(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 2 November 2006 (02.11,2006) (10) International Publication Number WO 2006/116127 A2

(51) International Patent Classification: *C12Q 1/68* (2006.01)

(21) International Application Number:

PCT/US2006/015160

(22) International Filing Date: 21 April 2006 (21.04.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 60/674,118
 21 April 2005 (21.04.2005)
 US

 60/705,631
 3 August 2005 (03.08.2005)
 US

 60/732,539
 1 November 2005 (01.11.2005)
 US

 60/773,124
 13 February 2006 (13.02.2006)
 US

(71) Applicant (for all designated States except US): ISIS PHARMACEUTICALS, INC. [US/US]; 1896 Rutherford Rd., Carlsbad, California 92008 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SAMPATH, Rangarajan [US/US]; 12223 Mannix Road, San Diego, California 92129 (US). HALL, Thomas, A. [US/US]; 5239 Wohlford St., Oceanside, California 92056 (US). ESHOO, Mark, W. [US/US]; 615 Glenmont Dr., Solana Beach, California 92075 (US).

- (74) Agents: CASIMIR, David et al.; Medlen & Carroll, 101 Howard Street, Suite 350, San Francisco, CA 94105 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

(57) Abstract: The present invention provides compositions, kits and methods for rapid identification and quantification of bacteria by molecular mass and base composition analysis.

COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

STATEMENT OF GOVERNMENT SUPPORT

[01] This invention was made with United States Government support under CDC contract RO1 CI000099-01. The United States Government has certain rights in the invention.

FIELD OF THE INVENTION

[02] The present invention provides compositions, kits and methods for rapid identification and quantification of bacteria by molecular mass and base composition analysis.

BACKGROUND OF THE INVENTION

- [03] A problem in determining the cause of a natural infectious outbreak or a bioterrorist attack is the sheer variety of organisms that can cause human disease. There are over 1400 organisms infectious to humans; many of these have the potential to emerge suddenly in a natural epidemic or to be used in a malicious attack by bioterrorists (Taylor et al. Philos. Trans. R. Soc. London B. Biol. Sci., 2001, 356, 983-989). This number does not include numerous strain variants, bioengineered versions, or pathogens that infect plants or animals.
- Much of the new technology being developed for detection of biological weapons incorporates a polymerase chain reaction (PCR) step based upon the use of highly specific primers and probes designed to selectively detect certain pathogenic organisms. Although this approach is appropriate for the most obvious bioterrorist organisms, like smallpox and anthrax, experience has shown that it is very difficult to predict which of hundreds of possible pathogenic organisms might be employed in a terrorist attack. Likewise, naturally emerging human disease that has caused devastating consequence in public health has come from unexpected families of bacteria, viruses, fungi, or protozoa. Plants and animals also have their natural burden of infectious disease agents and there are equally important biosafety and security concerns for agriculture.
- [05] A major conundrum in public health protection, biodefense, and agricultural safety and security is that these disciplines need to be able to rapidly identify and characterize infectious agents, while there is no existing technology with the breadth of function to meet this need. Currently used methods for identification of bacteria rely upon culturing the bacterium to effect isolation from other

organisms and to obtain sufficient quantities of nucleic acid followed by sequencing of the nucleic acid, both processes which are time and labor intensive.

- [06] Mass spectrometry provides detailed information about the molecules being analyzed, including high mass accuracy. It is also a process that can be easily automated. DNA chips with specific probes can only determine the presence or absence of specifically anticipated organisms. Because there are hundreds of thousands of species of benign bacteria, some very similar in sequence to threat organisms, even arrays with 10,000 probes lack the breadth needed to identify a particular organism.
- [07] The present invention provides oligonucleotide primers and compositions and kits containing the oligonucleotide primers, which define bacterial bioagent identifying amplicant and, upon amplification, produce corresponding amplification products whose molecular masses provide the means to identify bacteria, for example, at and below the species taxonomic level.

SUMMARY OF THE INVENTION

- [08] The present invention provides compositions, kits and methods for rapid identification and quantification of bacteria by molecular mass and base composition analysis.
- [09] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456.
- [10] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEO ID NO: 1261.
- Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1261.
- One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 288.
- [13] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1269.

[14] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 288 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1269.

- [15] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 698.
- [16] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1420.
- [17] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 698 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1420.
- [18] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 217.
- [19] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEO ID NO: 1167
- [20] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 217 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1167.
- [21] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 399.
- [22] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1041.
- [23] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 399 and an

oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1041.

- [24] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 430.
- [25] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1321.
- [26] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 430 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1321.
- [27] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 174.
- [28] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEO ID NO: 853.
- [29] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 174 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 853.
- [30] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 172.
- [31] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1360.
- [32] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 172 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1360.

[33] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1261.

- Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1261 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 288:1269, 698:1420, 217:1167, 399:1041, 430:1321, 174:853, and 172:1360.
- [35] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681.
- [36] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022.
- [37] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022.
- One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 315.
- [39] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1379.
- [40] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 315 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1379.

[41] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 346.

- [42] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 955.
- [43] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 346 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 955.
- One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 504.
- [45] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1409.
- [46] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 504 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1409.
- [47] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 323.
- [48] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1068.
- [49] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 323 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1068.
- [50] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 479.

[51] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 938.

- [52] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 479 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 938.
- [53] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022.
- Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 315:1379, 346:955, 504:1409, 323:1068, 479:938.
- [55] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 583.
- [56] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 923.
- [57] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 583 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 923.
- [58] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 454.

[59] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1418.

- [60] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 454 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1418.
- [61] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 250.
- [62] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 902.
- [63] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 250 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 902.
- [64] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 384.
- [65] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 878.
- Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 384 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 878.
- [67] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 694.
- [68] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1215.

[69] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 694 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1215.

- [70] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 194.
- [71] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1173.
- Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 194 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1173.
- [73] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 375.
- [74] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 890.
- [75] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 375 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 890.
- [76] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 656.
- [77] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1224.
- [78] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID

NO: 656 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1224.

- [79] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 618.
- [80] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1157.
- [81] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 618 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1157.
- [82] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 302.
- [83] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 852.
- [84] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 302 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 852.
- [85] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 199.
- [86] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 889.
- [87] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 199 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 889.

[88] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 596.

- [89] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1169.
- [90] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 596 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1169.
- [91] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 150.
- [92] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1242.
- [93] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 150 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1242.
- [94] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166.
- [95] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1069.
- [96] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1069.
- [97] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166.

[98] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1168.

- [99] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1168.
- Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 583 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 923 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 454:1418, 250:902, 384:878, 694:1215, 194:1173, 375:890, 656:1224, 618:1157, 302:852, 199:889, 596:1169, 150:1242, 166:1069 and 166:1168.
- [101] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 437.
- [102] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1137.
- [103] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 437 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1137.
- [104] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 530.
- [105] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 891.
- [106] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID

NO: 530 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 891.

- [107] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 474.
- [108] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 869.
- [109] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 474 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 869.
- [110] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 268.
- [111] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1284.
- [112] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 268 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1284.
- [113] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 418.
- [114] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1301.
- [115] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 418 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1301.

[116] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 318.

- [117] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1300.
- [118] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 318 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1300.
- [119] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 440.
- [120] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1076.
- [121] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 440 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1076.
- [122] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 219.
- [123] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1013.
- [124] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 219 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1013.
- [125] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 437 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence

identity with SEQ ID NO: 1137 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 530:891, 474:869, 268:1284, 418:1301, 318:1300, 440:1076 and 219:1013.

- [126] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 325.
- [127] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1163.
- [128] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 325 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1163.
- [129] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 278.
- [130] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1039.
- [131] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 278 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1039.
- [132] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 465.
- [133] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1037.
- [134] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID

NO: 465 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1037.

- [135] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 148.
- [136] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1172.
- [137] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 148 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1172.
- [138] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 190.
- [139] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1254.
- [140] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 190 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1254.
- [141] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 266.
- [142] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1094.
- [143] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 266 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1094.

[144] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 508.

- [145] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1297.
- [146] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 508 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1297.
- One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 259.
- [148] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1060.
- [149] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 259 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1060.
- [150] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 325 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1163 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 278:1039: 465:1037, 148:1172, 190:1254, 266:1094, 508:1297 and 259:1060.
- [151] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 376.
- [152] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1265.

[153] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 376 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1265.

- One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 267.
- [155] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1341.
- [156] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 267 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1341.
- One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 705.
- [158] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1056.
- [159] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 705 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1056.
- [160] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 710.
- [161] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1259.
- [162] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID

NO: 710 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1259.

- [163] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 374.
- [164] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1111.
- [165] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 374 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1111.
- [166] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 545.
- [167] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 978.
- [168] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 545 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 978.
- [169] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 249.
- [170] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1095.
- [171] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 249 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1095.

[172] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 195.

- [173] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1376.
- [174] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 195 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1376.
- [175] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 311.
- [176] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1014.
- [177] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 311 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1014.
- [178] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 365.
- [179] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1052.
- [180] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 365 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1052.
- [181] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 527.

[182] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1071.

- [183] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 527 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1071.
- [184] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 490.
- [185] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1182.
- [186] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 490 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1182.
- [187] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 376 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1265 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 267:1341, 705:1056, 710:1259, 374:1111, 545:978, 249:1095, 195:1376, 311:1014, 365:1052, 527:1071 and 490:1182.
- [188] In some embodiments, either or both of the primers of a primer pair composition contain at least one modified nucleobase such as 5-propynyluracil or 5-propynylcytosine for example.
- [189] In some embodiments, either or both of the primers of the primer pair comprises at least one universal nucleobase such as inosine for example.
- [190] In some embodiments, either or both of the primers of the primer pair comprises at least one non-templated T residue on the 5'-end.

[191] In some embodiments, either or both of the primers of the primer pair comprises at least one non-template tag.

- [192] In some embodiments, either or both of the primers of the primer pair comprises at least one molecular mass modifying tag.
- [193] In some embodiments, the present invention provides primers and compositions comprising pairs of primers, and kits containing the same, and methods for use in identification of bacteria. The primers are designed to produce amplification products of DNA encoding genes that have conserved and variable regions across different subgroups and genotypes of bacteria.
- [194] Some embodiments are kits that contain one or more of the primer pair compositions. In some embodiments, each member of the one or more primer pairs of the kit is of a length of 14 to 35 . nucleobases and has 70% to 100% sequence identity with the corresponding member from any of the primer pairs listed in Table 2.
- [195] Some embodiments of the kits contain at least one calibration polynucleotide for use in quantitiation of bacteria in a given sample, and also for use as a positive control for amplification.
- [196] Some embodiments of the kits contain at least one anion exchange functional group linked to a magnetic bead.
- In some embodiments, the present invention also provides methods for identification of bacteria. Nucleic acid from the bacterium is amplified using the primers described above to obtain an amplification product. The molecular mass of the amplification product is measured. Optionally, the base composition of the amplification product is determined from the molecular mass. The molecular mass or base composition is compared with a plurality of molecular masses or base compositions of known analogous bacterial identifying amplicons, wherein a match between the molecular mass or base composition and a member of the plurality of molecular masses or base compositions identifies the bacterium. In some embodiments, the molecular mass is measured by mass spectrometry in a modality such as electrospray ionization (ESI) time of flight (TOF) mass spectrometry or ESI Fourier transform ion cyclotron resonance (FTICR) mass spectrometry, for example. Other mass spectrometry techniques can also be used to measure the molecular mass of bacterial bioagent identifying amplicons.

In some embodiments, the present invention is also directed to a method for determining the presence or absence of a bacterium in a sample. Nucleic acid from the sample is amplified using the composition described above to obtain an amplification product. The molecular mass of the amplification product is determined. Optionally, the base composition of the amplification product is determined from the molecular mass. The molecular mass or base composition of the amplification product is compared with the known molecular masses or base compositions of one or more known analogous bacterial bioagent identifying amplicons, wherein a match between the molecular mass or base composition of the amplification product and the molecular mass or base composition of one or more known bacterial bioagent identifying amplicons indicates the presence of the bacterium in the sample. In some embodiments, the molecular mass is measured by mass spectrometry.

In some embodiments, the present invention also provides methods for determination of the quantity of an unknown bacterium in a sample. The sample is contacted with the composition described above and a known quantity of a calibration polynucleotide comprising a calibration sequence. Nucleic acid from the unknown bacterium in the sample is concurrently amplified with the composition described above and nucleic acid from the calibration polynucleotide in the sample is concurrently amplified with the composition described above to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon. The molecular masses and abundances for the bacterial bioagent identifying amplicon and the calibration amplicon are determined. The bacterial bioagent identifying amplicon is distinguished from the calibration amplicon based on molecular mass and comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in the sample. In some embodiments, the base composition of the bacterial bioagent identifying amplicon is determined.

[200] In some embodiments, the present invention provides methods for detecting or quantifying bacteria by combining a nucleic acid amplification process with a mass determination process. In some embodiments, such methods identify or otherwise analyze the bacterium by comparing mass information from an amplification product with a calibration or control product. Such methods can be carried out in a highly multiplexed and/or parallel manner allowing for the analysis of as many as 300 samples per 24 hours on a single mass measurement platform. The accuracy of the mass determination methods in some embodiments of the present invention permits allows for the ability to discriminate between different bacteria such as, for example, various genotypes and drug resistant strains of *Staphylococcus aureus*.

BRIEF DESCRIPTION OF THE DRAWINGS

[201] The foregoing summary of the invention, as well as the following detailed description of the invention, is better understood when read in conjunction with the accompanying drawings which are included by way of example and not by way of limitation.

- [202] Figure 1: process diagram illustrating a representative primer pair selection process.
- [203] Figure 2: process diagram illustrating an embodiment of the calibration method.
- [204] Figure 3: common pathogenic bacteria and primer pair coverage. The primer pair number in the upper right hand corner of each polygon indicates that the primer pair can produce a bioagent identifying amplicon for all species within that polygon.
- [205] Figure 4: a representative 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples (labeled NHRC samples) closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.
- [206] Figure 5: a representative mass spectrum of amplification products indicating the presence of bioagent identifying amplicons of *Streptococcus pyogenes*, *Neisseria* meningitidis, and *Haemophilus influenzae* obtained from amplification of nucleic acid from a clinical sample with primer pair number 349 which targets 23S rRNA. Experimentally determined molecular masses and base compositions for the sense strand of each amplification product are shown.
- [207] Figure 6: a representative mass spectrum of amplification products representing a bioagent identifying amplicon of *Streptococcus pyogenes*, and a calibration amplicon obtained from amplification of nucleic acid from a clinical sample with primer pair number 356 which targets rplB. The experimentally determined molecular mass and base composition for the sense strand of the *Streptococcus pyogenes* amplification product is shown.
- [208] Figure 7: a representative mass spectrum of an amplified nucleic acid mixture which contained the Ames strain of *Bacillus anthracis*, a known quantity of combination calibration polynucleotide (SEQ ID NO: 1464), and primer pair number 350 which targets the capC gene on

the virulence plasmid pX02 of *Bacillus anthracis*. Calibration amplicons produced in the amplification reaction are visible in the mass spectrum as indicated and abundance data (peak height) are used to calculate the quantity of the Ames strain of *Bacillus anthracis*.

DEFINITIONS

[209] As used herein, the term "abundance" refers to an amount. The amount may be described in terms of concentration which are common in molecular biology such as "copy number," "pfu or plate-forming unit" which are well known to those with ordinary skill. Concentration may be relative to a known standard or may be absolute.

[210] As used herein, the term "amplifiable nucleic acid" is used in reference to nucleic acids that may be amplified by any amplification method. It is contemplated that "amplifiable nucleic acid" also comprises "sample template."

[211] As used herein the term "amplification" refers to a special case of nucleic acid replication involving template specificity. It is to be contrasted with non-specific template replication (i.e., replication that is template-dependent but not dependent on a specific template). Template specificity is here distinguished from fidelity of replication (i.e., synthesis of the proper polynucleotide sequence) and nucleotide (ribo- or deoxyribo-) specificity. Template specificity is frequently described in terms of "target" specificity. Target sequences are "targets" in the sense that they are sought to be sorted out from other nucleic acid. Amplification techniques have been designed primarily for this sorting out. Template specificity is achieved in most amplification techniques by the choice of enzyme. Amplification enzymes are enzymes that, under conditions they are used, will process only specific sequences of nucleic acid in a heterogeneous mixture of nucleic acid. For example, in the case of QB replicase, MDV-1 RNA is the specific template for the replicase (D.L. Kacian et al., Proc. Natl. Acad. Sci. USA 69:3038 [1972]). Other nucleic acid will not be replicated by this amplification enzyme. Similarly, in the case of T7 RNA polymerase, this amplification enzyme has a stringent specificity for its own promoters (Chamberlin et al., Nature 228:227 [1970]). In the case of T4 DNA ligase, the enzyme will not ligate the two oligonucleotides or polynucleotides, where there is a mismatch between the oligonucleotide or polynucleotide substrate and the template at the ligation junction (D.Y. Wu and R. B. Wallace, Genomics 4:560 [1989]). Finally, Tag and Pfu polymerases, by virtue of their ability to function at high temperature, are found to display high specificity for the sequences bounded and thus defined by the primers; the high temperature results in thermodynamic conditions that favor primer hybridization with the target sequences and not hybridization with non-target sequences (H.A. Erlich (ed.), PCR Technology, Stockton Press [1989]).

[212] As used herein, the term "amplification reagents" refers to those reagents (deoxyribonucleotide triphosphates, buffer, etc.), needed for amplification, excluding primers, nucleic acid template, and the amplification enzyme. Typically, amplification reagents along with other reaction components are placed and contained in a reaction vessel (test tube, microwell, etc.).

- [213] As used herein, the term "analogous" when used in context of comparison of bioagent identifying amplicons indicates that the bioagent identifying amplicons being compared are produced with the same pair of primers. For example, bioagent identifying amplicon "A" and bioagent identifying amplicon "B", produced with the same pair of primers are analogous with respect to each other. Bioagent identifying amplicon "C", produced with a different pair of primers is not analogous to either bioagent identifying amplicon "A" or bioagent identifying amplicon "B".
- [214] As used herein, the term "anion exchange functional group" refers to a positively charged functional group capable of binding an anion through an electrostatic interaction. The most well known anion exchange functional groups are the amines, including primary, secondary, tertiary and quaternary amines.
- [215] The term "bacteria" or "bacterium" refers to any member of the groups of eubacteria and archaebacteria.
- [216] As used herein, a "base composition" is the exact number of each nucleobase (for example, A, T, C and G) in a segment of nucleic acid. For example, amplification of nucleic acid of *Staphylococcus aureus* strain carrying the lukS-PV gene with primer pair number 2095 (SEQ ID NOs: 456:1261) produces an amplification product 117 nucleobases in length from nucleic acid of the lukS-PV gene that has a base composition of A35 G17 C19 T46 (by convention with reference to the sense strand of the amplification product). Because the molecular masses of each of the four natural nucleotides and chemical modifications thereof are known (if applicable), a measured molecular mass can be deconvoluted to a list of possible base compositions. Identification of a base composition of a sense strand which is complementary to the corresponding antisense strand in terms of base composition provides a confirmation of the true base composition of an unknown amplification product. For example, the base composition of the antisense strand of the 139 nucleobase amplification product described above is A46 G19 C17 T35.
- [217] As used herein, a "base composition probability cloud" is a representation of the diversity in base composition resulting from a variation in sequence that occurs among different isolates of a given

species. The "base composition probability cloud" represents the base composition constraints for each species and is typically visualized using a pseudo four-dimensional plot.

- [218] In the context of this invention, a "bioagent" is any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus. Examples of bioagents include, but are not limited, to cells, (including but not limited to human clinical samples, bacterial cells and other pathogens), viruses, fungi, protists, parasites, and pathogenicity markers (including but not limited to: pathogenicity islands, antibiotic resistance genes, virulence factors, toxin genes and other bioregulating compounds). Samples may be alive or dead or in a vegetative state (for example, vegetative bacteria or spores) and may be encapsulated or bioengineered. In the context of this invention, a "pathogen" is a bioagent which causes a disease or disorder.
- [219] As used herein, a "bioagent division" is defined as group of bioagents above the species level and includes but is not limited to, orders, families, classes, clades, genera or other such groupings of bioagents above the species level.
- [220] As used herein, the term "bioagent identifying amplicon" refers to a polynucleotide that is amplified from a bioagent in an amplification reaction and which 1) provides sufficient variability to distinguish among bioagents from whose nucleic acid the bioagent identifying amplicon is produced and 2) whose molecular mass is amenable to a rapid and convenient molecular mass determination modality such as mass spectrometry, for example.
- [221] As used herein, the term "biological product" refers to any product originating from an organism. Biological products are often products of processes of biotechnology. Examples of biological products include, but are not limited to: cultured cell lines, cellular components, antibodies, proteins and other cell-derived biomolecules, growth media, growth harvest fluids, natural products and biopharmaceutical products.
- [222] The terms "biowarfare agent" and "bioweapon" are synonymous and refer to a bacterium, virus, fungus or protozoan that could be deployed as a weapon to cause bodily harm to individuals. Military or terrorist groups may be implicated in deployment of biowarfare agents.
- [223] In context of this invention, the term "broad range survey primer pair" refers to a primer pair designed to produce bioagent identifying amplicons across different broad groupings of bioagents. For example, the ribosomal RNA-targeted primer pairs are broad range survey primer pairs which have the capability of producing bacterial bioagent identifying amplicons for essentially all known bacteria. With

respect to broad range primer pairs employed for identification of bacteria, a broad range survey primer pair for bacteria such as 16S rRNA primer pair number 346 (SEQ ID NOs: 202:1110) for example, will produce an bacterial bioagent identifying amplicon for essentially all known bacteria.

- [224] The term "calibration amplicon" refers to a nucleic acid segment representing an amplification product obtained by amplification of a calibration sequence with a pair of primers designed to produce a bioagent identifying amplicon.
- [225] The term "calibration sequence" refers to a polynucleotide sequence to which a given pair of primers hybridizes for the purpose of producing an internal (i.e. included in the reaction) calibration standard amplification product for use in determining the quantity of a bioagent in a sample. The calibration sequence may be expressly added to an amplification reaction, or may already be present in the sample prior to analysis.
- [226] The term "clade primer pair" refers to a primer pair designed to produce bioagent identifying amplicons for species belonging to a clade group. A clade primer pair may also be considered as a "speciating" primer pair which is useful for distinguishing among closely related species.
- [227] The term "codon" refers to a set of three adjoined nucleotides (triplet) that codes for an amino acid or a termination signal.
- [228] In context of this invention, the term "codon base composition analysis," refers to determination of the base composition of an individual codon by obtaining a bioagent identifying amplicon that includes the codon. The bioagent identifying amplicon will at least include regions of the target nucleic acid sequence to which the primers hybridize for generation of the bioagent identifying amplicon as well as the codon being analyzed, located between the two primer hybridization regions.
- [229] As used herein, the terms "complementary" or "complementarity" are used in reference to polynucleotides (i.e., a sequence of nucleotides such as an oligonucleotide or a target nucleic acid) related by the base-pairing rules. For example, for the sequence "5'-A-G-T-3'," is complementary to the sequence "3'-T-C-A-5'." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids. Either term may also be used in reference to individual nucleotides, especially within the

context of polynucleotides. For example, a particular nucleotide within an oligonucleotide may be noted for its complementarity, or lack thereof, to a nucleotide within another nucleic acid strand, in contrast or comparison to the complementarity between the rest of the oligonucleotide and the nucleic acid strand.

- [230] The term "complement of a nucleic acid sequence" as used herein refers to an oligonucleotide which, when aligned with the nucleic acid sequence such that the 5' end of one sequence is paired with the 3' end of the other, is in "antiparallel association." Certain bases not commonly found in natural nucleic acids may be included in the nucleic acids of the present invention and include, for example, inosine and 7-deazaguanine. Complementarity need not be perfect; stable duplexes may contain mismatched base pairs or unmatched bases. Those skilled in the art of nucleic acid technology can determine duplex stability empirically considering a number of variables including, for example, the length of the oligonucleotide, base composition and sequence of the oligonucleotide, ionic strength and incidence of mismatched base pairs. Where a first oligonucleotide is complementary to a region of a target nucleic acid and a second oligonucleotide has complementary to the same region (or a portion of this region) a "region of overlap" exists along the target nucleic acid. The degree of overlap will vary depending upon the extent of the complementarity.
- [231] In context of this invention, the term "division-wide primer pair" refers to a primer pair designed to produce bioagent identifying amplicons within sections of a broader spectrum of bioagents For example, primer pair number 352 (SEQ ID NOs: 687:1411), a division-wide primer pair, is designed to produce bacterial bioagent identifying amplicons for members of the Bacillus group of bacteria which comprises, for example, members of the genera *Streptococci*, *Enterococci*, and *Staphylococci*. Other division-wide primer pairs may be used to produce bacterial bioagent identifying amplicons for other groups of bacterial bioagents.
- [232] As used herein, the term "concurrently amplifying" used with respect to more than one amplification reaction refers to the act of simultaneously amplifying more than one nucleic acid in a single reaction mixture.
- [233] As used herein, the term "drill-down primer pair" refers to a primer pair designed to produce bioagent identifying amplicons for identification of sub-species characteristics or confirmation of a species assignment. For example, primer pair number 2146 (SEQ ID NOs: 437:1137), a drill-down Staphylococcus aureus genotyping primer pair, is designed to produce Staphylococcus aureus genotyping amplicons. Other drill-down primer pairs may be used to produce bioagent identifying amplicons for Staphylococcus aureus and other bacterial species.

[234] The term "duplex" refers to the state of nucleic acids in which the base portions of the nucleotides on one strand are bound through hydrogen bonding the their complementary bases arrayed on a second strand. The condition of being in a duplex form reflects on the state of the bases of a nucleic acid. By virtue of base pairing, the strands of nucleic acid also generally assume the tertiary structure of a double helix, having a major and a minor groove. The assumption of the helical form is implicit in the act of becoming duplexed.

- [235] As used herein, the term "etiology" refers to the causes or origins, of diseases or abnormal physiological conditions.
- [236] The term "gene" refers to a DNA sequence that comprises control and coding sequences necessary for the production of an RNA having a non-coding function (e.g., a ribosomal or transfer RNA), a polypeptide or a precursor. The RNA or polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or function is retained.
- The terms "homology," "homologous" and "sequence identity" refer to a degree of identity. [237] There may be partial homology or complete homology. A partially homologous sequence is one that is less than 100% identical to another sequence. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is otherwise identical to another 20 nucleobase primer but having two non-identical residues has 18 of 20 identical residues (18/20 = 0.9 or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of a primer 20 nucleobases in length would have 15/20 = 0.75 or 75% sequence identity with the 20 nucleobase primer. In context of the present invention, sequence identity is meant to be properly determined when the query sequence and the subject sequence are both described and aligned in the 5' to 3' direction. Sequence alignment algorithms such as BLAST, will return results in two different alignment orientations. In the Plus/Plus orientation, both the query sequence and the subject sequence are aligned in the 5' to 3' direction. On the other hand, in the Plus/Minus orientation, the query sequence is in the 5' to 3' direction while the subject sequence is in the 3' to 5' direction. It should be understood that with respect to the primers of the present invention, sequence identity is properly determined when the alignment is designated as Plus/Plus. Sequence identity may also encompass alternate or modified nucleobases that perform in a functionally similar manner to the regular nucleobases adenine, thymine, guanine and cytosine with respect to hybridization and primer extension in amplification reactions. In a non-limiting example, if the 5-propynyl pyrimidines propyne C and/or propyne T replace one or more C or T residues in one primer which is otherwise identical to another primer in sequence and length, the two primers will have 100% sequence identity with each other. In another non-limiting example, Inosine (I) may be used as a replacement for G or T and effectively

hybridize to C, A or U (uracil). Thus, if inosine replaces one or more C, A or U residues in one primer which is otherwise identical to another primer in sequence and length, the two primers will have 100% sequence identity with each other. Other such modified or universal bases may exist which would perform in a functionally similar manner for hybridization and amplification reactions and will be understood to fall within this definition of sequence identity.

- [238] As used herein, "housekeeping gene" refers to a gene encoding a protein or RNA involved in basic functions required for survival and reproduction of a bioagent. Housekeeping genes include, but are not limited to genes encoding RNA or proteins involved in translation, replication, recombination and repair, transcription, nucleotide metabolism, amino acid metabolism, lipid metabolism, energy generation, uptake, secretion and the like.
- [239] As used herein, the term "hybridization" is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is influenced by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, and the T_m of the formed hybrid. "Hybridization" methods involve the annealing of one nucleic acid to another, complementary nucleic acid, i.e., a nucleic acid having a complementary nucleotide sequence. The ability of two polymers of nucleic acid containing complementary sequences to find each other and anneal through base pairing interaction is a well-recognized phenomenon. The initial observations of the "hybridization" process by Marmur and Lane, Proc. Natl. Acad. Sci. USA 46:453 (1960) and Doty et al., Proc. Natl. Acad. Sci. USA 46:461 (1960) have been followed by the refinement of this process into an essential tool of modem biology.
- [240] The term "in silico" refers to processes taking place via computer calculations. For example, electronic PCR (ePCR) is a process analogous to ordinary PCR except that it is carried out using nucleic acid sequences and primer pair sequences stored on a computer formatted medium.
- [241] As used herein, "intelligent primers" are primers that are designed to bind to highly conserved sequence regions of a bioagent identifying amplicon that flank an intervening variable region and, upon amplification, yield amplification products which ideally provide enough variability to distinguish individual bioagents, and which are amenable to molecular mass analysis. By the term "highly conserved," it is meant that the sequence regions exhibit between about 80-100%, or between about 90-100%, or between about 95-100% identity among all, or at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% of species or strains.

[242] The "ligase chain reaction" (LCR; sometimes referred to as "Ligase Amplification Reaction" (LAR) described by Barany, Proc. Natl. Acad. Sci., 88:189 (1991); Barany, PCR Methods and Applic., 1:5 (1991); and Wu and Wallace, Genomics 4:560 (1989) has developed into a well-recognized alternative method for amplifying nucleic acids. In LCR, four oligonucleotides, two adjacent oligonucleotides which uniquely hybridize to one strand of target DNA, and a complementary set of adjacent oligonucleotides, that hybridize to the opposite strand are mixed and DNA ligase is added to the mixture. Provided that there is complete complementarity at the junction, ligase will covalently link each set of hybridized molecules. Importantly, in LCR, two probes are ligated together only when they basepair with sequences in the target sample, without gaps or mismatches. Repeated cycles of denaturation, hybridization and ligation amplify a short segment of DNA. LCR has also been used in combination with PCR to achieve enhanced detection of single-base changes. However, because the four oligonucleotides used in this assay can pair to form two short ligatable fragments, there is the potential for the generation of target-independent background signal. The use of LCR for mutant screening is limited to the examination of specific nucleic acid positions.

- [243] The term "locked nucleic acid" or "LNA" refers to a nucleic acid analogue containing one or more 2'-O, 4'-C-methylene-β-D-ribofuranosyl nucleotide monomers in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The primers of the present invention may contain LNA modifications.
- [244] As used herein, the term "mass-modifying tag" refers to any modification to a given nucleotide which results in an increase in mass relative to the analogous non-mass modified nucleotide. Mass-modifying tags can include heavy isotopes of one or more elements included in the nucleotide such as carbon-13 for example. Other possible modifications include addition of substituents such as iodine or bromine at the 5 position of the nucleobase for example.
- [245] The term "mass spectrometry" refers to measurement of the mass of atoms or molecules. The molecules are first converted to ions, which are separated using electric or magnetic fields according to the ratio of their mass to electric charge. The measured masses are used to identity the molecules.
- [246] The term "microorganism" as used herein means an organism too small to be observed with the unaided eye and includes, but is not limited to bacteria, virus, protozoans, fungi; and ciliates.

[247] The term "multi-drug resistant" or multiple-drug resistant" refers to a microorganism which is resistant to more than one of the antibiotics or antimicrobial agents used in the treatment of said microorganism.

- [248] The term "multiplex PCR" refers to a PCR reaction where more than one primer set is included in the reaction pool allowing 2 or more different DNA targets to be amplified by PCR in a single reaction tube.
- [249] The term "non-template tag" refers to a stretch of at least three guanine or cytosine nucleobases of a primer used to produce a bioagent identifying amplicon which are not complementary to the template. A non-template tag is incorporated into a primer for the purpose of increasing the primer-duplex stability of later cycles of amplification by incorporation of extra G-C pairs which each have one additional hydrogen bond relative to an A-T pair.
- [250] The term "nucleic acid sequence" as used herein refers to the linear composition of the nucleic acid residues A, T, C or G or any modifications thereof, within an oligonucleotide, nucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single or double stranded, and represent the sense or antisense strand
- [251] As used herein, the term "nucleobase" is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide residue," "nucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dNTP).
- [252] The term "nucleotide analog" as used herein refers to modified or non-naturally occurring nucleotides such as 5-propynyl pyrimidines (i.e., 5-propynyl-dTTP and 5-propynyl-dTCP), 7-deaza purines (i.e., 7-deaza-dATP and 7-deaza-dGTP). Nucleotide analogs include base analogs and comprise modified forms of deoxyribonucleotides as well as ribonucleotides.
- [253] The term "oligonucleotide" as used herein is defined as a molecule comprising two or more deoxyribonucleotides or ribonucleotides, preferably at least 5 nucleotides, more preferably at least about 13 to 35 nucleotides. The exact size will depend on many factors, which in turn depend on the ultimate function or use of the oligonucleotide. The oligonucleotide may be generated in any manner, including chemical synthesis, DNA replication, reverse transcription, PCR, or a combination thereof. Because mononucleotides are reacted to make oligonucleotides in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a phosphodiester linkage, an end of an oligonucleotide is referred to as the "5'-end" if its 5' phosphate is not

linked to the 3' oxygen of a mononucleotide pentose ring and as the "3'-end" if its 3' oxygen is not linked to a 5' phosphate of a subsequent mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5' and 3' ends. A first region along a nucleic acid strand is said to be upstream of another region if the 3' end of the first region is before the 5' end of the second region when moving along a strand of nucleic acid in a 5' to 3' direction. All oligonucleotide primers disclosed herein are understood to be presented in the 5' to 3' direction when reading left to right. When two different, non-overlapping oligonucleotides anneal to different regions of the same linear complementary nucleic acid sequence, and the 3' end of one oligonucleotide points towards the 5' end of the other, the former may be called the "upstream" oligonucleotide and the latter the "downstream" oligonucleotide. Similarly, when two overlapping oligonucleotides are hybridized to the same linear complementary nucleic acid sequence, with the first oligonucleotide positioned such that its 5' end is upstream of the 5' end of the second oligonucleotide, and the 3' end of the first oligonucleotide is upstream of the 5' end of the second oligonucleotide, the first oligonucleotide may be called the "upstream" oligonucleotide and the second oligonucleotide may be called the "downstream" oligonucleotide and the second oligonucleotide may be called the "downstream" oligonucleotide.

- [254] In the context of this invention, a "pathogen" is a bioagent which causes a disease or disorder.
- [255] As used herein, the terms "PCR product," "PCR fragment," and "amplification product" refer to the resultant mixture of compounds after two or more cycles of the PCR steps of denaturation, annealing and extension are complete. These terms encompass the case where there has been amplification of one or more segments of one or more target sequences.
- [256] The term "peptide nucleic acid" ("PNA") as used herein refers to a molecule comprising bases or base analogs such as would be found in natural nucleic acid, but attached to a peptide backbone rather than the sugar-phosphate backbone typical of nucleic acids. The attachment of the bases to the peptide is such as to allow the bases to base pair with complementary bases of nucleic acid in a manner similar to that of an oligonucleotide. These small molecules, also designated anti gene agents, stop transcript elongation by binding to their complementary strand of nucleic acid (Nielsen, et al. Anticancer Drug Des. 8:53 63). The primers of the present invention may comprise PNAs.
- [257] The term "polymerase" refers to an enzyme having the ability to synthesize a complementary strand of nucleic acid from a starting template nucleic acid strand and free dNTPs.
- [258] As used herein, the term "polymerase chain reaction" ("PCR") refers to the method of K.B. Mullis U.S. Patent Nos. 4,683,195, 4,683,202, and 4,965,188, hereby incorporated by reference, that

describe a method for increasing the concentration of a segment of a target sequence in a mixture of genomic DNA without cloning or purification. This process for amplifying the target sequence consists of introducing a large excess of two oligonucleotide primers to the DNA mixture containing the desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The two primers are complementary to their respective strands of the double stranded target sequence. To effect amplification, the mixture is denatured and the primers then annealed to their complementary sequences within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer annealing, and polymerase extension can be repeated many times (i.e., denaturation, annealing and extension constitute one "cycle"; there can be numerous "cycles") to obtain a high concentration of an amplified segment of the desired target sequence. The length of the amplified segment of the desired target sequence is determined by the relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. By virtue of the repeating aspect of the process, the method is referred to as the "polymerase chain reaction" (hereinafter "PCR"). Because the desired amplified segments of the target sequence become the predominant sequences (in terms of concentration) in the mixture, they are said to be "PCR amplified." With PCR, it is possible to amplify a single copy of a specific target sequence in genomic DNA to a level detectable by several different methodologies (e.g., hybridization with a labeled probe; incorporation of biotinylated primers followed by avidin-enzyme conjugate detection; incorporation of 32P-labeled deoxynucleotide triphosphates, such as dCTP or dATP, into the amplified segment). In addition to genomic DNA, any oligonucleotide or polynucleotide sequence can be amplified with the appropriate set of primer molecules. In particular, the amplified segments created by the PCR process itself are, themselves, efficient templates for subsequent PCR amplifications.

[259] The term "polymerization means" or "polymerization agent" refers to any agent capable of facilitating the addition of nucleoside triphosphates to an oligonucleotide. Preferred polymerization means comprise DNA and RNA polymerases.

[260] As used herein, the terms "pair of primers," or "primer pair" are synonymous. A primer pair is used for amplification of a nucleic acid sequence. A pair of primers comprises a forward primer and a reverse primer. The forward primer hybridizes to a sense strand of a target gene sequence to be amplified and primes synthesis of an antisense strand (complementary to the sense strand) using the target sequence as a template. A reverse primer hybridizes to the antisense strand of a target gene sequence to be amplified and primes synthesis of a sense strand (complementary to the antisense strand) using the target sequence as a template.

[261] The primers are designed to bind to highly conserved sequence regions of a bioagent identifying amplicon that flank an intervening variable region and yield amplification products which ideally provide enough variability to distinguish each individual bioagent, and which are amenable to molecular mass analysis. In some embodiments, the highly conserved sequence regions exhibit between about 80-100%, or between about 90-100%, or between about 95-100% identity, or between about 99-100% identity. The molecular mass of a given amplification product provides a means of identifying the bioagent from which it was obtained, due to the variability of the variable region. Thus design of the primers requires selection of a variable region with appropriate variability to resolve the identity of a given bioagent. Bioagent identifying amplicons are ideally specific to the identity of the bioagent.

- [262] Properties of the primers may include any number of properties related to structure including, but not limited to: nucleobase length which may be contiguous (linked together) or non-contiguous (for example, two or more contiguous segments which are joined by a linker or loop moiety), modified or universal nucleobases (used for specific purposes such as for example, increasing hybridization affinity, preventing non-templated adenylation and modifying molecular mass) percent complementarity to a given target sequences.
- [263] Properties of the primers also include functional features including, but not limited to, orientation of hybridization (forward or reverse) relative to a nucleic acid template. The coding or sense strand is the strand to which the forward priming primer hybridizes (forward priming orientation) while the reverse priming primer hybridizes to the non-coding or antisense strand (reverse priming orientation). The functional properties of a given primer pair also include the generic template nucleic acid to which the primer pair hybridizes. For example, identification of bioagents can be accomplished at different levels using primers suited to resolution of each individual level of identification. Broad range survey primers are designed with the objective of identifying a bioagent as a member of a particular division (e.g., an order, family, genus or other such grouping of bioagents above the species level of bioagents). In some embodiments, broad range survey intelligent primers are capable of identification of bioagents at the species or sub-species level. Other primers may have the functionality of producing bioagent identifying amplicons for members of a given taxonomic genus, clade, species, sub-species or genotype (including genetic variants which may include presence of virulence genes or antibiotic resistance genes or mutations). Additional functional properties of primer pairs include the functionality of performing amplification either singly (single primer pair per amplification reaction vessel) or in a multiplex fashion (multiple primer pairs and multiple amplification reactions within a single reaction vessel).
- As used herein, the terms "purified" or "substantially purified" refer to molecules, either nucleic or amino acid sequences, that are removed from their natural environment, isolated or separated,

and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated. An "isolated polynucleotide" or "isolated oligonucleotide" is therefore a substantially purified polynucleotide.

- [265] The term "reverse transcriptase" refers to an enzyme having the ability to transcribe DNA from an RNA template. This enzymatic activity is known as reverse transcriptase activity. Reverse transcriptase activity is desirable in order to obtain DNA from RNA viruses which can then be amplified and analyzed by the methods of the present invention.
- [266] The term "ribosomal RNA" or "rRNA" refers to the primary ribonucleic acid constituent of ribosomes. Ribosomes are the protein-manufacturing organelles of cells and exist in the cytoplasm. Ribosomal RNAs are transcribed from the DNA genes encoding them.
- [267] The term "sample" in the present specification and claims is used in its broadest sense. On the one hand it is meant to include a specimen or culture (e.g., microbiological cultures). On the other hand, it is meant to include both biological and environmental samples. A sample may include a specimen of synthetic origin. Biological samples may be animal, including human, fluid, solid (e.g., stool) or tissue, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste. Biological samples may be obtained from all of the various families of domestic animals, as well as feral or wild animals, including, but not limited to, such animals as ungulates, bear, fish, lagamorphs, rodents, etc. Environmental samples include environmental material such as surface matter, soil, water, air and industrial samples, as well as samples obtained from food and dairy processing instruments, apparatus, equipment, utensils, disposable and non-disposable items. These examples are not to be construed as limiting the sample types applicable to the present invention. The term "source of target nucleic acid" refers to any sample that contains nucleic acids (RNA or DNA). Particularly preferred sources of target nucleic acids are biological samples including, but not limited to blood, saliva, cerebral spinal fluid, pleural fluid, milk, lymph, sputurn and semen.
- [268] As used herein, the term "sample template" refers to nucleic acid originating from a sample that is analyzed for the presence of "target" (defined below). In contrast, "background template" is used in reference to nucleic acid other than sample template that may or may not be present in a sample. Background template is often a contaminant. It may be the result of carryover, or it may be due to the presence of nucleic acid contaminants sought to be purified away from the sample. For example, nucleic acids from organisms other than those to be detected may be present as background in a test sample.
- [269] A "segment" is defined herein as a region of nucleic acid within a target sequence.

The "self-sustained sequence replication reaction" (3SR) (Guatelli et al., Proc. Natl. Acad. Sci., 87:1874-1878 [1990], with an erratum at Proc. Natl. Acad. Sci., 87:7797 [1990]) is a transcription-based in vitro amplification system (Kwok et al., Proc. Natl. Acad. Sci., 86:1173-1177 [1989]) that can exponentially amplify RNA sequences at a uniform temperature. The amplified RNA can then be utilized for mutation detection (Fahy et al., PCR Meth. Appl., 1:25-33 [1991]). In this method, an oligonucleotide primer is used to add a phage RNA polymerase promoter to the 5' end of the sequence of interest. In a cocktail of enzymes and substrates that includes a second primer, reverse transcriptase, RNase H, RNA polymerase and ribo- and deoxyribonucleoside triphosphates, the target sequence undergoes repeated rounds of transcription, cDNA synthesis and second-strand synthesis to amplify the area of interest. The use of 3SR to detect mutations is kinetically limited to screening small segments of DNA (e.g., 200-300 base pairs).

- [271] As used herein, the term ""sequence alignment"" refers to a listing of multiple DNA or amino acid sequences and aligns them to highlight their similarities. The listings can be made using bioinformatics computer programs.
- [272] In context of this invention, the term "speciating primer pair" refers to a primer pair designed to produce a bioagent identifying amplicon with the diagnostic capability of identifying species members of a group of genera or a particular genus of bioagents. Primer pair number 2249 (SEQ ID NOs: 430:1321), for example, is a speciating primer pair used to distinguish *Staphylococcus aureus* from other species of the genus *Staphylococcus*.
- [273] As used herein, a "sub-species characteristic" is a genetic characteristic that provides the means to distinguish two members of the same bioagent species. For example, one viral strain could be distinguished from another viral strain of the same species by possessing a genetic change (e.g., for example, a nucleotide deletion, addition or substitution) in one of the viral genes, such as the RNA-dependent RNA polymerase. Sub-species characteristics such as virulence genes and drug-are responsible for the phenotypic differences among the different strains of bacteria.
- [274] As used herein, the term "target" is used in a broad sense to indicate the gene or genomic region being amplified by the primers. Because the present invention provides a plurality of amplification products from any given primer pair (depending on the bioagent being analyzed), multiple amplification products from different specific nucleic acid sequences may be obtained. Thus, the term "target" is not used to refer to a single specific nucleic acid sequence. The "target" is sought to be sorted out from other nucleic acid sequences and contains a sequence that has at least partial complementarity with an

oligonucleotide primer. The target nucleic acid may comprise single- or double-stranded DNA or RNA. A "segment" is defined as a region of nucleic acid within the target sequence.

- [275] The term "template" refers to a strand of nucleic acid on which a complementary copy is built from nucleoside triphosphates through the activity of a template-dependent nucleic acid polymerase. Within a duplex the template strand is, by convention, depicted and described as the "bottom" strand. Similarly, the non-template strand is often depicted and described as the "top" strand.
- [276] As used herein, the term " T_m " is used in reference to the "melting temperature." The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. Several equations for calculating the T_m of nucleic acids are well known in the art. As indicated by standard references, a simple estimate of the T_m value may be calculated by the equation: T_m =81.5+0.41(% G+C), when a nucleic acid is in aqueous solution at 1 M NaCl (see e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization (1985). Other references (e.g., Allawi, H. T. & SantaLucia, J., Jr. Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36, 10581-94 (1997) include more sophisticated computations which take structural and environmental, as well as sequence characteristics into account for the calculation of T_m .
- [277] The term "triangulation genotyping analysis" refers to a method of genotyping a bioagent by measurement of molecular masses or base compositions of amplification products, corresponding to bioagent identifying amplicons, obtained by amplification of regions of more than one gene. In this sense, the term "triangulation" refers to a method of establishing the accuracy of information by comparing three or more types of independent points of view bearing on the same findings. Triangulation genotyping analysis carried out with a plurality of triangulation genotyping analysis primers yields a plurality of base compositions that then provide a pattern or "barcode" from which a species type can be assigned. The species type may represent a previously known sub-species or strain, or may be a previously unknown strain having a specific and previously unobserved base composition barcode indicating the existence of a previously unknown genotype.
- [278] As used herein, the term "triangulation genotyping analysis primer pair" is a primer pair designed to produce bioagent identifying amplicons for determining species types in a triangulation genotyping analysis.
- [279] The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification." Triangulation identification is pursued by

analyzing a plurality of bioagent identifying amplicons produced with different primer pairs. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of *B. anthracis* (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the *B. anthracis* genome would suggest a genetic engineering event.

- [280] In the context of this invention, the term "unknown bioagent" may mean either: (i) a bioagent whose existence is known (such as the well known bacterial species *Staphylococcus aureus* for example) but which is not known to be in a sample to be analyzed, or (ii) a bioagent whose existence is not known (for example, the SARS coronavirus was unknown prior to April 2003). For example, if the method for identification of coronaviruses disclosed in commonly owned U.S. Patent Serial No. 10/829,826 (incorporated herein by reference in its entirety) was to be employed prior to April 2003 to identify the SARS coronavirus in a clinical sample, both meanings of "unknown" bioagent are applicable since the SARS coronavirus was unknown to science prior to April, 2003 and since it was not known what bioagent (in this case a coronavirus) was present in the sample. On the other hand, if the method of U.S. Patent Serial No. 10/829,826 was to be employed subsequent to April 2003 to identify the SARS coronavirus in a clinical sample, only the first meaning (i) of "unknown" bioagent would apply since the SARS coronavirus became known to science subsequent to April 2003 and since it was not known what bioagent was present in the sample.
- [281] The term "variable sequence" as used herein refers to differences in nucleic acid sequence between two nucleic acids. For example, the genes of two different bacterial species may vary in sequence by the presence of single base substitutions and/or deletions or insertions of one or more nucleotides. These two forms of the structural gene are said to vary in sequence from one another. In the context of the present invention, "viral nucleic acid" includes, but is not limited to, DNA, RNA, or DNA that has been obtained from viral RNA, such as, for example, by performing a reverse transcription reaction. Viral RNA can either be single-stranded (of positive or negative polarity) or double-stranded.
- [282] The term "virus" refers to obligate, ultramicroscopic, parasites that are incapable of autonomous replication (i.e., replication requires the use of the host cell's machinery). Viruses can survive outside of a host cell but cannot replicate.
- [283] The term "wild-type" refers to a gene or a gene product that has the characteristics of that gene or gene product when isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designated the "normal" or "wild-type" form of the gene. In contrast, the term "modified", "mutant" or "polymorphic" refers to a gene or gene product

that displays modifications in sequence and or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are identified by the fact that they have altered characteristics when compared to the wild-type gene or gene product.

[284] As used herein, a "wobble base" is a variation in a codon found at the third nucleotide position of a DNA triplet. Variations in conserved regions of sequence are often found at the third nucleotide position due to redundancy in the amino acid code.

DETAILED DESCRIPTION OF EMBODIMENTS

A. Bioagent Identifying Amplicons

The present invention provides methods for detection and identification of unknown bioagents [285] using bioagent identifying amplicons. Primers are selected to hybridize to conserved sequence regions of nucleic acids derived from a bioagent, and which bracket variable sequence regions to yield a bioagent identifying amplicon, which can be amplified and which is amenable to molecular mass determination. The molecular mass then provides a means to uniquely identify the bioagent without a requirement for prior knowledge of the possible identity of the bioagent. The molecular mass or corresponding base composition signature of the amplification product is then matched against a database of molecular masses or base composition signatures. A match is obtained when an experimentally-determined molecular mass or base composition of an analyzed amplification product is compared with known molecular masses or base compositions of known bioagent identifying amplicons and the experimentally determined molecular mass or base composition is the same as the molecular mass or base composition of one of the known bioagent identifying amplicons. Alternatively, the experimentally-determined molecular mass or base composition may be within experimental error of the molecular mass or base composition of a known bioagent identifying amplicon and still be classified as a match. In some cases, the match may also be classified using a probability of match model such as the models described in U.S. Serial No. 11/073,362, which is commonly owned and incorporated herein by reference in entirety. Furthermore, the method can be applied to rapid parallel multiplex analyses, the results of which can be employed in a triangulation identification strategy. The present method provides rapid throughput and does not require nucleic acid sequencing of the amplified target sequence for bioagent detection and identification.

[286] Despite enormous biological diversity, all forms of life on earth share sets of essential, common features in their genomes. Since genetic data provide the underlying basis for identification of bioagents by the methods of the present invention, it is necessary to select segments of nucleic acids which ideally provide enough variability to distinguish each individual bioagent and whose molecular mass is amenable to molecular mass determination.

[287] Unlike bacterial genomes, which exhibit conservation of numerous genes (i.e. housekeeping genes) across all organisms, viruses do not share a gene that is essential and conserved among all virus families. Therefore, viral identification is achieved within smaller groups of related viruses, such as members of a particular virus family or genus. For example, RNA-dependent RNA polymerase is present in all single-stranded RNA viruses and can be used for broad priming as well as resolution within the virus family.

- [288] In some embodiments of the present invention, at least one bacterial nucleic acid segment is amplified in the process of identifying the bacterial bioagent. Thus, the nucleic acid segments that can be amplified by the primers disclosed herein and that provide enough variability to distinguish each individual bioagent and whose molecular masses are amenable to molecular mass determination are herein described as bioagent identifying amplicons.
- [289] In some embodiments of the present invention, bioagent identifying amplicons comprise from about 45 to about 150 nucleobases (i.e. from about 45 to about 200 linked nucleosides), although both longer and short regions may be used. One of ordinary skill in the art will appreciate that the invention embodies compounds of 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, and 150 nucleobases in length, or any range therewithin.
- [290] It is the combination of the portions of the bioagent nucleic acid segment to which the primers hybridize (hybridization sites) and the variable region between the primer hybridization sites that comprises the bioagent identifying amplicon. Thus, it can be said that a given bioagent identifying amplicon is "defined by" a given pair of primers.
- [291] In some embodiments, bioagent identifying amplicons amenable to molecular mass determination which are produced by the primers described herein are either of a length, size or mass compatible with the particular mode of molecular mass determination or compatible with a means of providing a predictable fragmentation pattern in order to obtain predictable fragments of a length compatible with the particular mode of molecular mass determination. Such means of providing a predictable fragmentation pattern of an amplification product include, but are not limited to, cleavage with chemical reagents, restriction enzymes or cleavage primers, for example. Thus, in some

embodiments, bioagent identifying amplicons are larger than 150 nucleobases and are amenable to molecular mass determination following restriction digestion. Methods of using restriction enzymes and cleavage primers are well known to those with ordinary skill in the art.

[292] In some embodiments, amplification products corresponding to bioagent identifying amplicons are obtained using the polymerase chain reaction (PCR) that is a routine method to those with ordinary skill in the molecular biology arts. Other amplification methods may be used such as ligase chain reaction (LCR), low-stringency single primer PCR, and multiple strand displacement amplification (MDA). These methods are also known to those with ordinary skill.

B. Primers and Primer Pairs

[293] In some embodiments, the primers are designed to bind to conserved sequence regions of a bioagent identifying amplicon that flank an intervening variable region and yield amplification products which provide variability sufficient to distinguish each individual bioagent, and which are amenable to molecular mass analysis. In some embodiments, the highly conserved sequence regions exhibit between about 80-100%, or between about 90-100%, or between about 95-100% identity, or between about 99-100% identity. The molecular mass of a given amplification product provides a means of identifying the bioagent from which it was obtained, due to the variability of the variable region. Thus, design of the primers involves selection of a variable region with sufficient variability to resolve the identity of a given bioagent. In some embodiments, bioagent identifying amplicons are specific to the identity of the bioagent.

In some embodiments, identification of bioagents is accomplished at different levels using primers suited to resolution of each individual level of identification. Broad range survey primers are designed with the objective of identifying a bioagent as a member of a particular division (e.g., an order, family, genus or other such grouping of bioagents above the species level of bioagents). In some embodiments, broad range survey intelligent primers are capable of identification of bioagents at the species or sub-species level. Examples of broad range survey primers include, but are not limited to: primer pair numbers: 346 (SEQ ID NOs: 202:1110), 347 (SEQ ID NOs: 560:1278), 348 SEQ ID NOs: 706:895), and 361 (SEQ ID NOs: 697:1398) which target DNA encoding 16S rRNA, and primer pair numbers 349 (SEQ ID NOs: 401:1156) and 360 (SEQ ID NOs: 409:1434) which target DNA encoding 23S rRNA.

[295] In some embodiments, drill-down primers are designed with the objective of identifying a bioagent at the sub-species level (including strains, subtypes, variants and isolates) based on sub-species characteristics which may, for example, include single nucleotide polymorphisms (SNPs), variable

number tandem repeats (VNTRs), deletions, drug resistance mutations or any other modification of a nucleic acid sequence of a bioagent relative to other members of a species having different sub-species characteristics. Drill-down intelligent primers are not always required for identification at the sub-species level because broad range survey intelligent primers may, in some cases provide sufficient identification resolution to accomplishing this identification objective. Examples of drill-down primers include, but are not limited to: confirmation primer pairs such as primer pair numbers 351 (SEQ ID NOs: 355:1423) and 353 (SEQ ID NOs: 220:1394), which target the pX01 virulence plasmid of *Bacillus anthracis*. Other examples of drill-down primer pairs are found in sets of triangulation genotyping primer pairs such as, for example, the primer pair number 2146 (SEQ ID NOs: 437:1137) which targets the arcC gene (encoding carmabate kinase) and is included in an 8 primer pair panel or kit for use in genotyping *Staphylococcus aureus*, or in other panels or kits of primer pairs used for determining drug-resistant bacterial strains, such as, for example, primer pair number 2095 (SEQ ID NOs: 456:1261) which targets the pv-luk gene (encoding Panton-Valentine leukocidin) and is included in an 8 primer pair panel or kit for use in identification of drug resistant strains of *Staphylococcus aureus*.

A representative process flow diagram used for primer selection and validation process is [296] outlined in Figure 1. For each group of organisms, candidate target sequences are identified (200) from which nucleotide alignments are created (210) and analyzed (220). Primers are then designed by selecting appropriate priming regions (230) to facilitate the selection of candidate primer pairs (240). The primer pairs are then subjected to in silico analysis by electronic PCR (ePCR) (300) wherein bioagent identifying amplicons are obtained from sequence databases such as GenBank or other sequence collections (310) and checked for specificity in silico (320). Bioagent identifying amplicons obtained from GenBank sequences (310) can also be analyzed by a probability model which predicts the capability of a given amplicon to identify unknown bioagents such that the base compositions of amplicons with favorable probability scores are then stored in a base composition database (325). Alternatively, base compositions of the bioagent identifying amplicons obtained from the primers and GenBank sequences can be directly entered into the base composition database (330). Candidate primer pairs (240) are validated by testing their ability to hybridize to target nucleic acid by an in vitro amplification by a method such as PCR analysis (400) of nucleic acid from a collection of organisms (410). Amplification products thus obtained are analyzed by gel electrophoresis or by mass spectrometry to confirm the sensitivity, specificity and reproducibility of the primers used to obtain the amplification products (420).

[297] Many of the important pathogens, including the organisms of greatest concern as biowarfare agents, have been completely sequenced. This effort has greatly facilitated the design of primers for the detection of unknown bioagents. The combination of broad-range priming with division-wide and drill-down priming has been used very successfully in several applications of the technology, including

environmental surveillance for biowarfare threat agents and clinical sample analysis for medically important pathogens.

[298] Synthesis of primers is well known and routine in the art. The primers may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed.

In some embodiments primers are employed as compositions for use in methods for [299] identification of bacterial bioagents as follows: a primer pair composition is contacted with nucleic acid (such as, for example, bacterial DNA or DNA reverse transcribed from the rRNA) of an unknown bacterial bioagent. The nucleic acid is then amplified by a nucleic acid amplification technique, such as PCR for example, to obtain an amplification product that represents a bioagent identifying amplicon. The molecular mass of each strand of the double-stranded amplification product is determined by a molecular mass measurement technique such as mass spectrometry for example, wherein the two strands of the double-stranded amplification product are separated during the ionization process. In some embodiments, the mass spectrometry is electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) or electrospray time of flight mass spectrometry (ESI-TOF-MS). A list of possible base compositions can be generated for the molecular mass value obtained for each strand and the choice of the correct base composition from the list is facilitated by matching the base composition of one strand with a complementary base composition of the other strand. The molecular mass or base composition thus determined is then compared with a database of molecular masses or base compositions of analogous bioagent identifying amplicons for known viral bioagents. A match between the molecular mass or base composition of the amplification product and the molecular mass or base composition of an analogous bioagent identifying amplicon for a known viral bioagent indicates the identity of the unknown bioagent. In some embodiments, the primer pair used is one of the primer pairs of Table 2. In some embodiments, the method is repeated using one or more different primer pairs to resolve possible ambiguities in the identification process or to improve the confidence level for the identification assignment.

[300] In some embodiments, a bioagent identifying amplicon may be produced using only a single primer (either the forward or reverse primer of any given primer pair), provided an appropriate amplification method is chosen, such as, for example, low stringency single primer PCR (LSSP-PCR). Adaptation of this amplification method in order to produce bioagent identifying amplicons can be accomplished by one with ordinary skill in the art without undue experimentation.

[301] In some embodiments, the oligonucleotide primers are broad range survey primers which hybridize to conserved regions of nucleic acid encoding the hexon gene of all (or between 80% and 100%, between 85% and 100%, between 90% and 100% or between 95% and 100%) known bacteria and produce bacterial bioagent identifying amplicons.

- [302] In some cases, the molecular mass or base composition of a bacterial bioagent identifying amplicon defined by a broad range survey primer pair does not provide enough resolution to unambiguously identify a bacterial bioagent at or below the species level. These cases benefit from further analysis of one or more bacterial bioagent identifying amplicons generated from at least one additional broad range survey primer pair or from at least one additional division-wide primer pair. The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as triangulation identification.
- [303] In other embodiments, the oligonucleotide primers are division-wide primers which hybridize to nucleic acid encoding genes of species within a genus of bacteria. In other embodiments, the oligonucleotide primers are drill-down primers which enable the identification of sub-species characteristics. Drill down primers provide the functionality of producing bioagent identifying amplicons for drill-down analyses such as strain typing when contacted with nucleic acid under amplification conditions. Identification of such sub-species characteristics is often critical for determining proper clinical treatment of viral infections. In some embodiments, sub-species characteristics are identified using only broad range survey primers and division-wide and drill-down primers are not used.
- [304] In some embodiments, the primers used for amplification hybridize to and amplify genomic DNA, and DNA of bacterial plasmids.
- [305] In some embodiments, various computer software programs may be used to aid in design of primers for amplification reactions such as *Primer Premier 5* (Premier Biosoft, Palo Alto, CA) or *OLIGO* Primer Analysis Software (Molecular Biology Insights, Cascade, CO). These programs allow the user to input desired hybridization conditions such as melting temperature of a primer-template duplex for example. In some embodiments, an *in silico* PCR search algorithm, such as (ePCR) is used to analyze primer specificity across a plurality of template sequences which can be readily obtained from public sequence databases such as GenBank for example. An existing RNA structure search algorithm (Macke et al., Nucl. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 1460-1465, which is incorporated herein by reference in its entirety). This also provides information on primer specificity of

the selected primer pairs. In some embodiments, the hybridization conditions applied to the algorithm can limit the results of primer specificity obtained from the algorithm. In some embodiments, the melting temperature threshold for the primer template duplex is specified to be 35°C or a higher temperature. In some embodiments the number of acceptable mismatches is specified to be seven mismatches or less. In some embodiments, the buffer components and concentrations and primer concentrations may be specified and incorporated into the algorithm, for example, an appropriate primer concentration is about 250 nM and appropriate buffer components are 50 mM sodium or potassium and 1.5 mM Mg²⁺.

primer need not hybridize with 100% complementarity in order to effectively prime the synthesis of a complementary nucleic acid strand in an amplification reaction. Moreover, a primer may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event. (e.g., for example, a loop structure or a hairpin structure). The primers of the present invention may comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% sequence identity with any of the primers listed in Table 2. Thus, in some embodiments of the present invention, an extent of variation of 70% to 100%, or any range therewithin, of the sequence identity is possible relative to the specific primer sequences disclosed herein. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is identical to another 20 nucleobase primer having two non-identical residues has 18 of 20 identical residues (18/20 = 0.9 or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of primer 20 nucleobases in length would have 15/20 = 0.75 or 75% sequence identity with the 20 nucleobase primer.

[307] Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for UNIX, Genetics Computer Group, University Research Park, Madison WI), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). In some embodiments, complementarity of primers with respect to the conserved priming regions of viral nucleic acid is between about 70% and about 75% 80%. In other embodiments, homology, sequence identity or complementarity, is between about 75% and about 80%. In yet other embodiments, homology, sequence identity or complementarity, is at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 97%, at least 98%, at least 99% or is 100%.

[308] In some embodiments, the primers described herein comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 98%,

or at least 99%, or 100% (or any range therewithin) sequence identity with the primer sequences specifically disclosed herein.

- [309] One with ordinary skill is able to calculate percent sequence identity or percent sequence homology and able to determine, without undue experimentation, the effects of variation of primer sequence identity on the function of the primer in its role in priming synthesis of a complementary strand of nucleic acid for production of an amplification product of a corresponding bioagent identifying amplicon.
- [310] In one embodiment, the primers are at least 13 nucleobases in length. In another embodiment, the primers are less than 36 nucleobases in length.
- In some embodiments of the present invention, the oligonucleotide primers are 13 to 35 nucleobases in length (13 to 35 linked nucleotide residues). These embodiments comprise oligonucleotide primers 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35 nucleobases in length, or any range therewithin. The present invention contemplates using both longer and shorter primers. Furthermore, the primers may also be linked to one or more other desired moieties, including, but not limited to, affinity groups, ligands, regions of nucleic acid that are not complementary to the nucleic acid to be amplified, labels, etc. Primers may also form hairpin structures. For example, hairpin primers may be used to amplify short target nucleic acid molecules. The presence of the hairpin may stabilize the amplification complex (see e.g., TAQMAN MicroRNA Assays, Applied Biosystems, Foster City, California).
- [312] In some embodiments, any oligonucleotide primer pair may have one or both primers with less then 70% sequence homology with a corresponding member of any of the primer pairs of Table 2 if the primer pair has the capability of producing an amplification product corresponding to a bioagent identifying amplicon. In other embodiments, any oligonucleotide primer pair may have one or both primers with a length greater than 35 nucleobases if the primer pair has the capability of producing an amplification product corresponding to a bioagent identifying amplicon.
- [313] In some embodiments, the function of a given primer may be substituted by a combination of two or more primers segments that hybridize adjacent to each other or that are linked by a nucleic acid loop structure or linker which allows a polymerase to extend the two or more primers in an amplification reaction.

In some embodiments, the primer pairs used for obtaining bioagent identifying amplicons are the primer pairs of Table 2. In other embodiments, other combinations of primer pairs are possible by combining certain members of the forward primers with certain members of the reverse primers. An example can be seen in Table 2 for two primer pair combinations of forward primer $16S_EC_789_810_F$ (SEQ ID NO: 206), with the reverse primers $16S_EC_880_894_R$ (SEQ ID NO: 796), or $16S_EC_882_899_R$ or (SEQ ID NO: 818). Arriving at a favorable alternate combination of primers in a primer pair depends upon the properties of the primer pair, most notably the size of the bioagent identifying amplicon that would be produced by the primer pair, which preferably is between about 45 to about 150 nucleobases in length. Alternatively, a bioagent identifying amplicon longer than 150 nucleobases in length could be cleaved into smaller segments by cleavage reagents such as chemical reagents, or restriction enzymes, for example.

- [315] In some embodiments, the primers are configured to amplify nucleic acid of a bioagent to produce amplification products that can be measured by mass spectrometry and from whose molecular masses candidate base compositions can be readily calculated.
- [316] In some embodiments, any given primer comprises a modification comprising the addition of a non-templated T residue to the 5' end of the primer (i.e., the added T residue does not necessarily hybridize to the nucleic acid being amplified). The addition of a non-templated T residue has an effect of minimizing the addition of non-templated adenosine residues as a result of the non-specific enzyme activity of *Taq* polymerase (Magnuson et al., Biotechniques, 1996, 21, 700-709), an occurrence which may lead to ambiguous results arising from molecular mass analysis.
- [317] In some embodiments of the present invention, primers may contain one or more universal bases. Because any variation (due to codon wobble in the 3rd position) in the conserved regions among species is likely to occur in the third position of a DNA (or RNA) triplet, oligonucleotide primers can be designed such that the nucleotide corresponding to this position is a base which can bind to more than one nucleotide, referred to herein as a "universal nucleobase." For example, under this "wobble" pairing, inosine (I) binds to U, C or A; guanine (G) binds to U or C, and uridine (U) binds to U or C. Other examples of universal nucleobases include nitroindoles such as 5-nitroindole or 3-nitropyrrole (Loakes et al., Nucleosides and Nucleotides, 1995, 14, 1001-1003), the degenerate nucleotides dP or dK (Hill *et al.*), an acyclic nucleoside analog containing 5-nitroindazole (Van Aerschot et al., Nucleosides and Nucleotides, 1995, 14, 1053-1056) or the purine analog 1-(2-deoxy-β-D-ribofuranosyl)-imidazole-4-carboxamide (Sala et al., Nucl. Acids Res., 1996, 24, 3302-3306).

[318] In some embodiments, to compensate for the somewhat weaker binding by the wobble base, the oligonucleotide primers are designed such that the first and second positions of each triplet are occupied by nucleotide analogs that bind with greater affinity than the unmodified nucleotide. Examples of these analogs include, but are not limited to, 2,6-diaminopurine which binds to thymine, 5-propynyluracil (also known as propynylated thymine) which binds to adenine and 5-propynylcytosine and phenoxazines, including G-clamp, which binds to G. Propynylated pyrimidines are described in U.S. Patent Nos. 5,645,985, 5,830,653 and 5,484,908, each of which is commonly owned and incorporated herein by reference in its entirety. Propynylated primers are described in U.S Pre-Grant Publication No. 2003-0170682, which is also commonly owned and incorporated herein by reference in its entirety. Phenoxazines are described in U.S. Patent Nos. 5,502,177, 5,763,588, and 6,005,096, each of which is incorporated herein by reference in its entirety. G-clamps are described in U.S. Patent Nos. 6,007,992 and 6,028,183, each of which is incorporated herein by reference in its entirety.

- [319] In some embodiments, primer hybridization is enhanced using primers containing 5-propynyl deoxy-cytidine and deoxy-thymidine nucleotides. These modified primers offer increased affinity and base pairing selectivity.
- [320] In some embodiments, non-template primer tags are used to increase the melting temperature (T_m) of a primer-template duplex in order to improve amplification efficiency. A non-template tag is at least three consecutive A or T nucleotide residues on a primer which are not complementary to the template. In any given non-template tag, A can be replaced by C or G and T can also be replaced by C or G. Although Watson-Crick hybridization is not expected to occur for a non-template tag relative to the template, the extra hydrogen bond in a G-C pair relative to an A-T pair confers increased stability of the primer-template duplex and improves amplification efficiency for subsequent cycles of amplification when the primers hybridize to strands synthesized in previous cycles.
- [321] In other embodiments, propynylated tags may be used in a manner similar to that of the non-template tag, wherein two or more 5-propynylcytidine or 5-propynyluridine residues replace template matching residues on a primer. In other embodiments, a primer contains a modified internucleoside linkage such as a phosphorothioate linkage, for example.
- [322] In some embodiments, the primers contain mass-modifying tags. Reducing the total number of possible base compositions of a nucleic acid of specific molecular weight provides a means of avoiding a persistent source of ambiguity in determination of base composition of amplification products. Addition of mass-modifying tags to certain nucleobases of a given primer will result in simplification of de novo determination of base composition of a given bioagent identifying amplicon from its molecular mass.

In some embodiments of the present invention, the mass modified nucleobase comprises one or more of the following: for example, 7-deaza-2'-deoxyadenosine-5-triphosphate, 5-iodo-2'-deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxyeytidine-5'-triphosphate, 5-iodo-2'-deoxyeytidine-5'-triphosphate, 5-iodo-2'-deoxyeytidine-5'-triphosphate, 5-hydroxy-2'-deoxyuridine-5'-triphosphate, 4-thiothymidine-5'-triphosphate, 5-aza-2'-deoxyuridine-5'-triphosphate, 5-fluoro-2'-deoxyuridine-5'-triphosphate, O6-methyl-2'-deoxyguanosine-5'-triphosphate, N2-methyl-2'-deoxyguanosine-5'-triphosphate, 8-oxo-2'-deoxyguanosine-5'-triphosphate or thiothymidine-5'-triphosphate. In some embodiments, the mass-modified nucleobase comprises ¹⁵N or ¹³C or both ¹⁵N and ¹³C.

[324] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with a plurality of primer pairs. The advantages of multiplexing are that fewer reaction containers (for example, wells of a 96- or 384-well plate) are needed for each molecular mass measurement, providing time, resource and cost savings because additional bioagent identification data can be obtained within a single analysis. Multiplex amplification methods are well known to those with ordinary skill and can be developed without undue experimentation. However, in some embodiments, one useful and non-obvious step in selecting a plurality candidate bioagent identifying amplicons for multiplex amplification is to ensure that each strand of each amplification product will be sufficiently different in molecular mass that mass spectral signals will not overlap and lead to ambiguous analysis results. In some embodiments, a 10 Da difference in mass of two strands of one or more amplification products is sufficient to avoid overlap of mass spectral peaks.

[325] In some embodiments, as an alternative to multiplex amplification, single amplification reactions can be pooled before analysis by mass spectrometry. In these embodiments, as for multiplex amplification embodiments, it is useful to select a plurality of candidate bioagent identifying amplicons to ensure that each strand of each amplification product will be sufficiently different in molecular mass that mass spectral signals will not overlap and lead to ambiguous analysis results.

C Determination of Molecular Mass of Bioagent Identifying Amplicons

[326] In some embodiments, the molecular mass of a given bioagent identifying amplicon is determined by mass spectrometry. Mass spectrometry has several advantages, not the least of which is high bandwidth characterized by the ability to separate (and isolate) many molecular peaks across a broad range of mass to charge ratio (m/z). Thus mass spectrometry is intrinsically a parallel detection scheme without the need for radioactive or fluorescent labels, since every amplification product is identified by its molecular mass. The current state of the art in mass spectrometry is such that less than femtomole quantities of material can be readily analyzed to afford information about the molecular contents of the

sample. An accurate assessment of the molecular mass of the material can be quickly obtained, irrespective of whether the molecular weight of the sample is several hundred, or in excess of one hundred thousand atomic mass units (amu) or Daltons.

In some embodiments, intact molecular ions are generated from amplification products using one of a variety of ionization techniques to convert the sample to gas phase. These ionization methods include, but are not limited to, electrospray ionization (ES), matrix-assisted laser desorption ionization (MALDI) and fast atom bombardment (FAB). Upon ionization, several peaks are observed from one sample due to the formation of ions with different charges. Averaging the multiple readings of molecular mass obtained from a single mass spectrum affords an estimate of molecular mass of the bioagent identifying amplicon. Electrospray ionization mass spectrometry (ESI-MS) is particularly useful for very high molecular weight polymers such as proteins and nucleic acids having molecular weights greater than 10 kDa, since it yields a distribution of multiply-charged molecules of the sample without causing a significant amount of fragmentation.

[328] The mass detectors used in the methods of the present invention include, but are not limited to, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), time of flight (TOF), ion trap, quadrupole, magnetic sector, Q-TOF, and triple quadrupole.

D. Base Compositions of Bioagent Identifying Amplicons

[329] Although the molecular mass of amplification products obtained using intelligent primers provides a means for identification of bioagents, conversion of molecular mass data to a base composition signature is useful for certain analyses. As used herein, "base composition" is the exact number of each nucleobase (A, T, C and G) determined from the molecular mass of a bioagent identifying amplicon. In some embodiments, a base composition provides an index of a specific organism. Base compositions can be calculated from known sequences of known bioagent identifying amplicons and can be experimentally determined by measuring the molecular mass of a given bioagent identifying amplicon, followed by determination of all possible base compositions which are consistent with the measured molecular mass within acceptable experimental error. The following example illustrates determination of base composition from an experimentally obtained molecular mass of a 46-mer amplification product originating at position 1337 of the 16S rRNA of *Bacillus anthracis*. The forward and reverse strands of the amplification product have measured molecular masses of 14208 and 14079 Da, respectively. The possible base compositions derived from the molecular masses of the forward and reverse strands for the *B. anthracis* products are listed in Table 1.

Calc. Mass	Mass Error	Base	Calc. Mass	Mass Error	Base
Forward	Forward	Composition of	Reverse	Reverse	Composition of
Strand	Strand	Forward Strand	Strand	Strand	Reverse Strand
14208.2935	0.079520	A1 G17 C10 T18	14079.2624	0.080600	A0 G14 C13 T19
14208.3160	0.056980	A1 G20 C15 T10	14079.2849	0.058060	A0 G17 C18 T11
14208.3386	0.034440	A1 G23 C20 T2	14079.3075	0.035520	A0 G20 C23 T3
14208.3074	0.065560	A6 G11 C3 T26	14079.2538	0.089180	A5 G5 C1 T35
14208.3300	0.043020	A6 G14 C8 T18	14079.2764	0.066640	A5 G8 C6 T27
14208.3525	0.020480	A6 G17 C13 T10	14079.2989	0.044100	A5 G11 C11 T19
14208.3751	0.002060	A6 G20 C18 T2	14079.3214	0.021560	A5 G14 C16 T11
14208.3439	0.029060	A11 G8 C1 T26	14079.3440	0.000980	A5 G17 C21 T3
14208.3665	0.006520	A11 G11 C6 T18	14079.3129	0.030140	A10 G5 C4 T27
14208.3890	0.016020	A11 G14 C11 T10	14079.3354	0.007600	A10 G8 C9 T19
14208.4116	0.038560	A11 G17 C16 T2	14079.3579	0.014940	A10 G11 C14 T11
14208.4030	0.029980	A16 G8 C4 T18	14079.3805	0.037480	A10 G14 C19 T3
14208.4255	0.052520	A16 G11 C9 T10	14079.3494	0.006360	A15 G2 C2 T27
14208.4481	0.075060	A16 G14 C14 T2	14079.3719	0.028900	A15 G5 C7 T19
14208.4395	0.066480	A21 G5 C2 T18	14079.3944	0.051440	A15 G8 C12 T11
14208.4620	0.089020	A21 G8 C7 T10	14079.4170	0.073980	A15 G11 C17 T3
_	-	-	14079.4084	0.065400	A20 G2 C5 T19
	-	-	14079.4309	0.087940	A20 G5 C10 T13

[330] Among the 16 possible base compositions for the forward strand and the 18 possible base compositions for the reverse strand that were calculated, only one pair (shown in **bold**) are complementary base compositions, which indicates the true base composition of the amplification product. It should be recognized that this logic is applicable for determination of base compositions of any bioagent identifying amplicon, regardless of the class of bioagent from which the corresponding amplification product was obtained.

[331] In some embodiments, assignment of previously unobserved base compositions (also known as "true unknown base compositions") to a given phylogeny can be accomplished via the use of pattern classifier model algorithms. Base compositions, like sequences, vary slightly from strain to strain within species, for example. In some embodiments, the pattern classifier model is the mutational probability model. On other embodiments, the pattern classifier is the polytope model. The mutational probability model and polytope model are both commonly owned and described in U.S. Patent application Serial No. 11/073,362 which is incorporated herein by reference in entirety.

[332] In one embodiment, it is possible to manage this diversity by building "base composition probability clouds" around the composition constraints for each species. This permits identification of

organisms in a fashion similar to sequence analysis. A "pseudo four-dimensional plot" can be used to visualize the concept of base composition probability clouds. Optimal primer design requires optimal choice of bioagent identifying amplicons and maximizes the separation between the base composition signatures of individual bioagents. Areas where clouds overlap indicate regions that may result in a misclassification, a problem which is overcome by a triangulation identification process using bioagent identifying amplicons not affected by overlap of base composition probability clouds.

[333] In some embodiments, base composition probability clouds provide the means for screening potential primer pairs in order to avoid potential misclassifications of base compositions. In other embodiments, base composition probability clouds provide the means for predicting the identity of a bioagent whose assigned base composition was not previously observed and/or indexed in a bioagent identifying amplicon base composition database due to evolutionary transitions in its nucleic acid sequence. Thus, in contrast to probe-based techniques, mass spectrometry determination of base composition does not require prior knowledge of the composition or sequence in order to make the measurement.

[334] The present invention provides bioagent classifying information similar to DNA sequencing and phylogenetic analysis at a level sufficient to identify a given bioagent. Furthermore, the process of determination of a previously unknown base composition for a given bioagent (for example, in a case where sequence information is unavailable) has downstream utility by providing additional bioagent indexing information with which to populate base composition databases. The process of future bioagent identification is thus greatly improved as more BCS indexes become available in base composition databases.

E. Triangulation Identification

In some cases, a molecular mass of a single bioagent identifying amplicon alone does not provide enough resolution to unambiguously identify a given bioagent. The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification." Triangulation identification is pursued by determining the molecular masses of a plurality of bioagent identifying amplicons selected within a plurality of housekeeping genes. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of *B. anthracis* (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the *B. anthracis* genome would suggest a genetic engineering event.

characterization of bioagent identifying amplicons in a massively parallel fashion using the polymerase chain reaction (PCR), such as multiplex PCR where multiple primers are employed in the same amplification reaction mixture, or PCR in multi-well plate format wherein a different and unique pair of primers is used in multiple wells containing otherwise identical reaction mixtures. Such multiplex and multi-well PCR methods are well known to those with ordinary skill in the arts of rapid throughput amplification of nucleic acids. In other related embodiments, one PCR reaction per well or container may be carried out, followed by an amplicon pooling step wherein the amplification products of different wells are combined in a single well or container which is then subjected to molecular mass analysis. The combination of pooled amplicons can be chosen such that the expected ranges of molecular masses of individual amplicons are not overlapping and thus will not complicate identification of signals.

F. Codon Base Composition Analysis

[337] In some embodiments of the present invention, one or more nucleotide substitutions within a codon of a gene of an infectious organism confer drug resistance upon an organism which can be determined by codon base composition analysis. The organism can be a bacterium, virus, fungus or protozoan.

[338] In some embodiments, the amplification product containing the codon being analyzed is of a length of about 35 to about 200 nucleobases. The primers employed in obtaining the amplification product can hybridize to upstream and downstream sequences directly adjacent to the codon, or can hybridize to upstream and downstream sequences one or more sequence positions away from the codon. The primers may have between about 70% to 100% sequence complementarity with the sequence of the gene containing the codon being analyzed.

[339] In some embodiments, the codon base composition analysis is undertaken

[340] In some embodiments, the codon analysis is undertaken for the purpose of investigating genetic disease in an individual. In other embodiments, the codon analysis is undertaken for the purpose of investigating a drug resistance mutation or any other deleterious mutation in an infectious organism such as a bacterium, virus, fungus or protozoan. In some embodiments, the bioagent is a bacterium identified in a biological product.

[341] In some embodiments, the molecular mass of an amplification product containing the codon being analyzed is measured by mass spectrometry. The mass spectrometry can be either electrospray (ESI) mass spectrometry or matrix-assisted laser desorption ionization (MALDI) mass spectrometry.

Time-of-flight (TOF) is an example of one mode of mass spectrometry compatible with the analyses of the present invention.

[342] The methods of the present invention can also be employed to determine the relative abundance of drug resistant strains of the organism being analyzed. Relative abundances can be calculated from amplitudes of mass spectral signals with relation to internal calibrants. In some embodiments, known quantities of internal amplification calibrants can be included in the amplification reactions and abundances of analyte amplification product estimated in relation to the known quantities of the calibrants.

[343] In some embodiments, upon identification of one or more drug-resistant strains of an infectious organism infecting an individual, one or more alternative treatments can be devised to treat the individual.

G. Determination of the Quantity of a Bioagent

In some embodiments, the identity and quantity of an unknown bioagent can be determined using the process illustrated in Figure 2. Primers (500) and a known quantity of a calibration polynucleotide (505) are added to a sample containing nucleic acid of an unknown bioagent. The total nucleic acid in the sample is then subjected to an amplification reaction (510) to obtain amplification products. The molecular masses of amplification products are determined (515) from which are obtained molecular mass and abundance data. The molecular mass of the bioagent identifying amplicon (520) provides the means for its identification (525) and the molecular mass of the calibration amplicon obtained from the calibration polynucleotide (530) provides the means for its identification (535). The abundance data of the bioagent identifying amplicon is recorded (540) and the abundance data for the calibration data is recorded (545), both of which are used in a calculation (550) which determines the quantity of unknown bioagent in the sample.

[345] A sample comprising an unknown bioagent is contacted with a pair of primers that provide the means for amplification of nucleic acid from the bioagent, and a known quantity of a polynucleotide that comprises a calibration sequence. The nucleic acids of the bioagent and of the calibration sequence are amplified and the rate of amplification is reasonably assumed to be similar for the nucleic acid of the bioagent and of the calibration sequence. The amplification reaction then produces two amplification products: a bioagent identifying amplicon and a calibration amplicon. The bioagent identifying amplicon and the calibration amplicon should be distinguishable by molecular mass while being amplified at essentially the same rate. Effecting differential molecular masses can be accomplished by choosing as a calibration sequence, a representative bioagent identifying amplicon (from a specific species of bioagent) and performing, for example, a 2-8 nucleobase deletion or insertion within the variable region between

the two priming sites. The amplified sample containing the bioagent identifying amplicon and the calibration amplicon is then subjected to molecular mass analysis by mass spectrometry, for example. The resulting molecular mass analysis of the nucleic acid of the bioagent and of the calibration sequence provides molecular mass data and abundance data for the nucleic acid of the bioagent and of the calibration sequence. The molecular mass data obtained for the nucleic acid of the bioagent enables identification of the unknown bioagent and the abundance data enables calculation of the quantity of the bioagent, based on the knowledge of the quantity of calibration polynucleotide contacted with the sample.

- [346] In some embodiments, construction of a standard curve where the amount of calibration polynucleotide spiked into the sample is varied provides additional resolution and improved confidence for the determination of the quantity of bioagent in the sample. The use of standard curves for analytical determination of molecular quantities is well known to one with ordinary skill and can be performed without undue experimentation.
- [347] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with multiple primer pairs which also amplify the corresponding standard calibration sequences. In this or other embodiments, the standard calibration sequences are optionally included within a single vector which functions as the calibration polynucleotide. Multiplex amplification methods are well known to those with ordinary skill and can be performed without undue experimentation.
- [348] In some embodiments, the calibrant polynucleotide is used as an internal positive control to confirm that amplification conditions and subsequent analysis steps are successful in producing a measurable amplicon. Even in the absence of copies of the genome of a bioagent, the calibration polynucleotide should give rise to a calibration amplicon. Failure to produce a measurable calibration amplicon indicates a failure of amplification or subsequent analysis step such as amplicon purification or molecular mass determination. Reaching a conclusion that such failures have occurred is in itself, a useful event.
- [349] In some embodiments, the calibration sequence is comprised of DNA. In some embodiments, the calibration sequence is comprised of RNA.
- [350] In some embodiments, the calibration sequence is inserted into a vector that itself functions as the calibration polynucleotide. In some embodiments, more than one calibration sequence is inserted into the vector that functions as the calibration polynucleotide. Such a calibration polynucleotide is herein termed a "combination calibration polynucleotide." The process of inserting polynucleotides into vectors

is routine to those skilled in the art and can be accomplished without undue experimentation. Thus, it should be recognized that the calibration method should not be limited to the embodiments described herein. The calibration method can be applied for determination of the quantity of any bioagent identifying amplicon when an appropriate standard calibrant polynucleotide sequence is designed and used. The process of choosing an appropriate vector for insertion of a calibrant is also a routine operation that can be accomplished by one with ordinary skill without undue experimentation.

H. Identification of Bacteria

In other embodiments of the present invention, the primer pairs produce bioagent identifying amplicons within stable and highly conserved regions of bacteria. The advantage to characterization of an amplicon defined by priming regions that fall within a highly conserved region is that there is a low probability that the region will evolve past the point of primer recognition, in which case, the primer hybridization of the amplification step would fail. Such a primer set is thus useful as a broad range survey-type primer. In another embodiment of the present invention, the intelligent primers produce bioagent identifying amplicons including a region which evolves more quickly than the stable region described above. The advantage of characterization bioagent identifying amplicon corresponding to an evolving genomic region is that it is useful for distinguishing emerging strain variants or the presence of virulence genes, drug resistance genes, or codon mutations that induce drug resistance.

[352] The present invention also has significant advantages as a platform for identification of diseases caused by emerging bacterial strains such as, for example, drug-resistant strains of *Staphylococcus aureus*. The present invention eliminates the need for prior knowledge of bioagent sequence to generate hybridization probes. This is possible because the methods are not confounded by naturally occurring evolutionary variations occurring in the sequence acting as the template for production of the bioagent identifying amplicon. Measurement of molecular mass and determination of base composition is accomplished in an unbiased manner without sequence prejudice.

[353] Another embodiment of the present invention also provides a means of tracking the spread of a bacterium, such as a particular drug-resistant strain when a plurality of samples obtained from different locations are analyzed by the methods described above in an epidemiological setting. In one embodiment, a plurality of samples from a plurality of different locations is analyzed with primer pairs which produce bioagent identifying amplicons, a subset of which contains a specific drug-resistant bacterial strain. The corresponding locations of the members of the drug-resistant strain subset indicate the spread of the specific drug-resistant strain to the corresponding locations.

I. Kits

[354] The present invention also provides kits for carrying out the methods described herein. In some embodiments, the kit may comprise a sufficient quantity of one or more primer pairs to perform an amplification reaction on a target polynucleotide from a bioagent to form a bioagent identifying amplicon. In some embodiments, the kit may comprise from one to fifty primer pairs, from one to twenty primer pairs, from one to ten primer pairs, or from two to five primer pairs. In some embodiments, the kit may comprise one or more primer pairs recited in Table 2.

- In some embodiments, the kit comprises one or more broad range survey primer(s), division wide primer(s), or drill-down primer(s), or any combination thereof. If a given problem involves identification of a specific bioagent, the solution to the problem may require the selection of a particular combination of primers to provide the solution to the problem. A kit may be designed so as to comprise particular primer pairs for identification of a particular bioagent. A drill-down kit may be used, for example, to distinguish different genotypes or strains, drug-resistant, or otherwise. In some embodiments, the primer pair components of any of these kits may be additionally combined to comprise additional combinations of broad range survey primers and division-wide primers so as to be able to identify a bacterium.
- [356] In some embodiments, the kit contains standardized calibration polynucleotides for use as internal amplification calibrants. Internal calibrants are described in commonly owned U.S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.
- In some embodiments, the kit comprises a sufficient quantity of reverse transcriptase (if RNA is to be analyzed for example), a DNA polymerase, suitable nucleoside triphosphates (including alternative dNTPs such as inosine or modified dNTPs such as the 5-propynyl pyrimidines or any dNTP containing molecular mass-modifying tags such as those described above), a DNA ligase, and/or reaction buffer, or any combination thereof, for the amplification processes described above. A kit may further include instructions pertinent for the particular embodiment of the kit, such instructions describing the primer pairs and amplification conditions for operation of the method. A kit may also comprise amplification reaction containers such as microcentrifuge tubes and the like. A kit may also comprise reagents or other materials for isolating bioagent nucleic acid or bioagent identifying amplicons from amplification, including, for example, detergents, solvents, or ion exchange resins which may be linked to magnetic beads. A kit may also comprise a table of measured or calculated molecular masses and/or base compositions of bioagents using the primer pairs of the kit.
- [358] Some embodiments are kits that contain one or more survey bacterial primer pairs represented by primer pair compositions wherein each member of each pair of primers has 70% to 100% sequence

identity with the corresponding member from the group of primer pairs represented by any of the primer pairs of Table 5. The survey primer pairs may include broad range primer pairs which hybridize to ribosomal RNA, and may also include division-wide primer pairs which hybridize to housekeeping genes such as rplB, tufB, rpoB, rpoC, valS, and infB, for example.

- [359] In some embodiments, a kit may contain one or more survey bacterial primer pairs and one or more triangulation genotyping analysis primer pairs such as the primer pairs of Tables 8, 12, 14, 19, 21, 23, or 24. In some embodiments, the kit may represent a less expansive genotyping analysis but include triangulation genotyping analysis primer pairs for more than one genus or species of bacteria. For example, a kit for surveying nosocomial infections at a health care facility may include, for example, one or more broad range survey primer pairs, one or more division wide primer pairs, one or more Acinetobacter baumannii triangulation genotyping analysis primer pairs and one or more Staphylococcus aureus triangulation genotyping analysis primer pairs. One with ordinary skill will be capable of analyzing in silico amplification data to determine which primer pairs will be able to provide optimal identification resolution for the bacterial bioagents of interest.
- [360] In some embodiments, a kit may be assembled for identification of strains of bacteria involved in contamination of food. An example of such a kit embodiment is a kit comprising one or more bacterial survey primer pairs of Table 5 with one or more triangulation genotyping analysis primer pairs of Table 12 which provide strain resolving capabilities for identification of specific strains of *Campylobacter jejuni*.
- [361] Some embodiments of the kits are 96-well or 384-well plates with a plurality of wells containing any or all of the following components: dNTPs, buffer salts, Mg²⁺, betaine, and primer pairs. In some embodiments, a polymerase is also included in the plurality of wells of the 96-well or 384-well plates.
- [362] Some embodiments of the kit contain instructions for PCR and mass spectrometry analysis of amplification products obtained using the primer pairs of the kits.
- [363] Some embodiments of the kit include a barcode which uniquely identifies the kit and the components contained therein according to production lots and may also include any other information relative to the components such as concentrations, storage temperatures, etc. The barcode may also include analysis information to be read by optical barcode readers and sent to a computer controlling amplification, purification and mass spectrometric measurements. In some embodiments, the barcode provides access to a subset of base compositions in a base composition database which is in digital

communication with base composition analysis software such that a base composition measured with primer pairs from a given kit can be compared with known base compositions of bioagent identifying amplicons defined by the primer pairs of that kit.

- [364] In some embodiments, the kit contains a database of base compositions of bioagent identifying amplicons defined by the primer pairs of the kit. The database is stored on a convenient computer readable medium such as a compact disk or USB drive, for example.
- [365] In some embodiments, the kit includes a computer program stored on a computer formatted medium (such as a compact disk or portable USB disk drive, for example) comprising instructions which direct a processor to analyze data obtained from the use of the primer pairs of the present invention. The instructions of the software transform data related to amplification products into a molecular mass or base composition which is a useful concrete and tangible result used in identification and/or classification of bioagents. In some embodiments, the kits of the present invention contain all of the reagents sufficient to carry out one or more of the methods described herein.
- [366] While the present invention has been described with specificity in accordance with certain of its embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same. In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner.

EXAMPLES

Example 1: Design and Validation of Primers that Define Bioagent Identifying Amplicons for Identification of Bacteria

- [367] For design of primers that define bacterial bioagent identifying amplicons, a series of bacterial genome segment sequences were obtained, aligned and scanned for regions where pairs of PCR primers would amplify products of about 45 to about 150 nucleotides in length and distinguish subgroups and/or individual strains from each other by their molecular masses or base compositions. A typical process shown in Figure 1 is employed for this type of analysis.
- [368] A database of expected base compositions for each primer region was generated using an *in silico* PCR search algorithm, such as (ePCR). An existing RNA structure search algorithm (Macke et al., Nucl. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 1460-1465, which is incorporated

herein by reference in its entirety). This also provides information on primer specificity of the selected primer pairs.

Table 2 represents a collection of primers (sorted by primer pair number) designed to identify [369] bacteria using the methods described herein. The primer pair number is an in-house database index number. Primer sites were identified on segments of genes, such as, for example, the 16S rRNA gene. The forward or reverse primer name shown in Table 2 indicates the gene region of the bacterial genome to which the primer hybridizes relative to a reference sequence. In Table 2, for example, the forward primer name 16S EC 1077 1106 F indicates that the forward primer (F) hybridizes to residues 1077-1106 of the reference sequence represented by a sequence extraction of coordinates 4033120..4034661 from GenBank gi number 16127994 (as indicated in Table 3). As an additional example: the forward primer name BONTA X52066 450_473 indicates that the primer hybridizes to residues 450-437 of the gene encoding Clostridium botulinum neurotoxin type A (BoNT/A) represented by GenBank Accession No. X52066 (primer pair name codes appearing in Table 2 are defined in Table 3. One with ordinary skill knows how to obtain individual gene sequences or portions thereof from genomic sequences present in GenBank. In Table 2, Tp = 5propynyluracil; Cp = 5-propynylcytosine; * = phosphorothioate linkage; I = inosine. T. GenBank Accession Numbers for reference sequences of bacteria are shown in Table 3 (below). In some cases, the reference sequences are extractions from bacterial genomic sequences or complements thereof.

Table 2: Primer Pairs for Identification of Bacteria

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

165 BC 1077 1106 F CGRGATGTTGGGTTAAGTCCCGTAA 165 BC 1082 1106 F ATGTTGGGTTAAGTCCCGCAACGAG 165 BC 1090 1111 F TTAAGTCCCGCAACGAG 165 BC 1222 1241 F GCTACACACGTGCTACTAATCG 165 BC 1222 1241 F GCTACACACGTGCTACTAATCG 165 BC 1322 1353 F AAGTCGGAATCGCTAATACATCG 165 BC 1322 1353 F AAGTCGGAATCGCTAATACATCG 165 BC 1322 1353 F TTAACACATCGTAATACATCGAACG 165 BC 132 1353 F TTAACACATCGTAATACATCGAACG 165 BC 133 732 F AGATCGCATGGTGAACG 165 BC 713 732 F AGATCACCTGGTAATACACCC 165 BC 713 732 F AGATCACCTGGTAATACCC 165 BC 713 732 F AGATCACCTGGTAATACCCCC 165 BC 713 732 F AGATCACCTGGTAATACCCCC 165 BC 713 732 F AGATCACCTGGTAATACCCCCC 165 BC 713 732 F ACCCCATCATACACCCCACCC 165 BC 713 732 F ACCCCATCATACACCCCACCCC 165 BC 713 732 F ACCCCATCATACACCCCACCCC 165 BC 713 732 F ACCCCATCATACCCCCACCCCCCCCCCCCCCCCCCCC	Primer Fair Number	Forward Primer Name	Forward Sequence	Forward SEQ ID NO:	Reverse Primer Name	Reverse Sequence	Reverse SEQ ID NO:
165 EC 108 1111 P CORRESOCRANGEMENT 151 152 EC 1175 1197 P CORRESOCRATICOCTOCALCITYCOCTOCACTOCACTOCACTOCACTOCACTOCACTOCAC			GTGAGATGTTGGGTTAAGTCCCGTAA	70.1	175 1105	ひかいかかいのかいかいかっちゃっちゃっちゃっちゃっちゃっちゃっちゃっちゃっちゃっちゃっちゃっちゃっちゃっ	9 C 8
168 BC 1090 1111 F TRANSCOCROANCONCONCONCONCONCONCONCONCONCONCONCONCON	-1 0	EC 1077 1106	CARC CHITA A CHOOL A VIOLATION A	38	EC 1175 1197	TTGACGTCATCCCCACCTTCCTC	1398
168 EC 1322 1341 F CORDOLOGOROCTOCATION 114 168 EC 1303 1323 R CORDOLOGOROCTOCATION 168 EC 1322 1341 F CORDOLOGOROCTOCATION 168 EC 1382 1407 R CORDOLOGOROCTOCATION 168 EC 1382 1407 R CORDOLOGOROCTOCATION 168 EC 1382 1407 R TAGGORDACCTOCATION 168 EC 1382 1407 R TAGGORDACCTOCATION 158 EC 1381 1407 R TAGGORDACCTOCATION 158 EC 1381 1408 R TAGGORDACCTOCATION 158 EC 1381 1408 R TAGGORDACCTOCATION 158 EC 1381 1408 R TAGGORDACCCTOCATION 158 EC 1381 1408 R TAGGORDACCTOCATION 158 EC 1381 1408 R TAGGORDACCCTOCATION 158 EC 1381 1408 R TAGGORDACATION 158 EC 1381 1408 R TAGGORDACCCTOCATION 158 EC 1381 1408 R TAGGORDACATION 158 EC 1381 1408 R TAGGORDACCTORACCCTORACCTO	2 6	EC 1090 1111	THE PROTECTION OF THE PROTECTI	651	EC 1175 1196	TGACGTCATCCCCACCTTCCTC	1159
165 EC 1322 1353 P ANGTOGGRAPTOCCTAGATANCOCC	0 4	EC 1222 1241	GCTACACACGTGCTACAATG	114	EC 1303 1323	CGAGTTGCAGACTGCGATCCG	787
165 EC 30 54 F TORANCOCTOGRACECTUARCAC 136 EC 105 126 R TANGCOCTOGRACECTUARCACCOCTOCCCC 165 EC 20 8 64 F TANGCATACTUARCACATCACACTUARCACCCCCCCCCCCCCCC	5		AAGTCGGAATCGCTAGTAATCG	10	EC 1389 1407	GACGGGCGGTGTGCAAG	806
165 EC 28 64 F TYACKCANGCCRANGCCANGCCANGCCANGCCANGCCANGCANGCCANGC	9	EC 30 54 F	TGAACGCTGGTGGCATGCTTAACAC	429	16S EC 105 126 R	TACGCATTACTCACCCGTCCGC	897
168 EC 49 68 P	7	EC 38 64	GTGGCATGCCTAATACATGCAAGTCG	1.36	16S EC 101 120 R	TTACTCACCCGTCCGCCGCT	1365
165 EC 683 700 F GINTAGCAGGARAATGCG 137 168 EC 774 795 R GINTACTAATCCTCTTTGCTCCCCAAGGCC 116 EC 779 809 R CGTCGTACTCCCCAGGCGCCCCCCCCCCCCCCCCCCCCC	8	EC 49 68	TAACACATGCAAGTCGAACG	152	EC 104 120	TTACTCACCCGTCCGCC	1364
168 EC 713 732 F AGAACACCGARGGCAAGGC 118 168 EC 800 897 R GGCCGTACCCCCCGGGCG 118 168 EC 800 897 R GGCCGTACTCCCCCGGGCG 118 168 EC 800 897 R GGCCGTACTCCCCCGGGCG 168 EC 800 897 2 R GGCCGTACTCCCCCGGCG 168 EC 800 897 2 R GGCCGTACTCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCG 168 EC 800 897 2 R ACAGACCCAGGCGCGCGCG 168 EC 800 897 2 R ACAGACCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCG 168 EC 800 897 2 R ACAGACCCAGGCGCGCGCG 168 EC 800 897 2 R ACAGACCCAGGCGCGCGCGCG 168 EC 800 897 2 R ACAGACCCAGGCGCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCGCGCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCGCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCCCCCAGGCG 168 EC 800 897 2 R ACAGACCCCAGGCCCCCAGGCG 168 EC 800 897 2 R 168 EC 800 897 R 168 EC 8	Q	EC 683 700	GTGTAGCGGTGAAATGCG	137	EC 774 795	GTATCTAATCCTGTTTGCTCCC	839
168 EC 785 806 F GGATTAGARACCCTGGTAGTCC 118 168 EC 800 897 R GGCCGTACTCCCCAGGCG 168 EC 785 810 F GGATTAGATACCCTGGTAGTCCACGC 119 168 EC 800 894 R GGCCGTACTCCCCAGGCG 168 EC 80 810 F TAGATACACCTGGTAGATCCCTGGTAGACCC 129 168 EC 1054 1078 R GGCCGTACTCCCCAGGCG 168 EC 969 815 F TAGATCCACGGAAGACCTTACC 19 168 EC 1054 1078 R ACCACACAGACACACACACACACACACACACACACACAC	10	732	AGAACACCGATGGCGAAGGC	21	789 809	CGTGGACTACCAGGGTATCTA	798
168 EC 785 810 F GGATTAGATACCCTGGTAGTCCACGC 119 168 EC 880 894 R CGTACTCCCAGGCG 168 EC 789 810 F TAGATGCCTGGTAGTCCACGC 206 168 EC 880 894 R CGTACTCCCAGGCG 168 EC 789 810 F TTGGATGCAGGCGAGAGACCT 206 168 EC 1064 1073 R ACGAGCTGAGCGG 168 EC 569 585 F ACGCGAAGAACCTTACC 209 235 EC 1064 1073 R ACGAGCTGAGCGGC 235 EC 2645 2669 2 TTGCACCTAGTCCCGGAGAGACCGG 80 235 EC 1064 1073 R ACGAGCTGAGCGCC 235 EC 2645 2669 2 TTGCACCTAGTCCCGGAGACCGG 80 235 EC 2741 2761 R ACGAGCTGAGCGCC 235 EC 2645 2669 2 TTGCACCTAGTACAGAGACCGG 83 235 EC 2741 2761 R ACGAGCTGAGCGCC 235 EC 2645 2669 2 TTGCACCTAGTACAGAGACCGG 235 EC 2751 2767 R ACCACACGAGCCCCTCCCC 235 EC 2645 2669 2 TTGCACCTAGTACAGAGACCGG 235 EC 2751 2767 R ACCACACACGCCCCCCCC 235 EC 2645 2669 2 TTGCACCTAGTACAGAGACCGG 235 EC 2751 2767 R ACCACACACGCCCCTCCCC 235 EC 2645 2669 2 TTGCACCTAGTACAGACCCG 235 EC 2751 2767 R TGCATAGTTACACCCCCCCCCCCCCCCCCCCCCCCCCCC	11		GGATTAGAGACCCTGGTAGTCC	118		GGCCGTACTCCCCAGGCG	830
165 EC 789 810 F	1.2	EC 785 810	GGATTAGATACCCTGGTAGTCCACGC	119		GGCCGTACTCCCCAGGCG	830
16.5 EC 960 981 F TTCGATGCTAGCGGAAGAACCTT 16.5 EC 1054 1073 R ACGCGAAGCTAGCCAGACCTAGCCCAGACCTAGCCCAGACCTAGCCCAGACCTAGCCCAGACCTAGCCCGGACCTAGCCCCGGACCTAGCCCCGGACCTAGCCCCGGACCTAGCCCCGGCCCCGCCCCGCCCCGCCCCGCCCCGCCCCCCGCCCC	1.3	EC 789 810	TAGATACCCTGGTAGTCCACGC	206	S E	CGTACTCCCCAGGCG	796
16.5 EC 969 98.5 F ACGCGAAGAACCTTACC 19 16.5 EC 1061 1078 R ACGCACGAGCTCACCACCACCACCACCACCACCACCACCACCACCACCA	14	EC 960 981	TTCGATGCAACGCGAAGAACCT	672	EC 1054 1073	ACGAGCTGACGACAGCCATG	735
235 EC 1826 1843 F CTGACACCAGGAGG	1.5	EC 969 985	ACGCGAAGAACCITACC	1.9	EC 1061 1078	ACGACGAGCTGACGAC	734
235 EC 2645 2669 F TCIGTCCCTAGTACGAGACCCGG 83 235 EC 2741 2761 R TGCTTAGATGCTTTCAGC 235 EC 2645 2669 2 CTGTCCCTAGTACGAGACCCGG 83 238 EC 2751 2767 R ACATAGCTTTCAGC 235 EC 493 518 F GGGAGTGAAAGAGACTCCTGAAACCG 125 238 EC 551 571 R ACATAGGATCCCCTCACCCCCCCCCCCCCCCCCCCCCCC	16	EC 1826 1843	CTGACACCTGCCCGGTGC	80		GACCGTTATAGTTACGGCC	805
235 EC 2645_2669_2	1.7	23S EC 2645 2669 F	TCTGTCCCTAGTACGAGAGGACCGG	408	EC 2744 2761	TGCTTAGATGCTTTCAGC	1252
235 BC 493 518 F GGGGGGGGGAAAAGGGATCCTGAAACCG 125 218 BC 551 571 R ACAAAAGGGTACCCGTCACCC 236 BC 493 518 2 F GGGGAGTGAAAGGACTCCTGAAACCG 125 235 BC 551 571 2 R ACAAAAGGCACCCTCTCAAACCG 66 235 BC 1059 1077 R TGGCTTCTTAAGCCACCCCACCCCCACCCCCCCCCCCCC	«	23S_EC_2645_2669_2_	CTGTCCCTAGTACGAGAGGACGG	83	EC 2751 2767	GTTTCATGCTTAGATGCTTTCAGC	846
235 EC 493 518 2 F GGGGGGGAAACACCCGCACCC	5 5	EC 493 518	GGGGAGTGAAAGAGATCCTGAAACCG	125	EC_551_571	ACAAAAGGTACGCCGTCACCC	717
CAPC BA 104 131 F CCAPC BA 105 107 E TGATCTTAACCCACACCCACACCCACACCCACACCCCACACCCCACA	02	EC 493 518 2	GGGGAGTGAAAGAGATCCTGAAACCG	1.25		ACAAAAGGCACGCCATCACCC	716
CAPC BA 104 131 F CCAPC BA 114 133 F CCAPC TATTTAGCACTCGTTTTAATCAGCCGG 20 CAPC BA 185 205 R TGAATCTTGAAACACCATACG CAPC BA 114 133 F ACTCGTTTTTAATCAGCCGT 20 CAPC BA 185 205 R TGAATCTTGAAATCTTAATCAGCCATT 109 CAPC BA 349 376 R TGAAACCCTTGTCTTTGAATTGTTATTTTTTTTTTTTTT	21	EC 971 992	CGAGAGGGAAACCAGACC	99	EC 1059 1077	TGGCTGCTTCTAAGCCAAC	1282
CAPC BA 114 133 F ACTCGTTTTTAATCAGCCGG 20 CAPC BA 185 205 R TGAATCTTGAAACACCATAGG CAPC BA 274 303 F GATTATTGTTATCTGTTATGCTTTTGCATT 109 CAPC BA 349 376 R GTAACCCTTGTCTTTGAATTGTTTTGC CAPC BA 276 296 F TTATTGTTATCCTGTTATGCC 663 CAPC BA 361 378 R GGTAACCCTTGTCTTTGAAT CAPC BA 281 301 F GTTATCTTATGCATTTGG 138 CAPC BA 361 378 R TGGTAACCCTTGTCTTTGAT CAPC BA 315 334 F CCGTGGTATTGGAGTTATTG 59 CAPC BA 361 378 R TGGTAACCCTTGTCTTTG CYA BA 1055 1072 F GAAAGAGTTGGATTGGG 92 CYA BA 1112 1130 R TGTTGACCATCTTTAG	22	BA 104 131	GITATITAGCACTCGTITITAATCAG	139	205	TGAATCTTGAAACACCATACGTAACG	1150
CAPC BA 274 303 F GATTATTGTTATCCTGTTATGCCATT 109 CAPC BA 349 376 R GTAACCCTTGTCTTTGAATTGTTATTGCT CAPC BA 276 29 F TTATTGTTATCCTGTTATGCCATTTG 663 CAPC BA 358 377 R GGTAACCCTTGTCTTTGAAT CAPC BA 281 301 F GTTATCCTGTTATTGCATTTTG 138 CAPC BA 361 378 R TGGTAACCCTTGTCTTTG CAPC BA 315 314 F CCGTGGTATTGCAGTTATTG 59 CAPC BA 361 378 R TGGTAACCCTTGTCTTTG CYA BA 1055 1072 F GABAGATTGGATTGGG 92 CYA BA 1112 1130 R TGTTGACCATGTCTTAG	23		ACTCGTTTTTAATCAGCCCG	20	205	TGAATCTTGAAACACCATACG	1149
CAPC BA 281 301 F TIATTGTTATCCTGTTATGC 663 CAPC BA 358 377 R GGTAACCCTTGTCTTTGAT CAPC BA 281 301 F GTTATCCTGTTATGCCATTTG 138 CAPC BA 361 378 R TGGTAACCCTTGTCTTTG CAPC BA 315 334 F CCGTGGTATTGGAGTTATTG 59 CAPC BA 3112 1130 R TGGTAACCCTTGTCTTAG	24	274 303	GATTATTGTTATCCTGTTATGCCATT	109	349 376	GTAACCCTTGTCTTTGAATTTGTATTTGC	837
CAPC BA 281 301 F CTTATCCTGTTATGCCATTG 138 CAPC BA 361 378 R TGGTAACCCTTGTCTTG CAPC BA 315 334 F CCGTGGTATTGCAGTTATTG 59 CAPC BA 361 378 R TGGTAACCCTTGTCTTG CYA BA 1055 1072 F GAAAGAGTTGGATTGGG 92 CYA BA 1112 1130 R TGTTGACCATGCTTCTTAG	25	276 296	TTATTGTTATCCTGTTATGCC	663	358 377	GGTAACCCTTGTCTTTGAAT	834
CAPC BA 315 334 F CCGTGGTATTGGAGTTATTG 59 CAPC BA 361 378 R TGGTAACCCTTGTCTTTG CYA BA 1055 1072 F GAAAGAGTTGGGATTGGG 92 CYA BA 1112 1130 R TGTTGACCATGCTTCTTAG	26	281 301	GTTATCCTGTTATGCCATTTG	138	378	TGGTAACCCTTGTCTTTG	1298
CYA BA 1055 1072 F GAAAGAGTTCGGATTGGG 92 CYA BA 1112 1130 R TGTTGACCATGCTTCTTAG	27	315 334	CCGTGGTATTGGAGTTATTG	59		TGGTAACCCTTGTCTTTG	1298
	28	1072	GAAAGAGTTCGGATTGGG	92	CYA_BA_1112_1130_R	TGTTGACCATGCTTCTTAG	1352

63

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

800	1342	794	728	768	1248	803	- Landerson	745	1135	748	1140	762	781	774	1186	778	1089	1089	959	958	831	1414	1413	790	789	847	741	785	784
CTTCTACATTTTTAGCCATCAC	TGTTAACGGCTTCAAGACCC	CGGCTTCAAGACCCC	ACCACTITIAAIAAGGITITGIAGCIAAC	CCACTTTTAATAAGGTTTTGTAGC	TGCTGCTTTCGCATGGTTAATTGCTTCA	CS STATE STATE STATES	AGATAAAGAATCACGAATATCAATTTGT	AGC	TCTTCCAAGGATAGATTTATTTCTTGTT CG	AGGATAGATTTATTTCTTGTTCG	TCTTGACAGCATCCGTTG	CAGATAAAGAATCGCTCCAG	CCTGTAGTAGAGGGTAAC	CCCTGTAGTAGAGGGTAACCAC	TGATTATCAGCGGAAGTAG	CCGTGCTCCATTTTTCAG	TCGGATAAGCTGCCACAAGG	TCGGATAAGCTGCCACAAGG	TCAAGCGCCATTTCTTTGGTAAACCAC AT	TCAAGCGCCATCTTTCGGTAATCCAC AT	GGCGCTTGTACCTACCAC	TTGGCCATCAGGCCACGCATAC	TIGGCCATCAGACCACGCATAC	CGCACCGTGGGTTGAGATGAAGTAC	CGCACCATGCGTAGAGATGAAGTAC	GTTTTTCGTTGCGTACGATGTC	ACGTTTTCGTTTTGAACGATAATGCT	CGAACGGCCTGAGTAGTCAACACG	CGAACGGCCAGAGTAGTCAACACG
CYA BA 1447 1426 R	CYA BA 1448 1467 R	CYA BA 1447 1461 R	CYA BA 999 1026 R	CYA BA 1003 1025 R	d Fall ocal od dawn			LEF BA 1119 1149 R	LEF BA 843 872 R	865	LEF BA 883 900 R	LEF BA 939 958 R	PAG BA 190 209 R	PAG BA 187 210 R	PAG BA 326 344 R	PAG BA 755 772 R	PAG BA 849 868 R	PAG BA 849 868 R	RPOC EC 1095 1124 R	RPOC EC 1095 1124 2 R	RPOC EC 213 232 R	RPOC EC 2225 2246 R	RPOC BC 2225 2246 2 R	RPOC EC 2313 2337 R	RPOC EC 2313 2337 2 R	RPOC EC 865 889 R	RPOC EC 865 891 R	RPOC EC 1036 1059 R	RPOC EC 1036 1059 2 R
12	64	13	53	131	r c	200	+00	44	26	06	700	43	49	22	11	93	341	552	39	39	158	478	477	81	86	75	76	41	40
ACAACGAAGTACAATACAAGAC	CGAAGTACAATACAAGACAAAAGAAG G	ACAATACAAGACAAAGAAGG	CAGGITTAGTACCAGAACAIGCAG	GGTTTAGTACCAGAACATGC	TGCTCGTGGTGCACAAGTAACGGATA		CARGARGADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AATAC	AGCTTTTGCATATTATATCGAGCCAC	CTTTTGCATATTATATCGAGC	TTTACAGCTTTATGCACCG	CAACGGATGCTGGCAAG	CAGAATCAAGTTCCCAGGGG	AGAATCAAGTTCCCAGGGGTTAC	AATCTGCTATTTGGTCAGG	GAAGGATATACGGTTGATGTC	TCCTGAAAATGGAGCACGG	TGGAGCACGGCTTCTGATC	CAAAACTTATTAGGTAAGCGTGTTGA CT	CAAAACTTATTAGGTAAGCGTGTTGA CT	TAAGAAGCCGGAAACCATCAACTACC G	TGATTCTGGTGCCCGTGGT	TGATTCCGGTGCCCGTGGT	CTGGCAGGTATGCGTGGTCTGATG	CTTGCTGGTATGCGTGGTCTGATG	CGTCGGGTGATTAACCGTAACAACCG	CGTCGTGTAATTAACCGTAACAACCG	CAAAGGTAAGCAAGGTCGTTTCCGTC A	CAPAGGTAAGCAAGGACGTTTCCGTC A
CYA_BA_1349_1370_F	CYA BA 1353 1379 F	CYA BA 1359 1379 F	BA 914 937 F	CYA BA 916 935 F		วเ	TEL BA TOSS TOSE	LEF BA 1036 1066 F	T.EF BA 756 781 F		BA 795 813	BA 883 899	BA 122 142	BA 123 145	BA 269 287	BA 655 675	PAG BA 753 772 F	BA 763 781	EC 1018 10	1045	RPOC EC 114 140 F	RPOC EC 2178 2196 F	2178 2196	2241	RPOC_EC_2218_2241_2 F	RPOC EC 808 833 F	808 833	RPOC EC 993 1019 F	RPOC_EC_993_1019_2_
29	30	3.1	32	33		i, c	66	36	3.7	80 0	98	40	41	422	43	44	45	46	47	84	49	50	51	52	53	54	55	26	57

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1201	815	816	845	778	r F O	1006	666	842	754	1435	1356	795	825	767		1000	779	1240		1209	824	752	200	222	27.0	2 VI	763
TGCACGTCTGTTTCAGTTGCAAATTC	GCCGTCCATCTGAGCAGCACC	GCCGTCCATTTGAGCAGCACC	GTTGTCGCCAGGCATAACCATTTC	いませんのといっていることをいっていません。	TCCAGGCATTACCATTTCTACTCTTCT	වර	TCCAAGTGCTGGTTTACCCCATGG	GTGCTGGTTTACCCCATGGAGT	ATTCAAGAGCCATTTCTTTTGGTAAACC	TTTCTTGAAGAGTATGAGCTGCTCCGTA AG	TGTTTTGTATCCAAGTGCTGGTTTACCC	CGGTACGAACTGGATGTCGCCGTT	GCTGGATTCGCCTTTGCTACG	CCAAGIGCTGGTTTACCCCATGGAGTA		TCCAAGTGCTGGTTTTACCCCATGGAG	CCTACCCAACGTTCACCAAGGGCAG	TGTGGCCGATTTCACCACTTCTT		TECCACITIGACACICCIGITECTE	GCTGCTTTGATGGCTGAATCCCCTTC	を中へのでする。		CCCATTTTTCACGCATGCTGAAATAT	GATTGGCGATAAAGTGATATTTTCTAAA	GCCCACCAGAAAGACAACAACAAAAA	CATGACAGCCAAGACCTCACCCACC
SSPE_BA_197_222_R	TUFB_EC_283_303_R	TUFB EC 283 303 2 R	TUFB EC 1045 1068 R	TUFB EC 1045 1068 2 R		TUFB EC 1033 1062 R	RPLB EC 739 762 R	RPLB EC 736 757 R	RPOC EC 1097 1126 R	RPOB EC 3836 3865 R	RPLB EC 743 771 R	VALS EC 1195 1218 R	RPOB EC 1909 1929 R	RPLB EC 735 761 R	ת משל מכני שם מוממ	KFUD EC /3/ /62 K	SP101_SPET11_92_116_R	SP101 SPET11 213 238 R	CCC 000 1177900	ONC TITES	SP101_SPET11_355 380 R	SP101 SPET11 423 441 R	SPET11 448 473	SPET11 686 714	SDET11 756 784	SPET11 871 896	1012
45	204	678	4	Ŋ		56	86	54	78	248	54	7.7	233	623	8 9 1	207	2	115	40	h 1	89	132	126	62	127	364	123
CAAGCAAACGCACAATCAGAAGC	TAGACTGCCCAGGACACGCTG	TIGACTGCCCAGGTCACGCTG	AACTACCGTCCGCAGTTCTACTTCC	AACTACCGTCCTCAGTTCTACTTCC	CCACAGTTCTACTTCCGTACTACTGA	වර	GACCTACAGTAAGAGGTTCTGTAATG AACC	CATCCACACGGTGGTGAAGG	CGTGTTGACTATTCGGGGGCGTTCAG	TCAACAACCTCTTGGAGGTAAAGCTC AGT	CATCCACACGGTGGTGATGG	CGTGGCGTGGTTATCGA	TATCGCTCAGGCGAACTCCAAC	TGTAATGAACCCTAATGACCATCCAC ACGG	TAATGAACCCTAATGACCATCCACAC	なるといって、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは	AGT	GCTGGTGAAAATAACCCAGATGTCGT CTTC	AGCAGGIGGIGAAAICGGCCACAIGA TT	CTTGTACTTGTGGCTCACACGGCTGT	TTGG	GTCAAAGTGGCACGTTTACTGGC	GGGGATTCAGCCATCAAAGCAGCTAT TGAC	CCTTACTTCGAACTATGAATCTTTTG GAAG	GGGGATTGATATCACCGATAAGAAGA A	TCGCCAATCAAACTAAGGGAATGGC	GGGCAACAGCAGCGGATTGCGATTGC
SSPE BA 115 137 F	TUFB EC 239 259 F	TUFB EC 239 259 2 F	TUFB EC 976 1000 F	TUFB_EC_976_1000_2 F		TUFB EC 985 1012 F	RPLB EC 650 679 F	RPLB EC 688 710 F	RPOC EC 1036 1060 F	RPOB EC 3762 3790 F	RPLB EC 688 710 F	VALS EC 1105 1124 F	RPOB EC 1845 1866 F	RPLB EC 669 698 F	RPLB EC 671 700 F		SP101 SPET11 1 29 F	SP101_SPET11_118_14 7_F	SPIOL SPETI1 216 24		5 13	SP101_SPET11_322_34 4_F	SP101_SPET11_358_38 7_F	SP101_SPET11_600_62	SP101_SPET11_658_68 4 F	SP101_SPET11_776_80 1_F	SP101_SPET11_893_92
58	59	9	61	62	1	63	99	67	89	60	70	71	72	73	74		75	76	77		78	79	80	81	82	83	84

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

								-	 7						-	-	-				—т					
804	711	828	752	821	1412	755	1131	747	770	827	715	769	832	797	822	1386	930	792	1075	819	1389	733	727	727	740	
GACCCCAACCTGGCCTTTGTCGTTGA	AAACTATTTTTTTAGCTATACTCGAACA C	GGATAATTGGTCGTAACAAGGGATAGTG AG	ATATGATTATCATTGAACTGCGGCCG	GCGTGACGTTCTTGAATTGTAATCA	TIGGACCIGIAAICAGCIGAAIACIGG	ATTGCCCAGAAATCAATCATC	TCTGGGTGACCTGGTGTTTTAGA	AGCTGCTAGATGAGCTTCTGCCATGGCC	CCATAAGGTCACCGTCACCATTCAAAGC	GGAATTTACCAGCGATAGACACC	AATCGACGACCATCTTGGAAAGATTTCT C	CCAGCAGTTACTGTCCCCTCATCTTTG	GGGTCTACACCTGCACTTGCATAAC	CGTATAAGCTGCACCATAAGCTTGTAAT GC	GCGTTCCACAGCTTGTTGCAGAAG	TTCGCTCGGCCTGGCC	TATAGCACCATCCATCTGAGCGGCAC	CGCGGTCGGCTCGTTGATGA	TCGCAGTTCATCAGCACGAAGCG	GCGCTCCACGTCTTCACGC	TTCGTGCTTAGATGCTTTCAG	ACGACACCPTPGACGAC	ACACGAGCpTpGAC	ACACGAGCTGAC	ACGICCTICALCGCCTCTGA	
SP101 SPET11 1251 1277 R	SP101 SPET11 1403 1431 R	SP101_SPET11_1486_1515_R	SP101_SPET11_1783_1808_R	SP101 SPET11 1808 1835 R	SP101 SPET11 1901 1927 R	SP101 SPET11 2062 2083 R	SP101 SPET11 2375 2397 R	SP101 SPET11 2470 2497 R	SP101 SPET11 2543 2570 R		SP101 SPET11 3168 3196 R	SPET11 3480 3506	SPET11 3605 3629	3829 3858 R	EC 1920 1943	RPOB EC 1438 1455 R	TUFB EC 284 309 R	DNAK EC 503 522 R	VALS EC 1948 1970 R	TUFB EC 849 867 R	23S EC 2745 2765 R	16S EC 1061 1078 2P R	16S_EC_1064_1075_2P_R	16S EC 1064 1075 R	23S EC 40 59 R	
47	89	67	09	82	33	155	50	390	35	15	108	25	116	8.7	65	97	111	72	85	9	84	1.9	63	63	61	
CAATACCGCAACAGCGGTGGCTTGGG	CGCAAAAAATCCAGCTATTAGC	CGAGTATAGCTAAAAAAATAGTTTAT GACA	CCTATATTAATCGTTTACAGAAACTG GCT	CTGGCTAAACTTTGGCAACGGT	ATGATTACAATTCAAGAAGGTCGTCA CGC	TAACGGTTATCATGGCCCAGATGGG	CAGAGACCGTTTTATCCTATCAGC	TCTAAAACACCAGGTCACCAGAAG	ATGGCCATGGCAGAAGCTCA	ACCATGAGAAGGCATTTGACA	GATGACTTTTTAGCTAATGGTCAGGC AGC	AGCGTAAAGGTGAACCTT	GCTTCAGGAATCAATGATGGAGGAGGAGG	CITGGAGGTAAGTCTCATTTTGGTGG	CGACGCGCTGCGCTTCAC	GACCACCTCGGCAACCGT	GCACTATGCACACGTAGATTGTCCTG G	CGGCGTACTTCAACGACAGCCA	CTTCTGCAACAAGCTGTGGAACGC	AAGACGTGCACGGGC	CTGTTCTTAGTACGAGGACC	ACGCGAAGAACCTTACpC	CGAAGAACDCDTTACC	CGAAGAACCITACC	CCTGATAAGGGTGAGGTCG	
SP101_SPET11_1154_1 179_F	SP101_SPET11_1314_1 336 F	 	-	SP101_SPET11_1711_1 733 F	SPET11_1807_1	-	SP101_SPET11_2260_2 283 F	SP101_SPET11_2375_2	SP101_SPET11_2468_2	SP101_SPET11_2961_2	SP101_SPET11_3075_3	SP101_SPET11_3386_3	SP101 SPET11 3511 3	PDOB EC 3775 3803 F	1850	1353		DNAK EC 428 449 F	VALS EC 1920 1943 F	TUFB EC 757 774 F	23S EC 2646 2667 F	16S EC 969 985 1P F	16S EC 972 985 2P F	985 F	TRNA ILE- RRNH EC 32 50.2 F	
85	86			68	06				 	, o	96	20	0	2 -	112	113	114	115	116	11.7	118	119	120	121	122	1

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

799	1403	712	893	765	826	820	823	771	739	780	71.9	721	718	722	720	723	724	725	743	796	1019	1132	759	764	802	713	1377	732	791	843	796	737	1158	71.4
CTATCGGTCAGGAGTAT	TTGCATCGGGTTGGTAAGTC	AACATAGCCTTCTCCGTCC	TACCTTAGGACCGTTATAGTTACG	CCAAACACCGCCGTCGATAT	GCTTACACACCCGGCCTATC	GCGTGACAGCTATTC	GCTGCTGGCACGGAGTTA	CCATGCAGCACCTGTCTC	ACGGTTACCTTGTTACGACT	CCTCCTGCGTGCAAAGC	ACAACACGAGCTGACGAC	ACAACACGAGCTGICGAC	ACAACACGAGCIGACGAC	ACAACACGAGITGACGAC	ACAACACGAGCTGACIAC	ACAACACGAICTIACGAC	ACAACACIAICTIACGAC	ACAACACIAICTIACIAC	ACTTAGATGCTTTCAGCGGT	CGTACTCCCCAGGCG	TCCCCACCTTCCTCC	TCTGTTTCAGTTGCAAATTC	CAATCTGCTGACGGATCTGAGC	CATGATGGTCACAACCGG	CITICGCTITCICGAACTCAACCAI	AACTTCGCCTTCGGTCATGTT	TICAGGICCATCGGGTICATGCC	ACGAACTGGATGTCGCCGTT	CGCATTICACCGCTACAC	GTTCAAATGCCTGGATACCCA	CGTACTCCCCAGGCG	ACGCGGCCATGCAGAGATGCC	TGACGTCATCCCCACCTTCC	AAGGAGGTGATCCAGCC
23S_BC_430_450_R	23S_EC_891_910_R	23S EC 1424 1442 R	23S EC 1908 1931 R	23S EC_2475_2494_R	23S EC 2833 2852 R	TRNA ASP- RRNH EC 23 41.2 R	16S EC 508 525 R	16S EC 1041 1058 R	16S EC 1493 1512 R	TRNA_ALA- RRNH_EC_30_46.2_R	16S_EC_1061_1078.2_R	16S_EC_1061_1078.2_114_R	16S EC 1061 1078.2 I12 R	16S EC 1061 1078.2 III R	16S EC 1061 1078.2 I16 R	168 EC 1061 1078.2 21 R	16S EC 1061 1078.2 31 R	16S EC 1051 1078.2 4I R	23S EC 2741 2760 R	16S EC 880 894 R	16S EC 1174 1188 R	SSPE BA 197 216 R	GROL EC 1039 1060 R	INFB EC 1174 1191 R	HFLB EC 1144 1168 R	INFB EC 2038 2058 R	GROL_BC_328_350_R	VALS EC 1195_1214_R	16S_EC_683_700_R	RPOC EC 1295 1315 R	16S_EC_880_894_R	RPOC EC 1623 1643 R	16S EC 1177 1196 R	16S_EC_1525_1541_R
140	141	30	100	117	73	31	28	95	107	101	19	19	19	19	19	19	1.9	19	79	137	42	3	544	133	569	74	128	7.7	70	16	122	567	37	88
GTTGTGAGGTTAAGCGACTAAG	GTTGTGAGGTTAAGCGACTAAG	ATACTCCTGACTGACCGATAG	GACTTACCAACCCGATGCAA	GGACGGAGAGGCTATGTT	CGTAACTATAACGGTCCTAAGGTA	ATATCGACGGCGGTGTTTGG	AGTCTCAAGAGTGAACACGTAA	GACACGGTCCAGACTCCTAC	GATCTGGAGGAATACCGGTG	GAGAGCAAGCGGACCTCATA	ACGCGAAGAACCTTACC	ACGCGAAGAACCTTACC	ACGCGAAGAACCTTAACC	ACGCGAAGAACCTTACC	ACGCGAAGAACCTTACC	ACGCGAAGAACCTTACC	ACGCGAAGAACCTTACC	ACGCGAAGAACCTTACC	CTAGTACGAGAGGACCGG	GTGTAGCGGTGAAATGCG	CAACGAGCGCAACCCTT	AACGCACAATCAGAAGC	TGGAAGATCTGGGTCAGGC	GTCGTGAAACGAGCTGGAAGA	TGGCGAACCTGGTGAACGAAGC	CGTCAGGGTAAATTCCGTGAAGTTAA	GGTGAAAGAAGTTGCCTCTAAAGC	CGTGGCGGCGTGGTTATCGA	CGGAATTACTGGGCGTAAAG	ACCCAGTGCTGCTGAACCGTGC	GGGAGCAAACAGGATTAGATAC	TGGCCCGAAAGAAGCTGAGCG	ATGTTGGGTTAAGTCCCGC	CTTGTACACCGCCCGTC
23S EC -7 15 F	-7 15 F	EC 430 45	EC 891 910	EC 1424 144	EC 1908 1931	EC 2475 2494		345	724	16S EC 1268 1287 F			985	985	985	985	EC 969 985	985	2 266	16S EC 683 700 F	16S EC 1100 1116 F			INFB EC 1103 1124 F		1		VALS EC 1105 1124 F		RPOC EC 1256 1277 F	ı	RPOC EC 1584 1604 F	1 14	
123					-			T							1			╁	-		\vdash	┢	220	221	222	223	224	225	226	227	228	229	230	231

*L*9

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

808	833	1385	782	760	775	746	777	1369	841	742	108	839	835	757	71.4	#T/	714	1080	761	783	731	773	817	818	810	749	750	751	838	750	751	838	750	751	838	000	י י י
GACGGGGGGTGTGTACAAG	GGGTTTCCCCATTCGG	Treecreecrac	CCTTCTCCCGAAGTTACG	CACCGGGCAGGCGTC	CCGACAAGGAATTTCGCTACC	AGCCGACATCGAGGTGCCAAAC	なよりなようなようないのかって	いたなからなっていることはないないのである。	1世代の 1年の日本ののでのなり	STOCKET TOTAL TOTA	ACIGCI CCCCCC AND ADDITION	CITTACCCASTANT TO COLUMN T	CHARLOCOMICANOCAMENCO	GGIAAGGIICIICGCGIIG	All'iG'i'AGCAUGIGIAGCCC	AAGGAGGTGATCCAGCC	AAGGAGGTGATCCAGCC	TCGCTACCTTAGGACCGT	CACGGCTACCTTGTTACGAC	CCTTGTTACGACTTCACCCC	ACCTIGITACGACTICACCCCA	CCCCCGTCAATTCCTTTGAGT	GCCITGCGACCGTACTCCC	GCGACCGTACTCCCAGG	GACGTCATCCCCACCTTCCTCC	AGTCCATCCCGGTCCTCTCG	ATAAGCCATGTTCTGTTCCATC	ATAAGCCGGGTTCTGTCG	GTAAGCCATGTTTGTTCCATC	ATAAGCCATGTTCTGTTCCATC	ATPAGGGGTTCTGTCG		いたないしたようないでものことをある。	CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE P	ALFAGCCGGG LCTCLCC	GTARGCCATGTTTGTTCCATC	GTAAGCCATGTTTTGTTCCATC
16S EC 1389 1407 R	23S EC 115 130 R	EC 242 256	EC 1686 170	EC 1828 1842	EC 1929 1949	EC 2490 2511	EC 2430 2311	EC 2653	EC 2/3/ 2/30	BS 5 21 K	EC 342 358	EC 556 575	EC //4 /90	EC 967 985 R	1220 1240	165 EC 1525 1541 R	16S EC 1525 1541 R	23S EC 1919 1936 R	16S EC 1494 1513 R	EC 1486 1505	1485 1506	909 929 R	FC 886 904	EC 666	FC 1174 119	2658 2677	SA 358 379	TH 345 362	BS 363 384	SD 358 379	176 345 3E	10 C C C C C C C C C C C C C C C C C C C	55 565 504 51 515 515	SA 358 379	EC 345 362	384	RNASEP BS 363 384 R
71	129	121	184	8 1	5 0		;	96	22.1		23	48	57	137	7	46	23	1.8	112	693	191	177	301	900	000	0 77	103	200	507	501	# 0 t	1.04	1.04	105	105	105	104
CGGATTGGAGTCTGCAACTCG		SELECTION OF A SECURITY OF A S	GGGAAC LGAAACALC IAAGACA	TACCCCAAACCGACACAGG	CCGTAACTICGGGGGGGG	GAUGULIGUUGGIAGU	AAGGTACTCCGGGGATAACAGGC	GACAGITCGGICCCIAIC	TAGTACGAGAGGACGGG	AAACTAGATAACAGTAGACATCAC	AGAGTTTGATCATGGCTCAG	CACTGGAACTGAGACACGG	CCAGCAGCCGCGGTAATAC	GIGTAGCGGTGAAATGCG	AAGCGGTGGAGCATGTGG	CAAGTCATGGCCCTTA	AGAGTTTGATCATGGCTCAG	のなるとはいっていることの	いたかしいしたのである。		TIGING THE COURT OF THE COURT O	TACGGTGAATACGTTCCGGG	ACCACGCCGTAAACGATGA	GATACCCTGGTAGTCCACCG	TAGATACCCIGGIAGICCACGC	TAGTCCCGCAACGAGCGC	TAGAACGICGCGAGACAGIICG	GAGGAAAGICCAIGCICAC	GAGGAAAGTCCATGCTCAC	GAGGAAGICCAIGCICAC	GAGGAAAGIICCAIGCIICGC	GAGGAAAGTCCATGCTCGC	GAGGAAAGTCCATGCTCGC	GAGGAAAGTCCGGGCTC	GAGGAAAGTCCGGGCTC	GAGGAAAGTCCGGGCTC	GAGGAAAGTCCATGCTCGC
168 EC 1303 1323 F	T		23S EC 187 207 F	23S EC 1602 1620 F	23S EC 1685 1703 F	EC 1827 1843	23S EC 2434 2456 F	23S EC 2599 2616 F	23S EC 2653 2669 F	23S BS -68 -44 F	16S EC 8 27 F	16S EC 314 332 F	16S EC 518 536 F	16S EC 683 700 F	16S EC 937 954 F	FC 119	EC 8 27 F	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TOOL TOOL	165 EC 1387 1407 F	168 EC 1390 1411 F	EC 1367	EC 804 822	EC 791 812	EC 789 810 F	EC 1092 1109	2586 2607	SA 31 49	SA 31	SA 31 49	딚	RNASEP BS 43 61 F	RNASEP BS 43 61 F	RNASEP EC 61 77 F	RNASEP EC 61 77 F	RNASEP EC 61 77 F	
232	T		+	1	1	1	238	239	240	241	242	243	244	245	-	T	070	0 7 7	243	250	251	252	253	254	255	256	257	258	258	258	258	258	258	258	258	258	259

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

751	750	714	839	1160	1161	744	1158	749	807	788	796	734	800	1159	793	914	776	786	840	736	738	811	829	1345	929	726	1110	1278	895
ATAAGCCGGGTTCTGTCG	ATAAGCCATGTTCTGTTCCATC	AAGGAGGTGATCCAGCC	GTATCTAATCCTGTTTGCTCCC	TGACGICAIGCCCACCTICC	TGACGTCATGGCCACCTTCC	AGACCTCCTGCGTGCAAAGC	TGACGTCATCCCCACCTTCC	AGTCCATCCCGGTCCTCTCG	GACGGGCGGTGTGTACAAG	CGAGTTGCAGACTGCGATCCG	CGTACTCCCCAGGCG	ACGACACGAGCTGACGAC	CTTCTACATTTTAGCCATCAC	TGACGTCATCCCCACCTTCCTC	CGGCTGCCACGAAGTTAG	TAGCCGCGGTCGAATTGCAT	CCGCGGTCGAATTGCATGCCTTC	CGACTTGACGGTTAACATTTCCTG	GTCCGACTTGACGGTCAACATTTCCTG	ACGCCATCAGGCCACGCAT	ACGCCACGAGGTAGTCGC	GAGCATCAGCGTGCTT	GGCATCACCATTCCTTGTCCTTCG	TGTTACTCACCCGTCTGCCACT	TATAACGCACATCGTCAGGGTGA	ACAACCATGCACCACCTGTC	TCGTGGACTACCAGGGTATCTA	TGGCCGTACTCCCCAGGCG	TACGAGCTGACGACCATG
RNASEP EC 345 362 R	RNASEP SA 358 379 R	16S EC 1525 1541 R	16S EC 774 795 R	16S EC 1177 1196 10G R	16S_EC_1177_1196_10G_11G_ R	TRNA ALA- RRNH EC 30 49 F MOD	16S EC 1177 1196 R MOD	23S EC 2658 2677 R MOD	16S EC 1389 1407 R	16S EC 1303 1323 R	16S EC 880 894 R	16S EC 1061 1078 R	CYA BA 1426 1447 R	16S EC 1175 1196 R	16S EC 507 527 R	GROL EC 577 596 R		RPOB EC 3862 3885 R	RPOB EC 3862 3888 R	RPOC EC 2227 2245 R	ASPS EC 521 538 R	RPOC EC 1437 1455 R	TUFB EC 1034 1058 R	16S EC 101_122_R	VALS EC 705 727 R	16S EC 1043 1062 R	168 EC 789 809 TMOD R	16S EC 880 897 TMOD R	16S EC 1054 1073 TMOD R
105	103	37	70	37	37	130	37	203	19	137	152	152	1.2	650	464	34	8	51	124	52	110	69	55	102	1.7	113	202	560	706
GAGGAAAGTCCGGGCTC	GAGGAAAGTCCATGCTCAC	ATGTTGGGTTAAGTCCCGC	CGGAATTACTGGGCGTAAAG	ATICTURGGGTTTAAGTCCCGC	ATGTTGGGTTAAGTCCCGC	GGIGTTAAATAGCCTGGCAG	ATGTTGGGTTAAGTCCCGC	TAGAACGICGCGAGACAGIICG	ACGCGAAGAACCTTACC	GTGTAGCGGTGAAATGCG	TAACACATGCAAGTCGAACG	TAACACATGCAAGTCGAACG	ACAACGAAGTACAATACAAGAC	TTAAGTCCCGCAACGAGCGCAA	TGAGTGATGAAGGCCTTAGGGTTGTA	angga Caagga Tidga Caagga	AAGGAAGGCGTGATCACCGTTGAAGA	CAGCGTTTTCGGCGAAATGGA	GGGCAGCGTTTCGGCGAAATGGA	CAGGAGTCGTTCAACTCGATCTACAT	GCACAACCTGCGGCTGCG	CGCCGACTTCGACGGTGACC	CCACACGCCGTTCTTCAACAACT	GAGAGTTTGATCCTGGCTCAGAACGA	ACCGAGCAAGGAGACCAGC	GCGAAGAACCTTACCAGGTC			
RNASED EC 61.77 F	31 49 F	1082 1100 F	RC 556 575 F	TO 1080 1 100 F	4 00	-	S_EC_1082_1100_F_	 	FC 969 985 F	RC 683 700 F	HC 49 68 F	RC 49 68	BA 1349 1	EC_1090_1111	168 BC 405 432 B	2 2	536	3 8				RPOC EC 1374 1393 F		7 33 17	VALS RC 610 649 F	16S EC 971 990 F	16S_EC_713_732_TMOD F	16S_EC_785_806_TMOD	16S EC 960 981 TMOD
250	252	202	202	F04	200	80 80	698	02.0	272	273	277	275	277	278	0 0	000	281	0000	780	0 0	291	292	293	700					

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

TTACGGCC 1156	TGTAACCCTTGTCTTGAATTGTATTTG		TCAAGACCC 1423	TTGCTGCTTTCGCATGGTTAATTGCTTC 1411	TTCTICCAAGGATAGATTTATTTCTTGT 1394 TCG	TCGCACCGTGGGTTGAGATGAGTAC 1072	TTGCACGTCTGTTTCAGTTGCAAATTC 1402		TTCCAAGTGCTGGTTTACCCCATGG 1380						DID	DID	DIL	DI DI	DE SE	CTG SG CTG	CTG CTG	CTG CTG CCTG CCTG CCTG CCTG CCTG CCTG C	CCTG CCTG CCTG CCTG TCTGA TCTGA TABAC TRGA TRGA TRGA TRGA TRGA TRGA TRGA TRGA
1	╁╴			TTGCTGCTTTCGCAI		R TCGCACCGTGGGTTC	TTGCACGTCTGTTT		TTCCAAGTGCTGGT	TTCCAAGTGCTGGTTTACCCCATGAGT TGTGCTGGTTTACCCCATGGAGT	TICCAAGIGCIGGITIACCCCAIGG TGIGCIGGITIACCCCAIGGAGI R TCGGIACGAACIGGAIGICGCCGII	요 요	R R 시	M M N N	M M N N M		M M M M M M						
8 (I)WIT 1001 2001 20 000	ביים מומי ביים	CAPC BA 349 376 TMUD R	CYA BA 1448 1467 TMOD R	INFB EC 1439 1467 TMOD 1	A 843 872 TMOD R	RPOC EC 2313 2337 TMOD	SSPE BA 197 222 TMOD R	Ę	71100	EC 736 757 IMOD	EC 736 757 TMOD R EC 1195 1218 TMOD	EC 735 757 TMOD R EC 1195 1218 TMOD EC 1909 1929 TMOD	EC 736 757 TMOD R EC 1195 1218 TMOD EC 1909 1929 TMOD SC 2745 2765 TMOD R	EC 736 757 TMOD R EC 1195 1218 TMOD EC 1909 1929 TMOD 3C 2745 2765 TMOD I	EC 735 762 1700 R EC 1195 1218 TWOD EC 1909 1929 TWOD SC 2745 2765 TWOD I SC 1175 1196 TWOD I SC 3862 3888 TWOD	EC 735 762 INOD R EC 1195 1218 TWOD EC 1909 1929 TWOD 3C 2745 2765 TWOD I 3C 1175 1196 TWOD I EC 3862 3888 TWOD EC 2227 2245 TWOD	EC 736 757 TMOD R EC 1195 1218 TMOD R EC 1909 1929 TMOD R 3C 2745 2765 TMOD R 3C 1175 1196 TMOD F EC 3862 3888 TMOD F EC 2227 2245 TMOD EC 1437 1455 TMOD	RPLB EC 736 757 TMOD R VALS EC 1195 1218 TMOD R RPOB EC 1209 1929 TMOD R 23S EC 2745 2765 TMOD R 16S EC 1175 1196 TMOD R RPOG EC 2227 2245 TMOD R RPOC EC 2227 2245 TMOD R RPOC EC 1237 1455 TMOD R TUFB EC 1034 1058 TMOD R	회 회 피 퍼 잃 워 찌 피 피 피 피,	회 회 회 회 회 기 기 회 회 회 기 기 기 기 기 기 기 기 기 기	RPLIS EC 735 752 INCOLR RPLIS EC 735 757 TMOD R VALS EC 1195 1218 TMOD R 23S EC 2745 2765 TMOD R 16S EC 1175 1196 TMOD R RPOG EC 2227 2245 TWOD R RPOC EC 2227 2245 TWOD R TUFB EC 1034 1058 TMOD R TUFB EC 1034 1058 TMOD R SP101 SPET11 1251 1277 TM SP101 SPET11 213 238 TMOD R	회 회 회 회 회 있 이 회 회 및 비 비 비 기급 급 급 급	휙 뭐 뭐 뭐 뭐 뭐 뭐 뭐 뭐 뭐 뭐 ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ
		476 C	355	183		405	255	449															
	TCTGACACCTGCCGGTGC TGATTATTGTTATCCTGTTATGCCAT	TTGAG	TCGAAGTACAATACAAGACAAAAGAA	TTGCTCGTGGTGCACAGTAACGGAT	TAGCTTTTGCATALTATATCGAGCCA	TCTGGCAGGTATGCGTGGTCTGATG	TCAAGCAAACGCACAATCAGAAGC	TGACCTACAGTAAGAGGTTCTGTAAT		TCATCCACACGGTGGTGAAGG	TCATCCACACGGTGGTGGTGAAGG	TCATCCACACGGTGGTGGTGAAGG TCGTGGCGGCGTGGTTATCGA TTATCGCTCAGGCGAACTCCAAC	TCAICCACACGGTGGTGGTGAAGG TCGTGGCGGCGTGGTTATCGA TTATCGCTCAGGCGAACTCCAAC TCTGTTCTTAGTACGAGAGGACC	TCATCCACACGGTGGTGGTGAAGG TCGTGGCGGCGTGGTTATCGA TTATCGCTCAGGCGAACTCCAAC TCTGTTCTTAGTACGAGGAGCC TTTAAGTCCGCAACGAGGGCAA	TCATCCACACGGTGGTGGTGAAGG TCGTGGCGGCGTGGTTATCGA TTATCGCTCAGGCGAACTCCAAC TCTGTTCTTAGTACGAGGGCAA TTTAAGTCCCGCAACGAGGCAA TGGGCAGCGTACGAGGGCAA	TCATCCACACGGTGGTGAAGG TCGTGGCGGCGTGGTTATCGA TTATCGCTCAGGCGAACTCCAAC TCTGTTCTTAGTACGAGGGCGAACTCCAAC TTTAAGTCCCGCAACGAGGGCAA TGGGCAGCGTTTCGGCGAAATGGA TCAGGAGTCGTTCCAACTCGAATCTACA TGAG	TCATCCACACGGTGGTGGTGAAGG TCGTGGCCGGCGTGGTTATCGA TTATCGCTCAGGCGAACTCCAAC TCTGTTCTTAGTACGACGAACTCCAAC TTTAAGTCCCGCAACGAGCGAA TGGGCAGCGTTTCGGCGAATGGA TCGGGAGTCGTTTCGGCGAATGGA TCAGGACTCGTTCCACTCGATCTACA TGAAT	TCATCCACAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TCATCCACACGGTGGTGAAGG TCGTGGCGGCGGGGGAACTCCAAC TCTGTTCTTAGTAGTACGAGGGCGAACTCCAAC TTTAAGTCCCGCAACGAGGGAA TGGGCAGCGTTTCGGCGAAATGGA TCGCCGACTTCGACGGGAATTGCA TCCACACGCGTTTCGACGGTGACC TCCACACGCGGTTTTTAAGTCTCAACAACT TCGCCGACTTCGACGGTGACC TCGCCGACTTCGACGGTGACC TCGCCGACACAGCGGTGACC TCGCCGACACAGCGGTGACC TCGCCACACACGCGGTTTTTCAACAACT TGGGCAACAGCAGCGGATTGCGATTG	TCATCCACACGGTGGTGGTGAAGG TCGTGGCGGCGTGGTTATCGA TTATCGCTCAGGCGAACTCCAAC TCTGTTCTTAGTACGAGGCGAATGGA TGGGCAGCGTTCTTCGGCGAATGGA TGGGCAGCGTTCTTCAACTCGATCTACA TCGCCGACTTCGACGGTGACT TCGCCGACTTCGACGGTGACT TCGCCGACGCGTTCTTCAACAACT TCGCCGACACAGCGGTGACC TCCACACGCCGTTCTTCAACAACT TCGCCGACACAGCGGTGACC TCCACACGCCGTTCTTCAACAACT TGGCCAACAGCAGGGTGGCTTGG	TCATCCACAGGTGGTGAAGG TCGTGGCGGCGGGGGAACTCCAAC TTAAGTCCCGCAACTCCAAC TTTAAGTCCCGCAACGAGGAA TGGGCAGCGTTTCGGCGAAATGGA TCGCCGACTTCGACGGGAATTGCA TCGCCGACTTCGACGGGGAATTGCA TCGCCGACTTCGACGGGGATTGCGATTG TCGCCGACACAGCGGTGACC TCGCCGACACAGCGGATTGCGATTG TCGCCGACACAGCGGATTGCGATTG TCGCCAATACCGCAACAGCGGTGGCTTGG TCGCCAATACCGCCAACAGCGGTGGCTTGG TCGAATACCGCCAACAGCGGTGGCTTGG TCGAATACCGCAACAGCGGTGGCTTGG TCGAATACCGCCAATAGCCGATTGC TCGAATACCGCCAATAGCCGATTGG TCCAATACCGCCAATAGTCCG TGCTGGTGAAAATAAACCCCAGATGTCG TGCTGGTGAAAATAAACCCCAGATGTCG	TCATCCACAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TCATCCCACAGGTGGTGGTGAAGG TCGTGGCGGCGGGGGGAACTCCAAC TTATCGCTCAGGCGAACTCCAAC TCTGTTCTTAAGTACGACGAACTCCAAC TCGGGGAGCGTTTCGGCGAATGGA TCGGCGACTTCGACGGGAATGGA TCGCCGACTTCGACGGTGACC TCCACACGCCGTTCTTCAACAACT TCGCCGACTTCGACGGTGACC TCCACACGCCGTTCTTCAACAACT TGGCGAAAAAATCCAGCGGTGGCTTGG G TGCTGGTGAAAAAATCCAGCTATTAGC TCGCCAAAAAAAATCCAGCTATTAGC TCGCCAAAAAAAATCCAGCTATTAGC TCGCCAAAAAAAATCCAGCTATTAGC TCGCCAAAAAAAATCCAGCTATTAGC TCGCCAAAAAAAATCCAGCTATTAGC
23S_EC_1826_1843_TM		\dashv	CYA_BA_1353_1379_TM	╂─		RPOC EC 2218 2241_T	┿	3_EC_650_679_TMO		+	 	3_EC_688_710_TMO S_EC_1105_1124_T F B_EC_1845_1866_T	 	 	 	 							
	349	350	, L	+	352	25.5		<u> </u>	200	357	357	357	358	357	357 358 359 360 361	357 358 359 360 361 362	357 358 360 361 361 363 363	357 358 359 360 361 362 363 363	357 358 359 360 361 361 363 364 364	357 358 359 360 361 362 362 364 367 423	357 358 359 360 361 362 363 364 423 423	357 358 359 360 361 362 364 364 423 423	357 358 359 360 361 361 362 363 364 424 424 425

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

932	1239	1439	940	1404	1393	918	1007	1249	1264	875	934	1005	1294	866	1018	1189	1217	1044	894	1066	1336	1346
TATATGATTATCATTGAACTGCGGCCG	TGCGTGACGACCTTCTTGAATTGTAATC A	TTTGGACCTGTAATCAGCTGAATACTGG	TATTGCCCAGAAATCAAATCATC	TIGCCACTITGACAACTCCTGTIGCIG	TTCTGGGTGACCTGGTGTTTAGA	TAGCTGCTAGATGAGCTTCTGCCATGGC C	TCCATAAGGTCACCGTCACCATTCAAAG C	TGCTGCTTTGATGGCTGAATCCCCTTC	TGGAATTTACCAGCGATAGACACC	TAATCGACGACCATCTTGGAAAGATTTC TC	TATCCCCTGCTTCTGCTGCC	TCCAGCAGTTACTGTCCCCTCATCTTTG	TGGGTCTACACCTGCACTTGCATAAC	TCCAACCTTTTCCACAAAATCAGC	TCCCATTTTTCACGCATGCTGAAATA TC	TGATTGGCGATAAAGTGATATTTTCTAA AA	TGCCCACCAGAAGACTAGCAGGATAA	TCCTACCCAACGTTCACCAAGGGGCAG	TACCTTTTCCACAACAGAATCAGC	TCGACGACCATCTTGGAAAGATTTC	TGTGCTGGTTTACCCCATGGAG	TGTTACTGCTGGAT
SP101_SPET11_1783_1808_TM OD_R	SP101_SPET11_1808_1835_TM OD_R	SP101_SPET11_1901_1927_TM OD_R	SP101_SPET11_2062_2083_TM OD_R	SP101_SPET11_308_333_TMOD_R	SP101_SPET11_2375_2397_TM OD_R	SP101_SPET11_2470_2497_TM OD_R	SP101_SPET11_2543_2570_TM OD R	SPI01_SPET11_355_380_TMOD R	SP101_SPET11_3023_3045_TM OD R	SP101_SPET11_3168_3196_TM OD R	SP101_SPET11_423_441_TMOD	SP101_SPET11_3480_3506_TM OD R	SP101_SPET11_3605_3629_TM OD R	SP101_SPET11_448_473_TMOD	SP101_SPET11_686_714_TMOD R	SP101_SPET11_756_784_TMOD R	SP101_SPET11_871_896_TMOD R	SP101_SPET11_92_116_TMOD_R	SP101 SPET11 448 471 R	SP101 SPET11 3170 3194 R	RPLB EC 737 758 R	BONTA_X52066_647_660_R
.3 3.4	406	235	649	210	272	675	238	417	183	473	631	215	531	588	348	588	673	154	276	216	309	239
TCCTATATTAATCGTTTACAGAAACT GGCT	TCTGGCTAAAACTTTGGCAACGGT	TATGATTACAATTCAAGAAGGTCGTC ACGC	TTAACGGTTATCATGGCCCAGATGGG	TAGCAGGTGGTGAAATCGGCCACATG ATT	TCAGAGACCGTTTTATCCTATCAGC	TTCTAAAACACCAGGTCACCCAGAAG	TATGGCCATGGCAGAAGCTCA	TCTIGTACTIGIGGCTCACACGGCTG	TACCATGACAGAGACATTTTGACA	TGATGACTTTTTAGCTAATGGTCAGG	TGTCAAAGTGGCACGTTTACTGGC	TAGCCTAAAGGTGAACCTT	TGCTTCAGGAATCAATGATGGAGCAG	TGGGGATTCAGCCATCAAAGCAGCTA	TCCTTACTTCGAACTATGAATCTTTT	TGGGGATTGATATCACCGATAAGAAG AA	TTCGCCAATCAAACTAAGGGAATGG C	TAACCTTAATTGGAAAGAAACCCAAG AAGT	TCAGCCATCAAAGCAGCTATTG	TAGCTAATGGTCAGGCAGCC	TCCACACGGTGGTGAAGG	TATGGCTCTACTCAA
SP101_SPET11_1688_1 716 TMOD F	SP101_SPET11_1711_1 733_TMOD_F	SP101_SPET11_1807_1 835_TMOD_F	SP101_SPET11_1967_1 991_TMOD_F	SP101_SPET11_216_24 3_TMOD_F	SP101_SPET11_2260_2 283_TMOD_F	SP101_SPET11_2375_2 399 TMOD F	SP101_SPET11_2468_2 487_TMOD_F	SP101_SPET11_266_29	SP101_SPET11_2961_2	SP101 SPET11 3075 3	SP101 SPET11 322 34	SP101 SPET11 3386 3	SP101 SPET11 3511 3	SP101 SPET11 358 38	SP101 SPET11 600 62	SP101_SPET11_658_68	SP101_SPET11_776_80		SPIO1_SPET11_364_38	SP101_SPET11_3085_3 104 F	RPLB EC 690 710 F	BONTA_X52066_538_55 2_F
428	429	430	431	432	433	434	435	436	437	438	439	0 4 4	144	442	443	777	445	446	447	448	449	481

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1146	1367	1359	859	857	992	1241	1338	1191	995	1401	1431	1202	2000	1338	1190	995	1421		986	1402	213		1304	943	1	610	1235	i i	1005	1183
TG*Tp*TpA*Cp*TpG*Cp*TpGGAT	TTACTTCTAACCCACTC	TTA*Cp*Tp*Tp*Cp*TpAA*Cp*Cp*C pA*Cp*TpC	TAACCATTTCGCGTAAGATTCAA	TAACCA*Tp*Tp*Tp*CpGCGTAAGA*T p*Tp*CpAA	TCATGTGCTAATGTTACTGCTGGATCTG	TGCpAGCpTGATpTpGT	TGTGCTpTpGAATpGCpT	TGATTGTTTTGCpAGCpTGATpTpGT	TCATTTGTGCTPTPTPGAATPGCPT	TIGCACGICPIPGITICAGIIGCAAALI	TTTCACAGCATGCACGTCTGTTTCAGTT		TGCAGCTGATTGT	TGTGCTTTGAATGCT	TGATTGTTTTGCAGCTGATTGT	TCATTTGTGCTTTGAATGCT	TTGTGATTGTTTTGCAGCTGATTGTG	TCATAACTAGCATTTGTGCTTTGAATGC	Ţ	TTGCACGTCTGTTTCAGTTGCAAATTC	TGTAAATTCCGCAAAGACTTTGGCATTA	9	TGGTCTGAGTACCTCCTTTGC	TATTGGAAATACCGGCAGCATCTC		TAATGCGATACTGGCCTGCAAGTC	TGCGGGCTGGTTCAACAAGAG		TCCTGTTTTATAGCCGCCAAGAGTAAG	TGATGCGGGCTGGTTCAAC
BONTA X52066 647 660P R	BONTA X52066 759 775 R	BONTA X52066 759 775P R	BONTA X52066 517 539 R	BONTA X52066 517 539P R	BONTA X52066 644 671 R	SSPE BA 243 255P R	SSPE BA 163 177P R	SSPE BA 243 264P R	SSPE BA 163 182P R	SSPE BA 196 222P R		BA 202 231	SSPE BA 243 255 R	SSPE BA 163 177 R	SSPE BA 243 264 R	SSPE BA 163 182 R	242 267		SSPE BA 163 191 R	SSPE BA 196 222 R		PLA AF053945 7434 7462 K	PLA AF053945 7482 7502 R	PT.A AF053945 7539 7562 R		PLA AF053945 7257 7280 R	CAF1_AF053947_33494_33514 R	CAF1_AF053947_33595_33621	저	CAF1_AF053947_33499_3351/
143	Q 44	91	393	142	463	616	192	533	602	255		488	612	179	533	600	184	# o #	518	255		442	327	481	1	657	000	1	270	542
TA*TpGGC*Tp*Cp*TpA*Cp*Tp*C	ביירס ברים מחידים בחים ברים ברים.	GAA*TDAG*CDAA*TD*TDAA*TD*C		T*Cp*TpAGTAATAAGGA*Cp*Cp	TGAGTCACTTGAAGTTGATACAAATC	TGGTDGCDTDAGCDATT	TACTAGENTOTOTOGEAC	TUCKTOUTETTELLE	TGGTACDAGAGTDTPTPGCPGAC	האם פהפתרהרות מה מיחה מיחה מיחה מיחה מיחה מיחה מיחה מ	TGCACAATCAGAAGCTAAGAAAGCGC	AAGCT	TGGTGCTAGCATT	TACAGAGITIGCGAC	TGCTTCTGGTGCTAGCATT	とはなりないようななない。	1661ACAGAGIIICOMOMA	TGCAAGCTTCTGGTGCTAGCATT	TGCTAGTTATGGTACAGAGTTTGCGA C	TOPPOSTOREDACTOREAGE		TGACATCCGGCTCACGTTATTATGGT	TCCGGCTCACGTTATTGGTAC	日本プライン キプロフィロフロ・デフィ・・・・・・	TGCAAAGGAGGTACTCAGGAGGAT	TTATACCGGAAACTTCCCGAAAGGAG	H K D D HILL K D D D D I K HILL D D D D HILL K D D D D D D D D D D D D D D D D D D	TCAGITICCGITAICGCCAITGCAI	D	TGGAACTATTGCAACTGCTAATG
BONTA_X52066_538_55 7	A_X52066_701_72	ONTA_X52066_701_72	X52066_450_47	BONTA X52066 450 47	 -	1 0 K	-	G	+		SSPE BA 114 137F F	SSPE BA 123 153 F	SSPE BA 156 168 F	BA 75 89 F	7 150 16	DOT OF EE	4 68 7/	SSPE BA 146 168 F	3 89 FA MG WG		DIA AF053945 7377 7	402 F	PLA_AF053945_7382_7		503 F	211 F	CAF1_AF053947_33407	33430 F	33541 F	CAF1 AF053947_33435 33457 F
482		15 to	404	485	486	487	000	603	019	1	612	669	200	701	107	707	703	704	705	00/	706	770	777		772	773		774	775	776

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

962	1343	976	1154	1408	1123	1272	1380	1380	1333	1015	1181	1269	939	858	1357	1358	1231	944	1048	885	1372	1218	
TCAAGGTTCTCACCGTTTACCTTAGGAG	TGTTAAGTGTGTGCGGCTGTCTTTATT	TCACGCGACGAGTGCCATCCATTG	TGACCCAAAGCTGAAAGCTTTACTG	TIGCGIIGCAGAITAICIITACCAA	TCTCATCCCGATATTACCGCCATGA	TGGCAACAGCTCAACACCTTTGG	TTCCAAGTGCTGGTTTACCCCATGG	TTCCAAGTGCTGGTTTACCCCATGG	TGTGATATGGAGGTGTAGAAGGTGTTA	TCCCAATCTAACTTCCACATACCATCT	TGATCCTGAATGTTTATATCTTTAACGC CT	TGGATAGACGTCATATGAAGGTGTGCT	TATTCTTCGTTACTCATGCCATACA	TAACCACCCAAGAITTAICETITIGCC A	TpACpTpCpATpGCpCpA	TPATPTPCPTPTCPGTPT		TATTTGGGTTTCATTCACACICAGAILCI GG	TCCTCTTTTCACAGGCTCTACTTCATC	TACATCGTTTCGCCCAAGATCAATCA	TTCAAAATGCGGAGGCGTATGTG	TGCCCAGGTACAACCTGCAT	
CAF1_AF053947_33755_33782 R	INV U22457 571 598 R	INV U22457 753 776 R	INV U22457 942 966 R	INV U22457 1619 1643 R	LL NC003143_2367073_23670 97_R	LL_NC003143_2367249_23672 71_R	RPLB EC 739 762 TMOD R	RPLB EC 739 762 IMOD R	MECIA Y14051 3367 3393 R	MECA Y14051 3828 3854 R	MECA Y14051 3690 3719 R	MECA Y14051 4555 4581 R	MECA Y14051 4586 4610 R	MECA Y14051 4765 4793 R	MECA Y14051 4590 4600P R	MECA Y14051 4600 4610P R	TRPE AY094355 1569 1592 R	TRPE AY094355 1551 1580 R	TRPE AY094355 1392 1418 R	TRPE AY094355 1171 1196 R	TRPE AY094355 769 791 R	TRPE AY094355 864 883 R	73
286	573	525	664	597	627	550	620	646	653	144	434	288	626	262	389	389	36	557	247	357	135	483	
CAFL_AF053947_33687 TCAGGAIGGAAATAACCACCAATTCA 33716 F	TGGCTCCTTGGTATGACTCTGCTTC	TGCTGAGGCCTGGACCGATTATTTAC	TTATTTACCTGCACTCCCACACTG	TGGTAACAGAGCCTTATAGGCGCA	TGTAGCCTAAGCACTACCATCC	THEACHGCATCACGATTCTCTAC	TGICCIACIGTIGIGGTTCTGTAAT	TPCPCPTPTPGITPGICCIACIGTII	TTACACATATCGTGAGCAATGAACTG	TAAAACAAACTACGGTAACATTGATC	TGAACTGAACGTCCGA	TCAGGTACTGCTATCCACCCTCAA	TGTACTGCTATCCACCTCAA	TCACCAGGITCAACTCAAAAAATATT AACA	TCpCpACpCpTpCpAA	TCpCpACpCpTpCpAA	ATGTCGATTGCAATCCGTACTTGTG	TGGATGGCATGGTGAAATGGATATGT	TCAAATGTACAAGGTGAAGTGCGTGA	TCGACCTTTGGCAGGAACTAGAC	CTCCC STATE CAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA	TOTABLECERATERE	1
CAF1_AF053947_33687	INV_U22457_515_539_	INV_U22457_699_724_	INV_U22457_834_858_	INV_U22457_1558_158	LL NC003143 2366996	LL NC003143 2367172	# 01.0 01.0 OE dited		MECIA_Y14051_3315_3	MECA_Y14051_3774_38	MECA_Y14051_3645_36	MECA_Y14051_4507_45	MECA_Y14051_4510_45	MECA_Y14051_4669_46	MECA_Y14051_4520_45	MECA_X14051_4520_45	TRPE AY094355 1467	TRPE AY094355 1445	TRPE AY094355_1278_	TRPE AY094355_1064_	TRPE_AY094355_666_6	אל איז איזטסאיר הרתה	
777	778	07.7	087	0 0	107	107	50/	0 74	0 0	0 1	8//	0 0	6,0	000	6 8	883		70 0	500	# L	000	906	2007

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	758	1274	TG 1326	TG 1327	1271	937		1243	1004	905	1362	1399	1104	1090	T 1384	1363	1170	TAT	_	FI'A 1379	3TA 955	1409	AAA 1437	ATT 951	1029	IAA 1022	1068
	CAAGCGGTTTGCCTCAAATAGTCA	TEGCACGAGCCTGACCTGT	TGTCCGACTTGACGGTCAGCATTTCCTG	TGTCCGACTTGACGGTTAGCATTTCCTG	TGGATGTGCTCACGAGTCTGTGGCAT	TATGTGCTCACGAGTTTGCGGCAT	TCCTGCAATATCTAATGCACTCTTACG	TGCTAGACCTTTACGTGCACCGTG	TCCAGCAGGTTCTGACGGAAACG	TACTAGACGACGGGTCAGGTAACC	TTACCGAGCAGGTTCTGACGGAAACG	TTGACGTTGCATGTTCGAGCCCAT	TCGTCGCGGACTTCGAAGCC	TCGGCATCACGCCGTCGTC	TTCGCGCATCCAGGAGAAGTACATGTT	TTACGCCATCAGGCCACGCA	TGAGCGTGTGGAAAAGGACTTGGATG	TCTCTTTCAAAGCACCATTGCTCATTAT	AGI	TICATTITCIGGICCAAAGIAAGCAGIA TC	TCAACTGGTTCAAAAACATTAAGTTGTA ATTGTCC	TIGCIGCCATAGCAAAGCCTACAGC	TITGCTCATGATCTGCATGAAGCATAAA	TCAAAGAACCCGCACCTAATTCATCATT TA	TCCCTTATTTTTTTTTCTACTACCTTCG GATAAT	TCCCCTCATGTTTAAATGATCAGGATAA AAAGC	4年の20年4月20日42日42日4日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1
	WAAA 296925 115 138 R	WAAA_Z96925_394_412_R	RPOB EC 3862 3889 R	RPOB EC 3862 3889 2 R	TUFB EC 337 362 R	TUFB EC 337 360 R	GYRB AB008700_862_888_2_R	RPOC_EC_2329_2352_R	RPOC_EC_1009_1031_R	RPOC_EC_2380_2403_R	RPOC_EC_1009_1034_R	RPOB EC 2041 2064 R	RPOB EC 1630 1649 R	INFB EC 1414 1432 R	VALS EC 1231 1257 R	RPOC EC 2228 2247 R	CJST CJ 1774 1799 R	;	CUST CU 2283 2313 K	CJST_CJ_663_692_R	CJST_CJ_442_476_R	CJST CJ 2753 2777 R	CJST CJ 1406 1433 R	CJST CJ 3356 3385 R	CJST CJ 104 137 R	CJST CJ 1166 1198 R	0 270 0710 10
	416	360	581	581	468	493	198	605	404	523	242	387	282	515	237	285	522	c	388	315	346	504	575	707	222	681	323
AA	TCTTGCTCTTTCGTGAGTTCAGTAAA TG	TCGATCTGGTTTCAGT	TGGGCAGCGTTTCGGCGAAATGGA	TGGGCAGCGTTTCGGCGAAATGGA	TGATCACTGGTGCTGCTCAGATGGA	TGCACGCCGACTATGTTAAGAACATG AT	TACTTACTTGAGAATCCACAAGCTGC AA	TGGTATGCGTCTGATGGC	TCTGGATAACGGTCGTCGCGG	TGCTCGTAAGGGTCTGGCGGATAC	TATTGGACAACGGTCGTCGCGG	TCGTTCCTGGAACACGATGACGC	TCAGCTGTCGCAGTTCATGGACC	TGCGTTTTACCGCAATGCGTGC	TATGCTGACCGACCAGTGGTACGT	TCAGGAGTCGTTCAACTCGATCTACA TGATG	TGCTCGAGTGATTGACTTTGCTAAAT TTAGAGA	TCGTTTGGTGGTGGTAGATGAAAAG	פי	TCCAGGACAAATGTATGAAAAATGTC CAAGAAG	TCCTGTTATCCCTGAAGTAGTTAATC AAGTTTGTT	TGCCTAGAAGATCTTAAAAATTTCCG CCAACTT	TGGCTTATCCAAATTTAGATCGTGGT TTTAC	TTTGATTTTACGCCGTCCTCCAGGTC	TAGGCGAAGATATACAAAGAGTATTA GAAGCTAGA	TTGAGGGTATGCACCGTCTTTTTGAT TCTTT	TCCCGGACTTAATATCAATGAAAATT
87_F	WAAA Z96925 2 29 F	WAAA_Z96925_286_311 _F	RPOB EC 3798 3821 F	RPOB_EC_3798_3821_F	TUFB EC 275 299 F	TUFB EC 251 278 F	GYRB_AB008700_760_7 87_F	RPOC EC 2223 2243 F	RPOC_EC_918_938_F	RPOC EC 2334 2357 F	RPOC_EC_917_938_F	RPOB EC 2005 2027 F	RPOB EC 1527 1549 F	INFB EC 1347 1367 F	VALS EC 1128 1151 F	2145 2175	CJST CJ 1668 1700 F	0 0	COST CO 21/1 219/ F	CJST_CJ_584_616_F	CJST CJ 360 394 F	CJST CJ 2636 2668 F	3	CJST CJ 3267 3293 F	CJST CJ 5 39 F	CJST CJ 1080 1110 F	
	931	932	939	940	941	942	949	958	959	960	961	962	963	964	965	978	1045	,	1046	1047	1048	1049	1050	1051	1052	1053	1057

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1045	1309	1152	1198	1002	1024	882	1339	1096	938	1253		1034	1222	1115	1074	1088		1247	1426	921	921	916	848		952	957	
TCCTCCTTGTGCCTCAAAACGCATTTTT A	rggtictractigctitgcaraaactit cca	TGAATTCTTTCAAAGCACCATTGCTCAT TATAGT	TGCAATGTGTGCTATGTCAGCAAAAGA T	TCCACACTGGATTGTAATTTACCTTGTT	TCCCGAACAATGAGTTGTATCAACTATT TTTAC	TACAACTGGTTCAAAAACATTAAGCTGT AATTGTC	TGTGCTTTTTTTGCTGCCATAGCAAAGC	TCGGTTTAAGCTCTACATGATCGTAAGG ATA	TATGTGTAGTTGAGCTTACTACATGAGC	TGCTTCAAAACGCATTTTTACATTTTCG TTAAAG		TCCGATAAGCCGGATTCTGTGC	TGCCGATAAGCCGGATTCTGTGC	TCGTTTCACCCTGTCATGCCG	TCGCAGGCTTACAGAACGCTCTCCTA	TO SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	していたのでは、これでは、これでは、これでは、これでは、これでは、これには、これには、これには、これには、これには、これには、これには、これに		TTACCTCGCCTTTCCACCCTTACC	TAGGATTTTTCCACGGCGCATC	TAGGATTTTCCACGGCGGCATC	TAGCCTTTTCTCCGGCGTAGATCT	いようなしたような生をなってなるなのかものできる。		TCAACAACACCTCCTTATTCCCACTC	TCAAGCGATCTACCGCATTACAA	
CUST CU 2979 3007 R		C.T.ST. C.T. 2283 2316 R	CT 1724 1752	CT 2247 2278	G 547 117 TA	C.T 443 477	CJ 2760 278	CJST CJ 1349 1379 R	CJST CJ 1795_1822_R	R 8080 7380 F. HOLD	2202 2220	RNASEP BKM 665 686 R	RNASEP BKM 665 687 R	RNASEP BDP 616 635 B		TOTAL CALL PRODU	Z3S BKW 010 030 K	RNASEP CLB 498 526 R	RNASEP CLB 498 522 R	ICD CXB 172 194 R	TCD CXB 172 194 R	224 247	ISI111A NC002971 6928 695	4 K	4 R	RNASEP RKP 542 565 R	
2.5.4	31.7	800	0 0	200	770	424 24E	321	29	479	נו	202	512	333	F 61	1 000	0.7.0	496	162	162	343	671	698		290	594	599	
TGAAGCTTGTTCTTTAGCAGGACTTC	TCCCAATTAATTCIGCCATTTTTCCA	TAGATGAAAAGGGCGAAGTGGCTAAT	TTATCGTTTGTGGAGCTAGTGCTTAT	GCGGATCGTTTGGTGGTTGTAGATG	AAAA TGAAAAATGTCCAAGAAGCATAGCAA	TCCTGTTATCCCTGAAGTAGTTAATC	PCCCCAGGACACCTGAAATTTCAAC	AGTTATAAACACGGCTTTCCTATGGC	TGATTTTGCTAAATTTAGAGAAATTG	TGGCATTTCTTATGAAGCTTGTTCTT	TAGCA	TGCGGGTAGGGAGCTTGAGC	TCCTAGAGGAATGGCTGCCACG		Tegcacecarcress	TGCGCGGAAGATGTAACGGG	TGCATACAACAGTCGGAGCCT	TAAGGATAGTGCAACAGAGATATACC	TAAGGATAGTGCAACAGAGATATACC GCC	TCCTGACCGACCCATTATTCCCTTTA	TTCCTGACCGACCCATTATTCCCTTT	ALC		TCAGTATGTATCCACCGTAGCCAGTC	TGGGTGACATTCATCATTTCATCGT TC	TGGTAAGAGCGCACCGGTAAGTTGGT AACA	11011
E	CU 2869 2699	מת דמת האדרת	CJ 2185 2212	1643 1670 F	2165 2194 F	CJ 599 632	CJST CJ 360 393 F				CJST CJ 2857 2887 F	RNASEP_BKM_580_599_F	RNASEP_BKM_616_637_	RNASEP BDP 574 592		23S BRM 1110 1129 F	23S BRM 515_536_F	RNASEP_CLB_459_487_	RNASEP_CLB_459_487_	7 120 E	0 9	92 120 5	IS1111A NC002971 68	66 6891 F	IS1111A_NC002971_74 56 7483 F	RNASEP RKP 419 448	£4
	-		+	-	1059	1060	1061	700	7000	T064	1065	1070	1071		1072	1073	1074	7	2001	0 0	1107	1078	TO./0	1080	1081	1080	7007

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

957	957	1119	957	1051	910	1310	1147	1305	1415	1147	1330	1230	1226	1324	1163	1370	1164	1009	973	915	1136	1055	1441
TCAAGCGATCTACCGCATTACAA	TCAAGCGATCTACCGCATTACAA	TCTATAGAGTCCGGACTTTCCTCGTGA	TCAAGCGATCTACCGCATTACAA	TCCTGCAGCTCTACCTGCTCCATTA	TAGCAGCAAAAGTTATCACACCTGCAGT	TGGTTGTAGTTCCTGTAGTTGTTGCATT AAC	TGAACATTTGCGACGGTATACCCAT	TGGTGGGTATCTTAGCAATCATTCTAAT AGC	TTGGCGACGGTATACCCATAGCTTTATA	TGAACATTTGCGACGGTATACCCAT	TGTGAACATTTGCGACGGTATACCCAT	TGCGATGGTAGGTATCTTAGCAATCATT CT	TGCCTAACAAATCCCGTCTGAGTTC	TGTCATCAAGCACCCCAAAATGAACT	TGACTTTCCTCCCCTTATCAGTCTCC	TTCAAAACCTTGCTCTCGCCAAACAA	TGAGATGTCGAAAAAACGTTGGCAAAA TAC	TCCATATIGTTGCATAAAACCTGTTGGC	TCACCTACAGCTTTAAAGCCAGCAAAAT G	TAGCCTTGGCAACATCAGCAAAACT	TCTTCTGTAAAGGGTGGTTTATTATTCA TCCCA	TCCTTCTGATGCCTGATGGACCAGGAG	TTTCCAGCCATGCAGCAC
RNASEP RKP 542 565 R	RNASEP_RKP_542_565_R	RNASEP RKP 295 321 R	RNASED RKP 542 565 R	OMPB RKP 972 996 R	OMPB RKP 1288 1315 R	OMPB RKP 3520 3550 R	GLTA RKP 1138 1162 R	GLTA RKP 499 529 R	GLTA RKP 1129 1156 R	GLTA RKP 1138 1162 R	GLTA RKP 1138 1164 R	GLTA RKP 505 534 R	CTXA_VBC_194_218_R	CTXA VBC 441 466 R	RNASEP_VBC_388_414_R	TOXR VBC 221 246 R	ASD FRT 86 116 R	ASD FRT 129 156 R	GALE FRT 241 269 R	GALE FRT 901 925 R	GALE FRT 390 422 R	IPAH SGF 301 327 R	IPAH SGF 172 191 R
159	310	391	497	654	392	485	576	413	330	553	543	413	410	630	325	362	069	295	658	245	306	458	350
TAAGAGCGCACCGGTAAGTTGG	TCCACCAAGAGCAAGATCAAATAGGC	TCTAAATGGTCGTGCAGTTGCGTG	TGCATACCGGTAAGTTGGCAACA	TTACAGGAAGTTTAGGTGGTAATCTA AAAGG	TCTACTGATTTTGGTAATCTTGCAGC ACAG	TGCAAGTGGTACTTCAACATGGGG	TGGGACTTGAAGCTATCGCTCTTAAA GATG	TCTTCTCATCCTATGGCTATTATGCT TGC	TCCGTTCTTACAAATAGCAATAGAAC TTGAAGC	TGGAGCTTGAAGCTATCGCTCTTAAA GATG	TGGAACTIGAAGCICTCGCTCTTAAA GAIG	TCITCTCATCCTATGGCTATTATGCT TGC	TCTTATGCCAAGAGGACAGAGTGAGT	TGTATTAGGGGCATACAGTCCTCATC C	TCCGCGGAGTTGACTGGGT	TCGATTAGGCAGCAACGAAAGCCG	TTGCTTAAAGTTGGTTTTTATTGGTTG GCG	TCAGTTTTAATGTCTCGTATGATCGA ATCAAAAG	TTATCAGCTAGACCTTTTAGGTAAAG CTAAGC	TCAAAAAGCCCTAGGTAAAGAGATTC CATATC	TCCAAGGTACACTAAACTTACTTGAG CTAATG	TGAGGACCGTGTCGCGCTCA	TCCTTGACCGCCTTTCCGATAC
RNASEP_RKP_422_443_ F	RNASEP_RKP_466_491_ F	RNASEP_RKP_264_287_ F	RNASEP_RKP_426_448_ F	OMPB RKP 860 890 F	OMPB_RKP_1192_1221_ F	OMPB_RKP_3417_3440_F	GLTA_RKP_1043_1072_F	GLTA RKP 400 428 F	RKP_1023_10E	GLTA_RKP_1043_1072_ 2 F	GLTA_RKP_1043_1072_ 3 F	GLTA RKP 400 428 F	VBC 117 142	CIXA VBC 351 377 F	RNASEP_VBC_331_349_	TOXR VBC 135 158 F	ASD FRT 1 29 F	ASD FRT 43 76 F	GALE FRT 168 199 F	GALE FRT 834 865 F	GALE FRT 308 339 F	IPAH SGF 258 277 F	IPAH SGF 113 134 F
1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1322	1227	1125	1028	1028	913		1418	969	1400		1036	1392	C	206	881	o t	0/0	1199		1215	1212		1083	1083	1083		1173	1173	0	050
TGTCACTCCCGACACGCCA	TGCCTCGCGCAACCTACCCG	TCTCTTACCCCACCCTTTCACCCTTAC	TCCCTAATAGTAGAATAACTGCATCAG TAGC	TCCCTAATAGTAGAAATAACTGCATCAG TAGC	THE REPORT OF THE PROPERTY OF	TIGTACATTTGAAACAATATGCATGACA	TGTGAAT	TCACAGGITCIACTICATAATIIC CATTGC	TIGCAAICGACAIAICCAITICACCAIG		TCCGCCAAAACTCCCCTTTTCACAGG	TICTGCTTGAGGAATAGTGCGTGG	TACGITCTACGATTICTICATCAGGIAC	ATC	TACAACGTGATAAACACGACCAGAAGC	TAATGCCGGGTAGTGCAATCCATTCTTC	TAG	######################################	דפרים ביים ביים ביים ביים ביים ביים ביים ב	TGCCATCCATAATCACGCCATACTGACG	 PACCA CHITTICA CONTINUED ACCUTED	100000	TCGCTTGAGTGTAGTCATGATTGCG	TCGCTTGAGTGTAGTCATGATTGCG	かいかしませんないようなようようないのかっている		TGAGTCGGGTTCACTTTACCTGGCA	TGAGTCGGGTTCACTTTACCTGGCA		TACCGGAAGCACCACCACATTAATAG
IPAH SGF 522 540 R	RNASEP BRM 542 561 R	RNASEP BRM 402 428 R	HTTDR CT 157 188 B	8	207 /27 00	HUPB CJ 114 135 R	OIF007 169 203 R	AB MLST-11- OIF007 291 324 R	3	AB MLST-11-	OIF007 318 344 R	AB MLST-11-		OIF007 656 686 R	AB MLST-11- OTE007 710 736 R		OIF007 1266 1296 R	7	OIF007 1299 1316 K	OIF007 1335 1362 R		OIF007 1422 1448 K	OIF007 1470 1494 R	AB_MLST-11- OTF007 1470 1494 R		OIF007 1470 1494 K	AB MLST-11- OIF007 1656 1680 R	AB MIST-11-		OIF007 1731 1757 R
271	147	185		0000	324	324	454	243		541	436	0	3/0	250	u C	007	384		384	694		225	383	667		422	194		684	375
TOPERATION OF THE TOPERATION OF	TAAACCCCATCGGGAGCAAGACCGAA		TACCCCAeccaaaateccacaa	TAGTTGCTCAAACAGCTGGGCT	AT TOCCGGAGCTTTTTATGACTAAAGCAG	AT	TGAGATTGCTGAACATTTAATGCTGA	TATTGTTTCAAATGTACAAGGTGAAG	TGCGAACGTTATCAGGTGCCCCAAAAA	PTCG	TGAAGTGCGTGATGATALCGATGCAC	TCGGTTTTAGTAAAAGAACGTATTGCT	CAACC	TCAACTGCGTGAATGGTTGT	TCAAGCAGAAGCTTTGGAAGAAGAAG	9	した。本本は中では、中では、一つのでは、一つのでは、一つのでは、一つのでは、一つのでは、一つのでは、「これでは、「これでは、」というできます。	TCGTGCCGCGCTTTTTTTTTTTTTTTTTTTTTTTTTTT	TCGTGCCCGCAATTTGCATAAAGC	TTGTAGCACAGCAAGCCAAATTTCCT	TAGGTTTACGTCAGTATGGCGTGATT	ATGG	TCTGATTATGGATGGCAACGTGAA	ECCCC 4 F SERVICE A SERVICE ASSESSMENT	TTATGGATGGCAACGTGAAACGCGT	TCTTTGCCATTGAAGATGACTTAAGC	TACTAGCGGTAAGCTTAAACAAGATT	TTGCCAATGATATTCGTTGGTTAGCA	АС	TOGGOGAAAICUGIBIIGGIGGIGGIGGIGGIGGIGGIGGIGGIGGIGGIGG
P 00 00 00 00 00 00 00 00 00 00 00 00 00	NASEP BRM 461 488	MASEP_BRM_325_347_		HUPB CJ 113 134 F	HUPB CJ 76 102 F	HUPB CJ 76 102 F	AB_MLST-11-	4	OIF007 185 214 F	OIF007 260 289 F	AB MLST-11-		OIF007 522 552 F	AB MLST-11-	5	OIF007 601 627 F	1	OIF007 1202 1225 F	OIF007 1202 1225 F		OIF007 1234 1264 F	OIF007 1327 1356 F	AB MLST-11-		OIF007 1351 1375 F	OTF007 1387 1412 F		AB MIST-11-	OIF007 1566 1593 F	AB MLST-11- OIF007 1611 1638 F
_	-	+	1112	1128	1129	1130		1151	1152	1153	1 1 1 1		1155		1156	1157		1158	1159		1160	1161	1	7777	1163	1164	7 0 1	1165	1166	1167

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1195	1151	1224	1157	1228	1039	1037	974	980	1046	1011	1003	1042	1262	1054	1283	1172	1254	1033	1094	908	1291	911
TGCAACTGAATAGATTGCAGTAAGTTAT AAGC	TGAATTATGCAAGAAGTGATCAATTTTC TCACGA	TGCCGTAACTAACATAAGAGAATTATGC AAGAA	TGACGGCATCGATACCACCGTC	TGCCTCGTGCAACCCACCG	TCCGGCTAGAGATTCTGTATACGACAAT ATC	TCCGCCTTCAAAATGGTGGCGAGT	TCACGATACCTGCATCATCAAATTGGTT	TCAGAATCGATGCCAAATGCGTCATC	TCCTCTATGCAACTTAGTATCAACAGGA AT	TCCATCGCAGTCACGTTTACTGTTGG	TCCACCTCAAAGACCATGTGGTG	TCCGTCATCGCTGACAGAACTGAGTT	TGGAAACCGGCTAAGTGAGTACCACCAT C	TCCTTCACGCGCATCATCACC	TGGCTTGAGAATTTAGGATCCGGCAC	TGAGTCACCTCCACAATGTATAGTTCA GA	TGCTTCAGCACGACCAACTTCTAG	TCCGAGACCAGCGTAGGTGTAACG	TCGGTCAGCAAAACGGTAGCTTGC	TAGAGAGTAGCCATCTTCACCGTTGTC	TGGGGTAAGACGCGGCTAGCATGTATT	TAGCAGCTAGCTCGTAACCAGTGTA
AB_MLST-11- OIF007_1790_1821_R	AB_MLST-11- OIF007_1876_1909_R	AB_MLST-11- OIF007 1895 1927 R	AB_MLST-11- OIF007 2097 2118 R	RNASEP BRM 542 561 2 R	CTXB NC002505 132 162 R	205 228 R	FUR NC002505 178 205 R	GAPA_NC002505_646_671_R	GAPA NC002505 769 798 R	GAPA NC002505 856 881 R	GYRB NC002505 109 134 R	GYRB NC002505 199 225 R	GYRB NC002505 832 860 R	GYRB NC002505 937 957 R	GYRB NC002505 982 1007 R	GYRB NC002505 1255 1284 R	OMPU_NC002505_154_180_R	OMPU_NC002505_346_369_R	OMPU_NC002505_544_567_R	OMPU NC002505 625 651 R	OMPU_NC002505_725_751_R	OMPU NC002505 811 835 R
182	656	656	618	147	278	465	465	356	259	51.7	501	460	236	603	377	148	190	451	266	223	224	181
TACCACTATTAATGTCGCTGGTGCTT C	TTATAACTTACTGCAATCTATTCAGT TGCTTGGTG	TTATAACTTACTGCAATCTATTCAGT TGCTTGGTG	TGGTTATGTACCAAATACTTTGTCTG AAGATGG	TAAACCCCATCGGGAGCAAGACCGAA TA	TCAGCGTATGCACATGGAACTCCTC	TGAGTGCCAACATATCAGTGCTGAAG A	TGAGTGCCAACATATCAGTGCTGAAG A	TCGACAACACCATTATCTATGGTGTG AA	TCAATGAACGACCAACAAGTGATTGA TG	TGCTAGTCAATCTATCATTCCGGTTG ATAC	TGCCGGACAATTACGATTCATCGAGT ATTAA	TGAGGTGGTGATAACTCAATTGATG AAGC	TATGCAGTGGAACGATGGTTTCCAAG A	TGGIACTCACTTAGCGGGTTTCCG	TCGGGTGATGAGGCGCGTGAAGG	TAAAGCCCGTGAAATGACTCGTCGTA AAGG	TACGCTGACGGAATCAACCAAAGCGG	TGACGGCCTATACGGTGTTTGGTTTCT	TCACCGATATCATGGCTTACCACGG	TAGGCGTGAAGCAAGCTACCGTTT	TAGGTGCTGGTTACGCAGATCAAGA	TACATGCTAGCCGCGTCTTAC
AB_MLST-11- OIF007_1726_1752_F	AB_MLST-11- OIF007_1792_1826_F	AB MLST-11- OIF007 1792 1826 F	AB_MLST-11- OIF007 1970 2002 F	RNASEP_BRM_461_488_ F	CTXB_NC002505_46_70 F	FUR_NC002505_87_113 F	FUR_NC002505_87_113	GAPA_NC002505_533_5 60_F	GAPA_NC002505_694_7 21 F	GAPA_NC002505_753_7 82_F	GYRB_NC002505_2_32_ F	GYRB_NC002505_123_1 52_F	GYRB_NC002505_768_7 94 F	GYRB_NC002505_837_8 60 F	GYRB NC002505 934 9 56 F	GYRB_NC002505_1161_ 1190_F	OMPU_NC002505_85_11 0_F	OMPU_NC002505_258_2 83_F	OMPU_NC002505_431_4 55_F	OMPU_NC002505_533_5 57_F	OMPU_NC002505_689_7	OMPU NC002505 727 7
1168	1169	1170	1171	1172	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

101001	1368	1307	1391	1351	887	1297	1240	1278	896	1204	1244	1250	1208	1295	1335	0	1292	1402	1273	1420	730	906	1319	1021
	TTAGAAGTCGTAACGTGGACC	TGGTTAGAAGTCGTAACGTGGACC	TTCTGCGAATCAATCGCACGCTG	TGTTGAAGCTGTACTTGACCTGATTTTA CG	TACCAAAGCGTGCACGATAGTTGAG	TGGGTTTCGCGCTTAGATGCTTTCA	TGCGTGGACTACCAGGGTATCTA	TGGCCGTACTCCCCAGGCG	TACGAGCTGACGACAGCCATGCA	TGCATCACCATTTCCTTGTCCTTCG	TGCTAGGCCATCAGGCCACGCAT	TGCTGGATTCGCCTTTGCTACG	TGCCAAGTGCTGGTTTACCCCATGG	TGGGTGCTGGTTTACCCCATGGAG	TGTGCTGCTTTCGCATGGTTAATTGCTT CAA		TGGGTACGAACTGGATGTCGCCGTT	TIGCACGICTGITICAGITGCAAAITC	TGGCACCGTGGGTTGAGATGAAGTAC	TIGTGATATGGAGGTGTAGAAGGTGTTA	ACCIGCAICCTAAACGIACIIGC	TACTTCAGCTTCGTCCAATAAAATCA CAAT	TGTAGGCAAGTGCATAAGAAATTGATAC A	TCCCCATTTAATAATTCCACCTACTATC ACACT
- And Andrews	OMPU NC002505 1033 1053 R	OMPU NC002505 1033 1054 R	TCPA NC002505 148 170 R	TDH NC004605 357 386 R	VVHA NC004460 862 886 R	23S EC 2746 2770 R	16S EC 789 811 R	16S EC 880 897 TMOD R	16S EC 1052 1074 R	TUFB EC 1034 1058 2 R	RPOC EC 2227 2249 R	RPOB EC 1909 1929 TMOD R	RPIB EC 739 763 R	RPLB EC 737 760 R	1439 146		VALS EC 1195 1219 R	SSPE BA 197 222 TMOD R	RPOC EC 2313 2338 R	MECI-R_NC003923-41798- 41609_86_113_R	AGR-III_NC003923-2108074- 2109507_56_79_R	AGR-III_NC003923-2108074-	AGR-III_NC003923-2108074- 2109507_1070_1098_R	AGR-I AJ617706 694 726 R
	193	197	77 00 00	574	412	508	202	560	634	489	284	617	449	309	397		385	482	405	698	263	457	701	610
	TACTACTTCAAGCCGAACTTCCG	TACTTACTACTTCAAGCCGAACTTCC G	TCACGATAAGAAAACCGGTCAAGAGG	TGGCTGACATCCTACATGACTGTGA	TCTTATTCCAACTTCAAACCGAACTA TGACG	TGCCTGTTCTTAGTACGAGGACC	TAGAACACCGATGGCGAAGGC	TGGATTAGAGACCCTGGTAGTCC	TGTCGATGCAACGCGAAGAACCT	TGCACACGCCGTTCTTCAACAACT	TCAGGAGTCGTTCAACTCGATCTACA TGAT	TGGTTATCGCTCAGGCGAACTCCAAC	TGACCTACAGTAAGAGGTTCTGTAAT	SEASTERENTERNOOF	TCTCGTGGTGCACAGTAACGGATAT	7.7.7	TCGTGGCGGCGTGGTTATCGA	TGCAAGCAAACGCACAATCAGAAGC	TCTGGCAGGTATGCGTGGTCTGATG	TTTACACATATCGTGAGCAATGAACT GA	TCACCAGTTTGCCACGTATCTTCAA	TGAGCTTTTAGTTGACTTTTTCAACA GC	TTTCACACAGCGTGTTTATAGTTCTA	TGGTGACTTCATAATGGATGAAGTTG AAGT
47_F	OMPU_NC002505_931_9	OMPU_NC002505_927_9 53_F	TCPA_NC002505_48_73	TDH NC004605_265_28	VVHA_NC004460_772_8	23S EC 2643 2667 F	16S_EC_713_732_TMOD F	16S EC 784 806 F	EC 959 981	TUFB EC 956 979 F	RPOC_EC_2146_2174_T	RPOB EC 1841 1866 F	RPLB EC 650 679 IMO	a off con the drine	TAMES EN 0300 / 1002 E	VALS EC 1105 1124 T	MOD F	SSPE BA 113 137 F	RPOC EC 2218 2241 T MOD F	MECI-R NC003923- 41798-41609 33 60 F	AGR-III NC003923- 2108074- 2109507 1 23 F	AGR-III NC003923- 2108074- 2109507 569 596 F		106 622 651
	2018	2019	0000	1000	2022	2023	2024	2025	2026	2027	2028	2029	0200	2000	T C C C C C	4034	2033	2034	2035	2056	2057	2058	0 0 0 0	2060

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

								 -				г	·	ı		
	1302	1424	1077	1233	1017	1277	926	1263	1145	1366	1289	1197	1203	856	1353	1331
	TGGTACTTCAACTTCATCCATTATGAAG TC	TIGITTATIGITTCCATAIGCTACACAC TITC	TCGCCATAGCTAAGTTGTTTATTGTTTC CAT	TGCGCTATCAACGATTTTGACAATATAT GTGA	TCCCATACCTATGGCGATAACTGTCAT	TGGCCACTTTTATCAGCAACCTTACAGT C	TAGICTTTTGGAACACCGTCTTTAATTA AAGT	TGGAACACCGTCTTAATTAAAGTATCT CC	TCTTTCTTTGCTTAATTTTCCATTTGC GAT	TTACTTCCTTACCACTTTTAGTATCTAA AGCATA	TGGGGACTTCCTTACCACTTTTAGTATC TAA	TGCAAGGGAAACCTAGAATTACAAACCC T	TGCATAGGGAAGGTAACACCATAGTT	TAACAACGITACCITCGCGAICCACIAA	TGTTGTGCCGCAGTCAAATA	IGTGAAGAACTITCAAATCTGTGAATCC
	AGR-I AJ617706 626 655 R	AGR-II_NC002745-2079448- 2080879_700_731_R	AGR-II_NC002745-2079448- 2080879_715_745_R	AGR- IV AJ617711 1004 1035 R	AGR-IV AJ617711_309_335_R	BLAZ NC002952 (191382719 14672) 68 68 R	BLAZ_NC002952(191382719 14672) 68 68 2 R	2002	BLAZ_NC002952(191382719 14672) 68 68 4 R		BLAZ NC002952 (191382719	BSA-A_NC003923-1304065- 1303589_165_193_R	BSA-A NC003923-1304065- 1303589 253 278 R	BSA-A_NC003923-1304065- 1303589_388_415_R	BSA-A_NC003923-1304065- 1303589_317_344_R	BSA-B NC003923-1917149-
	579	415	624	909	562	312	494	467	232	487	351	214	32	679	519	209
	TGGGATTTTAAAAAACATTGGTAACA TCGCAG	TCTTGCAGCAGTTTATTTGATGAACC TAAAGT	TGTACCCGCTGAATTAACGAATTTAT ACGAC	TGGTATTCTATTTGCTGATAATGAC CTCGC	TGGCACTCTTGCCTTTAATATTAGTA AACTATCA	TCCACTTATCGCAAATGGAAAATTAA GCAA	TGCACTTATCGCAAATGGAAAATTAA GCAA	TGATACTTCAACGCCTGCTGCTTTC	טייחיים באיים בחיים בה עיהי איה איה	TGCAATTGCTTTAGTTTTAAGTGCAT	TCCTTGCTTTAGTTTTAAGTGCATGT AATTCAA	TAGCGAAIGTGGCTTTACTTCACAAT T	ATCAATTTGGTGGCCAAGAACCTGG	TIGACTGCGGCACAACACGGAT	TGCTATGGTGTTACCTTCCCTATGCA	TAGCAACAATATATCTGAAGCAGCG
Ēu	AGR- I_AJ617706_580_611_ F	AGR-II_NC002745- 2079448- 2080879 620 651 F	AGR-II NC002745- 2079448- 2080879 649 679 F	931	AGR- IV_AJ617711_250_283 F	BLAZ_NC002952(19138 271914672)_68_68_	BLAZ_NC002952(19138 271914672)_68_68_ 2 F	BLAZ_NC002952(19138 271914672)_68_68_ 3_F	BLAZ_NC002952(19138 271914672)_68_68_	BLAZ NC002952 (19138		23 - 25 F	BSA-A NC003923- 1304065- 1303589 194 218 F	Я	BSA-A NC003923- 1304065- 1303589 253 278 F	2003923-
	2061	2062	2063	2064	2065	2 20 20 20 20 20 20 20 20 20 20 20 20 20	7906	2002		6007	2071	2072	2073	2074	2075	2076

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	1138	1267	1148	1174	1167	1143	964	1266	1397	1041	1429	936	956	1185	953	1196	919
Ą	TCTTCTTGAAAATTGTTGTCCCGAAAC	TGGACTAATAACAATGAGCTCATTGTAC TGA	TGAATATGTAATGCAAACCAGTCTTTGT CAT	TGAGTCTACACTTGGCTTAGGATGAAA	TGAGCATTTTATATCCATCTCCACCAT	TCTTGGCTTAGGATGAAATATAGTGGT GGTA	TCAATACAGAGTCTACACTTGGCTTAGG AT	TGGACGATATTCACGGTTTACCCACTTA TA	TTGACALTTGCATGCTTCAAAGCCTG	TCCGTAGTTTTGCATAATTTATGGTCTA TTTCAA	TTTATGGTCTATTTCAATGGCAGTTACG AA	TATGGTCTATTTCAATGGCAGTTACGA	TCAACTICTGCCATTAAAAGTAATGCCA	TGATGGTCTATTICAAIGGCAGITACGA AA	TCAACAATCAGATAGATGTCAGACGCAT G	TGCAAGAGCAACCCTAGTGTTCG	TAGGATGAAAGCATTCCGCTGGC
1914156_1011_1039_R	BSA-B_NC003923-1917149- 1914156_1109_1136_R	BSA-B_NC003923-1917149- 1914156_1323_1353_R	BSA-B NC003923-1917149- 1914156 2186 2216 R	ERMA_NC002952-55890- 56621_487_513_R	ERMA_NC002952-55890- 56621_438_465_R	ERMA_NC002952-55890- 56621_473_504_R	ERMA_NC002952-55890- 56621_491_520_R	ERMA_NC002952-55890- 56621_586_615_R	ERMA_NC002952-55890- 56621 640 665 R	ERMC_NC005908-2004- 2738_173_206_R	ERMC_NC005908-2004- 2738_160_189_R	ERMC_NC005908-2004- 2738_161_187_R	ERMC_NC005908-2004- 2738_425_452_R	ERMC_NC005908-2004- 2738_159_188_R	ERMB Y13600-625- 1362 352 380 R	ERMB_Y13600-625- 1362_415_437_R	ERMB Y13600-625- 1362 471 493 R
	426	300	703	372	217	470	480	297	231	399	298	283	168	421	644	536	556
TACT	TGAAAAGTATGGALTTGAACAACTCG TGAATA	TCATTATCATGCGCCAATGAGTGCAG	TITCATCTTATCGAGGACCCGAAATC	TCGCTATCTTATCGTTGAGAAGGGAT T	TAGCTATCTTATCGTTGAGAAGGGAT TTGC	TGATCGTTGAGAAGGGATTTGCGAAA	TGCBABATCTGCBACGAGCTTTGG	TCATCCTAAGCCAAGTGTAGACTCTG	TATAAGTGGGTAAACCGTGAATATCG	TCTGAACATGATAATATCTTTGAAAT	TCATGATAATATCTTTGAAATCGGCT	TCAGGAAAAGGGCATTTTACCCTTG	TAATCGTGGAATACGGGTTTGCTA	TOTALEDADATCGCCTCAGGAAAAGG	TGTTGGGAGTATTCCTTACCATTTAA	TEGAPAGCCATECGECATCT	TGGATATTCACCGAACACTAGGGTTG
1917149-	1050 1081 F	[z				ERMA_NC002952- 55890-	ERMA NC002952- 55890-	ERMA NC002952- 55890-		56621 586 614 F ERMC_NC005908-2004-	ERMC_NC005908-2004-	ERMC NC005908-2004-	ERMC_NC005908-2004-	NC005908	ERMB_Y13600-625-	ERMB Y13600-625-	ERMB Y13600-625-
	2077		00100		2080		7007	2083	2084		1	7087	0000	600	0607	2091	2093

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

						-									
989	1261	993	1124	896	1433	1098	1428	1179	1070	1315	861	862	888	1194	1334
TCATCTGTGGTATGGCGGGTAAGTT	TGGAAAACTCATGAAATTAAAGTGAAAG GA	TCATTAGGTAAANGTCTGGACANGATC CAA	TCTCATGAAAAGGCTCAGGAGATACAA G	TCACACCTGTAAGTGAGAAAAGGTTGA T	TTTCCGATGCAACGTAATGAGATTTCA	TCGTATGACCAGCTTCGGTACTACTA	TTTATGACCAGCITCGGTACTACTAAA	TGATAATGAAGGGAAACCTTTTTCACG	TCGATCGTGACTCTTTATTTTCAGTT	TGTAATTAACCGAAGGTTCTGTAGAAGT AIG	TPACCGTTTCCAAAGGTACTGTATTTTG T	TAACCGTTTCCAAAGGTACTGTATTTG TTTACC	TCATCTGGTTTAGGAICTGGTTGACT	TGCAACTCATCTGGTTTAGGATCT	TGTGCAGGCATCATGTCATACCAA
ERMB_Y13600-625- 1362_521_545_R	PVLUK_NC003923-1529595- 1531285_775_804_R	PVLUK_NC003923-1529595- 1531285_1095_1125_R	PVLUK_NC003923-1529595- 1531285_950_978_R	PVLUK_NC003923-1529595- 1531285_654_682_R	SA442_NC003923-2538576- 2538831_98_124_R	SA442_NC003923-2538576- 2538831_163_188_R	SA442_NC003923-2538576- 2538831_161_187_R	SA442_NC003923-2538576- 2538831_231_257_R	SEA NC003923-2052219- 2051456 173 200 R	SEA_NC003923-2052219- 2051456_621_651_R	SEA NC003923-2052219- 2051456 464 492 R	SEA_NC003923-2052219- 2051456_459_492_R	SEB NC002758-2135540- 2135140_273_298_R	SEB_NC002758-2135540- 2135140_281_304_R	SEB NC002758-2135540- 2135140 402 402 R
161	456	539	461	373	635	427	395	226	495	156	629	695	702	244	151
TAAGCTGCCAGCGAATGCTTTC	TGAGCTGCATCAACTGTAFTGGATAG	TGGAACAAAATAGTCTCTCGGATTTT GACT	TGAGTAACATCCATATTTCTGCCATA CGT	TCGGAATCTGATGTTGTT	TGTCGGTACACGATATTCTTCACGA	TGAAATCTCATTACGTTGCATCGGAA A	TCTCATTACGTTGCATCGGAAACA	TAGTACCGAAGCTGGTCATACGA	TGCAGGGAACAGCTTTAGGCA	TAACTCTGATGTTTTTTGATGGGAAGG T	TGTATGGTGGTGTAAACGTTACATGAT AATAATC	TIGTALGTALGGIGGIGTAACGTTAC AIGA	TITCACAIGTAATITIGATATICGCA	TATTTCACATGTAAFTFFGATATFCG CACT	TAACAACTCGCCTTATGAAACGGGAT ATA
ERMB_Y13600-625- 1362 465_487_F	PVLUK_NC003923- 1529595- 1531285 688 713 F	PVLUK NC003923- 1529595- 1531285 1039 1068 F	PVLUK NC003923- 1529595- 1531285 908 936 F	003923- 610 633	3003923- 11 35 F	SA442 NC003923- 2538576- 2538831 98 124 F	103 126	166 188	03923- 115 135		382 414	SEA_NC003923- 2052219- 2051456_377_406_F			-
2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109

83

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	1361	1177	985	1078	1133	1318	1288	1079	1320	994	870	1120	1436	892	1043	863
	TTACCATCTTCAAATACCCGAACAGTAA	TGAGTTTGCACTTCAAAAGAAATTGTGT	TCAGITIGCACITCAAAAGAAAITGIGI T	TCGCCTGGTGCAGGCATCATAT	TCTTCACACTTTTAGAATCAACCGTTTT ATTGTC	TGTACACCATTTATCCACAAATTGATTG GT	TGGGCACCATTTATCCACAAATTGATTG GTAT	TCGCGCTGTATTTTCCTCCGAGA	TGTCAATATGAAGGTGCTCTGTGGATA	TCALTTALTTCTCGCTTTTCTCGCTAC	TAAGCACCATATAAGTCTACTTTTTTCC CTT	TCTATAGGTACTGTAGTTTGTTTTCCGT CT	TTTGCACCTTACCGCCAAAGCT	TACCTTACCGCCAAAGCTGTCT	TCCGTCTATCCACAAGTTAATTGGTACT	TAACTCCTCTTCAACAGGTGGA
	SEE_NC002758-2135540- 2135140_402_402_2_R	SEC_NC003923-851678- 852768_620_647_R	SEC_NC003923-851678- 852768 619 647_R	SEC_NC003923-851678- 852768_794_815_R	SEC_NC003923-851678- 852768 853 886 R	SED M28521 741 770 R	SED M28521 739 770 R	SED M28521 888 911 R	SED M28521 1022 1048 R	SEA-SEE_NC002952-2131289- 2130703_71_98_R	SEA-SEE NC002952-2131289- 2130703 314 344 R	SEE_NC002952-2131289- 2130703_465_494_R	SHE_NC002952-2131289- 2130703_586_586_R	SEE_NC002952-2131289- 2130703 586 586 2 R	SEE_NC002952-2131289- 2130703_444_471_R	SEG_NC002758-1955100- 1954171_321_346_R
	969	648	546	466	604	615	554	683	559	669	469	445	640	639	403	520
	TTGTATGTATGGTGGTGTAACTGAGC A	TTAACATGAAGGAAACCACTTTGATA ATGG	TGGAATAACAAACATGAAGGAAACC ACTT	TGAGITTTAACAGITCACCAIAIGAAA CAGG	TGGTATGATGATGCCTGCACCA	TGGTGGTAAATAGATAGGACTGCTT	TGGAGGTGTCACTCCACACGAA	TTGCACAAGCAAGGCGCTATTT	TGGATGTTAAGGGTGATTTTCCCGAA	TTTACACTACTTTTATTCATTGCCCT AACG	TGATCATCGTGGTATAACGATTTAT TAGT	TGACATGATAATAACCGATTGACCGA AGA	TGTICAAGAGCTAGATCTTCAGGCAA	TGTTCAAGAGCTAGATCTTCAGGCA	TCTGGAGGCACACAATAAAACA	TGCTCAACCCGATCCTAAATTAGACG A
2135140_402_402_F	SEB_NC002758- 2135540- 2135140_402_402_2_F	SEC_NC003923- 851678- 852768_546_575_F	SEC_NC003923- 851678- 852768 537 566 F	SEC_NC003923- 851678- 852768_720_749_F	SEC_NC003923- 851678- 852768 787 810 F	SED_M28521_657_682_ F	SED_M28521_690_711_ F	SED_M28521_833_854_	SED_M28521_962_987_ F	SEA-SEE NC002952- 2131289- 2130703 16 45 F	SEA-SEE NC002952- 2131289- 2130703 249 278 F	SEE_NC002952- 2131289- 2130703 409 437 F	SEE_NC002952- 2131289- 2130703 525 550 F	SEE_NC002952- 2131289- 2130703 525 549 F	SEE_NC002952- 2131289- 2130703 361 384 F	SEG_NC002758- 1955100- 1954171 225 251 F
	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

											-	—r				-	
1260	1329	1187	927	1390	888	606	996	1316	1129	1293	1118	1049	925	984	1312	1221	907
TGCTTTGTAATCTAGTTCCTGAATAGTA ACCA	TGTCTATTGTCGALTGTTACCTGTACAG T	TGAITCAAATGCAGAACCATCAAACTCG	TAGIGITGIACCICCATATAGACATICA GA	THURGAGUTABATCAGCAGTTGCA	TACCATCTACCCAAACATTAGCACCAA	TAGCACCAATCACCCTTTCCTGT	TCACAAGGACCATTATAATCAATGCCAA	TGTACAAGGACCATTATAATCAATGCCA	TCTGGCCCCTCCATACATGTATTTAG	TGGGTAGGTTTTTATCTGTGACGCCTT	TCTAGCGGAACAACAGTTCTGATG	TCCTGAAGATCTAGTTCTTGAATGGTTA CT	TAGTCCTTTCTGAATTTTACCATCAAAG GTAC	TCAGGTATGAAACACGATTAGTCCTTTC T	TGTAAAAGCAGGGCTATAATAAGGACTC	TGCCCTTTGTAAAGCAGGGCTAT	TACTTTAAGGGGCTAICTTTACCATGAA CCT
SEG_NC002758-1955100- 1954171_671_702_R	SEG_NC002758-1955100- 1954171_607_635_R	SEG_NC002758-1955100- 1954171 735 762 R	SEH NC002953~60024~ 60977 547 576 R	SEH NC002953-60024- 60977 450 473 R	SEH_NC002953-60024- 60977_608_634_R	SEH_NC002953-60024- 60977_594_616_R	SEI NC002758-1957830- 1956949 419 446 R	SEI NC002758-1957830- 1956949 420 447 R	SEI_NC002758-1957830- 1956949 449_474_R	SEI_NC002758-1957830- 1956949_290_316_R	SEJ AF053140 1381 1404 R	SEJ AF053140 1429 1458 R	SEJ AF053140 1500 1531 R	SEJ AF053140 1521 1549 R	TSST_NC002758-2137564- 2138293_278_305_R	TSST_NC002758-2137564- 2138293_289_313_R	TSST_NC002758-2137564- 2138293 448 478 R
548	555	173	682	201	400	677	253	999	471	394	637	211	153	301	619	514	304
TGGACAATAGACAATCACTTGGATTT ACA	TGGAGGTTGTTGTATGTGTGGGT	TACAAAGACACTGGCICACTA	TTGCAACTGCTGATTTAGCTCAGA	TAGAAATCAAGGTGATAGTGGCAATG A	TCTGAATGTCTATATGGAGGTACAAC ACTA	TTCTGAATGTCTATATGGAGGTACAA CACT	TCAACTCGAATTTTCAACAGGTACCA	TTCAACAGGTACCAATGATTTGATCT CA	TGATCTCAGAATCTAATAATTGGGAC GAA	TCTCAAGGTGATATTGGTGTAGGTAA CTTAA	TGTGGAGTAACACTGCATGAAAACAA	TAGCATCAGAACTGTTGTTCCGCTAG	TAACCATTCAAGAACTAGATCTTCAG GCA	TCATTCAAGAACTAGATCTTCAGGCA AG	TGGTTTAGATAATTCCTTAGGATCTA TGCGT	TGCGTATAAAAAACACAGATGGCAGC A	TCCAAATAAGTGGCGTTACAAATACT GAA
SEG_NC002758- 1955100- 1954171 623 651 F	SEG_NC002758- 1955100- 1954171 540 564 F	SEG NC002758- 1955100- 1954171 694 718 F	SEH NC002953-60024-	SEH NC002953-60024-60977 408 434 F	SEH_NC002953-60024- 60977 547 576 F	SEH NC002953-60024- 60977 546 575 F	SEI NC002758- 1957830- 1956949 324 349 F	SEI_NC002758- 1957830- 1956949 336 363 F	1	SEI NC002758- 1957830- 1956949 223 253 F	SEJ AF053140_1307_1	SEJ_AF053140_1378_1 403_F	SEJ_AF053140_1431_1 459_F	SEJ AF053140_1434_1 461_F	TSST_NC002758- 2137564- 2138293 206 236 F	TSST_NC002758- 2137564- 2138293_232_258_F	TSST_NC002758- 2137564- 2138293_382_410_F
2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143

85

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	1	1	i	1		T	1				1	T	т —	
874	1175	1137	1306	1064	891	698	1193	850	972	1180	1082	1284	1301	1207
TAAGTTCCTTCGCTAGTAIGTTGGCTT	TGAGTTAAAATGCGATTGATTTCAGTTT CCAA	TCTTCTTTCGTATAAAAGGACCAA TTGG	TGGTGTTCTAGTATAGATTGAGGTAGTG GTGA	TCGAATTCAGCTAAATACTTTTCAGCAT CT	TACCTGCALTAATCGCTTGTTCATCAA	TAAGCAATACCTTTACTTGCACCACCTG	TGCAACAATTAATGCTCCGACAATTAAA GGATT	TAAAGACACCGCTGGGTTTAAATGTGCA	TCACCGATAAATAAATACCTAAAGTTA ATGCCATTG	TGATATTGAACTGGTGTACCATAATAGT TGCC	TCGCTCTCTCAAGTGATCTAAACTTGGA G	TGGGACGTAATCGTATAAATTCATCATT TC	TGGTACACCTGGTTTCGTTTTGATGATT TGTA	TGCATTGTACCGAAGTAGTTCACATTGT T
TSST_NC002758-2137564-2138293 347 373 R	ARCC_NC003923-2725050- 2724595 97 128 R	ARCC_NC003923-2725050- 2724595_214_245_R	ARCC NC003923-2725050- 2724595 322 353 R	AROE NC003923-1674726- 1674277 435 464 R	AROE_NC003923-1674726- 1674277_155_181_R	AROE_NC003923-1674726- 1674277 308 335 R	GLPF_NC003923-1296927- 1297391_382_414_R	GLPF_NC003923-1296927- 1297391_81_108_R	GLPF_NC003923-1296927- 1297391_323_359_R	GMK_MC003923-1190906- 1191334_166_197_R	GMK_MC003923-1190906- 1191334_305_333_R	GMK_NC003923-1190906- 1191334 403 432 R	PTA_NC003923-628885- 629355_314_345_R	PTA_MC003923-628885- 629355_211_239_R
423	368	437	691.	989	590	474	491	558	218	200	435	268	418	439
TCTTTTACAAAAGGGGAAAAAGTTGA CTT	TCGCCGGCAATGCCATTGGATA	TGAATAGTGATAGAACTGTAGGCACA ATCGT	TTGGTCCTTTTTATACGAAAGAA GTTGAA	TTGCGAATAGAACGATGGCTCGT	TGGGGCTTTPAATATTCCAATTGAAG ATTTTCA	TGATGGCAAGTGGATAGGGTATAATA CAG	TGCACCGGCTATTAAGAATTACTTTG CCAACT	TGGATGGGGATTAGCGGTTACAATG	TAGCTGGCGCGAAATTAGGTGT	TACTTTTTAAAACTAGGGATGCGTT TGAAGC	TGAAGTAGAAGGTGCAAAGCAAGTTA GA	TCACCTCCAAGTTTAGATCACTTGAG AGA	TCTTGTTTATGCTGGTAAAGCAGATG G	TGAATTAGTTCAATCATTTGTTGAAC GACGT
TSST_NC002758- 2137564- 2138293_297_325_F	ARCC_NC003923- 2725050- 2724595_37_58_F	ARCC_NC003923- 2725050- 2724595_131_161_F	ARCC_NC003923- 2725050- 2724595_218_249_F	AROE_NC003923- 1674726- 1674277_371_393_F	AROE_NC003923- 1674726- 1674277_30_62_F	AROE_NC003923- 1674726- 1674277_204_232_F	GLPF_NC003923- 1296927- 1297391_270_301_F	GLPF_NC003923- 1296927- 1297391_27_51_F	GLPF_NC003923- 1296927- 1297391_239_260_F	GMK_NC003923- 1190906- 1191334_91_122_F	GMK_NC003923- 1190906- 1191334_240_267_F	GMK_NC003923~ 1190906- 1191334_301_329_F	PTA_NC003923~ 628885- 629355_237_263_F	PTA_NC003923~ 628885- 629355_141_171_F
2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158

DOCKET NO.: DIBIS-0083USI (COUNSEL DOCKET NO: 10593)

1349	1165	1300	1275	1076	1388	766	1013	1277	926	1263	1145	1366	1289	1277	926	1263
TGTTCTGGATTGATTGCACAATCACCAA AG	TGAGATGTTGATTTACCAGTTCCGA TTG	TGGTACAACATCGTTAGCTTTACCACTT TCACG	TGGCAGCAATAGTTTGACGTACAAATGC ACACAT	TCGCCAGCTAGCACGATGTCATTTTC	TICGIGCIGGATTITGICCTIGICCT	TCCAACCCAGAACCACATACTTTATTCA C	TCCATCTGTTAAACCATCATATACCATG CTATC	TGGCCACTTTTATCAGCAACCTTACAGT C	TAGTCTTTTGGAACACCGTCTTTAATTA AAGT	TGGAACACCGTCTTTAATTAAAGTATCT CC	TCTTTTCTTTGCTTAATTTTCCATTTGC GAT	TTACTTCCTTACCACTTTTAGTATCTAA AGCATA	TGGGGACTTCCTTACCACTTTAGTATC TAA	TGGCCRCTTTTATCAGCAACCTTACAGT C	TAGTCTTTTGGAACACCGTCTTTAATTA AAGT	TGGAACACCGTCTTTAATTAAAGTATCT CC
PTA_NC003923-628885- 629355 393_422_R	TPI_NC003923-830671- 831072_209_239_R	TPI_NC003923-830671- 831072_97_129_R	TPI_NC003923-830671-831072_253_286_R	YQI_NC003923-378916- 379431_259_284_R	YQI_NC003923-378916- 379431_120_145_R	YQI_NC003923-378916- 379431_193_221_R	YQI_NC003923-378916- 379431_364_396_R	BLAZ_(19138271914672)_6 55 683 R	BLAZ (19138271914672)_6 28 659 R	BLAZ_(19138271914672)_6 22 651 R	BLAZ (19138271914672)_5	BLAZ_(19138271914672)_1 21 154 R	BLAZ (19138271914672) 1 27_157_R	BLAZ MC002952-1913827- 1914672_655_683_R	BLAZ NC002952-1913827- 1914672 628 659 R	BLAZ NC002952-1913827- 1914672 622 651 R
303	486	318	246	440	175	314	219	312	494	467	232	487	351	312	494	467
TCCAAACCAGGTGTATCAAGAACAIC AGG	TGCAAGTTAAGAAAGCTGTTGCAGGT TTAT	TCCCACGAACAGATGAAGAAATTAA CAAAAAAG	TCAAACTGGGCAATCGGAACTGGTAA ATC	TGAATTGCTGCTATGAAAGGTGGCTT	TACAACATATTATTAAAGAGACGGGT TTGAATCC	TCCAGCACGAATTGCTGCTATGAAAG	ייסידער מספס אוויסייסים אייסירט מספס מספס המספס מספס המספס מספס המספס מספס	TCCACTTATCGCAAATGGAAATTAA	TGCACTTATCGCAAATGGAAAATTAA	ります。	では、このでは、このでは、このでは、このでは、このでは、このでは、このでは、この	TGCAATTGCTTTAGTTTTAAGTGCAT	TCCTTGCTTTAGTTTTAAGTGCATGT	TCCACTTATCGCAAATGGAAAATTAA GCAA	TGCACTTATCGCAAATGGAAAATTAA GCAA	TGATACTTCAACGCCTGCTGCTTTC
PTA_NC003923- 628885- 629355 328 356 F	160	TPI NC003923- 830671- 831072 1 34 F	99		YQI NC003923- 378916- 379431 44 77 F	23-	003923-	BLAZ (19138271914	BLAZ (19138271914	BLAZ (19138271914	BLAZ (19138271914	BLAZ (19138271914	BLAZ (19138271914 672) 26 58 F	BLAZ NC002952- 1913827- 1914672 546 575 F	546 575	002952- 507 531 F
2159	2160	2161	2162	2163	2164	21.65	3310	1			7 7 7	0/ 77	2172	2173	2174	2175

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

					-						T		\neg		
1145	1366	1289	1321	1321	1321	1311	922	1382	899	1354	928	853	979	1107	1102
TCTTTTCTTTGCTTAATTTTCCALTTGC GAT	TTACTTCCTTACCACTTTTAGTATCTAA AGCATA	TGGGGACTTCCTTACCACTTTAGTATC TAA	TGTCACCAGCTTCAGCGTAGTCTAATAA	TGTCACCAGCTTCAGCGTAGTCTAATAA	TGTCACCAGCTTCAGCGTAGTCTAATAA	TGGTTTGTCAGAATCACGTTCTGGAGTT GG	TAGGCATAACCATTTCAGTACCTTCTGG TAA	TICCATTICAACTAATICTAATAATTCT TCATCGIC	TACGCTAAGCCACGTCCATATTATCA	TGITTGTGATGCAITTGCTGAGCIA	TAGTTGAAGTTGCACTATATACTGTTGG A	TAAATGCACTTGAGGGCCATAT	TCACGTCGACTTCACGTCAGCAT	GCA GOOD AND A COORD A CONTINUE OF	GCA
BLAZ_NC002952-1913827- 1914672_553_583_R	BLAZ NC002952-1913827- 1914672 121 154 R	BLAZ NC002952-1913827- 1914672 127 157 R	TUFB_NC002758-615038- 616222_793_820_R	TUFB_NC002758-615038- 616222_793_820_R	TUFB_NC002758-615038- 616222_793_820_R	TUFB_NC002758-615038- 616222_601_630_R	TUFE_NC002758-615038- 616222 1030 1060_R	TUFB_NC002758-615038- 616222 424 459 R	NUC_NC002758~894288~ 894974 483 509 R	NUC_NC002758-894288- 894974_165_189_R	NUC_NC002758-894288- 894974_222_250_R	NUC_NC002758-894288- 894974_396_421_R	RPOB EC 3868 3895 R	RPOB EC 3860 3890 R	RPOB EC 3860 3890 2 R
232	487	351	643	386	430	320	433	307	342	349	273	174	566	294	294
TATACTTCAACGCCTGCTGCTTTC	TGCAATTGCTTTAGTTTTAAGTGCAT GTRAATTG	TCCTTGCTTTAGTTTTAAGTGCATGT	TGTTGAACGTGGTCAAATCAAAGTTG	TCGTGTTGAACGTGGTCAAATCAAAG T	TGAACGIGGTCAAATCAAAGTIGGIG AAGA	TCCCAGGTGACGATGTACCTGTAATC	TGAAGGTGGACGTCACACTCCATTCT	TCCAATGCCACAAACTCGTGAACA	מטושהייה מוביהים איניריט איניריטיה	TCCITATAGGGATGGCTATCAGTAAT GTT	TOPECTA DATECTA CARACAGATAA	TACAAAGGTCAACCAATGACATTCAG ACTA	TGGCCAGCGCTTCGGTGAAATGGA	TCAGTTCGGCGGTCAGCGCTTCGG	TCAGTTCGGCGGTCAGCGCTTCGG
BLAZ_NC002952- 1913827-	002952- 24 E6 E	BLAZ NC002952- 1913827-			1	8	2002758-		002758-	894974 402 424 F NUC_NC002758- 894288- 894974 53 81 F	NUC_NC002758- 894288-	316 345		RPOB EC 3789 3812 F	RPOB EC 3789 3812 F
27.1.0	0 0	7717	21.78	2248	2 0	0	0627	7251 2251	7527	2253	1	2255	2270	2271	2272

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1106	1101	1105	1100	1030	1171	931	1360	1103	981	1127	1317	1109	1109	855	855	1027	8 5 5 5	1154	864	1296
TCGTCGGACTTAACGGTCAGCATTTCCT G	TCGTCCGACTTAACGGTCAGCATTTCCT G	TCGTCGGACTTAACGGTCAGCATTTC	TCGTCCGACTTAACGGTCAGCATTTC	TCCCTTCCTTAATATGAGAAGGAAACCA CT	TGAGCTGGTGCTATATGAACAATACCAG T	TATATGAACAATACCAGTTCCTGAG T	TTAATCTGGCTGCGAAGTGAAATCGT	TCGTCCTCTCGAATCTCCGATATACC	TCAGATATAAATGGAACAAATGGAGCCA CT	TCTGCATTTTTGCGAGCCTGTCTA	TGTACAATAAGGAGTCACCTTATGTCCC TTA	TCGTGCCTAACAAATCCCGTCTGAGTTC	TCGTGCCTAACAAATCCCGTCTGAGTTC	TAACAAATCCCGTCTGAGTTCCTCTTGC A	TAACAAATCCCGTCTGAGTTCCTCTTGC A	TCCCGTCTGAGTTCCTCTTGCATGATCA	TAACAAATCCCGTCTGAGTTCCTCTTGC A	TGACCCAAAGCTGAAAGCTTTACTG	TAACTGACCCAAAGCTGAAAGCTTTACT G	TGGGTTGCGTTGCAGATTATCTTTACCA
RPOB_EC_3862_3890_R	RPOB EC 3862 3890 2 R	RPOB_EC_3865_3890_R	RPOB EC 3865 3890 2 R	MUPR X75439 1744 1773 R	MUPR X75439 1413 1441 R	MUPR X75439 1381 1409 R	MUPR X75439 2548 2574 R	MUPR X75439 2605 2630 R	MUPR X75439 2711 2740 R	MUPR X75439 2867 2890 R	977 1007 R	CTXA NC002505-1568114- 1567341 194 221 R	CTXA_NC002505-1568114- 1567341 194 221 R	CTXA_NC002505-1568114- 1567341_186_214_R	CTXA_NC002505-1568114- 1567341_186_214_R	CTXA NC002505-1568114- 1567341 180 207 R	CTXA_NC002505-1568114- 1567341 186 214 R	INV U22457-74- 3772 942 966 R	INV U22457-74- 3772 942 970 R	INV_U22457-74-
294	294	674	674	352	699	704	172	188	513	165	447	608	41.1	608	411	27	200	530	438	526
TCAGTTCGGCGGTCAGCGCTTCGG	TCAGITCGGCGGTCAGCGCITCGG	TTCGGCGGTCAGCGCTTCGG	TTCGGCGGTCAGCGCTTCGG	TCCTTTGATATATTATGCGATGGAAG	TTCCTCCTTTTGAAAGCGACGGTT	TTTCCTCCTTTTGAAAGCGACGGTT	TAATTGGGCTCTTTCTCGCTTAAACA CCTTA	TACGATTTCACTTCCGCAGCCAGATT	TGCGTACAATACGCTTTTATGAAATTT TAACA	TAATCAAGCATTGGAAGATGAAATGC ATACC	TGACATGGACTCCCCTATATAACTC TTGAG	TGGTCTTATGCCAAGAGGACAGAGTG AGT	TCTTATGCCAAGAGGACAGAGTGAGT ACT	TGGTCTTATGCCAAGAGGACAGAGTG AGT	TCTTATGCCAAGAGGACAGAGTGAGT ACT	AGGACAGAGTCAGTACTTTGACCGAG GT	TGCCAAGAGGACAGAGTGAGTACTTT GA	TGCTTATTTACCTGCACTCCCACAAC TG	TGAATGCTTATTTACCTGCACTCCCA CAACT	TGCTGGTAACAGAGCCTTATAGGCGC
RPOB EC 3789 3812 F	RPOB_EC_3789_3812_F	RPOB EC 3793 3812 F		MUPR_X75439_1658_16 89_F	MUPR_X75439_1330_13	MUPR_X75439_1314_13 38_F		MUPR_X75439_2547_25 72_F	MUPR_X75439_2666_26 96 F	MUPR X75439_2813_28 43 F	MUPR_X75439_884_914 F	CTXA_NC002505- 1568114- 1567341 114 142 F	CTXA_NC002505- 1568114- 1567341 117 145 F	CTXA_NC002505- 1568114- 1567341_114_142_F	CTXA_NC002505- 1568114- 1567341_117_145_F	CTXA_NC002505- 1568114- 1567341 129 156 F	CTXA_NC002505 1568114 1567341 122 149 F	INV_U22457-74- 3772_831_858_F	INV U22457-74- 3772 827 857 F	INV_U22457-74-
2273	2274	2275	2276	2309	2310	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326

88

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

		987	1188	948		1016	מנר	1122	7777	7777	883	1274	F	900	1035		854	866	3	1308	1373	200	*011	1060	196	2.70	1328
4	TCATAAGGGTTGCGTTGCAGATTAICTT	TGATTCGATCATACGAGACATTAAAACT	GAG.	ICAMATCITIGATICGATCATACGAG AC	TCCCAATCTTTGATTCGATCATACGAG	А	TCTGCCTGAGATGTCGAAAAAAAAATG	TCTCACCTACAGCTTTAAAGCCAGCAAA	ה האים היים אינו החחותים הוא החיים בים חיים	TACAGCTTTAAAGCCAGCAAATT	ACAG	TitCAACACTCTCACCTACAGCTTTTACAACAC	TACGTATGTAAATTCCGCAAAGACTTTG	GCATTAG	TCCGCAAAGACTTTGGCATTAGGTAGA	TAAATTCCGCAAAGACTTTGGCATTAGG	TGT	TAAGAGTGATGCGGGCTGGTTCAACA		TGGTTCAACAGAGTTGCCGTTGCA	TTCAACAAGAGTTGCCGTTGCA	中であれていたことのようなものである。	TCCTTTATGCAACTTGGTATCAACAGGA	At	TCACACCAAGTAGTGCAAGGATC	TCAAAACTIGCTCTAGACCATTTAACTC C	TGTCGCAGCATCTGCTGC
3772 1619 1647 R	INV U22457-74-	C006570-43	ASD NCOOFF70-420714	438608 66 95 R		*20000 07 90 K	ASD_NC006570~439714- 438608 107 134 R	GALE AF513299 241 271 R	12.6		GALE AF513299 233 264 R	GALE AF513299 252 279 R		FLA AFU53945 7434 7468 R	PLA AF053945 7428 7455 R		PLA AF053945 7430 7460 R	CAF_AF053947_33498_33523_ R	CAF AF053947 33483 33507	CAF AF053947 33483 32504	R	CAF_AF053947_33494_33517_ R	N GAES		OMPA NC000117 145 167 R	OMPA NC000117 865 893 R	757 777
	α σ	д 4 0	77	149		Ē	709	280	658		658	319	000	000	443		444	329	000	004	291	293	260		507	475	521
Æ	TGGTAACAGAGCCTTATAGGCGCATA TG	TGAGGGTTTFATGCTTAAAGTTGGTT TTATTGGTT	TAAAGTTGGTTTTATTGGTTGGCGCG	GA	TTAAAGITGGTTTTATTGGTTGGCGC		TTTTATGCTTAAAGTTGGTTTTATTG GTTGGC	TCAGCTAGACCTTTTAGGTAAAGCTA AGCT	TTATCAGCTAGACCTTTTAGGTAAAG CTAAGC	TTATCAGCTAGACCTTTTAGGTAAAG	CTAAGC	TUCCAGCIAGACCTTTTAGGTAAAGC	TTGAGAAGACATCCGGCTCACGTTAT	出たの世本田田本田田としなりようこうしているという	and the second of the second o	TGACATCCGGCTCACGTTATTATGGT	BOOODH BOOOD BEEN BOOOD BEEN BEEN BEEN BEEN BEEN BOOODH BEEN BOOODH BEEN BOOODH BEEN BOOODH BEEN BEEN BEEN BEEN BEEN BEEN BEEN BEE	iccellaiceccaliecalialiige AACT	TGCATTATTTGGAACTATTGCAACTG		TCAGTTCCGTTATCGCCATTGCA	TCAGTTCCGTTATCGCCATTGCATT	TCAATGAACGATCAACAAGTGATTGA TG	The state of the s	TGCCTGTAGGGAATCCTGCTGA	TGATTACCATGAGTGGCAAG	TGCTCAATCTAAACTAAAGTCGAAG A
3772_1555_1581_F	INV_U22457-74- 3772_1558_1585_F	ASD_NC006570- 439714- 438608 3 37 F	570	438608 18 45 F	ASD_NCU055/0- 439714- 438608 17 45 F	06570-	439714- 438608 9 40 F	GALE_AF513299_171_2 00_F	GALE_AF513299_168_1 99_F	GALE_AF513299_168_1	99 F	98 F	PLA_AF053945_7371_7 403_F		403 F	PLA_AF053945_7377_7	Che 2047 22412	33441 F	CAF_AF053947_33426_ 33458 F	CAF AF053947 33407	33429 F	CAF AF053947_33407_ 33431_F	GAPA_NC_002505_1_28 F 1	OMPA_NC000117_68_89	F	21 F	OMPA_NC000117_645_6
	2327	2328		2329	2330		2331	2332	2333		2334	2335	2336		2337	2338		2339	2340		2341	2342	2344		24.12	2473	2474

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1153	1371	851	1406	1395	1058	1025	1270	903	1062	1323	1396	1251	1419	1010	1073	1416	1279	1032	873	1236	1251	1234	
TGACAGGACACAATCTGCATGAAGTCTG AG	TICAAAAGIIGCICGAGACCATIG	TAAAGAGGCTTTGGTAGTTCATTTGC	TTGCCATTCATGGTATTTAAGTGTAGCA GA	TTCTTGAACGCGAGGTTTCGATTG	TCCTTTAAAATAACCGCTAGTAGCTCCT	TCCCGCTGGCAAATAAACTCG	TGGATCACTGCTTACGAACTCAGCTTC	TACGTTTGTATCTGCAGAACC	TCCITTCAATGTTACAGAAAACTCTACA G	TGTCAGCTAAGCTAATAACGTTTGTAGA G	TTGACATCGTCCTCTTCACAG	TGCTGTAGGGAAATCAGGGCC	TIGICAGACICATCGCGAACAIC	TCCATCCATAGAACCAAAGTTACCTTG	TOGCAGCGTGCCAC	TIGGIGCGCTIGGCGIA	TGGCGATGCACTGGCTTGAG	TCCGAAGITGCCCTGGCCGTC	TAAGTTACCTTGCCCGTCAACCA	TGCGGGTGATACTTACCGAGTAC	TGCTGTAGGGAAATCAGGGCC	TGCGGCAGCACTATCACCATCCA	
OMPA NC000117 1011 1040 R	OMPA NC000117 871 894 R	OMPA NC000117 511 534 R	OMPA_NC000117_787_816_R	OMPA NC000117 649 672 R	OMPA NC000117 417 444 R	OMP2 NC000117 71 91 R	OMP2 NC000117_445_471_R	OMP2 NC000117_1396_1419_R	OMP2 NC000117 1541 1569 R	OMP2 NC000117 120 148 R	OMP2 NC000117 240 261 R	GYRA NC000117 640 660 R	GYRA_NC000117_871_893_R	GYRA NC002952 319 345 R	GYRA NC002952 1024 1041 R	GYRA_NC002952_1546_1562_R	GYRA NC002952 124 143 R	GYRA_NC002952_313_333_R	GYRA NC002952 308 330 R	GYRA NC002952 220 242 R	GYRA NC002952 643 663 R	GYRA NC002952 338 360 R	01
157	196	929	212	571	492	234	516	537	407	450	441	287	636	632	176	366	279	452	625	453	287	380	
TAACTGCATGGAACCCTTCTTTACTA G	TACTGGAACAAGTCTGCGACC	TICIAICICGIIGGIITAATICGGAGI T	TAGCCCACACTTTGTGATTCA	TGGCGTAGTAGAGCTATTTACAGACA C	TGCACGATGCGGAATGGTTCACA	TATGACCAAACTCATCAGACGAG	TGCTACGGTAGGATCTCCTTATCCTA TTG	TGGAAAGGTGTTGCAGCTACTCA	TCTGGTCCAACAAAGGAACGATTAC AGG	TGACGAFCTTCGCGGTGACTAGT	TGACAGCGAAGAAGGTTAGACTTGTC C	TCAGGCATTGCGATGGC	TGTGAATAAATCACGATTGATTGAGC A	TGICATGGGTAAATATCACCCTCA	TACAAGCACTCCCAGCTGCA	TCGCCGCGAGGACGT	TCAGCTACATCGACTATGCGATG	TGACGTCATCGGTAAGTACCACCC	TGTACTCGGTAAGTATCACCCGCA	TGAGATGGATTTAAACCTGTTCACCG C	TCAGGCATTGCGGTTGGGATGGC	TCGTATGGCTCAATGGTGGAG	
	OMPA_NC000117_774_7 95_F	OMPA_NC000117_457_4 83_F	OMPA_NC000117_687_7 10 F	OMPA_NC000117_540_5 66_F	OMPA_NC000117_338_3 60 F	OMP2_NC000117_18_40 F	OMP2_NC000117_354_3 82_F	OMP2_NC000117_1297_ 1319_F	OMP2_NC000117_1465_ 1493_F	OMP2_NC000117_44_66 F	OMP2_NC000117_166_1 90 F	GYRA_NC000117_514_5 36 F	GYRA_NC000117_801_8 27 F	GYRA_NC002952_219_2 42 F	GYRA_NC002952_964_9 83_F	GYRA NC002952 1505 1520 F	GYRA_NC002952_59_81 F	GYRA_NC002952_216_2 39 F	GYRA_NC002952_219_2 42_2_F	GYRA_NC002952_115_1	GYRA_NC002952_517_5 39 F	GYRA_NC002952_273_2	
2475	2476	2477	2478		2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494	2495	2496	2497	

DOCKET NO.: DIBIS-0083USI (COUNSEL DOCKET NO: 10593)

	CGTC 1067	GACDCDA 1116	TPTPTPT 904	TACTACA 1355		TIGCCTT 1117	TCTGGTC 1084	CAAAAAC 1245	CATTICC 1427	CATCATT 950	CAAATTG 1348	TAAGCCA 1432	TCAAAAG 996	ATCAAGT 1205	ACAATTA 1257	AAGAATC 920	TTGAAAT 917	TAAACTT 1417	TCTTGGA 942	AGCATAA 1443	
	TCGAGCCGAAGTTACCCTGTCCGTC	TCOTOTOTOCOGTATAAAAAGGACOCDA ATOTOGG	TACDACPCGTGGTpTpTpCpGTpTpTpT pGATGATpTpTpGTA	TGTTTTATGTGTAGTTGAGCTTACTACA TGAGC	TCCCCATCTCCGCAAAGACAATAAA	TCTACAACACTTGATTGTAATTTGCCTT GTTCTTT	TCGGAAACAAAGAATTCATTTTCTGGTC	TGCTATATGCTACAACTGGTTCAAAAC ATTAAG	TTTAGCTACTATTCTAGCTGCCATTTCC	TCAAAGAACCAGCACCTAATTCATCATT TA	TGTTCCAATAGCAGTTCCGCCCAAATTG AT	TITCCCCGATCTAAATTTGGATAAGCCA TAGGAAA	TCCAAACGATCTGCATCACCATCAAAG	TGCATGAAGCATAAAAACTGTATCAAGT GCTTTTA	TGCTTGCTCAAATCATCATAAACAATTA AAGC	TAGGATGAGCATTATCAGGGAAAGAATC	TAGCGATTTCTACTCCTAGAGTTGAAAT TTCAGG	TIGGIICITACIIGIITITGCATAAACIT TCCA	TATTGCTTTTTTGCTATGCTTCTTGGA CAT	TTTTGCTCATGATCTGCATGAAGCATAA A	なり出るるるのはいりなりのなりのようのなりのよう
	GYRA_NC000912_346_370_R	ARCC_NC003923-2725050- 2724595_214_2399_R	PTA_NC003923-628885- 629355_314_342P_R	CUMLST ST1 1945 1977 R		CJMLST ST1 2447 2481 R	CJMLST ST1 725 756 R	CJMLST ST1 454 487 R	CJMLST_ST1_1312_1340_R	CJMLST_ST1_3656_3685_R	CJMLST ST1 55 84 R	CJMLST_ST1_1383_1417_R	CUMLST ST1 2352 2379 R	CJMLST_ST1_1486_1520_R	CJMLST ST1 3511 3542 R	CJMLST ST1 1203 1230 R	CJMLST ST1 2940 2973 R	CJMLST ST1 2131 2162 R	CUMLST ST1 655 685 R	GLTA_NC002163-1604930- 1604529 352 380 R	11 62 11
·	462	229	417	708	428	535	240	347	564	529	145	538	582	534	692	189	591	241	344	299	000
	TGAGTAGTTCCACCCGCACGG	TAGTPGATPAGAACPTPGTAGGCPAC PAATPCPGT	TCTTGTpTpTpATGCpTpGGTAAAGC AGATGG	TITIGCGGATGAAGTAGGTGCCTAICT TITIGC	TGAAATTGCTACAGGCCCTTTAGGAC AAGG	TGCTTTTGATGGTGATGCAGATCGTT TGG	TATGTCCAAGAAGCATAGCAAAAAA GCAAT	TCCTGTTATTCCTGAAGTAGTTAATC AAGTTTGTTA	TGGCAGTTTTACAAGGTGCTGTTTCA TC	TGCTGTAGCTTATCGCGAAATGTCTT TGAITT	TAAAACTTTTGCCGTAATGATGGGTG AAGATAT	TGGAAATGGCAGCTAGAATAGTAGCT AAAAT	TGGGCCTAATGGGCTTAATATCAATG AAAATTG	TGCTTTCCTATGGCTTATCCAAATTT AGATCG	TTGTAAATGCCGGTGCTTCAGATCC	TACGCGTCTTGAAGCGTTTCGTTAIG A	TGGGGCTTTGCTTTATAGTTTTTTAC ATTTAAG	TATICAAGGIGGICCTITGAIGCAIG T	TCCTGATGCTCAAAGTGCTTTTTAG ATCCTTT	TCATGTTGAGCTTAAACCTATAGAAG TAAAAGC	サインしていっこう できない からかい からいい かんしん
93_F	GYRA_NC000912_257_2 78_F	ARCC_NC003923- 2725050- 2724595_135_161P_F	PTA_NC003923~ 628885~ 629355_237_263P_F	CUMLST_ST1_1852_188	CUMLST_ST1_2963_299 2_F	CUMLST_ST1_2350_237 8_F	CUMLST_ST1_654_684_ F	CJMLST_ST1_360_395	CUMLST_ST1_1231_125	CUMLST_ST1_3543_357 4_F	COMLST ST1 1 17 F	CUMLST_ST1_1312_134 2_F	CUMLST_ST1_2254_228 6_F	CUMLST_ST1_1380_141	CUMLST_ST1_3413_343 7_F	CUMLST_STI_1130_115	CJMLST_ST1_2840_287 2_F	CJMLST_ST1_2058_208	COMLST_ST1_553_585_ F	GLTA_NC002163- 1604930- 1604529_306_338_F	CALCOOM WOME
	2498	2504	2505	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528	2529	2530	2531	2532	2564	2565

92

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	1285	0101	946	1347	1214	700	מ	, L	7	0177	2701	277	T057	70.5 14.28	1219
	TGGGATAACATTGGTTGGAATATAAGCA GAAACATC	TCCATCGCCAGTTTTTGCATAATCGCTA AAAA	TCAAAACGCATTTTACATCTTCGTTAA AGGCTA	TGTTCATGTTTAAATGATCAGGATAAAA AGCACT	TGCCATAGCAAAGCCTACAGCATT	TACATCTCCTTCGATAGAAATTTCALTG CTATC	TAAGACAAGGTTTTGTGGATTTTTTAGC	TIGCCATAGCAAAGCCTTACTAGTATT	TGCCATTTCCATGTACTCTTCTCTAACA	ATTGCTTCTTACTTGCTTAGCATAAATT	TGCTCACCTGCTACAACAAGTCCAGCAA T	TTCCACCTTGGATACCTGGAAAAATAGC TGAAT	TCAAGCTCTACACCATAAAAAAAGCTCT	TTTGCTCCGCCAAAGTTTCCAC	TGCCCCATTGCTCATGATAGTAGCTAC
112647_146_171_R	UNCA NC002163~112166- 112647 294 329 R	PGM NC002163-327773~ 328270 365 396 R	TKT_NC002163-1569415- 1569873 350 383 R	GLTA_NC002163-1604930- 1604529 109 142 R	TKT_NC002163-1569415- 1569903_139_162_R	TKT_NC002163-1569415- 1569903 313 345 R	TKT_NC002163-1569415- 1569903 449 481 R	TKT_NC002163-1569415- 1569903 139 163 R	GLTA_NC002163-1604930- 1604529 139 168 R	GLYA_NC002163-367572-368079 476 508 R	GLYA_NC002163-367572- 368079_242_270_R	GLYA_NC002163-367572-368079 384 416 R		PGM_NC002163-327746- 328270 356 379 R	PGM_NC002163-327746- 328270_241_267_R
	170	414	661	381	472	164	213	665	382	287	611	622	614	455	425
GATTTGAG	TAATGATGAATTAGGTGCGGGTTCTT T	TCTTGATACTTGTAATGTGGGCGATA AATATGT	TTATGAAGCGTGTTCTTTAGCAGGAC TTCA	TCGTCTTTTGATTCTTTCCCTGATA ATGC	TGATCTTAAAAATTTCCGCCAACTTC ATTC	TAAGGTTTATTGTCT-TTGTGGAGATG GGGATTT	TAGCCTTTRACGAAAATGTAAAATG CGTTTTGA	TTCAAAAACTCCAGGCCATCCTGAAA TTTCAAC	TCGICITITIGALICITICCCIGAIA AIGCIC	TCAGCTATTTTCCAGGTATCCAAGG TGG	TGGTGCGAGTGCTTATGCTCGTATTA T	TGTAAGCTCTACAACCCACAAAACCT TACG	TGGTGGACATTTAACACATGGTGCAA A	TGAGCAATGGGGCTTTGAAAGAATTT TTAAAT	TGAAAAGGGTGAAGTAGCAAATGGAG ATAG
112166- 112647 80 113 F	UNCA_NC002163~ 112166~ 112647_233_259_F	PGM_NC002163- 327773- 328270_273_305_F	TKT_NC002163- 1569415- 1569873_255_284_F	GLTA NC002163- 1604530- 1604529 39 68 F	TKT_NC002163- 1569415- 1569903 33 62 F	TKT_NC002163- 1569415- 1569903_207_239_F	TKT_NC002163- 1569415- 1569903_350_383_F	TKT_NC002163- 1569415- 1569903_60_92_F	GLTA_NC002163- 1604930- 1604529_39_70_F	GLYA_NC002163- 367572- 368079_386_414_F	GLYA_NC002163- 367572- 368079_148_174_F	GLYA NC002163- 367572- 368079 298 327 F	GLYA NC002163- 367572- 368079 1 27 F	PGM_NC002163- 327746- 328270_254_285_F	PGM_NC002163- 327746-
	2566	2567	2568	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	328270_153_182_F					
2582	PGM_NC002163~ 327746~ 328270_19_50_F	TGGCCTAATGGGCTTAATATCAATGA AAATTG	568	PGM_NC002163-327746- 328270_79_102_R	TGCACGCAAACGCTTTACTTCAGC	1200
2583	UNCA_NC002163- 112166- 112647_114_141_F	TAAGCATGCTGTGGCTTATCGTGAAA TG	160	UNCA_NC002163-112166- 112647_196_225_R	TGCCCTTTCTAAAAGTCTTGAGTGAAGA TA	1220
2584	UNCA_NC002163- 112166- 112647_3_29_F	TGCTTCGGATCCAGCAGCACTTCAAT A	532	UNCA_NC002163-112166- 112647_88_123_R	TGCATGCTTACTCAAATCATCATAACA ATTAAAGC	1206
2585	ASPA_NC002163- 96692- 97166_308_335_F	TTAATTTGCCAAAAATGCAAGGT AG	652	ASPA_NC002163-96692- 97166_403_432_R	TGCBABAGTAACGGTTACATCTGCTCCA AT	1192
2586	ASPA_NC002163- 96692- 97166_228_258_F	TCGCGTTGCAACAAACTTTCTAAAG TAIGT	370	ASPA_NC002163-96692- 97166_316_346_R	TCATGATAGAACTACCTGGTTGCATTTT TGG	1961
2587	GINA_NC002163- 658085- 657609_244_275_F	TGGAATGATAAAGATTTTCGCAGA TAGCTA	547	GIMA_NC002163-658085- 657609_340_371_R	TGAGTTTGAACCATTTCAGAGCGAATAT CTAC	1176
2588	TKT_NC002163- 1569415- 1569903 107 130 F	TCGCTACAGGCCCTTTAGGACAAG	371	TKT_NC002163-1569415- 1569903_212_236_R	TCCCCATCTCCGCAAAGACAATAAA	1020
2589	TKT_NC002163- 1569415- 1569903_265_296_F	TGTTCTTTAGCAGGACTTCACAAACT TGATAA	642	TKT_NC002163-1569415- 1569903_361_393_R	TCCTTGTGCTTCAAACGCATTTTTACA TTTTC	1057
2590	GLYA_NC002163- 367572- 368095 214 246 F	TGCCTATCTTTTGCTGATATAGCAC ATATTGC	505	GLYA NC002163-367572- 368095_317_340_R	TCCTCTTGGGCCACGCAAAGTTTT	1047
2591	GLYA_NC002163- 367572- 368095_415_444_F	TCCTTTGATGCATGTAATTGCTGCAA AAGC	353	GLYA_NC002163-367572- 368095_485_516_R	TCTTGAGCATTGGTTCTTACTTGTTTTG CATA	1141
2592	PGM_NC002163_21_54F	TCCTAATGGACTTAATATCAATGAAA ATTGTGGA	332	PGM NC002163 116 142 R	TCAAACGATCCGCATCACCATCAAAAG	949
2593	PGM_NC002163_149_17 6 F	TAGATGAAAAGGCGAAGTGGCTAAT GG	207	PGM_NC002163_247_277_R	TCCCCTTTAAAGCACCATTACTCATTAT AGT	1023
2594	GLNA_NC002163- 658085- 657609 79 106 F	TGTCCAAGAAGCATAGCAAAAAAAGC AA	633	GLNA_NC002163-658085- 657609_148_179_R	TCAAAAACAAGAATTCATTTTCTGGTC CAAA	945
2595	ASPA_NC002163- 96685- 97196 367 402 F	TCCTGTTATTCCTGAAGTAGTTAATC AAGTTTGTTA	347	ASPA_NC002163-96685- 97196_467_497_R	TCAAGCTATATGCTACAACTGGTTCAAA AAC	960
2596	ASPA NC002163- 96685-97196 1 33 F	TGCCGTAATGATAGGTGAAGATATAC AAAGAGT	502	ASPA_NC002163-96685- 97196_95_127_R	TACAACCTTCGGATAATCAGGATGAGAA TTAAT	880
2597	,	TGGAACAGGAATTAATTCICATCCTG ATTATCC	540	ASPA_NC002163-96685- 97196_185_210_R	TAAGCTCCCGTATCTTGAGTCGCCTC	872

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

										1						I		
	975	1443	1178	963	1258	1031	1407	1213	1407	935	1142	933	912	1142	1299	1314	1344	860
	TCACGATCTAAATTTGGATAAGCCATAG GAAA	TTTTGCTCATGATCTGCATGAAGCATAA A	TGATAAAAGCACTAAGCGATGAAACAG C	TCAAGTGCTTTTACTTCTATAGGTTTTAA GCTC	TGCTTGCTCTTTCAAGCAGTCTTGAATG AAG	TCCGAAACTTGTTGTAGCTTTAATTT GAGC	TIGCGCCATACGIACCAICGI	TGCCATACGTACCATCGTTTCATAACA GC	TIGCGCCATACGTACCATCGT	TATCGACAGATCCAAAGTTACCATGCCC	TCTTGAGCCATACGTACCATTGC	TATCCATTGAACCAAAGTTACCTTGGCC	TAGCCATACGTACCATTGCTTCATAAT AGA	TCTTGAGCCATACGTACCATTGC	TGGTAACCCTTGTCTTTGAATTGTATTT GCA	TGTAACCCTTGTCTTTGAATPTPGTATP TPTPGC	TGTTAATGGTAACCCTTGTCTTTGAATT GTATTTGC	TAACCCTTGTCTTTGAATTGTATTTGCA
	PGM_NC002163-327746- 328270_230_261_R	PGM_WC002163-327746- 328270_353_381_R	PGM_NC002163-327746- 328270_95_123_R	PGM_NC002163-327746- 328270_314_345_R	UNCA_NC002163-112166- 112647 199 229 R	UNCA_NC002163-112166- 112647 430 461 R	GYRA AY291534 268 288 R	GYRA AY291534 256 285 R	GYRA AY291534 268 288 R	GYRA AY291534 319 346 R	GYRA_NC002953-7005- 9668_265_287_R	GYRA_NC002953-7005- 9668_316_343_R	GYRA NC002953-7005- 9668 253 283 R	GYRA_NC002953-7005- 9668_265_287_R	CAPC_AF188935-56074- 55628 348 378 R	CAPC_AF188935-56074- 55628_349_377P_R	CAPC_AF188935-56074- 55628_349_384_R	CAPC_AF188935-56074-
	563	593	577	146	628	313	265	167	221	167	163	171	171	264	578	476	331	331
	TGGCAGCTAGAATAGTAGCTAAAATC CCTAC	TGGGTCGTGTTTACAGAAAATTTC TTATATATATG	TGGGATGAAAAGCGTTCTTTATCC ATGA	TAAACACGGCTTTCCTAIGGCTTAIC	TGTAGCTTATCGCGAAATGTCTTTGA TTTT	TCCAGATGGACAATTTTCTTAGAAA CTGATTT	TCACCCTCATGGTGATTCAGCTGTTT AT	TAATCGGTAAGTATCACCCTCATGGT GAT	TAGGAATTACGGCTGATAAAGCGTAT AAA	TAATCGGTAAGTATCACCCTCATGGT GAT	TAAGGTATGACACCGGATAAATCATA TAAA	TAATGGGTAATATCACCCTCATGGT	TAATGGGTAAATATCACCCTCATGGT	TCACCCTCATGGTGACTCATCTATTT AT	TGGGATTATTGTTATCCTGTTATGCC ATTTGAGA	TGATTATTGTTATCCTGTTATGCpCp ATPTPTPGAG	TCCGTTGATTATTGTTATCCTGTTAT GCCATTTGAG	TCCGTTGATTATTGTTATCCTGTTAT
97196_85_117_F	PGM_NC002163- 327746- 328270 165 195 F	PGM_NC002163- 327746- 328270 252 286 F	PGM_NC002163- 327746- 328270 1 30 F	- E			GYRA_AY291534_237_2 64 F	GYRA_AY291534_224_2 52 F	GYRA_AY291534_170_1 98 F	GYRA_AY291534_224_2 52 F	GYRA NC002953-7005- 9668 166 195 F	GYRA_NC002953-7005- 9668_221_249_F	GYRA_NC002953-7005- 9668_221_249_F	NC002953	AF18893 - 271 304		CAPC AF188935- 56074- 55628 268 303 F	AF188935
	2598	2599	2600	2601	2602	2603	2734	2735	2736	2737	2738	2739	2740	2741	2842	2843	2844	2845

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	852	889	1169	1001	1099	1162	1242	1069	1168	983	1144	1144	1237	965	1097	1210	1040	923	1060	1061
ATTAATCCTGG	TAAAGGATAGCGGTAACTAAATGGCTGA GCCAT	TACCCCAGTTCCCCTGACCTTC	TGAGCCATGAGTACCATGGCTTCATAAC ATGC	TCCAAGITTGACTTAAACGTACCATCGC	TCGTCAACACTACCATTATTACCATGCA TCTC	TGACTTAAACGTACCATCGCTTCATATA CAGA	TGCTAAAGTCTTGAGCCATACGAACAAT GG	TCGATCGAACCGAAGTTACCCTGACC	TGAGCCATACGAACAATGGTTTCATAAA CAGC	TCAGCTGTTAACGGCTTCAAGACCC	TCTTTAAGTTCTTCCAAGGATAGATTTA TTTCTTGTTCG	TCTTTAAGTTCTTCCAAGGATAGATTTA TTTCTTGTTCG	TGCGGTCTGGCGCATATAGGTA	TCAATCTCGACTTTTTGTGCCGGTA	TCGGTTTCAGTCATCTCCACATAAAGG T	TGCCAGCGACAGCCATCGTA	TCCGGTAACTGGGTCAGCTCGAA	TAGTATCACCACGTACACCCGGATCAGT	TCCTTTATGCAACTTGGTATCAACAGGA AT	TCCTTTATGCAACTTGGTATCAACCGGA AT
55628_337_375_R	PARC X95819 121 153 R	PARC X95819 157 178 R	PARC X95819 97 128 R	PARC_NC003997-3362578- 3365001_256_283_R	PARC_NC003997-3362578- 3365001_304_335_R	PARC_NC003997-3362578- 3365001_244_275_R	GYRA AY642140 71 100 R	GYRA AY642140 121 146 R	GYRA AY642140 58 89 R	CYA AF065404 1448 1472_R	LEF BA AF065404 843 881 R	LEF BA AF065404 843 881 R	MUTS AY698802 172 193 R	NUTS AY698802 228 252 R	MUTS AY698802 314 342 R	MUTS AY698802 413 433 R	MUTS AY698802 497 519 R	AB_MLST-11- OIF007_1110_1137_R	GAPA NC 002505 29 58 R 1	GAPA NC002505 769 798 2 R
	302	199	596	999	621	621	150	166	166	305	354	498	326	187	186	419	585	583	259	361
GCCATTTGAG	TCCAAAAAATCAGCGCGTACAGTGG	TACTTGGTAAATACCACCCACATGGT GA	TGGTPAATACCACCCACATGGTGAC	TTCCGTAAGTCGGCTAAAACAGTCG	TGTAACTATCACCGCACGGTGAT	TGTAACTATCACCGCACGGTGAT	TAAATCTGCCCGTGTCGTTGGTGAC	TAATCGGTAAATATCACCCGCATGGT GAC	TAATCGGTAAATATCACCCGCATGGT GAC	TCCAACGAAGTACAATACAAGACAAA AGAAGG	TCGAAAGCTTTTGCATATTATATCGA	TGCATATTATATCGAGCCACAGCATC G	TCCGCTGAATCTGTCGCCGC	TACCTATATGCGCCAGACCGC	TACCGGCGCAAAAAGTCGAGAFTGG	TCTTTATGGTGGAGATGACTGAAACC GA	TGGGCGTGGAACGTCCAC	TGGGCGATGCTGCGAAATGGTTAAAA GA	TCAATGAACGACCAACAAGTGATTGA TG	TCGATGAACGACCAACAAGTGATTGA TG
56074- 5508 303 F	95819 33	PARC X95819 65 92 F	93	37- 205 F	PARC_NC003997- 3362578- 3365001_217_240_F		GYRA AX642140	GYRA_AY642140_26_54	GYRA AY642140 26 54	CYA_AF065404_1348_1 379_F	LEF BA AF065404 751	LEF BA AF065404_762 788 F	MUTS AY698802 106 1	MUTS_AY698802_172_1 92_F	MUTS_AY698802_228_2 52 F	MUTS_AY698802_315_3 42 F	MUTS_AY698802_394_4	AB_MLST-11- OIF007 991 1018 F	905 69	GAPA_NC002505_694_7 21_2_F
	2846	2847	2848	2849	2850	1,380	0 00 0 00 0 00 0 00	7873	2854	2860	7867	2862	2917	2918	2919	2920	2921	2922	2927	2928

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1059	1410	1410	1410	1265	1341	1056	1091	1256	1259	1229	1111	978	971	1095	1376	1014
TCCTTTATGCAACTTAGTATCAACCGGA AT	TTGCTGCTTTCGCATGGTTAATCGCTTC AA	TTGCTGCTTTCGCATGGTTAATCGCTTC AA	TTGCTGCTTTCGCATGGTTAATCGCTTC AA	TGGACCACGCGGAAGGG	TGTGTTGTCGCCGCAG	TCCTTGGCATACATCATGTCGTAGCA	TCGGCGAACATGGCCATCAC	TGCTTCTCCGGGTCGGC	TGCTTGGTGGCTTCTTCGTCGAA	TGCGAGGAACTTCACGTCCTGC	rcaraaccrraccaar	TCACGGGCCAGCTCGTCT	TCACCATGCGCCCGTTCACATA	TCGGTGGTAGCCGATCTC	TTCAGGTACAGCAGGTGGTTCAGGAT	TCCATTTCCGACACGTCGTTGATCAC
GAPA NC002505_769_798_3_R	INFB EC 1439 1468 R	INFB EC 1439 1468 R	INFB EC 1439 1468 R	ACS_NC002516-970624- 971013 364 383 R	ARO NC002516-26883- 27380 111 128 R	ARO_NC002516-26883- 27380_459_484_R	GUA_NC002516-4226546- 4226174_127_146_R	GUA_NC002516-4226546- 4226174_214_233_R	GUA_NC002516-4226546- 4226174_265_287_R	GUA_NC002516-4226546- 4226174_288_309_R	GUA_NC002516-4226546- 4226174_355_371_R	MUT_NC002516-5551158- 5550717 99 116 R	MUT_NC002516-5551158- 5550717_256_277_R	NUO_NC002516-2984589- 2984954_97_117_R	NUO_NC002516-2984589- 2984954_301_326_R	PPS_NC002516-1915014- 1915383_140_165_R
361	889	689	685	376	267	705	551	448	710	670	374	545	358	249	195	311
TCGATGAACGACCAACAAGTGATTGA TG	TTGCTCGTGGTGCACAAGTAACGGAT ATTAC	TTGCTCGTGCTGCAIAAGTAACGGAT ATIAC	TTGCCCGCGCTGCGGAAGTAACCGAT ATTAC	тсаасасстасстая тая	TCACCGTGCCGTTCAAGGAAGAG	TTTCGAAGGCCTTTCGACCTG	TGGACTCCTCGGTGGTCGC	TGACCAGGTGATGGCCATGTTCG	TTTTGAAGGTGATCCGTGCCAACG	TTCCTCGGCCGCCTGGC	TCGGCCGCACCTTCATCGAAGT	TGGAAGTCATCAAGCGCCTGGC	TCGAGCAGGCGCTGCCG	TCAACCTCGGCCCGAACCA	TACTCTCGGTGGAGAAGCTCGC	TCCACGGTCATGGAGCGCTA
GAPA_NC002505_694_7 21_2_F	INFB EC 1364 1394 F	1364_1394	INFB EC 80 110 F	l .	ARO WC002516-26883- 27380 4 26 F	ARO NC002516-26883- 27380 356 377 F	GUA_NC002516- 4226546- 4226174_23_41_F	GUA_NC002516- 4226546- 4226174_120_142_F	GUA NC002516- 4226546- 4226174 155 178 F	8	242	2516- 5 26 F	MUT_NC002516- 5551158- 5550717 152 168 F	NUO NC002516- 2984589- 2984954 8 26 F	NUO NC002516- 2984589- 2984954 218 239 F	PPS_NC002516- 1915014- 1915383 44 63 F
2929	2932	2933	2934	2949	2950	2951	2952	2953	2.95.4	2955	2956	2957	2958	2959	2960	2961

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

1052	1071	1182	924	1094	1442	1008	1085	1085	1087	1086	1430	1026	1038	1225	982
TCCTGGCCATCCTGCAGGAT	TCGATCTCCTTGGCGTCCGA	TGATCTCCATGGCGCGGATCTT	TAGTATCACCACGTACICCIGGATCAGT	TCGGTCAGCAAACGGTAGCTTGC	TTTTCCCTTTATGCRACTTAGTATCAAC IGGRAT	TCCATACCTTARGCAACTTIGTATCAA CIGGAAT	TCGGAAATATTCTTTCAATACCTTTATG CAACT	TCGGAAATATTCTTTCAATACCTTTATG CAACT	TCGGAAATATTCTTTCAATICCTTTITG CAACTT	TCGGAAATAFTCFFTCAATACCFFFATG CAACTT	TTTCAATACCTTTATGCAACTTIGTATC AACIGGAAT	TCCCGGCTAGAGATTCTGTATACGA	TCCGGCTAGAGATTCTGTATACGAAAAT ATC	TGCCGTATACGAAAATATCTTATCATTT AGCGT	TCAGCGTAGTCTAATATTTACGGAACA TTTC
PPS NC002516-1915014- 1915383_341_360_R	TRP_MC002516-671831- 672273_131_150_R	TRP_NC002516-671831- 672273 362 383 R	5_115	OMPU_NC002505_544_567_R	GAPA_NC002505-506780- 507937_769_802_R	GAPA_NC002505-506780~ 507937_769_803_R	GAPA_NC002505-506780~ 507937_785_817_R	GAPA_NC002505-506780- 507937_785_817_R	GAPA_NC002505-506780- 507937_784_817_R	GAPA NC002505-506780- 507937 784 817 2 R	GAPA_NC002505-506780- 507937_769_805_R	CTXB_NC002505-1566967- 1567341_139_163_R	CTXB_NC002505-1566967- 1567341_132_162_R	CIXB_NC002505-1566967- 1567341_118_150_R	TUFB_NC002758-615038- 616222 778 809 R
365	527	490	592	299	335	339	396	337	336	340	338	275	274	274	180
TCGCCATCGTCACCAACCG	TGCTGGTACGGGTCGAGGA	TGCACATCGTGTCCAACGTCAC	TGGGIGATGCTGCIAPATGGTTAAAA GA	TTCCCACCGATATCATGGCTTACCAC GG	TCCTCAATGAACGALCAACAAGTGAT TGATG	TCCTCIATGAACGAICAACAAGTGAT TGATG	TCTCGATGAACGACCAACAAGTGATT GATG	TCCTCGATGAACGAICAACAAGTIAT TGATG	TCCTCAATGAATGATCAACAAGTGAT TGATG	TCCTCIATGAAIGAICAACAAGTIAT TGATG	TCCTCGATGAATGALCAACAAGTIAT TGATG	TCAGCATATGCACATGGAACACCTCA	TCAGCATATGCACATGGAACACCTC	TCAGCATATGCACATGGAACACCTC	TACAGGCCGTGTTGAACGTGG
PPS_NC002516- 1915014- 1915383 240_258 F	TRP_NC002516- 671831- 672273_24_42_F	TRP_NC002516- 671831- 672273 261 282 F		OMPU_NC002505- 674828- 675880_428_455_F	GAPA_NC002505- 506780- 507937 691 721 F	GARA_NC002505- 506780- 507937 691 721 2 F	GAPA_NC002505- 506780- 507937 692 721 F	GAPA NC002505- 506780- 507937 691 721 3 F	GAPA_NC002505- 506780- 507937 691 721 4 F	GAPA_NC002505- 506780- 507937 691 721 5 F	φ	CTXB_NC002505- 1566967- 1567341 46 71 F	CTXB_NC002505- 1566967- 1567341 46 70 F	CTXB_NC002505- 1566967- 1567341 46 70 F	TURB NC002758- 615038-
2962	2963	2964	2972	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003	3004

86

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	1255	1238	1238	970	1134	1332	1287	1286	1290	1130	1281	876	877	1303	1112	898	1378	867
	TGCTTCAGCGTAGTCTAATAATTTACGG AAC	TGCGTAGTCTAATATTTACGGAACATT TC	TGCGTAGTCTAATAATTTACGGAACATT TC	TCACCAGCTTCAGCGTAGTCTAATAATT TACGGA	TCTTCAGCGTAGTCTAATAATTTACGGA ACATTTC	TGTGATATGGAGGTGTAGAAGGTG	TGGGATGGAGGTGTAGAAGGTGTTATCA TC	TGGGATGGAGGTGTAGAAGGTGTTATCA TC	TGGGGATATGGAGGTGTAGAAGGTGTTA TCATC	TCTGGCTGGAAGTGAAATCGT	TGGCTGCGGAAGTGAAATCGTA	TAATCTGGCTGCGGAAGTGAAAT	TAATCTGGCGGAAGTGAAATCG	TGGTATATTCGTTAATTAATCTGGCTGC GGA	ICGITAAITAAICIGGCIGCGGAAGIGA	TAAGCAATACCTTTACTTGCACCACCT	TTCATAAGCAATACCTTTACTTGCACCA C	TAAGCAATACCPTPTPTPACTPTPGCPA CpCpAC
	TUFB_NC002758-615038- 616222_783_813_R	TUFB_NC002758-615038- 616222_778_807_R	TUFB_NC002758-615038- 616222_778_807_R	TUFB_NC002758-615038- 616222_785_818_R	TUFB_NC002758-615038- 616222 778 812 R	MECI-R NC003923-41798- 41609 89 112 R	MECI-R_NC003923-41798- 41609 81 110 R	MECI-R_NC003923-41798- 41609 81 110 R	MECI-R NC003923-41798- 41609 81 113 R	MUPR X75439 2548 2570 R	MUPR X75439 2547 2568 R	MUPR X75439 2551 2573 R	MUPR X75439 2549 2573 R	MUPR X75439 2559 2589 R	MUPR X75439 2554 2581 R	AROE_NC003923-1674726- 1674277_309_335_R	AROE NC003923-1674726- 1674277 311 339 R	AROE_NC003923-1674726- 1674277_311_335P_R
	503	638	607	431	386	261	584	549	595	587	586	205	587	205	587	474	570	572
	TGCCGTGTTGAACGTGGTCAAAT	TGTGGTCAAATCAAAGTTGGTGAAGA A	TGGTCAAATCAAAGTTGGTGAAGAA	TGAACGTGGTCAAATCAAAGTTGGTG AAGAA	TCGTGTTGAACGTGGTCAAATCAAAG T	TCACATATCGTGAGCAATGAACTG	TGGGCGTGAGCAATGAACTGATTATA C	TGGACATATCGTGAGCAATGAACT GA	TGGGTTTACACATATCGTGAGCAATG AACTGA	TGGGCTCTTTCTCGCTTAAACACCT	TGGGCTCTTTCTCGCTTAAACACC	TAGATAATTGGGCTCTTTCTCGCTTA	TGGGCTCTTTCTCGCTTAAACACCT	TAGATAATTGGGCTCTTTCTCGCTTA AAC	TGGGCTCTTTCTCGCTTAAACACCT	TGATGGCAAGTGGATAGGGTATAATA CAG	TGGCGAGTGGATAGAG	тессраястресатрасстратраа трасрас
616222_684_704_F	TUFB_NC002758- 615038- 616222_688_710_F	TUFB_NC002758- 615038- 616222 700 726 F	TUFB_NC002758- 615038- 61622 702 726 F		TUFB_NC002758- 615038- 616222 690 716 F	MECI-R_NC003923~ 41798-41609 36 59 F	1 99		MECI-R NC003923- 41798-41609 29 60 F		MUPR_X75439_2490_25 13 F	MUPR X75439 2482 25	MUPR_X75439_2490_25 14 F	MUPR X75439 2482 25 10 F	MUPR_X75439_2490_25 14 F	AROE NC003923- 1674726- 1674277 204 232 F	AROE_NC003923- 1674726- 1674277 207 232 F	
	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022

DOCKET NO.: DIBIS-0083US1 (COUNSEL DOCKET NO: 10593)

	1674277_207_232P_F					
	ARCC_NC003923-					
	2725050-	TCTGAAATGAATAGTGATAGAACTGT		ARCC NC003923-2725050-	TCTTCTTCTTTCGTATAAAAGGACCAA	
3023	2724595_124_155_F	AGGCAC	398	2724595_214_245_R	TTGG	1137
	ARCC_NC003923-					
	2725050-	TGAATAGTGATAGAACTGTAGGCACA		ARCC NC003923-2725050-	TCTTCTTTCGTATAAAAGGACCAATTG	
3024	2724595_131_161_F	ATCGT	437	2724595 212 242 R	GTT	1139
	ARCC NC003923-					
	2725050-	TGAATAGTGATAGAACTGTAGGCACA		ARCC_NC003923-2725050-	TGCGCTAATTCTTCAACTTCTTTTCG	
3025	2724595_131_161_F	ATCGT	437	2724595 232 260 R	E	1232
	PTA NC003923-					
.,,	628885-	TACAATGCTTGTTTATGCTGGTAAAG		PTA_NC003923-628885-	TGTTCTTGATACACCTGGTTTCGTTTTG	
3026	629355_231_259_F	CAG	177	629355_322_351_R	AT	1350
	PTA NC003923-					
	628885-	TACAATGCTTGTTTATGCTGGTAAAG		PTA NC003923-628885-	TGGTACACCTGGTTTCGTTTTGATGATT	
3027	629355 231 259 F	CAG	177	629355_314_345_R	TGTA	1301
	PTA_NC003923-					
	628885-	TCTTGTTTATGCTGGTAAAGCAGATG		PTA NC003923-628885-	TGTTCTTGATACACCTGGTTTCGTTTTG	
3028	629355 237 263 F	U	418	629355 322 351 R	TA	1350

[370] Primer pair name codes and reference sequences are shown in Table 3. The primer name code typically represents the gene to which the given primer pair is targeted. The primer pair name may include specific coordinates with respect to a reference sequence defined by an extraction of a section of sequence or defined by a GenBank gi number, or the corresponding complementary sequence of the extraction, or the entire GenBank gi number as indicated by the label "no extraction." Where "no extraction" is indicated for a reference sequence, the coordinates of a primer pair named to the reference sequence are with respect to the GenBank gi listing. Gene abbreviations are shown in bold type in the "Gene Name" column.

[371] To determine the exact primer hybridization coordinates of a given pair of primers on a given bioagent nucleic acid sequence and to determine the sequences, molecular masses and base compositions of an amplification product to be obtained upon amplification of nucleic acid of a known bioagent with known sequence information in the region of interest with a given pair of primers, one with ordinary skill in bioinformatics is capable of obtaining alignments of the primers of the present invention with the GenBank gi number of the relevant nucleic acid sequence of the known bioagent. For example, the reference sequence GenBank gi numbers (Table 3) provide the identities of the sequences which can be obtained from GenBank. Alignments can be done using a bioinformatics tool such as BLASTn provided to the public by NCBI (Bethesda, MD). Alternatively, a relevant GenBank sequence may be downloaded and imported into custom programmed or commercially available bioinformatics programs wherein the alignment can be carried out to determine the primer hybridization coordinates and the sequences, molecular masses and base compositions of the amplification product. For example, to obtain the hybridization coordinates of primer pair number 2095 (SEQ ID NOs: 456:1261), First the forward primer (SEQ ID NO: 456) is subjected to a BLASTn search on the publicly available NCBI BLAST website. "RefSeq_Genomic" is chosen as the BLAST database since the gi numbers refer to genomic sequences. The BLAST query is then performed. Among the top results returned is a match to GenBank gi number 21281729 (Accession Number NC 003923). The result shown below, indicates that the forward primer hybridizes to positions 1530282..1530307 of the genomic sequence of Staphylococcus aureus subsp. aureus MW2 (represented by gi number 21281729).

```
Staphylococcus aureus subsp. aureus MW2, complete genome
Length=2820462

Features in this part of subject sequence:
    Panton-Valentine leukocidin chain F precursor

Score = 52.0 bits (26), Expect = 2e-05
Identities = 26/26 (100%), Gaps = 0/26 (0%)
```

Strand=Plus/Plus

[372] The hybridization coordinates of the reverse primer (SEQ ID NO: 1261) can be determined in a similar manner and thus, the bioagent identifying amplicon can be defined in terms of genomic coordinates. The query/subject arrangement of the result would be presented in Strand = Plus/Minus format because the reverse strand hybridizes to the reverse complement of the genomic sequence. HThe preceding sequence analyses are well known to one with ordinary skill in bioinformatics and thus, Table 3 contains sufficient information to determine the primer hybridization coordinates of any of the primers of Table 2 to the applicable reference sequences described therein.

Table 3: Primer Name Codes and Reference Sequence

			Reference
			GenBank gi
Primer name code	Gene Name	Organism	number
16S_EC	16S rRNA (16S ribosomal RNA gene)	Escherichia coli	16127994
23S_EC	23S rRNA (23S ribosomal RNA gene)	Escherichia coli	16127994
CAPC_BA	capC (capsule biosynthesis gene)	Bacillus anthracis	6470151
CYA_BA	cya (cyclic AMP gene)	Bacillus anthracis	4894216
DNAK_EC	dnaK (chaperone dnaK gene)	Escherichia coli	16127994
GROL_EC	groL (chaperonin groL)	Escherichia coli	16127994
	hflb (cell division protein peptidase	Escherichia coli	
HFLB_EC	ftsH)		16127994
	infB (protein chain initiation factor	Escherichia coli	
INFB_EC	infB gene)		16127994
LEF_BA	lef (lethal factor)	Bacillus anthracis	21392688
PAG_BA	pag (protective antigen)	Bacillus anthracis	21392688
RPLB_EC	rplB (50S ribosomal protein L2)	Escherichia coli	16127994
	rpoB (DNA-directed RNA polymerase beta	Escherichia coli	
RPOB_EC	chain)		6127994
	rpoC (DNA-directed RNA polymerase	Escherichia coli	
RPOC_EC	beta' chain)		16127994
	Artificial Sequence Concatenation		
	comprising:	Artificial	
		Sequence* -	
		partial gene	
	gki (glucose kinase)	sequences of	
		Streptococcus	
SP101ET_SPET_11	gtr (glutamine transporter protein)	pyogenes	15674250
	mumT (alubomato magomago)		
	murI (glutamate racemase)		
	mutS (DNA mismatch repair protein)		
	muco (DNA mismacch repair procein)		
	xpt (xanthine phosphoribosyl		
	transferase)		
	ygiL (acetyl-CoA-acetyl transferase)		
	, , , , , , , , , , , , , , , , , , , ,		
	tkt (transketolase)]	
	sspE (small acid-soluble spore		
SSPE BA	protein)	Bacillus anthracis	30253828
TUFB EC	tufB (Elongation factor Tu)	Escherichia coli	16127994

VALS EC	valS (Valy1-tRNA synthetase)	Escherichia coli	16127994
ASPS EC	aspS (Aspartyl-tRNA synthetase)	Escherichia coli	16127994
CAF1 AF053947	cafl (capsular protein cafl)	Yersinia pestis	2996286
INV U22457	inv (invasin)	Yersinia pestis	1256565
IN OZZASI	Y. pestis specific chromosomal genes -	TOTAL POBLES	16120353
LL NC003143	difference region	Yersinia pestis	
		Clostridium	40381
BONTA X52066	BoNT/A (neurotoxin type A)	botulinum	
	1	Staphylococcus	2791983
MECA Y14051	mecA methicillin resistance gene	aureus	
	trpE (anthranilate synthase (large	Acinetobacter	20853695
TRPE AY094355	component))	baumanii	
		Acinetobacter	9965210
RECA AF251469	recA (recombinase A)	baumanii	
		Acinetobacter	4240540
GYRA_AF100557	gyrA (DNA gyrase subunit A)	baumanii	
		Acinetobacter	4514436
GYRB_AB008700	gyrB (DNA gyrase subunit B)	baumanii	
	waaA (3-deoxy-D-manno-octulosonic-acid	Acinetobacter	2765828
WAAA_Z96925	transferase)	baumanii	
	Artificial Sequence Concatenation		
	comprising:		
			15791399
	tkt (transketolase)		
	glyA (serine hydroxymethyltransferase)		
CJST_CJ		Artificial	
	gltA (citrate synthase)	Sequence* -	
		partial gene	
	aspA (aspartate ammonia lyase)	sequences of	
		Campylobacter	
	glnA (glutamine synthase)	jejuni	
	(-bb		
	pgm (phosphoglycerate mutase)		
	uncA (ATP synthetase alpha chain)		
	dien (All Synchecuse diplica chain)	Bordetella	33591275
RNASEP BDP	RNase P (ribonuclease P)	pertussis	20332210
		Burkholderia	53723370
RNASEP BKM	RNase P (ribonuclease P)	mallei	
RNASEP BS	RNase P (ribonuclease P)	Bacillus subtilis	16077068
		Clostridium	18308982
RNASEP CLB	RNase P (ribonuclease P)	perfringens	
RNASEP EC	RNase P (ribonuclease P)	Escherichia coli	16127994
		Rickettsia	15603881
RNASEP RKP	RNase P (ribonuclease P)	prowazekii	
		Staphylococcus	15922990
RNASEP SA	RNase P (ribonuclease P)	aureus	
RNASEP VBC	RNase P (ribonuclease P)	Vibrio cholerae	15640032
ICD_CXB	icd (isocitrate dehydrogenase)	Coxiella burnetii	29732244
		Acinetobacter	29732244
IS1111A			
	multi-locus IS1111A insertion element	baumannii	
	multi-locus IS1111A insertion element	baumannii Rickettsia	40287451
OMPA_AY485227	multi-locus IS1111A insertion element ompA (outer membrane protein A)		40287451
OMPA_AY485227	ompA (outer membrane protein A)	Rickettsia prowazekii Rickettsia	40287451 15603881
OMPB_RKP	ompA (outer membrane protein A) ompB (outer membrane protein B)	Rickettsia prowazekii Rickettsia prowazekii	15603881
	ompA (outer membrane protein A)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae	15603881 15603881
OMPB_RKP	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella	15603881
OMPB_RKP	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis	15603881 15603881 15640032
OMPB_RKP GLTA_RKP TOXR_VBC	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella	15603881 15603881
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis	15603881 15603881 15640032 56707187
OMPB_RKP GLTA_RKP TOXR_VBC	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis	15603881 15603881 15640032 56707187
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT GALE_FRT	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase) galE (UDP-glucose 4-epimerase)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis Shigella flexneri Campylobacter	15603881 15603881 15640032 56707187
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis Shigella flexneri Campylobacter jejuni	15603881 15603881 15640032 56707187
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT GALE_FRT IPAH_SGF	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase) galE (UDP-glucose 4-epimerase) ipaH (invasion plasmid antigen)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis Shigella flexneri Campylobacter	15603881 15603881 15640032 56707187 56707187 30061571
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT GALE_FRT IPAH_SGF HUPB_CJ	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase) galE (UDP-glucose 4-epimerase) ipaH (invasion plasmid antigen) hupB (DNA-binding protein Hu-beta)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis Shigella flexneri Campylobacter jejuni	15603881 15603881 15640032 56707187 56707187 30061571
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT GALE_FRT IPAH_SGF	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase) galE (UDP-glucose 4-epimerase) ipaH (invasion plasmid antigen) hupB (DNA-binding protein Hu-beta) Artificial Sequence Concatenation	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis Shigella flexneri Campylobacter jejuni Coxiella burnetii	15603881 15603881 15640032 56707187 56707187 30061571 15791399 Sequenced
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT GALE_FRT IPAH_SGF HUPB_CJ	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase) galE (UDP-glucose 4-epimerase) ipaH (invasion plasmid antigen) hupB (DNA-binding protein Hu-beta)	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis Shigella flexneri Campylobacter jejuni Coxiella burnetii Artificial	15603881 15603881 15640032 56707187 56707187 30061571 15791399 Sequenced in-house
OMPB_RKP GLTA_RKP TOXR_VBC ASD_FRT GALE_FRT IPAH_SGF HUPB_CJ	ompA (outer membrane protein A) ompB (outer membrane protein B) gltA (citrate synthase) toxR (transcription regulator toxR) asd (Aspartate semialdehyde dehydrogenase) galE (UDP-glucose 4-epimerase) ipaH (invasion plasmid antigen) hupB (DNA-binding protein Hu-beta) Artificial Sequence Concatenation	Rickettsia prowazekii Rickettsia prowazekii Vibrio cholerae Francisella tularensis Francisella tularensis Shigella flexneri Campylobacter jejuni Coxiella burnetii	15603881 15603881 15640032 56707187 56707187 30061571 15791399 Sequenced

		1 20	
	I))	sequences of Acinetobacter	
,	adk (adenylate kinase)	baumannii	
	mutY (adenine glycosylase)		
	fumC (fumarate hydratase)		
	efp (elongation factor p)		
	ppa (pyrophosphate phospho-		
	hydratase		
		Staphylococcus	420005
MUPR_X75439	mupR (mupriocin resistance gene)	aureus Acinetobacter	438226
PARC_X95819	parC (topoisomerase IV)	baumannii Staphylococcus	1212748
SED M28521	sed (enterotoxin D)	aureus	1492109
PLA AF053945	pla (plasminogen activator)	Yersinia pestis	2996216
		Staphylococcus	
SEJ_AF053140_	sej (enterotoxin J)	aureus	3372540
		Mycoplasma	
GYRA_NC000912	gyrA (DNA gyrase subunit A)	pneumoniae	13507739
		Pseudomonas	15505100
ACS_NC002516_	acsA (Acetyl CoA Synthase)	aeruginosa	15595198
ADO MODOSTIC	near (ahikimata E dahudaasanasa	Pseudomonas aeruginosa	15595198
ARO_NC002516	aroE (shikimate 5-dehydrogenase	Pseudomonas	13333130
GUA NC002516	guaA (GMP synthase)	aeruginosa	15595198
GOA NCOUZSIE	guar (GMF Synchase)	Pseudomonas	13333130
MUT NC002516	muth (DNA mismatch repair protein)	aeruginosa	15595198
101 10002310	Marca (Ditt Marchael agent)	Pseudomonas	
NUO NC002516	nuoD (NADH dehydrogenase I chain C, D)	aeruginosa	15595198
		Pseudomonas	
PPS NC002516	ppsA (Phosphoenolpyruvate synthase)	aeruginosa _	15595198
	trpE (Anthranilate synthetase	Pseudomonas	
TRP_NC002516	component I)	aeruginosa	15595198
		Chlamydia	
OMP2_NC000117	ompB (outer membrane protein B)	trachomatis	15604717
		Chlamydia	15604717
OMPA_NC000117	ompA (outer membrane protein B)	trachomatis Chlamydia	15604717
GIFT INGODALIA		trachomatis	15604717
GYRA_NC000117 CTXA_NC002505	gyrA (DNA gyrase subunit A)	Vibrio cholerae	15640032
CTXB NC002505	ctxB (Cholera toxin B subunit)	Vibrio cholerae	15640032
FUR NC002505	fur (ferric uptake regulator protein)	Vibrio cholerae	15640032
FOR_NCOUZSUS	gapA (glyceraldehyde-3-phosphate	,	22010002
GAPA NC 002505	dehydrogenase)	Vibrio cholerae	15640032
GYRB NC002505	gyrB (DNA gyrase subunit B)	Vibrio cholerae	15640032
OMPU NC002505	ompU (outer membrane protein)	Vibrio cholerae	15640032
TCPA NC002505	tcpA (toxin-coregulated pilus)	Vibrio cholerae	15640032
		Campylobacter	
ASPA_NC002163	aspA (aspartate ammonia lyase)	jejuni	15791399
		Campylobacter	
GLNA_NC002163	glnA (glutamine synthetase)	jejuni	15791399
		Campylobacter	
GLTA_NC002163	gltA (glutamate synthase)	jejuni	15791399
AT 177 ************	-3-3 (non-inc hard	Campylobacter	15701300
GLYA_NC002163	glyA (serine hydroxymethyltransferase)	jejuni Campylobacter	15791399
PGM NC002163	pgm (phosphoglyceromutase)	jejuni	15791399
FGR NCUUZIOS	bar /briosbiroarlest ourressel	Campylobacter	15/31333
TKT NC002163	tkt (transketolase)	jejuni	15791399
1111 110004100		Campylobacter	
UNCA NC002163	unca (ATP synthetase alpha chain)	jejuni	15791399
		Staphylococcus	T
AGR-III_NC003923	agr-III (accessory gene regulator-III)	aureus	21281729
		Staphylococcus	
ARCC_NC003923	arcC (carbamate kinase)	aureus	21281729
AROE_NC003923	aroE (shikimate 5-dehydrogenase	Staphylococcus	21281729

		aureus	
		Staphylococcus	0.000.000
BSA-A_NC003923	bsa-a (glutathione peroxidase)	aureus	21281729
	bsa-b (epidermin biosynthesis protein	Staphylococcus	
BSA-B NC003923	EpiB)	aureus	21281729
İ		Staphylococcus	
GLPF_NC003923	glpF (glycerol transporter)	aureus	21281729
		Staphylococcus	
GMK NC003923	gmk (guanylate kinase)	aureus	21281729
***	mecR1 (truncated methicillin	Staphylococcus	
MECI-R NC003923	resistance protein)	aureus	21281729
TIBEL R NEGOSSES	TOSTSTATION PROTECTION	Staphylococcus	22202702
DWR 170000000		. ~ -	21281729
PTA_NC003923	pta (phosphate acetyltransferase)	aureus	21281729
	pvluk (Panton-Valentine leukocidin	Staphylococcus	
PVLUK_NC003923	chain F precursor)	aureus	21281729
		Staphylococcus	
SA442 NC003923	sa442 gene	aureus	21281729
	sea (staphylococcal enterotoxin A	Staphylococcus	
SEA NC003923	precursor)	aureus	21281729
		Staphylococcus	
SEC NC003923	sec4 (enterotoxin type C precursor)	aureus	21281729
SEC_NC003923	sec4 (enterotoxin type t precursor)		41401149
	And the transfer of the transfer of	Staphylococcus	0100-500
TPI_NC003923	tpi (triosephosphate isomerase)	aureus	21281729
1	yqi (acetyl-CoA C-acetyltransferase	Staphylococcus	
YQI_NC003923	homologue)	aureus	21281729
		Francisella	
GALE AF513299	galE (galactose epimerase)	tularensis	23506418
VVHA NC004460	vVhA (cytotoxin, cytolysin precursor)	Vibrio vulnificus	27366463
		Vibrio	
TDH NC004605	tdh (thermostable direct hemolysin A)	parahaemolyticus	28899855
1DH NC004805	cui (chermoscable direct hemorysth A)	Staphylococcus	40033033
		1	00165615
AGR-II_NC002745	agr-II (accessory gene regulator-II)	aureus	29165615
PARC_NC003997	parC (topoisomerase IV)	Bacillus anthracis	30260195
GYRA_AY291534	gyrA (DNA gyrase subunit A)	Bacillus anthracis	31323274
		Staphylococcus	
AGR-I AJ617706	agr-I (accessory gene regulator-I)	aureus	46019543
		Staphylococcus	
AGR-IV AJ617711	agr-IV (accessory gene regulator-III)	aureus	46019563
ACK IV ACCITYIN	agrat (acceptory gene regarded rary	Staphylococcus	10012303
	hlag /baka laskawasa TTT\	~ -	40400000
BLAZ_NC002952	blaZ (beta lactamase III)	aureus	49482253
		Staphylococcus	
ERMA_NC002952	ermA (rRNA methyltransferase A)	aureus	49482253
]		Staphylococcus	
ERMB_Y13600	ermB (rRNA methyltransferase B)	aureus	49482253
	sea (staphylococcal enterotoxin A	Staphylococcus	
SEA-SEE NC002952	precursor)	aureus	49482253
	sea (staphylococcal enterotoxin A	Staphylococcus	
SEA-SEE NC002952	precursor)	aureus	49482253
	sea (staphylococcal enterotoxin A	Staphylococcus	
GER MCCCCCC		1	40400000
SEE_NC002952	precursor)	aureus	49482253
	1	Staphylococcus	
SEH_NC002953	seh (staphylococcal enterotoxin H)	aureus	49484912
1		Staphylococcus	
ERMC_NC005908	ermC (rRNA methyltransferase C)	aureus	49489772
MUTS AY698802	mutS (DNA mismatch repair protein)	Shigella boydii	52698233
		Staphylococcus	
NUC NC002758	nuc (staphylococcal nuclease)	aureus	57634611
100 10002 700		Staphylococcus	0,00,1011
CED MCCCCCC	ach (antorotorin time B macausar)	aureus	E7674633
SEB_NC002758	seb (enterotoxin type B precursor)		57634611
		Staphylococcus	
SEG_NC002758	seg (staphylococcal enterotoxin G)	aureus	57634611
		Staphylococcus	
SEI_NC002758	sei (staphylococcal enterotoxin I)	aureus	57634611
		Staphylococcus	
TSST NC002758	tsst (toxic shock syndrome toxin-1)	aureus	57634611
	7.222.27	Staphylococcus	
TUFB NC002758	tufB (Elongation factor Tu)	aureus	57634611
I TOED MCGOV130	ture (Brongacton ractor in)	aurens	2,024011

[373] Note: artificial reference sequences represent concatenations of partial gene extractions from the indicated reference gi number. Partial sequences were used to create the concatenated sequence because complete gene sequences were not necessary for primer design.

Example 2: Sample Preparation and PCR

[374] Genomic DNA was prepared from samples using the DNeasy Tissue Kit (Qiagen, Valencia, CA) according to the manufacturer's protocols.

[375] All PCR reactions were assembled in 50 μL reaction volumes in a 96-well microtiter plate format using a Packard MPII liquid handling robotic platform and M.J. Dyad thermocyclers (MJ research, Waltham, MA) or Eppendorf Mastercycler thermocyclers (Eppendorf, Westbury, NY). The PCR reaction mixture consisted of 4 units of Amplitaq Gold, 1x buffer II (Applied Biosystems, Foster City, CA), 1.5 mM MgCl₂, 0.4 M betaine, 800 μM dNTP mixture and 250 nM of each primer. The following typical PCR conditions were used: 95°C for 10 min followed by 8 cycles of 95°C for 30 seconds, 48°C for 30 seconds, and 72°C 30 seconds with the 48°C annealing temperature increasing 0.9°C with each of the eight cycles. The PCR was then continued for 37 additional cycles of 95°C for 15 seconds, 56°C for 20 seconds, and 72°C 20 seconds.

Example 3: Purification of PCR Products for Mass Spectrometry with Ion Exchange Resin- Magnetic Beads

[376] For solution capture of nucleic acids with ion exchange resin linked to magnetic beads, $25 \mu l$ of a 2.5 mg/mL suspension of BioClone amine terminated superparamagnetic beads were added to 25 to 50 μl of a PCR (or RT-PCR) reaction containing approximately 10 pM of a typical PCR amplification product. The above suspension was mixed for approximately 5 minutes by vortexing or pipetting, after which the liquid was removed after using a magnetic separator. The beads containing bound PCR amplification product were then washed three times with 50mM ammonium bicarbonate/50% MeOH or 100mM ammonium bicarbonate/50% MeOH, followed by three more washes with 50% MeOH. The bound PCR amplicon was eluted with a solution of 25mM piperidine, 25mM imidazole, 35% MeOH which included peptide calibration standards.

Example 4: Mass Spectrometry and Base Composition Analysis

[377] The ESI-FTICR mass spectrometer is based on a Bruker Daltonics (Billerica, MA) Apex II 70e electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer that employs an actively shielded 7 Tesla superconducting magnet. The active shielding constrains the majority of the fringing magnetic field from the superconducting magnet to a relatively small volume. Thus,

components that might be adversely affected by stray magnetic fields, such as CRT monitors, robotic components, and other electronics, can operate in close proximity to the FTICR spectrometer. All aspects of pulse sequence control and data acquisition were performed on a 600 MHz Pentium II data station running Bruker's Xmass software under Windows NT 4.0 operating system. Sample aliquots, typically 15 µl, were extracted directly from 96-well microtiter plates using a CTC HTS PAL autosampler (LEAP Technologies, Carrboro, NC) triggered by the FTICR data station. Samples were injected directly into a 10 µl sample loop integrated with a fluidics handling system that supplies the 100 µl /hr flow rate to the ESI source. Ions were formed via electrospray ionization in a modified Analytica (Branford, CT) source employing an off axis, grounded electrospray probe positioned approximately 1.5 cm from the metalized terminus of a glass desolvation capillary. The atmospheric pressure end of the glass capillary was biased at 6000 V relative to the ESI needle during data acquisition. A countercurrent flow of dry N₂ was employed to assist in the desolvation process. Ions were accumulated in an external ion reservoir comprised of an rf-only hexapole, a skimmer cone, and an auxiliary gate electrode, prior to injection into the trapped ion cell where they were mass analyzed. Ionization duty cycles greater than 99% were achieved by simultaneously accumulating ions in the external ion reservoir during ion detection. Each detection event consisted of 1M data points digitized over 2.3 s. To improve the signalto-noise ratio (S/N), 32 scans were co-added for a total data acquisition time of 74 s.

[378] The ESI-TOF mass spectrometer is based on a Bruker Daltonics MicroTOFTM. Ions from the ESI source undergo orthogonal ion extraction and are focused in a reflectron prior to detection. The TOF and FTICR are equipped with the same automated sample handling and fluidics described above. Ions are formed in the standard MicroTOFTM ESI source that is equipped with the same off-axis sprayer and glass capillary as the FTICR ESI source. Consequently, source conditions were the same as those described above. External ion accumulation was also employed to improve ionization duty cycle during data acquisition. Each detection event on the TOF was comprised of 75,000 data points digitized over 75 μ s.

[379] The sample delivery scheme allows sample aliquots to be rapidly injected into the electrospray source at high flow rate and subsequently be electrosprayed at a much lower flow rate for improved ESI sensitivity. Prior to injecting a sample, a bolus of buffer was injected at a high flow rate to rinse the transfer line and spray needle to avoid sample contamination/carryover. Following the rinse step, the autosampler injected the next sample and the flow rate was switched to low flow. Following a brief equilibration delay, data acquisition commenced. As spectra were co-added, the autosampler continued rinsing the syringe and picking up buffer to rinse the injector and sample transfer line. In general, two syringe rinses and one injector rinse were required to minimize sample carryover. During a

routine screening protocol a new sample mixture was injected every 106 seconds. More recently a fast wash station for the syringe needle has been implemented which, when combined with shorter acquisition times, facilitates the acquisition of mass spectra at a rate of just under one spectrum/minute.

[380] Raw mass spectra were post-calibrated with an internal mass standard and deconvoluted to monoisotopic molecular masses. Unambiguous base compositions were derived from the exact mass measurements of the complementary single-stranded oligonucleotides. Quantitative results are obtained by comparing the peak heights with an internal PCR calibration standard present in every PCR well at 500 molecules per well. Calibration methods are commonly owned and disclosed in U.S. Provisional Patent Application Serial No. 60/545,425 which is incorporated herein by reference in entirety.

Example 5: *De Novo* Determination of Base Composition of Amplification Products using Molecular Mass Modified Deoxynucleotide Triphosphates

Because the molecular masses of the four natural nucleobases have a relatively narrow molecular mass range (A = 313.058, G = 329.052, C = 289.046, T = 304.046 – See Table 4), a persistent source of ambiguity in assignment of base composition can occur as follows: two nucleic acid strands having different base composition may have a difference of about 1 Da when the base composition difference between the two strands is $G \leftrightarrow A$ (-15.994) combined with $C \leftrightarrow T$ (+15.000). For example, one 99-mer nucleic acid strand having a base composition of $A_{27}G_{30}C_{21}T_{21}$ has a theoretical molecular mass of 30779.058 while another 99-mer nucleic acid strand having a base composition of $A_{26}G_{31}C_{22}T_{20}$ has a theoretical molecular mass of 30780.052. A 1 Da difference in molecular mass may be within the experimental error of a molecular mass measurement and thus, the relatively narrow molecular mass range of the four natural nucleobases imposes an uncertainty factor.

- [382] The present invention provides for a means for removing this theoretical 1 Da uncertainty factor through amplification of a nucleic acid with one mass-tagged nucleobase and three natural nucleobases. The term "nucleobase" as used herein is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide residue," "nucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dNTP).
- [383] Addition of significant mass to one of the 4 nucleobases (dNTPs) in an amplification reaction, or in the primers themselves, will result in a significant difference in mass of the resulting amplification product (significantly greater than 1 Da) arising from ambiguities arising from the $G \leftrightarrow A$ combined with $C \leftrightarrow T$ event (Table 4). Thus, the same the $G \leftrightarrow A$ (-15.994) event combined with 5-Iodo- $C \leftrightarrow T$ (-110.900) event would result in a molecular mass difference of 126.894. If the molecular mass of the

base composition $A_{27}G_{30}$ **5-Iodo-** $C_{21}T_{21}$ (33422.958) is compared with $A_{26}G_{31}$ **5-Iodo-** $C_{22}T_{20}$, (33549.852) the theoretical molecular mass difference is +126.894. The experimental error of a molecular mass measurement is not significant with regard to this molecular mass difference. Furthermore, the only base composition consistent with a measured molecular mass of the 99-mer nucleic acid is $A_{27}G_{30}$ **5-Iodo-** $C_{21}T_{21}$. In contrast, the analogous amplification without the mass tag has 18 possible base compositions.

Table 4: Molecular Masses of Natural Nucleobases and the Mass-Modified Nucleobase 5-Iodo-C and Molecular Mass Differences Resulting from Transitions

Nucleobase	Molecular Mass	Transition	Δ Molecular Mass
A	313.058	T <a< td=""><td>-9.012</td></a<>	-9.012
A	313.058	A>C	-24.012
A	313.058	A>5-Iodo-C	101.888
A	313.058	A>G	15.994
T	304.046	T>A	9.012
Т	304.046	T>C	-15.000
T	304.046	T>5-Iodo-C	110.900
T	304.046	T>G	25.006
С	289.046	C>A	24.012
С	289.046	C>T	15.000
С	289.046	C>G	40.006
5-Iodo-C	414.946	5-Iodo-C>A	-101.888
5-Iodo-C	414.946	5-Iodo-C>T	-110.900
5-Iodo-C	414.946	5-Iodo-C>G	-85.894
G	329.052	G>A	-15.994
G	329.052	G>T	-25.006
G	329.052	G>C	-40.006
G	329.052	G>5-Iodo-C	85.894

[384] Mass spectra of bioagent-identifying amplicons were analyzed independently using a maximum-likelihood processor, such as is widely used in radar signal processing. This processor, referred to as GenX, first makes maximum likelihood estimates of the input to the mass spectrometer for each primer by running matched filters for each base composition aggregate on the input data. This includes the GenX response to a calibrant for each primer.

[385] The algorithm emphasizes performance predictions culminating in probability-of-detection versus probability-of-false-alarm plots for conditions involving complex backgrounds of naturally occurring organisms and environmental contaminants. Matched filters consist of *a priori* expectations of signal values given the set of primers used for each of the bioagents. A genomic sequence database is

used to define the mass base count matched filters. The database contains the sequences of known bacterial bioagents and includes threat organisms as well as benign background organisms. The latter is used to estimate and subtract the spectral signature produced by the background organisms. A maximum likelihood detection of known background organisms is implemented using matched filters and a running-sum estimate of the noise covariance. Background signal strengths are estimated and used along with the matched filters to form signatures which are then subtracted. The maximum likelihood process is applied to this "cleaned up" data in a similar manner employing matched filters for the organisms and a running-sum estimate of the noise-covariance for the cleaned up data.

[386] The amplitudes of all base compositions of bioagent-identifying amplicons for each primer are calibrated and a final maximum likelihood amplitude estimate per organism is made based upon the multiple single primer estimates. Models of all system noise are factored into this two-stage maximum likelihood calculation. The processor reports the number of molecules of each base composition contained in the spectra. The quantity of amplification product corresponding to the appropriate primer set is reported as well as the quantities of primers remaining upon completion of the amplification reaction.

[387] Base count blurring can be carried out as follows. "Electronic PCR" can be conducted on nucleotide sequences of the desired bioagents to obtain the different expected base counts that could be obtained for each primer pair. See for example, ncbi.nlm.nih.gov/sutils/e-pcr/; Schuler, Genome Res. 7:541-50, 1997. In one illustrative embodiment, one or more spreadsheets, such as Microsoft Excel workbooks contain a plurality of worksheets. First in this example, there is a worksheet with a name similar to the workbook name; this worksheet contains the raw electronic PCR data. Second, there is a worksheet named "filtered bioagents base count" that contains bioagent name and base count; there is a separate record for each strain after removing sequences that are not identified with a genus and species and removing all sequences for bioagents with less than 10 strains. Third, there is a worksheet, "Sheet1" that contains the frequency of substitutions, insertions, or deletions for this primer pair. This data is generated by first creating a pivot table from the data in the "filtered bioagents base count" worksheet and then executing an Excel VBA macro. The macro creates a table of differences in base counts for bioagents of the same species, but different strains. One of ordinary skill in the art may understand additional pathways for obtaining similar table differences without undo experimentation.

[388] Application of an exemplary script, involves the user defining a threshold that specifies the fraction of the strains that are represented by the reference set of base counts for each bioagent. The reference set of base counts for each bioagent may contain as many different base counts as are needed

to meet or exceed the threshold. The set of reference base counts is defined by taking the most abundant strain's base type composition and adding it to the reference set and then the next most abundant strain's base type composition is added until the threshold is met or exceeded. The current set of data was obtained using a threshold of 55%, which was obtained empirically.

[389] For each base count not included in the reference base count set for that bioagent, the script then proceeds to determine the manner in which the current base count differs from each of the base counts in the reference set. This difference may be represented as a combination of substitutions, Si=Xi, and insertions, Ii=Yi, or deletions, Di=Zi. If there is more than one reference base count, then the reported difference is chosen using rules that aim to minimize the number of changes and, in instances with the same number of changes, minimize the number of insertions or deletions. Therefore, the primary rule is to identify the difference with the minimum sum (Xi+Yi) or (Xi+Zi), e.g., one insertion rather than two substitutions. If there are two or more differences with the minimum sum, then the one that will be reported is the one that contains the most substitutions.

[390] Differences between a base count and a reference composition are categorized as one, two, or more substitutions, one, two, or more insertions, one, two, or more deletions, and combinations of substitutions and insertions or deletions. The different classes of nucleobase changes and their probabilities of occurrence have been delineated in U.S. Patent Application Publication No. 2004209260 (U.S. Application Serial No. 10/418,514) which is incorporated herein by reference in entirety.

Example 6: Use of Broad Range Survey and Division Wide Primer Pairs for Identification of Bacteria in an Epidemic Surveillance Investigation

[391] This investigation employed a set of 16 primer pairs which is herein designated the "surveillance primer set" and comprises broad range survey primer pairs, division wide primer pairs and a single *Bacillus* clade primer pair. The surveillance primer set is shown in Table 5 and consists of primer pairs originally listed in Table 2. This surveillance set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row. Primer pair 449 (non-T modified) has been modified twice. Its predecessors are primer pairs 70 and 357, displayed below in the same row. Primer pair 360 has also been modified twice and its predecessors are primer pairs 17 and 118.

Table 5: Bacterial Primer Pairs of the Surveillance Primer Set

Primer	Forward Primer Name	Forward	Reverse Primer Name	Reverse	Target Gene
Pair	Por ward Filmer Teams	Primer		Primer	

No.		(SEQ ID NO:)		(SEQ ID NO:)	
346	16S_EC_713_732_TMOD_F	202	16S_EC_789_809_TMOD_R	1110	16S rRNA
10	16S_EC_713_732_F	21	16S_EC_789_809	798	16S rRNA
347	16S_EC_785_806_TMOD_F	560	16S_EC_880_897_TMOD_R	1278	16S rRNA
11	16S EC 785 806 F	118	16S EC 880 897 R	830	16S rRNA
348	16S_EC_960_981_TMOD_F	706	16S_EC_1054_1073_TMOD_R	895	16S rRNA
14	16S EC 960 981 F	672	16S_EC_1054_1073_R	735	16S rRNA
349	23S_EC_1826_1843_TMOD_F	401	23S_EC_1906_1924_TMOD_R	1156	23S rRNA
16	23S_EC_1826_1843_F	80	23S_EC_1906_1924_R	805	23S rRNA
352	INFB_EC_1365_1393_TMOD_F	687	INFB_EC_1439_1467_TMOD_R	1411	infB
34	INFB_EC_1365_1393_F	524	INFB_EC_1439_1467_R	1248	infB
354	RPOC_EC_2218_2241_TMOD_F	405	RPOC_EC_2313_2337_TMOD_R	1072	rpoC
52	RPOC_EC_2218_2241_F	81	RPOC_EC_2313_2337_R	790	rpoC
355	SSPE_BA_115_137_TMOD_F	255	SSPE_BA_197_222_TMOD_R	1402	sspE
58	SSPE_BA_115_137_F	45	SSPE_BA_197_222_R	1201	sspE
356	RPLB_EC_650_679_TMOD_F	232	RPLB_EC_739_762_TMOD_R	592	rplB
66	RPLB_EC_650_679_F	98	RPLB_EC_739_762_R	999	rplB
358	VALS_EC_1105_1124_TMOD_F	385	VALS_EC_1195_1218_TMOD_R	1093	valS
71	VALS_EC_1105_1124_F	77	VALS_EC_1195_1218_R	795	valS
359	RPOB_EC_1845_1866_TMOD_F	659	RPOB_EC_1909_1929_TMOD_R	1250	rpoB
72	RPOB_EC_1845_1866_F	233	RPOB_EC_1909_1929_R	825	rpoB
360	23S_EC_2646_2667_TMOD_F	409	23S_EC_2745_2765_TMOD_R	1434	23S TRNA
118	23S_EC_2646_2667_F	84	23S_EC_2745_2765_R	1389	23S rRNA
17	23S_EC_2645_2669_F	408	23S_EC_2744_2761_R	1252	23S rRNA
361	16S_EC_1090_1111_2_TMOD_F	697	16S_EC_1175_1196_TMOD_R	1398	16S rRNA
3	16S_EC_1090_1111_2_F	651	16S_EC_1175_1196_R	1159	16S rRNA
362	RPOB_EC_3799_3821_TMOD_F	581	RPOB_EC_3862_3888_TMOD_R	1325	rpoB
289	RPOB_EC_3799_3821_F	124	RPOB_EC_3862_3888_R	840	rpoB
363	RPOC_EC_2146_2174_TMOD_F	284	RPOC_EC_2227_2245_TMOD_R	898	rpoC
290	RPOC_EC_2146_2174_F	52	RPOC_EC_2227_2245_R	736	rpoC
367	TUFB_EC_957_979_TMOD_F	308	TUFB_EC_1034_1058_TMOD_R	1276	tufB
293	TUFB_EC_957_979_F	55	TUFB EC 1034 1058 R	829	tufB
449	RPLB_EC_690_710_F	309	RPLB_EC_737_758_R	1336	rplB
357	RPLB_EC_688_710_TMOD_F	296	RPLB_EC_736_757_TMOD_R	1337	rplB
67	RPLB_EC_688_710_F	54	RPLB_EC_736_757_R	842	rplB

[392] The 16 primer pairs of the surveillance set are used to produce bioagent identifying amplicons whose base compositions are sufficiently different amongst all known bacteria at the species level to identify, at a reasonable confidence level, any given bacterium at the species level. As shown in Tables 6A-E, common respiratory bacterial pathogens can be distinguished by the base compositions of bioagent identifying amplicons obtained using the 16 primer pairs of the surveillance set. In some cases, triangulation identification improves the confidence level for species assignment. For example, nucleic acid from *Streptococcus pyogenes* can be amplified by nine of the sixteen surveillance primer pairs and *Streptococcus pneumoniae* can be amplified by ten of the sixteen surveillance primer pairs. The base

compositions of the bioagent identifying amplicons are identical for only one of the analogous bioagent identifying amplicons and differ in all of the remaining analogous bioagent identifying amplicons by up to four bases per bioagent identifying amplicon. The resolving power of the surveillance set was confirmed by determination of base compositions for 120 isolates of respiratory pathogens representing 70 different bacterial species and the results indicated that natural variations (usually only one or two base substitutions per bioagent identifying amplicon) amongst multiple isolates of the same species did not prevent correct identification of major pathogenic organisms at the species level.

[393] Bacillus anthracis is a well known biological warfare agent which has emerged in domestic terrorism in recent years. Since it was envisioned to produce bioagent identifying amplicons for identification of Bacillus anthracis, additional drill-down analysis primers were designed to target genes present on virulence plasmids of Bacillus anthracis so that additional confidence could be reached in positive identification of this pathogenic organism. Three drill-down analysis primers were designed and are listed in Tables 2 and 6. In Table 6, the drill-down set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed below in the same row.

Table 6: Drill-Down Primer Pairs for Confirmation of Identification of Bacillus anthracis

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
350	CAPC_BA_274_303_TMOD_F	476	CAPC_BA_349_376_TMOD_R	1314	capC
24	CAPC_BA_274_303_F	109	CAPC BA 349 376 R	837	capC
351	CYA_BA_1353_1379_TMOD_F	355	CYA_BA_1448_1467_TMOD_R	1423	cyA
30	CYA BA 1353 1379 F	64	CYA_BA_1448_1467 R	1342	CVA
353	LEF_BA_756_781_TMOD_F	220	LEF_BA_843_872_TMOD_R	1394	lef
37	LEF_BA_756_781_F	26	LEF_BA_843_872_R	1135	lef

[394] Phylogenetic coverage of bacterial space of the sixteen surveillance primers of Table 5 and the three *Bacillus* anthracis drill-down primers of Table 6 is shown in Figure 3 which lists common pathogenic bacteria. Figure 3 is not meant to be comprehensive in illustrating all species identified by the primers. Only pathogenic bacteria are listed as representative examples of the bacterial species that can be identified by the primers and methods of the present invention. Nucleic acid of groups of bacteria enclosed within the polygons of Figure 3 can be amplified to obtain bioagent identifying amplicons using the primer pair numbers listed in the upper right hand corner of each polygon. Primer coverage for polygons within polygons is additive. As an illustrative example, bioagent identifying amplicons can be obtained for *Chlamydia trachomatis* by amplification with, for example, primer pairs 346-349, 360 and

361, but not with any of the remaining primers of the surveillance primer set. On the other hand, bioagent identifying amplicons can be obtained from nucleic acid originating from *Bacillus anthracis* (located within 5 successive polygons) using, for example, any of the following primer pairs: 346-349, 360, 361 (base polygon), 356, 449 (second polygon), 352 (third polygon), 355 (fourth polygon), 350, 351 and 353 (fifth polygon). Multiple coverage of a given organism with multiple primers provides for increased confidence level in identification of the organism as a result of enabling broad triangulation identification.

[395] In Tables 7A-E, base compositions of respiratory pathogens for primer target regions are shown. Two entries in a cell, represent variation in ribosomal DNA operons. The most predominant base composition is shown first and the minor (frequently a single operon) is indicated by an asterisk (*). Entries with NO DATA mean that the primer would not be expected to prime this species due to mismatches between the primer and target region, as determined by theoretical PCR.

Table 7A – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying
Amplicons Corresponding to Primer Pair Nos: 346, 347 and 348

1		Primer 346	Primer 347	Primer 348
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella		[29 32 25 13]	[23 38 28 26]	[26 32 28 30]
pneumoniae	MGH78578	[29 31 25 13]*	[23 37 28 26]*	[26 31 28 30]*
	CO-92 Biovar	1		[29 30 28 29]
Yersinia pestis	Orientalis	[29 32 25 13]	[22 39 28 26]	[30 30 27 29]*
	KIM5 P12 (Biovar			
Yersinia pestis	Mediaevalis)	[29 32 25 13]	[22 39 28 26]	[29 30 28 29]
				[29 30 28 29]
Yersinia pestis	91001	[29 32 25 13]	[22 39 28 26]	[30 30 27 29]*
Haemophilus				
influenzae	KW20	[28 31 23 17]	[24 37 25 27]	[29 30 28 29]
Pseudomonas			[26 36 29 24]	
aeruginosa	PAO1	[30 31 23 15]	[27 36 29 23]*	[26 32 29 29]
Pseudomonas				
fluorescens	Pf0-1	[30 31 23 15]	[26 35 29 25]	[28 31 28 29]
Pseudomonas				
putida	KT2440	[30 31 23 15]	[28 33 27 27]	[27 32 29 28]
Legionella				
pneumophila	Philadelphia-1	[30 30 24 15]	[33 33 23 27]	[29 28 28 31]
Francisella				
tularensis	schu 4	[32 29 22 16]	[28 38 26 26]	[25 32 28 31]
Bordetella				
pertussis	Tohama I	[30 29 24 16]	[23 37 30 24]	[30 32 30 26]
Burkholderia				[27 36 31 24]
cepacia	J2315	[29 29 27 14]	[27 32 26 29]	[20 42 35 19]*
Burkholderia				
pseudomallei	K96243	[29 29 27 14]	[27 32 26 29]	[27 36 31 24]
Neisseria	FA 1090, ATCC			
gonorrhoeae	700825	[29 28 24 18]	[27 34 26 28]	[24 36 29 27]
Neisseria				
meningitidis	MC58 (serogroup B)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
Neisseria				
meningitidis	serogroup C, FAM18	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
Neisseria				
meningitidis	Z2491 (serogroup A)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
Chlamydophila				
pneumoniae	TW-183	[31 27 22 19]	NO DATA	[32 27 27 29]

Chlamedonhila	I	T		I
Chlamydophila pneumoniae	AR39	[21 27 22 10]	NO DATA	[20 27 27 20]
L-7.	AR39	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila		(l	
pneumoniae	CWL029	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila		1.		
pneumoniae	J138	[31 27 22 19]	NO DATA	[32 27 27 29]
Corynebacterium				
diphtheriae	NCTC13129	[29 34 21 15]	[22 38 31 25]	[22 33 25 34]
Mycobacterium			!	
avium	k10	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium		1		
avium	104	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium				
tuberculosis	CSU#93	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium				
tuberculosis	CDC 1551	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium				
tuberculosis	H37Rv (lab strain)	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycoplasma				
pneumoniae	M129	[31 29 19 20]	NO DATA	NO DATA
Staphylococcus		†	 	[30 29 30 29]
aureus	MRSA252	[27 30 21 21]	[25 35 30 26]	[29 31 30 29]*
Staphylococcus				[30 29 30 29]
aureus	MSSA476	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus	I I I I I I I I I I I I I I I I I I I	FR NO RT RT	[23 33 30 Z0]	[30 29 30 29]
aureus	COL	[27 30 21 21]	[25 35 30 26]	[30 29 30 29]
Staphylococcus	000	[21 20 27 27]	[23 33 30 26]	[30 29 29 30]*
aureus	Mu50	for 20 21 211	[25 25 20 26]	I
	MUSU	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus	\mu_0	707 00 07 013	[[[]]]]] [[]]	[30 29 30 29]
aureus	MW2	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus		l		[30 29 30 29]
aureus	N315	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus			[25 35 30 26]	[30 29 30 29]
aureus	NCTC 8325	[27 30 21 21]	[25 35 31 26]*	[30 29 29 30]
Streptococcus			[24 36 31 25]	l
agalactiae	NEM316	[26 32 23 18]	[24 36 30 26]*	[25 32 29 30]
Streptococcus			1	
equi	NC_002955	[26 32 23 18]	[23 37 31 25]	[29 30 25 32]
Streptococcus		1		
pyogenes	MGAS8232	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus		1		
pyogenes	MGAS315	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	SSI-1	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	MGAS10394	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	Manfredo (M5)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus		1		
pyogenes	SF370 (M1)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus		1		<u> </u>
pneumoniae	670	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
Streptococcus		•	<u> </u>	•
pneumoniae	R6	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
Streptococcus				
pneumoniae	TIGR4	[26 32 23 18]	[25 35 28 28]	[25 32 30 29]
Streptococcus				
gordonii	NCTC7868	[25 33 23 18]	[24 36 31 25]	[25 31 29 31]
Streptococcus	1.010,000	122 22 201	L	[25 32 29 30]
mitis	NCTC 12261	[26 32 23 18]	[25 35 30 26]	[24 31 35 29]*
Streptococcus	NCIC 12201	[20 24 43 10]	[LEU JU JU Z0]	[64 34 33 63]"
mutans	UA159	[24 32 24 19]	[25 37 30 24]	[28 31 26 31]
- macaaa	Urakuu	124 27 24 TA	1 123 37 30 241	[20 31 20 31]

Table 7B – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying
Amplicons Corresponding to Primer Pair Nos: 349, 360, and 356

		- 1 - 1	- 1 0.00	
Organism	Strain	Primer 349	Primer 360	Primer 356
025000000	, 201411	LALMICA DAD		1

	I	[AGCT]	[AGCT]	[AGCT]
Klebsiella		<u> </u>		
pneumoniae	MGH78578	[25 31 25 22]	[33 37 25 27]	NO DATA
	CO-92 Biovar	[25 31 27 20]		
Yersinia pestis	Orientalis	[25 32 26 20]*	[34 35 25 28]	NO DATA
	KIM5 P12 (Biovar	[25 31 27 20]		
Yersinia pestis	Mediaevalis)	[25 32 26 20]*	[34 35 25 28]	NO DATA
Yersinia pestis	91001	[25 31 27 20]	[34 35 25 28]	NO DATA
Haemophilus influenzae	KW20	[28 28 25 20]	[32 38 25 27]	NO DATA
Pseudomonas	KW20	[20 20 23 20]	[31 36 27 27]	NO DATA
aeruginosa	PAO1	[24 31 26 20]	[31 36 27 28]*	NO DATA
Pseudomonas			[30 37 27 28]	
fluorescens	Pf0-1	NO DATA	[30 37 27 28]	NO DATA
Pseudomonas				
putida	KT2440	[24 31 26 20]	[30 37 27 28]	NO DATA
Legionella				
pneumophila	Philadelphia-1	[23 30 25 23]	[30 39 29 24]	NO DATA
Francisella tularensis	schu 4	[26 31 25 19]	[32 36 27 27]	NO DATA
Bordetella	SCHU 4	[26 31 23 13]	[32 36 27 27]	NO DATA
pertussis	Tohama I	[21 29 24 18]	[33 36 26 27]	NO DATA
Burkholderia				
cepacia	J2315	[23 27 22 20]	[31 37 28 26]	NO DATA
Burkholderia				
pseudomallei	K96243	[23 27 22 20]	[31 37 28 26]	NO DATA
Neisseria				
gonorrhoeae Neisseria	FA 1090, ATCC 700825	[24 27 24 17]	[34 37 25 26]	NO DATA
Neisseria Meningitidis	MC58 (serogroup B)	[25 27 22 18]	[34 37 25 26]	NO DATA
Neisseria	MC56 (Selogloup B)	[23 27 22 10]	[34 37 23 20]	NO DATA
meningitidis	serogroup C, FAM18	[25 26 23 18]	[34 37 25 26]	NO DATA
Neisseria				
meningitidis	Z2491 (serogroup A)	[25 26 23 18]	[34 37 25 26]	NO DATA
Chlamydophila				
pneumoniae	TW-183	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila			1	
pneumoniae	AR39	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila pneumoniae	CWL029	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila	CNIIOZO	[50 20 27 10]	NO DATA	NO DATA
pneumoniae	J138	[30 28 27 18]	NO DATA	NO DATA
Corynebacterium				
diphtheriae	NCTC13129	NO DATA	[29 40 28 25]	NO DATA
Mycobacterium				
avium	k10	NO DATA	[33 35 32 22]	NO DATA
Mycobacterium	l	170 7777	[[]]] [] [] [] [] [] [] [] [1,70 53.53
avium Mycobacterium	104	NO DATA	[33 35 32 22]	NO DATA
Mycobacterium tuberculosis	CSU#93	NO DATA	[30 36 34 22]	NO DATA
Mycobacterium			[30 30 34 88]	
tuberculosis	CDC 1551	NO DATA	[30 36 34 22]	NO DATA
Mycobacterium				
tuberculosis	H37Rv (lab strain)	NO DATA	[30 36 34 22]	NO DATA
Mycoplasma				
pneumoniae	M129	[28 30 24 19]	[34 31 29 28]	NO DATA
Staphylococcus	MDCAGEG	[00 20 05 00]	[21 20 04 00]	[22 20 27 07]
aureus Staphylogogus	MRSA252	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus aureus	MSSA476	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus		20 00 20 201	[[]]]]]	, , , , , , , , , , , , , , , , , , , ,
aureus	COL	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				-
aureus	Mu50	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				
aureus	MW2	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus	W215	[[[] [] [] [] [] [] []	[21 20 24 22]	[[]]]]] [] []
aureus	N315	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus	NCTC 8325	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]

aureus				
Streptococcus agalactiae	NEM316	[28 31 22 20]	[33 37 24 28]	[37 30 28 26]
Streptococcus equi	NC_002955	[28 31 23 19]	[33 38 24 27]	[37 31 28 25]
Streptococcus pyogenes	MGAS8232	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus pyogenes	MGAS315	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus pyogenes	SSI-1	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus pyogenes	MGAS10394	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus pyogenes	Manfredo (M5)	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus pyogenes	SF370 (M1)	[28 31 23 19] [28 31 22 20]*	[33 37 24 28]	[38 31 29 23]
Streptococcus pneumoniae	670	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus pneumoniae	R6	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus pneumoniae	TIGR4	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus gordonii	NCTC7868	[28 32 23 20]	[34 36 24 28]	[36 31 29 25]
Streptococcus mitis	NCTC 12261	[28 31 22 20] [29 30 22 20]*	[34 36 24 28]	[37 30 29 25]
Streptococcus mutans	UA159	[26 32 23 22]	[34 37 24 27]	NO DATA

Table 7C – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 449, 354, and 352

		Primer 449	Primer 354	Primer 352
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella				
pneumoniae	MGH78578	NO DATA	[27 33 36 26]	NO DATA
	CO-92 Biovar			·
Yersinia pestis	Orientalis	NO DATA	[29 31 33 29]	[32 28 20 25]
	KIM5 P12 (Biovar			
Yersinia pestis	Mediaevalis)	NO DATA	[29 31 33 29]	[32 28 20 25]
Yersinia pestis	91001	NO DATA	[29 31 33 29]	NO DATA
Haemophilus				
influenzae	KW20	NO DATA	[30 29 31 32]	NO DATA
Pseudomonas				
aeruginosa	PAO1	NO DATA	[26 33 39 24]	NO DATA
Pseudomonas				1
fluorescens	Pf0-1	NO DATA	[26 33 34 29]	NO DATA
Pseudomonas				1
putida	KT2440	NO DATA	[25 34 36 27]	NO DATA
Legionella				1
pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella				
tularensis	schu 4	NO DATA	[33 32 25 32]	NO DATA
Bordetella				
pertussis	Tohama I	NO DATA	[26 33 39 24]	NO DATA
Burkholderia	ł			}
cepacia	J2315	NO DATA	[25 37 33 27]	NO DATA
Burkholderia	ļ		1.	
pseudomallei	K96243	NO DATA	[25 37 34 26]	NO DATA
Neisseria				
gonorrhoeae	FA 1090, ATCC 700825	[17 23 22 10]	[29 31 32 30]	NO DATA
Neisseria				
meningitidis	MC58 (serogroup B)	NO DATA	[29 30 32 31]	NO DATA
Neisseria				
meningitidis	serogroup C, FAM18	NO DATA	[29 30 32 31]	NO DATA

Neisseria	1		T	Г
meningitidis	Z2491 (serogroup A)	NO DATA	[29 30 32 31]	NO DATA
Chlamydophila	22172 (201031005 1.)			
pneumoniae	TW-183	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	AR39	NO DATA	NO DATA	NO DATA
Chlamydophila			NO DAMA	NO DATA
pneumoniae	CWL029	NO DATA	NO DATA	NO DATA
Chlamydophila pneumoniae	J138	NO DATA	NO DATA	NO DATA
Corynebacterium	0136	NO BILLI		
diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA
Mycobacterium				
avium	k10	NO DATA	NO DATA	NO DATA
Mycobacterium				l
avium	104	NO DATA	NO DATA	NO DATA
Mycobacterium			NO DAMA	NO DATA
tuberculosis	CSU#93	NO DATA	NO DATA	NO DATA
Mycobacterium tuberculosis	CDC 1551	NO DATA	NO DATA	NO DATA
Mycobacterium	CDC 133%	1.0 2		
tuberculosis	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
Mycoplasma				
pneumoniae	M129	NO DATA	NO DATA	NO DATA
Staphylococcus			[[]]	[26 04 10 26]
aureus	MRSA252	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus	M003.476	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
aureus Staphylococcus	MSSA476	[17 20 21 17]	[30 27 30 33]	[30 27 20 20]
aureus	COL	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
Staphylococcus				
aureus	Mu50	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus			_	
aureus	MW2	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus	-	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
aureus	N315	[17 20 21 17]	[30 27 30 33]	[50 24 15 20]
Staphylococcus aureus	NCTC 8325	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
Streptococcus	1010 0220			
agalactiae	NEM316	[22 20 19 14]	[26 31 27 38]	[29 26 22 28]
Streptococcus				
equi	NC_002955	[22 21 19 13]	NO DATA	NO DATA
Streptococcus		[00 00 00 101	[04 20 20 26]	NO DATA
pyogenes	MGAS8232	[23 21 19 12]	[24 32 30 36]	MO DATA
Streptococcus pyogenes	MGAS315	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus	1040010			
pyogenes	SSI-1	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus				
pyogenes	MGAS10394	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus		top on 15 507	1 104 20 20 20	NO DAMA
pyogenes	Manfredo (M5)	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus	SF370 (M1)	[23 21 19 12]	[24 32 30 36]	NO DATA
pyogenes Streptococcus	SES /O (PIL)	[22 24 42 42]	[22 02 50 50]	
pneumoniae	670	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus				
pneumoniae	R6	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus				
pneumoniae	TIGR4	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus	ATOMORA 6.5	FOT OT TO 147	NO DAMA	[29 26 22 28]
gordonii	NCTC7868	[21 21 19 14]	NO DATA	[27 20 22 20]
Streptococcus mitis	NCTC 12261	[22 20 19 14]	[26 30 32 34]	NO DATA
Streptococcus				
mutans	UA159	NO DATA	NO DATA	NO DATA
L	4	 		

Table 7D – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying
Amplicons Corresponding to Primer Pair Nos: 355, 358, and 359

				T = 1 = 1
O	Skunin	Primer 355 [A G C T]	Primer 358 [A G C T]	Primer 359 [A G C T]
Organism	Strain	[A G C I]	I LA G C 11	[R G C I]
Klebsiella pneumoniae	MGH78578	NO DATA	[24 39 33 20]	[25 21 24 17]
pheamonrae	CO-92 Biovar	110 21111		
Yersinia pestis	Orientalis	NO DATA	[26 34 35 21]	[23 23 19 22]
	KIM5 P12 (Biovar			
Yersinia pestis	Mediaevalis)	NO DATA	[26 34 35 21]	[23 23 19 22]
Yersinia pestis	91001	NO DATA	[26 34 35 21]	[23 23 19 22]
Haemophilus				
influenzae	KW20	NO DATA	NO DATA	NO DATA
Pseudomonas		NO DATA	NO DATA	NO DATA
aeruginosa	PAO1	NO DATA	NO DATA	NO DATA
Pseudomonas fluorescens	Pf0-1	NO DATA	NO DATA	NO DATA
Pseudomonas	ETO-T	110 51111		
putida	*KT2440	NO DATA	[21 37 37 21]	NO DATA
Legionella				
pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella				
tularensis	schu 4	NO DATA	NO DATA	NO DATA
Bordetella	m-1 7	NO DAILA	NO DATE	NO DATA
pertussis	Tohama I	NO DATA	NO DATA	NO DATA
Burkholderia cepacia	J2315	NO DATA	NO DATA	NO DATA
Burkholderia	02313	110 211111		
pseudomallei	K96243	NO DATA	NO DATA	NO DATA
Neisseria				
gonorrhoeae	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA
Neisseria				
meningitidis	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
Neisseria	TOWNS C. PAMIS	NO DATA	NO DATA	NO DATA
meningitidis Neisseria	serogroup C, FAM18	NO DATA	NO DATA	NO DATA
meningitidis	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	TW-183	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	AR39	NO DATA	NO DATA	NO DATA
Chlamydophila	CHI DOG	NO DAMA	NO DATA	NO DATA
pneumoniae Chlamydophila	CWL029	NO DATA	NO DATA	NO DATA
pneumoniae	J138	NO DATA	NO DATA	NO DATA
Corvnebacterium				
diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA
Mycobacterium				
avium	k10	NO DATA	NO DATA	NO DATA
Mycobacterium	1204	NO DAMPA	NO DATA	NO DATA
avium	104	NO DATA	MO DATA	NO DATA
Mycobacterium tuberculosis	CSU#93	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	CDC 1551	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
Mycoplasma	1	No Pier	NO 72 W.	NO DATA
pneumoniae	M129	NO DATA	NO DATA	NO DATA
Staphylococcus aureus	MRSA252	NO DATA	NO DATA	NO DATA
Staphylococcus	FINGRESA	NO DATA	3.0 2.121	
aureus	MSSA476	NO DATA	NO DATA	NO DATA
Staphylococcus			1	
aureus	COL	NO DATA	NO DATA	NO DATA
Staphylococcus			nam-	NO DAMA
aureus	Mu50	NO DATA	NO DATA	NO DATA

		- T		
Staphylococcus	1570	NO DAMA	NO DATA	NO DATA
aureus	MW2	NO DATA	NO DATA	NO DATA
Staphylococcus	1	170 Dama	NO DATA	NO DATA
aureus	N315	NO DATA	NO DATA	NO DATA
Staphylococcus				NO DIMI
aureus	NCTC 8325	NO DATA	NO DATA	NO DATA
Streptococcus			370 53.03	NO DIES
agalactiae	NEM316	NO DATA	NO DATA	NO DATA
Streptococcus	1			370 73 77
equi	NC_002955	NO DATA	NO DATA	NO DATA
Streptococcus				770 P.F.
pyogenes	MGAS8232	NO DATA	NO DATA	NO DATA
Streptococcus				
pyogenes	MGAS315	NO DATA	NO DATA	NO DATA
Streptococcus		1		
pyogenes	SSI-1	NO DATA	NO DATA	NO DATA
Streptococcus				
pyogenes	MGAS10394	NO DATA	NO DATA	NO DATA
Streptococcus				
pyogenes	Manfredo (M5)	NO DATA	NO DATA	NO DATA
Streptococcus	1			
pyogenes	SF370 (M1)	NO DATA	NO DATA	NO DATA
Streptococcus				
pneumoniae	670	NO DATA	NO DATA	NO DATA
Streptococcus	Į.			
pneumoniae	R6	NO DATA	NO DATA	NO DATA
Streptococcus				
pneumoniae	TIGR4	NO DATA	NO DATA	NO DATA
Streptococcus)		1	
gordonii	NCTC7868	NO DATA	NO DATA	NO DATA
Streptococcus	(l
mitis	NCTC 12261	NO DATA	NO DATA	NO DATA
Streptococcus	1			
mutans	UA159	NO DATA	NO DATA	NO DATA

Table 7E – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying
Amplicons Corresponding to Primer Pair Nos: 362, 363, and 367

		Primer 362	Primer 363	Primer 367
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella				
pneumoniae	MGH78578	[21 33 22 16]	[16 34 26 26]	NO DATA
	CO-92 Biovar			1
Yersinia pestis	Orientalis	[20 34 18 20]	NO DATA	NO DATA
	KIM5 P12 (Biovar	ł	ł	}
Yersinia pestis	Mediaevalis)	[20 34 18 20]	NO DATA	NO DATA
Yersinia pestis	91001	[20 34 18 20]	NO DATA	NO DATA
Haemophilus			}	Į.
influenzae	KW20	NO DATA	NO DATA	NO DATA
Pseudomonas				
aeruginosa	PA01	[19 35 21 17]	[16 36 28 22]	NO DATA
Pseudomonas		ł		
fluorescens	Pf0-1	NO DATA	[18 35 26 23]	NO DATA
Pseudomonas				
putida	KT2440	NO DATA	[16 35 28 23]	NO DATA
Legionella		j		
pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella	_	i .		
tularensis	schu 4	NO DATA	NO DATA	NO DATA
Bordetella	_			
pertussis	Tohama I	[20 31 24 17]	[15 34 32 21]	[26 25 34 19]
Burkholderia				507 07 00 001
cepacia	J2315	[20 33 21 18]	[15 36 26 25]	[25 27 32 20]
Burkholderia				
pseudomallei	K96243	[19 34 19 20]	[15 37 28 22]	[25 27 32 20]
Neisseria				
gonorrhoeae	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA

meningitidis MC58 (serogroup B) NO DATA NO DATA NO DATA Neisseria meningitidis serogroup C, FAM18 NO DATA NO DATA NO DATA Neisseria meningitidis Z2491 (serogroup A) NO DATA NO DATA NO DATA Chlamydophila pneumoniae TW-183 NO DATA NO DATA NO DATA Chlamydophila pneumoniae CWL029 NO DATA NO DATA NO DATA Chlamydophila pneumoniae J138 NO DATA NO DATA NO DATA Corynebacterium diphtheriae NCTC13129 NO DATA NO DATA NO DATA Mycobacterium avium k10 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20]				· · · · · · · · · · · · · · · · · · ·	
Melsestia	Neisseria	MGCO (management B)	NO DATE	NO DATA	אייט אייט
Memingitidis Memi		MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
Meisearia		serogroup C. FAM18	NO DATA	NO DATA	NO DATA
CallenyHophila	Neisseria				
### DREADMAND DATA NO DATA NO DATA NO DATA ### DREADMAND DATA NO DATA NO DATA ### DREADMAND DATA NO DATA NO DATA ### DREADMAND DATA NO DATA NO DATA ### NO NO DATA ### NO DATA NO DATA ### NO DATA NO DATA ### NO DATA ### NO DATA NO DATA ### NO DATA NO DATA ### NO DATA ### NO DATA NO DATA ### NO DATA NO DATA ### NO DATA ### NO DATA NO DATA ### NO DATA NO DATA ### N	meningitidis	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
Chlamydophila Departmentale RR39	Chlamydophila				
DECEMBER	pneumoniae	TW-183	NO DATA	NO DATA	NO DATA
CRILERY CONTROLL NO DATA NO DA				NO DATE:	370 D3 M3
DATE NO DATA NO DATA NO DATA NO DATA NO DATA		AR39	NO DATA	NO DATA	NO DATA
Dispute Disp		CMT.029	NO DATE	NO DATA	NO DATA
DATE		CWHOZY	NO BALLA	110 211111	
dightheriae NCC13129 NO DATA NO DATA NO DATA Mycobacterium avium k10 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis 104 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CDC 1551 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H378V (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H378V (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H378V (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H378V (lab strain) [19 31 24 18] NO DATA	pneumoniae	J138	NO DATA	NO DATA	NO DATA
Mycobacterium	Corynebacterium				
Avium	diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA
Mycobacterium 104	•				[04.05.05.40]
Avium		k10	[19 34 23 16]	NO DATA	[24 26 35 19]
Mycobacterium	-	104	[19 34 23 16]	NO DATA	[24 26 35 19]
Euberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium Euberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium Euberculosis H37RV (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma M129 NO DATA NO DATA NO DATA NO DATA Staphylococcus MRSA252 NO DATA NO DATA NO DATA NO DATA Staphylococcus MSSA476 NO DATA NO DATA NO DATA NO DATA Staphylococcus Muso No DATA NO DATA NO DATA NO DATA Staphylococcus Muso NO DATA NO DATA NO DATA Staphylococcus NO DATA NO DATA NO DATA NO DATA Staphylococcus NO DATA NO DATA NO DATA Sureptococcus NO DATA NO DATA NO DATA Streptococcus NO DATA NO DATA NO DATA Streptococcus NO DATA NO DATA NO DATA Streptococcus MGAS315 NO DATA NO DATA NO DATA Streptococcus MGAS315 NO DATA NO DATA NO DATA Streptococcus MGAS315 NO DATA NO DATA NO DATA Streptococcus MGAS10394 NO DATA NO DATA NO DAT		104	[127 24 23 10]	NO BILLI.	[2. 20 00 20]
Mycobacterium CDC 1551	_	CSU#93	[19 31 25 17]	NO DATA	[25 25 34 20]
### Description	Mycobacterium		1		
Elberculosis		CDC 1551	[19 31 24 18]	NO DATA	[25 25 34 20]
Mycoplasma	Mycobacterium				[
Designation Miles Miles No DATA No DATA No DATA		H37Rv (lab strain)	[19 31 24 18]	NO DATA	[25 25 34 20]
Staphylococcus aureus		м129	NO DATE	ATTACT ON	NO DATE
MRSA252 NO DATA NO DATA NO DATA		MIZ9	NO DATA	NO DATA	NO DATA
Staphylococcus aureus		MRSA252	NO DATA	NO DATA	NO DATA
MSSA476					
NO DATA NO DATA NO DATA NO DATA NO DATA		MSSA476	NO DATA	NO DATA	NO DATA
Staphylococcus aureus	Staphylococcus				
Museum		COL	NO DATA	NO DATA	NO DATA
Staphylococcus aureus			270 72772	NO DAMA	MO DAMA
MW2		Muso	NO DATA	NO DATA	NO DATA
Staphylococcus aureus		MW2	NO DATA	NO DATA	NO DATA
NO DATA NO DATA NO DATA NO DATA					
NCTC 8325		N315	NO DATA	NO DATA	NO DATA
Streptococcus agalactiae NEM316 NO DATA NO DATA NO DATA NO DATA Streptococcus equi NC 002955 NO DATA NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS8232 NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes SSI-1 NO DATA NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS10394 NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae FATO Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae NO DATA Streptococcus pneumoniae NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae NO DATA	Staphylococcus				
agalactiae NEM316 NO DATA NO DATA NO DATA Streptococcus equi NC 002955 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS8232 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS315 NO DATA NO DATA NO DATA Streptococcus pyogenes SSI-1 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS10394 NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pnoeumoniae SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC7868 NO DATA NO DATA NO DATA		NCTC 8325	NO DATA	NO DATA	NO DATA
Streptococcus equi NC 002955 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS8232 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS315 NO DATA NO DATA NO DATA Streptococcus pyogenes SSI-1 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS10394 NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA				170 D3 III	NO DATE
equi NC_002955 NO_DATA NO_DATA NO_DATA Streptococcus pyogenes MGAS8232 NO_DATA NO_DATA NO_DATA Streptococcus pyogenes MGAS315 NO_DATA NO_DATA NO_DATA Streptococcus pyogenes SSI-1 NO_DATA NO_DATA NO_DATA Streptococcus pyogenes MGAS10394 NO_DATA NO_DATA NO_DATA Streptococcus pyogenes Manfredo (M5) NO_DATA NO_DATA NO_DATA Streptococcus pneumoniae 670 NO_DATA NO_DATA NO_DATA Streptococcus pneumoniae R6 [20_30_19_23] NO_DATA NO_DATA Streptococcus pneumoniae TIGR4 [20_30_19_23] NO_DATA NO_DATA Streptococcus pordonii NCTC7868 NO_DATA NO_DATA NO_DATA Streptococcus mitis NCTC7868 NO_DATA NO_DATA NO_DATA		NEM316	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes MGAS8232 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS315 NO DATA NO DATA NO DATA Streptococcus pyogenes SI-1 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS10394 NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA		NC 002955	NO DATA	NO DATA	NO DATA
pyogenes MGAS8232 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS315 NO DATA NO DATA NO DATA Streptococcus pyogenes SSI-1 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS10394 NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA					
pyogenes MGAS315 NO DATA NO DATA NO DATA Streptococcus pyogenes SSI-1 NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS10394 NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA		MGAS8232	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes SSI-1 NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes MGAS10394 NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA	Streptococcus				
pyogenes SSI-1 NO DATA NO DATA NO DATA Streptococcus MGAS10394 NO DATA NO DATA NO DATA Streptococcus Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus SF370 (M1) NO DATA NO DATA NO DATA Streptococcus Pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus Pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus Pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus NCTC7868 NO DATA NO DATA NO DATA Streptococcus NCTC7868 NO DATA NO DATA NO DATA		MGAS315	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes MGAS10394 NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA	_		NO DAME	NO DATE	NO DATE
pyogenes MGAS10394 NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA NO DATA Streptococcus pordonii NCTC7868 NO DATA NO DATA NO DATA		SSI-1	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA	_	MGAS10394	אים סא	NO DATA	NO DATA
pyogenes Manfredo (M5) NO DATA NO DATA NO DATA Streptococcus pyogenes SF370 (M1) NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA		1.05020074	110 011411	 	
Streptococcus	-	Manfredo (M5)	NO DATA	NO DATA	NO DATA
pyogenes SF370 (M1) NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae 670 NO DATA NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA					
pneumoniae 670 NO DATA NO DATA NO DATA Streptococcus pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA	_	SF370 (M1)	NO DATA	NO DATA	NO DATA
Streptococcus				NO D	NO 73
pneumoniae R6 [20 30 19 23] NO DATA NO DATA Streptococcus pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA		670	NO DATA	NO DATA	NO DATA
Streptococcus	. ~	R6	[20 30 19 23]	NO DATA	NO DATA
pneumoniae TIGR4 [20 30 19 23] NO DATA NO DATA Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA		KO	[20 30 13 23]	HO DAIA	
Streptococcus gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA		TIGR4	[20 30 19 23]	NO DATA	NO DATA
gordonii NCTC7868 NO DATA NO DATA NO DATA Streptococcus mitis NCTC 12261 NO DATA NO DATA NO DATA					
mitis NCTC 12261 NO DATA NO DATA NO DATA		NCTC7868	NO DATA	NO DATA	NO DATA
Streptococcus UAL59 NO DATA NO DATA NO DATA					
	Streptococcus	UA159	NO DATA	NO DATA	NO DATA

mutans

[396] Four sets of throat samples from military recruits at different military facilities taken at different time points were analyzed using the primers of the present invention. The first set was collected at a military training center from November 1 to December 20, 2002 during one of the most severe outbreaks of pneumonia associated with group A *Streptococcus* in the United States since 1968. During this outbreak, fifty-one throat swabs were taken from both healthy and hospitalized recruits and plated on blood agar for selection of putative group A *Streptococcus* colonies. A second set of 15 original patient specimens was taken during the height of this group A *Streptococcus* -associated respiratory disease outbreak. The third set were historical samples, including twenty-seven isolates of group A *Streptococcus*, from disease outbreaks at this and other military training facilities during previous years. The fourth set of samples was collected from five geographically separated military facilities in the continental U.S. in the winter immediately following the severe November/December 2002 outbreak.

[397] Pure colonies isolated from group A *Streptococcus*-selective media from all four collection periods were analyzed with the surveillance primer set. All samples showed base compositions that precisely matched the four completely sequenced strains of *Streptococcus pyogenes*. Shown in Figure 4 is a 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[398] In addition to the identification of *Streptococcus pyogenes*, other potentially pathogenic organisms were identified concurrently. Mass spectral analysis of a sample whose nucleic acid was amplified by primer pair number 349 (SEQ ID NOs: 401:1156) exhibited signals of bioagent identifying amplicons with molecular masses that were found to correspond to analogous base compositions of bioagent identifying amplicons of *Streptococcus pyogenes* (A27 G32 C24 T18), *Neisseria meningitidis* (A25 G27 C22 T18), and *Haemophilus influenzae* (A28 G28 C25 T20) (see Figure 5 and Table 7B). These organisms were present in a ratio of 4:5:20 as determined by comparison of peak heights with peak height of an internal PCR calibration standard as described in commonly owned U.S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[399] Since certain division-wide primers that target housekeeping genes are designed to provide coverage of specific divisions of bacteria to increase the confidence level for identification of bacterial species, they are not expected to yield bioagent identifying amplicons for organisms outside of the specific divisions. For example, primer pair number 356 (SEQ ID NOs: 449:1380) primarily amplifies the nucleic acid of members of the classes *Bacilli* and *Clostridia* and is not expected to amplify proteobacteria such as *Neisseria meningitidis* and *Haemophilus influenzae*. As expected, analysis of the mass spectrum of amplification products obtained with primer pair number 356 does not indicate the presence of *Neisseria meningitidis* and *Haemophilus influenzae* but does indicate the presence of *Streptococcus pyogenes* (Figures 3 and 6, Table 7B). Thus, these primers or types of primers can confirm the absence of particular bioagents from a sample.

[400] The 15 throat swabs from military recruits were found to contain a relatively small set of microbes in high abundance. The most common were *Haemophilus influenza*, *Neisseria meningitides*, and *Streptococcus pyogenes*. *Staphylococcus epidermidis*, *Moraxella cattarhalis*, *Corynebacterium pseudodiphtheriticum*, and *Staphylococcus aureus* were present in fewer samples. An equal number of samples from healthy volunteers from three different geographic locations, were identically analyzed. Results indicated that the healthy volunteers have bacterial flora dominated by multiple, commensal non-beta-hemolytic *Streptococcal* species, including the viridans group *streptococci* (*S. parasangunis*, *S. vestibularis*, *S. mitis*, *S. oralis* and *S. pneumoniae*; data not shown), and none of the organisms found in the military recruits were found in the healthy controls at concentrations detectable by mass spectrometry. Thus, the military recruits in the midst of a respiratory disease outbreak had a dramatically different microbial population than that experienced by the general population in the absence of epidemic disease.

Example 7: Triangulation Genotyping Analysis for Determination of emm-Type of *Streptococcus pyogenes* in Epidemic Surveillance

[401] As a continuation of the epidemic surveillance investigation of Example 6, determination of sub-species characteristics (genotyping) of *Streptococcus pyogenes*, was carried out based on a strategy that generates strain-specific signatures according to the rationale of Multi-Locus Sequence Typing (MLST). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced (Enright et al. Infection and Immunity, 2001, 69, 2416-2427). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced. In the present investigation, bioagent identifying amplicons from housekeeping genes were produced using drill-down primers and analyzed by mass spectrometry. Since mass spectral analysis results in molecular mass,

from which base composition can be determined, the challenge was to determine whether resolution of *emm* classification of strains of *Streptococcus pyogenes* could be determined.

[402] For the purpose of development of a triangulation genotyping assay, an alignment was constructed of concatenated alleles of seven MLST housekeeping genes (glucose kinase (gki), glutamine transporter protein (gtr), glutamate racemase (murI), DNA mismatch repair protein (mutS), xanthine phosphoribosyl transferase (xpt), and acetyl-CoA acetyl transferase (yqiL)) from each of the 212 previously *emm*-typed strains of *Streptococcus pyogenes*. From this alignment, the number and location of primer pairs that would maximize strain identification via base composition was determined. As a result, 6 primer pairs were chosen as standard drill-down primers for determination of *emm*-type of *Streptococcus pyogenes*. These six primer pairs are displayed in Table 8. This drill-down set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row.

Table 8: Triangulation Genotyping Analysis Primer Pairs for Group A Streptococcus Drill-Down

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
442	SP101_SPET11_358_387_ TMOD_F	588	SP101_SPET11_448_ 473_TMOD_R	998	gki
80	SP101_SPET11_358_387_ F	126	SP101_SPET11_448_ 473_TMOD_R	766	gki
443	SP101_SPET11_600_629_ TMOD_F	348	SP101_SPET11_686_ 714_TMOD_R	1018	gtr
81	SP101_SPET11_600_629_ F	62	SP101_SPET11_686_ 714_R	772	gtr
426	SP101_SPET11_1314_133 6_TMOD_F	363	SP101_SPET11_1403 _1431_TMOD_R	849	murI
86	SP101_SPET11_1314_133 6_F	68	SP101_SPET11_1403 _1431_R	711	murI
430	SP101_SPET11_1807_183 5_TMOD_F	235	SP101_SPET11_1901 _1927_TMOD_R	1439	muts
90	SP101_SPET11_1807_183 5_F	33	SP101_SPET11_1901 _1927_R	1412	mutS
438	SP101_SPET11_3075_310 3_TMOD_F	473	SP101_SPET11_3168 _3196_TMOD_R	875	xpt
96	SP101_SPET11_3075_310 3_F	108	SP101_SPET11_3168 _3196_R	715	xpt
441	SP101_SPET11_3511_353 5_TMOD_F	531	SP101_SPET11_3605 _3629_TMOD_R	1294	yqiL
98	SP101_SPET11_3511_353 5_F	116	SP101_SPET11_3605 _3629_R	832	yqiL

[403] The primers of Table 8 were used to produce bioagent identifying amplicons from nucleic acid present in the clinical samples. The bioagent identifying amplicons which were subsequently analyzed by mass spectrometry and base compositions corresponding to the molecular masses were calculated.

[404] Of the 51 samples taken during the peak of the November/December 2002 epidemic (Table 9A-C rows 1-3), all except three samples were found to represent *emm3*, a Group A *Streptococcus* genotype previously associated with high respiratory virulence. The three outliers were from samples obtained from healthy individuals and probably represent non-epidemic strains. Archived samples (Tables 9A-C rows 5-13) from historical collections showed a greater heterogeneity of base compositions and *emm* types as would be expected from different epidemics occurring at different places and dates. The results of the mass spectrometry analysis and *emm* gene sequencing were found to be concordant for the epidemic and historical samples.

Table 9A: Base Composition Analysis of Bioagent Identifying Amplicons of Group A Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 426 and 430

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	murI (Primer Pair No. 426)	mutS (Primer Pair No. 430)
48	3	3	MCRD San		A39 G25 C20 T34	A38 G27 C23 T33
2	6	6	Diego	2002	A40 G24 C20 T34	A38 G27 C23 T33
1	28	28	(0-1	2002	A39 G25 C20 T34	A38 G27 C23 T33
15	3	ND	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
6	3	3			A39 G25 C20 T34	A38 G27 C23 T33
3	5,58	5			A40 G24 C20 T34	A38 G27 C23 T33
6	6	6	NHRC San		A40 G24 C20 T34	A38 G27 C23 T33
1.	11	11	Diego-		A39 G25 C20 T34	A38 G27 C23 T33
3	12	12	Archive	2003	A40 G24 C20 T34	A38 G26 C24 T33
1.	22	22	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
3	25,75	75] (carearea)	(carearea)	A39 G25 C20 T34	A38 G27 C23 T33
4	44/61,82,9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	53,91	91			A39 G25 C20 T34	A38 G27 C23 T33
1	2	2			A39 G25 C20 T34	A38 G27 C24 T32
2	3	3]		A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	}	ŀ	A39 G25 C20 T34	A38 G27 C23 T33
1	6	6	Ft.		A40 G24 C20 T34	A38 G27 C23 T33
11	25 or 75	75	Leonard Wood	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	25,75, 33, 34,4,52,84	75	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
1.	44/61 or 82 or 9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	5 or 58	5	İ		A40 G24 C20 T34	A38 G27 C23 T33
3	1	1			A40 G24 C20 T34	A38 G27 C23 T33
2	3	3	Ft. Sill	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	(Cultured)	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	28	28		L	A39 G25 C20 T34	A38 G27 C23 T33
1	3	3	Ft.	2003	A39 G25 C20 T34	A38 G27 C23 T33

1	4	4	Benning		A39 G25 C20 T34	A38 G27 C23 T33
3	6	6	(Cultured)		A40 G24 C20 T34	A38 G27 C23 T33
1	11	11] (00200200,		A39 G25 C20 T34	A38 G27 C23 T33
1	13	94**			A40 G24 C20 T34	A38 G27 C23 T33
1	44/61 or 82 or 9	82			A40 G24 C20 T34	A38 G26 C24 T33
1	5 or 58	58			A40 G24 C20 T34	A38 G27 C23 T33
1	78 or 89	89			A39 G25 C20 T34	A38 G27 C23 T33
2	5 or 58		Lackland		A40 G24 C20 T34	A38 G27 C23 T33
1	2		AFB 2003		A39 G25 C20 T34	A38 G27 C24 T32
1	81 or 90	ND		2003	A40 G24 C20 T34	A38 G27 C23 T33
1	78	<u> </u>	(Throat Swabs)		A38 G26 C20 T34	A38 G27 C23 T33
3***	No detection		5wdD57		No detection	No detection
7	3	ND			A39 G25 C20 T34	A38 G27 C23 T33
1	3	ND	MCRD San		No detection	A38 G27 C23 T33
1	3	ND	Diego	2002	No detection	No detection
1	3	ND	(Throat Swabs)	2002	No detection	No detection
2	3	ND			No detection	A38 G27 C23 T33
3	No detection	ND			No detection	No detection

Table 9B: Base Composition Analysis of Bioagent Identifying Amplicons of Group A

Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 438 and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	xpt (Primer Pair No. 438)	yqiL (Primer Pair No. 441)
48	3	3	MCRD San		A30 G36 C20 T36	A40 G29 C19 T31
2	6	6	Diego 2002 A30	A30 G36 C20 T36	A40 G29 C19 T31	
1	28	28	/(5:-3 +	2002	A30 G36 C20 T36	A41 G28 C18 T32
15	3	ND	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31
6	3	3			A30 G36 C20 T36	A40 G29 C19 T31
3	5,58	5			A30 G36 C20 T36	A40 G29 C19 T31
6	6	6	NHRC San		A30 G36 C20 T36	A40 G29 C19 T31
1	11	11	Diego-		A30 G36 C20 T36	A40 G29 C19 T31
3	12	12	Archive	2003	A30 G36 C19 T37	A40 G29 C19 T31
1.	22	22	(Cultured)	A30 G36 C20 T36	A40 G29 C19 T31	
3	25,75	75] (0000000,	·	A30 G36 C20 T36	A40 G29 C19 T31
4	44/61,82,9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	53,91	91		A30 G36 C19 T37	A40 G29 C19 T31	
1	2	2			A30 G36 C20 T36	A40 G29 C19 T31
2	3	3			A30 G36 C20 T36	A40 G29 C19 T31
1	4	4			A30 G36 C19 T37	A41 G28 C19 T31
1	6	6	Ft.		A30 G36 C20 T36	A40 G29 C19 T31
11	25 or 75	75	Leonard Wood	2003	A30 G36 C20 T36	A40 G29 C19 T31
1.	25,75, 33, 34,4,52,84	75	(Cultured)		A30 G36 C19 T37	A40 G29 C19 T31
ı	44/61 or 82 or 9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58	5			A30 G36 C20 T36	A40 G29 C19 T31
3	ı	1	Ft. Sill	2003	A30 G36 C19 T37	A40 G29 C19 T31
2	3	3	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31
1	4	4	, =,		A30 G36 C19 T37	A41 G28 C19 T31

1	28	28			A30 G36 C20 T36	A41 G28 C18 T32
1	3	3			A30 G36 C20 T36	A40 G29 C19 T31
1	4	4			A30 G36 C19 T37	A41 G28 C19 T31
3	6	6			A30 G36 C20 T36	A40 G29 C19 T31
1	11	11	Ft.		A30 G36 C20 T36	A40 G29 C19 T31
1	13	94**	Benning	2003	A30 G36 C20 T36	A41 G28 C19 T31
	44/61 or 82		(Cultured)			
1	or 9	82			A30 G36 C20 T36	A41 G28 C19 T31
1	5 or 58	58			A30 G36 C20 T36	A40 G29 C19 T31
1	78 or 89	89			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58		Lackland		A30 G36 C20 T36	A40 G29 C19 T31
1	2		AFB	A30 G36 C20 T36	A40 G29 C19 T31	
1,	81 or 90	ND		2003	A30 G36 C20 T36	A40 G29 C19 T31
1	78		(Throat Swabs)		A30 G36 C20 T36	A41 G28 C19 T31
3***	No detection		Dwabs)		No detection	No detection
7	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
1.	3	ND	MCRD San	1	A30 G36 C20 T36	A40 G29 C19 T31
1.	3	ND	Diego (Throat Swabs)	2002	A30 G36 C20 T36	No detection
1	3	ND			No detection	A40 G29 C19 T31
2	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
3	No detection	ND			No detection	No detection

Table 9C: Base Composition Analysis of Bioagent Identifying Amplicons of Group A Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 438 and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	gki (Primer Pair No. 442)	gtr ((Primer Pair No. 443)
48	3	3	MCRD San		A32 G35 C17 T32	A39 G28 C16 T32
2	6	6	Diego 2002 A33	2002	A31 G35 C17 T33	A39 G28 C15 T33
1	28	28		A30 G36 C17 T33	A39 G28 C16 T32	
15	3	ND	(Cultured)		A32 G35 C17 T32	A39 G28 C16 T32
6	3	3			A32 G35 C17 T32	A39 G28 C16 T32
3	5,58	5			A30 G36 C20 T30	A39 G28 C15 T33
6	6	6	NHRC San		A31 G35 C17 T33	A39 G28 C15 T33
1	11	11	Diego-		A30 G36 C20 T30	A39 G28 C16 T32
3	12	12	Archive	2003	A31 G35 C17 T33	A39 G28 C15 T33
1	22	22	(Cultured)		A31 G35 C17 T33	A38 G29 C15 T33
3	25,75	75] (04204244,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A30 G36 C17 T33	A39 G28 C15 T33
4	44/61,82,9	44/61]		A30 G36 C18 T32	A39 G28 C15 T33
2	53,91	91		A32 G35 C17 T32	A39 G28 C16 T32	
1	2	2			A30 G36 C17 T33	A39 G28 C15 T33
2	3	3			A32 G35 C17 T32	A39 G28 C16 T32
1	4	4			A31 G35 C17 T33	A39 G28 C15 T33
1	6	6	Ft.		A31 G35 C17 T33	A39 G28 C15 T33
11	25 or 75	75	Leonard Wood	2003	A30 G36 C17 T33	A39 G28 C15 T33
1	25,75, 33, 34,4,52,84	75	(Cultured)		A30 G36 C17 T33	A39 G28 C15 T33
1	44/61 or 82 or 9	44/61			A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58	5			A30 G36 C20 T30	A39 G28 C15 T33
3	1	1	Ft. Sill	2003	A30 G36 C18 T32	A39 G28 C15 T33
2	3	3		<u> </u>	A32 G35 C17 T32	A39 G28 C16 T32

1	4	4	(Cultured)		A31 G35 C17 T33	A39 G28 C15 T33
1	28	28			A30 G36 C17 T33	A39 G28 C16 T32
1	3	3			A32 G35 C17 T32	A39 G28 C16 T32
1	4	4			A31 G35 C17 T33	A39 G28 C15 T33
3	6	6			A31 G35 C17 T33	A39 G28 C15 T33
1	11	11	Ft.		A30 G36 C20 T30	A39 G28 C16 T32
1	13	94**	Benning	2003	A30 G36 C19 T31	A39 G28 C15 T33
1	44/61 or 82 or 9	82	(Cultured)		A30 G36 C18 T32	A39 G28 C15 T33
1	5 or 58	58]		A30 G36 C20 T30	A39 G28 C15 T33
1	78 or 89	89			A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58		Lackland		A30 G36 C20 T30	A39 G28 C15 T33
1	2		AFB		A30 G36 C17 T33	A39 G28 C15 T33
1	81 or 90	ND		2003	A30 G36 C17 T33	A39 G28 C15 T33
1	78		(Throat Swabs)		A30 G36 C18 T32	A39 G28 C15 T33
3***	No detection		Swabb,		No detection	No detection
7	3	ND			A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND	MCRD San		No detection	No detection
1	3	ND	Diego (Throat Swabs)	2002	A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND		2002	A32 G35 C17 T32	No detection
2	3	ND			A32 G35 C17 T32	No detection
3	No detection	ND	1		No detection	No detection

Example 8: Design of Calibrant Polynucleotides based on Bioagent Identifying Amplicons for Identification of Species of Bacteria (Bacterial Bioagent Identifying Amplicons)

[405] This example describes the design of 19 calibrant polynucleotides based on bacterial bioagent identifying amplicons corresponding to the primers of the broad surveillance set (Table 5) and the *Bacillus anthracis* drill-down set (Table 6).

[406] Calibration sequences were designed to simulate bacterial bioagent identifying amplicons produced by the T modified primer pairs shown in Tables 5 and 6 (primer names have the designation "TMOD"). The calibration sequences were chosen as a representative member of the section of bacterial genome from specific bacterial species which would be amplified by a given primer pair. The model bacterial species upon which the calibration sequences are based are also shown in Table 10. For example, the calibration sequence chosen to correspond to an amplicon produced by primer pair no. 361 is SEQ ID NO: 1445. In Table 10, the forward (_F) or reverse (_R) primer name indicates the coordinates of an extraction representing a gene of a standard reference bacterial genome to which the primer hybridizes e.g.: the forward primer name 16S_EC_713_732_TMOD_F indicates that the forward primer hybridizes to residues 713-732 of the gene encoding 16S ribosomal RNA in an *E. coli* reference sequence (in this case, the reference sequence is an extraction consisting of residues 4033120-4034661 of the genomic sequence of *E. coli* K12 (GenBank gi number 16127994). Additional gene coordinate reference information is shown in Table 11. The designation "TMOD" in the primer names indicates that the 5' end of the primer has been modified with a non-matched template T residue which

prevents the PCR polymerase from adding non-templated adenosine residues to the 5' end of the amplification product, an occurrence which may result in miscalculation of base composition from molecular mass data (*vide supra*).

[0143] The 19 calibration sequences described in Tables 10 and 11 were combined into a single calibration polynucleotide sequence (SEQ ID NO: 1464 - which is herein designated a "combination calibration polynucleotide") which was then cloned into a pCR®-Blunt vector (Invitrogen, Carlsbad, CA). This combination calibration polynucleotide can be used in conjunction with the primers of Tables 5 or 6 as an internal standard to produce calibration amplicons for use in determination of the quantity of any bacterial bioagent. Thus, for example, when the combination calibration polynucleotide vector is present in an amplification reaction mixture, a calibration amplicon based on primer pair 346 (16S rRNA) will be produced in an amplification reaction with primer pair 346 and a calibration amplicon based on primer pair 363 (rpoC) will be produced with primer pair 363. Coordinates of each of the 19 calibration sequences within the calibration polynucleotide (SEQ ID NO: 1464) are indicated in Table 11.

Table 10: Bacterial Primer Pairs for Production of Bacterial Bioagent Identifying

Amplicons and Corresponding Representative Calibration Sequences

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Calibration Sequence Model Species	Calibration Sequence (SEQ ID NO:)
361	16S_EC_1090_1111_2_T MOD_F	697	16S_EC_1175_1196_TMOD_R	1398	Bacillus anthracis	1445
346	16S_EC_713_732_TMOD_ F	202	16S_EC_789_809_TMOD_R	1110	Bacillus anthracis	1446
347	16S_EC_785_806_TMOD_ F	560	16S_EC_880_897_TMOD_R	1278	Bacillus anthracis	1447
348	16S_EC_960_981_TMOD_ F	706	16S_EC_1054_1073_TMOD_R	895	Bacillus anthracis	1448
349	23S_EC_1826_1843_TMO D_F	401	23S_EC_1906_1924_TMOD_R	1156	Bacillus anthracis	1449
360	23S_EC_2646_2667_TMO D_F	409	23S_EC_2745_2765_TMOD_R	1434	Bacillus anthracis	1450
350	CAPC_BA_274_303_TMOD _F	476	CAPC_BA_349_376_TMOD_R	1314	Bacillus anthracis	1451
351	CYA_BA_1353_1379_TMO D_F	355	CYA_BA_1448_1467_TMOD_R	1423	Bacillus anthracis	1452
352	INFB_EC_1365_1393_TM OD_F	687	INFB_EC_1439_1467_TMOD_ R	1411	Bacillus anthracis	1453
353	LEF_BA_756_781_TMOD_ F	220	LEF_BA_843_872_TMOD_R	1394	Bacillus anthracis	1454
356	RPLB_EC_650_679_TMOD _F	449	RPLB_EC_739_762_TMOD_R	1380	Clostridium botulinum	1455
449	RPLB_EC_690_710_F	309	RPLB_EC_737_758_R	1336	Clostridium botulinum	1456
359	RPOB_EC_1845_1866_TM OD_F	659	RPOB_EC_1909_1929_TMOD_ R	1250	Yersinia Pestis	1457
362	RPOB_EC_3799_3821_TM OD_F	581	RPOB_EC_3862_3888_TMOD_ R	1325	Burkholderia mallei	1458
363	RPOC_EC_2146_2174_TM OD_F	284	RPOC_EC_2227_2245_TMOD_ R	898	Burkholderia mallei	1459

354	RPOC_EC_2218_2241_TM OD_F	405	RPOC_EC_2313_2337_TMOD_ R	1072	Bacillus anthracis	1460
355	SSPE_BA_115_137_TMOD F	255	SSPE_BA_197_222_TMOD_R	1402	Bacillus anthracis	1461
367	TUFB_EC_957_979_TMOD	308	TUFB_EC_1034_1058_TMOD_ R	1276	Burkholderia mallei	1462
358	VALS_EC_1105_1124_TM OD_F	385	VALS_EC_1195_1218_TMOD_ R	1093	Yersinia Pestis	1463

Table 11: Primer Pair Gene Coordinate References and Calibration Polynucleotide Sequence
Coordinates within the Combination Calibration Polynucleotide

Bacterial Gene and Species	Gene Extraction Coordinates of Genomic or Plasmid Sequence	Reference GenBank GI No. of Genomic (G) or Plasmid (P) Sequence	Primer Pair No.	Coordinates of Calibration Sequence in Combination Calibration Polynucleotide (SEQ ID NO: 1464)
16S E. coli	40331204034661	16127994 (G)	346	16109
16S E. coli	40331204034661	16127994 (G)	347	83190
16S E. coli	40331204034661	16127994 (G)	348	246353
16S E. coli	40331204034661	16127994 (G)	361	368469
23S E. coli	41662204169123	16127994 (G)	349	743837
23S E. coli	41662204169123	16127994 (G)	360	865981
rpoB E.	41788234182851	16127994 (G)	359	15911672
coli.	(complement strand)			
rpoB E. coli	41788234182851	16127994 (G)	362	20812167
	(complement strand)	16127994 (G)	354	18101926
rpoC E. coli	41829284187151	16127994 (G)	363	21832279
rpoC E. coli	41829284187151		352	16921791
infB E. coli	33136553310983 (complement strand)	16127994 (G)	352	16921/91
<u> </u>	41735234174707	16127994 (G)	367	24002498
tufB E. coli		16127994 (G)	356	19452060
rplB E. coli	34490013448180	16127994 (G)	449	19862055
rplB E. coli	34490013448180		358	14621572
valS E. coli	44814054478550	16127994 (G)	336	14021372
	(complement strand)	6470151 (P)	350	25172616
capC	5607455628 (complement strand)	04/0131 /F/	330	
B. anthracis	156626154288	4894216 (P)	351	13381449
cya	(complement strand)	4034210 (F)	55*	
B. anthracis		4894216 (P)	353	11211234
lef	127442129921	4034210 (F)	555	
B. anthracis	200406 226703	30253828 (G)	355	1007-1104
sspE	226496226783	30253626 (G)	""	
B. anthracis	l	J	J	I

Example 9: Use of a Calibration Polynucleotide for Determining the Quantity of *Bacillus*Anthracis in a Sample Containing a Mixture of Microbes

[407] The process described in this example is shown in Figure 2. The capC gene is a gene involved in capsule synthesis which resides on the pX02 plasmid of *Bacillus anthracis*. Primer pair number 350 (see Tables 10 and 11) was designed to identify *Bacillus anthracis* via production of a bacterial bioagent identifying amplicon. Known quantities of the combination calibration polynucleotide vector described in Example 8 were added to amplification mixtures containing bacterial bioagent nucleic acid from a mixture of microbes which included the Ames strain of *Bacillus anthracis*. Upon amplification of the bacterial bioagent nucleic acid and the combination calibration polynucleotide vector with primer pair no. 350, bacterial bioagent identifying amplicons and calibration amplicons were obtained and characterized by mass spectrometry. A mass spectrum measured for the amplification reaction is shown in Figure 7. The molecular masses of the bioagent identifying amplicons provided the means for identification of the bioagent from which they were obtained (Ames strain of *Bacillus*

anthracis) and the molecular masses of the calibration amplicons provided the means for their identification as well. The relationship between the abundance (peak height) of the calibration amplicon signals and the bacterial bioagent identifying amplicon signals provides the means of calculation of the copies of the pX02 plasmid of the Ames strain of *Bacillus anthracis*. Methods of calculating quantities of molecules based on internal calibration procedures are well known to those of ordinary skill in the art.

[408] Averaging the results of 10 repetitions of the experiment described above, enabled a calculation that indicated that the quantity of Ames strain of *Bacillus anthracis* present in the sample corresponds to approximately 10 copies of pX02 plasmid.

Example 10: Triangulation Genotyping Analysis of Campylobacter Species

[409] A series of triangulation genotyping analysis primers were designed as described in Example 1 with the objective of identification of different strains of *Campylobacter jejuni*. The primers are listed in Table 12 with the designation "CJST_CJ." Housekeeping genes to which the primers hybridize and produce bioagent identifying amplicons include: tkt (transketolase), glyA (serine hydroxymethyltransferase), gltA (citrate synthase), aspA (aspartate ammonia lyase), glnA (glutamine synthase), pgm (phosphoglycerate mutase), and uncA (ATP synthetase alpha chain).

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
1053	CJST CJ 1080 1110 F	681	CJST CJ_1166_1198_R	1022	gltA
1047	CJST CJ 584 616 F	315	CJST_CJ_663_692_R	1379	glnA
1048	CJST CJ 360 394 F	346	CJST CJ 442 476 R	955	aspA
1049	CJST_CJ_2636_2668_F	504	CJST_CJ_2753_2777_R	1409	tkt
1054	CJST CJ 2060 2090 F	323	CJST_CJ_2148_2174_R	1068	pgm
1064	CJST CJ 1680 1713 F	479	CJST_CJ_1795_1822_R	938	glyA

Table 12: Campylobacter Genotyping Primer Pairs

[410] The primers were used to amplify nucleic acid from 50 food product samples provided by the USDA, 25 of which contained *Campylobacter jejuni* and 25 of which contained *Campylobacter coli*. Primers used in this study were developed primarily for the discrimination of *Campylobacter jejuni* clonal complexes and for distinguishing *Campylobacter jejuni* from *Campylobacter coli*. Finer discrimination between *Campylobacter coli* types is also possible by using specific primers targeted to loci where closely-related *Campylobacter coli* isolates demonstrate polymorphisms between strains. The conclusions of the comparison of base composition analysis with sequence analysis are shown in Tables 13A-C.

Table 13A – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1048 and 1047

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1048 (aspA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1047 (glnA)
J-1	C. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A30 G25 C16 T46	A47 G21 C16 T25
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A30 G25 C16 T46	A48 G21 C17 T23
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A30 G25 C15 T47	A48 G21 C18 T22
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A30 G25 C16 T46	A48 G21 C18 T22
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A30 G25 C16 T46	A48 G21 C17 T23
J-6	C.	Human	Complex 443	ST 51, complex	RM4275	A30 G25 C15 T47	A48 G21 C17 T23
u -0	jejuni	Trumerir	COMPLEX 443	443	RM4279	A30 G25 C15 T47	A48 G21 C17 T23
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A30 G25 C15 T47	A48 G21 C18 T22
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A30 G25 C15 T47	A48 G21 C18 T22
J-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A30 G25 C15 T47	A47 G21 C18 T23
	C. jejuni			ST 828	RM4183	A31 G27 C20 T39	A48 G21 C16 T24
		Human		ST 832	RM1169	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1056	RM1857	A31 G27 C20 T39	A48 G21 C16 T24
				ST 889	RM1166	A31 G27 C20 T39	A48 G21 C16 T24
				ST 829	RM1182	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1050	RM1518	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1051	RM1521	A31 G27 C20 T39	A48 G21 C16 T24
			Consistent	ST 1053	RM1523	A31 G27 C20 T39	A48 G21 C16 T24
		Poultry	with 74 closely	ST 1055	RM1527	A31 G27 C20 T39	A48 G21 C16 T24
			related sequence	ST 1017	RM1529	A31 G27 C20 T39	A48 G21 C16 T24
C-1	C. coli		types (none belong to a	ST 860	RM1840	A31 G27 C20 T39	A48 G21 C16 T24
			clonal complex)	ST 1063	RM2219	A31 G27 C20 T39	A48 G21 C16 T24
			- '	ST 1066	RM2241	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1067	RM2243	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1068	RM2439	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1016	RM3230	A31 G27 C20 T39	A48 G21 C16 T24
		Swine		ST 1069	RM3231	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1061	RM1904	A31 G27 C20 T39	A48 G21 C16 T24
		Unknown		ST 825	RM1534	A31 G27 C20 T39	A48 G21 C16 T24
				ST 901	RM1505	A31 G27 C20 T39	A48 G21 C16 T24
C-2	C. coli	Human	ST 895	ST 895	RM1532	A31 G27 C19 T40	A48 G21 C16 T24
C-3	C. coli	Poultry	Consistent	ST 1064	RM2223	A31 G27 C20 T39	A48 G21 C16 T24

	with 63 closely	ST 1082	RM1178	A31 G27 C20 T39	A48 G21 C16 T24
	related sequence	ST 1054	RM1525	A31 G27 C20 T39	A48 G21 C16 T24
	types (none belong to a	ST 1049	RM1517	A31 G27 C20 T39	A48 G21 C16 T24
Marmoset	clonal complex)	ST 891	RM1531	A31 G27 C20 T39	A48 G21 C16 T24

Table 13B – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1053 and 1064

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Ease Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1053 (gltA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1064 (glyA)
J-1	C. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A24 G25 C23 T47	A40 G29 C29 T45
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A24 G25 C23 T47	A40 G29 C29 T45
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A24 G25 C23 T47	A40 G29 C29 T45
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A24 G25 C23 T47	A40 G29 C29 T45
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A24 G25 C23 T47	A39 G30 C26 T48
J-6	c.			ST 51,	RM4275	A24 G25 C23 T47	A39 G30 C28 T46
0-0	jejuni	Human	Complex 443	complex 443	RM4279	A24 G25 C23 T47	A39 G30 C28 T46
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A24 G25 C23 T47	A39 G30 C26 T48
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A24 G25 C23 T47	A38 G31 C28 T46
J-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A24 G25 C23 T47	A38 G31 C28 T46
	C. jejuni		Consistent with 74	ST 828	RM4183	A23 G24 C26 T46	A39 G30 C27 T47
C-1	C. coli	Human	closely related	ST 832	RM1169	A23 G24 C26 T46	A39 G30 C27 T47
			sequence types (none	ST 1056	RM1857	A23 G24 C26 T46	A39 G30 C27 T47
			belong to a clonal	ST 889	RM1166	A23 G24 C26 T46	A39 G30 C27 T47
		:	complex)	ST 829	RM1182	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1050	RM1518	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1051	RM1521	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1053	RM1523	A23 G24 C26 T46	A39 G30 C27 T47
		Poultry		ST 1055	RM1527	A23 G24 C26 T46	A39 G30 C27 T47
		louzery		ST 1017	RM1529	A23 G24 C26 T46	A39 G30 C27 T47
				ST 860	RM1840	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1063	RM2219	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1066	RM2241	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1067	RM2243	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1068	RM2439	A23 G24 C26 T46	A39 G30 C27 T47
	i.	Swine		ST 1016	RM3230	A23 G24 C26 T46	A39 G30 C27 T47

				ST 1069	RM3231	A23 G24 C26 T46	NO DATA
				ST 1061	RM1904	A23 G24 C26 T46	A39 G30 C27 T47
				ST 825	RM1534	A23 G24 C26 T46	A39 G30 C27 T47
		Unknown		ST 901	RM1505	A23 G24 C26 T46	A39 G30 C27 T47
C-2	C. coli	Human	ST 895	ST 895	RM1532	A23 G24 C26 T46	A39 G30 C27 T47
			Consistent with 63	ST 1064	RM2223	A23 G24 C26 T46	A39 G30 C27 T47
			closely	ST 1082	RM1178	A23 G24 C26 T46	A39 G30 C27 T47
C-3	-3 C. coli sequ	related sequence	ST 1054	RM1525	A23 G24 C25 T47	A39 G30 C27 T47	
		types (none belong to a	ST 1049	RM1517	A23 G24 C26 T46	A39 G30 C27 T47	
		Marmoset	clonal complex)	ST 891	RM1531	A23 G24 C26 T46	A39 G30 C27 T47

Table 13C – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drill-down MLST Primer Pair Nos: 1054 and 1049

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1054 (pgm)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1049 (tkt)
J-1	C. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A26 G33 C18 T38	A41 G28 C35 T38
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A26 G33 C19 T37	A41 G28 C36 T37
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A27 G32 C19 T37	A42 G28 C36 T36
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A27 G32 C19 T37	A41 G29 C35 T37
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A26 G33 C18 T38	A41 G28 C36 T37
J-6	c.	Human	Complex 443	ST 51,	RM4275	A27 G31 C19 T38	A41 G28 C36 T37
u-0	jejuni	Hullan	Complex 443	complex 443	RM4279	A27 G31 C19 T38	A41 G28 C36 T37
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A27 G32 C19 T37	A42 G28 C35 T37
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A26 G33 C19 T37	A42 G28 C35 T37
J-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A28 G31 C19 T37	A43 G28 C36 T35
	C. jejuni		Consistent with 74	ST 828	RM4183	A27 G30 C19 T39	A46 G28 C32 T36
C-1	C. coli	Human	closely related	ST 832	RM1169	A27 G30 C19 T39	A46 G28 C32 T36
			sequence types (none	ST 1056	RM1857	A27 G30 C19 T39	A46 G28 C32 T36
		Poultry	belong to a clonal	ST 889	RM1166	A27 G30 C19 T39	A46 G28 C32 T36
			complex)	ST 829	RM1182	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1050	RM1518	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1051	RM1521	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1053	RM1523	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1055	RM1527	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1017	RM1529	A27 G30 C19 T39	A46 G28 C32 T36

	i 1	1		1	RM1840	A27 G30 C19 T39	A46 G28 C32 T36
				ST 860	KMT040	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1063	RM2219		
				ST 1066	RM2241	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1067	RM2243	A27 G30 C19 T39	A46 G28 C32 T36
	<u> </u>			ST 1068	RM2439	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1016	RM3230	A27 G30 C19 T39	A46 G28 C32 T36
		Swine		ST 1069	RM3231	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1061	RM1904	A27 G30 C19 T39	A46 G28 C32 T36
				ST 825	RM1534	A27 G30 C19 T39	A46 G28 C32 T36
		Unknown		ST 901	RM1505	A27 G30 C19 T39	A46 G28 C32 T36
C-2	C. coli	Human	ST 895	ST 895	RM1532	A27 G30 C19 T39	A45 G29 C32 T36
			Consistent	ST 1064	RM2223	A27 G30 C19 T39	A45 G29 C32 T36
			with 63 closely	ST 1082	RM1178	A27 G30 C19 T39	A45 G29 C32 T36
C-3	C. coli	Poultry	related sequence	ST 1054	RM1525	A27 G30 C19 T39	A45 G29 C32 T36
			types (none belong to a	ST 1049	RM1517	A27 G30 C19 T39	A45 G29 C32 T36
		Marmoset	clonal complex)	ST 891	RM1531	A27 G30 C19 T39	A45 G29 C32 T36

[411] The base composition analysis method was successful in identification of 12 different strain groups. Campylobacter jejuni and Campylobacter coli are generally differentiated by all loci. Ten clearly differentiated Campylobacter jejuni isolates and 2 major Campylobacter coli groups were identified even though the primers were designed for strain typing of Campylobacter jejuni. One isolate (RM4183) which was designated as Campylobacter jejuni was found to group with Campylobacter coli and also appears to actually be Campylobacter coli by full MLST sequencing.

Example 11: Identification of *Acinetobacter baumannii* Using Broad Range Survey and Division-Wide Primers in Epidemiological Surveillance

[412] To test the capability of the broad range survey and division-wide primer sets of Table 5 in identification of *Acinetobacter* species, 183 clinical samples were obtained from individuals participating in, or in contact with individuals participating in Operation Iraqi Freedom (including US service personnel, US civilian patients at the Walter Reed Army Institute of Research (WRAIR), medical staff, Iraqi civilians and enemy prisoners. In addition, 34 environmental samples were obtained from hospitals in Iraq, Kuwait, Germany, the United States and the USNS Comfort, a hospital ship.

[413] Upon amplification of nucleic acid obtained from the clinical samples, primer pairs 346-349, 360, 361, 354, 362 and 363 (Table 5) all produced bacterial bioagent amplicons which identified Acinetobacter baumannii in 215 of 217 samples. The organism Klebsiella pneumoniae was identified in the remaining two samples. In addition, 14 different strain types (containing single nucleotide polymorphisms relative to a reference strain of Acinetobacter baumannii) were identified and assigned

arbitrary numbers from 1 to 14. Strain type 1 was found in 134 of the sample isolates and strains 3 and 7 were found in 46 and 9 of the isolates respectively.

- [414] The epidemiology of strain type 7 of *Acinetobacter baumannii* was investigated. Strain 7 was found in 4 patients and 5 environmental samples (from field hospitals in Iraq and Kuwait). The index patient infected with strain 7 was a pre-war patient who had a traumatic amputation in March of 2003 and was treated at a Kuwaiti hospital. The patient was subsequently transferred to a hospital in Germany and then to WRAIR. Two other patients from Kuwait infected with strain 7 were found to be non-infectious and were not further monitored. The fourth patient was diagnosed with a strain 7 infection in September of 2003 at WRAIR. Since the fourth patient was not related involved in Operation Iraqi Freedom, it was inferred that the fourth patient was the subject of a nosocomial infection acquired at WRAIR as a result of the spread of strain 7 from the index patient.
- [415] The epidemiology of strain type 3 of *Acinetobacter baumannii* was also investigated. Strain type 3 was found in 46 samples, all of which were from patients (US service members, Iraqi civilians and enemy prisoners) who were treated on the USNS Comfort hospital ship and subsequently returned to Iraq or Kuwait. The occurrence of strain type 3 in a single locale may provide evidence that at least some of the infections at that locale were a result of nosocomial infections.
- [416] This example thus illustrates an embodiment of the present invention wherein the methods of analysis of bacterial bioagent identifying amplicons provide the means for epidemiological surveillance.

Example 12: Selection and Use of Triangulation Genotyping Analysis Primer Pairs for Acinetobacter baumanii

[417] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, an additional 21 primer pairs were selected based on analysis of housekeeping genes of the genus *Acinetobacter*. Genes to which the drill-down triangulation genotyping analysis primers hybridize for production of bacterial bioagent identifying amplicons include anthranilate synthase component I (trpE), adenylate kinase (adk), adenine glycosylase (mutY), fumarate hydratase (fumC), and pyrophosphate phospho-hydratase (ppa). These 21 primer pairs are indicated with reference to sequence listings in Table 14. Primer pair numbers 1151-1154 hybridize to and amplify segments of trpE. Primer pair numbers 1155-1157 hybridize to and amplify segments of adk. Primer pair numbers 1158-1164 hybridize to and amplify segments of mutY. Primer pair numbers 1165-1170 hybridize to and amplify segments of fumC. Primer pair number 1171 hybridizes to and amplifies a segment of ppa.

Primer pair numbers: 2846-2848 hybridize to and amplify segments of the parC gene of DNA topoisomerase which include a codon known to confer quinolone drug resistance upon sub-types of Acinetobacter baumannii. Primer pair numbers 2852-2854 hybridize to and amplify segments of the gyrA gene of DNA gyrase which include a codon known to confer quinolone drug resistance upon subtypes of Acinetobacter baumannii. Primer pair numbers 2922 and 2972 are speciating primers which are useful for identifying different species members of the genus Acinetobacter. The primer names given in Table 14A (with the exception of primer pair numbers 2846-2848, 2852-2854) indicate the coordinates to which the primers hybridize to a reference sequence which comprises a concatenation of the genes TrpE, efp (elongation factor p), adk, mutT, fumC, and ppa. For example, the forward primer of primer pair 1151 is named AB_MLST-11-OIF007_62_91_F because it hybridizes to the Acinetobacter primer reference sequence of strain type 11 in sample 007 of Operation Iraqi Freedom (OIF) at positions 62 to 91. DNA was sequenced from strain type 11 and from this sequence data and an artificial concatenated sequence of partial gene extractions was assembled for use in design of the triangulation genotyping analysis primers. The stretches of arbitrary residues "N"s in the concatenated sequence were added for the convenience of separation of the partial gene extractions (40N for AB_MLST (SEQ ID NO: 1444)).

[418] The hybridization coordinates of primer pair numbers 2846-2848 are with respect to GenBank Accession number X95819. The hybridization coordinates of primer pair numbers 2852-2854 are with respect to GenBank Accession number AY642140. Sequence residue "I" appearing in the forward and reverse primers of primer pair number 2972 represents inosine.

Table 14A: Triangulation Genotyping Analysis Primer Pairs for Identification of Sub-species characteristics (Strain Type) of Members of the Bacterial Genus *Acinetobacter*

Primer	Forward Primer Name	Forward Primer	Reverse Primer Name	Reverse Primer
Pair No.		(SEQ ID NO:)		(SEQ ID NO:)
1151	AE MLST-11-01F007 62 91 F	454	AB MLST-11-01F007_169_203_R	1418
1152	AB_MLST-11-0IF007 185 214 F	243	AB MLST-11-01F007_291_324_R	969
1153	AB_MLST-11-01F007_260_289_F	541	AB_MLST-11-OIF007_364_393_R	1400
1154	AB_MLST-11-01F007_206_239_F	436	AB MLST-11-01F007 318 344 R	1036
1.155	AB MLST-11-01F007_522_552_F	378	AB MLST-11-01F007 587 610 R	1392
1156	AB MLST-11-01F007_547_571_F	250	AB_MLST-11-01F007_656_686_R	902
1157	AB_MLST-11-01F007_601_627_F	256	AB MLST-11-01F007_710_736_R	881
1158	AB_MLST-11-0IF007_1202_1225_F	384	AB MLST-11-01F007 1266 1296 R	878
1159	AB_MLST-11-01F007_1202_1225_F	384	AB MLST-11-01F007 1299 1316 R	1199
1160	AB MLST-11-01F007 1234 1264 F	694	AB MLST-11-01F007 1335 1362 R	1215

1161	AB_MLST-11-OIF007_1327_1356_F	225	AB MLST-11-01F007 1422 1448 R	1212
1162	AB_MLST-11-OIF007_1345_1369_F	383	AB_MLST-11-01F007_1470_1494_R	1083
1163	AB_MLST-11-OIF007_1351_1375_F	662	AB_MLST-11-01F007_1470_1494_R	1083
1164	AB_MLST-11-OIF007_1387_1412_F	422	AB_MLST-11-01F007_1470_1494_R	1083
1165	AB MLST-11-0IF007 1542 1569 F	194	AB_MLST-11-01F007_1656_1680_R	1173
1166	AB MLST-11-0IF007 1566 1593 F	684	AB MLST-11-01F007 1656 1680 R	1173
1167	AB MLST-11-01F007 1611 1638 F	375	AB MLST-11-01F007 1731 1757 R	890
1168	AB MLST-11-0IF007 1726 1752 F	182	AB MLST-11-01F007 1790 1821 R	1195
1169	AB MLST-11-0IF007 1792 1826 F	656	AB MLST-11-01F007 1876 1909 R	1151
1170	AB MLST-11-0IF007 1792 1826 F	656	AB MLST-11-0IF007 1895 1927 R	1224
1171	AB MLST-11-0IF007 1970 2002 F	618	AB MLST-11-0IF007 2097 2118 R	1157
2846	PARC X95819 33 58 F	302	PARC X95819 121 153 R	852
2847	PARC X95819 33 58 F	199	PARC X95819 157 178 R	889
2848	PARC X95819 33 58 F	596	PARC X95819 97 128 R	1169
2852		150	GYRA AY642140 71 100 R	1242
	GYRA AY642140 -1 24 F			
2853	GYRA_AY642140_26_54_F	166	GYRA AY642140 121 146 R	1069
2854	GYRA_AY642140_26_54_F	166	GYRA AY642140 58 89 R	1168
2922	AB MLST-11-0IF007 991 1018 F	583	AB MLST-11-01F007 1110 1137 R	923
2972	AB_MLST-11-0IF007_1007_1034_F	592	AB_MLST-11-0IF007_1126_1153_R	924

Table 14B: Triangulation Genotyping Analysis Primer Pairs for Identification of Sub-species characteristics (Strain Type) of Members of the Bacterial Genus *Acinetobacter*

Primer	Forward Primer		Reverse Primer	
Pair No.	(SEQ ID NO:)	SEQUENCE	(SEQ ID NO:)	SEQUENCE
1151	454	TGAGATTGCTGAACATTTAATGCTGATTGA	1418	TTGTACATTTGAAACAATATGCATGACATGTGAAT
1152	243	TATTGTTTCAAATGTACAAGGTGAAGTGCG	969	TCACAGGTTCTACTTCATCAATAATTTCCATTGC
1153	541	TGGAACGTTATCAGGTGCCCCAAAAATTCG	1400	TTGCAATCGACATATCCATTTCACCATGCC
1154	436	TGAAGTGCGTGATGATATCGATGCACTTGATGTA	1036	TCCGCCAAAAACTCCCCTTTTCACAGG
1155	378	TCGGTTTAGTAAAAGAACGTATTGCTCAACC	1392	TTCTGCTTGAGGAATAGTGCGTGG
1156	250	TCAACCTGACTGCGTGAATGGTTGT	902	TACGTTCTACGATTTCTTCATCAGGTACATC
1157	256	TCAAGCAGAAGCTTTGGAAGAAGAAGG	881	TACAACGTGATAAACACGACCAGAAGC
1158	384	TCGTGCCCGCAATTTGCATAAAGC	878	TAATGCCGGGTAGTGCAATCCATTCTTCTAG
1159	384	TCGTGCCCGCAATTTGCATAAAGC	1199	TGCACCTGCGGTCGAGCG
1160	694	TTGTAGCACAGCAAGGCAAATTTCCTGAAAC	1215	TGCCATCCATAATCACGCCATACTGACG
1161	225	TAGGTTTACGTCAGTATGGCGTGATTATGG	1212	TGCCAGTTTCCACATTTCACGTTCGTG
1162	383	TCGTGATTATGGATGGCAACGTGAA	1083	TCGCTTGAGTGTAGTCATGATTGCG

1163	662	TTATGGATGGCAACGTGAAACGCGT	1083	TCGCTTGAGTGTAGTCATGATTGCG
1164	422	TCTTTGCCATTGAAGATGACTTAAGC	1083	TCGCTTGAGTGTAGTCATGATTGCG
1165	194	TACTAGCGGTAAGCTTAAACAAGATTGC	1173	TGAGTCGGGTTCACTTTACCTGGCA
1166	684	TTGCCAATGATATTCGTTGGTTAGCAAG	1173	TGAGTCGGGTTCACTTTACCTGGCA
1167	375	TCGGCGAAATCCGTATTCCTGAAAATGA	890	TACCGGAAGCACCAGCGACATTAATAG
1168	182	TACCACTATTAATGTCGCTGGTGCTTC	. 1195	TGCAACTGAATAGATTGCAGTAAGTTATAAGC
1169	656	TTATAACTTACTGCAATCTATTCAGTTGCTTGGTG	1151	TGAATTATGCAAGAAGTGATCAATTTTCTCACGA
1170	656	TTATAACTTACTGCAATCTATTCAGTTGCTTGGTG	1224	TGCCGTAACTAACATAAGAGAATTATGCAAGAA
1171	618	TGGTTATGTACCAAATACTTTGTCTGAAGATGG	1157	TGACGGCATCGATACCACCGTC
2846	302	TCCAAAAAATCAGCGCGTACAGTGG	852	TAAAGGATAGCGGTAACTAAATGGCTGAGCCAT
2847	199	TACTTGGTAAATACCACCCACATGGTGA	889	TACCCCAGTTCCCCTGACCTTC
2848	596	TGGTAAATACCACCCACATGGTGAC	1169	TGAGCCATGAGTACCATGGCTTCATAACATGC
2852	150	TAAATCTGCCCGTGTCGTTGGTGAC	1242	TGCTAAAGTCTTGAGCCATACGAACAATGG
2853	166	TAATCGGTAAATATCACCCGCATGGTGAC	1069	TCGATCGAACCGAAGTTACCCTGACC
2854	166	TAATCGGTAAATATCACCCGCATGGTGAC	1168	TGAGCCATACGAACAATGGTTTCATAAACAGC
2922	583	TGGGCGATGCTGCGAAATGGTTAAAAGA	923	TAGTATCACCACGTACACCCGGATCAGT
2972	592	TGGGIGATGCTGCIAAATGGTTAAAAGA	924	TAGTATCACCACGTACICCIGGATCAGT

[419] Analysis of bioagent identifying amplicons obtained using the primers of Table 14B for over 200 samples from Operation Iraqi Freedom resulted in the identification of 50 distinct strain type clusters. The largest cluster, designated strain type 11 (ST11) includes 42 sample isolates, all of which were obtained from US service personnel and Iraqi civilians treated at the 28th Combat Support Hospital in Baghdad. Several of these individuals were also treated on the hospital ship USNS Comfort. These observations are indicative of significant epidemiological correlation/linkage.

[420] All of the sample isolates were tested against a broad panel of antibiotics to characterize their antibiotic resistance profiles. As an example of a representative result from antibiotic susceptibility testing, ST11 was found to consist of four different clusters of isolates, each with a varying degree of sensitivity/resistance to the various antibiotics tested which included penicillins, extended spectrum penicillins, cephalosporins, carbepenem, protein synthesis inhibitors, nucleic acid synthesis inhibitors, anti-metabolites, and anti-cell membrane antibiotics. Thus, the genotyping power of bacterial bioagent identifying amplicons, particularly drill-down bacterial bioagent identifying amplicons, has the potential to increase the understanding of the transmission of infections in combat casualties, to identify the source of infection in the environment, to track hospital transmission of nosocomial infections, and to

rapidly characterize drug-resistance profiles which enable development of effective infection control measures on a time-scale previously not achievable.

Example 13: Triangulation Genotyping Analysis and Codon Analysis of *Acinetobacter baumannii* Samples from Two Health Care Facilities

[421] In this investigation, 88 clinical samples were obtained from Walter Reed Hospital and 95 clinical samples were obtained from Northwestern Medical Center. All samples from both healthcare facilities were suspected of containing sub-types of Acinetobacter baumannii, at least some of which were expected to be resistant to quinolone drugs. Each of the 183 samples was analyzed by the method of the present invention. DNA was extracted from each of the samples and amplified with eight triangulation genotyping analysis primer pairs represented by primer pair numbers: 1151, 1156, 1158, 1160, 1165, 1167, 1170, and 1171. The DNA was also amplified with speciating primer pair number 2922 and codon analysis primer pair numbers 2846-2848 which interrogate a codon present in the parC gene, and primer pair numbers 2852-2854 which bracket a codon present in the gyrA gene. The parC and gyrA codon mutations are both responsible for causing drug resistance in Acinetobacter baumannii. During evolution of drug resistant strains, the gyrA mutation usually occurs before the parC mutation. Amplification products were measured by ESI-TOF mass spectrometry as indicated in Example 4. The base compositions of the amplification products were calculated from the average molecular masses of the amplification products and are shown in Tables 15-18. The entries in each of the tables are grouped according to strain type number, which is an arbitrary number assigned to Acinetobacter baumannii strains in the order of observance beginning from the triangulation genotyping analysis OIF genotyping study described in Example 12. For example, strain type 11 which appears in samples from the Walter Reed Hospital is the same strain as the strain type 11 mentioned in Example 12. Ibis# refers to the order in which each sample was analyzed. Isolate refers to the original sample isolate numbering system used at the location from which the samples were obtained (either Walter Reed Hospital or Northwestern Medical Center). ST = strain type. ND = not detected. Base compositions highlighted with **bold** type indicate that the base composition is a unique base composition for the amplification product obtained with the pair of primers indicated.

Table 15A: Base Compositions of Amplification Products of 88 A. baumannii Samples Obtained from Walter Reed Hospital and Amplified with Codon Analysis Primer Pairs Targeting the gyrA

Gene

Species	Ibis#	Isolate	ST	PP No: 2852 gyrA	PP No: 2853 gyrA	PP No: 2854 gyrA
A. baumannii	20	1082	1	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. baumannii	13	854	10	A25G23C21T32	A29G28C21T43	A17G13C13T21

2 haumanndd	22	1160	1 10	725022021722	720G20G21E42	1 77777777777
A. baumannii	22	1162	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	27	1230	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	31	1367	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	37	1459	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	55	1700	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	64	1777	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	73	1861	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	74	1877	1.0	ND	A29G28C21T43	A17G13C13T21
A. baumannii	86	1972	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	3	684	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	6	720	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	7	726	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	19	1079	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	21	1123	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	23	1188	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	33	1417	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	34	1431	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	38	1496	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	40	1523	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	42	1640	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	50	1666	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	51	1668	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
	52	1695	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	65	1781	11	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	44	1649	12	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	49A	1658.1	12	A25G23C22T31	A29G28C21T43	A17G13C13T21
A. baumannii	49B	1658.2	12	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	56	1707	12	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	80	1893	12	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	5	693	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	8	749	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	10	839	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	14	865	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	16	888	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	29	1326	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	35	1440	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	41	1524	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	46	1652	1.4	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	47	1653	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	48	1657	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	57	1709	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	61	1727	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	63	1762	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	67	1806	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	75	1881	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
	77		14		A29G28C21T43	
		1886		A25G23C21T32		A17G13C13T21
A. baumannii	1	649	46	A25G23C21T32	A29G28C21T43	A17G13C13T21

A. baumannii	2	653	46	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	39	1497	16	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	24	1198	1.5	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	28	1243	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	43	1648	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	62	1746	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	4	689	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	68	1822	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	69	1823A	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	70	1823B	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	71	1826	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	72	1860	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	81	1924	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	82	1929	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	85	1966	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	11	841	3	A25G23C2T31	A29G28C22T42	A17G13C14T20
	32	1415	24	A25G23C22T31 A25G23C21T32	A29G28C21T43	A17G13C14120
			24	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	45	1651		A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	54	1697	24		A29G28C21T43	A17G13C13T21
A. baumannii	58	1712	24	A25G23C21T32 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	60	1725		A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	66	1802	24		A29G28C21T43	A17G13C13T21
A. baumannii	76	1883	24	A25G23C21T32		
A. baumannii	78	1891	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	79	1892	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	83	1947	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	84	1964	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	53	1696	24	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. baumannii	36	1458	49	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	59	1716	9	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. baumannii	9	805	30	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. baumannii	18	967	39	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. baumannii	30	1322	48	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. baumannii	26	1218	50	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. sp. 13TU	15	875	A1	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. sp. 13TU	17	895	A1	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. sp. 3	12	853	B7	A25G22C22T32	A30G29C22T40	A17G13C14T20
A. johnsonii	25	1202	NEW1	A25G22C22T32	A30G29C22T40	A17G13C14T20
A. sp. 2082	87	2082	NEW2	A25G22C22T32	A31G28C22T40	A17G13C14T20

Table 15B: Base Compositions Determined from A. baumannii DNA Samples Obtained from Walter Reed Hospital and Amplified with Codon Analysis Primer Pairs Targeting the parC Gene

Species	Ibis#	Isolate	ST	PP No: 2846 parC	PP No: 2847 parC	PP No: 2848 parC
A. baumannii	20	1082	1	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	13	854	10	A33G26C28T34	A29G28C25T32	A16G14C14T16

A. baumannii	22	1162	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	27	1230	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	31	1367	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	37	1459	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	55	1700	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	64	1777	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	73	1861	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	74	1877	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	86	1972	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	3	684	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	6	720	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	7	726	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	19	1079	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	, 21	1123	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	23	1188	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	33	1417	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	34	1431	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	38	1496	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	40	1523	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	42	1640	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	50	1666	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	51	1668	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	52	1695	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	65	1781	11	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	44	1649	12	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	49A	1658.1	12	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	49B	1658.2	12	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	56	1707	12	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	80	1893	12	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	5	693	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	8	749	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	10	839	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	14	865	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	16	888	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	29	1326	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	35	1440	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	41	1524	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	46	1652	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	47	1653	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	48	1657	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	57	1709	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	61	1727	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	63	1762	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	67	1806	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	75	1881	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	77	1886	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	1	649	46	A33G26C28T34	A29G28C25T32	A16G14C14T16

A. baumannii	2	653	46	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	39	1497	16	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	24	1198	15	A33G26C28T34	A29G29C23T33	A16G14C14T16
A. baumannii	28	1243	15	A33G26C28T34	A29G29C23T33	A16G14C14T16
A. baumannii	43	1648	15	A33G26C28T34	A29G29C23T33	A16G14C14T16
A. baumannii	62	1746	15	A33G26C28T34	A29G29C23T33	A16G14C14T16
A. baumannii	4	689	15	A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	68	1822	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	69	1823A	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	70	1823B	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	71	1826	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	72	1860	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	81	1924	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	82	1929	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	85	1966	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	11	841	3	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	32	1415	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	45	1651	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	54	1697	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	58	1712	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	60	1725	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	66	1802	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	76	1883	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	78	1891	24	A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	79	1892	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	83	1947	24	A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	84	1964	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	53	1696	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	36	1458	49	A34G26C29T32	A30G28C24T32	A16G14C15T15
A. baumannii	59	1716	9	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	9	805	30	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	18	967	39	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	30	1322	48	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	26	1218	50	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. sp. 13TU	15	875	A1	A32G26C28T35	A28G28C24T34	A16G14C15T15
A. sp. 13TU	17	895	A1	A32G26C28T35	A28G28C24T34	A16G14C15T15
A. sp. 3	12	853	B7	A29G26C27T39	A26G32C21T35	A16G14C15T15
A. johnsonii	25	1202	NEW1	A32G28C26T35	A29G29C22T34	A16G14C15T15
A. sp. 2082	87	2082	NEW2	A33G27C26T35	A31G28C20T35	A16G14C15T15

Table 16A: Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Codon Analysis Primer Pairs Targeting the gyrA Gene

				PP No: 2852	PP No: 2853	PP No: 2854
Species	Ibis#	Isolate	ST	gyrA	gyrA	gyrA

						
A. baumannii	54	536	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	87	665	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	8	80	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	9	91	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	10	92	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	11	131	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	12	137	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	21	218	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	26	242	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	94	678	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	11	9	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	2	13	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	3	19	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	4	24	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	5	36	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	6	39	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	13	139	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	15	165	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	16	170	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	17	186	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	20	202	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	22	221	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	24	234	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	25	239	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	33	370	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	34	389	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	19	201	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	27	257	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	29	301	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	31	354	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	36	422	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	37	424	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	38	434	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	39	473	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	40	482	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	44	512	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	45	516	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	47	522	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	48	526	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	50	528	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	52	531	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	53	533	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	56	542	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	59	550	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	62	556	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	64	557	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	70	588	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
	·					

	l	602	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	73	603	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	74	605		A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	75	606	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii		611	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	79	622	51	A25G23C21T32 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	83	643	51		A29G28C21T43	A17G13C13T21
A. baumannii	85	653	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	89	669	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	93	674	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	23	228	51	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	32	369	52	A25G23C21T32		A17G13C13T21
A. baumannii	35	393	52	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	30	339	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	41	485	53	A25G23C21T32	A29G28C21T43	
A. baumannii	42	493	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	43	502	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	46	520	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	49	527	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	51	529	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	65	562	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	68	579	53	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	57	546	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	58	548	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	60	552	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	61	555	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	63	557	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	66	570	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	67	578	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
	69	584	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
1	71	593	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
	72	602	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
	76	609	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
	78	621	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	80	625	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	81	628	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii		632	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	82	649	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	84		54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	86	655	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	88	668		A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	90	671	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	91	672	54	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	92	673	54			A17G13C13T21
A. baumannii	18	196	55	A25G23C22T31		A17G13C13T21
A. baumannii	55	537	27	A25G23C21T32		A17G13C13T2
A. baumannii	28	263	27	A25G23C22T31		
A. sp. 3	14	164	B7	A25G22C22T32		A17G13C1412C
mixture	7	71		ND	ND	MT/GT3CT3TT3

Table 16B: Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Codon Analysis Primer Pairs Targeting the parC Gene

A111-2				DD No. 2046	77 77 0047	
Species	Ibis#	Isolate	ST	PP No: 2846 parC	PP No: 2847	PP No: 2848 parC
A. baumannii	54	536	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	87	665	3	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	8	80	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	9	91	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	10	92	10	A33G26C28T34	A29G28C25T32	ND
A. baumannii	11	131	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	12	137	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	21	218	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	26	242	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	94	678	10	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	1	9	1.0	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	2	13	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	3	19	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	4	24	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	5	36	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	6	39	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	13	139	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	1 5	165	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	16	170	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	17	186	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	20	202	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	22	221	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	24	234	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	25	239	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	33	370	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	34	389	10	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	19	201	14	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	27	257	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	29	301	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	31	354	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	36	422	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	37	424	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	38	434	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	39	473	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	40	482	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	44	512	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	45	516	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	47	522	51	A33G26C28T34	A29G28C25T32	A16G14C14T16

] 7 1		40 1	526	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	48 50	528	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
<u> </u>	aumannii	52	531	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	53	533	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	56	542	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii				A33G26C28T34	A29G28C25T32	A16G14C14T16
<u> </u>	aumannii	59	550	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	62	556	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	64	557	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	70	588	51		A29G28C25T32	A16G14C14T16
	aumannii	73	603	51 51	A33G26C28T34 A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	74	605		A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	75	606	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	77	611	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	79	622	51		A29G28C25T32	A16G14C14T16
	aumannii	83	643	51	A33G26C28T34		A16G14C14T16
	aumannii	85	653	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii 	89	669	51	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii 	93	674	51	A33G26C28T34	A29G28C25T32	
	aumannii 	23	228	51	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii ,.	32	369	52	A34G25C28T34	A30G27C25T32	A16G14C14T16
	aumannii 	35	393	52	A34G25C28T34	A30G27C25T32	A16G14C14T16
<u> </u>	aumannii	30	339	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii	41	485	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii 	42	493	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii	43	502	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii	46	520	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii	49	527	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii	51	529	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii 	65	562	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
-	aumannii 	68	579	53	A34G25C29T33	A30G27C26T31	A16G14C15T15
	aumannii	57	546	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	58	548	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
-	aumannii 	60	552	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A.b	aumannii	61	555	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. b	aumannii	63	557	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	66	570	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	67	578	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. b	aumannii	69	584	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	71	593	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. b	aumannii	72	602	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	76	609	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	78	621	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
—	aumannii	80	625	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. b	aumannii	81	628	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. b	aumannii	82	632	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
	aumannii	84	649	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. b	aumannii	86	655	54	A33G26C28T34	A29G28C25T32	A16G14C14T16

A. baumannii	88	668	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	90	671	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	91	672	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	92	673	54	A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	18	196	55	A33G27C28T33	A29G28C25T31	A15G14C15T16
A. baumannii	55	537	27	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	28	263	27	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. sp. 3	14	164	B7	A35G25C29T32	A30G28C17T39	A16G14C15T15
mixture	7	71		ND	ND	A17G14C15T14

Table 17A: Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Walter Reed Hospital and Amplified with Speciating Primer Pair No. 2922 and Triangulation Genotyping Analysis Primer Pair Nos. 1151 and 1156

	r	T	·		T	
Species	Ibis#	Isolate	ST	PP No: 2922 efp	PP No: 1151 trpE	PP No: 1156 Adk
A. baumannii	20	1082	1	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	13	854	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	22	1162	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	27	1230	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	31	1367	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	37	1459	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	55	1700	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	64	1777	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	73	1861	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	74	1877	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	86	1972	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	3	684	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	6	720	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	7	726	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	19	1079	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	21	1123	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	23	1188	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	33	1417	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	34	1431	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	38	1496	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	40	1523	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	42	1640	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	50	1666	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	51	1668	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	52	1695	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	65	1781	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	44	1649	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	49A	1658.1	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	49B	1658.2	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	56	1707	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	80	1893	12	A45G34C25T43	A44G35C21T42	A44G32C26T38

A. baumannii	5	693	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
	8	749	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
	10	839	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	14	865	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii		888	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	16		14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	29	1326		A44G35C25T43	ND ND	A44G32C27T37
A. baumannii	35	1440	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	41	1524	14		A44G35C22T41	A44G32C27T37
A. baumannii	46	1652	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	47	1653	14	A44G35C25T43		A44G32C27T37
A. baumannii	48	1657	14	A44G35C25T43	A44G35C22T41	
A. baumannii	57	1709	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	61	1727	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	63	1762	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	67	1806	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	75	1881	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	77	1886	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	1.	649	46	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	2	653	46	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	39	1497	16	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	24	1198	15	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	28	1243	15	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	43	1648	1.5	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	62	1746	15	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	4	689	1.5	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	68	1822	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	69	1823A	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	70	1823B	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	71	1826	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	72	1860	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	81	1924	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	82	1929	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	85	1966	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	11	841	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	32	1415	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	45	1651	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	54	1697	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	58	1712	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	60	1725	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	66	1802	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	76	1883	24	ND	A43G36C20T43	A44G32C27T37
A. baumannii	78	1891	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	79	1892	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	83	1947	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	84	1964	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
	53	1696	24	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii		·	49	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	36	1458	49	H44G35C45143	A44GJJCZZI4I	1111100000/10/

A. baumannii	59	1716	9	A44G35C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	9	805	30	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	18	967	39	A45G34C25T43	A44G35C22T41	A44G32C26T38
A. baumannii	30	1322	48	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii	26	1218	50	A44G35C25T43	A44G35C21T42	A44G32C26T38
A. sp. 13TU	15	875	A1	A47G33C24T43	A46G32C20T44	A44G33C27T36
A. sp. 13TU	17	895	A1	A47G33C24T43	A46G32C20T44	A44G33C27T36
A. sp. 3	12	853	В7	A46G35C24T42	A42G34C20T46	A43G33C24T40
A. johnsonii	25	1202	NEW1	A46G35C23T43	A42G35C21T44	A43G33C23T41
A. sp. 2082	87	2082	NEW2	A46G36C22T43	A42G32C20T48	A42G34C23T41

Table 17B: Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Walter Reed Hospital and Amplified with Triangulation Genotyping Analysis Primer Pair Nos.

1158 and 1160 and 1165

Species	Ibis#	Isolate	ST	PP No: 1158 mutY	PP No: 1160	PP No: 1165
A. baumannii	20	1082	1	A27G21C25T22	A32G35C29T33	A40G33C30T36
	13	854	10	A27G21C25122 A27G21C26T21	A32G35C29T33	A40G33C30T36
A. baumannii						A40G33C30T36
A. baumannii	22	1162	10	A27G21C26T21	A32G35C28T34	
A. baumannii	27	1230	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	31	1367	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	37	1459	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	55	1700	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	64	1777	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	73	1861	1.0	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	74	1877	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	86	1972	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	3	684	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	6	720	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	7	726	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	19	1079	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	21	1123	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	23	1188	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	33	1417	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	34	1431	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	38	1496	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	40	1523	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	42	1640	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	50	1666	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	51	1668	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	52	1695	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	65	1781	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
A. baumannii	44	1649	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	49A	1658.1	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	49B	1658.2	12	A27G21C26T21	A32G34C29T34	A40G33C30T36

A. baumannii	56	1707	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	80	1893	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	5	693	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	8	749	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	10	839	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	14	865	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	16	888	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	29	1326	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	35	1440	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	41	1524	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	46	1652	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	47	1653	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	4.8	1657	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	57	1709	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	61	1727	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	63	1762	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	67	1806	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	75	1881	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	77	1886	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	1	649	46	A29G19C26T21	A31G35C29T34	A40G33C29T37
A. baumannii	2	653	46	A29G19C26T21	A31G35C29T34	A40G33C29T37
A. baumannii	39	1497	16	A29G19C26T21	A31G35C29T34	A40G34C29T36
A. baumannii	24	1198	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
A. baumannii	28	1243	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
A. baumannii	43	1648	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
A. baumannii	62	1746	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
A. baumannii	4	689	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
A. baumannii	68	1822	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	69	1823A	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	70	1823B	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	71	1826	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	72	1860	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	81	1924	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	82	1929	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	85	1966	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	11	841	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	32	1415	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	45	1651	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	54	1697	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	58	1712	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	60	1725	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	66	1802	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	76	1883	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	78	1891	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	79	1892	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	83	1947	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	84	1964	24	A27G21C26T21	A32G35C28T34	A40G33C30T36

A. baumannii	53	1696	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	36	1458	49	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	59	1716	9	A27G21C25T22	A32G35C28T34	A39G33C30T37
A. baumannii	9	805	30	A27G21C25T22	A32G35C28T34	A39G33C30T37
A. baumannii	18	967	39	A27G21C26T21	A32G35C28T34	A39G33C30T37
A. baumannii	30	1322	48	A28G21C24T22	A32G35C29T33	A40G33C30T36
A. baumannii	26	1218	50	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. sp. 13TU	15	875	A1	A27G21C25T22	A30G36C26T37	A41G34C28T36
A. sp. 13TU	17	895	A1	A27G21C25T22	A30G36C26T37	A41G34C28T36
A. sp. 3	12	853	В7	A26G23C23T23	A30G36C27T36	A39G37C26T37
A. johnsonii	25	1202	NEW1	A25G23C24T23	A30G35C30T34	A38G37C26T38
A. sp. 2082	87	2082	NEW2	A26G22C24T23	A31G35C28T35	A42G34C27T36

Table 17C: Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Walter Reed Hospital and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1167 and 1170 and 1171

G				PP No: 1167	PP No: 1170	PP No: 1171
Species	Ibis#	Isolate	ST	fumC	fumC	ppa
A. baumannii	20	1082	1	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	13	854	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	22	1162	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	27	1230	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	31	1367	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	37	1459	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	55	1700	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	64	1777	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	73	1861	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	74	1877	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	86	1972	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	3	684	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	б	720	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	7	726	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	19	1079	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	21	1123	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	23	1188	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	33	1417	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	34	1431	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	38	1496	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	40	1523	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	42	1640	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	50	1666	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	51	1668	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	52	1695	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	65	1781	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	44	1649	12	A41G34C34T38	A38G27C21T50	A35G37C33T44

A. baumannii	49A	1658.1	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	49B	1658.2	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	56	1707	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	80	1893	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	5	693	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	8	749	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	10	839	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	14	865	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	16	888	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	29	1326	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	35	1440	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	41	1524	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	46	1652	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	47	1653	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	48	1657	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	57	1709	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	61	1727	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	63	1762	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	67	1806	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	75	1881	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	77	1886	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	1.	649	46	A41G35C32T39	A37G28C20T51	A35G37C32T45
A. baumannii	2	653	46	A41G35C32T39	A37G28C20T51	A35G37C32T45
A. baumannii	39	1497	16	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	24	1198	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	28	1243	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	43	1648	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	62	1746	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	4	689	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	68	1822	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	69	1823A	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	70	1823B	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	71	1826	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	72	1860	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	81	1924	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	82	1929	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	85	1966	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	11	841	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	32	1415	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	45	1651	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	54	1697	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	58	1712	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	60	1725	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	66	1802	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	76	1883	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	78	1891	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	79	1892	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
TTO NORTHERITIES	, ,	1075	L	1110033034130	-10000000000000000000000000000000000000	1

A. baumannii	83	1947	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	84	1964	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	53	1696	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	36	1458	49	A40G35C34T38	A39G26C22T49	A35G37C30T47
A. baumannii	59	1716	9	A40G35C32T40	A38G27C20T51	A36G35C31T47
A. baumannii	9	805	30	A40G35C32T40	A38G27C21T50	A35G36C29T49
A. baumannii	18	967	39	A40G35C33T39	A38G27C20T51	A35G37C30T47
A. baumannii	30	1322	48	A40G35C35T37	A38G27C21T50	A35G37C30T47
A. baumannii	26	1218	50	A40G35C34T38	A38G27C21T50	A35G37C33T44
A. sp. 13TU	15	875	A1	A41G39C31T36	A37G26C24T49	A34G38C31T46
A. sp. 13TU	17	895	A1.	A41G39C31T36	A37G26C24T49	A34G38C31T46
A. sp. 3	12	853	B7	A43G37C30T37	A36G27C24T49	A34G37C31T47
A. johnsonii	25	1202	NEW1	A42G38C31T36	A40G27C19T50	A35G37C32T45
A. sp. 2082	87	2082	NEW2	A43G37C32T35	A37G26C21T52	A35G38C31T45

Table 18A: Base Compositions Determined from A. baumannii DNA Samples Obtained from
Northwestern Medical Center and Amplified with Speciating Primer Pair No. 2922 and
Triangulation Genotyping Analysis Primer Pair Nos. 1151 and 1156

				PP No: 2922	PP No: 1151	PP No: 1156
Species	Ibis#	Isolate	ST	efp	trpE	adk
A. baumannii	54	536	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	87	665	3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	8	80	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	9	91	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	10	92	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	11	131	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	12	137	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	21	218	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	26	242	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	94	678	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	1	9	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	2	13	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	3	19	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	4	24	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	5	36	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	6	39	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	13	139	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	15	165	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	16	170	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	17	186	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	20	202	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	22	221	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	24	234	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	25	239	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	33	370	10	A45G34C25T43	A44G35C21T42	A44G32C26T38

A. baumannii	34	389	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	19	201	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	27	257	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	29	301	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	31	354	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	36	422	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	37	424	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	38	434	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	39	473	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	40	482	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	44	512	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	45	516	51	A44G35C25T43	A43G36C20T43	
A. baumannii	47	522	51	A44G35C25T43		A44G32C26T38
A. baumannii	48	526	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	50	528	51		A43G36C20T43	A44G32C26T38
A. baumannii	52		 	A44G35C25T43	A43G36C20T43	A44G32C26T38
		531	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	53	533	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	56	542	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	59	550	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	62	556	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	64	557	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	70	588	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	73	603	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	74	605	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	75	606	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	77	611	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	79	622	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	83	643	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	85	653	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	89	669	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	93	674	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	23	228	51	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	32	369	52	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	35	3 9 3	52	A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	30	339	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	41	485	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	42	493	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	43	502	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	46	520	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	49	527	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	51	529	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	65	562	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	68	579	53	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	57	546	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	58	548	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	60	552	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	61	555	54	A44G35C25T43	A44G35C20T43	
1 Dadilanite L	0.1			M44633C23143	M44G35C2U143	A44G32C26T38

A. baumannii	63	557	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	66	570	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	67	578	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	69	584	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	71	593	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	72	602	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	76	609	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	78	621	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	80	625	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	81	628	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	82	632	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	84	649	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	86	655	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
, A. baumannii	88	668	54	A44G35C25T43	A44G35C20T43.	A44G32C26T38
A. baumannii	90	671	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	91	672	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	92	673	54	A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	18	196	55	A44G35C25T43	A44G35C20T43	A44G32C27T37
A. baumannii	55	537	27	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	28	263	27	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. sp. 3	14	164	B7	A46G35C24T42	A42G34C20T46	A43G33C24T40
mixture	7	71	?	mixture	ND	ND

Table 18B: Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1158, 1160 and 1165

Species	Tbis#	Isolate	ST	PP No: 1158 mutY	PP No: 1160 mutY	PP No: 1165 fumC
A. baumannii	54	536	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	87	665	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	8	80	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	9	91	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	10	92	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	11	131	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	12	137	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	21	218	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	26	242	1.0	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	94	678	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	1	9	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	2	13	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	3	19	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	4	24	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	5	36	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	6	39	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	13	139	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	15	165	10	A27G21C26T21	A32G35C28T34	A40G33C30T36

A. baumannii	16	170	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	17	186	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	20	202	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	22	221	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	24	234	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	25	239	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	33	370	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	34	389	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	19	201	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	27	257	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	29	301	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	31	354	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	36	422	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	37	424	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	38	434	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	39	473	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	40	482	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	44	512	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	45	516	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	47	522	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	48	526	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	50	528	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	52	531	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	53	533	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	56	542	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	59	550	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	62	556	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	64	557	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	70	588	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	73	603	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	74	605	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	75	606	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	77	611	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	79	622	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	83	643	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	85	653	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	89	669	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	93	674	51.	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	23	228	51	A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	32	369	52	A27G21C25T22	A32G35C28T34	A40G33C29T37 A40G33C29T37
A. baumannii	35	393	52	A27G21C25T22 A28G20C26T21	A32G35C28T34 A32G34C29T34	A40G33C29137
A. baumannii	30	339	53			A40G33C30T36
A. baumannii	41	485	53	A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	42	493	53	A28G20C26T21 A28G20C26T21	A32G34C29T34 A32G34C29T34	A40G33C30T36
A. baumannii	43	502	53	A28G20C26T21 A28G20C26T21	A32G34C29T34 A32G34C29T34	A40G33C30T36
A. baumannii	46	520	53	A28G20C26T21 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	49	527	53	AZ0GZUCZ01Z1	M32G34C23134	P40G33C30130

•						
A. baumannii	51	529	53	A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	65	562	53	A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	68	579	53	A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	57	546	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	58	548	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	60	552	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	61	555	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	63	557	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	66	570	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	67	578	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	69	584	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	71	593	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	72	602	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	.76	609	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	78	621	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	80	625	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	81	628	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	82	632	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	84	649	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	86	655	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	88	668	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	90	671	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	91	672	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	92	673	54	A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	18	196	55	A27G21C25T22	A31G36C27T35	A40G33C29T37
A. baumannii	55	537	27	A27G21C25T22	A32G35C28T34	A40G33C30T36
A. baumannii	28	263	27	A27G21C25T22	A32G35C28T34	A40G33C30T36
A. sp. 3	14	164	В7	A26G23C23T23	A30G36C27T36	A39G37C26T37
mixture	7	71	?	ND	ND	ND

Table 18C: Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1167, 1170 and 1171

Species	Ibis#	Isolate	ST	PP No: 1167 fumC	PP No: 1170 fumC	PP No: 1171 ppa
A. baumannii	54	536	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	87	665	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	8	80	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	9	91	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	10	92	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	11	131	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	12	137	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	21	218	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	26	242	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	94	678	10	A41G34C34T38	A38G27C21T50	A35G37C33T44

A. baumannii	1 l	9	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	2	13	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	3	19	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	4	24	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	5	36	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	6	39	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	13	139	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	15	165	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	16	170	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	17	186	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	20	202	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	22	221	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	24	234	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	25	239	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	33	370	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	34	389	1.0	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	19	201	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	27	257	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	29	301	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	31	354	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	36	422	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	37	424	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	38	434	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	39	473	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	40	482	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	44	512	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	45	516	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	47	522	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	48	526	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	50	528	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	52	531	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	53	533	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	56	542	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	59	550	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	62	556	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	64	557	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	70	588	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	73	603	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	74	605	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	75	606	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	77	611	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	79	622	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	83	643	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	85	653	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	89	669	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	93	674	51	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	23	228	51	A40G35C34T38	A38G27C21T50	A35G37C30T47

A. baumannii	32	369	52	A40G35C34T38	A38G27C21T50	A35G37C31T46
A. baumannii	35	393	52	A40G35C34T38	A38G27C21T50	A35G37C31T46
A. baumannii	30	339	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	41	485	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	42	493	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	43	502	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	46	520	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	49	527	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	51	529	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	65	562	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	68	579	53	A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	57	546	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	58	548	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	60	552	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	61	555	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	63	557	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	66	570	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	67	578	54	A40G35C34T3B	A39G26C22T49	A35G37C31T46
A. baumannii	69	584	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	71	593	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	72	602	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	76	609	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	78	621	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	80	625	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	81	628	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	82	632	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	84	649	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	86	655	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	88	668	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	90	671	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	91	672	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	92	673	54	A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	18	196	55	A42G34C33T38	A38G27C20T51	A35G37C31T46
A. baumannii	55	537	27	A40G35C33T39	A38G27C20T51	A35G37C33T44
A. baumannii	28	263	27	A40G35C33T39	A38G27C20T51	A35G37C33T44
A. sp. 3	14	164	B7	A43G37C30T37	A36G27C24T49	A34G37C31T47
mixture	7	71		ND	ND	ND

[422] Base composition analysis of the samples obtained from Walter Reed hospital indicated that a majority of the strain types identified were the same strain types already characterized by the OIF study of Example 12. This is not surprising since at least some patients from which clinical samples were obtained in OIF were transferred to the Walter Reed Hospital (WRAIR). Examples of these common strain types include: ST10, ST11, ST12, ST14, ST15, ST16 and ST46. A strong correlation was noted between these strain types and the presence of mutations in the gyrA and parC which confer quinolone drug resistance.

[423] In contrast, the results of base composition analysis of samples obtained from Northwestern Medical Center indicate the presence of 4 major strain types: ST10, ST51, ST53 and ST54. All of these strain types have the gyrA quinolone resistance mutation and most also have the parC quinolone resistance mutation, with the exception of ST35. This observation is consistent with the current understanding that the gyrA mutation generally appears before the parC mutation and suggests that the acquisition of these drug resistance mutations is rather recent and that resistant isolates are taking over the wild-type isolates. Another interesting observation was that a single isolate of ST3 (isolate 841) displays a triangulation genotyping analysis pattern similar to other isolates of ST3, but the codon analysis amplification product base compositions indicate that this isolate has not yet undergone the quinolone resistance mutations in gyrA and parC.

- [424] The six isolates that represent species other than *Acinetobacter baumannii* in the samples obtained from the Walter Reed Hospital were each found to not carry the drug resistance mutations.
- [425] The results described above involved analysis of 183 samples using the methods and compositions of the present invention. Results were provided to collaborators at the Walter Reed hospital and Northwestern Medical center within a week of obtaining samples. This example highlights the rapid throughput characteristics of the analysis platform and the resolving power of triangulation genotyping analysis and codon analysis for identification of and determination of drug resistance in bacteria.

Example 14: Identification of Drug Resistance Genes and Virulence Factors in *Staphylococcus* aureus

[426] An eight primer pair panel was designed for identification of drug resistance genes and virulence factors of *Staphylococcus aureus* and is shown in Table 19. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 19.

Table 19: Primer Pairs for Identification of Drug Resistance Genes and Virulence Factors in Staphylococcus aureus

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
879	MECA_Y14051_4507_4530_F	288	MECA Y14051 4555 4581 R	1269	mecA
2056	MECI-R_NC003923-41798- 41609_33_60_F	698	MECI-R_NC003923-41798- 41609_86_113_R	1420	MecI-R
2081	ERMA_NC002952-55890-	217	ERMA_NC002952-55890-	1167	ermA

	56621_366_395_F		56621_438_465_R		
2086	ERMC_NC005908-2004- 2738_85_116_F	399	ERMC_NC005908-2004- 2738_173_206_R	1041	ermC
2095	PVLUK_NC003923-1529595- 1531285_688_713_F	456	PVLUK_NC003923-1529595- 1531285_775_804_R	1261	Pv-luk
2249	TUFB_NC002758-615038- 616222_696_725_F	430	TUFB_NC002758-615038- 616222_793_820_R	1321	tufB
2256	NUC_NC002758-894288- 894974_316_345_F	174	NUC_NC002758-894288- 894974 396 421 R	853	Nuc
2313	MUPR_X75439_2486_2516_F	172	MUPR_X75439_2548_2574_R	1360	mupR

- [427] Primer pair numbers 2256 and 2249 are confirmation primers designed with the aim of high level identification of *Staphylococcus aureus*. The nuc gene is a *Staphylococcus aureus*-specific marker gene. The tufB gene is a universal housekeeping gene but the bioagent identifying amplicon defined by primer pair number 2249 provides a unique base composition (A43 G28 C19 T35) which distinguishes *Staphylococcus aureus* from other members of the genus *Staphylococcus*.
- [428] High level methicillin resistance in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair numbers 879 and 2056. Analyses have indicated that primer pair number 879 is not expected to prime *S. sciuri* homolog or *Enterococcus faecalis/faciem* ampicillin-resistant PBP5 homologs.
- [429] Macrolide and erythromycin resistance in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair numbers 2081 and 2086.
- [430] Resistance to mupriocin in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair number 2313.
- [431] Virulence in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair number 2095. This primer pair can simultaneously and identify the pvl (lukS-PV) gene and the lukD gene which encodes a homologous enterotoxin. A bioagent identifying amplicon of the lukD gene has a six nucleobase length difference relative to the lukS-PV gene.
- [432] A total of 32 blinded samples of different strains of *Staphylococcus aureus* were provided by the Center for Disease Control (CDC). Each sample was analyzed by PCR amplification with the eight primer pair panel, followed by purification and measurement of molecular masses of the amplification products by mass spectrometry. Base compositions for the amplification products were calculated. The base compositions provide the information summarized above for each primer pair. The results are shown in Tables 20A and B. One result noted upon un-blinding of the samples is that each of the PVL+ identifications agreed with PVL+ identified in the same samples by standard PCR assays. These results

indicate that the panel of eight primer pairs is useful for identification of drug resistance and virulence sub-species characteristics for *Staphylococcus aureus*. It is expected that a kit comprising one or more of the members of this panel will be a useful embodiment of the present invention.

Table 20A: Drug Resistance and Virulence Identified in Blinded Samples of Various Strains of Staphylococcus aureus with Primer Pair Nos. 2081, 2086, 2095 and 2256

Sample Index No.	Primer Pair No.	Primer Pair No.	Primer Pair No.	Primer Pair No
	2081 (ermA)	2086 (ermC)	2095 (pv-luk)	2256 (nuc)
CDC0010	-	-	PVL-/lukD+	+
CDC0015	-	-	PVL+/lukD+	+
CDC0019	-	+	PVL-/lukD+	+
CDC0026	+		PVL-/lukD+	+
CDC0030	+	_	PVL-/lukD+	+
CDC004	-	_	PVL+/lukD+	+
CDC0014	1	+	PVL+/lukD+	+
CDC008	-		PVL-/lukD+	+
CDC001	+	-	PVL-/lukD+	+
CDC0022	+	_	PVL-/lukD+	+
CDC006	+	-	PVL-/lukD+	+
CDC007	-		PVL-/lukD+	+
CDCVRSA1	+	-	PVL-/lukD+	+
CDCVRSA2	+	+	PVL-/lukD+	+
CDC0011	+	. –	PVL-/lukD+	+
CDC0012	-	-	PVL+/lukD-	+
CDC0021	+	-	PVL-/lukD+	+
CDC0023	+	-	PVL-/lukD+	+
CDC0025	+		PVL-/lukD+	+
CDC005	-		PVL-/lukD+	+
CDC0018	+	-	PVL+/lukD-	+
CDC002	-	-	PVL-/lukD+	+
CDC0028	+	_	PVL-/lukD+	+
CDC003	-	-	PVL-/lukD+	+
CDC0013	-	-	PVL+/lukD+	+
CDC0016	_	_	PVL-/lukD+	+
CDC0027	+	_	PVL-/lukD+	+
CDC0029	-	and the state of t	PVL+/lukD+	+

CDC0020	-	+	PVL-/lukD+	+
CDC0024	-	-	PVL-/lukD+	+
CDC0031	-	-	PVL-/lukD+	+

Table 20B: Drug Resistance and Virulence Identified in Blinded Samples of Various Strains of Staphylococcus aureus with Primer Pair Nos. 2249, 879, 2056, and 2313

Sample	Primer Pair No. 2249	Primer Pair No.	Primer Pair No.	Primer Pair No.
Index No.	(tufB)	879 (mecA)	2056 (mecI-R)	2313 (mupR)
CDC0010	Staphylococcus aureus	+	+	-
CDC0015	Staphylococcus aureus	-	***	-
CDC0019	Staphylococcus aureus	+	+	-
CDC0026	Staphylococcus aureus	+	+	•
CDC0030	Staphylococcus aureus	+	+	
CDC004	Staphylococcus aureus	+	+	-
CDC0014	Staphylococcus aureus	+	+	-
CDC008	Staphylococcus aureus	+	+	-
CDC001	Staphylococcus aureus	+	+	→
CDC0022	Staphylococcus aureus	+	+	-
CDC006	Staphylococcus aureus	4-	+	+
CDC007	Staphylococcus aureus	+	+	-
CDCVRSA1	Staphylococcus aureus	+	+	-
CDCVRSA2	Staphylococcus aureus	+	+	-
CDC0011	Staphylococcus aureus	-	-	••
CDC0012	Staphylococcus aureus	+	+	-
CDC0021	Staphylococcus aureus	+	+	-
CDC0023	Staphylococcus aureus	+	+	-
CDC0025	Staphylococcus aureus	+	+	-
CDC005	Staphylococcus aureus	+	+	-
CDC0018	Staphylococcus aureus	+	+	-
CDC002	Staphylococcus aureus	+	+	-
CDC0028	Staphylococcus aureus	+	+	-
CDC003	Staphylococcus aureus	+	+	-
CDC0013	Staphylococcus aureus	+	+	-
CDC0016	Staphylococcus aureus	+	+	-
CDC0027	Staphylococcus aureus	+	+	-
CDC0029	Staphylococcus aureus	+	+	

	Staphylococcus aureus	-	**	-
CDC0020				
	Staphylococcus aureus	+	+	-
CDC0024		•		
	Staphylococcus scleiferi	-	-	-
CDC0031				

Example 15: Selection and Use of Triangulation Genotyping Analysis Primer Pairs for Staphylococcus aureus

[433] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, a panel of eight triangulation genotyping analysis primer pairs was selected. The primer pairs are designed to produce bioagent identifying amplicons within six different housekeeping genes which are listed in Table 21. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 21.

Table 21: Primer Pairs for Triangulation Genotyping Analysis of Staphylococcus aureus

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
2146	ARCC_NC003923-2725050- 2724595_131_161_F	437	ARCC_NC003923-2725050- 2724595_214_245_R	1137	arcC
2149	AROE_NC003923-1674726- 1674277_30_62_F	530	AROE_NC003923-1674726- 1674277_155_181_R	891	aroE
2150	AROE_NC003923-1674726- 1674277_204_232_F	474	AROE_NC003923-1674726- 1674277_308_335_R	869	aroE
2156	GMK_NC003923-1190906- 1191334 301 329 F	268	GMK_NC003923-1190906- 1191334_403_432_R	1284	gmk
2157	PTA_NC003923-628885- 629355 237 263 F	418	PTA_NC003923-628885- 629355 314 345 R	1301	pta
2161	TPI_NC003923-830671- 831072 1 34 F	318	TPI_NC003923-830671- 831072_97_129_R	1300	tpi
2163	YQI NC003923-378916- 379431 142 167 F	440	YQI_NC003923-378916- 379431 259 284 R	1076	yqi
2166	YQI_NC003923-378916- 379431_275_300_F	219	YQI_NC003923-378916- 379431_364_396_R	1013	yqi

[434] The same samples analyzed for drug resistance and virulence in Example 14 were subjected to triangulation genotyping analysis. The primer pairs of Table 21 were used to produce amplification products by PCR, which were subsequently purified and measured by mass spectrometry. Base compositions were calculated from the molecular masses and are shown in Tables 22A and 22B.

Table 22A: Triangulation Genotyping Analysis of Blinded Samples of Various Strains of Staphylococcus aureus with Primer Pair Nos. 2146, 2149, 2150 and 2156

Sample		Primer Pair No.	Primer Pair No.	Primer Pair No.	Primer Pair No.
Index No.	Strain	2146 (arcC)	2149 (aroE)	2150 (aroE)	2156 (gmk)
CDC0010	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32

				γ	
CDC0015	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC0019	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC0026	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC0030	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC004	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC0014	COT	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC008	????	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC001	Mu50	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31
CDC0022	Mu50	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31
CDC006	Mu50	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31
CDC0011	MRSA252	A45 G24 C18 T28	A58 G24 C19 T51	A41 G36 C12 T43	A51 G29 C21 T31
CDC0012	MRSA252	A45 G24 C18 T28	A58 G24 C19 T51	A41 G36 C12 T43	A51 G29 C21 T31
CDC0021	MRSA252	A45 G24 C18 T28	A58 G24 C19 T51	A41 G36 C12 T43	A51 G29 C21 T31
CDC0023	ST:110	A45 G24 C18 T28	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC0025	ST:110	A45 G24 C18 T28	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC005	ST:338	A44 G24 C18 T29	A59 G23 C19 T51	A40 G36 C14 T42	A51 G29 C21 T31
CDC0018	ST:338	A44 G24 C18 T29	A59 G23 C19 T51	A40 G36 C14 T42	A51 G29 C21 T31
CDC002	ST:108	A46 G23 C20 T26	A58 G24 C19 T51	A42 G36 C12 T42	A51 G29 C20 T32
CDC0028	ST:108	A46 G23 C20 T26	A58 G24 C19 T51	A42 G36 C12 T42	A51 G29 C20 T32
CDC003	ST:107	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31
CDC0013	ST:12	ND	A59 G24 C18 T51	A40 G36 C13 T43	A51 G29 C21 T31
CDC0016	ST:120	A45 G23 C18 T29	A58 G24 C19 T51	A40 G37 C13 T42	A51 G29 C21 T31
CDC0027	ST:105	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31
CDC0029	MSSA476	A45 G23 C20 T27	A58 G24 C19 T51	A40 G36 C13 T43	A50 G30 C20 T32
CDC0020	ST:15	A44 G23 C21 T27	A59 G23 C18 T52	A40 G36 C13 T43	A50 G30 C20 T32
CDC0024	ST:137	A45 G23 C20 T27	A57 G25 C19 T51	A40 G36 C13 T43	A51 G29 C22 T30
CDC0031	***	No product	No product	No product	No product

Table 22B: Triangulation Genotyping Analysis of Blinded Samples of Various Strains of Staphylococcus aureus with Primer Pair Nos. 2146, 2149, 2150 and 2156

Sample		Primer Pair No.	Primer Pair No.	Primer Pair No.	Primer Pair No.
Index No.	Strain	2157 (pta)	2161 (tpi)	2163 (yqi)	2166 (yqi)
CDC0010	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37
CDC0015	COF	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37
CDC0019	COF	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37
CDC0026	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37

......

CDC0030 A32 G25 C23 T29 A51 G28 C22 T28 COL A41 G37 C22 T43 A37 G30 C18 T37 COL CDC004 A32 G25 C23 T29 A51 G28 C22 T28 A41 G37 C22 T43 A37 G30 C18 T37 CDC0014 COL A32 G25 C23 T29 A51 G28 C22 T28 A41 G37 C22 T43 A37 G30 C18 T37 CDC008 A37 G30 C18 T37 unknown A32 G25 C23 T29 A51 G28 C22 T28 A41 G37 C22 T43 CDC001 Mu50 A33 G25 C22 T29 A50 G28 C22 T29 A42 G36 C22 T43 A36 G31 C19 T36 CDC0022 A33 G25 C22 T29 A50 G28 C22 T29 Mu50 A42 G36 C22 T43 A36 G31 C19 T36 A33 G25 C22 T29 CDC006 Mu50 A50 G28 C22 T29 A42 G36 C22 T43 A36 G31 C19 T36 CDC0011 MRSA252 A32 G25 C23 T29 A50 G28 C22 T29 A42 G36 C22 T43 A37 G30 C18 T37 A32 G25 C23 T29 CDC0012 MRSA252 A50 G28 C22 T29 A42 G36 C22 T43 A37 G30 C18 T37 CDC0021 MRSA252 A32 G25 C23 T29 A50 G28 C22 T29 A42 G36 C22 T43 A37 G30 C18 T37 ST:110 CDC0023 A32 G25 C23 T29 A51 G28 C22 T28 A41 G37 C22 T43 A37 G30 C18 T37 CDC0025 ST:110 A32 G25 C23 T29 A51 G28 C22 T28 A41 G37 C22 T43 A37 G30 C18 T37 CDC005 ST:338 A32 G25 C24 T28 A51 G27 C21 T30 A42 G36 C22 T43 A37 G30 C18 T37 CDC0018 ST:338 A32 G25 C24 T28 A51 G27 C21 T30 A42 G36 C22 T43 A37 G30 C18 T37 CDC002 ST:108 A33 G25 C23 T28 A50 G28 C22 T29 A42 G36 C22 T43 A37 G30 C18 T37 CDC0028 ST:108 A33 G25 C23 T28 A50 G28 C22 T29 A42 G36 C22 T43 A37 G30 C18 T37 CDC003 ST:107 A32 G25 C23 T29 A51 G28 C22 T28 A41 G37 C22 T43 A37 G30 C18 T37 CDC0013 ST:12 A32 G25 C23 T29 A51 G28 C22 T28 A42 G36 C22 T43 A37 G30 C18 T37 CDC0016 ST:120 A32 G25 C24 T28 A50 G28 C21 T30 A42 G36 C22 T43 A37 G30 C18 T37 CDC0027 ST:105 A33 G25 C22 T29 A50 G28 C22 T29 A43 G36 C21 T43 A36 G31 C19 T36 CDC0029 MSSA476 A33 G25 C22 T29 A50 G28 C22 T29 A42 G36 C22 T43 A36 G31 C19 T36 CDC0020 ST:15 A33 G25 C22 T29 A50 G28 C21 T30 A42 G36 C22 T43 A36 G31 C18 T37 A51 G28 C22 T28 CDC0024 ST:137 A33 G25 C22 T29 A42 G36 C22 T43 A37 G30 C18 T37 CDC0031 *** A34 G25 C25 T25 A51 G27 C24 T27 No product No product

[435] Note: *** The sample CDC0031 was identified as *Staphylococcus scleiferi* as indicated in Example 14. Thus, the triangulation genotyping primers designed for *Staphylococcus aureus* would generally not be expected to prime and produce amplification products of this organism. Tables 22A and 22B indicate that amplification products are obtained for this organism only with primer pair numbers 2157 and 2161.

[436] A total of thirteen different genotypes of *Staphylococcus aureus* were identified according to the unique combinations of base compositions across the eight different bioagent identifying amplicons obtained with the eight primer pairs. These results indicate that this eight primer pair panel is useful for analysis of unknown or newly emerging strains of *Staphylococcus aureus*. It is expected that a kit

comprising one or more of the members of this panel will be a useful embodiment of the present invention.

Example 16: Selection and Use of Triangulation Genotyping Analysis Primer Pairs for Members of the Bacterial Genus *Vibrio*

[437] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, a panel of eight triangulation genotyping analysis primer pairs was selected. The primer pairs are designed to produce bioagent identifying amplicons within seven different housekeeping genes which are listed in Table 23. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 23.

Table 23: Primer Pairs for Triangulation Genotyping Analysis of Members of the Bacterial Genus Vibrio

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
1098	RNASEP_VBC_331_349_F	325	RNASEP VBC 388 414 R	1163	RNAse P
2000	CTXB_NC002505_46_70_F	278	CTXB_NC002505 132 162 R	1039	ctxB
2001	FUR_NC002505_87_113_F	465	FUR NC002505 205 228 R	1037	fur
2011	GYRB_NC002505_1161_1190 _F	148	GYRB NC002505 1255 1284 R	1172	gyrB
2012	OMPU_NC002505_85_110 F	190	OMPU NC002505 154 180 R	1254	Uqmo
2014	OMPU_NC002505_431_455_F	266	OMPU NC002505 544 567 R	1094	Uqmo
2323	CTXA_NC002505-1568114- 1567341_122_149_F	508	CTXA_NC002505-1568114- 1567341_186_214_R	1297	ctxA
2927	GAPA NC002505 694 721 F	259	GAPA NC 002505 29 58 R	1060	gapA

[438] A group of 50 bacterial isolates containing multiple strains of both environmental and clinical isolates of *Vibrio cholerae*, 9 other *Vibrio* species, and 3 species of Photobacteria were tested using this panel of primer pairs. Base compositions of amplification products obtained with these 8 primer pairs were used to distinguish amongst various species tested, including sub-species differentiation within *Vibrio cholerae* isolates. For instance, the non-O1/non-O139 isolates were clearly resolved from the O1 and the O139 isolates, as were several of the environmental isolates of *Vibrio cholerae* from the clinical isolates.

[439] It is expected that a kit comprising one or more of the members of this panel will be a useful embodiment of the present invention.

Example 17: Selection and Use of Triangulation Genotyping Analysis Primer Pairs for Members of the Bacterial Genus *Pseudomonas*

[440] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, a panel of twelve triangulation genotyping analysis primer pairs was selected. The primer pairs are designed to produce bioagent identifying amplicons within seven different housekeeping genes which are listed in Table 24. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 24.

Table 24: Primer Pairs for Triangulation Genotyping Analysis of Members of the Bacterial Genus

*Pseudomonas**

Primer	Forward Primer Name	Forward	Reverse Primer Name	Reverse	Target
Pair		Primer		Primer	Gene
No.		(SEQ ID	4	(SEQ ID	1
		NO:)		NO:)	
	ACS NC002516-970624-	376	ACS_NC002516-970624-	1265	acsA
2949	971013_299_316_F	1	971013_364_383_R		
	ARO_NC002516-26883-	267	ARO_NC002516-26883-	1341	aroE
2950	27380_4_26_F	İ	27380_111_128_R		
	ARO NC002516-26883-	705	ARO_NC002516-26883-	1056	aroE
2951	27380_356_377_F		27380_459_484_R		
	GUA_NC002516-4226546-	710	GUA_NC002516-4226546-	1259	guaA
2954	4226174_155_178_F		4226174_265_287_R		
	GUA_NC002516-4226546-	374	GUA_NC002516-4226546-	1111	guaA
2956	4226174_242_263_F		4226174_355_371_R		
	MUT NC002516-5551158-	545	MUT_NC002516-5551158-	978	mutL
2957	5550717_5_26_F		5550717_99_116_R		
	NUO_NC002516-2984589-	249	NUO_NC002516-2984589-	1095	nuoD
2959	2984954_8_26_F		2984954_97_117_R		
	NUO_NC002516-2984589-	195	NUO_NC002516-2984589-	1376	nuoD
2960	2984954_218_239_F		2984954_301_326_R		
	PPS_NC002516-1915014-	311	PPS_NC002516-1915014-	1014	pps
2961	1915383_44_63_F		1915383_140_165_R		
	PPS_NC002516-1915014-	365	PPS_NC002516-1915014-	1052	pps
2962	1915383 240 258 F		1915383 <u>341</u> 360_R		
	TRP_NC002516-671831-	527	TRP_NC002516-671831-	1071	trpE
2963	672273 24 42 F		672273_131_150_R		
	TRP_NC002516-671831-	490	TRP_NC002516-671831-	1182	trpE
2964	672273 261 282 F	Í	672273_362_383_R		1

- [441] It is expected that a kit comprising one or more of the members of this panel will be a useful embodiment of the present invention.
- [442] The present invention includes any combination of the various species and subgeneric groupings falling within the generic disclosure. This invention therefore includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.
- [443] While in accordance with the patent statutes, description of the various embodiments and examples have been provided, the scope of the invention is not to be limited thereto or thereby.

Modifications and alterations of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the present invention.

[444] Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims, rather than by the specific examples which have been presented by way of example.

[445] Each reference (including, but not limited to, journal articles, U.S. and non-U.S. patents, patent application publications, international patent application publications, gene bank gi or accession numbers, internet web sites, and the like) cited in the present application is incorporated herein by reference in its entirety.

CLAIMS

What is claimed is:

1. An oligonucleotide primer 14 to 35 nucleobases in length comprising at least 70% sequence identity with SEQ ID NO: 456.

- 2. An oligonucleotide primer 14 to 35 nucleobases in length comprising at least 70% sequence identity with SEQ ID NO: 1261.
- 3. A composition comprising the primer of claim 1.
- 4. The composition of claim 3 further comprising an oligonucleotide primer 14 to 35 nucleobases in length comprising at least 70% sequence identity with SEQ ID NO: 1261.
- 5. The composition of claim 4 wherein either or both of said primers comprises at least one modified nucleobase.
- 6. The composition of claim 5 wherein said modified nucleobase is 5-propynyluracil or 5-propynylutosine.
- 7. The composition of claim 4 wherein either or both of said primers comprises at least one universal nucleobase.
- 8. The composition of claim 7 wherein said universal nucleobase is inosine.
- 9. The composition of claim 4 wherein either or both of said primers further comprises a non-templated T residue on the 5'-end.
- 10. The composition of claim 4 wherein either or both of said primers comprises at least one non-template tag.
- 11. The composition of claim 4 wherein either or both of said primers comprises at least one molecular mass modifying tag.
- 12. A kit comprising the composition of claim 4.

The kit of claim 12 further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 288:1269, 698:1420, 217:1167, 399:1041, 430:1321, 174:853, and 172:1360.

- 14. The kit of claim 12 further comprising one or more calibration polynucleotides.
- 15. The kit of claim 12 further comprising at least one anion exchange functional group linked to a magnetic bead.
- 16. A method for identification of a strain of *Staphylococcus aureus* in a sample comprising: amplifying nucleic acid from said strain of *Staphylococcus aureus* using the composition of claim 4 to obtain an amplification product;

determining the molecular mass of said amplification product;

optionally, determining the base composition of said amplification product from said molecular mass; and

comparing said molecular mass or said base composition with a plurality of molecular masses or base compositions of known amplification products of strains of *Staphylococcus aureus* defined by the composition of claim 4, wherein a match between said molecular mass or base composition and a member of said plurality of molecular masses or base compositions identifies said strain of *Staphylococcus aureus*.

- 17. The method of claim 16 further comprising repeating said amplifying, determining, optionally determining, and comparing steps using at least one additional primer pair, wherein each member of said at least one additional primer pair is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 288:1269, 698:1420, 217:1167, 399:1041, 430:1321, 174:853, and 172:1360.
- 18. The method of claim 16 wherein said strain of Staphylococcus aureus is a virulent strain.
- 19. The method of claim 18 wherein said strain of Staphylococcus aureus is a virulent strain.
- 20. A method for determination of the quantity of a strain of *Staphylococcus aureus* in a sample comprising:

contacting said sample with the composition of claim 4 and a known quantity of a calibration polynucleotide comprising a calibration sequence;

concurrently amplifying nucleic acid from said a strain of *Staphylococcus aureus* and nucleic acid from said calibration polynucleotide in said sample with the composition of claim 4 to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon;

determining the molecular mass and abundance for said bacterial bioagent identifying amplicon and said calibration amplicon; and

distinguishing said bacterial bioagent identifying amplicon from said calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of said strain of *Staphylococcus aureus* in said sample.

Figure 1

Figure 3

PCT/US2006/015160

Figure 4

SEQUENCE LISTING

```
<110> Sampath, Rangarajan
      Hall, Thomas A.
      Eshoo, Mark W.
<120> COMPOSITIONS FOR IDENTIFICATION OF
      BACTERIA
<130> DIBIS-0083WO
<150> 60/674,118
<151> 2005-04-21
<150> 60/705,631
<151> 2005-08-03
<150> 60/732,539
<151> 2005-11-01
<150> 60/773,124
<151> 2006-02-13
<160> 1464
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 1
aaactagata acagtagaca tcac
                                                                    24
<210> 2
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Primer
<400> 2
aaccttaatt ggaaagaaac ccaagaagt
                                                                    29
<210> 3
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 3
aacgcacaat cagaagc
                                                                    17
```

<210> 4	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 4	
aactaccgtc cgcagttcta cttcc	25
	4.5
<210> 5	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
000	
<220>	
<223> Primer	
400 7	
<400> 5	
aactaccgtc ctcagttcta cttcc	25
<210> 6	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
<400> 6	
aagacgacct gcacgggc	10
aagacgacce gcacgggc	18
<210> 7	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 7	
aagcggtgga gcatgtgg	18
<210> 8	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 8	
aaggaaggcg tgatcaccgt tgaaga	26
-210. 0	
<210> 9	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	

2/271

<223> Primer	
<400> 9	
aaggtactcc ggggataaca ggc	23
<210> 10	
<211> 22 <212> DNA	
<212> DNA <213> Artificial Sequence	
· ·	
<220>	
<223> Primer	
<400> 10	
aagtoggaat ogotagtaat og	22
<210> 11	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 11	19
aatctgctat ttggtcagg	19
<210> 12	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 12	
acaacgaagt acaatacaag ac	22
<210> 13	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 13	
acaatacaag acaaaagaag g	21
<210> 14	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 14	
accacgccgt aaacgatga	19
<210> 15	

PCT/US2006/015160

WO 2006/116127

<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 15	
accatgacag aaggcatttt gaca	24
<210> 16	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 16	
acccagtget gctgaaccgt gc	22
<210> 17 <211> 19	
<211> 19 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 17	
accgagcaag gagaccagc	19
<210> 18	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 18	
acctgcccag tgctggaag	19
<210> 19	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 19	
acgcgaagaa ccttacc	17
<210> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

4/271

<400> 20 actcgttttt aatcagcccg	20
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 21 agaacaccga tggcgaaggc	20
<210> 22 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 22 agaatcaagt teecaggggt tac	23
<210> 23 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 23 agagtttgat catggctcag	20
<210> 24 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 24 agcaggtggt gaaatcggcc acatgatt	28
<210> 25 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 25 agcgtaaagg tgaacctt	18
<210> 26 <211> 26	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 26 agcttttgca tattatatcg agccac	
agettegea tattateteg ageeae	26
<210> 27	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 27	
aggacagagt gagtactttg accgaggt	28
<210> 28	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 28	
agtotoaaga gtgaacaogt aa	22
<210> 29	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 29	
agttataaac acggctttcc tatggcttat cc	32
<210> 30	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 30	
atactcctga ctgaccgata g	21
<210> 31	
<211> 20	
2212> DNA	
:213> Artificial Sequence	
:220>	
223> Primer	

<400> 31 atatcgacgg cggtgtttgg	20
<210> 32 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 32 atcaatttgg tggccaagaa cctgg	25
<210> 33 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 33 atgattacaa ttcaagaagg tcgtcacgc	29
<210> 34 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 34 atggacaagg ttggcaagga agg	23
<210> 35 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 35 atggccatgg cagaagctca	20
<210> 36 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 36 atgtcgattg caatccgtac ttgtg	25
<210> 37 <211> 19 <212> DNA	

<213>	Artificial Sequence	
<220>		
	Primer	
<400>		
atget	gggtt aagteeege	19
<210>	38	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	38	
	gggtt aagtcccgca acgag	25
<210><211>		
<212>		
	Artificial Sequence	
<220>	Primer	
~2232	FITHEL	
<400>		
caaaa	cttat taggtaageg tgttgaet	28
<210>	40	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	40	
	gtaag caaggacgtt teegtea	27
		41
<210>		
<211><212>		
	Artificial Sequence	
	•	
<220>		
<223>	Primer	
<400>	41	
caaagg	gtaag caaggtcgtt tccgtca	27
-210-	42	
<210> <211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Primer	

<400> 42	
caacgagcgc aaccctt	17
<210> 43	
<211> 17 <212> DNA	
<212> DNA <213> Artificial Sequence	
THE THE THE DEGREE OF THE THE THE THE THE THE THE THE THE THE	
<220>	
<223> Primer	
400 40	
<400> 43 caacggatgc tggcaag	4 50
caacggatge tggtaag	17
<210> 44	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 44	
caagaagaaa aagagcttct aaaaagaata c	31
<210> 45	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 45	
caagcaaacg cacaatcaga agc	23
<210> 46	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400- 45	
<400> 46 caagtcatca tggccctta	10
caagecacca eggeeera	19
<210> 47	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
100 47	
<400> 47	
caataccgca acagcggtgg cttggg	26
<210> 48	
<211> 19	

PCT/US2006/015160

WO 2006/116127

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 48 cactggaact gagacacgg	19
<210> 49 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 49 cagaatcaag ttcccagggg	20
<210> 50 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 50 cagagaccgt tttatcctat cagc	24
<210> 51 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 51 cagcgtttcg gcgaaatgga	20
<210> 52 <211> 29 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 52 caggagtcgt tcaactcgat ctacatgat	29
<210> 53 <211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 53 caggtttagt accagaacat gcag	24
<210> 54 <211> 23	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 54 catccacacg gtggtggtga agg	23
<210> 55	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 55	
ccacacgccg ttcttcaaca act	23
<210> 56	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 56 ccacagttct acttccgtac tactgacg	28
<210> 57	
<211> 19	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 57 ccagcagccg cggtaatac	19
<210> 58	
<211> 19	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 58	19
ccgtaacttc gggagaagg	
<210> 59	
<211> 20 <212> DNA	
CATAN DING	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 59 ccgtggtatt ggagttattg	20
<210> 60 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 60 cctatattaa tcgtttacag aaactggct	29
<210> 61 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 61 cctgataagg gtgaggtcg	19
<210> 62 <211> 30 <212> DNA <213> Artificial Sequence	
<220><223> Primer	
<400> 62 ccttacttcg aactatgaat cttttggaag	30
<210> 63 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 63 cgaagaacct tacc	14
<210> 64 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

12/271

WO 2006/116127	PCT/US2006/015160
<400> 64	
cgaagtacaa tacaagacaa aagaagg	27
<210> 65 <211> 18 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 65 cgacgcgctg cgcttcac	18
<210> 66 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 66 cgagagggaa acaacccaga cc	22
<210> 67 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 67 cgagtatagc taaaaaaata gtttatgaca	30
<210> 68 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 68 cgcaaaaaaa tccagctatt agc	23
<210> 69 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 69 cgccgacttc gacggtgacc	20
<210> 70 <211> 20	

<212> <213>	DNA Artificial Sequence	
<220>	Primer	
\ZZ32	ETIMOT	
<400>		
cggaa	ttact gggcgtaaag	20
<210>	71	
<211>		
<212>	DNA Artificial Sequence	
<220>		
<223>	Primer	
<400>	71	
cggat	tggag tetgeaacte g	21
<210>	72	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	72	
cggcgt	tactt caacgacagc ca	22
<210>	73	
<211>		
<212>		
<413 <i>></i>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	73	
cgtaac	stata acggtcctaa ggta	24
<210>	74	
<211>		
<212>		
<413>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	74	
cgtcag	ggta aattccgtga agttaa	26
<210>	75	
<211>	26	
<212>		
<213>	Artificial Sequence	
<220>	The day and the	
<443>	Primer	

14/271

<400> 75 cgtcgggtga ttaaccgtaa caaccg	26
<210> 76 <211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 76 cgtcgtgtaa ttaaccgtaa caaccg	26
<210> 77 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<pre><400> 77 cgtggcggcg tggttatcga</pre>	20
<210> 78	20
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 78	
cgtgttgact attcggggcg ttcag	25
<210> 79	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 79	
ctagtacgag aggaccgg	18
<210> 80	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 80	
ctgacacctg cccggtgc	18
<210> 81	

<	211> 24 212> DNA 213> Artificial Sequence	
	220> 223> Primer	
	400> 81	24
С	tggcaggta tgcgtggtct gatg	24
	210> 82 211> 23	
<	212> DNA	
<	213> Artificial Sequence	
	220>	
<	223> Primer	
	:400> 82 :tggctaaaa ctttggcaac ggt	23
<	210> 83	
	2211> 24	
	:212> DNA :213> Artificial Sequence	
	:220>	
	223> Primer	
	<400> 83	24
C	etgteeetag taegagagga eegg	24
	<210> 84	
	<211> 22 <212> DNA	
<	<213> Artificial Sequence	
<	<220>	
<	<223> Primer	
	<400> 84	22
(ctgttcttag tacgagagga cc	22
	<210> 85	
	<211> 24 <212> DNA	
•	<213> Artificial Sequence	
	<220>	
•	<223> Primer	
	<400> 85	24
(cttctgcaac aagctgtgga acgc	Δπ
	<210> 86	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	

<400> 86 cttgctggta tgcgtggtct gatg	24
<210> 87 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 87 cttggaggta agtctcattt tggtgggca	29
<210> 88 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 88 cttgtacaca ccgcccgtc	19
<210> 89 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 89 cttgtacttg tggctcacac ggctgtttgg	30
<210> 90 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 90 cttttgcata ttatatcgag c	21
<210> 91 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 91 gaatagcaat taatccaaat	20
<210> 92 <211> 18	

<212> DNA	
<213> Artificial Sequence	
*	
<220>	
<223> Primer	
<400> 92	
gaaagagttc ggattggg	10
gaaagageee ggaeeggg	18
<210> 93	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
VZZS/ IIIMCI	
<400> 93	
gaaggatata cggttgatgt c	24
gaaggacaca cggccgacgc c	21
<210> 94	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
4220	
<220>	
<223> Primer	
<400> 94	
gaatagcaat taatccaaat	20
<210> 95	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 95	
gacacggtcc agactcctac	20
<210> 96	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 96	
gacagttcgg tccctatc	18
	10
<210> 97	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

<400> 97 gaccacctcg gcaaccgt	18
<210> 98 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 98	
gacctacagt aagaggttct gtaatgaacc	30
<210> 99	
<211> 16 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 99	
gacgcctgcc cggtgc	16
<210> 100	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 100	
gacttaccaa cccgatgcaa	20
<210> 101	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 101	
gagagcaagc ggacctcata	20
<210> 102	
<211> 27 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 102	
gagagtttga teetggetea gaacgaa	27
<210> 103	

<211> 19	
<212> DNA <213> Artificial Sequence	
22135 ALCITICIAL BEGACIEC	
<220>	
<223> Primer	
<400> 103	19
gaggaaagtc catgetcac	
<210> 104	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 104	19
gaggaaagtc catgctcgc	
<210> 105	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 105	17
gaggaaagtc cgggctc	
<210> 106	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 106	22
gataccetgg tagtecacae eg	
<210> 107	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 107	20
gatctggagg aataccggtg	20
<210> 108	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
2205	
<220> <223> Primer	

<400> 108 gatgactttt tagctaatgg tcaggcagc	29
<210> 109 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 109 gattattgtt atcctgttat gccatttgag	30
<210> 110 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 110 gcacaacctg cggctgcg	18
<210> 111 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 111 gcactatgca cacgtagatt gtcctgg	27
<210> 112 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 112 gccttgtaca cacctcccgt c	21
<210> 113 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 113 gcgaagaacc ttaccaggtc	20
<210> 114 <211> 20	

<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> gctaca		20
.010.	115	
<210><211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	115	
gctgg	tgaaa ataacccaga tgtcgtcttc	30
<210>	116	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	116	
gcttc	aggaa tcaatgatgg agcag	25
<210>	117	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
ggacg	gagaa ggctatgtt	19
<210>	118	
<211>		
<212><213>	DNA Artificial Sequence	
<220>	Primer	
<400>		22
ggatt	agaga coctggtagt co	22
<210>		
<211>		
<212><213>	DNA Artificial Sequence	
<220>	Primer	

<400> 119 ggattagata ccctggtagt ccacgc	26
<210> 120 <211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 120 ggctcagcca tttagttacc gctat	25
<210> 121	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 121	
gggaactgaa acatctaagt a	21
<210> 122	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 122	
gggagcaaac aggattagat ac	22
<210> 123	
<211> 29	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 123	20
gggcaacagc agcggattgc gattgcgcg	29
<210> 124	
<211> 23 <212> DNA	
<212> DNA <213> Artificial Sequence	
-220-	
<220> <223> Primer	
.400. 104	
<400> 124 gggcagcgtt tcggcgaaat gga	23
	-*
<210> 125 <211> 26	
<211> 20 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 125 ggggagtgaa agagateetg aaaceg	26
<210> 126 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 126 ggggattcag ccatcaaagc agctattgac	30
<210> 127 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 127 ggggattgat atcaccgata agaagaa	27
<210> 128 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 128 ggtgaaagaa gttgcctcta aagc	24
<210> 129 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 129 ggtggatgcc ttggc	15
<210> 130 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 136	
gtggcatgcc taatacatgc aagtcg	26
<210> 137	
<211> 18 <212> DNA	
<213> Artificial Sequence	
Azis Artificial boquence	
<220>	
<223> Primer	
<400> 137	
gtgtagcggt gaaatgcg	18
-210. 120	
<210> 138 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 138	
gttatcctgt tatgccattt g	21
<210> 139	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 139	
gttatttagc actcgttttt aatcagcc	28
	20
<210> 140	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
.000	
<220> <223> Primer	
CZZ37 FIIIIIEI	
<400> 140	
gttgtgaggt taagcgacta ag	22
<210> 141	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Primer	
<400> 141	

gttgtgaggt taagcgacta ag	22
<210> 142 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 142 tctagtaata ataggaccct cagc	24
<210> 143 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 143 tatggctcta ctcaa	15
<210> 144 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 144 taaaacaaac tacggtaaca ttgatcgca	29
<210> 145 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 145 taaaactttt gccgtaatga tgggtgaaga tat	33
<210> 146 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 146 taaacacggc tttcctatgg cttatccaaa t	31
<210> 147 <211> 28 <212> DNA <213> Artificial Sequence	

PCT/US2006/015160

WO 2006/116127

<220> <223>	Primer	
<400>	147	
taaaco	ccat cgggagcaag accgaata	28
<210>	148	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
taaago	cogt gaaatgacto gtogtaaagg	30
<210>	149	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
taaagt	tggt tttattggtt ggcgcgga	28
<210>	150	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	150	
taaatc	tgcc cgtgtcgttg gtgac	25
<210>	151	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
taacaa	ctcg ccttatgaaa cgggatata	29
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
taacac	atqc aaqtcqaacq	20

<210> 153	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 153	
taaccattca agaactagat cttcaggca	29
5	2,
<210> 154	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 154	
taaccttaat tggaaagaaa cccaagaagt	30
	30
<210> 155	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 155	
taacggttat catggcccag atggg	
	25
<210> 156	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
1213 Alculicat Bequence	
<220>	
<223> Primer	
VZZJV FIIMEI	
<400> 156	
taactctgat gtttttgatg ggaaggt	
caaccetgae geeeetgaeg ggaagge	27
<210> 157	
<211> 27	
<211> 27 <212> DNA	
<213> Artificial Sequence	
varax viciliorar pedacuce	
<220>	
<223> Primer	
24425 TTTMCT	
<400> 157	
taactgcatg gaaccettet ttactag	- -
caacegeaty gaadectict ttadeag	27
<210> 158	
<210> 158 <211> 27	
<211> 27 <212> DNA	
<212> DNA <213> Artificial Sequence	
SALDE BULLIUM IN LA SECONETICA	

<220> <223>	Primer	
<400> taagaa	158 agceg gaaaccatca actaceg	27
<210><211><212>	22	
	Artificial Sequence	
<220> <223>	Primer	
<400> taagag	159 gegea eeggtaagtt gg	22
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220>	Primer	
<400> taagca	atgct gtggcttatc gtgaaatg	28
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
taagct	gcca gcggaatgct ttc	23
<210>		
<211>		
<212>		
	Artificial Sequence	
<220> <223>	Primer	
<400>		20
cuayya	tagt gcaacagaga tataccgcc	29
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
taaggt	atga caccggataa atcatataaa	30

<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 164	
taaggtttat tgtctttgtg gagatgggga ttt	33
<210> 165	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
000	
<220>	
<223> Primer	
<400> 165	
taatcaagca ttggaagatg aaatgcatac c	31
<210> 166	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(22) FIIMEI	
<400> 166	
	20
taatcggtaa atatcacccg catggtgac	29
	29
<210> 167	29
<210> 167 <211> 29	29
<210> 167 <211> 29 <212> DNA	29
<210> 167 <211> 29	29
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence	29
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence	29
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence	29
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence	29
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence	29
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167	29 29
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer	
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167	
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168	
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24</pre>	
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA</pre>	
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168	
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence</pre>	
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220></pre>	
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220></pre>	
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <220> <223> Primer</pre>	
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <220> <223> Primer <400> 168</pre>	29
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <220> <223> Primer</pre>	
<210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400 168 taatcggtaa gtatcacct catggtgat	29
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <4001 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 168 taatcgtgga atacgggttt gcta <210> 168</pre>	29
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400 168</pre> <pre><210</pre>	29
<pre><210> 167 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 167 taatcggtaa gtatcaccct catggtgat <210> 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <4001 168 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 168 taatcgtgga atacgggttt gcta <210> 168</pre>	29

<220> <223> Primer	
<400> 169 taatgaaccc taatgaccat ccacacggtg	30
<210> 170	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 170	
taatgatgaa ttaggtgcgg gttcttt	27
<210> 171	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 171	
taatgggtaa atatcaccct catggtgac	29
010 400	
<210> 172	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 172	
taattggget ettteteget taaacacett a	31
	-
<210> 173	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 173	
tacaaagcaa gacactggct cacta	25
cacaaagcaa gacaccggct cacca	25
<210> 174	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 174	
tacaaaggtc aaccaatgac attcagacta	30

<210> 175	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
2257 FIIMEL	
400. 455	
<400> 175	
tacaacatat tattaaagag acgggtttga atcc	34
<210> 176	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
7425 711MCI	
<400> 176	
tacaagcact cccagctgca	20
<210> 177	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
C2237 FILMEL	
400. 155	
<400> 177	
tacaatgctt gtttatgctg gtaaagcag	29
	29
tacaatgctt gtttatgctg gtaaagcag <210> 178	29
	29
<210> 178	29
<210> 178 <211> 25 <212> DNA	29
<210> 178 <211> 25	29
<210> 178 <211> 25 <212> DNA <213> Artificial Sequence	29
<210> 178 <211> 25 <212> DNA <213> Artificial Sequence	29
<210> 178 <211> 25 <212> DNA <213> Artificial Sequence	29
<210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer	29
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178</pre>	
<210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer	29
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg</pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179</pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg</pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179</pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA</pre>	
<pre> <210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15</pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA</pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence</pre>	
<pre> <210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220></pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <220> Primer</pre>	
<pre> <210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <221> Primer </pre>	25
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <220> Primer</pre>	
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer</pre>	25
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer</pre>	25
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer <400 179 <211> 21 15</pre> <pre><212 DNA <213> Artificial Sequence <220> <223> Primer <400> 179 tacagagttt gcgac <210> 180 <211> 21</pre>	25
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer <400 179</pre> <pre><211> 15</pre> <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 179 tacagagttt gcgac <210> 180 <211> 21 <212> DNA	25
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer <400 179 <211> 21 15</pre> <pre><212 DNA <213> Artificial Sequence <220> <223> Primer <400> 179 tacagagttt gcgac <210> 180 <211> 21</pre>	25
<pre><210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 178 tacacaacaa tggcggtaaa gatgg <210> 179 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer <400 179</pre> <pre><211> 15</pre> <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 179 tacagagttt gcgac <210> 180 <211> 21 <212> DNA	25

<223> Primer	
<400> 180 tacaggccgt gttgaacgtg g	21
<210> 181 <211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 181 tacatgctag ccgcgtctta c	21
<210> 182 <211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 182	
taccactatt aatgtcgctg gtgcttc	27
<210> 183	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 183	
taccatgaca gaaggcattt tgaca	25
<210> 184 <211> 19	
<211> 19 <212> DNA	
<213> Artificial Sequence	
Table Indicated boddened	
<220>	
<223> Primer	
<400> 184	
taccccaaac cgacacagg	19
<210> 185	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 185	
taccccaggg aaagtgccac aga	23
<210> 186	

<211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 186 taccggcgca aaaagtcgag attgg	25
<210> 187 <211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 187 tacctatatg cgccagaccg c	21
<210> 188 <211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 188 tacgatttca cttccgcagc cagatt	26
<210> 189 <211> 27	
<211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 189 tacgcgtctt gaagcgtttc gttatga 2	27
<210> 190	s /
<211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<pre><400> 190 tacgctgacg gaatcaacca aagcgg 2</pre>	26
<210> 191 <211> 21	
<211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 191 tacggtgaat acgttcccgg g	21
<210> 192 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 192 tacagagttt gcgac	15
<210> 193 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 193 tactacttca agccgaactt ccg	23
<210> 194 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 194 tactagcggt aagcttaaac aagattgc	28
<210> 195 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 195 tactctcggt ggagaagctc gc	22
<210> 196 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 196 tactggaaca aagtctgcga cc	22
<210> 197	

<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
<223>	Primer	
<400>	197	
		2 12
Lactt	actac ttcaagccga acttccg	27
.010.	100	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1.98	
	acttg agaatccaca agctgcaa	28
-acc.	acces agaacceaca ageegeaa	20
<210>	100	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	199	
tactto	ggtaa ataccaccca catggtga	28
		20
<210>	200	
<211>		
<211>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	200	
tactt	:ttta aaactaggga tgcgtttgaa gc	32
<210>	201	
<211>		
<212>		
	Artificial Sequence	
\m_1J/	Artificial bequeice	
42205		
<220>	Declaration	
<223>	Primer	
<400>		
tagaaa	itcaa ggtgatagtg gcaatga	27
<210>	202	
<211>		
<212>		
	Artificial Sequence	
~~ <i>></i>	merrana ocquence	
2220 -		
<220>	The American	
<223>		

<400> 202 tagaacaccg atggcgaagg c	21
<210> 203 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 203 tagaacgtcg cgagacagtt cg	22
<210> 204 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 204 tagactgccc aggacacgct g	21
<210> 205 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 205 tagataattg ggctctttct cgcttaaac	29
<210> 206 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 206 tagataccet ggtagtecae ge	22
<210> 207 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 207 tagatgaaaa aggcgaagtg gctaatgg	28
<210> 208 <211> 28	

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 208	
tagatgaaaa gggcgaagtg gctaatgg	28
5034054444 55505005 5 5	
<210> 209	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 209	30
tagcaacaaa tatatctgaa gcagcgtact	30
<210> 210	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
(210) Institution of the control of	
<220>	
<223> Primer	
<223> FITMET	
400 010	
<400> 210	29
tagcaggtgg tgaaatcggc cacatgatt	
<210> 211	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 211	
tagcatcaga actgttgttc cgctag	26
,	
<210> 212	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 212	24
tageceagea caatttgtga ttea	24
<210> 213	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
CHTON VITORITHOUSE ANTI	
<220>	
<223> Primer	

WO 2006/116127 PCT/US2006/015160 <400> 213 34 tagcctttaa cgaaaatgta aaaatgcgtt ttga <210> 214 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 214 27 tagcgaatgt ggctttactt cacaatt <210> 215 <211> 19 <212> DNA <213> Artificial Sequence <223> Primer <400> 215 19 tagcgtaaag gtgaacctt <210> 216 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 216 20 tagctaatgg tcaggcagcc <210> 217 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 217 30 tagctatctt atcgttgaga agggatttgc <210> 218 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 218 22 tagctggcgc gaaattaggt gt <210> 219

<211> 26 <212> DNA

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 219	
tagetggegg tatggagaat atgtet	26
<210> 220	
<211> 27	
<212> DNA <213> Artificial Sequence	
- In State S	
<220>	
<223> Primer	
<400> 220	
tagettttge atattatate gageeae	27
<210> 221	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 221	
taggaattac ggctgataaa gcgtataaa	29
<210> 222	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 222	
taggcgaaga tatacaaaga gtattagaag ctaga	35
<210> 223	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 223	
taggcgtgaa agcaagctac cgttt	25
<210> 224	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 224	

taggtgctgg ttacgcagat caaga	25
<210> 225 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 225 taggtttacg tcagtatggc gtgattatgg	30
<210> 226 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 226 tagtaccgaa gctggtcata cga	23
<210> 227 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 227 tagtacgaga ggaccgg	17
<210> 228 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 228 tagtcccgca acgagcgc	18
<210> 229 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 229 tagtgataga actgtaggca caatcgt	27
<210> 230 <211> 22 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 230	
tagttgctca aacagctggg ct	22
<210> 231	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 231	
tataagtggg taaaccgtga atatcgtgt	29
<210> 232	
<211> 24 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 232	
tatacttcaa cgcctgctgc tttc	24
<210> 233	
<211> 22	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 233	
tategeteag gegaaeteea ae	22
<210> 234	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 234	
tatgaccaaa ctcatcagac gag	23
<210> 235	
<211> 30 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 235	

43/271

tatgattaca attcaagaag gtcgtcacgc	30
<210> 236 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 236 tatgcagtgg aacgatggtt tccaaga	27
<210> 237 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 237 tatgctgacc gaccagtggt acgt	24
<210> 238 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 238 tatggccatg gcagaagctc a	21
<210> 239 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 239 tatggctcta ctcaa	15
<210> 240 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 240 tatgtccaag aagcatagca aaaaaagcaa t	31
<210> 241 <211> 27 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 241 tattcaaggt ggtcctttga tgcatgt	27
<210> 242 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 242 tattggacaa cggtcgtcgc gg	22
<210> 243 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 243 tattgtttca aatgtacaag gtgaagtgcg	30
<210> 244 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 244 tatttcacat gtaattttga tattcgcact	30
<210> 245 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 245 tcaaaaagcc ctaggtaaag agattccata tc	32
<210> 246 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 246 tcaaactggg caatcggaac tggtaaatc	29

<210> 247 <211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 247 tcaaatgtac aaggtgaagt gcgtga	26
<210> 248 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 248 tcaacaacct cttggaggta aagetcagt	29
<210> 249 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 249 tcaacctcgg cccgaacca	19
<210> 250 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 250 tcaacctgac tgcgtgaatg gttgt	25
<210> 251 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 251 tcaacgaagg taaaaaccat ctcaacg	27
<210> 252 <211> 27 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 252 tcaacggtaa cttctatgtt acttctg	27
<210> 253 <211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 253 tcaactcgaa ttttcaacag gtacca	26
<210> 254 <211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 254	
tcaagaagaa aaagagc	17
<210> 255	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 255	
tcaagcaaac gcacaatcag aagc	24
<210> 256	
<211> 27	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 256	
tcaagcagaa gctttggaag aagaagg	27
<210> 257	
<211> 27	
<212> DNA <213> Artificial Sequence	
ZETAN VICTITOTAL DEGRETICE	
<220> <223> Primer	
ZWWO C TTIMOT	
<400> 257 tcaagccgta cgtattatta ggtgctg	27

<210> 258	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 258	
tcaataccgc aacagcggtg gcttggg	27
<210> 259	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 259	
tcaatgaacg accaacaagt gattgatg	28
	40
<210> 260	
<211> 28	
<211> 20 <212> DNA	
<213> Artificial Sequence	
(213) Arciiiciai sequence	
<220>	
<223> Primer	
(223) Filmer	
<400> 260	
tcaatgaacg atcaacaagt gattgatg	28
<210> 261	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
-000	
<220>	
<223> Primer	
.400. 261	
<400> 261	
tcacatatcg tgagcaatga actg	24
010 050	
<210> 262	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 262	
caccaggtt caactcaaaa aatattaaca	30
<210> 263	
:211> 25	
:212> DNA	
213> Artificial Sequence	

<220> <223> Primer	
<400> 263 tcaccagttt gccacgtatc ttcaa	25
<210> 264 <211> 28	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 264 tcaccctcat ggtgactcat ctatttat	28
<210> 265 <211> 28	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 265	
tcaccctcat ggtgattcag ctgtttat	28
<210> 266	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 266	
tcaccgatat catggcttac cacgg	25
<210> 267	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 267	
tcaccgtgcc gttcaaggaa gag	23
<210> 268	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 268	
tcacctccaa gtttagatca cttgagaga	29

<210> 269	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
CZZO FIINCI	
1400. 260	
<400> 269	
tcacgataag aaaaccggtc aagagg	26
<210> 270	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
7227 FILMOI	
4400, 270	
<400> 270	
tcactcttac atataaggaa ggcgctc	27
<210> 271	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
7227 FILMOL	
.400. 001	
<400> 271	
tcagaccatg ctcgcagaga aactt	25
<210> 272	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<u>-</u>	
<220>	
<223> Primer	
1111101	
<400> 272	
tcagagaccg ttttatccta tcagc	25
<210> 273	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 273	
	20
tcagcaaatg catcacaaac agataa	26
070 084	
<210> 274	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
~2205	

<223> Primer <400> 274 25 tcagcatatg cacatggaac acctc <210> 275 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 275 26 tcagcatatg cacatggaac acctca <210> 276 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 276 22 tcagccatca aagcagctat tg <210> 277 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 277 21 tcagcgcgta cagtgggtga t <210> 278 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 278 25 tcagcgtatg cacatggaac tcctc <210> 279 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 279 23 tcagctacat cgactatgcg atg

PCT/US2006/015160

WO 2006/116127

<210> 280

WO 2006/116127 PCT/US2006/015160 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 280 tcagctagac cttttaggta aagctaagct 30 <210> 281 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 281 tcagctattt ttccaggtat ccaaggtgg 29 <210> 282 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 282 tcagctgtcg cagttcatgg acc 23 <210> 283 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 283 tcaggaaaag ggcattttac ccttg 25 <210> 284 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 284 tcaggagtcg ttcaactcga tctacatgat 30 <210> 285 <211> 31 <212> DNA <213> Artificial Sequence <220>

<223> Primer

<400> 285 tcaggagtcg ttcaactcga tctacatgat g	31
<210> 286 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 286 tcaggatgga aataaccacc aattcactac	30
<210> 287 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 287 tcaggcattg cggttgggat ggc	23
<210> 288 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 288 tcaggtactg ctatccaccc tcaa	24
<210> 289 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 289 tcaggtggct tacacggcgt ag	22
<210> 290 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 290 tcagtatgta tccaccgtag ccagtc	26
<210> 291	

<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	291	
tcagt	tccgt tatcgccatt gca	23
		
<210>	292	
<211>		
<212>		
	Artificial Sequence	
12107	incitional pedactice	
<220>		
	Primer	
<443>	Frimer	
400		
<400>		
tcagt	teegt tategeeatt geat	24
<210>		
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	293	
	tccgt tatcgccatt gcatt	25
00050	soogo cacogocaco geaco	45
<210>	294	
<211>		
<212>		
<213>	Artificial Sequence	
000		
<220>	_ ,	
<223>	Primer	
<400>		
tcagti	tegge ggteageget tegg	24
<210>	295	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Primer	
12207		
<400>	295	
ccagtt	cttaa tgtctcgtat gatcgaatca aaag	34
.010	006	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	

<400> 296 tcatccacac ggtggtggtg aagg	24
<210> 297 <211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 297 tcatcctaag ccaagtgtag actctgta	28
<210> 298 <211> 31	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 298	
tcatgataat atctttgaaa tcggctcagg a	31
<210> 299	
<211> 33	
<212> DNA <213> Artificial Sequence	
12157 Altificial boquence	
<220>	
<400> 299	
tcatgttgag cttaaaccta tagaagtaaa agc	33
<210> 300	
<211> 27	
<212> DNA <213> Artificial Sequence	
THE STREET SOURCE	
<220> <223> Primer	
12257 FILMEL	
<400> 300 tcattatcat gcgccaatga gtgcaga	27
<210> 301	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 301	
tcattcaaga actagatctt caggcaag	28
<210> 302	
<211> 26	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 302 tccaaaaaaa tcagcgcgta cagtgg	26
<210> 303 <211> 29	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 303 tccaaaccag gtgtatcaag aacatcagg	29
<210> 304 <211> 29 <212> DNA	
<213> Artificial Sequence <220>	
<223> Primer	
<400> 304 tccaaataag tggcgttaca aatactgaa	29
<210> 305 <211> 32	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 305 tccaacgaag tacaatacaa gacaaaagaa gg	32
<210> 306 <211> 32	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 306 tccaaggtac actaaactta cttgagctaa tg	32
<210> 307 <211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
5.4.4.3.2 PT 1992 C	

<400> 307 tccaatgcca caaactcgtg aaca	24
<210> 308 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 308 tccacacgcc gttcttcaac aact	24
<210> 309 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 309 tccacacggt ggtggtgaag g	21
<210> 310 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 310 tccaccaaga gcaagatcaa ataggc	26
<210> 311 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 311 tccacggtca tggagcgcta	20
<210> 312 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 312 tccacttatc gcaaatggaa aattaagcaa	30
<210> 313 <211> 33 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 313 tccagatgga caaattttet tagaaactga ttt	33
<210> 314 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 314 tccagcacga attgctgcta tgaaag	26
<210> 315 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 315 tccaggacaa atgtatgaaa aatgtccaag aag	33
<210> 316 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 316 tccattgttc gtatggctca agact	25
<210> 317 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 317 tcccaattaa ttctgccatt tttccaggta t	31
<210> 318 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 318	

tcccacgaaa cagatgaaga aattaacaaa aaag	34
<210> 319 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 319 tcccagctag accttttagg taaagctaag	30
<210> 320 <211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 320 tcccaggtga cgatgtacct gtaatc	26
<210> 321	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 321 tccccaggac accctgaaat ttcaac	26
<210> 322 <211> 34	
<211> 34 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 322 tccccacgc tttaattgtt tatgatgatt tgag	34
<210> 323 <211> 31	
<211> 31 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 323 tcccggactt aatatcaatg aaaattgtgg a	31
<210> 324	
<211> 28 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 324	
tcccggagct tttatgacta aagcagat	28
040 007	
<210> 325 <211> 19	
<212> DNA	
<213> Artificial Sequence	
*	
<220>	
<223> Primer	
<400> 325	
tccgcggagt tgactgggt	19
<210> 326	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 326	
tccgctgaat ctgtcgccgc	20
<210> 327	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 327	
tccggctcac gttattatgg tac	23
<210> 328	
<211> 27	
<212> DNA <213> Artificial Sequence	
varay Architetar bequence	
<220>	
<223> Primer	
<400> 328	0.77
tccgtacgta ttattaggtg ctggtca	27
<210> 329	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
-220	
<220> <223> Primer	
ADD - LETINGE	
<400> 329	

teegttateg ceattgeatt atttggaact	30
<210> 330 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 330 tccgttctta caaatagcaa tagaacttga agc	33
<210> 331 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 331 tccgttgatt attgttatcc tgttatgcca tttgag	36
<210> 332 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 332 tcctaatgga cttaatatca atgaaaattg tgga	34
<210> 333 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 333	22
<210> 334 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 334 tcctatatta atcgtttaca gaaactggct	30
<210> 335	
<211> 31	
<212> DNA <213> Artificial Sequence	

```
<220>
<223> Primer
<220>
<221> modified base
<222> (15)...(15)
<223> I
<400> 335
                                                                    31
tcctcaatga acgatcaaca agtgattgat g
<210> 336
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 336
tcctcaatga atgatcaaca agtgattgat g
                                                                    31
<210> 337
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<220>
<221> modified base
<222> (15)...(15)
<223> I
<220>
<221> modified base
<222> (24)...(24)
<223> I
<400> 337
tcctcgatga acgatcaaca agtgattgat g
                                                                    31
<210> 338
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<220>
<221> modified base
<222> (15) ... (15)
<223> I
<220>
<221> modified_base
<222> (24) ... (24)
<223> I
```

```
<400> 338
tcctcgatga atgatcaaca agtgattgat g
                                                                       31
<210> 339
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
220>
<221> modified_base
<222> (6)...(6)
<223> I
<220>
<221> modified base
<222> (15)...(15)
<223> I
<400> 339
                                                                       31
tcctcgatga acgatcaaca agtgattgat g
<210> 340
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<220>
<221> modified base
<222> (6)...(6)
<223> I
<220>
<221> modified base
<222> (12) ... (12)
<223> I
220>
<221> modified base
<222> (15)...(15)
<223> I
<220>
<221> modified base
\langle 222 \rangle (24) \dots (\overline{24})
<223> I
<400> 340
tcctcgatga acgatcaaca agtgattgat g
                                                                       31
<210> 341
<211> 20
```

<212> <213>	Artificial Sequence	
<220> <223>	Primer	
<400>		20
tcctga	aaaaa tggagcacgg	
<210>	342	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>		23
teetg	aagca agtgcattta cga	
<210>	343	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	242	
	accga cccattattc cctttatc	28
	-	
<210>		
<211>		
<212>	Artificial Sequence	
\ <u></u>	•••••••••••••••••••••••••••••••••••••••	
<220>		
<223>	Primer	
<400>	344	
	patget caaagtgett ttttagatee ttt	33
<210×		
<2112		
	Artificial Sequence	
<220:		
<2233	> Primer	
<400	> 345	
tcct	gttatc cctgaagtag ttaatcaagt ttgt	34
2710.	316	
<211:	> 346 > 35	
<212	> DNA	
<213	> Artificial Sequence	
-000		
<220:	> > Primer	

<400> 346 tectgttate cetgaagtag ttaateaagt ttgtt 3	35
<210> 347 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 347 tcctgttatt cctgaagtag ttaatcaagt ttgtta 3	36
<210> 348 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 348 tccttacttc gaactatgaa tcttttggaa g 3	31
<210> 349 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 349 tccttatagg gatggctatc agtaatgtt 2	29
<210> 350 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 350 tccttgaccg cctttccgat ac 2	22
<210> 351 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 351 tccttgcttt agttttaagt gcatgtaatt caa 3	33
<210> 352 <211> 32 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 352 tcctttgata tattatgcga tggaaggttg gt	32
<210> 353 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 353 tcctttgatg catgtaattg ctgcaaaagc	30
<210> 354 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 354 tcgaaagctt ttgcatatta tatcgagcca c	31
<210> 355 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 355 tcgaagtaca atacaagaca aaagaagg	28
<210> 356 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 356 tcgacaacac cattatctat ggtgtgaa	28
<210> 357 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 357	

tegacetttg geaggaacta gae	23
<210> 358 <211> 17	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 358 tegageagge getgeeg	17
<210> 359 <211> 31	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 359 tcgagtatag ctaaaaaaat agtttatgac a	31
	J
<210> 360 <211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 360	0.5
tcgatctggt ttcatgctgt ttcagt	26
<210> 361	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 361	
tcgatgaacg accaacaagt gattgatg	28
<210> 362	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 362 tcgattaggc agcaacgaaa gccg	24
	<u>~</u> ∓
<210> 363	
<211> 24 <212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 363 tcgcaaaaaa atccagctat tagc	24
<210> 364 <211> 26	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 364	
tegecaatea aaactaaggg aatgge	26
<210> 365	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 365	
tegecategt caccaaceg	19
<210> 366	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 366	
togoogga ggaogt	16
<210> 367	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 367	
tcgccgactt cgacggtgac c	21
<210> 368	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 368	
tcgccggcaa tgccattgga ta	22

<210><211><212>	23	
	Artificial Sequence	
<220> <223>	Primer	
<400> tagaa	369 gtgga aaaateetae get	23
<210><211><212><212><213>	31	
<220> <223>	Primer	
<400> tcgcgl		31
<210><211><212><213>	24	
<220> <223>	Primer	
<400> tcgcta	371 acagg ccctttagga caag	24
<210><211><211><212><213>	27	
<220> <223>	Primer	
<400> tcgcta	372 atctt atcgttgaga agggatt	27
<210><211><212><213>	24	
<220> <223>	Primer	
<400> tcggaa	373 atctg atgttgcagt tgtt	24
<210><211><212><212><213>	22	

<220> <223> Primer	
<400> 374 teggeegeac etteategaa gt	22
<210> 375 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 375 teggegaaat eegtatteet gaaaatga	28
<210> 376 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 376 tcggcgcctg cctgatga	18
<210> 377 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 377 tcgggtgatg atgcgcgtga agg	23
<210> 378 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 378 toggtttagt aaaagaacgt attgctcaac c	31
<210> 379 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 379	28

<210> 380 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 380 tegtatgget caatggtgga g	21
<210> 381 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 381 tegtettttt gattetttee etgataatge	30
<210> 382 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 382 tegtetttt gattetttee etgataatge te	32
<210> 383 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 383 tegtgattat ggatggcaac gtgaa	25
<210> 384 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 384 tcgtgcccgc aatttgcata aagc	24
<210> 385 <211> 21 <212> DNA <213> Artificial Sequence	
<220>	

71/271

<223> Primer	
<400> 385 tcgtggcggc gtggttatcg a	21
<210> 386 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 386 tcgtgttgaa cgtggtcaaa tcaaagt	27
<210> 387 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 387 tcgttcctgg aacacgatga cgc	23
<210> 388 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 388 tcgtttggtg gtggtagatg aaaaagg	27
<210> 389 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 389 tccaccctca a	11
<210> 390 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 390 tctaaaacac caggtcaccc agaag	25
<210> 391	

<211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 391 tctaaatggt cgtgcagttg cgtg	24
<210> 392 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 392 totactgatt ttggtaatct tgcagcacag	30
<210> 393 <211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 393 tctagtaata ataggaccet cage	24
<210> 394 <211> 31	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 394 tctcaaggtg atattggtgt aggtaactta a	31
<210> 395 <211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 395 tctcattacg ttgcatcgga aaca	24
<210> 396 <211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	

<400> 396 tctcgatgaa cgaccaacaa gtgattgatg	30
<210> 397 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 397 tctcgtggtg cacaagtaac ggatatta	28
<210> 398 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 398 tctgaaatga atagtgatag aactgtaggc ac	32
<210> 399 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 399 totgaacatg ataatatott tgaaatoggo to	32
<210> 400 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 400 tctgaatgtc tatatggagg tacaacacta	30
<210> 401 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 401 tetgacaeet geeeggtge	19
<210> 402 <211> 20	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 402 tetgecegtg tegttggtga	20
<210> 403	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 403	2.4
totggaggca caccaaataa aaca	24
<210> 404	
<211> 21	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
CAZON FILMEL	
<400> 404	21
tetggataac ggtegtegeg g	2.1
<210> 405	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 405	
tctggcaggt atgcgtggtc tgatg	25
210. 406	
<210> 406 <211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 406	
tctggctaaa actttggcaa cggt	24
<210> 407	
<211> 29	
<212> DNA <213> Artificial Sequence	
ZID ALCILICIAL DOQUENCE	
<220>	
<223> Primer	

<400> 407 tctggtccaa caaaaggaac gattacagg	29
<210> 408 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 408 tctgtcccta gtacgagagg accgg	25
<210> 409 <211> 23	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 409 tctgttctta gtacgagagg acc	23
<210> 410 <211> 26	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 410 tcttatgcca agaggacaga gtgagt	26
<210> 411	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 411	
tcttatgcca agaggacaga gtgagtact	29
<210> 412	
<211> 31	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 412	2 2
tettatteea aetteaaace gaactatgae g	31
<210> 413	
<211> 29	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 413 tetteteate etatggetat tatgettge	29
<210> 414 <211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 414	
tettgataet tgtaatgtgg gegataaata tgt	33
<210> 415	
<211> 32	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 415	
tcttgcagca gtttatttga tgaacctaaa gt	32
<210> 416	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 416	0.0
tettgetett tegtgagtte agtaaatg	28
<210> 417	
<211> 31 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 417	
tettgtaett gtggeteaca eggetgtttg g	31
<210> 418	
<211> 27 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<220> <223> Primer	
<400> 418	

77/271

tcttgtttat gctggtaaag cagatgg	27
<210> 419	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 419	
tctttatggt ggagatgact gaaaccga	28
<210> 420	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 420	
tctttcttga atgctggtgt acgtatcg	28
<210> 421 <211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 421	25
tctttgaaat cggctcagga aaagg	د ک
<210> 422	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 422	
tctttgccat tgaagatgac ttaagc	26
<210> 423	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 423	
tcttttacaa aaggggaaaa agttgactt	29
<210> 424	
<211> 34	
<212> DNA	
<213> Artificial Seguence	

<220> <223> Primer	
<400> 424 tgaaaaatgt ccaagaagca tagcaaaaaa agca	34
<210> 425 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 425 tgaaaagggt gaagtagcaa atggagatag	30
<210> 426 <211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 426 tgaaaagtat ggatttgaac aactcgtgaa ta	32
<210> 427	
<211> 27	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 427	
tgaaatctca ttacgttgca tcggaaa	27
<210> 428	
<211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 428	
tgaaattgct acaggccctt taggacaagg	30
<210> 429	
<211> 25	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 429	
tgaacgctgg tggcatgctt aacac	25

<210> 430	
:211> 30	
<212> DNA	
213> Artificial Sequence	
<220>	
<223> Primer	
<400> 430	
tgaacgtggt caaatcaaag ttggtgaaga	30
1944C9C999	
<210> 431	
<211> 31	
<211> 31 <212> DNA	
<213> DNA <213> Artificial Sequence	
SZIS> ALTITICIAI Bedgence	
<220>	
<223> Primer	
<400> 431	31
tgaacgtggt caaatcaaag ttggtgaaga a	
<210> 432	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 432	
tgaagcttgt tctttagcag gacttca	27
<210> 433	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
(213) Indiana Dages	
<220>	
<223> Primer	
SSS25 ETTINGT	
<400> 433	
tgaaggtgga cgtcacactc cattette	28
tgaaggtgga tgttacatte tattette	
010. 424	
<210> 434	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 434	26
tgaagtagaa atgactgaac gtccga	20
<210> 435	
<211> 28	
<212> DNA	
-213 Artificial Sequence	

<220> <223> Primer	
<400> 435 tgaagtagaa ggtgcaaagc aagttaga	28
<210> 436 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 436 tgaagtgcgt gatgatatcg atgcacttga tgta	34
<210> 437 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 437 tgaatagtga tagaactgta ggcacaatcg t	31
<210> 438 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 438 tgaatgctta tttacctgca ctcccacaac t	31
<210> 439 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 439 tgaattagtt caatcatttg ttgaacgacg t	31
<210> 440 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 440 tgaattgctg ctatgaaagg tggctt	26

<210> 441 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 441 tgacagcgaa gaaggttaga cttgtcc	27
<210> 442 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 442 tgacatccgg ctcacgttat tatggt	26
<210> 443 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 443 tgacatccgg ctcacgttat tatggta	27
<210> 444 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 444 tgacatccgg ctcacgttat tatggtac	28
<210> 445 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 445 tgacatgata ataaccgatt gaccgaaga	29
<210> 446 <211> 22 <212> DNA <213> Artificial Sequence	
<220>	

82/271

<223> Primer	
<400> 446	
tgacatgctt gtccgttcag gc	22
<210> 447	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 447	31
tgacatggac tececetata taaetettga g	31
<210> 448	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 448	
tgaccaggtg atggccatgt tcg	23
<210> 449	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 449	
tgacctacag taagaggttc tgtaatgaac c	31
<210> 450	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 450	
tgacgatett egeggtgact agt	23
<210> 451	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 451	
tgacggccta tacggtgttg gtttct	26
<210> 452	

<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tgacgt	catc ggtaagtacc accc	24
<210>	453	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	453	
tgagat	ggat ttaaacctgt tcaccgc	27
<210>	454	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>	454	
tgagat	tgct gaacatttaa tgctgattga	30
<210>	455	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>		32
rgagea	aatgg ggctttgaaa gaatttttaa at	22
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	456	
	tgcat caactgtatt ggatag	26
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	

<400> 457 tgagctttta gttgactttt tcaacagc	28
<210> 458 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 458 tgaggaccgt gtcgcgctca	20
<210> 459 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 459 tgagggtttt atgcttaaag ttggttttat tggtt	35
<210> 460 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 460 tgaggtggtg gataactcaa ttgatgaagc	30
<210> 461 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 461 tgagtaacat ccatatttct gccatacgt	29
<210> 462 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 462 tgagtaagtt ccacccgcac gg	22
<210> 463	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 463 tgagtcactt gaagttgata caaatcctct	30
<210> 464 <211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 464 tgagtgatga aggccttagg gttgtaaa	28
<210> 465 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 465 tgagtgccaa catatcagtg ctgaaga	27
<210> 466 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 466 tgagtttaac agttcaccat atgaaacagg	30
<210> 467 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 467 tgatacttca acgcetgetg ctttc	25
<210> 468 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	

86/271

<400> 468 tgatcactgg tgctgctcag atgga	25
<210> 469 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 469 tgatcatccg tggtataacg atttattagt	30
<210> 470	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 470	29
tgatcgttga gaagggattt gcgaaaaga	20
<210> 471	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 471 tgatctcaga atctaataat tgggacgaa	29
<210> 472	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 472 tgatcttaaa aatttccgcc aacttcattc	30
<210> 473	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 473	
tgatgacttt ttagctaatg gtcaggcagc	30
<210> 474	
<211> 29 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
1999 ETTINGT	
<400> 474	
tgatggcaag tggatagggt ataatacag	29
	29
<210> 475	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(22) IIIMCI	
<400> 475	
tgattaccat gagtggcaag caag	24
	24
<210> 476	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
ADD TITING	
<400> 476	
tgattattgt tatcctgtta tgccatttga g	31
	5.1
<210> 477	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 477	
tgattccggt gcccgtggt	19
<210> 478	
<211> 19	
<212> DNA <213> Artificial Sequence	
varas variational sequence	
<220>	
<223> Primer	
<400> 478	
tgattctggt gcccgtggt	19
2010 470	
<210> 479 <211> 34	
<211> 34 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 479	

tgattttgct aaatttagag aaattgcgga tgaa	34
<210> 480 <211> 24 <212> DNA	•
<213> Artificial Sequence	
<220> <223> Primer	
<400> 480 tgcaaaatct gcaacgagct ttgg	24
<210> 481 <211> 23	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 481 tgcaaaggag gtactcagac cat	23
<210> 482	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 482	
tgcaagcaaa cgcacaatca gaagc	25
<210> 483	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 483	
tgcaagegeg accacataeg	20
<210> 484	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 484	
tgcaagcttc tggtgctagc att	23
<210> 485	
<211> 24	
<212> DNA <213> Artificial Sequence	
rarar uncurrat acducince	

:220> :223> Primer	
<pre><400> 485 :gcaagtggt acttcaacat gggg</pre>	24
<210> 486 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 486 tgcaagttaa gaaagctgtt gcaggtttat	30
<210> 487	
<211> 33	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 487 tgcaattgct ttagttttaa gtgcatgtaa ttc	33
<210> 488	
<211> 31	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 488	31
tgcacaatca gaagctaaga aagcgcaagc t	
<210> 489	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 489	2.4
tgcacacgcc gttcttcaac aact	24
<210> 490	
<211> 22	
<212> DNA <213> Artificial Sequence	
<57135 WICHTIGTON podagage	
<220> <223> Primer	
CSSSS ETTHET	
<400> 490 tgcacatcgt gtccaacgtc ac	22
packorona a marana na .	

<210><211><211><212><213>	32	
<220>	Primer	٠
<400> tgcaco	491 egget attaagaatt actttgecaa et	32
<210> <211> <212> <213>	23	
<220> <223>	Primer	
<400> tgcacç	492 gatgc ggaatggttc aca	23
<210> <211> <212> <213>	28	
<220> <223>	Primer	
<400> tgcacq	493 gccga ctatgttaag aacatgat	28
<210> <211> <212> <213>	30	
<220> <223>	Primer	
<400> tgcact	494 ttatc gcaaatggaa aattaagcaa	30
<210> <211> <212> <213>	21	
<220> <223>	Primer	
<400> tgcago	495 ggaac agctttaggc a	21
<210><211><211><212><213>	22	

WO 2006/116127	PCT/US2006/015160
<220> <223> Primer	
<400> 496	
tgcatacaaa cagtcggagc ct	22
<210> 497	
<211> 23 <212> DNA	
<213> Artificial Sequence	
-	
<220> <223> Primer	
<400> 497	
tgcataccgg taagttggca aca	23
<210> 498	
<211> 27	
<212> DNA <213> Artificial Sequence	
1213/ Altilitial Sequence	
<220>	
<223> Primer	
<400> 498	
tgcatattat atcgagccac agcatcg	27
<210> 499	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 499	
tgcattattt ggaactattg caactgctaa tgc	33
<210> 500	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
.400. 500	
<400> 500 tgccaagagg acagagtgag tactttga	0.0
egocaagagg acagagegag tactitiga	28
<210> 501	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	,
<400> 501	
tgccggacaa ttacgattca tcgagtatta a	31

<210> 502	
<211> 33	
<212> DNA <213> Artificial Sequence	
SST35 WICITIOTAL GOMAGNA	
<220>	
<223> Primer	
<400> 502	33
tgccgtaatg ataggtgaag atatacaaag agt	
<210> 503	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 503	•
tgccgtgttg aacgtggtca aat	23
<210> 504	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
000	
<220> <223> Primer	
<223> FIIMEL	
<400> 504	22
tgcctagaag atcttaaaaa tttccgccaa ctt	33
<210> 505	
<211> 33	
<212> DNA <213> Artificial Sequence	
SST32 WICHTIGIAL poduonos	
<220>	
<223> Primer	
<400> 505	33
tgcctatctt tttgctgata tagcacatat tgc	
<210> 506	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 506	
tgcctcgaag ctgaatataa ccaagtt	27
<u> </u>	
<210> 507	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
\40v/	

223> Primer	
<400> 507	
geetgtagg gaateetget ga	22
<210> 508	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 508	25
tgcctgttct tagtacgaga ggacc	~ 0
<210> 509	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 509	23
tgcgcagctc ttggtatcga gtt	43
<210> 510	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 510	20
tgcgcggaag atgtaacggg	20
<210> 511	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 511	30
tgcggatcgt ttggtggttg tagatgaaaa	30
<210> 512	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 512	
tgcgggtagg gagcttgagc	20
<210> 513	

<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 513	
tgcgtacaat acgctttatg aaattttaac a	31
<210> 514	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
.000	
<220> <223> Primer	
<223> PIIMEL	
<400> 514	
tgcgtataaa aaacacagat ggcagca	27
egegeaeaaa aaaoacagaa ggoagoa	
<210> 515	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
<400> 515	
tgcgtttacc gcaatgcgtg c	21
<210> 516	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
100 500	
<400> 516	29
tgctacggta ggatctcctt atcctattg	23
<210> 517	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
Cally Alterrated bequence	
<220>	
<223> Primer	
<400> 517	
tgctagtcaa tctatcattc cggttgatac	30
<210> 518	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

95/271

<400> 518 tgctagttat ggtacagagt ttgcgac	27
<210> 519 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 519 tgctatggtg ttaccttccc tatgca	26
<210> 520 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 520 tgctcaaccc gatcctaaat tagacga	27
<pre> <210> 521 <211> 27 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 521 tgctcaatct aaacctaaag tcgaaga	27
<210> 522 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 522 tgctcgagtg attgactttg ctaaatttag aga	33
<210> 523 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 523 tgctcgtaag ggtctggcgg atac	24
<210> 524 <211> 29	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 524 tgctcgtggt gcacaagtaa cggatatta	29
<210> 525 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 525 tgctgaggcc tggaccgatt atttac	26
<210> 526 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 526 tgctggtaac agagccttat aggcgca	27
<210> 527 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 527 tgctggtacg ggtcgagga	19
<210> 528 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 528 tgctggtgaa aataacccag atgtcgtctt c	31
<210> 529 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 529 32 tgctgtagct tatcgcgaaa tgtctttgat tt <210> 530 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 530 28 tgcttattta cctgcactcc cacaactg <210> 531 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 531 26 tgcttcagga atcaatgatg gagcag <210> 532 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 532 27 tgcttcggat ccagcagcac ttcaata <210> 533 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 533 19 tgcttctggt gctagcatt <210> 534 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 534 32 tgctttccta tggcttatcc aaatttagat cg <210> 535 <211> 29 <212> DNA

PCT/US2006/015160

WO 2006/116127

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 535	
tgcttttgat ggtgatgcag atcgtttgg	29
<210> 536	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 536	
tggaaagcca tgcgtctgac atct	24
<210> 537	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 537	
tggaaaggtg ttgcagctac tca	23
<210> 538	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 538	
tggaaatggc agctagaata gtagctaaaa t	31
<210> 539	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 539	
tggaacaaaa tagtctctcg gattttgact	30
<210> 540	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 540	

33 tggaacagga attaattctc atcctgatta tcc <210> 541 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 541 30 tggaacgtta tcaggtgccc caaaaattcg <210> 542 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 542 23 tggaactatt gcaactgcta atg <210> 543 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 543 30 tggaacttga agctctcgct cttaaagatg <210> 544 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 544 19 tggaagatct gggtcaggc <210> 545 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 545 22 tggaagtcat caagcgcctg gc <210> 546 <211> 30 <212> DNA <213> Artificial Sequence

PCT/US2006/015160

WO 2006/116127

<220> <223> Primer	
100 516	
<400> 546 tggaataaca aaacatgaag gaaaccactt	30
<210> 547	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 547	
tggaatgatg ataaagattt cgcagatagc ta	32
<210> 548	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 548	
tggacaatag acaatcactt ggatttaca	29
<210> 549	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 549	
tggacacata tcgtgagcaa tgaactga	28
<210> 550	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 550	
tggacggcat cacgattctc tac	23
210, FF1	
<210> 551 <211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
100 554	
<400> 551 tggactcctc ggtggtcgc	19
<u> </u>	

<210> <211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>		
tggago	cacgg cttctgatc	19
<210>	553	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	553	
tggago	ettga agetateget ettaaagatg	30
<210>	554	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	554	
		22
<210>	555	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>	555	
		25
<210>	556	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>	556	
		26
<210>	557	
<211>		
<212>		
	Artificial Sequence	

WO 2006/116127	PCT/US2006/015160
<220> <223> Primer	
<400> 557 tggatggcat ggtgaaatgg atatgtc	27
<210> 558 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 558 tggatgggga ttagcggtta caatg	25
<210> 559 <211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 559 tggatgttaa gggtgatttt cccgaa	26
<210> 560 <211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 560 tggattagag accctggtag tcc	23
<210> 561 <211> 19	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	•
<400> 561	
tggcacggcc atctccgtg	19
<210> 562 <211> 34 <212> DNA	
<pre><213> Artificial Sequence</pre>	
<pre><220> <223> Primer</pre>	
:400> 562 :ggcactett geetttaata ttagtaaaet atea	34

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tggcag	ctag aatagtagct aaaatcccta c	31
<210>	564	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	564	
tggcag	sttt acaaggtgct gtttcatc	28
<210>	565	
<211>	31	
<212>	DNA	
	Artificial Sequence	
	*	
<220>		
<223>	Primer	
1		
<400>	565	
		31
055000		
<210>	566	
<211>		
<212>		
	Artificial Sequence	
12107	THE OFFICE AND ACTION	
<220>		
	Primer	
\44J/	TIMOI	
<400>	ECC	
		24
cggcce	agogo ttoggtgaaa tgga	
<210>	567	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<423>	FITHER	
-100:	5.47	
<400>		21
rageco	gaaa gaagetgage g	<u>с</u> , т
.010	ECO.	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		

WO 2006/116127	PCT/US2006/015160
<223> Primer	
<400> 568 tggcctaatg ggcttaatat caatgaaaat tg	32
<210> 569 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 569 tggcgaacct ggtgaacgaa gc	22
<210> 570 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 570 tggcgagtgg atagggtata atacag	26
<210> 571 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 571 tggcgtagta gagctattta cagacac	27
<210> 572 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 572 tggcaagtgg atagggtata atacag	26
<210> 573 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 573 tggctccttg gtatgactct gcttc	25
<210> 574	

<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 574	
tggctgacat cctacatgac tgtga	25
0990094044 000404-3	
<210> 575	
<211> 31	
<211> J1 <212> DNA	
<213> Artificial Sequence	
57132 WIGHTEGAT podromon	
<220>	
<223> Primer	
<552> BITHET	
400. 575	
<400> 575	31
tggcttatcc aaatttagat cgtggtttta c	
A	
<210> 576	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 576	30
tgggacttga agctatcgct cttaaagatg	30
<210> 577	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 577	
tgggatgaaa aagcgttctt ttatccatga	30
-555 5 5 5	
<210> 578	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
72137 1110011100111 = 1	
<220>	
<223> Primer	
7227 4 E E E E E E E E E E E E E E E E E E	
<400> 578	
tgggattatt gttatcctgt tatgccattt gaga	34
Lyggactatt getateeege taegeoatta gaga	
.010. 570	
<210> 579	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

<400> 579 tgggatttta aaaaacattg gtaacatcgc ag	32
<210> 580 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 580 tgggcaacag cagcggattg cgattgcgcg	30
<210> 581 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 581 tgggcagcgt ttcggcgaaa tgga	24
<210> 582 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 582 tgggcctaat gggcttaata tcaatgaaaa ttg	33
<210> 583 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 583 tgggcgatgc tgcgaaatgg ttaaaaga	28
<210> 584 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 584 tgggcgtgag caatgaactg attatac	27
<210> 585	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 585 tgggcgtgga acgtccac	18
tgggtgtgga atggtooks	
<210> 586	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 586	24
tgggctcttt ctcgcttaaa cacc	24
<210> 587	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 587	25
tgggctcttt ctcgcttaaa cacct	25
<210> 588	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 588	31
tggggattca gccatcaaag cagctattga c	31
<210> 589	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 589	28
tggggattga tatcaccgat aagaagaa	20
<210> 590	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

<400> 590 tggggcttta aatattccaa ttgaagattt tca	33
<210> 591 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 591 tggggctttg ctttatagtt ttttacattt aag	33
<210> 592 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	,
220> <221> modified_base <222> (5)(5) <223> I	
<220> <221> modified_base <222> (14)(14) <223> I	
<400> 592 tgggtgatgc tgctaaatgg ttaaaaga	28
<210> 593	
<211> 35 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 593	
tgggtcgtgg ttttacagaa aatttcttat atatg	35
<210> 594	
<211> 28	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 594 tgggtgacat tcatcaattt catcgttc	
	28
<210> 595	
<211> 32 <212> DNA	

PCT/US2006/015160

WO 2006/116127

<213> Artificial Sequence <220> <223> Primer <400> 595 32 tgggtttaca catatcgtga gcaatgaact ga <210> 596 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 596 25 tggtaaatac cacccacatg gtgac <210> 597 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 597 24 tggtaacaga gccttatagg cgca <210> 598 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 598 28 tggtaacaga gccttatagg cgcatatg <210> 599 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 599 30 tggtaagagc gcaccggtaa gttggtaaca <210> 600 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 600

PCT/US2006/015160

WO 2006/116127

tggtac	agag tttgcgac	18
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tggtac	atgt gccttcattg atgctg	26
<210>	602	
<211>	18	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	602	
tggtac	agag tttgcgac	18
<210>	603	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	603	
tggtad	etcac ttagcgggtt tccg	24
<210>	604	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	604	
	gata tgatgcctgc acca	24
<210>	605	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	605	
	gegt ggtetgatgg c	21
<210>		
<211><212>		
	Artificial Sequence	

PCT/US2006/015160

WO 2006/116127

<220> <223> Primer	
<400> 606 tggtattcta ttttgctgat aatgacctcg c	31
<210> 607 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 607 tggtcaaatc aaagttggtg aagaa	25
<210> 608 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 608 tggtcttatg ccaagaggac agagtgagt	29
<210> 609 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 609 tggtgactcg gcatgttatg aagc	24
<210> 610 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 610 tggtgacttc ataatggatg aagttgaagt	30
<210> 611 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 611 tggtgcgagt gcttatgctc gtattat	27

<pre><210> 612 <211> 13 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 612 tggtgctagc att	13
<210> 613 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 613 tggtgctttc tggcgcttaa acga	24
<210> 614 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 614 tggtggacat ttaacacatg gtgcaaa	27
<210> 615 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 615 tggtggtgaa atagatagga ctgctt	26
<210> 616 <211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 616 tggtgctagc att	13
<210> 617 <211> 26 <212> DNA <213> Artificial Sequence	

PCT/US2006/015160 WO 2006/116127 <220> <223> Primer <400> 617 tggttatcgc tcaggcgaac tccaac 26 <210> 618 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 618 tggttatgta ccaaatactt tgtctgaaga tgg 33 <210> 619 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 619 tggtttagat aattccttag gatctatgcg t 31 <210> 620 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> modified base <222> (3)...(3) <223> I <220> <221> modified_base <222> (6)...(6) <223> I <220> <221> modified_base <222> (9)...(9) <223> I <220> <221> modified base <222> (12)...(13) <223> I <220> <221> modified base <222> (15)...(15) <223> I

<400> 620 tgtcctactg tttgtggttc tgtaatgaac c	31
<210> 621 <211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 621 tgtaactatc accegcacgg tgat	24
<210> 622 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 622	
tgtaagetet acaacccaca aaaccttacg	30
<210> 623 <211> 30	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 623 tgtaatgaac cctaatgacc atccacacgg	30
<210> 624 <211> 31	
<211> 31 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 624 tgtacccgct gaattaacga atttatacga c	31
<210> 625	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 625	
gtactcggt aagtatcacc cgca	24
2210 > 626	
:211> 21 :212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 626 tgtactgcta tccaccctca a	21
<210> 627 <211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 627	
tgtageeget aageactace atee	24
<210> 628	
<211> 30	
<212> DNA <213> Artificial Sequence	
<213> ALCITICIAL Sequence	
<220>	
<223> Primer	
<400> 628	
tgtagcttat cgcgaaatgt ctttgatttt	30
<210> 629 <211> 33	
<212> DNA	
<213> Artificial Sequence	
000.	
<220> <223> Primer	
(4237 112mol	
<400> 629	33
tgtatggtgg tgtaacgtta catgataata atc	33
<210> 630	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 630	
tgtattaggg gcatacagtc ctcatcc	27
<210> 631	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 631	

tgtcaaagtg gcacgtttac tggc	24
<210> 632	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 632	
tgtcatgggt aaatatcacc ctca	
ogeodeggge dadeecace cod	24
<210> 633	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 633	
tgtccaagaa gcatagcaaa aaaagcaa	
5	28
<210> 634	
<211> 23	
<212> DNA <213> Artificial Sequence	
12137 Altilitial Sequence	
<220>	
<223> Primer	
<400> 634	
tgtcgatgca acgcgaagaa cct	
	23
<210> 635	
<211> 25	
<212> DNA <213> Artificial Sequence	
varan variational pedreinge	
<220>	
<223> Primer	
<400> 635	
tgtcggtaca cgatattett cacga	
55 55 55 55 55 55 55 55 55 55 55 55 55	25
<210> 636	
<211> 27	
<pre><212> DNA <213> Artificial Sequence</pre>	
Architetar Sequence	
220>	
223> Primer	
:400> 636	
gtgaataaa tcacgattga ttgagca	27
	27
210> 637	
211> 26 212> DNA	
212> DNA 213> Artificial Sequence	

<220> <223> Primer	
<400> 637 tgtggagtaa cactgcatga aaacaa	26
<210> 638 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 638 tgtggtcaaa tcaaagttgg tgaagaa	27
<210> 639 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 639 tgttcaagag ctagatcttc aggca	25
<210> 640 <211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 640 tgttcaagag ctagatcttc aggcaa	26
<210> 641 <211> 28	
<211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 641	
tgttcgctgt ttcacaaaca acattcca	28
<210> 642 <211> 32	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 642 tgttctttag caggacttca caaacttgat aa	
-goodday caggaddda daadddga aa	32

```
<210> 643
  <211> 29
  <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
 <400> 643
 tgttgaacgt ggtcaaatca aagttggtg
                                                                     29
 <210> 644
 <211> 31
 <212> DNA
 <213> Artificial Sequence
 <223> Primer
 <400> 644
 tgttgggagt attccttacc atttaagcac a
                                                                     31
 <210> 645
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
 <400> 645
 tgttggtgct ttctggcgct taa
                                                                     23
<210> 646
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 646
tccttgttgt cctactgttt gtggttctgt aatgaacc
                                                                    38
<210> 647
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<220>
<221> modified_base
<222> (7)...(7)
<223> I
<220>
<221> modified_base
<222> (10)...(10)
```

```
<223> I
<220>
<221> modified_base
<222> (13)...(13)
<223> I
<220>
<221> modified_base
<222> (16) ... (16)
<223> I
<220>
<221> modified base
<222> (19)...(20)
<223> I
<220>
<221> modified base
<222> (22)...(22)
<223> I
<400> 647
ttaaagttgg ttttattggt tggcgcgga
                                                                    29
<210> 648
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 648
ttaacatgaa ggaaaccact ttgataatgg
                                                                    30
<210> 649
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 649
ttaacggtta tcatggccca gatggg
                                                                    26
<210> 650
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 650
ttaagtcccg caacgagcgc aa
                                                                    22
<210> 651
<211> 22
<212> DNA
```

<213> Artificial Sequence	
<220> <223> Primer	
<400> 651	22
ttaagtcccg caacgatcgc aa <210> 652	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 652 ttaatttgcc aaaaatgcaa ccaggtag	28
<210> 653 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 653 ttacacatat cgtgagcaat gaactga	27
<210> 654 <211> 31	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 654 ttacaggaag tttaggtggt aatctaaaag g	31
<210> 655 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 655 ttactccatt attgcttggt tacactttcc	30
<210> 656 <211> 35	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400× 656	

ttataactta ctgcaatcta ttcagttgct tggtg	35
<210> 657 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 657 ttataccgga aacttcccga aaggag	26
<210> 658 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 658 ttatcagcta gaccttttag gtaaagctaa gc	32
<210> 659 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 659 ttatcgctca ggcgaactcc aac	23
<210> 660 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 660 ttatcgtttg tggagctagt gcttatgc	28
<210> 661 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 661 ttatgaagcg tgttctttag caggacttca	30
<210> 662 <211> 25 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 662 ttatggatgg caacgtgaaa cgcgt	25
<210> 663 <211> 21	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 663 ttattgttat cctgttatgc c	21
<210> 664 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 664 ttatttacct gcactcccac aactg	25
<210> 665 <211> 33	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 665 ttcaaaaact ccaggccatc ctgaaatttc aac	33
<210> 666 <211> 28	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 666 ttcaacaggt accaatgatt tgatctca	28
<210> 667 <211> 28	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 667 ttcccaccga tatcatggct taccacgg	28

<210>	668	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
400		
<400>		25
tteegi	caagt cggctaaaac agtcg	
<210>	669	
<211>		
<212>		
	Artificial Sequence	
\m_20'		
<220>		
<223>	Primer	
<400>	669	
ttcct	ccttt tgaaagcgac ggtt	24
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
550		
<220>	The desired	
<423>	Primer	
<400>	670	
	eggee geetgge	17
	39900 3000930	
<210>	671	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		29
ttcct	gaccg acccattatt ccctttatc	23
<210>	672	
<211>		
<211>		
	Artificial Sequence	
~~102	interretar podemon	
<220>		
	Primer	
<400>	672	
ttcga	tgcaa cgcgaagaac ct	22
<210>		
<211>		
<212>	DNA	
	Artificial Sequence	

PCT/US2006/015160 WO 2006/116127 <220> <223> Primer <400> 673 ttcgccaatc aaaactaagg gaatggc 27 <210> 674 <211> 20 <212> DNA <213> Artificial Sequence

<220> <223> Primer <400> 674

ttcggcggtc agcgcttcgg 20

<210> 675 <211> 26 <212> DNA <213> Artificial Sequence

<220>

<223> Primer

<223> Primer

<223> Primer

<400> 675 ttctaaaaca ccaggtcacc cagaag

26

<210> 676 <211> 27 <212> DNA <213> Artificial Sequence

<220>

<400> 676 ttctatctcg ttggtttatt cggagtt

27

<210> 677 <211> 30 <212> DNA <213> Artificial Sequence <220>

<400> 677

ttctgaatgt ctatatggag gtacaacact 30

<210> 678 <211> 21 <212> DNA <213> Artificial Sequence <220>

<223> Primer

<400> 678 ttgactgccc aggtcacgct g

21

<210> 679	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 679	
ttgactgcgg cacaacacgg at	
	22
<210> 680	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 680	
ttgagaagac atccggctca cgttattatg gta	33
24	
<210> 681	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
72237 FIIMEL	
-400.	
<400> 681	
ttgagggtat gcaccgtctt tttgattctt t	31
<210> 682	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
5046.00	
<220>	
<223> Primer	
-2237 FIIII(EI	
100	
<400> 682	
ttgcaactgc tgatttagct caga	24
<210> 683	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
Alto Alterritar Sequence	
<220>	
<223> Primer	
<400> 683	
tgcacaagc aaggcgctat tt	22
	44
210. (04	
541U> 684	
<pre><210> 684 <211> 28</pre>	
<211> 28	
<pre><211> 28</pre> <pre><212> DNA</pre>	
<211> 28	
<pre><211> 28</pre> <pre><212> DNA</pre>	

126/271

<223> Primer	
<400> 684	
ttgccaatga tattcgttgg ttagcaag	
5	28
<210> 685	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
.400. com	
<400> 685 ttgcccgcgg tgcggaagta accgatatta c	
oogoogogy tytygaagta accgatatta c	31
<210> 686	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
400. 606	
<400> 686 ttgcgaatag aacgatggct cgt	
Togogaacag aacgatgget egt	23
<210> 687	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 687	
ttgctcgtgg tgcacaagta acggatatta	
J J	30
<210> 688	
<211> 31	
<212> DNA <213> Artificial Sequence	
varov Arciffetat Sequence	
<220>	
<223> Primer	
<400> 688	
ctgctcgtgg tgcacaagta acggatatta c	
	31
<210> 689	
:211> 31 :212> DNA	
2212> DNA 2213> Artificial Sequence	
220>	
223> Primer	
220>	
221> modified_base	
222> (15)(15)	
223> I	

<220> <221> modified_base <222> (29)(29) <223> I	
<400> 689 ttgctcgtgg tgcacaagta acggatatta c	31
<210> 690 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 690 ttgcttaaag ttggttttat tggttggcg	29
<210> 691 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 691 ttggtccttt ttatacgaaa gaagaagttg aa	32
<210> 692 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 692 ttgtaaatgc cggtgcttca gatcc	25
<210> 693 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 693 ttgtacacac cgcccgtcat ac	22
<210> 694 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 694 ttgtagcaca gcaaggcaaa tttcctgaaa c	31
<210> 695 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 695 ttgtatgtat ggtggtgtaa cgttacatga	30
<210> 696 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 696 ttgtatgtat ggtggtgtaa ctgagca	27
<210> 697 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 697 tttaagtccc gcaacgagcg caa	23
<210> 698 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 698 tttacacata tcgtgagcaa tgaactga	28
<210> 699 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 699 tttacactac ttttattcat tgccctaacg	30
<210> 700 <211> 19	

<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 700	19
tttacagctt tatgcaccg	19
<210> 701 <211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 701	•
tttcacacag cgtgtttata gttctacca	29
<210> 702	
<211> 30	
<212> DNA <213> Artificial Sequence	
2213> ALCITICIAL Bequence	
<220>	
<223> Primer	
<400> 702	
tttcacatgt aattttgata ttcgcactga	30
<210> 703	
<211> 28	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 703	28
tttcatctta tcgaggaccc gaaatcga	20
<210> 704	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 704	
tttcctcctt ttgaaagcga cggtt	25
<210> 705	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
ZEEDY TITUOT	

<400> 705 tttcgaaggg cctttcgacc tg	22
<210> 706 <211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 706 tttcgatgca acgcgaagaa cct	23
<210> 707 <211> 27	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 707	
tttgatttta cgccgtcctc caggtcg	27
<210> 708	
<211> 32 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 708 tttgcggatg aagtaggtgc ctatcttttt gc	32
<210> 709	
<211> 32	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 709	
ttttatgett aaagttggtt ttattggttg ge	32
<210> 710	
<211> 24 <212> DNA	
<pre><213> Artificial Sequence</pre>	
<220>	
<223> Primer	
<pre><400> 710 :tttgaaggt gatccgtgcc aacg</pre>	
	24
:210> 711 :211> 29	
2212> DNA	

PCT/US2006/015160 WO 2006/116127 <213> Artificial Sequence <220> <223> Primer <400> 711 aaactatttt tttagctata ctcgaacac 29 <210> 712 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 712 aacatagcct tctccgtcc 19 <210> 713 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 713 aacttcgcct tcggtcatgt t 21 <210> 714 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 714 aaggaggtga tccagcc 17 <210> 715 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 715 aatcgacgac catcttggaa agatttctc 29 <210> 716 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer

<400> 716

acaaaaggca cgccatcacc c	21
<210> 717	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 717	
acaaaaggta cgccgtcacc c	21
	21
<210> 718	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
-200	
<220>	
<221> modified_base	
<222> (12)(12) <223> I	
7223 T	
<400> 718	
acaacacgag ctgacgac	18
	10
<210> 719	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 719	
acaacacgag ctgacgac	
	18
<210> 720	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<220>	
<221> modified base	
<222> (16)(16) <223> I	
7223 T	
<400> 720	
acaacacgag ctgacgac	18
	10
<210> 721	
<211> 18	
<212> DNA <213> Artificial Sequence	
29-27 PARCETTURE DECIDENCE	

```
<220>
    <223> Primer
    <220>
    <221> modified_base
    <222> (14) ... (14)
    <223> I
    <400> 721
   acaacacgag ctgacgac
                                                                        18
   <210> 722
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Primer
   <220>
   <221> modified_base
  <222> (11) ... (11)
  <223> I
  <400> 722
  acaacacgag ctgacgac
                                                                       18
  <210> 723
  <211> 18
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Primer
 <220>
 <221> modified_base
 <222> (10)...(10)
 <223> I
 <220>
 <221> modified_base
 <222> (13)...(13)
 <223> I
<400> 723
acaacacgag ctgacgac
                                                                     18
<210> 724
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<220>
<221> modified_base
<222> (8)...(8)
<223> I
```

```
<220>
  <221> modified base
 <222> (10)...(10)
 <223> I
 <220>
 <221> modified base
 <222> (13)...(13)
 <223> I
 <400> 724
 acaacacgag ctgacgac
                                                                     18
 <210> 725
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <223> Primer
 <220>
 <221> modified_base
 <222> (8)...(8)
 <223> I
 <220>
 <221> modified_base
 <222> (10)...(10)
 <223> I
<220>
<221> modified base
<222> (13)...(13)
<223> I
<220>
<221> modified base
<222> (16)...(16)
<223> I
<400> 725
acaacacgag ctgacgac
                                                                    18
<210> 726
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 726
acaaccatgc accacctgtc
                                                                    20
<210> 727
<211> 12
<212> DNA
<213> Artificial Sequence
```

PCT/US2006/015160 WO 2006/116127 <220> <223> Primer <400> 727 acacgagetg ac 12 <210> 728 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 728 accactttta ataaggtttg tagctaac 28 <210> 729 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 729 acctgcaata tctaatgcac tcttacg 27 <210> 730 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 730 acctgcatcc ctaaacgtac ttqc 24 <210> 731 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 731 accttgttac gacttcaccc ca 22 <210> 732 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 732 acgaactgga tgtcgccgtt 20

<210> 733	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
Arctitotal peddence	
-220	
<220>	
<223> Primer	
<400> 733	
acgacacgag ctgacgac	18
	10
<210> 734	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 734	
acgacacgag ctgacgac	
55545	18
<210> 735	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 735	
acgagctgac gacagccatg	20
210 504	
<210> 736	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
TIMEL	
<400> 736	
acgccatcag gccacgcat	19
<210> 737	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
CZZS> PIIMET	
400	
<400> 737	
acgcgggcat gcagagatgc c	21
	<u></u>
<210> 738	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
-220	
<220>	

137/271

	<223> Primer	
	<400> 738	
	acggcacgag gtagtcgc	10
		18
	<210> 739	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	400 500	
	<400> 739	
	acggttacct tgttacgact	20
	<210> 740	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 740	
	acgtccttca tegeetetga	20
	<210> 741	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 741	
,	acgtttttcg ttttgaacga taatgct	27
	<210> 742	
	<211> 17	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	223> Primer	
	3400> 742	
•	actgctgcct cccgtag	17
	2210> 743	
	211> 20	
	212> DNA	
<	213> Artificial Sequence	
~	220>	
	223> Primer	
	400> 743	
а	cttagatgc tttcagcggt	20
<	210> 744	

138/271

<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 744	
agacctcctg cgtgcaaagc	
ugueeeeeg egegeaaage	20
<210> 745	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
400	
<400> 745	
agataaagaa tcacgaatat caatttgtag c	31
<210> 746	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 746	
agccgacatc gaggtgccaa ac	22
-010. E4E	
<210> 747	
<211> 28 <212> DNA	
<213> Artificial Sequence	
Vara Artificial Sequence	
<220>	
<223> Primer	
<400> 747	
agctgctaga tgagcttctg ccatggcc	28
<210> 748	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
	•
<400> 748	
aggatagatt tatttcttgt tcg	23
	د2
<210> 749	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
.000.	
<220>	
<223> Primer	

<400> 749 agtccatccc ggtcctctcg	20
<210> 750 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 750 ataagccatg ttctgttcca tc	22
<210> 751	
<211> 18	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 751	
ataagccggg ttctgtcg	18
<210> 752	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 752	
atatgattat cattgaactg cggccg	26
<210> 753	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 753	
atcccctgct tctgctgcc	19
<210> 754	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 754	
attcaagagc catttctttt ggtaaaccac	30
210> 755	
:211> 22	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 755 attgcccaga aatcaaatca tc	22
<210> 756 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 756 attgcttctt acttgcttag cataaatttt cca	33
<210> 757 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 757 attgtagcac gtgtgtagcc c	21
<210> 758 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 758 caageggttt geetcaaata gtea	24
<210> 759 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 759 caatctgctg acggatctga gc	22
<210> 760 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

141/271

<400> 760 caccgggcag gcgtc 15 <210> 761 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 761 cacggctacc ttgttacgac 20 <210> 762 <211> 20 <212> DNA <213> Artificial Sequence <223> Primer <400> 762 cagataaaga atcgctccag 20 <210> 763 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 763 catgacagcc aagacctcac ccacc 25 <210> 764 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 764 catgatggtc acaaccgg 18 <210> 765 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 765 ccaaacaccg ccgtcgatat 20 <210> 766 <211> 26 <212> DNA

WO 2006/116127

PCT/US2006/015160

PCT/US2006/015160 WO 2006/116127 <213> Artificial Sequence <220> <223> Primer <400> 766 ccaacctttt ccacaacaga atcagc 26 <210> 767 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 767 ccaagtgctg gtttacccca tggagta 27 <210> 768 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 768 ccacttttaa taaggtttgt agc 23 <210> 769 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 769 ccagcagtta ctgtccctc atctttg 27 <210> 770 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 770 ccataaggtc accgtcacca ttcaaagc 28 <210> 771 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer

<400> 771

ccatgcagca cctgtctc 18 <210> 772 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 772 cccattttt cacgcatgct gaaaatatc 29 <210> 773 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 773 ccccgtcaa ttcctttgag t 21 <210> 774 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 774 ccctgtagta gaagaggtaa ccac 24 <210> 775 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 775 ccgacaagga atttcgctac c 21 <210> 776 <211> 23 <212> DNA <213> Artificial Sequence <223> Primer <400> 776 ccgcggtcga attgcatgcc ttc 23 <210> 777 <211> 17 <212> DNA <213> Artificial Sequence

WO 2006/116127

PCT/US2006/015160

<220> <223> Primer	
<400> 777	
ccggtcctct cgtacta	17
<210> 778	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 778	
ccgtgctcca tttttcag	18
<210> 779	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 779	
cctacccaac gttcaccaag ggcag	25
<210> 780	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 780	
cctcctgcgt gcaaagc	17
<210> 781	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 781	
cctgtagtag aagaggtaac	20
<210> 782	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 782	
ccttctcccg aagttacg	18
	4.0

<210> 783	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 783	
ccttgttacg acttcacccc	20
<210> 784	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
1020 IIIIICI	
<400> 784	
cgaacggcca gagtagtcaa cacg	24
<210> 785	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
<400> 785	
cgaacggcct gagtagtcaa cacg	24
210 706	
<210> 786	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 786	
cgacttgacg gttaacattt cctg	_
5 - A Sharp groundated deep	24
<210> 787	
<211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Primer</pre>	
:400> 787	
gagttgcag actgcgatcc g	
	21
:210> 788	
2211> 21	
212> DNA	
213> Artificial Secuence	

<220>	
<223> Primer	
<400> 788	
cgagttgcag actgcgatcc g	
	21
<210> 789	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
<400> 789	
cgcaccatgc gtagagatga agtac	25
	25
<210> 790	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
.000	
<220>	
<223> Primer	
400. 500	
<400> 790	
cgcaccgtgg gttgagatga agtac	25
<210> 791	
<211> 18	
<211> 16 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 791	
cgcatttcac cgctacac	
	18
<210> 792	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
1	
<220>	
<223> Primer	
<400> 792	
cgcggtcggc tcgttgatga	20
	20
<210> 793	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
.220	
<220>	
<223> Primer	
-100° 203	
<400> 793	
cggctgctgg cacgaagtta g	21

<210> 794	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
223> FIIMEI	
<400> 794	
cggcttcaag acccc	15
<210> 795	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
AZZO FILMEL	
400. 705	
<400> 795	
cggtacgaac tggatgtcgc cgtt	24
<210> 796	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
V2237 FILMEL	
400 505	
<400> 796	
cgtactcccc aggcg	15
<210> 797	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
NAZOV FILMEI	
400. 707	
<400> 797	
cgtataagct gcaccataag cttgtaatgc	30
<210> 798	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
4	
<220>	
<223> Primer	
1880 Filmer	
<400> 798	
cgtggactac cagggtatct a	21
<210> 799	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	

<223> Primer	
<400> 799	
ctatoggtca gtcaggagta t	
	21
<210> 800	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 800	
cttctacatt tttagccatc ac	22
<210> 801	22
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 801	
ctttacgccc agtaattccg	20
<210> 802	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 802	
ctttcgcttt ctcgaactca accat	٥٣
\cdot	25
<210> 803 <211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
•	
<400> 803	
gaatatcaat ttgtagc	17
<210> 804	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 804	
gaccccaacc tggccttttg tcgttga	
•	27
<210> 805	

<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 805	
gaccgttata gttacggcc	
- 55	19
<210> 806	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
imparatorer peduence	
<220>	
<223> Primer	
AND TETHICE	
<400> 806	
gacgggcggt gtgtacaag	19
-210: 000	
<210> 807	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 807	
gacgggcggt gtgtacaag	
	19
<210> 808	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
metricial pequence	
<220>	
<223> Primer	
C223> PIIMET	
<400> 808	
gacgggcggt gtgtacaag	19
.010. 000	7-2
<210> 809	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 809	
gacgtcatcc ccaccttcct c	
• • • • • •	21
<210> 810	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

<400> 810 gacgtcatcc ccaccttcct cc	22
<210> 811 <211> 19 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 811 gagcatcagc gtgcgtgct	19
<210> 812 <211> 25	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 812	
gagctgcgcc aacgaataaa tcgtc .	25
<210> 813	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 813 gattggcgat aaagtgatat tttctaaaa	20
	29
<210> 814 <211> 26	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 814	
goccaccaga aagactagca ggataa	26
<210> 815	
<211> 21	
<pre><212> DNA <213> Artificial Sequence</pre>	
<pre>220> 223> Primer</pre>	
:400> 815	
googtocato tgagoagoao o	21
210> 816	
211> 21	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 816 gccgtccatt tgagcagcac c	21
<210> 817 <211> 19	2.1
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 817 gccttgcgac cgtactccc	19
<210> 818	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 818 gcgaccgtac tccccagg	18
<210> 819 <211> 19	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 819 gcgctccacg tcttcacgc	19
<210> 820 <211> 19	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 820 gcgtgacagg caggtattc	19
<210> 821 <211> 28	ر _ب د
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	

PCT/US2006/015160 WO 2006/116127 <400> 821 gcgtgacgac cttcttgaat tgtaatca 28 <210> 822 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 822 gcgttccaca gcttgttgca gaag 24 <210> 823 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 823 gctgctggca cggagtta 1.8 <210> 824 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 824 gctgctttga tggctgaatc cccttc 26 <210> 825 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 825 gctggattcg cctttgctac q 21 <210> 826 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 826 gcttacacac ccggcctatc 20 <210> 827 <211> 23

<212> DNA

PCT/US2006/015160 WO 2006/116127 <213> Artificial Sequence <220> <223> Primer <400> 827 ggaatttacc agcgatagac acc 23 <210> 828 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 828 ggataattgg tcgtaacaag ggatagtgag 30 <210> 829 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 829 ggcatcacca tttccttgtc cttcg 25 <210> 830 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 830 ggccgtactc cccaggcg 18 <210> 831 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 831 ggcgcttgta cttaccgcac 20 <210> 832 <211> 25 <212> DNA <213> Artificial Sequence <223> Primer <400> 832

gggtctacac ctgcacttgc ataac	25
<210> 833	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 833	
gggtttcccc attegg	16
<210> 834	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
1970 Viciliciai pedneuce	
<220>	
<223> Primer	
<400> 834	
ggtaaccctt gtctttgaat	20
	20
<210> 835	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
7220 LTTHCT	
<400> 835	
ggtaaggttc ttcgcgttg	
	19
<210> 836	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 836	
ggtataacgc atcgcagcaa aagattta	
Journal of acceptage adjacted	28
<210> 837	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400. 000	
<400> 837	
gtaaccettg tetttgaatt gtatttge	28
<210> 838	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
· · · · · · · · · · · · · · · · · · ·	

<220> <223> Primer	
<400> 838 gtaagccatg ttttgttcca tc	22
<210> 839 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 839 gtatctaatc ctgtttgctc cc	22
<210> 840 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 840 gtccgacttg acggtcaaca tttcctg	27
<210> 841 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 841 gtgcgccctt tctaactt	18
<210> 842 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 842 gtgctggttt accccatgga gt	22
<210> 843 <211> 21 <212> DNA . <213> Artificial Sequence	ı
<220> <223> Primer	
<400> 843 gttcaaatgc ctggataccc a	21

<210> 844 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 844 gttgtcacca ggcattacca tttc	24
<210> 845 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 845 gttgtcgcca ggcataacca tttc	24
<210> 846 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 846 gtttcatgct tagatgcttt cagc	24
<210> 847 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 847 gtttttegtt gegtaegatg atgte	25
<210> 848 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 848 taaacgtccg ataccaatgg ttcgctc	27
<210> 849 <211> 30 <212> DNA <213> Artificial Sequence	

<220> <223> Primer <400> 849 taaactattt ttttagctat actcgaacac 30 <210> 850 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 850 taaagacacc gctgggttta aatgtgca 28 <210> 851 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 851 taaagagacg tttggtagtt catttgc 27 <210> 852 <211> 33 <212> DNA <213> Artificial Sequence <223> Primer <400> 852 taaaggatag cggtaactaa atggctgagc cat 33 <210> 853 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 853 taaatgcact tgcttcaggg ccatat 26 <210> 854 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 854 taaattccgc aaagactttg gcattaggtg t 31

PCT/US2006/015160

WO 2006/116127

<210> 855	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
1	
<220>	
<223> Primer	
<400> 855	
taacaaatcc cgtctgagtt cctcttgca	
-	29
<210> 856	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
and Architectar bequence	
<220>	
<223> Primer	
<400> 856	
taacaacgtt accttcgcga tccactaa	28
<210> 857	
<211> 23	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
7223 ETTIMET	
<400> 857	
taaccatttc gcgtaagatt caa	23
<210> 858	
<211> 29	
<211> 29 <212> DNA	
<213> Artificial Sequence	
~220-	
<220> <223> Primer	
<223> Primer	
<400. 0F0	
<400> 858	
taaccacccc aagatttatc tttttgcca	29
<210> 859	
<211> 23	
	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400. 050	
<400> 859	
taaccatttc gcgtaagatt caa	23
.010	
<210> 860	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	

<223> Primer	
<400> 860 taacccttgt ctttgaattg tatttgcaat taatcctgg	39
<210> 861 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 861 taaccgtttc caaaggtact gtattttgt	29
<210> 862 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 862 taaccgtttc caaaggtact gtattttgtt tacc	34
<210> 863 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 863 taactcctct tccttcaaca ggtgga	26
<210> 864 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 864 taactgaccc aaagctgaaa gctttactg	29
<210> 865 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 865 taagacaagg ttttgtggat tttttagctt gtt	33
<210> 866	

<211> 26	5	
<212> DN		
<213> Ar	rtificial Sequence	
<220>		
<223> Pr	cimer	
<400> 86	56	
taagagtg	gat gegggetggt teaaca	26
		20
<210> 86	57	
<211> 25	;	
<212> DN	IA.	
<213> Ar	tificial Sequence	
	4	
<220>		
<223> Pr	imer	
<400> 86	7	
	ac ctttacttgc accac	
5		25
<210> 868	8	
<211> 27		
<212> DN2	Δ	
	tificial Sequence	
	errerer pedreuce	
<220>		
<223> Pr:	imer	
<400> 868	8	
	ac ctttacttgc accacct	
caageaace	de etteatige addadet	27
<210> 869	9	
<211> 28		
<212> DNA	A	
	cificial Sequence	
(MIS) AIC	criteral sequence	
<220>		
<223> Pri	imer	
	rmer	
<400> 869		
	ac ctttacttgc accacctg .	
caagcaaca	e certactige accadents	28
<210> 870		
<210> 070 <211> 31		
<211> 31 <212> DNA		
CZISS ALL	ificial Sequence	
<220>		
<220> <223> Pri		
<223> Pri	mer	
.100 050		
<400> 870		
_aagcacca	t ataagtetae tttttteeet t	31
.010:		
<210> 871		
211> 27		
212> DNA		
213> Art:	ificial Sequence	
:220>		
:223> Prir	mer	

<400> 871 taagccagca agagctgtat agttcca	2'
<210> 872 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 872 taagctcccg tatcttgagt cgcctc	26
<210> 873 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 873 taagttacct tgcccgtcaa cca	23
<210> 874 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 874 taagtteett egetagtatg ttggett	27
<210> 875 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 875 taatcgacga ccatcttgga aagatttctc	30
<210> 876 <211> 23 <212> DNA <213> Artificial Sequence	30
<220> <223> Primer	
<400> 876 taatctggct gcggaagtga aat	
<210> 877 <211> 25	23

WO 2006/116127	PCT/US2006/015160
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 877	
taatetgget geggaagtga aateg	25
<210> 878	
<211> 31	
<212> DNA <213> Artificial Sequence	
bedreite	
<220>	
<223> Primer	
<400> 878	
taatgccggg tagtgcaatc cattetteta g	31
<210> 879	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 879	
taatgcgata ctggcctgca agtc	24
<210> 880	.
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 880	
tacaaccttc ggataatcag gatgagaatt aat	33
	33
<210> 881 <211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400- 001	
<pre><400> 881 cacaacgtga taaacacgac cagaagc</pre>	
	27
<pre><210> 882 <211> 35</pre>	
2211> 35 2212> DNA	
2213> Artificial Sequence	
:220>	
223> Primer	

<400> 882 tacaactggt tcaaaaacat taagctgtaa ttgtc	35
<210> 883 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 883 tacagettta aageeageaa aatgaattae ag	32
<210> 884 <211> 22	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 884	
tacaggagca gcaggcttca ag <210> 885	22
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 885	
tacatcgttt cgcccaagat caatca	26
<210> 886	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 886	
tacateteet tegatagaaa ttteattget ate	33
<210> 887	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 887	
taccaaagcg tgcacgatag ttgag	25
<210> 888	
<211> 27	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 888	
taccatctac ccaaacatta gcaccaa	27
<210> 889	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
C225> PIIMEr	
<400> 889	
taccccagtt cccctgacct tc	22
.010	22
<210> 890 <211> 27	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 890	
taccggaagc accagcgaca ttaatag	
	27
<210> 891	
<211> 27	
<212> DNA <213> Artificial Sequence	
delia seduence	
<220>	
<223> Primer	
<400> 891	
tacctgcatt aatcgcttgt tcatcaa	
- Junea accege coaceaa	27
<210> 892	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
.400	
<400> 892	
tacettaceg ccaaagetgt et	22
<210> 893	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 893	

taccttagga ccgttatagt tacg 24 <210> 894 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 894 taccttttcc acaacagaat cagc 24 <210> 895 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 895 tacgagetga egacagecat g 21 <210> 896 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 896 tacgagetga egacagecat gea 23 <210> 897 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 897 tacgcattac tcacccgtcc gc 22 <210> 898 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 898 tacgccatca ggccacgcat 20 <210> 899 <211> 27 <212> DNA <213> Artificial Sequence

PCT/US2006/015160

WO 2006/116127

<220> <223> Primer	
<400> 899 tacgctaagc cacgtccata tttatca	27
<210> 900 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 900 tacgtatgta aattccgcaa agactttggc attag	35
<210> 901 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 901 tacgtcgcct ttaacttggt tatattcagc	30
<210> 902 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 902 tacgttctac gatttcttca tcaggtacat c	31
<210> 903 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 903 tacgtttgta tcttctgcag aacc	24
<210> 904 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 904 tacacctggt ttcgttttga tgatttgta	29

<210> 905	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 905	
tactagacga cgggtcaggt aacc	24
<210> 906	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 906	
tacttcagct tcgtccaata aaaaatcaca at	32
<210> 907	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 907	
tactttaagg ggctatcttt accatgaacc t	31
<210> 908	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400, 000	
<400> 908	0.11
tagagagtag ccatcttcac cgttgtc	27
-210. 000	
<210> 909 <211> 23	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 909	
tagcaccaat caccetttee tgt	23
<210> 910	
<210> 910 <211> 28	
<211> 26 <212> DNA	
<212> DNA <213> Artificial Sequence	
SALDY ALCILICIAL DEGUCACE	

<220> <223> Primer	
<400> 910	
tagcagcaaa agttatcaca cctgcagt	28
<210> 911	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 911	
tagcagctag ctcgtaacca gtgta	25
<210> 912	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 912	
tagccatacg taccattgct tcataaatag a	31
<210> 913	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 913	
tagcccagct gtttgagcaa ct	22
<210> 914	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 914	
tagccgcggt cgaattgcat	20
<210> 915	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 915	
tagccttggc aacatcagca aaact	25

WO 2006/116127 PCT/US2006/015160 <210> 916 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 916 tagcetttte teeggegtag atet 24 <210> 917 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 917 tagcgatttc tactcctaga gttgaaattt cagg 34 <210> 918 <211> 29 <212> DNA <213> Artificial Sequence <223> Primer <400> 918 tagctgctag atgagcttct gccatggcc 29 <210> 919 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 919 taggatgaaa gcattccgct ggc 23 <210> 920 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 920 taggatgagc attatcaggg aaagaatc 28

<220>

<210> 921 <211> 23 <212> DNA

<213> Artificial Sequence

<223> Primer	
<400> 921	
taggattttt ccacggcggc atc	23
<210> 922	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 922	
taggcataac catttcagta ccttctggta a	31
<210> 923	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 923	
tagtatcacc acgtacaccc ggatcagt	28
<210> 924	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<220>	
<221> modified base	
<222> (17)(17)	
<223> I	
<220>	
<221> modified base	
<222> (20)(20) <223> I	
<400> 924	
tagtatcacc acgtacaccc ggatcagt	
	28
<210> 925 <211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 925	
tagtcettte tgaattttae cateaaaggt ac	32
<210> 926	J.L

<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 926	
tagtettttg gaacacegte tttaattaaa gt	32
<210> 927	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 927	
tagtgttgta cctccatata gacattcaga	30
<210> 928	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 928	
tagttgaagt tgcactatat actgttgga	29
<210> 929	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 929	
tataacgcac atcgtcaggg tga	23
<210> 930	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 930	
tatagcacca tccatctgag cggcac	26
<210> 931	
<211> 29 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	

PCT/US2006/015160

WO 2006/116127

<400> tatato	931 gaaca ataccagttc cttctgagt	29
<210><211><211><212><213>	27	
<220> <223>	Primer	
<400> tatato	932 gatta teattgaact geggeeg	27
<210><211><211><212><213>	28	
<220> <223>	Primer	
<400> tatcca	933 attga accaaagtta cettggce	28
<210><211><212><213>	20	
<220> <223>	Primer	
<400> tatccc	934 ectge ttetgetgee	20
<210><211><211><212><213>	28	
<220> <223>	Primer	
<400> tatcga	935 .caga tccaaagtta ccatgccc	28
<210><211><211><212><213>	27	
<220> <223>	Primer	
<400> tatggt	936 ctat ttcaatggca gttacga	27
<210>		

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
400. 005	
<400> 937	24
tatgtgctca cgagtttgcg gcat	24
<210> 938	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 938	
tatgtgtagt tgagcttact acatgagc	28
<210> 939	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
000	
<220> <223> Primer	
CZZ3> FITMET	
<400> 939	
tattcttcgt tactcatgcc ataca	25
<210> 940	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 940	
tattgcccag aaatcaaatc atc	23
<210> 941	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 941	,
tattgcggat caccatgatg atattcttgc	30
<210> 942	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

<400> 942 tattgcttt tttgctatgc ttcttggaca t	31
<210> 943 <211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 943 tattggaaat accggcagca tctc	24
<210> 944 <211> 30	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 944	
tatttgggtt tcattccact cagattctgg	30
<210> 945	
<211> 32 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 945 tcaaaaacaa agaattcatt ttctggtcca aa	32
<210> 946 <211> 34	
<211> 34 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 946	
tcaaaacgca tttttacatc ttcgttaaag gcta	34
<210> 947	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Primer</pre>	
<400> 947	
caaaaacttg ctctagacca tttaactcc	29
:210> 948	
:211> 30 :212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 948	
tcaaaatctt ttgattcgat catacgagac	30
.010 040	
<210> 949 <211> 27	
<211> 27 <212> DNA	
<213> Artificial Sequence	
bequested	
<220>	
<223> Primer	
<400> 949	
tcaaacgatc cgcatcacca tcaaaag	27
<210> 950	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<223> FIIMEr	
<400> 950	
tcaaagaacc agcacctaat tcatcattta	30
	30
<210> 951	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 951	
tcaaagaacc cgcacctaat tcatcattta	30
<210> 952	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 952	
tcaacaacac ctccttattc ccactc	
	26
<210> 953	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Primer	
AND TETINOT	
<400> 953	

tcaacaatca gatagatgtc agacgcatg	29
<210> 954 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 954 tcaacaccag cgttacctaa agtacctt	28
<210> 955 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 955 tcaactggtt caaaaacatt aagttgtaat tgtcc	35
<210> 956 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 956 tcaacttctg ccattaaaag taatgcca	28
<210> 957 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 957 tcaagcgatc tacccgcatt acaa	24
<210> 958 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 958 tcaagegcca tetetttegg taatecaeat	30
<210> 959 <211> 30 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 959 tcaagcgcca tttcttttgg taaaccacat	30
<210> 960 <211> 31	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 960 tcaagctata tgctacaact ggttcaaaaa c	31
<210> 961	
<211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 961	
tcaagctcta caccataaaa aaagctctca	30
<210> 962	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 962	
tcaaggttct caccgtttac cttaggag	28
<210> 963	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 963	
tcaagtgctt ttacttctat aggtttaagc tc	32
<210> 964	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 964	
	30

<210> 965 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 965 tcaatctcga ctttttgtgc cggta	25
<210> 966 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 966 tcacaaggac cattataatc aatgccaa	28
<210> 967 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 967 tcacaccaag tagtgcaagg atc	23
<210> 968 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 968 ccacacctgt aagtgagaaa aaggttgat	29
<210> 969 <211> 34 <212> DNA <213> Artificial Sequence	
220> 223> Primer	
:400> 969 :cacaggttc tacttcatca ataatttcca ttgc	34
:210> 970 :211> 34 :212> DNA :213> Artificial Sequence	

<220> <223> Pr	rimer	
<400> 97		34
ccaccago	ce cagogeagec caacaaceea cgga	J- <u>T</u>
<210> 97		
<211> 22		
<212> DN <213> Ar	rtificial Sequence	
<220>		
<223> Pr	rimer	
<400> 97	71	
		22
-210- 07		
<210> 97 <211> 37		
<211> 37		
	tificial Sequence	
<220>		
<223> Pr	rimer	
<400> 97	72	
tcaccgat	aa ataaaatacc taaagttaat gccattg	37
<210> 97	12	
<210> 57		
<212> DN		
	tificial Sequence	
-000		
<220> <223> Pr	imer	
1000, 11		
<400> 97		
tcacctac	ag ctttaaagcc agcaaaatg	29
<210> 97	4	
<211> 28		
<212> DN		
<213> Ar	tificial Sequence	
<220>		
<223> Pr	imer	
<400> 97		
tcacgata	cc tgcatcatca aattggtt	28
<210> 97	5	
<211> 32		
<212> DN		
<213> Ar	tificial Sequence	
<220>		
<220> <223> Pr	rimer	
<400> 97		
tcacqatc	ta aatttggata agccatagga aa	32

<210>	976	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	976	
tcacg	cgacg agtgccatcc attg	24
_		
<210>	977	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Primer	
<400>	977	
tcacq	cgcat catcaccagt ca	22
	- J	
<210>	978	
<211>		
<212>		
	Artificial Sequence	
12.07	THE STATE OF	
<220>		
	Primer	
72277	ملت ت القابل ملت ملت القابل ملت ملت القابل ملت ملت ملت ملت ملت ملت ملت ملت ملت مل	
<400>	978	
	ggcca gctcgtct	18
ccacg	geca getegeet	10
<210>	979	
<211>		
<211>		
	Artificial Sequence	
\ 2132	Arciricial peddence	
<220>		
	Primer	
\ 2232	FIIMEL	
<400>	979	
	cegte egaetteaeg gteageat	20
ccacgi	segre egacticacy gecagoat	28
<210>	000	
<211>		
<212>		
<213>	Artificial Sequence	
-220-		
<220>	P	
<443>	Primer	
400		
<400>		
ccagaa	atoga tgocaaatgo gtoato	26
.010	001	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
000		
<220>		

181/271

<223> Primer	
<400> 981 tcagatataa atggaacaaa tggagccact	30
<210> 982 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 982 tcagcgtagt ctaataattt acggaacatt tc	32
<210> 983 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 983 teagetgtta aeggetteaa gaeee	25
<210> 984 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 984 tcaggtatga aacacgatta gtcctttct	29
<210> 985 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 985 tcagtttgca cttcaaaaga aattgtgtt	29
<210> 986 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 986 tcataactag catttgtgct ttgaatgct	29
~210> 987	

<211> 31 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 987 tcataagggt tgcgttgcag attatcttta c	31
<210> 988 <211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 988 tcatctggtt taggatctgg ttgact	26
<210> 989 <211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 989 tcatctgtgg tatggcgggt aagtt	25
<210> 990 <211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 990 tcatgacagc caagacetca cecace	
<210> 991	26
<211> 31 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
c400> 991 ccatgataga actacctggt tgcatttttg g	31
:210> 992 :211> 28	
2212> DNA 2213> Artificial Sequence	
220> 223> Primer	

183/271

<400> 992 tcatgtgcta atgttactgc tggatctg	28
<210> 993 <211> 31 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 993 tcattaggta aaatgtctgg acatgatcca a	31
<210> 994 <211> 28	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 994 tcatttattt cttcgctttt ctcgctac	
	28
<210> 995	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 995	
tcatttgtgc tttgaatgct	20
<210> 996	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 996	
tccaaacgat ctgcatcacc atcaaaag	28
<210> 997	
<211> 29	
<pre><212> DNA </pre>	
<pre><213> Artificial Sequence</pre>	
<220>	
<pre><223> Primer</pre>	
×400> 997	
ccaacccag aaccacatac titattcac	29
210> 998	
2211> 27	

<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
<223> FIIIIGI	
<400> 998	
tccaaccttt tccacaacag aatcagc	27
<210> 999	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
1227 111101	
100 000	
<400> 999	
tccaagtgct ggtttacccc atgg	24
<210> 1000	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
111101	
100, 100	
<400> 1000	
tccaagtgct ggtttacccc atggag	26
<210> 1001	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1001	
	00
tccaagtttg acttaaacgt accatcgc	28
<210> 1002	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
2213/ ALCILICIAL BEQUENCE	
<220>	
<223> Primer	
<400> 1002	
tccacactgg attgtaattt accttgttct tt	32
cocacacag acceptance acceptice to	24
<210> 1003	
<210> 1003 <211> 26	
<211> 26 <212> DNA	
<211> 26	
<211> 26 <212> DNA <213> Artificial Sequence	
<211> 26 <212> DNA	

<400> 1003 tccaccacct caaagaccat gtggtg	26
<210> 1004 <211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1004 tccagcaggt tctgacggaa acg	23
<210> 1005	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1005	
tccagcagtt actgtcccct catctttg	28
<210> 1006	
<211> 30 <212> DNA	
<212> DNA <213> Artificial Sequence	
-	
<220> <223> Primer	
<400> 1006	
tccaggcatt accatttcta ctccttctgg	30
<210> 1007	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1007	
tecataaggt cacegteace atteaaage	29
<210> 1008	
<211> 35	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<220>	
<pre><221> modified_base</pre>	
<pre><222> (21)(21)</pre> <pre><223> I</pre>	
:220>	

<221> modified_base <222> (30)(30) <223> I	
<400> 1008 tocatacett tatgeaactt tgtateaact ggaat	35
<210> 1009 <211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1009 tccatattgt tgcataaaac ctgttggc	28
<210> 1010 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1010 tccatccata gaaccaaagt taccttg	27
<210> 1011	27
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1011 tccatcgcag tcacgtttac tgttgg	
<210> 1012	26
<211> 32	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1012 tccatcgcca gtttttgcat aatcgctaaa aa	32
<210> 1013	
<211> 33 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1013	

tccatctgtt aaaccatcat ataccatgct atc	33
<210> 1014 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1014 tccatttccg acacgtcgtt gatcac	26
<210> 1015 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1015 tcccaatcta acttccacat accatct	27
<210> 1016 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1016 tcccaatctt ttgattcgat catacgaga	29
<210> 1017 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1017 tcccatacct atggcgataa ctgtcat	27
<210> 1018 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1018 teccattttt teaegeatge tgaaaatate	30
<210> 1019 <211> 15 <212> DNA <213> Artificial Sequence	

<220> <223>	Primer	
<400>	1.019	
	cett cetee	15
<210>	1020	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tcccca	tete egeaaagaca ataaa	25
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1021	
tcccca	ttta ataattocac ctactatcac act	33
<210>	1022	
<211>	33	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1022	
tcccct	catg tttaaatgat caggataaaa agc	33
<210>	1023	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1023	
tcccct	ttaa agcaccatta ctcattatag t	31
<210>	1024	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tecega	acaa tgagttgtat caactatttt tac	33

<210> 1025 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1025 tcccgctggc aaataaactc g	21
<210> 1026 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1026 tcccggctag agattctgta tacga	25
<210> 1027 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1027 tecegtetga gtteetettg catgatea	28
<210> 1028 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1028 ccctaatag tagaaataac tgcatcagta gc	32
<210> 1029 <211> 34 <212> DNA <213> Artificial Sequence	
:220> :223> Primer	
:400> 1029 :cccttattt ttctttctac taccttcgga taat	34
2210> 1030 2211> 30 2212> DNA 2213> Artificial Sequence	

<220> <223> Primer <400> 1030 tecetteett aatatgagaa ggaaaccact 30 <210> 1031 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1031 tccgaaactt gttttgtagc tttaatttga gc 32 <210> 1032 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1032 tccgaagttg ccctggccgt c 21 <210> 1033 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1033 tccgagacca gcgtaggtgt aacg 24 <210> 1034 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1034 tccgataagc cggattctgt gc 22 <210> 1035 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1035 tccgcaaaga ctttggcatt aggtgtga 28

WO 2006/116127

PCT/US2006/015160

<210> 1036 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1036 tccgccaaaa actccccttt tcacagg	27
<210> 1037 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1037 tccgccttca aaatggtggc gagt	24
<210> 1038 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1038 tccggctaga gattctgtat acgaaaatat c	31
<210> 1039 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1039 tccggctaga gattctgtat acgacaatat c	31
<210> 1040 <211> 23 <212> DNA <213> Artificial Sequence	
<220> 223 Primer	
:400> 1040 :ccggtaact gggtcagctc gaa	23
:210> 1041 :211> 34 :212> DNA :213> Artificial Sequence	
220>	

192/271

WO 2006/116127 PCT/US2006/015160 <223> Primer <400> 1041 tccgtagttt tgcataattt atggtctatt tcaa 34 <210> 1042 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1042 tccgtcatcg ctgacagaaa ctgagtt 27 <210> 1043 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1043 tccgtctatc cacaagttaa ttggtact 28 <210> 1044 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1044 tectacecaa egtteaceaa gggeag 26 <210> 1045 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1045 tcctccttgt gcctcaaaac gcattttta 29 <210> 1046 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1046 tcctctatgc aacttagtat caacaggaat 30 <210> 1047

<211>		
<212>		
<213>	Artificial Sequence	
000		
<220>	Primer	
<443>	Primer	
<400>	1047	
	tggg ccacgcaaag tttt	0.4
00000	tagag coacacaaag tete	24
<210>	1048	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tactati	tttc acaggeteta etteate	27
.010	1040	
<210> :		
<212>]		
\4137 1	Artificial Sequence	
<220>		
<223> 1	Primer	
<400>	1049	
tcctgaa	agat ctagttcttg aatggttact	30
_	3 33	50
<210>	1050	
<211> 2	27	
<212> I		
<213> A	Artificial Sequence	
<220>	n. 1.	
<223> I	Primer	
<400> 1	1050	
	aata totaatgoac tottaog	277
Coccagoo	audu totuutgodo tottatg	27
<210> 1	1051	
<211> 2		
<212> I		
<213> P	Artificial Sequence	
	-	
<220>		
<223> I	Primer	
<400> 1		
tcctgca	agct ctacctgctc catta	25
-010: 1		
<210> 1		
<211> 2 <212> D		
	artificial Sequence	
~~1J/ F	retriciat bedaemee	
<220>		
<223> P	Primer	

<400> 1052 tcctggccat cctgcaggat	20
<210> 1053 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1053 tcctgtttta tagccgccaa gagtaag	27
<210> 1054 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1054	
tccttcacge gcatcatcac c	21
<210> 1055	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1055	
teettetgat geetgatgga ceaggag	27
<210> 1056	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1056	
cettggeat acateatgte gtagea	26
<210> 1057 <211> 33	
2212	
213> Artificial Sequence	
:220>	
223> Primer	
400> 1057	
cettgtget teaaaaegea tttttaeatt tte	33
210> 1058 211> 28	
4112 40	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1058	
tootttaaaa taaccgctag tagctcct	28
<210> 1059	
<211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1059	
tootttatgo aacttagtat caaccggaat	30
<210> 1060	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1060	
tcctttatgc aacttggtat caacaggaat	30
<210> 1061	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1061	
tcctttatgc aacttggtat caaccggaat	30
<210> 1062	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1062	
tcctttcaat gttacagaaa actctacag	29
<210> 1063	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	

<400> 1063 tcgaaccgaa gttaccctga ccat 24 <210> 1064 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1064 tcgaattcag ctaaatactt ttcagcatct 30 <210> 1065 <211> 26 <212> DNA <213> Artificial Sequence <223> Primer <400> 1065 tcgacctgga ggacgacgta aaatca 26 <210> 1066 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1066 tcgacgacca tcttggaaag atttc 25 <210> 1067 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1067 tcgagccgaa gttaccctgt ccgtc 25 <210> 1068 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1068 tcgatccgca tcaccatcaa aagcaaa 27 <210> 1069 <211> 26 <212> DNA

PCT/US2006/015160

WO 2006/116127

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1069	
tcgatcgaac cgaagttacc ctgacc	26
<210> 1070	
<211> 28	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1070	
tcgatcgtga ctctctttat tttcagtt	28
<210> 1071	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1071	
tcgatctcct tggcgtccga	20
<210> 1072	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1072	
tcgcaccgtg ggttgagatg aagtac	26
<210> 1073	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1073	
tegeagegtg egtggeae	18
<210> 1074	
<211> 26	
<212> DNA <213> Artificial Sequence	
27702 Wretrotar pedactice	
<220>	
<223> Primer	
<400> 1074	

tegeaggett acagaacget etecta	26
<210> 1075 <211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400. 1075	
<400> 1075 tegeagttea teageaegaa geg	23
oogougueau couguuoguu gog	23
<210> 1076	
<211> 26 <212> DNA	
<212> DNA <213> Artificial Sequence	
salabada soquoto	
<220>	
<223> Primer	
<400> 1076	
tcgccagcta gcacgatgtc attttc	26
<210> 1077 <211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1077	
togocatago taagttgttt attgtttoca t	31
<210> 1078	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1078	
tcgcctggtg caggcatcat at	22
<210> 1079	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1079	
tegegetgta ttttteetee gaga	24
<210> 1080	
<211> 18	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 1080	
tegetacett aggacegt	18
<210> 1081	
<211> 29	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1081	
tegeteagea ataatteaet ataageega	29
<210> 1082	
<211> 29	
<212> DNA <213> Artificial Sequence	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1082	29
tcgctctctc aagtgatcta aacttggag	23
<210> 1083	
<211> 25	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1083	
tegettgagt gtagteatga ttgeg	25
<210> 1084	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1084	
tcggaaacaa agaattcatt ttctggtcca aa	32
<210> 1085	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1085	7.7
toggaaatat totttoaata ootttatgoa act	33

```
<210> 1086
 <211> 34
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
 <400> 1086
 tcggaaatat tctttcaata cctttatgca actt
                                                                        34
 <210> 1087
 <211> 34
 <212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<220>
<221> modified_base
<222> (20)...(20)
<223> I
<220>
<221> modified base
\langle 222 \rangle (26) \dots (\overline{2}6)
<223> I
<400> 1087
tcggaaatat tctttcaata cctttatgca actt
                                                                       34
<210> 1088
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 1088
tcggactcgc tttcgctacg
                                                                       20
<210> 1089
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 1089
tcggataagc tgccacaagg
                                                                       20
<210> 1090
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220>	
<223> Primer	
1 I I I I I I I I I I I I I I I I I I I	
100 1000	
<400> 1090	
teggeateae geogtegte	19
<210> 1091	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
.220.	
<220>	
<223> Primer	
<400> 1091	
tcggcgaaca tggccatcac	20
<210> 1092	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(223) FIIMEL	
<400> 1092	
tcgggcgtag tttttagtaa ttaaatcaga agt	33
	33
<210> 1093	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
1213) ALCIIICIAI Sequence	
<220>	
<223> Primer	
400 7000	
<400> 1093	
toggtaogaa otggatgtog oogtt	25
<210> 1094	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
4320.	
<220>	
<223> Primer	
<400> 1094	
	_
teggteagea aaaeggtage ttge	24
<210> 1095	-
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
7573% ETTIMET	
<400> 1095	
toggtggtgg tagoogatot c	21
JJ JJ:JJJ	

<210> 1096	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
1220 TTIMET	
<400> 1096	
tcggtttaag ctctacatga tcgtaaggat a	31
<210> 1097	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
<400> 1097	
teggttteag teateteeae cataaaggt	29
010	
<210> 1098	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
<400> 1098	
togtatgaco agottoggta otacta	26
2310-1000	
<210> 1099	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1099	
tcgtcaacac taccattatt accatgcatc tc	
	32
<210> 1100	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1100	
tcgtccgact taacggtcag catttc	_
J 3	26
<210> 1101	
<211> 29	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	

<223> Primer	
<400> 1101 tegteegact taacggteag cattteetg	29
<210> 1102 <211> 31 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1102 tegteegaet taacggteag cattteetge a	31
<210> 1103 <211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1103 tcgtcctctc gaatctccga tatacc	26
<210> 1104 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1104 tegtegegga ettegaagee	20
<210> 1105	
<211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1105	
tcgtcggact taacggtcag catttc	26
<210> 1106 <211> 29	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1106 tcgtcggact taacggtcag catttcctg	29
<210> 1107	

<211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1107 tegteggaet taaeggteag cattteetge a	31
<210> 1108 <211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1108 tcgtcgtatt tatagtgacc agcaccta	28
<210> 1109 <211> 28	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1109 tcgtgcctaa caaatcccgt ctgagttc	28
<210> 1110 <211> 22	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1110 tcgtggacta ccagggtatc ta	22
<210> 1111	
<211> 17 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1111 tcgtgggcct tgccggt	17
<210> 1112 <211> 28	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	

<400> 1112 tcgttaatta atctggctgc ggaagtga	28
<210> 1113 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1113 tcgttgagat ggtttttacc ttcgttg	27
<210> 1114 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1114 tcgtttaagc gccagaaagc accaa	25
<210> 1115 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1115 tegtttcacc etgteatgee g	21
<210> 1116 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1116 tctttcgtat aaaaaggacc aattgg	26
<210> 1117 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1117 tctacaacac ttgattgtaa tttgccttgt tcttt	35
<210> 1118 <211> 24	

<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1118	
tctagcggaa caacagttct gatg	24
<210> 1119	
<211> 27	
<212> DNA <213> Artificial Sequence	
(213) Artificial Sequence	
<220>	
<223> Primer	
<400> 1119	
tetatagagt ceggaettte etegtga	27
<210> 1120	
<211> 30	
<212> DNA <213> Artificial Sequence	
12132 ALCILICIAL BEQUENCE	
<220>	
<223> Primer	
<400> 1120	
tctataggta ctgtagtttg ttttccgtct	30
<210> 1121	
<211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<223> Filmer	
<400> 1121	
totoacotac agotttaaag ocagoaa	27
<210> 1122	
<211> 31	
<212> DNA <213> Artificial Sequence	
and individual beducines	
<220>	
<223> Primer	
<400> 1122	
tctcacctac agctttaaag ccagcaaaat g	31
<210> 1123	
<211> 25	
<212> DNA <213> Artificial Sequence	
varor imparatorar peducuce	
<220>	
<223> Primer	

<400> 1123 tctcatcccg atattaccgc catga	25
<210> 1124 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1124 tctcatgaaa aaggctcagg agatacaag	29
<210> 1125 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1125 tctcttaccc caccctttca cccttac	27
<210> 1126 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1126 tctctttcaa agcaccattg ctcattatag t	31
<210> 1127 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1127 tctgcatttt tgcgagcctg tcta	24
<210> 1128 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1128 tctgcctgag atgtcgaaaa aaacgttg	28
<210> 1129 <211> 26 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1129	
tctggccct ccatacatgt atttag	26
<210> 1130	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
.000	
<220> <223> Primer	
<400> 1130	
tctggctgcg gaagtgaaat cgt	23
<210> 1131	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
2237 FIIMGI	
<400> 1131	
tctgggtgac ctggtgtttt aga	23
<210> 1132	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
ZAZON ETTIMOT	
<400> 1132	
tctgtttcag ttgcaaattc	20
-210. 1122	
<210> 1133 <211> 34	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<225> Plimer	
<400> 1133	
tcttcacact tttagaatca accgttttat tgtc	34
.010. 1104	
<210> 1134 <211> 35	
<211> 35 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1134	

209/271

tcttcagcgt agtctaataa tttacggaac atttc	35
<210> 1135	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1135	
tcttccaagg atagatttat ttcttgttcg	30
<210> 1136	
<211> 33 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1136	2.2
tcttctgtaa agggtggttt attattcatc cca	33
<210> 1137	
<211> 32 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1137	
tettettett tegtataaaa aggaccaatt gg	32
<210> 1138	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1138	
tottottgaa aaattgttgt oocgaaac	28
<210> 1139	
<211> 31	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1139	
tottotttog tataaaaagg accaattggt t	31
<210> 1140	
<211> 18	
<212> DNA <213> Artificial Sequence	

<220> <223> Primer	
400 1140	
<400> 1140 tettgacage atcegttg	18
<210> 1141	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1141	
tettgageat tggttettae ttgttttgea ta	32
<210> 1142	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1142	
tettgageca taegtaecat tge	23
<210> 1143	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1143	
tcttggctta ggatgaaaat atagtggtgg ta	32
<210> 1144	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1144	
totttaagtt ottocaagga tagatttatt tottgttog	39
<210> 1145	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1145	
tctttcttt gcttaatttt ccatttgcga t	31

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1146	
tattac	etget ggat	14
<210>	1147	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1.1.4.7	
		25
cyaaca	terig egaeggeata eccae	22
010	4440	
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
	<u>-</u>	
<220>		
	Primer	
72237	1 1 I I I I I I I I I I I I I I I I I I	
-400-	1140	
<400>		21
	1148 atgta atgcaaacca gtotttgtoa t	31
tgaata	atgta atgcaaacca gtctttgtca t	31
	atgta atgcaaacca gtctttgtca t	31
tgaata	ntgta atgcaaacca gtctttgtca t	31
tgaata <210>	1149 21	31
tgaata <210> <211> <212>	1149 21 DNA	31
tgaata <210> <211> <212>	1149 21	31
tgaata <210> <211> <212> <213>	1149 21 DNA	31
tgaata <210> <211> <212> <213>	atgta atgcaaacca gtctttgtca t 1149 21 DNA Artificial Sequence	31
tgaata <210> <211> <212> <213>	1149 21 DNA	31
tgaata <210> <211> <212> <213> <223>	1149 21 DNA Artificial Sequence	31
tgaata <210> <211> <212> <213> <220> <223>	1149 21 DNA Artificial Sequence Primer	
tgaata <210> <211> <212> <213> <220> <223>	1149 21 DNA Artificial Sequence	31
tgaata <210> <211> <212> <213> <220> <223> <400> tgaata	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g	
tgaata <210> <211> <212> <213> <220> <223>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g	
tgaata <210> <211> <212> <213> <220> <223> <400> tgaata	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g	
tgaata <210> <211> <212> <213> <223> <400> tgaata <210>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26	
tgaata <210> <211> <212> <213> <223> <400> tgaata <210> <211> <212>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26 DNA	
tgaata <210> <211> <212> <213> <223> <400> tgaata <210> <211> <212>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26	
<pre>tgaata <210 > <211 > <212 > <213 > <220 > <223 > <400 > <221 > <210 > <211 > <211 > <212 > <213 ></pre>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26 DNA	
tgaata <210> <211> <212> <213> <223> <400> tgaata <210> <211> <211> <212> <213>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26 DNA Artificial Sequence	
tgaata <210> <211> <212> <213> <223> <400> tgaata <210> <211> <211> <212> <213>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26 DNA	
tgaata <210> <211> <212> <213> <223> <400> tgaata <210> <211> <212> <213>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26 DNA Artificial Sequence Primer	
tgaata <210> <211> <212> <213> <223> <400> tgaata <2210> <2210> <2212> <211> <2212> <213> <400>	1149 21 DNA Artificial Sequence Primer 1149 2tga aacaccatac g 1150 26 DNA Artificial Sequence Primer 1150	21
tgaata <210> <211> <212> <213> <223> <400> tgaata <2210> <2210> <2212> <211> <2212> <213> <400>	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26 DNA Artificial Sequence Primer	
tgaata <210> <211> <212> <213> <223> <400> tgaata <2210> <2210> <2212> <211> <2212> <213> <400>	1149 21 DNA Artificial Sequence Primer 1149 2tga aacaccatac g 1150 26 DNA Artificial Sequence Primer 1150	21
tgaata <210> <211> <212> <213> <223> <400> tgaata <2210> <2210> <2211> <2212> <213> <400>	1149 21 DNA Artificial Sequence Primer 1149 221 23 24 25 26 DNA Artificial Sequence Primer 1150 26 DNA Artificial Sequence Primer 1150 2150 225 235 245 255 265 265 265 265 265 265 265 265 26	21
tgaata <210> <211> <212> <213> <223> <400> tgaata <220> <221> <221> <210> <211> <2212> <213> <400> tgaata	1149 21 DNA Artificial Sequence Primer 1149 2ttga aacaccatac g 1150 26 DNA Artificial Sequence Primer 1150 2ttga aacaccatac gtaacg	21
tgaata <210> <211> <212> <213> <220> <223> <400> <211> <2212> <213> <400> <2110> <2110> <2110> <2110> <2110> <2110> <2110> <2110> <210> <210> <210> <210> <210> <210> <210> <210> <210>	1149 21 DNA Artificial Sequence Primer 1149 21tga aacaccatac g 1150 26 DNA Artificial Sequence Primer 1150 21 22 23 24 25 26 26 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	21

<220> <223> Primer	
<400> 1151	
tgaattatgc aagaagtgat caattttctc acga	34
<210> 1152	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1152	
tgaattettt caaagcacca ttgctcatta tagt	34
<210> 1153	
<211> 30 <212> DNA	
<212> DNA <213> Artificial Sequence	
THEORETICE DOMESTICS	
<220>	
<223> Primer	
<400> 1153	
tgacaggaca caatctgcat gaagtctgag	30
<210> 1154	
<211> 25 <212> DNA	
<213> Artificial Sequence	
_	
<220>	
<223> Primer	
<400> 1154	
tgacccaaag ctgaaagctt tactg	25
<210> 1155	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1155	
tgaccccaac ctggcctttt gtcgttga	28
<210> 1156	
<211> 20 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1156	
tgaccgttat agttacggcc	20

<210> 1157 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1157 tgacggcatc gataccaccg tc	22
<210> 1158 <211> 20 <212> DNA	
<213> Artificial Sequence <220>	
<223> Primer	
<400> 1158 tgacgtcatc cccaccttcc	20
<210> 1159 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1159 tgacgtcatc cccaccttcc tc	22
<210> 1160 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1160 tgacgtcatg cccaccttcc	20
<210> 1161 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1161 tgacgtcatg gccaccttcc	20
<210> 1162 <211> 32 <212> DNA <213> Artificial Sequence	
<220>	

<223> Primer	
<400> 1162	
tgacttaaac gtaccatcgc ttcatataca	ga 32
<210> 1163	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1163	
tgactttcct cccccttatc agtctcc	27
<210> 1164	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
value Architectar beduence	
<220>	
<223> Primer	
<400> 1164	
tgagatgtcg aaaaaaacgt tggcaaaata	c 31
<210> 1165	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1165	
tgagatgttg atgatttacc agttccgatt	g 31
<210> 1166	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1166	
tgagcatcag cgtgcgtgct	20
<210> 1167	
<210> 1167 <211> 28	
<211> 26 <212> DNA	
<212> DNA <213> Artificial Sequence	
-	
<220>	
<223> Primer	
<400× 1167	
<400> 1167 tgagcatttt tatatccatc tccaccat	28
egagoarter catacocato cocaccat	28
<210> 1168	

<211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1168 tgagccatac gaacaatggt ttcataaaca gc	32
<210> 1169 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1169 tgagccatga gtaccatggc ttcataacat gc	32
<210> 1170 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1170 tgagcgtgtg gaaaaggact tggatg	26
<210> 1171 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1171 tgagetggtg ctatatgaac aataccagt	29
<210> 1172 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1172 tgagtcaccc tccacaatgt atagttcaga	30
<210> 1173 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 1173 tgagtcgggt tcactttacc tggca	25
<210> 1174 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1174 tgagtctaca cttggcttag gatgaaa	27
<210> 1175 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1175 tgagttaaaa tgcgattgat ttcagtttcc aa	32
<210> 1176 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1176 tgagtttgaa ccatttcaga gcgaatatct ac	32
<210> 1177 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1177 tgagtttgca cttcaaaaga aattgtgt	28
<210> 1178 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1178 cgataaaaag cactaagcga tgaaacagc	29
<210> 1179 2211> 27	

<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1179	27
tgataatgaa gggaaacctt tttcacg	۵,
<210> 1180	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1180	2.0
tgatattgaa ctggtgtacc ataatagttg cc	32
<210> 1181	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1181	30
tgatcctgaa tgtttatatc tttaacgcct	30
<210> 1182	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1182	22
tgatctccat ggcgcggatc tt	22
<210> 1183	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1183	19
tgatgcgggc tggttcaac	ΣJ
<210> 1184	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

<400> 1184 tgatgcgggc tggttcaaca agag	24
<210> 1185 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1185 tgatggtcta tttcaatggc agttacgaaa	30
<210> 1186 <211> 19	
<212> DNA <213> Artificial Sequence .	
<220> <223> Primer	
<400> 1186 tgattatcag cggaagtag	19
<210> 1187	1.9
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1187	
tgattcaaat gcagaaccat caaactcg	28
<210> 1188	
<211> 31	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1188	
tgattcgatc atacgagaca ttaaaactga g	31
<210> 1189	
<211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1189	
tgattggcga taaagtgata ttttctaaaa	30
<210> 1190	
<211> 22	
<212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 1190 tgattgtttt gcagctgatt gt	22
<210> 1191 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1191 tgattgtttt gcagctgatt gt	22
<210> 1192 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1192 tgcaaaagta acggttacat ctgctccaat	30
<210> 1193 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1193 tgcaacaatt aatgctccga caattaaagg att	33
<210> 1194 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1194 tgcaactcat ctggtttagg atct	24
<210> 1195 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
-400× 1195	

tgcaactgaa tagattgcag taagttataa gc	32
<210> 1196 <211> 23 <212> DNA <213> Artificial Sequence	
<213> Architetar Sequence	
<220> <223> Primer	
<400> 1196 tgcaagagca accctagtgt tcg	23
<210> 1197	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1197	
tgcaagggaa acctagaatt acaaaccct	29
<210> 1198	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1198	0.0
tgcaatgtgt gctatgtcag caaaaagat	29
<210> 1199	
<211> 18 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1199	
tgcacctgcg gtcgagcg	18
<210> 1200	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1200	
tgcacgcaaa cgctttactt cagc	24
<210> 1201	
<211> 26	
<212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 1201 tgcacgtctg tttcagttgc aaattc	26
<210> 1202 <211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1202 tgcagctgat tgt	13
<210> 1203 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1203 tgcataggga aggtaacacc atagtt	26
<210> 1204 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1204 cgcatcacca tttccttgtc cttcg	25
<210> 1205 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
400> 1205 cgcatgaagc ataaaaactg tatcaagtgc tttta	35
<pre></pre>	
2220> 2223> Primer	
:400> 1206 :gcatgctta ctcaaatcat cataaacaat taaagc	36

<210> 1207	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400 7707	
<400> 1207	
tgcattgtac cgaagtagtt cacattgtt	29
<210> 1208	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
,	
<400> 1208	
tgccaagtgc tggtttaccc catgg	25
<210> 1209	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
*	
<220>	
<223> Primer	
<400> 1209	
tgccactttg acaactcctg ttgctg	26
<210> 1210	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
* ***	
<220>	
<223> Primer	
<400> 1210	
tgccagcgac agaccatcgt a	21
<210> 1211	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1211	
tgccagctta gtcatacgga cttc	24
<210> 1212	
<211> 27	
<211> 27 <212> DNA	
<213> Artificial Sequence	
· · · · · · · · · · · · · · · · · · ·	

<220> <223> Primer	
<400> 1212	
tgccagtttc cacatttcac gttcgtg	27
<210> 1213	
<211> 30	
<212> DNA <213> Artificial Sequence	
value metalicatal bequesion	
<220>	
<223> Primer	
.400. 1010	
<400> 1213 tgccatacgt accatcgttt cataaacagc	30
egocaracy: accarcycri caraaacayc	30
<210> 1214	
<211> 24	
<212> DNA	
<213> Artificial Sequence '	
<220>	
<223> Primer	
<400> 1214	
tgccatagca aagcctacag catt	24
<210> 1215	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1215	
tgccatccat aatcacgcca tactgacg	28
<210> 1216	
<210> 1216 <211> 30	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<223> Primer	
<400> 1216	
tgccatttcc atgtactctt ctctaacatt	30
<210> 1217	
<211> 27 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1217	
<pre><400> 1217 tgcccaccag aaagactagc aggataa</pre>	27
· J · · · · · J · · · · · · · · · · · ·	

<210> 1218 <211> 20	
<211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1218 tgcccaggta caacctgcat	20
<210> 1219	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1219 tgccccattg ctcatgatag tagctac	27
<210> 1220	
<211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1220 tgccctttct aaaagtcttg agtgaagata	30
<210> 1221	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1221 tgcccttttg taaaagcagg gctat	25
<210> 1222	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1222 tgccgataag ccggattctg tgc	23
<210> 1223	-
<211> 28	
<212> DNA <213> Artificial Sequence	
<220>	

<223> Primer	
<400> 1223 tgccgtaaca tagaagttac cgttgatt	28
<210> 1224 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1224 tgccgtaact aacataagag aattatgcaa gaa	33
<210> 1225 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1225 tgccgtatac gaaaatatct tatcatttag cgt	33
<210> 1226 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1226 tgcctaacaa atcccgtctg agttc	25
<210> 1227 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1227 tgcctcgcgc aacctacccg	20
<210> 1228 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1228 tgcctcgtgc aacccacccg	20
<210> 1229	

<211> 22 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<pre><400> 1229 tgcgaggaac ttcacgtcct gc 2:</pre>	2
<210> 1230 <211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1230 tgcgatggta ggtatcttag caatcattct 3	O
<210> 1231 <211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1231 tgcgcgagct tttatttggg tttc 2	4
<210> 1232 <211> 29	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1232 tgcgctaatt cttcaacttc ttctttcgt 2	9
<210> 1233	
<211> 32 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1233 tgcgctatca acgattttga caatatatgt ga 3	2
<210> 1234 <211> 23	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 1234 tgcggcagca ctatcaccat cca	23
<210> 1235 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1235 tgcgggctgg ttcaacaaga g	21
<210> 1236 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1236 tgcgggtgat acttaccgag tac	23
<210> 1237 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1237 tgcggtctgg cgcatatagg ta	22
<210> 1238 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1238 tgcgtagtct aataatttac ggaacatttc	30
<210> 1239 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1239 tgcgtgacga ccttcttgaa ttgtaatca	29
<210> 1240 <211> 23	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1240 tgcgtggact accagggtat cta	23
<210> 1241 <211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1241 tgcagctgat tgt	13
<210> 1242 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1242 tgctaaagtc ttgagccata cgaacaatgg	30
<210> 1243 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1243 tgctagacct ttacgtgcac cgtg	24
<210> 1244 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1244 tgctaggcca tcaggccacg cat	23
<210> 1245 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 1245 tgctatatgc tacaactggt tcaaaaacat taag	34
<210> 1246 <211> 29 <212> DNA <213> Artificial Sequence	•
<220> <223> Primer	
<400> 1246 tgctcacctg ctacaacaag tccagcaat	29
<210> 1247 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1247 tgctcttacc tcaccgttcc acccttacc	29
<210> 1248 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1248 tgctgctttc gcatggttaa ttgcttcaa	29
<210> 1249 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1249 tgctgctttg atggctgaat ccccttc	27
<210> 1250 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1250 tgctggattc gcctttgcta cg	22
<210> 1251 <211> 21 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1251	0.1
tgctgtaggg aaatcagggc c	21
<210> 1252	
<211> 18 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1252	
tgcttagatg ctttcagc	18
<210> 1253	
<211> 34	
<212> DNA <213> Artificial Sequence	
72.107 III.022.20222 204.000	
<220> <223> Primer	
CZZO FIIMCI	
<400> 1253	34
tgcttcaaaa cgcattttta cattttcgtt aaag	24
<210> 1254	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1254	
tgcttcagca cggccaccaa cttctag	27
<210> 1255	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1255	
tgcttcagcg tagtctaata atttacggaa c	31
<210> 1256	
<211> 20	
<212> DNA <213> Artificial Sequence	
72107 MICILIOIGI DOGGOGOGO	
<220> <223> Primer	
<773> ETTINGT	
<400> 1256	

231/271

WO 2006/116127 PCT/US2006/015160 20 tgettetett cegggtegge <210> 1257 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer 32 <400> 1257 tgcttgctca aatcatcata aacaattaaa gc <210> 1258 <211> 31 <212> DNA <213> Artificial Sequence <223> Primer 31 <400> 1258 tgcttgctct ttcaagcagt cttgaatgaa g <210> 1259 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer 23 <400> 1259 tgcttggtgg cttcttcgtc gaa <210> 1260 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer 32 <400> 1260 tgctttgtaa tctagttcct gaatagtaac ca <210> 1261 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 30 <400> 1261 tggaaaactc atgaaattaa agtgaaagga <210> 1262 <211> 29 <212> DNA <213> Artificial Sequence

<220> <223> Primer	
<223> Filmer	
<400> 1262	29
tggaaaccgg ctaagtgagt accaccatc	
7.0	
<210> 1263 <211> 30	
<211> 30 <212> DNA	
<213> DNA <213> Artificial Sequence	
(212) WICHIOTOT	
<220>	
<223> Primer	
<400> 1263	30
tggaacaccg tctttaatta aagtatctcc	
<210> 1264	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1264	24
tggaatttac cagcgataga cacc	24
555mm	
<210> 1265	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1265	20
tggaccacgc cgaagaacgg	
<210> 1266	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1266	2.0
tggacgatat tcacggttta cccacttata	30
Lggacgaca	
<210> 1267	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
-2205	
<220> <223> Primer	
/250/ ************************************	
<400> 1267	31
tggactaata acaatgagct cattgtactg a	

<210>	1268	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1268	
tagata	aattg gtcgtaacaa gggatagtga g	31
33		
<210>	1269	
<211>		
<212>		
	Artificial Sequence	
\213 /	Wrettrerar pedagues	
<220>		
	Primer	
4 4437	FITHER	
. 1 0 0 .	1260	
<400>		27
tggata	agacg tcatatgaag gtgtgct	21
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1270	
tggato	cactg cttacgaact cagcttc	27
<210>	1271	
<211>	26	
<212>	DNA	
	Artificial Sequence	
	•	
<220>		
	Primer	
<400>	1271	
	gtget cacgagtetg tggcat	26
09940	,0900 0409490009 099040	
<210>	1272	
<211>		
<212>		
<413>	Artificial Sequence	
.000		
<220>	Pari mana	
<223>	Primer	
<400>		
tggca	acage teaacacett tgg	23
<210>		
<211>		
<212>		
	Artificial Sequence	

<220>	
<223> Primer	
<400> 1273	
tggcaccgtg ggttgagatg aagtac	26
<210> 1274	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1274	
tggcacgagc ctgacctgt	19
<210> 1275	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1275	
tggcagcaat agtttgacgt acaaatgcac acat	34
.010. 1006	
<210> 1276 <211> 26	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1276	20
tggcatcacc atttccttgt ccttcg	26
<210> 1277	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1277	
tggccacttt tatcagcaac cttacagtc	29
<210> 1278	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1278	
togcostact ccccagoog	19

<210> 1279 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1279 tggcgatgca ctggcttgag	20
<210> 1280 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1280 tggctcataa gacgcgcttg taga	24
<210> 1281 <211> 22 <212> DNA <213> Artificial Sequence	•
<220> <223> Primer	
<400> 1281 tggctgcgga agtgaaatcg ta	22
<210> 1282 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1282 tggctgcttc taagccaac	19
<210> 1283 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1283 tggcttgaga atttaggatc cggcac	26
<210> 1284 <211> 30 <212> DNA <213> Artificial Sequence	
<220>	

<223> Primer	
<400> 1284 tgggacgtaa tcgtataaat tcatcatttc	30
<210> 1285 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1285 tgggataaca ttggttggaa tataagcaga aacatc	36
<210> 1286 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1286 tgggatggag gtgtagaagg tgttatcatc	30
<210> 1287 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1287 tgggatggag gtgtagaagg tgttatcatc	30
<210> 1288 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1288 tgggcaccat ttatccacaa attgattggt at	32
<210> 1289 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1289 tggggacttc cttaccactt ttagtatcta a	31
<210> 1290	

<211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1290 tggggatatg gaggtgtaga aggtgttatc atc	33
<210> 1291 <211> 27 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1291 tggggtaaga cgcggctagc atgtatt	27
<210> 1292 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1292 tgggtacgaa ctggatgtcg ccgtt	25
<210> 1293 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1293 tgggtaggtt tttatctgtg acgcctt	27
<210> 1294	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1294 tgggtctaca cctgcacttg cataac	26
<210> 1295 <211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 1295 tgggtgctgg tttaccccat ggag	24
<210> 1296 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1296 tgggttgcgt tgcagattat ctttaccaa	29
<210> 1297 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1297 tgggtttcgc gcttagatgc tttca	25
<210> 1298 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1298 tggtaaccet tgtetttg	18
<210> 1299 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1299 tggtaaccct tgtctttgaa ttgtatttgc a	31
<210> 1300 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1300 tggtacaaca tcgttagctt taccactttc acg	33
<210> 1301 <211> 32	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1301 tggtacacct ggtttcgttt tgatgatttg ta	32
<210> 1302 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1302 tggtacttca acttcatcca ttatgaagtc	30
<210> 1303 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1303 tggtatattc gttaattaat ctggctgcgg a	31
<210> 1304 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1304 tggtctgagt acctcctttg c	21
<210> 1305 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1305 tggtgggtat cttagcaatc attctaatag c	31
<210> 1306 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 1306 tggtgttcta gtatagattg aggtagtggt ga	32
<210> 1307 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1307 tggttagaag tcgtaacgtg gacc	24
<210> 1308 <211> 25 <212> DNA <213> Artificial Sequence	
<220><223> Primer	
<400> 1308 tggttcaaca agagttgccg ttgca	25
<210> 1309 <211> 31 <212> DNA	
<220> <223> Primer	
<400> 1309 tggttcttac ttgctttgca taaactttcc a	31
<210> 1310 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1310 tggttgtagt tcctgtagtt gttgcattaa c	31
<210> 1311 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1311 tggtttgtca gaatcacgtt ctggagttgg	30
<210> 1312 <211> 28 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1312 tgtaaaagca gggctataat aaggactc	28
cytaaaagca gggctacaac aaggaccc	
<210> 1313	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1313	
tgtaaattcc gcaaagactt tggcattag	29
<210> 1314	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1314	
tgtaaccctt gtctttgaat tgtatttgc	29
<210> 1315	
<211> 31	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1315	2.1
tgtaattaac cgaaggttct gtagaagtat g	31
<210> 1316	
<211> 28	
<212> DNA <213> Artificial Sequence	
22137 ALCILICIAL Sequence	
<220>	
<223> Primer	
<400> 1316	
tgtacaagga ccattataat caatgcca	28
<210> 1317	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1317	

242/271

tgtacaataa ggagtcacct tatgtccctt a	31
<210> 1318	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
(24) IIII	
<400> 1318	30
tgtacaccat ttatccacaa attgattggt	50
<210> 1319	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1319	29
tgtaggcaag tgcataagaa attgataca	25
<210> 1320	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1320 tgtcaatatg aaggtgetet gtggata	27
tgttaatatg aaggtgetet gtggata	
<210> 1321	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1321 tgtcaccage ttcagegtag tetaataa	28
<210> 1322	
<211> 19 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
400 1000	
<400> 1322 tgtcactccc gacacgcca	19
<210> 1323	
<211> 29 <212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 1323 tgtcagctaa gctaataacg tttgtagag	29
<210> 1324 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1324 tgtcatcaag caccccaaaa tgaact	26
<210> 1325 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1325 tgtccgactt gacggtcaac atttcctg	28
<210> 1326 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1326 tgtccgactt gacggtcagc atttcctg	28
<210> 1327 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1327 tgtccgactt gacggttagc atttcctg	28
<210> 1328 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1328 tgtcgcagca tctgttcctg c	21

<210> 1329 <211> 29 <212> DNA <213> Artificial Sequence	
22139 Altilitat Sequence	
<220> <223> Primer	
<400> 1329 tgtctattgt cgattgttac ctgtacagt	29
<210> 1330 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1330 tgtgaacatt tgcgacggta tacccat	27
<210> 1331 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1331 tgtgaagaac tttcaaatct gtgaatcca	29
<210> 1332 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1332 tgtgatatgg aggtgtagaa ggtg	24
<210> 1333 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1333 tgtgatatgg aggtgtagaa ggtgtta	27
<210> 1334 <211> 24 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 1334 tgtgcaggca tcatgtcata ccaa	24
<210> 1335 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1335 tgtgctgctt tcgcatggtt aattgcttca a	31
<210> 1336 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1336 tgtgctggtt taccccatgg ag	22
<210> 1337 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1337 tgtgctggtt taccccatgg agt	23
<210> 1338 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1338 tgtgctttga atgct	15
<210> 1339 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1339 tgtgcttttt ttgctgccat agcaaagc	28

<210>	1340	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1340	
	ecgat ttcaccacct gctcct	26
-5-55		
<210>	1341	
<211>		
<211>		
<213>	Artificial Sequence	
000		
<220>	m Augusta	
<223>	Primer	
<400>		18
tgtgt	tgtcg ccgcgcag	ТО
<210>	1342	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Primer	
1000		
<400>	1342	
		20
igila	acggc ttcaagaccc	
.010.	1242	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1343	
tgtta	agtgt gttgcggctg tctttatt	28
<210>	1344	
<211>		
<212>		
	Artificial Sequence	
4213 2	WIGHTIOTOT Bodgomog	
<220>		
	Primer	
<443>	Firmer	
4400	1244	
	1344	36
tgtta	atggt aaccettgte tttgaattgt atttge	50
	1345	
<211>		
<212>		
<213>	Artificial Sequence	

247/271

<223> Primer	
<400> 1345	
tgttactcac ccgtctgcca ct	22
<210> 1346	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1346	
tgttactgct ggat	14
<210> 1347	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1347	
tgttcatgtt taaatgatca ggataaaaag cact	34
<210> 1348	
<211> 30	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
7227 LL11101	
<400> 1348	2.0
tgttccaata gcagttccgc ccaaattgat	30
<210> 1349	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1349	
tgttctggat tgattgcaca atcaccaaag	30
24.0 1050	
<210> 1350	
<211> 30	
<212> DNA <213> Artificial Sequence	
.000	
<220> <223> Primer	
CAAS/ FLAMOL	
<400> 1350	_
tgttcttgat acacctggtt tcgttttgat	30
<21.0> 1351	

<211> 3	30	
<212> I	DNA	
<213> A	Artificial Sequence	
<220>		
<223> I	Primer	
<400> 1		
tgttgaa	agct gtacttgacc tgattttacg	30
<210> 3	1352	
<211>	19	
<212> I	DNA	
<213> 2	Artificial Sequence	
<220>		
<223> 1	Primer	
<400>		
tgttga	ccat gcttcttag	19
<210>	1353	
<211> 2	28	
<212> I		
<213> 1	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1353	
		28
<210>		
<211>		
<212>		
<213> .	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1354	
tgtttg	tgat gcatttgctg agcta	25
<210>	1355	
<211>	33	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1355	
	atgt gtagttgagc ttactacatg agc	33
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	

<400> 1356 tgttttgtat ccaagtgctg gtttacccc	29
<210> 1357 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1357 tactcatgcc a	11
<210> 1358 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1358 tattettegt t	11
<210> 1359 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1359 ttacttctaa cccactc	17
<210> 1360 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1360 ttaatctggc tgcggaagtg aaatcgt	27
<210> 1361 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1361 ttaccatctt caaatacccg aacagtaa	28
<210> 1362 <211> 26	

	DNA	
<213>	Artificial Sequence	
	<u>.</u>	
.000		
<220>		
<223>	Primer	
<400>	1362	
		26
LLaccy	gagca ggttctgacg gaaacg	
<210>	1363	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>	•	
<223>	Primer	
1000		
<400>		20
ttacgo	ccatc aggccacgca	20
<210>	1364	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	The day are	
<223>	Primer	
<400>	1364	
ttacto	cacce gteegee	17
CCacco	300300	
<210>		
<210> <211>		
	20	
<211> <212>	20 DNA	
<211> <212>	20	
<211> <212> <213>	20 DNA	
<211><212><213><223>	20 DNA Artificial Sequence	
<211><212><213><223>	20 DNA	
<211><212><213><223>	20 DNA Artificial Sequence	
<211><212><213><223>	20 DNA Artificial Sequence Primer	
<211><212><213><223><400>	20 DNA Artificial Sequence Primer 1365	20
<211><212><213><223><400>	20 DNA Artificial Sequence Primer	20
<211><212><213><223><400>ttacte	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct	20
<211><212><213><223><400>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct	20
<211><212><213><213><220><223><400> ttacto<<210>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct	20
<211><212><213><220><223><400>ttacte<<210><211>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34	20
<211><212><213><220><223><400>ttacte<<210><211><211><212>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA	20
<211><212><213><220><223><400>ttacte<<210><211><211><212>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34	20
<211><212><213><220><223><400>ttacte<<210><211><211><212>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA	20
<211><212><213><220><223><400>ttacte<<210><211><211><212>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA	20
<211><212><213> 220 223 223 400 <210><211><212><213>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence	20
<211><212><213> 220 223 223 400 <210><211><212><213>	20 DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA	20
<211><212><213> 220 223 400 <2210><2210><211><212><213><220><223>	DNA Artificial Sequence Primer 1365 cacce gteegeeget 1366 34 DNA Artificial Sequence Primer	20
<211><212><213> 220 223 400 <2210><2210><211><212><2213><220><223>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366	
<211><212><213> 220 223 400 <2210><2210><211><212><2213><220><223>	DNA Artificial Sequence Primer 1365 cacce gteegeeget 1366 34 DNA Artificial Sequence Primer	20
<211><212><213> 220 223 400 <2210><2210><211><212><2213><220><223>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366	
<211><212><213> 220 223 400 <221><221><210><211><212><213><220><223><400> <td< td=""><td>DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accactttta gtatctaaag cata</td><td></td></td<>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accactttta gtatctaaag cata	
<211><212><213> 220 223 400 <220><221><210><211><212><213><220><223><400><210><221>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accacttta gtatctaaag cata	
<211><212><213> 220 223 400 <220><221><210><211><212><213><220><221><213>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accactttta gtatctaaag cata 1367	
<211><212><213> 220 223 400 <220><221><210><211><212><213><220><223><400><210><221>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accactttta gtatctaaag cata 1367	
<211><212><213> 220 223 400 <220><221><211><212><213><220><223><400><210><212><213>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accactttta gtatctaaag cata 1367 17 DNA	
<211><212><213> 220 223 400 <220><221><211><212><213><220><223><400><210><212><213>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accactttta gtatctaaag cata 1367	
<211><212><213> 220 223 400 <220><221><210><211><212><213><220><221><211><212><213>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accacttta gtatctaaag cata 1367 17 DNA Artificial Sequence	
<211><212><213> 220 223 400 <220><221><211><212><213><220><223><400><211><212><213>	DNA Artificial Sequence Primer 1365 caccc gtccgccgct 1366 34 DNA Artificial Sequence Primer 1366 tcctt accacttta gtatctaaag cata 1367 17 DNA Artificial Sequence	

251/271

<400> 1367 ttacttctaa cccactc	17
<210> 1368 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1368 ttagaagtcg taacgtggac c	21
<210> 1369 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1369 ttagatgctt tcagcactta tc	22
<210> 1370 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1370 ttcaaaacct tgctctcgcc aaacaa	26
<210> 1371 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1371 ttcaaaagtt gctcgagacc attg	24
<210> 1372 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1372 ttcaaaatgc ggaggcgtat gtg	23
<210> 1373 <211> 22 <212> DNA	

ttcataagca atacctttac ttgcaccac	29
<210> 1379 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1379 ttcattttct ggtccaaagt aagcagtatc	30
<210> 1380 <211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1380 ttccaagtgc tggtttaccc catgg	25
<210> 1381 <211> 33	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1381 ttccaccttg gatacctgga aaaatagctg aat	33
<210> 1382 <211> 36	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	,
<400> 1382	2.5
ttccatttca actaattcta ataattcttc atcgtc	36
<210> 1383 <211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1383 ttcccctgac cttcgattaa aggatagc	28
<210> 1384	
<211> 27 <212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 1384 ttcgcgcatc caggagaagt acatgtt	27
<210> 1385 <211> 15	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1385 ttcgctcgcc gctac	15
<210> 1386 <211> 18	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1386 ttcgctctcg gcctggcc	18
<210> 1387 <211> 22	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1387 ttcggtataa cgcatcgcag ca	22
<210> 1388	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 1388 ttcgtgctgg attttgtcct tgtcct	26
	20
<210> 1389 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
400 1000	
<400> 1389 ttcgtgctta gatgctttca g	21

<210> 1390 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1390 ttctgagcta aatcagcagt tgca	24
<210> 1391 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1391 ttctgcgaat caatcgcacg ctg	23
<210> 1392 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1392 ttctgcttga ggaatagtgc gtgg	24
<210> 1393 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1393 ttctgggtga cctggtgttt taga	24
<210> 1394 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1394 ttcttccaag gatagattta tttcttgttc g	31
<210> 1395 <211> 24 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 1395 ttcttgaacg cgaggtttcg attg	24
<210> 1396 <211> 22 <212> DNA <213> Artificial Sequence	
<220><223> Primer	
<400> 1396 ttgacatcgt ccctcttcac ag	22
<210> 1397 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1397 ttgacatttg catgcttcaa agcctg	26
<210> 1398 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1398 ttgacgtcat ccccaccttc ctc	23
<210> 1399 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1399 ttgacgttgc atgttcgagc ccat	24
<210> 1400 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1400 ttqcaatcga catatccatt tcaccatgcc	30

_
7
0
_
J
J
7
7
7
7
7
7

258/271

	7779> ETTIMET	
	<400> 1406	
	ttgccattca tggtatttaa gtgtagcaga	20
	5 -555 Jogodyddyd	30
	<210> 1407	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 1407	
	ttgcgccata cgtaccatcg t	21
	<210> 1408	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 1408	
	ttgcgttgca gattatcttt accaa	25
	<210> 1409	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 1409	
•	ttgctgccat agcaaagcct acagc	25
	<210> 1410	
	<211> 30	
	<pre><212> DNA</pre>	
•	213> Artificial Sequence	
	:220>	
	223> Primer	
	:400> 1410	
t	tgctgcttt cgcatggtta atcgcttcaa	30
	210> 1411	
	211> 30	
<	212> DNA	
<	213> Artificial Sequence	
	220	
	220> 223> Primer	
<	WODY ETTIMET	
<	400> 1411	
t	tgctgcttt cgcatggtta attgcttcaa	30
	010 1440	
<	210> 1412	

259/271

<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1412	
		27
ttggad	ectgt aatcagctga atactgg	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1413	
	catca gaccacgcat ac	22
cegge	sacca gassasgear as	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1414	
	catca ggccacgcat ac	22
	4.415	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1415	
	gacgg tatacccata gctttata	28
	1416	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	1416	
	geget tggegta	17
	1417	
<210>	· 1417 · 32	
<212>		
	Artificial Sequence	
.000		
<220>	Primer	
~~~~	<b>=</b> ·	

<400> 1417 ttggttctta cttgttttgc ataaactttc ca	32
<210> 1418 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1418 ttgtacattt gaaacaatat gcatgacatg tgaat	35
<210> 1419 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1419 ttgtcagact catcgcgaac atc	23
<210> 1420 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1420 ttgtgatatg gaggtgtaga aggtgtta	28
<210> 1421 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1421 ttgtgattgt tttgcagctg attgtg	26
<210> 1422 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1422 ttgtggccga tttcaccacc tgctcct	27
<210> 1423 <211> 21	

<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1423	21
ttgttaacgg cttcaagacc c	2.1
<210> 1424	
<211> 32	
<212> DNA '	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1424	
ttgtttattg tttccatatg ctacacactt tc	32
<210> 1425	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1425	22
tttaagcgcc agaaagcacc aac	23
<210> 1426	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1426	25
tttacctcgc ctttccaccc ttacc	23
<210> 1427	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1427	29
tttagctact attctagctg ccatttcca	29
<210> 1428	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

262/271

<400> 1428 tttatgacca gcttcggtac tactaaa	27
<210> 1429 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1429 tttatggtct atttcaatgg cagttacgaa	30
<210> 1430 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<220> <221> modified_base <222> (23)(23) <223> I	
<220> <221> modified_base <222> (32)(32) <223> I	
<400> 1430 tttcaatacc tttatgcaac tttgtatcaa ctggaat	37
<210> 1431 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1431 tttcacagca tgcacgtctg tttcagttgc	30
<210> 1432 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1432 tttccccgat ctaaatttgg ataagccata ggaaa	35
<210> 1433 <211> 27 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
(22)/ 121	
<400> 1433 tttccgatgc aacgtaatga gatttca	27
<210> 1434	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1434	00
tttcgtgctt agatgctttc ag	22
<210> 1435 <211> 30	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1435	30
tttcttgaag agtatgagct gctccgtaag	30
<210> 1436	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1436	22
tttgcacctt accgccaaag ct	
<210> 1437	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 1437	
tttgctcatg atctgcatga agcataaa	28
<210> 1438	
<211> 24 <212> DNA	
<212> DNA <213> Artificial Sequence	
Same Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the C	
<220>	
<223> Primer	
<400> 1438	

PCT/US2006/015160 WO 2006/116127 24 tttgctctcc gccaaagttt ccac <210> 1439 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer 28 <400> 1439 tttggacctg taatcagctg aatactgg <210> 1440 <211> 29 <212> DNA <213> Artificial Sequence <223> Primer 29 <400> 1440 tttgtgaaac agcgaacatt ttcttggta <210> 1441 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1441 20 ttttccagcc atgcagcgac <210> 1442 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> modified_base <222> (29)...(29) <223> I <400> 1442 34 ttttcccttt atgcaactta gtatcaactg gaat <210> 1443 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer 29 <400> 1443 ttttgctcat gatctgcatg aagcataaa

```
<210> 1444
<211> 2118
<212> DNA
<213> Artificial Sequence
<223> Concatenation of A. baumannii genes
<220>
<221> misc_feature
<222> 447-486, 778-817, 1162-1201, 1495-1534, 1928-1967, 2115-2118
<223> n = A,T,C or G
<400> 1444
cgcgcggtaa aactaaagaa gaagatatag cattagaaaa agatttgctg tctgatgaaa 60
aagagattgc tgaacattta atgctgattg atcttgggcg aaacgatgta gggcgtgtat 120
cgaaaatagg taaagtccaa gtcacggatc aaatggtgat cgagcgttat tcacatgtca 180
tgcatattgt ttcaaatgta caaggtgaag tgcgtgatga tatcgatgca cttgatgtat 240
ttaaagccac ctttccagca ggaacgttat caggtgcccc aaaaattcgt gcaatggaaa 300
ttattgatga agtagaacct gtgaaaaggg gagtttttgg cggggctgtt ggttatttgg 360
gatggcatgg tgaaatggat atgtcgattg caatccgtac ttgtgttatc cgtgataaaa 420
aggtgtatgt acaggctggt gcagggnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 480
nnnnnnggaa tetggeggtt tagttteaga tgaacteatt ateggtttag taaaagaaeg 540
tattgctcaa cctgactgcg tgaatggttg tattttcgac ggcttcccac gcactattcc 600
tcaagcagaa gctttggaaa aagaagggat cagcattgat catgtaattg aaattgatgt 660
acctgatgaa gaaatcgtaa aacgtctttc tggtcgtcgt cagcatcctg cttctggtcg 720
tgtttatcac gttgtataca atccacctaa agtggaaggt aaagatgatg tcacaggnnn 780
aaccttaaaa ctggtaaagt tttagaaaaa acttttaaat ctggtgatac tttagaagct 900
gctgacatcg tagaagtaga aatgaactac ctatacaacg atggcgaaat gtggcacttc 960
atggacccag aaagcttcga acaaattgca gctgacaaaa ctgcaatggg tgatgctgct 1020
aaatggttaa aagacgactc aaatgaaaca tgtacaatca tgttattcaa cggcgttcct 1080
ttaaacgtaa atgcacctaa cttcgttgta ttgaaagttg ttgaaactga tccgggcgta 1140
ntcgtgcccg yaatttgcat aaagctgccg gccttgtagc acagcaaggc aaatttcctg 1260
aaactctaga agaatggatt gcactacccg gcattggtcg ctcgaccgca ggtgcactca 1320
tgtctttagg tttacgtcag tatggcgtga ttatggatgg caacgtgaaa cgcgttttag 1380
cccgtttctt tgccattgaa gatgacttaa gcaaaccaca gcacgaacgt gaaatgtgga 1440
aactggctga agagctttgt cccacccaac gcaatcatga ctacactcaa gcgannnnnn 1500
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnttaaaa acactagegg taagettaaa 1560
caaqattgcc aatgatattc gttggttagc aagtggtcca cgttgcggct tcggcgaaat 1620
ccqtattcct gaaaatgaac ctggttcaag tatcatgcca ggtaaagtga acccgactca 1680
aaqtqaagcc atgaccatgg ttgttgctca agtacttggc aacgatacca ctattaatgt 1740
cgctggtgct tctggtaact tcgagctcaa tgtatttatg ccagtgattg cttataactt 1800
actgcaatct attcagttgc ttggtgatgc atgtaatagt tttaatgatc actgtgcagt 1860
agggatcgag ccaaatcgtg agaaaattga tcatttcttg cataattctc ttatgttagt 1920
caaatacttt gtctgaagat ggtgacccat tagacgtact tgttgtaact ccacatcctg 2040
ttgctgccgg ttctgtaatt cgttgccgcc cagtgggcaa attaaacatg gaagacgacg 2100
gtggtatcga tgccnnnn
 <210> 1445
 <211> 102
 <212> DNA
 <213> Artificial Sequence
 <223> Calibration Polynucleotide
```

```
<400> 1445
tttaagtccc gcaacgagcg caacccttga tcttagttgt ttagttgggc actctaaggt 60
gactgccggt gacaaaccgg aggaaggtgg ggatgacgtc aa
<210> 1446
<211> 94
<212> DNA
<213> Artificial Sequence
<223> Calibration Polynucleotide
<400> 1446
tagaacaccg atggcgaagg cgactttctg gtctgtaact gacactgaga aagcgtgggg 60
agcaaacagg attagatacc ctggtagtcc acga
<210> 1447
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 1447
tggattagag accetggtag tccacgccgt aaacgatgag tgctaagtgt tagaggcctt 60
tagtgctgaa gttaacgcat taagcactcc gcctggggag tacggcca
<210> 1448
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 1448
tttegatgca acgcgaagaa cettaccagg tettgacate etetgacaac cetagettet 60
ccttcgggag cagagtgaca ggtggtgcat ggctgtcgtc agctcgta
 <210> 1449
 <211> 95
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Calibration Polynucleotide
 <400> 1449
 tetgacacet geceggtget ggaaggttaa ggagagggt tagegtaact etgaactgaa 60
                                                                    95
 gccccagtaa acggcggccg taactataac ggtca
 <210> 1450
 <211> 117
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Calibration Polynucleotide
 <400> 1450
```

```
tetgttetta gtacgagagg accgggatgg acgcaccggt accagttgtt etgccaaggg 60
catagctggg tagctatgtg cggaagggat aagtgctgaa agcatctaag cacgaaa
<210> 1451
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 1451
tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgttc 60
                                                                   100
caggattaat tgcaaataca attcaaagac aagggttaca
<210> 1452
<211> 112
<212> DNA
<213> Artificial Sequence
<223> Calibration Polynucleotide
<400> 1452
tcgaagtaca atacaagaca aaagaaggta aaattactgt tttaggggaa aaattcaaga 60
aatatagaag tgatggctaa aaatgtagaa ggggtcttga agccgttaac aa
<210> 1453
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 1453
ttgctcgtgg tgcacaagta acggatatta caatcattgt tgttgcagct gatgacggcg 60
taataaacag ttgaagcaat taaccatgcg aaagcagcaa
<210> 1454
<211> 114
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 1454
tagettttge atattatate gagecaeage ategtgatgt tttaeagett tatgeaeegg 60
aagcttttaa tggataaatt taacgaacaa gaaataaatc tatccttgga agaa
<210> 1455
<211> 116
 <212> DNA
<213> Artificial Sequence
 <220>
 <223> Calibration Polynucleotide
 <400> 1455
 tgacctacag taagaggttc tgtaatgaac cctaatgacc atccacacgg tggtggtgaa 60
```

ggtagatete etateggaaa gteeaegtae teeatggggt aaa	ccagcac ttggaa 116
<210> 1456 <211> 70 <212> DNA <213> Artificial Sequence	
<220> <223> Calibration Polynucleotide	
<400> 1456 tocacacggt ggtggtgaag gtagatetee tateggaaag tee aaccagcaca	acgtact ccatggggta 60 70
<210> 1457 <211> 82 <212> DNA <213> Artificial Sequence	
<220> <223> Calibration Polynucleotide	
<400> 1457 ttategetea ggegaactee aacetggatg atgaaggeeg ett egtageaaag gegaateeag ea	tttagaa ggtgacttgt 60 82
<210> 1458 <211> 87 <212> DNA <213> Artificial Sequence	
<220> <223> Calibration Polynucleotide	
<400> 1458 tgggcagcgt ttcggcgaaa tggaagtggc tcgaagcgta tggaggaaatgtt gaccgtcaag tcggaca	gegetteg taegtgetge 60 87
<210> 1459 <211> 97 <212> DNA <213> Artificial Sequence	
<220> <223> Calibration Polynucleotide	
<400> 1459 tcaggagtcg ttcaactcga tctacatgat ggccgaccgc cc ttcgtcagct ggccggcatg cgtggcctga tggcgta	ggggttcg gcggtgcaga 60 97
<210> 1460 <211> 117 <212> DNA <213> Artificial Sequence	
<220> <223> Calibration Polynucleotide	
<400> 1460 totggcaggt atgogtggto tgatggccaa tocatotggt og caagtttoog tgaaggttta acagtacttg agtacttcat ot	rtatcatcg aacttccaat 60 caacccac ggtgcga 11

```
<210> 1461
<211> 98
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 1461
tcaagcaaac gcacaatcag aagctaagaa agcgcaagct tctggaaagc acaaatgcta 60
gttatggtac agaatttgca actgaaacag acgtgcaa
<210> 1462
<211> 99
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 1462
tocacacgoo gttottcaac aactacogtg ttotacttoo gtacgacgga cgtgacgggc 60
                                                                   99
tcgatcgagc tgccgaagga caaggaaatg gtgatgcca
<210> 1463
<211> 111
<212> DNA
<213> Artificial Sequence
<223> Calibration Sequence
<400> 1463
togtggcggc gtggttatcg aacccatgct gaccgatcaa tggtacgtgc acaccgcccc 60
ccaaagtcgc gattgaagcc gtagagaacg gcgacatcca gttcgtaccg a
<210> 1464
<211> 2100
<212> DNA
<213> Artificial Sequence
<223> Combination Calibration Polynucleotide
<400> 1464
gaagtagaga tatggaggaa caccagtggc gaaggcgact ttctggtctg taactgacac 60
tgagaaagcg tggggagcaa acaggattag ataccetggt agtecacgce gtaaacgatg 120
agtgctaagt gttagaggcc tttagtgctg aagttaacgc attaagcact ccgcctgggg 180
agtacggccg caaggctgaa actcaaagga attgacgggg cacaagcggt ggagcatgtg 240
gtttaattcg aagcaacgcg aagaacctta ccaggtcttg acatcctctg acaaccctag 300
cttctccttc gggagcagag tgacaggtgg tgcatggttg tcgtcagctc gtgtcgtgag 360
atgttgggtt aagtcccgca acgagcgcaa cccttgatct tagttgttta gttgggcact 420
ctaaggtgac tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc 480
ccagtaccgt gagggaaagg tgaaaagcac cccggaaggg gagtgaaaga gatcctgaaa 540
ccgtgtgcca tagtcagagc ccgttaacgg gtgatggcgt gccttttgta gaatgaaccg 600
gcgagttata agatccgtag tcaaaaggga aacagcccag accgccagct aaggtcccaa 660
agtgtgtatt gaaaaggatg tggagttgct tagacaacta ggatgttggc ttagaagcag 720
ccaccattta aagagtatag ggggtgacac ctgcccggtg ctggaaggtt aaggagaggg 780
gttagcgtaa ctctgaactg aagccccagt aaacggcggc cgtaactata acggtcctaa 840
```

ggtagcgaaa	gaaatttgag	aggagctgtc	cttagtacga	gaggaccggg	atggacgcac	900
cggtaccagt	tgttctgcca	agggcatagc	tgggtagcta	tgtgcggaag	ggataagtgc	960
tgaaagcatc	taagcatgaa	gccccctca	agatgagagc	agtaaaacaa	gcaaacgcac	1020
aatcagaagc	taagaaagcg	caagcttctg	gaaagcacaa	atgctagtta	tggtacagaa	1080
tttqcaactq	aaacagacgt	gcatgctgtg	aaatttgcga	aagcttttgc	atattatatc	1140
gagccacagc	atcgtgatgt	tttacagctt	tatgcaccgg	aagcttttaa	tggataaatt	1200
taacqaacaa	gaaataaatc	tatccttgga	agaacttaaa	gatcaacgga	tgctggcaag	1260
atatgaaaaa	taagataaaa	cagcactatc	aacactggag	cgattcttta	tctgaagaag	1320
gaagagcgat	qaaaacaacg	aagtacaata	caagacaaaa	gaaggtaaaa	ttactgtttt	1380
aggggaaaaa	ttcaaqaaat	atagaagtga	tggctaaaaa	tgtagaaggg	gtcttgaagc	1440
cqttaacaqc	tgttatggcg	accgtggcgg	cgtggttatc	gaacccatgc	tgaccgatca	1500
atggtacgtg	cacaccgccc	cccaaagtcg	cgattgaagc	cgtagagaac	ggcgagatcc	1560
agttcgtccc	taaacagtac	ggcaacttcg	ttatcgctca	ggcgaactcc	aacctggatg	1620
atgaaggccg	ctttttagaa	ggtgacttgt	cgtagcaaag	gcgaatcaag	cctgtttagc	1680
cacaactatq	catactcata	gtgcacaagt	aacggatatt	acaatcattg	ttgttgcagc	1740
tgatgacggc	gtaataaaca	gttgaagcga	ttaaccatgc	gaaagcagca	ggagtaccaa	1800
ctttactcag	cttgctggta	tgcgtggtct	gatggccaat	ccatctggtc	gtatcatcga	1860
acttccaatc	aagtttccgt	gaaggtttaa	cagtacttga	gtacttcatc	tctacgcatg	1920
gtgcgcgtaa	aggtcatggg	agtaagacct	acagtaagag	gttctgtaat	gaaccctaat	1980
gaccatccac	acggtggtgg	tgaaggtaga	tctcctatcg	gaaagtccac	gtactccatg	2040
gggtaaacca	gcacttggat	acaaaacaag	cgcagttcgg	cggccagcgc	ttcggtgaaa	2100