Chapter 15Key Management

Chapter 15 Objectives

- ☐ To explain the need for a key-distribution center
- ☐ To show how a KDC can create a session key
- ☐ To show how two parties can use a symmetric-key agreement protocol to create a session key
- ☐ To describe Kerberos as a KDC and an authentication protocol
- ☐ To explain the need for certification authorities for public keys
- ☐ To introduce the idea of a Public-Key Infrastructure (PKI) and explain some of its duties

15-1 SYMMETRIC-KEY DISTRIBUTION

Symmetric-key cryptography is more efficient than asymmetric-key cryptography for enciphering large messages. Symmetric-key cryptography, however, needs a shared secret key between two parties. The distribution of keys is another problem.

Topics discussed in this section:

- **15.1.1** Key-Distribution Center: KDC
- 15.1.2 Session Keys

15.1.1 Key-Distribution Center: KDC

Figure 15.1 Key-distribution center (KDC)

15.1.1 Continued

Flat Multiple KDCs.

Figure 15.2 Flat multiple KDCs

15.1.1 Continued

Hierarchical Multiple KDCs

Figure 15.3 Hierarchical multiple KDCs

15.1.2 Session Keys

A KDC creates a secret key for each member. This secret key can be used only between the member and the KDC, not between two members.

Note

A session symmetric key between two parties is used only once.

15.1.2 Continued

A Simple Protocol Using a KDC

Figure 15.4 First approach using KDC

15.1.2 Continued

Needham-Schroeder Protocol

K_A Encrypted with Alice-KDC secret key

K_B Encrypted with Bob-KDC secret key

K_{AB} Encrypted with Alice-Bob session key

Session key between Alice and Bob

KDC: Key-distribution center

R_A: Alice's nonce

R_B: Bob's nonce

Figure 15.5

Needham-Schroeder protocol

15.1.2 Continued

Otway-Rees Protocol

Figure 15.6
Otway-Rees protocol

15-2 KERBEROS

Kerberos is an authentication protocol, and at the same time a KDC, that has become very popular. Several systems, including Windows 2000, use Kerberos. Originally designed at MIT, it has gone through several versions.

Topics discussed in this section:

- **15.2.1 Servers**
- 15.2.2 Operation
- **15.2.3** Using Different Servers
- 15.2.4 Kerberos Version 5
- **14.2.5 Realms**

15.2.1 Servers

Figure 15.7 Kerberos servers

15.2.1 Continued

Authentication Server (AS)

The authentication server (AS) is the KDC in the Kerberos protocol.

Ticket-Granting Server (TGS)

The ticket-granting server (TGS) issues a ticket for the real server (Bob).

Real Server

The real server (Bob) provides services for the user (Alice).

15.2.2 Operation

Figure 15.8 Kerberos example

15.2.3 Using Different Servers

Note that if Alice needs to receive services from different servers, she need repeat only the last four steps.

15.2.4 Kerberos Version 5

The minor differences between version 4 and version 5 are briefly listed below:

- 1) Version 5 has a longer ticket lifetime.
- 2) Version 5 allows tickets to be renewed.
- 3) Version 5 can accept any symmetric-key algorithm.
- 4) Version 5 uses a different protocol for describing data types.
- 5) Version 5 has more overhead than version 4.

15.2.5 Realms

Kerberos allows the global distribution of ASs and TGSs, with each system called a realm. A user may get a ticket for a local server or a remote server.

15-4 PUBLIC-KEY DISTRIBUTION

In asymmetric-key cryptography, people do not need to know a symmetric shared key; everyone shields a private key and advertises a public key.

Topics discussed in this section:

- **15.4.1** Public Announcement
- 15.4.2 Trusted Center
- **15.4.3** Controlled Trusted Center
- **15.4.4** Certification Authority
- 15.4.5 X.509
- 15.4.6 Public-Key Infrastructures (PKI)

15.4.1 Public Announcement

Figure 15.13 Announcing a public key

15.4.2 Trusted Center

Figure 15.14 Trusted center

15.4.3 Controlled Trusted Center

Figure 15.15 Controlled trusted center

15.4.4 Certification Authority

Figure 15.16 Certification authority

Certificate

Figure 15.17 shows the format of a certificate.

15.4.5 Continued

Certificate Renewal

Each certificate has a period of validity. If there is no problem with the certificate, the CA issues a new certificate before the old one expires.

Certificate Renewal

In some cases a certificate must be revoked before its expiration.

Delta Revocation

To make revocation more efficient, the delta certificate revocation list (delta CRL) has been introduced.

15.4.5 Continued

Figure 15.17 Certificate revocation format

15.4.6 Public-Key Infrastructures (PKI)

Figure 15.19 Some duties of a PKI

15.4.6 Continued

Trust Model

Figure 15.20 PKI hierarchical model

15.4.6 Continued Example 15.3

Show how User1, knowing only the public key of the CA (the root), can obtain a verified copy of User3's public key.

Solution

User3 sends a chain of certificates, CA<<CA1>> and CA1<<User3>>, to User1.

- a. User1 validates CA<<CA1>> using the public key of CA.
- b. User1 extracts the public key of CA1 from CA<<CA1>>.
- c. User1 validates CA1<<User3>> using the public key of CA1.
- d. User1 extracts the public key of User 3 from CA1<<User3>>.