

# **Contents**

| 1 | Hier | archica  | Index                                                        | 1  |
|---|------|----------|--------------------------------------------------------------|----|
|   | 1.1  | Class    | Hierarchy                                                    | 1  |
| 2 | Clas | s Index  |                                                              | 3  |
|   | 2.1  | Class    | _ist                                                         | 3  |
| 3 | Clas | s Docu   | mentation                                                    | 5  |
|   | 3.1  | Trilinos | Wrappers::BoomerAMG_PreconditionedSolver Class Reference     | 5  |
|   |      | 3.1.1    | Detailed Description                                         | 5  |
|   |      | 3.1.2    | Constructor & Destructor Documentation                       | 5  |
|   |      |          | 3.1.2.1 BoomerAMG_PreconditionedSolver()                     | 5  |
|   |      | 3.1.3    | Member Function Documentation                                | 6  |
|   |      |          | 3.1.3.1 solve()                                              | 6  |
|   | 3.2  | Trilinos | Wrappers::BoomerAMGParameters Class Reference                | 6  |
|   |      | 3.2.1    | Detailed Description                                         | 7  |
|   |      | 3.2.2    | Member Enumeration Documentation                             | 10 |
|   |      |          | 3.2.2.1 AMG_type                                             | 10 |
|   |      | 3.2.3    | Constructor & Destructor Documentation                       | 10 |
|   |      |          | 3.2.3.1 BoomerAMGParameters()                                | 11 |
|   | 3.3  | Trilinos | Wrappers::ifpackHypreSolverPrecondParameters Class Reference | 11 |
|   |      | 3.3.1    | Detailed Description                                         | 12 |
|   |      | 3.3.2    | Member Typedef Documentation                                 | 12 |
|   |      |          | 3.3.2.1 hypre_function_variant                               | 12 |
|   |      |          | 3.3.2.2 param_value_variant                                  | 13 |

ii CONTENTS

|     | 3.3.3    | Constructor & Destructor Documentation                                          | 3 |
|-----|----------|---------------------------------------------------------------------------------|---|
|     |          | 3.3.3.1 ifpackHypreSolverPrecondParameters()                                    | 3 |
|     | 3.3.4    | Member Function Documentation                                                   | 3 |
|     |          | 3.3.4.1 add_parameter()                                                         | 3 |
|     |          | 3.3.4.2 remove_parameter()                                                      | 4 |
|     |          | 3.3.4.3 return_parameter_value()                                                | 4 |
|     |          | 3.3.4.4 set_parameter_value()                                                   | 4 |
|     |          | 3.3.4.5 set_parameters()                                                        | 4 |
| 3.4 | Trilinos | Wrappers::ifpackSolverParameters Class Reference                                | 5 |
|     | 3.4.1    | Detailed Description                                                            | 6 |
|     | 3.4.2    | Constructor & Destructor Documentation                                          | 6 |
|     |          | 3.4.2.1 ifpackSolverParameters()                                                | 6 |
| 3.5 | Trilinos | Wrappers::ifpackHypreSolverPrecondParameters::parameter_data Struct Reference 1 | 6 |
|     | 3.5.1    | Detailed Description                                                            | 7 |
|     | 3.5.2    | Constructor & Destructor Documentation                                          | 7 |
|     |          | 3.5.2.1 parameter_data() [1/2]                                                  | 7 |
|     |          | 3.5.2.2 parameter_data() [2/2]                                                  | 7 |
|     | 3.5.3    | Member Data Documentation                                                       | 7 |
|     |          | 3.5.3.1 hypre_function                                                          | 8 |
|     |          | 3.5.3.2 set_function                                                            | 8 |
| 3.6 | Trilinos | Wrappers::SolverBoomerAMG Class Reference                                       | 8 |
|     | 3.6.1    | Detailed Description                                                            | 8 |
|     | 3.6.2    | Constructor & Destructor Documentation                                          | 8 |
|     |          | 3.6.2.1 SolverBoomerAMG()                                                       | 8 |
|     | 3.6.3    | Member Function Documentation                                                   | 9 |
|     |          | 3.6.3.1 solve()                                                                 | 9 |

## **Chapter 1**

# **Hierarchical Index**

## 1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

| TrilinosWrappers::BoomerAMG_PreconditionedSolver                     | 5  |
|----------------------------------------------------------------------|----|
| TrilinosWrappers::ifpackHypreSolverPrecondParameters                 | 11 |
| TrilinosWrappers::BoomerAMGParameters                                | 6  |
| TrilinosWrappers::ifpackSolverParameters                             | 15 |
| TrilinosWrappers::ifpackHypreSolverPrecondParameters::parameter_data | 16 |
| TrilinosWrappers::SolverBoomerAMG                                    | 18 |

2 Hierarchical Index

# Chapter 2

# **Class Index**

## 2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

| TrilinosWrappers::BoomerAMG_PreconditionedSolver                                                |    |
|-------------------------------------------------------------------------------------------------|----|
| This class serves as an interface to ifpack for using a hypre solver with a BoomerAMG precondi- |    |
| tioner                                                                                          | 5  |
| TrilinosWrappers::BoomerAMGParameters                                                           |    |
| Class meant to handle BoomerAMG solver or preconditioner parameters                             | 6  |
| TrilinosWrappers::ifpackHypreSolverPrecondParameters                                            |    |
| This class is meatn to handle parameters that are used by hypre solvers and preconditioners .   | 11 |
| TrilinosWrappers::ifpackSolverParameters                                                        |    |
| This class adds minimal functionality to its base class                                         | 15 |
| TrilinosWrappers::ifpackHypreSolverPrecondParameters::parameter_data                            |    |
| This struct holds the data required for a single parameter                                      | 16 |
| TrilinosWrappers::SolverBoomerAMG                                                               |    |
| This class serves as an interface to ifpack for using a BoomerAMG as a solver                   | 18 |

4 Class Index

## **Chapter 3**

## **Class Documentation**

## 3.1 TrilinosWrappers::BoomerAMG\_PreconditionedSolver Class Reference

This class serves as an interface to ifpack for using a hypre solver with a BoomerAMG preconditioner.

#### **Public Member Functions**

BoomerAMG\_PreconditionedSolver (BoomerAMGParameters &BoomerAMG\_precond\_parameters, ifpack
 — SolverParameters &solver\_parameters)

Constructor

void solve (LA::SparseMatrix &system\_matrix, LA::Vector &right\_hand\_side, LA::Vector &solution)
 Solver function.

#### 3.1.1 Detailed Description

This class serves as an interface to ifpack for using a hypre solver with a BoomerAMG preconditioner.

**Author** 

Joshua Hanophy, 2019

#### 3.1.2 Constructor & Destructor Documentation

#### 3.1.2.1 BoomerAMG\_PreconditionedSolver()

Constructor.

#### **Parameters**

| BoomerAMG_precond_parameters | is the instance of BoomerAMGParameters hanlding the BoomerAMG parameters |
|------------------------------|--------------------------------------------------------------------------|
| solver_parameters            | is the instance of ifpackSolverParameters hanlding the solver parameters |

#### 3.1.3 Member Function Documentation

#### 3.1.3.1 solve()

Solver function.

#### **Parameters**

| system_matrix   | is the system matrix                                           |
|-----------------|----------------------------------------------------------------|
| right_hand_side | it the right hand side for the system                          |
| solution        | is the solution vector into which the solution will be written |

## 3.2 TrilinosWrappers::BoomerAMGParameters Class Reference

Class meant to handle BoomerAMG solver or preconditioner parameters.

Inheritance diagram for TrilinosWrappers::BoomerAMGParameters:



Collaboration diagram for TrilinosWrappers::BoomerAMGParameters:



### **Public Types**

• enum AMG\_type { CLASSICAL\_AMG, AIR\_AMG, NONE } Enum storing possible default parameter configurations.

#### **Public Member Functions**

• BoomerAMGParameters (AMG\_type config\_selection, Hypre\_Chooser solver\_preconditioner\_selection) Constructor.

#### **Additional Inherited Members**

#### 3.2.1 Detailed Description

Class meant to handle BoomerAMG solver or preconditioner parameters.

This class adds little functionality to its base class, but includes a comprehensive list of default parameters that may be of interest for BoomerAMG when used as either a solver or a preconditioner. The constructor for this class is of primary interest and sets a number of parameters.

The default parameters are:

| String Name | Description |
|-------------|-------------|

#### interp\_type

The interp\_type integer variable sets the interpolation type. Interpolation types, taken from the hypre documentation, are:

- · 0: classical modified interpolation
- 1: LS interpolation (for use with GSMG)
- · 2: classical modified interpolation for hyperbolic PDEs
- 3: direct interpolation (with separation of weights)
- · 4: multipass interpolation
- 5: multipass interpolation (with separation of weights)
- 7: extended+i interpolation
- 8: standard interpolation
- 9: standard interpolation (with separation of weights)
- 10: classical block interpolation (for use with nodal systems version only)
- 11: classical block interpolation (for use with nodal systems version only) with diagonalized diagonal blocks
- · 12: FF interpolation
- 13: FF1 interpolation
- · 14: extended interpolation
- 100: Pointwise interpolation (intended for use with AIR)

#### pre\_post\_relax

The prerelax string specifies the points, order, and relaxation steps for prerelaxation. The options are "A", "F", or "C" where A is relaxation over all points, F is relaxation over the F-points, and C is relaxation over the C-points. Multiple characters specify multiple relaxation steps and the order matters. For example, "AA" specifies two relaxation steps of all points. The postrelax string specifies the points, order, and relaxation steps for postrelaxation. The options are "A", "F", or "C" where A is relaxation over all points, F is relaxation over the F-points, and C is relaxation over the C-points. Multiple characters specify multiple relaxation steps and the order matters. For example, "FFFC" specifies three post relaxations over F-points followed by a relexation over C-points.

## relax\_type The relax\_type integer variable sets the relaxation type. Relaxation types, taken from the hypre documentation, are: · 0: Jacobi • 1: Gauss-Seidel, sequential (very slow!) • 2: Gauss-Seidel, interior points in parallel, boundary sequential (slow!) · 3: hybrid Gauss-Seidel or SOR, forward solve · 4: hybrid Gauss-Seidel or SOR, backward solve • 5: hybrid chaotic Gauss-Seidel (works only with OpenMP) · 6: hybrid symmetric Gauss-Seidel or SSOR 8: ℓ₁ Gauss-Seidel, forward solve • 9: Gaussian elimination (only on coarsest level) • 13: $\ell_1$ Gauss-Seidel, forward solve • 14: $\ell_1$ Gauss-Seidel, backward solve • 15: CG (warning - not a fixed smoother - may require FGMRES) • 16: Chebyshev 17: FCF-Jacobi • 18: $\ell_1$ -scaled jacobi The coarsen\_type integer variable sets the coarsening algorithm. Coarsening algorithm opcoarsen\_type tions, taken from the hypre documentation, are: • 0: CLJP-coarsening (a parallel coarsening algorithm using independent sets. • 3: classical Ruge-Stueben coarsening on each processor, followed by a third pass, which adds coarse points on the boundaries • 6: Falgout coarsening (uses 1 first, followed by CLJP using the interior coarse points generated by 1 as its first independent set) 8: PMIS-coarsening (a parallel coarsening algorithm using independent sets, generatlower complexities than CLJP, might also lead to slower convergence) 10: HMIS-coarsening (uses one pass Ruge-Stueben on each processor independently, by PMIS using the interior C-points generated as its first independent set) • 21: CGC coarsening by M. Griebel, B. Metsch and A. Schweitzer 22: CGC-E coarsening by M. Griebel, B. Metsch and A.Schweitzer max\_levels The max\_levels integer specifies the maximum number of AMG that hypre will be allowed to use

| cycle_type | The cycle_type integer variable sets the cycle type. Cycle types available, taken from the hypre documentation, are:                                                                                                                                                                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 0: F-cycle type                                                                                                                                                                                                                                                                       |
|            | • 1: V-cycle type                                                                                                                                                                                                                                                                     |
|            | • 2: W-cycle type                                                                                                                                                                                                                                                                     |
| sabs_flag  | sabs_flag sets whether the classical strength of connection test based on testing the negative of matrix coefficient or if the absolute value is tested. If set to 0, the negative coefficient values are tested, if set to 1, the absolute values of matrix coefficients are tested. |
| distance_R | The distance_R double variable sets whether Approximate Ideal Restriction (AIR) multigrid or classical multigrid is used.                                                                                                                                                             |
|            | 0.0: Use classical AMG, not AIR                                                                                                                                                                                                                                                       |
|            | 1.0: Use AIR, Distance-1 LAIR is used to compute R                                                                                                                                                                                                                                    |
|            | 2.0: Use AIR, Distance-2 LAIR is used to compute R                                                                                                                                                                                                                                    |
|            | 3.0: Use AIR, degree 0 Neumann expansion is used to compute R                                                                                                                                                                                                                         |
|            | 4.0: Use AIR, degree 1 Neumann expansion is used to compute R                                                                                                                                                                                                                         |
|            | 5.0: Use AIR, degree 2 Neumann expansion is used to compute R                                                                                                                                                                                                                         |

#### Author

Joshua Hanophy, Ben Southworth 2019

### 3.2.2 Member Enumeration Documentation

## 3.2.2.1 AMG\_type

enum TrilinosWrappers::BoomerAMGParameters::AMG\_type

Enum storing possible default parameter configurations.

Generally, different sets of parameters may be of interest for different AMG solvers. The AMG\_type enum determines which parameters are set when an instance of BoomerAMGParameters is constructed.

#### Enumerator

| CLASSICAL_AMG | Load default parameters consistent with Classical AMG. CLASSICAL_AMG |
|---------------|----------------------------------------------------------------------|
| AIR_AMG       | Load default parameters consistent with AIR. AIR_AMG                 |
| NONE          | Create an empty parameter map. NONE                                  |

### 3.2.3 Constructor & Destructor Documentation

#### 3.2.3.1 BoomerAMGParameters()

```
\label{thm:continuous} TrilinosWrappers:: BoomerAMGParameters:: BoomerAMGParameters ( $$ AMG_type config_selection, $$ Hypre_Chooser solver_preconditioner_selection )
```

#### Constructor.

#### **Parameters**

| config_selection                | is the AMG_type specifying what default parameters should be used                                                                                       |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| solver_preconditioner_selection | is either Hypre_Chooser:Solver or Hypre_Chooser:Preconditioner and specifies whether the parameter object will be used of a solver or a preconditioner. |

## 3.3 TrilinosWrappers::ifpackHypreSolverPrecondParameters Class Reference

This class is meatn to handle parameters that are used by hypre solvers and preconditioners.

Inheritance diagram for TrilinosWrappers::ifpackHypreSolverPrecondParameters:



#### Classes

• struct parameter\_data

This struct holds the data required for a single parameter.

#### **Public Types**

typedef boost::variant< int(\*)(HYPRE\_Solver, int), int(\*)(HYPRE\_Solver, double), int(\*)(HYPRE\_Solver, double, int), int(\*)(HYPRE\_Solver, int, int), int(\*)(HYPRE\_Solver, int \*), int(\*)(HYPRE\_Solver, double \*), int(\*)(HYPRE\_Solver, int \*\*), std::nullptr\_t > hypre\_function\_variant

This type is meant to be used for a pointer to a hypre set function.

• typedef boost::variant< int, double, int \*, int \*\*, std::pair< double, int >, std::pair< int, int >, std::pair< std::string, std::string > > param\_value\_variant

This type is meant to be used for a parameter value.

#### **Public Member Functions**

• ifpackHypreSolverPrecondParameters (Hypre\_Chooser solver\_preconditioner\_selection)

Constructor.

void set\_parameter\_value (std::string name, param\_value\_variant value)

This function can be used to change the value of a parameter in the parameters map that already exists.

void add\_parameter (std::string name, parameter\_data param\_data)

This function can be used to add a new parameter to the.

• void remove\_parameter (std::string name)

Function to remove a parameter from the parameters parameter map.

template<typename return\_type > void return\_parameter\_value (std::string name)

Function to return the value of a parameter.

void set\_parameters (Ifpack\_Hypre &Ifpack\_obj)

This function is to be used by the solver or preconditioner class to set the parameter values.

#### **Protected Attributes**

std::map< std::string, parameter\_data > parameters

The parameters map stores parameters as a string name key and then a parameter\_data instance value.

#### 3.3.1 Detailed Description

This class is meatn to handle parameters that are used by hypre solvers and preconditioners.

It stores parameter values and also interfaces with an ifpack\_Hypre object to actually set the parameter values.

**Author** 

Joshua Hanophy 2019

#### 3.3.2 Member Typedef Documentation

#### 3.3.2.1 hypre\_function\_variant

```
typedef boost::variant<int (*) (HYPRE_Solver, int), int (*) (HYPRE_Solver, double), int (*) (HYPRE_E_Solver, double), int (*) (HYPRE_Solver, int, int), int (*) (HYPRE_Solver, int*), int (*) (HYPRE_Solver, int*), int (*) (HYPRE_Solver, int*), std::nullptr_t> TrilinosWrappers::ifpack HypreSolverPrecondParameters::hypre_function_variant
```

This type is meant to be used for a pointer to a hypre set function.

This is simply an alias for a boost variant type. Note the types in the boos variant contianer are those function pointer types supported by this interface.

#### 3.3.2.2 param\_value\_variant

```
typedef boost::variant<int,double,int*,int**,std::pair<double,int>, std::pair<int, int>,
std::pair<std::string,std::string> > TrilinosWrappers::ifpackHypreSolverPrecondParameters←
::param_value_variant
```

This type is meant to be used for a parameter value.

This is simply an alias for a boost variant type.

#### 3.3.3 Constructor & Destructor Documentation

#### 3.3.3.1 ifpackHypreSolverPrecondParameters()

```
\label{thm:cond} Trilinos \verb|Wrappers::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondParameters::ifpackHypreSolverPrecondPa
```

Constructor.

#### **Parameters**

| solver_preconditioner_selection | is either a Hypre_Chooser enum::Solver or Hypre_Chooser enum::Solver         |
|---------------------------------|------------------------------------------------------------------------------|
|                                 | preconditioner and specifies whether the instance will handle paramets for a |
|                                 | solver or a preconditioner.                                                  |

#### 3.3.4 Member Function Documentation

#### 3.3.4.1 add\_parameter()

This function can be used to add a new parameter to the.

#### **Parameters**

| name       | is the string parameter name. Note that the parameter name should not already exist. To update the value or a parameter that already exists, use the set_parameter_value function |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| param_data | is an instance of the parameter_data struct which contains the parameter value and a pointer to the proper set function                                                           |

#### 3.3.4.2 remove\_parameter()

```
\label{thm:cond} \begin{tabular}{ll} void TrilinosWrappers::ifpackHypreSolverPrecondParameters::remove\_parameter ( std::string \verb| name | ) \\ \end{tabular}
```

Function to remove a parameter from the parameters parameter map.

#### **Parameters**

| name | is the string parameter name to remove. |
|------|-----------------------------------------|
|------|-----------------------------------------|

#### 3.3.4.3 return\_parameter\_value()

```
\label{template} template < typename \ return\_type > \\ void \ Trilinos \\ Wrappers:: ifpack \\ HypreSolver \\ Precond \\ Parameters:: return\_parameter\_value \ ( \\ std:: string \ name \ )
```

Function to return the value of a parameter.

#### **Parameters**

| name | is the string parameter name of the parameter whose value is to be returned |
|------|-----------------------------------------------------------------------------|
|------|-----------------------------------------------------------------------------|

#### 3.3.4.4 set\_parameter\_value()

```
void TrilinosWrappers::ifpackHypreSolverPrecondParameters::set_parameter_value ( std::string \ name, \\ param_value\_variant \ value )
```

This function can be used to change the value of a parameter in the parameters map that already exists.

Use the add\_parameter function if the parameter does not already exist

#### **Parameters**

| name  | is the string parameter name. Note that the parameter name should already exist in the parameters |
|-------|---------------------------------------------------------------------------------------------------|
|       | parameter map. Use the add_parameter function to add a new parameters.                            |
| value | This is the value to assign the parameter found at parameters[name]                               |

#### 3.3.4.5 set\_parameters()

```
\label{thm:cond} \begin{tabular}{ll} void TrilinosWrappers::ifpackHypreSolverPrecondParameters::set\_parameters ( & Ifpack\_Hypre & Ifpack\_obj ) \end{tabular}
```

This function is to be used by the solver or preconditioner class to set the parameter values.

Note that all parameters contained in the parameters map will be set.

## 3.4 TrilinosWrappers::ifpackSolverParameters Class Reference

This class adds minimal functionality to its base class.

Inheritance diagram for TrilinosWrappers::ifpackSolverParameters:



Collaboration diagram for TrilinosWrappers::ifpackSolverParameters:



#### **Public Member Functions**

ifpackSolverParameters (Hypre\_Solver solver\_selection=Hypre\_Solver::PCG)
 Constructor.

#### **Public Attributes**

Hypre\_Solver solver\_selection

#### **Additional Inherited Members**

#### 3.4.1 Detailed Description

This class adds minimal functionality to its base class.

It is meant to be used to handle parameters for a hypre solver other than BoomerAMG. In particular, it is used by BoomerAMG\_PreconditionedSolver to handle the solver parameters.

#### 3.4.2 Constructor & Destructor Documentation

#### 3.4.2.1 ifpackSolverParameters()

Constructor.

**Parameters** 

solver\_selection specifies the solver type to be used.

# 3.5 TrilinosWrappers::ifpackHypreSolverPrecondParameters::parameter\_data Struct Reference

This struct holds the data required for a single parameter.

#### **Public Member Functions**

- parameter\_data (param\_value\_variant value, hypre\_function\_variant hypre\_function)
  - Constructor
- parameter\_data (param\_value\_variant value, std::function < void(const Hypre\_Chooser, const parameter\_
   data &, Ifpack\_Hypre &) > set\_function)

Constructor.

#### **Public Attributes**

- param\_value\_variant value
  - value stores the value of the parameter
- hypre\_function\_variant hypre\_function =nullptr
  - hypre function stores a pointer to the hypre set function to be used to set the parameter value.
- std::function< void(const Hypre\_Chooser, const parameter\_data &, Ifpack\_Hypre &)> set\_function =nullptr set\_function stores a pointer to a custom set function.

#### 3.5.1 Detailed Description

This struct holds the data required for a single parameter.

The required data is a parameter value and a set function. There are two possibilities for a set function. A pointer to a hypre set function defined in the hypre library can used and will be stored as hypre\_function. Or if a custom set function is desired in place of directly using the predfined hypre set functions, a pointer to a custom set function is stored as set\_function. Note that either set\_function or hypre\_function should be a nullptr.

#### 3.5.2 Constructor & Destructor Documentation

#### **3.5.2.1** parameter\_data() [1/2]

#### Constructor.

#### **Parameters**

| value          | is the value of the parameter                                       |
|----------------|---------------------------------------------------------------------|
| hypre_function | is a pointer to the hypre set function defined in the hypre library |

#### 3.5.2.2 parameter\_data() [2/2]

#### Constructor.

#### **Parameters**

| value        | is the value of the parameter         |
|--------------|---------------------------------------|
| set_function | is a pointer to a custom set function |

#### 3.5.3 Member Data Documentation

#### 3.5.3.1 hypre\_function

 $\label{thm:lineswrappers::ifpackHypreSolverPrecondParameters::parameter\_data \leftarrow :: hypre\_function = nullptr$ 

hypre function stores a pointer to the hypre set function to be used to set the parameter value.

Note is this is used then hypre\_function should be equal to a nullptr

#### 3.5.3.2 set function

```
std::function<void(const Hypre_Chooser, const parameter_data &, Ifpack_Hypre &)> Trilinos← Wrappers::ifpackHypreSolverPrecondParameters::parameter_data::set_function =nullptr
```

set\_function stores a pointer to a custom set function.

This can be used if simply setting a parameter value with the set functions predifined in the hypre library is not sufficient. If this is used, hypre\_function should be equal to nullptr

### 3.6 TrilinosWrappers::SolverBoomerAMG Class Reference

This class serves as an interface to ifpack for using a BoomerAMG as a solver.

#### **Public Member Functions**

- SolverBoomerAMG (BoomerAMGParameters &SolverParameters)
- void solve (LA::SparseMatrix &system\_matrix, LA::Vector &right\_hand\_side, LA::Vector &solution) Solver function.

#### 3.6.1 Detailed Description

This class serves as an interface to ifpack for using a BoomerAMG as a solver.

Author

Joshua Hanophy, 2019

#### 3.6.2 Constructor & Destructor Documentation

#### 3.6.2.1 SolverBoomerAMG()

Constructor.

#### **Parameters**

| SolverParameters | is the instance of BoomerAMGParameters container the parameter that the solver will use. |
|------------------|------------------------------------------------------------------------------------------|
|------------------|------------------------------------------------------------------------------------------|

### 3.6.3 Member Function Documentation

#### 3.6.3.1 solve()

#### Solver function.

#### **Parameters**

| system_matrix   | is the system matrix                                           |
|-----------------|----------------------------------------------------------------|
| right_hand_side | it the right hand side for the system                          |
| solution        | is the solution vector into which the solution will be written |