Displaying analytic results

Abhijit Dasgupta

BIOF 339

Comparing groups

The **ggpubr** package, which extends **ggplot2** functionality, has several functions that allow the computation and visualization of different statistical analyses

Under the hood, it's just fancy application of R for statistical tests and then translating the results to ggplot geometries.

```
plt <- ggboxplot(penguins,</pre>
          x = 'species',
          y = 'body mass g',
          color = 'species'.
          add='jitter',
          add.params = list(color='grey', size=0.5))
summary.stats <- penguins %>%
  select(body_mass_g, species) %>%
  group_by(species) %>%
  get_summary_stats(type='common')
plt2 <- ggsummarytable(</pre>
  summary.stats, x = 'species', y = c('n', 'median',
    theme minimal()+
    theme(panel.grid=element_blank(),
          axis.text.x = element_blank())+
    labs(x='', y='')
ggarrange(plt, plt2, ncol=1, heights=c(3,1))
```



```
summary.stats <- penguins %>%
  select(body_mass_g, species) %>%
  group_by(species) %>%
  get_summary_stats(type='common')
(plt2 <- ggsummarytable(
  summary.stats, x = 'species',
  y = c('n','median','iqr'),
  color='species'
  ) +
   theme_minimal()+
   theme(panel.grid=element_blank(),
        axis.text.x = element_blank())+
  labs(x='', y=''))</pre>
```



```
summary.stats <- penguins %>%
  select(body_mass_g, species) %>%
  group_by(species) %>%
  get_summary_stats(type='common')
(plt2 <- ggsummarytable(
  summary.stats, x = 'species',
  y = c('n','median','iqr'),
  color='species'
  ) +
   theme_minimal()+
   theme(panel.grid=element_blank(),
        axis.text.x = element_blank())+
  labs(x='', y=''))</pre>
```

ggarrange(plt, plt2, ncol=1, heights = c(4,1))

```
(summ_plt <- ggsummarystats(
  penguins,
  x = 'species',
  y = 'body_mass_g',
  ggfunc = ggboxplot, add='jitter',
  color='species',
  add.params=list(color='grey', size=0.5)
))</pre>
```


Scatter plots

Add tables to a graphic

```
library(ggsci) # Themes for science journals
dens plt <- ggplot(penguins.
                   aes(x = bodv mass g))+
  geom_density(aes(fill=species))+
  scale fill jco(alpha=0.3)+ # Journal of Clinical
  theme classic() +
  theme(axis.text.y = element_blank(),
        legend.position='top') +
  labs(y="")
stable <- desc_statby(penguins,</pre>
                   measure.var='body_mass_g',
                    grps='species')
stable <- stable[,c('species','length','mean','sd')]</pre>
stable plt <- ggtexttable(stable, rows=NULL)</pre>
ggarrange(dens_plt, stable_plt,
          ncol=1, heights=c(2,1))
```

Add tables to a graphic

```
library(ggsci)
dens plt <- ggplot(penguins,
                   aes(x = bodv mass g))+
  geom_density(aes(fill=species))+
  scale_fill_jco(alpha=0.3)+
  theme classic() +
        legend.position='top') +
  stat central tendency(
    aes(color=species),
    type='mean',
    geom='line', linetype=2
  scale color jco() +
  labs(y = "")
stable <- desc_statby(penguins,</pre>
                   measure.var='body mass g',
                    grps='species')
stable <- stable[,c('species','length','mean','sd')</pre>
stable plt <- ggtexttable(stable, rows=NULL)</pre>
ggarrange(dens_plt, stable_plt,
          ncol=1, heights=c(2,1))
```



```
library(gtsummary)
theme_gtsummary_compact()
tbl_regression(m1,
  label = list(
    bill_length_mm ~ 'Bill length (mm)',
    bill_depth_mm ~ 'Bill depth (mm)',
    flipper_length_mm ~ 'Flipper length (
    species ~ 'Species',
    island ~ 'Island',
    sex ~ 'Sex',
    year ~ 'Year')
) %>%
  add_global_p() %>%
  bold_labels() %>%
  italicize_levels()
```

preserve3f46698eb29c82dc

Putting together multiple models

preservece78e1b69e63de5b

Putting together multiple models

preservea8e8d46170a799d7

Putting together multiple models

```
(gt_t1 <- trial[c("trt", "grade")] %>%
  tbl_summary(missing = "no") %>%
  add_n() %>%
  modify_header(stat_0 ~ "**n (%)**") %>%
  modify_footnote(stat_0 ~ NA_character_))
```

preserve3e4bd5fb1314577c

Putting together multiple models

```
tbl_merge(
  list(gt_t1, gt_r1, gt_r2),
  tab_spanner = c(NA_character_, "**Tumor Response**", "**Time to Death**")
)
```

preservecbab918c1ae4dd6d

The finalfit package

```
explanatory <- setdiff(names(penguins), 'body_mass_g')
dependent <- 'body_mass_g'
t2 <- penguins %>%
   finalfit::finalfit(dependent, explanatory, metrics=TRUE)
knitr::kable(t2[[1]], row.names = F)
```

Dependent: body_mass_g		unit	value	Coefficient (univariable)	Coefficient (multivariable)
species	Adelie	Mean (sd)	3700.7 (458.6)	-	-
	Chinstrap	Mean (sd)	3733.1 (384.3)	32.43 (-100.37 to 165.22, p=0.631)	-282.54 (-457.22 to -107.86, p=0.002)
	Gentoo	Mean (sd)	5076.0 (504.1)	1375.35 (1264.91 to 1485.80, p<0.001)	890.96 (606.55 to 1175.36, p<0.001)
island	Biscoe	Mean (sd)	4716.0 (782.9)	-	-
	Dream	Mean (sd)	3712.9 (416.6)	-1003.11 (-1149.16 to -857.07, p<0.001)	-21.18 (-136.05 to 93.69, p=0.717)

Other packages

- sjPlot (link)
- stargazer

Utility packages

The function broom::tidy takes results from many models and transforms them into tidy datasets, which can be formatted and output using a variety of other packages in the R ecosystem. Some popular and effective packages are

- gt: The grammar of tables (link)
- **flextable**: Creating tables that can work with RMarkdown/HTML as well as the officeverse, which creates Microsoft Word and Powerpoint files from R and RMarkdown (link)
- pixiedust is designed to format the results from the broom::tidy (link)
- xtable and stargazer are targeted towards \LaTeX and PDF outputs

Plotting results

term	estimate	lcb	ucb
speciesChinstrap	-282.54	-460.12	-104.96
speciesGentoo	890.96	601.83	1180.08
islandDream	-21.18	-137.96	95.60
islandTorgersen	-58.78	-180.48	62.93
bill_length_mm	18.96	4.74	33.19
bill_depth_mm	60.80	20.79	100.80
flipper_length_mm	18.50	12.25	24.76
sexmale	378.98	282.83	475.13
year	-42.78	-84.68	-0.89

Plotting results

Plotting results

```
out <- out %>%
  mutate(across(-term, round, 2)) %>%
  mutate(ci = glue::glue('{estimate} ({lcb},{ucb})')
plt2 <- ggplot(out, aes(x = term, y = 0))+
  geom_text(aes(label=ci), size=3, hjust=0)+
  coord_flip()+theme_void() + scale_y_continuous(linggpubr::ggarrange(plt1, plt2, nrow=1, widths=c(2,1),</pre>
```


Plotting results

We can use the **coefplot** package to make a similar plot

```
pacman::p_load("coefplot")
coefplot(m1, intercept=FALSE)
```


This slide differs from the video. It was updated in 2021

Plotting results

We can also use the **see** package

```
pacman::p_load(see, parameters)
plot(model_parameters(m1), show_labels = TRUE)
```


This slide differs from the video. It was updated in 2021

Survival analysis

```
library(survival)
library(survminer)
pbc <- pbc %>% mutate(trt = as.factor(trt), stage =
m <- survfit(Surv(time, status==2)~trt, data=pbc)
ggsurvplot(m, pval=TRUE, risk.table=T)</pre>
```

Survival analysis

```
library(survival)
library(survminer)
pbc <- pbc %>% mutate(trt = as.factor(trt), stage =
m <- survfit(Surv(time, status==2)~trt, data=pbc)
ggsurvplot(m, pval=TRUE, risk.table=T)</pre>
```

m2 <- coxph(Surv(time, status==2) ~ trt, data = pbc)
gtsummary::tbl_regression(m2, exponentiate=T)</pre>

preservefa538ab9eac99275

Survival analysis

preserve5d634018ef9b25bf

Survival analysis

```
ggsurvplot(
    m, pval = TRUE, risk.table = FALSE,
    palette="jama",
    xlab = "Days",
    legend.title="",
    facet.by = "stage",
    legend.labs=c("Control","Treatment")
)
```

This slide differs from the video and was updated in 2021

