

Setup for Lecture

- Open Tutorial
- Packages Required:
 - Tidyverse
 - Ecdat
- Knit Document As You Go
- Read Introduction
- Prepare Your Minds for the Matrix

Part 2: Loops

Correlation Matrix

- Definition: Matrix Which Shows the Correlation Between Every Pair of Numeric Variables
- Used to Understand Strength of Linear Relationships Between Numeric Variables
- Helpful in Measuring Collinearity

Run Chunk 4

- Inspect the Variables in Cigar
- Inspect the Correlation Matrix
- Which Variable(s) is Inappropriate for a Correlation Analysis? Why?

Part 2: Loops

Run Chunk 5

- Run First Half Loops through Every Combination of Columns and Computes Correlation
- Examine Second Half Loops
 Through Every Combination of Columns Excluding the First Column
- Fill in Blanks with Appropriate
 Indices so Second Loop Works
- Run Second Half

Run Chunk 6

- Inspect the Variables in HI
- Uncomment to Print Correlation
 Matrix
- What is the Problem?

Part 2: Loops

Run Chunk 7

- Observe the Difference Between the Printed Tibbles
- What is the Difference?
- How Would You Explain the First Loop to a Toddler?
- What is cat() doing?
- How Would You Explain the Second Loop to an Infant?
- Remember: There Are an Infinite Number of Ways to Do the Same Thing.

Part 3: SRS

- Important For Simulation Studies
- Known Distributions

Distribution	Density/pmf	cdf	Quantiles	Random Numbers
Normal Chi square Binomial	<pre>dnorm() dchisq() dbinom()</pre>	<pre>pnorm() pchisq() pbinom()</pre>	qnorm() qchisq() qbinom()	<pre>rnorm() rchisq() rbinom()</pre>

- "d" -> Useful for Plotting
 Density Curve for Continuous
 Variables or Probability Mass
 Function for Discrete Variables
- "p" -> Finds the Probability
 Less Than Or Equal to a Given
 Number
- "q" -> Finds Cutoff Points
- "r" -> Generates a Random Sample from the Distribution

Part 3: SRS

- For SRS, Use "r"
- Run Chunk 1
 - Scenario for x1: You Ask
 BLANK Number of Students
 There Grades where Grades
 Follow a Normal Distribution
 with Mean=82 and SD=2
 - Scenario for x2: You Ask
 BLANK Number of Students to
 Roll a Fair Die 10 Times and
 Tell You the Number of 6's that
 Appeared.
 - Try Small and Large for BLANK

Part 3: SRS

- Sampling From Finite Set of Possible Outcomes
- Run Chunk 2
 - Scenario: Flip k Coins
 - P(Heads) = BLANK
 - P(Tails) = 1-BLANK
 - How would You Explain What the Figure is Showing to a Politician?

Closing

Disperse and Make Reasonable Decisions