A Uniform Framework for Handling Position Constraints in String Solving

Yu-Fang Chen¹ Vojtěch Havlena² Michal Hečko² Lukáš Holík² **Ondřej Lengál**²

> ¹Academia Sinica, Taiwan ²Brno University of Technology, Czech Republic

> > PLDI'25

String Solving

Satisfiability of formulas over string constraints such as:

disequalities
$$x = yz \land yz \neq ua \land x \in (ab)^*a^+(b|c) \land |xy| = 2|uv| + 1 \land \neg contains(uxz, zbcx)$$
 equations regular constraints more complex operations

String Solving

Satisfiability of formulas over string constraints such as:

$$\underbrace{x = yz}_{\text{equations}} \land \underbrace{yz \neq ua}_{\text{disequalities}} \land \underbrace{x \in (ab)^*a^+(b|c)}_{\text{regular constraints}} \land \underbrace{|xy| = 2|uv| + 1}_{\text{more complex operations}} \land \underbrace{\neg contains(uxz, zbcx)}_{\text{more complex operations}}$$

- Reasoning about string manipulation in programs
 - source of security vulnerabilities (SQL/code injection, cross-site scripting)
 - scripting languages rely heavily on strings
- Analysis of AWS/Rego access policies
- **.**..
- implemented in solvers:
 - ► Z3, cvc5, ... (deduction-based)
 - ► NORN, TRAU, SLOTH, OSTRICH, Z3-NOODLER, ... (automata-based)

String Solving

Satisfiability of formulas over string constraints such as:

disequalities
$$x = yz \land yz \neq ua \land x \in (ab)^*a^+(b|c) \land |xy| = 2|uv| + 1 \land \neg contains(uxz, zbcx)$$
equations regular constraints more complex operations

- Reasoning about string manipulation in programs
 - source of security vulnerabilities (SQL/code injection, cross-site scripting)
 - scripting languages rely heavily on strings
- Analysis of AWS/Rego access policies
- **.**..
- implemented in solvers:
 - ► Z3, cvc5, ... (deduction-based)
 - ► NORN, TRAU, SLOTH, OSTRICH, Z3-NOODLER, ... (automata-based)

Here, we consider:

■ (monadic) regular constraints: $x \in (ab)^*a^+(b|c)$

- (monadic) regular constraints: $x \in (ab)^*a^+(b|c)$
- disequalities: $xyz \neq uawx$

- (monadic) regular constraints: $x \in (ab)^*a^+(b|c)$
- disequalities: $xyz \neq uawx$
- length constraints: $|xy| \le 2|uaw| 3$

- (monadic) regular constraints: $x \in (ab)^*a^+(b|c)$
- disequalities: $xyz \neq uawx$
- length constraints: $|xy| \le 2|uaw| 3$
- symbol (not) at position: a = str.at(xy, 42)

- (monadic) regular constraints: $x \in (ab)^*a^+(b|c)$
- disequalities: $xyz \neq uawx$
- length constraints: $|xy| \le 2|uaw| 3$
- symbol (not) at position: a = str.at(xy, 42)
- not prefix, not suffix: $\neg suffixof(axb, yzw)$

- (monadic) regular constraints: $x \in (ab)^*a^+(b|c)$
- disequalities: $xyz \neq uawx$
- length constraints: $|xy| \le 2|uaw| 3$
- symbol (not) at position: a = str.at(xy, 42)
- not prefix, not suffix: $\neg suffixof(axb, yzw)$
- not contains: $\neg contains(xya, zyw)$

Here, we consider:

 \blacksquare (monadic) regular constraints: $x \in (ab)^*a^+(b|c)$

disequalities: $xyz \neq uawx$

length constraints: $|xy| \leq 2|uaw| - 3$

symbol (not) at position: a = str.at(xy, 42)

 \neg suffixof(axb, yzw) not prefix, not suffix:

not contains:

position constraints

disequalities: $xyz \neq uawx$

■ length constraints: $|xy| \le 2|uaw| - 3$

■ symbol (not) at position: a = str.at(xy, 42)

■ not prefix, not suffix: $\neg suffixof(axb, yzw)$

not contains: $\neg contains(xya, zyw)$

Why "position constraints"?

position constraints

disequalities: $xyz \neq uawx$

■ length constraints: $|xy| \le 2|uaw| - 3$

■ symbol (not) at position: a = str.at(xy, 42)

■ not prefix, not suffix: $\neg suffixof(axb, yzw)$

• not contains: $\neg contains(xya, zyw)$

position constraints

Why "position constraints"?

- they are satisfied by "existence of an interesting position"
- e.g.,

$$xaz \neq ux \Leftrightarrow \exists i \in \mathbb{N} : (xaz)[i] \neq (ux)[i]$$

disequalities: $xyz \neq uawx$

■ length constraints: $|xy| \le 2|uaw| - 3$

■ symbol (not) at position: a = str.at(xy, 42)

■ not prefix, not suffix: $\neg suffixof(axb, yzw)$

not contains: $\neg contains(xya, zyw)$

position constraints

Why "position constraints"?

- they are satisfied by "existence of an interesting position"
- e.g.,

$$xaz \neq ux \Leftrightarrow \exists i \in \mathbb{N} : (xaz)[i] \neq (ux)[i]$$

 $\neg suffixof(axb, yzw) \Leftrightarrow \exists i \in \mathbb{N} : i < |axb| \land (axb)[-i] \neq (yzw)[-i]$

disequalities: $xyz \neq uawx$

■ length constraints: $|xy| \le 2|uaw| - 3$

■ symbol (not) at position: a = str.at(xy, 42)

■ not prefix, not suffix: $\neg suffixof(axb, yzw)$

not contains: $\neg contains(xya, zyw)$

position constraints

Why "position constraints"?

- they are satisfied by "existence of an interesting position"
- e.g.,

$$xaz \neq ux \quad \Leftrightarrow \quad \exists i \in \mathbb{N} : (xaz)[i] \neq (ux)[i]$$

 $\neg suffixof(axb, yzw) \Leftrightarrow \exists i \in \mathbb{N} : i < |axb| \land (axb)[-i] \neq (yzw)[-i]$

 $\neg contains(xya, zyw) \Leftrightarrow \forall k : 0 \le k \le |zyw| - |xya| \Rightarrow \exists i : (xya)[i] \ne (zyw)[i+k]$

Our Approach (High Level)

- 11 Construct the tag automaton A_{tag} encoding positions' information
 - ▶ a version of nondeterministic finite automaton with additional information on edges

Our Approach (High Level)

- 1 Construct the tag automaton A_{tag} encoding positions' information
 - ▶ a version of nondeterministic finite automaton with additional information on edges

- 2 Construct the Parikh formula $PF(A_{tag})$
 - ightharpoonup a linear integer arithmetic (LIA) formula encoding information about the runs of A_{tag}

Theorem (Parikh's theorem (modified))

Numbers of occurrences of symbols in words in a regular language can be described by a linear integer arithmetic formula.

Our Approach (High Level)

- 1 Construct the tag automaton A_{tag} encoding positions' information
 - a version of nondeterministic finite automaton with additional information on edges

- 2 Construct the Parikh formula $PF(A_{tag})$
 - ightharpoonup a linear integer arithmetic (LIA) formula encoding information about the runs of \mathcal{A}_{tag}

Theorem (Parikh's theorem (modified))

Numbers of occurrences of symbols in words in a regular language can be described by a linear integer arithmetic formula.

Solve $PF(A_{tag})$ by an off-the-shelf LIA solver

Tag Automaton

Tag automaton over set of tags \mathbb{T} :

- extension of finite automaton
- \blacksquare $\mathcal{A}_{tag} = (Q, \Delta, I, F)$
 - Q: (finite) set of states
 - $ightharpoonup I \subseteq Q$: initial states
 - $ightharpoonup F \subset Q$: final states
 - $ightharpoonup \Delta \subseteq Q \times 2^{\mathbb{T}} \times Q$: transitions

Tag Automaton

Tag automaton over set of tags \mathbb{T} :

- extension of finite automaton
- \blacksquare $\mathcal{A}_{tag} = (Q, \Delta, I, F)$
 - Q: (finite) set of states
 - $ightharpoonup I \subseteq Q$: initial states
 - $ightharpoonup F \subset Q$: final states
 - $ightharpoonup \Delta \subseteq Q \times 2^{\mathbb{T}} \times Q$: transitions

Tag Automaton

Tag automaton over set of tags \mathbb{T} :

- extension of finite automaton
- \blacksquare $\mathcal{A}_{tag} = (Q, \Delta, I, F)$
 - Q: (finite) set of states
 - $I \subseteq Q$: initial states
 - $ightharpoonup F \subseteq Q$: final states
 - ▶ $\Delta \subseteq Q \times 2^{\mathbb{T}} \times Q$: transitions

Example $x \in (ab)^*$ $y \in (ac)^*$ $\mathbb{T} = \{ \langle \mathbf{S}, \mathbf{a} \rangle,$ $\langle \mathbf{S}, \mathbf{c} \rangle \}$

Parikh formula $PF(A_{tag})$:

- **a** linear integer arithmetic (LIA) formula over variables $\#\mathbb{T} = \{\#t \mid t \in \mathbb{T}\}$
- assignments $\{\#t \mapsto n_t \mid t \in \mathbb{T}, n_t \in \mathbb{N}\}$ (simplified)
- $m \models PF(A_{tag})$ iff there is an accepting run in A_{tag} s.t. m(#t) is the number of occurrences of a tag in a word accepted by A_{tag} .
- $lacktriangleq ext{e.g., if } ababacac \in L(\mathcal{A}_{tag}) ext{ then } \{\#\langle \mathbf{S},a \rangle = 4,\#\langle \mathbf{S},b \rangle = 2,\#\langle \mathbf{S},c \rangle = 2\} \models PF(\mathcal{A}_{tag})$

$$x \in (ab)^* \land y \in (ac)^* \land 2|x| = 3|y| + 2$$

Length Constraints:
$$x \in (ab)^* \land y \in (ac)^* \land 2|x| = 3|y| + 2$$

- construct a tag automaton by connecting the NFAs for x and y
- tags

$$\mathbb{T} = \{\langle \mathbf{S}, a \rangle, \langle \mathbf{S}, b \rangle, \langle \mathbf{S}, c \rangle\} \cup \{\langle \mathbf{L}, x \rangle, \langle \mathbf{L}, y \rangle\}$$

Length Constraints:
$$x \in (ab)^* \land y \in (ac)^* \land 2|x| = 3|y| + 2$$

- \blacksquare construct a tag automaton by connecting the NFAs for x and v
- tags

$$\mathbb{T} = \{ \langle \mathbf{S}, a \rangle, \langle \mathbf{S}, b \rangle, \langle \mathbf{S}, c \rangle \} \cup \\ \{ \langle \mathbf{L}, x \rangle, \langle \mathbf{L}, y \rangle \}$$

$$\varphi : PF(A_{tag}) \wedge 2 \cdot \# \langle \mathbf{L}, \mathbf{x} \rangle = 3 \cdot \# \langle \mathbf{L}, \mathbf{y} \rangle + 2$$

 $x \in (ab)^* \land y \in (ac)^* \land x \neq y$

 $x \in (ab)^* \land y \in (ac)^* \land x \neq y$

- \blacksquare construct tag automaton A_{tag}
- tags:

$$\begin{split} \mathbb{T} &= \{ \langle \mathbf{S}, a \rangle, \langle \mathbf{S}, b \rangle, \langle \mathbf{S}, c \rangle \} \cup \\ &\{ \langle \mathbf{L}, x \rangle, \langle \mathbf{L}, y \rangle \} \cup \{ \langle \mathbf{P}, x \rangle, \langle \mathbf{P}, y \rangle \} \cup \\ &\{ \langle \mathbf{M}_1, a \rangle, \langle \mathbf{M}_1, b \rangle, \langle \mathbf{M}_2, a \rangle, \langle \mathbf{M}_2, c \rangle \} \end{split}$$

- \blacksquare construct tag automaton A_{tag}
- tags:

$$\begin{split} \mathbb{T} &= \{ \langle \mathbf{S}, a \rangle, \langle \mathbf{S}, b \rangle, \langle \mathbf{S}, c \rangle \} \cup \\ & \{ \langle \mathbf{L}, x \rangle, \langle \mathbf{L}, y \rangle \} \cup \{ \langle \mathbf{P}, x \rangle, \langle \mathbf{P}, y \rangle \} \cup \\ & \{ \langle \mathbf{M}_1, a \rangle, \langle \mathbf{M}_1, b \rangle, \langle \mathbf{M}_2, a \rangle, \langle \mathbf{M}_2, c \rangle \} \end{split}$$

$$x \in (ab)^* \land y \in (ac)^* \land x \neq y$$

- count the positions before the mismatch in x ($\#\langle \mathbf{P}, x \rangle$)
- **count the positions before the mismatch** in y ($\#\langle \mathbf{P}, y\rangle$)
- check that $\#\langle \mathbf{P}, \mathbf{x} \rangle = \#\langle \mathbf{P}, \mathbf{y} \rangle$ and there is a mismatch

- \blacksquare construct tag automaton A_{tag}
- tags:

$$\begin{split} \mathbb{T} &= \{ \langle \mathbf{S}, a \rangle, \langle \mathbf{S}, b \rangle, \langle \mathbf{S}, c \rangle \} \cup \\ & \{ \langle \mathbf{L}, x \rangle, \langle \mathbf{L}, y \rangle \} \cup \{ \langle \mathbf{P}, x \rangle, \langle \mathbf{P}, y \rangle \} \cup \\ & \{ \langle \mathbf{M}_1, a \rangle, \langle \mathbf{M}_1, b \rangle, \langle \mathbf{M}_2, a \rangle, \langle \mathbf{M}_2, c \rangle \} \end{split}$$

$$x \in (ab)^* \land y \in (ac)^* \land x \neq y$$

- count the positions before the mismatch in x ($\#\langle \mathbf{P}, x \rangle$)
- count the positions before the mismatch in y ($\#\langle \mathbf{P}, y\rangle$)
- check that $\#\langle \mathbf{P}, \mathbf{x} \rangle = \#\langle \mathbf{P}, \mathbf{y} \rangle$ and there is a mismatch

now we need to consider several options:

now we need to consider several options:

- \blacksquare construct tag automation \mathcal{A}_{tag}
- tags:

$$\begin{split} \mathbb{T} &= \{ \langle \mathbf{S}, a \rangle, \langle \mathbf{S}, b \rangle, \langle \mathbf{S}, c \rangle \} \cup \\ &\{ \langle \mathbf{L}, x \rangle, \langle \mathbf{L}, y \rangle \} \cup \\ &\{ \langle \mathbf{P}_1, x \rangle, \langle \mathbf{P}_1, y \rangle, \langle \mathbf{P}_2, x \rangle, \langle \mathbf{P}_2, y \rangle \} \cup \\ &\{ \langle \mathbf{M}_1, a, x \rangle, \langle \mathbf{M}_1, b, x \rangle, \langle \mathbf{M}_1, a, y \rangle, \langle \mathbf{M}_1, c, y \rangle, \\ &\langle \mathbf{M}_2, a, x \rangle, \langle \mathbf{M}_2, b, x \rangle, \langle \mathbf{M}_2, a, y \rangle, \langle \mathbf{M}_2, c, y \rangle \} \end{split}$$

$$\varphi \colon PF(\mathcal{A}_{tag}) \land (\#\langle \mathbf{L}, \mathbf{x} \rangle + \#\langle \mathbf{P}_1, \mathbf{y} \rangle = \#\langle \mathbf{P}_1, \mathbf{y} \rangle + \#\langle \mathbf{P}_2, \mathbf{y} \rangle) \land \\ (\#\langle \mathbf{M}_1, \mathbf{y}, \mathbf{a} \rangle + \#\langle \mathbf{M}_2, \mathbf{y}, \mathbf{a} \rangle < 2) \land (\#\langle \mathbf{M}_1, \mathbf{y}, \mathbf{c} \rangle + \#\langle \mathbf{M}_2, \mathbf{y}, \mathbf{c} \rangle < 2) \land \dots$$

Multiple Disequalities:

 $x \neq y \land x \neq z$

Multiple Disequalities:

$$x \neq y \land x \neq z$$

- we need to consider a mismatch for $x \neq y$ and a mismatch for $x \neq z$
- ~ more copies
- naive solution: $\frac{(2n)!}{2^n} \in 2^{\Theta(n \log n)}$
 - n... number of disequalities

Multiple Disequalities:

$$x \neq y \land x \neq z$$

- we need to consider a mismatch for $x \neq y$ and a mismatch for $x \neq z$
- ~ more copies
- naive solution: $\frac{(2n)!}{2^n} \in 2^{\Theta(n \log n)}$
 - n...number of disequalities
- better encoding: $\mathcal{O}(n)$
- details in the paper!

Multiple Disequalities:

$$x \neq y \land x \neq z$$

- we need to consider a mismatch for $x \neq y$ and a mismatch for $x \neq z$
- ~ more copies
- naive solution: $\frac{(2n)!}{2^n} \in 2^{\Theta(n \log n)}$
 - n...number of disequalities
- better encoding: $\mathcal{O}(n)$
- details in the paper!

Other constraints

- ¬prefixof, ¬suffixof, str.at, ¬str.at: similar technique
- ¬contains: . . .

$$\neg contains(u, v) \land u \in \ldots \land v \in \ldots$$

 $\neg contains(u, v) \land u \in \ldots \land v \in \ldots$

■ implicit universal quantification

 $\neg contains(u, v) \land u \in \ldots \land v \in \ldots$

■ implicit universal quantification

$$\neg contains(u, v) \land u \in \ldots \land v \in \ldots$$

■ implicit universal quantification

$$\forall \kappa \geq 0 \colon \exists \# \delta_1, \dots \# \delta_n \colon PF(\mathcal{A}_{tag}) \wedge \dots$$

- \blacksquare universal quantification of the offset κ doesn't work!
- \blacksquare one model of $PF(A_{tag})$ may correspond to several different words
- $\blacksquare \rightsquigarrow$ allows different models for different $\kappa!$

$$\neg contains(u, v) \land u \in \ldots \land v \in \ldots$$

$$\forall \kappa \geq 0 \colon \exists \# \delta_1, \dots \# \delta_n \colon PF(\mathcal{A}_{tag}) \wedge \dots$$

- \blacksquare universal quantification of the offset κ doesn't work!
- one model of $PF(A_{tag})$ may correspond to several different words
- \longrightarrow allows different models for different $\kappa!$
- example: suppose $m = \{\#a \mapsto 4, \#b \mapsto 1\}$

$$\neg contains(u, v) \land u \in \ldots \land v \in \ldots$$

$$\forall \kappa \geq 0 \colon \exists \# \delta_1, \dots \# \delta_n \colon PF(\mathcal{A}_{tag}) \wedge \dots$$

- \blacksquare universal quantification of the offset κ doesn't work!
- one model of $PF(A_{tag})$ may correspond to several different words
- $\blacksquare \rightsquigarrow$ allows different models for different $\kappa!$
- example: suppose $m = \{\#a \mapsto 4, \#b \mapsto 1\}$

- restriction to flat regular constraints
 - ▶ ∀∃ LIA formula
- details in the paper!

- REG with single disequality $x_1 ... x_m \neq y_1 ... y_n$:
 - ▶ PTIME ... $\mathcal{O}(nm \cdot |\Sigma|^3 \cdot |\mathcal{R}|^6)$
 - ightharpoonup also for $\neg prefixof$, $\neg suffixof$

- REG with single disequality $x_1 ... x_m \neq y_1 ... y_n$:
 - ▶ PTIME ... $\mathcal{O}(nm \cdot |\Sigma|^3 \cdot |\mathcal{R}|^6)$
 - ▶ also for ¬prefixof, ¬suffixof
- REG with multiple disequalities $\bigwedge_{q < i < K} (x_{i,1} \dots x_{i,m_i} \neq y_{i,1} \dots y_{i,n_i})$
 - NP-complete
 - ▶ also for $\neg prefixof$, $\neg suffixof$, str.at, $\neg str.at$, lengths

- REG with single disequality $x_1 ... x_m \neq y_1 ... y_n$:
 - ► PTIME ... $\mathcal{O}(nm \cdot |\Sigma|^3 \cdot |\mathcal{R}|^6)$
 - ▶ also for ¬prefixof, ¬suffixof
- REG with multiple disequalities $\bigwedge_{q \le i \le K} (x_{i,1} \dots x_{i,m_i} \ne y_{i,1} \dots y_{i,n_i})$
 - NP-complete
 - ightharpoonup also for $\neg prefixof$, $\neg suffixof$, str.at, $\neg str.at$, lengths
 - ► adding flat ¬contains:
 - NP-HARD (just one flat ¬contains suffices)
 - in NExpTIME

- REG with single disequality $x_1 ... x_m \neq y_1 ... y_n$:
 - ► PTIME ... $\mathcal{O}(nm \cdot |\Sigma|^3 \cdot |\mathcal{R}|^6)$
 - ▶ also for ¬prefixof, ¬suffixof
- REG with multiple disequalities $\bigwedge_{q < i < K} (x_{i,1} \dots x_{i,m_i} \neq y_{i,1} \dots y_{i,n_i})$
 - NP-complete
 - ▶ also for ¬prefixof, ¬suffixof, str.at, ¬str.at, lengths
 - ► adding flat ¬contains:
 - NP-HARD (just one flat ¬contains suffices)
 - in NEXPTIME
- REG with multiple position constraints, lengths, and chain-free word equations
 - decidable (in ELEMENTARY)
 - efficient in practice!

Experimental Evaluation

- implemented in Z3-Noodler-Pos extension of Z3-Noodler
- compared to
 - ► Z3-Noodler
 - ► cvc5
 - ► Z3
 - OSTRICH
- benchmarks:
 - symbolic execution¹: using Python PyCT symbolic executor
 - biopython (77,222): bioinformatics Python tools
 - django (52,643): Django Python web app
 - thefuck (19,872): Python command mistake correction tool
 - hand-crafted:
 - position-hard (550): difficult small formulae with \neq and \neg contains

¹Abdulla et al. "Solving not-substring constraint with flat abstraction". In: APLAS'21.

Experimental Evaluation

	biopython (77,222)		django (52,643)		thefuck (19,872)		position-hard (550)		All (150,287)	
	Unsolved	TimeAll	Unsolved	TimeAll	Unsolved	TimeAll	Unsolved	TimeAll	Unsolved	TimeAll
Z3-Noodler-pos	171	24,010	39	8,005	0	665	0	124	210	32,804
Z3-Noodler	507	64,385	145	20,873	376	45,757	480	59,512	1,508	190,527
cvc5	69	21,114	0	4,515	0	690	550	66,000	619	92,319
Z3	1,047	141,301	502	67,741	47	15,097	550	66,000	2,146	290,139
OSTRICH	2,986	1,108,306	4,404	1,507,806	967	236,192	550	66,000	8,907	2,918,304

- Unsolved: out of resources (timeout: 120 s) or Unk
- **TimeAll**: time-of-solved + (timeout * #-of-failed-instances)

Comparison with Z3 and CVC5

Conclusion and Future Work

Takeaway:

- regular + position constraints
 - → tag automaton →→ Parikh formula →
- efficient in practice!

Conclusion and Future Work

Takeaway:

- regular + position constraints
 - → tag automaton →→ Parikh formula →
- efficient in practice!

Future Work:

- non-flat ¬contains
 - REG + 1 non-flat not-contains: decidable in EXPSPACE (under review)
- extend to richer REG constraints
 - backreferences, bounded repetition, ...

Conclusion and Future Work

Takeaway:

- regular + position constraints ~
- efficient in practice!

Future Work:

- non-flat ¬contains
 - ► REG + 1 non-flat not-contains: decidable in ExpSpace (under review)
- extend to richer REG constraints
 - backreferences, bounded repetition, . . .

Thank you!

Word Equations:

uxa = buw

Word Equations:

uxa = buw

- word equations
 - ▶ ~ can be transformed to regular constraints
 - basic algorithm of main automata-based solvers (NORN, OSTRICH, Z3-NOODLER, ...)
 - obtain the so-called monadic decomposition
 - incomplete, but mostly works in practice
- non-negated predicates: can be encoded as word equations
 - ightharpoonup e.g., $prefixof(x,y) \Leftrightarrow x = yz$

Standard Approach for Position Constraints

Standard approach for handling position constraints:

- encode to word equations
- **disequalities**: $x \neq y$:

$$\bigvee_{\substack{c_1,c_2\in\Sigma\\c_1
eq c_2}} lpha c_1eta = xyz \wedge lpha c_2eta' = uawx$$

- other constraints: similar
- solving word equations is in PSPACE (but often solved by algorithms)
- breaks chain-freeness

Standard Approach for Position Constraints

Standard approach for handling position constraints:

- encode to word equations
- **disequalities**: $x \neq y$:

$$\bigvee_{\substack{ c_1, c_2 \in \Sigma \\ c_1 \neq c_2}} \alpha c_1 \beta = xyz \wedge \alpha c_2 \beta' = uawx$$

- other constraints: similar
- solving word equations is in PSPACE (but often solved by algorithms)
- breaks chain-freeness
- ¬contains: no standard way
 - \triangleright can be encoded in the $\forall \exists$ fragment of string constraints (undecidable)
 - ightharpoonup $\neg contains(x, y)$

Comparison with OSTRICH and Z3-NOODLER

