

Exploratory Data Analysis

Assoc. Prof. Karl Ezra Pilario, Ph.D.

Process Systems Engineering Laboratory
Department of Chemical Engineering
University of the Philippines Diliman

Outline

- Exploratory Data Analysis
 - Introduction
 - Titanic Survival Data Set
 - Iris Flower Data Set
 - Taylor Swift Spotify Data Set

Exploratory Data Analysis

- Tools to analyze and investigate data sets and summarize their main characteristics.
- Often employs data visualization methods.
- Helps determine how best to manipulate data sources to get the answers you need, making it easier to discover patterns, spot anomalies, test a hypothesis, or check assumptions.

Source: https://www.ibm.com/topics/exploratory-data-analysis

Example:

A correlogram visualization of the Iris Flower Data Set

What are the different modalities of data?

Tabular Data

Time Series Data

Images / Videos Data

Text Data

Audio / Speech Data

Graph Data

- Data sets can be <u>heterogeneous</u>, i.e., different types of data are contained in one set.
- <u>Multi-modal learning</u> = learning from a combination of various modalities of data (speech, text, image, etc.).

Exploratory Data Analysis

For tabular data, different data types can exist in one table.

Example: Titanic Survival Data Set

Contains information on 1309 passengers aboard the Titanic and whether they survived or not. Goal: To predict the survival of passengers based on their attributes.

Attributes

Did not survive

Survived

Class 1

Contains information on 1309 passengers aboard the Titanic and whether they survived or not. Goal: To predict the survival of passengers based on their attributes.

Bar plots and histograms are useful for visualizing the "count" of values in the data set.

400

300

200

100

Before training any classifier, only the relevant <u>numerical</u> (Num) and <u>categorical</u> (Cat) columns should be retained. Other columns can be <u>dropped</u>.

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
		Label	Cat		Cat	Num	Num	Num		Num		Cat

• This is called <u>feature selection</u>.

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

Here is our current data set:

Label Cat Cat Num Num Num Num Cat

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	s

Here is the current count of missing values:

- "Age" has 177 missing values.
- "Embarked" has 2 missing values.

How to deal with missing values?

Two options:

- Remove rows with missing values; or,
- Imputation = the act of filling in missing values by estimating them.

Mean imputation

Most-frequent imputation

Other imputers: median imputer, iterative imputer, kNN imputer, etc.

We set up one last preprocessing task before ML training: Column Transformation

Before

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
857	1	male	51.000000	0	0	26.5500	S
52	1	female	49.000000	1	0	76.7292	С
386	3	male	1.000000	5	2	46.9000	S
124	1	male	54.000000	0	1	77.2875	S
578	3	female	29.699118	1	0	14.4583	С
835	1	female	39.000000	1	1	83.1583	С
192	3	female	19.000000	1	0	7.8542	S
629	3	male	29.699118	0	0	7.7333	Q
559	3	female	36.000000	1	0	17.4000	S
684	2	male	60.000000	1	1	39.0000	S

After

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0.0	1.0	1.623937	0.0	0.0	-0.122530	2.0
1	0.0	0.0	1.470203	1.0	0.0	0.918124	0.0
2	2.0	1.0	-2.219399	5.0	2.0	0.299503	2.0
3	0.0	1.0	1.854537	0.0	1.0	0.929702	2.0
4	2.0	0.0	-0.013392	1.0	0.0	-0.373297	0.0
618	0.0	0.0	0.701536	1.0	1.0	1.051455	0.0
619	2.0	0.0	-0.835798	1.0	0.0	-0.510258	2.0
620	2.0	1.0	-0.013392	0.0	0.0	-0.512765	1.0
621	2.0	0.0	0.470936	1.0	0.0	-0.312290	2.0
622	1.0	1.0	2.315737	1.0	1.0	0.135667	2.0

For Numerical Data:

- "Age", "Fare"
- Standard Scaling

For Categorical Data:

- "Pclass", "Sex", "Embarked"
- Ordinal Encoding
- Other features are just retained.

Data Normalization

- Normalization removes the effect of differing scales and biases.
- All data are centered to zero-mean and scaled to unit-variance.

Mean

$$\mu = \frac{1}{N} \sum x_i$$

Population standard deviation

$$\sigma_P = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Sample standard deviation

$$\sigma_{S} = \sqrt{\frac{\sum (x_{i} - \mu)^{2}}{N - 1}}$$

Data Standardization (Standard scaler)

$$x_i' = \frac{x_i - \mu}{\sigma_P}$$

Min-max scaler

$$x_i' = \frac{x_i - \min x_i}{\max x_i - \min x_i}$$

Max-abs scaler

$$x_i' = \frac{x_i}{\max |x_i|}$$

What happens to the data points after normalization?

- The scatter of data is preserved. *Information is intact!*
- Normalization improves machine learning by treating all features equally.

We now set up the **ML pipeline**:

Randomly split the instances into a Training Data Set and a Testing Data Set.

Perform data preprocessing

Fit and Transform the

data using the Column

the Column Transform

Perform model training and testing

Train the ML

classifier

Test the trained ML

classifier

Trained model

Training Accuracy 97.9%

Test Accuracy **82.1%**

Report performance metrics

Outline

- Exploratory Data Analysis
 - Introduction
 - Titanic Survival Data Set
 - Iris Flower Data Set
 - Taylor Swift Spotify Data Set

Example: Iris Flower Data Set

The data set contains measurements of 150 iris flowers in terms of their sepal length, sepal width, petal length, and petal width. There are 3 species of flowers, Setosa, Versicolor, and Virginica, with 50 samples each.

Versicolor Setosa Virginica

sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Species
5.1	3.5	1.4	0.2	Setosa
4.9	3.0	1.4	0.2	Setosa
4.7	3.2	1.3	0.2	Setosa
4.6	3.1	1.5	0.2	Setosa
5.0	3.6	1.4	0.2	Setosa
6.7	3.0	5.2	2.3	Virginica
6.3	2.5	5.0	1.9	Virginica
6.5	3.0	5.2	2.0	Virginica
6.2	3.4	5.4	2.3	Virginica
5.9	3.0	5.1	1.8	Virginica
	5.1 4.9 4.7 4.6 5.0 6.7 6.3 6.5 6.2	5.1 3.5 4.9 3.0 4.7 3.2 4.6 3.1 5.0 3.6 6.7 3.0 6.3 2.5 6.5 3.0 6.2 3.4	5.1 3.5 1.4 4.9 3.0 1.4 4.7 3.2 1.3 4.6 3.1 1.5 5.0 3.6 1.4 6.7 3.0 5.2 6.3 2.5 5.0 6.5 3.0 5.2 6.2 3.4 5.4	4.9 3.0 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5.0 3.6 1.4 0.2 6.7 3.0 5.2 2.3 6.3 2.5 5.0 1.9 6.5 3.0 5.2 2.0 6.2 3.4 5.4 2.3

Example: Iris Flower Data Set

The data set contains measurements of 150 iris flowers in terms of their sepal length, sepal width, petal length, and petal width. There are 3 species of flowers, Setosa, Versicolor, and Virginica, with 50 samples each.

Box-and-whisker plots (or box plots) and Violin plots are useful for visualizing the distributions of values.

Matplotlib

Seaborn

Example: Iris Flower Data Set

The data set contains measurements of 150 iris flowers in terms of their sepal length, sepal width, petal length, and petal width. There are 3 species of flowers, Setosa, Versicolor, and Virginica, with 50 samples each.

Box plots can be **grouped** according to each feature, then visualized per class (or any categorical variable).

Distributions of measurements per feature per species

Grouped boxplots can also be applied to the Titanic Data Set.

Distributions of Age by Pclass and Survived

Survived Southampton Embarked Pclass ~ Cherbourg 3 -Queenstown 50 100 10 20 60 Age Oldest survivors at the time

Distributions of Fare by Embarked and Survived

Outline

- Exploratory Data Analysis
 - Introduction
 - Titanic Survival Data Set
 - Iris Flower Data Set
 - Taylor Swift Spotify Data Set

Example: Taylor Swift Spotify Data Set

- Contains information on Taylor Swift's songs from the Spotify API.
- Data set is updated **monthly**: https://www.kaggle.com/datasets/jarredpriester/taylor-swift-spotify-dataset
- Shown here is the data downloaded on 18 September 2023. Total no. of instances: 487
- Typical goal: Predict Popularity.

Name	Song name
Album	Album name
Release Date	YYYY-MM-DD
Track Number	Order of the song in the album where it appeared
Id	Spotify id for the song
Uri	Spotify uri for the song
Acousticness	[0, 1] where 1 = most acoustic
Danceability	[0, 1] where 1 = most danceable
Energy	[0, 1] where 1 = most energetic
Instrumentalness	[0, 1] where 1 = no vocals, mostly instrumental
Liveness	[0, 1] where 1 = most likely has a live audience
Loudness	Average loudness in decibels
Speechiness	[0, 1] where 1 = mostly speech, like audiobooks
Tempo	Average speed in beats per minute (BPM)
Valence	[0, 1] where 1 = most positive, cheerful, or happy
Popularity	[0, 100] No. of recent streams relative to other artists
Duration_ms	Duration of the track in milliseconds

name	album	release_date	track_number		i	d			uri	acousticnes	s danceability
Mine (Taylor's Version)	Speak Now (Taylor's Version)	2023-07-07	1	7G0gBu6nLdhFD	PRLc0HdD	G spotify:	track:7G0gBu6n	LdhFDPR	Lc0HdDG	0.0044	14 0.646
Sparks Fly (Taylor's Version)	Speak Now (Taylor's Version)	2023-07-07	2	3MytWN8L7shN	IYzGI4tAKR	p spotify	y:track:3MytWN	8L7shNYz	GI4tAKRp	0.0251	0 0.588
Back To December (Taylor's Version)	Speak Now (Taylor's Version)	2023-07-07	energy	instrumentalness	liveness	loudness	speechiness	tempo	valence	popularity	duration_ms
Speak Now (Taylor's Version)	Speak Now (Taylor's Version)	2023-07-07	0.783	0.000001	0.1710	-2.846	0.0356	121.080	0.490	87	231706
Dear John (Taylor's Version)	Speak Now (Taylor's Version)	2023-07-07	0.758	0.000000	0.1310	-2.347	0.0305	114.991	0.387	84	261230
			0.635	0.000000	0.1170	-3.927	0.0273	142.063	0.203	88	294189
			0.677	0.000000	0.1430	-2.871	0.0325	118.995	0.639	84	242473
			0.470	0.000000	0.1630	-5.016	0.0296	119.294	0.133	84	405906

Correlation matrix

- Popularity has little linear correlation with other numerical features.
- Energy and loudness are the two most positively correlated features (0.79).
- Acousticness and loudness are the two most negatively correlated features (-0.71).
- Valence is positively correlated with energy (0.47), which means that happy Taylor Swift songs are also energetic.

Example: Taylor Swift Spotify Data Set

Box plots

 All features that have a range of values within [0, 1] are plotted as box plots per album.

Legend:

Example: Taylor Swift Spotify Data Set

Duration

Box plots

 Distributions of track durations plotted as box plots per album.

Legend:

All Too Well (10-min version)

Album

Box plots

 Distributions of popularity plotted as box plots per album.

Legend:

popularity

Speak Now (album) has the highest median popularity

Cruel Summer

Album

Example: Taylor Swift Spotify Data Set

Another way to explore the data is to reveal rankings.

Most popular tracks

name popularity 234 Cruel Summer Anti-Hero 224 93 august 235 Lover 218 cardigan 285 Treacherous 35 35 297 Invisible 290 34

300 Jump Then Fall

Hey Stephen

Longest tracks

	name	duration_ms
107	All Too Well (10 Minute Version) (Taylor's Ver	613026
4	Dear John (Taylor's Version)	405906
394	Dear John - Live/2011	404680
422	Dear John	403920
402	Dear John	403920
62	Glitch	148781
39	Glitch	148781
330	Blank Space - Voice Memo	131186
329	I Wish You Would - Voice Memo	107133
393	I Want You Back - Live/2011	83253

Most acoustic tracks

	name	acousticness
249	It's Nice To Have A Friend	0.971000
33	Sweet Nothing	0.967000
232	hoax	0.966000
198	hoax - the long pond studio sessions	0.962000
187	\ensuremath{my} tears ricochet - the long pond studio sessions	0.946000
384	The Story Of Us - Live	0.000480
83	22 (Taylor's Version)	0.000443
78	State Of Grace (Taylor's Version)	0.000328
344	State Of Grace	0.000197
120	Change (Taylor's Version)	0.000191

Most danceable tracks

	name	danceability
238	l Think He Knows	0.897
52	Vigilante Shit	0.870
305	Hey Stephen	0.843
363	Treacherous - Original Demo Recording	0.828
241	Cornelia Street	0.824
155	tolerate it	0.316
182	the lakes - bonus track	0.313
169	exile (feat. Bon Iver)	0.310
237	The Archer	0.292
471	Change - Live From Clear Channel Stripped 2008	0.243

Most energetic tracks

34 34

	name	energy
409	Haunted	0.950
483	I'm Only Me When I'm With You	0.934
407	Better Than Revenge	0.917
11	Haunted (Taylor's Version)	0.915
385	Mean - Live/2011	0.915
198	hoax - the long pond studio sessions	0.155
265	New Year's Day	0.151
97	State Of Grace (Acoustic Version) (Taylor's Ve	0.131
328	I Know Places - Voice Memo	0.128
365	State Of Grace - Acoustic	0.118

	name	valence
336	Shake It Off	0.9430
374	Stay Stay Stay	0.9280
164	closure	0.9200
240	Paper Rings	0.8650
305	Hey Stephen	0.8380
44	Karma (feat. Ice Spice)	0.0734
365	State Of Grace - Acoustic	0.0682
59	Bigger Than The Whole Sky	0.0680
255	Delicate	0.0499
23	Maroon	0.0382

Happiest tracks

Example: Taylor Swift Spotify Data Set

Using the **date-and-time** columns, we can:

- Investigate the frequency of track release per day, month, year
- Track the evolution of feature values with time

Average Acousticness vs. Release Year

Average Valence vs. Release Year

Summary

- Exploratory Data Analysis
 - Introduction
 - Titanic Survival Data Set
 - Tabular Data can come with mixed data types
 - Bar plots / histograms are best for counting data points
 - Missing values can be removed or imputed
 - Data Normalization is important!
 - Ordinal Encoding, Label Encoding, One-hot Encoding
 - Iris Flower Data Set
 - Box plots / violin plots are great for visualizing data distributions
 - Pair plots / correlation matrices can find related features
 - Grouped / nested box plots can be used with categorical data
 - Taylor Swift Spotify Data Set
 - Sorting / ranking the data points by feature values
 - Dates and times can be extracted from tabular data
 - Visualizing the evolution of features with time

EDA tools that we didn't cover:

- Dimensionality reduction (t-SNE, PCA)
 - Week 6 and 7
- Clustering and Density Estimation –
 Week 8
- Hand-crafting new features
- Autocorrelation in Time Series
- EDA on other data modalities

Other plots you may be interested in...

- Know which plots are best to use when.
- Effective data storytelling is as important as the analysis itself.
- There are plenty of code examples on the internet to learn from.
- Practice on your own!

Further Reading

- Hastie et al. (2008). The Elements of Statistical Learning. 2nd Ed. Springer.
- Bishop (2006). *Pattern Recognition and Machine Learning*. Springer.
- https://towardsdatascience.com/a-beginners-guide-to-kaggle-s-titanic-problem-3193cb56f6ca
- https://towardsdatascience.com/handling-missing-data-like-a-pro-part-2-imputation-methods-eabbf10b9ce4
- https://scikit-learn.org/stable/modules/impute.html
- https://www.kdnuggets.com/2022/07/scikitlearn-imputer.html
- https://seaborn.pydata.org/tutorial/categorical.html
- Recent news on multi-modal AI: https://science.org/doi/full/10.1126/science.adk6139
- https://www.kaggle.com/code/aaronjones32/predicting-song-popularity-from-spotify-dataset