1 Лист 3

Задача 1.1. Индивидуальное домашнее задание. Для задачи 3 надо взять в качестве $(a_1, a_2, \ldots, a_{16})$ вектор значений той из функций f_1, f_2 из прошлой задачи, в котором модуль разности между числом единиц и числом нулей меньше. Далее надо рассмотреть семь булевых функций $\varphi_i(x, y, z), i = 1, \ldots, 7$, таких что вектор значений функции φ_i это вектор $(a_i, a_{i+1}, \ldots, a_{i+7})$.

Проверьте функциональную полноту системы функций $\mathcal{F} = \{\varphi_1, \dots, \varphi_7\}$. Если эта система окажется неполной, измените одно значение одной функции так, чтобы система стала полной. Укажите (с полным обоснованием!) все минимальные (по включению) полные подсистемы. Для одной из этих минимальных подсистем (на выбор) выразите все стандартные функции (т.е. $0, 1, \bar{x}, x \vee y, xy$) через функции этой подсистемы и нарисуйте соответствующие схемы из функциональных элементов.

Доказательство. f_1 имеет вектор значений $(a_1,a_2,\ldots,a_{16})=(1,1,1,0,0,0,0,0,1,0,0,1,0,1,0,0)$ f_2 имеет вектор значений $(a_1,a_2,\ldots,a_{16})=(0,0,0,0,0,0,1,1,0,0,0,0,1,0,1,1)$ для $f_1\colon n_1^0=10,n_1^1=6,$ для $f_2\colon n_2^0=11,n_2^1=5,$ $|n_1^0-n_1^1|<|n_2^0-n_2^1|$ то есть мы берем $f_1.$

тогда

$$\begin{split} \varphi_1 &= (1,1,1,0,0,0,0,0) \\ \varphi_2 &= (1,1,0,0,0,0,0,1) \\ \varphi_3 &= (1,0,0,0,0,0,1,0) \\ \varphi_4 &= (0,0,0,0,0,1,0,0) \\ \varphi_5 &= (0,0,0,0,1,0,0,1) \\ \varphi_6 &= (0,0,0,1,0,0,1,0) \\ \varphi_7 &= (0,0,1,0,0,1,0,1) \\ \mathcal{F} &= \{\varphi_1,\varphi_2,\varphi_3,\varphi_4,\varphi_5,\varphi_6,\varphi_7\} \end{split}$$

Проверим, к каким замкнутым классам они относятся:

 φ_1

$$\varphi_1(0,0,0) \neq 0 \Rightarrow \varphi_1 \notin T_0$$

$$\varphi_1(1,1,1) \neq 1 \Rightarrow \varphi_1 \notin T_1$$

$$n_1^0 \neq n_1^1 \Rightarrow \varphi_1 \notin L$$

$$\varphi_1 = (1,1,1,0,0,0,0,0), \quad \varphi_1^* = (1,1,1,1,1,0,0,0) \Rightarrow \varphi_1 \neq \varphi_1^* \Rightarrow \varphi_1 \notin S$$

Носитель функции $N_{\varphi_1} = \{(0,0,0), (0,0,1), (0,1,0)\}$

Максимальные интервалы: $\overline{x_1x_2}, \overline{x_1x_3}$

Сокращенная ДНФ: $\overline{x_1}(\overline{x_2} \vee \overline{x_3})$ — есть отрицания $\Rightarrow \varphi_1 \notin M$

 φ_2

$$\begin{split} & \varphi_2(0,0,0) \neq 0 \Rightarrow \varphi_2 \notin T_0 \\ & \varphi_2(1,1,1) = 1 \Rightarrow \varphi_2 \in T_1 \\ & n_2^0 \neq n_2^1 \Rightarrow \varphi_2 \notin L \\ & \varphi_2 = (1,1,0,0,0,0,0,1), \quad \varphi_2^* = (0,1,1,1,1,1,0,0) \Rightarrow \varphi_2 \neq \varphi_2^* \Rightarrow \varphi_2 \notin S \end{split}$$

Носитель функции $N_{\varphi_2} = \{(0,0,0), (0,0,1), (1,1,1)\}$

Максимальные интервалы: $\overline{x_1x_2}, x_1x_2x_3$

Сокращенная ДНФ: $\overline{x_1x_2} \lor x_1x_2x_3$ — есть отрицания $\Rightarrow \varphi_2 \notin M$

 φ_3

$$\varphi_3(0,0,0) \neq 0 \Rightarrow \varphi_3 \notin T_0$$

$$\varphi_3(1,1,1) \neq 1 \Rightarrow \varphi_3 \notin T_1$$

$$n_3^0 \neq n_3^1 \Rightarrow \varphi_3 \notin L$$

$$\varphi_3 = (1,0,0,0,0,0,1,0), \quad \varphi_3^* = (1,0,1,1,1,1,1,0) \Rightarrow \varphi_3 \neq \varphi_3^* \Rightarrow \varphi_3 \notin S$$

Носитель функции $N_{\varphi_3} = \{(0,0,0),(1,1,0)\}$

Максимальные интервалы: $\overline{x_1x_2x_3}, x_1x_2\overline{x_3}$

Сокращенная ДНФ: $(\overline{x_1x_2} \lor x_1x_2)\overline{x_3}$ — есть отрицания $\Rightarrow \varphi_3 \notin M$

$$\varphi_4$$

$$\begin{split} & \varphi_4(0,0,0) = 0 \Rightarrow \varphi_4 \in T_0 \\ & \varphi_4(1,1,1) \neq 1 \Rightarrow \varphi_4 \notin T_1 \\ & n_4^0 \neq n_4^1 \Rightarrow \varphi_4 \notin L \\ & \varphi_4 = (0,0,0,0,0,1,0,0), \quad \varphi_4^* = (1,1,0,1,1,1,1,1) \Rightarrow \varphi_4 \neq \varphi_4^* \Rightarrow \varphi_4 \notin S \end{split}$$

Носитель функции $N_{\varphi_4} = \{(1,0,1)\}$

Максимальные интервалы: $x_1\overline{x_2}x_3$

Сокращенная ДНФ: $x_1\overline{x_2}x_3$ — есть отрицания $\Rightarrow \varphi_4 \notin M$

 φ_5

$$\begin{split} & \varphi_5(0,0,0) = 0 \Rightarrow \varphi_5 \in T_0 \\ & \varphi_5(1,1,1) = 1 \Rightarrow \varphi_5 \in T_1 \\ & n_5^0 \neq n_5^1 \Rightarrow \varphi_5 \notin L \\ & \varphi_5 = (0,0,0,0,1,0,0,1), \quad \varphi_5^* = (0,1,1,0,1,1,1,1) \Rightarrow \varphi_5 \neq \varphi_5^* \Rightarrow \varphi_5 \notin S \end{split}$$

Носитель функции $N_{\varphi_5} = \{(1,0,0),(1,1,1)\}$

Максимальные интервалы: $x_1\overline{x_2x_3}, x_1x_2x_3$

Сокращенная ДНФ: $x_1(\overline{x_2x_3} \lor x_2x_3)$ — есть отрицания $\Rightarrow \varphi_5 \notin M$

 φ_6

$$\varphi_{6}(0,0,0) = 0 \Rightarrow \varphi_{6} \in T_{0}
\varphi_{6}(1,1,1) \neq 1 \Rightarrow \varphi_{6} \notin T_{1}
n_{6}^{0} \neq n_{6}^{1} \Rightarrow \varphi_{6} \notin L
\varphi_{6} = (0,0,0,1,0,0,1,0), \quad \varphi_{6}^{*} = (1,0,1,1,0,1,1,1) \Rightarrow \varphi_{6} \neq \varphi_{6}^{*} \Rightarrow \varphi_{6} \notin S$$

Носитель функции $N_{\varphi_6} = \{(0,1,1),(1,1,0)\}$

Максимальные интервалы: $\overline{x_1}x_2x_3, x_1x_2\overline{x_3}$

Сокращенная ДНФ: $x_2(\overline{x_1}x_3 \vee x_1\overline{x_3})$ — есть отрицания $\Rightarrow \varphi_6 \notin M$

 φ_7

$$\begin{split} & \varphi_7(0,0,0) = 0 \Rightarrow \varphi_7 \in T_0 \\ & \varphi_7(1,1,1) = 1 \Rightarrow \varphi_7 \in T_1 \\ & n_7^0 \neq n_7^1 \Rightarrow \varphi_7 \notin L \\ & \varphi_7 = (0,0,1,0,0,1,0,1), \quad \varphi_7^* = (0,1,0,1,1,0,1,1) \Rightarrow \varphi_7 \neq \varphi_7^* \Rightarrow \varphi_7 \notin S \end{split}$$

Носитель функции $N_{\varphi_7} = \{(0,1,0), (1,0,1), (1,1,1)\}$

Максимальные интервалы: $\overline{x_1}x_2\overline{x_3}, x_1x_3$

Сокращенная ДНФ: $\overline{x_1}x_2\overline{x_3} \vee x_1x_3$ — есть отрицания $\Rightarrow \varphi_7 \notin M$

Проверим полноту системы

	T_0	T_1	L	S	M
φ_1	-	-	-	-	-
φ_2	-	+	-	-	-
φ_3	-	-	-	-	-
φ_4	+	-	-	-	-
φ_5	+	+	-	-	-
φ_6	+	-	-	-	-
φ_7	+	+	-	-	-

В каждом столбце есть хотя бы один '-', следовательно система функций полна.

Минимальные подсистемы: φ_1, φ_3 , так как эти функции не принадлежат ни одному из классов.

Рассмотрим функцию $\varphi_3 = (1, 0, 0, 0, 0, 0, 1, 0)$ и выразим для нее $0, 1, \overline{x}, x \vee y, xy$

$$\varphi_3(x, x, x) = (1, 0) = \overline{x}$$

$$\varphi_3(\overline{x}, x, \overline{x}) = (0, 0) = 0 = \varphi_3(\varphi_3(x, x, x), x, \varphi_3(x, x, x))$$

$$1 = \overline{0} = \varphi_3(\varphi_3(\overline{x}, x, \overline{x}), \varphi_3(\overline{x}, x, \overline{x}), \varphi_3(\overline{x}, x, \overline{x}))$$

Выпишем полином Жегалкина

1	\mathbf{Z}	у	yz	X	XZ	хy	xyz
1	1	1	1	1	1	0	0
0	0	0	0	0	1	0	
0	0	0	0	1	1		
0	0	0	1	0			
0	0	1	1				
0	1	0					
1	1						
0							

Получим

$$\begin{split} \varphi_3(x,y,z) &= 1 \oplus z \oplus y \oplus yz \oplus x \oplus xz \\ \varphi_3(x,0,y) &= 1 \oplus y \oplus x \oplus xy = \overline{x}\,\overline{y} \\ \overline{\varphi_3(x,0,y)} &= x \vee y \\ \varphi_3(\overline{x},0,\overline{y}) &= xy \end{split}$$

Рис. 1: схема \overline{x}

Рис. 2: схема 0

Рис. 3: схема 1

Рис. 4: схема $x \vee y$

Рис. 5: схема xy