第13回演習課題解答

習近平

2022年5月18日

目次

13.1	問題 13.1																2
13.2	問題 13.2																2
	13.2.1 (1	.)															2
	13.2.2 (2	2)															2
13.3	# 雑談 .																4

13.1 問題 13.1

数列 $(a_n)_{\mathbb{N}_{>1}}$ を次のように定める:

$$a_n = \frac{1}{n^2}$$

次に,級数 $\sum\limits_{n=1}^\infty a_n$ が収束することを以下示す:数列 $S_n=\sum\limits_{m=1}^n a_m$ とする.数列 S_n が単調増加である.次に, S_n が上に有界であることを示す:

$$\sum_{m=1}^{n} \frac{1}{m^2} \le \sum_{m=1}^{n} \frac{1}{m-1} - \frac{1}{m} \le 3$$

以上より,実数の連続性より S_n が収束する.続いて, $n\in\mathbb{N}_{\geq 1}$ を任意に取った時,

$$\sup_{x \in \mathbb{R}} \frac{1}{x^2 + n^2} \le \frac{1}{n^2} = a_n$$

が成り立つ . M-test より , この函数項級数が \mathbb{R} 上一様収束する .

13.2 問題 13.2

区間 I = [-1,1] とする.

13.2.1 (1)

 $x\in\mathbb{R}\{0\}$ を任意に取る.級数 $\sum\limits_{n=1}^\infty rac{x^2}{(1+x^2)^{n-1}}$ は初項が x^2 ,公比が $rac{1}{1+x^2}<1$ の等比数列の無限和である.

の等比数列の無限和である.
この時,
$$\sum\limits_{n=1}^{\infty}rac{x^2}{(1+x^2)^{n-1)}}=1+x^2$$
 となる.

x=0 の時, $\sum\limits_{n=1}^{\infty}0=0$ となる.

$$\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^{n-1}} = \begin{cases} 1+x^2, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

13.2.2 (2)

一様収束しない.

一様収束と仮定してこのもとで矛盾を導く: 第十三回講義の補題より,函数項級数を $f_n(x)=\sum\limits_{k=1}^n \frac{x^2}{(1+x^2)^{k-1}}$ として,その一様収束先は (1) を用いて,次のような函数 $f:\mathbb{R}\to\mathbb{R}$ で表せる:

$$f(x) = \begin{cases} 1 + x^2, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

ここで各自然数 n に対し, f_n が I 上連続であり(有限個連続函数の和となるため,連続函数の性質に従う),また第十一回レポートの問題 11.2 の定理より,f は I 上連続となる.しかし,x=0 に対し, $\varepsilon=1/2$ と定めたことろ,任意の $\delta\in\mathbb{R}_{>0}$ に関して, $x_0=\delta/2$ としたら, $|x_0-0|<\delta$ を満たすが, $|f(x_0)-f(0)|>1>\varepsilon$ で連続でないことを示せた.従って,矛盾が生じる.以上より一様収束するわけがありません.

13.3 # 雑談

最初は定義どおりに一様収束でないことを確認したかったが、値の評価が 細かすぎてうまく行かなかった、過去のレポート問題を復習したら、この方 針に辿り着いた、てか定義どおりに確認できるなら、ぜひ教えてください、