PRINCE DR K VASUDEVAN COLLEGE OF ENGINEERING AND TECNOLOGY

Mambakkam - Medavakkam Main Rd, Ponmar, Chennai, Tamil Nadu 600127

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING.

WEB PHISHING DETECTION (ASSIGNMENT 3)

DATE : 10-10-2022

PROBLEM: TO PERFORM ABALONE AGE PREDICTION

NAME: VENKATASUBRAMANIAN S

OUTPUT:

SCREENSHOTS:

1.Download the dataset

2. Load the dataset into the tool

	mp	ort ort ort	matplot numpy a	n as sns lib.pypl as np						
	dat	a.he	ad()	Sv("abal			Shucked weight	Viscera weight	Shell weight	Pinge
-	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
	3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10

We have to add the "Age" column using "Rings" data. We just have to add '1.5' to the ring data

4 I 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055 7

```
In [3]: Age=1.5+data.Rings
data["Age"]=Age
           data=data.rename(columns = {'Whole weight':'Whole_weight','Shucked weight': 'Shucked_weight','Viscera weight': 'Viscera_weight', 'Shell weight': 'Shell_weight'})
data=data.drop(columns=["Rings"],axis=1)
           data.head()
Out[3]:
               Sex Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age
           0
                M
                     0.455
                                0.365 0.095
                                                      0.5140
                                                                       0.2245
                                                                                        0.1010
                                                                                                       0.150 16.5
                      0.350
                                0.265
                                        0.090
                                                      0.2255
                                                                        0.0995
                                                                                        0.0485
                                                                                                       0.070 8.5
                     0.530
                                0.420
                                       0.135
                                                      0.6770
                                                                        0.2565
                                                                                        0.1415
                                                                                                       0.210 10.5
                                                                                                       0.155 11.5
                                                      0.5160
                                                                        0.2155
                                                                                        0.1140
                     0.440
                                0.365
                                        0.125
                     0.330
                                0.255 0.080
                                                      0.2050
                                                                        0.0895
                                                                                        0.0395
                                                                                                       0.055 8.5
```

3. Perform Below Visualizations

Univariate Analysis

200

```
In [7]: sns.displot(data["Age"], color='red')

Out[7]: <seaborn.axisgrid.FacetGrid at 0x204e94d81f0>

700-
600-
500-
300-
```



```
In [9]: sns.histplot(x=data.Age,color='yellow')
Out[9]: <AxesSubplot:xlabel='Age', ylabel='Count'>
```



```
In [10]: sns.boxplot(x=data.Age,color='green')
```

Out[10]: <AxesSubplot:xlabel='Age'>

In [11]: sns.countplot(x=data.Age)

Out[11]: <AxesSubplot:xlabel='Age', ylabel='count'>

Bi-Variate Analysis

In [12]: sns.barplot(x=data.Height,y=data.Age)

Out[12]: <AxesSubplot:xlabel='Height', ylabel='Age'>

In [13]: sns.lineplot(x=data.Age,y=data.Height, color='orange')

Out[13]: <AxesSubplot:xlabel='Age', ylabel='Height'>


```
In [14]: sns.scatterplot(x=data.Age,y=data.Height,color='black')
```

Out[14]: <AxesSubplot:xlabel='Age', ylabel='Height'>

In [15]: sns.pointplot(x=data.Age, y=data.Height, color="pink")

Out[15]: <AxesSubplot:xlabel='Age', ylabel='Height'>

Out[16]: <AxesSubplot:xlabel='Age', ylabel='Height'>

Multi-Variate Analysis

4. Perform descriptive statistics on the dataset

In [18]: data.describe(include='all')

Out[18]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
unique	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	M	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	1528	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
max	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing values and deal with them ¶

In [19]: data.isnull().sum()

Out[19]: Sex
Length
Diameter
Height
Whole_weight
Shucked_weight
Viscera_weight
Shell_weight Age dtype: int64

6. Find the outliers and replace them outliers

```
In [20]: outliers=data.quantile(q=(0.25,0.75))
         outliers
```

Out[20]: Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age 0.25 0.450 0.35 0.115 0.4415 0.186 0.0935 0.130 9.5 1.1530

In [21]: a = data.Age.quantile(0.25) b = data.Age.quantile(0.75) c = b - a lower_limit = a - 1.5 * c data.median(numeric_only=True)

0.2530

0.329 12.5

0.502

Out[21]: Length Diameter 0.4250 Height 0.1400 Whole weight 0.7995 Shucked_weight 0.3360 Viscera_weight Shell_weight 0.2340 10.5000 dtype: float64

0.75 0.615

0.48 0.165

In [22]: data['Age'] = np.where(data['Age'] < lower_limit, 7, data['Age'])
sns.boxplot(x=data.Age,showfliers = False)</pre>

Out[22]: <AxesSubplot:xlabel='Age'>

7. Check for Categorical columns and perform encoding

In [23]: data.head()

Out[23]: Sex Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age 0.5140 0 M 0.455 0.365 0.095 0.2245 0.1010 0.150 16.5 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 8.5 2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 10.5 3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155 11.5 4 | 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055 8.5

In [24]: from sklearn.preprocessing import LabelEncoder lab = LabelEncoder() data.Sex = lab.fit_transform(data.Sex) data.head()

Out[24]: Sex Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age 0 2 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 16.5 0.265 0.2255 0.0995 0.0485 0.070 8.5 2 0 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 10.5 3 2 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155 11.5 **4** 1 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055 8.5

8. Split the data into dependent and independent variables

```
In [25]: y = data["Sex"]
         y.head()
Out[25]: 0
         Name: Sex, dtype: int32
In [26]: x=data.drop(columns=["Sex"],axis=1)
         x.head()
Out[26]:
            Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age
                                    0.5140
                                                0.2245
         0 0 455
                    0.365 0.095
                                                                0.1010
                                                                           0.150 16.5
         1 0.350
                    0.265 0.090
                                      0.2255
                                                    0.0995
                                                                0.0485
                                                                            0.070 8.5
                                     0.6770
         2 0.530
                    0.420 0.135
                                                   0.2565
                                                                0.1415
                                                                           0.210 10.5
                                      0.5160
                                                   0.2155
         3 0.440
                    0.365 0.125
                                                                0.1140
                                                                           0.155 11.5
                                                                        0.055 8.5
         4 0.330 0.255 0.080
                                  0.2050
                                                   0.0895 0.0395
```

9. Scale the independent variables

```
In [27]: from sklearn.preprocessing import scale
        X_Scaled = pd.DataFrame(scale(x), columns=x.columns)
        X_Scaled.head()
Out[27]:
            Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight
                                                                                Age
        1 -1.448986 -1.439929 -1.183978 -1.230277
                                                -1.170910
                                                           -1.205221 -1.212987 -0.919022
        2 0.050033 0.122130 -0.107991 -0.309469 -0.463500 -0.356690 -0.207139 -0.294809
        3 -0.699476 -0.432149 -0.347099
                                  -0.637819
                                               -0 648238
                                                           -0.607600
                                                                    -0.602294 0.017298
        4 -1.615544 -1.540707 -1.423087 -1.272086
                                               -1.215968 -1.287337
                                                                    -1.320757 -0.919022
```

10. Split the data into training and testing

```
In [28]: from sklearn.model_selection import train_test_split
         X_Train, X_Test, Y_Train, Y_Test = train_Test_split(X_Scaled, y, test_size=0.2, random_state=0)
In [29]: X_Train.shape,X_Test.shape
Out[29]: ((3341, 8), (836, 8))
In [30]: Y_Train.shape,Y_Test.shape
Out[30]: ((3341,), (836,))
In [31]: X_Train.head()
Out[31]:
                Length Diameter
                                 Height Whole weight Shucked weight Viscera weight Shell weight
                                                                                             Age
         3141 -2.864726 -2.750043 -1.423087 -1.622870 -1.553902 -1.583867 -1.644065 -1.543234
         3521 -2.573250 -2.598876 -2.020857
                                           -1.606554
                                                         -1.551650
                                                                      -1.565619
                                                                                -1.626104 -1.387181
         883 1.132658 1.230689 0.728888 1.145672 1.041436 0.286552 1.538726 1.577830
         3627 1.590691 1.180300 1.446213
                                           2.164373
                                                         2.661269
                                                                      2.330326 1.377072 0.017298
         2106 0.591345 0.474853 0.370226 0.432887 0.255175 0.272866 0.906479 1.265723
In [32]: X_Test.head()
Out[32]:
            Length Diameter
                                Height Whole weight Shucked weight Viscera weight Shell weight
          668 0.216591 0.172519 0.370226 0.181016 -0.368878 0.569396 0.690940 0.953617
          1580 -0.199803 -0.079426 -0.466653
                                           -0.433875
                                                         -0 443224
                                                                      -0.343004
                                                                                -0.325685 -0.606915
         3784 0.799543 0.726798 0.370226 0.870348 0.755318 1.764639 0.565209 0.329404
          463 -2.531611 -2.447709 -2.020857
                                           -1.579022
                                                         -1.522362
                                                                      -1.538247
                                                                                 -1.572219 -1.543234
         2615 1.007740 0.928354 0.848442 1.390405 1.415417 1.778325 0.996287 0.641511
In [33]: Y_Train.head()
Out[33]: 3141
         3521
         883
         Name: Sex, dtype: int32
```

```
In [34]: Y_Test.head()
Out[34]: 668
         1580
         3784
         463
         2615
         Name: Sex, dtype: int32
         11. Build the Model
 In [35]: from sklearn.ensemble import RandomForestClassifier
         model = RandomForestClassifier(n_estimators=10,criterion='entropy')
In [36]: model.fit(X_Train,Y_Train)
Out[36]: RandomForestClassifier(criterion='entropy', n_estimators=10)
In [37]: y_predict = model.predict(X_Test)
In [38]: y_predict_train = model.predict(X_Train)
         12. Train the Model
In [39]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
In [40]: print('Training accuracy: ',accuracy_score(Y_Train,y_predict_train))
         Training accuracy: 0.980544747081712
         13. Test the Model
In [41]: print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))
         Testing accuracy: 0.5526315789473685
         14. Measure the performance using Metrics
In [42]: pd.crosstab(Y_Test,y_predict)
Out[42]: col_0 0 1 2
            0 115 24 110
            1 41 225 25
         2 118 56 122
In [43]: print(classification_report(Y_Test,y_predict))
                     precision recall f1-score support
                  0
                          0.42
                                   0.46
                                            0.44
                                                      249
                          0.74
                                   0.77
                                            0.76
                                                      291
                         0.47
                                  0.41
                                            0.44
                                                      296
```

0.55

0.55

accuracy

macro avg weighted avg 0.54

0.55

0.55

0.55

836

836