Models

A model in predicate logic is something that gives a meaning to a statement

It contains 3 things

-a Domain

- The meanings of the functional symbols

The meanings of the predicate symbols

The functional symbols & predication of the symbols are given in the

question

Exercise Sheet 10b
Predicate Logic – Natural Deduction & Semantics

P. 9

Consider the following signature:

- Function symbols: zero (arity 0); succ (arity 1)
- Predicate symbols: < (arity 2); \le (arity 2)

We will use infix notation for the binary symbols < and \le . For simplicity we write 0 for zero, 1 for succ(zero), 2 for succ(succ(zero)), etc. Consider the following formulas that capture properties of the above symbols:

- let S_1 be $\forall x. \exists y. x < y$
- let S_2 be $\forall x. \forall y. x < y \rightarrow \mathtt{succ}(x) \leq y$
- let S_3 be $\exists x.1 \leq x$
- 1. Provide a constructive Natural Deduction proof of $(S_1) \to \neg \exists x. \forall y. \neg x < y$
- 2. Provide a Constructive Natural Deduction proof of $(S_1) \to (S_2) \to S_3$
- 3. Provide a model M_1 such that $\vDash_{M_1} S_1$
- 4. Provide a model M_2 such that $\vDash_{M_2} \neg S_1$

We give a model with respect to some prédicate logic formula
eg Q3 asks for a model M1
such that $F_{m_1}(\forall x. \exists y. x. x. y)$ (Q3) so we are giving a model for $(\forall x. \exists y. x. x. x. y. x. x. y. x. y. x. x. y. x. x. y. x. x. y. x. y. x. x. y. x. y. x. x. y. x. y. x. y. x. y. x. x. y. y. x. y. x. y. x. y. y. x. y. x. y. y. y. y. x. y. y.$
Again, 3 parts:
-a Domain
- The meanings of the functional symbols - The meanings of the predicate symbols
< M, < 0 , +1>, < { < a, b> a < b } , { < a, b> a < b } >
Meanings of Meanings of The The domain symbols predicate
we are symbols giving 15 M,
the natural numbers. You are free to choose the Domain (e.g. N, Z, B, etc.) Booleans

It's important to note The meanings must be given in the same order as The question: 60,+1> refers to 0 & succ {ca,b>|a<b} refers to < {ca,b>|a < b } refers to < What The model does 15 give an actual meaning to 0, succ, < and s < M, < 0, +1>, < { < x,y > | x < y } , { < x,y > | x < y } >> This model for $\forall x. \exists y. x < y$ says that for all oc, there exists a y such that xxy. Here mat means mat mere exists a pair $\langle x, y \rangle \in \{(a,b) \mid a < b\}$ as that is the meaning we assigned

We can test with x=0 & y=1 is 20,1> a member of {ca,b>|a<b} i.e. 40,1> E { 2a,b > | a < b } This is true : me model holds For Q4: We are asked to give a model Such that Fm27 (Yx. Fy. x < y) so the part inside the brackets must be False < M; < 0; +1>,< 0, {2x,y>|x<y}>>> This is saying not for all x, there exists a y such that xxy.

Here mat means mat mere exists a pair $\langle x,y \rangle \in Q$ -the empty So now the part inside must brackets evaluates to False 2 the routside changes it