ML Overview

GeoComput & ML

2021-05-04 Tue

Course Structure

GeoComputation

- Linux environment
- Geo computational tools : gdal/ogr, pktools, grass, etc.

GeoModelling

- GeoMath
- GeoStats

Class Survey

Topics	Speakers
Python	web
R	web
TensorFlow	guest ?
unSupervised Learning	LS
Image processing?	LS ?
ML Optimisation	LS
rivernetwork delinearation	GA + LS
from project discussions	GA + LS

Course Outlook

Dates	Contents	Speaker
0504	projects + ML overview	LS
0506	projects + ML opt.	LS
0511	unsupervised learning	LS
0518	specific topics	LS + GA
0520	ANN	guest
0525	ANN	guest
0527	LSTM	guest
0601	presentation day	
0604	presentation day	

• Problem Statement : project definition, data collection

- Problem Statement : project definition, data collection
- Model Construction

- Problem Statement : project definition, data collection
- Model Construction
 - Explorative
 Data exploration : missing data, correction, manipulation
 Geocomput tools, math/stats, programming

- Problem Statement : project definition, data collection
- Model Construction
 - Explorative
 Data exploration : missing data, correction, manipulation
 Geocomput tools, math/stats, programming
 - Mathematical Modelling knowledge, Programming skills

- Problem Statement : project definition, data collection
- Model Construction
 - Explorative
 Data exploration : missing data, correction, manipulation
 Geocomput tools, math/stats, programming
 - Mathematical Modelling knowledge, Programming skills
- Model Analysis solution determination

- Problem Statement : project definition, data collection
- Model Construction
 - Explorative
 Data exploration : missing data, correction, manipulation
 Geocomput tools, math/stats, programming
 - Mathematical Modelling knowledge, Programming skills
- Model Analysis solution determination
- Model Assessment fidelity, cost, complexity, flexibility, etc.

- Problem Statement : project definition, data collection
- Model Construction
 - Explorative
 Data exploration : missing data, correction, manipulation
 Geocomput tools, math/stats, programming
 - Mathematical Modelling knowledge, Programming skills
- Model Analysis solution determination
- Model Assessment fidelity, cost, complexity, flexibility, etc.
- Model Deployment presentation: map output

Iterative Process

Project Guidance

Broad Sense

- Prediction and/or Analytics
- Coding languages

Evaluation

- Clear concepts
- Logic reasoning
- Numerical ability
- Presentability

Machine Thinking

• 1930s : Turing machine : mathematics into recipe

Machine Thinking

- 1930s : Turing machine : mathematics into recipe
- Can machine think?

Machine Thinking

- 1930s : Turing machine : mathematics into recipe
- Can machine think ?
- Turing test: indistinguishable from human reactions

Al Foundation

• 1950s : John McCarthy : Al research

Al Foundation

- 1950s : John McCarthy : Al research
- Machine learning : learning from experience

Al Foundation

- 1950s : John McCarthy : Al research
- Machine learning : learning from experience

Optimal Solution

Combinatorial explosion

- average 200 possible moves
- anticipating next four moves
- more than 320 billion combinations

11 / 21

Expert System

- 1970s : capturing human knowledge
- logic-based
- deduction
- logic knots

 1980 : Intelligence as emergent property rising from the interaction w/ the environment

13 / 21

- 1980 : Intelligence as emergent property rising from the interaction w/ the environment
- Bayesian theorem : coping w/ uncertainty

- 1980 : Intelligence as emergent property rising from the interaction w/ the environment
- Bayesian theorem : coping w/ uncertainty

100 out of 10,000 women at age forty who participate in routine screening have breast cancer. 80 of every 100 women with breast cancer will get a positive mammography. 950 out of 9,900 women without breast cancer will also get a positive mammography. If 10,000 women in this age group undergo a routine screening, about what fraction of women with positive mammographies will actually have breast cancer?

- 1980 : Intelligence as emergent property rising from the interaction w/ the environment
- Bayesian theorem : coping w/ uncertainty

100 out of 10,000 women at age forty who participate in routine screening have breast cancer. 80 of every 100 women with breast cancer will get a positive mammography. 950 out of 9,900 women without breast cancer will also get a positive mammography. If 10,000 women in this age group undergo a routine screening, about what fraction of women with positive mammographies will actually have breast cancer?

$$P(C|+) = \frac{P(+|C)P(C)}{P(+|C)P(C) + P(+|C^c)P(C^c)}$$
$$= \frac{0.8 \times 0.1}{0.8 \times 0.1 + 0.96 \times 0.9} = 48\%$$

• ML : generating output w/o a recipe

14 / 21

- ML : generating output w/o a recipe
- Categories : supervised + unsupervised learning

- ML : generating output w/o a recipe
- Categories : supervised + unsupervised learning
- Neural nets

- ML : generating output w/o a recipe
- Categories : supervised + unsupervised learning
- Neural nets

Well-posed Problem

Definition

A computer program is said to learn from experience E w.r.t. some tasks T and performance measure P, if its performance at tasks T as measured by P improves with experience E.

For example, a computer programs learns to play Go game might improves its performance as measured by its ability to win, through the experience of playing against itself.

• generalisation : perform well on previously unseen data

- generalisation : perform well on previously unseen data
- ullet test error : $\mathcal{L}(\hat{f}(oldsymbol{X})-oldsymbol{Y})$

- generalisation : perform well on previously unseen data
- test error : $\mathcal{L}(\hat{f}(\boldsymbol{X}) \boldsymbol{Y})$
- capacity : ability to fit a wide range of functions

- generalisation : perform well on previously unseen data
- test error : $\mathcal{L}(\hat{f}(\boldsymbol{X}) \boldsymbol{Y})$
- capacity : ability to fit a wide range of functions
- underfitting vs. overfitting

- generalisation : perform well on previously unseen data
- test error : $\mathcal{L}(\hat{f}(\boldsymbol{X}) \boldsymbol{Y})$
- capacity: ability to fit a wide range of functions
- underfitting vs. overfitting
- non-free lunch theorem : no ML algorithm universally better than another

- generalisation : perform well on previously unseen data
- test error : $\mathcal{L}(\hat{f}(\boldsymbol{X}) \boldsymbol{Y})$
- capacity: ability to fit a wide range of functions
- underfitting vs. overfitting
- non-free lunch theorem : no ML algorithm universally better than another
- goal : seeking ML algorithms with good performance on the data generating distribution of concern

- generalisation : perform well on previously unseen data
- test error : $\mathcal{L}(\hat{f}(\boldsymbol{X}) \boldsymbol{Y})$
- capacity: ability to fit a wide range of functions
- underfitting vs. overfitting
- non-free lunch theorem : no ML algorithm universally better than another
- goal : seeking ML algorithms with good performance on the data generating distribution of concern
- hyperparameters tuning

Bias vs. Variance

Given
$$y = f(x) + \epsilon$$

$$E[y] = E[f + \epsilon] = E[f] = f$$

$$E[(y - \hat{f})^2] = E[(f + \epsilon - \hat{f})^2]$$

$$= E[(f - E[\hat{f}] + \epsilon - \hat{f} + E[\hat{f}])^2]$$

$$= E[(f - E[\hat{f}])^2] + E[\epsilon]^2 + E[(E[\hat{f}] - \hat{f})^2] - 2E[(E[\hat{f}] - \hat{f})(f - E[\hat{f}])]$$

$$= E[(f - E[\hat{f}])^2] + E[\epsilon]^2 + E[(E[\hat{f}] - \hat{f})^2] - 2(E[\hat{f}]f - E[\hat{f}]f + E[\hat{f}]E[\hat{f}] - E[\hat{f}]E[\hat{f}])$$

$$= Bias(\hat{f}^2) + Var[\hat{f}] + \sigma^2$$

Bias vs. Variance

MLE

Let $p_{MDL}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution over the same space indexed by $\boldsymbol{\theta}$.

$$heta_{\mathsf{ML}} = rg\max_{oldsymbol{ heta}} \sum log(p_{\mathsf{MDL}}(oldsymbol{x};oldsymbol{ heta}))$$

$$m{ heta}_{ML} = rg\max_{m{ heta}} \mathbb{E}[\mathbf{x} \sim \hat{p}_{DAT}] log(p_{MDL}(m{x};m{ heta}))$$

Bayes Statistics

 θ as a prior distribution : $p(\theta)$

$$p(\theta|x^{(1)}...x^{(m)}) = \frac{p(x^{(1)},...,x^{(m)}|\theta)p(\theta)}{p(x^{(1)},...,x^{(m)})}$$

References

A. Turing. Mind (1950) 59, 433

D. Wolpert. Neual Comput. (1996) 8, 1341

D. Wolpert, W. MacReady. IEEE Trans. Evol. Comput. (1997) 1, 67

M. Wooldridge. A Brief History of Artificial Intelligence (2021)

N. Nilson. The quest for artificial intelligence (2010)

T. Mitchell. Machine Learning (1997)

M. Bishop. Pattern Recognition and Machine Learning (2006)

I. Goodfellow. Deep Learning (2016)

 $https://en.wikipedia.org/wiki/Alan_Turing$

https://en.wikipedia.org/wiki/Bias

https://www.data-stats.com/bias-variance-tradeoff/

https://www.geeksforgeeks.org/java-program-for-tower-of-hanoi/

 $https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)$

https://www.stemlittleexplorers.com/en/make-and-solve-tower-of-hanoi/

https://en.wikipedia.org/wiki/Go_(game)

