Introduction to zk-SNARK. R1CS

Sep 12, 2024

Distributed Lab

What is zk-SNARK?

Boolean Circuits

Arithmetic Circuits

Linear Algebruh Preliminaries

Rank-1 Constraint System

WHAT IS ZK-SNARK? ●00000

What is zk-SNARK?

What Is zk-SNARK?

Definition

zk-SNARK

Zero-Knowledge Succinct Non-interactive ARgument of Knowledge.

- **Argument of Knowledge** a proof that the prover knows the data (witness) that resolves a certain problem, and this knowledge can be "extracted".
- **Succinctness** the proof size and verification time is relatively small to the computation size and typically does not depend on the size of the data or statement.
- **Non-interactiveness** to produce the proof, the prover does not need any interaction with the verifier.
- **Zero-Knowledge** the verifier learns nothing about the data used to produce the proof, despite knowing that this data resolves the given problem and that the prover possesses it.

WHAT IS ZK-SNARK? 000000

Well... Let's take a look at some example.

Still don't get who is SNARK...

Well... Let's take a look at some example.

Imagine you're part of a treasure hunt...

...and you've found a hidden treasure chest...

...but how to prove that without revealing the chest location?

Still don't get who is SNARK...

The Problem

WHAT IS ZK-SNARK?

You have found a hidden treasure chest, and you want to prove to the organizer that you know its location without actually revealing that.

We can retrieve some information from that:

The Secret Data: the exact treasure location.

The Prover: you.

The Verifier: the treasure hunt organizer.

Ohh... Got it!

WHAT IS ZK-SNARK?

Here is how we can apply the zk-SNARK to our problem:

- **Argument of Knowledge**: You need to create a proof that demonstrates you know the chest is.
- **Succinct**: The proof you provide is very small and concise. It doesn't matter how large the treasure map is or how many steps it took you to find the chest.
- Non-interactive: You don't need to have a back-and-forth conversation with the organizer to create this proof.
- **Zero-Knowledge**: The proof doesn't reveal any information about the actual location of the treasure chest.

Ohh... Got it!

WHAT IS ZK-SNARK?

Here is how we can apply the zk-SNARK to our problem:

- **Argument of Knowledge**: You need to create a proof that demonstrates you know the chest is.
- **Succinct**: The proof you provide is very small and concise. It doesn't matter how large the treasure map is or how many steps it took you to find the chest.
- Non-interactive: You don't need to have a back-and-forth conversation with the organizer to create this proof.
- **Zero-Knowledge**: The proof doesn't reveal any information about the actual location of the treasure chest.

Well... The golden coin where the pirates' sign is engraved is our zk-SNARK proof!

The First Question To Resolve

But the problems that we usually want to solve are in a slightly different format.

When we need to prove that some element is in a merkle tree, we can't come to a verifier and give them a "coin"...

Question?

How do we convert a program into a mathematical language?

Boolean Circuits

We can do that in a way like the computer does it - boolean circuits.

Figure: Boolean AND and OR Gates

A	В	A AND B	
0	0	0	
0	1	0	
1	0	0	

Boolean Circuit Example

Figure: Example of a circuit evaluating d = (a AND b) OR c.

Boolean circuits receive an input vector of 0, 1 and resolve to true (1) or false (0);

The above circuit can be satisfied with the next values:

$$a = 1$$
, $b = 1$, $c = 0$, $d = 1$

File	No. ANDs	No. XORs	No. INVs
sha256Final.txt	22,272	91,780	2,194

Figure: Stats of a SHA256 boolean circuit implementation.

More than 100000 gates. Impressive, isn't it?

But it also shows how inconvenient the boolean circuits are.

Arithmetic Circuits

Similar to Boolean Circuits, the **Arithmetic Circuits** consist of gates and wires.

- Wires: elements of some finite field F.
- **Gates**: field addition (+) and multiplication (×).

Figure: Addition and Multiplication Gates

```
def multiply(a: F, b: F) -> F:
    return a * b
```

This can be represented as a circuit with only one (multiplication) gate:

$$r = a \times b$$

The witness vector (essentially, our solution vector) is $\mathbf{w} = (r, a, b)$, for example: (6, 2, 3).

We assume that the *a* and *b* are input values.

Note

We can think of the "=" in the gate as an assertion.

Now, suppose we want to implement the evaluation of the polynomial $Q(x_1, x_2) = x_1^3 + x_2^2 \in \mathbb{F}[x_1, x_2]$ using arithmetic circuits.

```
def evaluate(x1: F, x2: F) -> F:
    return x1**3 + x2**2
```

Looks easy, right? But the circuit is now much less trivial.

$$x_1^2 = x_1 \times x_1$$
 $r_1 = x_1 \times x_1$
 $x_1^3 = x_1^2 \times x_1$ or $r_2 = r_1 \times x_1$
 $x_2^2 = x_2 \times x_2$ or $r_3 = x_2 \times x_2$
 $Q = x_1^3 + x_2^2$ $Q = r_2 + r_3$

Figure: Example of a circuit evaluating $x_1^3 + x_2^2$.

Well, it is quite clear how to represent any polynomial-like expressions. But how can we translate if statements?

```
def example(a: bool, b: F, c: F) -> F:
    if a:
        return b * c
    else:
        return b + c
```

We can transform such a function into the next expression:

$$r = a \times (b \times c) + (1 - a) \times (b + c)$$

Corresponding equations for the circuit are:

$$r_1 = b \times c$$
, $r_3 = 1 - a$, $r_5 = r_3 \times r_2$
 $r_2 = b + c$, $r_4 = a \times r_1$, $r = r_4 + r_5$

Arithmetic Circuits Example III

Figure: Example of a circuit evaluating the if statement logic.

Linear Algebruh Preliminaries

Definition

A **vector space** V over the field \mathbb{F} is an abelian group for addition "+" together with a scalar multiplication operation "·" from $\mathbb{F} \times V$ to V, sending $(\lambda, x) \mapsto \lambda x$ and such that for any $\mathbf{v}, \mathbf{u} \in V$ and $\lambda, \mu \in \mathbb{F}$ we have:

- $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$
- $(\lambda + \mu)\mathbf{v} = \lambda\mathbf{v} + \mu\mathbf{v}$
- $\bullet \ (\lambda \mu) \mathbf{v} = \lambda(\mu \mathbf{v})$
- 1**v** = **v**

Any element $\mathbf{v} \in V$ is called a **vector**, and any element $\lambda \in \mathbb{F}$ is called a **scalar**. We also mark vector elements in boldface.

The matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. For example, the matrix A with m rows and n columns, consisting of elements from the finite field \mathbb{F} is denoted as $A \in \mathbb{F}^{m \times n}$.

Definition

Let A, B be two matrices over the field \mathbb{F} . The following operations are defined:

- Matrix addition/subtraction: $A \pm B = \{a_{i,j} \pm b_{i,j}\}_{i,j=1}^{m \times n}$. The matrices A and B must have the same size $m \times n$.
- **Scalar multiplication**: $\lambda A = \{\lambda a_{i,j}\}_{1 \leqslant i,j \leqslant n}$ for any $\lambda \in \mathbb{F}$.
- **Matrix multiplication**: C = AB is a matrix $C \in \mathbb{F}^{m \times p}$ with elements $c_{i,j} = \sum_{\ell=1}^n a_{i,\ell} b_{\ell,j}$. The number of columns in A must be equal to the number of rows in B, that is $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times p}$.

Matrix Multiplication

Example

Consider

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 3}, \quad B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

We cannot add *A* and *B* since they have different sizes. However, we can multiply them:

$$AB = \begin{bmatrix} 5 & 6 \\ 7 & 9 \end{bmatrix}, \quad BA = \begin{bmatrix} 4 & 4 & 5 \\ 7 & 7 & 5 \\ 3 & 3 & 3 \end{bmatrix}$$

To see why, for example, the upper left element of *AB* is 5, we can calculate it as $\sum_{\ell=1}^{3} a_{1,\ell} b_{\ell,1} = 1 \times 2 + 1 \times 1 + 2 \times 1 = 5$.

Vector As A Matrix

Note

It just so happens that when working with vectors, we usually assume that they are **column vectors**. This means that the vector $v = (v_1, v_2, \dots, v_n)$ is represented as a matrix:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

This is a common convention in linear algebra, and we will use it in the following sections.

Matrix Transpose

Definition (Transposition)

Given a matrix $A \in \mathbb{F}^{m \times n}$, the **transpose** of A is a matrix $A^{\top} \in \mathbb{F}^{n \times m}$ with elements $A_{ii}^{\top} = A_{ji}$.

Example

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad A^{\top} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad B^{\top} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}^{\top} = [1, 2, 3]$$

Definition

Consider the vector space W

Consider the vector space \mathbb{V} over the finite field \mathbb{F}_p . The **inner product** is a function $\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{F}_p$ satisfying the following conditions for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{V}$:

- $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$.
- $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$.
- $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{0}$ for all $\mathbf{u} \in \mathbb{V}$ iff $\mathbf{v} = \mathbf{0}$.
- $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ for all $\mathbf{v} \in \mathbb{V}$ iff $\mathbf{u} = \mathbf{o}$.

Plenty of functions can be built that satisfy the inner product definition, we'll use the one that is usually called **dot product**.

Definition

Consider the vector space \mathbb{F}^n over the finite field \mathbb{F} . The **dot product** on \mathbb{F}^n is a function $\langle \cdot, \cdot \rangle : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$, defined for every $\mathbf{u}, \mathbf{v} \in \mathbb{F}^n$ as follows:

$$\langle \mathbf{u}, \mathbf{v} \rangle := \mathbf{u}^{\top} \mathbf{v} = \sum_{i=1}^{n} u_i v_i$$

Note

The dot product can also be denoted using the dot notation as:

$$\mathbf{u} \cdot \mathbf{v}$$

That is why it's called the "dot" product.

Let \mathbf{u} , \mathbf{v} are vectors over the real number \mathbb{R} , where

$$\mathbf{u} = (1, 2, 3), \quad \mathbf{v} = (2, 4, 3)$$

Then:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{3} u_i v_i = 2 \cdot 1 + 2 \cdot 4 + 3 \cdot 3 = 2 + 8 + 9 = 19$$

Hadamard Product

Definition

Suppose $A, B \in \mathbb{F}^{m \times n}$. The **Hadamard product** $A \odot B$ gives a matrix C such that $C_{i,j} = A_{i,j}B_{i,j}$. Essentially, we multiply elements elementwise.

Example

Consider
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$. Then, the Hadamard product:

$$A \odot B = \begin{bmatrix} 1 \cdot 3 & 1 \cdot 2 & 2 \cdot 1 \\ 3 \cdot 0 & 0 \cdot 2 & 3 \cdot 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Outer Product

Definition

Given two vectors $\mathbf{u} \in \mathbb{F}^n$, $\mathbf{v} \in \mathbb{F}^m$ the **outer product** is a the matrix whose entries are all products of an element in the first vector with an element in the second vector:

$$\mathbf{u} \otimes \mathbf{v} := \mathbf{u} \mathbf{v}^{\top} = \begin{bmatrix} u_1 v_1 & u_1 v_2 & \cdots & u_1 v_n \\ u_2 v_1 & u_2 v_2 & \cdots & u_2 v_n \\ \vdots & \vdots & \ddots & \vdots \\ u_m v_1 & u_m v_2 & \cdots & u_m v_n \end{bmatrix}$$

Outer Product

Lemma (Properties of outer product)

For any scalar $c \in \mathbb{F}$ and $(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbb{F}^n \times \mathbb{F}^m \times \mathbb{F}^p$:

- Transpose: $(\mathbf{u} \otimes \mathbf{v}) = (\mathbf{v} \otimes \mathbf{u})^T$
- Distributivity: $\mathbf{u} \otimes (\mathbf{v} + \mathbf{w}) = \mathbf{u} \otimes \mathbf{v} + \mathbf{u} \otimes \mathbf{w}$
- Scalar Multiplication: $c(\mathbf{v} \otimes \mathbf{u}) = (c\mathbf{v}) \otimes \mathbf{u} = \mathbf{v} \otimes (c\mathbf{u})$
- Rank: the outer product $\mathbf{u} \otimes \mathbf{v}$ is a rank-1 matrix if \mathbf{u} and \mathbf{v} are non-zero vectors

Outer Product

Example

Let \mathbf{u} , \mathbf{v} are vectors over the real number \mathbb{R} , where

$$\mathbf{u} = (1, 2, 3), \quad \mathbf{v} = (2, 4, 3)$$

Then:

$$\mathbf{u} \otimes \mathbf{v} = \mathbf{u}\mathbf{v}^{\top} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 4 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 & 1 \cdot 4 & 1 \cdot 3 \\ 2 \cdot 2 & 2 \cdot 4 & 2 \cdot 3 \\ 3 \cdot 2 & 3 \cdot 4 & 3 \cdot 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 3 \\ 4 & 8 & 6 \\ 6 & 12 & 9 \end{bmatrix}$$

The rows/columns number 2 and 3 in the result matrix can be represented as a linear combination of the first row/column, specifically by multiplying it by 2 and 3, respectively.

Rank-1 Constraint System

Definition

Each **constraint** in the Rank-1 Constraint System must be in the form:

$$\langle \mathsf{a}, \mathsf{w} \rangle \times \langle \mathsf{b}, \mathsf{w} \rangle = \langle \mathsf{c}, \mathsf{w} \rangle$$

Where **w** is a vector containing all the input, output, and intermediate variables involved in the computation. The vectors **a**, **b**, and **c** are vectors of coefficients corresponding to these variables, and they define the relationship between the linear combinations of \mathbf{w} on the left-hand side and the right-hand side of the equation.

Constraint Example

Example

Consider the most basic circuit with one multiplication gate:

$$x_1 \times x_2 = r$$
. The witnes vector $\mathbf{w} = (r, x_1, x_2)$. So

$$w_2 \times w_3 = w_1$$
 $(o + w_2 + o) \times (o + o + w_3) = w_1 + o + o$ $(ow_1 + 1w_2 + ow_3) \times (ow_1 + ow_2 + 1w_3) = 1w_1 + ow_2 + ow_3$

Therefore the coefficients vectors are:

$$\mathbf{a} = (0, 1, 0), \quad \mathbf{b} = (0, 0, 1), \quad \mathbf{c} = (1, 0, 0).$$

The general form of our constraint is:

$$(a_1w_1 + a_2w_2 + a_3w_3)(b_1w_1 + b_2w_2 + b_3w_3) = c_1w_1 + c_2w_2 + c_3w_3$$

Constraint System Example

Now, let us consider a more complex example.

That can be expressed as:

$$r = x_1 \times (x_2 \times x_3) + (1 - x_1) \times (x_2 + x_3)$$

We need a boolean restriction for x_1 :

$$x_1\times (1-x_1)=0$$

Thus, the next constraints can be build:

$$x_1 \times x_1 = x_1$$
 (binary check) (1)

$$x_2 \times x_3 = \text{mult}$$
 (2)

$$x_1 \times \text{mult} = \text{selectMult}$$
 (3)

$$(1 - x_1) \times (x_2 + x_3) = r - \text{selectMult}$$

Constraint System Example

The witness vector: $\mathbf{w} = (1, r, x_1, x_2, x_3, \text{mult, selectMult})$. The coefficients vectors:

$$\begin{aligned} \mathbf{a}_1 &= (0,0,1,0,0,0,0), & \mathbf{b}_1 &= (0,0,1,0,0,0,0), & \mathbf{c}_1 &= (0,0,1,0,0,0,0) \\ \mathbf{a}_2 &= (0,0,0,1,0,0,0), & \mathbf{b}_2 &= (0,0,0,0,0,1,0,0), & \mathbf{c}_2 &= (0,0,0,0,0,0,1,0) \end{aligned}$$

$$\mathbf{a}_3 = (0, 0, 1, 0, 0, 0, 0),$$
 $\mathbf{b}_3 = (0, 0, 0, 0, 0, 1, 0),$ $\mathbf{c}_3 = (0, 0, 0, 0, 0, 0, 1)$ $\mathbf{a}_4 = (1, 0, -1, 0, 0, 0, 0),$ $\mathbf{b}_4 = (0, 0, 0, 1, 1, 0, 0),$ $\mathbf{c}_4 = (0, 1, 0, 0, 0, 0, -1)$

Using the arithmetic in a large \mathbb{F}_n , consider the following values:

$$x_1 = 1$$
, $x_2 = 3$, $x_3 = 4$

Verifying the constraints:

1.
$$x_1 \times x_1 = x_1 \quad (1 \times 1 = 1)$$

2.
$$x_2 \times x_3 = \text{mult} \quad (3 \times 4 = 12)$$

3.
$$x_1 \times \text{mult} = \text{selectMult} \quad (1 \times 12 = 12)$$

4.
$$(1-x_1) \times (x_2 + x_3) = r - \text{selectMult}$$
 $(0 \times 7 = 12 - 12)$

Theorem

Consider a Rank-1 Constraint System (R1CS) defined by m constraints. Each constraint is associated with coefficient vectors \mathbf{a}_i , \mathbf{b}_i , and \mathbf{c}_i , where $i \in \{1, 2, \ldots, m\}$ and also a witness vector \mathbf{w} consisting of n elements. Then this system can also be represented using the corresponding matrices A, B, and C.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} \quad C = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

such that all constraints can be reduced to the single equation:

$$A\mathbf{w} \odot B\mathbf{w} = C\mathbf{w}$$

Proof. Matrices defined this way can be expressed as

$$A = \begin{bmatrix} \mathbf{a}_1^\top \\ \mathbf{a}_2^\top \\ \vdots \\ \mathbf{a}_m^\top \end{bmatrix}, \quad B = \begin{bmatrix} \mathbf{b}_1^\top \\ \mathbf{b}_2^\top \\ \vdots \\ \mathbf{b}_m^\top \end{bmatrix}, \quad C = \begin{bmatrix} \mathbf{c}_1^\top \\ \mathbf{c}_2^\top \\ \vdots \\ \mathbf{c}_m^\top \end{bmatrix}$$

Consider an expression Aw:

$$A\mathbf{w} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \\ \mathbf{a}_{m}^{\top} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \mathbf{w} \\ \mathbf{a}_{2}^{\top} \mathbf{w} \\ \vdots \\ \mathbf{a}_{m}^{\top} \mathbf{w} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} a_{1i} w_{i} \\ \sum_{i=1}^{n} a_{2i} w_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{ni} w_{i} \end{bmatrix} = \begin{bmatrix} \langle \mathbf{a}_{1}, \mathbf{w} \rangle \\ \langle \mathbf{a}_{2}, \mathbf{w} \rangle \\ \vdots \\ \langle \mathbf{a}_{m}, \mathbf{w} \rangle \end{bmatrix}$$

Therefore, we have:

$$A\mathbf{w} = \begin{bmatrix} \langle \mathbf{a}_{1}, \mathbf{w} \rangle \\ \langle \mathbf{a}_{2}, \mathbf{w} \rangle \\ \vdots \\ \langle \mathbf{a}_{m}, \mathbf{w} \rangle \end{bmatrix}, \quad B\mathbf{w} = \begin{bmatrix} \langle \mathbf{b}_{1}, \mathbf{w} \rangle \\ \langle \mathbf{b}_{2}, \mathbf{w} \rangle \\ \vdots \\ \langle \mathbf{b}_{m}, \mathbf{w} \rangle \end{bmatrix}, \quad C\mathbf{w} = \begin{bmatrix} \langle \mathbf{c}_{1}, \mathbf{w} \rangle \\ \langle \mathbf{c}_{2}, \mathbf{w} \rangle \\ \vdots \\ \langle \mathbf{c}_{m}, \mathbf{w} \rangle \end{bmatrix}$$

Thus, $A\mathbf{w} \odot B\mathbf{w} = C\mathbf{w}$ is equivalent to the system of *m* constraints:

$$\langle \mathbf{a}_i, \mathbf{w} \rangle \times \langle \mathbf{b}_i, \mathbf{w} \rangle = \langle \mathbf{c}_i, \mathbf{w} \rangle, \ j \in \{1, \ldots, m\}.$$

R1CS In Matrix Form

Example

The vectors \mathbf{a}_i from the previous examples have the form:

$$\begin{aligned} \mathbf{a}_1 &= (0,0,1,0,0,0,0) \\ \mathbf{a}_2 &= (0,0,0,1,0,0,0) \\ \mathbf{a}_3 &= (0,0,1,0,0,0,0) \\ \mathbf{a}_4 &= (1,0,-1,0,0,0,0) \end{aligned}$$

This corresponds to n = 7, m = 4

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7} \\ a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Lemma

Suppose we have a constraint $\langle \mathbf{a}, \mathbf{w} \rangle \times \langle \mathbf{b}, \mathbf{w} \rangle = \langle \mathbf{c}, \mathbf{w} \rangle$ with coefficient vectors **a**, **b**, **c** and witness vector **w** (all from \mathbb{F}^n). Then it can be expressed in the form:

$$\mathbf{w}^{\top} A \mathbf{w} + \mathbf{c}^{\top} \mathbf{w} = 0$$

Where A is the outer product of vectors **a**, **b**, so a **rank-1** matrix.

Lemma proof. Consider $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{w} \in \mathbb{F}^n$.

$$\left(\sum_{i=1}^n a_i w_i\right) \times \left(\sum_{j=1}^n b_j w_j\right) = \sum_{k=1}^n c_k w_k$$

Combine the products into a double sum on the left side:

$$\sum_{i=1}^n \sum_{j=1}^n a_i b_j w_i w_j = \mathbf{w}^\top (\mathbf{a} \otimes \mathbf{b}) \mathbf{w} = \mathbf{w}^\top A \mathbf{w}$$

Thus, the constraint can be written as:

$$\mathbf{w}^{\top} A \mathbf{w} + \mathbf{c}^{\top} \mathbf{w} = 0$$

Thanks for your attention!