UMA & Optimus Schematics Document

IVY Bridge(rPGA989)

Intel PCH(Panther Point)

DY :NotInstalled

UMA: UMA platform installed

OPS:Optimus

HR:Huron River

CR:Chief River

V: V-Series installed

**Core Design>

**Core Design>

Wistron Corporation
21F,88,Sec.1,Hsin Tai Wu Rd.,Hsichih,
Taipei Hsien 221, Taiwan, R.O.C

Title

Cover Page
Size Document Number A4 LA480

Date: Friday, January 06, 2012 Sheet 1 of 103

PCH Strapping Chief River Schematic Checklist Rev0.72 Name Schematics Notes Reboot option at power-up Default Mode: Internal weak Pull-down. No Reboot Mode with TCO Disabled: Connect to Vcc3_3 with $8.2\text{-}\mathrm{k}\Omega$ - 10-kΩ weak pull-up resistor. INIT3 3V# Weak internal pull-up. Leave as "No Connect". GNT3#/GPIO55 GNT[3:0]# functionality is not available on Mobile. GNT2#/GPT053 Mobile: Used as GPTO only GNT1#/GPTO51 Pull-up resistors are not required on these signals. If pull-ups are used, they should be tied to the Vcc3_3power rail. Enable Danbury: Connect to Vcc3_3 with 8.2-k? weak pull-up resistor. SPT MOST Disable Danbury Left floating, no pull-down required. Enable Danbury: Connect to +NVRAM_VCCQ with 8.2-kohm weak pull-up resistor [CRB has it pulled up with 1-kohm no-stuff resistor] NV ALE Disable Danbury: Leave floating (internal pull-down) NC CLE DMI termination voltage. Weak internal pull-up. Do not pull low. Low (0) - Flash Descriptor Security will be overridden. Also, when this signals is sampled on the rising edge of PWROK then it will also disable Intel ME and its features. HAD DOCK EN# High (1) - Security measure defined in the Flash Descriptor will be enabled. Platform design should provide appropriate pull-up or pull-down depending on /GPIO[33] the desired settings. If a jumper option is used to tie this signal to GND as required by the functional strap, the signal should be pulled low through a weak pull-down in order to avoid asserting HDA_DOCK_EN# inadvertently. Note: CRB recommends 1-kohm pull-down for FD Override. There is an internal pull-up of 20 kohm for DA_DOCK_EN# which is only enabled at boot/reset for strapping functions. HDA SDO Weak internal pull-down. Do not pull high. Sampled at rising edge of RSMRST#. HDA SYNC Weak internal pull-down. Do not pull high. Sampled at rising edge of RSMRST#. Low(0) - Intel ME Crypto Transport Layer Security (TLS) cipher suite with no GPIO15 confidentiality. High(1) - Intel ME Crypto Transport Layer Security (TLS) cipher suite with confidentiality. Note : This is an un-muxed signal. This signal has a weak internal pull-down of 20 kohm which is enabled when PWROK is low Sampled at rising edge of RSMRST#. CRB has a 1-kohm pull-up on this signal to +3.3VA rail. GPIO8 on PCH is the Integrated Clock Enable strap and is required to be pulled-down GPI08 using a 1k +/- 5% resistor. When this signal is sampled high at the rising edge of RSMRST#, Integrated Clocking is enabled, When sampled low, Buffer Through Mode is enabled. Default = Do not connect (floating) High(1) = Enables the internal VccVRM to have a clean supply for GPIO27 analog rails. No need to use on-board filter circuit. Low (0) = Disables the VccVRM. Need to use on-board filter circuits for analog rails.

DCTA Pouting

РСТЕ	Routing
LANE1	x
LANE2	Mini Card2(WWAN)
LANE3	Card Reader
LANE4	Mini Card1(WLAN)
LANE5	x
LANE6	Intel GBE LAN / LAN
LANE7	x
LANE8	Express Card

USB Table port9 is debug port

	ports in acting ports
Pair	Device
0	USB3.0 ext port 1
1	USB3.0 ext port 2
2	USB3.0 ext port 3
3	USB3.0 ext port 4
4	BLUETOOTH (USB1.1)
5	Fingerprint (USB1.1)
6	x
7	x
8	Mini Card2 (WWAN)
9	USB ext. port 4 / E-SATA /USB CHARGER
10	CARD READER
11	Mini Card1 (WLAN)
12	CCD
13	New Card

Proce	Processor Strapping Chief River Schematic Checklist Rev0.72		
Pin Name	Strap Description	Configuration (Default value for each bit is 1 unless specified otherwise)	Default Value
CFG[2]	PCI-Express Static Lane Reversal	1: Normal Operation. 0: Lane Numbers Reversed 15 -> 0, 14 -> 1,	1
CFG[4]		Disabled - No Physical Display Port attached to 1: Embedded DisplayPort. Enabled - An external Display Port device is 0: connectd to the EMBEDDED display Port	0
CFG[6:5]	PCI-Express Port Bifurcation Straps	11: x16 - Device 1 functions 1 and 2 disabled 10: x8, x8 - Device 1 function 1 enabled; function 2 disabled 01: Reserved - (Device 1 function 1 disabled; function 2 enabled) 00: x8, x4, x4 - Device 1 functions 1 and 2 enabled	11
CFG[7]	PEG DEFER TRAINING	1: PEG Train immediately following xxRESETB de assertion $_{0}\colon \text{PEG}$ Wait for BIOS for training	1

		Voltage Rails	
POWER PLANE	VOLTAGE	voitage kails	DESCRIPTION
		ACTIVE IN	
5V_S0 303V_S0 105V_S0 105V_S0 105V_VTT 100V_S0 VCCSA 0075V_S0 VCC_CORE VCC_GORE VCC_GFXCORE 105V_VGA_S0 303V_VGA_S0 1V_VGA_S0	5V 1.8V 1.5V 1.05V 1.05V 0.9 - 0.675V 0.75V 0.4 to 1.5V 0.4 to 1.25V 1.8V 3.3V	S0	CPU Core Rail Graphics Core Rail
5V_USBX_S3 1D5V_S3 DDR_VREF_S3	5V 1.5V 0.75V	S3	
BT+ DCBATOUT 5V_S5 5V_AUX_S5 3D3V_S5 3D3V_S5	6V-14.1V 6V-14.1V 5V 5V 3.3V 3.3V	All S states	AC Brick Mode only
1D05V_LAN	1.05V	SO/MO, SX/M3	ON whenever iAMT is active
3D3V_M 1D05V_M	3.3V 1.05V	SO/MO, SX/M3, WOL_EN	ON for iAMTLegacy WOL
3D3V_AUX_KBC	3.3V	DSW, Sx	ON for supporting Deep Sleep states
3D3V_AUX_S5	3.3V	G3, Sx	Powered by Li Coin Cell in G3 and 3D3V_S5 in Sx

SMBus ADDRESSES

I ² C / SMBus Addresses	Ref Des	Chief River CRV
Device		Address Hex Bus
EC SMBus 1 Battery CHARGER		BAT_SCL/BAT_SDA BAT_SCL/BAT_SDA BAT_SCL/BAT_SDA
EC SMBus 2 PCH eDP		SML1_CLK/SML1_DATA SML1_CLK/SML1_DATA SML1_CLK/SML1_DATA
PCH SMBus SO-DIMMA (SPD) SO-DIMMB (SPD) Digital Pot G-Sensor MINI		PCH_SMEDATA/PCH_SMEC PCH_SMEDATA/PCH_SMEC PCH_SMEDATA/PCH_SMEC PCH_SMEDATA/PCH_SMEC PCH_SMEDATA/PCH_SMEC PCH_SMEDATA/PCH_SMEC PCH_SMEDATA/PCH_SMEC PCH_SMEDATA/PCH_SMEC

SATA Table

Pair	Device
0	HDD1
1	mSATA
2	N/A
3	N/A
4	ODD
5	ESATA

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

SD

Ta	ble	e of	Content	
Document Number				
		A 40	n	

BLANK

<Core Design>

Friday, January 06, 2012

Wistron Corporation

21F,88,Sec.1,Hsin Tai Wu Rd.,Hsichih, Taipei Hsien 221, Taiwan, R.O.C

Date:

<Title>

Document Number LA480

Rev SD

BLANK

<Core Design>

Friday, January 06, 2012

Wistron Corporation

21F,88,Sec.1,Hsin Tai Wu Rd.,Hsichih, Taipei Hsien 221, Taiwan, R.O.C

Date:

<Title>

Size A4 Document Number LA480

Rev SD

Gx8 USB Table

0	
	х
1	USB3.0, ext port1
2	USB2.0, ext port4
3	USB3.0, ext port2
4	Bluetooth
5	CARD READER
6	x
7	x
8	3G
9	USB2.0, ext. port 3
10	Finger Print
11	Mini Card1 (WLAN)
12	CAMERA
13	x

緯創資通 Wistron Corporation

PCH: PCI/USB/NVRAM/RSVD

LA480

SSID = PCH

For platforms not supporting Deep S4/S5
1.VCcSUS3.3 and VccDSW3.3 will rise at the same time (connected on board)
2.DPWRGX and RSMSST# will rise at the same time (connected on board)
3.SLP_SUS# and SUSACX# are left as 'no connect'
4.SUSWARN# used as SUSPWRDNACX/GPIO30

Core Designs

Wistron Corporation
1F, 80, 5c.1, 14sh Ta Wu M. A. Deschin, 18ph Pittler 221, Talens, A. Desc

Core Designs

Wistron Corporation
21f; 80, Sec. I Hain Tai Wu Rd. Haidan,
Tapel Hain 21f; Taine A. Taine Tai Wu Rd. Haidan,
Tapel Hain 21f; Taines Rd.
Title

PCH: GPIO/NTCF/MISC

Sto
A2

Date: Fridey. January 06, 2012 | Bheet 22 of 100

Layout Note: Close to U3101 pin C3130 ~ C3134,C3138,C3139 For VDD10 pins - 3, 6, 9, 13, 29, 41, 45.

Layout Note: C3128&C3149 Close to U3101 pin21

L3102 adopt spec. C3104 change to 4.7uF X5R type capacitor

> Layout Note: C3135, C3140-C3144 Close to U3101 pin For VDD33 pins - 12, 27, 39, 42, 47, 48.

Com Danger

Wiston Corporation

2f 点 是 Like Fail No. 4, Heads,
Tapes Res. 21, Tennes, R.O.C.

Adaptor in to generate DCBATOUT

Wistron Corporation
21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih,
Taipei Hsien 221, Taiwan, R.O.C.

Title

DCIN_JACK
Size Document Number LA480 SD
Date: Friday, January 06, 2012 Sheet 38 of 103

BATTERY CONNECTOR

wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

Title

BATT_CONN

Size Document Number LA480

Rev SD

SSID = PWR.Plane.Regulator_5v3p3v

緯創資

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Tainei Hsien 221 Taiwan R O C

* TPS51123_5V_3D3V

Document Number Rev SD

TPS51219 for 1D05V

Core Designo

Wistron Corporation
21F, 88, Sec. 1, Hein Tai Wu Rd., Heichen,
Tapie Histen 221, Taiwan, R.O.C.

Filde

TPS51211_1D05V

Size

Document Number

Rev
SD

Date: Fidday, January 08, 2012

Sheet As of 133

SSID = PWR.Plane.Regulator_1p8v

Core Design>

Wistron Corporation
21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih,
Taipe Hsien 221, Taiwan, R.O.C.

Title PWM_1D8V_RT8015B

Size Document Number Rev
SD
Date: Fridey, January 06, 2012 Sheet 47 of 103

TPS51461 for VCCSA

<Doc>

Date: Friday, January 06, 2012

SD

LCD / Inverter Connector

DCBATOUT_LCD

1.2A

Panel BL brightness/Power En/BL En

Core Designs

Wistron Corporation
21F, Rig. Sec. 1, Hein Tal Wu Rd., Heichin,
Taipe Heine 22T, Talwan, R.O.C.

Size
Document Number
LCD Connector

Size
Document Number
SD
Date: Frostly, January UK, 2012
Sheet 49 of 103

CRT DDCDATA & DDCCLK level shift Pull High 5V Design on CRT Board

CRT Hsync & Vsync level shift

CHINA

HDMI Passive Level Shifter

Close to HDMI Connector

HDMI CONNECTOR

HDMI DDC Passive Level Shifter

Core Designo

Wistron Corporation
21F. 88, Sec. 1, Hein Tal Wu Rd. Huschen,
The

HDMI Level Shifter/Connector

Size Document Number

A4480

But 1768/y. 388048/100, 2012 Sheet 51 of 103

SSID = User.Interface

ITP Connector

H_CPURST# use pull-up Resistor close ITP connector 500 mil (max), others place near CPU side.

<Core Design>

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wü Rd., Hsichih,

	Та	ipei Hsien 22	21, Taiw	an, R.O.C.	
Title					
	ITP				
Size	Document Number				Rev
A4	LA480				SD
Date:	Friday, January 06, 2012	Sheet	55	of	103

Int. Digital MIC for V series

Int. Mono Analog MIC for B series

INTERNAL STEREO SPEAKERS

Table 58.1 - Bi-direction ESD multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
ROHM	RSB5.6SMT2R	N/A	83.RSB56.BAF
ON SEMI	ESD5B5.0ST1G	N/A	83.ESD5B.0AF
NXP	PESD5V0S1BB	N/A	83.0005V.0AF

FOR CO-LAY

GIGA Lan Transformer

1st 68.1H601.301(Taimag) for 1000 68.HH035.301(Taimag) for 10/100 2nd 68.2413s.30A(Lankom) for 1000 68.H6441.301(Lankom) for 10/100

LAN Connector

TVS

83.00005.BAE

DIODE ARR SRV05-4.TCT SOTORIBLE

83.09904.AAE DIODE ESD AZC099-04S SOT23-6L

SSID = Flash.ROM

SPI FLASH ROM (8M byte) for PCH

4MB			
	Marcronix	MX25L3206EM2I-12G	72.25320.C01
S08	Winbond	W25Q032BVSSIG	72.25Q32.A01
	Numonyx	N25Q032A13ESE40	72.25032.H01
8MB			
	Marcronix	MX25L6406EM2I-12G	72.25640.D01
s08	Winbond	W25Q064CVSSIG	72.25Q64.B01
	Numonyx	N25Q064A13ESE40	72.25Q64.D01
16MB	3		
	Marcronix	MX25L12836EZNI-100	72.25128.X01
WSON		MX25L12835EZNI-100	72.25128.Y01
	Winbond	W25Q128BVEIG	72.25128.l01
	Numonyx	N25Q128A13EF840	72.25128.B03

SSID = RBATT

緯創資通 Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

Taipei Hsien 221, Taiwan, R.O.C.

USB Board CONN.

Bluetooth conn.

BT Module pin definition is same as LA470

SILERGY	74.06288.07F	SY6288CAAC	High Active
DIODES	74.02171.07F	AP2171WG-7	High Active
UPI	74.07534.A7F	OBS	High Active
GMT	74.05240.A7F	OBS	High Active

AFTP6302 AFTP6303 AFTP6304 AFTP6305 AFTP6306	6	1 1 1 1 1	3D3V_BT_S0 USB_PP4 USB_PN4 BT_LED GND
	£		

<Core Design>

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

tle	
	Bluetooth
ze	Document Number
4	Ι Δ480

Date: Friday, January 06, 2012

Sheet

SD

SSID = Wireless

Mini Card Connector(802.11a/b/g/n)

placememt close close WLAN1 in bottom side

G6506~G6511

CLK_PCI_LPC_C G65111 2
GAP-OPEN <> CLK_PCI_LPC 18,71

韓創資通 Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichith, Taipei Hsien 221, Taiwan, R.O.C.

MINICARD(WLAN)/ITP CONN
Document Number
LA480

SD

SSID = Wireless

mSATA for V Series Only

Internal KeyBoard Connector

KB14 for 14" VB480 & VB485 KB15 for 15" VB580 & VB585

* Membrane Pin Out Top View:

PIN #	7	11	13	18	14	10	17	15	16	4	23	22	19	20	21	24	12	1	8	9	5	6	3	2
As-sign	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D 10	D 11	D 12	D 13	D 14	D 15	D 16	S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8

		Models									
Synaptics P/N	B480	V480	B580	V580							
TM-01146-006	1										
TM-02023-001		1									
TM-02060-001			1								
TM-02045-001				V							
ADD	5V	3.3V	5V	3.3V							
Pin 1	ADD	ADD	ADD	VDD							
Pin 2	CLE	CLK	CLK	CLK							
Pin3	DAT	DAT	DAT	DAT							
Pin 4	Left button	GND	GND	GND							
Pin 5	Right button	NC	Left button	NC							
Pin 6	GND	NC	Right button	NC							

:Core Design>

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Tahwan, R.O.C.

TOUCH PAD CONNECTOR
Document Number

Document Number
LA480

RFID

Table 80.1- Transistor multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
NXP	PDTC115TE	N/A	84.00115.E1K
ROHM	LTC015TEB	N/A	84.00015.B1H
Panasonic	DRC9115T0L	N/A	84.09115.A11

Table 80.2- EEPROM multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
ROHM	BUL08-1FVJ-WGE2	N/A	72.BUL08.A0Q
NXP	PCA24S08ADP	N/A	72.24S08.A0Q
SANYO	LE26CAP08TT-TLM-H	N/A	72.26C08.00R

BLANK

<Core Design>

Wistron Corporation

21F,88,Sec.1,Hsin Tai Wu Rd.,Hsichih, Taipei Hsien 221, Taiwan, R.O.C

Date:

<Title>

Document Number LA480

Friday, January 06, 2012

Rev SD

Thermal Block Diagram

Audio Block Diagram

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C. Thermal/Audio Block Diagram

SD

