Algorithmic Thinking Luay Nakhleh

Functions

Definition 1 Let A and B be nonempty sets. A function from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \to B$.

Examples:

- $f_1: \mathbb{N} \to \mathbb{N}$ defined by $f_1(n) = 2n$.
- Suppose we have a graph g=(V,E). $f_2:V\to\{1,2,\ldots k\}$ defined by $f_2(u)\in\{1,2,\ldots,k\}$ for every $u\in V$ and $f_2(u)\neq f_2(v)$ whenever $\{u,v\}\in E$.

Definition 2 For function $f: A \to B$, we say that A is the domain of f and B is the codomain of f. If f(a) = b, we say that b is the image of a and a is the preimage of b. The range of f is the set of all images of elements of A. In other words, the range of f is the set

$$\{b \in B : \exists a \in A, f(a) = b\}.$$

For example, for function f_1 above, the domain and codomain of f_1 is the set of all natural numbers (\mathbb{N}) . The range of f_1 is the set of even positive integers (as no number in \mathbb{N} can be mapped to an odd number under f_1).

Definition 3 A function f is said to be one-to-one (sometimes written 1-1), or injective, if and only if $f(a) \neq f(b)$ whenever $a \neq b$.

Examples:

- $f_3: \mathbb{Z} \to \mathbb{Z}$ defined by $f_3(a) = a + 1$. f_3 is one-to-one (why?).
- $f_4: \mathbb{Z} \to \mathbb{Z}$ defined by $f_4(a) = a^2$. f_4 is not one-to-one (why?).

Definition 4 A function $f: A \to B$ is called onto, or surjective, if and only if for every element $b \in B$, there is an element $a \in A$ with f(a) = b.

For example, the function f_3 above is onto (why?), whereas the function f_4 is not onto (why?).

Definition 5 A function f is a bijection if it is both one-to-one and onto.

For example, for a set A, the identity function

$$f(a) = a, \quad \forall a \in A$$

is a bijection.

A very important result in math is the following.

Theorem 1 Let A and B be two sets. If there exists a bijection $f: A \to B$, then |A| = |B|.

Using this result, we can prove that two sets are of the same cardinality by showing a bijection from one to the other.

Definition 6 Let $f: A \to B$ be a bijection. The inverse function of f, dented by f^{-1} , is given by $f^{-1}(b) = a$ when f(a) = b.

Algorithmic Thinking Functions

For example, for f_3 above, the inverse function f_3^{-1} is given by

$$f_3^{-1}(x) = x - 1.$$

Definition 7 Let $g: A \to B$ and $f: B \to C$ be two functions. The composition of f and g, denoted by $f \circ g$, is define by

$$(f \circ g)(x) = f(g(x)).$$

For example, let f_5 and f_6 be two functions from the set of integers to the set of integers defined by

$$f_5(x) = 2x + 3$$
 and $f_6(x) = 3x + 2$.

Then, we have

$$(f_5 \circ f_6)(x) = f_5(f_6(x)) = f_5(3x+2) = 2(3x+2) + 3 = 6x + 7$$

and

$$(f_6 \circ f_5)(x) = f_6(f_5(x)) = 6x + 11.$$

Remark. A function $f:A\to B$ can also be defined in terms of a relation from A to B. A relation from A to B is just a subset of $A\times B$. A relation from A to B that contains one, and only one, ordered pair (a,b) for every element $a\in A$, defined a function f from A to B. For example, the function f is $\{a,b,c\}\to\{0,1\}$ defined by

$$f_7(a) = 0$$
 $f_7(b) = 1$ $f_7(c) = 0$

can be represented as the relation

$$\{(a,0),(b,1),(c,0)\}.$$