ECONhw5

Nick Gembs

3/31/2022

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
     filter, lag
## The following objects are masked from 'package:base':
##
     intersect, setdiff, setequal, union
##
data <- read.csv("C:/Users/Nick/Downloads/pntsprd.csv")</pre>
#2.1
data$sprdcvr
  [1] 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0
0 0 1
## [38] 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0
## [75] 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1
0 1 1
## [112] 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0
1 0 1
## [149] 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0
1 0 1
0 1 0
100
## [260] 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1
1 1 0
## [297] 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1
0 1 0
1 1 1
1 1 1
0 0 1
```

```
## [445] 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0
0 1 0
## [482] 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1
## [519] 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0
t.test(data$sprdcvr,mu = .5, paired = F, conf.level=.9)
##
## One Sample t-test
##
## data: data$sprdcvr
## t = 0.7226, df = 552, p-value = 0.4702
## alternative hypothesis: true mean is not equal to 0.5
## 90 percent confidence interval:
## 0.4803236 0.5504178
## sample estimates:
## mean of x
## 0.5153707
# Fail to reject the null hyothesis as the p-value if greater than .05.
#2.2
gamesonneutralcourt = sum(data$neutral)
gamesonneutralcourt
## [1] 35
#2.3
lm.fit <- lm(data$sprdcvr ~ data$favhome + data$neutral + data$fav25 +</pre>
data$und25)
summary(lm.fit)
##
## Call:
## lm(formula = data$sprdcvr ~ data$favhome + data$neutral + data$fav25 +
##
       data$und25)
##
## Residuals:
       Min
                10 Median
                                3Q
                                       Max
## -0.6072 -0.5242 0.3928 0.4758 0.5339
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                                              <2e-16 ***
                            0.04476 10.938
## (Intercept)
                 0.48957
## data$favhome 0.03459
                            0.04972
                                      0.696
                                               0.487
## data$neutral 0.11762
                                      1.242
                                               0.215
                            0.09466
## data$fav25 -0.02347
                            0.05019 -0.468
                                               0.640
```

```
## data$und25 0.01787
                        0.09188
                                   0.195
                                             0.846
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5012 on 548 degrees of freedom
## Multiple R-squared: 0.0034, Adjusted R-squared: -0.003874
## F-statistic: 0.4674 on 4 and 548 DF, p-value: 0.7597
# Load libraries
library("lmtest")
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
      as.Date, as.Date.numeric
library("sandwich")
# Robust t test
hetero.fit <- coeftest(lm.fit, vcov = vcovHC(lm.fit, type = "HCO"))
hetero.fit
##
## t test of coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
##
                                             <2e-16 ***
## (Intercept)
                0.489567 0.044648 10.9651
## data$favhome 0.034591 0.049597 0.6974
                                             0.4858
## data$neutral 0.117618 0.092701 1.2688
                                             0.2051
## data$fav25 -0.023467 0.050154 -0.4679
                                             0.6400
                0.017873 0.089655 0.1994
## data$und25
                                             0.8421
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(hetero.fit)
##
      Estimate
                        Std. Error
                                          t value
                                                            Pr(>|t|)
## Min.
          :-0.02347
                             :0.04465
                                       Min. :-0.4679
                      Min.
                                                         Min.
                                                                :0.0000
                                       1st Qu.: 0.1993
## 1st Qu.: 0.01787
                      1st Qu.:0.04960
                                                         1st Qu.:0.2051
## Median : 0.03459
                      Median :0.05015
                                       Median : 0.6974
                                                         Median :0.4858
                                             : 2.5325
## Mean
         : 0.12724
                      Mean
                             :0.06535
                                       Mean
                                                         Mean
                                                                :0.4346
## 3rd Qu.: 0.11762
                      3rd Qu.:0.08966
                                       3rd Qu.: 1.2688
                                                         3rd Qu.:0.6400
## Max.
         : 0.48957
                      Max.
                             :0.09270
                                       Max.
                                             :10.9651
                                                         Max.
                                                                :0.8421
# Standard errors do not significantly change for any estimators when
assuming heteroskedasticity robust model. heteroskedasticity robust model is
more significant (lower p-values).
```

#2.4

If all of the estimators equal zero (B1 = B2 = B3 = B4 = 0), the OLS fit will just be a horizontal line across the data with a y value at the mean of the regressand (sprdcvr). Since sprdcvr is binary and all estimators equal zero, variance of error will not be dependent on any regressor, suggesting homoskedascticity.

#2.5

None of the statistics in any of the tests performed on the model above have shown any significance of relationship between the regressors and if the game will cover the spread. This suggests that the market of sports betting is efficient and that one cannot use available data to get advantage in calling sports bets.

#2.6

lm.fit\$fitted.values

	1 2	. 3	4	5	6	7
8						
	1 0.5241576	0.5241576	0.5241576	0.4895665	0.5837171	0.5241576
0.5006902	2		12	4.2	1.4	45
	9 16) 11	12	13	14	15
16 ## 0.489566	5 0 1805669	: 0 52/1576	0 52/1576	0 1660001	0 52/1576	0 1805665
0.5006902	0.400000	0.5241570	0.5241570	0.4000551	0.3241370	0.4055005
## 1	7 18	19	20	21	22	23
24						
## 0.524157	6 0.5241576	0.4895665	0.5241576	0.5241576	0.4895665	0.5241576
0.5006902						
## 2	5 26	27	28	29	30	31
32						
## 0.607184	5 0.4895665	0.5241576	0.5241576	0.5006902	0.5241576	0.5006902
0.5837171						
## 3	3 34	35	36	37	38	39
40	- 0 -0444		0 4074045	0 =044==4	0 4074045	0 5044554
	5 0.52415/6	0.5241576	0.60/1845	0.52415/6	0.60/1845	0.52415/6
0.6071845 ## 4	1 42	43	44	45	46	47
48	1 42	. 45	44	45	40	47
_	6 0 60718 <i>4</i> 5	0.4895665	0 6071845	0 6071845	0 5241576	0 5837171
0.5241576	0.0071045	0.4023003	0.0071043	0.0071043	0.3241370	0.3037171
## 4	9 50	51	52	53	54	55
56	-					
## 0.500690	2 0.5241576	0.5241576	0.5006902	0.4660991	0.5241576	0.5241576
0.5241576						
## 5	7 58	59	60	61	62	63
64						

## 0.4895665 0.5241576	0.5241576	0.5006902	0.6071845	0.6071845	0.4895665	0.5241576
## 65 72	66	67	68	69	70	71
## 0.6015899 0.4895665	0.5241576	0.5241576	0.5241576	0.5241576	0.5241576	0.6071845
## 73 80	74	75	76	77	78	79
## 0.4660991 0.4895665	0.5241576	0.4895665	0.4895665	0.5241576	0.4895665	0.5241576
## 81 88	82	83	84	85	86	87
## 0.4895665 0.5241576	0.5185630	0.4660991	0.5241576	0.5006902	0.5006902	0.5241576
## 89 96	90	91	92	93	94	95
## 0.5006902 0.5241576	0.6071845	0.5241576	0.6071845	0.5241576	0.5241576	0.6071845
## 97 104	98	99	100	101	102	103
## 0.6071845 0.5420304	0.5006902	0.5241576	0.5241576	0.5241576	0.5241576	0.6015899
## 105 112	106	107	108	109	110	111
## 0.4660991 0.4660991	0.5241576	0.5241576	0.5006902	0.5241576	0.5241576	0.5241576
## 113 120	114	115	116	117	118	119
## 0.5241576 0.5241576	0.4660991	0.5241576	0.5241576	0.5837171	0.5241576	0.5185630
## 121 128	122	123	124	125	126	127
## 0.5241576 0.5241576	0.5241576	0.5241576	0.5241576	0.5241576	0.5241576	0.5006902
## 129 136	130	131	132	133	134	135
## 0.4895665 0.5241576	0.5241576	0.5241576	0.4895665	0.5241576	0.5241576	0.5241576
## 137 144	138	139	140	141	142	143
## 0.5241576 0.5241576	0.5241576	0.5241576	0.4895665	0.4895665	0.6071845	0.6071845
## 145 152	146	147	148	149	150	151
## 0.5241576 0.5241576	0.6071845	0.4895665	0.5241576	0.5420304	0.5241576	0.4660991
## 153 160	154	155	156	157	158	159
## 0.5837171 0.5241576	0.5241576	0.5006902	0.5837171	0.5006902	0.4895665	0.4895665

## 1 168	L61	162	163	164	165	166	167
## 0.50069	902	0.4660991	0.5420304	0.4660991	0.4660991	0.4660991	0.4895665
	L69	170	171	172	173	174	175
176 ## 0.52415	576	0.4895665	0.5241576	0.5241576	0.5006902	0.5241576	0.4660991
	L77	178	179	180	181	182	183
184 ## 0.52415	576	0.5241576	0.4895665	0.4895665	0.5241576	0.5241576	0.5241576
	L85	186	187	188	189	190	191
192 ## 0.52415	576	0.5241576	0.5241576	0.4895665	0.5241576	0.5241576	0.5241576
	L93	194	195	196	197	198	199
200 ## 0.52415	576	0.5241576	0.5241576	0.4895665	0.5006902	0.5241576	0.5241576
	201	202	203	204	205	206	207
208 ## 0.52415	576	0.5006902	0.4895665	0.5241576	0.5241576	0.4895665	0.5241576
	209	210	211	212	213	214	215
216 ## 0.52415	576	0.5185630	0.5006902	0.5241576	0.5241576	0.5241576	0.5241576
	217	218	219	220	221	222	223
224 ## 0.52415	576	0.5241576	0.5241576	0.4895665	0.5241576	0.5241576	0.5241576
0.5241576 ## 2	225	226	227	228	229	230	231
232 ## 0.52415	576	0.5241576	0.4839719	0.5241576	0.5006902	0.4895665	0.5006902
0.5241576 ## 2	233	234	235	236	237	238	239
240 ## 0.48956	565	0.4895665	0.5006902	0.4895665	0.4895665	0.5006902	0.4660991
0.5241576 ## 2	241	242	243	244	245	246	247
248 ## 0.50069	902	0.5006902	0.5241576	0.5241576	0.4895665	0.5241576	0.5241576
0.5837171 ## 2	249	250	251	252	253	254	255
256 ## 0.48956							
0.5006902	257	258	259	260	261	262	263
264	- •			_30			_00

## 0.6071845	0.5241576	0.5837171	0.6071845	0.4895665	0.4895665	0.5241576
0.4895665 ## 265	266	267	268	269	270	271
272 ## 0.5241576	0.4895665	0.5241576	0.4895665	0.5241576	0.4895665	0.5241576
0.5241576 ## 273	274	275	276	277	278	279
280 ## 0.5241576	0.5241576	0.5241576	0.5241576	0.5006902	0.5241576	0.5006902
0.6015899 ## 281	282	283	284	285	286	287
288 ## 0.5837171	0.5006902	0.4895665	0.4660991	0.4895665	0.5241576	0.5241576
0.5241576 ## 289	290	291	292	293	294	295
296 ## 0.4839719	0.5241576	0.5241576	0.5006902	0.5420304	0.4895665	0.5241576
0.5241576 ## 297	298	299	300	301	302	303
304 ## 0.5185630	0.5006902	0.4895665	0.5006902	0.4895665	0.4660991	0.5241576
0.5006902 ## 305	306	307	308	309	310	311
312 ## 0.4660991	0.4660991	0.5241576	0.5006902	0.5241576	0.5241576	0.5241576
0.5241576 ## 313	314	315	316	317	318	319
320 ## 0.5185630	0.5006902	0.5420304	0.5241576	0.5006902	0.5006902	0.5241576
0.5006902 ## 321	322	323	324	325	326	327
328 ## 0.4895665	0.5185630	0.5185630	0.5006902	0.5185630	0.4895665	0.5241576
0.5241576 ## 329	330	331	332	333	334	335
336 ## 0.4660991	0.4895665	0.5006902	0.5241576	0.5241576	0.4660991	0.5241576
0.5006902 ## 337	338	339	340	341	342	343
344 ## 0.4660991	0.5241576	0.4895665	0.5241576	0.4895665	0.5420304	0.4839719
0.4895665 ## 345	346	347	348	349	350	351
352 ## 0.5241576	0.5420304	0.5006902	0.5006902	0.5006902	0.4895665	0.4895665
0.5241576 ## 353	354	355	356	357	358	359
360 ## 0.5241576 0.5006902	0.5420304	0.4660991	0.5241576	0.5241576	0.5006902	0.5006902

## 361 368	362	363	364	365	366	367	
## 0.5241576	0.5241576	0.4895665	0.4660991	0.4839719	0.5241576	0.5420304	
0.5241576 ## 369	370	371	372	373	374	375	
376 ## 0.5241576	0.4660991	0.5006902	0.4895665	0.5241576	0.4895665	0.4660991	
0.5241576 ## 377	378	379	380	381	382	383	
384 ## 0.5241576	0.5241576	0.5241576	0.4660991	0.4895665	0.5241576	0.5241576	
0.5241576 ## 385	386	387	388	389	390	391	
392 ## 0.5241576	0.5241576	0.5006902	0.5241576	0.5241576	0.5241576	0.4895665	
0.4895665 ## 393	394	395	396	397	398	399	
400 ## 0.5241576 0.4895665	0.5185630	0.5241576	0.5185630	0.5006902	0.5006902	0.5241576	
## 401 408	402	403	404	405	406	407	
## 0.5006902	0.5241576	0.5241576	0.4895665	0.5241576	0.5241576	0.5241576	
0.5185630 ## 409 416	410	411	412	413	414	415	
## 0.5241576	0.5241576	0.5241576	0.5241576	0.4895665	0.4895665	0.5241576	
0.5006902 ## 417 424	418	419	420	421	422	423	
## 0.5006902 0.5241576	0.5241576	0.5241576	0.5241576	0.4895665	0.5241576	0.4895665	
## 425 432	426	427	428	429	430	431	
## 0.4660991 0.4660991	0.4895665	0.5006902	0.5241576	0.5241576	0.5241576	0.4895665	
## 433 440	434	435	436	437	438	439	
## 0.5241576 0.5241576	0.5241576	0.5241576	0.5006902	0.5006902	0.5241576	0.5241576	
## 441 448	442	443	444	445	446	447	
## 0.5241576 0.5241576	0.5241576	0.5241576	0.5241576	0.5006902	0.5241576	0.4895665	
## 449 456	450	451	452	453	454	455	
## 0.5241576 0.5185630	0.5241576	0.4895665	0.5420304	0.5241576	0.5241576	0.4895665	
## 457 464	458	459	460	461	462	463	
. • .							

## 0.4660991 0.5241576	0.5241576	0.5241576	0.5241576	0.5241576	0.5241576	0.4895665
## 465 472	466	467	468	469	470	471
## 0.5006902 0.4895665	0.4660991	0.4660991	0.4660991	0.5241576	0.5241576	0.4660991
## 473 480	474	475	476	477	478	479
## 0.5185630 0.5241576	0.6071845	0.4895665	0.5241576	0.4895665	0.5241576	0.4895665
## 481 488	482	483	484	485	486	487
## 0.5241576 0.5241576				0.4895665	0.5241576	0.5241576
## 489 496	490	491	492	493	494	495
## 0.5241576 0.4895665						
## 497 504	498	499	500	501	502	503
## 0.5241576 0.5241576						
## 505 512 ## 0.4895665	506	507	508	509	510	511
0.5241576 ## 513	514	515	516	517	518	519
520 ## 0.5241576						
0.5241576 ## 521	522	523	524	525	526	527
528 ## 0.5241576						
0.5241576 ## 529	530				534	535
536 ## 0.5837171						
0.4895665 ## 537	538	539	540	541	542	543
544 ## 0.5241576	0.5006902	0.4895665	0.4895665	0.4660991	0.5185630	0.5241576
0.5241576 ## 545	546	547	548	549	550	551
552 ## 0.5241576 0.4660991 ## 553 ## 0.4660991	0.5241576	0.5006902	0.5241576	0.4660991	0.5241576	0.5241576

```
#2.7
library(foreign)
logit <- glm(data$sprdcvr ~ data$favhome + data$neutral + data$fav25 +</pre>
data$und25, family=binomial(link="logit"))
logit
##
## Call: glm(formula = data$sprdcvr ~ data$favhome + data$neutral +
data$fav25 +
##
       data$und25, family = binomial(link = "logit"))
##
## Coefficients:
   (Intercept) data$favhome data$neutral
                                                data$fav25
                                                              data$und25
##
       -0.04169
                      0.13845
                                    0.47618
                                                  -0.09424
                                                                 0.07177
##
## Degrees of Freedom: 552 Total (i.e. Null); 548 Residual
## Null Deviance:
                        766.1
## Residual Deviance: 764.2
                                AIC: 774.2
summary(logit)
##
## Call:
## glm(formula = data$sprdcvr ~ data$favhome + data$neutral + data$fav25 +
       data$und25, family = binomial(link = "logit"))
##
##
## Deviance Residuals:
       Min
                 10
                      Median
                                    3Q
                                            Max
## -1.3666 -1.2188
                      0.9993
                               1.1366
                                         1.2356
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -0.04169
                            0.17873
                                    -0.233
                                                0.816
## data$favhome 0.13845
                            0.19855
                                      0.697
                                                0.486
## data$neutral 0.47618
                            0.38413
                                      1.240
                                                0.215
## data$fav25
                -0.09424
                            0.20070
                                     -0.470
                                                0.639
## data$und25
                 0.07177
                            0.36783
                                      0.195
                                                0.845
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 766.10 on 552 degrees of freedom
## Residual deviance: 764.21 on 548 degrees of freedom
## AIC: 774.21
## Number of Fisher Scoring iterations: 3
probit <- glm(data$sprdcvr ~ data$favhome + data$neutral + data$fav25 +</pre>
data$und25, family=binomial(link="probit"))
probit
```

```
##
## Call: glm(formula = data$sprdcvr ~ data$favhome + data$neutral +
data$fav25 +
       data$und25, family = binomial(link = "probit"))
##
## Coefficients:
   (Intercept) data$favhome data$neutral
                                               data$fav25
                                                             data$und25
##
       -0.02606
                      0.08665
                                    0.29798
                                                 -0.05916
                                                                0.04591
##
## Degrees of Freedom: 552 Total (i.e. Null); 548 Residual
## Null Deviance:
                        766.1
## Residual Deviance: 764.2
                                AIC: 774.2
summary(probit)
##
## Call:
## glm(formula = data$sprdcvr ~ data$favhome + data$neutral + data$fav25 +
       data$und25, family = binomial(link = "probit"))
##
## Deviance Residuals:
                               3Q
      Min
               10 Median
##
                                      Max
## -1.367 -1.219
                    0.999
                            1.137
                                    1.236
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                                    -0.233
## (Intercept) -0.02606
                            0.11197
                                               0.816
## data$favhome 0.08665
                            0.12439
                                      0.697
                                               0.486
## data$neutral 0.29798
                            0.23901
                                      1.247
                                               0.213
## data$fav25
               -0.05916
                            0.12566
                                    -0.471
                                               0.638
## data$und25
                 0.04591
                            0.23020
                                      0.199
                                               0.842
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 766.10 on 552 degrees of freedom
## Residual deviance: 764.21 on 548 degrees of freedom
## AIC: 774.21
##
## Number of Fisher Scoring iterations: 3
# Probit and logit models still return similar results without statisticsal
significance.
```