Solution Section 3.2 - Exponential Functions

Exercise

Evaluate to four decimal places using a calculator $2^{3.4}$

Solution

$$2^{3.4} = 10.5561$$

Exercise

Evaluate to four decimal places using a calculator $5^{\sqrt{3}}$

Solution

$$5^{\sqrt{3}} = 16.2425$$

Exercise

Evaluate to four decimal places using a calculator $6^{-1.2}$

Solution

$$6^{-1.2} = 0.1165$$

Exercise

Evaluate to four decimal places using a calculator: $e^{-0.75}$

Solution

$$e^{-0.75} = .4724$$

Exercise

Evaluate to four decimal places using a calculator: $e^{2.3}$

Solution

$$e^{2.3} = 9.9742$$

Exercise

Evaluate to four decimal places using a calculator: $e^{-0.95}$

$$e^{-0.95} = 0.3867$$

Evaluate to four decimal places using a calculator: $\pi^{\sqrt{\pi}}$

Solution

$$\pi^{\sqrt{\pi}} = 7.6063$$

Exercise

Evaluate to four decimal places using a calculator: $e^{\sqrt{2}}$

Solution

$$e^{\sqrt{2}} = 4.1133$$

Exercise

Sketch the graph: $f(x) = 2^x + 3$

Solution

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(3, \infty)$

х	f(x)
-1	3.5
0	4
1	5
2	7

Sketch the graph: $f(x) = 2^{3-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

X	f(x)
1	4
2	2
0	8

Exercise

Sketch the graph: $f(x) = \left(\frac{2}{5}\right)^{-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Х	f(x)
-1	0.4
0	1
1	2.5

Exercise

Sketch the graph: $f(x) = -\left(\frac{1}{2}\right)^x + 4$

Solution

Asymptote: y = 4

Domain: $(-\infty, \infty)$

Range: $(-\infty, 4)$

х	f(x)
-2	0
-1	2
0	3

Sketch the graph of $f(x) = 4^x$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
0	1
1	4

Exercise

Sketch the graph of $f(x) = 2 - 4^x$

Solution

Asymptote: y = 2

Domain: $(-\infty, \infty)$

Range: $(-\infty, 2)$

х	f(x)
0	1
1	-2

Exercise

Sketch the graph of $f(x) = -3 + 4^{x-1}$

Solution

Asymptote: y = -3

Domain: $(-\infty, \infty)$

Range: $(-3, \infty)$

x	f(x)
1	-2
2	1

Sketch the graph of $f(x) = 1 + \left(\frac{1}{4}\right)^{x+1}$

Solution

Asymptote: y = 1

Domain: $(-\infty, \infty)$

Range: $(1, \infty)$

х	f(x)
-1	2
0	<u>5</u>

Exercise

Sketch the graph of $f(x) = e^{x-2}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
2	1
3	2.7

Exercise

Sketch the graph of $f(x) = 3 - e^{x-2}$

Solution

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(-\infty, 3)$

X	f(x)
2	2
3	.3

Sketch the graph of $f(x) = e^{x+4}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
-4	1
-3	2.7

Exercise

Sketch the graph of $f(x) = 2 + e^{x-1}$

Solution

Asymptote: y = 2

Domain: $(-\infty, \infty)$

Range: $(2, \infty)$

х	f(x)
1	3
2	4.7

Exercise

The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), in *billions*, *x years* after 1978. Project the gray population in the recovery area in 2012.

$$x = 2012 - 1978 = 34$$

 $f(x = 34) = 1066e^{0.042(34)}$
 $= 4445.6$
 $\approx 4446 \ billions$

The function $f(x) = 6.4e^{0.0123x}$ describes world population, f(x), in billions, x years after 2004 subject to a growth rate of 1.23% annually. Use the function to predict world population in 2050.

Solution

$$x = 2050 - 2004 = 46$$

 $f(x = 46) = 6.4e^{0.0123(46)}$
 $\approx 11.27 \ billion$

Exercise

A cup of coffee is heated to $160^{\circ}F$ and placed in a room that maintains a temperature of $70^{\circ}F$. The temperature T of the coffee, in *degree Fahrenheit*, after t minutes is given by

$$T(t) = 70 + 90e^{-0.0485t}$$

- a) Find the temperature of the coffee 20 minutes after it is placed in the room
- b) Determine when the temperature of the coffee will reach $90^{\circ}F$

Solution

a)
$$T(20) = 70 + 90e^{-0.0485(20)}$$

 $\approx 104^{\circ}F$

b)
$$T(t) = 70 + 90e^{-0.0485t} = 90$$

 $90e^{-0.0485t} = 20$
 $e^{-0.0485t} = \frac{2}{9}$

 \therefore The temperature of the coffee will reach 90°F in about 31.01 minutes.

A cup of coffee is heated to $180^{\circ}F$ and placed in a room that maintains a temperature of $65^{\circ}F$. The temperature T of the coffee, in *degree Fahrenheit*, after t minutes is given by

$$T(t) = 65 + 115e^{-0.042t}$$

- a) Find the temperature of the coffee 10 minutes after it is placed in the room
- b) Determine when the temperature of the coffee will reach $100^{\circ}F$

Solution

a)
$$T(10) = 65 + 115e^{-0.042(10)}$$

 $\approx 141^{\circ}F$

b)
$$T(t) = 65 + 115e^{-0.042t} = 100$$

 $115e^{-0.042t} = 35$
 $e^{-0.042t} = \frac{7}{23}$

 \therefore The temperature of the coffee will reach $100^{\circ}F$ in about 31.01 minutes.

Exercise

The percent I(x) of the original intensity of light striking the surface of a lake that is available *x feet* below the surface of the lake is given by the equation

$$I(x) = 100e^{-.95x}$$

- a) What percentage of the light is available 2 feet below the surface of the lake?
- b) At what depth is the intensity of the light one-half the intensity at the surface?

a)
$$I(2) = 100e^{-.95(2)}$$

: The percentage of the light is available 2 feet below the surface of the lake is 15%

b)
$$I(x) = 100e^{-.95x} = \frac{1}{2}(100)$$

$$e^{-.95x} = \frac{1}{2}$$

$$100$$

$$75+$$

$$50+$$

$$25+$$

$$2 \quad 4 \quad 6 \quad 8$$

$$0.72800 \quad 50.07742$$

$$0.73200 \quad 49.88749$$

 \therefore The depth is 0.73 feet when the intensity of the light one-half the intensity at the surface

Exercise

Starting on the left side of a standard 88–key piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

$$f(n) = (2.75) 2^{\frac{n-1}{12}}$$
Middle D E

- a) Determine the frequency of middle C, key number 40 on an 88-key piano.
- b) Is the difference in frequency between middle C (key number 40) and D (key number 42) the same as the difference in frequency between D (key number 42) and E (key number 44)?

a)
$$f(40) = (2.75) 2^{\frac{40-1}{12}}$$

the frequency of middle C is ≈ 26 vibrations per second.

b)
$$f(42) = (2.75) 2^{(41/12)}$$

 ≈ 29.37

The difference between the frequency of middle C and D is:

$$29.37 - 26.16 \approx 3.21$$

$$f(44) = (2.75) 2^{(43/12)}$$

 ≈ 32.96

The difference between the frequency of middle D and E is:

$$32.96 - 29.37 \approx 3.59$$

: the differences are *not* the same since the function is *not* linear function

Starting on the left side of a standard 88–key piano, the frequency, in vibrations per second, of the nth note is given by

- c) Determine the frequency of middle C, key number 40 on an 88–key piano.
- *d)* Is the difference in frequency between middle *C* (key number 40) and *D* (key number 42) the same as the difference in frequency between *D* (key number 42) and *E* (key number 44)?

Solution

c)
$$f(40) = (27.5) 2^{\frac{40-1}{12}}$$

 ≈ 261.63

the frequency of middle C is ≈ 262 vibrations per second.

d)
$$f(42) = (27.5) 2^{(41/12)}$$

 ≈ 293.66

The difference between the frequency of middle C and D is: $293.66 - 261.66 \approx 32$

$$f(44) = (27.5) 2^{(43/12)}$$

 ≈ 329.63

The difference between the frequency of middle *D* and *E* is: $329.63 - 293.66 \approx 36$

: The differences are *not* the same since the function is *not* linear function.

