# CHESS ENGINES

Presented By: James Baker



### Explanation and Purpose

Highly specialized calculators for chess

Studying chess

Back end program

### Brief History

• 1914 – First Machine for Chess

• 1986 – The phrase "Chess Engine"

 1989 - Deep Thought beats Bent Larson but loses to Gary Kasparov





## Brief History

1996 – IBM rematch - Deep Blue wins

 Chess Engines have surpassed humans for chess performance

Engine tournaments



| 1  |    | Carlsen         | #  | 2873.5 |
|----|----|-----------------|----|--------|
| 2  |    | Caruana         |    | 2818.4 |
| 3  |    | Ding Liren      | *) | 2804.3 |
| 4  | ↑1 | Giri            |    | 2779.0 |
| 5  | ↓1 | Vachier-Lagrave | П  | 2778.4 |
| 6  | ↑1 | Nepomniachtchi  |    | 2775.0 |
| 7  | ↑1 | Mamedyarov      | (  | 2774.6 |
| 8  | ↓2 | Grischuk        |    | 2774.4 |
| 9  |    | Anand           | 1  | 2768.5 |
| 10 |    | Artemiev        |    | 2761.0 |

| 1  |      | Hou Yifan   | 2659.0        |
|----|------|-------------|---------------|
| 2  |      | Ju Wenjun   | 2592.0        |
| 3  | ↑1   | Koneru      | 2558.0        |
| 4  | ↑1   | Lagno       | 2552.7        |
| 5  | †3   | Goryachkina | 2552.6        |
| 6  | Live | Muzychuk M  | 2551.2        |
| 7  |      | Cmilyte     | <b>2538.0</b> |
| 8  | ↓2   | Muzychuk A  | 2528.5        |
| 9  |      | Kosteniuk   | 2528.2        |
| 10 |      | Dzagnidze   | # 2522.5      |

| 1  | Carlsen      | + | 2889.2 | 21 Apr 2014 |
|----|--------------|---|--------|-------------|
| 2  | Kasparov     |   | 2856.7 | 03 Mar 2000 |
| 3  | Caruana      |   | 2851.3 | 08 Oct 2014 |
| 4  | Aronian      |   | 2835.5 | 02 Feb 2014 |
| 5  | Topalov      |   | 2826.5 | 24 Aug 2015 |
| 6  | Mamedyarov   | 0 | 2826.2 | 30 Sep 2018 |
| 7  | So           |   | 2824.5 | 01 Apr 2017 |
| 8  | Anand        | 1 | 2820.7 | 26 Jan 2011 |
| 9  | Vachier-Lagr |   | 2819.3 | 28 Jul 2016 |
| 10 | Nakamura     |   | 2819.0 | 23 Aug 2015 |

| 1  | Stockfish 10 64-bit 4CPU     | 3546 |
|----|------------------------------|------|
| 2  | Houdini 6 64-bit 4CPU        | 3520 |
| 3  | Komodo 11.2 64-bit 4CPU      | 3503 |
| 4  | Lc0 0.21.1 JH.T6.532 GPU     | 3486 |
| 5  | Fire 7.1 64-bit 4CPU         | 3424 |
| 6  | Komodo 12.3 MCTS 64-bit 4CPU | 3409 |
| 7  | Xiphos 0.5 64-bit 4CPU       | 3401 |
| 8  | Ethereal 11.25 64-bit 4CPU   | 3389 |
| 9  | Laser 1.7 64-bit 4CPU        | 3366 |
| 10 | Fizbo 2 64-bit 4CPU          | 3341 |

### How do they work

- Two different approaches both are by machine learning
- Starting moves are given book moves

- First Principles
  - Zero Sum Game
  - Perfect Information
  - Alternating Moves

Final Positions are Table Bases

• Everything in-between is the algorithm

#### **Decision Trees**

- Brute Force engines
- Alpha–Beta pruning







a search algorithm that seeks to decrease the number of nodes that are evaluated by the minmax algorithm in its search tree.

- The current position is the root
- Children nodes represent the legal moves
- Each child has children nodes based on legal moves
- Converge similar positions
- Pieces and combinations are weighted and position reevaluated.

#### Neural Networks





- Still uses trees but stacks a neural network on top of it
- PUCT Predictor + Upper Confidence Bound Tree Search
- Simulates the games many times and tries to predict the most promising move based on the simulation results.

 Probabilities of a best move is determined through back propagation until resources are exhausted.

#### Which is Better

• Both have won major tournaments

• Static position return different results

Better than humans



