

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

GitHub

Han Cai, Ligeng Zhu, Song Han Massachusetts Institute of Technology

Design Automation for Hardware Efficient Nets

Hardware-Centric AutoML allows non-experts to efficiently design neural network architectures with a push-button solution that runs fast on a specific hardware.

From General Design to Specialized CNN

Different platform has different properties, e.g., degree of parallelism, cache size, memory bandwidth. We need to customize our models for each platform to achieve the best accuracy-efficiency trade-off.

Indirect Search to Direct Search

Conventional NAS is **VERY EXPENSIVE** (e.g., 48,000 GPU-hours) to run, thus relies on Non expert Hardware-Centric proxy tasks (e.g., CIFAR-10 -> ImageNet).

Not optimize for the target hardware

Limitations of Proxy

(2) Our proxy-less approach Architecture Learner

Goal: Directly learn neural network different structures.

architectures on the large-scale target task and target hardware while allowing all blocks to have

Results on ImageNet

Model	Top-1	Top-5	Mobile	Hardware	No	No	Search cost	-
			Latency	-aware	Proxy	Repeat	(GPU hours)	
MobileNetV1 [16]	70.6	89.5	113ms	-	-	Х	Manual	-
MobileNetV2 [30]	72.0	91.0	75ms	_	_	X	Manual	
NASNet-A [38]	74.0	91.3	183ms	Х	X	Х	48,000	-
AmoebaNet-A [29]	74.5	92.0	190ms	X	X	X	75,600	
MnasNet [31]	74.0	91.8	76ms	✓	X	X	40,000	200x
MnasNet (our impl.)	74.0	91.8	79ms	✓	X	X	40,000	fewer
Proxyless-G (mobile)	71.8	90.3	83ms	Х	✓	✓	200	
Proxyless-G + LL	74.2	91.7	79ms	✓	✓	✓	200	
Proxyless-R (mobile)	74.6	92.2	78ms	✓	✓	✓	200	_
								-

ProxylessNAS achieves state-of-the art accuracy (%) on ImageNet (under mobile latency constraint ≤ 80ms) with 200× less search cost in GPU hours.

Model	Top-1	Top-5	GPU latency
MobileNetV2 (Sandler et al., 2018)	72.0	91.0	6.1ms
ShuffleNetV2 (1.5) (Ma et al., 2018)	72.6	_	7.3ms
ResNet-34 (He et al., 2016)	73.3	91.4	8.0ms
NASNet-A (Zoph et al., 2018)	74.0	91.3	38.3ms
DARTS (Liu et al., 2018c)	73.1	91.0	_
MnasNet (Tan et al., 2018)	74.0	91.8	6.1ms
Proxyless (GPU)	75.1	92.5	5.1ms

Our specialized model on GPU achieves 1.1% - 3.1% higher top-1 accuracy while being 1.2× faster, compared to MobileNetV2 and MnasNet.

ProxylessNAS consistently outperforms MobileNetV2 under various latency settings. With the same level of top-1 accuracy as MobileNetV2 1.4, it runs 1.8× faster.

Model	Top-1	GPU	CPU	Mobile
Specialized for GPU	75.1	5.1ms	204.9ms	124ms
Specialized for CPU	75.3	7.4ms	138.7ms	116ms
Specialized for Mobile	74.6	7.2ms	164.1ms	78ms

Hardware prefers specialized models.

Path-Level Pruning and Binarization

paths in a multi-path supernet.

activation is active in memory at run-time.

Making Hardware Latency Differentiable

Expected latency is a continuous function of architecture parameters. We take the expected latency as a regularization term, thereby making latency differentiable.