# Markowitz Portfolio Optimization with quantum computing

THOMASSIN Pablo, COZ Olivier, BERDOUS Louiza

M2MO - Université Paris Cité

April 13, 2025

### Overview

- 1. Context & Literature review
- 2. Theoretical Results
- 3. Implementation & Results
- 4. Replication of the results
- 5. Conclusion

## **Context & Literature review**

### Summary

#### Quantum Computing Revolution

- Promising for combinatorial optimization, especially in finance.
- Key players: Google, IBM, D-Wave, IonQ.

#### Portfolio Optimization Problem

- Classic mean-variance model (Markowitz)  $\rightarrow$  Binary Quadratic Programming (BQP), NP-hard.
- Real-world applications: pension funds, long-term portfolios.

#### Quantum Advantage

- BQP structure well-suited to quantum hardware.
- Quantum annealers vs. gate-based quantum computers.

#### Empirical Studies

- D-Wave tested on Nikkei225 and S&P500.
- Hybrid quantum-classical approaches.
- Benchmarks vs. Gurobi and LocalSolver.

## **Theoretical Results**

### Portfolio Optimization: Classical Formulation

- Inputs:
  - N assets with returns  $\mu_i$ , risks  $\sigma_i$ , correlations  $\rho_{ij}$
  - Covariance matrix:  $\Sigma = \{\sigma_{ij}\}$  with:
    - $\sigma_{ij} = \sigma_i^2$  if i = j, else  $\rho_{ij}\sigma_i\sigma_j$
- Classical Problem:

min 
$$x^T \Sigma x$$
  
s.t.  $\sum x_i = n$ ,  $\mu^T x \ge R^*$ ,  $x_i \in \{0, 1\}$ 

- Select *n* assets to minimize risk and meet a return target.
- Towards QUBO:
  - QUBO = Quadratic Unconstrained Binary Optimization
  - Standard form:  $\min x^T Qx$  with  $x \in \{0, 1\}^n$
  - Constraints encoded via penalty terms

## QUBO Reformulation and Ising Mapping

Converting Constraints to QUBO:

$$\min y = c^T x + \lambda (Ax - b)^T (Ax - b) = x^T Qx$$

Ising Model (used in quantum annealing):

$$\min y = \sum h_i s_i + \sum J_{ij} s_i s_j, \quad s_i \in \{-1, 1\}$$

- Relation:  $s_i = 2x_i 1$  for QUBO-Ising conversion
- Portfolio QUBO Formulations:
  - Equality constraints:

$$\min \lambda_0 x^T \Sigma x + \lambda_1 \left( \sum x_i - n \right)^2 + \lambda_2 \left( \mu^T x - R^* \right)^2$$

Inequality constraints:

$$\min \lambda_0 x^T \Sigma x + \lambda_1 \left( \sum x_i - n \right)^2 + \lambda_2 \left( \mu^T x - R^* - \sum 2^k y_k \right)^2$$

## Implementation & Results

## **Determining QUBO Parameters**

#### Finding optimal penalty coefficients:

- Set  $\lambda_0 = 1$  (scaling factor)
- $\lambda_1$  controls budget constraint penalty
- $\lambda_2$  controls return constraint penalty

#### Rule of thumb:

- Gain from violating constraint must be lower than cost
- Values too low: constraints violated
- Values too high: search efficiency decreased



Figure: Relation between Risk and setting of  $\lambda$ . Open dots are violating the original constraints, closed dots are valid solutions.

## Determining QUBO Parameters (continued)

• Calculation for  $\lambda_1$ :

$$\lambda_1^c = \max_i \sum_{j=1}^n \sigma_{i\{j\}}$$

where  $\sigma_{i\{j\}}$  is the j-th smallest covariance value for asset i

- Calculation for  $\lambda_2$ :
  - 1.  $A_1$  = average difference between smallest n sums  $S_i = \sum_{i=1}^n \sigma_{i\{j\}}$
  - 2.  $A_2$  = average positive difference in  $\mu_i$  between these n stocks
  - 3.  $\lambda_2^c = A_1/A_2$
- Note: These values are first estimations and starting points for eventual grid search of optimal parameters

### Experiment Setup

- **Objective:** Portfolio optimization (risk minimization under budget and return constraints)
- Datasets: Nikkei225 and S&P500
- Compared Methods:
  - Quantum: D-Wave HQPU
  - Classical: Simulated Annealing (SA), Genetic Algorithm (GA), Gurobi (GB), LocalSolver (LS)
- Parameter Grid: Stock pool size N, selection size n, minimum return  $R^*$

#### **Solution Quality:**

- Small instances (N ≤ 100): All methods (except GA) reached optimal or near-optimal solutions
- Medium (100 < N ≤ 200): HQPU/SA within 5% of best, LS best, GA poor, GB memory issues</li>
- ullet Large (N > 200): LS best, HQPU/SA still competitive, GA poor, GB not applicable

## Computational Performance & Observations

- Computation Time (N=50 to N=500):
  - **HQPU**: Fastest (1–6s), consistent across instance sizes
  - **SA**: Slower (2–135s)
  - **GA**: Slowest (53–221s)
  - GB: Very fast but crashes on large instances
  - LS: Efficient but variable (2–207s)

#### Key Insights:

- HQPU is suitable for large-scale, time-sensitive tasks
- LocalSolver gives best quality, but no optimality proof
- Gurobi best for small instances when proof of optimality is required
- GA underperforms both in quality and speed

## Conclusions & Insights

#### **Strengths of D-Wave HQPU:**

- Fast solution time
- Minimal scaling with problem size
- Near-optimal solutions for smaller instances
- Reasonable solutions for larger instances

#### **Limitations & Considerations:**

- Solution quality gap for largest instances
- Optimality not proven (unlike Gurobi)
- Parameter tuning required ( $\lambda_1$  and  $\lambda_2$ )
- Multiple runs needed due to stochastic nature

#### Best approach by use case:

- Need for provable optimality: Gurobi (for  $N \le 150$ )
- Large problems with time constraints: HQPU
- Best solution quality: LocalSolver (though cannot prove optimality in reasonable time)

## Replication of the Results

### Replication of Results Overview

In this study, we aimed to replicate and extend the work of Phillipson and Bhatia on portfolio optimization using quantum annealing. The problem was formulated as a QUBO, minimizing risk under budget and return constraints, and solved using hybrid quantum-classical solvers. Due to limitations accessing D-Wave's platform, we performed a simulation to demonstrate the mechanism and compare it with classical methods.

- Quantum algorithm used: QAOA (Quantum Approximate Optimization Algorithm)
- Classical optimizer: COBYLA
- Hybrid quantum-classical approach for quantum sampling and optimization

## Methodological Changes and Rationale

- QAOA vs VQE: We used QAOA for combinatorial optimization, contrasting it with the VQE approach used by Phillipson and Bhatia. The motivation was QAOA's potential advantages in handling optimization problems with combinatorial nature.
- **Optimization Depth**: We varied the number of iterations and the maximum number of iterations to understand the impact of optimization depth on solution quality.
- Hybrid Approach: Unlike the original study, which relied solely on D-Wave's quantum annealer, we incorporated a hybrid quantum-classical solver for better solution flexibility.

## Results and Differences from Original Study

- QAOA Results: The QAOA solver found optimal solutions for smaller instances, but slightly underperformed in return while matching classical methods in risk minimization.
- Comparison with Original Work: Results were comparable in terms of feasible solutions but QAOA didn't surpass classical solvers (e.g., Gurobi) in return maximization.
- Performance vs Classical Solvers: LocalSolver and Gurobi performed better in return maximization but quantum methods like QAOA showed potential scalability for larger problems.
- **Key Differences**: QAOA required more careful tuning of parameters compared to D-Wave's quantum annealer, highlighting the sensitivity of quantum optimization methods to settings like chain strength and annealing schedules.

## **Conclusion**

### Conclusion: Quantum Portfolio Optimization

- Quantum computing shows promise for large-scale portfolio optimization, particularly via hybrid quantum-classical methods.
- Classical solvers still outperform quantum approaches in solution quality and constraint handling, especially for return maximization.
- Key limitations of quantum methods:
  - Stochastic variability across runs
  - High sensitivity to parameter tuning
  - Difficulty handling return constraints in large problems
- Future outlook:
  - Hybrid methods can be useful under time constraints
  - Further development of quantum algorithms like QAOA is needed
  - Classical solvers like Gurobi remain preferable for small, precise tasks

## The End