Análisis de presencias con procesos de puntos

Tutorial intermedio de spatstat

Gerardo Martín 2022-06-29

Simulación de presencias

Especificación de un centroide

- · aggregate disminuye la resolución por el factor indicado
- round redondea los valores con el número de decimales
- Estos pasos no son enteramente necesarios en un análisis real, los hacemos para disminuir tiempo de cómputo

Código - viendo la favorabilidad

Formateo para spatstat

Cargando las funciones

```
source("Funciones-spatstat/imFromStack.R")
source("Funciones-spatstat/plotQuantIntens.R")
source("Funciones-spatstat/findCompatibles.R")
source("Funciones-spatstat/getPolyFormulas.R")
source("Funciones-spatstat/ppmBatchFit.R")
```

Formateo rápido

Análisis exploratorio

Autocorrelación

Función de K de Ripley

 Número promedio de vecinos como función de la distancia a cada punto:

Los datos

Radio	Vecinos
0.1	0.0000000
0.2	0.0666667
0.3	0.2000000
0.4	0.2666667
0.5	0.2666667

Representación gráfica

Implementación en spatstat

```
K <- envelope(puntos.ppp, fun = Kest, nsim = 39)</pre>
```

Para estimar significancia hace un muestreo aleatorios de punto, de ahí que haya que especificar el número de simulaciones (nsim = 39).

Autocorrelación - notas

- 1. El proceso está levemente autocorrelacionado
 - Veremos si la correlación presente es explicada por factores ambientales
- 2. No sabemos de momento si afectará al modelo

Análisis 2.0

Respuestas a variables

Ver archivo de gráficas

Consideraciones para proponer modelos

Curvas con forma de campana ightarrow fórmula cuadrática

Consideraciones para proponer modelos

Ecuación lineal:

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n$$

Ecuación polinomial de 2^o grado

$$y = \alpha + \beta_1 x_1 + \beta_1' x_1^2 + \dots + \beta_n x_n + \beta_n' x_n^2$$

Recordemos que $y = \log \lambda$

¿Qué variables podemos incluir en el mismo modelo?

Regla de oro: Aquellas que no estén correlacionadas

- \cdot Que x_1 no sea predictor de x_2
- · No se puede atribuir efecto de x_1 ó x_2 sobre λ
- · Necesitamos medir correlación entre pares de variables (pairs)

Identificación automática de covariables compatibles

Variable_1	Variable_2	Variable_3
bio1	bio12	bio18
bio1	bio12	bio2
bio1	bio12	bio3
bio1	bio12	bio4
bio1	bio12	bio6
bio1	bio12	bio7

Obteniendo las fórmulas

- Necesitamos generar una tabla de exponentes para variables, usando el resultado de plotQuantIntens.
- · Razonamiento:
 - Identificar exponente máximo que tendrá el modelo para cada variable
 - La función ${\tt getPolyFormulas}$ generará las fórmulas para todas las combinaciones con exponentes 1:n
- · Tabla debe tener dos columnas: Variable, Power

Uso de getPolyFormulas

```
expon <- read.csv("Datos/Tabla-coefs.csv")</pre>
formulas <- getPolyFormulas(respDF = expon,
                              compatMat = compatibles)
formulas[1:5]
## [1] "~bio1 + bio12 + I(bio12^2) + bio18 + I(bio18^2) + I(bio18
## [2] "~bio1 + bio12 + I(bio12^2) + bio2 + I(bio2^2)"
## [3] "~bio1 + bio12 + I(bio12^2) + bio3 + I(bio3^2)"
## [4] "~bio1 + bio12 + I(bio12^2) + bio4 + I(bio4^2)"
## [5] "~bio1 + bio12 + I(bio12^2) + bio6 + I(bio6^2)"
```

Ajustando los modelos

- La función ppmBatchFit ajustará todos los modelos generados por getPolyFormulas
- · Algunos modelos no lograrán estimar coeficientes satisfactoriamente
- La implementación presente solamente puede priorizar con base en AIC
- · En un futuro, eliminará modelos que con converjan

Uso de ppmBatcchFit

Los argumentos

- points, tabla de coordenadas con dos columnas, x y y, en formato data.frame
- covariates, raster con bandas como covariables, nombres deben coincidir con fórmulas
- · formulas
- parallel, si la rutina se ejeccutará en serie ó paralelo, si
 parallel = T, especificar número de núcleos a usar con cores =
 3 (ajustar para cada máquina)
- topModels, cuántos de los "mejores" modelos queremos que nos guarde
- El resultado almacenado en modelos es una lista con los 5 mejores con base en el AIC

Analizando el resultado

```
sapply(modelos, AIC)
## [1] -455.9962 -438.1068 -446.9706 -484.8199 -438.0861
Podemos usar los procedimientos habituales para los modelos de
regresión en R
summary(modelos[[1]])
```

Análisis de residuales

datos

Como en los análisis de regresión, podemos ver el ajuste con los residuales, y siendo un modelo espacial, ver si hemos logrado explicar la correlación espacial con la prueba K de Ripley, tal como en el análisis exploratorio:

```
K.modelo <- envelope(modelos[[1]], fun = "Kest", nsim = 39)

## Generating 39 simulated realisations of fitted Poisson model
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
## 39.
##
## Done.</pre>
```

Esta prueba genera 39 patrones de puntos utilizando el modelo base para calcular la función de Ripley y compara las simulaciones con la base de

```
par(mfrow = c(1, 2))
plot(K, main = "Datos")
plot(K.modelo, main = "Modelo")
```


Métodos para residuales

- · Gráficas de horizonte
- · Muestra 4 páneles:
- 1. Patrón de puntos
- 2. Residuales acumulados en cada fila de píxeles
- 3. Residuales acumulados en cada columna de píxeles
- 4. Residuales suavizados con contornos:

Kernel-Modelo

Gráfica de horizonte

Corrección de sesgo

Definición de escenario de sesgo

Filtrado del entorno

· Usaremos las función maskBias

source("Funciones-spatstat/maskBias.R")

- · Necesita los siguientes argumentos:
- 1. **s**, es el raster multi-banda de las covariables
- pres.areas, es la base de datos de presencia con las coordenadas x y y
- 3. bias.lay, la capa que representa el esfuerzo de muestreo, donde los valores máximos correspondan a aquellos más muestreados.
- p.keep, la proporción de valores a ser retenidos en cada corte de la capa
- 5. **power**, cuánto queremos que las muestras se concentren en los valores más altos de la capa de sesgo
- 6. **dis**, un factor de desagregación en caso que querer concentrar más valores en las zonas más muestreadas de lo que la resolución

```
r.mask1 \leftarrow maskBias(s = r[[1]], \#Bio1
                    pres.areas = puntos,
                    bias.lay = sesgo[[1]], #Target group
                    p.keep = 0.1, power = 1)
r.mask2 \leftarrow maskBias(s = r[[1]], \#Bio1
                    pres.areas = puntos,
                    bias.lay = sesgo[[1]], #Target group
                    p.keep = 0.05, power = 3, dis = 4)
r.mask3 \leftarrow maskBias(s = r[[1]], \#Bio1
                    pres.areas = puntos,
                    bias.lay = sesgo[[1]], #Target group
                    p.keep = 0.025, power = 4, dis = 4)
```

Gráfica

Histogramas

El resto de la historia

- 1. Correr análisis exploratorio con capas filtradas
- 2. Seleccionar exponentes
- 3. Generar fórmulas
- 4. Ajustar modelos
- 5. Evaluar bondad de ajuste
- 6. Proyectar a geografía completa (sin filtrado)
- 7. Validar

Modelando la correlación espacial

Modelos de interacción

- · Estiman efecto aleatorio para puntos cercanos
- · Sirven para procesos de exclusión o agregación moderada
- · Hay varios tipos de interacciones entre puntos

¿Qué es interacción?

Tipos de interacciones

Figure 2: Crédito a Baddeley et al (2016)

Modelos de interacción en spatstat

FUNCTION	Model
AreaInter	area-interaction process
BadGey	multiscale Geyer saturation process
Concom	connected component interaction
Geyer	Geyer saturation process
Hybrid	hybrid of several interactions
Ord	Ord model, user-supplied potential
OrdThresh	Ord model, threshold potential
Saturated	saturated model, user-supplied potential
SatPiece	multiscale saturation process
Triplets	Geyer triplet interaction process

Para generar un modelo de interacción

1. Establecer tamaño del búfer

```
rr < - data.frame(r=seg(0.1,0.5,bv=0.1))
p <- profilepl(rr, AreaInter,</pre>
                puntos.ppp \sim bio1 + bio12 + I(bio12^2) +
                  bio18 + I(bio18^2) +
                  I(bio18^3) + I(bio18^4),
          covariates = r.im, aic=F, rbord = 0.1)
## comparing 5 models...
## 1, 2, 3, 4,
## 5.
## fitting optimal model...
## done.
```

Para generar un modelo de interacción

38

Para generar un modelo de interacción

Un radio de tamaño 2 minimiza la pseudo-verosimilitud, de modo que el modelo de interacción con la fórmula de m1 es:

Efectos estimados

	Estimate	S.E.	CI95.lo	CI95.hi
(Intercept)	0.4137068	0.4490086	-0.4663340	1.2937475
bio1	-0.6205813	0.3081276	-1.2245003	-0.0166623
bio12	-0.1321785	0.4455172	-1.0053760	0.7410191
I(bio12^2)	-1.9700678	0.6119923	-3.1695507	-0.7705849
bio18	-0.3436010	0.4462209	-1.2181779	0.5309760
I(bio18^2)	0.0495367	0.3207293	-0.5790811	0.6781545
I(bio18^3)	0.3702628	0.3617619	-0.3387774	1.0793031
I(bio18^4)	-0.0912547	0.1434135	-0.3723400	0.1898306
Interaction	2.9641936	0.5721996	1.8427030	4.0856841

Efectos estimados - comparación

Modelo 1 sin interacción

knitr::kable(coef(modelos[[1]]))

	Х
(Intercept)	1.5745520
bio1	-1.3199163
bio12	-0.9782225
I(bio12^2)	-2.5917197
bio18	0.8957644
I(bio18^2)	-0.3261731
I(bio18^3)	0.0066449
I(bio18^4)	0.0936610

Efectos estimados - comparación

knitr::kable(coef(m1.int))

	Х
(Intercept)	0.4137068
bio1	-0.6205813
bio12	-0.1321785
I(bio12^2)	-1.9700678
bio18	-0.3436010
I(bio18^2)	0.0495367
I(bio18^3)	0.3702628
I(bio18^4)	-0.0912547
Interaction	2.9641936

```
K.int <- envelope(m1.int, Kest, nsim = 39)

## Generating 39 simulated realisations of fitted Gibbs model .

## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1

## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

## 39.

##
## Done.</pre>
```

Modelo Poisson Modelo de interacci

44

Análisis de residuales

```
par(mar = c(1.5, 1, 0, 0))
diagnose.ppm(m1.int, cex = 0.25, outer = 5)
                          cumulative sum of raw residuals
    ulative sum of raw residuals
         4
         7
         φ
```

-88.5

Comparación con favorabilidad real

