Density Curves

Reading

• Section 2.5

Practice Problems

2.6.5 (page 125) 2.43, 2.44

Notes

- The book refers to them as "continuous probability functions".
- Think of them like "smooth histograms".
- Used to describe large (infinite) populations.
- Key property:

Area under the curve and between v_1 , v_2 is equal to the percent of data values that are between v_1 and v_2 .

Total area under curve equals 1 (100%).

- To really compute things we would need to know the equation of this curve, and do some Calculus.
- Distributions have *parameters* that specify their exact shape.
- Some examples of distributions that are easy to work with:

Uniform Straight line from a to b. Represents the idea that all numbers between a and b are equally likely. For example most computers are equipped with "random number generators" that produce uniformly random numbers between 0 and 1.

Normal Has well known formula and tables to use. We will see this in next section. Plays a dominant role in statistics because of the "Central Limit Theorem" we will discuss later.

Uniform Distribution

- Graph is a straight line at height $\frac{1}{b-a}$, extending from x=a and x=b.
- Can compute areas as they are just rectangles.

Shape Symmetric

Mean $\frac{a+b}{2}$ Median $\frac{a+b}{2}$ Std Dev $\sqrt{\frac{(b-a)^2}{12}}$ Quartiles One fourth and three fourths of the way from a to b. IQR $\frac{b-a}{2}$

Example: Consider the uniform distribution from a=1 to b=3.

- Draw the graph.
- Compute using the graph the amount of data between x = 1.2 and x = 2.9.
- Find using the graph the location of the 90th percentile.
- Compute the mean, standard deviation, and IQR.