BrainStorm optimization

Brainstorm optimization

Se basa en el comportamiento humano para resolver problemas.

- Generar primeras ideas sin prejuicios
- Agrupar ideas parecidas
- Fusionar ideas prometedoras pero de distintos grupos
- Intentar mejorar buenas ideas.

Brainstorm optimization

Generación de ideas

Brainstorm optimization. Clustering.

Brainstorm optimization. Clustering.

En el paper no se realiza ninguna propuesta. Aquí algunos métodos de clustering:

- Clustering por cercanía.
- Clustering por centroide.
- Distribución, densidad...

En el ejemplo hemos utilizado el primer tipo, siendo la función de distancia de un cluster a otro:

$$d(C1, C2) = min\{d(x, y) : x \in C1, y \in C2\}$$

Brainstorm optimization. Selección de centros de clusters.

$$coste(x) = \sum |cos(x_i)|$$

Brainstorm optimization

• Posible mutación de alguna idea.

$$X_{new}^d < -X_{selected}^d + \psi imes n(0,1)$$

•

$$\psi = logsig\left(rac{Max_{iter}}{2} - Curr_{iter}\over k}
ight) imes random()$$

Brainstorm optimization:parámetros de modificación

Brainstorm optimization. Combinación de ideas prometedoras.

Ninguna propuesta en el paper, pero:

•
$$X_{new} = \frac{X_1 + X_2}{2}$$
 (Media aritmética)

•
$$X_{new} = X_1 + F \times (X_2 - X_3)$$
 (Recombinación diferencial)

Brainstorm optimization. Procedimiento.

¿Cómo se escogen las ideas a modificar?

- Los centros de cluster suelen ser la mejor opción para modificar.
- Podemos alcanzar ideas mejores a partir de explorar una idea buena o recombinando varias ideas buenas(aleatoriamente).
- Los clusters con más ideas se modificarán con más frecuencia.
- Nos quedaremos con los individuos que mejoren a su idea predecesora. (Posible mejora?).

Brainstorm optimization.

Brainstorm optimization. Selección de parámetros.

n m		p _{mutación}		<i>p</i> _{explotación}		p _{cluster} Center	p _{comb} .Centros
100	5	0,2	(0,8		0,4	0,5
k	Max _{iteraciones}		μ	σ			
20	2000		0	1			

Brainstorm optimization: Comparación

Comparaciones en el paper...

• **Sphere:** $f(X) = \sum_{i=0}^{d} X_i^2$

• Rastrigin: $f(X) = \sum_{i=0}^{d} (X_i^2 - 10\cos(2\pi X_i) + 10)$

function	dimension	mean	best	worst	variance
Sphere	10	3.82E-44	1.50775E-44	7.12557E-44	1.57592E-88
	20	3.1E-43	1.61402E-43	4.56276E-43	4.0471E-87
	30	1.15E-42	8.07001E-43	1.69603E-42	4.69513E-86
Rastrigin	10	3.820643	1.989918	6.964713	1.954026
	20	18.06844	8.954632	26.86387	19.65172
	30	32.91322	17.90926	58.70249	82.82522