SEQUENCES IN \mathbb{R}

Sequences:

Definition: A **sequence of real numbers** (or a **sequence in** \mathbb{R}) is a function defined on the set $\mathbb{N} = \{1, 2, ...\}$ of natural numbers whose range is contained in the set \mathbb{R} of real numbers.

Thus by defining a sequence on a set A we are defining a function $f: \mathbb{N} \to \text{which set}$ the it assigns every member of set \mathbb{N} an element of the set A.

Sequences are denoted by notation : (x_n) .

In Sequences order of elements is important.

Consider, $\mathbf{A} = (1, 2, 3, 4, 5)$ and $\mathbf{B} = (1, 3, 2, 5, 4)$

Sequence $A \neq B$ as the order in which the elements of sequences occur is different in both the Sequences A and B.

Important things to note about Sequences:

What makes a sequence different from an arbitrary set are the following important things:

- 1) Rule: Every Sequence in Mathematics is defined by a function or a rule; even arbitrary sequences are stated as being defined 'arbitrarily' before writing.
 - e.g.: $D = \{2^n : n \in \mathbb{N}\}$ here the function or rule being every term of the sequence is positive integral power of 2.
- 2) Order: Order in which the elements or terms of the sequences are arranged.

e.g.: Consider the following arbitrarily defined sequences:

 $A = \{1,2,3,4,5\}$ and $B = \{2,1,4,3,5\}$ are both **different** when defined as **Sequences** but are equal when defined as **Sets.**

3) Repetition: In Sequences repetition of elements is allowed.

e.g.: $C = \{1,1,1,...\}$ is called a constant sequence of 1.

Examples of sequences:

1.)
$$(x_n) = \{(-1)^n : n \in \mathbb{N}\}$$

2.)
$$(y_n) = \{\frac{1}{n} : n \in \mathbb{N}\}$$

Example of not a sequence:

 $E = \{2,5,3,4,6,7,...\}$ is not a sequence as we have no rule for guessing or generating the next element in the sequence.

Neighbourhood around a point:

Definition: A neighbourhood around a point $x \in \mathbb{R}$ is any set $\mathbf{V} = \{y \in \mathbb{R} \mid y \in (x - \varepsilon, x + \varepsilon)\}$ for some $\varepsilon > 0$, the neighbourhood is said to be an ε – neighbourhood of x

So a neighbourhood around x is the set of all the points around x which are at a distance of arbitrary length $\varepsilon > 0$

Example: = 1, so a 1 – neighbourhood around the point 1 is illustrated by the red line in the below diagram

Limit of a Sequence:

Definition: A sequence $\mathbf{X} = (x_n)$ in \mathbb{R} is said to converge to a limit \mathbf{L} in \mathbb{R} if for every $\varepsilon > 0$ there exists a natural number $\mathbf{K}(\varepsilon)$ such that for all $\mathbf{n} \geq \mathbf{K}(\varepsilon)$ the terms x_n satisfy $|x_n - L| < \varepsilon$

The above definition basically says that if we have a limit L of a given sequence then we can find at least one element with index $K(\varepsilon)$ of the sequence X at any distance of arbitrary length ε of our choice such that all the elements which succeed the element with $K(\varepsilon)$ index have distance between them and L less than ε

In terms of neighbourhood, the above definition can be understood as we can find the element with $K(\varepsilon)$ for every ε – neighbourhood of L, such that all the elements which succeed the element with $K(\varepsilon)$ index have distance between them and L less than ε

Sequences which have a limit are said to converge to the limit and are said as convergent sequences.

Sequences which do not have a limit are said to diverge or not convergent and are said as divergent sequences.

Consider a sequence defined as $\mathbf{X} = \{x \mid x = 5 + 3 \frac{(-1)^n}{n}, n \in \mathbb{N}\}$ On X- axis the sequence is illustrated below:

It can be also seen in x-y plane with indices of terms plotted on x-axis and the sequence on y-axis below is the illustration:

The considered example is a convergent sequence and its convergence is illustrated below:

for $\varepsilon = 1$ we can find $K(\varepsilon) = 3$ after which the succeeding terms stay at a distance of length at the most 1.

or $\varepsilon = 0.5$ we can find $K(\varepsilon) = 6$ after which the succeeding terms stay at a distance of length at the most 0.5.

Continuing in this way we can find $K(\varepsilon)$ for arbitrary $\varepsilon > 0$

Examples:

- $\overline{1.)}(x_n) = \{(-1)^n : n \in \mathbb{N}\}$
- 2.) $(y_n) = \{\frac{1}{n} : n \in \mathbb{N}\}$ 3.) $(z_n) = \{1, 1, 1, ...\}$

Consider the sequences in the example above

- 1.) The first sequence is an oscillatory sequence and is divergent we cannot find any limit for the sequence.
- 2.) In the second sequence is **convergent** and its **limit is 0**, $\left| \frac{1}{n} \mathbf{0} \right| < \varepsilon$ since by **Archimedean property** we can always find a real number ε , such that $\frac{1}{n} < \varepsilon$, $n \in$ \mathbb{N}
- 3.) The third sequence is said to be a **constant sequence** and is **convergent** with limit 1 as we can always find one element of the sequence namely 1 itself for every $\varepsilon > 0$

References:

Introduction to real analysis – Robert Bartle and Donald Sherbert.