CM 1015 Computational Mathematics

Kevin Juandi

2023-06-27

Preface

I wrote this note after finishing the course, so the content might not reflect the current version of the course. It is mostly based on my handwritten personal notes. I personally feel this course should be called "Foundation Mathematics" instead of "Computational Mathematics" because of the lack of "Numerical Methods" and probably some other things people more familiar with the topic would say. If you spot any error please don't hesitate to contact me via slack or mail me.

Number Bases, Conversion and Operations

Reading Materials:

Croft, A. and R. Davidson *Foundation maths*. (Harlow: Pearson, 2016) 6th edition. **Chapter 14 Number Bases**

Number Bases

Decimal System

The numbers that we commonly used are based on 10. For example:

$$253 = 200 + 50 + 3$$

$$= 2(100) + 5(10) + 3$$

$$= 2(10^{2}) + 5(10^{1}) + 3(10^{0})$$
(1)

Binary System

A binary system uses base 2, it only consist of 2 digits, 0 and 1. Numbers in base 2 are called binary digits or simply bits.

Consider the binary number 110101_2 . As the base is 2, this means that power of 2 essentially replace powers of 10. Let us convert it to base 10.

$$\begin{split} 110101_2 &= 1(2^5) + 1(2^4) + 0(2^3) + 1(2^2) + 0(2^1) + 1(2^0) \\ &= 1(32) + 1(16) + 0(8) + 1(4) + 0(2) + 1(1) \\ &= 32 + 16 + 4 + 1 \\ &= 53_{10} \end{split} \tag{2}$$

Octal System

Octal numbers use 8 as a base. The eight digits used in the octal system are 0, 1, 2, 3, 4, 5, 6 and 7. Octal numbers use powers of 8, just as decimal numbers

use powers of 10 and binary numbers use powers of 2. Example:

$$325_8 = 3(8^2) + 2(8^1) + 5(8^0)$$

$$= 3(64) + 2(8) + 5(1)$$

$$= 192 + 16 + 5$$

$$= 213_{10}$$
(3)

Hexadecimal System

Hexadecimal system use 16 as a base. The digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. Example:

$$\begin{split} 93A_{16} &= 9(16^2) + 3(16^1) + A(16^0) \\ &= 9(256) + 3(16) + 10(1) \\ &= 2304 + 48 + 10 \\ &= 2362_{10} \end{split} \tag{4}$$

Number Conversion

Converting from Decimal to Other Number Base

The no-brainer way is to divide the number by the base, the remainder would be the last digit of the new number base. Keep dividing the quotient until it is smaller than the number base. Let us convert 253_{10} as example.

$$2) \overline{253} = 126 \text{ with remainder } 1$$

$$2) \overline{126} = 63 \text{ with remainder } 0$$

$$2) \overline{63} = 31 \text{ with remainder } 1$$

$$2) \overline{31} = 15 \text{ with remainder } 1$$

$$2) \overline{15} = 7 \text{ with remainder } 1$$

$$2) \overline{7} = 3 \text{ with remainder } 1$$

$$2) \overline{3} = 1 \text{ with remainder } 1$$

$$2) \overline{3} = 0 \text{ with remainder } 1$$

Thus, 253_{10} is 11111101_2 in binary. We could do the same to other number bases.

Another method is by listing the powers of the base, compare and subtract. Using the same number as example.

$$2^{0} = 1 2^{1} = 2 2^{2} = 4$$

$$2^{3} = 8 2^{4} = 16 2^{5} = 32$$