V. The second fundamental form -> extend notion of curvature to surfaces: will not be possible to described it by a number. The description is based on concept of normal curvature, which associates a number to each of the infinite many unit tangent vectors at a given point p. 5.1 Shape operator Weingute may > for plane curve with unit speed (t'= Kt) the K is given by the rate of change of dir. of the tangent angle t for surfaces we will look at the rate of change of the tangent space at p. I will show the -> Let o: U-> 183 a regular surface: position of Too in 183 completely aletermined by unit normal vec N= 101 xol 77 Whor rate of change, both - Nu and - Ny have to be considered (Nu, Ny ET po as Na unit vec) OD51: Let p=(no, vo) EU. The linear map W=Wp: Tpo->Tpo, W(as'+bs')=-aNu-bNy tabell is called the shape operator of or at p. (o', o', N', N', all evaluated in p) () [-) = - U, W(o') = - W Examples: (1) $\sigma(u,v) = p + uq_1 + vq_2$ with q_1,q_2 linearly independent $\Rightarrow N = \frac{q_1 \times q_2}{11q_1 \times q_2 11}$ constant and 1 the zero operator (2) unit sphere with standard spherical coordinates: $N(u,v) = -\sigma(u,v) \Rightarrow N_0 = -\sigma(u,N_0) = -\sigma(u,$ 70 N and f analogues of each other=> W(ar(to)) = -a(f)'(to)=akf -> W a higher dim. version of K Surface nortal day ciny - D(m(4)): pulling mi(+)=aNu+bN'y for con+bo'r= r'(+)=t(+) 01.51: 8=004 with ulto)=p => W(o'(to))=-m'(to) where m=Non the surface normal along the curve 4) W more directly related to a geometric prop of or than N'n, N'y 4) Wassociates to a fan vec. the derivative of N along any curve that has the tan vec as its tanger in that paint 07.5.1: The shape operator V is unchanged under dispreserving reparametrization and changes to - W for reversing Proof: T=500 reparem with differ 0:V->U. Claim that W= +W => VeseTpo Ito: W= 8(to) for some curve curve 8=004 = ± (- Nop)(+0)= ± Wo(x1(+0)) -> nothing on when 5.2 Second fundamental form -> introduce another object, closely related to W, to relate V with Kn 0 D.5.2: The map WETPOI-> II IIp(w) = W. W(w) EIR is called the second fundamental form of o in p, which does not change under reparametrizations, except by a sign if dir reversing (T 0 1.5.2: The normal curvature in direction we is Kn= (recall kn the same for all curves through p with o'(6)=40. Proof: was proofin in 4.8 that kn=- 7'(to). m'(to)/117'(to)12 with 7'(to)= Wo for a & with &= oop and olt.)= wo 5.3 Coordinate expressions for second fundamental form -> give an explicit expression by which II can be computed for a given parametrization. det si si sin 07.5.3: IIp(asi+bsy)=Le2+2Meb+Nb2 with respect to basis (si, sy) with L:=N-sun= 1154xovl (where all forms are eval in given pell) M=N. 5 or and N=N. 8m => (LM) => IIp (aoutboi) = (a)t(LM)(a) -> second fundamental is a quadratic form Example: o(u,v)=(rcosucosv, rcosusiny, rsinu), r>0 => N(u,v)=-o(u,v) => L=r, M=0, N=rcos2u => II(aoutbo;)=r(b20) 07.54: The matrix for the shape operator W with respect to (5', 5') is (EG) (MN Proof: (ab) 1 (d-b), wite W(s'n)=hoin+jo', W(o')=io'n+ko', > mot for W of form (j) cale (LM) = (FG)(hi) = (FG)(LM) NN) = (FG)(hi) = (FG)(LM) > A Palo in seneral not symmetric (product of symmetric)

55 Diens	nalization of the secon		Para		
330130	reduction of the secon	a panalamenta	Lorm	Eigervalue:	
∘D.5.5: A	eigenvec. for Up is called	d a principal vec	lor in Too and the	corresponding principal convert	we at p.
wif ue	lpo is principal vec. with cor	responding principe	I characture $\lambda \Rightarrow k$,	$\lambda = II_{p}(u) = \lambda$	
		under reparam.	, While corresponding p	oxincipal curvatures have opposition	rosite
Lylof: To	rection reversing reparam. 5-> Tpo symmetric with resp	alds dal soul de	11 1 1/11) = 1/11 /11	W HU WETE	
P	The symmetic City	ect to other product .	Ch. M. Colland	JI V 31. 370 . po	
oT.5.5: Th	ere exists for each pEU a	n orthonormalba	usis (un, uz) for]	per consisting of principal	
vectors	with corresponding principa	al curvatures Kn	, Kz ElR. With rupe	d to this basis:	
11	$p(au_1+bu_2)=k_1a^2+k_2b^2$	· Valbelk		E a sea a la la	
Proof: List on	e Pollous from C. D.1 in Append	ix other formula P	Nous from evaluation	of w. W(u) with u=aw+bc	2
	et un. uz and kn, Kz as al	bove, DER, up.	= cos Oun + sin Ouz		8:
in per	ticular Kn E[Kn, Kz]			12 IIp (40)=Kn then 5,5	
o(557:T	no acinical enverture by	0 = 41 = 5 = 4 ×	ما وم لما الما الما	(EF) (LM) - K(20))=0	
				zero and solves $O(3)=K_1(1)$	2)
Example: cyl	inder o(u,v)=(cosv, sinv, u) =	>E=G=1,F=0, N=	(-cosv, -sinv, O) & ove	zero and (marically) of dir is 1	1
(10)	$\int_{0}^{\infty} \binom{00}{00} = \binom{00}{00} \Rightarrow K_{1} = 0, K_{2} = 0$	1 -> normal chirely	use in dir od (vertical) is	zero and (variables) of odic is 1	8
5 6 eco ch	ol a quadratic form	t tra	report, tre-uposition		
ZIZ DISPILL	A A ALMINIE DOLL				
-> A quade	atic form on R'is a fu	nction q:R2->R	of the form glass)= ax2+2bx5+c52 for som	e a,b,cell
glx!	o)=(x,5)(bc)(g)				
> Kecall fro	m linear algebra that every	symmetric matri	x A is orthogonally of	iajonalizable, C is an orthogon	41/11/
larm an	orthonormal basis of eigen	vectors Condinat	es of U=(x)=P2	d the columns of $C(C^{-2}=0)$ ith respect to the basis given	h) (oterce
the colu	mns of C are denoted (*	(') => W=C(X')	U'=(") => U=CU	1 => 9(U) = U1AW =	
=(C	1) A(CW) = 4 Ct ACU	= u't Dw' if &	, he be th eigenval in	the diagonal $\Rightarrow q(w) = \lambda_1 x^2 + \lambda_2$	29'2
L>change	of variables results in simp	dification of the ex	epression for a (x5	tem dissapeau) vectors still a	n acthonic
→ Notice de	+C=+1 and h. chanin	the sin of one of	(we can arrange det C=	17362311
=> C = (coso -sine for some of	ER > basis vecs	of C are obtained	from the standard house ve	ce. 8
500	sin & cos by excactly by	this retation x	and y new coordinat	from the standard besis ve es with respect to this new	besis (rote
ekuise,	$\omega = \begin{pmatrix} x' \\ 5' \end{pmatrix} = \begin{pmatrix} \cos 6 \\ -\sin 6 \end{pmatrix}$	Sim (4) (2)			
clockwise	.`	· /7C,			
o 1.5.6. Le	P glw) = W All a grade	tatic form on 18	Latti a symm &	2 matrix A. These exists a 25'2 where hands are eigenva	1 A
Ιυίατίου	of it said late in the co	oldied 25-0010	. y(s) = x _n x _n +x	2) THRE VYIVE CHE CHENCE	ine of H
→in these ro	tated coordinates we can ea	wild describe the gr	aph of g: vertical c	cosssections of graph, obtained	l
by taking i	ntersection with one of the tu	so vertical coordinat	e planes (x'z-plane	and g'z-plane ().	
	surface is called paraboloie			1000	-191
=> Shape	of the nonzontal cross section	ions depends on t	he eigenvalues λ_i an	d hz. If they are both positive	Noticipament and a second
				aboloid because every hair	
Crossse	ction is a hyperbola.	Pour of a sad	dole		86
IP one	eigenvalue is zero but the	e other isn't, then	graph is called a p	arabolic estinder (cylinder ut	nese V
the c	ross section is a parabola	instead of a circle	.). Finally if $\lambda_1 = \lambda_2 =$	0 => graph is a plane	

In the rotated coordinates we obtain a graph $\sigma(u,v) = (u,v,\lambda,u^2 + \lambda_2 v^2)$. A simple calculation shows that of (u,v) = (0,0) we have $(EF) = \begin{pmatrix} 1&0\\0&1 \end{pmatrix}$, $\begin{pmatrix} LM\\MN \end{pmatrix} = \begin{pmatrix} 2\lambda_1&0\\0&2\lambda_2 \end{pmatrix}$ in rotated coordinates => rotation of coordinates has executly the effect that shape operator is diggonalized. The principal curvatures are 2, and 22, and the principal vectors along the two horizontal axes for rotated basis. Example: $q(x,y) = x^2 + xy + y^2$ corresponds to $(0.5.1) \Rightarrow D = C^TAC = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ where $C = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ is a constant of the x and y axes by anyle O, determited by from $COSO = \sqrt{2} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ that is clockwise by 45 degrees 5.7 type of a surface at a point -> principal curvatures and vectors can be explained geometrically: can assume that o(p) is the origin and the xy-plane is Too (can always be arranged by translation followed by a suitable rotation of R3). Can be shown that transformation does not after Kn and kg. Furthermore, it follows from 2.11 and its proof that & allows arientation presuring reparam. as smooth graph over xy-plane (principal curvatures unchanged by such a reparam.). We therefore assume o(4,v)=(4,v,h(4,v)) with h smooth. Since o(p)=(0,0,0) => p=(0,0), h(0,0)=0, ou =(1,0,hu), ov=(0,1,hv) and as Too is xy-plane => hu=hv=0 =>E=G=1 F=0 imp. N=(0,01) and o "= (0,0,00), o" = (0,0,00), o" = (0,0,00) = L=h" (0,0), M=h" (0,0), h" (0,0) => Taylor expansion to order two of o: \(\sigma(\alpha, 0) \rightarrow \sigma(\do, 0) + \varepsilon \(\lambda(\do, 0) + \varepsilon \(\lambda(\do, 0) + \varepsilon \(\lambda(\do, 0) + \varepsilon \(\lambda(\do, 0) + \varepsilon \(\do, 0) + \varepsilon \\ \do, 0 \\ \ = (u,v, 2 IIp (uoin +voir)) => o approxed near p by 2 IIp (its graph) > We can now read all the shape of to from this shape of the graph => Conclusion: after suitable rotation of xy-plane which brings the principal vectors in the direction of the axes, surface will appear as in 5.6 (depending on signitures of kn, kz) o D.57: the type of a at pell is defined as follows. It's called elliptic point if principal curvatures k, Ke are both non-zero with some sijn, a hyperbolic point if non-zero (both) with appoint sijns. If one is zero but other one is not -> point is called parabolic and if kn=k2=0 planar > type of a point unchanged under reparam as principal curvatures are either unchanged or both change signs