Meranie na synchrónnom stroji

Štítkové údaje:

$$S_{
m N}=$$
 $f=$ $2p=$ $I_{
m 1N}=$ $I_{
m 2N}=$ $U_{
m 2N}=$ $\cos arphi_{
m N}=$ $cos arphi_{
m N}=$ $n_{
m s}=$

Meranie odporov vinutí

Odpory vinutí meriame miliohmmetrom. Statorové vinutia meriame voči nulovému bodu. Výsledky meraní zapisujeme do Tab. 1.

Tab. 1: Meranie odporov vinutia

Vinutie	$R\left(\Omega\right)$	$R_{ m R} \; (\Omega)$
U		
V		
W		

Meranie synchrónneho stroja naprázdno

V chode naprázdno meriame stroj v generátorickom stave. Budiaci prúd stroja meníme od nuly do hodnoty odpovedajúcej približne indukovanému napätiu $1,2\,U_{\rm N}$. Pre každú hodnotu budiaceho prúdu odčítame indukované napätie a moment na hriadeli. Namerané hodnoty zapisujeme do Tab. 2.

Tab. 2: Tabuľka nameraných a vypočítaných hodnôt z merania naprázdno

I_2 (A)	U_0 (V)	M (Nm)

Meranie synchrónneho stroja nakrátko

Statorové vinutie skratujeme tromi ampérmetrami, tak ako je to uvedené na Obr. 3. Rotor synchrónneho stroja otáčame dynamometrom rýchlosťou $\omega_{\rm s}$. Postupne zvyšujeme prúd budiaceho vinutia I_2 až do hodnoty odpovedajúcej $I_{1\rm k}\approx 1,2\,I_{1\rm N}$. Súčasne odčítame moment dynamometra. Namerané hodnoty zapisujeme do Tab. 3.

Tab. 3: Tabuľka nameraných a vypočítaných hodnôt z merania nakrátko

I_2 (A)	$I_{\mathrm{U}}\left(\mathrm{A}\right)$	$I_{ m V}\left({ m A} ight)$	$I_{\mathrm{W}}\left(\mathrm{A}\right)$	M (Nm)

Zaťažovanie synchrónneho stroja na tvrdej sieti

Synchrónny stroj môžeme pripojiť do siete, len pri splnení nasledovných podmienok:

- Rovnost frekvencie napätia siete a stroja.
- Rovnosť efektívnych hodnôt napätí a siete.
- Rovnosť sledu fáz napätí siete a stroja.
- Nulový fázový posun medzi napäťovým systémom siete a stroja.

Synchrónny stroj zapojíme tak, ako je to uvedené na Obr. 4.

Postup pri fázovaní

- Stroj roztočíme dynamometrom na synchrónnu rýchlosť $\omega_{\rm s}$ $(n_{\rm s})$.
- Stroj vybudíme tak, aby svorkové napätie stroja bolo rovné napätiu siete.
- Ukazovateľom sledu fáz (malý indukčný motorček) skontrolujeme sled fáz napätia na svorkách stroja a na svorkách siete.
- Synchrónny stroj pripojíme na sieť pri nulovom fázovom posune medzi napäťovými systémom siete a stroja. Vhodný okamih určíme pomocou elektrodynamického synchronoskopu.

Prevádzkové stavy synchrónneho stroja

Po pripojení synchrónneho stroja na sieť môžeme vyšetrovať jeho chovanie v jednotlivých režimoch (Obr. 1):

- Generátorický a motorický chod meníme mechanickým momentom na hriadeli synchrónneho stroja t.z. pohonným strojom (dynamometrom). V generátorickom chode synchrónny stroj dodáva do siete činný výkon P ↑, v motorickom chode odoberá činný výkon P ↓.
- Podľa stavu vybudenia synchrónneho stroja, ktorý sa mení budiacim prúdom, je synchrónny stroj – prebudený, ideálne budený a podbudený. Prebudený synchrónny stroj dodáva do siete jalový výkon Q↑, podbudený synchrónny stroj jalový výkon zo siete odoberá Q↓. Ideálne budený synchrónny stroj má Q = 0.
- Fázový posun medzi napätím a prúdom stroja φ , a teda aj účinník $\cos \varphi$ závisí od pracovného stavu stroja a mení sa jednak s mechanickým momentom na hriadeli ako aj a vybudením stroja. Ak je stroj ideálne budený (Q=0) potom je $\varphi=0^\circ$ alebo $\varphi=180^\circ$ a účinník $\cos \varphi=1$.

Obr. 1: Prevádzkové stavy synchrónneho stroja

Synchrónny kompenzátor je silne prebudzovaný nezaťažený synchrónny motor. Kompenzuje účinník siete tým, že dodáva do siete jalový výkon.

Meranie záťažových charakteristík synchrónneho stroja

Po pripojení synchrónneho stroja na sieť, zvolíme režim a nastavíme výkon $P = P_N$ a podobne pri ďalších meraniach $P = 0.5P_N$ a P = 0. Budiaci prúd I_2 zvyšujeme tak, aby prúd statora neprekročil hodnotu $1.2I_{1N}$. Ďalej postupne znižujeme budiaci prúd s uvážením hodnoty statorového prúdu. Namerané hodnoty zapisujeme do Tab. 4, Tab. 5 a Tab. 6.

Tab. 4: Tabuľka nameraných hodnôt

P = 0				$U_1 = V$					
I ₂ (A)									
I_1 (A)									

Tab. 5: Tabuľka nameraných hodnôt

$P=0.5P_{ m N}$				$U_1 = V$					
I_2 (A)									
I_1 (A)									
$\cos \varphi$ (–)									

Tab. 6: Tabuľka nameraných hodnôt

$P = P_{ m N}$				$U_1 = V$					
I_2 (A)	I ₂ (A)								
I_1 (A)									
$\cos \varphi$ (–)									

Obr. 2: Schéma zapojenia synchrónneho stoja pri meraní naprázdno

Obr. 3: Schéma zapojenia synchrónneho stoja pri meraní nakrátko

Obr. 4: Schéma zapojenia synchrónneho stoja pri fázovaní