Part I

长度与比例

Exercise 0.1. 设 $\triangle ABC$ 的切触三角形为 $\triangle DEF$,证明: AD,BE,CF 三线共点。这个点 被称作 $\triangle ABC$ 的 Gergonne 点。

Exercise 0.2. 在圆内接四边形 ABCD 中,点 X 和 Y 分别是 $\triangle ABC$ 和 $\triangle BCD$ 的垂心。证明: AXYD 是平行四边形。

Exercise 0.3. 设 AD, BE, CF 是三角形中的塞瓦线,交于一点 P。证明:

$$\frac{PD}{AD} + \frac{PE}{BE} + \frac{PF}{CF} = 1.$$

Exercise 0.4. (预选题 2006/G3) 设凸五边形 ABCDE 满足 $\angle BAC = \angle CAD = \angle DAE$, $\angle ABC = \angle ACD = \angle ADE$ 。对角线 BD 和 CE 交于点 P。证明:射线 AP 平分 CD。

Exercise 0.5. (BAMO 2013/3) 设 H 是锐角 $\triangle ABC$ 的垂心,考虑 $\triangle ABH, \triangle BCH, \triangle CAH$ 的外心。证明:这三个外心构成的三角形与 $\triangle ABC$ 全等。

Exercise 0.6. (USAMO 2003/4) 设 $\triangle ABC$ 中,经过点 A,B 的一个圆与线段 AC,BC 分别相交于 D,E,直线 AB 与 DE 相交于 F,直线 BD 与 CF 相交于 M。证明:MF=MC 当且仅当 $MB\cdot MD=MC^2$ 。

Exercise 0.7. 设锐角 $\triangle ABC$ 的外接圆上一点 $D \neq A$,满足 $AD \parallel BC$ 。设 G 是 $\triangle ABC$ 的 重心,K 是从点 A 出发的高的垂足。证明: K,G,D 共线。

Exercise 0.8. (USAMO 1993/2) 设四边形 ABCD 的对角线 AC,BD 垂直相交于 E。证明: E 关于 AB,BC,CD,DA 的反射点共圆。

Exercise 0.9. (EGMO 2013/1) 将 $\triangle ABC$ 的边 BC 延长到 D,使得 CD=BC。将边 CA 延长到 E 使得 AE=2CA。证明:若 AD=BE,则 $\triangle ABC$ 是直角三角形。

Exercise 0.10. (APMO 2004/2) 设 O 和 H 分别是锐角 $\triangle ABC$ 的外心和垂心。证明: $\triangle AOH$, $\triangle BOH$, $\triangle COH$ 之一的面积等于另外两个面积之和。

Exercise 0.11. (USATSTST 2011/4) 锐角 $\triangle ABC$ 内接于圆 ω 。设 H 和 O 分别表示它的垂心和外心,设 M,N 分别是 AB,AC 的中点。射线 MH,NH 分别与圆 ω 相交于 P,Q,直线 MN 和 PQ 相交于 R。证明: $OA \perp AR$ 。

Exercise 0.12. (USAMO 2015/2) 四边形 APBQ 内接于圆 ω , $\angle P = \angle Q = 90^\circ$, AP = AQ < BP。设 X 是线段 PQ 上的动点。直线 AX 与圆 ω 相交于不同于 A 的一点 S。点 T 在 ω 的 弧 AQB 上,使得 $XT \perp AX$ 。设 M 是弦 ST 的中点。当 X 在 PQ 上变动时,证明:M 在某固定的圆上。

Exercise 0.13. (香港 1998) 设 PQRS 是圆内接四边形, $\angle PSR = 90^{\circ}$,且 H, K 分别是 Q 到 直线 PR, PS 的高的垂足。证明 HK 平分 QS。

Exercise 0.14. (USAMO 1995/3) 给定不等边、非直角 $\triangle ABC$,设 O 是外心, A_1, B_1, C_1 分别是 BC, CA, AB 的中点。点 A_2 在射线 OA_1 上,使得 $\triangle OAA_1$ 和 $\triangle OA_2A$ 相似。点 B_2, C_2 分别在射线 OB_1, OC_1 上类似地定义。证明: AA_2, BB_2, CC_2 三线共点。

Exercise 0.15. (USATST 2014) 设 $\triangle ABC$ 是一个锐角三角形,X 是劣弧 \overrightarrow{BC} 上的动点。设 P,Q 分别是 X 到直线 CA,CB 的投影。设 R 是直线 PQ 与 B 到 AC 的垂线的交点。设直线 l 经过 P 平行于 XR。证明:当 X 在劣弧 \overrightarrow{BC} 上变动时,直线 l 总是经过一个定点。

Exercise 0.16. (USATST 2011/1) 在锐角 $\triangle ABC$ 中,D, E, F 分别是 BC, CA, AB 上的高的垂足,H 是垂心。点 P,Q 在线段 EF 上,满足 $AP \perp EF, HQ \perp EF$ 。直线 DP 和 QH 相交于 R。计算 $\frac{HQ}{HR}$ 。

