A Theorem on n

Bruce Wen

January 11, 2023

1 Theorem

From Haile Tamer (2003), define the strictly increasing differentiable function $\phi_{i:n}(H):[0,1]\to[0,1]$ as the implicit solution to

$$H = \frac{n!}{(n-i)!(i-1)!} \int_0^{\phi} s^{i-1} (1-s)^{n-i} ds$$

Define $G_{n:n}(v)$ as the highest order statistic among a known *n*-bidder empirical distribution function with support $[\underline{v}, \overline{v}]$.

Define the function, $f_n(v):[0,1] \to [0,1]$,

$$f_n(v) = \phi_{n:n}^{-1} \phi_{n-1:n} (G_{n:n}(v))$$

Theorem 1: Suppose $n \in \mathbb{N}$ and n > 1. Then $f_n(v)$ is decreasing in $n \in \mathbb{N}$, for all $\underline{v} \leq v \leq \overline{v}$.

2 Proof

Lemma 0.1: $\phi_{n:n}^{-1}(x) = x^n$.

Proof: See that:

$$\begin{split} H &= \frac{n!}{(n-n)!(n-1)!} \int_0^\phi s^{n-1} (1-s)^{n-n} ds \\ &= n \int_0^\phi s^{n-1} ds \\ &= n \frac{1}{n} \left[s^n \right]_0^\phi \\ &= \phi^n \end{split}$$

Lemma 1: If $n, n' \in \mathbb{N}$ and n' > n, then $G_{n':n'}(v) \succsim_{FOSD} G_{n:n}(v)$ for all

 $v \in [0, 1].$

Proof:

It suffices to show that $G_{n+1:n+1}(v) \succsim_{\text{FOSD}} G_{n:n}(v)$ for all v.

Take a common distribution G where valuations are drawn from. In 1 scenario, n+1 valuations are drawn from G, and we can define the CDF of the highest order statistic, $G_{n+1:n+1}(v) = G(v)^{n+1}$. In the other scenario, n valuations are drawn from G, and the CDF for this highest order statistic is, $G_{n:n}(v) = G(v)^n$. Thus,

$$G_{n+1:n+1}(v) \le G_{n:n}(v)$$

for all v and n, and so $G_{n+1:n+1}(v) \succsim_{\text{FOSD}} G_{n:n}(v)$.

Lemma 2: $\phi_{n:n}^{-1}\phi_{n-1:n}(G_{n:n}(v))$ is decreasing in $n \in \mathbb{N}, n > 1$ if the following holds: $\phi_{n-1:n}(H)$ is increasing in $H \in [0,1]$ for any $n \geq 2$.

Proof:

We can rewrite $\phi_{n:n}^{-1}\phi_{n-1:n}\left(G_{n:n}(v)\right)$ as $\phi_{n-1:n}\left(v^n\right)^n$ by Lemma 0.1. From Lemma 1, $G_{n:n}(v)$ is decreasing in n for all $v \in [0,1]$. Furthermore, $\phi_{n-1:n}(.)$ maps to [0,1], so the outer exponent is decreasing in n as well. Thus, to show $\phi_{n-1:n}\left(v^n\right)^n$ is decreasing in n, it suffices to show that $\phi_{n-1:n}(H)$ is increasing in $H \in [0,1]$ for any $n \geq 2, n \in \mathbb{N}$.

Lemma 3: $\phi_{n-1:n}(H)$ is increasing in $H \in [0,1]$ for any $n \geq 2$.

Observe that $\phi_{n-1:n}(H)$ is the implicit solution to the following:

$$H = \frac{n!}{(n-n+1)!(n-1-1)!} \int_0^\phi s^{n-1-1} (1-s)^{n-n+1} ds$$
$$= n(n-1) \left[\frac{1}{n-1} s^{n-1} - \frac{1}{n} s^n \right]_0^\phi$$
$$= n\phi^{n-1} - (n-1)\phi^n$$

We will now show that the inverse of $\phi_{n-1:n}(.)$, $H(n,\phi) = n\phi^{n-1} - (n-1)\phi^n$, is increasing in $\phi \in (0,1)$ for all $n \geq 2$. The partial derivative is,

$$\frac{\partial H(n,\phi)}{\partial \phi} = n(n-1)\phi^{n-2} - n(n-1)\phi^{n-1}$$
$$= n(n-1)\left[\phi^{n-2} - \phi^{n-1}\right]$$
$$> 0$$

where the last inequality comes from the fact that $\phi \in [0,1]$ and $n \geq 2$. Since the inverse of $\phi_{n-1:n}(.)$ is increasing, $\phi_{n-1:n}(.)$ must be increasing as well.

The prooof of **Theorem 1** follows from **Lemmas 1,2,3**.

3 Extensions

Lemma 4: $f_n(v): [0,1] \to [0,1], f_n(v) = \phi_{n:n}^{-1} \phi_{n-1:n} (G_{n:n}(v))$ can be rewritten as:

$$t^n = ny^{\frac{n-1}{n}} - (n-1)y$$

Proof:

The function can be rewritten,

$$\phi_{n:n}^{-1}\phi_{n-1:n}(G_{n:n}(v)) = \phi_{n-1:n}(G_{n:n}(v))^{n}$$

= $\phi_{n-1:n}(v^{n})^{n}$

Let $y \equiv \phi_{n:n}^{-1} \phi_{n-1:n} \left(G_{n:n}(v) \right)$ and $t \equiv v$. Then, $y = \phi_{n-1:n} \left(t^n \right)^n$. And so,

$$y^{\frac{1}{n}} = \phi_{n-1:n}\left(t^n\right)$$

Then,

$$t^{n} = \frac{n!}{(n-2)!} \int_{0}^{y^{\frac{1}{n}}} s^{n-2} (1-s) ds$$
$$= n(n-1) \left[\frac{1}{n-1} s^{n-1} - \frac{1}{n} s^{n} \right]_{0}^{y^{\frac{1}{n}}}$$
$$= ny^{\frac{n-1}{n}} - (n-1)y$$

Theorem 2: Define the implicit equation,

$$t^{n} = ny^{\frac{n-1}{n}} - (n-1)y$$

For any fixed $t \in [0,1]$, and $n \ge 2$ integers, $y \in [0,1]$ is decreasing in n.

Proof: This follows from **Lemma 4** and **Theorem 1**.