Разработка эффективной реализации методов, основанных на поиске оптимального баланса между дивергенцией и точностью аппроксимации

Д. Д. Аристархов

ВМК МГУ

Декабрь 2024 г.

Постановка задачи

Дана выборка $S=(X_1,y_1),\ldots,(X_m,y_m)$, где X_i — вектор признакового описания объекта, y_i — метка объекта. Рассматривается задача регресии: $X_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$. Требуется построить ансамбль базовых алгоритмов $A_1(X),\ldots,A_k(X)$, предсказывающих значения метки по вектору признаков.

Дисперсия ансамбля

Рассматриваем ошибку ансамбля $\mathcal{A}(x) = \frac{1}{k} \sum_{i}^{k} A_{i}(x)$

Разложение ошибки ансамбля

$$L(\mathcal{A}) = \underbrace{\mathbb{E}_{\mathsf{x},y} \Big[\big(y - \mathbb{E}[y|x] \big)^2 \Big]}_{\text{Шум}} + \underbrace{\mathbb{E}_{\mathsf{x},y} \Big[\big(\mathbb{E}_X \big[A_i(X)(x) \big] - \mathbb{E}[y|x] \big)^2 \Big]}_{\mathsf{Смещение}} \\ + \underbrace{\frac{1}{k} \mathbb{E}_{\mathsf{x},y} \Big[\mathbb{E}_X \Big[\Big(A_i(X)(x) - \mathbb{E}_X \big[A_i(X)(x) \big] \Big)^2 \Big] \Big]}_{\mathsf{Дисперсия} \ A_i} \\ + \underbrace{\frac{k(k-1)}{k^2} \mathbb{E}_{\mathsf{x},y} \Big[\mathbb{E}_X \Big[\Big(A_i(X)(x) - \mathbb{E}_X \big[A_i(X)(x) \big] \Big) \Big(A_j(X)(x) - \mathbb{E}_X \big[A_j(X)(x) \big] \Big) \Big] \Big]}_{\mathsf{Ковариация} \ A_i, A_j}$$

Дисперсия ансамбля

- Шум свойство выборки, не зависит от модели
- Смещение равно смещению базового алгоритма, поэтому берем базовые алгоритмы с маленьким смещением, например, глубокие деревья
- Дисперсия A_i уменьшается в k раз при увеличении количества базовых алгоритмов
- Ковариация A_i, A_j ?

Дисперсия ансамбля

Для уменьшения ковариации используются следующие подходы:

- Бэггинг. Каждый алгоритм обучается на случайной подвыборке, сгенерированной из выборки с помощью бутстрэпа, т.е. выбираются *m* объектов с возвращениями. Таким образом, в одной выборке некоторые объекты встретятся несколько раз, а некоторые ни разу.
- Рандомизация признаков. При построении очередного дерева в каждой вершине выбор наилучшего признака для разбиения происходит не из всех возможных признаков, а из случайно выбранной подвыборки.

Обозначим $L_k(X) = \frac{1}{k} \sum_{i=1}^k A_i(X)$, $Q_k(X) = \frac{1}{k} \sum_{i=1}^k A_i^2(X)$. Введем критерий, представляющие собой среднеквадратичную ошибку алгоритма и дисперсию прогнозов вычисляемых алгоритмов:

Критерий Φ_E

$$\Phi_{E}(A_{1}(X),...,A_{k}(X)) = \frac{1}{mk} \sum_{i=1}^{k} \sum_{j=1}^{m} (y_{j} - A_{i}(X_{j}))^{2}$$

K ритерий Φ_V

$$\Phi_V(A_1(X),\ldots,A_k(X)) = \frac{1}{mk} \sum_{i=1}^k \sum_{j=1}^m (L_k(X_j) - A_i(X_j))^2$$

При построении ансамбля предлагается предлагается явно минимизировать Φ_E и максимизировать Φ_V . Данная задача может быть сведена к минимизации Φ_G :

Критерий Φ_G

$$\Phi_G = (1 - \mu)\Phi_E - \mu\Phi_V,$$

где $\mu \in [0,1]$ является гиперпараметром, определяющим соотношение точности и разнородности прогнозов отдельных деревьев.

В силу вычислительной сложности построения оптимального дерева, оно строится жадным образом, при котором выбирается наилучшее разбиение на каждом шаге. Ансамбль также строится жадно, т.е. каждое дерево добавляется последовательно. Поскольку каждое дерево в ансамбле строится отдельно от других, необходимо получить критерий для построения очередного дерева. Обозначим через D_E^k и D_V^k изменение функционалов Φ_E и Φ_V при включении в ансамбль дополнительного алгоритма A_{k+1} .

K ритерий D_{F}^k

$$D_E^k = \Phi_E(A_1(X), ..., A_{k+1}(X)) - \Phi_E(A_1(X), ..., A_k(X))$$

= $\frac{1}{m(k+1)} \sum_{j=1}^m (y_j - A_{k+1}(X_j))^2 + C_E,$

где C_E не зависит от $A_{k+1}(X)$.

Критерий D_F^k

$$egin{aligned} D_V^K &= \Phi_V(A_1(X), \dots, A_{k+1}(X)) - \Phi_V(A_1(X), \dots, A_k(X)) \ &= rac{k}{m(k+1)^2} \sum_{i=1}^m (A_{k+1}^2(X_i) - 2L_k(X_i)A_{k+1}(X_i)) + C_V, \end{aligned}$$

где C_V не зависит от $A_{k+1}(X)$.

Объединяя эти выражения, получаем функционал, который необходимо минимизировать при построении очередного дерева $A_{k+1}(X)$:

Критерий D_G^k

$$D_G^k = (1 - \mu)D_E^k - \mu D_V^k =$$

$$= \frac{1 - \mu}{m(k+1)} \sum_{j=1}^m (y_j - A_{k+1}(X_j))^2$$

$$- \frac{\mu k}{m(k+1)^2} \sum_{i=1}^m (A_{k+1}^2(X_j) - 2L_k(X_j)A_{k+1}(X_j)) + C_G,$$
(1)

где C_G не зависит от $A_{k+1}(X)$.

Теперь рассмотрим вопрос оптимального значения в листе дерева $A_{k+1}(X)$. Пусть в лист попали объекты $(X_{n_1},y_{n_1}),\dots,(X_{n_p},y_{n_p})$. В листе алгоритм предсказывает одно значение для всех объектов, попавших в этот лист: $A_{k+1}(X_{n_j}) \equiv \tilde{A}, \ j=\overline{1,p}$. Найдем производную функционала (1) относительно прогноза \tilde{A} :

$$\frac{\partial D_G^k}{\partial \tilde{A}} = \frac{2(1-\mu)}{p(k+1)} \sum_{j=1}^p (\tilde{A} - y_{n_j}) - \frac{2\mu k}{p(k+1)^2} \sum_{j=1}^p (\tilde{A} - L_k(X_{n_j}))$$

$$= \frac{2}{p(k+1)} \sum_{j=1}^p \left((1-\mu \frac{2k+1}{k+1}) \tilde{A} - (1-\mu) y_{n_j} + \frac{k\mu}{k+1} L_k(X_{n_j}) \right)$$

Приравнивая производную к нулю, получаем оптимальный прогноз:

$$\tilde{A} = \sum_{i=1}^{p} \frac{(k+1)(1-\mu)y_{n_i} - \mu k L_k(X_{n_i})}{p(k+1-\mu(2k+1))}$$
(2)

Algorithm Предложенный алгоритм

- 1: Сгенерировать выборку $ilde{X}_1$ с помощью бутстрэпа
- 2: Построить решающее дерево $A_1(x)$ по выборке \tilde{X}_1 , используя только среднеквадратичную ошибку
- 3: Вычислить $L_1(X) = A_1(X)$ для всех X_1, \dots, X_m
- 4: **for** k = 2, ..., N **do**
- 5: Сгенерировать выборку \tilde{X}_k с помощью бутстрэпа
- 6: Построить решающее дерево $A_k(x)$ по выборке \tilde{X}_k , используя $L_{k-1}(X)$:
 - В каждой вершине ищется оптимальное разбиение относительно функционала (1)
 - Для вычисления значений в листе используется выражение (2)
- 7: Вычислить $L_k(X) = \frac{1}{k}((k-1)L_{k-1}(X) + A_k(X))$ для всех X_1, \dots, X_m
- 8: end for
- 9: Вернуть композицию $\mu_N(X) = \frac{1}{N} \sum_{k=1}^N A_k(X)$

Эксперименты

В качестве reference использовался обычный случайный лес (эквивалентно $\mu=0.0$)

Эксперименты

Выводы

В работе был предложен новый метод ансамблирования деревьев, а также его теоретическое обоснование. Были проведены эксперименты на реальных и синтетических данных, которые показали, что метод достигает лучшего качества, чем обычный случайный лес.