

Operating System Concepts

Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information Engineering, Chang Gung University

Final Project– An Real–Time OS: µC/OS–II Quick Overview

Introduction of μ C/OS-II (1/2)

- ▶ The name is from micro-controller operating system, version 2
- μC/OS-II is certified in an avionics product by FAA in July 2000 and is also used in the Mars Curiosity Rover
- It is a very small real-time kernel
 - Memory footprint is about 20KB for a fully functional kernel
 - Source code is about 5,500 lines, mostly in ANSI C
 - It's source is open but not free for commercial usages
- Preemptible priority-driven real-time scheduling
 - 64 priority levels (max 64 tasks)
 - \circ 8 reserved for μ C/OS-II
 - Each task is an infinite loop

Introduction of μ C/OS-II (2/2)

- Deterministic execution times for most μC/OS-II functions and services
- Nested interrupts could go up to 256 levels
- ▶ Supports of various 8-bit to 64-bit platforms: x86, ARM, MIPS, 8051, etc.
- ▶ Easy for development: Borland C++ compiler and DOS (optional)
- ▶ However, uC/OS-II still lacks of the following features:
 - Resource synchronization protocol
 - Soft-real-time support

The µC/OS-II File Structure

Application Code (Your Code!)

Processor Independent Implementations

- Scheduling policy
- •Event flags
- Semaphores
- •Mailboxes
- •Event queues
- •Task management
- •Time management
- •Memory management

Application Specific Configurations

- •OS CFG.H
- •Max # of tasks
- •Max Queue length
- •...

uC/OS-II Port for Processor Specific Codes

Software

Hardware

CPU

Timer

Requirements of $\mu C/OS-II$ Emulator

- Operating System
 - Windows XP 32bits
 - Use virtual machine to install the OS
 - Install "Guest Additions" for Virtualbox
- Tools
 - Borland C++ compiler (V4.5)
 - BC45 is the compiler
 - Turbo Assembler
 - The assembler is in tasm
 - $\circ~$ The source code and the emulation environment of $\mu C/OS\text{-}II$
 - SOFTWARE is the package
- Full Package
 - Download it from the course website with password: csie2020
 - https://www.csie.cgu.edu.tw/~chewei/files/ucOSII_ProjectPackage.zip
 - https://www.csie.cgu.edu.tw/~chewei/files/Files.zip

Borland C++ Compiler

- Download Borland C++ and install it on your windows XP environment
 - Double click the "INSTALL.EXE"
- Add ";C:\BC45\BIN" to your system Path

Turbo Assembler

- Download Turbo assembler and unzip the file
- ▶ Copy "\tasm\BIN\TASM.EXE" to your "C:\BC45\BIN"
 - \circ Include the missing assembler which is going to be used during we compile the source code of $\mu C/OS$ -II

Compile µC/OS-II Example Code

- Download the source code and emulator μC/OS-II
 - It is recommended to put the source code package "SOFTWARE" directly in C:\
- ▶ Test the first example
 - Execute C:\SOFTWARE\uCOS-II\EX1_x86L\BC45\TEST\TEST.EXE
 - Press ECS to leave
- Rename or remove the executable file
 - Rename TEST.EXE
- Compile the μC/OS-II and the source code of the first example
 - Run C:\SOFTWARE\uCOS-II\EX1_x86L\BC45\TEST\ MAKETEST.BAT
 - A new "TEST.EXE" will be created if we compile it successfully

Common Mistakes

- ▶ Did you directly put the package "SOFTWARE" in C:\?
- ► Have you copied the correct file "TASM.EXE" to your "C:\BC45\BIN" directory?
- ▶ Did you set the Path correctly?
 - See the picture in Page 7
 - There is no space

Example 1 on the Textbook

An Example on µC/OS-II: Multitasking

- Three system tasks
- Ten application tasks randomly prints its number

Multitasking: Workflow

Multitasking: TEST.C

(\SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE\TEST.C)

```
#include "includes.h"
/*
CONSTANTS
****************************
*/
#define TASK STK SIZE 512
#define N TASKS 10
/*
VARIABLES
****************************
*/
OS_STK TaskStk[N_TASKS][TASK_STK_SIZE];
OS_STK TaskStartStk[TASK_STK_SIZE];
char TaskData[N TASKS];
OS EVENT *RandomSem;
```

Multitasking: Main()

```
void main (void)
        PC_DispClrScr(DISP_FGND_WHITE + ISP_BGND_BLACK);
        OSInit();
                                                 Entry point of the task
                                                 (a pointer to a function)
        PC DOSSaveReturn();
        PC_VectSet(uCOS, OSCtxSw);
        RandomSem = OSSemCreate(1):
        OSTaskCreate( TaskStart,
                                                   User-specified data
                        (void *)0,
       Top of stack
                        (void *)&TaskStartStk[TASK_STK_SIZE-1],
Priority (0=hightest)
        OSStart();
```

Multitasking: TaskStart()

```
void TaskStart (void *pdata)
                                                Call the function to
                                                create the other tasks
       /*skip the details of setting*/
                                                      See if the ESCAPE
       OSStatInit();
                                                      key has been pressed
       TaskStartCreateTasks();
      for (;;)
              if (PC_GetKey(&key) == TRUE)
                      if (key == 0x1B) \{ PC_DOSReturn(); \}
              OSTimeDlyHMSM(0, 0, 1, 0);
                                                     Wait one second
```

Multitasking: TaskStartCreateTasks()

```
static void TaskStartCreateTasks (void)
      INT8U i;
      for (i = 0; i < N_TASKS; i++)
                                           Entry point of the task
                                            (a pointer to function)
              TaskData[i] = '0' + i;
              OSTaskCreate(
                                                   Argument:
                     Task,
                                                   character to print
     Top of stack
                     (void *)&TaskData[i],
                     &TaskStk[i][TASK_STK_SIZE - 1],
        Priority
                     i+1);
```

Multitasking: Task()

```
void Task (void *pdata)
               INT8U x;
                                                                                Randomly pick up the
               INT8U v;
                                                                                position to print its data
               INT8U err;
               for (;;)
                            OSSemPend(RandomSem, 0, &err);
                           /* Acquire semaphore to perform random numbers */
                           x = random(80);
                           /* Find X position where task number will appear */
                           y = random(16);
Print & delay
                           /* Find Y position where task number will appear */
                           OSSemPost(RandomSem);
                           /* Release semaphore */
                           PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND_BLACK +DISP_BGND_LIGHT_GRAY);
                           /* Display the task number on the screen */
                           OSTimeDly(1);
                           /* Delay 1 clock tick */
```

OSinit()

(\SOFTWARE\uCOS-II\SOURCE\OS_CORE.C)

- Initialize the internal structures of μC/OS-II and MUST be called before any services
- Internal structures of μC/OS-2
 - Task ready list
 - Priority table
 - Task control blocks (TCB)
 - Free pool
- Create housekeeping tasks
 - The idle task
 - The statistics task

PC_DOSSaveReturn()

(\SOFTWARE\BLOCKS\PC\BC45\PC.C)

- Save the current status of DOS for the future restoration
 - Interrupt vectors and the RTC tick rate
- Set a global returning point by calling setjump()
 - μC/OS-II can come back here when it terminates.
 - PC_DOSReturn()

PC_VectSet(uCOS,OSCtxSw)

(\SOFTWARE\BLOCKS\PC\BC45\PC.C)

- Install the context switch handler
- Interrupt 0x08 (timer) under 80x86 family
 - Invoked by INT instruction

OSStart()

(SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE\CORE.C)

- Start multitasking of μC/OS-II
- It never returns to main()
- μC/OS-II is terminated if PC_DOSReturn() is called

Real-Time Scheduling

CPU Scheduler

- Short-term scheduler selects a process among the processes in the ready queue, and allocates the CPU to the selected process
 - Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive
- All other scheduling is preemptive

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to resume that process
- ▶ Dispatch latency the time it takes for the dispatcher to stop one process and start another running

Scheduling Algorithms

- ▶ First-Come, First-Served Scheduling (FIFO)
- Shortest-Job-First Scheduling (SJF)
- Priority Scheduling
- Round-Robin Scheduling (RR)
- Multilevel Queue Scheduling
- Multilevel Feedback Queue Scheduling
- Multiple-Processor Scheduling

An Example of Real-Time Tasks

- A camera periodically takes a photo
- ▶ The image recognition result will be produced before the next period
- If there is an obstacle, the train automatically brakes

Time of a Period = 150/50 = 3sDistance of a Period = (400 - 100)/2 = 150m

Braking: -12.5m/s²

Max Seed: 50m/s

Distance to Stop 25x(50/12.5)=100m

Camera Range: 400m

Periodic Task Scheduling

- Studying: 2 days per 4 daysPlaying Basketball: 1.5 days per 3 days
- ▶ Case 1: Studying is always more important

▶ Case 2: Doing whatever is more urgent

A Static Scheduling Algorithm— Rate Monotonic Scheduling

- A static priority is assigned to each task based on the inverse of its period
 - A task with shorter period \rightarrow higher priority
 - A task with longer period

 lower priority
 - For example:
 - P₁ has its period 50 and execution time 20
 - P₂ has its period 100 and execution time 37
 - \rightarrow P₁ is assigned a higher priority than P₂

Property of Rate Monotonic Scheduling

- The rate monotonic (RM) priority assignment assigns processes priorities according to their request rates
 - If a feasible fixed priority assignment exists for some process set, then the rate monotonic priority assignment is feasible for that process set
 - The optimal fixed priority assignment

Proof. Exchange the priorities of two tasks if their priorities are out of RMS order.

A Dynamic Scheduling Algorithm— Earliest Deadline First Scheduling

- Dynamic priorities are assigned according to deadlines
 - The earlier the deadline, the higher the priority
 - The later the deadline, the lower the priority
 - For example:
 - P₁ has its period 50 and execution time 25
 - P₂ has its period 80 and execution time 35

Project Requirements

Requirements

- Task Scheduling
 - Adopt priority-driven scheduling
 - The scheduler always schedules the highest priority ready task to run
 - Modify the priority of each task
 - Related code in uC/OS II
 - See OS_Sched() for scheduling policy
 - See OSTimeTick() for time management
 - See OSIntExit() for the interrupt management
- Provide the RM Scheduler
 - Input: A task set, each task is with its execution time and period
 - Output: The printed result of each task

Report and Source Files

- Report
 - File name: OSProjectStudentIDReport
 - File type: PDF
 - Only four A4 pages, 12 pt words
- Source File
 - File name: OSProjectStudentIDSource
 - File type: ZIP
 - Source code of your project (the whole SOFTWARE directory)
- Deadline is 20:00 2023/12/20
- Upload to the e-learning system

Grading

Implementation

- $^{\circ}$ Install $\mu C/OS\text{-II}$ and successfully compile a new application 30%
- Run the RM scheduler with the given input files 30%

Report

· 20%

Bonus

- Implement EDF scheduler 10%
- $^{\circ}$ Use the semaphore functions of μ C/OS-II and make a deadlock during the task running 10%

Demo Q&A

· 20%

Input

- ▶ The input format should be as follows
 - Your program should have the capability to create the assigned number of tasks and their corresponding period and execution time.
 - Example: taskset.txt
 3 //number of task
 1 3 // task 1: (execution time 1, period 1)
 2 9 // task 2: (execution time 2, period 2)
 4 12 // task 3: (execution time 3, period 3)
- ▶ The total utilization is no more than 90%
- ▶ The number of tasks is no more than 7

Input Example (1/2)

4

1 12

17

2 19

3 20

Input Example (2/2)

```
5
1 18
1 17
2 16
1 20
1 6
```

Output

- Your program output must show the following information
 - A sequence of the running task over time
 - The time when context switch occurred
- A report to describe your implementation
 - Relationship of each function
 - Implementation flow chart
 - Implementation details

Hints (1/2)

- You can read three other example in the document and refer to the source code.
- In order to implement a new scheduler, we might have to modify the os_tcb data structure to include some new attributes.
- The function OSTaskCreateExt() is used to create tasks, and we can modify this function to input the execution time and the period to each task.
- ▶ Each task executes an infinite loop and uses OSTimeGet() to get the execution time, where OS_TICKS_PER_SEC is the number of ticks for a second.
 - Note that a task might be preempted during its execution.
- Use OSTimeDly() when the task finish its execution.

Hints (2/2)

- Modify the deadline of a task before it call OSTimeDly() (ex: OSTCBCur->deadline= OSTCBCur->deadline+TaskPeriod)
- When the delay of a task is completed, the function OSTaskResume() is called to put the task back to ready queue and reschedule.
- ▶ Modify the function OS_Sched() to pick the task with the shortest period or the earliest deadline.
- ▶ OSStart() is used to start the execution of tasks.