ICCT 2013

Paper ID: 8

using Teager based DSCC features **Emotion Recognition from Speech**

Santosh Chapaneri & Deepak Jayaswal St. Francis Institute of Technology University of Mumbai

Outline

- Motivation
- Emotion Recognition Overview
- Proposed Feature Extraction Technique
- Proposed Feature Recognition Technique
- Conclusion
- References

Why Emotion Recognition?

- help line Detecting frustration of callers to automated
- Computer tutorials via virtual avatars
- Lie detection
- **Humanoid Robots**

Santosh Chapaneri/Deepak Jayaswal Emotion Recognition

ICCT 2013

Basic Emotions

NEUTRAL

FEAR

SADNESS

Speech Database

- Berlin Emotional Database (EMO-DB) [1]
- Total 535 utterances:

- 70% used for training, 30% for testing
- Sampling frequency 16KHz
- 16-bit resolution, mono channel samples

Santosh Chapaneri/Deepak Jayaswal Emotion Recognition

Emotion Recognition Overview

Conventional MFCC

Computation of Mel Frequency Cepstral Coefficients [2]:

DSCC Features

- Delta Spectral Cepstral Coefficients [3]
- Delta in spectral domain domain instead of cepstral
- Gaussian non-linearity instead of Log nonlinearity
- 2nd Delta over DSCC features instead of MFCC

Santosh Chapaneri/Deepak Jayaswal

Output Features MFCC [13]+DCC[26]

Teager Energy Operator (TEO)

- Non-linear energy tracking operator
- Useful mathematical model of vocal tract

$$\psi\left[x(n)\right] = x^{2}(n) - x(n+1)x(n-1)$$

$$y(x(n)) = x^{2}(n) - x^{2}(n) - x^{2}(n)$$

$$y(x(n)) = x^{2}(n) - x^{2}(n) - x^{2}(n)$$

$$y(x(n)) = x^{2}(n)$$

Feature Recognition

- Dynamic Time Warping (DTW)
- Warping expanding/contracting the time dimension

DTW Algorithm

- Popular algorithm for automatic speech recognition based on template matching
- Dynamic programming approach based on Bellman's optimality principle
- Solutions to slightly smaller problems used to find larger solutions

DTW Variants

- feature values DTW ignores temporal relationship between
- Derivative DTW (DDTW) [4]
- Improved Features for DTW (IFDTW) [5]
- Fast DTW [6] to reduce computations from $O(N^2)$ to O(N)

Santosh Chapaneri/Deepak Jayaswal

Emotion Recognition

ICCT 2013

5

Proposed Feature Recognition

reference emotions "Anger" & "Happiness" Distribution of distances between test emotion "Happiness" to

- Median found to be accurate compared to Minimum distance
- Proposed Feature Recognition: Median Filtered IFDTW

Experimental Results

- Clean speech + Speech under 10 dB Gaussian noise
- 161 utterances for testing against 374 trained samples

Overall Recognition Accuracy (%)

	#Features	DTW	IFDTW	Median IFDTW
MFCC + $\Delta + \Delta \Delta$	39	84.52	87.39	91.29
DSCC	26	93.82	95.14	96.73
T-DSCC	26	94.18	95.69	97.52

Santosh Chapaneri/Deepak Jayaswal Emotion Recognition

ICCT 2013

Experimental Results

Confusion Matrix (23 utterances/emotion)

(A: Anger, B: Boredom, D: Disgust, F: Fear, H: Happiness, S: Sadness, N: Neutral)

N	S	Н	F	D	В	Α	
0	0	0	0	0	0	23	Α
1	1	0	0	0	23	0	В
0	0	0	0	22	0	0	D
0	1	0	23	0	0	0	F
0	0	23	0	0	0	0	Н
0	21	0	0	0	0	0	S
22	0	0	0	1	0	0	Z

Conclusion

- to noise in input speech signal Proposed Teager-DSCC features are robust
- accurate classification of test emotion Proposed Median Filtered IFDTW gives
- to existing systems Overall recognition accuracy higher compared
- Future scope:
- Indian native speech
- App for Aakash tablets

Santosh Chapaneri/Deepak Jayaswal Emotion Recognition

Thank You

References