p-adic analytic action on Fukaya categories and iterates of symplectomorphisms

Yusuf Barış Kartal

Princeton University

August 26, 2020

Overview

- Motivation from algebraic geometry and mirror symmetry
- 2 Basics of Floer homology and Fukaya categories
- Main result
- 4 Main tool: p-adic analytic action
- Proof of the theorem

Motivation: Bell's theorems

Theorem (J. Bell, 2005)

Let X be an affine variety over a field of characteristic 0 and ϕ be an automorphism of X. Consider a subvariety $Y \subset X$ and a point $x \in X$. Then the set

$$\{k \in \mathbb{N} : \phi^k(x) \in Y\}$$

is a union of finitely many arithmetic progressions and finitely many other numbers.

This theorem has versions for coherent sheaves as well, describing similar results for $\{k \in \mathbb{N} : \mathcal{T}or(\mathcal{F}, (\phi^k)^*\mathcal{F}') \neq 0\}$. It is valid for surfaces.

Symplectic analogues?

Then one can ask if there is a symplectic analogue of this theorem. For instance:

Conjecture (Seidel)

Let L and L' be two Lagrangians in a symplectic manifold M with a symplectomorphism ϕ . Then the set

$$\{k \in \mathbb{N} : \phi^k(L) \text{ is "Floer theoretically isomorphic" to } L'\}$$

is a union of finitely many arithmetic progressions and finitely many other numbers.

For the heuristic relation of Bell's theorem to this conjecture, consider X= "moduli of Lagrangians", $x=L\in X, Y=\{L'\}\subset X.$

To explain further, we review basics of Floer homology. Let $\Lambda = \mathbb{Q}((T^{\mathbb{R}}))$.

Definition

Let (M, ω_M) be a symplectic manifold (e.g. an oriented surface with an area form), let L, L' be two Lagrangians (e.g. non-separating curves on the surface) that intersect transversally (so $L \cap L'$ is finite).

Define the chain complex

$$CF(L, L') = \Lambda \langle L \cap L' \rangle$$

Its differential defined by counting 2-gons:

The cohomology of CF(L, L') is denoted by HF(L, L'). There is also product structure $CF(L_1, L_2) \otimes CF(L_0, L_1) \rightarrow CF(L_0, L_2)$ defined by

We obtain a category $\mathcal{F}(M,\Lambda)$ such that

$$ob(\mathcal{F}(M, \Lambda)) = \{Lagrangians\}\$$

 $hom(L, L') = CF(L, L')$

This may be hard to compute, but in some cases it is equivalent to $Coh(M^{\vee})$ for an algebraic variety M^{\vee} (mirror dual)

Example C

Basic observation: Let $f \in Aut(\mathbb{P}^1)$ be the action of some element of " $\mathbb{R}_+ \subset \mathbb{G}_m$ ". Then, the rank of $Ext^*(\mathcal{F},(f^*)^n(\mathcal{F}'))$ is constant in n, with finitely many exceptions.

This serves as a second motivation for the main result:

Main result

Theorem (K., 2020)

Let M be a monotone symplectic manifold and ϕ be a symplectomorphism isotopic to identity. Given Lagrangians $L, L' \subset M$, the rank of $HF(L, \phi^k(L'))$ is constant in $k \in \mathbb{Z}$, with finitely many exceptions.

There are some assumption on M such as:

- (technical) $\mathcal{F}(M; \Lambda)$ is finitely generated and smooth
- \exists finite set $\{L_i\}$ of generators such that each L_i is **Bohr-Sommerfeld** monotone

Some explanation, remarks

- B-S monotone \Longrightarrow the coefficients of the differential and product on $CF(L_i, L_j)$ are finite sums (i.e. $\sum \pm T^{E(u)}.y$ is a finite sum)
- if $\{L_i\}$ is a set of generators, can see Fukaya category as an algebra $\bigoplus_{i,j} CF(L_i,L_j)$
- L can be seen as a right module $h_L = \bigoplus_j CF(L_j, L)$ or as a left module $h^L = \bigoplus_i CF(L, L_i)$
- $hom(L, L') = CF(L, L') \simeq h_L \otimes_{\mathcal{F}(M, \Lambda)} h^{L'}$

Examples

Example

Let $M = \Sigma_2$ be a genus 2 surface. Every non-separating curve has a B-S monotone representative in their isotopy class.

One can let L, L' be any pair of non-separating curves.

Main tool

- Bell proves his theorem by interpolating the orbit $\{\phi^k(x)\}$ by a p-adic analytic arc
- ullet Analogous main tool for us: interpolate iterates of ϕ by a p-adic analytic action

Local action on $\mathcal{F}(M,\Lambda)$

- $\phi \in Symp^0(M) \rightsquigarrow Autoequivalence on \mathcal{F}(M, \Lambda) \rightsquigarrow \mathcal{F}(M, \Lambda)$ -bimodule (bimodule defined by $\phi \rightsquigarrow \bigoplus_{i,j} CF(L_i, \phi(L_j))$)
- $1_M \rightsquigarrow 1_{\mathcal{F}(M,\Lambda)} \rightsquigarrow$ diagonal bimodule $\mathcal{F}(M,\Lambda)$
- As ϕ is isotopic to identity, this suggests to define "the local action" as a deformation of the digonal bimodule.

Recall that closed 1-forms on M can be used to construct symplectic isotopy ϕ_{α}^t . WLOG assume $\phi=\phi_{\alpha}^1$.

Local action on $\mathcal{F}(M, \Lambda)$

Definition

Let $\mathfrak{M}_{\alpha}^{\Lambda}|_{t} = \bigoplus_{i,j} CF(L_{i}, L_{j})$. Define the differential via:

$$x \mapsto \sum \pm T^{E(u)} T^{t\alpha([\partial_h u])}.y$$

u varies among the holomorphic strips as in figure below:

Local action on $\mathcal{F}(M,\Lambda)$

Definition (cont'd)

Define right multiplication by elements of $\mathcal{F}(M,\Lambda)$ via

$$\mu^1(|x|y) = \sum \pm T^{E(u)} T^{t\alpha([\partial_h u])}.z$$

where the count is as in:

Define left multiplication (and higher multiplications) similarly.

Local action on $\mathcal{F}(M,\Lambda)$

Remark

Plugging t = 0 gives us the usual Floer differential and multiplication (defined earlier).

Lemma

The bimodule $\mathfrak{M}_{\alpha}^{\Lambda}|_{t}$ is "geometric" for small |t|, i.e. it corresponds to action of ϕ_{α}^{t} .

Lemma

The family of bimodules $\mathfrak{M}_{\alpha}^{\Lambda}|_{t}$ behave like a "local group action", i.e. for small t_{1},t_{2}

$$\mathfrak{M}_{\alpha}^{\Lambda}|_{t_{2}}\otimes_{\mathcal{F}(M,\Lambda)}\mathfrak{M}_{\alpha}^{\Lambda}|_{t_{1}}\simeq\mathfrak{M}_{\alpha}^{\Lambda}|_{t_{1}+t_{2}}$$

Review of *p*-adics

Let p > 2 be a prime. Recall:

- \mathbb{Z}_p = completion of \mathbb{Z} with respect to norm $|x|_p := p^{-val_p(x)}$
- \mathbb{Q}_p = field of fractions of \mathbb{Z}_p , normed field

Upshot: One can do analytic geometry over \mathbb{Q}_p

- ullet $\mathbb{D}_1 = \mathsf{closed}$ unit $\mathsf{disc} = \mathbb{Z}_p$
- $\mathbb{Q}_p\langle t \rangle=\{\sum a_it^i: a_i\in\mathbb{Q}_p, |a_i|_p o 0\}=$ analytic functions on \mathbb{D}_1
- $\mathbb{D}_{p^{-n}}=$ closed disc of radius $p^{-n}=p^n\mathbb{Z}_p$
- ullet $\mathbb{Q}_p\langle t/p^n
 angle=$ analytic functions on $\mathbb{D}_{p^{-n}}$

Some strange features of *p*-adic analytic disc

- $1, 2, 3, \dots \in \mathbb{D}_1 = \text{unit disc}$
- Unit disc is an additive group
- (Strassman's theorem) if $f(t) \in \mathbb{Q}_p \langle t \rangle$ has infinitely many 0's, f(t) = 0
- ullet Coherent sheaves on $\mathbb{D}_{p^{-n}}$ are locally free outside finitely many points

Fukaya category over smaller fields and over \mathbb{Q}_p

- B-S monotone \Rightarrow the coefficients $\sum \pm T^{E(u)}$ are finite
- Fukaya category is defined over $\mathbb{Q}(T^{\mathbb{R}})$
- $E(u) \in \omega_M(H_2(M, \bigcup L_i \cup L \cup L'))$ and the latter is a finitely generated additive subgroup of \mathbb{R}
- Given finitely generated $G \supset \omega_M(H_2(M,\bigcup L_i \cup L \cup L'))$ with basis $g_1,\ldots,g_k \subset G$, Fukaya category is defined over $\mathbb{Q}(T^G) = \mathbb{Q}(T^{g_1},\ldots,T^{g_k})$ (denote it by $\mathcal{F}(M,\mathbb{Q}(T^G))$)
- Any embedding $\mu: \mathbb{Q}(T^{\mathcal{G}}) \to \mathbb{Q}_p$ defines a category $\mathcal{F}(M, \mathbb{Q}_p)$
- Assume $\alpha(H_1(M)) \subset G$

Want: p-adic family of bimodules

Suggestion: Replace previous formula by

$$x \mapsto \sum \pm \mu(T^{E(u)})\mu(T^{\alpha([\partial_h u])})^t.y$$

(analytic in $t \in \mathbb{D}_1$) and same with other structure maps. To define $\mu(T^{\alpha([\partial_h u])})^t \in \mathbb{Q}_p\langle t \rangle$, we need $\mu(T^{\alpha([\partial_h u])}) \equiv 1 \pmod{p}$

Definition (Poonen, Bell)

Given
$$v \in 1 + p\mathbb{Z}_p$$
, define $v^t := \sum {t \choose i} (v-1)^i \in \mathbb{Q}_p \langle t \rangle$

We can choose $\mu: \mathbb{Q}(T^{\mathcal{G}}) \to \mathbb{Q}_p$ such that $\mu(T^g) \equiv 1 \pmod{p}$

Definition

Let $\mathfrak{M}_{\alpha}^{\mathbb{Q}_p} = \bigoplus_{i,j} (\mathbb{Q}_p \langle t \rangle) \langle L_i \cap L_j \rangle$, with bimodule structure as above.

Proposition

 $\mathfrak{M}_{lpha}^{\mathbb{Q}_{
ho}}$ also behaves like a "local group action", i.e.

$$\mathfrak{M}_{lpha}^{\mathbb{Q}_p}|_{t=t_2}\otimes_{\mathcal{F}(M,\mathbb{Q}_p)}\mathfrak{M}_{lpha}^{\mathbb{Q}_p}|_{t=t_1}\simeq\mathfrak{M}_{lpha}^{\mathbb{Q}_p}|_{t=t_1+t_2}$$

for small $t_1, t_2 \in \mathbb{Z}_p$.

Idea of the proof.

Define a map

$$\mathfrak{M}_{lpha}^{\mathbb{Q}_{
ho}}|_{t=t_2}\otimes_{\mathcal{F}(M,\mathbb{Q}_{
ho})}\mathfrak{M}_{lpha}^{\mathbb{Q}_{
ho}}|_{t=t_1} o\mathfrak{M}_{lpha}^{\mathbb{Q}_{
ho}}|_{t=t_1+t_2}$$

Idea of the proof (cont'd).

by
$$m_2 \otimes m_1 \mapsto \sum \pm \mu(T^{E(u)}) \mu(T^{\alpha([\partial_1 u])})^{t_1} \mu(T^{\alpha([\partial_2 u])})^{t_2}.y$$

This induces a (quasi)-isomorphism at $t_1=t_2=0$. Therefore, it induces a (quasi)-isomorphism at a small (p-adic) neighborhood of (0,0).

Observe that being p-adically small is equivalent to being in $p^n\mathbb{Z}_p$ for some $n\gg 0$. Hence,

Corollary

$$\mathfrak{M}_{\alpha}^{\mathbb{Q}_p}|_{t=t_2}\otimes_{\mathcal{F}(M,\mathbb{Q}_p)}\mathfrak{M}_{\alpha}^{\mathbb{Q}_p}|_{t=t_1}\simeq \mathfrak{M}_{\alpha}^{\mathbb{Q}_p}|_{t=t_1+t_2} \text{ for } t_1,t_2\in p^n\mathbb{Z}_p.$$

We can combine this corollary with quasi-isomorphism preserving property of base change to show:

Corollary

$$\mathfrak{M}_{\alpha}^{\Lambda}|_{t_{2}}\otimes_{\mathcal{F}(M,\Lambda)}\mathfrak{M}_{\alpha}^{\Lambda}|_{t_{1}}\simeq\mathfrak{M}_{\alpha}^{\Lambda}|_{t_{1}+t_{2}}\ \text{for}\ t_{1},t_{2}\in\rho^{n}\mathbb{Z}_{(p)}:=\rho^{n}\mathbb{Z}_{p}\cap\mathbb{Q}\subset\mathbb{R}.$$

Proof of the theorem

Recall that $\mathfrak{M}_{\alpha}^{\Lambda}|_{t}$ corresponds to action of ϕ_{α}^{t} for small t. By the last corollary, the bimodule $\mathfrak{M}_{\alpha}^{\Lambda}|_{t}$ corresponds to action of ϕ_{α}^{t} for all $t \in p^{n}\mathbb{Z}_{(p)}$. Therefore,

Proposition

$$h_{L'}\otimes_{\mathcal{F}(M,\Lambda)}\mathfrak{M}^{\Lambda}_{lpha}|_{p^nk}\simeq h_{\phi^{p^nk}_{lpha}(L')}$$
 for all $k\in\mathbb{Z}$ and

$$HF(L, \phi_{\alpha}^{p^n k}(L')) = Hom(L, \phi_{\alpha}^{p^n k}(L')) \cong H^*(h_{L'} \otimes_{\mathcal{F}(M,\Lambda)} \mathfrak{M}_{\alpha}^{\Lambda}|_{p^n k} \otimes_{\mathcal{F}(M,\Lambda)} h^L)$$

We observe that the rank of $H^*(h_{L'} \otimes_{\mathcal{F}(M,\Lambda)} \mathfrak{M}^{\Lambda}_{\alpha}|_{p^n k} \otimes_{\mathcal{F}(M,\Lambda)} h^L)$ is the same as the rank of $H^*(h_{L'} \otimes_{\mathcal{F}(M,\mathbb{Q}_p)} \mathfrak{M}^{\mathbb{Q}_p}_{\alpha} \otimes_{\mathcal{F}(M,\mathbb{Q}_p)} h^L)$ at $t = p^n k \in p^n \mathbb{Z}_p$ (a coherent sheaf over $\mathbb{D}_{p^{-n}}$).

Proof of the theorem

As explained, the rank of a analytic coherent sheaf over $\mathbb{D}_{p^{-n}}\subset \mathbb{D}_1$ is constant with finitely many exceptions. Therefore,

- Rank of $HF(L, \phi_{\alpha}^{p^n k}(L'))$ is constant in k with finitely many exceptions
- Replace L' by $\phi^i_{\alpha}(L')$, $i=0,\ldots,p^n-1$ to obtain constancy of rank of $HF(L,\phi^{p^nk+i}_{\alpha}(L'))$ in k
- Hence the rank of $HF(L,\phi_{\alpha}^k(L'))$ is p^n periodic. Replace p by p' to obtain $(p')^{n'}$ -periodicity as well

Hence, we obtain

Theorem (K., 2020)

The rank of $HF(L, \phi_{\alpha}^{k}(L'))$ is constant in $k \in \mathbb{Z}$, with finitely many exceptions.

Thank you!