Notes for Mathematical Analysis

Zhao Wenchuan

June 24, 2021

Chapter 1

Set Theory

1.1 Countability of Sets

Definition 1.1.1. A set A is said to be *countable* iff there is a bijection $f: I \to A$ with $I \subseteq \mathbb{N}$.

A is said to be uncountable iff for any injection $f: I \to A$ with $I \supseteq \mathbb{N}$, f is not surjection.

Definition 1.1.2. The *cardinal number* of a set A, denoted |A| or #A, is defined to the quantity of it elements.

Customarily, we write \aleph_0 for $|\mathbb{N}|$, and \mathfrak{c} for $|\mathbb{R}|$.

Definition 1.1.3. Given A and B as sets, we define the following:

- (i) |A| = |B| iff there is a bijection $f: A \to B$;
- (ii) $|A| \leq |B|$ iff there is an injection $g: A \to B$;
- (iii) |A| < |B| iff for any injection $g: A \to B$, g is not surjection.

Definition 1.1.4. A set A is said to be *finite* iff $|A| < \aleph_0$; it is *infinite* iff $|A| \ge \aleph_0$.

By 1.1.3, A is finite iff for all injection $f:A\to\mathbb{N},\ f$ is not surjection. Respectively, A is infinite iff there exists injection $f:\mathbb{N}\to A$.

Proposition 1.1.1. For any countable set A, $|A| \leq \aleph_0$.

Proof. If A is finite, i.e., $|A| < \aleph_0$, it is clearly countable.

If A is infinite, by Definition 1.1.4, $|A| \ge \aleph_0$. As A is countable, there must be an bijective $f: I \to A$ with $I \subseteq \mathbb{N}$, then (iii) in Definition 1.1.3 fails, so $|A| = \aleph_0$.

Proposition 1.1.2. For any set A, A is uncountable iff $|A| > \aleph_0$.

Proof. By Definition 1.1.1, A is uncountable iff for any injection $f: I \to A$ with $I \supseteq \mathbb{N}$, f is not surjection. This holds iff for any $I \subseteq \mathbb{N}$, |I| < |A|. $\mathbb{N} \subseteq \mathbb{N}$, Thus $\aleph_0 < |A|$.

Proposition 1.1.3. The subsets of any countable sets are countable.

Proof. Clearly, by intuition or by Definition 1.1.3, for any sets A and B, $A \subseteq B$ implies $|A| \leq |B|$. By Proposition 1.1.2, B is countable iff $|B| \leq \aleph_0$. Then we have $|A| \leq \aleph_0$. This holds iff A is countable.

Proposition 1.1.4. The super sets of any uncountable sets are uncountable.

Proof. Let A be an uncountable set. $|A| > \aleph_0$ implies that for any $B \supseteq A$, $|B| > |A| > \aleph_0$. Thus, by Proposition 1.1.2.

Proposition 1.1.5. The Cartesian product of countable sets is countable.

Proof. If A or B is empty, $A \times B$ is empty. The empty set is countable.

Let A and B be both infinite countable, then there exist $f: \mathbb{N} \to A$ and $g: \mathbb{N} \to B$. Let $h: \mathbb{N} \to \mathcal{P}(A \times B)$ defined by

$$h(x) = \begin{cases} \{(f_0, g_0)\} & x = 0 \\ \{(f_0, g_1), (f_1, g_0)\} & x = 1 \\ \{(f_0, g_2), (f_1, g_1), (f_2, g_0)\} & x = 2 \\ \{(f_0, g_3), (f_1, g_2), (f_2, g_1), (f_3, g_0)\} & x = 3 \\ \vdots & \vdots & \vdots \end{cases}$$

Now we have

$$A \times B = \bigcup_{x=0}^{\infty} f(x).$$

Thus,

$$|A \times B| = \left| \bigcup_{x=0}^{\infty} f(x) \right| = \sum_{x=0}^{\infty} (x+1).$$

Clearly,

$$\aleph_0 = |\{0\} \cup \{1, 2\} \cup \{3, 4, 5\} \cup \dots| = |A \times B|.$$

Thus, $A \times B$ is countable.

Proposition 1.1.6. The countable unions of countable sets is countable.

Proof. Similar to Proposition 1.1.5.

Proposition 1.1.7. If A is a countable set but B is not, then $B \setminus A$ is uncountable.

Proof. If $B \setminus A$ is countable, $B \setminus A \cup A$ must be countable. Then $B \subseteq B \setminus A \cup A$ is also countable, contradicted to the condition.

Proposition 1.1.8. There is no countably infinite $\mathcal{P}(X)$ for any set X.

Proof. As \aleph_0 is the smallest infinite cardinal number, let $X = \mathbb{N}$. Let

$$\mathcal{U} = \left\{ U = \bigcup_{i=0}^{\infty} \{ x_i \in \{2i, 2i+1\} \} \right\} \subseteq \mathcal{P}(X).$$

Suppose $\mathcal U$ is countable, then there is a list

$$\mathcal{W} = \bigcup_{k=0}^{\infty} \{ U_k = \{ x_{k,i} \} \} \supseteq \mathcal{U}.$$

Now construct a new set

$$W = \{w_i\}_{i=0}^{\infty}$$

where for all $i \in \mathbb{N}$, $w_i = 2i$ if $x_{i,i} = 2i + 1$, and $w_i = 2i + 1$ if $x_{i,i} = 2i$. Now we have $W \in \mathcal{U}$ but $W \notin \mathcal{W}$, which is contradicted to the condition. Thus \mathcal{U} is not countable, thus $\mathcal{P}(X) \supseteq \mathcal{U}$ is not either.

Proposition 1.1.9. \mathbb{R} is uncountable.

Proof. Similar to Proposition 1.1.8.