CSCI 4470 Algorithms

Part VI Graph Algorithms Notes

- · 20 Elementary Graph Algorithms
- 21 Minimum Spanning Trees
- · 22 Single-Source Shortest Paths
- · 23 All-Pairs Shortest Paths
- 24 Maximum Flow
- · 25 Matchings in Bipartite Graphs

Chapter 22: Single-Source Shortest Paths

- 22 Single-Source Shortest Paths
 - 22.1 The Bellman-Ford algorithm
 - 22.2 Single-source shortest paths in directed acyclic graphs
 - 22.3 Dijkstra's algorithm
 - 22.4 Difference constraints and shortest paths
 - 22.5 Proofs of shortest-paths properties

Before Single-Source Shortest Paths

Graph Types and Algorithms:

- 1. Unweighted Graphs: BFS is applicable.
- If all weights are 1, BFS is efficient.
- 2. Weighted Graphs: Requires algorithms like Dijkstra or Bellman-Ford.

Examples and Variations:

- 1. Single-Destination Shortest Path:
 - 1. Single-Destination Shortest Path: Reverse edges and solve as a single-source problem.
 - i. Application: Useful when multiple sources share a common destination.
 - ii. Algorithmic Approach: Reverse edges, solve as SSSP, and consider edge cases like negative cycles.

2. Single-Pair Shortest Path:

- 2. Single-Pair Shortest Path: Can be solved using single-source algorithms.
- Find the shortest path between a specific pair of vertices (u, v).

• Approach: Can be solved using single-source shortest path algorithms by considering u as the source.

3. All-Pair Shortest Path:

3. All-Pair Shortest Path: Run single-source algorithm for each vertex.

Key Terms:

- s: The source vertex from which all shortest paths are calculated.
- (s, u): The shortest path from the source vertex s to another vertex u.
- (s, v): The shortest path from the source vertex s to another vertex v.

Single-Source Shortest Path (SSSP)

Single-Source Shortest Path (SSSP): Focusing on weighted graphs, where the shortest path is not solely determined by the number of edges.

Goal: Find the shortest paths from a specific source vertex s to all other vertices in a directed graph G=(V,E) with edge weights w(u,v).

Given G = (V, E) with weights w(u, v) and a vertex s, find the shortest paths from s to all $v \in V$.

- **1. Subset** G' = (V', E'): V' includes all vertices reachable from s.
- **2. Shortest Paths**: For each $v \in V'$, find the unique, simplest, and minimum weight path from s to v in G.
 - · A minimum weight path is referred to as a shortest path.

SSSP Example, Given G(V, E) with $V = \{a, b, c, d, e\}$ and directed edges $E = \{(a, b, 5), (a, d, -3), (b, c, 10), (b, d, -1), (c, e, 7), (d, e, 1), (e, c, 2)\}$:

Vertices and Directed Edges:

- V: Set of vertices a, b, c, d, e.
- E: Set of directed edges with weights.

Single-Source Shortest Path (from a):

- s: Source vertex is a.
- (s, u): Shortest path from a to u.
 - \circ (s, u): For u = b, path is (a, b, 5).
- (s, v): Shortest path from a to v.

 $\circ \ (s,v)$: For v=e, path is (a,d,-3) o (d,e,1), total weight -2.

Negative Weight Edges and Cycles:

- ullet The graph G can have negative weight edges
- If graph G has negative weight edges but no negative weight cycles, the shortest path is well defined
- If graph G has any negative weight cycles, the shortest path is no longer well defined

example, the graph G, vertex={a, b, c, d, e, f}, edges={(a, b, 3), (b, c, 4), (b, e, 1)(c, d, -1), (d, e, 5), (b, f, 6)}

- 1. Negative Weights: Algorithms like Bellman-Ford can handle these, but negative cycles create problems.
- 2. Cycles: They make the shortest path undefined.

- · Can not have cycle in the shortest path, because make the shortest path undefined.
- · Cycles also increase distance of the path.
- i.e., The shortest path of d(a,f)=3+6, if there is a cycle as the diagram shown. the shortest path of d(a,f)=3+6+9, where 9=4+5+1+(-1)

Negative Cycles:

The Simple Path in a graph is one that doesn't revisit any vertices. In the context of shortest paths, it ensures no cycles are included, making the path truly the shortest.

Dashed Algorithm: This algorithm calculates the shortest distance between a single source and all vertices.

- · No Negative weights and cycles in the algorithm
- Bellman-Ford Algorithm: This algorithm can detect negative cycles and is used when graphs have negative weights.

Notations

Proof of Single-Source Shortest Path: Let $p = \langle v_0, v_1, ..., v_k \rangle$ be any path in G:

- $\bullet \ \ \mathsf{Denoted} \ v_0 \overset{p}{\leadsto} v_k$
- w(p) is the weight of p, then $w(p) = \sum\limits_{i=1}^k w(v_{i-1},v_i)$

Let u and v be any two vertices in G:

- If there exists a path from u to v in $G \delta(u,v) = \min\{w(p) | u \stackrel{p}{\leadsto} v\}$
- Otherwise, $\delta(u,v)=\infty$

The graph G' has $w(p)=\delta(s,v)$ for every path p from s to v in V'

• G' will be a tree

Optimal Substructure

1. Optimal Substructure: Shortest paths contain shortest paths to intermediate vertices.

Lemma: Given a weighted directed graph G = (V, E).

Let $p = \langle v_0, v_2, ..., v_k \rangle$ be a shortest path from vertex v_0 to v_k and for any i, j such that $1 \leq i \leq j \leq k$.

 $\text{Let } v_i \text{ and } v_j \text{ be the intermediate vertices. Let } p_{ij} \text{ be the subpath of } p \text{ from } v_i \text{ to } v_i. \text{ Then } p_{ij} \text{ is a shortest path from } v_i \text{ to } v_j.$

Proof: Decompose p into p_{0i} , p_{ij} , p_{jk}

$$p_{0
ightarrow k} = v_0 \overset{p_{0i}}{\leadsto} v_i \overset{p_{ij}}{\leadsto} v_j \overset{p_{jk}}{\leadsto} v_k$$

Assume: p_{0k} is the shortest path from v_0 to v_k , p_{ij} is not a shortest path from v_i to v_j and let p_{ij} be a shorter path.

Derive a contradiction.

$$egin{aligned} p'_{0 o k} &= v_0 \overset{p_{0i}}{\leadsto} v_i \overset{p'_{ij}}{\leadsto} v_j \overset{p_{jk}}{\leadsto} v_k \ & w(p_{0k}) &= w(p_{0i}) + w(p_{ij}) + w(p_{jk}) \ & w(p'_{0k}) &= w(p_{0i}) + w(p'_{ij}) + w(p_{jk}) \ & \Rightarrow w(p_{0k}) > w(p'_{0k}) \end{aligned}$$

2. Examples: Demonstrated with specific weights and paths in the graph.

PROPERTIES OF SHORTEST PATHS AND RELAXATION

Triangle Inequality:

• For edge (u, v), $\delta(s, v) < \delta(s, u) + w(u, v)$.

Upper Bound Property:

• v.d (shortest path estimate) always upper bounds $\delta(s,v)$, remains unchanged once it equals $\delta(s,v)$.

No-path Property:

• If no path from s to v, then v.d and $\delta(s,v)=\infty$.

Convergence Property:

• If $s \leadsto u \to v$ is a shortest path and $u.d = \delta(s,u)$ before relaxing (u,v), then $v.d = \delta(s,v)$ after.

Path Relaxation Property:

• If a path $p=\langle v_0,...,v_k \rangle$ is shortest from v_0 to v_k and edges of p are relaxed in order, then $v_k.d=\delta(s,v_k)$.

Predecessor Subgraph Property:

• Once $v.d = \delta(s, v)$ for all v, a shortest-paths tree rooted at s forms.

These properties are essential for understanding shortest path algorithms like Dijkstra's and Bellman-Ford, and are derived from the relaxation process.

Algorithms

Bellman-Ford, SSSP in DAGs, and Dijkstra, All these algorithms share two subroutines and rely on several
properties.

```
Initialize-Single-Source(G,s)
01. //initialize .d and .π
02. for each vertex v in V
03.     v.d = ∞
04.     v.π = NIL
05. s.d = 0

Relax(u,V,W)
01. // update v.d and v.π if shorter path exists
02. if v.d > u.d + w(u,v)
03.     v.d = u.d + w(u,v)
04.     v.π = u
```

- ullet From u to v the shortest path is 3+5
- Relaxing v.d if v.d is smaller than shortest path

The Bellman-Ford

1. Bellman-Ford Algorithm:

- Handles graphs with negative edge weights, detects negative cycles.
- Complexity: $O(V \cdot E)$ expensive due to repeated edge relaxations. Reports error if G
- · Contains any negative weight cycles

Correctness of Bellman-Ford:

- 1. $v.d = \delta(s, v)$ for all $v \in V$.
- 2. Returns TRUE if no negative-weight cycles,
- 3. Returns FALSE otherwise

Key Steps:

- Initialize vertex distances to infinity, source distance to 0.
- Relax edges V-1 times.
- · Check for negative cycles.

Properties:

- Shortest paths are simple paths (no positive and negative cycles).
- Path length is at most k-1 for k vertices.

Bellman-Ford Example:

```
BELLMAN-FORD(G, W, s)

01. INITIALIZE-SINGLE-SOURCE (G,s) // Line 1 takes O(V) time

02. for i=1 to |G.V|-1

03. for each edge (u,v) \in G.E

04. RELAX(u,v,w) // Lines 2-4 take O(VE) time

05. for each edge (u,v) \in G.E

06. if v.d > u.d = w(u.v)

07. // G contains a negative weight cycle

08. return FALSE // Lines 5-8 take O(E) time

09. return TRUE // Line 9 takes O(1) time
```

Running time: Total is $O(V \cdot E)$

• Round 0 to 4 in the Table

	v.d, round 0 - 4								
v	0	1	2	3	4				
а	∞	0	0	0					
b	∞	2	2	2					
С	∞	12	7	7					
d	∞	∞	∞	-1					
е	∞	∞	∞	∞					
f	∞	4	4	4					
g	∞	∞	-2	-2					

	v.d, round 0 - 4						
h	∞	∞	24	7			

• Round 4: No change (Can Stop)

Method2: For every iteration, to check all edges

Iterations	(a,b)	(a,c)	(a,f)	(b,c)	(c,d)	(e,c)	(e,a)	(f,g)	(f,h)	(g,h)	(h,a)
1st iteration	V	V	√	√	V	V	√	√	√	√	V
2nd iteration	V	V	V	V	V	V	V	V	V	V	V

- Only need 2 iterations can find out the shortest path, |V|- 1 sometimes not necessary.
- $\{(a=0),(b=2),(c=7),(d=-1),(e=\infty),(f=4),(g=-2),(h=7)\}$

SSSP in DAGs

2. Directed Acyclic Graph (DAG) Algorithm:

- Efficiently finds shortest paths in DAGs ONLY, No negative weight cycles
- · Negative edge weights allowed
- Complexity: O(V+E), faster due to topological sorting.

```
Dag-Shortest-Paths(G, w, s)

01. Topologically sort the vertices of G

02. Initialize-Single-Source(G,s)

03. for each vertex u, taken in topologically sorted order

04. for each v ∈ G.Adj[u]

05. Relax(u,v, w)
```

Key Steps:

- · Perform topological sort.
- · Relax edges in topological order.

DAG-Shortest-Paths(G, w, s) Example:

Given that
$$G(V, E)$$
, vertex= $\{a, b, c, d, e\}$, and the edges with weights= $\{(a, b, 2), (a, e, 6), (b, c, 4), (b, d, 2), (b, e, 7), (e, c, -1), (e, d, 1), (c, d, -2)\}$

1. Perform DFS(G) to find the topological order (use reverse alpha order)

2. Then Initialize Nodes, and Relax the Nodes in topological sorting order

v	v.d	v.f		-	0	1	$u.\pi$
а	1	10	-	а	0	0	NiL
b	2	9	-	b	∞	(a,b)0+2=2	a
С	3	6	-	С	∞	(b, c) $2 + 4 = 6$ (e, c) $6 + (-1) = 5$	b , е
d	4	5	-	d	∞	$\frac{\text{(c, d)}}{6} + \frac{6}{2} = 4$ (c, d) $5 + (-2) = 3$	e, c
е	7	8	-	е	∞	(a, e) $0+6=6$	a

- Starting at a, so relaxing from a, b, and a, e...
- then b, e, c, d by the topological sorting order, it means the edges ONLY goes from left to right
- Each vertex only relaxes the edges from itself only 1 time, we can see that the topological sorting order is the shortest path in the example a,b,e,c,d is the $v.d=\delta(s,v_k)$
 - \circ The relaxing in the Bellman-Ford() is V-1 times which is $O(V\cdot E)$

Using DAG-Shortest-Paths Algorithm for PERT Charts Example:

Problem: Rather than looking for the shortest path, we want to know the longest path

Two strategies:

• Replace all weights w(u,v) with -w(u,v)

• Initialize weights to - ∞ and relax to increase v.d instead of decreasing

Dijkstra Algorithm

3. Dijkstra's Algorithm:

Greedy Algorithm: Similar to Prim's for minimum spanning trees.

Key Steps:

- 1. Initialize distances; source to 0, others to infinity.
- 2. Use a min-heap for vertices and distances.
- 3. Extract min, relax edges until the queue is empty.

Properties:

- · Guarantees shortest paths in graphs with non-negative weights.
- · Not suitable for negative weight edges.

Conditions: Weighted, directed graph G with no negative edges, best represented using adjacency lists.

Purpose: Finds shortest paths from a source to all vertices efficiently using a greedy approach.

Min-Heap: Utilizes a min-heap for efficient vertex selection with the smallest distance.

Complexity: $O((V+E)\log V)$ or $O(E\log V)$, efficient for graphs with non-negative weights.

- Involves:
 - Extracting min value from a priority queue (min-heap), $O(V \log V)$.
 - Relaxing edges and updating edge values in the priority queue, $O(E \log V)$.

```
DIJKSTRA(G, w, s)
01. INITIALIZE-SINGLE-SOURCE(G, s)
// Initialize distances from source to all vertices // O(V)
02. S = \emptyset
// S, a set to store vertices whose final shortest-path weights from the source are already determined // O(1)
Q = \emptyset
                // Priority queue Q to store all vertices of the graph // O(1)
04. for each vertex u \in G.V
                                          // O(V)
         INSERT(Q, u)
// Insert each vertex into the priority queue Q, // O(\log V) for each vertex, total O(V \log V)
06. while Q \neq \emptyset // The linear O(V)
         u = EXTRACT-MIN(Q)
// Extract vertex u with the smallest distance value from Q, // The Logarithmic O(log V) for each vertex, total O(V log
V)
         S = S \cup \{u\}
// Add u to the set S of vertices with finalized shortest-path weights // Constant O(1)
         for each vertex v in G.Adj[u]
// For each neighbor v of u, // The linear O(E), as each edge will be considered once
10.
             RELAX(u, v, w)
// Relax the edge (u, v) to potentially find a shorter path from source to v through u
                                                                                           // 0(1)
            if the call of RELAX decreased v.d
11.
                 DECREASE-KEY(Q, v, v.d)
12.
// If RELAX was successful in decreasing the distance value of v, update v's position in the priority queue,
                                                                                                                    //
O(log V) for each decrease, total O(E log V)
```

Explanation:

- 1. Initialize Distances: O(V) Initializing distances and predecessors for all vertices.
- 2. Initialize Set S: O(1) Creating an empty set.
- 3. **Initialize Priority Queue Q**: O(1) Creating an empty priority queue.
- 4. For Each Vertex: O(V) Iterating through each vertex.
- 5. Insert into Priority Queue: O(log V) per insertion, total O(V log V) Inserting each vertex into the priority queue.
- 6. While Loop: O(V) In the worst case, every vertex is dequeued once.
- 7. Extract Min: O(log V) per extraction, total O(V log V) Extracting the vertex with the minimum distance value.
- 8. Add to Set S: O(1) Adding a vertex to the set.
- 9. For Each Neighbor: O(E) In total, all adjacent vertices are considered.
- 10. Relax Edge: O(1) Relaxing an edge takes constant time.
- 11. If Statement: O(1) Checking a condition takes constant time.
- 12. **Decrease Key**: O(log V) per decrease, total O(E log V) Updating a vertex's position in the priority queue.

Example: Dijkstra's Algorithm

Given Graph
$$G(V,E)$$
: Vertices: $\{S,Y,Z,T,X\}$, Edges with weights: $(S,T,10), (S,Y,5), (T,Y,2), (Y,T,3), (Y,Z,2), (Y,X,9), (Z,X,6), (Z,S,7), (T,X,1), (X,Z,4)$

Dijkstra Algorithm: Tracing, What is the shortest path from S to X?? To find the shortest path from S to X using Dijkstra's Algorithm

1. Initialization:

- Starting from vertex S, , Set S.d=0 (distance from source to source is 0).
- For all other vertices V, set $V.d = \infty$ and $V.\pi = \text{NIL}$.
- $S.\pi$ is not defined as S is the starting point.
- ullet The vertex S keep s tracking of all vertices that its visited.

- The shortest path from S to X, Removed all paths that are not belonged to the shortest path in the graph

Step	Vertex	d	π	Visited	Min d	Operation	Note			
Init	S	0	NIL	No	0	Initialize	Start at S			
Init	Υ	∞	NIL	No	No					
Init	Z	∞	NIL	No	No					
Init	Т	∞	NIL	No						
Init	X	∞	NIL	No						
1	S	0	NIL	Yes	0	Visit	Update Y, T			

Step	Vertex	d	π	Visited	Min d	Operation	Note		
1	Υ	5	S	No		Relax			
1	Т	10	S	No		Relax			
2	Υ	5	S	Yes 5		Visit	Update T, Z, X		
2	Т	8	Υ	No		Relax			
2	Z	7	Υ	No	No		Relax		
2	X	14	Y	No		Relax			
3	Z	7	Υ	Yes	7	Visit	No update		
4	Т	8	Y	Yes 8		Visit Update X			
4	X	9	Т	No		Relax			
5	X	9	Т	Yes	9	Visit	Path to X finalized		

Theorem Proof:

Dijkstra's algorithm, run on a weighted directed graph G=(V, E) with nonnegative edge weights, terminates with $v.d = \delta(s, v)$ for all v in V.

By Induction prove that $v.d = \delta(s, v)$ for all v in S is the shortest path in the graph G.

- The goal is to prove that the calculated distances converge to the shortest paths upon algorithm termination.
- The proof is based on induction, with two main parts:
- 1. **Base Case:** Initially, the set S (vertices with finalized shortest-path weights) is empty, and the base case holds trivially. When the source vertex is added to S, its distance is correctly initialized to 0.
- 2. **Inductive Step:** Assume that for all vertices in S, the calculated distance is equal to the shortest path distance. When a new vertex u is dequeued from the heap, the goal is to show that the distance of u has converged to the shortest path distance.
- S: Set of nodes with finalized shortest paths from the start.

For proof, Assume that vertex s and x are in the Set S

S-V: Set of nodes with tentative shortest paths, yet to be finalized.

For proof, Assume that vertex $\,{}_{
m V}\,$ and $\,{}_{
m u}\,$ is in the set S-V

In the Induction Proof: $s.d = \delta(s, s) = 0$,

- 1. Base Case: $S=\emptyset$, and $S=\{S\}$
- 2. $v.d = \delta(s,v)$ for all the vertices in S

```
06. while Q \neq \emptyset
```

07. u = EXTRACT-MIN(Q)

in the code u = EXTRACT-MIN(Q), when Dequeue the Vertex u from the min-heap

$$u.d = \delta(s, u)$$

 $u.d \leq y.d$, $\delta(s,u) \leq u.d$ (upper bound properties)

$$\delta(s, y) \leq \delta(s, u), y.d = \delta(s, y)$$

$$\delta(s, y) \le \delta(s, u) \le u.d \le y.d = \delta(s, y)$$

$$\delta(s, y) = \delta(s, u) = y.d = u.d, u.d = \delta(s, u)$$

Linear Programming in Graphs

Objective and Form:

- Optimize a linear objective function subject to linear constraints.
- $Ax \leq b, x \geq 0$, where c, x are coefficient vectors, A is a coefficient matrix, and b is a constant vector.
- $\bullet \ \ \mathsf{Form: min/max} \ \textstyle\sum_{i=1}^n C_i X_i$

Key Concepts:

- Objective Function: Function to minimize/maximize.
- Constraints: Linear inequalities defining feasible region.
- Feasible Region: All points satisfying constraints.
- Optimal Solution: Point minimizing objective function in feasible region.

Constraint Graph Construction:

- · Vertices for variables, edges for constraints.
- Extra vertex v_0 with 0-weight edges to others.

Example Constraint Graph:

- Vertices: v_0, v_1, v_2, \ldots for x_1, x_2, \ldots
- Edges: Directed, weighted, representing constraints.

Solving the Problem:

- 1. Create Vertices: For each X_i , create V_i .
- 2. Add Source Vertex: Add V_0 .
- 3. Connect Source to All: Connect V_0 to all V_i with 0-weight
- 4. Add Edges for Constraints: For each $X_j-X_i \leq b_k$, add edge $V_i o V_j$ with weight b_k .

Direction of Edges in Constraint Graph

To determine the direction of edges in the constraint graph for inequalities $X_j - X_i \le b_k$:

1. Rearrange Inequality: If necessary, rearrange to $X_i \leq X_j + b_k$.

2. **Direct Edge**: Draw an edge from X_i to X_j with weight b_k .

Solving the Problem:

- Convert to shortest path problem, run Bellman-Ford from $\emph{v}_0.$
- · Shortest paths give variable values.

Key Points:

- · Negative Weight Cycles: No solution if present.
- · Shortest Paths: Represent solution.
- · Bellman-Ford Algorithm: Handles negative weights.

Linear Programming in Graphs_

Objective:

• Optimize linear function $\sum C_i X_i$ within constraints.

Constraints:

• Represented by $Ax \leq b$, $x \geq 0$.

Key Concepts:

- Feasible Region: Set of points satisfying constraints.
- Optimal Solution: Point in feasible region that optimizes the function.

Graph Construction:

- · Create vertices for variables and edges for constraints.
- Use a source vertex v_0 connected to all others with zero weight.

Solving:

- Transform to shortest path problem, use Bellman-Ford algorithm from $\emph{v}_0.$
- Solutions reflected in shortest paths from v_0 .

Key Points:

- Negative Weight Cycles: Indicate no solution.
- Bellman-Ford: Suitable for negative weights.

Example Constraint Graph:

- Vertices: v_0, v_1, v_2, \ldots representing x_1, x_2, \ldots
- · Edges: Represent constraints, directed and weighted.

1. Convert Inequalities to Graph:

• Turn linear inequalities $X_i-X_i \leq b_k$ into a directed graph: variables X_1,\ldots,X_n as vertices V_1,\ldots,V_n , add V_0 .

2. Zero-Weight Edges:

• Link V_0 to all vertices with zero-weight edges.

3. Find Shortest Paths:

• Obtain X_1, \ldots, X_n values by finding shortest paths from V_0 to all vertices.

The Given System of Inequalities for all constraints $X_j - X_i \leq b_k$

$$X_1-X_2 \leq 0 \ X_1-X_5 \leq -1 \ X_2-X_5 \leq 1 \ -X_1+X_3 \leq 5 \ -X_1+X_4 \leq 4 \ -X_3+X_4 \leq -1 \ -X_3+X_5 \leq -3 \ -X_4+X_5 \leq -3$$

Step 1. **Create Vertices**: For each variable X_i , create a vertex V_i in the graph.

• Vertices: $V_0, V_1, V_2, V_3, V_4, V_5$

Step 2. Add a Source Vertex: Add an additional vertex V_0 which will act as a source vertex.

• A new Source Vertex V_0

Step 3. Connect Source to All Vertices: Connect V_0 to all other vertices V_i with edges of weight 0.

- Connect V_0 to All Vertices: Add edges with weight 0 from V_0 to $V_1, V_2, V_3, V_4, V_5.$

Step 4. Add Edges for Constraints: For each constraint $X_j - X_i \le b_k$, add a directed edge from vertex V_i to vertex V_j with weight b_k .

- Add Edges for Constraints:
- $X_1-X_2 \leq 0$: Add edge from V_2 to V_1 with weight 0.
- $X_1-X_5 \leq -1$: Add edge from V_5 to V_1 with weight -1.
- $X_2-X_5 \leq 1$: Add edge from V_5 to V_2 with weight 1.
- ullet $-X_1+X_3\leq 5$: Add edge from V_1 to V_3 with weight 5.
- ullet $-X_1+X_4\leq 4$: Add edge from V_1 to V_4 with weight 4.
- $-X_3+X_4 \leq -1$: Add edge from V_4 to V_3 with weight -1.
- $X_3 + X_5 \leq -3$: Add edge from V_5 to V_3 with weight -3.
- $-X_4+X_5 \leq -3$: Add edge from V_5 to V_4 with weight -3.

Solving the Problem:

- · Convert to a shortest path problem.
- Run Bellman-Ford algorithm starting from v_0 .
- Shortest paths from v_0 give the values of variables.

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} \le \begin{bmatrix} 0 \\ -1 \\ 1 \\ 5 \\ 4 \\ -1 \\ -3 \\ -3 \end{bmatrix}$$

(1)

Result: $x = \{-5, -3, 0, -1, -4\}$