

# Library of General Functions (LGF) for S7-1200/1500

STEP 7 (TIA Portal) V14



# Warranty and Liability

### Note

The Application Examples are not binding and do not claim to be complete regarding the circuits shown, equipping and any eventuality. The Application Examples do not represent customer-specific solutions. They are only intended to provide support for typical applications. You are responsible for ensuring that the described products are used correctly. These Application Examples do not relieve you of the responsibility to use safe practices in application, installation, operation and maintenance. When using these Application Examples, you recognize that we cannot be made liable for any damage/claims beyond the liability clause described. We reserve the right to make changes to these Application Examples at any time without prior notice.

If there are any deviations between the recommendations provided in these Application Examples and other Siemens publications – e.g. Catalogs – the contents of the other documents have priority.

We do not accept any liability for the information contained in this document. Any claims against us – based on whatever legal reason – resulting from the use of the examples, information, programs, engineering and performance data etc., described in this Application Example shall be excluded. Such an exclusion shall not apply in the case of mandatory liability, e.g. under the German Product Liability Act ("Produkthaftungsgesetz"), in case of intent, gross negligence, or injury of life, body or health, guarantee for the quality of a product, fraudulent concealment of a deficiency or breach of a condition which goes to the root of the contract ("wesentliche Vertragspflichten"). The damages for a breach of a substantial contractual obligation are, however, limited to the foreseeable damage, typical for the type of contract, except in the event of intent or gross negligence or injury to life, body or health. The above provisions do not imply a change of the burden of proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts hereof is prohibited without the expressed consent of the Siemens AG.

# Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks. In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens' guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit <a href="http://www.siemens.com/industrialsecurity">http://www.siemens.com/industrialsecurity</a>.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under <a href="http://www.siemens.com/industrialsecurity">http://www.siemens.com/industrialsecurity</a>.

# **Table of Contents**

| Warr | anty and                                                                                                                                                                                                                                                                                                         | Liability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1    | Library (                                                                                                                                                                                                                                                                                                        | Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                  |
|      | 1.1<br>1.2<br>1.3                                                                                                                                                                                                                                                                                                | General Hardware and software requirements Library resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                  |
| 2    | Working                                                                                                                                                                                                                                                                                                          | with the Library                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                  |
| 3    | Explana                                                                                                                                                                                                                                                                                                          | tion of the blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                  |
|      | 3.0<br>3.0.1<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.2.1<br>3.2.2<br>3.3.3<br>3.3.1<br>3.4.2<br>3.4.3<br>3.4.5<br>3.4.5<br>3.4.6<br>3.4.7<br>3.4.8<br>3.4.10<br>3.4.11<br>3.4.12<br>3.4.13<br>3.4.14<br>3.5<br>3.5.1<br>3.6.2<br>3.6.3<br>3.6.5<br>3.6.5<br>3.6.6<br>3.6.7<br>3.6.8<br>3.6.9<br>3.6.10<br>3.7.1 | Bit logic operations  FB LGF_PulseRelay.  Date and timer operations  FB LGF_SetTime  FB LGF_CalendarDayWeek  Counter operations.  FC LGF_CalendarDayWeek  Counter operations.  FC LGF_CountFallnDWord.  FC LGF_CountRisInDWord.  FC LGF_CompareVariant  FC LGF_CompareReal  Math operations.  FC LGF_AverageAndDeviation.  FB LGF_HoatingAverage.  FC LGF_MatrixAddition.  FC LGF_MatrixNuverse.  FC LGF_MatrixSubtraction.  FC LGF_MatrixSubtraction.  FC LGF_RandomBasic.  FC LGF_RandomBasic.  FC LGF_RandomINT / LGF_RandomReal.  FC LGF_SearchMinMax.  FC LGF_HighLowLimit.  FB LGF_Integration.  Data handling.  FB LGF_ShellSortInt / LGF_ShellSortUInt / LGF_ShellSortReal.  Converter operations.  FC LGF_GrayToBinary.  FC LGF_GrayToBinary.  FC LGF_StringToDTL  CLGF_StringToTaddr.  FC LGF_StringToTaddr.  FC LGF_StringToTaddr.  FC LGF_Trequency. | 10 10 12 12 16 19 22 42 26 28 30 32 32 34 42 44 46 47 48 50 52 55 57 60 62 63 64 65 66 67 77 76 77 |
|      | 3.7.2<br>3.7.3                                                                                                                                                                                                                                                                                                   | FB LGF_ImpulseFB LGF_SawTooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                                                                                                 |

|   | 3.8    | Technology operations          | 82 |
|---|--------|--------------------------------|----|
|   | 3.8.1  |                                |    |
|   | 3.8.2  | FB LGF_LimRateOfChangeAdvanced |    |
|   |        | FB LGF_Ramp                    |    |
|   |        | FB LGF_NonLin                  |    |
| 4 | Links  | & Literature                   | 98 |
| 5 | Histor | y                              | 99 |
|   | 5.1    | Library versioning             | 99 |
|   | 5.2    | Change log                     |    |

### 1.1 General

# 1 Library Overview

### 1.1 General

TIA Portal features an extensive number of "ready-to-use" instructions (mathematical functions, times, timers, etc.). Furthermore, there are additional useful basic functions.

These functions are provided in the form of a library and can be used freely. The finished functions are freely adjustable and can thus be used universally.

The library described here is version-numbered and is continually expanded. Information on the versioning can be found in chapter 5.1 Library versioning.

## 1.2 Hardware and software requirements

### Requirements for this library

To be able to use the functionality of the library described here, the following hardware and software requirements must be met.

### **Hardware**

All blocks (FB, FC, DB,...) in the library can be used universally with the following controllers:

- S7-1200 and S7-1200 F product family
- S7-1500 and S7-1500 F product family
- Simulation with S7-PLCSIM (from V14 and higher)

### Software

• STEP 7 (TIA Portal) Basic or Professional from V14 or higher

### Note

It is generally possible to open a library with STEP 7 Basic, even if it contains STEP 7 Professional elements (e.g. S7-1500 controller). In this case, you will be informed by a message upon opening the library.

All elements (types and master copies) can be used if they are supported by the installed hardware in the TIA portal.

In case you attempt to copy elements from the library with STEP 7 Basic which are not supported (e.g. S7-1500 controller), an error message is displayed.

### 1.3 Library resources

# 1.3 Library resources

The following section gives you an overview of the size of the blocks of the library in the main memory.

### Assignment of memory space to the individual blocks

Table 1-1: Memory usage (CPU 1212 DC/DC/DC V4.2, CPU 1511-1 PN V2.0)

| Block                              | CPU 1212 a<br>(in by |                | CPU 1511 allocation<br>(in byte) |                |
|------------------------------------|----------------------|----------------|----------------------------------|----------------|
|                                    | Load<br>memory       | Work<br>memory | Load<br>memory                   | Work<br>memory |
| Bit logic operations               |                      |                |                                  |                |
| FB LGF_PulseRelay V1.0.2           | 7295                 | 201            | 7367                             | 302            |
| Date and timer operations          |                      |                |                                  |                |
| FB LGF_Astro V1.1.4                | 48132                | 3525           | 48226                            | 3604           |
| FB LGF_SetTime V1.0.2              | 26835                | 2231           | 27040                            | 2301           |
| FB LGF_TimerSwitch V1.1.1          | 35911                | 4161           | 35861                            | 4272           |
| FC LGF_CalendarDayWeekV1.0.0       | 21867                | 1751           | 22071                            | 1826           |
| Counter operations                 |                      | ·              | ·                                |                |
| FC LGF_CountFalInDWord V1.0.1      | 14890                | 1124           | 14896                            | 1188           |
| FC LGF_CountRisInDWord V1.0.1      | 14759                | 1124           | 14766                            | 1188           |
| Comperator operations              | <u> </u>             |                | <u>.</u>                         |                |
| FC LGF_CompareVariant V1.0.2       | 10955                | 620            | 10966                            | 684            |
| FC LGF_CompareReal V1.0.0          | 6281                 | 118            | 6302                             | 182            |
| Math operations                    | <u>.</u>             |                |                                  |                |
| FC LGF_AverageAndDeviation V1.0.2  | 29602                | 3194           | 29614                            | 3258           |
| FB LGF_FloatingAverage V1.1.0      | 16590                | 748            | 16506                            | 830            |
| FC LGF_MatrixAddition V2.0.0       | 11514                | 489            | 11556                            | 553            |
| FC LGF_MatrixInverse V2.0.0        | 15936                | 1017           | 15976                            | 1081           |
| FC LGF_MatrixMultiplication V2.0.0 | 12172                | 546            | 12213                            | 610            |
| FC LGF_MatrixSubtraction V2.0.0    | 11545                | 489            | 11590                            | 553            |
| FC LGF_MatrixTranspose V2.0.0      | 9971                 | 383            | 10010                            | 447            |
| FB LGF_MinMaxHistory V1.0.1        | 6150                 | 114            | 6144                             | 178            |
| FC LGF_RandomBasic V1.0.0          | 6844                 | 191            | 6868                             | 255            |
| FC LGF_RandomInt V1.0.1            | 9104                 | 241            | 9115                             | 305            |
| FB LGF_RandomReal V1.0.2           | 9528                 | 281            | 9550                             | 345            |
| FC LGF_SearchMinMax V1.0.1         | 36145                | 4642           | 36195                            | 4706           |
| FC LGF_XRoot V1.0.1                | 4688                 | 49             | 4693                             | 113            |
| FC LGF_HighLowLimit V1.0.0         | 8978                 | 262            | 9015                             | 334            |
| FC LGF_Integration V1.0.0          | 11058                | 323            | 11073                            | 393            |
| Data handling                      | - 1                  | 1              |                                  |                |
| FB LGF_FIFO V1.0.2                 | 20681                | 1688           | 20773                            | 1784           |
| FB LGF_ShellSortInt V1.1.1         | 18458                | 1458           | 18526                            | 1540           |
| FB LGF_ShellSortUint V1.1.1        | 18563                | 1458           | 18637                            | 1540           |

### 1.3 Library resources

| Block                                 | CPU 1212 allocation<br>(in byte) |                | CPU 1511 allocation<br>(in byte) |                |
|---------------------------------------|----------------------------------|----------------|----------------------------------|----------------|
|                                       | Load<br>memory                   | Work<br>memory | Load<br>memory                   | Work<br>memory |
| FB LGF_ShellSortReal V1.1.1           | 18484                            | 1458           | 18530                            | 1540           |
| Converter operations                  |                                  |                |                                  |                |
| FC LGF_BinaryToGray V1.0.2            | 4327                             | 36             | 4335                             | 100            |
| FC LGF_GrayToBinary V1.0.2            | 11803                            | 872            | 11809                            | 936            |
| FC LGF_BitsToWord V1.0.0              | 6052                             | 186            | 6079                             | 250            |
| FC LGF_WordToBits V1.0.0              | 6226                             | 175            | 6250                             | 239            |
| FC LGF_DTLtoString V1.0.1             | 16403                            | 876            | 16395                            | 935            |
| FC LGF_StringToDTL V1.0.1             | 19911                            | 1116           | 19886                            | 1139           |
| FC LGF_TemperatureConvert V1.0.1      | 6644                             | 242            | 6624                             | 306            |
| FC LGF_ScaleLinear V1.0.0             | 29123                            | 4443           | 29144                            | 4507           |
| FC LGF_StringToTaddr V1.0.0           | 21707                            | 883            | 21715                            | 941            |
| FC LGF_TaddrToString V1.0.0           | 10780                            | 388            | 10825                            | 447            |
| Signal generators                     |                                  |                |                                  |                |
| FB LGF_Frequency V1.1.2               | 10878                            | 345            | 10871                            | 412            |
| FB LGF_Impulse V1.2.0                 | 7730                             | 131            | 7719                             | 200            |
| FB LGF_SawTooth V1.0.1                | 10137                            | 249            | 10179                            | 320            |
| Technology operations                 |                                  |                |                                  |                |
| FB LGF_LimRateOfChangeBasic V1.0.1    | 11985                            | 357            | 12022                            | 430            |
| FB LGF_LimRateOfChangeAdvanced V1.0.1 | 24401                            | 1474           | 24704                            | 1706           |
| FB LGF_Ramp V1.0.0                    | 27084                            | 1440           | 27144                            | 1517           |
| FB LGF_NonLin V1.0.0                  | 12901                            | 564            | 13014                            | 640            |

# 2 Working with the Library

All blocks in the "LGF" library are freely usable in connection with S7-1200 and S7-1500 controllers.

Most blocks are stored as type in the library. The blocks are therefore versionnumbered and can fully exploit the advantages.

- Central update function of library elements
- Versioning of library elements

### Note

Information on the general use of libraries can be found in the S7-1200/1500 program guide under the chapter "libraries".

https://support.industry.siemens.com/cs/ww/en/view/81318674

### **Note**

All blocks in the LGF have been created according to the programming style guide.

https://support.industry.siemens.com/cs/ww/en/view/81318674

Further information on libraries in the TIA portal:

- How do you open libraries in STEP 7 (TIA Portal)? https://support.industry.siemens.com/cs/ww/en/view/37364723
- automation in less than 10 minutes TIA portal: Time Savers Global libraries <a href="https://support.industry.siemens.com/cs/ww/en/view/78529894">https://support.industry.siemens.com/cs/ww/en/view/78529894</a>
- Which elements of STEP 7 (TIA Portal) can you store in a library as Type or as Master Copy? https://support.industry.siemens.com/cs/ww/en/view/109476862
- How can you automatically open a global library upon starting up TIA portal from V13 or higher, and how can you use it, for example, as a company library?

https://support.industry.siemens.com/cs/ww/en/view/100451450

# 3 Explanation of the blocks

The following chapters describe all blocks of the library "Library General Functions". The chapters follow the same structure as the library itself.

All blocks are divided into areas of application or categories:

- Bit logic operations
- Date and timer operations
- Counter operations
- Comperator operations
- Math operations
- Data handling
- Converter operations
- Signal generators
- Technology operations

Figure 3-1: Global library (LGF)



3.0 Bit logic operations

# 3.0 Bit logic operations

### 3.0.1 FB LGF\_PulseRelay

### **Short description**

This block equals a surge relay or a toggle flip-flop including a set and reset input.

### **Block**

Figure 3-2: FB LGF\_PulseRelay



### Input parameters

Table 3-1: Input parameter

| Parameter | Data type | Description                                                              |
|-----------|-----------|--------------------------------------------------------------------------|
| Trigger   | BOOL      | Every rising edge changes the boolean value of the "out" output.         |
| Set       | BOOL      | Every rising edge sets the boolean value of the "out" output to "TRUE".  |
| Reset     | BOOL      | Every rising edge sets the boolean value of the "out" output to "FALSE". |

### **Output parameters**

Table 3-2: Output parameter

| Parameter | Data type | Description   |
|-----------|-----------|---------------|
| Out       | BOOL      | Signal output |

3.0 Bit logic operations

### **Mode of Operation**

Figure 3-3: LGF\_PulseRelay signal diagram



- 1. Every rising edge of the "trigger" input changes the boolean value of the "out" output.
- 2. Every rising edge of the "set" input sets the boolean value of the "out" output to "TRUE".
- 3. Every rising edge of the "reset" input sets the boolean value of the "out" output to "FALSE".
- 4. If the "set" and "reset" inputs are set in the same cycle, the "reset" input has priority.

The block can also be used as frequency distribution. If the "trigger" input is supplied with a fixed frequency, the "out" output provides half the frequency.

# 3.1 Date and timer operations

### 3.1.1 FB LGF Astro

### **Short description**

This block calculates the sunrise and sunset times for a particular location on earth. The exact position is transmitted to the block in the form of geographic coordinates (longitude and latitude).

Figure 3-4: Earth with longitude and latitude



Information on time synchronization can be found in the following entry: <a href="https://support.industry.siemens.com/cs/ww/en/view/86535497">https://support.industry.siemens.com/cs/ww/en/view/86535497</a>

### **Block**

Figure 3-5: FB LGF\_Astro



### Input parameters

Table 3-3: Input parameter

| Parameter     | Data type        | Description                                                                                                                                                                                                                                                                                              |  |
|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| latitudeDD    | REAL             | Latitude in degrees with decimal values (unit: degrees decimal), Permissible value range [-90.00000+90.00000]° This is a common coordinate format in GPX files (GPS).                                                                                                                                    |  |
| longitudeDD   | REAL             | Longitude in degrees with decimal values (unit: degrees decimal) <sup>1</sup> Permissible value range [-180.0000+180.0000]°                                                                                                                                                                              |  |
| modeDMS       | BOOL             | <ol> <li>Transfer format of position in "degrees decimal" via the formal parameters "latitudeDD" and "longitudeDD"</li> <li>Transfer format of position in direction, degree, minute and seconds via the formal parameters "latitudeDMS" and "longitudeDMS"</li> </ol>                                   |  |
| latitudeDMS   | LGF_typeAstroDMS | Latitude in compass direction; degree; minutes and seconds in the PLC data type "LGF_typeAstroDMS".  Permissible parameter values [N,S]; [090]; [059]; [059]  Permissible parameter values (sum of parameter values) [N, S, n, s]; [090]°  This is a common coordinate format in map navigation.         |  |
| IongitudeDMS  | LGF_typeAstroDMS | Longitude in direction; degree; minutes and seconds in the PLC data type "LGF_typeAstroDMS".  Permissible parameter values [E, W]; [0180]; [059]; [059]  Permissible parameter values (sum of parameter values) [E, W, e, w]; [0180]°  The international standard letter designating east is "E" (East). |  |
| offsetSunrise | TIME             | Offset of power-on time for "daytime"                                                                                                                                                                                                                                                                    |  |
| offsetSunset  | TIME             | Offset of power-off time for "daytime"                                                                                                                                                                                                                                                                   |  |

### **Output parameters**

Table 3-4: Output parameter

| Parameter     | Data<br>type | Description                                                                                               |  |  |  |
|---------------|--------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| sunrise       | DTL          | Sunrise at specified location considering the "offsetSunrise"                                             |  |  |  |
| sunset        | DTL          | Sunset at specified location considering the "offsetSunset"                                               |  |  |  |
| daytime       | BOOL         | If the controller's local time is between "sunrise" and "sunset" then "daytime" returns the value "TRUE". |  |  |  |
| actSystemTime | DTL          | Current system time (UTC)                                                                                 |  |  |  |
| actLocalTime  | DTL          | Current local time                                                                                        |  |  |  |
| error         | BOOL         | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code.                |  |  |  |
| statusID      | UINT         | "statusID" returns the ID of the block reporting the status. See table below.                             |  |  |  |
| status        | WORD         | "status" returns the status/error code (see table below).                                                 |  |  |  |

### Status and error displays

Table 3-5: Status/error codes

| statusID | status  | Meaning                                                       | Remedy/notes                                                      |
|----------|---------|---------------------------------------------------------------|-------------------------------------------------------------------|
| 1        | 16#7000 | Initial value                                                 | -                                                                 |
| 1        | 16#0000 | No errors                                                     | -                                                                 |
| 1        | 16#8200 | Incorrect direction information at<br>"latitudeDMS.dir" input | Only the following characters are allowed: N, n, S, s, W, w, E, e |
| 1        | 16#8201 | Incorrect values at "latitudeDMS"                             | Check the values at                                               |
| 1        | 16#8202 | Incorrect direction information at "longitudeDMS.dir"         | Only the following characters are allowed: N, n, S, s, W, w, E, e |
| 1        | 16#8203 | Incorrect values at "longitudeDMS"                            | Check the values at                                               |
| 1        | 16#8204 | Incorrect value at "latitudeDD" input.                        | Check the actual value at the input.                              |
| 1        | 16#8205 | Incorrect value at "longitudeDD" input.                       | Check the actual value at the input.                              |
| 2        | -       | Error/status of subordinate block "RD_SYS_T".                 | -                                                                 |
| 3        | -       | Error/status of subordinate block "RD_LOC_T".                 | -                                                                 |

### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

### **Mode of Operation**

If processes are to be run automatically, depending on the day and night change, an astronomical clock function is required. Examples for this would be switching exterior lighting on and off of opening and closing roller shutters.

If these processes are to be executed time-delayed, that is, at a specified time before or after sunrise or sunset, an offset is required for each of them as well.

### Note

To execute the function exactly, it needs to be ensured that the system time and local time of the SIMATIC controller are set correctly.

Based on the system time/local time of the SIMATIC controller and the set coordinates, the block calculates the sunrise and sunset times. The offset times are added on to the sunrise and sunset and returned at the "sunrise" and "sunset" outputs. If the system time of the SIMATIC controller is in-between these values, the "daytime" output is set to the value "TRUE".

### Note

Because sunrise and sunset times change daily, it is possible that the "daytime" output constantly "remains" on "TRUE" or "FALSE" for a longer period of time:

- at correspondingly high offset values
- at a location beyond the polar circle

The coordinates can be entered in the "DMS" format (with PLC data type "LGF\_typeAstroDMS"), or in "Degree.Decimal".

Which format is active can be set with the "modeDMS" formal parameter (see <u>Table 3-3</u>).

The entry of the coordinate values is checked for valid values. In case of invalid values, a corresponding error code is returned at "status" (see Table 3-5)

If there is an invalid coordinate value at a formal parameter and if this formal parameter was activated via "modeDMS", the "sunrise" and "sunset" outputs are set to the value DTL#1970-01-01-00:00:00.

### **Example**

The following example describes the block's mode of operation.

Table 3-6: Geographic coordinates for Nuremberg-Moorenbrunn, date and system time

| longitude: | + 11.07675° | or          | E 11° 4' 36" |
|------------|-------------|-------------|--------------|
| Latitude:  | + 49.45203° | or          | N 49° 27' 7" |
| Date:      | 07.07.2016  | Local time: | 09:20 AM     |

Figure 3-6: FB LGF\_Astro, online monitoring of the block with the parameters as well as the actual parameters via the monitoring table



### 3.1.2 FB LGF\_SetTime

### **Short description**

This block summarizes the functions system time, local time and setting time zone.

### **Block**

Figure 3-7: FB LGF\_SetTime



### Input parameters

Table 3-7: Input parameter

| Parameter          | Data type | Description                                                                                                                                                                                       |
|--------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| setSystemTimeUTC   | BOOL      | Rising edge sets the specified system time at the<br>"systemTimeUTC" input                                                                                                                        |
| systemTimeUTC      | DTL       | Specified system time, corresponds to UTC (Coordinated Universal Time)                                                                                                                            |
| setLocalTime       | BOOL      | Rising edge accepts the specified local time at the "localTime" input                                                                                                                             |
| localTime          | DTL       | Defined local time                                                                                                                                                                                |
| setTimeZone        | BOOL      | Rising edge accepts  the value at the "timeZone" input  the value at the "daylightSavingTime" input                                                                                               |
| timeZone           | INT       | Defined local time (format [+-HHMM] Examples:  UTC -12:00 [-1200]  UTC -03:30 [-330]  UTC [0]  UTC +13:00 [1300]                                                                                  |
| daylightSavingTime | BOOL      | TRUE: Daylight saving time changeover active (Local time + 60 min)  - from last Sunday in March at 02:00 AM  - until last Sunday in October at 3:00 AM  FALSE: no daylight saving time changeover |

### **Output parameters**

Table 3-8: Output parameter

| Parameter       | Data type | Description                                                                                |
|-----------------|-----------|--------------------------------------------------------------------------------------------|
| systemTime      | DTL       | Current system time (UTC)                                                                  |
| localTime       | DTL       | Current local time                                                                         |
| lastSetTimeZone | STRING    | Time zone that has last been set by the block                                              |
| error           | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID        | UINT      | "statusID" returns the ID of the block reporting the status. See table below.              |
| status          | WORD      | "status" returns the status/error code (see table below).                                  |

### Status and error displays

Table 3-9: Status/error codes

| statusID | status  | Meaning                                                       | Remedy/notes                                     |
|----------|---------|---------------------------------------------------------------|--------------------------------------------------|
| 1        | 16#7000 | Initial value                                                 | -                                                |
| 1        | 16#0000 | No errors                                                     | -                                                |
| 1        | 16#8200 | No valid time zone has been returned at the "timeZone" input. | Use only allowed values (see mode of operation). |
| 2        | -       | Error/status of subordinate block "SET_TIMEZONE"              | -                                                |

### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

### **Mode of Operation**

This block summarizes the functions system time, local time and setting time zone. The following time zones are possible at the "timeZone" input.

| Input<br>"timeZone" | Time zone                                             |  |
|---------------------|-------------------------------------------------------|--|
| -1200               | (UTC -12:00) Eniwetok, Kwajalein                      |  |
| -1100               | (UTC -11:00) Midway Island                            |  |
| -1000               | (UTC -10:00) Hawaii                                   |  |
| -930                | (UTC -09:30) (French) Polynesia                       |  |
| -900                | (UTC -09:00) Alaska                                   |  |
| -800                | (UTC -08:00) Tijuana, Los Angeles, Seattle, Vancouver |  |
| -700                | (UTC -07:00) Arizona, Denver, Salt Lake City, Calgary |  |
| -600                | (UTC -06:00) Chicago, Dallas, Kansas City, Winnipeg   |  |
| -500                | (UTC -05:00) Eastern Time (USA & Canada)              |  |
| -400                | (UTC -04:00) La Paz, Georgetown                       |  |

| Input<br>"timeZone" | Time zone                                                         |  |
|---------------------|-------------------------------------------------------------------|--|
| -330                | (UTC -03:30) Newfoundland                                         |  |
| -300                | (UTC -03:00) Brasilia, Buenos Aires                               |  |
| -200                | (UTC -02:00) Mid-Atlantic                                         |  |
| -100                | (UTC -01:00) Azores, Cape Verde Is.                               |  |
| 0                   | (UTC) Dublin, Edinburgh, Lisbon, London                           |  |
| 100                 | (UTC +01:00) Berlin, Bern, Brussels, Rome, Stockholm, Vienna      |  |
| 200                 | (UTC +02:00) Athens, Istanbul, Minsk, Bucharest                   |  |
| 300                 | (UTC +03:00) Baghdad, Kuwait, Riyadh                              |  |
| 330                 | (UTC +03:30) Iran                                                 |  |
| 400                 | (UTC +04:00) Moscow, St. Petersburg, Volgograd, Abu Dhabi, Muscat |  |
| 430                 | (UTC +04:30) Afghanistan                                          |  |
| 500                 | (UTC +05:00) Islamabad, Karachi, Tashkent                         |  |
| 530                 | (UTC +05:30) India, Sri Lanka                                     |  |
| 545                 | (UTC +05:45) India, Sri Lanka                                     |  |
| 600                 | (UTC +06:00) Astana, Almaty, Dhaka, Colombo                       |  |
| 630                 | (UTC +06:30) Coco Island, Mayanmar                                |  |
| 700                 | (UTC +07:00) Bangkok, Hanoi, Jakarta                              |  |
| 800                 | (UTC +08:00) Beijing, Chongqing, Hong Kong, Urumqi                |  |
| 830                 | (UTC +08:30) North Corea                                          |  |
| 900                 | (UTC +09:00) Yakutsk, Osaka, Sapporo, Tokyo, Seoul                |  |
| 930                 | (UTC +09:30) Australia: Northern Territory, South Australia       |  |
| 1000                | (UTC +10:00) Brisbane, Canberra, Melbourne, Sydney                |  |
| 1030                | (UTC +10:30) Australia: Lord Howe Island                          |  |
| 1100                | (UTC +11:00) Vladivostok, Magadan, Solomon Is., New Caledonia     |  |
| 1200                | (UTC +12:00) Auckland, Wellington                                 |  |
| 1245                | (UTC +12:45) Chatham Islands                                      |  |
| 1300                | (UTC +13:00) Kiribati                                             |  |

### Note Daylight saving time/winter time

The parameters (time difference, beginning of daylight saving time, beginning of winter time) can be adjusted in the static "statTimeZone" tag.

Standard values of the static "statTimeZone" tag:

• Time difference: 60 min

Beginning of daylight saving time: Last Sunday in March, 02:00 am
 Beginning of winter time: Last Sunday in October, 03:00 am

### 3.1.3 FB LGF\_TimerSwitch

### **Short description**

This block is a timer. It is possible to set daily, weekly, monthly and annual scheduler points, as well as scheduler points for weekdays or weekend days.

### **Block**

Figure 3-8: FB LGF\_TimerSwitch



### Input parameters

Table 3-10: Input parameter

| Parameter  | Data type | Description                                               |
|------------|-----------|-----------------------------------------------------------|
| onMonth    | USINT     | Month, in which the signal is to be set.                  |
| onDay      | USINT     | Day, on which the signal is to be set.                    |
| onWeekday  | USINT     | Weekday, on which the signal is to be set. (Sunday = 1)   |
| onHour     | USINT     | Hour, at which the signal is to be set.                   |
| onMinute   | USINT     | Minute, at which the signal is to be set.                 |
| offMonth   | USINT     | Month, in which the signal is to be reset.                |
| offDay     | USINT     | Day, on which the signal is to be reset.                  |
| offWeekday | USINT     | Weekday, on which the signal is to be reset. (Sunday = 1) |
| offHour    | USINT     | Hour, at which the signal is to be reset.                 |
| offMinute  | USINT     | Minute, at which the signal is to be reset.               |
| mode       | USINT     | Specification of module (see operating notes).            |

### **Output parameters**

Table 3-11: Output parameter

| Parameter    | Data type | Description                                                                                |
|--------------|-----------|--------------------------------------------------------------------------------------------|
| signal       | BOOL      | Output signal                                                                              |
| actLocalTime | DTL       | Current local time                                                                         |
| error        | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID     | UINT      | "statusID" returns the ID of the block reporting the status. See table below.              |
| status       | WORD      | "status" returns the status/error code (see table below).                                  |

### Status and error displays

Table 3-12: Status/error codes

| statusID | status  | Meaning                                                 | Remedy/notes                                |
|----------|---------|---------------------------------------------------------|---------------------------------------------|
| 1        | 16#7000 | Initial value                                           | -                                           |
| 1        | 16#0000 | No errors                                               | -                                           |
| 1        | 16#8200 | No valid actual value was returned at the "mode" input. | Allowed values "1", "2", "3", "4", "5", "6" |
| 2        | -       | Error/status of subordinate block "RD_LOC_T"            | -                                           |

### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

### **Mode of Operation**

The block provides different kinds of timers which are specified in the "mode" parameter:

- Daily timer (mode = 1)
- Weekly timer (mode = 2)
- Monthly timer (mode = 3)
- Annual timer (mode = 4)
- On weekdays, from monday till friday (mode = 5)
- On weekend, saturday and sunday (mode = 6)

Depending on the mode, the following formal parameters need to be activated:

Table 3-13: Required formal parameters for the respective mode

| Mode          | Required formal parameters |
|---------------|----------------------------|
| Daily timer   | onHour / offHour           |
| (mode = 1)    | onMinute / offMinute       |
| Weekly timer  | onWeekday / offWeekday     |
| (mode = 2)    | onHour / offHour           |
|               | onMinute / offMinute       |
| Monthly timer | onDay / offDay             |
| (mode = 3)    | onHour / offHour           |
|               | onMinute / offMinute       |
| Annual timer  | onMonth / offMonth         |
| (mode = 4)    | onDay / offDay             |
|               | onHour / offHour           |
|               | onMinute / offMinute       |
| On weekdays   | onHour / offHour           |
| (mode = 5)    | onMinute / offMinute       |
| Weekend       | onHour / offHour           |
| (mode = 6)    | onMinute / offMinute       |

If the set start time corresponds to the controller's actual local time, the "signal" output is set to "TRUE". If the set switch-off time corresponds to the controller's actual local time, the "signal" output is reset again.

### 3.1.4 FC LGF\_CalendarDayWeek

### **Short description**

Using the specified date, this function calculates the calender week and the number of days that have passed since the beginning of the year.

### **Block**

Figure 3-9: FC LGF\_ CalendarDayWeek



### Input parameters

Table 3-14: Input parameter

| Parameter | Data type | Description                                                                                                                                                                              |
|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| inDate    | DTL       | Date for calculating the calendar week and the days since January 1.                                                                                                                     |
| modeEU    | BOOL      | Selecting the calculation mode for calendar weeks.  0: for the calculation in the US and in many other countries  1: for the calculation in european countries according to the ISO 8601 |

### **Output parameters**

Table 3-15: Output parameter

| Parameter  | Data type | Description                                               |
|------------|-----------|-----------------------------------------------------------|
| daysPassed | DINT      | Days passed since January 1.                              |
| weekNumber | DINT      | Number of calendar week.                                  |
| error      | BOOL      | Error display.                                            |
|            |           | 0: no error.                                              |
|            |           | 1: Block error, "status" returns error code.              |
| status     | WORD      | "status" returns the status/error code (see table below). |

### Status and error displays

Table 3-16: Status/error codes

| Status  | Meaning                                       | Remedy                                   |
|---------|-----------------------------------------------|------------------------------------------|
| 16#0000 | No errors.                                    | -                                        |
| 16#8201 | Date at "inDate" input below the lower limit. | Select "inDate" greater than 1971-01-01. |
| 16#8202 | Date at "inDate" input above the upper limit. | Select "inDate" lower than 2261-12-31.   |

### **Mode of Operation**

There are two calculating modes for determining the calendar week for the specified date. Via the "modeEU" input, you can select the calculatin mode:

- modeEU = 0: For the calculation in the US and in many other countries
- modeEU = 1: for the calculation in european countries according to the ISO 8601

### For the calculation in european countries according to the ISO 8601

- Calendar weeks have 7 days, start on a Monday and are counted continuously over the year.
- The first calendar week of a year is the one containing the first Thursday.
- Each year has either 52 or 53 calendar weeks.
- A year has 53 weeks if the following properties apply:
  - A common year starts and ends on a Thursday.
  - A leap year either starts on a Wednesday and ends on a Thursday or it starts on a Thursday and ends on a Friday.
- The 29, 30 and 31 December may already belong to the first calendar week of the following year.
- The 1, 2 and 3 January may still belong to the last calendar week of the previous year.

### For the calculation in the US and in many other countries

- Calendar weeks have 7 days, start on a Sunday and are counted continuously over the year.
- The first calendar week of a year is the one containing the 1 January.
- Each year has either 52 or 53 calendar weeks.
- A year has 53 weeks if the following properties apply:
  - A common year starts on a Saturday and ends on a Saturday.
  - A leap year either starts on a Saturday and ends on a Sunday or it starts on a Friday and ends on a Saturday.
- The days after the last Saturday in December may already belong to the first calendar week of the following year.

### 3.2 Counter operations

### 3.2 Counter operations

### 3.2.1 FC LGF CountFalInDWord

### **Short description**

This block analyses a tag of the DWORD type and returns, how often a 1-0 sequence (falling edge) occurs in the tag.

### **Application Example**

Extract from the manual of the TM Timer DIDQ 16x24V technology module

With the oversampling function, the technology module captures the status of the respective digital input per application cycle (e.g. OB61) at 32 times and in even chronological intervals. These 32 states are collectively returned at the check-back interface in the form of 32 bit values.

Figure 3-10: Oversampling example of DI0 at the DIDQ 16x24V TM Timer.



In this case, the LGF\_CountFalInDWord block is used to count the number of falling edges.

SIMATIC ET 200MP/S7-1500 Technoloy Module TM Timer DIDQ 16x24V (6ES7552-1AA00-0AB0)

https://support.industry.siemens.com/cs/ww/en/view/95153313

### **Block**

Figure 3-11: FC LGF\_CountFalInDWord



### Input parameters

Table 3-17: Input parameter

| Parameter      | Data type | Description                                         |
|----------------|-----------|-----------------------------------------------------|
| dWordActCycle  | DWORD     | Double word, in which the falling edges are counted |
| dWordPrevCycle | DWORD     | Double word from the previous cycle                 |

### 3 Explanation of the blocks

### 3.2 Counter operations

### **Output parameters**

Table 3-18: Output parameter

| Parameter | Data type | Description                                |
|-----------|-----------|--------------------------------------------|
| Ret_Val   | INT       | Number of falling edges in the double word |

### **Mode of Operation**

The block counts the number of falling edges (1-0 transitions) in a tag of the DWORD data type from left to right. In this, the "Ret\_Val" output returns the number of falling edges.

For falling edges to be detected at tag bounds, the "dWordPrevCycle" input needs to be interconnected with the tag of the previous cycle.

### **Example**

The following example describes the block's mode of operation. In this case, it is assumed that a signal of unknown length is continually scanned per cycle in the form of double words (DWORD).

Within this signal, 1-0 sequences (falling edges) are to be continually counted and returned. For falling edges to be detected at tag bounds as well in this example, the "dWordPrevCycle" input needs to be interconnected with the tag of the previous cycle.

Table 3-19: Example

| DWORD previous cycle<br>(dWordPrevCycle) | DWORD actual cycle (dWordActCycle)                                                                             |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| 1001_0000_0001_1010_1001_0000_0001_1011  | <b>0</b> 01 <b>0</b> _1 <b>0</b> 1 <b>0</b> _0001_1111_ <b>0</b> 1 <b>0</b> 0_0011_1 <b>0</b> 00_01 <b>0</b> 1 |  |

Number of 1-0 sequences (falling edges): "Ret Val" = 8

### 3.2 Counter operations

### 3.2.2 FC LGF\_CountRisInDWord

### **Short description**

This block analyzes a tag of the DWORD type and returns, how often a 0-1 sequence (rising edge) occurs in the tag.

### **Application example:**

Extract from the manual of the TM Timer DIDQ 16x24V technology module:

With the oversampling function, the technology module captures the status of the respective digital input per application cycle (e.g. OB61) at 32 times and in even chronological intervals. These 32 states are collectively returned at the check-back interface in the form of 32 bit values.

Figure 3-12: Oversampling example of DI0 at the DIDQ 16x24V TM Timer.



TAPP Applikationszyklus MSB Most significant bit LSB Least significant bit

In this case, the LGF\_CountRisInDWord block is used to count the number of rising edges.

SIMATIC ET 200MP/S7-1500 Technoloy Module TM Timer DIDQ 16x24V (6ES7552-1AA00-0AB0)

https://support.industry.siemens.com/cs/ww/en/view/95153313

### **Block**

Figure 3-13: FC LGF\_CountRisInDWord



### Input parameters

Table 3-20: Input parameter

| Parameter      | Data type | Description                                        |
|----------------|-----------|----------------------------------------------------|
| dWordActCycle  | DWORD     | Double word, in which the rising edges are counted |
| dWordPrevCycle | DWORD     | Double word from the previous cycle                |

### 3 Explanation of the blocks

### 3.2 Counter operations

### **Output parameters**

Table 3-21: Output parameter

| Parameter | Data type | Description                               |
|-----------|-----------|-------------------------------------------|
| Ret_Val   | INT       | Number of rising edges in the double word |

### **Mode of Operation**

The block counts the number of rising edges (0-1 transitions) in a tag of the DWORD data type from left to right. In this, the "Ret\_Val" output returns the number of rising edges.

For rising edges to be detected at tag bounds as well, the "dWordPrevCycle" input needs to be interconnected with the tag of the previous cycle.

### **Example**

The following example describes the block's mode of operation. In this case, it is assumed that a signal of unknown length is continually scanned per cycle in the form of double words (DWORD).

Within this signal, 0-1 sequences (rising edges) are to be continually counted and returned. For rising edges to be detected at tag bounds as well in this example, the "dWordPrevCycle" input needs to be interconnected with the double word of the previous cycle.

Table 3-22: Example

| DWORD previous cycle (dWordPrevCycle)   | DWORD actual cycle<br>(dWordActCycle)   |  |
|-----------------------------------------|-----------------------------------------|--|
| 1001_0000_0001_1010_1001_0000_0001_1010 | 1010_1010_0001_1111_0100_0011_1000_0101 |  |

Number of 0-1 sequences (rising edges): "Ret Val" = 9

# 3.3 Comperator operations

### 3.3.1 FC LGF CompareVariant

### **Short description**

This block compares two structured actual parameters (array, PLC data type) and returns, whether they correspond to the same type and have the same values.

### **Block**

Figure 3-14: FC LGF\_CompareVariant



### Input/Output parameters (InOut)

Table 3-23: Input/Output parameters (InOut)

| Parameter | Data type | Description                             |
|-----------|-----------|-----------------------------------------|
| variable1 | VARIANT   | Comparison tag with arbitrary data type |
| variable2 | VARIANT   | Comparison tag with arbitrary data type |

### **Output parameters**

Table 3-24: Output parameter

| Parameter | Data type | Description                                                                                                                         |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Ret_Val   | BOOL      | O: Values of comparison tags or PLC data types differ.  1: Values of comparison tags are the same and PLC data types are identical. |
| Error     | BOOL      | no errors     Block error, "statusID" returns error source, "status" returns error code.                                            |
| statusID  | UINT      | "statusID" returns the ID of the block reporting the status. See table below.                                                       |
| Status    | WORD      | "status" returns the status/error code (see table below).                                                                           |

### Status and error displays

Table 3-25: Status/error codes

| statusID | Status  | Meaning       | Remedy/notes |
|----------|---------|---------------|--------------|
| 1        | 16#7000 | Initial value | -            |
| 1        | 16#0000 | No errors     | -            |

### **Mode of Operation**

This block compares two (structured) actual parameters and outputs whether they correspond to the same value.

### Note

The following differences cannot be detected with the comparison method (byte level):

- Tags of the "Struct" data type cannot be compared.
- With strings, differences may occur in the range between actual length and maximum length.
- A disparity can also be displayed with "same" tags, if the structure contains REAL numbers.
- Tags of the "ARRAY of BOOL" type cannot be checked for equality with the function, because the used "CountOfElements" instruction also counts the filling elements (e.g. with an ARRAY[0..1] of BOOL, 8 is output).

### 3.3.2 FC LGF\_CompareReal

### **Short description**

Via an approximation formula, this function checks the equality of two REAL numbers.

### **Block**

Figure 3-15: FC LGF\_CompareReal



### Input parameters

Table 3-26: Input parameter

| Parameter | Data type | Description            |
|-----------|-----------|------------------------|
| valueA    | REAL      | Number to be compared. |
| valueB    | REAL      | Number to be compared. |

### **Output parameters**

Table 3-27: Output parameter

| Parameter | Data type | Description                                               |
|-----------|-----------|-----------------------------------------------------------|
| Ret_Val   | BOOL      | 0: not equal                                              |
|           |           | 1: equal                                                  |
| Error     | BOOL      | Error display.                                            |
|           |           | 0: no error.                                              |
|           |           | 1: Block error, "status" returns error code.              |
| Status    | WORD      | "status" returns the status/error code (see table below). |

### Status and error displays

Table 3-28: Status/error codes

| Status  | Meaning                                                            | Remedy                                                |
|---------|--------------------------------------------------------------------|-------------------------------------------------------|
| 16#0000 | No errors.                                                         | -                                                     |
| 16#8601 | valueA + valueB  exceeds the maximum value range of a REAL number. | valueA + valueB  must be $+3.402823*10^{38}$ smaller. |

### **Mode of Operation**

Via an approximation formula, two REAL numbers, "valueA" and "valueB" are checked for equality. In order to compare the two numbers regardless of their size, their ration is examined.

### **Approximation formula**

$$\frac{|valueA - valueB|}{|valueA| + |valueB|} \le EPSILON$$

Two REAL numbers are classified as equal if the ratio of the difference to the sum of both numbers is smaller or equal to EPSILON.

The value of EPSILON describes the accuracy with which two numbers are classified as equal. In the function, EPSILON is defined as a constant with a value of  $1.0\cdot10^{-6}$ .

To avoid a division by zero, the approximation formula is changed in the function:

 $|valueA - valueB| \le EPSILON * (|valueA| + |valueB|)$ 

The following table shows two examples to clarify the function principle.

Table 3-29

|                                                                                                 | Example 1 | Example 2 |
|-------------------------------------------------------------------------------------------------|-----------|-----------|
| valueA  +  valueB                                                                               | 5         | 5.000.000 |
| EPSILON                                                                                         | 1.0 ·     | $10^{-6}$ |
| Maximum difference of "valueA" and "valueB", in which two numbers are still classified a equal. | 0.000005  | 5         |

### Note

If you require a different accuracy for the examination of the ratio between the numbers for the application, you need to adjust the constant EPSILON in the function to your needs.

# 3.4 Math operations

### 3.4.1 FC LGF\_AverageAndDeviation

### **Short description**

This block determines the arithmetic average and the standard deviation from a series of numbers.

### **Block**

Figure 3-16: FC LGF\_AverageAndDeviation



### Input parameters

Table 3-30: Input parameter

| Parameter     | Data type | Description                                |
|---------------|-----------|--------------------------------------------|
| variableArray | VARIANT   | Series of numbers which which to calculate |

### **Output parameters**

Table 3-31: Output parameter

| Parameter         | Data type | Description                                                                                |
|-------------------|-----------|--------------------------------------------------------------------------------------------|
| arithmeticAverage | REAL      | Arithmetic mean                                                                            |
| standardDeviation | REAL      | Standard deviation                                                                         |
| Error             | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID          | UINT      | "statusID" returns the ID of the block reporting the status. See table below.              |
| Status            | WORD      | "status" returns the status/error code (see table below).                                  |

### Status and error displays

Table 3-32: Status/error codes

| statusID | status  | Meaning                                                                       | Remedy/notes |
|----------|---------|-------------------------------------------------------------------------------|--------------|
| 1        | 16#7000 | Initial value                                                                 | -            |
| 1        | 16#0000 | No errors                                                                     | -            |
| 1        | 16#8200 | At the "variableArray" input, the actual parameter is not an array.           | -            |
| 1        | 16#8201 | The data type of the array elements is not supported (see mode of operation). | -            |
| 2        | ı       | Error/status of subordinate block "MOVE_BLK_VARIANT".                         | -            |

### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

### **Mode of Operation**

Via the "variableArray" input, an array of any size is connected. After a data type query in the block, the arithmetic average and the standard deviation are calculated from the values and returned.

### Note

An array with too many elements may lead to the scan cycle monitoring time being exceeded.

### Note

Note: Only the data types Int, UInt, DInt, UDInt, USInt, SInt and Real are supported.

### 3.4.2 FB LGF\_FloatingAverage

### **Short description**

This block calculates a moving arithmetic average from REAL values. This method can be used to smooth a data series. The values can be read in cyclically or triggered.

### **Block**

Figure 3-17: LGF\_FloatingAverage



### Input parameters

Table 3-33: Input parameter

| Parameter   | Data type | Description                                                                         |
|-------------|-----------|-------------------------------------------------------------------------------------|
| Value       | REAL      | Values from which the moving average is to be determined.                           |
| Mode        | INT       | Selection of mode (see mode of operation); Default value: mode=1.                   |
| windowsSize | INT       | Window size for the moving averaging in the range of 1100 The default value is 100. |
| Trigger     | BOOL      | Trigger tag, impulse                                                                |
| Reset       | BOOL      | The block is reset and the calculation starts over.                                 |

### Note

The "LGF\_FloatingAverage" block does not perform a data type query for the "value" input parameter. With data types other than REAL, either an implicit conversion is performed automatically, or an error is generated during translation.

Further information can be found in the chapter "Overview of data type conversion" in the TIA Portal online help or under:

https://support.industry.siemens.com/cs/ww/en/view/109011420/58427923211

### **Output parameters**

Table 3-34: Output parameter

| Parameter         | Data type | Description                                                         |
|-------------------|-----------|---------------------------------------------------------------------|
| Average           | LREAL     | Moving average                                                      |
| windowSizeReached | BOOL      | maximum window size not yet reached     maximum window size reached |
| Error             | BOOL      | 0: no errors<br>1: Block errors                                     |
| Status            | WORD      | Status/ error code (see table below)                                |

### Status and error displays

Table 3-35: Status/error codes

| status  | Meaning               | Remedy/notes                   |
|---------|-----------------------|--------------------------------|
| 16#0000 | No errors             | -                              |
| 16#8201 | No mode selected      | Select a mode (1 or 2).        |
| 16#8202 | Incorrect window size | Set a value between 1 and 100. |

### **Mode of Operation**

The block calculates the (moving) average on the basis of the set window size. The window size specifies the maximum number of the values last read in. After the maximum number of values has been read in, the "windowSizeReached" output will be set and each newly read in value replaces the respective oldest value (FIFO principle).

To read in the values, two modes are available which are determined via the "mode" parameter:

- mode = 1: Read in with each impulse at the "trigger" input
- mode = 2: Cyclic read in

The block is activated as soon as a mode has been selected. It is possible to select between the modes during operation.

### 3.4.3 FC LGF\_MatrixAddition

### **Short description**

This block adds up two matrices of the same size of the "ARRAY of REAL" data type.

### **Block**

Figure 3-18: FC LGF\_MatrixAddition



### Input parameters

Table 3-36: Input parameter

| Parameter | Data type     | Description             |  |
|-----------|---------------|-------------------------|--|
| matrix1   | ARRAY of REAL | First summand (Matrix)  |  |
| matrix2   | ARRAY of REAL | Second summand (Matrix) |  |

### **Output parameters**

Table 3-37: Output parameter

| Parameter    | Data type     | Description                                                                   |
|--------------|---------------|-------------------------------------------------------------------------------|
| matrixResult | ARRAY of REAL | Sum (Matrix)                                                                  |
| Error        | BOOL          | 0: no errors                                                                  |
|              |               | 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID     | UINT          | "statusID" returns the ID of the block reporting the status. See table below. |
| Status       | WORD          | "status" returns the status/error code (see table below).                     |

### Status and error displays

Table 3-38: Status/error codes

| statusID | status  | Meaning                               | Remedy/notes                                                              |
|----------|---------|---------------------------------------|---------------------------------------------------------------------------|
| 1        | 16#0000 | No errors                             | -                                                                         |
| 1        | 16#8200 | Lower bounds of arrays are different. | All arrays need to have the same lower bound, e.g.: Array[02, 02] of Real |
| 1        | 16#8201 | Upper bounds of arrays are different. | All arrays need to have the same upper bound, e.g.: Array[02, 02] of Real |

#### **Mode of Operation**

The block adds up two matrices of the same size. The individual fields of the two incoming matrices are read, added up and then returned in the "matrixResults" matrix.

#### Note

Please note that all input and output matrices need to have the same lower and upper bound and therefore the same number of columns and rows.

# 3.4.4 FC LGF\_MatrixInverse

#### **Short description**

This block inverts a square matrice of the "ARRAY of REAL" data type.

#### **Block**

Figure 3-19: FC LGF\_MatrixInverse



#### Input parameters

Table 3-39: Input parameter

| Parameter | Data type     | Description  |
|-----------|---------------|--------------|
| Matrix    | ARRAY of REAL | Input matrix |

#### **Output parameters**

Table 3-40: Output parameter

| Parameter    | Data type     | Description                                                                                |
|--------------|---------------|--------------------------------------------------------------------------------------------|
| matrixResult | ARRAY of REAL | Inverse matrix                                                                             |
| Error        | BOOL          | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID     | UINT          | "statusID" returns the ID of the block reporting the status. See table below.              |
| Status       | WORD          | "status" returns the status/error code (see table below).                                  |

Table 3-41: Status/error codes

| statusID | status  | Meaning                                         | Remedy/notes                                                              |
|----------|---------|-------------------------------------------------|---------------------------------------------------------------------------|
| 1        | 16#0000 | No errors                                       | -                                                                         |
| 1        | 16#8200 | Lower bounds of arrays are different.           | All arrays need to have the same lower bound, e.g.: Array[02, 02] of Real |
| 1        | 16#8201 | Upper bounds of arrays are different.           | All arrays need to have the same upper bound, e.g.: Array[02, 02] of Real |
| 1        | 16#8202 | Input matrix is not quadratic.                  | The number of lines needs to be equal to the number of columns.           |
| 1        | 16#8203 | Use of algorithm for input matrix not possible. | First element (a <sub>1,1</sub> ) of input matrix must not be zero.       |

#### **Mode of Operation**

The block inverts a square matrix of any size with the Shipley-Coleman procedure.

#### Note

Note that the input matrix needs to be quadratic. This means that the number of lines needs to be equal to the number of columns.

The output matrix needs to be dimensioned as large and have the same array bounds as the input matrix.

#### 3.4.5 FC LGF\_MatrixMultiplication

#### **Short description**

This block multiplies two matrices of the "Array of REAL" data type.

#### **Block**

Figure 3-20: FC LGF\_MatrixMultiplication



#### Input parameters

Table 3-42: Input parameter

| Parameter | Data type     | Description                            |
|-----------|---------------|----------------------------------------|
| matrix1   | ARRAY of REAL | First factor: Matrix to be multiplied  |
| matrix2   | ARRAY of REAL | Second factor: Matrix to be multiplied |

#### Note

#### New as of V2.0.0

The input parameters "rows1", "columns1", "rows2" and "columns2" are no longer needed for this block version, as the variable bounds of array[\*,\*] are queried via the "LOWER\_BOUND" and "UPPER\_BOUND" instructions.

Table 3-43: Output parameter

| Parameter    | Data type     | Description                                                                                |
|--------------|---------------|--------------------------------------------------------------------------------------------|
| matrixResult | ARRAY of REAL | Product: The resulting matrix                                                              |
| Error        | BOOL          | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID     | UINT          | "statusID" returns the ID of the block reporting the status. See table below.              |
| Status       | WORD          | "status" returns the status/error code (see table below).                                  |

## Status and error displays

Table 3-44: Status/error codes

| statusID | status  | Meaning                                                                                                                              | Remedy/notes                                |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1        | 16#0000 | No errors                                                                                                                            | -                                           |
| 1        | 16#8200 | The number of columns of the first matrix does not correspond to the number of rows of the second matrix.                            | The array bounds also need to be identical. |
| 1        | 16#8201 | The size of the output matrix (m x n) results from the number of rows (m) of "matrix1" and the number of columns (n) from "matrix2". | The array bounds also need to be identical. |

# **Mode of Operation**

The block multiplies two matrices of varying sizes. The individual elements of the two incoming matrices are read, added up and then returned in the "matrixResults" matrix.

#### Note

Note that the numbers of columns of the first matrix needs to be equal to the number of rows of the second matrix.

The size of the output matrix (m \* n) results from the number of rows (m) of "matrix1" and the number of columns (n) from "matrix2".

#### 3.4.6 FC LGF\_MatrixSubtraction

#### **Short description**

This block subtracts a matrix of the "ARRAY of REALR" data type from another.

#### **Block**

Figure 3-21: FC LGF\_MatrixSubtraction



#### Input parameters

Table 3-45: Input parameter

| Parameter | Data type     | Description                                           |
|-----------|---------------|-------------------------------------------------------|
| matrix1   | ARRAY of REAL | Minuend: From this matrix, "matrix2" is subtracted.   |
| matrix2   | ARRAY of REAL | Subtrahend: This matrix is subtracted from "matrix1". |

#### **Output parameters**

Table 3-46: Output parameter

| Parameter    | Data type     | Description                                                                   |
|--------------|---------------|-------------------------------------------------------------------------------|
| matrixResult | ARRAY of REAL | Difference: The resulting matrix                                              |
| Error        | BOOL          | 0: no errors                                                                  |
|              |               | 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID     | UINT          | "statusID" returns the ID of the block reporting the status. See table below. |
| Status       | WORD          | "status" returns the status/error code (see table below).                     |

#### Status and error displays

Table 3-47: Status/error codes

| statusID | status  | Meaning                               | Remedy/notes                                                              |
|----------|---------|---------------------------------------|---------------------------------------------------------------------------|
| 1        | 16#0000 | No errors                             | -                                                                         |
| 1        | 16#8200 | Lower bounds of arrays are different. | All arrays need to have the same lower bound, e.g.: Array[02, 02] of Real |
| 1        | 16#8201 | Upper bounds of arrays are different. | All arrays need to have the same upper bound, e.g.: Array[02, 02] of Real |

# **Mode of Operation**

The block subtracts two matrices of varying sizes. The individual fields of the two matrices are read, subtracted and then returned in the "matrixResults" matrix.

Note

Please note that all input and output matrices need to have the same number of columns and rows.

# 3.4.7 FC LGF\_MatrixTranspose

#### **Short description**

This block transposes a matrix of the ARRAY of REAL data type.

Condition: Input matrix  $(m \times n) = Output matrix (n \times m)$ 

#### **Block**

Figure 3-22: FC LGF\_MatrixTranspose



#### Input parameters

Table 3-48: Input parameter

| Parameter | Data type     | Description              |
|-----------|---------------|--------------------------|
| Matrix    | ARRAY of REAL | matrix to be transposed. |

#### Note

#### New as of V2.0.0

The input parameters "rows" and "columns" are no longer needed for this block version, as the variable bounds of array[\*,\*] are queried via the "LOWER\_BOUND" and "UPPER\_BOUND" instructions.

## **Output parameters**

Table 3-49: Output parameter

| Parameter    | Data type     | Description                                                                                |
|--------------|---------------|--------------------------------------------------------------------------------------------|
| matrixResult | ARRAY of REAL | resulting matrix                                                                           |
| Error        | BOOL          | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID     | UINT          | "statusID" returns the ID of the block reporting the status. See table below.              |
| Status       | WORD          | "status" returns the status/error code (see table below).                                  |

Table 3-50: Status/error codes

| statusID | status  | Meaning                               | Remedy/notes                                                              |
|----------|---------|---------------------------------------|---------------------------------------------------------------------------|
| 1        | 16#0000 | No errors                             | -                                                                         |
| 1        | 16#8200 | Lower bounds of arrays are different. | All arrays need to have the same lower bound, e.g.: Array[02, 02] of Real |

# 3 Explanation of the blocks

# 3.4 Math operations

| statusID | status  | Meaning                               | Remedy/notes                                                              |
|----------|---------|---------------------------------------|---------------------------------------------------------------------------|
| 1        | 16#8201 | Upper bounds of arrays are different. | All arrays need to have the same upper bound, e.g.: Array[02, 02] of Real |

# 3.4.8 FB LGF\_MinMaxHistory

#### **Short description**

This block reads in a tag's value each time it is called up and returns the maximum and minimum value that has been read in since the first call up.

The evaluation can be reset, if required. The block supports the LREAL data type.

#### **Block**

Figure 3-23: FB LGF\_MinMaxHistory



#### Input parameters

Table 3-51: Input parameter

| Parameter | Data type | Description                                         |
|-----------|-----------|-----------------------------------------------------|
| Variable  | LREAL     | Tag whose value is checked for minimum and maximum. |
| Reset     | BOOL      | The block is reset and the evaluation starts over.  |

Table 3-52: Output parameter

| Parameter | Data type | Description                                                                         |
|-----------|-----------|-------------------------------------------------------------------------------------|
| minValue  | LREAL     | Minimum value since the first call up or since the activation of the "reset" input. |
| maxValue  | LREAL     | Maximum value since the first call up or since the activation of the "reset" input. |

## 3.4.9 FC LGF\_RandomBasic

#### **Short description**

This function generates a random value between 0.0 and 1.0 at each call. The random number has the REAL data type.

#### **Block**

Figure 3-24: FC LGF\_RandomBasic



#### **Output parameters**

Table 3-53: Output parameter

| Parameter | Data type | Description   |
|-----------|-----------|---------------|
| Ret_Val   | REAL      | Random number |

#### **Mode of Operation**

The function generates random values in the range of  $0.0 \le \text{Ret}_{\text{Val}} \le 1.0$ .

#### **Background information**

The random value is generated from the nano seconds of the current system time of the CPU. In this, the byte order of this value is inverted and then converted to a standard floating-point number.

# 3.4.10 FC LGF\_RandomINT / LGF\_RandomReal

#### **Short description**

This block generates a "random" value between a defined maximum and minimum value per call up. The random number has the INT /REAL data type.

#### **Block**

Figure 3-25: FC LGF\_RandomINT / FC LGF\_RandomReal



#### Input parameters

Table 3-54: Input parameter

| Parameter | Data type  | Description                                    |
|-----------|------------|------------------------------------------------|
| maxValue  | INT / REAL | Defines the random number's upper limit value. |
| minValue  | INT / REAL | Defines the random number's lower limit value. |

# **Output parameters**

Table 3-55: Output parameter

| Parameter | Data type  | Description                                                                                    |
|-----------|------------|------------------------------------------------------------------------------------------------|
| Ret_Val   | INT / REAL | Random number                                                                                  |
| Error     | BOOL       | 0: no errors     1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID  | UINT       | "statusID" returns the ID of the block reporting the status. See table below.                  |
| Status    | WORD       | "status" returns the status/error code (see table below).                                      |

Table 3-56: Status/error codes

| statusID | status  | Meaning                                       | Remedy/notes |
|----------|---------|-----------------------------------------------|--------------|
| 1        | 16#7000 | Initial value                                 | -            |
| 1        | 16#0000 | No errors                                     | -            |
| 1        | 16#8200 | "minValue" is greater than "maxValue".        | -            |
| 2        | -       | Error/status of subordinate block "RD_SYS_T". | -            |

#### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

#### **Mode of Operation**

This block generates random values that are between the specified "minValue" value and "maxValue" value. This random value is returned via "Ret-Val".

# **Background information**

The random value is generated from the nano seconds of the current system time of the CPU. In this, the byte order of this value is inverted and then converted to a standard floating-point number.

#### Note

If no maximum and minimum value (= 0) is determined, the block returns random values from the entire range of values of INT / REAL.

# 3.4.11 FC LGF\_SearchMinMax

#### **Short description**

This block searches for the maximum and minimum value as well as the respective index in an array.

The following data types of the array elements are supported: Int, DInt, UInt, UDInt, USInt, SInt and Real.

#### **Block**

Figure 3-26: FC LGF\_SearchMinMax



#### Input parameters

Table 3-57: Input parameter

| Parameter     | Data type | Description                                                    |
|---------------|-----------|----------------------------------------------------------------|
| variableArray | VARIANT   | Array in whose fields the maximum and minimum is searched for. |

Table 3-58: Output parameter

| Parameter     | Data type | Description                                                                                                            |
|---------------|-----------|------------------------------------------------------------------------------------------------------------------------|
| minValue      | VARIANT   | Smallest value found.                                                                                                  |
| minArrayIndex | INT       | Start index of the array plus minArrayIndex results in the array index of the smallest value. The index starts with 0. |
| maxValue      | VARIANT   | Largest value found.                                                                                                   |
| maxArrayIndex | INT       | Start index of the array plus maxArrayIndex results in the array index of the largest value. The index starts with 0.  |
| Error         | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code.                             |
| statusID      | UINT      | "statusID" returns the ID of the block reporting the status.  See table below.                                         |
| Status        | WORD      | "status" returns the status/error code (see table below).                                                              |

#### Status and error displays

Table 3-59: Status/error codes

| statusID | status  | Meaning                                                                                            | Remedy/notes                                                                    |
|----------|---------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1        | 16#7000 | Initial value                                                                                      | -                                                                               |
| 1        | 16#0000 | No errors                                                                                          | -                                                                               |
| 1        | 16#8200 | At the "variableArray" input, the actual parameter is not an array.                                | -                                                                               |
| 1        | 16#8201 | The data type of the elements of the array is not supported.                                       | Only the data types Int, UInt, DInt, UDInt, USInt, SInt and Real are supported. |
| 1        | 16#8202 | The elements of the array do not have the same data type as the "minValue" and "maxValue" outputs. | -                                                                               |
| 2        | -       | Error/status of subordinate block "MOVE_BLK_VARIANT".                                              | -                                                                               |

#### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

#### **Mode of Operation**

Via the "variableArray" input, an array of any size is connected. After a data type query in the block, the elements are one after another copied into a tag of the respective type and compared. The smallest and the largest value are returned as well as their respective index in the array.

#### Note

With multiple identical minimum and maximum values, the index of the first minimum or maximum value is returned.

#### 3.4.12 FC LGF\_XRoot

#### **Short description**

This block calculates the xth root of a numerical tag.

#### **Block**

Figure 3-27: FC LGF\_Random



#### Input parameters

Table 3-60: Input parameter

| Parameter | Data type | Description                                 |
|-----------|-----------|---------------------------------------------|
| Variable  | REAL      | Tag, of which the root is to be calculated. |
| Root      | REAL      | Root (e.g. 3 as third root)                 |

#### **Output parameters**

Table 3-61: Output parameter

| Parameter | Data type | Description      |
|-----------|-----------|------------------|
| Ret_Val   | REAL      | Output of result |

#### **Mode of Operation**

The block calculates the nth root of a number. To perform this function, the following formula is extended.

$$number = e^{log_e(number)}$$

This results in:

$$Ret\_Val = \sqrt[root]{number} = number \frac{1}{root} = (e^{log_e(number)}) \frac{1}{root} = e^{ln(number)*} \frac{1}{root}$$

In STEP 7 (TIA Portal) the function equals "EXP"  $e^{(...)}$  and the function "LN" ln(...). This results in the following formula:

$$Ret_Val = EXP((1/root) * LN(number))$$

# 3.4.13 FC LGF\_HighLowLimit

#### **Short description**

The functions checks whether a value is within a defined value range. The value range is defined via a setpoint value and a deadband around this setpoint value. The function calculates the lower and higher limit of the value range.

#### **Block**

Figure 3-28: FC LGF\_HighLowLimit



#### Input parameters

Table 3-62: Input parameter

| Parameter | Data type  | Description                                                                 |
|-----------|------------|-----------------------------------------------------------------------------|
| Value     | INT / REAL | Value that is to be checked on whether it is within the defined value range |
| Setpoint  | INT / REAL | Setpoint value                                                              |
| Deadband  | INT / REAL | Deadband                                                                    |

#### **Output parameters**

Table 3-63: Output parameter

| Parameter          | Data type | Description                                                                               |
|--------------------|-----------|-------------------------------------------------------------------------------------------|
| valueInRange       | BOOL      | "TRUE", if "value" is within the value range (Deadband around setpoint value).            |
| valueOverHighLimit | BOOL      | "TRUE", if "value" is higher than the higher limit value ("setpoint" + 0,5 * "deadband"). |
| valueUnderLowLimit | BOOL      | "TRUE", if "value" is lower than the lower limit value ("setpoint" - 0,5 * "deadband").   |
| Error              | BOOL      | "FALSE": no errors "TRUE": Block errors                                                   |
| Status             | WORD      | "status" returns the status/error code (see table below)                                  |

Table 3-64: Status/error codes

| Status  | Meaning                       | Remedy/notes |
|---------|-------------------------------|--------------|
| 16#0000 | No errors                     | -            |
| 16#8101 | False value range "highValue" | -            |

| Status  | Meaning                                 | Remedy/notes |
|---------|-----------------------------------------|--------------|
| 16#8102 | False value range "lowValue"            | -            |
| 16#8200 | "lowValue" is greater than "highValue". | -            |

# **Mode of Operation**

The "setpoint" and "deadband" tags define a value range. The function checks whether the "value" value is below, within or above the value range. The outputs "valueUnderLowLimit", "valueInRange" or "valueOverHighLimit" indicate where the "value" value is.

Figure 3-29: Function principle

# valueUnderLowLimit valueInRange valueOverHighLimit value deadband \* 0,5 deadband deadband

# 3.4.14 FB LGF\_Integration

#### **Short description**

This block calculates the approximate area under a function curve. The function curve is delivered as analog value (REAL) that varies over time. At the output, the integral value is returned.

#### **Block**

Figure 3-30: FB LGF\_Integration



#### Input parameters

Table 3-65: Input parameter

| Parameter | Data type | Description                                                                                                                                                                   |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Value     | REAL      | Analog value of continous function curve                                                                                                                                      |
| Enable    | BOOL      | Activation of integral calculation If this input receives the value "FALSE", the integral calculation is stopped and the "integral" output returns the value last calculated. |
| Reset     | BOOL      | Sets the "integral" output to "0.0".                                                                                                                                          |

# **Output parameters**

Table 3-66: Output parameter

| Parameter | Data type | Description                                                                   |
|-----------|-----------|-------------------------------------------------------------------------------|
| Integral  | LREAL     | Integrated value                                                              |
| Error     | BOOL      | 0: no errors                                                                  |
|           |           | 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID  | UINT      | "statusID" returns the ID of the block reporting the status. See table below. |
| Status    | WORD      | "status" returns the status/error code (see table below).                     |

Table 3-67: Status/error codes

| status | sID | Status  | Meaning                                       | Remedy/notes |
|--------|-----|---------|-----------------------------------------------|--------------|
| 0      |     | 16#0000 | No errors                                     | -            |
| 2      |     | -       | Error/status of subordinate block "RD_SYS_T". | -            |

Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

#### **Mode of Operation**

The integral calculation contains the summation of those trapezoidal areas that span between the last two function values at the "value" input and the time. The elapsed time is calculated via the CPU's system time. Tis trapezoidal area is identical to the result from the average value of both process values and the time interval.

$$A = \frac{1}{2} * (F_{(t1)} + F_{(t0)}) * (t1 - t0) + \frac{1}{2} * (F_{(t2)} + F_{(t1)}) * (t2 - t1) + ...)$$

Figure 3-31: Function principle



To launch the integral calculation for the input value at the "value" parameter, you need to

- set the "enable" parameter to the value "TRUE",
- set the "reset" parameter to the value "FALSE".

If the "enable" parameter is set to "FALSE", the integral calculation is stopped and the "integral" output returns the value last calculated.

If the "reset" parameter is set to the value "TRUE", the "integral" output is reset to "0.0".

# 3.5 Data handling

#### 3.5.1 FB LGF FIFO

# **Short description**

This block stores incoming jobs/data and returns the oldest job that has not yet been processed.

#### **Block**

Figure 3-32: FB LGF\_FIFO



#### Input parameters

Table 3-68: Input parameter

| Parameter    | Data type | Description                                                                                                                 |
|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| execute      | BOOL      | Requirement of a pass.                                                                                                      |
| mode         | BOOL      | Selecting the mode. TRUE: Writing of "item" value into "buffer" FALSE: Reading the value from "buffer" and output at "item" |
| initialValue | VARIANT   | Value for initialization of buffer (usually: 0)                                                                             |
| resetBuffer  | BOOL      | Clearing out and initializing the buffer.                                                                                   |

# Input/Output parameters (InOut)

Table 3-69: Input/Output parameters (InOut)

| Parameter | Data type | Description                                                                      |
|-----------|-----------|----------------------------------------------------------------------------------|
| item      | VARIANT   | Value that is returned from the buffer or is to be written into the ring buffer. |
| buffer    | VARIANT   | Buffer (Array of )                                                               |

#### **Output parameters**

Table 3-70: Output parameter

| Parameter | Data type | Description                                                                                |
|-----------|-----------|--------------------------------------------------------------------------------------------|
| done      | BOOL      | 1: Pass completed.                                                                         |
| error     | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID  | UINT      | "statusID" returns the ID of the block reporting the status. See table below.              |
| status    | WORD      | "status" returns the status/error code (see table below).                                  |

#### Status and error displays

Table 3-71: Status/error codes

| statusID | status  | Meaning                                                                                                                       | Remedy/notes |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1        | 16#7000 | Initial value                                                                                                                 | -            |
| 1        | 16#0000 | No errors                                                                                                                     | -            |
| 1        | 16#8001 | The buffer is empty.                                                                                                          | -            |
| 1        | 16#8002 | The buffer is full.                                                                                                           | -            |
| 1        | 16#8200 | No array is applied to the "buffer" input.                                                                                    | -            |
| 1        | 16#8201 | The data type of the InOut parameter "item" does not correspond to the data type of the array elements at the "buffer" input. | -            |
| 1        | 16#8202 | The data type of the input "initialValue" does not correspond to the data type of the InOut parameter "item".                 | -            |
| 1        | 16#8601 | The tag "nextEmptyItemIndex" is not within the array limits.                                                                  | -            |
| 1        | 16#8602 | The tag "firstItemIndex" is not within the array limits.                                                                      | -            |
| 2        | -       | Error/status of subordinate block "MOVE_BLK_VARIANT".                                                                         | -            |

#### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

## **Mode of Operation**

For the block to be started up, a positive edge needs to be detected at the "execute" input.

To call up the next read-task to be processed, the value "FALSE" must be activated at the "mode" input. If this is the case, the next task/data to be processed is returned at the "item" InOut parameter and this field is replaced in the buffer with the value at the "initialValue" parameter.

To save a new write task in the buffer, the "TRUE" value needs to be activated at the "mode" input. If this is the case, the value at the "item" InOut parameter or the task in the buffer is saved at the next free location.

If during a pass, the "TRUE" value is activated at the "resetBuffer" input, all fields in the buffer are reset to the value specified at the "InitialValue" input. After this, the buffer can once more be filled with tasks/data.

## 3.5.2 FB LGF\_ShellSortInt / LGF\_ShellSortUInt / LGF\_ShellSortReal

#### **Short description**

This block sorts an array with any number of elements (1000 max.) in ascending or descending order. The following data types are supported:

• Array of "Int" type: LGF\_ShellSortInt

Array of "UInt" type: LGF\_ShellSortUInt
 Array of "Real" type: LGF\_ShellSortReal

#### **Block**

Figure 3-33: FB LGF\_ShellSort...



#### Input parameters

Table 3-72: Input parameter

| Parameter | Data type | Description                                                    |
|-----------|-----------|----------------------------------------------------------------|
| mode      | BOOL      | sort in ascending order (default)     sort in descending order |

#### Input/Output parameters (InOut)

Table 3-73: Input/Output parameters (InOut)

| Parameter    | Data type | Description                 |
|--------------|-----------|-----------------------------|
| variantArray | VARIANT   | Array that is to be sorted. |

Table 3-74: Output parameter

| Parameter | Data type | Description                                                                                |
|-----------|-----------|--------------------------------------------------------------------------------------------|
| done      | BOOL      | 1: Sorting completed.                                                                      |
| error     | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID  | UINT      | "statusID" returns the ID of the block reporting the status. See table below.              |
| status    | WORD      | "status" returns the status/error code (see table below).                                  |

#### Status and error displays

Table 3-75: Status/error codes

| statusID | status  | Meaning                                                                                 | Remedy/notes                                                                                                                                                                               |
|----------|---------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 16#7000 | Initial value                                                                           | -                                                                                                                                                                                          |
| 1        | 16#0000 | No errors                                                                               | -                                                                                                                                                                                          |
| 1        | 16#8200 | At the "variantArray" input, the actual parameter only has one element.                 | At the "variantArray" input, connect an array with at least two elements.                                                                                                                  |
| 1        | 16#8201 | At the "variableArray" input, the actual parameter is not an array.                     |                                                                                                                                                                                            |
| 1        | 16#8202 | At the "variantArray" input, the actual parameter does not have the suitable data type. | At the "variantArray" input, connect an array with the suitable data type: LGF_ShellSortInt: Array of type Int LGF_ShellSortUInt: Array of type UInt LGF_ShellSortReal: Array of type Real |
| 1        | 16#8203 | At the "variantArray" input, the actual parameter has too many elements.                | By default, arrays with up to 1000 elements can be sorted.                                                                                                                                 |
| 2        | -       | Error/status of subordinate block<br>"MOVE_BLK_VARIANT" during<br>reading the array.    | -                                                                                                                                                                                          |
| 3        | -       | Error/status of subordinate block "MOVE_BLK_VARIANT" during writing the array.          | -                                                                                                                                                                                          |

#### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

#### **Mode of Operation**

The block sorts according to the shell sorting method. Note that the block's execution time strongly depends on how many elements the array to be sorted has. The following overview shows a few of the block's measured values which are subject to the number of array elements.

Table 3-76: Execution times of the "LGF\_ShellSort..." block

| Number of array elements | S7-1212C DC/DC/DC  | S7-1516-3 PN/DP  |
|--------------------------|--------------------|------------------|
| 100                      | approx. 11-16 ms   | approx. 1-2 ms   |
| 1000                     | approx. 185-205 ms | approx. 10-12 ms |

#### Note

The block is executed synchronously and is not distributed over several SPS cycles. Therefore, the execution time directly affects the SPS cycle time. Keep this behavior in mind with regards to your project and the controller used and adjust the controller's monitoring time, if necessary.

# 3.6 Converter operations

# 3.6.1 FC LGF\_BinaryToGray

#### **Short description**

This block converts a binary coded value into a gray coded value.

#### **Block**

Figure 3-34: FC LGF\_BinaryToGray



# Input parameters

Table 3-77: Input parameter

| Parameter      | Data type | Description        |
|----------------|-----------|--------------------|
| variableBinary | DWORD     | Binary coded value |

Table 3-78: Output parameter

| Parameter | Data type | Description      |
|-----------|-----------|------------------|
| Ret_Val   | DWORD     | Gray coded value |

# 3.6.2 FC LGF\_GrayToBinary

# **Short description**

This block converts a gray coded value into a binary coded value.

#### **Block**

Figure 3-35: FC LGF\_GrayToBinary



#### Input parameters

Table 3-79: Input parameter

| Parameter    | Data type | Description      |
|--------------|-----------|------------------|
| variableGray | DWORD     | Gray coded value |

Table 3-80: Output parameter

| Parameter | Data type | Description        |
|-----------|-----------|--------------------|
| Ret_Val   | DWORD     | Binary coded value |

# 3.6.3 FC LGF\_BitsToWord

#### **Short description**

This block converts 16 BOOL variables into a WORD variable.

#### **Block**

Figure 3-36: FC LGF\_BitsToWord



#### Input parameters

Table 3-81: Input parameter

| Parameter  | Data type | Description   |
|------------|-----------|---------------|
| bit0       | BOOL      | Bit variables |
| <br>bit 15 |           |               |

Table 3-82: Output parameter

| Parameter | Data type | Description   |
|-----------|-----------|---------------|
| Ret_Val   | WORD      | Word variable |

# 3.6.4 FC LGF\_WordToBits

## **Short description**

This block converts a WORD variable into 16 BOOL variables.

#### **Block**

Figure 3-37: FC LGF\_WordToBits



# Input parameters

Table 3-83: Input parameter

| Parameter | Data type | Description   |
|-----------|-----------|---------------|
| Word      | WORD      | WORD variable |

Table 3-84: Output parameter

| Parameter | Data type | Description   |
|-----------|-----------|---------------|
| bit0      | BOOL      | Bit variables |
| •••       |           |               |
| bit 15    |           |               |

#### 3.6.5 FC LGF\_DTLtoString

#### **Short description**

This block converts a date of the DTL data type into a character string of the STRING data type.

#### **Block**

Figure 3-38: FC LGF\_DTLtoString



#### Input parameters

Table 3-85: Input parameter

| Parameter     | Data type | Description                                                                                                   |
|---------------|-----------|---------------------------------------------------------------------------------------------------------------|
| inDTL         | DTL       | Date                                                                                                          |
| format        | BOOL      | Format selection of the displayed character string: 0: international (YYYY MM DD) 1: traditional (DD MM YYYY) |
| separatorDate | CHAR      | Separator between the components of the displayed date.                                                       |

#### **Output parameters**

Table 3-86: Output parameter

| Parameter | Data type | Description                |
|-----------|-----------|----------------------------|
| Ret_Val   | STRING    | Displayed character string |

#### **Mode of Operation**

The block reads a date of the DTL data type, converts the date's individual components (year, month, day, hour...) into a character string and outputs it. The individual components are placed at the correct position in the character string according to the format selection. The separator between the date's components is variable.

#### Format selection

Via the "format" input parameter, you can select between the international (ISO 8601) and the traditional (DE) date format for the returned character string.

# 1. International format (ISO 8601)

If the "format" input parameter has not been set (format = FALSE), the date is returned as character string in the international format.

Example: 2016-03-16 13:34:12.123456789

The following figure shows the position of the individual characters in the character string.

#### 3 Explanation of the blocks

# 3.6 Converter operations

Figure 3-39: Position of the individual characters

|           |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | Forr | nat |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|------|-----|----|----|----|----|----|----|----|----|----|----|----|----|
| outString | Υ | Y | Υ | Υ | - | M | M | - | D | D  |    | Н  | Н  | :  | М  | М    | :   | S  | S  |    | NS |
| Position  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16   | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

#### 2. Traditional format (DE)

If the "format" input parameter has been set (format = TRUE), the date is returned as character string in the traditional format.

Example: 2016-16-03 13:34:12.123456789

The following figure shows the position of the individual characters in the character string.

Figure 3-40: Position of the individual characters

|           |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | Forn | nat |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|------|-----|----|----|----|----|----|----|----|----|----|----|----|----|
| outString | D | D | - | М | М | - | Υ | Y | Υ | Y  |    | Н  | Н  | :  | М  | M    | :   | S  | S  |    | NS |
| Position  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16   | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

#### Separator

At the "separatorDate" input parameter, you have to specify the separator between the components of the calendar date.

Example: separatorDate = '/'
outString = '2016/03/16 ...'

separatorDate = '-' outString = '2016-03-16 ...'

# 3.6.6 FC LGF\_StringToDTL

#### **Short description**

This block converts a character string of the String format with date components into the DTL data type.

#### **Block**

Figure 3-41: FC LGF\_StringToDTL



#### Input parameters

Table 3-87: Input parameter

| Parameter | Data type | Description                                                                                                 |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------|
| inString  | STRING    | Date as character string                                                                                    |
| format    | BOOL      | Format selection of the read in character string: 0: international (YYYY MM DD) 1: traditional (DD MM YYYY) |

#### **Output parameters**

Table 3-88: Output parameter

| Parameter | Data type | Description                                              |
|-----------|-----------|----------------------------------------------------------|
| Ret_Val   | DTL       | Returns the read in date                                 |
| error     | BOOL      | 0: no error                                              |
|           |           | 1: Block error, "status" returns error code              |
| status    | WORD      | "status" returns the status/error code (see table below) |

Table 3-89: Status/Error codes

| Status  | Meaning       | Remedy/notes                                                                                        |
|---------|---------------|-----------------------------------------------------------------------------------------------------|
| 16#0000 | No errors     | -                                                                                                   |
| 16#7000 | Initial value | -                                                                                                   |
| 16#8201 | Format: Year  | Year specification does not correspond to format or specification (outside the value range of DTL)  |
| 16#8202 | Format: Month | Month specification does not correspond to format or specification (outside the value range of DTL) |
| 16#8203 | Format: Day   | Day specification does not correspond to format or specification (outside the value range of DTL)   |
| 16#8204 | Format: Hour  | Hour specification does not correspond to format or                                                 |

| Status  | Meaning               | Remedy/notes                                                                                             |
|---------|-----------------------|----------------------------------------------------------------------------------------------------------|
|         |                       | specification (outside the value range of DTL)                                                           |
| 16#8205 | Format: Minute        | Minute specification does not correspond to format or specification (outside the value range of DTL)     |
| 16#8206 | Format: Second        | Second specification does not correspond to format or specification (outside the value range of DTL)     |
| 16#8207 | Format:<br>Nanosecond | Nanosecond specification does not correspond to format or specification (outside the value range of DTL) |

#### **Mode of Operation**

This block reads in a date as character string and converts it into the DTL data type. The individual date components in the character string are separated according to the format selection (positioning of data components in the character string). In this, the separator between the components in the character string is irrelevant.

#### Format selection

Via the "format" input parameter, you select, whether the read in character string is specified in the international (ISO 8601) or traditional (DE) data format.

#### 1. International format (ISO 8601)

If the "format" input parameter has not been set (format = FALSE), the date in the character string is read in in the international format.

Example: inString = `2016-03-16 13:34:12.001`

format = FALSE

outDTL = DTL#2016-03-16-13:34:12.001000

Figure 2-10 shows the position of the individual characters in the character string.

Figure 3-42: Position of the individual characters

|          |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | Fori | nat |    |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|------|-----|----|----|----|----|----|----|----|----|----|----|----|----|
| inString | Y | Υ | Y | Υ | - | M | M | - | D | D  |    | Н  | Н  | :  | M  | M    | :   | S  | S  |    | NS |
| Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16   | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

# 2. Traditional format (DE)

If the "format" input parameter has been set (format = TRUE), the date in the character string is read in in the traditional format.

inString = '16/03/2016 13:34:12.1' format = TRUE Example:

outDTL = DTL#2016-03-16-13:34:12.100000

The following figure shows the position of the individual characters in the character string.

Figure 3-43: Position of the individual characters

|          |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | Forn | nat |    |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|------|-----|----|----|----|----|----|----|----|----|----|----|----|----|
| inString | D | D | - | M | M | - | Y | Υ | Υ | Υ  |    | Н  | Н  | :  | М  | M    | :   | S  | S  |    | NS |
| Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16   | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

# 3.6.7 FC LGF\_TemperatureConvert

#### **Short description**

This block converts °Celsius to °Fahrenheit or Kelvin, as well as °Fahrenheit to Kelvin and vice versa.

#### **Block**

Figure 3-44: FC LGF\_TemperatureConvert



# Input parameters

Table 3-90: Input parameter

| Parameter   | Data type | Description                                                                                                                                                    |
|-------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mode        | INT       | Mode  1. °Celsius to °Fahrenheit  2. °Fahrenheit to °Celsius  3. °Celsius to Kelvin  4. Kelvin to °Celsius  5. °Fahrenheit to Kelvin  6. Kelvin to °Fahrenheit |
| temperature | REAL      | Temperature to be converted                                                                                                                                    |

# **Output parameters**

Table 3-91: Output parameter

| Parameter | Data type | Description                                               |
|-----------|-----------|-----------------------------------------------------------|
| Ret_Val   | REAL      | Converted temperature                                     |
| error     | BOOL      | 0: no errors<br>1: Block errors                           |
| status    | WORD      | "status" returns the status/error code (see table below). |

Table 3-92: Status/error codes

| Status  | Meaning                         | Remedy/notes                        |
|---------|---------------------------------|-------------------------------------|
| 16#7000 | Initial value                   | -                                   |
| 16#0000 | No errors                       | -                                   |
| 16#8200 | Incorrect mode at "mode" input. | See description of input parameters |

# 3.6.8 FC LGF\_ScaleLinear

#### **Short description**

This function scales an input value via a linear function.

#### **Block**

Figure 3-45: FC LGF\_ScaleLinear



# Input parameters

Table 3-93: Input parameter

| Parameter | Data type | Description                                       |  |
|-----------|-----------|---------------------------------------------------|--|
| Х         | VARIANT   | Input value that is to be scaled.                 |  |
| x1        | VARIANT   | Daint 4 (D) of the lineau function                |  |
| y1        | VARIANT   | Point 1 (P <sub>1</sub> ) of the linear function. |  |
| x2        | VARIANT   | Point 2 (P <sub>2</sub> ) of the linear function. |  |
| y2        | VARIANT   |                                                   |  |
| yMin      | VARIANT   | Lower limit value of the output.                  |  |
| yMax      | VARIANT   | Higher limit value of the output.                 |  |

# **Output parameters**

Table 3-94: Output parameter

| Parameter | Data type | Description                                                              |  |
|-----------|-----------|--------------------------------------------------------------------------|--|
| у         | VARIANT   | Output value, scaled.                                                    |  |
| error     | BOOL      | Error display. 0: no error. 1: Block error, "status" returns error code. |  |
| status    | WORD      | "status" returns the status/error code (see table below).                |  |

Table 3-95: Status and error codes

| Status  | Meaning                                                      | Remedy                                                                |
|---------|--------------------------------------------------------------|-----------------------------------------------------------------------|
| 16#0000 | No errors.                                                   | -                                                                     |
| 16#8200 | Actual parameter at the "x" input is of the wrong data type. | The "x" input must only be configured with the INT or REAL data type. |
| 16#8201 | Actual parameter at the "y" output is of the                 | The "y" output must only be configured with                           |

| Status  | Meaning                                                                                                       | Remedy                                                     |
|---------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|         | wrong data type.                                                                                              | the INT or REAL data type.                                 |
| 16#8202 | Actual parameters at the "x", "x1" and "x2" inputs are of different data types.                               | All x parameters must either be INT or REAL.               |
| 16#8203 | Actual parameters at the "y1", "y2", "yMin", "yMax" inputs and at the "y" output are of different data types. | All y parameters must either be INT or REAL.               |
| 16#8204 | Lower limit value "yMin" is greater than higher limit value "yMax".                                           | Select the lower limit value below the higher limit value. |

# **Mode of Operation**

The function linearly scales an input value (e.g. an analog input value) to a specific output value (e.g. filling level).

To determine the output value, the following linear function is used in the function:

$$y = \frac{y_2 - y_1}{x_2 - x_1} \cdot (x - x_1) + y_1$$

The straight line is described by two points,  $P_1$  and  $P_2$ . By way of a Cartesian coordinate system, the points are specified via x and y coordinates.

Note

If the values of the "x1" and "x2" parameters are identical, the value of "y1" is returned at the "y" output.

By specifying "yMin" and "yMax", you can set up a lower and upper limit for the calculated "y" value. You therefore avoid overdrive and underdrive ranges.

Figure 3-46: Scaling



You can configure the formal parameters with the following data types:

Table 3-96: Data types

| Formal parameter | x, x1, x2 | y, y1, y2, yMin, yMax |
|------------------|-----------|-----------------------|
| Scaling          | Data      | type                  |
| INT → INT        | INT       | INT                   |
| INT → REAL       | INT       | REAL                  |
| REAL → INT       | REAL      | INT                   |
| REAL → REAL      | REAL      | REAL                  |

### Example

A signal of 4 to 20mA is applied to an analog input module. This signal is converted to the CPU-internal value of to 27648, in order to measure a filling level. In this, 0 corresponds to a filling level of 0.0m and 27648 a filling level of 1.7m.

You then need to configure the block as follows:

- x1 = 0; y1 = 0,0 (P1)
- x2 = +27648; y2 = 1,7 (P2)
- yMin = 0.0
- yMax = 1.7

# 3.6.9 FC LGF\_StringToTaddr

### **Short description**

The "TADDR\_Param" system data type contains address information consisting of an IPV4 address and the port number.

The LGF\_StringToTaddr function converts a variable of the "String" data type into a variable of the "TADDR\_Param" system data type.

### **Block**

Figure 3-47: FC LGF\_StringToTaddr



### Input parameters

Table 3-97: Input parameter

| Parameter       | Data type | Description  |
|-----------------|-----------|--------------|
| ipAddressString | STRING    | IPV4 address |

### **Output parameters**

Table 3-98: Output parameter

| Parameter | Data type   | Description                                               |
|-----------|-------------|-----------------------------------------------------------|
| Ret_Val   | TADDR_param | IPV4 address                                              |
| error     | BOOL        | 0: no errors<br>1: Block errors                           |
| status    | WORD        | "status" returns the status/error code (see table below). |

### Status and error displays

Table 3-99: Status/error codes

| Status  | Meaning                                           | Remedy/notes                      |
|---------|---------------------------------------------------|-----------------------------------|
| 16#0000 | No errors                                         | -                                 |
| 16#8101 | False value in first Range of the IP address      | Check the IP address at the input |
| 16#8102 | False value in second Range of the the IP address |                                   |
| 16#8103 | False value in third Range of the IP address      |                                   |
| 16#8104 | False value in fourth Range of the the IP address |                                   |
| 16#8105 | False value in port range of the IP address       |                                   |

### **Mode of Operation**

The function converts the IPV4 address with or without port number from the "STRING" data type to "TADDR\_param". The string must correspond to the following form:

[0..255].[0..255].[0..255] without port number or

[0..255].[0..255].[0..255]:[0..65535] with port number

# **Example**

- The standard string format for an IPV4 address without port number: '192.168.11.11'
- The standard string format for an IPV4 address with port number: '192.168.11.11:3294'

#### Note

If you do not enter a port number in the "ipAddressString" parameter, the "Ret\_Val.REM\_PORT\_NR" parameter outputs the value "0".

# 3.6.10 FC LGF\_TaddrToString

### **Short description**

The "TADDR\_Param" system data type contains address information consisting of an IPV4 address and the port number.

The LGF\_TaddrToString function converts a variable of the "TADDR\_param" system data type into a variable of the "String" data type.

#### **Block**

Figure 3-48: FC LGF\_TaddrToString



#### Input parameters

Table 3-100: Input parameter

| Parameter     | Data type   | Description  |
|---------------|-------------|--------------|
| ipAdressTaddr | TADDR_Param | IPV4 address |

#### **Output parameters**

Table 3-101: Output parameter

| Parameter | Data type | Description  |
|-----------|-----------|--------------|
| Ret_Val   | STRING    | IPV4 address |

### **Mode of Operation**

The function converts the IPV4 address with or without port number. The "TADDR\_param" system data type is a structured data type. This structure contains the "REM\_PORT\_NR" variable. If this variable is "0", no port is written into the "Ret\_Val" parameter.

### **Example**

Ret\_val without port number: '192.168.11.11'

Ret\_val with port number: '192.168.11.11:3294'

# 3.7 Signal generators

### 3.7.1 FB LGF Frequency

### **Short description**

The block generates a signal which, depending on a defined frequency and a pulse-to-pause ratio, switches between the values "0" and "1".

#### **Block**

Figure 3-49: FB LGF\_Frequency



### Input parameters

Table 3-102: Input parameter

| Parameter       | Data type | Description                                 |
|-----------------|-----------|---------------------------------------------|
| frequency       | REAL      | Clock frequency in Hz                       |
| pulsePauseRatio | REAL      | Pulse-pause ratio (Default: 1.0 equals 1:1) |

### **Output parameters**

Table 3-103: Output parameter

| Parameter | Data type | Description                              |
|-----------|-----------|------------------------------------------|
| clock     | BOOL      | Output switches with defined frequency   |
| countdown | TIME      | Remaining time of current "clock" status |

### **Mode of Operation**

The "clock" output is a Boolean value that toggles in the desired frequency. Via the "pulsePauseRatio" input, the pulse-pause ratio is set.

The "Countdown" output outputs the remaining time of the current state of "clock".

If the desired frequency or pulse-pause ratio is smaller than or equal to 0.0, then the "clock" output = FALSE and "countdown" = "0 s".

### **Example**

Figure 3-50: FB LGF\_Frequency

clock



# 3.7.2 FB LGF\_Impulse

### **Short description**

This block generates impulses in a predefined frequency. The impulse is always available for a (controller) cycle.

#### **Block**

Figure 3-51: FB LGF\_Impulse



### Input parameters

Table 3-104: Input parameter

| Parameter | Data type | Description           |
|-----------|-----------|-----------------------|
| frequency | REAL      | Clock frequency in Hz |

### **Output parameters**

Table 3-105: Output parameter

| Parameter | Data type | Description             |
|-----------|-----------|-------------------------|
| impulse   | BOOL      | Signal with impulses    |
| countdown | TIME      | Time until next impulse |

### **Mode of Operation**

The block generates impulses at the "impulse" output with the frequency "frequency". The block always begins with an impuls and sets the following impulse after the period time has elapsed.

### **Example**

Figure 3-52: Example



### Note

New as of V1.2.0

The LGF\_Impulse block (as of V1.2.0) no longer calls the LGF\_Frequency block.

### 3.7.3 FB LGF\_SawTooth

### **Short description**

This block generates a sawtooth-shaped signal path. Every sawtooth consists of a defined number of steps (increments).

### **Block**

Figure 3-53: FB LGF\_SawTooth



### Input parameters

Table 3-106: Input parameter

| Parameter      | Data type | Description                                                                                                     |
|----------------|-----------|-----------------------------------------------------------------------------------------------------------------|
| startValue     | INT       | Start value at the the signal starts.                                                                           |
| timeRange      | TIME      | Time, after which the "value" output parameter is incremented                                                   |
| incrementRange | INT       | Size of jump from one increment to the next.                                                                    |
| numberSteps    | INT       | Number of increments per sawtooth. (In case of an endless sawtooth-signal, this specification is not required). |
| endlessSteps   | BOOL      | Specification, whether an endless sawtooth-signal shall be generated.                                           |
| restart        | BOOL      | Sawtooth-signal restarts at start value "start value".                                                          |

Note

Note that changes to the input parameters only become effective upon "restart".

### **Output parameters**

Table 3-107: Output parameter

| Parameter | Data type | Description                           |
|-----------|-----------|---------------------------------------|
| value     | INT       | Current value of the sawtooth-signal. |

### **Mode of Operation**

The block calculates the values for a sawtooth-shaped signal path which are output at the "value" output parameter. The signal starts with the start value "startValue"

and is added up with the "increment" value every time the "timeRange" time interval expires. The value can also be negative.

If the "endlessSteps" tag is set to "FALSE", the number of summation steps is counted. If it exceeds the "numberSteps" value, then the output parameter "value" is reset to the start value. A new sawtooth starts.

If the "endlessSteps" tag is set to "TRUE", then - once beginning at "startValue" - the "increment" value is continuously added up. If the maximum positive INT value range (32767) of the "value" output parameter is exceeded, "value" switches to the maximum negative INT value range (-32768) and is continuously added up.

Note

The duration of a sawtooth with "endlessSteps" on "FALSE" is calculated as follows:

Duration = "timeRange \* ("numberSteps" + 1)

Figure 3-54: Signal path of "value" output



# 3.8 Technology operations

# 3.8.1 FB LGF\_LimRateOfChangeBasic

### **Short description**

This block limits the rate of change of an input value. A jump function turns into a ramp function.

### **Block**

Figure 3-55: FB LGF\_LimRateOfChangeBasic



# Input parameters

Table 3-108: Input parameter

| Parameter         | Data type | Description                                 |  |
|-------------------|-----------|---------------------------------------------|--|
| inputValue        | REAL      | Input value (jump function)                 |  |
| setRateLim        | REAL      | Rate of change of ramp function (1/second). |  |
| onDefaultOutValue | BOOL      | Preset output value                         |  |
| dafaultOutValue   | REAL      | Value for preset of output value            |  |
| callOB            | OB_CYCLIC | Calling cyclic interrupt OB.                |  |

### **Output parameters**

Table 3-109: Output parameter

| Parameter   | Data type | Description                                                                                |
|-------------|-----------|--------------------------------------------------------------------------------------------|
| outputValue | REAL      | output quantity                                                                            |
| error       | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |
| statusID    | UINT      | "statusID" returns the ID of the block reporting the status. See table below.              |
| status      | WORD      | "status" returns the status/error code (see table below)                                   |

### Status and error displays

Table 3-110: Status/error codes

| statusID | status  | Meaning                                                                                               | Remedy/notes                                                             |
|----------|---------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1        | 16#0000 | No errors                                                                                             | -                                                                        |
| 1        | 16#7000 | Initial value                                                                                         | "onDefaultOutValue" active                                               |
| 1        | 16#8200 | OB at "callOB" input is not configured/present.                                                       | At the "callOB" input, connect a configured/present cyclic interrupt OB. |
| 1        | 16#8201 | Negative rate of change.                                                                              | The parameter for the rate of change must not be negative.               |
| 2        | -       | Error/status of subordinate function<br>"QRY_CINT" while querying the cyclic<br>interrupt parameters. | Possible cause: OB at "callOB" input is of the wrong type.               |

#### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

#### **Mode of Operation**

The ramp is a limitation line and refers to a change of rate per second; if "setRateLim = 10.0" is parameterized, for example, then at a sampling time of 1s/100ms/10ms and if "inputValue > outputValue" is set, 10.0/1.0/0.1 are added to "outputValue" during each block call, until "inputValue" has been reached.

The limitation of the change of rate is valid for the increase and the decrease in both, the positive and the negative value range.

The "output Value" output can be preset or initialized.

The time interval of the calling cycle interrupt OB is detected by connecting the calling cycle interrupt OB at the "callOB" input parameter.

Figure 3-56: Connect cyclic interrupt OB



### Presetting the output

If "onDefaultOutValue = TRUE" is set, then "defaultOutValue" is the active output; upon switching from TRUE to FALSE, "outputValue" is run as a ramp from "outputValue" to "inputValue". Upon switching from FALSE to TRUE, the "outputValue" output immediately switches to "defaultOutValue".

# 3 Explanation of the blocks

# 3.8 Technology operations

### **Function characteristics**

Figure 3-57: Ramp function growth



### 3.8.2 FB LGF\_LimRateOfChangeAdvanced

### **Short description**

The LGF\_LimRateOfChangeAdvanced block limits the rate of change of an input value. Jumpf functions turn to ramp functions. Additionally, the block has several operating modes.

### **Block**

Figure 3-58: FB LGF\_LimRateOfChangeAdvanced



### Input parameters

Table 3-111: Input parameter

| Parameter Data type |      | Description                                                     |  |
|---------------------|------|-----------------------------------------------------------------|--|
| inputValue          | REAL | Input value (jump function)                                     |  |
| setPosUpRateLim     | REAL | Rate of change per second for up ramp in positive value range   |  |
| setPosDownRateLim   | REAL | Rate of change per second for down ramp in positive value range |  |
| setNegUpRateLim     | REAL | Rate of change per second for up ramp in negative value range   |  |
| setNegDownRateLim   | REAL | Rate of change per second for down ramp in negative value range |  |
| setHighLim          | REAL | Upper limit                                                     |  |
| setLowLim           | REAL | Lower limit                                                     |  |
| processValue        | REAL | Process value                                                   |  |
| defaultOutValue     | REAL | Value for preset of output value                                |  |
| onDefaultOutValue   | BOOL | Preset output value                                             |  |
| track               | BOOL | Switching input value (tracking)                                |  |

# 3 Explanation of the blocks

# 3.8 Technology operations

| Parameter | Data type | Description                  |
|-----------|-----------|------------------------------|
| manOp     | BOOL      | Switching process value      |
| reset     | BOOL      | Restart                      |
| callOB    | OB_CYCLIC | Calling cyclic interrupt OB. |

# **Output parameters**

Table 3-112: Output parameter

| Parameter      | Data<br>type | Description                                                                                |  |
|----------------|--------------|--------------------------------------------------------------------------------------------|--|
| outputValue    | REAL         | output quantity                                                                            |  |
| posUpRateLim   | BOOL         | Up rate limitation in positive area switched on                                            |  |
| posDownRateLim | BOOL         | Down rate limitation in positive area switched on                                          |  |
| negUpRateLim   | BOOL         | Up rate limitation in negative area switched on                                            |  |
| negDownRateLim | BOOL         | Down rate limitation in negative area switched on                                          |  |
| highLim        | BOOL         | Upper limit switched on                                                                    |  |
| lowLim         | BOOL         | Lower limit switched on                                                                    |  |
| error          | BOOL         | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |  |
| statusID       | UINT         | "statusID" returns the ID of the block reporting the status. See table below               |  |
| status         | WORD         | "status" returns the status/error code (see table below)                                   |  |

### Status and error displays

Table 3-113: Status/error codes

| statusID | status  | Meaning                                                                                               | Remedy/notes                                                                   |
|----------|---------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1        | 16#0000 | No errors                                                                                             | -                                                                              |
| 1        | 16#8200 | OB at "callOB" input is not configured/present.                                                       | At the "callOB" input, connect a configured/present cyclic interrupt OB.       |
| 1        | 16#8201 | "setHighLim" < "setLowLim"                                                                            | Upper limit "setHighLim" needs to be greater than the lower limit "setLowLim". |
| 1        | 16#8202 | Negative rate of change.                                                                              | The parameters for the rate of change must only be >= 0.0.                     |
| 2        | -       | Error/status of subordinate function<br>"QRY_CINT" while querying the cyclic<br>interrupt parameters. | Possible cause: OB at "callOB" input is of the wrong type.                     |

#### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

### **Mode of Operation**

For the positive/negative value range, two rates of change are parameterizable for the ramp (rising and falling values). Via controller inputs, the following operating modes can be selected:

- Restart
- Presetting the output
- Normal operation (automatic)
- Tracking
- Switching process value (manual)

The output value can be limited via two parameterizable limits. An active limitation of the rate of change of a ramp as well as an active limitation of the output value are reported via the outputs.

The time interval of the calling cycle interrupt OB is detected by connecting the calling cycle interrupt OB at the "callOB" input parameter.

Figure 3-59: Connect cyclic interrupt OB



#### Restart

Upon restart "reset = TRUE", the output "outputValue" is reset to 0.0. If "onDefaultOutValue = TRUE" is set, "defaultOutValue" is output. All signal outputs are set to FALSE.

### Presetting the output

If "onDefaultOutValue = TRUE" is set, then "defaultOutValue" is the active output; upon switching from TRUE to FALSE, "outputValue" is run as a ramp from "outputValue" to "inputValue". Upon switching from FALSE to TRUE, the "outputValue" output immediately switches to "defaultOutValue".

### **Normal operation**

The ramps are a limitation lines and refer to a change of rate per second; if "setPosUpRateLim = 10.0" is parameterized, for example, then at a sampling time of 1s/100ms/10ms and if "inputValue > outputValue" is set, 10.0/1.0/0.1 are added to "outputValue" during each block call, until "inputValue" has been reached.

The limitation of the change of rate is parameterizable for the rise and the fall in both, the positive and the negative value range.

Table 3-114: Marking of ramps

| Parameter         | Ramp                                         |
|-------------------|----------------------------------------------|
| setPosUpRateLim   | outputValue > 0 and  outputValue  ascending  |
| setPosDownRateLim | outputValue > 0 and  outputValue  descending |
| setNegUpRateLim   | outputValue < 0 and  outputValue  ascending  |
| setNegDownRateLim | outputValue < 0 and  outputValue  descending |

If the ramps are not parameterized ("setPosUpRateLim", "setPosDownRateLim", "setNegUpRateLim" and "setNegDownRateLim" are 0.0), then the output remains at a value of 0.0 and normal operation is not functioning.

### **Tracking**

If the input "track = TRUE" is set, the input value "inputValue" is switched directly to the output value "outputValue". Thus, jumps of the input value are also output.

### Switching process value

If "manOp = TRUE" is set, the process value "processValue" is switched directly to the output value "outputValue".

In this operating mode, the parameterization of the ramps or the upper/lower limits of the output value and the preset of the output are ineffective.

Upon switching from TRUE to FALSE, the output "outputValue" is once more run as a ramp to "inputValue".

As soon as the value section between the lower and the upper limitation has been reached, the upper and lower limitation is reactivated.

### **Function characteristics**

Figure 3-60: Ramp function, operating modes



# 3.8.3 FB LGF\_Ramp

### **Short description**

This block generates a speed curve on the basis of a support point table. Between both points, there is a linear interpolation within the specified time.

#### **Block**

Table 3-115: FB LGF\_Ramp



#### Input parameters

Table 3-116: Input parameter

| Table 5 110. Input parameter |                         |                                                                                                     |  |  |
|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Parameter Data type          |                         | Description                                                                                         |  |  |
| defaultOutValue              | REAL                    | Value for preset of output value                                                                    |  |  |
| contStepNbr                  | INT                     | Number of the next support point to continue                                                        |  |  |
| contStepTime                 | TIME                    | Remaining time to continue until the support point "contStepNbr"                                    |  |  |
| onDefaultOutValue            | BOOL                    | Preset output quantity with "defaultOutValue"                                                       |  |  |
| start                        | BOOL                    | Track support point table                                                                           |  |  |
| hold                         | BOOL                    | Hold current value at output                                                                        |  |  |
| continue                     | BOOL                    | Continue                                                                                            |  |  |
| cyclicOP                     | BOOL                    | Repeat support table cyclically                                                                     |  |  |
| updateTime                   | BOOL                    | Update time                                                                                         |  |  |
| reset                        | BOOL                    | Restart                                                                                             |  |  |
| callOB                       | OB_CYCLIC               | Calling cyclic interrupt OB.                                                                        |  |  |
| setpoints                    | ARRY of "typeTimeTable" | Support point table. Information on the "typeTimeTable" data type can be found under "Global data". |  |  |

### **Output parameters**

Table 3-117: Output parameter

| Parameter       | Data type | Description                                                                                |  |
|-----------------|-----------|--------------------------------------------------------------------------------------------|--|
| outputValue     | REAL      | output quantity                                                                            |  |
| actTimeTable    | BOOL      | Support point table is currently being processed.                                          |  |
| stepNumber      | INT       | Current support point number (support point that is switched)                              |  |
| remainTime      | TIME      | Remaining time until the next support point is reached                                     |  |
| totalTime       | TIME      | Total time                                                                                 |  |
| remainTotalTime | TIME      | Total remaining time                                                                       |  |
| error           | BOOL      | 0: no errors 1: Block error, "statusID" returns error source, "status" returns error code. |  |
| statusID        | UINT      | "statusID" returns the ID of the block reporting the status. See table below.              |  |
| status          | WORD      | "status" returns the status/error code (see table below).                                  |  |

### Status and error displays

Table 3-118: Status/error codes

| statusID | status  | Meaning                                                                                         | Remedy/notes                                                             |
|----------|---------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1        | 16#0000 | No errors                                                                                       | Job completed.                                                           |
| 1        | 16#7000 | Initial value                                                                                   | Restart has been performed.                                              |
| 1        | 16#7001 | first call                                                                                      | Rising edge "start".                                                     |
| 1        | 16#7002 | Subsequent call                                                                                 | "cyclicOP" input set.                                                    |
| 1        | 16#8200 | OB at "callOB" input is not configured/present.                                                 | At the "callOB" input, connect a configured/present cyclic interrupt OB. |
| 1        | 16#8201 | Lower array limit <> 0                                                                          | The array with the support points needs to begin with the index 0.       |
| 2        | -       | Error/status of subordinate function "QRY_CINT" while querying the cyclic interrupt parameters. | Possible cause: OB at "callOB" input is of the wrong type.               |

### Note

If "statusID" is > 1, all values of the "status" output came directly from called up instructions (see table on output parameters). In this case, get the information on the respective instructions from the TIA Portal Online Help.

#### Global data

Together with the block, you automatically receive the PLC data type "typeTimeTable" which comprises of the parameters "outVal" for the value of a support point and "time" for the time until the next support point is reached. The declaration is done in a one-dimensional array of the "typeTimeTable" data type, beginning with the index 0. The array is created in a global data block and is then transferred to the "LGF\_Ramp" block.

Figure 3-61: Example for the declaration of the support points

| ■ ■      | • | setpoints |              | Array[09] of "typeTimeTable" |      |
|----------|---|-----------|--------------|------------------------------|------|
| <b>=</b> |   | •         | setpoints[0] | "typeTimeTable"              |      |
| •        |   | •         | outVal       | Real                         | 1.0  |
| •        |   | •         | time         | Time                         | t#5s |
| •        |   | •         | setpoints[1] | "typeTimeTable"              |      |
| •        |   | •         | outVal       | Real                         | 5.0  |
| •        |   | •         | time         | Time                         | t#3s |
| •        |   | ٠         | setpoints[2] | "typeTimeTable"              |      |
|          |   | ٠,        | setnoints[3] | "typeTimeTable"              | ~~~  |

The "time" parameter of the last support point needs to be configured with 0s, since there is no longer any subsequent support point.

### **Mode of Operation**

With each block, speed curves can be performed on the basis of configured support points; in each call cycle, values are output according to a time schedule and there is an interpolation between the support points.

In each cycle, the currently switched support point number "stepNumber", the current remaining time "remainTime" until the support point has been reached, the total time "totalTime" and the total remaining time "remainTotalTime" until the speed curve end has been reached are output. Also, the "actTimeTable" output is set in the moment in which the configured speed curve is output.

The time interval of the calling cycle interrupt OB is detected by connecting the calling cycle interrupt OB at the "callOB" input parameter.

Figure 3-62: Connect cyclic interrupt OB



Via control inputs, the following operating modes can be selected:

- Restart
- · Presetting the output
- Output speed curve
- Stop processing
- Specify processing step and time
- Switch to cyclic operation
- Update total time and remaining time

#### Overview of operating modes

Table 3-119: Overview of operating modes

| Operating mode                       | onDefault<br>OutValue | Start | hold  | continue | cyclicOP | updateTime | reset  | Output/action                                              |
|--------------------------------------|-----------------------|-------|-------|----------|----------|------------|--------|------------------------------------------------------------|
| Restart                              |                       |       |       |          |          |            | TRUE ↑ | Block is initialized.                                      |
| Preset the output                    | TRUE                  | TRUE  |       |          |          |            | FALSE  | defaultOutValue                                            |
| Output speed curve                   | FALSE                 | TRUE↑ | FALSE |          | FALSE    |            | FALSE  | outputValue(t);<br>Final value is held<br>after processing |
| Stop speed curve                     | FALSE                 | TRUE  | TRUE  | FALSE    |          |            | FALSE  | current value of<br>outputValue(t) is<br>held              |
| Specify processing step              | FALSE                 | TRUE  | TRUE  | TRUE ↑   |          |            | FALSE  | outputValue (alt)                                          |
| and time                             |                       |       | FALSE |          |          |            |        | Continue with configured support point                     |
| Switch to cyclic operation           | FALSE                 | TRUE  | FALSE |          | TRUE     |            | FALSE  | outputValue(t);<br>automatic restart<br>after end          |
| Update total time and remaining time |                       |       |       |          |          | TRUE ↑     | FALSE  | Total time and remaining time are updated.                 |

#### Restart

A positive edge at the "reset" input resets the "outValve" output to 0.0. With "onDefaultOutValue" = TRUE, "defaultOutValue" is output at the output. The total time and total remaining time is updated and output at the output.

### Preset the output

If the speed curve shall begin with a specific output value, then "onDefaultOutValue" needs to be = TRUE. In this case, the value "defaultOutValue" is applied to the output of the timer. All the while, the internal processing of the speed curve continues. If "onDefaultOutValue" switches to FALSE gain, it will be interpolated to the current active support point.

### **Output speed curve**

With a rising edge at the "start" input, the speed curve will be output - as long as "start" is TRUE or until the speed curve has been finished by reaching the last support point. With another rising edge, the speed curve is output again. Additionally, the total time is updated at each start-up.

### Switch to cyclic operation

If, in addition to the "start" input, the "cyclicOP" input is also set to TRUE, the speed curve automatically returns to the starting point after the output of the last support point value and starts a new cycle.

There is no interpolation between the last support point value and the starting point. For a bumpless transition, the following needs to apply: last support point value = starting point.

### Stop speed curve

With "hold" = TRUE, the value of the output quantity (including the processing time) is frozen. If "hold" is reset to = FALSE, it will be continued at the point of interruption or at a configured point (see "Specify processing step and time"). The processing time of the speed curve is extended by the hold time "T1\*" (see Fehler! Verweisquelle konnte nicht gefunden werden.).

### Specify processing step and time

If during the interruption of the speed curve ("hold" = TRUE), the "continue" input parameter for the continuation is set to TRUE, then, after resetting the "hold" input, the support point number "contStepTime" (destination support point) is switched within the "contStepTime" time period (interpolation). The total remaining time will be recalculated.

### Update total time and total remaining time

If support point values are changed, the total time and the total remaining time of the speed curve may change. Since for many support points, a calculation of "totalTime" and "remainTotalTime" may significantly increase the processing time of the function block, it will only be performed once, with a rising edge at the "updateTime" input.

### **Function characteristics**

Figure 3-63: Functional sequences



### 3.8.4 FB LGF\_NonLin

### **Short description**

This block realizes a characteristic. The characteristic is specified via a support point table with a linear interpolation between the support points. In every cycle, a specified input value generates an output value, using the characteristic from the support point table.

### **Block**

Figure 3-64: FB LGF\_NonLin



### Input parameters

Table 3-120: Input parameter

| Parameter         | Data type | Description                                                                                                                                                    |
|-------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| inputValue        | REAL      | Input value for the calculation of the output value via the defined characteristic.                                                                            |
| defaultOutValue   | REAL      | Default output value without the use of the characteristic                                                                                                     |
| onDefaultOutValue | BOOL      | Enabling the default output value The default output value is output for as long as this input is set.                                                         |
| track             | BOOL      | The value of the "outputValue" output follows the value of the "inputValue" value without the use of the characteristic, as long as this input is set.         |
| reset             | BOOL      | If during operation, the support point table is changed, the "reset" input needs to be activated subsequently. Otherwise, the block may not function properly. |

### Input/Output parameters (InOut)

Table 3-121: Input/Output parameters (InOut)

| Parameter | Data type               | Description                                                  |
|-----------|-------------------------|--------------------------------------------------------------|
| setpoints | LGF_typeNonLinSetpoints | Support point table for the definition of the characteristic |

#### **Output parameters**

Table 3-122: Output parameter

| Parameter   | Data type | Description                                                                                               |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------|
| outputValue | REAL      | The output value that has been calculated via the defined characteristic on the basis of the input value. |

#### **Mode of Operation**

The value of the "output Value" output is output on the basis of the following priorities:

- 1. As long as the "onDefaultOutValue" input is set, the value defined via the "defaultOutValue" parameter will be output as output value.
- 2. As long as the "reset" input is set, the block will be reset and the value of 0.0 will be output as output value.
- 3. As long as the "track" input is set, the input value is directly output as output value, without taking into account the characteristic.
- 4. On the basis of the input vaue, a characteristic value is calculated via the linearly interpolated support point table and output as output value.
  - If the input value is located between two support points within the support point table, the output value is calculated as intersection with the connection line between the previous and the next support point (see <u>Figure 3-65</u>).
  - If the input value is located before the first support point (lowest value that has been defined in the support point table), the output value is calculated as intersection of the line that is formed by the first two support points of the support point table.
  - If the input value is located after the last support point (highest value that has been defined in the support point table), the output value is calculated as intersection of the line that is formed by the last two support points of the support point table.

Figure 3-65: Exemplary course of the output signal



#### NOTICE

To keep the calculating time of the block as low as possible, no check of the configuration or the support point table data will be performed.

When the support points are entered in the support point table, the following characteristics need to be observed. Otherwise, mafunction of the block may occur.

- At least two support points need to be entered in the support point table.
- The support points in the support point table need to be entered in ascending order of the input values in the table.

### Interpolation point table

The support point table is realized by a tag of the Array data type. The type of the Array corresponds to the "LGF\_typeNonLinSetpoint" PLC data type.

You can create the support point table in any global data block. The size of the Array depends on the number of support points.

### **Example**

Figure 3-66: Exemplary data block



# 4 Links & Literature

Table 4-1: Links & literature

|     | Торіс                                                                                                                                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \1\ | Siemens Industry Online Support <a href="http://support.automation.siemens.com">http://support.automation.siemens.com</a>                                                           |
| \2\ | Download page of the entry <a href="https://support.industry.siemens.com/cs/ww/en/view/109479728">https://support.industry.siemens.com/cs/ww/en/view/109479728</a>                  |
| /3/ | Programming guide and programming style guide <a href="https://support.industry.siemens.com/cs/ww/en/view/81318674">https://support.industry.siemens.com/cs/ww/en/view/81318674</a> |
| \4\ | Libraries with PLC data types (LPD) for STEP 7 (TIA Portal) and S7-1200 / S7-1500  https://support.industry.siemens.com/cs/ww/en/view/109482396                                     |

# 5 History

# 5.1 Library versioning

The library and library elements are maintained on basis of the following table:

Table 5-1: Definition of version

| ٧                      | 1.                                                                                                                               | 2.                                                                                         | 3                                                |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|
| Non-compatible changes |                                                                                                                                  | Compatible changes                                                                         | Error correction                                 |
|                        | <ul> <li>Reduction of interfaces</li> <li>Modification of interfaces</li> <li>Incompatible extension of functionality</li> </ul> | <ul> <li>Extension of interfaces</li> <li>Compatible extension of functionality</li> </ul> | Bugfix     Upgrade to new     TIA Portal version |

# Versioning example

Table 5-2: Example for changing the version

| Library | FB1   | FB2   | FC1   | FC2   | Comment                           |
|---------|-------|-------|-------|-------|-----------------------------------|
| 1.0.0   | 1.0.0 | 1.0.0 | 1.0.0 | -     | Released                          |
| 1.0.1   | 1.0.1 | 1.0.0 | 1.0.0 | -     | Error handling of FB1             |
| 1.0.2   | 1.0.1 | 1.0.1 | 1.0.0 | -     | Optimization of FB2               |
| 1.1.0   | 1.1.0 | 1.0.1 | 1.0.0 | -     | Expansion at FB1                  |
| 1.2.0   | 1.2.0 | 1.0.1 | 1.0.0 | -     | Expansion at FB1                  |
| 2.0.0   | 2.0.0 | 1.0.1 | 2.0.0 | -     | New functionality at FB1 and FC1  |
| 2.0.1   | 2.0.0 | 1.0.2 | 2.0.0 | -     | Error handling of FB2             |
| 3.0.0   | 2.0.0 | 1.0.2 | 2.0.0 | 1.0.0 | New function FC2                  |
| 3.0.1   | 2.0.1 | 1.0.3 | 2.0.1 | 1.0.1 | Upgrade to new TIA Portal version |
|         |       |       |       |       |                                   |

# 5.2 Change log

Table 5-3: Change log

| Version | Date    | Modifications                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V1.0.0  | 09/2015 | First version                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V1.0.1  | 10/2015 | LGF_Astro V1.0.1  T_ADD instruction replaced by "+".                                                                                                                                                                                                                                                                                                                                                                                         |
| V1.0.2  | 10/2015 | LGF_BinaryToGray V1.0.1  Name changed LGF_GrayToBinary V1.0.1  Name changed                                                                                                                                                                                                                                                                                                                                                                  |
| V1.0.3  | 11/2015 | LGF_CompareVariant V1.0.1  • Error correction                                                                                                                                                                                                                                                                                                                                                                                                |
| V1.0.4  | 11/2015 | LGF_SawTooth V1.0.1  • Error correction                                                                                                                                                                                                                                                                                                                                                                                                      |
| V1.0.5  | 11/2015 | LGF_Astro V1.0.2  Error correction LGF_AverageAndDeviation V1.0.1  Error correction LGF_TimerSwitch V1.0.1  Error correction LGF_FIFO V1.0.1  Error correction                                                                                                                                                                                                                                                                               |
| V2.0    | 07/2016 | New: Chapter 1.3 Library resources FB LGF_PulseRelay V1.0.0 FB LGF_SetTime V1.0.0 FB LGF_FloatingAverage V1.0.0 FC LGF_DTLtoString V1.0.0 FC LGF_StringToDTL V1.0.0 FB LGF_LimRateOfChangeBasic V1.0.0 FB LGF_LimRateOfChangeAdvanced V1.0.0  Revised: LGF_Astro V1.1.1  • systemTime and localTime outputs added FB LGF_TimerSwitch V1.1.0  • Two new modes: Weekday, weekend FB LGF_ShallSort V1.1.0  • New mode: Sort in descending order |
| V2.0.1  | 01/2017 | FB LGF_Frequency V1.1.0  New function: Pulse-pause ratio adjustable FB LGF_Impulse V1.1.0  Calls new LGF_Frequency V1.1.0.  Revised: LGF_Astro V1.1.2  Error correction for sunrise and sunset calculation.                                                                                                                                                                                                                                  |
| V2.0.2  | 01/2017 | Revised: All blocks: Upgrade TIA V14                                                                                                                                                                                                                                                                                                                                                                                                         |

| Version | Date    | Modifications                                            |
|---------|---------|----------------------------------------------------------|
| V3.0.0  | 03/2017 | New:                                                     |
|         |         | FC LGF_CalendarDayWeekV1.0.0                             |
|         |         | FC LGF_CompareReal V1.0.0                                |
|         |         | FC LGF_RandomBasic V1.0.0                                |
|         |         | FC LGF_HighLowLimit V1.0.0                               |
|         |         | FC LGF_BitsToWord V1.0.0                                 |
|         |         | FC LGF_WordToBits V1.0.0                                 |
|         |         | FC LGF_ScaleLinear V1.0.0                                |
|         |         | FC LGF_StringToTaddr V1.0.0                              |
|         |         | FC LGF_TaddrToString V1.0.0                              |
|         |         | FB LGF_Ramp V1.0.0                                       |
|         |         | FB LGF_NonLin V1.0.0                                     |
|         |         | Revised:                                                 |
|         |         | Supplementation in chapter <u>5.1 Library versioning</u> |
|         |         | FB LGF_PulseRelay V1.0.2                                 |
|         |         | Commentary correction                                    |
|         |         | FB LGF_Astro V1.1.4                                      |
|         |         | Code tuning                                              |
|         |         | FB LGF_SetTime V1.0.2                                    |
|         |         | Correction: FB Number: automatic                         |
|         |         | FB LGF_FloatingAverage V1.1.0                            |
|         |         | Code tuning                                              |
|         |         | New input parameter "windowSize"                         |
|         |         | FC LGF_MatrixAddition V2.0.0                             |
|         |         | Code tuning                                              |
|         |         | Input parameters changed to ARRAY*                       |
|         |         | FC LGF_MatrixInverse V2.0.0                              |
|         |         | Code tuning                                              |
|         |         | Input parameters changed to ARRAY*                       |
|         |         | FC LGF_MatrixMultiplication V2.0.0                       |
|         |         | Code tuning                                              |
|         |         | Input parameters changed to ARRAY*                       |
|         |         | FC LGF_MatrixSubtraction V2.0.0                          |
|         |         | Code tuning                                              |
|         |         | Input parameters changed to ARRAY*                       |
|         |         | FC LGF_MatrixTranspose V2.0.0                            |
|         |         | Code tuning                                              |
|         |         | Input parameters changed to ARRAY*                       |
|         |         | FB LGF_Impulse V1.2.0                                    |
|         |         | Code tuning: No longer call of LGF_Frequency             |
|         | 1       | - Code turning. No longer call of LOF_Frequency          |