EECE 2322: Fundamentals of Digital Design and Computer Organization Lecture 2 2: Gates and Numbers

Xiaolin Xu Department of ECE Northeastern University

Gate Outputs Created by All Input Combinations

* XN stands for X' or NOT(X)

From Circuit to Truth Table

* Think about why

Row	Х	Υ	Z	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Logic Expressions for Signal Lines

Two-Level AND-OR Circuit

Two-Level OR-AND Circuit

Algebraic Analysis of a Logic Circuit with NAND and NOR Gates

Logic Synthesis

* What is logic synthesis? and Why?

Logic Synthesis

- * What is logic synthesis? and Why?
- Only some standard logic cells are used in practical design.

Lab 0: XOR Gate

* XOR: Exclusive-OR gate

Truth Table:

Χ	Υ	F
0	0	0
0	1	1
1	0	1
1	1	0

Symbol

to designate its operation.

Similar to the OR gate but excludes (has the value 0 for) the combination with both X and Y equal to 1.

Lab 0: XOR with NAND Gates

Properties of XOR Gate

$$X \oplus 0 = X$$

$$X \oplus X = 0$$

$$X \oplus \overline{Y} = \overline{X \oplus Y}$$

$$X \oplus 1 = \overline{X}$$

$$X \oplus \overline{X} = 1$$

$$\overline{X} \oplus Y = \overline{X} \oplus \overline{Y}$$

Commutative:

$$A \oplus B = B \oplus A$$

Associative:

$$(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$$

Binary, Decimal, Octal, and Hexadecimal Numbers

Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10		8	1000
1001	9	11	-	9	1001
1010	10	12	-	A	1010
1011	11	13	_	В	1011
1100	12	14	<u> </u>	C	1100
1101	13	15	-	D	1101
1110	14	16	-	E	1110
1111	15	17	-	F	1111

Binary Additions

Binary Subtractions

Must borrow 1, yielding the new subtraction 10 - 1 = 1

After the first borrow, the new subtraction for this column is 0 - 1, so we must borrow again.

The borrow ripples through three columns to reach a borrowable 1, i.e.,

100 = 011 (the modified bits)

+ 1 (the borrow)

minuend X 229
subtrahend Y <u>- 46</u>
difference X-Y 183

 1
 1
 1
 0
 0
 1
 0
 1

 0
 0
 1
 0
 1
 1
 0

 1
 0
 1
 1
 0
 1
 1
 1

1) 1 10 10

X 210 Y <u>- 109</u> X - Y 101 0 10 10 0 1 10 0 10 1 1 0 1 0 0 1 0 - 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1

Representation of Negative Numbers

Computer needs to know negative numbers as well!

- * Signed-Magnitude Representation
- Complement Number Systems
 - Two's complement representation
 - One's complement representation

Signed-Magnitude Representation

- * In the sign-magnitude system, a number is interpreted in the usual way, and the sign is denoted with:
 - * 1 for -
 - * 0 for +

- * $01010101_2 = +85_{10}$ $11010101_2 = -85_{10}$
- * $011111111_2 = +127_{10} \ 111111111_2 = -127_{10}$

- * In the two's complement system, a n-bit number is obtained by subtracting it from 2^n
- * Suppose we want to get -17
- * 17₁₀ = 00010001₂
- $* 2^8 17_{10} = ?$
 - $2^n = (2^n-1)+1$
 - * 2^n A = (2^n 1 A) + 1
 - * 2^n 1 = 1111...111
- * $-17_{10} = 1111111111_2 00010001_2 + 1 = ?$

- * $17_{10} = 111111111_2 00010001_2 + 1$
- $* = 111011110_2 + 1$
- $* = 111011111_2$
- $* = -17_{10}$
- * The MSB has a negative weight -2^(n-1)

* Why?

- Computer is stupid
- * Add two numbers 55 and 11 together

- * 0011 0111₂(55)
- $* + 0000 1011_2(11)$
- * 0100 0010₂(66)

- Computer is stupid
- * Subtract 11 from 55
 - * $-11 = 1111 \ 11112 0000 \ 10112 + 1 = 1111 \ 01002 + 1 = 1111 \ 01012$
- * 0011 0111₂(55)
- $* + 1111 \ 0101_2(-11)$
- * 0010 1100₂(44)

- Computer is stupid
- * Subtract 55 from 11
 - * $-55 = 1111 \ 11112 0011 \ 01112 + 1 = 1100 \ 10002 + 1 = 1100 \ 10012$
- * 0000 1011₂(11)
- $* + 1100 1001_2(-55)$
- * 1101 0100₂(-44)

What is the "E-reason"?

Any reason to design/use two's complement systems?

- * In the one's complement system, a n-bit number is obtained by subtracting it from 2^n-1
- * Suppose we want to get -17
- * 17₁₀ = 00010001₂
- * $-17_{10} = 111111111_2 00010001_2 = ?$

Decimal and 4-Bit Numbers

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Excess 2 ^{m-1}
-8	1000			0000
_7	1001	1000	1111	0001
-6	1010	1001	1110	0010
-5	1011	1010	1101	0011
-4	1100	1011	1100	0100
-3	1101	1100	1011	0101
-2	1110	1101	1010	0110
-1	1111	1110	1001	0111
0	0000	1111 or 0000	1000 or 0000	1000
1	0001	0001	0001	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7	0111	0111	0111	1111

Binary Multiplication

Binary Division

19		10011	quotient
11)217	1011)11011001	dividend
11	16_	1011	shifted divisor
107		0101	reduced dividend
99	82	0000	shifted divisor
8		1010	reduced dividend
	5-	0000	shifted divisor
		10100	reduced dividend
		1011	shifted divisor
		10011	reduced dividend
	76 <u>-</u>	1011	shifted divisor
		1000	remainder

Binary Code and Real-world Applications

- * A Mechanical Encoding Disk Using a 3-Bit Binary Code
- * Any problem?

Binary Code and Real-world Applications

- * A Mechanical Encoding Disk Using a 3-Bit Binary Code
 - Gray Code

Hamming Distance

* In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different