3. Fundamental amplifier configurations & Elementary R forms

Sedra & Smith Sec. 5.6

(S&S 5th Ed: Sec. 4.7)

Voltage Amplifier Model

Voltage Amplifier Model

Input Resistance: $R_i = v_i/i_i$

Voltage gain: $A_v = v_o / v_i$ with load

Open-loop gain: $A_{vo} = v_o / v_i$ with no load

Output resistance: R_o (resistance seen between

output terminals with $v_i = 0$)

$$\frac{v_i}{v_{sig}} = \frac{R_i}{R_i + R_{sig}}$$

$$\frac{v_o}{v_i} = A_v = A_{vo} \cdot \frac{R_L}{R_L + R_o}$$

$$\frac{v_o}{v_{sig}} = \frac{R_i}{R_i + R_{sig}} \cdot A_{vo} \cdot \frac{R_L}{R_L + R_o}$$

Fundamental MOS Amplifier Configurations

- We are considering only signal circuit here!
- ➤ There are only <u>FOUR</u> single-transistor MOS Amplifier Configuration

Possible MOS amplifier configurations

Common-Source

Common-Source with $R_{\rm s}$

Common-Gate

Same as Common Gate (v_i does not change)

Common-Drain

Not Useful

PMOS configurations are the same as NMOS

Since PMOS has the same signal model, configurations and results are exactly the same

Textbook includes R_D in its analysis

Small Signal Circuit for a Common Source Amplifier

Textbook:

Lecture:

- Textbook is inconsistent. It includes R_D for common source and common gate but does not include R_S in common drain.
- \triangleright Note R_D is parallel to R_L.
- To avoid confusion, I am using only one resistor, R'_L, which is the equivalent of all resistors in the drain circuit (e.g., for the above circuit, R'_L = R_L | | R_D)

Common Source Configuration (Gain)

Signal Circuit:

Small Signal Circuit with MOS SSM

Relevant circuit for Gain calculation

Common Source Configuration (R_i)

Small Signal Circuit with MOS SSM

Relevant circuit for $oldsymbol{R}_i$ calculation

$$i_i = 0$$

$$R_i = \frac{v_i}{i_i} = \infty$$

Common Source Configuration (R_o)

Small Signal Circuit with MOS SSM

Relevant circuit for R_o calculation (set $v_i = 0$)

Current source becomes open circuit

$$R_o = r_o$$

Common Source with Source Resistor

 v_{sig}

Signal Circuit:

Small Signal Circuit with MOS SSM

Input Resistance

$$i_i = 0 \Longrightarrow R_i = \frac{v_i}{i_i} = \infty$$

Common Source with Source Resistor (Gain*)

Node voltage method:

$$v_{gs} = v_i - v_S$$

$$\text{Node } v_S \qquad \frac{v_S}{R_S} + \frac{v_S - v_o}{r_o} - g_m(v_i - v_S) = 0$$

$$\text{Node } v_o \qquad \frac{v_o}{R_L'} + \frac{v_o - v_S}{r_o} + g_m(v_i - v_S) = 0$$

$$A_{v} = \frac{v_{o}}{v_{i}} = -\frac{g_{m}r_{o}R'_{L}}{r_{o} + (1 + g_{m}r_{o})R_{S} + R'_{L}}$$

$$A_{v} \approx -\frac{g_{m}R'_{L}}{1 + g_{m}R_{S} + R'_{L}/r_{o}}$$

$$A_{vo} = -g_{m}r_{o}$$

Common Source with Source Resistor (R_o*)

$$\triangleright$$
 set $v_i = 0$

> set $v_i = 0$ > Attach v_x and compute i_x > $R_o = v_x / i_x$

$$ightharpoonup R_o = v_x / i_x$$

Node voltage method:

$$v_{gs} = -v_{S}$$
Node v_{S}
$$\frac{v_{S}}{R_{S}} + \frac{v_{S} - v_{x}}{r_{o}} - g_{m}(-v_{S}) = 0$$

$$\frac{v_{S}}{R_{S}} = \frac{v_{x}}{r_{o} + (1 + g_{m}r_{o})R_{S}}$$

$$i_{x} = \frac{v_{S}}{R_{S}} = \frac{v_{x}}{r_{o} + (1 + g_{m}r_{o})R_{S}}$$

$$\frac{1}{R_o} = \frac{i_x}{v_x} = \frac{1}{r_o + (1 + g_m r_o) R_S}$$

$$R_o = r_o + (1 + g_m r_o) R_S$$

Common Gate Configuration

Signal Circuit:

Small Signal Circuit with MOS SSM

Common Gate Configuration (Gain*)

Node voltage method:

$$\begin{aligned} v_{gs} &= -v_i \\ \text{Node } v_o & \frac{v_o}{R_L'} + \frac{v_o - v_i}{r_o} + g_m(-v_i) = 0 \\ & \frac{v_o}{r_o \parallel R_L'} = \frac{1 + g_m r_o}{r_o} v_i \end{aligned}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{1 + g_{m} r_{o}}{r_{o}} (r_{o} \parallel R'_{L})$$

$$A_{v} \approx g_{m} (r_{o} \parallel R'_{L})$$

$$A_{vo} \approx g_{m} r_{o}$$

Common Gate Configuration (R_i and R_o^st)

Input Resistance

KVL:
$$v_i = (i_i + g_m v_{gs}) r_o + i_i R'_L$$

 $v_i (1 + g_m r_o) = i_i (r_o + R'_L)$

$$R_i = \frac{v_i}{i_i} = \frac{r_o + R_L'}{1 + g_m r_o}$$

$$R_i \approx \frac{1}{g_m} + \frac{R_L'}{g_m r_o}$$

Output Resistance (set $v_i = 0$)

Current source becomes open circuit

$$R_o = r_o$$

Common Drain Configuration (Source Follower)

Gain

Node voltage method:

$$v_{gs} = v_i - v_o$$
Node v_o
$$\frac{v_o}{R'_L} + \frac{v_o}{r_o} - g_m(v_i - v_o) = 0$$

$$g_m v_i = \frac{v_o}{r_o \parallel R'_L} + g_m v_o$$

$$A_{v} = \frac{g_{m}(r_{o} || R'_{L})}{1 + g_{m}(r_{o} || R'_{L})}$$

$$A_{vo} = \frac{g_{m}r_{o}}{1 + g_{m}r_{o}} \approx 1$$

Common Drain Configuration (Source Follower)

Input Resistance

$$i_i = 0$$

$$R_i = \frac{v_i}{i_i} = \infty$$

Output Resistance (set $v_i = 0$)

$$i_x = \frac{v_x}{r_o} - g_m v_{gs} = \frac{v_x}{r_o} + \frac{v_x}{1/g_m}$$

$$R_o = \frac{1}{g_m} \| r_o \approx \frac{1}{g_m}$$

MOS Fundamental Amplifier Configurations (PMOS circuits are identical)

Elementary R Forms

A Transistor can be configured to act as a resistor for small signals!

Ex: Output resistance of a CS Amplifier

Set $v_i = 0$, current source becomes open circuit

$$R_o = r_o$$

Notation:

 r_o is the small-signal resistance between the point and ground

- If we connect any two terminals of a MOS, we get a two-terminal device.
 - For Small Signals, this two terminal device can be replaced with its Thevenin equivalent circuit.
 - As there is NO independent sources present, the Thevenin equivalent circuit is <u>reduced to a resistor</u>.

A Transistor can be configured to act as a resistor for small signals!

- But, MOS should be in saturation for small signal model to work!
 - Connection between MOS terminals are, therefore, made through ground for signals.
 - o In fact, one or two MOS terminals have to be connected to bias power supply to ensure that MOS is in saturation (there is an exception, see next page)

MOS Elementary R Forms (PMOS circuits are identical)

Output resistance of CS Amp with R_s

Input resistance of CG Amp

Input resistance of CS Amp

Diode-connected
Transistor
Always in saturation!

Above configurations are for <u>Small Signal</u>. Typically one or both grounds are connected to bias voltage sources to ensure that MOS is in saturation!

Gain, input, and output resistances of MOS amplifiers can be found using fundamental amplifiers configurations and elementary R forms