Bio Computing & Machine Learning (BCML) Lab

Machine Learning

Linear Regression

Professor: Cheolsoo Park

Acknowledgement

- Andrew Ng's ML class
 - https://www.coursera.org/learn/machine-learning

One Variable Linear Regression

Smoking vs lifespan

of tobacco per day

- Supervised Learning
 - **7** Classification : discrete output
 - **7** Regression : continuous value output

One Variable Linear Regression

Linear regression with one variable

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- Parameter estimation in linear regression problem
- Hypothesis : $h_{\theta}(x) = \theta_0 + \theta_1 x$, where θ_i (i = 0 and 1) are parameters
- \blacksquare Let's find the parameters, θ_i
- Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{k=1}^{n} (h_{\theta}(x^{(k)}) - y^{(k)})^2$$

To estimate θ_0 and θ_1 , minimize $J(\theta_0, \theta_1)$ minimize θ_0, θ_1 $J(\theta_0, \theta_1)$

Linear regression hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{k=1}^{n} (h_{\theta}(x^{(k)}) - y^{(k)})^2$$

To estimate θ_0 and θ_1 , minimize $J(\theta_0, \theta_1)$ $\frac{minimize}{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Example

When $\theta_0 = 0$, and $\theta_1 = 0.5$

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{k=1}^{n} \left(0.5 x^{(k)} - y^{(k)} \right)^2 = \frac{1}{2 \cdot 3} \left((0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right) = 0.58$$

When $\theta_0 = 0$, and $\theta_1 = 1$

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{k=1}^{n} \left(h_{\theta} \left(x^{(k)} \right) - y^{(k)} \right)^2$$
$$\frac{1}{2n} \sum_{k=1}^{n} \left(x^{(k)} - y^{(k)} \right)^2 = \frac{1}{2 \cdot 3} (0^2 + 0^2 + 0^2) = 0$$

 $J(\theta_0, \theta_1)$ with two parameters

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

of tobacco per day (x)

$$J(\theta_0, \theta_1)$$

Repeat the function below until it converges

$$\theta_j \coloneqq \theta_j - \alpha \frac{d}{d\theta_j} J(\theta_0, \theta_1) \text{ for j=0 and j=1}$$

where α (>0) is a learning rate

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

- 7 Too large α makes gradient descent could overshoot the minimum.
 - $J(\theta_1)$
- Gradient descent can converge to a local minimum
 Bio Computing & Machine Learning (BCML) Lab

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Since gradient descent takes smaller steps by itself, we don't have to adjust or decrease α over time.

Linear regression hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{k=1}^{n} (h_{\theta}(x^{(k)}) - y^{(k)})^2$$

Gradient descent algorithm

Repeat the function below until it converges

$$\theta_j \coloneqq \theta_j - \alpha \frac{d}{d\theta_j} J(\theta_0, \theta_1)$$
 for j=0 and j=1

$$\frac{d}{d\theta_{j}}J(\theta_{0},\theta_{1}) = \frac{d}{d\theta_{j}}\frac{1}{2n}\sum_{k=1}^{n} (h_{\theta}(x^{(k)}) - y^{(k)})^{2}$$

$$= \frac{d}{d\theta_{j}}\frac{1}{2n}\sum_{k=1}^{n} (\theta_{0} + \theta_{1}x^{(k)} - y^{(k)})^{2}$$

$$j = 0 \Rightarrow \frac{d}{d\theta_0} J(\theta_0, \theta_1) = \frac{1}{n} \sum_{k=1}^n \left(h_\theta(x^{(k)}) - y^{(k)} \right)$$
$$j = 1 \Rightarrow \frac{d}{d\theta_1} J(\theta_0, \theta_1) = \frac{1}{n} \sum_{k=1}^n \left(h_\theta(x^{(k)}) - y^{(k)} \right) x^{(k)}$$

Repeat the function below until it converges

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{n} \sum_{k=1}^n \left(h_\theta(x^{(k)}) - y^{(k)} \right)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{n} \sum_{k=1}^n \left(h_\theta(x^{(k)}) - y^{(k)} \right) x^{(k)}$$

Update θ_0 and θ_1 simultaneously

Machine Learning by Andrew Ng.

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

Machine Learning by Andrew Ng.

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

Machine Learning by Andrew Ng.

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

Machine Learning by Andrew Ng.

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

Machine Learning by Andrew Ng.

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

Machine Learning by Andrew Ng.

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

Machine Learning by Andrew Ng.

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

Machine Learning by Andrew Ng.

Machine Learning by Andrew Ng.

Linear Regression with multiple variables

- When we have multiple variables(features) to interpret a phenomenon
 - for example, lifespan vs smoking/exercise/fine dust/diet and so on....
- Hypothesis for the multiple variables

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4 + \cdots$$

$$\rightarrow h_{\theta}(x) = \theta^T X$$

, where
$$m{ heta}=egin{bmatrix} heta_0 \\ heta_1 \\ heta_2 \\ heta_2 \\ heta_n \end{bmatrix}$$
 and $m{X}=egin{bmatrix} x_0 \\ x_1 \\ x_2 \\ heta_2 \\ heta_n \end{bmatrix}$ $(x_0=1)$

Linear Regression with multiple variables

Hypothesis of linear regression

$$h_{\theta}(x) = \boldsymbol{\theta}^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Cost function

$$J(\theta_0, \theta_1, \dots \theta_n) = \frac{1}{2m} \sum_{k=1}^{m} (h_{\theta}(x^{(k)}) - y^{(k)})^2$$

Gradient descent algorithm

Repeat the function below until it converges

$$\theta_j \coloneqq \theta_j - \alpha \frac{d}{d\theta_j} J(\theta_0, \theta_1, \dots \theta_n) \text{ for j=0,...,n}$$

Linear Regression with multiple variables

Repeat the function below until it converges

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{d}{d\theta_{j}} J(\theta_{0}, \theta_{1}, \dots \theta_{n}) \text{ for j=0,...,n}$$

$$\theta_{0} \coloneqq \theta_{0} - \alpha \frac{1}{m} \sum_{k=1}^{m} \left(h_{\theta} \left(x^{(k)} \right) - y^{(k)} \right) x_{0}^{(k)}$$

$$\theta_{1} \coloneqq \theta_{1} - \alpha \frac{1}{m} \sum_{k=1}^{m} \left(h_{\theta} \left(x^{(k)} \right) - y^{(k)} \right) x_{1}^{(k)}$$

$$\theta_{2} \coloneqq \theta_{2} - \alpha \frac{1}{m} \sum_{k=1}^{m} \left(h_{\theta} \left(x^{(k)} \right) - y^{(k)} \right) x_{2}^{(k)}$$

$$\cdot$$

Feature Scaling

- Features should be in similar range
 - \blacksquare Set the range into $-1 \le x_i \le 1$
 - Feature normalization : zero mean and unit variance $\frac{x_i \mu}{\sigma}$

For example,
$$x_1 = \# of \ cigaret \ (0^40 \ pieces)$$

 x_2 =seconds of exercise (0~7200 secs)

$$x_1 = \frac{\text{# of cigaret}}{40}$$

$$x_2 = \frac{\text{seconds of exercise}}{7200}$$

Bio Computing & Machine Learning (BCML) Lab

Convergence of Gradient Descent

Checking the convergence of gradient descent

- Sometimes, the stopping criterion of gradient descent is set as $I(\theta) < 10^{-3}$
- \blacksquare Using too large α , $J(\theta)$ may not decrease on every iteration

- If α makes $J(\theta)$ decrease on every iteration
- ightharpoonup However, too small lpha causes too slow convergence

Polynomial Regression

Quadratic function

(y)

of tobacco per day (x)

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_3^3$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 \sqrt{x_2}$$

Normal Equation

 \blacksquare Normal equation : analytic way to solve for θ

	Smoking (cigarette #)	Exercise (Seconds/day)	Fine dust $(\mu g/m^3)$	Diet (kcal)	Lifespan (years)
x_0	x_1	x_2	x_3	x_4	У
1	5	3600	20	2000	90
1	0	1000	60	2500	75
1	10	7200	150	3500	57
1	40	500	100	1000	45

$$\mathbf{x} = \begin{bmatrix} 1 & 5 & 3600 & 20 & 2000 \\ 1 & 0 & 1000 & 60 & 2500 \\ 1 & 10 & 7200 & 150 & 3500 \\ 1 & 40 & 500 & 100 & 1000 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 90\\75\\57\\45 \end{bmatrix}$$

$$y = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$
 $\theta = (X^T X)^{-1} X^T y$

Gradient Descent vs Normal Equation

- \overline{a} When m is the sample numbers and n is the number of features
- Gradient Descent
 - \nearrow Needs α
 - Takes many iterations
 - **⋾** is OK with large n

- Normal Equation
 - \blacksquare Needs no α
 - Needs no iteration
 - Need to compute $(X^TX)^{-1}$
 - Slow with large n