Builtin Fourier Transforms

torch.stft

pad_mode='reflect', normalized=False, onesided=True) Require • $|input| = (d_1, d_2)$ or (d_2) (rank = 1 or 2) • $0 < n_{-}fft < 2 \cdot d_2$ if center == True• $0 < n_{-}fft \le d_2$ if center == False• $hop_length > 0$ - if $hop_length == None$, then let $hop_length = \lfloor \frac{n_fft}{4} \rfloor$. • $0 < win_length < n_fft$ - if $win_length == None$, then let $win_length = n_fft$. • $window == None \text{ or } |window| = (win_length) \text{ (rank 1)}$ Guarantees • $|y| = (d_1, a, b, 2)$ or (a, b, 2) ... from the proof tree Comment • 음향분석에서 자주 쓰이는 short-time Fourier transform. • 마지막 텐서 부분은 real과 complex 부분을 가리키는 두 텐서. real 함수가 여기서 쓰임 $\sigma \vdash E \Rightarrow e, c$ $\sigma \vdash window \Rightarrow w, c_{win}$ if $window \neq None$, otherwise $c_{win} = \emptyset$ $hop_length = \lfloor \frac{n_fft}{4} \rfloor$ if $hop_length == None$ $win_length = n_fft$ if $win_length == None$ $n = e[\operatorname{rank}(e)]$ $c_{dim} = \{(window = None \lor w = (win_length)) \land (0 < hop_length) \land (0 < win_length \le n_fft)\}$ $c_{fft} = \{(\text{if } center \text{ then } 0 < n_{-}fft < 2 \cdot n \text{ else } 0 < n_{-}fft < n)\}$ $a = \text{if } one side d \text{ then } \lfloor \frac{n - fft}{2} \rfloor + 1 \text{ else } n - fft$ $b=\texttt{if}\ center\ \texttt{then}\ \lfloor\frac{n}{hop_length}\rfloor+1\ \texttt{else}\ \lfloor\frac{n-n_fft}{hop_length}\rfloor+1$ e' = if rank(e) == 2 then (e[1], a, b, 2) else (a, b, 2) $\sigma \vdash \mathsf{stft}(E, n_fft, hop_length = None, win_length = None, ..., onesided = True) \Rightarrow e', c \cup c_{win} \cup c_{dim} \cup c_{fft}$ Example Codes:

torch.stft(input, n_fft, hop_length=None, win_length=None, window=None, center=True,

Example Codes.

```
a = torch.randn(5, 10000)
print(a.shape) # (5, 10000)
print(torch.stft(a, 4).shape) # (5, 3, 10001, 2)
print(torch.stft(a, 200, 100).shape) # (5, 101, 101, 2)
print(torch.stft(a, 200, 100, center=False).shape) # (5, 101, 99, 2)
print(torch.stft(a, 200, 100, center=False, onesided=False).shape) # (5, 200, 99, 2)
```

torch.rfft(input, signal_ndim, normalized=False, onesided=True)

input as polynomial of, jet-1
Compute of(e) for each be.
Onesided options is because es = e-si

Require

- $|input| = (d_1, d_2, \dots, d_k)$
- $signal_ndim \in \{1, 2, 3\}$
- $\bullet \ signal_ndim \leq k$

Guarantees

• $|y|=(d_1,d_2,\ldots,d_{k-1},d_k',2)$ where $-d_k'=$ if onesided then $\lfloor \frac{d_k}{2} \rfloor +1$ else d_k

Comment

- Real-to-complex Discrete Fourier Transform
- 마지막 텐서 부분은 real과 complex 부분을 가리키는 두 텐서. real 함수가 여기서 쓰임

$$\begin{split} \sigma \vdash E \Rightarrow e, c \\ k = \texttt{rank}(e) \\ c_{dim} &= \{(signal_ndim \in \{1, 2, 3\}) \land (signal_ndim \leq k)\} \\ f &= \texttt{if } onesided \texttt{ then } \lfloor \frac{e[k]}{2} \rfloor + 1 \texttt{ else } e[k] \\ e' &= (e[1], e[2], \ldots, e[k-1], f, 2) \\ \hline \sigma \vdash \texttt{rfft}(E, signal_ndim, normalized = False, onesided = True) \Rightarrow e', c \cup c_{dim} \end{split}$$

torch.fft

torch.fft(input, signal_ndim, normalized=False)

Require

- $|input| = (d_1, d_2, \dots, d_k)$
- $d_k = 2$ (real and complex values)
- $signal_ndim \in \{1, 2, 3\}$
- $signal_ndim \le k-1$

Guarantees

• $|y| = (d_1, d_2, \dots, d_{k-1}, d_k) = |input|$ (same shape)

Comment

- Complex-to-complex Discrete Fourier Transform
- 마지막 텐서 부분은 real과 complex 부분을 가리키는 두 텐서. real 함수가 여기서 쓰임

$$\begin{split} \sigma &\vdash E \Rightarrow e, c \\ k &= \mathtt{rank}(e) \\ c_{last} &= \{(e[k] = 2)\} \\ c_{dim} &= \{(signal_ndim \in \{1, 2, 3\}) \land (signal_ndim \leq k - 1)\} \\ \hline \sigma &\vdash \mathtt{fft}(E, signal_ndim, normalized = False) \Rightarrow e, c \cup c_{last} \cup c_{dim} \end{split}$$

Window Declarations

torch.hann_window

torch.hann_window(window_length, periodic=True, dtype=None, layout=torch.strided, device=None,		
requires_grad=False)		
	Require	
	• $window_length \ge 0$	
	Guarantees	
	• $ y = (window_length)$	
	Comment	
	● sin ² 가중치의 주기성 윈도우 선언	

 $\overline{\sigma \vdash \mathtt{hann_window}(window_length, ...) \Rightarrow (window_length), \{(window_length \geq 0)\}}$

torch.bartlett_window

	length, periodic=True, dtype=None, layout=torch.strided, device=None,
requires_grad=False)	
	Require
	• $window_length \ge 0$
	Guarantees
	• $ y = (window_length)$
	Comment
	• 절대값함수 가중치 윈도우 선언

 $\overline{\sigma \vdash \mathtt{bartlett_window}(window_length, ...)} \Rightarrow (window_length), \{(window_length \ge 0)\}$

torch.hamming_window

<pre>torch.hamming_window(window_length, perio</pre>	dic=True, alpha=0.54, beta=0.46, dtype=None,layout=torch.stride
device=None, requires_grad=False)	
	Require
	• $window_length \ge 0$
	Guarantees
	• $ y = (window_length)$
	Comment
	• 삼각함수 가중치의 주기성 윈도우 선언

Linear Algebra

torch.svd

torch.svd(input, some=True, compute_uv=True, out=None)

Require

• |input| = (*, m, n) $(rank \ge 2)$

Guarantees

- $|U|=(*,m,m), |S|=(*,m), |V|=\dots$ - if $(compute_uv) \land (some)$ then |V|=(*,n,m) (as default) - otherwise, |V|=(*,n,n)
- |y| = (|U|, |S|, |V|)

Comment

- (U, S, V) 형태의 (Tensor, Tensor, Tensor) 출력 반환
- $input = U \times \operatorname{diag}(S) \times V^T$
- out-텐서 인자가 있는 함수

$$\begin{split} \sigma \vdash E &\Rightarrow e, c \\ k &= \mathtt{rank}(e) \\ u &= e[1:k-2]@(e[k-1], e[k-1]) \\ s &= e[1:k-2]@(e[k-1]) \\ v_{tail} &= \mathtt{if} \ (compute_uv) \land (some) \ \mathtt{then} \ (n,m) \ \mathtt{else} \ (n,n) \\ v &= e[1:k-2]@v_{tail} \\ c_{dim} &= \{(k \geq 2)\} \\ \hline \sigma \vdash \mathtt{svd}(E, some = True, compute_uv = True, out = None) \Rightarrow (u,s,v), c \cup c_{dim} \end{split}$$

3-tensor tuple로 반환

torch.diag

torch.diag(input, diagonal=0, out=None)

Require

- $|input| = (d_1)$ or (d_1, d_2) . (rank 1 or 2)
- if rank = 1, then there is no requirement.
- if rank = 2, then $-d_1 \leq diagonal \leq d_2$

Guarantees

- if rank = 1, then $|y| = (d_1 + |diagonal|, d_1 + |diagonal|)$
- if rank = 2, then $|y| = (\min\{d_1, d_2, d_1 + diagonal, d_2 diagonal\})$

Comment

- 1차원, 2차원 텐서 입력에 따라 역할이 달라짐
- out-텐서 인자가 있는 함수

$$\begin{split} \sigma \vdash E \Rightarrow e, c \\ k = \texttt{rank}(e) \\ c_{dim} &= \{(k \in \{1,2\}) \land (k = 1 \lor (-e[1] \le diagonal \le e[2]))\} \\ e' &= \texttt{if } k = 1 \texttt{ then } (e[1] + |diagonal|, e[1] + |diagonal|) \texttt{ else } (\min\{e[1], e[2], e[1] + diagonal, e[2] - diagonal)\} \\ &= \sigma \vdash \texttt{diag}(E, diagonal = 0, out = None) \Rightarrow e', c \cup c_{dim} \end{split}$$

torch.nn.functional.bilinear(input1, input2, weight, bias=None)

Require

- $|input_1| = (d_1, d_2, \dots, d_m, h_1)$
- $|input_2| = (d_1, d_2, \dots, d_m, h_2)$
 - Same ranks with rank ≥ 1 and
 - for all $i \in \{1, 2, \dots, m\}$, $|input_1|[i] = |input_2|[i]$
- $|weight| = (s, h_1, h_2)$
- bias is None or |bias| = (s)

Guarantees

• $|y| = (d_1, d_2, \dots, d_m, s)$

Comment

• 특이사항으로 torch.nn.functional.bilinear에서는 bias의 기 본값이 *None*으로 설정되어있지만, torch.bilinear에서는 그렇지 않아서 무조건 값을 넣어줘야합니다.

$$\begin{split} \sigma &\vdash E_1 \Rightarrow e_1, c_1 \\ \sigma &\vdash E_2 \Rightarrow e_2, c_2 \\ \sigma &\vdash W \Rightarrow w, c_w \\ \sigma &\vdash B \Rightarrow b, c_b \quad \text{if B is not $None$, otherwise $c_b = \emptyset$} \\ c_{dim} &= \left\{ (\operatorname{rank}(e_1) = \operatorname{rank}(e_2)) \wedge (\operatorname{rank}(e_1) \geq 1) \wedge (\operatorname{rank}(w) = 3) \right\} \\ k &= \operatorname{rank}(e_1) \\ c_{prefix} &= \left\{ (\forall i \in \{1, 2, \dots, k-1\}, e_1[i] = e_2[i]) \right\} \\ c_{suffix} &= \left\{ (e_1[k] = w[2]) \wedge (e_2[k] = w[3]) \wedge (B = None \vee b = (w[1])) \right\} \\ e' &= e_1[1:k-1]@(w[1]) \\ \hline \sigma &\vdash \operatorname{bilinear}(E_1, E_2, W, B = None) \Rightarrow e', c \cup c_{dim} \cup c_{prefix} \cup c_{suffix} \\ \end{split}$$