Mariam Cobalea

Universidad de Málaga Dpto, de Matemática Aplicada

Curso 15/16

Mariam Cobalea (UMA)

Relación binaria definida en un conjunto

Propiedades que puede verificar una relación binaria

Definición

Sea R una relación binaria definida sobre un conjunto A. Se dice que

- \mathcal{R} es reflexiva si para todo $a \in A$:
- \mathcal{R} es simétrica si para todo $a, b \in A$: $aRb \implies bRa$
- \mathcal{R} es antisimétrica si para todo $a, b \in A$: $aRb \ y \ bRa \implies a = b$
- $aRb \ y \ bRc \implies aRc$ • \mathcal{R} es transitiva si para todo $a, b, c \in A$:
- \mathcal{R} es conexa si para todo $a, b \in A$: aRb. o bien bRa

EAC, Curso 15/16 Tema 1- Relaciones de Orden

Relaciones

Introducción

• Las conexiones entre elementos de conjuntos se representan usando una estructura llamada relación.

Definición

Una relación binaria definida sobre un conjunto A es cualquier subconjunto $\mathcal{R} \subseteq A \times A$.

Ejemplo

Son relaciones binarias:

- **1** La inclusión \subseteq definida en el conjunto $\mathcal{P}(S)$ de un conjunto S.
- divisibilidad definida en \mathbb{N} .
- < entre números reales.
- paralelismo entre rectas.
- □ perpendicularidad entre rectas.

Relaciones de orden

Las relaciones de orden permiten **comparar** los elementos de un conjunto.

Definición (Relación de orden parcial)

Sea \mathcal{R} una relación binaria definida sobre un conjunto no vacío A.

- Se dice que \mathcal{R} es una relación de orden parcial si es reflexiva, antisimétrica y transitiva.
- El par (A, \mathcal{R}) se llama conjunto parcialmente ordenado.

Ejemplo

Son conjuntos parcialmente ordenados:

- $(\mathcal{P}(S),\subseteq)$
- $(A = \{2, 4, 5, 10, 12, 20\}, |)$
- (N, |)

Notación: Para denotar las relaciones de orden usaremos los símbolos

Vocabulario: Cuando $a \leq b$, se dice que:

- el elemento a es anterior al elemento b.
- el elemento b es posterior al elemento a.
- el elemento a precede al elemento b.
- el elemento b supera al elemento a.

Mariam Cobalea (UMA)

Mariam Cobalea (UMA) EAC. Curso 15/16 Tema 1- Relaciones de Orden

Relaciones de orden

Representación: Diagramas de Hasse

Un conjunto parcialmente ordenado (A, \prec) se puede representar gráficamente usando un grafo simplificado teniendo en cuenta las propiedades de la relación: reflexiva, antisimétrica y transitiva.

- ✓ Por ser reflexiva, tenemos asegurados los arcos (a, a).
- ✓ por ser antisimétrica, no habrá arcos de ida y vuelta, es decir, si aparece (a,b), no aparecerá (b,a) y,
- ✓ por ser transitiva, si aparecen los arcos (a, b) y (b, c), también contamos con el arco (a, c).
- ✓ Por todo ello, podemos **simplificar** la gráfica prescindiendo de los arcos que tenemos asegurados por estas propiedades.

Relaciones de orden

Representación: Diagramas de Hasse

Para determinar qué arcos son imprescindibles definimos los siguientes conceptos.

Definición

Sea (A, \preceq) un conjunto parcialmente ordenado y sean a y $b \in A$. Se dice que son elementos **comparables** si $a \prec b$ o bien $b \prec a$.

Se dice que el elemento b es **sucesor inmediato** del elemento a si se verifican las siguientes condiciones:

- $\mathbf{a} \prec b$
- 2 No existe $c \in A$, $a \prec c \prec b$.

Se denota $a \ll b$.

Eiemplo

En el conjunto parcialmente ordenado $(A = \{2, 4, 5, 10, 12, 20\}, \mid)$ 20 es sucesor inmediato de 4, pero no es sucesor inmediato de 5, ya que existe 10 tal que 5 | 10 y 10 | 20

Relaciones de orden

Representación: Diagramas de Hasse

Teniendo en cuenta estos conceptos, podemos describir una representación gráfica de una relación de odren parcial en un conjunto finito: el diagrama de Hasse.

- Empezamos representando cada elemento del conjunto A con un punto del plano, colocándolos de abajo hacia arriba (el punto a por debajo del b. si $a \leq b$).
- Se dibuja una línea ascendente desde cada elemento hasta cada uno de sus sucesores inmediatos.
- Se suprimen las orientaciones, pues todas las líneas son ascendentes.

Eiemplo

El diagrama de Hasse del

conjunto parcialmente ordenado

$$(A = \{2, 4, 5, 10, 12, 20\}, \mid)$$
 es:

Representación: Diagramas de Hasse

Ejemplo

ullet El conjunto \mathcal{D}_{30} de los divisores de 30 con la relación de orden parcial divisibilidad se representa:

Relaciones de orden

Orden producto

Definición (Orden Producto)

Sean (A, \leq_1) y (B, \leq_2) dos conjuntos parcialmente ordenados. En el conjunto $A \times B$ se define la relación \leq :

$$(a_1,b_1) \preceq (a_2,b_2) \iff a_1 \preceq_1 a_2 \land b_1 \preceq_2 b_2$$

Teorema (Orden Producto)

 $(A \times B, \preceq)$ es un conjunto parcialmente ordenado.

Relaciones de orden

Representación: Diagramas de Hasse

Ejercicio

En el conjunto $T = \{a, b, c, d, e, f\}$ se define la relación

$$\mathcal{R} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (b, d), (b, e), (b, f),$$
$$(c, c), (c, d), (c, e), (c, f), (d, d), (d, f), (e, e), (e, f), (f, f)\}$$

- Demuestra que (T, \mathcal{R}) es un conjunto parcialmente ordenado.
- 2 Dibuja su diagrama de Hasse.

Relaciones de orden

Orden producto

Orden producto

Ejercicio

En $\mathbb{R} \times \mathbb{R}$ se considera el **orden producto** construido a partir de la relación \leq . Representa gráficamente con qué puntos del plano se relaciona el punto (1,2).

Mariam Cobalea (UMA)

AC, Curso 15/16

Tema 1- Relaciones de Order

13 /

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . Se dice que $x \in B$ es maximal de B, si no existe ningún $b \in B$ posterior.

> El *maximal* es posterior a todo elemento comparable con él.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

 $B_1 = \{2, 4, 12, 20\}$

12 es maximal de B_1

20 es maximal de B_1

Mariam Cobalea (UMA)

EAC, Curso 15/1

Relaciones de orden

Orden Lexicográfico

Definición (Orden Lexicográfico)

Sean (A, \preceq_1) y (B, \preceq_2) dos conjuntos parcialmente ordenados. En el conjunto $A \times B$ se define la relación \sqsubseteq , llamada orden lexicográfico

$$(a_1,b_1) \sqsubseteq (a_2,b_2) \iff a_1 \preceq_1 a_2 \quad \lor \quad (a_1 = a_2 \quad \land \quad b_1 \preceq_2 b_2)$$

Teorema

 $(A \times B, \sqsubseteq)$ es un conjunto parcialmente ordenado.

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . Se dice que $x \in B$ es **minimal** de B, si no existe ningún $b \in B$ anterior.

> El *minimal* es anterior a todo elemento comparable con él.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

 $B_1 = \{2, 4, 12, 20\}$

2 es minimal de B

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $x \in B$ es máximo de B, si x es posterior a todo $b \in B$.

Eiemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_2 = \{2, 4, 10, 20\}$$

20 es máximo de B_2 , ya que

 $20 \in B_2$ y 2|20, 4|20, 10|20 y 20|20

Teorema

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . El máximo de B (si existe) es único.

Mariam Cobalea (UMA) EAC, Curso 15/16 Tema 1- Relaciones de Orden

Relaciones de orden

Elementos destacables en una ordenación

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_3 = \{2, 4, 5, 20\}$$

20 es máximo de B_3 , ya que

 $20 \in B_3$ y 2|20, 4|20, 5|20 y 20|20

¿Tiene mínimo B₃?

$$B_4 = \{2, 4, 12, 20\}$$

2 es mínimo de B_4 , va que

 $2 \in B_4$ y 2|2, 2|4, 2|12 y 2|20

¿Tiene máximo B₄?

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $x \in B$ es **mínimo** de B, si x es anterior a todo $b \in B$.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_2 = \{2, 4, 10, 20\}$$

2 es mínimo de B_2 , ya que

 $2 \in B_2$ y 2|2, 2|4, 2|10 y 2|20

Teorema

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \leq) . El mínimo de B (si existe) es único.

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $x \in B$ es máximo de B, si x es posterior a todo $b \in B$. Se dice que $x \in B$ es **mínimo** de B, si x es anterior a todo $b \in B$.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

 $B_5 = \{2, 4, 5, 10\}$

; Tiene máximo B₅?

¿Tiene mínimo B₅?

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . Se dice que $c \in A$ es **cota superior** de B, si c es posterior a todo $b \in B$.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_6 = \{2, 5, 10\}$$

10 es cota superior de B_6 ,

20 es cota superior de B_6 ,

$$C_S(B_6) = \{10, 20\}$$

EAC, Curso 15/16 Tema 1- Relaciones de Orden

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $m \in A$ es la mínima cota superior o supremo de B, si m es el mínimo del conjunto $C_s(B)$ de las cotas superiores de B.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_6 = \{2, 5, 10\}$$
 $C_S(B_6) = \{10, 20\}$

$$\min\left(\mathit{C_S}(\mathit{B}_6)\right)=10$$

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \leq) . Se dice que $c \in A$ es **cota inferior** de B, si c es anterior a todo $b \in B$.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_7 = \{4, 10, 12, 20\}$$

2 es cota inferior de B_7 ,

$$C_i(B_7) = \{2\}$$

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $M \in A$ es la máxima cota inferior o ínfimo de B, si M es el máximo del conjunto $C_i(B)$ de las cotas inferiores de B.

Ejemplo

 $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_8 = \{4, 12, 20\}$$
 $C_i(B_6) = \{2, 4\}$

$$\max\left(C_i(B_8)\right)=4$$

Elementos destacables en una ordenación

Eiercicio

Sea el conjunto parcialmente ordenado $T = \{a, b, c, d, e, f\}$

Determina los elementos destacables de los siguientes subconjuntos:

$$B_1 = \{a, b, c\}, \qquad B_2 = \{c, d\}$$

$$B_2 = \{c, d\}$$

$$B_3 = \{d, e\}$$

Relaciones de orden

Elementos destacables en una ordenación

Ejercicio

Sea D_{72} el conjunto de los divisores de 72.

- Dibuja el diagrama de Hasse de $(D_{72}, |)$
- Halla los elementos destacables de los subconjuntos

$$B_1 = \{3, 6, 12, 18\}, \quad B_2 = \{4, 6, 12, 18\} \quad \text{y} \quad B_3 = \{6, 9, 12, 18, 36\}$$

Ejercicio

Sea D_{2310} el conjunto de los divisores de 2310.

• Halla los elementos destacables de los subconjuntos

$$B_1 = \{2, 6, 10, 14, 22\}, \quad B_2 = \{6, 14, 15, 42\} \quad \text{y} \quad B_3 = \{6, 15, 21, 35\}$$

Relaciones de orden

Elementos destacables en una ordenación

Ejercicio

Sea D_{60} el conjunto de los divisores de 60.

- Dibuja el diagrama de Hasse de $(D_{60}, |)$
- Halla los elementos destacables de los subconjuntos

$$B_1 = \{1, 2, 3, 5\},$$
 $B_2 = \{3, 4\}$ y $B_3 = \{4, 15\}$

Relaciones de orden

Orden total compatible con un orden dado

Lema

Sea (A, \preceq) un conjunto parcialmente ordenado. Si A es finito y no vacío, entonces tiene un elemento minimal.

Demostración:

- \triangleright Por ser A no vacío, existe un elemento $x_1 \in A$.
- > Si x_1 es minimal, entonces el lema queda demostrado.
- ightharpoonup En caso contrario, existe un $x_2 \neq x_1$ tal que $x_2 \leq x_1$.
- > Si x_2 es minimal, queda demostrado el lema.
- ightharpoonup En caso contrario, existe $x_3 \neq x_2$ tal que $x_3 \leq x_2$.
- > Como el conjunto A es finito, el proceso debe terminar. Así obtenemos el elemento minimal.

Orden total compatible con un orden dado

Aplicando el lema anterior repetidamente podemos encontrar una relación de orden total ≪ **compatible** con ≺; es decir, una relación de orden total ≪ que contenga a la relación de orden parcial ≺ dada:

para todo $a, b \in A$ si $a \prec b$, entonces $a \ll b$

El proceso de construcción de un orden total como ≪ se llama

clasificación u ordenación topológica.

Mariam Cobalea (UMA)

EAC, Curso 15/16 Tema 1- Relaciones de Orden

Relaciones de orden

Algoritmo de ordenación topológica

- Solución 1: $5 \ll 2 \ll 10 \ll 4 \ll 20 \ll 12$
- Solución 2: $2 \ll 4 \ll 12 \ll 5 \ll 10 \ll 20$

Mariam Cobalea (UMA)

EAC, Curso 15/16 Tema 1- Relaciones de Orden

Relaciones de orden

Algoritmo de ordenación topológica

Sea \leq una relación de orden parcial definida en un conjunto finito no vacío A. Nos planteamos encontrar una relación de orden total \ll compatible con \prec . esto es, para todo $a, b \in A$ si $a \leq b$, entonces $a \ll b$.

- **1** Se empieza eligiendo un elemento minimal $a_1 \in A$.
- ② Si $A \{a_1\}$ no es vacío, se elige un elemento minimal $a_2 \in A \{a_1\}$.
- Se repite este proceso hasta elegir todos los elementos de A.
- La secuencia $a_1 \ll a_2 \ll ... \ll a_n$ nos proporciona un orden total.

Bibliografía

Matemática Discreta N.L.Biggs (Ed. Vicens Vives)

Matemática Discreta F. García Merayo (Ed. Paraninfo)

Problemas resueltos de Matemática Discreta F. García Merayo,

G. Hernández Peñalver y A. Nevot Luna (Ed. Thomson)

Matemáticas Discreta y combinatoria R.P. Grimaldi (Ed. Addison Wesley)

Matemática Discreta R. Johnsonbaugh (Ed. Prentice Hall)

Estructuras de Matemáticas Discretas para la Computación

B. Kolman y R.C. Busby (Ed. Prentice Hall)

2000 Problemas resueltos de Matemática Discreta

S. Lipschutz y M. Lipson (Ed. McGraw Hill)

Matemática Discreta y sus aplicaciones K. Rosen (Ed. McGraw Hill)

Matemática Discreta K.A. Ross v C.R.B. Wright (Ed. Prentice Hall)

Tema 1- Relaciones de Orden