Chicago COVID-19 ZIP Code Analysis

Jamil Mirabito

Chicago is in the midst of a second wave of COVID-19 cases, now having surpassed the total number of cases during the initial wave.

Challenge

With the massive uptick in positive cases, it's important to understand which communities are most affected by the virus and how certain mitigation efforts may be working to reduce the city's overall positivity rate through the coming weeks.

Analyses

ZIP-Code Analysis:

Using zip-code-level demographic and economic characteristics to understand which variables are most related to positivity rates and testing.

Projecting Chicago's Positivity Rate:

Using time-variant characteristics to model the city's positivity rate for the next two weeks.

Positivity Rates

Positivity rate is the percentage of total tests administered in a given day that come back positive. This does not include rapid tests, or antibody tests.

The World Health Organization (WHO) recommends that the **positivity rate in a particular area remain below 5 percent** for at least 2 weeks before loosening restrictions.

As recently as the start of November, the city-wide positivity rate has approached 15 percent - far exceeding the 5 percent threshold

Primarily Black and Latinx communities have the highest 2-week average positivity rates while testing seems to be focused near universities

COVID-19 Positivity Rates by ZIP Code (10/18 - 10/31)

COVID-19 Testing Rates by ZIP Code (10/18 - 10/31)

COVID-19 Percentage-Point Change in Positivity Rate from Prior 2-Week Period (10/4 - 10/17)

Sources: US Census Data, Chicago COVID-19 Cases, Deaths, and Tests (3/01/2020 - 10/31-2020) at the zip-code level. Data sourced from different dataset with ZIP-code-level positivity rates available on a weekly basis. See **Appendix Slide 26** for list of top 5 ZIP codes for positivity rates and testing.

ZIP Code Analysis

ZIP Code Analysis

Data Sources:

- US Census Data
- City of Chicago Cases, Testing and Deaths by ZIP Code
- City of Chicago Testing Sites

Target Variables:

- COVID-19 Positivity Rates
- Testing Rate

Variables included in **Robust Linear Model** (**RLM**):

- Median Age
- Median Household Income
- Median Household Size
- Percent of a ZIP Code that is Hispanic/Latinx
- Percent Black
- Percent White
- Percent Undocumented & Percent Undocumented Foreign Born Latin America (FBLA)
- Percent Uninsured
- Percent Unemployed
- Percent Healthcare Workers
- Percent Essential Workers
- Distance from Testing Site

The following features were found to be significantly correlated with COVID-19 positivity rates & testing controlling for all other features

Target: COVID-19 Positivity Rates

- Mean Household Size (+0.021)
- Percent Hispanic (+0.124)
- Percent Uninsured (-0.309)
- Percent Health Workers (-0.696)
- Percent Essential Workers (+0.184)

Target: Testing Rate

- Median Age (-0.002)
- Median Household Income (-3.16e-07)
- Mean Household Size (-0.013)
- Percent Uninsured (-0.246)
- Percent Unemployed (-0.244)

Predicting Positivity Rates

Time-Series Modeling

Data Sources:

- Chicago Open Data Daily Tests by Test
- NOAA Historical Weather Data

Models Tested:

- Naive Untrained Model
- Moving Average Model
- Triple Exponential Smoothing Model
- SARIMA Model
- Various iterations of a SARIMAX model

Training Period: 03/01/2020 -

10/20/2020

Testing Period: 10/20/2020 -

11/3/2020

Model Type	RMSE
Naive Untrained Model	2.582
Moving Average Model	3.112
Triple Exponential Smoothing Model	1.252
SARIMA Model	1.149
Final SARIMAX model	0.393

The best-performing model was a SARIMAX Model trained on data from 05/15/2020 - 10/20/2020

RMSE: 0.393

Exogenous variables used in model - all 10-day lag variables:

- Holidays
- Tightening Restrictions
- Loosening Restrictions
- Average Daily Temperature
- Precipitation

Optimal model predicts steady increase in daily positivity rates of roughly one percentage point per week for the next 2 weeks

Summary & Recommendations

Summary:

Over the past month, COVID-19 positivity rates were highest in **Latinx communities** and areas with a high percentage of **essential workers**.

In the coming weeks, it's projected that the City's overall **positivity rate will continue to increase**, likely driven by increases in group gatherings through the holiday season.

While testing is readily available for **younger students**, communities with a higher percentage of **uninsured individuals are less likely to be tested**.

Recommendations:

Work with community leaders and city stakeholders to ensure that all community residents are aware of free testing regardless of insurance coverage.

Consider **mandating regular testing** for all essential and non-essential workers

Continue stressing the importance of social distancing in mitigating the spread of the virus particularly in communities with higher positivity rates (i.e., Hispanic communities)

Questions?

Appendix

Data Sources

Census Data (API):

- American Community Survey 2018 Estimates zip-code level
- ACS Occupation Lookup Table S2401

Chicago Open Data:

- COVID-19 Cases, Tests, and Deaths by ZIP Code
- COVID-19 Testing Sites
- COVID-19 Daily Cases, Deaths, and Hospitalizations
- COVID-19 Daily Testing by Test
- Chicago ZIP Codes Shapefile

NOAA:

 Average Daily Temperature and Precipitation (Historical Data)

Cases, Testing & Positivity Rates

While total positive cases have surpassed the maximum number of cases in March, positivity rates appear much lower due to expanded testing

Individuals lead the City in total number of daily cases (7-day moving average)

Latinx individuals also account for the highest number of daily cases consistently throughout the pandemic

Individuals between the ages of 18 and 29 are tested at the highest rate

White Chicagoans tend to get tested more than other ethnic groups

Individuals younger than 17 seem to be leading the city in positivity rates

Latinx Chicagoans lead all other groups in positivity rates

Top 5 ZIP Codes for both Positivity Rates and Testing

Positivity Regression Analysis:

- 1. **Brighton Park (60632):** Primarily Latinx Neighborhood on Southwest Side (84 percent Latinx) with 19.9 percent positivity rate.
- Chicago Lawn (60629): Primarily Latinx neighborhood in Chicago (71 percent Latinx) with 18.4 percent positivity rate.
- 3. **Clearing (60638):** Primarily White & Latinx community near Midway Airport with 30.6 percent essential workers and a positivity rate of 17.9 percent.
- 4. **Belmont Cragin (60639):** Primarily Latinx neighborhood (77.9 percent latinx) with 31.4 percent essential workers and a positivity rate of 17 percent.
- 5. **Little Village (60623):** Primarily Mexican neighborhood on the Southwest Side (66.1 percent Latinx) with positivity rate of 15.6 percent.

Testing Regression Analysis:

- Hyde Park/Woodlawn (60637): Primarily Black neighborhoods home to the UChicago Campus and student body. The testing rate here is 18.2 percent.
- 2. **West Loop (60607):** Upscale neighborhoods directly west of downtown home to UIC and the Illinois Medical District. The testing rate here is 11.1 percent.
- 3. **Loop/West Loop (60606):** Wealthy area in the financial district of the city where most residents are White and few unemployed. Testing per capita is 10.6 percent.
- 4. **East Hyde Park (60615):** Neighborhood directly north of Hyde Park and the UChicago campus. The testing rate in this area is 10.2 percent.
- Wicker Park/West Town (60622): Home to a number of students, recent graduates, and families. The testing rate here is 10 percent.

Regression Summaries

Target: Positivity Rates

Robust linear Model Regression Results

						====
Dep. Variable:	posRate No. Observations:				56	
Model:	RLM Df Residuals:				44	
Method:		IRLS	Df Model:			11
Norm:		HuberT				
Scale Est.:		mad				
Cov Type:		н1				
Date:	Thu, 12	Nov 2020				
Time:		22:02:19				
No. Iterations:		42				
	coef		z			(E)
const	-0.0486		-1.180		-0.129	
medianAge	0.0017	0.001	1.897	0.058	-5.61e-05	0.003
medianHHInc	1.87e-07	1.83e-07	1.022	0.307	-1.72e-07	5.46e-07
mean HHsize	0.0206	0.010	2.136	0.033	0.002	0.040
pctHispanic	0.1235	0.027	4.531	0.000	0.070	0.177
pctBlack	0.0260	0.026	0.991	0.322	-0.025	0.077
pctUndocumented	0.0639	0.058	1.092	0.275	-0.051	0.179
pctUninsured	-0.3086	0.130	-2.372	0.018	-0.564	-0.054
pctUnemployed	0.2272	0.224	1.013	0.311	-0.212	0.667
pctHealthWorkers	-0.6956	0.258	-2.695	0.007	-1.201	-0.190
pctEssential	0.1836	0.089	2.074	0.038	0.010	0.357
dist	-0.6104	0.379	-1.609	0.108	-1.354	0.133

Target: Testing Rate

Robust linear Model Regression Results

Dep. Variable:	testpercent	No. Observations:	56
Model:	RLM	Df Residuals:	44
Method:	IRLS	Df Model:	11
Norm:	HuberT		
Scale Est.:	mad		
Cov Type:	H1		
Date:	Thu, 12 Nov 2020		
Time:	22:27:18		
No. Iterations:	50		

	coef	std err	z	P> z	[0.025	0.975]
const	0.2239	0.022	10.262	0.000	0.181	0.267
medianAge	-0.0020	0.000	-4.334	0.000	-0.003	-0.001
medianHHInc	-3.159e-07	9.7e-08	-3.258	0.001	-5.06e-07	-1.26e-07
mean_HHsize	-0.0132	0.005	-2.579	0.010	-0.023	-0.003
pctHispanic	0.0226	0.014	1.564	0.118	-0.006	0.051
pctBlack	-0.0175	0.014	-1.261	0.207	-0.045	0.010
pctUndocumented	-0.0331	0.031	-1.069	0.285	-0.094	0.028
pctUninsured	-0.2463	0.069	-3.573	0.000	-0.381	-0.111
pctUnemployed	-0.2437	0.119	-2.050	0.040	-0.477	-0.011
pctHealthWorkers	0.1154	0.137	0.844	0.399	-0.153	0.383
pctEssential	-0.0037	0.047	-0.079	0.937	-0.096	0.088
dist	0.0828	0.201	0.412	0.680	-0.311	0.477

Individual Scatter Plots

Median Age

Median Household Income

Mean Household Size

Percent Hispanic

Percent Black

Percent Undocumented

Percent Uninsured

Percent Unemployed

Percent Health Workers

Percent Essential Workers

Distance From Testing Site

Time Series Models

Naive Model Forecast

Moving Average Model

Triple Exponential Smoothing Model

SARIMA Model

SARIMAX Model - Final Model

RMSE: 0.393