2013-6-22 高等数学 A2 考卷

课程名称: <u>高等数学 A(2)</u> : 课程编码: <u>GE03026</u> : 试卷编号: <u>A</u> : 考试时间: 120 分钟 学号 专业、班级 姓名 姓名
一. 填空题 (本题共 11 小题, 每小题 3 分, 满分 33 分)
1. 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\alpha}}$,当且仅当 α 满足 时条件收敛.
2. 幂级数 $\sum_{n=1}^{\infty} nx^n$ 的和函数 $S(x) = $
3. 设 $\ \bar{a}\ =4$, $\ \bar{b}\ =3$, \bar{a} 与 \bar{b} 的夹角 $\theta=\frac{\pi}{6}$, 则以 $\bar{a}+\bar{b}$ 和 $\bar{a}-\bar{b}$ 为邻边的平行四边形的面积为
4. 设函数 $f(x, y)$ 可微, $f(0, 0) = 0$, $f'_x(0, 0) = m$, $f'_y(0, 0) = n$, $\varphi(t) = f[t, f(t, t)]$, 则 $\varphi'(0) =$
5. 设 $z=f(x,y)$ 是由方程 $e^{-xy}-2z=e^{z}$ 确定的隐函数,则在 $x=0,y=1$ 处的全徽分 $dz=$
6. 函数 $u = x^2 + y^2 + z^2$ 在曲线 $x = t$, $y = t^2$, $z = t^3$ 上点 $(1, 1, 1)$ 处,沿曲线在该点的切线正方向 $($ 对应于 t 增大的方向 $)$ 的方向导数 $\frac{\partial u}{\partial l} _{(1,1,1)} =$
7. 函数 $f(x,y)=3x-x^3+y^2+2y$ 的极值点为
8. 已知曲线 $L: y = \sqrt{1-x^2}$ (0 $\leq x \leq 1$),则曲线积分 $\int_{L} x ds =$.
9. 设 L 是抛物线 $x = y^2$ 上从点 $O(0,0)$ 到点 $A(1,1)$ 的一段,则曲线积分
$\int_{L} y \sin x dx - \cos x dy = \underline{\hspace{1cm}}$
10. 设 Σ 是平面 $x+y+z=1$ 位于第一卦限的部分,则对面积的曲面积分 $\iint xdS = $
$11.$ 由曲面 $z^2 = x^2 + y^2$ 与平面 $z = 1$ 所围立体的质心是(设立体密度