MAD-CB

Erros Tipo I e II e Poder Estatístico

Revisão de Conceitos

- Hipótese Nula (H_0): parâmetro = valor teórico
- Hipótese Alternativa (H_1) : \geq , \neq , \leq valor teórico
- ullet Estatística de teste calculada dos dados assumindo H_0 verdade
- Valor p probabilidade de observar valor teórico testado ou um valor mais extremo
- Valores p pequenos mostram evidência contra H₀
- Nível de significância define limite para "quão pequeno é pequeno" de um valor p
- Anotado como α (letra grega "alfa")

Poder de Um Teste Estatístico

- ullet lpha fornece uma ideia do desempenho do teste com amostras multiplas
- Se H_0 é verdade e $\alpha = 0.01$
 - \blacktriangleright Em 1% das amostras, rejeitaremos H_0 erroneamente
 - ► Em 99% das amostras, não rejeitaremos H₀ (decisão correta)
- Queremos rejeitar H_0 quando é realmente falsa
- Se α é pequeno demais, podemos nunca rejeitar H_0 mesmo se o valor correto do parâmetro seja muito diferente da H_0
- **Poder** de um teste é a probabilidade de tomar a decisão correta (i.e., rejeitar H_0 quando é realmente falsa)
- Um grau de poder mais alto de um teste significa que o teste fica mais sensível

Poder – Applet

- Wise Power Applet Claremont Graduate University, Claremont, CA
- http://http://wise1.cgu.edu/power_applet/power.asp

Poder – Definição

Poder é a probabilidade de rejeitar corretamente uma hipótese nula falsa quando uma hipótese alternativa é verdade

Análise de Poder

- Permite determinar a probabilidade de um teste de significância estatística rejeitar a hipótese nula
- Permite calculo de número de casos (n) que seria necessária na amostra para conseguir um certo patamar de poder.
- Mais simples: permite que determinamos a priori a probabilidade que tomaremos a decisão certa

2 Tipos de Erros Estatísticos

- **Tipo I** Rejeitar H_0 quando **verdade**
 - Ocorre com probabilidade α
 - Uma pessoa inocente condenada falsamente de um crime
- **Tipo II** Não rejeitar *H*₀ quando **falso**
 - Ocorre com probabilidade β
 - $\beta = 1$ poder
 - ▶ Um criminal liberado em erro

Resultados Possíveis de Um Teste de Hipótese

Conclusão do Teste	Estado de Natureza		
		Nula Verdadeira	Nula Falsa
	Não rejeitar H _o	Correta p = 1 - α	Erro Tipo II p. = B
	Rejeitar H _o	Erro Tipo L p = α	Correta p = 1 - B

Poder e o Tamanho de Amostra

- Pesquisador presta atenção a 4 valores importantes:
 - ► Tamanho da amostra
 - ▶ Nível de significância (α)
 - Poder
 - Tamanho de efeito
- Se você conhece três, pode calcular o quarto
- $n \in \alpha$ são sob seu controle direto

Poder - Maximização

- Meta normal: maximizar o poder enquanto manter o nível de significância e minimizar tamanho de amostra
- Quer maximizar probabilidade de achar um efeito verdadeiro enquanto minimizando chance de identificar um efeito que não existe
- Fazemos nossos cálculos de poder e tamanho de amostra ao início da pesquisa – no planejamento
 - ▶ Não depois já executou experimento. Não pode tentar aumentar casos

Poder – Diagrama

Tamanho de Efeito

- Magnitude da diferença entre da média verdadeira na população e a média hipotetizada na nula relativa ao desvio padrão
- Quando efeito de tamanho é maior, poder maior
 - Existe menos sobreposição entre as duas curvas

- Desses valores, mais difícil para entender
- Normalmente precisa experiência com pesquisas para aplicar bem
- Tabela para guiar calouros estatísticos no uso de tamanho de efeito
- Esses são indicações gerais
 - Com experiência, vai ganhar melhor ideia

Tabela de Tamanhos de Efeito Exemplares

	Pequeno	Médio	Grande
teste - t	0,2	0,5	0,8
modelo linear	0,02	0,15	0,35
proporções	0,2	0,5	0,8
Qui-quadrado (χ²)	0,1	0,3	0,5

Como Calcular o Poder

Trabalhar com os Dados de Temperatura Normal Humana

```
temps <- read_table("TempData.txt", col_names = FALSE)</pre>
colnames(temps) <- "tempC"</pre>
suppressMessages(library(psych))
summary(temps)
        tempC
    Min. :35.72
    1st Qu.:36.56
##
##
    Median :36.83
    Mean :36.81
##
##
    3rd Qu.:37.06
##
    Max. :38.22
dp <- sd(temps$tempC); paste ("Desvio Padrão =", dp) # desvio padrão
## [1] "Desvio Padrão = 0.407323976688302"
n <- length(temps$tempC); paste ("n =", n)</pre>
```

[1] "n = 130"

Cálculo de Poder no Pacote pwr

 Pode especificar 3 dos quatro componentes de poder; função calcula o outro

```
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
    type = c("two.sample", "one.sample", "paired"),
    alternative = c("two.sided", "less", "greater"))
```

- d = tamanho de efeito
- $sig.level = \alpha$
- Deve especificar type e alternative

Executar Função pwr.t.test

n = 130d = 0.8

sig.level = 0.05 power = 1

alternative = two.sided

##

##

##

##

Conclusão sobre Amostra de 130 Pessoas

- Poder = 1; Amostra exagerada
- Vamos testar uma amostra de 10

```
##
## One-sample t test power calculation
##
## n = 10
## d = 0.8
## sig.level = 0.05
## power = 0.6162328
## alternative = two.sided
```

Um Pouco Fraco

 O que seria o tamanho certo da amostra para conseguir um poder = 0.95?

- Uma amostra de 23 seria suficiente para ter todo o poder estatístico que você quer
- Pode contar para seu colega montando o experimento que 23 seria um número bom.