Отчёт по лабораторной работе №2

Дисциплина: Операционные системы

Бызова Мария Олеговна

Содержание

1	Цель работы	5	
2	Задание	6	
3	Выполнение лабораторной работы	7	
	3.1 Установка программного обеспечения		
	3.2 Базовая настройка git		
	3.3 Создание ключа ssh	8	
	3.4 Создание ключа PGP	10	
	3.5 Настройка github	10	
	3.6 Добавление ключа PGP в Github	11	
	3.7 Настройка автоматических подписей коммитов git	12	
	3.8 Настройка gh	12	
	3.9 Создание репозитория курса на основе шаблона	14	
	3.10 Настройка каталога курса	15	
4	Выводы	17	
5	Ответы на контрольные вопросы.	18	
Сп	Список литературы		

Список иллюстраций

5.1	установка gtt	1
3.2	Установка gh	7
3.3	Задаю имя и email владельца репозитория	8
3.4	Настройка utf-8 в выводе сообщений git	8
3.5	Задаю имя начальной ветки	8
3.6	Задаю параметр autocrlf	8
3.7	Задаю параметр safecrlf	8
3.8	Генерация ключа ssh по алгоритму rsa	9
3.9	Генерация ключа ssh по алгоритму ed25519	9
3.10	Генерация ключа	10
3.11	Аккаунт Github	11
3.12	Вывод списка ключей	11
3.13	Копирование ключа в буфер обмена	11
3.14	Добавление нового ключа	12
3.15	Настройка подписей git	12
	Авторизация	13
3.17	Завершение авторизации	13
3.18	Результат авторизации	13
3.19	Создание и перемещение между директориями	14
3.20	Создание репозитория на основе шаблона репозитория	14
3.21	Клонирование репозитория	15
3.22	Перемещение между директориями	15
3.23	Удаление лишних файлов	16
	Создание необходимых каталогов	16
	Отправка файлов на сервер	16

Список таблиц

1 Цель работы

Целью данной лабораторной работы является изучение идеологии и применение средств контроля версий, освоение умения по работе с git.

2 Задание

- 1. Создать базовую конфигурацию для работы с git.
- 2. Создать ключ SSH.
- 3. Создать ключ PGP.
- 4. Настроить подписи git.
- 5. Зарегистрироваться на Github.
- 6. Создать локальный каталог для выполнения заданий по предмету.

3 Выполнение лабораторной работы

3.1 Установка программного обеспечения.

Уставливаю необходимое программное обеспечение: устанавливаю git (рис. 3.1).

Рис. 3.1: Установка git

Устанавливаю gh (рис. 3.2).

```
[mobihzova@mobihzova ~]$ dnf install gh
Ошибка: Эту команду нужно запускать с привилегиями суперпользователя (на
большинстве систем - под именем пользователя root).
[mobihzova@mobihzova ~]$ sudo dnf install gh
Последняя проверка окончания срока действия метаданных: 0:00:46 назад, С
р 21 фев 2024 15:34:35.
Зависимости разрешены.
-----
       Архитектура Версия
                                    Репозиторий Размер
............
Установка:
        x86_64 2.43.1-1.fc39 updates 9.1 M
Результат транзакции
Установка 1 Пакет
Объем загрузки: 9.1 М
Объем изменений: 46 М
Продолжить? [д/Н]:
```

Рис. 3.2: Установка gh

3.2 Базовая настройка git.

Задаю имя и email владельца репозитория (рис. 3.3).

```
[mobihzova@mobihzova ~]$ git config --global user.name "mobyzova"
[mobihzova@mobihzova ~]$ git config --global user.email "1132236129@pfur
ru"
[mobihzova@mobihzova ~]$
```

Рис. 3.3: Задаю имя и email владельца репозитория

Настраиваю utf-8 в выводе сообщений git (рис. 3.4).

```
.ru"
[mobihzova@mobihzova ~]$ git config --global core.quotepath false
[mobihzova@mobihzova ~]$ |
```

Рис. 3.4: Настройка utf-8 в выводе сообщений git

Зададаю имя начальной ветки (будем называть её master) (рис. 3.5).

```
[mobihzova@mobihzova ~]$ git config --global init.defaultBranch master [mobihzova@mobihzova ~]$
```

Рис. 3.5: Задаю имя начальной ветки

Задаю параметр autocrlf (рис. 3.6).

```
[mobilizova@mobilizova ~]$ git config --global core.autocrlf input
[mobihzova@mobihzova ~]$
```

Рис. 3.6: Задаю параметр autocrlf

Задаю параметр safecrlf (рис. 3.7).

```
[mobihzova@mobihzova ~]$ git config --global core.safecrlf warn
[mobihzova@mobihzova ~]$
```

Рис. 3.7: Задаю параметр safecrlf

3.3 Создание ключа ssh.

Создаю ключ ssh по алгоритму rsa с ключём размером 4096 бит (рис. 3.8).

```
[mobihzova mobihzova ~]$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key (/home/mobihzova/.ssh/id_rsa):
Created directory '/home/mobihzova/.ssh'
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/mobihzova/.ssh/id_rsa
Your public key has been saved in /home/mobihzova/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:f12uNvUioTZTEBTu23H8DG5UsPbfGuVtkqX1GjEmCE0 mobihzova@mobihzova
The key's randomart image is:
+---[RSA 4096]----+
         .E. . |
+. 0 |
. 0. 0 .|
          0.. 0 0 |
         5 0.0 0 *|
          . 000 /*
           000.X.%
           = . . . +0 . |
          . 0 0+0 |
 ----[SHA256]----+
[mobihzova@mobihzova ~]$
```

Рис. 3.8: Генерация ключа ssh по алгоритму rsa

Создаю ключ ssh по алгоритму ed25519 (рис. 3.9).

```
[mobihzova@mobihzova ~]$ ssh-keygen -t ed25519
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/mobihzova/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/mobihzova/.ssh/id_ed25519
Your public key has been saved in /home/mobihzova/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:CfwII4Yhf5AjkJ7Q3GENqOjwnEOB+yHWO9XMLA1rpus mobihzova@mobihzova
The key's randomart image is:
+--[ED25519 256]--+
l==.+++
| * + Bo . o .
 =+*o+ @
 *=o+ 0 X
 +* o* o S
    . 0
   . E
+|---[SHA256]----+
[mobihzova@mobihzova ~]$
```

Рис. 3.9: Генерация ключа ssh по алгоритму ed25519

3.4 Создание ключа PGP.

Генерирую ключ PGP, затем выбираю тип ключа RSA and RSA, задаю максимальную длину ключа: 4096, оставляю неограниченный срок действия ключа. Далее отвечаю на вопросы программы о личной информации (рис. 3.10).

```
[mobihzova@mobihzova ~]$ gpg --full-generate-key
gpg (GnuPG) 2.4.3; Copyright (C) 2023 g10 Code GmbH
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
gpg: создан каталог '/home/mobihzova/.gnupg'
Выберите тип ключа:
  (1) RSA and RSA
  (2) DSA and Elgamal
  (3) DSA (sign only)
  (4) RSA (sign only)
  (9) ECC (sign and encrypt) *default*
 (10) ЕСС (только для подписи)
 (14) Existing key from card
Ваш выбор? 1
длина ключей RSA может быть от 1024 до 4096.
Какой размер ключа Вам необходим? (3072) 4096
Запрошенный размер ключа - 4096 бит
Выберите срок действия ключа.
       0 = не ограничен
     <n> = срок действия ключа - п дней
     <n>w = срок действия ключа - п недель
     <n>m = срок действия ключа - п месяцев
     <n>y = срок действия ключа - п лет
Срок действия ключа? (0) 0
Срок действия ключа не ограничен
Все верно? (y/N) у
GnuPG должен составить идентификатор пользователя для идентификации ключ
Ваше полное имя: MariaByzova
Адрес электронной почты: 1132236129@pfur.ru
```

Рис. 3.10: Генерация ключа

3.5 Настройка github.

У меня уже был создан аккаунт на Github, соответсвенно, основные данные аккаунта я так же заполняла и проводила его настройку, поэтому просто вхожу в свой аккаунт (рис. 3.11).

Рис. 3.11: Аккаунт Github

3.6 Добавление ключа PGP в Github

Вывожу список ключей и копирую отпечаток приватного ключ (рис. 3.12).

Рис. 3.12: Вывод списка ключей

Скопирую мой сгенерированный РGР ключ в буфер обмена (рис. 3.13).

```
Выполнено!
[mobihzova@mobihzova ~]$ gpg --armor --export 94499505E2FAC668 | xclip -
sel clip
[mobihzova@mobihzova ~]$
```

Рис. 3.13: Копирование ключа в буфер обмена

Перейду в настройки GitHub, нажму на кнопку New GPG key и вставлю полученный ключ в поле ввода (рис. 3.14).

Рис. 3.14: Добавление нового ключа

3.7 Настройка автоматических подписей коммитов git.

Используя введёный email, укажу Git применять его при подписи коммитов (рис. 3.15).

```
[mobihzova@mobihzova ~]$ git config --global user.signingkey 94499505E2F
AC668
[mobihzova@mobihzova ~]$ git config --global commit.gpgsign true
[mobihzova@mobihzova ~]$ git config --global gpg.program $(which gpg2)
[mobihzova@mobihzova ~]$ ]
```

Рис. 3.15: Настройка подписей git

3.8 Настройка gh.

Для начала авторизируюсь: отвечаю на наводящие вопросы от утилиты, в конце выбираю авторизироваться через браузер (рис. 3.16).

```
[mobihzova@mobihzova ~]$ gh auth login

? What account do you want to log into? GitHub.com

? What is your preferred protocol for Git operations on this host? HTTPS

**Authenticate Git with your GitHub credentials? Yes

? How would you like to authenticate GitHub CLI? Login with a web browse

! First copy your one-time code: 44D7-87A2

Press Enter to open github.com in your browser...
```

Рис. 3.16: Авторизация

Завершаю авторизацию на сайте (рис. 3.17).

Рис. 3.17: Завершение авторизации

Авторизация прошла успешно (рис. 3.18).

```
    Authentication complete.
    gh config set -h github.com git_protocol https
    Configured git protocol
    Authentication credentials saved in plain text
    Logged in as mobyzova
    [mobihzova@mobihzova ~]$
```

Рис. 3.18: Результат авторизации

3.9 Создание репозитория курса на основе шаблона.

Сначала создаю директорию с помощью утилиты mkdir и флага -p, который позволяет установить каталоги на всем указанном пути. После этого с помощью утилиты cd перехожу в только что созданную директорию (рис. 3.19).

```
[mobihzova@mobihzova ~]$ mkdir -p ~/work/study/2022-2023/"Операционные сис
темы"
[mobihzova@mobihzova ~]$ cd ~/work/study/2022-2023/"Операционные системы"
```

Рис. 3.19: Создание и перемещение между директориями

Далее создаю репозиторий на основе шаблона репозитория (рис. 3.20).

```
[mobihzova@mobihzova Операционные системы]$ gh repo create study_2022-2023
_os-intro --template=yamadharma/course-directory-student-template --public
/ Created repository mobyzova/study_2022-2023_os-intro on GitHub
https://github.com/mobyzova/study_2022-2023_os-intro
[mobihzova@mobihzova Операционные системы]$
```

Рис. 3.20: Создание репозитория на основе шаблона репозитория

Клонирую репозиторий (рис. 3.21).

```
[mobihzova@mobihzova Операционные системы]$ gh repo create study_2022-2023
_os-intro --template=yamadharma/course-directory-student-template --public
  Created repository mobyzova/study_2022-2023_os-intro on GitHub
 https://github.com/mobyzova/study_2022-2023_os-intro
[mobihzova@mobihzova Операционные системы]$ git clone --recursive https://
github.com/mobyzova/study_2022-2023_os-intro
Клонирование в «study_2022-2023_os-intro»...
remote: Enumerating objects: 32, done
remote: Counting objects: 100% (32/32), done.
remote: Compressing objects: 100% (31/31), done.
remote: Total 32 (delta 1), reused 18 (delta 0), pack-reused 0
Получение объектов: 100% (32/32), 18.59 КиБ | 6.20 МиБ/с, готово.
Определение изменений: 100% (1/1), готово.
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-
presentation-markdown-template.git) зарегистрирован по пути «template/pres
Подмодуль «template/report» (https://github.com/yamadharma/academic-labora
tory-report-template.git) зарегистрирован по пути «template/report»
Клонирование в «/home/mobihzova/work/study/2022-2023/Операционные системы/
study_2022-2023_os-intro/template/presentation»..
remote: Enumerating objects: 95, done.
remote: Counting objects: 100% (95/95), done
remote: Compressing objects: 100% (67/67), done
remote: Total 95 (delta 34), reused 87 (delta 26), pack-reused 0
Получение объектов: 100% (95/95), 96.99 КиБ | 973.00 КиБ/с, готово.
Определение изменений: 100% (34/34), готово
.
Клонирование в «/home/mobihzova/work/study/2022-2023/Операционные системы/
study_2022-2023_os-intro/template/report»...
remote: Enumerating objects: 126, done
remote: Counting objects: 100% (126/126), done.
remote: Compressing objects: 100% (87/87), done.
remote: Total 126 (delta 52), reused 108 (delta 34), pack-reused 0
Получение объектов: 100% (126/126), 335.80 КиБ | 1.64 МиБ/с, готово.
Определение изменений: 100% (52/52), готово.
Submodule path 'template/presentation': checked out '40a1761813e197d00e844
3ff1ca72c60a304f24c
Submodule path 'template/report': checked out '7c31ab8e5dfa8cdb2d67caeb8a1
[mobihzova@mobihzova Операционные системы]$
```

Рис. 3.21: Клонирование репозитория

3.10 Настройка каталога курса.

Перехожу в каталог курса (рис. 3.22).

```
[mobihzova@mobihzova ~]$ cd /home/mobihzova/work/study/2022-2023/"Операц
ионные системы"/study_2022-2023_os-intro/
[mobihzova@mobihzova study_2022-2023_os-intro]$
```

Рис. 3.22: Перемещение между директориями

Удаляю лишние файлы (рис. 3.23).

```
[mobihzova@mobihzova study_2022-2023_os-intro]$ rm package.json
[mobihzova@mobihzova study_2022-2023_os-intro]$
```

Рис. 3.23: Удаление лишних файлов

Создаю необходимые каталоги (рис. 3.24).

Рис. 3.24: Создание необходимых каталогов

Отправляю файлы на сервер (рис. 3.25).

Рис. 3.25: Отправка файлов на сервер

4 Выводы

В ходе выполнения данной лабораторной работы я изучила идеологию и применение средств контроля версий, освоила умения по работе с git.

5 Ответы на контрольные вопросы.

- 1. Системы контроля версий (VCS) программное обеспечение для облегчения работы с изменяющейся информацией. Они позволяют хранить несколько версий изменяющейся информации, одного и того же документа, может предоставить доступ к более ранним версиям документа. Используется для работы нескольких человек над проектом, позволяет посмотреть, кто и когда внес какое-либо изменение и т. д. VCS ррименяются для: Хранения понлой истории изменений, сохранения причин всех изменений, поиска причин изменений и совершивших изменение, совместной работы над проектами.
- 2. Хранилище репозиторий, хранилище версий, в нем хранятся все документы, включая историю их изменения и прочей служебной информацией. commit отслеживание изменений, сохраняет разницу в изменениях. История хранит все изменения в проекте и позволяет при необходимости вернуться/обратиться к нужным данным. Рабочая копия копия проекта, основанная на версии из хранилища, чаще всего последней версии.
- 3. Централизованные VCS (например: CVS, TFS, AccuRev) одно основное хранилище всего проекта. Каждый пользователь копирует себенеобходимые ему файлы из этого репозитория, изменяет, затем добавляет изменения обратно в хранилище. Децентрализованные VCS (например: Git, Bazaar) у каждого пользователя свой вариант репозитория (возможно несколько вариантов), есть возможность добавлятьи забирать

изменения из любого репозитория. В отличие от классических, в распределенных (децентралиованных) системах контроля версий центральный репозиторий не является обязательным.

- 4. Сначала создается и подключается удаленный репозиторий, затем по мере изменения проекта эти изменения отправляются на сервер.
- 5. Участник проекта перед началом работы получает нужную ему версию проекта в хранилище, с помощью определенных команд, после внесения изменений пользователь размещает новую версию в хранилище. При этом предыдущие версии не удаляются. К ним можно вернуться в любой момент.
- 6. Хранение информации о всех изменениях в вашем коде, обеспечение удобства командной работы над кодом.
- 7. Создание основного дерева репозитория: git init Получение обновлений (изменений) текущего дерева из центрального репозитория: git pull Отправка всех произведённых изменений локального дерева в центральный репозиторий: git push Просмотр списка изменённых файлов в текущей директории: git status Просмотр текущих изменений: git diff Сохранение текущих изменений: добавить все изменённые и/или созданные файлы и/или каталоги: git add . добавить конкретные изменённые и/или созданные файлы и/или каталоги: git add имена файлов удалить файл и/или каталог из индекса репозитория (при этом файл и/или каталог остаётся в локальной директории): git rm имена файлов Сохранение добавленных изменений: сохранить все добавленные изменения и все изменённые файлы: git commit -am 'Описание коммита' сохранить добавленные изменения с внесением комментария через встроенный редактор: git commit создание новой ветки, базирующейся на текущей: git checkout -b имя ветки переключение на некоторую ветку: git checkout имя ветки (при переключении на ветку, которой ещё нет в локальном репозитории, она

будет создана и связана с удалённой) отправка изменений конкретной ветки в центральный репозиторий: git push origin имя_ветки слияние ветки с текущим деревом: git merge -no-ff имя_ветки Удаление ветки: удаление локальной уже слитой с основным деревом ветки: git branch -d имя_ветки принудительное удаление локальной ветки: git branch -D имя_ветки удаление ветки с центрального репозитория: git push origin :имя ветки

- 8. git push -all отправляем из локального репозитория все сохраненные изменения в центральный репозиторий, предварительно создав локальный репозиторий и сделав предварительную конфигурацию.
- 9. Ветвление один из параллельных участков в одном хранилище, исходящих из одной версии, обычно есть главная ветка. Между ветками, т. е. их концами возможно их слияние. Используются для разработки новых функций.
- 10. Во время работы над проектом могут создаваться файлы, которые не следуют добавлять в репозиторий. Например, временные файлы. Можно прописать шаблоны игнорируемых при добавлении в репозиторий типов файлов в файл .gitignore с помощью сервисов.

Список литературы

1. Лабораторная работа №2 [Электронный ресурс] URL: https://esystem.rudn.ru/mod/page/vi