浙江大学 20<u>13</u> - 20<u>14</u> 学年<u>春夏</u>学期

《概率论与数理统计》期末考试试卷

课程号	: <u>061B909</u>	<u>90</u> ,开课学	·院: _数学	多系 ,任证	果教师:_		
考试试	卷: A 卷 √	、B卷(请	青在选定项	上打√)			
考试形	式: 闭√、	开卷(请	在选定项」	上打 √), ƒ	允许带 <u>计算</u>	器入场	
考试日	期: 2014	_年_7_月_	<u>3</u> 日,考试	时间: _12	0_分钟		
		诚信	考试,沉	着应考. *	+绝讳纪。		
请注	意:本试剂						
请勿	将试卷拆法	开或撕页	! 如发生	此情况责	任自负!		
考生姓名:	:			专业/大类:			
题序		_	=	四	五.	总 分	
得分							<u>.</u>
评卷人							
						D(1.96) = 0	. 975,
			0.000		0,00	5) = 1.75,	
	$= 2.13, F_0$						
	题(每小格						
1. 设 <i>A</i> , <i>B</i>	,C 为三个F	随机事件,	P(A) = P	P(B) = P(C)	C) = 0.4,	A与 B 不相容	F, C 与 A 独立,
C与B独立	工,则P(A)	$(\cup B) = $, <i>P</i>	$P(A \cup B \cup$	C) =	•	
2. 一盒中存	了3个红球	5 个白球,	采用不放[回抽样从中	取2个球,	以 X_1 表示取	(到红球的个数,
则 X_1 的分	布律为 $\frac{X_1}{p_k}$;若将取 	双出的2个	球放回,重	新采用不放回	· 引抽样取 2 个球,
取到的红斑	求数记为 X_2	2, …, 如	此重复进行	fn次,第	n 次采用 ^z	下放回抽样取	2个球,取到的
红球数记为	jX_n ,则((1) 若n=	3, 三次记	式验中都没	有取到红斑	求的概率为	; (2)
若 $n = 980$,则没有取	到红球的情	青况不超过	1365 次的	概率近似值	直为	$(3) \stackrel{.}{=} n \rightarrow \infty$

时,
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\overset{P}{\rightarrow}$$
_______。

3. 设某种电池的寿命 X (小时) 具有概率密度 $f(x) = \begin{cases} \frac{1}{200}e^{-x/200}, & x > 0, \\ 0, & 其它. \end{cases}$ 随机选取一节

4. 设总体 $X \sim N(\mu, 0.5), \mu$ 未知, $X_1, ..., X_9$ 为来自 X 的简单随机样本,记 $\overline{X} = \frac{1}{9} \sum_{i=1}^{9} X_i$,

则
$$P(|\bar{X}-X_1| \le 2/3) =$$
______, $\sum_{i=1}^4 (X_i - X_{i+4})^2$ 服从 ______分布,若根据样

本观测值,得 $\bar{x} = 6.472$,则检验假设 $H_0: \mu \le 6, H_1: \mu > 6$ 的 P_1 值为______.

5. 在研究我国人均消费水平问题上,考虑人均国民收入x(千元)对人均消费金额Y(千元)的影响。设 $Y \sim N(a+bx,\sigma^2)$, a,b,σ^2 均未知, $(x_1,y_1)...(x_{20},y_{20})$ 是 1980—1999

年的数据,已知
$$\overline{x} = 2.37$$
, $\overline{y} = 1.16$, $s_{xx} = \sum_{i=1}^{20} (x_i - \overline{x})^2 = 73.5$, $s_{yy} = \sum_{i=1}^{20} (y_i - \overline{y})^2 = 15.3$,

二. (16分)某种化合物中酒精含量的百分比X是随机变量,其概率密度为

$$f(x) = \begin{cases} c(1-x), & 0.1 < x < 0.9, \\ 0, & \text{其他.} \end{cases}$$
 , (1) 求常数 c ; (2) 求 X 的分布函数; (3) 设该化合物

的成本为每升 10 元,售价每升只有 50 元和 100 元两种: 若酒精含量在 0.3 < X < 0.5 时,售价为 100 元的概率为 0.8,酒精含量在 $X \le 0.3$ 或 $X \ge 0.5$ 时,售价为 100 元的概率为 0.3. 以 Y 表示每升的利润,求 P(Y = 90)及E(Y).

三. (16 分) 设随机变量 X与Y独立同分布, $X \sim U(-1,1)$ (均匀分布),Z = X + Y,求 (1) P(X < 0 | Z < 1),(2) X与Z 的相关系数 ρ_{XZ} ,(3) Z 的概率密度 $f_Z(z)$,(4) 设 $U = \begin{cases} 1, X > 0, \\ 0, X \leq 0. \end{cases}, \quad V = \begin{cases} 1, Z > 1, \\ 0, Z \leq 1. \end{cases}, \quad \vec{x}(U, V)$ 的联合分布律.

四. (16 分)(1)设总体 X 的概率密度 $f(x;\theta) = \begin{cases} \frac{x}{2\theta^2}, & 0 < x < 2\theta, \\ 0, & 其他. \end{cases}$

 X_1,\ldots,X_n 为来自X 的简单随机样本,求 θ 的矩估计量 $\hat{\theta}$,判断 $\hat{\theta}^2$ 是否为 θ^2 的无偏估计量,说明理由;(2)设总体 $Y\sim\pi(\lambda)$ (泊松分布), $\lambda>0$ 未知,Y 的样本观测值为 1,3,0,1,2,2,分别求 λ 和P(Y=1) 的极大似然估计值。

五.(16 分)为比较三种不同型号橡胶制品 A,B 和 C 的耐磨系数 X,Y 和 Z,从三种产品中各随机抽取 6 件,测得数据如下:

数据	1	2	3	4	5	6	样本均值	样本方差
X	305. 8	295. 1	336. 7	313.8	298. 4	324. 6	$\bar{x} = 312.4$	$s_x^2 = 256.028$
Y	262. 1	249.9	278.8	274.8	241. 3	259. 7	$\overline{y} = 261.1$	$s_y^2 = 204.284$
Z	300. 3	268. 5	279. 2	294. 1	273.6	302. 1	$\overline{z} = 286.3$	$s_z^2 = 207.004$

设三种型号橡胶制品的耐磨系数来自独立正态总体 $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$,

$Z \sim N(\mu_3, \sigma^2)$ 。(1)完成下面的方差分析表,

		平方和	自由度	均方	F比
J					
ì	误差				/
1	总和	11232. 46		/	/

且在显著水平 0.05 下检验假设 $H_0: \mu_1 = \mu_2 = \mu_3, H_1: \mu_1, \mu_2, \mu_3$ 不全相等;

(2) 求 $\mu_1 - \mu_2$ 的置信度为95%的双侧置信区间.