Отчет по лабораторной работе №1

Дисциплина: Операционные системы

Иванов Сергей Владимирович

Содержание

1	Цель работы	4
2	Выполнение лабораторной работы	5
3	Контрольные вопросы	17
4	Вывод	19

Список иллюстраций

2.1	Скачивание дистрибутива
2.2	Создание виртуальной машины
2.3	Указываем характеристики
2.4	Виртуальный жесткий диск
2.5	Запуск виртуальной машины
2.6	Установка ОС
2.7	Рабочий стол ОС
2.8	Обновление пакетов
2.9	Установка tmux
2.10	Установка ПО для автоматического обновления
2.11	Запуск таймера
2.12	Отключение SELinux
2.13	Установка средств разработки
2.14	Установка DKMS
2.15	Подключение Диска дополнений гостевой ОС
2.16	Подмонтируем диск
2.17	Установка драйвера
2.18	Редактирование конфиг. файла
2.19	Редактируем файл
	Изменение имени хоста
2.21	Общая папка
2.22	Установка pandoc
2.23	Установка pandoc-crossref
2.24	Установка TeXlive
	Версия ядра
2.26	Частота процессора
	Модель процессора
2.28	Объем оперативной памяти
	Тип гипервизора
2.30	Тип файловой системы
	Последовательность монтирования файловых систем

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

Для начала нам нужно скачать дистрибутив Linux Fedora-Sway 39 воспользовавшись сайтом: https://fedoraproject.org/spins/sway/download/index.html (рис. 1).

Рис. 2.1: Скачивание дистрибутива

Далее создадим виртуальную машину. Укажем имя машины согласно соглашению о именовании и подключим наш скачанный образ Linux Sway. (рис. 2).

Рис. 2.2: Создание виртуальной машины

Далее нужно указать объём памяти и количество виртуальных процессоров. Я указал 4096 мб оперативной памяти и 2 ЦП. (рис. 3).

Рис. 2.3: Указываем характеристики

В конце указываем объем памяти виртуального жесткого диска и указываем 80 гб. (рис. 4).

Рис. 2.4: Виртуальный жесткий диск

После выставления всех параметров запускаем виртуальную машину. (рис. 5).

Рис. 2.5: Запуск виртуальной машины

На этом этапе выбираем диск для установки операционной системы, создаем учетную запись и начинаем установку. (рис. 6).

Рис. 2.6: Установка ОС

Дожидаемся загрузки, перезагружаем виртуальную машину, вводим пароль и оказываемся на рабочем столе нашей системы. (рис. 7).

Рис. 2.7: Рабочий стол ОС

Далее нам необходимо запустить терминал комбинацией Win+Enter, переключимся на роль супер-пользователя и обновим все пакеты командой 'dnf –y update' (рис. 8).

Рис. 2.8: Обновление пакетов

Установим программы для удобства работы в консоли командой 'dnf install

tmux mc' (рис. 9).

[root@fedora ~]# dnf i	nstall tm	ux mc						
Последняя проверка окончания срока действия метаданных: 0:10:00 назад, Сб 10 фев 2024 22:59:52.								
Пакет tmux-3.3a-7.20230918gitb202a2f.fc39.x86_64 уже установлен.								
Зависимости разрешены.								
		=======================================						
Установка:								
		x86_64	1:4.8.30-1.fc39	fedora	1.9 1			
Установка зависимостей								
gpm-libs		x86_64	1.20.7-44.fc39	fedora	20 k			
perl-AutoLoader		noarch	5.74-502.fc39	updates	21			
		x86_64	1.88-502.fc39	updates	177 l			
		noarch	1.54-500.fc39	fedora	29 I			
		noarch	0.68-502.fc39	updates	22 I			
perl-Data-Dumper		x86_64	2.188-501.fc39	fedora	56 I			
perl-Digest		noarch	1.20-500.fc39	fedora	25 I			
perl-Digest-MD5		x86_64	2.58-500.fc39	fedora	35 H			
		x86_64	1.54-502.fc39	updates	26 I			
		x86_64	4:3.19-500.fc39	fedora	1.7 (
	60	x86_64	1.37-502.fc39	updates	15			
	1	noarch	5.77-500.fc39	fedora	31 I			
		x86_64	1.15-502.fc39	updates	21			
		noarch	2.86-502.fc39	updates	17 k			
perl-File-Path		noarch	2.18-500.fc39	fedora	35 k			

Рис. 2.9: Установка tmux

Используем автоматическое обновление. Для этого необходимо установить программное обеспечение воспользовавшись командой 'dnf install dnf-automatic' (рис. 10).

Пакет	Архитектура 	Версия ========	Репозиторий 	Разме
становка: dnf-automatic	noarch	4.18.2-1.fc39	updates	45
езультат транзакции				
:====================================		=======================================		.=======:
	92			
Объем загрузки: 45 k	ľ			
Объем изменений: 76 k Продолжить? [д/Н]: у				
продолжить: [д/п]. у Загрузка пакетов:				
Inf-automatic-4.18.2-1.fc	39. noarch. rpm		921 kB/s 45 kB	00:00
общий размер			60 kB/s 45 kB	00:00
Іроверка транзакции				
Іроверка транзакции успеш	но завершена.			
дет проверка транзакции				
ест транзакции проведен	успешно.			
выполнение транзакции				
Подготовка :				1/
Установка : dnf-	automatic-4.18.2-1.fc3	9.noarch		1/
Запуск скриптлета: dnf-				1/

Рис. 2.10: Установка ПО для автоматического обновления

И запустим таймер командой 'systemctl enable –now dnf-automatic.timer' (рис. 11).

```
[root@svivanov1 ~]# dnf install dnf-automatic
Последняя проверка окончания срока действия метаданных: 1:56:01 назад, Вт 13 фев 2024 11:57:40.
Пакет dnf-automatic-4.18.2-1.fc39.noarch уже установлен.
Зависимости разрешены.
Нет действий для выполнения.
Выполнено!
[root@svivanov1 ~]# systemctl enable --now dnf-automatic.timer
[root@svivanov1 ~]#
```

Рис. 2.11: Запуск таймера

Далее нам необходимо отключить SELinux. В файле /etc/selinux/config заменим значение SELINUX=enforcing на значение SELINUX=permissive.(рис. 12).

```
# To revert back to SELinux enabled:

# grubby --update-kernel ALL --remove-args selinux

# SELINUX=permissive

# SELINUXTYPE= can take one of these three values:

# targeted - Targeted processes are protected,

# minimum - Modification of targeted policy. Only selected processes are protected.

# mis - Multi Level Security protection.

SELINUXTYPE=targeted

1 TOMOMUS 2 COXPANUTS 3 SANK 4 SAMEHA 5 KONUA 6 DEPETUTS 7 DOUCK 8 VAANUTS 9 MEHEMC 10 SANKOA 10 0 KEEP-24
```

Рис. 2.12: Отключение SELinux

Перезагружаем виртуальную машину. Установим драйвера для VirtualBox. Войдём в ОС под заданной нами при установке учётной записи. Нажмем комбинацию Win+Enter для запуска терминала. Запустим терминальный мультиплексор tmux, переключимся на роль супер-пользователя. Установим средства разработки 'dnf -y group install "Development Tools" '(рис. 13).

Рис. 2.13: Установка средств разработки

И установим пакет DKMS используя команду 'dnf -y install dkms' (рис. 14).

```
Подготовка :
Установка : kernel-devel-matched-6.7.4-200.fc39.x86_64 1/3
Установка : openssl-1:3.1.1-4.fc39.x86_64 2/3
Установка : odenssl-1:3.1.1-4.fc39.moarch 3/3
Запуск скриптлета: dkms-3.0.12-1.fc39.noarch 3/3
Created symlink /etc/systemd/system/multi-user.target.wants/dkms.service - /usr/lib/systemd/system/dkms.service.

Проверка : openssl-1:3.1.1-4.fc39.x86_64 1/3
Проверка : dkms-3.0.12-1.fc39.noarch 2/3
Проверка : dkms-3.0.12-1.fc39.noarch 2/3
Проверка : kernel-devel-matched-6.7.4-200.fc39.x86_64 3/3

Установлен: dkms-3.0.12-1.fc39.noarch kernel-devel-matched-6.7.4-200.fc39.x86_64 openssl-1:3.1.1-4.fc39.x86_64

Выполнено!
root@svivanov1:-#

[0] 0:sudo* "mc [root@svivanov1]:-" 19:50 15-фев-24
```

Рис. 2.14: Установка DKMS

В меню виртуальной машины подключим образ диска дополнений гостевой ОС.(рис. 15).

Рис. 2.15: Подключение Диска дополнений гостевой ОС.

Подмонтируем диск командой 'mount /dev/sr0 /media' (рис. 16).

```
root@svivanov1:~# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
root@svivanov1:~#
```

Рис. 2.16: Подмонтируем диск

После чего установим драйвера '/media/VBoxLinuxAdditions.run' (рис. 17).

```
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.14 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Removing installed version 7.0.14 of VirtualBox Guest Additions...
Copying additional installer modules ...
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
6.7.4-200.fc39.x86_64.
grep: warning: stray \ before /
ValueError: File context for /opt/VBoxGuestAdditions-7.0.14/other/mount.vboxsf already defined
root@svivanovi: #
```

Рис. 2.17: Установка драйвера

Настроим раскладку клавиатуры. Запустим терминальный мультиплексор tmux, переключимся на роль супер-пользователя. Создадим конфигурационный файл ~/.config/sway/config.d/95-system-keyboard-config.conf. Отредактируем его. (рис. 18).

Рис. 2.18: Редактирование конфиг. файла

Отредактируем конфигурационный файл/etc/X11/xorg.conf.d/00-keyboard.conf (рис. 19).

```
00-keyboard.conf [----] 10 L: [ 1+ 9 10/ 11] *(436 / 437b) 0010 0x00A
# Written by systemd-localed(8), read by systemd-localed and Xorg. It's
# probably wise not to edit this file manually. Use localectl(1) to
# instruct systemd-localed to update it.
Section "InputClass"

    Identifier "system-keyboard"
        MatchIsKeyboard "on"
        Option "XkbLayout" "us,ru"
        Option "XkbLayout" "us,ru"
        Option "XkbVariant" ",winkeys"
        Option "XkbOptions" "grp:rctrl_toggle,compose:ralt,terminate:ctrl_alt_bksp"
EndSection
EndSection
```

Рис. 2.19: Редактируем файл

Необходимо установить имя хоста 'hostnamectl set-hostname username'. Проверим что имя хоста установлено верно, после чего перезагрузим систему. (рис. 20).

```
root@svivanov1:~# hostnamectl set-hostname svivanov1
root@svivanov1:~# hostnamectl
Static hostname: svivanov1
Icon name: computer-vm
```

Рис. 2.20: Изменение имени хоста.

Подключим общую папку. (рис. 21).

```
C:\Users\1serg>"C:\Program Files\Oracle\VirtualBox\VBoxManage.exe" sharedfolder add "sv ivanov1" --name=work --hostpath="C:\work" --automount
```

Рис. 2.21: Общая папка

Установим программное обеспечение для создания документации. Нажмем комбинацию Win+Enter для запуска терминала. Запустим терминальный мультиплексор tmux, установим pandoc с помощью менеджера пакетов 'dnf -y install pandoc' (рис. 22).

Рис. 2.22: Установка pandoc

Установим pandoc-crossref. Скачаем необходимую версию pandoc-crossref (https://github.com/lierdakil/pandoc-crossref/releases). Распакуем архив и поместим их в каталог /usr/local/bin. (рис. 23).

```
Svivanovl@svivanov1:-$ 1s

Видео Документы Загрузки Изображения Музыка Общедоступные 'Рабочий стол' Шаблоны
svivanovl@svivanov1:-/Загрузки$ 1s
pandoc-cxossref-Linux.tar.xz
svivanovl@svivanov1:-/Загрузки$ tar -xvf pandoc-crossref-Linux.tar.xz
pandoc-crossref
pandoc-crossref
pandoc-crossref:1
svivanovl@svivanov1:-/Загрузки$ ls
pandoc-crossref pandoc-crossref.1
pandoc-crossref pandoc-crossref.1
pandoc-crossref pandoc-crossref.1
mv: невозможно создать обычный файл '/usr/local/bin/pandoc-crossref': Отказано в доступе
svivanovl@svivanov1:-/Загрузки$ sudo mv pandoc-crossref /usr/local/bin
[sudo] пароль для svivanov1:
svivanovl@svivanov1:-/Загрузки$ sudo mv pandoc-crossref /usr/local/bin
[sudo] пароль для svivanov1:
```

Рис. 2.23: Установка pandoc-crossref

Установим дистрибутив TeXlive 'dnf -y install texlive-scheme-full'(рис. 24).

```
texlive-zhspacing-11:svn41145-69.fc39.noarch
texlive-zxjafbfont-11:svn28539.0.2-69.fc39.noarch
texlive-zxjafont-11:svn62864-69.fc39.noarch
texlive-zxjatype-11:svn53500-69.fc39.noarch

Выполнено!
root@svivanov1:~#
[0] 0:sudo*
```

Рис. 2.24: Установка TeXlive

Домашнее задание

1) Версия ядра Linux (Linux version). Чтобы посмотреть версию ядра, можно воспользоваться командой dmesg | grep -i 'linux version'. (Рис. 25) Версия ядра: 6.7.4-200. (рис. 25).

```
root@svivanov1:-# dmesg | grep -i 'linux version'
[ 0.000000] Linux version 6.7.4-200.fc39.x86_64 (mockbuild@de0c58eb5f524c20963d3b29334043cc) (gcc
GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), GNU ld version 2.40-14.fc39) #1 SMP PREEMPT_DYNAMIC Mon Feb
5 22:21:14 UTC 2024
root@svivanov1:-#
```

Рис. 2.25: Версия ядра

2) Частота процессора (Detected Mhz processor). Частоту процессора можно узнать командой dmesg | grep -I "MHz". Частота процессора: 2688.004 MHz. (рис. 26).

```
root@svivanov1:~# dmesg | grep -I "MHz"

[ 0.000005] tsc: Detected 2688.004 MHz processor

[ 2.222950] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:ad:11:9d

root@svivanov1:~#
```

Рис. 2.26: Частота процессора

3) Модель процессора (CPU0). Модель процессора можно посмотреть командой cat /proc/cpuinfo | grep "model name". (рис. 27).

```
root@svivanov1:~# cat /proc/cpuinfo | grep "model name"

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

root@svivanov1:~#
```

Рис. 2.27: Модель процессора

4) Объем доступной оперативной памяти (Memory available). Объём доступной оперативной памяти можно посмотреть командой free -m. В моём случае: Всего – 3894 Мб. Используется – 779 Мб. Свободно – 3115 Мб. (рис. 28).

```
root@svivanov1:~# free -m
total used free shared buff/cache available

Mem: 3894 779 730 27 2692 3115

Swap: 3893 0 3893

root@svivanov1:~#
```

Рис. 2.28: Объем оперативной памяти

5) Тип обнаруженного гипервизора (Hypervisor detected). Тип обнаруженного гипервизора можно посмотреть командой dmesg | grep -I "hypervisor detected". В моём случае: KVM. (рис. 29).

```
root@svivanov1:~# dmesg | grep -I "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
root@svivanov1:~#
```

Рис. 2.29: Тип гипервизора

6) Тип файловой системы корневого раздела. Тип файловой системы корневого раздела можно посмотреть командой findmnt. Тип файловой системы корневого раздела: ext4. (рис. 30).

```
fusect1
                                 fusectl rw,nosuid,nodev,noexec,relatime
                     securityfs security rw,nosuid,nodev,noexec,relatime
  /sys/fs/cgroup
                                 cgroup2 rw,nosuid,nodev,noexec,relatime,seclabel,nsdelegate,memory_r
                     cgroup2
                                 pstore rw,nosuid,nodev,noexec,relatime,seclabel
  /sys/firmware/efi/efivars
  /svs/fs/bnf
                     bpf
                                bof
                                          rw,nosuid,nodev,noexec,relatime,mode=700
  /sys/kernel/config
                     configfs configfs rw,nosuid,nodev,noexec,relatime
                     proc
                                          rw.nosuid.nodev.noexec.relatime
 /proc/sys/fs/binfmt_misc
                     systemd-1 autofs rw,relatime,fd=34,pgrp=1,timeout=0,minproto=5,maxproto=5,dir
                                tmpfs rw,nosuid,nodev,seclabel,size=797632k,nr_inodes=819200,mode
tmpfs rw,nosuid,nodev,relatime,seclabel,size=398812k,nr_inodes=99
                     tmpfs
tmpfs
  /run/user/1000 tmp
└─/run/user/1000/doc
                                 fuse.por rw,nosuid,nodev,relatime,user_id=1000,group_id=1000
/tmp
                                tmpfs
                                       rw,nosuid,nodev,seclabel,size=1994080k,nr_inodes=1048576,ino
                     /dev/sda3[/home]
/home
                                          rw,relatime,seclabel,compress=zstd:1,space_cache=v2,subvolid
                     /dev/sda2 ext4
                                         rw,relatime,seclabel
rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=asc
/boot
                    /dev/sda1 vfat
/var/lib/nfs/rpc_pipefs
                                rpc_pipe rw,relatime
                     sunrpc
```

Рис. 2.30: Тип файловой системы

7) Последовательность монтирования файловых систем. Последовательность монтирования файловых систем можно посмотреть командой dmesg | grep -i "mount".(puc. 31).

```
[ 0.084656] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.084656] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 1.972420] BTRFS: device label fedora devid 1 transid 356 /dev/sda3 scanned by mount (487)
[ 1.975720] BTRFS info (device sda3): first mount of filesystem 2668caca-cdf2-4e9d-8638-58b43c87f3c
[ 5.439113] systemd[1]: Set up automount proc-sys-fs-binfmt_misc.automount - Arbitrary Executable File Formats File System Automount Point.
[ 5.467821] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System...
[ 5.478872] systemd[1]: Mounting dev-mqueue.mount - POSIX Message Queue File System...
[ 5.472043] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File System...
[ 5.496940] systemd[1]: Nounting sys-kernel-tracing.mount - Kernel Trace File System...
[ 5.502520] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
[ 5.502684] systemd[1]: Mounted dev-hugepages.mount - POSIX Message Queue File System.
[ 5.502684] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File System.
[ 5.502792] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 5.502792] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 6.335755] EX14-fs (sda2): mounted filesystem 9c5a38a4-96ec-4be3-a5ff-223160ff9ab6 r/w with ordered data mode. Quota mode: none.
```

Рис. 2.31: Последовательность монтирования файловых систем

3 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Учетная запись пользователя содержит системное имя, идентификатор пользователя, идентификатор группы, полное имя, домашний каталог и начальную оболочку.

2. Укажите команды терминала и приведите примеры:

- Для получения справки по команде 'man ', например, (man ls)
- Для перемещения по файловой системе 'cd ', например, (cd / перемещение в корневой каталог)
- Для просмотра содержимого каталога 'ls ', пример, (ls / содержимое корневого каталога)
- Для определения объёма каталога 'du -s ', пример, (du -s /etc)
- Для создания или удаления каталогов и файлов 'rm ' Пустые каталоги можно удалять командой rmdir (если добавить ключ -s, то можно удалять и не только пустые).
- Для задания определённых прав на файл / каталог 'chmod ', например, (chmod 777 lab8-1.txt)
- Для просмотра истории команд. 'history'

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — это порядок, определяющий способ организации, хранения и именования данных на носителях информации. Например: ext4. Характеристика: ext4 это файловая система для операционных систем Linux, поддерживающая файлы до 16 терабайт и файловые системы до 1 экзабайта. Обладает улучшенной производительностью, надежностью, поддержкой расширенных атрибутов и обратной совместимостью с Ext2 и Ext3. Обеспечивает быстрые операции чтения и записи данных.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Команда mount.

5. Как удалить зависший процесс?

Чтобы удалить зависший процесс, можно использовать команду Kill . Pid можно получить командой ps axu | grep "то, что мы ищем". (kill 5099).

4 Вывод

В ходе работы были приобретены практические навыки установки виртуальной машины и операционной системы на виртуальную машину, а также настройки минимально необходимых для дальнейшей работы сервисов.