

Hy T. Son

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

Molecular clustering

Author: Hy Truong Son

Advisor: Prof. Risi Kondor

TTIC 31220 - Unsupervised Learning and Data Analysis

The University of Chicago

Chicago, May 2017

Contents

Hy T. Sor

Chapter I: Introduction Chapter II:

Graph Kernels
Chapter III:

Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

1 Chapter I: Introduction

2 Chapter II: Graph Kernels

3 Chapter III: Graph Neural Networks

4 Chapter IV: Visualization

Chapter V: Results

Molecular chemical representation

Hv T. Son

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion Harvard Clean Energy Project (HCEP) Dataset 1

Compound: C18H9N3OSSe

SMILES: C1C=CC=C1c1cc2[Se]c3c4occc4c4nsnc4c3c2cn1 Power Conversion Efficiency (PCE, range 0 - 11): 5.16195

Molecular graph representation

Hy T. Sor

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI:

C18H9N3OSSe

Adjacency matrix

Measure the similarity among molecules?

Hy T. Sor

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

C18H9N3OSSe

C22H15NSeSi

Measure the similarity among graphs?

Hy T. Son

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

C18H9N3OSSe

C22H15NSeSi

Positive Semi-definite Graph Kernel

Hy T. Son

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

Given 2 graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$. Each vertex is associated with a feature vector $f:V\to\Omega$. A graph kernel between G_1 and G_2 can be defined as:

$$\mathcal{K}_{graph}(G_1, G_2) = \frac{1}{|V_1|} \cdot \frac{1}{|V_2|} \cdot \sum_{v_1 \in V_1} \sum_{v_2 \in V_2} k_{base}(f(v_1), f(v_2))$$

where k_{base} is the based kernel and that can be:

- Linear: $k_{base}(x,y) = \langle x,y \rangle_{norm} = x^T y/(\|x\| \cdot \|y\|)$
- Quadratic: $k_{base}(x,y) = (\langle x,y \rangle_{norm} + q)^2$
- RBF: $k_{base}(x, y) = exp(-\gamma ||x y||^2)$

Hy T. Son

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

Given a set of N graphs $\mathcal{G}=\{G^{(1)},..,G^{(N)}\}$ where $G^{(i)}=(V^{(i)},E^{(i)})$ $(1\leq i\leq N).$ Let $f^G:V\to\Omega$ be the initial feature vector for each vertex of graph G=(V,E). Let $S_k^G(v)$ be the set of vectors for vertex $v\in V$ of graph G at Weisfeiler-Lehman level k.

Hy T. Son

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

```
Set of graphs: \mathcal{G} = \{G^{(1)},..,G^{(N)}\}
Set of vertex features: \mathcal{F} = \{f^{G^{(1)}},..,f^{G^{(N)}}\}
Number of WL levels: K \in \mathbb{N}
```

function Dictionary-WL()

```
01. Universal dictionary: \mathcal{D} \leftarrow \emptyset
```

02. for
$$i = 1 \rightarrow N$$
:

04. for each
$$v \in V^{(i)}$$
:

05.
$$S_0^{G^{(i)}}(v) \leftarrow \{f_{G^{(i)}}^{G^{(i)}}(v)\}$$

06.
$$\mathcal{D} \leftarrow \mathcal{D} \cup \{S_0^{G^{(i)}}(v)\}$$


```
Hv T. Son
                     08.
                                       Build the WL level 1, 2, ..., K
                     09.
                                       for k=1 \to K:
Chapter I:
Introduction
                                            for each v \in V^{(i)}:
                     10.
Chapter II:
                                                  S_{k}^{G^{(i)}}(v) \leftarrow S_{k-1}^{G^{(i)}}(v)
                     11.
Graph Kernels
                                                  for each (u, v) \in E^{(i)}:
Chapter III:
                     12.
Graph Neural
                                                       S_{k}^{G^{(i)}}(v) \leftarrow S_{k}^{G^{(i)}}(v) \cup S_{k-1}^{G^{(i)}}(u)
Networks
                     13.
Chapter IV:
                                                  end for
                     14.
Visualization
                                                  \mathcal{D} \leftarrow \mathcal{D} \cup \{S_{\nu}^{G^{(i)}}(v)\}
                     15.
Chapter V:
Results
                     16.
                                            end for
Chapter VI:
                     17.
                                       end for
Conclusion
                     18.
                                 end for
                                 return \mathcal{D}, \mathcal{S} = \{S_0^{G^{(1)}}, ..., S_0^{G^{(N)}}, ..., S_{\kappa}^{G^{(1)}}, ..., S_{\kappa}^{G^{(N)}}\}
                     19.
```

end function

Hy T. Son

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

We define a **receptive field** of radius R at a vertex v is the set of all vertices that are reachable from v by a path has length no greater than R. For example, a receptive field can be represented as [C C C Se], or [C C N N N N S S S].

The number of different receptive field of radius 3 in 50K molecules of HCEP dataset is: **11,172**. For each molecule, we can find all of its receptive fields, and map the frequencies into a vector of length **11,172** as a fingerprint.

I call this method as **Dictionary Weisfeiler-Lehman Graph Kernel**. The original method is **Morgan molecular fingerprint** that only supports binary feature.

Molecular clustering

Hy T. Son

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

Histogram-Alignment Weisfeiler-Lehman Graph Kernel 2

C18H9N3OSSe

C22H15NSeSi

Graph (Covariant) Neural Networks - Part 1

Hy T. Son

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

Input graph: G = (V, E)

Vertex feature vectors: $f: V \to \Re^d$

Learning target: $T \in \Re$ Number of levels: $L \in \mathbb{N}$

The receptive field: $\mathcal{R}(v)$ where $v \in V$

Non-linearity: σ

Outer-product: \otimes

Graph (Covariant) Neural Networks - Part 2

Hy T Son

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural

Networks
Chapter IV:

Visualization

Chapter V: Results

```
function GCN(G = (V, E), T \in \Re, f : V \to \Re^d, L \in \mathbb{N})
            Level 0: \phi_0^v \leftarrow \sigma(W_0^{(1)} f(v)) \ (\forall v \in V)
01.
            for each level l=1 \rightarrow L:
02.
03.
                  for each v \in V:
                       \Phi \leftarrow \bigcup \phi_{l-1}^u
04.
                                u \in \mathcal{R}(v)
                       \Theta \leftarrow \sum_{i < j} \Phi_i \otimes \Phi_j
05.
                       \Psi_i \leftarrow \sum_k \Theta_{i,k} + \Theta_{k,i}
06.
                       \phi_{I}^{v} \leftarrow \sigma(W_{I}^{(1)} f(v) + W_{I}^{(2)} \Psi)
07.
08.
                  end for
            end for
09.
10.
            Graph feature: \phi_C \leftarrow \bigcup_{v \in V} \phi_I^v
            Linear regression: U \leftarrow argmin_{u \in \mathfrak{P}^h} (u^T \phi_G - T)^2
11.
```


Graph (Covariant) Neural Networks - Part 3

Hv T. Soi

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Higher-order representation of a set of vectors

Hy T. Sor

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Hierarchical Clusterings

Hy T. Sor

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Kernel PCA

Chapter I: Introduction

Chapter II: **Graph Kernels**

Chapter III: **Graph Neural** Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

Molecular clustering

Weisfeiler-Lehman Graph Kernel

Hv T. Sor

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Graph (Covariant) Neural Networks

Hy T. Soi

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Experimental results - MAE

Hy T. Sor

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

	Linear regression	Gaussian Process	SVM
WL	0.805135	0.760736	0.878423
GCN 1D	0.539711	0.528121	0.493815
GCN 2D	0.624043	0.653314	0.560620
GCN 3D	0.594986	0.602821	0.551861

Experimental results - RMSE

Hy T. Soi

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

	Linear regression	Gaussian Process	SVM
WL	1.096222	1.093145	1.202667
GCN 1D	0.800283	0.833758	0.775039
GCN 2D	0.895965	0.940610	0.843593
GCN 3D	0.876125	0.883956	0.834215

Experimental results - Distribution

Hy T. Sor

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Conclusion

Hy T. Soi

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

- Graph Neural Networks outperform Graph Kernels in HCEP dataset
- The top features of GCNs give us clustering information of molecules (with both PCA and t-SNE)

Reference

Hy T. Son

Chapter I:

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

- 1 https://cepdb.molecularspace.org/
- 2 Nils M. Kriege, Pierre-Louis Giscard, *On Valid Optimal Assignment Kernels and Applications to Graph Classification*, NIPS 2016
- 3 David Duvenaud, Dougal Maclaurin, Jorge Aguilera Iparraguirre, Rafael Gomez Bombarelli, Timothy Hirzel, Alan Aspuru Guzik, Ryan P. Adams, *Convolutional Networks on Graphs for Learning Molecular Fingerprints*.

Hy T. Sor

Chapter I: Introduction

Chapter II: Graph Kernels

Chapter III: Graph Neural Networks

Chapter IV: Visualization

Chapter V: Results

Chapter VI: Conclusion

Thank you very much for your attention!