Class 05: Data Visualization with GGPLOT

Marcos Díaz-Gay4/19/23

Base R plotting

We are going to start by generating the plot of class 04. This code is plotting the **cars** dataset.

plot(cars)

Ggplot2

First, we need to install the package. We do this by using the install.packages command.

```
# install.packages('ggplot2')
```

After that, we need to load the package.

```
library(ggplot2)
```

We are going to build the plot of the cars dataframe by using ggplot2.

```
ggplot(data = cars)
```

ggplot(data = cars) +

aes(x=speed, y=dist)


```
ggplot(data = cars) +
  aes(x=speed, y=dist) +
  geom_point()
```



```
ggplot(data = cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(method = 'lm') +
  labs(title = 'Distance vs. Speed',
      subtitle = 'A nice subtitle!',
      caption = 'BIMM143',
      x = 'Speed (MPH)',
      y = 'Distance (feet)') +
  theme_bw()
```

`geom_smooth()` using formula = 'y ~ x'

Distance vs. Speed

Q1. For which phases is data visualization important in our scientific workflows? For Exploratory data analysis, detection of outliers, etc.

Plotting gene expression data

Loading the data from the URL.

```
# Load data
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

Initial ggplot

```
ggplot(data = genes) +
  aes(x=Condition1, y=Condition2) +
  geom_point()
```



```
Q3

nrow(genes)

[1] 5196

ncol(genes)

[1] 4

colnames(genes)

[1] "Gene" "Condition1" "Condition2" "State"
```

```
table(genes[,'State'])
```

```
down unchanging up 72 4997 127
```

Adding color to the plot.

```
p1 <- ggplot(data = genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p1</pre>
```


Let's change the color scheme.

```
p2 = p1 +
    scale_color_manual(values = c("blue", "gray", "red"))
p2
```


Let's add some labels

Differential gene expression

