等额年金

年金的含义

- 一系列的付款(或收款)形成的现金流。
- 付款时间和付款金额具有一定规律性。
- 例: 住房贷款的还款额

- (1) 支付时间和支付金额是否确定?
 - 确定年金
 - 风险年金

- (2) 支付期限?
 - 定期年金
 - 永续年金

- (3) 支付时点?
 - 期初付年金
 - 期末付年金

- (4) 开始支付的时间?
 - 即期年金,简称年金
 - 延期年金

- (5) 每次付款的金额是否相等?
 - 等额年金
 - 变额年金

• 如何计算年金的价值?

- 每年支付1次的年金
- 每年支付 // 次的年金
- 连续支付的年金(每年支付∞ 次的年金)

期末付等额年金

年金的价值:

- 现值
- 终值(累积值)

每年末支付一次的等额年金: 现值

$$a_{\overline{n}} = v + v^2 + \dots + v^n$$
 $(1+i)a_{\overline{n}} = 1 + v + v^2 + \dots + v^{n-1}$

$$ia_{\overline{n}} = 1 - v^n$$

$$a_{\overline{n}} = \frac{1 - v^n}{i}$$

每年末支付一次的等额年金:终值(累积值)

$$S_{\overline{n}} = a_{\overline{n}} (1+i)^n$$

$$1 = ia_{\overline{n}} + v^n$$

$$a_{\overline{n}|} = \frac{1 - v^n}{i}$$

含义:初始投资1,在每年末产生利息i,这些利息的现值为 ia_n 。在第n个时期末收回本金1,其现值为 v^n 。

0 1 2 3 \cdots n

$$\frac{1}{a_{\overline{n}}} = \frac{1}{s_{\overline{n}}} + i$$

0 1 2 3 \cdots n

 $|S_{\overline{n}}|$

$$\frac{1}{a_{\overline{n}}} = \frac{1}{s_{\overline{n}}} + i$$

例:银行贷款为100万元,期限10年,年利率为6%。分别在下述两种情况下计算银行在第10年末的累积值(先根据经验判断,哪个的累积值更大?)。

- (1) 本金和利息在第10年末一次还清;
- (2) 利息在当年末支付, 本金在第10年末偿还(收到的利息按6%的利率投资)。

参考答案:

(1)
$$100 \times (1+0.06)^{10} = 179.08$$

(2)
$$6s_{\overline{10}} + 100 = 6 \times \frac{1.06^{10} - 1}{0.06} = 179.08$$

思考题

一项年金,每 k 年末支付一次,每次支付1元,一共支付 n 次。年有效利率为 i,写出该年金的现值计算公式。

期初付等额年金

含义: 在 n 个时期, 每个时期初付款1元。

$$\ddot{a}_{\overline{n}} = (1+i) \times a_{\overline{n}}$$

注: 年初的 1 = 4 年末的 1 + i 元

练习:验证下述关系成立

$$\ddot{a}_{\overline{n}} = (1+i) \times a_{\overline{n}} \iff \ddot{a}_{\overline{n}} = \frac{1-v^n}{d}$$

期初付等额年金的终值(积累值)

$$\ddot{s}_{\overline{n}} = \ddot{a}_{\overline{n}} (1+i)^n$$

$$\ddot{a}_{\overline{n}}$$

练习:解释下述关系成立

$$\frac{1}{\ddot{a}_{\overline{n}}} = \frac{1}{\ddot{s}_{\overline{n}}} + d$$

$$\ddot{a}_{\overline{n}}$$
 $\ddot{s}_{\overline{n}}$

1

$$\frac{1}{\ddot{a}_{\overline{n}}}$$
 $\frac{1}{\ddot{a}_{\overline{n}}}$

$$\frac{1}{\ddot{a}_{\overline{n}|}}$$

$$\frac{1}{\ddot{a}}$$

1

$$\frac{1}{\ddot{s}_{\overline{n}}}$$
 $\frac{1}{\ddot{s}_{\overline{n}}}$

Ĭ

$$\frac{1}{\ddot{a}_{\overline{n}}} = \frac{1}{\ddot{s}_{\overline{n}}} + d$$

l

例:期初付年金和期末付年金的关系 $\ddot{a}_{n} = 1 + a_{n-1}$

$$\ddot{a}_{\overline{n}}$$
 1 1 1 ... 1 $a_{\overline{n-1}}$ 1 1 ... 1

例:期初付年金和期末付年金的关系

$$\ddot{s}_{\overline{n}} = s_{\overline{n+1}} - 1$$

例:一项年金还有12次支付,每年初支付10000;第一次支付发生在当前时刻。如果将该年金转换为25年期的期末付年金,第一次支付发生在第一年末。如果年有效贴现率为5%,计算每年末的付款金额。

$$10000\ddot{a}_{\overline{12}} = Xa_{\overline{25}}$$

$$i = \frac{d}{1 - d}$$

参考答案:

$$d = 5\%$$
 $i = \frac{d}{1-d} = \frac{0.05}{0.95} = \frac{1}{19}$

令 X 是新年金在每年末的支付额,则

$$10000\ddot{a}_{\overline{12}} = Xa_{\overline{25}} \implies X = 6695.61$$

例:投资者在每4年的期初存入100,持续40年。账户在40年末的累积值为x,是账户在20年末的累积值的5倍.计算 x.

令4年期的有效利率为j

$$100\ddot{s}_{5|_j}$$

$$x = 100\ddot{s}_{\overline{10}|j}$$

$$100\ddot{s}_{\overline{10}|_{j}} = 5 \times 100\ddot{s}_{\overline{5}|_{j}}$$

参考答案:

$$100\ddot{s}_{\overline{10}|j} = 5 \times 100\ddot{s}_{\overline{5}|j}$$

$$\Rightarrow j=31.9508\%$$

$$X = 100\ddot{s}_{\overline{10}|j} = 6194.72$$

应用Excel计算等额年金(参见MOOC视频)

计算现值: PV(rate, nper, pmt, [fv], [type])

计算终值: FV(rate, nper, pmt, [pv], [type])

rate 利率

nper 付款次数

pmt 每次的付款额

fv 终值。缺省值为0

pv 现值。缺省值为0

type 0表示期末,1表示期初。缺省值为0

例:年金在每年末支付1元,支付10次。假设年利率为5%,计算该年金的现值。

$$a_{\overline{10|5\%}} = \frac{1 - 1.05^{-10}}{0.05} = 7.7217$$

				A ////	<i>7</i> 77	
1	例:年金在每年	末支付1元,	支付10次。	假设年利率为5%,	计算该年金的	现值
2	$a_{\overline{10}} = \frac{1 - 1.05^{-10}}{1 - 1.05^{-10}}$	= 7.7217				
3	0.05					
4		- <u>7</u> 7.` 			<u> </u>	
5	*	*			×	×
6	,00°	,00°	,,o ^C	,,o°C		

例:年金在每年初支付1元,支付10次。假设年利率为5%,计算该年金的现值

$$\ddot{a}_{\overline{10}|5\%} = \frac{1 - 1.05^{-10}}{0.05 / 1.05} = 8.1078$$

 1 例: 年金在每年初支付1元,支付10次。假设年利率为5%,计算该年金 2	. 400		Α				
$ \begin{array}{c c} \ddot{a}_{\overline{10} 5\%} = \frac{1 - 1.03}{0.05 / 1.05} = 8.1078 \\ 4 \end{array} $	的现值.	计算该年金的	。假设年利率为	寸1元,支付10亿	年金在每年 <mark>初</mark> 支付	例:年	1
$\frac{a_{\overline{10} 5\%}}{4} = \frac{a_{\overline{10} 5\%}}{0.05/1.05} = 8.10/8$					1-1.05 ⁻¹⁰		2
				78		1/1 — -	3
5 ÷						10	4
	> 1	***	<i>₹</i>			ф	5
6		C		C			6

例:年金在每年末支付1元,支付10次。假设年利率为5%,计算该年金的终值

$$s_{\overline{10|5\%}} = \frac{1.05^{10} - 1}{0.05} = 12.5779$$

			Α		
1	例: 年金在每年末	支付1元,支付10	次。假设年利率	率为5%,计算证	亥年金的终值
2	1.05^{10} –	$\frac{1}{-1} = 12.5779$			
3	$s_{\overline{10} 5\%} = 0.05$	-=12.5779			
4	**************************************			<u> </u>	
5	•		-C	-(,	_C
6	100	-1/2/1000	-131MO	-131MO	-151.MOO

例:年金在每年初支付1元,支付10次。假设年利率为5%,计算该年金的终值

$$\ddot{s}_{\overline{10}|5\%} = \frac{1.05^{10} - 1}{0.05 / 1.05} = 13.2068$$

		A			
1	例:年金在每年初支付	† 1元,支付10次。﴿	假设年利率为5%,	计算该年金的	的终值
2	$\frac{1.05^{10}}{1.05^{10}}$	$\frac{-1}{1}$ = 13.2068			
3	$S_{\overline{10} 5\%} = 0.05/1$	$\frac{1.05}{1.05}$			X A A A A A A A A A A A A A A A A A A A
4			×	<u> </u>	
5	I				
6	oc "100c	HOC	OC		
-12	-7/2	-125	-42	-12	

例:年金在每年末支付100元,支付10次。第10年末另有1000元付款。假设年利率为5%,计算该年金的现值。

$$PV = 100a_{\overline{10}|5\%} + 1000(1 + 5\%)^{-10} = 1386.09$$

应用EXCEL求解

				А			
1		每年末支付1 十算该年金的		0次。第10年2	末另有1000元	记付款。假设	年利
2							
3	I			Ć.	ć		
4			X A NO				X
5							
6	, o ^C	,0°C	,00 ^C	,0°C	,0°C	, o ^C	

延期年金

含义:延期 m 年开始支付,每年末支付1元的 n 年期年金

$$a_{\overline{n}} = v^m a_{\overline{n}}$$

延期年金

$$a_{\overline{m+n}}$$

$$a_{\overline{m}}$$

$$a_{\overline{n}} = a_{\overline{m+n}} - a_{\overline{m}}$$

例: 年金共有7次付款,每次支付1元,分别在第3年末到第9年末。求年金的现值和在第12年末的积累值。

永续年金

- 含义: 无限期支付的年金
- 期末付: $a_{\overline{\infty}} = \lim_{n \to \infty} a_{\overline{n}} = \lim_{n \to \infty} \frac{1 v^n}{i} = \frac{1}{i}$
- 解释:将本金 1/i 按利率 i 无限期投资,每期获得1元利息

• 期初付永续年金的现值:

$$\ddot{a}_{\overline{\infty}} = \frac{1}{d}$$

$$\ddot{a}_{\overline{\infty}} = (1+i)a_{\overline{\infty}}$$

$$= \left(1+i\right)\frac{1}{i}$$

$$=\frac{1}{d}$$

例: n 年期年金 = 两个永续年金之差

$$a_{\overline{n}} = \frac{1}{i} - \frac{v^n}{i}$$

 $\frac{1}{i}$

0

n

n 年期年金

$$\frac{v^n}{i}$$

$$\frac{1}{i}$$

例:每年初支付1元的永续年金的现值是20,如果将该年金转换为一个每2年初支付R的永续年金,且两个永续年金的现值相等。计算R。

$$R = 1 + (1 - d) = 2 - d$$

$$1/d = 20$$

参考答案2

$$\frac{1}{d} = 20$$

两年期的实际贴现率D为:

$$1 - D = (1 - d)^2$$

$$\Rightarrow D = 1 - (1 - 1/20)^2$$

故新的永续年金的现值为

$$\frac{R}{D} = 20$$

$$R = \frac{39}{20}$$

例: 一笔10万元的遗产, 年收益率为7%

- 第一个10年将每年的利息付给受益人A,
- 第二个10年将每年的利息付给受益人B,
- 二十年后将每年的利息付给受益人C。
- 确定三个受益者的相对受益比例。

解: 10万元每年产生的利息是7000元。

• A所占的份额是
$$7000a_{10} = 49165$$

• B所占的份额是
$$7000a_{10}v^{10} = 24993$$

• C所占的份额是
$$7000a_{\overline{\omega}}v^{20} = 25842$$

A、B、C受益比例近似为49%, 25%和26%。

例:解释为何成立

$$a_{\overline{\infty}} = a_{\overline{m}} + a_{\overline{n}} + v^{m+n} a_{\overline{\infty}}$$

练习: A, B, C, D分享一个期末付永续年金。A 获得第一个 n 次付款, B 获得 随后的 2n 次付款, C 获得第 3n + 1,..., 5n次付款, D 获得后期的所有付款。
 假设B和D的现值相等。计算A, B, C, D的现值之比。

参考答案:

$$A: \frac{1-v^n}{i}$$

$$B: \frac{v^n}{i}(1-v^{2n})$$

$$C: \frac{v^{3n}-v^{5n}}{i}$$

$$D: \frac{v^{5n}}{i}$$

$$\mathbf{B} = \mathbf{D} \qquad \longrightarrow \qquad \frac{v^n}{i} \cdot (1 - v^{2n}) = \frac{v^{5n}}{i}$$

$$v^n = 0.78615$$

A:B:C:D =
$$(1 - v^n)$$
: $(v^n - v^{3n})$: $(v^{3n} - v^{5n})$: (v^{5n})

= 0.2138 : 0.3003 : 0.1856 : 0.3003

每年支付 m 次的期末付年金

$$a_{\overline{n}}^{(m)}$$

例:将1年等分为m个区间,每个区间末支付1/m,累积值为 $\frac{\iota}{i^{(m)}}$

- · 每个区间的长度为1/m年
- · 每个区间末的付款为1/m元
- 每个区间的有效利率为 j
- 年名义利率为 $i^{(m)} = m j$

$$\frac{1}{m} S_{\overline{m}|j} = \frac{1}{m} \frac{\left(1+j\right)^m - 1}{j}$$

$$=\frac{(1+i)-1}{mj}$$

$$=\frac{i}{i^{(m)}}$$

每年支付 m 次的期末付年金的现值

$$a_{\overline{n}}^{(m)} = \frac{i}{i^{(m)}} a_{\overline{n}}$$

每年支付 m 次的期末付年金的终值

$$s_{\overline{n}|}^{(m)} = (1+i)^n a_{\overline{n}|}^{(m)} = \frac{i}{i^{(m)}} s_{\overline{n}|}$$

例:每月末支付400,持续支付10年的现值?

如果每年末支付一次,每次 12*400 元,现值为:

$$12 \times 400 \times a_{\overline{10}}$$

改为每月末支付一次,每次支付400元,现值为:

$$12 \times 400 \times a_{\overline{10}} \times \frac{i}{i^{(12)}}$$

例: 每季度末支付200, 持续支付5年的现值?

如果每年末支付一次,每次 4*200 元,现值为:

$$4 \times 200 \times a_{\overline{5}}$$

改为每季末支付一次,每次支付200元,现值为:

$$4 \times 200 \times a_{\overline{5}|} \times \frac{i}{i^{(4)}}$$

每年支付 m 次的期初付年金的现值

$$\ddot{a}_{n}^{(m)} = (1+i)^{\frac{1}{m}} a_{n}^{(m)} = \frac{d}{d^{(m)}} \ddot{a}_{n}$$

证明见下页

每年支付 m 次的期初付年金的现值

$$\ddot{a}_{\overline{n}|}^{(m)} = (1+i)^{\frac{1}{m}} a_{\overline{n}|}^{(m)} = (1+i)^{\frac{1}{m}} \frac{i}{i^{(m)}} a_{\overline{n}|}$$

$$= \frac{i}{(1+i)^{-\frac{1}{m}}i^{(m)}} a_{\overline{n}} = \frac{i}{d^{(m)}} a_{\overline{n}}$$

$$= \frac{i/(1+i)}{d^{(m)}} (1+i) a_{\overline{n}} = \frac{d}{d^{(m)}} \ddot{a}_{\overline{n}}$$

例: 投资者向一基金存入10000元,基金的年利率为5%。如果投资者在今后的5年内每个季度末从基金领取一笔等额收入,则基金在第5年末的价值为零。计算该投资者每次可以领取多少。

解: 若每年末领取4x, 现值为 $4x \cdot a_{\overline{s}}$, 改为每季度领取x, 现值为

$$4x \cdot a_{\overline{5}|} \cdot \frac{i}{i^{(4)}} = 10000$$

$$4x \cdot a_{\overline{5}|} \cdot \frac{i}{i^{(4)}} = 10000$$

$$x = 2500 \div \left(\frac{i}{i^{(4)}} a_{\overline{5}|}\right) = 566.92 \ (\vec{\pi})$$

应用EXCEL计算(参见MOOC视频)

		A A		В		C	
(1	$x = 2500 \div \left(\frac{i}{i^{(4)}} a{\overline{5} }\right) =$	= 566.92 (元)	, c			Ç	
2	实际利率						
3	名义利率						
4	现值因子	313. NOC	-211 MOC	-767. ^M OC	-3i MOC	313.MOC	
5	领取额						× 5
6							

连续支付的等额年金

• 含义: 连续付款, 每年的付款总量为1元。

• 记号:

 $\overline{a}_{\overline{n}}$

 $\overline{S}_{\overline{n}}$

• 连续支付年金 = 年支付次数 m 趋于无穷大

$$\overline{a}_{\overline{n}} = \lim_{m \to \infty} a_{\overline{n}}^{(m)} = \lim_{m \to \infty} \frac{1}{i^{(m)}} a_{\overline{n}} = \frac{1}{\delta} a_{\overline{n}}$$

$$=\frac{1-v^n}{\delta}$$

连续支付年金的现值(另一种方法): 考虑时间区间(t, t+dt),

因为年付款为1,故区间(t, t+dt)的付款为 dt, 其现值为 $v^t dt$

$$\overline{a}_{\overline{n}} = \int_{0}^{n} v^{t} dt = \frac{v^{t}}{\ln v} \begin{vmatrix} n \\ 0 \end{vmatrix} = \frac{1 - v^{n}}{\delta}$$

例:连续支付,每年的支付总量为1,支付期限为无穷的现值。

$$\overline{a}_{\overline{\infty}} = \lim_{n \to \infty} \overline{a}_{\overline{n}}$$

$$= \lim_{n\to\infty} \frac{1-v^n}{\delta}$$

$$= \frac{1}{\delta}$$

连续支付年金的累积值:考虑时间区间(t, t+dt)

区间 (t, t+dt) 内的付款为 dt, 其终值为 $(1+i)^{n-t} dt$

$$\overline{S}_{\overline{n}} = \int_{0}^{n} (1+i)^{n-t} dt$$
 = $-\int_{0}^{n} (1+i)^{n-t} d(n-t)$

$$= -\frac{(1+i)^{n-t}}{\ln(1+i)} \binom{n}{0} = \frac{(1+i)^n - 1}{\delta}$$

例:年金在时间区间[2,5]内连续支付,每年的付款额为300元,计算该年金的现值。假设年利率为5%。

解:

在区间 (t, t + dt) 的付款额为300dt, 现值为 v^t 300dt 故有

$$PV = \int_{2}^{5} 300v^{t} dt = 300 \frac{v^{t}}{\ln v} \Big|_{2}^{5} = \frac{300}{\ln v} (v^{5} - v^{2}) = 759.4$$

例:年金在时间区间[2,5]内连续支付,每年的付款额为300元,计算该年金的现值。假设利息力为 $\delta(t) = 1/(1+t)$ 。

解:

$$PV = \int_{2}^{5} 300e^{-\int_{0}^{t} (1+s)^{-1} ds} dt = \int_{2}^{5} 300e^{-\ln(1+s)|_{0}^{t}} dt = 207.94$$

练习:年金在时间区间[2,5]内连续支付,每年的付款额为300元,计算该年金在 t=3 时的价值。假设利息力为 $\delta(t)=1/(1+t)$ 。

价值方程

如何计算年金的价值?付款次数n,利率i

$$a_{\overline{n}} = \frac{1 - v^n}{i}$$

例:投资者在每年初向基金存入1万元,当年利率为多少时,在第20年末可以累积到30万元?

$$\ddot{s}_{\overline{20}|_{j}} = 30$$

$$\ddot{s}_{\overline{20}|_j} = 30$$

$$\Rightarrow \frac{(1+j)^{20}-1}{j/(1+j)} = 30$$

$$\Rightarrow (1+j)^{21} - 31j - 1 = 0$$

用Excel求解即得 j = 0.0372

应用EXCEL求解方程(参见MOOC视频)

等额年金

孟生旺

等额年金

- 年金的概念和分类
- 每年支付一次的年金
- · 每年支付m次的年金
- 连续支付的年金

每年支付1次的年金的价值

期末付现值

$$a_{\overline{n}} = \frac{1 - v^n}{i}$$

终值 = 现值 $\times (1+i)^n$

$$S_{\overline{n}} = \frac{(1+i)^n - 1}{i}$$

期初付 = 期末付 $\times (1+i)$

$$\ddot{a}_{\overline{n}} = \frac{1 - v^n}{d}$$

$$d = \frac{i}{1+i}$$

$$\ddot{s}_{\overline{n}|} = \frac{(1+i)^n - 1}{d}$$

每年支付m次 年金的价值

• 期末付
$$a_{\overline{n}}^{(m)} = \frac{l}{i^{(m)}} a_{\overline{n}}$$

• 期初付
$$\ddot{a}_{\overline{n}}^{(m)} = \frac{a}{d^{(m)}} \ddot{a}_{\overline{n}}$$

连续支付 年金的价值 $(m \rightarrow \infty)$

$$\overline{a}_{\overline{n}} = \frac{i}{\delta} a_{\overline{n}}$$

$$\overline{a}_{\overline{n}} = \frac{d}{\delta} \ddot{a}_{\overline{n}}$$

(两者相等)

• 练习:假设年有效利率为 *i*。一项永续年金在每3年末支付10,第一次支付发生在第6年末,该永续年金的现值为32。另一项永续年金每4个月末支付1,计算其现值。

参考答案:

令j为3年期的有效利率,则

$$1+j=(1+i)^3$$
 永续年金在第3年末的价值为 $10/j$

在时间
$$0$$
点的价值为 $\frac{10}{j} \frac{1}{1+j}$,令其等于32,得 $\begin{cases} j = 0.25 \\ i = (1+j)^{1/3} - 1 = 7.72\% \end{cases}$

$$\begin{cases}
j = 0.25 \\
i = (1+j)^{1/3} - 1 = 7.72\%
\end{cases}$$

令 *h* 为每4个月的有效利率:
$$1+i=(1+h)^3 \Rightarrow h=2.5\%$$

每4个月末支付1元的永续年金的现值为
$$x = \frac{1}{h} = 40$$