Imaging and Deconvolution

David J. Wilner (Harvard-Smithsonian Center for Astrophysics)

Fourteenth Synthesis Imaging Workshop 2014 May 13–20

References

- Thompson, A.R., Moran, J.M., Swensen, G.W. 2004
 "Interferometry and Synthesis in Radio Astronomy", 2nd edition (Wiley-VCH)
- previous Synthesis Imaging Workshop proceedings
 - Perley, R.A., Schwab, F.R., Bridle, A.H. eds. 1989 ASP Conf. Series 6
 "Synthesis Imaging in Radio Astronomy" (San Francisco: ASP)
 - Ch. 6 Imaging (Sramek & Schwab) and Ch. 8 Deconvolution (Cornwell)
 - www.aoc.nrao.edu/events/synthesis
 - lectures by Cornwell 2002 and Bhatnagar 2004, 2006
- IRAM Interferometry School proceedings
 - www.iram.fr/IRAMFR/IS/IS2008/archive.html
 - Ch. 13 Imaging Principles and Ch. 16 Imaging in Practice (Guilloteau)
 - lectures by Pety 2004-2012
- many other lectures and pedagogical presentations are available
 - ALMA primer, ATNF, CARMA, ASIAA, e-MERLIN, ...

Visibility and Sky Brightness

• V(u,v), the complex visibility function, is the 2D Fourier transform of T(l,m), the sky brightness distribution (for incoherent source, small field of view, far field, etc.) [for derivation from van Cittert-Zernike theorem, see TMS Ch. 14]

mathematically

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

$$T(l,m) = \int \int V(u,v)e^{i2\pi(ul+vm)}dudv$$

u,v are E-W, N-S spatial frequencies [wavelengths] I,m are E-W, N-S angles in the tangent plane [radians] (recall $e^{ix}=\cos x+i\sin x$)

$$V(u,v) \xrightarrow{\mathcal{F}} T(l,m)$$

The Fourier Transform

• Fourier theory states and any well behaved signal (including images) can be expressed as the sum of sinusoids

Jean Baptiste Joseph Fourier 1768-1830

$$x(t) = \frac{4}{\pi} \left(\sin(2\pi f t) + \frac{1}{3} \sin(6\pi f t) + \frac{1}{5} \sin(10\pi f t) + \dots \right)$$

- the Fourier transform is the mathematical tool that decomposes a signal into its sinusoidal components
- the Fourier transform contains all of the information of the original signal

The Fourier Domain

- acquire some comfort with the Fourier domain
- in older texts, functions and their Fourier transforms occupy *upper* and *lower* domains, as if "functions circulated at ground level and their transforms in the underworld" (Bracewell 1965)

adding
$$g(x) + h(x) = G(s) + H(s)$$

scaling
$$g(\alpha x) = \alpha^{-1}G(s/\alpha)$$

shifting
$$g(x-x_0) = G(s)e^{i2\pi x_0 s}$$

convolution/multiplication
$$g(x) = h(x) * k(x)$$
 $G(s) = H(s)K(s)$

Nyquist-Shannon sampling theorem

$$g(x) \subset \Theta$$
 completely determined if $G(s)$ sampled at $\leq 1/\Theta$

Visibilities

- each V(u,v) contains information on T(l,m) everywhere, not just at a given (l,m) coordinate or within a particular subregion
- each V(u,v) is a complex quantity
 - expressed as (real, imaginary) or (amplitude, phase)

Example 2D Fourier Transforms

narrow features transform into wide features (and vice-versa)

Example 2D Fourier Transforms

uniform

disk

V(u,v) amplitude

Bessel function

sharp edges result in many high spatial frequencies

Amplitude and Phase

- amplitude tells "how much" of a certain spatial frequency
- phase tells "where" this spatial frequency component is located

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

- visibility as a function of baseline coordinates (u,v) is the Fourier transform of the sky brightness distribution as a function of the sky coordinates (l,m)
- V(u=0,v=0) is the integral of T(l,m)dldm = total flux density
- since T(l,m) is real, $V(-u,-v) = V^*(u,v)$
 - -V(u,v) is Hermitian
 - get two visibilities for one measurement

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

Aperture Synthesis Basics

- idea: sample V(u,v) at enough (u,v) points using distributed small aperture antennas to synthesize a large aperture antenna of size (u_{max}, v_{max})
- one pair of antennas = one baseline
 two (u,v) samples at a time
- N antennas = N(N-1) samples at a time
- use Earth rotation to fill in (u,v) plane over time
 (Sir Martin Ryle, 1974 Nobel Prize in Physics)

Sir Martin Ryle 1918-1984

- reconfigure physical layout of N antennas for more samples
- observe at multiple wavelengths for (u,v) plane coverage, for source spectra amenable to simple characterization ("multi-frequency synthesis")
- if source is variable, then be careful

Examples of Aperture Synthesis Telescopes (for Millimeter Wavelengths)

VEX configuration of 6 SMA antennas, v = 345 GHz, dec = +22 deg

EXT configurations of 7 SMA antennas, v = 345 GHz, dec = +22 deg

COM configurations of 7 SMA antennas, V = 345 GHz, dec = +22 deg

3 configurations of SMA antennas, v = 345 GHz, dec = +22 deg

Implications of (u,v) plane Sampling

samples of V(u,v) are limited by number of antennas and by Earth-sky geometry

- outer boundary
 - no information on smaller scales
 - resolution limit
- inner hole
 - no information on larger scales
 - extended structures invisible
- irregular coverage between boundaries
 - sampling theorem violated
 - information missing

Inner and Outer (u,v) Boundaries

xkcd.com/26/

Formal Description of Imaging

$$V(u,v) \xrightarrow{\mathcal{F}} T(l,m)$$

- sample Fourier domain at discrete points $S(u,v) = \sum_{k=1}^{m} \delta(u-u_k,v-v_k)$
- Fourier transform sampled visibility function $\ V(u,v)S(u,v) \xrightarrow{\mathcal{F}} T^D(l,m)$
- apply the convolution theorem

$$T(l,m) * s(l,m) = T^{D}(l,m)$$

where the Fourier transform of the sampling pattern $s(l,m) \xrightarrow{\mathcal{F}} S(u,v)$ is the "point spread function"

the Fourier transform of the sampled visibilities yields the true sky brightness convolved with the point spread function

radio jargon: the "dirty image" is the true image convolved with the "dirty beam"

Dirty Beam and Dirty Image

7 Antennas, 10 min

7 Antennas, 2 x 10 min

7 Antennas, I hour

Dirty Beam Shape and N Antennas

7 Antennas, 3 hours

Dirty Beam Shape and N Antennas

7 Antennas, 8 hours

Calibrated Visibilities: What's Next?

- analyze directly V(u,v) samples by model fitting
 - good for simple structures, e.g. point sources, symmetric disks
 - sometimes for statistical descriptions of sky brightness
 - visibilities have very well defined noise properties
- recover an image from the observed incomplete and noisy samples of its Fourier transform for analysis
 - Fourier transform V(u,v) to get $T^D(l,m)$
 - difficult to do science with the dirty image $T^{D}(l,m)$
 - deconvolve s(l,m) from $T^D(l,m)$ to determine a model of T(l,m)
 - work with the model of T(l,m)

Some Details of the Dirty Image

- "Fourier transform"
 - Fast Fourier Transform (FFT) algorithm is much faster than simple Fourier summation, O(NlogN) for $2^N \times 2^N$ image
 - FFT requires data on a regularly spaced grid
 - aperture synthesis does not provide V(u,v) on a regularly spaced grid, so...
- "gridding" used to resample V(u,v) for FF
 - customary to use a convolution method
 - special ("spheroidal") functions
 that minimize smoothing and aliasing

$$V^{G}(u, v) = V(u, v)S(u, v) * G(u, v)$$

$$\xrightarrow{F} T^{D}(l, m)g(l, m)$$

Antenna Primary Beam Response

- antenna response A(I,m) is not uniform across the entire sky
 - main lobe = "primary beam"fwhm ~ λ/D
 - response beyond primary beam can be important ("sidelobes")
- antenna beam modifies the sky brightness distribution
 - $T(l,m) \rightarrow T(l,m)A(l,m)$
 - can correct with division by A(l,m) in the image plane
 - large source extents require multiple pointings of antennas
 = mosaicking

Imaging Decisions: Pixel Size, Image Size

pixel size

satisfy sampling theorem for longest baselines

$$\Delta l < \frac{1}{2u_{max}} \qquad \Delta m < \frac{1}{2v_{max}}$$

- in practice, 3 to 5 pixels across main lobe of dirty beam to aid deconvolution
- e.g. at 870 μ m with baselines to 500 meters \rightarrow pixel size < 0.1 arcsec
- CASA "cell" size

image size

- natural choice is often the full extent of the primary beam A(l,m)
- e.g. SMA at 870 μ m, 6 meter antennas \rightarrow image size 2 x 35 arcsec
- if there are bright sources in the sidelobes of A(l,m), then the FFT will alias them into the image \rightarrow make a larger image (or equivalent)
- CASA "imsize"

Imaging Decisions: Visibility Weighting

- introduce weighting function W(u,v)
 - modifies sampling function
 - $S(u,v) \rightarrow S(u,v)W(u,v)$
 - changes s(l,m), the dirty beam shape

natural weight

- $W(u,v) = I/\sigma^2$ in occupied (u.v) cells, where σ^2 is the noise variance, and W(u,v) = 0 everywhere else
- maximizes point source sensitivity
- lowest rms in image
- generally gives more weight to short baselines (low spatial frequencies), so
 angular resolution is degraded

Dirty Beam Shape and Weighting

uniform weight

- W(u,v) is inversely proportional to local density of (u,v) points
- sum of weights in a (u,v) cell = const (and 0 for empty cells)
- fills (u,v) plane more uniformly and dirty beam sidelobes are lower
- gives more weight to long baselines (high spatial frequencies), so angular resolution is enhanced
- downweights some data, so point source sensitivity is degraded
- can be trouble with sparse sampling:
 cells with few data points have same
 weight as cells with many data points

Dirty Beam Shape and Weighting

- robust (Briggs) weight
 - variant of uniform that avoids giving too much weight to (u.v) cells with low natural weight
 - software implementations differ

- e.g.
$$W(u,v)=\frac{1}{\sqrt{1+S_N^2/S_{thresh}^2}}$$

 S_N is natural weight of cell S_{thresh} is a threshold high threshold \rightarrow natural weight low threshold \rightarrow uniform weight

 an adjustable parameter allows for continuous variation between maximum point source sensitivity and resolution

Dirty Beam Shape and Weighting

tapering

- apodize (u,v) sampling by a Gaussian

$$W(u,v) = \exp\left(-\frac{(u^2 + v^2)}{t^2}\right)$$

t = adjustable tapering parameter

- like smoothing in the image plane (convolution by a Gaussian)
- gives more weight to short baselines, degrades angular resolution
- downweights some data, so point source source sensivitity degraded
- may improve sensitivity to extended structure sampled by short baselines
- limits to usefulness

Weighting and Tapering: Image Noise

Weighting and Tapering: Summary

- imaging parameters provide a lot of freedom
- appropriate choices depend on science goals

	Robust/Uniform	Natural	Taper
resolution	higher	medium	lower
sidelobes	lower	higher	depends
point source sensitivity	lower	maximum	lower
extended source sensitivity	lower	medium	higher

Beyond the Dirty Image: Deconvolution

- to keep you awake at night
 - \exists an infinite number of T(l,m) compatible with sampled V(u,v), with "invisible" distributions R(l,m) where s(l,m)*R(l,m)=0
 - no data beyond u_{max} , $v_{max} \rightarrow unresolved structure$
 - no data within $u_{min}, v_{min} \rightarrow limit on largest size scale$
 - holes in between → synthesized beam sidelobes
 - noise \rightarrow undetected/corrupted structure in T(l,m)
 - no unique prescription for extracting optimum estimate of T(l,m)

deconvolution

- uses non-linear techniques to interpolate/extrapolate samples of V(u,v) into unsampled regions of the (u,v) plane
- aims to find a sensible model of T(l,m) compatible with data
- requires a priori assumptions about T(l,m) to pick plausible "invisible" distributions to fill unmeasured parts of the Fourier plane

Deconvolution Algorithms

- an active research area, e.g. compressive sensing methods
- clean: dominant deconvolution algorithm in radio astronomy
 - a priori assumption: T(l,m) is a collection of point sources
 - fit and subtract the synthesized beam iteratively
 - original version by Högbom (1974) purely image based
 - variants developed for higher computational efficiency, model visibility subtraction, to deal better with extended emission structure, etc.
- maximum entropy: a rarely used alternative
 - a priori assumption: T(l,m) is smooth and positive
 - define "smoothness" via a mathematical expression for entropy, e.g.
 Gull and Skilling (1983), find smoothest image consistent with data
 - vast literature about the deep meaning of entropy as information content

Basic clean Algorithm

- initialize

 a residual map to the dirty map
 a Clean Component list
- I. identify the highest peak in the residual map as a point source
- 2. subtract a fraction of this peak from the residual map using a scaled dirty beam, s(l,m) x gain
- 3. add this point source location and amplitude to the Clean Component list
- 4. goto step I (an iteration) unless stopping criterion reached

Basic clean Algorithm (continued)

- stopping criteria?
 - residual map maximum < threshold = multiple of rms (if noise limited)</p>
 - residual map maximum < threshold = fraction of dirty map maximum (if dynamic range limited)
 - maximum number of Clean Components reached (no justification)
- loop gain?
 - good results for g=0.1 to 0.3
 - lower values can work better for smoother emission, g=0.05
- easy to include a priori information about where in dirty map to search for Clean Components (using "boxes" or "masks")
 - very useful but potentially dangerous
- Schwarz (1978) showed that the clean algorithm is equivalent to a least squares fit of sinusoids to visibilities in the case of no noise

Basic clean Algorithm (continued)

- last step: make "restored" image
 - make a model image with all point source Clean Components
 - convolve point sources with an elliptical Gaussian, fit to the main lobe of the dirty beam ("clean beam"); avoids super-resolution of model
 - add residual map of noise and source structure below the threshold
- resulting restored image is an estimate of the true sky brightness T(l,m)
- units of the restored image are (mostly) Jy per clean beam area
 - = intensity (or brightness temperature)
- for most weighting schemes, there is information in the image from baselines that sample high spatial frequencies within the clean beam fwhm, so modest super-resolution may be OK
- the restored image does not actually fit the observed visibilities

final image depends on

imaging parameters (pixel size, visibility weighting scheme, gridding) and deconvolution (algorithm, iterations, masks, stopping criteria)

CASA clean filename extensions

- <imagename>.image
 - final clean image (or dirty image if niter=0)
- <imagename>.psf
 - point spread function (= dirty beam)
- <imagename>.model
 - image of clean components
- <imagename>.residual
 - residual after subtracting clean components
 (use to decide whether or not to continue clean)
- <imagename>.flux
 - relative sensitivity on the sky
 - pbcor = True divides .image by .flux

Results from Different Weighting Schemes

Tune Resolution/Sensitivity to suit Science

• example: SMA 870 µm images of protoplanetary disk dust continuum emission with resolved inner cavities (Andrews et al. 2009, ApJ, 700, 1502)

Scale Sensitive Deconvolution Algorithms

- basic clean (or Maximum Entropy) is scale-free and treats each pixel as an independent degree of freedom: no concept of source size
- adjacent pixels in an image are not independent
- an extended source covering 1000 pixels might be characterized by just a few parameters, not 1000 parameters (e.g. an elliptical Gaussian with 6 parameters: x, y, amp, major fwhm, minor fwhm, position angle)
- scale sensitive deconvolution algorithms try to employ fewer degrees of freedom to model plausible sky brightness distributions
- MS Clean (Multi-Scale Clean)
- Adaptive Scale Pixel (Asp) Clean
- yields promising results on extended emission

"Invisible" Large Scale Structure

- missing short spacings can be problematic for large scale structure
- to estimate? simulate observations, or check simple expressions for a Gaussian or unform disk (appendix of Wilner & Welch 1994, ApJ, 427, 898)

Homework Problem

- Q: By what factor is the central brightness reduced as a function of source size due to missing short spacings for a Gaussian characterized by fwhm $\theta_{1/2}$?
- A: a Gaussian source central brightness is reduced 50% when

$$\theta_{1/2} = 18'' \left(\frac{\nu}{100 \ GHz}\right)^{-1} \left(\frac{B_{min}}{15 \ meters}\right)^{-1}$$

where B_{min} is the shortest baseline [meters], U is the frequency [GHz]

Missing Short Spacings: Demonstration

- important structure may be missed in central hole of (u,v) coverage
- Do the visibilities observed in our example discriminate between these two models of the sky brightness distribution T(l,m)?

Yes... but only on baselines shorter than about 75 kλ

Missing Short Spacings: Demonstration

Measures of Image Quality

dynamic range

- ratio of peak brightness to rms noise in a region void of emission
- easy way to calculate a lower limit to the error in brightness in a non-empty region
- e.g. peak = 89 mJy/beam, rms = 0.9 mJy/beam \rightarrow DR = 89/0.9 = 99

fidelity

- difference between any produced image and the correct image
- fidelity image = input model / difference
 - = model * beam / abs(model * beam reconstruction)
 - = inverse of the relative error

need knowledge of the correct image to calculate

Techniques to Obtain Short Spacings

use a large single dish telescope

- all Fourier components from 0 to D sampled, where D is dish diameter (weighting depends on illumination)
- scan single dish across sky to make an image T(l,m) * A(l,m) where A(l,m) is the single dish response pattern
- Fourier transform single dish image, T(l,m) * A(l,m), to get V(u,v)a(u,v) and then divide by a(u,v) to estimate V(u,v) for baselines < D
- choose D large enough to overlap interferometer samples of V(u,v) and avoid using data where a(u,v) becomes small, e.g. VLA & GBT

Techniques to Obtain Short Spacings

use a separate array of smaller antennas

- small antennas can observe short baselines inaccessible to larger ones
- the larger antennas can be used as single dish telescopes to make images with Fourier components not accessible to the smaller antennas
- example: ALMA main array + ACA

main array $50 \times 12m$: 12m to 14+ km

ACA

12 x 7m: covers 7-12m

 4×12 m single dishes: 0-7m

Techniques to Obtain Short Spacings

mosaic with a homogeneous array

 recover a range of spatial frequencies around the nominal baseline b using knowledge of A(I,m), shortest spacings from single dishes (Ekers & Rots 1979)

- V(u,v) is a linear combination of baselines from b-D to b+D
- depends on pointing direction (l_0, m_0) as well as on (u, v)

$$V(u, v; l_0, m_0) = \int \int T(l, m) A(l - l_0, m - m_0) e^{i2\pi(ul + vm)} dl dm$$

• Fourier transform with respect to pointing direction (l_0, m_0)

$$V(u-u_0, v-v_0) = \left(\int \int V(u, v; l_0, m_0) e^{i2\pi(u_0 l_0 + v_0 m_0)} dl_0 dm_0\right) / a(u_0, v_0)$$

Self Calibration

- a priori calibration using external calibrators is not perfect
 - interpolated from different time, different sky direction from source
- basic idea of self calibration is to correct for antenna based phase and amplitude errors together with imaging to create a source model
- works because
 - at each time, measure N complex gains and N(N-1)/2 visibilities
 - source structure can be represented by a small number of parameters
 - a highly overconstrained problem if N large and source simple
- in practice, an iterative, non-linear relaxation process
 - assume source model \rightarrow solve for time dependent gains \rightarrow form new source model from corrected data using e.g. clean \rightarrow solve for new gains
 - requires sufficient signal-to-noise at each solution interval
- loses absolute phase from calibrators and therefore position information
- dangerous with small N arrays, complex sources, marginal signal-to-noise

Concluding Remarks

- interferometry samples Fourier components of sky brightness
- make an image by Fourier transforming sampled visibilities
- deconvolution attempts to correct for incomplete sampling
- remember
 - there are an infinite number of images compatible with the visibilities
 - missing (or corrrupted) visibilities affect the entire image
- astronomers must use judgement in the imaging and deconvolution process
- it's fun and worth the trouble \rightarrow high angular resolution images!

many, many issues not covered in this talk: see References and upcoming talks

END

