AMENDMENTS TO THE CLAIMS

1. A compound of the formula I [for preparing essentially isotactic olefin polymers]

$$R^{10})_{p}$$

$$R^{1}$$

$$R^{2}$$

$$R^{4}$$

$$(CR^{8}R^{9})_{n}$$

$$(CR^{8}R^{9})_{n}$$

$$(CR^{8}R^{9})_{n}$$

ø

$$(CR^8R^9)m$$
 R^1
 R^4
 $(CR^8R^9)m$
 $(CR^8R^9)m$
 $(CR^8R^9)m$
 $(CR^8R^9)m$

in which

 M^{l}

 R^1 and R^2

is a metal from group IVb, Vb or VIb of the Periodic Table are identical or different and are a hydrogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom,

is a hydrogen atom, a halogen atom, a C₂-C₁₀-alkyl group, a C₁
C₁₀-alkyl group which is halogenated, a C₆-C₁₀-aryl group, an

-NR₂¹⁵, -SR¹⁵, -OSiR₃¹⁵, -SiR₃¹⁵ or -PR₂¹⁵ radical in which R¹⁵

is a halogen atom, a C₁-C₁₀-alkyl group or a C₆-C₁₀-aryl group,

[R³ and] R⁴ is a hydrogen atom, a halogen atom, [a halogen atom,] a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R¹⁵ is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group,

 R^5 and R^6 are identical or different and are as defined for $[R^3$ and R^4 , with the proviso that R^5 and R^6 are not hydrogen,

 R^7 is

=BR¹¹, =AlR¹¹, -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR¹¹, =CO, =PR¹¹ or =P(O)R¹¹,

where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_1 - C_{10} -alkoxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{11} and R^{12} -- or R^{11} and R^{13} in each case with the atoms connecting them, form a ring,

 M^2 is silicon, germanium or tin, R^8 and R^9 are identical or different and are as defined for R^{11}

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2,

the radicals R¹⁰ are identical or different and are as defined

for
$$R^{11}$$
, R^{12} and R^{13}

rings A are saturated or aromatic,

p is 8, when rings A are saturated, and

p is 4, when rings A are aromatic.

2. A compound of the formula I as claimed in claim 1, wherein, in the formula I, M¹ is Zr or Hf, R¹ and R² are identical or different and are methyl or chlorine, R³ or R⁴ are hydrogen, R⁵ and R⁶ are identical or different and are methyl, ethyl or trifluoromethyl, R⁷ is a

$$\begin{array}{cccc} R^{11} & & R^{11} \\ \downarrow & & \downarrow \\ \text{-C-, or --Si-, radical,} \\ R^{12} & & R^{12} \end{array}$$

n plus m is zero or 1, and R¹⁰ is hydrogen.

- 3. A compound of the formula I as claimed in claim 1 wherein the compound is rac-dimethylsilyl(2-methyl-4,5,6,7-tetrahydro-1-indenyl)₂zirconium dichloride, racethylene(2-methyl-4,5,6,7-tetrahydro-1-indenyl)₂zirconium dichloride, rac-dimethylsilyl (2-methly-4,5,6,7-tetrahydro-1-indenyl)₂dimethylzirconium or racethylene(2-methyl-4,5,6,7-tetrahydro-1-indenyl)₂dimethylzirconium.
- 4. A compound as claimed in claim 1, wherein M¹ is zirconium, hafnium or titanium.
- 5. A compound as claimed in claim 1, wherein R¹ and R² are identical or different and are a hydrogen atom, a C₁-C₃-alkyl group, a C₁-C₃-alkoxy group, a C₆-C₈-aryl group, a C₆-C₆-arloxy group, a C₂-C₄-alkenyl group, a C₇-C₁₀-arylalkyl group, a C₇-C₁₂-alkylaryl group, a C₈-C₁₂-arylalkenyl group or chlorine.

6. A compound as claimed in claim 1, wherein R^3 is a C_4 -alkyl group, C_1 - C_4 -alkyl group which is halogenated, a C_6 - C_8 -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical and R^4 is [are identical and different and are] a hydrogen atom, a fluorine, chlorine or bromine atom, a C_1 - C_4 -alkyl group, which may be halogenated, a C_6 - C_8 -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R^{15} is a chlorine atom, or a C_1 - C_3 -alkyl group or a C_6 - C_8 -aryl group

7. A compound [as claimed in claim 1,] of the formula (I) for preparing essentially isotactic olefin polymers

$$(CR^8R^9)m$$
 R^1
 R^4
 $(CR^8R^9)m$
 $(CR^8R^9)m$
 $(CR^8R^9)m$
 $(CR^8R^9)m$

in which

M¹ is a metal from group IVb, Vb or VIb of the Periodic Table

R¹ and R² are identical or different and are a hydrogen atom, a C₁-C₁₀-alkyl group, a C₁-C₁₀-alkoxy group, a C₆-C₁₀-aryl group, a C₆-C₁₀-aryloxy group, a C₂-

 $\underline{C_{10}}$ -alkenyl group, a $\underline{C_7}$ - $\underline{C_{40}}$ -arylalkyl group, a $\underline{C_8}$ - $\underline{C_{40}}$ -arylalkenyl group or a halogen atom,

 R^3 and R^4 are hydrogen,

R⁵ and R⁶ are identical or different and are a halogen atom, a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R¹⁵ is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group

 \mathbf{R}^7 is

 $=BR^{11}$, $=AlR^{11}$, -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, $=NR^{11}$, =CO, $=PR^{11}$ or $=P(O)R^{11}$, where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_1 - C_{10} -alkoxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{11} and R^{12} -- or R^{11} and R^{13} in each case with the atoms connecting them, form a ring,

M² is silicon, germanium or tin,

R⁸ and R⁹ are identical or different and are as defined for R¹¹

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2,

the radicals R¹⁰ are identical or different and are as defined

for R¹¹, R¹² and R¹³,

rings A are saturated or aromatic,

p	is 8, when rings A are saturated, and
p	is 4, when rings A are aromatic.

- 8. A compound as claimed in claim 1, wherein R^5 and R^6 are identical.
- 9. A compound as claimed in claim 1, wherein R_5 and R_6 are (C_1-C_4) -alkyl, which may be halogenated with methyl.
- 10. A compound as claimed in claim 1, wherein R¹¹, R¹² and R¹³ are identical or different and are a hydrogen atom, a halogen atom, a C₁-C₄-alkyl group, a CF₃ group, a C₆-C₈-aryl group, a pentafluorophenyl group, a C₁-C₄-alkoxy group, a C₂-C₄-alkenyl group, a C₇-C₁₀-arylalkyl group, a C₈-C₁₂-arylalkenyl group of a C₇-C₁₂-alkylaryl group, or R¹¹ and R¹² or R¹¹ and R¹³, in each case together with the atoms connecting them, form a ring.
- 11. A compound as claimed in claim 1, wherein M² is silicon or germanium.
- 12. A compound as claimed in claim 1, wherein R^7 is $=CR^{11}R^{12}$, $=SiR^{11}R^{12}$, $=GeR^{11}R^{12}$, -O-, -S-, =SO, $-PR^{11}$ or $=P(O)R^{11}$.
- 13. A compound as claimed in claim 1, wherein m and n are identical or different and are zero or 1.
- 14. A compound as claimed in claim 1, wherein m plus n is zero or 1.
- 15. A compound as claimed in claim 1, wherein R^{10} is hydrogen or C_1 - C_4 -alkyl groups.
- [16. A compound of the formula I

$$(R^{10})_4$$
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$

in which

M¹ is a metal from group IVb, Vb or VIb of the Periodic Table,

 R^1 and R^2 are identical or different and are a hydrogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom,

 R^3 and R^4 are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an -NR₂¹⁵, -SR¹⁵,

 1 -OSiR₃¹⁵, SiR₃¹⁵ or PR₂¹⁵ radical in which R¹⁵ is a halogen atom, a C₁-C₁₀-alkyl group or a C₆-C₁₀-aryl group,

 R^5 and R^6 are identical or different and are as defined for R^3 and R^4 , with the proviso that R^5 and R^6 are not both hydrogen,

 R^7 is

 $=BR^{11}$, $=A1R^{11}$, -Ge-, -Sn-, -O-, -S-, =SO, $=SO_2$, $=NR^{11}$, =CO, $=PR^{11}$ or $=P(O)R^{11}$, where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{11} and R^{12} or R^{11} and R^{13} , in each case with the atoms connecting them, form a ring,

M² is silicon, germanium or tin,

 R^8 and R^9 are identical or different and are as defined for R^{11} ,

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2, the radicals R^{10} are the same or different and are as defined for R^{11} , R^{12} and R^{13} .]

[17. A compound as claimed in claim 16, wherein:

M¹ is titanium, zirconium, hafnium, vanadium, niobium, or tantalum,

314460_1

Application No.: 08/895950

Docket No.: 09086-00185-US

R¹ and R² are identical or different and are methyl or halogen,

R³ and R⁴ are hydrogen,

R⁵ and R⁶ are identical or different and are methyl, ethyl, or trifluoromethyl,

R⁷ is a radical of the formula

where M" is silicon or germanium, and

 R^8 and R^9 are identical or different and are hydrogen or C_1 - C_{10} -alkyl.]

[18. A compound of the formula I

$$(R^{10})_p$$
 $(CR^8R^9)_m$
 $(R^7)_p$
 $(R^7)_p$
 $(R^7)_p$
 $(R^7)_p$
 $(R^7)_p$
 $(R^7)_p$

in which

M¹ is a metal from group IVb, Vb or VIb of the Periodic Table,

R¹ and R² are identical or different and are a hydrogen atom,

a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom,

 R^3 and R^4 are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an -NR₂¹⁵, -SR¹⁵,

-OSiR $_3$ ¹⁵, SiR $_3$ ¹⁵ or PR $_2$ ¹⁵ radical in which R¹⁵ is a halogen atom, a C₁-C₁₀-alkyl group or a C₆-C₁₀-aryl group,

 R^5 and R^6 are identical or different and are as defined for R^3 and R^4 , with the proviso that R^5 and R^6 are not both hydrogen,

 R^7 is

=BR¹¹, =AlR¹¹, -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR¹¹, =CO, =PR¹¹ or =P(O)R¹¹, where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{11} and R^{12} or R^{11} and R^{13} , in each case with the atoms connecting them, form a ring,

M² is silicon, germanium or tin,

R⁸ and R⁹ are identical or different and are as defined for R¹¹,

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2, p is a number from 1 to 4, and

the radicals R^{10} are the same or different and are a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl

Application No.: 08/895950

Docket No.: 09086-00185-US

group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{10} , with the atoms connecting them, form a ring.]

19. A compound of the formula (I)'

$$(CR^8R^9)_m$$
 R^5
 $(CR^8R^9)_m$
 $(CR^8R^9)_m$

in which

M¹ is a metal from group IVb, Vb or VIb of the Periodic Table,

 R^1 and R^2 are identical or different and are a hydrogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom,

 R^3 is a hydrogen atom, a halogen atom, a C_2 - C_{10} -alkyl group, a C_1 - C_{10} -alkyl group which is halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R^{15} is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group,

 R^4 is a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, which is optionally halogenated, a C_6 - C_{10} -aryl group, an $-NR_2^{-15}$, $-SR^{-15}$, $-OSiR_3^{-15}$, $-SiR_3^{-15}$ or $-PR_2^{-15}$ radical in which R^{-15} is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group, R^5 and R^6 are identical or different and are as defined for R^3 and R^4 , with the proviso that R^5 and R^6 are not hydrogen,

 \mathbb{R}^7 is

$$\begin{array}{c} R^{11} \\ -M^2 \\ -M^2 \\ R^{12} \end{array}, \begin{array}{c} R^{11} \\ -M^2 \\ R^{12} \end{array}, \begin{array}{c} R^{11} \\ -M^2 \\ -CR_2^{13} \\ -CR_2^{13} \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \\ -M^2 - CR \\ -O \end{array}, \begin{array}{c} R^{11} \\ -O \\ -M^2 - CR \\ -O \\ -M^2 - CR \\ -O \\ -M^2 - CR \\ -O \\ -O \\ -CR \\ -O \\ -O \\ -CR \\ -C$$

 $=BR^{11}$, $=A1R^{11}$, -Ge-, -Sn-, -O-, -S-, =SO, $=SO_2$, $=NR^{11}$, =CO, $=PR^{11}$ or $=P(O)R^{11}$, where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or a pair of substituents R^{11} and R^{12} -- or R^{11} and R^{13} , in each case with the atoms connecting them, form a ring,

M² is silicon, germanium or tin,

 R^8 and R^9 are identical or different and are as defined for R^{11} m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2, the radicals R^{10} are the same or different and are as defined for R^{11} , R^{12} and R^{13} .

20. A compound as claimed in claim 19, wherein:

 M^1 is titanium, zirconium, hafnium, vanadium, niobium, or tantalum, R^1 and R^2 are identical or different and are methyl or halogen, R^3 and R^4 are hydrogen,

 $\underline{R^5}$ and $\underline{R^6}$ are identical or different and are methyl, ethyl, or trifluoromethyl, $\underline{R^7}$ is a radical of the formula

where M" is silicon or germanium, and

R⁸ and R⁹ are identical or different and are hydrogen or C₁-C₁₀-alkyl.

- 21. A catalyst composition comprising the combination comprising a compound of claim 19 and a cocatalyst.
- 22. A catalyst composition comprising the combination comprising a compound of claim 19 and an aluminoxane.
- 23. A process for polymerizing an olefin monomer, comprising the step of carrying out the polymerization in the presence of a catalyst composition of claim 21.
- 24. A process for polymerizing an olefin monomer, comprising the step of carrying out the polymerization in the presence of a catalyst composition of claim 22.
- 25. The compound as claimed in claim 1, wherein R³ is a hydrogen atom, a halogen atom, a C₁-C₁₀-alkyl group which is halogenated, a C₆-C₁₀-aryl group, an -NR₂¹⁵, -SR¹⁵, -OSiR₃¹⁵, -SiR₃¹⁵ or -PR₂¹⁵ radical in which R¹⁵ is a halogen atom, a C₁-C₁₀-alkyl group or a C₆-C₁₀-aryl group.

26. The compound as claimed in claim 1, wherein R^3 is a hydrogen atom, a halogen atom, a C_6 - C_{10} -aryl group, an $-NR_2^{15}$, $-SR^{15}$, $-OSiR_3^{15}$, $-SiR_3^{15}$ or $-PR_2^{15}$ radical in which R^{15} is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group.