

① Veröffentlichungsnummer: 0 316 704 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag der Patentschrift: **12.07.95**

(51) Int. Cl.6: **C07H** 19/067, A61K 31/70

(21) Anmeldenummer: 88118515.1

2 Anmeldetag: 07.11.88

- Fluorcytidinderivate, deren Herstellung und Arzneimittel, die diese Derivate enthalten.
- Priorität: 17.11.87 EP 87116926
- (43) Veröffentlichungstag der Anmeldung: 24.05.89 Patentblatt 89/21
- (45) Bekanntmachung des Hinweises auf die Patenterteilung: 12.07.95 Patentblatt 95/28
- 84 Benannte Vertragsstaaten: AT BE CH DE ES FR GB GR IT LI LU NL SE
- 56 Entgegenhaltungen: CH-A- 633 810 FR-A- 2 140 526

THE JOURNAL OF MEDICINAL CHEMISTRY, Band 22, Nr. 11, November 1979, Seiten1330-1335, American Chemical Society; A.F. COOK et al.: "Fluorinated pyrimidinenucleosides. 3. Synthesis and antitumor activity of a series of 5'-deoxy-5-fluoropyrimidine nucleosides

- 73) Patentinhaber: F. HOFFMANN-LA ROCHE AG Postfach 3255 CH-4002 Basel (CH)
- 2 Erfinder: Fujiu, Morio

Murota 2-4-3, Chigasaki-shi Kanagawa-ken (JP) Erfinder: Ishitsuka, Hideo Katsura-cho 1-1-1-405 Sakae-ku

Yokohama-shi Kanagawa-ken (JP) Erfinder: Miwa, Masanori Kamakura Green Mansion 404 Ueki 436-1

Kamakura-shi Kanagawa-ken (JP)

Erfinder: Umeda, Isao Imperial Higashihakura-

Garden House B-513 Shirahata minami1-1 Kanagawa-ku Yokohama-shi Kanagawa-ken (JP)

Erfinder: Yokose, Kazuteru Nekozane 3-19-16, Urayasu-shi

Chiba-ken (JP)

(74) Vertreter: Lederer, Franz, Dr. et al Lederer, Keller & Riederer Patentanwälte Prinzregentenstrasse 16 D-80538 München (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

5

10

15

20

30

50

55

Die vorliegende Erfindung betrifft neue 5'-Deoxy-5-fluorcytidinderivate, ein Verfahren zur Herstellung davon und Antitumormittel auf der Basis dieser Derivate.

Letztere haben die allgemeine Formel

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

worin R¹, R² und R³ unabhängig voneinander Wasserstoff oder eine unter physiologischen Bedingungen leicht abspaltbare Gruppe sind, mit der Bedingung, dass zumindest eines von R¹, R² und R³ eine unter physiologischen Bedingungen leicht abspaltbare Gruppe ist, sowie Hydrate oder Solvate der Verbindungen

der Formel I, wobei die leicht hydrolysierbaren Gruppen R1, R2 und R3 in der Formel I eine der Formel

R4CO-, R5OCO- oder R6SCO-

worin R⁴ Wasserstoff, Alkyl, Cycloalkyl, Oxoalkyl, Alkenyl, Aralkyl oder Aryl und R⁵ und R⁶ Alkyl oder Aralkyl sind.

Im Rahmen der vorliegenden Erfindung bezeichnet "Alkyl" eine geradkettige oder verzweigte Kette mit 1-19 C-Atomen, z.B. Methyl, Aethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, t-Butyl, Pentyl, Isopentyl, Neopentyl, Hexyl, Isohexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl oder Nonadecyl. "Cycloalkyl" bedeutet z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Adamantyl. "Oxoalkyl" bezeichnet z.B. Acetyl, Propionyl, Butyryl, 2-Oxopropyl oder 3-Oxobutyl. "Alkenyl" bezeichnet gegebenenfalls substituiertes Alkenyl mit 3-19 C-Atome, wie Allyl, Butenyl, 3-Methyl-2-butenyl, 1-Methyl-2-propenyl, Hexenyl, Decenyl, Undecenyl, Tridecenyl, Pentadecenyl, Heptadecenyl, Heptadecadienyl, Nonadecatetraenyl oder 2-Phenylvinyl. "Aralkyl" bedeutet gegebenenfalls substituiertes Aralkyl, wie Benzyl, 1-Phenyläthyl, Methyl-, Fluor-, Chlor-, Methoxy-, Dimethoxy- oder Nitrobenzyl, Phenäthyl, Picolyl oder 3-Indolylmethyl. "Aryl" bezeichnet gegebenenfalls substituiertes Aryl, wie Phenyl, Tolyl, Xylyl, Mesityl, Cumenyl, Aethyl-, Fluor-, Chlor-, Brom-, Jod-, Difluor-, Dichlor-, Methoxy-, Dimethoxy-, Trimethoxy-, Aethoxy-, Diäthoxy-, Triäthoxy-, Propoxy-, Methylendioxy-, Methylthio-, Nitro-, Cyan-, Acetyl- oder Carbamoylphenyl, Methylpyrrolyl, Imidazolyl, Pyrazolyl, Pyridyl, Methylpyrrolyl, Oder Pyrazinyl.

Besonders bevorzugte Verbindungen der Formel I sind die folgenden:

N⁴-Acetyl-5'-deoxy-5-fluorcytidin,

5'-Deoxy-5-fluor-N4-propionylcytidin,

N⁴-Butyryl-5'-deoxy-5-fluorcytidin,

5'-Deoxy-5-fluor-N⁴-isobutyrylcytidin,

5'-Deoxy-5-fluor-N⁴-(2-methylbutyryl)cytidin,

5'-Deoxy-N⁴-(2-äthylbutyryl)-5-fluorcytidin,

5'-Deoxy-N⁴-(3,3-dimethylbutyryl)-5-fluorcytidin,

5'-Deoxy-5-fluor-N4-pivaloylcytidin,

5'-Deoxy-5-fluor-N⁴-valerylcytidin,

5'-Deoxy-5-fluor-N4-isovalerylcytidin,

5'-Deoxy-5-fluor-N4-(2-methylvaleryl)cytidin,

5'-Deoxy-5-fluor-N4-(3-methylvaleryl)cytidin,

```
5'-Deoxy-5-fluor-N4-(4-methylvaleryl)cytidin,
          5'-Deoxy-5-fluor-N4-hexanoylcytidin,
          5'-Deoxy-5-fluor-N4-heptanoylcytidin,
          5'-Deoxy-5-fluor-N4-octanovlcytidin,
          5'-Deoxy-5-fluor-N4-nonanoylcytidin,
5
          5'-Deoxy-5-fluor-N4-hexadecanoylcytidin,
          N<sup>4</sup>-Benzoyl-5'-deoxy-5-fluorcytidin,
          5'-Deoxy-5-fluor-N4-(4-methylbenzoyl)cytidin,
          5'-Deoxy-5-fluor-N4-(3-methylbenzoyl)cytidin,
          5'-Deoxy-5-fluor-N4-(2-methylbenzoyl)cytidin,
10
          5'-Deoxy-N4-(4-äthylbenzoyl)-5-fluorcytidin,
          5'-Deoxy-N<sup>4</sup>-(3,4-dimethylbenzoyl)-5-fluorcytidin,
          5'-Deoxy-N<sup>4</sup>-(3,5-dimethylbenzoyl)-5-fluorcytidin,
          5'-Deoxy-5-fluor-N4-(4-methoxybenzoyl)cytidin,
          5'-Deoxy-N<sup>4</sup>-(3,4-dimethoxybenzoyl)-5-fluorcytidin,
15
          5'-Deoxy-N<sup>4</sup>-(3,5-dimethoxybenzoyl)-5-fluorcytidin,
          5'-Deoxy-5-fluor-N<sup>4</sup>-(3,4,5-trimethoxybenzoyl)cytidin,
          5'-Deoxy-5-fluor-N<sup>4</sup>-(3,4,5-triäthoxybenzoyl)cytidin,
          5'-Deoxy-N4-(4-äthoxybenzoyl)-5-fluorcytidin,
          5'-Deoxy-5-fluor-N<sup>4</sup>-(4-propoxybenzoyl)cytidin,
20
          5'-Deoxy-N<sup>4</sup>-(3,5-diäthoxybenzoyl)-5-fluorcytidin,
          N<sup>4</sup>-(4-Chlorbenzoyl)-5'-deoxy-5-fluorcytidin,
          5'-Deoxy-N<sup>4</sup>-(3,4-dichlorbenzoyl)-5-fluorcytidin,
          5'-Deoxy-N<sup>4</sup>-(3,5-dichlorbenzoyl)-5-fluorcytidin,
          5'-Deoxy-5-fluor-N4-(4-nitrobenzoyl)cytidin,
25
          5'-Deoxy-5-fluor-N<sup>4</sup>-(4-methoxycarbonylbenzoyl)cytidin,
          N<sup>4</sup>-(4-Acetylbenzoyl)-5'-deoxy-5-fluorcytidin,
          5'-Deoxy-5-fluor-N4-(phenylacetyl)cytidin,
          5'-Deoxy-5-fluor-N4-(4-methoxyphenylacetyl)cytidin,
          5'-Deoxy-5-fluor-N4-nicotinoylcytidin,
30
          5'-Deoxy-5-fluor-N<sup>4</sup>-isonicotinoylcytidin,
          5'-Deoxy-5-fluor-N4-picolinoylcytidin,
          5'-Deoxy-5-fluor-N4-(2-furoyl)cytidin,
          5'-Deoxy-5-fluor-N4-(5-nitro-2-furoyl)cytidin,
          5'-Deoxy-5-fluor-N4-(2-thenoyl)cytidin,
35
          5'-Deoxy-5-fluor-N4-(5-methyl-2-thenoyl)cytidin,
          5'-Deoxy-5-fluor-N4-(1-methyl-2-pyrrolcarbonyl)cytidin,
          5'-Deoxy-5-fluor-N4-(3-indolylacetyl)cytidin,
          N<sup>4</sup>-(3-Butenoyl)-5'-deoxy-5-fluorcytidin,
          3'-O-Benzoyl-5'-deoxy-5-fluorcytidin,
40
          N<sup>4</sup>,3'-O-Dibenzoyl-5'-deoxy-5-fluorcytidin und
          5'-Deoxy-N<sup>4</sup>-(äthylthio)carbonyl-5-fluorcytidin.
         Weitere bevorzugte Verbindungen der Formel I sind die folgenden:
          5'-Deoxy-5-fluor-N4-octadecanoylcytidin,
          N<sup>4</sup>-Cyclopropancarbonyl-5'-deoxy-5-fluorcytidin,
45
          N<sup>4</sup>-Cyclohexancarbonyl-5'-deoxy-5-fluorcytidin,
          N<sup>4</sup>-(1-Adamantancarbonyl)-5'-deoxy-5-fluorcytidin,
          5'-Deoxy-5-fluor-N4-(2-methoxybenzoyl)cytidin,
          5'-Deoxy-N<sup>4</sup>-(2,4-dimethoxybenzoyl)-5-fluorcytidin,
          5'-Deoxy-5-fluor-N4-piperonyloylcytidin,
50
          5'-Deoxy-5-fluor-N4-(4-fluorbenzoyl)cytidin,
          N<sup>4</sup>-(2-Chlorbenzoyl)-5'-deoxy-5-fluorcytidin,
          N<sup>4</sup>-(3-Chlorbenzoyl)-5'-deoxy-5-fluorcytidin,
          5'-Deoxy-5-fluor-N<sup>4</sup>-(3-nitrobenzoyl)cytidin.
          5'-Deoxy-5-fluor-N4-[4-(methylthio)benzoyl]cytidin,
55
          5'-Deoxy-5-fluor-N4-(2-naphthoyl)cytidin,
          5'-Deoxy-5-fluor-N<sup>4</sup>-(3-furoyl)cytidin,
```

5'-Deoxy-5-fluor-N⁴-(3-phenylpropionyl)cytidin,

N⁴-Cinnamoyl-5'-deoxy-5-fluorcytidin,

2',3'-di-O-Benzoyl-5'-deoxy-5-fluorcytidin,

N⁴,2'-0,3'-O-Tribenzoyl-5'-deoxy-5-fluorcytidin,

5'-Deoxy-5-fluor-N⁴-(octyloxycarbonyl)cytidin,

N⁴-(Benzyloxycarbonyl)-5'-deoxy-5-fluorcytidin und

5'-Deoxy-5-fluor-N⁴-formylcytidin.

5

Die Verbindungen der Formel I und die Hydrate und Solvate davon können dadurch hergestellt werden, dass man eine Verbindung der allgemeinen Formel

20 R⁹O OR⁸

worin R⁷ Wasserstoff oder eine Aminoschutzgruppe, R⁸ und R⁹ unabhängig voneinander Wasserstoff oder eine Hydroxyschutzgruppe oder R⁸ und R⁹ zusammen eine cyclische Hydroxyschutzgruppe sind, mit einer Verbindung der allgemeinen Formel XCOR⁴, worin X eine Abgangsgruppe und R⁴ Wasserstoff, Alkyl, Cycloalkyl, Oxoalkyl, Alkenyl, Aralkyl oder Aryl ist, oder mit einer Verbindung der allgemeinen Formel YCOR¹⁰, worin Y Halogen und R¹⁰ eine Gruppe der Formel R⁵O- oder R⁶S-, in der R⁵ und R⁶ Alkyl oder Aralkyl sind, umsetzt und eine vorhandene Schutzgruppe abspaltet.

Beispiele von Aminoschutzgruppen sind Benzyloxycarbonyl, Phenoxycarbonyl, 2,2-Trichloräthoxycarbonyl, Aethoxycarbonyl, t-Butoxycarbonyl und Trifluoracetyl. Beispiele von Hydroxyschutzgruppen sind Benzyl, Methoxybenzyl, Trimethylsilyl, Triäthylsilyl, Isopropyldimethylsilyl, t-Butyldimethylsilyl, t-Butyldimethylsilyl, t-Butyldimethylsilyl, t-Butyldimethylsilyl, t-Butyldimethylsilyl, Beispiele von cyclischen Hydroxyschutzgruppen sind cyclische Acetale, Ketale, Carbonate oder Orthoester oder cyclische 1,3-(1,1,3,3-Tetraisopropyl)disiloxandiyl-Derivate. Beispiele von Abgangsgruppen sind Halogene, Acyloxy, Alkyloxycarbonyloxy, Succinimidoxy, Phthalimidoxy, 4-Nitrophenyl, Azido, 2,4,6-Triisopropylbenzolsulfonyl und Diäthoxyphosphoryloxy. "Halogen" bezeichnet Chlor, Brom oder Jod.

Unter den Verbindungen der Formel II ist 5'-Deoxy-5-fluorcytidin bekannt [J. Med. Chem., <u>22</u>, (1979) 1330]. Die anderen Verbindungen der Formel II können in an sich bekannter Weise [Chem. Pharm. Bull., 33, (1985) 2575] ausgehend von 5'-Deoxy-5-fluorcytidin oder von 5'-Deoxy-5-fluoruridin hergestellt werden.

Die im obigen Verfahren verwendete Verbindungen der Formel XCOR⁴ sind Säurehalogenide, Säureanhydride, gemischte Anhydride (hergestellt durch Reaktion von R⁴ COOH mit 2,4,6-Triisopropylbenzolsulfonylchlorid oder Diäthylchlorphosphat, worin R⁴ die obige Bedeutung hat) aktivierte Ester, wie N-Hydroxysuccinimidester, N-Hydroxyphthalimidester oder 4-Nitrophenylester; Acylazide oder gemischte Carbonsäureanhydride. Die Verbindungen der Formel YCOR¹⁰ sind Alkoxycarbonylhalogenide, Aralkoxycarbonylhalogenide, Alkylthiocarbonylhalogenide oder Aralkylthiocarbonylhalogenide.

Die Reaktion einer Verbindung der Formel II mit einer Verbindung der Formel XCOR⁴ oder YCOR¹⁰ kann man in einem Lösungsmittel, wie Pyridin, Dioxan, Tetrahydrofuran, Acetonitril, Chloroform, Dichlormethan, Methanol, Aethanol oder Wasser oder Gemische davon durchführen, in Gegenwart eines Säureakzeptors, wie Triäthylamin, Pyridin, Picolin, Dimethylaminopyridin, Lutidin, N,N-Dimethylanilin oder eines Alkalimetallhydroxids, -carbonats oder -phosphats. Die Reaktion kann in einem breiten Temperaturbereich durchgeführt werden, zweckmässig jedoch zwischen etwa 0 und 120°C, vorzugsweise zwischen 0 und 50°C. Für 1 Mol einer Verbindung der Formel II werden 1, 2 oder 3 Mol oder ein Ueberschuss einer Verbindung der Formel XCOR⁴ oder YCOR¹⁰ verwendet.

Die Abspaltung einer Schutzgruppe kann in an sich bekannter Weise durchgeführt werden.

Die Verbindungen der vorliegenden Erfindung können in an sich bekannter Weise isoliert und gereinigt werden, z.B. durch Abdampfen, Filtrierung, Extraktion, Abfällen, Chromatographie und/oder Umkristallisation.

Die Verbindungen der Formel I können als Solvate, insbesondere als Hydrate vorliegen. Die Hydrierung kann im Laufe der Herstellung oder als Resultat der hygroskopischen Eigenschaften eines ursprünglich wasserfreien Produktes erfolgen. Zur Herstellung eines Hydrats kann ein vollständig oder teilweise wasserfreies Produkt, z.B. bei etwa 10 bis 40°C einer feuchten Atmosphäre ausgesetzt werden. Solvate mit pharmazeutisch anwendbaren Lösungsmitteln, wie Aethanol, können z.B. während einer Kristallisation entstehen.

Die Verbindungen der Formel I sowie die Hydrate und Solvate davon sind gegen Sarcoma 180, Meth A Fibrosarcoma und Lewis Lungenkarzinom bei Mäusen über einen breiten Dosierungsbereich sowohl oral wie parenteral wirksam und können als Antitumormittel Verwendung finden. 5-Fluoruracil und seine Derivate haben den Nachteil der intestinalen und immunosuppressiven Toxizität, was ihre Verwendung drastisch limitiert. Bei oraler Verabreichung sind die vorliegenden Verbindungen der Formel I viel weniger toxisch im intestinalen Trakt und für das Immunsystem als 5-Fluoruracil (J.A.C.S. 79, 1957, 4559) und die Vorläufer davon, wie Tegafur: Uracil, 1:4 (UFT) und 5'-Deoxy-5-fluoruridin (US 4071680). Daher können die Verbindungen der Formel I bei der Behandlung von verschiedenen Tumoren beim Menschen Verwendung finden.

Die Erfindung betrifft ebenfalls pharmazeutische Präparate, die eine oder mehrere Verbindungen der Formel I enthalten, sowie die Verwendung dieser Verbindungen zur Herstellung von Arzneimitteln zur Behandlung von Tumoren.

Die Verbindungen der Formel I kann man dem Menschen oral oder nicht oral verabreichen, gegebenenfalls unter Zusatz eines verträglichen Trägermaterials. Letzteres kann eine für die enterale, perkutane oder parenterale Verabreichung geeignete organische oder anorganische inerte Substanz sein, wie Wasser, Gelatine, Gummi arabicum, Lactose, Stärke, Magnesiumstearat, Talk, pflanzliche Oele oder Polyalkylenglykole. Die pharmazeutischen Präparate können in fester Form als Tabletten, Dragées, Granulate, Kapseln, Suppositorien oder als enteral verabreichbare Tabletten, Granulate oder Kapseln; in halbfester Form als Salben oder in flüssiger Form als Lösungen, Suspensionen oder Emulsionen vorliegen. Sie können sterilisiert sein und/oder weitere Hilfsmittel, wie Konservierungs- oder Stabilisierungsmittel, Emulgatoren, Riechstoffe, Salze zur Veränderung des osmotischen Druckes oder Puffer enthalten. Sie können in an sich bekannter Weise hergestellt werden.

Die Verbindungen der Formel I können einzeln oder als Gemische von zwei oder mehr Verwendung finden, wobei der Gehalt an Wirkstoff im Bereich von etwa 0,1 bis 99,5%, vorzugsweise 0,5 bis 95% des Gesamtgewichts des Präparats, liegt. Die Präparate können auch weitere pharmazeutisch wirksame Substanzen enthalten.

Die tägliche Dosis der Verbindungen der Formel I hängt von dem Gewicht des Patienten und der zu behandelnden Krankheit ab, liegt jedoch im allgemeinen im Bereich von 0,5 bis 700, vorzugsweise von etwa 3 bis 500 mg/kg Körpergewicht. Die Antitumorwirksamkeit der Verbindungen der Formel I wird in den folgenden Versuchen veranschaulicht:

Antitumorwirkung gegen Sarcoma 180

Sarcoma 180 Zellen (2 x 10⁶ Zellen) werden am Tag 0 Mäusen (20-22 g) subkutan implantiert. Die Testsubstanzen werden täglich vom Tag 1 bis zum Tag 7 oral verabreicht. Die Tiere werden am Tag 14 getötet und die Tumoren werden herausgenommen und gewogen. Die in der nachfolgenden angegebene Hemmung des Tumorwachstums in Tabelle 1 wird wie folgt ermittelt:

% Hemmung = $(1 - T/C) \times 100$

45

15

30

T = Gewicht der Tumoren der behandelten Gruppe

C = Gewicht der Tumoren der Kontrollgruppe.

50

Tabelle 1

Antitumorwirksamkeit gegen Sarcoma 180 bei Mäusen						
Verbindung (Beispiel-Nr.)	Dosis x 7 (mMol/kg/Tag)	Hemmung (%)				
1	1,1 2,2	56 83				
2	1,5 3,0	84 91				
5	1,1 2,2	62 82				
6	0,5 1,5	28 76				
7	1,4 2,7	57 84				
8	1,4 2,7	20 77				
9	1,4 2,7	76 96				
10	1,5 3,0	74 97				
11	0,8 1,5	69 90				
12	0,8 1,5	40 73				
13	0,8 1,5	28 66				
15	0,8 1,5	47 62				
17	1,3 2,6	75 92				
24	1,5 3,0	63 94				
41	0,5 1,5	-18 36				
42	0,5 1,5	0 36				

Antitumorwirksamkeit gegen Meth A Fibrosarcoma

Meth A Fibrosarcoma Zellen (2 x 10⁵ Zellen) werden Mäusen (21-22 g) subkutan implantiert. Der Versuch gegen Meth A Fibrosarcoma und die Ermittlung der Hemmung des Tumorwachstums wurde in ähnlicher Weise wie beim Versuch gegen Sarcoma 180 durchgeführt. Die Resultate sind in der Tabelle 2 angegeben.

In ähnlicher Weise wurde die Antitumorwirksamkeit der Verbindung des vorliegenden Beispiels 3 mit derjenigen von 5'-Deoxy-5-fluoruridin verglichen. Die Resultate sind in der Tabelle 3 angegeben. Am Tag 8 des Versuchs wurde der Kot beobachtet. Die Resultate zeigen, dass die Verbindung des Beispiels 3 höhere eine Antitumorwirksamkeit und eine niedrigere Toxizität als 5'-Deoxy-5-fluoruridin aufweist. Im gleichen Experiment verursachte die Verbindung des Beispiels 3 keine Diarrhea während letztere der die Dosis

limitierende Faktor von 5'-Deoxy-5-fluoruridin darstellt.

Tabelle 2

Antitumorwirksamkeit gegen Meth A Fibrosarcoma bei Mäusen

	Verbindung	Dosis x 7	Hemmung
((Beispiel-Nr.)	(mMol/kg/Tag)	(%)
	1	1,5	50
		3,0	72
	3	1,5	86
		3,0	79
	14	1,5	66
		3,0	94
	16	0.8	38
	1.0	1,5	58
	18	1,5 3,0	51 91
	19	1,5	3
	1. 9	3,0	64
	20	1,5	53
	20	3,0	84
	21	0.8	17
		1,5	60
	22	1,5	42
		3,0	42
	23	0,8	56
		1,5	64
	25	1,5	- 6
		3,0	34
	26	1.5	37
		3,0	58
	27	1,5	58
		3,0	91
	28	1,5	-13
	3.0	3,0	-13
	29	1,5	49
	30	3,0 1,5	92 55
	30	3,0	58
	31	1,5	55
	31	3,0	84
	34	1,3	75
	- -	2,6	92
	36	1,5	53
		3,0	92
	37	1,5	59
		3,0	86

55

Tabelle 2 (Fortsetzung)

0,8 1,5 1,5 3,0	41 57
1,5	57
3,0	38
1,5	66 49
3,0 1,5	71 51
3,0 1,5 3,0	66 29 59
0,8 1,5	42 72
1,5	58 76
0,8 1,5	41 51
1,5	48 85
1,5 3,0	55 85
1,5	28 56
~,~	23 80

Tabelle 3

40	Antitumorwirksamkeit gegen Meth A Fibrosarcoma bei Mäusen und Beobachtung des Kots am Tag 8							
	Verbindung (BeispNr.)	Dosis x 7 (mMol/kg/Tag)	Hemmung (%)	Fekale Beobachtung*				
	3	0.4	-27	N				
45		0.8	20	N				
		1.5	86	N				
		3.0	79	N				
	5'-Deoxy-5-fluoruridin	0.4	34	N				
		0.8	31	N				
50		1.5	66	L - D				
		3.0	toxisch	D				

^{*} Fekale Beobachtung

N: normaler Kot

L: loser Kot

D: Diarrhea

Antitumorwirksamkeit gegen Lewis-Lungenkarzinom

15

50

55

Die Antitumorwirksamkeit der Verbindung des vorliegenden Beispiels 1 wurde mit derjenigen von 5'-Deoxy-5-fluoruridin und des Kombinationspräparats, UFT (Tegafur: Uracil, 1:4) verglichen. Mäusen wurde am Tag 0 Lewis-Lungenkarzinom (10^6 Zellen) subkutan inokuliert. Die Verbindungen wurden täglich 14 mal ab Tag 1 oral verabreicht. Die effektive Dosis (ED_{50}), bei der das Wachstum des Tumors um 50% gehemmt wurde und die toxischen Dosen wurden ermittelt. Der therapeutische Index (toxische Dose/ ED_{50}) sind in der Tabelle 4 angegeben. Die Resultate zeigen, dass die Verbindung des Beispiels 1 einen höheren therapeutischen Index hat als die klassischen Vorläufer von 5-Fluoruracil, 5'-Deoxy-5-fluoruridin und UFT. Sie ist weniger toxisch im intestinalen Trakt (Diarrhea) und in den für die Immunität verantwortlichen Organe (Thymus und Knochenmark) und weist daher einen höheren Sicherheitsgrad auf.

Antitumorwirksamkeit gegen Sarcoma 180, Meta A Fibrosarcoma und UV 2237 Fibrosarcoma

Die Antitumorwirksamkeit der Verbindung des vorliegenden Beispiels 1 wurde in drei Murintumormodellen mit derjenigen von 5'-Deoxy-5-fluoruridin und 5'-Deoxy-5-fluorutidin verglichen. Mäuse wurden am Tag

0 subkutan mit Sarcoma 180, Meth A Fibrosarcoma und UV 2237 Fibrosarcoma inokuliert. Ab Tag 1 wurden die Versuchssubstanzen 7 mal den Mäusen oral verabreicht. Die Wirksamkeit wurde als therapeutischer Index (ED_{max}/ED₅₀) am Tag 14 nach Tumorinokulation gemessen. ED_{max} ist die Dosis, bei der die Hemmung des Tumorwachstums maximal ist. Die Resultate sind in der Tabelle 5 angegeben.

5

10

Tabelle 5

Wirksamkeit gegen Sarcom 180, Meth A Fibrosarcoma und UV 2237 Fibrosarcoma					
Verbindung (BeispNr.)) Therapeutischer Index				
	S 180	Meth A	UV 2237		
1	2.3	2.0	4.8		
5'-Deoxy-5-fluorcytidin	2.0	1.2	1.0		
5'-Deoxy-5-fluoruridin	2.4	1.1	1.6		

15

Akute Toxizität

20

Die akute Toxizität (LD_{50}) der Verbindungen der vorliegenden Beispiele 1, 5, 9, 24, 34, 46 und 47 beträgt mehr als 2000 mg/kg bei oraler Verabreichung an Mäusen.

Die folgenden Beispiele veranschaulichen die Erfindung.

Referenzbeispiel

30

25

a) 245 mg 5'-Deoxy-5-fluorcytidin, 354 mg t-Butyldimethylsilylchlorid und 284 mg Imidazol werden in 1,5 ml Dimethylformamid gelöst und 18 Stunden unter Stickstoff gerührt. Das Gemisch wird dann in Wasser geschüttet und mit Aethylacetat extrahiert. Der Extrakt wird mit Wasser gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Man erhält 431 mg 2',3'-Bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluorcytidin, MS 473 (M⁺).

b) Eine Lösung von 490 mg 5'-Deoxy-5-fluorcytidin, 418 mg p-Toluolsulfonsäure-monohydrat und 984 µI

35

2,2-Dimethoxypropan in 10 ml Aceton wird 1,5 Stunden gerührt. Der Lösung werden 900 mg Natriumbicarbonat zugesetzt und das Gemisch wird 4 Stunden gerührt. Der Niederschlag wird abfiltriert und mit Aceton gewaschen. Die Filtrate werden unter vermindertem Druck eingeengt. Der Rückstand wird über Silicagel mit Dichlormethan-Methanol gereinigt. Man erhält 570 mg 5'-Deoxy-5-fluor-2',3'-O-isopropylidencytidin, MS 286 (MH⁺), Smp. des Picrats 169-171 °C.

Beispiel 1

40

1(a) 9,46 g 2',3'-Bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluorcytidin, hergestellt nach Referenzbeispiel a), 3,48 g n-Buttersäureanhydrid und 2,93 g 4-Dimethylaminopyridin werden in 150 ml Methylenchlorid gelöst und über Nacht gerührt, dann mit Wasser gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Man erhält 9,75 g N⁴-Butyryl-2',3'-bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluorcytidin, MS 544 (MH⁺).

45

1(b) 9,75 g des Produkts von Beispiel 1(a) werden in 80 ml Tetrahydrofuran enthaltend 80 mMol Tetrabutylammoniumfluorid gelöst und 1,5 Stunden gerührt. Nach Entfernung des Lösungsmittels unter vermindertem Druck wird der Rückstand über Silicagel mit Aethylacetat-Methanol gefolgt durch Umkristallisation aus Methanol gereinigt. Man erhält 4,5 g N⁴-Butyryl-5'-deoxy-5-fluorcytidin, Smp. 156-157 °C; MS 316 (MH⁺).

50

Die folgenden Verbindungen wurden in ähnlicher Weise wie in Beispiel 1 erhalten:

15

20

25

5

10

ispiel Nr.	R	Smp. °C	Umkristallisatior Lösungsmittel	ıs-	MS
 2	-COCH ₃	157-159	EtOH	288	(MH+)
3	-co-\och3	170-171	EtOAc-Et ₂ O	440	(MH+)
	<i></i> ОСН3				

Beispiel 4

30

4(a) Einer Lösung von 14,19 g 2',3'-Bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluorcytidin in 150 ml trockenem Pyridin werden 3,84 g n-Butyrylchlorid unter Rühren zugetropft. Das Gemisch wird über Nacht gerührt. Pyridin wird unter vermindertem Druck entfernt und der Rückstand wird zwischen Wasser und Aethylacetat verteilt. Die Aethylacetatschicht wird mit Wasser gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird über Silicagel mit n-Hexan-Aethylacetat gereinigt. Man erhält 15,32 g N⁴-Butyryl-2',3'-bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluorcytidin.

4(b) Das Produkt des Beispiels 4(a) wird in Analogie zu Beispiel 1(b) behandelt. Man erhält farblose Kristalle von N^4 -Butyryl-5'-deoxy-5-fluorcytidin.

Die folgenden Verbindungen werden analog Beispiel 4 hergestellt:

40

Beispiel Nr.	R	Smp. °C	Umkristallisatio Lösungsmittel	ns- MS
2	-co(сн ₂) ₆ сн ₃	106-107	Et ₂ O-MeOH	372 (MH ⁺)
6	-co(сн ₂) ₇ сн ₃	(erhalte Pulver)	en als amorphes	386 (MH ⁺)
7	-со(сн ₂) ₁₄ сн ₃	65-66	МеОН	484 (MH ⁺)
8	-со(сн ₂) ₁₆ сн ₃	65-66	МеОН	512 (MH ⁺)
9	-сосн(сн ₃) ₂	(erhalte Pulver)	en als amorphes	316 (MH ⁺)

EP 0 316 704 B1

	Beispiel Nr.	R	Smp. °C	Umkristallisationç- Lösungsmittel	MS
5	10	-coc(cH ₃) ₃	(erhalten als	amorphes Pulver)	330 (MH ⁺)
10	11	-co- <u></u>	168~170	EtOAc-MeOH	314 (MH ⁺)
15	12	-co-	(erhalten als a	amorphes Pulver)	356 (MH ⁺)
73	13	-co	(erhalten als	amorphes Pulver)	408 (MH ⁺)
20	14	-CO-CH ₂ -	(erhalten als	amorphes Pulver)	364 (MH ⁺)
25	15	-co	169~171	EtOAc	376 (MH ⁺)
	16	-co-	165-166	Et0Ac	350 (MH ⁺)
30	17	-со-СН3	158-159	MeOH	363 (M ⁺)
35	18	-co-CH3	140-142	EtOH	364 (MH ⁺)
40	19	-co-CH ₃	187-190	EtOH	364 (MH ⁺)
	20	-co-C1	143-145	EtOAc	384 (MH ⁺)
45	21	-co-\	164 -166	EtOAc	384 (MH ⁺)

EP 0 316 704 B1

	Beispiel Nr.	R	Smp. °C	Umkristallisation s- Lösungsmittel	MS
5	22	-co- ()	182-184 (Zers.)	MeOH	384 (MH ⁺)
10	23	-co	161-163	МеОН	368 (MH ⁺)
15	24	-co-OCH3	166-167	EtOAc	379 (M ⁺)
	25	-CO-OCH3	161-163	CH ₂ C1 ₂	380 (MH ⁺)
20	26	-co-OCH ₃	153-156	МеОН	410 (MH ⁺)
25	27	-co-OCH ₃	159-161	CH ₂ Cl ₂ -MeOH	410 (MH ⁺)
30	28	-co-OCH3	207-210 (Zers.)	EtOH	410 (MH ⁺)
35	29	-co-\No ₂	177-179	сн ₂ с1 ₂	395 (MH ⁺)
	30	-co-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	177~178	EtOAc	395 (MH ⁺)
40	31	-со-Со2сн3	193-194	МеОН	408 (MH ⁺)
45	32	-co-ScH ₃	155-158	MeOH	396 (MH ⁺)
50	33	-CO-N	170 - 172	EtOH	351 (MH ⁺)

EP 0 316 704 B1

	Beispiel Nr.	R	Smp. °C	Umkristallisation(- Lösungsmittel	MS	
5	34	-co-(N)	155-157	МеОН	351	(MH ⁺) [']
10	35	-co-(N-)	176-178	EtOH	351	(MH ⁺)
15	36	-coo	177-179	EtOH	340	(MH ⁺)
	37	-co-(s)	181-183	EtOH	356	(MH ⁺)
20	38	-co-(N)	155-156	EtOAc	353	(MH ⁺)
25	39	-co_s _cH3	171 -175	MeOH	370	(MH ⁺)
30	40	-co-	167-168	CH ₂ C1 ₂	400	(MH ⁺)
	41	-co ₂ (cH ₂) ₇ CH ₃	107-109	Et ₂ 0	402	(MH ⁺)
35	42	-co ₂ cH ₂ -	150-151	МеОН	380	(MH ⁺)

40 Beispiel 43

45

50

55

735 mg 5'-Deoxy-5-fluorcytidin und 1,04 g Buttersäureanhydrid werden in 20 ml 75% wässrigem Dioxan gelöst und 18 Stunden gerührt. Nach Entfernung des Lösungsmittel wird der Rückstand durch Chromatographie über Silicagel gereinigt. Man erhält 420 mg N⁴-Butyryl-5'-deoxy-5-fluorcytidin, Smp. 156-157°C; MS 316 (MH⁺).

Beispiel 44

(1) 4,9 g 5'-Deoxy-5-fluorcytidin und 5,58 ml Trimethylsilylchlorid werden in 50 ml trockenem Pyridin gelöst und 2 Stunden gerührt. Dem Reaktionsgemisch werden 2,09 ml Aethylchlorthioformat zugesetzt. Nach 2,5-stündigem Rühren wird das Pyridin unter vermindertem Druck abgedampft. Der Rückstand wird zwischen Wasser und Aethylacetat verteilt. Die organische Schicht wird mit Wasser gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Dem Rückstand werden 5 g Zitronensäure und 80 ml Methanol zugesetzt. Das Gemisch wird 1 Stunde gerührt. Nach Entfernen des Lösungsmittels unter vermindertem Druck wird der Rückstand über Silicagel mit Methanol-Dichlormethan gefolgt durch Umkristallisation aus Dichlormethan gereinigt. Man erhält 2,66 g 5'-Deoxy-N⁴-[(äthylthio)-carbonyl]-5-fluorcytidin, Smp. 138-139 °C (Zers.); MS 334 (MH⁺).

(2)

5

10

15

20

25

- (a) Einer Lösung von 1 g 5'-Deoxy-5-fluor-2',3'-O-isopropylidencytidin erhalten nach Referenzbeispiel b) in 8 ml Pyridin werden 365 µl Aethylchlorthioformat bei 0°C unter Rühren zugesetzt und das Gemisch wird über Nacht gerührt. Das Reaktionsgemisch wird unter vermindertem Druck eingeengt und der Rückstand wird zwischen Aethylacetat und Wasser verteilt. Die organische Schicht wird mit einer Natriumbicarbonatlösung und Wasser gewaschen und über Natriumsulfat getrocknet. Nach Entfernung des Lösungsmittels wird der Rückstand über Silicagel mit CHCl₃ gereinigt. Man erhält 510 mg 5'-Deoxy-N⁴--[(äthylthio)carbonyl]-5-fluor -2',3'-O-isopropylidencytidin, MS 374 (MH⁺).
- (b) Einer Lösung von 150 mg des Produkts von Beispiel 44(2)(a) in 50% wässrigem Aethanol werden 150 mg Dowex 50 (H⁺) zugesetzt und das Gemisch wird 4 Stunden unter Rühren bei 50-60°C erhitzt. Das Dowex 50 wird abfiltriert und das Filtrat wird unter vermindertem Druck zur Trockene eingedampft. Der Rückstand wird über Silicagel mit CHCl₃-Aceton und dann durch Umkristallisation aus Dichlormethan gereinigt. Man erhält 5'-Deoxy-N⁴-[(äthylthio)carbonyl]-5-fluorcytidin, Smp. 138-139°C (Zers.); MS 334 (MH⁺).

Die folgenden Verbindungen werden in Analogie zu Beispiel 44(1) erhalten:

Beispiel Nr.	ispiel Nr. R		Umkristallisations-Lösungsmittel	MS
45	-COCH ₂ CH ₃	119-120	EtOAc-Et₂O	302 (MH ⁺)
46	-CO(CH ₂) ₃ CH ₃	150-151	EtOAc	330 (MH ⁺)
47	-COCH ₂ CH(CH ₃) ₂	142-143	EtOAc	330 (MH ⁺)

Beispiel 48

Eine Lösung von 0.42 g Piperonylsäure in trockenem Acetonitril (5 ml) enthaltend 0,36 ml Triäthylamin wird mit 0,37 ml Diäthylchlorphosphat I Stunde gerührt. Dem Reaktionsgemisch werden 1,0 g 2',3'-Bis-O-(t-butyldimethylsilyl)-5'--deoxy-5-fluorcytidin, hergestellt nach Beispiel a), 0,36 ml Triäthylamin und 0,05 g 4-Dimethylaminopyridin zugesetzt. Nach 12-stündigem Rühren wird das Acetonitril unter vermindertem Druck abgedampft. Der Rückstand wird zwischen Wasser und Aether verteilt. Die organische Schicht wird mit Wasser gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Das erhaltene Pulver wird in 6,3 ml Tetrahydrofuran enthaltend 1,65 g Tetrabutylammoniumfluorid gelöst und das Reaktionsgemisch wird 1 Stunde gerührt. Nach Entfernung des Lösungsmittels unter vermindertem Druck wird der Rückstand über Silicagel mit Isopropanol-Dichlormethan und dann Umkristallisation aus Aethylacetat gereinigt. Man erhält 0,5 g 5'-Deoxy-5-fluor-N⁴-piperonyloylcytidin, Smp. 124-125 °C, MS 394 (MH⁺).

Die folgende Verbindung wird in Analogie zu Beispiel 48 erhalten:

40	Beispiel Nr.	R	Smp. °C	Umkristallisations- Lösungsmittel	1	MS		
	49	-COCH ₂ CH=CH ₂	137-138	B EtOAc	314	(MH+)		
45								

Beispiel 50

50

0,355 g 3-Furancarbonsäure und 0,96 g 2,4,6-Triisopropylbenzolsulfonsäurechlorid werden in 5 ml trockenem Pyridin gelöst. Das Gemisch wird 1 Stunde gerührt. Dem Gemisch werden 1 g 2',3'-Bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluorcytidin, erhalten im Referenzbeispiel a), und 0,80 g 4-Dimethylaminopyridin zugesetzt. Nach 12 Stunden Rühren wird das Pyridin unter vermindertem Druck abgedampft. Nach Behandlung des Rückstands wie im Beispiel 48 erhält man 0,55 g 5'-Deoxy-5-fluor-N⁴-(3-furoyl)cytidin, Smp. 173-174°C (Aethanol); MS 340 (MH⁺).

Die folgenden Verbindungen werden analog Beispiel 50 hergestellt:

5	Beispiel Nr.	R	Smp. °C	MS	
10	51	-coch ₂	(erhalten als	s amorphes Pulver)	394 (MH ⁺)
	52	-co(cH ₂) ₂ -	146-148	EtOH	378 (MH ⁺)
15	53	-co-CH ₃	161-162	EtOH	378 (MH+)
20	54	-COCH ₂	(erhalten al	s amorphes Pulver)	403 (MH ⁺)
	55	-CO NO2	162-163	EtOH	385 (MH ⁺)
25	55	-co-\(\) -coch3	176-178	EţOAc	392 (MH ⁺)

Beispiel 57

30

35

40

45

50

55

(a) Einer Lösung von 24,6 g 5'-Deoxy-5-fluoruridin in 150 ml trockenem Pyridin werden 24,5 ml Benzoylchlorid über 10 Minuten bei 0°C Rühren zugetropft und das Gemisch wird 5 Stunden bei Raumtemperatur gerührt. Nach Entfernen des Pyridins unter vermindertem Druck wird der Rückstand zwischen Wasser und Aethylacetat verteilt. Die organische Schicht wird mit gesättigter Natriumbicarbonatlösung und Wasser gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird aus Aethylacetat-n-Hexan umkristallisiert und man erhält 38,9 g 2',3'-Di-Obenzoyl-5'-deoxy-5-fluoruridin, MS 455 (MH⁺).

(b) Einem Gemisch von 0,8 ml N-Methylimidazol und 0,28 ml Phosphorylchlorid in 20 ml Acetonitril werden 500 mg 2',3'-Di-O-benzoyl-5'-deoxy-5-fluoruridin bei 0°C zugesetzt. Nach 1,5-stündigem Rühren werden 2,5 ml 28% Ammoniumhydroxid bei 0°C zugesetzt und das Gemisch wird 1 Stunde bei Raumtemperatur gerührt. Das Acetonitril und das Ammoniak werden unter vermindertem Druck entfernt. Der Rückstand wird mit 1N HCl angesäuert und dann mit Aethylacetat extrahiert. Die organische Schicht wird mit Wasser gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird aus Aethylacetat umkristallisiert. Man erhält 155 mg 2',3'-Di-O-benzoyl-5'-deoxy-5-fluorcytidin, Smp. 192-194°C; MS 476 (M+Na)⁺.

Beispiel 58

(a) 0,57 ml eisgekühltem Essigsäureanhydrid werden 286 µl 99% Ameisensäure zugetropft. Die Lösung wird 15 Minuten bei 0°C und 50 Minuten bei 50°C gerührt und dann auf 0°C abgekühlt. Der Lösung werden 473 mg 2',3'-Bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluorcytidin hergestellt nach Referenzbeispiel a) in 5 ml trockenem Pyridin bei 0°C zugefügt. Das Reaktionsgemisch wird 10 Minuten bei 0°C und 26 Stunden bei Raumtemperatur gerührt. Nach Entfernen des Lösungsmittels unter vermindertem Druck wird der Rückstand zwischen Wasser und Aethylacetat aufgeteilt. Die organische Schicht wird mit gesättiger Natriumbicarbonatlösung und Wasser gewaschen und über Natriumsulfat getrocknet. Das

Aethylacetat wird unter vermindertem Druck abgedampft und der Rückstand wird über Silicagel mit n-

Hexan-Aethylacetat und dann durch Umkristallisation aus n-Hexan-Aethylacetat gereinigt. Man erhält 144 mg 2',3'-Bis-O-(t-butyldimethylsilyl)-5'-deoxy-5-fluor -N⁴-formylcytidin, Smp. 188°C (Zers.); MS 502 (MH⁺).

(b) Das Produkt des Beispiels 58(a) wird behandelt in Analogie zu Beispiel 1(b). Man erhält amorphes 5'- Deoxy-5-fluor-N⁴-formylctidin, MS 274 (MH⁺).

Beispiel 59

5

Einer Lösung von 245 mg 5'-Deoxy-5-fluorcytidin in 5 ml trockenem Pyridin werden unter Rühren bei 0°C 130 μl Benzoylchlorid zugesetzt. Das Gemisch wird 1 Stunde bei 0°C gerührt. Nach Entfernen des Lösungsmittels unter vermindertem Druck wird der Rückstand über Silicagel mit Dichlormethan-Methanol und dann durch Umkristallisation aus Aethylacetat gereinigt. Man erhält 51 mg 3'-O-Benzoyl-5'-deoxy-5-fluorcytidin, Smp. 127-129°C; MS 350 (MH+).

15 Beispiel 60

Einer Lösung von 35 mg des Produkts von Beispiel 59 in 0,5 ml trockenem Pyridin werden 13,8 μl Trimethylsilylchlorid und nach 2-stündigem Rühren 12,6 μl Benzoylchlorid zugesetzt. Das Gemisch wird 1 Stunde gerührt. Nach Entfernen des Lösungsmittels unter vermindertem Druck wird der Rückstand in 0,5 ml Methanol gelöst. Der Lösung werden 15 mg Kaliumcarbonat zugesetzt und das Reaktionsgemisch wird 30 Minuten bei 0°C gerührt. Nach Entfernen des Lösungsmittels unter vermindertem Druck wird der Rückstand zwischen Wasser und Aethylacetat aufgeteilt. Die organische Schicht wird über Magnesiumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird über Silicagel mit Dichlormethan-Methanol gereinigt. Man erhält 15 mg amorphes N⁴,3′-O-Dibenzoyl-5′-deoxy-5-fluorcytidin, MS 454 (MH⁺).

Beispiel 61

25

245 mg 5'-Deoxy-5-fluorcytidin, 400 µl Benzoylchlorid und 122 mg 4-Dimethylaminopyridin werden in 5 ml trockenem Pyridin gelöst. Nach 3-stündigem Rühren wird das Pyridin unter vermindertem Druck entfernt. Der Rückstand wird zwischen Aethylacetat und Wasser verteilt. Die Aethylacetatschicht wird über Magnesiumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird aus Methanol umkristallisiert. Man erhält 280 mg N⁴,2′-0,3′-O-Tribenzoyl-5′-deoxy-5-fluorcytidin, Smp. 158-160 °C; MS 558 (MH+).

Die nachfolgenden Beispiele veranschaulichen pharmazeutische Präparate auf der Basis einer Verbin-5 dung nach der vorliegenden Erfindung.

Beispiel A

Es werden in an sich bekannter Weise Gelatinesteckkapseln folgender Zusammensetzung hergestellt:

N ⁴ -Butyryl-5'-deoxy-5-fluorcytidin	100 mg
Maisstärke	20 mg
Titaniumdioxid	385 mg
Magnesiumstearat	5 mg
Film	20 mg
PEG 6000	3 mg
Talk	10 mg
Gesamtgewicht	543 mg

50

40

45

Beispiel B

Es werden in an sich bekannter Weise Tabletten folgender Zusammensetzung hergestellt:

N ⁴ -Butyryl-5'-deoxy-5-fluorcytidin	100 mg
Lactose	25 mg
Maisstärke	20,2 mg
Hydroxypropylmethylcellulose	4 mg
Magnesiumstearat	0,8 mg
Film	10 mg
PEG 6000 Talk Gesamtgewicht	1,5 mg 4,5 mg 166 mg

15

20

25

5

10

Beispiel C

- (1) 5 g N⁴-Butyryl-5'-deoxy-5-fluorcytidin werden in 75 ml destilliertem Wasser gelöst. Die Lösung wird einer bakteriologischen Filtration unterworfen und dann aseptisch in 10 sterilen Fläschchen geschüttet. Die Lösung wird dann trocken gefroren, sodass jedes Fläschchen 500 mg sterilen trockenen Feststoff enthält.
- (2) Reines N⁴-Butyryl-5′-deoxy-5-fluorcytidin in einer Menge von mg pro Fläschchen oder Ampulle wird versiegelt und heiss sterilisiert.

Vor der Verwendung werden den obigen trockenen Dosierungsformen ein steriles wässriges Lösungsmittel, wie Wasser für Injektion oder isotonische Natriumchloridlösung oder 5% Dextrose, für parenterale Verabreichung zugesetzt.

Patentansprüche

30

1. 5'-Deoxy-5-fluorcytidinderivate der allgemeinen Formel

35

40

45

50

55

worin R¹, R² und R³ unabhängig voneinander Wasserstoff oder eine unter physiologischen Bedingungen leicht abspaltbare Gruppe sind, mit der Bedingung, dass zumindest eines von R¹, R² und R³ eine unter physiologischen Bedingungen leicht abspaltbare Gruppe ist, sowie Hydrate oder Solvate der Verbindungen der Formel I, wobei die leicht hydrolysierbaren Gruppen R¹, R² und R³ in der Formel I eine der Formel

R⁴CO-, R⁵OCO- oder R6SCO-

worin R⁴ Wasserstoff, Alkyl, Cycloalkyl, Oxoalkyl, Alkenyl, Aralkyl oder Aryl und R⁵ und R⁶ Alkyl oder Aralkyl sind.

- Verbindungen nach Anspruch 1 aus der Gruppe der folgenden: N⁴-Acetyl-5'-deoxy-5-fluorcytidin, 5'-Deoxy-5-fluor-N⁴-propionylcytidin, N⁴-Butyryl-5'-deoxy-5-fluorcytidin, 5'-Deoxy-5-fluor-N4-isobutyrylcytidin, 5 5'-Deoxy-5-fluor-N4-(2-methylbutyryl)cytidin, 5'-Deoxy-N4-(2-äthylbutyryl)-5-fluorcytidin, 5'-Deoxy-N⁴-(3,3-dimethylbutyryl)-5-fluorcytidin, 5'-Deoxy-5-fluor-N⁴-pivaloylcytidin, 5'-Deoxy-5-fluor-N4-valerylcytidin, 10 5'-Deoxy-5-fluor-N4-isovalerylcytidin, 5'-Deoxy-5-fluor-N4-(2-methylvaleryl)cytidin, 5'-Deoxy-5-fluor-N4-(3-methylvaleryl)cytidin, 5'-Deoxy-5-fluor-N⁴-(4-methylvaleryl)cytidin, 5'-Deoxy-5-fluor-N⁴-hexanoylcytidin, 15 5'-Deoxy-5-fluor-N⁴-heptanoylcytidin, 5'-Deoxy-5-fluor-N⁴-octanoylcytidin, 5'-Deoxy-5-fluor-N4-nonanovlcytidin. 5'-Deoxy-5-fluor-N⁴-hexadecanoylcytidin, N⁴-Benzoyl-5'-deoxy-5-fluorcytidin, 20 5'-Deoxy-5-fluor-N⁴-(4-methylbenzoyl)cytidin, 5'-Deoxy-5-fluor-N⁴-(3-methylbenzoyl)cytidin, 5'-Deoxy-5-fluor-N⁴-(2-methylbenzoyl)cytidin, 5'-Deoxy-N⁴-(4-äthylbenzoyl)-5-fluorcytidin, 5'-Deoxy-N⁴-(3,4-dimethylbenzoyl)-5-fluorcytidin, 25 5'-Deoxy-N⁴-(3,5-dimethylbenzoyl)-5-fluorcytidin, 5'-Deoxy-5-fluor-N4-(4-methoxybenzoyl)cytidin, 5'-Deoxy-N⁴-(3,4-dimethoxybenzoyl)-5-fluorcytidin, 5'-Deoxy-N⁴-(3,5-dimethoxybenzoyl)-5-fluorcytidin, 5'-Deoxy-5-fluor-N⁴-(3,4,5-trimethoxybenzoyl)cytidin, 30 5'-Deoxy-5-fluor-N⁴-(3,4,5-triäthoxybenzoyl)cytidin, 5'-Deoxy-N⁴-(4-äthoxybenzoyl)-5-fluorcytidin, 5'-Deoxy-5-fluor-N⁴-(4-propoxybenzoyl)cytidin, 5'-Deoxy-N⁴-(3,5-diäthoxybenzoyl)-5-fluorcytidin, N⁴-(4-Chlorbenzoyl)-5'-deoxy-5-fluorcytidin, 35 5'-Deoxy-N⁴-(3.4-dichlorbenzovl)-5-fluorcytidin. 5'-Deoxy-N⁴-(3,5-dichlorbenzoyl)-5-fluorcytidin, 5'-Deoxy-5-fluor-N⁴-(4-nitrobenzoyl)cytidin, 5'-Deoxy-5-fluor-N⁴-(4-methoxycarbonylbenzoyl)cytidin, N⁴-(4-Acetylbenzoyl)-5'-deoxy-5-fluorcytidin, 40 5'-Deoxy-5-fluor-N4-(phenylacetyl)cytidin, 5'-Deoxy-5-fluor-N4-(4-methoxyphenylacetyl)cytidin, 5'-Deoxy-5-fluor-N⁴-nicotinoylcytidin, 5'-Deoxy-5-fluor-N⁴-isonicotinoylcytidin, 5'-Deoxy-5-fluor-N⁴-picolinoylcytidin, 45 5'-Deoxy-5-fluor-N⁴-(2-furoyl)cytidin, 5'-Deoxy-5-fluor-N4-(5-nitro-2-furoyl)cytidin, 5'-Deoxy-5-fluor-N4-(2-thenoyl)cytidin, 5'-Deoxy-5-fluor-N4-(5-methyl-2-thenoyl)cytidin, 5'-Deoxy-5-fluor-N⁴-(1-methyl-2-pyrrolcarbonyl)cytidin, 50 5'-Deoxy-5-fluor-N4-(3-indolylacetyl)cytidin, N⁴-(3-Butenoyl)-5'-deoxy-5-fluorcytidin, 3'-O-Benzoyl-5'-deoxy-5-fluorcytidin, N⁴.3'-O-DibenzovI-5'-deoxy-5-fluorcytidin und 5'-Deoxy-N⁴-(äthylthio)carbonyl-5-fluorcytidin. 55
 - 3. 5'-Deoxy-5-fluorcytidin-Derivate nach Anspruch 1 oder 2 aus der Gruppe der folgenden: 5'-Deoxy-5-fluor-N⁴-octadecanoylcytidin,

N⁴-Cyclopropancarbonyl-5'-deoxy-5-fluorcytidin,

N⁴-Cyclohexancarbonyl-5'-deoxy-5-fluorcytldin,

N⁴-(1-Adamantancarbonyl)-5'-deoxy-5-fluorcytidin,

5'-Deoxy-5-fluor-N4-(2-methoxybenzoyl)cytidin,

5'-Deoxy-N⁴-(2,4-dimethoxybenzoyl)-5-fluorcytidin,

5'-Deoxy-5-fluor-N⁴-piperonyloylcytidin,

5

10

15

20

30

35

40

45

50

5'-Deoxy-5-fluor-N4-(4-fluorbenzoyl)cytidin,

N⁴-(2-Chlorbenzoyl)-5'-deoxy-5-fluorcytidin,

N⁴-(3-Chlorbenzoyl)-5'-deoxy-5-fluorcytidin,

5'-Deoxy-5-fluor-N⁴-(3-nitrobenzoyl)cytidin,

5'-Deoxy-5-fluor-N⁴-[4-(methylthio)benzoyl]cytidin,

5'-Deoxy-5-fluor-N4-(2-naphthoyl)cytidin,

5'-Deoxy-5-fluor-N4-(3-furoyl)cytidin,

5'-Deoxy-5-fluor-N⁴-(3-phenylpropionyl)cytidin,

N⁴-Cinnamoyl-5'-deoxy-5-fluorcytidin,

2',3'-di-O-Benzoyl-5'-deoxy-5-fluorcytidin,

N⁴,2'-0,3'-O-Tribenzoyl-5'-deoxy-5-fluorcytidin,

5'-Deoxy-5-fluor-N⁴-(octyloxycarbonyl)cytidin,

N⁴-(Benzyloxycarbonyl)-5'-deoxy-5-fluorcytidin und

5'-Deoxy-5-fluor-N⁴-formylcytidin.

- Die Verbindungen gemäss den Ansprüchen 1-3 zur Verwendung als Heilmittel, insbesondere als Antitumormittel.
- 25 **5.** Verfahren zur Herstellung der Verbindungen nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass man eine Verbindung der allgemeinen Formel

R C

worin R⁷ Wasserstoff oder eine Aminoschutzgruppe, R⁸ und R⁹ unabhängig voneinander Wasserstoff oder eine Hydroxyschutzgruppe oder R⁸ und R⁹ zusammen eine cyclische Hydroxyschutzgruppe sind,

mit einer Verbindung der allgemeinen Formel XCOR⁴, worin X eine Abgangsgruppe und R⁴ Wasserstoff, Alkyl, Cycloalkyl, Oxoalkyl, Alkenyl, Aralkyl oder Aryl ist, oder mit einer Verbindung der allgemeinen Formel YCOR¹⁰, worin Y Halogen und R¹⁰ eine Gruppe der Formel R⁵ O- oder R⁶ S-, in der R⁵ und R⁶ Alkyl oder Aralkyl sind, umsetzt und eine vorhandene Schutzgruppe abspaltet.

- **6.** Pharmazeutische, insbesondere antitumor-wirksame Präparate auf der Basis einer Verbindung nach einem der Ansprüche 1-3.
- 55 **7.** Verwendung einer Verbindung nach einem der Ansprüche 1-3 zur Herstellung von Arzneimitteln zur Behandlung von Tumoren.

Claims

5

20

25

30

35

40

45

50

55

1. 5'-deoxy-5-fluorocytidine derivatives of the general formula

HNR¹ 10 (I) 15

> wherein R¹, R² and R³ are each independently hydrogen or a group which is readily cleavable under physiological conditions, with the proviso that, at least one of R1, R2 or R3 is a group which is readily cleavable under physiological conditions,

> as well as hydrates or solvates of the compounds of formula I, whereby the readily hydrolyzable groups R1, R2 and R3 in formula I are of the formula

R4CO-, R5OCO- or R6SCO-

wherein R4 is hydrogen, alkyl, cycloalkyl, oxoalkyl, alkenyl, aralkyl or aryl and R5 and R6 are alkyl or aralkyl.

- Compounds according to claim 1 from the following group:
 - N⁴-Acetyl-5'-deoxy-5-fluorocytidine,
 - 5'-deoxy-5-fluoro-N⁴-propionylcytidine,
 - N⁴-butyryl-5'-deoxy-5-fluorocytidine,
 - 5'-deoxy-5-fluoro-N⁴-isobutyrylcytidine,
 - 5'-deoxy-5-fluoro-N4-(2-methylbutyryl)cytidine,,
 - 5'-deoxy-N⁴-(2-ethylbutyryl)-5-fluorocytidine,,
 - 5'-deoxy-N⁴-(3,3-dimethylbutyryl)-5-fluorocytidine,
- 5'-deoxy-5-fluoro-N⁴-pivaloylcytidine,
 - 5'-deoxy-5-fluoro-N4-valerylcytidine,
 - 5'-deoxy-5-fluoro-N4-isovalerylcytidine,
 - 5'-deoxy-5-fluoro-N⁴-(2-methylvaleryl)cytidine,
 - 5'-deoxy-5-fluoro-N4-(3-methylvaleryl)cytidine,
 - 5'-deoxy-5-fluoro-N⁴-(4-methylvaleryl)cytidine,
 - 5'-deoxy-5-fluoro-N⁴-hexanoylcytidine,
 - 5'-deoxy-5-fluoro-N4-heptanoylcytidine,
 - 5'-deoxy-5-fluoro-N4-octanoylcytidine,
 - 5'-deoxy-5-fluoro-N4-nonanoylcytidine,
 - 5'-deoxy-5-fluoro-N4-hexadecanoylcytidine,
 - N⁴-benzoyl-5'-deoxy-5-fluorocytidine,
 - 5'-deoxy-5-fluoro-N⁴-(4-methylbenzoyl)cytidine,
 - 5'-deoxy-5-fluoro-N⁴-(3-methylbenzoyl)cytidine,
 - 5'-deoxy-5-fluoro-N⁴-(2-methylbenzoyl)cytidine,
- 5'-deoxy-N⁴-(4-ethylbenzoyl)-5-fluorocytidine,
 - 5'-deoxy-N⁴-(3,4-dimethylbenzoyl)-5-fluorocytidine,
 - 5'-deoxy-N⁴-(3,5-dimethylbenzoyl)-5-fluorocytidine,
 - 5'-deoxy-5-fluoro-N⁴-(4-methylbenzoyl)cytidine,

```
5'-deoxy-N<sup>4</sup>-(3,4-dimethoxybenzoyl)-5-fluorocytidine,
               5'-deoxy-N<sup>4</sup>-(3,5-dimethoxybenzoyl)-5-fluorocytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(3,4,5-trimethoxybenzoyl)cytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(3,4,5-triethoxybenzoyl)cytidine,
               5'-deoxy-N<sup>4</sup>-(4-ethoxybenzoyl)-5-fluorocytidine,
5
               5'-deoxy-5-fluoro-N4-(4-propoxybenzoyl)cytidine,
               5'-deoxy-N<sup>4</sup>-(3,5-diethoxybenzoyl)-5-fluorocytidine,
               N<sup>4</sup>-(4-chlorobenzoyl)-5'-deoxy-5-fluorocytidine,
               5'-deoxy-N<sup>4</sup>-(3,4-dichlorobenzoyl)-5-fluorocytidine,
               5'-deoxy-N<sup>4</sup>-(3,5-dichlorobenzoyl)-5-fluorocytidine,
10
               5'-deoxy-5-fluoro-N<sup>4</sup>-(4-nitrobenzoyl)cytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(4-methoxycarbonylbenzoyl)cytidine,
               N<sup>4</sup>-(4-acetylbenzoyl)-5'-deoxy-5-fluorocytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup> (phenylacetyl) cytidine,
               5'-deoxy-5-fluoro-N4-(4-methoxyphenylacetyl)cytidine,
15
               5'-deoxy-5-fluoro-N<sup>4</sup>-nicotinoylcytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-isonicotinoylcytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-picolinoylcytidine,
               5'-deoxy-5-fluoro-N4-(2-furoyl)cytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(5-nitro-2-furoyl)cytidine,
20
               5'-deoxy-5-fluoro-N4-(2-thenoyl)cytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(5-methyl-2-thenoyl)cytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(1-methyl-2-pyrrolecarbonyl)cytidine,
               5'-deoxy-5-fluoro-N4-(3-indolylacetyl)cytidine,
               N<sup>4</sup>-(3-butenoyl)-5'-deoxy-5-fluorocytidine,
25
               3'-O-benzoyl-5'-deoxy-5-fluorocytidine,
               N<sup>4</sup>,3'-O-dibenzoyl-5'-deoxy-5-fluorocytidine and
               5'-deoxy-N<sup>4</sup>-(ethylthio)carbonyl-5-fluorocytidine.
     3.
          Compounds according to claim 1 or 2 from the following group:
30
               5'-Deoxy-5-fluoro-N4-octadecanoylcytidine,
               N<sup>4</sup>-cyclopropanecarbonyl-5'-deoxy-5-fluorocytidine,
               N<sup>4</sup>-cyclohexanecarbonyl-5'-deoxy-5-fluorocytidine,
               N<sup>4</sup>-(1-adamantanecarbonyl-5'-deoxy-5-fluorocytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(2-methoxybenzoyl)cytidine,
35
               5'-deoxy-N<sup>4</sup>-(2,4-dimethoxybenzoyl)-5-fluorocytidine,
               5'-deoxy-5-fluoro-N4-piperonyloylcytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(4-fluorobenzoyl)cytidine,
               N<sup>4</sup>-(2-chlorobenzoyl)-5'-deoxy-5-fluorocytidine,
               N<sup>4</sup>-(3-chlorobenzoyl)-5'-deoxy-5-fluorocytidine,
40
               5'-deoxy-5-fluoro-N4-(3-nitrobenzoyl)cytidine,
               5'-deoxy-5-fluoro-[N4-(methylthio)benzoyl]cytidine,
               5'-deoxy-5-fluoro-N4-(2-naphthoyl)cytidine,
               5'-deoxy-5-fluoro-N4-(3-furoyl)cytidine,
               5'-deoxy-5-fluoro-N<sup>4</sup>-(3-phenylpropionyl)cytidine,
45
```

N⁴-cinnamoyl-5'-deoxy-5-fluorocytidine, 2',3'-di-O-benzoyl-5'-deoxy-5-fluorocytidine, N⁴,2'-0,3'-O-tribenzoyl-5'-deoxy-5-fluorocytidine, 5'-deoxy-5-fluoro-N⁴-(octyloxycarbonyl)cytidine, N⁴-(benzyloxycarbonyl)-5'-deoxy-5-fluorocytidine and

5'-deoxy-5-fluoro-N⁴-formylcytidine.

- The compounds according to claims 1-3 for use as medicaments, especially as antitumour agents.
- 55 **5.** A process for the manufacture of compounds according to any one of claims 1-3, characterized by reacting a compound of the general formula

15

20

5

10

wherein R⁷ is hydrogen or an amino protecting group, R⁸ and R⁹ are each independently hydrogen or a hydroxy protecting group or R⁸ and R⁹ together are a cyclic hydroxy protecting group, with a compound of the general formula XCOR⁴, wherein X is a leaving group and R⁴ is hydrogen, alkyl, cycloalkyl, oxoalkyl, alkenyl, aralkyl or aryl, or with a compound of the general formula YCOR¹⁰, wherein Y is halogen and R¹⁰ is a group of the formula R⁵O- or R⁶S-, in which R⁵ and R⁶ are alkyl or aralkyl, and cleaving off any protecting group present.

- **6.** A pharmaceutical preparation, especially a preparation having antitumour activity, based on a compound according to any one of claims 1-3.
 - 7. The use of a compound according to any one of claims 1-3 for the manufacture of medicaments for the treatment of tumours.

30 Revendications

1. Dérivés de 5'-désoxy-5-fluorocytidine de formule générale

35

40

45

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

50

55

dans laquelle R¹, R² et R³ sont indépendamment les uns des autres un atome d'hydrogène ou un groupe aisément séparable dans des conditions physiologiques, avec la condition qu'au moins un des radicaux R¹, R² et R³ est un groupe aisément séparable dans des conditions physiologiques, et hydrates ou produits de solvatation des composés de formule I, les groupes aisément hydrolysables R¹, R² et R³ dans la formule I étant un groupe de formule

R4CO-, R5OCO- ou R6SCO-

formules dans lesquelles R⁴ représente un atome d'hydrogène ou un groupe alkyle, cycloalkyle, oxoalkyle, alcényle, aralkyle ou aryle, et R⁵ représentent un groupe alkyle ou aralkyle.

```
Composés selon la revendication 1, choisis dans le groupe formé par les composés suivants:
          N<sup>4</sup>-acétyl-5'-désoxy-5-fluorocytidine,
5
          5'-désoxy-5-fluoro-N<sup>4</sup>-propionylcytidine,
          N<sup>4</sup>-butyryl-5'-désoxy-5-fluorocytidine,
          5'-désoxy-5-fluoro-N4-isobutyrylcytidine,
          5'-désoxy-5-fluoro-N4-(2-méthylbutyryl)cytidine,
          5'-désoxy-N<sup>4</sup>-(2-éthylbutyryl)-5-fluorocytidine,
10
          5'-désoxy-N4-(3,3-diméthylbutyryl)-5-fluorocytidine,
          5'-désoxy-5-fluoro-N4-pivaloylcytidine,
          5'-désoxy-5-fluoro-N4-valérylcytidine,
          5'-désoxy-5-fluoro-N4-isovaléry/cytidine,
          5'-désoxy-5-fluoro-N4-(2-méthylvaléryl)cytidine,
15
          5'-désoxy-5-fluoro-N4-(3-méthylvaléryl)cytidine,
          5'-désoxy-5-fluoro-N4-(4-méthylvaléryl)cytidine,
          5'-désoxy-5-fluoro-N4-hexanovlcytidine.
          5'-désoxy-5-fluoro-N4-heptanoylcytidine,
          5'-désoxy-5-fluoro-N<sup>4</sup>-octanoylcytidine,
20
          5'-désoxy-5-fluoro-N4-nonanoylcytidine,
          5'-désoxy-5-fluoro-N4-hexadécanoylcytidine,
          N<sup>4</sup>-benzoyl-5'-désoxy-5-fluorocytidine,
          5'-désoxy-5-fluoro-N<sup>4</sup>-(4-méthylbenzoyl)cytidine,
          5'-désoxy-5-fluoro-N4-(3-méthylbenzoyl)cytidine,
25
          5'-désoxy-5-fluoro-N4-(2-méthylbenzoyl)cytidine,
          5'-désoxy-N<sup>4</sup>-(4-éthylbenzoyl)-5-fluorocytidine,
          5'-désoxy-N4-(3,4-diméthylbenzoyl)-5-fluorocytidine,
          5'-désoxy-N4-(3,5-diméthylbenzoyl)-5-fluorocytidine,
          5'-désoxy-5-fluoro-N4-(4-méthoxybenzoyl)cytidine,
30
          5'-désoxy-N<sup>4</sup>-(3,4-diméthoxybenzoyl)-5-fluorocytidine,
          5'-désoxy-N<sup>4</sup>-(3,5-diméthoxybenzoyl)-5-fluorocytidine,
          5'-désoxy-5-fluoro-N<sup>4</sup>-(3,4,5-triméthoxybenzoyl)cytidine,
          5'-désoxy-5-fluoro-N<sup>4</sup>-(3,4,5-triéthoxybenzoyl)cytidine,
          5'-désoxy-N<sup>4</sup>-(4-éthoxybenzoyl)-5-fluorocytidine,
35
          5'-désoxy-5-fluoro-N<sup>4</sup>-(4-propoxybenzoyl)cytidine,
          5'-désoxy-N<sup>4</sup>-(3,5-diéthoxybenzoyl)-5-fluorocytidine,
          N<sup>4</sup>-(4-chlorobenzoyl)-5'-désoxy-5-fluorocytidine,
          5'-désoxy-N<sup>4</sup>-(3,4-dichlorobenzoyl)-5-fluorocytidine,
          5'-désoxy-N<sup>4</sup>-(3,5-dichlorobenzoyl)-5-fluorocytidine,
40
          5'-désoxy-5-fluoro-N4-(4-nitrobenzoyl)cytidine,
          5'-désoxy-5-fluoro-N4-(4-méthoxycarbonylbenzoyl)cytidine,
          N<sup>4</sup>-(4-acétylbenzoyl)-5'-désoxy-5-fluorocytidine,
          5'-désoxy-5-fluoro-N4-(phénylacétyl)cytidine,
          5'-désoxy-5-fluoro-N<sup>4</sup>-(4-méthoxyphénylacétyl)cytidine,
45
          5'-désoxy-5-fluoro-N4-nicotinoylcytidine,
          5'-désoxy-5-fluoro-N4-isonicotinoylcytidine,
          5'-désoxy-5-fluoro-N4-picolinoylcytidine,
          5'-désoxy-5-fluoro-N4-(2-furoyl)cytidine,
          5'-désoxy-5-fluoro-N4-(5-nitro-2-furoyl)cytidine,
50
          5'-désoxy-5-fluoro-N4-(2-thénoyl)cytidine,
          5'-désoxy-5-fluoro-N4-(5-méthyl-2-thénoyl)cytidine,
          5'-désoxy-5-fluoro-N<sup>4</sup>-(1-méthyl-2-pyrrolcarbonyl)cytidine,
          5'-désoxy-5-fluoro-N<sup>4</sup>-(3-indolylacétyl)cytidine,
          N<sup>4</sup>-(3-buténoyl)-5'-désoxy-5-fluorocytidine,
55
          3'-O-benzoyl-5'-désoxy-5-fluorocytidine,
          N<sup>4</sup>,3'-O-dibenzoyl-5'-désoxy-5-fluorocytidine et
          5'-désoxy-N<sup>4</sup>-(éthylthio)carbonyl-5-fluorocytidine.
```

- 3. Dérivés de 5'-désoxy-5-fluorocytidine selon la revendication 1 ou 2, choisis dans le groupe formé par les composés suivants:
 - 5'-désoxy-5-fluoro-N4-octadécanoylcytidine,
 - N⁴-cyclopropanecarbonyl-5'-désoxy-5-fluorocytidine,
- N⁴-cyclohexanecarbonyl-5'-désoxy-5-fluorocytidine,
 - N⁴-(1-adamantanecarbonyl)-5'-désoxy-5-fluorocytidine,
 - 5'-désoxy-5-fluoro-N4-(2-méthoxybenzoyl)cytidine,
 - 5'-désoxy-N⁴-(2,4-diméthoxybenzoyl)-5-fluorocytidine,
 - 5'-désoxy-5-fluoro-N4-pipéronyloylcytidine,
- 5'-désoxy-5-fluoro-N⁴-(4-fluorobenzoyl)cytidine,
 - N⁴-(2-chlorobenzoyl)-5'-désoxy-5-fluorocytidine,
 - N⁴-(3-chlorobenzoyl)-5'-désoxy-5-fluorocytidine,
 - 5'-désoxy-5-fluoro-N4-(3-nitrobenzoyl)cytidine,
 - 5'-désoxy-5-fluoro-N⁴-[4-(méthylthio)benzoyl]cytidine,
- 5'-désoxy-5-fluoro-N⁴-(2-naphtoyl)cytidine,
 - 5'-désoxy-5-fluoro-N4-(3-furoyl)cytidine,
 - 5'-désoxy-5-fluoro-N4-(3-phénylpropionyl)cytidine,
 - N⁴-cinnamovI-5'-désoxy-5-fluorocytidine.
 - 2',3'-di-O-benzoyl-5'-désoxy-5-fluorocytidine,
 - N⁴,2'-0,3'-O-tribenzoyl-5'-désoxy-5-fluorocytidine,
 - 5'-désoxy-5-fluoro-N4-(octyloxycarbonyl)cytidine,
 - N⁴-(benzyloxycarbonyl)-5'-désoxy-5-fluorocytidine et
 - 5'-désoxy-5-fluoro-N⁴-formylcytidine.
- 25 4. Composés selon les revendications 1 à 3, pour utilisation en tant que médicaments, en particulier en tant que médicaments antitumoraux.
 - 5. Procédé pour la préparation des composés selon l'une des revendications 1 à 3, caractérisé en ce que l'on fait réagir un composé de formule générale

30

35

5

10

20

40

45

50

55

dans laquelle R⁷ est un atome d'hydrogène ou un groupe protecteur de groupe amino, R⁸ et R⁹ sont indépendamment l'un de l'autre un atome d'hydrogène ou un groupe protecteur de groupe hydroxy, ou R⁸ et R⁹ forment ensemble un groupe cyclique protecteur de groupe hydroxy,

avec un composé de formule générale XCOR⁴, dans laquelle X représente un groupe partant et R⁴ représente un atome d'hydrogène ou un groupe alkyle, cycloalkyle, oxoalkyle, alcényle, aralkyle ou aryle, ou avec un composé de formule générale YCOR¹⁰, dans laquelle Y est un atome d'halogène et R¹⁰ est un groupe de formule R⁵O- ou R⁶S-, dans lequel R⁵ et R⁶ représentent un groupe alkyle ou aralkyle, et on élimine un groupe protecteur présent.

6. Compositions pharmaceutiques, en particulier à action antitumorale, à base d'un composé selon l'une des revendications 1 à 3.

	7.	Utilisation d'un destinés au trait	composé ement de t	selon l'une umeurs.	des r	evendications	1 à	3,	oour la	fabrication	de	médicaments
5												
10												
15												
20												
25												
30												
35												
40												
<i>4</i> 5												
50 55												
50												