第四章历年期末试题

- **1**. (2020年)设 f(x)在[-2,2]上可导,且 f'(x) > f(x) > 0,则().
- (A) $\frac{f(-2)}{f(-1)} > 1$ (B) $\frac{f(0)}{f(-1)} > e$ (C) $\frac{f(1)}{f(-1)} < e^2$ (D) $\frac{f(-2)}{f(-1)} > e^3$

- 2. (2019年) 当 $x \to 0$ 时, 下列无穷小量
 - (1) $\sqrt{1+\tan x} \sqrt{1+\sin x}$ (2) $\sqrt{1+2x} \sqrt[3]{1+3x}$ (3) $x \left(\frac{4}{3} \frac{1}{3}\cos x\right)\sin x$ (4) $e^{x^4-x} \frac{1}{3}\cos x$
 - 1从低阶到高阶排列顺序为().
- (A) (1)(2)(3)(4) (B) (3)(1)(2)(4) (C) (4)(3)(2)(1) (D) (4)(2)(1)(3)
- 3. (2019年) 下列函数在给定区间上满足罗尔定理条件的是().
 - (A) $f(x) = \begin{cases} e^{x-1} & 0 < x \le 2 \\ e & x = 0 \end{cases}$, [0,2] (B) $f(x) = x^2 2x 3$, [-1,3]
 - (C) $f(x) = \frac{1}{(x-1)^4}$, [0,2]
- **(D)** f(x) = |x|, [-1, 1]
- **4.** (2018年) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = -e^x$, 且 f'(0) = 0, 则 ().
 - (A) f(0) 是 f(x) 的极大值
 - **(B)** f(0) 是 f(x) 的极小值
 - (C) 点 (0, f(0)) 是曲线 y = f(x) 的拐点
 - **(D)** f(0) 不是 f(x) 的极值,点 (0, f(0)) 也不是曲线 y = f(x) 的拐点
- **5.** (2017年) 设函数 f(x) 在点 x_0 的 δ 邻域 $(x_0 \delta, x_0 + \delta)(\delta > 0)$ 内三阶导数 f'''(x) > 00, 且二阶导数值 $f''(x_0) = 0$, 则曲线 y = f(x) ().
 - (A) 在 $(x_0 \delta, x_0)$ 内是凹弧, 在 $(x_0, x_0 + \delta)$ 内是凸弧
 - (B) 在 $(x_0 \delta, x_0 + \delta)$ 内是凸弧
 - (C) 在 $(x_0 \delta, x_0)$ 内是凸弧, 在 $(x_0, x_0 + \delta)$ 内是凹弧
 - (**D**) 在 $(x_0 \delta, x_0 + \delta)$ 内是凹弧
- **6.** (2016 年) 函数 $f(x) = \frac{\sin(x+1)}{x^2-3x-4}$,下列说法错误的是().

- (A) 有渐近线 y = 0, x = 4
- (B) x = 4 为无穷间断点
- (C) 在区间(1,4)上有界
- **(D)** 若补充定义 $f(-1) = -\frac{1}{5}$, 则 f(x) 在点 x = -1 处连续
- **7**. (**2016**年) 函数 $f(x) = \arctan x + \operatorname{arccot} x = ($).
 - **(A)** 0
- **(B)** 2*x*
- (C) $\frac{\pi}{2}$
- (D) π
- 8. (2016年) 曲线 $y = e^{-\frac{1}{x}}$,则下列说法正确的是().
 - (A) 在 $(-\infty,0)(0,+\infty)$ 内单调减少
- (B) 没有极值
- (C) 在 $(-\infty, \frac{1}{2})$ 内图形是下凹的
- (D) 没有拐点
- 9. (2015 年) 函数 y = f(x) 在点 $x = x_0$ 处连续且取得极小值,则 f(x) 在 x_0 处必有().
 - **(A)** $f'(x_0) = 0$

- **(B)** $f''(x_0) > 0$
- (C) $f'(x_0) = 0 \perp f''(x_0) > 0$
- **(D)** $f'(x_0) = 0$ 或不存在
- **10**. (2015 年) 设函数 f(x) 在 [a,b] 上有定义, 在开区间 (a,b) 内可导,则().
 - (A) 当 f(a)f(b) < 0 时,存在 $x_0 \in (a,b)$,使得 $f(x_0) = 0$
 - **(B)** 对任何 $x_0 \in (a,b)$, 有 $\lim_{x \to x_0} [f(x) f(x_0)] = 0$
 - (C) 当 f(a) = f(b) 时, 存在 $x_0 \in (a, b)$, 使得 $f'(x_0) = 0$
 - (D) 存在 $x_0 \in (a, b)$, 使得 $f(b) f(a) = f'(x_0)(b a)$
- **11**. (**2014** 年) 函数 $y = x^3 + 12x + 1$ 在定义域内 ()
 - (A) 图形是凸的
- (B) 图形是凹的
- (C) 单调减少
- (D) 单调增加
- 12. (2013年) 下列函数在给定的区间上满足罗尔定理条件的是().
 - **(A)** $f(x) = x^2 5x + 6$, [2,3]
- **(B)** $f(x) = \sin x$, $[\frac{\pi}{6}, \frac{7\pi}{6}]$
- (C) $f(x) = \sqrt{x^2} e^{x^2}$, [-1, 1]
- **(D)** $f(x) = \begin{cases} x+1, & x < 5, \\ 1, & x \ge 5. \end{cases}$ [0,5]
- 13. (2012年)下列函数在给定区间上满足罗尔定理条件的是()
 - (A) $f(x) = \begin{cases} e^{x-1} & 0 < x \le 2 \\ e & x = 0 \end{cases}$
- **(B)** f(x) = |x|, [-1,1]
- (C) $f(x) = \frac{1}{(x-1)^4}$, [0,2]
- **(D)** $f(x) = x^2 2x 3$, [-1,3]

14. (2012年) 若 (0,1) 是曲线
$$y = x^3 + (b-1)x^2 + c$$
 的拐点,则有 () (A) $b = 1, c = 1$ (B) $b = -1, c = -1$ (C) $b = 1, c = -1$ (D) $b = -1, c = 1$

(A)
$$f(x) = \frac{1}{\sqrt[3]{(x-1)^2}}$$
, [0,2]

(B)
$$f(x) = \sin x, \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$

(C)
$$f(x) = xe^x$$
, [0, 1]

(D)
$$f(x) = \begin{cases} x+1, & x < 5 \\ 1, & x \ge 5, \end{cases}$$
 [0,5]

16. (2020年) 极限
$$\lim_{x\to 0} \frac{e^x(e^x-2)+1}{x^2} =$$
_____.

17. (**2020** 年**)** 函数
$$y = x^{2x}$$
 在 (0,1] 上的最小值

18. (2019 年)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x} = \underline{\hspace{1cm}}$$

19. (2018年) 设
$$f'(0) = 2$$
, 则 $\lim_{x \to 0} \frac{f(x) - f(\frac{1}{2}x)}{x} = \underline{\hspace{1cm}}$.

20. (**2018**年) 函数
$$y = x - \ln(1+x)$$
 在区间 内单调减少.

21. (**2017**年) 已知点(1,1) 是曲线
$$y = x^2 + a \ln x$$
 的拐点,则 $a =$

22.
$$(2016 \mp) \lim_{x \to 0} \frac{x^2 \cos \frac{2}{x}}{\arcsin x} = \underline{\hspace{1cm}}$$

23. (2016年)设
$$f'(0) = 1$$
,则 $\lim_{h \to 0} \frac{f(2h) - f(-h)}{h} =$ _____.

24. (**2016** 年) 设
$$f(x) = \mathbf{lnsin} x, x \in [\frac{\pi}{6}, \frac{5\pi}{6}]$$
 ,则满足罗尔中值定理中的数值 $\xi =$

25. (**2015** 年) 为使函数
$$f(x) = (1-x)^{\frac{2}{x}}$$
 在点 $x = 0$ 处连续, 应定义 $f(0) =$

26. (2015 年)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x} =$$
_____.

27. (**2015**年) 函数
$$y = x^2 - \frac{16}{x}(x < 0)$$
 的最小值是 ______.

- **28.** (2014 年) 函数 $f(x) = x \ln x$ 的单调递减区间是
- **29.** (**2014**年) 函数 $f(x) = |x^2 3x + 2|$ 在区间 [-10, 10] 上的最大值为
- **30.** (**2013**年) 函数 $y = 2x^3 6x^2 18x$ 的极大值是 ______.
- **31.** (2012 年) 函数 $y = x^2 \frac{54}{x}$ 在区间 $(-\infty, 0)$ 上的最小值是 ______.
- 32. (2012年) 设函数 f(x) = x(x-1)(x-2), 则方程 f'(x) = 0 的实根个数为 _____.
- **33.** (**2011** 年) 函数 $y = 2x^3 6x^2 18x$ 在区间 [-2,2] 上的最大值是
- **34.** (2020年) 计算极限 $\lim_{x\to 0} (\sin x + \cos x)^{\frac{1}{x}}$.
- **35.** (2020年) 已知函数 $f(x) = \frac{x^3}{(x-1)^2}$, 求:
 - (1) 函数 f(x) 的增减区间及极值;
 - (2) 函数图形的凹凸区间及拐点;
 - (3) 函数图形的渐近线。
- **36.** (2019年) 求 $\lim_{x\to 0} \left(3e^{\frac{x}{x-1}}-2\right)^{\frac{1}{x}}$.
- **37.** (2019 年) 求函数 $f(x) = xe^x e^x + 1$ 的单调区间与极值及凹凸区间与拐点.
- **38.** (2018年) 求极限 $\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}}$.
- **39**. (2018年) 把一根长度为 a 的铁丝截成两段,其中一段折成正方形框架,另一段 弯成圆周问当如何截取时,可使围成的正方形和圆的面积之和达到最小?
- **40.** (**2017** 年)(本题 **10** 分) 设 y = y(x) 是由方程 $y^2 + xy + x^2 + x = 0$ 所确定的满足 y(-1) = 1 的隐函数,求 y'(-1) 及 y''(-1),并计算极限 $\lim_{x \to -1} \frac{y(x) 1}{(x+1)^2}$.
- 41. (2017年) (本题 8分)
 (A 班) 计算极限 $\lim_{x\to 0} (e^x + x)^{\frac{2}{\sin x}}$.

计算极限
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x}\right)$$
.

- **42**. (**2017** 年)(本题 **10** 分) 求 $y = (x-1)e^{\frac{\pi}{3} + \arctan x}$ 的单调区间和极值.
- **43.** (2016 年) $\vec{x} \lim_{x\to 0} (1+\sin x^2)^{\frac{1}{1-\cos x}}$.
- **44.** (2016年) 一房地产公司有 50 套公寓要出租,当月租金定为 1000 元时,公寓会全部租出去,当月租金每增加 50 元时,就会多一套公寓租不出去,而租出去的公寓每月需花费 100 元的维修费。问房租金定为多少时可获得最大收入?
 - (A 班) 需求函数为 $p = 10 \frac{Q}{5}$,
 - (1) 求当 Q = 20 时的边际收益,并说明其经济意义;
 - (2) 求当 p=6 时的收益弹性,并说明其经济意义。
- **45.** (2015年) 求极限 $\lim_{x\to 0} (x+e^x)^{\frac{1}{3x}}$
- **46**. (**2015**年) 求曲线 $y = xe^{-x}$ 的凹凸区间与拐点.
- **47**. (**2015** 年)(**1**) 求函数 $y = f(x) = 2x^3 9x^2 + 12x$ 的单调区间与极值; (**2**) 设 a 为实数,试讨论方程 f(x) = a 的不同实数解的个数.
- **48.** (2014年) 求极限 $\lim_{x\to +\infty} x^{\frac{2}{\ln(1+3x)}}$
- **49.** (**2014** 年) 求曲线 $y = x^4 2x^3 + 1$ 的凹凸区间及拐点.
- **50**. (**2013**年) 求极限 $\lim_{x\to 1} x^{\frac{1}{1-x}}$.
- **51.** (2013年)问 a, b 为何值时,点 A(1,3) 是曲线 $y = ax^3 + bx^2 + 1$ 的拐点?
- **52.** (**2013** 年) 某商场每年销售商品 a 件, 分为 x 批采购进货. 已知每批采购费用为 b 元, 而未销售商品的库存费用为 c 元/件·年. 设销售商品是均匀的, 问分多少批进货时, 才能使以上两种费用的总和为最省?
- 53. (2012年) 求极限 $\lim_{x\to 0} \frac{\sin x x \cos x}{x^2 \arcsin x}$.
- **54.** (2012年) 求极限 $\lim_{x\to 0^+} x^{\sin x}$

55. (2012年) 某企业生产某种产品,固定成本 20000元,每生产一单位产品,成本增加 100元。已知总收益 R 是年产量 Q 的函数,即

$$R = R(Q) = \begin{cases} 400Q - \frac{1}{2}Q^2, & 0 \le Q \le 400\\ 80000, & Q > 400 \end{cases}$$

问每年生产多少产品时,总利润最大?最大利润是多少?

- **56.** (2011年) 求极限 $\lim_{x\to 0^+} (\frac{1}{x})^{\sin x}$.
- **57**. (**2011** 年) 求曲线 $y = xe^{-x}$ 的出凸区间及拐点.
- **58.** (2011 年) 某企业生产产品 x 件时, 总成本函数为 $C(x) = ax^2 + bx + c$, 总收益函数为 $R(x) = px^2 + qx$, 其中 a, b, c, p, q > 0, a > p, b < q. 当企业按最大利润投产时, 对每件产品征收税额为多少才能使总税额最大**?**
- **59.** (**2020** 年**)** 已知函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1, 证明:
 - (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
 - (2) 存在两个不同的点 η , $\zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.
- **60.** (2019年) 若 0 < a < 1, 则对于 x > 0, 证明 $x^a ax \le 1 a$.
- **61.** (**2018** 年) 当 0 < a < b < 1 时, 证明不等式 $\frac{b-a}{\sqrt{1-a^2}}$ < $\arcsin b$ $\arcsin a$ < $\frac{b-a}{\sqrt{1-b^2}}$.
- **62.** (**2017** 年)(**A** 班) 设函数 f(x) 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导,证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi) = -f(\xi)\cot \xi$.

设函数 f(x) 在 $[0,\pi]$ 上连续, 在 $(0,\pi)$ 内可导, 且 $f(0)=f(\pi)=0$. 证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi)=-f(\xi)$.

63. (2016年) 证明: 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\tan x > x + \frac{1}{3}x^3$.

(A 班) 设 f(x) 在 [a,b] 上可微,且 f(a) = f(b) = 0,试证明:在 (a,b) 内至少存在一点 ξ ,使 $f'(\xi) = 3f(\xi)$.

- **64.** (**2014** 年) 已知 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1)=0,证明在区间 (0,1) 内至少有一点 c,使得 $f'(c)=-\frac{f(c)}{c}$.
- **65.** (2013 年) 若函数 f(x) 在 $(-\infty, +\infty)$ 内满足关系式 f'(x) = f(x), 且 f(0) = 1, 则 $f(x) = e^x$.
- **66.** (2012年)证明: 当x > 0时, $(1+x)\ln^2(1+x) < x^2$
- **67**. (**2011** 年) 设函数 f(x) 在 [**0,2**] 上连续, 在 (**0,2**) 内可导, 且 f(2) = 4. 试证存在一点 $\xi \in (0.2)$, 使得 $2\xi f(\xi) + \xi^2 f'(\xi) = 8$