Fill-in-the-blanks 2. Complete the following proof of the squeeze theorem (sandwich principle, lemma of two policemen).

Claim: If three sequences $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, and $(c_n)_{n\in\mathbb{N}}$ of real numbers satisfy $a_n \leq b_n \leq c_n$ starting from some index, and if

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = \beta \in \mathbb{R},$$

then the sequence $(b_n)_{n\in\mathbb{N}}$ also converges, and $\lim_{n\to\infty} b_n = \beta$.

Proof. Since the beginning of a sequence affects neither the convergence nor the limit of the sequence, we may assume that $a_n \leq b_n \leq c_n$ holds for all $n \in \mathbb{N}$. We will show that $\lim_{n\to\infty} b_n = \beta$.

Let $\varepsilon > 0$. We must show that $|b_n - \beta| < \varepsilon$ from some index on.

Idea: the expression $b_n - \beta$ has to be estimated from both directions; one relying on the sequence $(a_n)_{n \in \mathbb{N}}$, and the other on the sequence $(c_n)_{n \in \mathbb{N}}$. (Draw a figure!)

Since	$\lim_{n\to\infty} a_n = \beta$ and $\varepsilon > 0$, there exists an $n'_{\varepsilon} \in \mathbb{N}$ such that
	for all $n \geq n'_{\varepsilon}$.
Since	$\lim_{n\to\infty} c_n = \beta$ and $\varepsilon > 0$, there exists an $n''_{\varepsilon} \in \mathbb{N}$ such that
	for all
Now o	choose

With this choice, for any $n \geq n_{\varepsilon}$ we have $n \geq n'_{\varepsilon}$. Therefore we get

$$\beta - b_n \le \beta - a_n \le |\beta - a_n| < \underline{\hspace{1cm}}$$

(the leftmost inequality holds by virtue of the assumption $a_n \leq b_n$). Similarly, for $n \geq n_{\varepsilon}$ we have $n \geq n_{\varepsilon}''$, so we get

$$b_n - \beta \leq c_n - \beta \leq \underline{} < \underline{}$$

(the leftmost inequality holds by virtue of the assumption $b_n \leq c_n$). The above inequalities imply that

$$|b_n - \beta| < \underline{\hspace{1cm}}$$

for all $n \geq n_{\varepsilon}$. We have thus proved the claim. \square