$$\begin{cases} H - h = v_1 \tau \sin \alpha_1 - \frac{g\tau^2}{2} \\ H - h = v_1 \tau \sin \alpha_1 - \frac{g\tau^2}{2} \\ S = v_1 \tau \cos \alpha_1 + v_1 \tau \cos \alpha_1 \end{cases}$$
 (1)

Из первых двух уравнений следует выразить значения $v_1 \tau$ и $v_2 \tau$ и подставить их в третье уравнение системы (1)

$$S = \left(H - h + \frac{g\tau^2}{2}\right) \cdot \left(\frac{\cos\alpha_1}{\sin\alpha_1} + \frac{\cos\alpha_2}{\sin\alpha_2}\right) \approx 18\,\text{M}\,. \tag{2}$$

Данная задача допускает также более простое «геометрическое» решение. Представим закон движения каждого мяча в векторной форме $\vec{r} = \vec{v} \, \tau - \frac{\vec{g} \, \tau^2}{2}$ и

изобразим его графически.

Можно заметить, что треугольники ABC и ABD прямоугольные $(m.\kappa.\ \alpha_1 + \alpha_2 = 90^\circ)$ поэтому

$$S = |AC| = \frac{|AB|}{\cos \alpha_1} = \frac{1}{\cos \alpha_1} \cdot \frac{|BD|}{\sin \alpha_1} = \frac{H - h + \frac{g\tau^2}{2}}{\cos \alpha_1 \sin \alpha_1},$$

что приводит к тому же численному результату.

9.5 Запишем уравнения законов сохранения механической энергии и импульса, учитывая, что в момент наибольшего сближения x скорости тележек равны (обозначим это значение v)

$$\frac{mv_0^2}{2} = 2\frac{mv^2}{2} + U(x); (1)$$

$$mv_0 = 2mv. (2)$$

Из этих уравнений находим, что при минимальном сближении потенциальная энергия взаимодействия определяется выражением

$$U(x) = \frac{mv_0^2}{4}; (3)$$

Используя эту формулу и прилагаемый график зависимости U(x) можно рассчитать значения начальной скорости, при которой минимальное расстояние будет равно x_{min} с помощью выражения

$$v_0 = 2\sqrt{\frac{U(x_{min})}{m}}.$$

(4)

Результаты таких расчетов представлены в таблице и на графике

\mathcal{X}_{min} ,	U,	v_0 ,
(см)	(мДж)	(cM/c)
1	18	60
2	9	42
3	6	35
5	3,5	26
9	2	20
12	1,5	17
18	1	14

10 класс.

10.1 При неподвижной тележке дальность полета рассчитывается по известной формуле

$$S_0 = \frac{2v_0^2}{g} \sin\alpha \cos\alpha = \frac{v_0^2}{g},\tag{1}$$

где $v_{\scriptscriptstyle 0}$ - начальная скорость снаряда.

При выстреле с подвижной тележки будет сохраняться механическая энергия (причем она будет равна энергии снаряда при стрельбе с неподвижной тележки) и проекция импульса на горизонтальное направление. Кроме того, скорость снаряда относительно тележки (а не относительно земли)

будет направлена под углом $\alpha = 45^{\circ}$ к горизонту.

Разложим вектор скорости снаряда (относительно земли) на горизонтальную v_x и вертикальную v_y составляющие, скорость

