Neural Style Transfer

Analysis and Improvement

The Intent

Content Image

Reference Image

Generated Image

Starting point

Content Image (C)

Style Image (S)

Generated Image (G)

Concept

Loss function:

$$J_{total}(G) = \alpha . J_{content}(C,G) + \beta . J_{style}(S,G)$$

$$J_{content}(C, G, I) = \frac{1}{2} \sum (F_{ij}^{I} - P_{ij}^{I})^{2}$$

$$J_{style}(S, G) = \sum w_l E_l$$

$$E_{l} = 1/(4N_{l}^{2}M_{l}^{2}) \sum (G_{ij}^{l} - A_{ij}^{l})$$

$$G^l_{ij} = \sum (F^l_{ik} F^l_{jk})$$

Algorithm:

- Initialise G randomly
 (here, G initialised to content image)
- Use gradient descent to minimise J(G)

$$G = G - d(J(G)) / (dG)$$

=> Updating pixel value

Content-style tradeoff

[Gatys et al., 2015 A Neural Algorithm of Artistic Style]

The columns show different relative weightings between the content and style reconstruction.

The number above each column indicates the ratio α/β between the emphasis on matching the content of the photograph and the style of the artwork

Analysis: Using a painting as reference

Total loss: 1.34e+6 (1000 iterations)

Analysis: Using real image as reference

Total loss: 1.35e+6

Total loss: 1.35e+6

Scope of improvement

- **Noise & Computation time**: Varying the following may be able achieve the same loss in less number of iterations:
 - Loss function hyperparameters
 - Set of layers for style features
 - Weights of individual style layers
 - Optimizer parameters
 - Image resolution
 - Pre-trained model

Photo-realistic:

Current limitation: Style copied fully from reference image, and applied to the whole content image

Solution: Image segmentation masks

Turtle + The Great Wave off Kanagawa: Vary alpha, beta

Default SL4,5=_conv2

Starry night + Tuebingen

Default

SL4,5=_conv2

Turtle + The Great Wave of Kanagawa: Changing the Style Layers

Effect of different style layers on content-style image combos on total loss

Combo

SL4,5=_conv2

Default **(Total Loss = 9.9596e+05)**

Reduced Loss by 18.8%

SL4,5=_conv2 (Total Loss = 8.0869e+05)

References

- Gatys et al., 2015 A Neural Algorithm of Artistic Style
- Luan, Fujun et al., 2017 Deep Photo Style Transfer
- https://github.com/LouieYang/deep-photo-styletransfer-tf
- https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-C onvolutional-Neural-Networks/

Thank you...

Presented by

Krit Goyal Bishwarup Neogy