

Finding Near-Duplicate Web Pages A Large-Scale Evaluation of Algorithms

CSCI 599: Content Detection and Analysis for Big Data

Surasit Prakunhungsit

University of Southern California

Paper Abstract

Near-Duplicate Algorithm

- Shingling
- Charikar's

Results

- Both Good for "Different sites"
- Neither works on "Same sites"

Same site Evaluation

- 50% precision for Charikar's
- 38% for Shingling
- 79% for a combined algorithm

USC Viterbi

Problems

Waste space

Slow Down

Annoy the users

University of Southern California

Related Works

Native Solution

- Compare all pairs to document
- Expensive on large datasets

Broder et al. (Shingling)

 Use word sequences to efficiently find near-duplicate pages

Charikar

 Random projections of words in the document

Why should we care?

Moss (Measure Of Software Similarity)

Search Engines

Email Spam Detection

University of Southern California

Relation to the Class Lecture

Shingling and Charikar Similarities

· Creation of token sequences

USC Viterbi
School of Engineering

Iniversity of Southern California

Shingling Example

USC Viterbi

Shingling

 The percentage of unique shingles on which the two pages agree is a good measure for the similarity

 The percentage of entries in the min-values vector that two pages agree could be use for a similarity approximation

University of Southern California

Shingling

· To save space and speed up

- B-similarity is the number of identical entries in the super-shingle vectors from two pages
 - Two pages are near-duplicates iff their B-similarity is at least 2

Page
$$d = \{I, j, k, x, y, z\}$$

Page $d' = \{a, b, c, x, y, p\}$

Charikar

The cosine similarity of two pages is a good measure for the similarity

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

 The cosine similarity of two pages is proportional to the number of bits in which the two projections agree.

Result = 100111001....

University of Southern California

Charikar

- C-similarity of two pages is the number of bits their projections agree on
- Two page are near-duplicate iff the number of agreeing bits in their projections goes above a fixed threshold t (t = 372)

USC Viterbi

Human Evaluation

· Randomly sample B-similar and C-similar pairs

University of Southern California

Result for Shingling

Near	Number of	Correct	Not	Undecided
dups	pairs		correct	
all	1910	0.38	0.53	0.09 (0.04)
same site	1758	0.34	0.57	0.09 (0.04)
diff. sites	152	0.86	0.06	0.08 (0.01)
B-sim 2	1032	0.24	0.68	0.08 (0.03)
B-sim 3	389	0.42	0.48	0.1 (0.04)
B-sim 4	240	0.55	0.36	0.09(0.05)
B-sim 5	143	0.71	0.23	0.06 (0.02)
B-sim 6	106	0.85	0.05	0.1 (0.08)

Table 1: Shingling Fraction of correct, not correct, and undecided pairs

Result for Charikar

Near	Number of	Correct	Not	Undecided
dups	pairs		correct	
all	1872	0.50	0.27	0.23 (0.18)
same site	1393	0.36	0.34	0.30 (0.25)
different site	479	0.90	0.05	0.05(0)
C -sim ≥ 382	179	0.47	0.37	0.16 (0.10)
382 >				
C -sim ≥ 379	407	0.40	0.37	0.23 (0.18)
379 >				
C -sim ≥ 376	532	0.37	0.27	0.35 (0.30)
C-sim < 376	754	0.62	0.19	0.19 (0.12)

Table 2: Charikar Fraction of correct, not correct, and undecided pairs

University of Southern Californi

Result Comparison: Shingling and Charikar

Overall

• Charikar outperform Shingling (50% > 38%)

Pairs on different sites

- Both achieve high precision
- Charikar is superior to shingling (90% > 86%)

Pairs on the same site

- Neither achieve high precision
- Charikar achieves slightly higher precision (36% > 34%)

The Combined Algorithm

- First compute all B-similar pairs.
- Then filter out those pairs whose C-similarity falls below a certain threshold.

Near	Number	Correct	In-	Un-
dups	of		correct	deci-
	pairs			ded
all	363	0.79	0.15	0.06
same site	296	0.74	0.19	0.07
different site	65	0.99	0.00	0.01

Table 3: Combined Algorithm Fraction of correct, not correct, and undecided pairs

University of Southern California

Conclusion

Combined Algorithm outperform both Charikar and Shingling

(79% > 50% > 38%)

Parameters **k** and **t** affect the result precision

Charikar & Shingling perform poorly for the same site due to **boilerplate text**.

We could use a **boilerplate detection algorithm** to resolve this issue

Pros and Cons

Pros

- Clear tables and beautiful graphs
- Good organization

Cons

- · No examples of the two main algorithms
- Wrong spelling

larity computation the m-dimensional vector of minvalues is reduced to a m-dimensional vector of <u>supershingles</u> by fingerprinting non-overlapping sequences of minvalues: Let m be divisible by m' and let l = m/m'. The <u>concatentation</u> of minvalue $j*l, \dots, (j+1)*l-1$ for $0 \le j \le m'$ is fingerprinted with yet another fingerprinting function and is called <u>supershingle</u>. This creates a supershingle vector. The <u>number of the number of the property of the number of the property of the number o</u>

