

- 1) Um líquido de massa específica ρ escoa suavemente através de uma tubulação cuja área de seção transversal se reduz de A_1 para $A_2 = A_1/2$ em certo ponto. A diferença de pressão entre a seção larga e a estreita do tubo é Δp . Em termos dos dados literais fornecidos calcule:
- a) A razão entre as velocidades do líquido v_1 (na seção larga) e v_2 (na seção estreita);
- b) A vazão volumétrica Rv do fluido.

- 2) Um *medidor de venturi* é usado para medir a velocidade de um fluido em um cano. O medidor é ligado entre dois segmentos do cano; a seção reta \underline{A} na entrada é na saída do medidor é igual à seção reta do cano. Entre a entrada e a saída do medidor o fluido escoa com velocidade \underline{V} e depois passa com velocidade \underline{V} por uma "garganta" estreita de seção reta \underline{a} . Um manômetro liga a parte mais larga do medidor à parte mais estreita. A variação da velocidade do fluido é acompanhada por uma variação $\underline{\Delta p}$ da pressão do fluido, que produz uma diferença \underline{h} na altura do líquido nos dois lados do manômetro. (A diferença $\underline{\Delta p}$ corresponde à pressão na garganta menos a pressão no cano.)
- a) Aplicando a equação de Bernoulli e a equação de continuidade aos pontos 1 e 2 na figura, mostre que

$$V=((2a^2\Delta p)/(\rho(a^2-A^2)))^{1/2},$$

onde ρ é a massa específica do fluido.

- b) Considere que a massa específica do líquido dentro do manômetro é 12000 kg/m³ e h=5 cm. Determine a diferença de pressão do fluido.
- c) Suponha que o fluido no cano é água doce, que a seção reta é 64 cm² no cano e 32 cm² na garganta . Qual a vazão de água em metros cúbicos por segundo?

3) Água doce escoa horizontalmente do segmento 1 de uma tubulação, com uma seção reta A_1 , para o segmento 2, com uma seção reta A_2 . A figura mostra um gráfico da diferença de pressão p_2 - p_1 em função do inverso do quadrado A_1^{-2} da área que seria esperada para uma vazão de certo valor se o escoamento fosse laminar em todas as circunstâncias. A escala do eixo vertical é definida por Δp_s =300 KN/m². Nas condições da figura, quais são os valores (a) de A_2 e (b) da vazão?

Extra) Na figura abaixo, água escoa através de uma tubulação horizontal e depois sai para a atmosfera com uma velocidade de 15 m/s. Os diâmetros das secções esquerda e direita da tubulação são de 5,0 cm e 3,0 cm respectivamente.

- (a) Que volume de água escoa para a atmosfera durante um período de 10 min?
- (b) Na seção do lado esquerdo da tubulação qual é o valor da velocidade v₂ e a pressão manométrica?

