4 4 2

최백준 choi@startlink.io

a^b

• a의 b제곱을 빠르게 구해야 한다.

```
int ans = 1;
for (int i=1; i<=b; i++) {
    ans = ans * a;
}</pre>
```

- 직관적인 방법이지만 O(b)라는 시간이 걸리게 된다.
- 따라서, 조금 더 빠른 방법이 필요하다.

- 분할정복을 이용해서 구할 수 있다.
- $a^{2b} = a^b \times a^b$
- $a^{2b+1} = a \times a^{2b}$

```
int calc(int a, int b) {
    if (b == 0) {
        return 1;
   } else if (b == 1) {
        return a;
   } else if (b % 2 == 0) {
        int temp = calc(a, b/2);
        return temp * temp;
   } else { // b % 2 == 1
        return a * calc(a, b-1);
```

```
• 이 부분을
} else if (b % 2 == 0) {
    int temp = calc(a, b/2);
    return temp * temp;
• 아래와 같이 구현 하면 O(N) 이다. (호출이 2배가 되어버린다)
} else if (b % 2 == 0) {
    return calc(a, b/2) * calc(a, b/2);
```

```
• 이진수의 원리를 이용해서도 구할 수 있다.
int calc(int a, int b) {
   int ans = 1;
   while (b > 0) {
       if (b % 2 == 1) {
           ans *= a;
       a = a * a;
       b /= 2;
    return ans;
```

- 예를 들어, 3의 27 제곱인 경우를 생각해보자.
- 27은 이진수로 11011 이다.
- $27 = 2^0 + 2^1 + 2^3 + 2^4$
- 27 = 1 + 2 + 8 + 16
- $3^{27} = 3^{1+2+8+16}$
- $3^{27} = 3^1 \times 3^2 \times 3^8 \times 3^{16}$
- 을 이용해서 a를 계속해서 a*a로 곱해가면서 제곱을 구하게 된다.

급셈

https://www.acmicpc.net/problem/1629

• 자연수 A를 B번 곱한 수를 C로 나눈 나머지를 구하는 문제

곱셈

- C++ (분할 정복): https://gist.github.com/Baekjoon/d0012f7c7b47cd5ad166
- C++ (이진수 응용): https://gist.github.com/Baekjoon/8b832ab8508fab1e1a42

에라토스테네스의체

- 소수: 2 ~ N-1로 나누어 떨어지지 않는 수
- 제곱 ㄴㄴ수: 2*2, 3*3, … 제곱수로 나누어 떨어지지 않는 수

- 소수를 구하는 방법인 에라토스 테네스의 체를 응용해서 문제를 풀 수 있다.
- max-min의 차이가 1,000,000이기 때문에, 배열을 이용할 수 있다.

https://www.acmicpc.net/problem/1016

• 1부터 100까지 제곱 ㄴㄴ 수를 구해보자

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

https://www.acmicpc.net/problem/1016

• 2의 제곱의 배수를 모두 지운다.

1	2	3		5	6	7		9	10
11		13	14	15		17	18	19	
21	22	23		25	26	27		29	30
31		33	34	35		37	38	39	
41	42	43		45	46	47		49	50
51		53	54	55		57	58	59	
61	62	63		65	66	67		69	70
71		73	74	75		77	78	79	
81	82	83		85	86	87		89	90
91		93	94	95		97	98	99	

https://www.acmicpc.net/problem/1016

• 3의 제곱의 배수를 모두 지운다.

1	2	3		5	6	7			10
11		13	14	15		17		19	
21	22	23		25	26			29	30
31		33	34	35		37	38	39	
41	42	43			46	47		49	50
51		53		55		57	58	59	
61	62			65	66	67		69	70
71		73	74	75		77	78	79	
	82	83		85	86	87		89	
91		93	94	95		97	98		

https://www.acmicpc.net/problem/1016

• 4의 제곱의 배수를 모두 지운다.

1	2	3		5	6	7			10
11		13	14	15		17		19	
21	22	23		25	26			29	30
31		33	34	35		37	38	39	
41	42	43			46	47		49	50
51		53		55		57	58	59	
61	62			65	66	67		69	70
71		73	74	75		77	78	79	
	82	83		85	86	87		89	
91		93	94	95		97	98		

https://www.acmicpc.net/problem/1016

• 5의 제곱의 배수를 모두 지운다.

1	2	3		5	6	7			10
11		13	14	15		17		19	
21	22	23			26			29	30
31		33	34	35		37	38	39	
41	42	43			46	47		49	
51		53		55		57	58	59	
61	62			65	66	67		69	70
71		73	74			77	78	79	
	82	83		85	86	87		89	
91		93	94	95		97	98		

https://www.acmicpc.net/problem/1016

• 6의 제곱의 배수를 모두 지운다.

1	2	3		5	6	7			10
11		13	14	15		17		19	
21	22	23			26			29	30
31		33	34	35		37	38	39	
41	42	43			46	47		49	
51		53		55		57	58	59	
61	62			65	66	67		69	70
71		73	74			77	78	79	
	82	83		85	86	87		89	
91		93	94	95		97	98		

https://www.acmicpc.net/problem/1016

• 7의 제곱의 배수를 모두 지운다.

1	2	3		5	6	7			10
11		13	14	15		17		19	
21	22	23			26			29	30
31		33	34	35		37	38	39	
41	42	43			46	47			
51		53		55		57	58	59	
61	62			65	66	67		69	70
71		73	74			77	78	79	
	82	83		85	86	87		89	
91		93	94	95		97			

- C/C++: https://gist.github.com/Baekjoon/390c28220b7ed484f7ea11817b2b9be2
- Java: https://gist.github.com/Baekjoon/b3e73785626d7522c4c7cfcff213a67d

행렬

행렬덧셈

```
    F 행렬을 입력받고 덧셈을 수행하는 문제
    for (int i=0; i<n; i++) {
        for (int j=0; j<m; j++) {
            c[i][j] = a[i][j]+b[i][j];
        }
}</li>
```

행렬곱셈

```
• 두 행렬을 입력받고 곱셈을 수행하는 문제
for (int i=0; i<n; i++) {
   for (int j=0; j<r; j++) {
       c[i][j] = 0;
       for (int k=0; k<m; k++) {
           c[i][j] += a[i][k]*b[k][j];
```

행렬제곱

https://www.acmicpc.net/problem/10830

• 행렬 A의 B제곱을 구하는 문제

행렬제곱

- C++: https://gist.github.com/Baekjoon/53da6550ac5ca0c7608d
- C++ (연산자 오버로딩): https://gist.github.com/Baekjoon/a5d855c9f20ad45ef6c9

피!보나카 수

Fibonacci Number

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$
- 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

- N번째 피보나치 수를 구하는 문제 (N ≤ 45)
- https://gist.github.com/Baekjoon/7e3535257c280c231f57

- N번째 피보나치 수를 구하는 문제 (N ≤ 90)
- 90번째 피보나치 수는 int 범위를 넘어간다.
- https://gist.github.com/Baekjoon/f179bfa10c7d10ac5c3d

피사노주기

Pisano Period

- 피보나치 수를 K로 나눈 나머지는 주기를 갖는다.
- 이것을 피사노 주기라고 한다.
- 3으로 나누었을 때의 주기는 8이다.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
F _n	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610
F _n %3	0	1	1	2	O	2	2	1	0	1	1	2	0	2	2	1

- N번째 피보나치 수를 M = 1,000,000으로 나눈 나머지를 구하는 문제
- $N \le 1,000,000,000,000,000$
- 피사노 주기를 이용해서 주기를 찾고 문제를 풀 수 있다.
- 주기의 길이가 K이면
- N번째 피보나치 수를 M으로 나눈 나머지는 N%K 번째 피보나치 수와 같다.
- $M = 10^k$ 일 때, k > 2 라면, 주기는 항상 $15 \times 10^{k-1}$ 이다.
- 이 사실을 모른다고 해도, 주기를 구하는 코드를 이용해서 정답을 구할 수 있다.

https://www.acmicpc.net/problem/2749

• C++: https://gist.github.com/Baekjoon/967bc3b5f8f7638db71c

Fibonacci Number

$$\bullet \begin{pmatrix} F_{n+2} \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix}$$

$$\bullet \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$

•
$$\sum_{i=1}^{n} F_i = F_{n+2} - 1$$

•
$$\sum_{i=1}^{n} F_{2i} = F_{2n+1} - 1$$

•
$$\sum_{i=0}^{n} F_{2i+1} = F_{2n}$$

•
$$\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$$

•
$$gcd(F_n, F_m) = F_{gcd(n,m)}$$

Fibonacci Number

•
$$F_{2n-1} = F_n^2 + F_{n-1}^2$$

•
$$F_{2n} = (F_{n-1} + F_{n+1})F_n = (2F_{n-1} + F_n)F_n$$

- N번째 피보나치 수를 M = 1,000,000,007으로 나눈 나머지를 구하는 문제
- $N \le 1,000,000,000,000,000$
- 주기가 어떻게 될 지 알 수 없기 때문에,
- 20 페이지의 분할 정복 방법이나
- 19 페이지의 행렬 곱셈을 이용해서 풀어야 한다.

- C++ (행렬 제곱): https://gist.github.com/Baekjoon/eef05420ac8ac0491fc2
- C++ (분할 정복): https://gist.github.com/Baekjoon/b0828d05c8321f4c2e0e4a1c40fc60f8

그 외의 피보나치 수 문제

Fibonacci Number

- 피보나치 수 4: https://www.acmicpc.net/problem/10826
- 피보나치 수 5: https://www.acmicpc.net/problem/10870
- 피보나치 수의 확장: https://www.acmicpc.net/problem/1788
- 피사노 주기: https://www.acmicpc.net/problem/9471
- 피보나치 수의 합: https://www.acmicpc.net/problem/2086
- 피보나치 수의 제곱의 합: https://www.acmicpc.net/problem/11440
- 홀수번째 피보나치 수의 합: https://www.acmicpc.net/problem/11442
- 짝수번째 피보나치 수의 합: https://www.acmicpc.net/problem/11443
- 피보나치 수와 최대공약수: https://www.acmicpc.net/problem/11778

Binomial Coefficient

- n개중에 k개를 순서 없이 고르는 방법 nCm
- $\binom{n}{k}$ 로 쓴다.
- $\frac{n!}{k!(n-k)!} \cap |\Gamma|.$
- $\frac{n \times (n-1) \times \dots (n-k+1)}{k!}$ 와 같다.
- 구해보자!

https://www.acmicpc.net/problem/11050

- $\binom{n}{k}$ 를 구하는 문제
- $1 \le n \le 10, 0 \le k \le n$ 이기 때문에
- $\frac{n!}{k!(n-k)!}$ 값을 그냥 구하면 된다.

https://www.acmicpc.net/problem/11050

• C++: https://gist.github.com/Baekjoon/28960ad31bc2c134a6e4

- 이항계수를 삼각형 모양으로 배열
- n번 줄에는 수를 n개만 쓴다.
- 각줄의 첫 번째와 마지막 수는 1이다.
- 나머지 수는 윗 줄의 왼쪽 수와 오른쪽 수를 더해서 만든다.

Pascal's Triangle

• 5까지 파스칼의 삼각형

```
3
       3
         6
                 5
  5
      10
           10
            15
        20
   15
6
                   6
```

- C[n][k] = n 번 줄의 k 번째 수라고 했을 때
- C[n][1] = 1, C[n][n] = 1
- C[n][k] = C[n-1][k-1] + C[n-1][k]
- 로 정의할 수 있음
- $C[n][k] = {n \choose k}$ 이다.

- C[n][k] = C[n-1][k-1] + C[n-1][k]
- $C[n][k] 는 \binom{n}{k}$ 를 나타내기 때문에, n개 중에 k개를 순서 없이 고르는 방법이다.
- n개 중에 k개를 순서 없이 고른다면 다음과 같은 두 가지 경우가 가능하다
- 1. n번째를 고른 경우
- 2. n번째를 고르지 않은 경우

- C[n][k] = C[n-1][k-1] + C[n-1][k]
- $C[n][k] 는 \binom{n}{k}$ 를 나타내기 때문에, n개 중에 k개를 순서 없이 고르는 방법이다.
- n개 중에 k개를 순서 없이 고른다면 다음과 같은 두 가지 경우가 가능하다
- 1. n번째를 고른 경우
 - n번째를 골랐기 때문에, n-1개 중에 k-1개를 골랐어야 한다. C[n-1][k-1]
- 2. n번째를 고르지 않은 경우
 - n번째를 고르지 않았기 때문에, n-1개 중에 k개를 골랐어야 한다. C[n-1][k]

https://www.acmicpc.net/problem/11051

- $\binom{n}{k}$ 을 10,007로 나눈 나머지를 구하는 문제
- $1 \le n \le 1,000, 0 \le k \le n$ 이기 때문에
- 파스칼의 삼각형을 이용해서 구하면 된다.

https://www.acmicpc.net/problem/11051

• C++: https://gist.github.com/Baekjoon/318692441d185275e5a3

Binomial Coefficient

•
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

•
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} (1 \le k \le n-1)$$

$$\bullet \ \binom{n}{k} = \binom{n}{n-k}$$

Binomial Coefficient

- n개 중에 k개를 중복 없이 뽑는 방법의 수 $\binom{n}{k}$
- n개 중에 k개를 중복을 허용하면서 뽑는 방법의 수 $\binom{n+k-1}{k}$
- 0과 1로만 이루어진 문자열의 개수 $\binom{n+k}{k}$
- 0과 1로만 이루어진 문자열의 개수 (1은 연속하지 않음) $\binom{n+1}{k}$
- 카탈란 수 $\frac{1}{n+1} \binom{2n}{n}$

뤼카의 정리

Lucas' Theorem

• 음이 아닌 정수 n, m과 소수 p에 대해서 다음이 성립한다.

$$\bullet \ \binom{n}{m} = \prod_{i=0}^{k} \binom{n_i}{m_i} \ (mod \ p)$$

- 여기서 n_i 와 m_i 는 n과 m을 p진법으로 나타낸 것이다. 즉, 다음과 같다.
- $n = n_k p^k + n_{k-1} p^{k-1} + \cdots + n_1 p + n_0$
- $m = m_k p^k + m_{k-1} p^{k-1} + \cdots + m_1 p + m_0$

https://www.acmicpc.net/problem/11402

- $\binom{n}{k}$ mod M을 구하는 문제
- $1 \le n \le 10^{18}$, $0 \le k \le n, 2 \le m \le 2000$, m은 소수
- m이 2000보다 작은 소수이기 때문에, 파스칼의 삼각형을 만들고
- 뤼카의 정리를 이용하면 된다.

https://www.acmicpc.net/problem/11402

- $\binom{n}{k}$ mod M을 구하는 문제
- $1 \le n \le 10^{18}$, $0 \le k \le n, 2 \le m \le 2000$, m은 소수
- m이 2000보다 작은 소수이기 때문에, 파스칼의 삼각형을 만들고
- 뤼카의 정리를 이용하면 된다.

https://www.acmicpc.net/problem/11402

• C++: https://gist.github.com/Baekjoon/69fb9c3f786e0e1855da

https://www.acmicpc.net/problem/11439

- $\binom{n}{k}$ mod M을 구하는 문제
- $1 \le n \le 4 \times 10^6$, $0 \le k \le n, 2 \le m \le 4 \times 10^6$, $m \in \Delta \uparrow$
- $\binom{n}{k}$ 를 소인수 분해 하면서 풀어야 한다.
- 팩토리얼 0의 개수 문제를 풀 때, N!를 소인수 분해를 하면 5^k의 k가 몇 개 인지 구하는 방법을 배웠다.
- 이 방법을 응용해서 푼다.

https://www.acmicpc.net/problem/11439

• C++: https://gist.github.com/Baekjoon/237269bdf7fa2ea98520

Catalan Number

•
$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!} = \prod_{k=2}^n \frac{n+k}{k}$$
 (n ≥ 0)

•
$$C_n = {2n \choose n} - {2n \choose n+1}$$

- $C_0 = 1$
- $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$
- 1, 1, 2, 5, 14, 42, 132, …

Catalan Number

• 여는 괄호 n개와 닫는 괄호 n개로 이루어진 올바른 괄호 문자열의 개수 Cn

• 항 n+1개를 곱하는 순서의 수

• 단말 정점이 n+1개인 풀 바이너리 트리의 개수 (풀 바이너리 트리: children이 2개 or 0개)

Catalan Number

- n × n 개의 정사각형으로 이루어져 있는 격자에서 대각선을 지나가지 않고 가장 왼쪽 아래에서 오른쪽 위로 지나가는 방법의 수
- 오른쪽으로 가는 것을 (로, 위로 가는 것을)로 생각하면 올바른 괄호 문자열의 수와 같다

괄호

https://www.acmicpc.net/problem/10422

• 올바른 괄호 문자열의 개수를 구하는 문제

https://www.acmicpc.net/problem/10422

• C++: https://gist.github.com/Baekjoon/58302ab9793b7e861fa8

오일러 피함수

오일러피함수

Euler's phi Function

- φ(n)로 나타낸다.
- ф(n) = gcd(n, k) = 1 인 1 ≤ k ≤ n의 개수
- $\phi(9) = 6$
- k = 1, 2, 4, 5, 7, 8

오일러피함수

Euler's phi Function

- φ(nm) = φ(n) × φ(m) (n, m이 서로소인 경우)
- $\phi(n) = n \prod_{p \mid n} (1 \frac{1}{p})$
- p는 n의 소인수
- $\phi(9) = 9 * (1 1/3) = 9 * 2/3 = 6$

오일러피함수

Euler's phi Function

```
long long phi(long long n) {
    long long ans = n;
    for (long long i=2; i*i<=n; i++) {</pre>
        if (n % i == 0) {
            while (n % i == 0)
                n /= i;
            ans -= ans / i;
    if (n > 1)
        ans -= ans / n;
    return ans;
```

GCD(n,k)=1

https://www.acmicpc.net/problem/11689

• 오일러 피 함수를 구현해보는 문제

GCD(n,k) = 1

https://www.acmicpc.net/problem/11689

• C++: https://gist.github.com/Baekjoon/47e8d9b2a2e60253e22f

나머지 연산 2

- ax + by = gcd(a,b) 의 해를 구할 수 있는 알고리즘
- 유클리드 알고리즘과 다르게 4개의 변수를 이용해서 사용한다.
- gcd(a, b)를 조금 어렵게 써보면 다음과 같다.
- 몫: q₀, ···, q_k, 나머지: r₀ ···, r_k
- $r_0 = a$
- $r_1 = b$
- •
- $r_{i+1} = r_{i-1} q_i r_i$ ($0 \le r_{i+1} < |r_i|$, $0 \ne q_i = q_i$

- 유클리드 알고리즘에 두 변수 s와 t를 추가해야 한다.
- $r_0 = a, r_1 = b$
- $s_0 = 1, s_1 = 0$
- $t_0 = 0, t_1 = 1$
- •
- $r_{i+1} = r_{i-1} q_i r_i (0 \le r_{i+1} < |r_i|)$
- $S_{i+1} = S_{i-1} q_i S_i$
- $t_{i+1} = t_{i-1} q_i t_i$

- a = 240, b= 46인 경우를 풀어보자.
- 240x + 46y = gcd(240, 46) = 2

İ	q _{i-1}	r _i	Si	t _i
		240	1	0
1		46		1
2	240/46 = 5	240 - 5 ×46 = 10	$1 - 5 \times 0 = 1$	$0 - 5 \times 1 = -5$
3	46/10 = 4	$46 - 4 \times 10 = 6$	$0 - 4 \times 1 = -4$	$1 - 4 \times -5 = 21$
4	10/6 = 1	$10 - 1 \times 6 = 4$	$1 - 1 \times -4 = 5$	$-5 - 1 \times 21 = -26$
5	6/4 = 1	$6 - 1 \times 4 = 2$	$-41 \times 5 = -9$	$21 - 1 \times -26 = 47$
6	$4 \times 2 = 2$	$4 - 2 \times 2 = 0$	$5 - 2 \times -9 = 23$	$-26 - 2 \times 47 = -120$

- ax + by = gcd(a,b) 의 해를 쉽게 구할 수 있는 알고리즘
- 대부분의 경우에 a와 b중 하나는 음수가 나온다.
- 240x + 46y = gcd(240, 46) = 2
- 확장 유클리드 알고리즘의 마지막 이전 s와 t값이 x와 y값이 된다.
- $240 \times -9 + 46 \times 47 = 2$

해의개수

https://www.acmicpc.net/problem/11661

• Ax + By + C = 0의 해의 개수를 구하는 문제

- ax + by = gcd(a,b) 의 해를 쉽게 구할 수 있는 알고리즘
- 이 알고리즘은 gcd(a,b)가 1인 경우에 유용하게 사용할 수 있다.
- ax + by = 1 일 때, x는 a의 나머지 연산의 곱셈 역원이 되기 때문

나머지 연산의 곱셈 역원

Modular Multiplicate Inverse

- 정수 a을 m으로 나눈 나머지의 곱셈 역원은 a \times a⁻¹ = 1 (mod m) 을 만족하는 a⁻¹ 을 말한다.
- \neg , $a^{-1} \equiv x \pmod{m}$ 을 만족하는 x를 말한다.
- 역원은 a와 m이 서로소인 경우에만 존재한다.

```
for (int i=1; i<m; i++) {
    if ((a*i) % m == 1) {
        x = i;
    }
}</pre>
```

• 위 소스의 시간 복잡도는 O(m) 이다.

나머지 연산의 곱셈 역원

Modular Multiplicate Inverse

- 확장 유클리드 알고리즘을 이용해서 구할 수도 있다.
- ax = 1 (mod m) 을 구해야 하기 때문에
- ax = 1 + my로 바꿔서 쓸 수 있다.
- ax my = 1 로 다시 쓸 수 있고, x와 y는 음수가 되어도 상관 없기 때문에
- ax + my = 1 로 다시 바꿔 쓸 수 있다.
- 이제 확장 유클리드 알고리즘을 이용해서 x의 값을 구할 수 있다.

나머지 연산의 곱셈 역원

Modular Multiplicate Inverse

- m이 소수인 경우에는 페르마의 소정리를 이용해서 구할 수도 있다.
- m0 소수이고, a가 m과 서로소라면, a^{m-1} 은 m으로 나눈 나머지는 1이다.
- 즉
- a^{m-1} ≡ 1 (mod m) 이라는 의미이다.
- 따라서, $a \times a^{m-2} \equiv 1 \pmod{m}$ 이고,
- a^{m-2} 가 $a \times x \equiv 1 \pmod{m}$ 을 만족하는 x가 되기 때문에
- 역원은 a^{m-2}가 된다.

https://www.acmicpc.net/problem/11401

- $\binom{n}{k}$ mod M을 구하는 문제
- $1 \le n \le 4,000,000, 0 \le k \le n, M = 1,000,000,007$
- 나머지 연산의 곱셈 역원을 이용해서 풀 수 있다.

https://www.acmicpc.net/problem/11401

• C++: https://gist.github.com/Baekjoon/24a439e38aceb9946b2f