

Estruturas de Dados e Algoritmos (02/2012) - Módulo 01: Avaliação 01A

Nome:	
Matrícula:	Data:

OBSERVAÇÕES:

- (A) A PROVA É INDIVIDUAL E SEM CONSULTA, SENDO VEDADO O USO DE TELEFONES CELULARES OU MATERIAIS DE APOIO.
- (B) A INTERPRETAÇÃO DOS COMANDOS DOS PROBLEMAS FAZ PARTE DA AVALIAÇÃO.
- (C) A SOLUÇÃO DE CADA PROBLEMA DEVE ESTAR EM UM ARQUIVO CUJO NOME DEVE SER: {NÚMERO DO PROBLEMA}-{MATRÍCULA SEM BARRA}.C (OU .CPP, .JAVA OU .PY).
- (D) AS ENTRADAS DO PROBLEMA DEVEM SER LIDAS DA ENTRADA PADRÃO DO SISTEMA (CONSOLE), E ESCRITAS NA SAÍDA PADRÃO.

Os problemas a seguir dizem respeito aos números naturais e seus divisores.

1. Sejam d e n números naturais. Dizemos que d é um **divisor** de n se n=cd, para algum c natural. Em outras palavras, d divide n se resto da divisão de n por d é **zero**.

Seja k=E(n,d) a maior potência d^k de d que divide n. Por exemplo, E(36,3)=2, E(96,2)=5, E(11,11)=1 e E(128,3)=0.

Dados n e d, determine o valor de E(n, d).

Variáveis:

Símbolo	Tipo	Descrição	Valores válidos
n	int	Número natural	$1 \le n \le 10.000$
d	int	Candidato a divisor de \boldsymbol{d}	$2 \le d \le n$
E(n,d)	int	Maior potência de \boldsymbol{d} que divide \boldsymbol{n}	$0 \le E(n,d) \le n$

Entrada: o programa deverá receber a seguinte entrada:

n d

Saída: a saída do programa deverá ser o valor de E(n,d), seguido de uma quebra de linha.

Exemplos de entradas e saídas esperadas:

Entradas	Saídas
1024 2	10
50 5	2
33 33	1
230 3	0

2. Seja n um número natural. O conjunto D(n) dos **divisores próprios** de n é formado por todos os divisores de n, exceto o próprio o n. Por exemplo, $D(2) = \{2\}$, $D(12) = \{1, 2, 3, 4, 6\}$ e $D(1) = \{\emptyset\}$.

Seja S(n) a soma de todos os divisores próprios de n. Se S(n), então n é um número **primo**; se S(n) = n, n é um número **perfeito**; se S(n) < n, n é um número **deficiente**; e, por fim, se S(n) > n, n é um número **abundante**.

Utilizando as definições acima, determine se um dado número natural n>1 é primo, perfeito, abundante ou deficiente.

Variáveis:

Símbolo	Tipo	Descrição	Valores válidos
\overline{n}	int	Número natural a ser avaliado	$2 \le n \le 10.000$
D(n)	int[]	Conjunto dos divisores próprios d_i de n	$1 \le d_i \le n$
S(n)	int	Soma dos elementos de ${\cal D}(n)$	$1 \le S(n) \le 500.005.000$
C	char	Símbolo que representa o tipo do número: P para primo, Z para perfeito, A para abundante e D para deficiente	$C \in \{A, D, P, Z\}$

Entrada: o programa deverá receber o valor de n.

Saída: a saída do programa deverá ser o valor de C, seguido de uma quebra de linha.

Exemplos de entradas e saídas esperadas:

Entradas	Saídas
19	Р
6	Z
12	Α
4	D

3. Dois números naturais m e n são **amigos** se S(n)=m e S(m)=n, onde S(n) é a soma dos divisores próprios de n. Por exemplo, os divisores próprios de 220 são

$$1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,$$

cuja soma é 284, enquanto que os divisores próprios de 284 são

cuja soma é 220, de modo que estes dois números são amigos.

Dados n e m, determine se são amigos ou não.

Variáveis:

Símbolo	Tipo	Descrição	Valores válidos
n	int	Número natural	$2 \le n \le 10.000$
m	int	Número natural	$2 \le m \le 10.000$
R	char	Caractere que indica se os números n e m são amigos: S para sim, N para não	$R \in \{S, N\}$

Entrada: o programa deverá receber a seguinte entrada:

n m

Saída: a saída do programa deverá ser o valor de R, seguido de uma quebra de linha.

Exemplos de entradas e saídas esperadas:

Entradas	Saídas
220 284	S
100 150	N
6 6	S
6232 6368	S

4. O maior divisor comum MDC(n,m) de dois números naturais m e n é o maior elemento comum dos conjuntos dos divisores destes números (incluindo os próprios números). Por exemplo, MDC(6,12)=6, MDC(20,24)=4 e MDC(2,5)=1.

Dados m e n, calcule o maior divisor comum de ambos.

Variáveis:

Símbolo	Tipo	Descrição	Valores válidos
n	int	Número natural	$1 \le n \le 10.000$
m	int	Número natural	$1 \le m \le 10.000$
MDC(n,m)	int	$\hbox{Maior divisor comum de } n \hbox{ e } m$	$1 \le MDC(n, m) \le \min\{m, n\}$

Entrada: o programa deverá receber a seguinte entrada:

n m

Saída: a saída do programa deverá ser o valor de MDC(n, m), seguido de uma quebra de linha.

Exemplos de entradas e saídas esperadas:

Entradas	Saídas
12 20	4
12 15	3
8 8	8
5 3	1