Fall problem 3

Min
$$Z = S \times_1 + 6 \times_2 + 7 \times_3 + 8 \times_4 + 9 \times_5$$

S.E.2

$$-3 \times_1 + 2 \times_2 - 2 \times_3 + 2 \times_4 - 2 \times_5 \leq -2$$

$$+ \times_1 + 2 \times_2 - 3 \times_3 - 2 \times_4 - 2 \times_5 \leq -1$$

$$+ \times_1 + 2 \times_2 - 3 \times_3 - 2 \times_4 - 2 \times_5 \leq -1$$
(3)

Relaxed problem: UCX; &] \ i & 7. «, 5.

Solution ? $Z_{rel}^* = 6.0$, $x^* = [7/2, 0, 1/2, 0, 0]_{v}^{T}$

Banch-And-Board

X3=7] 240= 12 6 2 incompart X=[1,0,1,0,0]= in cumber t) dprinal salikions Winder 5 (1) } (p > x) X=[1,0,0,7,]=X 2 rel- 22 > Zall $\stackrel{\boldsymbol{\sim}}{\times}$ X2=1 \{(3) No'0'82'0'0] = 32 01= 5% 6 Xria **~** X=[1,0,33,0,0] intersible 3 xc = 1933 =10, $(x_1 = 0)$ メッン X=[1,2/1,0,0] Zali 6

Xxx = [9,0,9,0,0], Zale= 12, Oppgare 43

Min $Z = C^T \times$ 5.6. $A \times = 6$

 $x_{j} \leq 1$, j=1,2, $x_{j} \leq 5$, $j \neq 1,2$.

X; 20, x; EN, V j & d1, ..., 7 %.

d) Hvis & 3x2 + 2x4 = 15, Mas x5+2x6=10.

Huis 5,20,=> 5,20.

 $y_1 \in \{0,1\}$ $y_1 = \{0, S_1 \notin 0, 1, S_2 \ge 0.$

Tel pass alikheters
$$M >> 0$$
.
 $S_1 - My_1 \leq \frac{2}{M}$. $S_1 < 0 \Rightarrow y = 0.4$.
 $S_1 - My_1 \leq \frac{1}{M}$. $S_1 > 0 \Rightarrow y = 1$.

$$S_{1}-My_{1} \leq \frac{1}{M}$$
, $S_{1} > 0 = 7$ $y = 1$, $M(S_{1}-My_{1}) \leq 1$, $(f S_{1} > \frac{1}{M}, y = 7$ $y = 1$,

$$M(S_1-My_1) \stackrel{?}{=} 1$$
, if $S_1 > \frac{1}{m}$, $y = 1 \stackrel{?}{=} 1$, if $S < 0$, $y = 0 = 1 \stackrel{?}{=} 1$.

And $S_2 + M(1-y_1) \stackrel{?}{=} 0$, $y_1 = 1 = 1$, $S_2 = 0$.

 $S_2 - My_1 \stackrel{?}{=} -M$, $y_1 = 0 \stackrel{?}{=} 1$, $S_2 = -M$, $Y_1 = 0 \stackrel{?}{=} 1$, $Y_2 = 0 \stackrel{?}{=} 1$.

Want to avoid the feasible point

 $S_1 = 0, \ Y_1 = 0, \ MY_1 - S_1 \le 1 %$

Want to avoid the feasible point
$$S_1=0, \ y_1=0, \qquad My_1-S_1 \le 1^2$$

$$S_0 \text{ do } S_1 \text{ My}_1+S_1 \ge 1, \qquad S_1=0 \Rightarrow y_1=1, \qquad S_1>0 \text{ not possible...}$$

$$S_1 < 0 \Rightarrow y_1=1, \qquad S_1>0 \text{ not possible...}$$

$$S_1 = 0 \Rightarrow y_1=1, \qquad S_1>0 \text{ not possible...}$$

$$S_1 = 0 \Rightarrow y_1=1, \qquad S_1>0 \text{ not possible...}$$

Nev I Lea E Check with a binary varieble whether er not one of the Ewo constraints are satisfied. and then we impose logical (endikins on those binary wars. 1 = 3x2 + 2x4 = 15 (4x) Eleno x5+2x6=10, (24)

9= jo if (1") ratifold

1, if (4") 1 56. $3\times_2 + 1\times_4 - My_7 \leq 15$ x 5+2x6-My2 = 10.

Nax logical require ment on y, y2.

Either & $y_1 = 0$ and $y_2 = 0$,

or $y_1 = 7$, $y_2 = 0, 7$. $y_2 \neq y_1$ Ettend the Mif model by:

then the [NI] model

Constraints and voiss $\overline{A}x=\overline{b} = \begin{cases}
3x_2+2x_4-My_1+5_1=(5), \\
x_3+2x_6-My_2+2=10, \\
y_2-y_1=0
\end{cases}$

 $y_1, y_2 \in \{0, 7\}, \quad S_1, S_2 \geq 0.$

b) Add 10x2xq to the objective for for, whilst keeping the MIP madel. Find $Z_q = \chi_2 \cdot \chi_7 \quad Z_0 \quad \chi_2 \quad \text{In the years}$ Have to makiply something, how to do it quadratically? Max $2 = C^{7}x + 102_{1}$ If x2=7, 21=X7, allerwise 21=0. And $27 \leq MX_2$, $(M > Max X_7)$ $21 - MX_2 \leq 0$, \iiint

In the 3

Max 7 = CTX + 1021,

 $5, \epsilon.$ $A_x = b$

 $-M(1-x_{2})+2_{1}-x_{7} \leq 0,$ $+M(7-x_{2})+2_{7}-x_{7} \geq 0,$ $2_{7}-Mx_{1} \leq 0,$ $2 \leq (5-x_{2})$

 $Z_1 \in \{0, ..., 5\},$

 $() \qquad \chi_{s} = 0 \quad \text{old} \quad \chi_{s} = 3.$

X8 ER, it he heltall.

 $\times_{8} = 3$, $\times_{8} - S_{3} = 3$, $S_{3} \in \mathbb{R}$,

use binary variable to the ck if Sz 20:

Enforce that x = 0 if y = 0:

 $\times_{g} \leq My_{3}$ $\times_{g} -My_{3} \leq 0$ $\times_{g} -My_{3} \leq 0$ $\times_{g} -My_{3} \leq 0$