

vv255_Assignment 5: Double Integrals.

Due to: 2019-07-08

Problem 1: Sketch the region of integration and change the order of integration

A. a.

 $\int_0^2 dx \int_x^{2x} f(x,y) dy \qquad \boldsymbol{b}. \qquad \int_{-6}^2 dx \int_{(x^2/4)-1}^{2-x} f(x,y) dy \qquad \boldsymbol{c}. \qquad \int_0^1 dx \int_{x^3}^{x^2} f(x,y) dy$

d. $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y) dy$ **e.** $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy$ **f.** $\int_{0}^{2\pi} dx \int_{0}^{\sin x} f(x,y) dy$

B.

 $\mathbf{a}.\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\varphi\int_{0}^{a\cos\varphi}f(r,\varphi)dr, a>0 \quad \mathbf{b}.\int_{0}^{\frac{\pi}{2}}d\varphi\int_{0}^{a\sqrt{\cos\varphi}}f(r,\varphi)dr, a>0 \quad \mathbf{c}.\int_{a}^{0}d\varphi\int_{0}^{\varphi}f(r,\varphi)dr, 0< a< 2\pi$

Problem 2

Let $R: 0 \le x \le t, 0 \le y \le t$ and

 $F(t) = \int_{0}^{\infty} e^{\frac{tx}{y^2}} dx dy$

Compute F'(t).

Problem 3

Recall that $S_R = \iint_R dx dy$

A. Find the area of the regions bounded by the following curves:

 $\mathbf{a}. xy = a^2, \quad x + y = \frac{5}{2}a \quad (a > 0)Ans: \left(\frac{15}{8} - 2\ln 2\right) \quad \mathbf{b}. \quad (x - y)^2 + x^2 = a^2 \quad (a > 0) \quad Ans: \pi a^2$

Change variables and find the area of regions bounded by the following curves:

a. x + y = a, x + y = b, $y = \alpha x$, $y = \beta x$ ($0 < \alpha < b$; $0 < \alpha < \beta$) Ans: $\frac{(\beta - \alpha)(b^2 - a^2)}{2(\alpha + 1)(\beta + 1)}$

b. $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 1$, $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 2$, $\frac{x}{a} = \frac{y}{b}$, $4\frac{x}{a} = \frac{y}{b}$ (a > 0, b > 0) Ans: $\frac{65}{108}ab$

c. $(x^3 + y^3)^2 = x^2 + y^2$, $x \ge 0$, $y \ge 0$ Ans: $\frac{\pi}{6} + \frac{\sqrt{2}}{3} \ln(1 + \sqrt{2})$

Problem 4

Sketch the solid bodies whose volumes are given by

a. $\iint_{0 \le x \le 1} (x+y) dx \ dy \qquad b. \qquad \iint_{|x|+|y| \le 1} (x^2+y^2) dx \ dy \qquad c. \iint_{x^2+y^2 \le x} \sqrt{x^2+y^2} \ dx \ dy$

Dr. Olga Danilkina

中国 上海闵行区东川路 800 号

B. Find the volume of the given solid bounded by

a.
$$z = 1 + x + y$$
, $z = 0$, $x + y = 1$, $x = 0$, $y = 0$ Ans: $\frac{5}{6}$

b.
$$z = \cos x \cos y$$
, $z = 0$, $|x + y| \le \frac{\pi}{2}$, $|x - y| \le \frac{\pi}{2}$ Ans: π

c.
$$z = xy$$
, $z = 0$, $x + y + z = 1$ Ans: $\frac{17}{12} - 2 \ln 2$

Use polar coordinates to find the volume of the solid bodies bounded by the following surfaces:

a.
$$z^2 = xy$$
, $x^2 + y^2 = a^2$ Ans: $\frac{4}{3\sqrt{\pi}}\Gamma^2(\frac{3}{4})a^3$

b.
$$z = x + y$$
, $(x^2 + y^2)^2 = 2xy$, $z = 0$ $(x > 0, y > 0)$ Ans: $\frac{\pi}{8}$

c.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{x^2}{a^2} - \frac{y^2}{b^2}$, $a, b, c > 0$ Ans: $\frac{2}{9}abc(3\pi + 20 - 16\sqrt{2})$

Problem 5

Find the area of the surface.

- **a.** The part of the surface az = xy that lies inside the cylinder $x^2 + y^2 = a^2$.
- **b.** The surface is bounded by $x^2 + z^2 = a^2$, $y^2 + z^2 = a^2$ Ans: $16a^2$
- **c.** The part of the surface $z = \sqrt{x^2 y^2}$ that lies inside the cylinder $(x^2 + y^2)^2 = a^2(x^2 y^2)$, $z \in \mathbb{R}$.

Ans: $\frac{\pi a^2}{2}$