7-1: Introduction to Dimensionality Reduction Recommenders

Learning Objectives

- To understand the motivation, history, and intuition behind dimensionality reduction recommendation algorithms
- To gain a basic understanding of the algorithm idea, preparing you to master the details later this module
- To understand some of the practical strengths and weaknesses dimensionality reduction approaches

Motivation and Intuition

- Ratings matrix is an overfit representation of user tastes and item descriptions
 - Leads to problems of synonymy what happens if I like Hamlet and King Lear and you like Shakespeare: The Histories and Tragedies
 - Also leads to computational complexity, potentially poorer results
 - Ideal would be to have a more compact representation of user tastes and item descriptions – but how?

History: Latent Semantic Indexing

- The information retrieval community addressed this problem earlier (1988)
 - They faced the same issue keyword vectors had the problem that queries and documents were poorly represented. They wanted to recognize concepts, not words.
- Singular Value Decomposition was used to create a solution
 - Intuitive description: reduce space to a smaller taste space that is compact and robust

SVD: Mathematical Background

The reconstructed matrix $R_k = U_k S_k V_k$ is the closest rank-k matrix to the original matrix R.

SVD for Collaborative Filtering

1. Low dimensional representation O(m+n) storage requirement

Singular Value Decomposition

- Reduce dimensionality of problem
 - Results in small, fast model
 - Richer neighbor network
 - Need to experiment to find appropriate value of k for a domain (for movies, roughly 13-20)
- Challenge #1: missing values
 - Need some way to fill them
 - Several alternatives, including clever averages and predictions

Singular Value Decomposition

- Challenge #2: computational complexity
 - SVD computation is O(m²n + n³)
 - Some practical approaches
 - Folding in (keep factorization, add new users, item, data) – factorization slowly worsens
 - Probabalistic and incremental approaches
- Challenge #3: lack of transparency / explainability
 - Optimal dimensions do not correspond to usercomprehensible concepts

SVD: Take-Aways

- Clever and useful approach
 - Reduces problems of synonymy and overfitting
 - Computational advantages at run-time
- Significant challenges in model building
 - Particularly for large models
 - One key compromise can be sacrificing model optimality for performance
- SVD is growing in use, but still not dominant in the field

Moving Forward

- Next Lectures
 - Looking at the details of SVD
 - Preparing the matrix (handling missing values)
 - Linear algebra
 - Optimizations and practical variants
 - Gradient descent approaches
 - Simon Funk's approach from the Netflix Prize

7-1: Introduction to Dimensionality Reduction Recommenders