Aufgaben zur Klausurvorbereitung

Lineare Algebra I Wintersemester 2015/16

Robert Schütz

11. Februar 2016

1 Gruppen, Körper, etc.

Aufgabe 1 Sei (G, e, \circ) eine Gruppe mit $|G| < \infty$ und für jedes $g \in G \setminus \{e\}$ gelte $g \neq g^{-1}$. Zeigen Sie:

- (a) Die Abbildung $\varphi:G\to G,g\mapsto g^2=g\circ g$ ist genau dann ein Gruppenhomomorphismus, wenn G abelsch ist.
- (b) Wenn G abelsch ist, dann ist die Abbildung φ bijektiv.

Aufgabe 2 Sei G eine Gruppe mit $n := |G| < \infty$. Zeigen Sie, dass $\operatorname{Aut}(G)$, die Automorphismen von G, isomorph zu einer Untergruppe der S_n sind.

Hinweis: Überlegen Sie sich zunächst, dass für einen Gruppenisomorphismus $\varphi: G \to G'$ und eine Untergruppe $H \subseteq G$ gilt, dass auch $\varphi(H) \subseteq G'$ eine Untergruppe ist.

Aufgabe 3 Sei K ein Körper mit $|K| < \infty$ und $\psi \in \text{End}(K)$. Zeigen Sie, dass ψ bijektiv ist.

2 Lineare Abbildungen

Aufgabe 1 Seien U, V, W endl.-dim. Vektorräume, $\varphi : U \to V$ ein VR-Monomorphismus und $\psi : V \to W$ ein VR-Epimorphismus, sodass $\operatorname{Kern}(\psi) = \operatorname{Bild}(\varphi)$. Zeigen Sie, dass $\dim(V) = \dim(U) + \dim(W)$ gilt.

Aufgabe 2 Es seien K ein Körper und V ein endlich dimensionaler K-Vektorraum mit Basis $\underline{B} = (b_1, \ldots, b_n)$ und $g \in \operatorname{Aut}(V)$ ein Automorphismus von V.

- (a) Zeigen Sie, dass $\underline{C} := (g(b_1), \dots, g(b_n))$ auch eine Basis von V ist.
- (b) Zeigen Sie, dass die Darstellungsmatrizen $\operatorname{Mat}_{\underline{B}}^{\underline{B}}(g)$ und $\operatorname{Mat}_{\underline{C}}^{\underline{C}}(g)$ gleich sind.

3 Darstellungsmatrizen

Aufgabe 1 Seien K ein Körper, V und W endlich-dim. K-Vektorräume, \underline{B} eine Basis von V, \underline{C} eine Basis von W. Seien $A \in \mathrm{M}_{m \times n}(K)$ und $B \in \mathrm{M}_{n \times m}(K)$ Matrizen mit m > n. Seien $f: V \to W$ und $g: W \to V$ lineare Abbildungen, sodass $\mathrm{Mat}_{\underline{B}}^{\underline{C}}(f) = A$ und $\mathrm{Mat}_{\overline{C}}^{\underline{B}}(g) = B$ gelten. Welche Aussagen stimmen?

- (a) f ist ein Isomorphismus.
- (b) f ist nicht surjektiv.
- (c) Man kann V und W so wählen, dass g ein Endomorphismus ist.
- (d) f ist kein Monomorphismus.
- (e) q ist nicht injektiv.
- (f) g ist kein Epimorphismus.

4 Dualraum

Definition Seien V ein K-Vektorraum und $S \subseteq V$, $T \subseteq V^* = \text{Lin}(V, K)$ Teilmengen.

$$\operatorname{Ann}(S) := \{ \varphi \in V^* \mid \varphi(v) = 0 \ \forall v \in S \} \subseteq V^*$$

$$\mathrm{Null}(T) := \{ v \in V \mid \varphi(v) = 0 \ \forall \varphi \in T \} \subseteq V$$

Aufgabe 1 Sei V ein Vektorraum, $T \subseteq V^*$. Zeigen Sie:

$$Null(T) = V \Leftrightarrow T \subseteq \{0_{V^*}\}$$

Aufgabe 2 Sei $U \subseteq V$ ein Untervektorraum. Sei S eine Basis von $U, T \subseteq V$ und $S \cup T$ eine Basis von V.

Sei $f:V\to W$ eine lineare Abbildung und $f^*:W^*\to V^*$ mit $f^*(\varphi):=\varphi\circ f$ die duale Abbildung. Zeigen Sie:

- (a) $\operatorname{Ann}(U) = \operatorname{L}(T^*)$, wobei T^* die duale Basis zu T ist. **Hinweis**: Sie dürfen hier annehmen, dass V endlich-dimensional ist, allerdings ist das nicht notwendig.
- (b) Ist V endlich-dimensional, so gilt $\dim \text{Ann}(U) = \dim V \dim U$.
- (c) $\operatorname{Kern}(f^*) = \operatorname{Ann}(\operatorname{Bild}(f)).$

5 Eigenwerte

Aufgabe 1 Sei K ein Körper, V ein endlich-dim. K-Vektorraum und $\varphi:V\to V$ ein Endomorphismus. Zeigen Sie: Besitzt φ keinen Eigenwert, so ist φ ein Automorphismus. **Hinweis**: Überlegen Sie sich zunächst, was für Endomorphismen endlich-dimensionaler Vektorräume gilt.

Aufgabe 2 Sei \mathbb{F}_5 der Körper mit 5 Elementen, V ein 4-dimensionaler \mathbb{F}_5 -Vektorraum und $\underline{B} = (b_1, b_2, b_3, b_4)$ eine Basis von V. Sei die lineare Abbildung $f: V \to V$ gegeben durch $f(b_1) = b_2$, $f(b_2) = b_3$, $f(b_3) = b_4$ und $f(b_4) = b_1$

- (a) Geben Sie $\operatorname{Mat}_{\underline{B}}^{\underline{B}}(f)$ an und berechnen Sie das charakteristische Polynom von f. (Die Koeffizienten liegen in \mathbb{F}_5 !)
- (b) Zeigen Sie, dass f diagonalisierbar ist, und geben Sie eine Diagonalmatrix an, die Darstellungsmatrix von f bezüglich einer Basis von Eigenvektoren ist.
- (c) Bestimmen Sie den Eigenraum von f zum Eigenwert $\overline{-1}$

6 Euklidische Vektorräume

Aufgabe 1 Seien $x_1, x_2, x_3 \in \mathbb{R}^4$ mit

$$x_1 = \begin{pmatrix} 3 \\ 4 \\ 0 \\ 0 \end{pmatrix}, \quad x_2 = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 1 \end{pmatrix}, \quad x_3 = \begin{pmatrix} 0 \\ 5 \\ 5 \\ 7 \end{pmatrix}$$

Sei $U = L(x_1, x_2, x_3)$ die lineare Hülle ebenjener Vektoren.

- (a) Zeigen Sie, dass $\{x_1, x_2, x_3\}$ eine Basis von U ist.
- (b) Bestimmen Sie mithilfe des Gram-Schmidt'schen Orthogonalisierungsverfahrens eine Orthonormalbasis von U bezüglich des Standardskalarproduktes.

Aufgabe 2 Seien $x, y \in \mathbb{R}^n$ und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt mit zugehöriger Norm $\| \cdot \|$.

(a) Zeigen Sie:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

(b) Sei $x \perp y$. Zeigen Sie den Satz des Pythagoras:

$$||x||^2 + ||y||^2 = ||x - y||^2$$