MATH 2301

** Office how: Monday 1-2 (in person + Zoom)

* Last time: Equivalence classes

*** Proposition

- (1) Let ye [2]. Then xe[y] and [2] = [y]
- (2) If E_1 and E_2 are two equivalence classes, then either $E_1 = E_2$ or $E_1 \cap E_2 = \phi$

Proof

(1) Let ye [x] or nay.

By symmetry, we have yax

80, x & [y].

Let $y \in [x]$ $\Rightarrow x \wedge y$ To show that [x] = [y], suppose that $z \in [x]$

⇒ スルそ

By symmetry & transitivity, y ~ Z

>> ze[y]

(Similarly if Ze [y] then Ze [x])

(2) If E_1 and E_2 are two equivalence classes, then either $E_1 = E_2$ or $E_1 \cap E_2 = \emptyset$.

Proof: If $E_1 = E_2$, then we're done. Now suppose $E_1 \neq E_2$. Also suppose that $E_1 \cap E_2 \neq \emptyset$ [otherwise we're done].

Since E_1, E_2 are equivalence classes, we know that there are elements $x, y \in S$, such that $E_1 = [x]$, and $E_2 = [y]$. Since $E_1 \pm E_2$, one of them contains an element not in the other.

(WLOG) Without loss of generality, suppose that ?

There is ≠ ∈ E, such that z ∉ Ez.

⇒ Ze[2] ⇒ XNZ ①

and by assumption, [x] n [y] # \$
So, there is some we [x] n [y], that is

2 WN 2 & WNY. 3

By fransitivity and symmetry, (i)+(2)+(3) tell us that

2NXNWNY => ZNY

> = e(y) 6

@ and 6 contradict each other. Contradiction!

*** Notahion:

(1) We say that $S = S_1 \coprod S_2$ if $S = S_1 \coprod S_2$

 $S = S_1 \cup S_2$ and also $S_1 \cap S_2 = \emptyset$.

- (2) We often write S = U Si or S = U Si ieI si to mean a union/disjoint union over an "index set" I.
- *** Proposition: Let v be an equivalence relation on S. Let {Silict} be the set of equivalence classes.

Then S= IL Si.

- * Often, we just write I to mean an unspecified index set In this case, I is enumerating all the equivalence classes.
- * Proposition translates as: a set S, with an equivalence relation », is the disjoint union over all of its equivalence classes.

Proof: Let N be an equivalence velation on S.

Let \(\grace \Si \) i \(\text{I} \grace \) be the set of equivalence classes.

classes.

(1) Consider two equivalence classes S_i & S_j .

Then by the previous result, S_i \(\alpha S_j = \phi.

(2) Every 2t S is in some equivalence class, namely [2]. So [2] = Si for some i

3) U Si = Si

** How to think about equivalence relations/
equivalence classes

Heuristic: A relation that identifies some

shaved property between elements in your set is usually an equivalence relation.

An equivalence class can offen be described as "all elements of S that have the same ..."

Example: \(\frac{7}{2} (\text{X}, \text{Y}) \in \text{Z} \text{Z} \(\text{X} \) \(\text{Y} \) is a multiple of 173

Equivalence classes consist of all elements of 20 that have the same remainder when divided by 17

* Modular anithmetic

We'll define a new system of an'thmetic (+,-,*,/,...) using equivalence classes on Z.

** Baby example:

Consider $\frac{7}{3}(x,y) \in \mathbb{Z}[x,\mathbb{Z}] \mid x-y \text{ is even} \frac{7}{3}$ This is an equivalence relation. [modulus = 2]

Equivalence classes:

$$\{x \in \mathbb{Z} \mid x \text{ is even } \} = \{x \in \mathbb{Z} \mid x \text{ is odd } \} = \{x$$

$$\{\text{evens}\} = [0] = [2020] = [42] = [-22]$$

 $\{\text{odde}\} = [2021] = [-5] = [3]$

Typically, we'll use o and 1 as our standard representatives, but they are not special in any way.