Mathematics

Robin Adams

September 17, 2023

Contents

1	Pri	nitive Terms and Axioms	5
	1.1	Primitive Terms	5
	1.2	Axioms	5
	1.3	Consequences of the Axioms	6
		1.3.1 Definitions Used in the Axioms	6
		1.3.2 Tabulations	6
		1.3.3 The Empty Set	7
		1.3.4 The Singleton	8
			9
	1.4		10
	1.5		10
	1.6		11
2	Top	ology 1	3
	2.1	Topological Spaces	13
		2.1.1 Subspaces	15
			15
		- •	15
		- 00	15
			15
	2.2		15
	2.3		16
	2.4		16
	2.5		16
	2.6		 L7
	-	r	- · I 7

4 CONTENTS

Chapter 1

Primitive Terms and Axioms

1.1 Primitive Terms

Let there be sets. We write A: Set for: A is a set.

For any set A, let there be *elements* of A. We write a : El(A) for: a is an element of A.

For any sets A and B, let there be *relations* between A and B. We write $R: A \hookrightarrow B$ for: R is a relation between A and B.

For any set A and elements a, b : El(A), let there be a proposition that a and b are equal, a = b.

For any relation $R: A \hookrightarrow B$ and elements a: El(A), b: El(B), let there be a proposition aRb, that R holds between a and b.

1.2 Axioms

Definition 1.1 (Function). Let A and B be sets and $F: A \hookrightarrow B$. Then F is a function from A to B, $F: A \to B$, if and only if, for all $x \in A$, there exists a unique $y \in B$ such that xFy. We denote this unique y by F(x).

Axiom Schema 1.2 (Comprehension). For any formula $\phi[X, Y, x, y]$ where X and Y are set variables and x : El(X) and y : El(Y), the following is an axiom: For any sets A and B, there exists a relation $R : A \hookrightarrow B$ such that, for all a : El(A) and b : El(B), we have aRb if and only if $\phi[A, B, a, b]$.

Axiom 1.3 (Tabulations). For any sets A and B and relation $R: A \to B$, there exists a set |R|, a tabulation of R, and functions $p: |R| \to A$ and $q: |R| \to B$ such that:

• For all x : El(A) and y : El(B), we have xRy if and only if there exists r : El(|R|) such that p(r) = x and q(r) = y

• For all r, s : El(|R|), if p(r) = p(s) and q(r) = q(s) then r = s.

Axiom 1.4 (Infinity). There exists a set \mathbb{N} , an element $0 : \text{El}(\mathbb{N})$, and a function $s : \mathbb{N} \to \mathbb{N}$ such that:

- $\forall n : \text{El}(\mathbb{N}) . s(n) \neq 0$
- $\forall m, n : \text{El}(\mathbb{N}) . s(m) = s(n) \Rightarrow m = n.$

Axiom 1.5 (Choice). Let $R: A \hookrightarrow B$ be a relation such that $\forall a : \text{El}(A) . \exists b : \text{El}(B) . aRb$. Then there exists a function $f: A \rightarrow B$ such that $\forall a : \text{El}(A) . aRf(a)$.

1.3 Consequences of the Axioms

1.3.1 Definitions Used in the Axioms

Definition 1.6 (Equality of Relations). Let $R, S : A \hookrightarrow B$. We say that R and S are equal, R = S, iff $\forall a : \text{El}(A) . \forall b : \text{El}(B) . aRb \Leftrightarrow aSb$.

Proposition 1.7. Let $f, g: A \to B$. If $\forall x: \text{El}(A) . f(x) = g(x)$ then f = g.

PROOF: Since $xfy \Leftrightarrow y = f(x) \Leftrightarrow y = g(x) \Leftrightarrow xgy$. \square

Definition 1.8 (Injective). A function $f: A \to B$ is *injective* iff, for all x, y: El(A), if f(x) = f(y) then x = y.

Definition 1.9 (Surjective). A function $f: A \to B$ is *surjective* iff, for all y: El(B), there exists x: El(A) such that f(x) = y.

Definition 1.10 (Bijective). A function $f: A \to B$ is bijective or a bijection iff it is injective and surjective.

Sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between them.

If we prove there exists a set X such that P(X), and that any two sets that satisfy P are bijective, then we may introduce a constant C and define "Let C be the set such that P(C)".

1.3.2 Tabulations

Theorem 1.11. Let $R: A \hookrightarrow B$. Let $p: T \to A$ and $q: T \to B$ form a tabulation of R. Let $p': T' \to A$ and $q': T' \to B$ form a tabulation of R. Then there exists a unique bijection $f: T \approx T'$ such that $\forall t: \text{El}(T).p'(f(t)) = p(t)$ and $\forall t: \text{El}(T).q'(f(t)) = q(t)$.

Proof:

 $\langle 1 \rangle 1.$ Let: $f: T \hookrightarrow T'$ be the relation such that tft' iff p(t) = p'(t') and q(t) = q'(t')

Proof: Axiom of Comprehension

 $\langle 1 \rangle 2$. f is a function.

```
\langle 2 \rangle 1. Let: x : \text{El}(T)
   \langle 2 \rangle 2. p(x)Rq(x)
      PROOF: Since T is a tabulation of R.
   \langle 2 \rangle 3. There exists a unique y : \text{El}(T') such that p'(y) = p(x) and q'(y) = q(x).
      PROOF: Since T' is a tabulation of R.
\langle 1 \rangle 3. f is injective.
   \langle 2 \rangle 1. Let: x, y : \text{El}(T)
   \langle 2 \rangle 2. Assume: f(x) = f(y)
   \langle 2 \rangle 3. \ p'(f(x)) = p'(f(y)) \text{ and } q'(f(x)) = q'(f(y))
   \langle 2 \rangle 4. p(x) = p(y) and q(x) = q(y)
   \langle 2 \rangle 5. x = y
      PROOF: Since T is a tabulation of R.
\langle 1 \rangle 4. f is surjective.
   \langle 2 \rangle 1. Let: y : \text{El}(T')
   \langle 2 \rangle 2. p'(y)Rq'(y)
      PROOF: Since T' is a tabulation of R.
   \langle 2 \rangle 3. There exists x : \text{El}(T) such that p(x) = p'(y) and q(x) = q'(y).
      PROOF: Since T is a tabulation of R.
\langle 1 \rangle5. If g: T \approx T' satisfies \forall t: \text{El}(T).p'(g(t)) = p(t) and \forall t: \text{El}(T).q'(g(t)) = p(t)
         q(t).
   \langle 2 \rangle 1. Let: g: T \approx T' satisfy \forall t: \text{El}(T).p'(g(t)) = p(t) and \forall t: \text{El}(T).q'(g(t)) = p(t)
                    q(t).
   \langle 2 \rangle 2. For all t : \text{El}(T) we have p'(f(t)) = p'(g(t)) and q'(f(t)) = q'(g(t)).
   \langle 2 \rangle 3. For all t : \text{El}(T) we have f(t) = g(t).
```

1.3.3 The Empty Set

Theorem 1.12. There exists a set which has no elements.

```
PROOF: \langle 1 \rangle 1. PICK a set A PROOF: By the Axiom of Infinity, a set exists. \langle 1 \rangle 2. Let: R:A \hookrightarrow A be the relation such that, for all x,y \in A, we have \neg (xRy) PROOF: By the Axiom of Comprehension. \langle 1 \rangle 3. Let: |R| be the tabulation of R with projections p,q:|R| \to A. PROVE: |R| has no elements. PROOF: By the Axiom of Tabulations. \langle 1 \rangle 4. Assume: for a contradiction r: \operatorname{El}(|R|) \langle 1 \rangle 5. p(r)Rq(r) \langle 1 \rangle 6. Q.E.D. PROOF: This contradicts \langle 1 \rangle 2.
```

Theorem 1.13. If E and E' have no elements then $E \approx E'$.

```
Proof:
\langle 1 \rangle 1. Let: E and E' have no elements.
\langle 1 \rangle 2. Let: F: E \hookrightarrow E' be the relation such that, for all x: El(E) and y: E'
              \mathrm{El}\,(E'), we have xFy.
  Proof: Axiom of Comprehension.
\langle 1 \rangle 3. F is a function.
  PROOF: Vacuously, for all x : El(E), there exists a unique y : El(E') such
  that xFy.
\langle 1 \rangle 4. F is injective.
  PROOF: Vacuously, for all x, y : \text{El}(E), if F(x) = F(y) then x = y.
\langle 1 \rangle 5. F is surjective.
  PROOF: Vacuously, for all y : El(E), there exists x : El(E) such that F(x) =
  y.
Definition 1.14 (Empty Set). The empty set \emptyset is the set with no elements.
1.3.4
           The Singleton
Theorem 1.15. There exists a set that has exactly one element.
Proof:
\langle 1 \rangle 1. PICK a set A that has an element.
  PROOF: By the Axiom of Infinity, there exists a set that has an element.
\langle 1 \rangle 2. Pick a : \text{El}(A)
\langle 1 \rangle 3. Let: R: A \hookrightarrow A be the relation such that, for all x, y: El(A), we have
              xRy if and only if x = y = a.
  Proof: By the Axiom of Comprehension.
\langle 1 \rangle 4. Let: |R| be the tabulation of R with projections p, q: |R| \to A.
       PROVE: |R| has exactly one element.
   PROOF: By the Axiom of Tabulations.
(1)5. Let: r : \text{El}(|R|) be the element such that p(r) = q(r) = a
  PROOF: Since aRa by \langle 1 \rangle 3.
\langle 1 \rangle 6. Let: s : \text{El}(|R|)
       Prove: s = r
\langle 1 \rangle 7. p(s)Rq(s)
  PROOF: By the Axiom of Tabulations.
\langle 1 \rangle 8. \ p(s) = q(s) = a
  PROOF: By \langle 1 \rangle 3.
\langle 1 \rangle 9. p(s) = p(r) and q(s) = q(r)
  PROOF: By \langle 1 \rangle 5.
\langle 1 \rangle 10. s=r
   Proof: By the Axiom of Tabulations.
```

Theorem 1.16. If A and B both have exactly one element then $A \approx B$.

Proof:

```
⟨1⟩1. Let: A and B both have exactly one element.

⟨1⟩2. Let: F: A \hookrightarrow B be the relation such that, for all x: El(A) and y: El(B), we have xFy.

⟨1⟩3. F is a function.

PROOF: If xFy and xFy' then y=y' because B has only one element.

⟨1⟩4. F is injective.

PROOF: If F(x) = F(x') then x = x' because A has only one element.

⟨1⟩5. F is surjective.

⟨2⟩1. Let: y: El(B)

⟨2⟩2. Let: x be the element of A.

⟨2⟩3. F(x) = y
```

Definition 1.17 (Singleton). Let 1 be the set that has exactly one element. Let * be its element.

1.3.5 Subsets

Definition 1.18 (Subset). A *subset* of a set A is a relation $1 \hookrightarrow S$. Given $S: 1 \hookrightarrow S$ and a: El(A), we write $a \in S$ for *Sa.

Theorem Schema 1.19. For any property P[X, x] where X is a set variable and x : El(X), the following is a theorem:

For any set A, there exists a set B and injection $i: B \to A$ such that, for all x: El(A), we have P[A, x] if and only if there exists b: El(B) such that i(b) = x.

Proof:

 $\langle 1 \rangle 1$. LET: $S: 1 \hookrightarrow A$ be the relation such that, for all e: El(1) and a: El(A), we have eSa if and only if P[A, a].

PROOF: Axiom of Comprehension.

- $\langle 1 \rangle 2$. Let: B be the tabulation of S with projections $p: B \to 1$ and $i: B \to A$. Proof: Axiom of Tabulations.
- $\langle 1 \rangle 3$. *i* is injective.
 - $\langle 2 \rangle 1$. Let: r, s : El(B)
 - $\langle 2 \rangle 2$. Assume: i(r) = i(s)
 - $\langle 2 \rangle 3. \ p(r) = p(s)$

PROOF: Since 1 has only one element.

 $\langle 2 \rangle 4$. r = s

Proof: Axiom of Tabulations.

- $\langle 1 \rangle 4$. For all x : El(A), we have P[A, x] if and only if there exists b : El(B) such that i(b) = x.
 - $\langle 2 \rangle 1$. Let: x : El(A)
 - $\langle 2 \rangle 2$. If P[A, x] then there exists b : El(B) such that i(b) = x
 - $\langle 3 \rangle 1$. Assume: P[A, x]
 - $\langle 3 \rangle 2. *Sx$

Proof: $\langle 1 \rangle 1$

```
\langle 3 \rangle 3. There exists b : \operatorname{El}(B) such that p(b) = * and i(b) = x Proof: Axiom of Tabulations. \langle 2 \rangle 3. For all b : \operatorname{El}(B) we have P[A, i(b)] \langle 3 \rangle 1. Let: b : \operatorname{El}(B) \langle 3 \rangle 2. p(b)Si(b) Proof: Axiom of Tabulations. \langle 3 \rangle 3. P[A, i(b)] Proof: \langle 1 \rangle 1
```

1.4 Composition

Definition 1.20 (Composite). Let $\phi : A \hookrightarrow B$ and $\psi : B \hookrightarrow C$. The *composite* $\psi \circ \phi : A \hookrightarrow C$ is the relation such that $a(\psi \circ \phi)c$ iff there exists b such that $a\phi b$ and $b\psi c$.

Definition 1.21 (Identity). For any set A, the *identity* function $id_A : A \to A$ is the function defined by $id_A(a) = a$.

Theorem 1.22. Composition of relations is associative, and the identity function is an identity for composition. The composite of functions is a function. The composite of injective functions is injective. The composite of surjective functions is surjective. The composite of bijections is a bijection. A function $f: A \to B$ is a bijection iff there exists a function $f^{-1}: B \to A$ such that $f^{-1}f = \mathrm{id}_A$ and $ff^{-1} = \mathrm{id}_B$, in which case f^{-1} is unique.

1.5 Axioms Part Two

Axiom 1.23 (Power Set). For any set A, there exists a set $\mathcal{P}A$, the power set of A, and a relation \in : $A \hookrightarrow \mathcal{P}A$, called membership, such that, for any subset S of A, there exists a unique $\overline{S} \in \mathcal{P}A$ such that, for all $x \in A$, we have $x \in \overline{S}$ if and only if $x \in S$.

We usually write just S for \overline{S} .

Axiom Schema 1.24 (Collection). Let P[X,Y,x] be a formula with set variables X and Y and an element variable $x \in X$. Then the following is an axiom. For any set A, there exists a set B, a function $p:B \to A$, a set Y and a relation $M:B \hookrightarrow Y$ such that:

- $\forall b \in B.P[A, \{y \in Y : bMy\}, p(b)]$
- For all $a \in A$, if $\exists Y.P[A, Y, a]$, then there exists $b \in B$ such that a = p(b).

Definition 1.25 (Universe). Let $E: U \hookrightarrow X$ be a relation. Let us say that a set A is *small* iff there exists $u \in U$ such that $A \approx \{x \in X : uEx\}$.

Then (U, X, E) form a *universe* if and only if:

- \mathbb{N} is U-small.
- For any U-small sets A and B and relation $R:A \hookrightarrow B$, the tabulation of R is U-small.
- If A is U-small then so is $\mathcal{P}A$
- Let $f:A\to B$ be a function. If B is U-small and $f^{-1}(b)$ is U-small for all $b\in B$, then A is U-small.
- If $p: B \to A$ is a surjective function such that A is U-small, then there exists a U-small set C, a surjection $q: C \to A$, and a function $f: C \to B$ such that q = pf.

Axiom 1.26 (Universe). There exists a universe.

Let $E:U\hookrightarrow X$ be a universe. We shall say a set is small iff it is U-small, and large otherwise.

1.6 Cartesian Product

Definition 1.27 (Cartesian Product). Let A and B be sets. The Cartesian product of A and B, $A \times B$, is the tabulation of the relation $A \hookrightarrow B$ that holds for all $a \in A$ and $b \in B$. The associated functions $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ are called the *projections*.

Given $a \in A$ and $b \in B$, we write (a, b) for the unique element of $A \times B$ such that $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$.

Chapter 2

Topology

2.1 Topological Spaces

Definition 2.1 (Topological Space). Let X be a set and $\mathcal{O} \subseteq \mathcal{P}X$. Then we say (X, \mathcal{O}) is a *topological space* iff:

- For any $\mathcal{U} \subseteq \mathcal{O}$ we have $\bigcup \mathcal{U} \in \mathcal{O}$.
- For any $U, V \in \mathcal{O}$ we have $U \cap V \in \mathcal{O}$.
- $X \in \mathcal{O}$

We call \mathcal{O} the topology of the topological space, and call its elements open sets. We shall often write X for the topological space (X, \mathcal{O}) .

Definition 2.2 (Closed Set). Let X be a topological space and $A \subseteq X$. Then A is *closed* iff X - A is open.

Proposition 2.3. A set B is open if and only if X - B is closed.

Proposition 2.4. Let X be a set and $C \subseteq \mathcal{P}X$. Then there exists a topology \mathcal{O} on X such that C is the set of closed sets if and only if:

- For any $\mathcal{D} \subseteq \mathcal{C}$ we have $\bigcap \mathcal{D} \in \mathcal{C}$
- For any $C, D \in \mathcal{C}$ we have $C \cup D \in \mathcal{C}$.
- $\varnothing \in \mathcal{C}$

In this case, \mathcal{O} is unique and is given by $\mathcal{O} = \{X - C : C \in \mathcal{C}\}.$

Definition 2.5 (Neighbourhood). Let X be a topological space, $Sx \in X$ and $U \subseteq X$. Then U is a *neighbourhood* of x, and x is an *interior* point of U, iff there exists an open set V such that $x \in V \subseteq U$.

Proposition 2.6. A set B is open if and only if it is a neighbourhood of each of its points.

Proposition 2.7. Let X be a set and $\mathcal{N}: X \to \mathcal{P}X$. Then there exists a topology \mathcal{O} on X such that, for all $x \in X$, we have \mathcal{N}_x is the set of neighbourhoods of x, if and only if:

- For all $x \in X$ and $N \in \mathcal{N}_x$ we have $x \in N$
- For all $x \in X$ we have $X \in \mathcal{N}_x$
- For all $x \in X$, $N \in \mathcal{N}_x$ and $V \subseteq \mathcal{P}X$, if $N \subseteq V$ then $V \in \mathcal{N}_x$
- For all $x \in X$ and $M, N \in \mathcal{N}_x$ we have $M \cap N \in \mathcal{N}_x$
- For all $x \in X$ and $N \in \mathcal{N}_x$, there exists $M \in \mathcal{N}_x$ such that $M \subseteq N$ and $\forall y \in M.M \in \mathcal{N}_y$.

In this case, \mathcal{O} is unique and is given by $\mathcal{O} = \{U : \forall x \in U.U \in \mathcal{N}_x\}.$

Definition 2.8 (Exterior Point). Let X be a topological space, $x \in X$ and $B \subseteq X$. Then x is an *exterior point* of B iff B - X is a neighbourhood of x.

Definition 2.9 (Boundary Point). Let X be a topological space, $x \in X$ and $B \subseteq X$. Then x is a boundary point of B iff it is neither an interior point nor an exterior point of B.

Definition 2.10 (Interior). Let X be a topological space and $B \subseteq X$. The *interior* of B, B° , is the set of all interior points of B.

Proposition 2.11. The interior of B is the union of all the open sets included in B.

Definition 2.12 (Closure). Let X be a topological space and $B \subseteq X$. The *closure* of B, \overline{B} , is the set of all points that are not exterior points of B.

Proposition 2.13. The closure of B is the intersection of all the closed sets that include B.

Proposition 2.14. A set B is open iff $X - B = \overline{X - B}$.

Proposition 2.15 (Kuratowski Closure Axioms). Let X be a set and $\neg: \mathcal{P}X \to \mathcal{P}X$. Then there exists a topology \mathcal{O} such that, for all $B \subseteq X$, \overline{B} is the closure of B, if and only if:

- $\overline{\varnothing} = \varnothing$
- For all $A \subseteq X$ we have $A \subseteq \overline{A}$
- For all $A \subseteq X$ we have $\overline{\overline{A}} = \overline{A}$
- For all $A, B \subseteq X$ we have $\overline{A \cup B} = \overline{A} \cup \overline{B}$

In this case, \mathcal{O} is unique and is defined by $\mathcal{O} = \{U : X - U = \overline{X - U}\}.$

2.1.1 Subspaces

Definition 2.16 (Subspace). Let X be a topological space and $X_0 \subseteq X$. The subspace topology on X_0 is $\{U \cap X_0 : U \text{ is open in } X\}$.

2.1.2 Topological Disjoint Union

Definition 2.17. Let X and Y be topological spaces. The *disjoint union* is X + Y where $U \subseteq X + Y$ is open if and only if $\kappa_1^{-1}(U)$ is open in X and $\kappa_2^{-1}(U)$ is open in Y.

2.1.3 Product Topology

Definition 2.18. Let X and Y be topological spaces. The *product topology* on $X \times Y$ is the set of all subsets $W \subseteq X \times Y$ such that, for all $(x, y) \in W$, there exist neighbourhoods U of x in X and Y of y in Y such that $U \times V \subseteq W$.

2.1.4 Bases

Definition 2.19 (Basis). Let X be a topological space. A *basis* for the topology on X is a set of open sets \mathcal{B} such that every open set is the union of a subset of \mathcal{B}

2.1.5 Subbases

Definition 2.20 (Subbasis). Let X be a topological space. A *subbasis* for the topology on X is a subset $S \subseteq \mathcal{P}X$ such that every open set is a union of finite intersections of S.

2.2 Continuous Functions

Definition 2.21 (Continuous). Let X and Y be topological spaces. A function $f: X \to Y$ is *continuous* iff, for every open set V in Y, the inverse image $f^{-1}(V)$ is open in X.

Proposition 2.22. 1. id_X is continuous

- 2. The composite of two continuous functions is continuous.
- 3. If $f: X \to Y$ is continuous and $X_0 \subseteq X$ then $f \upharpoonright X_0 : X_0 \to Y$ is continuous.
- 4. If $f: X + Y \to Z$, then f is continuous iff $f \circ \kappa_1 : X \to Z$ and $f \circ \kappa_2 : Y \to Z$ are continuous.
- 5. If $f: Z \to X \times Y$, then f is continuous iff $\pi_1 \circ f$ and $\pi_2 \circ f$ are continuous.

Definition 2.23 (Homeomorphism). Let X and Y be topological spaces. A homeomorphism between X and Y is a bijection $f: X \approx Y$ such that f and f^{-1} are continuous.

2.3 Convergence

Definition 2.24 (Convergence). Let X be a topological space. Let (x_n) be a sequence in X. A point a : El(X) is a *limit* of the sequence iff, for every neighbourhood U of a, there exists n_0 such that $\forall n \ge n_0.x_n \in U$.

2.4 Connected Spaces

Definition 2.25 (Connected). A topological space is *connected* iff it is not the union of two nonempty open disjoint subsets.

Proposition 2.26. The continuous image of a connected space is connected.

Proposition 2.27. Let X be a topological space and $A, B \subseteq X$. If $X = A \cup B$, $A \cap B \neq \emptyset$, and A and B are connected, then X is connected.

Proposition 2.28. If X and Y are nonempty topological spaces, then $X \times Y$ is connected if and only if X and Y are connected.

Definition 2.29 (Path-connected). A topological space X is path-connected iff, for any points $a, b \in X$, there exists a continuous function $\alpha : [0,1] \to X$, called a path, such that $\alpha(0) = a$ and $\alpha(1) = b$.

Proposition 2.30. The continuous image of a path connected space is path connected.

Proposition 2.31. Let X be a topological space and $A, B \subseteq X$. If $X = A \cup B$, $A \cap B \neq \emptyset$, and A and B are path connected, then X is path connected.

Proposition 2.32. If X and Y are nonempty topological spaces, then $X \times Y$ is path connected if and only if X and Y are path connected.

2.5 Hausdorff Spaces

Definition 2.33 (Hausdorff). A topological space is a *Hausdorff* space or a T_2 space iff any two distinct points have disjoint neighbourhoods.

Proposition 2.34. In a Hausdorff space, a sequence has at most one limit.

Proposition 2.35. 1. Every subspace of a Hausdorff space is Hausdorff.

- 2. The disjoint union of two Hausdorff spaces is Hausdorff.
- 3. The product of two Hausdorff spaces is Hausdorff.

2.6 Compactness

Definition 2.36 (Compact). A topological space is *compact* iff every open cover has a finite subcover.

Proposition 2.37. Let X be a compact topological space. Let P be a set of open sets such that, for all $U, V \in P$, we have $U \cup V \in P$. Assume that every point has an open neighbourhood in P. Then $X \in P$.

Proof:

```
\langle 1 \rangle 1. P is an open cover of X \langle 1 \rangle 2. PICK a finite subcover U_1, \ldots, U_n \in P \langle 1 \rangle 3. X = U_1 \cup \cdots \cup U_n \in P
```

Corollary 2.37.1. Let f be a compact space and $f: X \to \mathbb{R}$ be locally bounded. Then f is bounded.

PROOF: Take $P = \{U \text{ open in } X : f \text{ is bounded on } U\}$. \square

Proposition 2.38. The continuous image of a compact space is compact.

Proposition 2.39. A closed subspace of a compact space is compact.

Proposition 2.40. Let X and Y be nonempty spaces. Then the following are equivalent.

- 1. X and Y are compact.
- 2. X + Y is compact.
- 3. $X \times Y$ is compact.

Proposition 2.41. A compact subspace of a Hausdorff space is closed.

Proposition 2.42. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

2.7 Metric Spaces

Definition 2.43 (Metric Space). Let X be a set and $d: X^2 \to \mathbb{R}$. We say (X,d) is a *metric space* iff:

- For all $x, y \in X$ we have $d(x, y) \ge 0$
- For all $x, y \in X$ we have d(x, y) = 0 iff x = y
- For all $x, y \in X$ we have d(x, y) = d(y, x)
- (Triangle Inequality) For all $x, y, z \in X$ we have $d(x, z) \leq d(x, y) + d(y, z)$

We call d the metric of the metric space (X,d). We often write X for the metric space (X,d).

Definition 2.44 (Topology of a Metric Space). Let (X,d) be a metric space. The topology induced by the metric d is defined by: for $V \subseteq X$, we have V is open if and only if, for all $x \in V$, there exists $\epsilon > 0$ such that $\{y \in X : d(x,y) < \epsilon\} \subseteq V$.

Definition 2.45 (Metrizable). A topological space is *metrizable* iff there exists a metric that induces its topology.

Proposition 2.46. Every metrizable space is Hausdorff.