AutoFarm

André Mendes ¹, Arthur Costa¹, Felipe Picinin¹, Gabriel Amaral¹, Gabriel Carvalho ¹, Pedro Silva¹

¹Instituto de Ciências Exatas e Informática Pontifícia Universidade de Minas Gerais (PUC Minas) Belo Horizonte – MG – Brasil

{abc, def, ghi}@sga.pucminas.br

Resumo. O projeto AutoFarm visa automatizar o gerenciamento de fazendas pecuárias, abordando desafios como o controle do rebanho bovino, rodízio de pastagens, transações de compra e venda de gado, e gestão de funcionários. O sistema proposto permite o registro detalhado de cada animal, o planejamento eficiente das áreas de pastagem, e um controle financeiro preciso. Como resultado, o AutoFarm oferece uma plataforma centralizada que melhora a produtividade e a sustentabilidade das operações pecuárias. O desenvolvimento utiliza tecnologias como React.js e Node.js, promovendo a eficiência e a rastreabilidade dos processos da fazenda.

1. Introdução

A gestão de fazendas pecuárias é um processo complexo, que envolve o controle detalhado de diversos aspectos, como a saúde dos animais, o rodízio de pastagens, e a comercialização do gado. Atualmente, muitos produtores rurais enfrentam dificuldades devido à falta de sistemas centralizados e automatizados, resultando em decisões ineficazes que afetam a produtividade e sustentabilidade da fazenda.

No contexto da pecuária brasileira, as soluções tecnológicas voltadas para a automação e otimização das operações ainda são escassas. O uso de métodos manuais e desconectados para gerenciar o rebanho e o controle financeiro resulta em erros, desperdícios e baixa eficiência operacional.

Este trabalho tem como objetivo geral desenvolver o AutoFarm, um sistema que automatiza o controle de rebanhos e operações relacionadas à gestão de fazendas pecuárias. Especificamente, o sistema permitirá:

- O registro detalhado dos animais, incluindo idade, peso e histórico de saúde.
- O planejamento e monitoramento do rodízio de pastagens.
- A gestão financeira da fazenda, com controle de receitas e despesas.

O desenvolvimento do AutoFarm é importante para facilitar a tomada de decisões informadas e melhorar a eficiência das operações pecuárias, contribuindo diretamente para a produtividade e a sustentabilidade das propriedades rurais.

2. Referencial Teórico

2.1. Extensão Universitária

O projeto AutoFarm faz parte de uma iniciativa de extensão universitária da PucMinas, que visa promover uma plataforma para que estudantes e pesquisadores apliquem seus

conhecimentos diretamente em projetos que têm impacto real na sociedade, permitindo o desenvolvimento de soluções tecnológicas relevantes e eficazes.

2.2. Parceiro

Nosso parceiro é uma produtora rural que administra uma fazenda de propriedade de sua família, localizada na zona rural de Unaí, município brasileiro situado noroeste do estado de Minas Gerais. A fazenda, denominada Ilha, tem aproximadamente 230 hectares, o que equiva a 2,3 km² e, atualmente, conta com 160 cabeças de gado que precisam ser registradas e gerenciadas.

2.3. Tecnologias Envolvidas

O sistema utiliza tecnologias de desenvolvimento web como React.js no frontend e Node.js no backend, proporcionando uma plataforma responsiva e escalável.

2.4. Trabalhos relacionados

Diversos estudos destacam a importância da automação na agricultura e pecuária, mostrando que soluções de software podem reduzir custos e aumentar a eficiência operacional. Sistemas semelhantes, como o Agrosys, já foram implementados em outras regiões, mas ainda há lacunas em funcionalidades específicas, como o controle de pastagens.

3. Metodologia

A pesquisa realizada foi de natureza qualitativa, com um estudo de caso exploratório em uma fazenda pecuária. A coleta de dados foi realizada por meio de entrevistas com o proprietário, além de observações diretas das operações diárias da fazenda.

3.1. Etapas do Trabalho

Levantamento de Requisitos: Foram realizadas entrevistas com o proprietário da fazenda para identificar os principais desafios e necessidades operacionais.

Desenvolvimento do Sistema: O sistema foi desenvolvido utilizando metodologias ágeis, permitindo o ajuste contínuo às necessidades do cliente.

Testes e Validação: O sistema vai ser testado diretamente no ambiente da fazenda, com a participação dos funcionários para garantir a usabilidade e adequação às operações diárias.

3.2. Stakeholders

Dono da Fazenda: Responsável pela administração dos recursos da fazenda, com foco em aumentar a eficiência e sustentabilidade das operações, além de gerenciar o rodízio de pastagens e atualizar o status do rebanho.

Desenvolvedores: Alunos responsáveis pelo desenvolvimento e implementação do sistema.

4. Resultados

Resultados do trabalho devem ser apresentados. Consiste da descrição técnica da solução desenvolvida. Use figuras e tabelas sempre que necessário. Todas as etapas descritas na metodologia devem ter seus resultados apresentados aqui. Uma subseção para apresentar a empresa ou área pode ser uma opção adotada.

Devem ser incluídas informações que permitam caracterizar a arquitetura do software, seus componentes arquiteturais, tecnologias envolvidas, frameworks utilizados, etc.

Devem ser apresentados os artefatos criados para a solução do problema (ex. software, protótipos, especificações de requisitos, modelagem de processos, documentos arquiteturais, etc). Os artefatos não devem ser apresentados na íntegra, mas o texto deve apresentar o que foi feito como solução para o problema apresentado.

Deve ter no mínimo: lista de requisitos (pode ser uma tabela), diagrama de classe e modelo relacional do banco de dados.

Apresente também as telas da aplicação e uma explicação de como usá-las. O código fonte deve ser disponibilizado em um repositório público no GithubClassroom. O link para o repositório deve estar no Trabalho. Colocar também o link da aplicação.

Veja os exemplos de uso de Figuras e Tabelas. Todas as figuras e tabelas devem ser referenciadas no texto. Por exemplo, deve haver uma frase assim "A Figura 1 mostra ..." ou "A Tabela 1 mostra...

Figura 1. A typical figure

Link do vídeo:

Link do repositório:

Link da apresentação:

5. Conclusões e trabalhos futuros

A conclusão deve iniciar resgatando o objetivo do trabalho e os principais resultados alcançados. Em seguida, devem ser apresentados os trabalhos futuros.

Tabela 1. Variables to be considered on the evaluation of interaction techniques

	Chessboard top view	Chessboard perspective view
Selection with side movements	6.02 ± 5.22	7.01 <u>+</u> 6.84
Selection with in- depth movements	6.29 <u>+</u> 4.99	12.22 <u>+</u> 11.33
Manipulation with side movements	4.66 <u>+</u> 4.94	3.47 <u>+</u> 2.20
Manipulation with indepth movements	5.71 <u>+</u> 4.55	5.37 <u>+</u> 3.28

Acrescentar aqui a tabulação da estatística de avaliação da aplicação (questionário de avaliação final da ferramenta).

Referências