Bump mapping

Background

- Used for simulating bumps and wrinkles on the surface of an object
 - Technique was created by Jim Blinn in 1978

Bump mapping Vs. Displacement

- Bump mapping: the underlying object is not changed
 - o Instead, the surface normals are perturbed during lighting calculations
- Displacement mapping: actual geometric position of points over textured surface are displaced

Figure 18.1: Associating points on a surface with a surface geometry to be simulated

You can create the appearance of this simulated surface by modifying, or *perturbing*, the normal vectors of a flat surface to the orientation of the simulated surface, even though the actual surface is not in fact oriented in those directions.

Figure 18.2: Changing the normals of a flat surface to simulate geometric complexity

Mapping

Bump mapping Vs. Displacement

Uses of bump and displacement mapping

Some uses of Displacement Mapping:

- landscapes
- animating fields of grass or trees
- waves or ocean water (and animating it)
- animating fire, clouds, smoke, or any other particle-driven volume

Some uses of Bump Mapping:

- adding realism to textures (human skin, orange peel)
- adding small details to an object
- simulating grass from far away

http://youtu.be/sdl7sInBp9w?t=52s