2. Dominio e codominio di una funzione

Una funzione reale di variabile reale y = f(x) è una legge che associa ad ogni numero $x \in E \subseteq \mathbb{R}$ un numero reale y che si indica con f(x). Le due variabili x e y sono dette rispettivamente variabile indipendente e variabile dipendente.

L'insieme E è detto **dominio** o **insieme di esistenza** della funzione. L'insieme C_f , indicato anche con C_f , formato dai corrispondenti valori di y = f(x) al variare di x in E, è detto **codominio** o **insieme di variabilità** della funzione

Nella tabella sono riportati i domini di funzioni composte con polinomi

Tipo	Espressione di $f(x)$	Dominio E	esempio
polinomio	p(x)=	$\forall x \in \mathbb{R}$	$f(x) = 3x^3 + 2x$
	$= a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$		$E = \mathbb{R}$
razionale fratta	$= a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ $f(x) = \frac{p_1(x)}{p_2(x)}$	$\forall x \in \mathbb{R}/p_2(x) \neq 0$	$f(x) = \frac{4-5x}{x^2-4};$ $x^2 - 4 \neq 0$
irrazionale di	2n ($\forall x \in \mathbb{R}/p(x) \ge 0$	$E = \mathbb{R} - \{-2; 2\}$ $f(x) = \sqrt{2 - x};$
indice pari di	$f(x) = \sqrt[2n]{p(x)},$	$ v_{\lambda} \subset \mathbb{R}/p(\lambda) \geq 0$	$f(x) = \sqrt{2 - x};$ 2 - x > 0
un	$(n \in N; n \ge 1)$		$E = (-\infty; 2]$
polinomio			L = (0.00, 2]
irrazionale di indice dispari di un	$f(x) = \sqrt[2n+1]{p(x)},$ $(n \in N; n \ge 1)$	$\forall x \in \mathbb{R}$	$f(x) = \sqrt[3]{5 - x^2}$ $E = \mathbb{R}$
polinomio			
logaritmo di un	$f(x) = \log_a p(x)$ ($a \in \mathbb{R}$; $a > 0$; $a \ne 1$)	$\forall x \in \mathbb{R}/p(x) > 0$	$f(x) = \log(x^3 + 1) x^3 + 1 > 0$
polinomio			$E=(-1;+\infty)$
esponenziale	$f(x) = a^{p(x)}$	$\forall x \in \mathbb{R}$	$f(x) = e^{4-x}$
con	$(a \in \mathbb{R}; a > 0; a \neq 1)$		$E=\mathbb{R}$
polinomio a			
esponente esponenziale	$f(x) = [p_1(x)]^{p_2(x)}$	$\forall x \in \mathbb{R}/p_1(x) > 0$	$f(x) = (1 - x^2)^{4 - x}$
con base un polinomio	$\int (\lambda) - [p_1(\lambda)]$		$ \begin{array}{c c} 1 - x^2 > 0 \\ E = (-1; 1) \end{array} $
Coseno e	$f(x) = \cos p(x)$	$\forall x \in \mathbb{R}$	$f(x) = \cos\left(x + \frac{\pi}{6}\right)$
seno	$f(x) = \sin p(x)$		$E = \mathbb{R}$
			$f(x) = \sin(2x - \frac{\pi}{4})$
			$E = \mathbb{R}$
tangente	$f(x) = tg \ p(x)$	$\forall x \in \mathbb{R}/p(x) \neq \frac{\pi}{2} + k\pi$	f(x) = tg(2x)
	, , , , , , , , , , , , , , , , , , ,	$(k \in \mathbb{Z})$	$2x \neq \frac{\pi}{2} + k\pi;$
			$E = \left\{ \forall x \in \mathbb{R}/x \neq \frac{\pi}{4} + k \frac{\pi}{2} \right\}$

cotangente	$f(x) = ctg \ p(x)$	$\forall x \in \mathbb{R}/p(x) \neq \pi + k\pi$ $(k \in \mathbb{Z})$	$f(x) = \operatorname{ctg}(x - \frac{\pi}{6})$ $x - \frac{\pi}{6} \neq \pi + k\pi;$ $E = \left\{ \forall x \in \mathbb{R}/x \neq \frac{7\pi}{6} + k\pi \right\}$
Coseno e seno iperbolico	$f(x) = \cosh p(x)$ $f(x) = \sinh p(x)$	$\forall x \in \mathbb{R}$ $coshx = \frac{e^x + e^{-x}}{2}$	$f(x) = \cosh(4x)$ $E = \mathbb{R}$
		$sinhx = \frac{e^x - e^{-x}}{2}$	$f(x) = sinh(2x + 3)$ $E = \mathbb{R}$

Negli altri casi devono essere verificate simultaneamente le condizioni di esistenza di tutte le funzioni componenti, cioè le condizioni di esistenza formano sistema le cui soluzioni individuano il dominio della funzione.

Esempi

1. Il dominio della funzione $f(x) = \frac{1}{1-\sqrt{3-x}}$ si ottiene risolvendo il sistema radice di indice pari $\begin{cases} 3-x \geq 0 \\ 1-\sqrt{3-x} \neq 0 \end{cases} \Rightarrow \begin{cases} x \leq 3 \\ x \neq 2 \end{cases}$

Pertanto $E = (-\infty; 3] - \{2\}$

2. Il dominio della funzione $f(x) = \frac{\sqrt{x} - \sqrt{6 - 2x}}{\sqrt[3]{\log x}}$ si ottiene risolvendo il sistema radice di indice pari radice di indice pari denominatore non nullo argomento del logaritmo > 0 $\begin{cases} x \geq 0 \\ 6 - 2x \geq 0 \\ \log x \neq 0 \\ x > 0 \end{cases} \Rightarrow \begin{cases} x \geq 0 \\ x \leq 3 \\ x \neq 1 \\ x > 0 \end{cases}$ Pertanto $E = (0; 3] - \{1\}$

3. Il dominio della funzione $f(x) = \frac{\log(e^x - 1)}{\frac{\pi}{4} - arctgx}$ si ottiene risolvendo il sistema $argomento \ del \ logaritmo > 0 \ \begin{cases} \frac{e^x - 1 > 0}{\frac{\pi}{4} - arctgx \neq 0} \Rightarrow \begin{cases} x > 0 \\ x \neq 1 \end{cases}$

Pertanto $E = (0; +\infty) - \{1\}.$

Esercizi

(gli esercizi con asterisco sono avviati)

Determinare il dominio E delle sequenti funzioni:

$$1)f(x) = x^2(2 - x^3)$$

$$2)f(x) = x^4 - 3x^3 + x^2 - x + 5$$

3)
$$f(x) = \frac{x^4 - x^3 + 1}{x^4 + 5}$$

$$4)f(x) = \frac{3x+1}{x^4-1}$$

$$5)f(x) = 3x + \frac{x+1}{x^3+2}$$

6)
$$f(x) = \frac{x-1}{(x^5+1)(x^4+1)}$$

$$7)f(x) = \frac{\sqrt[3]{x}}{x^2 + 6}$$

8)
$$f(x) = \sqrt{\frac{5}{1-x}}$$

*9)
$$f(x) = \sqrt{x(x+2)}$$

11)
$$f(x) = \sqrt{3-x} - \sqrt{x-2}$$
 12) $f(x) = \frac{1}{x^2 + \sqrt{4-x}}$

$$12)f(x) = \frac{1}{x^2 + \sqrt{4-x}}$$

$$13)f(x) = \sqrt{\frac{x-1}{x}}$$

$$14)f(x) = \frac{\sqrt{x-1}}{\sqrt{x}}$$

* 15)
$$f(x) = \frac{\sqrt{x} + \sqrt{2x-1}}{\sqrt{2x-3} - \sqrt{5-x}}$$

$$16)f(x) = \frac{\sin x}{\cos 2x}$$

17)
$$f(x) = \frac{x^2 + x + 2}{|x - 3| + 1}$$

$$*18) f(x) = \frac{x+1}{x^3-|x|}$$

$$19)f(x) = e^{\frac{1}{x}}$$

$$20)f(x) = \frac{2}{3 - e^x}$$

$$(21)f(x) = \frac{x^2}{1-e^x}$$

$$*22)f(x) = \frac{\log x}{x-2}$$

$$23) f(x) = log(1 + x + x^2)$$

$$24)f(x) = \log(x^2 + x)$$

$$(25)f(x) = \frac{4-2x}{\log x}$$

$$26)f(x) = logx + \log(x+1)$$

* 27)
$$f(x) = \frac{\sqrt[3]{x+1}}{\log(4-x) - \log(2+x)}$$

$$28)f(x) = \frac{\sqrt[3]{x+1}}{\log(4-x) - \log(2+x)}$$

$$29)f(x) = \frac{e^{2x}}{\log|x|}$$

$$30)f(x) = log(arctgx)$$

$$31)f(x) = \frac{1}{e^{3x} + \sqrt{e^{3x} - 1}}$$

* 32)
$$f(x) = e^{\frac{1}{|x|+1}} \cdot \log_3|x-1|$$
.

Soluzioni

1.S.
$$E = \mathbb{R}$$
 ; **2.** S. $E = \mathbb{R}$; **3.S**. $E = \mathbb{R}$; **4.** S. $E = \mathbb{R} - \{-1, 1\}$; **5.** S. $E = \mathbb{R} - \{-\sqrt[3]{2}\}$;

6. S.
$$E = \mathbb{R} - \{-1\};$$
 7. S. $E = \mathbb{R};$ **8.** S. $E = (-\infty; 1);$

*9. S.
$$E = (-\infty; -2] \cup [0; +\infty)$$
 (La condizione di realtà $x(x+2) \ge 0 \Rightarrow x \le -2 \forall x \ge 0$);

*10. S.
$$E = [0; +\infty)$$
; (Le condizioni di realtà $\begin{cases} x \ge 0 \\ x > -2 \end{cases} \Rightarrow x \ge 0$)

11.S.
$$E = [2;3]$$
; **12. S.** $E = (-\infty; 4]$; **13. S.** $E = (-\infty; 0) \cup [1; +\infty)$; **14.S.** $E = [1; +\infty)$;

*15.S.
$$E = \left[\frac{3}{2}; 5\right] - \left\{\frac{8}{3}\right\}$$

$$\begin{array}{c} \textit{radice di indice pari} \\ \textit{radice di indice pari} \\ \textit{(radice di indice pari} \\ \textit{radice di indice pari} \\ \textit{radice di indice pari} \\ \textit{denominatore non nullo} \end{array} \begin{cases} x \geq 0 \\ 2x - 1 \geq 0 \\ 2x - 3 \geq 0 \\ \hline 5 - x \geq 0 \\ \sqrt{2x - 3} - \sqrt{5 - x} \neq 0 \end{cases} \Rightarrow \begin{cases} x \geq 0 \\ x \geq \frac{1}{2} \\ x \geq \frac{3}{2} \\ x \leq \frac{3}{2} \end{cases} \Rightarrow \frac{3}{2} \leq x \leq 5 \text{ escluso } x = \frac{8}{3});$$

16.S.
$$E = \left\{ x \in \mathbb{R}, \ x \neq \frac{\pi}{4} + k \frac{\pi}{2} \right\};$$
 17. $S.E = \mathbb{R};$

*18.S.
$$E = \mathbb{R} - \{0; 1\};$$

(Deve essere
$$x^3 - |x| \neq \mathbf{0} \Rightarrow \begin{cases} x^3 - x \neq 0 & \text{se } x \geq 0 \to x \neq 0, x \neq 1 \\ x^3 + x \neq 0 & \text{se } x < 0 & \forall x \end{cases} \dots$$

19. S.
$$E = \mathbb{R}_0$$
; **20. S.** $E = \mathbb{R} - \{log3\}$; **21. S.** $E = \mathbb{R} - \{0\}$;

*22. S.
$$E = (0; 2) \cup (2; +\infty); (argomento del logaritmo > 0 \begin{cases} x > 0 \\ x - 2 \neq 0 \ per \ x \neq 2 \end{cases});$$

23. S.
$$E = \mathbb{R}$$
; **24.** S. $E = (-\infty; -1) \cup (0; +\infty)$; **25.** S. $E = (0; +\infty) - \{1\}$; **26.** S. $E = (0; +\infty)$;

*27.S.
$$E = (-2; 4) - \{1\};$$

$$\begin{array}{c} argomento \ del \ logaritmo > 0 \\ (argomento \ del \ logaritmo > 0 \\ denominatore \ non \ nullo \end{array} \begin{array}{c} 4-x>0 \\ 2+x>0 \\ \log(4-x) \neq \log(2+x) \end{array} \Rightarrow \begin{cases} x < 4 \\ x > -2 \ ... \end{cases}$$

28. S.
$$E = (-2; 4) - \{1\}$$
; **29.** S. $E = \mathbb{R} - \{-1; 0; 1\}$; **30.** S. $E = (0; +\infty)$; **31.** S. $E = [0; +\infty)$;

*32. S.
$$E = \mathbb{R} - \{1\}$$
; $\binom{denominatore\ non\ nullo}{argomento\ del\ logaritmo} \begin{cases} |x| + 1 \neq 0 \ \forall x \\ |x - 1| > 0 \ \forall x \neq 1 \end{cases}$.