Lecture 19. Introduction to Network Analysis

COMP90051 Statistical Machine Learning

Semester 2, 2015 Lecturer: Andrey Kan

Copyright
University of
Melbourne

Networks in real life: the Internet

Networks in real life: gene regulatory network

Networks in real life: transport map

Graph as a mathematical abstraction

- Network = graph
- Graph is a tuple $G = \{V, E\}$, where V is a set of vertices, and $E \subseteq V \times V$ is a set of pairs of vertices (edges)
 - Undirected graph: unordered pair
 - * Directed graph: ordered pair
- Graphs model pairwise relations between objects
- Graph is a major type of data
 - Other types of data: feature sets, sequences, images, distributions
 - * Mixed types, e.g., graph where each vertex is a sequence

Basic definitions (refresher)

- Vertex degree is the number of incident edges
 - * For directed graphs, in-degree and out-degree denote the number of adjacent incoming and outgoing edges, respectively
- A path is a sequence of vertices, such that each two consecutive vertices are connected
 - * For directed graphs, edges in path must point in the same direction
- A subgraph is a graph with a subset of vertices and edges from the original graph
 - * For graph $G = \{V, E\}$, H is a subgraph if $H = \{V_H, E_H\}$, where $V_H \subset V$, $E_H \subset E$ and $E_H \subseteq V_H \times V_H$

Basic definitions (refresher)

- Connected component is a maximal subgraph where each vertex is reachable from each other vertex via a path
 - * Reachable means there exists a path
 - * Maximal means that after adding any additional vertices, the new subgraph is not a connected component anymore

 Clique is a subgraph where each vertex is connected to each other vertex (for undirected graphs)

Types of graphs

- Directed vs undirected
- Allowing self-edges or not
- Allowing multi-edges or not
- Weighted or unweighted
 - * Weights on edges or on vertices
- Unlabeled vs labelled
 - Labels on edges or vertices

 In graphs (especially unlabeled and unweighted) most of the information is contained in the way the vertices are connected (connectivity structure aka topology)

Adjacency matrix for directed graph

- Each graph $G = \{V, E\}$ can be represented with an adjacency matrix A
 - * Size of A is $|V| \times |V|$
 - * $A_{ij} = 1 \Leftrightarrow (i \rightarrow j) \in E$, otherwise $A_{ij} = 0$

	1	2	3
1			
2			
3			

Adjacency matrix for undirected graphs

- For undirected graphs, adjacency matrix is symmetric
- Diagonal elements are zeros unless self-edges are allowed

It's like a binarized kernel matrix or a pairwise similarity matrix!

Adjacency matrix

- Rows and columns of the adjacency matrix can be permuted (simultaneously)
 - * This is also true for directed graphs

	1	2	3
1			
2			
3			

	2	1	3
2			
1			
3			

More network examples

- Probabilistic Graphical Models
 - Vertices variables
 - Directed edges model dependencies
- Neural networks
 - Vertices values (input, intermediate, output)
 - Directed edges flow of computation
- Metro maps
 - Vertices stations
 - Undirected edges tunnels, rails
- Social relations
 - Vertices individuals
 - Undirected edges pairs of individuals often seen together

Learning from networks

- In this course we focus on real-world networks
 - Naturally emerging networks
 - Emphasis on social and biological networks
 - * Examples: the Internet, Facebook friendship, gene interaction
- Growing interest as more and more data becomes available
- Example problems / types of analysis
 - Link prediction
 - Identifying frequent subgraphs
 - Identifying influential vertices
 - Community finding

Properties of real-world networks

- Real-world networks are not homogeneous
 - Different vertices play different "roles"

Properties of real-world networks

- Sparse adjacency matrix
- Small world phenomenon
- Right-skewed degree distribution
- Clustering (transitivity)

Properties of real-world networks: Sparsity

- Given |V| vertices the maximum number of possible edges is $|V| \times |V|$
- However, many real-world networks have much fewer number of edges, often in the order of |V|

 The resulting adjacency matrix is sparse: most of its elements are zero

	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

Properties of real-world networks: Small world

- Small world phenomenon: most vertices can be reached from any other vertex with a small number of hops
 - * "Six degrees of separation"
 - Friends of friends chain

Properties of real-world networks: Power law

- Right-skewed degree distribution is common
 - * Few "hubs", and a large number of peripheral vertices
- Often asymptotically follows a power law $P(k) \sim k^{-\gamma}$
 - * In many networks $2 < \gamma < 3$
- "The rich get richer" or Preferential attachment

Properties of real-world networks: Clustering

- If two vertices are both connected to the same third vertex, they are more likely to be connected
 - More likely compared to two arbitrarily chosen vertices
- This property is also called network transitivity
- Clustering coefficient

$$C = \frac{3 \times (\#triangles)}{(\#connected\ triples\ of\ vertices)}$$

• In many networks 0.1 < C < 0.5

Checkpoint

- Which of the following statements is true?
 - There is a finite number of paths in a real-world network
 - Maximum shortest path across all pairs of vertices tends to be small for real-world networks
 - In a small network each vertex can be accessed from any other vertex via a path

The Google PageRank algorithm

- Rank webpages by some measure importance
- Consider a directed graph where vertices are webpages, and edges are links

PageRank: Ranking scheme revisited

- PageRank assigns a score of importance to each page (vertex)
- A recursive definition: a page is important if it is referred by important vertices

$$p_{i} = \frac{(1-d)}{N} + d\sum_{j=1}^{N} A_{ji} \frac{p_{j}}{c_{j}}$$

- *A* is the adjacency matrix:
 - * A_{ji} equals to 1 if there is a link from page j to page i, otherwise A_{ji} is 0
- (1-d) is the minimum guaranteed rank
- c_j is the number of pages linked from page j (out-degree of vertex j)
- N is the total number of pages

PageRank: Interpretation

 A recursive definition: a page is important if it is referred by important vertices

$$p_{i} = \frac{(1-d)}{N} + d \sum_{j=1}^{N} A_{ji} \frac{p_{j}}{c_{j}}$$

- PageRank p_i can be interpreted as a likelihood that a random surfer will land at page i
 - * The surfer starts from a random page
 - Given a current page, the surfer follows a random link on this page
 - * With a small probability the surfer does not follow any links from the current page, but jumps to a random page

PageRank: Iterative solution

- At time t = 0 assume $p_i(0) = \frac{1}{N}$
- At each subsequent time step

$$p_i(t+1) = \frac{1-d}{N} + d\sum_{j=1}^N A_{ji} \frac{p_j(t)}{c_j}$$

In matrix form

$$\boldsymbol{p}(t+1) = \frac{1-d}{N}\boldsymbol{e} + dA^T D_c^{-1} \boldsymbol{p}(\boldsymbol{t})$$

- * Here *e* is a vector of *N* ones
- * D_c is a diagonal matrix with elements $\frac{1}{c_i}$
- Stop when convergence is observed

$$|\boldsymbol{p}(t+1) - \boldsymbol{p}(t)| < \varepsilon$$

PageRank: Iterative solution

- Assume a steady state at $t \to \infty$
 - * Steady state means that for some large t: p(t+1) = p(t)
- We have that

$$\boldsymbol{p} = \frac{1 - d}{N} \boldsymbol{e} + dA^T D_c^{-1} \boldsymbol{p}$$

- * Here e is a vector of N ones
- * D_c is a diagonal matrix with elements $\frac{1}{c_j}$
- After rearranging the terms one gets

$$\boldsymbol{p} = (I - dA^T D_c^{-1})^{-1} \frac{1 - d}{N} \boldsymbol{e}$$

- Here I is the identity matrix
- Proofs of existence and uniqueness of solution are omitted here

PageRank: Solving using the power method

A recursive definition: a page is important if it is referred by important vertices

$$p_i = (1 - d) + d \sum_{j=1}^{N} A_{ji} \frac{p_j}{c_j}$$

• Let e be a vector of N ones and D_c be diagonal matrix with elements c_j . Also assume that PageRank is normalized $e^T p = N$. PageRank equation can then be rewritten in a matrix form

$$\boldsymbol{p} = (1 - d)\boldsymbol{e} + A^T D_c^{-1} \boldsymbol{p} = \left[\frac{1}{N} (1 - d) \boldsymbol{e} \boldsymbol{e}^T + dA^T D_c^{-1} \right] \boldsymbol{p}$$

- The expression in the square braces contains known information, denote the expression as X. One gets $\boldsymbol{p} = X\boldsymbol{p}$
- Vector p (ranks) can be found using the power method
 - * The proof of this statement involves relating the PageRank equation to Markov chains

Summary

- Recall basic definitions of graph theory (vertex degree, paths, connected components)
- How to construct an adjacency matrix?
- Give examples of real-world networks
- What are the properties of real-world networks?
- What is the aim of PageRank algorithm, and what is the intuition behind its main equation?