Spring 2019

數位控制系統 Digital Control Systems

DCS-21 A Design Example

Feng-Li Lian NTU-EE Feb19 – Jun19

IEEE CSS

March 2019

Publications Content Digest

A Flexible Robot Arm:

CT Input-Output Model:

$$\frac{\text{Output}}{\text{Input}} = \frac{w_2}{I} = \frac{B(s)}{A(s)} = G(s)$$

CT State-Space Model:

$$x_1 = \phi_1 - \phi_2$$
 $x_2 = w_1$ $x_3 = w_2$ $x_2 = \mathbf{C} \mathbf{x}$ $x_3 = \mathbf{C} \mathbf{x}$

Problem, Model, Analysis, and Design

Feng-Li Lian © 2019 DCS21-DesignExample-4

Stability:

■ Plant Poles & Zeros:
$$G(s) = \frac{B(s)}{A(s)}$$
 $\Rightarrow p_{p1}, p_{p2}, \cdots$

■ Characteristics:
$$\Rightarrow$$
 Damping Ratio: ζ_p

$$\Rightarrow$$
 Natural Frequency: w_p

- Root Locus & Bode Plot
- Impulse Response & Step Response:

■ Design Specifications: • ζ_d , w_d

■ Sampling Time: $\Rightarrow w_N > (10 \sim 20)w_d$

$$\Rightarrow h = \frac{2\pi}{w_s}$$
 $w_s = 2w_N$

DT Models:

$$G(z) = \frac{B(z)}{A(z)} \qquad x(k+1) = \mathbf{F} x(k) + \mathbf{H} u(k)$$
$$y(k) = \mathbf{C} x(k)$$

Desired Poles & Zeros:

 $\Rightarrow p_{d1}, p_{d2}, \cdots$

Desired Eigenvalues:

Problem, Model, Analysis, and Design

Feng-Li Lian © 2019 DCS21-DesignExample-6

Block Diagram of a Typical Control System:

$$G(z) = \frac{B(z)}{A(z)}$$
 $p_{p1}, p_{p2}, \dots \Rightarrow p_{d1}, p_{d2}, \dots$

$$\mathbf{x}(k+1) = \mathbf{F} \mathbf{x}(k) + \mathbf{H} u(k)$$

$$y(k) = \mathbf{C} \mathbf{x}(k)$$

$$\lambda_{p1}, \lambda_{p2}, \dots \Rightarrow \lambda_{d1}, \lambda_{d2}, \dots$$

Simulation Study

Feng-Li Lian © 2019 21-DesignExample-8

Root Locus:

Step Reponses of Different Gains:

