Code-breaking algorithms have also existed for centuries. It is usually easier to code in "high-level" languages than in "low-level" ones. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Programs were mostly entered using punched cards or paper tape. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Programming languages are essential for software development. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Normally the first step in debugging is to attempt to reproduce the problem. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Use of a static code analysis tool can help detect some possible problems. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Code-breaking algorithms have also existed for centuries. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Normally the first step in debugging is to attempt to reproduce the problem. Techniques like Code refactoring can enhance readability. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Scripting and breakpointing is also part of this process. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Use of a static code analysis tool can help detect some possible problems. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams.