Содержание

1	Лин	Линейные пространства. Пространства со скалярным произведением.					
	1.1	Неравенство Коши-Бунековского-Шварца	٠				
	1.2	Процесс ортогонализации Грама-Шмидта и QR-разложение матрицы	4				
	1.3	Матрица Грама и критерий линейной зависимости	Ę				
	1.4 1.5	Общий вид скалярного произведения в конечномерном пространстве Задача о наилучшем приближении вектора на конечномерном подпро-	6				
	1.0	странстве в пространстве со скалярным произведением	7				
2	Линейные операторы.						
	2.1	Матрица линейного оператора в паре базисов. Изменение матрицы опера-					
		тора при изменении пары базисов	8				
	2.2	Эквивалентность матриц, подобие матриц и инварианты подобия	Ć				
	2.3	Ядро и образ линейного оператора. Соотношение между рангом и дефек-					
			11				
	2.4	Обратимый оператор. Критерий обратимости. Линейность обратного опе-					
			12				
	2.5	Оператор проектирования	12				
	2.6	Собственные значения и собственные векторы. Характеристический мно-					
			13				
	2.7		14				
	2.8	Операторы простой структуры и диагонализуемые матрицы. Критерий					
			15				
	2.9	Верхняя треугольная форма матрицы линейного оператора в комплексном					
			15				
	2.10		17				
		Нильпотентные и квазискалярные операторы (матрицы). Критерий ниль-					
			17				
	2.12	Прямая сумма линейных операторов (матриц). Теорема о расщеплении					
			18				
	2.13	Корневое расщепление линейного оператора.	19				
			20				
		Условие линейной независимости составной системы векторов Крылова					
			21				
	2.16		$\frac{1}{2}$				
			24				
		Единственность жордановой формы линейного оператора (матрицы)	25				
		Критерий подобия комплексных матриц	26				
			26				
			28				
			29				

В Линейные операторы в пространствах со скалярным произведение			
	3.1	Существование, линейность, единственность сопряжённого оператора	29
	3.2	Матрицы оператора и сопряжённого к нему в паре биортогональных ба-	
		зисов.	31
	3.3	Критерии нормальности оператора (матрицы)	31
	3.4	Критерии унитарности и эрмитовости оператора (матрицы)	32
	3.5	Эрмитово разложение оператора (матрицы) и эрмитовость знакоопреде-	
		ленного оператора в унитарном пространстве	33
	3.6	Существование и единственность неотрицательно определенного квадрат-	
		ного корня из неотрицательно определенной матрицы	34
	3.7	Блочно-диагональная форма вещественной нормальной матрицы	35
	3.8	Блочно-диагональная форма ортогональной матрицы. Матрицы враще-	
		ния и отражения.	35

Линейные пространства. Пространства со скалярным произведением.

1.1 Неравенство Коши-Бунековского-Шварца.

Опр. Пусть V - вещественное линейное пространство, на котором каждой упорядоченной паре векторов $x,y \in V$ поставлено в соответствие вещественное число (x,y) таким образом, что:

- $(x,x) \ge 0 \,\forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $(x,y) = (y,x) \forall x,y \in V$;
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $(\alpha x, y) = \alpha(x, y) \, \forall \alpha \in \mathbb{R} \, \forall x, y \in V.$

Число(x,y) называется скалярным произведением векторов x,y. Вещественное линейное пространство со скалярным произведение называется евклидовым.

Опр. Пусть V - комплексное линейное пространство, на котором каждой упорядоченной паре векторов $x,y \in V$ поставлено в соответствие комплексное число (x,y) таким образом, что:

- $(x,x) \ge 0 \,\forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $\bullet \ (x,y) = \overline{(y,x)} \, \forall x,y \in V;$
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $\bullet \ (\alpha x,y) = \alpha(x,y) \, \forall \alpha \in \mathbb{C} \, \forall x,y \in V.$

 $\mathit{Число}(x,y)$ называется скалярным произведением векторов x,y. Комплексное линейное пространство со скалярным произведение называется унитарным.

Опр. В произвольном евклидовом или унитарном пространстве величина $|x| := \sqrt{(x,x)}$ называется длиной вектора.

Теорема (Неравенство Коши-Буняковского-Шварца). Скалярное произведение векторов и их длины связано неравенством $|(x,y)| \le |x||y|$. Равенство достигается в том и только в том случае, когда векторы x и у линейно зависимы.

 \mathcal{A} -во. Случай (x,y) = 0 очевиден. В противном случае запишем $(x,y) = |(x,y)|\xi$, где $\xi = e^{i\phi}$, и рассмотрим функцию вещественного аргумента $F(t) = (x + t\xi y, x + t\xi y) = (x,x) + t\overline{\xi(x,y)} + t\overline{\xi(x,y)} + t^2\xi\overline{\xi}(y,y) = t^2|y|^2 + 2t|(x,y)| + |x|^2$. В силу свойств скалярного произведения $F(t) \geq 0$ при всех вещественных t. Значит $D \leq 0$, $D = |(x,y)|^2 - |x|^2|y|^2 \leq 0 \implies |(x,y)| \leq |x||y|$. Равенство означает, что $D = 0 \implies (x + t\xi y, x + t\xi y) = 0 \implies x + t\xi y = 0$.

1.2 Процесс ортогонализации Грама-Шмидта и QR-разложение матрицы.

Теорема. Для любой линейно независимой системы векторов a_1, \ldots, a_m существует ортогональная система p_1, \ldots, p_m такая, что $L(p_1, \ldots, p_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

 \mathcal{A} -60. Положим, что $p_1 = a_1 \implies L(p_1) = L(a_1)$. Предположим, что уже постоена ортогональная система p_1, \ldots, p_{k-1} такая, что $L(p_1, \ldots, p_i) = L(a_1, \ldots, a_i)$ при $1 \le i \le k-1$. Тогда вектор

$$p_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i.$$

будет ортогонален каждому из векторов p_1, \ldots, p_{k-1} :

$$(p_k, p_j) = (a_k, p_j) - \left(\sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i, p_j\right) = (a_k, p_j) - \frac{(a_k, p_j)}{(p_j, p_j)} (p_j, p_j) = 0.$$

Кроме того,
$$p_k \in L(p_1, \dots, p_{k-1}, a_k) = L(a_1, \dots, a_{k-1}, a_k)$$
 и $a_k \in L(p_1, \dots, p_{k-1}, p_k) \implies L(p_1, \dots, p_{k-1}, p_k) = L(a_1, \dots, a_{k-1}, a_k)$.

Теорема об ортогонализации содержит, по существу, следующий алгоритм построения ортонормированной системы q_1, \ldots, q_m в линейной оболочке заданной линейно независимой системы a_1, \ldots, a_m :

$$p_k := a_k - \sum_{i=1}^{k-1} (a_k, q_i)q_i, \quad q_k := \frac{p_k}{|p_k|}, \quad k = 1, 2, \dots, m.$$

Этот алгоритм называется процессом ортогонализации Грама-Шмидта.

Пусть матрица A имеет линейно независимые столбцы a_1, \ldots, a_m , а процесс ортогонализации ее столбцов относительно естественного скалярного произведения дает ортонормированные столбцы q_1, \ldots, q_m . Процесс ортогоналиации устроен таким образом, что a_k есть линейная комбинация столбцов q_1, \ldots, q_k :

$$a_k = \sum_{i=1}^k r_{ik} q_i \Leftrightarrow A = QR, \ Q = [q_1, \dots, q_m], \ R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ & r_{22} & \dots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}.$$

Опр. Разложение A = QR, где Q имеет ортонормированные столбцы, а R - верхняя треугольная матрица, называется QR-разложением матрицы A. Таким образом, для любой прямоугольной матрицы c линейно независимыми столбцами существует QR-разложение.

Теорема (Теорема о QR-разложении). Любая квадратная комплексная матрица представима в виде произведения унитарной и верхней треугольной матрицы.

 \mathcal{A} -во. Любая квадратная матрица A является пределом последовательности невырожденных матриц $A_k = A - \alpha_k I$, так как заведомо имеется последовательность чисел $\alpha_k \to 0$, отличных от собственных значений матрицы A. Для каждой невырожденной матрицы A_k , как мы уже знаем, существует QR-разложение: $A_k = Q_k R_k$. Последовательность Q_k принадлежит компактному множеству матриц, поэтому из нее можно выделить сходящуюся подпоследовательность $Q_{k_l} \to Q$. Матрица Q будет, конечно, унитарной, а предел последовательности $R_{k_l} = Q_{k_l}^* A_{k_l} \to Q^* A$ является, очевидно, верхней треугольной матрицей.

1.3 Матрица Грама и критерий линейной зависимости.

Теорема (теорема о перпендикуляре). Для любого вектора x в произвольном пространстве со скалярным произведением и любого конечномерного подпространства $L \subset V$ существуют и единственны перпендикуляр h и проекция z такие, что

$$x = z + h, z \in L, h \perp L, |x - z| = |h| \le |x - y| \, \forall y \in L.$$

 \mathcal{A} -во. Если $x\in L$, то полагаем z=x и h=0. Пусть v_1,\ldots,v_k - базис подпространства L. В случае $x\not\in L$ система v_1,\ldots,v_k,x будет линейно независимой. Применив к ней процесс ортогонализации Грама-Шмидта, получим ортонормированную системы q_1,\ldots,q_k,q_{k+1} такую, что $L=L(q_1,\ldots,q_k)$ и $x\in L(q_1,\ldots,q_k,q_{k+1})$, а искомые проекция и перпендикуляр получаются из разложения $x=\alpha_1q_1+\cdots+\alpha_kq_k+\alpha_{k+1}q_{k+1}$ очевидным образом: $z=\alpha_1q_1+\cdots+\alpha_kq_k, h=\alpha_{k+1}q_{k+1}$.

Единственность: если x=z+h=z'+h', где $z,z'\in L$ и $h,h'\perp L$, то $c:=z-z'=h'-h\in L\cap L^\perp\implies v=0$.

Наконец, для любого $y \in L$ находим x-y=(z-y)+h, и, согласно теореме Пифагора, $|x-y|^2=|z-h|^2+|h|^2\geq |h|^2$. Равенство, очевидно, имеет место в том и только в том случае, когда y=z.

Если v_1, \ldots, v_k - произвольный базис подпространства L, то ортогональная проекция $z = x_1v_1 + \cdots + x_kv_k$ вектора x на L однозначно определяется уравнением $x - z \perp L$. Для этого необходимо и достаточно, чтобы вектор x - z был ортогонален каждому из векторов v_1, \ldots, v_k :

$$\begin{cases} (v_1, v_1)x_1 + \dots + (v_k, v_1)x_k = (x, v_1) \Leftrightarrow (x - z, v_1) = 0 \\ (v_1, v_2)x_1 + \dots + (v_k, v_2)x_k = (x, v_2) \Leftrightarrow (x - z, v_2) = 0 \\ \dots \\ (v_1, v_k)x_1 + \dots + (v_k, v_k)x_k = (x, v_k) \Leftrightarrow (x - z, v_k) = 0 \end{cases}$$

Из теоремы о перпендикуляре следует, что эта система линейных алгебраических уравнений имеет и притом единственное решение, определяющее коэффициенты x_1, \ldots, x_k .

Опр. Матрицы $A = [a_{ij}]$ полученной нами системы линейны алгебраических уравнений имеет элементы $a_{ij} = (v_i, v_j)$. Матрица такого вида называется матрицей Грама системы векторов v_1, \ldots, v_k .

Теорема. Для линейно независимой системы матрица Грама невырождена.

 \mathcal{A} -60. Сразу следует из теоремы о перпендикуляре, так как система должна иметь единственное решение.

Теорема. Матрица Грама неотрицательно определена для любой системы векторов и положительно определена в том и только в том случае, когда система линейно независима.

 \mathcal{A} -во. Пусть A - матрица Грама системы v_1, \ldots, v_k и x - вектор столбец с элементами x_1, \ldots, x_k . Тогда $x^*Ax = \sum\limits_{i,j=1}^k \overline{x}_i a_{ij} x_j = \sum\limits_{i,j=1}^k \overline{x}_i (v_i, v_j) x_j = \sum\limits_{i=1}^k \overline{x}_i \left(v_i, \sum\limits_{j=1}^k \overline{x}_j v_j\right) = \sum\limits_{i=1}^k \overline{x}_i (v_i, v) = \left(\sum\limits_{i=1}^k \overline{x}_i v_i, v\right) = (v, v) \ge 0, v = \overline{x}_1 v_1 + \cdots + \overline{x}_k v_k.$

1.4 Общий вид скалярного произведения в конечномерном пространстве.

Теорема. Пусть V - вещественное скалярное или комплексное пространство размерности n и e_1, \ldots, e_n - произвольный фиксированный базис V. Тогда для произвольной положительно определенной матрицы A порядка n формула

$$(x,y) = [y]_e^* A[x]_e = [\overline{y}_1, \dots, \overline{y}_n] A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \ \partial e \ x = \sum_{j=1}^n x_j e_j, \ y = \sum_{j=1}^n y_j e_j,$$

задает некоторое скалярное произведение на V и для произвольного скалярного произведения является тождеством, в котором A является матрица Γ рама базиса e_1, \ldots, e_n .

 \mathcal{A} -во. Пусть A — эрмитова положительно определенная матрица и $f(u,v)=v^*Au$ — функция от векторов-столбцов $u,v\in\mathbb{C}^n$. Проверка свойств скалярного произведения для данной функции выполняется непосредственно: линейность по первому аргументу очевидна, а положительная определенность и симметричность вытекает их положительной определенности и эрмитовости матрицы.

В тоже время, проивольное скалярное произведение векторов $x = \sum_{i=1}^n x_i e_i$ и $y = \sum_{i=1}^n y_1 e_i$ имеет вид

$$(x,y) = \left(\sum_{i=1}^n x_j e_j, \sum_{i=1}^n y_i e_i\right) = \sum_{i,j=1}^n \overline{y}_i(e_j, e_i) x_j = \left[\overline{y}_1 \dots y_n\right] A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

A - матрица с элементами $a_{ij} = (e_j, e_i)$.

1.5 Задача о наилучшем приближении вектора на конечномерном подпространстве в пространстве со скалярным произведением.

Опр. Пусть V - нормированное пространство и M - непустое подмножество векторов из V. Вектор $z \in M$ называется элементом наилучшего приближения вектора $x \in V$ на множестве M, если $||x-z|| \le ||x-y|| \ \forall y \in M$.

Теорема. Для любого $x \in V$ и любого конечномерного подпространства $M \in V$ существует единственное наилучшее приближение.

 \mathcal{A} -во. Если M состоит из одного вектора, то он и является наилучшим приближением. Далее полагаем, что в M больше одного вектора. Пусть $y,z\in M$. Представим z в виде $z=y+h,\ h\in .$ Тогда

$$(x-z,x-z) = (x-y-h,x-y-h) = (x-y,x-y) - (x-y,h) - (h,x-y) + (h,h)$$
$$||x-z||^2 = ||x-y||^2 - (x-y,h) - (h,x-y) + ||h^2||.$$

Если $(x-y,h)=0 \ \forall h\in M,$ то $||x-y||\leq ||x-z|| \forall z\in M.$

Если $||x-y|| \le ||x-z|| \ \forall z \in M$, то $-(x-y,h)-(h,x-y)+(h,h) \ge 0 \ \forall h \in M$. Заменим что вектор h на $h_1 = \frac{(x-y,h)}{||h||^2}h$. Получим

$$\begin{split} -\left(x-y,\frac{(x-y,h)}{||h||^2}h\right) - \left(\frac{(x-y,h)}{||h||^2}h,x-y\right) + \left(\frac{(x-y,h)}{||h||^2}h,\frac{(x-y,h)}{||h||^2}h\right) = \\ = -\frac{\overline{(x-y,h)}}{||h^2||}(x-y,h) - \frac{(x-y,h)}{||h||^2}\overline{(x-y,h)} + \frac{|(x-y,h)|^2}{||h||^4}(h,h) = \\ = -2\frac{|(x-y,h)|^2}{||h^2||} + \frac{|(x-y,h)|^2}{||h||^2} = -\frac{|(x-y,h)|^2}{||h||^2} \ge 0 \end{split}$$

Полученное неравенство верно только при (x - y, h) = 0.

Итак, чтобы вектор $y \in M$ был наилучшим приближением к вектору $x \in V$ необходимо и достаточно, чтобы $(x-y,h)=0 \ \forall h \in M$ (вектор x-y должен быть ортогонален подпространству M).

Докажем, что вектор y, удовлетворяющий условию $(x-y,h)=0 \ \forall h\in M$ однозначно определяется вектором x.

Пусть $(x-y,h)=0 \ \forall h\in M$ и существует вектор еще один вектор $\widetilde{y}\in M$ такой, что

 $(x-\widetilde{y},h)=0\ \forall h\in M.$ Тогда $(y-\widetilde{y},h)=0\ \forall h\in M.$ Пологая $h=y-\widetilde{y},$ получим, что $(y-\widetilde{y},y-\widetilde{y})=0\implies y=\widetilde{y}.$

Докажем теперь, что существует вектор $y \in M$, удовлетворяющий условию $(x - y, h) = 0 \ \forall h \in M$.

Пусть e_1, \ldots, e_m - базис M. Условие $(x-y,h)=0 \ \forall h\in M$ эквивалентно тому, что $(x-y,e_k)=0, \ k=\overline{1,m}$. Будем искать y в виде разложения по базису: $y=\sum_{i=1}^m y_i e_i$. Тогда

$$\left(\sum_{i=1}^{m} y_i e_i, e_k\right) = (x, e_k), \ k = \overline{1, m}.$$

$$\sum_{i=1}^{m} y_i(e_i, e_k) = (x, e_k), \ k = \overline{1, m}.$$

— СЛАУ относительно y_1, \dots, y_m , в которой матрица коэффициентов A — матрица Грама векторов e_1, \dots, e_m . A невырождена \Longrightarrow система имеет единственное решение. \square

2 Линейные операторы.

2.1 Матрица линейного оператора в паре базисов. Изменение матрицы оператора при изменении пары базисов.

Пусть $e=(e_1,\ldots,e_n)$ и $f=(f_1,\ldots,f_n)$ - базисы пространств V и W. Линейный оператор $A\in L(V,W)$ однозначно определяется заданием векторов Ae_1,\ldots,Ae_n . В свою очередь векторы $Ae_i,\ i=1,\ldots,n$, однозначно определяются своими координатами в базисе f, т.е. коэффициентами разложений

$$\begin{cases}
Ae_1 = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m, \\
Ae_2 = a_{12}f_1 + a_{22}f_2 + \dots + a_{m2}f_m, \\
\dots \\
Ae_n = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_n.
\end{cases}$$

Опр. Матрица

$$A_{fe} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

называется матрицей оператора A в паре базисов e u f.

Пусть e и $t = C_{et}^{-1}e$ - два базиса пространства V с матрицей перехода C_{et} , а f и $s = D_{fs}^{-1}f$ - два базиса пространства W с матрицей перехода D_{fs} . Одному и тому же линейному оператору $A \in L(V, W)$ в паре базисов e и f соответствует матрица A_{ef} , а в паре базисов t и s - матрица A_{st} .

Теорема. Матрицы A_{fe} и A_{st} линейного оператора в различных парах базисов связаны соотношением

$$A_{st} = D_{fs}^{-1} A_{fe} C_{et}.$$

 \mathcal{A} -во. Для произвольного вектора $x \in V$ и его образа y = Ax имеем

$$y_f = A_{fe}x_e, \quad y_s = A_{st}x_t.$$

В свою очередь, $x_e = C_{et}x_t$, $y_f = D_{fs}y_s$. Подставив эти соотношения, получим, что $D_{fs}y_s = A_{fe}C_{et}x_t$ или $D_{fs}A_{st}x_t = A_{fe}C_{et}x_t$. Так как это соотношение имеет место при любых x_t , то $D_{fs}A_{st} = A_{fe}C_{et}$. В силу невырожденности матрицы перехода получаем, что $A_{st} = D_{fs}^{-1}A_{fe}C_{et}$.

2.2 Эквивалентность матриц, подобие матриц и инварианты подобия.

Опр. Две матрицы $A, B \in \mathbb{P}^{m \times n}$ называются эквивалентными, если существуют невырожденные матрицы P и Q такие, что A = PBQ.

Утверждение. Эквивалентность матриц является соотношением эквивалентности.

 \mathcal{A} -во. (рефлексивность) $A \sim A$, т.к. A = IAI. (симметричность) $A \sim B \implies \exists P,Q$, т.ч. $|P| \neq 0$, $|Q| \neq 0$, $A = PBQ \implies B = P^{-1}AQ^{-1} \implies B \sim A$. (транзитивность) $A \sim B$, $B \sim C \implies$, \exists невырожденные P_1,P_2,Q_1,Q_2 , т.ч. $A = P_1BQ_1$, $B = P_2CQ_2 \implies A = (P_1P_2)B(Q_1Q_2) \implies A \sim C$.

Теорема. Две матрицы A и B над полем \mathbb{P} одинакового размера эквивалентны тогда и только тогда, когда они являются матрицами одного линейного оператора $A \in L(V,W)$, где V и W - линейные пространства над полем \mathbb{P} размерностей n и m соответственно.

 \mathcal{A} -во. (\Longrightarrow) Пусть $A,B\in\mathbb{P}^{m\times n}$ и $B=D^{-1}AC$. Рассмотрим любые линейные пространства V и W над полем \mathbb{P} такие, что $\dim V=n, \dim W=m$. Возьмем в пространстве V произвольный базис e, а в пространстве W - базис f. В силу взаимной однозначности соответствия между $\mathbb{P}^{m\times n}$ и L(V,W) существует единственный оператор $A\in L(V,W)$, который в паре базисов e и f имеет матрицу A. Тогда матрица B будет матрицей этого же оператора в паре базисов t=Ce и s=Df.

 (\Leftarrow) Пусть A и B - матрицы линейного оператора $A \in L(V,W)$ в парах базисов e,f и t,s соответственно. Причем $t=C^{-1}e, s=D^{-1}f$. Тогда $B=D^{-1}AC \implies$ матрицы A и B эквивалентны.

Теорема. Любая невырожденная матрица $A \in \mathbb{P}^{m \times n}$ ранга r эквивалентна матрице $I_r \in \mathbb{P}^{m \times n}$ вида

 \mathcal{A} -во. Любую матрицу можно привести к диагональному виду элементарными преобразованиями. Если привести матрицу A к диагональному виду, а затем поделить каждую ненулевую строку на ненулевой элемент в ней, то получится матрица вида I_r . Это означает, что существу, матрицы элементарных преобразований Q_1, \ldots, Q_k и P_1, \ldots, P_s , такие, что $I_r = Q_1 \ldots Q_k A P_1 \ldots P_s$. Значит $A \sim I_r$.

Теорема. Две матрицы $A, B \in \mathbb{P}^{m \times n}$ эквивалентны тогда и только тогда, когда их ранги совпадают.

 \mathcal{A} -60. (\Longrightarrow) Вытекает из того, что умножение на невырожденную матрицу не меняет ранга матрицы.

(⇐) Следует из предыдущей теоремы и транзитивности эквивалентности матриц. 🗆

Опр. Матрицы $A, B \in \mathbb{P}^{n \times n}$ называются подобными, если существует невырожденная матрица $C \in \mathbb{P}^{n \times n}$, т.ч. $A = C^{-1}BC$.

Теорема. Инварианты подобия:

- 1. Ранг матрицы;
- 2. Опрделитель матрицы;
- 3. След матрицы.

 \mathcal{A} -во. 1) Сразу следует из предыдущей теоремы.

2) $|A| = |P^{-1}BP| = |P^{-1}||B||P| = |P^{-1}P||B| = |B|$.

$$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}BP) = \sum_{i=1}^{n} (P^{-1}BP)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} (P^{-1})_{ij} (BP)_{ji} =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (P^{-1})_{ij} \sum_{k=1}^{n} b_{jk} (P)_{ki} = \sum_{j=1}^{n} \sum_{k=1}^{n} b_{jk} \sum_{i=1}^{n} (P)_{ki} (P)_{ij} =$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} b_{jk} (I)_{kj} = \sum_{j=1}^{n} b_{jj} = \operatorname{tr}(B)$$

2.3 Ядро и образ линейного оператора. Соотношение между рангом и дефектом линейного оператора.

Опр. Образом линейного оператора называется множество im $A = \{y \in W \mid \exists x \in V : Ax = y\}$. Ядром линейного оператора называется множество ker $A = \{x \in V \mid Ax = 0\}$. Рангом линейного оператора называется размерность его образа, а дефектом - размерность его ядра.

Теорема. Если $A \in L(V, W)$, то ker A - линейное подпространство пространства V, im A - линейное подпространство пространства W.

 \mathcal{A} -во. Для того чтобы подмножество было подпространством достаточно, чтобы применение операций сложения векторов и умножения вектора на число давало результат в подмножестве. Для данных подмножеств данные условия легко проверяются.

Теорема. Если e_1, \ldots, e_n - базис пространства V, то im $A = L(Ae_1, \ldots, Ae_n)$.

 \mathcal{A} -во. Достаточно показать для множеств im A и $L(Ae_1,\ldots,Ae_n)$ имеет место двухстороннее вложение. С одной стороны, если $y\in \operatorname{im} A$, то $y=Ax=A\sum_{i=1}^n x_ie_i=\sum_{i=1}^n x_iAe_i\in \mathcal{A}$

$$L(Ae_1,\ldots,Ae_n)$$
. С другой стороны, если $y\in L(Ae_1,\ldots,Ae_n)$, то $y=\sum_{i=1}^n x_iAe_i=A\sum_{i=1}^n x_ie_i=Ax\in\operatorname{im} A$.

Теорема. Если $A \in L(V, W)$, то rank $A + \operatorname{def} A = \dim V$.

 \mathcal{A} -во. Пусть $\ker A \neq \{\theta\}$ и e_1, \ldots, e_k - базис $\ker A$. Дополним его до базиса $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ пространства V. $\operatorname{im} A = L(Ae_1, \ldots, Ae_k, Ae_{k+1}, \ldots, Ae_n) = L(Ae_{k+1}, \ldots, Ae_n)$. Покажем, что векторы Ae_{k+1}, \ldots, Ae_n линейно независимы. Пусть это не так. Тогда для нетривиальной линейной комбинации этих векторов имеет место соотношение $\alpha_{k+1}Ae_{k+1}+\cdots+\alpha_nAe_n=A(\alpha_{k+1}e_{k+1}+\cdots+\alpha_ne_n)=\theta$. Следовательно, $\alpha_{k+1}e_{k+1}+\cdots+\alpha_ne_n\in \ker A$. Это означает, что вектор $\alpha_{k+1}e_{k+1}+\cdots+\alpha_ne_n$ линейно выражается через e_1,\ldots,e_k , что невозможно в силу линейной независимости e_1,\ldots,e_n . Таким образом, $\dim \ker A=k$, $\dim \operatorname{im} A=n-k$.

Теорема. Пусть M — конечномерное линейное пространство над полем \mathbb{P} . Тогда для любых его линейных подпространств V_1 и V_2 , m.ч. $\dim V_1 + \dim V_2 = \dim V$, существует линейный оператор $A \in L(V,V)$: $\operatorname{im} A = V_1$, $\operatorname{ker} A = V_2$.

 \mathcal{A} -во. Пусть $\dim V_1 = p$, $\dim V_2 = q$, $\dim V = n$, n = p + q и e_{p+1}, \ldots, e_n - базис V_2 . Дополним его до базиса $V: e_1, \ldots, e_p, e_{p+1}, \ldots, e_n$. Выберем произвольный базис $V_1: g_1, \ldots, g_p$ и зададим линейный оператор $A \in L(V, V)$:

$$\begin{cases} Ae_1 = g_1, \dots, Ae_p = g_p \\ Ae_{p+1} = Ae_{p+2} = \dots = Ae_n = 0 \end{cases}$$

Тогда im $A = L(Ae_1, \dots, Ae_p) = A(g_1, \dots, g_p) = V_1$ и ker $A = L(e_{p+1}, \dots, e_n) = V_2$.

2.4 Обратимый оператор. Критерий обратимости. Линейность обратного оператора.

Опр. Оператор $A:V\to W$ называется обратимым ил невырожденный, если существует оператор $B:W\to V$ такой, что $AB=I_W$ и $BA=I_V$.

Утверждение. Если линейный оператор обратим, то обратный оператор определен однозначно и является линейным.

 \mathcal{A} -60. 1) Пусть $A \in L(V, W)$ и $B_1, B_2 \in L(W, V)$ обратные к A. Тогда

$$B_1AB_2 = (B_1A)B_2 = I_VB_2 = B_2$$

 $B_1AB_2 = B_1(AB_2) = B_1I_W = B_2$ $\Longrightarrow B_1 = B_2.$

2) Пусть $A \in L(V,W)$ и $B \in L(W,V)$ — обратный к A. Тогда $\forall y_1,y_2 \in W \ \exists x_1,x_2 \in V: y_1 = Ax_1, \ y_2 = Ax_2,$ значит $By_1 = x_1, \ By_2 = x_2. \ \forall \alpha_1,\alpha_2 \in \mathbb{P}$:

$$B(\alpha_1 y_1 + \alpha_2 y_2) = B(\alpha_1 A x_1 + \alpha_2 A x_2) = B(A(\alpha_1 x_1 + \alpha_2 x_2)) =$$

$$= (BA)(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 x_1 + \alpha_2 x_2 =$$

$$= \alpha_1 B y_1 + \alpha_2 B y_2.$$

Теорема. Пусть V и W — конечномерные пространства над общим полем. Тогда для обратимости линейного оператора $A \in L(V,W)$ необходимо и достаточно, чтобы $\dim V = \dim W$ и $\ker A = \{\theta\}$

 \mathcal{A} -во. (\Longrightarrow) Если $x_0 \in \ker A$, то $\forall x \in V : A(x+x_0) = Ax + Ax_0 = Ax + \theta = Ax = y \in W$. Значит $A^{-1}y = x = x + x_0$, т.е. $x_0 = \theta$. im $A = L(Ae_1, \ldots, Ae_{\dim V}) \subseteq W \implies \dim W \ge \dim V$ и im $A^{-1} = L(A^{-1}f_1, \ldots, A^{-1}f_{\dim W}) \subseteq V \implies \dim V \ge \dim W$. Значит $\dim V = \dim W$.

 (\iff) Пусть $\dim V = \dim W$ и $\ker A = \{\theta\}$. Согласно теореме о размерности ядра и образа: $\operatorname{rank} A = n \implies$ оператор сюръективен и инъективен, а значит для каждого $y\exists !x = x(y) \in V: Ax = y$. Пусть оператор $B: W \to V$ определяется правилом By = x(y). Тогда $(AB)y = y, (BA)x = x \implies$ выполнены условия обратимости оператора A.

2.5 Оператор проектирования.

Опр. Пусть $V = L \oplus M$. Тогда любой вектор $x \in V$ однозначно представляется в виде суммы x = u + v, где $u \in L$, $v \in M$. Оператор P, переводящий x в u называется оператором проектирования на подпространство L параллельно подпространству M.

Утверждение. P является линейным оператором.

A-60. $y_1, y_2 \in L$, $z_1, z_2 \in M$, $x_1 = z_1 + y_1$, $x_2 = y_2 + z_2$, $\lambda x_1 = \lambda y_1 + \lambda z_1$:

$$P(x_1 + x_2) = y_1 + y_2 = Px_1 + Px_2$$

 $P(\lambda x_1) = \lambda y_1 = \lambda Px_1$

Теорема. Для того чтобы линейный оператор $P \in L(V, V)$ был оператором проектирования, необходимо и достаточно, чтобы $P^2 = P$.

 \mathcal{A} -60. (\Longrightarrow) $V=L\oplus M\ \forall x\in V\ \exists !u\in L,\ v\mathrm{im}\ M: x=u+v\ u\ Px=u.$ Значит Pu=u ($u=u+\theta$) и $P^2x=P(Px)=Pu=u=Px$, т.е. $P^2=P$. (\Longleftrightarrow) Пусть $P^2=P$. Положим $L=\mathrm{im}\ P,\ M=\ker P.$ Тогда $\dim L+\dim M=\dim V.$ Если $w\in L\cap M$, то w=Px и $Pw=\theta.$ Поэтому $Pw=P^2x=Px=2=\theta.$ Значит $L\oplus M=V.$

2.6 Собственные значения и собственные векторы. Характеристический многочлен линейного оператора (матрицы).

Опр. Пусть V - линейное пространство над полем \mathbb{P} . $A \in L(V,V)$. Число $\lambda \in \mathbb{P}$ и вектор $\theta \neq v \in V$ называются собственным значением и собственным вектором оператора A, если $Av = \lambda v$.

Теорема. Собственные вектора $x_1, ..., x_k$, отвечающие различным собственным значениям $\lambda_1, ..., \lambda_k$ линейно независимы.

Д-во. Применим индукцию по k. Для k=1 утверждение очевидно. Пусть оно верно для любой системы из k-1 векторов. Докажем его для k векторов x_1,\ldots,x_k . Приравняем нулевому вектору линейную комбинацию этих векторов: $\alpha_1x_1+\cdots+\alpha_kx_k=\theta$. Под действием оператора A это равенство перейдет в равенство $\alpha_1\lambda_1x_1+\cdots+\alpha_k\lambda_kx_k=\theta$ (*). (*) $-\lambda_k(*)=\alpha_1(\lambda_1-\lambda_k)+\cdots+\alpha_k(\lambda_{k-1}-\lambda_k)x_{k-1}=\theta$. В силу индуктивного предположения отсюда следует, что $\alpha_1=\cdots=\alpha_{k-1}=0$. Значит и $\alpha_k=0$. Значит x_1,\ldots,x_k линейно независимы.

Следствие. Линейный оператор, действующий в п-марном пространстве, не может иметь более чем п различных собственных векторов.

Опр. Характеристическим многочленом матрицы $A \in \mathbb{P}^{m \times n}$ называется функция $f(\lambda) = |A - \lambda I|$.

Теорема. Характеристический многочлен матрицы является инвариантом подобия.

 \mathcal{A} -во. Пусть $B=P^{-1}AP$. Тогда

$$|B - \lambda I| = |(P^{-1}AP) - \lambda P^{-1}P| = |P^{-1}(A - \lambda I)P| = |P^{-1}||A - \lambda I||P| =$$
$$= |P^{-1}||P||A - \lambda I| = |P^{-1}P||A - \lambda I| = |A - \lambda I|.$$

Свойства характеристического многочлена.

- Характеристический многочлен индуцированного оператора является делителем характеристического многочлена порождающей его матрицы.
- Если $V = L_1 \oplus \cdots \oplus L_k$, где L_1, \ldots, L_k инвариантные подпространства относительно оператора $A \in L(V, V)$, то характеристический многочлен $f(\lambda)$. Равен произведению характеристических многочленов $f_1(\lambda), \ldots, f_k(\lambda)$ индуцированных операторов $A|L_1, \ldots, A|L_k$.

Теорема. Пусть V - линейное пространство над полем \mathbb{P} . Число $\lambda \in \mathbb{P}$ является собственным значением оператора $A \in L(V,V)$ тогда и только тогда, когда λ - корень его характеристического многочлена.

 \mathcal{A} -во. Число λ является собственным значением оператора A тогда и только тогда, когда существует вектор x, удовлетворяющий условиям

$$\begin{cases} Ax = \lambda x, \\ x \neq \theta, \\ \lambda \in \mathbb{P}. \end{cases} \Leftrightarrow \begin{cases} (A - \lambda I)x = \theta, \\ x \neq 0, \\ \lambda \in \mathbb{P}. \end{cases}$$

Это равносильно вырожденности оператора $A - \lambda I$ при некотором λ , т.е. $|A - \lambda I| = 0$. \square

2.7 Геометрическая и алгебраическая кратность собственного значения.

Опр. Пусть λ_0 - собственное значение оператора A. Множество $W_{\lambda_0} = \{x \in V : Ax = \lambda_0 x\}$ называется собственным подпространством оператора A, отвечающим собственному значению λ_0 .

Очевидно, что $W_{\lambda_0} = \ker(A - \lambda_0 I)$, поэтому собственное подпространство является линейным подпространством пространства V.

Опр. Размерность собственного подпространства W_{λ_0} называется геометрической кратностью собственного значения λ_0 , а кратность λ_0 как корня характеристического многочлена - его алгебраической кратностью.

Теорема. Геометрическая кратность собственного значения не превосходит его алгебраической кратности.

 \mathcal{A} -во. Пусть m и s - алгебраическая и геометрическая кратность собственного значения λ_0 оператора $A \in L(V,V)$. Собственное подпространство W_{λ_0} инвариантно относительно оператора A, следовательно, можно рассматривать индуцированный оператор $A|W_{\lambda_0}$. Найдем его характеристический многочлен $f_1(\lambda)$. Пусть e_1,\ldots,e_s - базис W_{λ_0} . Тогда матрица оператора $A|W_{\lambda_0}$ в этом базисе будет диагональной матрицей s-го порядка с элементами λ_0 на главной диагонали. Следовательно, $f_1(\lambda) = (\lambda_0 - \lambda)^s$. $(\lambda_0 - \lambda)^s$ является делителем характеристического многочлена $f(\lambda)$ оператора A, но $(\lambda_0 - \lambda)$ входит в характеристический многочлен $f(\lambda)$ ровно m раз. Значит, $s \leq m$.

2.8 Операторы простой структуры и диагонализуемые матрицы. Критерий диагонализуемости.

Опр. Линейный оператор $A \in L(V, V)$ называется оператором простой структуры, если в пространстве V существует базис из собственных векторов оператора A.

Теорема. Линейный оператор $A \in L(V, V)$ имеет простую структуру тогда и только тогда, когда в пространстве V существует базис, в котором он имеет диагональную матрицу.

 \mathcal{A} -во. Пусть $\dim V = n$. Согласно определению оператор A имеет простую структуру тогда и только тогда, когда он имеет n линейно независимых собственных векторов e_1, \ldots, e_n , в котором матрица A_e оператора A имеет вид

$$A_e = \begin{bmatrix} \lambda_1 & & & O \\ & \lambda_2 & & \\ & & \ddots & \\ O & & & \lambda_n \end{bmatrix},$$

где $\lambda_1, \ldots, \lambda_n$ — собственные значения, соответствующие собственным векторам e_1, \ldots, e_n .

Следствие. В *п-мерном пространстве линейный оператор, имеющий п различных* значений, являетя оператором простой структуры.

Следствие. Если матрица порядка n имеет n попарно различных собственных значений, то она диагонализируема.

Теорема. Линейный оператор $A \in L(V,V)$ имеет простую структуру тогда и только тогда, когда $W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_p} = V$.

 \mathcal{A} -во. (\Longrightarrow) Пусть A имеет простую структуру. Тогда в пространстве V существует базис e_1,\ldots,e_n , состоящий из собственных векторов оператора A. Рассмотрим подпространство $W_{\lambda_1}+\cdots+W_{\lambda_p}$, оно содержится в V. С другой стороны, каждый вектор базиса e_1,\ldots,e_n принадлежит одному из собственных подпространств, поэтому $P\subset\sum_{i=1}^nW_{\lambda_i}\Longrightarrow W_{\lambda_1}+W_{\lambda_p}=V$. Эта сумма прямая, т.к. собственные подпространства $W_{\lambda_1},\ldots,W_{\lambda_p}$ имеют тривиальное пересечение.

2.9 Верхняя треугольная форма матрицы линейного оператора в комплексном пространстве.

Вопрос о существовании собственных векторов сводится к вопросу о существовании корней характеристического многочлена, принадлежащих основному полю. В алгебраическом поле $\mathbb C$ любой многочлен степени $n\geq 1$ имеет n корней. Отсюда вытекает следующее утверждение. **Теорема.** Произвольный линейный оператор, действующий в *n*-мерном комплексном пространстве, имеет:

- 1. п собственных значений, если каждое собственное значение считать столько раз, какова его кратность как корня характеристического многочлена;
- 2. Хотя бы один собственный вектор;
- 3. На любом своем инвариантном подпространстве хотя бы один собственный вектор.

Лемма. Линейный оператор, действующий в n-мерном комплексном пространстве, обладает инвариантным пространством размерности n-1.

 \mathcal{A} -60. Линейный оператор A действующий в комплексном пространстве V, имеет собственное значение λ . Значит, $|A-\lambda I|=0$ и $\mathrm{rank}\,(A-\lambda I)\leq n-1$. Следовательно, $\dim\mathrm{im}\,(A-\lambda I)\leq n-1$ и в пространстве V существует подпространство L размерности n-1, которое содержит $\mathrm{im}\,(A-\lambda I)$. Очевидно, что L инвариантно относительно оператора $A-\lambda I$. Покажем, что оно инвариантно и относительно A. Пусть $x\in L$, тогда $(A-\lambda I)x=y\in L \implies Ax=\lambda x+y\in L$.

Теорема. В n-метрном комплексном пространстве V для любого линейного оператора $A \in L(V,V)$ существует система n вложенных друг в друга инвариантных подпространств L_1, \ldots, L_n всех размерностей от 1 до n, m.e. таких, что $L_1 \subset L_2 \subset \cdots \subset L_n = V$, где $\dim L_k = k$, $k = 1, \ldots, n$.

 \mathcal{A} -во. Используем индукцию по n. \mathcal{A} ля n=1 утверждение теоремы очевидно. Пусть теорема верна для всех линейных операторов размерности n-1. Тогда, согласно лемме оператор A, действующий в n-мерном комплексном пространстве V, имеет инвариантное пространство L_{n-1} размерности n-1. Тогда для индуцированного оператора $A|L_{n-1}$ существует система вложенных инвариантных подпространств $L_1 \subset L_2 \subset \cdots \subset L_{n-1}$. Так как действия операторов A и $A|L_{n-1}$ совпадают, то подпространства L_1, \ldots, L_{n-1} инвариантны относительно оператора A. Остается добавить, что $L_{n-1} \subset L_n = V$.

Теорема. Для любого комплексного оператора A, действующего в комплексном пространстве, существует базис, в котором матрица линейного оператора имеет треугольную форму.

 \mathcal{A} -60. Для оператора A найдется система инвариантных подпространств L_1, \ldots, L_n таких, что $\dim L_k = k$ и $L_1 \subset L_2 \subset \cdots \subset L_n = V$. Искомый базис e_1, \ldots, e_n строим так: в качестве вектора e_1 берем любой базис L_1 , в качестве $e_k, k > 1$ - вектор, дополняющий базис L_{k-1} до базиса L_k . В силу инвариантности подпространств L_1, \ldots, L_n матрица A_e имеет верхнюю треугольную форму.

2.10 Многочлен от линейного оператора (матрицы). Теорема Гамильтона-Кэли.

Опр. Зафиксируем квадратную матрицу $A \in \mathbb{P}^{n \times n}$. Рассмотрим произвольный многочлен $f(\lambda) = \sum_{i=0}^k f_i \lambda^i$ и поставим ему в соответствие матрицу $\sum_{i=0}^n f_i A^i = f(A)$. f(A) называется многочленом от матрицы A, соответствующий многочлену $f(\lambda)$ с коэффициентами из поля \mathbb{P} . Если f(A) = 0 $f(\lambda) \not\equiv 0$, то говорят, что многочлен f аннулирует матрицу A.

Утверждение. Для любой матрицы можно найти многочлен, который ее аннулирует.

 \mathcal{A} -во. Рассмотрим матрицы $I=A^0,\,A^1=A,\,A^2,\ldots,A^{n^2}.$ Их n^2+1 штука \Longrightarrow они \mathcal{A} 3 \Longrightarrow \exists нетривиальный набор $a_0,\ldots,a_{n^2},\,$ т.ч. $a_0I+a_1A+\cdots+a_{n^2}A^{n^2}=O$ — искомый многочлен, т.к. $f(\lambda)\not\equiv 0$ в силу нетривиальности набора $a_0,\ldots,a_{n^2}.$

Опр. Многочлен, аннулирующий матрицу A и имеющий минимальную степень среди всех аннулирующий ее многочленов, называется минимальным многочленом матрицы A.

Теорема. Линейный оператор, действующий в комплексном (или в вещественном) пространстве, является корнем своего характеристического многочлена.

 \mathcal{A} -во. 1. Докажем сначала для комплексного пространства V. Пусть $A \in L(V,V)$ и его характеристический многочлен имеет вид $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_j - \lambda)^{m_j}$. $V = K_{\lambda_1} \oplus \dots \oplus K_{\lambda_p}$ и, следовательно, для любого вектора $x \in V$ имеет место разложение $x = x_1 + \dots + x_p$, где $x_j \in K_{\lambda_j}$, $k = 1, \dots, p$. Тогда

$$f(A)x = f(A)x_1 + \dots + f(A)x_j + \dots + f(A)x_p.$$

Каждое слагаемое в этом разложении равно нулевову вектору, так как $f(A)x_j=(\lambda_1 I-A)^{m_1}\dots(\lambda_j I-A)^{m_j}\dots(\lambda_p I-A)^{m_p}x_j=\theta$, ибо операторы в этом произведении перестановочны, а $(A-\lambda_j I)^{m_j}x_j=\theta$. Следовательно, $f(A)x=\theta \ \forall x\in V$, т.е. f(A)=O. 2. Пусть V - вещественное линейное пространство. Возьмем какой-либо базис e пространства V, и пусть A_e - матрица оператора A в этом базисе. Рассмотрим любое комплексное пространство V_1 той же размерности. Пусть f - произвольный базис V_1 , тогда матрица A_e является матрицей оператора $B\in L(V_1,V_1)$ в базисе f, т.е. $A_e=B_f$. Значит характеристические многочлены операторов A и B совпадают, и согласно п. 1, $f(A_e)=O$.

2.11 Нильпотентные и квазискалярные операторы (матрицы). Критерий нильпотентности.

Опр. Пусть линейный оператор A действует в n-мерном пространстве. Если он имеет только одно собственное значение λ кратности n, то будем называть его квазискалярным.

Опр. Линейный оператор $A \in L(V, V)$ называется нильпотентным, если существует число $q \in \mathbb{N}$ такое, что $A^n = O$. Наименьшее число q, обладающее таким свойством, называется индексом нильпотентности (высотой) оператора A.

Теорема. В комплексном пространстве линейный оператор нильпотентен тогда и только тогда, когда он является квазискалярный с единственным собственным значением равным нулю.

 \mathcal{A} -60. (\Longrightarrow) Если λ - собственное значение нильпотентного оператора $A\in L(V,V)$ индекса q и x - собственное значение соответствующее ему, то $Ax=\lambda x\implies A^2x=\lambda^2x\implies \cdots\implies A^qx=\lambda^qx$. Отсюда следует, что $\lambda^qx=0$. Так как $x\neq 0$, то $\lambda=0$. (\Longleftrightarrow) Рассмотрим базис e комплексного пространства V, в котором оператор A имеет верхнюю треугольную матрицу с нулями на главной диагонали. Итак,

$$A_e = \begin{bmatrix} 0 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 0 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

Нетрудно проверить, что при последовательном возведении этой матрицы в степени $q=2,3,\ldots,n$ нетривиальный треугольник расположенный над главной диагональю, перемещается каждый раз на одну диагональ выше, так что $(A_e)^n=O$. Значит, $A^n=O$.

2.12 Прямая сумма линейных операторов (матриц). Теорема о расщеплении вырожденного оператора.

Опр. Если $V = L_1 \oplus L_2 \oplus \cdots \oplus L_p$ - прямая сумма подпространств L_1, \ldots, L_p инвариантных относительно линейного оператора $A \in L(V, V)$, то оператор A называется прямой суммой индуцированных операторов $A|L_1, \ldots, A|L_p$.

Теорема. Вырожденный и не нильпотентный оператор $A \in L(V, V)$ является прямой суммой нильпотентного и обратимого операторов, причем это разложение единственно.

 \mathcal{A} -60. Для доказательства теоремы необходимо показать, что существует единственная пара подпространств L_1, L_2 , инвариантных относительно линейного оператора A и таких, что $V = L_1 \oplus L_2$, $A|L_1$ нильпотентен, $A|L_2$ обратим.

Cуществование. Обозначим для $k \in \mathbb{N}$: $N_k = \ker A^k$, $T_k = \operatorname{im} A^k$.

- 1. Покажем, что подпространства N_k строго вложены друг в друга до некоторого момента q, начиная с которого все N_k совпадают, т.е. $N_1 \subset N_2 \subset \cdots \subset N_q = N_{q+1} = \ldots$
- а) Вложение $N_k \subseteq N_{k+1}$ очевидно, так как если $A^k x = \theta$, то $A^{k+1} x = A(A^k x) = A\theta = \theta$.
- б) Пусть $N_k=N_{k+1},$ Тогда $N_{k+1}=N_{k+2},$ так как $N_{k+1}\subseteq N_{k+2},$ $N_{k+2}\subseteq N_{k+1}.$ Второе

из этих вложений следует из того, что если $x \in N_{k+2}$, то $A^{k+2}x = \theta$, т.е. $A^{k+1}(Ax) = \theta$. Значит, $Ax \in N_{k+1} = N_k$, откуда $A^k(Ax) = \theta$, т.е. $A^{k+1}x = \theta$.

Из а и б следует, что подпространство N_k либо строго вложено в N_{k+1} , либо совпадает со всеми последующими ядрами. Так как в конечномерном пространстве размерности подпространств N_k не могут бесконечно возрастать, то наступит момент q, начиная с которого все ядра N_k будут совпадать с N_q .

2. Зафиксируем этот момент q и покажем, что $V = N_q \oplus T_q$.

Действительно, $\dim V = \dim N_q + \dim T_q$ в силу теоремы о ранге и дефекте, при этом $N_q \cap T_q = \{\theta\}$, так как если $y \in N_q \cap T_q$, то $A^q y = \theta$, $y = A^q x$, т.е. $A^{2q} x = \theta$. Значит, $x \in N_{2q} = N_q$ и $A^q x = \theta = y$.

- 3. Подпространства N_q и T_q инвариантны относительно A, т.к.:
- а) если $x \in N_q$, то $x \in N_{q+1} = N_q \implies A^{q+1}x = \theta$, т.е. $A^q(Ax) = \theta \implies Ax \in N_q$.
- б) если $y \in T_q$, то $y = A^q x$ и $Ay = A^{q+1} y = A^q (Ax) = A^q x_1$, где $x_1 = Ax$, следовательно, $Ay \in T_q$.
- 4. Оператор $A|N_q$ нильпотентный оператор индекса q, т.к.:
- a) $A^q x = \theta \, \forall x \in N_q;$
- б) $\exists x_0 \in N_q$ такой, что $A^{q-1}x_0 \neq \theta$, ибо $N_{q-1} \neq N_q$.
- 5. Оператор $A|T_q$ обратим, так как его ядро состоит только из нулевого вектора. Действительно, если $y \in \ker A|T_q$, то $y \in T_q$, $Ay = \theta$, т.е. $y = A^qx$ и $A^{q+1}x = \theta$, Отсюда следует, что $x \in N_{q+1} = N_q$, т.е. $A^qx = \theta$ и $y = \theta$.

Утверждения 2-5 доказывают существование искомого разложения: $L_q = N_q$, $L_2 = T_q$. Eдинственность. Пусть существует другое разложение $V = N \oplus T$, обладающее всеми свойствам первого.

- 1. Нильпотентность оператора A|N означает, что $A^kx=\theta\,\forall x\in N$, при некотором $k\in\mathbb{N}$. Следовательно, $N\subseteq N_k\subseteq N_q$ и dim $N\le\dim N_q$.
- 2. Обратимость оператора A|T означает, что $\operatorname{im} A|T = T$. Следовательно, для любого вектора $y \in T$ имеет место представление $y = Ay_1$, где $y_1 \in T$. Используя такое же представление для вектора y_1 и всех последующих, получаем, что $y = Ay_1 = A^2y_2 = \cdots = A^qy_q$. Таким образом, $T \subseteq T_q$ и $\dim T \le \dim T_q$.

Так как $\dim V = \dim N + \dim T = \dim N_q + \dim T_q$ и $\dim N \leq \dim N_q$, $\dim T \leq \dim T_q$, то $N = N_q$ и $T = T_q$.

2.13 Корневое расщепление линейного оператора.

Опр. Пусть λ_j - собственное значение оператора A. Вектор $x \in V$ называется корневым вектором оператора A, отвечающим собственному значению λ_j , если $(A - \lambda_j I)^k x = \theta$ при некотором $k \in \mathbb{N} \cup \{0\}$. Высотой корневого вектора называется наименьшее k, обладающее указанным свойством.

Опр. Множество $K_{\lambda_j} = \{x \in V \mid \exists k \in \mathbb{N} \cup \{0\} : (A - \lambda_j I)^k x = \theta\}$ называется корневым подпространством оператора A, отвечающим собственному значению λ_j .

Утверждение. Корневое подпространство K_{λ_i} инвариантно относительно A.

$$\mathcal{A}$$
-so. $v \in K_{\lambda_j} \Longrightarrow \exists q_j : (A - \lambda_j I)^{q_j} v = \theta \Longrightarrow (A - \lambda_j I)^{q_j} (Av) = A(A - \lambda_j I)^{q_j} v = A \cdot \theta = \theta \Longrightarrow Av \in K_{\lambda_j}.$

Оператор $B=A-\lambda_j I$ - вырожденный, но не нильпотентный. Следовательно, к оператору B применима теорема о прямой сумме нильпотентного и обратимого оператора. Согласно этой теореме, если $N_k=\ker B^k$, $T_k\mathrm{im}\,B^k$, то $N_1\subset N_2\subset\cdots\subset N_q=N_{q+1}=\ldots$ $V=N_q\oplus T_q$, где N_q и T_q - инвариантны относительно B. Вернемся к оператору A.

 N_1 состоит из корневых векторов оператора A высоты не превосходящей 1, т.е. совпадающим собственному значению λ_j . Таким образом $N_1=W_{\lambda_1}$ и, следовательно, dim $N_1=s_j$, где s_j - геометрическая кратность собственного значения λ_j .

 N_2 состоит из корневых векторов оператора A высоты, не превосходящей 2, а N_q состоит из векторов всех высот, т.е. q - максимальная высота коневого вектора, отвечающего собственному вектору λ_j , и N_q совпадает со всем корневым подпространством K_{λ_j} . Таким образом, $K_{\lambda_j} = N_q$.

Из свойств подпространства N_q вытекают важные свойства корневых подпространств: если характеристический многочлен оператора A имеет вид $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_j - \lambda)^{m_j} \dots (\lambda_p - \lambda)^{m_p}$, то

- а) подпространство K_{λ_j} инвариантно относительно оператора A (в силу инвариантности относительно оператора $A-\lambda_j I$).
- б) характеристический многочлен оператора $A|K_{\lambda_j}$ имеет вид $f_j(\lambda)=(\lambda_j-\lambda)^{m_j}$ (т.к. $f_{A|N_q}(\lambda)=(-\lambda)^{m_1},\ F_{A|T_q}=(\lambda_2-\lambda)^{m_2}\dots(\lambda_p-\lambda)^{m_p})$ в) $\dim K_{\lambda_j}=m_j.$

Теорема. Если A - линейный оператор, действующий в комплексном пространстве V $u f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_p - \lambda)^{m_p}, \lambda_i \neq \lambda_k$, при $i \neq k$ - его характеристический многочлен, то пространство V разлагается в прямую сумму его корневых подпространств: $V = K_{\lambda_1} \oplus \dots \oplus K_{\lambda_p}$.

 \mathcal{A} -во. Воспользуемся индукцией по p. Для p=1, понятно, что $V=K_{\lambda_1}$. Пусть теорема верна для оператора, имеющего p-1 различных собственных значений. Докажем ее для оператора A. Выделим корневое подпространство $K_{\lambda_p}=N_q=\ker(A-\lambda_p I)^{m_p}$. Тогда $V=K_{\lambda_p}\oplus T_q$, $T_q=\operatorname{im}(A-\lambda_p I)^{m_p}$. Обозначим $V_1=T_q$. Пространство V_1 инвариантно относительно оператора $A-\lambda_p I$, а, следовательно, оно инвариантно и относительно A, при этом характеристический многочлен оператора $A_1=A|V_1$ имеет вид $f_1(\lambda)=(\lambda_1-\lambda)^{m_1}\ldots(\lambda_{p-1}-\lambda)^{m_{p-1}}$. Оператор A_1 имеет p-1 различных собственных значений, и для него теорема верна. Если учесть, что корневые пространства оператора A_1 совпадают с корневыми подпространствами $K_{\lambda_1},\ldots,K_{\lambda_{p-1}}$ оператора A, то $V_1=K_{\lambda_1}\oplus\cdots\oplus K_{\lambda_{p-1}}$ и $V=K_{\lambda_1}\oplus\cdots\oplus K_{\lambda_{p-1}}\oplus K_{\lambda_p}$.

2.14 Нерасщепляемые операторы и подпространства Крылова.

В максимальном расщеплении линейного оператора каждое инвариантное подпространство не может быть прямой суммой ненулевых инвариантных подпространств. Такие

подпространства и сужение оператора на них естественно называть нерасщепляемыми. Согласно теореме о корневом расщеплении, нерасщепляемый оператор обязан быть квазискалярным.

Опр. Инвариантное подпространство M = M(A, x) оператора A, содержащие заданные ненулевой вектор x, называется минимальным, если данное подпространство содержится в любом инвариантном подпространстве, которому принадлежит вектор x.

Минимальное инвариантное подпространство M(A,x) должно содержать последовательность векторов x,Ax,A^2x,\ldots Векторы такого вида принято называть векторами Крылова, а линейные оболочки $L_k(A,x)=L(x,Ax,A^2x,\ldots A^{k-1}x)$ — пространствами Крылова.

Лемма. Минимальное инвариантное подпространство M(A, x) совпадает с пространством Крылова $L_x(A, x)$, содержащим вектор $A^k x$. Его размерность равна минимальному значению k, при котором $A^k x \in L_k(A, x)$.

 \mathcal{A} -во. Пусть $x, Ax, \ldots, A^{k-1}x$ — ЛНЗ, а вектор A^kx выражается в виде их линейной комбинации. Ясно, что $\sim L_k(A,x) = k$. Условие $A^kx \in L_k(A,x)$ обеспечивает инвариантность подпространства $L_k(A,x)$. В то же время, любое инвариантное подпространство, содержащие вектор x, обязано содержать все пространство Крылова $\implies M(A,x) = L_k(A,x)$.

Лемма. Минимальное инвариантное подпространство M(A, x) нерасщепляемо в том и только в том случае, когда сужение оператора A на нем квазискалярно.

 \mathcal{A} -60. Квазискалярность является необходимым условием нерасщепляемости. Докажем его достаточность в случае подпространства M(A,x). $M=M(A,x)=L_k(A,x)$, где $k=\dim L_k(A,x)$ и $A^kx\in L_k(A,x)$. Пусть единственное собственное значение оператора A на M равно λ . Тогда $B=A-\lambda I$ - нильпотентный на $M,\,M=L_k(B,x)$, система $x,Bx,\ldots,B^{k-1}x$ - ЛНЗ и индекс нильпотентности B|M не больше k. Значит $B^kx=\theta$. Пусть $L\subseteq M$ — произвольное ненулевое инвариантное подпространство B. Возьмем ненулевой вектор $\theta\neq z\in L,\,z=\sum\limits_{j=0}^{k-1}\alpha_jB^jx$, пусть i — минимальное число такое, что $\alpha_i\neq 0$. Тогда $B^{k-1-i}z=\alpha_iB^{k-1}x\in L\implies B^{k-1}x\in L$. Таким образом, любое инвариантное подпространство $L\subseteq M$ оператора B содержит общий вектор $B^{k-1}x$. Значит M нельзя представить в виде прямой суммы двух ненулевых инвариантных подпространств оператора B. Каждое инвариантное пространство оператора A является инвариантным и для оператора $B=A-\lambda I$.

2.15 Условие линейной независимости составной системы векторов Крылова нильпотентного оператора.

Лемма. Пусть A - линейный оператор и k_1, \ldots, k_t - его индексы нильпотентности на ненулевых векторах x_1, \ldots, x_t . Тогда для линейной независимости составной си-

стемы векторов Крылова: $x_1, Ax_1, \ldots, A^{k_1-1}x_1, \ldots, x_t, Ax_t, \ldots, A^{k_t-1}x_t$ (1) необходима и достаточна линейная независимость векторов $A^{k_1-1}x_1, \ldots, A^{k_t-1}x_t$ (2).

 \mathcal{A} -60. (\Longrightarrow) Из системы (1) очевидно следует линейная независимость системы (2). (\Longleftrightarrow) Пусть (2) линейно независима и $k=\max_{1\leq i\leq t}k_i$. Индукция по k. При k=1 системы (1) и (2) совпадают. Пусть $k\geq 2$ и $I_k=\{i:k_i=k,i=\overline{1,t}\}$. Пусть $\theta=y=\sum_{i=1}^t\sum_{j=1}^{k_i-1}\alpha_{ij}A^jx_i$ (*). Тогда $\theta=A^{k-1}y=\sum_{i\in I_k}\alpha_{i0}A^{k-1}x_i$ \Leftrightarrow $\alpha_{i0}=0$ $\forall i\in I_k$. Из системы (1) удалим все векторы $x_i,\ i\in I_k$. Оставшаяся система — составная система векторов Крылова, но индексы нильпотентности A на векторах $x_i,\ i\not\in I_k$ и векторах $Ax_i,\ i\in I_k$ меньше k. По предположению индукции для векторов, оставшихся в (*) (в силу ЛНЗ) $\alpha_{ij}=0,\ \forall i,j:1\leq i\leq t,\ 0\leq j\leq k_i-1$.

Следствие. Пусть A - нильпотентный оператор и $L_{k_1}(A, x_1), \ldots, L_{k_t}(A, x_t)$ - максимальные пространства Крылова. Для того чтобы их сумма была прямой необходимо и достаточно, чтобы $A^{k_1-1}x_1, \ldots, A^{k_t-1}x_t$ были линейно независимыми.

2.16 Максимальное расщепление и жорданова форма нильпотентного оператора.

Теорема. Любой нильпотентный оператор A на конечномерном пространстве V расщепляется в прямую сумму операторов на максимальных пространствах крылова и в любом таком расщеплении число n_k пространств размерности k не зависит от метода, которым было получено расщепление и равно $n_k = 2 \operatorname{def} A^k - \operatorname{def} A^{k+1} - \operatorname{def} A^{k-1}$.

 \mathcal{A} -во. Пусть нильпотентный оператор A действует в V. Рассмотрим какие-либо максимальные пространства Крылова: $L_1 = L_{k_1}(A, x_1), \ldots, L_s = L_{k_s}(A, x_s)$ дающие в сумме (необязательно прямой) пространство V. Чтобы получить их, возьмем в качестве начальных векторов x_1, \ldots, x_s , например, базис пространства V.

Если $V = L_1 + \dots + L_s$ - прямая сумма, то нужное расщепление получено. Если нет, то $A^{k_1-1}x_1,\dots,A^{k_s-1}x_s$ — ЛЗ. Рассмотрим нетривиальную линейную комбинацию $\sum\limits_{i=1}^s \alpha_i A^{k_i-1}x_i = 0$

 θ . Среди векторов линейно комбинации, перед которыми стоит ненулевой коэффициент, выберем тот, который входит в пространство Крылова с наименьшей размерностью. Пусть это будет $A^{j_j-1}x_j$.

$$A^{k_j-1}x_j + \sum_{i=1, i\neq j}^s \frac{\alpha_i}{\alpha_j} A^{k_i-1}x_i = \theta.$$

$$y_0 = x_j + \sum_{i=1, i \neq j}^s \frac{\alpha_i}{\alpha_j} A^{k_i - k_j} x_i,$$

$$y_1 = Ax_j + \sum_{i=1, i \neq j}^s \frac{\alpha_i}{\alpha_j} A^{k_i - k_j + 1} x_i,$$

$$\dots$$

$$y_{k_j - 1} = A^{k_j - 1} x_j + \sum_{i=1, i \neq j}^s \frac{\alpha_i}{\alpha_j} A^{k_i - 1} x_i = \theta.$$

 y_0, \dots, y_{k_i-1} образуют последовательность векторов Крылова. Если $y_0 = \theta$, то все они нулевые и пространство V - сумма меньшего числа максимальных пространств Крылова. Если $y_0 \neq \theta$, то $V = L_1 + \dots + L_{j-1} + L'_j + L_{j+1} + \dots + L_s$, где $L'_j = L_k(A, y_0)$ — максимальное пространство Крылова размерность $d = \dim L(y_0, \dots, y_{k_i-2}) < k_i$. Мы получаем новое расщепление, в котором сумма размерностей максимальных пространств Крылова уменьшена. Всякий раз, когда V представляется суммой максимальных пространств Крылова с суммой размерностей больше, чем $\dim V$, мы можем найти аналогичной расщепление с меньшей суммой размерностей. В какой-то момент сумма размерностей будет $\dim V$ и сумма подпространств будет прямой.

Пусть $V=L_{k_1}(A,x_1)\oplus\cdots\oplus L_{k_s}(A,x_s)$ - прямая сумма максимальных пространств Крылова и среди них ровно m_k пространств размерности $\geq k$. Докажем, что $m_k =$ $\det A^k - \det A^{k-1}$.

Множество $\{A^dx_i: k \leq d \leq k_i-1, i=\overline{1,s}\}$ состоит из ненулевых векторов, образующих базис пространства im A^k : rank $A^k = \sum_{i=1}^s l_i$, $l_i = \max(0, k_i - k) \implies \det A^k =$

$$\sum_{i=1}^{s} (k_i - l_i) \implies \ker A^k = L(A^{l_1}x_1, A^{l_1+1}x_1, \dots, A^{k_1-1}x_1, \dots, A^{l_s}x_s, A^{l_s+1}x_s, \dots, A^{k_s-1}x_s).$$

Число образующих векторов равно размерности ярда и все они принадлежат ядру оператора A^k . Если $l_j = k_j - k$, то $A^k A^{l_j} x_j = A^{k+k_j-k} x = A^{k_j} x_j = \theta$, а если $l_j = \theta$, то $d_j < d \implies A^d A^{l_j} x_j = A^d x_j = \theta$. Среди образующих векторов все, кроме, возможно, первых векторов $A^{l_1}x_1, \ldots, A^{l_s}x_s$ в последовательностях крылова, принадлежат пространству $\ker A^{k-1}$. А число тех из них, которые ему не принадлежат, как раз и равно числу пространств Крылова размерность, которых $\geq k$. Пусть M_k — их линейная оболочка. Тогда dim $M_k = m_k$, ker $A^k = \ker A^{k-1} \oplus M_k \Longrightarrow m_k = \operatorname{def} A^k - \operatorname{def} A^{k-1}$. $n_k = m_k - m_{k+1} = (\operatorname{def} A^k - \operatorname{def} A^{k-1}) - (\operatorname{def} A^{k+1} - \operatorname{def} A^k) = -\operatorname{def} A^{k-1} + 2\operatorname{def} A^k - \operatorname{def} A^k$

$$n_k = m_k - m_{k+1} = (\operatorname{def} A^k - \operatorname{def} A^{k-1}) - (\operatorname{def} A^{k+1} - \operatorname{def} A^k) = -\operatorname{def} A^{k-1} + 2\operatorname{def} A^k - \operatorname{def} A^{k+1}.$$

Следствие. Для нильпотентного оператора на конечномерном пространстве расщепление в прямую сумму операторов является максимальным тогда и только тогда, когда операторы расщепления определены на максимальных пространствах Крылова.

Д-60. Если подпространство в прямой сумме не является максимальным пространством

Крылова, то оно может быть разложено в нетривиальную прямую сумму таких подпространств, а значит исходное разложение не максимальное.

Пусть λ - единственное собственное значение квазискалярного оператора A и пусть $L_k(A,x)$ — его инвариантное пространство Крылова. В данном пространстве имеется линейно независимая системы векторов $x, Bx, \ldots, B^{k-1}x$, где $B = A - \lambda I$. Составим из них базис $e_1 = B^{k-1}x$, $e_2 = B^{k-2}x, \ldots, e_{k-1} = Bx$, $e_k = x \implies Ae_1 = \lambda e_1$, $Ae_2 = \lambda e_2 + e_1, \ldots, Ae_k = \lambda e_k + e_1$. Матрица оператора $A|L_k(A,x)$ в этом базисе:

$$J_k(\lambda) = egin{bmatrix} \lambda & 1 & & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda & 1 \\ & & & & \lambda \end{bmatrix}_{k imes k}$$

— жорданова клетка собственного значения λ .

Жордановой матрицей называется прямая сумма жордановых клеток. Для заданной матрица A подобная ей жорданова матрица $J=P^{-1}AP$ и столбцы матрицы P называются жордановой формой и жордановым базисом матрицы A. Ясно, что $J_n^m(0) \neq O$ при $m=\overline{1,n-1}$ и $J_n^n(0)=O$, т.е. $J_n(0)$ - нильпотентная матрица с индексом нильпотентности равным n.

2.17 Теорема Жордана о структуре линейного оператора.

Теорема. Пусть V- конечномерное линейное пространство, $n=\dim V$, $A\in L(V,V)-$ квазискалярный оператор и $\lambda-$ его единственное собственное значение. Тогда существует базис $h_1,\ldots,h_n,\ m.ч.$ $A_h=J_{k_1}(\lambda)\oplus\cdots\oplus J_{k_r}(\lambda),\ \text{где }k_1+\cdots+k_r=n.$

 \mathcal{A} -60. Оператор $B = A - \lambda I$ — нильпотентный. Значит существует базис h_1, \ldots, h_n , т.ч. $B_r = J = J_{k_1}(0) \oplus \cdots \oplus J_{k_r}(0), \ k_1 + \cdots + k_r = 0$. Далее, $A = B + \lambda I \implies A_n = B_n + \lambda I = J + \lambda I = J_{k_1}(\lambda) \oplus \cdots \oplus J_{k_r}(\lambda)$.

Теорема (Жордана о структуре линейного оператора). Пусть V- конечномерное линейное пространство, $\dim V=n,\ A\in L(V,V)\ u\ f(\lambda)=(-1)^n(\lambda-\lambda_1)^{l_1}\dots(\lambda-\lambda_k)^{l_k},$ $\lambda_p\neq\lambda_q-$ характеристический многочлен A. Тогда существует базис $h_1,\dots,h_n,\ m.ч.$ $A_h=A_1\oplus\dots\oplus A_k,\$ где $A_j=J_{i_1}(\lambda_j)\oplus\dots\oplus J_{i_m}(\lambda_j),\ m=m(j),\ i_1+\dots+i_m=l_j,\ j=\overline{1,k}.$

 \mathcal{A} -во. Положим $f_j(\lambda) = (\lambda - \lambda_j)^{l_j}, \ j = \overline{1,k}$. Из теоремы о корневом расщеплении $V = W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_k}$, где $W_{\lambda_j} = \ker(A - \lambda_j I)^{l_j}$, $\dim W_{\lambda_j} = l_j$, $AW_{\lambda_j} \subset W_{\lambda_j}$, $j = \overline{1,k}$ и $A_j = A|W_{\lambda_j}$ — сужение оператора A на подпространство W_{λ_j} . Оператор $A_j \in L(W_{\lambda_j}, W_{\lambda_j})$ имеет единственное собственное значение λ_j , алгебраической кратности l_j . Применим предыдущую теорему к каждому оператору A_j , получим искомое утверждение.

2.18 Единственность жордановой формы линейного оператора (матрицы).

Пусть K_{λ_j} - корневое пространство оператора A, отвечающее собственному значению λ_j . Положим $B = A - \lambda_j I$, $N_k = \ker B^k$, $n_k = \dim N_k$, $r_k = \operatorname{rank} B^k$.

Построим сначала само корневое подпространство K_{λ_j} . Для этого необходимо найти момент q, начиная с которого все ядра N_q будут совпадать с $N_q = K_{\lambda_j}$, при этом имеем $n_1 = s_j < n_2 < \dots < n_q = m_j$, где s_j и m_j - геометрическая и алгебраическая кратности λ_j . Теперь будем строить базис K_{λ_j} , последовательно просматривая подпространства N_q, N_{q-1}, \dots, N_1 .

 N_q) Пусть f_1, \dots, f_{t_q} - векторы, дополняющие произвольный базис N_{q-1} до базиса N_q . Ясно, что:

- 1) они будут корневыми векторами высоты q;
- 2) их количество равно $n_q n_{q-1}$;
- 3) $t_q = n_q n_{q-1} = (n_q n_{q-1}) (n_{q+1} n_q) = -n_{q+1} + 2n_1 n_{q-1}$, так как $n_{q+1} = n_q$.
- 4) никакая нетривиальная линейная комбинация этих векторов не принадлежит N_{q-1} (такие векторы будем называть линейно независимыми над N_{q-1}).

 N_{q-1}) Построим векторы Bf_1,\ldots,Bf_{t_q} . Эти векторы являются корневыми векторами высоты q-1, и они линейно независимы над N_{q-2} , так как в противном случе для

нетривиального набора чисел
$$\alpha_1, \ldots, \alpha_{t_q}$$
 имеем $B^{q-2} \sum_{k=1}^{t_q} \alpha_k B d_f$, т.е. $B^{q-1} \sum_{k=1}^{t_q} \alpha_k f_k = \theta$, и

 $\sum\limits_{k=1}^{t_p} lpha_k f_k \in N_{q-1}$, что противоречит линейной независимости f_1,\ldots,f_{t_q} над N_{q-1} .

Дополним эти векторы векторами $g_1,..,g_{t_{p-1}}\in N_{q-1}$ так, что векторы $Bf_1,..,Bf_{t_q},g_1,...,g_{t_{p-1}}$ дополняли произвольный базис N_{q-2} до базиса N_{q-1} . Ясно, что:

- 1) они будут корневыми векторам высоты q-1;
- 2) их количество равно $n_{q-1} n_{q-2}$;
- 3) $t_{q-1} = (n_{q-1} n_{q-2}) (n_q n_{q-1}) = -n_q + 2n_{q-1} n_{q-2};$
- 4) они линейно независимы над N_{q-2} .

Выполняя далее такие же построения в подпространствах N_{q-2}, N_{q-3}, \ldots , придем к подпространству N_1 .

 N_1) Здесь строятся векторы

$$B^{q-1}f_1, \ldots, B^{q-1}f_{t_a}, B^{q-2}g_1, \ldots, B^{q-2}g_{t_{a-1}}, \ldots, Bv_1, \ldots, Bv_{t_2},$$

которые дополняются векторами u_1,\ldots,u_{t_1} до базиса N_1 . Таким образом векторы

$$B^{q-1}f_1, \dots, B^{q-1}f_{t_q}, B^{q-2}g_1, \dots, B^{q-2}g_{t_{q-1}}, \dots, Bv_1, \dots, Bv_{t_2}, u_1, \dots, u_{t-1},$$

- 1) являются собственными векторами;
- 2) их количество равно $n_1 = n_1 n_0$ (очевидно, $n_0 = \text{def } B^0 = 0$);
- 3) $t_1 = (n_1 n_0) (n_2 n_1) = -n_2 + 2n_1 n_0;$
- 4) они линейно независимы.

Полученную за q шагов систему вектором удобно объединить в таблицу, которую будем называть жордановой лестницей.

N_1	$f_1,\ldots,f_{t_{q-1}}$			
	$t_q = -n_{q-1} + 2n_q - n_{q+1}$			
N_{q-1}	$Bf_1,,Bf_{t_q}$	$g_1,\ldots,g_{t_{q-1}}$		
		$t_{q-1} = -n_{q-2} + 2n_{q-1} - n_q$		
:	:	:	٠	
$\overline{N_1}$	$B^{q-1}f_1,, B^{q-1}f_{t_q}$	$B^{q-2}g_1, \dots, B^{q-2}g_{t_{q-1}}$		u_1,\ldots,u_{t_1}
				$t_1 = -n_0 + 2n_1 - n_2$

Получили, что число и размер клеток жордана однозначно определяется размерностями ядер операторов $(A - \lambda_i I)^i$.

Таким образом доказали теорему:

Теорема. Любая матрица $A \in \mathbb{C}^{n \times n}$ подобна прямой сумме экорэкановых клеток $P^{-1}AP = J_1 \oplus \cdots \oplus J_n$, причем число и размеры экорэкановых клеток определяются однозначно по матрице A.

2.19 Критерий подобия комплексных матриц.

Опр. Матрицы A и B называются подобными, если существует невырожденная матрица X, такая, что $A = X^{-1}BX$.

Теорема. Две матрицы $A, B \in \mathbb{C}^{n \times n}$ подобны тогда и только тогда, когда их жордановы формы совпадают.

 \mathcal{A} -60. В доказательстве нуждается только подобие жордановых матриц с одинаковым набором жоржановых клеток. Это утверждение следует из того, что перемещение столбцов матрицы реализуется умножением матрицы на матрицу элементарных преобразований, которая не вырождена.

2.20 Блочно-диагональная жорданова форма вещественной матрицы.

Пусть $A \in \mathbb{R}^{n \times n}$, $f_A(\lambda) \in \mathbb{R}_n[\lambda]$.

Если $\lambda \in \mathbb{R}$, $f_A(\lambda) = 0$, то корневое пространство, порожденное этим собственным значением, расщепляется в прямую сумму жордановых клеток $J_k(\lambda)$.

Пусть $\lambda = a + bi \ (a, b \in \mathbb{R} \ \text{и} \ b \neq 0), \ f_{\underline{A}}(\lambda) = 0.$ Тогда $\overline{\lambda} = a - bi$ тоже собственное значение A и алгебраические кратности λ и $\overline{\lambda}$ совпадают. Пусть h_1, \ldots, h_k — жарданова цепочка (система векторов Крылова) клетки $J_k(\lambda)$, тогда $\overline{h}_1, \ldots, \overline{h}_k$ — жорданова цепочка, отвечающая жардановой клетке $J_k(\overline{\lambda})$.

Пусть $h_j = x_j + iy_j \ (x_j, y_j \in \mathbb{R}^n), \ j = \overline{1, k}$, тогда

$$\begin{array}{ll}
Ah_{1} = \lambda h_{1}, & Ah_{j} = \lambda h_{j} + h_{j-1} \ (2 \le j \le k) \\
A\overline{h}_{1} = \lambda \overline{h}_{1}, & A\overline{h}_{j} = \lambda \overline{h}_{j} + \overline{h}_{j-1} \ (2 \le j \le k)
\end{array} (*)$$

Система $h_1, \ldots, h_k, \overline{h}_1, \ldots, \overline{h}_k - \Pi$ НЗ над \mathbb{C} и $L_{\mathbb{C}}(h_1, \overline{h}_1, \ldots, h_k, \overline{h}_k) = L_{\mathbb{C}}(x_1, y_1, \ldots, x_k, y_k)$. Значит $2k = \dim L_{\mathbb{C}}(h_1, \overline{h}_1, \ldots, h_k, \overline{h}_k) = \dim L_{\mathbb{C}}(x_1, y_1, \ldots, x_k, y_k)$. Поэтому $\dim L_{\mathbb{R}}(x_1, y_1, \ldots, x_k, y_k) = 2k$.

Перепишем жорданову цепочку (*):

$$\begin{cases}
A(x_1 + iy_1) = (a + ib)(x_1 + iy_1), \\
A(x_2 + iy_2) = (x_1 + iy_1) + (a + ib)(x_2 + iy_2), \\
\dots \\
A(x_k + iy_k) = (x_{k-1} + iy_{k-1}) + (a + ib)(x_k + iy_k).
\end{cases}$$

Выделим действительные части и мнимые части в этих равенствах, получим:

$$\begin{cases}
Ax_1 = ax_1 - by_1, & Ay_1 = bx_1 + ay_1, \\
Ax_2 = 1x_1 + 0y_1 + ax_2 - by_2, & Ay_2 = 0x_1 + 1y_1 + bx_2 + ay_2, \\
\dots & \\
Ax_k = 1x_{k-1} + 0y_{k-1} + ax_k - by_k, & Ay_k = 0x_{k-1} + 1y_k + bx_k + ay_k.
\end{cases}$$
(**)

Значит вещественное подпространство $L_{\mathbb{R}}(x_1, y_1, \dots, x_k, y_k) = L$ — это инвариантное подпространство размерности 2k и A_L — сужение A на L выглядит так:

$$J = \begin{bmatrix} a & b & 1 & 0 & & & & & \\ -b & a & 0 & 1 & & & & & \\ & & a & b & 1 & 0 & & & \\ & & -b & a & 0 & 1 & & & \\ & & & \ddots & \ddots & \ddots & \ddots & \\ & & & a & b & 1 & 0 \\ & & & -b & a & 0 & 1 \\ & & & & a & b \\ & & & -b & a \end{bmatrix} \in \mathbb{R}^{2k \times 2k}$$

Положим $\Lambda = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ и $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ можем записать:

$$J = \begin{bmatrix} \Lambda & E & & & \\ & \Lambda & E & & \\ & & \ddots & \ddots & \\ & & & \Lambda & E \\ & & & & \Lambda \end{bmatrix}$$

— блочная жорданова клетка порядка 2k. Таким образом, доказали теорему:

Теорема. Любая вещественная матрица подобна прямой сумме вещественных жордановых клеток и вещественных блочных жордановых клеток.

2.21 Минимальный многочлен матрицы (оператора).

Опр. Многочлен минимальной степени аннулирующий матрицу A называет s ее минимальным многочленом.

Пемма. Минимальный многочлен является делителем характеристического многочлена.

Д-60. Пусть p(t) - минимальный многочлен для матрицы A, тогда $f_A(t) = q(t)p(t) + r(t)$, где $p(t), r(t) \in \mathbb{C}[t], r(t) = 0$ или $\deg r(t) < \deg p(t)$. Далее, $f_A(t) = 0$ и p(A) = 0, значит r(A) = 0, т.е. r(t) — аннулирующий многочлен и неравенство $\deg r(t) < \deg p(t)$ противоречит минимальности p(t). Значит r(t) = 0 и p(t) являетя делителем $f_A(t)$.

Лемма. Минимальные многочлены подобных матрии совпадают.

$$\mathcal{A}$$
-во. Сразу следует из того, что если $B = C^{-1}AC$, то $p(B) = C^{-1}p(A)C$.

Следствие. Минимальный многочлен A совпадает c минимальным многочленом ее жордановой формы.

Теорема. Пусть матрица A имеет попарно различные собственные значения $\lambda_1, \ldots, \lambda_m$. Тогда степень ее минимального многочлена равна сумме $n_1 + \cdots + n_m$, где $n_i -$ максимальный порядок жордановых клеток для собственного значения λ_i .

 \mathcal{A} -во. Достаточно рассмотреть разложение произвольного вектора x по инвариантным подпространствам L_j максимального расщепления. Пусть подпространства L_{j_1},\ldots,L_{j_m} отвечают собственным значениям $\lambda_1,\ldots,\lambda_m$ и имеют размерности n_1,\ldots,n_m . Тогда подпространства $\ker(A-\lambda I)^{n_i}$ является корневым подпространством собственного значения $\lambda_i \implies (A-\lambda_i I)^{n_1}\ldots(A-\lambda_m I)^{n_m}=0$. Степень минимального многочлена не выше $n_1+\cdots+n_m$. В то же время, степень минимального многочлена не может быть меньше. Жорданова клетка порядка n_i для λ_i не может быть аннулирована многочленом степень меньше n_i , при этом ее минимальный многочлен есть в точности $(\lambda_i-\lambda)^{n_i}$ и этот многочлен не может аннулировать ни одну из жордановых клеток, отвечающих другому собственному значению.

Лемма. Пусть A — линейный оператор на пространстве над произвольным полем, многочлены $f_1(\lambda)$ и $f_2(\lambda)$ над этим полем взаимно просты и является минимальными для сужений $A_1 = A|L_1$ и $A_2 = A|L_2$, где $L_1 = \ker f_1(A)$, $L_2 = \ker f_2(A)$. Тогда минимальный многочлен для прямой суммы $A_1 \oplus A_2$ есть произведение $f_1(\lambda)f_2(\lambda)$.

 \mathcal{A} -60. Пусть A действует на пространстве $L = L_1 \oplus L_2$. Пусть $L \ni x = x_1 + x_2$ — разложение на подпространства L_1 и L_2 . Тогда $f_1(A)f_2(A)x_1 = f_1(A)f_2(A)x_2 = 0 \Longrightarrow f_1(A)f_2(A) = O$. Если $\varphi(\lambda)$ — многочлен, аннулирующий A, то он аннулирует также A_1 и $A_2 \Longrightarrow$ делится на $f_1(\lambda)$ и $f_2(\lambda) \Longrightarrow$ на их произведение $f_1(\lambda)f_2(\lambda)$.

2.22 Условие совпадения минимального и характеристического многочленов.

Опр. V — линейное пространство над \mathbb{C} , $x \in V$, $p(t) \in \mathbb{C}[t]$. p(t) называется аннулирующим многочленом вектора x относительно оператора A, если $p(A)x = \theta$. Аннулирующий многочлен минимальной степень со старшим коэффициентом 1 называется минимальным многочленом вектора x.

Пемма. Минимальный многочлен вектора является делителем минимального многочлена оператора.

 \mathcal{A} -во. Аналогично доказательству леммы из вопроса 2.21.

Исходя из теоремы Гамильтона-Кели, характеристический многочлен матрицы A порядка n совпадает с минимальным многочленом тогда и только тогда, когда степень минимального многочлена равна n. Поэтому, если существует вектор x такой, что система векторов Крылова $x, Ax, \ldots A^{n-1}x - \Pi H 3$, то минимальный многочлен совпадает в характеристическим. Действительно, пусть $p(t) = a_0 + a_1 t + \cdots + a_{n-1} t^{n-1}$. Тогда $p(A)x = a_0 Ix + a_1 Ax + \cdots + a_{n-1} A^{n-1}x$. Если p(A)x = 0, то в силу $\Pi H 3$: $a_0 = a_1 = \cdots = a_{n-1} = 0$, т.е. никакой многочлен степени ниже n не может быть аннулирующим для A.

3 Линейные операторы в пространствах со скалярным произведением.

3.1 Существование, линейность, единственность сопряжённого оператора.

Опр. Пусть V и W — комплексные линейные пространства со скалярными произведениями $(\,,\,)_V$ и $(\,,\,)_W$ и $A:V\to W$ произвольный оператор. Оператор $A^*:W\to V$ называется сопряженным оператору A, если $(Ax,y)_W=(x,A^*y)_V$ $\forall x\in V$ $\forall y\in W$.

Утверждение. Если оператор обладает сопряженным, то он и его сопряженный оператор являются линейными.

Д-60. Пусть
$$u, v \in V$$
, $\alpha, \beta \in \mathbb{C}$. Тогда $(A(\alpha u + \beta v), y)_W = (\alpha u + \beta v, A^*y)_V = \alpha(u, A^*y)_V + \beta(v, A^*y)_V = \alpha(Au, y)_W + \beta(Av, y)_W = (\alpha Au + \beta Av, y)_W = 0 \implies (A(\alpha u + \beta v) - \alpha Au - \beta Av, y)_W = 0 \forall y \in W$. Для вектора $y = A(\alpha u + \beta v) - \alpha Au - \beta Av : (y, y)_W = 0 \implies y = 0$. Аналогично показывается линейность A^* .

Теорема. Если линейный оператор существует, то он единственный.

$$\mathcal{A}$$
-во. Пусть $A:V \to W, \, A_1^*, \, A_2^*:W \to V$ и $(Ax,y)_W = (x,A_1^*y)_V = (X,A_2^*x)_V \, \forall x \in V, y \in W$. Значит $(x,A_1^*y-A_2^*y)_V = 0$. Взяв $x=A_1^*y-A_2^*y$, получим: $(A_1^*y-A_2^*y,A_1^*y-A_2^*y)_V = 0 \, \forall y \in W \implies A_1^*y = A_2^*y \, \forall y \in W \implies A_1^* = A_2^* = A^*$.

Если пространства V и W конечномерные, то в них можно выбрать ортонормированные базисы. Пусть [u] и [v] — векторы-столбцы из координат векторов $u,v\in V$. Аналогично, [p],[q] — векторы-столбцы из координат векторов $p,q\in W$. Тогда скалярные произведения принимают вид:

$$(u, v)_V = [v]^*[u]$$

 $(p, q)_W = [q]^*[p]$

Теорема. Если пространства V и W конечномерны, то для любого линейного оператора $A: V \to W$ сопряженный оператор существует и единственен.

Д-во. Учитываю ортонормированность базисов, находим

$$(Ax, y)_W = (x, A^*y)_V \Leftrightarrow [y]^*[Ax] = [A^*y][x] \Leftrightarrow [y]^*[A][x] = [y]^*[A^*]^*[x] \Leftrightarrow [A] = [A^*]^* \Leftrightarrow [A^*] = [A]^*$$

При использовании ортонормированных базисов линейный оператор A^* удовлетворяет условиям сопряженного оператора в том и только в том случае, когда он задается матрицей $[A^*] = [A]^*$.

Свойства сопряженного оператора.

- 1. $(A^*)* = A;$
- 2. $(A+B)^* = A^* + B^*$;
- 3. $(\alpha A)^* = \overline{\alpha} A^*$;
- 4. $(AB)^* = B^*A^*$;
- 5. $(A^{-1})^* = (A^*)^{-1}$.

 \mathcal{A} -во. 1) $A \in L(V,W) \Longrightarrow A^* \in L(W,V) \Longrightarrow (A^*)^* \in L(V,W)$ и $\forall x \in V, y \in W$: $(y,(A^*)^*x)_W = (A^*y,x)V = \overline{(x,A^*y)_V} = \overline{(Ax,y)_W} = (y,Ax)_W$. Возьмем $y = Ax - (A^*)^*x$, тогда $\forall x \in V : (Ax - (A^*)^*x, Ax - (A^*)^*x) = 0 \Longrightarrow A = (A^*)^*$. 2) $\forall x \in V, y \in W$:

$$(x, (A+B)^*y)_V = ((A+B)x, y)_W = (Ax, y)_W + (Bx, y)_W =$$

$$= (x, A^*y)_V + (x, B^*y)_V =$$

$$= (x, A^*y + B^*y)_V$$

Значит, $\forall y \in W : (A+B)^*y = A^*y + B^*y$. 3) $\forall x \in V, y \in W, \alpha \in \mathbb{C}$:

$$(x, (\alpha A)^* y)_V = (\alpha Ax, y)_W = \alpha (Ax, y)_W = \alpha (x, A^* y)_V =$$
$$= (x, \overline{\alpha} Ay)_W$$

Значит, $\forall y \in W : (\alpha A)^* y = \overline{\alpha} A^* y$.

4) $\forall B \in L(V, W), A \in L(W, K), x \in V, y \in W$:

$$(x, B^*A^*y)_V = (Bx, A^*y)_W = (ABx, y)_K = (x, (AB)^*y)_V$$

Значит, $\forall y \in K : B^*A^*y = (AB)^*y$.

5) $A\in L(V,W), A^{-1}\in L(W,V), (A^{-1})^*\in L(V,W).$ Если $\exists (A^*)^{-1},$ то $(A^*)^{-1}\in L(V,W),$ т.к. $A^*\in L(W,V).$

Поскольку $\exists A^{-1}$, то A — изоморфизм между V и W и $\forall y \in W \exists ! x \in V : y = Ax$. Пусть $A^*y = \theta$, тогда $\forall x \in V : 0 = (x, A^*y)_V = (Ax, y)_W$. Положим x : Ax = y, получаем, $(y, y)_w = 0$, т.е. $y = \theta$, а значит $\ker A^* = \{\theta\}$, т.е. существует $(A^*)^{-1}$. Далее $\forall x \in W, y \in V$:

$$(x, (A^{-1})^*y)_W = (A^{-1}x, y)_V = (A^{-1}x, A^*(A^*)^{-1}y)_V = (AA^{-1}x, (A^*)^{-1}y)_W = (x, (A^*)^{-1}y)_W = (x, (A^*)^{-1}y)_W$$

Значит,
$$\forall y \in V : (A^{-1})^* y = (A^*)^{-1} y.$$

3.2 Матрицы оператора и сопряжённого к нему в паре биортогональных базисов.

Опр. Два ортогональных базиса e_1, \ldots, e_n и f_1, \ldots, f_n пространства V называются парой биортогональных базисов, если $(e_i, f_j) = \delta_{ij}$.

Теорема. В паре биортогональных базисов е и f унитарного пространства V матрицы операторов A и A^* связаны соотношением $(A^*)_f = (A_e)^H$.

$$\mathcal{A}$$
-во. Пусть $A_e = [a_{ij}], (A^*)_f = [b_{ij}].$ Тогда $Ae_j = \sum_{k=1}^n a_{kj}e_k, A^*f_i = \sum_{k=1}^n b_{ki}f_k$. Умножив первое их равенств скалярно на f_i получим, что $(Ae_j, f_i) = \sum_{k=1}^n a_{kj}(e_k, f_i) = a_{ij}$. С другой стороны, $(Ae_j, f_i) = (e_j, A^*f_j) = \sum_{k=1}^n \overline{b}_{ki}(e_j, f_k) = \overline{b}_{ji}$. Следовательно, $a_{ij} = \overline{b}_{ji}$.

3.3 Критерии нормальности оператора (матрицы).

Опр. Линейный оператор $A \in L(V,V)$ называется нормальным, если $A^*A = AA^*$.

При выборе ортонормированного базиса сопряженный оператор определяется сопряженной матрицей, поэтому условие нормальности оператора A равносильно условию нормальности его марицы в ортонормированном базисе: $[A]^*[A] = [A][A]^*$.

Теорема (Критерий нормальности). Оператор A нормален тогда и только тогда, когда существует ортонормированный базис, состоящий из собственных векторов A.

 \mathcal{A} -во. (\Longrightarrow) Пусть A — нормальный оператор и e — ее базис Шура. Тогда A_e — верхняя треугольная матрица и A_e^* — нижняя треугольная матрица. Сравнив диагональный элементы матриц расположенных в левой и правой части равенства: $A_eA_e^*=A_e^*A_e$. Получим, равенства:

$$|a_{11}|^{2} + |a_{12}|^{2} + \dots + |a_{1n}|^{2} = |a_{11}|^{2},$$

$$|a_{22}|^{2} + \dots + |a_{2n}|^{2} = |a_{22}|^{2},$$

$$\dots$$

$$|a_{n-1,n-1}|^{2} + |a_{n-1,n}|^{2} = |a_{n-1,n-1}|^{2},$$

$$|a_{nn}|^{2} = |a_{nn}|^{2},$$

из которых следует, что $a_{12}=a_{13}=\cdots=a_{1n}=a_{24}=a_{24}=\cdots=2_{2n}=\cdots=1_{n-1,n}=0$. Следовательно, матрица A_e имеет диагональную форму. Таким образом, базис Шура является ортонормированным базисом из собственных векторов оператора A. (\Leftarrow) Пусть e—базис из собственных векторов оператора A, тогда $A_e=\mathrm{diag}(\alpha_1,\ldots,\alpha_n)$, $A_e^*=\mathrm{diag}(\overline{\alpha}_1,\ldots,\overline{\alpha}_n)$. Из перестановочности диагональных матриц следует, что A_e —нормальна матрица. Это означает, что A—нормальный оператор.

3.4 Критерии унитарности и эрмитовости оператора (матрицы).

Опр. Линейный оператор A называется унитарным, если он обратим $A^{-1} = A^*$, т.е. $AA^* = A^*A = I$.

Теорема. Нормальный оператор унитарен тогда и только тогда, когда все его собственные значения по модулю равны 1.

$$\mathcal{A}$$
-60. (\Longrightarrow) Пусть U — унитарен, $Ux = \lambda x$, $||x|| = 1$. Тогда $1 = (x, x) = (x, U^*Ux) = (Ux, Ux) = (\lambda x, \lambda x) = \lambda \overline{\lambda}(x, x) = |\lambda|^2$. (\Longleftrightarrow) U — нормален $\Longrightarrow \exists e$ — ортонормированный базис в V , в котором $U_e = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ и $U_e^* = \operatorname{diag}(\overline{\lambda}_1, \ldots, \overline{\lambda}_n)$. Тогда $U_e U_e^* = U_e^* U_e = \operatorname{diag}(|\lambda_1|^2, \ldots, |\lambda_n|^2) = I$.

Теорема. U - yнитарен $\Leftrightarrow \forall x, y \in V : (x, y) = (Ux, Uy)$.

$$\mathcal{A}$$
-60. (\Longrightarrow) $\forall x,y \in V: (x,y) = (x,Iy) = (x,U^*Uy) = (Ux,Uy)$. (\Longleftrightarrow) $\forall x,y \in V: (x,Iy) = (x,y) = (Ux,Uy) = (x,U^*Uy) \implies U^*U = I$. Значит U — невырожденный и $U^* = U^{-1}$.

Теорема. U-yнитарен \Leftrightarrow переводит любой ортонормированный базис в ортонормированный базис.

 \mathcal{A} -во. (\Longrightarrow) Пусть U — унитарен, e_1, \ldots, e_n — ортонормированная система векторов. Значит, $(e_i, e_j) = \gamma_{ij}$. Тогда $(Ue_i, Ue_j) = (e_i, e_j) = \delta_{ij}$.

(\Leftarrow) Пусть e_1, \ldots, e_n — ОНБ в V, тогда Ue_1, \ldots, Ue_n — ОНБ в V. $\forall x, y \in V$:

$$x = x_1 e_1 + \dots + x_n e_n$$

$$y = y_1 e_1 + \dots + y_n e_n$$

$$Ux = x_1 U e_1 + \dots + x_n U e_n$$

$$Uy = y_1 U e_1 + \dots + y_n U e_n$$

Значит,
$$(x,y) = x_1 \overline{y}_1 + \dots + x_n \overline{y}_n = (Ux, Uy).$$

Теорема. U - yнитарен $\Leftrightarrow \forall x \in V : ||Ux|| = ||x||$.

Опр. Линейный оператор A называется эрмитовым, если $A = A^*$.

Теорема. Нормальный оператор эрмитов \Leftrightarrow все его собственные значения вещественные.

Д-во. (
$$\Longrightarrow$$
) Пусть $A=A^*,\ Ax=\lambda x,\ ||x||=1.$ Тогда

$$\lambda = \lambda \cdot 1 = \lambda(x, x) = (\lambda x, x) = (Ax, x) = (x, A^*x) = (x, Ax) = (x, \lambda x) = \overline{\lambda}(x, x) = \overline{\lambda}(x, x)$$

$$(\Leftarrow)$$
 Пусть e_1, \ldots, e_n — ОНБ из собственных векторов A . Тогда $A_e = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, $A_e^* = \operatorname{diag}(\overline{\lambda}_1, \ldots, \overline{\lambda}_n) \implies A_e = A_e^* \implies A = A^*$.

3.5 Эрмитово разложение оператора (матрицы) и эрмитовость знакоопределенного оператора в унитарном пространстве.

Теорема. Любой линейный оператор $A \in L(V, V)$ допускает однозначно определенное эрмитово разложение: $A = H_1 + iH_2$, $H_1, H_2 -$ эрмитовы операторы.

$$\mathcal{A}$$
-во. Если $A=H_1+iH_2$ и $H_1=H_1^*,\ H_2=H_2^*,$ то $A^*=H_1^*-iH^*=H_1-iH_2.$ Значит $H_1=\frac{1}{2}(A+A^*)$ и $H_2=\frac{i}{2}(A^*-A).$

Теорема. Если в унитарном простарснтве $V : \forall x \in V : (Bx, x) = 0, \text{ то } B = O.$

 \mathcal{A} -во. Для любых векторов $y, z \in V$:

$$0 = (B(y+z), y+z) = (By, y) + (Bz, y) + (By, z) + (Bz, z) = (Bz, y) + (By, z)$$
$$0 = (B(iy+z), iy+z) = (By, y) - i(Bz, y) + i(By, z) + (Bz, z) = -i(Bz, y) + i(By, z)$$

Прибавим к первому равенству второе, умноженное на -i, получим, что $(By, z) = 0 \,\forall y, z \in V \implies B = O$.

Теорема. Линейный оператор A в унитарном пространстве V эрмитов \Leftrightarrow $(Ax, x) \in \mathbb{R}$.

$$\underline{\mathcal{A}}$$
-во. (\Longrightarrow) Пусть A — эрмитов оператор. Тогда $(Ax,x)=(x,A^*x)=(x,Ax)=(x,Ax)=(Ax,x)\in\mathbb{R}$. (\Longleftrightarrow) Пусть $(Ax,x)\in\mathbb{R}$. Тогда $(x,Ax)=\overline{(x,Ax)}=(Ax,x)=(x,A^*x)\Longrightarrow (x,(A-A^*)x)=0 \forall x\in V\implies A=A^*$.

Опр. Эрмитов линейный оператор $A:V\to V$ называется неотрицательно определенным, если $\forall x \in V : (Ax, x) > 0$, и положительно определенным, если $\forall \theta \neq x \in V :$ (Ax, x) > 0.

Теорема. Оператор A — неотрицателен (положителен) $\Leftrightarrow A$ эрмитов с неотрицательными (неположительными) собственными значениями.

$$\mathcal{A}$$
-во. (\Longrightarrow) Пусть $Ax = \lambda x, \ x \neq \theta$. Тогда $0 \leq (Ax, x) = \lambda(x, x)$. Значит $\lambda \geq 0$. (\Longleftrightarrow) Пусть e_1, \dots, e_n — ОНБ, $Ae_k = \lambda e_k, \ k = \overline{1, n}$ и $x = \sum_{i=1}^n x_i e_i$. Тогда $(Ax, x) = \left(A\sum_{k=1}^n x_k e_k, \sum_{m=1}^n x_m e_m\right) = \sum_{k,m=1}^n \lambda_k x_k \overline{x}_m(e_k, e_m) = \sum_{k=1}^n \lambda_k |x_k|^2$. Если $\lambda_k \geq 0$ (> 0), то $(Ax, x) \geq 0$ (> 0).

3.6 Существование и единственность неотрицательно определенного квадратного корня из неотрицательно определенной матрицы.

Теорема. Для любого неотрицательного определенного оператора A существует, uпритом единственный, неотрицательно определенный оператор B такой, что $B^2=A$.

 Д-во. Существование. Пусть e_1,\dots,e_n — ОНБ в V, тогда $Ae_k=\lambda e_k,\ \lambda_k\geq 0,\ k=\overline{1,n}.$ Пусть $B \in L(V, V) : Be_k = \sqrt{\lambda_k} e_k, \ k = \overline{1, n}$. Тогда:

- 1) B нормален, т.к. e_1, \ldots, e_n ОНБ из собственных векторов;
- 2) B эрмитов, т.к. его собственные значения $\sqrt{\lambda_k} \in \mathbb{R}, \ k = \overline{1,n};$
- 3) $B \ge 0$, т.к. его собственные значения $\sqrt{\lambda_k} \ge 0$, $k = \overline{1, n}$;
- 4) $B^2e_k = B(Be_k) = B(\sqrt{\lambda_k}e_k) = \sqrt{\lambda_k}Be_k = \lambda_k e_k = Ae_k, \ k = \overline{1, n} \implies B^2 = A.$ $E\partial uнственность.$ Пусть существует другой оператор $C \geq 0$, т.ч. $C^2 = A$. Тогда существует ортонормированный базис $\underline{f_1},\ldots,f_n$ пространства из собственных векторов

оператора C. Если $Cf_i=\mu_i f_i,\ i=\overline{1,n},$ то $Af_i=C^2f_i=\mu_i^2 f_i,\ i=\overline{1,n}.$ Значит, числа μ_1^2,\ldots,μ_n^2 являются собственными значениями оператора A и совпадают с числами Разложим вектор e_i по базису f: $e_i = \sum_{k=1}^n \alpha_k f_k$. Из линейной независимости собственных

векторов отвечающих различным собственным значениям следует, что отличными от нуля будут только коэффициенты α_k лишь при тем f_k , который отвечают собственному значению $\mu_k^2 = \lambda_i$. Поэтому $Ce_i = \sum_{k=1}^n \alpha_k Cf_k = \sum_{k=1}^n \alpha_k \sqrt{\lambda_i} f_k = \sqrt{\lambda_i} \sum_{k=1}^n \alpha_k f_k = \sqrt{\lambda_i} e_i$, i = 1 $\overline{1,n} \implies C = B.$

3.7 Блочно-диагональная форма вещественной нормальной матрицы.

Теорема. Для любого вещественного нормального оператора существует e-OHB, в котором его матрица является прямой суммой вещественных блоков порядка 1: $[\lambda]$ и вещественных блоков порядка 2: $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$.

 \mathcal{A} -во. A — нормален \implies все его жордановы клетки имеют порядок 1 (т.к. существует базис из собственных векторов). Пусть $\lambda = a + ib$, $a,b \in \mathbb{R},\ b \neq 0$ и $f_A(\lambda) = 0$. Тогда $f_A(\overline{\lambda}) = 0$ и A(x+iy) = (a+ib)(x+iy) = (ax-by)+i(bx+ay), т.е. Ax = ax-by, Ay = bx + ay, где x,y — ненулевые вещественные векторы: система x,y — ЛНЗ (т.к. система x+iy,x-iy — ЛНЗ). Значит $A(L(x,y)) \subset L(x,y)$ и сужение A на L(x,y) в базисе x,y имеет матрицу $A_{x,y} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$.

Заметим, что собственные векторы нормального оператора, отвечающие различным собственным значениям, ортогональны. Действительно, если A нормальный то собственные векторы A и A^* совпадают. Далее, пусть $Ae = \lambda e, \ Af = \mu f, \ \lambda \neq \mu, \ e \neq \theta, \ f \neq \theta.$ Тогда $A^*f = \overline{\mu}f$ и $(Ae,f) = (\lambda e,f) = \lambda(e,f) = (e,A^*f) = (e,\overline{\mu}f) = \mu(e,f) \Longrightarrow (\lambda - \mu)(e,f) = 0 \Longrightarrow (e,f) = 0$. Значит векторы x+iy и x-iy ортогональны, т.е. $0 = (x+iy,x-iy) = (x,x)-(y,y)+2i(x,y) \Leftrightarrow \begin{cases} (x,x)=(y,y) \\ (x,y)=0 \end{cases}$. Получили, что если t=||x||=||y||>0, то $t=\frac{x}{t}, \ f=\frac{y}{t}:e,f$ — ОНБ в L(x,y) и $A_{e,f}=A_{x,y}$.

3.8 Блочно-диагональная форма ортогональной матрицы. Матрицы вращения и отражения.

Опр. Пусть V — вещественное конечномерное линейное пространство, $A \in L(V, V)$. Оператор A называется ортогональным, если $AA^* = A^*A = I$.

Теорема. Пусть $A \in L(V, V)$ — ортогональный оператор. Тогда существует e_1, \ldots, e_n — OHB, в котором A_e является прямой суммой вещественных матриц порядка 1 с элементами ± 1 и вещественных матриц вражения порядка 2.

 \mathcal{A} -во. $AA^* = I = A^*A \implies A$ — нормален. Значит $\exists e$ — ОНБ, в котором матрица A_e — есть прямая сумма вещественных матриц порядка $1:[\lambda]$ и болоков порядка 2:[a b b -b a]. Далее, A — ортогонален \implies по модулю собственные значения A равны A 1. Значит блоки порядка A имеют вид A 1 имеют вид A 2 отвечают парам собственных значений A 2 A 2 A 3 A 4 A 4 A 5 A 6 A 6 A 7 A 8 A 9

Матрица оператора вращения.

$$R_{k,m}(\varphi) = \begin{bmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & \cos \varphi & \dots & -\sin \varphi & \dots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \dots & \sin \varphi & \dots & \cos \varphi & \dots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{bmatrix} \leftarrow m$$

 $P_{k,m}(\varphi)$ — матрица Гивенса.

Пусть в ОНБ e матрица оператора $A_e = P_{k,k+1}(\varphi)$. $x = \sum_{i=1}^n x_i e_i$. Пусть $x' = x_k e_k + x_{k+1} e_{k+1}$, $z = x_1 e_1 + \dots + x_{k-1} e_{k-1} + x_{k+2} e_{k+2} + \dots + x_n e_n$, x = z + x', $x' \in L(e_k, e_{k+1})$, $z \in L^{\perp}(e_k, e_{k+1})$. $y' \in L(e_k, e_{k+1})$ и y' получен из x' поворотом на угол φ ; y = Ax = z + y'. Такой оператор называют оператором простого поворота.

Матрица оператора отражения.

 Q_k — матрица отражения.