TITANIC SURVIVAL PREDICTION

September 24, 2024

1 Loading Libraries

```
[61]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.preprocessing import OneHotEncoder
[62]: data=pd.read_csv("Titanic-Dataset.csv")
      data.head(10)
[62]:
         PassengerId
                       Survived
                                 Pclass
                              0
                                       3
                    1
                   2
                              1
                                       1
      1
      2
                    3
                              1
                                       3
      3
                    4
                                       1
                              1
      4
                    5
                              0
                                       3
      5
                    6
                              0
                                       3
      6
                   7
                              0
                                       1
      7
                   8
                              0
                                       3
      8
                   9
                              1
                                       3
      9
                   10
                              1
                                       2
                                                         Name
                                                                  Sex
                                                                         Age
                                                                              SibSp
      0
                                     Braund, Mr. Owen Harris
                                                                 male
                                                                        22.0
      1
         Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
      2
                                                               female
                                                                        26.0
                                                                                  0
                                      Heikkinen, Miss. Laina
      3
              Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                               female
                                                                       35.0
                                                                                  1
      4
                                    Allen, Mr. William Henry
                                                                       35.0
                                                                                  0
                                                                 male
      5
                                            Moran, Mr. James
                                                                 male
                                                                        NaN
                                                                                  0
      6
                                     McCarthy, Mr. Timothy J
                                                                 male 54.0
                                                                                  0
      7
                             Palsson, Master. Gosta Leonard
                                                                 male
                                                                        2.0
                                                                                  3
         Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
                                                                                  0
                                                               female
                                                                      27.0
      9
                        Nasser, Mrs. Nicholas (Adele Achem)
                                                               female 14.0
                                                                                  1
                           Ticket
                                       Fare Cabin Embarked
         Parch
      0
                        A/5 21171
                                    7.2500
                                              NaN
                                                          S
```

```
С
1
       0
                   PC 17599
                              71.2833
                                         C85
2
       0
          STON/02. 3101282
                               7.9250
                                                      S
                                         NaN
3
                                                      S
       0
                      113803
                              53.1000
                                         C123
4
                      373450
                               8.0500
                                                      S
       0
                                         NaN
5
       0
                      330877
                               8.4583
                                         NaN
                                                      Q
6
                       17463
                              51.8625
                                         E46
                                                     S
       0
7
                      349909
                              21.0750
                                         NaN
                                                      S
       1
8
       2
                      347742
                              11.1333
                                                      S
                                         NaN
9
                                                      С
       0
                      237736
                              30.0708
                                         NaN
```

2 Drop the unnecessary columns from the data

```
[63]: data_new=data.drop(["PassengerId","Name","Cabin","Ticket"],axis=1)
data_new.head(10)
```

[63]:	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	C
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S
5	0	3	male	${\tt NaN}$	0	0	8.4583	Q
6	0	1	male	54.0	0	0	51.8625	S
7	0	3	male	2.0	3	1	21.0750	S
8	1	3	female	27.0	0	2	11.1333	S
9	1	2	female	14.0	1	0	30.0708	C

3 Calculate Statistical values

```
[64]: data_new.describe().round(3)
```

[64]:		Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000	891.000	714.000	891.000	891.000	891.000
	mean	0.384	2.309	29.699	0.523	0.382	32.204
	std	0.487	0.836	14.526	1.103	0.806	49.693
	min	0.000	1.000	0.420	0.000	0.000	0.000
	25%	0.000	2.000	20.125	0.000	0.000	7.910
	50%	0.000	3.000	28.000	0.000	0.000	14.454
	75%	1.000	3.000	38.000	1.000	0.000	31.000
	max	1.000	3.000	80.000	8.000	6.000	512.329

4 Checking Null values and Filling them

```
[65]: data_new.isnull().sum()
```

```
[65]: Survived
                    0
      Pclass
                    0
      Sex
                    0
      Age
                  177
      SibSp
                    0
      Parch
                    0
      Fare
                    0
      Embarked
                    2
      dtype: int64
[66]: data_new.dtypes
[66]: Survived
                    int64
                    int64
      Pclass
                   object
      Sex
      Age
                  float64
      SibSp
                    int64
      Parch
                    int64
      Fare
                  float64
      Embarked
                   object
      dtype: object
[67]: data_new["Embarked"].unique()
[67]: array(['S', 'C', 'Q', nan], dtype=object)
[68]: data_new["Embarked"]=data_new["Embarked"].fillna(method="ffill")
[69]: data_new["Embarked"].unique()
[69]: array(['S', 'C', 'Q'], dtype=object)
[70]: ord_data={"S":0,"C":1,"Q":2}
      data_new["Embarked"] = data_new["Embarked"] . map(ord_data)
[71]: data_new.dtypes
[71]: Survived
                    int64
                    int64
      Pclass
                   object
      Sex
                  float64
      Age
      SibSp
                    int64
      Parch
                    int64
      Fare
                  float64
                    int64
      Embarked
      dtype: object
```

```
[72]: data_new["Age"]=data_new["Age"].fillna(data_new["Age"].mean())
      data_new["Embarked"] = data_new["Embarked"].fillna(data_new["Embarked"].mean())
      data_new.isnull().sum()
[72]: Survived
                  0
     Pclass
                  0
      Sex
                  0
                  0
      Age
      SibSp
                  0
      Parch
                  0
     Fare
      Embarked
```

5 Visualization of Passenger Survival

dtype: int64

```
[73]: ax=data_new["Sex"].value_counts().plot(kind="bar",x="Survived",figsize=(6,5))
plt.title("Ratio of Male and Female passengers")
plt.ylabel("count")
plt.xlabel("Sex")
plt.show()
```



```
[19]: ax=data_new["Survived"].value_counts().plot(kind="bar",figsize=(6,5))
    plt.title("Survival Distribution (0:NO,1:YES)")
    plt.ylabel("count")
    plt.xlabel("Survived")
    plt.show()
```


Distribution of Passengers by Embarked


```
[21]: fig, ax = plt.subplots(figsize=(8, 6))
sns.countplot(data=data_new, x="Embarked", hue="Survived", ax=ax)
ax.set_title("Countplot for Embarked with Survival")
ax.set_xlabel("Embarked")
ax.set_xticklabels(["Q", "S", "C"])
ax.set_ylabel("Number of Passengers")
ax.legend(title="Legends", labels=["Not Survived", "Survived"])
plt.show()
```


[90]:		<pre>data_new["Sex"] = data_new["Sex"] . apply({"male":1,"female":0}.get) data_new.head(10).round(3)</pre>								
[90]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
	0	0	3	None	22.000	1	0	7.250	0	
	1	1	1	None	38.000	1	0	71.283	1	
	2	1	3	None	26.000	0	0	7.925	0	
	3	1	1	None	35.000	1	0	53.100	0	
	4	0	3	None	35.000	0	0	8.050	0	
	5	0	3	None	29.699	0	0	8.458	2	
	6	0	1	None	54.000	0	0	51.862	0	

21.075

11.133

30.071

2.000

27.000

14.000

None

None

None

6 Splitting and Training the Cleaned data

```
[91]: x=data new.drop(["Survived"],axis=1)
                    y=data_new["Survived"]
  [98]: from sklearn.model_selection import train_test_split
                    x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.8)
  [99]: from sklearn.neighbors import KNeighborsClassifier
                    knn=KNeighborsClassifier(n_neighbors=5)
[113]: from sklearn.impute import SimpleImputer
                    imputer = SimpleImputer(strategy='mean')
                    x train = imputer.fit transform(x train)
                    x_test = imputer.fit_transform(x_test)
[110]: knn.fit(x_train,y_train)
[110]: KNeighborsClassifier()
[112]: predictions=knn.predict(x_test)
                    print(predictions)
                   1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
                     0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0
                              Accuracy score and confusion metrices
[117]: from sklearn.metrics import confusion_matrix,accuracy_score
                    ac=accuracy_score(y_test,predictions)
                    cm=confusion_matrix(y_test,predictions)
[118]: print(cm)
                   [[92 23]
                      [28 36]]
[119]: print(ac)
                   0.7150837988826816
[120]: from sklearn.tree import DecisionTreeClassifier
                    tree=DecisionTreeClassifier()
[121]: tree.fit(x train,y train)
```

```
[121]: DecisionTreeClassifier()
[122]: predictions=tree.predict(x_test)
    print(predictions)
    [0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 0
    0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1
[123]: from sklearn.metrics import confusion_matrix,accuracy_score
    ac=accuracy_score(y_test,predictions)
    cm=confusion_matrix(y_test,predictions)
[124]: print(cm)
    [[89 26]
     [28 36]]
[125]: print(ac)
    0.6983240223463687
[126]: from sklearn.svm import SVC
    svm=SVC()
[127]: svm.fit(x_train,y_train)
[127]: SVC()
[129]: predictions=svm.predict(x_test)
    print(predictions)
    [0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0
    [130]: from sklearn.metrics import confusion_matrix,accuracy_score
    ac=accuracy_score(y_test,predictions)
    cm=confusion_matrix(y_test,predictions)
[131]: print(cm)
    [[106
         9]
    [ 42 22]]
[132]: print(ac)
```

0.7150837988826816