Decaimiento radioactivo.

- E: Calcular la vida media de una sustancia radioactiva que en 10 años decae un 25%.
- D: ▼ Si S(t) es la cantidad de sustancia al cabo de t años y S_0 es la cantidad inicial, entonces $S(0) = S_0$.

Debido a que en 10 años desaparece el 25 % de S_0 , entonces S(10)=75 % de $S_0=(0.75)S_0=\frac{3}{4}S_0$.

Por lo tanto, la cantidad S(t) está dada por la solución del PVI:

$$S'(t) = kS(t)$$
, con $S(0) = S_0$ y además $S(10) = \frac{3}{4}S_0$.

Sabemos que $S(t) = Ce^{kt}$. Ahora:

$$S(0) = S_0 \implies Ce^0 = S_0 \implies C = S_0 \implies S(t) = S_0e^{kt}$$
.

Luego:

$$S(10) = \frac{3}{4}S_0 \implies S_0e^{10k} = \frac{3}{4}S_0 \implies e^{10k} = 0.75 \implies k = \frac{\ln(0.75)}{10} = -0.02877.$$

Por lo tanto: $S(t) = S_0 e^{-(0.02877)t}$. Si t_m es la vida media de esta sustancia, entonces:

$$t_m = \frac{-\ln 2}{k} \implies t_m = \frac{-\ln 2}{-0.02877} = 24.0927 \implies t_m \approx 24 \text{ años, } 34 \text{ días.}$$

5. canek.azc.uam.mx: 29/11/2010