Drug Discovery, Development and Commercialization, Winter 2013

Yazdi K. Pithavala, PhD
Clinical Trials: Phase 1

Overview

Phase 1 studies

- Terminology
- Typical objectives
- Study Designs
 - population, entry criteria, use of placebo
 - dose escalation/stopping criteria
 - challenges in oncology
- Dose selection

Introduction

Phase 1 studies characterized by competing objectives:

getting maximal information from first clinical study vs. not compromising safety of subjects

Clinical Drug Development

F

E

N

D

A

Terminology

- 'Phase 1' is often used to mean different things, based on:
- Chronology: first set of clinical studies conducted during drug development (most common definition)
- Population: studies conducted in healthy volunteers (regardless of timeframe)
- Intent: studies conducted to evaluate safety of a new combination of drugs

Typical **objectives** of Phase 1 studies

- Characterize safety
- Identify dose-limiting toxicities
- Identify recommended dose for further clinical development
- Characterize pharmacokinetics
- If tenable, measures of drug activity

Example: TeGenero Phase 1 study (TGN1412)

- TGN1412
 - first clinical product by TeGenero Immune Therapeutics
 - humanized monoclonal antibody that binds to and is a strong agonist to CD28, the T-cell receptor
- First In Man Phase 1 initiated in London March 2006
 - starting dose 0.1 mg/kg (500-fold \upseld than safe dose from animal studies)
 - administered as 3-6 minute infusion concurrently to healthy volunteers; n=6 active and n=2 placebo
- Hospitalization of 6 volunteers; 4 with multiple organ dysfunction.

Safety

- Safety is primary imperative of Phase 1 studies
- Safety assessments to minimally include
 - Physical examination
 - Laboratory tests (hematology, serum chemistry, urinalysis)
 - Vital signs
 - ECG assessments
 - Adverse event monitoring
- The timing of safety assessments (baseline and post-treatment) to be clearly outlined in study protocol.

Safety

- Usually will include any additional safety assessments as necessary based on class of molecule, expected effects, observed findings in animals
 - e.g., troponin or MUGA scans
 - e.g., BP measurements for antiangiogenic drugs
- Should pay particular attention to any severe, irreversible, acute, or potentially clinically silent effects observed in animal toxicology studies
 - e.g. cardiac necrosis, Torsade de Pointes

Additional measurements

- If there are pre-identified "No Go" criteria that would stop further clinical evaluation of the drug, it is beneficial to assess them upfront in FIH study
 - if QTc prolongation expected, include rigorous ECG assessments (e.g., placebo/baseline/time-matched ECGs with positive control)
 - if drug is expected to be time-dependent inhibitor of CYP3A4 include midazolam interaction
 - e.g., if plasma half-life is short & requires more frequent than once daily dosing
 - e.g., evaluation of effect of food will help guide dosing for future clinical studies

Markers of drug activity

- Depending on intended effect the drug, may be feasible to include early markers of drug activity or mechanism of action.
 - e.g. FEV for asthma
 - Glucose levels for anti-diabetic
 - Changes in HIV viral load for AIDS

Enrollment criteria: Phase 1 studies

Phase 1 studies typically conducted in a highly controlled study population

- Healthy male /female, 18-55 years, within range for body mass index
- No clinically significant abnormalities/diseases
- Provided informed consent
- Willing to follow guidelines for meal and dietary restrictions: alcohol, tobacco and caffeine use
- No pregnant or nursing females; considerations for female subjects of child-bearing potential
- Use of most concomitant medications restricted
- No recent blood donation or participation in another study

This is usually the FIH study

- Population: healthy volunteers, with some exceptions
- Number of subjects:
 - Depends on confidence in safety, nature of expected adverse events and expected PK variability.
 - Usually ~ 6 subjects active treatment + 2 subjects placebo
 - Can have more subjects depending on additional assessments included in study (e.g., QT assessments, biomarker assessments, metabolism via enzymes that demonstrate genetic polymorphisms)
 - Dropout considerations
- Site: Usually single site, in promixity of ICU/emergency medical facilities

STUDY DESIGN

Should provide required information without compromising safety of subjects.

- Usually subject- and investigator-blinded, sponsor-open
- Different designs have been used:
 - Crossover design favored (vs. parallel design)
 - uses fewer subjects
 - each subject acts as their own control for safety / drug activity.
 - carries potential for safety (and PK) carryover
 - drop-outs will impact results substantially
 - each subject will receive many doses

Crossover (placebo-substitution design)

Cohort	Number of subjects	Treatment				
		Period I	Period II	Period III	Period IV	
A (n=8)	2 2 2 2	Placebo Dose 1 Dose 1 Dose 1	Dose 2 Placebo Dose 2 Dose 2	Dose 3 Dose 3 Placebo Dose 3	Dose 4 Dose 4 Dose 4 Placebo	
B (n=8)	2 2 2 2	Placebo Dose 5 Dose 5 Dose 5	Dose 6 Placebo Dose 6 Dose 6	Dose 7 Dose 7 Placebo Dose 7	Dose 8 Dose 8 Dose 8 Placebo	

- In design above, 8 doses can be studied with two cohorts.
- Time between consecutive periods must be defined (at least 7 days)
- Time between last period in Cohort A and first period in Cohort B should be long enough to allow safety and PK assessments

For <u>very first dosing</u> in humans, i.e., Period I of Cohort A (in any design), dosing should be staggered so safety initially evaluated in one subject at a time before dosing additional subjects.

Crossover (placebo-insertion design)

Cohort	Number of subjects	Treatment				
		Period I	Period II	Period III	Period IV	
A (n=8)	2 2 2 2	Placebo Dose 1 Dose 1 Dose 1	Dose 1 Placebo Dose 2 Dose 2	Dose 2 Dose 2 Placebo Dose 3	Dose 3 Dose 3 Dose 3 Placebo	
B (n=8)	2 2 2 2	Placebo Dose 4 Dose 4 Dose 4	Dose 4 Placebo Dose 5 Dose 5	Dose 5 Dose 5 Placebo Dose 6	Dose 6 Dose 6 Dose 6 Placebo	

- In design above, 6 doses can be studied with two cohorts; increased study duration compared to placebo-substitution design
- Each subject receives all 3 active doses and placebo
- Two different active doses administered during some periods

Parallel design

Cohort	Number of subjects	Treatment					
		Period I	Period II	Period III	Period IV	Period V	Period VI
A (n=8)	6 2	Dose 1 Placebo					
B (n=8)	6 2		Dose 2 Placebo				
C (n=8)	6 2			Dose 3 Placebo			
D (n=8)	6 2				Dose 4 Placebo		
E (n=8)	6 2					Dose 5 Placebo	
F (n=8)	6 2						Dose 6 Placebo

Parallel design

- A subject will receive only 1 treatment: randomly assigned to active drug or placebo.
- requires substantially more subjects than crossover design
- Cannot evaluate intra-subject variability
- Typically employed when
 - (predicted) plasma half-life of parent/metabolite is so long that it is difficult to logistically implement washout and successive treatments in a crossover design.
 - there is concern about exposing participants to more than one dose of a drug (e.g., generation of neutralizing antibodies for biologics)

- Usually performed immediately after the FIH single dose study
- Usually intended to determine the recommended Phase 2 dose for the drug.
- Objectives:
 - -Evaluate safety with continuous dosing
 - –Evaluate steady-state pharmacokinetics
 - -Assess, where tenable, measures of drug activity

- Population: typically healthy volunteers
 - Unless safety considerations preclude use of volunteers (e.g., oncology drugs, high-risk biologics, drugs tolerated better in patients than volunteers)
- Number of subjects:
 - Depends on confidence in safety, expected PK variability.
 - Usually ~ 6-8 subjects active treatment + 2 subjects placebo
 - Can have more subjects depending on additional assessments
 - Dropout considerations (replacements assigned to same treatment)
- <u>Site</u>: Usually single site, in promixity of ICU/emergency medical facilities. Subjects confined from day prior to treatment through an appropriate time (e.g., at least 24-hours after last dose)

Dosing Interval:

 usually predicated by half-life (and duration of effect, if available) from single-dose FIH study

Duration of treatment:

- Typically 7-14 days.
- Typically dose at least to steady-state (3-5 half lives)
- Longer duration can be considered provided there is toxicological coverage from animal studies.
- At least 1-week between successive periods (for safety & pharmacokinetic evaluation); may be longer
- <u>Design</u>: Usually, randomized, placebo-controlled, double-blind (investigator and subject blinded), parallel group study.

• Dosing:

 Usually escalated from a low dose, to ensure safety from prior dose before exposing subjects to higher dose

– Parallel design, representative example:

Cohort	Number of subjects	Treatment				
		Period 1 Week 1-2	Period 2 Week 4-5	Period III Week 7-8	Period IV Week 10-11	
A (n=10)	8 2	Dose 1 Placebo				
B (n=10)	6 2		Dose 2 Placebo			
C (n=10)	6 2			Dose 3 Placebo		
D (n=10)	6 2				Dose 4 Placebo	

- For very first dosing, i.e., Period I of Cohort A, dosing should be staggered so safety evaluated in single subjects at a time

In addition to usual safety and pharmacokinetic assessments, should also consider:

- Evaluation of human metabolites with multiple dosing
- Dose-linearity with multiple dosing
- Assessment of protein binding with multiple dosing
- Differences in safety/pharmacokinetics based on demographics (e.g., gender, ethnicity, age)

Pharmacodynamic measures of drug effect more relevant with multiple dosing, since will drive design of Phase II study

Stopping Rules for Phase 1 studies

- Safety from ongoing-study reviewed in real time.
- Safety % pharmacokinetic data reviewed prior to escalation to next dose group.
- Dose-escalation halted if pre-determined safety threshold exceeded:
 - observed adverse events, laboratory findings, vital signs (including ECGs), or other criteria.
 - escalation may be halted for other reasons, e.g., observed druginteraction/half-life makes it commercially untenable.
- Stopping rules should be clearly identified in study protocol and approved by IRB.

Dose Selection for Phase 1 studies

- Dose selection for a FIH study is often a combination of art & science.
 Relevant doses that need to be projected include
 - 1. maximum tolerated dose
 - 2. pharmacologically effective dose
 - 3. starting dose
- Dose selection typically based on presumption that same (unbound) drug plasma concentration produces same effect in all species.
- Dose selection typically driven by a multitude of data sources:
 - toxicology studies
 - animal pharmacology studies (intended effect)
 - animal pharmacokinetic studies
 - in vitro metabolism studies
 - dosing/formulation options

Dose Escalation Considerations

Starting dose → pharmacologically active dose → MTD

- Ideally want to avoid excessive steps in getting to MTD.
- May employ large dose increase steps initially (e.g., up to 3-fold) until clinical signs are observed, and then less aggressive dosing.
- Unless the drug is expected to have a steep dose-response, very small dose increases (e.g., < 2-fold) may not be useful, because these doses may not be pharmacokinetically distinguishable.
- May have wording built into protocol that escalation will proceed less aggressively after observation of specific signs (exposures>NOAEL, expected safety signals)

Challenges with **Phase I studies in** oncology

- In most instances, FIH study conducted in patients with cancer
 - patients who have exhausted other therapeutic options
 - desire to get to 'therapeutic dose' during escalation soon, so subjects have greater chance of benefit
 - Need to expose as few subjects in earlier cohorts as possible
- Evaluation of safety may be confounded because
 - patients could have compromised end-organ (renal, hepatic) function
 - patients could be taking variety of concomitant medications that may interact with investigational drug
- Desire to characterize long-term safety to be weighed against permitting intra-cohort dose-escalation in lower dosing cohorts

"Phase 0" study

- Study conducted with a dose of drug that is so small as to not be considered pharmacologically active
 - Typically done to decide if the drug is worth further clinical development (e.g., determine half-life of drug)
 - Can be accomplished by administration of a micro-dose of radiolabeled compound

Example: TeGenero Phase 1 study (TGN1412)

 Could anything have been done differently to avoid the outcome from the TGN1412 Phase 1 (FIH) study?

