The user's manual, version 5.0

- D. Barducci¹, G. Bélanger², J. Bernon³, F. Boudjema², J. Da Silva², A. Goudelis⁴, S. Kraml⁵, U. Laa⁶ A. Pukhov⁷, A. Semenov⁸, B. Zaldivar^{2,9}.
 - 1) SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136 Trieste, Italy 2) UGA, USMB, CNRS, LAPTh, F-74940 Annecy, France
 - 3) Institute for Advanced Studies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R, China
 - 4) LPTHE, Sorbonne Universités, UPMC, CNRS, F-75252 Paris Cedex, France
- 5) Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble, France 6) Monash University, Melbourne, Victoria 3800 Australia.
- 7) Skobeltsyn Inst. of Nuclear Physics, Moscow State Univ., Moscow 119992, Russia
 - 8) Joint Institute for Nuclear Research (JINR) 141980, Dubna, Russia
 - 9) Departamento de Física Teórica, UAM, 28049 Madrid, Spain

Abstract

We give an up-to-date description of the micrOMEGAs functions. Only the routines which are available for the users are described. Examples on how to use these functions can be found in the sample main programs distributed with the code.

Contents

1	Introduction					
2	Discrete symmetry in micrOMEGAs.					
3	Downloading and compilation of micrOMEGAs. 3.1 File structure of micrOMEGAs	4				
	3.1 File structure of micrOMEGAs	$\frac{4}{5}$				
	3.3 Module structure of main programs	6				
	3.4 Compilation of codes for specific models	7				
	3.5 External packages	7				
	3.6 Command line parameters of main programs	7				
4	Global Parameters and constants	8				
5	Setting of model parameters, spectrum calculation, parameter display.	8				
6	Relic density calculation.	12				
	6.1 Switches and auxiliary routines	12				
	6.2 Calculation of relic density for one-component Dark Matter models					
	6.3 Calculation of relic density for two-component Dark Matter models					
	6.4 Calculation of relic density for freeze-in	17				

7	Direct detection.	20							
	7.1 Amplitudes for elastic scattering	20							
	7.2 Scattering on nuclei	20							
	7.3 Auxiliary routines	22							
8	Indirect detection								
	8.1 Interpolation and display of spectra	22							
	8.2 Annihilation spectra	23							
	8.3 Distribution of Dark Matter in Galaxy	24							
	8.4 Photon signal	25							
	8.5 Propagation of charged particles	26							
9	Neutrino signal from the Sun and the Earth 9.1 Comparison with IceCube results	26 28							
10	Cross sections and decays.	28							
11	Tools for model independent analysis	31							
12	Constraints from colliders	32							
	12.1 The Higgs sector	32							
	12.1.1 Lilith								
	12.1.2 HiggsBounds and HiggsSignals								
	12.1.3 Automatic generation of interface files								
	12.2 Searches for New particles								
	12.2.1 SModelS								
	12.2.2 Other limits								
13	Additional routines for specific models	38							
	13.1 MSSM	38							
	13.2 The NMSSM	40							
	13.3 The CPVMSSM	40							
	13.4 The UMSSM	41							
14	Tools for new model implementation.	42							
	14.1 Main steps	42							
	14.2 Automatic width calculation								
	14.3 Using LanHEP for model file generation	43							
	14.4 QCD functions	44							
	14.5 SLHA reader	44							
	14.5.1 Writing an SLHA input file	47							
	14.6 Routines for diagonalisation	48							
15	Mathematical tools.	48							
\mathbf{A}	An updated routine for $b \rightarrow s \gamma$ in the MSSM	51							

1 Introduction

micromegas is a code to calculate the properties of cold dark matter (CDM) in a generic model of particle physics. First developed to compute the relic density of dark matter, the code also computes the rates for dark matter direct and indirect detection. micromegas computes CDM properties in the framework of a model of particle interactions presented in Calcher format [1]. It is assumed that the model is invariant under a discrete symmetry like R-parity (even for all standard particles and odd for some new particles including the dark matter candidate) which ensures the stability of the lightest odd particle (LOP). Similarly in two-component dark matter models, a discrete symmetrie that guarantees the stability of the lightest particle in each of the two dark matter sectors is assumed. The CalcHEP package is included in micrOMEGAs and used for matrix elements calculations. All annihilation and coannihilation channels are included in the computation of the relic density. This manual gives an up-to-date description of all microMEGAs functions. The methods used to compute the different dark matter properties are described in references [2-10]. These references also contain a more complete description of the code. In the following the cold dark matter candidate also called LOP or weakly-interactive massive particle (WIMP) will be denoted by χ . Starting with version 5.0, micromegas also allows to compute the abundance of feebly interacting dark matter candidates (FIMP) through the freeze-in mechanism [10]

micromegas contains both C and Fortran routines. Below we describe only the C-version of the routines, in general we use the same names and the same types of argument for both C and Fortran functions. We always use $\mathtt{double(real*8)}$ variables for float point numbers and $\mathtt{int(INTEGER)}$ for integers. In this manual we use FD for file descriptor variables, the file descriptors are FILE* in C and channel number in Fortran. For C-functions which return values different from integer and real number, the first parameter in the corresponding Fortran subroutine presents the return value. The symbol & before the names of variables in C-functions stands for the address of the variable. It is used for output parameters. In Fortran calls there is no need for & since all parameters are passed via addresses. In C programs one can substitute NULL for any output parameter which the user chooses to ignore. In Fortran one can substitute cNull, iNull, r8Null for unneeded parameters of character, integer and real*8 type respectively.

A few C-functions use pointer variables that specify an *address* in the computer memory. Because pointers do not exist in Fortran, we use an INTEGER*8 variable whose length is sufficient to store a computer address.

The complete format for all functions can be found in include/.h (for C) or include/_f.h (for Fortran). Examples on how to use these functions are provided in the MSSM/main.c[F] file.

2 Discrete symmetry in micrOMEGAs.

microMEGAs exploits the fact that models of dark matter exhibit a discrete symmetry and that the fields of the model transform as $\phi \to e^{i2\pi X_{\phi}}\phi$ where the charge $|X_{\phi}| < 1$. The particles of the Standard Model are assumed to transform trivially under the discrete symmetry, $X_{\phi} = 0$. In the following all particles with charge $X_{\phi} \neq 0$ will be called *odd* and the lightest odd particle will be stable. If neutral, it can be considered as a DM candidate.

Typical examples of discrete symmetries used for constructing single DM models are \mathbb{Z}_2 and Z_3 . Multi-component DM can arise in models with larger discrete groups. A simple example is a model with $Z_2 \times Z_2'$ symmetry, the particles charged under $Z_2(Z_2')$ will belong to the first (second) dark sector. The lightest particle of each sector will be stable and therefore a potential DM candidate. Another example is a model with a \mathbb{Z}_4 symmetry. The two dark sectors contain particles with $X_{\phi} = \pm 1/4$ and $X_{\phi} = 1/2$ respectively. The lightest particle with charge 1/4 is always stable while the lightest particle of charge 1/2 is stable only if its decay into two particles of charge 1/4 is kinematically forbidden. micromegas assumes that all odd particles have names starting with '~', for example, ~o1 for the lightest neutralino. In versions 4.X, to distinguish the particles with different transformation properties with respect to the discrete group, that is particles belonging to different 'dark' sectors, we use the convention that the names of particles in the second 'dark' sector starts with '~~'. Note that micrOMEGAs does not check the symmetry of the Lagrangian, it assumes that the name convention correctly identifies all particles with the same discrete symmetry quantum numbers. For models with FIMPs, new particles are considered to be in thermal equilibrium with the SM bath (\mathcal{B}) unless explicitly defined as being feeble, ie belonging to \mathcal{F} . Both \mathcal{B} and \mathcal{F} can contain odd or even particles.

3 Downloading and compilation of micrOMEGAs.

To download micrOMEGAs, go to

http://lapth.cnrs.fr/micromegas

and unpack the file received, micromegas_5.0.tgz, with the command

tar -xvzf micromegas_5.0.tgz

This should create the directory micromegas_5.0/ which occupies about 67Mb of disk space. You will need more disk space after compilation of specific models and generation of matrix elements. In case of problems and questions

email: micromegas@lapth.cnrs.fr

3.1 File structure of micrOMEGAs.

calc calculator

calchep.ini specify the fonts for graphics in CalCHEP
Makefile to compile the kernel of the package
README short description on how to run the code
GalcHEP_src/ generator of matrix elements for micrOMEGAs

Packages/ external codes

clean to remove compiled files

man/ contains the manual: description of micrOMEGAs routines

newProject to create a new model directory structure

sources/ micrOMEGAs code

include/ include files for micrOMEGAs routines or external codes

lib/ contains library micromegas.a when microMEGAs is compiled

MSSM model directory

MSSM/

```
main.c[pp] main.F files with sample main programs
                        directory for routines specific to this model
   lib/
        Makefile
                        to compile the auxiliary code library lib/aLib.a
        *.c *.f *.h *.inc
                                 source codes of auxiliary functions
   work/
                        CalcHEP working directory for the generation of
                        matrix elements
                        to compile the library work/work_aux.a
        Makefile
        lanhep/
                        directory containing lanhep source model files
        models/
                        directory for files which specifies the model
                        files *1.mdl are used in micrOMEGAs sessions. Other *.mdl files
                        are intended for CalcHEP interactive sessions
          vars1.mdl
                        free variables
                        constrained variables
          func1.mdl
          prtcls1.mdl particles
          lgrng1.mdl Feynman rules
                        auxiliary directories for CalcHEP sessions
        tmp/
        results/
        so_generated/ storage of matrix elements generated by CalcHEP
Directories of other models which have the same structure as MSSM/
 NMSSM/
                        Next-to-Minimal Supersymmetric Model [11, 12]
 CPVMSSM/
                        MSSM with complex parameters [13, 14]
                        U(1) extensions of the MSSM [15, 16]
 UMSSM/
 IDM/
                        Inert Doublet Model [17]
                        Simplified model with singlet charged lepton and real scalar DM
 LLL_singlet/
 LHM/
                        Little Higgs Model [18]
                        Singlet scalar DM model with \mathbb{Z}_2 symmetry [19]
 SingletDM/
                        Inert doublet model with Z_3 discrete symmetry [20, 21]
 Z3IDM/
```

to compile the code and executable for this model

Other models can be downloaded on the web, http://lapth.cnrs.fr/micromegas, for example: RHNM, a right-handed Neutrino Model [22], SM4, a toy model with a 4th generation of leptons and neutrino DM, as well as Z5M, a two scalar singlets with a Z_5 symmetry model.

Inert doublet and singlet model with Z_4 symmetry [20, 21]

Simplified model with a Z' portal and fermion DM

For model independent computation of DM signals

3.2 Compilation of CalcHEP and micrOMEGAs routines.

Calchep and micromegas are compiled by gmake. Go to the micromegas directory and launch

gmake

Z4IDSM/ ZpPortal/

mdlIndep/

Makefile

If gmake is not available, then make should work like gmake. In principle micrOMEGAs defines automatically the names of C and Fortran compilers and the flags for compilation. If you meet a problem, open the file which contains the compiler specifications, CalcHEP_src/FlagsForSh, improve it, and launch [g]make again. The file is written in sh script format and looks like

```
# C compiler
CC="gcc"
# Flags for C compiler
CFLAGS="-g -fsigned-char"
# Disposition of header files for X11
HX11=
# Disposition of lX11
LX11="-1X11"
# Fortran compiler
FC="gfortran"
FFLAGS="-fno-automatic"
```

After a successful definition of compilers and their flags, micromegas rewrites the file FlagsForSh into FlagsForMake and substitutes its contents in all Makefiles of the package.

 $\label{lem:clean} \begin{tabular}{l} \begin{tabul$

[g]make flags only generates FlagsForSh. It allows to check and change flags before compilation of codes.

3.3 Module structure of main programs.

Each model included in micromegas is accompanied with sample files for C and Fortran programs which call micromegas routines, the main.c, main.F files. These files consist of several modules enclosed between the instructions

```
#ifdef XXXXX
    .....
#endif
```

#define CLEAN

Each of these blocks contains some code for a specific problem

```
#define MASSES_INFO
                           //Displays information about mass spectrum
#define CONSTRAINTS
                           //Displays B_>sgamma, Bs->mumu, etc
#define HIGGSBOUNDS
                           //calls HiggsBounds/HiggsSignal to constrain the Higgs sector
                           //calls LiLith to constrain the Higgs sector
#define LILITH
#define SModelS
                           //calls SModelS to constrain the new physics sector
#define OMEGA
                           //Calculates the relic density
#define FREEZEIN
                           //Calculates the relic density in the freeze-in mechanism
#define INDIRECT_DETECTION //Signals of DM annihilation in galactic halo
#define LoopGAMMA
                           //Gamma-Ray lines - available only in some models
#define RESET_FORMFACTORS
                           //Redefinition of Form Factors and other
                           //parameters
#define CDM_NUCLEON
                           //Calculates amplitudes and cross-sections
                           //for DM-nucleon collisions
#define CDM_NUCLEUS
                           //Calculates number of events for 1kg*day
                           //and recoil energy distribution for various nuclei
#define NEUTRINO
                           //Calculates flux of solar neutrinos and
                           //the corresponding muon flux
                           //Calculates decay widths and branching ratios
#define DECAYS
#define CROSS_SECTIONS
                           //Calculates cross sections
```

//Removes intermediate files.

There is a flag

#define SHOWPLOTS //which switches on graphic facilities of \micro.

Note that HiggsBounds and HiggsSinals are no longer included in the micrOMEGAs's distribution, they are uploaded from our website at first compilation when the option is activated.

All these modules are completely independent. The user can comment or uncomment any set of *define* instructions to suit his/her need.

3.4 Compilation of codes for specific models.

After the compilation of micrOMEGAs one has to compile the executable to compute DM related observables in a specific model. To do this, go to the model directory, say MSSM, and launch

[g]make

It should generate the executable main using the main.c source file. In general

```
gmake main=filename.ext
```

generates the executable filename based on the source file filename.ext. For ext we support 3 options: c', F', cpp' which correspond to C, FORTRAN and C++ sources. [g]make called in the model directory automatically launches [g]make in subdirectories lib and work to compile

lib/aLib.a - library of auxiliary model functions, e.g. constraints, work/work_aux.a - library of model particles, free and dependent parameters.

3.5 External packages

All external codes are stored in the directory /Packages. Some are included in micrOMEGAs distribution, others are downloaded automatically when they are required.

The packages included in micrOMEGAs distribution are: Suspect spectrum calculator for MSSM, NMSSMTools spectrum calculator for NMSSM, CPsuperH2.3 spectrum calculator for CPVMSSM, Lilith that checks the Higgs properties, and Lanheep that generates model file.

Automatically downloaded packages are: SMODELS [23], HiggsBounds [24], HiggsSignals [25], SPheno [26], SOFTSUSY [27], superIso [28]. The version of the code to be downloaded can be modified by the user. It is defined via the parameter VERSION in the corresponding files:

```
include/SMODELS.in, include/hBandS.inc sources/superIso.c,
MSSM/lib/spheno_call.c, MSSM/lib/ssusy_call.c.
```

3.6 Command line parameters of main programs.

The default versions of main.c/F programs need some arguments which have to be specified in command lines. If launched without arguments main explains which parameter

are needed. As a rule *main* needs the name of a file containing the numerical values of the free parameters of the model. The structure of a file record should be

```
Name Value # comment (optional)
```

For instance, an Inert Doublet model (IDM) input file contains

```
Mh
      125
            # mass of SM Higgs
MHC
      200
            # mass of charged Higgs ~H+
MH3
      200
            # mass of odd Higgs ~H3
XHM
       63.2 # mass of ~X particle
la2
     0.01
            # \lambda_2 coupling
     0.01
            # 0.5*(\lambda_3+\lambda_4+\lambda_5)
laL
```

In other cases, different inputs can be required. For example, in the MSSM with input parameters defined at the GUT scale, the parameters have to be provided in a command line. Launching ./main will return

```
This program needs 4 parameters:

m0 common scalar mass at GUT scale

mhf common gaugino mass at GUT scale

a0 trilinear soft breaking parameter at GUT scale

tb tan(beta)

Auxiliary parameters are:

sgn +/-1, sign of Higgsino mass term (default 1)

Mtp top quark pole mass

MbMb Mb(Mb) scale independent b-quark mass

alfSMZ strong coupling at MZ

Example: ./main 120 500 -350 10 1 173.1
```

4 Global Parameters and constants

The list of the global parameters and their default values are given in Tables 1, 2. The numerical value for any of these parameters can be simply reset anywhere in the code. The numerical values of the scalar quark form factors can also be reset by the calcScalarQuarkFF routine presented below. Some physical values evaluated by micrOMEGAs also are presented as global variables, see Table 3.

All physical constants used in relic density calculations are defined in the file include/micromegas_aux.h, they are listed in Table 4.

5 Setting of model parameters, spectrum calculation, parameter display.

The independent parameters that characterize a given model are listed in the file work/models/vars1.mdl. Three functions can be used to set the value of these parameters:

Table 1: Global input parameters of micrOMEGAs

Name	default value	units	comments		
deltaY	0		Difference between DM/anti-DM abundances		
K_dif	0.0112	$\rm kpc^2/Myr$	The normalized diffusion coefficient		
L_dif 4 kpc		kpc	Vertical size of the Galaxy diffusive halo		
Delta_dif	0.7		Slope of the diffusion coefficient		
Tau_dif	10^{16}	s	Electron energy loss time		
Vc_dif	0	km/s	Convective Galactic wind		
Fermi_a	0.52	fm	nuclei surface thickness		
Fermi_b	-0.6	fm	parameters to set the nuclei radius with		
Fermi_c	1.23	fm	$R_A = cA^{1/3} + b$		
Rsun	8.5	kpc	Distance from the Sun to the center of the Galaxy		
Rdisk	20	kpc	Radius of the galactic diffusion disk		
rhoDM	0.3	GeV/cm^3	Dark Matter density at Rsun		
Vearth	232	$\rm km/s$	Galaxy velocity of the Earth		
Vrot	220	km/s	Galaxy rotation velocity at Rsun		
Vesc	544	km/s	Escape velocity at Rsun		
etaSHMpp	0.2		η parameter of SHM++		
betaSHMpp	0.9		β parameter of SHM++		

Table 2: Global parameters of ${\tt micrOMEGAs}$: nucleon quark form factors

Proton		Neutron		
Name	value	Name	value	comments
ScalarFFPd	0.0191	ScalarFFNd	0.0273	
ScalarFFPu	0.0153	ScalarFFNu	0.011	Scalar form factor
ScalarFFPs	0.0447	ScalarFFNs	0.0447	
pVectorFFPd	-0.427	pVectorFFNd	0.842	
pVectorFFPu	0.842	pVectorFFNu	-0.427	Axial-vector form factor
pVectorFFPs	-0.085	pVectorFFNs	-0.085	
SigmaFFPd	-0.23	SigmaFFNd	0.84	
SigmaFFPu	0.84	SigmaFFNu	-0.23	Tensor form factor
SigmaFFPs	-0.046	SigmaFFNs	-0.046	

Table 3: Evaluated global variables

Name	units	comments	Evaluated by
CDM1	character	name of first DM particle	sortOddParticles
CDM2	character	name of second DM particle	sortOddParticles
Mcdm1	${ m GeV}$	Mass of the first Dark Matter particle	sortOddParticles
Mcdm2	${ m GeV}$	Mass of the second DM particles	sortOddParticles
Mcdm	${ m GeV}$	min(Mcdm1,Mcdm2) if both exist	sortOddParticles
dmAsymm		Asymmetry between relic density of DM - \overline{DM}	darkOmega[FO]
fracCDM2		fraction of CDM2 in relic density.	darkOmega2
Tstart, Tend	${\rm GeV}$	Temperature interval	
		for solving the differential equation	darkOmega[2]

Name	Value	Units	Description
MPlank	1.22091×10^{19}	GeV	Planck mass
EntropyNow	2.8912×10^{9}	m^{-3}	Present day entropy, s_0
RhoCrit100	10.537	${\rm GeVm^{-3}}$	ρ_c/h^2 or ρ for $H = 100 \text{km/s/Mpc}$

Table 4: Some useful constants included in micromegas.

- assignVal(name, val)
- assignValW(name, val)

assign value *val* to parameter *name*. The function assignVal returns a non-zero value if it cannot recognize a parameter name while assignValW writes an error message.

• readVar(fileName)

reads parameters from a file. The file should contain two columns with the following format (see also Section 3.6)

name value

readVar returns zero when the file has been read successfully, a negative value when the file cannot be opened for reading and a positive value corresponding to the line where a wrong file record was found.

Note that in Fortran, numerical constants should be specified as Real*8, for example

A common mistake is to use Real*4.

The constrained parameters of the model are stored in work/models/func1.mdl. Some of these parameters are treated as *public* parameters. The *public* parameters include by default all particle masses and all parameters whose calculation requires external functions (except simple mathematical functions like sin, cos, ...). The parameters needed for the calculation of any *public* parameters in work/models/func1.mdl are also treated as *public*. It is possible to enlarge the list of *public* parameters. There are two ways to do this. One can type * before a parameter name to make it *public* or one can add a special record in work/models/func1.mdl

%Local! |

Then all parameters listed above this record become *public*.

The calculation of the particle spectrum and of all *public* model constraints is done with:

• sortOddParticles(txt)

which also sorts the odd particles with increasing masses. This routine fills the text parameters CDM1 and CDM2 with the names of the lightest odd particle starting with one and two tildes respectively and assigns the value of the mass of the lightest odd particle in each sector to the global parameters Mcdm1 and Mcdm2. For models with only one DM candidate, micrOMEGAs will set CDM2=NULL and Mcdm2=0 (in Fortran the string is filled by space symbols). This routine returns a non zero error code for a wrong set of parameters, for example parameters for which some constraint cannot be calculated. The name of the corresponding constraint is written in txt. This routine has to be called after a reassignment of any input parameter.

• qNumbers(pName, &spin2,&charge3,&cdim)

returns the quantum numbers for the particle pName. Here spin2 is twice the spin of the particle; charge3 is three times the electric charge; cdim is the dimension of the representation of $SU(3)_c$, it can be 1, 3, -3, 6, -6 or 8. The parameters spin2, charge3, cdim are variables of type int. The value returned is the PDG code. If pName does not correspond to any particle of the model then qNumbers returns zero.

• pdg2name(nPDG)

returns the name of the particle which PDG code is nPDG. If this particle does not exist in the model the return value is NULL. In the FORTRAN version this function is Subroutine pdg2name(pName,nPDG) and the character variable pName consists of white spaces if the particle does not exist in the model.

• antiParticle(pName)

returns the name of the anti-particle for the particle pName.

• pMass(pName)

returns the numerical value of the particle mass.

• nextOdd(n, &pMass)

returns the name and mass of the n^{th} odd particle assuming that particles are sorted according to increasing masses. For n=0 the output specifies the name and the mass of the CDM candidate. In the FORTRAN version this function is Subroutine nextOdd(pName,n,pMass)

• findVal(name, &val)

finds the value of variable name and assigns it to parameter val. It returns a non-zero value if it cannot recognize a parameter name.

• findValW(name)

returns the value of variable name and writes an error message if it cannot recognize a parameter name.

The variables accessible by these two commands are all free parameters and the constrained parameters of the model (in file model/func1.mdl) treated as *public*.

The following routines are used to display the value of the independent and the constrained public parameters:

• printVar(FD)

prints the numerical values of all independent and public constrained parameters into FD

printMasses(FD, sort)

prints the masses of 'odd' particles (those whose names started with $\tilde{\ }$). If $sort \neq 0$ the masses are sorted so the mass of the CDM is given first.

• printHiggs(FD, sort)

prints the masses and widths of 'even' colorless scalars.

6 Relic density calculation.

6.1 Switches and auxiliary routines

•VWdecay, VZdecay

Switches to turn on/off processes with off-shell gauge bosons in the final state for DM annihilation and particle decays. If VW/VZdecay=1, the 3-body final states will be computed for annihilation processes only while if VW/VZdecay=2 they will be included in coannihilation processes as well. By default the switches are set to (VW/VZdecay=1).¹ Note that micrOMEGAs calculates the width of each particle only once and stores the result in Decay Table. A second call to the function pWidth (whether an explicit call or within the computation of a cross section) will return the same result even if the user has changed the VW/VZdecay switch. We recommend to call

•cleanDecayTable()

after changing the switches to force micrOMEGAs to recalculate the widths taking into account the new value of VW/VZdecay. In Fortran, the subroutine

• setVVdecay(VWdecay, VZdecay) changes the switches and calls cleanDecayTable(). The sortOddParticles command which must be used to recompute the particle spectrum after changing the model parameters also clears the decay table.

• useSLHAwidth

Switch to determine how the particle widths are computed. If =1 the particle widths stored in a SLHA file (Susy Les Houches Accord [29]) are downloaded by micrOMEGAs. These widths then do not depend on the VW/VZdecay switches. If =0 micrOMEGAs will calculate the widths, it will also do so if the switch is set to 1 and the widths are not provided in the SLHA file. By default this swith is set to 0.

The temperature dependence of the effective number of degrees of freedom can be set with

• loadHeffGeff(char*fname)

allows to modify the temperature dependence of the effective number of degrees of freedom by loading the file fname which contains a table of $h_{eff}(T), g_{eff}(T)$. A positive return value corresponds to the number of lines in the table. A negative return value indicates the line which creates a problem (e.g. wrong format), the routine returns zero when the file fname cannot be opened. The default file is std_thg_t and is downloaded automatically if loadHeffGeff is not called in the user's main program [30]. Five other files are provided in the sources/data directory: $HP_A_thg_t$ ab, $HP_B_thg_t$ ab, $HP_B_thg_t$ ab, HP_B_t and $HP_C_thg_t$ ab. They correspond to sets A, B, B2, B3, C in [31]. The user can substitute his/her own table as well, if so, the file must contain three columns containing the numerical values for T, h_{eff} , g_{eff} , the data file can also contain comments

¹Including the 3-body final states can significantly increase the execution time for the relic density computation.

for lines starting with #.

These functions are accessed via

• gEff(T)

returns the effective number of degrees of freedom for the energy density of radiation at a bath temperature T, only SM particles are included.

• hEff(T)

returns the effective number of degrees of freedom for the entropy density of radiation at a bath temperature T.

• hEffLnDiff(T)

returns the derivative of h_{eff} with respect to the bath temperature, $\frac{d \log(h_{eff}(T))}{d \log(T)}$.

●Hubble(T)

returns the Hubble expansion rate at a bath temperature T. This applies for the radiation-dominated era and is valid for $T \gtrsim 100 \text{eV}$.

•improveCrossSection(p1,p2,p3,p4, Pcm, &cs)

allows to substitute a new cross-section for a given process. Here p1,p2 are the names of particles in the initial state and p3,p4 those in the final state. Pcm is the center of mass momentum and cs is the cross-section in [pb]. This function is useful if for example the user wants to include her/his one-loop improved cross-section calculation in the relic density computation. This function has to be written by the user. The corresponding code can be placed in the directory lib. micrOMEGAs will call this routine substituting &cs by the new calculated cross-section. The dummy version of this routine contained in micrOMEGAs does not change the default cross section.

6.2 Calculation of relic density for one-component Dark Matter models.

All routines to calculate the relic density in version 3 are available in further versions. For these routines, the difference between the two dark sectors is ignored. These routines are intended for models with either a Z_2 or Z_3 discrete symmetry.

• vSigma(T,Beps,fast)

calculates the thermally averaged cross section for DM annihilation times velocity at a temperature T [GeV],

$$\sigma_{v}(T) = \frac{T}{8\pi^{4}\overline{n}(T)^{2}} \int ds \sqrt{s} K_{1} \left(\frac{\sqrt{s}}{T}\right) \sum_{\tilde{\alpha},\tilde{\beta}} p_{\tilde{\alpha}\tilde{\beta}}^{2}(s) g_{\tilde{\alpha}} g_{\tilde{\beta}}$$

$$\left(\sum_{x \geq y} \sigma_{\tilde{\alpha}\tilde{\beta} \to xy}(s) + \frac{1}{2} \sum_{x\tilde{\gamma}} \sigma_{\tilde{\alpha}\tilde{\beta} \to x\tilde{\gamma}}(s)\right)$$

$$\overline{n}(T) = \frac{T}{2\pi^{2}} \sum_{\tilde{\alpha}} g_{\tilde{\alpha}} m_{\tilde{\alpha}}^{2} K_{2}(\frac{m_{\tilde{\alpha}}}{T}),$$

$$(2)$$

Here $\tilde{\alpha}$, $\tilde{\beta}$, $\tilde{\gamma}$ is used for Odd particles and x,y for Even particles. $\sigma_{\tilde{\alpha}\tilde{\beta}\to x[\tilde{\gamma}/y]}$ is the cross section for the corresponding process averaged over the spins of incoming particles and summed over the spins of outgoing particles. σ_v should represent the rate of disappearance of Odd particles, therefore when a final state particle has a non-zero decay branching

ratio to odd particles, the annihilation cross section for this process is multiplied by the corresponding branching ratio of the decays into SM particles. For the same reason cross sections for semi - annihilation processes contribute to vSigma with a factor $\frac{1}{2}$. K_1 , K_2 are modified Bessel functions of the second kind, and $m_{\tilde{\alpha}}$ and $g_{\tilde{\alpha}}$ stand for the mass and the number of degrees of freedom of particle $\tilde{\alpha}$. Note, that if $\tilde{\alpha} \neq \tilde{\beta}$ then each $\sigma_{\tilde{\alpha}\tilde{\beta}}$ term will be presented twice. The value for σ_v is expressed in $[pb \cdot c]$. The parameter Beps defines the criteria for including coannihilation channels as for darkOmega described below. The fast = 1/0/-1 option switches between the fast/accurate/very accurate calculation. The global array vSigmaTCh contains the contribution of different channels to vSigma. vSigmaTCh[i].weight specifies the relative weight of the i^{th} channel,

vSigmaTCh[i].prtcl[j] (j=0, 4) defines the particles names for the i^{th} channel.

The last record in vSigmaTCh array has zero weight and NULL particle names. In the Fortran version, the function vSigmaTCh(i,weight,pdg,process) serves the same purpose. This function returns 0 if i exceeds the number of annihilation channels and 1 otherwise, $i \geq 1$. The variable real*8 weight gives the relative contribution of each annihilation channel and integer pdg(5) contains the codes of incoming and outgoing particles in the annihilation process. character*40 process contains a textual description of annihilation processes.

• vSigmaCC(T,cc,mode)

calculates the thermally averaged $cross\ section \times velocity$ for $2 \to 2,\ 2 \to 3$, and $2 \to 4$ processes. T is the temperature in [GeV], cc is the address of the code for each process. This address can be obtained by the function newProcess presented in Section 10. The returned value is given in [c·pb].

If $mode \neq 0$, vSigmaCC calculates the contribution of a given process to the total annihilation cross section, see Eq.1. The incoming particles should belong to the odd sector. For $2 \to 2$ processes the result after summation over all subprocesses should be identical to the one obtained via vSigma above. For this mode, vSigmaCC includes combinatoric factors: 2 if $\tilde{\alpha} \neq \tilde{\beta}$, an additional factor 2 if the incoming state is not self-conjugated, and a factor $\frac{1}{2}$ for semi-annihilation.

If mode = 0, vSigmaCC is defined by the integral

$$< v\sigma^{\tilde{\alpha}\tilde{\beta}\to X}>_T = \frac{1}{2Tm_{\tilde{\alpha}}^2m_{\tilde{\beta}}^2K_2(\frac{m_{\tilde{\alpha}}}{T})K_2(\frac{m_{\tilde{\beta}}}{T})}\int ds\sqrt{s}K_1(\frac{\sqrt{s}}{T})p_{cm}^2(s)\sigma^{\tilde{\alpha}\tilde{\beta}\to X}(p_{cm}(s))$$

where p_{cm} is the center of mass momentum of incoming particles. Note that

$$\lim_{T\to 0} vSigmaCC(T, cc, 0) = \lim_{p_{cm}\to 0} \sigma(p_{cm})v_{rel}(p_{cm})$$

where $v_{rel}(p_{cm})$ is the relative velocity of incoming particles. The result of vSigmaCC can be different from that of vSigma described above when there is an important contribution from NLSP's to the total number density of DM particles.

• darkOmega(&Xf,fast,Beps,&err)

calculates the dark matter relic density Ωh^2 . This routine solves the differential evolution equation using the Runge-Kutta method. $X_f = Mcdm/T_f$ characterizes the freeze-out temperature which is defined by the condition $Y(T_f) = 2.5Y_{eq}(T_f)$. For asymmetric DM this condition reads $2\sqrt{Y^+(T_f)Y^-(T_f)} = 2.5Y_{eq}(T_f)$. The value of X_f is given for

information and is also used as an input for the routine that gives the relative contribution of each channel to Ωh^2 , see printChannels below. The fast=1 flag forces the fast calculation (for more details see Ref. [3]). This is the recommended option and gives an accuracy around 1%. The parameter Beps defines the criteria for including a given coannihilation channel in the computation of the thermally averaged cross-section, [3]. The recommended value is $Beps=10^{-4}-10^{-6}$ whereas if Beps=1 only annihilation of the lightest odd particle is computed. Non-zero error code means that the temperature where thermal equilibrium between the DM and SM sectors is too large Mcdm/T<2 or $T>10^5 {\rm GeV}$.

darkOmega solves the differential equation for the abundance Y(T) in the temperature interval [Tend,Tstart] defined by the conditions $Y(T_{start}) \approx 1.1Y_{eq}(T_{start})$, $Y(T_{end}) \approx 10Y_{eq}(T_{end})$. For temperatures below Tend, the contribution for Y_{eq} is neglected and the differential equation is integrated explicitly. The solution in the interval [Tend,Tstart] interval is tabulated and can be displayed via the function YF(T). The equilibrium abundance can be accessed with the function Yeq(T).

- darkOmegaFO(&Xf, fast, Beps) calculates the dark matter relic density Ωh^2 using the freeze-out approximation.
- printChannels(Xf,cut,Beps,prcnt,FD)

writes into FD the contributions of different channels to $(\Omega h^2)^{-1}$. Here Xf is an input parameter which should be evaluated first in darkOmega[FO]. Only the channels whose relative contribution is larger than cut will be displayed. Beps plays the same role as in the darkOmega[FO] routine. If $prcnt \neq 0$ the contributions are given in percent. Note that for this specific purpose we use the freeze-out approximation.

- oneChannel (Xf,Beps,p1,p2,p3,p4) calculates the relative contribution of the channel p1,p2 \rightarrow p3,p4 to $(\Omega h^2)^{-1}$. p1,...,p4 are particle names. To sum over several channels one can write "*" instead of a particle name, e.g "*" in place of p1.
- omegaCh is an array that contains the relative contribution and particle names for each annihilation channel. In the Fortran version one uses instead the function omegaCh(i,weight,pdg,process). These array and function are similar to vSigmaTCh described above. The array omegaCh if filled after calling either darkOmegaFO or printChannels.

There is an option to calculate the relic density in models with DM- \overline{DM} asymmetry. In this case we assume that the number difference DM- \overline{DM} is conserved in all reactions. Thus a small difference in initial abundances can lead to a large DM asymmetry after freeze-out as is the case for the baryon asymmetry.

•deltaY

describes the difference between the DM and anti-DM abundances for the models where the number of DM particles minus the number of anti-DM is conserved in decays and collisions. In such models deltaY is a constant during the thermal evolution of the Universe, see Ref. [7].

•dmAsymm

is defined by the equation

$$\Omega_{\pm} = \Omega \frac{1 \pm dm Asymm}{2}$$

and evaluated by micrOMEGAs while calculating the relic density with an initial asymmetry

deltaY, see [7]. This parameter can also be reset after the relic density computation and will then be taken into account for direct and indirect detection rates.

•darkOmegaExt(&Xf, vs_a, vs_sa)

calculates the dark matter relic density Ωh^2 for annihilation cross sections provided by external functions. Here vs_a is the annihilation cross section in $[c \cdot pb]$ as a function of the temperature in [GeV] units while vs_sa is the semi-annihilation cross section. vs_a is required for all models, while vs_sa is relevant only for models where semi-annihilation occurs. The user can substitute NULL for vs_sa when semi-annihilation is not possible.

darkOmegaExt can also be used if $2 \to 2$ processes do not contribute to DM annihilation. In this case the appropriate annihilation or semi-annihilation cross sections can be calculated by vSigmaCC and the tabulated results stored in vs_a and vs_sa. Note that if the user substitute some function which is not in tabular form, darkOmegaExt can be slow as it has not been optimized.

darkOmegaExt solves the Runge-Kutta equation in the interval [Tstart, Tend] where Tstart is defined automatically while Tend has a fixed value 10^{-3} GeV. darkOmegaExt is sensitive to effect of DM asymmetry.

6.3 Calculation of relic density for two-component Dark Matter models.

•darkOmega2(fast, Beps)

Calculates Ωh^2 for either one- or two-components DM models. In the former case it should give the same result as darkOmega. The parameters fast and Beps have the same meaning as for the darkOmega routine. The returned value corresponds to the sum of the contribution of the two DM components to Ωh^2 . darkOmega2 also calculates the global parameter fracCDM2 which represents the mass fraction of CDM2 in the total relic density

$$\Omega = \Omega_1 + \Omega_2 \tag{3}$$

$$\begin{array}{rcl} \Omega & = & \Omega_1 + \Omega_2 & & (3) \\ {\rm fracCDM2} & = & \frac{\Omega_2}{\Omega} & & (4) \end{array}$$

This parameter is then used in routines which calculate the total signal from both DM candidates in direct and indirect detection experiments, nucleusRecoil, calcSpectrum, and neutrinoFlux. The user can change the global fracCDM2 parameter before the calculation of these observables to take into account the fact that the value of the DM fraction in the Milky Way could be different than in the early Universe.

The routines that were described in section 6.2 are not available for two-component DM models. In particular the individual channel contribution to the relic density cannot be computed and DM asymmetry is ignored. After calling darkOmega2 the user can check the cross sections for each class of reactions (but not for individual processes) which were tabulated during the calculation of the relic density. The functions

•vsabcd F(T)

computes the sum of the cross sections for each class of reactions (a, b, c, d = 0, 1, 2)tabulated during the calculation of the relic density. Here T is the temperature in [GeV] and the return value is $v\sigma$ in [c·pb]. These functions are defined in the interval [Tstart , Tend] where Tstart is a global parameter defined by darkOmega2, Tend= $10^{-3} {
m GeV}$. Specifically the functions available are

The temperature dependence of the abundances can also be called by the user, the functions are named Y1F(T) and Y2F(T) and are defined only in the interval $T \in [Tend, Tstart]$. The equilibrium abundances are accessible via the Yeq1(T), Yeq2(T) functions and the deviation from equilibrium by the functions dY1F(T) = Y1F(T) - Y1eq(T) and dY2F(T) = Y2F(T) - Y2eq(T).

6.4 Calculation of relic density for freeze-in.

Several routines are provided in micromegas to compute the DM abundance in freeze-in scenarios. These can be found in the file sources/freezein.c. The first line of this file contains the statement

//#define NOSTATISTICS

This statement can be uncommented for micromegas to compute the relic density assuming a Maxwell-Boltzman distribution. This option is faster.

The auxiliary functions that are needed for the computation of the factors from statistical quantum mechanics are

• Stat2($P/T, x_Y, x_1, x_2, \eta_1, \eta_2$), returns the S function defined in Eq. (5), that takes into account particle statistical distributions for the decay of a mediator $Y \to a, b$ of fixed momentum P.

$$S(P/T, x_Y, x_a, x_b, \eta_a, \eta_b) = \frac{1}{2} \int_{-1}^{1} dc_\theta \frac{e^{E_Y/T}}{(e^{E_a(c_\theta)/T} - \eta_a)(e^{E_b(c_\theta)/T} - \eta_b)} .$$
 (5)

where $x_i \equiv m_i/T$, E_a, E_b are the energies of the outgoing particles and $\eta_i \equiv \pm e^{\mu_i/T}$ and μ_i is the chemical potential.

• K1to2($x_1, x_2, x_3, \eta_1, \eta_2, \eta_3$), returns the \tilde{K}_1 function defined in Eq. (6), that takes into account particle statistical distributions.

$$\tilde{K}_{1}(x_{1}, x_{2}, x_{3}, \eta_{1}, \eta_{2}, \eta_{3}) \equiv \frac{1}{(4\pi)^{2} p_{\text{CM}} T} \int \prod_{i=1}^{3} \left(\frac{d^{3} p_{i}}{E_{i}} \frac{1}{e^{E_{i}/T} - \eta_{i}} \right) e^{E_{1}/T} \delta^{4} \left(P_{1} - P_{2} - P_{3} \right)$$
(6)

The code does *not* check whether or not a particle is in thermal equilibrium with the SM thermal bath and that it is the responsability of the user to specify which particles belong to the bath, \mathcal{B} , or are out of equilibrium, \mathcal{F} . This can be done through the function

• toFeebleList(particle_name)

which assigns the particle_name to the list of feebly interacting ones (i.e. those which belong to \mathcal{F}). Feebly interacting particles can be odd or even. This function can be called several times to include more than one particle. All odd or even particles that are not in this list are assumed to be in thermal equilibrium with the SM and belong to \mathcal{B} . The treatment of the particles that belong to \mathcal{F} for the computation of Ωh^2 within the freeze-in routines is described below. Calling toFeebleList(NULL) will reassign all

particles to \mathcal{B} .

The actual computation of the freeze-in DM abundance can be performed with the help of three functions:

• darkOmegaFiDecay(TR, Name, KE, plot)

calculates the DM abundance from the decay of the particle Name into all odd FP. Here we assume that all odd FP will decay into the lightest one which is the DM. TR is the reheating temperature and KE is a switch to specify whether the decaying particle is in kinetic equilibrium (KE=1) or not (KE=0) with the SM. The equations used for the three different cases are described in [10]. Numerically, the latter two methods give very similar results, however the function with KE=1 is faster. The switch plot=1 displays on the screen Y(T) for the decaying particle and $dY/d\log(T)$ for DM.

• darkOmegaFi22(TR, Process, vegas, plot, &err)

calculates the DM abundance taking into account only DM production via the $2 \to 2$ process defined by the parameter Process. For example "b,B ->~x1,~x1" for the production of DM (here ~x1) via $b\bar{b}$ scattering. This routine allows the user to extract the contribution of individual processes. TR is the reheating temperature. When the switch vegas=1, the collision term is integrated directly as described in [10]. The execution time for this option is quite long, it is intended mostly for precision checks. The switch plot=1 displays on the screen $dY/d\log(T)$ for DM. Note that the temperature profile for DM production obtained by darkOmegaFiDecay and darkOmegaFi22 can be different. For example, in the case of a s-channel resonance, the temperature for DM production corresponds to the one of the mediator decay for darkOmegaFiDecay and the temperature at which the mediator is created for darkOmegaFi22. err is the returned error code, it has the following meaning

- 1: the requested processes does not exist
- 2: $2 \rightarrow 2$ process is expected
- 3: can not calculate local parameters // some constrain parameters can not be calculated.
- 4: the reheating temperature is too small, $(T_R < 1keV)$
- 5: one of the incoming particles belong to \mathcal{F} .
- 6: None of the outgoing particles are odd and feeble.
- 7: Lost of precision in temperature integrand
- 8: Pole in temperature integrand
- 9: NaN in temperature intergrand
- 10: Lost of precision in sqrt(s) integrand
- 11: Pole in sqrt(s) integrand
- 12: NaN in sqrt(s) intergrand
- 13: Lost of precision in angle integrand
- 14: Pole in angle integrand
- 15: NaN in angle intergrand
- 16: lost of precision caused by diagramm cancelation

When substituting NULL for the error code, the error message is displayed on the screen and in this case the message does not appear in the address of the variable used for passing the error code.

• darkOmegaFi(TR, &err)

calculates the DM abundance after summing over all $2 \to 2$ processes involving particles in the bath $\mathcal B$ in the initial state and at least one particle in $\mathcal F$ in the final state. The routine checks the decay modes of all bath particles and if one of them has no decay modes into two other bath particles, the $2 \to 2$ processes involving this particle are removed from the summation and instead the contribution to the DM abundance computed from the routine darkOmegaFiDecay is included in the sum. This is done to avoid appearance of poles in the corresponding $2 \to 2$ cross-section. We recommend for such models to compute individual $2 \to 2$ processes with darkOmegaFi22 described above. As before, we assume that all odd FIMPs will decay into the lightest one which is the DM. T_R has the same meaning as above. err is the returned error code, err=1 if feeble particles have not been defined.

• printChannelsFi(cut,prcnt,filename)

writes into the file filename the contribution of different channels to Ωh^2 . The cut parameter specifies the lowest relative contribution to be printed. If $\mathtt{prcnt} \neq 0$, the contributions are given in percent. The routine $\mathtt{darkOmegaFi}$ fills the array $\mathtt{omegaFiCh}$ which contains the contribution of different channels ($2 \to 2$ or $1 \to 2$) to Ωh^2 . $\mathtt{omegaFiCh}[i].\mathtt{weight}$ specifies the relative weight of the ith channel, $\mathtt{omegaFiCh}[i].\mathtt{prtcl}[j]$ (j=0,4) defines the particles names for the ith channel. The last record in the array $\mathtt{omegaFiCh}$ has zero weight and NULL particle names.

Note that if no particle has been declared as being feebly interacting, the freeze-out routines darkOmega, darkOmegaFO, and darkOmega2 [8] will work exactly like in previous versions of micromegas. A non-empty list of FIMPs, however, will affect these routines since micromegas will exclude all odd particles in this list from the computation of the relic density via freeze-out. For example, if the DM is a bath particle, excluding FPs can impact the freeze-out computation of Ωh^2 when they are nearly degenerate in mass with the DM, hence could potentially contribute to coannihilation processes. Note also that if, for example, the lightest odd particle (the DM) belongs to \mathcal{F} and the user computes the freeze-out abundance of the lightest odd bath particle, the resulting value of $\Omega_{LBP}h^2$ will be automatically rescaled by a factor M_{LFP}/M_{LBP} , where $M_{LBP}(M_{LFP})$ is the mass of the lightest odd particle in \mathcal{B} (\mathcal{F}). Conversely, if the DM belongs to \mathcal{B} and the user computes the freeze-in abundance of the lightest feeble odd particle, the corresponding result for $\Omega_{LFP}h^2$ will be rescaled by M_{LBP}/M_{LFP} . In other words, the answer obtained in both of these cases corresponds to the predicted density of the dark matter particles and not the heavier ones. Besides, micromegas does not check whether the decay rate of an odd particle to the feeble particles is much smaller than $H(T_{FO})$ which would justify the fact that they should not be included in the freeze-out computation.

7 Direct detection.

7.1 Amplitudes for elastic scattering

• nucleonAmplitudes(CDM,pAsi,pAsd,nAsi,nAsd)

calculates the amplitudes for CDM-nucleon elastic scattering at zero momentum. pAsi(nAsi) are spin independent amplitudes for protons(neutrons) whereas pAsd(nAsd) are the corresponding spin dependent amplitudes. Each of these four parameters is an array of dimension 2. The zeroth (first) element of these arrays gives the χ -nucleon amplitudes whereas the second element gives $\overline{\chi}$ -nucleon amplitudes. Amplitudes (in GeV⁻²) are normalized such that the total cross section for either χ or $\overline{\chi}$ cross sections is

$$\sigma_{tot} = \frac{4M_{\chi}^2 M_N^2}{\pi (M_{\chi} + M_N)^2} (|A^{SI}|^2 + 3|A^{SD}|^2)$$
 (7)

nucleonAmplitudes depends implicitly on form factors which describe the quark contents in the nucleon. These form factors are global parameters (see Table 1 for default values)

$$TypeFFPq$$
 $TypeFFNq$

where Type is either "Scalar", "pVector", or "Sigma", FFP and FFN denote proton and neutron and q specifies the quark, d, u or s. Heavy quark coefficients are calculated automatically.

micrOMEGAs automatically takes into account loop contributions from box diagrams as calculated in [32] (DM spin 1/2 case) and [33] (DM spin 0 and 1 cases).

ullet calcScalarQuarkFF $(m_u/m_d, m_s/m_d, \sigma_{\pi N}, \sigma_s)$

computes the scalar coefficients for the quark content in the nucleon from the quark mass ratios m_u/m_d , m_s/m_d as well as from $\sigma_{\pi N}$ and σ_s . The default values given in Table 2 are obtained for $\sigma_s = 42 \text{MeV}$, $\sigma_{\pi N} = 34 \text{MeV}$, $m_u/m_d = 0.56$, $m_s/m_d = 20.2$ [34]. The function calcScalarQuarkFF(0.553,18.9,55.,243.5) will reproduce the default values of the scalar quark form factors used in micrOMEGAs2.4 and earlier versions.

7.2 Scattering on nuclei

• nucleusRecoil(f,A,Z,J,Sxx,dNdE)

This is the main routine of the direct detection module. The input parameters are:

♦ f - the DM velocity distribution normalized such that

$$\int_0^\infty v f(v) dv = 1 \tag{8}$$

The units are km/s for v and s^2/km^2 for f(v).

- ♦ A atomic number of nucleus;
- \diamond Z number of protons in the nucleus, predefined values for a wide set of isotopes are called with $Z_{-}\{Name\};$
- \diamond J nucleus spin, predefined values for a wide set of isotopes are called with J_{Name} { $atomic_number$ }.

 \diamond Sxx - is a routine which calculates nucleus form factors for spin-dependent interactions (S00,S01,S11), it depends on the momentum transfer in fm^{-1} . The available form factors are

SxxF19 SxxNa23 SxxNa23A SxxA127 SxxSi29 SxxSi29A SxxK39 SxxGe73 SxxGe73A SxxNb92 SxxTe125 SxxTe125A SxxI127 SxxI127A SxxXe129 SxxXe129A SxxXe129M SxxXe131 SxxXe131A SxxXe131B SxxXe131Me

The last character is used to distinguish different implementations of the form factor for the same isotope, the form factors SxxXe129M and SxxXe131Me were added recently, see details in [5]. For nucleus with zero spin one can substitute NULL for this parameter.

The form factors for the spin independent (SI) cross section are defined by a Fermi distribution and depend on the global parameters Fermi_a, Fermi_b, Fermi_c.

The returned value gives the number of events per day and per kilogram of detector material. The result depends implicitly on the global parameter rhoDM, the density of DM near the Earth. The distribution over recoil energy is stored in the array dNdE which has NRDIM elements with NRDIM = 150. The value in the n^{th} element corresponds to

$$dNdE[n] = \frac{dN}{dE}|_{E=0.01\cdot 1.08^n[eV]}$$

in units of (1/keV/kg/day).

dNdERecoil(E,dNdE) interpolates the dNdE table.

For a complex WIMP, nucleusRecoil averages over χ and $\overline{\chi}$. For example for ^{73}Ge , a call to this routine will be:

nucleusRecoil(Maxwell, 73, Z_Ge, J_Ge73, SxxGe73, dNdE);

• Maxwell(v)

returns

$$f(\mathbf{v}) = \frac{c_{\text{norm}}}{\mathbf{v}} \int_{|\vec{v}| < v_{max}} d^3 \vec{v} \exp\left(-\frac{(\vec{v} - V_{Earth})^2}{\Delta v^2}\right) \delta(\mathbf{v} - |\vec{v}|)$$

which corresponds to the isothermal model. Default values for the global parameters $\Delta v = \text{Vrot}$, $v_{max} = \text{Vesc}$ and Vearth are listed in Table 1. c_{norm} is the normalization factor. This function is an argument of the nucleusRecoil function described above.

• SHMpp(v)

returns the velocity distribution SHM++ proposed in [35]. This distribution consists of two components. The first, with weight $(1-\eta)$, is the standard Maxwell velocity distribution described above. The second component has weight η , it is not spherically symmetric and is defined by the anisotropy parameter β and

$$\Delta v_r = \frac{\text{Vrot}}{\sqrt{1 - \frac{2}{3}\beta}} , \quad \Delta v_\phi = \Delta v_\Theta = \frac{\text{Vrot}\sqrt{1 - \beta}}{\sqrt{1 - \frac{2}{3}\beta}}$$
 (9)

The central values and uncertainties of the SHM++ parameters are

$$rhoDM = 0.55 \pm 0.17 \text{ GeV/cm}^3$$
 (10)

$$Vrot = 233 \pm 3 \text{ km/s}$$
 (11)

Vesc =
$$580 \pm 63 \text{ km/s}$$
 (12)

$$\beta = \mathsf{betaSHMpp} = 0.9 \pm 0.05 \tag{13}$$

$$\eta = \mathsf{etaSHMpp} = 0.2 \pm 0.1 \tag{14}$$

Note that these central values are different than the default values used for the global parameters. Both Maxwell and SHMpp velocity distributions are normalized by the condition Eq.8.

• nucleusRecoilO(f,A,Z,J,Sp,Sn,dNdE)

is similar to the function nucleusRecoil except that the spin dependent nuclei form factors are described by Gauss functions whose values at zero momentum transfer are defined by the coefficients Sp,Sn [5]. Predefined values for the coefficients Sp,Sn are included for the nuclei listed in nucleusrecoil as well as ${}^{3}He$, ${}^{133}Cs$. Their names are

$$Sp_{Nucleus\ Name} \{Atomic\ Number\}$$

 $Sn_{Nucleus\ Name} \{Atomic\ Number\}$

One can use this routine for nuclei whose form factors are not known.

7.3 Auxiliary routines

An auxiliary routine is provided to work with the energy spectrum computed with nucleusRecoil and nucleusRecoil0.

• cutRecoilResult(dNdE,E1,E2)

calculates the number of events in an energy interval defined by the values E1,E2 in keV.

8 Indirect detection

8.1 Interpolation and display of spectra

Various spectra and fluxes of particles relevant for indirect detection are stored in arrays with NZ=250 elements. To decode and interpolate the spectrum array one can use the following functions:

• SpectdNdE(E,spectTab)

interpolates the tabulated spectra and returns the particle distribution dN/dE where E is the energy in GeV. For a particle number distribution the returned value is given in GeV^{-1} while a particle flux is expressed in (sec cm² sr GeV)⁻¹.

To display the spectra as a function of energy one can use function displayPlot.

Even though the user does not need to know the structure of the spectrum array, we describe it below. The first (zeroth) element of the array contains the maximum energy E_{max} . As a rule E_{max} is the mass of the DM particle. The i^{th} element $(1 \le i < NZ - 1)$ of the

spectrum array contains the value of $E_i \frac{dN}{dE_i}$ where $E_i = E_{max} e^{Zi(i)}$, $Zi(i) = -7 \ln 10 \left(\frac{i-1}{NZ}\right)^{1.5}$. That is the array covers the energy interval $E_{max} \ge E > 10^{-7} E_{max}$.

• addSpectrum(Spect,toAdd)

sums the spectra toAdd and Spect and writes the result in Spect. For example, this routine can be useful for summing spectra with different maximal energy.

• spectrMult(Spec, func)

allows to multiply the spectrum Spec by any energy dependent function func

• spectrInt(Emin, Emax, Spec)

integrates a spectrum/flux, Spec from Emin to Emax.

• spectrInfo(Emin, Spec, &Etot)

provides information on the spectra. The returned value and <code>Etot</code> corresponds respectively to

$$N_{tot} = \int_{E_{min}}^{E_{max}} SpectdNdE(E, Spec)dE = spectrInt(E_{min}, E_{max}, Spec)$$

$$E_{tot} = \int_{E_{min}}^{E_{max}} E SpectdNdE(E, Spec)dE$$

where the first element of the table Spec contains the value of E_{max} .

8.2 Annihilation spectra

• calcSpectrum(key,Sg,Se,Sp,Sne,Snm,Snl,&err)

calculates the spectra of DM annihilation at rest and returns σv in cm^3/s . The calculated spectra for γ , e^+ , \bar{p} , ν_e , ν_μ , ν_τ are stored in arrays of dimension NZ as described above: Sg, Se, Sp, Sne, Snm, Snl. To remove the calculation of a given spectra, substitute NULL for the corresponding argument. key is a switch to include the polarisation of the W, Z bosons (key=1) or photon radiation (key=2). Note that final state photon radiation (FSR) is always included. When key=2 the 3-body process $\chi \chi' \to XX + \gamma$ is computed for those subprocesses which either contain a light particle in the t-channel (of mass less than 1.2 Mcdm) or an outgoing W when Mcdm>500GeV. The FSR is then subtracted to avoid double counting. Only the electron/positron spectrum is modified with this switch. When key=4 the contibutions for each channel to the total annihilation rate are written on the screen. More than one option can be switched on simultaneously by adding the corresponding values for key. For example both the W polarization and photon radiation effects are included if key=3. A problem in the spectrum calculation will produce a non zero error code, $err \neq 0$. calcSpectrum interpolates and sums spectra obtained by Pythia. The spectra tables are provided only for Mcdm> 2GeV. The results for a dark matter mass below 2 GeV will therefore be wrong, for example an antiproton spectrum with kinematically forbidden energies will be produced. A warning is issued for Mcdm < 2GeV.

• vSigmaCh

is an array that contains the relative contribution and particle names for each annihilation channel. It is similar to vSigmaTCh described in Section 6.2. Note that the list of particles contains five elements to allow to include gamma radiation. For 2->2 processes vSigmaCh[n].prtcl[4]=NULL. The array vSigmaCh is filled by calcSpectrum. In the Fortran version one uses instead the function

vSigmaCh(i,weight,pdg,process)

which is similar to the Fortran vSigmaTCh described in Section 6.2.

8.3 Distribution of Dark Matter in Galaxy.

The indirect DM detection signals depend on the DM density in our Galaxy. The DM density is given as the product of the local density at the Sun with the halo profile function

$$\rho(r) = \rho_{\odot} F_{halo}(r) \tag{15}$$

In micrOMEGAs ρ_{\odot} is a global parameter rhoDM and the Zhao profile [36]

$$F_{halo}(r) = \left(\frac{R_{\odot}}{r}\right)^{\gamma} \left(\frac{r_c^{\alpha} + R_{\odot}^{\alpha}}{r_c^{\alpha} + r^{\alpha}}\right)^{\frac{\beta - \gamma}{\alpha}}$$
(16)

with $\alpha = 1, \beta = 3, \gamma = 1, rc = 20[kpc]$ is used by default. R_{\odot} , the distance from the Sun to the galactic center, is also a global parameter, Rsun. The parameters of the Zhao profile can be reset by

• setProfileZhao($\alpha, \beta, \gamma, rc$)

The function to set another density profile is

• setHaloProfile($F_{halo}(r)$)

where $F_{halo}(r)$ is any function which depends on the distance from the galactic center, r, defined in [kpc] units. For instance, setHaloProfile(hProfileEinasto) sets Einasto profile

$$F_{halo}(r) = exp\left[-\frac{2}{\alpha}\left(\left(\frac{r}{R_{\odot}}\right)^{\alpha} - 1\right)\right]$$

where by default $\alpha = 0.17$, but can be changed by

• setProfileEinasto(α)

The command setHaloProfile(hProfileZhao) sets back the Zhao profile. Note that both setProfileZhao and setProfileEinasto call setHaloProfile to define the corresponding profile.

Dark matter annihilation in the Galaxy depends on the average of the square of the DM density, $<\rho^2>$. This quantity can be significantly larger than $<\rho>^2$ when clumps of DM are present [37]. In micrOMEGAs, we use a simple model where f_{cl} is a constant that characterizes the fraction of the total density due to clumps and where all clumps occupy the same volume V_{cl} and have a constant density ρ_{cl} . Assuming clumps do not overlap, we get

$$\langle \rho^2 \rangle = \rho^2 + f_{cl} \rho_{cl} \rho. \tag{17}$$

This simple description allows to demonstrate the main effect of clumps: far from the Galactic center the rate of DM annihilation falls as $\rho(r)$ rather than as $\rho(r)^2$. The parameters ρ_{cl} and f_{cl} have zero default values. The routine to change these values is

• setClumpConst(f_{cl}, ρ_{cl})

To be more general, one could assume that ρ_{cl} and f_{cl} depend on the distance from the galactic center. The effect of clumping is then described by the equation

$$<\rho^2>(r)=\rho(r)(\rho(r)+\rho_{clump}^{eff}(r)),$$
 (18)

and the function

ullet setRhoClumps $(
ho_{clump}^{eff})$

allows to implement a more sophisticated clump structure. To return to the default treatment of clumps call setRhoClumps(rhoClumpsConst) or setClumpConst.

8.4 Photon signal

The photon flux does not depend on the diffusion model parameters but on the angle ϕ between the line of sight and the center of the galaxy as well as on the annihilation spectrum into photons

- gammaFluxTab(fi,dfi,sigmav,Sg,Sobs)
- multiplies the annihilation photon spectrum with the integral over the line of sight and over the opening angle to give the photon flux. fi is the angle between the line of sight and the center of the galaxy, dfi is half the cone angle which characterizes the detector resolution (the solid angle is $2\pi(1-\cos(dfi))$, sigmav is the annihilation cross section, Sg is the DM annihilation spectra. Sobs is the spectra observed in 1/(GeV cm^2 s) units.

The function gammaFluxTab can be used for the neutrino spectra as well.

• gammaFluxTabGC(1,b,dl,db,sigmav,Sg,Sobs)

is similar to gammaFluxTab but uses standard galactic coordinates. Here l is the galactic longitude (measured along the galactic equator from the galactic center, and b is the latitude (the angle above the galactic plane). Both l and b are given in radians. The relation between the angle fi used above and the galactic coordinates is $\mathtt{fi} = \cos^{-1}(\cos(l)\cos(b))$. gammaFluxTabGC integrates the flux over a rectangle [(l,b)-(l+dl,b+db)].

- loopGamma(&vcs_gz,&vcs_gg)
- calculates σv for loop induced processes of DM pair annihilation into γZ and into $\gamma \gamma$. The result is given in $\frac{cm^3}{s}$. The function returns a non-zero value to signal a problem. This function is available only for MSSM [38], NMSSM [39], CPVMSSM and IDM. Note that this function does not include non-perturbative effects that are in particular important when the mass of DM is much above the weak scale [40,41].
- gammaFlux(fi,dfi,dSigmavdE)

computes the photon flux for a given energy E and a differential cross section for photon production, dSigmavdE. For example, one can substitute dSigmavdE= σv SpectdNdE(E,SpA) where σv and SpA are obtained by calcSpectrum. This function can also be used to compute the flux from a monochromatic gamma-ray line by substituting the cross section at fixed energy (in cm^3/s) instead of dSigmavdE, for example the cross sections obtained with the loopGamma function in the MSSM, NMSSM, CPVMSSM models (vcsAA and vcsAZ). In this case the flux of photons can be calculated with gammaFlux(fi,dfi,2*vcsAA+vcsAZ).

• gammaFluxGC(1,b,d1,db,vcs)

is the analog of gammaFlux when using standard galactic coordinates.

8.5 Propagation of charged particles.

The observed spectrum of charged particles strongly depends on their propagation in the Galactic Halo. The propagation depends on the global parameters

K_dif, Delta_dif, L_dif, Rsun, Rdisk

as well as

Tau_dif (positrons), Vc_dif (antiprotons)

- posiFluxTab(Emin, sigmav, Se, Sobs)
- computes the positron flux at the Earth. Here sigmav and Se are values obtained by calcSpectrum. Sobs is the positron spectrum after propagation. Emin is the energy cut to be defined by the user. Note that a low value for Emin increases the computation time. The format is the same as for the initial spectrum. The function SpectrdNdE(E,Sobs) described above can also be used for the interpolation, in this case the flux is returned in (GeV s cm²sr)⁻¹.
- pbarFlux(E,dSigmavdE)

computes the antiproton flux for a given energy E and a differential cross section for antiproton production, dSigmavdE. For example, one can substitute

 $dSigmavdE = \sigma vSpectdNdE(E,SpP)$

where σv and SpP are obtained by calcSpectrum. This function does not depend on the details of the particle physics model and allows to analyse the dependence on the parameters of the propagation model.

- pbarFluxTab(Emin, sigmav, Sp, Sobs) computes the antiproton flux, this function works like posiFluxTab,
- solarModulation(Phi, mass, stellarTab, earthTab)

takes into account modification of the interstellar positron/antiproton flux caused by the electro-magnetic fields in the solar system. Here Phi is the effective Fisk potential in MeV, mass is the particle mass, stellarTab describes the interstellar flux, earthTab is the calculated particle flux in the Earth orbit.

Note that for solarModulation and for all *FluxTab routines one can use the same array for the spectrum before and after propagation.

9 Neutrino signal from the Sun and the Earth

This module does not work yet in case of 2DM

After being captured, DM particles concentrate in the center of the Sun/Earth and then annihilate into Standard Model particles. These SM particles further decay producing neutrinos that can be observed at the Earth. The neutrino spectra originating from different annihilation channels into SM particles and taking into account oscillations and Sun medium effects were computed both in WimpSim [42] and in PPPC4DM ν [43]. We use the set of tables provided by these two groups as well as those from DM ν [44] which were included in previous versions of micrOMEGAs. The new global parameter

WIMPSIM allows to choose the neutrino spectra. The default value WIMPSIM=0 2 corresponds to the PPPC4DM ν spectra while WIMPSIM=1 corresponds to the WimpSim spectra and WIMPSIM=-1 to the DM ν spectra.

• neutrinoFlux(f,forSun,nu, nu_bar)

calculates the muon neutrino/anti-neutrino fluxes near the surface of the Earth. Here f is the DM velocity distribution normalized such that $\int_0^\infty v f(v) dv = 1$. The units are km/s for v and s^2/km^2 for f(v). For example, one can use the same Maxwell function introduced for direct detection. This routine implicitly depends on the WIMPSIM switch.

If forSun==0 then the flux of neutrinos from the Earth is calculated, otherwise this function computes the flux of neutrinos from the Sun. The calculated fluxes are stored in nu and nu_bar arrays of dimension NZ=250. The neutrino fluxes are expressed in [1/Year/km²].

• muonUpward(nu,Nu,muon)

calculates the muon flux which results from interactions of neutrinos with rocks below the detector. Here nu and Nu are input arrays containing the neutrino/anti-neutrino fluxes calculated by neutrinoFlux. muon is an array which stores the resulting sum of μ^+ , μ^- fluxes. SpectdNdE(E,muon) gives the differential muon flux in [1/Year/km²/GeV] units. The muon flux weakly depends on the propagation medium, e.g. rock or ice. The energy lost during propagation is described by the equation [45]

$$\frac{dE}{dx} = -(\alpha + \beta E)\rho\tag{19}$$

For propagation in ice (the switch forRocks=0), micrOMEGAs substitutes $\rho=1.0\,\mathrm{g/cm^3}$, $\alpha=0.00262\,\mathrm{GeVcm^2/g},~\beta=3.5\times10^{-6}\,\mathrm{cm^2/g}$ [46], while for propagation in rocks, $\rho=2.6\,\mathrm{g/cm^3},~\alpha=0.002\,\mathrm{GeVcm^2/g},~\beta=3.0\times10^{-6}\,\mathrm{cm^2/g}$ [45]. The result depends on the ratio α/β .

• muonContained(nu,Nu,rho, muon) calculates the flux of muons produced in a given detector volume. This function has the same parameters as muonUpward except that the outgoing array gives the differential muon flux resulting from neutrinos converted to muons in a km^3 volume given in [1/Year/km³/GeV] units. rho is the density of the detector in g/cm^3 .

• atmNuFlux(nu,cs,E)

returns the atmospheric muon neutrinos (nu > 0) and anti-neutrinos spectrum (nu < 0) in [1/Year/km^2] units for a given cosine of the zenith angle, cs. This function is based on [47].

Two functions allow to estimate the background from atmospheric neutrinos creating muons after interaction with rocks below the detector or with water inside the detector.

- ATMmuonUpward(cosFi,E) calculates the sum of muon and anti-muon fluxes resulting from the interaction of atmospheric neutrinos with rocks in units of [1/Year/km²/GeV/Sr]. cosFi is the energy between the direction of observation and the direction to the center of Earth. E is the muon energy in GeV. The result depends on the forRock switch.
- ATMmuonContained(cosFi, E, rho) calculates the muon flux caused by atmospheric neutrinos produced in a given (detector) volume. The returned value for the flux is given

 $^{^2} Since \ PPPC4DM\nu$ does not provide neutrino spectra produced at the center of the Earth, in this case and for WIMPSIM=0 micrOMEGAs uses the DM ν spectra.

in 1/Year/km³/GeV/Sr. rho is the density of the detector in g/cm³ units. cosFi and E are the same as above.

9.1 Comparison with IceCube results

These functions are described in [48] and allow to compare the predictions for the neutrino flux from DM captured in the Sun with results of IceCube22.

• IC22nuAr(E)

effective area in $[km^2]$ as a function of the neutrino energy, $A_{\nu_{\mu}}(E)$

• IC22nuBarAr(E)

effective area in $[km^2]$ as a function of the anti-neutrino energy, $A_{\bar{\nu}_{\mu}}(E)$).

• IC22BGdCos(cs)

angular distribution of the number of background events as a function of $\cos \phi$, $\frac{dN_{bg}}{d\cos \varphi}$.

• IC22sigma(E)

neutrino angular resolution in radians as a function of energy.

• exLevIC22(nu_flux, nuB_flux,&B)

calculates the exclusion confidence level for number of signal events generated by given ν_{μ} and $\bar{\nu}_{\mu}$ fluxes, [48]. The fluxes are assumed to be in [GeV km² Year]⁻¹. This function uses the IC22BGdCos(cs) and IC22sigma(E) angular distribution for background and signal as well as the event files distributed by IceCube22 with $\phi < \phi_{cut} = 8^{\circ}$. The returned parameter B is a Bayesian factor representing the ratio of likelihood functions for the model with given fluxes and the model with null signal. See details in [48].

• fluxFactorIC22(exLev, nu,nuBar)

For given neutrino, nu, and anti-neutrino fluxes, nuBar, this function returns the factor that should be applied to the fluxes (neutralino-proton cross sections) to obtain a given exclusion level exLev in exLevIC22. This is used to obtain limits on the SD cross section for a given annihilation channel.

10 Cross sections and decays.

The calculation of particle widths, decay channels and branching fractions can be done by the functions

• pWidth(particleName, &address)

returns directly the particle width. If the 1->2 decay channels are kinematically accessible then only these channels are included in the width when VVdecay, VZdecay = 0. If not, pWidth compiles all open 1->3 channels and use these for computing the width. If all 1->3 channels are kinematically forbidden, micrOMEGAs compiles 1->4 channels. If $VVdecay(VZdecay) \neq 0$, then micrOMEGAs also computes the processes with virtual W(Z) and adds these to the 1->2 decay channels. Note that 1->3 decay channels with a virtual VVVdecay will be computed even if the mass of the decaying particle exceeds the threshold for 1->2 decays by several GeV's. This is done to ensure a proper matching of 1->2 and 1->3 processes. For particles other than gauge bosons, an improved routine with 3-body processes and a matching between the 1->2 and 1->3 calculations is kept for the future. The returned parameter address gives an address where information about the decay channels is stored. In C, the address should be of type txtList. For models which read a

SLHA parameter file, the values of the widths and branchings are taken from the SLHA file when useSLHAwidth=1.

• printTxtList(address,FD)

lists the decays and their branching fractions and writes them in a file. address is the address returned by pWidth.

• findBr(address, pattern)

finds the branching fraction for a specific decay channel specified in pattern, a string containing the particle names in the CalcHEP notation. The names are separated by commas or spaces and can be specified in any order.

• printPartialWidth(width,address,FD)

prints the branching fractions and partial widths for each decay channel of a particle in the file FD. Here width and address are the result of the function pWidth described above.

slhaDecayPrint(pname,delVirt,FD)

uses pWidth described above to calculate the width and branching ratios of particle pname and writes down the result in SLHA format. The return value is the PDG particles code. In case of problem, for instance wrong particle names, this function returns zero. This function first computes $1 \to 2$ decays. If such decays are kinematically forbidden then $1 \to 3$ decay channels are computed. Decays via virtual W/Z bosons will be listed via their decay products when $delVirt \neq 0$.

• newProcess(procName)

compiles the codes for any $2 \to 2$ or $1 \to 2$ reaction. The result of the compilation is stored in the shared library in the directory work/so-generated/. The name of the library is generated automatically.

The newProcess routine returns the *address* of the compiled code for further usage. If the process can not be compiled, then a NULL address is returned. ³

Note that it is also possible to compute processes with polarized massless beams, for example for a polarized electron beam use e% to designate the initial electron.

• procInfo1(address, &ntot, &nin, &nout)

provides information about the total number of subprocesses (ntot) stored in the library specified by address as well as the number of incoming (nin) and outgoing (nout) particles for these subprocesses. Typically, for collisions (decays), nin=2(1) and nout=2,3. NULL can be substitute if this information is not needed.

• procInfo2(address,nsub,N,M)

fills an array of particle names N and an array of particle masses M for the subprocess nsub $(1 \le nsub \le ntot)$. These arrays have size nin + nout and the elements are listed in the same order as in CalcHEP starting with the initial state, see the example in MSSM/main.c.

• cs22(address,nsub,P,c1,c2,&err)

calculates the cross-section for a given $2 \to 2$ process, nsub, with center of mass momentum P(GeV). All model parameters except the strong coupling GG can be specified with the functions findVal[W]/assignVal[W] described in Section 5. The strong coupling GG is defined via the scale parameter GGscale. The differential cross-section is integrated within the range $c1 < \cos\theta < c2$. θ is the angle between $\vec{p_1}$ and $\vec{p_3}$ in the center-of-mass frame. Here $\vec{p_1}$ ($\vec{p_3}$) denote respectively the momentum of the first initial(final) particle. err contains a non zero error code if nsub exceeds the maximum value for the number of

³The Fortran version of newProcess returns integer*8.

subprocesses (given by the argument ntot in the routine procInfo1). To set the polarization of the initial massless beam, define Helicity[i] where i = 0, 1 for the 1^{th} and 2^{nd} particles respectively. The helicity is defined as the projection of the particle spin on the direction of motion. It ranges from [-1,1] for spin 1 particles and from [-0.5,0.5] for spin 1/2 particles. By definition a left handed particle has a positive helicity.

• hCollider(Pcm,pp,nf, Qren,Qfac, pName1,pName2,Tmin,wrt) calculates the cross section for particle production at hadron colliders. Here Pcm is the beam energy in the center-of-mass frame. pp is 1(-1) for $pp(p\bar{p})$ collisions, $nf \leq 5$ defines the number of quark flavors taken into account. The parameters Qren and Qfac define the renormalisation and factorization scales respectively. pName1 and pName2 are the names of outgoing particles. If $T_{\min} \leq 0$ then hCollider calculates the total cross section for the 2-body final state process. Otherwise it calculates the cross section for

proton, [a]proton -> pName1, pName2, jet

where $T_{\min} > 0$ defines the cut on the jet transversee momentum. The jet content is defined by the parameter nf. If $Q_{\text{fact}} \leq 0$, then running \hat{s} is used for the factorization scale. If $Q_{\text{ren}} \leq 0$, \hat{s} is used for the renormalization scale for a $2 \to 2$ process and p_T of the jet is used for the renormalization scale for a process with a jet in the final state. The last argument in the hCollider routine allows to switch on/off (wrt=1/0) the printing of the contribution of individual channels to the total cross section. The value returned is the total cross section in [pb].

One of the arguments pName1, pName2 can be NULL. Then the cross section for $2 \to 1$ or $2 \to 1 + jet$ process will be calculated. In Fortran, one should pass a blank string instead of NULL.

By default hCollider uses the cteq61 structure function built-in the micrOMEGAs code. One can set any other parton distribution included in either micrOMEGAs or LHAPDF. The list of structure functions in micrOMEGAs can be obtained with the command

• PDFList

and one of these can be activated by

• setPDF(name)

To work with other PDF's available in LHAPDF one should first define the environment variable LHAPDFPATH which specifies the path to the LHAPDF library. Then micrOMEGAs Makefile links it automatically. The list of available LHAPDF distributions can be obtained with the command

• LHAPDFList

and one of these can be activated by

• setLHAPDF(nset,name)

where nset specifies the subset number. Note, that if a wrong input is provided, setLHAPDF terminates the execution.

The parton densities are defined by the function

parton_distr(pdg,x,q)

where pdg is the PDG code of a particle. Note that parton_distr defines the parton number density and contains a factor 1/x with respect to the definition used in LHAPDF.

11 Tools for model independent analysis

A model independent calculation of the DM observables is also available. After specifying the DM mass, the cross sections for DM spin dependent and spin independent scattering on proton and neutron, the DM annihilation cross section times velocity at rest and the relative contribution of each annihilation channel to the total DM annihilation cross section, one can compute the direct detection rate on various nuclei, the fluxes for photons, neutrinos and antimatter resulting from DM annihilation in the galaxy and the neutrino/muon fluxes in neutrino telescopes.

All the routines presented here depend implicitly on the global parameter Mcdm except for basicSpectra and basicNuSpectra. These routines do not take into account the multi-component structure of DM and, in particular, possible differences between DM and anti-DM. To use these for multi-component DM the user has to perform a summation over the different DM components.

• nucleusRecoilAux(f,A,Z,J,Sxx,csIp,csIn,csDp,csDn,dNdE)

This function is similar to nucleusRecoil. The additional input parameters include csIp(csIn) the SI cross sections for WIMP scattering on protons(neutrons) and csDp(csDn) the SD cross sections on protons(neutrons). A negative value for one of these cross sections is interpreted as a destructive interference between the proton and neutron amplitudes. Note that the rate of recoil depends implicitly on the WIMP mass, the global parameter Mcdm. The numerical value for the global parameter has to be set before calling this function

• nucleusRecoilOAux(f,A,Z,J,Sp,Sn,csIp,csIn,csDp,csDn,dNdE) is the corresponding modification of nucleusRecoilO.

For indirect detection, we also provide a tool for model independent studies

• basicSpectra(Mass,pdgN,outN,Spectr)

computes the spectra of outgoing particles and writes the result in an array of dimension 250, Spectr, pdgN is the PDG code of the particles produced in the annihilation of a pair of WIMPs. To get the spectra generated by transverse and longitudinal W's substitute pdgN= 24 + 'T' and 24 + 'L' correspondingly. In the same manner pdgN= 23 + 'T' and 23 + 'L' provides the spectra produced by a polarized Z boson. outN specifies the outgoing particle,

outN =
$$\{0, 1, 2, 3, 4, 5\}$$
 for $\{\gamma, e^+, p^-, \nu_e, \nu_\mu, \nu_\tau\}$

The Mass parameter defines the mass of the DM particle. Note that the propagation routines for e^+, p^-, γ can be used after this routine as usual. Note that the result of basicSpectra are not valid for Mcdm < 2GeV as explained in the description of calcSpectrum.

To get indirect detection signals one can substitute the obtained spectra in the [photon/posi/pbar]FluxTab routines. As long as one keeps the default setting CDM1=CDM2=NULL these routines will use the Mcdm parameter to calculate the number density of DM particles.

• captureAux(f,forSun,Mass,csIp,csIn,csDp,csDn)

calculates the number of DM particles captured per second assuming the cross sections for spin-independent and spin-dependent interactions with protons and neutrons csIp, csIn, csDp, csDn are given as input parameters (in [pb]). A negative value for one of the cross sections is interpreted as a destructive interference between the proton and neutron amplitudes. The first two parameters have the same meaning as in the neutrinoFlux

routine Section 9. The result depends implicitly on the global parameters rhoDM and Mcdm in Table 1.

• basicNuSpectra(forSun,Mass,pdg, pol, nu_tab, nuB_tab)

calculates the ν_{μ} and $\bar{\nu}_{\mu}$ spectra corresponding to the pair annihilation of DM in the center of the Sun/Earth into a particle-antiparticle pair with PDG code pdg. Mass is the DM mass. Note that this routine depends implicitly on the global parameter WIMPSIM (1,0,-1) which selects the neutrino spectra computed by WimpSim [42], PPPC4DM ν [43] and DM ν [44]. The parameter pol selects the spectra for polarized particles available in PPPC4DM ν . pol=-1(1) corresponds to longitudinal (transverse) polarisation of vector bosons or to left-handed (right-handed) polarisation of fermions, pol=0 is used for unpolarized spectra. When polarized spectra are not available, the unpolarized ones are generated irrespective of the value of pol. The parameter outN is 1 for muon neutrino and -1 for anti-neutrino. The resulting spectrum is stored in the arrays nu_tab and nuB_tab with NZ=250 elements.

The files main.c/F in the directory mdlIndep contain an example of the calculation of the direct detection, indirect detection and neutrino telescope signals using the routines described in this section. The numerical input data in this sample file corresponds to 'MSSM/mssmh.dat'.

12 Constraints from colliders

12.1 The Higgs sector

To obtain the limits on the Higgs sector for models with one or several Higgs bosons, the predictions for the signal strengths of the 125 GeV Higgs can be compared to the latest results of the LHC, for this an interface to the public code HiggsSignals [25] or Lilith [49] is provided. Moreover the exclusion limits obtained from Higgs searches in different channels at LEP, Tevatron and the LHC can be applied to other Higgses in the model using HiggsBounds [24].

12.1.1 Lilith

Lilith [49] is a Python library that is used to construct a global likelihood function \mathcal{L} from the latest ATLAS and CMS results on the 125 GeV Higgs. ⁴ The Lilith inputs are the set of reduced couplings of the 125 GeV state, *i.e.*, couplings normalized by the SM ones, as well as the branching ratios of Higgs decays to invisible, BR_{inv}, or to undetected non-SM final states, BR_{undetected} = $1 - \mathrm{BR_{inv}} - \sum \mathrm{BR}(H \to \mathrm{SM\,SM})$. By default, the automatic generation of the input file assumes that only DM contributes to the invisible width. Note that the reduced couplings of the 125 GeV Higgs are defined for all the models provided with micrOMEGAs with the exception of the $Z\gamma$ coupling. The latter is computed within Lilith assuming that only SM particles run in the loop. The file include/Lilith.inc (or Lilith.inc_f) contains the instructions to launch Lilith using a system call. The input file Lilith_in.xml for Lilith can be created by two

 $^{^4}$ Lilith can test Higgs bosons with masses within the [123, 128] GeV interval, a warning will be issued if no such state can be found. In the case where two or more states have masses within this interval, their signal strengths will be summed incoherently and an effective Higgs state will be tested against the LHC measurements.

commands

```
LilithMDL("Lilith_in.xml")
LilithMO("Lilith_in.xml")
```

both also return the number of neutral Higgs particles. LilithMDL requires that the reduced couplings be defined in lib/lilith.c of the model. These files are defined for all models provided with micrOMEGAs and should be written by the user for new models. On the other hand LilithMO generates automatically the input file required by Lilith. The functionality of LilithMO is described in Section 12.1.3. As input parameters, Lilith also requires the number of free parameters, n_par, and a reference likelihood point, m2logL_reference. Those are defined in the main.c file of each model and set to 0 by default.

The SLHA output file, Lilith_out.slha, consists of six entries which are respectively the log-likelihood evaluated at a parameter space point \mathcal{P} , $-2 \log \mathcal{L}(\mathcal{P})$, the number of experimental degrees of freedom, n^{exp} , the reference likelihood point, the number of degrees of freedom, ndf, the p-value, p and the database version. For a detailed description of the various output and their interpretation see [49]. For example, one could flag or exclude points with too low p-value. In this context, a point with a p-value smaller than 0.3173, 0.0455, 0.0027 could be excluded at more than the 1σ , 2σ , 3σ levels, respectively.

12.1.2 HiggsBounds and HiggsSignals

Constraints on the properties of the 125 GeV Higgs boson can also be obtained with HiggsSignals. Moreover exclusion limits provided by the experimental LHC and Tevatron collaborations on additional Higgs bosons are obtained through an interface to HiggsBounds [50]. Theses codes are no longer distributed with micrOMEGAs but are downloaded when required. The file include/hBandS.inc contains the instructions to call both HiggsBounds and HiggsSignals, in particular the options for running HiggsSignals are set in this file by fixing the Dataset, Method and PDF parameters. Moreover the interface uses the effective coupling option for specifying the input see [24] for more details. Two functions can be used to generate the input SLHA file, HB.in

```
hbBlocksMDL("HB.in",&NchHiggs)
hbBlocksMO("HB.in",&NchHiggs)
```

Both return the number of neutral Higgses and NchHiggs gives the number of charged Higgs particles. The function hbBlocksMDL is located in lib/hbBlocks.c for each MSSM-like model and contains the appropriate definition of the reduced couplings. The function hbBlocksMO generates automatically the required input file for any model and is thus very convenient to use for new models. The content of this function is described in Section 12.1.3. Note that the PDG numbers that will be considered by HiggsBounds for Higgs-like particles are only 25,35,36,37,45,46. Moreover HiggsBounds will check the contribution to the Higgs invisible width only for particles with PDG codes 1000022, 1000012, 1000014, 1000016, 1000017, 1000018 or 1000019. Also note that the theoretical uncertainty on the mass of the Higgs boson should be specified in the SLHA BLOCK DMASS, see the example given in main.[c/F] to set the uncertainty at 2 GeV.

The complete outputs of HiggsBounds and HiggsSignals are stored in the files HB.out and HS.out respectively and can be accessed and read by the user using the slhaval function [51]. The screen output of micrOMEGAs contains the following information

```
HiggsBounds(version number)
id result obsratio channel
```

where three channels are listed, result = 0, 1, -1 denotes respectively whether a parameter point is excluded at 95% CL, not excluded, or invalid; obsratio gives the ratio of the theoretical expectation relative to the observed value for the channel specified in channel. The first channel in this list is the one with the highest expected sensitivity and is the one that determines the overall exclusion, see [24], other channels are to be interpreted by the user.

The HiggsSignals output displayed on the screen is simply

```
HiggsSignals(version number)
Nobservables chi^2 pval
```

where Nobservables gives the number of observables used in the fit, chi² the associated χ^2 and pval the p-value. The interpretation of these values is left to the user, see [25] for a detailed description.

12.1.3 Automatic generation of interface files

The functions LiLithMO and hbBlocksMO contain two routines that allow to extract the couplings contained in the model file, lgrng1.mdl. The first routine returns a description of a given vertex. The format used is

```
1Vert* vv=getLagrVertex(name1,name2,name3,name4);
```

where name1,...,name4 are the names of the particles included in the vertex; for vertices with three particles, name4 should be replaced by NULL. The return parameter vv is the memory address of a structure which contains information about the vertex:

- vv->GGpower power of strong coupling included in vertex
- vv->nTerms number of different Lorentz structures in vertex
- vv->SymbVert[i] text form of Lorentz structures $i \in [0, nTerms]$

The second routine allows to obtain the numerical coefficients corresponding to each Lorentz structure. The command is

```
getNumCoeff(vv,coeff)
```

with coeff[i] the numerical coefficient for SymbVert[i]. Note that the strong coupling is factored out of the coefficients.

All the QCD-neutral scalars belonging to the even sector (not designated with ~) are considered as Higgs particles. For each of these, microMEGAs calculates the couplings to

SM fermions and massive bosons and writes down into the interface file the ratio of these couplings to the corresponding SM Higgs coupling. Note that the couplings of the Higgs to SM fermions can significantly depend on the QCD scale; microMEGAs assumes that the quark masses entering the vertices are obtained at the same scale in both the SM and the new model, thus the scale dependence in the reduced couplings to fermions disappears. The loop-induced couplings of the Higgs to gluons and photons are calculated by the LiLithMO/hbBlocksMO routines whether or not the Hgg and $H\gamma\gamma$ vertices are already implemented in the Lagrangian. This includes NLO-QCD corrections and is performed as described in [7,52].

The various branching ratios and widths of the Higgs required by HiggsBounds, HiggsSignals or Lilith are also written automatically in the interface file. When these values are provided in an SLHA file, they will be used. Otherwise LiLithMO/hbBlocksMO check the existence of $H \to gg$ and $H \to \gamma\gamma$ in the table of decays generated from the model Lagrangian. If found, the branching ratios and total widths are written in the interface file without comparing with the internal calculations. If not found, then LiLithMO/hbBlocksMO add these channels and recompute the total widths and all branching ratios.

12.2 Searches for New particles

12.2.1 SModelS

LHC limits on new (odd) particles can be obtained using SModelS [23,53], a code which tests Beyond the Standard Model (BSM) predictions against Simplified Model Spectra (SMS) results from searches for R-parity conserving SUSY by ATLAS and CMS. SModelS v1.1.1 decomposes any BSM model featuring a Z_2 symmetry into its SMS components using a generic procedure where each SMS is defined by the vertex structure and the SM final state particles; BSM particles are described only by their masses, production cross sections and branching ratios. The underlying assumption is that differences in the event kinematics (e.g. from different production mechanisms or from the spin of the BSM particle) do not significantly affect the signal selection efficiencies. Within this assumption, SModelS can be used for any BSM model with a Z_2 symmetry as long as all heavier odd particles decay promptly to the dark matter candidate. Note that due to the Z_2 symmetry only pair production is considered, and missing transverse energy (MET) is always implied in the final state description. This code is no longer distributed with microMEGAs but is downloaded when required.

SModelS needs three input files:

- an SLHA-type input file, containing the mass spectrum, decay tables⁵ and production cross sections for the parameter point under investigation;
- particles.py defining the particle content of the model, specifically which particles are even ("R-even") and which ones are odd ("R-odd") under the Z_2 symmetry;
- a file for setting the run parameters, parameters.ini.

The first two are located in the same directory as main.c and are automatically written by micrOMEGAs by calling the function

⁵Note that all decay products in the decay table need to be on-shell.

smodels(Pcm, nf, csMinFb, fileName, wrt)

where Pcm is the proton beam energy in GeV and nf is the number of parton flavors used to compute the production cross sections of the \mathbb{Z}_2 -odd particles. (Note that u, d, \bar{u}, \bar{d} and gluons are always included while s, c, and b quarks are included for nf = 3, 4, 5 respectively.) csMinFb defines the minimum production cross section in pb for \mathbb{Z}_2 -odd particles; processes with lower cross sections are not added to the SLHA file passed to SModelS, here denoted by fileName. Finally, wrt is a steering flag for the screen output; if wrt $\neq 0$ the computed cross sections will be also written on the screen. The call of smodels() is by default done in the file micromegas_5.0.X/include/SMODELS.inc. For this functionality, the user first needs to specify which series of LHC results should be considered. This is done by setting in main.c the switch

LHCrun = LHC8 and/or LHC13

for Run 1 (8 TeV), Run 2 (13 TeV) or both. This determines whether 8 TeV or 13 TeV cross sections or both will be appended to the SLHA file, which in turn determines which simplified model results will be considered from the SModelS database. Parameters needed for running SModelS can be set in the file parameters.ini, for example the parameters sigmacut which is the cutoff cross section for topologies to be considered in the decomposition. For more information on the different options and parameters available, see the SModelSv1.1 manual [28].

An SLHA-type output is written to smodels.in.smodelsslha, (or an alternative name selected by the user). This output consists of the blocks,

- SModelS_Settings lists the SModelS code and database versions as well as input parameters for the decomposition.
- SModelS_Exclusion contains as the first line the status information if a point is excluded (1), not excluded (0), or not tested (-1). The latter can occur in scenarios with long-lived charged particles or in scenarios where no matching SMS results are found.

If a point is excluded (status 1), this is followed by a list of all results with R > 1, sorted by their R values, R is defined as the ratio of the predicted theory cross section and the corresponding experimental upper limit. For each of these results, the SMS topology identifier (entry 0) (so-called Tx-name, see [54] for an explanation of the terminology), the R value (entry 1), a measure of condition violation (entry 2), and the analysis identifier (entry 3) are listed.

If the point is not excluded (status 0), the result with the highest R value is given instead to show whether a point is close to the exclusion limit or not.

• SModelS_Missing_Topos lists up to ten missing topologies sorted by their weights $(= \sigma \times BR)$. Each entry consists of the line number, the \sqrt{s} in TeV, the weight and a description of the topology in the SModelS bracket notation. Note that this information is useful mainly for points that are not excluded.

Additional blocks SModelS_Outside_Grid, SModelS_Long_Cascade, SModelS_Asymmetric_Branches provide information about the coverage by Simplified Models. In order to exploit decay channels involving a SM-like Higgs for which the

experimental collaborations assume SM branching ratios for the h with the mass fixed to $m_h = 125$ GeV, microMEGAs checks whether neutral scalar particles with a mass in the range 123–128 GeV have branching ratios to $WW, ZZ, \tau\tau, b\bar{b}$ within 15% of those of a SM Higgs of the same mass. The corresponding particle will be identified as a SM Higgs by an entry of type

25 : "higgs", -25 : "higgs"

in the rEven dictionary in the file particles.py. Note that the name higgs is reserved for a SM-like Higgs and should not be assigned generically. If no particle of that name is identified in particles.py, then the corresponding SMS results requiring a Higgs in the final state are not used by SModelS to constrain the parameter point.

12.2.2 Other limits

Limits from searches for a new massive Abelian gauge boson at the LHC, from LEP on an invisible Z as well as limits on light neutralinos from LEP are provided through the functions:

• Zinvisible()

returns 1 and prints a WARNING if the invisible width of the Z boson of the Standard Model is larger than 0.5 MeV ([55]) and returns 0 if this constraint is fulfilled. This routine can be used in any model with one DM where the Z boson is uniquely defined by its PDG=23 and whether the neutral LSP is its own antiparticle or not.

Zprimelimits()

returns 0 if the scenario considered is not excluded by Z' constraints, 1 if the point is excluded and 2 if both subroutines dealing with Z' constraints cannot test the given scenario. The routine can be used for any Z' uniquely defined by the PDG code 32. Currently two types of searches defined in different subroutines of Zprimelimits() are implemented. The latest Z' search in the dilepton final state at $\sqrt{s} = 13$ TeV from AT-LAS [56] is considered in the first subroutine Zprime_dilepton. If the scenario considered is allowed or not tested by Zprime_dilepton, a second subroutine called Zprime_dijet analyses the point using constraints from LHC dijet searches at $\sqrt{s} = 8$ TeV [57–59] and at $\sqrt{s} = 13$ TeV [60,61]. This subroutine uses the recasting performed in [62] for a combination of ATLAS and CMS searches. Zprimelimits() returns 1 if $M_{Z'} < 0.5$ TeV and 2 for points for which the narrow-width approximation is not valid, i.e. $\Gamma/M_{Z'} > 0.3$.

• LspNlsp_LEP()

checks the ocmpatibility with the upper limit [63] on the cross section for the production of neutralinos $\sigma(e^+e^- \to \tilde{\chi}_1^0\tilde{\chi}_i^0)$, $i \neq 1$, when the heavier neutralino decays into quark pairs and the LSP, $\tilde{\chi}_i^0 \to \tilde{\chi}_1^0 q \bar{q}$. The function returns $\sigma \times BR = \sum_i \sigma(e^+e^- \to \tilde{\chi}_1^0\tilde{\chi}_i^0) \times \text{BR}(\tilde{\chi}_i^0 \to \tilde{\chi}_1^0 q \bar{q})$ in pb as well as a flag greater than one if $\sigma \times BR > 0.1(0.5)$ pb if $m_{\text{NLSP}} > (<)100$ GeV [63]. This function can also be applied for non-SUSY models which feature the same signature, in this case the function will compute the cross section for production of the LSP and any other neutral particle from the odd sector which can decay into the LSP and a Z boson.

• monoJet(pName1,pName2)

computes the cross section for $p, p \to pName1, pName2+jet$ at $\sqrt{s}=8$ TeV where pName1, pName2 are the names of neutral outgoing particles and jet includes light quarks (u,d,s) and gluons. The function returns the resulting CL obtained with the CLs technique [64,65] for each signal region (SR) of the 8 TeV mono-jet CMS analysis [66] and chooses the most constraining one.

13 Additional routines for specific models

The models included in micrOMEGAs contain some specific routines which we describe here for the sake of completeness. The current distribution includes the following models: MSSM, NMSSM, CPVMSSM, UMSSM, IDM (inert doublet model), LHM(little Higgs model), Z3IDM (Inert doublet model with Z_3 symmetry), Z4IDSM (Inert doublet and singlet model with Z_5 symmetry) as well as three freeze-in models for which there are currently no additional routines (SingletDM, ZpPortal, LLL_scalar).

Some of these models contain a special routine for reading the input parameters:

• readVarMSSM, readVarNMSSM, readVarCPVMSSM, readVarlHiggs, readVarRHNM.

These routines are similar to the general readVar routine described in Section 5 but they write a warning when a parameter is not found in the input file and display the default

The supersymmetric models contain several additional routines to calculate the spectrum and compute various constraints on the parameter space of the models. Some functions are common to the MSSM, NMSSM, CPVMSSM, UMSSM models:

• o1Contents(FD)

values for these parameters.

prints the neutralino LSP components as the $\tilde{B}, \tilde{W}, \tilde{h_1}, \tilde{h_2}$ fractions. For the NMSSM the fifth component is the singlino fraction \tilde{S} and for the UMSSM the sixth component is the bino' fraction \tilde{B}' . The sum of the squares of the LSP components should add up to 1.

13.1 MSSM

The MSSM has a long list of low scale independent model parameters, those are specified in the SLHA file [29,67]. They are directly implemented as parameters of the model. micrOMEGAs can either read an SLHA file computed externally or generate this file in the framework of popular SUSY scenarios, these are specified by one of the instructions

#define SUGRA
#define SUGRANUH
#define AMSB
#define EWSB

If none of these instructions are given then micrOMEGAs reads the external SLHA file which should be passed as an argument when executing the *main* routine. To generate an SLHA file, micrOMEGAs uses either SuSpect, SPHENO, or SoftSusy. These codes, if need be, solve the RGE equations and calculate the masses of Higgs and SUSY particles including one-loop corrections. Note that SuSpect is included within the micrOMEGAs distribution while SPHENO or SOFTSUSY will be downloaded automatically when needed (see section 3.4). To specify the spectrum calculator the user has to define the parameter RGE in *main.c/main.cpp*. For instance

#define RGE suspect

Other possibilities for RGE are softSusy, spheno and tree. The option tree will generate the needed SLHA file for the spectrum using EWSB input parameters and tree-level formulas. One-loop corrections to the Higgs masses and to the effective Higgs potential are based on [68]. In this case, the realization of the MSSM is completely gauge invariant. This option can be useful to check the effect of loop corrections.

For **EWSB** scenarios the input parameters are the soft parameters, the names of these parameters are given in the MSSM/mssm[1/2].par files. The user can assign new values to these parameters by means of assignVal or readVarMSSM.

• spectEwsbMSSM()

calculates the masses of Higgs and supersymmetric particles in the MSSM including one-loop corrections starting from weak scale input parameters.

In these functions *spect* is defined by RGE.

For other MSSM scenarios, the parameters at the electroweak symmetry breaking scale are derived from an input at high scale. The same codes suspect, spheno, or softSusy are used for this. The corresponding routines are:

• spectSUGRA(tb,MG1,MG2,MG3,Al,At,Ab,signMu,MHu,MHd,Ml1,Ml3,Mr1,Mr3,Mq1,Mq3,Mu1,Mu3,Md1,Md3)

assumes that all input parameters except tb and signMu are defined at the GUT scale. The SUGRA/CMSSM scenario is a special case of this general routine.

• spectSUGRAnuh(tb,MG1,MG2,MG3,A1,At,Ab,Ml1,Ml3,Mr1,Mr3,Mq1,Mq3,Mu1,Mu3,Md1,Md3,mu,MA)

realizes a SUGRA scenario with non universal Higgs parameters. Here the Mhu, MHd parameters in the Higgs potential are replaced with the mu parameter defined at the EWSB scale and MA, the pole mass of the CP-odd Higgs. The signMu parameter is omitted because mu is defined explicitly.

• spectAMSB (am0, m32, tb, sng).

does the same as above within the AMSB model.

We have an option to directly read a SLHA input file, this uses the function

• lesHinput(file_name)

which returns a non-zero number in case of problem.

The routines for computing constraints are (see details in [3]).

• deltarho()

calculates the $\Delta \rho$ parameter in the MSSM. It contains for example the stop/sbottom contributions, as well as the two-loop QCD corrections due to gluon exchange and the correction due to gluino exchange in the heavy gluino limit.

bsgnlo(&SMbsg)

returns the value of the branching ratio for $b \to s\gamma$, see Appendix A. We have included some new contributions beyond the leading order that are especially important for high $\tan \beta$. SMbsg gives the SM contribution.

• bsmumu()

returns the value of the branching ratio $B_s \to \mu^+ \mu^-$ in the MSSM. It includes the loop contributions due to chargino, sneutrino, stop and Higgs exchange. The Δm_b effect relevant for high tan β is taken into account. Code is bases on [69].

• btaunu()

computes the ratio between the MSSM and SM branching fractions for $\bar{B}^+ \to \tau^+ \nu_{\tau}$.

• gmuon()

returns the value of the supersymmetric contribution to the anomalous magnetic moment of the muon.

• R123()

computes the ratio of the MSSM to SM value for R_{l23} in $K^+ \to \mu\nu$ due to a charged higgs contribution, see Eq.70 in [7].

• dtaunu(&dmunu)

computes the branching ratio for $D_s^+ \to \tau^+ \nu_{\tau}$. dmunu gives the branching ratio for $D_s^+ \to \mu^+ \nu_{\mu}$

• masslimits()

returns a positive value and prints a WARNING when the choice of parameters conflicts with a direct accelerator limits on sparticle masses from LEP. The constraint on the light Higgs mass from the LHC is included.

• treeMSSM()

This function transforms a loop improved model defined in an SLHA file into a tree level one. The masses and mixing angles are stored in the file tree.slha. This option can be useful to check the effect of loop induced masses and mixings. This option guarantees gauge invariance for all processes.

13.2 The NMSSM

As in the MSSM there are specific routines to compute the parameters of the model as specified in SLHA. The spectrum calculator is NMSPEC [11] in the NMSSMTools_5.0.1 package [70].

• nmssmEWSB()

calculates the masses of Higgs and supersymmetric particles in the NMSSM starting from the weak scale input parameters [71]. These can be downloaded by the readVarNMSSM routine

• nmssmSUGRA(m0,mhf,a0,tb,sgn,Lambda,aLambda,aKappa)

calculates the parameters of the NMSSM starting from the input parameters of the CNMSSM.

The routines for computing constraints are taken from NMSSMTools (see details in [4]).

• bsgnlo(&M,&P), bsmumu(&M,&P), btaunu(&M,&P), gmuon(&M,&P)

are the same as in the MSSM case. Here the output parameters M and P give information on the lower/upper experimental limits [72]

deltaMd(&M,&P),deltaMs(&M,&P)

compute the supersymmetric contribution to the $B_{d,s}^0 - \overline{B^0}_{d,s}$ mass differences, ΔM_d and ΔM_s .

• NMHwarn(FD)

is similar to masslimits_ except that it also checks the constraints on the Higgs masses, returns the number of warnings and writes down warnings in the file FD.

13.3 The CPVMSSM

The independent parameters of the model include, in addition to some standard model parameters, only the weak scale soft SUSY parameters. The independent parameters are listed in CPVMSSM/work/models/vars1.mdl. Masses, mixing matrices and parameters of the effective Higgs potential are read directly from CPsuperH [13, 73], together with the masses and the mixing matrices of the neutralinos, charginos and third generation sfermions. Masses of the first two generations of sfermions are evaluated (at tree-level) within micrOMEGAs in terms of the independent parameters of the model.

The routines for computing constraints are taken from CPsuperH, [74]

- bsgnlo(), bsmumu(), btaunu(), gmuon() are the same as in the MSSM case.
- deltaMd(),deltaMs() are the same as in the NMSSM case.
- Bdll()

computes the supersymmetric contribution to the branching fractions for $B_d \to \tau^+ \tau^-$ in the CPVMSSM.

- ABsg() computes the supersymmetric contribution to the asymmetry for $B \to X_s \gamma$.
- EDMel(), EDMmu(), EDMTl() return the value of the electric dipole moment of the electron, d_e , the muon, d_{μ} , and of Thallium, d_{Tl} in units of ecm.

13.4 The UMSSM

The independent parameters of the UMSSM are the standard model parameters and weak scale soft SUSY parameters listed in UMSSM/work/models/vars1.mdl. All masses, mixing matrices and parameters of the different sectors of the model are computed by micrOMEGAs [15, 16].

Some routines for computing constraints were taken from the MSSM and were adapted to the UMSSM. For example

- masslimits() which is essentially the same as in the MSSM except that the constraint on the light Higgs mass from the LHC was removed as other routines in the UMSSM include this constrain, or
- deltarho()

calculates the $\Delta \rho$ parameter in the UMSSM where in addition to MSSM contributions a pure UMSSM tree-level contribution from the extended Abelian gauge boson sector is included. Two other routines in C are included, Zinvisible() and Zprimelimits() that were defined above.

The remaining routines for computing *B*-physics, *K*-physics and Higgs observables as well as the anomalous magnetic moment of the muon were taken from NMSSMTools_5.0.1 and adapted to the UMSSM [15,75]. To call these routines use umssmtools(PDG_LSP) where PDG_LSP is the PDG code of the LSP. The result is contained in four files (UMSSM_inp.dat,

UMSSM_spectr.dat, UMSSM_decay.dat and SM_decay.dat) and the WARNING messages from these routines can be displayed with slhaWarnings(stdout).

As in the NMSSM the following routines are available:

• bsg(&M,&P), bsmumu(&M,&P), btaunu(&M,&P), gmuon(&M,&P),deltamd(&M,&P),deltams(&M,&P).

as well as the routines

• bdg(&M,&P), bdmumu(&M,&P), bxislllow(&M,&P), bxisllhigh(&M,&P), bxisnunu(&M,&P), bpkpnunu(&M,&P), bksnunu(&M,&P), rdtaul(&M,&P), rdstaul(&M,&P)

to compute respectively $b \to d\gamma$, $B_d \to \mu^+\mu^-$, the $b \to sl^+l^-$ transition in the low ([1,6] GeV²) and high ($\geq 14.4 \text{ GeV}^2$) $m_{l+l^-}^2$ ranges, $B \to X_s \nu \bar{\nu}$, $B^+ \to K^+ \nu \bar{\nu}$, $B \to K^* \nu \bar{\nu}$, $R_D \equiv \frac{\text{BR}(B^+ \to D\tau^+\nu_{\tau})}{\text{BR}(B^+ \to Dl^+\nu_{l})}$ and $R_{D^*} \equiv \frac{\text{BR}(B^+ \to D^*\tau^+\nu_{\tau})}{\text{BR}(B^+ \to D^*l^+\nu_{l})}$.

The K-physics observables $K^+ \to \pi^+ \nu \bar{\nu}$, $K_L \to \pi^0 \nu \bar{\nu}$, ΔM_K and ϵ_K can be computed respectively with

• kppipnunu(&M,&P), klpiOnunu(&M,&P), deltamk(&M,&P), epsk(&M,&P).

See the README of the UMSSM for further details.

14 Tools for new model implementation.

It is possible to implement a new particle physics model in micrOMEGAs. For this the model must be specified in the CalcHEP format. micrOMEGAs then relies on CalcHEP to generate the libraries for all matrix elements entering DM calculations. Below we describe the main steps and tools for implementing a new model.

14.1 Main steps

- The command ./newProject MODEL MODEL launched from the root micrOMEGAs directory creates the directory MODEL. This directory and the subdirectories contain all files needed to run micrOMEGAs with the exception of the new model files.
- The new model files in the CalcHEP format should then be included in the subdirectory MODEL/work/models. The files needed are vars1.mdl, func1.mdl, prtcls1.mdl, lgrng1.mdl, extlib1.mdl. For more details on the format and content of model files see [1].
- For odd particles and for the Higgs sector it is recommended to use the widths that are (automatically) calculated internally by CalcHEP/micrOMEGAs. For this one has to add the '!' symbol before the definition of the particle's width in the file prtcls1.mdl, for example

• Some models contain external functions, if this is the case they have to be compiled and stored in the MODEL/lib/aLib.a library. These functions should be written in C and both functions and their arguments have to be of type double. The library aLib.a can also contain some functions which are called directly from the main program. The MODEL/Makefile automatically launches make in the lib directory and compiles the external functions provided the prototypes of these external functions are specified in MODEL/lib/pmodel.h. The user can of course rewrite his own—lib/Makefile if need be.

If the new aLib.a library needs some other libraries, their names should be added to the SSS variable defined in MODEL/Makefile.

The MODEL directory contains both C and FORTRAN samples of *main* routines. In these sample main programs it is assumed that input parameters are provided in a separate file. In this case the program can be launched with the command:

```
./main data1.par
```

Note that for the direct detection module all quarks must be massive. However the cross sections do not depend significantly on the exact numerical values for the masses of light quarks.

14.2 Automatic width calculation

Automatic width calculation can be implemented by inserting the '!' symbol before the name of the particle width in the CalcHEP particle table (file prtcls1.mdl). In this case the width parameter should not be defined as a free or constrained parameter. Actually the pWidth function described in section 10 is used for width calculation in this case. We recommend to use the automatic width calculation for all particles from the 'odd' sector and for Higgs particles. For models which use SLHA parameter transfer (Section 14.5), the automatic width option will use the widths computed internally unless the user chooses to use those contained in the SLHA file by setting useSLHAwidth=1.

14.3 Using LanHEP for model file generation.

For models with a large number of parameters and various types of fields/particles such as the MSSM, it is more convenient to use an automatic tool to implement the model. LanHEP is a tool for Feynman rules generation. A few minor modifications to the default format of LanHEP have to be taken into account to get the model files into the micrOMEGAs format.

• The **lhep** command has to be launched with the -ca flag

```
lhep -ca source_file
```

• The default format for the file prtcls1.mdl which specifies the particle content has to be modified to include a column containing the PDG code of particles. For this, first add the following command in the LanHEP source code, before specifying the particles

```
prtcformat fullname:
'Full Name', name:' P', aname:' aP', pdg:' number',
spin2,mass,width, color, aux, texname: '> LaTeX(A) <',
atexname:'> LateX(A+) <' .

Then for each particle define the PDG code. For instance:
vector 'W+'/'W-': ('W boson', pdg 24, mass MW, width wW).</pre>
```

• LanHEP does not generate the file extlib1.mdl. micrOMEGAs works without this file but it is required for a CalcHEP interactive session. The role of this file is to provide the linker with the paths to all user's libraries needed at compilation. For example for the lib/aLib.a library define

```
$CALCHEP/../MODEL/lib/aLib.a
```

For examples see the extlib1.mdl files in the directory of the models provided.

14.4 QCD functions

Here we describe some QCD functions which can be useful for the implementation of a new model.

• initQCD(alfsMZ,McMc,MbMb,Mtp)

This function initializes the parameters needed for the functions listed below. It has to be called before any of these functions. The input parameters are the QCD coupling at the Z scale, $\alpha_s(M_Z)$, the quark masses, $m_c(m_c)$, $m_b(m_b)$ and $m_t(pole)$.

• alphaQCD(Q)

calculates the running α_s at the scale Q in the \overline{MS} scheme. The calculation is done using the NNLO formula in [76]. Thresholds for the b-quark and t-quark are included in n_f at the scales $m_b(m_b)$ and $m_t(m_t)$ respectively.

- MtRun(Q), MbRun(Q), McRun(Q) calculates top, bottom and charm quarks running masses evaluated at NNLO.
- MtEff(Q), MbEff(Q), McEff(Q), calculates effective top, bottom and charm quark masses using [76]

$$M_{eff}^{2}(Q) = M(Q)^{2} \left[1 + 5.67a + (35.94 - 1.36n_{f})a^{2} + (164.14 - n_{f}(25.77 - 0.259n_{f}))a^{3} \right]$$
(20)

where $a = \alpha_s(Q)/\pi$, M(Q) and $\alpha_s(Q)$ are the quark masses and running strong coupling in the \overline{MS} -scheme. In micromegas, we use the effective quark masses calculated at the scale Q = 2Mcdm. In some special cases one needs a precise treatment of the light quarks masses. The function

• MqRun(M2GeV, Q)

returns the running quark mass defined at a scale of 2 GeV. The corresponding effective mass needed for the Higgs decay width is given by

• Mqeff(M2GeV, Q)

14.5 SLHA reader

Very often the calculation of the particle spectra for specific models is done by some external program which writes down the particle masses, mixing angles and other model parameters in a file with the so-called **SLHA** format [29,67]. The micromegas program contains routines for reading files in the SLHA format. Such routines can be very useful for the implementation of new models.

In general a SLHA file contains several pieces of information which are called blocks. A block is characterized by its name and, sometimes, by its energy scale. Each block contains the values of several physical parameters characterized by a *key*. The key consists in a sequence of integer numbers. For example:

```
BLOCK MASS
             # Mass spectrum
                                 particle
# PDG Code
                mass
        25
               1.15137179E+02
                                # lightest neutral scalar
        37
               1.48428409E+03
                                # charged Higgs
BLOCK NMIX # Neutralino Mixing Matrix
           9.98499129E-01
                            # Zn11
    1
  1
    2
          -1.54392008E-02
                            # Zn12
BLOCK Au Q= 4.42653237E+02 # The trilinear couplings
          -8.22783075E+02
                            # A_u(Q) DRbar
    1
    2
          -8.22783075E+02
                            # A_c(Q) DRbar
```

• slhaRead(filename, mode)

downloads all or part of the data from the file filename. mode is an integer which determines which part of the data should be read form the file, mode= 1*m1+2*m2+4*m4 where

```
m1 = 0/1 -  overwrites all/keeps old data

m2 = 0/1 -  reads DECAY /does not read DECAY

m4 = 0/1 -  reads BLOCK/does not read BLOCK
```

For example mode=2 (m1=0,m2=1) is an instruction to overwrite all previous data and read only the information stored in the BLOCK sections of filename. In the same manner mode=3 is an instruction to add information from DECAY to the data obtained previously. slhaRead returns the values:

```
0 - successful reading
-1 - can not open the file
-2 - error in spectrum calculator
-3 - no data
n>0 - wrong file format at line n
```

• slhaValExists(BlockName, keylength, key1, key2,...)

checks the existence of specific data in a given block. BlockName can be substituted with any case spelling. The keylength parameter defines the length of the key set {key1,key2,...}. For example slhaValExists("Nmix",2,1,2) will return 1 if the neutralino mass mixing element Zn12 is given in the file and 0 otherwise.

• slhaVal(BlockName,Q, keylength, key1, key2,....)

is the main routine which allows to extract the numerical values of parameters. BlockName and keylength are defined above. The parameter $\mathbb Q$ defines the scale dependence. This parameter is relevant only for the blocks that contain scale dependent parameters, it will be ignored for other blocks, for example those that give the particle pole masses. In general a SLHA file can contain several blocks with the same name but different scales (the scale is specified after the name of the block). slhaVal uses the following algorithm to read the scale dependent parameters. If $\mathbb Q$ is less(greater) than all the scales used in the different blocks for a given parameter slhaVal returns the value corresponding to the minimum(maximum) scale contained in the file. Otherwise slhaVal reads the values corresponding to the two scales Q_1 and Q_2 just below and above $\mathbb Q$ and performs a linear interpolation with respect to $\log(\mathbb Q)$ to evaluate the returned values.

Recently it was proposed to use an extension of the SLHA interface to transfer Flavour Physics data [77]. Unfortunately the structure of the new blocks is such that they cannot be read with the slhaVal routine. We have added two new routines for reading such data • slhaValFormat(BlockName, Q, format)

where the *format* string allows to specify data which one would like to extract from the given block BlockName. For instance, to get the $b \to s\gamma$ branching ratio from the block

Block FOBS # Flavour observables

```
# ParentPDG type value
                                  NDA ID1 ID2 ID3 ... comment
    5
             2.95061156e-04
                                        3
                                           22
                                                    # BR(b->s gamma)
  521
             8.35442304e-02
                              0
                                    2 313
                                           22
                                                    # Delta0(B->K* gamma)
             3.24270419e-09
                                      13 -13
                                                    \# BR(B_s->mu+mu-)
  531
```

one has to use the command slhaValFormat("FOBS", 0., "5 1 %E 0 2 3 22"). In this command the *format* string is specified in C-style. The same routine can be used to read HiggsBound SLHA output.

A block can also contain a textual information. For example, in HIGGSBOUNDS a block contains the following records,

${\tt Block\ HiggsBoundsResults}$

In particular, the last record contains the name of the channel which gives the strongest constraint on the Higgs. To extract the name of this channel one can use the new function

- slhaSTRFormat("HiggsBoundsResults","1 5 || %[^|]||",channel); which will write the channel name in the text parameter *channel*.
- slhaWarnings(fileName)

writes into the file the warnings or error message stored in the SPINFO block and returns the number of warnings. If FD=NULL the warnings are not written in a file.

• slhaWrite(fileName)

writes down the information stored by readSLHA into the file. This function can be used for testing purposes.

SLHA also describes the format of the information about particle decay widths. Even though micrOMEGAs also performs the width calculation, one might choose to read the information from the SLHA file.

• slhaDecayExists(pNum)

checks whether information about the decay of particle pNum exists in the SLHA file. pNum is the particle PDG code. This function returns the number of decay channels. In particular zero means that the SLHA file contains information only about the total width, not on branching ratios while -1 means that even the total width is not given.

- slhaWidth(pNum)
- returns the value of particle width.
- slhaBranch(pNum,N, nCh)

returns the branching ratio of particle pNum into the N-th decay channel. Here O<N<=slhaDecayExists(pNum). The array nCh is an output which specifies the PDG numbers of the decay products, the list is terminated by zero.

The functions slhaValExists, slhaVal, slhaDecayExists, slhaWidth can be used directly in CalcHEP model files, see an example in

MSSM/work/models/func3.mdl. Note that in this example the call to slhaRead is done within the function suspectSUGRAc.

14.5.1 Writing an SLHA input file

We have included in the micrOMEGAs package some routines which allow to write an SLHA input file and launch the spectrum generator via the CalcHEP constraints menu. This way a new model can be implemented without the use of external libraries. The routines are called from func1.mdl, see example below.

• openAppend(fileName)

deletes the input file fileName and stores its name. This file will then be filled with the function aPrintF.

- aPrintF(format,...)
- opens the file fileName and writes at the end of the file the input parameters needed in the SLHA format or in any other format understood by the spectrum calculator. The arguments of aPrintF are similar to the arguments of the standard printf function.
- System(command, ...) generates a command line which is launched by the standard system C-function. The parameter *command* works here like a format string and can contain %s, %d elements. These are replaced by the next parameters of the System call.

For example to write directly the SLHA model file needed by SuSpect to compute the spectrum in a CMSSM(SUGRA) model, one needs to add the following sequence in the func1.mdl model file.

```
open |openAppend("suspect2_lha.in")
input1|aPrintF("Block MODSEL # Select model\n 1 1 # SUGRA\n")
input2|aPrintF("Block SMINPUTS\n 5 %E#mb(mb)\n 6 %E#mt(pole)\n",MbMb,Mtp)
input3|aPrintF("BLOCK MINPAR\n 1 %E #m0\n 2 %E #m1/2\n ",Mzero,Mhalf)
input4|aPrintF("3 %E #tb\n 4 %E #sign(mu)\n 5 %E #A0\n",tb,sgn,A0)
sys |System("./suspect2.exe")
rd |slhaRead("suspect2_lha.out",0)
```

It is possible to cancel the execution of a program launched with System if it runs for too long. For this we have introduced two global parameters sysTimeLim and sysTimeQuant. sysTimeLim sets a time limit in milliseconds for System execution, if sysTimeLim==0 (the default value) the execution time is not checked. The time interval between checks of the status of the program launched with System is specified by the parameter sysTimeQuant, the default value is set to 10. Note that it is preferable not too use too large a value for sysTimeQuant as it defines the lower time limit for a system call. In Fortran use call setSysTimeLim(sysTimeLim,sysTimeQuant) to reset the default time control parameters.

The function prototypes are available in CalcHEP_src/c_source/SLHAplus/include/SLHAplus.h

14.6 Routines for diagonalisation.

Very often in a new model one has to diagonalize mass matrices. Here we present some numerical routines for diagonalizing matrices. Our code is based on the jacobi routine provided in [78]. To use the same routine for a matrix of arbitrary size, we use a C option that allows to write routines with an arbitrary number of arguments.

- initDiagonal() should be called once before any other rDiagonal(A) routine described below. initDiagonal() assigns zero value to the internal counter of eigenvalues and rotation matrices. Returns zero.
- rDiagonal(d,M11,M12,..M1d,M22,M23...Mdd) diagonalizes a symmetric matrix of dimension d. The d(d+1)/2 matrix elements, Mij $(i \le j)$, are given as arguments. The function returns an integer number id which serves as an identifier of eigenvalues vector and rotation matrix.
- MassArray(id, i) returns the eigenvalues m_i ordered according to their absolute values.
- MixMatrix(id,i,j) returns the rotation matrix R_{ij} where

$$M_{ij} = \sum_{k} R_{ki} m_k R_{kj}$$

A non-symmetric matrix, for example the chargino mass matrix in the MSSM, is diagonalized by two rotation matrices,

$$M_{ij} = \sum_{k} U_{ki} m_k V_{kj}.$$

- rDiagonalA(d,M11,M12..M1d,M21,M22...Mdd) diagonalizes a non-symmetric matrix, the d^2 matrix elements, Mij, are given as arguments. The eigenvalues and the V rotation matrix are calculated as above with MassArray and MixMatrix.
- MixMatrixU(id,i,j)
 returns the rotation matrix U_{ij}.
 The function prototypes can be found in
 CalcHEP_src/c_source/SLHAplus/include/SLHAplus.h

15 Mathematical tools.

Some mathematical tools used by micromegas are available only in C format. Prototypes of these functions can be found in

include/micromegas_aux.h

- gauss(F,x1,x2,N)
- performs Gauss N-point integration for N < 8.
- simpson(F, x1, x2, eps,&err)

numerical integration of the function F(x) in the interval [x1, x2] with relative precision eps. simpson uses an adaptive algorithm for integrand evaluation and recursively increases the number of function calls in the regions where the integrand has peaks. A non-zero error code err means

- 1: NaN in integrand: simpson replaces NaN by zero and continues integration
- 2: Too deep recursion: the recursion stops at $10^{-15}|x1-x2|$. One can meet this problem when integrating a function with a pole $|x-a|^{-\gamma}$ when $\gamma > 0.75$.
- 4: Lost of precision: If in a small interval $\approx 10^{-4}|x1-x2|$ the derivative of the function changes sign more than twice, it is treated as a lost of precision in the integrand and simpson stops without reaching the required precision. The result of integration can be correct despite this error code.

In case of several error messages, err contains their sum. If the last argument of simpson is NULL, the error message is displayed on the screen.

• odeint(Y, Dim, x1, x2, eps,h1, deriv)

solves a system of Dim differential equations in the interval [x1, x2]. The Dim component array Y contains the starting variables at x1 as an input and is replaced by the resulting values at x2 as an output. eps determines the precision of the calculation and h1 gives an estimation of step of calculation. The function deriv calculates $Y'_i = dY_i/dx$ with the call deriv(x, Y, Y'). The Runge-Kutta method is used, see details in [78].

- stiff (first, x1, x2, Dim, Y, Yscal, eps, &htry,derivs)
- stifbs(first, x1, x2, Dim, Y, Yscal, eps, &htry,derivs)

these two functions solve stiff differential equations. Both routines are slightly adapted codes from [78]. Here the parameters x1, x2, Dim, Y have the same meaning as in the routine odeint above. The parameter first should be set to one for the first call to routines with a given number of equations Dim and to zero for subsequent calls. The flag first is used for memory allocation. If Yscale=NULL the parameter eps defines the absolute precision of calculation ($\delta Y_i < eps$). Otherwise, the precision is defined by the condition $\delta Y_i < epsYscale_i$. The parameter htry defines the initial step of integration and contains the last step of integration used during calculations. The function derivs evaluates the differential equation F = dY/dx and its partial derivatives:

derivs(x, Y, F, h, dFdx,dFdY) where dFdY[i*Dim+j]=
$$\frac{dF_i}{dY_i}$$

This routine can be called with parameters dFdx=NULL and dFdY=NULL. The parameter h presents current step of integration and can be used for numerical evaluation of dFdx.

polint3(x,Dim,X,Y)

performs cubic interpolation for *Dim*-dimension arrays X,Y. Similar functions, polint1 performs linear interpolations.

- spline(x, y, dim, y2)
- splint(x, y, y2, dim, double x0, &y0)

spline constructs cubic spline and splint calculates spline interpolation y_0 for a given point x_0 . Here x and y are a grid of function arguments and function values $y_i = Y(x_i)$. The function spline fills an array of second derivatives y2 which is used by splint.

• buildInterpolation(F,x1,x2,eps,delt, &Dim,&X,&Y)

constructs a cubic interpolation of the function F in the interval [x1, x2]. eps controls the precision of interpolation. If eps < 0 the absolute precision is fixed, otherwise a relative precision is required. The delt parameter limits distance between interpolation points: $|x_i - x_{i+1}| < delt|x^2 - x^2|$. The function checks that after removing any grid point, the function at that point can be reproduced with a precision eps using only the other points. It means that the expected precision of interpolation is about eps/16. Dim gives the number of points in the constructed grid. X and Y are variables of the double* type. The function allocates memory for Dim array for each of these parameters. X[i] contains the x-grid while Y[i] = F(X[i]).

- bessIO(x), bessI1(x), bessKO(x), bessK1(x), bessK2(x) the Bessel functions I_0, I_1, K_1, K_2 .
- ullet K1pole(x)= $K_1(rac{1}{x})e^{rac{1}{x}}\sqrt{rac{2}{\pi x}}$
- K2pole(x)= $K_2(\frac{1}{x})e^{\frac{1}{x}}\sqrt{\frac{2}{\pi x}}$

microMEGAs uses these functions for calculating the relic density. For small values of $x = T/M_{cdm}$, these functions are written as polynomials in x, thus the large exponentials are cancelled symbolically when taking ratios of Bessel functions.

• FeldmanCousins(n0, b,cl)

is the Feldman-Cousins [79] function for Poisson distribution. Here n0 is the observed number of events, b - expected background, cl< 1 - the requested confidence level. Assuming that there is some number of signal events in addition to background, this function sets the upper limit on the number of signal events compatible with n0 and cl.

• ch2pval(ndf,chi2)

returns the p-value assuming a χ^2 distribution with ndf degrees of freedom (expected χ^2) and chi2 is the observed χ^2 .

$$\mathtt{ch2pval}(k,q) = \int_q^\infty \frac{1}{2^k \Gamma(\frac{k}{2})} Q^{\frac{k}{2}-1} e^{-\frac{Q}{2}} dQ$$

• displayPlot(title,xName,xMin,xMax,lScale, N, ...)⁶

displays several curves/histograms on one plot. Here title contains some text, xName is the name of a variable, xMin,xMax are the lower and upper limits. If $1Scale \neq 0$, a logarithmic scale is used for the x axis.

N is the number of curves/histograms to display. After the parameter N, displayPlot expects $N \times 4$ parameters, where each tetrad can contain

text label	dimension of array	array of data	array of error
text label	dimension of array	array of data	NULL
text label	0	double *f(double x)	NULL
text label	0	double *f(double x, void *arg)	arg

⁶This function is not available in Fortran

where the first line is used for an histogram with error bars, the second line for a tabulated function, the third for a function f(x) and the fourth for a function f(x,arg) which also depends on some arguments contained in the structure arg. For a linear scale lscale=0, the arrays of data and errors should correspond to a grid

$$x_i = xMin + (i + 0.5)(xMax - xMin)/Dim$$
,

where i = 0, ..., Dim - 1. For logarithmic scale

$$x_i = \mathrm{xMin} \cdot \left(\frac{\mathrm{xMax}}{\mathrm{xMin}}\right)^{\frac{i+0.5}{\mathrm{Dim}}}$$

A An updated routine for $b \rightarrow s\gamma$ in the MSSM

The calculation of $b \to s\gamma$ was described in micromegas 1.3 [3]. The branching fraction reads

$$B(\bar{B} \to X_s \gamma) = B(\bar{B} \to X_c e \bar{\nu}) \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi f(z_0)} K_{NLO}(\delta)$$
 (21)

where $\alpha_{em} = 1./137.036$, the factor K_{NLO} involves the photon energy cut-off parameter δ and $f(z_0) = 0.542 - 2.23(\sqrt{z_0} - 0.29)$ depends on $z_0 = (m_c/m_b)^2$ defined in terms of pole masses. In the code the standard model and Higgs contribution at NLO were included as well as the leading order SUSY contributions. However in the last few years the NNLO standard model contribution has been computed [80] and shown to lead to large corrections, shifting the standard model value by over 10%. It was also argued that the NNLO SM result could be reproduced from the NLO calculation by appropriately choosing the scale for the c-quark mass [81,82].

In this improved version of the bsgnlo routine, we have changed the default value for the parameter $z_1 = (m_c/m_b)^2$ where m_c is the \overline{MS} running charm mass $m_c(m_b)$. Taking $z_1 = 0.29$ allows to reproduce the NNLO result. It is therefore no longer necessary to apply a shift to the microMEGAs output of $b \to s\gamma$ to reproduce the SM value.

We have also updated the default values for the experimentally determined quantities in Eq. 21, see Table 5, and we have replaced the factor $f(z_0)$ by C_{sl} where

$$C_{sl} = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma(\bar{B} \to X_c e \bar{\nu})}{\Gamma(\bar{B} \to X_u e \bar{\nu})}$$
(22)

accounts for the m_c dependence in $\bar{B} \to X_c e \bar{\nu}$.

The CKM matrix elements in the Wolfenstein parametrisation given in Table 5 are used to compute the central value of ckmf at order λ^4 ,

$$ckmf = \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 = 1 + \lambda^2 (2\bar{\rho} - 1) + \lambda^4 (\bar{\rho}^2 + \bar{\eta}^2 - A^2)$$
 (23)

With these default values the NLO- improved SM contribution is $B(\bar{B} \to X_s \gamma)|_{\text{SM}} = 3.27 \times 10^{-4}$ which corresponds to the result of Gambino and Giordano [82] after correcting for the slightly different CKM parameter used (ckm f = 0.963).

We have performed a comparison with superIso which includes the NNLO SM calculation for 10^5 randomly generated MSSM scenarios. The results are presented in Fig. 1 after applying a correction factor in superISO to account for the different value for the overall factor $F = B(\bar{B} \to X_c e \bar{\nu}) \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 / C_{sl}$. The ratio of $F_{micro}/F_{ISO} = 0.942$. The two codes agree within 5% most of the time.

$B(\bar{B} \to X_c e \bar{\nu})$	0.1064 [83]
C_{sl}	0.546 [82]
$ V_{ts}^*V_{tb}/V_{cb} ^2$	0.9613 [83]
A	0.808
λ	0.2253
$ar{ ho}$	0.132
$ar{\eta}$	0.341
m_b/m_s	50
$\lambda_2 \approx \frac{1}{4} (m_{B^*}^2 - m_B^2)$	$0.12 \text{GeV}^2 [84]$
$\alpha_s(M_Z)$	0.1189

Table 5: Default values in micrOMEGAs

Figure 1: Relative difference for $B(\bar{B} \to s\gamma)$ between micromegas 2.4 and super Iso 3.1. the vertical lines show the 3σ experimentally measured value.

References

- [1] A. Pukhov. CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages. 2004.
- [2] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. MicrOMEGAs: A Program for calculating the relic density in the MSSM. *Comput. Phys. Commun.*, 149:103–120, 2002.
- [3] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. micrOMEGAs: Version 1.3. Comput. Phys. Commun., 174:577–604, 2006.
- [4] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model. *Comput. Phys. Commun.*, 176:367–382, 2007.

- [5] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. *Comput. Phys. Commun.*, 180:747–767, 2009.
- [6] G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati, and A. Semenov. Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun., 182:842–856, 2011.
- [7] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. micrOMEGAs_3: A program for calculating dark matter observables. *Comput. Phys. Commun.*, 185:960–985, 2014.
- [8] G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov. micrOMEGAs4.1: two dark matter candidates. *Comput. Phys. Commun.*, 192:322–329, 2015.
- [9] D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J. Da Silva, S. Kraml, U. Laa, and A. Pukhov. Collider limits on new physics within micrOMEGAs4.3. *Comput. Phys. Commun.*, 222:327–338, 2018.
- [10] Genevieve Bélanger, Fawzi Boudjema, Andreas Goudelis, Alexander Pukhov, and Bryan Zaldivar. micrOMEGAs5.0: Freeze-in. *Comput. Phys. Commun.*, 231:173–186, 2018.
- [11] Ulrich Ellwanger and Cyril Hugonie. NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions. *Comput. Phys. Commun.*, 177:399–407, 2007.
- [12] G. Belanger, F. Boudjema, C. Hugonie, A. Pukhov, and A. Semenov. Relic density of dark matter in the NMSSM. *JCAP*, 0509:001, 2005.
- [13] J. S. Lee, A. Pilaftsis, Marcela Carena, S. Y. Choi, M. Drees, John R. Ellis, and C. E. M. Wagner. CPsuperH: A Computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP violation. *Comput. Phys. Commun.*, 156:283–317, 2004.
- [14] G. Belanger, F. Boudjema, S. Kraml, A. Pukhov, and A. Semenov. Relic density of neutralino dark matter in the MSSM with CP violation. *Phys. Rev.*, D73:115007, 2006.
- [15] Jonathan Da Silva. Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables. PhD thesis, Annecy, LAPTH, 2013.
- [16] G. Belanger, J. Da Silva, U. Laa, and A. Pukhov. Probing U(1) extensions of the MSSM at the LHC Run I and in dark matter searches. *JHEP*, 09:151, 2015.
- [17] Riccardo Barbieri, Lawrence J. Hall, and Vyacheslav S. Rychkov. Improved naturalness with a heavy Higgs: An Alternative road to LHC physics. *Phys. Rev.*, D74:015007, 2006.
- [18] Alexander Belyaev, Chuan-Ren Chen, Kazuhiro Tobe, and C. P. Yuan. Phenomenology of littlest Higgs model with T^- parity: including effects of T^- odd fermions. *Phys. Rev.*, D74:115020, 2006.

- [19] John McDonald. Thermally generated gauge singlet scalars as selfinteracting dark matter. *Phys. Rev. Lett.*, 88:091304, 2002.
- [20] G. Belanger, K. Kannike, A. Pukhov, and M. Raidal. Impact of semi-annihilations on dark matter phenomenology an example of Z_N symmetric scalar dark matter. JCAP, 1204:010, 2012.
- [21] G. Bélanger, K. Kannike, A. Pukhov, and M. Raidal. Minimal semi-annihilating Z_N scalar dark matter. JCAP, 1406:021, 2014.
- [22] G. Belanger, A. Pukhov, and G. Servant. Dirac Neutrino Dark Matter. *JCAP*, 0801:009, 2008.
- [23] Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Wolfgang Magerl, Doris Proschofsky-Spindler, Michael Traub, and Wolfgang Waltenberger. SModelS v1.0: a short user guide. 2014.
- [24] Philip Bechtle, Oliver Brein, Sven Heinemeyer, Oscar Stål, Tim Stefaniak, et al. HiggsBounds—4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC. Eur. Phys. J., C74:2693, 2014.
- [25] Philip Bechtle, Sven Heinemeyer, Oscar Stl, Tim Stefaniak, and Georg Weiglein. HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC. Eur. Phys. J., C74(2):2711, 2014.
- [26] W. Porod and F. Staub. SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM. *Comput. Phys. Commun.*, 183:2458–2469, 2012.
- [27] B. C. Allanach. SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun., 143:305–331, 2002.
- [28] Federico Ambrogi, Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Jory Sonneveld, Michael Traub, and Wolfgang Waltenberger. SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps. *Comput. Phys. Commun.*, 227:72–98, 2018.
- [29] Peter Z. Skands, B.C. Allanach, H. Baer, C. Balazs, G. Belanger, et al. SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators. *JHEP*, 0407:036, 2004.
- [30] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, Mia Schelke, and E. A. Baltz. Dark-SUSY: Computing supersymmetric dark matter properties numerically. *JCAP*, 0407:008, 2004.
- [31] Mark Hindmarsh and Owe Philipsen. WIMP dark matter and the QCD equation of state. *Phys. Rev.*, D71:087302, 2005.
- [32] Manuel Drees and Mihoko Nojiri. Neutralino nucleon scattering revisited. *Phys. Rev.*, D48:3483–3501, 1993.
- [33] Junji Hisano, Ryo Nagai, and Natsumi Nagata. Effective Theories for Dark Matter Nucleon Scattering. *JHEP*, 05:037, 2015.

- [34] J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev., D86:010001, 2012.
- [35] N. Wyn Evans, Ciaran A. J. O'Hare, and Christopher McCabe. SHM⁺⁺: A Refinement of the Standard Halo Model for Dark Matter Searches in Light of the Gaia Sausage. 2018.
- [36] HongSheng Zhao. Analytical models for galactic nuclei. Mon. Not. Roy. Astron. Soc., 278:488–496, 1996.
- [37] Julien Lavalle, Jonathan Pochon, Pierre Salati, and Richard Taillet. Clumpiness of dark matter and positron annihilation signal: computing the odds of the galactic lottery. *Astron. Astrophys.*, 462:827–848, 2007.
- [38] F. Boudjema, A. Semenov, and D. Temes. Self-annihilation of the neutralino dark matter into two photons or a Z and a photon in the MSSM. *Phys. Rev.*, D72:055024, 2005.
- [39] G. Chalons and A. Semenov. Loop-induced photon spectral lines from neutralino annihilation in the NMSSM. *JHEP*, 12:055, 2011.
- [40] Junji Hisano, Shigeki. Matsumoto, Mihoko M. Nojiri, and Osamu Saito. Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center. *Phys. Rev.*, D71:063528, 2005.
- [41] Andrzej Hryczuk and Roberto Iengo. The one-loop and Sommerfeld electroweak corrections to the Wino dark matter annihilation. *JHEP*, 01:163, 2012. [Erratum: JHEP06,137(2012)].
- [42] Mattias Blennow, Joakim Edsjo, and Tommy Ohlsson. Neutrinos from WIMP annihilations using a full three-flavor Monte Carlo. *JCAP*, 0801:021, 2008.
- [43] Pietro Baratella, Marco Cirelli, Andi Hektor, Joosep Pata, Morten Piibeleht, and Alessandro Strumia. PPPC 4 DM ν : a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun. JCAP, 1403:053, 2014.
- [44] Marco Cirelli, Nicolao Fornengo, Teresa Montaruli, Igor A. Sokalski, Alessandro Strumia, and Francesco Vissani. Spectra of neutrinos from dark matter annihilations. *Nucl. Phys.*, B727:99–138, 2005. [Erratum: Nucl. Phys.B790,338(2008)].
- [45] Arif Emre Erkoca, Mary Hall Reno, and Ina Sarcevic. Muon Fluxes From Dark Matter Annihilation. *Phys. Rev.*, D80:043514, 2009.
- [46] Dmitry Chirkin and Wolfgang Rhode. Muon Monte Carlo: A High-precision tool for muon propagation through matter. 2004.
- [47] Morihiro Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. *Phys. Rev.*, D75:043006, 2007.
- [48] G. Bélanger, J. Da Silva, T. Perrillat-Bottonet, and A. Pukhov. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs. *JCAP*, 1512(12):036, 2015.

- [49] Jeremy Bernon and Beranger Dumont. Lilith: a tool for constraining new physics from Higgs measurements. Eur. Phys. J., C75(9):440, 2015.
- [50] Philip Bechtle, Oliver Brein, Sven Heinemeyer, Georg Weiglein, and Karina E. Williams. HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron. *Comput. Phys. Commun.*, 182:2605–2631, 2011.
- [51] G. Belanger, F. Boudjema, and A. Pukhov. micrOMEGAs: a code for the calculation of Dark Matter properties in generic models of particle interaction. In *The Dark Secrets of the Terascale*, pages 739–790, 2013.
- [52] A. Djouadi, J. Kalinowski, and M. Spira. HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension. *Comput. Phys. Commun.*, 108:56–74, 1998.
- [53] Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Wolfgang Magerl, Doris Proschofsky-Spindler, and Wolfgang Waltenberger. SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry. *Eur. Phys. J.*, C74:2868, 2014.
- [54] http://smodels.hephy.at/wiki/SmsDictionary.
- [55] Ayres Freitas. Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson. *JHEP*, 04:070, 2014.
- [56] Morad Aaboud et al. Search for high-mass new phenomena in the dilepton final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. 2016.
- [57] Georges Aad et al. Search for new phenomena in the dijet mass distribution using p-p collision data at $\sqrt{s}=8$ TeV with the ATLAS detector. *Phys. Rev.*, D91(5):052007, 2015.
- [58] Vardan Khachatryan et al. Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at $\sqrt{s} = 8$ TeV. *Phys. Rev.*, D91(5):052009, 2015.
- [59] Vardan Khachatryan et al. Search for narrow resonances in dijet final states at $\sqrt(s) = 8$ TeV with the novel CMS technique of data scouting. *Phys. Rev. Lett.*, 117(3):031802, 2016.
- [60] Georges Aad et al. Search for new phenomena in dijet mass and angular distributions from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. *Phys. Lett.*, B754:302–322, 2016.
- [61] Vardan Khachatryan et al. Search for narrow resonances decaying to dijets in proton-proton collisions at $\sqrt(s) = 13$ TeV. Phys. Rev. Lett., 116(7):071801, 2016.
- [62] Malcolm Fairbairn, John Heal, Felix Kahlhoefer, and Patrick Tunney. Constraints on Z' models from LHC dijet searches. 2016.

- [63] G. Abbiendi et al. Search for chargino and neutralino production at $\sqrt{s} = 192$ 209 GeV at LEP. Eur. Phys. J., C35:1–20, 2004.
- [64] Alexander L. Read. Presentation of search results: The CL(s) technique. *J. Phys.*, G28:2693–2704, 2002.
- [65] Alexander L. Read. Modified frequentist analysis of search results (The CL(s) method). In Workshop on confidence limits, CERN, Geneva, Switzerland, 17-18 Jan 2000: Proceedings, 2000.
- [66] Vardan Khachatryan et al. Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at $\sqrt{s} = 8$ TeV. Eur. Phys. J., C75(5):235, 2015.
- [67] B. C. Allanach et al. SUSY Les Houches Accord 2. Comput. Phys. Commun., 180:8–25, 2009.
- [68] Marcela Carena, M. Quiros, and C. E. M. Wagner. Effective potential methods and the Higgs mass spectrum in the MSSM. *Nucl. Phys.*, B461:407–436, 1996.
- [69] C. Bobeth, T. Ewerth, F. Kruger, and J. Urban. Analysis of neutral Higgs boson contributions to the decays $\bar{B}(s^0 \to \ell^+\ell^-)$ and $\bar{B} \to K\ell^+\ell^-$. Phys. Rev., D64:074014, 2001.
- [70] http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html.
- [71] Ulrich Ellwanger and Cyril Hugonie. NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM. *Comput. Phys. Commun.*, 175:290–303, 2006.
- [72] Florian Domingo and Ulrich Ellwanger. Updated Constraints from B Physics on the MSSM and the NMSSM. *JHEP*, 12:090, 2007.
- [73] J. S. Lee, M. Carena, J. Ellis, A. Pilaftsis, and C. E. M. Wagner. CPsuperH2.0: an Improved Computational Tool for Higgs Phenomenology in the MSSM with Explicit CP Violation. *Comput. Phys. Commun.*, 180:312–331, 2009.
- [74] http://www.hep.man.ac.uk/u/jslee/CPsuperH.html.
- [75] Florian Domingo. Update of the flavour-physics constraints in the NMSSM. 2015.
- [76] S. Eidelman et al. Review of particle physics. Particle Data Group. *Phys. Lett.*, B592:1–1109, 2004.
- [77] F. Mahmoudi et al. Flavour Les Houches Accord: Interfacing Flavour related Codes. *Comput. Phys. Commun.*, 183:285–298, 2012.
- [78] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes: The Art of Scientific Computing.
- [79] Gary J. Feldman and Robert D. Cousins. A Unified approach to the classical statistical analysis of small signals. *Phys. Rev.*, D57:3873–3889, 1998.

- [80] M. Misiak et al. Estimate of $\mathcal{B}(\bar{B}\to X_s\gamma)$ at $O(\alpha_s^2)$. Phys. Rev. Lett., 98:022002, 2007.
- [81] Mikolaj Misiak and Matthias Steinhauser. NNLO QCD corrections to the anti-B—¿ X(s) gamma matrix elements using interpolation in m(c). Nucl. Phys., B764:62–82, 2007.
- [82] Paolo Gambino and Paolo Giordano. Normalizing inclusive rare B decays. *Phys. Lett.*, B669:69–73, 2008.
- [83] K. Nakamura et al. Review of particle physics. J. Phys., G37:075021, 2010.
- [84] W. M. Yao et al. Review of Particle Physics. J. Phys., G33:1–1232, 2006.