Representation Focused Algorithm for Deep Networks (R., Jones & Harchaoui 2022)

Reduced objective

• Consider learning a feature representation $\phi(\cdot, \theta)$ and a linear predictor W on top of $\phi(\cdot, \theta)$,

$$\min_{\boldsymbol{\theta}, \boldsymbol{W}} \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{W}^{\top} \phi(\mathbf{x}_{i}, \boldsymbol{\theta}), y_{i}) + \Omega(\boldsymbol{\theta}, \boldsymbol{W})$$

ullet For squared loss ℓ , penalty Ω , can define

$$f(\boldsymbol{\theta}) := \min_{\boldsymbol{W}} \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{W}^{\top} \phi(\boldsymbol{x}_{i}, \boldsymbol{\theta}), y_{i}) + \Omega(\boldsymbol{\theta}, \boldsymbol{W})$$

→ pseudo-likeli. Besag (1975) or Wiberg algo. Wiberg (1976)

Algorithm Idea

- Stochastic gradient descent on reduced objective $f(\theta)$ \rightarrow Biased oracles with bias controlled by mini-batch size
- Generalized to approx. minimizers for non-quad. losses
- ightarrow Gradient of $f(\theta)$ obtained by implicit diff.

Blondel et al. (2021)

 \rightarrow Can be plugged into e.g. Adam

Potentially circumvent oscillations

All-CNN on CIFAR10 multinomial loss

LeNet5 on MNIST squared loss SGO: Stochastic Gradient Optimization

ULR-X: Proposed oracle with optim. algo. X