# MIDS W207 Applied Machine Learning

Week 6 Live Session Slides

#### **Gradient Descent**

Gradient Descent is an optimization algorithm for finding a local minimum of a differentiable function.

Gradient descent is simply used in machine learning to find the values of a function's parameters (coefficients) that minimize a cost function as far as possible.

It's based on a convex function and tweaks its parameters iteratively to minimize a given function to its local minimum.

#### **Gradient Descent**

"A gradient measures how much the output of a function changes if you change the inputs a little bit." —Lex Fridman (MIT)

A gradient is a derivative of a function that has more than one input variable.

Known as the slope of a function in mathematical terms, the gradient simply measures the change in all weights with regard to the change in error.

### **Gradient Descent**



$$\mathbf{b} = \mathbf{a} - \gamma \nabla \mathbf{f}(\mathbf{a})$$

### **Gradient Descent: Analysis**



### **Gradient Descent: Learning Rate**



### **Gradient Descent: Learning Rate**





| House Size<br>sq.ft (X) | 1400    | 1600    | 1700    | 1875    | 1100    | 1550    | 2350    | 2450    | 1425    | 1700    |
|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| House<br>Price\$ (Y)    | 245,000 | 312,000 | 279,000 | 308,000 | 199,000 | 219,000 | 405,000 | 324,000 | 319,000 | 255,000 |

Given its size (X), what will its price (Y) be?





Sum of Squared Errors (SSE) =  $\frac{1}{2}$  Sum (Actual House Price – Predicted House Price)<sup>2</sup> =  $\frac{1}{2}$  Sum(Y – Ypred)<sup>2</sup>

Step 1: Initialize the weights(a & b) with random values and calculate Error (SSE)

Step 2: Calculate the gradient i.e. change in SSE when the weights (a & b) are changed by a very small value from their original randomly initialized value. This helps us move the values of a & b in the direction in which SSE is minimized.

Step 3: Adjust the weights with the gradients to reach the optimal values where SSE is minimized

Step 4: Use the new weights for prediction and to calculate the new SSE

Step 5: Repeat steps 2 and 3 till further adjustments to weights doesn't significantly reduce the Error

| HOUSING DATA   |                 |  |  |  |  |
|----------------|-----------------|--|--|--|--|
|                |                 |  |  |  |  |
| House Size (X) | House Price (Y) |  |  |  |  |
| 1,100          | 1,99,000        |  |  |  |  |
| 1,400          | 2,45,000        |  |  |  |  |
| 1,425          | 3,19,000        |  |  |  |  |
| 1,550          | 2,40,000        |  |  |  |  |
| 1,600          | 3,12,000        |  |  |  |  |
| 1,700          | 2,79,000        |  |  |  |  |
| 1,700          | 3,10,000        |  |  |  |  |
| 1,875          | 3,08,000        |  |  |  |  |
| 2,350          | 4,05,000        |  |  |  |  |
| 2,450          | 3,24,000        |  |  |  |  |

Normalize

| Min-Max Standardization |                             |  |  |  |  |
|-------------------------|-----------------------------|--|--|--|--|
| X<br>(X-Min/Max-min)    | <b>Y</b><br>(Y-Min/Max-Min) |  |  |  |  |
| 0.00                    | 0.00                        |  |  |  |  |
| 0.22                    | 0.22                        |  |  |  |  |
| 0.24                    | 0.58                        |  |  |  |  |
| 0.33                    | 0.20                        |  |  |  |  |
| 0.37                    | 0.55                        |  |  |  |  |
| 0.44                    | 0.39                        |  |  |  |  |
| 0.44                    | 0.54                        |  |  |  |  |
| 0.57                    | 0.53                        |  |  |  |  |
| 0.93                    | 1.00                        |  |  |  |  |
| 1.00                    | 0.61                        |  |  |  |  |

| a    | b    | х    | Υ    | YP=a+bX | SSE=1/2(Y-YP)^2 |
|------|------|------|------|---------|-----------------|
| 0.45 | 0.75 | 0.00 | 0.00 | 0.45    | 0.101           |
|      |      | 0.22 | 0.22 | 0.62    | 0.077           |
|      |      | 0.24 | 0.58 | 0.63    | 0.001           |
|      |      | 0.33 | 0.20 | 0.70    | 0.125           |
|      |      | 0.37 | 0.55 | 0.73    | 0.016           |
|      |      | 0.44 | 0.39 | 0.78    | 0.078           |
|      |      | 0.44 | 0.54 | 0.78    | 0.030           |
|      |      | 0.57 | 0.53 | 0.88    | 0.062           |
|      |      | 0.93 | 1.00 | 1.14    | 0.010           |
|      |      | 1.00 | 0.61 | 1.20    | 0.176           |
|      |      |      |      | То      | tal             |
|      |      |      |      | S       | SE 0.677        |

| a    | b    | х    | Υ    | YP=a+bX |           | SSE   |     | ðSSE/ða<br>= -(Y-YP) | ðSSE/ðb<br>= -(Y-YP)X |
|------|------|------|------|---------|-----------|-------|-----|----------------------|-----------------------|
| 0.45 | 0.75 | 0.00 | 0.00 | 0.45    |           | 0.101 |     | 0.45                 | 0.00                  |
|      |      | 0.22 | 0.22 | 0.62    |           | 0.077 |     | 0.39                 | 0.09                  |
|      |      | 0.24 | 0.58 | 0.63    |           | 0.001 |     | 0.05                 | 0.01                  |
|      |      | 0.33 | 0.20 | 0.70    |           | 0.125 |     | 0.50                 | 0.17                  |
|      |      | 0.37 | 0.55 | 0.73    |           | 0.016 |     | 0.18                 | 0.07                  |
|      |      | 0.44 | 0.39 | 0.78    |           | 0.078 |     | 0.39                 | 0.18                  |
|      |      | 0.44 | 0.54 | 0.78    |           | 0.030 |     | 0.24                 | 0.11                  |
|      |      | 0.57 | 0.53 | 0.88    |           | 0.062 |     | 0.35                 | 0.20                  |
|      |      | 0.93 | 1.00 | 1.14    |           | 0.010 |     | 0.14                 | 0.13                  |
|      |      | 1.00 | 0.61 | 1.20    |           | 0.176 |     | 0.59                 | 0.59                  |
|      |      |      |      |         | Total SSE | 0.677 | Sum | 3.300                | 1.545                 |



| a    | b    | Х    | Υ    | YP=a+bX | SSE             | ðSSE/ða   | ðSSE/ðb |
|------|------|------|------|---------|-----------------|-----------|---------|
| 0.42 | 0.73 | 0.00 | 0.00 | 0.42    | 0.087           | 0.42      | 0.00    |
|      |      | 0.22 | 0.22 | 0.58    | 0.064           | 0.36      | 0.08    |
|      |      | 0.24 | 0.58 | 0.59    | 0.000           | 0.01      | 0.00    |
|      |      | 0.33 | 0.20 | 0.66    | 0.107           | 0.46      | 0.15    |
|      |      | 0.37 | 0.55 | 0.69    | 0.010           | 0.14      | 0.05    |
|      |      | 0.44 | 0.39 | 0.74    | 0.063           | 0.36      | 0.16    |
|      |      | 0.44 | 0.54 | 0.74    | 0.021           | 0.20      | 0.09    |
|      |      | 0.57 | 0.53 | 0.84    | 0.048           | 0.31      | 0.18    |
|      |      | 0.93 | 1.00 | 1.10    | 0.005           | 0.10      | 0.09    |
|      |      | 1.00 | 0.61 | 1.15    | 0.148           | 0.54      | 0.54    |
|      |      |      |      |         | Total SSE 0.553 | Sum 2.900 | 1.350   |

### Gradient Descent: In depth Analysis

Formula:

$$X = X - lr * \frac{d}{dX} f(X)$$

Where, X = input  $F(X) = output \ based on X$   $lr = learning \ rate$ 

#### **Cost Function**

$$J(\theta) = \theta^2$$

<u>Goal</u>

**Update Function** 

$$\theta := \theta - \alpha * \frac{d}{d\theta} J(\theta)$$

**Learning Rate** 

$$\alpha = 0.1$$

#### **Updating Parameters**

$$\theta := \theta - \alpha * \frac{d}{d\theta} J(\theta)$$

$$\theta := \theta - \alpha * 2\theta$$

$$\theta := \theta - 2\alpha\theta$$

$$\theta := 0.8 * \theta$$

#### **Table Generation**

| θ    | J(θ)  |
|------|-------|
| 5    | 25    |
| 4    | 16    |
| 3.2  | 10.24 |
| 2.56 | 6.55  |
| 2.04 | 4.19  |
| 1    | 1     |
|      | I     |
| 0    | 0     |

| θ     | J(θ)  |
|-------|-------|
| -5    | 25    |
| -4    | 16    |
| -3.2  | 10.24 |
| -2.56 | 6.55  |
| -2.04 | 4.19  |
| 1     | I,    |
| 1     | I     |
| 0     | 0     |



#### **Cost Function**

$$J(\theta_1, \theta_2) = \theta_1^2 + \theta_2^2$$

Goal

min 
$$J(\theta_1, \theta_2)$$

#### **Update Function**

$$\theta_1 := \theta_1 - \alpha * \frac{d}{d\theta_1} J(\theta_1, \theta_2)$$

$$\theta_2 := \theta_2 - \alpha * \frac{d}{d\theta_2} J(\theta_1, \theta_2)$$

#### **Derivatives**

$$\frac{d}{d\theta_1}J(\theta_1,\theta_2) = \frac{d}{d\theta_1}(\theta_1^2 + \theta_2^2)$$

$$= \frac{d}{d\theta_1}(\theta_1^2) + \frac{d}{d\theta_1}(\theta_2^2)$$

$$= 2\theta_1 + 0$$

$$= 2\theta_1$$

$$\frac{d}{d\theta_2}J(\theta_1,\theta_2) = \frac{d}{d\theta_2}(\theta_1^2 + \theta_2^2)$$

$$= \frac{d}{d\theta_2}(\theta_1^2) + \frac{d}{d\theta_2}(\theta_2^2)$$

$$= 0 + 2\theta_2$$

$$= 2\theta_2$$

#### **Update Values**

$$\theta_1 := \theta_1 - \alpha * 2\theta_1$$
  
$$\theta_1 := \theta_1 - 2\alpha\theta_1$$

$$\theta_2 := \theta_2 - \alpha * 2\theta_2$$
  
$$\theta_2 := \theta_2 - 2\alpha\theta_2$$

#### **Learning Rate**

$$\alpha = 0.1$$

<u>Table</u>

| θ1     | θ2     | J(θ)   |
|--------|--------|--------|
| 1      | 1      | 2      |
| 0.8    | 0.8    | 1.28   |
| 0.64   | 0.64   | 0.4096 |
| 0.512  | 0.512  | 0.2621 |
| 0.4096 | 0.4096 | 0.1677 |
| 1      |        | 1      |
|        |        |        |
| 0      | 0      | 0      |

**Gradient Descent** 

<u>Graph</u>



### **Gradient Descent: General Formulation**

#### **General Formulation**

- Model ("hypothesis"):  $Y_i = \alpha + \beta X_i$
- Parameters: $\alpha$ ,  $\beta$
- Cost function:

$$J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)^2$$

Objective:

$$\min_{\alpha,\beta} J(\alpha,\beta)$$

#### Sigmoid Function



#### **Sigmoid Function**

- Logistic (sigmoid) function:  $g(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$
- In logistic regression:  $z = \alpha + \beta X + ...$
- Transforms:  $[-\infty, +\infty] \rightarrow [0, 1]$
- · Constrains output of our model between 0 and 1

#### **Models and Parameters**

- Model (hypothesis):  $Pig(Y_i=1\big|x: hetaig)=gig(zig)=rac{1}{1+e^{-z}}$
- · Parameters:
  - Above,  $\theta$ , and in our case,  $\alpha$ ,  $\beta$

If 
$$\theta = (\alpha, \beta), P(Y_i = 1) = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$$

#### **Cost Function**

- Cost function, in general:  $J\!\left( heta
  ight) = rac{1}{N} \sum_{i=1}^{N} \mathrm{Cost}\!\left(\widehat{Y}_{i}, Y_{i}
  ight)$ 
  - $\circ$   $\hat{\mathbf{Y}}$  = predicted value of  $\mathbf{Y}$
  - $\hat{Y}_i$  = predicted value of  $i^{th}$  observation
  - $Y_i$  = actual value of  $i^{th}$  observation
  - Cost function, in logistic regression:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} Y_i \cdot \log \hat{\mathbf{Y}}_i + (1 - Y_i) \log(1 - \hat{\mathbf{Y}}_i)$$

#### **Objective**

• Minimize cost function subject to parameters *θ*:

$$\min_{\theta} J(\theta)$$

• In our case, minimize cost function subject to parameters  $\alpha$ ,  $\beta$ .:

$$\min_{\alpha,\beta} J(\alpha,\beta)$$

#### **Examining the Cost Function**

· Logistic regression cost function:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} Y_i \cdot \log \hat{Y}_i + (1 - Y_i) \log(1 - \hat{Y}_i)$$

Can rewrite single part as two different components:

$$Cost(\widehat{Y}_i, Y_i) = \begin{cases} -\log(\widehat{Y}_i) & \text{if } Y_i = 1\\ -\log(1 - \widehat{Y}_i) & \text{if } Y_i = 0 \end{cases}$$

Produces a convex surface

#### **Graphs of Cost Function**







#### **Logistic Regression: Gradient Descent**

Benefit: leads to getting predicted cost values closer to actual values
 Cost function:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} Y_i \cdot \log \hat{\mathbf{Y}}_i + (1 - Y_i) \log(1 - \hat{\mathbf{Y}}_i)$$

Use the update rule:

$$\theta < -\theta - R \frac{\partial}{\partial \theta} J(\theta)$$

· Benefit: derivative is very simple:

$$\frac{\partial}{\partial \theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i) X_i$$

· Gradient descent algorithm:

$$\beta < -\beta - R \frac{1}{N} \sum_{i=1}^{N} (Y_i - \frac{1}{1 + e^{-(\alpha + \beta X_i)}}) X_i$$

### **Gradient Descent: Types**

**Batch Gradient Descent** 



Mini-Batch Gradient Descent



**Stochastic Gradient Descent** 



### Regularization



### Regularization

#### **Changing the Cost Function**

· Original cost function:

$$J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k)^2$$

· Modified cost function:

$$J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k)^2 + \lambda_3 \theta_3 + \dots + \lambda_k \theta_k$$

- $\circ$  Add  $\lambda$  terms to account for additional, unnecessary terms.
- Penalized cost function:

$$J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \theta_0 + \theta_1 X_i + \ldots + \theta_k X_i^k)^2 + \frac{\lambda}{\lambda} \sum_{j=1}^{k} \theta_j^2$$
Regularization parameter

Regularized version with new partials:

$$\beta < -\beta - R \frac{1}{N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i) X_i + \frac{\lambda}{N} \beta$$

#### **Gradient Descent Algorithm**

- Pseudocode:
  - Choose an initial vector of parameters  $\alpha$ ,  $\beta$ .
  - $\circ$  Choose learning rate R.
  - Repeat until an approximate minimum is obtained (randomly shuffle examples in training set).
  - For each example i:

$$\alpha < -\alpha - R \frac{\partial}{\partial \alpha} J(\alpha, \beta)$$

$$\beta < -\beta - R \frac{\partial}{\partial \beta} J(\alpha, \beta)$$

#### **Regression Cost Function**

• Regression cost function:

$$J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)^2$$

• Repeat until convergence:

$$\alpha < -\alpha - R \frac{\partial}{\partial \alpha} J(\alpha, \beta)$$
  
 $\beta < -\beta - R \frac{\partial}{\partial \beta} J(\alpha, \beta)$ 

Missing pieces:

$$\frac{\partial}{\partial \alpha} J(\alpha, \beta) = \frac{\partial}{\partial \alpha} \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)^2$$

$$\frac{\partial}{\partial \beta} J(\alpha, \beta) = \frac{\partial}{\partial \alpha} \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)^2$$

#### Partial Derivatives: Cost Function With Respect to α

$$\begin{split} \frac{\partial}{\partial \alpha} J(\alpha, \beta) &= \frac{\partial}{\partial \alpha} \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)^2 \\ &= \frac{1}{2N} \sum_{i=1}^{N} \frac{\partial}{\partial \alpha} (Y_i - \alpha - \beta X_i)^2 \\ &= \frac{1}{2N} \sum_{i=1}^{N} 2(Y_i - \alpha - \beta X_i) \frac{\partial}{\partial \alpha} (Y_i - \alpha - \beta X_i) \end{split}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)$$

#### Partial Derivatives: Cost Function With Respect to β

$$\frac{\partial}{\partial \beta} J(\alpha, \beta) = \frac{\partial}{\partial \beta} \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

$$= \frac{1}{2N} \sum_{i=1}^{N} \frac{\partial}{\partial \beta} (Y_i - \alpha - \beta X_i)^2$$

$$= \frac{1}{2N} \sum_{i=1}^{N} 2(Y_i - \alpha - \beta X_i) \frac{\partial}{\partial \beta} (Y_i - \alpha - \beta X_i)$$

$$= \frac{1}{N} \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i) (-X_i)$$

$$= -\frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i) X_i$$