

INSA – Gaussian processes

Introduction

Andrés F. López-Lopera

The French Aerospace Lab ONERA, France Information Processing and Systems Department (DTIS) Multidisciplinary Methods, Integrated Concepts (M2CI) Research Unit

Who am I?

Andrés F. López-Lopera

Colombia

2008-2013

2014-2015

France

2016-2019

2019-2020

2020-2021

Electrical Eng., *Universidad Tecnológica de Pereira*· Machine learning and signal processing

M.Sc. in Electrical Eng., *Universidad Tecnológica de Pereira*· Probabilistic modelling using Gaussian processes (GPs)

PhD in Applied Mathematics, Mines Saint-Étienne

Joint supervision: Institut de Mathématiques de Toulouse
 GPs under inequality constraints

· Applications: nuclear risk assessment, coastal flooding

Applications: nuclear risk assessment, coastal flooding

Postdoctoral Research, Institut de Mathématiques de Toulouse • Joint supervision: The French Geological Survey BRGM

· Multi-output GPs & coastal flooding

Postdoctoral Research, *The French Aerospace Lab ONERA*· Multi-fidelity GPs & aerodynamics (wind tunnel tests)

]

Gaussian processes (GPs) as flexible priors over functions

Gaussian processes (GPs) as flexible priors over functions

Gaussian random fields

Outline

- · In this course:
 - 1. A recap of Gaussian processes
 - 2. Spectral representation and Bochner's theorem
 - 3. Regularity conditions (e.g. continuity, differentiability)
 - 4. An introduction to reproducing kernel Hilbert-spaces (RKHS)

Main references

http://www.gaussianprocess.org/gpml/

Michael L. Stein

https:

//www.springer.com/gp/book/9780387986296

Additional references

- Alain Berlinet and Christine Thomas-Agnan. *Reproducing kernel Hilbert spaces in probability and statistics*. Springer Science & Business Media, 2011.
- C. Chatfield. *The Analysis of Time Series: An Introduction, Sixth Edition*. Chapman & Hall/CRC Texts in Statistical Science. CRC Press, 2016.
- Marc G. Genton. Classes of kernels for machine learning: A statistics perspective. *Journal of Machine Learning Research*, 2001.
- Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2021.
- Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). MIT Press, 2005.
- Arno Solin. Machine learning with signal processing. ICML TUTORIAL, 2020.
- Michael L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.

Gaussian processes

- · Let $\{Y(x); x \in \mathbb{R}^d\}$ be a GP
- · Y is completely defined by its mean m and covariance (kernel) k functions:

$$Y \sim \mathcal{GP}(m,k),$$
 (1)

where

(trend)
$$m(x) = \mathbb{E} \{Y(x)\},$$

(correlation, p.s.d.) $k(x, x') = \text{cov} \{Y(x), Y(x')\}, \text{ for } x, x' \in \mathbb{R}^d.$ (2)

 \cdot The operator $\mathbb E$ denotes the expectation of random variables (r.v's), and the covariance operator is given by

$$cov \{Y(x), Y(x')\} = \mathbb{E} \{[Y(x) - m(x)][Y(x') - m(x')]\}.$$

Gaussian processes

· It is common to assume that Y has mean zero, i.e. $m(\cdot) = 0$. Then,

$$k(x,x') = \operatorname{cov}\left\{Y(x),Y(x')\right\} = \mathbb{E}\left\{Y(x)Y(x')\right\}. \tag{3}$$

· If $m(\cdot) = 0$, then Y is known as a centred GP.

Exercise. Show that $Z \sim \mathcal{GP}(m, k)$ can be written in terms of $Y \sim \mathcal{GP}(0, k)$:

$$Z(x) = m(x) + Y(x). (4)$$

Gaussian processes

- · If Y is a centred GP, then it is completely defined by its kernel k.
- · Regularity assumptions are then encoded in *k* [Genton, 2001]:
 - smoothness
 - periodicity
 - stationarity
 - isotropy

Definition (Stationary kernel functions)

A kernel function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, with $\mathcal{X} \subset \mathbb{R}^d$, is **stationary** if, for all $x, x' \in \mathcal{X}$, k(x, x') only depends on x - x'.

Definition (Isotropic kernel functions)

A kernel k is **isotropic** (or homogeneous) if k(x, x') only depends on |x - x'|.

THE FRENCH AEROSPACE

Examples of 1D kernels

Examples of GP samples [Solin, 2020]

Examples of 1D stationary kernels

- · Denote $k(\tau) := k(x, x + \tau)$ (abuse of notation)
- · Some classic 1D stationary kernels are [Genton, 2001]:

Squared Exponential (SE):
$$k_{\sigma^2,\ell}(\tau) = \sigma^2 \exp\left\{-\frac{1}{2}\frac{\tau^2}{\ell^2}\right\}$$
,

$$k_{\sigma^2,\ell}(\tau) = \sigma^2 \left(1 + \sqrt{5} \tfrac{|\tau|}{\ell} + \tfrac{5}{3} \tfrac{\tau^2}{\ell^2} \right) \exp\left\{-\sqrt{5} \tfrac{|\tau|}{\ell} \right\},$$

$$k_{\sigma^2,\ell}(au) = \sigma^2 \exp\left\{-rac{| au|}{\ell}
ight\},$$

with variance parameter σ^2 and length-scale parameter ℓ .

[A visual exploration of GPs]

Biology: prediction of protein concentrations

- A. F. López-Lopera, N. Durrande and M. A. Alvarez:

Physically-inspired Gaussian process models for post-transcriptional regulation in Drosophila IEEE/ACM Transaction on Computational Biology and Bioinformatics, 2019

- A. F. López-Lopera and M. A. Alvarez:

Switched latent force models for reverse-engineering transcriptional regulation in genes IEEE/ACM Transaction on Computational Biology and Bioinformatics, 2017

Neuroscience: magnetic resonance imaging (MRI)

- H. Vargas, A. López-Lopera, M. A. Ivarez, A. Orozco, J. Hernández and N. Malpica: Gaussian processes for slice-based super-resolution MR images Lecture Notes in Computer Science (LNCC), 2015

Risk assessment: nuclear safety

- A. F. López-Lopera, N. Durrande, F. Bachoc and O. Roustant:

Finite-dimensional Gaussian approximation with linear inequality constraints SIAM/ASA Journal on Uncertainty Quantification, 2018

Risk assessment: coastal flooding

- A. F. López-Lopera, D. Idier, J. Rohmer and F. Bachoc:

 $\label{eq:Multi-output} \textit{Gaussian processes with functional data: A study on coastal flood hazard assessment} \\ \textit{Submitted, 2020}$

Geostatistics: spatial distribution of tree species

- A. F. López-Lopera, S. John and N. Durrande:

Gaussian process modulated Cox processes under linear inequality constraints International Conference on Artificial Intelligence and Statistics (AISTATS), 2019

Conclusions

- · GPs provide a well-founded non-parametric (Bayesian) framework
- · They have been successfully applied in diverse applications:
 - Geostatistics, physics, chemistry
 - Neuroscience, biology and medicine
 - Engineering fields
 - Econometrics
 - ..
- · Regularity assumptions are encoded in kernel functions
 - smoothness, periodicity, stationarity, isotropy, ...

