Две задачи машинного обучения

Воронцов Константин Вячеславович

Машинное обучение ● МФТИ ● 16 мая 2017

Содержание

- Диагностика заболеваний по ЭКГ
 - Информационный анализ электрокардиосигналов
 - Статистические обоснования
 - Измерение качества диагностики

- Разведочный информационный поиск
 - Тематическое моделирование текстовых коллекций
 - Разведочный тематический поиск
 - Оптимизация параметров модели

Электрокардиография

Photograph of a Complete Electrocardiograph, Showing the Manner in which the Electroges are Attached to the Patient, In this Case the Hands and One Foot Being Immeesed in Jars of Salt Solution

- 1872 первые записи электрической активности сердца
- 1911 коммерческий электрокардиограф (фото)
- 1924 нобелевская премия по медицине, Виллем Эйнтховен

Примеры электрокардиограмм

В основе диагностики заболеваний сердца — многочисленные наблюдения за особенностями PQRST-комплекса

Теория информационной функции сердца [В.М.Успенский]

Возможна ли диагностика несердечных заболеваний по ЭКГ?

Предпосылки:

- Китайская традиционная медицина: пульсовая диагностика
- Р. М. Баевский: использование вариабельности сердечного ритма (интервалов кардиоциклов) в целях диагностики
- Цифровая электрокардиография высокого разрешения

Предположения:

- ЭКГ-сигнал несёт информацию о функционировании всех систем организма, не только сердца
- Информация о заболевании может проявляться на любой его стадии, поэтому возможна ранняя диагностика
- Каждое заболевание по-своему «модулирует» ЭКГ-сигнал

Аналогии в теорию передачи сигналов

Модуляция — процесс, при котором высокочастотная волна используется для переноса низкочастотного сигнала.

Демодуляция — процесс, обратный модуляции, преобразование модулированных колебаний высокой (несущей) частоты в исходный низкочастотный сигнал.

В случае ЭКГ несущая частота — биения сердца, ~ 1 Гц А что будет аналогом модуляции и демодуляции?

Вариабельность интервалов и амплитуд кардиоциклов

приращение амплитуд: $dR_t = R_{t+1} - R_t$ приращение интервалов: $dT_t = T_{t+1} - T_t$

приращение интервалов: $dI_t = I_{t+1} - I_t$

приращение углов: $extbf{d}lpha_t=lpha_{t+1}-lpha_t, \qquad lpha_t= ext{arctg}\,rac{R_t}{T_t}$

Есть ли различия в знаках приращений у больных и здоровых?

Приращения dR_t , dT_t , $d\alpha_t$ в последовательных кардиоциклах t Здоровый:

Больной (язвенная болезнь):

Есть ли различия в знаках приращений у больных и здоровых?

Приращения dR_t , dT_t , $d\alpha_t$ в последовательных кардиоциклах t Здоровый:

Больной (гипертония):

Есть ли различия в знаках приращений у больных и здоровых?

Приращения dR_t , dT_t , $d\alpha_t$ в последовательных кардиоциклах t Здоровый:

Больной (рак):

Технология информационного анализа ЭКГ-сигналов

Этап І. Методы символьной динамики

- Демодуляция вычисление амплитуд, интервалов и углов по кардиограмме длиной 600 кардиоциклов
- Дискретизация перевод в кодограмму 599-символьную строку в 6-буквенном алфавите
- **3** Векторизация перевод в вектор $6^3 = 216$ частот триграмм

Этап II. Методы машинного обучения

- 🚺 Формирование обучающих выборок здоровых и больных
- Формировании модели классификации
- Оптимизация модели классификации
- Оценивание качества диагностики

Диагностическая система «Скринфакс»

Цифровой электрокардиограф с улучшенной помехозащищённостью и расширенной полосой пропускания.

- более 15 лет исследований и накопления данных
- более 20 тысяч прецедентов (кардиограмма + диагнозы)
- более 40 заболеваний

Объём исходных данных (по заболеваниям)

«абсолютно здоровые»	А3	193
гипертоническая болезнь	ГБ	1894
ишемическая болезнь сердца	ИБС	1265
сахарный диабет (СД1 и СД2)	СД	871
язвенная болезнь	ЯБ	785
миома матки	MM	781
узловой (диффузный) зоб щитовидный железы	УЩ	748
дискинезия желчевыводящих путей	ДЖВП	717
хронический гастрит (гастродуоденит) гипоацидный	ХГ2	700
вегетососудистая дистония	всд	694
мочекаменная болезнь	МКБ	654
рак общий (онкопатология различной локализации)	PO	530
холецистит хронический	XX	340
асептический некроз головки бедренной кости	НГБК	324
хронический гастрит (гастродуоденит) гиперацидный	ΧΓ1	324
желчнокаменная болезнь	ЖКБ	278
аднексит хронический	AX	276
аденома простаты	дгпж	260
анемия железодефицитная	ЖДА	260

Дискретизация ЭКГ-сигнала

Вход: последовательность интервалов и амплитуд $(T_t, R_t)_{t=1}^{N+1}$ Правила кодирования:

Выход: *кодограмма* $x = (s_t)_{t=1}^N$ — последовательность символов алфавита $\{A, B, C, D, E, F\}$:

Векторизация ЭКГ-сигнала

x — *кодограмма*, последовательность символов $\{A, B, C, D, E, F\}$:

$f_j(x)$ — частота триграммы $j=1,\ldots,n$ ($n{=}216$) в кодограмме x:

```
33. CEC - 6
34. ADB - 5
35. FFE - 5
36. EBF - 5
37. CFD - 5
38. AFB - 4
39. AAE - 4
 1. FFA - 42
2. FAA - 33
                                                                               50. DDA - 3
                           19. ECF
                                                                               51. CAC -
                                                                              52. EDF -
53. EFB -
    AAF -
 5. ADF - 18
 6. FCA
                                                                               54. DBA
                                                                               55. FCC
    AAD - 15
                                                                               56. AFC -
57. EAA -
                                                    41. CAE - 4
42. DAC - 4
43. DBF - 4
                           25. FCE
                           26. AEB
27. DFD
                                                                               58. CED -
11. FDA -
                                                                                    CAA
                                                                               60. BCA -
12. FAE - 12
                           28. ACD
29. CDF
                                                     44. BFC - 4
                                                                               61. BBA
13. FAC - 12
                                                     45. CFB - 4
14. FBA
                           30. DFA
                                                                               62. DFF -
                                                                               63. BDA -
15. BFA - 11
                           31. CAF
                                                     47. FFF - 3
16. BAA - 11
                                                     48. FBC - 3
                                                                               64. DAE - 2
                           32. CAD - 6
```

Линейная модель классификации с двумя классами

$$\{x_i\}_{i=1}^\ell$$
 — обучающая выборка кодограмм y_i — класс объекта x_i : больной $y_i=1$, здоровый $y_i=0$

Основная эмпирическая гипотеза:

• у больных одни триграммы частые, у здоровых — другие

Линейная модель классификации:

$$\langle x, w \rangle = \sum_{j=1}^{n} w_j f_j(x), \qquad a(x) = \begin{cases} 1, & \langle x, w \rangle \geqslant w_0 \\ 0, & \langle x, w \rangle < w_0 \end{cases}$$

где w_i — вес j-й триграммы:

- ullet $w_j>0$, если триграмма более характерна для больных
- ullet $w_i < 0$, если триграмма более характерна для здоровых
- ullet $w_i = 0$, если триграмма не информативна для этой болезни

Наивный байесовский классификатор и его модификации

Число объектов класса y, для которых триграмма j частая

$$S_y^j = \sum_{i=1}^{\ell} [y_i = y] [f_j(x_i) \geqslant \theta]$$

Число объектов класса y, для которых триграмма j редкая

$$s_y^j = \sum_{i=1}^{\ell} [y_i = y] [f_j(x_i) < \theta]$$

Вес триграммы j больше, если S_1^j , s_0^j больше, S_0^j , s_1^j меньше:

$$\begin{aligned} w_j &= S_1^j / S_0^j & w_j &= S_1^j s_0^j / S_0^j s_1^j \\ w_j &= \log \left(S_1^j / S_0^j \right) & w_j &= \log \left(S_1^j s_0^j / S_0^j s_1^j \right) \\ w_j &= \sqrt{S_1^j} - \sqrt{S_0^j} & w_j &= \sqrt{S_1^j s_0^j} - \sqrt{S_0^j s_1^j} \end{aligned}$$

Методы машинного обучения

- Наивный байесовский классификатор
 - 🙂 простой интерпретируемый линейный классификатор
 - 🙁 качество классификации невысокое
- Наивный байесовский классификатор + отбор признаков
 - 😊 качество классификации получше
 - 🙂 находит один диагностический эталон каждой болезни
- Метод главных компонент + логистическая регрессия
 - 😊 качество классификации высокое
 - 🕲 не определяет диагностические эталоны болезней
- SVM, нейронные сети, случайный лес
 - 😊 качество классификации высокое
 - 🙁 неоправданно сложное, неинтерпретируемое решение
- Тематические модели классификации
 - 😊 автоматически находит все диагностические эталоны
 - 😑 качество классификации среднее

Существуют сочетания триграмм, специфичные для болезней

Точки на графиках соответствуют триграммам, $j = 1, \dots, 216$

- ось X: доля здоровых с частой триграммой $f_i(x_i) \geqslant 2$
- ось Y: доля больных с частой триграммой $f_i(x_i) \geqslant 2$

НГБК (асептический некроз головки бедренной кости)

Слева: как распределятся точки, если объектам x_i назначить случайно переставленные метки классов y_i .

Жёлтая область: если случайно перемешать 20 раз, 1000 раз.

Существуют сочетания триграмм, специфичные для болезней

Для каждой болезни есть свои неслучайно частые триграммы

Болезни отличаются наборами информативных триграмм

- ось X: номера триграмм $j=1,\ldots,n$, n=216
- ось Ү: болезни (АЗ абсолютно здоровые)

- □ неслучайно низкая частота триграммы
- — неслучайно высокая частота триграммы
- Вывод 1. Для каждой болезни есть триграммы с неслучайно высокой и неслучайно низкой частотой
- Вывод 2. Болезни отличаются *диагностическими эталонами* наборами специфичных триграмм с неслучайно высокой частотой

Терминология диагностики

Положительный диагноз — алгоритм предсказывает болезнь

Доля больных с верным положительным диагнозом:

чувствительность
$$=rac{\sum_{i=1}^{\ell}[y_i=1][a(x_i)=1]}{\sum_{i=1}^{\ell}[y_i=1]}$$

Доля здоровых с верным отрицательным диагнозом:

специфичность =
$$\frac{\sum_{i=1}^{\ell} [y_i = 0][a(x_i) = 0]}{\sum_{i=1}^{\ell} [y_i = 0]}$$

Максимизируем чувствительность и специфичность

- они не зависят от соотношения мощностей классов
- они подходят для несбалансированных выборок

ROC-кривой и AUC — площадь под ROC-кривой

Модель классификации: $a(x) = [\langle x, w \rangle > w_0]$

по оси X: 1- специфичность = FPR, False Positive Rate, по оси Y: чувствительность = TPR, True Positive Rate

Каждая точка ROC-кривой соответствует значению порога w_0 (ROC — «receiver operating characteristic»),

Результаты кросс-валидации

Обучающая выборка: оптимизация параметров модели Тестовая выборка: Чувствительность, Специфичность, AUC 40×10 -fold cross-validation — для доверительного оценивания

болезнь	выборка	AUC, %	С% при Ч=95%
некроз головки бедренной кость	1 327	99.19 ± 0.10	96.6 ± 1.76
желчнокаменная болезнь	277	98.98 ± 0.23	94.4 ± 1.54
ишемическая болезнь сердца	1262	97.98 ± 0.14	91.1 ± 1.86
гастрит	321	97.76 ± 0.11	88.3 ± 2.64
гипертоническая болезнь	1891	96.76 ± 0.09	84.7 ± 1.99
сахарный диабет	868	96.75 ± 0.19	85.3 ± 2.18
аденома простаты	257	96.49 ± 0.13	80.1 ± 3.19
рак	525	96.49 ± 0.28	82.2 ± 2.38
узловой зоб щитовидной желез	ы 750	95.57 ± 0.16	$\textbf{73.5} \pm \textbf{3.41}$
холецистит хронический	336	95.35 ± 0.12	74.8 ± 2.46
дискинезия ЖВП	714	94.99 ± 0.16	$\textbf{70.3} \pm \textbf{4.67}$
мочекаменная болезнь	649	94.99 ± 0.11	69.3 ± 2.14
язвенная болезнь	779	94.62 ± 0.10	63.6 ± 2.55

ROC-кривые в осях X:(1-специфичность), Y:чувствительность

ROC-кривые в осях X:(1-специфичность), Y:чувствительность

ROC-кривые в осях X:(1-специфичность), Y:чувствительность

Константин Воронцов (voron@f<u>orecsys.ru)</u>

Две задачи машинного обучения

Тонкая (верхняя) линия — на обучающей выборке Толстая (нижняя) линия — на тестовой выборке

Зависимость AUC от длительности регистрации ЭКГ

Зависимость AUC от типа символьного кодирования

2R: 2-символьная, только приращения амплитуд

2Т: 2-символьная, только приращения интервалов

4RT: 4-символьная, приращения интервалов и амплитуд

6RTA: 6-символьная, приращения интервалов, амплитуд и их отношений

Открытые данные по инфарктам миокарда: база данных РТВ

Данные национального метрологического института Германии.

Число записей ЭКГ-сигналов: 320 больных, 74 здоровых.

Длительность регистрации ЭКГ: 100–200 кардиоциклов.

AUC при 6-символьном кодировании (6RTA) для трёх методов:

LR — логистическая регрессия,

RF — случайный лес,

SA — наивный Байес с отбором признаков

	LR	RF	SA
2-граммы	87.7	87.9	86.1
3-граммы	89.4	89.6	87.1
4-граммы	88.6	87.7	86.9

Bousseljot R., Kreiseler D., Schnabel A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomedizinische Technik. 1995.

Выводы

О данной задаче:

- многие болезни можно диагностировать по ЭКГ
- с очень высокой чувствительностью и специфичностью
- достаточно 300-600 кардиоциклов (5-10 минут)

О прикладных исследованиях в машинном обучении:

- в основе идеи специалиста о прикладной области
- изобретение удачных признаков 90% успеха
- начинать с разведочного анализа и визуализации
- пробовать стандартные методы «из коробки»
- пробовать простые методы
- баланс сложности между недо- и пере-переобучением
- выбрать критерий качества и делать кросс-валидацию

Что такое «тема» в коллекции текстовых документов?

- *тема* семантически однородный кластер текстов
- тема специальная терминология предметной области
- тема набор часто совместно встречающихся терминов

Более формально,

- тема условное распределение на множестве терминов, p(w|t) вероятность (частота) термина w в теме t;
- тематика документа условное распределение p(t|d) вероятность (частота) темы t в документе d.

Когда автор писал термин w в документе d, он думал о теме t, и мы хотели бы выявить, о какой именно.

Тематическая модель выявляет латентные темы по наблюдаемым распределениям слов p(w|d) в документах.

Задача тематического моделирования

Дано: коллекция текстовых документов

ullet n_{dw} — частоты терминов в документах, $p(w|d)=rac{n_{dw}}{n_d}$

Найти: параметры тематической модели $p(w|d) = \sum\limits_{t \in \mathcal{T}} arphi_{wt} heta_{td}$

- ullet $\varphi_{wt} = p(w|t)$ вероятности терминов w в каждой теме t
- ullet $heta_{td} = p(t|d)$ вероятности тем t в каждом документе d

Это задача стохастического матричного разложения:

Задачи, некорректно поставленные по Адамару

Задача корректно поставлена, если её решение

- существует,
- единственно,
- устойчиво.

Жак Саломон Адамар (1865-1963),

Задача стохастического матричного разложения является некорректно поставленной — её решение не единственно:

$$\Phi\Theta = (\Phi S)(S^{-1}\Theta) = \Phi'\Theta'$$

для невырожденных $S_{ au imes au}$ таких, что Φ', Θ' — стохастические.

Регуляризация — дополнительные ограничения на Φ, Θ .

ARTM: Аддитивная Регуляризация Тематических Моделей

Максимизация \log правдоподобия с регуляризатором R:

$$\sum_{d,w} n_{dw} \ln \sum_t \varphi_{wt} \theta_{td} + R(\Phi,\Theta) \rightarrow \max_{\Phi,\Theta}; \quad R(\Phi,\Theta) = \sum_i \tau_i R_i(\Phi,\Theta)$$

ЕМ-алгоритм: метод простой итерации для системы уравнений

Е-шаг:
$$\begin{cases} p_{tdw} \equiv p(t|d,w) = \underset{t \in T}{\operatorname{norm}} \left(\varphi_{wt}\theta_{td}\right) \\ \varphi_{wt} = \underset{w \in W}{\operatorname{norm}} \left(\sum_{d \in D} n_{dw} p_{tdw} + \varphi_{wt} \frac{\partial R}{\partial \varphi_{wt}}\right) \\ \theta_{td} = \underset{t \in T}{\operatorname{norm}} \left(\sum_{w \in d} n_{dw} p_{tdw} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$

Воронцов К. В. Аддитивная регуляризация тематических моделей коллекций текстовых документов. Доклады РАН. 2014.

Некоторые полезные регуляризаторы

PLSA, вероятностный латентный семантический анализ — модель без регуляризации:

$$R(\Phi,\Theta)=0$$

LDA, латентное размещение Дирихле — сглаживание или разреживание распределений p(w|t) и p(t|d):

$$R(\Phi, \Theta) = \sum_{t,w} \beta_w \ln \varphi_{wt} + \sum_{d,t} \alpha_t \ln \theta_{td}$$

Декоррелирование тем:

$$R(\Phi) = -\tau \sum_{s,t \in T} \sum_{w \in W} \varphi_{wt} \varphi_{ws}$$

Обобщение ARTM на мультимодальные задачи

Выявление тематики документов p(t|d) и терминов p(t|w), а также модальностей: p(t|автор), p(t|время), p(t|ссылка), p(t|баннер), p(t|изображение), p(t|пользователь), ...

Мультимодальная ARTM [Vorontsov et al, 2015]

$$W^m$$
 — словарь токенов m -й модальности, $m \in M$ $W = W^1 \sqcup \cdots \sqcup W^M$ — объединённый словарь всех модальностей

Максимизация суммы log-правдоподобий с регуляризацией:

$$\sum_{\mathbf{m} \in \mathcal{M}} \lambda_{\mathbf{m}} \sum_{d \in D} \sum_{w \in \mathcal{W}^{\mathbf{m}}} n_{dw} \ln \sum_{t} \varphi_{wt} \theta_{td} + R(\Phi, \Theta) \ \rightarrow \ \max_{\Phi, \Theta}$$

ЕМ-алгоритм: метод простой итерации для системы уравнений

Е-шаг:
$$\begin{cases} p_{tdw} = \underset{t \in T}{\mathsf{norm}} \big(\varphi_{wt} \theta_{td} \big) \\ \varphi_{wt} = \underset{w \in \mathcal{W}^m}{\mathsf{norm}} \Big(\underset{d \in D}{\sum} \lambda_{m(w)} n_{dw} p_{tdw} + \varphi_{wt} \frac{\partial R}{\partial \varphi_{wt}} \Big) \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \Big(\underset{w \in d}{\sum} \lambda_{m(w)} n_{dw} p_{tdw} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \Big) \end{cases}$$

Концепция разведочного поиска (exploratory search)

- пользователь может не знать ключевых терминов,
- запросом может быть текст произвольной длины,
- информационной потребностью систематизация знаний

навигация в сети, поиск фактов, упоминаний, конкретных ответов самообразование, тематический поиск систематизация знаний исследование, экспертиза, реферирование, мониторинг тем

Gary Marchionini. Exploratory Search: from finding to understanding. 2006.

Разведочный тематический поиск

$$q=(\mathit{w}_1,\ldots,\mathit{w}_{\mathit{n}_q})$$
 — текст запроса произвольной длины n_q

$$heta_{tq} = p(t|q)$$
 — тематический профиль запроса q

 $heta_{td} = extstyle{p(t|d)}$ — тематические профили документов $d \in D$

Косинусная мера близости документа d и запроса q:

$$\operatorname{sim}(q,d) = \frac{\sum_{t} \theta_{tq} \theta_{td}}{\left(\sum_{t} \theta_{tq}^{2}\right)^{1/2} \left(\sum_{t} \theta_{td}^{2}\right)^{1/2}}.$$

Ранжируем документы коллекции $d \in D$ по убыванию $\mathsf{sim}(q,d)$

Выдача тематического поиска — k первых документов.

Реализация: uнeртuрoвaнный uнdеkсd для быстрого поиска документов d по кажdой из тем t запроса

Данные коллективного блога Хабрахабр.ру

Данные

- 132 157 статей
- Модальности:
 - 52354 терминов (слов)
 - 524 авторов статей
 - 10000 комментаторов (авторов комментариев к статьям)
 - 2546 тегов
 - 123 хаба (категории)

Предобработка текстов

- отброшены 5% наиболее частотных слов (общая лексика)
- удаление пунктуации
- ullet нижний регистр, $\ddot{\mathrm{e}} \rightarrow \mathrm{e}$
- лемматизация pymorphy2

Методика оценивания качества разведочного поиска

Поисковый запрос

набор ключевых слов или фрагментов текста, около одной страницы А4

Поисковая выдача

документы d с распределением p(t|d), близким к распределению p(t|q) запроса

Два задания асессорам

- найти как можно больше статей, пользуясь любыми средствами поиска (и засечь время)
- оценить релевантность поисковой выдачи на том же запросе

Hadoon ManReduce - morrosanous scores (framework) samonesees распределеннях выпислений для больших объемов, данных в разких парадилия дирізебись, представляющих собой набор Лача-классов и исполняемых утилит для создания и обсоботки заданий на пасадлельного Основные концепции Надоор МарКедосе можно сформулировать как: chestores income name from our chance manner автоматическое распарадлеливание заданий: работа на ненадежном оборудования; ватоматическая обработка откаков выполнения надавий. Набор - популярная программняя платформа (койзоде, бакселоск) построения распределенных приложений для массово-парадлельной Набосо включает в себе спедующие компоненты HDFS - commencement distribute comment Надоор МарКедиса - программия моделя (бланджурск) выполнения распределенных выпислений для больших обрещов данных в разках Компенции, заложенные в архитектуру Кафоор Марбефисе и структуру HDFS, crame moreovost cama vasor ander a casser acamerana, a ross vacue at единичные точки отказа. Что, в конечном игоге, определило ограничения птатформы Вадоор в целом К последени можно отвести: Оправителяе задодилабируемости кластеса Набоск «4К выпислительна Сильных скизанность фрефудоруд, распределенных выпислений и клиентски библиотек, реализующих распределенный алгориты. Как следствие: Этсутствие поддержки альтеревтивной программой модели выпол оспределеннях капислений к <u>Набоор</u> v1.0 подрерживается только модел Написия впростоком точем отказа и как спедствия, меколюциюст использования в соедах с высокрая тоебованиями в надежности. Проблемы версисиюй совместимости: гребование по единовременному обесплению всех выпислительных ушее кластера при обеспления платформы Набора (установке новой версии или пакета обновлений);

Пример запроса для разведочного поиска

Пример: фрагмент запроса «Система IBM Watson»

IBM Watson — суперкомпьютер фирмы IBM, оснащённый вопросно-ответной системой искусственного интеллекта, созданный группой исследователей под руководством Дэвида Феруччи. Его создание — часть проекта DeepQA. Основная задача Уотсона — понимать вопросы, сформулированные на естественном языке, и находить на них ответы в базе данных. Назван в честь основателя IBM Томаса Уотсона.

IBM Watson представляет собой когнитивную систему, которая способна понимать, делать выводы и обучаться. Она также позволяет преобразовывать целые отрасли, различные направления науки и техники. Например, предсказывать появление эпидемий или возникновения очагов природных катастроф в различных регионах, вести мониторинг состояния атмосферы больших городов, оптимизировать бизнес-процессы, узнавать, какие товары будут в тренде в ближайшее время.

Релевантные тексты: примеры сервисов и приложений, основа которых — когнитивная платформа IBM Watson, используемые в IBM Watson технологии, вопрос-ответные системы, сопоставление IBM Watson с Wolfram-Alpha.

Нерелевантные тексты: общие вопросы искусственного интеллекта, другие коммерческие решения на рынке бизнес-аналитики.

Тематика запросов разведочного поиска

Примеры заголовков разведочных запросов к Хабру (объём каждого запроса — около одной страницы А4):

Алгоритмы раскраски графов Рекомендательная система Netflix Методики быстрого набора текста Космические проекты Илона Маска Технологии Hadoop MapReduce Беспилотный автомобиль Google car Криптосистемы с открытым ключом Обзор платформ онлайн-курсов Data Science Meetups в Москве Образовательные проекты mail.ru Межпланетная станция New horizons Языковая модель word2vec

Система IBM Watson 3D-принтеры CERN-кластер АВ-тестирование Облачные сервисы Контекстная реклама Mapcoxoд Curiosity Видеокарты NVIDIA Распознавание образов Сервисы Google scholar MIT Medial ab Research Платформа Microsoft Azure

Подбор коэффициентов регуляризации

Последовательное добавление регуляризаторов:

- ullet декоррелирование распределений терминов в темах (au),
- ullet разреживание распределений тем в документах (lpha),
- сглаживание распределений терминов в темах (β).

Оценки качества поиска

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

$$P = rac{ extstyle extstyle P}{ extstyle extstyle extstyle extstyle P} - extstyle extstyle extstyle extstyle extstyle extstyle extstyle P} = rac{ extstyle extst$$

$$F_1 = \frac{P+R}{2PR}$$
 — F1-мера

TP (true positive) — найденные релевантные FP (false positive) — найденные нерелевантные FN (false negative) — ненайденные релевантные

Результаты измерения точности и полноты по запросам

25 запросов, 3 асессора на запрос

точность и полнота поиска

время и F_1 -мера (асессоры)

- среднее время обработки запроса асессором 30 минут
- точность выше у асессоров, полнота у поисковика

Выбор модальностей по критериям точности и полноты

Habrahabr. Число тем |T| = 200.

Модальности: <u>С</u>лова, <u>А</u>вторы, <u>К</u>омментаторы, <u>Т</u>еги, <u>Х</u>абы.

	асессоры	С	K	TX	СТ	CX	CTX	все
Pr@5	0.82	0.63	0.54	0.59	0.74	0.73	0.73	0.74
Pr@10	0.87	0.67	0.56	0.58	0.77	0.74	0.75	0.77
Pr@15	0.86	0.65	0.53	0.55	0.67	0.67	0.68	0.68
Pr@20	0.85	0.64	0.53	0.54	0.66	0.67	0.68	0.68
Re@5	0.78	0.77	0.63	0.69	0.82	0.81	0.82	0.82
Re@10	0.84	0.79	0.64	0.71	0.88	0.82	0.87	0.88
Re@15	0.88	0.82	0.67	0.73	0.90	0.84	0.89	0.90
Re@20	0.88	0.85	0.68	0.74	0.91	0.85	0.89	0.91

- Наилучшее качество поиска по всем модальностям
- Наиболее полезные модальности слова и теги

Выбор модальностей по критериям точности и полноты

Tech Crunch. Число тем |T| = 450.

Модальности: Слова, Биграммы, Категории, Авторы.

	асессоры	С	K	СБ	СБК	СБКА
Pr@5	0.83	0.71	0.55	0.77	0.80	0.80
Pr@10	0.88	0.72	0.58	0.78	0.81	0.81
Pr@15	0.87	0.73	0.59	0.79	0.83	0.83
Pr@20	0.86	0.72	0.56	0.77	0.82	0.82
Re@5	0.81	0.75	0.65	0.77	0.82	0.83
Re@10	0.85	0.77	0.66	0.80	0.85	0.86
Re@15	0.89	0.78	0.68	0.82	0.87	0.91
Re@20	0.90	0.82	0.69	0.83	0.89	0.93

- Наилучшее качество поиска по всем модальностям
- Наиболее полезные модальности слова и категории

Выбор числа тем по критериям точности и полноты

Habrahabr. Используем все 5 модальностей, меняем |T|

	асессоры	100	200	300	400	500
Pr@5	0.82	0.61	0.74	0.71	0.69	0.59
Pr@10	0.87	0.65	0.77	0.72	0.67	0.61
Pr@15	0.86	0.67	0.68	0.67	0.65	0.62
Pr@20	0.85	0.64	0.68	0.67	0.64	0.60
Re@5	0.78	0.62	0.82	0.80	0.72	0.63
Re@10	0.84	0.63	0.88	0.81	0.75	0.64
Re@15	0.88	0.67	0.90	0.82	0.77	0.67
Re@20	0.88	0.69	0.91	0.85	0.77	0.68

- Наилучшее качество поиска при 200 темах
- Тематический поиск превосходит асессоров по полноте

Выбор числа тем по критериям точности и полноты

Tech Crunch. Используем все 4 модальности, меняем |T|

асессоры	350	400	450	475	500
0.83	0.65	0.72	0.75	0.80	0.68
0.88	0.66	0.73	0.76	0.81	0.69
0.87	0.68	0.74	0.78	0.82	0.68
0.86	0.65	0.74	0.77	0.81	0.67
0.81	0.65	0.75	0.78	0.83	0.79
0.85	0.66	0.78	0.79	0.86	0.80
0.89	0.68	0.79	0.79	0.91	0.83
0.90	0.69	0.79	0.80	0.93	0.85
	0.83 0.88 0.87 0.86 0.81 0.85 0.89	0.83	0.83 0.65 0.72 0.88 0.66 0.73 0.87 0.68 0.74 0.86 0.65 0.74 0.81 0.65 0.75 0.85 0.66 0.78 0.89 0.68 0.79	0.83 0.65 0.72 0.75 0.88 0.66 0.73 0.76 0.87 0.68 0.74 0.78 0.86 0.65 0.74 0.77 0.81 0.65 0.75 0.78 0.85 0.66 0.78 0.79 0.89 0.68 0.79 0.79	0.83 0.65 0.72 0.75 0.80 0.88 0.66 0.73 0.76 0.81 0.87 0.68 0.74 0.78 0.82 0.86 0.65 0.74 0.77 0.81 0.81 0.65 0.75 0.78 0.83 0.85 0.66 0.78 0.79 0.86 0.89 0.68 0.79 0.79 0.91

- Наилучшее качество поиска при 475 темах
- Тематический поиск превосходит асессоров по полноте

Выбор меры близости документа и запроса

Меры близости распределений: <u>E</u>uclidean, <u>C</u>osine, <u>M</u>anhattan, <u>K</u>ullback-<u>L</u>eibler

	Hai	brahabr,	T =	200	TechCrunch, $ T = 450$			
	E	C	М	KL	E	C	М	KL
Pr@5	0.61	0.74	0.68	0.72	0.63	0.80	0.67	0.71
Pr@10	0.65	0.77	0.69	0.75	0.66	0.81	0.68	0.73
Pr@15	0.62	0.68	0.63	0.70	0.64	0.82	0.64	0.72
Pr@20	0.62	0.68	0.62	0.70	0.64	0.81	0.63	0.71
Re@5	0.67	0.82	0.69	0.80	0.66	0.83	0.67	0.77
Re@10	0.68	0.88	0.70	0.85	0.67	0.86	0.68	0.78
Re@15	0.70	0.90	0.72	0.87	0.71	0.91	0.70	0.80
Re@20	0.70	0.91	0.73	0.88	0.71	0.93	0.71	0.81

• Наилучшее качество поиска — при косинусной мере

Все ли регуляризаторы были нужны?

Декоррелирование, Разреживание

	Habrahabr					TechCrunch				
	асессоры	все	ДР	Д	нет	асессоры	все	ДР	Д	нет
Pr@5	0.82	0.74	0.69	0.58	0.52	0.83	0.80	0.71	0.57	0.54
Pr@10	0.87	0.77	0.70	0.59	0.55	0.88	0.81	0.72	0.59	0.55
Pr@15	0.86	0.68	0.65	0.56	0.53	0.87	0.82	0.68	0.58	0.54
Pr@20	0.85	0.68	0.65	0.55	0.52	0.86	0.81	0.68	0.58	0.54
Re@5	0.78	0.82	0.75	0.63	0.59	0.81	0.81	0.76	0.65	0.60
Re@10	0.84	0.88	0.76	0.65	0.60	0.85	0.86	0.78	0.66	0.62
Re@15	0.88	0.90	0.77	0.66	0.61	0.89	0.89	0.81	0.64	0.63
Re@20	0.88	0.91	0.77	0.66	0.61	0.90	0.92	0.82	0.64	0.63

• Все регуляризаторы необходимы

Сравнение с поиском по векторам TF-IDF слов

Поиск по векторам TF-IDF $(w|d)=rac{n_{dw}}{\ln N_w}$

	Hai	brahabr		TechCrunch			
	асессоры	topic	tf-idf	assessors	topic	tf-idf	
Pr@5	0.82	0.74	0.76	0.83	0.80	0.78	
Pr@10	0.87	0.77	0.77	0.88	0.81	0.79	
Pr@15	0.86	0.68	0.72	0.87	0.82	0.76	
Pr@20	0.85	0.68	0.71	0.86	0.81	0.75	
Re@5	0.78	0.82	0.76	0.81	0.81	0.77	
Re@10	0.84	0.88	0.77	0.85	0.86	0.78	
Re@15	0.88	0.90	0.80	0.89	0.89	0.80	
Re@20	0.88	0.91	0.81	0.90	0.92	0.83	

- Тематический поиск немного лучше TF-IDF
- При этом поисковый индекс на 2-3 порядка компактнее

Янина А. О., Воронцов К. В. Мультимодальные тематические модели для разведочного поиска в коллективном блоге. JMLDA, 2016.

Выводы

О данной задаче:

- для построения моделей использовался BigARTM
- аккуратная настройка модели даёт хороший поиск
- но для прорывного результата качество недостаточно

О прикладных исследованиях в машинном обучении:

- любое исследование это сравнение вариантов.
- комбинирование регуляризаторов общий приём для учёта большого числа требований в одной модели
- многокритериальное обучение:
 - 1) выбрать поэтапную стратегию регуляризации
 - 2) подобрать коэффициент регуляризации на каждом этапе
- асессоры оценивали данные, а не модель, поэтому удалось сравнить много моделей