JP5-3079

Partial Translation

[0026] Fig. 1 shows one embodiment of the organic EL element applied to a two-layer structure. Over the rough surface of glass substrate 6, transparent electrode 2 of In₂O₃, SnO₂, or the like, hole transfer layer 4 that constitutes the organic EL layer and is made of triphenyldiamine derivative (TPD), light-emitting layer 3 made of alumiquinolinol complex (Alq₃), and metal electrode 1 made of Mg-Al or the like are formed in this order.

[0027] Fig. 2 is an enlarged view of the above rough portion, and the maximum height of the roughened surface is on the order of 1 μm . Distance L between peaks of the roughened surface is desirably on the order of 3 μm . An organic EL element whose surface is made rough in the above manner is prepared as follows.

[0028] First, surface treatment of glass substrate 6 is carried out such as corrosion treatment using a chemical with a corrosion effect such as fluorite, sand blasting treatment, and the like. Here the maximum height of the roughened surface and distance L between peaks of the roughened surface are respectively on the order of 1 μ m and 3 μ m. These methods of treatment are similar to the method of producing what is called translucent glass.

[0029] Next, over the surface of glass substrate 6 over which the roughening treatment has been carried out, a layer of transparent electrode 2 formed by making an ITO thin film approximately 1000 angstroms is formed by sputtering. Formation of this layer of transparent electrode 2 is carried out in a vacuum of approximately $10^{\cdot3}$ Torr using mixture gas of Ar and $0^{\circ2}$.

[0030] After forming transparent electrode 2, over its surface, TPD and Alq³ are deposited in this order by the resistance heating deposition method in a vacuum of 10⁻⁵-10⁻⁷ Torr, thus forming hole transfer layer 4 and light-emitting layer 3 of 500 angstroms each. After forming light-emitting layer 3, over its surface, Mg-Al is deposited in a vacuum of 10⁻⁶-10⁻⁷ Torr, thus forming metal electrode 1.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-3079/

(43)公開日 平成5年(1993)1月8日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示簡所
H 0 5 B 33/14		8815-3K		这种 交小菌7
H 0 1 L 33/00	Α	8934-4M		
H 0 5 B 33/26		8815-3K		

審査請求 未請求 請求項の数1(全 6 頁)

			
(21)出顧番号	特願平3-178679	(71)出願人 000005016	
		パイオニア株式会社 /	
(22)出願日	平成3年(1991)6月24日	東京都目黒区目黒1丁目4番1号	
		(71)出顧人 000111889	
		パイオニアピデオ株式会社	
		山梨県中巨摩郡田富町西花輪2680番地	
		(72)発明者 真鍋 昌道	
		山梨県甲府市大里町465番地 パイオニア	
		ピデオ株式会社国母工場内	
		(72)発明者 雨宮 公男	
		山梨県甲府市大里町465番地 パイオニア	
		ピデオ株式会社国母工場内	
		(74)代理人 弁理士 小橋 信淳 (外1名)	
		最終頁に続く	

(54)【発明の名称】 有機EL素子

(57)【要約】

【目的】 輝度及び発光スペクトルの視覚依存性を低減すること。

【構成】 透明基板上に透明電極、有機E L 層及び金属電極を順に積層した有機E L 素子において 前記有機E L 層の前記金属電極に接する側の面又は前記金属電極の前記有機E L 層に接する側の面が粗面化されていることを特徴とする有機E L 素子。

1

【特許請求の範囲】

【請求項1】 透明基板上に透明電極、有機EL層及び 金属電極を順に積層した有機Eし素子において、前記有 機EL層の前記金属電極に接する側の面又は前記金属電 極の前記有機E L層に接する側の面が粗面化されている ことを特徴とする有機EL素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電流の注入による物質 のエレクトロルミネッセンス (以下、E L という) を利 用して、かかる物質を薄膜に形成したEL層を備えたE L素子に関し、特に発光物質が有機化合物である有機 E し素子に関する。

[0002]

【従来の技術】との種の有機EL素子として、図3に示 すように、金属陰極1と透明陽極2との間に、それぞれ 有機化合物からなり互いに積層された発光体薄膜からな るEL層3及び正孔輸送層4が配された2層構造のもの や、図4に示すように、金属陰極1と透明陽極2との間 に互いに積層された有機化合物からなる電子輸送層 5、 EL層3及び正孔輸送層4が配された3層構造のものが 知られている。ととで、正孔輸送層4は陽極から正孔を 注入させ易くする機能と電子をブロックする機能とを有 し、電子輸送層5は陰極から電子を注入させ易くする機 能と正孔をブロックする機能とを有している。

【0003】例えば金属陰極1には、アルミニウム、マ グネシウム、インジウム、銀又は各々の合金等の仕事関 数が小さな金属からなり厚さが1000~5000オン グストローム程度のものが用い得る。また、例えば陽極 2には、インジウムすず酸化物(以下、ITOという) 等の仕事関数の大きな導電性材料からなり厚さが100 0~3000オングストローム程度で、又は金で厚さが 800~1500オングストローム程度のものが用い得

【0004】EL層3には、アルミキノリノール錯体す なわちAIオキシンキレート(以下、AIa,とい **う)、テトラフェニルブタジエン誘導体等が用いられ得** る。正孔翰送層4にはトリフェニルジアミン誘導体であ るN、N´ージフェニルーN、N´ービス(3メチルフ ェニル) -1, 1 -ピフェニル-4, 4 -ジアミン (以下、TPDという) が好ましく用いられ、更にCT M(Carrier Transporting Ma terials)として知られている化合物を単独、も しくは混合物として用い得る。

【0005】電子輸送層には、例えばオキサジアゾール 誘導体(PBD)等が用いられ得る。これら有機EL素 子において、透明電極2の外側にはガラス基板6が配さ れており、金属陰極1から注入された電子と透明陽極2 からEL層3へ注入された正孔との再結合によって励起 子が生じ、EL層における正孔輸送層との境界面近傍に 50

て励起子が放射失活する過程で光を放ち、この光が透明 陽極2及びガラス基板6を介して外部に放出される(特 開昭59-194393号公報及び特開昭63-295

695公報参照)。

び輝度が変化する。

[0006] 【発明が解決しようとする課題】ところで発明者は、2 層構造の有機EL素子のEL層膜厚、発光スペクトル及 び輝度並びに視角度の研究の結果、輝度にはEL層膜厚 による依存性及び視角度依存性があることを知見した。 すなわち、図5に示すように有機EL素子のガラス基板 6 側表面を目視者が見る角度によって発光スペクトル及

【0007】目視者にとってEL層内の発光源Pの1点 から発した光には、図中の直接基板6へ向かう経路A及 び背面の金属電極1で反射し基板6へ向かう経路Bの2 つの光が含まれる。この2つの経路の光は以下の数式1 に示す光路差し、さらに数式2に示す位相差ヵyを保持 しているので、互いに干渉する(両数式中、nはEL層 3の屈折率を、yは発光源Pから金属電極1までの距離 20 を、 θ はEL層内における表示表面の法線からそれる視 角を、λは波長をそれぞれ示す。以下、同じ)。

[8000]

【数1】

L=2nycos θ

[0009]

【数2】

$$\frac{4\pi\operatorname{nycos}\theta}{\lambda} = \eta y$$

よって、干渉効果としてその強度 I (y λ) は数式3 の如く表せる。

[0010]

【数3】

$$I(y,\lambda) = \frac{1}{2} \{1 + \cos(\eta y)\}$$

【0011】E L層中で発光強度 f (y) 分布は、図6 に示すように正孔輸送層4の境界面においては強く金属 電極1に向かうほど減少し、膜厚に関する指数関数分布 として数式4の如く表せ、EL層全体としては数式5の 如く正規化できる(両数式中、dは発光源から金属電極 までの距離を、εは発光強度分布パラメータを、kは定 数をそれぞれ示す。以下、同じ)。

[0012]

【数4】

$$f(y) = k \exp(y / \varepsilon)$$

[0013]

【数5】

2

$$\int_{-\infty}^{d} f(y) dy = 1$$

【0014】発光源自体の発光スペクトルの強度分布下 (λ) は発光体特有の波長 λ の関数として表せる。よって、目視者によって実際に観察されるE L 素子の発光強度T (λ , θ , d) は数式6 のように表せる。

[0015]

【数6】

$$T(\lambda) = F(\lambda) \times \int_0^d f(y) \times I(y, \lambda) dy$$

【0016】 ここで、EL素子の発光強度T(λ , θ , d)を確認するために、膜厚dを6000オングストロームとしたAlq,からなるEL層を含む有機EL素子を作成し、視角 θ を0°から75°まで種々変化させてその発光強度の試験を行った。図7は、発光波長に対する発光強度分布を示す。かかる発光強度分布と上記数式 206の発光強度T(λ , θ , d)とが略一致することが確認された。図から明らかなように、目視者にとっては視角0°から75°までEL素子表示面を見る方向によって色彩が順次異なるように見える。

【0017】さらに、実用に沿うように、波長 λ に対して特定値で感応する目視者または光検出器の視感度特性 $E(\lambda)$ を考慮する。例えば視感度特性 $E(\lambda)$ を正規分布とすると、かかる感度特性内におけるE L素子の輝度特性L(d) は、数式T のようにd の関数として表せる(K は定数を示す)。

[0018]

【数7】

$$L(d) = K \int_0^{\infty} T(\lambda) \times E(\lambda) d\lambda$$

【0019】図8は、Alq、からなるEL層(θ = 0、n = 1.7)についてその膜厚を略0オングストロームから8000オングストロームにわたって変化させ計算した場合の膜厚に対する輝度/電流特性の膜厚輝度減衰(特性)を示し、この減衰曲線が有機EL素子にお 40 ける輝度の膜厚依存性を示している。

【0020】以上のことから、有機EL素子は、視角により色(発光スペクトル)及び輝度が変化し、また膜厚のバラツキにより輝度が変化するので、カラー表示を行うと、見る角度で色及び輝度が変化し、ディスプレイとして非常に不都合となりその改善が大きな課題となる。【0021】そこで本発明は、このような事情に対処してなされたもので輝度、及び発光スペクトルの視角依存性を低減した有機EL素子を提供することを目的とする。

[0022]

【課題を解決するための手段】本発明は、上記の知見に基づいて完成されたものであって、透明基板上に透明電極、有機E L 層及び金属電極を順に積層した有機E L 素子において、前記有機E L 層の前記金属電極に接する側の面又は前記金属電極の前記有機E L 層に接する側の面が租面化されていることを特徴とするものである。

4

[0023]

【作用】本発明の面発光装置では、たとえばホール輸送 10 層及び発光層からなる有機EL層にあっては、膜厚により輝度が変化し、また視角により発光スペクトルや輝度 が変化することにより、視角により輝度が低下してしま うということが本発明者等の実験によって判明した。更 に、このような変化は、干渉モデルによって説明するこ とができることも判明した。

【0024】したがって、有機EL層の金属電極に接する側の面又は金属電極の有機EL層に接する側の面を粗面化することにより、発光層内の発光点からの光の光路差が多少異なり、干渉効果が平均化されるため、角度依存性及び膜厚依存性が小さくなる。

[0025]

【実施例】以下、本発明の実施例の詳細を図面に基づいて説明する。なお、以下に説明する図において、図3と共通する部分には同一符号を付し重複する説明を省略する。

【0026】図1は、本発明の有機EL素子を2層構造のものに適用した場合の一実施例を示すもので、ガラス基板6の粗面上にIn,O,やSnO,等の透明電極2、有機EL層を構成するトリフェニルジアミン誘導体(TPD)からなるホール輸送層4及びアルミキノリノーム錯体(Alq,)からなる発光層3、及びMg-Al等からなる金属電極1が順に形成されている。

【0027】図2は、上記の粗面部分を拡大して示すもので、その相面化された面の最大の高さは1μm程度とされ、相面化された山と山との間隔しは3μm程度とするのが望ましい。そして、上記のように粗面化された有機EL素子は、次のようにして作成される。

【0028】まず、たとえばフッソ酸塩等の腐食作用を有した薬品による腐食処理やサンドブラスト処理等によって、ガラス基板6の表面を処理する。このとき粗面化された面の最大の高さ及び山と山との間隔しは、それぞれ1μm程度及び3μm程度である。これらの処理方法は、いわゆる曇りガラスの製法と同様な手法である。

【0029】次いで、ガラス基板6の粗面化処理された面上にスパッタリングによってIT〇の薄膜を約1000オングストロームとした透明電極2の層を形成する。この透明電極2の層を形成する際には、Arと〇、の混合ガスを用いるとともに、10⁻¹Torr程度の真空度中にて行う。

50 【0030】透明電極2の形成を終えた後、その面上

5

に、10-6~10-7 Torrの真空度中にてTPD及びAl q。を順に抵抗加熱蒸着法により蒸着し、それぞれ500オングストロームのホール輸送層4及び発光層3を形成する。発光層3の形成を終えた後、その上に10-6~10-7 Torrの真空度中にてMg-Alを蒸着し、金属電極1を形成する。

【0031】このようにして各層の界面が上述した程度 に粗面化されることとなる。その結果、ある視角からみ た時の発光層内の各発光点の光路差が異なり、一定では なくなる。従って干渉効果は平均化され、輝度及び発光 10 スペクトルの視角依存性や膜厚のバラツキによる変化も 抑制されることとなる。

【0032】さらに正反射が減少するのでコントラストも向上する。なお、本実施例では、まずガラス基板1の表面に対して粗面化処理することによて、発光層と金属電極の接する面を粗面化した場合について説明したが、この例に限らず、発光層の金属電極と接する側の面のみに対して粗面化処理を施すようにしてもよい。

【0033】さらに、本発明は、上記実施例の2層構造 に限らず、図4に示す3層構造の場合も同様に各層間の 20 界面を粗面化することができる。

[0034]

【発明の効果】以上説明したように、本発明の有機EL 素子によれば、有機EL層の金属電極に接する側の面又 は金属電極の有機EL層に接する側の面を相面化し、発 光層内の発光点からの光の光路差を異ならせたことによ*

* り、干渉効果を平均化し、角度依存性及び膜厚依存性を 小さくしたので、視角による輝度の低下を阻止すること ができる。

6

【図面の簡単な説明】

【図1】本発明を2層構造の有機EL素子に適用した場合の一実施例を示す図である。

【図2】図1に示す有機EL素子の粗面部分の一部を示す図である。

【図3】2層構造の有機EL素子を示す構造図である。

【図4】3層構造の有機EL素子を示す構造図である。

【図5】2層構造の有機EL素子における光の干渉を説明する部分拡大断面図である。

【図6】2層構造の有機EL素子におけるEL層の膜厚 発光強度分布を説明するグラフである。

【図7】2層構造の有機EL素子におけるEL層の波長 発光強度分布を説明するグラフである。

【図8】2層構造の有機EL素子におけるEL層の単体 層の膜厚輝度減衰曲線を説明するグラフである。

【符号の説明】

-) 1 金属電極
 - 2 透明電極
 - 3 EL層
 - 4 正孔輸送層
 - 5 電子輸送層
 - 6 ガラス基板

(図1) 3 1 2 6

【図4】

EL 層膜厚(A)

フロントページの続き

(72)発明者 田中 幸男 山梨県甲府市大里町 465番地 パイオニア ビデオ株式会社国母工場内 (72)発明者 米本 圭伸 山梨県甲府市大里町 465番地 バイオニア ビデオ株式会社国母工場内 【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第1区分 【発行日】平成11年(1999)7月9日

【公開番号】特開平5-3079

【公開日】平成5年(1993)1月8日

【年通号数】公開特許公報5-31

【出願番号】特願平3-178679

【国際特許分類第6版】

H05B 33/14

H01L 33/00

H05B 33/26

[FI]

H05B 33/14

H01L 33/00 A

H05B 33/26

【手続補正書】

【提出日】平成10年5月21日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 透明基板上に透明電極、有機EL層及び金属電極を順に積層した有機EL素子において、前記有機EL層の前記金属電極に接する側の面又は前記金属電極の前記有機EL層に接する側の面が粗面化されていることを特徴とする有機EL素子。

【請求項2】 透明基板上に透明電極、有機EL層及び金属電極を順に積層した有機EL素子において、前記透明基板の前記透明電極が積層される側の面が租面化されていることを特徴とする有機EL素子。

【請求項3】 前記有機EL層はホール輸送層及び発光 層からなることを特徴とする請求項1ないしは2に記載 の有機EL素子。

【請求項4】 前記有機EL層はホール輸送層、発光層及び電子輸送層からなることを特徴とする請求項1ない しは3に記載の有機EL素子。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0022

【補正方法】変更

【補正内容】

[0022]

【課題を解決するための手段】本発明は、上記の知見に基づいて完成されたものであって、透明基板上に透明電極、有機EL層及び金属電極を順に積層した有機EL素子において、前記有機EL層の前記金属電極に接する側

の面又は前記金属電極の前記有機EL層に接する側の面が粗面化されていることを特徴とするものである。また本発明は、透明基板上に透明電極、有機EL層及び金属電極を順に積層した有機EL素子において、前記透明基板の前記透明電極が積層される側の面が粗面化されていることを特徴とするものである。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0024

【補正方法】変更

【補正内容】

【0024】したがって、透明基板の前記透明電極が積層される側の面を粗面化する等の方法で、有機EL層の金属電極に接する側の面又は金属電極の有機EL層に接する側の面を粗面化することにより、発光層内の発光点からの光の光路差が多少異なり、干渉効果が平均化されるため、角度依存性及び膜圧依存性が小さくなる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0034

【補正方法】変更

【補正内容】

[0034]

【発明の効果】以上説明したように、本発明の有機EL素子によれば、透明基板の前記透明電極が積層される側の面を粗面化する等の方法で有機EL層の金属電極に接する側の面又は金属電極の有機EL層に接する側の面を粗面化し、発光層内の発光点からの光の光路差を異ならせたことにより、干渉効果を平均化し、角度依存性及び膜圧依存性が小さくしたので、視角による輝度低下を阻止することができる。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

_
☐ BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.