Quiz 1 - Monod's Nightmare

My name is:
Under ideal growing conditions in the laboratory, the population size of the common bacterium <i>Escherichia coli</i> can double in around 20 minutes. <i>E. coli</i> 's cells are rod-shaped and are roughly approximated by a rectangular box that is 2 μm long, 1 μm wide, and 1 μm high. (1 $\mu m = 1$ micro-meter = 1 x 10-6 meters = 0.000001 m). For comparison, a strand of human hair is roughly 100 μm wide.
(a) Would a continuous-time model (the solution for which is $N_t = N_0 e^{rt}$) or a discrete-time model (the solution for which is $N_t = \lambda^t N_0$) be more appropriate for describing this population? Why?
(b) What is $E.\ coli$'s growth rate r (in minutes) under these ideal growing conditions. Express your answer by solving for the equation you would use to calculate r to the simplest solution possible.
(c) Let's assume that our classroom is roughly $10 \ m$ long, $10 \ m$ wide, and $8 \ m$ high (it's not, I just made up these numbers). How long it would take for an exponentially growing population of $E.\ coli$ under ideal conditions to fill our empty classroom when starting from a single individual bacterium?