**Due: October 24, 2006** 

EE 3350 HW 4: Angle Modulation

- 1. Determine the bandwidth in Hz of the angle modulated signal  $\varphi(t) = 10 \cos(2\pi 10^8 t + 200 \cos 2\pi 10^3 t)$ .
- 2. Consider the angle modulated signal

 $\varphi(t) = 10 \cos(2\pi 10^8 t + 3 \sin 2\pi 10^3 t).$ 

- (a) Assume that the signal is PM. Find the bandwidth of the PM signal when the message frequency is (1) doubled, and (2) is halved.
- (b) Repeat part (a) assuming that the angle modulated signal is FM.
- 3. An FM signal is given by

 $\varphi(t) = 10 \cos(2\pi 10^6 t + 5 \sin 2\pi 10^3 t).$ 

Determine and sketch the magnitude spectrum of the signal  $\phi$  (t). [Note: sketch only those sidebands that are within the "bandwidth" of the FM signal.]

4. An angle modulated signal is given by the following expression:

$$\Phi_{EM}(t) = 5 \cos (\omega_c t + 40 \sin 500\pi t + 20 \sin 1000\pi t + 10 \sin 2000\pi t)$$

- a. Determine the frequency deviation  $\Delta f$ , in Hz.
- b. Estimate the bandwidth, in Hz, of the angle modulated signal by Carson's rule. If the angle modulated signal is a phase modulated signal with the phase deviation constant,  $k_p$  is 5 radians per volt, determine the message signal m (t).
- c. If the angle modulated signal is a frequency modulated signal with a frequency deviation constant,  $k_f$  is 20,000  $\pi$  radians/sec per volt, determine the message signal m(t).
- 5. An FM signal  $\phi_{FM}(t) = 5 \cos{(2\pi \ 10^6 t + \sin{20,000} \ \pi t)}$  is input a square-law nonlinearity (with the characteristic:  $y = 2 \ x^2$ , where x is the input and y the output). The output of the nonlinearity y(t) is filtered by an ideal band pass filter with center frequency 2.03 MHz and bandwidth 10 kHz to produce the final output z(t). Determine z(t) and sketch its magnitude spectrum.
- 6. A message signal  $m(t) = 4 \cos 2\pi \ 1000t$  modulates a carrier frequency to produce a frequency modulated signal with a resulting modulation index (i.e. frequency deviation ratio) of 2.
  - (a) What is the estimate of the bandwidth of the FM signal?
  - (b) The message signal m(t) is replaced by a new message signal m(t) =  $4 \cos 2\pi 1000t + 4 \cos 2\pi 3000t$ . What is the estimate of the bandwidth of this new FM signal?

- 7. The message signal  $m(t) = \{10 (\sin 2\pi 200t) / \pi t\}$  frequency modulates an appropriate carrier signal with a modulation index of 6. (a) Write the expression for the FM waveform. (You do not need to integrate m(t) in your answer.); (b) What is the maximum frequency deviation of the modulated signal? (c) Find the bandwidth of the modulated signal.
- 8. The carrier  $c(t) = 100 \cos 2\pi \, 10^8 \, t$  is frequency modulated by the signal m(t) =  $5 \cos 2\pi \, 10000 \, t$ . The (peak) frequency deviation is 20 kHz. (a) Determine the amplitude and frequency of all signal components that have a power level of at least 10% of the power of the FM signal. (b) What is the bandwidth of the FM signal?
- 9. A signal m(t) frequency modulates a 100 kHz carrier to produce the following narrowband FM signal:

```
\phi_{NB FM}(t) = 5 \cos(2\pi . 10^5 t + 0.0050 \sin 2\pi \ 10^4 t).
```

Generate (block diagram design) the wideband FM signal  $\phi_{WBFM}(t)$  with a carrier frequency of 150 MHz and a (peak) frequency deviation of 100 kHz. Assume that the following are available for the design:

- Frequency Multipliers of any (integer) value
- A local oscillator whose frequency can be tuned to any value between 100 MHz to 300 MHz
- An ideal Band pass filter with tunable center frequency and bandwidth.

Your block diagram design must clearly specify the carrier frequencies and frequency deviations at all logical points, as well as the center frequency and bandwidth of the Band pass filter.



EE 3350

Hw 4 Solutions

1. 
$$\phi(t) = 10 \cos(2\pi.10^{8}t + 200\cos 2\pi 10^{3}t)$$
 $= A\cos(\omega_{ct} + \varphi(t))$ 

Where

 $\psi(t) = 200 \cos 2\pi.10^{3}t$ 
 $\psi(t) = \frac{d\varphi(t)}{dt} = \frac{d\varphi(t)}{dt} + \omega_{c}^{2}$ 
 $\Delta \omega = \left|\frac{d\varphi(t)}{dt}\right|_{max} \int_{max}^{\infty} Bcann \omega_{c}(t) = \frac{d\varphi(t)}{dt} + \omega_{c}^{2}$ 
 $\frac{d\varphi(t)}{dt} = -4\pi.10^{5} \sin 2\pi.10^{3}t$ 
 $\frac{d\varphi(t)}{dt} = 4\pi \times 10^{5} \operatorname{rad}_{pec} = \Delta \omega.$ 
 $\Delta f = \frac{\Delta \omega}{2\pi} = \frac{4\pi \times 10^{5}}{2\pi} \operatorname{Rg} = \left|\frac{200 \operatorname{kerg}}{200 \operatorname{kerg}}\right|$ 
 $B = 1 \operatorname{kerg}.$ 
 $B = 1 \operatorname{kerg}.$ 
 $B = 2 \left(\Delta f + B\right) \operatorname{Rg}$ 

2. 
$$\phi(t) = 10 \cos(2\pi.10^6 t + 35in 2\pi.10^6 t)$$
  
 $\phi(t) = 10 \cos(2\pi.10^6 t + 35in 2\pi.10^6 t)$ 

$$\psi(t) = k_{f} m(t) = 3 \sin 2\pi 10^{3} t$$

$$\Delta W = \left| \frac{d\psi(t)}{dt} \right|_{mex} = 6\pi \times 10^{3} \text{ rad/mec}$$

$$\Delta F = 3 \text{ RHz}$$

$$BW = 2 (\Delta f + B) 17z$$

$$= 2(3+1) = 8 \text{ MHz}$$

(i) Frequency of met) is doubled.

Frequency is halved. (ii) i.e. 4(6) = 3 sin 20. 2.1036 dq(6)= 311.103 C. 5 25. 1. 1036 de Δω = | d4(b) | mex ar Δf=1.5 king

2. (continued)

b. 
$$fm$$
.

 $y(t) = kf \int_{-\infty}^{\infty} [x \cos w m^{2}] dx$ 
 $= kf \int_{-\infty}^{\infty} [x \cos w m^{2}] dx$ 
 $= kf \int_{-\infty}^{\infty} [x \cos w m^{2}] dx$ 
 $= \frac{kg x}{w m}$  oin  $w m t$ .

Thus  $\beta = 3$  for  $fm$ . [Noh:  $\beta$  depends

on  $m(t)$ , and specifically on  $\beta$ , The  $\beta w$ 

on  $m(t)$ , and specifically on  $\beta$ , The  $\beta w$ 
 $\beta = 1 k k k^{2}$   $\Delta f = \beta \cdot \beta = 3 \cdot 1 k k k^{2} \cdot 3 \cdot k k v$ .

 $\beta = 1 k k k^{2}$   $\Delta f = \beta \cdot \beta = 3 \cdot 1 k k k^{2} \cdot 3 \cdot k k v$ .

 $\beta = 1 k k k^{2}$   $\Delta f = \beta \cdot \beta = 3 \cdot 1 k k k^{2} \cdot 3 \cdot k k v$ .

(i) Frequency is doubled.

 $\beta = 2 k k k^{2}$   $w m m doubled$ ,

 $\beta = \frac{1}{2} k k k^{2}$   $w m m doubled$ ,

 $\beta = \frac{1}{2} k k k^{2}$   $w m m doubled$ ,

 $\beta = \frac{3}{2} \cdot \Rightarrow \Delta f = \beta \cdot 3 = \frac{3}{2} \cdot 2 = 3 \cdot k k v$ 
 $\beta = \frac{3}{2} \cdot \Rightarrow \Delta f = \beta \cdot 3 = \frac{3}{2} \cdot 2 = 3 \cdot k k v$ 

(ii) Frequency is helical:

 $\beta = \frac{1}{2} k k v$ ,  $\beta = 6 \cdot (w k v)$ 
 $\Delta f = 6 \cdot v k^{2} \cdot 3 \cdot k v$ 
 $\Delta f = 6 \cdot v k^{2} \cdot 3 \cdot k v$ 
 $\Delta f = 6 \cdot v k^{2} \cdot 3 \cdot k v$ 
 $\Delta f = 6 \cdot v k^{2} \cdot 3 \cdot k v$ 
 $\Delta f = 6 \cdot v k^{2} \cdot 3 \cdot k v$ 
 $\Delta f = 6 \cdot v k^{2} \cdot 3 \cdot k v$ 
 $\Delta f = 6 \cdot v k^{2} \cdot 3 \cdot k v$ 

Note on #2:

This problem illustrates the effect of changing lac bandwidle of mce) on the benewidin Bupmana Bupm It illustratus that Bupmis more neusitive to the change in B (But mct-) In=n BWFM

PM: BWpm = 2 ( & fpm + B) Afpril Limite) max

BWEN 2 (DFFn+B) Africa depend on 15th depend on 15th of mch).

However, BUFM does depend on MEBH of mct) Browsh the expression BWpm = 2( Df + B).

+8(w+(wc+nwm))]

Hw 4.5 4(t)= 10 cos(211.10 t+5 sin 211 103 t) 3. The above orgnal is an Fm orgnal. -> A=10, fc=1MHz, wc=21/x10 rad/pm B=5, fm=1kH, wm=27x103xen/mc For a home modelated FM, \$(6) = A \( \frac{1}{2} \) \( \tau\_n \) \( \beta\_n \) \( \tau\_n \) \( We have he dehrmine to sprehum within The bandridth of the amorgane. For B=5, we have only 13+1=6 Dischard on each order of we. Thes, within 150 Signal bandwidt, the for signal can q(t)=10= Jn(5) cos((wc+nwm)t) で(w): 10TI Jn(5)[S(w-(wc+nwm)) + 8 (w + (we + n wm))] Mag. Spechun. | \$\Pi(\omega) = (1011.) \[ \int | \i

$$J_{8}(5) = -6.178$$

$$J_{1}(5) = -0.328$$

$$J_{2}(5) = 0.647$$

$$J_{3}(5) = 0.365$$

$$J_{4}(5) = 0.391$$

$$J_{5}(5) = 0.261$$

$$J_{5}(5) = 0.131$$

$$J_{6}(5) = 0.131$$

$$J_{6}(5) = 0.131$$

$$J_{10}(5) = 0.391$$

$$J_{10}(5) =$$

4(4) An angle modulated signal is given by the following expression: (I)  $\phi_{EM}(t) = 5 \cos(\omega_c t + 40 \sin 500\pi t + 20 \sin 1000\pi t + 10\sin 2000\pi t)$ a Determine the (peak) frequency deviation Af, in Hz. b. Estimate the bandwidth, in Hz, of the angle modulated signal by Carson's rule.

c. If the angle modulated signal is a phase modulated signal with the phase deviation constant,  $k_n$  is 5

radians per volt, determine the message signal m (i) d. If the angle modulated signal is a frequency modulated signal with a frequency deviation constant, by

a give auditural ten massage signal m(s).

a.

$$w_i - \omega_c = \left| \frac{d}{dt} \right| 40 \text{ 8m } 500 \text{ Te} + 20 \text{ 8m } 1000 \text{ fraction of } + 10 \text{ 6m } 2000 \text{ fraction of } + 10 \text{ 6m } 2000 \text{ fraction of } + 10 \text{ 6m } 2000 \text{ fraction of } + 20,000 \text{ fr$$

## An FM signal

$$\phi_{FM}(t) = 5 \cos(2\pi \cdot 10^6 t + \sin 20,000\pi t)$$

is input to a square-law nonlinearity (with the characteristic:  $y = 2 x^2$ , where x is the input and y is the output), and filtered by a bandpass filter. The center frequency of the bandpass filter is 2.03 MHz and the bandwidth is 10 kHz. Determine the output z(t), and sketch its magnitude spectrum.

sketch its magnitude spectrum.

$$\frac{b}{frn}(t) = \frac{1}{2} \frac{y(t)}{y(t)} = \frac{1}{2} \frac{A^{2} \cos^{2}(\omega_{c}t + \psi(t))}{(\omega_{c}t + \psi(t))}$$

$$\frac{y(t)}{frn} = \frac{1}{2} \frac{A^{2} \cos^{2}(\omega_{c}t + 2\psi(t))}{(\omega_{c}t + 2\psi(t))}$$
Rejected by
$$\frac{A^{2} + A^{2} \cos(2\omega_{c}t + 2\psi(t))}{(\omega_{c}t + 2\psi(t))}$$

y(E) = 25005 (20-2-106+28in20,000 17t)

y(E) = 25005 (20-2-106+28in20,000 17t)

15 an FM Signal with fc=2MH3, B=2 and fm=10 kH2 y (6) = 25 \( \frac{Z}{N=16} \) \( \frac{1}{N} \) \( \frac{2}{N} \) \( \frac{2}{N} \) \( \frac{2}{N} \) \( \frac{2}{N} \) \( \frac{1}{N} \) \( \frac{1} \) \( \frac{1} \) \( \frac{1}{N} \) \( \frac{1}{N} \) \( \

WITH 
$$CF = 2.53 \text{ (N)}$$

$$2.03 \text{ MH}$$

$$3(6) = 25 \text{ J}_{3}(2) \text{ Cos} \left(2\pi \left(2 + 10^{6} + 30 + 10^{3}\right) \right)$$

$$3(6) = 3 225 \text{ Cos} \left(2\pi \left(2 + 10^{6} + 30 + 10^{3}\right) \right)$$



$$a$$
.  $BW_{fm} = 2(\Delta f_{fm} + B) \cdot \omega = 2B(\beta + 1)$   
=  $2.1 \cdot (2 + 1) = 6 \frac{k_{fm}}{2}$ 

$$\Delta f = \frac{k_f \cdot m_b}{2\pi} = \frac{11}{2} \times 10^3 \times 8 = 4 \text{ keHz}$$

Given: 
$$(m(t) = 10. \frac{0in 2\pi}{\pi t}) \xrightarrow{B} = 200 \text{ M}$$
  
 $B = 6.$ 

$$\Delta f = \beta.B = \frac{k_f \cdot m_p}{2\pi}$$

$$\Rightarrow (x200 = \frac{k_f \cdot 10}{2\pi}) \Rightarrow \frac{k_f \cdot 10}{2\pi} \Rightarrow \frac{k_$$

Thus, The FM waveform can be written as
$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} \cos \left[ wct + 240\pi \int_{-a}^{b} \left[ \frac{\sin 2\pi \cdot 2 \cos A}{\pi \lambda} \right] d\lambda \right]$$

$$= \frac{1}{\sqrt{1}} \left[ A \cos \left[ wct + 2400\pi \int_{-ab}^{b} \left[ \frac{\sin 2\pi \cdot 2 \cos A}{\pi \lambda} \right] d\lambda \right] d\lambda$$

b Freq. Bev.  

$$\Delta f = \frac{k_f \cdot m_b}{25} k_g = \frac{24 \cdot 11 \times 10}{2\pi} = 1200 \text{ Hz}$$

c(t) = 100 cos 211.10 t m(t) = 5. cos(211.104t). B= 10 kby

(t) = 100[cos 211.108 + B. sin(211.104)t] -0. [tone Modulation] where we need to determine po from B= DF = 20x10 = 2]. \$ (t) = 100 \frac{20}{N=-40} \frac{7}{n}(2) \cos \left[ 27 \left( 10^8 + n 10^4 \right) \text{ } \right] 1) Can be written as Let's answer part b first BW= 2.B(/3+1)= 2×104(2+1)=60 kuz a. The power level of Fm is: 100 wat: 5000 walls The power in the k-16 months and, at frequency fc+12fm is [Je (13)]/2. walls. We have to include in our list those sidebends for which 100? [Jh (/3)]/2 \$ 500. [Jella) = 1000 = 6.1.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | . 1       |                     |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------------------|---------------|
| Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 及(2)    | Freq.     | Any.<br>100. TR(2). | POWEY JA(B)/2 |
| Age of the second secon |         |           |                     |               |
| -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.034   | 108-4.104 | 3.40                | 5.7785        |
| _ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1289 | 108-3.104 | -12.89              | 83.3          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | n 1.      |                     | 622.46        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 3528 | 108+2.104 | 35 28               |               |
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.5767 | 108-104   | -57.67              | 1663.1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |                     | A es          |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2239  | 108       | 22.39               | 250.63        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5767  | 108+104   | 57.67               | 1663.1        |
| / '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |                     | 622.46        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3528  | 108+2.104 | 35.28               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 8 /6      | 12.89               | 83.13         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1289  | 108+2.104 |                     | 5.7785        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.034   | 108+2.104 | 3.40                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1 Canho   | a in the le         | land)         |

The highlighted (enhin in the blocks)

Components are the only components that have 
at least 10% of the for original powers. Beyond 3 

Components (B+1), the original powers are 

Components (B+1), the original powers are 

dropping off rapidly

Target: 
$$f_{c}=150 \text{ MHz}$$
  $\Delta f = 100 \text{ kHz}$ 

From  $G$ :

 $f_{c}=150 \text{ MHz}$   $\Delta f = 100 \text{ kHz}$ 

From  $G$ :

 $f_{c}=100 \text{ kHz}$   $\Delta f = 50 \text{ hz}$ 

From  $G$ :

 $f_{c}=100 \text{ kHz}$   $\Delta f = 500 \text{ hz}$ 

From  $G$ :

 $f_{c}=100 \text{ kHz}$   $\Delta f = 500 \text{ hz}$ 

From  $G$ :

 $f_{c}=100 \text{ kHz}$   $\Delta f = 500 \text{ hz}$ 

From  $G$ :

 $f_{c}=100 \text{ kHz}$   $\Delta f = 500 \text{ hz}$ 
 $f_{c}=100 \text{ kHz}$   $\Delta f = 500 \text{ hz}$ 
 $f_{c}=100 \text{ kHz}$   $\Delta f = 1000 \text{ kHz}$ 
 $f_{c}=100 \text{ kHz}$   $\Delta f = 1000 \text{ kHz}$ 
 $f_{c}=100 \text{ kHz}$   $\Delta f = 1000 \text{ kHz}$ 
 $f_{c}=100 \text{ kHz}$