

3. Backpropagation

Extension Note: Homework 4 due date has been extended by 1 day to July 27 23:59UTC.

One of the key steps for training multi-layer neural networks is stochastic gradient descent. We will use the back-propagation algorithm to compute the gradient of the loss function with respect to the model parameters.

Consider the L-layer neural network below:

In the following problems, we will the following notation: b^l_j is the bias of the j^{th} neuron in the l^{th} layer, a^l_j is the activation of j^{th} neuron in the l^{th} layer, and w^l_{jk} is the weight for the connection from the k^{th} neuron in the $(l-1)^{th}$ layer to the j^{th} neuron in the l^{th} layer.

If the activation function is f and the loss function we are minimizing is C, then the equations describing the network are:

$$egin{aligned} a_j^l &= f\left(\sum_k w_{jk}^l a_k^{l-1} + b_j^l
ight) \end{aligned}$$

Loss
$$= C(a^L)$$

For $l=1,\ldots,L$.

Computing the Error

2/2 points (graded)

Let the weighted inputs to the d neurons in layer l be defined as $z^l\equiv w^la^{l-1}+b^l$, where $z^l\in\mathbb{R}^d$. As a result, we can also write the activation of layer l as $a^l\equiv f(z^l)$, and the "error" of neuron j in layer l as $\delta^l_j\equiv \frac{\partial C}{\partial z^l_j}$. Let $\delta^l\in\mathbb{R}^d$ denote the full vector of errors associated with layer l.

Back-propagation will give us a way of computing δ^l for every layer.

Assume there are d outputs from the last layer (i.e. $a^L \in \mathbb{R}^d$). What is δ_i^L for the last layer?

$$ullet rac{\partial C}{\partial a_j^L} f'\left(z_j^L
ight) oldsymbol{\checkmark}$$

$$igcup_{k=1}^d rac{\partial C}{\partial a_k^L} f'\left(z_j^L
ight)$$

$$\bigcirc \quad \frac{\partial C}{\partial a_i^L}$$

$$\circ$$
 $f'\left(z_{j}^{L}
ight)$

What is δ_j^l for all l
eq L?

$$ullet \sum_k w_{kj}^{l+1} \delta_k^{l+1} f'\left(z_j^l
ight) oldsymbol{\checkmark}$$

$$\circ \;\; \delta_k^{l+1} f'\left(z_j^l
ight)$$

$$igcup_k w_{jk}^{l-1} \delta_j^{l-1} f'\left(z_j^l
ight)$$

$$igcup_k w_{kj}^{l+1} \delta_k^{l+1} f(z_j^l)$$

Solution:

We make use of the chain rule.

^{1.} By definition,
$$\delta_j^L=rac{\partial C}{\partial a_j^L}rac{\partial a_j^L}{\partial z_j^L}=rac{\partial C}{\partial a_j^L}f'\left(z_j^L
ight).$$

2. We have:

$$egin{align} \delta_j^l &= rac{\partial C}{\partial z_j^l} \ &= \sum_k rac{\partial C}{\partial z_k^{l+1}} rac{\partial z_k^{l+1}}{\partial z_j^l} \ &= \sum_k rac{\partial z_k^{l+1}}{\partial z_j^l} \delta_k^{l+1} \ \end{gathered}$$

Then we have $z_k^{l+1} = \sum_j w_{kj}^{l+1} a_j^l + b_k^{l+1} = \sum_j w_{kj}^{l+1} f(z_j^l) + b_k^{l+1}$. Taking the derivative of this with respect to z_j^l gives $w_{kj}^{l+1} f'(z_j^l)$.

Combining the two gives the final answer: $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} f'\left(z_j^l
ight)$

Submit

You have used 2 of 2 attempts

• Answers are displayed within the problem

Parameter Derivatives

2/2 points (graded)

During SGD we are interested in relating the errors computed by back-propagation to the quantities of real interest: the partial derivatives of the loss with respect to our parameters. Here that is $\frac{\partial C}{\partial w_{ik}^l}$ and $\frac{\partial C}{\partial b_i^l}$.

What is $rac{\partial C}{\partial w^l_{jk}}$? Write in terms of the variables a^{l-1}_k , w^l_j , b^l_j , and δ^l_j if necessary.

Example of writing superscripts and subscripts:

$$delta_j ackslash \hat{l}$$
 for δ^l_j

$$w_{-}\{jk\}ackslash^{\hat{}}l$$
 for w_{jk}^{l}

0 **✓** Answer: 0

STANDARD NOTATION

Solution:

 $\sigma'(z) = \sigma(z) (1 - \sigma(z))$. As z gets large in magnitude, the sigmoid function saturates, and the gradient approaches zero.

ReLU is a simple activation function. Above zero, it has a constant gradient of 1. Below zero, it is always zero.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Simple Network

4/4 points (graded)

Consider a simple 2-layer neural network with a single neuron in each layer. The loss function is the quadratic loss: $C=rac{1}{2}(y-t)^2$, where y is the prediction and t is the target.

Starting with input x we have:

- $\bullet \ \ z_1=w_1x$
- $a_1 = \operatorname{ReLU}(z_1)$
- $z_2 = w_2 a_1 + b$
- $ullet \ y = \sigma(z_2)$
- $C = \frac{1}{2}(y-t)^2$

Consider a target value t=1 and input value x=3. The weights and bias are $w_1=0.01$, $w_2=-5$, and b=-1.

Please provide numerical answers accurate to at least three decimal places.

What is the loss?

0.28842841648243966

✓ Answer: 0.28842841648243966

What are the derivatives with respect to the parameters?

$$\frac{\partial C}{\partial w_1} = 2.0809$$

✓ Answer: 2.0809165621704553

$$\frac{\partial C}{\partial w_2} = \begin{bmatrix} -0.0041618 \end{bmatrix}$$

✓ Answer: -0.00416183312434091

$$\frac{\partial C}{\partial b} = \boxed{-0.13872777}$$

✓ Answer: -0.13872777081136367

STANDARD NOTATION

Solution:

Using the chain rule, we have:

$$ullet rac{\partial C}{\partial w_1} = rac{\partial C}{\partial y} rac{\partial y}{\partial z_2} rac{\partial z_2}{\partial a_1} rac{\partial a_1}{\partial z_1} rac{\partial z_1}{\partial w_1} = (y-t) \, y \, (1-y) \, w_2 \, \mathbf{1} \{z_1 > 0\} x$$

$$ullet rac{\partial C}{\partial w_2} = rac{\partial C}{\partial y} rac{\partial y}{\partial z_2} rac{\partial z_2}{\partial w_2} = (y-t) \, y \, (1-y) \, a_1$$

•
$$\frac{\partial C}{\partial b} = (y - t) y (1 - y)$$

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem
SGD
1/1 point (graded) Referring to the previous problem, what is the update rule for w_1 in the SGD algorithm with step size η ? Write in terms of w_1 , η , and $\frac{\partial C}{\partial w_1}$;

Next $w_1 = \boxed{\hspace{1.5cm} ext{w_1 - eta*(partialC)/(part)}} \hspace{1.5cm} \checkmark \hspace{1.5cm} \mathsf{Answ}$

enter the latter as (partialC)/(partialw_1), noting the lack of space in the variable names:

✓ Answer: w_1 - eta * (partialC)/(partialw_1)

STANDARD NOTATION

Solution:

The definition of the simple SGD update rule is new_parameter = old_parameter - learning_rate * derivative of loss w.r.t old parameter.

Submit

You have used 1 of 5 attempts

• Answers are displayed within the problem

Discussion

Topic: Unit 3 Neural networks (2.5 weeks):Homework 4 / 3. Backpropagation

Show Discussion

© All Rights Reserved