PLSC 502 – Fall 2022 Central Tendency and Variation

September 15, 2022

Current Premier League Statistics

Team	Won	Drew	Lost	${\tt GoalsFor}$	${\tt GoalsAgainst}$	${\tt GoalDifference}$	Points
Arsenal	5	0	1	14	7	7	15
Manchester City	4	2	0	20	6	14	14
Tottenham Hotspur	4	2	0	12	5	7	14
Brighton and Hove Albion	4	1	1	11	5	6	13
Manchester United	4	0	2	8	8	0	12
Chelsea	3	1	2	8	9	-1	10
Liverpool	2	3	1	15	6	9	9
Brentford	2	3	1	15	9	6	9
Leeds United	2	2	2	10	10	0	8
Fulham	2	2	2	9	9	0	8
Newcastle United	1	4	1	7	6	1	7
Southampton	2	1	3	7	10	-3	7
Bournemouth	2	1	3	5	18	-13	7
Wolverhampton Wanderers	1	3	2	3	4	-1	6
Crystal Palace	1	3	2	7	9	-2	6
Everton	0	4	2	4	6	-2	4
Aston Villa	1	1	4	5	10	-5	4
West Ham United	1	1	4	3	8	-5	4
Nottingham Forest	1	1	4	4	14	-10	4
Leicester City	0	1	5	8	16	-8	1

Premier League Points: Histogram

The Arithmetic Mean

The "mean":

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

implies that:

$$\sum_{i=1}^{N} X_i = N\bar{X}$$

and so:

$$\sum_{i=1}^{N} (X_i - \bar{X}) = 0$$

\bar{X} Minimizes Squared Deviations

Find the value of X μ that minimizes the sum of squared deviations...

$$f(X) = \sum_{i=1}^{N} (X_i - \mu)^2$$
$$= \sum_{i=1}^{N} (X_i^2 + \mu^2 - 2\mu X_i)$$
$$\frac{\partial f(X)}{\partial \mu} = \sum_{i=1}^{N} (2\mu - 2X_i)$$

\bar{X} Minimizes Squared Deviations

Solve:

$$\sum_{i=1}^{N} (2\mu - 2X_i) = 0$$

$$2N\mu - 2\sum_{i=1}^{N} X_i = 0$$

$$2N\mu = 2\sum_{i=1}^{N} X_i$$

$$\mu = \frac{1}{N}\sum_{i=1}^{N} X_i \equiv \bar{X}$$

Means from Sums of Frequencies

Frequency table:

Points	Frequency f_j
1	1
4	4
6	2
7	3
÷	:
15	1

For J different unique values of X:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{J} f_j X_j$$

Weighted Means

For "weights" w_i , the weighted mean is:

$$\bar{W} = \frac{\sum_{i=1}^{N} w_i X_i}{\sum_{i=1}^{N} w_i}$$

Things to remember:

- If $w_i = \frac{1}{N} \ \forall \ i$, then $\bar{W} = \bar{X}$
- If $w_i = w \ \forall \ i$, then $\bar{W} = w\bar{X}$
- Weighted means are simpler if $\sum_{i=1}^{N} w_i = 1.0...$
- ... we can normalize any set of weights by $w_i' = \frac{w_i}{\sum_{i=1}^N w_i}$.

Geometric Mean

$$\bar{X}_{G} = \left(\prod_{i=1}^{N} X_{i}\right)^{\frac{1}{N}}$$

$$= \sqrt[N]{X_{1} \cdot X_{2} \cdot \dots \cdot X_{N}}$$

$$= \exp\left[\frac{1}{N} \sum_{i=1}^{N} \ln X_{i}\right]$$

$$= \left[\frac{1}{N} \sum_{i=1}^{N} \ln X_{i}\right]$$

 \overline{X}_{G}

 X_1

Geometric Mean (continued)

Note: Geometric means don't like negative values...

- Formally, \bar{X}_G is defined only if $X_i > 0 \ \forall i$
- R's geometric.mean() defaults to removing them before calculation...
- If all values of X are negative, the geometric mean will be NaN.

Consider percentage changes:

```
\{ +12\%, +5\%, -9\%, +2\%, -10\% \}
```

```
> geometric.mean(c(12,5,-9,2,-10))
[1] 4.932424
Warning message:
In log(x) : NaNs produced
> geometric.mean(c(1.12,1.05,0.91,1.02,0.90))
[1] 0.9964563
```

Harmonic Mean

The harmonic mean is:

$$\bar{X}_{H} = \frac{N}{\sum_{i=1}^{N} \frac{1}{X_{i}}}$$
$$= \frac{1}{\left(\frac{1}{X}\right)}$$

Note that:

$$\bar{X}_H \leq \bar{X}_G \leq \bar{X}$$

The Median

Median:

$$\check{X}$$
 = "middle observation" of X
= 50th *percentile* of X .

Minimizes absolute distance:

$$\check{X} = \min\left(\sum_{i=1}^N |X_i - c|\right).$$

The Mode

The $\underline{\text{mode}}$ of X is "the value of X that appears most frequently in the data."

- That works fine for discrete variables...
 - · There can be zero, one, two, or more modes,
 - · If (say) two values of X have *nearly* the same number of cases, we often refer to that as "bimodal" data.
- For continuous variables:
 - There is often no mode (no two observations have exactly the same values of X)
 - Modes are usually defined as any local maximum of the probability density function of X

Modes: Discrete *X*

Modes: Continuous X

Means, Medians, Modes, and Skewness

Central Tendencies: Premier League Data

Variation

Range and Percentiles

Range:

$$\mathsf{Range}(X) = \mathsf{max}(X) - \mathsf{min}(X)$$

The kth percentile is the value of the variable below which k percent of the observations fall.

- 50th percentile = \check{X}
- 0th percentile = minimum(X)
- 100th percentile = maximum(X)

More Percentiles

- *Quartiles* = {25th, 50th, 75th percentiles}
- Interquartile Range (IQR):

$$IQR(X) = 75th percentile(X) - 25th percentile(X)$$

• *Deciles* = {10th, 20th, 30th, etc. percentiles}

"Mean Deviation"

$$\frac{1}{N}\sum_{i=1}^{N}(X_{i}-\bar{X}).$$

$$\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}) = \frac{1}{N} \left[\left(\sum_{i=1}^{N} X_i \right) - N \bar{X} \right]$$

$$= \frac{1}{N} \left[\sum_{i=1}^{N} X_i - N \left(\frac{1}{N} \sum_{i=1}^{N} X_i \right) \right]$$

$$= \frac{1}{N} \left(\sum_{i=1}^{N} X_i - \sum_{i=1}^{N} X_i \right) = \frac{1}{N} (0)$$

$$= 0$$

Squared Deviation

Mean squared deviation:

$$MSD = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Also known as *mean squared error* ("MSE") in regression models...

Note that MSD is "average squared difference from the mean" \rightarrow expressed in "squared" units of X...

A more useful quantity is "root mean squared deviation":

$$\mathsf{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$

An Important Fact

Consider N = 1:

Team Points
Tottenham Hotspur 14

This gives:

$$\bar{X} = \frac{14}{1} = 14$$
 and $RMSD = \sqrt{\frac{(14 - 14)^2}{1}} = 0$

For N=2:

Team Points
Tottenham Hotspur 14
Leeds United 8

we get:

$$\bar{X} = \frac{14+8}{2} = 11$$
 and $RMSD = \sqrt{\frac{(14-11)^2 + (8-11)^2}{2}} = 3$

You cannot learn about more characteristics of data than you have observations.

Variance:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Standard deviation:

$$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(X_i - \bar{X})^2}$$

"Geometric" Standard Deviation:

$$\sigma_G = \exp\left[\sqrt{\frac{\sum_{i=1}^N (\ln X_i - \ln \bar{X}_G)^2}{N}}\right]$$

PL Points Data

```
> summary(PL$Points)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 5.5 7.5 8.1 10.5 15.0
```

> var(PL\$Points)
[1] 15.35789

> sd(PL\$Points)
[1] 3.918915

Standardizing Variables

Sometimes useful to put variables on a common scale... ("z-scores")...

Typically:

$$Z_i = \frac{X_i - \bar{X}}{\sigma}$$

A standardized variable Z has:

- A mean of zero, and
- A standard deviation (and therefore variance) of 1.0

Standardizing Example

- > library(psych)
- > PLSmall<-PL[,4:10] # subset of variables
- > describe(PLSmall,trim=0,skew=FALSE)

	vars	n	${\tt mean}$	sd	min	${\tt max}$	range	se
Won	1	20	2.10	1.45	0	5	5	0.32
Drew	2	20	1.80	1.20	0	4	4	0.27
Lost	3	20	2.10	1.37	0	5	5	0.31
GoalsFor	4	20	8.75	4.59	3	20	17	1.03
GoalsAgainst	5	20	8.75	3.67	4	18	14	0.82
${\tt GoalDifference}$	6	20	0.00	6.69	-13	14	27	1.50
Points	7	20	8.10	3.92	1	15	14	0.88

- > PL.Z<-scale(PLSmall) # standardize
- > describe(PL.Z,trim=0,skew=FALSE)

	vars	n	mean	sd	mın	max	range	se
Won	1	20	0	1	-1.45	2.00	3.45	0.22
Drew	2	20	0	1	-1.50	1.84	3.34	0.22
Lost	3	20	0	1	-1.53	2.11	3.64	0.22
GoalsFor	4	20	0	1	-1.25	2.45	3.71	0.22
GoalsAgainst	5	20	0	1	-1.29	2.52	3.82	0.22
${\tt GoalDifference}$	6	20	0	1	-1.94	2.09	4.04	0.22
Points	7	20	0	1	-1.81	1.76	3.57	0.22

Absolute Deviations and MAD

Median Absolute Deviation ("MAD"):

$$\mathsf{MAD} = \mathsf{median}[|X_i - \check{X}|]$$

Mean Absolute Deviation:

Mean Absolute Deviation
$$=\frac{1}{N}\sum_{i=1}^{N}|X_i-\bar{X}|$$

Moments

Moments are functions of distributions that characterize their shape...

For a random variable X, the kth raw moment is:

$$m_k = \begin{cases} \sum f(X) \Pr(X) \text{ if } X \text{ is discrete} \\ \int f(X) \Pr(X) dX \text{ if } X \text{ is continuous.} \end{cases}$$

The kth central moment is:

$$M_k = \begin{cases} \mathsf{E}[(X - \mu)^k] \text{ for discrete } X\\ \int_{-\infty}^{+\infty} (X - \mu)^k f(X) \, dX \text{ for continuous } X \end{cases}$$

A distribution for X can be completely characterized by its non-zero moments...

Why Might We Care?

The first (raw) moment of a variable is the mean:

$$\mu = \mathsf{E}(X)$$

The second (central) moment of a variable is its variance:

$$\sigma^2 = \mathsf{E}[(X - \mu)^2]$$

[†]The first central moment is zero (why?)...

Skewness

Third central moment:

$$M_3 = \mathsf{E}[(X - \mu)^3]$$

More typically, we use the third *standardized moment* (usually called *skewness*):

$$\mu_{3} = \frac{M_{3}^{2}}{\sigma^{3}}$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{3}}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right]^{3/2}}$$

- Skewness = $0 \rightarrow \text{symmetrical}$
- Skewness $> 0 \rightarrow$ "positive" (tail to the right)
- Skewness $< 0 \rightarrow$ "negative" (tail to the left)

Skewness Illustrated

Symmetry

If a distribution is *symmetrical*, then:

- $\mu_3 = 0$
- $\check{X} = (Q_{25} + Q_{75})/2$,
- MAD = $\frac{IQR}{2}$

Note that:

- Both discrete and continuous variables can be symmetrical or asymmetrical;
- Every distribution with no mode is symmetrical, but
- Unimodal, bimodal, etc. distributions can be symmetrical or asymmetrical.

Kurtosis

Fourth moment:

$$M_4 = \mathsf{E}[(X - \mu)^4]$$

More typically, kurtosis ("excess kurtosis"):

$$\mu_{4} = \frac{M_{4}}{\sigma^{4}} - 3$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{4}}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right]^{2}} - 3$$

Note that:

$$\frac{\mathit{M}_4}{\sigma^4} \geq \left(\frac{\mathit{M}_3}{\sigma^3}\right)^2 + 1$$

Kurtosis Intuition

Kurtosis is "the average of the standardized X raised to the fourth power (minus three)."

- Values of standardized variables within one σ of \bar{X} have $|X| \leq 1$
- Taking X^4 when $|X| \le 1$ gives values very close to 0
- $\bullet \to \text{only those values on the "tail" of the distribution contribute significantly to kurtosis$

Kurtosis Explained

- "Fat-tailed" = leptokurtic: μ_4 is positive.
- "Medium-tailed" = mesokurtic: μ_4 is close to zero.
- "Thin-tailed" = platykurtic: μ_4 is negative.

Kurtosis Illustrated

Kurtosis Examples

PL Points Data

- > library(moments)
- > skewness(PL\$Points)
- [1] 0.2408431
- > kurtosis(PL\$Points)-3
- [1] -0.8326687

Binary Variables

For a Bernoulli (binary) variable *D*:

- $mode(D) = \check{D}$ (why?)
- The mean of D is:

$$\bar{D} = \frac{1}{N} \sum_{i} D_{i}$$

$$= \pi [\equiv \Pr(D=1)]$$

• The variance is:

$$\sigma_D^2 = \pi \times (1 - \pi)$$

• and so the standard deviation is:

$$\sigma_D = \sqrt{\pi \times (1 - \pi)}$$

Implies:

- $\sigma_D > \sigma_D^2$
- $\max(\sigma_D^2) \leftrightarrow \pi = 0.5$

Binary Variables (continued)

For a binary variable, skewness is:

$$\mu_3 = \frac{1-2\pi}{\sqrt{\pi(1-\pi)}}$$

and the (excess) kurtosis is:

$$\mu_4 = \frac{1 - 6\pi(1 - \pi)}{\pi(1 - \pi)}$$

Getting Summary Statistics

Good: summary

> summary(PLSmall)

Won	Drew	Lost	GoalsFor	GoalsAgainst
Min. :0.00	Min. :0.0	Min. :0.0	Min. : 3.00	Min. : 4.00
1st Qu.:1.00	1st Qu.:1.0	1st Qu.:1.0	1st Qu.: 5.00	1st Qu.: 6.00
Median :2.00	Median :1.5	Median :2.0	Median: 8.00	Median: 8.50
Mean :2.10	Mean :1.8	Mean :2.1	Mean : 8.75	Mean : 8.75
3rd Qu.:3.25	3rd Qu.:3.0	3rd Qu.:3.0	3rd Qu.:11.25	3rd Qu.:10.00
Max. :5.00	Max. :4.0	Max. :5.0	Max. :20.00	Max. :18.00
GoalDifference	Points			
Min. :-13.0	Min. : 1.0			
1st Qu.: -3.5	1st Qu.: 5.5			
Median : -0.5	Median: 7.5			
Mean : 0.0	Mean : 8.1			
3rd Qu.: 6.0	3rd Qu.:10.5			
Max. : 14.0	Max. :15.0			

Better: describe (in psych)

> describe(PLSmall)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Won	1	20	2.10	1.45	2.0	2.06	1.48	0	5	5	0.43	-1.05	0.32
Drew	2	20	1.80	1.20	1.5	1.75	0.74	0	4	4	0.36	-1.06	0.27
Lost	3	20	2.10	1.37	2.0	2.06	1.48	0	5	5	0.41	-0.78	0.31
GoalsFor	4	20	8.75	4.59	8.0	8.38	4.45	3	20	17	0.72	-0.33	1.03
GoalsAgainst	5	20	8.75	3.67	8.5	8.25	2.97	4	18	14	1.03	0.31	0.82
GoalDifference	6	20	0.00	6.69	-0.5	0.00	6.67	-13	14	27	0.10	-0.59	1.50
Points	7	20	8.10	3.92	7.5	8.00	4.45	1	15	14	0.22	-1.04	0.88

Reporting Summary Statistics

> stargazer(PLSmall,title="Summary Statistics")

Table: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max
Won	20	2.100	1.447	0	5
Drew	20	1.800	1.196	0	4
Lost	20	2.100	1.373	0	5
Goals For	20	8.750	4.587	3	20
Goals Against	20	8.750	3.669	4	18
Goal Difference	20	0.000	6.689	-13	14
Points	20	8.100	3.919	1	15