Лекции по математическому анализу.

Contents

Исэ	История математического анализа	
1.	Множества и действия над ними. Точные грани числовых множеств.	1
1.1.	Алгебра высказываний	1
1.2.	Аксиомы множеств	2

История математического анализа

Definition. Математический анализ-область науки, где изучается переменная величина своеобразными методами иследования (анализом посредствам б.м. или посредствам предельных переходов.

Предшествинеками были: метод исчерпования и метод неделимового.

Definition. Метод исчерпования - античныйметоддля исследования площадей или объёмов тела. Для нахождения некоторой фигуры вписывалась монотоная последовательность других фигур и доказывалось, что их площадь неограничено приближается к площади искомой фигуры. Затем вычислялся предел и выдвагалась гипотиза , что этот предмет равен R , доказывалось, что обратное приводит к противоречию.

Definition. Метод неделимового -совокупность предметов для вычесления площадей геометрических тел. Идея метода для плоских фигур: разделить их на фигуры нулевой ширины, потом собирать без изменения длины , площадь которых известна.

1. Множества и действия над ними. Точные грани числовых множеств.

1.1. Алгебра высказываний.

- (1) $p \wedge q$ -конъюкция (логическое произведение)
- (2) $p \lor q$ -дизъюнкция (логическое или)
- (3) $p \to q$ -импликация с посылкой р (если..., то...)
- (4) $p \equiv q$ -эквиваленция (тогда и только тогда)
- (5) \overline{q} -отрицание
- (6) V произвольное истиное
- (7) F произвольное ложное
- (8) В квантер существования
- (9) ∀-квантор всеобщности

 $\mathrm{p,q,r}$ - произвольные высказывания

Definition. Множество -совокупность неупорядоченных неповторяющихся объектов

1.2. Аксиомы множеств.

- (1) Аксиома объемности -если множества A и B состоят из одних и тех же элементов, то они совпадают. A=B
- (2) Аксиома суммы для произвольных множеств A и B существует множество, элементы которого являются элементами множества A и все элементы множества B. $A \cup B$
- (3) Аксиома разности -для произвольного множества A и B существует множество, элементами кторого являются те и только те элементы множества A, которые не являются элементами множеста B. $A \setminus B$
- (4) Существет по крайней мере одно множество
 - (a) Произведение - $A\cap B$ множеств A и B -это общая часть сомножетелей: $\forall x\in A\cap B\equiv (x\in A)(x\in B)$
 - (b) Симметричная разность -разность двух множеств A и B определяется как : $A \triangle B \equiv (A \setminus B) \cup (A \setminus B)$

Definition. Включение -множесвто A называется подмножеством B, если каждый элемент множества B принадлежит множеству A. $A \subset B : A = B, B = A$

Definition. $C_M A$ -дополненое множества A в M. $C_m = A \setminus B$

Definition. Прямое(декартовое) произведение множеств X и Y называется множество всех упорядочных пар(x,y): $x \in X$, $x \in Y$, $X \times Y \neq Y \times X$

Definition. Отображение -правило f, по которому каждому элементу $x \in X$ ставится в соответсвие опредленый, и при этом единственный, элемент $y \in Y$. (отображение множества X в множества Y). X- область значения. Y-область определения.

Definition. Отображение $f: N \to Y$ множества N в произвеольное множество Y будем называть последовательностью (в Y) . Числовой последовательностью же мы будем называть : $\{x_n\}_{i=1}^{\infty}$

Definition. График функции - $\Gamma_f = \{(x,y) \in X \times Y \mid y = f(x)\}$

Definition. Образ множества A при отображение f называется множество $f(A) = \{y \in Y \mid \exists x \in A : y = f(x)\}$

Definition. Прообраз множества B при отображение $f:X\to Y$ $(B\subset Y)$ называется множество $f^{-1}(B)=\{x\in X\mid f(x)\in B\}$

Definition. Транзитивность - $f: X \to Y$ $g: Y \to Z \Rightarrow h: X \to Z$ $h(x) = g(f(x)) \forall x \in X$, где g(f(x))-суперпозиция отображения.

Definition. $f \circ g$ - суперпозиция $f: X \to Y \ g: Y \to Z \Rightarrow h: X \to Z$

Claim.
$$g \circ (f \circ g) = (h \circ g) \circ f \ \forall x \in X$$

$$Proof. \ \left[h \circ (g \circ f)\right] = h\left(\left(g \circ f\right)(x)\right) = h\left(g\left(f\left(x\right)\right)\right) = \left(h \circ g\right)\left(f\left(x\right)\right) = \left[\left(h \circ g\right) \circ f\right]\left(x\right)$$

Definition. $f: X \to Y$ отображение f от X в Y называется

- сюръективным или отображением "на" f(X) = Y
- инъективным или взаимно однозначным отображение "в" $\forall x_1,x_2 \in X$ $x_1 \neq x_2 \ f(x_1) \neq f(x_2)$, $x_1 = x_2 \ f(x_1) = f(x_2)$

• биективным или взаимно однозначным отображением "на" (одновременно и сюръективно и инъективно

Путь наше отображение биективно \Rightarrow можно установить новое отображение: $g:Y\to X\ (y\in Y,g(x)=x\in X)\ (g(y)=x)\Leftrightarrow (f(x)=y)\ g=f^{-1}$

$$q: Y \to X \ (y \in Y, q(x) = x \in X) \ (q(y) = x) \Leftrightarrow (f(x) = y) \ q = f^{-1}$$

- (1) обратное отображение биективно
- (2) Имеет место равенства:

(a)
$$f^{-1}(f(x)) = x \ \forall x$$