

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு நான்காம் தவணைப் பரீட்சை - 2023 National Field Work Centre, Thondaimanaru.

4th Term Examination - 2023

இரசாயனவியல் - II B

Chemistry - II B

Gr -13 (2023)

02

 \mathbf{T}

II B

பகுதி II B

- 💠 இப்பகுதியிலிருந்து எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடையளிக்க.
- **05)** a)
 - I) பின்வரும் தரவுகளைப் பயன்படுத்தி கீழேயுள்ள தாக்கத்தின் நியம வெப்பவுள்ளுறை மாற்றத்தைக் கணிக்க.

$$H - C \equiv C - H_{(g)} + H_{2(g)} + HI_{(g)} \longrightarrow CH_3 - CH_2 - I_{(g)}$$

<u> വിഞ്ഞെ</u> ப்பு	நியம பிணைப்புச்	சக்தி (KJm	ol ⁻¹)
C-H	412		
H-I	297		
C = C	611		
C - C	346		
C-I	218		
H - H	432		

II) பின்வரும் இரசாயனத் தாக்கத்தைக் கருதுக.

$$NO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow NO_{2(g)}$$

கீழே தரப்பட்ட இரசாயனத் தாக்கங்களின் நியம வெப்பவுள்ளுறைப் பெறுமானங்களைப் பயன்படுத்தி மேற்குறித்த தாக்கத்தின் ΔH^0 ஐக் கணிக்க.

$$2 \text{ NH}_{3 \text{ (g)}} + \frac{5}{2} \text{ O}_{2 \text{ (g)}} \rightarrow 2 \text{ NO}_{\text{ (g)}} + 3 \text{ H}_{2} \text{O}_{\text{(g)}}$$
 $\Delta \text{H}^{\theta} = -394 \text{ kJmol}^{-1}$

$$\frac{1}{2} N_{2(g)} + O_{2(g)} \rightarrow NO_{2(g)}$$
 $\Delta H^{\theta} = 33 \text{ kJmol}^{-1}$

$$NH_{3(g)} \rightarrow \frac{1}{2}N_{2(g)} + \frac{3}{2}H_{2(g)}$$
 $\Delta H^{\theta} = 46 \text{ kJmol}^{-1}$

$$H_2O_{(g)} \to H_{2(g)} + \frac{1}{2}O_{2(g)}$$
 $\Delta H^{\theta} = 242 \text{ kJmol}^{-1}$

- b) C₃H₈, SiH₄, CO₂ ஆகிய வாயுக்கள் முறையே 2 : 3 : 8 என்ற கனவளவு விகிதமுள்ள குடுவைக்குள் 127^OC இல் உள்ள போது அவற்றின் அமுக்கங்கள் முறையே 3 : 2 : 1 என்ற விகிதத்தில் காணப்பட்டன. இம்மூன்று குடுவைகளும் புறக்கணிக்கத்தக்க கனவளவுள்ள ஒரு குழாயினால் இணைக்கப்பட்டு வாயுக்கள் சுயாதீனமாக பரவவிட்ட போது தொகுதியின் அமுக்கம் 127^OC இல் 16.628 x 10⁴ Pa ஆகக் காணப்பட்டது. தொகுதியில் காணப்பட்ட வாயுக்களின் மொத்தத் திணிவு 4.07g ஆக இருந்தது. (C=12, H=1, Si=29, O=16) வாயுக்கள் இலட்சிய நடத்தையுடையன எனக் கருதி பின்வருவனவற்றைக் கணிக்க.
 - i. தொகுதியின் மொத்தக் கனவளவு.
 - ii. CO₂ வாயுவின் பகுதி அமுக்கம்.
 - iii. வாயுத் தொகுதியின் அடர்த்தி (g dm⁻³ இல்)

- iv. தொகுதிக்குள் KOH திண்மத்தைச் சேர்த்த போது ${
 m CO_2}$ வாயு மட்டும் முழுமையாக உறிஞ்சப்பட்டதெனின் தற்போது தொகுதியின் அமுக்கம் யாது?
- v. தொகுதியின் தற்போதைய அடர்த்தி யாது?
- **06)** a) 27° C இல் $A_{(s)}$ இன் 2 mol, $B_{(g)}$ இன் 1 mol மற்றும் $D_{(g)}$ இன் 1 mol ஆகியன 5 dm $^{-3}$ கனவளவுள்ள விறைத்த கொள்கலனொன்றில் எடுக்கப்பட்டு கீழே தரப்பட்ட சமநிலையை அடையவிடப்பட்டன.

 $2A_{(s)} + B_{(g)} \rightleftharpoons 2C_{(g)} + D_{(g)}$

 $27^{
m OC}$ இல் ஏற்பட்ட மேற்படி சமநிலையில் $m C_{
m (g)}$ இன் 1~
m mol காணப்பட்டது.

- i. $27^{\circ}\mathrm{C}$ இல் சமநிலைக் கலவையிலிருந்த $\mathrm{B,\,C,\,D}$ ஆகிய வாயுக்களின் மூல் அளவுகளைக் கணிக்க.
- ii. தரப்பட்ட சமநிலைக்கான சமநிலை மாறிலி Kc இற்கான கோவையை எழுதுக.
- iii. 27°c இல் மேற்படி சமநிலைத் தாக்கத்தின் Kc ஐக் கணிக்க.
- iv. இதிலிருந்து 27° C இல் சமநிலைக்கான Kp ஐ உய்த்தறிக. $(27^{\circ}$ C இல் $RT=~2500~\mathrm{J~mol}^{-1}$ எனக் கொள்க.)
- v. தொகுதியின் வெப்பநிலையை 227^OC இற்கு உயர்த்திய போது ஏற்பட்ட புதிய சமநிலையில் வாயு D இன் 1.25 mol காணப்பட்டதெனின் மேற்படி சமநிலைத் தாக்கத்தின் முன்முகத்தாக்கம் எவ்வகைக்குரியது (அகவெப்பம் / புற வெப்பம்) என்பதை உய்த்தறிக.
- vi. 27° C இல் ஏற்பட்ட சமநிலையில் தொகுதிக்குள் $1 \text{ mol } C_{(g)}$ ஐ சேர்க்கும் போது சமநிலை எத்திசையில் நகரும் என்பதை பொருத்தமான கணிப்பின் மூலம் உய்த்தறிக.
- vii. 27° C இல் ஏற்பட்ட ஆரம்ப சமநிலைத் தொகுதிக்குள் $B_{(g)}$, $C_{(g)}$ ஒவ்வொன்றினதும் 1 mol ஐச் சேர்ப்பின் சமநிலை எத்திசையில் நகரும் என்பதை தர்க்க ரீதியாக எதிர்வு கூறுக.
- b) $A_{(g)} + 2B_{(g)} \to AB_{2(g)}$, $\Delta H < O$ எனும் தாக்கம் பின்வரும் இரு படிகளினூடாக நடைபெறுகின்றதெனத் தரப்பட்டுள்ளது.

படி $1: A_{(g)} + B_{(g)} \rightleftharpoons AB_{(g)}$ விரைவானது.

படி $2: AB_{(g)} + B \longrightarrow AB_{2(g)}$ மெதுவானது.

- i. மேற்படி தாக்கத்துக்கான வீத விதியைப் பெறுக.
- ii. 300 K இல் படி (1) இற்குரிய தாக்கத்தின் Kc ஆனது $4 \times 10^{-5} \text{ mol}^{-1} \text{ dm}^3$ உம் பிற்தாக்கத்தின் வீத மாறிலி $2 \times 10^{-5} \text{ S}^{-1}$ உம் எனத் தரப்படின் முன்முக தாக்கத்தின் வீத மாறிலியைக் கணிக்க.
- iii. A, B ஒவ்வொன்றினது செறிவையும் இரு மடங்காக்கும் போது தாக்க வீதம் எவ்வாறு மாற்றமடையும்?
- iv. மேற்தரப்பட்ட தாக்கத்துக்கான சக்தி வரைபடத்தை வரைந்து பெயரிடுக. (முற்தாக்கத்தினதும் பிற்தாக்கத்தினதும் ஏவற்சக்திகள் முறையே Ea₁, Ea₂ என்க.)
- v. [B] >> [A] ஆகப் பேணப்பட்டு நிகழ்த்தப்பட்ட ஒரு தாக்கத்தில் A இன் செறிவு 0.8 mol dm^{-3} இலிருந்து 600 s களில் 0.125 mol dm^{-3} ஆகக் குறைவடைந்ததெனின் A இன் அரைவாழ்வுக் காலத்தைக் கணிக்க.

07) a) I)

- i. pH = 1 உடைய HCl_(aq) இன் செறிவு யாது?
- ii. 25° C இல் மேற்குறிப்பிட்ட HCl கரைசலின் $50~\rm{cm^3}$ ஐயும் $\rm{pH}=12$ உடைய $\rm{NaOH_{(aq)}}$ இன் $200~\rm{cm^3}$ ஐயும் கலந்து பெறப்பட்ட கரைசலின் \rm{pH} ஐக் காண்க.

- iii. 0.1 mol dm^{-1} செறிவுள்ள $CH_3 COOH_{(aq)}$ இன் pH ஐக் காண்க. (தரப்பட்ட வெப்பநிலையில் CH_3COOH இன் $Ka=1 \times 10^{-5} \text{ moldm}^{-3}$)
- iv. மேற்குறிப்பிட்ட $CH_3COOH_{(aq)}$ இன் $55~cm^3$ உடன் பகுதி II இல் தரப்பட்ட pH உடைய $NaOH_{(aq)}$ இன் $50~cm^3$ ஐச் சேர்ப்பதால் பெறப்படும் விளைவுக் கரைசலின் pH யாது?
- II) A ⇌ P எனும் தாக்கமானது பின்வரும் இரு படிகளினூடாக நடைபெறுகின்றதெனத் தரப்பட்டுள்ளது.

$$I \longrightarrow P$$
 (தா.வீ.மாறிலி k_2) இங்கு I என்பது இடைநிலையாகும்.

பின்வரும் சந்தர்ப்பங்களில் நேரத்துடன் A, I, P ஒவ்வொன்றினதும் செறிவு மாறும் முறையை பருமட்டான வரைபுகளில் காட்டுக.

i.
$$K_1 >> K_2$$
 ii. $K_2 >> K_1$

- b) A,B ஆகியன மூலக்கூற்றுச் சூத்திரம் $CoN_5H_{12}Br_2O_2$ உடைய இரு இணைப்புச் சேர்வைகளாகும். இவற்றின் இணைப்புக்கோளங்கள் எண்முகி வடிவானவை. இவற்றில் H அணுக்கள் NH₃ ஆக மாத்திரம் இருக்கின்றன. இரு சேர்வைகளிலும் கோபாற்று ஒரே ஒட்சியேற்ற நிலையில் இருக்கின்றது. சேர்வை B மாத்திரம் $AgNO_{3(aq)}$ உடன் ஓர் இள மஞ்சள் வீழ்படிவைத் தரும். அதேவேளை அவ்வீழ்படிவு ஐதான NH_3 இல் கரையாத போதிலும் செறிந்த NH_3 இல் கரைகின்றது.
- i. காரணங்கள் தந்து A, B ஆகிய சேர்வைகளின் கட்டமைப்புச் சூத்திரங்களை எழுதுக.
- ii. மேற்குறித்த சேர்வைகளில் Co இன் ஒட்சியேற்ற நிலை யாது?
- iii. மேலே தரப்பட்ட சேர்வைகளிலுள்ள Co அயனின் இலத்திரன் நிலையமைப்பை எழுதுக.
- iv. A,B ஆகிய இரு சேர்வைகளிலும் இணைந்த பொது இணையிகளை இனங்காண்க.
- v. சேர்வை A இல் உள்ள அன்னயனை இனங்காண்பதற்கு ஓர் இரசாயனச் சோதனையைத் தருக.

பகுதி IIC

- 💠 இப் பகுதியிலிருந்து எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடையளிக்குக.
- **08**) a) ஒரே சேதனத் தொடக்கச் சேர்வையாக $CH_3CH = CH_2$ ஐ மட்டும் பயன்படுத்தி சேர்வை G இன் தொகுப்புக்கான ஒரு தாக்க ஒழுங்கு கீழே தரப்பட்டுள்ளது.

- A தொடக்கம் G வரையான சேர்வைகளின் கட்டமைப்புகளை வரைவதன் மூலமும் படிகள் 1-8 இற்குப் பொருத்தமான சோதனைப் பொருள்களை பட்டியலில் தரப்பட்டவற்றிலிருந்து மாத்திரம் தெரிவு செய்வதன் மூலமும் இத்தாக்க ஒழுங்கு முறையைப் பூரணப்படுத்துக.
- b) i. பின்வரும் மாற்றீட்டை 6 இற்கு மேற்படாத படிகளைப் பயன்படுத்தி எவ்வாறு நிறைவேற்றுவீரெனக் காட்டுக.

$$CH_3 - C \equiv CH \longrightarrow CH_3 \quad CH_2 - CH = C - CHO$$

$$| CH_3 |$$

$$CH_3 = CH_3 | CH_3 |$$

ii. பென்சீனை மாத்திரம் சேதனத் தொடக்கச் சேர்வையாகப் பயன்படுத்தி ஏழு (07) இற்கு மேற்படாத படிமுறைகளைப் பயன்படுத்தி பின்வரும் மாற்றீட்டை எவ்வாறு நிறைவேற்றுவீர்?

- c) "அற்ககோல்களை விட அமீன்கள் மூல இயல்பு கூடியவை." மேலுள்ள கூற்றைச் சுருக்கமாக விளக்குக.
- d) $\mathrm{CH_3CH_2NH_2}$ இற்கும் $\mathrm{CH_3COCl}$ இற்குமிடையிலான தாக்கத்தின் விளைவின் கட்டமைப்பை எழுதுக.
 - மேற்குறிப்பிட்ட விளைபொருளை $\mathrm{CH_3CONH_2}$ $\mathrm{CH_3CH_2Cl}$ ஐயும் தாக்கமுறச் செய்து பெறமுடியாது என்பதை சுருக்கமாக விளக்குக.
- **09)** a) கரைசல் P ஆனது மூன்று உலோகக் கற்றயன்களைக் கொண்டுள்ளது. இக்கரைசலுடன் மேற்கொள்ளப்பட்ட சில பரிசோதனைகளும் அவற்றின் அவதானங்களும் பின்வரும் பாய்ச்சற்கோட்டுப் படத்தில் காட்டப்பட்டுள்ளன.

- ullet D இல் உள்ள கற்றயன் அமில ஊடகத்தில் $m H_2S$ உடன் வீழ்படிவைத் தரமாட்டாது.
- C இல் உள்ள உலோகம் பிறதிருப்பத்தைக் கொண்டது.
 - i. கரைசல் P இல் உள்ள உலோகக் கற்றயன்கள் யாவை?
 - ii. A இல் உள்ள நிறமுடைய வீழ்படிவுகள் எவை?
 - iii. B, C, D, E, F, G இற்குரிய சேர்வைகளை / அயன்களை இனங்கண்டு எழுதுக.
- b) கரைசல் Q ஆனது Fe^{3+} , Cl^{-} , H^{+} ஆகிய அயன்களை மட்டும் கொண்டுள்ளது. இவ்வயன்களின் செறிவுகளைத் துணிவதற்கு பின்வரும் நடைமுறைகள் A,B,C பின்பற்றப்பட்டன.
 - A. கரைசல் Q இன் $25.00~{\rm cm^3}$ உடன் மிகையான ${\rm AgNO_3}$ கரைசலைச் சேர்த்த போது கிடைத்த வீழ்படிவின் உலர் திணிவு $0.287{\rm g}$ ஆகும். கரைசல் Q இலுள்ள Cl^- அயன் செறிவைக் கணிக்க. $({\it engm})$ த் திணிவுகள் : ${\rm Ag}=108,\,{\rm Cl}=35.5)$
 - B. கரைசல் Q இல் பிறிதொரு $25.00~{\rm cm}^3$ எடுக்கப்பட்டு அதிலுள்ள ${\rm Fe}^{3+}$ அயன்கள் முற்றாக ${\rm FeS}$ ஆக வீழ்படிவாதற்கு போதியவாறு ${\rm H}_2{\rm S}$ குமிழியிடப்பட்டது. இங்கு உருவாகும் கந்தகம் அடங்கிய ஒரு விளைவான ${\rm FeS}$ உம் வீழ்படிவு ${\rm S}$ உம் வடிகட்டப்பட்டு வடிதிரவம் நடைமுறை ${\rm C}$ இற்குப் பயன்படுத்தப்பட்டது. மேலே உருவாகிய வீழ்படிவுகளை உலர்த்தி வளியில் வறுத்த போது வெளிவந்த ${\rm SO}_2$ வாயு $0.048~{\rm mol~dm}^{-3}$ அமில ${\rm KMnO}_4$ கரைசலின் $50.00~{\rm cm}^3$ இனுள்ளே செலுத்தப்பட்டது. இங்கு தாக்கம் புரியாத ${\rm KMnO}_4$ உடன் முற்றாகத் தாக்கம் புரிவதற்கு $0.12{\rm mol~dm}^{-3}$ ${\rm H}_2{\rm C}_2{\rm O}_4$ கரைசலின் $25.00~{\rm cm}^3$ தேவைப்பட்டது. கரைசலி ${\rm Q}$ இலுள்ள ${\rm Fe}^{3+}$ அயன் செறிவைக் கணிக்க.
 - C. மேலே நடைமுறை B இல் பெற்ற வடி திரவத்தில் உள்ள H_2S முற்றாக அகற்றப்பட்ட பின் அதனை 0.60 mol dm $^{-3}$ NaOH உடன் நியமித்த போது தேவைப்பட்ட கனவளவு 20.00 cm ஆகும். கரைசல் Q இல் H^+ அயன் செறிவைக் கணிக்க.
- 10) a) M ஆனது ஒரு 3d தொடரைச் சார்ந்த மூலகமாகும். அது ஒரே ஒட்சியேற்ற நிலையில் இரு வேறுபட்ட நிறங்களைக் கொண்ட ஒட்சோ அன்னயன்கள் இரண்டை உருவாக்கக் கூடியது. M இன் மிகப்பொதுவான ஒட்சியேற்ற நிலையில் உள்ள கற்றயனின் நீர்க்கரைசலிற்கு கார ஊடகத்தில் சேர்வை X இன் நீர்க்கரைசலைச் சேர்க்கும் போது மஞ்சள் நிறமுடைய கரைசல் பெறப்பட்டது. சேர்வை X பாகு நிலையுடைய, நீரைவிடக் கொதிநிலை கூடிய ஒரு திரவமாகும். X ஆனது தளமற்ற, முனைவாக்கமுடைய மூலக்கூறாக காணப்படுகின்றது.
 - i. M ஐ இனங்காண்க.
 - ii. M இன் தரைநிலை இலத்திரன் நிலையமைப்பை எழுதுக.
 - iii. வினாவிற் குறிப்பிடப்பட்ட M இன் இரு ஒட்சோ அன்னயன்களின் சூத்திரங்களையும் பெயர்களையும் குறிப்பிடுவதுடன் அவற்றின் நிறங்களையும் தருக.
 - iv. சேர்வை X இன் இரசாயனப் பெயர் யாது?
 - v. மேலே வினாவில் குறிப்பிடப்பட்ட மஞ்சள் நிறக்கரைசல் உருவாகும் தாக்கத்துக்கான ஈடு செய்த அயன்சமன்பாட்டை எழுதுக.

- vi. M இன் ஓர் உப்பு, வெப்பப் பிரிகையின் போது ஈரியல்புள்ள M இன் ஓர் ஓட்சைட்டை மட்டும் திண்ம விளைவாகத் தருகின்றது. அவ்வுப்பை இனங்கண்டு அதன் வெப்பப்பிரிகைக்கான சமன்பாட்டையும் எழுதுக.
- vii. மேலே பகுதி (vi) இல் குறிப்பிட்ட ஒட்சைட்டின் நிறம் யாது?
- viii. வினாவில் குறிப்பிடப்பட்ட M இன் இரு ஒட்சோ அன்னயன்களுக்கிடையில் நிலவக்கூடிய சமநிலைத் தாக்கத்தை எழுதுக.
- b) 500 K வெப்பநிலையில் வாயு A கூட்டப்பிரிகையடைந்து பின்வரும் சமன்பாட்டுக்கமைய வாயுக்கள் B, C ஐ கொடுக்கின்றது.

 $A_{(g)} \rightleftharpoons B_{(g)} + C_{(g)}$ சமநிலை மாறிலி $Kc = 1.6 \text{ mol dm}^{-3}$

அதே வெப்பநிலையில் வாயு B கூட்டப்பிரிகையடைந்து வாயு C, வாயு D ஆகியவற்றைக் கொடுக்கின்றது.

 $B_{(g)} \rightleftharpoons C_{(g)} + D_{(g)}$ சமநிலை மாறிலி $Kc = 2 \text{ mol dm}^{-3}$

ஆரம்பத்தில் 1dm³ கனவளவுள்ள விறைப்பான பாத்திரமொன்றில் 300K இல் 8 mol வாயு A எடுக்கப்பட்டு 500K இற்கு வெப்பமேற்றப்பட்டபோது மேற்படி இரண்டு சமநிலைகளும் பெறப்பட்டன.

சமநிலை $C_{(g)}$ இன் செறிவு 4 $\mod {dm}^{-3}$ ஆகும். எனின் சமநிலையில் $A,\,B,\,D$ ஆகியவற்றின் செறிவுகளை காண்க.