ESPACES VECTORIELS

1 Intersection de sous-espaces vectoriels

Proposition (Intersection de sev).

Soient E un \mathbb{R} -espace vectoriel, F et G deux sous-espaces vectoriels de E. Alors $F \cap G$ est un sous-espace vectoriel de E.

Preuve:

- $F \subset E$ et $G \subset E \Longrightarrow F \cap G \subset E$.
- F et G sous-espaces vectoriels de $E \Longrightarrow 0_E \in F$ et $0_E \in G \Longrightarrow 0_E \in F \cap G$.
- Soient $(u,v) \in (F \cap G)^2$ et $\alpha \in \mathbb{R}$. Alors, $(u,v) \in F^2$ et $(u,v) \in G^2$. Or

F sous-espace vectoriel de $E \Longrightarrow \alpha u + v \in F$.

G sous-espace vectoriel de $E \Longrightarrow \alpha u + v \in G$.

Ainsi, $\alpha u + v \in F \cap G$.

2 Somme de sous-espaces vectoriels

Proposition (Somme de sev).

Soient E un \mathbb{R} -espace vectoriel, F et G deux sous-espaces vectoriels de E. Alors F+G est un sous-espace vectoriel de E.

Preuve:

On rappelle que $F+G=\{u\in E,\,\exists\,(u_1,u_2)\in F\times G,u=u_1+u_2\}.$

Ainsi, un vecteur u de E est dans F+G si on peut l'écrire comme la somme d'un vecteur de F et d'un vecteur de G:

$$u = \underbrace{u_1}_{\in F} + \underbrace{u_2}_{\in G}$$

- De par sa définition, $F + G \subset E$.
- $0_E = \underbrace{0_E}_{\in F} + \underbrace{0_E}_{\in G}$ car F et G sev de E. D'où, $0_E \in F + G$.
- Soient $(u, v) \in (F + G)^2$ et $\alpha \in \mathbb{R}$.

 $\exists (u_1, u_2) \in F \times G \text{ et } \exists (v_1, v_2) \in F \times G \text{ tels que } u = u_1 + u_2 \text{ et } v = v_1 + v_2. \text{ Ainsi,}$

$$\alpha u + v = \alpha (u_1 + u_2) + (v_1 + v_2) = \underbrace{(\alpha u_1 + v_1)}_{\in F} + \underbrace{(\alpha u_2 + v_2)}_{\in G}$$

car F et G sev de E. Donc $\alpha u + v \in F + G$.

Théorème (Unicité de la décomposition dans F+G).

Soient E un \mathbb{R} -espace vectoriel, F et G deux sous-espaces vectoriels de E en somme directe c'est-à-dire $F \cap G = \{0_E\}$.

Alors la décomposition est unique dans F + G:

$$\forall u \in F + G, \exists !(u_1, u_2) \in F \times G, \ u = u_1 + u_2$$

Preuve:

Soit $u \in F + G$. Supposons deux décompositions possibles :

$$u = u_1 + u_2$$
 avec $(u_1, u_2) \in F \times G$ et $u = v_1 + v_2$ avec $(v_1, v_2) \in F \times G$

Alors, $u_1 + u_2 = v_1 + v_2 \Longrightarrow u_1 - v_1 = v_2 - u_2$. Comme $(u_1, v_1) \in F^2$ et F sev de E, $u_1 - v_1 \in F$. De même, $v_2 - u_2 \in G$ car $u_2 \in G$, $v_2 \in G$ et G sev de E. Ainsi, $u_1 - v_1 = v_2 - u_2 \in G$ et on obtient $u_1 - v_1 \in F \cap G$. Comme F et G sont en somme directe, on en déduit que $u_1 - v_1 = 0_E$ c'est-à-dire $u_1 = v_1$. De là, on en déduit que $u_2 = v_2$. L'écriture est unique.

3 Espaces vectoriels engendrés

Proposition (Ev engendré).

Soient E un \mathbb{R} -espace vectoriel et $(u_1, u_2, \dots, u_n) \in E^n$. Si u_n est combinaison linéaire de u_1, \dots, u_{n-1} alors

$$Vect((u_1, ..., u_{n-1}, u_n)) = Vect((u_1, ..., u_{n-1}))$$

Preuve:

$$\exists (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n \text{ tel que } v = \alpha_1 u_1 + \ldots + \alpha_{n-1} u_{n-1} + \alpha_n u_n$$

Or
$$\exists (\lambda_1, \ldots, \lambda_{n-1}) \in \mathbb{R}^{n-1}$$
 tel que $u_n = \lambda_1 u_1 + \ldots + \lambda_{n-1} u_{n-1}$. D'où

$$v = \alpha_1 u_1 + \ldots + \alpha_{n-1} u_{n-1} + \alpha_n \lambda_1 u_1 + \ldots + \alpha_n \lambda_{n-1} u_{n-1} = (\alpha_1 + \alpha_n \lambda_1) u_1 + \ldots + (\alpha_{n-1} + \alpha_n \lambda_{n-1}) u_{n-1}$$

Donc $v \in \text{Vect}((u_1, \dots, u_{n-1})).$

On a montré que Vect $((u_1, \ldots, u_{n-1}, u_n)) \subset \text{Vect } ((u_1, \ldots, u_{n-1})).$

 \supset Soit $v \in \text{Vect}((u_1, \ldots, u_{n-1})).$

$$\exists (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^{n-1} \text{ tel que } v = \alpha_1 u_1 + \dots + \alpha_{n-1} u_{n-1} = \alpha_1 u_1 + \dots + \alpha_{n-1} u_{n-1} + 0u_n$$

Donc $v \in \text{Vect}((u_1, \dots, u_{n-1}, u_n)).$

On a montré que Vect $((u_1, \ldots, u_{n-1})) \subset \text{Vect}((u_1, \ldots, u_{n-1}, u_n))$