МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ»

Тема: Изучение режимов адресации и формирования исполнительного адреса.

Студент(ка) гр. 1381	Биктагирова Д.С.
Преподаватель	Ефремов М. А.

Санкт-Петербург

2022

Цель работы.

Изучить основные принципы трансляции, отладки и выполнения программ на языке Ассемблера. Разобраться в используемых режимах адресации и получаемых результатах.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Выполнение работы.

- 1. Изменение набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, согласно своему варианту.
- 2. Трансляция программы с созданием файла диагностических сообщений. Объяснение обнаруженных ошибок и предупреждений и закомментирование операторов с ошибками в тексте программы

```
Z:\>mount c d:/tools
Drive C is mounted as local directory d:/tools\

Z:\>c:

C:\>masm lr2_comp.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [lr2_comp.OBJ]:
Source listing [NUL.LST]: lr2_comp
Cross-reference [NUL.CRF]:
lr2_comp.asm(41): error A2052: Improper operand type
lr2_comp.asm(48): warning A4031: Operand types must match
lr2_comp.asm(52): warning A4031: Operand types must match
lr2_comp.asm(53): error A2055: Illegal register value
lr2_comp.asm(67): error A2006: Phase error between passes

47800 + 461507 Bytes symbol space free

2 Warning Errors
3 Severe Errors
```

Нельзя читать из памяти и писать в память одной командой.

2)

```
66 002D 8B 8D 000E R mov cx,vec2[di]
67 [1r2_comp.asm(48): warning A4031: Operand types must match
```

Размер элементов массива vec2 - 1 байт, а регистра сх - 2 байта.

3)

```
72 0038 8B 89 0016 R mov cx,matr[bx][di]
73 1r2_comp.asm(52): warning A4031: Operand types must match
```

Размер элементов матрицы matr - 1 байт, а регистра сх - 2 байта.

4)

```
74 003C 8B 85 0022 R mov ax,matr[bx*4][di]
75 -1r2 comp.asm(53): error A2055: Illegal register value
```

В режиме реальных адресов нельзя использовать адресацию с масштабированием (нельзя умножать 16-битные регистры).

5)

```
91 0058 CA 0002 ret 2
92 005B Main ENDP
93 1r2_comp.asm(67): error A2006: Phase error between passes
```

Данная ошибка свидетельствует о том, что в процедуре Main содержатся ошибки.

3. Повторная трансляция исправленной программы и линковка.

```
C:\>masm lr2_comp.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [lr2_comp.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:

49950 + 461407 Bytes symbol space free

0 Warning Errors
0 Severe Errors

C:\>link lr2_comp.obj

Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Run File [LR2_COMP.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:
```

4. Выполнение программы в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

Начальные значения: CS = 1A0A, DS = 19F5, ES = 19F5, SS = 1A05, SP = 0018, IP = 0000.

Адрес	Символический	16-ричный код	Содержимое регистров и ячеек	
команды	код команды	команды	памяти	
			До выполнения	После
				выполнения
0000	PUSH DS	1E	Stack:	Stack:
			+0 0000	+0 19F5
			+2 0000	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000
			DS =19F5	DS =19F5
			SP = 0018	SP = 0016
			IP = 0000	IP = 0001
0001	SUB AX, AX	2BC0	AX = 0000	AX = 0000
			IP = 0001	IP = 0003
0003	PUSH AX	50	Stack:	Stack:
			+0 19F5	+0 0000
			+2 0000	+2 19F5
			+4 0000	+4 0000
			+6 0000	+6 0000
			AX = 0000	AX = 0000
			SP = 0016	SP = 0014
			IP = 0003	IP = 0004
0004	B8071A	MOV AX, 1A07	AX = 0000	AX = 1A07
	200,111	1120 1 1111, 1110,	IP = 0004	IP = 0007
0007	8ED8	MOV DS, AX	AX = 1A07	AX = 1A07
			DS =19F5	DS = 1A07
			IP = 0007	IP = 0009
0009	B8F401	MOV AX, 01F4	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C
000C	8BC8	MOV CX, AX	CX = 009F	CX = 01F4
		·,	AX = 01F4	AX = 01F4
			IP = 000C	IP = 000E
000E	B324	MOV BL, 24	BX = 0000	BX = 0024
	2021	1.10, 21, 21	IP = 000E	IP = 0010
			1 0001	
0010	B7CE	MOV BH, CE	BX = 0024	BX = CE24
	D / CL	, into i bii, ch	IP = 0010	IP = 0012
			11 - 0010	11 - 0012
0012	C7060200CEFF	MOV [0002], FFCE	IP = 0012	IP = 0018

0018	BB0600	MOV BX, 0006	BX = CE24 $IP = 0018$	BX = 0006 $IP = 001B$
001B	A30000	MOV [0000], AX	AX = 01F4 $IP = 001B$	AX = 01F4 $IP = 001E$
001E	8A07	MOV AL, [BX]	AX = 01F4 BX = 0006 IP = 001E	AX = 0101 BX = 0006 IP = 0020
0020	8A4703	MOV AL, [BX + 03]	AX = 0101 BX = 0006 IP = 0020	AX = 0104 BX = 0006 IP = 0023
0023	8B4F03	MOV CX, [BX + 03]	CX = 01F4 BX = 0006 IP = 0023	CX = 0804 BX = 0006 IP = 0026
0026	BF0200	MOV DI, 0002	DI = 0000 IP = 0026	DI = 0002 IP = 0029
0029	8A850E00	MOV AL, [000E + DI]	AX = 0104 DI = 0002 IP = 0029	AX = 010A DI = 0002 IP = 002D
002D	BB0300	MOV BX, 0003	BX = 0006 IP = 002D	BX = 0003 IP = 0030
0030	8A811600	MOV AL, [0016 + BX + DI]	AX = 010A BX = 0003 DI = 0002 IP = 0030	AX = 01FD BX = 0003 DI = 0002 IP = 0034
0034	B8071A	MOV AX, 1A07	AX = 01FD $IP = 0034$	AX = 1A07 $IP = 0037$
0037	8EC0	MOV ES, AX	AX = 1A07 ES = 19F5 IP = 0037	AX = 1A07 ES = 1A07 IP = 0039
0039	268B07	MOV AX, ES:[BX]	AX = 1A07 ES = 1A07 BX = 0003 IP = 0039	AX = 00FF ES = 1A07 BX = 0003 IP = 003C
003C	B80000	MOV AX, 0000	AX = 00FF $IP = 003C$	AX = 0000 $IP = 003F$
003F	FF360000	PUSH [0000]	Stack: +0 0000 +2 19F5	Stack: +0 01F4 +2 0000

			+4 0000	+4 19F5
			+6 0000	+6 0000
			SP = 0014	SP = 0012
			IP = 003F	IP = 0043
0043	FF360200	PUSH [0002]	Stack:	Stack:
			+0 01F4	+0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
			SP = 0012	SP = 0010
			IP = 0043	IP = 0047
0047	8BEC	MOV BP, SP	BP = 0000	BP = 0010
			SP = 0010	SP = 0010
			IP = 0047	IP =0049
0049	8B5602	MOV DX, [BP + 02]	DX = 0000	DX = 01F4
			BP = 0010	BP = 0010
			Stack:	Stack:
			+0 FFCE	+0 FFCE
			+2 01F4	+2 01F4
			+4 0000	+4 0000
			+6 19F5	+6 19F5
			SP = 0010	SP = 0010
			IP = 0049	IP = 004C
004C	CA0200	RET Far 0002	Stack:	Stack:
			+0 FFCE	+0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000
			SP = 0010	SP = 0016
			IP = 004C	IP = FFCE
			CS = 1A0A	CS = 01F4

Выводы.

В ходе выполнения лабораторной работы были получены основные навыки программирования на ассемблере, изучены основные режимы адресации памяти.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lr2_comp.asm

```
; Головная процедура
Main PROC FAR
push DS
 sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al, [bx]
; mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al, matr[bx][di]
; mov cx, matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
```

```
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END
```