Artificial Intelligence for FAULT prediction

Complex System Design

In collaboration with:

A.Y. 2021/2022

Team

Matteo Romagnoli
matteo02.romagnoli@studenti.unicam.it

Roberto Cesetti
roberto.cesetti@studenti.unicam.it

Supervisors

Contents

01. Introduction

Introduction of the project context

02. Architecture

The main component of the system

03. Last updates

Rest system and Open Telemetry

04. Conclusion

Conclusion and future developments

Loccioni

Loccioni develops measurements and control systems to help manufacturers perform at their best, saving time and money while respecting human safety and the natural environment.

Application Domain

General Business Intelligent schema

Database

Storage of collected data

Rules & models

Use rules and templates to create data statistics

Objective

Improve the quality of the supplied product

IoT Sensors

Data production from IoT sensors, alarms and industrial machines

Analytical tools & ML

Data analysis and transformation using Machine Learning tools

Action

Data-driven actions performed by the company

Objective

A system that allows the company to integrate Machine Learning Algorithms, for each industrial machine used, in a simple way

Main task

Pluggable ML algorithms

Language

Using .NET core and C# language

WORK PLANE

Development activities

Workflow

GANTT Diagram

Workflow

ARCHITECTURE

The architecture of the system has the following components.

In this way, the architecture provides some constraint about input and output at each stage of the pipeline.

MLManager

- Create ML pipelines
- Train the model
- · Evaluate the model
- · Predict a value

Pipeline

- It represents a sequence of filters, transformations and ML algorithms
- Append filters, transformations and ML algorithms

ARCHITECTURE

The pipeline is the result of the concatenation of this 3 operations.

Pipeline

Filter

- · Interface for data filters
- We are able to implement any kind of filter

Transformer

- Input Data transformation
- Implemented using ML.NET Trasformers

Algorithm

- ML or specific algorithm
- ONNX / Tensorflow pre-trained model

Pipeline constraints

Latest updates

REST API services

Open Telemetry

OpenTelemetry integration

01

Application

The system integrate the OpenTelemetry tracer and exporter

OT Collector

It is an external component that receive, process and export the received telemetries

Backend

It is a system that allow to store and analyze the telemetries

Flow of the program in REST API mode

The server, if is available, accept the request and instantiate all the resources.

The server will process the request and perform some computation.

Conclusion

Conclusion

The system meets all the requirements that were defined during the meetings with the development team

Future developments

However it could be improved by adding additional features such as:

- Automate the insertion and removal of algorithms
- Generic implementation for the input algorithms
- Perform asynchronous predictions

