Билет №6 Функции многих переменных. Частные производные и полный дифференциал для функций многих переменных. Достаточные условия дифференцируемости. Градиент.

Можем рассматривать Евклидово пространство (\mathbb{E}^n) в смысле конечномерного (имеется конечный базис) вещественного векторного пространства \mathbb{R}^n с введённым на нём положительно определённым скалярным произведением или как метрическое пространство. В статье будет использоваться оба варианта.

Говоря об изменении двух независимых переменных х и у, мы должны всякий раз указывать, какие пары значений (х, у) они могут принимать совместно; множество М этих пар и будет областью изменения переменных х, у.

Определение: Переменная z (с областью изменения Z) называется функцией независимых переменных x_1, x_2, \ldots, x_m в множестве M, если каждой паре (x_1, x_2, \ldots, x_m) их значений из M - по некоторому правилу или закону ставится в соотстветствие одно определённое значение z из $\mathbb Z$

Назовём m-мерной 'точкой' систему из m вещественных чисел: $\mathrm{M}(x_1,x_2,\ldots,x_m)$; сами числа x_1,x_2,\ldots,x_m являются координатами этой точки М. Множество всех мыслимых т-мерных точек составляет тмерное 'пространство', которое иногда называют арифметическим. Введём понятие 'расстояния' $\overline{MM'}$ между двумя m-мерными точками $M(x_1,x_2,\ldots,x_m),M'(x_1',x_2',\ldots,x_m')$:

$$\overline{MM'} = \overline{M'M} = \sqrt{\sum_{i=1}^{n} (x_i' - x_i)^2}$$

Множества точек m-мерного пространства \mathbb{E}^m :

- 1. m-мерный шар: $(x_1-x_1')^2+(x_2-x2')^2+\cdots+(xm-xm0)R2$ 2. m-мерный параллелепипед: $|x_1-x_1'|\leq d_1, |x_2-x_2'|\leq d2,\ldots,|x_m-x_m'|\leq dm$

Определение: Будем называть ϵ -окрестностью точки $M_0(x_1^0, x_2^0, \dots, x_m^0)$ m-мерного евклидового пространства \mathbb{E}^m открытый m-мерный шар радиуса ϵ с центром в точке M_0

Точка множества называется внутренней точкой этого множества, если существует некоторая ϵ окрестность точки M, все точки которой принадлежат множеству M, а если помимо этого эта окрестность содержит точки не принадлежащие М, то точка называется граничной.

Определение: Множество, целиком состоящее из внутренних точек, будем называть открытой

Определение: Если каждая граничная точка множества является точкой этого множества, то множество называется замкнутым.

Определение: Если все точки множества находятся внутри некоторого шара, то эта область называется ограниченной.

Пример функции двух переменных:

$$u=\sqrt{\cos(x^2+y^2)}$$

Областью задания функции является множество точек, координаты которых удовлетворяют неравенству $\sqrt{\cos(x^2+y^2)} \ge 0$. Это неравенство эквивалентно неравенствам $0 \le x^2+y^2 \le \frac{\pi}{2},\ 2k\pi-\frac{\pi}{2} \le x^2+y^2 \le 2k\pi+\frac{\pi}{2},\ k=1,\ 2,$

Таким образом, множество точек состоит из круга радиуса $\sqrt{\pi/2}$ с центром в точке O(0,0) и кольцеобразных областей. Получившаяся область - несвязная

Для упрощения, далее, иногда будет рассматриваться случай 2 или трёх переменных; всё дальнейшее справедливо и для функций m переменных.

Определение предела и непрерывности для функции многих переменных

Определение: Пусть функция z=f(x,y) определена в некоторой окрестности точки $M_0(x_0;y_0)$, кроме, быть может, самой этой точки. Число A называется пределом функции z=f(x,y) при $x \to x_0$ и $y \to y_0$ (или, что то же самое при $M(x,y) \to M_0(x_0,y_0)$), если для $\forall \epsilon > 0 \exists \delta > 0$ такое, что для всех $x \neq x_0$ и $y \neq y_0$ и удовлетворяющих неравенству $\sqrt{(x-x_0)^2+(y-y_0)^2} < \delta \Rightarrow |f(x,y)-A| < \epsilon$.

Из определения можно сделать вывод, что раз уж предел существует, то он не зависит от пути по которому М стремится к M_0 , а таких направлений бесконечно, когда как для функции одной переменной всего два.

Определение: Функция z=f(x,y) (или f(M)) называется непрерывной в точке $M_0(x_0;y_0)$, если она:

- 1) определена в этой точке и некоторой её окрестности
- 2) имеет предел $\lim_{M\to M_0} f(M)$
- 3) этот предел равен значению функции z в точке M_0 , т.е. $\lim_{M \to M_0} f(M) = f(M_0)$

Или на языке $\epsilon - \delta$ - $\forall \epsilon > 0$ $\exists \delta > 0$: $|f(x_0, \ldots, x_m) - f(x'_0, \ldots, x_m)| < \epsilon$ лишь только $|x_1 - x'_1| < \delta, \ldots, |x_m - x'_m| < \delta$. (Отличие от определения предела в том, что функция должна быть определена и в самой точке тоже; ну а если можем подобрать такое $\delta > 0$ по $\epsilon > 0$, что оно годно для всех точек (x_0, y_0) из М одновременно, то f равномерно непрерывна в M, ничего нового).

Пример:

 $\lim_{\substack{x\to 0\\y\to 0}}\frac{xy}{x^2+y^2}$ - функция определена на всей плоскости за исключением x=0,y=0. Если взять две частичные последовательности точек $M_n(1/n,1/n)$ и $M_n'(2/n,1/n)$, сходящихся к точке (0,0) то окажется, что при всех n

 $f(M_n) = 1/2$, а $f(M'_n) = 2/5$. Отсюда следует, что упомянутого предела не существует.

функция $f(x_1, ..., x_m) = f(M)$ и меет пределом число A при c тре млении переменных $x_1, ..., x_m$, соответственно, k $a_1, ..., a_m$ (или — короче — при стремлении точки M k точке M_0), если, какую бы ни извлечь из \mathcal{M} последовательность (8) отличных от $M_0(a_1, ..., a_m)$ точек, сходящуюся k M_0 , числовая последовательность $\{f(x_1^{(n)}, ..., x_m^{(n)})\} = \{f(M_n)\}$, состоящая из соответствующих значений функции, всегда сходится k k.

Наоборот существует предел у $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2y}{x^2+y^2}$ это вытекает из неравенства $|\frac{x^2y}{x^2+y^2}| \le 1/2|x|$

Частные производные и дифференцируемость для функций многих переменных. Связь этих понятий. Полный дифференциал для функций многих переменных. Достаточные условия дифференцируемости

Определение: Частная производная функции f(x, y, z) по x в точке (x меняется, стремясь к x_0 , остальные переменные - фиксированы) (x_0, y_0, z_0) :

$$\lim_{\Delta_x \to 0} \frac{\Delta_x u}{\Delta_x} = \frac{f(x_0 + \Delta_x, y_0, z_0) - f(x_0, y_0, z_0)}{\Delta_x}$$

Теперь придадим всем трём независимым переменным некоторые приращения, тогда $\Delta_u = \Delta f(x_0, y_0, z_0) =$ $f(x_0 + \Delta_x, y_0 + \Delta_y, z_0 + \Delta_z) - f(x_0, y_0, z_0)$ называется полным приращением функции.

Определение: f дифференцируема, если её полное приращение представимо в виде: $\Delta_u = \Delta f(x_0, y_0, z_0) =$ $f_x'(x_0,y_0,z_0)\cdot\Delta_x+f_y'(x_0,y_0,z_0)\cdot\Delta_y+f_z'(x_0,y_0,z_0)\cdot\Delta_z+\alpha\cdot\Delta_x+\beta\cdot\Delta y+\gamma\cdot\Delta z$, где $lpha,eta,\gamma$ бесконечно малые функции от $\Delta_x, \Delta_y, \Delta_z$ (1) и вместе с ними стремятся к нулю.

Определение: Линейная часть приращения функции, называется её полным дифференциалом и обозначается символом $df(x_0, y_0, z+0)$: $df(x_0, y_0, z+0) = f'_x(x_0, y_0, z_0) \cdot \Delta_x + f'_y(x_0, y_0, z_0) \cdot \Delta_y + f'_y(x_0, y_0, z_0) \cdot \Delta_y$ $f_z'(x_0, y_0, z_0) \cdot \Delta_z$

Теорема (Лагранжа, о конечных приращениях): Пусть f(x) определена и непрерывна в замкнутом промежутке [a,b], существует конечная производная f'(x), хотя бы в (a,b). Тогда между а и b найдётся такая точка с (a<c<b), что для неё выполняется равенство:

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Теорема (Необходимое условие дифференцируемости функции в точке): Если функция дифференцируема в точке x_0 , то она имеет в точке x_0 все частные производные $\frac{\partial f}{\partial x_i}(x_0), i = \overline{1, n}$. (Доказательство см. Тер-Крикоров А.М. "Курс математического анализа стр 242-249 https://www. dropbox.com/s/1rz1bs2hg0pbi0g/Ter-Krikorov.djvu)

Теорема (Достаточное условие дифференцируемости): Если существуют непрерывные частные производные в точке (x_0, y_0, z_0) и некоторой её окрестности, то функция f дифференцируема. \mathcal{A} оказательство: Представим приращение функции Δ_u в виде:

$$\Delta_u = [f(x_0 + \Delta_x, y_0 + \Delta_y, z_0 + \Delta_z) - f(x_0, y_0 + \Delta_y, z_0 + \Delta_z)] + [f(x_0, y_0 + \Delta_y, z_0 + \Delta_z) - f(x_0, y_0, z_0 + \Delta_z)] + [f(x_0, y_0 + \Delta_y, z_0 + \Delta_z) - f(x_0, y_0 + \Delta_z)] + [f(x_0, y_0 + \Delta_y, z_0 + \Delta_z)] + [f(x_0, y_0 + \Delta_z, z_0 + \Delta_z, z_0 + \Delta_z)] + [f(x_0, y_0 + \Delta_z, z_0 + \Delta_z, z_0 + \Delta_z, z_0 + \Delta_z)] + [f(x_0, y_0 + \Delta_z, z_0 + \Delta_z, z_0 + \Delta_z, z_0 + \Delta_z, z_0 + \Delta_z)] + [f(x_0, y_0 + \Delta_z, z_0 + \Delta_z, z_0 + \Delta_z, z$$

Каждая из этих разностей представляет частное приращение функции лишь по одной переменной. Так как мы предположили существование частных производных в окрестности точки (x_0, y_0, z_0) , то - при достаточной малости приращений - к этим разностям по отдельности можно применить формулу конечных приращений:

$$\Delta_{u} = f'_{x}(x_{0} + \theta \Delta_{x}, y_{0} + \Delta_{u}, z_{0} + \Delta_{z}) \cdot \Delta_{x} + f'_{x}(x_{0}, y_{0} + \theta_{1} \Delta_{u}, z_{0}) \cdot \Delta_{u} + f'_{x}(x_{0}, y_{0}, z_{0} + \theta_{2} \Delta_{z}) \cdot \Delta_{z}$$

(Если рассмотрим первую разность, то там происходит переход от $\mathbf{x}=x_0$ к $\mathbf{x}=x_0+\Delta_x$. Производная по х от этой функции, по предположению, существует для всех значений х в промежутке $[x_0, x_0 + \Delta_x]$ - можем применять формулу конечных приращений. Точка с по формуле у нас лежит в промежутке, поэтому приращение берём с $\theta < 1$) Если положить здесь

$$f'_{x}(x_{0} + \theta \Delta_{x}, y_{0} + \Delta_{y}, z_{0} = f'_{x}(x_{0}, y_{0}, z_{0}) + \alpha$$

$$f'_{x}(x_{0}, y_{0} + \theta_{1}\Delta_{y}, z_{0}) = f'_{y}(x_{0}, y_{0}, z_{0}) + \beta$$

$$f'_{x}(x_{0}, y_{0}, z_{0} + \theta_{2}\Delta_{z}) = f'_{z}(x_{0}, y_{0}, z_{0}) + \gamma$$

$$f'_x(x_0, y_0 + \theta_1 \Delta_y, z_0) = f'_y(x_0, y_0, z_0) + \beta$$

$$f'_x(x_0, y_0, z_0 + \theta_2 \Delta_z) = f'_z(x_0, y_0, z_0) + \gamma$$

то придём к выражению (1) для Δ_u . Устремляем приращения к 0, тогда аргументы производных в левых частях этих равенств стремятся к x_0, y_0, z_0 (тк $\theta, \theta_1, \theta_2$ - правильные дроби), следовательно, сами производные, ввиду предположенной непрерывности их для этих значений переменных, стремятся к производным в правых частях, а α, β, γ - к нулю. Доказательство закончено.

Связь дифференцируемости и непрерывности для функции многих переменных.

(Скорей всего имелась ввиду одна из следующих теорем; привожу доказательство первой)

Теорема: Если функция нескольких переменных дифференцируема в некоторой точке, то она непрерывна в этой точке.

Доказательство: Тк функция f(x,y) дифференцируема, тогда её полное приращение в точке а можно записать в виде: $\Delta f(a) = \frac{\partial f}{\partial x}(a)\Delta_x + \frac{\partial f}{\partial y}(a)\Delta_y + \alpha\Delta_x + \beta\Delta_y$, где $\alpha \to 0, \beta \to 0$ при $\Delta_x \to 0, \Delta_y \to 0$. Из этого следует, что существует предел: $\lim \Delta_x \to 0 \Delta f(a) = 0$, означающий, что функция f(x,y) непрерывна в точке а. (тк непрерывная функция характеризуется тем, что бесконечно малому приращению аргумента отвечает бесконечно малое же приращение функции)

Доказательство закончено.

Теорема: Предположим, что: 1) функция f(x,y) определена в открытой области D, 2) в этой области существуют первые производные f'_x и f'_y , а также вторые смешанные производные f''_{xy} и f''_{yx} и, наконец, 3) эти последние производные, как функции х и у, непрерывны в некоторой точке (x_0, y_0) области D. Тогда в этой точке:

$$f_{xy}''(x_0, y_0) = f_{yx}''(x_0, y_0)$$

Производная по направлению. Градиент дифференцируемой функций

Производная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Пусть функция $\mathbf{u} = \mathbf{f}(\mathbf{x},\mathbf{y},\mathbf{z})$ задана в некоторой окрестности точки $M_0(x_0,y_0,z_0)$. Рассмотрим некоторое направление, определяемое единичным вектором \overline{a} с координатами $\cos(\alpha),\cos(\beta),\cos(\gamma)$ (из аналитической геометрии известно, что если единичный вектор \overline{a} составляет с осями координат углы α,β,γ , то координаты этого векторы равны $\cos(\alpha),\cos(\beta),\cos(\gamma)$). Проведём через точку M_0 ось \mathbf{l} , направление которой совпадает с направлением вектора \overline{a} , возьмём на этой оси произвольную точку $\mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{z})$ и обозначим через \mathbf{L} величину направленного отрезка $\overline{M_0M}$ указанной оси.

Величиной L направленного отрезка $\overline{M_0M}$ оси l называется число, равное его длине, взятой со знаком плюс, если направление этого отрезка совпадает с направлением оси l, и со знаком минус, если направление этого отрезка противоположно направлению оси l. Из аналитической геометрии известно, что координаты x,y,z, точки M определяются равенствами: $x=x_0+L\cos\alpha$, $y=y_0+L\cos\beta$, $z=z_0+L\cos\gamma$.

На указанной оси l функция u=f(x,y,z) является сложной функцией одной переменной величины L.

Определение: Под производной рассматриваемой сложной функции в данном направлении $\overline{l=(l_x;l_y;l_z)}$ понимается выражение:

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial l} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial l} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial l}$$

, а тк $\frac{\partial x}{\partial l}=\cos\alpha, \frac{\partial y}{\partial l}=\cos\beta, \frac{\partial z}{\partial l}=\cos\gamma,,$ то

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x}\cos\alpha + \frac{\partial u}{\partial y}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma$$

Определение: Градиентом функции $\mathbf{u}=\mathbf{f}(\mathbf{x},\mathbf{y},\mathbf{z})$ в точке M_0 называется вектор, обозначаемый символом gradu и имеюющий координаты, соответственно равные производным $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}$, взятым в точке M_0 .

Производная функции и в точке M_0 по направлению, определяемому градиентом этой функции в

указанной точке, имеет максимальное значение по сравнению с производной по любому другому направлению в точке M_0 . (Почему? Да потому https://studfiles.net/preview/3924470/page:8/) Почитать дополнительно http://mathprofi.ru/proizvodnaja_po_napravleniju_i_gradient.html