Основы теории графов

осень 2013

Александр Дайняк

www.dainiak.com

Связность

- *Связный граф* это граф, в котором между любыми двумя вершинами существует путь
- *Компонента связности* графа это его максимальный связный подграф

Связность

- *Mocm* это ребро, удаление которого приводит к графу с бо́льшим числом компонент связности
- Точка сочленения вершина, удаление которой приводит к графу с большим числом компонент связности

k-связность

k-связный (k-вершинно-связный) граф — это такой связный граф, что чтобы сделать его несвязным или одновершинным, нужно удалить не менее k вершин.

Тривиальные наблюдения:

- 1-связные графы это то же, что и связные графы
- В k-связном графе при $k \geq 2$ должно быть не менее чем (k+1) вершин
- Если граф (k+1)-связен, то он и k-связен
- Если из k-связного графа удалить любые l вершин, то граф останется по крайней мере (k-l)-связным

Рёберная *k*-связность

k-рёберно-связный граф — это такой связный граф, что чтобы сделать его несвязным, нужно удалить не менее k рёбер.

Тривиальные наблюдения:

- Если граф (k+1)-рёберно-связен, то он и k-рёберно-связен
- 1-рёберно-связные графы это то же, что и связные графы
- Если из k-рёберно-связного графа удалить любые l рёбер, то полученный граф будет, как минимум, (k-l)-рёберно-связным

Характеристики связности

- $\kappa(G)$ число вершинной связности графа. Это минимальное число вершин, которые нужно удалить из графа, чтобы он стал одновершинным или несвязным.
- $\lambda(G)$ число рёберной связности. Это минимальное число рёбер, которые нужно удалить из графа, чтобы он стал несвязным

Характеристики связности

Имеют место неравенства

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

При этом для любых $\kappa, \lambda, \delta \in \mathbb{N}$, таких, что $\kappa \leq \lambda \leq \delta$, можно указать граф G, имеющий

$$\kappa(G) = \kappa$$
, $\lambda(G) = \lambda$, $\delta(G) = \delta$

Теорема Мадера

Теорема. (W. Mader '1972)

Пусть непустой граф G таков, что $||G|| \ge 2k \cdot |G|$. Тогда в G найдётся (k+1)-связный подграф.

Замечание.

Из доказательства теоремы также будет следовать, что существует такой (k+1)-связный $H\subseteq G$, для которого

$$\frac{||H||}{|H|} \ge \frac{||G||}{|G|} - k$$

Положим $\gamma \coloneqq ||G||/|G| \ge 2k$.

Рассмотрим множество подграфов

$$\mathcal{G} \coloneqq \{G' \subseteq G \mid |G'| \ge 2k \land ||G'|| > \gamma \cdot (|G'| - k)\}$$

- Множество \mathcal{G} непусто, т.к. $G \in \mathcal{G}$.
- Для любого $G' \in \mathcal{G}$ выполнено |G'| > 2k, т.к. иначе мы имели бы

$$||G'|| > \gamma \cdot (2k - k) = \gamma k \ge 2k^2 > {2k \choose 2} \ge ||G'||$$

- $\gamma \coloneqq ||G||/|G| \ge 2k$
- $G := \{G' \subseteq G \mid |G'| \ge 2k \land ||G'|| > \gamma \cdot (|G'| k)\}$
- Для любого $G' \in \mathcal{G}$ выполнено |G'| > 2k

Пусть H — граф из $\mathcal G$ с минимальным числом вершин.

Имеем $\delta(H) > \gamma$, иначе можно было удалить из H вершину степени $\leq \gamma$, и полученный граф оказался бы снова из \mathcal{G} .

- $\gamma \coloneqq ||G||/|G| \ge 2k$
- $G := \{G' \subseteq G \mid |G'| \ge 2k \land ||G'|| > \gamma \cdot (|G'| k)\}$
- H граф из $\mathcal G$ с минимальным числом вершин
- $\delta(H) > \gamma$

Допустим, что H не (k+1)-связный и придём к противоречию.

Пусть найдётся $S \subset V(H)$, такое, что $|S| \leq k$ и (H - S) несвязен.

Тогда H имеет вид $H_1 \cup H_2$, где $V(H_1) \cap V(H_2) = S$, $V(H_1) \setminus S$ и $V(H_2) \setminus S$ непусты и между $V(H_1) \setminus S$ и $V(H_2) \setminus S$ рёбер нет.

 H_1 S H_2

- $\gamma \coloneqq ||G||/|G| \ge 2k$
- $\mathcal{G} \coloneqq \{G' \subseteq G \mid |G'| \ge 2k \land ||G'|| > \gamma \cdot (|G'| k)\}$
- H граф из $\mathcal G$ с минимальным числом вершин
- $\delta(H) > \gamma$

- H_1 S H_2
- Пусть $S \subset V(H), |S| \leq k, H = H_1 \cup H_2, V(H_1) \cap V(H_2) = S,$ между $V(H_1) \setminus S$ и $V(H_2) \setminus S$ рёбер нет.
- У любой вершины из $V(H_i)\setminus S$ более γ соседей, так что $|H_i|>2k$.
- Из минимальности H следует $\|H_i\| \le \gamma \cdot (|H_i| k)$. Отсюда $\|H\| \le \|H_1\| + \|H_2\| \le \gamma \cdot (|H_1| + |H_2| 2k) \le \gamma \cdot (|H| k)$
- противоречие с выбором $H \in \mathcal{G}$.

Теорема Менгера

• Граф является k-вершинно-связным т. и т.т., когда любую пару вершин графа можно соединить k цепями, не имеющими общих внутренних вершин.

(вершинная теорема Менгера)

• Граф является k-рёберно-связным т. и т.т., когда любую пару вершин графа можно соединить k цепями, не имеющими общих рёбер.

(рёберная теорема Менгера)

Тривиальная часть теоремы:

• Если любую пару вершин графа можно соединить k цепями, не имеющими общих рёбер, то граф является k-рёберно-связным

(Т.к. никакую пару вершин графа нельзя отрезать друг от друга, удалив произвольные (k-1) рёбер)

Нетривиальная часть теоремы:

• Если граф является k-рёберно-связным, то любую пару вершин графа можно соединить k цепями, не имеющими общих рёбер

Доказательство — с помощью теоремы Форда—Фалкерсона (максимальная величина потока равна минимальной пропускной способности разреза)

- Зафиксируем в k-рёберно-связном графе произвольную пару вершин s,t.
- Каждое ребро заменим на пару противоположных дуг.
- Пропускные способности всех дуг считаем равными 1.

- Если в полученной сети есть разрез (отделяющий s от t) пропускной способности k', то исходный граф можно разделить на несколько компонент связности удалением соответствующих k' рёбер.
- Т.к. исходный граф k-рёберно-связен, то пропускная способность любого разреза в сети не меньше k. Значит в сети есть целочисленный поток величины k.

• Осталось в построенном потоке удалить ориентированные циклы, если они есть:

- Полученный поток определяет k не пересекающихся по дугам путей, ведущих из s в t.
- Эти пути соответствуют k не пересекающимся по рёбрам цепям между s и t в исходном графе.

• Граф является k-связным т. и т.т., когда любую пару вершин графа можно соединить k цепями, не имеющими общих внутренних вершин.

Тривиальная часть:

• Если любую пару вершин графа можно соединить k цепями без общих внутренних вершин, то граф является k-связным.

Нетривиальная часть:

• В k-связном графе любую пару вершин можно соединить k цепями без общих внутренних вершин.

Доказательство, как и в рёберном случае, выводится из теоремы Форда—Фалкерсона. Теперь нужно добиться, чтобы у вершин графа тоже были «пропускные способности».

По исходному графу строим сеть:

- Каждой вершине v графа соответствует две вершины сети: v^- и v^+
- ullet Для каждой пары вершин сети v^- , v^+ проводим дугу из v^- в v^+
- Если в исходном графе было ребро между u и v, то проводим в сети дугу из u^- в v^+
- Пропускные способности всех дуг равны 1

- Вершина v графа \rightarrow пара вершин сети: v^- , v^+
- Ребро uv графа \rightarrow дуга в сети: u^+v^-
- Добавляем в сеть дуги вида v^-v^+

- Если в сети есть разрез пропускной способности k', то исходный граф можно сделать несвязным, удалив k' вершин
- Т.к. исходный граф k-связен, то пропускная способность любого разреза не меньше k

- Значит, для любой пары s,t вершин графа в сети есть целочисленный поток величины k из s^+ в t^-
- После удаления из потока ориентированных циклов, его можно разбить на k путей из s^+ в t^- , не пересекающихся по внутренним вершинам
- Этим путям соответствуют k цепей в исходном графе между s и t без общих внутренних вершин

Свойства k-связных графов

- Если графы G' и G'' являются k-связными и имеют не менее k общих вершин, то граф G' U G'' является k-связным
- Если к k-связному графу добавить новую вершину и соединить её с любыми k вершинами графа, полученный граф будет также k-связным

Свойства k-связных графов

Лемма о веере

В k-связном графе для любых различных вершин u, v_1, v_2, \dots, v_k существует k не пересекающихся по внутренним вершинам путей из u в v_i ($i=1,\dots,k$)

 $\it Идея доказательства$: добавляем вершину и используем (второе) определение $\it k$ -связности.

Свойства k-связных графов

Теорема.

В k-связном графе для любых $A, B \subseteq V$, таких, что $A \cap B = \emptyset$ и |A| = |B| = k, найдутся k не пересекающихся по вершинам путей из A в B.

Идея доказательства: добавляем к графу две новые вершины.

Следующие утверждения эквивалентны:

- Граф двусвязен
- Любые две вершины графа принадлежат простому циклу
- Любая вершина и любое ребро принадлежат простому циклу
- Любые два ребра принадлежат простому циклу
- Для любых двух вершин a,b и любого ребра e в графе есть простая цепь между a и b, содержащая e
- Для любых трёх вершин a,b,c существует простая цепь между a и b, проходящая через c

Граф двусвязен ⇒ любые две вершины графа принадлежат простому циклу

Для произвольных $u, v \in V(G)$ в двусвязном графе есть две цепи без общих внутренних вершин.

Объединив эти цепи, получаем простой цикл.

Любые две вершины графа принадлежат простому циклу ⇒ любая вершина и любое ребро принадлежат простому циклу

Пусть $u \in V(G)$ и $\{v, w\} \in E(G)$.

Вершины u, v лежат на некотором простом цикле.

Если он проходит через w, то всё хорошо.

Любые две вершины графа принадлежат простому циклу ⇒ любая вершина и любое ребро принадлежат простому циклу

Пусть $u \in V(G)$ и $\{v, w\} \in E(G)$.

Вершины u,v лежат на некотором простом цикле C. Если w на этом цикле не лежит, то воспользуемся тем, что есть ещё цикл C', проходящий через u и w.

Из C' можно выделить цепь P, соединяющую u с w и he проходящую через v.

Любые две вершины графа принадлежат простому циклу ⇒ любая вершина и любое ребро принадлежат простому циклу

Если цепь P не пересекается хотя бы с одной из цепей между u и v (например, с $u \dots v$), то можно скомбинировать искомый цикл:

Любые две вершины графа принадлежат простому циклу ⇒ любая вершина и любое ребро принадлежат простому циклу

Если P пересекается с циклом C, то рассмотрим кусок P от вершины w до первого пересечения с C. Из этого куска и цикла C можно скомбинировать искомый цикл:

Любая вершина и любое ребро принадлежат простому циклу ⇒ любые два ребра принадлежат простому циклу

Пусть ab и cd — рёбра, и C — простой цикл через c и ab. Через d и ab тоже проходит некоторый простой цикл, из которого можно выделить цепь P, соединяющую a и d и не проходящую через c.

Любая вершина и любое ребро принадлежат простому циклу ⇒ любые два ребра принадлежат простому циклу

Если кроме вершины a цепь P больше не имеет с циклом C общих вершин, то всё ОК:

Любая вершина и любое ребро принадлежат простому циклу ⇒ любые два ребра принадлежат простому циклу

Если первая (по пути от d) точка пересечения P с циклом C лежит на пути $c \dots b$, то искомый цикл получается так:

Любая вершина и любое ребро принадлежат простому циклу ⇒ любые два ребра принадлежат простому циклу

Если первая (по пути от d) точка пересечения P с циклом C лежит на пути $c \dots a$, то искомый цикл получается аналогично:

Любые два ребра принадлежат простому циклу \Rightarrow для любых двух вершин a, b и любого ребра e в графе есть простая цепь между a и b, содержащая e

Между a и b есть некоторая цепь P.

Пусть v — сосед a на этой цепи. В графе есть цикл, проходящий через e и av. На основе этого цикла и цепи P комбинируется искомая цепь между a и b:

Для любых двух вершин a, b и любого ребра e в графе есть простая цепь между a и b, содержащая $e \Rightarrow$ для любых трёх вершин a, b, c существует простая цепь между a и b, проходящая через c

Пусть e — любое ребро, концом которого является c. В графе есть цепь из a в b, проходящая через e. Эта цепь содержит c.

Для любых трёх вершин a,b,c существует простая цепь между a и b, проходящая через $c\Rightarrow$ граф двусвязен

Надо показать, что удаление из графа одной любой вершины не нарушает связности.

Пусть из графа G удалена произвольная вершина a. Пусть b, c — любые вершины графа (G-a).

В графе G была простая цепь из a в b, проходящая через c. Но кусок этой цепи, соединявший c и b остался в (G-a):

Теорема.

При любом $k \geq 2$ в любом k-связном графе для любых $v_1, \dots, v_k \in V$ существует простой цикл, содержащий v_1, \dots, v_k .

Доказательство индукцией по k:

- При k = 2 уже доказано
- Пусть $k \ge 3$ и для (k-1)-связных графов утверждение теоремы выполнено...

Удалим из исходного графа G вершину v_k .

Граф $(G-v_k)$ по меньшей мере (k-1)-связный, так что в нём есть цикл C, содержащий v_1,\ldots,v_{k-1} (и не содержащий v_k).

Без ограничения общности можно считать, что v_1, \dots, v_{k-1} идут на $\mathcal C$ по порядку:

Вначале рассмотрим случай, когда $V(C) = \{v_1, \dots, v_{k-1}\}.$

Тогда граф $(G - \{v_3, \dots, v_{k-1}\})$ по меньшей мере двусвязный, и в нём есть цепь из v_1 в v_2 через v_k .

Объединяя эту цепь с $(C-v_1v_2)$, получаем нужный цикл.

Теперь рассмотрим случай, когда есть вершина $u \in V(C) \setminus \{v_1, \dots, v_{k-1}\}$

По лемме о веере, в G есть k не пересекающихся по внутренним вершинам путей из v_k в каждую из вершин u, v_1, \dots, v_{k-1} .

Рассмотрим отрезки этих путей от v_k до первого пересечения с циклом:

Всего таких отрезков путей k штук, а вершины v_1, \dots, v_{k-1} разбивают цикл на (k-1) интервалов.

По принципу Дирихле, найдётся интервал, на который попали концы двух отрезков.

Из этой пары отрезков и части цикла через v_1, \dots, v_{k-1} строится искомый цикл через v_1, \dots, v_k :

Внешней цепью для графа называется цепь, концы которой принадлежат графу, а внутренние вершины — не принадлежат:

Утверждение. Если произвольную пару вершин двусвязного графа соединить внешней цепью, получится двусвязный граф.

Теорема. Граф двусвязен т. и т.т., когда его можно построить, начав с простого цикла и последовательно добавляя внешние цепи.

- Докажем, что произвольный двусвязный граф можно построить, начав с простого цикла и последовательно добавляя внешние цепи.
- База. Так как G двусвязен, в нём есть цикл. Любой из циклов в G возьмём в качестве первого графа в последовательности.

- Пусть на очередном шаге построения мы пришли к подграфу H графа G, и допустим, что H ещё не совпадает с G.
- Если H остовный подграф в G, то возьмём любое ребро графа G, не входящее в H. Оно само по себе будет внешней для H цепью.
- Добавляя это ребро к H, делаем шаг построения.

- Если H не остовный подграф в G, то существует вершина $w \in V(G-H)$.
- В графе H рассмотрим любую пару вершин u,v.
- По лемме о веере, в G есть не пересекающиеся по внутренним вершинам пути из W в U и из W в V.
- Взяв части этих путей до первого пересечения с H, получим внешнюю для H цепь. Это вновь позволяет сделать очередной шаг построения.

• Дерево — это связный граф без циклов

• Это дерево:

• А это не деревья:

Два простейших свойства:

- В любом дереве, имеющем более одной вершины, существует не менее двух листьев (висячих вершин)
- В любом дереве

```
#вершин = 1 + #рёбер
```

Эквивалентные определения дерева:

- связный граф без циклов
- связный граф, при удалении любого ребра становящийся несвязным
- граф без циклов, в котором при добавлении любого ребра появляется цикл
- граф, в котором между любой парой вершин существует единственный путь
- связный граф, в котором #вершин = 1 + #рёбер
- граф без циклов, в котором #вершин = 1 + #рёбер

- Деревья простейшие связные графы
- Если требуется доказать некоторое утверждение о всех связных графах, попытайтесь вначале доказать его для деревьев

Блоки и точки сочленения

- Точка сочленения графа это вершина, удаление которой делает граф несвязным
- Блок в графе это максимальный связный подграф без точек сочленения (т.е. блок это «компонента двусвязности» графа; будем допускать и блоки, состоящие всего из двух вершин).

Блоки и точки сочленения

- Любые два блока имеют не более одной общей точки (если она есть, то это точка сочленения)
- Любой простой цикл в графе лежит в пределах одного блока

ВС-деревья

- Каждому связному графу можно поставить в соответствие его *BC-дерево* (BC = Block-Cutvertex)
- Вершины ВС-дерева соответствуют блокам и точкам сочленения графа.
- Между вершинами b,c ВС-дерева проводится ребро, если соответствующая c точка сочленения принадлежит соответствующему b блоку графа

ВС-деревья

- Листья ВС-дерева всегда соответствуют блокам графа. Такие блоки называются *концевыми*. Концевые блоки имеют с оставшейся частью графа только одну общую вершину.
- Во всяком дереве не меньше двух листьев, значит, если граф связный, но не двусвязный, то в нём не меньше двух концевых блоков.

Трёхсвязные графы

- Мы описали структуру двусвязных графов: это в точности те графы, к которым приводят последовательности, начинающиеся с простого цикла и в которых каждый следующий граф получается из предыдущего добавлением внешней цепи
- Для трёхсвязных графов существуют аналогичные критерии (рекурсивные построения), хотя и сложнее.

Стягивание ребра

Стягивание ребра е в графе G — это операция, результатом которой является граф G/e, получаемый из G удалением e и отождествлением его концов. Если при этом образуются кратные рёбра, оставляем из них только одно.

Теорема.

Граф G трёхсвязен т. и т.т., когда существует последовательность графов G_0, \dots, G_n , в которой

- $\bullet \ G_0=K_4,$
- $G_n = G$,
- для каждого i граф G_i получается из G_{i+1} стягиванием некоторого ребра xy, где $d(x), d(y) \ge 3$.

Лемма.

В любом трёхсвязном графе $G \neq K_4$ есть ребро e, такое, что граф G/e трёхсвязен.

Последовательно применяя эту лемму, можно по любому трёхсвязному графу G построить последовательность

$$G \to G_{n-1} \to \cdots \to G_0$$

из утверждения теоремы.

Доказательство от противного.

- Допустим, что в графе G не менее пяти вершин, и что для любого ребра xy граф G/xy не трёхсвязен.
- Т.е. в G/xy удаление некоторых двух вершин нарушает связность.
- Одна из этих вершин должна быть та, что получилась слиянием x и y, иначе сам G разваливался бы при удалении той же пары вершин.
- Получаем: для любого ребра xy графа G должна существовать вершина z, такая, что граф $(G \{x, y, z\})$ несвязный.

• Для любого ребра xy графа G должна существовать вершина z, такая, что граф $G_{-xyz}\coloneqq (G-\{x,y,z\})$ несвязный.

Выберем xy и z так, чтобы минимальная из компонент графа G_{-xyz} имела наименьшее возможное число вершин. Обозначим эту компоненту C.

У вершины z есть сосед $v \in C$ (иначе бы C «отваливалась» ужé при удалении x и y)

- Для ребра vz в G должна быть вершина w, такая, что граф G_{-zvw} несвязен.
- $w \neq x$, иначе $(G \{x, z\})$ был бы несвязен. Аналогично, $w \neq y$.
- Вершины x и y лежат в одной и той же компоненте графа G_{-zvw}
- Значит, у G_{-zvw} есть компонента, не содержащая ни x, ни y. Обозначим её D.

- У вершины v есть сосед $u \in D$ (иначе G развалился бы при удалении лишь z и w).
- Вершина u принадлежит и множеству C.
- Если из какой-то вершины $t \in D$ есть путь до u по вершинам множества D, то этот путь не содержит x,y,z.
- Значит, этот путь есть и в C. Отсюда $D \subseteq C$. При этом $v \in C \setminus D$, то есть |D| < |C|.
- Получаем противоречие с минимальностью |C|.

• Мы только что доказали теорему в одну сторону:

Если граф G трёхсвязен, то существует последовательность графов G_0, \dots, G_n , в которой $G_0 = K_4, G_n = G$, и для каждого i граф G_i получается из G_{i+1} стягиванием некоторого ребра xy, где $d(x), d(y) \geq 3$.

• Осталось доказать, что любая последовательность указанного вида приводит к трёхсвязному графу

 G_i получается из G_{i+1} стягиванием некоторого ребра xy, где $d(x), d(y) \ge 3$.

Достаточно показать, что если G_i трёхсвязен, то и G_{i+1} трёхсвязен. Рассуждаем от противного.

- Допустим, что G_{i+1} не трёхсвязен. Тогда в нём есть пара вершин S, удаление которых нарушает связность.
- $S \neq \{x, y\}$, иначе в G_i была бы точка сочленения
- $S \cap \{x,y\} \neq \emptyset$, иначе удаление вершин S из G_i нарушало бы связность G_i

• Таким образом, можно считать, что $S = \{x, v\}$, где v — некоторая вершина, отличная от y

- Пусть C компонента графа $(G_{i+1}-S)$, содержащая y, а C' произвольная компонента, не содержащая y
- Если $\exists u \in C \setminus \{y\}$, то в G_{i+1} любой путь от u до вершин из C' проходит через x или v, а значит граф $(G_i \{v, xy\})$ несвязен противоречие. Так что $C = \{y\}$.
- Но тогда получаем $d(y) \le 2$, что противоречит выбору y