HW1

Load necessary libraries

```
library(fields)
## Warning: package 'fields' was built under R version 3.2.5
## Loading required package: spam
## Warning: package 'spam' was built under R version 3.2.5
## Loading required package: grid
## Spam version 1.4-0 (2016-08-29) is loaded.
## Type 'help( Spam)' or 'demo( spam)' for a short introduction
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
##
## Attaching package: 'spam'
## The following objects are masked from 'package:base':
##
##
       backsolve, forwardsolve
## Loading required package: maps
## Warning: package 'maps' was built under R version 3.2.5
library(SpatialTools)
## # This research was partially supported under NSF Grant ATM-0534173
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
library(GGally)
## Warning: package 'GGally' was built under R version 3.2.5
## Warning: replacing previous import by 'utils::capture.output' when loading
## 'GGally'
## Warning: replacing previous import by 'utils::head' when loading 'GGally'
## Warning: replacing previous import by 'utils::installed.packages' when
## loading 'GGally'
## Warning: replacing previous import by 'utils::str' when loading 'GGally'
Problem 1: Explain whether each scenario is a classification or regression problem, and indicate whether
we are most interested in inference or pre-diction. Finally, provide n and p.
```

(a) We collect a set of data on the top 500 firms in the US. For each firm we record profit, number of employees, industry and the CEO salary. We are interested in understanding which factors affect CEO salary.

Regression, inference, n = 500, p = 4

(b) We are considering launching a new product and wish to know whether it will be a success or a failure. We collect data on 20 similar products that were previously launched. For each prod- uct we

have recorded whether it was a success or failure, price charged for the product, marketing budget, competition price, and ten other variables.

Classification Prediction n = 20, p = 14,

(c) We are interesting in predicting the % change in the US dollar in relation to the weekly changes in the world stock markets. Hence we collect weekly data for all of 2012. For each week we record the % change in the dollar, the % change in the US market, the % change in the British market, and the % hange in the German market.

Problem 2

Complete Exercise 3 from section 2.4 of the textbook (p. 52).

- 3. We now revisit the bias-variance decomposition.
- (a) Provide a sketch of typical (squared) bias, variance, training er- ror, test error, and Bayes (or irreducible) error curves, on a sin- gle plot, as we go from less flexible statistical learning methods towards more flexible approaches. The x-axis should represent the amount of flexibility in the method, and the y-axis should represent the values for each curve. There should be five curves. Make sure to label each one.
- (b) Explain why each of the five curves has the shape displayed in part (a).
- i. bias is inversely related to flexibility as higher flexibility creates a closer fit
- ii. variance increases monotonically because increases in flexibility yield overfitting
- iii. training error decreases monotonically because increases in flexibility yield a closer fit
- iv. test error concave up curve because increase in flexibility yields a closer fit before it overfits
- v. Bayes (irreducible) error defines the lower limit, the test error is bounded below by the irreducible error due to variance in the error (epsilon) in the output values (0 \leq value). When the training error is lower than the irreducible error, overfitting has taken place. The Bayes error rate is defined for classification problems and is determined by the ratio of data points which lie at the 'wrong' side of the decision boundary, (0 \leq value \leq 1).

Problem 3

[3,]

0

Complete Exercise 7 from section 2.4 of the textbook (p. 53).

```
Obs \leftarrow seq(1,6,length=6)
X1 \leftarrow c(0,2,0,0,-1,1)
X2 \leftarrow c(3,0,1,1,0,1)
X3 \leftarrow c(0,0,3,2,1,1)
Y <- c('Red', 'Red', 'Red', 'Green', 'Green', 'Red')
df <- data.frame(Obs, X1, X2, X3, Y)
(df)
     Obs X1 X2 X3
                         Y
##
## 1
        1
           0
               3
                  0
                       Red
        2
## 2
           2
               0
                  0
                       Red
## 3
        3
           0
               1
                  3
                       Red
## 4
        4
           0
               1
                  2 Green
## 5
        5 -1
               0
                  1 Green
## 6
        6
           1
               1
                       Red
coords_mat <- data.matrix(df[2:4])</pre>
coords_mat
         X1 X2 X3
##
## [1.]
             3
          0
## [2,]
          2
             0
```

```
## [4,] 0
## [5,] -1 0
## [6,] 1
  a)
dist <- NULL
for(i in 1:nrow(coords_mat)) {
   dist[i] <- dist(rbind(coords_mat[i,], c(0,0,0)))</pre>
df$dist <- dist
df
     Obs X1 X2 X3
                      Y
##
                            dist
## 1
                    Red 3.000000
       1
         0
            3
                0
## 2
       2
          2
            0
                0
                    Red 2.000000
## 3
       3
         0
             1
                    Red 3.162278
               3
          0
             1
                2 Green 2.236068
## 5
       5 -1
               1 Green 1.414214
           0
            1 1
                    Red 1.732051
```

- b) If the only datapoint we care about is the one nearest neighbor, then the prediction will be Green (Obs 5)
- c) Obs 2, 5, 6 will be the closest 3 neighbors for [0,0,0], which corresponds with a Y of Red, Green and Red respectively; thus the prediction would be red.

d)

Problem 4: Exercise 1 (p. 413) a) K-Means Clustering: Prove equation 10.12 b)

Problem 5: Exercise 2 (p. 413) For given Dissimilarity matrix, a) On the basis of this dissimilarity matrix, sketch the dendrogram that results from hierarchically clustering these four observations using complete linkage. Be sure to indicate on the plot the height at which each fusion occurs, as well as the observations corresponding to each leaf in the dendrogram.

Cluster Dendrogram

Cluster Dendrogram

dist_matrix hclust (*, "single")

c) Cluster1: Observations 1 and 2; Cluster2: Observations 3 and 4

- d) Cluster1: Observations 1,2, and 3; Cluster2: Observation 4
- e) The following dendrogram swaps positions of the two clusters without changing the meaning

plot(hclust(dist_matrix, method="complete"), labels=c(4,3,1,2))

Cluster Dendrogram

dist_matrix hclust (*, "complete")

Problem 6: Exercise 4 (p. 414) Suppose that for a particular data set, we perform hierarchical clustering using single linkage and using complete linkage. We obtain two dendrograms. (a) At a certain point on the single linkage dendrogram, the clusters $\{1,2,3\}$ and $\{4,5\}$ fuse. On the complete linkage dendrogram, the clusters $\{1,2,3\}$ and $\{4,5\}$ also fuse at a certain point. Which fusion will occur higher on the tree, or will they fuse at the same height, or is there not enough information to tell?

This question requires more information to answer and is dependent on both the organization of information as well as the dissimilarity measure (euclidian distance, correlation etc). Complete linkage joins on maximal intercluster dissimilarity, while single linkage joins on minimal intercluster dissimilarity; were these to be equal, then the two clusters in question would fuse at the same height. Otherwise, a dendrogram formed with complete linkage would fuse them at a greater height than a dendrogram formed with single linkage.

(b) At a certain point on the single linkage dendrogram, the clusters {5} and {6} fuse. On the complete linkage dendrogram, the clusters {5} and {6} also fuse at a certain point. Which fusion will occur higher on the tree, or will they fuse at the same height, or is there not enough information to tell? They would fuse at the same height because the choice of complete vs single linkage operates on observations between two clusters instead of the clustering of two individual observations that are not yet clustered.

```
Problem 7: Exercise 9 (p. 416)
```

```
data("USArrests")
names(USArrests)

## [1] "Murder" "Assault" "UrbanPop" "Rape"
dim(USArrests)

## [1] 50 4
```

```
class(USArrests)

## [1] "data.frame"
a)
cluster_USArrests <- hclust(dist(USArrests), method="complete")
plot(cluster_USArrests)</pre>
```

Cluster Dendrogram

dist(USArrests) hclust (*, "complete")

b)
cutree(cluster_USArrests, 3)

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	1	1	2	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	3	1	1	2
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	3	3	1	3	3
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	3	3	1	3	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	1	3	1	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	3	1	3	2
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	1	1	3	3
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	2	2	3	2	1
##	South Dakota	Tennessee	Texas	Utah	Vermont

```
## 3 2 2 3 3 3
## Virginia Washington West Virginia Wisconsin Wyoming
## 2 2 3 3 2
c)
cluster_USArrests_scaled = hclust(dist(scale(USArrests)), method="complete")
plot(cluster_USArrests_scaled)
```

Cluster Dendrogram

dist(scale(USArrests)) hclust (*, "complete")

d) Number of states in each cluster without scaling USArrests:

```
table(cutree(cluster_USArrests, 3))

##

## 1 2 3

## 16 14 20

Number of states in each cluster after scaling USArrests:

table(cutree(cluster_USArrests_scaled, 3))

##
```

```
##
## 1 2 3
## 8 11 31
```

The overall height and spread of the dendrogram was not dramatically altered after scaling the input dataset. The states that ended up in each 3 cluster did change. In general, scaling each variable vector to standardize variance makes sense. The variables in USArrests dataset have different units with different inherent variance. Units with a larger variance has a greater effect on euclidian distance, and thus have a greater influence on how clusters are formed.

Problem 8: Exercise 4 (p. 120)

- 4. I collect a set of data (n = 100 observations) containing a single predictor and a quantitative response. I then fit a linear regression model to the data, as well as a separate cubic regression, i.e. Y = 0 + 1X + 2X2 + 3X3 + .
- (a) Suppose that the true relationship between X and Y is linear, i.e. Y = 0 + 1X + ... Consider the training residual sum of squares (RSS) for the linear regression, and also the training RSS for the cubic regression. Would we expect one to be lower than the other, would we expect them to be the same, or is there not enough information to tell? Justify your answer. Adding more variables to the least squares equations always improves the fit to the training data; thus, the RSS to training data should decrease
- (b) Answer (a) using test rather than training RSS. test RSS should decrease due to the overfitting and failing to generalize overfit model to test dataset
- (c) Suppose that the truerelationship between X and Y is not linear, but we don't know how far it is from linear. Consider the training RSS for the linear regression, and also the training RSS for the cubic regression. Would we expect one to be lower than the other, would we expect them to be the same, or is there not enough information to tell? Justify your answer. The increased flexibility from polynomial regression will lead to a better fit to training data over a linear regression.
- (d) Answer (c) using test rather than training RSS. Since the true relationship is not known, there is not enough information to exactly tell whether test dataset RSS will be better with a polynomial fit;

Problem 9: Exercise 9 (p. 122). In parts (e) and (f), you need only try a few interactions and transformations.

Auto = na.omit(read.csv("Auto.csv", na.strings="?")) #massage out question marks and lists with missing
Auto

##		mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
##	1	18.0	8	307.0	130	3504	12.0	70	1
##	2	15.0	8	350.0	165	3693	11.5	70	1
##	3	18.0	8	318.0	150	3436	11.0	70	1
##	4	16.0	8	304.0	150	3433	12.0	70	1
##	5	17.0	8	302.0	140	3449	10.5	70	1
##	6	15.0	8	429.0	198	4341	10.0	70	1
##	7	14.0	8	454.0	220	4354	9.0	70	1
##	8	14.0	8	440.0	215	4312	8.5	70	1
##	9	14.0	8	455.0	225	4425	10.0	70	1
##	10	15.0	8	390.0	190	3850	8.5	70	1
##	11	15.0	8	383.0	170	3563	10.0	70	1
##	12	14.0	8	340.0	160	3609	8.0	70	1
##	13	15.0	8	400.0	150	3761	9.5	70	1
##	14	14.0	8	455.0	225	3086	10.0	70	1
##	15	24.0	4	113.0	95	2372	15.0	70	3
##	16	22.0	6	198.0	95	2833	15.5	70	1
##	17	18.0	6	199.0	97	2774	15.5	70	1
##	18	21.0	6	200.0	85	2587	16.0	70	1
##	19	27.0	4	97.0	88	2130	14.5	70	3
##	20	26.0	4	97.0	46	1835	20.5	70	2
##	21	25.0	4	110.0	87	2672	17.5	70	2
##	22	24.0	4	107.0	90	2430	14.5	70	2
##	23	25.0	4	104.0	95	2375	17.5	70	2
##	24	26.0	4	121.0	113	2234	12.5	70	2
##	25	21.0	6	199.0	90	2648	15.0	70	1
##	26	10.0	8	360.0	215	4615	14.0	70	1
##	27	10.0	8	307.0	200	4376	15.0	70	1
##	28	11.0	8	318.0	210	4382	13.5	70	1
##	29	9.0	8	304.0	193	4732	18.5	70	1

## 30	27.0	4	97.0	88	2130	14.5	71	3
## 31	28.0	4	140.0	90	2264	15.5	71	1
## 32	25.0	4	113.0	95	2228	14.0	71	3
## 34	19.0	6	232.0	100	2634	13.0	71	1
## 35	16.0	6	225.0	105	3439	15.5	71	1
## 36	17.0	6	250.0	100	3329	15.5	71	1
## 37	19.0	6	250.0	88	3302	15.5	71	1
## 38	18.0	6	232.0	100	3288	15.5	71	1
## 39	14.0	8	350.0	165	4209	12.0	71	1
## 40	14.0	8	400.0	175	4464	11.5	71	1
## 41	14.0	8	351.0	153	4154	13.5	71	1
## 42	14.0	8	318.0	150	4096	13.0	71	1
## 43	12.0	8	383.0	180	4955	11.5	71	1
## 44	13.0	8	400.0	170	4746	12.0	71	1
## 45	13.0	8	400.0	175	5140	12.0	71	1
## 46	18.0	6	258.0	110	2962	13.5	71	1
## 47	22.0	4	140.0	72	2408	19.0	71	1
## 48	19.0	6	250.0	100	3282	15.0	71	1
## 49	18.0	6	250.0	88	3139	14.5	71	1
## 50	23.0	4	122.0	86	2220	14.0	71	1
## 51	28.0	4	116.0	90	2123	14.0	71	2
## 52	30.0	4	79.0	70	2074	19.5	71	2
## 53	30.0	4	88.0	76	2065	14.5	71	2
## 54	31.0	4	71.0	65	1773	19.0	71	3
## 55	35.0	4	72.0	69	1613	18.0	71	3
## 56	27.0	4	97.0	60	1834	19.0	71	2
## 57	26.0	4	91.0	70	1955	20.5	71	1
## 58	24.0	4	113.0	95	2278	15.5	72	3
## 59	25.0	4	97.5	80	2126	17.0	72	1
## 60	23.0	4	97.0	54	2254	23.5	72	2
## 61	20.0	4	140.0	90	2408	19.5	72	1
## 62	21.0	4	122.0	86	2226	16.5	72	1
## 63	13.0	8	350.0	165	4274	12.0	72	1
## 64	14.0	8	400.0	175	4385	12.0	72	1
## 65	15.0	8	318.0	150	4135	13.5	72	1
## 66	14.0	8	351.0	153	4129	13.0	72	1
## 67	17.0	8	304.0	150	3672	11.5	72	1
## 68	11.0	8	429.0	208	4633	11.0	72	1
## 69	13.0	8	350.0	155	4502	13.5	72	1
## 70	12.0	8	350.0	160	4456	13.5	72	1
## 71	13.0	8	400.0	190	4422	12.5	72	1
## 72	19.0	3	70.0	97	2330	13.5	72	3
## 73	15.0	8	304.0	150	3892	12.5	72	1
## 74	13.0	8	307.0	130	4098	14.0	72	1
## 75	13.0	8	302.0	140	4294	16.0	72	1
## 76	14.0	8	318.0	150	4077	14.0	72	1
## 77	18.0	4	121.0	112	2933	14.5	72	2
## 78	22.0	4	121.0	76	2511	18.0	72	2
## 79	21.0	4	120.0	87	2979	19.5	72	2
## 80	26.0	4	96.0	69 06	2189	18.0	72	2
## 81	22.0	4	122.0	86	2395	16.0	72 70	1
## 82 ## 82	28.0	4	97.0	92	2288	17.0	72 72	3
## 83	23.0	4	120.0	97	2506	14.5	72 70	3
## 84	28.0	4	98.0	80	2164	15.0	72	1

## 8	35	27.0	4	97.0	88	2100	16.5	72	3
## 8	36	13.0	8	350.0	175	4100	13.0	73	1
## 8	37	14.0	8	304.0	150	3672	11.5	73	1
## 8		13.0	8	350.0	145	3988	13.0	73	1
## 8		14.0	8	302.0	137	4042	14.5	73	1
## 9		15.0	8	318.0	150	3777	12.5	73	1
## 9		12.0	8	429.0	198	4952	11.5	73	1
## 9	92	13.0	8	400.0	150	4464	12.0	73	1
## 9		13.0	8	351.0	158	4363	13.0	73	1
## 9	94	14.0	8	318.0	150	4237	14.5	73	1
## 9	95	13.0	8	440.0	215	4735	11.0	73	1
## 9	96	12.0	8	455.0	225	4951	11.0	73	1
## 9		13.0	8	360.0	175	3821	11.0	73	1
## 9		18.0	6	225.0	105	3121	16.5	73	1
## 9		16.0	6	250.0	100	3278	18.0	73	1
		18.0	6	232.0	100	2945	16.0	73	1
		18.0	6	250.0	88	3021	16.5	73	1
		23.0	6	198.0	95	2904	16.0	73	1
## 1	.03	26.0	4	97.0	46	1950	21.0	73	2
## 1	.04	11.0	8	400.0	150	4997	14.0	73	1
## 1	.05	12.0	8	400.0	167	4906	12.5	73	1
## 1	.06	13.0	8	360.0	170	4654	13.0	73	1
## 1	.07	12.0	8	350.0	180	4499	12.5	73	1
		18.0	6	232.0	100	2789	15.0	73	1
		20.0	4	97.0	88	2279	19.0	73	3
		21.0	4	140.0	72	2401	19.5	73	1
		22.0	4	108.0	94	2379	16.5	73	3
		18.0	3	70.0	90	2124	13.5	73	3
		19.0	4	122.0	85	2310	18.5	73	1
		21.0	6	155.0	107	2472	14.0	73	1
		26.0	4	98.0	90	2265	15.5	73	2
## 1	.16	15.0	8	350.0	145	4082	13.0	73	1
## 1	17	16.0	8	400.0	230	4278	9.5	73	1
## 1	18	29.0	4	68.0	49	1867	19.5	73	2
## 1	19	24.0	4	116.0	75	2158	15.5	73	2
## 1	.20	20.0	4	114.0	91	2582	14.0	73	2
## 1	21	19.0	4	121.0	112	2868	15.5	73	2
		15.0	8	318.0	150	3399	11.0	73	1
		24.0	4	121.0	110	2660	14.0	73	2
		20.0	6	156.0	122	2807	13.5	73	3
		11.0	8	350.0	180	3664	11.0	73	1
		20.0	6	198.0	95	3102	16.5	74	1
		19.0	6	232.0	100	2901	16.0	74	1
		15.0	6	250.0	100	3336	17.0	74	1
		31.0	4	79.0	67	1950	19.0	74	3
## 1	.31	26.0	4	122.0	80	2451	16.5	74	1
## 1	.32	32.0	4	71.0	65	1836	21.0	74	3
## 1	.33	25.0	4	140.0	75	2542	17.0	74	1
## 1	.34	16.0	6	250.0	100	3781	17.0	74	1
		16.0	6	258.0	110	3632	18.0	74	1
		18.0	6	225.0	105	3613	16.5	74	1
		16.0	8	302.0	140	4141	14.0	74	1
		13.0	8	350.0	150	4699	14.5	74	1
## 1	.59	14.0	8	318.0	150	4457	13.5	74	1

## 140 14.0	8	302.0	140	4638	16.0	74	1
## 141 14.0	8	304.0	150	4257	15.5	74	1
## 142 29.0	4	98.0	83	2219	16.5	74	2
## 143 26.0	4	79.0	67	1963	15.5	74	2
## 144 26.0	4	97.0	78	2300	14.5	74	2
## 145 31.0	4	76.0	52	1649	16.5	74	3
## 146 32.0	4	83.0	61	2003	19.0	74	3
## 147 28.0	4	90.0	75	2125	14.5	74	1
## 148 24.0	4	90.0	75	2108	15.5	74	2
## 149 26.0	4	116.0	75	2246	14.0	74	2
## 150 24.0	4	120.0	97	2489	15.0	74	3
## 151 26.0	4	108.0	93	2391	15.5	74	3
## 152 31.0	4	79.0	67	2000	16.0	74	2
## 153 19.0	6	225.0	95	3264	16.0	75	1
## 154 18.0	6	250.0	105	3459	16.0	75	1
## 155 15.0	6	250.0	72	3432	21.0	75	1
## 156 15.0	6	250.0	72	3158	19.5	75	1
## 157 16.0	8	400.0	170	4668	11.5	75	1
## 158 15.0	8	350.0	145	4440	14.0	75	1
## 159 16.0	8	318.0	150	4498	14.5	75	1
## 160 14.0	8	351.0	148	4657	13.5	75	1
## 161 17.0	6	231.0	110	3907	21.0	75	1
## 162 16.0	6	250.0	105	3897	18.5	75	1
## 163 15.0	6	258.0	110	3730	19.0	75	1
## 164 18.0	6	225.0	95	3785	19.0	75	1
## 165 21.0	6	231.0	110	3039	15.0	75	1
## 166 20.0	8	262.0	110	3221	13.5	75	1
## 167 13.0	8	302.0	129	3169	12.0	75	1
## 168 29.0	4	97.0	75	2171	16.0	75	3
## 169 23.0	4	140.0	83	2639	17.0	75	1
## 170 20.0	6	232.0	100	2914	16.0	75	1
## 171 23.0	4	140.0	78	2592	18.5	75	1
## 172 24.0	4	134.0	96	2702	13.5	75	3
## 173 25.0	4	90.0	71	2223	16.5	75	2
## 174 24.0	4	119.0	97	2545	17.0	75	3
## 175 18.0	6	171.0	97	2984	14.5	75	1
## 176 29.0	4	90.0	70	1937	14.0	75	2
## 177 19.0	6	232.0	90	3211	17.0	75	1
## 178 23.0	4	115.0	95	2694	15.0	75	2
## 179 23.0	4	120.0	88	2957	17.0	75	2
## 180 22.0	4	121.0	98	2945	14.5	75	2
## 181 25.0	4	121.0	115	2671	13.5	75	2
## 182 33.0	4	91.0	53	1795	17.5	75	3
## 183 28.0	4	107.0	86	2464	15.5	76	2
## 184 25.0	4	116.0	81	2220	16.9	76	2
## 185 25.0	4	140.0	92	2572	14.9	76	1
## 186 26.0	4	98.0	79	2255	17.7	76	1
## 187 27.0	4	101.0	83	2202	15.3	76	2
## 188 17.5	8	305.0	140	4215	13.0	76	1
## 189 16.0	8	318.0	150	4190	13.0	76	1
## 190 15.5	8	304.0	120	3962	13.9	76	1
## 191 14.5	8	351.0	152	4215	12.8	76	1
## 192 22.0	6	225.0	100	3233	15.4	76	1
## 193 22.0	6	250.0	105	3353	14.5	76	1

## 194	24.0	6	200.0	81	3012	17.6	76	1
	22.5	6	232.0	90	3085	17.6	76	1
	29.0	4	85.0	52	2035	22.2	76	1
	24.5	4	98.0	60	2164	22.1	76	1
	29.0	4	90.0	70	1937	14.2	76	2
	33.0	4	91.0	53	1795	17.4	76	3
	20.0	6	225.0	100	3651	17.7	76	1
	18.0	6	250.0	78	3574	21.0	76	1
	18.5	6	250.0	110	3645	16.2	76	1
	17.5	6	258.0	95	3193	17.8	76	1
	29.5	4	97.0	71	1825	12.2	76	2
	32.0	4	85.0	70	1990	17.0	76	3
	28.0	4	97.0	75	2155	16.4	76	3
	26.5	4	140.0	72	2565	13.6	76	1
	20.0	4	130.0	102	3150	15.7	76	2
	13.0	8	318.0	150	3940	13.2	76	1
	19.0	4	120.0	88	3270	21.9	76	2
## 211		6	156.0	108	2930	15.5	76	3
## 212		6	168.0	120	3820	16.7	76	2
## 213		8	350.0	180	4380	12.1	76	1
## 214		8	350.0	145	4055	12.0	76	1
## 215		8	302.0	130	3870	15.0	76	1
## 216		8	318.0	150	3755	14.0	76	1
## 217		4	98.0	68	2045	18.5	77	3
## 218		4	111.0	80	2155	14.8	77	1
## 219		4	79.0	58	1825	18.6	77	2
	25.5	4	122.0	96	2300	15.5	77	1
	33.5	4	85.0	70	1945	16.8	77	3
	17.5	8	305.0	145	3880	12.5	77	1
	17.0	8	260.0	110	4060	19.0	77	1
	15.5	8	318.0	145	4140	13.7	77	1
	15.0	8	302.0	130	4295	14.9	77	1
	17.5	6	250.0	110	3520	16.4	77	1
	20.5	6	231.0	105	3425	16.9	77	1
	19.0	6	225.0	100	3630	17.7	77	1
	18.5	6	250.0	98	3525	19.0	77	1
## 230		8	400.0	180	4220	11.1	77	1
	15.5	8	350.0	170	4165	11.4	77	1
## 232		8	400.0	190	4325	12.2	77	1
	16.0	8	351.0	149	4335	14.5	77	1
	29.0	4	97.0	78	1940	14.5	77	2
	24.5	4	151.0	88	2740	16.0	77	1
	26.0	4	97.0	75	2265	18.2	77	3
	25.5	4	140.0	89	2755	15.8	77	1
	30.5	4	98.0	63	2051	17.0	77	1
	33.5	4	98.0	83	2075	15.9	77	1
	30.0	4	97.0	67	1985	16.4	77	3
	30.5	4	97.0	78	2190	14.1	77	2
	22.0	6	146.0	97	2815	14.5	77	3
	21.5	4	121.0	110	2600	12.8	77	2
	21.5	3	80.0	110	2720	13.5	77	3
	43.1	4	90.0	48	1985	21.5	78	2
	36.1	4	98.0	66	1800	14.4	78	1
	32.8	4	78.0	52	1985	19.4	78	3
		-	•					-

## 248 39.4	4	85.0	70	2070	18.6	78	3
## 249 36.1	4	91.0	60	1800	16.4	78	3
## 250 19.9	8	260.0	110	3365	15.5	78	1
## 251 19.4	8	318.0	140	3735	13.2	78	1
## 252 20.2	8	302.0	139	3570	12.8	78	1
## 252 20.2 ## 253 19.2	6	231.0	105	3535	19.2	78	1
## 254 20.5	6	200.0	95	3155	18.2	78	1
## 255 20.2	6	200.0	85	2965	15.8	78	1
## 256 25.1	4	140.0	88	2720	15.4	78	1
## 257 20.5	6	225.0	100	3430	17.2	78	1
## 258 19.4	6	232.0	90	3210	17.2	78	1
## 259 20.6	6	231.0	105	3380	15.8	78	1
## 260 20.8	6	200.0	85	3070	16.7	78	1
## 261 18.6	6	225.0	110	3620	18.7	78	1
## 262 18.1	6	258.0	120	3410	15.1	78	1
## 263 19.2	8	305.0	145	3425	13.2	78	1
## 264 17.7	6	231.0	165	3445	13.4	78	1
## 265 18.1	8	302.0	139	3205	11.2	78	1
## 266 17.5	8	318.0	140	4080	13.7	78	1
## 267 30.0	4	98.0	68	2155	16.5	78	1
## 268 27.5	4	134.0	95	2560	14.2	78	3
## 269 27.2	4	119.0	97	2300	14.7	78	3
## 270 30.9	4	105.0	75	2230	14.5	78	1
## 271 21.1	4	134.0	95	2515	14.8	78	3
## 272 23.2	4	156.0	105	2745	16.7	78	1
## 273 23.8	4	151.0	85	2855	17.6	78	1
## 274 23.9	4	119.0	97	2405	14.9	78	3
## 275 20.3	5	131.0	103	2830	15.9	78	2
## 276 17.0	6	163.0	125	3140	13.6	78	2
## 277 21.6	4	121.0	115	2795	15.7	78	2
## 278 16.2	6	163.0	133	3410	15.8	78	2
## 279 31.5	4	89.0	71	1990	14.9	78	2
## 280 29.5	4	98.0	68	2135	16.6	78	3
## 281 21.5	6	231.0	115	3245	15.4	79	1
## 282 19.8	6	200.0	85	2990	18.2	79	1
## 283 22.3	4	140.0	88	2890	17.3	79	1
## 284 20.2	6	232.0	90	3265	18.2	79	1
## 285 20.6	6	225.0	110	3360	16.6	79	1
## 286 17.0	8	305.0	130	3840	15.4	79	1
## 287 17.6	8	302.0	129	3725	13.4	79	1
## 288 16.5	8	351.0	138	3955	13.2	79	1
## 289 18.2	8	318.0	135	3830	15.2	79	1
## 290 16.9	8	350.0	155	4360	14.9	79	1
## 291 15.5	8	351.0	142	4054	14.3	79	1
## 292 19.2	8	267.0	125	3605	15.0	79	1
## 293 18.5	8	360.0	150	3940	13.0	79	1
## 294 31.9	4	89.0	71	1925	14.0	79	2
## 295 34.1	4	86.0	65	1975	15.2	79	3
## 296 35.7	4	98.0	80	1915	14.4	79	1
## 297 27.4	4	121.0	80	2670	15.0	79	1
## 298 25.4	5	183.0	77	3530	20.1	79	2
## 299 23.0	8	350.0	125	3900	17.4	79	1
## 300 27.2	4	141.0	71	3190	24.8	79	2
## 301 23.9	8	260.0	90	3420	22.2	79	1

## 302 34.2	4	105.0	70	2200	13.2	79	1
## 303 34.5	4	105.0	70	2150	14.9	79	1
## 304 31.8	4	85.0	65	2020	19.2	79	3
## 305 37.3	4	91.0	69	2130	14.7	79	2
## 306 28.4	4	151.0	90	2670	16.0	79	1
## 307 28.8	6	173.0	115	2595	11.3	79	1
## 308 26.8	6	173.0	115	2700	12.9	79	1
## 309 33.5	4	151.0	90	2556	13.2	79	1
## 310 41.5	4	98.0	76	2144	14.7	80	2
## 311 38.1	4	89.0	60	1968	18.8	80	3
## 312 32.1	4	98.0	70	2120	15.5	80	1
## 313 37.2	4	86.0	65	2019	16.4	80	3
## 314 28.0	4	151.0	90	2678	16.5	80	1
## 315 26.4	4	140.0	88	2870	18.1	80	1
## 316 24.3	4	151.0	90	3003	20.1	80	1
## 317 19.1	6	225.0	90	3381	18.7	80	1
## 318 34.3	4	97.0	78	2188	15.8	80	2
## 319 29.8	4	134.0	90	2711	15.5	80	3
## 320 31.3	4	120.0	75	2542	17.5	80	3
## 321 37.0	4	119.0	92	2434	15.0	80	3
## 322 32.2	4	108.0	75	2265	15.2	80	3
## 323 46.6	4	86.0	65	2110	17.9	80	3
## 324 27.9	4	156.0	105	2800	14.4	80	1
## 325 40.8	4	85.0	65	2110	19.2	80	3
## 326 44.3	4	90.0	48	2085	21.7	80	2
## 327 43.4	4	90.0	48	2335	23.7	80	2
## 328 36.4	5	121.0	67	2950	19.9	80	2
## 329 30.0	4	146.0	67	3250	21.8	80	2
## 330 44.6	4	91.0	67	1850	13.8	80	3
## 332 33.8	4	97.0	67	2145	18.0	80	3
## 333 29.8	4	89.0	62	1845	15.3	80	2
## 334 32.7	6	168.0	132	2910	11.4	80	3
## 335 23.7	3	70.0	100	2420	12.5	80	3
## 336 35.0	4	122.0	88	2500	15.1	80	2
## 338 32.4	4	107.0	72	2290	17.0	80	3
## 339 27.2	4	135.0	84	2490	15.7	81	1
## 340 26.6	4	151.0	84	2635	16.4	81	1
## 341 25.8	4	156.0	92	2620	14.4	81	1
## 342 23.5	6	173.0	110	2725	12.6	81	1
## 343 30.0	4	135.0	84	2385	12.9	81	1
## 344 39.1	4	79.0	58	1755	16.9	81	3
## 345 39.0	4	86.0	64	1875	16.4	81	1
## 346 35.1	4	81.0	60	1760	16.1	81	3
## 347 32.3	4	97.0	67	2065	17.8	81	3
## 348 37.0	4	85.0	65	1975	19.4	81	3
## 349 37.7	4	89.0	62	2050	17.3	81	3
## 350 34.1	4	91.0	68	1985	16.0	81	3
## 351 34.7	4	105.0	63	2215	14.9	81	1
## 352 34.4	4	98.0	65	2045	16.2	81	1
## 353 29.9	4	98.0	65	2380	20.7	81	1
## 354 33.0	4	105.0	74	2190	14.2	81	2
## 356 33.7	4	107.0	75	2210	14.4	81	3
## 357 32.4	4	108.0	75	2350	16.8	81	3
## 358 32.9	4	119.0	100	2615	14.8	81	3

## 359 31.6	4	120.0	74	2635	18.3	81	3
## 360 28.1	4	141.0	80	3230	20.4	81	2
## 361 30.7	6	145.0	76	3160	19.6	81	2
## 362 25.4	6	168.0	116	2900	12.6	81	3
## 363 24.2	6	146.0	120	2930	13.8	81	3
## 364 22.4	6	231.0	110	3415	15.8	81	1
## 365 26.6	8	350.0	105	3725	19.0	81	1
## 366 20.2	6	200.0	88	3060	17.1	81	1
## 367 17.6	6	225.0	85	3465	16.6	81	1
## 368 28.0	4	112.0	88	2605	19.6	82	1
## 369 27.0	4	112.0	88	2640	18.6	82	1
## 370 34.0	4	112.0	88	2395	18.0	82	1
## 371 31.0	4	112.0	85	2575	16.2	82	1
## 372 29.0	4	135.0	84	2525	16.0	82	1
## 373 27.0	4	151.0	90	2735	18.0	82	1
## 374 24.0	4	140.0	92	2865	16.4	82	1
## 375 36.0	4	105.0	74	1980	15.3	82	2
## 376 37.0	4	91.0	68	2025	18.2	82	3
## 377 31.0	4	91.0	68	1970	17.6	82	3
## 378 38.0	4	105.0	63	2125	14.7	82	1
## 379 36.0	4	98.0	70	2125	17.3	82	1
## 380 36.0	4	120.0	88	2160	14.5	82	3
## 381 36.0	4	107.0	75	2205	14.5	82	3
## 382 34.0	4	108.0	70	2245	16.9	82	3
## 383 38.0	4	91.0	67	1965	15.0	82	3
## 384 32.0	4	91.0	67	1965	15.7	82	3
## 385 38.0	4	91.0	67	1995	16.2	82	3
## 386 25.0	6	181.0	110	2945	16.4	82	1
## 387 38.0	6	262.0	85	3015	17.0	82	1
## 388 26.0	4	156.0	92	2585	14.5	82	1
## 389 22.0	6	232.0	112	2835	14.7	82	1
## 390 32.0	4	144.0	96	2665	13.9	82	3
## 391 36.0	4	135.0	84	2370	13.0	82	1
## 392 27.0	4	151.0	90	2950	17.3	82	1
## 393 27.0	4	140.0	86	2790	15.6	82	1
## 394 44.0	4	97.0	52	2130	24.6	82	2
## 395 32.0	4	135.0	84	2295	11.6	82	1
## 396 28.0	4	120.0	79	2625	18.6	82	1
## 397 31.0	4	119.0	82	2720	19.4	82	1
##			name				
## 1	chevrol	et chevelle m	alibu				
## 2		buick skylar	k 320				
## 3		plymouth sate	llite				
## 4		amc rebe	l sst				
## 5		ford t	orino				
## 6		ford galaxi	e 500				
## 7		chevrolet i	mpala				
## 8		plymouth fur	y iii				
## 9		pontiac cat					
## 10		amc ambassado	r dpl				
## 11	d	lodge challeng	er se				
## 12		plymouth 'cud					
## 13		vrolet monte					
## 14	buick	estate wagon	(wa)				

## 15	toyota corona mark ii
## 16	plymouth duster
## 17	amc hornet
## 18	ford maverick
## 19	datsun pl510
## 20	volkswagen 1131 deluxe sedan
## 21	peugeot 504
## 22	audi 100 ls
## 23	saab 99e
## 24	bmw 2002
## 25	amc gremlin
## 26	ford f250
## 27	chevy c20
## 28	dodge d200
## 29	hi 1200d
## 30	datsun pl510
## 31	chevrolet vega 2300
## 32	toyota corona
## 34	amc gremlin
## 35	plymouth satellite custom
## 36	chevrolet chevelle malibu
## 37	ford torino 500
## 38	amc matador
## 39	chevrolet impala
## 40	pontiac catalina brougham
## 41 ## 42	ford galaxie 500
	plymouth fury iii
	dodge monaco (sw) ford country squire (sw)
## 44 ## 45	pontiac safari (sw)
## 46	=
## 40 ## 47	amc hornet sportabout (sw) chevrolet vega (sw)
## 48	pontiac firebird
## 49	ford mustang
## 50	mercury capri 2000
## 51	opel 1900
## 52	peugeot 304
## 53	fiat 124b
## 54	toyota corolla 1200
## 55	datsun 1200
## 56	volkswagen model 111
## 57	plymouth cricket
## 58	toyota corona hardtop
## 59	dodge colt hardtop
## 60	volkswagen type 3
## 61	chevrolet vega
## 62	ford pinto runabout
## 63	chevrolet impala
## 64	pontiac catalina
## 65	plymouth fury iii
## 66	ford galaxie 500
## 67	amc ambassador sst
## 68	mercury marquis
## 69	buick lesabre custom

## 70	oldsmobile delta 88 royale
## 71	chrysler newport royal
## 72	mazda rx2 coupe
## 73	amc matador (sw)
## 74	chevrolet chevelle concours (sw)
## 75	ford gran torino (sw)
## 76	<pre>plymouth satellite custom (sw)</pre>
## 77	volvo 145e (sw)
## 78	volkswagen 411 (sw)
## 79	peugeot 504 (sw)
## 80	renault 12 (sw)
## 81	ford pinto (sw)
## 82	datsun 510 (sw)
## 83	toyouta corona mark ii (sw)
## 84	<pre>dodge colt (sw)</pre>
## 85	toyota corolla 1600 (sw)
## 86	buick century 350
## 87	amc matador
## 88	chevrolet malibu
## 89	ford gran torino
## 90	dodge coronet custom
## 91	mercury marquis brougham
## 92	chevrolet caprice classic
## 93	ford ltd
## 94	plymouth fury gran sedan
## 95	chrysler new yorker brougham
## 96	buick electra 225 custom
## 97	amc ambassador brougham
"" 00	plymouth valiant
## 98	
## 98 ## 99	chevrolet nova custom
## 99	chevrolet nova custom
## 99 ## 100	chevrolet nova custom amc hornet
## 99 ## 100 ## 101	chevrolet nova custom amc hornet ford maverick
## 99 ## 100 ## 101 ## 102	chevrolet nova custom amc hornet ford maverick plymouth duster
## 99 ## 100 ## 101 ## 102 ## 103	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle
## 99 ## 100 ## 101 ## 102 ## 103 ## 104	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 109	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 109 ## 110	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 109 ## 110 ## 111	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 111	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 111 ## 112 ## 113	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 109 ## 110 ## 111 ## 112 ## 113 ## 114	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 111 ## 112 ## 113 ## 114 ## 115	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6 fiat 124 sport coupe
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 112 ## 113 ## 114 ## 115 ## 116	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6 fiat 124 sport coupe chevrolet monte carlo s
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 111 ## 112 ## 113 ## 114 ## 115 ## 116 ## 117	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6 fiat 124 sport coupe chevrolet monte carlo s pontiac grand prix
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 111 ## 112 ## 113 ## 114 ## 115 ## 116 ## 117 ## 118	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6 fiat 124 sport coupe chevrolet monte carlo s pontiac grand prix fiat 128
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 111 ## 112 ## 113 ## 114 ## 115 ## 116 ## 117 ## 118 ## 119	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6 fiat 124 sport coupe chevrolet monte carlo s pontiac grand prix fiat 128 opel manta
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 111 ## 112 ## 113 ## 114 ## 115 ## 116 ## 117 ## 118 ## 119 ## 120	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6 fiat 124 sport coupe chevrolet monte carlo s pontiac grand prix fiat 128 opel manta audi 1001s volvo 144ea
## 99 ## 100 ## 101 ## 102 ## 103 ## 104 ## 105 ## 106 ## 107 ## 108 ## 110 ## 111 ## 112 ## 113 ## 114 ## 115 ## 116 ## 117 ## 118 ## 119 ## 120 ## 121	chevrolet nova custom amc hornet ford maverick plymouth duster volkswagen super beetle chevrolet impala ford country plymouth custom suburb oldsmobile vista cruiser amc gremlin toyota carina chevrolet vega datsun 610 maxda rx3 ford pinto mercury capri v6 fiat 124 sport coupe chevrolet monte carlo s pontiac grand prix fiat 128 opel manta audi 1001s

toyota mark ii	124	##
oldsmobile omega	125	##
plymouth duster	126	##
amc hornet	128	##
chevrolet nova	129	##
datsun b210	130	##
ford pinto	131	##
toyota corolla 1200	132	##
chevrolet vega	133	##
chevrolet chevelle malibu classic	134	##
amc matador	135	##
plymouth satellite sebring	136	##
ford gran torino	137	##
buick century luxus (sw)	138	##
dodge coronet custom (sw)	139	##
ford gran torino (sw)	140	##
amc matador (sw)	141	##
audi fox	142	##
volkswagen dasher	143	##
opel manta	144	##
toyota corona	145	##
datsun 710	146	##
dodge colt	147	##
fiat 128	148	##
fiat 124 tc	149	##
honda civic	150	##
subaru	151	##
fiat x1.9	152	##
plymouth valiant custom	153	##
chevrolet nova	154	##
mercury monarch	155	##
ford maverick	156	##
1	157	##
	158	##
plymouth grand fury	159	##
ford ltd	160	##
buick century	161	##
	162	##
	163	##
1 0	164	##
v	165	##
		##
8		##
,	168	##
1	169	##
ĕ	170	##
pontiac astro	171	##
J	172	##
5	173	##
	174	##
1	175	##
8	176	##
-	177	##
audi 1001s	178	##

##	179	peugeot 504
##	180	volvo 244dl
##	181	saab 991e
##	182	honda civic cvcc
##	183	fiat 131
##	184	opel 1900
##	185	capri ii
##	186	dodge colt
##	187	renault 12tl
##	188	chevrolet chevelle malibu classic
##	189	dodge coronet brougham
##	190	amc matador
##	191	ford gran torino
##	192	plymouth valiant
##	193	chevrolet nova
##	194	ford maverick
##	195	amc hornet
##	196	chevrolet chevette
##	197	chevrolet woody
##	198	vw rabbit
##	199	honda civic
##	200	dodge aspen se
##	201	ford granada ghia
##	202	pontiac ventura sj
##	203	amc pacer d/l
##	204	volkswagen rabbit
##	205	datsun b-210
##	206	toyota corolla
##	207	ford pinto
##	208	volvo 245
##	209	plymouth volare premier v8
##	210	peugeot 504
##	211	toyota mark ii
##	212	mercedes-benz 280s
##	213	cadillac seville
##	214	chevy c10
##	215	ford f108
	216	dodge d100
	217	honda accord cvcc
	218	buick opel isuzu deluxe
	219	renault 5 gtl
	220	plymouth arrow gs
	221	datsun f-10 hatchback
	222	chevrolet caprice classic
	223	oldsmobile cutlass supreme
	224	dodge monaco brougham
	225	mercury cougar brougham
	226	chevrolet concours
	227	buick skylark
	228	plymouth volare custom
	229	ford granada
	230	pontiac grand prix lj
	231	chevrolet monte carlo landau
##	232	chrysler cordoba

## 233	ford thunderbird
## 234	volkswagen rabbit custom
## 235	pontiac sunbird coupe
## 236	toyota corolla liftback
## 237	ford mustang ii 2+2
## 238	chevrolet chevette
## 239	dodge colt m/m
## 240	subaru dl
## 241	volkswagen dasher
## 242	datsun 810
## 243	bmw 320i
## 244	mazda rx-4
## 245	volkswagen rabbit custom diesel
## 246	ford fiesta
## 247	mazda glc deluxe
## 248	datsun b210 gx
## 249	honda civic cvcc
## 250	oldsmobile cutlass salon brougham
## 251	dodge diplomat
## 252	mercury monarch ghia
## 253	pontiac phoenix lj
## 254	chevrolet malibu
## 255	ford fairmont (auto)
## 256	ford fairmont (man)
## 257	plymouth volare
## 258	amc concord
## 259	buick century special
## 260	mercury zephyr
## 261	dodge aspen
## 262	amc concord d/l
## 263	chevrolet monte carlo landau
## 264	buick regal sport coupe (turbo)
## 265	ford futura
## 266	dodge magnum xe
## 267	chevrolet chevette
## 268	toyota corona
## 269	datsun 510
## 270	dodge omni
## 271	toyota celica gt liftback
## 272	plymouth sapporo
## 273	oldsmobile starfire sx
## 274	datsun 200-sx
## 275	audi 5000
## 276	volvo 264gl
## 277	saab 99gle
## 278	peugeot 604sl
## 279	volkswagen scirocco
## 280	honda accord lx
## 281	pontiac lemans v6
## 282	mercury zephyr 6
## 283	ford fairmont 4
## 284	amc concord dl 6
## 285	dodge aspen 6
## 286	chevrolet caprice classic

	287	ford ltd landau
##	288	mercury grand marquis
##	289	dodge st. regis
##	290	buick estate wagon (sw)
##	291	ford country squire (sw)
##	292	<pre>chevrolet malibu classic (sw)</pre>
##	293	chrysler lebaron town @ country (sw)
##	294	vw rabbit custom
##	295	maxda glc deluxe
##	296	dodge colt hatchback custom
##	297	amc spirit dl
##	298	mercedes benz 300d
##	299	cadillac eldorado
##	300	peugeot 504
##	301	oldsmobile cutlass salon brougham
	302	=
##		plymouth horizon
##	303	plymouth horizon tc3
##	304	datsun 210
##	305	fiat strada custom
##	306	buick skylark limited
##	307	chevrolet citation
##	308	oldsmobile omega brougham
##	309	pontiac phoenix
##	310	vw rabbit
##	311	toyota corolla tercel
##	312	chevrolet chevette
##	313	datsun 310
##	314	chevrolet citation
##	315	ford fairmont
##	316	amc concord
##	317	dodge aspen
##	318	audi 4000
##	319	toyota corona liftback
##	320	mazda 626
	321	datsun 510 hatchback
##	322	toyota corolla
##	323	mazda glc
	324	dodge colt
	325	datsun 210
	326	vw rabbit c (diesel)
	327	vw dasher (diesel)
	328	audi 5000s (diesel)
##	329	mercedes-benz 240d
##	330	honda civic 1500 gl
##	332	subaru dl
##	333	vokswagen rabbit
##	334	datsun 280-zx
##	335	mazda rx-7 gs
	336	triumph tr7 coupe
	338	honda accord
	339	plymouth reliant
	340	buick skylark
	341	dodge aries wagon (sw)
	342	chevrolet citation
##	342	cheviolet citation

## 343	plymouth reliant
## 344	toyota starlet
## 345	plymouth champ
## 346	honda civic 1300
## 347	subaru
## 348	datsun 210 mpg
## 349	toyota tercel
## 350	mazda glc 4
## 351	plymouth horizon 4
## 352	ford escort 4w
## 353	ford escort 2h
## 354	volkswagen jetta
## 356	honda prelude
## 357	toyota corolla
## 358	datsun 200sx
## 359	mazda 626
## 360	peugeot 505s turbo diesel
## 361	volvo diesel
## 362	toyota cressida
## 363	datsun 810 maxima
## 364	buick century
## 365	oldsmobile cutlass ls
## 366	ford granada gl
## 367	chrysler lebaron salon
## 368	chevrolet cavalier
## 369	chevrolet cavalier wagon
## 370	chevrolet cavalier 2-door
## 371	pontiac j2000 se hatchback
## 372	dodge aries se
## 373	pontiac phoenix
## 374	ford fairmont futura
## 375	volkswagen rabbit l
## 376	mazda glc custom l
## 377	mazda glc custom
## 378	plymouth horizon miser
## 379	mercury lynx l
## 380	nissan stanza xe
## 381	honda accord
## 382	toyota corolla
## 383	honda civic
## 384	honda civic (auto)
## 385	datsun 310 gx
## 386	buick century limited
## 387	oldsmobile cutlass ciera (diesel)
## 388	chrysler lebaron medallion
## 389	ford granada l
## 390	toyota celica gt
## 391	dodge charger 2.2
## 392	chevrolet camaro
## 393	ford mustang gl
## 394	vw pickup
## 395	dodge rampage
## 396	ford ranger
## 397	chevy s-10

a)

b)

##

pairs(Auto, main="Autos Dataset Scatterplot Matrix")

cor(data.matrix(Auto[,-length(Auto)]))

lm(formula = mpg ~ ., data = df)

```
mpg cylinders displacement horsepower
##
                                                              weight
## mpg
                1.0000000 -0.7776175
                                      -0.8051269 -0.7784268 -0.8322442
## cylinders
               -0.7776175
                         1.0000000
                                       ## displacement -0.8051269 0.9508233
                                       1.0000000
                                                 0.8972570 0.9329944
## horsepower
               -0.7784268 0.8429834
                                       0.8972570
                                                 1.0000000 0.8645377
               -0.8322442 0.8975273
                                       0.9329944 0.8645377
## weight
                                                           1.0000000
## acceleration 0.4233285 -0.5046834
                                      -0.5438005 -0.6891955 -0.4168392
## year
                0.5805410 -0.3456474
                                      -0.3698552 -0.4163615 -0.3091199
                                      -0.6145351 -0.4551715 -0.5850054
## origin
                0.5652088 -0.5689316
##
               acceleration
                                 year
                                          origin
## mpg
                 0.4233285 0.5805410 0.5652088
## cylinders
                 -0.5046834 -0.3456474 -0.5689316
## displacement
                 -0.5438005 -0.3698552 -0.6145351
## horsepower
                 -0.6891955 -0.4163615 -0.4551715
## weight
                 -0.4168392 -0.3091199 -0.5850054
## acceleration
                 1.0000000 0.2903161 0.2127458
## year
                  0.2903161 1.0000000 0.1815277
## origin
                 c)
df <- Auto[,-length(Auto)]</pre>
# help(lm)
model <- lm(mpg ~ ., data=df)</pre>
summary(model)
##
## Call:
```

```
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
##
  -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -17.218435
                            4.644294 -3.707 0.00024 ***
## cylinders
                -0.493376
                            0.323282 -1.526 0.12780
## displacement
                 0.019896
                            0.007515
                                       2.647
                                              0.00844 **
                                      -1.230
## horsepower
                -0.016951
                            0.013787
                                             0.21963
## weight
                 -0.006474
                            0.000652
                                      -9.929
                                              < 2e-16 ***
## acceleration
                 0.080576
                            0.098845
                                       0.815 0.41548
                            0.050973
## year
                 0.750773
                                      14.729 < 2e-16 ***
                            0.278136
                                       5.127 4.67e-07 ***
## origin
                 1.426141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
```

- c.i) The model does predict a relationship between the predictors and response; R^2 at 0.903 is high, expressing that the model fits training data well. The F-statistic is high (considering the number of observations is much larger than our number of predictors) and p value is very low, thus the null-hypothesis can be rejected.
- c.ii) Based on their low p values (highlighted by the 2-3 stars next to each p-value), displacement, weight, year and origin appear to have a statistically significant relationship to the response
- c.iii) With each passing year, mpg increases by ~0.75 mpg

d)

```
par(mfrow=c(2,2))
plot(model)
```


The residuals vs fitted plot can be used to diagnose non-linear behavior in residuals. There appears to be a parabolic shape to the residuals curves, where non-linear relationship that was not explained by the model was left out in the residuals. The Normal Q-Q plot shows if residuals are normally distributed; there is some deviation in the points that have gained labels: 326, 327 and 323 The Scale-Location plot shows that the residuals are randomly spread and homoscedastic The residuals vs leverage plot shows that residual 14 has leverage, but all points are within cook's distance, meaning there aren't any particular residual that is highly influential to regression results

e) with some car knowledge that engine performance depends on an interaction of number of cylinders and total displacement, I believed it would be interesting to see whether this can influence our model:

```
model_interaction <- lm(mpg~cylinders*displacement, data=df)
summary(model_interaction)</pre>
```

Call:

```
## lm(formula = mpg ~ cylinders * displacement, data = df)
##
## Residuals:
##
                                    3Q
       Min
                  1Q
                      Median
                                            Max
##
   -16.0432 -2.4308 -0.2263
                                2.2048
                                        20.9051
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          48.22040
                                      2.34712
                                              20.545 < 2e-16 ***
## cylinders
                          -2.41838
                                      0.53456
                                              -4.524 8.08e-06 ***
## displacement
                          -0.13436
                                      0.01615 -8.321 1.50e-15 ***
                                                5.711 2.24e-08 ***
## cylinders:displacement 0.01182
                                      0.00207
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.454 on 388 degrees of freedom
## Multiple R-squared: 0.6769, Adjusted R-squared: 0.6744
## F-statistic:
                 271 on 3 and 388 DF, p-value: < 2.2e-16
```

Cylinders, displacement as well as their interaction proved to be very statistically significant in predicting mpg, which makes sense from a mechanical standpoint; more cylinders should allow for a more stable engine and higher RPMs, coupled with greater displacement fuel use can increase very quickly

Next I wondered whether there were strong interactions between year and origin, i.e. whether some countries of origin made great improvements overtime or vice veresa

```
model_interaction <- lm(mpg~year*origin, data=df)
summary(model_interaction)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ year * origin, data = df)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    30
                                            Max
                     -0.6513
                                        15.5859
##
  -11.3141
            -3.7120
                                3.3621
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -83.3809
                           12.0000
                                   -6.948 1.57e-11 ***
                                     8.305 1.68e-15 ***
## year
                 1.3089
                            0.1576
                17.3752
                            6.8325
                                     2.543
                                             0.0114 *
## origin
## year:origin -0.1663
                            0.0889
                                    -1.871
                                             0.0621 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.199 on 388 degrees of freedom
## Multiple R-squared: 0.5596, Adjusted R-squared: 0.5562
## F-statistic: 164.4 on 3 and 388 DF, p-value: < 2.2e-16
```

However, here the significance is rather weak

Finally, knowing that acceleration can have a very high penalty on fuel usage, and that horsepower is a function of RPM:

```
model_interaction <- lm(mpg~acceleration*horsepower, data=df)
summary(model_interaction)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ acceleration * horsepower, data = df)
## Residuals:
##
       Min
                 1Q
                     Median
                                    30
                                            Max
## -13.3442 -2.7324 -0.4049
                                2.4210 15.8840
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           33.512440
                                      3.420187
                                                 9.798 < 2e-16 ***
                                                 3.777 0.000184 ***
                                      0.211899
## acceleration
                            0.800296
## horsepower
                            0.017590
                                      0.027425
                                                 0.641 0.521664
## acceleration:horsepower -0.015698
                                      0.002003 -7.838 4.45e-14 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.426 on 388 degrees of freedom
## Multiple R-squared: 0.6809, Adjusted R-squared: 0.6784
## F-statistic: 275.9 on 3 and 388 DF, p-value: < 2.2e-16
It turns out that a fast moving, high revving powerhouse consumes a ton of fuel: the interaction is statistically
significaent.
  f)
model_transform <- lm(log(mpg)~cylinders+exp(displacement)+log(horsepower)+log(weight)+log(acceleration
summary(model_transform)
##
## Call:
## lm(formula = log(mpg) ~ cylinders + exp(displacement) + log(horsepower) +
##
       log(weight) + log(acceleration) + I(year^2) + origin, data = Auto)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                    3Q
                                            Max
  -0.40259 -0.07022 -0.00125 0.06176 0.38161
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      8.278e+00 3.461e-01 23.921 < 2e-16 ***
## cylinders
                     -1.515e-02 7.799e-03 -1.942 0.05284 .
## exp(displacement) 1.922e-199 0.000e+00
                                                Inf < 2e-16 ***
## log(horsepower)
                     -3.069e-01 5.805e-02 -5.287 2.09e-07 ***
## log(weight)
                      -5.475e-01 6.743e-02 -8.119 6.46e-15 ***
## log(acceleration)
                     -1.846e-01 5.754e-02 -3.208 0.00145 **
## I(year^2)
                      1.959e-04 1.127e-05 17.385 < 2e-16 ***
                      2.401e-02
                                             2.646 0.00847 **
## origin
                                  9.074e-03
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1124 on 384 degrees of freedom
## Multiple R-squared: 0.8927, Adjusted R-squared: 0.8908
## F-statistic: 456.5 on 7 and 384 DF, p-value: < 2.2e-16
```

Using a log transform of mpg proved a much better fit on its own; making additional transforms on predictor

vectors, especially $\exp()$ on displacement and $\log()$ on horsepower, weight and acceleration further improved adjusted R² and reduced RSE

And now looking at the diagnostic plots:

We see that with the aforementioned transforms on our response and predictor variables, the non-linear patterns on residuals greatly decreased (on the residuals vs fitted plot). Deviation of residuals from the straight line on Normal Q-Q plot also decreased, signifying more normally distributed residuals

Problem 10: Exercise 14 (p. 125) a)

```
set.seed(1)
x1 = runif(100)
x2 = 0.5 * x1 + rnorm(100)/10
```

```
y = 2 + 2*x1 + 0.3*x2 + rnorm(100)
```

Form of the linear model:

$$Y = 2 + 2x_1 + 0.3 x_2 + 8$$
 $B_0 = 2$
 $B_1 = 2$
 $B_3 = 0.3$

Figure 1: problem 10a

```
b)

print(cor(x1, x2))

## [1] 0.8351212

model = lm(x2~x1)
plot(x1, x2)
abline(model, col='blue')
```

