Abstract Binding Trees

Jonathan Sterling

1 Preliminaries

Fix a set $\mathscr S$ of *sorts*. We will say s *sort* when $s \in S$. A valence $\{\vec p\}[\vec q].s$ specifies an expression of sort s which binds symbols in $\vec p$ and variables in $\vec q$.

$$\frac{s \ sort \quad p_i \ sort \quad (i \le m) \quad q_i \ sort \quad (i \le n)}{\left\{p_0, \dots, p_m\right\} \left[q_0, \dots, q_n\right]. \ s \ valence}$$

An arity $(\vec{v})s$ specifies an operator of sort s with arguments of valences \vec{v} . We will call the set of valences \mathcal{V} , and the set of arities \mathcal{A} .

$$\frac{s \ sort \ v_i \ valence \ (i \le n)}{(v_0, ..., v_n) s \ arity}$$

Let \mathbb{I} be an infinite set of symbols. Let \mathbb{F} be the category of finite subsets of \mathbb{I} and their injective maps; then the comma construction $\mathbf{SCtx} \triangleq \mathbb{F} \downarrow \mathscr{S}$, with \mathscr{S} regarded as a discrete category, is the category of contexts of symbols, whose objects are finite sets of symbols U and sort-assignments $\mathfrak{s}: U \to \mathscr{S}$, and whose morphisms are sort-preserving renamings; we will write Υ for a symbol context (U, \mathfrak{s}) .

Then, fix a covariant presheaf of operators $\mathscr{O}: \mathbf{SCtx} \times \mathscr{A} \to \mathbf{Set}$ such that the arrows in \mathbf{SCtx} lift to renamings of operators' parameters; via the Grothendieck construction, we can also consider the set $\oint \mathscr{O}$ of operators $(\Upsilon, \varrho, \vartheta)$ for $\vartheta \in \mathscr{O}(\Upsilon, \varrho)$.

$$\frac{\vartheta \in \mathcal{O}(\Upsilon,\varrho)}{\Upsilon \Vdash \vartheta : \varrho}$$

The judgment $\Upsilon \Vdash \vartheta : \varrho$ enjoys the structural properties of weakening and exchange via the functoriality of \mathscr{O} .

Examples Operators are defined by specifying the fibres of $\oint \mathcal{O}$ in which they reside. For instance, consider the lambda calculus with a single sort, exp; we give its signature by asserting the following about its operators:

$$\Upsilon \Vdash \lambda : (\{\cdot\} [\exp] . \exp) \exp$$

 $\Upsilon \Vdash ap : (\{\cdot\} [\cdot] . \exp, \{\cdot\} [\cdot] . \exp) \exp$

So far, we have made no use of symbols and parameters; however, consider the extension of the calculus with assignables (references):

```
\Upsilon \Vdash \mathsf{decl} : (\{\cdot\} [\cdot] . \mathsf{exp}, \{\mathsf{exp}\} [\cdot] . \mathsf{exp}) \mathsf{exp}

\Upsilon, u : \mathsf{exp} \Vdash \mathsf{get}[u] : (\cdot) \mathsf{exp}

\Upsilon, u : \mathsf{exp} \Vdash \mathsf{set}[u] : (\{\cdot\} [\cdot] . \mathsf{exp}) \mathsf{exp}
```

Declaring a new assignable consists in providing an initial value, and an expression with a free symbol (which shall represent the assignable in scope). Weakening can be seen as inducing a "degeneracy map" on operators, whereas a renaming $u \mapsto v$ will take get[u] to get[v].

2 Contexts

In general, we will have three kinds of context: metavariable contexts, variable contexts, and symbol (parameter) contexts. A metavariable context Ω consists of bindings of valences to metavariables; a variable context Γ is a collection of bindings of sorts to variables, and a parameter context Υ is a collection of bindings of sorts to symbols.

$$\frac{\Omega \ mctx \quad v \ valence \quad \mathbf{M} \notin |\Omega|}{\Omega, \mathbf{M} : v \ mctx}$$

$$\frac{\Gamma \ vctx \quad s \ sort \quad x \notin |\Gamma|}{\Gamma, x : s \ vctx}$$

$$\frac{\Upsilon \ vctx \quad s \ sort \quad u \notin |\Upsilon|}{\Upsilon, u : s \ sctx}$$

3 Abstract Binding Trees

Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash M : s$ presuppose Ω mctx, Υ sctx, Γ vctx and s sort, meaning that M is an abstract binding tree of sort s, with metavariables in Ω , parameters in Υ , and variables in Γ . Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash E : v$ presuppose v valence. Then, the syntax of abstract binding trees is inductively defined in four rules:

$$\frac{\Gamma \ni x : s}{\Omega \rhd \Upsilon \parallel \Gamma \vdash x : s} var$$

$$\Omega \ni M : \left\{ p_0, \dots, p_m \right\} \left[q_0, \dots, q_n \right] . s$$

$$\Upsilon \ni u_i : p_i \quad (i \le m)$$

$$\Omega \rhd \Upsilon \parallel \Gamma \vdash M_i : q_i \quad (i \le n)$$

$$\overline{\Omega \rhd \Upsilon \parallel \Gamma \vdash M \{u_0, \dots, u_m\} (M_0, \dots, M_n) : s} \quad mvar$$

$$\Upsilon \Vdash \vartheta : v_1, \dots, v_n$$

$$\frac{\Omega \rhd \Upsilon \parallel \Gamma \vdash E_i : q_i \quad (i \le n)}{\Omega \rhd \Upsilon \parallel \Gamma \vdash \vartheta (E_0, \dots, E_n) : s} \quad app$$

$$\frac{\Omega \rhd \Upsilon, \overrightarrow{u} : \overrightarrow{p} \parallel \Gamma, \overrightarrow{x} : \overrightarrow{q} \vdash M : s}{\Omega \rhd \Upsilon \parallel \Gamma \vdash \left(\left\{ \overrightarrow{u} \right\} \left[\overrightarrow{x} \right] . M \right) : \left(\left\{ \overrightarrow{p} \right\} \left[\overrightarrow{q} \right] . s \right)} \quad abs$$

Abstract binding trees are identified up to α -equivalence.

3.1 Substitution of Variables

Variable substitution in abstract binding trees is defined inductively by a pair of judgments, $[N/x]M \rightsquigarrow M'$ and $[N/x]E \rightsquigarrow E'$:

$$\frac{x = y}{[N/x] y \rightsquigarrow N} \frac{x \# y}{[N/x] y \rightsquigarrow y}$$

$$\frac{[N/x] M_i \rightsquigarrow M_i' \quad (i \leq n)}{[N/x] M \{\vec{u}\} (M_0, \dots, M_n) \rightsquigarrow M \{\vec{u}\} (M_0', \dots, M_n')}$$

$$\frac{[N/x] E_i \rightsquigarrow E_i' \quad (i \leq n)}{[N/x] \vartheta (E_0, \dots, E_n) \rightsquigarrow \vartheta (E_0', \dots, E_n')}$$

$$\frac{x \notin \vec{y} \quad \vec{y} \# FV(N) \quad [N/x] M \rightsquigarrow M'}{[N/x] \{\vec{u}\} [\vec{y}] . M \rightsquigarrow \{\vec{u}\} [\vec{y}] . M'} \frac{x \in \vec{y} \quad \vec{y} \# FV(N)}{[N/x] \{\vec{u}\} [\vec{y}] . M \rightsquigarrow \{\vec{u}\} [\vec{y}] . M}$$

Because terms are identified up to α -equivalence, the variable substitution judgment is functional in its inputs, and so we are justified in writing [N/x]M for M' when $[N/x]M \rightsquigarrow M'$. We write $[\vec{N}/\vec{x}]M$ for the simultaneous substitution of \vec{N} for \vec{x} in M.

3.2 Substitution of Metavariables

Metavariable substitution is defined inductively by the judgment $[E/M]M \leadsto M'$:

$$\begin{split} & \overline{[E/\mathrm{M}]\,x} \leadsto \overline{x} \\ & \underline{\mathrm{M} \,\#\, \mathrm{N} \quad [E/\mathrm{N}]\,M_i \leadsto M_i' \quad (i \leq n)} \\ & \overline{[E/\mathrm{M}]\,\mathrm{N}\,\left\{\overrightarrow{u}\right\}(M_0,\ldots,M_n) \leadsto \mathrm{N}\,\left\{\overrightarrow{u}\right\}\left(M_0',\ldots,M_n'\right)} \end{split}$$