LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search

Bin Yan*, Houwen Peng*, Kan Wu*, Dong Wang, Jianlong Fu, Huchuan

Lu

Paper link: https://arxiv.org/abs/2104.14545v1

Code link: https://github.com/researchmm/LightTrack

Overview

- Motivation
- Potential Solutions for Lightweight model design
- Introduction to Neural Architecture Search
- LightTrack
- Experiments

Motivation

SOTA object trackers are becoming increasingly heavy and expensive

• Tracking models are difficult to deploy in real-world applications 20.3G FLOPs 25.9M Params

Potential Solutions

- Model Compression
 - bringing non-negligible performance degradation x
- Handcraft new compact and efficient models
 - engineering expensive & heavily relying on human expertise and experience x
- Automating the design of lightweight models with NAS
 - Automatically designing optimal architectures on resource-limited hardware platforms for object tracking task √

History and early NAS methods

The simplest idea for NAS:

Preliminaries on one-shot NAS

DARTS

- Optimize architecture parameters and weight parameters jointly
- Always Keeping all operations in memory

V.S

Step1:
$$W_{\mathcal{A}} = \underset{W}{\operatorname{argmin}} \mathcal{L}_{\operatorname{train}} \left(\mathcal{N}(\mathcal{A}, W) \right)$$

Step1:
$$W_{\mathcal{A}} = \underset{W}{\operatorname{argmin}} \mathcal{L}_{\operatorname{train}} (\mathcal{N}(\mathcal{A}, W))$$

Step2: $a^* = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \operatorname{ACC}_{\operatorname{val}} (\mathcal{N}(a, W_{\mathcal{A}}(a)))$

- Decouple training and searching
- Activate only one path in each iteration

More Resources for Neural Architecture Search

Blogs, Libraries, Benchmarks, and Papers...

- https://github.com/D-X-Y/Awesome-AutoDL
- https://www.automl.org/automl/literature-on-neural-architecture-search/

Method

Search space

Insights:

- Both **backbone** and **head** play significant roles for a successful tracker
- there is no definitive answer to the question of which layer's feature is more suitable for object tracking

Kernel size: {3x3, 5x5, 7x7} Expansion ratio: {4, 6}

6 choices for each MBConv

Search Space Details

	Input Shape	Operators	$N_{choices}$	Chn	Rpt	Stride
Backbone	$256^2 \times 3$	3×3 Conv	1	16	1	2
	$128^{2} \times 16$	DSConv	1	16	1	1
	$128^{2} \times 16$	MBConv	6	24	2	2
	$64^2 \times 24$	MBConv	6	40	4	2
	$32^2 \times 40$	MBConv	6	80	4	2
	$16^2 \times 80$	MBConv	6	96	4	1
Cls Head	$16^2 \times 128$	DSConv	6	C_1	1	1
	$16^2 \times C_1$	DSConv / Skip	3	C_1	7	1
	$16^2 \times C_1$	3x3 Conv	1	1	1	1
Reg Head	$16^2 \times 128$	DSConv	6	C_2	1	1
	$16^2 \times C_2$	DSConv / Skip	3	C_2	7	1
	$16^2 \times C_2$	3x3 Conv	1	4	1	1

DSConv: Depthwise separable convolution Kernel size {3x3, 5x5}, channel {128, 192, 256}

Method

• Framework (pipeline)

Experiments

Searched architecture

- More than 50% layers in the backbone adopt kernel size 7x7 (large receptive fields can improve the localization precision)
- The searched architecture chooses the second-last block as the feature output layer. (higher-level feature might not be better)

The classification branch contains fewer layers than the regression branch. (coarse object localization is relatively easier than precise bounding box regression.

Experiments

Comparison with SOTA trackers

Experiments

Speed on resource-limited platforms

Thanks for your listening

We are hiring!

Please contact to Houwen.peng@microsoft.com