NEUROFUNCTIONAL IMPACT OF CHRONIC CANNABIS USE ON EMOTION

ZHONGJIE, BAO Nipissing University

WORLD DRUG REPORT, 2018

PREVALENCE

Acute Effects

- THC → CB₁ receptors
- Well studied effects: perceptual/motor, cognition, emotion

Chronic Effects

- Non-acute, overtime, present without THC
- Cognitive effects well studied: verbal memory¹, theory of mind², and executive functions³
- Emotion less understood

EFFECTS OF CANNABIS

1 Battisti et al., 2010 2 Roser et al. 2012;

3 Crean, Crane & Mason, 2011

FUNCTIONAL NEUROIMAGING EVIDENCE

Chronic cannabis use – Mixed Results

Threat-based faces → reduced activity

- Amygdala^{1,2,3}
- PCC¹
- dIPFC³

Negative-valence images → increased activity

• mOFC⁵

- 1 Gruber et al., 2009
- 2 Cornelius, Aizenstein and Hariri, 2010
- 3 Heitzeg et al., 2015
- 4 Wesley et al., 2016
- 5 Zimmermann et al., 2017

LIMITATION OF PAST STUDIES

fMRI studies → small sample size

- Inconsistent definition of "chronic cannabis use"
- Continuous and categorical

OUR STUDY

Chronic Cannabis Use

Emotional processing?

 Hypothesis: chronic use of cannabis alters the brain's neurofunctional response to affective stimuli in the limbic system

Use data from the Human Connectome Project

THE HUMAN CONNECTOME PROJECT

Network Map for the brain.

Comprehensive behavioural data

 Uses reliable and well-validated battery of measures that assess a wide range of human functions (Personality, IQ, Cognitive measures, BMI, etc.)

Large-scale neuroimaging

- Collected neuroimaging data for 1200 healthy adults
- Exceptional data quality. High temporal resolution, high maximum gradient strength

METHOD - DATA SELECTION

genetically independent sub-sample analysis - 192 participants into 3 groups

Exploratory

- Case-matched on
- 1)Age 2)Gender
- 3) Education status 4) Education attainment

GROUP STATS

	Gender M/F	Age M(SD)	Education M(SD)	Age of Onset (Years)	Duration of use (Years)	Intensity of Use (5 point scale)
Abuser	44/15	28.4(3.5)	14.5(1.8)	16	12.4	4.3
User	44/15	28.3(3.6)	14.2(2.0)	18.2	10.1	2.4
Non-user	42/17	28.7(3.8)	14.4(1.9)			

Intentionally matched

Comparable coincidentally: Big Five Personality traits, Household Income, IQ

METHOD – EXPERIMENTAL PARADIGM

Emotional face-matching task (Hariri et al, 2002) – Anger and Fear from IAPS

TASK RESPONSE

- Faces vs. shapes
- Abuser group

The following findings were significant at a voxel level with minimum cluster size, not significant when we take into account family-wise error correction.

The effects are simply weak.

ABUSER VS. NON-USER

Orbitofrontal Cortex (OFC) – Most support

- decision making and impulse control
- impulsive drug taking behaviour

Abuser vs. Non-user

- MCC
- OFC
- Piriform cortex
- Left putamen
- Left thalamus

User vs. Non-user

- Left amygdala
- IFC
- Left putamen

Abuser vs. User

No significant difference

ABUSER VS. NON-USER

Left Putamen – well-supported^{1,2}

- CB₁ receptors³ are abundant
- reward anticipation
- Pleasure-related drug-seeking behaviour in chronic cannabis use¹

Abuser vs. Non-user

- MCC
- OFC
- Piriform cortex
- Left putamen
- Left thalamus

User vs. Non-user

- Left amygdala
- IFC
- Left putamen

Abuser vs. User

No significant difference

1 van Hell et al., 2010;

2 Hester, Nestor & Garavan, 2009

3 Hurley, Mash & Jenner, 2003

USER VS. NON-USER

A IFC 0 0/1 25

Left amygdala and Inferior Frontal Cortex (IFC)

- Emotional face processing
- Only in users not abusers
- Only in lower doses and not higher doses¹
- Compensatory effect?

Abuser vs. Nonuser

- MCC
- OFC
- Piriform cortex
- Left putamen
- Left thalamus

User vs. Non-user

- Left amygdala
- IFC
- Left putamen

Abuser vs. User

No significant difference

CONCLUSION

Chronic use of cannabis might be associated with altered

- emotional processing (Amygdala, IFC)
- decision making (OFC)
- impulse control (OFC)
- reward anticipation (Putamen)

LIMITATION & FUTURE DIRECTIONS

- Abuser depend on telephone-based, DSM-like diagnosis
- Require self-awareness
- For more sensitive assessment, we will include continuous measures: age of onset, intensity of use

Use the whole HCP dataset

Include genetic relatedness

ONGOING ANALYSES

- Stripped down to 59 each group, Excluded
- 1. Current psychiatric disorders
- 2. Urine test positive for drugs other than THC
- 3. Other variables (such as tobacco use and alcohol use)

 Ignore group, use alcohol and intensity of cannabis use

Abusers vs. Non-Users

Abusers vs. Non-Users

Left putamen

Left thalamus

Users vs. Non-Users

Users vs. Non-Users

Left putamen

Left amygdala