

Teste Intermédio de Matemática A

Versão 1

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 24.05.2013

12.º Ano de Escolaridade

Na sua folha de respostas, indique de forma legível a versão do teste.

- Os cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma está correta.
- Escreva na sua folha de respostas apenas o número de cada item e a letra correspondente à opção que selecionar para responder a esse item.
- Não apresente cálculos, nem justificações.
- Se apresentar mais do que uma opção, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- **1.** Para um certo número real k, positivo, seja f a função, de domínio $]-\infty,1[$, definida por

$$f(x) = \begin{cases} \ln(k - x) & \text{se } x \le 0 \\ 2e^x + \frac{1}{\ln x} & \text{se } 0 < x < 1 \end{cases}$$

Sabe-se que f é contínua.

Qual é o valor de k?

- (A) ln 2

- (B) e^2 (C) $\ln 3$ (D) e^3
- **2.** Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = x^a + a^2 \ln x$ (a é um número real maior do que 1), e seja r a reta tangente ao gráfico da função f no ponto de abcissa a

Qual é o declive da reta r?

- (A) $a^{a-1} + a^2$ (B) $a^a + a^2$ (C) $a^{a-1} + a$ (D) $a^a + a$

- 3. Seja f uma função de domínio $\mathbb R$ e seja f'' a segunda derivada da função f

Sabe-se que f'' tem domínio \mathbb{R} e é definida por $f''(x) = e^{-x}x^2(x-1)$

Qual das afirmações seguintes é verdadeira?

- (A) O gráfico da função f tem exatamente quatro pontos de inflexão.
- **(B)** O gráfico da função f tem exatamente três pontos de inflexão.
- (C) O gráfico da função f tem exatamente dois pontos de inflexão.
- (D) O gráfico da função f tem exatamente um ponto de inflexão.

- **4.** Considere todos os números que se podem obter alterando a ordem dos algarismos do número $12\,345$ Quantos desses números são ímpares e maiores do que $40\,000$?
 - **(A)** 18
- **(B)** 30
- **(C)** 120
- **(D)** 240
- **5.** Em \mathbb{C} , conjunto dos números complexos, seja $z=\operatorname{cis}\theta$, em que θ é um número real pertencente ao intervalo $\left|\frac{3\pi}{4},\pi\right|$

Seja
$$w = z^2 - 2$$

A que quadrante do plano complexo pertence a imagem geométrica de w?

- (A) Primeiro quadrante.
- (B) Segundo quadrante.
- (C) Terceiro quadrante.
- (D) Quarto quadrante.

GRUPO II

Nas respostas aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Seja $\mathbb C$ o conjunto dos números complexos; i designa a unidade imaginária.

Resolva os dois itens seguintes sem recorrer à calculadora.

1.1. Determine o valor de $\frac{i^6 + 2i^7}{2-i}$

Apresente o resultado na forma algébrica.

1.2. Mostre que o número $2 \operatorname{cis} \left(\frac{\pi}{10} \right)$ é solução da equação $z^6 \times \overline{z} = 128 \, i$

 \overline{z} designa o conjugado de z

- **2.** Um saco contém quatro bolas com o número 0, uma bola com o número 2 e duas bolas com o número 3
 - **2.1.** Retiram-se, simultaneamente e ao acaso, duas bolas do saco.

Seja X a variável aleatória «produto dos números das duas bolas retiradas».

Construa a tabela de distribuição de probabilidades da variável aleatória $\, X \,$

Apresente cada uma das probabilidades na forma de fração irredutível.

2.2. Considere agora a experiência que consiste em retirar, ao acaso, uma a uma, sucessivamente e sem reposição, **todas** as bolas do saco.

Sejam A e B os acontecimentos seguintes.

A: «Não saem bolas com o número 0 em extrações consecutivas»

B: «A segunda bola retirada tem o número 2»

Determine $P(B \mid A)$, sem utilizar a fórmula da probabilidade condicionada.

Numa pequena composição, justifique a sua resposta.

A sua composição deve contemplar:

- o significado de $P(B \mid A)$, no contexto da situação descrita;
- a explicação da ordem de saída das bolas com o número $\,0\,$
- a explicação do número de casos possíveis;
- a explicação do número de casos favoráveis;
- a apresentação do valor da probabilidade na forma de fração.
- 3. Relativamente à Figura 1, sabe-se que:
 - o ponto B pertence ao segmento de reta [AC]
 - \bullet os pontos A e D pertencem à circunferência que tem centro no ponto B e raio igual a 4
 - o segmento de reta $\begin{bmatrix} BD\end{bmatrix}$ é perpendicular ao segmento de reta $\begin{bmatrix} AC\end{bmatrix}$
 - $\overline{BC} = 2$

Admita que um ponto P se desloca ao longo do arco AD, nunca coincidindo com A nem com D, e que um ponto E acompanha o movimento do ponto P de forma que o quadrilátero $\begin{bmatrix} PBCE \end{bmatrix}$ seja um trapézio retângulo.

Figura 1

O ponto $\,Q\,$ é a intersecção do segmento de reta $\,[PE]\,$ com o segmento de reta $\,[BD]\,$

Para cada posição do ponto P, seja x a amplitude do ângulo EPB e seja S(x) a área do trapézio $\lceil PBCE \rceil$

3.1. Mostre que
$$S(x) = 8\operatorname{sen} x + 4\operatorname{sen}(2x) \ \left(x \in \left]0, \frac{\pi}{2}\right]\right)$$

3.2. Estude a função S quanto à monotonia e quanto à existência de extremos relativos, recorrendo a métodos analíticos, sem utilizar a calculadora.

Na sua resposta, deve apresentar:

- o(s) intervalo(s) em que a função é crescente;
- o(s) intervalo(s) em que a função é decrescente;
- os valores de x para os quais a função tem extremos relativos, caso existam.

4. Seja
$$f$$
 a função, de domínio \mathbb{R} , definida por $f(x) = \begin{cases} 3x + 1 - xe^x & \text{se } x < 0 \\ x + \cos x & \text{se } x \ge 0 \end{cases}$

Resolva os dois itens seguintes recorrendo a métodos analíticos, sem utilizar a calculadora.

- **4.1.** Determine $f'\left(\frac{\pi}{2}\right)$ recorrendo à definição de derivada de uma função num ponto.
- **4.2.** O gráfico da função f tem uma assíntota oblíqua quando $x \to -\infty$ Determine a equação reduzida dessa assíntota.
- **5.** Seja a um número real tal que a>e (e número de Neper ou número de Euler) Seja g a função, de domínio \mathbb{R}^+ , definida por $g(x)=ax+\ln x$ Mostre que a função g tem, pelo menos, um zero no intervalo $\left]\frac{1}{a},\frac{1}{e}\right[$

FIM

COTAÇÕES

GRUPO I

1	10 pontos	
2	10 pontos	
3	10 pontos	
4	10 pontos	
5	10 pontos	
- -		50 pontos
GRUPO II		
1.		
1.1	10 pontos	
1.2	10 pontos	
2.		
2.1	15 pontos	
2.2.	15 pontos	
3.		
3.1	20 pontos	
3.2.	20 pontos	
4.		
4.1.	20 pontos	
4.2.	20 pontos	
5	20 pontos	
-		150 pontos
	_	
TOTAL		200 pontos