MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 25th January 2018 D1 - Lecture 10

Random Attendance

1	170050039	Jatin Lamba
2	170050082	Patnala Rohit Keerti Teja
3	170050085	Lukka Govinda Siva Nagadev
4	170050098	Diddi Sai Kiran
5	170070012	Vedant Anil Satav
6	170070015	Anshul Nasery
7	170070025	Sunil Meena
8	170070027	Priyanshu Jharwal
9	170070045	Bandaru Sri Harsha
10	17D070014	Nakrani Prajval Sushil
1	17D070018	Abhishek Sandeep Tanpure
12	17D070020	Rushil Shyam Heda Absent
13	17D070033	Shivam Agarwal

Summary: Vector Spaces, Span and Independence

- Vector space: A triple (V, +, *) which is closed under + and * with some additional properties satisfied by + and *.
- Subspace: A non-empty subset *W* of *V* closed under linear combinations.

Let
$$V = \mathbb{R}^m$$
, v_1, \ldots, v_n be in V , and $A = (v_1 \cdots v_n)$.

- For v in V, v is in Span $\{v_1, \ldots, v_n\} \Leftrightarrow Ax = v$ is consistent
- \bullet v_1, \ldots, v_n are linearly independent
- $\Leftrightarrow N(A) = 0 \Leftrightarrow \operatorname{rank}(A) = n.$
- In particular, with n = m, A is invertible
- $\Leftrightarrow Ax = v$ is consistent for every v
- \Leftrightarrow Span $\{v_1, \dots, v_n\} = \mathbb{R}^n \Leftrightarrow \text{rank}(A) = n$
- $\Leftrightarrow N(A) = 0 \Leftrightarrow v_1, \dots, v_n$ are linearly independent.
- Any subset of \mathbb{R}^m with more than m vectors is dependent.

3/8

Minimal Spanning Set

Let
$$v_1 = \begin{pmatrix} 2 & 2 & 2 \end{pmatrix}^T$$
, $v_2 = \begin{pmatrix} 4 & 5 & 3 \end{pmatrix}^T$, $v_3 = \begin{pmatrix} 6 & 7 & 5 \end{pmatrix}^T$ and $v_4 = \begin{pmatrix} 4 & 6 & 2 \end{pmatrix}^T$. If $A = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \end{pmatrix}$, can $C(A) = \text{Span}\{v_1, v_2, v_3, v_4\}$ be spanned by less than 4 vectors?

Note: $v_3 = v_1 + v_2$ and $v_4 = -2v_1 + 2v_2 \Rightarrow C(A) = \text{Span}\{v_1, v_2\}.$

Observe:

- The span of only v_1 or only v_2 is a line. Clearly v_1 is not on the line spanned by v_2 and vice versa. Thus, $\{v_1, v_2\}$ is a minimal spanning set for C(A).
- v_1 and v_2 are linearly independent and span C(A).
- If v is in $C(A) = \operatorname{Span}\{v_1, v_2\}$, then v_1, v_2, v are linearly dependent. Why? Thus, $\{v_1, v_2\}$ is a maximal linearly independent set in C(A).

Any such set of vectors gives a *basis* of C(A).

Basis: Definition

Defn. A subset \mathcal{B} of a vector space V, is said to be a *basis* of V, if it is linearly independent and $\text{Span}(\mathcal{B}) = V$.

Theorem: For any subset S of a vector space V, the following are equivalent:

- S is a maximal linearly independent set in V
- S is linearly independent and Span(S) = V.
- S is a minimal spanning set of V.

Note: Every vector space *V* has a basis.

Examples:

- By convention, the empty set is a basis for $V = \{0\}$.
- $\left\{ \begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^2 .
- $\{e_1, \ldots, e_n\}$ is a basis for \mathbb{R}^n , called the standard basis.
- A basis of \mathbb{R} is just $\{1\}$.

Basis: Remarks

• Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V and v a vector in V. Span $(\mathcal{B}) = V \Rightarrow v = a_1 v_1 + \dots + a_n v_n$ for scalars a_1, \dots, a_n . Linear independence \Rightarrow this expression for v is unique. Thus

Every
$$v \in V$$
 can be *uniquely* written as a linear combination of $\{v_1, \dots, v_n\}$.

Exercise: Prove this.

Q: Is the basis of a vector space unique? A: No.

e.g. $\{e_1, e_2\}$ is a basis for \mathbb{R}^2 , so is $\{\begin{pmatrix} -1 & 1 \end{pmatrix}^T, \begin{pmatrix} 0 & 1 \end{pmatrix}^T \}$, and so are the columns of any 2 \times 2 invertible matrix.

Exercise: Find two different basis of \mathbb{R}^3 .

The number of vectors in each basis of \mathbb{R}^3 is 3. Not a coincidence!

Dimension of a Vector Space

If $v_1, \ldots v_m$ and w_1, \ldots, w_n are both basis of V, then m = n. This is called the *dimension* of V. Thus

$$dim(V)$$
 = number of elements in a basis of V .

Exercise: Prove that every basis of \mathbb{R}^3 has only three elements.

Examples:

- $dim(\{0\}) = 0$.
- $\dim(\mathbb{R}^n) = n$.
- If **L** is a line through origin in \mathbb{R}^3 , what is its dimension as a vector space? Recall $L = \{tu \mid t \in \mathbb{R}\}$ where u is some vector in \mathbb{R}^3 . Thus $\dim(\mathbf{L}) = 1$.
- •. Dimension of a plane (**P**) in \mathbb{R}^3 is 2. Why?
- A basis for $\mathbb C$ as a vector space over the scalars $\mathbb R$ is $\{1, i\}$. A basis for $\mathbb C$ as a vector space over the scalars $\mathbb C$ is $\{1\}$.
- i.e., $dim(\mathbb{C}) = 2$ as a \mathbb{R} -vector space and 1 as a \mathbb{C} -vector space.

Thus, dimension depends on the choice of scalars!

7/8

Dimension and Basis

Let dim
$$(V) = n$$
, $S = \{v_1, \ldots, v_k\} \subseteq V$.

Recall: A basis is a minimal spanning set.

In particular, if $\operatorname{Span}(S) = V$, then $k \ge n$, and S contains a basis of V, i.e., there exist $\{v_{i_1}, \ldots, v_{i_n}\} \subseteq S$ which is a basis of V.

Example: The columns of a 3×4 matrix A with 3 pivots span \mathbb{R}^3 . Hence the columns contain a basis of \mathbb{R}^3 .

Recall: A basis is a maximal linearly independent set.

In particular, if S is linear independent, then $k \leq n$, and S can be extended to a basis of V, i.e., there exist w_1, \ldots, w_{n-k} in V such that $\{v_1, \ldots, v_k, w_1, \ldots, w_{n-k}\}$ is a basis of V.

Example: The columns of a 3×2 matrix A with 2 pivots has linearly independent columns, and hence can be extended to a basis of \mathbb{R}^3 .