Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_mate-info* Simulare pentru elevii clasei a XII-a

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	1+i	
_,	$\left \frac{1+i}{1-i} = i \Rightarrow a+ib=i \right $	3p
		l _
	a = 0, b = 1	2p
2.	$f(x) = 0 \Rightarrow x^2 - 6x + 8 = 0 \Rightarrow x_1 = 2, x_2 = 4 \Rightarrow G_f \cap Ox = \{(2,0), (4,0)\}$	3 p
	$f(0) = 8 \Rightarrow G_f \cap Oy = \{(0,8)\}$	2p
3.	$3^{x+2} + 3^{x+1} = 36 \Leftrightarrow 3^{x+1} = 9$	2 p
	$x+1=2 \Leftrightarrow x=1$	3 p
4.	Sunt 72 de numere naturale de două cifre care nu conțin cifra 6, deci sunt 72 de cazuri	2n
	favorabile	2 p
	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	nr. cazuri favorabile 72 4	l _
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{72}{90} = \frac{4}{5}$	2p
5.	$m_{AB} = \frac{1}{3}$, $d \parallel AB \Rightarrow m_d = \frac{1}{3}$, unde d este paralela prin $C \ln AB$	3 p
	3 " 3 " 1	
	$d \cdot v = \frac{1}{r} \cdot 2$	200
	$d: y = \frac{1}{3}x - 2$	2p
6.	$\cos x + \sin x \cos x = \sin x + \sin x \cos x \Leftrightarrow \cos x = \sin x$	2p
	$x = \frac{\pi}{}$	2n
	$\left \begin{array}{c} x - \overline{4} \end{array} \right $	3р

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(a)) = \begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = \begin{vmatrix} a+2 & 1 & 1 \\ a+2 & a & 1 \\ a+2 & 1 & a \end{vmatrix} = (a+2) \begin{vmatrix} 1 & 0 & 0 \\ 1 & a-1 & 0 \\ 1 & 0 & a-1 \end{vmatrix} =$	3 p
	$ = (a+2) \begin{vmatrix} a-1 & 0 \\ 0 & a-1 \end{vmatrix} = (a+2)(a-1)^{2} $	2p
b)	$\det(A(-1)) = 4$	2 p
	Inversa matricei $A(-1)$ este $ \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} $	3 p

c)	$A(a) \cdot A(b) = \begin{pmatrix} ab+2 & a+b+1 & a+b+1 \\ a+b+1 & ab+2 & a+b+1 \\ a+b+1 & a+b+1 & ab+2 \end{pmatrix}$	2p
	$3ab + 6a + 6b + 12 = 24 \Rightarrow (a+2)(b+2) = 8$	1p
	Perechile de numere naturale care verifică cerința sunt $(0,2)$ și $(2,0)$	2 p
2.a)	3xy - 3x - 3y + 4 = 3(xy - x - y + 1) + 1 =	3 p
	=3(x-1)(y-1)+1, pentru orice numere reale x și y	2 p
b)	x*1=1*x=1, pentru orice număr real x	2p
	$\boxed{\frac{1}{1007} * \frac{2}{1007} * \frac{3}{1007} * \dots * \frac{2014}{1007} = \left(\frac{1}{1007} * \dots * \frac{1006}{1007}\right) * \frac{1007}{1007} * \left(\frac{1008}{1007} * \dots * \frac{2014}{1007}\right) = 1}$	3 p
c)	Elementul neutru este $\frac{4}{3}$	1p
	$x * x = \frac{4}{3} \Leftrightarrow 3(x-1)^2 + 1 = \frac{4}{3} \Leftrightarrow (x-1)^2 = \frac{1}{9}$	2p
	$x_1 = \frac{2}{3}, \ x_2 = \frac{4}{3}$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to +\infty} \frac{f(x)}{x} = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = 1 \Rightarrow \text{dreapta } y = x + 1 \text{ este asimptotă oblică spre } +\infty \text{ la graficul funcției } f$	3p
b)	f(2)=6, f'(2)=-2	3p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2) \Rightarrow y = -2x+10$	2 p
c)	$\lim_{x \to +\infty} \left(\frac{f(x)}{x} \right)^{x+3} = \lim_{x \to +\infty} \left(\frac{x^2 + 2}{x^2 - x} \right)^{x+3} = \lim_{x \to +\infty} \left[\left(1 + \frac{x + 2}{x^2 - x} \right)^{\frac{x^2 - x}{x + 2}} \right]^{\frac{x+2}{x^2 - x}} = $	3р
	$\lim_{x \to +\infty} \frac{x^2 + 5x + 6}{x^2 - x} = e$	2p
	$ = e^{\lim_{x \to +\infty} \frac{x^2 + 5x + 6}{x^2 - x}} = e^{\lim_{x \to +\infty} x^2 + 5x $	2p
	$=1-\ln 2$	3 p
b)	$I_{n+1} + I_n = \int_0^1 \frac{x^{n+1}}{x+1} dx + \int_0^1 \frac{x^n}{x+1} dx = \int_0^1 \frac{x^n(x+1)}{x+1} dx =$	3p
	$=\frac{x^{n+1}}{n+1}\Big _{0}^{1}=\frac{1}{n+1}$, pentru orice număr natural nenul n	2 p
c)	$I_{n+1} - I_n = \int_0^1 \frac{x^n(x-1)}{x+1} dx \le 0$, pentru orice număr natural nenul n	1p
	$2I_{n+1} \le \frac{1}{n+1} \le 2I_n$, pentru orice număr natural nenul n	2p
	$\frac{1}{2} \le (n+1)I_n \le \frac{n+1}{2n}$, pentru orice număr natural $n, n \ge 2$	1p
	$\lim_{n \to +\infty} (n+1)I_n = \frac{1}{2}$	1p