Risk and Portfolio Management Spring 2010

Equity Options: Risk and

Portfolio Management

Summary

Review of equity options

Risk-management of options on a single underlying asset

Full pricing versus Greeks

Volatility Surface: PCA

Stress Test (SPAN)

Multi-asset portfolios

Multi-asset option portfolios

Equity Options Markets

Single-name options

Electronic trading in 6 exchanges, cross-listing of many stocks, penny-wide bid ask spreads for many contracts

Index Options

S&P 500, NDX, Minis. Traded on the Chicago Mercantile Exchange. VIX options & futures trade in CME as well.

ETF Options

Most of the large ETFs are optionable. Traded like stocks in multiple exchanges. SPY, QQQQ, XLF are among the most traded options in the US.

Options Markets Halliburton (HAL) April 09

CALLS									PUTS							
Symbol	Last	Change	Bid	A	Ask	Volume	Open Int	Strike	Symbol	Last	Change	Bid	A	\sk	Volume	Open Int
HALDA.X	12.65	C)	11.15	11.3	0	0	5	HALPA.X	0.03	C	N/A		0.04	100	210
HALDU.X	8.5	C)	8.65	8.85	2	2	7.5	HALPU.X	0.05	C)	0.01	0.06	1	2,237
HALDB.X	5.2	C)	6.3	6.35	57	116	10	HALPB.X	0.15	C)	0.1	0.12	25	3,775
HALDZ.X	4.2	0.15	5	4.05	4.15	20	944	12.5	HALPZ.X	0.4	0.12	2	0.39	0.4	185	10,482
HALDC.X	2.31	0.1		2.3	2.33	220	4,942	15	HALPC.X	1.06	0.33	3	1.09	1.11	52	10,592
HALDP.X	1.11	0.18	3	1.09	1.11	495	8,044	17.5	HALPP.X	2.42	0.34	ŀ	2.36	2.37	196	8,482
HALDD.X	0.43	0.05	5	0.42	0.44	57	10,693	20	HALPD.X	4.59	C)	4.15	4.25	250	12,440
HALDQ.X	0.15	0.02	2	0.14	0.16	23	7,646	22.5	HALPQ.X	7.25	C)	6.4	6.45	25	2,770
HALDE.X	0.05	0.01		0.05	0.06	13	4,060	25	HALPE.X	9.95	C)	8.8	8.85	4	1,111
HALDR.X	0.03	C)	0.01	0.03	8	5,784	27.5	HALPR.X	12.35	C)	11.25	11.35	18	977
HALDF.X	0.01	C	N/A		0.02	20	8,399	30	HALPF.X	14.8	C)	13.7	13.9	18	5,772
HALDS.X	0.04	C	N/A		0.04	1	1,698	32.5	HALPS.X	15.5	C)	16.2	16.4	20	150
HALDG.X	0.08	C	N/A		0.04	2	1,470	35	HALPG.X	18.93	C)	18.7	18.9	5	514
HALDT.X	0.02	C	N/A		0.04	9	604	37.5	HALPT.X	20.59	C)	21.2	21.35	40	151
HALDH.X	0.02	C	N/A		0.03	10	1,593	40	HALPH.X	20.6	C)	23.7	23.85	10	139
HALDV.X	0.02	C	N/A		0.02	4	2,805	42.5	HALPV.X	26.1	C)	26.2	26.4	752	311
HALDI.X	0.02	C	N/A		0.02	1	623	45	HALPI.X	28.6	C)	28.7	29	152	0
HALDW.X	0.02	C	N/A		0.02	1	245	47.5	HALPW.X	31.1	C)	31.2	31.4	52	13
HALDJ.X	0.02	C	N/A		0.02	7	733	50	HALPJ.X	24.55	C)	33.7	33.9	0	0
HALDX.X	0.04	C	N/A		0.02	10	324	52.5	HALPX.X	14.8	C)	36.2	36.4	0	0
HALDK.X	0.02	C	N/A		0.02	10	376	55	HALPK.X	19.1	C)	38.7	39	0	

HAL= \$16.36

Available expirations: Mar09, Apr09, Jul09, Oct09, Jan10, Jan11 2 front months, 2 LEAPS, quarterly cycle (*Jan cycle* for HAL).

Put-Call Parity

$$C - P = Se^{-dT} - Ke^{-rT}$$

Put-call parity holds for American options which are ATM, to within reasonable approximation.

CALLS			PUTS		(C-F	P+K*(1-r*40/252))/S d_	_imp
HALDC.X	2.3	2.33	15 HALPC.X	1.09	1.11	0.988473167	7.26%
HALDP.X	1.09	1.11	17.5 HALPP.X	2.36	2.37	0.989451906	6.65%

Hal pays dividend of 9 cents at the end of Feb, May, Aug, Nov

There are no ex-dividend dates between now and April 20, 2009.

Option markets give an implied cost of carry for the stock (implied forward price), which may be different from the nominal cost of carry. This is due to stock-loan considerations.

DIA Options Apr 18, 2009

Symbol	Last	Change	Bid	Ask	Volume	OpenInt	STRIKE	Symbol	Last	Change I	Bid	Ask	Volume	Open Int
DIHDX.X	N/A	(18.	1 18.2	0	0	50	DIHPX.X	0.37	0	0.15	0.19	18	245
DIHDY.X	21	(17.3	3 17.4	2			DIHPY.X	0.39	0	0.17	0.22	2 105	370
DIHDZ.X	16.3	(16.3	3 16.4	1	93	52	DIHPZ.X	0.26	0.22	0.23	0.26	5 7	225
DIHDA.X	N/A	(15.4	5 15.55	0	0	53	DIHPA.X	0.32	0.26	0.28	0.31	5	68
DIHDB.X	N/A	(14.2	5 14.35	0	0	54	DIHPB.X	0.4	0.24	0.34	0.37	' 4	392
DIHDC.X	11.94	(13.4	5 13.55	4	14	55	DIHPC.X	0.42	0.38	0.41	0.44	25	765
DIHDD.X	12.35	0.17	7 12.5	12.65	40	22	56	DIHPD.X	0.51	0.46	0.49	0.52	2 20	870
DIHDE.X	10.3	0.47	7 11.6	11.75	10	48	57	DIHPE.X	0.61	0.53	0.59	0.62		
DIHDF.X	8.6							DIHPF.X	0.73		0.71	0.73		
DIHDG.X	8.4							DIHPG.X	0.86	0.54	0.83			
DIHDH.X	8.4							DIHPH.X	1	0.75	1	1.02		11,734
DIJDI.X	7.7			5 8.3				DIJPI.X	1.21	0.75	1.17	1.2	2 61	510
DIJDJ.X	7.2						62	DIJPJ.X	1.43	0.9	1.38			916
DIJDK.X	6.7					_		DIJPK.X	1.65	0.94	1.61	1.63		, -
DIJDL.X	6				60	444	64	DIJPL.X	1.93	1.03	1.89			
DIJDM.X	5.25				102	825		DIJPM.X	2.27	1.18	2.19			•
DIJDN.X	4.55				69	,	66	DIJPN.X	2.64		2.52			
DIJDO.X	3.96				134			DIJPO.X	3.05		2.91	2.95	450	, -
DI.JDP.X	3.4	1.08						DIJPP.X	3.46		3.3			
DIJDQ.X	2.85							DIJPQ.X	3.8		3.8		116	,
DIJDR.X	2.41	0.82						DIJPR.X	4.54		4.35			,
DIJDS.X	1.92							DIJPS.X	5.14		4.9			3,035
DIJDT.X	1.58							DIJPT.X	5.6		5.55			,
DIJDU.X	1.27	0.5						DIJPU.X	6.28		6.2			
DIJDV.X	1	0.4						DIJPV.X	7.1	2.05	6.95			
DIJDW.X	0.78							DIJPW.X	7.8		7.75			,
DIJDX.X	0.6							DIJPX.X	10.3		8.55			
DIJDY.X	0.44	0.14						DIJPY.X	9.5		9.4			
DIJDZ.X	0.32					,		DIJPZ.X	10.65		10.3			1,290
DIJDA.X	0.26							DIJPA.X	11.83		11.2			
DIJDB.X	0.19							DIJPB.X	13.57	1.29	12.15			,
DIJDC.X	0.11	(-			-,		DIJPC.X	15.13		13.1	13.2		,
DAVDD.X		(DAVPD.X	16.6		14.3			,
DAVDE.X		0.01				,		DAVPE.X	16.44		15.3			1,016
DAVDF.X			0.0			,		DAVPF.X	16.85		16.3			
DAVDG.X								DAVPG.X			17.3			
DAVDH.X			0.02					DAVPH.X	17.7		18.25			91
DAVDI.X	0.04) N/A	0.05				DAVPI.X	21.78		19.25			
DAVDJ.X	0.04		N/A	0.05				DAVPJ.X	19.5		20.25			
DAVDK.X			l N/A	0.04				DAVPK.X	15.9		21.25			
DAVDL.X	0.04		N/A	0.04				DAVPL.X	16.95		22.2			
DAVDM.X	0.03	() N/A	0.04	4	787	91	DAVPM.X	17.5	0	23.2	23.35	5 2	78

Implied Dividend Yield for DIA April 18, 2009 Options

CALLS			PUTS		(C-P	+K*(1-r*40/252))/S d_	_imp
DIJDP.X	3.35	3.4	68 DIJPP.X	3.3	3.4	0.995267636	2.98%
DIJDQ.X	2.84	2.87	69 DIJPQ.X	3.8	3.9	0.994951292	3.18%

Dividend Yield from Yahoo.com= 3.30%

Actual payments are approx 15 cents / month ~ \$1.80 ~ 2.60%

Step1 in understanding options markets: find the implied dividend from the market.

If the <u>implied dividend</u> is different from the <u>nominal dividend</u> then

-- check for HTB if
$$d_{imp} > d_{nom}$$

-- check for dividend reductions if $d_{\it imp} < d_{\it nom}$

Calculation of d {nom}, d {imp}

$$d_{nom} = \frac{-1}{T} \ln \left(\frac{S - \sum_{i=1}^{n} D_i e^{-rT_i}}{S} \right)$$
 Dividend payment dates

$$d_{imp} = \frac{-1}{T} \ln \left(\frac{C_{atm} - P_{atm} + K_{atm} e^{-rT}}{S} \right)$$

LDK Solar Co. (LDK) May 2010 options series

Pricing Date Expiration CALLS		3/23/202 5/22/202		0.12	%Spot Days	6.9 4 4		PUTS						
Symbol	Last		Bid	Ask	Volume	Open Int	Strike	Symbol	Last	Bid	Ask	Volume	Open Int idiv	
DLO100522C00 005000		N/A	1.9	2	0	0	5	DLO100522 P00005000		0.2	0.3	60	26	15%
DLO100522C00 006000		N/A	1.1	1.3	0	0	6	DLO100522 P00006000		0.5	0.6	30	30	15%
DLO100522C00 007000		1.65	0.7	0.7	175	73	7	DLO100522 P00007000		1	1.1	0	0	17%
DLO100522C00 008000		.35	0.3	0.35	40	206	8	DLO100522 P00008000		1.7	1.9	0	0	28%
DLO100522C00 009000		.15	0.2	0.2	9	101	9	DLO100522 P00009000		2.5	2.8	0	0	26%

LDK is a hard-to-borrow stock with repo rate of approximately -12.5% in one of the brokers. No ``real'' dividend is paid.

Choosing the dividend for implied volatility calculations

Since the dividend is an attribute of the stock and not of the options, we must a constant dividend per maturity to fit all option prices irrespective of the strike.

Based on this choice of dividend, we can then calculate the implied volatility of each contract and construct the implied volatility curves for the options in the given maturity.

The market convention is to use the mid-market NBBO for puts and calls, the current rate (FF) and the implied dividend to calculate implied volatilities.

Note: implied dividends for different strike form an increasing curve always in the case of HTB stocks (Avellaneda and Lipkin, RISK, 2009)

Implied Volatility HAL April 09

CALLS							PUTS				
Symbol	Last Bid	Ask	IVOL	Delta	Strike	Symbol	Last	Bid A	Ask IV	/OL [Delta
HALDU.X	8.5	8.65	8.85 na	1	.00 7.5	HALPU.X	0.05	0.01	0.06	211	0.00
HALDB.X	5.2	6.3	6.35	141 0	.99 10	HALPB.X	0.15	0.1	0.12	144	-0.01
HALDZ.X	4.2	4.05	4.15	108 0	.94 12.5	HALPZ.X	0.4	0.39	0.4	109	-0.05
HALDC.X	2.31	2.3	2.33	92.4 0	.76 15	HALPC.X	1.06	1.09	1.11	93	-0.24
HALDP.X	1.11	1.09	1.11	85.1 0	.36 17.5	HALPP.X	2.42	2.36	2.37	85	-0.63
HALDD.X	0.43	0.42	0.44	82.4 0	.09 20	HALPD.X	4.59	4.15	4.25	84	-0.90
HALDQ.X	0.15	0.14	0.16	89.3 0	.02 22 .5	HALPQ.X	7.25	6.4	6.45	90	-0.97

DIA Volatility Surface, March 10 2009, 12:00 noon

These curves move in time.

Modeling the Volatility Risk

- 1. Compute the historical volatility of a constant maturity series by interpolation over fixed maturities.
 - (Typically, for equities: 30d, 60 d, 90 d, 180 d, etc)
- 2. Express the implied volatilities in terms of moneyness or deltas. Deltas is better because this takes into account the volatility of the underlying asset as well.
- 3. Study the variations of the implied volatility curve for each maturity using PCA & extreme-value theory (Student T)
- 4. Deduce a model for the variation of implied volatilities for portfolio risk analysis

The Data (example with DIA)

OTM Puts OTM Calls

date\delta	-20	-25	-30	-35	-40	-45	50	45	40	35	30	25	20
9/2/2008	23.9%	23.2%	22.6%	22.0%	21.5%	21.1%	20.8%	20.5%	20.1%	19.7%	19.3%	18.9%	18.5%
9/3/2008	23.1%	22.4%	21.9%	21.3%	20.9%	20.4%	20.2%	20.1%	19.7%	19.3%	18.9%	18.5%	18.1%
9/4/2008	26.2%	25.6%	25.0%	24.6%	24.2%	23.8%	22.7%	21.6%	21.3%	21.0%	20.7%	20.4%	20.0%
9/5/2008	25.0%	24.3%	23.7%	23.2%	22.8%	22.3%	21.9%	21.5%	21.1%	20.7%	20.4%	20.0%	19.6%
9/8/2008	24.9%	24.2%	23.6%	23.0%	22.5%	22.0%	21.9%	21.7%	21.3%	20.8%	20.4%	19.9%	19.5%

We consider data from 9/2/2008 until 10/30/2009, organized by Deltas (13 strikes per day)

DIA 30 day Implied Vol Curves

DIA ATM Volatility Sep 2, 2008 – Oct 30 2009

Eigenvalues of the Correlation Matrix 30 Day Ivol returns

Eigenvectors and their explanatory power

1st Eigenvector 91.1%

2nd Eigenvector 7.51%

3rd Eigenvector 1.28%

Most of the risk is in the parallel shift, i.e. exposure to the ATM vol

The second EV corresponds to the classical skew, i.e. exposure to risk-reversals.

RR= long 30 D put / short 30 D call

Risk-model for single-name option portfolios

$$R_{\sigma(\Delta)} = \beta_1 R_1 + \beta_2 R_2 \left(\frac{\Delta_c - 50}{50} \right) + \varepsilon$$

or
$$\frac{d\sigma(\Delta)}{\sigma(\Delta)} = \beta_1 \frac{d\sigma_{atm}}{\sigma_{atm}} + \beta_2 \left(\frac{\Delta_c - 50}{50}\right) R_2 + \varepsilon$$

The distributions for ATM vol returns and RR returns can be estimated from historical data.

One important consideration: ATM vol is negatively correlated to stock prices, so there is a further analysis needed to specify the joint distribution of stocks and volatility

X=DIA returns, Y=ATM vol returns

Coupled model for stock and vol shocks

$$R_{\sigma(\Delta)} = \beta_1 R_1 + \beta_2 R_2 \left(\frac{\Delta_c - 50}{50} \right) + \varepsilon$$

$$\frac{d\sigma(\Delta)}{\sigma(\Delta)} = \beta_1 \frac{d\sigma_{atm}}{\sigma_{atm}} + \beta_2 \left(\frac{\Delta_c - 50}{50}\right) R_2 + \varepsilon$$

Stock return

Idiosyncratic vol return

RR return

Extreme-value analysis: ATM vol

QQ-plot vs. Student T with DF=4

prob	student	data
0.0034	-3.633	-3.333
0.0068	-2.976	-3.074
0.0102	-2.633	-2.779
0.01361	-2.406	-2.755
0.01701	-2.238	-2.55
0.02041	-2.106	-1.999
0.02381	-1.997	-1.678
0.02721	-1.905	-1.651
0.03061	-1.825	-1.561
0.03401	-1.755	-1.526
0.03741	-1.693	-1.468
0.04082	-1.637	-1.444
0.04422	-1.585	-1.385
0.04762	-1.538	-1.347
0.05102	-1.495	-1.328

Left tail vs right tail using DF=4

Extreme down moves

prob	student	data
0.0034	-3.633	-3.333
0.0068	-2.976	-3.074
0.0102	-2.633	-2.779
0.01361	-2.406	-2.755
0.01701	-2.238	-2.55
0.02041	-2.106	-1.999
0.02381	-1.997	-1.678
0.02721	-1.905	-1.651
0.03061	-1.825	-1.561
0.03401	-1.755	-1.526
0.03741	-1.693	-1.468
0.04082	-1.637	-1.444
0.04422	-1.585	-1.385
0.04762	-1.538	-1.347
0.05102	-1.495	-1.328

Extreme up moves moves

prob	student	data
0.9558	1.5853	1.99021
0.9592	1.6366	2.0349
0.9626	1.6929	2.10579
0.966	1.7554	2.11977
0.9694	1.8255	2.21635
0.9728	1.9051	2.22458
0.9762	1.9971	2.39156
0.9796	2.1058	2.66136
0.983	2.2381	2.70045
0.9864	2.406	2.8036
0.9898	2.6331	3.01731
0.9932	2.9757	3.06495
0.9966	3.6328	3.28219

Risk-management of option portfolios

Portfolio change =

$$\sum_{K,T,a=p,c} Q_{K,T,a} \Big[BS_a \Big(S_0 (1+R_s), T - \Delta T, K, r_T, d_T, \sigma_{K,T} (1+R_{\sigma_{K,T}}) \Big) - BS_a \Big(S_0, T, K, r_T, d_T, \sigma_{K,T} \Big) \Big]$$

where

 $Q_{K,T,a}$ = number of options with strike K, maturity T, put or call (a = p or c)

 $S_0 = \text{stock price}$

 $\sigma_{K,T}$ = implied volatility

Simulate risk-scenarios using the factor model described above and analyze extreme values

Risk scenarios correspond to joint stock shocks and vol shocks $\left(R_{_S},R_{\sigma_{_{K,T}}}\right)$