ตัวอย่างกรณีศึกษาความเสียหายของรางรถไฟในประเทศไทย

ทีมวิจัยเทคโนโลยีการผลิตและการซ่อมบำรุง ศูนย์วิจัยเทคโนโลยีระบบรางและการขนส่งสมัยใหม่ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ ได้ขอความอนุเคราะห์ตัวอย่างรางรถไฟที่เกิดความ เสียหายในพื้นที่ภาคเหนือและภาคตะวันออกเฉียงเหนือจากการรถไฟแห่งประเทศไทย เพื่อศึกษารูปแบบ ความเสียหายที่เกิดขึ้นกับรางรถไฟที่ใช้งานในประเทศไทย และวิเคราะห์หาสาเหตุที่ทำให้รางรถไฟแตกหักเพื่อ เป็นข้อมูลในการหาแนวทางป้องกันความเสียหายในอนาคต

กรณีศึกษาที่ 1

ข้อมูลเบื้องต้น

การรถไฟแห่งประเทศไทยตรวจพบการแตกหักของรางรถไฟที่อยู่ในระหว่างการใช้งานในเขตพื้นที่ ภาคเหนือ การตรวจสอบเบื้องต้นพบว่ารางแตกหักใกล้กับตำแหน่งที่มีการเชื่อมต่อราง **รูปที่ 54** แสดงราง รถไฟที่เสียหาย

ขั้นตอนการตรวจสอบและผลการวิเคราะห์

การวิเคราะห์ลักษณะทางกายภาพ

ตรวจสอบลักษณะทางกายภาพบริเวณที่เกิดความเสียหายด้วยสายตา (Visual Examination) พร้อม ถ่ายภาพที่กำลังขยายต่ำด้วยกล้องดิจิทัล (Digital Camera) เพื่อศึกษาลักษณะความเสียหายและลักษณะอื่นๆ

การตรวจสอบชิ้นส่วนที่เสียหาย พบว่ารางรถไฟเกิดการแตกหักใกล้รอยเชื่อมต่อราง รางที่เสียหาย แตกหักอย่างสมบูรณ์ ดังแสดงใน**รูปที่ 54** ผิวแตกที่พบบริเวณหัวรางมีลักษณะมันวาว ในขณะที่บริเวณฐาน รางรถไฟ พบสนิมหรือเหล็กออกไซด์ปกคลุมผิวหน้า นอกจากนี้พบการยุบตัวของเนื้อวัสดุ (Collapsed or deformed) บริเวณฐานรางรถไฟดังแสดงใน**รูปที่ 55**

รูปที่ 55 ลักษณะฐานรางรถไฟที่ยุบตัวและเสียรูป

การวิเคราะห์ผิวหน้าแตก

ตัดชิ้นส่วนของรางรถไฟที่เกิดการแตกหักไปตรวจสอบผิวหน้าแตก (Fracture Surface Analysis) ด้วย เทคนิคการตรวจสอบด้วยสายตา (Visual Examination) และกล้องถ่ายภาพระบบดิจิทัล (Digital Camera) เพื่อตรวจสอบหาจุดเริ่มต้นของรอยแตก (Fracture Origins) รูปแบบของผิวหน้ารอยแตก (Fracture Mode) และสเก็ตช์ภาพผิวหน้าแตก

การตรวจสอบผิวหน้าแตกพบเหล็กออกไซด์ปกคลุมผิวหน้าแตกบริเวณฐานรางรถไฟ ลักษณะดังกล่าว บ่งชี้ว่าบริเวณฐานรางเกิดการแตกหักก่อนตำแหน่งอื่น ๆ สอดคล้องกับผลการตรวจสอบผิวแตกโดยละเอียด เนื่องจากพบรูปแบบ Beach marks และ chevron mark บริเวณฐานราง ซึ่งเป็นรูปแบบการแตกหักจาก กลไกการล้า (Fatigue Mechanism) ทิศทางการขยายตัวของ Beach marks และ chevron mark บ่งชี้ว่า บริเวณฐานรางเป็นจุดเริ่มต้นของการแตกหัก (Crack Origin) จากนั้นรอยแตกจึงขยายตัวเข้าสู่บริเวณเอวราง และบริเวณหัวราง รูปที่ 56 แสดงลักษณะการขยายตัวของรอยแตก

รูปที่ 56 ภาพสเก็ตช์ผิวหน้าแตกหักของรางรถไฟ

การวิเคราะห์ผิวหน้าแตกด้วย SEM

นำผิวหน้าแตกบริเวณจุดเริ่มรอยแตกไปตรวจสอบที่กำลังขยายสูงด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบสแกน (Scanning Electron Microscope; SEM)

จากการตรวจสอบจุดเริ่มรอยแตกด้วย SEM พบรอยแตกร้าวทุติยภูมิ (Secondary Crack) ขนาดเล็ก กระจายตัวอยู่ทั่วไป และพบออกไซด์เกาะติดหนาแน่นที่ผิวแตก ดังแสดงใน**รูปที่ 57**

ร**ูปที่ 57** ภาพถ่าย SEM แสดงลักษณะสภาพผิวแตกของชิ้นส่วนรางรถไฟ

การวิเคราะห์ภาคตัดขวางและโครงสร้างจุลภาค

ตัดชิ้นส่วนรางรถไฟตามแนวภาคตัดขวางผ่านบริเวณที่เกิดรอยแตกร้าว นำไปเตรียมตัวอย่างสำหรับ การวิเคราะห์ภาคตัดขวางและโครงสร้างทางจุลภาค โดยเริ่มจากการขัดหยาบ ขัดละเอียด และกัดผิวหน้า เพื่อให้ปรากฏโครงสร้างด้วยสารละลายในตอล (Nital Solution) ความเข้มข้น 2 เปอร์เซ็นต์โดยปริมาตร จากนั้นนำไปตรวจสอบภายใต้กล้องจุลทรรศน์แบบแสง ชนิดแสงสะท้อน (Optical Reflected Light Microscope, OM)

รูปที่ 58 แสดงโครงสร้างจุลภาคในบริเวณจุดเริ่มต้นรอยแตกหรือตำแหน่ง A การตรวจสอบพบลักษณะ การเสียรูปอย่างรุนแรงของเนื้อโลหะพบการไหลตัว (Flow) ของเนื้อโลหะในทิศทางเดียวกับการขยายตัวของ รอยแตก โครงสร้างจุลภาคที่พบในตำแหน่งนี้คือโครงสร้างเพิร์ลไลท์ (Pearlite) ซึ่งเป็นโครงสร้างปกติของ เหล็กที่ใช้ผลิตเหล็กรางรถไฟ

เมื่อตรวจสอบฐานรางที่ตำแหน่ง B พบออกไซด์ปกคลุมอย่างหนาแน่น และพบการเสียรูปของเนื้อโลหะ เช่นเดียวกันแต่ไม่รุนแรงเท่ากับที่ตำแหน่ง A และเมื่อตรวจสอบโครงสร้างจุลภาคที่ตำแหน่ง C และตำแหน่ง D ที่อยู่ห่างออกไปพบว่าการเสียรูปของเนื้อโลหะลดลงเมื่อห่างจากจุดเริ่มต้นรอยแตกมากขึ้น โดยบริเวณ D สามารถเห็นลักษณะโครงสร้างปกติของเหล็กรางรถไฟซึ่งเป็นโครงสร้างเพิร์ลไลท์ที่มีลักษณะเกรนแบบ สมมาตร (Equiaxed Grain)

รูปที่ 58 โครงสร้างจุลภาคที่ตำแหน่ง A

รูปที่ 59 โครงสร้างจุลภาคที่ตำแหน่ง B

รูปที่ 60 โครงสร้างจุลภาคที่ตำแหน่ง C

รูปที่ 61 โครงสร้างจุลภาคที่ตำแหน่ง D

การตรวจสอบส่วนผสมทางเคมี

ผลการวิเคราะห์ส่วนผสมทางเคมีของชิ้นงานตัวอย่างแสดงใน**ตารางที่ 8** จากผลการวิเคราะห์ พบว่า ชิ้นส่วนรางรถไฟที่เสียหายมีปริมาณธาตุคาร์บอนเกินกว่าข้อกำหนดของมาตรฐาน UIC Grade 900A เล็กน้อย ตารางที่ 8 ส่วนผสมทางเคมีของรางรถไฟเทียบกับมาตรฐาน

ธาตุผสม (Wt. %)							
	С	Mn	Si	Р	S		
รางรถไฟ	0.874	1.206	0.292	0.019	0.014		
เกรด 900A	0.60-0.80	0.80-1.30	0.10-0.50	0.04max	0.04max		

หมายเหตุ: ค่าที่แสดงได้จากการตรวจสอบ 3 ครั้งแล้วหาค่าเฉลี่ย

การตรวจสอบความแข็ง

ชิ้นงานภาคตัดขวางที่ผ่านการตรวจสอบโครงสร้างจุลภาคถูกนำมาวัดความแข็งรอบผิวแตกด้วยวิธีวัด ความแข็งแบบไมโครวิคเกอร์ (Micro Vicker) โดยวัดตั้งแต่แนวที่เกิดการเสียรูป (Deformation) ของ โครงสร้างจุลภาคไปยังโครงสร้างพื้นดัง**รูปที่ 62** ซ้ายมือ การตรวจสอบใช้น้ำหนักกด 200 กรัม และค้างไว้ 15 วินาที

รูปที่ 62 ความแข็งของรางรถไฟบริเวณที่แตกหัก

การตรวจสอบพบว่าบริเวณจุดเริ่มต้นรอยแตกที่พบการเสียรูปของเนื้อโลหะมีค่าความแข็งสูงสุด โดย ค่าความแข็งในตำแหน่งนี้มีค่าประมาณ 500 Hv_{0.2} ในขณะที่ตำแหน่งที่ไม่พบการเสียรูปของเนื้อโลหะมีค่า ความแข็งประมาณ 300-350 Hv_{0.2} ดังแสดงใน**รูปที่ 62**

วิเคราะห์ผล

การตรวจสอบรางรถไฟที่เสียหายพบว่ารางแตกหักในรูปแบบของกลไกการล้า เนื่องจากพบรูปแบบ Beach Mark และ Chevron Mark $^{[26-29]}$ บ่งชี้ได้ว่ารอยแตกขยายตัวหรือมีจุดกำเนิดจากบริเวณฐานรางที่เกิด การเสียรูปอย่างรุนแรงของเนื้อโลหะ การเสียรูปอย่างรุนแรงในตำแหน่งฐานรางทำให้มีความเค้นสะสมสูง (High Residual Stress) $^{[30]}$ และทำให้บริเวณนี้มีความแข็งสูงกว่าความแข็งปกติของรางรถไฟที่มีค่าประมาณ $300-350~\text{Hv}_{0.2}$

การพบออกไซด์ที่ผิวแตกบริเวณฐานรางยืนยันได้ว่าบริเวณนี้เป็นจุดเริ่มต้นรอยแตก ในขณะที่รอยแตก บริเวณหัวรางที่มีลักษณะแตกหักอย่างรวดเร็วจะมีลักษณะมันวาว ซึ่งเป็นลักษณะเฉพาะของการแตกหักแบบ ทันทีทันใด ซึ่งเป็นช่วงสุดท้ายของการแตกหักหลังจากรอยแตกขยายตัวจนมีพื้นที่รับแรงเหลือน้อยจนรับภาระ ใช้งานไม่ได้ [26]

เมื่อพิจารณาโครงสร้างจุลภาคบริเวณใกล้จุดเริ่มต้นรอยแตก ยังพบว่าเกรนบริเวณรอยแตกหรือ บริเวณใกล้ฐานมีขนาดเล็กกว่าเกรนบริเวณหัวรางและมีลักษณะเกรนแบบสมมาตร ซึ่งอาจเป็นไปได้ว่าบริเวณ ฐานของรางอาจได้รับผลกระทบจากความร้อนจากการเชื่อมต่อราง (Thermit Welding) จนทำให้เกิดการตก ผลึกของเกรนใหม่ (Recrystallization) แต่ความร้อนที่ได้รับอาจมีอุณหภูมิต่ำกว่า 723 องศาเซลเซียส ซึ่งเป็น อุณหภูมิที่ทำให้เหล็กเปลี่ยนโครงสร้างเป็นเฟสออสเตไนท์ (Austenite) จึงไม่พบโครงสร้างที่มีความแข็งสูง อย่าง มาร์เทนไซต์ (Martensite) หรือ เบนไนต์ (Bainite) ซึ่งเกิดขึ้นได้ในกรณีที่รางได้รับความร้อนสูงเกินกว่า อุณหภูมิที่เริ่มเกิดเฟสออสเตไนท์และมีการเย็นตัวอย่างรวดเร็ว

การเสียรูปอย่างรุนแรงของเนื้อโลหะบริเวณฐานรางเป็นไปได้ว่าเกิดขึ้นในระหว่างการใช้งานภาย หลังจากการเชื่อมต่อราง (Thermit Welding) เพราะการตกผลึกใหม่จะทำให้ความแข็งในเนื้อวัสดุลดลงและ ทำให้ความเค้นตกค้างภายในลดลง [37] ตำแหน่งที่เสียรูปจึงอาจเป็นผลจากบริเวณฐานรางไม่อยู่ในสภาวะ การใช้งานที่ปกติ เช่น อาจเกิดการสูญเสียเนื้อบางส่วนจากกระบวนการกัดกร่อน (จากการตรวจสอบผิวแตก และโครงสร้างจุลภาคพบออกไซด์เกาะผิวหนาแน่น) ทำให้ฐานรางซึ่งปกติแล้วจะมีความเค้นต่ำกว่าบริเวณ หัวราง (รูปที่ 63 แสดงความเค้นที่เกิดขึ้นในรางขณะรถไฟเคลื่อนที่) [31] กลายเป็นจุดสะสมความเค้น (Stress Concentrator) และทำให้บริเวณดังกล่าวเกิดการเสียรูปอย่างถาวรและเป็นจุดเริ่มต้นของรอยแตก

ร**ูปที่ 63** การกระจายตัวของความเค้นในรางรถไฟที่รับน้ำหนัก 19,000 ปอนด์ (ก) longitudinal Plane Stress (ข) Vertical Shear Stress ^[31]

สรุป

จากการตรวจสอบและวิเคราะห์ในครั้งนี้ สามารถสรุปความน่าจะเป็นของสาเหตุการเสียหายได้ดังนี้

- 1. รางรถไฟเกิดแตกหักจากกลไกการล้า โดยบริเวณจุดเริ่มต้นรอยแตกอยู่ที่บริเวณฐานของรางรถไฟ
- 2. พบการเสียรูปอย่างรุนแรงและพบออกไซด์ขึ้นปกคลุมบริเวณจุดเริ่มต้นรอยแตก
- 3. บริเวณฐานรางรถไฟซึ่งอยู่ใกล้กับบริเวณแนวเชื่อมต่อรางรถไฟพบการเกิดผลึกใหม่เกิดขึ้น
- 4. ความแข็งที่บริเวณจุดเริ่มต้นรอยแตกมีค่าสูงกว่าบริเวณอื่น ๆ

กรณีศึกษาที่ 2

1. ข้อมูลเบื้องต้น

การรถไฟแห่งประเทศไทยตรวจสอบพบรางรถไฟแตกหักในเขตพื้นที่ภาคเหนือ การตรวจสอบเบื้องต้น พบว่ารางแตกหักใกล้เคียงกับตำแหน่งที่เชื่อมต่อรางด้วยแผ่นประกับ **รูปที่ 64** รางรถไฟที่เกิดความเสียหาย

รูปที่ 64 ชิ้นส่วนรางรถไฟที่ใช้ในการวิเคราะห์ความเสียหาย

ขั้นตอนการตรวจสอบและผลการวิเคราะห์

การวิเคราะห์ลักษณะทางกายภาพและผิวแตก

ตรวจสอบชิ้นงานที่แตกหักด้วยสายตา (Visual Examination) เพื่อหาลักษณะทางกายภาพ และ ลักษณะอื่น ๆ หาจุดเริ่มต้นของรอยแตก (Fracture Origins) และรูปแบบของผิวหน้ารอยแตก (Fracture Mode) จากนั้นจึงทำการบันทึกภาพด้วยกล้องถ่ายรูปดิจิทัล และกล้องจุลทรรศน์แบบแสงสะท้อนชนิด สเตอริโอ

จากการตรวจสอบด้วยสายตา พบว่า บริเวณที่เกิดความเสียหายเกิดการเสียรูปอย่างถาวร (Plastic Deformation) เกิดขึ้น โดยสามารถสังเกตเห็นการยุบตัวของเนื้อวัสดุได้อย่างชัดเจนดังแสดงใน**รูปที่ 65**

รูปที่ 65 บริเวณหัวรางที่ยุบตัว

การตรวจสอบผิวแตกพบว่าจุดเริ่มต้นของรอยแตกอยู่ที่บริเวณใต้ผิวหน้าของรางที่สัมผัสกับล้อ รถไฟ เนื่องจากพบ Beach Mark และ Radial Mark ขยายตัวออกมาจากตำแหน่งดังกล่าว จากนั้น รอยแตกขยายตัวผ่านเอวรางและเข้าสู่ฐานรางและพบลักษณะของ River Mark ที่มีการแผ่เข้าสู่จุดเริ่มต้น รอยแตก นอกจากรอยแตกร้าวปฐมภูมิ (Primary Crack) ยังพบรอยแตกทุติยภูมิที่บริเวณหัวรางใกล้กับ ตำแหน่งของจุดเริ่มต้นรอยแตก รูปที่ 66 แสดงลักณะผิวแตกที่ปรากฏ และรูปที่ 67 แสดงภาพสเก็ตช์การ ขยายตัวของรอยแตกและลักษณะของรอยต่าง ๆ ที่พบบนผิวแตก

รูปที่ 66 ลักษณะผิวหน้าแตกหักของรางรถไฟ

รูปที่ 67 ภาพสเก็ตช์ผิวหน้าแตกหักของรางรถไฟ

การวิเคราะห์ผิวหน้าแตกด้วย SEM

นำผิวหน้าแตกหักบริเวณจุดเริ่มรอยแตกไปตรวจสอบที่กำลังขยายสูงด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบสแกน จากการตรวจสอบบริเวณจุดเริ่มรอยแตกด้วย SEM พบว่าบริเวณจุดเริ่มต้นการแตกหักพบการ ขยายตัวของรอยแตกระดับจุลภาคที่เรียกว่า Striation ซึ่งเป็นรูปแบบการแตกหักจากการล้า การเกิด Striation แสดงให้เห็นถึงคาบของความเค้นหรือแรงแต่ละรอบที่กระทำกับชิ้นงาน เมื่อตรวจสอบในบริเวณ ถัดไปเล็กน้อยพบรูปแบบการแตกหักแบบ Cleavage ซึ่งเป็นลักษณะเฉพาะของการแตกหักแบบเปราะ ดังแสดงใน**รูปที่ 68**

รูปที่ 68 ลักษณะสภาพผิวแตกของชิ้นส่วนรางรถไฟ

การวิเคราะห์ภาคตัดขวางและโครงสร้างจุลภาค

ตัดชิ้นส่วนรางรถไฟตามแนวภาคตัดขวางผ่านบริเวณที่เกิดรอยแตกร้าว นำไปเตรียมตัวอย่างสำหรับ การวิเคราะห์ภาคตัดขวางและโครงสร้างทางจุลภาค โดยเริ่มจากการขัดหยาบ ขัดละเอียด และกัดผิวหน้า เพื่อให้ปรากฏโครงสร้างด้วยสารละลายในตอล (Nital Solution) ความเข้มข้น 2 เปอร์เซ็นต์โดยปริมาตร จากนั้นนำไปตรวจสอบภายใต้กล้องจุลทรรศน์แบบแสงชนิดแสงสะท้อน

การตรวจสอบโครงสร้างจุลภาคดังแสดงในร**ูปที่ 69-70** พบว่ารางรถไฟที่เสียหายผ่านกระบวนการ เชื่อมซ่อมก่อนเกิดการแตกหัก เมื่อตรวจสอบโครงสร้างจุลภาคที่บริเวณจุดเริ่มต้นของรอยแตก พบการเสีย รูปแบบถาวรและมีโครงสร้างที่มีเกรนละเอียด เมื่อตรวจสอบโครงสร้างด้วยกล้องจุลทรรศน์แบบแสง ที่มีกำลังขยายสูงขึ้น **(รูปที่ 70)** พบว่าบริเวณจุดเริ่มต้นรอยแตกเป็นโครงสร้างแบบ Acicular Ferrite ซึ่งเป็น ผลจากอิทธิพลความร้อนในการเชื่อมซ่อม

ในขณะที่โครงสร้างจุลภาคบริเวณตำแหน่งถัดไป (Zone B) พบโครงสร้างมาร์เทนไซต์ (Martensite) เกิดขึ้น นอกจากนี้ที่บริเวณ Zone B พบรอยแตกทุติยภูมิในทิศทางตั้งฉากกับรอยแตกหรือในทิศทางขนานกับ ความยาวของรางรถไฟ ในขณะที่โครงสร้างบริเวณ Zone C ไม่ได้รับผลกระทบจากความร้อน โดยโครงสร้าง จุลภาคที่พบเป็นโครงสร้างเพิร์ลไลท์ทั้งหมด

รูปที่ 69 ลักษณะโครงสร้างจุลภาคของชิ้นงานรางรถไฟ

รูปที่ 70 โครงสร้างจุลภาคบริเวณจุดเริ่มต้นรอยแตกที่กำลังขยายสูง

การตรวจสอบส่วนผสมทางเคมี

ผลการวิเคราะห์ส่วนผสมทางเคมีของชิ้นงานตัวอย่างแสดงใน**ตารางที่ 9** จากผลการวิเคราะห์ พบว่า ชิ้นส่วนรางรถไฟที่เสียหายมีปริมาณธาตุคาร์บอนเกินกว่าข้อกำหนดของมาตรฐาน UIC Grade 900A เล็กน้อย **ตารางที่ 9** ส่วนผสมทางเคมีของรางรถไฟเทียบกับมาตรฐาน

ธาตุผสม (Wt. %)								
	С	Mn	Si	Р	S			
รางรถไฟ	0.909	1.218	0.194	0.024	0.013			
เกรด 900A	0.60-0.80	0.80-1.30	0.10-0.50	0.04max	0.04max			

หมายเหตุ: ค่าที่แสดงได้จากการตรวจสอบ 3 ครั้งแล้วหาค่าเฉลี่ย

การตรวจสอบความแข็ง

ชิ้นงานภาคตัดขวางที่ผ่านการตรวจสอบโครงสร้างจุลภาคถูกนำมาวัดความแข็งรอบผิวแตกด้วยวิธีวัด ความแข็งแบบไมโครวิคเกอร์ ตำแหน่งวัดผ่านบริเวณแนวเชื่อมใกล้ผิวหน้าแตกการตรวจสอบใช้น้ำหนักกด 100 กรัม และกดค้างไว้เป็นระยะเวลา 15 วินาที

การวัดความแข็งพบว่าบริเวณที่มีค่าความแข็งมากที่สุดอยู่บริเวณที่ได้รับผลกระทบเนื่องจากความ ร้อน (Heat Affected Zone) ดังแสดงใน**รูปที่ 71** โดยบริเวณดังกล่าวเป็นบริเวณที่พบโครงสร้างมาร์เทนไซต์

รูปที่ 71 ความแข็งของรางรถไฟบริเวณที่เกิดการแตกร้าว

วิเคราะห์ผล

ลักษณะผิวแตกสามารถสังเกตร่องรอยของ Beach Mark, Radial Mark และ River mark ได้อย่าง ชัดเจน ร่องรอยเหล่านี้บ่งชี้ว่ารางรถไฟเสียหายจากการล้า หน้าตัดขวางผ่านผิวหน้าแตกและโครงสร้าง จุลภาคบริเวณจุดเริ่มต้นรอยแตกพบการเสียรูปอย่างรุนแรงซึ่งสอดคล้องกับการเสียรูปบริเวณผิวรางซึ่ง มองเห็นด้วยตาเปล่า ลักษณะดังกล่าวเป็นรูปแบบความเสียหายจากการกลิ้งสัมผัส (Rolling Contact Fatigue, RCF) ซึ่งเกิดขึ้นได้ในตำแหน่งที่รางสัมผัสกับล้อที่ซึ่งกลิ้งผ่านซ้ำ ๆ การเกิด RCF มีจุดเริ่มต้นจาก การเสียรูปแบบพลาสติกของวัสดุ^[32]

การตรวจสอบโครงสร้างจุลภาคของภาคตัดขวางยังพบรอยแตกทุติยภูมิ 2 ตำแหน่งคือ

1. รอยแตกที่ผิวและใต้ผิวรางรถไฟเล็กน้อย บริเวณนี้พบลักษณะของการยืดตัวของเนื้อวัสดุได้ อย่างชัดเจน และประกอบด้วย acicular ferrite phase เช่นเดียวกับที่จุดเริ่มต้นรอยแตก ดังนั้น จึงเป็นไปได้ว่ารอยแตกทุติยภูมิเกิดความเสียหายจาก Rolling Contact Fatigue เช่นกัน โครงสร้าง

acicular ferrite อาจเป็นผลจากการเชื่อมซ่อมรางรถไฟที่เกิดการสึกหรอและการใช้ลวดเชื่อมที่มีปริมาณ คาร์บอนต่ำ

2. รอยแตกภายในเนื้อราง รอยแตกนี้เกิดในตำแหน่งที่พบโครงสร้างมาร์เทนไซต์ ซึ่งมักเป็นผลจาก ความร้อนที่ใช้ในการเชื่อมซ่อมแผ่มาถึงรางรถไฟซึ่งผลิตจากเหล็กกล้าคาร์บอนสูง หากอุณหภูมิสูงกว่าเส้น A₁ หรือ 727 องศาเซลเซียส และเย็นตัวอย่างรวดเร็วก็สามารถทำให้เกิดโครงสร้างมาร์เทนไซต์ซึ่งมีความ แข็งสูงแต่สามารถรับแรงกระแทกได้น้อย ^[2]

จากกรณีที่เกิดความเสียหายอาจเป็นไปได้ว่ารางบริเวณดังกล่าวอาจมีการได้รับความเค้นเกินพิกัด ทำให้เกิดการเสียรูป เนื่องจากความแข็งของหัวรางที่ผ่านกระบวนการเชื่อมซ่อมมีค่าใกล้เคียงกับความแข็งที่ กำหนดไว้ในมาตรฐานของเหล็กรางไฟเกรด Grade 900A-HSH แต่ไม่มีกระบวนการให้ความร้อนก่อนการ เชื่อม เนื่องจากมีการพบโครงสร้างมาร์เทนไซต์ที่บริเวณแนวกระทบร้อน (HAZ) ทำให้บริเวณนี้รับแรง กระทแกได้น้อยและเกิดการแตกร้าวได้ง่าย

สรุป

จากการตรวจสอบและวิเคราะห์ในครั้งนี้ สามารถสรุปความน่าจะเป็นของสาเหตุความเสียหายได้ดังนี้

- 1. พบ Beach Mark, Radial Mark, River Mark รวมถึง Striation บนผิวหน้าแตกซึ่งบ่งชี้ถึงความ เสียหายจากการล้า
- 2. รางรถไฟเกิดความเสียหายในรูปแบบของ Rolling Contact Fatigue
- 3. จุดเริ่มต้นรอยแตกอยู่ที่บริเวณใต้ผิวเล็กน้อย ในตำแหน่งเชื่อมซ่อม
- 4. พบรอยแตกทุติยภูมิบริเวณแนวเชื่อมซ่อมที่เกิดการเสียรูปของเนื้อโลหะและบริเวณแนวกระทบร้อนที่ เกิดโครงสร้างมาร์เทนไซต์

กรณีศึกษาที่ 3 ข้อมูลเบื้องต้น

การรถไฟแห่งประเทศไทยตรวจสอบพบการแตกหักของรางรถไฟในเขตพื้นที่จังหวัดนครราชสีมา การตรวจสอบเบื้องต้นพบว่ารางแตกหักใกล้กับตำแหน่งที่มีการเชื่อมต่อราง **รูปที่ 72** แสดงรางรถไฟที่เกิด ความเสียหาย

รูปที่ 72 ลักษณะรางรถไฟที่แตกหักระหว่างใช้งาน

การวิเคราะห์ลักษณะทางกายภาพและผิวแตก

ตรวจสอบชิ้นงานที่แตกหักด้วยสายตา (Visual Examination) เพื่อหาลักษณะทางกายภาพ และ ลักษณะอื่น ๆ หาจุดเริ่มต้นของรอยแตก (Fracture Origins) และรูปแบบของผิวหน้ารอยแตก (Fracture Mode) จากนั้นจึงทำการบันทึกภาพด้วยกล้องถ่ายรูปดิจิทัล และกล้องจุลทรรศน์แบบแสงชนิด สเตอริโอ การตรวจสอบลักษณะทางกายภาพของรางรถไฟที่แตกหักพบคราบออกไซด์ปกคลุมชิ้นงานหนาแน่น โดยเฉพาะบริเวณผิวแตกตำแหน่งแนวเชื่อมเทอร์มิต (Thermit Welding) จึงเป็นไปได้ว่าบริเวณแนวเชื่อม เทอร์มิตเกิดการแตกหักก่อนตำแหน่งอื่น ๆ ซึ่งสอดคล้องกับการวิเคราะห์ผิวหน้าแตกหักที่พบว่า Radial Mark มีทิศทางการขยายตัวออกจากบริเวณผนังด้านนอกของแนวเชื่อมเทอร์มิต และ Chevron Marks มีทิศทางวิ่ง เข้าหาบริเวณแนวเชื่อมเทอร์มิตดังแสดงในรูปที่ 73 และ รูปที่ 74 ภาพสเก็ตช์แสดงจุดเริ่มต้นและการขยายตัว ของรอยแตกในรางรถไฟที่เกิดความเสียหาย

รูปที่ 73 ลักษณะทางกายภาพของผิวแตกบริเวณเอวราง

รูปที่ 74 ภาพสเก็ตช์แสดงจุดเริ่มต้นและการขยายตัวของรอยแตกในรางรถไฟที่เกิดความเสียหาย

การวิเคราะห์ผิวหน้าแตกด้วย SEM

นำผิวหน้าแตกหักบริเวณจุดเริ่มรอยแตกไปตรวจสอบที่กำลังขยายสูงด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบสแกน (Scanning Electron Microscope; SEM)

เมื่อตัดชิ้นส่วนผิวแตกบริเวณแนวเชื่อมเทอร์มิตที่เป็นจุดเริ่มต้นรอยแตกไปตรวจสอบด้วย SEM พบ ข้อบกพร่องจากการเชื่อมชนิดโพรงหดตัวจากการเย็นตัวของน้ำโลหะ (Shrinkage Porosity) ที่บริเวณใกล้ผิว ดังแสดงใน**รูปที่ 75**

รูปที่ 75 โพรงการหดตัวที่บริเวณจุดเริ่มต้นรอยแตก

การวิเคราะห์ภาคตัดขวางและโครงสร้างจุลภาค

ตัดชิ้นส่วนรางรถไฟตามแนวขวางและผ่านบริเวณที่เกิดรอยแตกหัก (รูปที่ 76) นำไปเตรียมตัวอย่าง สำหรับการวิเคราะห์ภาคตัดขวางและโครงสร้างทางจุลภาค โดยเริ่มจากการขัดหยาบ ขัดละเอียด และกัด ผิวหน้าเพื่อให้ปรากฏโครงสร้างด้วยสารละลายในตอล (Nital Solution) ความเข้มข้น 2 เปอร์เซ็นต์โดย ปริมาตร จากนั้นนำไปตรวจสอบภายใต้กล้องจุลทรรศน์แบบแสงชนิดแสงสะท้อน

ผลการตรวจสอบภาคตัดขวางบริเวณจุดเริ่มต้นของการแตกหักพบว่าโครงสร้างจุลภาคของแนวเชื่อม เทอร์มิตเป็นโครงสร้างเพิร์ลไลท์และไม่พบโครงสร้างที่มีลักษณะผิดปกติดังแสดงในร**ูปที่ 77** อย่างไรก็ตามการ ตรวจสอบบริเวณจุดเริ่มต้นรอยแตกพบโพรงการหดตัวของน้ำโลหะขนาดใหญ่เกิดขึ้น นอกจากนี้ยังพบโพรง การหดตัวขนาดเล็กกระจายตัวอยู่ทั่วไปในเนื้อเชื่อม

รูปที่ 76 ตำแหน่งที่ตรวจสอบภาคตัดขวางและโครงสร้างจุลภาค

รูปที่ 77 โพรงการหดตัวของน้ำโลหะ (Shrinkage Porosity) บริเวณจุดเริ่มต้นการแตกหัก

วิเคราะห์ผล

การตรวจสอบลักษณะทางกายภาพและผิวแตกของรางรถไฟที่แตกหักพบ Chevron Mark และ Radial Mark บ่งชี้ว่าการแตกหักมีจุดเริ่มต้นที่ผนังด้านนอกของแนวเชื่อมเทอร์มิตบริเวณเอวรางที่อยู่ใกล้กับ ฐานราง จากนั้นรอยแตกขยายตัวในทิศทางขนานกับแนวราง น่าสังเกตว่าจุดเริ่มต้นของรอยแตกเป็นตำแหน่ง ที่มีความเค้นต่ำกว่าตำแหน่งอื่น ๆ รูปที่ 78 [32] แสดงเส้นคอนทัวร์ของความเค้นของราง 119 ปอนด์ ขณะรับ น้ำหนักรถไฟ นอกจากนี้ไม่พบการเสียหายรูปของเนื้อวัสดุหรือโครงสร้างที่มีการเย็นตัวอย่างรวดเร็ว เช่น มาร์เทนไซต์ ซึ่งทำให้เกิดความเค้นตกค้างภายในเนื้อวัสดุ ดังนั้นการแตกหักในตำแหน่งนี้อาจเป็นผลจาก ข้อบกพร่องที่พบบริเวณแนวเชื่อมเทอร์มิต เพราะโพรงจากการหดตัวเป็นจุดสะสมความเค้น บริเวณดังกล่าว จึงมักเป็นจุดเริ่มต้นของการแตกร้าวและเหนี่ยวนำให้ชิ้นงานที่ผ่านการเชื่อมเกิดการแตกหัก [26]

รูปที่ 78 การกระจายตัวของความเค้นในรางรถไฟที่รับน้ำหนัก 19,000 ปอนด์ (ก) longitudinal Stress
(ข) Vertical Shear Stress

สรุป

จากการตรวจสอบและวิเคราะห์ สามารถสรุปความน่าจะเป็นของสาเหตุความเสียหายได้ดังนี้

- 1. พบ Radial Mark และ Chevron Mark บนผิวหน้าแตก ซึ่งบ่งชี้ถึงการแตกหักแบบเปราะ
- 2. จุดเริ่มต้นรอยแตกอยู่ที่บริเวณเอวราง โดยรอยแตกมีการขยายมาจากโพรงการหดตัวของน้ำโลหะของ แนวเชื่อมเทอร์มิต