Six-DUH-WAR-F: A Fluid-Based Framework for Gravitational and Relativistic Effects

May 31, 2025

1 Introduction

The Six-DUH-WAR-F (6-Dimensional Wake Accretion in Relativistic Fluids) framework proposes that space behaves as a structured quantum fluid whose viscosity, memory, compressibility, and higher-dimensional coupling vary across gravitational regimes. We present here the first parameterization of this cosmic fluid based on observationally derived quantities across three regimes: Toroidal Vacuum, Uncompressed Space, and Compressed Space.

2 Core Fluid Equations

2.1 Viscosity (Mu)

$$\mu(r) = \mu_0 \cdot f_{\mu}(r, \rho, v)$$

2.2 Memory Term (Tau_m)

$$\tau_m(r) = \tau_0 \cdot f_{\tau}(r, \nabla v, t)$$

2.3 Compressibility (C6D)

$$C_{6D}(r) = C_0 \cdot f_C(\nabla \rho, \nabla P)$$

2.4 Dimensional Coupling (D₋4,5)

$$D_{4,5}(r) = D_0 \cdot f_D(\nabla B, \nabla E, \text{Polarization})$$

3 Reverse Engineered Parameters

3.1 Mu Profile

Regime	Mu (relative)
Toroidal	1.00
Uncompressed	0.58
Compressed	5.45

3.2 Tau_m Profile

Regime	Tau_m (relative)
Toroidal	1.00
Uncompressed	1.37
Compressed	8.02

3.3 C6D Profile

Regime	C6D (relative)
Toroidal	1.00
Uncompressed	0.83
Compressed	7.12

3.4 D₋4,5 Proxy Profile

Regime	$D_{-}4,5$ (relative)
Toroidal	1.00
Uncompressed	1.28
Compressed	4.95

4 Path Length Corrections vs. True Time Dilation

4.1 Equation

$$\Delta t_{\rm obs} = \frac{L_{\rm fluid}}{c} + \Delta t_{\rm true}$$

4.2 Initial Results

Object	Correction Factor	Corrected Time Delay
Lensed Quasar	1.28	6.25 days
BH Lensed Light	1.45	TBD
Void Edge Light	1.15	TBD

5 Shell Strength Prediction

$$S_{\text{shell}} = f(C_{6D}, \Delta \mu, \Delta \tau_m, \nabla v)$$

6 Observational Sources

- Nature (10.1038/s41586-018-0254-4)
- NASA Voyager Mission
- ALMA/ESO (10.3847/2041-8213/abe4b7)
- LAB Survey (10.1051/0004-6361:20040436)
- BOSS (10.1093/mnras/stz1096)
- \bullet GRAVITY (10.1051/0004-6361/201935656)
- LIGO/Virgo (10.1103/PhysRevLett.125.101102)
- NANOGrav (10.3847/2041-8213/acdac6)
- SOHO/SDO (10.1086/381502)
- SDSS (10.1086/427276)
- \bullet COSMOGRAIL (10.1051/0004-6361/201935229)
- AMS-02 (10.1103/PhysRevLett.114.171103)
- IceCube (10.1126/science.1242856)

- \bullet Parker Solar Probe (10.1038/s41586-019-1818-7)
- \bullet COS-HST (10.3847/1538-4357/ab8e3d)
- \bullet XMM-Newton (10.1088/0004-637X/742/1/44)
- LOFAR (10.1051/0004-6361/202039703)
- \bullet KM3NeT/ANTARES (10.1093/mnras/stac2439)