

NumPy, SciPy and Matplotlib

David Grellscheid

- NumPy and SciPy are open-source add-on modules to Python that provide common mathematical and numerical routines in pre- compiled, fast functions.
- The NumPy (Numeric Python) package provides basic routines for manipulating large arrays and matrices of numeric data.
- The SciPy (Scientific Python) package extends the functionality of NumPy with a substantial collection of useful algorithms, like minimization, Fourier transformation, regression, and other applied mathematical techniques.

They are listed on PyPI, so can be installed with pip install numpy scipy

http://www.scipy.org/install.html has other alternatives

Import the modules into your program like most Python packages:

```
import numpy
import numpy as np
```

```
import scipy
import scipy as sp
```

- The array is the basic, essential unit of NumPy
- Designed to be accessed just like Python lists
- All elements are of the same type

- Ideally suited for storing and manipulating large numbers of

elements

```
>>> a = np.array([1, 4, 5, 8], float32)
>>> a
array([1., 4., 5., 8.])
>>> type(a)
<type 'numpy.ndarray'>
>>> a[:2]
Array([1., 4.])
>>> a[3]
8.0
```


Just like lists, an array can have multiple dimensions (obviously useful for matrices)

```
>>> a = np.array([[1, 2, 3], [4, 5, 6]], 'float32')
>>> a
array([[1., 2., 3.],
       [4., 5., 6]]
>>> a[0,0]
1.0
>>> a[0,1]
2.0
>> a.shape
(2,3)
```


Arrays can be reshaped:

```
>>> a = np.array(range(10), dtype='uint8')
>>> a
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a.reshape((5, 2))
>>> a
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = a.reshape((5,2))
array([[ 0, 1],
       [ 2, 3],
                        b points at same
      [ 4, 5],
      [ 6, 7],
                        data in memory,
       [8, 9]
                        new "view"
>>> b.shape
```


Plain assignment creates a view, copies need to be explicit:

```
>>> a = np.array([1, 2, 3], dtype='float')
>>> b = a  # same array, same data (py)
>>> c = a.view() # new array, same data (np)
>>> d = a.copy() # new array, new data (np)
>>> a[0] = 99
>>> a
array([99., 2., 3.])
>>> b
array([99., 2., 3.])
>>> C
array([99., 2., 3.])
>>> d
array([1., 2., 3.])
```

- One can fill an array with a single value
- Arrays can be transposed easily

```
>>> a = np.array([1, 2, 3],dtype='float')
>>> a
array([1.0, 2.0, 3.0])
>>> a.fill(0)
array([0.0, 0.0, 0.0])
>>> a = np.array(range(6), 'float').reshape((2, 3))
>>> a
array([[ 0., 1., 2.],
       [ 3., 4., 5.]])
>>> a.transpose()
array([[ 0., 3.],
       [1., 4.],
       [2., 5.]
```


Combining arrays can be done through concatenation. Careful, the data is copied!

```
>>> a = np.array([1,2], 'float')
>>> b = np.array([3,4,5,6], 'float')
>>> c = np.array([7,8,9], 'float')
>>> np.concatenate((a, b, c))
array([1., 2., 3., 4., 5., 6., 7., 8., 9.])
```


Multi-dimensional arrays can be concatenated along a specific axis:

```
>>> np.arange(5, dtype='float')
array([ 0., 1., 2., 3., 4.])
>>> np.linspace(30,40,5)
array([ 30., 32.5, 35., 37.5, 40.])
>>> np.ones((2,3), dtype='float')
array([[ 1., 1., 1.],
       [1., 1., 1.]
>>> np.zeros(7, dtype='int')
array([0, 0, 0, 0, 0, 0, 0])
>>> a = np.array([[1, 2, 3], [4, 5, 6]], 'float')
>>> np.zeros_like(a)
array([[ 0., 0., 0.],
      [0., 0., 0.]
>>> np.ones_like(a)
array([[ 1., 1., 1.],
       [1., 1., 1.]
```


Element-by-element processing is defined trivially:

```
>>> a = np.array([1,2,3], 'float')
>>> b = np.array([5,2,6], 'float')
>>> a + b
array([6., 4., 9.])
>>> a - b
array([-4., 0., -3.])
>>> a * b # is _not_ a dot-product!
array([5., 4., 18.])
>>> b / a
array([5., 1., 2.])
>>> a % b
array([1., 0., 3.])
>>> b**a
array([5., 4., 216.])
```


Watch out for automatic shape extension ("broadcasting"):

```
>>> a = np.array([[1, 2], [3, 4], [5, 6]], 'float')
>>> b = np.array([-1, 3], 'float')
>>> a
array([[ 1., 2.],
       [ 3., 4.],
       [5., 6.]]
>>> b
array([-1., 3.])
>>> a + b
array([[ 0., 5.],
       [ 2., 7.],
                         b was extended to
       [4., 9.11)
                         match shape (3,2):
                         array([[-1., 3.],
                                 [-1., 3.],
                                 [-1., 3.]
```


Control shape extension with newaxis:

```
>>> a = np.zeros((2,2), float)
array([[ 0., 0.],
     [0., 0.]]
>>> b = np.array([-1., 3.], float)
array([-1., 3.])
>>> a + b
array([[-1., 3.],
       [-1., 3.]]
>>> a + b[np.newaxis,:]
array([[-1., 3.],
       [-1., 3.]
>>> a + b[:,np.newaxis]
array([[-1., -1.],
       [3., 3.11)
```

NumPy offers a large library of common mathematical functions that can be applied elementwise to arrays

- Among these are: abs, sign, sqrt, log, log10, exp, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, and arctanh

```
>>> a = np.linspace(0.3, 0.6, 4)
array([ 0.3,  0.4,  0.5,  0.6])

>>> np.sin(a)
>>> array([ 0.29552021,  0.38941834,  0.47942554,  0.56464247])
```

```
>>> a = np.array([2, 4, 3], float)
>>> a.sum()
9.0
>>> a.prod()
24.0
>>> np.sum(a)
9.0
>>> np.prod(a)
24.0
>>> a = np.array([2, 1, 9], float)
>>> a.mean()
4.0
>>> a.var()
12.66666666666666
>>> a.std()
3.5590260840104371
```


Axis can be selected for marginal statistic:

```
>>> a = np.array([[0, 2], [3, -1], [3, 5]], float)
>>> a.mean(axis=0)
array([ 2., 2.])
>>> a.mean(axis=1)
array([ 1., 1., 4.])
>>> a.min(axis=1)
array([ 0., -1., 3.])
>>> a.max(axis=0)
array([ 3., 5.])
```


Array comparisons with <,==,> result in boolean arrays that can also be used as filters:

Perhaps the most powerful feature of NumPy is the vector and matrix operations

Provide compiled code performance similar to machine specific BLAS, uses BLAS internally

Performing a vector-vector, vector-matrix or matrix-matrix multiplication using **dot**

Also supports inner, outer, cross

```
>>> a = np.array([[0, 1], [2, 3]], float)
>>> b = np.array([2, 3], float)
>>> c = np.array([[1, 1], [4, 0]], float)
>>> a
array([[ 0., 1.],
       [2., 3.]
>>> np.dot(b, a)
array([ 6., 11.])
>>> np.dot(a, b)
array([ 3., 13.])
>>> np.dot(a, c)
array([[ 4., 0.],
       [14., 2.]]
>>> np.dot(c, a)
array([[ 2., 4.],
       [0., 4.]]
```


A number of built-in routines for linear algebra are in the linalg submodule:

```
>>> a = np.array([[4, 2, 0], [9, 3, 7], [1, 2, 1]], float)
array([[ 4., 2., 0.],
      [ 9., 3., 7.],
       [1., 2., 1.]
>>> np.linalg.det(a)
-53.99999999999993
>>> vals, vecs = np.linalg.eig(a)
>>> vals
array([ 9. , 2.44948974, -2.44948974])
>>> vecs
array([[-0.3538921, -0.56786837, 0.27843404],
       [-0.88473024, 0.44024287, -0.89787873],
       [-0.30333608, 0.69549388, 0.34101066]])
```

```
>>> b = np.linalg.inv(a)
|>>> b
array([[ 0.14814815, 0.07407407, -0.25925926],
       [0.2037037, -0.14814815, 0.51851852],
       [-0.27777778, 0.11111111, 0.11111111])
>>> np.dot(a, b)
array([[ 1.00000000e+00, 5.55111512e-17, 2.22044605e-16],
       [ 0.00000000e+00, 1.00000000e+00, 5.55111512e-16],
       [ 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]])
>>> a = np.array([[1, 3, 4], [5, 2, 3]], float)
>>> U, s, Vh = np.linalg.svd(a)
|>>> U
array([[-0.6113829 , -0.79133492],
       [-0.79133492, 0.6113829]
>>> S
|array([ 7.46791327, 2.86884495])
|>>> Vh
array([[-0.61169129, -0.45753324, -0.64536587],
       [ 0.78971838, -0.40129005, -0.464.....
```


- Polynomial Mathematics
- Statistical computations
- Full suite of pseudo-random number generators and operations
- Discrete Fourier transforms,
- more complex linear algebra operations
- size / shape / type testing of arrays,
- splitting and joining arrays, histograms
- creating arrays of numbers spaced in various ways
- creating and evaluating functions on grid arrays
- treating arrays with special (NaN, Inf) values
- set operations
- creating various kinds of special matrices
- evaluating special mathematical functions (e.g. Bessel functions)
- To learn more, consult the NumPy documentation at http://docs.scipy.org/doc/

SciPy is built on top of numpy and has specialist scientific routines like:

cluster	 Vector Quantization / Kmeans
fftpack	 Discrete Fourier Transform algorithms
integrate	 Integration routines
interpolate	 Interpolation Tools
io	 Data input and output
lib	 Python wrappers to external libraries
lib.lapack	 Wrappers to LAPACK library
linalg	 Linear algebra routines
misc	 Various utilities that don't have
	another home.
ndimage	 n-dimensional image package
odr	 Orthogonal Distance Regression
optimize	 Optimization Tools
signal	 Signal Processing Tools
sparse	 Sparse Matrices
sparse.linalg	 Sparse Linear Algebra
sparse.linalg.dsolve	 Linear Solvers
<pre>sparse.linalg.dsolve.umfpack</pre>	 :Interface to the UMFPACK library:
	Conjugate Gradient Method (LOBPCG)
sparse.linalg.eigen.lobpcg	 Locally Optimal Block Preconditioned
	Conjugate Gradient Method (LOBPCG) [*]
special	 Airy Functions [*]
lib.blas	 Wrappers to BLAS library [*]
sparse.linalg.eigen	 Sparse Eigenvalue Solvers [*]
stats	Statistical Functions [*]
spatial	 Spatial data structures and algorithms

Matplotlib

Powerful library for 2D data plotting, some 3D capability Very well designed: common tasks easy, complex tasks possible.

Matplotlib

```
>>> import pylab as pl
>>> xs = pl.linspace(0,100,101)
>>> ys = pl.sin(xs)
>>> cols = pl.random(101)
>>> sizes = 100.0 * pl.random(101)
>>> pl.scatter(xs,ys,c=cols,s=sizes)
>>> pl.savefig('test.svg')
```

Typical workflow in the beginning:

Go to gallery, pick something close to desired plot, and modify

http://docs.scipy.org/doc

http://matplotlib.org/gallery/index.html

Exercise: particle animation

Exercise: large data memmap

```
https://users.hepforge.org/
~dgrell/ictp16/landcover.html
```