L1 Mathématiques Analyse 1

Université de Brest

Feuille 2

Suites numériques

Questions de cours.

- 1. Qu'est-ce qu'une suite bornée?
- 2. Donner quelques critères de convergence pour une suite.

Exercice 1 (Étude de la monotonie).

- 1. Soit $\alpha \in \mathbb{R}$ donné. Soit $(a_n)_{n \in \mathbb{N}}$ la suite définie par la relation de récurrence $a_{n+1} = a_n + \alpha$ avec a_0 donné et $(b_n)_{n \in \mathbb{N}}$ la suite définie par $b_n = n \alpha + (-1)^n$. Étudier en fonction de α la monotonie des suites (a_n) et (b_n) .
- 2. Étudier la monotonie de la suite $(a_n)_{n\in\mathbb{N}^*}$ définie par $a_n=(n+1)(n+2)\cdots(n+n)$

Exercice 2 (Étude de la monotonie). Étudier la monotonie (resp. stricte monotonie) des suites suivantes :

$$1. \left(\frac{n^2-1}{n^2+1}\right)_{n\in\mathbb{N}}$$

$$3. \left(\frac{n^2}{2-3n}\right)_{n\in\mathbb{N}}$$

$$5. \left(\sqrt{n+e^{-n}}\right)_{n\geq 0}$$

$$2. \left(\frac{n}{n+1}\right)_{n \in \mathbb{N}}$$

4.
$$(n^{1/n})_{n\geq 3}$$

7.
$$(n^n - n!)_{n>1}$$

6. $(n^2-2n)_{n>0}$

Exercice 3. Montrer que les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ définies ci-dessous sont bornées.

$$u_n = \frac{n + \cos(n)}{2n + 3}$$
 $v_n = \frac{n\cos(n)}{2n + 2 + \cos(n)}$

Exercice 4. Montrer que toute suite convergente est bornée.

Exercice 5. En utilisant la définition de la limite, montrer qu'une suite de réels $(u_n)_{n\in\mathbb{N}}$ est convergente si et seulement si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers une même limite.

1

Exercice 6. Soit q un entier au moins égal à 2 . Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos\left(\frac{2n\pi}{q}\right)$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_{n+q} = u_n$.
- 2. Calculer u_{nq} et u_{nq+1} . En déduire que la suite (u_n) n'a pas de limite.

Exercice 7. Soit (a_n) et (b_n) deux suites convergentes. On note respectivement A et B les limites des suites (a_n) et (b_n) . En appliquant la définition de la convergence, démontrer les propriétés suivantes :

1. Pour tout
$$\lambda \in \mathbb{R}$$
, $\lim_{n \to \infty} \lambda a_n = \lambda A$.

3.
$$\lim_{n\to\infty} (a_n \, b_n) = AB.$$

2.
$$\lim_{n \to \infty} (a_n + b_n) = A + B$$
.

4. Si
$$\forall n \in \mathbb{N}$$
, $b_n \neq 0$, alors $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$.

Exercice 8. Soit (a_n) une suite à valeurs réelles.

1. Montrer que si
$$\lim_{n\to +\infty} a_n = l$$
 avec $l\in \mathbb{R}\cup \{\pm\infty\}$, alors $\lim_{n\to +\infty} |a_n| = |l|$.

2. En déduire que si la suite $(|a_n|)$ est divergente, alors la suite (a_n) est divergente.

Exercice 9. En utilisant la définition de la limite, montrer que si $(a_n)_{n\in\mathbb{N}}$ est une suite bornée de réels et $(b_n)_{n\in\mathbb{N}}$ une suite de limite nulle, alors la suite $(a_n\,b_n)_{n\in\mathbb{N}}$ converge vers 0.

Exercice 10 (Critère de convergence). Soit $(u_n)_{n\in\mathbb{N}}$ une suite jamais nulle, et telle que $\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=$ $l \in \mathbb{R}$.

1. On suppose que l < 1. On veut montrer que $\lim_{n \to \infty} u_n = 0$.

a) Montrer qu'il esxiste
$$0 < r < 1$$
 et $N \in \mathbb{N}$ tel que : $\forall \, n \geq N \, , \, \left| \frac{u_{n+1}}{u_n} \right| \leq r \, .$

- b) En déduire que pour tout $n \ge N$, $|u_n| \le r^{n-N} |u_N|$.
- c) Conclure.

2. On suppose que l > 1. Montrer que $\lim_{n \to \infty} |u_n| = +\infty$.

3. Si l=1, montrer que la suite peut soit converger vers une limite finie, soit tendre vers $+\infty$ ou $-\infty$, soit ne pas avoir de limite.

Exercice 11. Soit $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 1}$ les suites définies par

$$a_n = \frac{n^3 + 1}{n^3 + n^2 + 2}$$
 et $b_n = \frac{n + \cos(n)}{n - \sin(n)}$.

1. Pour tout $\varepsilon \in \mathbb{R}_+^*$, trouver un entier N tel que : $\forall n \geq N, |a_n - 1| \leq \varepsilon$. Que peut-on conclure?

2. Pour tout $\varepsilon \in \mathbb{R}_+^*$, trouver un entier N tel que : $\forall n \geq N, \ |b_n - 1| \leq \varepsilon$. Que peut-on conclure?

Exercice 12. Étudier si les suites $(a_n)_{n\geq 0}$ définies ci-dessous possèdent une limite.

$$a_n = n^{-2+(-1)^n}$$
 $a_n = e^{n(-1)^n}$ $a_n = \cos(\pi \sqrt{n})$.

Exercice 13. Étudier dans chacun des cas suivants la convergence de la suite (a_n) ; en cas de convergence, calculer la limite.

1.
$$a_n = n^3 + \frac{1}{n}$$

3.
$$a_n = \frac{(2n-3)(n+3)}{n^2 - n - 6}$$
 5. $a_n = \frac{n}{n + \sqrt{n}}$

$$5. \ a_n = \frac{n}{n + \sqrt{n}}$$

$$2. \ a_n = n\sqrt{n} - n$$

4.
$$a_n = \sqrt{n+1} - \sqrt{n}$$
 6. $a_n = \frac{\cos(n)}{2^n}$

2

$$6. \ a_n = \frac{\cos(n)}{2^n}$$

7.
$$a_n = \sqrt{n^2 + n} - n$$
 8. $a_n = (2n)^{\frac{1}{2n}}$

8.
$$a_n = (2n)^{\frac{1}{2n}}$$

9.
$$a_n = \frac{\sqrt{3n+1}}{3+\sqrt{n}}$$

Exercice 14. Calculer les limites des suites suivantes :

$$u_n = \frac{1+2+\ldots+n}{n^2}$$

$$v_n = \frac{n + e^n}{2n + e^n}$$

$$w_n = \frac{\ln(n + \ln(n))}{\ln(2n + \ln(n))}$$

$$u_n = \frac{1+2+\ldots+n}{n^2}$$
 $v_n = \frac{n+e^n}{2n+e^n}$ $w_n = \frac{\ln(n+\ln(n))}{\ln(2n+\ln(n))}$ $x_n = \frac{\sqrt{n+1}-\sqrt{n-1}}{\sqrt{n+1}+\sqrt{n-1}}$.

Exercice 15 (Suites et séries géométriques). Soit $q \in \mathbb{R}^*$ et $(u_n)_n$ une suite à valeurs réelles définie par la relation de récurrence $u_{n+1} = q u_n$.

- 1. Déterminer une expression du terme général de la suite $(u_n)_n$ en fonction de q, u_0 et n.
- 2. Étudier la monotonie de la suite $|u_n|$.
- 3. Montrer que $|u_n|$ admet une limite dans $\mathbb{R} \cup \{+\infty\}$ et la déterminer en fonction de |q|.
- 4. Soit $(S_n)_{n\in\mathbb{N}}$ la suite définie par $S_n=\sum_{k=0}^n u_k$. Déterminer le terme général de la suite (S_n) . Préciser dans quel cas la suite $(S_n)_n$ converge.

Exercice 16 (Suites adjacentes). Soit a et b deux réels tels que 0 < a < b. Soit (u_n) et (v_n) les suites définies par $u_0 = a$, $v_0 = b$,

$$u_{n+1} = \frac{2 u_n v_n}{u_n + v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Montrer que $a < \frac{2ab}{a+b} < \frac{a+b}{2} < b$.
- 2. Montrer que les suites (u_n) et (v_n) sont adjacentes. Calculer la limite de (u_n) .

Exercice 17 (Suite de Cauchy). On pose pour $n \in \mathbb{N}^*$, $u_n = \sum_{i=1}^n \frac{1}{k}$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, $u_{2n} u_n \ge \frac{1}{2}$.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ n'est pas de Cauchy et que $\lim_{n\to\infty}u_n=+\infty$.

Exercice 18 (Suite de Cauchy).

- 1. Soit 0 < a < 1 un réel et $(u_n)_{n \in \mathbb{N}}$ une suite vérifiant : $\forall n \in \mathbb{N}, |u_{n+1} u_n| \leq a^n$. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.
- 2. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle de Cauchy si elle vérifie $|u_{n+1}-u_n|\leq \frac{1}{n}$?

Exercice 19. Calculer $\limsup_{n\to\infty} a_n$ et $\liminf_{n\to\infty} a_n$ des suites (a_n) .

1.
$$u_n = (-1)^n$$

3.
$$u_n = (-1)^n \left(1 + \frac{1}{n}\right)$$

3.
$$u_n = (-1)^n \left(1 + \frac{1}{n}\right)$$
 5. $u_n = 2(-1)^n + \frac{n}{n+1}$

2.
$$u_n = \frac{(-1)^n}{2^n}$$

4.
$$u_n = (-1)^n (1 - e^{n/4})$$

3

4.
$$u_n = (-1)^n (1 - e^{n/4})$$
 6. $u_n = (-1)^n e^{(-1)^{n+1} n}$

Exercice 20 (Théorème de Cesàro). Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels. On appelle suite des moyennes de Cesàro associée à (a_n) la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_n = \frac{1}{n} \sum_{k=1}^n a_k = \frac{a_1 + a_2 + \dots + a_n}{n}$$
.

- **1. Cas d'une suite monotone.** On suppose que la suite $(a_n)_{n\geq 1}$ est une suite croissante de limite $l\in\mathbb{R}$.
 - a) Montrer que la suite (u_n) est croissante.
 - b) Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \leq l$ et $u_{2n} \geq \frac{1}{2}(u_n + a_{n+1})$.
 - c) Montrer que la suite (u_n) converge vers l.
- **2.** Cas d'une suite convergente. Soit $(a_n)_{n\geq 1}$ une suite de réels convergeant vers $l\in\mathbb{R}$. Soit $\varepsilon\in\mathbb{R}_+^*$ fixé.
 - a) Justifier qu'il existe $n_0 \in \mathbb{N}^*$ tel que : $\forall n \in \mathbb{N}^*, \ n \geq n_0 \Longrightarrow |a_n l| \leq \frac{\varepsilon}{2}$.
 - b) Montrer que pour tout entier $n > n_0$, on a

$$|u_n - l| \le \frac{|a_1 - l| + \ldots + |a_{n_0} - l|}{n} + \frac{|a_{n_0+1} - l| + \ldots + |a_n - l|}{n}$$
.

c) Montrer qu'il existe $n_1>n_0$ tel que pour tout $n\in\mathbb{N}$ avec $n>n_1$,

$$\frac{|a_1-l|+\ldots+|a_{n_0}-l|}{n} \le \frac{\varepsilon}{2} .$$

- d) Conclure que la suite (u_n) converge vers l.
- 3. Cas d'une suite tendant vers $-\infty$. Montrer que si $\lim_{n\to\infty}a_n=-\infty$, alors $\lim_{n\to\infty}u_n=-\infty$.
- **4. Cas d'une suite périodique.** Soit $T \in \mathbb{N}^*$ et $(a_n)_{n \geq 1}$ une suite de réels T-périodique, c'est-à-dire, pour tout $n \in \mathbb{N}^*$, $a_{n+T} = a_n$. On introduit sa suite des moyennes de Cesàro $(u_n)_{n \geq 1}$. On note

$$s = \frac{1}{T}(a_1 + a_2 + \ldots + a_T)$$

et $(v_n)_{n\geq 1}$ la suite définie par $\ v_n=n\,u_n-(n+1)s$.

- a) Montrer que pour tout $n \in \mathbb{N}^*$, $s = \frac{1}{T}(a_n + a_{n+1} + \ldots + a_{n+T-1})$.
- b) Montrer que la suite (v_n) est T-périodique. En déduire que la suite (v_n) est bornée.
- c) Établir que la suite (u_n) converge et préciser sa limite.
- 5. Application.
 - a) Montrer que si $(a_n)_{n\in\mathbb{N}^*}$ est une suite de réels strictement positifs ayant pour limite $l\in[0\,;\,+\infty]$, alors la suite des moyennes géométriques $u_n=\sqrt[n]{a_1\cdots a_n}$ a pour limite l.
 - b) En déduire que si $(y_n)_{n\in\mathbb{N}^*}$ est une suite de réels strictement positifs telle que $\frac{y_{n+1}}{y_n} \xrightarrow[n\to\infty]{l}$, alors la suite $(\sqrt[n]{y_n})$ converge vers l.