P.T. INTER WORLD STEEL MILLS INDONESIA MELTING LOG SHEET FOR (MONTHLY VERSION)

E.101

March Marc	ED DD 04 05																		NDONESI											E.101			4 20 14	: 2025
Mart	FR.PP.01.05			^			(7 \	_											VERSION	V)							54144			DATE	<u>:</u>		1-30 ME	1 2025
Company Comp		- ···· V			\ /			1	B II ()		· ·			INCLUDING OFF DAY TARGET			BREAK DOWN & MAINTENANCE														OFF QUALITY & OPERATION			
Description Vote (s) 9, Vote (s) Vot	HEAT					65					65							De	escription	Un	it Min	%	Sub Unit		%	Descr	iption			Т	Desc	ription	Unit I	leat No Sub
State	Description	Yield	(s)	%	Yie	Hd (s)	%	Yield	(s) %	Yi	ield (s)	%		Yield (s	s)	%		S E.T.T.								Coke				- 35	Oxidis	eLQ.M		Total
Company Comp	Scrap					2.231.392					2.231.39	2						A.T.T-	-B. T-C.T				130	3887	78,67	Carbon R	aiser	25.005	12,61	` 33	L/D L	anding	22	22
1901-100 1901-100	LQ Metal Yield					2.058.841	92,27				2.058.84	1 92,27					> 90,0	O Fettlin	ng 2,9	5			22	218	4,41	Lime / Ca	0	73.850	37,23	< 35	Return	ı to EAF		
M. Lico. 1. 17.00 1. 17.																		Charg	ging 3,0	0			195	375	7,59	Mag. Cart	on Ball			< 8		ST 1	1	1
Marco	Billet Yield					1.983.420	88,89				1.983.42	0 88,89)				> 89,0	Meltin	ng				65		57,76	Silicon Ca	rbide	2.520	1,27	< 5	5	2		
Fig.	_																	Refini	ing				65	1033	20,91						¥	3		
Marchenical 1						47.200	2,12				47.20	0 2,12					< 0,75	Tappir	ing						6,94	Ferro Silio	on				- H	4		
Supplement	End Cutting					28.220	1,26				28.22	0 1,26					< 0,5	S	Sub Total				412	4.823	97,61	Silicon Ma	anganese)			
Standard)																	Mecha	anical				1	60	,	,,				1 00		ST 1	1	
Suit Floration Suit Su	<u>- </u>											3						Electri	ical				1	9	0,18						_ = =	2	1	
S SPY V																		Coolin	ng SYM												MO	3	1	1
5 SP2						30,51					30,5	1					31-32 T	_		1						T/D Board				23	공공	4		
S SP 99 283 5.34 99 295 5.35 99 295 5.34 99 295 5.35 99 295 5.34 99 295 5.35 99 295 5.34 99 295 5.35 99 295 5.35 99 295 5.35 99 295 5.35 99 295 5.35 99 295 5.35 99 295 5.35 99 295 5.35 99 295 99 295 5.35 99 295 9		ļ																		\perp							REF				1	\longrightarrow		
SPT	5 SP2 V	<u> </u>																		1						Description	Supplier							
5 5 7 2																		D/C S	YM							·		Ch	Ch		_			
3-9		<u> </u>																		1											Z			
3-9	∑ 5 SP2					899.283	45,34				899.28	3 45,34																			_ ≓			
SSP	H																															S		
NG-50 91,444 6,61 91,444 6	=																	-													_ >			
SSP NO																														_				
NG-9R NSW NSW																		△ Swing	ing SYM				1	60	1,21	T. Spout	CHH	432		800	Z	Cr		
Table Paper C 26.773 1.23 485 6.22 a 44.324 1.305.385 6.01 b 1.091.015 500.05 500.05 1.091.015 1.091.015	* *.					91.444	4,61				91.44	4 4,61					< 5	¥													H	1		
Total Prover C 26.573 1.234.486 622.60 44.324 1.305.382 68.815 1.34.6 r.o.g 68.90 68.67 68.815 1.34.6 r.o.g 68.90 68.67 68.90 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00 69.07 69.00	NG - SR																	, N													_			
Sept Description Sept		KW		WH/T				KW									KWH/I															Sn		
## Septical Process 1,007,000 507,7 1,007,000 1,007,000 507,7 1,007,000			26.573					0	44.324									_													_	V		
CMPrever C 2.014 11.155 5.62 3.622 16.891 8.47 26.581 13.40 ALK Power C 1.786 13.752 6.93 4.881 20.419 10.29 30.397 15.33 CMPressons 6.148 19.445 9.50 4.498 30.090 15.71 32.101 16.18 SASY/DAS Closers 32								5																								\vdash		
ALK Pewer C 1.766	>							1				-	_				< 450	-															82/23	82/23
MT Pixes 14 760 71 882 36.24 31.736 31.838 59.68 137.376 69.26 73.736 69.26 73.7376 69.26 73.7376 74.54 30.76 896 62.677 31.60 62.919 31.72 67.454 30.76 896 62.677 31.60 62.919 31.72 67.454 30.76 896 62.677 31.60 62.919 31.72 67.454 30.76 896 62.677 31.60 62.919 31.72 67.454 30.76 69.26 62.677 31.60 62.919 31.72 67.454 30.76 69.26 62.677 31.60 62.919 31.72 67.454 69.26 69.2	(/)											-	_																			В		
Compressions Comp	\sim												_			.,				_														
33 N/ Dast Cidedox. 327 61.454 30.98 896 62.677 31.60 62.919 31.72 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 38 5.283 2.66 180 5.503 2.77 5.874 2.96 C230V Power. 180 180 1.001 1	-							1												_						v Prod	luktivitas	=	3	4,96	T/Hc	ur		
C2390/Power 38 5.283 2.66 180 5.503 2.77 5.874 2.96 5.80 Total 5.60 5.70 5.874 2.96 5.80 Total 5.80 5.889%	4)					_																					
Description Section	3.3 KV Dust Colector.		327			61.454	30,9	3	896		62.67	7 31,	60		62.919	31,72		_													dalam 6	5 Heat 11	hari kerj	ā.
Charge L. Delay Charging Delay L. Pemakaian CaQ 37,23 Kg/T Billet melebihi dari target sebesar 35,00 Kg/T Billet	C) CO 2002 / E						_		405			0								-		1				±tisiensi M	erz5, L/S=9	52.27%&B/	S = 88.89%	/a				
Null OK T-MIN A/EANN UNIT OK T-MIN A/E UNIT OK T-MIN A/E UNIT OK T-MIN A/E UNIT OK T-MIN A/E UNIT OK T-MIN A/E UNIT OK T-MIN A/E UNIT OK T-MIN A/E	∐ UZ 38UV Power.		38			5.283	2,60)	180		5.50	3 2	//		5.8/4	2,96				+	-	+				l Bome	raian CaC	27 22 1/2	/T Dillat	molobil	i dari t	argot eab	ocar 2F f	0 Ka/T Billet
Made By Made By Made By Manual Part Made By Manual Part Manual Part Manual Part Made By Made By Manual Part Manual Part Made By Made By Manual Part Made By Made By Manual Part Made By Manual Part Made By Manual Part Manual Part Manual Part Made By Manual Part Manual Part Manual Part Manual Part Manual Part Manual Part Made By Manual Part	ш		_					 	_	+		+						Charge	je L. Delay				2	-					•			-		•
Felling		UNIT OK	T-MIN	AVE-MIN	UNIT	OK T-MIN	AVE	UNIT OK	T-MIN AVE	UNIT	OK T-MIN	AVE	UNI	IT OK	T-MIN	AVE	MIN	Chargi	ing Delay	1			1	16	0,32									
Charging 195 56 375 5,8 195 56 575 56 195 56 575 56 195 56 575 57	Fetling				22	22 218	3.4	1		22	22 21	8 3	3,4	1 1			4	Clean	elbow of D/C															
Melt Down 65 3 2.854 43,9 65 3 2.854 43,9 65 3 2.854 43,9 65 3 4 1.033 15,9 65 34 1.033 15,9 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0					195		-7			195				+						1													J	,
Refining 65 34 1.033 15,9 65 34 1033 15,9 15 65 46 343 5,3 15,9 15 65 46 343 5,3 5,3 5 65 46 343 5,3 5 65 46 343 5,3 5 5 65 46 343 5,3 5 5 65 46 343 5,3 5 5 65 46 343 5,3 5 5 65 46 343 5,3 5 5 65 46 343 5,3 5 65 46 343 5,3 5 65 46 343 5,3 5 65 46 343 5,3 5 65 46 343 5,3 5 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68					65			9						+						1						II. Pemal	kaian <u>Gun</u>	ning Mate	<u>erial</u> 19,6	61 Kg/T E	Billet m	elebihi da		
Tapping					65			9		65			/-	1 1						1		1												
Breek Down 9 118 9 118 9 118 9 118 9 118 9 118 9 118	نيا													1 1				70		+		1												
Break Down 9 118 9 118 9 118 JET BURNER T-T 4941 76.0 68 NAMED FOR SUID TOTAL SUID TOTA	o rapping				65	40 343	5,0	5		65	40 34	3 8	0,3	\perp			5	5 CCM P	repair	1														
T-T 4941 76,0 4941 76,0 68 Sub Total 3 23 0,47 Billet, karena adanya cairan buang H.2530 LD bocor ± 29 T sehingga menambah konsumsi FeSiMn.	Break Down				9	118				9	11	8						JET BI	URNER	1						Konsulli	or Juniani	y materia	i untuk II	nencega	ıı terjat	iiiya kebi	Journali Ul	nang uaput.
Sub Total 3 23 0,47 Sub Fengendali KABAG PENGENDALI Made By	≝ T-T						76.0)			4941	76	5,0				68																	
	ADIV DENCENDAL	<u> </u>			KABACI			1 1		Mada P								Sul	b Total				3	23	0,47				ı buang l	n.2530 L	ט מסכנ	г <u>+</u> 29 ſs	eningga	menamban
9 118 2,39	ADI V PENGENDALI				KARAG I	PENGENDALI				iviade B	у							\sqcup								1								
9 116 2,39																		1		1				440		l								
																		l		1			9	118	2,39	l								