```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         sns.set(color_codes=True)
         import scipy.stats as stats
         import warnings
        warnings.filterwarnings("ignore")
         import os
In [2]: # Importing data
        os.listdir(os.getcwd())
        ['.ipynb_checkpoints',
Out[2]:
          '2015_Street_Tree_Census_-_Tree_Data_20240605.csv',
          'aerofit_treadmill_data.csv',
          'BeautifulSoup and Requests.ipynb',
          'Cleaning Cricket Dataset.ipynb',
          'crime.csv',
          'crime.zip',
          'Customer Call List.xlsx',
          'Data Cleaing in Pandas.ipynb',
          'data_cleaning_challenge.csv',
          \verb|'data_cleaning_challenge.ipynb'|,
          'EDA of Crime Dataset.ipynb',
          'EDA of Crime Dataset.pdf',
          'EDA with Crime Dataset.ipynb',
          'layoffs.csv',
          'Loan Default Predictor',
          'Records for Test Matches.csv',
          'Records for Test Matches.xlsx'
          'Scraping Data from a Real Website + Pandas.ipynb',
          'SurveyMonkey Data Transformation and Analysis',
          'Treadmill Purchase Analysis.ipynb']
In [3]: df = pd.read_csv('aerofit_treadmill_data.csv')
         # Get overview of dataset
        df.head()
Out[3]:
           Product Age Gender Education MaritalStatus Usage Fitness Income Miles
        n
             KP281
                                                                    29562
                                                                            112
                    18
                          Male
                                     14
                                               Single
        1
             KP281
                                      15
                                               Single
                                                                    31836
                                                                             75
                    19
                          Male
        2
             KP281
                                                                3
                                                                    30699
                    19
                        Female
                                      14
                                             Partnered
                                                                             66
        3
             KP281
                                      12
                                                                3
                                                                    32973
                    19
                          Male
                                               Single
                                                                             85
             KP281
                                                                2
                                                                             47
                    20
                          Male
                                     13
                                             Partnered
                                                         4
                                                                    35247
In [4]: # Shape of dataframe
        df.shape
        (180, 9)
Out[4]:
In [5]: # Identify name of all columns
         df.columns
        Out[5]:
              dtype='object')
In [6]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 180 entries, 0 to 179
        Data columns (total 9 columns):
         # Column Non-Null Count Dtype
                            -----
         0 Product 180 non-null object
1 Age 180 non-null int64
2 Gender 180 non-null object
3 Education 180 non-null int64
            MaritalStatus 180 non-null object
                      180 non-null int64
180 non-null int64
             Usage
            Fitness
         7 Income 180 non-null 8 Miles 180 non-z
                                           int64
         8 Miles
                           180 non-null int64
        dtypes: int64(6), object(3)
        memory usage: 12.8+ KB
In [7]: # Convert columns with object data type
         df['Product'] = df['Product'].astype('category')
        df['Gender'] = df['Gender'].astype('category')
        df['MaritalStatus'] = df['MaritalStatus'].astype('category')
In [8]: df.dtypes
        Product
                    category
Out[8]:
        Age
                           int64
        Gender category
Education int64
        MaritalStatus category
                         int64
        Usage
        Fitness
                            int64
        Income
Miles
                            int64
        Miles
                           int64
        dtype: object
In [9]: df.skew()
                     0.982161
        Age
Out[9]:
        Education 0.622294
        Usage 0.739494
        Fitness
                     0.454800
        Income 1.291785
Miles 1.724497
                    1.291785
        dtype: float64
```

Statistical Summary

df.describe(include='all')

Out[10]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.000000
	unique	3	NaN	2	NaN	2	NaN	NaN	NaN	NaN
	top	KP281	NaN	Male	NaN	Partnered	NaN	NaN	NaN	NaN
	freq	80	NaN	104	NaN	107	NaN	NaN	NaN	NaN
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.194444
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.863605
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.000000
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.000000
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.000000
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.750000
	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.000000

Observations

- there are no missing values in the data
- there are 3 unique products
- KP281 is the most frequent product
- min age is 18, max age is 50, and average age is 28.79

- most of the people have at most 16 years of education
- majority of the data is from male

```
In [11]: # Check for missing values
          df.isnull().sum()
         Product
Out[11]:
         Age
                          0
         Gender
         Education
                          0
         MaritalStatus
                          0
         Usage
                          0
         Fitness
                          0
         Income
                          0
         Miles
                          0
         dtype: int64
In [12]: # Check for duplicates in dataset
          df.duplicated().sum()
Out[12]:
```

Non-Graphical Analysis

Value Counts

```
In [13]: df['Product'].value_counts()
         KP281
                  80
Out[13]:
         KP481
                  60
         KP781
                  40
         Name: Product, dtype: int64
In [14]: df['Gender'].value_counts()
         Male
                   104
Out[14]:
         Female
                    76
         Name: Gender, dtype: int64
In [15]: df['MaritalStatus'].value_counts()
         Partnered
                       107
Out[15]:
         Single
                       73
         Name: MaritalStatus, dtype: int64
```

Unique Attributes

```
In [16]: df.nunique()
                           3
         Product
Out[16]:
         Age
                           32
         Gender
                           2
         Education
                           8
         MaritalStatus
                           2
         Usage
         Fitness
                           5
         Income
                           62
         Miles
                           37
         dtype: int64
In [17]: df['Product'].unique()
         ['KP281', 'KP481', 'KP781']
Out[17]:
         Categories (3, object): ['KP281', 'KP481', 'KP781']
In [18]: df['Age'].unique()
         array([18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
Out[18]:
                35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 50, 45, 48, 42],
               dtype=int64)
In [19]: df['Education'].unique()
         array([14, 15, 12, 13, 16, 18, 20, 21], dtype=int64)
Out[19]:
In [20]: df['MaritalStatus'].unique()
```

```
['Single', 'Partnered']
Out[20]:
            Categories (2, object): ['Partnered', 'Single']
In [21]: df['Usage'].unique()
           array([3, 2, 4, 5, 6, 7], dtype=int64)
Out[21]:
In [22]: df['Fitness'].unique()
Out[22]: array([4, 3, 2, 1, 5], dtype=int64)
In [23]: df['Income'].unique()
Out[23]: array([ 29562, 31836, 30699, 32973, 35247, 37521, 36384, 38658,
                     40932, 34110, 39795, 42069, 44343, 45480, 46617, 48891, 53439, 43206, 52302, 51165, 50028, 54576, 68220, 55713, 60261, 67083, 56850, 59124, 61398, 57987, 64809, 47754,
                      65220, 62535, 48658, 54781, 48556, 58516, 53536, 61006,
                      57271, 52291, 49801, 62251, 64741, 70966, 75946, 74701,
                    69721, 83416, 88396, 90886, 92131, 77191, 52290, 8590 103336, 99601, 89641, 95866, 104581, 95508], dtype=int64)
In [24]: df['Miles'].unique()
           array([112, 75, 66, 85, 47, 141, 103, 94, 113, 38, 188, 56, 132, 169, 64, 53, 106, 95, 212, 42, 127, 74, 170, 21, 120, 200,
                    140, 100, 80, 160, 180, 240, 150, 300, 280, 260, 360], dtype=int64)
```

Graphical Analysis

Univariate Analysis - Numerical Variables

Distance Plot

```
In [25]: fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12,10))
fig.subplots_adjust(top=1.2)

sns.distplot(df['Age'], kde=True, ax=axis[0,0])
sns.distplot(df['Education'], kde=True, ax=axis[0,1])
sns.distplot(df['Usage'], kde=True, ax=axis[1,0])
sns.distplot(df['Fitness'], kde=True, ax=axis[1,1])
sns.distplot(df['Income'], kde=True, ax=axis[2,0])
sns.distplot(df['Miles'], kde=True, ax=axis[2,1])
plt.show()
```


- Income and Miles are skewed to the right suggesting that they outliers
- most customers has Fitness level 3
- most customer has Income within the range of \$45,000 \$55,000

Count Plot

```
In [26]: fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(22,12))
    fig.subplots_adjust(top=1.2)

    sns.countplot(data=df, x='Age', ax=axis[0,0])
    sns.countplot(data=df, x='Education', ax=axis[0,1])
    sns.countplot(data=df, x='Usage', ax=axis[1,0])
    sns.countplot(data=df, x='Fitness', ax=axis[1,1])
    sns.countplot(data=df, x='Income', ax=axis[2,0])
    sns.countplot(data=df, x='Miles', ax=axis[2,1])
    plt.show()
```


• people of age 25 are more inclined to buy treadmills compared to older people

Box Plot

```
In [27]: fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12,10))
fig.subplots_adjust(top=1.2)

sns.boxplot(data=df, x='Age', ax=axis[0,0])
sns.boxplot(data=df, x='Education', ax=axis[0,1])
sns.boxplot(data=df, x='Usage', ax=axis[1,0])
sns.boxplot(data=df, x='Fitness', ax=axis[1,1])
sns.boxplot(data=df, x='Income', ax=axis[2,0])
sns.boxplot(data=df, x='Miles', ax=axis[2,1])
plt.show()
```


• Age , Education , Usage , and Fitness have very few outliers

Univariate Analysis - Categorical Variables

Count Plot

```
In [28]:
fig, axis = plt.subplots(nrows=1, ncols=3, figsize=(20,6))
sns.countplot(data=df, x='Product', ax=axis[0])
sns.countplot(data=df, x='Gender', ax=axis[1])
sns.countplot(data=df, x='MaritalStatus', ax=axis[2])
plt.show()
```


- most popular treadmill is the KP281
- most of the customers are Male
- most customers that purchase treadmills are Partnered

Bivariate Analysis

Checking if features have any effect on product being purchased.

```
In [29]: fig, axis = plt.subplots(nrows = 1, ncols = 3, figsize=(35,10))
sns.countplot(data = df, x = 'Product', hue = 'Gender', ax = axis[0])
sns.countplot(data = df, x = 'Product', hue = 'MaritalStatus', ax = axis[1])
sns.countplot(data = df, x = 'Age', hue = 'Product', ax = axis[2])
plt.show()
```

Observations

- Equal number of males and females have purchased the KP281 which is the most desirable
- Most of the purchases were from partnered customers
- Customers of the age 25 are more likely to purchase the KP481

```
In [30]: attributes = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
sns.set(color_codes = True)
fig,axis = plt.subplots(nrows = 2, ncols = 3, figsize = (18,12))
fig.subplots_adjust(top = 1.2)
count = 0
for i in range(2):
    for j in range(3):
        sns.boxplot(data = df, x = 'Product', y = attributes[count], ax = axis[i,j])
        count += 1
```


Product vs Age

- KP281 and KP481 share the same customer's median Age .
- Customers between age 25 30 are likely to purchase the KP781 .

Product vs Education

- Customers that has over 16 years of education are more likely to purchase KP781 .
- Customers with less than 16 years of education have equal chance of purchasing KP281 or KP481.

Product vs Usage

• Customers who purchased KP781 are likely to use it more than 4 times a week.

Product vs Fitness

• Customers with high fitness level (fitness > 3) have a higher chance of purchasing the KP781 .

Product vs Income

• Customers with higher income (income > 60,000) are more likely to purchase the KP781.

Product vs Miles

• Customers that walk/run for more than 120 miles per week are likelier to buy the KP781 .

Correlation Analysis

n [31]:	df.corr()							
Out[31]:		Age	Education	Usage	Fitness	Income	Miles	
	Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618	
	Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284	
	Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130	
	Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702	
	Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473	
	Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000	

Heatmaps

```
In [34]: fig, ax = plt.subplots(figsize=(10,10))
    sns.set(color_codes=True)
    sns.heatmap(df.corr(), ax=ax, annot=True, fmt='0.2f')
    plt.show()
```


Observation

- (Miles & Usage) and (Miles & Fitness) attributes are highly correlated which means fit customers tend to use more treadmills.
- Income and Education shows a strong correlation. Customers with high income and very educated prefer the KP781 treadmill.