FONCTION LOGARITHME NÉPÉRIEN EN TERMINALE ES/L

1. DÉFINITION DE LA FONCTION LOGARITHME NÉPÉRIEN

THÉORÈME ET DÉFINITION

Pour tout réel x > 0, l'équation $e^y = x$, d'inconnue y, admet une **unique** solution.

La fonction **logarithme népérien**, notée ln, est la fonction définie sur $]0;+\infty[$ qui à x>0, associe le réel y solution de l'équation $e^y=x$.

REMARQUES

• Pour $x \le 0$, par contre, l'équation $e^y = x$ n'a **pas de solution**.

PROPRIÉTÉS

- Pour tout réel x > 0 et tout $y \in \mathbb{R}$: $e^y = x \Leftrightarrow y = \ln(x)$.
- Pour tout réel x > 0: $e^{\ln(x)} = x$.
- Pour tout réel $x : \ln(e^x) = x$.

REMARQUES

- Ces propriétés se déduisent immédiatement de la définition.
- On dit que les fonctions «logarithme népérien» et «exponentielle» sont réciproques.
- On en déduit immédiatement : $\ln(1) = 0$ et $\ln(e) = 1$.

2. ETUDE DE LA FONCTION LOGARITHME NÉPÉRIEN

THÉORÈME

La fonction logarithme népérien est dérivable sur $]0;+\infty[$ et sa dérivée est définie par :

$$\ln'(x) = \frac{1}{x}.$$

PROPRIÉTÉ

La fonction logarithme népérien est **strictement croissante** sur $]0;+\infty[$.

DÉMONSTRATION

Sa dérivée $\ln'(x) = \frac{1}{x}$ est strictement positive sur]0; $+\infty$ [.

REMARQUES

• Ces résultats permettent de tracer le tableau de variation et la courbe représentative de la fonction logarithme népérien :

Tableau de variation de la fonction logarithme népérien

Représentation graphique de la fonction logarithme népérien

PROPRIÉTÉ

Soit u une fonction dérivable et **strictement positive** sur un intervalle I.

Alors la fonction $f: x \mapsto \ln(u(x))$ est dérivable sur I et :

$$f' = \frac{u'}{u}.$$

EXEMPLE

Soit f définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1)$.

f est dérivable sur \mathbb{R} et $f'(x) = \frac{2x}{x^2 + 1}$.

THÉORÈME

Si a et b sont 2 réels strictement positifs :

- $\ln a = \ln b$ si et seulement si a = b.
- $\ln a < \ln b$ si et seulement si a < b.

REMARQUES

- Le théorème précédent résulte de la stricte croissance de la fonction logarithme népérien.
- En particulier, comme ln (1) = 0 : ln x < 0 ⇔ x < 1. N'oubliez donc pas que ln (x) **peut être négatif** (si 0 < x < 1); c'est une cause d'erreurs fréquente dans les exercices notamment avec des inéquations!

3. PROPRIÉTÉS ALGÉBRIQUES DE LA FONCTION LOGARITHME NÉPÉRIEN

THÉORÈME

Si a et b sont 2 réels strictement positifs et si $n \in \mathbb{Z}$:

- $\ln(ab) = \ln a + \ln b$.
- $\ln\left(\frac{1}{a}\right) = -\ln a$.
- $\ln\left(\frac{a}{b}\right) = \ln a \ln b$.
- $\ln(a^n) = n \ln a$.
- $\ln\left(\sqrt{a}\right) = \frac{1}{2}\ln a$.

EXEMPLES

• $\ln(4) = \ln(2^2) = 2\ln(2)$.

• Pour x > 1: $\ln\left(\frac{x+1}{x-1}\right) = \ln\left(x+1\right) - \ln\left(x-1\right)$. Cette égalité peut être intéressante (pour calculer la dérivée par exemple) mais il faut que x > 1. Si x < -1, l'expression $\ln\left(\frac{x+1}{x-1}\right)$ est définie mais pas $\ln\left(x+1\right) - \ln\left(x-1\right)$.