Problem Set - 19 Jan 2024

PROBLEM 1 (2019 AMC 10B #2)

Consider the statement, "If n is not prime, then n-2 is prime." Which of the following values of n is a counterexample to this statement?

(A) 11

(B) 15

(C) 19

(D) 21

(E) 27

PROBLEM 2 (2019 AMC 8 #13)

A *palindrome* is a number that has the same value when read from left to right or from right to left. (For example, 12321 is a palindrome.) Let N be the least three-digit integer which is not a palindrome but which is the sum of three distinct two-digit palindromes. What is the sum of the digits of N?

(A) 2

(B) 3

(C) 4

(D) 5

(E) 6

PROBLEM 3 (2014 AMC 10A #5)

On an algebra quiz, 10% of the students scored 70 points, 35% scored 80 points, 30% scored 90 points, and the rest scored 100 points. What is the difference between the mean and median score of the students' scores on this quiz?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

PROBLEM 4 (2017 USAJMO #1)

Prove that there are infinitely many distinct pairs (a,b) of relatively prime positive integers a>1 and b>1 such that a^b+b^a is divisible by a+b.

PROBLEM 5 (2014 IMO #3)

Convex quadrilateral ABCD has $\angle ABC = \angle CDA = 90^\circ$. Point H is the foot of the perpendicular from A to BD. Points S and T lie on sides AB and AD, respectively, such that H lies inside $\triangle SCT$ and

 $\angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}.$

Prove that line BD is tangent to the circumcircle of $\triangle TSH$.