Лабораторная работа №2 Статистическая проверка гипотез

1. Цель работы

Освоение методов статистической проверки гипотез о равенстве математических ожиданий в Пакете анализа Microsoft Excel.

2. Общие сведения

Проверяемую гипотезу обычно называют нулевой (или основной) и обозначают H_0 . Наряду с нулевой гипотезой H_0 рассматривают альтернативную, или конкурирующую, гипотезу H_1 , являющуюся логическим отрицанием H_0 . Например, $\sigma 9 - \sigma T = 0$. Принятие H_1 свидетельствует о наличии различий. Например, $\sigma 9 - \sigma T \neq 0$.

Правило, по которому гипотеза H_0 отвергается или принимается, называется статистическим критерием или статистическим тестом.

При проверке гипотезы, т.к. все данные у нас имеют вероятностную природу, неизбежны ошибки. При проверке гипотез возможны ошибки двух родов:

1 рода. в результате статистической проверке нулевая гипотеза (H_0) отклоняется, но на самом деле она верна;

2 рода. когда нулевая гипотеза (H_0) не отклоняется, но на самом деле верна альтернативная гипотеза (H_1).

Ошибки тесно связаны с понятием уровня статистической значимости. Уровень значимости — это вероятность ошибки первого рода при принятии решения. Для обозначения уровня значимости используют $\alpha = 0.05$; $\alpha = 0.01$; $\alpha = 0.001$. Вероятность ошибки (α) показывает процент ошибки, допустимый при статистическом исследовании.

В науке приняты следующие уровни значимости:

α <0,01 – высокозначимый уровень

α <0,05 − значимый уровень

 $0.05 < \alpha < 0.1$ – не значимо, но есть тенденция (квазизначимый уровень)

Например, в группе из 100 учеников проводилось исследование по уровню утомляемости в начале учебного года и в конце учебного года. Была принята H_0 , заключающееся в том, что существенных различий между уровнем утомляемости в начале года и в конце года нет (с уровнем значимости 0,05). Это означает, что различия могут быть только в пяти процентах от общего количества испытуемых, т.е. различия могут наблюдаться у пяти детей из этих ста.

Этапы принятия статистического решения

- 1. Формулировка H_0 и H_1 .
- 2. Определение объема выборки.
- 3. Выбор соответствующего уровня значимости ($\approx 0.05, 0.01, 0.001$).
- 4. Выбор статистического метода (критерия), который зависит от типа решаемой психологической задачи.
- 5. Вычисление соответствующего эмпирического значения по экспериментальным данным, согласно выбранному статистическому методу (критерию).
- 6. Нахождение по таблице для выбранного статистического метода критических значений, соответствующих уровню значимости $\alpha = 0.05$ и $\alpha = 0.01$ или уровень допустимого значения $\beta = 0.95$, $\beta = 0.99$.
- 7. Построение оси значимости и нанесение на нее табличных критических значений и эмпирических значений измеряемой величины.
 - 8. Формулировка принятия решения (принятие гипотезы).

Уровень значимости прямо зависит от того, каким числом степеней свободы обладает данный коэффициент или параметр. Число независимых величин, участвующих в образовании того или другого параметра, называется числом степеней свободы этого параметра. Оно равно общему числу величин, по которым вычисляется параметр, минус число условий, связывающих эти величины. Число степеней свободы и способы его определения всегда даются в окончательных формулах, которыми пользуется исследователь при статистической обработке своих материалов.

2.1 Двухвыборочный z-тест для средних

Это средство применяется для проверки гипотезы о равенстве (неравенстве) математических ожиданий двух независимых генеральных совокупностей (большие независимые выборки), имеющих нормальное распределение, при известных дисперсиях этих распределений. Пусть имеются две независимые выборки x_1 , x_2 , ..., x_n и y_1 , y_2 , ... y_m объемом соответственно n u m, извлеченные из совокупностей, имеющих нормальные распределения с известными дисперсиями σ_1^2 и σ_2^2 и неизвестными математическими ожиданиями соответственно μ_1 и μ_2 . Проверяется нулевая гипотеза H_o : μ_1 - μ_2 = δ (δ задано). Z-тест позволяет проверить гипотезу H_o против разных конкурирующих гипотез: H_1 : $\mu_1 \neq \mu_2 + \delta$ или H_1 : $\mu_1 > \mu_2 + \delta$, либо H_1 : $\mu_1 < \mu_2 + \delta$. Критериальная статистика вычисляется по формуле

$$z = \frac{\overline{x} - \overline{y} - \delta}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}},$$

где \bar{x} и \bar{y} — выборочные средние соответственно первой и второй выборок.

Для выборок из нормально распределенных генеральных совокупностей критериальная статистика z имеет стандартное нормальное распределение. Поэтому при заданном уровне значимости α критическая область строится на основе стандартного нормального распределения — вычисляется квантиль t порядка (1 — α) для проверки гипотезы о равенстве, либо квантиль t порядка (1 - α /2) для проверки гипотез неравенства. Нулевая гипотеза о равенстве принимается, если |z| < t (в противном случае отвергается); гипотеза H_0 при конкурирующей гипотезе H_1 : $\mu_1 > \mu_2 + \delta$ принимается, если z < t; и при конкурирующей гипотезе H_2 : $\mu_1 < \mu_2 + \delta$ принимается при выполнении неравенства z > -t.

Рассмотрим пример. Имеется две выборки¹ объемом соответственно 50 и 20 значений, показанные на рис. 2.1. Обе имеют нормальное распределение, первая — стандартное (т.е. $\mu_1 = 0$ и $\sigma_1^2 = 1$), а для второй $\mu_2 = 1$ и $\sigma_2^2 = 2$. Проверим с помощью средства **Двухвыборочныи z-тест для средних** нулевую гипотезу, что $\mu_2 = \mu_1 = 1,5$ для разных случаев конкурирующих гипотез. Заполненное диалоговое окно для этого примера также показано на рис.2.1а.

_

¹ Выборки получены с помощью средства *Генерация случайных чисел*

Рис.2.1а Исходные данные и диалоговое окно Двухвыборочныи z-тест для средних

Отметим, что средство требует, чтобы δ , значение которого задается в поле *Гипотетическая средняя разность*, было неотрицательно. Поэтому первым (в поле ввода *Интервал переменной 1*) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле *Интервал переменной 2* указывается адрес второй выборки. В полях ввода *Дисперсия переменной 1* и *Дисперсия переменной 2* вводятся значения дисперсий соответственно первой и второй выборок. В поле *Альфа* вводится значение уровня значимости α .

Для удобства анализа результатов сформируем исходные данные таким образом, чтобы выборка с большим математическим ожиданием расположилась в первом столбце. В нашем примере необходимо поменяем местами исходные выборки. Итак, имеем две выборки объемом соответственно 20 и 50 значений, показанные на рис. 2.16. Обе имеют нормальное распределение, параметры первой — $\mu_2 = 1$ и $\sigma_2^2 = 2$; вторая имеет стандартное распределение (т.е. $\mu_1 = 0$ и $\sigma_1^2 = 1$). Проверим с помощью средства **Двухвыборочныи z-тест для средних** нулевую гипотезу, что $\mu_1 - \mu_2 = 1,5$ для разных случаев конкурирующих гипотез. Заполненное диалоговое окно для этого примера также показано на рис.2.1б. Результат вычислений средства **Двухвыборочный z-тест для средних** показан на рис.2.2.

Рис.2.16 Исходные данные и диалоговое окно Двухвыборочный z-тест для средних

	J 🖫 🔊 -	C - Q 🖨) ;	,	Пример	выполнен	ия [Режим	совместимости]	- Microsoft Exce
C	Главная	Вставка		Разметка страницы Формулы Д	Цанные Рец	ензировани	е Вид	novaPDF	
	D35	+ (9		f_x					
⊿	Α	В	С	D	Е	F	G	Н	I
1	Выборка1	Выборка2		Двухвыборочный z-тест для сред	них				
2	-1,7921524	0,4002322							
3	1,964186	-2,0913103			Выборка1	Выборка2			
4	0,4795278	0,1115745		Среднее	1,109472688	0,045969			
5	-0,6124313	-0,813011		Известная дисперсия	2	1			
6	1,8233352	0,6258881		Наблюдения	20	50			
7	2,0276819	-0,3239256		Гипотетическая разность средних	1,5				
8	-1,5194159	2,8905924		z	-1,26005737				
9	2,4017227	-0,2000309		P(Z<=z) одностороннее	0,103824334				
10	1,1662841	2,5671397		z критическое одностороннее	1,644853627				
11	1,7819029	-1,767462		P(Z<=z) двухстороннее	0,207648669				
12	4,2750252	-0,7335711		z критическое двухстороннее	1,959963985				
13	0,8715709	-0,4893536							
14	1,9028429	0,5075435		z =	1,260057366		z < t K	ф2, следователь	но гипотезу Но
15	0,675596	-0,3372566		t кp2=	1,959963985		о равенст	ве не отвергаем	I
16	1,5698823	-0,4794606							
17	0,6566853	0,779919							
18	0,5922409	-0,5297716		z =	-1,26005737		z < t кр1,	следовательно	гипотезу Но
19	-0,2684349	1,8675109		t кр1 =	1,644853627		при конку	рируещей гипот	езе Н1: μ1 > μ2
20	2,1343336	1,3266117					+ в не от	вергаем	
21	2,0590704	1,3833096							
22		1,1624229		z =	-1,26005737		z > - t кр1	l, следовательн	о гипотезу Но
23		-1,0600274		t кр1 =	1,644853627		при конку	рируещей гипот	езе Н1: μ1 <
24		-1,5822616					μ2 + δ не	е отвергаем	
25		-0,8618963							

Рис.2.2. Результат вычислений

В итоговой таблице приводятся следующие данные:

- Среднее выборочные средние выборок.
- Известная дисперсия дисперсии выборок, которые указаны в диалоговом окне.
- Наблюдения объемы выборок.
- *Гипотетическая разность средних* значение δ, которое задано в диалоговом окне.
- *z* значение критериальной статистики.
- $P(Z \le z)$ одностороннее вероятность $P(X \le z)$, где X случайная величина, распределенная по стандартному нормальному закону, z подсчитанное значение критериальной статистики.
- z критическое одностороннее значение квантиля порядка $(1 \alpha/2)$.
- $P(Z \le z)$ двухстороннее вероятность $P(|X| \le |z|)$, где X случайная величина, распределенная по стандартному нормальному закону, z подсчитанное значение критериальной статистики.
- *z критическое двухстороннее* значение квантиля порядка (1α) .

Как видно из результатов расчета, в данном примере нет оснований отвергать нулевую гипотезу при любых конкурирующих гипотезах.

Статистическая функция ZTECT вычисляет вероятность $P(Z \le z)$ двухстороннее.

2.2. Двухвыборочныи t-тест с одинаковыми дисперсиями (тест Стьюдента)

Это средство реализует критерий проверки гипотезы о равенстве (неравенстве) математических ожиданий распределений двух независимых генеральных совокупностей (малые независимые выборки), имеющих нормальные распределения с неизвестными дисперсиями в предположении, что дисперсии равны. Этот критерий, называется *t*-тестом или тестом Стьюдента.

Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы H_0 : $\mu_1 - \mu_2 = \delta$ (δ задано) против разных конкурирующих гипотез: H_1 : $\mu_1 \neq \mu_2 + \delta$ или H_1 : $\mu_1 > \mu_2 + \delta$, либо H_1 : $\mu_1 < \mu_2 + \delta$ (μ_1 и μ_2 — неизвестные математические ожидания выборок). Исходные данные и заполненное диалоговое окно **Двухвыборочныи t-mecm c одинаковыми дисперсиями** показаны на рис.23а. Выборки извлечены из нормально распределенных генеральных совокупностей с одной и той же дисперсией, равной 1, и математическими ожиданиями 0 и 1 соответственно². Проверим гипотезу, что μ_1 - $\mu_2 = 2$ (на самом деле μ_1 - $\mu_2 = 1$).

² Выборки получены с помощью средства *Генерация случайных чисел*

Рис. 2.3а. Исходные данные и диалоговое окно Двухвыборочныи t-тест с одинаковыми дисперсиями Отметим, что средство требует, чтобы δ, значение которого задается в поле Гипотетическая средняя разность, было неотрицательно. Поэтому первым (в поле ввода Интервал переменной 1) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле Интервал переменной 2 указывается адрес второй выборки. (Диапазоны должны состоять из одного столбца или одной строки.) В поле Альфа вводится значение уровня значимости α.

Для удобства анализа результатов сформируем исходные данные таким образом, чтобы выборка с большим математическим ожиданием расположилась в первом столбце. В нашем примере необходимо поменяем местами исходные выборки. Итак, имеем две выборки объемом по 100 значений каждая, показанные на рис. 2.3б. Выборки имеют одинаковую дисперсию, равную 1, и математическими ожиданиями 1 и 0 соответственно. Результат вычислений средства Двухвыборочныи t-mecm с одинаковыми дисперсиями показан на рис.2.4.

Рис. 2.36. Исходные данные и диалоговое окно Двухвыборочныи t-тест с одинаковыми дисперсиями

C	H 19 -	(- 💆 🛗	₹			Пример вып	олнения	[Режим совмести	імости] - Міст	osoft Excel
	Главная	Вставка	Разме	тка страницы	Формулы Данн	ые Рецензи	рование	Вид novaPD	F	
	K36	▼ ()	j	f _{sc}						
4	Α	В	С		D	Е	F	G	Н	I
1	Выборка 1	Выборка 2	Дв	зухвыборочны	ый t-тест с одинаков	выми дисперси	иями			
2	-0,13490159	0,08052439								
3	0,987951469	-0,1279864				Выборка 2	ыборка	1		
4	0,057183686	-0,0024102	Ср	еднее		0,065024983	0,9449			
5	2,357484507	-0,4761159	Ди	исперсия		0,81075736	1,1107			
6	1,120199957	-0,3911316	На	блюдения		100	100			
7	-0,5648493	-1,0968347	06	бъединенная	дисперсия	0,960726485				
8	1,98059445	0,30896672	Ги	потетическая	разность средних	2				
9	0,723214614	0,34244408	df			198				
10	-0,25181032	0,34877758	t-c	татистика		-20,77554603				
11	0,187414232	0,4658591	P(1	T<=t) односто	роннее	6,2213E-52				
12	1,066104349	-0,289765	tк	ритическое о	дностороннее	1,652585784				
13	-0,29748514	-0,5189747	P(1	T<=t) двухстор	ооннее	1,24426E-51				
14	-0,33142294	-0,4702133	tк	ритическое д	вухстороннее	1,972017432				
15	1,357326826	1,05895424								
16	2,617468115	-0,4211233								
17	-0,79550625	0,15851583			t =	20,77554603		t >tкp2, следо	вательно гип	отезу Но
18	1,340417046	0,12204964			t кp2=	1,972017432		отвергаем		
19	-0,65120582	-1,4904253								
20	0,415275624	-0,9305973			t =	-20,77554603		t < t крl, следова	ательно гипот	езу Но при
21	0,632543677	-1,4988382			t кр1=	1,652585784		конкурируещей г	ипотизе Н1: µ	$1 > \mu 2 + \delta$ не
22	1,567924872	0,27035185						отвергаем		
23	1,504846867	-0,5836364						_		
24	1,326425607	-1,2996179			t =	-20,77554603		t < -t кр1, следов	ательно гипот	гезу Но при
25	1,329171144	-0,0046282			t кр1=	1,652585784		конкурируещей г		
26	0,922314373	-1,0456461			·			отвергаем		•
27	_n n7212226	1 3006888/						-		

Рис.2.4. Результат вычислений

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.

- Наблюдения объемы выборок.
- *Гипотетическая разность средних* значение δ , которое задано в диалоговом окне.
- Объединенная дисперсия "средняя" оценка дисперсии; рассчитывается по формуле

$$s^2 = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m+2}$$
, где n и m — объемы выборок, s_i^2 — оценки дисперсий (их значения

приводятся в строке Дисперсия).

- df число степеней свободы; вычисляется как (n + m 2).
- *t-статистика* значение критериальной статистики; вычисляется по формуле

$$t = \frac{\sqrt{n+m-2}\,(\overline{x}-\overline{y}-\delta)}{\sqrt{\frac{n+m}{nm}}\,\sqrt{(n-1)s_1^2+(m-1)s_2^2}}$$
, имеет распределение Стьюдента с df степенями свободы.

- P(T <= t) одностороннее вероятность $P(X \le t)$, где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t подсчитанное значение критериальной статистики.
- t критическое одностороннее значение квантиля $t_{\kappa pl}$ порядка $(1-\alpha)$ распределения Стьюдента с df степенями свободы.
- $P(T \le t)$ двухстороннее вероятность $P(|X| \le |t|)$, где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t подсчитанное значение критериальной статистики.
- t критическое двухстороннее значение квантиля $t_{\kappa p2}$ порядка (1 a/2) распределения Стьюдента с df степенями свободы.

Нулевая гипотеза H_o : μ_1 - μ_2 = δ принимается, если $t < t_{\kappa p2}$ (в противном случае отвергается); гипотеза H_o при конкурирующей гипотезе H_I : $\mu_1 > \mu_2 + \delta$ принимается, если $t < t_{\kappa p1}$; при конкурирующей гипотезе H_I : $\mu_1 < \mu_2 + \delta$ нулевая гипотеза принимается при выполнении неравенства $t > -t_{\kappa p1}$.

Как видно из результатов расчета, в данном примере нулевую гипотезу H_o : $\mu 1 - \mu 2 = \delta$ следует отвергнуть при конкурирующей гипотезе о неравенстве $\mu 1 - \mu 2 \neq \delta$ и конкурирующей гипотезе H_I : $\mu 1 < \mu 2 + \delta$. При конкурирующей гипотезе H_I : $\mu 1 > \mu 2 + \delta$ нулевую гипотезу H_o : $\mu 1 - \mu 2 = \delta$ нет оснований отвергать.

Статистическая функция TTECT при значении аргумента Tun = 2 вычисляет вероятности P(T <= t) овухстороннее и P(T <= t) одностороннее.

2.3. Двухвыборочный t-тест с различными дисперсиями

Это средство реализует критерий проверки гипотезы о равенстве (неравенстве) математических ожиданий распределений двух независимых генеральных совокупностей, имеющих нормальные распределения с неизвестными и различными дисперсиями. Этот критерий также называется f-тестом или тестом Стьюдента для неравных дисперсий, либо критерием Фишера-Беренса.

Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы H_0 : μ_1 - μ_2 = δ (δ задано) против разных конкурирующих гипотез: H_1 : $\mu_1 \neq \mu_2 + \delta$ или H_1 : $\mu_1 > \mu_2 + \delta$, либо H_1 : $\mu_1 < \mu_2 + \delta$ (μ_1 и μ_2 — неизвестные математические ожидания выборок). Повторим тест на примере данных из предыдущего раздела, т.е. выборки извлечены из нормально распределенных генеральных совокупностей с одной и той же дисперсией, равной 1, и математическими ожиданиями соответственно 0 и 1. Проверим гипотезу, что μ_1 - μ_2 = 2 (на самом деле μ_1 - μ_2 = 1). Исходные данные и заполненное диалоговое окно *Пвухвыборочный t-тест с различными дисперсиями* показаны на рис. 2.5.

		,	. •	•		•		_		
4	Α	В	С	D	Е	F	G	Н	1	J
1	Выборка 1	Выборка 2								
2	0,08052439	-0,1349016								
3	-0,1279864	0,98795147		Двухвыбор	очный t-т	ест с разл	ичными д	испе рсия	ми 🔼	×
4	-0,0024102	0,05718369		Входные да					ОК	1
5	-0,4761159	2,35748451		Интервал г	теременной <u>1</u>	\$B\$1::	\$B\$101			
6	-0,3911316	1,12019996		Интервал г	теременной <u>2</u>	\$A\$1:	\$A\$101		Отмена	J
7	-1,0968347	-0,5648493		Гипотетич	еская средня	я разность:	2		<u>С</u> правка	
8	0,30896672	1,98059445								
9	0,34244408	0,72321461		<u>✓ М</u> етки	05					
10	0,34877758	-0,2518103		<u>А</u> льфа: 0,	05					
11	0,4658591	0,18741423		Параметры	вывода					
12	-0,289765	1,06610435		Выходн	ой интервал:	\$D\$1				
13	-0,5189747	-0,2974851		О Новый р	оабочий <u>л</u> ист	:				
14	-0,4702133	-0,3314229		О Новая р	абочая <u>к</u> нига					
15	1,05895424	1,35732683								
16	-0,4211233	2,61746812								

Рис.2.5 Исходные данные и диалоговое окно Двухвыборочный t-тест с различными дисперсиями

Отметим, что средство требует, чтобы δ , значение которого задается в поле *Гипотетическая средняя разность*, было неотрицательно. Поэтому первым (в поле ввода *Интервал переменной 1*) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле Интервал переменной 2 указывается адрес второй выборки. (Диапазоны должны состоять из одного столбца или одной строки.) В поле *Альфа* вводится значение уровня значимости α . Результат вычислений средства *Двухвыборочный t-тест с различными дисперсиями* показан на рис.2.6.

4	А	В	С	D	E	F	G	Н	- 1	J
1	Выборка 1	Выборка 2		Двухвыборочный t-тест с различным	и дисперсиям	и				
2	0,08052439	-0,1349016								
3	-0,1279864	0,98795147			Выборка 2	Выборка 1				
4	-0,0024102	0,05718369		Среднее	0,944858132	0,065024983				
5	-0,4761159	2,35748451		Дисперсия	1,110695611	0,81075736				
6	-0,3911316	1,12019996		Наблюдения	100	100				
7	-1,0968347	-0,5648493		Гипотетическая разность средних	2					
8	0,30896672	1,98059445		df	193					
9	0,34244408	0,72321461		t-статистика	-8,0810508					
10	0,34877758	-0,2518103		P(T<=t) одностороннее	3,43194E-14					
11	0,4658591	0,18741423		t критическое одностороннее	1,652787069					
12	-0,289765	1,06610435		P(T<=t) двухстороннее	6,86389E-14					
13	-0,5189747	-0,2974851		t критическое двухстороннее	1,972331631					
14	-0,4702133	-0,3314229								
15	1,05895424	1,35732683								
16	-0,4211233	2,61746812								
17	0,15851583	-0,7955063		t =	8,081050801		t >t kp2	2, следоват	гельно	
18	0,12204964	1,34041705		t кp2 =	1,972331631		гипотезу Но отвергаем			
19	-1,4904253	-0,6512058								
20	-0,9305973	0,41527562		t =	-8,0810508		t < t xpl, €	педовател	њно гипот	езу Но
21	-1,4988382	0,63254368		t кр1 =	1,652787069		при конку	рируещей	гипотизе І	H1: μ1 >
22	0,27035185	1,56792487					μ2 + δ н	е отвергае	M	
23	-0,5836364	1,50484687								
24	-1,2996179	1,32642561		t =	-8,0810508		t < -t кр1	, следоват	гельно гип	отезу Но
25	-0,0046282	1,32917114		t кр1 =	1,652787069		при конку	рируещей	гипотезе І	H1: μ1 <
26	-1,0456461	0,92231437					$\mu 2 + \delta$ or	гвергаем		
27	1,30068884	-0,0731333								
28	-0,746245	2,17103582								
29	1,11859208	2,28132569								
30	-0,1357034	-0,0861481								
31	0,49868731	-1,1745473								

Рис.2.6. Результат вычислений

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.
- Наблюдения объемы выборок.
- *Гипотетическая разность средних* значение δ, которое задано в диалоговом окне.

•
$$df$$
 — число степеней свободы; вычисляется по формуле
$$\frac{\left(\frac{s_1^2}{n} + \frac{s_2^2}{m}\right)^2}{\frac{\left(s_1^2/n\right)^2}{n-1} + \frac{\left(s_2^2/m\right)^2}{m-1}},$$
 где

 s_1^2 и s_2^2 — несмещенные оценки дисперсий (их значения приводятся в строке **Дисперсия**), n и m — объемы соответственно первой и второй выборок.

• *t-статистика* — значение критериальной статистики; вычисляется по формуле $t = \frac{\overline{x} - \overline{y} - \delta}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}}$, имеет

распределение, близкое к распределению Стьюдента с df степенями свободы.

- $P(T \le t)$ одностороннее вероятность $P(X \le t)$, где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t подсчитанное значение критериальной статистики.
- t критическое одностороннее значение квантиля $t_{\kappa pl}$ порядка (1α) распределения Стьюдента с df степенями свободы.

- $P(T \le t)$ овухстороннее вероятность $P(|X| \le /t/)$, где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t подсчитанное значение критериальной статистики.
- t критическое двухстороннее значение квантиля $t_{\kappa p2}$ порядка $(1 \alpha/2)$ распределения Стьюдента с df степенями свободы.

Нулевая гипотеза H_o : μ_1 - μ_2 = δ принимается, если $/t/< t_{\rm кp2}$, (в противном случае отвергается); гипотеза H_o при конкурирующей гипотезе H_I : $\mu_1 > \mu_2 + \delta$ принимается, если $t < t_{\rm kp1}$, при конкурирующей гипотезе H_I : $\mu_1 < \mu_2 + \delta$ нулевая гипотеза принимается при выполнении неравенства $t > -t_{\rm kp1}$.

Как видно из результатов расчета, в данном примере нулевую гипотезу H_o : $\mu 1 - \mu 2 = \delta$ следует отвергнуть при конкурирующей гипотезе о неравенстве $\mu 1 - \mu 2 \neq \delta$ и конкурирующей гипотезе H_I : $\mu 1 < \mu 2 + \delta$. При конкурирующей гипотезе H_I : $\mu 1 > \mu 2 + \delta$ нулевую гипотезу H_o : $\mu 1 - \mu 2 = \delta$ нет оснований отвергать.

Статистическая функция TTECT при значении аргумента Tun = 3 вычисляет вероятности P(T <= t) двухстороннее и P(T <= t) одностороннее.

2.4. Парный двухвыборочный t-mecm для средних (тест Стьюдента для парных наблюдений)

Это средство реализует критерий проверки гипотезы о равенстве (неравенстве) математических ожиданий распределений двух зависимых выборок, имеющих нормальные распределения. Этот критерий также называется t-тестом или тестом Стьюдента для парных наблюдений.

Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы H_o : μ_1 - μ_2 = δ (δ задано) против разных конкурирующих гипотез: H_I : $\mu_1 \neq \mu_2 + \delta$ или H_I : $\mu_1 > \mu_2 + \delta$, либо H_I : $\mu_1 < \mu_2 + \delta$ (μ_1 и μ_2 — неизвестные математические ожидания выборок). Рассмотрим пример, когда выборки извлечены из нормально распределенных генеральных совокупностей с математическими ожиданиями соответственно 1 и 0.

Проверим гипотезу, что: μ_1 - μ_2 = 0 (на самом деле μ_1 - μ_2 = 1). Исходные данные и заполненное диалоговое окно *Парный двухвыборочныи t-тест для средних* показаны на рис. 2.7.

Рис. 2.7. Исходные данные и диалоговое окно Парный двухвыборочныи t-тест для средних

Отметим, что средство требует, чтобы δ , значение которого задается в поле *Гипотетическая средняя разность*, было неотрицательно. Поэтому первым (в поле ввода *Интервал переменной 1*) задается адрес диапазона ячеек, содержащий выборку с большим математическим ожиданием, а затем в поле *Интервал переменной 2* указывается адрес второй выборки. (Диапазоны должны состоять из одного столбца или одной строки.) В поле *Альфа* вводится значение уровня значимости α . Результат вычислений средства *Парный двухвыборочныи t-тест для средних* показан на рис. 2.8.

ar pre-		-,	t кр1=	1,729132792		при конкурируещей гипотезе Н1: µ1 <
μ 11-μ2=	1,021002373	0,963233165	t=	4,977091384		t > -t кp1, следовательно гипотезу Но
μ	1,021682979	0,058449814				μ2 · O OIBEPIAEM
	-0,40488/3/1	-3,161153472	t кр1=	1,729132792		при конкурируещей гипотизе H1: μ 1 > μ 2 + δ отвергаем
	3,61511218		t=	4,977091384		t > t кpl, следовательно гипотезу Но
		-7,549647307		4.077004004		
	-7,569869578	-7,92318815	t кр2 =	2,09302405		гипотезу Но отвергаем
		-9,132804735	t =	4,977091384		t > t кр2, следовательно
	13,70565008	13,8870746				Lili
	10,27618885		t критическое двухстороннее	2,09302405		
	1,523159542		P(T<=t) двухстороннее	8,36741E-05		
	0,791416485		t критическое одностороннее	1,729132792		
	8,238195394	-	P(T<=t) одностороннее	4,18371E-05		
	-0,073831299	-1,112664449	t-статистика	4,977091384		
	21,84884841	-	df	19		
	-5,348354873	-6,3943844	Гипотетическая разность средних	0		
	9,767750614	8,264987628	Корреляция Пирсона	0,995083187		
	-12,90306579	-13,28089638	Наблюдения	20	20	
	3,48599008	1,295290986	Дисперсия	73,10150276	69,37172144	
	-7,686929505	-9,261248124	Среднее	1,021682979	0,058449814	
	-1,499165248	-2,380352271		Выборка 1	Выборка 2	
	-0,557425549	-0,284228463				
	-0,536150194	-1,607622835	Парный двухвыборочный t-тест для ср	едних		
	Выборка 1	Выборка 2				

Рис. 2.8. Результат вычислений

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.
- *Наблюдения* объемы выборок.
- Корреляция Пирсона выборочный коэффициент корреляции; вычисляется по формуле

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}.$$

- *Гипотетическая разность средних* значение δ , которое задано в диалоговом окне.
- df число степеней свободы, равное (n-1).
- t-статистика значение критериальной статистики; вычисляется по формуле $t=\frac{\overline{d}-\delta}{S_+/\sqrt{n}}$, где

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - y_i \right)$$
, $S_n^2 = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - y_i - \overline{d} \right)^2$, и имеет распределение Стьюдента с **df** степенями свободы.

• $P(T \le t)$ одностороннее — вероятность $P(X \le t)$, где X — случайная величина, имеющая распределение Стьюдента с df степенями свободы, t — подсчитанное значение критериальной статистики.

- t критическое одностороннее значение квантиля $t_{\text{кр1}}$ порядка (1α) распределения Стьюдента с df степенями свободы.
- $P(T \le t)$ двухстороннее вероятность $P(|X| \le |t|)$, где X случайная величина, имеющая распределение Стьюдента с df степенями свободы, t подсчитанное значение критериальной статистики.
- t критическое двухстороннее значение квантиля $t_{\text{кр2}}$ порядка $(1 \alpha/2)$ распределения Стьюдента с df степенями свободы.

Нулевая гипотеза H_0 : μ_1 - μ_2 = δ принимается, если $/t/< t_{\rm kp2}$, (в противном случае отвергается); гипотеза H_0 при конкурирующей гипотезе H_1 : $\mu_1 > \mu_2 + \delta$ принимается, если $t < t_{\rm kp1}$, при конкурирующей гипотезе H_1 : $\mu_1 < \mu_2 + \delta$ нулевая гипотеза принимается при выполнении неравенства $t > -t_{\rm kp1}$.

Как видно из результатов расчета, в данном примере нулевую гипотезу H_o : $\mu 1 - \mu 2 = \delta$ следует отвергнуть при конкурирующей гипотезе о неравенстве $\mu 1 - \mu 2 \neq \delta$ и конкурирующей гипотезе H_I : $\mu 1 > \mu 2 + \delta$. При конкурирующей гипотезе H_I : $\mu 1 < \mu 2 + \delta$ нулевую гипотезу H_o : $\mu 1 - \mu 2 = \delta$ нет оснований отвергать.

Статистическая функция TTECT при значении аргумента Tun = 1 вычисляет вероятности P(T <= t) двухстороннее и P(T <= t) одностороннее.

2.5. Двухвыборочный F-тест для дисперсий

Это средство реализует критерий Фишера проверки равенства дисперсий двух независимых выборок из нормально распределенных генеральных совокупностей с дисперсиями соответственно σ_1^2 и σ_2^2 . Рассмотрим выходные данные, вычисляемые этим средством, на примере проверки нулевой гипотезы H_0 : $\sigma_1^2 = \sigma_2^2$ против конкурирующей гипотезы H_1 : $\sigma_1^2 \neq \sigma_2^2$.

Рассмотрим пример, когда выборки извлечены из нормально распределенных генеральных совокупностей с равными дисперсиями 2. Исходные данные и заполненное диалоговое окно **Двухвыборочный F-тест для дисперсий** показаны на рис.2.9.

Рис. 2.9. Исходные данные и диалоговое окно Двухвыборочный F-тест для дисперсий

Отметим, что первой (в поле *Входной интервал 1*) должна задаваться выборка, имеющая большую дисперсию. В поле *Альфа* вводится значение уровня значимости а. Результат вычислений средства *Двухвыборочный F-тест для дисперсий* показан на рис. 3.1.

E	J - C	¹ - 🔼 👸) ₹			Приме	ер выпол	нения [Режим	совместимости] - Місго
	Главная	Вставка Р	Разметка стр	аницы	Формулы Данные Ре	ецензиров	вание Вид	novaPDF
	K34	+ (9	f _x					
4	А	В	С	D	Е		F	G
1	Выборка 1	Выборка 2						
2	5,163747119	1,348162186						
3	2,121932994	-0,781601557			Двухвыборочный F-тест	для дис	персии	
4	3,216400728	1,326543497						
5	-0,95703399	3,125542207					Выборка 1	Выборка 2
6	1,745406735	1,565858838			Среднее		0,43199052	-0,124340977
7	-0,287318471	1,011605946			Дисперсия		4,751494238	4,606441686
8	3,227596608	-4,780085874			Наблюдения		50	50
9	-0,049958544	-0,743593773			df		49	49
10	-0,658665158	0,78903895			F		1,031489067	
11	0,876643753	0,540703695			P(F<=f) одностороннее		0,457014599	
12	-3,820623533	-2,413407856			F критическое одностор	оннее	1,607289464	
13	-0,214529337	-1,304129						
14	-0,754755547	-3,590248525						

Рис.3.1 Результат вычислений

В итоговой таблице приводятся следующие данные.

- Среднее выборочные средние для каждой выборки.
- Дисперсия несмещенные выборочные оценки дисперсий выборок.
- *Наблюдения* объемы выборок.

- df числа степеней свободы, равные (n-1) и (m-1); n и m объемы выборок.
- F значение критериальной статистики, вычисляемой по формуле

$$F = \frac{S_x^2}{S_y^2}$$
, где $S_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ $S_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2$,

и имеющей F-распределение со степенями свободы $k_1 = n - 1$ и $k_2 = m - 1$.

- $P(F \le f)$ одностороннее вероятность $P(X \le F)$, где X случайная величина, имеющая F-распределение с df степенями свободы, F подсчитанное значение критериальной статистики.
- F критическое одностороннее значение квантиля t порядка (1α) F-распределения с df степенями свободы.

Нулевая гипотеза H_0 принимается, если $F < F_{\kappa pl}$ (в противном случае отвергается). Как видно из результатов расчета, в данном примере нулевую гипотезу следует принять.

Статистическая функция $\Phi TECT$ вычисляет удвоенную вероятность P(F <= f) одностороннее.

3. Задание к лабораторной работе

- 3.1 Сгенерировать 2 выборки значений случайных чисел разной длины, имеющих нормальное распределение. С помощью средств **Пакета анализа** получить дисперсии и математические ожидания каждой выборки. Проверить с помощью средства *Двухвыборочныи z-mecm для средних* нулевую гипотезу, что $\mu_2 \mu_1 = ($ произвольное число из [0,5; 50]) для разных случаев конкурирующих гипотез при α =0,05.
- 3.2 Сгенерировать 2 выборки значений случайных чисел одинаковой длины, имеющих нормальное распределение, с одной и той же дисперсией. С помощью средств **Пакета анализа** получить дисперсии и математические ожидания каждой выборки. Проверить с помощью средства **Двухвыборочныи t-mecm с одинаковыми дисперсиями** нулевую гипотезу, что μ_1 μ_2 = (произвольное число из [0,5; 50]) для разных случаев конкурирующих гипотез при α =0,05.
- 3.3 Сгенерировать 2 выборки значений случайных чисел одинаковой длины, имеющих нормальное распределение и разные дисперсии. С помощью средств **Пакета анализа** получить дисперсии и математические ожидания каждой выборки. Проверить с помощью средства **Двухвыборочный t-mecm с различными дисперсиями** нулевую гипотезу, что μ_1 μ_2 = (произвольное число из [0,5; 50]) для разных случаев конкурирующих гипотез при α =0,05.
- 3.4 Сгенерировать 2 выборки значений случайных чисел одинаковой длины, имеющих нормальное распределение и разные дисперсии. С помощью средств **Пакета анализа** получить дисперсии и математические ожидания каждой выборки. Проверить с помощью средства **Парный**

двухвыборочныи t-тест для средних нулевую гипотезу, что μ_1 - μ_2 = (произвольное число из [0,5; 50]) для разных случаев конкурирующих гипотез при α =0,05.

- 3.5 Сгенерировать 2 выборки значений случайных чисел одинаковой длины, имеющих нормальное распределение и разные дисперсии. С помощью средств **Пакета анализа** получить дисперсии и математические ожидания каждой выборки. Проверить с помощью средства **Двухвыборочный F-тест для дисперсий** нулевую гипотезу, что μ_1 μ_2 = (произвольное число из [0,5; 50]) для разных случаев конкурирующих гипотез при α =0,05.
- 3.6 Сгенерировать 2 выборки значений случайных чисел разной длины, имеющих нормальное распределение и разные дисперсии. С помощью средств **Пакета анализа** получить дисперсии и математические ожидания каждой выборки. Проверить с помощью средства **Двухвыборочный F-тест для дисперсий** нулевую гипотезу, что μ_1 μ_2 = (произвольное число из [0,5; 50]) для разных случаев конкурирующих гипотез при α =0,05.

Сравнить результаты из п/п 3.5 и 3.6.

4. Содержание отчета

Отчет по лабораторной работе выполняется строго в соответствии с «Требованиями к отчету по лабораторным работам».

В части «Последовательность действий выполняемых по ходу лабораторной работы» отчет должен содержать последовательное описание шагов выполнения лабораторной работы согласно заданию (пункт 3) с приведением данных:

- 1. Для каждой выборки описать параметры, которые были заданы студентом.
- 2. Привести значения дисперсии и математические ожидания каждой выборки.
- 3. Для каждого п/п задания привести нулевую гипотезу, которая проверялась, и конкурирующие гипотезы. Указать в каких случаях нулевая гипотеза отвергается, а в каких нет.
- 4. Для п/п 3.5 и 3.6 задания к лабораторной работе сравнить результаты полученные при разных условиях.

5. Контрольные вопросы

- 1. Что такое альтернативная или конкурирующая гипотеза?
- 2. Что называется статистическим критерием?
- 3. Дайте определение ошибок первого и второго рода.