UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2022/1 Prova da área IIB

1 - 3	4	5	Total

Nome:	Cartão:	
	-	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- $\bullet\,$ Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.

1.	Linearidade	Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}.$ $\mathcal{F}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{F}\{f(t)\} + \beta \mathcal{F}\{g(t)\}$			
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F} \{f'(t)\} = iw\mathcal{F} \{f(t)\}$			
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$			
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$			
4.	Deslocamento no eixo t	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$			
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$			
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$			
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$			
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$			
8.	Conjugação	$\overline{F(w)} = F(-w)$			
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$			
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$			
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a } F\left(\frac{w}{a}\right), \qquad a \neq 0$			
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$			
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$			

Séries e transformadas de Fourier:				
	Forma trigonométrica	Forma exponencial		
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$		
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$		
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$			
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$			
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$			
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$		
	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$		

Tabela de integrais definidas:

18	abela de integrais definidas:		
1.	$\int_0^\infty e^{-ax}\cos(mx)dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \operatorname{sen}(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 1)$	> 0)
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	1. $\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0,$	m > 0)
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ 0, & n > m \end{cases}$	$\int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases}$	
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	3. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}}$	(a > 0)
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$	
		$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n^2)^2)}$	(a > 0)
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \frac{\pi}{8a^3} e^{-ma}) (\sin(ma) + \frac{\pi}{8a^3} e^{-ma})$	$\cos(ma)$)
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$	
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < \frac{\pi n}{2}), \\ \frac{\pi n}{2}, & (0 < \frac{\pi n}{2}), \end{cases} $	$m \le n$) $n \le m$)
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3}$	(a > 0)
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0,$	m > 0)
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma)e^{-ma} \begin{array}{l} (a > 0, \\ m \ge 0) \end{array}$	22. $\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}}$	(a > 0)

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó ‡	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (2.0 pontos) Considere a função

$$f(t) = -2\cos^2(t) + \sin(2t) + \sin(4t).$$

e sua expansão em série de Fourier em que w_1 é a frequência fundamental. Sobre a função f(t) e os coefientes da sua série de Fourier, responda:

Frequência fundamental

 $() w_1 = 1/2$

 $(\)\ w_1=1$

(x) $w_1 = 2$

 $(\)\ w_1=3$

 $() w_1 = 4$

Fase de C_2

() $\phi_2 = \frac{3\pi}{4}$

() $\phi_2 = \frac{\pi}{2}$ () $\phi_2 = \frac{\pi}{4}$

() $\phi_2 = -\frac{3\pi}{4}$

(X) $\phi_2 = -\frac{\pi}{2}$ Solução:

Módulo de C_2

 $(\)\ |C_2| = \frac{\sqrt{3}}{2}$

(X) $|C_2| = \frac{1}{2}$

 $(\)\ |C_2|=1$

() $|C_2| = \sqrt{2}$

 $(\)\ |C_2|=2$

Potência Média $\frac{1}{T}\int_0^T |f(t)|^2 dt$

() $\bar{P}_f = 1/2$

() $\bar{P}_f = 1$

() $\bar{P}_f = 3/2$

() $\bar{P}_f = 2$

(X) $\bar{P}_f = 5/2$

$$f(t) = -2\cos^{2}(t) + \sin(2t) + \sin(4t)$$

$$= -(1 + \cos(2t)) + \sin(2t) + \sin(4t)$$

$$= -1 - \cos(2t) + \sin(2t) + \sin(4t)$$

$$C_1 = \frac{a_1 - ib_1}{2} = \frac{-1 - i}{2}, \quad |C_1| = \frac{\sqrt{2}}{2}, \quad \phi_1 = -\frac{3\pi}{4}.$$

$$C_2 = \frac{a_2 - ib_2}{2} = \frac{0 - i}{2}, \quad |C_2| = \frac{1}{2}, \quad \phi_2 = -\frac{\pi}{2}.$$

$$\bar{P}_f = |C_0|^2 + 2|C_1|^2 + 2|C_2|^2 = 1 + 1 + \frac{1}{2}.$$

• Questão 2 (1.0 ponto) Considere uma aproximação discreta do diagrama de espectro de uma nota Mi 2 (82, 5 Hz) dada pelo sinal f(t).

O diagrama de espectro de fase do sinal f(t) é zero para todas as frequências. Responda os itens corretamente:

Nota produzida por g(t) = f(1, 5t)

() Lá 1

() Lá 2

(X) Si 2

() Mi 3

() Si 3

Série de Fourier trigonométrica de f(t)

(X) $f(t) = 2\cos(165\pi t) + 0.8\cos(370\pi t) + \cos(495\pi t) + 0.8\cos(660\pi t)$

() $f(t) = \cos(165\pi t) + 0.4\cos(370\pi t) + 0.5\cos(495\pi t) + 0.4\cos(660\pi t)$

() $f(t) = 2 \sin(165\pi t) + 0.8 \sin(370\pi t) + \sin(495\pi t) + 0.8 \sin(660\pi t)$ () $f(t) = 1 + \sin(165\pi t) + 0.4 \sin(370\pi t) + 0.5 \sin(495\pi t) + 0.4 \sin(660\pi t)$

() $f(t) = \frac{1}{2} + \cos(165\pi t) + 0,4 \sin(370\pi t) + 0,5 \cos(495\pi t) + 0,4 \sin(660\pi t)$

 $\bullet \ \mathbf{Quest\~ao} \ \mathbf{3} \ (2.0 \ \mathrm{pontos}) \ \mathrm{Seja} \ f(t) = e^{-3|t|}, \ g(t) := \mathcal{F}^{-1} \left\{ iwF(w) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ G(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{2t}, \ \mathrm{onde} \ F(w) = \mathcal{F} \left\{ f(t) \right\}, \ h(t) := \mathcal{F}^{-1} \left\{ f(w)e^{-5iw} \right\} \ \mathrm{e} \ p(t) = f(t)e^{-5iw} + f(t)e^{$ $G(w) = \mathcal{F}\left\{g(t)\right\}$ e $P(w) = \mathcal{F}\left\{p(t)\right\}$. Responda corretamente.

(X)
$$g(2) = -3e^{-6}$$
 () $h(11) = -3e^{-11}$

()
$$g(2) = -3e^6$$
 (X) $h(11) = -3e^{-18}$ () $h(11) = -3e^{-33}$

()
$$g(2) = e^6$$
 () $h(11) = -3e^-$ () $h(11) = e^{-18}$

()
$$g(2) = e^{-3}$$

() $g(2) = e^{-2}$
() $h(11) = e^{-33}$
 $P(w)$

F(w)() $F(w) = \frac{2}{w^2 + 9}$

()
$$F(w) = \frac{2}{w^2 + 9}$$
 () $P(w) = \frac{2}{(w - 2i)^2 + 9}$ () $P(w) = \frac{2}{(w + 2i)^2 + 3}$

$$(x) F(w) = \frac{6}{w^2 + 9}$$

$$(x) F(w) = \frac{6}{w^2 + 9}$$

$$(x) F(w) = \frac{6}{(w + 2)^2 + 9}$$

()
$$F(w) = \frac{1}{w^2 + 9}$$

 () $P(w) = \frac{1}{(w - 2)^2 + 9}$
 (X) $P(w) = \frac{6}{(w + 2i)^2 + 9}$

Solução:

$$g(t) = f'(t)$$

$$h(t) = f(t+5)$$

$$F(w) = 2\int_0^\infty e^{-3t}\cos(wt)dt = \frac{6}{w^2+9}$$

$$P(w) = F(w+2i)$$

ullet Questão 4 (3.0 pontos) Considere a função periódica de período T=2 cujo gráfico é esboçado abaixo:

Aqui a é uma constante positiva menor que 1. Escreva esta funça \tilde{a} em séries de Fourier na seguinte forma:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\pi n t) + b_n \sin(\pi n t)],$$

Trace o diagrama de amplitudes e o de fase quando a=1/2 com pelo menos duas rais positivas e duas negativas. Indique eixos e valores notáveis. Solução:

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt, \quad w_n = \frac{2\pi n}{T}$$

$$= \int_{-a}^{a} f(t) \sin(w_n t) dt = 2 \int_{0}^{a} \sin(w_n t) dt$$

$$= -2 \frac{\cos(w_n t)}{w_n} \Big|_{0}^{a} = -2 \frac{\cos(aw_n) - 1}{w_n} \Big|_{0}^{a}$$

$$= 2 \frac{1 - \cos(a\pi n)}{\pi n}$$

Assim:

$$f(t) = 2\sum_{n=1}^{\infty} \frac{1 - \cos(a\pi n)}{\pi n} \operatorname{sen}(\pi nt).$$

Agora substituímos a = 1/2:

$$C_n = \frac{a_n - ib_n}{2} = -i\frac{\cos(\pi n/2) - 1}{\pi n}$$

Portanto:

$$C_n = \begin{cases} 0, & n = 4k, \\ \frac{i}{\pi n}, & n = 4k+1, \\ \frac{2i}{\pi n}, & n = 4k+2, \\ \frac{i}{\pi n}, & n = 4k+3. \end{cases}$$

ullet Questão 5 (2.0 pontos) Seja f(t) uma função que possui transformada de Fourier $F(w) = \mathcal{F}\{f(t)\}$. O gráfico abaixo apresenta o diagrama de espectro de magnitudes de F(w).

Esboce o diagrama de magnitudes de $g(t) = f'(t)\cos(4t)$ e $h(t) = \frac{d}{dt}(f(t)\cos(4t))$. Indique eixos e valores notáveis. Vemos que $\mathcal{F}\left\{f'(t)\right\} = iwF(w)$ e $\mathcal{F}\left\{f'(t)\cos(4t)\right\} = \frac{i(w-4)F(w-4) + i(w+4)F(w+4)}{2}$. Para o outro item, temos $\mathcal{F}\left\{f(t)\cos(4t)\right\} = \frac{F(w-4) + F(w+4)}{2}$ e $\mathcal{F}\left\{\frac{d}{dt}\left[f(t)\cos(4t)\right]\right\} = iw\frac{F(w-4) + F(w+4)}{2}$.

|H(w)|

