Classically Approximating Variational Quantum Machine Learning with Random Fourier Features

Team Members: Jerry Xu, Nicholas Ng, Matthew Stefansson, Ying Qi Wen

Introduction

- Near-term quantum computing applications rely on VQCs
- VQCs trained with classical optimization of gates' parameters

Major Challenge: Scalability of VQCs

Idea to adapt 3 sampling strategies using Random Fourier Features (RFF)

Why the Paper is Interesting

The Novel Test Results

(a) Fashion-MNIST dataset (classification)

(b) California Housing dataset (regression)

Underlying Theory

- "It is known that quantum models from VQCs are equivalent to kernel methods"
- High-dimensional kernels can be approximated using Random Fourier Features
- The kernel of the VQC is built from frequencies $\omega \in \Omega$
- 3 sampling methods: Distinct Sampling, Tree Sampling, Grid Sampling
- Use the sampled frequencies to solve ML problems

$$\begin{split} \tilde{\phi}(x) &= \frac{1}{\sqrt{D}} \begin{bmatrix} \cos(\omega_i^T x) \\ \sin(\omega_i^T x) \end{bmatrix}_{i \in [1,D]} & \tilde{k}(x,y) \simeq \tilde{\phi}(y)^T \tilde{\phi}(x) \\ \tilde{f} &= \tilde{\mathbf{w}}^T \tilde{\phi}(x) & \mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + M \lambda I_p)^{-1} \mathbf{\Phi}^T \mathbf{y} \end{split}$$

Software Implementation Approach

- 1. Create a dataset and target function
- 2. Diagonalize the Hamiltonians of the VQC's encoding gates
- 3. Obtain their eigenvalues to get all frequencies
- 4. Sample the frequencies
- 5. Construct φ and Φ (i.e. matrix with each row i corresponds to $\varphi(x_i)^T$)
- 6. Obtain the weight w and the approximate function

$$ilde{f} = ilde{\mathbf{w}}^T ilde{\phi}(x) \qquad \mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + M \lambda I_p)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

Software Implementation Highlights

- RFF with Distinct Sampling
 - Using qml.fourier.circuit_spectrum to obtain the frequencies
- RFF with Tree Sampling
 - Compute frequencies from eigenvalues of the encoding gates
 - Redundant frequencies are more likely to be sampled than unique frequencies
- RFF with Grid Sampling
 - Create a grid of frequencies between zero and the highest frequency
 - \circ Sample from the grid instead of the actual frequencies in Ω
- Used all of the frequencies

$$\Lambda_{m i} = \lambda_1^{i_1} + \dots + \lambda_L^{i_L}$$

Demo

Issues Encountered

Notation inconsistencies

- Tried emailing author (no response)
- Have to work based on assumptions
- Reproducibility of the paper past simple VQC's.

$$D = \Omega \left(\frac{dC_1(1+\lambda)^2}{\lambda^4 \epsilon^2} \left[log(dL^2|\mathcal{X}|) + log \frac{C_2(1+\lambda)}{\epsilon \lambda^2} - log \delta \right] \right)$$
(22)

Thank you for Listening Any Questions?