

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	Т «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ, ЭКСПЛУАТАЦИОННОЙ ПРАКТИКЕ

Студент Супрунова Екатерина Алексеевна					
	фамилия, имя, отчест	60			
Группа ИУ7-66Б					
Тип практики П	роизводственная, эксп	луатационная			
Название предприятия	«Российские косми	«Российские космические системы»			
Студент		Супрунова Е. А.			
	nodnucь, $dama$	фамилия, и.о.			
Руководитель практики		Толпинская Н. Б.			
	nodnucь, $dama$	фамилия, и.о.			
Руководитель практики					
от предприятия					
	$no\partial nuc$ ь, ∂ama	фамилия, и.о.			
Рекомендованная оценка _					
Опенка					

Содержание

В	веден	ие		•	 3
1	Осн	овная і	часть	•	 4
	1.1	Харан	ктеристика организации		 4
	1.2	Задан	ние на практику		 4
	1.3	Алгор	ритмы планирования		 5
		1.3.1	Результаты планирования		 6
	1.4	Сравн	нительный анализ алгоритмов планирования		 S
		1.4.1	Выводы		 10
За	ключ	пение .			 11
Сі	тисок	литера	ратуры		 12

Введение

1. ОСНОВНАЯ ЧАСТЬ

1.1 ХАРАКТЕРИСТИКА ОРГАНИЗАЦИИ

ПАО «МАК «Вымпел» — предприятие российской оборонной про- мышленности в области ракетно-космической обороны. Входит в состав АО «Концерн «ВКО «Алмаз-Антей». Корпорация «Вымпел» отвечает за широкий комплекс наукоемких работ, связанных с проектированием, созданием, испытаниями и развитием систем, решающих задачи предупреждения о ракетном нападении (СПРН), противоракетной обороны (ПРО) и контроля космического пространства (СККП), создает и совершенствует программно-алгоритмическое обеспечение для одновременной обработки гиперобъемной информации и визуализации ее результатов на командных пунктах этих систем.

Все системы и средства РКО работают в полностью автоматическом режиме, в реальном масштабе времени, с возможностью одновременного управления с командных пунктов. Существенную долю объема работ корпорации составляет наукоемкая продукция, разрабатываемая в интересах российских и иностранных заказчиков.[1]

1.2 ЗАДАНИЕ НА ПРАКТИКУ

В последнее время происходит быстрый рост количества космических аппаратов, в основном за счет разворачивания группировок на низких орбитах. [2] Это предполагает оптимизацию планирования наблюдений наземными средствами.

В рамках практики было предложено реализовать ряд алгоритмов планирования наблюдений за спутниками. Данные в виде времени видимости спутников за 150 дней были предоставлены организацией.

1.3 АЛГОРИТМЫ ПЛАНИРОВАНИЯ

Были рассмотрены и реализованы следующие алгоритмы планирования:

- 1. LIHP (last in hight priority) В случае коллизии наблюдается спутник, который последним попал в зону видимости станции мониторинга. Для этого алгоритма станция РТМ в случае коллизии переходит к наблюдению нового спутника.
- 2. FIHP (first in high priority). В случае коллизии наблюдается спутник, который первым попал в зону видимости станции мониторинга. Для этого алгоритма, станция в случае коллизии продолжает следить за спутником, не переходя к наблюдению нового. После этого выбирается спутник, который первым вошел в область наблюдения при коллизии.
- 3. RW (random walk, случайные блуждания). В данном алгоритме при возникновении коллизии выбор спутника, за которым будет вестись наблюдение, осуществляется по марковскому правилу принятия решений. В случае возникновения коллизии среди спутников одного приоритета, спутник выбирается случайно с вероятностью $P_i(t) = \frac{1}{N}$, где N количество спутников участвующих в коллизии.
- 4. Алгоритм принятия решения с учетом всего интервала планирования. Алгоритм состоит из 6 основных шагов:
 - а) Добавление в план наблюдения интервалов времени в которых отсутствует коллизия.
 - b) Расчёт среднего времени наблюдения спутника t_{mean}
 - c) Спутники сортируются по возрастанию потенциальной длительности наблюдения t_i^{pot}
 - d) Производится сравнение потенциального времени наблюдения каждого космического аппарата со средним временем наблюдения $t_m ean$. Если t_i^{pot} , то есть потенциальное время наблюдения спутника меньше или равно среднему, то все интервалы видимости соответствующего спутника добавляются в план наблюдения

- и алгоритм переходит к шагу 4f. Если потенциальное время наблюдения спутника больше среднего времени наблюдения спутника, то алгоритм переходит к шагу 4e.
- е) Перерасчет среднего (при необходимости). На этом шаге пересчитывается среднее время наблюдения и добавляется в расписание время наблюдения спутника с самым маленьким интервалом видимости из спутников, которые еще не были добавлены в расписание. Если таких спутников несколько, то выбирается тот, у которого меньший интервал времени уже добавлен в расписание. Если в этом случае спутников несколько, выбирается произвольный.
- f) Переход к следующему спутнику, 4c алгоритма.
- 5. Алгоритм принятия решения с учетом всего интервала планирования, а также приоритетности космических аппаратов. Данный алгоритм схож с алгоритмом, описанным в пункте выше, однако учитывает приоритет космических аппаратов. В реализации были заданы 3 приоритета 3, 2, 1, где 3 самый высокий, а 1 самый низкий.

1.3.1 РЕЗУЛЬТАТЫ ПЛАНИРОВАНИЯ

Ниже приведены гистограммы результатов планирования наблюдений реализованными алгоритмами.

Рисунок 1.1 – Общее время наблюдения каждого спутника при использовании алгоритма планирования LIHP

Рисунок 1.2 – Общее время наблюдения каждого спутника при использовании алгоритма планирования FIHP

Рисунок 1.3 – Общее время наблюдения каждого спутника при использовании алгоритма планирования RW

Рисунок 1.4 — Общее время наблюдения каждого спутника при использовании алгоритма планирования с учетом всего интервала наблюдения

Рисунок 1.5 – Общее время наблюдения каждого спутника при использовании алгоритма планирования с учетом приоритета космических аппаратов

1.4 СРАВНИТЕЛЬНЫЙ АНАЛИЗ АЛГОРИТМОВ ПЛАНИРОВАНИЯ

В таблице 1.1 представлено среднее время выполнения каждого реализованного алгоритма, в которой

- LIHP last in hight priority;
- FIHP first in high priority;
- $\circ\,$ RW random walk;
- interv алгоритм принятия решения с учетом всего интервала планирования;
- modif модифицированный алгоритм принятия решения с учетом всего интервала планирования и приоритетности космических аппаратов.

Таблица 1.1 – Среднее время выполнения, с

LIHP	FIHP	RW	interv	modif
14.9167	7.8685	22.8472	30.0623	58.8573

1.4.1 Выводы

На основе полученных данных можем сделать следующие выводы:

- 1. Алгоритмы LIHP, FIHP, RW не гарантируют равномерность распределения по времени. При этом в алгоритмах FIHP и RW возникает вероятность пропуска спутника, который наблюдается кратковременно одновременно с другим спутником.
- 2. Алгоритм, учитывающий все время планирования, работает почти в 4.3 раза быстрее алгоритма FIHP, однако он обеспечивает выравнивание времени наблюдения каждого КА и при этом достигается максимально возможное общее время наблюдения.
- 3. Модифицированный алгоритм планирования, учитывающий не только все время планирования, но и приоритетность космических аппаратов, работает почти в 7.55 раз медленнее алгоритма FIHP и в 1.96 раз медленнее алгоритма планирования, учитывающего только общее время наблюдений.

ЗАКЛЮЧЕНИЕ

Список литературы

- 1. ΠAO «MAK «Вымпел». URL: https://macvympel.ru/about/.
- 2. В. Ф. Фатеев В. Д. Ш. Направления развития космического эшелона информационных средств ВКО РФ на основе новых технологий // Вопросы радиоэлектроники. 2014. т. 2, № 1. с. 5—25.