Find the sum of pentagonal numbers P_j and P_k such that both their sum and differenc is also pentagonal. Find the value for which $D = |P_k - P_j|$ is minmised.

Problem 44 - Pentagonal Numbers

We are interested in the pentagonal numbers, P,

$$P_n = \frac{n}{2}(3n-1) = \frac{1}{2}(3n^2-n)$$

we are interested in the case where both the sum and difference of two pentagonal numbers are also pentagonal.

Useful relations

$$P_{n+1} = \frac{1}{2} \big(3n^2 + 5n + 2 \big)$$

Sums

We trivially get that the sum of two pentagonal numbers, ${\cal P}_n$ and ${\cal P}_m$ are given by

$$\frac{1}{2}(3m^2 - m + 3n^2 - n)$$

so for the case m = n

$$2P_n = 3n^2 - n$$

with sum of the next terms m = n + 1,

$$3n^2 + 2n + 1$$

or m = n + 2

$$3n^2 + 5n + 5$$

Differences

The differnce between two adjacent terms, $P_{n+1} - P_n$, is given by

$$P_{n+1} - P_n = 3n + 1$$

this means that

Solution Bounds