2023 年上海市高等学校信息技术水平考试试卷

一级(大学信息技术+人工智能基础)(模拟卷)

(本试卷考试时间 90 分钟)

一、单选题 (本大题 25 道小题 ,每小题 1 分,共 25 分),从下面题目给出的 A 、 B 、
C、D 四个可供选择的答案中选择一个正确答案。
1. 信息技术的发展大致可分为古代、近代和现代三个阶段,其中进入现代信息技术发展阶
段的标志是的出现。
A. 电子计算机
B. 电视机
C. 互联网
D. 电话
2. 无论在显示器上显示的是文字、数字还是图形,显示器总是用
A. 圆点
B. 栅格
C. 像素
D. 块
3. 计算思维的本质是。
A. 抽象和自动化
B. 计算求解
C. 程序和算法
D. 代码和实现
4不是人工智能主要技术。
A. 机器学习
B. 传感器技术
C. 人工神经网络
D. 自然语言处理
5是保护数据在网络传输过程中不被窃听、篡改或伪造的技术。
A. 身份识别技术
B. 访问控制技术
C. 防火墙技术
D. 加密技术
6. 在 Windows 系统中, "回收站"的内容。
A. 无法还原
B. 不占用磁盘空间
C. 可以被永久删除
D. 只能在桌面上找到

7. Windows 系统搜索栏中输入"*. docx",则搜索到的是。
A. 带*号的文件或文件夹
B. 含有*. docx 文字的文件和文件夹
C. 所有 docx 类型的文件
D. 含有 docx 文字的文件和文件夹
8. 关于 Windows 系统中应用程序的卸载,错误的方法是。
A. 在控制面板的"卸载程序"窗口中,选中程序后单击工具栏中的"卸载"按钮
B. 在控制面板的"卸载程序"窗口中,选中程序右击鼠标,在菜单中选择"卸载"命令
C. 选中程序图标,直接按"Delete"键删除
D. 利用针对该应用程序的 Uninstall. exe 卸载程序
9. 投影仪连接笔记本电脑时,通过
A. HDMI
B. VGA
C. 电源线
D. Type-C 数据线
10不属于数据通信的主要技术指标。
A. 压缩比
B. 传输速率
C. 差错率
D. 带宽
11. 计算机网络的应用越来越普遍,联网的主要目的在于。
A. 节省人力
B. 扩大存储容量
C. 实现资源共享和信息通信
D. 提高信息存取速度
12. 不同体系结构的网络互联时,需要使用。
A. 中继器
B. 网关
C. 调制解调器
D. 集线器
13. NFC 技术是近距离无线通信技术,其中 应用到了 NFC 技术。
A. 手机扫码支付
B. 磁条银行卡
C. 交通一卡通
D. 无线局域网
14. 关于防火墙,描述错误的是。
A. 防火墙是安全策略的检查站

第 2 页, 共 9 页 18 (模拟卷)

C. 有了防火墙,就可以抵御一切网络攻击 D. 防火墙可以对网络存取和访问进行监控审计
15. 在 Word 文档中设定制表位后, 只需要按
16. 在创建 Excel 图表时,若要显示各组成部分所占百分比,一般可采用的图表类型是 —————。 A. 散点图 B. 饼图 C. 折线图 D. 柱形图
17. 在 PowerPoint 中,功能支持手写输入公式。 A. 数学公式 B. 绘图工具 C. SmartArt D. 墨迹公式
18.1956年,麦卡锡、明斯基、香农等人召开了
19. 关于人工智能技术对社会发展的影响,描述正确的是。 A. 人工智能技术具有机械化特点,降低了人们的服务水平 B. 人工智能技术更新迭代快,新的工作岗位不断涌现 C. 人工智能技术趋于成熟,不会带来隐私的泄露问题 D. 人工智能技术较为完善,不会存在偏见和歧视等问题
20. 在人工智能领域很重要的一个分支是计算机视觉,属于计算机视觉应用的是。 A. 用手机 APP 进行植物识别 B. 电子卡签到 C. 机器翻译 D. 和客服"机器人"对话
21. 关于下一代智能计算系统,描述正确的是。
第 3 页, 共 9 页 18 (模拟卷)

B. 防火墙可以有效防止内部网络和外部网络的相互影响

- A. 它以面向符号主义的计算系统为代表
- B. 它的逻辑元件采用电子管
- C. 它是面向智能算法的定制化设计
- D. 它可能会成为强人工智能的物质载体
- 22. 不是基本程序控制结构。
- A. 顺序结构
- B. 选择结构
- C. 循环结构
- D. 嵌套结构
- 23. matplotlib 提供了丰富的图形绘制函数,其中 函数用于绘制折线
- A. plot ()
- B. bar()
- C. pie()
- D. scatter()
- 24. 用来评估训练后的模型性能。
- A. 训练集
- B. 测试集
- C. 参数集
- D. 样本集
- 25. 关于多层感知器,描述错误的
- A. 它由多个神经元构成
- B. 它的同层神经元之间没有连接
- C. 它的同层神经元之间存在连接
- D. 它的每个神经元都与上一层的所有神经元相连接
- 二、是非题 (本大题 5 道小题 , 每小题 1 分, 共 5 分)。
- 1. 信息时代的大学生不但要遵守现实社会的秩序,还要遵守网络社会的秩序。
- 2. 在 Windows 操作系统中,右击任务栏上的文件夹图标,可以打开"文件资源管理器"。
- 3. TCP/IP 协议的参考模型共分四层,从低到高分别是网络接口层、网络层、传输层和表示 层。
- 4. 对当前人工智能行业影响最大的学派是连接主义学派。
- 5. 为了更好地评测模型的效果,通常将原始数据集划分为训练集和使用集。

三、操作题

所有的样张都在"C:\样张"文件夹中,考试系统中【样张】按钮可直接打开此文件夹。 注意:样张仅供参考,相关设置按题目要求完成即可。由于显示器颜色差异,部分题目

第 4 页, 共 9 页 18 (模拟卷)

做出结果可能与样张图片存在色差。

(一) 文件管理(共6分)

- 1.在 C:\KS 文件夹中新建文件夹 AA,在文件夹 AA 中新建子文件夹 BB,设置 C:\KS\JJ.txt 文件属性为 "只读"。将 C:\素材\KK.zip 文件中的 ZBQ.txt 文件解压缩至 C:\KS\AA 文件夹中,并修改文件名为 ZZ.rtf。将 C:\素材文件夹中所有图片文件以文件名为 TP.zip 压缩至 C:\KS 文件夹中。在 C:\KS\AA 文件夹中,创建文本文件 zx.txt,在该文档中录入文字"文化自信"。
- 2. 在 C:\KS 文件夹中创建名为"截图工具"的快捷方式: 指向 Windows 系统文件夹中的应用程序 SnippingTool.exe,运行方式为"最大化"。

(二) 数据处理(共20分)

1. 电子表格处理(12分)

打开C:\KS\JExcel.xlsx文件,按要求对各工作表进行编辑处理,将结果以原文件名保存在C:\KS文件夹中(计算必须用公式,否则不计分)。

- (1) 在 Sheet1 中,设置 A1:I1 区域"合并后居中",在 A2 输入副标题"2022 级",设置 A2:I2 区域"跨列居中";设置正副标题格式:字体为黑体、大小为 20、加粗;为 A3:I21 区域添加"所有框线";利用公式,在 G22 中计算所有学生的平均视力,保留 2 位小数;利用函数和公式,在 I 列计算每位学生的当前年龄;利用条件格式,将 E 列最高的三个体重,设置为橙色字体、红色填充,再将 D 列的学生身高用橙色数据条渐变填充。
- (2) 在 Sheet2 中,对所有学生按"性别"为关键字进行排列;根据 Sheet2 的数据,创建分类汇总,按"性别"为分类字段,汇总"身高"的平均值,汇总结果显示在数据下方,再汇总出"体重"的最大值,不要"替换当前分类汇总",所有汇总结果数据 2 位小数显示。在 Sheet3 中的 H 列,利用函数,求出每个学生的视力排名(降序);对 Sheet3 中所有学生,筛选体重高于平均值的学生信息;利用 Sheet3 中 A1:G19 区域的数据,在 A22 起始位置处创建数据透视表,要求:以"学院"为行标签、"性别"为列标签,统计"身高"的平均值,所有结果保留 2 位小数,设置数据透视表样式为浅色的"数据透视表样式浅色 17"。
- (3) 参照样张,在 Sheet4 的 A21:P46 区域中,创建学生体重与视力的折线图,图表快速布局为"布局 1","颜色 3",样式套用"样式 6",添加数据标签在"左侧",标题为"学生体重与视力对照图",图例位置在"右侧",不显示纵坐标轴标题。体重的数据标签包括"类别名称"和"值",且标签位置"靠右"。系列"视力"显示在"次坐标轴"。绘图区用默认色纯色填充。图表区的边框为"圆角"、阴影为预设的"外部-右下斜偏移"。

2. 文字信息处理(8分)

打开C:\KS\JWord.docx文件,参照样张,按要求进行编辑和排版,将结果以<mark>原文件名</mark>保存在C:\KS文件夹中。

(1)设置纸张方向为"横向",为页面添加页面边框:红色心形的艺术型。将标题文字修改为艺术字,艺术字样式为列表中的第1行第3列的效果,艺术字的形状样式为:"中等效果-橙色,强调颜色2",上下型环绕,水平居中。设置正文第1、3、5段的样式为标题2,设置这三段的字体大小为五号,段前段后间距为0,单倍行距,为这三段创建编号列表,样式为"A,B,C..."。在文首插入自定义目录,格式:简单,显示级别:2级。为正文后四段添加

项目符号QQ(Wingdings字体集),颜色为橙色、加粗。将正文后四段文本转换成1列4行的表 格,根据内容自动调整表格。为正文第2段设置字符间距加宽3磅、文字位置提升3磅、突出 显示颜色"青绿"色;首字下沉2行,字体为楷体。为正文第4段设置首行缩进2个字符,边 框样式为橙色、外粗内细,底纹填充色为浅绿、图案样式为10%。

(2) 为正文第6段中的文字"根据规划"添加拼音指南;并为其添加尾注:"2027年"; 将该段落所有"机场"文字替换为加粗、有着重号、突出显示的Airport;分为等宽两栏、加 分隔线。插入内置页眉:"空白",内容为自动更新的日期,格式按样张。在文末插入内置公 式"傅立叶级数",并将公式文字设置为橙色。在文末左侧插入SmartArt图:"循环"类别中 的"多向循环",按样张在文字占位符中输入"虹桥"、"浦东"、"南通",更改SmartArt图样 式为"三维"类别中的"平面场景",高为4厘米、宽为6厘米。利用C:\素材\JC.jpg设置图片 水印、"冲蚀"效果。在文末相应位置插入形状:"基本形状"中的"椭圆",高为4厘米、宽 为6厘米,形状填充为图片C:\素材\JC.jpg。在文末右侧插入图片C:\素材\JC.jpg、图片高为4厘 米 (锁定纵横比),四周型环绕,图片样式为"透视阴影,白色"。在页面底端插入"普通数 字3"样式页码,设置页码编号格式为"a,b,c…"。

(三)网络应用基础(共4分)

- 1. 打开 C:\素材\网页 J.html 文件,将该网页以 PDF 格式保存在 C:\KS 文件夹中,文件 名为 WYJ.pdf。
- 2. 在 C:\KS 文件夹中创建 NET.txt 文件,使用命令查看网络信息、将使用的命令与当 前计算机的任一以太网适配器的物理地址、DHCP是否已启用、自动配置是否已启用的信息 粘贴在内,每个信息独占一行。并测试本机网络连通情况,将命令及结果窗口截图以 JPG 格 式保存在 C:\KS 文件夹中,文件名为 WLLJ.jpg。

(四)人工智能数据处理(共15分)

打开C:\KS文件夹下的程序文件4 1.py,接下列要求完成程序,并将结果以原文件名保 存在C:\KS文件夹中。

程序实现绘制2023年某月我国轿车车型的销量TOP10条形图,具体要求如下:

- 1. 导入相关库,设置支持中文显示,读取CSV数据文件。按提示信息,输入条形图边 框颜色对应的字符。
- 2. 如果输入"黑",则采用黑色边框线;如果输入"红",则采用红色边框线;否则, 给出输入错误提示。
- 3. 设置标题,设置x轴标签为"品牌/车型",设置y轴标签为"销量 (万辆)",适当旋转 x轴坐标标签。
 - 4. 绘制条形图,并设置条形图的边框线颜色等属性。
 - 5. 设置图例,设置网格,显示图形。

按代码中的注释提示,在横线处补全合适的程序代码,程序运行结果如样张所示。注意: 考生只可补全代码,不可修改或删除横线处以外任何代码。

【样张】

请选择条形图边框线颜色,输入"黑"是黑色边框线,输入"红"是红色边框线:红

(五) 机器学习(共15分)

打开C:\KS文件夹下的程序文件5 1.py,按下列要求完成程序,并将结果以原文件名保 存在C:\KS文件夹中。

程序实现红酒分类功能,具体要求如下

- 分割红酒品类数据集, 产生训练集和测试集, 1. 导入相关库,加载红酒品类数据集, 测试集所占比例为30%,随机数种子为3。
 - 2. 对训练集进行标准化拟合和转换,对测试集进行标准化转换。
 - 3. 利用KNN算法构建分类模型,利用训练集的特征数据和标签数据进行模型拟合。
 - 4. 调用predict()函数预测未知类别的样本数据,并输出预测结果。
- 5. 根据测试集的特征数据和标签数据,使用模型自带的评估函数进行准确性测评; 然 后,计算并显示主要分类指标的文本报告。

程序运行结果如样张所示。注意:考生只可补全代码,不可修改或删除横线处以外任何 代码。

从以下选项中选择正确的代码填入相应的横线处,补全程序。

- data, target, test_size=0.3
- ss.transform(X test)
- knc.predict(X train)
- classification report(y test, y predict)
- wine.data, wine.target, test size=0.3
- KNeighborsClassifier(n neighbors=5)
- KNeighborsClassifier(n = 5)
- ss.fit transform(X test)
- classification report(y predict, X test)
- knc.predict(X sample)

【样张】

The type of Wine is [0] The accuracy is 0.9630

	precision	recall	f1-score	support
0	0.96	1.00	0.98	23
1	1.00	0.89	0.94	19
2	0.92	1.00	0.96	12
accuracy			0.96	54
macro avg	0.96	0.96	0.96	54
weighted avg	0.97	0.96	0.96	54

(六)深度学习(共10分)

打开C:\KS文件夹下的程序文件6_1.py,阅读和分析程序,按下列要求完成题目,并将 结果以原文件名保存在C:\KS文件夹中。

程序通过神经网络对Fashion-MNIST数据集进行分类训练、模型评估和模型保存。针对 程序中5处【 题号 】所在的代码行,从以下选项中选择对该行恰当的代码解释,并将选项 编号填入【】内,如【A】,注意编号不区分大小写。

- A. 导出tensorflow库,并命名为"tf"。
- B. 以"model 2023.h5"为名保存模型
- C. 训练模型,其中训练样本的20%用于验证,迭代次数达到5时结束训练,并显示不包 含进度条的日志信息。
- D. 训练模型,其中训练样本的80%用于验证,迭代次数达到5时结束训练,并显示不包 含进度条的日志信息。
 - E. 加载名为 "model 2023.h5" 的模型
- F. 添加名为"Hidden1"的隐藏层,该层包含28×28个神经元,输入维度为50,激活函 数为 "relu"。
 - G. 评估模型。
- H. 添加名为"Hidden1"的隐藏层,该层包含50个神经元,输入维度为28×28,激活函 数为 "relu"。
 - I. 测试模型。
 - J. 导入tensorflow库,并命名为"tf"。

程序运行结果如样张所示,结果可能存在随机性。注意: 此题仅做阅读和分析, 无需运 行和调试。

【样张】

Model: "sequential"

Layer (type)	Output	Shape	Param #
Hidden1 (Dense)	(None,	50)	39250
Hidden2 (Dense)	(None,	50)	2550
Hidden3 (Dense)	(None,	50)	2550
Output (Dense)	(None,	10)	510

Total params: 44,860 Trainable params: 44,860 Non-trainable params: 0

None

compiling ...

fitting ...

```
Epoch 1/5
1500/1500 - 2s - loss: 0.9543 - accuracy: 0.6688 - val_loss: 0.6033 - val_accuracy: 0.7860
Epoch 2/5
1500/1500 - 1s - loss: 0.5438 - accuracy: 0.8085 - val_loss: 0.5369 - val_accuracy: 0.8029
Epoch 3/5
1500/1500 - 1s - loss: 0.4845 - accuracy: 0.8288 - val_loss: 0.5108 - val_accuracy: 0.8164
Epoch 4/5
1500/1500 - 1s - loss: 0.4536 - accuracy: 0.8400 - val_loss: 0.4636 - val_accuracy: 0.8383
Epoch 5/5
1500/1500 - 1s - loss: 0.4341 - accuracy: 0.8463 - val_loss: 0.4387 - val_accuracy: 0.8428
 evaluating ...
```

313/313 [==================] - 0s 1ms/step - loss: 0.4632 - accuracy: 0.8362 saving ...

loading ...