INTEGRAL DE FUNCIONES MEDIBLES

JUAN FERRERA

Vamos a empezar definiendo la integral de las funciones simples **no** negativas. Recordemos que una función simple φ es una función de la forma

$$\varphi = \sum_{i=1}^{m} \alpha_i \aleph_{E_i}$$

donde E_1, \ldots, E_m son conjuntos medibles y $\alpha_1, \ldots, \alpha_m$ son números reales. Es inmediato ver que una función simple solo toma un número finito de valores. Podemos redefinir los conjuntos E_i de forma que los α_i sean distintos y $E_i = \varphi^{-1}(\{\alpha_i\})$. Al hacer esto, los nuevos E_i son uniones y restas de los antiguos, y por tanto siguen siendo medibles.

Por supuesto también es fácil darse cuenta de que una función simple es medible, ya que la imagen inversa de un intervalo es o \emptyset , o todo \mathbf{R}^n , o una unión finita de los conjuntos E_i y por tanto medible.

Resumiendo todo lo anterior, podemos decir que una función simple es una función medible que solo toma un número finito de valores.

Ahora vamos a definir lo que acabará siendo la integral de una función simple no negativa.

Definición: Si φ es una función simple no negativa,

$$\varphi = \sum_{i=1}^{m} \alpha_i \aleph_{E_i},$$

definimos el valor $I(\varphi)$ como

$$I(\varphi) = \sum_{i=1}^{m} \alpha_i \mu(E_i)$$

Antes hemos visto que una función simple puede expresarse de distintas formas, po ejemplo, la función característica de $\mathbb Q$ se puede escribir también como

$$\frac{1}{2}\aleph_{(\mathbb{Q}\smallsetminus\{\sqrt{2}\})}+\frac{1}{2}\aleph_{\mathbb{Q}\cap[\sqrt{2},+\infty)}+\frac{1}{2}\aleph_{\mathbb{Q}\cap(0,\sqrt{2}]}+\frac{1}{2}\aleph_{\mathbb{Q}\cap(-\infty,0]}$$

Por tanto para ver que la definición anterior es consistente, hay que ver que aunque una función φ se pueda escribir de distintas formas, $I(\varphi)$ no varía.

Date: January 26, 2022 (1098).

Proposición: Si

$$\varphi = \sum_{i=1}^{m} \alpha_i \aleph_{E_i} = \sum_{i=1}^{p} \beta_i \aleph_{D_i}$$

entonces

$$\sum_{i=1}^{m} \alpha_i \mu(E_i) = \sum_{i=1}^{p} \beta_i \mu(D_i)$$

La demostración se deja como ejercicio.

Observaciones:

- (1) Como $\alpha_i \geq 0$, el valor $I(\varphi)$ es mayor o igual que 0, pudiendo ser $+\infty$ si algún $\mu(E_i) = +\infty$.
- (2) Puede darse una indeterminación en el sentido de que pueden ser $\mu(E_i) = +\infty$ y $\alpha_i = 0$. En este caso siempre entenderemos que $0 \times (+\infty) = 0$.
- (3) Ahora queda claro por que exigimos que la función sea no negativa. Es para evitar que en la suma aparezcan términos de la forma $+\infty (+\infty)$. Por ejemplo si dos E_i distintos tienen medida infinito y los correspondientes α_i son uno positivo y otro negativo.

Las siguientes propiedades son inmediatas a partir de la definición.

Propiedades: Si φ y ψ son funciones simples no negativas, entonces

- (1) Si c > 0, entonces $I(c\varphi) = cI(\varphi)$.
- (2) $I(\varphi + \psi) = I(\varphi) + I(\psi)$.
- (3) Si $\varphi \leq \psi$ c.t.p. entonces $I(\varphi) \leq I(\psi)$.
- (4) Si $\varphi = \psi$ c.t.p. entonces $I(\varphi) = I(\psi)$.

Ahora ya podemos definir la integral de una función medible no negativa.

Definición: Si $f: \mathbb{R}^n \to [0, +\infty]$ es una función medible, definimos su integral como

$$\int_{\mathbb{R}^n} f d\mu = \sup_{\varphi \le f} I(\varphi)$$

donde el supremo se toma en todas las funciones simples no negativas menores o iguales que f.

Observación: Este supremo siempre existe, porque por lo menos hay una función simple no negativa menor o igual que f, por ejemplo la

función constantemente 0. Además, la integral es claramente mayor o igual que 0, aunque puede valer infinito.

Observación: En la definición de integral se obtiene el mismo valor si en lugar de pedir $\varphi \leq f$ se pide $\varphi \leq f$ c.t.p.

Una pregunta natural es que relación existe entre la integral de una función simple φ y el valor $I(\varphi)$. Es inmediato que $I(\varphi) \leq \int \varphi d\mu$, porque $\varphi \leq \varphi$ Pero además se puede probar la igualdad.

Proposición: Si φ es una función simple no negativa, entonces

$$\int_{\mathbb{R}^n} \varphi d\mu = I(\varphi).$$

Demostración: Sea $\varepsilon > 0$. Por la definición de supremo, existe $\psi \le \varphi$ simple tal que

$$\int_{\mathbb{R}^n} \varphi d\mu - \varepsilon \le I(\psi) \le I(\varphi).$$

Haciendo tender $\varepsilon \to 0$ obtenemos $\int \varphi d\mu \leq I(\varphi)$.

También es fácil probar el siguiente resultado cuya demostración se deja como ejercicio.

Proposición: Si f y g son funciones medibles no negativas y $f \leq g$ c.t.p. entonces

$$\int_{\mathbb{R}^n} f d\mu \le \int_{\mathbb{R}^n} g d\mu$$

Por tanto también tenemos el siguiente corolario:

Corolario: Si f y g son funciones medibles no negativas y f=g c.t.p. entonces

$$\int_{\mathbb{R}^n} f d\mu = \int_{\mathbb{R}^n} g d\mu$$

Por último, definimos la integral sobre un conjunto medible

Definición: Si A es un conjunto medible y f es una función medible no negativa, se define la integral de f en A como

$$\int_{A} f d\mu = \int_{\mathbb{R}^n} f \aleph_A d\mu.$$