Acessando dados criminais com BrazilCrime

Giovanni Vargette, Igor Laltuf, Marcelo Justus

Contents

1	Intr	rodução	2										
2 Exemplos de Uso													
	2.1	Exemplo 1 - Visualização simples	2										
	2.2	Exemplo 2 - Filtrar por Estado, cidade e tipologia	2										
	2.3	Exemplo 3 - Dados agregados por ano, para Estado e categoria específica $\ \ldots \ \ldots \ \ldots$	2										
	2.4	Exemplo 4 - Visualização rápida	3										
	2.5	Exemplo 5 - Visualização de dados com vítimas	4										
	2.6	Exemplo 6 - Buscando tendências com o argumento geom_smooth em ggplot $\dots \dots$	5										
	2.7	Exemplo 7 - Análise de correlação	6										

Correlação entre diferentes crimes em SP (2022)

2.8

1 Introdução

O pacote BrazilCrime permite acessar dados públicos de segurança do sistema SINESP/VDE com filtros por localidade, tipologia criminal, categoria e período.

A função central, get_sinesp_vde_data(), permite obter dados por UF, município, categoria (arma de fogo, bombeiros, desaparecidos/localizados, drogas, mandado de prisão cumprido, ocorrencias, profissionais de segurança e vitimas), para 28 tipologias de evento (Apreensão de Cocaína, Apreensão de Maconha, Arma de Fogo Apreendida, Atendimento pré-hospitalar, Busca e salvamento, Combate a incêndios, Emissão de Alvarás de licença, Estupro, Feminicídio, Homicídio doloso, Lesão corporal seguida de morte, Mandado de prisão cumprido, Morte de Agente do Estado, Morte no trânsito ou em decorrência dele (exceto homicídio doloso), Morte por intervenção de Agente do Estado, Mortes a esclarecer (sem indício de crime), Pessoa Desaparecida, Pessoa Localizada, Realização de vistorias, Roubo a instituição financeira, Roubo de carga, Roubo de veículo, Roubo seguido de morte (latrocínio), Suicídio, Suicídio de Agente do Estado, Tentativa de homicídio, Tráfico de drogas) com granularidade mensal ou anual.

2 Exemplos de Uso

2.1 Exemplo 1 - Visualização simples

Table 1: (#tab:exemplo 1)Visualização dos primeiros registros

uf	municipio	ano	mes	categoria	evento	agente	arma	faixa_etaria	feminino	masculino	nao_informado	total	total_peso	total_vitima	data
AC	ACRELÂNDIA	2015	01	mandado de prisao cumprido	Mandado de prisão cumprido	NA	NA	NA	NA	NA	NA	NA	NA	NA	2015-01-01
AC	ACRELÂNDIA	2015	01	vitimas	Feminicídio	NA	NA	NA	0	0	0	NA	NA	0	2015-01-01
AC	ACRELÂNDIA	2015	01	vitimas	Homicídio doloso	NA	NA	NA	0	0	0	NA	NA	0	2015-01-01
		2015	01	vitimas	Lesão corporal seguida de morte	NA	NA	NA	0	0	0	NA	NA	0	2015-01-01
AC	ACRELÂNDIA	2015	01	vitimas	Morte no trânsito ou em decorrência dele (exceto homicídio doloso)	NA	NA	NA	0	0	0	NA	NA	0	2015-01-01
AC	ACRELÂNDIA	2015	01	vitimas	Mortes a esclarecer (sem indício de crime)	NA	NA	NA	0	0	0	NA	NA	0	2015-01-01

2.2 Exemplo 2 - Filtrar por Estado, cidade e tipologia

```
recife <- BrazilCrime::get_sinesp_vde_data(state = "PE", city = "Recife", typology = "Homicidio
    doloso",
    year = 2020:2022)
#> Query completed.

kableExtra::kable(head(recife), format = "latex", booktabs = TRUE, caption = "Visualização dos
    primeiros registros") |>
    kableExtra::kable_styling(latex_options = c("scale_down", "hold_position"))
```

2.3 Exemplo 3 - Dados agregados por ano, para Estado e categoria específica

Table 2: Visualização dos primeiros registros

uf	municipio	ano	mes	categoria	evento	agente	arma	faixa_etaria	feminino	masculino	nao_informado	total	total_peso	total_vitima	data
PE	RECIFE	2020	01	vitimas	Homicídio doloso	NA	NA	NA	1	42	0	NA	NA	43	2020-01-01
PE	RECIFE	2020	02	vitimas	Homicídio doloso	NA	NA	NA	2	42	0	NA	NA	44	2020-02-01
PE	RECIFE	2020	03	vitimas	Homicídio doloso	NA	NA	NA	2	37	0	NA	NA	39	2020-03-01
PE	RECIFE	2020	04	vitimas	Homicídio doloso	NA	NA	NA	2	45	0	NA	NA	47	2020-04-01
$^{\mathrm{PE}}$	RECIFE	2020	05	vitimas	Homicídio doloso	NA	NA	NA	2	46	0	NA	NA	48	2020-05-01
$_{\mathrm{PE}}$	RECIFE	2020	06	vitimas	Homicídio doloso	NA	NA	NA	0	37	0	NA	NA	37	2020-06-01

Table 3: Visualização dos primeiros registros

uf	municipio	ano	mes	categoria	evento	agente	arma	faixa_etaria	feminino	masculino	nao_informado	total	total_peso	total_vitima	data
SP	NÃO INFORMADO	2015	01	ocorrencias	Furto de veículo	NA	NA	NA	NA	NA	NA	9563	NA	NA	2015-01-01
SP	NÃO INFORMADO	2015	01	ocorrencias	Roubo a instituição financeira	NA	NA	NA	NA	NA	NA	17	NA	NA	2015-01-01
SP	NÃO INFORMADO	2015	01	ocorrencias	Roubo de carga	NA	NA	NA	NA	NA	NA	782	NA	NA	2015-01-01
SP	NÃO INFORMADO	2015	01	ocorrencias	Roubo de veículo	NA	NA	NA	NA	NA	NA	7490	NA	NA	2015-01-01
$_{\mathrm{SP}}$	NÃO INFORMADO	2015	02	ocorrencias	Furto de veículo	NA	NA	NA	NA	NA	NA	8966	NA	NA	2015-02-01
$_{ m SP}$	NÃO INFORMADO	2015	02	ocorrencias	Roubo a instituição financeira	NA	NA	NA	NA	NA	NA	17	NA	NA	2015-02-01

2.4 Exemplo 4 - Visualização rápida

Evolução anual de ocorrências no Estado de SP

2.5 Exemplo 5 - Visualização de dados com vítimas

Evolução anual de vítimas na cidade de SP

2.6 Exemplo 6 - Buscando tendências com o argumento geom_smooth em ggplot

```
# Carregar dados
dados_var <- BrazilCrime::get_sinesp_vde_data(state = "BA", typology = "Homicídio doloso",
    city = "Salvador", category = "vitimas", granularity = "month", year = 2015:2023)
#> Query completed.
dados_var <- dados_var |>
    dplyr::mutate(data = as.Date(paste0(ano, "-", mes, "-01")))
# Carregar pacotes library(gqplot2)
# Criar gráfico com smoothing
ggplot2::ggplot(dados_var, ggplot2::aes(x = data)) + ggplot2::geom_line(ggplot2::aes(y =

→ total_vitima,

    color = "Valores mensais"), size = 0.8) + ggplot2::geom_smooth(ggplot2::aes(y = total_vitima,
    color = "Tendência"), method = "loess", se = FALSE, size = 1.2, span = 0.3) +
    ggplot2::scale_color_manual(name = "Série Temporal", values = c(`Valores mensais` = "#0072B2",
        Tendência = "#D55E00")) + ggplot2::labs(title = "Tendência de homicídios dolosos em

→ Salvador - BA (2015-2023)",

    x = "Data", y = "Total de Vítimas") + ggplot2::theme_minimal(base_size = 12) +
    ggplot2::theme(plot.title = ggplot2::element_text(face = "bold", size = 10, hjust = 0.5),
        axis.text.x = ggplot2::element_text(angle = 45, hjust = 1), panel.grid.minor =

    ggplot2::element_blank(),

        legend.position = "top", legend.direction = "horizontal", legend.box = "horizontal",
        legend.title = ggplot2::element_text(size = 9, face = "bold"), legend.text =

    ggplot2::element_text(size = 9))
```

```
#> `geom_smooth()` using formula = 'y ~ x'
#> Warning: Removed 1 row containing non-finite outside the scale range
#> (`stat_smooth()`).
```

Tendência de homicídios dolosos em Salvador - BA (2015-2023)

2.7 Exemplo 7 - Análise de correlação

```
# Pacotes necessários library(BrazilCrime) library(tidyverse)
# library(ggcorrplot)
# Buscar dados para SP em 2022 (cross-section municipal)
dados_cross <- BrazilCrime::get_sinesp_vde_data(state = "SP", granularity = "year",</pre>
   year = 2022, category = "vitimas")
#> Query completed.
# Selecionar algumas tipologias comuns
tipos_desejados <- c("Feminicídio", "Homicídio doloso", "Suicídio", "Lesão corporal seguida de

→ morte")

# Agrupar e pivotar os dados corretamente
dados_filtrados <- dados_cross |>
   dplyr::filter(evento %in% tipos_desejados) |>
    dplyr::group_by(municipio, evento) |>
    dplyr::summarise(total_vitima = sum(total_vitima, na.rm = TRUE), .groups = "drop") |>
    tidyr::pivot_wider(names_from = evento, values_from = total_vitima) |>
    tidyr::drop_na() |>
    dplyr::mutate(across(-municipio, as.numeric))
# Calcular matriz de correlação
```

Correlação entre diferentes crimes em SP (2022)

2.8

References

- [1] Ministério da Justiça e Segurança Pública (MJSP). SINESP Sistema Nacional de Informações de Segurança Pública. Disponível em: https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/estatistica/dados-nacionais-1/base-de-dados-e-notas-metodologicas-dos-gestores-estaduais-sinesp-vde-2022-e-2023. Acesso em: julho de 2025.
- [2] Vargette, G., Laltuf, I., Justus, M. (2024). BrazilCrime: Interface to Brazilian Crime Data. CRAN Comprehensive R Archive Network. Disponível em: https://CRAN.R-project.org/package=BrazilCrime
- [3] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
- [4] Gu, Z., Eils, R., Schlesner, M. (2022). ggcorrplot: Visualization of a Correlation Matrix using ggplot2. Disponível em: https://cran.r-project.org/package=ggcorrplot
- [5] R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

- [6] Zhu, H. (2021). kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. CRAN. https://cran.r-project.org/package=kableExtra
- [7] Wickham, H., François, R., Henry, L., Müller, K. (2019). dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org
- [8] Wickham, H. (2023). tidyr: Tidy Messy Data. https://tidyr.tidyverse.org
- [9] Chang, W. (2023). stringr: Simple, Consistent Wrappers for Common String Operations. https://stringr. tidyverse.org