MATH 265 HW5

Hanzhang Yin

Sep/26/2024

Question 1

(a)

We can analysis this question by the parity of $n \in \mathbb{Z}_+$.

1. When n is odd, $(-1)^n = -1$. Hence the term becomes:

$$-\left(1 - \frac{1}{n}\right) = -1 + \frac{1}{n}$$

Noticing that for all n, $0 \le \frac{1}{n} \le 1$, hence:

$$\frac{1}{n} \to 1 \Rightarrow -1 + \frac{1}{n} \le 0$$

Hence, for all odd $n, s \leq 0, s \in S$.

2. When n is even, $(-1)^n = 1$. Hence the term becomes:

$$\left(1 - \frac{1}{n}\right) = 1 - \frac{1}{n}$$

Noticing that for all n, $0 \le \frac{1}{n} \le 1$, hence:

$$\frac{1}{n} \to 0 \Rightarrow 1 - \frac{1}{n} \to 1$$

Hence, for all odd n, $1 - \frac{1}{n} \le 1$

Since every element $s \in S$, $s \le 1$. By definition, 1 is an upper bound of S.

(b)

Proof. If M is an upper bound for S, then $M \ge s$, for every element $s \in S$. Suppose M < 1 and M is an upper bound of S, it is sufficient for us to only consider the case where n is even.

Since $\frac{1}{2(1-M)} < 0$, by Archimedes Property, $\exists n \in \mathbb{N} \text{ s.t. } \frac{1}{2(1-M)} < n$, we can get:

$$\frac{1}{2(1-M)} < n \Rightarrow \frac{1}{1-M} < 2n \Rightarrow 1 < 2n(1-M) \Rightarrow \frac{1}{2n} < 1-M \Rightarrow M < 1-\frac{1}{2n}$$

In this case, we know that for n is even,

$$M < 1 - \frac{1}{2n} = (1 - \frac{1}{2n})(-1)^{2n}$$

Hence, there exists a $s \in S$ s.t. $M < (1 - \frac{1}{2n})(-1)^{2n}$ for some $n \in \mathbb{Z}_+$. This derived a contradiction, hence $M \ge 1$.

(c)

Proof. From part (a), 1 is an upper bound of S, and from part (b), no number less then 1 can be an upper bound. Thus by definition, the supremum of S is 1 (i.e. $\sup S = 1$).

Quesiton 2

Noting that by definition $A + B = \{a + b \mid a \in A, b \in B\}$

Proof. First we need to show that $\sup(A+B) \leq \sup A + \sup B$:

let $a \in A$ and $b \in B$. By definition of supremum, we have $a \leq \sup A$ and $b \leq \sup B$.

Therefore, for any $a \in A$ and $b \in B$:

$$a + b \le \sup A + \sup B$$

Since $A + B = \{a + b \mid a \in A, b \in B\}$, every element in A + B is less than or equal to $\sup A + \sup B$. Therefore, $\sup (A + B) \leq \sup A + \sup B$.

Then we can derived the equality from here:

Let $\epsilon > 0$, by definition of supremum, for set A and B:

- $\exists a_{\epsilon} \in A : \sup A \epsilon < a_{\epsilon} < \sup A$
- $\exists b_{\epsilon} \in B : \sup B \epsilon < b_{\epsilon} < \sup B$

Now consider $a_{\epsilon} + b_{\epsilon} \in A + B$. Then:

$$(\sup A - \epsilon) + (\sup B - \epsilon) < a_{\epsilon} + b_{\epsilon} \le \sup(A + B)$$

$$\Rightarrow \sup A + \sup B - 2\epsilon < a_{\epsilon} + b_{\epsilon} \le \sup(A + B)$$

$$\Rightarrow \sup A + \sup B - 2\epsilon < \sup(A + B)$$

$$\Rightarrow 0 \le \frac{1}{2}(\sup A + \sup B - \sup(A + B)) < \epsilon$$

By previous step, WLOG, since $\sup(A+B) \leq \sup A + \sup B$, the left inequality holds. Reffering to one of the theorem in section 2.1, we can get:

$$\frac{1}{2}(\sup A + \sup B - \sup(A + B)) = 0 \Rightarrow \sup A + \sup B = \sup(A + B)$$

Question 3

Proof. Let x > 1 and consider the set $S = \{x^n : n \in \mathbb{Z}_+\}$.

For any $M \in \mathbb{R}$, we want to show that there exists $n \in \mathbb{Z}_+$ such that $x^n > M$ Taking natural logarithm on both sides of the inequality $x^n > M$, we get:

$$n \cdot \ln(x) > \ln(M)$$

Since ln(x) > 0, noting x > 1, we can solve for n:

$$n > \frac{\ln(M)}{\ln(x)}$$

Note that RHS is a constant, let $N = \lceil \frac{\ln(M)}{\ln(x)} \rceil + 1$, Hence, for n = N, we have:

$$x^n > M$$

For any $M \in \mathbb{R}$, we can found $n \in \mathbb{Z}_+$ s.t. $x^n > M$. Thus, the set is not bounded from above.

Question 4

For example:

$$I_n = \left[1 + \frac{1}{n}, 3 + \frac{1}{n}\right)$$

For each positive integer n.

Property verification:

Proof.

- 1. Prove that $\bigcup_{n=1}^{\infty} I_n = (1, 4)$:
 - Show that $\bigcup_{n=1}^{\infty} I_n \subseteq (1,4)$: Let $x \in \bigcup_{n=1}^{\infty} I_n$. Then there exists $n \in \mathbb{N}$ s.t. $x \in I_n$, i.e.,

$$1 + \frac{1}{n} \le x < 3 + \frac{1}{n}$$

Since $\frac{1}{n} > 0$, it follows that:

$$1 < x < 3 + \frac{1}{n} \le 3 + 1 = 4$$

Therefore, $x \in (1,4)$, and thus:

$$\bigcup_{n=1}^{\infty} I_n \subseteq (1,4)$$

- Show that $(1,4) \subseteq \bigcup_{n=1}^{\infty} I_n$: Let $x \in (1,4)$. We need to find $n \in \mathbb{N}$ s.t. $x \in I_n$.
 - If $x \in (1,3)$: Then x-1>0. By Archimedes' Theorem, $\exists N \in \mathbb{N}$

$$\frac{1}{N} < x - 1$$

For $n \ge N$, we have $\frac{1}{n} \le \frac{1}{N} < x - 1$, so:

$$1 + \frac{1}{n} < x$$

Since x < 3, and $\frac{1}{n} > 0$, we have:

$$x < 3 + \frac{1}{n}$$

Therefore $x \in I_n$, for all n > N.

– If $x \in [3,4)$: Then 4-x>0. By Archimedes' Theorem, $\exists N \in \mathbb{N}$

$$\frac{1}{N} < 4 - x$$

For all n > N $\frac{1}{n} \leq \frac{1}{N} < 4 - x$, so:

$$x < 4 - \frac{1}{n}$$

However, since the right endpoint of I_n is $3 + \frac{1}{n}$, and $3 + \frac{1}{n} < 4 - \frac{1}{n}$, we need to ensure $x < 3 + \frac{1}{n}$. Observe that $x - 3 \ge 0$ and x - 3 < 1. By Archimedes theorem

again, there exists $n \in \mathbb{N}$ s.t.

$$\frac{1}{n} > x - 3$$

This implies":

$$x - 3 < \frac{1}{n} \Rightarrow x < 3 + \frac{1}{n}$$

Also, since $x \ge 3$ and $\frac{1}{n} > 0$:

$$x \ge 3 = 1 + 2 \le 1 + \frac{1}{n} + 2$$
, since $\frac{1}{n} < 1$

Note: $1 + \frac{1}{n} \le x$ holds because $1 + \frac{1}{n} \le 1 + 1 = 2 < x$ Therefore, $x \in I_n$

Combining two steps, $\bigcup_{n=1}^{\infty} I_n = (1,4)$

- 2. Prove that $\bigcap_{n=1}^{\infty} I_n = [2, 3]$:
 - Show that $[2,3] \subseteq \bigcap_{n=1}^{\infty} I_n$ Let $x \in [2,3]$. For all $n \in \mathbb{N}$, since: $1 + \frac{1}{n} \le 1 + 1 = 2 \le x \le 3$, and $x < 3 + \frac{1}{n}$ we have:

$$1 + \frac{1}{n} \le x < 3 + \frac{1}{n}$$

Therefore. $x \in I_n$, for all n. Thus,

$$[2,3] \subseteq \bigcap_{n=1}^{\infty} I_n$$

• Show that $\bigcap_{n=1}^{\infty} I_n \subseteq [2,3]$ Let $x \in \bigcap_{n=1}^{\infty} I_n$. Then for all $n \in \mathbb{N}$:

$$1 + \frac{1}{n} \le x < 3 + \frac{1}{n}$$

– Show $x \geq 2$: Suppose, x < 2, then x - 1 < 1. By Archimedes Theorem, there exists $N \in \mathbb{N}$ s.t. $\frac{1}{N} < x - 1$. For all $n \geq N$:

$$1 + \frac{1}{n} < x$$

- which contradicts the fact that $x \ge 1 + \frac{1}{n}$, for all n. Therefore, $x \ge 2$.
- Show $x \leq 3$: Suppose, x > 3, then x 3 > 0. By Archimedes Theorem, there exists $N \in \mathbb{N}$ s.t. $\frac{1}{N} < x 3$. For all $n \geq N$:

$$x > 3 + \frac{1}{n}$$

which contradicts the fact that $x < 1 + \frac{1}{n}$, for all n. Therefore, $x \le 3$.

Thus, $x \in [2, 3]$, so:

$$\bigcap_{n=1}^{\infty} I_n \subseteq [2,3]$$

Combining both inclusions, we have:

$$\bigcap_{n=1}^{\infty} I_n = [2, 3]$$

Overall $I_n = \left[1 + \frac{1}{n}, 3 + \frac{1}{n}\right)$ satisfy two given properties.