MT251P - Foundations of Euclidean Geometry

Assignment #4

Viktor Ilchev 22337763

Question 1

In each case below, state whether the statement is true or false. Justify your answer in each case.

Part A

There are infinitely many 4×4 matrices that are not invertible.

Solution

Since a square matrix is invertible if and only if its determinant is non-zero. Since there are infinitely many possible values for the elements of a 4×4 matrix, there are also infinitely many matrices that have a determinant of zero ie there are infinite amount of matrices with a zero row and any matrix with a zero row has det = 0 and therefore not invertible. Therefore the statement is True

Part B

There is a 4×4 invertible matrix A such that $A^3 = 2A^2$ and det A = 2.

Solution

$$A^{3} = 2A^{2}$$

$$A(AA) = There2(AA)$$

Since A is invertible, then A^{-1} exists. So:

$$A(AA)(A^{-1}A^{-1}) = 2(AA)(A^{-1}A^{-1})$$

Since $AA^{-1} = I_4 = A^{-1}A$, then:

$$A(AA^{-1})(AA^{-1}) = 2(AA^{-1})(AA^{-1})$$

We also know that $AA^{-1} = I_4$ since A is a 4×4 matrix. So:

$$A(I_4)(I_4) = 2(I_4)(I_4)$$

 $A = 2(I_4)$
 $\det(A) = \det(2(I_4))$
 $\det(A) = 16$

Since $16 \neq 2$, then the statement is False.

Part C

There is a 4 × 4 matrix A such that
$$A^2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Solution

$$\det(A^2) = \det(A)\det(A) = \det(A)^2$$

Since $det(A) \in \mathbb{R}$, then $det(A^2) \ge 0$ However,

$$\det(A^2) = -1 \det\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= -1 \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= -1$$

This gives a contradiction. Therefore the statement is False.

Question 2

Part A

Prove that $det(A^{-1}BA) = det(B)$, for all $n \times n$ matrices A, B, where A is invertible and n > 1.

Solution

Let *A* be an invertible $n \times n$ matrix, and let *B* be any $n \times n$ matrix. We have $\det(A^{-1}BA) = \det(A^{-1})\det(B)\det(A) = \frac{1}{\det(A)}\det(B)\det(A) = \det(B)$, so $\det(A^{-1}BA) = \det(B)$

Part B

Suppose $\underline{a} = i + 2j - k$, $\underline{b} = i + 3j + k$ and $\underline{c} = 3i + 8j + 4k$. Find $||\underline{w}||^2$ if $\underline{w} \in \mathbb{R}^3$ such that $\underline{w}.\underline{a} = 3$, $\underline{w}.\underline{b} = 5$ and $\underline{w}.\underline{c} = 17$.

Solution

Since \underline{w} is in \mathbb{R}^3 , it must be represented in the form of $\underline{w} = xi + yj + zk$ for some $x, y, z \in \mathbb{R}$. We have the following:

$$\underline{w}.\underline{a} = (xi + yj + zk).(i + 2j - k) = x + 2y - z = 3$$

$$\underline{w}.\underline{b} = (xi + yj + zk).(i + 3j + k) = x + 3y + z = 5$$

$$\underline{w}.\underline{c} = (xi + yj + zk).(3i + 8j + 4k) = 3x + 8y + 4z = 17$$

Now we can solve for x, y, z using a matrix:

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
1 & 3 & 1 & 5 \\
3 & 8 & 4 & 17
\end{pmatrix}$$

Replace R_2 with $R_2 - R_1$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
0 & 1 & 2 & 2 \\
3 & 8 & 4 & 17
\end{pmatrix}$$

Replace R_3 with $R_3 - 3R_1$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
0 & 1 & 2 & 2 \\
0 & 2 & 7 & 8
\end{pmatrix}$$

Replace R_3 with $R_3 - 2R_2$

$$\begin{pmatrix}
1 & 2 & -1 & 3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 3 & 4
\end{pmatrix}$$

Replace R_1 with $R_1 - 2R_2$

$$\begin{pmatrix}
1 & 0 & -5 & -1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 3 & 4
\end{pmatrix}$$

Replace R_3 with $\frac{1}{3}R_3$

$$\begin{pmatrix}
1 & 0 & -5 & -1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & \frac{4}{3}
\end{pmatrix}$$

Replace R_2 with $R_2 - 2R_3$

$$\begin{pmatrix}
1 & 0 & -5 & -1 \\
0 & 1 & 0 & -\frac{2}{3} \\
0 & 0 & 1 & \frac{4}{3}
\end{pmatrix}$$

Replace R_1 with $R_1 - (-5)R_3$

$$\begin{pmatrix} 1 & 0 & 0 & \frac{17}{3} \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & \frac{4}{3} \end{pmatrix}$$

Then:
$$x = \frac{17}{3}, y = -\frac{2}{3}, z = \frac{4}{3}$$

Therefore $||\underline{w}|| = \sqrt{x^2 + y^2 + z^2} = \sqrt{\frac{17}{3}^2 - \frac{2}{3}^2 + \frac{4}{3}^2} = \frac{\sqrt{309}}{3}$
Then: $||w||^2 = (\frac{\sqrt{309}}{3})^2 = \frac{103}{3}$

Question 3

Find the solution set of the following system of linear equations:

$$x_1 - 4x_2 + 3x_3 = 0$$

$$2x_1 - 6x_2 + 10x_3 = 6$$

$$x_1 - 2x_2 + 7x_3 = 5$$

Solution

We can solve for x_1, x_2, x_3 using a matrix:

$$\begin{pmatrix} 1 & -4 & 3 & 0 \\ 2 & -6 & 10 & 6 \\ 1 & -2 & 7 & 5 \end{pmatrix}$$

Replace R_2 with $R_2 - 2R_1$

$$\begin{pmatrix}
1 & -4 & 3 & 0 \\
0 & 2 & 4 & 6 \\
1 & -2 & 7 & 5
\end{pmatrix}$$

Replace R_3 with $R_3 - R_1$

$$\begin{pmatrix}
1 & -4 & 3 & 0 \\
0 & 2 & 4 & 6 \\
0 & 2 & 4 & 5
\end{pmatrix}$$

Replace R_3 with $R_3 - R_2$

$$\begin{pmatrix}
1 & -4 & 3 & 0 \\
0 & 2 & 4 & 6 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

Notice how the last row states: 0 = -1, therefore the system has no solutions.

Question 4

Find the solution set of the following system of linear equations:

$$4x - 6y + 8z = 8$$

$$x + 2y - 5z = 2$$

$$y + 4x - 6z = 8$$

Solution

We can solve for x, y, z using a matrix:

$$\begin{pmatrix} 4 & -6 & 8 & 8 \\ 1 & 2 & -5 & 2 \\ 4 & 1 & -6 & 8 \end{pmatrix}$$

Replace R_1 with R_2

$$\begin{pmatrix}
1 & 2 & -5 & 2 \\
4 & -6 & 8 & 8 \\
4 & 1 & -6 & 8
\end{pmatrix}$$

Replace R_2 with $R_2 - 4R_1$

$$\begin{pmatrix} 1 & 2 & -5 & 2 \\ 0 & -14 & 28 & 0 \\ 4 & 1 & -6 & 8 \end{pmatrix}$$

Replace R_3 with $R_3 - 4R_1$

$$\begin{pmatrix}
1 & 2 & -5 & 2 \\
0 & -14 & 28 & 0 \\
0 & -7 & 14 & 0
\end{pmatrix}$$

Replace R_2 with $\frac{1}{2}R_2$

$$\begin{pmatrix}
1 & 2 & -5 & 2 \\
0 & -7 & 14 & 0 \\
0 & -7 & 14 & 0
\end{pmatrix}$$

Replace R_3 with $R_3 - R_2$

$$\begin{pmatrix}
1 & 2 & -5 & 2 \\
0 & -7 & 14 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Replace R_2 with $-\frac{1}{7}R_2$

$$\begin{pmatrix}
1 & 2 & -5 & 2 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Replace R_1 with $R_1 - 2R_2$

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Notice how the matrix is in RREF and the last row states 0 = 0, therefore the system has infinitely many solutions. Then the system of linear equations is:

$$x - z = 2$$

$$y - 2z = 0$$

By Remark 4, x, y are leading variables, and z is a free variable. We say that z = s, where s can be any real number. Then we can represent x, y in terms of z:

$$x = 2 + z = 2 + s$$

$$y = 2z = 2s$$

Therefore the solution set of the system of equations is:

$$\{(2+s, 2s, s) : s \in \mathbb{R}\}$$

Question 5

Find
$$A^{-1}$$
 if $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}$

Solution

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$

Replace R_1 with R_2 in both matrices

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 4 & -3 & 8 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Replace R_3 with $R_3 - 4R_1$ in both matrices

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -4 & 1 \end{pmatrix}$$

Replace R_3 with $R_3 - (-3)R_2$ in both matrices

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 3 & -4 & 1 \end{pmatrix}$$

Replace R_3 with $\frac{1}{2}R_3$ in both matrices

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{pmatrix}$$

Replace R_2 with $R_2 - 2R_3$ in both matrices

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -2 & 4 & -1 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{pmatrix}$$

Replace R_1 with $R_1 - 3R_3$ in both matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{9}{2} & 7 & -\frac{3}{2} \\ -2 & 4 & -1 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{pmatrix}$$

Since A is in RREF, then:

$$A^{-1} = \begin{pmatrix} -\frac{9}{2} & 7 & -\frac{3}{2} \\ -2 & 4 & -1 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{pmatrix}$$