Dieharder Usage and Results

- Essential Usage Synopsis
- List of Currently Available Tests
- Screen Shots (sort of)
- Back to Dieharder Page

Essential Usage Synopsis

Dieharder is autodocumenting and is simple to use right away. In fact, if you compile the test or installed the provided binary rpm's, you should be able to immediate run it by entering:

dieharder -a

This should run -a(ll) tests on the default GSL generator. Let's review the features of dieharder that document its usage; then you should be able to figure the rest out on your own.

Choose alternative random number generators with -g number. To learn what generators are available within your current version of the Gnu Scientific Library (GSL -- which can vary as more or added in future versions) enter:

dieharder -g -1

or enter diehard on a line by itself. Note that a couple of the generators listed are not in the GSL but were added by me. It is quite simple to add your own random number generators to be tested by using these as templates.

dieharder -l

should list all the tests implemented in the current snapshop of DieHarder.

Finally, the venerable and time tested:

dieharder -h

provides a Usage synopsis (which can quite long)

Also following the *nix tradition:

man dieharder

is the (installed) man page, which may or many not be completely up to date as the suite is under active development. For developers, additional documentation is available in the toplevel directory or doc subdirectory of the source tree. Eventually, a complete DieHarder manual in printable PDF form will be available both on this website and in /usr/share/doc/dieharder-*/ (when it is finished, that is).

Back to top

List of Currently Available Generators and Tests

Here is the list of generators that were available at the time this documentation was written. There are quite a lot of them, including many of the most famous and useful generators currently known!

rgb@lilith|B:1344>dieharder

Listing available built-in gsl-linked generators:					
Id	Test Name		est Name		Test Name
====	======================================	 1 cr	======================================	==== າ	coveyou
_	fishman18		ishman20		fishman2x
_			nuthran	_	knuthran2
	gfsr4		instd	_	
	lecuyer21 mt19937				mrg m+10037 1008
			t19937_1999		mt19937_1998
	r250	16 r			ran1
	ran2	19 ra			rand
	rand48		andom128-bsd		random128-glibc2
	random128-libc5		andom256-bsd		random256-glibc2
	random256-libc5		andom32-bsd		random32-glibc2
	random32-libc5		andom64-bsd		random64-glibc2
	random64-libc5		andom8-bsd		random8-glibc2
36	random8-libc5	37 ra	andom-bsd	38	random-glibc2
39	random-libc5	40 ra	andu	41	ranf
42	ranlux	43 ra	anlux389	44	ranlxd1
45	ranlxd2	46 ra	anlxs0	47	ranlxs1
48	ranlxs2	49 ra	anmar	50	slatec
51	taus	52 ta	aus2	53	taus113
54	transputer	55 t	t800	56	uni
57	uni32	58 va	ax	59	waterman14
60	zuf		·		•
Listing available non-gsl generators:					
Id	Test Name		est Name		Test Name
61	/dev/random	62 /	dev/urandom	63	empty

Note that the last three tests are examples of random number generators that have been wrapped up in GSL compatible clothes and linked to the GSL so that the standard GSL interface works for them. *Any* random number generator that one wishes to test can thus easily be added for testing using these as prototypes, and can likely be submitted to the GSL for inclusion if they pass the tests as well or better than the tests that are already there. That makes this a *very convenient tool* for testing new RNGs.

To list the current fully implemented tests, enter the following:

rgb@lilith|B:1346>dieharder -l

DieHarder Test Suite

The following tests are available and will be run when diehard -a is invoked. Special options or suggested parameters are indicated if they are needed to get a satisfactory result (such as completion in a

reasonable amount of time).

```
Diehard Tests
-d 1 Diehard Runs test
-d 2 Diehard Birthdays test (-t 100, or less than 200)
-d 3 Diehard Minimum Distance (2D Spheres) test
-d 4 Diehard 3D Spheres (minimum distance) test

RGB Tests
-r 1 Bit Persist test
-r 2 Bit Ntuple Distribution test suite (-n ntuple for 1-8)

Statistical Test Suite (STS)
-s 1 STS Monobit test
-s 2 STS Runs test
```

User Tests

No user-developed test are installed at this time.

Full descriptions of the tests are available (as you can see) from within the tool and source documentation. All tests are completely and independently rewritten from their description alone, and may be functionally modified or extended relative to the original source code published in the originating suite. The author (rgb) bears complete responsibility for these changes, subject to the standard GPL code disclaimer (in essence, yes it's my fault if they don't work but using the tool is at your own risk).

Back to top

Screen Shots (sort of)

An example: The result of running the Diehard runs test on a generator that clearly passes (mt19937) and one that clearly fails (randu):

```
rgb@lilith|B:1350>dieharder -d 1 -g 12
Diehard "runs" test (modified).
# This tests the distribution of increasing and decreasing runs
# of integers. If called with reasonable parameters e.g. -s 100
# or greater and -n 100000 or greater, it will compute a vector
# of p-values for up and down and verify that the proportion
# of these values less than 0.01 is consistent with a uniform
# distribution.
# Random number generator tested: mt19937
# size of vector tested = 10000 (100000 or more suggested)
# p = 0.102725 for diehard_runs test from Kuiper Kolmogorov-Smirnov
    test on 200 pvalues (up runs + down runs).
rgb@lilith|B:1352>dieharder -d 1 -g 40
Diehard "runs" test (modified).
# This tests the distribution of increasing and decreasing runs
# of integers. If called with reasonable parameters e.g. -s 100
# or greater and -n 100000 or greater, it will compute a vector
# of p-values for up and down and verify that the proportion
# of these values less than 0.01 is consistent with a uniform
# distribution.
# Random number generator tested: randu
# size of vector tested = 10000 (100000 or more suggested)
```

p = 0.006163 for diehard runs test from Kuiper Kolmogorov-Smirnov

test on 200 pvalues (up runs + down runs).

In the latter case, the value of p indicates that there is only a 0.6% chance that a perfect random number generator could have produced the observed distribution of p-values from 100 independent runs of 10000 samples each. It is thus unlikely (in a manner of speaking) that randu is a good random number generator, but it is still possible -- even a perfect generator *could* have produced the observed result, it just isn't likely. One advantage of dieharder is that one can easily crank up the number of samples per test (-t) to make failure certain:

randu *fails* this test. To be more precise, the probability that randu is a "good" generator but produced the observed distribution is less than 0.000001, according to this test. mt19937, on the other hand, still returns perfectly reasonable values of p from the final KS test, even when run repeatedly with still larger -t.

All the tests have a similar call format, and share control parameters to the extent possible. At this point I expect to live with the overall structure and encapsulation of the tests for a while (after completing a fairly major overhaul) and will spend time in the near term just adding tests.