Signals and Systems 1.2 ---Elementary Signals School of Information & Communication Engineering, BUPT Reference: 1. Textbook: 1.6

Outline of Today's Lecture

- Elementary Signals: Several elementary signals feature prominently in the study of signals and systems. All of elementary signals serve as building blocks for construction of more complex signals.
 - Exponential Signals
 - Sinusoidal Signals
 - The Unit-Step Function
 - □ The Unit-Impulse Function

2011-9-27

Elementary Signals—Exponential Signals $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ 1. Decaying exponential, for which a < 02. Growing exponential, for which a > 0 $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameters}$ $x(t) = Be^{at} \qquad \text{B and } a \text{ are real parameter$

Elementary Signals---Exponential Signals

For a physical example of an exponential signal, consider a so-call lossy capacitor. The capacitor has capacitance C, and the loss is represented by shunt resistance(分流电阻) R. The capacitor is charged by connecting a battery across it, and then the battery is removed at time t=0. Let V_0 denote the initial value of the voltage developed across the capacitor. For t ≥ 0 : $RC \frac{d}{dt} v(t) + v(t) = 0$ $v(t) = V_0 e^{-t/(RC)}$ RC = Time constant

where v(t) is the voltage measured across the capacitor at time t.

Elementary Signals---Sinusoidal Signals

Example 1.7 Discrete-Time Sinusoidal Signal

A pair of sinusoidal signals with a common angular frequency is defined by $x_1[n] = \sin[5\pi n]$ and $x_2[n] = \sqrt{3}\cos[5\pi n]$ (a) Both $x_1[n]$ and $x_2[n]$ are periodic. Find their common fundamental period. (b) Express the composite sinusoidal signal $y[n] = x_1[n] + x_2[n]$ In the form $y[n] = A\cos(\Omega n + \phi)$, and evaluate the amplitude A and phase ϕ .

Sol.>

(a) Angular frequency of both $x_1[n]$ and $x_2[n]$: $\Omega = 5\pi \quad \text{radians/cycle} \qquad \qquad N = \frac{2\pi m}{\Omega} = \frac{2m}{5\pi} = \frac{2m}{5}$ $\Rightarrow \text{This can be only for } m = 5, 10, 15, ..., \text{ which results in } N = 2, 4, 6, ...$

Elementary Signals

-Relation Between Sinusoidal and Complex Exponential Signals

1. Euler's identity: $e^{j\theta} = \cos \theta + j \sin \theta$ Complex exponential signal: $B = Ae^{j\phi}$ $x(t) = A\cos(\omega t + \phi)$ $\Rightarrow A\cos(\omega t + \phi) = \text{Re}\{Be^{j\omega t}\}$ $= Ae^{j\phi}e^{j\omega t}$ $= Ae^{j(\phi+\omega t)}$ $= A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$ $\Rightarrow A\sin(\omega t + \phi)$ $\Rightarrow A\sin(\omega t + \phi) = \text{Im}\{Be^{j\omega t}\}$

Elementary Signals---Impulse Function

The impulse and unit step function u(t) are related to each other

3. $\delta(t)$ is the derivative of u(t):

$$\delta(t) = \frac{d}{dt}w(t)$$

4. u(t) is the integral of $\delta(t)$:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

2011-9-27

Elementary Signals---Impulse Function

- Properties of impulse function:
- 1. Even function: $\frac{\delta(-t) = \delta(t)}{2. \text{ Sifting property:}}$

$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$$

$$\int_{-\infty}^{\infty} f(t) \delta(t) dt = f(0)$$

 $\int_{-\infty}^{\infty} \delta(t - t_0) dt = 1$

3. Time-scaling property:

$$\delta(at) = \frac{1}{a}\delta(t), \quad a > 0$$

$$f(t)\delta(t) = f(0)\delta(t)$$

$$\int_{-\infty}^{\infty} f(t) \delta'(t) dt = -f'(0)$$

$$U(t) = \int_{-\infty}^{t} \delta(t) dt$$

Elementary Signals---Impulse Function

To represent the function $x_{\Delta}(t)$, we use the rectangular pulse shown in Fig. 1.44(a), which has duration Δ , amplitude 1/ Δ , and therefore unit area. Correspondingly, the time-scaled function $x_{\Delta}(at)$ is shown in Fig. 1.44(b) for a > 1. The amplitude of $x_{\Delta}(at)$ is left unchanged by the time-scaling operation. Consequently, in order to restore the area under this pulse to unity, $x_{\Delta}(at)$ is scaled by the same factor a, as indicated in Fig. 1.44(c), in which the time function is thus denoted by $ax_{\Delta}(at)$. Using this new function in Eq. (1.67) yields

(a) Figure 1.44 (p. 48) Steps involved in proving the time-scaling property of the unit impulse. (a) Rectangular pulse $x\Delta(t)$ of amplitude $1/\Delta$ and duration Δ , symmetric about the origin. (b) Pulse $x\Delta(t)$ compressed by factor a. (c) Amplitude scaling of the compressed pulse, restoring it to

Elementary Signals---Impulse Function Derivatives of The Impulse Definitions: (1) $d\delta(t)$ The first derivative of $\delta(t)$ as the limiting form of the first derivative of the same rectangular pulse. The rectangular pulse is equal to the step function $(1/\triangle)[u(t + \triangle/2)-u(t - \triangle/2)]$

Summary and Exercises

- Summary
 - Exponential Signals
 - Sinusoidal Signals
 - The Unit-Step Function
 - The Unit-Impulse Function
- Exercises
 - P89: 1.54 (a, c, e)
 - P90: 1.56 (b, d, f, h, j), 1.57 (a, c, e, g, i), 1.58, 1.60

Trigonometric identities

$$\sin A \pm \sin B = 2\sin \frac{A \pm B}{2}\cos \frac{A \mp B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

 $\sin 3A = 3\sin A - 4\sin^3 A$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

 $\cos 3A = 4\cos^3 A - 3\cos A$

http://en.wikipedia.org/wiki/List of trigonometric identities

Circuit Fundenmental

$$u_{\scriptscriptstyle R}(t) = Ri_{\scriptscriptstyle R}(t)$$

$$i_C(t) = C \frac{du_C(t)}{dt}$$

$$u_L(t) = L \frac{di_L(t)}{dt}$$