■ Chapitre 17 ■

Fonctions vectorielles, Arcs paramétrés

Notations.

- $\blacksquare I$ désigne un intervalle de \mathbb{R} non vide et non réduit à un point.
- \blacksquare L'espace vectoriel \mathbb{R}^n est muni de sa structure euclidienne usuelle.
- \bullet $\langle \cdot, \cdot \rangle$ désigne le produit scalaire et $\| \cdot \|_2$ la norme associée.
- $\blacksquare f$ désigne une fonction de I vers \mathbb{R}^n .

I. Régularité

I.1 Dérivabilité

Définition 1 (Dérivabilité).

Soit $x_0 \in I$. La fonction f est dérivable au point x_0 si l'une des propriétés équivalentes suivantes est satisfaite :

* son taux d'accroissement en x_0 admet une limite finie lorsque x tend vers x_0 , i.e. il existe $\ell \in \mathbb{R}^n$ tel que

$$\lim_{x \to x_0, x \neq x_0} \frac{1}{x - x_0} (f(x) - f(x_0)) = \ell.$$

* la fonction f admet un développement limité à l'ordre 1 en x_0 , i.e. il existe $(a,b) \in (\mathbb{R}^n)^2$ tel que $f(x) = a + (x - x_0)b + o(x - x_0)$.

La limite du taux d'accroissement est notée $f'(x_0)$. Alors, $f(x_0) = a$ et $f'(x_0) = b$.

Propriété 1 (Applications coordonnées).

Soit $f = (f_1, ..., f_n)$ et $x_0 \in I$. La fonction f est dérivable en x_0 si et seulement si pour tout $i \in [1, n]$, f_i est dérivable en x_0 .

Exercice 1. Déterminer la dérivée des fonctions

1.
$$f: t \mapsto (\cos(t), \sin(t))$$
.

2.
$$q: t \mapsto (r(t-\sin(t)), r(1-\cos(t))).$$

Définition 2 (Dérivabilité sur un intervalle).

La fonction f est dérivable sur I si elle est dérivable en tout point de I.

I.2 Dérivabilité & Opérations

Théorème 1 (Structure d'espace vectoriel).

Soient f et g deux fonctions dérivables en x_0 et $\lambda \in \mathbb{R}$. Alors, $\lambda f + g$ est dérivable en x_0 et

$$(\lambda f + q)'(x_0) = \lambda f'(x_0) + q'(x_0).$$

Théorème 2 (Applications linéaires).

Soit $u \in \mathcal{L}(\mathbb{R}^n)$ une application linéaire. Si f est dérivable en x_0 , alors $u \circ f$ est dérivable en x_0 et

$$(u \circ f)'(x_0) = u \circ f'(x_0).$$

Exercice 2. Soit ω un vecteur de \mathbb{R}^3 et $f: t \mapsto (1, t^2, t^3)$, où \mathbb{R}^3 est orienté par la base canonique. Déterminer la dérivée de la fonction $g: t \mapsto \omega \wedge f(t)$.

Théorème 3 (Applications bilinéaires).

Soit ψ une application bilinéaire sur $\mathbb{R}^n \times \mathbb{R}^n$. Si f et g sont dérivables en x_0 , alors $\psi(f,g)$ est dérivable en x_0 et

$$\psi(f,g)'(x_0) = \psi(f',g)(x_0) + \psi(f,g')(x_0).$$

Exercice 3.

- **1.** Soient f et g deux fonctions dérivables sur I à valeurs dans \mathbb{R}^3 orienté par la base canonique. Déterminer la dérivée de la fonction $h: t \mapsto f(t) \wedge g(t)$.
- **2.** Soient M et N deux fonctions continues et dérivables sur \mathbb{R} , à dans $\mathscr{M}_n(\mathbb{R})$. Déterminer la dérivée de $h: t \mapsto M(t) \cdot N(t)$.

Corollaire 4.

Soient f et g deux fonctions dérivables de I dans \mathbb{R}^2 . Les fonctions $\langle f, g \rangle$ et $\det(f, g)$ sont dérivables et satisfont, pour tout réel $t \in I$,

$$\langle f, g \rangle' = \langle f', g \rangle + \langle f, g' \rangle,$$

$$\|f\|_2'(t) = \frac{\langle f(t), f'(t) \rangle}{\|f(t)\|_2} \operatorname{ssi} f(t) \neq (0, 0),$$

$$\det(f, g)' = \det(f', g) + \det(f, g').$$

Exercice 4. Soient f_1 et f_2 deux solutions de l'équation différentielle y'' = ay' + by. En utilisant la bilinéarité du déterminant, déterminer une équation différentielle satisfaite par $W = \begin{vmatrix} f_1 & f_2 \\ f'_1 & f'_2 \end{vmatrix}$.

I.3 Classe \mathscr{C}^k

Définition 3 (Fonctions de classe \mathscr{C}^k).

Soit $k \in \mathbb{N}$. Sous réserve d'existence, la dérivée $k^{\text{ème}}$ de f est définie par

$$f^{(0)} = f, f^{(k+1)} = (f^{(k)})'.$$

La fonction f est de classe \mathscr{C}^k si $f^{(k)}$ existe et est continue. Elle est de classe \mathscr{C}^{∞} si toutes ses dérivées existent.

Propriétés 2.

Soient f, g deux fonctions dérivables k fois, λ un réel, u une application linéaire et ψ une application bilinéaire. Alors, $\lambda f + g, u \circ f$ et $\psi(f,g)$ sont de classe \mathscr{C}^k et

(i).
$$(\lambda f + g)^{(k)} = \lambda f^{(k)} + g^{(k)}$$
.
(ii). $(u \circ f)^{(k)} = u \circ f^{(k)}$.
(iii). $\psi(f, g)^{(k)} = \sum_{j=0}^{k} {k \choose j} \psi(f^{(k-j)}, g^{(j)})$.

II. Arc paramétré

II.1 Définition

Définition 4 (Arc paramétré, Support).

Soit $k \in \mathbb{N}^* \cup \{\infty\}$. Soit f une fonction de classe \mathscr{C}^k de I dans \mathbb{R}^2 . Le couple (I, f) est un arc paramétré, ou courbe paramétrée, de classe \mathscr{C}^k .

L'ensemble $f(I) = \{f(t), t \in I\}$ est le support de la courbe (I, f).

Exercice 5.

- 1. Décrire le cercle trigonométrique à l'aide d'un arc paramétré.
- **2.** Que dire du mouvement d'une particule dont la trajectoire f satisfait $\langle f',f''\rangle=0$?
- 3. Comment caractériser un mouvement à accélération centrale à l'aide des vecteurs f et f''?

II.2 Tangentes

Notation.

Dans toute la suite, $\Gamma = (I, f)$ désigne un arc paramétré de classe \mathscr{C}^2 . Pour tout $t \in I$, le point du plan de coordonnées f(t) sera noté M_t . Le réel t_0 désigne un élément de I.

Définition 5 (Point régulier / singulier).

Le point M_{t_0} est dit

- (i). régulier si $f'(t_0) \neq (0,0)$,
- (ii). stationnaire ou singulier si $f'(t_0) = (0,0)$.

Exercice 6. Déterminer les points réguliers de

1. Cercle.

$$f: t \mapsto (\cos(t), \sin(t)).$$

$$g: t \mapsto (r(t - \sin(t)), r(1 - \cos(t))).$$

3.
$$h: t \mapsto \left(2t - \frac{1}{t^2}, 2t + t^2\right)$$
.

4.
$$u: t \mapsto \left(\frac{t^2+1}{2t}, \frac{2t-1}{t^2}\right)$$

Définition 6 (Tangente).

L'arc Γ admet une tangente au point M_{t_0} s'il existe une fonction $u:I\to\mathbb{R}$ telle que la fonction $t\mapsto \left(\frac{1}{u(t)}\overrightarrow{M_tM_{t_0}}\right)$ admette une limite non nulle \overrightarrow{v} en t_0 . La droite passant par M_{t_0} et dirigée par ce vecteur \overrightarrow{v} est la tangente en M_{t_0} à Γ .

Proposition 3 (Tangente en un point régulier).

Si M_{t_0} est un point régulier, l'arc Γ admet une tangente au point M_{t_0} dirigée par le vecteur de coordonnées $f'(t_0)$.

Exercice 7. Soit $v \in \mathscr{C}^1(I,\mathbb{R})$. Déterminer, en tout point, un vecteur directeur de la tangente pour les courbes :

1.
$$w: t \mapsto (t, v(t)).$$

2.
$$f: t \mapsto (\cos(t), \sin(t))$$
.

3. Lemniscate de Bernoulli.
$$v: t \mapsto \left(\frac{t}{t^4+1}, \frac{t^3}{t^4+1}\right)$$
.

Théorème 5.

S'il existe un plus petit entier $p \in [1, k]$ tel que $f^{(p)}(t_0) \neq 0$. La droite passant par le point M_{t_0} de coordonnées $f(t_0)$ et de vecteur directeur $f^{(p)}(t_0)$ est la tangente à Γ en M_{t_0}

Exercice 8. Déterminer, en tout point singulier, un vecteur directeur de la tangente de :

1.
$$g: t \mapsto (r(t - \sin(t)), r(1 - \cos(t))).$$

3.
$$u: t \mapsto \left(\frac{t^2+1}{2t}, \frac{2t-1}{t^2}\right)$$
.

2.
$$h: t \mapsto \left(2t - \frac{1}{t^2}, 2t + t^2\right)$$
.

Notation.

On suppose dans la suite que $k \ge 2$.

Définition 7 (Repère local).

On suppose qu'il existe deux entiers minimaux $0 tels que <math>f^{(p)}(t_0)$ et $f^{(q)}(t_0)$ soient non colinéaires. Alors, $(M(t_0), f^{(p)}(t_0), f^{(q)}(t_0))$ est le repère local.

- (i). Si p est impair et q est pair, le point $M(t_0)$ est un point ordinaire.
- (ii). Si p est impair et q est impair, le point $M(t_0)$ est un point d'inflexion.
- (iii). Si p est pair et q est impair, le point $M(t_0)$ est un point de rebroussement de première espèce.

(iv). Si p est pair et q est pair, le point $M(t_0)$ est un point de rebroussement de seconde espèce.

Exercice 9. Tracer l'allure, au voisinage des points singuliers, des arcs :

1.
$$t \mapsto \left(\frac{t^2+1}{2t}, \frac{2t-1}{t^2}\right) \operatorname{sur} \mathbb{R}_+^*$$

2.
$$t \mapsto (t^2 + t^3, \frac{t^3}{1+t}) \text{ sur } \mathbb{R} \setminus \{-1\}.$$

II.3 Branches infinies

Notations.

- t_0 désigne une des bornes de l'intervalle I, ou les quantités $+\infty$ et $-\infty$.
- \blacksquare On note $f: t \mapsto (f_1(t), f_2(t))$.

Définition 8 (Branche infinie, Direction asymptotique).

- (i). L'arc Γ possède une branche infinie en t_0 si $\lim_{t\to t_0} \|f(t)\| = +\infty$.
- (ii). L'arc Γ admet une direction asymptotique de pente $m \in \mathbb{R}$ en t_0 si

$$\lim_{t \to t_0} ||f(t)|| = +\infty \text{ et } \lim_{t \to t_0} \frac{f_2(t)}{f_1(t)} = m.$$

Définition 9 (Asymptote, Branche parabolique).

Soit Γ un arc paramétré de direction asymptotique m au point t_0 .

- (i). Si $f_2 mf_1$ a une limite finie p en t_0 , la droite d'équation y = mx + p est dite asymptote à l'arc paramétré en t_0 .
- (ii). Si $f_2 mf_1$ a une limite infinie en t_0 , l'arc paramétré possède une branche parabolique de pente m en t_0 .

II.4 Tracé d'un arc paramétré

Notation.

- $\blacksquare \, f: t \mapsto (x(t), y(t))$ désigne un arc paramétré.
- \bullet $(O, \overrightarrow{i}, \overrightarrow{j})$ désigne un repère orthonormé direct du plan euclidien orienté.
- 1. Recherche de l'intervalle de définition \mathcal{D} de l'arc paramétré.
- 2. Réduction de l'intervalle d'étude en utilisant les symétries.

Généralement, on teste les changements de paramétrage

- * u = -t, réduction à $\mathcal{D} \cap \mathbb{R}_+$,
- * $u = 2t_0 t$, réduction à $\mathcal{D} \cap [t_0, +\infty[$,
- * $u = \frac{1}{t}$, réduction à $\mathcal{D} \cap [0, 1]$.

Propriété		Symétrie
x(u) = x(t)	y(u) = y(t)	identité
x(u) = x(t) + a	y(u) = y(t) + b	translation $a\overrightarrow{i} + b\overrightarrow{j}$
x(u) = -x(t)	y(u) = y(t)	$\operatorname{axe}\left(O,\overrightarrow{j}\right)$
x(u) = x(t)	y(u) = -y(t)	$\operatorname{axe}\left(O,\overrightarrow{i}\right)$
x(u) = -x(t)	y(u) = -y(t)	centre O
x(u) = y(t)	y(u) = x(t)	axe première bissectrice

- **3.** Régularité & Variations : étude des variations de x et y, tracé du tableau des variations (incluant les tangentes remarquables).
- 4. Étude des points stationnaires (Utilisation de la formule de Taylor-Young).
- **5.** Étude des branches infinies : $\lim_{t_0} ||f|| = +\infty$ (Utilisation de développements asymptotiques).

$\lim_{t_0} x(t) $	$\lim_{t_0} y(t) $	${ m Comportement}$
$+\infty$	y_0	asymptote $y = y_0$
x_0	$+\infty$	asymptote $x = x_0$
$\lim_{t_0} \frac{ y }{ x } = +\infty$		branche parabolique, direction (Oy)
$\lim_{t_0} \frac{ y }{ x } = 0$		branche parabolique, direction (Ox) .
$\lim_{t_0} \frac{y}{x} = a \in \mathbb{R}^*$		
	$\lim_{t_0} y - ax = \infty$	branche parabolique, direction $y = ax$
	$\lim_{t_0} y - ax = b$	asymptote $y = ax + b$

Si une des limites précédentes n'existe pas, on ne peut en général rien conclure. Position par rapport aux asymptotes.

6. Recherche éventuelle des points doubles.

Recherche des solutions du système d'équations $x(t) = x(u), y(t) = y(u), t \neq u$.

7. Tracé (mise en valeur des tangentes et points remarquables, on pourra préciser le sens des t croissants).

Exercice 10. Étudier les courbes paramétrées :

1.
$$f(t) = \left(t^2 + t^3, \frac{t^3}{1+t}\right)$$
.

2.
$$g(t) = (\cos(3t), \sin(2t))$$
.

III. Propriétés métriques

Notation.

■ Γ désigne un arc paramétré de classe \mathscr{C}^k dont tous les points sont supposés réguliers, i.e. $f'(t_0) \neq (0,0)$.

Définition 10 (Longueur d'arc).

Soient
$$t_1, t_2 \in I$$
 tels que $t_1 \leqslant t_2$. Le réel $\int_{t_1}^{t_2} \|f'(t)\|_2$ dt est la longueur d'arc (M_{t_1}, M_{t_2}) .

Exercice 11.

- 1. Calculer la longueur du segment de droite $t \mapsto (t, at + b)$ compris entre les paramètres 0 et 1.
- 2. Calculer la longueur du cercle unité.
- 3. Déterminer la distance parcourue par la valve du pneu d'un vélo lorsque celui-ci parcourt un tour.

Programme officiel (PSI)

Fonctions vectorielles, arcs paramétrés (p. 16)