Boundary Detection

Group 5: Qin Tong Bettina Tee, Daso Jung, Yan Renyu

Contents

- 1. Problem Statement
- 2. Approach taken to solve the problem
- 3. Key findings and observations
- 4. Live demo
- 5. Challenges encountered and how they were addressed

Problem Statement

Predict boundary score maps for given image, where each pixel's value (between 0.0 and 1.0) indicates the likelihood of being part of an object boundary.

Approach taken to solve the problem

- 1. Feature + Target Extraction
- 2. Feature Importance
- 3. Parameter Prediction
- 4. Image Processing
- 5. Edge Detection

1. Feature + Target Extraction

Features extracted:

- 1. Edge Density
- 2. Edge Sharpness
- 3. Colour Contrast:
- 4. Root Mean Square Contrast
- 5. Entropy
- 6. Mean Intensity
- 7. Standard Deviation of Intensity
- 8. Colour Channel Variability
- 9. Spatial Frequency

Target (parameters for preprocessing):

- Gaussian Blurring:
 - a. blur amount
 - b. sigma
- 2. Contrast Enhancing:
 - a. contrast factor

2. Feature Importance

2. Feature Importance

3. Parameter Prediction

Hyperparameter Tuning (GridSearch)

Best Random Forest Classifier

4. Image Preprocessing

Original Image

Gaussian Blurring

Optimized Parameter

- 1. Sigma
- 2. Blur amount

Contrast Enhancing

Optimized Parameter

1. Contrast Factor

5. Edge Detection

Key Findings and Observations

Key metrics

- F1-score: Harmonic mean of precision and recall
- Best F1: Average F1-score using optimal threshold for each image
- Best F1 (Single): Average F1-score using a single optimal threshold for all images
- Recall: proportion of actual edges correctly identified
- Precision: Proportion of correctly predicted edges among all classified edges

Impact of Preprocessing

	Average F1-score	Best F1	Best F1 (Single)
Without preprocessing	0.54	0.56	0.52
With preprocessing	0.64	0.65	0.63

Improvement:

- 18.5% increase in average F1-score (from 0.54 to 0.64)
- Significant impact in Sobel operator performance.

Training Set Results

- Metrics:
 - Average F1-score: 0.57
 - Best F1: 0.59, Best F1 (Single): 0.56
 - Recall: 0.67, Precision: 0.52
- Range Across Images:
 - Recall: 0.4 to 0.95
 - Precision: 0.2 to 0.9
- Insights
 - Optimized thresholds marginally improve F1-scores
 - High recall indicates most edges were detected
 - Lower precision suggests more false positives

Test Set Results

- Metrics:
 - Average F1-score: 0.54
 - Best F1: 0.55, Best F1 (Single): 0.52
- Insights
 - Image-specific thresholds improve results
 - Slight performance drop from training to test set
 - o Training F1-score: 0.57, Test F1-score: 0.54
 - Gap of 0.03 suggests minor overfitting

Live Demo

Challenges

1. Different images characteristics

Too much detail

Overly simplified

Challenges

2. Very wide grid search space, a long time to run grid search → Bayesian Optimisation (less time + computation intensive)

```
# search space of paramters of blur_amounts, sigmas, contrast_factors
search_space = [
    Categorical([3, 5, 7, 9]), # blur_amount for red
    Categorical([3, 5, 7, 9]), # blur_amount for green
    Categorical([1, 0, 3, 0, 5, 0, 7, 0, 9, 0]), # sigma for red
    Categorical([1, 0, 3, 0, 5, 0, 7, 0, 9, 0]), # sigma for green
    Categorical([1, 0, 3, 0, 5, 0, 7, 0, 9, 0]), # sigma for blue
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]), # contrast_factor for
    Categorical([1, 0, 1, 5, 2, 0, 3, 0, 4, 0, 5, 0
```

Thank you