Data Analysis: Statistical Modeling and Computation in Applications

<u>Help</u>

sandipan_dey >

<u>Course</u>

Progress

<u>Dates</u>

Discussion

Resources

< Previous</pre>

Next >

7. Closeness and Betweenness Centrality

□ Bookmark this page

Exercises due Oct 20, 2021 17:29 IST Completed

Citation Network

1/1 point (graded)

Consider the citation graph where there is a directed edge from paper $m{i}$ to $m{j}$ if $m{i}$ has cited $m{j}$ as a reference. Assume that there may or may not be papers that cite one another. Among the following centrality measures,

which one is most appropriate as a measure of importance for each paper?
Eigenvector centrality
Page-rank centrality
Katz centrality
Solution:
Page-rank centrality is the most appropriate. It overcomes all of the issues associated with eigenvector and Katz centrality measures. A paper that is cited by a very important paper such as a survey paper should not get very high importance just for the fact that it was cited by a survey paper. Further, page-rank centrality works just fine even if the citation graph turns out to be a DAG.
Submit You have used 1 of 2 attempts
Answers are displayed within the problem
Twitter
1/2 points (graded) Consider a Twitter dataset that consists of the following data: users $i=1,\dots,n$, list of followers f_i for each user i .
1. What is the most appropriate graph type that could model the dataset?
Simple, directed graph
Simple, undirected graph
Simple, bipartite graph
Simple, weighted (directed) graph
Multigraph
✓
2. Which centrality measure of the ones studied so far is most suited to capture the importance of the users in the network?

Eigenvector centrality		
Page-rank centrality 🗸		

Katz centrality

Solution:

- 1. The user graph with follows represented as directed edges is a simple, directed graph.
- 2. Similar to the citation network, page-rank centrality is the most appropriate measure of centrality here.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

Closeness Centrality and Betweenness Centrality

The **closeness centrality** of a node i is the reciprocal of average distance of the node to every other node. Recall that d_{ij} is the shortest path length (smallest weight path, in weighted graphs) between node i and j. The closeness centrality of node $m{i}$ is given as

$$C_i = \left(rac{1}{n-1}\sum_{j
eq i}d_{ij}
ight)^{-1}$$

The measure of "high" or "low" value of closeness centrality is relative. A high closeness centrality C_i , relative to the closeness centrality of the other nodes, indicates that node $m{i}$ is relatively close to all the other nodes.

The **betweenness centrality** measures the extent to which a node lies on paths between other nodes.

$$B_i = \sum_{s
eq i
eq t} rac{n^i_{st}}{g_{st}},$$

where n_{st}^i is the number of shortest paths between s and t that pass through i and g_{st} is the total number of shortest paths between $m{s}$ and $m{t}$. Note that this considers both orderings of each pair of nodes, so for undirected graphs, a path counts twice (as it counts both for n_{st}^i and for n_{ts}^i).

Closeness Centrality in a Circle Graph

1/1 point (graded)

Consider the circle graph of $m{n}$ nodes: the nodes all have degree $m{2}$ and are linked to form a circle. Assume that $m{n}$ is odd and that $n \geq 3$. Compute the closeness centrality of the nodes.

✓ Answer: 4/(n+1) 4/(n+1)

Solution:

For any node, given that n is odd,

- Two nodes are at distance 1.
- Two nodes are at distance 2.
- So on...
- Two nodes are at distance (n-1)/2.

Therefore, the closeness centrality is equal to

$$egin{align} \left(rac{1}{n-1}\sum_{j
eq i}d_{ij}
ight) &=\left(rac{1}{n-1}\left[2\left(1+2+\cdots+rac{n-1}{2}
ight)
ight]
ight) \ &=\left(rac{1}{n-1}\left[2rac{(n+1)\left(n-1
ight)}{8}
ight]
ight)^{-1} \ &=\left(rac{n+1}{4}
ight)^{-1} \ &=rac{4}{n+1} \end{aligned}$$

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Betweenness Centrality in a Line Graph

1/1 point (graded)

Consider the undirected line graph on $m{n}$ nodes: the nodes form a straight line. Let the nodes be numbered $1,2,\ldots,n$. Compute the betweenness centrality of node i (use the formula defined on this page, rather than the one in the lecture video):

Solution:

Let the node indicies increase from left to right in the graph. The only paths that pass through node i are those that start on the left and end to the right of $m{i}$, or vice versa. There are $(m{i}-m{1})$ nodes to the left of node $m{i}$, and (n-i) nodes to the right of node i. Thus, there are $(i-1)\,(n-i)$ paths that pass through node i (from left to right). Now, note that there are the same number of paths that pass from right to left.

So the betweenness centrality is 2(i-1)*(n-i).

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Module 3: Network Analysis: Graph Centrality Measures / 7. Closeness and Betweenness Centrality

Add a Post

≺ All Posts when will eigenvector and katz centrality be advantageous compared with page-rank? discussion posted 2 months ago by zcypaul The same as the question title. I just wonder if we should always use page-rank centrality? What's the limitation of page-rank? This post is visible to everyone. 1 response Add a Response

© All Rights Reserved

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy <u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>