Greedy Algorithms

Weighted Knapsack

CS 3100 - DSA2

ETHAN BLASER (GRAD TA)

SLIDES ADOPTED FROM PROF. BRUNELLE AND PROF. FLORYAN

Announcements

- Brunelle out of town this week
 - Office hours will be over Discord
 - Time TBA
- PS2 Due 3/16
- PA5 Due 3/21
 - Penalty-free late submission until 3/23
- Q2 Due 3/23
 - Released Friday
 - On Recurrence relations and Divide and Conquer
 - Not purposefully cumulative (but some problems may assume familiarity of past content)
 - We will provide a guide similar to that for Q1
 - Remember to leave sufficient time to upload your paper solutions!
- PA6 Due 3/28
 - Penalty-free late submission until 3/30

Optimization Problems

Greedy algorithms can (sometimes) solve optimization problems:

Find the best solution among all *feasible* solutions

Feasible solutions must meet problem constraints

We can get a score for each feasible solution on some criteria: We call this the objective function

One (or more) feasible solutions that scores highest (by the objective function) is the optimal solution(s)

Examples you've already seen:

- Find the shortest path in a weighted graph G from s to v
- Find the maximum depth (PA4)
- Making Change

Q: Does our optimization problem have optimal substructure? Can we prove it?

Optimal Substructure: If given an optimal solution to the larger problem, it can be seen to be made up of optimal solutions to smaller versions of the same problem

• If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems (pg. 379 of CLRS)

Ex. Coin Change from prev. lecture

15 cents

10 cents subproblem

5 cents subproblem

Divide and Conquer does NOT require optimal substructure!

- Divide and Conquer (We saw this already)
- Linear Programming
- Quadratic Programming
- Non-linear Programming
- Machine Learning (We will see this later!)
- Others!

Q: Does this problem exhibit the greedy choice property? If so, what is the greedy choice function?

Greedy Choice Property: We can achieve the globally optimal solution by repeatedly making locally optimal choices

Greedy Choice Function: The rule for how to choose an item guaranteed to be in the optimal solution

- Locally optimal: best choice given what info available now
- Irrevocable: a choice can't be un-done

Must prove optimality for a given problem and greedy choice function!

Optimal Solution to big problem

Choice Optimal Solution to the rest

DSA 2

8

DSA 2

9

Optimization Problem Solving Tree (Reality)

Weighted Knapsack

Knapsack Problems

Description: Thief robbing a store finds n items, each with a profit amount p_i and a weight w_i

- Wants to steal as valuable a load as possible
- But can only carry total weight C in their knapsack
- Which items should they take to maximize profit?

Form of the solution: an x_i value for each item, showing if (or how much) of that item is taken

Inputs: C, n, the p_i and w_i values

Two Types of Knapsack Problem

0/1 knapsack problem

- Each item is discrete: must choose all of it or none of it
 - Each x_i is 0 or 1
- Greedy approach does not produce optimal solutions
- But dynamic programming does

Fractional knapsack problem (AKA weighted knapsack)

- Can pick up fractions of each item
 So each x_i is a value between 0 or 1
- A greedy algorithm finds the optimal solution

Fractional Knapsack Problem Statement

Given n objects and a knapsack of capacity C, where object i has total weight w_i and earns profit p_i , find values x_i that maximize the total profit (objective function):

subject to the constraints:

Optimal Substructure Proof

First, let's show that <u>fractional knapsack</u> has the <u>optimal substructure property</u>

Formally: Suppose we have a solution to knapsack $S = \{x_1, x_2, x_3 ...\}$ where each x_j is the amount taken of each of the i items for a knapsack with capacity C.

Then: It must be the case that $S' = \{x_2, x_3, x_4, ...\}$ is optimal for a knapsack of size $C - w_1 x_1$

Optimal Substructure Proof

Formally: Suppose we have a solution to knapsack $S = \{x_1, x_2, x_3 ...\}$ where each x_j is the amount taken of each of the i items for a knapsack with capacity C.

Then: It must be the case that $S' = \{x_2, x_3, x_4, \dots\}$ is optimal for a knapsack of size $C - w_1 x_1$

Proof Outline:

- 1. Let V() be a function that computes the value of an item or of an entire solution
- 2. Note that $V(S) = V(x_1) + V(S')$ and recall that S is optimal
- 3. Suppose S' is NOT optimal, then some better solution S' exists such that V(S'') > V(S') for capacity $C w_1 x_1$
- 4. But now there is a better overall solution: $V(S) = V(x_1) + V(S') < V(x_1) + V(S'')$ so the original S is not actually optimal. Contradiction!!

DSA 2

16

Greedy Approach for Fractional Knapsack

Build up a partial solutions:

- Determine which of the remaining items to add
- How much can you add (its x_i)
- Repeat until knapsack is full (or no more items)

What's a good greedy choice?

Let's try several options on this example:

Item	Value	Weight
1	25	18
2	24	15
3	15	10

Possible Greedy Choices for Knapsack

Greedy choice #1: by highest profit value

$$n = 3, C = 20$$

Item	Value	Weight
1	25	18
2	24	15
3	15	10

Select item 1 first, then item 2, then item 3.

Take as much of each as fits!

- 1. Item 1 first. Can take all of it, so x_1 is 1. Capacity used is 18 of 20. Profit so far is 25.
- 2. Item 2 next. Room for only 2 units, so x_2 is 2/15 = 0.133. Capacity used is 20 of 20. Profit so far is $25 + (24 \times 0.133) = 28.2$.
- 3. Item 3 would be next, but knapsack full! x_3 is 0. Total profit is 28.2. x = [1, .133, 0]

Possible Greedy Choices for Knapsack

Greedy choice #2: by lowest weight

$$n = 3, C = 20$$

Item	Value	Weight
1	25	1 8
2	24	15
3	15	10

Select item 3 first, then item 2, then item 1.

Take as much of each as fits!

- 1. Item 3 first. Can take all of it, so x_3 is 1. Capacity used is 10 of 20. Profit so far is 15.
- 2. Item 2 next. Room for only 10 units, so x_2 is 10/15 = 0.667. Capacity used is 20 of 20. Profit so far is $15 + (24 \times 0.667) = 31$.
- 3. Item 1 would be next, but knapsack full! x_1 is 0. Total profit is 31.0. $x_i = (0, .667, 1)$

Note it's better than previous greedy choice. Best possible?

DSA 2

19

Possible Greedy Choices for Knapsack

Greedy choice #3: highest value-to-weight ratio

$$n = 3, C = 20$$

Item	Value	Weight		Ratio
1	25	18		1.4
2	24	15	-	1.6
3	15	10		1.5

Select item 2 first, then item 3, then item 1.

Take as much of each as fits!

- Item 2 first. Can take all of it, so x₂ is 1.
 Capacity used is 15 of 20. Profit so far is 24.
- 2. Item 3 next. Room for only 5 units, so x_1 is 5/10 = 0.5. Capacity used is 20 of 20. Profit so far is $24 + (15 \times 0.5) = 31.5$.
- 3. Item 1 would be next, but knapsack full! x_1 is 0. Total profit is 31.5. $x_i = (0, 1, 0.5)$

This greedy choice produces optimal solution! Must prove this.

Greedy Choice Property

Greedy Choice Property: The item with the largest value-to-weight ratio, filled to its max possible amount, must be in some optimal solution.

Terms:

Items are $I = \{i_1, i_2, i_3, ...\}$ and each item has a value and weight field (like an object)

Assume ratios of items sorted.
$$R=\{r_1,r_2,\dots\}$$
 and $r_j=\frac{I[j].v}{I[j].w}$ and $r_1\leq r_2\leq \dots \leq r_n$

C > 0 is capacity of knapsack

Formally:
$$x_n = Min(\frac{c}{i_n.w}, 1)$$

Accounts for when $i_n.w > C$ (when item is bigger than the capacity)

Otherwise, take the whole item

Greedy Choice Property Proof

<u>Greedy Choice Property</u>: The item with the largest value-to-weight ratio, filled to its max possible amount w.r.t. knapsack capacity, must be in some optimal solution.

Proof (Exchange Argument):

- O Assume claim is false and the largest value-to-weight ratio item i_n is NOT in optimal solution its maximum amount
 - There exists some other optimal solution $O=\{o_1,o_2,...\}$ where o_n was NOT taken to its maximum amount
- We COULD have taken item i_n some amount $x_n = Min(\frac{C}{i_n.w}, 1)$, but optimal solution O has strictly less than this amount ($o_n < x_n$)
- Let $\delta = i_n$. $w(x_n o_n) > 0$ be the extra amount of weight of item i_n that was NOT taken by this optimal solution
 - o Note that $0 < \delta < C$ (There must be at least some extra weight AND knapsack is not full)

Optimal Solution O

Greedy Choice Property Proof

Proof (continued):

Note that $0 < \delta < C$ (There must be at least some extra weight AND knapsack is not full)

This extra weight δ must be taken by some other arbitrary item i_j in optimal solution

• Note that the ratio of item j is the same or worse than item n: $r_j \leq r_n$ *by definition

So, let's swap the i_j that was used to fill δ , with more item i_n . (V is the objective function again) to make a new solution O'

$$V(O') = V(O) - (\delta * r_j) + (\delta * r_n)$$

$$V(O') = V(O) + \delta(r_n - r_j)$$

$$V(O') \ge V(O)$$

Contradiction!!!!

Optimal Solution O'

Proof Summary

Greedy Choice Property: The item with the largest value-to-weight ratio, filled to its max possible amount w.r.t. knapsack capacity, must be in some optimal solution.

- 1. Toward Contradiction: Suppose there is some optimal solution O that does NOT have the largest value-to-weight ratio item i_n filled to its max possible amount
- 2. Then there must be some space in the knapsack where some other item i_j is used where i_n could have been used instead
- 3. We can exchange item i_j with more item i_n which has a higher value-to-weight ratio giving a new solution O' to the problem
- 4. We showed that this new solution O' has a larger overall profit than the original "optimal solution" O.
- 5. Contradiction! Therefore, the largest weight value item must be in the optimal solution

Fractional Knapsack Algorithm

```
FRACTIONAL_KNAPSACK(a, C)
  n = a.last
2 for i = 1 to n
                                                        Sorting is \theta(nlogn)
     ratio[i] = a[i].p / a[i].w
  sort(a, ratio)
  weight = 0
                                                         For loop and while loop take \theta(n) time
6 i = n
   while (i \geq 0 and weight < C)
     if (weight + a[i].w \le C)
8
        println "select all of object " + a[i].id
10
        weight = weight + a[i].w
                                                               Greedy Algorithm: θ(nlogn)
11
     else
                                                               Brute Force: O(2^n)
     r = (C - weight) / a[i].w
12
13
        println "select " + r + " of object " + a[i].id
14
      weight = C
15
     i = i-1
```

Another Knapsack Example to Try

Assume for this problem that: $\overset{n}{\diamond} w_i \not \in C$

Ratios of profit to weight: i=

$$p_1/w_1 = 5/120 = .0417$$

 $p_2/w_2 = 5/150 = .0333$
 $p_3/w_3 = 4/200 = .0200$
 $p_4/w_4 = 8/150 = .0533$
 $p_5/w_5 = 3/140 = .0214$

What order do we examine items?

What are the x_i values that result?

What's the total profit?

0/1 Knapsack

Let's try this same greedy solution with the 0/1 version

- New example inputs →
- 1. Item 1 first. So x_1 is 1. Capacity used is 1 of 4. Profit so far is 3.
- Item 2 next. There's room for it! So x_2 is 1. Capacity used is 3 of 4. Profit so far is 3 + 5 = 8.

-	_	7			1
- [1	=	3 .	L	=	4
		-,	_		

Item	Value	Weight	Ratio
1	3	1	3
2	5	2	2.5
3	6	3	2

Item 3 would be next, but its weight is 3 and knapsack only has 1 unit left! So x_3 is 0. Total profit is 8. $x_i = (1, 1, 0)$

But picking items 1 and 3 will fit in knapsack, with total value of 9

- Thus, the greedy solution does not produce an optimal solution to the 0/1 knapsack algorithm
- Greedy choice left unused room, but we can't take a fraction of an item
- The 0/1 knapsack problem doesn't have the *greedy choice property*

Recap

Optimization problems can sometimes be solved by Greedy Algorithms

 Discussed "Optimization Problem Solving Tree" to determine which algorithmic approach best suits your problem

Greedy Algorithms require the problem to have:

- Optimal Substructure
- Greedy Choice Property

Weighted Knapsack Problem

- Proved optimal substructure
- Formulated the Greedy Choice function
- Proved the greedy choice function is optimal via Exchange Argument

