

Quiz 1 (A)

12th September 2017, 12:00 pm - 12:20 pm

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: D

Time: 20 minutes. Max Marks: 5 points

Question 1: Arrange the following functions in increasing order of growth rate: (1.5 points)

- a) \sqrt{n}
- b) 10^{n}
- c) $n^{1.5}$
- d) $2^{\sqrt{logn}}$
- e) $n^{\frac{5}{3}}$
- f) logn

Question 2: Solve the recurrence using Recurrence Tree

$$T(n) = T(\frac{n}{10}) + T(\frac{9n}{10}) + n$$

Quiz 1 (B)

12th September 2017, 12:00 pm - 12:20 pm

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: D

Time: 20 minutes. Max Marks: 5 points

Question 1: Whether each of the following are True or False? Justify your answer.

(1.5 points)

- a) $n^{1.5}$ + 10 n log n = O(n log n)
- b) $n \log n + \frac{n}{2} = Theta(n)$
- c) $10\sqrt{n} + \log n = O(n)$
- d) \sqrt{n} + log n = O(log n)
- e) $2\sqrt{n} + \log n = \text{Theta}(\sqrt{n})$

Question 2: Solve the recurrence using Recurrence Tree.

$$T(n) = T(\frac{n}{5}) + T(\frac{7n}{10}) + n$$

Quiz 1 (A)

13th September 2017, 9:00 am - 9:20 am

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: B

Time: 20 minutes. Max Marks: 5 points

Question 1: Is T1(n) = O(T2(n))?, Is T1(n) = Omega(T2(n))?, Is T1(n) = Theta(T2(n))?

Justify your answer.

(1.5 points)

a) T1(n) =
$$6n^2$$
, T2(n) = $n^2 log n$

b) T1(n) =
$$\frac{3}{2}n^2$$
 + 7n -4, T2(n) = $8n^2$

c) T1(n) =
$$n^4$$
, T2(n) = $n^3 log n$

Question 2: Solve the recurrence using **Recurrence Tree**.

$$T(n) = T(\frac{n}{3}) + T(\frac{n}{5}) + n^2$$

Quiz 1 (B)

13th September 2017, 9:00 am - 9:20 am

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: B

Time: 20 minutes. Max Marks: 5 points

Question 1: Use Master's Theorem to find the solution of the following recurrences. (1.5 points)

a)
$$T(n) = 10T(\frac{n}{5}) + n^2$$

b)
$$T(n) = 4T(\frac{n}{3}) + \sqrt{n}$$

c)
$$T(n) = T(\frac{n}{2}) + n$$

Question 2: Solve the recurrence using **Recurrence Tree**

$$T(n) = 9T(\frac{n}{5}) + n$$

Quiz 1 (A)

14th September 2017, 1:00 pm - 1:20 pm

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: E

Time: 20 minutes. Max Marks: 5 points

Question 1:

a) Use Master's Theorem to Solve

(1.5 points)

$$T(n) = 2T(\frac{n}{2}) + \sqrt{n}$$

 $T(n) = 10T(\frac{n}{3}) + n \log n$

b) Solve the Asymptotic Notation $f(x) = x^3 + 2x + 3$ is $O(x^3)$

Question 2: Solve the recurrence using Recurrence Tree

$$T(n) = T(\frac{n}{4}) + T(\frac{3n}{4}) + n$$

Quiz 1 (B)

14th September 2017, 1:00 pm - 1:20 pm

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: E

Time: 20 minutes. Max Marks: 5 points

Question 1: Arrange the following functions in increasing order of growth rate: (1.5 points)

- a) \sqrt{n}
- b) 10^n
- c) nlogn
- d) $2^{\sqrt{logn}}$
- e) 2^{2n}
- f) **n**!

Question 2: Solve the recurrence using **Recurrence Tree**.

$$T(n) = T(\frac{n}{5}) + T(\frac{n}{2}) + n^2$$