

ZDD - DAISY

UbiComp – Teil 4: Netzwerktechnik und industrielle Kommunikation I

Prof. Dr.-Ing. Dorothea Schwung

Lernziele Teil 4

- 1. Sie wissen wozu das ISO-OSI Schichtenmodell dient und können die einzelnen Schichten benennen und näher beschreiben.
- 2. Sie kennen diverse Übertragungsmedien und deren Eigenschaften.
- 3. Sie sind mit den Codierungsarten vertraut und können diese schematisch erklären.
- 4. Sie können die verschiedenen Manchestercodierungen unterscheiden.
- 5. Sie kennen mögliche Topologien innerhalb der Bitübertragungsschicht.

Der Kommunikationsprozess

Die Dolmetscher stellen je einen Kommunikationselektroniker ein, diese einigen sich auf die Übertragungsart und das Übertragungsmedium.

Der Kommunikationsprozess

Der Kommunikationsprozess

Standardisierung-offene Kommunikationssy.

- ISO-OSI-Modell
 - beschreibt das externe Verhalten von Endsystemen und keine Implementierung
 - dient der Interoperabilität verschiedenster Protokolle und Netzwerktechnologien
 - realisiert durch Schichten-Modell
 - Abstraktion / Komplexitätsreduzierung
 - Austauschbarkeit der Protokolle einzelner Schichten

ISO → International Standard Organization

OSI → Open Systems Interconnection Reference Model

- Unabhängigkeit von Hard-/ Software
- Offenheit
- Vergleichbarkeit der einzelnen Systeme
- 7 Schichten,
 - die nur Schnittstellen zu den benachbarten Schichten haben

- einheitliche Sprachregelungen
- jede Schicht "manipuliert" die Daten

Ablauf einer Datenübertragung

- Reg (Reguest, Anforderung vom Klienten),
 - Rsp (Response, Antwort vom Klienten),
 - Ind (Indication, Anzeige vom Dienst),
- Cnf (Confirmation, Bestätigung vom Dienst)

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Schicht 1: Bitübertragungsschicht

- Übertragung des "rohen" Bitstroms
- Aufrechterhaltung der physikalischen Verbindung
- Festlegung
 - Übertragungsmedium
 - Steckerbelegung
 - Übertragung
 - Modulationsart
 - Übertragungsrate
 - Leitungslänge
 - Signalpegel

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Schicht 2: Sicherungsschicht

- Aufbau und Unterhaltung einer "logischen" Verbindung
- Zeichen- und Datenblocksynchronisation
- Erkennung von Datenblockgrenzen
- Fehlererkennung und Fehlerbehandlung
- Zugriffssteuerung auf das Medium
- sehr oft Unterteilung in 2 Teilschichten:
 - Logical Link Control
 - Medium Access Control

11

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Schicht 3: Vermittlungsschicht

- Routing:
 - Suche nach dem kürzesten, schnellsten und kosten-günstigsten Weg durch ein Netz von Knoten
- Flusskontrolle innerhalb des Netzes:
 - Teilstreckenüberwachung mit Zwischenspeichern
- Verbindungsorientierte und verbindungslose Dienste

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Schicht 4: Transportschicht

- Logische Kanäle (Multiplexen und Demultiplexen)
- Zerlegung von Nachrichten in kleinere Einzelpakete
- Einhaltung der richtigen Reihenfolge
- Wiederholungsanforderungen
- Fehlerkontrolle von Endsystem zu Endsystem

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Schicht 5: Kommunikationssteuerungsschicht

- Aufbau von Sitzungen
- Authentifizierung und Passwortkontrolle
- Überwachung eines Betriebs während einer Sitzung
- Datenflusskontrolle
- Dialogkontrolle
- Synchronisation
- Abbau von Sitzungen

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Schicht 6: Darstellungsschicht

- Festlegung der Syntax und Semantik der zu übertragenden Daten
- Umformung der Daten, sodass kommunizierenden Anwendungsprozesse sie verstehen können
- Schutz der Daten vor Zugriff unberechtigter Benutzer
- Verfahren zur Verschlüsselung

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Schicht 7: Anwendungsschicht

- Anbieten von Diensten für die eigentlichen Applikationen z.B.:
 - Email-Service
 - Übertragung von Dateien
 - File-Server
 - Schreiben und Lesen von Variablen
 - Download von Speicherbereichen und Programmen

Telegrammaufbau

Kommunikation zwischen 2 Teilnehmern

Beispiele für die Schichten

Schicht 7	Anwendung	Telnet, FTP, HTTP, SMTP, NNTP	
Schicht 6	Darstellung	Telnet, FTP, HTTP, SMTP, NNTP, NetBIOS	
Schicht 5	Kommunikation	TFTP, Telnet, FTP, HTTP, SMTP, NNTP, NetBIOS	
Schicht 4	Transport	TCP, UDP, SPX, NetBEUI	
Schicht 3	Vermittlung	IP, IPX, ICMP, T.70, T.90, X.25, NetBEUI	
Schicht 2	Sicherung	LLC/MAC, X.75, V.120, ARP, HDLC, PPP	
Schicht 1	Bitübertragung	Ethernet, Token Ring, FDDI, V.110, X.25, Frame Relay, V.90, V.34, V.24	

Beispiele für die Schichten

Implementierung Feldbusse

- L1:
 - Art des Signals / Kodierung
 - Art des Kabels (Medium)
 - Stecker mit Anschlussbelegung
 - Topologie
- L2:
 - Data Link Layer: fehlerfreie Übertragung
 - Zugriffsmechanismen
 - Strategie bei BusKollisionen
 - Datenformat
 - Adressierung
 - Kontrollbits
- L7:
- Kommunikationsfunktionen für das AW-Programm und aw.spez. Protokolle
 Hochschule Düsseldorf

Bitübertragungsschicht - Übersicht

"Physikalisch" = physisch, nicht logisch (nicht "virtuell")

Technisches Funktionieren basiert auf technischen Einrichtungen, auf denen Signale, das sind diskrete Werte physikalischer Größen die übertragene Information darstellen.

Technische Einrichtungen:

elektrische Leitungen, Glasfaserkabel, Antennen

Signale:

Spannung, Strom, Lichtstärke, elektrische/magnetische Feldstärke

Bitübertragungsschicht – Übersicht Medien

Bitübertragungsschicht – Phys. Medium

Bussystem	Leitung	Standard
Ethernet	Koax o. Twisted Pair	IEEE 802.3
PROFIBUS-FMS PROFIBUS-DP	Zweidraht, verdrillt, geschirmt	RS 485
CAN	Zweidraht, verdrillt, geschirmt	RS 485 (mod.)
LON	z.B. Zweidraht, verdrillt	z.B. RS 485
Interbus-S	5-adrig, paarweise verdrillt	RS 485
ASI	Zweidraht, ungeschirmt	Speziell
Foundation FB WorldFIP	Zweidraht, verdrillt, geschirmt	IEC 61158-2
SERCOS	Lichtwellenleiter	

Bitübertragungsschicht – sym. Ansteuerung

Der Sender bildet mit U+ gegen U- ein Differenzpotential.

Der Empfänger führt eine Subtraktion der Spannungen beider Leitungen bezogen auf sein Bezugspotential aus: eingekoppelte Störungen (gleichsinnig) subtrahieren sich zu Null.

Bitübertragungsschicht - Koaxialleitung

$$Z = \frac{60\Omega}{\sqrt{\epsilon_r}} \cdot ln \left(\frac{D}{d}\right)$$

Bandbreite: 1 GHz

Wellenwiderstände: 50 Ohm; 75 Ohm

Einsatz auf langen Übertragungsstrecken > 1000m

Bitübertragungsschicht - Lichtwellenleiter

- Merkmale Lichtwellenleiter
- Vorteile
 - mechanische Eigenschaften
 - · geringes Gewicht
 - kleine Abmessungen (2000 Fasern haben 85 mm Durchmesser)
 - hohe Übertragungsrate
 - Multimodefasern (Stufenindex)
 20 MHz / km
 - · Gradientenindex-Fasern 500 1800 MHz / km
 - Monomodefasern < 20.000 MHz / km

Bitübertragungsschicht - Lichtwellenleiter

- Merkmale Lichtwellenleiter
- Nachteile
 - Gesamtsystem teuer als Systeme mit elektrischer Leitung
 - Empfindlich gegen Knicke / scharfes Biegen (Verlegung)
 - Installation aufwendiger (richtige Längen)

Bitübertragungsschicht - Lichtwellenleiter

Man unterscheidet verschiedene Arten von Lichtwellenleitern:

LWL – Übertragungsraten/-strecke

Physikalisches Medium – Zusammenfassung

Medium	Eigenschaften	
Twisted Pair, verdrillte Zweidrahtleitung	 ↑ Kostengünstig ↑ einfache Handhabung und Konfektionierung ↑ weit verbreitet → Einsatz für Differenzsignale (Störungen kompensieren sich) 	
Koaxleitung	 ↓ Relativ teuer ↓ schwierige Konfektionierung ↑ gute HF-Eigenschaften ↑ gute Störunterdrückung 	
Lichtwellenleiter	 ↓ Teuer relativ schwierige Konfektionierung mechanisch empfindlich (Biegeradius) Störunempfindlich galvanische Trennung 	

Physikalisches Medium – Zusammenfassung

Funk	↑ ↑ →	Weite Strecken Kontaktlose Übermittlung begrenzte Bandbreite starke gesetzliche Regelungen
Infrarot	↑	Berührungslos
	\rightarrow	begrenzte Bandbreite
	\downarrow	kurze Entfernungen
	\downarrow	Schmutzempfindlich
Telekommunikation, Modem	\uparrow	Fernwartung möglich
	\uparrow	weltweite Erreichbarkeit
	\downarrow	begrenzte Bandbreite
Powerline	^	Vorhandenes Netz kann genutzt werden
	\downarrow	nur niedrige Baudraten möglich
	\downarrow	starke gesetzliche Regelungen
	\downarrow	störempfindlich

Bitübertragungsschicht – Art des Signals

(Bit) **Seriell**:

Die Bits eines Zeichens werden auf einer einzigen Datenleitung nacheinander in einem festen Schrittakt übertragen.

(Bit) Parallel:

Alle Bits eines Zeichens/Datums werden gleichzeitig übertragen.

Synchron: Ubertragung in einem festen Zeitraster

 gemeinsamer Takt für Sender und Empfänger oder zwei Taktgeneratoren, Empfänger synchronisiert sich durch die im Datenstrom enthaltene Taktinformation

Asynchron: Abstand zwischen zwei Zeichen ist beliebig lang.

 Zwei Taktgeneratoren, Empfänger synchronisiert sich erneut mit jedem Zeichentransport durch die im Datenstrom enthaltene Start/Stop-Information.

Pegel am Beispiel der RS232 Schnittstelle

Signalpegel:

Beispiel:

Codierungsarten

- Zur Übertragung von digitalen Zuständen muss diese zunächst codiert werden.
- Die digitale Information kann dabei in der

- Hierbei können u.a. folgende Interessen im Vordergrund stehen:
 - Sicherheit
 - Kodierung der Taktinformation
 - Kodierung frei von Gleichanteilen
 - Implementierungsaufwand

Codierungsarten

- (a) Unmoduliertes Signal
- (b) Modulierendes Signal
- (c) Amplitudenmoduliert

- (d) Frequenzmoduliert
- (e) Phasenmoduliert

Unipolare Codierung:

- Nicht frei von Gleichanteilen
- Taktinformation nicht enthalten
- Fehleranfällig (Leitungsbruch)

NRZ(-L) – Non-Return-to-Zero(-Level) – Bipolare Codierung

- Zwei unterschiedliche Spannungen für "0" und "1"
- Kein neutraler Pegel
- Spannung konstant im Bitintervall

RZ – Return-to-Zero – Bipolare Codierung

- Zwei unterschiedliche Spannungen für "0" und "1"
- Pegel kehrt während des Taktes in den Ausgangszustand zurück
- Taktinformation enthalten!

NRZ-I – Non-Return-to-Zero-Insert

- Differentielle Codierung → Information in den Zuständsübergängen codiert
 - Bildung: $p_k = d_k \oplus p_{k-1}$

p, -binäre Ausgangsdatenfolge

 d_k – binäre Eingangsdatenfolge

⊕-XOR - Verknüpfung

Manchesterverfahren (hier: Definition nach IEEE 802.3)

- Low to High Übergang in der Mitte des Zyklus repräsentiert "1"
- High to Low Übergang in der Mitte des Zyklus repräsentiert "0"
- Übergang dient als Takt
- Kein Gleichanteil

Manchesterverfahren (hier: Definition nach Biphase-L oder Manchester-II):

- Low to High Übergang in der Mitte des Zyklus repräsentiert "0"
- High to Low Übergang in der Mitte des Zyklus repräsentiert "1"
- Übergang dient als Takt
- Kein Gleichanteil

Manchesterverfahren

$$p_k = d_k \oplus t_k$$

 \oplus – XOR – Verknüpfung

Differentielles Manchesterverfahren:

- Übergang in der Mitte des Zyklus ist nur Taktinformation
- Übergang am Beginn repräsentiert "0"
- Kein Übergang am Beginn repräsentiert "1"
- Übergang dient als Takt
- Kein Gleichanteil

- Vorteile:
 - Takt im Signal enthalten
 - Kein Gleichanteil
 - Für Fehlererkennung vorteilhaft: Feste Übergänge erwartet (differentielles)

Nachteile:

Benötigt mehr Bandbreite

Der wesentliche Vorteil der differentiellen Manchestercodierung besteht darin, dass die Polarität des codierten Signals für den korrekten Empfang und die Decodierung keine Rolle spielt.

Codierungsarten - Übersicht

Implementierung Feldbusse

- L1:
 - Art des Signals / Kodierung
 - Art des Kabels (Medium)
 - Stecker mit Anschlussbelegung
 - Topologie
- **L2**:
 - Data Link Layer: fehlerfreie Übertragung
 - Zugriffsmechanismen
 - Strategie bei BusKollisionen
 - Datenformat
 - Adressierung
 - Kontrollbits
- L7:
 - Kommunikationsfunktionen für das AW-Programm und aw.spez. Protokolle

Topologien

- Für die informationstechnische Kopplung von räumlich benachbarten Prozessen sind verschiedene Verbindungsstrukturen wie
 - Stern,
 - Ring,
 - Baum (Linie) und Bus (Linie) realisierbar.
- Bei einer größeren Anzahl von Teilnehmern wird ein serielles Bussystem zur lokalen Vernetzung eingesetzt.

Topologien

• Übersicht Topologien:

Topologien

Topologie Stern	Eigenschaften	
	→ → →	Punkt-zu-Punkt-Verbindung viele Verbindungen, Kabel und Kontakte Masterausfall legt das Netz lahm
Baum	<u> </u>	Teilnehmerausfall ist für das Gesamtnetz nicht kritisch Teilnehmerausfall ist für das Gesamtnetz nicht kritisch
Linie mit Stichleitungen	↑	Teilnehmerausfall ist für das Gesamtnetz nicht kritisch Multimasterfähig
Linie	†	Teilnehmerausfall unterbricht das Gesamtnetz Multimasterfähig
Ring	\downarrow	Teilnehmerausfall unterbricht das Gesamtnetz
Insellösung	†	Teilnehmerausfall unterbricht das Gesamtnetz Vorortstationen mit Unterstationen möglich

Ausblick

Ausblick

ZDD - DAISY

UbiComp – Teil 4: Netzwerktechnik und industrielle Kommunikation I

Fragen?

Prof. Dr.-Ing. Dorothea Schwung