Exercises on singular value decomposition

Problem 29.1: (Based on 6.7 #4. *Introduction to Linear Algebra:* Strang) Verify that if we compute the singular value decomposition $A = U\Sigma V^T$ of the Fibonacci matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$,

$$\Sigma = \left[\begin{array}{cc} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{\sqrt{5}-1}{2} \end{array} \right].$$

Problem 29.2: (6.7 #11.) Suppose *A* has orthogonal columns \mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_n of lengths σ_1 , σ_2 , ..., σ_n . Calculate A^TA . What are U, Σ , and V in the SVD?

$$\frac{29.1}{A^{T}A} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

has cigenvalues
$$\Gamma^2 = 3 \pm \sqrt{5}$$

 $\left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}$
 $\left(\frac{5-1}{2}\right)^2 = \frac{6-2\sqrt{5}}{2} = \frac{3-\sqrt{5}}{2}$
Confirms that $\Gamma = 1 \pm \sqrt{5}$
(since we take $\Gamma 7/0$).

$$A^{T}A = \begin{bmatrix} -w_{1}^{T} - \\ -w_{1}^{T} - \end{bmatrix} \begin{bmatrix} 1 & 1 \\ w_{1} & w_{n} \end{bmatrix}$$

$$= \begin{bmatrix} r_{1}^{2} & r_{2}^{2} \\ -r_{n}^{2} & r_{n}^{2} \end{bmatrix} = \sqrt{2}^{T} 2 \sqrt{2}^{T}$$