Bit3 bit2 bit1 bit0	Theoretical DAC voltage	Measured DAC voltage	
0	0	.009	
1	.22	.203	
2	.44	.460	
3	.66	.659	
4	.88	.862	
5	1.1	1.132	
6	1.32	1.375	
7	1.54	1.502	
8	1.76	1.707	
9	1.98	1.999	
10	2.2	2.256	
11	2.42	2.395	
12	2.64	2.670	
13	2.86	2.923	
14	3.08	3.051	
15	3.3	3.294	

Accuracy=.11V	Resolution=.22V	Range=0-3.3V	Precision=16

- a. The interrupt trigger occurs everytime data in the Sine Wave is outputted into DAC_OUT.
- b. The interrupt vector is located in the startup file.
- c. After the trigger occurs, then we load the value that is next from the array of the Sine Wave, and then that value is outputted into DAC_OUT, before flicking the heartbeat and repeating the interrupt over again.
- d. This is due to the fact that the LR will be set to 0xFFFF from bits 31 to 8, a value set up by the ISR, which will pop all the registers after the BX LR is executed.

