Package 'TreeDep'

October 12, 2022

Гуре Р	Package
Γitle A	air Pollution Removal by Dry Deposition on Trees
Versior	1 0.1.3
Author	Silvestre Garcia de Jalon
Mainta	iner Silvestre Garcia de Jalon <s.garciadejalon@gmail.com></s.garciadejalon@gmail.com>
m ta lo ri la q 9 ti	otion The model estimates air pollution removal by dry deposition on trees. It also estimates or uses hourly values for aerodynamic resistance, boundary layer resistance, canopy resistance, stomatal resistance, cuticular resistance, mesophyll resistance, soil resistance, friction velocity and deposition velocity. It also allows plotting graphical results for a specific time period. The pollutants are nitrogen dioxide, ozone, sulphur dioxide, carbon monoxide and particular matter. Baldocchi D (1994) <doi:10.1093 14.7-8-9.1069="" treephys="">. Farular GD, von Caemmerer S, Berry JA (1980) Planta 149: 78-0. Hirabayashi S, Kroll CN, Nowak DJ (2015) i-Tree Eco Dry Deposion Model. Nowak DJ, Crane DE, Stevens JC (2006) <doi:10.1016 j.ufug.2006.01.007="">. US EPA (1999) PCRAM/MET User's Guide. EPA-454/B-96-001. Weiss A, Norman JM (1985) Agricultural and Forst Meteorology 34: 205—213.</doi:10.1016></doi:10.1093>
License	e GPL-2
Depend	ls graphics, grDevices, stats, utils, lubridate, ggplot2
Encodi	ng UTF-8
LazyDa	ata true
Roxyge	enNote 6.0.1
Needs(Compilation no
Reposi	tory CRAN
Date/P	ublication 2018-12-02 17:50:03 UTC
R top	pics documented:
	Bizkaia_data 3 Conc_CO 3 Conc_NO2 4 Conc_O3 4

Index

Conc_PM10	5
Conc_SO2	5
Daylight	6
Dep_CO	7
Dep_CO_a	8
Dep_NO2	8
Dep_NO2_a	9
Dep_O3	10
Dep_O3_a	10
Dep_PM10	11
Dep_PM10_a	12
Dep_SO2	12
Dep_SO2_a	13
Dep_vel_CO	14
Dep_vel_NO2	14
Dep_vel_O3	15
Dep_vel_PM10	16
Dep_vel_SO2	16
Fric_vel	17
AI_deciduous	18
AI_evergreen	19
Res_aero	19
Res_boun_CO	20
Res_boun_CO2	21
Res_boun_NO2	21
Res_boun_O3	22
Res_boun_SO2	23
Res_cano_CO	23
Res_cano_NO2	24
Res_cano_O3	25
Res_cano_SO2	25
Res_cuti_NO2	26
Res_cuti_03	
Res_cuti_SO2	
Res_meso_03	
Res_meso_SO2	
Res_soil	29
Res_stom_NO2	30
Res_stom_O3	31
Res_stom_SO2	31
Res_Tot_CO	32
Res_Tot_NO2	33
Res_Tot_O3	33
Res_Tot_SO2	34
reeDep	35
reeDep_plot	35
	27
	37

Bizkaia_data 3

Bizkaia_data

Weather and environmental hourly data in Bizkaia province, Spain

Description

Weather and air pollution concentration hourly data in Bizkaia province (Spain)

Usage

Bizkaia_data

Format

A data frame with hourly data

Conc_CO

Conc_CO - Extracts data of hourly concentration of CO

Description

Conc_CO - Extracts data of hourly concentration of CO

Usage

 $Conc_CO(x)$

Arguments

Χ

A data frame containing hourly data of CO concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

Value

Hourly data of concentration of CO (micrograms m-3)

```
data(Bizkaia_data)
Conc_CO(x = Bizkaia_data)
```

Conc_O3

Conc_NO2

Conc_NO2 - Extracts data of hourly concentration of NO2

Description

Conc_NO2 - Extracts data of hourly concentration of NO2

Usage

 $Conc_N02(x)$

Arguments

Х

A data frame containing hourly data of NO2 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

Value

Hourly data of concentration of NO2 (micrograms m-3)

Examples

```
data(Bizkaia_data)
Conc_NO2(x = Bizkaia_data)
```

Conc_03

Conc_O3 - Extracts data of hourly concentration of O3

Description

Conc_O3 - Extracts data of hourly concentration of O3

Usage

 $Conc_03(x)$

Arguments

Х

A data frame containing hourly data of O3 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

Value

Hourly data of concentration of O3 (micrograms m-3)

Conc_PM10 5

Examples

```
data(Bizkaia_data)
Conc_03(x = Bizkaia_data)
```

Conc_PM10

Conc_PM10 - Extracts data of hourly concentration of PM10

Description

Conc_PM10 - Extracts data of hourly concentration of PM10

Usage

Conc_PM10(x)

Arguments

Х

A data frame containing hourly data of PM10 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

Value

Hourly data of concentration of PM10 (micrograms m-3)

Examples

```
data(Bizkaia_data)
Conc_PM10(x = Bizkaia_data)
```

Conc_S02

Conc_SO2 - Extracts data of hourly concentration of SO2

Description

Conc_SO2 - Extracts data of hourly concentration of SO2

Usage

```
Conc_S02(x)
```

Daylight Daylight

Arguments

Χ

A data frame containing hourly data of SO2 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

Value

Hourly data of concentration of SO2 (micrograms m-3)

Examples

```
data(Bizkaia_data)
Conc_SO2(x = Bizkaia_data)
```

Daylight

Daylight - Generates hourly daylight data ("Night" and "Daylight") in a specific year

Description

Daylight - Generates hourly daylight data ("Night" and "Daylight") in a specific year

Usage

```
Daylight(shortest_day_sunrise, shortest_day_sunset, longest_day_sunset0, Year)
```

Arguments

 $shortest_day_sunrise$

Sunrise time in the shortest day in the Northern Hemisphere (December 21) using decimals for minutes (e.g. 8.4)

shortest_day_sunset

Sunset time in the shortest day in the Northern Hemisphere (December 21) using decimals for minutes (e.g. 17.8)

longest_day_sunset0

Sunset time in the longest day in the Northern Hemisphere (June 21) using decimals for minutes (e.g. 21.9)

Year

Year to generate hourly daylight data (e.g. 2015)

Value

A dataframe with hourly daylight values is generated

Dep_CO 7

Examples

```
Daylight (shortest_day_sunrise = 8.4,
shortest_day_sunset = 17.8,
longest_day_sunset0 = 21.9,
Year = 2016)
```

Dep_C0

Dep_CO - Calculates hourly deposition of CO on vegetation

Description

Dep_CO - Calculates hourly deposition of CO on vegetation

Usage

```
Dep_CO(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of CO concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Value

Hourly data of deposition of CO on vegetation (g m-2 h-1)

```
data(Bizkaia_data)
Dep_CO(x = Bizkaia_data, z_0 = 1)
```

8 Dep_NO2

Dep_CO_a - Calculates the annual valuetation	ulue of deposition of CO on veg-
--	----------------------------------

Description

Dep_CO_a - Calculates the annual value of deposition of CO on vegetation

Usage

```
Dep_CO_a(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of CO concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W

m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Value

Annual value of deposition of CO on vegetation (g m-2 yr-1)

Examples

```
data(Bizkaia_data)
Dep_CO_a(x = Bizkaia_data, z_0 = 1)
```

Dep_NO2

Dep_NO2 - Calculates hourly deposition of NO2 on vegetation

Description

Dep_NO2 - Calculates hourly deposition of NO2 on vegetation

Usage

```
Dep_N02(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of NO2 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Dep_NO2_a

Value

Hourly data of deposition of NO2 on vegetation (g m-2 h-1)

Examples

```
data(Bizkaia_data)
Dep_N02(x = Bizkaia_data, z_0 = 1)
```

Dep_N02_a

Dep_NO2_a - Calculates the annual value of deposition of NO2 on vegetation

Description

Dep_NO2_a - Calculates the annual value of deposition of NO2 on vegetation

Usage

```
Dep_N02_a(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of NO2 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Value

Annual value of deposition of NO2 on vegetation (g m-2 yr-1)

```
data(Bizkaia_data)
Dep_NO2_a(x = Bizkaia_data, z_0 = 1)
```

10 Dep_O3_a

Dep_03

Dep_O3 - Calculates hourly deposition of O3 on vegetation

Description

Dep_O3 - Calculates hourly deposition of O3 on vegetation

Usage

```
Dep_03(x, z_0 = 1)
```

Arguments

Х

A data frame containing hourly data of O3 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0

Roughness length value (m)

Value

Hourly data of deposition of O3 on vegetation (g m-2 h-1)

Examples

```
data(Bizkaia_data)
Dep_03(x = Bizkaia_data, z_0 = 1)
```

Dep_03_a

Dep_O3_a - Calculates the annual value of deposition of O3 on vegetation

Description

Dep_O3_a - Calculates the annual value of deposition of O3 on vegetation

Usage

```
Dep_03_a(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of O3 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Dep_PM10 11

Value

Annual value of deposition of O3 on vegetation (g m-2 yr-1)

Examples

```
data(Bizkaia_data)
Dep_03_a(x = Bizkaia_data, z_0 = 1)
```

Dep_PM10

Dep_PM10 - Calculates hourly deposition of PM10 on vegetation

Description

Dep_PM10 - Calculates hourly deposition of PM10 on vegetation

Usage

```
Dep_PM10(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of PM10 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Value

Hourly data of deposition of PM10 on vegetation (g m-2 h-1)

```
data(Bizkaia_data)
Dep_PM10(x = Bizkaia_data, z_0 = 1)
```

Dep_SO2

Dep_PM10_a	Dep_PM10_a - Calculates the annual value of deposition of PM10 on vegetation
------------	--

Description

Dep_PM10_a - Calculates the annual value of deposition of PM10 on vegetation

Usage

```
Dep_PM10_a(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of PM10 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Value

Annual value of deposition of PM10 on vegetation (g m-2 yr-1)

Examples

```
data(Bizkaia_data)
Dep_PM10_a(x = Bizkaia_data, z_0 = 1)
```

Dep_S02

Dep_SO2 - Calculates hourly deposition of SO2 on vegetation

Description

Dep_SO2 - Calculates hourly deposition of SO2 on vegetation

Usage

```
Dep_S02(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of SO2 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Dep_SO2_a 13

Value

Hourly data of deposition of SO2 on vegetation (g m-2 h-1)

Examples

```
data(Bizkaia_data)
Dep_S02(x = Bizkaia_data, z_0 = 1)
```

Dep_S02_a

Dep_SO2_a - Calculates the annual value of deposition of SO2 on vegetation

Description

Dep_SO2_a - Calculates the annual value of deposition of SO2 on vegetation

Usage

```
Dep_S02_a(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of SO2 concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

z_0 Roughness length value (m)

Value

Annual value of deposition of SO2 on vegetation (g m-2 yr-1)

```
data(Bizkaia_data)
Dep_S02_a(x = Bizkaia_data, z_0 = 1)
```

Dep_vel_NO2

Den	_vel_	CO
	_ • • -	

Dep_vel_CO - Calculates hourly deposition velocity for CO

Description

Dep_vel_CO - Calculates hourly deposition velocity for CO

Usage

```
Dep_vel_CO(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

(kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or

Daylight))

z_0 Roughness length value (m)

Value

Hourly data of deposition velocity for CO (m s-1)

Examples

```
data(Bizkaia_data)
Dep_vel_CO(x = Bizkaia_data, z_0 = 1)
```

Dep_vel_NO2

Dep_vel_NO2 - Calculates hourly deposition velocity for NO2

Description

Dep_vel_NO2 - Calculates hourly deposition velocity for NO2

Usage

```
Dep_vel_N02(x, z_0 = 1)
```

Arguments

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

(kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or

Daylight))

z_0 Roughness length value (m)

Dep_vel_O3 15

Value

Hourly data of deposition velocity for NO2 (m s-1)

Examples

```
data(Bizkaia_data)
Dep_vel_N02(x = Bizkaia_data, z_0 = 1)
```

Dep_vel_03

Dep_vel_O3 - Calculates hourly deposition velocity for O3

Description

Dep_vel_O3 - Calculates hourly deposition velocity for O3

Usage

```
Dep_vel_03(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

z_0 Roughness length value (m)

Value

Hourly data of deposition velocity for O3 (m s-1)

```
data(Bizkaia_data)
Dep_vel_03(x = Bizkaia_data, z_0 = 1)
```

Dep_vel_SO2

_		D144.0
Deb	veı	PM10

Dep_vel_PM10 - Calculates hourly deposition velocity for PM10

Description

Dep_vel_PM10 - Calculates hourly deposition velocity for PM10

Usage

```
Dep_vel_PM10(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

 $(kPa),\,Precip\ (mm),\,Rad\ (W\ m\text{-}2),\,Temp\ (C),\,Wind\ (m\ s\text{-}1),\,Daylight\ (Night\ or\ n)$

Daylight))

z_0 Roughness length value (m)

Value

Hourly data of deposition velocity for PM10 (m s-1)

Examples

```
data(Bizkaia_data)
Dep_vel_PM10(x = Bizkaia_data, z_0 = 1)
```

Dep_vel_S02

Dep_vel_SO2 - Calculates hourly deposition velocity for SO2

Description

Dep_vel_SO2 - Calculates hourly deposition velocity for SO2

Usage

```
Dep_vel_S02(x, z_0 = 1)
```

Arguments

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

(kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or

Daylight))

z_0 Roughness length value (m)

Fric_vel 17

Value

Hourly data of deposition velocity for SO2 (m s-1)

Examples

```
data(Bizkaia_data)
Dep_vel_S02(x = Bizkaia_data, z_0 = 1)
```

Fric_vel

Fric_vel - Calculates friction velocity on an hourly basis

Description

Fric_vel - Calculates friction velocity on an hourly basis

Usage

```
Fric_vel(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

 z_0 Roughness length value (m)

Value

Hourly data of friction velocity (m s-1)

```
data(Bizkaia_data)
Fric_vel(x = Bizkaia_data, z_0 = 1)
```

18 LAI_deciduous

LAI_deciduous	LAI_deciduous - Generates hourly data of leaf and bark area index for deciduous trees in a specific year

Description

LAI_deciduous - Generates hourly data of leaf and bark area index for deciduous trees in a specific year

Usage

```
LAI_deciduous(Year, BAI_value, LAI_value, day_decay_ini, month_decay_ini, days_duration_decay, day_emergence_ini, month_emergence_ini, days_duration_emergence)
```

Arguments

Year	Year to generate leaf and bark area index (e.g. 2015)	
BAI_value	Bark area index value (e.g. 0.1)	
LAI_value	Maximum value of leaf area index value (e.g. 1.5)	
day_decay_ini	Day of the month leaves start to decay (between 1 and 31; e.g., 15)	
month_decay_ini		
	Month of the year leaves start to decay (between 1 and 12; e.g., 10)	
days_duration_decay		
	The duration of leaf decay in number of days (e.g., 50)	
day_emergence_ini		
	Day of the month leaves start to emerge (between 1 and 31; e.g., 1)	
month_emergence_ini		
	Month of the year leaves start to emerge (between 1 and 12; e.g., 4)	
days_duration_emergence		
	The duration of leaf emergence in number of days (e.g., 20)	

Value

A dataframe with LAI and BAI hourly values is generated

```
LAI_deciduous(Year = 2016,
BAI_value = 0.1,
LAI_value = 1.5,
day_decay_ini = 15,
month_decay_ini = 10,
days_duration_decay = 100,
day_emergence_ini = 1,
```

LAI_evergreen 19

```
month_emergence_ini = 4,
days_duration_emergence = 20)
```

LAI_evergreen

LAI_evergreen - Generates hourly data of leaf and bark area index for evergreen trees in a specific year

Description

LAI_evergreen - Generates hourly data of leaf and bark area index for evergreen trees in a specific year

Usage

```
LAI_evergreen(Year, LAI_value, BAI_value)
```

Arguments

Year Year to generate leaf and bark area index (e.g. 2015)

LAI_value Mean value of leaf area index (e.g. 1.3)

BAI_value Bark area index value (e.g. 0.1)

Value

A dataframe with LAI and BAI hourly values is generated

Examples

```
LAI_evergreen(Year = 2016,
BAI_value = 0.1,
LAI_value = 1.3)
```

Res_aero

Res_aero - Calculates aerodynamic resistance on an hourly basis

Description

Res_aero - Calculates aerodynamic resistance on an hourly basis

Usage

```
Res_aero(x, z_0 = 1)
```

20 Res_boun_CO

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

(kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or

Daylight))

z_0 Roughness length value (m)

Value

Hourly data of aerodynamic resistance (s m-1)

Examples

```
data(Bizkaia_data)
Res_aero(x = Bizkaia_data, z_0 = 1)
```

Res_boun_CO

Res_boun_CO - Calculates hourly boundary layer resistance for CO

Description

Res_boun_CO - Calculates hourly boundary layer resistance for CO

Usage

```
Res_boun_CO(x, z_0 = 1)
```

Arguments

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

(kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or

Daylight))

z_0 Roughness length value (m)

Value

Hourly data of boundary layer resistance for CO (s m-1)

```
data(Bizkaia_data)
Res_boun_CO(x = Bizkaia_data, z_0 = 1)
```

Res_boun_CO2 21

Res_boun_C02	Res_boun_CO2 - Calculates hourly boundary layer resistance for CO2
--------------	--

Description

Res_boun_CO2 - Calculates hourly boundary layer resistance for CO2

Usage

```
Res_boun_CO2(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

z_0 Roughness length value (m)

Value

Hourly data of boundary layer resistance for CO2 (s m-1)

Examples

```
data(Bizkaia_data)
Res_boun_CO2(x = Bizkaia_data, z_0 = 1)
```

Res_boun_NO2 - Calculates hourly boundary layer resistance for NO2

Description

Res_boun_NO2 - Calculates hourly boundary layer resistance for NO2

Usage

```
Res_boun_NO2(x, z_0 = 1)
```

Arguments

X	A data frame containing hourly data of weather variables (e.g. Hum (%), Pres
	(kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or
	Daylight))

z_0 Roughness length value (m)

Res_boun_O3

Value

Hourly data of boundary layer resistance for NO2 (s m-1)

Examples

```
data(Bizkaia_data)
Res_boun_NO2(x = Bizkaia_data, z_0 = 1)
```

Res_boun_03

Res_boun_O3 - Calculates hourly boundary layer resistance for O3

Description

Res_boun_O3 - Calculates hourly boundary layer resistance for O3

Usage

```
Res_boun_03(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

z_0 Roughness length value (m)

Value

Hourly data of boundary layer resistance for O3 (s m-1)

```
data(Bizkaia_data)
Res_boun_03(x = Bizkaia_data, z_0 = 1)
```

Res_boun_SO2 23

Res_boun_S02

Res_boun_SO2 - Calculates hourly boundary layer resistance for SO2

Description

Res_boun_SO2 - Calculates hourly boundary layer resistance for SO2

Usage

```
Res_boun_S02(x, z_0 = 1)
```

Arguments

X

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

z_0

Roughness length value (m)

Value

Hourly data of boundary layer resistance for SO2 (s m-1)

Examples

```
data(Bizkaia_data)
Res_boun_S02(x = Bizkaia_data, z_0 = 1)
```

Res_cano_CO

Res_cano_CO - Calculates hourly canopy resistance for CO

Description

Res_cano_CO - Calculates hourly canopy resistance for CO

Usage

```
Res_cano_CO(x)
```

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

24 Res_cano_NO2

Value

Hourly data of canopy resistance for CO (s m-1)

Examples

```
data(Bizkaia_data)
Res_cano_CO(x = Bizkaia_data)
```

Res_cano_NO2

Res_cano_NO2 - Calculates hourly canopy resistance for NO2

Description

Res_cano_NO2 - Calculates hourly canopy resistance for NO2

Usage

```
Res_cano_NO2(x)
```

Arguments

Χ

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of canopy resistance for NO2 (s m-1)

```
data(Bizkaia_data)
Res_cano_NO2(x = Bizkaia_data)
```

Res_cano_O3 25

Res_cano_03

Res_cano_O3 - Calculates hourly canopy resistance for O3

Description

Res_cano_O3 - Calculates hourly canopy resistance for O3

Usage

```
Res_cano_03(x)
```

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of canopy resistance for O3 (s m-1)

Examples

```
data(Bizkaia_data)
Res_cano_03(x = Bizkaia_data)
```

Res_cano_S02

Res_cano_SO2 - Calculates hourly canopy resistance for SO2

Description

Res_cano_SO2 - Calculates hourly canopy resistance for SO2

Usage

```
Res_cano_S02(x)
```

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of canopy resistance for SO2 (s m-1)

Res_cuti_O3

Examples

```
data(Bizkaia_data)
Res_cano_SO2(x = Bizkaia_data)
```

Res_cuti_NO2

 $Res_cuti_NO2 - Calculates \ hourly \ cuticular \ resistance \ for \ NO2$

Description

Res_cuti_NO2 - Calculates hourly cuticular resistance for NO2

Usage

```
Res_cuti_NO2(x)
```

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of cuticular resistance for NO2 (s m-1)

Examples

```
data(Bizkaia_data)
Res_cuti_NO2(x = Bizkaia_data)
```

Res_cuti_03

Res_cuti_O3 - Calculates hourly cuticular resistance for O3

Description

Res_cuti_O3 - Calculates hourly cuticular resistance for O3

Usage

```
Res_cuti_03(x)
```

Res_cuti_SO2 27

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of cuticular resistance for O3 (s m-1)

Examples

```
data(Bizkaia_data)
Res_cuti_03(x = Bizkaia_data)
```

Res_cuti_S02

Res_cuti_SO2 - Calculates hourly cuticular resistance for SO2

Description

Res_cuti_SO2 - Calculates hourly cuticular resistance for SO2

Usage

```
Res_cuti_S02(x)
```

Arguments

Χ

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of cuticular resistance for SO2 (s m-1)

```
data(Bizkaia_data)
Res_cuti_S02(x = Bizkaia_data)
```

28 Res_meso_O3

Res_meso_NO2

Res_meso_NO2 - Calculates hourly mesophyll resistance for NO2

Description

Res_meso_NO2 - Calculates hourly mesophyll resistance for NO2

Usage

```
Res_meso_NO2(x)
```

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of mesophyll resistance for NO2 (s m-1)

Examples

```
data(Bizkaia_data)
Res_meso_NO2(x = Bizkaia_data)
```

Res_meso_03

Res_meso_O3 - Calculates hourly mesophyll resistance for O3

Description

Res_meso_O3 - Calculates hourly mesophyll resistance for O3

Usage

```
Res_meso_03(x)
```

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of mesophyll resistance for O3 (s m-1)

Res_meso_SO2 29

Examples

```
data(Bizkaia_data)
Res_meso_03(x = Bizkaia_data)
```

Res_meso_SO2

Res_meso_SO2 - Calculates hourly mesophyll resistance for SO2

Description

Res_meso_SO2 - Calculates hourly mesophyll resistance for SO2

Usage

```
Res_meso_SO2(x)
```

Arguments

Х

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

Value

Hourly data of mesophyll resistance for SO2 (s m-1)

Examples

```
data(Bizkaia_data)
Res_meso_SO2(x = Bizkaia_data)
```

Res_soil

Res_soil - Calculates soil resistance on an hourly basis

Description

Res_soil - Calculates soil resistance on an hourly basis

Usage

```
Res_soil(x, r_soil_inleaf = 2941, r_soil_outleaf = 2941)
```

Res_stom_NO2

Arguments

x A data frame containing hourly data of weather and other variables (e.g. Hum

(%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight

(Night or Daylight), BAI, LAI)

r_soil_inleaf Resistance value during in-leaf seasonr_soil_outleaf Resistance value during in-leaf season

Value

Hourly data of soil resistance (s m-1)

Examples

```
data(Bizkaia_data)
Res_soil(x = Bizkaia_data, r_soil_inleaf = 2941, r_soil_outleaf = 2941)
```

Res_stom_NO2

Res_stom_NO2 - Calculates stomata resistance on an hourly basis

Description

Res_stom_NO2 - Calculates stomata resistance on an hourly basis

Usage

```
Res_stom_NO2(x, m2 = 1, m3 = 4)
```

Arguments

A data frame containing hourly data of weather and other variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)

m2 Dimensionless slope for different air pollutants

m3 Dimensionless slope for different species

Value

Hourly data of stomata resistance (s m-1)

```
data(Bizkaia_data)
Res_stom_NO2(x = Bizkaia_data)
```

Res_stom_O3

D	- 4	. ^ ^
RAS	ston	า เว≺
1103_	_3 (0)	

Res_stom_O3 - Calculates stomata resistance on an hourly basis

Description

Res_stom_O3 - Calculates stomata resistance on an hourly basis

Usage

```
Res_stom_03(x, m2 = 1, m3 = 4)
```

Arguments

X	A data frame containing hourly data of weather and other variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight
	(Night or Daylight), BAI, LAI)
m2	Dimensionless slope for different air pollutants
m3	Dimensionless slope for different species

Value

Hourly data of stomata resistance (s m-1)

Examples

```
data(Bizkaia_data)
Res_stom_03(x = Bizkaia_data)
```

 Res_stom_SO2

Res_stom_SO2 - Calculates stomata resistance on an hourly basis

Description

Res_stom_SO2 - Calculates stomata resistance on an hourly basis

Usage

```
Res_stom_SO2(x, m2 = 1, m3 = 4)
```

Arguments

X	A data frame containing hourly data of weather and other variables (e.g. Hum
	(%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight
	(Night or Daylight), BAI, LAI)
m2	Dimensionless slope for different air pollutants
m3	Dimensionless slope for different species

32 Res_Tot_CO

Value

Hourly data of stomata resistance (s m-1)

Examples

```
data(Bizkaia_data)
Res_stom_SO2(x = Bizkaia_data)
```

 Res_Tot_CO

Res_Tot_CO - Calculates hourly total resistance for CO

Description

Res_Tot_CO - Calculates hourly total resistance for CO

Usage

```
Res_Tot_CO(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

z_0 Roughness length value (m)

Value

Hourly data of total resistance for CO (s m-1)

```
data(Bizkaia_data)
Res_Tot_CO(x = Bizkaia_data, z_0 = 1)
```

Res_Tot_NO2

Res	To+	NO2

Res_Tot_NO2 - Calculates hourly total resistance for NO2

Description

Res_Tot_NO2 - Calculates hourly total resistance for NO2

Usage

```
Res_Tot_N02(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

 $(kPa),\,Precip\ (mm),\,Rad\ (W\ m\text{-}2),\,Temp\ (C),\,Wind\ (m\ s\text{-}1),\,Daylight\ (Night\ or\ n)$

Daylight))

z_0 Roughness length value (m)

Value

Hourly data of total resistance for NO2 (s m-1)

Examples

```
data(Bizkaia_data)
Res_Tot_NO2(x = Bizkaia_data, z_0 = 1)
```

Res_Tot_03

Res_Tot_O3 - Calculates hourly total resistance for O3

Description

Res_Tot_O3 - Calculates hourly total resistance for O3

Usage

```
Res_{Tot_{03}(x, z_{0} = 1)}
```

Arguments

A data frame containing hourly data of weather variables (e.g. Hum (%), Pres

(kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or

Daylight))

z_0 Roughness length value (m)

Res_Tot_SO2

Value

Hourly data of total resistance for O3 (s m-1)

Examples

```
data(Bizkaia_data)
Res_Tot_03(x = Bizkaia_data, z_0 = 1)
```

 Res_Tot_SO2

Res_Tot_SO2 - Calculates hourly total resistance for SO2

Description

Res_Tot_SO2 - Calculates hourly total resistance for SO2

Usage

```
Res_Tot_S02(x, z_0 = 1)
```

Arguments

x A data frame containing hourly data of weather variables (e.g. Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight))

z_0 Roughness length value (m)

Value

Hourly data of total resistance for SO2 (s m-1)

```
data(Bizkaia_data)
Res_Tot_S02(x = Bizkaia_data, z_0 = 1)
```

TreeDep 35

TreeDep Package

Description

The model estimates air pollution removal by dry deposition on trees. It also estimates aerodynamic resistance, boundary layer resistance, canopy resistance, stomatal resistance, cuticular resistance, mesophyll resistance, soil resistance, friction velocity and deposition velocity. It also allows plotting graphical results for a specific time period. The pollutants are nitrogen dioxide, ozone, sulphur dioxide, carbon monoxide and particulate matter.

Author(s)

Silvestre Garcia de Jalon < s.garciadejalon@gmail.com>

TreeDep_plot	TreeDep_plot - Generates a plot for selected variables and dates.

Description

TreeDep_plot - Generates a plot for selected variables and dates.

Usage

```
TreeDep_plot(my_data, variable1, variable2 = "Non-existent", start_month,
    start_day, stop_month, stop_day)
```

Arguments

my_data	A data frame containing hourly data pollutant concentration and other variables (Dates (e.g. 01/01/2016 00:00:00), Hum (%), Pres (kPa), Precip (mm), Rad (W m-2), Temp (C), Wind (m s-1), Daylight (Night or Daylight), BAI, LAI)
variable1	Variable to be plotted (e.g., "Dep_NO2", "Conc_O3", "Wind", "Temp")
variable2	Variable to be plotted (e.g., "Dep_NO2", "Conc_O3", "Wind", "Temp")
start_month	First month of the year in the plot (between 1 and 12; e.g., 3)
start_day	First day of the month in the plot (between 1 and 31; e.g., 4)
stop_month	Last month of the year in the plot (between 1 and 12; e.g., 11)
stop_day	Last day of the month in the plot (between 1 and 31; e.g., 22)

TreeDep_plot

Details

The variables that can be plotted are: "Hum", "Pres", "Precip", "Rad", "Temp", "Wind", "BAI", "LAI", "Fric_vel", "Res_aero", "Res_boun_CO2", "Res_soil", "Conc_NO2", "Dep_NO2", "Dep_vel_NO2", "Res_boun_NO2", "Res_cano_NO2", "Res_cano_NO2", "Res_cano_NO2", "Res_cano_NO2", "Res_cano_NO2", "Res_cano_NO2", "Res_stom_O3", "Res_meso_O3", "Res_cano_O3", "Res_tot_O3", "Res_boun_O3", "Res_cano_O3", "Res_boun_SO2", "Dep_SO2", "Dep_vel_SO2", "Res_boun_SO2", "Res_cano_SO2", "Res_cano_SO2", "Res_tot_SO2", "Dep_CO", "Dep_Vel_CO", "Res_boun_CO", "Res_cano_CO", "Res_tot_SO2", "Conc_PM10", "Dep_PM10", "Dep_vel_PM10".

Value

A plot with the variables and dates selected

```
TreeDep_plot(my_data = Bizkaia_data,
variable1 = "Dep_PM10",
variable2 = "Wind",
start_month = 6,
stop_month = 7,
start_day = 25,
stop_day = 3)
```

Index

* datasets	Res_cano_03, 25
Bizkaia_data,3	Res_cano_S02, 25
Di-luis data 2	Res_cuti_NO2, 26
Bizkaia_data, 3	Res_cuti_03, 26
Conc_C0, 3	Res_cuti_SO2, 27
Conc_N02, 4	Res_meso_NO2, 28
Conc_03, 4	Res_meso_03, 28
Conc_PM10, 5	Res_meso_SO2, 29 Res_soil, 29
Conc_S02, 5	Res_stom_NO2, 30
	Res_stom_03, 31
Daylight, 6	Res_stom_SO2, 31
Dep_C0, 7	Res_Tot_CO, 32
Dep_CO_a, 8	Res_Tot_NO2, 33
Dep_NO2, 8	Res_Tot_03, 33
Dep_N02_a, 9	Res_Tot_S02, 34
Dep_03, 10	NGS_100_502, 5 1
Dep_03_a, 10	TreeDep, 35
Dep_PM10, 11	TreeDep-package (TreeDep), 35
Dep_PM10_a, 12	TreeDep_plot, 35
Dep_S02, 12	
Dep_S02_a, 13 Dep_vel_C0, 14	
Dep_vel_NO2, 14	
Dep_vel_03, 15	
Dep_vel_PM10, 16	
Dep_vel_S02, 16	
bep_ve1_302, 10	
Fric_vel, 17	
LAI_deciduous, 18	
LAI_evergreen, 19	
Res_aero, 19	
Res_boun_CO, 20	
Res_boun_CO2, 21	
Res_boun_N02, 21	
Res_boun_03, 22	
Res_boun_S02, 23	
Res_cano_CO, 23	
Res_cano_N02, 24	