Homework: Vehicle Models

20.1-20.6

Hayden Atchley

13 December 2023

The car I chose for this problem set is a 2005 Chevrolet Corvette C6 Z06. This is a 6-speed manual transmission car with a $427.8~\text{in}^3~\text{V8}$ engine. An example of this car is shown in Figure 1.

Figure 1: A 2005 Chevrolet Corvette C6 Z06 racing at the Motor Speedway of the South in the 2005 Piston Cup final.

20.1

The following are specifications for the vehicle:

a. Final drive axle ratio: 3.42:1

b. 1st gear ratio: 2.66:1

c. 6th gear ratio: 0.5:1

d. Tire specification: P275/35ZR18 (front), P325/30ZR19 (rear)

e. Base curb weight: 3132 lb (13,940 N)

20.2

Given that the vehicle speed is related to engine speed as in Equation 1, where r is the tire radius and $N_{\rm ft}$ is the final transmission gear ratio, the vehicle cruising at 30 m/s in 6th gear has an engine speed of $1539/\pi r$ m/s (the final gear ratio is $0.5 \times 3.42 = 1.71$).

$$v = \frac{\pi r}{30N_{\rm ft}}\omega\tag{1}$$

Since this is a rear-wheel drive car, the rear tire radius will be used for r. This is $19"/2 + 0.3 \times 325 \text{ mm} = 0.339 \text{ m}$. The engine speed is therefore $1539/0.339\pi = 1446 \text{ rad/s}$.

20.3

At start-up, we are using 1st gear $(N_{ft}=9.1)$ and are assuming half the maximum torque is available ($\Gamma=317$ N-m). Since $F_e=\frac{\Gamma N_{ft}\zeta}{r}$, with $\zeta=80\%,\,F_e=6800$ N.

20.4

The car has a drag coefficient of 0.31 and a frontal area of 2.08 m^2 , and is traveling at 100 kph = 27.8 m/s. With the density of air at 1.2 kg/m^3 , the force of drag is:

$$F_d = \frac{\rho}{2} C_d A_f v^2 = \frac{1.2}{2} \times 0.31 \times 27.8^2 = 299 \text{ N}.$$

20.5

If the vehicle is traveling up a hill with a 5% grade, the grade resistance is $F_g \approx WG = 13940 \times 0.05 = 697$ N.

20.6

Assuming the vehicle is only subject to grade resistance and drag, the total force is the engine force minus the resistances ($F_t = F_e - F_d - F_g$). This force is 5805 N. The mass of the vehicle is 1421 kg, so the acceleration is $a = F_t/m = 4.1 \text{ m/s}^2$.