

Beställare: Göteborg Stad

Uppdrag: Kofferdalsvägen 6 nyb BMSS

Markteknisk undersökningsrapport Geoteknik

(MUR/GEO)

Dokumentinformation

Uppdrag: Kofferdalsvägen 6 nyb BMSS Datum: 2023-07-07

Uppdragsnummer: D0120784 Revidering:

Beställare: Göteborg Stad, Stadsfastighetsförvaltningen

Beställarens referens: Olga Folkesson

Uppdragsledare: Anna Maria Janson

Telefon: 076 113 06 76

E-post: annamaria.janson@afry.com

Upprättad av: Anna Maria Janson

Granskad av: Kim Plath

Innehållsförteckning

1	Objek	<t< th=""><th></th><th>4</th></t<>		4		
2	Syfte			4		
3	Unde	rlag		4		
4	Styra	nde dokı	ument	4		
	4.1	Certifie	ring	5		
5	Befin	tliga förh	ållanden	6		
	5.1	Topogra	afi	6		
	5.2	Ytbeska	affenhet	6		
	5.3	Befintli	ga byggnader och anläggningar	6		
6	Utsät	tning/Ini	mätning	6		
7	Fältur	ndersökn	ningar	6		
	7.1	Geotek	niska undersökningar	6		
		7.1.1	Geoteknisk kategori	6		
		7.1.2	Nu utförda undersökningar	6		
		7.1.3	Kalibrering	7		
	7.2	Hydrog	eologiska undersökningar	7		
8	Labor	atorieun	dersökningar	8		
	8.1 Geotekniska undersökningar					
		8.1.1	Kalibrering	8		
9	Härle	dda värd	len	8		
	9.1	Härledo	da värden, geotekniska egenskaper	8		
		9.1.1	Utvärdering och korrigering	8		
		9.1.2	Hållfasthetsegenskaper	8		
		9.1.3	Övriga egenskaper	8		
	9.2	Härledo	da värden, hydrogeologiska egenskaper	8		
10	Värde	ering av i	undersökning	9		
	10.1 Generellt					
	10.2	Härledo	da värdens spridning och relevans	9		
11	Övrig	t		9		

Bilagor

Bilaga A	Utvärdering härledda värden
Bilaga B	Utvärdering CPT
Bilaga C	Laboratorieprotokoll

Ritningar

Ritningsnummer	Ritning	Skala	Format
G-10.1-001	Plan	1:200	A1
G-10.2-001	Sektion	1:200	A1
G-10.2-002	Separata sonderingar	1:100	A1

1 Objekt

På uppdrag av Göteborg Stad har AFRY utfört en geoteknisk undersökning för rubricerat uppdrag. Området är beläget i Billdal, Göteborg

Figur 1 Översikt över område med ny byggnad (från FU/AF 2023-02-15)

2 Syfte

Syftet med undersökningen har varit att ta fram underlag för projektering av ny byggnad vid Kofferdalsvägen.

Föreliggande rapport redovisar resultaten av utförda geotekniska undersökningar inom området.

3 Underlag

- Information om uppdraget har erhållits från beställaren
- Grundkarta har erhållits från beställaren
- Jordarts- och jorddjupskartor har inhämtats från Sveriges geologiska undersöknings (SGU) tjänst Kartgeneratorn (https://www.sgu.se/)
- Ledningsunderlag har inhämtats från Ledningskollen (www.ledningskollen.se)

4 Styrande dokument

Denna rapport ansluter till SS-EN 1997-1 med tillhörande nationell bilaga.

Tabell 4.1 Planering och redovisning.

Metod	Standard eller annat styrande dokument		
Fältplanering	SS-EN 1997-2 med korrigering SS-EN 1997-2:1997/AC:2010		
Fältutförande	Geoteknisk fälthandbok, SGF Rapport 1:2013 SS-EN-ISO 22475–1		
Beteckningssystem	SGF/BGS beteckningssystem 2001:2 SS-EN 14688-1 med tillägg SS-EN ISO 14688-1/A1:2013		

Kompletterad version av Berg och Jord Beteckningsblad 2013-04- 24 (översättningsnyckel mellan SGF/BGS beteckningssystem och gällande europastandard SS-EN 14688-1, från IEG Rapport
13:2010)

Tabell 4.2 Fältundersökningar.

Metod	Standard eller annat styrande dokument			
Störd provtagning	Geoteknisk fälthandbok SGF Rapport 1:2013			
Vingförsök	Geoteknisk fälthandbok SGF Rapport 1:2013 SGF Rapport 2:93, Rekommenderad standard för vingförsök i fält			
CPT-sondering	Geoteknisk fälthandbok SGF Rapport 1:2013 SS-EN ISO 22476-1			
Trycksondering	Geoteknisk fälthandbok SGF Rapport 1:2013 SGF metodblad "Beskrivning av Mekanisk Trycksondering" 2009-01- 27			
Jord-bergsondering	Geoteknisk fälthandbok SGF Rapport 1:2013 SGF Rapport 4:2012 Metodbeskrivning för Jord-bergsondering			
Hydrogeologiska metoder	Geoteknisk fälthandbok SGF Rapport 1:2013			

Tabell 4.3 Laboratorieundersökningar.

Metod	Standard eller annat styrande dokument
Vattenkvot	SS 027116 SS-EN ISO 17892-1:2014
Materialtyp & Tjälfarlighetsklass	AMA Anläggning 17, Tabell CB/1
Benämning och indelning av jord Del 1 Benämning och beskrivning	SS-EN ISO 14688-1
Identifiering och klassificering av jord Del 2: Klassificeringsprinciper	SS-EN ISO 14688-2

4.1 Certifiering

AFRY är certifierade enligt ISO 9001:2015, ISO 14001:2015 samt OHSAS 18001:2007.

5 Befintliga förhållanden

5.1 Topografi

Området gränsar till Kofferdalsvägen i norr och öster. I söder finns befintlig förskola och lekplats. Väster om orådet finns befintlig bostadsbebyggelse. Markytan inom området varierar mellan ca + 4,4 och +7,0. Marken sluttar svagt från nordöst till sydväst.

5.2 Ytbeskaffenhet

Marken består av gräsytor och asfalterade ytor.

5.3 Befintliga byggnader och anläggningar

Inom undersökningsområdet finns en befintlig byggnad som är pålad. Strax öster om undersökningsområdet finns en befintlig förskola. Inom området finns även befintliga VA-, el- och teleledningar.

6 Utsättning/Inmätning

Undersökningspunkterna är utsatta och inmätta med GPS. Inmätning har skett i enlighet med geoteknisk mätningsklass B.

Mätklass Plan(m) Höjd (m). Se fälthandbok för detaljer.

A 0,3 0,05 B 1,0 0,1 C 2,0 0,5

Koordinatsystem: SWEREF 991200

Höjdsystem: RH2000

7 Fältundersökningar

7.1 Geotekniska undersökningar

7.1.1 Geoteknisk kategori

Undersökningarna är utförda i enlighet med förutsättningarna för tillämpning av Geoteknisk kategori 2 (GK 2).

7.1.2 Nu utförda undersökningar

Fältundersökningarna har utförts 2023-05-15 av fältingenjör Martin Johansson med borrbandvagn Geotech 605DD [17529]. Totalt omfattar fältarbetet 4 st undersökningspunkter. Antalet undersökningsmetoder fördelas enligt Tabell 7.1. Undersökningarna redovisas på ritning G-10.1-001 i plan samt på G-10.2-001 i sektion och G-10.2-002 som separata undersökningar.

Tabell 7.1. Utförda geotekniska fältundersökningar (exempel på syfte med undersökningen).

Metod	Syfte	Antal
Störd provtagning	Upptagning av störda jordprover	2
Vingförsök	Bestämning av lerans/gyttjans skjuvhållfasthet	1
CPT-sondering	Bestämning av jordlagerföljd, relativ fasthet, hållfasthets- och deformationsegenskaper samt variationer i jordens egenskaper mot djupet.	1
Trycksondering	Bestämning av jorddjup och jordlagerföljd	3
Jord-bergsondering	Bestämning av gränsen mellan jord och berg, blockförekomst i jord samt förekomst av sprickor eller krosszoner i berg	2

Hantering av jordprover har utförts enligt SGF rapport 1:2013.

Störda prover har förvarats och transporterats i provpåsar av plast.

7.1.3 Kalibrering

För att säkerställa kvalitén på utfört fältarbete genomförs årligen kalibrering, kontroll och dokumentation av använda maskiner och utrustning. Detta arbete göra av externt ackrediterat företag. Rutinmässig och regelbunden kontroll av maskiner och utrustning görs av ansvarig fältgeotekniker.

Tabell 7.2 Utrustning och kalibreringsdatum för använd utrustning

Utrustning	Kalibreringsdatum
Geotech 605DD, 17529	2022-07-01
Cpt-spets 4746	2022-12-17
Vinge EVB-0191	2022-12-16

Areafaktorer för använd Cpt-spets: A 0,843 och B 0,003

Kalibreringskonstant vinge 0,97.

Fältrapport finns hos AFRY och lämnas ut vid förfrågan.

7.2 Hydrogeologiska undersökningar

Fri grundvattenyta i den övre öppna akviferen har sökts i samband med samtliga skruvprovtagningar vid undersökningstillfället.

8 Laboratorieundersökningar

8.1 Geotekniska undersökningar

Jordprover har analyserats under juni 2023 av AFRY. Undersökningarnas omfattning redovisas i Tabell 8.1. Resultat av lobaratorieundersökning redovisas i Bilaga C.

Tabell 8.1. Utförda geotekniska laboratorieundersökningar.

Metod	Antal
Vattenkvot	11
Konflytgräns	5
Materialtyp & Tjälfarlighetsklass	9
Benämning	11

8.1.1 Kalibrering

För att säkerställa kvalitén på utfört laboratoriearbete genomförs årligen kalibrering, kontroll och dokumentation av använd utrustning. Detta arbete göra av externt ackrediterat företag. Rutinmässig och regelbunden kontroll av utrustning görs av ansvarig laboratorietekniker.

Laboratorierapport finns hos AFRY och lämnas ut vid förfrågan.

9 Härledda värden

9.1 Härledda värden, geotekniska egenskaper

9.1.1 Utvärdering och korrigering

Värden från utförda störda prover samt CPT-sonderingar redovisas. Den odränerade skjuvhållfastheten har korrigerats med hänsyn till konflytgräns.

Utförda CPT-sonderingar är utvärderade enligt SGI Info 15 i datorprogrammet Conrad version 3.1, se Bilaga B.

Sonderingarna har sammanställts utifrån djup.

9.1.2 Hållfasthetsegenskaper

Skjuvhållfasthet har utvärderats från CPT-sondering och vingförsök, se Bilaga A.

9.1.3 Övriga egenskaper

Vattenkvot och konflytgräns är framtaget i laboratorium och redovisas i Bilaga A.

9.2 Härledda värden, hydrogeologiska egenskaper

Resultat från tryckutjämningsförsök i samband med CPT-sondering och observerad vattenyta i skruvprovtagningshålen redovisas nedan.

Tabell 9.1. Resultat från tryckutjämningsförsök.

ID	Datum	Markyta	Mätdjup	Mätnivå	Utjämnat portryck [kPa]	Trycknivå	Artesiskt
23AF03	2023-05-15	+4,65	11,64	-6,99	122	+5,21	ja

Tabell 9.2 Observerad vattenyta i skruvprovtagningshål.

ID	Datum	Markyta	Observerad vattenyta i skruvprovtagningshål (m under my)	Trycknivå
23AF01	2023-05-15	+5,40	1,7	+3,7
23AF03	2023-05-15	+4,65	Rasar igen	-

10 Värdering av undersökning

Inga avvikelser avseende utförande har noterats i samband med fältundersökningarna. Fältarbetena har utförts som planerat.

10.1 Generellt

Undersökningen ger en generell bild av de geotekniska förhållandena inom planområdet.

10.2 Härledda värdens spridning och relevans

Spridningen för undersökta jordparametrar anses vara normal.

11 Övrigt

Undersökningsresultaten redovisas på bifogade handlingar och ritningar.

Bilaga A, *Utvärdering härledda värden*

Bilaga B, *Utvärdering CPT*

CPT-sondering

Projekt Kofferdalen BMSS G23039

Plats

Borrhål 23AF03

Datum 2023 05 15 0940

Förborrningsdjup 1.00 m Startdjup 1.00 m Stoppdjup 11.64 m Grundvattenyta 1.00 m Förborrat material Geometri

Normal

Stoppdjup 11.64 m Vätska i filter Grundvattenyta 1.00 m Operatör Referens Utrustning

X Portryck registrerat vid sondering

Nivå vid referens Kalibreringsdata

Nollvärden, kPa

	Portryck	Friktion	Spetstryck			
Före	270.80	123.80	4.11			
Efter	270.40	123.30	4.10			
Diff	-0.40	-0.50	-0.01			

Skalfaktorer

Portryck	Friktion	Spetstryck
Område Faktor	Område Faktor	Område Faktor

Korrigering

Portryck (ingen) Friktion (ingen) Spetstryck (ingen)

Bedömd sonderingsklass

Använd skalfaktorer vid beräkning

Portrycksobservationer

Djup (m) Portryck (kPa) 1.00 0.00

Skiktgränser Djup (m)

K	as	SII	nc	er	ın

Djup	(m)	Densitet		
Från	Till	(ton/m ³)	Flytgräns	Jordart
0.00	0.20	1.70	0.43	saMu
0.20	0.60	1.70	0.43	F:lesa
0.60	1.00	1.60	0.43	siLet
1.00	2.00		0.53	siLe
2.00	3.00		0.53	siLe
3.00	4.00		0.54	siLe
4.00	5.00		0.54	siLe
5.00	12.00		0.55	

Anmärkning

CPT-sondering

Sida 1 av 1

Projekt Koffe G230	erdalen	BMSS					Plat Bor Dat	rhål	23AF(2023 ()3 05 15 09	940				1 av 1
Djup	. /			ρ	\mathbf{W}_{L}	$ au_{\mathrm{fu}}$	ф	σ_{vo}	σ' _{vo}	σ'。	OCR	I_{D}	Е	M _{OC}	M _{NC}
0.00 0.20	0.20 0.60	Klassificering saMu F:lesa		t/m ³ 1.70 1.70	0.43 0.43	kPa	0	1.7 6.7	1.7 6.7	kPa		%	MPa	MPa	MPa
0.60 1.00	1.00 1.20	siLet siLe		1.60 1.60	0.43 0.53	21.6		13.1 17.9	13.1 16.9	151.8	9.01				
1.20 1.40	1.40 1.60	siLe siLe		1.30 1.30	0.53 0.53	12.7 9.5		20.7 23.2	17.7 18.2	77.4 53.1	4.37 2.91				
1.60 1.80	1.80	siLe siLe		1.30 1.45	0.53 0.53	10.7 10.8		25.8 28.5	18.8 19.5	61.1	3.25 3.17				
2.00	2.20	siLe		1.45	0.53	11.3		31.3	20.3	61.8 64.2	3.16				
2.20 2.40	2.40 2.60	siLe siLe		1.45 1.45	0.53 0.53	11.8 12.5		34.2 37.0	21.2 22.0	67.6 71.9	3.19 3.26				
2.60	2.80	siLe		1.60	0.53	13.4		40.0	23.0	77.3	3.36				
2.80 3.00	3.00 3.20	siLe siLe		1.60 1.60	0.53 0.54	13.9 15.5		43.2 46.3	24.2 25.3	80.2 89.7	3.32 3.54				
3.20	3.40	siLe		1.60	0.54	16.1		49.4	26.4	93.0	3.52				
3.40 3.60	3.60 3.80	siLe siLe		1.60 1.60	0.54 0.54	16.7 17.5		52.6 55.7	27.6 28.7	96.3 101.4	3.49 3.53				
3.80	4.00	siLe		1.60	0.54	17.6		58.9	29.9	101.2	3.39				
4.00 4.20	4.20 4.40	siLe siLe		1.60 1.60	0.54 0.54	17.5 17.5		62.0 65.1	31.0 32.1	99.3 98.2	3.20 3.06				
4.40	4.60	siLe		1.60	0.54	17.8		68.3	33.3	99.7	2.99				
4.60 4.80	4.80 5.00	siLe siLe		1.60 1.60	0.54 0.54	18.0 18.0		71.4 74.6	34.4 35.6	100.5 99.3	2.92 2.79				
5.00	5.20	ClvL	OC	1.60	0.55	18.3		77.7	36.7	99.7	2.72				
5.20 5.40	5.40 5.60	Cl vL Cl vL	OC OC	1.60 1.60	0.55 0.55	18.0 18.3		80.8 84.0	37.8 39.0	96.9 98.3	2.56 2.52				
5.60	5.80	ClvL	OC	1.60	0.55	18.2		87.1	40.1	96.7	2.41				
5.80 6.00	6.00 6.20	Cl vL Cl vL	OC OC	1.60 1.60	0.55 0.55	18.1 18.7		90.3 93.4	41.3 42.4	95.4 99.0	2.31 2.33				
6.20 6.40	6.40 6.60	CI vL CI vL	OC OC	1.60 1.60	0.55 0.55	18.9 18.3		96.5 99.7	43.5 44.7	99.3 94.6	2.28 2.12				
6.60	6.80	CIVL	OC	1.60	0.55	18.0		102.8	45.8	92.6	2.02				
6.80 7.00	7.00 7.20	Cl vL Cl vL	OC OC	1.60 1.60	0.55 0.55	17.9 18.5		105.9 109.1	46.9 48.1	91.0 94.6	1.94 1.97				
7.20	7.40	ClvL	OC	1.60	0.55	18.7		112.2	49.2	95.1	1.93				
7.40 7.60	7.60 7.80	CI vL CI vL	OC OC	1.60 1.60	0.55 0.55	18.5 18.2		115.4 118.5	50.4 51.5	93.4 90.7	1.86 1.76				
7.80	8.00	ClvL	OC	1.60	0.55	18.1		121.6	52.6	89.6	1.70				
8.00 8.20	8.20 8.40	Cl vL Cl vL	OC OC	1.60 1.60	0.55 0.55	18.5 18.6		124.8 127.9	53.8 54.9	91.6 91.7	1.70 1.67				
8.40	8.60	ClvL	OC	1.60	0.55	18.9		131.1	56.1	93.1	1.66				
8.60 8.80	8.80 9.00	Cl vL Cl vL	OC OC	1.60 1.60	0.55 0.55	18.7 18.4		134.2 137.3	57.2 58.3	91.7 89.4	1.60 1.53				
9.00	9.20	ClvL	NC	1.75	0.55	17.8		140.6	59.6	85.1	1.43				
9.20 9.40	9.40 9.60	Cl vL Cl vL	NC NC	1.75 1.75	0.55	18.4 18.6		144.1 147.5	61.1 62.5	88.1 89.2	1.44 1.43				
9.60	9.80	ClvL	NC	1.75	0.55	18.0		150.9	63.9	85.2	1.33				
9.80 10.00	10.00 10.20	Cl vL Cl vL	NC NC	1.75 1.75	0.55 0.55	18.8 19.6		154.4 157.8	65.4 66.8	89.2 93.5	1.37 1.40				
10.20	10.40	ClvL	NC	1.75	0.55	17.6		161.2	68.2	81.1	1.19				
10.40 10.60	10.60 10.80	Cl vL Cl vL	NC NC	1.60 1.60	0.55 0.55	18.7 15.0		164.5 167.7	69.5 70.7	87.4 67.1	1.26 1.00				
10.80	11.00	Si L	140	1.70	0.55	((90.6))	(29.8)	170.9	71.9	07.1	1.00		6.2	7.4	5.9
11.00 11.20	11.20 11.40	Sa L Sa v L		1.80 1.70	0.55 0.55		35.1 33.2	174.3 177.8	73.3 74.8			45.8 31.2	15.9 10.0	20.5 12.4	16.4 9.9
11.40	11.53	Sa L		1.80	0.55		34.2	180.6	75.9			40.6	13.7	17.3	13.9
															Pla

CPT-sondering utförd enligt EN ISO 22476-1

Bilaga C, Laboratorieprotokoll

Sammanställning av

LABORATORIEUNDERSÖKNING STÖRD PROVTAGNING

Uppdragsnamn: Kofferdalsvägen 6 nyb BMSS

Uppdragsnummer: D0120784

Beställare: Göteborg Stad

Provtagningsdatum: 2023-05-15

Fält-ansvarig: Martin Johansson
Lab-datum: 2023-06-05

 ÅF Infrastructure AB
 Besöksadress

 P.O. Box 1551
 Grafiska vägen 2

 SE-401 51 Göteborg
 412 63 Göteborg

 Tel. Vxl: +46 10 505 00 00
 geolabb@afry.com

Lab-uatt	IIII.		2023-00-03	3E-401 31 Golebo	лg		412 03 0	ocenory			
Lab-ans	varig:		Hanna Karlström	Tel. Vxl: +46 10 50	xl: +46 10 505 00 00			geolabb@afry.com			
Punkt	Dj	ир	-			14/ 0/	Org.				
(vy)	Från	Till	Klassificering av jordart enligt SS-EN ISO 14	4688-1	W _N %	W _L %	Halt %	Tjälfarl.	Mtrl-typ	Anmärkningar	
23AF01	0,0	0,8	mörkbrun FYLLNING mulljord sand		18						
1,7	0,0	1,5	grå siltig TORRSKORPELERA		34			4	5A		
-,-		2,2	grå siltig LERA		40			4	5A		
		2,5	grå siltig LERA		41	50		4	5A		
		3,0	grå siltig LERA		46	53		4	5A		
		3,0	gra sing Letta		40	55		_	3/		
23AF03	0,0	0,2	sandig MULLJORD							Enl fält	
ZSAFUS	0,0		grå FYLLNING lera sand		24					Lili lait	
		0,6	1		21			4	E A		
		1,0	grå siltig TORRSKORPELERA		42			4	5A		
		2,0	grå rostfläckig siltig LERA		54	50		4	5A		
		3,0	grå siltig LERA		61	53		4	5A		
		4,0	grå sulfidmelerad siltig LERA		62	54		4	5A		
		5,0	grå sulfidmelerad siltig LERA		63	54		4	5A		

vbrott under arbetet, avvikelse från standard, kommentarer, markskada m m

Materialtyp & Tjälfarlighetsklass enl AMA 17

ÅF Infrastructure AB

Ritningar

<u>KOORDINATSYSTEM</u>

HÖJDSYSTEM: RH2000

RITNINGSBETECKNINGAR
SE SGF:S BETECKNINGSSYSTEM

FÖR PLANERAD BYGGNAD

TECKENFÖRKLARING

UNG LÄGE OCH UTBREDNING FÖR FG

BET ÄNDRINGEN AVSER DATUM SIGN

BMSS BOENDE BILLDAL KOFFERDALSVÄGEN

AFRY

UPPDRAG NR RITAD/KONSTR AV
D0120784 B. EDMAN
DATUM HANDLÄGGARE

RITAD/KONSTR AV
GEOTEKNISKA UNDERSÖKNINGAR

2023-07-07 A. JANSSON SEKTION A-A OCH B-B
ANNA MARIA JANSSON 1:100 G-10.2-001

F. MODELL \ SEKTIONER 2023-06-13 09:55 \\
MODELL \ LEGEND \ SEKTION 2023-05-24 14:05 \\
MODELL \ LGGLENG \ 2017-01-03 16:49

XREF: MODELL\LEGEND SEKTION 2023-05-24 14:05 MODELL\SEPBH 2023-06-13 10:19 MODELL\BBG_LLCOL.PNG 2077-01-03 16:49