MAE 298 - Homework 1 **Computation of Sound Pressure Level** and Octave Band Spectrum

Logan Halstrom

PhD Graduate Student Researcher Center for Human/Robot/Vehicle Integration and Performance Department of Mechanical and Aerospace Engineering University of California, Davis Davis, California 95616 Email: Idhalstrom@ucdavis.edu

Introduction

Give overview of homework and background concepts

2 Read Data

40

20

list functions used to read data, how python/matlab compare.

80 60

 $t_s = 0.1339s$

Fig. 1: Recorded sonic boom shockwave pressure time history in characteristic high-low pressure N-wave shape (Zeropressure from recording start to initial shock)

Frequency Domain

decompose into frequency domain with FFT

3.1 Power Spectral Density Decomposition

power spectrum density decomposition stuff

Fig. 2: Shockwave signal power spectral density as a function of frequency (All frequencies above 50Hz very low power)

3.2 Sound Pressure Level

this is actually in the plot in the next section

4 Octave-Band Spectra

Fig. 3: Shockwave signal narrow-band, $\frac{1}{3}$ octave-band, and octave-band, with overall Sound Pressure Level reported in upper right

5 Conclusion

conclude