

MICROCONTROLADORES

Guia 6 Delays & Timers

Autores:

Jorge Cabral, José Mendes, Paulo Garcia e Reza Abrishambaf

Objectivo

Adquirir conceitos relacionados com o tempo de execução de instruções, implementando rotinas de atraso (*delay*) por software e recorrendo às unidades temporizadoras (*timers*) existentes no microcontrolador 8051.

1 Exercícios temporizadores/contadores

1.1 Analise a seguinte rotina:

Delay: mov r4,#10
D12: mov r3,#10
D11: mov r2,#10
djnz r2, \$
djnz r3, D11
djnz r4, D12
ret

- 1.2 Modifique a rotina Delay para ela demorar exactamente 2320 ciclos
- 1.3 Configure o Timer 0 em modo 16 bits para gerar overflow a cada 2320 ciclos. Implemente uma rotina para o configurar e outra para o ligar e esperar pelo fim de contagem.

ConfTmr0: mov tmod, #1 mov th0, #0F6h mov tl0, #0F0h ret

RunTMR0:

setb tr0 jnb tf0, \$

clr tr0

clr tf0

ret

- **1.4** Explique o porquê de colocar #f6h em TH0 e #f0h em TL0.
- 1.5 Modifique as rotinas para contar 500 ciclos e comutar o estado do porto P1.0 (toggle do pino) no final da contagem. O que é necessário para contar repetidamente (500+500+500+500+...).
- **1.6** Valide as rotinas implementadas usando o osciloscópio.
- **1.7** Modificar o código anterior para colocar o Timer 0 em modo de 8 bits autoreload, contando de 200 em 200 ciclos.
- **1.8** Idêntico ao 1.3, mas agora de 2300 em 2300 ciclos, utilizando o Timer 2.
- 1.9 Modifique o código do ponto 1.7, para utilizar a unidade temporizadora/contador em modo de Contador (counter) e para gerar overflow em 10 pulsos externos. Indique os passos necessários para garantir que a unidade realiza a contagem de pulsos externos.

2 Exercício máquina de estados temporizada

Recorrendo à placa de desenvolvimento pretende-se usar os temporizadores e algumas das saídas digitais para implementar um sistema muito básico de semáforos num cruzamento tipo T.

Devem ser codificados os estados codificados indicados na tabela seguinte:

Estado	Estado Semáforo A e A'	Estado Semáforo B	Obs
Reset (após boot-up)	Amarelas a piscar 10 s	Amarelas a piscar 10 s	Piscar 1 Hz
Estado 1	Verde	Vermelho	30 segundos
Estado 2	Amarelo	Vermelho	4 segundos
Estado 3	Vermelho	Vermelho	5 segundos
Estado 4	Vermelho	Verde	10 segundos
Estado 5	Vermelho	Amarelo	2 segundos
Estado 6	Vermelho	Vermelho	7 segundos
Estado 1	Verde	Vermelho	30 segundos

2.1 Problema

Como o microcontrolador é alimentado por um cristal com uma frequência de 12 MHz é possível programar com rigor de microsegundos os tempos indicados na tabela.

Sempre que ocorre a alteração de estado o microcontrolador deve enviar para o PC via porta série uma *string*, armazenada na memória de código (use MOVC A,@A+PC), com o respectivo estado (recorra às rotinas da porta série do Guia 4).

