(Justifique las respuestas)

Cuestión 1 (2 puntos)

Determine si el lenguaje $L = \{axyax : x, y \in \{a, b\}^*\}$ es regular o no.

Solución:

Demostraremos que no lo es por reducción al absurdo. Supongamos que L es regular, por lo tanto, existirá un AFD $A = (Q, \Sigma, \delta, q_0, F)$ tal que L(A) = L.

Consideremos el conjunto infinito de palabras $C = \{ab^i : i \geq 1\}$, y tomemos dos palabras cualesquiera de este conjunto, $u = ab^n$ y $v = ab^m$ con $n \neq m$. Consideremos sin pérdida de generalidad que n > m.

Considerando la palabra $w = ab^n$, comprobamos que $uw = ab^nab^n \in L$ (puede verse que, en este caso, la palabra puede factorizarse de acuerdo con la descripción del lenguaje tomando $x = b^n$ y considerando $y = \lambda$), pero donde $vw = ab^mab^n \notin L$ (al ser m < n, en este caso la división de vw en factores no permite considerar una palabra x que cumple la definición del lenguaje).

Esto implica que el estado que se alcanza al procesar en A la palabra u es distinto del estado que se alcanza al procesar v ($\delta(q_0, u) \neq \delta(q_0, v)$), por lo que, ya que C contiene infinitas palabras y la elección de u y v se hace sin condición de ningún tipo, el AFD A debería tener infinitos estados, lo que supone una contradicción, e implica que el lenguaje no es regular.

De forma análoga, puede verse que, independientemente de las palabras uy v escogidas los cocientes del lenguaje respecto a estas palabras son distintos, por lo que la relación \equiv_L es de índice infinito y por lo tanto L no es regular.

Cuestión 2 (2 puntos)

Obtener el AFD mínimo equivalente al siguiente autómata:

Solución:

A partir de la partición inicial del conjunto de estados considerando la pertenencia de estos al conjunto de estados finales:

$$\pi_0 = \{\{q_1, q_2, q_3, q_4\}, \{q_5, q_6, q_7\}\},\$$

Una traza del algoritmo de minimización de Moore para el autómata del ejercicio es la siguiente:

	π_0	a	b
$[1]_{\pi_0}$	q_1	$[5]_{\pi_0}$	$[1]_{\pi_0}$
	q_2	$[5]_{\pi_0}$	$[1]_{\pi_0}$
	q_3	$[5]_{\pi_0}$	$[1]_{\pi_0}$
	q_4	$[5]_{\pi_0}$	$[1]_{\pi_0}$
$[5]_{\pi_0}$	q_5	$[1]_{\pi_0}$	$[5]_{\pi_0}$
	q_6	$[5]_{\pi_0}$	$[1]_{\pi_0}$
	q_7	$[5]_{\pi_0}$	$[1]_{\pi_0}$

$$\pi_1 = \{\{q_1, q_2, q_3, q_4\}, \{q_5\}, \{q_6, q_7\}\}$$

	π_1	a	b
$[1]_{\pi_1}$	q_1	$[5]_{\pi_1}$	$[1]_{\pi_1}$
	q_2	$[6]_{\pi_1}$	$[1]_{\pi_1}$
	q_3	$[6]_{\pi_1}$	$[1]_{\pi_1}$
	q_4	$[6]_{\pi_1}$	$[1]_{\pi_1}$
$[5]_{\pi_1}$	q_5	$[1]_{\pi_1}$	$[6]_{\pi_1}$
$[6]_{\pi_1}$	q_6	$[6]_{\pi_1}$	$[1]_{\pi_1}$
	q_7	$[6]_{\pi_1}$	$[1]_{\pi_1}$

$$\pi_2 = \{\{q_1\}, \{q_2, q_3, q_4\}, \{q_5\}, \{q_6, q_7\}\}$$

	π_2	a	b
$[1]_{\pi_2}$	q_1	$[5]_{\pi_2}$	$[2]_{\pi_2}$
$[2]_{\pi_2}$	q_2	$[6]_{\pi_2}$	$[2]_{\pi_2}$
	q_3	$[6]_{\pi_2}$	$[1]_{\pi_2}$
	q_4	$[6]_{\pi_2}$	$[2]_{\pi_2}$
$[5]_{\pi_2}$	q_5	$[1]_{\pi_2}$	$[6]_{\pi_2}$
$[6]_{\pi_2}$	q_6	$[6]_{\pi_2}$	$[2]_{\pi_2}$
	q_7	$[6]_{\pi_2}$	$[2]_{\pi_2}$

$$\pi_3 = \{\{q_1\}, \{q_2, q_4\}, \{q_3\}, \{q_5\}, \{q_6, q_7\}\}\$$

	π_3	a	b
$[1]_{\pi_3}$	q_1	$[5]_{\pi_3}$	$[2]_{\pi_3}$
$[2]_{\pi_3}$	q_2	$[6]_{\pi_3}$	$[3]_{\pi_3}$
	q_4	$[6]_{\pi_3}$	$[3]_{\pi_3}$
$[3]_{\pi_3}$	q_3	$[6]_{\pi_3}$	$[1]_{\pi_3}$
$[5]_{\pi_3}$	q_5	$[1]_{\pi_3}$	$[6]_{\pi_3}$
$[6]_{\pi_3}$	q_6	$[6]_{\pi_3}$	$[2]_{\pi_3}$
	q_7	$[6]_{\pi_3}$	$[2]_{\pi_3}$

con lo que el autómata mínimo equivalente es el siguiente:

Cuestión 3 (2 puntos)

Dados los autómatas siguientes:

Obtenga un AFD para el lenguaje obtenido por la operación $L(A_1) \ominus L(A_2)$, donde \ominus denota la diferencia simétrica.

Solución:

Comprobamos que A_1 no es completo. Pese a que no es necesario para construir algunos resultados parciales, consideraremos el autómata equivalente completo.

Teniendo en cuenta que $L(A_1)\ominus L(A_2)=L(A_1)-L(A_2)\cup L(A_2)-L(A_1)$, obtenemos un autómata para $L(A_1)-L(A_2)=L(A_1)\cap \overline{L(A_2)}$.

Obtenemos un autómata para $L(A_2) - L(A_1) = \overline{L(A_1)} \cap L(A_2)$.

Finalmente consideramos estos autómatas y obtenemos uno que acepte la unión de estos.

Cuestión 4 (2 puntos)

Obtener los autómatas de posición y follow de la expresión $\alpha = (b + aab)^*(\lambda + aa)$.

Solución:

Considerando la expresión linearizada $\overline{\alpha} = (b_1 + a_2 a_3 b_4)^* (\lambda + a_5 a_6)$, el autómata local estandar para la subexpresión $b_1 + a_2 a_3 b_4$ es el siguiente:

y considerando este último, el autómata local estandar para la subexpresión $(b_1 + a_2 a_3 b_4)^*$ es:

por otra parte, el autómata local estandar para $\lambda + a_5 a_6$ es el siguiente:

$$- (\lambda) - a_5 - a_6 - a_6$$

con lo que el autómata local estandar para $(b_1 + a_2 a_3 b_4)^* (\lambda + a_5 a_6)$ (el autómata local estandar de que acepta $L(\overline{\alpha})$) es el siguiente:

y el autómata de posición para α el siguiente:

La relación follow para este autómata se resume en la siguiente tabla:

	$\in F$	sucesores
λ	Т	$\{b_1, a_2, a_5\}$
b_1	T	$\{b_1, a_2, a_5\}$
a_2	F	$\{a_3\}$
a_3	F	$\{b_4\}$
b_4	Т	$\{b_1, a_2, a_5\}$
a_5	F	$\{a_6\}$
a_6	F	Ø

con lo que el autómata follow es el siguiente:

Cuestión 5 (2 puntos)

Dado un alfabeto $\Sigma = \{a,b\},$ se define la operación $f:\Sigma^* \to \Sigma^*$ como:

$$\begin{cases} f(\lambda) = \lambda \\ f(ax) = xa \end{cases}$$

para cualquier símbolo a de Σ y cualquier palabra x de Σ^* . Esta operación se extiende a lenguajes como:

$$f(L) = \{ f(x) : x \in L \}.$$

 ξ Es la operación f cerrada en la clase de los lenguajes regulares?

Ejemplo: Dado $L = \{\lambda, a, ba, abbab\}$, se obtiene $P(L) = \{\lambda, a, ab, bbaba\}$

Solución:

Nótese que la operación puede describirse como:

$$f(L) = (L \cap \{\lambda\}) \cup (a^{-1}L)\{a\} \cup (b^{-1}L)\{b\}$$

donde los lenguajes $\{\lambda\}$, $\{a\}$ y $\{b\}$ son regulares ya que pueden denotarse respectivamente con las expresiones regulares λ , a y b.

Con todo ello, y teniendo que cuenta que, para la descripción de la operación, únicamente se consideran lenguajes reguares y operaciones cerradas en la clase de los lenguajes regulares, podemos concluir que la operación f es de cierre.