$\underline{5} \ \text{février} \ 2019 \\ \\ CIR \ 1 \ \text{et} \ CNB \ 1 \\$

Quiz de Mathématiques

Durée : 22 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée.

	La calculatrice collège est tolérée.
Veuillez n	e pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.
	BON COURAGE!
	* * * * * * * * * * * * * * * * * * * *
1. Soient $P,Q \in \mathbb{R}$	$\mathbb{R}[X]$, alors il existe $U, V \in \mathbb{R}[X]$ tels que
	$U+QV=pgcd(P,Q)$ $_{(2)}\square$ $PU+QV=pgcd(U,V)$ $_{(3)}\square$ $PU+QV=1$ $U+QV=\lambda,$ avec $\lambda\in\mathbb{R}$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
2. Soient $P,Q \in \mathbb{R}$	$\mathbb{R}[X]$, on dit que Q divise P si
	$_{(1)}\square$ il existe $S\in\mathbb{R}[X]$ tel que $P=QS$ $_{(2)}\square$ $Q P$ $_{(3)}\square$ $P Q$
	$_{(4)}\square P$ est multiple de $Q \qquad _{(5)}\square P$ est divisible pq r Q
3. Soient $A \in M_3$	(\mathbb{R}) et $X \in M_{3,1}(\mathbb{R})$, alors le système $AX = B$ est compatible si
$_{(1)}\Box$ il adr	net une et une seule solution $(2)\Box$ $rg(A)=rg(A B)$ $(3)\Box$ $rg(A)=rg(A X)$
(4)[$\Box rg(A) = rg(X)$ aucune des réponses précédentes n'est correcte.
1. Soit $A \in M_{3,4}$	(\mathbb{R}) . Le rang de A
	$_{(1)}\square$ on ne peut pas le calculer $_{(2)}\square$ $rg(A)=3$ $_{(3)}\square$ $rg(A)=4$
$_{(4)}\square$ est le	nombre de lignes non nulles de A $_{(5)}\square$ aucune des réponses précédentes n'est correcte
5. Soient $P, Q \in \mathbb{R}$	$\mathbb{R}[X]$, avec $P = (X-1)(X-2)$ et $Q = (X-1)^2(X+3)$.
$_{(1)}\Box$ pg	$cd(P,Q) = (X-1)$ $pgcd(P,Q) = (X-1)^2$ $(3)\Box P \land Q = (X-1)^2$
$_{(4)}\Box P \wedge Q$	$Q = (X-1)^2(X-2)(X+3)$ aucune des réponses précédentes n'est correcte.

6. Soient $P, Q \in \mathbb{R}[X]$, avec $P = (X - 5)^5$ et $Q = (X - 1)^2(X + 2)$.

$$(1)\square \quad ppcm(P,Q) = 1 \qquad (2)\square \quad ppcm(P,Q) = (X-5)(X-1)(X+2) \qquad (3)\square \quad P\vee Q = 1$$

$$(4)\square \quad P\vee Q = (X-5)^5(X-1)^2(X+2) \qquad (5)\square \quad \text{aucune des réponses précédentes n'est correcte.}$$

7. Cocher les matrices échelonnée réduites, si il y en a :

- 8. Soit s le système linéaire définit par AX = B de n équations à p inconnues avec rg(A) = r. Parmi les affirmations suivantes lesquelles sont vraies?
 - (1)L'ensemble S de solutions est $S = \emptyset$ si rg(A) = rg(A|B)
 - $_{(2)}\square$ Si s est de Cramer il admet une unique solution.
 - (3)Si rg(A) = rg(A|B) il a une et unique solution.
 - si r = n < p, s admet une infinité de solutions. (4)
 - (5)aucune des réponses précédentes n'est correcte.
- 9. Soit $P \in \mathbb{R}[X]$ définit par $P = (X+1)^3(X-\frac{1}{3})(X^2+2X+15)$. Parmi les affirmations suivantes lesquelles sont vrais?
 - 1 est une racine d'ordre de multiplicité 3 (1)
 - $_{(2)}\square$ deg P = 6
 - (3)P est irréductible dans \mathbb{R}
 - (4)Pest scindé sur $\mathbb R$
 - (5)aucune des réponses précédentes n'est correcte.
- 10. Soit $P \in \mathbb{C}[X]$ définit par $P = X^5 1$. Parmi les affirmations suivantes lesquelles sont vrais?
 - \Box P est factorisé sur \mathbb{C}
 - (2)
 - P est irréductible sur \mathbb{C} $X^5-1=\textstyle\prod_{k=0}^4(X-e^{\frac{2ik\pi}{5}})$
 - 1 est une racine de multiplicité 5 (4)
 - (5)aucune des réponses précédentes n'est correcte.