

**FIGURE 1**

AGGCAGGGCAGCAGCTGCAGGCTGACCTTGAGCTTGGCGGAATGGACTGGCCTCACAAACTGCTGTTCTT  
CTTACCATTCATCTCCCTGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAAGAGGAAGGGCAAGGGCG  
GCCTGGGCCCTGGCCCTGGCCCTCACAGGTGCCACTGGACCTGGTGTACGGATGAAACCGTATGCC  
GCATGGAGGAGTATGAGAGGAACATCGAGGAGATGGTGGCCAGCTGAGGAACAGCTCAGAGCTGGCCAG  
AGAAAGTGTGAGGTCAACTTGAGCTGTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGCTACAGCAT  
CAACCACGACCCAGCCGTATCCCCGTGGACCTGCCGGAGGCACGGTGCCTGTGTCTGGCTGTGAACC  
CCTTCACCATGCAGGAGGACCGCAGCATGGTAGCGTGCCGGTGTTCAGCCAGGTTCCGTGCGCCGCCGC  
CTCTGCCGCCACCGCCCCCACAGGGCCTGCCGCCAGCGCGAGTCATGGAGACCATCGCTGTGGCTG  
CACCTGCATCTTAATCACCTGGCCAGAAGCCAGGCCAGCAGCCGAGACCACCTCCTGCACCTT  
GTGCCAAGAAAGGCCTATGAAAAGTAAACACTGACTTTGAAAGCAAG

FIGURE 2

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRGPLAPGPHQVPLDLVSRMKPYARMEYERNIEEMVA  
QLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVVDLPEARCLCLGCVNPFTMQEDRSMSVVP  
VFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

FIGURE 3

GCCAGGTGTGCAGGCCGCTCCAAGCCCAGCCTGCCCGCTGCCGCCACCATGACGCTCCTCCCCGGCCTCC  
TGTTTCTGACCTGGCTGCACACATGCCTGGCCCACCATGACCCCTCCCTCAGGGGGCACCCCCACAGTCAC  
GGTACCCCACACTGCTACTCGGCTGAGGAACGTGCCCTCGGCCAGGGCCCCCACACCTGCTGGCTGAGG  
TGCCAAGTGGGGCAGGCTTGCCTGTAGCCCTGGTGTCCAGCCTGGAGGCAGCAAGCCACAGGGGAGGC  
ACGAGAGGCCCTCAGCTACGACCCAGTGCCCGGTGCTGCCGCCGGAGGAGGTGTTGGAGGCAGACACCCAC  
CAGCGCTCCATCTCACCTGGAGATAACCGTGTGGACACGGATGAGGACCGCTATCCACAGAAGCTGGCCTT  
CGCCGAGTGCCTGTGCAGAGGCTGTATCGATGCACGGACGGGCCGAGACAGCTGCGCTCAACTCCGTGC  
GGCTGCTCCAGGCCTGCTGGTGTGCCGCCCTGCTCCCGCGACGGCTGGGCTCCCCACACCT  
GGGGCCTTGCCTTCCACACCGAGTTACCCACGTCCCCGTGGCTGCACCTGCGTGTGCTGCCCGTTCAAGT  
**GTGACCGCCGAGGCCGTGGGCCCCTAGACTGGACACGTGTGCTCCCCAGAGGGCACCCCCATTATGTG**  
TATTTATTGTTATTATGCCTCCCCAACACTACCCCTGGGTCTGGCATTCCCGTGTCTGGAGGAC  
AGCCCCCACTGTTCTCCTCATCTCCAGCCTCAGTAGTTGGGGTAGAAGGAGCTCAGCACCTCTCCAGC  
CCTTAAAGCTGCAGAAAAGGTGTCACACGGCTGCCGTACCTTGGCTCCCTGCTCCGGCTTCCCT  
TACCCCTATCACTGGCCTCAGGCCCGCAGGCTGCCTTCCAACCTCCTGGAAGTACCCCTGTTCTTA  
AACAAATTATTTAAGTGTACGTGTATTATTAAACTGATGAACACATCCCCAAAA

FIGURE 4

MTLLPGLLFLTWLHTCLAHHDPSLRGHPHSHGTPHCYSAEELPLGQAPPPLLARGAKWGQALPVALVSSLE  
AASHRGRHERPSATTQCPVLRPEEVLEADTHQRSISPWRYRVDTDEDRYPQKLAFAECLRGCIDARTGRE  
TAALNSVRLLQSLLVLRRRPCSRDGSGLPTPGAFAFHTEFIHVPVGCTCVLPRSV

|                                       |                                    |
|---------------------------------------|------------------------------------|
| Signal peptide:                       | Amino acids 1-18                   |
| Tyrosine kinase phosphorylation site: | Amino acids 112-121                |
| N-myristoylation sites:               | Amino acids<br>32-38;55-61;133-139 |
| Leucine zipper pattern:               | Amino acids 3-25                   |
| Homologous region to IL-17:           | Amino acids 99-195                 |

FIGURE 5

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGTTCCACGAGGCCTGTCAGTCA  
GTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTAGTCAGTGAGAGGGCTGCCTGAGGGCT  
GTGCTGAGAGGGAGAGGAGCAGAGATGCTGCTGAGGGTGGAGGGAGGCAAGCTGCCAGGTTGGGCTGG  
GGGCCAAGTGGAGTGAGAAACTGGGATCCCAGGGGGAGGGTGCAGATGAGGGAGCGACCCAGATTAGGTGA  
GGACAGTTCTCTCATTAGCCTTTCTACAGGTGGTGCATTCTGGCAATGGTCATGGGAACCCACACCT  
ACAGCCAATGGCCCCAGCTGCTGCCCAAGGGCAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACT  
GTGCCTGTGCCTCCCTAGAGCCTGCTAGGCCAACGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGA  
CCCCTCAACAGCAGGGCCATCTCCCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCAGGA  
CCTGTACCACGCCGTTGCCGTGCCCCACTGCGTCAGCCTACAGACAGGCTCCCACATGGACCCCCGGG  
GCAACTCGGAGCTGCTCTACCACAACCAGACTGTCTTCTACAGGCCAGGCTGCCATGGCGAGAAGGGCACC  
CACAAAGGGCTACTGCCCTGGAGCGCAGGCTGTACCGTGTTCCTTAGCTTGTGTGTGCGGCCCGTGT  
GATGGGCTAGCCGGACCTGCTGGAGGCTGGTCCCTTTGGAAACCTGGAGCCAGGTGTACAACCACCTG  
CCATGAAGGGCCAGGATGCCAGATGCTTGGCCCTGTGAAGTGCTGTGGAGCAGCAGGATCCCCGGAC  
AGGATGGGGGGCTTGGGAAAACCTGCACATTTCAGAAAAGAGCAGCTGCTTAGGCCGC  
CGGAAGCTGGTGTCCGTCACTTCTCTCAGGAAAGGTTCAAAGTTCTGCCATTCTGGAGGCCACCA  
CTCCTGTCTCTCCCTTTCCATCCCTGCTACCCGCCAGCACAGGCACTTCTAGATATCCCC  
CTTGCTGGAGAAGAAAGAGCCCTGGTTTATTGTTACTCATCACTCAGTGAGCATCTACTTGG  
GTGCATTCTAGTGTAGTTACTAGTCTTGTGACATGGATGATTCTGAGGAGGAAGCTGTTATTGAATGTATA  
GAGATTATCCAAATAAATCTTATTAAAAATGAAAAA

FIGURE 6

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPKGQDTSEELLRWSTVPVPPLEPARPNRHP  
ESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNSELLYHNQTVFYR  
RPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Signal peptide: Amino acids 1-32

N-glycosylation site: Amino acids 136-140

Tyrosine kinase phosphorylation site: Amino acids 127-135

N-myristoylation sites: Amino acids 44-50;150-156

FIGURE 7

**ATGCTGGTAGCCGGCTCCTGCTGGCGCTGCCGCCAGCTGGCCGGCCCCAGGGCGGGCAGGCG  
CCCCCGCGGGCGCGGGCTGCGCGACCGCCGGAGGAGCTACTGGAGCAGCTGTACGGCGCCTGGCG  
CCGGCGTCTAGTGCCTTCACCACACGCTGCAGCTGGGCCGCGTGAAGCAGCGCAACCGAGCTGC  
CCGGCAGGGGCAGGCCGGCGACCGCCGCTCCGGCCGCCACCAACCTGCGCAGCGTGTGCCCTGGC  
CTACAGAATCTCCTACGACCCGGCGAGGTACCCCAGGTACCTGCCTGAAGCCTACTGCCTGTGCCGGGCT  
GCCTGACCGGGCTGTTGGCGAGGAGGACGTGCGCTTCCGCAGCGCCCTGTCTACATGCCAACCGTC  
CTGCGCCGCACCCCCCGCTGCGCCGGCGCTCCGTCTACACCGAGGCCTACGTACCATCCCCGTGG  
CTGCACCTGCGTCCCCGAGCCGGAGAAGGACGCAGACAGCATCAACTCCAGCATCGACA  
AAACAGGGCGCCAAGCTCCTGCTGGCCCCAACGACGCCCGCTGGCCCTGAGGCCGGTCTGCCCGGGAGGTCT  
CCCGCATCCCAGGGGCCAACGCTGGAGGCCCTGGAGGGCTCGTCCGACCTCTGAAGAGAGTGCACC  
GAGCAAACCAAGTGCAGGAGCACAGCGCCGCTTCCATGGAGACTCGTAAGCAGCTTCATCTGACACGG  
GCATCCCTGGCTTGTCTTCTAGCTACAAGCAAGCAGCGTGGCTGGAGCTGATGGAAACGACCCGGCACGG  
GCATCCTGTGTGCGGCCCGCATGGAGGGTTGGAAAAGTTCACGGAGGCTCCCTGAGGAGCCTCTCAGATC  
GGCTGCTGCCGGTGCAGGGCGTGAECTACCGCTGGTGCTTGCAAAGAGATAGGGACGCATATGCTTTT  
AAAGCAATCTAAAATAATAAGTATAGCGACTATATACCTACTTTAAAATCAACTGTTTGAATAGA  
GGCAGAGCTATTTATATTATCAAATGAGAGCTACTCTGTTACATTCTAACATATAACATCGTTTTT  
ACTTCTCTGGTAGAATTAAAGCATAATTGGAATCCTTGATAAATTGTTAGCTGGTACACTCTGG  
CCTGGGTCTCTGAATTCAAGCCTGTCACCGATGGCTGACTGATGAAATGGACACGTCTCATCTGACCCACTC  
TTCCTTCACTGAAGGTCTCACGGCCTCCAGGTGGACCAAAGGGATGCACAGGGCGCTCGCATGCCCA  
GGGCCAGCTAAGAGTTCCAAAGATCTCAGATTGGTTTAGTCATGAATAACATAAAACAGTCTCAAACCTCGC  
ACAATTTTTCCCCCTTTGAAAGCCACTGGGCCAATTGTTAGAGGTTAGGAGATAAGAAGTGG  
ACGTGACATCTTGCCAGTTGTCAGAAGAATCCAAGCAGGTATTGGCTTAGTTGAAGGGCTTGGATCA  
GGCTGAATATGAGGACAAAGTGGGCCACGTTAGCATCTGAGAGATCAATCTGGAGGCTCTGTTCTGCA  
TTCTGCCACGAGAGCTAGGTCTTGATCTTTCTTAGATTGAAAGTCTGTCTGAACACAATTATTGT  
AAAAGTTAGTAGTTCTTTAAATCATTAAAGAGGCTTGCTGAAGGAT**

FIGURE 8

MLVAGFLLALPPSWAAGAPRAGRRPARPRGCADRPEELLEQLYGRILAAGVLSAFHHTLQLGPREQARNASC  
PAGGRPGDRRFRPPTNLRSPWAYRISYDPARYPRYLPEAYCLCRGCLTGLFGEEDVFRSAPVYMPTVV  
LRRTPACAGGRSVYTEAYVTIPVGCTCVPEPEKDADSINSSIDKQGAKLLLGPNDAPAGP

Signal peptide: Amino acids 1-15

N-glycosylation sites: Amino acids 68-72;181-185

Tyrosine kinase phosphorylation site: Amino acids 97-106

N-myristoylation sites: Amino acids 17-23;49-55;74-80;  
118-124

Amidation site: Amino acids 21-25

FIGURE 9

CAACTGCACCTCGTTCTATCGATAGCCACCAGCGCAACATGACAGTGAAGACCCCTGCATGGCCCAGCCAT  
GGTCAAGTACTTGCTGCTGTCGATATTGGGGCTTGCCTTCTGAGTGAGGCGGCAGCTCGGAAAATCCCCA  
AAGTAGGACATACTTTTCCAAAAGCCTGAGAGTTGCCCGCTGTGCCAGGAGGTAGTATGAAGCTTGAC  
ATTGGCATCATCAATGAAAACCAGCGCGTTCCATGTCACGTAACATCGAGAGCCGCTCACCTCCCCCTG  
GAATTACACTGTCACTTGGGACCCCAACCGGTACCCCTCGGAAGTTGTACAGGCCAGTGTAGGAACCTGG  
GCTGCATCAATGCTCAAGGAAAGGAAGACATCTCCATGAATTCCGTTCCATCCAGCAAGAGACCCCTGGTCGTC  
CGGAGGAAGCACCAAGGCTGCTCTGTTCTTCCAGTTGGAGAAGGTGCTGGTGAUTGTTGGCTGCACCTG  
CGTCACCCCTGTCATCCACCATGTGCAGTAAGAGGTGCATATCCACTCAGCTGAAGAAG

FIGURE 10

MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKGHTFFQKPESCPPPGGSMKLDIGIINENQRVSMS  
RNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRLGCINAQGKEDISMNSVPIQQETLVVRRKHQGCSVSFQ  
LEKVLVTVGCTCVTPVIHHVQ

Signal sequence: Amino acids 1-30

N-glycosylation site: Amino acids 83-86

N-myristoylation sites: Amino acids 106-111;136-141

FIGURE 11

CGGGCGATGTCGCTCGTGTGCTAACGCCTGGCCGCGCTGTGCAAGGAGCGCCGTACCCCGAGAGGCCGACCGT  
TCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCCCCGGAGACTTGA  
GGGACCTCCGAGTAGAACCTGTTACAACACTAGTGTGCAACAGGGACTATTCAATTGATGAATGTAAGC  
TGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTGAAGGCCACCAAGATTGTGTGACGGGCAAAGCAA  
CTTCCAGTCCTACAGCTGTGAGGTGCAATTACACAGAGGCCTCCAGACTCAGACCAGACCCCTGGTG  
GTAAATGGACATTTCTACATCGGCTTCCCTGTAGAGCTGAACACAGTCTATTCTATTGGGCCATAAT  
ATTCCTAATGCAAATATGAATGAAGATGGCCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCAGA  
CCACATAATGAAATATAAAAAAAAGTGTGTCAAGGCCGAAGCCTGGGATCCGAACATCACTGCTTGT  
AGAAGAATGAGGAGACAGTAGAAGTGAACCTCACACCCTCCCTGGAAACAGATACTGGCTTTATC  
CAACACAGCACTATCATGGGTTTCTCAGGTGTTGAGGCCACACCAGAAGAAACAAACCGCAGCTTCAGT  
GGTATTCCAGTGACTGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTCCTACTTGTGGCA  
GCGACTGCATCCGACATAAGGAACAGTTGTGCTCTGCCACAAACAGGCGTCCCTTCCCTGGATAAC  
AACAAAAGCAAGCCGGGAGGCTGGCTGCCTCTCCTCCTGCTGTCTGCTGGTGGCCACATGGGTGCTGGT  
GGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTCCCTTTCTACCACACACTACTGC  
CCCCCATTAAGGTTCTGTGGTTACCCATCTGAAATATGTTCCATCACACAATTGTTACTTCAGTGA  
TTTCTTCAAAACCATTGCAGAAGTGAGGTATCCTGAAAAGTGGCAGAAAAGAAAATAGCAGAGATGGG  
TCCAGTGCAGTGCTTGCCACTCAAAGAAGGAGCAGACAAAGTCGTCTCCTTCCAATGACGTCA  
ACAGTGTGTGCGATGGTACCTGTGGCAAGAGCAGGGCAGTCCCAGTGAGAACTCTCAAGACCTCTCCCC  
CTTGCCTTAACTTTCTGCAGTGATCTAAGAAGCCAGATTCTGCACAAATACGTGGTGGTACTTT  
TAGAGAGATTGATACAAAGACGATTACAATGCTCTCAGTGTCTGCCCAAGTACCAACCTCATGAAGGATG  
CCACTGCTTCTGTGCAGAACCTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAGATCACAAGCCTGC  
CACGATGGCTGCTGCTCCTGTAG

FIGURE 12

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTSVATGDYSILMNVS梧  
LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP  
NANMNEDEGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKNEETVEVNFTTPLGNRYMALIQH  
STIIGFSQVFEPHQKKQTRASVVIPTVGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK  
SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTLLPPIKVLVVYPSEICFHHTICYFTEFL  
QNHCRCSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLSNDVNSCDGTCGKSEGSPESENSQDLFPLA  
FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVVKQQVSAGKRSQACHD  
GCCSL

|                                                                |                                                               |
|----------------------------------------------------------------|---------------------------------------------------------------|
| Signal sequence:                                               | Amino acids 1-14                                              |
| Transmembrane domain:                                          | Amino acids 290-309                                           |
| N-glycosylation sites:                                         | Amino acids 67-70;103-106;156-159;<br>183-186;197-200;283-286 |
| cAMP- and cGMP-dependent protein kinase phosphorylation sites: | Amino acids 228-231;319-322                                   |
| N-myristoylation site:                                         | Amino acids 116-121                                           |
| Amidation site:                                                | Amino acids 488-491                                           |

FIGURE 13

ACACTGGCAAACAAAAAGAAGCACTCCGTGCTGGAAGTAGGAGGAGACTAGGACTCCCAGGACAGAG  
 AGTGCACAAACTACCCAGCACAGCCCCCTCGCCCCCTGGAGGCTGAAGAGGGATTCCAGCCCCCTGCCA  
 CCCACAGACACGGGCTGACTGGGGTGTCTGCCCTGGGGGGGGCAGCACAGGGCTCAGGCCTGGGT  
 GCCACCTGGCACCTAGAAGATGCCTGTGCCCTGGTTCTGCTGTCCTGGCACTGGCGAAGGCCAGTGG  
 TCCTTCTCTGGAGAGGCTGTGGGGCTCAGGACGCTACCCACTGCTCTCCGGGCCTCTCCGTGCCCTC  
 TGGGACAGTGACATACTCTGCCTGCCCTGGGACATCGTGCCTGCTCCGGGCCGTGCTGGCGCTACGCA  
 CCTGCAGACAGAGCTGGTGTGAGGTGCCAGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCTGTCC  
 ACTTGGCCGTGCATGGCACTGGGAAGAGCCTGAAGATGAGGAAAAGTTGGAGGAGCAGCTGACTCAGGG  
 GTGGAGGAGCCTAGGAATGCCTCTCCAGGCCAAGTCGTGCTCTCCTCAGGCCTACCCACTGCCCG  
 CTGCGTCTGCTGGAGGTGCAAGTGCCTGCTGCCCTGTGCAAGTTGGTCAGTCTGTGGCTCTGTGGTATAT  
 GACTGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGCCTATACTCAGCCCAGGTACGAGAACAGGA  
 ACTCAACCACACACAGCAGCTGCCCTGCCCTGGCTAACGTGTCAAGCAGATGGTACAACGTGCATC  
 TGGTTCTGAATGTCCTGAGGAGCAGCACCTCGGCCTCTCCCTGTACTGGAATCAGGTCCAGGGCCCCCA  
 AAACCCCGGTGGCACAAAAACCTGACTGGACCGCAGATCATTACCTGAACCACACAGACCTGGTTCCCTG  
 CCTCTGTATTCAAGGTGTGGCCTCTGGAACCTGACTCCGTTAGGACGAACATCTGCCCTTCAGGGAGGACC  
 CCCGCGCACACCAGAACCTCTGGCAAGCCGCCACTGCACTGCTGACCTGCAAGAGCTGGCTGCTGGAC  
 GCACCGTGCTCGCTGCCCGAGAACGGCACTGTGCTGGGGCTCCGGTGGGGACCCCTGCCAGCCACT  
 GGTCCCACCGCTTCTGGAGAACGTCACTGTGACAAGGTTCTCGAGTCCATTGCTGAAAGGCCACC  
 CTAACCTCTGTGTTCAAGGTGAAAGCTCGGAGAACGCTGCACTGCAAGGAGTGTGGCTGACTCCCTG  
 GGGCCTCTCAAAGACGATGTGCTACTGTTGGAGACACGAGGCCCAAGGACAACAGATCCCTGTGCCCTT  
 GGAACCCAGTGGCTGTACTTCACTACCCAGCAAAGCCTCACGAGGGCAGCTGCCCTGGAGAGTACTTAC  
 TACAAGACCTGCAGTCAGGCCAGTGCTGCACTGCAAGCTGCTGGCTGGCTGGCTGCCCTACTCTTGCCGTGCGCTTTC  
 ATGGACAAATACATCCACAAGCGCTGGCCCTCGTGTGGCTGGCTGCCCTACTCTTGCCGTGCGCTTTC  
 CCTCATCCTCTTCTCAAAAGGATCACCGAAAGGGTGGCTGAGGCTCTGAAACAGGACGTCCGCTCG  
 GGGCGGCCAGGGCCGCCGGCTCTGCTCCTACTCAGCGATGACTCGGTTTCAGGCGCTGGAGCCGTGGTGG  
 GGCGCCCTGGCGTGGCCCTGTGCCAGCTGCCGTGCCGTAGACCTGTGGAGCCGTGTA  
 GAGCGCGCAGGGGCCGTGGCTGGTTCA CGCGCAGCGGCCAGACCCCTGCAGGAGGGCGCGTGGTGG  
 TCTTGCTCTCTCCGGTGCCTGGCGCTGTGCAGCGAGTGGCTACAGGATGGGTGTCCGGGGCCGG  
 GCGCACGGCCCGACGACGCCCTCCGCCCTCGCTCAGCTGCCGTGCCGACTTCTGCAAGGGCCGG  
 GCCCGGCAGCTACGTGGGGCTGCTCGACAGGCTGCTCACCCGGACGCCGTACCCGCCCTTCCGCA  
 CCCTGCCGTCTCACACTGCCCTCCCAACTGCCAGACTTCTGGGGCCCTGCAGCAGCCTCGCGCCCG  
 CGTCCGGCGGCTCCAAGAGAGAGCGGAGCAAGTGTCCCAGGGCCCTCAGCCAGCCCTGGATAGCTACTT  
 CCATCCCCGGGGACTCCCGCCGGACGCCGGTGGGACCAGGGCGGGACCTGGGGCGGGGACGGGA  
 CTTAAATAAAGGCAGACGCTGTTTCTAAAAAA

FIGURE 14

MPVPWFLLSLALGRSPVVLSLERLVPQDATHCSPGLSCLRWDSDLCLPGDIVPAPGPVLAPTHLQTELV  
 LRCQKETCDLCLRVAVHLAVGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV  
 QVPAALVQFGQSVGSVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSDGDNVHLVLNV  
 EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDVRTNICPFREDPRAHQN  
 LWQAARLRLTLQSWLDAPCSPLAEAALCWRAPIGGDPCQPLVPPLSWENVTVDKVLEFPPLLKGHPNLCVQ  
 VNSSEKLQLQECLWADSLGPLKDDVLLERGPQDNRSCLALEPSGCTSPLSKASTRAARLGLEYLLQDLQS  
 GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLLLLKKDHAKGWLRLLKQDVRSGAAARG  
 RAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRQTLQEGGVVLLFSP  
 GAVALCSEWLQDGVSAGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTPVFT  
 LPSQLPDFLGALQQPRAPRGSRQLQERAEQVSRALQPALDSYFHPPGTAPGRGVGPAGPGAGDGT

signal sequence: Amino acids 1-20

transmembrane domain: Amino acids 453-473

N-glycosylation sites: Amino acids 118-121;186-189;198-201;  
 211-214;238-241;248-251;334-337;  
 357-360;391-394

Glycosaminoglycan attachment site: Amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site:  
 Amino acids 552-555

N-myristoylation sites: Amino acids 107-112;152-157;319-324;  
 438-443;516-521;612-617;692-697;  
 696-701;700-705

FIGURE 15

CGAGGGCTCCTGCTGGTACTGTGTTGCTGCTGCACAGCAAGGCCCTGCCACCCACCTCAGGCCATGCAG  
 CCATGTTCCGGGAGCCCTAATTGCACAGAAGCCCATGGGGAGCTCCAGACTGGCAGCCCTGCTCCTGCCTC  
 TCCTCCTCATAGTCATCGACCTCTGACTCTGCTGGGATTGGCTTCGCCACCTGCCCACTGGAACACC  
 CGCTGTCCTCTGGCCTCCCACACGGATGACAGTTCACTGGAAGTCTGCCATATCCCTGCCACCTG  
 GTGGGCCCTCTTCTCCACAAAGCCTTGGTGTGCGAGTCTGGCACTGTTCCCGCTGTTGTGCCAGCATCTGC  
 TGTCAGGTGGCTCAGGTCTCAACGGGCCTTCCACCTCTGGTGAGAAATCCAAAAAGTCTTCACA  
 TTCAAGTTCTATAGGAGACACAAGATGCCAGCACCTGCTCAGAGGAAGCTGCTGCCCTGTCACCTGTC  
 TGAGAAGAGCCATCACATTCCATCCCCCTCCCCAGACATCTCCCACAAGGGACTTCGCTCTAAAGGACCC  
 AACCTCGGATCCAGAGACATGGGAAAGTCTTCCAGATTGGACTCACAAAGGCATGGAGGACCCGAGTTC  
 TCCTTGTGATTGCTGCCCTGAGGCCGGCTATTGGGTGACCATATCTCAGGCCCTGAGGTCAAGCGTGC  
 TCTTGTCAACCAGTGGCACTGGAGTGTGAAGAGCTGAGCAGTCCCTATGATGTCAGAAAATTGTGTCTG  
 GGGGCCACACTGTAGAGCTGCCCTATGAATTCTTCTGCCCTGTCTGTGCATAGAGGCATCCTACCTGCAA  
 GAGGACACTGTGAGGCAGAAAAATGTCCCTCCAGAGCTGGCCAGAACCTATGGCTGGACTTCTGGAA  
 GTCAGTGCACTTCACTGACTACAGCCAGCACACTCAGATGGTCATGCCCTGACACTCCGCTGCCCACTGA  
 AGCTGGAAGCTGCCCTGCCAGAGGCACGACTGGCATACCCCTTGCAAAGACCTCCGAATGCCACGGCT  
 CGAGAGTCAGATGGGTGGTATGTTTGGAGAAGGTGGACCTGCACCCCCAGCTCTGCTCAAGTTCTTT  
 TGGAAACAGCAGCCATGTTGAATGCCCTCACAGACTGGGTCTCTCACATCCTGGAATGTAAGCATGGATA  
 CCCAAGCCCAGCAGCTGATTCTCACTTCTCAAGAATGCATGCCACCTTCAGTGCTGCCCTGGAGGCC  
 CCAGGCTGGGGCAGGACACTTGGTGCACCCCCCGTGTACACTGTCAGCCAGGCCGGGCTCAAGCCCAGT  
 GTCACTAGACCTCATCATTCCCTCCTGAGGCCAGGGTGCTGTCTGGTGTGGCGGTCAAGATGTCCAGT  
 TTGCCCTGGAAGCACCTCTTGTGTCAGATGTCCTTACAGACACCTGGGCTCTTGATCCTGGCACTGCTG  
 GCCCTCCTCACCCACTGGGTGTTCTGCCCTCACCTGCCGGCCACAGTCAGGCCGGGCCAG  
 GCAGGCCAGTGCTCCTCCTGCACGCCGGACTCGGAGGCCAGCGGCCCTGGTGGGAGGCCGTGGCTGAAC  
 TGCTACGGGCAGCGCTGGCGCGGGCGACGTGATGTGGACCTGTGGAGGGAGGCCAGTGCGCGCG  
 GGGCCCGCTGCCGTGGCTCTGGCGCGCGACGCCGTAGCGCGGGAGCAGGCCACTGTGCTGCTG  
 GGAGCGCGCCGACCTTCGCCCGGTCAAGCGGCCCGACCCCCCGGCCGCCCTGCTGCCCTGCTCCAC  
 GCTGCCCGCGCCCGTGTGCTGCTGCTTACCTCAGTCGCCCTGCGCCAAGGGCGACATCCCCCGCC  
 GCTGCCGCCCTGCCGCGTACCGCCTGCTGCCGCGACCTGCCGCGTGTGCTGCCGCCCTGGACGCCGG  
 CTTTCCGAGAGGCCACCAGCTGGGCCCTGGGCCGGCAGGCCAGGCCCTAGAGCTGTGC  
 AGCCGGCTTGAACGAGAGGCCCGACTTGCAAGACCTAGGTTGAGCAGAGCTCCACCGCAGTCCCGGGTGTCT

FIGURE 16

MGSSRLAALLLPLLLIVIDLSDSAGIGFRHLPWNTRCPLASHTDDSF TGSSAYIPCRTWWALFSTKPWCVRVWHCSRCLCQHLLSGGSGLQRGLFHLLVQKSKKSTFKFYRRHKMPAPAQRKLLPRRHLSEKSHHISI PPDISHKGLRSKRTQPSDPETWESLPRLDQRHGGEFSFDLLPEARAIRVTI SSGPEVS VRLCHQWALECEELSSPYDVQKIVSGGHTVELPYEFLLPCLCIEASYLQEDTVRRKKCPFQS WPEAYGSDFWKSVHFTDYSQH TQMVMALTLRCPLKLEAACRHDWHTLC KDL PNATARESDGWYVLEKVDLHPQLCFKFSFGNSSHVECPH QTGSLT SWNVSM DTQAQQ LILHFSSRMHATFSAAWSLPGLGQDTLVPPVYTVSQARGSSPVSLDIIIPFLR PGCCV LVWRS DVQFAWKHLLCPDVSYRHLGLL LALL ALLTLLGVVLALT CRRPQSGPGPARPVLLHAAD SEAQRRLVGALAE LLRAALGGGRDVIVDLWEGRHVARVGPLWLWAARTRVAREQGTVLLLW SGADLRPVS GPD PRAAPLL ALLHAAPRPLL LAYFSRLCAKGDI P PPLRALPRYRLLRDL P RLLRALDARPFAEATSWGR LGARQR RQSRLE LCS RLERAARLADLG

|                                                                |                                       |
|----------------------------------------------------------------|---------------------------------------|
| Signal peptide:                                                | Amino acids 1-23                      |
| Transmembrane domain:                                          | Amino acids 455-472                   |
| N-glycosylation sites:                                         | Amino acids 318-322; 347-351; 364-368 |
| Glycosaminoglycan attachment site:                             | Amino acids 482-486                   |
| cAMP- and cGMP-dependent protein kinase phosphorylation sites: | Amino acids 104-108; 645-649          |
| Tyrosine kinase phosphorylation site:                          | Amino acids 322-329                   |
| N-myristoylation sites:                                        | Amino acids 90-96; 358-364; 470-476   |
| Eukaryotic cobalamin-binding proteins:                         | Amino acids 453-462                   |

**FIGURE 17**

GCCAGGCCCTATCTCCCTGCCAGGAGGCCGGAGTGGGGGAGGTCAAGACGGGGCGGTTGGAGGGGAGGGGG  
GCCACCGCGCTCTGCCTCAGGTGTTCTGCCTGCGTTGTCAGTGGAGAGCAGGGAGTGGGGCCAGCCAGCA  
GAAACAGTGGGCTGTACAACATCACCTCAAATATGACAATTGTACCACCTACTGAATCCAGTGGGAAG  
CATGTGATTGCTGACGCCAGAATATCACCATCAGCCAGTATGCTTGCCTGACCAAGTGGCAGTCACCAT  
TCTTTGGTCCCAGGGCCCTCGGCATCGAATTCCCTGAAAGGATTCGGGTAATACTGGAGGAGCTGAAGT  
CGGAGGGAAAGACAGTCCAACAACTGATTCTAAAGGATCGAACGCTAACAGTAGCTCAAAGAAG  
GGAATGGAATCTCAACCTTCCTGAATATGAAATTGAAACGGATTATTCGTAAAGGTTGTCCCTTTCC  
TTCCATTAAAAACGAAAGCAATTACCACCCCTTCTTAGAACCCGAGCCTGTGACCTGTTACAGC  
CGGACAATCTAGCTTGAAACCCCTCTGGAAAGCCTCGGAACCTGAACATCAGCCAGCATGGCTCGGACATGC  
AGGTGTCCCTCGACCACGCACCGCATGGCTCGGACATGCAGGTGTCCTCGACCACGCACCGACAACCTC  
GGCTTCCGTTCTTCTATCTCACTACAAGCTCAAGCACGAAGGACCTTCAAGCGAAAGACCTGTAAGCA  
GGAGCAAACATACAGAGATGACCAGCTGCCTCCTTCAAAATGTTCTCAGGGGATTATATAATTGAGCTGG  
TGGATGACACTAACACAACAAGAAAAGTGTGATTATGCCCTAAAGCCAGTGCACCTCCCGTGGCCGG  
CCCATCAGAGCCGTGGCCATCACAGTGCCACTGGTAGTCATATCGGATTGCGACGCTCTTCACTGTGAT  
GTGCCGCAAGAAGCAACAAGAAAATATATTACACATTAGATGAAGAGAGCTGAGTCTTCCACATACA  
CTGCAGCACTCCCAAGAGAGAGGCTCGGCCGCGGCCGAAGGTCTTCTCTGCTATTCCAGTAAAGATGGC  
CAGAACATGAATGTCGTCAGTGTGTTCGCTACTCCCTCCAGGACTTCTGTTGAGGTGGCT  
GGACCTGTGGAAAGACTTCAGCCTCTGTAGAGAAGGGCAGAGAGAATGGGTATCCAGAAGATCCACAG  
CCCAGTTCATCATTGTGGTTGTTCCAAAGGTATGAAGTACTTGTGGACAAGAAGAACTACAAACACAAA  
GGAGGTGGCCGAGGCTCGGGAAAGGAGAGCTCTCCTGGTGGGGTGTCAAGCATTGCCGAAAGCTCCG  
CCAGGCCAAGCAGAGTTCGTCGCGCGCTCAGCAAGTTATGCCGTACTTTGATTATCCTGCGAGG  
GAGACGTCCCCGGTATCCTAGACCTGAGTACCAAGTACAGACTCATGGACAATCTCCTCAGCTCTGTTCC  
CACCTGCACTCCCGAGACCACGCCCTCCAGGAGCCGGGAGCAGCACCGCAGAGGAGCAAGGAAC  
CTTCCGGAGCAAGTCAGGCCGGTCCCTATACGTCGCCATTGCAACATGCACTGAGGAGTATTGACGAGGAGC  
CCGACTGGTTGAAAGCAGTTGCTCCCTCATCCTCCACTGCGCTACCGGGAGCCAGTCTTGGAG  
AAATTGATTGGCTTGGTTAAATGATGTCATGTGCAAACCAAGGGCCTGAGAGTGAATTCTGCCCTAAA  
GGTAGAGGCGGCTGTTCTGGGCAACCGGACCAGCCACTCCAGCACGAGAGTCAGCATGGGGCCTGG  
ACCAAGACGGGGAGGCCCTGCCCTGACGGTAGGCCGCGCCCTGCAACCCCTGTCACACGGTAAA  
GCCGGCAGCCCTCGGACATGCCGCGGACTCAGGCATCTATGACTCGTCTGCCCCATCCGAGCTGTC  
TCTGCCACTGATGGAAGGACTCTCGACGGACCAGACAGAAACGTCTCCCTGACGGAGAGCGTGTCCCT  
CTTCAGGCCGGTGGAGGAGGAACCTCCTGCCCTTCCAAGCTCCTCTTCTGGGTATGCAAAGCA  
GATCTTGGTTGCCGAGCTACACTGATGAACTCCACGCCGCGCCCTTGTAAACAAACGAAAGAGTCTA  
AGCATTGCCACTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 18

MPRASASGVPAFLVSGEQGVGPASRNGLYNITFKYDNCTTYLNPGKHVIADAQNITISQYACHDQVAVT  
 ILWSPGALGIEFLKGFRVILEELKSEGRQCQQLILKDPKQLNSSFKRTGMESQPFLNMKFETDYFVKVVPF  
 PSIKNESNYHPFFFTRACDLLLQPDNLACKPFWKPRNLNISQHGSMDMQVSFDHAPHGSDMQVSFDHAPHN  
 FGFRFFYLHYKLKHEGPKRKTCQEQTTMSTSLLQNVSPGDYIIELVDDTNTRKVMHYALKPVHSPWA  
 GPIRAVAVTVPLVVISAFATLFTVMCRKKQQENIYSHLDEESSSTYTAALPRERLRPRPKVFLCYSSKD  
 GQNHNMVVQCFAYFLQDFCGCEVALDWEDFSLCREGQREWVIQKIHESQFIIIVVCSKGKYFVDKKNYKH  
 KGGGRGSGKGELFLVAVSAIAEKLQRQAKQSSAALSKFIAVYFDYSCEDVPGILDSTKYRLMDNLPQLC  
 SHLHSRDHGLQEPGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDWFEKQFVPFHPPPLRYREPVL  
 EKFDGVLNDVMCKPGPESDFCLKVEAAVLGATGPADSQHESQHGLDQDGGEARPALDGSAAALQPLLHTV  
 KAGSPSDMPRDGSIYDSSVPSELPLMEGLSTDQTETSSLTESVSSSSGLGEEEPALPSKLLSGSCK  
 ADLGCRSYTDELHAVAPL

Transmembrane domain: Amino acids 283-307

N-glycosylation sites: Amino acids 31-34;38-41;56-59;  
 113-116;147-150;182-185;266-269

Glycosaminoglycan attachment sites: Amino acids 433-436;689-692

cAMP- and cGMP-dependent protein kinase phosphorylation:  
 Amino acids 232-235

Tyrosine kinase phosphorylation sites: Amino acids 312-319;416-424

N-myristoylation site: Amino acids 19-24;375-380;428-433;  
 429-434;432-437;517-522;574-579;  
 652-657;707-712

FIG. 19

FIG. 20



FIG. 21



**FIG. 22**





FIG. 23

FIG. 24



**FIG. 25**



FIG. 26



FIG. 27



FIG. 28





FIG. 29A

FIG. 29B

h-IL17 1 - - - - M T P G K T S L V S L L L S E A I V K A G I T I P R . . . . .  
 h-IL17B 1 - - - - M D W P H N L L F L L T I S I F L G L G Q P R S P K S K R K G Q G R P G P . . . . .  
 h-IL17C 1 - - - - M T L L P G L L F L L T W L H T C L A H H D P S L R G H P H S H G T P H C Y S A E E L P L G Q . . . . .  
 h-IL17E 1 M R E R P R L G E D S S L I S L F Q V V A F L A M V M G T H T Y S H W P S C C P . . . . .

h-IL17 30 - - - - N P G C P N S E D K N F P R T V M V N L N I H N R N T N P K R . . . . .  
 h-IL17B 39 A P G P H Q V P L D L V S R M K P Y A R M E E Y E R N I E E M V A Q L R N S S E L A Q R K C E V N L  
 h-IL17C 47 A P P H L L A R G A K W G Q A L P V A L V S S L E A A S H R G R H E R P S A T T T Q C P V L R P E E V  
 h-IL17E 42 - - - - S K G Q D T S E E L L R W S T V P V P P L E P A R P N R H P E S C R A S E . . .

h-IL17 63 - S S D Y Y N R S T S P W N L H R N E D P E R Y P S V I W E A K C R H L G C I N A D G . . . . .  
 h-IL17B 89 Q L W M S N K R S L S P W G Y S I N H D P S R I P V D L P E A R C L C L G C V N P F T M Q E D R S M  
 h-IL17C 97 L E A D T H Q R S I S P W Y R V D T D E D R Y P Q K L A F A E E C L C R G C I D A R T G . . . . .  
 h-IL17E 79 . D G P L N S R A I S P W R Y E L D R D L N R L P Q D L Y H A R C L C P H C V S L Q T G S H M D P R

h-IL17 110 M N S V P I Q Q E I L V L R E . . . . .  
 h-IL17B 139 V S V P V F S Q V P V R R R L C P P . . . . .  
 h-IL17C 146 L N S V R L L Q S L L V L R R P C S R D G S G L P T P G A F A E F H T E F H V P V G C T C V L P R  
 h-IL17E 128 G N S E L L Y H N Q T V F Y R R P C H G E K . . . . .  
 h-IL17 151 V H H V A . . . . .  
 h-IL17C 196 S V . . . . .  
 h-IL17E 175 V M G . . .

FIG. 30



FIG. 31A



FIG. 31B

FLUORESCENCE INTENSITY



FIG. 32A

FLUORESCENCE INTENSITY





**FIG. 32B**



**FIG. 33A**



**IL-17E EXPRESSION VECTOR (μg)**

**FIG. 33B**



FIG. 34

IL-17 FAMILY OF CYTOKINES HAS COMPLEX PATTERN  
OF OVERLAPPING RECEPTOR-LIGAND SPECIFICITIES



FIG. 35



FIG. 36A



FIG. 36B





FIG. 38A



FIG. 38B



**FIG. 39**



**FIG. 40**

INHIBITION OF NITRIC OXIDE RELEASE DOES NOT BLOCK THE DETRIMENTAL EFFECTS OF IL 17 ON MATRIX BREAKDOWN OR SYNTHESIS



FIG. 41A



FIG. 41B



FIG. 41C

**INHIBITION OF NO RELEASE ENHANCES IL1- $\alpha$ -INDUCED  
MATRIX BREAKDOWN BUT NOT MATRIX SYNTHESIS**



**FIG. 42**

IL-17C DETRIMENTAL EFFECTS ON ARTICULAR CARTILAGE



FIG. 43

INFLAMMATORY BOWEL DISEASE:  
EXPRESSION OF IL-17 FAMILY IN MOUSE MODEL OF IBD



FIG. 44

**IL-17D, PRESENT IN BRAIN, DECREASES RAPIDLY FOLLOWING STROKE**



**FIG. 45**



**FIG. 46A**



**FIG. 46B**



**FIG. 46C**

**FIG. 47A**



**FIG. 47B**



**FIG. 47C**



**Matrix Breakdown**



**FIG. 48A**

**Matrix Synthesis**



**FIG. 48B**

**IL-6 production**



**FIG. 48C**

**Matrix  
Breakdown**



**FIG. 48D**

**Matrix  
Synthesis**



**FIG. 48E**

**IL-6  
production**



**FIG. 48F**

FIG. 49C



FIG. 49B



FIG. 49A



\*

|        |            |            |            |            |            |    |
|--------|------------|------------|------------|------------|------------|----|
| IL-17F | .....      | .....      | .....      | RKIPKVG    | HFFFQKPE   | 17 |
| IL-17A | .....      | .....      | .....      | IVKAG      | ITIPRNE.G. | 14 |
| IL-17B | .....QPRS  | PKSKRKQGQR | PGPLAPGPHQ | VPLDLVSRMK | PYARMEEYER | 44 |
| IL-17C | HHDPSLRGHP | HSHGTPHYS  | AEELPLGQAP | PHLLARGAKW | GQALPVALVS | 50 |
| IL-17E | .....      | .....      | .....YS    | HWPS.GPSKG | QDTSEELLRW | 22 |

| IL-17F | PPVPGG.... | SMKLDI    | GIINENQRVS | MSRNIESRST | PMNYTVTW   | 59 |
|--------|------------|-----------|------------|------------|------------|----|
| IL-17A | PNSEDKNFPR | TVMVNLIHN | RNTNTN..PK | RSDYYNRST  | PWNLHRNED  | 62 |
| IL-17B | NIEEMVAQLR | NSSELAQR  | KCEV....NL | QLWMSNKRSI | PWGY SINHD | 88 |
| IL-17C | SLEASHRGR  | HERPSATT  | Q.PVLRPEEV | LEADTHQRSI | PWRYRVDTD  | 98 |
| IL-17E | STVPVPPLEP | ARP NRHPE | S.RASE.... | DGPLNSRAI  | PWRYELDRD  | 65 |

| IL-17F | PNRYPSEVVQ  | AQ.RNLG.TN | A..QGKEDIS  | MN.VPI.QQE | TLVVRKHQG   | 106 |
|--------|-------------|------------|-------------|------------|-------------|-----|
| IL-17A | PERYP SVIWE | AK.RHLG.TN | A..DGNVDYH  | MN.VPI.QQE | ILVLIRREPPH | 109 |
| IL-17B | PSRI PVDLPE | AR.LCIG.VN | PF.TMQEDRS  | MV.VPV.FSQ | VPVRRR...L  | 133 |
| IL-17C | EDRYPQKLA F | AE.LRG.ID  | AR.TGRE TAA | LN.VRL.LQS | LLVLRR..RP  | 144 |
| IL-17E | LNRLPQDLYH  | AR.LCPH.VS | LQTGSHMDPR  | GN.ELLYHNQ | TVFYRRP...  | 112 |

| *      |            |            |             |            |     |     |
|--------|------------|------------|-------------|------------|-----|-----|
| IL-17F | SV.....    | SPQLEK     | VLI..VTVGCT | CATPVIIHHQ | ... | 133 |
| IL-17A | CPN.....   | SPRLEK     | IL..MSVGCT  | CATPIVRRVA | ... | 136 |
| IL-17B | CPPPPRTGP. | CRQRA      | VMETIAVGCT  | C.I.F..... | ... | 160 |
| IL-17C | CSRDGSGLPT | PGAFAFHTEF | IH..VPVGCT  | CV.LPRSVAA | ALE | 184 |
| IL-17E | CHGEKGTHKG | .....YLER  | RLYRVSLACV  | CYPRVMG... | ... | 145 |

FIG. 50

FIG. 51C



FIG. 51B



FIG. 51A



FIG. 52C



FIG. 52B



FIG. 52A



IL-17E is highly conserved between human and mouse

FIG. 53

Tissue distribution of IL-17E



IL-17E (PCR then probed with cDNA)

FIG. 54B



## Taqman assay

FIG. 54A

*mll*-17E transgenics are growth retarded



FIG. 55

IL-17E transgenics are jaundiced by 6 weeks of age



TG

WT

FIG. 56

mIL-17E transgenics have elevated total bilirubin and liver enzymes



FIG. 57



FIG. 58A



FIG. 58B



FIG. 58C

Gene profiling of IL-17E transgenics (Taqman)



FIG. 58D



FIG. 58E



FIG. 59

**Elevated serum IL-5, IL-13 and TNF  $\alpha$   
in mIL-17E transgenics**



**FIG. 60**

**Serum IgE and IgG1, but not IgG2a is elevated  
in mIL-17E transgenics**



**FIG. 61**

**Neutrophilia in mIL-17E transgenics  
(8 wks, PBMC by FACS)**



**FIG. 62A**  
Non-TG      FITC CD3      TG



**FIG. 62B**  
Non-TG      PE GR-1  
(neutrophils)      TG

### Neutrophilia and eosinophilia in mIL-17E transgenics (hematology)



FIG. 63

**G-CSF is elevated in  
mIL-17E transgenics**



**FIG. 64**

## IL-17E induces production of G-CSF in vitro



\* $P < 0.05$

FIG. 65



**FIG. 66A**



**FIG. 66B**



**FIG. 66C**



**FIG. 66D**