Exercise Week 01

GianAndrea Müller mailto:muellegi@student.ethz

February 28, 2018

Time Schedule

- 10' Generelle Information
- 15' Ganzzahldivision und Modulo mit Übung
- 10' Repetition einfacher Ausdrücke
- 15' Binäre Darstellung von Zahlen
- 15' Pause
- 40' Übungsbearbeitung

Learning Objectives

• Organisation: Klärung aller Fragen bezüglich der Übungsumgebung.

Verständnis: Ganzzahldivision

Verständnis: Ausdrücke

• Verständnis: Binäre Darstellung von Zahlen

Allgemeines

- Selbstverantwortung übernehmen.
- Programmieren ist eine Chance.
- Let me google that for you.

Organisation

Wieso Übungen lösen?

- Erfahrung sammeln.
- XP sammeln.
- Bonusaufgaben lösen.
- 0.25 Notenpunkte gewinnen.

Polybox

First login

All exercises

C++ reference

Hardcore C++ reference

Ein C++ Programm

```
#include <iostream>
2
  using namespace std;
4
  int main (){
6
     int a;
7
     int b = 4;
     cin>>a;
     cout <<a+b<<endl;
10
11
     return 0;
12
13
```

Ein C++ Programm

```
#include <iostream> //Bibliothek
  using namespace std; //Loesung fuer std::
     cin, std::cin
4
  int main () { // Beginn der Hauptfunktion
6
    int a; //Variabeldefinition ohne
7
        Initialisierung
    int b = 4; //Variabeldefinition mit
8
        Initialisierung
    cin>>a; //Einlesen mit cin>>
    cout << a+b << endl; // Ausgeben mit cout <<</pre>
10
    //Neue Zeile mit endl
11
    return 0; // Rueckgabewert der
12
        Hauptfunktion
13
```

Ganzzahldivision

```
1 using namespace std;
2
3 int main (){
4   int a = 6;
5   int b = 4;
6   cout << a/b << endl;
7   return 0;
8 }</pre>
```

Keep in mind!

Eine Ganzzahldivision löscht die Nachkommastellen.

Integer division, examples

```
using namespace std;
  int main (){
     int a = 6;
4
     int b = 4;
     cout <<b/r>b/a<<endl;</pre>
     cout <<1/2<<end1;
7
     cout << double (1) /2 << endl;</pre>
8
     cout <<1.0/2<<end1;
     return 0;
10
11
```

Ganzzahldivision, Beispiele

```
using namespace std;
  int main (){
    int a = 6:
4
    int b = 4;
    cout << b/a << endl; //0
    cout <<1/2<<end1; //0
7
    cout << double (1) /2 << endl; //0.5
8
     cout <<1.0/2<<end1; //0.5
    return 0;
10
11
```

Modulo

```
using namespace std;

int main (){
  int a = 6;
  int b = 4;
  cout << a%b << endl;
  return 0;
}</pre>
```

Keep in mind!

The modulo operation returns the rest of an integer division.

Short demonstration

Exercise 01 1 \sim 5'

Write a program which reads in two integers a and b, then calculates the quotient $\frac{a}{b}$ as a mixed expression and outputs it.

For example, if a = 17 and b = 6, the output should be 2 5/6.

Solution 01_1

Solution to 01_1

L- und R-Werte

Definition

Ein L-Wert ist ein Ausdruck der über eine Adresse im Computerspeicher verfügt und somit auf der linken Seite eines Zuweisungsoperators (=) stehen kann.

Alle anderen Ausdrücke sind R-Werte.

L- und R-Werte

```
using namespace std;
  int main (){
     int a = 6;
4
    int b = 4;
    //5 = a;
    //(1+a) = 7;
7
    int c = a + b;
8
     cout <<a%b<<endl;</pre>
     return 0;
10
11
```

Exercise 01 2 5'

Evaluating expressions

- Which of the following character sequences are not C++ expressions and why not?
 - 1*(2*3)
 - (a=1)
 - **3** (1
 - (a*3)=(b*5)
- ② For all of the expressions that you identified in 1), decide whether these are Ivalues or rvalues.
- Oetermine the values of the expressions and explain how these values are obtained.

Expressions Precedence

Solution 01_2

Solution 01_2

Binäre Darstellung

$$91310 = 10 * 9131 + 0$$
 $61 = 2 * 30 + 1$
 $9131 = 10 * 913 + 1$ $30 = 2 * 15 + 0$
 $913 = 10 * 91 + 3$ $15 = 2 * 7 + 1$
 $91 = 10 * 9 + 1$ $7 = 2 * 3 + 1$
 $9 = 10 * 0 + 9$ $3 = 2 * 1 + 1$
 $1 = 2 * 0 + 1$

Binäre Darstellung

						\sum
Ziffern	9	1	3	1	0	
Multiplikator	10000	1000	100	10	1	
Wert	90000	1000	300	10	0	91310

							\sum_{i}^{n}
Ziffern	1	1	1	1	0	1	
Multiplikator	32	16	8	4	2	1	
Wert	32	16	8	4	0	1	61

Negative Binärzahlen

bin	uint	int	bin	uint	int
0000	0	0	1000	8	-8
0001	1	1	1001	9	-7
0010	2	2	1010	10	-6
0011	3	3	1011	11	-5
0100	4	4	1100	12	-4
0101	5	5	1101	13	-3
0110	6	6	1110	14	-2
0111	7	7	1111	15	-1

One's complement

Demo

Two's complement

Tips für Exercise 3

- Serienschaltung von R_1 und R_2 : $R_{tot} = R_1 + R_2$
- Parallelschaltung von R_1 und R_2 : $R_{tot} = \frac{R_1 \cdot R_2}{R_1 + R_2}$
- Ganzzahlrundung: $1.999 \rightarrow 1$
- ullet Arithmetische Rundung: $1.5 \rightarrow 2$