MA 16200: Plane Analytic Geometry and Calculus II

Lecture 20: The Alternating Series Test

7achariah Pence

Purdue University

Sections Covered: 10.6

Motivation

•000000

Test Criterion and Examples

■ We have dealt with series where the terms are always positive (integral/comparison tests). But how can we deal with this series?

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

2 Are there some series $\sum a_n$ where $\lim_{n\to\infty} a_n = 0$ implies the series converges?

Alternating Series Test

Test Criterion and Examples

0000000

Theorem 1 (Alternating Series Test)

The alternating series $\sum (-1)^{n+1} a_n$ converges if:

1 The terms a_n are non-increasing in magnitude (eventually):

$$a_k \ge a_{k+1} > 0$$
 for k greater than some index N

$$\lim_{n\to\infty} a_n = 0$$

Why? Use Monotone Convergence on S_{2N} and S_{2N+1} (see p.g. 689 of textbook)

The Alternating Harmonic Series

Theorem 2

Test Criterion and Examples

0000000

The **alternating harmonic series** converges. Moreover,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$$

Why does it converge?

0000000

Problem 3

Test Criterion and Examples

Determine whether $\sum_{n=1}^{\infty} \frac{\cos \pi n}{n^{3/4}}$ converges or diverges. State the test used.

0000000

Problem 4

Test Criterion and Examples

Determine whether $\sum_{n=1}^{\infty} \frac{(-1)^n 3n}{4n-1}$ converges or diverges. State the test used.

0000000

Problem 5

Test Criterion and Examples

Determine whether $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ converges or diverges. State the test used.

000000

Problem 6

Test Criterion and Examples

Determine whether $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$ converges or diverges. State the test used.

Error Bound Derivation

For a series $\sum (-1)^{n-1}a_n$, what is a bound for $|R_N|$?

Error Bound Formula

Theorem 7 (Remainder in Alternating Series)

Let $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ be a convergent alternating series converging to S. Let $R_N = S - S_N = \sum_{n=N+1}^{\infty} (-1)^{n+1} a_n$ be the remainder in approximating S by the sum of the first N terms. Then:

$$|R_N| \leq a_{n+1}$$

In other words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected term.

Approximating In 2

Problem 8

Recall $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = \ln 2$. How many terms of the series are required to approximate $\ln 2$ with an error less than $\varepsilon = 10^{-6}$?

Approximating e^{-1}

Problem 9

Approximate $\frac{1}{e} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ accurate to 3 decimal places.

Approximating π

Problem 10

Leibniz's formula for π (Proved in §11.2) states that:

$$\pi = \sum_{n=0}^{\infty} (-1)^n \frac{4}{2n+1}$$

Bound the error for the approximation $\pi \approx \sum_{n=0}^{8} (-1)^n \frac{4}{2n+1}$

Definition

Definition 11

- I If $\sum |a_n|$ converges, we say $\sum a_n$ is absolutely convergent, or $\sum |a_n|$ converges absolutely.
- 2 If $\sum |a_n|$ diverges and $\sum a_n$ converges, we say $\sum a_n$ is conditionally convergent, or $\sum a_n$ converges conditionally.

The alternating harmonic series is conditionally convergent (Why?)

Problem 12

Show
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 is absolutely convergent.

Abs. Conv. Implies Convergence

Theorem 13 (Absolute Convergence Implies Convergence)

- 1 If $\sum |a_n|$ converges, then $\sum a_n$ converges.
- 2 If $\sum a_n$ diverges, then $\sum |a_n|$ diverges.

Why? $\sum (a_n + |a_n|) \le 2 \sum |a_n|$ converges by the comparison test. So.

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n| < \infty$$

(2) is the contrapositive of (1).

Diagram

Problem 14

Determine if $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ diverges, converges absolutely, or converges conditionally.

Problem 15

Determine if $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ diverges, converges absolutely, or converges conditionally.

Problem 16

Determine if $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{n+1}$ diverges, converges absolutely, or converges conditionally.

Problem 17

Determine if $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^3}}$ diverges, converges absolutely, or converges conditionally.

Problem 18

Determine if $\sum_{n=1}^{\infty} (-1)^n \sin \frac{\pi}{n}$ converges or diverges.

Problem 19

Determine if $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \ln n}$ converges absolutely, conditionally, or diverges.