

Бизнис статистика

Дефиниција на веројатност и својства

Дефиниција на веројатност

- **Веројатност** е нумеричка мерка за можноста да се случи еден случаен настан. Ќе дефинираме веројатност во случај кога множеството елементарни настани Ω е конечно множество.
- Нека $\Omega = \{E_1, E_2, ..., E_n\}$ е конечно множеството елементарни настани во врска со даден експеримент и нека $p_1, p_2, ..., p_n$ се дадени реални броеви помеѓу 0 и 1, т.е. $0 \le p_i \le 1$, така што

$$p_1 + p_2 + ... + p_n = 1.$$

• Ќе претпоставиме дека p_i е веројатноста на елементарниот настан E_i , т.е. $p_i = P(E_i)$, за i=1,2,...,n.

Дефиниција на веројатност

• Нека A е даден случаен настан во врска со истиот експеримент. Настанот A, како подмножество од Ω , нека е од облик

$$A = \{E_{i_1}, E_{i_2}, \dots, E_{i_k}\}$$

каде $k \le n$, а $i_1, i_2, ..., i_k$ се различни елементи од множеството $\{1, 2, ..., n\}$.

Дефиниција 1.

Веројатноста на настанот A се определува како сума на веројатностите на елементарните настани што се содржат во настанот A. Тоа значи дека,

$$P(A) = p_{i_1} + p_{i_2} + ... + p_{i_k} = \sum_{r=1}^{k} p_{i_r}.$$

Пример 1

• Една табла за пикадо е поделена со концентрични кругови на области кои носат по 10, 9, 8 и 7 поени. Еден играч ја гаѓа таблата со стреличките и ја погодува областа која носи 10 поени со веројатност 0.1, областа која носи 9 поени со веројатност 0.2, областа со 8 поени со веројатност 0.3, онаа со 7 поени со веројатност 0.3 и ја промашува метата (постигнува 0 поени) со веројатност а. Ако играчот гаѓа во пикадото еднаш, определи ја веројатноста на следните настани:

A: играчот ќе постигне најмалку 8 поени;

В: играчот ќе добие помалку од 8 поени.

Решение. При секоја реализација на експериментот "гаѓање на таблата за пикадо", се појавува еден и само еден од следните елементарни настани:

 E_1 : погодена е областа која носи 10 поени;

 E_2 : погодена е областа која носи 9 поени;

 E_3 : погодена е областа која носи 8 поени;

 E_4 : погодена е областа која носи 7 поени;

 E_5 : таблата е комплетно промашена.

Пример 1: продолжение

 E_1 : погодена е областа која носи 10 поени;

 E_2 : погодена е областа која носи 9 поени;

 E_3 : погодена е областа која носи 8 поени;

 E_4 : погодена е областа која носи 7 поени;

 E_5 : таблата е комплетно промашена.

- Значи, множеството елементарни настани $\Omega = \{E_1, E_2, E_3, E_4, E_5\}$, а од условите на задачата имаме дека $p_1 = P(E_1) = 0.1$, $p_2 = P(E_2) = 0.2$, $p_3 = P(E_3) = 0.3$, $p_4 = P(E_4) = 0.3$ и $p_5 = P(E_5) = a$.
- Константата a се определува од условот $p_1 + p_2 + p_3 + p_4 + p_5 = 1$. Имаме, 0.1 + 0.2 + 0.3 + 0.3 + a = 1.

т.е. a = 0.1, па и $p_5 = 0.1$.

• Сега, настаните A и B може да се опишат на следниот начин:

$$A = \{E_1, E_2, E_3\}$$
 и $B = \{E_4, E_5\}$.

• Согласно, дефиницијата на веројатност, за веројатностите на соодветните настани добиваме:

$$P(A) = p_1 + p_2 + p_3 = 0.1 + 0.2 + 0.3 = 0.6,$$

 $P(B) = p_4 + p_5 = 0.3 + 0.1 = 0.4.$

За вака дефинираната веројатност, важат следните основни својства.

Својство 1.
$$P(A) \ge 0$$

Согласно Дефиниција 1, веројатноста на настан A е сума на ненегативните броеви p_i (веројатностите на елементарните настани кои се содржат во A). Оттука, целата сума е ненегативна.

Својство 2.
$$P(\Omega) = 1$$

Сигурниот настан Ω ги содржи сите елементарни настани, па според Дефиниција 1, веројатноста на настанот Ω е сума од веројатностите на сите елементарни настани, а тие веројатности ги одбравме такашто нивната сума е 1.

Својство 3. Ако A и B се дисјунктни настани, тогаш P(A+B) = P(A) + P(B).

- Множеството елементарни настани за A + B ги содржи сите елементарни настани кои се во множеството елементарни настани соодветни на A и сите елементарни настани кои се во множеството елементарни настани соодветни на B.
- Затоа веројатноста на A + B може да се претстави како збир на веројатностите на сите тие елементарни настани.
- Таа веројатност ќе биде збир од веројатностите на елементарни настани кои се во множеството елементарни настани соодветни на A и елементарни настани кои се во множеството елементарни настани соодветни на B.

Својство 4. $P(\emptyset) = 0$.

Согласно Дефиниција 1, во сумата со која се определува веројатноста на невозможниот настан, нема да има ниеден собирок. Затоа таа сума ќе биде еднаква на 0.

Својство 5. Ако $A_1, A_2, ..., A_n$ се дисјунктни настани, тогап $P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n)$.

Својство 6. Ако $A \subseteq B$, тогаш $P(A) \le P(B)$.

Ако $A \subseteq B$, тогаш сите елементарни настани од A се и во B. Затоа, веројатност на настанот A е најмалку еднаква на веројатноста на настанот B.

Својство 7. За произволен настан А важи

$$0 \le P(A) \le 1$$
.

За секој настан A важи дека $\varnothing \subseteq A \subseteq \Omega$. Од Својство 6 следува дека $P(\varnothing) \le P(A) \le P(\Omega)$ $0 \le P(A) \le 1$

Својство 8. За произволен настан A, веројатноста на спротивниот настан се определува со

 $P(\overline{A}) = 1 - P(A).$

Множеството елементарна настани соодветно на настанот \bar{A} ги содржи сите елементарни настани од Ω кои не се во A. Оттука следува тврдењето.

Својство 9. За произволни два настани A и B, важи D(A + B) = D(A) + D(B) = D(A)

$$P(A \cup B) = P(A) + P(B) - P(AB).$$

Според Дефиниција 1, во P(A) + P(B), веројатностите на елементарните настани кои се во пресекот се собрани двапати. За да се добие веројатноста на $P(A \cup B)$ тие веројатности треба еднаш да се одземат, т.е. да се одземе P(AB).

За да не се бројат заедничките елементи два пати

- Ако A и B се дисјунктни настани, тогаш P(AB) = 0.
- Во овој случај, за веројатноста на збирот на овие два настани, се добива:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 A_2)$$

Така,

$$P(A_1 + A_2) = P(A_1) + P(A_2)$$

- Во овој случај, го добивме Својство 3.
- Значи, Својство 3 е специјален случај на Својство 9.

Пример 2

Еден кошаркар изведува две слободни фрлања. Притоа, се можни следните елементарни настани:

 E_1 : погодок во првото и погодок во второто фрлање;

 E_2 : погодок во првото и промашување во второто фрлање;

 E_3 : промашување во првото и погодок во второто фрлање;

 E_4 : промашување во првото и промашување во второто фрлање;

Веројатностите на елементарните настани се следните: $P(E_1) = 0.49$, $P(E_2) = P(E_3) = 0.21$ и $P(E_4) = 0.09$. Да се определи веројатноста на следните настани:

A: играчот ќе постигне погодок во првото фрлање;

B: играчот ќе постигне погодок во второто фрлање;

C: играчот ќе постигне погодок во двете фрлања;

D: играчот ќе постигне барем еден погодок во двете фрлања.

Пример 2: решение

• Настаните A и B може да се претстават како $A = \{E_1, E_2\}$, а $B = \{E_1, E_3\}$. Оттука, за нивната веројатност се добива:

$$P(A) = p_1 + p_2 = 0.49 + 0.21 = 0.7,$$

 $P(B) = p_1 + p_3 = 0.49 + 0.21 = 0.7,$
 $P(C) = P(E_1) = 0.49.$

• Настанот D ќе се појави ако се постигне погодок само во првото фрлање или само во второто или и во двете фрлања, т.е. $D = A \cup B$. Да воочиме дека настаните A и B не се исклучуваат, бидејќи $AB = \{E_1\} \neq \emptyset$. Оттука, со користење на Својството 9, за веројатноста на D се добива следното:

$$P(D) = P(A \cup B) = P(A) + P(B) - P(AB) = 0.7 + 0.7 - 0.49 = 0.91.$$

Класична дефиниција на веројатност

Ќе разгледаме еден специјален случај на претходно дефинираната веројатност.

• Нека $\Omega = \{E_1, E_2, ..., E_n\}$ е дадено множество елементарни настани и нека сите овие елементарни настани имаат еднаква веројатност да се појават, т.е. $p_i = p_j$, за i, j = 1, 2, ..., n. Од условот $p_1 + p_2 + ... + p_n = 1$, следува дека $p_i = \frac{1}{n}$, за сите i = 1, 2, ..., n. Оттука, ако $A = \{E_{i_1}, E_{i_2}, ..., E_{i_k}\}$ е даден настан, за неговата веројатност се добива дека

$$P(A) = p_{i_1} + p_{i_2} + \dots + p_{i_k}$$

$$= \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}$$

$$= \frac{k}{n}$$

Класична дефиниција на веројатност

Дефиниција 2. (Класична дефиниција на веројатност)

Нека $\Omega = \{E_1, E_2, ..., E_n\}$ е дадено конечно множество елементарни настани и нека секој од нив има еднаква веројатност да се појави, т.е. $P(E_i) = \frac{1}{n}$, за сите i = 1, 2, ..., n. Ако A е случаен настан во врска со дадениот експеримент во кој се содржат k елементарни настани, тогаш веројатност на настанот A се определува со :

$$P(A) = \frac{k}{n}$$

Класична дефиниција на веројатност

- Да воочиме дека n е вкупниот број на елементарни настани, т.е. бројот на елементи во Ω . Ќе означиме $n = |\Omega|$.
- Секој елементарен настан може да го толкуваме како "можен случај" во врска со даден експеримент.
- Од друга страна, k е бројот на елементарни настани кои се содржат на настанот A, т.е. k = |A| и секој елементарен настан од A ќе го толкуваме како "поволен случај" за појавување на настанот A.
- Согласно, класичната дефиниција, веројатноста на даден случаен настан A е еднаква на количникот на бројот на поволни случаи за појавување на настанот A и бројот на сите можни случаи за даден експеримент, т.е.

$$P(A) = \frac{|A|}{|\Omega|}$$

Пример 2.

Да се определи веројатноста при фрлање на коцка да се добие парен број.

- Ако експериментот е фрлање на коцка, множеството елементарни настани $\Omega = \{E_1, E_2, E_3, E_4, E_5, E_6\}$, каде E_i е настанот "се појави бројот i", i=1,2,...,6.
- Настанот A: падна парен број може да се опише со $A = \{E_2, E_4, E_6\}$.
- Значи, бројот на поволни можности за појавување на настанот A е 3, а вкупниот број на можности при реализација на експериментот е 6.
- Оттука, согласно класичната дефиниција на веројатност, за веројатноста на настанот A се добива:

$$P(A) = \frac{3}{6} = 0.5$$

Пример 3.

Во една кутија има 5 бели и 4 црни топчиња. Од кутијата се извлекуваат две топчиња наеднаш. Да се определи веројатноста дека двете извлечени топчиња се бели.

- Го означуваме настанот A: извлечени се две бели топчиња.
- Бројот на можни исходи на експериментот, т.е. вкупниот број на елементарни настани е:

$$C_9^2 = \binom{9}{2} = 36$$

■ Поволниот број можности за да се појави настанот A се:

$$C_5^2 = {5 \choose 2} = 10$$

 \blacksquare Значи, веројатноста за појавување на настанот A е

$$P(A) = \frac{10}{36} = \frac{5}{18}$$
.

Пример 4.

Се извлекува една карта од шпил со 52 карти. Да се определи веројатноста дека извлечената карта ќе биде црвена или единица.

■ Бројот на карти во шпилот може да ги претставиме по категории во следната табела на контингенција

Боја Вид	Црвена	Црна	Вкупно
Единица	2	2	4
Не е единица	24	24	48
Вкупно	26	26	52

Ги разгледуваме следните случајни настани:

A: извлечената карта е црвена

В: извлечената карта е единица

Треба да ја определиме веројатноста на $A \cup B$.

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

- Од табелата читаме дека за настанот A има 26 поволни настани, а за настанот B поволни се 4 елементарни настани. За настанот AB: извлечената карта е црвена и единица има 2 поволни настани.
- Според класичната дефиниција на веројатност

$$P(A \cup B) = P(A) + P(B) - P(AB) = \frac{26}{52} + \frac{4}{52} - \frac{2}{52} = \frac{28}{52}$$

Табели на контингенција

• Во општ случај, табела на контингенција за два настани A и B (и нивните спротивни настани) е од облик:

	A	Ā	Вкупно
В	$n(A \cap B)$	$n(\bar{A} \cap B)$	n(B)
$ar{B}$	$n(A \cap \overline{B})$	$n(\bar{A} \cap \bar{B})$	$n(\overline{B})$
Вкупно	n(A)	$n(\bar{A})$	$n(\Omega)$

- Притоа, n(C) е бројот на елементарни настани во множеството елементарни настани соодветно на даден настан C.
- Значи, $n(A \cap B)$ е бројот на елементарни настани во множеството елементарни настани соодветно на настанот $A \cap B$,...

Табели на заеднички веројатности

• Во некои случаи, наместо табела на контингенција поедноставно е да се направи табела на заеднички веројатности за два настани *A* и *B* (и нивните спротивни настани). Таа табела е од облик:

	A	$ar{A}$	Вкупно
В	$P(A \cap B)$	$P(\bar{A} \cap B)$	P(B)
$ar{B}$	$P(A \cap \overline{B})$	$P(\bar{A} \cap \bar{B})$	$P(\overline{B})$
Вкупно	P(A)	$P(\bar{A})$	$P(\Omega) = 1$

- Притоа, под заеднички веројатности се подразбираат веројатностите на пресеците на настаните A и B (и нивните спротивни).
- Таква табела е згодно да се направи кога настаните се зададени со нивните веројатности или процентуално.
- Табелите на контингенција може да се користат само ако сите елементарни настани се еднакво веројатни, а табелите на заеднички веројатности може да се користат и кога елементарните настани не се еднакво веројатни.

Врска помеѓу табели на контингенција и табели на заеднички веројатности на два настани

- Да воочиме дека ако е дадена табелата на контингенција за два настани, лесно може да се добие табелата со заедничките веројатности за два настани.
- Имено, сите броеви на елементарни настани во табелата на контингенција треба да се поделат со вкупниот број на елементарни настани.

Боја Вид	Црвена	Црна	Вкупно
Единица	2	2	4
Не е единица	24	24	48
Вкупно	26	26	52

Боја Вид	Црвена	Црна	Вкупно
Единица	2/52	2/52	4/52
Не е единица	24/52	24/52	48/52
Вкупно	1/2	1/2	1

Табела на контингенција

Веројаност на настанот "извлечена е црвена карта" Табела на заеднички веројатности на два настани

Заеднички и маргинални веројатности

- Табели на контингенција и табели на заеднички веројатности може да се состават и за повеќе од два настани. За да се направи ова, потребно е дисјунктно разложување на Ω на два начина (по две основи).
- Нека настаните A_1 , A_2 , ..., A_n се дисјунктно разложување на Ω и B_1 , B_2 , ..., B_k , се, исто така, дисјунктно разложување на Ω .
- Во табелата се претставени заеднич-ките веројатностите $P(A_i \cap B_j)$, за i = 1,2,...,n; j = 1,2,...,k.

	B_1	B_2	• • •	B_k	Маргинални
A_1	$P(A_1 \cap B_1)$	$P(A_1 \cap B_2)$		$P(A_1 \cap B_k)$	$P(A_1)$
A_2	$P(A_2 \cap B_1)$	$P(A_2 \cap B_2)$		$P(A_2 \cap B_k)$	$P(A_2)$
	•	•	•	•	
•	•	•	•	•	
•	•	•	•	•	
A_n	$P(A_n \cap B_1)$	$P(A_n \cap B_2)$	• • •	$P(A_n \cap B_k)$	$P(A_n)$
Маргинални	$P(B_1)$	$P(B_2)$		$P(B_k)$	1

Заеднички и маргинални веројатности

• За определување на маргиналната веројатност на настанот A_i , имаме:

$$P(A_i) = P(A_i \cap Q) = P(A_i \cap (\sum_{j=1}^k B_j)) = P(\sum_{j=1}^k (A_i \cap B_j)) = \sum_{j=1}^k P(A_i \cap B_j)$$
$$= P(A_i \cap B_1) + P(A_i \cap B_2) + \dots + P(A_i \cap B_k)$$

- Значи, маргиналната веројатост на настанот A_i се добива како сума на сите веројатности во редицата соодветна на A_i .
- Аналогно, маргиналната веројатност на настанот B_j се добива како сума на сите веројатности во колоната соодветна на B_j .

Пример 5

- Во една кутија има црвени, бели и зелени топчиња означени со некој од броевите 1,2,3,4. Табелата на заеднички веројатности е дадена подолу. Од кутијата се извлекува едно топче. Да се определи веројатноста дека е
 - а) извлечено е црвено топче со бројот 2;
 - б) извлечено зелено топче;
 - в) извлечен бројот 3.

	број 1	број 2	број 3	број 4
црвено	0.2	0.1	0.05	0.1
бело	0.05	0	0	0.15
зелено	0	0.15	0.15	0.05

Пример 5: решение

- Веројатноста дека е извлечено црвено топче со бројот 2, ја отчитуваме директно од табелата. Таа веројатност е 0.1.
- За определување на маргиналните веројатности ги пресметуваме сумите по редици и колони.

	број 1	број 2	број 3	број 4	вкупно
црвено	0.2	0.1	0.05	0.1	0.45
бело	0.05	0	0	0.15	0.2
зелено	0	0.15	0.15	0.05	0.35
вкупно	0.25	0.25	0.2	0.3	1

- Веројатноста дека е извлечено зелено топче е сума на сите веројатности во редицата соодветна на настанот "извлечено е зелено топче". Таа веројатност е 0.35.
- Веројатноста дека е извлечен бројот 3 е сума на сите веројатности во колоната соодветна на настанот "извлечен е бројот 3". Таа веројатност е 0.2.

Бизнис статистика

Условна веројатност Независност на настани

Условна веројатност

• Често се случува веројатноста за појавување на еден настан да зависи од тоа дали ќе се појави или не друг настан. Да ги разгледаме следните настани:

A: ќе врне

B: на небото има облаци.

- Јасно е дека веројатноста за појава на настанот A зависи од тоа дали ќе се појави или не настанот B.
- Имено, информацијата дека се појавил настанот B, ја зголемува веројатноста за појавување на настанот A.
- Затоа, се јавува потребата за дефинирање на таканаречена условна веројатност.

Условна веројатност

• Условната веројатност на настанот A при услов B е веројатност да се појави настанот A, ако се појавил настанот B. Оваа веројатност ќе ја означуваме со P(A|B).

Дефиниција 1. *Условната веројатност на настанот А при услов В* (ако P(B) > 0) се дефинира со:

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

а условната веројатност на настанот B при услов A (ако P(A) > 0) со:

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

Пример 1

• Експериментот се состои во фрлање коцка. Да се определи веројатноста дека паднал парен број, ако е познато дека паднал број кој е помал или еднаков на 4.

Решение: Да ги означиме следните настани;

A: се појавил парен број;

B: се појавил број помал или еднаков на 4.

• Во тој случај, настанот AB означува дека се појавил парен број кој е најмногу 4. Веројатноста на настаните B и AB е:

$$P(B) = \frac{4}{6} = \frac{2}{3};$$
 $P(AB) = \frac{2}{6} = \frac{1}{3}.$

• На крај, веројатноста P(A|B) според дефиниција за условна веројатност, ќе биде:

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{1/3}{2/3} = \frac{1}{2}$$

Пример 1: продолжение

- Задачите за определување на условна веројатност може да се решат и со користење на табели на контингенција.
- За претходниот пример, табелата на контингенција е:

	бро ј ≤ 4	број > 4	Вкупно
парен	2	1	3
непарен	2	1	3
Вкупно	4	2	6

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{2/6}{4/6} = \frac{1}{2}$$

Ревидиран простор (ги содржи само броевите кои се ≤ 4)

Пример 2

• Од колите на еден паркинг со користени возила, 70% имаат клима уред (настан *A*), 40% имаат CD (настан *B*), а 20% ги имаат и двете. Колку е веројатноста дека случајно избрана кола има CD, ако е дадено (знаеме) дека има клима уред?

Решение: Се бара веројатноста P(B|A). Со оглед на тоа што податоците се дадени во проценти, нив ќе и претставиме со табела на заеднички веројатностите за два настани. Од условите на задачата, дадени се следните веројатности.

	има CD	нема CD	вкупно
има клима	0.2		0.7
нема клима			0.3
вкупно	0.4	0.6	1

Пример 2: продолжение

• Табелата ја пополнуваме така што сумите по редици и колони бидат точни. Имено, ако кола има клима уред, таа може да има CD или да нема CD. Од вкупниот број на коли 70% имаат клима уред, а 20% се со клима уред и CD. Значи, 50% од вкупниот број на коли имаат клима уред и немаат CD.

	има CD	нема CD	вкупно
има клима	0.2	0.5	0.7
нема клима	0.2	0.1	0.3
вкупно	0.4	0.6	1

Пример 2: продолжение

 Дадено е дека избраната кола има клима уред. Затоа го гледаме само горниот ред (70% од колите). 20% од колите имаат клима и CD.

	има CD	нема CD	вкупно
има клима	0.2	0.5	0.7
нема клима	0.2	0.1	0.3
вкупно	0.4	0.6	1

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{0.2}{0.7} = \frac{2}{7} = 0.2857.$$

Веројатност на производ на два настани

• Од формулите за условна веројатност може да се изрази веројатноста за производ на два настани.

$$P(AB) = P(A)P(B|A) = P(B)P(A|B)$$

- Во една кутија има 4 бели и 3 црни топчиња. Од кутијата се извлекуваат две топчиња едно по едно, без враќање. Да се определи веројатноста дека двете извлечени топчиња се бели.
- Решение: Да ги означиме следните настаните

 A_1 : во првото извлекување е добиено бело топче,

 A_2 : во второто извлекување е добиено бело топче.

• Ја бараме веројатноста на настанот A_1A_2 . Според претходното својство имаме дека $P(A_1A_2) = P(A_1)P(A_2|A_1)$. Притоа,

$$P(A_1) = \frac{4}{7}$$
 u $P(A_2 \mid A_1) = \frac{3}{6} = \frac{1}{2}$.

• бидејќи ако се извлече бело топче во првото извлекување, во кутијата остануваат 3 бели од вкупно 6 топчиња. Оттука,

$$P(A_1 A_2) = P(A_1)P(A_2 \mid A_1) = \frac{4}{7} \cdot \frac{1}{2} = \frac{2}{7}.$$

Веројатност на производ на два настани

• Формулата за веројатност на производ на два настани може да се обопшти за производ на *n* настани на следниот начин.

$$P(A_1A_2...A_n) = P(A_1)P(A_2|A_1) P(A_3|A_2A_1)... P(A_n|A_{n-1}...A_2A_1).$$

• Во една кутија има 4 бели и 5 црни топчиња. Играчот извлекува по едно топче од кутијата, без враќање, сé додека не извлече бело топче. Да се определи веројатноста дека тој ќе извлекува точно 4 пати.

Решение: Играчот ќе извлекува точно 4 пати, ако во првите 3 обиди извлече црно топче, а во четвртиот обид - бело. Ако A_i е настанот дека играчот ќе извлече бело топче во i-тото извлекување, i=1,2,3,4, тогаш ја бараме веројатноста на настанот $\bar{A}_1\bar{A}_2\bar{A}_3A_4$.

• Според претходното својство, имаме:

$$P(\bar{A}_{1}\bar{A}_{2}\bar{A}_{3}A_{4}) = P(\bar{A}_{1})P(\bar{A}_{2} | \bar{A}_{1})P(\bar{A}_{3} | \bar{A}_{1}\bar{A}_{2})P(A_{4} | \bar{A}_{1}\bar{A}_{2}\bar{A}_{3})$$

$$= \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{4}{6}$$

$$= \frac{5}{63}$$

Независност

- Настаните A и B се независни кога појавата на еден настан не влијае на веројатноста да се појави другиот настан.
- **з**а настанот A велиме дека е **независен** од настанот B (P(B) > 0), ако P(A|B) = P(A).
- Аналогно, настанот B велиме дека е **независен** од настанот A (P(A) > 0), ако P(B|A) = P(B).
- Се покажува дека ако важи едно од горните две равенства, тогаш важи и другото равенство, т.е. ако A е независен од B тогаш и B е независен од настанот A. Ќе велиме дека A и B се независни настани.
- \blacksquare Сега, ако A и B се независни настани, тогаш

$$P(AB) = P(A)P(B|A) = P(A) P(B).$$

Независност

Теорема. Настаните A и B се независни настани ако и само ако $P(AB) = P(A) \ P(B)$.

■ Во некои случаи независноста може да се согледа од самите услови на задачата. На пример, ако се фрлаат две коцки и се набљудуваат настаните

A: на првата коцка падна шеска,

B: на втората коцка падна петка,

тогаш е јасно дека A и B се независни настани, бидејќи исходот на едната не влијае на исходот на другата коцка.

• Но, во некои случаи неопходно е да се провери условот за независност од последната теорема.

• Од шпил со 52 карти се извлекува една карта. Да ги разгледаме следните настани:

A: извлечена е карта на која е бројот пет;

B: извлечената карта е лист.

• Да се провери дали настаните A и B се независни.

Решение:

$$P(A) = \frac{4}{52} = \frac{1}{13}, \quad P(B) = \frac{13}{52} = \frac{1}{4}$$
$$P(AB) = \frac{1}{52} = \frac{1}{13} \cdot \frac{1}{4} = P(A)P(B).$$

• Значи, условот за независност е исполнет, па A и B се независни настани, иако интуитивно тоа не изгледа така (помеѓу картите со знак лист има петка и меѓу четирите петки има петка лист).

• Од шпил со 52 карти се извлекува една карта. За настаните

A: извлечена е карта на која е бројот пет;

В: извлечената карта е лист.

утврдивме дека се независни.

■ Да се провери независноста на паровите A и \overline{B} , \overline{A} и B, како и \overline{A} и \overline{B} .

Решение:

$$P(A) = \frac{4}{52} = \frac{1}{13}, \quad P(B) = \frac{13}{52} = \frac{1}{4}.$$

• Настанот $A\overline{B}$ означува дека е извлечена карта со бројот 5 која не е лист. Постојат 3 поволни можности за овој настан, па

$$P(A\overline{B}) = \frac{3}{52} = \frac{1}{13} \cdot \frac{3}{4} = P(A)P(\overline{B}).$$

• Значи, A и \bar{B} се независни настани.

Пример 6: продолжение

• Соодветно, $\overline{A}B$ е настанот : извлечена е карта со знакот лист на која е број што е различен од 5. Има 12 поволни можности за овој настан Оттука,

$$P(\overline{A}B) = \frac{12}{52} = \frac{12}{13} \cdot \frac{1}{4} = P(\overline{A})P(B),$$

- \blacksquare Значи, \bar{A} и B се независни настани.
- На крај, \overline{AB} е настанот: извлечена е карта која не е петка и не е лист. Поволни можности има 36, па

$$P(\bar{A}\bar{B}) = \frac{36}{52} = \frac{12}{13} \cdot \frac{3}{4} = P(\bar{A})P(\bar{B}).$$

• Оттука, \bar{A} и \bar{B} се независни настани.

Независност

- Во претходниот пример видовме дека независни се паровите настани: A и B, A и \overline{B} , \overline{A} и B, како и \overline{A} и \overline{B} .
- Се покажува дека ова важи не само за овој пример, туку и во општ случај.
- Имено, точно е следното тврдење:

Ако A и B се независни настани тогаш независни се и следните парови настани: A и \bar{B} , \bar{A} и B, како и \bar{A} и \bar{B} .

Независност во целина

• Поимот за независност на настани може да се обопшти на повеќе од два настани.

Настаните A_1, A_2, \dots, A_n се независни во целина, ако за произволно k $(2 \le k \le n)$ и за кој било избор на индекси $i_1 < i_2 < \dots < i_k$, важи

$$P(A_{i_1}A_{i_2}...A_{i_k}) = P(A_{i_1})P(A_{i_2})...P(A_{i_k}).$$

• Слично како и за два настани се покажува дека ако се независни настаните $A_1, A_2, ..., B_1, B_2, ...$ тогаш независни се и настаните $A_1, A_2, ..., \overline{B}_1, \overline{B}_2, ...$

• Во една кутија има 6 бели и 2 црни топчиња. Играчот извлекува едно топче, ја гледа неговата боја и го враќа во кутијата. Да се определи веројатноста дека бело топче ќе извлече за прв пат во четвртото извлекување.

Решение:

- Нека A_i означува дека во i-тото извлекување е добиено бело топче, i = 1, 2, ... Бидејќи после секое извлекување, извлеченото топче се враќа назад во кутијата, исходот на секое извлекување не зависи од исходот на претходните извлекувања, т.е. настаните A_i , i = 1, 2, ..., се независни.
- Притоа, $P(A_i) = 6/8 = 3/4$, а $P(\bar{A}) = \frac{1}{4}$, за i = 1,2,3,...
- Оттука,

$$P(\overline{A}_1 \overline{A}_2 \overline{A}_3 A_4) = P(\overline{A}_1) P(\overline{A}_2) P(\overline{A}_3) P(A_4) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{256}$$

Дисјунктни и независни настани

- Треба да се внимава да не се мешаат поимите за дисјунктни (взаемно исклучителни)
 настани и независни настани.
- Два настани со ненулти веројатности не може да бидат истовремено и дисјунктни и независни.
- Ако A и B се дисјунктни настани и $P(A) \neq 0$, $P(B) \neq 0$, тогаш $P(AB) = 0 \neq P(A) \ P(B)$,

па A и B не се независни настани.

- Два дисјунктни настани ќе бидат независни акко веројатноста на барем еден од нив е
 0.
- Два настани кои не се дисјунктни, може но не мора да бидат независни.

- Во една кутија има 10 топчиња: 2 црни, 3 црвени и 5 шарени. На случаен начин се вади едно по едно топче без враќање. Да се определат веројатностите
 - а) Првото топче е шарено
 - б) Првото е црно или црвено
 - в) Второто е црно ако првото е шарено
 - г) Првото е шарено и второто е црно
 - д) Првите две се шарено и црно без оглед на редоследот.

Решение: Ги означуваме следните настани:

 B_i : *i*-тото извлечено топче е црно

 R_i : *i*-тото извлечено топче е црвено

 C_i : *i*-тото извлечено топче е шарено

$$i = 1, 2, \dots$$

Пример 8: решение

a)
$$P(C_1) = \frac{5}{10} = \frac{1}{2}$$

6)
$$P(B_1 \cup R_1) = P(B_1 + R_1) = P(B_1) + P(R_1) = \frac{2}{10} + \frac{3}{10} = \frac{1}{2}$$

B)
$$P(B_2 \mid C_1) = \frac{2}{9}$$

r)
$$P(C_1B_2) = P(C_1)P(B_2 \mid C_1) = \frac{5}{10} \cdot \frac{2}{9} = \frac{1}{9}$$

д)
$$P(C_1B_2 + B_1C_2) = P(C_1B_2) + P(B_1C_2) = P(C_1)P(B_2 \mid C_1) + P(B_1)P(C_2 \mid B_1)$$

= $\frac{5}{10} \cdot \frac{2}{9} + \frac{2}{10} \cdot \frac{5}{9} = \frac{2}{9}$

Шанси за појавување на даден настан

- Шансите во корист на даден настан се добиваат како количник на веројатноста на настанот и веројатноста на неговиот спротивен настан.
- \blacksquare Шансите во корист на A се

шанси =
$$\frac{P(A)}{1 - P(A)} = \frac{P(A)}{P(\overline{A})}$$

■ Да се пресмета веројатноста за добивка ако шансите за добивка се 3 : 1.

Решение:

шанси =
$$\frac{3}{1} = \frac{P(A)}{1 - P(A)}$$

Ги множиме двете страни со 1 - P(A) и решаваме за P(A):

$$3 \cdot (1 - P(A)) = P(A)$$

 $3 - 3P(A) = P(A)$
 $3 = 4P(A)$
 $P(A) = 3/4 = 0.75$

Бизнис статистика

Формула за тотална веројатност Баесови формули

Формула за тотална веројатност

Теорема за тотална веројатност. Нека $H_1, H_2, ..., H_k$ се дисјунктно разложување на Ω , односно $H_i \cap H_j = \emptyset$, за $i \neq j$ и $\sum_{i=1}^k H_i = \Omega$. Тогаш, за произволен случаен настан A точна е следната формула:

$$P(A) = P(A \cap H_1) + P(A \cap H_2) + \dots + P(A \cap H_k)$$

$$= P(H_1)P(A \mid H_1) + P(H_2)P(A \mid H_2) + \dots + P(H_k)P(A \mid H_k)$$

$$= \sum_{i=1}^k P(H_i)P(A \mid H_i)$$

 Ω

Хипотези, априорни и апостериорни веројатности

- Случајните настани $H_1, H_2, ..., H_k$ во формулата за тотална веројатност се нарекуваат *хипотези*.
- Нивните веројатности $P(H_i)$, директно пресметани, се нарекуваат *априорни* веројатности (или веројатности априори).
- Често пати се јавува потребата за пресметување на условните веројатности $P(H_j|A)$, $j=1, 2, \ldots k$, т.е. да се проценат веројатностите на хипотезите откако ќе заврши експериментот и ќе се појави настанот A.
- Тие условни веројатности се нарекуваат *апостериорни веројатности*, т.е. *веројатности апостериори* и се определуваат со следната теорема.

Баесова теорема

Баесова теорема. Нека $H_1, H_2, ..., H_k$ се дисјунктно разложување на Ω , односно $H_i \cap H_j$ = \emptyset , за $i \neq j$ и $\sum_{i=1}^k H_i = \Omega$. Тогаш, точни се следните формули:

$$P(H_i | A) = \frac{P(H_i)P(A | H_i)}{P(A)}$$

$$= \frac{P(H_i)P(A | H_i)}{P(H_1)P(A | H_1) + P(H_2)P(A | H_2) + ... + P(H_k)P(A | H_k)}, \quad i = 1, 2, ..., k$$

- Честопати ја започнуваме анализата на веројатностите со почетни или претходни (априори) веројатности.
- Потоа, од примерок, извештај или тест производ добиваме некои дополнителни информации.
- Со користење на овие информации, може да пресметаме ревидирани или апостериорни веројатности.
- Баесовата теорема дава формула за пресметување на апостериорните веројатности.

- Дадени се два кафези К₁ и К₂. Во првиот кафез има 2 сиви и 1 бело глувче, а во вториот има 2 сиви и 2 бели глувчиња. На случаен начин се бира кафез и глувче од кафезот.
 - а) Да се определи веројатноста дека избраното глувче е сиво.
 - б) Ако глувчето е сиво, да се определи веројатноста дека е од првиот кафез?

Решение:

• Ги дефинираме хипотезите:

 H_1 : избран е првиот кафез

 H_2 : избран е вториот кафез

Бидејќи $H_1 \cap H_2 = \emptyset$ и $H_1 + H_2 = \Omega$ може да се примени формула за тотална веројатност и Баесовите формули.

Дефинираме настан A: избрано е сиво глувче.

Пример 11: Решение

A: избрано е сиво глувче

 H_1 : избран е првиот кафез

 H_2 : избран е вториот кафез

Двата кафеза имаат еднаква веројатност да бидат избрани, па затоа $P(H_1) = 1/2$ и $P(H_2) = 1/2$.

Веројатностите да се избере сиво глувче се: $P(A|H_1) = 2/3$, $P(A|H_2) = 2/4$.

а) Со формулата за тотална веројатност добиваме:

$$P(A) = P(H_1) \cdot P(A|H_1) + P(H_2) \cdot P(A|H_2) = 1/2 \cdot 2/3 + 1/2 \cdot 2/4 = 7/12$$

Значи, веројатноста да се избере сиво глувче е 7/12.

б) Ако глувчето е сиво, веројатноста дека тоа е од првиот кафез ја определуваме со помош на Баесовите формули:

$$P(H_1 \mid A) = \frac{P(H_1)P(A \mid H_1)}{P(A)} = \frac{1/2 \cdot 2/3}{7/12} = \frac{4}{7}.$$

Прим

Пример 12

• 50% од клиентите го враќаат кредитот. Од тие кои го враќаат, 40% имаат универзитетско образование. 10% од тие кои не го враќаат имаат универзитетско образование. Колку е веројатноста дека случајно избран корисник на кредит кој има универзитетско образование ќе го врати кредитот?

Решение:

• Ги дефинираме следните случајни настани:

 H_1 : клиентот го враќа кредитот

 H_2 : клиентот не го враќа кредитот

С: клиентот има универзитетско образование

$$P(H_1) = 0.5$$
 $P(C | H_1) = 0.4$ $P(C | H_2) = 0.1$

Треба да определиме $P(H_1 \mid C) = ?$

I

Пример 12

 H_1 : клиентот го враќа кредитот

 H_2 : клиентот не го враќа кредитот

C: клиентот има универзитетско образование

Во задачата дадени се: $P(H_1) = 0.5$, $P(C \mid H_1) = 0.4$, $P(C \mid H_2) = 0.1$.

$$P(C) = P(H_1)P(C \mid H_1) + P(H_2)P(C \mid H_2)$$
$$= 0.5 \cdot 0.4 + 0.5 \cdot 0.1$$
$$= 0.25$$

Сега,

$$P(H_1 \mid C) = \frac{P(H_1)P(C \mid H_1)}{P(C)}$$
$$= \frac{0.5 \cdot 0.4}{0.25} = 0.8$$