Cyclistic Case Study Oct21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for October 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Oct21 <- read_csv("C:/Users/theby/Documents/202110-divvy-tripdata.csv")
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(Oct21)

[1] 631226

13

```
colnames (Oct21)
   [1] "ride id"
                              "rideable_type"
                                                    "started at"
   [4] "ended at"
                                                    "start_station_id"
                              "start station name"
##
   [7] "end station name"
                                                    "start_lat'
                              "end station id"
## [10] "start lng"
                              "end lat"
                                                    "end lng"
## [13] "member_casual"
nrow(Oct21)
```

```
## [1] 631226
```

```
dim(Oct21)
```

```
head(Oct21)
```

```
## # A tibble: 6 × 13
##
                     ridea…¹ started at
     ride id
                                                   ended at
                                                                         start...2 start...3
##
     <chr>
                     <chr>
                            <dttm>
                                                   <dttm>
                                                                                 <chr>
                                                                         <chr>
## 1 620BC6107255B... electr.. 2021-10-22 12:46:42 2021-10-22 12:49:50 Kingsb.. KA1503...
## 2 4471C70731AB2... electr... 2021-10-21 09:12:37 2021-10-21 09:14:14 <NA>
## 3 26CA69D43D15E... electr... 2021-10-16 16:28:39 2021-10-16 16:36:26 <NA>
                                                                                  <NA>
## 4 362947F0437E1... electr... 2021-10-16 16:17:48 2021-10-16 16:19:03 <NA>
## 5 BB731DE2F2EC5... electr... 2021-10-20 23:17:54 2021-10-20 23:26:10 <NA>
                                                                                  <NA>
## 6 7176307BBC097... electr... 2021-10-21 16:57:37 2021-10-21 17:11:58 <NA>
                                                                                  <NA>
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

```
tail(Oct21)
```

```
## # A tibble: 6 × 13
##
   ride id
                  ridea…¹ started at
                                                                       start...2 start...3
                                                  ended at
##
                     <chr> <dttm>
                                                  <dttm>
## 1 817A854B4429A... classi... 2021-10-15 18:01:23 2021-10-15 18:09:41 Frankl... TA1305...
## 2 BA077FDD42DAB... classi... 2021-10-14 21:45:05 2021-10-14 22:07:25 Frankl... 13017
## 3 B7D99254E798A... classi... 2021-10-02 15:28:28 2021-10-02 15:51:02 Street... 13022
## 4 BCCFD66DA4664... electr... 2021-10-08 16:47:10 2021-10-08 16:52:43 Calume... 15546
## 5 623E0F6F50CDD... classi... 2021-10-08 07:49:47 2021-10-08 07:55:15 Calume... 15546
## 6 83FA6AC52B7B7... classi... 2021-10-02 12:55:45 2021-10-02 13:21:10 Winthr... TA1308...
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## # start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member_casual <chr>, and abbreviated variable names <sup>1</sup>rideable_type,
## #
       2start_station_name, 3start_station_id
```

summary(Oct21)

```
ride id
                      rideable type
                                          started at
                                        Min. :2021-10-01 00:00:09.00
##
   Length:631226
                      Length:631226
                      Class :character
                                        1st Ou.:2021-10-08 12:25:58.25
##
   Class :character
   Mode :character
                      Mode :character
                                        Median :2021-10-15 05:31:57.00
##
                                        Mean :2021-10-15 08:38:27.35
##
                                         3rd Qu.:2021-10-21 19:25:00.75
##
                                        Max. :2021-10-31 23:59:49.00
##
##
      ended at
                                    start_station_name start_station_id
##
   Min. :2021-10-01 00:03:11.00
                                    Length: 631226
                                                      Length:631226
   1st Qu.:2021-10-08 12:46:34.00
                                    Class :character
                                                      Class :character
##
   Median :2021-10-15 05:56:26.50
                                   Mode :character Mode :character
##
   Mean :2021-10-15 08:57:32.92
##
##
   3rd Qu.:2021-10-21 19:37:25.00
   Max. :2021-11-03 21:45:48.00
##
##
                                          start lat
                                                          start lng
##
   end station name end station id
##
   Length:631226
                      Length:631226
                                        Min. :41.65 Min. :-87.83
   Class :character Class :character
                                        1st Qu.:41.88
                                                        1st Qu.:-87.66
##
##
   Mode :character
                     Mode :character
                                        Median :41.90
                                                        Median :-87.64
##
                                         Mean :41.90
                                                        Mean :-87.65
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                        Max. :42.07
                                                        Max. :-87.52
##
##
      end_lat
                      end_lng
                                    member_casual
   Min. :41.60
                   Min. :-87.96
##
                                    Length: 631226
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
##
   Median :41.90
                   Median :-87.64
                                    Mode :character
                   Mean :-87.65
   Mean :41.90
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.13
                   Max. :-87.52
##
  NA's
         :484
                   NA's
                         :484
```

str(Oct21)

```
## spc_tbl_[631,226 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:631226] "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E15
## $ ride_id
14" ...
                       : chr [1:631226] "electric bike" "electric bike" "electric bike" ...
## $ rideable_type
                       : POSIXct[1:631226], format: "2021-10-22 12:46:42" "2021-10-21 09:12:37" ...
##
   $ started at
                       : POSIXct[1:631226], format: "2021-10-22 12:49:50" "2021-10-21 09:14:14" ...
##
   $ ended at
##
   $ start station name: chr [1:631226] "Kingsbury St & Kinzie St" NA NA NA ...
## $ start_station_id : chr [1:631226] "KA1503000043" NA NA NA ...
## $ end station name : chr [1:631226] NA NA NA NA ...
## $ end station id : chr [1:631226] NA NA NA NA ...
## $ start lat
                     : num [1:631226] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:631226] -87.6 -87.7 -87.7 -87.7 -87.7 ...
##
   $ end_lat
                       : num [1:631226] 41.9 41.9 41.9 41.9 ...
##
   $ end_lng
                       : num [1:631226] -87.6 -87.7 -87.7 -87.7 -87.7 ...
                      : chr [1:631226] "member" "member" "member" "member" ...
##
   $ member casual
    - attr(*, "spec")=
##
##
    .. cols(
##
         ride_id = col_character(),
     . .
         rideable_type = col_character(),
##
     . .
         started_at = col_datetime(format = ""),
##
     . .
##
         ended_at = col_datetime(format = ""),
     . .
##
         start station name = col character(),
    . .
##
         start station id = col character(),
    . .
##
         end_station_name = col_character(),
     . .
##
         end station id = col character(),
     . .
##
         start lat = col double(),
     . .
##
         start lng = col double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
    . .
##
         member_casual = col_character()
    . .
##
    ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Oct21$date <- as.Date(Oct21$started_at)
Oct21$month <- format(as.Date(Oct21$date), "%m")
Oct21$month <- month.name[as.numeric(Oct21$month)]
Oct21$day <- format(as.Date(Oct21$date), "%d")
Oct21$year <- format(as.Date(Oct21$date), "%Y")
Oct21$year <- format(as.Date(Oct21$date), "%A")
Oct21$ride_length <- difftime(Oct21$ended_at,Oct21$started_at)</pre>
```

Convert *ride_length* column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Oct21$ride_length)
## [1] FALSE
```

Recheck ride length data type.

```
Oct21$ride_length <- as.numeric(as.character(Oct21$ride_length))
is.numeric(Oct21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
0ct21 <- na.omit(0ct21)</pre>
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Oct21 <- subset(Oct21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 60 seconds or 1 minute.

```
0ct21 <- subset (0ct21, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Oct21$ride_length)
 ## [1] 1074.623
 median(Oct21$ride_length)
 ## [1] 646
 max(Oct21$ride_length)
 ## [1] 2442301
 min(Oct21$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(Oct21$ride length)
 ##
       Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                 Max.
 ##
                380
                         646
                                1075
                                         1141 2442301
Compare the members and casual users
 aggregate(Oct21$ride_length ~ Oct21$member_casual, FUN = mean)
      Oct21$member_casual Oct21$ride_length
 ##
 ## 1
                   casual
                                   1593.6891
                                    732.4198
 ## 2
                   member
 aggregate(Oct21$ride_length ~ Oct21$member_casual, FUN = median)
 ##
      Oct21$member_casual Oct21$ride_length
 ## 1
                   casual
                                          871
 ## 2
                   member
                                          539
 aggregate(Oct21$ride_length ~ Oct21$member_casual, FUN = max)
      Oct21$member_casual Oct21$ride_length
 ## 1
                   casual
                                      2442301
 ## 2
                                       84908
                   member
 aggregate(Oct21$ride_length ~ Oct21$member_casual, FUN = min)
 ##
      Oct21$member_casual Oct21$ride_length
 ## 1
                   casual
 ## 2
                   member
Aggregate the average ride length by each day of the week for members and users.
```

aggregate(Oct21\$ride length ~ Oct21\$member casual + Oct21\$day of week, FUN = mean)

```
##
      Oct21$member_casual Oct21$day_of_week Oct21$ride_length
## 1
                                                  1480.4697
                                    Friday
                   casual
## 2
                   member
                                     Friday
                                                    711.4170
## 3
                   casual
                                    Monday
                                                    1516.4396
## 4
                                    Monday
                                                    682.3499
                   member
## 5
                                                    1779.1088
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                    830.7100
## 7
                                                    1913.3562
                   casual
                                    Sunday
## 8
                   member
                                     Sunday
                                                    835.7162
## 9
                   casual
                                   Thursday
                                                   1119.6092
## 10
                   member
                                  Thursday
                                                    657.7660
## 11
                   casual
                                   Tuesday
                                                    1354.3535
## 12
                   member
                                    Tuesday
                                                     692.7858
## 13
                   casual
                                  Wednesday
                                                    1251.5777
## 14
                                                    699.7256
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
Oct21$day_of_week <- ordered(Oct21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
 x <- aggregate(0ct21\$ride\_length \sim 0ct21\$member\_casual + 0ct21\$day\_of\_week, \ FUN = mean)   head(x)
```

```
##
     Oct21$member_casual Oct21$day_of_week Oct21$ride_length
## 1
                  casual
                                    Sunday
                                                    1913.3562
## 2
                  member
                                     Sunday
                                                     835.7162
## 3
                  casual
                                     Monday
                                                    1516.4396
## 4
                  member
                                    Monday
                                                     682.3499
## 5
                                   Tuesday
                                                    1354.3535
                  casual
                  member
                                   Tuesday
                                                     692.7858
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
    member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                      39882
                                                        1913.
                         1
                                      15423
## 2 casual
                         2
                                                        1516.
## 3 casual
                         3
                                      18862
                                                       1354.
## 4 casual
                         4
                                      18435
                                                       1252.
## 5 casual
                                      14941
                                                        1120.
## 6 casual
                         6
                                      28282
                                                        1480.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Oct21$member_casual)
```

```
##
## casual member
## 187324 284140
```

```
table(Oct21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 311299 22552 137613
```

```
table(Oct21$day_of_week)
```

```
##
      Sunday
                                               Thursday
                                                            Friday
##
                 Monday
                           Tuesday Wednesday
                                                                    Saturday
##
       76082
                  47276
                             63434
                                       62656
                                                  50065
                                                             73292
                                                                        98659
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

```
0ct21 %>%
  mutate(day_of_week) %>%
  group_by(member_casual,day_of_week) %>%
  summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge")+
labs(x = "Days of Week",
     y= "Number of Rides",
     title= "Days of the Week")
```

Days of the Week

Plot the duration of the ride by user type during the week.

```
0ct21 %>%
  mutate(day_of_week) %>%
  group_by(member_casual, day_of_week) %>%
  summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = average_duration, fill = member_casual)) +
  geom_col(position = "dodge") +
  labs(x = "Days of Week",
       y= "Average Duration in Seconds",
       title= "Days of the Week vs Average Duration")
```


Create new dataframe for plots for weekday trends vs weekend trends.

Monday

Tuesday Wednesday Thursday

Days of Week

```
mc<- as.data.frame(table(Oct21$day_of_week,Oct21$member_casual))</pre>
```

Saturday

Friday

Rename columns

Sunday

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
                        casual 39882
          Sunday
## 2
          Monday
                        casual 15423
## 3
         Tuesday
                        casual 18862
## 4
       Wednesday
                        casual 18435
## 5
        Thursday
                        casual 14941
## 6
          Friday
                        casual 28282
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends 50000 40000 10000 Sunday vs Saturday Sunday vs Saturday Sunday vs Saturday

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(0ct21$rideable_type,0ct21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
## 1 classic bike
                         casual 104212
## 2
      docked bike
                         casual 22552
## 3 electric_bike
                         casual 60560
## 4 classic bike
                         member 207087
## 5
      docked bike
                         member
## 6 electric_bike
                                 77053
                         member
```

Plot for bike user vs bike type.

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Oct21, "Oct21.csv")