Final: STAT 570

Philip Pham

December 9, 2018

Consider the failure time data in Table 1.

1. We describe a simple model for these data. Let p (0) denote the weekly failure probability, i.e., the probability of failure during any week, and <math>T the random variable describing the week at which failure occurred. Then T may be modeled as a geometric random variable:

$$\mathbb{P}(T = t \mid p) = \begin{cases} p(1-p)^{t-1}, & t = 1, 2, ...; \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

Let Y_t represent the number of components that fail in week t, t = 1, 2, ..., N, and Y_{N+1} the number of components that have not failed by week N.

(a) Show that the likelihood function is

$$L(p) = \left[(1-p)^N \right]^{Y_{N+1}} \prod_{t=1}^N \left[p (1-p)^{t-1} \right]^{Y_t}.$$
 (2)

Solution: An individual component's failure week has distribution Geometric (p). The probability that a single component fails in week t is the probability that it survived t-1 weeks and failed on week t, which is $p(1-p)^{t-1}$ from Equation 1. There are Y_t such components, which gives us the factors for $t=1,2,\ldots,N$.

The probability that a component fails at a later date is

$$(1-p)^N \sum_{k=1}^{\infty} p (1-p)^{k-1} = (1-p)^N \frac{p}{1-(1-p)} = (1-p)^N,$$

which gives us the remaining factor. There are Y_{N+1} remaining components, so

$$L(p) = \left\{ \prod_{t=1}^{N} \left[p (1-p)^{t-1} \right]^{Y_t} \right\} \times \left[(1-p)^N \right]^{Y_{N+1}}.$$

(b) Find an expression for the MLE \hat{p} .

Solution: The score function is

$$S(p) = \frac{\partial}{\partial p} \log L(p)$$

$$= \frac{\partial}{\partial p} \left[NY_{N+1} \log (1-p) + \sum_{t=1}^{N} Y_t (\log p + (t-1) \log (1-p)) \right]$$

$$= -\frac{NY_{N+1}}{1-p} + \sum_{t=1}^{N} Y_t \left(\frac{1}{p} - \frac{t-1}{1-p} \right) = -\frac{NY_{N+1}}{1-p} + \sum_{t=1}^{N} Y_t \frac{1-pt}{p(1-p)}. \quad (3)$$

Solving for $S(\hat{p}) = 0$, we find the MLE:

$$\hat{p}\left(NY_{N+1} + \sum_{t=1}^{N} tY_{t}\right) = \sum_{t=1}^{N} Y_{t} \implies \boxed{\hat{p} = \frac{\sum_{t=1}^{N} Y_{t}}{NY_{N+1} + \sum_{t=1}^{N} tY_{t}}}.$$
(4)

(c) Find the form of the observed information and hence the asymptotic variance of the maximum likelihood estimate (MLE).

Solution: Using Equation 3, the expected observed information is

$$I(p) = \mathbb{E}\left[-\frac{\partial}{\partial p}S(p) \mid p\right]$$

$$= \frac{N\mathbb{E}\left[Y_{N+1} \mid p\right]}{(1-p)^2} + \sum_{t=1}^{N} \mathbb{E}\left[Y_t \mid p\right] \left(\frac{1}{p^2} + \frac{t-1}{(1-p)^2}\right)$$

$$= n\frac{N(1-p)^N}{(1-p)^2} + np\sum_{t=1}^{N} (1-p)^{t-1} \left(\frac{1}{p^2} + \frac{t-1}{(1-p)^2}\right)$$

$$= n\left[\frac{(1-p)^N}{(1-p)^2} + \frac{1-(1-p)^N}{p^2} + \frac{(1-p)-(1-p)^N}{p(1-p)^2}\right]$$

$$= n\left[\frac{1-(1-p)^N}{p^2(1-p)}, (5)\right]$$

where $n = Y_{N+1} + \sum_{t=1}^{N} Y_t$.

From Equation 5, the asymptotic variance of \hat{p} is

$$\operatorname{var}(\hat{p}) \approx \operatorname{var}(\hat{p}) = I(\hat{p})^{-1} = \frac{1}{n} \times \frac{\hat{p}^2 (1 - \hat{p})}{1 - (1 - \hat{p})^N}$$
(6)

by asymptotic normality of the MLE.

(d) For the data in Table 1, calculate the MLE, \hat{p} . the variance of \hat{p} , and an asymptotic 95% confidence interval for p.

Solution: The MLE can be calculated with Equation 4 to be $\hat{p} = 0.354717$. The variance can be found with Equation 6 to be $\hat{var}(\hat{p}) = 0.00016828$. If Φ is the cumulative distribution function for a standard normal, we can use asymptotic normality to find the 95% confidence interval as

$$\left[\hat{p} + \Phi^{-1}(0.025)\sqrt{\hat{\text{var}}(\hat{p})}, \hat{p} + \Phi^{-1}(0.975)\sqrt{\hat{\text{var}}(\hat{p})}\right] = \left[0.32929, 0.38014\right].$$

(e) We now consider a Bayesian analysis. The conjugate prior for p is a beta distribution, Beta (a, b). State the form of the posterior with this choice. Give the form of the posterior mean and write as a weighted combination of the MLE and the prior mean.

Solution: By Bayes' rule, we know the posterior density is proportional to the likelihood times the prior. From Equation 2, we'll have

$$L(p) \times \left[p^{a-1} (1-p)^{b-1} \right] = p^{a-1} (1-p)^{b+NY_{N+1}-1} \prod_{t=1}^{N} \left[p (1-p)^{t-1} \right]^{Y_t}$$
$$= p^{a+\sum_{t=1}^{N} Y_t - 1} (1-p)^{b+\sum_{t=1}^{N} (t-1)Y_t + NY_{N+1} - 1}.$$

whose form we recognize as the integrand of beta function, so the posterior also has beta distribution, that is,

$$p \mid Y_1, Y_2, \dots, Y_{N+1} \sim \text{Beta}\left(a + \sum_{t=1}^{N} Y_t, b + \sum_{t=1}^{N} (t-1)Y_t + NY_{N+1}\right)$$
$$= \frac{\Gamma(a'+b')}{\Gamma(a')\Gamma(b')} p^{a'-1} \left(1 - p\right)^{b'-1}, \tag{7}$$

where $a' = a + \sum_{t=1}^{N} Y_t$ and $b' = b + \sum_{t=1}^{N} (t-1)Y_t + NY_{N+1}$. The posterior mean takes the form

$$\mathbb{E}\left[p \mid Y_1, Y_2, \dots, Y_{N+1}\right] = \frac{a'}{a' + b'}$$

$$= \frac{a + \sum_{t=1}^{N} Y_t}{a + b + \sum_{t=1}^{N} t Y_t + N Y_{N+1}}.$$
(8)

We have that the prior mean is $p_{\text{prior}} = \frac{a}{a+b}$. Equation 8 can be rewritten as

$$\frac{(a+b) p_{\text{prior}} + \left(\sum_{t=1}^{N} tY_t + NY_{N+1}\right) \hat{p}}{a+b+\sum_{t=1}^{N} tY_t + NY_{N+1}},$$
(9)

so the posterior mean is a convex combination of the prior mean and MLE.

(f) Suppose we wish to fix the parameters of the prior, a and b, so that the mean is μ and the prior standard deviation is σ . Obtain expressions for a and b in terms of μ and σ^2 .

Solution: It is well known that the mean and variance of the Beta (a, b) distribution are $\frac{a}{a+b}$ and $\frac{ab}{(a+b)^2(a+b+1)}$, respectively. Solving equations

$$\frac{a}{a+b} = \mu$$

$$\frac{ab}{(a+b)^2(a+b+1)} = \sigma^2,$$

we find that

$$a = \mu \left[\frac{\mu \left(1 - \mu \right)}{\sigma^2} - 1 \right] \tag{10}$$

$$b = (1 - \mu) \left[\frac{\mu (1 - \mu)}{\sigma^2} - 1 \right]. \tag{11}$$

Figure 1: 2,048 samples drawn from the posterior in Equation 13. The red ticks denote the 5%, 50% and 95% quantiles.

(g) For the data in Table 1, assume we wish to have a beta prior with $\mu=0.2$ and $\sigma=0.08$. State the posterior for the prior corresponding to this choice and evaluate the posterior mean. Simulate samples from the posterior distribution. Provide a histogram representation of the posterior distribution and calculate the 5%, 50% and 95% points of the posterior distribution.

Solution: Apply Equations 10 and 11 with $\mu = 0.2$ and $\sigma = 0.08$, we find the prior:

$$p \sim \text{Beta}(4.8, 19.2)$$
. (12)

Using Equation 7, we have find the posterior:

$$p \sim \text{Beta}(474.8, 874.2)$$
. (13)

A histogram of samples drawn from the distribution in Equation 13 can be found in Figure 1. The 5%, 50%, and 95% posterior quantiles are 0.33070873, 0.35189124, and 0.37346975, respectively.

2. (a) A more complex likelihood for these data would assume that the *i*-th component had their own probability p_i , with the p_i 's arising from a distribution $\pi(p)$. Show that

$$\mathbb{P}(T=t) = \mathbb{E}\left[(1-p)^{t-1} \right] - E[(1-p)^t], \tag{14}$$

and

$$\mathbb{P}(T > t) = \mathbb{E}\left[(1 - p)^t\right]. \tag{15}$$

Solution: First let us find the survival function in 15.

$$\mathbb{P}(T > t) = \int_0^1 \mathbb{P}(T > t \mid p) \pi(p) \, dp = \int_0^1 \left[\sum_{s=t+1}^{\infty} p(1-p)^{s-1} \right] \pi(p) \, dp$$

$$= \int_0^1 \left[p \sum_{s=0}^{\infty} (1-p)^s \right] (1-p)^t \pi(p) \, dp$$

$$= \int_0^1 \left[p \times \frac{1}{1-(1-p)} \right] (1-p)^t \pi(p) \, dp = \int_0^1 (1-p)^t \pi(p) \, dp$$

$$= \mathbb{E}\left[(1-p)^t \right],$$

which proves Equation 15.

The probability mass function in Equation 14 follows:

$$\mathbb{P}\left(T=t\right)=\mathbb{P}\left(T>t-1\right)-\mathbb{P}\left(T>t\right)=\mathbb{E}\left[\left(1-p\right)^{t-1}\right]-\mathbb{E}\left[\left(1-p\right)^{t}\right].$$

(b) Obtain expressions for $\mathbb{P}(T = t \mid \alpha, \beta)$ and $\mathbb{P}(T > t \mid \alpha, \beta)$ with $\pi(\cdot)$ taken as the beta distribution, Beta (α, β) .

Solution: These follow from Equations 14 and 15.

$$\mathbb{P}(T > t) = \mathbb{E}\left[(1 - p)^{t}\right] = \sum_{s=t}^{\infty} \mathbb{E}\left[p(1 - p)^{s}\right] \tag{16}$$

$$= \sum_{s=t}^{\infty} \int_{0}^{p} p(1 - p)^{s} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} dp$$

$$= \sum_{s=t}^{\infty} \int_{0}^{p} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha + 1 - 1} (1 - p)^{\beta + s - 1} dp$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \sum_{s=t}^{\infty} \frac{\Gamma(\alpha + 1)\Gamma(\beta + s)}{\Gamma(\alpha + \beta + s + 1)} = \alpha \frac{\Gamma(\alpha + \beta)}{\Gamma(\beta)} \sum_{s=t}^{\infty} \frac{\Gamma(\beta + s)}{\Gamma(\alpha + \beta + s + 1)}$$

$$= 1 - \alpha \frac{\Gamma(\alpha + \beta)}{\Gamma(\beta)} \sum_{s=0}^{t-1} \frac{\Gamma(\beta + s)}{\Gamma(\alpha + \beta + s + 1)}$$

$$= 1 - \frac{1}{B(\alpha, \beta)} \sum_{s=0}^{t-1} B(\alpha + 1, \beta + s) = \frac{B(\alpha, \beta + t)}{B(\alpha, \beta)} = \frac{\Gamma(\alpha + \beta)\Gamma(\beta + t)}{\Gamma(\beta)\Gamma(\alpha + \beta + t)}$$

where B is the beta function, and we know $\mathbb{P}(T > 0) = 1$. Plugging Equation 16 into Equation 14, one obtains

$$\mathbb{P}(T=t) = \frac{B(\alpha+1,\beta+t-1)}{B(\alpha,\beta)} = \alpha \frac{\Gamma(\alpha+\beta)\Gamma(\beta+t-1)}{\Gamma(\beta)\Gamma(\alpha+\beta+t)}$$
(17)

for $t \in \mathbb{N}$.

(c) Using the previous part, write down the likelihood function $L(\alpha, \beta)$ corresponding to data $\{Y_t\}_{t=1}^{N+1}$.

Solution: Our model for T is different, so we can substitute Equations 17 and 16 into Equation 2: we'll have $\mathbb{P}(T=t)$ in place of $p(1-p)^{t-1}$ and $\mathbb{P}(T>N)$

in place of $(1-p)^N$.

$$L(\alpha, \beta) = \left[\mathbb{P}\left(T > N\right)\right]^{Y_{N+1}} \prod_{t=1}^{N} \left[\mathbb{P}\left(T = t\right)\right]^{Y_{t}}$$

$$= \left[\frac{B(\alpha, \beta + N)}{B(\alpha, \beta)}\right]^{Y_{N+1}} \prod_{t=1}^{N} \left[\frac{B(\alpha + 1, \beta + t - 1)}{B(\alpha, \beta)}\right]^{Y_{t}}.$$
(18)

(d) Find the MLEs $\hat{\alpha}$ and $\hat{\beta}$ for the data of Table 1.

Solution: From Equation 18, we can consider the log-likelihood function:

$$l(\alpha, \beta) = \log L(\alpha, \beta)$$

$$= -n \log B(\alpha, \beta) + Y_{N+1} \log B(\alpha, \beta + N) + \sum_{t=1}^{N} Y_t \log B(\alpha + 1, \beta + t - 1).$$
(19)

The score function is

$$S(\alpha, \beta) = \nabla l(\alpha, \beta) = \begin{pmatrix} S_{\alpha}(\alpha, \beta) \\ S_{\beta}(\alpha, \beta) \end{pmatrix}$$

$$S_{\alpha}(\alpha, \beta) = -n \left[\psi(\alpha) - \psi(\alpha + \beta) \right] + Y_{N+1} \left[\psi(\alpha) - \psi(\alpha + \beta + N) \right]$$

$$+ \sum_{t=1}^{N} Y_{t} \left[\psi(\alpha + 1) - \psi(\alpha + \beta + t) \right],$$

$$S_{\beta}(\alpha, \beta) = -n \left[\psi(\beta) - \psi(\alpha + \beta) \right] + Y_{N+1} \left[\psi(\beta + N) - \psi(\alpha + \beta + N) \right]$$

$$+ \sum_{t=1}^{N} Y_{t} \left[\psi(\beta + t - 1) - \psi(\alpha + \beta + t) \right],$$

$$(20)$$

p where $\psi\left(x\right)=\Gamma'\left(x\right)/\Gamma\left(x\right)$ is the digamma function. Numerically solving Equation 20 for $S\left(\hat{\alpha},\hat{\beta}\right)=\mathbf{0}$, I obtain $\left[\hat{\alpha}=1.413336\right]$ and $\left[\hat{\beta}=1.38001102\right]$ for the MLEs.

3. (a) Show that the likelihood in Equation 2 can be written as a product of binomial distributions.

Solution: We can model the data as taking N draws from a binomial distribution. Following each draw, we discard the failures and make another draw if t < N:

$$L(p) = \prod_{t=1}^{N} \left[\binom{n - \sum_{s=1}^{t-1} Y_s}{Y_t} p^{Y_t} (1-p)^{n - \sum_{s=1}^{t} Y_s} \right]$$

$$= \prod_{t=1}^{N} \left[\binom{\sum_{s=t}^{N+1} Y_s}{Y_t} p^{Y_t} (1-p)^{\sum_{s=t+1}^{N+1} Y_s} \right],$$
(21)

which is equivlaent to Equation 2 up to a constant of proportionality, In Equation 21, we have a product of binomial probability mass functions, where $Y_t \mid Y_1, \dots, Y_{t-1} \sim \text{Binomial}\left(n - \sum_{s=1}^{t-1} Y_s, p\right)$.

(b) Fit the binomial model, and show that the estimate of the probability is identical to that under the previous MLE analysis. Obtain a 95% asymptotic confidence interval for p.

Solution: Since Equation 21 only differs from Equation 2 by a constant of proporitionality, the score function is also Equation 3. Thus, the MLE is same $\hat{p} = 0.354717$.

The observed information will also be the same. To calculate the expected observed information, we can use the law of total expectation and strong induction. For the base case $\mathbb{E}[Y_1] = np$. In general, $\mathbb{E}[Y_t] = np(1-p)^{t-1}$ for t = 1, 2, ..., N. For t > 1, we have

$$\mathbb{E}[Y_t] = \mathbb{E}[\mathbb{E}[Y_t \mid Y_1, \dots, Y_{t-1}]] = \mathbb{E}\left[p\left(n - \sum_{s=1}^{t-1} Y_s\right)\right]$$

$$= p\left(n - \sum_{s=1}^{t-1} \mathbb{E}[Y_s]\right) = p\left(n - \sum_{s=1}^{t-1} np(1-p)^{s-1}\right)$$

$$= np\left(1 - p\sum_{s=0}^{t-2} (1-p)^r\right) = np\left(1 - p\frac{1 - (1-p)^{t-1}}{p}\right)$$

$$= np(1-p)^{t-1}, \tag{22}$$

which is same as it was under the geometric model. For Y_{N+1} , we have

$$\mathbb{E}[Y_{N+1}] = \mathbb{E}[\mathbb{E}[Y_{N+1} \mid Y_1, Y_2, \dots, Y_N]] = \mathbb{E}\left[n - \sum_{t=1}^{N} Y_t\right]$$

$$= n - \sum_{t=1}^{N} \mathbb{E}[Y_t] = n - np \sum_{t=1}^{N} (1 - p)^{t-1}$$

$$= n - np \frac{1 - (1 - p)^N}{p} = (1 - p)^N, \qquad (23)$$

which is also the same as under the geometric model. Therefore, the expected observed information is the same as Equation 5.

Then, the asymptotic 95% confidence interval for p is also [0.32929, 0.38014].

(c) Obtain Pearson residuals and comment on the fit of the model, using any plots you feel are appropriate.

Solution:

(d) Fit a binomial model you feel is appropriate.

Solution:

Time (weeks), i	Failures, y_i	Temperature, x_i
1	210	24.0
2	108	26.0
3	58	24.0
4	40	26.0
5	17	25.0
6	10	22.0
7	7	23.0
8	6	20.0
9	5	21.0
10	4	18.0
11	2	17.0
12	3	20.0
> 12	15	

Table 1: Time until failure for n=485 components, along with average weekly temperature.