TLANG – Décidabilité et Complexité

Didier Lime

École Centrale de Nantes – LS2N

Année 2017 - 2018

► Algorithme : Méthodes de résolution automatique d'un problème ;

- Algorithme : Méthodes de résolution automatique d'un problème ;
- Pour un problème donné, plusieurs algorithmes de résolution sont possibles;

- Algorithme : Méthodes de résolution automatique d'un problème ;
- Pour un problème donné, plusieurs algorithmes de résolution sont possibles;
- Comment comparer ces solutions?

- Algorithme : Méthodes de résolution automatique d'un problème ;
- Pour un problème donné, plusieurs algorithmes de résolution sont possibles;
- Comment comparer ces solutions?
- ▶ Peut-on en déduire la difficulté du problème?

- Algorithme : Méthodes de résolution automatique d'un problème ;
- Pour un problème donné, plusieurs algorithmes de résolution sont possibles;
- Comment comparer ces solutions?
- Peut-on en déduire la difficulté du problème?
- Peut-on alors en déduire une hiérarchie de problèmes?

Plan

Introduction

Problèmes algorithmiques

Algorithmes et Machines de Turing

Algorithmes et décidabilité

Automates finis

Machines de Turing

Complexité

Conclusion

On définit un problème algorithmique par :

- On définit un problème algorithmique par :
 - un ensemble d'entrées : les données ;

- On définit un problème algorithmique par :
 - un ensemble d'entrées : les données ;
 - une question (si possible formalisée);

- On définit un problème algorithmique par :
 - un ensemble d'entrées : les données ;
 - une question (si possible formalisée);
 - un ensemble de sorties répondant à la question : les résultats.

- On définit un problème algorithmique par :
 - un ensemble d'entrées : les données ;
 - une question (si possible formalisée);
 - un ensemble de sorties répondant à la question : les résultats.
- ► Problème d'optimisation : le résultat doit être optimal selon une certaine mesure :

- On définit un problème algorithmique par :
 - un ensemble d'entrées : les données ;
 - une question (si possible formalisée);
 - un ensemble de sorties répondant à la question : les résultats.
- ► Problème d'optimisation : le résultat doit être optimal selon une certaine mesure ;
- ▶ Problème de décision : le résultat est « oui » ou « non ».

► Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;

- ► Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs **représentations** p.ex. entiers et bases;
- ► Ces représentations correspondent à des mots sur un alphabet fini

- ► Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;
- Ces représentations correspondent à des mots sur un alphabet fini
 - ▶ booléens {0,1};

- ► Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;
- ► Ces représentations correspondent à des mots sur un alphabet fini
 - ▶ booléens {0,1};
 - entiers $\{0, 1, ..., 9\}$;

- ► Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;
- ► Ces représentations correspondent à des mots sur un alphabet fini
 - ▶ booléens {0,1};
 - entiers $\{0, 1, ..., 9\}$;
 - rationnels {0,1,...,9, /};

- Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;
- ► Ces représentations correspondent à des mots sur un alphabet fini

```
▶ booléens {0, 1};
```

- entiers {0, 1, ..., 9};
- ▶ rationnels {0, 1, ..., 9, /};
- ightharpoonup caractères $\{a, \ldots, z\}$;

- Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;
- ► Ces représentations correspondent à des mots sur un alphabet fini

```
▶ booléens {0,1};
```

- ▶ entiers {0, 1, ..., 9};
- rationnels {0, 1, ..., 9, /};
- ▶ caractères { a, . . . , z } ;
- réels : approximation (rationnels) ou purement symbolique $\{0,1,\ldots,9,\pi,e,\sqrt{2}\ldots\}$.

- Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;
- Ces représentations correspondent à des mots sur un alphabet fini

```
booléens {0, 1};
entiers {0, 1, ..., 9};
rationnels {0, 1, ..., 9, /};
```

- ▶ caractères { a, . . . , z } ;
- réels : approximation (rationnels) ou purement symbolique $\{0, 1, \dots, 9, \pi, e, \sqrt{2} \dots\}.$

- Tout algorithme opère non pas sur les objets eux-mêmes mais sur leurs représentations p.ex. entiers et bases;
- Ces représentations correspondent à des mots sur un alphabet fini

```
▶ booléens \{0,1\};

▶ entiers \{0,1,\ldots,9\};

▶ rationnels \{0,1,\ldots,9,/\};

▶ caractères \{a,\ldots,z\};

▶ réels : approximation (rationnels) ou purement symbolique \{0,1,\ldots,9,\pi,e,\sqrt{2}\ldots\}.

▶ ...
```

On peut donc se restreindre à des entrées et sorties sous forme de mots (finis) sur <u>un alphabet fini.</u>

➤ On peut ramener des problèmes généraux à des problèmes de décision (mais parfois un nombre infini de tels problèmes) :

On peut ramener des problèmes généraux à des problèmes de décision (mais parfois un nombre infini de tels problèmes) :

Taille du plus court chemin (Optimisation)

Entrées: Un graphe pondéré G de taille n. Deux nœuds u et v. **Résultat**: La taille du plus court chemin allant de u à v dans G.

On peut ramener des problèmes généraux à des problèmes de décision (mais parfois un nombre infini de tels problèmes) :

Taille du plus court chemin (Optimisation)

Entrées: Un graphe pondéré G de taille n. Deux nœuds u et v. **Résultat**: La taille du plus court chemin allant de u à v dans G.

Taille du plus court chemin (Décision)

Entrées: Un graphe pondéré G de taille n. Deux nœuds u et v.

Résultat: Existe-t-il un chemin allant de u à v en moins de n arêtes?

On peut ramener des problèmes généraux à des problèmes de décision (mais parfois un nombre infini de tels problèmes) :

Taille du plus court chemin (Optimisation)

Entrées: Un graphe pondéré G de taille n. Deux nœuds u et v. **Résultat**: La taille du plus court chemin allant de u à v dans G.

Taille du plus court chemin (Décision)

Entrées: Un graphe pondéré G de taille n. Deux nœuds u et v.

Résultat: Existe-t-il un chemin allant de u à v en moins de n arêtes?

Addition (Décision)

Entrées: Trois entiers relatifs a, b et c.

Résultat: c est-il la somme de a et b?

Factorisation

Entrées: Un entier *a*.

Résultat: La liste de ses facteurs premiers.

Factorisation

Entrées: Un entier *a*.

Résultat: La liste de ses facteurs premiers.

Factorisation (Décision)??

Entrées: Un entier a. Une liste d'entiers premiers $(p_i)_i$ inférieurs à a.

Factorisation

Entrées: Un entier *a*.

Résultat: La liste de ses facteurs premiers.

Factorisation (Décision)??

Entrées: Un entier a. Une liste d'entiers premiers $(p_i)_i$ inférieurs à a.

Résultat: Les p_i sont-ils les facteurs premiers de a?

Le problème de décision se résoud facilement par le calcul de $\prod_i p_i$;

Factorisation

Entrées: Un entier a.

Résultat: La liste de ses facteurs premiers.

Factorisation (Décision)??

Entrées: Un entier a. Une liste d'entiers premiers $(p_i)_i$ inférieurs à a.

- Le problème de décision se résoud facilement par le calcul de $\prod_i p_i$;
- Le problème originel est bien plus compliqué! (principe de la cryptographie asymétrique);

Factorisation

Entrées: Un entier a.

Résultat: La liste de ses facteurs premiers.

Factorisation (Décision)??

Entrées: Un entier a. Une liste d'entiers premiers $(p_i)_i$ inférieurs à a.

- Le problème de décision se résoud facilement par le calcul de $\prod_i p_i$;
- ▶ Le problème originel est bien plus compliqué! (principe de la cryptographie asymétrique);
- ► Mais on peut résoudre le problème originel à l'aide du problème de décision.

Factorisation

Entrées: Un entier a.

Résultat: La liste de ses facteurs premiers.

Factorisation (Décision)??

Entrées: Un entier a. Une liste d'entiers premiers $(p_i)_i$ inférieurs à a.

- Le problème de décision se résoud facilement par le calcul de $\prod_i p_i$;
- ▶ Le problème originel est bien plus compliqué! (principe de la cryptographie asymétrique);
- ► Mais on peut résoudre le problème originel à l'aide du problème de décision. Comment?

Factorisation

Entrées: Un entier a.

Résultat: La liste de ses facteurs premiers.

Factorisation (Décision)??

Entrées: Un entier a. Une liste d'entiers premiers $(p_i)_i$ inférieurs à a.

- Le problème de décision se résoud facilement par le calcul de $\prod_i p_i$;
- Le problème originel est bien plus compliqué! (principe de la cryptographie asymétrique);
- Mais on peut résoudre le problème originel à l'aide du problème de décision. Comment? il y a un nombre fini de listes d'entiers premiers possibles.

Les problèmes de décision sont d'un intérêt tout particulier

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - ▶ Ont tous le même type de résultat (facilite les mises en relation);

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - Ont tous le même type de résultat (facilite les mises en relation);
 - ► Se **formalisent** bien.

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - Ont tous le même type de résultat (facilite les mises en relation);
 - Se formalisent bien.
- ► On peut exprimer tous les problèmes de décision comme un problème d'appartenance à un ensemble :

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - Ont tous le même type de résultat (facilite les mises en relation);
 - Se formalisent bien.
- ➤ On peut exprimer tous les problèmes de décision comme un problème d'appartenance à un ensemble :
 - \triangleright soit \mathcal{P} un problème de décision;

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - Ont tous le même type de résultat (facilite les mises en relation);
 - Se formalisent bien.
- ► On peut exprimer tous les problèmes de décision comme un problème d'appartenance à un ensemble :
 - \triangleright soit \mathcal{P} un problème de décision;
 - ▶ soit X l'ensemble des entrées telles que la réponse est « oui » ;

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - Ont tous le même type de résultat (facilite les mises en relation);
 - Se formalisent bien.
- ► On peut exprimer tous les problèmes de décision comme un problème d'appartenance à un ensemble :
 - \triangleright soit \mathcal{P} un problème de décision;
 - ▶ soit X l'ensemble des entrées telles que la réponse est « oui » ;
 - ightharpoonup alors le problème \mathcal{P}' suivant est équivalent à \mathcal{P} :

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - Ont tous le même type de résultat (facilite les mises en relation);
 - Se formalisent bien.
- ► On peut exprimer tous les problèmes de décision comme un problème d'appartenance à un ensemble :
 - \triangleright soit \mathcal{P} un problème de décision;
 - ▶ soit X l'ensemble des entrées telles que la réponse est « oui » ;
 - ightharpoonup alors le problème \mathcal{P}' suivant est équivalent à \mathcal{P} :

\mathcal{P}'

Entrées: x

Résultat: x appartient-il à X?

- Les problèmes de décision sont d'un intérêt tout particulier
 - Plus simples;
 - Ont tous le même type de résultat (facilite les mises en relation);
 - Se formalisent bien.
- ➤ On peut exprimer tous les problèmes de décision comme un problème d'appartenance à un ensemble :
 - soit P un problème de décision;
 - ▶ soit X l'ensemble des entrées telles que la réponse est « oui » ;
 - lacktriangle alors le problème \mathcal{P}' suivant est équivalent à \mathcal{P} :

\mathcal{P}'

Entrées: x

Résultat: x appartient-il à X?

▶ On peut donc naturellement_confondre \mathcal{P} et X.

Plan

Introduction

Problèmes algorithmiques

Algorithmes et Machines de Turing

Algorithmes et décidabilité

Automates finis

Machines de Turing

Complexité

Conclusion

Soit $\mathcal P$ un problème algorithmique. On encode les entrées sur l'alphabet A, les sorties sur l'alphabet B.

▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables ;

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables ;
- ▶ Une valuation sur X est appelée configuration. \mathcal{C} est l'ensemble des configurations sur X;

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables ;
- ▶ Une valuation sur X est appelée configuration. \mathcal{C} est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :

- Soit $X = \{x_1, x_2, \ldots\}$ un ensemble de variables;
- ▶ Une valuation sur X est appelée configuration. \mathcal{C} est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :
 - $\mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée:

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables ;
- ▶ Une valuation sur X est appelée configuration. \mathcal{C} est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :
 - $\mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - $ightharpoonup \mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur *X* est appelée configuration. *C* est l'ensemble des configurations sur *X* ;
- On définit un algorithme par la donnée de trois fonctions :
 - $\mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - ▶ $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to \mathcal{B}^*$ est la fonction de sortie;

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur X est appelée configuration. C est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :
 - $\mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - ▶ $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to B^*$ est la fonction de sortie;
- L'exécution de l'algorithme sur l'entrée w est la suite :

$$\mathcal{E}(w), \mathcal{T}(\mathcal{E}(w)), \mathcal{T}(\mathcal{T}(\mathcal{E})), \dots$$

Soit \mathcal{P} un problème algorithmique. On **encode** les entrées sur l'alphabet A, les sorties sur l'alphabet B.

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur *X* est appelée configuration. *C* est l'ensemble des configurations sur *X* ;
- On définit un algorithme par la donnée de trois fonctions :
 - $\triangleright \mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to B^*$ est la fonction de sortie;
- L'exécution de l'algorithme sur l'entrée w est la suite :

$$\mathcal{E}(w), \mathcal{T}(\mathcal{E}(w)), \mathcal{T}(\mathcal{T}(\mathcal{E})), \dots$$

► Si la suite est **infinie**, l'algorithme ne se **termine pas** sur w;

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur X est appelée configuration. C est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :
 - $\triangleright \mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to \mathcal{B}^*$ est la fonction de sortie;
- L'exécution de l'algorithme sur l'entrée w est la suite :

$$\mathcal{E}(w), \mathcal{T}(\mathcal{E}(w)), \mathcal{T}(\mathcal{T}(\mathcal{E})), \dots$$

- ► Si la suite est **infinie**, l'algorithme ne se **termine pas** sur w;
- ▶ Si la suite est **finie** (disons *n* termes), l'algorithme se termine sur w et **produit** $S(T^n(\mathcal{E}(w)))$;

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur X est appelée configuration. C est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :
 - $\triangleright \mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to \mathcal{B}^*$ est la fonction de sortie;
- L'exécution de l'algorithme sur l'entrée w est la suite :

$$\mathcal{E}(w), \mathcal{T}(\mathcal{E}(w)), \mathcal{T}(\mathcal{T}(\mathcal{E})), \dots$$

- ► Si la suite est **infinie**, l'algorithme ne se **termine pas** sur w;
- ▶ Si la suite est **finie** (disons *n* termes), l'algorithme se termine sur w et **produit** $S(T^n(\mathcal{E}(w)))$;
- Cette définition impose qu'un algorithme soit séquentiel;

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur X est appelée configuration. C est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :
 - $\triangleright \mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - ▶ $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to \mathcal{B}^*$ est la fonction de **sortie**;
- L'exécution de l'algorithme sur l'entrée w est la suite :

$$\mathcal{E}(w), \mathcal{T}(\mathcal{E}(w)), \mathcal{T}(\mathcal{T}(\mathcal{E})), \dots$$

- ► Si la suite est **infinie**, l'algorithme ne se **termine pas** sur w;
- Si la suite est finie (disons n termes), l'algorithme se termine sur w et produit $\mathcal{S}(\mathcal{T}^n(\mathcal{E}(w)))$;
- Cette définition impose qu'un algorithme soit séquentiel;
- ▶ Reste à **restreindre** \mathcal{E}, \mathcal{S} et \mathcal{T} .

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur X est appelée configuration. C est l'ensemble des configurations sur X;
- On définit un algorithme par la donnée de trois fonctions :
 - $\mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - ▶ $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to B^*$ est la fonction de sortie;
- L'exécution de l'algorithme sur l'entrée w est la suite :

$$\mathcal{E}(w), \mathcal{T}(\mathcal{E}(w)), \mathcal{T}(\mathcal{T}(\mathcal{E})), \dots$$

- ► Si la suite est **infinie**, l'algorithme ne se **termine pas** sur w;
- Si la suite est finie (disons n termes), l'algorithme se termine sur w et produit $\mathcal{S}(\mathcal{T}^n(\mathcal{E}(w)))$;
- Cette définition impose qu'un algorithme soit séquentiel;
- ▶ Reste à **restreindre** \mathcal{E}, \mathcal{S} et \mathcal{T} . Pourquoi?

- ▶ Soit $X = \{x_1, x_2, ...\}$ un ensemble de variables;
- ▶ Une valuation sur X est appelée configuration. C est l'ensemble des configurations sur X ;
- On définit un algorithme par la donnée de trois fonctions :
 - $\mathcal{E}: \mathcal{A}^* \to \mathcal{C}$ est la fonction d'entrée;
 - $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ est la fonction de **transition**;
 - $S: C \to B^*$ est la fonction de sortie;
- L'exécution de l'algorithme sur l'entrée w est la suite :

$$\mathcal{E}(w), \mathcal{T}(\mathcal{E}(w)), \mathcal{T}(\mathcal{T}(\mathcal{E})), \dots$$

- ► Si la suite est **infinie**, l'algorithme ne se **termine pas** sur w;
- ▶ Si la suite est finie (disons n termes), l'algorithme se termine sur w et produit $S(T^n(\mathcal{E}(w)))$;
- Cette définition impose qu'un algorithme soit séquentiel;
- ▶ Reste à **restreindre** \mathcal{E}, \mathcal{S} et \mathcal{T} . Pourquoi? Décider V:

Didler time VECK -TS2NJ,
$$\mathcal{T}=\emptyset_{\text{JT}}$$
 SNE-VC(cVa)III(efonction indicatrice nde of) 2018

Définition

Soit A un alphabet, P une partie de A^* (donc un problème de décision), et A un algorithme.

 \blacktriangleright \mathcal{A} **décide** P si :

Définition

- ► A décide P si :
 - son alphabet d'entrée inclut A;

Définition

- ► A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};

Définition

- ► A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).
- ► A semi-décide P si :

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).
- ▶ A semi-décide P si :
 - son alphabet d'entrée inclut A;

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).
- ▶ A semi-décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {1};

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).
- ▶ A semi-décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).
- ▶ A semi-décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A ne se termine pas.

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).
- ▶ A semi-décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A ne se termine pas.
- ► *P* est **décidable** (resp. **semi-décidable**) s'il existe un algorithme qui le décide (resp. le semi-décide);

Définition

- ▶ A décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {0,1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A produit 0 (à partir de w).
- ▶ A semi-décide P si :
 - son alphabet d'entrée inclut A;
 - son alphabet de sortie inclut {1};
 - ▶ pour tout mot $w \in P$, A produit 1 (à partir de w);
 - ▶ pour tout mot $w \notin P$, A ne se termine pas.
- ▶ P est décidable (resp. semi-décidable) s'il existe un algorithme qui le décide (resp. le semi-décide);
- Si P n'est pas décidable, on dit qu'il est indécidable.

Exemple: Automates finis

Une classe très simple d'algorithmes :

▶ Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;

Une classe très simple d'algorithmes :

- Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ► Un programme fini avec un compteur de programme : une variable entière q entre 1 et N

Exemple: Automates finis

Une classe **très simple** d'algorithmes :

- Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ► Un programme fini avec un compteur de programme : une variable entière q entre 1 et N
- L'évolution de q (la prochaine instruction) ne dépend que de sa valeur actuelle et de la lettre courante (suivant une fonction $f: [1..N] \times A \rightarrow [1..N]$).

Une classe très simple d'algorithmes :

- Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ► Un **programme fini** avec un **compteur de programme** : une variable entière *q* entre 1 et *N*
- L'évolution de q (la prochaine instruction) ne dépend que de sa valeur actuelle et de la lettre courante (suivant une fonction $f:[1..N] \times A \rightarrow [1..N]$).
- Le résultat (booléen) ne dépend que de la valeur de q une fois le mot lu en entier (selon une fonction $F:[1..N] \rightarrow \{0,1\}$).

Une classe très simple d'algorithmes :

- Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ► Un **programme fini** avec un **compteur de programme** : une variable entière *q* entre 1 et *N*
- L'évolution de q (la prochaine instruction) ne dépend que de sa valeur actuelle et de la lettre courante (suivant une fonction $f:[1..N] \times A \rightarrow [1..N]$).
- Le résultat (booléen) ne dépend que de la valeur de q une fois le mot lu en entier (selon une fonction $F:[1..N] \rightarrow \{0,1\}$).

Plus formellement:

Une classe très simple d'algorithmes :

- Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ► Un **programme fini** avec un **compteur de programme** : une variable entière *q* entre 1 et *N*
- L'évolution de q (la prochaine instruction) ne dépend que de sa valeur actuelle et de la lettre courante (suivant une fonction $f:[1..N] \times A \rightarrow [1..N]$).
- Le résultat (booléen) ne dépend que de la valeur de q une fois le mot lu en entier (selon une fonction $F:[1..N] \rightarrow \{0,1\}$).

Plus formellement:

 $X = \{s, i, q\}$ // Variables de l'algorithme;

Une classe très simple d'algorithmes :

- ▶ Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ▶ Un programme fini avec un compteur de programme : une variable entière q entre 1 et N
- L'évolution de q (la prochaine instruction) ne dépend que de sa valeur actuelle et de la lettre courante (suivant une fonction $f: [1..N] \times A \to [1..N]$.
- Le résultat (booléen) ne dépend que de la valeur de q une fois le mot lu en entier (selon une fonction $F: [1..N] \rightarrow \{0,1\}$).

Plus formellement:

- $X = \{s, i, q\}$ // Variables de l'algorithme;
- $\forall w, \mathcal{E}(w) = (w, 0, 0)$ // Fonction d'entrée;

Une classe très simple d'algorithmes :

- Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ► Un programme fini avec un compteur de programme : une variable entière q entre 1 et N
- L'évolution de q (la prochaine instruction) ne dépend que de sa valeur actuelle et de la lettre courante (suivant une fonction $f:[1..N] \times A \rightarrow [1..N]$).
- Le résultat (booléen) ne dépend que de la valeur de q une fois le mot lu en entier (selon une fonction $F:[1..N] \rightarrow \{0,1\}$).

Plus formellement:

- ► $X = \{s, i, q\}$ // Variables de l'algorithme;
- $\forall w, \mathcal{E}(w) = (w, 0, 0) // \text{ Fonction d'entrée};$
- $\forall (s, i, q) \in \mathcal{C}, \mathcal{T}((s, i, q)) = (s, i + 1, f(q, s[i])) // \text{Transitions};$

Une classe très simple d'algorithmes :

- Une mémoire finie en lecture seule lue de gauche à droite : on lit le mot d'entrée lettre par lettre;
- ► Un programme fini avec un compteur de programme : une variable entière q entre 1 et N
- L'évolution de q (la prochaine instruction) ne dépend que de sa valeur actuelle et de la lettre courante (suivant une fonction $f: [1..N] \times A \rightarrow [1..N]$).
- Le résultat (booléen) ne dépend que de la valeur de q une fois le mot lu en entier (selon une fonction $F:[1..N] \rightarrow \{0,1\}$).

Plus formellement:

- $X = \{s, i, q\}$ // Variables de l'algorithme;
- $\forall w, \mathcal{E}(w) = (w, 0, 0) // \text{ Fonction d'entrée};$
- $\forall (s, i, q) \in \mathcal{C}, \mathcal{T}((s, i, q)) = (s, i + 1, f(q, s[i])) // \text{ Transitions};$
- $\forall c = (w, |w| + 1, q), S(c) = F(q) // Fonction de sortie.$

Didier Lime (ECN - LS2N)

On peut représenter un algorithme de cette classe graphiquement :

Exemple

On peut représenter un algorithme de cette classe graphiquement :

Exemple

w (écrit en base 2) est-il impair?

On peut représenter un algorithme de cette classe graphiquement :

Exemple

L'ensemble $2\mathbb{N}$ et son complémentaire dans \mathbb{N} sont donc « **décidables** par automate fini » (AF-décidable).

On peut représenter un algorithme de cette classe graphiquement :

Exemple

w (écrit en base 2) est-il impair?

L'ensemble $2\mathbb{N}$ et son complémentaire dans \mathbb{N} sont donc « **décidables** par automate fini » (AF-décidable).

Exercice

Donner un automate qui teste si l'entrée (écrite en base 2) est nulle.

Exemple

3N est-il AF-décidable?

Exemple

3N est-il AF-décidable?

Tout automate se traduit aisément en algorithme.

Donc AF-décidabilité implique décidabilité;

- ➤ Tout automate se traduit aisément en algorithme. Donc AF-décidabilité implique décidabilité;
- ▶ Et même en langage de programmation :

- Tout automate se traduit aisément en algorithme. Donc AF-décidabilité implique décidabilité;
- ▶ Et même en langage de programmation :

```
Automate fini en C
q=0;
for (i=0; i < strlen(w); ++i)</pre>
    q=f(q,w[i]);
return F(q);
```

- ► Tout automate se traduit aisément en algorithme. Donc AF-décidabilité implique décidabilité;
- ▶ Et même en langage de programmation :

```
Automate fini en C
q=0;
for (i=0; i < strlen(w); ++i)
    q=f(q,w[i]);
return F(q);</pre>
```

► Et dans l'autre sens?

- ► Tout automate se traduit aisément en algorithme. Donc AF-décidabilité implique décidabilité;
- ▶ Et même en langage de programmation :

```
Automate fini en C
q=0;
for (i=0; i < strlen(w); ++i)
    q=f(q,w[i]);
return F(q);</pre>
```

► Et dans l'autre sens ? $\{0^n1^n|n \in \mathbb{N}\}$ n'est pas AF-décidable

- ► Tout automate se traduit aisément en algorithme. Donc AF-décidabilité implique décidabilité;
- ▶ Et même en langage de programmation :

```
Automate fini en C
q=0;
for (i=0; i < strlen(w); ++i)
    q=f(q,w[i]);
return F(q);</pre>
```

- ► Et dans l'autre sens ? $\{0^n1^n|n \in \mathbb{N}\}$ n'est pas AF-décidable
- Il nous faut un modèle plus expressif.

▶ Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :

- ▶ Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :
 - On ne peut pas mettre un tel programme dans une mémoire finie;

- ▶ Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :
 - On ne peut pas mettre un tel programme dans une mémoire finie;
 - Tout ensemble est décidable par automate infini.

- Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :
 - On ne peut pas mettre un tel programme dans une mémoire finie;
 - Tout ensemble est décidable par automate infini.

```
Décider X: Q = A^*, q_0 = \epsilon, f(q, a) = qa, F(q) = 1 ssi q \in X.
```

- ▶ Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :
 - On ne peut pas mettre un tel programme dans une mémoire finie;
 - ▶ **Tout** ensemble est décidable par automate **infini**. Décider $X : Q = A^*$, $q_0 = \epsilon$, f(q, a) = qa, F(q) = 1 ssi $q \in X$.
- Mais, il faut un programme plus long que le nombre de lettres de l'entrée!

- ▶ Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :
 - On ne peut pas mettre un tel programme dans une mémoire finie;
 - ▶ **Tout** ensemble est décidable par automate **infini**. Décider $X : Q = A^*$, $q_0 = \epsilon$, f(q, a) = qa, F(q) = 1 ssi $q \in X$.
- Mais, il faut un programme plus long que le nombre de lettres de l'entrée!
- On désynchronise la lecture de l'entrée et les instructions;

- ▶ Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :
 - On ne peut pas mettre un tel programme dans une mémoire finie;
 - ▶ **Tout** ensemble est décidable par automate **infini**. Décider $X : Q = A^*$, $q_0 = \epsilon$, f(q, a) = qa, F(q) = 1 ssi $q \in X$.
- Mais, il faut un programme plus long que le nombre de lettres de l'entrée!
- On désynchronise la lecture de l'entrée et les instructions;
- ► On rend la mémoire infinie et on permet sa modification mais seule une partie finie sera utilisée si le programme se termine.

- ▶ Pour étendre notre classe d'algorithmes, supprimer le caractère fini du programme (nombre d'états) n'est pas un bonne idée :
 - On ne peut pas mettre un tel programme dans une mémoire finie;
 - ▶ **Tout** ensemble est décidable par automate **infini**. Décider $X: Q = A^*$, $q_0 = \epsilon$, f(q, a) = qa, F(q) = 1 ssi $q \in X$.
- Mais, il faut un programme plus long que le nombre de lettres de l'entrée!
- On désynchronise la lecture de l'entrée et les instructions;
- On rend la mémoire infinie et on permet sa modification mais seule une partie finie sera utilisée si le programme se termine.

 $\widetilde{A} = A \cup \{\Box\}$

Définition

Une machine de Turing sur un alphabet A est une paire (Q, \rightarrow) t.q. :

Q est un ensemble fini d'états. On suppose que Q contient au moins les trois états suivant :

Définition

- Q est un ensemble fini d'états. On suppose que Q contient au moins les trois états suivant :
 - init est l'état initial;

Définition

- ▶ *Q* est un ensemble **fini** d'états. On suppose que *Q* contient au moins les trois états suivant :
 - ▶ init est l'état initial ;
 - accept est l'état acceptant;

Définition

- ▶ *Q* est un ensemble **fini** d'états. On suppose que *Q* contient au moins les trois états suivant :
 - init est l'état initial;
 - accept est l'état acceptant;
 - reject est l'état refusant;

Définition

- ▶ *Q* est un ensemble **fini** d'états. On suppose que *Q* contient au moins les trois états suivant :
 - ▶ init est l'état initial ;
 - accept est l'état acceptant;
 - reject est l'état refusant;
- ▶ $\rightarrow \in Q \times \widetilde{A} \times \widetilde{A} \times \{-1, 0, +1\} \times Q$ est la relation de transition.

Définition

▶ Une **configuration** d'une machine de Turing (Q, \rightarrow) est un triplet (q, f, i) où :

- ▶ Une **configuration** d'une machine de Turing (Q, \rightarrow) est un triplet (q, f, i) où :
 - q ∈ Q est l'état de la machine;

- ▶ Une **configuration** d'une machine de Turing (Q, \rightarrow) est un triplet (q, f, i) où :
 - q ∈ Q est l'état de la machine;
 - $f: \mathbb{Z} \to \widetilde{A}$ est le contenu de la bande;

- ▶ Une **configuration** d'une machine de Turing (Q, \rightarrow) est un triplet (q, f, i) où :
 - q ∈ Q est l'état de la machine;
 - $f: \mathbb{Z} \to \widetilde{A}$ est le contenu de la bande;
 - ▶ $i \in \mathbb{Z}$ est la position de la **tête de lecture**.

- ▶ Une **configuration** d'une machine de Turing (Q, \rightarrow) est un triplet (q, f, i) où :
 - ▶ $q \in Q$ est l'état de la machine;
 - $f: \mathbb{Z} \to \widetilde{A}$ est le contenu de la bande;
 - $i \in \mathbb{Z}$ est la position de la **tête de lecture**.
- La configuration initiale de la machine sur l'entrée w est (init, $f_0, 0$) avec:

$$f_0(i) = \begin{cases} w(i), \text{ si } i \in [0..|w|-1], \\ \square \text{ sinon.} \end{cases}$$

▶ Une machine de Turing (Q, \rightarrow) passe de la configuration (q, f, i) à la configuration (q', f', i') ssi il existe $(q, a, b, x, q') \in \rightarrow t.q.$:

- ▶ Une machine de Turing (Q, \rightarrow) passe de la configuration (q, f, i) à la configuration (q', f', i') ssi il existe $(q, a, b, x, q') \in \rightarrow t.q.$:
 - ightharpoonup a = f(i); Si a est inscrit sous la tête de lecture...

- ▶ Une machine de Turing (Q, \rightarrow) passe de la configuration (q, f, i) à la configuration (q', f', i') ssi il existe $(q, a, b, x, q') \in \rightarrow t.q.$:
 - ightharpoonup a = f(i); Si a est inscrit sous la tête de lecture...
 - ▶ b = f'(i); Écrire b à la place;

- ▶ Une machine de Turing (Q, \rightarrow) passe de la configuration (q, f, i) à la configuration (q', f', i') ssi il existe $(q, a, b, x, q') \in \rightarrow t.q.$:
 - ▶ a = f(i); Si a est inscrit sous la tête de lecture...
 - ▶ b = f'(i); Écrire b à la place;
 - $\forall j \neq i, f(j) = f'(j);$

- ▶ Une machine de Turing (Q, \rightarrow) passe de la configuration (q, f, i) à la configuration (q', f', i') ssi il existe $(q, a, b, x, q') \in \rightarrow t.q.$:
 - ightharpoonup a = f(i); Si a est inscrit sous la tête de lecture...
 - ▶ b = f'(i); Écrire b à la place;
 - $\forall j \neq i, f(j) = f'(j);$
 - i' = i + x; Déplacer éventuellement la tête de lecture.

- ▶ Une machine de Turing (Q, \rightarrow) passe de la configuration (q, f, i) à la configuration (q', f', i') ssi il existe $(q, a, b, x, q') \in \rightarrow t.q.$:
 - ▶ a = f(i); Si a est inscrit sous la tête de lecture...
 - ▶ b = f'(i); Écrire b à la place;
 - $\forall i \neq i, f(i) = f'(i)$:
 - i' = i + x; Déplacer éventuellement la tête de lecture.
- Si la machine atteint l'état accept, elle s'arrête et renvoie « oui »;

- ▶ Une machine de Turing (Q, \rightarrow) passe de la configuration (q, f, i) à la configuration (q', f', i') ssi il existe $(q, a, b, x, q') \in \rightarrow t.q.$:
 - ▶ a = f(i); Si a est inscrit sous la tête de lecture...
 - ▶ b = f'(i); Écrire b à la place;
 - $\forall j \neq i, f(j) = f'(j);$
 - i' = i + x; Déplacer éventuellement la tête de lecture.
- ▶ Si la machine atteint l'état accept, elle s'arrête et renvoie « oui » ;
- Si la machine atteint l'état reject, elle s'arrête et renvoie « non ».

Exemple

Construire une machine qui teste si l'entrée est nulle (ou vide).

Exemple

Construire une machine qui teste si l'entrée est nulle (ou vide).

▶ Q = {init, accept, reject};

Exemple

Construire une machine qui teste si l'entrée est nulle (ou vide).

```
 \begin{array}{l} \blacktriangleright \ \ Q = \{\mathsf{init}, \mathsf{accept}, \mathsf{reject}\} \,; \\  \  \, \blacktriangleright \ \ \to = \left\{ \begin{array}{l} (\mathsf{init}, 0, 0, +1, \mathsf{init}), \\ (\mathsf{init}, 1, 1, +1, \mathsf{reject}), \\ (\mathsf{init}, \square, \square, 0, \mathsf{accept}) \end{array} \right\}
```

Exemple

Construire une machine qui teste si l'entrée est nulle (ou vide).

- $P = \{ \text{init}, \text{accept}, \text{reject} \};$ $P = \left\{ \begin{array}{l} (\text{init}, 0, 0, +1, \text{init}), \\ (\text{init}, 1, 1, +1, \text{reject}), \\ (\text{init}, \square, \square, 0, \text{accept}) \end{array} \right\}$
- On dit que $\{0\}$ est « **décidable** par machine de Turing » (MT-décidable).

Exemple

Construire une machine qui teste si l'entrée est nulle (ou vide).

$$P = \{ \text{init}, \text{accept}, \text{reject} \};$$

$$P = \left\{ \begin{array}{l} (\text{init}, 0, 0, +1, \text{init}), \\ (\text{init}, 1, 1, +1, \text{reject}), \\ (\text{init}, \square, \square, 0, \text{accept}) \end{array} \right\}$$

On dit que $\{0\}$ est « **décidable** par machine de Turing » (MT-décidable).

Exercice

Construire une machine de Turing qui teste si l'entrée est impaire.

Exemple

Construire une machine qui teste si l'entrée est nulle (ou vide).

► $Q = \{\text{init}, \text{accept}, \text{reject}\};$ ► $\rightarrow = \left\{ \begin{array}{l} (\text{init}, 0, 0, +1, \text{init}), \\ (\text{init}, 1, 1, +1, \text{reject}), \\ (\text{init}, \square, \square, 0, \text{accept}) \end{array} \right\}$

On dit que $\{0\}$ est « décidable par machine de Turing » (MT-décidable).

Exercice

Construire une machine de Turing qui teste si l'entrée est impaire.

Exercice

Construire une machine de Turing qui teste si deux chaînes (l'une de 0 et l'autre de 1 p.ex.) sont de même longueur.

Machines de Turing : Algorithme associé

On peut facilement construire un algorithme à partir d'une machine de Turing:

▶ Les configurations de l'algorithme sont celles de la machine;

On peut facilement construire un algorithme à partir d'une machine de Turing:

- Les configurations de l'algorithme sont celles de la machine;
- ▶ La fonction d'entrée est : $\mathcal{E}(w) = (\text{init}, f_0, 0)$;

Machines de Turing : Algorithme associé

On peut facilement construire un algorithme à partir d'une machine de Turing:

- Les configurations de l'algorithme sont celles de la machine;
- ▶ La fonction d'entrée est : $\mathcal{E}(w) = (\text{init}, f_0, 0)$;
- La fonction de transition est celle de la machine :

On peut facilement construire un **algorithme** à partir d'une machine de Turing :

- Les configurations de l'algorithme sont celles de la machine;
- ▶ La fonction d'entrée est : $\mathcal{E}(w) = (\text{init}, f_0, 0)$;
- La fonction de transition est celle de la machine;
- ▶ La fonction de sortie est définie par : $\forall i, \mathcal{S}(\mathsf{accept}, f, i) = 1$ et $\forall i, \mathcal{S}(\mathsf{reject}, f, i) = 0$.

► Toute machine de Turing se **traduit** trivialement en algorithme. Donc MT-décidabilité implique décidabilité.

- ► Toute machine de Turing se **traduit** trivialement en algorithme. Donc MT-décidabilité implique décidabilité.
- Comme pour les automates on peut programmer facilement en C ou autre langage de programmation, une machine de Turing (cf. TP);

- ► Toute machine de Turing se **traduit** trivialement en algorithme. Donc MT-décidabilité implique décidabilité.
- Comme pour les automates on peut programmer facilement en C ou autre langage de programmation, une machine de Turing (cf. TP);
- ▶ On se convainc facilement qu'un automate est un cas particulier de machine de Turing.
 - Donc AF-décidabilité implique MT-décidabilité;

- ► Toute machine de Turing se **traduit** trivialement en algorithme. Donc MT-décidabilité implique décidabilité.
- Comme pour les automates on peut programmer facilement en C ou autre langage de programmation, une machine de Turing (cf. TP);
- ▶ On se convainc facilement qu'un automate est un cas particulier de machine de Turing.
 - Donc AF-décidabilité implique MT-décidabilité;
- Existe-t-il des problèmes décidables qui ne sont pas MT-décidables?

Thèse de Church-Turing

Tout ensemble décidable est MT-décidable.

Thèse de Church-Turing

Tout ensemble décidable est MT-décidable.

Ne peut pas être prouvée (pas de notion complètement formelle d'algorithme);

Thèse de Church-Turing

Tout ensemble décidable est MT-décidable.

- ▶ Ne peut pas être **prouvée** (pas de notion complètement formelle d'algorithme);
- Très largement acceptée comme vraie;

Thèse de Church-Turing

Tout ensemble décidable est MT-décidable.

- Ne peut pas être prouvée (pas de notion complètement formelle d'algorithme);
- Très largement acceptée comme vraie;
- Le calcul par machine de Turing **coïncide** avec d'autres notions proches : λ -calcul et fonctions récursives.

▶ Une machine de Turing est **complètement** décrite par un ensemble fini de données :

- ► Une machine de Turing est **complètement** décrite par un ensemble **fini** de données :
 - Un ensemble fini d'états;

- ▶ Une machine de Turing est **complètement** décrite par un ensemble fini de données :
 - Un ensemble fini d'états :
 - ▶ Un ensemble fini de **instructions** (quintuplets (q, a, b, i, q'));

- Une machine de Turing est complètement décrite par un ensemble fini de données :
 - Un ensemble fini d'états;
 - ▶ Un ensemble fini de **instructions** (quintuplets (q, a, b, i, q'));
 - Un alphabet fini.

- ▶ Une machine de Turing est **complètement** décrite par un ensemble fini de données :
 - Un ensemble fini d'états :
 - ▶ Un ensemble fini de **instructions** (quintuplets (q, a, b, i, q'));
 - Un alphabet fini.
- ▶ On peut **encoder** toute machine *M* avec un alphabet fini, p.ex :

- Une machine de Turing est complètement décrite par un ensemble fini de données :
 - Un ensemble fini d'états;
 - ▶ Un ensemble fini de **instructions** (quintuplets (q, a, b, i, q'));
 - Un alphabet fini.
- ▶ On peut **encoder** toute machine *M* avec un alphabet fini, p.ex :
 - Les états :

$$e(\mathsf{init}) = 1, e(\mathsf{accept}) = 11, e(\mathsf{reject}) = 111, \dots$$

- Une machine de Turing est complètement décrite par un ensemble fini de données :
 - Un ensemble fini d'états;
 - ▶ Un ensemble fini de **instructions** (quintuplets (q, a, b, i, q'));
 - Un alphabet fini.
- ▶ On peut **encoder** toute machine *M* avec un alphabet fini, p.ex :
 - Les états :

$$e(\mathsf{init}) = 1, e(\mathsf{accept}) = 11, e(\mathsf{reject}) = 111, \dots$$

Les symboles :

$$e(0) = 1, e(-1) = 11, e(1) = 111, e(\square) = 1111, \dots$$

- Une machine de Turing est complètement décrite par un ensemble fini de données :
 - Un ensemble fini d'états;
 - ▶ Un ensemble fini de **instructions** (quintuplets (q, a, b, i, q'));
 - Un alphabet fini.
- ▶ On peut **encoder** toute machine *M* avec un alphabet fini, p.ex :
 - Les **états** :

$$e(\mathsf{init}) = 1, e(\mathsf{accept}) = 11, e(\mathsf{reject}) = 111, \dots$$

Les symboles :

$$e(0) = 1, e(-1) = 11, e(1) = 111, e(\square) = 1111, \dots$$

Les instructions :

$$e((q, a, b, i, q')) = e(q)0e(a)0e(b)0e(i)0e(q')0$$

- Une machine de Turing est complètement décrite par un ensemble fini de données :
 - Un ensemble fini d'états;
 - ▶ Un ensemble fini de **instructions** (quintuplets (q, a, b, i, q'));
 - Un alphabet fini.
- ▶ On peut **encoder** toute machine *M* avec un alphabet fini, p.ex :
 - Les états :

$$e(\mathsf{init}) = 1, e(\mathsf{accept}) = 11, e(\mathsf{reject}) = 111, \dots$$

Les symboles :

$$e(0) = 1, e(-1) = 11, e(1) = 111, e(\square) = 1111, \dots$$

Les instructions :

$$e((q, a, b, i, q')) = e(q)0e(a)0e(b)0e(i)0e(q')0$$

• M d'instructions I_1, \ldots, I_n ,

$$e(M) = e(\rightarrow) = 00e(I_1)e(I_2)...e(I_n)0$$

Exemple

La machine M, qui décide $\{0\}$, est définie par :

► *Q* = {init, accept, reject};

Exemple

La machine M, qui décide $\{0\}$, est définie par :

```
► Q = {init, accept, reject};
```

Encodage de machines de Turing

Exemple

La machine M, qui décide $\{0\}$, est définie par :

 $ightharpoonup Q = \{\text{init}, \text{accept}, \text{reject}\};$ $\rightarrow = \left\{ \begin{array}{l} (\mathsf{init}, 0, 0, +1, \mathsf{init}), \\ (\mathsf{init}, 1, 1, +1, \mathsf{reject}), \\ (\mathsf{init}, \square, \square, 0, \mathsf{accept}) \end{array} \right\}$

M peut être encodée par :

On note souvent $\langle M \rangle$ l'encodage de M pour un encodage non spécifié.

 On peut donc construire des machines qui vérifient des propriétés sur les machines

- On peut donc construire des machines qui vérifient des propriétés sur les machines
- \triangleright Cependant soit A un alphabet et S un ensemble de parties de A^* (différent de 2^{A^*} et de \emptyset). Soit le problème \mathcal{P} suivant :

- On peut donc construire des machines qui vérifient des propriétés sur les machines
- ▶ Cependant soit A un alphabet et S un ensemble de parties de A^* (différent de 2^{A^*} et de \emptyset). Soit le problème $\mathcal P$ suivant :

\mathcal{P} : Vérification de propriétés

Entrées: une machine de Turing *M*

Résultat: L'ensemble des mots acceptés par M est-il dans S?

- On peut donc construire des machines qui vérifient des propriétés sur les machines
- ▶ Cependant soit A un alphabet et S un ensemble de parties de A^* (différent de 2^{A^*} et de \emptyset). Soit le problème $\mathcal P$ suivant :

\mathcal{P} : Vérification de propriétés

Entrées: une machine de Turing *M*

Résultat: L'ensemble des mots acceptés par M est-il dans S?

Théorème (Théorème de Rice)

P est indécidable.

Problème de l'arrêt d'une machine de Turing Soit le problème \mathcal{P} suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: *M* s'arrête-t-elle sur l'entrée *w* ?

Problème de l'arrêt d'une machine de Turing Soit le problème \mathcal{P} suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: M s'arrête-t-elle sur l'entrée w?

Théorème

Soit le problème ${\mathcal P}$ suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: M s'arrête-t-elle sur l'entrée w?

Théorème

Le problème \mathcal{P} est indecidable.

▶ On peut le prouver par le théorème de Rice (et inversement);

Soit le problème ${\mathcal P}$ suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: *M* s'arrête-t-elle sur l'entrée *w* ?

Théorème

- On peut le prouver par le théorème de Rice (et inversement);
- Autre preuve : on suppose qu'il existe H telle que H accepte $(\langle M \rangle, w)$ si M s'arrête sur w, et refuse sinon . Soit la machine H' telle que :

Soit le problème ${\mathcal P}$ suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: *M* s'arrête-t-elle sur l'entrée *w* ?

Théorème

- On peut le prouver par le théorème de Rice (et inversement);
- Autre preuve : on suppose qu'il existe H telle que H accepte $(\langle M \rangle, w)$ si M s'arrête sur w, et refuse sinon . Soit la machine H' telle que :
 - \blacktriangleright H' accepte s si H refuse (s, s);

Soit le problème ${\mathcal P}$ suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: *M* s'arrête-t-elle sur l'entrée *w* ?

Théorème

- On peut le prouver par le théorème de Rice (et inversement);
- Autre preuve : on suppose qu'il existe H telle que H accepte $(\langle M \rangle, w)$ si M s'arrête sur w, et refuse sinon . Soit la machine H' telle que :
 - \blacktriangleright H' accepte s si H refuse (s, s);
 - \vdash H' rentre dans une boucle infinie si H accepte (s, s).

Soit le problème $\mathcal P$ suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: *M* s'arrête-t-elle sur l'entrée *w* ?

Théorème

Le problème \mathcal{P} est indecidable.

- On peut le prouver par le théorème de Rice (et inversement);
- Autre preuve : on suppose qu'il existe H telle que H accepte $(\langle M \rangle, w)$ si M s'arrête sur w, et refuse sinon . Soit la machine H' telle que :
 - \blacktriangleright H' accepte s si H refuse (s, s);
 - \blacktriangleright H' rentre dans une boucle infinie si H accepte (s, s).

Que dire de l'exécution de H' sur l'entrée $\langle H' \rangle$?

Soit le problème ${\mathcal P}$ suivant :

\mathcal{P} : Arrêt d'une machine de Turing

Entrées: Une machine M, un mot w

Résultat: M s'arrête-t-elle sur l'entrée w?

Théorème

Le problème \mathcal{P} est indecidable.

- On peut le prouver par le théorème de Rice (et inversement);
- Autre preuve : on suppose qu'il existe H telle que H accepte $(\langle M \rangle, w)$ si M s'arrête sur w, et refuse sinon . Soit la machine H' telle que :
 - \blacktriangleright H' accepte s si H refuse (s, s);
 - ightharpoonup H' rentre dans une boucle infinie si H accepte (s,s).

Que dire de l'exécution de H' sur l'entrée $\langle H' \rangle$?

▶ Il est donc **impossible** de faire un programme qui dit pour tout programme si celui-ci va s'arrêter.

Machines universelles

► En **encodant** une machine de Turing comme précédemment, on peut essayer de construire une **machine programmable**

► En **encodant** une machine de Turing comme précédemment, on peut essayer de construire une **machine programmable**

Définition (Machine universelle)

Une machine de Turing U est **universelle** sur l'alphabet A si pour un encodage e sur A, toute machine de Turing M sur A et toute entrée $w \in A^*$:

U accepte (resp. refuse) e(M)w ssi M accepte (resp. refuse) w.

► En **encodant** une machine de Turing comme précédemment, on peut essayer de construire une **machine programmable**

Définition (Machine universelle)

Une machine de Turing U est **universelle** sur l'alphabet A si pour un encodage e sur A, toute machine de Turing M sur A et toute entrée $w \in A^*$:

U accepte (resp. refuse) e(M)w ssi M accepte (resp. refuse) w.

Théorème

Pour tout alphabet A, il existe une machine de Turing universelle sur A.

Machines universelles

► En **encodant** une machine de Turing comme précédemment, on peut essayer de construire une **machine programmable**

Définition (Machine universelle)

Une machine de Turing U est **universelle** sur l'alphabet A si pour un encodage e sur A, toute machine de Turing M sur A et toute entrée $w \in A^*$:

U accepte (resp. refuse) e(M)w ssi M accepte (resp. refuse) w.

Théorème

Pour tout alphabet A, il existe une machine de Turing universelle sur A.

On utilise trois bandes : une pour e(M)w, une pour l'état courant de M et une pour la bande de n

Machines universelles

 En encodant une machine de Turing comme précédemment, on peut essayer de construire une machine programmable

Définition (Machine universelle)

Une machine de Turing U est universelle sur l'alphabet A si pour un encodage e sur A, toute machine de Turing M sur A et toute entrée $w \in A^*$:

U accepte (resp. refuse) e(M)w ssi M accepte (resp. refuse) w.

Théorème

Pour tout alphabet A, il existe une machine de Turing universelle sur A.

On utilise trois bandes : une pour e(M)w, une pour l'état courant de M et une pour la bande de n

► Ce résultat a fortement influencé l'architecture proposée par John Von Neumann et la notion de programme mémorisé.

Plan

Introduction

Problèmes algorithmiques

Algorithmes et Machines de Turing Algorithmes et décidabilité Automates finis Machines de Turing

Complexité

Conclusion

► On a modèle rigoureux pour la notion d'algorithme;

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- ▶ On peut définir naturellement deux critères de comparaison :

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- On peut définir naturellement deux critères de comparaison :
 - La complexité temporelle est le nombre d'étapes faites par la machine de Turing pour terminer;

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- On peut définir naturellement deux critères de comparaison :
 - La complexité temporelle est le nombre d'étapes faites par la machine de Turing pour terminer;
 - ▶ La **complexité spatiale** est le nombre **maximum** de cases de la bande utilisées (différentes de □) **simultanément** par la machine (jusqu'à la terminaison).

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- On peut définir naturellement deux critères de comparaison :
 - La complexité temporelle est le nombre d'étapes faites par la machine de Turing pour terminer;
 - La complexité spatiale est le nombre maximum de cases de la bande utilisées (différentes de □) simultanément par la machine (jusqu'à la terminaison).
- On peut regarder (en fonction de l'entrée) :

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- On peut définir naturellement deux critères de comparaison :
 - La complexité temporelle est le nombre d'étapes faites par la machine de Turing pour terminer;
 - La complexité spatiale est le nombre maximum de cases de la bande utilisées (différentes de □) simultanément par la machine (jusqu'à la terminaison).
- On peut regarder (en fonction de l'entrée) :
 - la complexité au meilleur cas;

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- On peut définir naturellement deux critères de comparaison :
 - La complexité temporelle est le nombre d'étapes faites par la machine de Turing pour terminer;
 - La complexité spatiale est le nombre maximum de cases de la bande utilisées (différentes de □) simultanément par la machine (jusqu'à la terminaison).
- ► On peut regarder (en fonction de l'entrée) :
 - la complexité au meilleur cas;
 - la complexité en moyenne;

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- On peut définir naturellement deux critères de comparaison :
 - La complexité temporelle est le nombre d'étapes faites par la machine de Turing pour terminer;
 - La complexité spatiale est le nombre maximum de cases de la bande utilisées (différentes de □) simultanément par la machine (jusqu'à la terminaison).
- ► On peut regarder (en fonction de l'entrée) :
 - la complexité au meilleur cas;
 - la complexité en moyenne;
 - la complexité au pire cas.

- On a modèle rigoureux pour la notion d'algorithme;
- On se place dans le cadre de problèmes décidables;
- On peut définir naturellement deux critères de comparaison :
 - La complexité temporelle est le nombre d'étapes faites par la machine de Turing pour terminer;
 - La complexité spatiale est le nombre maximum de cases de la bande utilisées (différentes de □) simultanément par la machine (jusqu'à la terminaison).
- ► On peut regarder (en fonction de l'entrée) :
 - la complexité au meilleur cas;
 - la complexité en moyenne;
 - la complexité au pire cas.
- On étudie ici la complexité au pire cas.

▶ Soit une fonction $T : \mathbb{N} \to \mathbb{N}$ croissante.

- ▶ Soit une fonction $T : \mathbb{N} \to \mathbb{N}$ croissante.
 - ▶ Le problème P appartient à la classe de complexité temporelle DTIME^A₁(T(n)) s'il existe une machine M qui décide toute entrée de P de longueur n en moins de T(n) étapes;

- ▶ Soit une fonction $T : \mathbb{N} \to \mathbb{N}$ croissante.
 - Le problème \mathcal{P} appartient à la classe de complexité temporelle $\mathbf{DTIME}_1^A(T(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en moins de T(n) étapes;
 - Le problème \mathcal{P} appartient à la classe de complexité spatiale $\mathbf{DSPACE}_1^A(\mathcal{T}(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en utilisant moins de $\mathcal{T}(n)$ cases de bande.

- ▶ Soit une fonction $T : \mathbb{N} \to \mathbb{N}$ croissante.
 - Le problème \mathcal{P} appartient à la classe de complexité temporelle $\mathbf{DTIME}_1^A(T(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en moins de T(n) étapes;
 - Le problème \mathcal{P} appartient à la classe de complexité spatiale $\mathbf{DSPACE}_1^A(T(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en utilisant moins de T(n) cases de bande.
- D pour déterministe, et 1 pour une seule bande.

- ▶ Soit une fonction $T : \mathbb{N} \to \mathbb{N}$ croissante.
 - Le problème \mathcal{P} appartient à la classe de complexité temporelle $\mathbf{DTIME}_1^A(T(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en moins de T(n) étapes ;
 - Le problème \mathcal{P} appartient à la classe de complexité spatiale $\mathbf{DSPACE}_1^A(T(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en utilisant moins de T(n) cases de bande.
- ▶ *D* pour déterministe, et 1 pour une seule bande.
- ▶ DTIME ⊂ DSPACE

- ▶ Soit une fonction $T : \mathbb{N} \to \mathbb{N}$ croissante.
 - Le problème \mathcal{P} appartient à la classe de complexité temporelle $\mathbf{DTIME}_1^A(T(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en moins de T(n) étapes;
 - Le problème P appartient à la classe de complexité spatiale DSPACE₁^A(T(n)) s'il existe une machine M qui décide toute entrée de P de longueur n en utilisant moins de T(n) cases de bande.
- ▶ *D* pour déterministe, et 1 pour une seule bande.
- DTIME ⊆ DSPACE

Exemple

$$\{0\} \in \mathsf{DTIME}_1^{\{0,1\}}(n), \{0\} \in \mathsf{DSPACE}_1^{\{0,1\}}(n)$$

$$2\mathbb{N} \in \mathsf{DTIME}_1^{\{0,1\}}(n), 2\mathbb{N} \in \mathsf{DSPACE}_1^{\{0,1\}}(n)$$

$$\{0^n1^n|n\in\mathbb{N}\} \in \mathsf{DTIME}_1^{\{0,1\}}(n^2), \{0^n1^n|n\in\mathbb{N}\} \in \mathsf{DSPACE}_1^{\{0,1\}}(n)$$

- ▶ Soit une fonction $T : \mathbb{N} \to \mathbb{N}$ croissante.
 - Le problème \mathcal{P} appartient à la classe de complexité temporelle $\mathbf{DTIME}_1^A(T(n))$ s'il existe une machine M qui décide toute entrée de \mathcal{P} de longueur n en moins de T(n) étapes;
 - ▶ Le problème P appartient à la classe de complexité spatiale DSPACE₁^A(T(n)) s'il existe une machine M qui décide toute entrée de P de longueur n en utilisant moins de T(n) cases de bande.
- ▶ *D* pour déterministe, et 1 pour une seule bande.
- ▶ DTIME ⊆ DSPACE

Exemple

$$\{0\} \in \mathsf{DTIME}_1^{\{0,1\}}(n), \{0\} \in \mathsf{DSPACE}_1^{\{0,1\}}(n)$$

$$2\mathbb{N} \in \mathsf{DTIME}_1^{\{0,1\}}(n), 2\mathbb{N} \in \mathsf{DSPACE}_1^{\{0,1\}}(n)$$

$$\{0^n1^n|n\in\mathbb{N}\} \in \mathsf{DTIME}_1^{\{0,1\}}(n^2), \{0^n1^n|n\in\mathbb{N}\} \in \mathsf{DSPACE}_1^{\{0,1\}}(n)$$
 En fait, $\exists c$ constante t.q. $\{0^n1^n|n\in\mathbb{N}\} \in \mathsf{DTIME}_1^{\{0,1\}}(cnlog_2(n))$

▶ Soient $M_1 = (Q_1, \rightarrow_1)$ et $M_2 = (Q_2, \rightarrow_2)$ deux machines de Turing. Soit \mathcal{R} une relation sur les configurations de M_1 et M_2 . \mathcal{R} est une simulation de M_2 par M_1 si :

- ▶ Soient $M_1 = (Q_1, \rightarrow_1)$ et $M_2 = (Q_2, \rightarrow_2)$ deux machines de Turing. Soit \mathcal{R} une relation sur les configurations de M_1 et M_2 . \mathcal{R} est une simulation de M_2 par M_1 si :
 - ▶ init₁ Rinit₂;

- ▶ Soient $M_1 = (Q_1, \rightarrow_1)$ et $M_2 = (Q_2, \rightarrow_2)$ deux machines de Turing. Soit \mathcal{R} une relation sur les configurations de M_1 et M_2 . \mathcal{R} est une simulation de M_2 par M_1 si :
 - ▶ init₁ Rinit₂;
 - ▶ si $q_2 \rightarrow_2 q_2'$ et $q_1 \mathcal{R} q_2$ alors il existe q_1^1, \dots, q_1^n t.q. $q_1 \rightarrow_1 q_1^1 \rightarrow_1 \dots \rightarrow_1 q_1^n$ et $q_2' \mathcal{R} q_1^n$;

- ▶ Soient $M_1 = (Q_1, \rightarrow_1)$ et $M_2 = (Q_2, \rightarrow_2)$ deux machines de Turing. Soit \mathcal{R} une relation sur les configurations de M_1 et M_2 . \mathcal{R} est une simulation de M_2 par M_1 si :
 - ▶ init₁ Rinit₂;
 - si $q_2 \rightarrow_2 q_2'$ et $q_1 \mathcal{R} q_2$ alors il existe q_1^1, \dots, q_1^n t.q. $q_1 \rightarrow_1 q_1^1 \rightarrow_1 \dots \rightarrow_1 q_1^n$ et $q_2' \mathcal{R} q_1^n$;
 - si $q_1 \mathcal{R}$ accept₂ alors $q_1 = \text{accept}_1$.

- ▶ Soient $M_1 = (Q_1, \rightarrow_1)$ et $M_2 = (Q_2, \rightarrow_2)$ deux machines de Turing. Soit \mathcal{R} une relation sur les configurations de M_1 et M_2 . \mathcal{R} est une simulation de M_2 par M_1 si :
 - ▶ init₁Rinit₂;
 - ▶ si $q_2 \rightarrow_2 q_2'$ et $q_1 \mathcal{R} q_2$ alors il existe q_1^1, \dots, q_1^n t.q. $q_1 \rightarrow_1 q_1^1 \rightarrow_1 \dots \rightarrow_1 q_1^n$ et $q_2' \mathcal{R} q_1^n$;
 - si $q_1\mathcal{R}$ accept₂ alors $q_1 = \mathsf{accept}_1$.
 - si $q_1\mathcal{R}$ reject₂ alors q_1 = reject₁.

- ▶ Soient $M_1 = (Q_1, \rightarrow_1)$ et $M_2 = (Q_2, \rightarrow_2)$ deux machines de Turing. Soit \mathcal{R} une relation sur les configurations de M_1 et M_2 . \mathcal{R} est une simulation de M_2 par M_1 si :
 - ▶ init₁ Rinit₂;
 - ▶ si $q_2 \rightarrow_2 q_2'$ et $q_1 \mathcal{R} q_2$ alors il existe q_1^1, \dots, q_1^n t.q. $q_1 \rightarrow_1 q_1^1 \rightarrow_1 \dots \rightarrow_1 q_1^n$ et $q_2' \mathcal{R} q_1^n$;
 - si $q_1\mathcal{R}$ accept₂ alors $q_1 = \mathsf{accept}_1$.
 - si $q_1\mathcal{R}$ reject₂ alors q_1 = reject₁.
- ▶ S'il existe une simulation de M_2 par M_1 , on dit que M_1 simule M_2 .

- ▶ Soient $M_1 = (Q_1, \rightarrow_1)$ et $M_2 = (Q_2, \rightarrow_2)$ deux machines de Turing. Soit \mathcal{R} une relation sur les configurations de M_1 et M_2 . \mathcal{R} est une simulation de M_2 par M_1 si :
 - ▶ init₁ Rinit₂;
 - ▶ si $q_2 \rightarrow_2 q_2'$ et $q_1 \mathcal{R} q_2$ alors il existe q_1^1, \dots, q_1^n t.q. $q_1 \rightarrow_1 q_1^1 \rightarrow_1 \dots \rightarrow_1 q_1^n$ et $q_2' \mathcal{R} q_1^n$;
 - si $q_1 \mathcal{R}$ accept₂ alors $q_1 = \text{accept}_1$.
 - si $q_1\mathcal{R}$ reject₂ alors q_1 = reject₁.
- ▶ S'il existe une simulation de M_2 par M_1 , on dit que M_1 simule M_2 .
- ▶ Si M_1 simule M_2 et M_2 décide X alors M_1 également.

► Une demi-bande :

► Une demi-bande :

Théorème

Pour toute machine de Turing sur A à une bande, il existe une machine à une demi-bande sur A qui la simule.

► Une demi-bande :

Théorème

Pour toute machine de Turing sur A à une bande, il existe une machine à une demi-bande sur A qui la simule.

Idée de la preuve : les indices pairs de la demi-bande codent les entiers négatifs et les impairs les positifs

► Une demi-bande :

Théorème

Pour toute machine de Turing sur A à une bande, il existe une machine à une demi-bande sur A qui la simule.

Idée de la preuve : les indices pairs de la demi-bande codent les entiers négatifs et les impairs les positifs

Théorème

$$\mathsf{DTIME}_{1/2}^A(T(n)) \subseteq \mathsf{DTIME}_1^A(T(n)) \subseteq \mathsf{DTIME}_{1/2}^A(3T(n) + 8n^2)$$

$$\mathsf{DSPACE}_{1/2}^A(T(n)) \subseteq \mathsf{DSPACE}_1^A(T(n)) \subseteq \mathsf{DSPACE}_{1/2}^A(2T(n) + 2n + 1)$$

▶ $k \ge 2$ bandes (à chaque transition les k têtes de lecture peuvent bouger **simultanément**) :

▶ $k \ge 2$ bandes (à chaque transition les k têtes de lecture peuvent bouger **simultanément**) :

Théorème

Pour toute machine de Turing sur $A \ a \ k \ge 2$ bandes, il existe une machine $a \ a \ b$ une bande sur $a \ a \ a$ une bande sur $a \ a$ unitation on utilise une case sur $a \ a$ pour chaque bande

▶ $k \ge 2$ bandes (à chaque transition les k têtes de lecture peuvent bouger **simultanément**) :

Théorème

Pour toute machine de Turing sur A à $k \ge 2$ bandes, il existe une machine à une bande sur A qui la simule.

Théorème

$$\mathsf{DTIME}_1^A(T(n)) \subseteq \mathsf{DTIME}_k^A(T(n)) \subseteq \mathsf{DTIME}_1^A(6k^2(T(n)+n^2))$$

$$\mathsf{DSPACE}_1^A(T(n)) \subseteq \mathsf{DSPACE}_k^A(T(n)) \subseteq \mathsf{DSPACE}_1^A(2kT(n))$$

Les complexités obtenues en faisant varier le nombre de bandes sont relativement **proches**;

- Les complexités obtenues en faisant varier le nombre de bandes sont relativement proches;
- ▶ Il est souvent commode d'utiliser plusieurs bandes ;

- Les complexités obtenues en faisant varier le nombre de bandes sont relativement proches;
- ▶ Il est souvent commode d'utiliser plusieurs bandes ;
- On s'intéresse donc plutôt aux classes de complexité :

$$\mathsf{DTIME}^A(T(n)) = \bigcup_k \mathsf{DTIME}_k^A(T(n))$$

$$\mathsf{DSPACE}^A(T(n)) = \bigcup_k \mathsf{DSPACE}^A_k(T(n))$$

- Les complexités obtenues en faisant varier le nombre de bandes sont relativement proches;
- ▶ Il est souvent commode d'utiliser plusieurs bandes ;
- On s'intéresse donc plutôt aux classes de complexité :

$$\mathsf{DTIME}^A(T(n)) = \bigcup_k \mathsf{DTIME}_k^A(T(n))$$

$$\mathsf{DSPACE}^A(T(n)) = \bigcup_k \mathsf{DSPACE}^A_k(T(n))$$

Théorème

Si n est négligeable devant T(n), alors pour toute constante c,

$$\mathsf{DTIME}^A(cT(n)) = \mathsf{DTIME}^A(T(n))$$

► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »

► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »

Factorisation en nombres premiers, équations algébriques,

- ► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »
 Factorisation en nombres premiers, équations algébriques,
- On veut hiérarchiser la complexité de ces problèmes;

- ► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »
 Factorisation en nombres premiers, équations algébriques,
- On veut hiérarchiser la complexité de ces problèmes;
- ► Il faut étendre les machines de Turing pour qu'elles puissent « deviner » la solution;

- ► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »
 Factorisation en nombres premiers, équations algébriques,
- On veut hiérarchiser la complexité de ces problèmes;
- Il faut étendre les machines de Turing pour qu'elles puissent « deviner » la solution;
- On peut ajouter un oracle qui va modifier la bande de façon non-déterministe;

- ► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »
 Factorisation en nombres premiers, équations algébriques,
- On veut hiérarchiser la complexité de ces problèmes;
- Il faut étendre les machines de Turing pour qu'elles puissent « deviner » la solution;
- On peut ajouter un oracle qui va modifier la bande de façon non-déterministe;
- ▶ De façon équivalente, on peut autoriser plusieurs transitions depuis une même configuration (machines de Turing non-déterministes (NMT)).

- ► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »
 Factorisation en nombres premiers, équations algébriques,
- On veut hiérarchiser la complexité de ces problèmes;
- Il faut étendre les machines de Turing pour qu'elles puissent « deviner » la solution;
- On peut ajouter un oracle qui va modifier la bande de façon non-déterministe;
- De façon équivalente, on peut autoriser plusieurs transitions depuis une même configuration (machines de Turing non-déterministes (NMT)).
- ► La machine accepte si l'une des configurations atteinte est dans l'état accept.

- ► Il y a des problèmes « difficiles » pour lesquels vérifier qu'un candidat donné est une solution (ou pas) est « facile »
 Factorisation en nombres premiers, équations algébriques,
- On veut hiérarchiser la complexité de ces problèmes;
- Il faut étendre les machines de Turing pour qu'elles puissent « deviner » la solution;
- On peut ajouter un oracle qui va modifier la bande de façon non-déterministe;
- De façon équivalente, on peut autoriser plusieurs transitions depuis une même configuration (machines de Turing non-déterministes (NMT)).
- La machine accepte si l'une des configurations atteinte est dans l'état accept.
- La machine **rejette** si toutes les configurations atteintes sont dans l'état reject.

Exemple

SAT « very light »

Entrées: Une formule booléenne $x_1 \wedge x_2 \cdots \wedge x_n$

Résultat: Une valeur des variables qui rend la formule vraie

On encode la formule par $x \wedge x \wedge x \wedge \cdots \wedge x$ *n* fois.

► Q = {init, accept, reject, *check*};

Exemple

SAT « very light »

Entrées: Une formule booléenne $x_1 \wedge x_2 \cdots \wedge x_n$

Une valeur des variables qui rend la formule vraie Résultat:

On encode la formule par $x \land x \land x \land \cdots \land x$ *n* fois.

```
► Q = {init, accept, reject, check};
 \Rightarrow = \begin{cases} (\mathsf{init}, x, 0, +1, \mathsf{init}), \\ (\mathsf{init}, x, 1, +1, \mathsf{init}), \\ (\mathsf{init}, \wedge, \wedge, +1, \mathsf{init}), \\ (\mathsf{init}, \square, \square, -1, \mathsf{check}), \\ (\mathsf{check}, 0, 0, 0, \mathsf{reject}), \\ (\mathsf{check}, \wedge, \wedge, -1, \mathsf{check}), \\ (\mathsf{check}, 1, 1, -1, \mathsf{check}), \\ (\mathsf{check}, \square, \square, 0, \mathsf{accept}) \end{cases}
```

➤ On peut définir les classes de complexité NTIME et NSPACE de la même façon que précédemment;

- On peut définir les classes de complexité NTIME et NSPACE de la même façon que précédemment;
- ▶ On a $DTIME(T(n)) \subseteq NTIME(T(n))$ et $DSPACE(T(n)) \subseteq NSPACE(T(n))$ car une machine déterministe est un cas particulier de machine non déterministe.

- On peut définir les classes de complexité NTIME et NSPACE de la même façon que précédemment;
- ▶ On a $DTIME(T(n)) \subseteq NTIME(T(n))$ et $DSPACE(T(n)) \subseteq NSPACE(T(n))$ car une machine déterministe est un cas particulier de machine non déterministe.

Théorème

Pour toute machine non déterministe, il existe une machine déterministe qui la simule.

Mais en un temps exponentiel!

▶ Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

▶ Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

Les problèmes à vérification polynomiale : NPTIME (ou NP);

Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

- ▶ Les problèmes à vérification polynomiale : NPTIME (ou NP);
- Les problèmes polynomiaux en espace : PSPACE;

Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

- Les problèmes à vérification polynomiale : NPTIME (ou NP);
- Les problèmes polynomiaux en espace : PSPACE;
- Les problèmes à vérification polynomiale en espace : NPSPACE;

Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

- Les problèmes à vérification polynomiale : NPTIME (ou NP);
- Les problèmes polynomiaux en espace : PSPACE;
- Les problèmes à vérification polynomiale en espace : NPSPACE;
- ► Les problèmes **exponentiels** : **EXPTIME** ;

Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

- Les problèmes à vérification polynomiale : NPTIME (ou NP);
- Les problèmes polynomiaux en espace : PSPACE;
- Les problèmes à vérification polynomiale en espace : NPSPACE;
- Les problèmes exponentiels : EXPTIME ;
- ► Les problèmes à vérification exponentielle : NEXPTIME

Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

- Les problèmes à vérification polynomiale : NPTIME (ou NP);
- Les problèmes polynomiaux en espace : PSPACE;
- Les problèmes à vérification polynomiale en espace : NPSPACE;
- Les problèmes exponentiels : EXPTIME ;
- Les problèmes à vérification exponentielle : NEXPTIME
- Les problèmes exponentiels en espace : EXPSPACE;

Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

- Les problèmes à vérification polynomiale : NPTIME (ou NP);
- Les problèmes polynomiaux en espace : PSPACE;
- Les problèmes à vérification polynomiale en espace : NPSPACE;
- Les problèmes exponentiels : EXPTIME ;
- ► Les problèmes à vérification exponentielle : NEXPTIME
- Les problèmes exponentiels en espace : EXPSPACE;
- ▶ Les problèmes à vérification exponentielle en espace : NEXPSPACE

► Les problèmes polynomiaux : PTIME (ou P) :

$$\mathbf{P} = \bigcup_k \mathbf{DTIME}(n^k)$$

- Les problèmes à vérification polynomiale : NPTIME (ou NP);
- Les problèmes polynomiaux en espace : PSPACE;
- Les problèmes à vérification polynomiale en espace : NPSPACE;
- Les problèmes exponentiels : EXPTIME ;
- ► Les problèmes à vérification exponentielle : NEXPTIME
- Les problèmes exponentiels en espace : EXPSPACE;
- Les problèmes à vérification exponentielle en espace : NEXPSPACE
- Les problèmes élémentaires : ELEMENTARY :

 $\mathsf{ELEMENTARY} = \mathsf{DTIME}(2^n) \cup \mathsf{DTIME}(2^{2^n}) \cup \mathsf{DTIME}(2^{2^{2^n}}) \cup \cdots$

 Les classes précédentes donnent la complexité pour répondre « oui » au problème;

- Les classes précédentes donnent la complexité pour répondre « oui » au problème;
- ▶ Pour chaque classe \mathcal{C} on définit la classe \ll $\operatorname{co} \mathcal{C} \gg$ qui donne la complexité pour répondre \ll non \gg .

- Les classes précédentes donnent la complexité pour répondre « oui » au problème;
- ▶ Pour chaque classe C on définit la classe C on définit la classe C on definit la classe C on C
- ▶ si on peut ramener par une **réduction polynomiale** (logarithmique pour P) tout problème de la classe \mathcal{C} au problème \mathcal{P} alors \mathcal{P} est dans la classe « \mathcal{C} -difficile » :

- Les classes précédentes donnent la complexité pour répondre « oui » au problème;
- ▶ Pour chaque classe $\mathcal C$ on définit la classe $\ll co \mathcal C \gg qui donne la complexité pour répondre <math>\ll non \gg .$
- ▶ si on peut ramener par une réduction polynomiale (logarithmique pour P) tout problème de la classe \mathcal{C} au problème \mathcal{P} alors \mathcal{P} est dans la classe « \mathcal{C} -difficile »;
- ▶ si \mathcal{P} est également dans \mathcal{C} alors \mathcal{P} est dans « \mathcal{C} -complet »

Hierarchie des grandes classes de complexité

► On a:

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq EXSPACE$

Hierarchie des grandes classes de complexité

▶ On a:

$$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq EXSPACE$$

L'une des trois premières inclusions est stricte car P ⊂ EXPTIME!

Hierarchie des grandes classes de complexité

▶ On a:

$$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq EXSPACE$$

- L'une des trois premières inclusions est stricte car P ⊂ EXPTIME!
- ▶ La question à 1 million de dollars est P = NP? (probablement pas).

▶ Une théorie **fondamentale** pour l'informatique :

- ▶ Une théorie **fondamentale** pour l'informatique :
 - ► Indécidabilité de l'arrêt des algortihmes;

- ▶ Une théorie **fondamentale** pour l'informatique :
 - Indécidabilité de l'arrêt des algortihmes;
 - Indécidabilité de toutes les propriétés non triviales;

- Une théorie fondamentale pour l'informatique :
 - Indécidabilité de l'arrêt des algortihmes;
 - Indécidabilité de toutes les propriétés non triviales;
 - Notion de complexité pour comparer les algorithmes et hiérarchiser les problèmes.

- ▶ Une théorie **fondamentale** pour l'informatique :
 - Indécidabilité de l'arrêt des algortihmes;
 - Indécidabilité de toutes les propriétés non triviales;
 - Notion de complexité pour comparer les algorithmes et hiérarchiser les problèmes.
- ► Une théorie qui a vu le jour avant l'invention des ordinateurs (~1935)!;

- Une théorie fondamentale pour l'informatique :
 - Indécidabilité de l'arrêt des algortihmes;
 - Indécidabilité de toutes les propriétés non triviales;
 - Notion de complexité pour comparer les algorithmes et hiérarchiser les problèmes.
- ► Une théorie qui a vu le jour avant l'invention des ordinateurs (~1935)!;
- Une théorie liée à d'autres grands problèmes mathématiques :
 λ-calcul, récursion, incomplétude des théories logiques;

- Une théorie fondamentale pour l'informatique :
 - Indécidabilité de l'arrêt des algortihmes;
 - Indécidabilité de toutes les propriétés non triviales;
 - Notion de complexité pour comparer les algorithmes et hiérarchiser les problèmes.
- ► Une théorie qui a vu le jour avant l'invention des ordinateurs (~1935)!;
- Une théorie liée à d'autres grands problèmes mathématiques :
 λ-calcul, récursion, incomplétude des théories logiques;
- Principaux acteurs: Alan Turing, Alonzo Church, Stephen Kleene et Kurt Gödel.

Bibliographie

- P. Dehornoy, Complexité et Décidabilité, Springer-Verlag, 1993.
- M. Sipser, *Introduction to the Theory of Computation*, PWS Pub. Co., 1996.
- http://www.wikipedia.org