Maximization of Nitrogen Recovery in Membrane-based Separation of Air

February 11, 2025 **Group TR9**

Taihar Tsengel (lead), Alexander Tam, Vincent Kwok, and Matthew Lokhonia

Berkeley College of Chemistry

Air Separation Membranes Crucial to Industry

Air separation membranes crucial to industry

- N₂ in food packaging, tire filling, and inert gas applications
- Gas separation and purification used in chemical industry

Fig 1. Schematic of air separation membrane.

Objectives

- Characterize the **selectivity** of the membrane to nitrogen and oxygen
- Identify ideal techno-economic membrane conditions to maximize nitrogen purity for air
- Compare membrane characteristics with theoretical model

Overview

- 1) Selectivity methods and results
- 2) Optimizing nitrogen purity methods and results

Characterizing Membrane Selectivity

Pure N2/O2 ☐ Filters ☐ Membranes ☐ Flowmeters

$$\kappa_{N_2} = \frac{J_{N_2}}{(p_{N_2R} - p_{N_2P})} = \frac{V_{eN_2}}{A_T(p_{N_2R} - p_{N_2P})}$$

Eqn 1. Nitrogen transmissibility equation

$$\alpha_{O_2N_2} = \frac{\kappa_{O_2}}{\kappa_{N_2}}$$

Eqn 2. Oxygen-Nitrogen selectivity equation

Fig 3. Schematic of nitrogen transmissibility experiment.

Membrane Selectivity is 7.8753

Flux vs. Pressure Drop of Oxygen

Transmissibility of Oxygen = $59.049*10^{-10}$ mol/(m²*s*Pa)

Flux vs. Pressure Drop of Nitrogen

Transmissibility of Nitrogen = $7.498*10^{-10}$ mol/(m²*s*Pa)

Finding Ideal Air Separation Configuration

Air □ Filters □ Membranes □ Oxygen Sensors

Characterize Effect of Feed Pressure

<u>Independent Variable</u>

- Feed Pressure

Constants

- Retentate Flow Rate
- Membrane Module
- Temperature

Measure

- Retentate O2 Molar Fraction
- Permeate Flow Rate

Characterize Effect of Retentate Flow Rate

Independent Variable

- Retentate Flow Rate

Constants

- Feed Pressure
- Membrane Module
- Temperature

Measure

- Retentate O2 Molar Fraction
- Permeate Flow Rate

Counter-Current:

Fig 2. Schematic of counter and co-current membranes.

Nitrogen Purity vs Feed Pressure at Retentate Flow Rate of 30 sho-rate

Feed Pressure (psig)

Nitrogen Purity vs Retentate Flow Rate at Feed Pressure of 90 psig

Counter-current outperforms Co-current in Nitrogen Purity

- N₂ purity increases as feed
 pressure increases for both modes
 of operation
- N₂ purity decreases as retentate
 flow rate increases for both modes
 of operation

Nitrogen Recovery vs Feed Pressure at Retentate Flow Rate of 30 sho-rate

Feed Pressure (psig)

Nitrogen Recovery vs Retentate Flow Rate at Feed Pressure of 90 psig

Co-current and Counter-current perform similarly in Nitrogen Recovery

$$N_2$$
 Recovery = $\frac{Moles N_2 \text{ in Retentate}}{Moles N_2 \text{ in Feed}}$

Eqn 3. Nitrogen recovery equation

- Nitrogen recovery decreases as feed pressure increases
- Nitrogen recovery increases as retentate flow rate increases

Counter-current outperforms Co-current in Nitrogen Purity at the same Nitrogen Recovery

Nitrogen Purity vs Nitrogen Recovery at Different Feed Pressures

Nitrogen purity
 decreases as
 nitrogen
 recovery
 increases

Nitrogen Recovery (%)

Low Pressures and High Retentate Flow Rate Economically Favorable

$$\dot{W}_S = \frac{\gamma}{\gamma - 1} R \dot{n}_f T \left(\left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right) , \gamma = \frac{C_{P,air}}{C_{V,air}}$$

Eqn 4. Work flow rate for adiabatic, steady-state, isothermal and ideal gas compression of air stream.

Operating Expense of Nitrogen vs. Pressure at Fixed Sho-Rate

30 Sho-rate, Counter-Current Module

Operating Expense of Nitrogen vs. Sho-Rate at Fixed Pressure

90 PSIg, Counter-Current Module

(

Sho-Rate

Theoretical Membrane Model Fails Due to Invalid Permeate Pressure Assumption

Theoretical Model:

$$y_{O_2} = \frac{\alpha_{O_2, N_2} x_{O_2}}{1 + (\alpha_{O_2, N_2} - 1) x_{O_2}}$$

Where:

x = Retentate Oxygen Molar Fraction,

a = Membrane Selectivity (7.8753)

y = Permeate Oxygen Molar Fraction

Assumptions:

Feed Pressure >> Permeate Pressure

Unrealistic since actual feed pressure only around x5 times larger than permeate pressure.

Experimental vs Theoretical Models of Oxygen Permeate Composition for Co-current Operation

Experimental vs Theoretical Models of Oxygen Permeate Composition for Counter-current Operation

Conclusions

1. The membrane is around **x8** more **selective** in favor of O2 compared to N2.

- 2. To *technologically* achieve the highest purity nitrogen stream, **counter-current**, **90 psig**, **20 sho-rate**.
 - The best *economic* configuration is counter-current, ~55 psig, and 30-40 sho-rate. More data is needed.

3. Theoretical model of permeate composition deviates from experimental data due to **unrealistic assumptions**.

Appendix A

Figure A-1: Process-flow diagram indicating the gas flow path for co-current module operation.

Appendix B

Figure A-2: Process-flow diagram indicating the gas flow path for counter-current module operation.

Appendix C

Figure B-1: Calibration curve for the retentate rotameters relating the volumetric flow rate in SCFS to the rotameter "Sho-Rate" reading. The equations at the top give the linear best fits to the data for each rotameter "Left" corresponds to the retentate rotameters in MS1 and MS2. Ignore "Middle" and "Right".

Appendix D

Assumptions for Work Model

Ideal Gas Assumption

Adiabatic Process

Isothermal

Steady-State Operation

Negligible Changes in Potential and Kinetic Energy

Constant Heat Capacity Ratio (γ)

\$0.31/kWh (Berkeley average energy rate)

	OPEX (\$/mol N2) Pressure/Retentate flow ra	Feed Pressure							
		19.9	30	40	49.8	59.9	70	79.8	90
	20								1504.07252
	30	267.750611	391.9534793	516.865002	652.3092586	789.032157	931.1370259	1088.336469	1244.646743
Retentate Sho-Rate	50								1041.600584
	70								942.066639
	90								887.0169933
	110								853.5475402
	120								836.9080062