Каков первый шаг в доказательстве любого из законов де Моргана?

Рассмотреть произвольный элемент a, принадлежащий левой (или правой) части соответствующего равенства.

Note 2

7e46fe30f7624833823e79c0fedc16df

Какова основная идея доказательства любого из законов де Моргана?

Надо показать, что условие принадлежности произвольного элемента a левой части совпадают с таковыми для правой части.

Note 3

010c7f55d37742fea697ee54e1b20715

Как показать, что произвольное бесконечное множество A содержит счётное подмножество?

Выбрать

- a₁ из A,
- a_2 из $A \setminus \{a_1\}$,
- a_3 из $A \setminus \{a_1, a_2\}$,

Получим счётное множество $\{a_1, a_2, a_3, \ldots\} \subset A$.

Note 4

61cad32098d341eb8086313887d6cd8c

Как показать, что любое бесконечное подмножество B счётного подмножества A счётно?

Пронумеровать элементы множества B в порядке их появления в последовательности $\{a_1, a_2, a_3, \ldots\}$ элементов множества A.

Пусть A — счётное множество, $B \subset A$. Что можно сказать о множестве B?

B не более чем счётно.

Note 6

bad29a5101fe46c3bd91ed4d7f33015b

Как показать, что не более чем счётное объединение не более чем счётных множеств не более чем счётно?

Расположить элементы множеств по строкам в таблицу и пронумеровать их в порядке их появления на "побочных" диагоналях.

Note 7

23eae0cde4e049379eab7d391cd31769

Как показать, что множество Q счётно?

Представить его как объединение не более чем счетного семейства не более чем счётных множеств $\{\mathbb{Q}_i\}_{i\in\mathbb{N}}$, где

$$\mathbb{Q}_q := \left\{ \frac{p}{q} \mid p \in \mathbb{Z} \right\}.$$

Note 8

fa0bde6f987c45f9b12f1e7a19f5ed7f

Пусть [a,b] — невырожденный отрезок. Как можно задать биекцию $\varphi:[a,b] \to [0,1]$?

$$\varphi(x) = \frac{(x-a)^n}{(b-a)^n}, \quad n \in \mathbb{N}.$$

Как доказать, что для любого бесконечного множества A и его конечного подмножества B (пусть |B| = m)

$$A \setminus B \sim A$$
?

Рассмотрим произвольную последовательность

$$\{x_n\}_{n=1}^{\infty}$$

несовпадающих элементов множества A такую, что первые её m элементов — это все элементы множества B. Обозначим теперь

$$\varphi(x) = \begin{cases} x_{k+m}, & x = x_k, \\ x, & x \notin \{x_n\}_{n=1}^{\infty}. \end{cases}$$

Тогда $\varphi:A\to A\setminus B$ — биекция, а значит $A\setminus B\sim A$.

Note 10

Как доказать, что $[0,1] \sim \mathbb{R}$?

- $[0,1]\sim (0,1),$ поскольку $(0,1)=[0,1]\setminus \{0,1\},$ $(0,1)\sim \mathbb{R},$ поскольку $\cot(\pi x)|_{(0,1)}$ биекция.

Получаем $[0,1] \sim (0,1) \sim \mathbb{R} \implies [0,1] \sim \mathbb{R}$.

Note 11

Приведите пример системы вложенных отрезков в множестве $\mathbb Q$ для которой не выполняется аксиома Кантора.

Можно рассмотреть последовательность вложенных отрезков

$$\{[1; 2], [1,4;1,5], [1,41;1,42], [1,414;1,415], \ldots\}$$

концы которых — все более и более точные десятичные приближения иррационального числа $\sqrt{2}$.

$$A \setminus (A \setminus B) = \{\{c1:: A \cap B.\}\}$$

59b526f72a4343fb936d1fa20561c886

Как доказать, что $C_{n+1}^{k+1} = C_n^k + C_n^{k+1}$?

$$C_{n+1}^{k+1} = \frac{(n+1)!}{(k+1)!(n-k)!}$$

$$= C_n^k \cdot \left(\frac{n+1}{k+1}\right)$$

$$= C_n^k \cdot \left(1 + \frac{n-k}{k+1}\right)$$

$$= C_n^k + \frac{n!(n-k)}{k!(n-k)!(k+1)}$$

$$= C_n^k + \frac{n!}{(k+1)!(n-(k+1))!}$$

$$= C_n^k + C_n^{k+1}.$$

Note 14

a20a03ca2ehe4h5d85249845f15f1561

Как доказать, что во всяком конечном подмножестве $\mathbb R$ есть наибольший элемент?

По индукции:

- максимум множества из одного элемента есть сам этот элемент;
- максимум множества из n>1 элемента есть либо максимум каких-либо n-1 его элементов, либо значение оставшегося n-ого элемента.

Как доказать, что во всяком непустом ограниченном сверху множестве $A \subset \mathbb{Z}$ есть наибольший элемент?

Выберем произвольный $x_0 \in A$ и обозначим

$$A_0 = \{ x \mid x \in A \land x \geqslant x_0 \},$$

$$A_1 = A \setminus A_0.$$

Тогда A_0 — конечное подмножество \mathbb{R} , а значит существует $\max A_0$. При этом для любого $x \in A$ имеем два случая:

- 1. если $x \in A_0$, то $x \le \max A_0$ по определению максимума;
- 2. если $x \notin A_0$, то по построению A_0 имеем

$$\forall \hat{x} \in A_0 \quad x < \hat{x},$$

а значит $x < \max A_0$.

В любом случае имеем $x \leq \max A_0$, так что $\max A_0 = \max A$ по определению.

Note 16

c7dd2e717d9c47199cf723b912cf4e34

Как доказать, что во всяком интервале есть хотя бы одно рациональное число?

Пусть (a,b) — интервал в $\mathbb R$. Тогда по аксиоме Архимеда

$$\exists n \in \mathbb{N} \quad n > \frac{1}{b-a} \implies b-a > \frac{1}{n}.$$

Нетрудно показать, что

$$\frac{\lfloor na\rfloor + 1}{n} \in (a, b) \cap \mathbb{Q}.$$

Если $\forall \varepsilon > 0 \quad |b-a| < \varepsilon$, то {{c1:: a=b.}}

Note 18

Beaaa1f0f8624d8db6fa6824b7394a4a

Как доказать, что если $\forall \varepsilon > 0 \quad |b-a| < \varepsilon$, то a = b?

Допустим, что $a \neq b$. Тогда для $\varepsilon = |b-a| > 0$ не выполняется $\varepsilon < |b-a| \implies$ противоречие $\implies a = b$.

Note 19

d8e380894h49477d9h690778e94ae82i

Как доказать, что у любой последовательности может быть не более одного предела?

Из определения предела

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \begin{cases} |x_n - a| < \frac{\varepsilon}{2}, \\ |x_n - b| < \frac{\varepsilon}{2}. \end{cases}$$

Но тогда

$$|a - b| = |a - x_n + x_n - b| \le |a - x_n| + |b - x_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Получаем, что $\forall \varepsilon > 0 \quad |b-a| < \varepsilon \implies a = b.$

Note 20

1e1fe886e2334eb18a97c2ab2cfadc49

Как доказать, что любая сходящаяся последовательность ограничена сверху?

Пусть $x_n \to a \in \mathbb{R}$. Возьмём $\varepsilon=1$; тогда по определению предела

$$\exists N \in \mathbb{N} \quad \forall n > N \quad a - 1 < x_n < a + 1,$$

т.е. множество $\{x_n \mid n>N\}$ ограниченно сверху значением a+1, но тогда все множество значений $\{x_n\}$ ограниченно сверху значением

$$\max\{x_1, x_2, \dots, x_N, a+1\}.$$

Если $\forall \varepsilon > 0$ $a - b < \varepsilon$, то ((c1:: $a \le b$.))

Note 22

b0c8d698cc304040a59c01dc5852ed8l

Как доказать, что если $\forall \varepsilon > 0 \quad a - b < \varepsilon$, то $a \leq b$?

Допустим, что a>b. Тогда для $\varepsilon=a-b>0$ не выполняется $a-b<\varepsilon \implies$ противоречие $\implies a\leqslant b$.

Note 23

f492d02ab40942c3bb31727a84b97f36

Как доказать теорему о предельном переходе в неравенстве для последовательностей?

Пусть $x_n \to a$, $y_n \to b$, $\forall n \ x_n \leqslant y_n$. Тогда из определения предела

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \begin{cases} a - \frac{\varepsilon}{2} < x_n, \\ y_n < b + \frac{\varepsilon}{2} \end{cases}$$
$$\implies a - \frac{\varepsilon}{2} < x_n \leqslant y_n < b + \frac{\varepsilon}{2}$$
$$\implies a - b < \varepsilon.$$

Получаем, что $\forall \varepsilon > 0 \quad a - b < \varepsilon \implies a \leqslant b$.

Note 24

6d56b828715344a4981b505177237b3d

Как доказать теорему о сжатой последовательности?

Пусть $x_n \to a$, $z_n \to a$, $\forall n \ x_n \leqslant y_n \leqslant z_n$. Тогда из определения предела

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \begin{cases} a - \varepsilon < x_n, \\ z_n < a + \varepsilon \end{cases}$$

$$\implies a - \varepsilon < x_n \leqslant y_n \leqslant x_n < a + \varepsilon$$

$$\implies a - \varepsilon < y_n < a + \varepsilon$$

$$\stackrel{\text{def}}{\Longrightarrow} y_n \to a.$$

Как доказать, что $\forall \{x_n\} \quad x \to a \iff x-a \to 0$?

Из определения предела

$$x \to a \iff \\ \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad |x - a| < \varepsilon \\ \iff x - a \to 0.$$

Note 26

ee8b4fecca4148bcb931714d65a0f370

Как доказать, что произведение бесконечно малой последовательности на ограниченную есть бесконечно малая?

Пусть $x_n \to 0$, $\exists M > 0 \quad \forall n \mid y_n \mid \leqslant M$.

Пусть
$$x_n \to 0, \quad \exists M>0 \quad \forall n \ |y_n| \leqslant M.$$
 Тогда из определения предела
$$\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n>N \quad |x_n| < \frac{\varepsilon}{M}$$

$$\Longrightarrow |x_n y_n| < \varepsilon \stackrel{\text{def}}{\Longrightarrow} x_n y_n \to 0.$$

Note 27

Как доказать, что если $x_n o a, y_n o b,$ то

$$x_n + y_n \to a + b$$
?

Из определения предела

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > \mathbb{N} \quad \begin{cases} |x_n - a| < \frac{\varepsilon}{2}, \\ |y_n - b| < \frac{\varepsilon}{2} \end{cases}$$

$$\implies |(x_n + y_n) - (a + b)| \leqslant |x_n - a| + |y_n - b| < \varepsilon$$

$$\stackrel{\text{def}}{\Longrightarrow} x_n + y_n \to a + b.$$

Как доказать, что если
$$x_n o a, \quad y_n o b,$$
 то
$$x_n y_n o ab?$$

$$x_n y_n - ab = x_n y_n - x_n b + x_n b - ab$$

$$= \underbrace{x_n}_{\text{opr.}} \underbrace{(y_n - b)}_{\text{6.M.}} - \underbrace{b}_{\text{orp.}} \underbrace{(x_n - a)}_{\text{6.M.}} \longrightarrow 0$$

$$\implies x_n u_n \to ab.$$

0ad2f5ec6e414af58c65e717bab87321

Как доказать, что если $x_n \to a \neq 0,$ то $\left\{\frac{1}{x_n}\right\}$ ограничена?

Возьмём $\varepsilon = \frac{|a|}{2} > 0.$ Тогда по определению предела

$$\exists N \in \mathbb{N} \quad \forall n > N \quad a - \frac{|a|}{2} < x_n < a + \frac{|a|}{2}$$

$$\implies \forall n > N \quad |x_n| > \frac{|a|}{2}.$$

Обозначим
$$k:=\min\left\{|x_1|,|x_2|,\ldots,|x_N|,\frac{|a|}{2}
ight\}$$
 . Тогда
$$1\qquad 1$$

$$\forall n \quad \frac{1}{|x_n|} \leqslant \frac{1}{k}.$$

Note 30

321261a3f4294e4e93998ebc9b7ee7b6

Как доказать, что если
$$x_n o a \neq 0$$
, то
$$\frac{1}{x_n} o \frac{1}{a}?$$

$$\frac{1}{x_n} - \frac{1}{a} = \frac{a - x_n}{x_n a} = \underbrace{(a - x_n)}_{\text{6.M.}} \cdot \underbrace{\frac{1}{x_n a}}_{\text{orp.}} \to 0$$

$$\implies \frac{1}{x_n} \to \frac{1}{a}.$$

Как доказать, что если
$$x_n o a, \quad y_n o b
eq 0,$$
 то
$$\frac{x_n}{y_n} o \frac{a}{b}?$$

$$\frac{x_n}{y_n} = x_n \cdot \frac{1}{y_n} \to a \cdot \frac{1}{b} = \frac{a}{b}.$$

Note 32

Как доказать, что если $x_n \to a$, то $|x_n| \to |a|$?

Из определения предела

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad |x_n - a| < \varepsilon$$

$$\implies ||x_n| - |a|| \leqslant |x_n - a| < \varepsilon \stackrel{\text{def}}{\implies} |x_n| \to |a|.$$

Note 33

Пусть $x_n \to +\infty$ и $\{y_n\}$ ограниченна снизу. Как доказать, что

$$x_n + y_n \to +\infty$$
?

 $\{y_n\}$ ограничена $\implies \exists m > 0 \quad \forall n \ y_n > m.$

$$\{y_n\}$$
 ограничена \Longrightarrow $\exists m>0$ $\forall n \ y_n>m$. Тогда из определения предела $\forall E>0$ $\exists N\in\mathbb{N}$ $\forall n>N$ $x_n>E-m$ \Longrightarrow $x_n+y_n>E \stackrel{\mathrm{def}}{\Longrightarrow} x_n+y_n\to+\infty$.

Как доказать, что если $x_n \to +\infty$, то $(-x_n) \to -\infty$?

из определения предела
$$\forall E>0 \quad \exists N\in \mathbb{N} \quad \forall n>N \quad x_n>E$$

$$\Longrightarrow -x_n<-E \stackrel{\text{def}}{\Longrightarrow} (-x_n)\to -\infty.$$

Note 35

Как доказать, что если $x_n \to -\infty$ и $\{y_n\}$ ограничена сверху, то

$$x_n + y_n \to -\infty$$
?

Очевидно, что $-x_n \to +\infty$ и $\{-y_n\}$ ограничена снизу,

$$-x_n - y_n \to +\infty \implies x_n + y_n \to -\infty.$$

Note 36

2a9c150676e64b28b32989c7bb381a61

Как доказать, что если $x_n o \infty$ и $\{y_n\}$ ограниченна, что

$$x_n + y_n \to \infty$$
?

$$\{y_n\}$$
 ограничена $\Longrightarrow \exists M \in \mathbb{R} \quad \forall n \quad -M < y_n < M.$ Тогда из определения предела
$$\forall E > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \begin{bmatrix} x_n > E + M, \\ x_n < -E - M \end{bmatrix}$$
 $\Longrightarrow \quad \begin{bmatrix} x_n + y_n > E, \\ x_n + y_n < -E \end{bmatrix} \stackrel{\text{def}}{\Longrightarrow} x_n + y_n \to \infty.$

Как доказать, что если $x_n \to \pm \infty$ и $\forall n \quad y_n \geqslant b > 0$, то

$$x_n y_n \to \pm \infty$$
?

Докажем для определённости случай с $x_n \to +\infty$.

докажем для определенности случай с
$$x_n \to +\infty$$
. Тогда из определения предела
$$\forall E>0 \quad \exists N\in \mathbb{N} \quad \forall n>N \quad x_n>\frac{E}{b} \\ \Longrightarrow x_ny_n>E \stackrel{\text{def}}{\Longrightarrow} x_ny_n\to +\infty.$$

Note 38

Как доказать, что если $x_n \to \pm \infty$ и $\forall n \quad y_n \leqslant b < 0$, то

$$x_n y_n \to \mp \infty$$
?

$$\forall n \quad -y_n \geqslant -b > 0 \implies x_n \cdot (-y_n) \to \pm \infty$$

 $\implies x_n y_n \to \mp \infty.$

Note 39

e7685c94559ac1625d9957beaef

Как доказать, что если $x_n o \infty$ и $\forall n \quad |y_n| \geqslant b > 0$, то $x_n y_n \to \infty$?

$$x_n \to \infty \implies |x_n| \to +\infty \implies |x_n y_n| \to +\infty$$

 $\implies x_n y_n \to \infty.$

Note 40

Как доказать, что $o(c \cdot f(x)) = o(f(x)) \quad \forall c \in \mathbb{R}?$

$$o(c \cdot f(x)) \stackrel{\text{def}}{=} \underbrace{\alpha(x)}_{\text{6.m.}} \cdot c \cdot f(x) = \underbrace{\alpha(x) \cdot c}_{\text{6.m.}} \cdot f(x) \stackrel{\text{def}}{=} o(f(x)).$$

ff3a996ecf5440ef9fec11b8e2b11e57

Как доказать, что $o(f(x)) \pm o(f(x)) = o(f(x))$?

$$\begin{split} o(f(x)) &\pm o(f(x)) \stackrel{\text{def}}{=} \underbrace{\alpha_1(x)}_{\text{6.m.}} f(x) \pm \underbrace{\alpha_2(x)}_{\text{6.m.}} f(x) = \\ &= \underbrace{(\alpha_1(x) \pm \alpha_2(x))}_{\text{6.m.}} \cdot f(x) \stackrel{\text{def}}{=} o(f(x)). \end{split}$$

Note 42

31f4dbdff85847fd8f20fa30144e98b

Как доказать, что $o(f(x)) \cdot o(g(x)) = o(f(x) \cdot g(x))$?

$$\begin{split} o(f(x)) \cdot o(g(x)) & \stackrel{\text{def}}{=} \underbrace{\alpha_1(x)}_{\text{6.m.}} f(x) \cdot \underbrace{\alpha_2(x)}_{\text{6.m.}} \cdot g(x) \\ &= \underbrace{\alpha_1(x)\alpha_2(x)}_{\text{6.m.}} \cdot f(x)g(x) = o(f(x) \cdot g(x)) \end{split}$$

Note 43

802f003287ab48a38ca2353f65202442

Как доказать, что $f(x) \sim g(x) \iff f(x) = g(x) + o(g(x))$?

$$f(x) \sim g(x) \iff f(x) = \alpha(x)g(x) \iff$$

$$f(x) = (1 + \alpha'(x))g(x) = g(x) + \alpha'(x)g(x)$$

$$\stackrel{\text{def}}{=} g(x) + o(g(x)),$$

где $\alpha(x) \to 1$, $\alpha'(x) := \alpha(x) - 1 \to 0$.

Пусть $\{[a_n,b_n]\}_{n=1}^{\infty}$ — последовательность стягивающихся отрезков. Как доказать, что

$$\exists ! c: \quad c \in \bigcap_{n=1}^{\infty} [a_n, b_n]?$$

Из аксиомы Кантора о вложенных отрезках имеем существование c. Рассмотрим теперь произвольный \bar{c} из $\bigcap_{n=1}^{\infty} [a_n,b_n]$. Тогда

$$\forall n \quad \begin{cases} a_n \leqslant c \leqslant b_n, \\ a_n \leqslant \bar{c} \leqslant b_n \end{cases} \implies a_n - b_n \leqslant c - \bar{c} \leqslant b_n - a_n,$$

но по определению стягивающихся отрезков $a_n - b_n \to 0$, а значит по теореме о сжатой последовательности

$$c - \bar{c} \to 0 \implies c - \bar{c} = 0 \implies \bar{c} = c.$$

Получаем и единственность c.

Note 45

cd83a426bf4446d184de8e0899cdefbd

Пусть $\{[a_n,b_n]\}_{n=1}^{\infty}$ — последовательность стягивающихся отрезков, и

$$c \in \bigcap_{n=1}^{\infty} [a_n, b_n].$$

Как доказать, что $a_n \to c$ и $b_n \to c$?

Из условия имеем

$$\forall n \quad a_n \leqslant c \leqslant b_n \implies a_n - b_n \leqslant c - b_n \leqslant 0,$$

но $a_n - b_n \to 0$ по определению стягивающихся отрезков, а значит по теореме о сжатой последовательности

$$c - b_n \to 0 \implies b_n \to c.$$

Аналогично получаем, что и $a_n \to c$.

Как доказать, что если M — верхняя граница множества $A \subset \mathbb{R},$ и при этом

$$\exists \{x_n\} \subset A: x_n \to M,$$

то $M = \sup A$?

Из определения предела

$$\forall \varepsilon > 0 \quad \exists n \quad |x_n - M| < \varepsilon \implies M - x_n < \varepsilon$$

$$\implies x_n > M - \varepsilon \implies \forall \varepsilon > 0 \quad \exists x \in A \quad x > M - \varepsilon$$

$$\stackrel{\text{def}}{\Longrightarrow} M = \sup A.$$

Note 47

a8068d8f45674dc8b8773d9b9326d19a

В чем основная идея доказательства теоремы о существовании верхней грани у любого непустого ограниченного сверху множества $A \subset \mathbb{R}$?

Нужно построить последовательность стягивающихся отрезков $\{[a_n,b_n]\}_{n=1}^\infty$ такую, что

$$\forall n \quad \begin{cases} [a_n, b_n] \cap A \neq \emptyset, \\ (b_n, +\infty) \cap A = \emptyset, \end{cases}$$

и показать, что точка $c\in \bigcap_{n=1}^\infty [a_n,b_n]$ — это супремум A.