Lecture5: Basic physics of semiconductors (5)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Review question

- What is the V_T shown in the second question?
 - It is the thermal voltage, which is given by

$$V_T = \frac{k_B T}{q}$$

- At 300K, it is approximately 25.85 mV.
- Using the values in the problem,

$$- V_0 = 25 \, mV \times \ln \frac{10^{16} \times 10^{18}}{10^{20}} = 805 \, \text{mV (close to 833 mV)}$$

PN junction @ equilibrium

- No current
 - Because it is at equilibrium.
- Depletion region

Forward/reverse

- A diode shows a strong polarity.
 - Does a resistor have a polarity?
 - In diodes, the following two cases are completely different.
- Forward bias
 - The voltage at the n-type side is higher than the p-type one.

- Reserve bias
 - The voltage at the p-type side is lower than the n-type one.

Reverse bias

Electric field

Now, the magnitude of the electric becomes larger.

← This is the equilibrium solution. What happens when the n-type region is positively biased?

Higher electric field?

- How can the pn junction generate the higher electric field?
 - At equilibrium, how did it generate the built-in electric field? $\nabla \cdot \mathbf{D} = \rho$
 - Higher electric field means more space charges!

← Which one can provide nonzero electric field?

- Therefore, the depletion region becomes wider.
 - Even higher potential barrier!

Variable capacitance

Capacitor? Why do we care about it?

$$Q = CV$$
 and $I = C \frac{dV}{dt}$

- Where can you find capacitance in the following structure?
- Why is it important?

Doping profile of a typical planar MOSFET

Charge

Charge stored in a pn junction

$$Q = A \sqrt{2\epsilon_s q \frac{N_A N_D}{N_A + N_D}} (V_0 + V_R)$$

- Then, what is the capacitance at a given value of the reverse bias, V_R ?

Summary of reverse bias

Reverse bias

- Larger electric field
- Wider depletion region
- (Almost) no current flow
- Variable capacitance

Forward bias

Forward bias

- We can easily guess that the depletion width will be reduced.
- Potential barrier is lowered. (Equilibrium and 0.5 V)

Electric potential [V]

Position [µm]
GIST Lecture on March 16, 2015 (Internal use only)

Density @ forward bias

- Electron concentration (similar for hole concentration)
 - Equilibrium and 0.5 V
 - Exponential increase of electron density!

IV characteristics

- In forward bias,
 - The external voltage opposes the built-in potential, raising the diffusion currents substantially.
- In reverse bias,
 - The applied voltage enhances the field, prohibiting current flow.

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

Here, the "reverse saturation current" is given by

$$I_S = Aqn_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$$

- L_n and L_p are electron and hole "diffusion lengths," respectively.

An example

- Determine I_S.
 - The cross section of 100 μm²
 - L_n and L_p are 20 µm and 30 µm, respectively.
 - L_n and L_p are 20 µm and 30 µm, respectively.
- When $I_S = 1.77 \times 10^{-17} \text{ A}$,
 - Determine the forward bias current.
 - For $V_D = 300 \text{ mV}$, $I_S \left(\exp \frac{V_D}{V_T} 1 \right) = 3.63 \text{ pA}$
 - For $V_D = 800$ mV, 820 μ A

Homework#1

- In total, five problems.
- Due date: March 23 (Mon)
- Problems will be announced shortly.

Office hour

- In this semester, you have to visit my office (at least) once.
- In this week, I will provide the following sessions.
 - March 16 (Mon) PM 09:00~PM11:00
 - March 17 (Tue) PM 09:00~PM11:00
 - March 18 (Wed) PM 09:00~PM11:00
 - March 19 (Thu) PM 09:00~PM11:00
- Please send me a reservation e-mail in advance.

	3/16, Mon	3/17, Tue	3/18, Wed	3/19, Thu
09:00~	Booked	Booked		
09:30~				
10:00~		Booked	Booked	
10:30~				