Loss, Empirical Risk

This problem continues a previous activity. Consider a classification problem where we aim to classify new data points x into one of c = 5 classes denoted by $y \in \{A, B, C, D, F\}$.

- Training a classifier in machine learning can be thought of as finding a function f(x) that a good job of assigning each data x point to its correct class. This is generally the challenging task in machine learning.
- *Testing* simply refers to applying the function $f(\cdot)$ to a new data point x.

You have a classifier that predicts the final letter grade for this course based on the number of hours studied for the first exam, denoted *x*:

$$f(x) = \begin{cases} x \ge 10 & A \\ 10 > x \ge 8 & B \\ 8 > x \ge 6 & C \\ 6 > x \ge 4 & D \\ 4 > x \ge 0 & F. \end{cases}$$
 (1)

Recall that training error or empirical risk is defined as

$$\frac{1}{n}\sum_{i}\ell(f(x_i),y_i)$$

where $\ell(\cdot)$ is the *loss* function. You have a labeled training dataset from last year, when only 6 students took the course:

$$\mathscr{D} = \{(x_i, y_i)\}_{i=1}^6 = \{(25.2, B), (2.1, D), (4.7, D), (12.0, A), (8.1, B), (4.9, C)\}$$

The misclassification loss (or 0/1 loss) is defined as $\ell(f(x), y) = \mathbb{1}_{f(x) \neq y}$ where

$$\mathbb{1}_{f(x) \neq y} = \begin{cases} f(x) \neq y & 1\\ \text{else} & 0 \end{cases}$$

is the indicator function.

1. What is the empirical risk on \mathscr{D} when $\ell(\cdot)$ is the misclassification loss? You may find it helpful to use a table:

Input x	25.2	2.1	4.7	12.0	8.1	4.9
Label y	В	D	D	A	В	C
Classifier Output $f(x)$	Δ	F	0	A	B	0
Loss $\ell(f(x), y)$	1	1	0	0	0	1

- **2.** A *confusion matrix* C is a matrix with entries $C_{i,j}$ defined as the number of times f(x) = j when y = i on the test set. Find the confusion matrix for $f(\cdot)$ with the dataset above.
- **3.** Instead of using letter grades, you decide to use the integers 1,2,3,4,5, where *A* maps to 5, *B* maps to 4, and so on. What is the empirical risk when $\ell(\cdot) = (f(x) y)^2$, i.e, the squared error? Make a new table with new labels and use the new loss function:

							elubinari usk
Input x	25.2	2.1	4.7	12.0	8.1	4.9	= 1 (HH 0+0+0+1)
Label y	4	2	2	5	4	3	6
Classifier Output $f(x)$	5	1	2	5	4	2	₹ 0.5
Loss $\ell(f(x), y)$	4	1	Ü	0	0	1	

- 4. If you change the mapping from letter grades to integers so that A maps to 1, and F maps to 5 (but no other changes). Does this change the squared error? Which is a more reasonable mapping and why? Yes. A to 5 is more reasonable between in the ac A=1, A \iff D is clust than FerD
- 5. You use the classifier f(x) in eq. (1) above for a new group of students. Without any new information, what percentage do you expect to correctly predict? How does this relate to the empirical risk when using misclassification loss? 50%, given emperior 15% of 0.5
- **6.** Empirical risk minimization is a technique for designing a classifier. If \mathscr{F} is a set of candidate functions, the empirical risk minimizer is:

$$f = \arg\min_{f \in \mathscr{F}} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

which, in words, is the function that minimizes the average loss among the candidate functions (on the training data). Let \mathscr{F} be functions of the form

$$f(x) = \begin{cases} x \ge t_a & A \\ t_a > x \ge t_b & B \\ t_b > x \ge t_c & C \\ t_c > x \ge t_d & D \\ t_d > x \ge 0 & F \end{cases}$$

with $t_a \ge t_b \ge t_c \ge t_d > 0$. Does the classifier specified at the start of this problem minimize empirical risk among \mathscr{F} (on \mathscr{D})? Use the 0/1 loss. If not, propose a new classifier that minimizes empirical risk among candidate functions \mathscr{F} .

$$2 \text{ of } 2$$

$$\begin{cases} t_0 = 10 \\ t_0 = 8 \\ t_c = 4 \\ t_d = 2 \end{cases}$$
Maximizes empirical risk