Ciencia de Datos para Políticas Públicas

Clase 05 - Regresión y Clasificación

Pablo Aguirre Hormann 02/09/2020

¿Qué veremos hoy?

- Regresión
- Clasificación

¿Por qué?

Objetivo: representar la relación entre una variable dependiente Y y una o varias variables explicativas/independientes X_1, X_2, \ldots, X_k .

$$Y = f(X) + \epsilon$$

- ullet Si Y es una variable continua: regresión
- ullet Si Y es una variable categ'orica: ${f clasificaci\'on}$

Inferencia vs Predicción

Inferencia:

- Aprender y concluir algo sobre como se relacionan variables
- Evitar sesgo
- Dentro de muestra
- \hat{f} / \hat{eta}

Predicción:

- Que la predicción esté lo más cerca posible del valor real
- Evitar sobreajuste al entrenar modelos
- Fuera de muestra
- \bullet \hat{Y}

Algunos algorítmos pueden servir para ambos objetivos pero con diferencias en la implementación (ej. Regresión lineal para inferencia o para predicción).

Por ahora no hablaremos de predicción

Regresión Lineal

Estudiantes/Profesor vs Resultados

```
# crear vectores de datos
REP ← c(15, 17, 19, 20, 22, 23.5, 25)
Resultados ← c(680, 640, 670, 660, 630, 660, 635)

# juntar ambos vectores en un data frame
datos_colegio ← data.frame(REP, Resultados)

ggplot(datos_colegio, aes(REP, Resultados)) +
   geom_point(size = 3) +
   theme_minimal()
```


Una linea que describe esta relación (?)

$$Resultados_i = 713 - 3 * REP_i$$

```
ggplot(datos_colegio, aes(REP, Resultados)) +
  geom_point(size = 3) +
  geom_abline(aes(intercept = 713, slope = -3), size = 2, col = "red") +
  theme_minimal()
```


Ahora muchas lineas

$Resultados_i = \cline{:}? - \cline{:}?*REP_i$

Mínimos Cuadrados Ordinarios

Dada una verdad:

$$Y_i = \beta_0 + \beta_1 * X_i + u_i$$

• Realizamos una estimación:

$$y_i = b_0 + b_1 * X_i$$

$$X,Y o (X'X)^{-1}X'Y o \hat{eta} \xrightarrow{si\ todo\ sale\ bien} eta$$

$$\hat{eta} = b$$

Mínimos Cuadrados Ordinarios (cont.)

Regresión lineal simple

Modelo a estimar dada la existencia de ciertos datos

$${\hat y}_i = b_0 + b_1 * X_i$$

- ¿Cómo se estiman los parámetros?
 - o **objetivo**: minimizar la suma del cuadrado de los residuales

$$\min_{b_o,b_1} \sum_i^n \hat{u_i}^2 = \min_{b_o,b_1} \sum_i^n (Y_i - \hat{y}_i)^2 = \min_{b_o,b_1} \sum_i^n (Y_i - b_0 + b_1 * X_i)^2$$

Parámetros estimados

$$b_1 = rac{\sum_{i=1}^n (X_i - ar{X})(Y_i - ar{Y})}{\sum_{i=1}^n (X_i - ar{X})^2} \ b_0 = ar{Y} - b_1 ar{X}$$

Representación visual

Representación visual (cont)

R^2 - Coeficiente de determinación

• Suma de cuadrados de la regresión (SCR):

$$\sum_{i=1}^n (\hat{Y}_i - \bar{Y})^2$$

• Suma de cuadrados de los residuales (SCE):

$$\sum_{i=1}^n \hat{u_i}^2 = \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Suma de cuadrados totales (SCT):

$$SCR + SCE = \sum (Y_i - ar{Y})^2$$

Teniendo estos valores, el coeficiente de determinación corresponde a:

$$R^2 = rac{SCR}{SCT} = 1 - rac{SCE}{SCT}$$

Noten que $R^2 \in [0,1]$, con 0 correspondiente a un nulo ajuste y 1 a un ajuste perfecto (todos los puntos sobre la curva estimada)

¿Cómo se ve esto?

Ahora con "datos reales"

(Disponibles en el paquete **AER**)

Datos California (USA)

```
library(tidvverse)
library(AER)
data("CASchools")
str(CASchools)
   'data.frame': 420 obs. of 14 variables:
   $ district
                       "75119" "61499" "61549" "61457" ...
##
                 : chr
                 : chr
                       "Sunol Glen Unified" "Manzanita Elementary" "Thermalito Union Eleme
   $ school
##
   $ county
                 : Factor w/ 45 levels "Alameda", "Butte", ...: 1 2 2 2 2 6 29 11 6 25 ...
###
   $ grades
                 : Factor w/ 2 levels "KK-06", "KK-08": 2 2 2 2 2 2 2 1 ...
###
##
   $ students
                 : num
                       195 240 1550 243 1335 ...
   $ teachers
###
                 : num
                       10.9 11.1 82.9 14 71.5 ...
   $ calworks
                       0.51 15.42 55.03 36.48 33.11 ...
###
                 : num
   $ lunch
##
                       2.04 47.92 76.32 77.05 78.43 ...
                 : num
   $ computer
                 : num 67 101 169 85 171 25 28 66 35 0 ...
###
   $ expenditure: num
                       6385 5099 5502 7102 5236 ...
###
   $ income
###
                 : num
                        22.69 9.82 8.98 8.98 9.08 ...
   $ english
                       0 4.58 30 0 13.86 ...
###
                 : num
                       692 660 636 652 642 ...
   $ read
##
                 : num
##
    $ math
                        690 662 651 644 640 ...
                 : num
```

Preparar datos

##	district	school	Resultados	REP
## 1	75119	Sunol Glen Unified	690.80	17.88991
## 2	61499	Manzanita Elementary	661.20	21.52466
## 3	61549	Thermalito Union Elementary	643.60	18.69723
## 4	61457	Golden Feather Union Elementary	647.70	17.35714
## 5	61523	Palermo Union Elementary	640.85	18.67133
## 6	62042	Burrel Union Elementary	605.55	21.40625
## 7	68536	Holt Union Elementary	606.75	19.50000
## 8	63834	Vineland Elementary	609.00	20.89412
## 9	62331	Orange Center Elementary	612.50	19.94737
## 10	67306	Del Paso Heights Elementary	612.65	20.80556
## 11	65722	Le Grand Union Elementary	615.75	21.23810
## 12	62174	West Fresno Elementary	616.30	21.00000
## 13	71795	Allensworth Elementary	616.30	20.60000

Relación entre variables

```
datos_reg %>%
  ggplot(aes(REP, Resultados)) +
  geom_point() +
  theme_minimal()
```


Graficar la curva de regresión

La regresión lineal simple a estimar sería $Resultados_i = b_0 + b_1 * REP_i$

- ggplot nos permite graficar esta curva de forma simple con geom_smooth
 - o method = lm:curva representando linear model
 - se = FALSE: sin intervalo de confianza

```
datos_reg %>%
  ggplot(aes(REP, Resultados)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE,
  theme_minimal()
```


¿Cuáles son los coeficientes? (b_0 , b_1)

Estimar coeficientes "a mano"

$$b_1 = rac{\sum_{i=1}^n (X_i - ar{X})(Y_i - ar{Y})}{\sum_{i=1}^n (X_i - ar{X})^2}; \;\; b_0 = ar{Y} - b_1 ar{X}$$

```
beta1 ← sum((datos_reg$REP - mean(datos_reg$REP)) * (datos_reg$Resultado - mean(datos_sum((datos_reg$REP - mean(datos_reg$REP))^2)
beta0 ← mean(datos_reg$Resultados) - (beta1*mean(datos_reg$REP))
round(c(beta0, beta1), 4)
```

[1] 698.9329 -2.2798

$$R^2 = rac{\sum_{i=1}^n (\hat{Y}_i - ar{Y})^2}{\sum (Y_i - ar{Y})^2}$$

```
 SCR \leftarrow sum(((beta0 + (beta1*datos_reg$REP)) - mean(datos_reg$Resultados))^2) \\ SCT \leftarrow sum((datos_reg$Resultados - mean(datos_reg$Resultados))^2) \\ R2 \leftarrow SCR/SCT \\ round(R2, 5)
```

[1] 0.05124

Por suerte R lo hace más simple

```
modelo1 ← lm(Resultados ~ REP, data = datos reg)
summary(modelo1)
###
## Call:
## lm(formula = Resultados ~ REP, data = datos reg)
##
## Residuals:
## Min 1Q Median 3Q
                                    Max
## -47.727 -14.251 0.483 12.822 48.540
###
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
###
## (Intercept) 698.9329 9.4675 73.825 < 2e-16 ***
## REP -2.2798 0.4798 -4.751 2.78e-06 ***
## ---
## Signif. codes: 0 '*** ' 0.001 '** ' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
## F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
```

¿Qué es esto?

str(modelo1)

```
## List of 12
   $ coefficients : Named num [1:2] 698.93 -2.28
   ..- attr(*, "names")= chr [1:2] "(Intercept)" "REP"
###
###
   $ residuals : Named num [1:420] 32.7 11.3 -12.7 -11.7 -15.5 ...
   ..- attr(*, "names")= chr [1:420] "1" "2" "3" "4" ...
###
   $ effects : Named num [1:420] -13406.2 88.3 -14 -12.6 -16.8 ...
###
   ..- attr(*, "names")= chr [1:420] "(Intercept)" "REP" "" "" ...
##
   $ rank : int 2
###
   $ fitted.values: Named num [1:420] 658 650 656 659 656 ...
###
   ..- attr(*, "names")= chr [1:420] "1" "2" "3" "4" ...
###
   $ assign : int [1:2] 0 1
##
   $ qr :List of 5
##
    ..$ gr : num [1:420, 1:2] -20.4939 0.0488 0.0488 0.0488 0.0488 ...
###
     .. .. - attr(*, "dimnames")=List of 2
##
     .. .. ..$ : chr [1:420] "1" "2" "3" "4" ...
##
     .. .. .. $ : chr [1:2] "(Intercept)" "REP"
##
     .. .. - attr(*, "assign")= int [1:2] 0 1
##
     ..$ graux: num [1:2] 1.05 1.05
##
     ..$ pivot: int [1:2] 1 2
##
     ..$ tol : num 1e-07
##
     .. $ rank : int 2
###
```

Tipos de objetos

Paquete broom

```
library(broom)
tidv(modelo1)
## # A tibble: 2 x 5
    term estimate std.error statistic p.value
###
###
  <chr> <dbl>
                     ## 1 (Intercept) 699. 9.47 73.8 6.57e-242
## 2 REP
        -2.28 0.480 -4.75 2.78e- 6
glance(modelo1)
## # A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value df logLik AIC
                                                            BIC
###
             <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
###
      <dbl>
## 1 0.0512 0.0490 18.6 22.6 2.78e-6 1 -1822. 3650. 3663.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

Paquete broom (cont.)

augment(modelo1)

```
## # A tibble: 420 x 8
                  REP .fitted .resid .std.resid .hat .sigma .cooksd
      Resultados
###
           <dbl> <dbl>
                          <dbl>
                                <dbl>
                                            <dbl>
                                                    <dbl>
                                                            <dbl>
                                                                     <dbl>
##
###
   1
            691.
                  17.9
                           658.
                                32.7
                                            1.76
                                                  0.00442
                                                             18.5 0.00689
                                11.3
##
            661.
                  21.5
                           650.
                                            0.612 0.00475
                                                             18.6 0.000893
    3
###
            644.
                  18.7
                           656.
                                -12.7
                                           -0.685 0.00297
                                                             18.6 0.000700
            648.
                  17.4
                                 -11.7
                                           -0.629 0.00586
###
   4
                           659.
                                                             18.6 0.00117
            641.
                  18.7
                                 -15.5
###
    5
                           656.
                                           -0.836 0.00301
                                                             18.6 0.00105
###
    6
            606.
                  21.4
                           650.
                                 -44.6
                                           -2.40
                                                  0.00446
                                                             18.5 0.0130
##
   7
            607.
                  19.5
                           654.
                                 -47.7
                                           -2.57
                                                  0.00239
                                                             18.5 0.00794
                  20.9
                                                  0.00343
###
    8
            609
                           651.
                                -42.3
                                           -2.28
                                                             18.5 0.00895
    9
            612.
###
                  19.9
                           653. -41.0
                                           -2.21
                                                  0.00244
                                                             18.5 0.00597
            613.
##
   10
                  20.8
                           652.
                                -38.9
                                           -2.09
                                                  0.00329
                                                             18.5 0.00723
     ... with 410 more rows
##
```

Regresión Lineal Múltiple

• ¿Es factible que solo REP influya en Resultados?

$$Resultados_i = b_0 + b_1REP + b_2A + b_3B + \ldots + b_nZ$$

• ¿Qué pasa si no se incluyen otras variables relacionadas?

Paradoja de Simpson

• Sesgo de variable omitida

Regresión Lieal Múltiploe (cont)

¿Cómo se estiman los parámetros?

En forma matricial:

$$Y = X\beta + \epsilon$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Lo que debemos hacer es estimar el vector de parámetros \hat{eta}

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Terminando finalmente con $\hat{Y} = X\hat{eta}$

Por suerte R lo hace más simple

 $Resultados_i = b_0 + b_1 * REP_i + b_2 * ingresos_i$

```
modelo2 ← lm(Resultados ~ REP + ingresos, data = datos reg)
summary(modelo2)
##
## Call:
## lm(formula = Resultados ~ REP + ingresos, data = datos reg)
##
## Residuals:
      Min
         1Q Median 3Q
                                   Max
###
## -39.608 -9.052 0.707 9.259 31.898
###
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
###
## (Intercept) 638.72916 7.44908 85.746 <2e-16 ***
## REP
       -0.64874 0.35440 -1.831 0.0679.
## ingresos 1.83911 0.09279 19.821 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.35 on 417 degrees of freedom
## Multiple R-squared: 0.5115, Adjusted R-squared: 0.5091
```

Comparemos

Comparemos los valores de \mathbb{R}^2 para <code>modelo1</code> (simple) y <code>modelo2</code> (múltiple)

```
glance(modelo1)$r.squared

## [1] 0.05124009

glance(modelo2)$r.squared

## [1] 0.511483
```

- modelo2 ajusta mejor
- ullet Pero **OJO** con el R^2 : aumentará siempre que sumemos variables

R^2 ajustado

[1] 0.50914

$$R_{adj}^2 = 1 - \left(rac{SCE}{SCT} rac{n-1}{n-k-1}
ight) = 1 - \left(rac{\sum_{i=1}^n (Y_i - \hat{Y_i})^2}{\sum (Y_i - ar{Y})^2} rac{n-1}{n-k-1}
ight)$$

n es el número de observaciones y k es el número de variables independientes.

- ullet Si la nueva variable no "aporta nueva información", R^2_{adj} no aumenta
- ullet Debido a lo anterior, R^2_{adj} suele ser mejor para la comparación entre modelos
 - $\circ \; R^2_{adj}$ no es la única métrica de comparación

```
glance(modelo1)$adj.r.squared

## [1] 0.04897033

glance(modelo2)$adj.r.squared
```

Modelos con interacciones

```
(base ← datos_reg %>%
  ggplot(aes(x = REP, y = Resultados)) +
  geom_point(aes(col = grupo_ingresos)) +
  theme_minimal() +
  theme(legend.position = "none"))
```


Modelos con interacciones (cont.)

$Resultados_i = b_0 + b_1 REP_i$

Modelos con interacciones (cont.)

$$Resultados_i = b_0 + b_1 REP_i + b_2 1_{med_ing}$$

Modelos con interacciones (cont.)

$$Resultados_i = b_0 + b_1 REP_i + b_2 1_{med_ing} + b_3 (REP_i * 1_{med_ing})$$

```
## # A tibble: 4 x 5
                    estimate std.error statistic p.value
    term
##
                       <dbl>
                                                <dbl>
    <chr>>
                               <dbl> <dbl>
###
  1 (Intercept)
                      664. 10.5 62.9 1.08e-214
                      -1.01 0.531 -1.90 5.83e- 2
  2 REP
                  62.5 16.1 3.88 1.21e- 4
  3 grupo ingresos1
## 4 REP:grupo ingresos1 -2.17 0.818 -2.66 8.16e- 3
```


¿Con qué modelo nos quedamos?

- Depende...
- $ightarrow R^2$?
- ¿p-value?
- ¿Estadístico F?
- Queremos estimaciones insesgadas
 - \circ "foco en \hat{eta} "
 - Supuestos de Gauss-Markov

Idea a retener

- Flexibilidad de un modelo
- Más variables → Más Flexibilidad
- Interacciones → Más Flexibilidad
- ¿Bueno o Malo?
- Sesgo vs Varianza (próxima clase)

Regresión Logística / Clasificación

Variable dependiente binaria

- ullet Hasta ahora consideramos una variable dependiente Y continua (Resultados de prueba)
- ullet Pero también podemos tener casos en que Y es una variable categórica/binaria (1 o 0)
 - o Otorgamiento de crédito/subsidio
 - Ocurrencia de algún evento/episodio
 - Ingreso a la Universidad
 - o ...
- Esto conlleva algunos desafíos extra a los que hemos visto hasta ahora

Datos de créditos hipotecarios

- Un crédito hipotecario puede ser aprobado o rechazado
- Uno de los principales criterios de evaluación es el ratio entre el dividendo y el sueldo

```
rechazado
##
                     pago ingreso
   Min.
          :0.0000
                    Min.
                           :0.0000
##
   1st Qu.:0.0000
                    1st Qu.:0.2800
###
   Median :0.0000
                    Median :0.3300
###
   Mean :0.1197
                    Mean :0.3308
###
##
   3rd Qu.:0.0000
                    3rd Qu.:0.3700
##
   Max. :1.0000
                    Max. :3.0000
```

¿Cómo se ve esto?

```
datos_logit %>%
  ggplot(aes(x = pago_ingreso, y = rechazado)) +
  geom_point() +
  theme_minimal()
```


Modelo de probabilidad lineal

¿Qué ocurre si modelamos esto al igual que una regresión con Y continua?

$$P(Rechazado = 1|pago_ingreso) = b_0 + b_1 * pago_ingresos$$

```
datos_logit %>%
  ggplot(aes(x = pago_ingreso, y = recha
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
  theme_minimal()
```


- El modelo permite valores menores a 0 y superiores a 1. ¿Cómo interpretamos eso?
- ullet Debemos buscar una forma de limitar los valores de Y
 - $\circ \ P(Rechazado = 1|pago_ingreso) = F(b_0 + b_1 * pago_ingresos)$

Modelo logit

ullet El modelo logit (o logístico) nos permite limitar los valores de Y entre 0 y 1 usando como función auxiliar $F=rac{exp(z)}{1+exp(z)}$ con $z=b_0+b_1*pago_ingresos$.

$$P(Rechazado=1|pago_ingreso) = rac{e^{(b_0+b_1*pago_ingresos)}}{1+e^{(b_0+b_1*pago_ingresos)}}$$

El proceso de estimación es algo distinto a lo que vimos para MCO. En este caso se hace por algo llamado máxima verosimilitud (no entraremos en detalles).

Pero en R...

```
modelo_logit ← glm(rechazado ~ pago_ingreso, family = "binomial", data = datos_logit)
```

¿Cómo se ve esto?

Interpretar el resultado

0.0311 0.0942 0.2523 0.5227 0.8648 0.9996

El efecto del ratio entre dividendo e ingresos en la probabilidad de que el crédito sea rechazado depende del "lugar de la curva" donde estemos (no es lineal).

Interpretar el resultado (cont)

$$log\left(rac{P(Rechazado=1)}{P(Rechazado=0)}
ight) = -4.03 + 5.88*pago_ingresos$$

¿Cómo evaluamos este modelo?

Pseudo- \mathbb{R}^2

glance(modelo logit)

Logit es un ejemplo de modelos de regresión no lineal y es importante destacar que en estos casos una métrica como el \mathbb{R}^2 no tiene sentido ya que sus supuestos son que las relaciones son lineales.

Una alternativa es utilizar una métrica conocida como pseudo- R^2 :

$$pseudo-R^2=1-rac{ln(f_{full}^{max})}{ln(f_{nulo}^{max})}=1-rac{devianza}{devianza~nula}$$

```
## # A tibble: 1 x 8
## null.deviance df.null logLik AIC BIC deviance df.residual nobs
## <dbl> <int> <dbl> <dbl> <dbl> <int> <int> 
## 1 1744. 2379 -830. 1664. 1676. 1660. 2378 2380

1 - (glance(modelo logit)$deviance/glance(modelo logit)$null.deviance)
```

[1] 0.04815042 47 / 55

¿Cómo evaluamos este modelo? (cont)

Por otro lado, ahora tenemos una probabilidad de que el crédito sea rechazado para cada observación

```
augment(modelo logit, type.predict = "response")
## # A tibble: 2,380 x 8
     rechazado pago ingreso .fitted .resid .std.resid .hat .sigma .cooksd
###
         <dbl>
                      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
###
   1
                     0.221 0.0613 -0.356 -0.356 0.000800 0.836 0.0000262
             0
                     0.265 0.0781 -0.403 -0.403 0.000617 0.836 0.0000262
###
###
                     0.372 \quad 0.137 \quad -0.543
                                             -0.543 0.000513 0.836 0.0000408
   4
                     0.32
                           0.105 - 0.470
                                             -0.471 0.000456 0.836 0.0000267
###
   5
                                              -0.526 0.000472 0.836 0.0000349
                     0.36
                           0.129 - 0.526
###
###
   6
                     0.24
                           0.0681 -0.376
                                             -0.376 0.000720 0.836 0.0000263
                                             -0.511 0.000452 0.836 0.0000316
###
   7
                     0.35
                           0.123 - 0.511
###
   8
                     0.28
                           0.0847 - 0.421
                                              -0.421 0.000561
                                                              0.836 0.0000260
             0
   9
                           0.0994 2.15
                                             2.15 0.000474 0.835 0.00215
###
                     0.31
## 10
                     0.18
                            0.0488 - 0.316
                                              -0.317 0.000963
                                                              0.836 0.0000248
## # ... with 2,370 more rows
```

¿Qué criterio usamos para decidir si se clasifica como rechazado o no?

¿Cómo evaluamos este modelo? (cont)

```
estimacion logit ← augment(modelo logit, type.predict = "response") %>%
   transmute(rechazado = as.factor(rechazado),
              .fitted.
              clasificacion = as.factor(ifelse(.fitted > 0.5, 1, 0)))
 library(tidymodels)
 (matriz confusion ← conf mat(estimacion logit, rechazado, clasificacion)$table)
             Truth
###
## Prediction 0 1
     0 2094 281
###
###
VP \leftarrow matriz confusion[2,2]
 FP \leftarrow matriz confusion[2,1]
 VN \leftarrow matriz confusion[1,1]
 FN \leftarrow matriz confusion[1,2]
 (tasa VP \leftarrow VP/(VP+FN))
 ## [1] 0.01403509
 (tasa FP \leftarrow FP/(FP+VN))
 ## [1] 0.000477327
```

Curva ROC

Pero hasta ahora solo se considera el puntaje de corte **0.5**.

La curva ROC (Receiver Operating Characteristic) permite mostrar todo el espacio de posibilidades dependiendo de distintos puntos de cortes y mostrando el *trade-off* entre *beneficios* (verdaderos positivos) y *costos* (falsos positivos)

Curva ROC (cont)

Área bajo la curva (AUC)

Una métrica que nos permite resumir parte de toda la información que la curva ROC entrega es el área bajo esta misma o AUC.

En nuestro ejemplo:

1 roc auc binary

0.351

Muy mal clasificador

Nuestro modelo es peor que "tirar una moneda" para asignar la clasificación

```
roc_curve(estimacion_logit, rechazado, .fitted) %>%
  autoplot()
```


Explorar el potencial de R al modelar

• DemoMuchasRegresiones.R

Siguiente clase

- Predicción
- Sesgo vs varianza
- Validación cruzada (cross-validation)

Tarea 2 para el sábado