INTRODUCTION AUX SYSTÈMES D'EXPLOITATION

Plan

- 1. Définition
- 2. Rôles
- 3. Historique
- 4. Services des SE
- 5. Types des Systèmes d'Exploitation
- 6. Structures des Systèmes d'Exploitation

Système d'Exploitation = Operating System

SE

OS

Système Informatique

Système Informatique

Logiciel

Matériel

Système Informatique

Matériel

Système Informatique

Matériel

Jeux	Navigateur	Traitement de texte	
Éditeurs	Compilateurs	Interprèteur de commandes	
Système d'exploitation			
	Unité Centrale		
Périphériques	Processeur	Mémoire	
	Mémoire centrale		

Chap 1. Introduction

Le SE est un logiciel de base indispensable à tout système informatique

Le SE fonctionne comme intermédiaire entre

l'utilisateur et le système informatique

Vue ascendante :

Carte mère

Vue ascendante :

Gestionnaire des ressources

- Mémoire
- Processeurs
- Périphériques
- Fichiers
- -

Vue descendante :

Vue descendante :

Machine Virtuelle

Vue descendante :

Machine Virtuelle

- Masquer les éléments fastidieux (logiciels et matériels)
- Permettre à l'utilisateur une exploitation simple et efficace de la machine
- -

Génération	Période	Évolution matérielle	Caractéristiques
1 ère	1945-1955	Tubes à vides et cartes perforées	Les gros systèmes
2 ème	1955-1965	Transistors	Les systèmes à temps partagés
3 ^{ème}	1965-1980	Circuits intégrés	Multiprogrammation
4 ^{ème}	1980-1990	LSI	PC
5 ^{ème}	1990-2005	VLSI	Ordinateurs portables
6 ^{ème}	2005-????	Micronoyau	Systèmes évolués mobiles

1ère génération (1945-1955)

Tubes à vides et cartes perforées

1ère génération (1945-1955)

Tubes à vides et cartes perforées

- Matériel volumineux
- Système mono-utilisateur
- Monoprogrammation
- Programmes introduits manuellement
- Pas de SE
- Très lent et très fragile

❖ 2^{ème} génération (1955-1965)

Transistors et traitement par lot

2ème génération (1955-1965)

Transistors et traitement par lot

- Machines plus fiable
- Abordables à des compagnies, universités, administrations, ...
- Temps réduit grâce au traitement par lot :
 - Principe : Les travaux similaires étaient mis en lot et exécutés comme un groupe
 - Utilisation : Calcul scientifique
 - SE: FMS(Fortran Monitor System), IBSYS (IBM)

❖ 3^{ème} génération (1965-1980)

Circuits intégrés et multiprogrammation

- Circuit intégré ={transistors}
- Multiprogrammation = partitionnement de la mémoire centrale entre des tâches différentes
 - Les travaux sont conservés dans le pool de travaux
 - Ordonnancement des travaux: choix des travaux à charger en mémoire

❖ 3^{ème} génération (1965-1980)

Circuits intégrés et multiprogrammation

- Performances
- − \(\rightarrow \text{Coûts} \)
- Une seule architecture et même jeux d'instruction
- SE énormes et très complexes (écrits en Assembleur)
 - MULTICS
 - UNICS
 - UNIX (écrit en C)

❖ 4^{ème} génération (1980-1990)

LSI et Ordinateurs personnels (PC)

- LSI (Large Scale Integration)
- SE en réseaux et distribués
- Deux principales familles de SE
 - MS-DOS
 - Unix

❖ 5^{ème} génération (1990-2005)

Ordinateurs portables et de poches

- SE de type micronoyau
- Familles:
 - Windows
 - Unix / Linux
 - Mac OS

♦ 6ème génération (2005-????)

Systèmes évolués

- SE de type mobile
- Familles :
 - iOS
 - Windows mobile
 - Android (Linux)

Les principaux services offerts par le SE à l'utilisateur concernent :

- 1. Gestion des fichiers
- 2. Exécution des programmes
- 3. Opération d'Entrées/sorties
- 4. Communication
- 5. Détection des erreurs
- Allocation des ressources
- 7. Traçabilité
- 8. Protection et sécurité

1. Gestion des Fichiers

- Tout est considéré comme un Fichier par le SE.
- Un fichier est une collection d'informations numériques réunies sous un même nom, enregistrées sur un support de stockage de masse et manipulées comme une unité.

1. Gestion des Fichiers

- Le Fichier est l'unité logique de stockage de l'information
- Le SE assure la gestion des Fichiers (via un SGF : Système de Gestion de Fichiers= File System) :
 - Création
 - Ouverture
 - Suppression
 - Lecture
 - Écriture
 - ...

Chap 1. Introduction

- 2. Exécution des programmes
 - Processus
 - Programme en cours d'exécution

Chap 1. Introduction

2. Exécution des programmes

Processus ≠ **Programme**

- 2. Exécution des programmes
 - Processus
 - Programme en cours d'exécution
 - Programme + Contexte

2. Exécution des programmes

- Processus
- Programme en cours d'exécution
- Programme + Contexte
 - o État de la mémoire
 - Variables
 - Compteur Ordinal
 - O ...

- 2. Exécution des programmes
 - Processus
 - Programme en cours d'exécution
 - Programme + Contexte
 - État de la mémoire
 - Variables
 - Compteur Ordinal
 - O ...
 - Le programme est statique Alors que Le processus est dynamique

- 2. Exécution des programmes
 - Processus
 - Programme en cours d'exécution
 - Programme + Contexte
 - État de la mémoire
 - Variables
 - Compteur Ordinal
 - O ...
 - Le programme est statique Alors que Le processus est dynamique

L'exécution d'un même programme plusieurs fois engendre des processus différents

- 2. Exécution des programmes
 - Processus
- Le SE est chargé de gérer les processus :
 - création,
 - activation,
 - suppression,
 - ordonnancement,
 - ...

- 2. Exécution des programmes
 - Processus
- Pour pouvoir s'exécuter sur le processeur, tout processus doit être chargé en mémoire:
 - Espace d'adressage: son code exécutable, ses données et sa pile
 - Registres: compteur ordinal, le pointeur de pile, ...

3. Opération d'Entrées/sorties

Afin d'assurer l'échange de processus avec son environnement, le SE doit gérer différentes opération d'I/O.

Trois types de périphériques:

- Périphériques d'entrée (Input): clavier, souris, scanner, Webcam, ...
- Périphériques de sortie (Output) :
 écran, imprimante, haut-parleur, ...
- Certains périphériques opèrent dans les deux sens (I/O): clé USB, disque dur, écran tactile, ...

4. Communication

- La communication interprocessus peut se faire entre des processus:
 - Sur le même ordinateur
 - Distants
- Implantation de la communication :
 - Partage d'une zone mémoire
 - Envoie de messages

5. Détection des erreurs

Le SE doit détecter et corriger les erreurs: pour chaque type d'erreur, le système d'exploitation doit entreprendre les actions appropriées :

- Correction
- Messages d'erreur
- Arrêt

6. Allocation des ressources

Si les processus s'exécutent d'une manière concurrente alors le SE doit gérer le partage des ressources entre eux :

- Partage dans le temps (exemple: allocation du processeur)
- Partage dans l'espace (exemple: allocation de la RAM)

7. Traçabilité

Le SE sauvegarde une trace des utilisations des ressources par les utilisateurs. Cette trace permet de détecter les erreurs et améliorer les services offerts par le système.

8. Protection et sécurité

- ❖ Protection: tout mécanisme servant à contrôler l'accès aux ressources du système ⇒ problèmes internes
- Sécurité: tout mécanisme servant à défendre le système des attaques
 - ⇒ considération de l'environnement externe

9. Accès aux services

9. Accès aux services

a) Interfaces utilisateurs (User Interface: UI)

Les services offerts par le SE sont accessibles via des interfaces utilisateurs.

Trois formes sont possibles:

- Interfaces de ligne de commande (Command-line Interface: CLI):
 Saisie directe des commandes
- Interfaces batch (Batch interface):
 - Saisie des commandes dans des fichiers
- Interfaces graphiques (Graphical User Interface: GUI):
 - Commande dépend de l'action choisie du menu graphique (via la souris ou l'écran tactile)

- 9. Accès aux services
 - b) Appel Système
 - Le processeur a deux modes de fonctionnement :
 - Mode noyau
 - Mode utilisateur
 - Ce mode est mémorisé dans un bit de PSW (Program Status Word)
 - Ce bit est dit mode bit, il est fournit par le matériel pour distinguer le mode d'exécution (exécution du code de l'utilisateur ou du code du SE)

- 9. Accès aux services
 - b) Appel Système
 - Le processeur en :
 - Mode noyau

peut exécuter n'importe quelle instruction

- 9. Accès aux services
 - b) Appel Système
 - Le processeur en :
 - Mode noyau

peut exécuter n'importe quelle instruction

Le SE tourne toujours en mode noyau ce qui lui donne l'accès à la totalité des ressources et des toutes les instructions.

- 9. Accès aux services
 - b) Appel Système
 - Le processeur en :
 - Mode utilisateur

peut exécuter un sous-ensemble d'instruction

- 9. Accès aux services
 - b) Appel Système
 - Le processeur en :
 - Mode utilisateur

peut exécuter un sous-ensemble d'instruction

Le processus utilisateur tourne en mode utilisateur

- 9. Accès aux services
 - b) Appel Système
 - Pour accéder à un service offert par le SE :
 - 1. Le processus utilisateur doit faire un appel système (mode bit = 1)

- 9. Accès aux services
 - b) Appel Système
 - Pour accéder à un service offert par le SE :
 - 1. Le processus utilisateur doit faire un appel système (mode bit = 1)
 - 2. Le processeur passe du mode utilisateur en mode noyau (mode bit = 0)

- 9. Accès aux services
 - b) Appel Système
 - Pour accéder à un service offert par le SE :
 - 1. Le processus utilisateur doit faire un appel système (mode bit = 1)
 - 2. Le processeur passe du mode utilisateur en mode noyau (mode bit = 0)
 - 3. Le SE exécute l'instruction demandée

- 9. Accès aux services
 - b) Appel Système
 - Pour accéder à un service offert par le SE :
 - 1. Le processus utilisateur doit faire un appel système (mode bit = 1)
 - 2. Le processeur passe du mode utilisateur en mode noyau (mode bit = 0)
 - 3. Le SE exécute l'instruction demandée
 - 4. Quand le SE termine le travail, le processeur est rendu au processus utilisateur pour passer à l'instruction suivante

- 9. Accès aux services
 - b) Appel Système
 - Pour accéder à un service offert par le SE :
 - 1. Le processus utilisateur doit faire un appel système (mode bit = 1)
 - 2. Le processeur passe du mode utilisateur en mode noyau (mode bit = 0)
 - 3. Le SE exécute l'instruction demandée
 - 4. Quand le SE termine le travail, le processeur est rendu au processus utilisateur pour passer à l'instruction suivante
 - 5. Le processeur bascule donc du mode noyau en mode utilisateur

9. Accès aux services

b) Appel Système

- 9. Accès aux services
 - b) Appel Système

Différents types d'appels système:

- Gestion des processus
- Gestion des Fichiers
- Gestion des Interruptions
- Communication et stockage de l'information

- 9. Accès aux services
 - b) Appel Système

Différents types d'appels système:

— Gestion des Fichiers : open()

- 9. Accès aux services
 - b) Appel Système

Différents types d'appels système:

— Gestion des Fichiers : open()

Nécessite un appel système puisque le SE doit vérifier :

- 9. Accès aux services
 - b) Appel Système

Différents types d'appels système:

Gestion des Fichiers : open()

Existence ?
Droits d'accès ?

- 9. Accès aux services
 - b) Appel Système

Différents types d'appels système:

— Gestion des Fichiers : open()

Types des SE

- Selon le service rendu
 - Mono/Multi Utilisateur
 - Mono/Multi Tâche
- Selon la capacité d'évoluer
 - Fermé /ouvert
- Selon l'architecture
 - Mono/Multi Processeurs

Types des SE

SE	Utilisateur	Tâche	Capacité	Architecture
MS-DOS	Mono	Mono	Fermé	Monoprocesseur
Windows 95	Mono	Multi	Fermé	Monoprocesseur
Windows NT	Multi	Multi	Fermé	Multiprocesseurs
Unix/Linux	Multi	Multi	Ouvert	Multiprocesseurs
Mac OS X	Multi	Multi	Fermé	Multiprocesseurs
Android	Multi	Multi	Ouvert	Multiprocesseurs

Chap 1. Introduction

Structures Internes des SE

Plusieurs types de structures:

- Monolithique
- En couches
- Micronoyaux
- Modulaire
- Hybride

1. Monolithique

Un seul code qui contient tout le programme

2. En couches

- Chaque couche contient des fonctionnalités précises
- Chaque couche s'appuie sur les services offerts par la couche

immédiatement inférieure

2. En couches

Gestion des E/S

Gestion de la Mémoire centrale

Gestion des processus

2. En couches

Exemple : Unix

3. Micronoyaux

- Vise à alléger le SE en réduisant le noyau aux procédures essentielles et en déplaçant certains services dans des programmes systèmes
- Le noyau est plus petit donc moins de changements:
 - Facilite la portabilité et l'extension du noyau
 - Plus fiable et plus sécuritaire
- Ralentissement du système à cause des communications supplémentaires entre l'espace du noyau et l'espace utilisateur

3. Micronoyaux

J. Microlloyaux

Chap 1. Introduction

3. Micronoyaux

- Exemple:
 - SE Clients/Serveur
 - Mac OS X (Darwin)

4. Modulaire

- Le noyau est formé de composants de base
- Les autres services sont liés dynamiquement ⇒ améliore la performance du système

4. Modulaire

- Exemple:

Chap 1. Introduction

5. Hybride

Combiner plusieurs structures (monolithique + modulaire + en couches)
 pour améliorer la performance, la sécurité, etc.

5. Hybride

- Exemple : Mac OS X

graphical user interface Aqua					
application environments and services					
Java Cocoa	Quicktime BSD :				
kernel environment					
Mach	BSD				
IVIACII					
I/O kit	kernel extensions				

5. Hybride

Exemple : Android

Application Framework

SQLite openGL

surface media framework

webkit libc

Android runtime

Core Libraries

Dalvik
virtual machine

FIN