Succinct Representations for Abstract Interpretation

Combined Analysis Algorithms and Experimental Evaluation.

Julien Henry, David Monniaux, Matthieu Moy

September 13, 2012

Sources of Imprecision in Abstract Interpretation

- Abstract domain
- Widening operator
 - ensures fast convergence
 - BUT: may induce huge imprecisions
 - Narrowing tends to recover some precision...
- Consider paths that are unfeasible in reality: least upper bound operations

Sources of Imprecision in Abstract Interpretation

- Abstract domain
- Widening operator
 - ensures fast convergence
 - BUT: may induce huge imprecisions
 - Narrowing tends to recover some precision...
- Consider paths that are unfeasible in reality: least upper bound operations

Summary

- Introduction: Weakness of the standard approach & Guided Static **Analysis**
- Using SMT-solving to focus new paths
- **Combining Both Techniques**
- Computing Disjunctive Invariants

Summary

- Introduction: Weakness of the standard approach & Guided Static **Analysis**
- Using SMT-solving to focus new paths
- Combining Both Techniques
- Computing Disjunctive Invariants

Example of Standard Abstract Interpretation Example from Gopan & Reps, SAS'07

```
x = 0;
\nabla = 0;
while (true) {
          if (x <= 50)
                    \forall ++;
          else
          if (y < 0) break;
          x++;
```


- x and y incremented during 51 iterations
- x incremented and y decremented during 51 iterations

 n_1

Example of Standard Abstract Interpretation

n₄

 n_1

 n_4

 n_1

 n_1

 n_4

Example of Standard Abstract Interpretation

Guided Static Analysis

D. Gopan & T. Reps, SAS'07

Introduction

- separate loops into distinct phases.
- obtaining a solution for each loop phase before proceeding to the next.
- widening & narrowing at each loop phase.
 - Better precision

⇒ Ascending sequence of subsets of transitions

Summary

- Introduction: Weakness of the standard approach & Guided Static **Analysis**
- Using SMT-solving to focus new paths
- Combining Both Techniques
- Computing Disjunctive Invariants

Principle of Path Focusing

D. Monniaux & L. Gonnord - SAS 2011

- Compute the fixpoint iterations on a multigraph
- Take a set P_R of nodes
- Distinguish all the paths between 2 nodes of P_R

Principle of Path Focusing

D. Monniaux & L. Gonnord - SAS 2011

- Compute the fixpoint iterations on a multigraph
- Take a set P_R of nodes
- Distinguish all the paths between 2 nodes of P_R

Exponential number of paths \Rightarrow

- We don't construct this graph explicitly
- We use SMT-solving to find interesting paths

Reducing the Graph

Using SMT-solving to Find New Paths

- SMT formula ρ expressing the semantics of the program
- ρ contains reachability predicates

"Does there exist a path starting in the invariant candidate, that arrives in a state outside the invariant?"


```
int x = 0;
int d = 1;
while (true) {
        if (x == 0) d=1;
        if (x == 51) d=-1;
        x +=d;
```

- x incremented until it is equal to 51,
- x decremented until it is equal to 0,
- restart...

Summary

- Introduction: Weakness of the standard approach & Guided Static Analysis
- Using SMT-solving to focus new paths
- Combining Both Techniques
- Computing Disjunctive Invariants

Our Contribution

We apply Guided Static Analysis over the reduced multigraph

Algorithm

Combining both techniques

3 phases:

- Compute new feasible paths
- Path Focusing on the subset of the multigraph
- Narrowing iterations

We store the set *P* of paths in a BDD.

New feasible paths starting at p_1 :

 $p_2 : X_2$ $p_3: X_3$

We store the set *P* of paths in a BDD.

New feasible paths starting at p_1 :

$$p_2: X_2 \sqcup \tau_1(X_1)$$

 $p_3: X_3$

We store the set *P* of paths in a BDD.

New feasible paths starting at p_1 :

$$p_2: X_2 \sqcup \tau_1(X_1)$$

 $p_3: X_3 \sqcup \tau_4(X_1)$

We store the set *P* of paths in a BDD.

New feasible paths starting at p_1 :

$$p_2: X_2 \sqcup \tau_1(X_1) \sqcup \tau_2(X_1)$$

 $p_3: X_3 \sqcup \tau_4(X_1)$

We store the set *P* of paths in a BDD.

New feasible paths starting at p_1 :

$$p_2: X_2 \sqcup \tau_1(X_1) \sqcup \tau_2(X_1)$$

 $p_3: X_3 \sqcup \tau_4(X_1)$

 τ_3 feasible, but:

$$\tau_3(X_1) \subset X_2 \sqcup \tau_1(X_1) \sqcup \tau_2(X_1)$$

Ascending Iterations

Combining both techniques

Path Focusing algorithm on the multigraph

But the formula is conjoined with *P* (subgraph):

$$f(p_i) \wedge P$$

Ascending Iterations

Combining both techniques

Path Focusing algorithm on the multigraph

But the formula is conjoined with *P* (subgraph):

$$f(p_i) \wedge P$$

We also conjoin the formula with P for narrowing iterations...

Summary

- Introduction: Weakness of the standard approach & Guided Static **Analysis**
- Using SMT-solving to focus new paths
- Combining Both Techniques
- Computing Disjunctive Invariants

 How to choose the disjunct and the path to focus on?

- How to choose the disjunct and the path to focus on?
 - Use SMT

- How to choose the disjunct and the path to focus on?
 - Use SMT
- How to choose which disjunct to join with?

- How to choose the disjunct and the path to focus on?
 - Use SMT
- How to choose which disjunct to join with?
 - Gulwani & Zuleger - PLDI 2010

Using SMT to Focus Path and Disjunct

"Does there exist a path starting in one disjunct, that arrives in a state outside all disjuncts?"

$$g(p_i) = \rho \wedge b_i^s \wedge \bigwedge_{\substack{j \in P_R \\ j \neq i}} \neg b_j^s \qquad \text{One starting disjunct}$$

$$\wedge \bigvee_{\substack{1 \leq k \leq m_i \\ j \in Succ(i)}} (d_k \wedge X_{i,k} \wedge \bigwedge_{l \neq k} \neg d_l) \qquad \text{Not in any destination}$$

$$\wedge \bigvee_{\substack{j \in Succ(i)}} (b_j^d \wedge \bigwedge_{\substack{1 \leq k \leq m_i \\ j \in Succ(i)}} \neg d_i) \qquad \text{disjunct}$$

In the model, $d_k = true \implies$ we use $X_{i,k}$ as the starting disjunct.

Gulwani & Zuleger's Technique

Gulwani & Zuleger: The Reachability Bound Problem - PLDI'10

Disjunctive invariant for p_i : $\bigvee_{1 \leq j \leq m_i} X_{i,j}$

- $\delta_i \in [1, m_i]$
- mapping function $\sigma_i : [1, m_i] \times [1, n_i] \mapsto [1, m_i]$

 $X_{i,\delta_i} \leftarrow \text{initial states}$

The image of the *j*-th disjunct $X_{i,j}$ by the *k*-th path $\tau_{i,k}$ is joined with $X_{i,\sigma_i(j,k)}$.

 σ is computed dynamically (See Gulwani & Zuleger's paper)

Example

```
int x = 0;
int d = 1;

while (true) {
   if (x == 0) d=1;
   if (x == 51) d=-1;
   x +=d;
}
```

$$(d = 1 \land 0 \le x \le 51)$$

 $\lor (d = -1 \land 0 \le x \le 50)$

Experiments

These techniques are implemented in PAGAI: a prototype of static analyzer.

- LLVM IR as input
- Apron Library for the abstract domains
- SMT-lib 2 interface, Microsoft Z3

In TAPAS'12:

PAGAI: a Path Sensitive Static Analyser; Henry, Monniaux, Moy

Experiments on GNU programs and WCET benchmarks

Time

	Size		Execution time (seconds)				
Name	kLOC	$ P_R $	S	G	PF	G+PF	DIS
a2ps-4.14	55	2012	23	74	34	115	162
gawk-4.0.0	59	902	15	46	12	40	50
gnuchess-6.0.0	38	1222	50	220	81	312	351
gnugo-3.8	83	2801	77	159	92	766	1493
grep-2.9	35	820	41	85	22	65	122
gzip-1.4	27	494	22	268	91	303	230
lapack-3.3.1	954	16422	294	3740	3773	8159	10351
make-3.82	34	993	67	108	53	109	257
tar-1.26	73	1712	37	218	115	253	396

Table: Execution times

Conclusion

- Path distinction avoids loss of precision due to join operators.
- Explicit exhaustive enumeration of paths can be avoided using SMT.
- This idea can be applied / combined with many existing techniques.

Questions?

Dynamic Construction of σ

M: maximum number of disjunct m_i : current number of disjunct

When $\sigma_i(j, k)$ is undefined:

- lacktriangledown if $\exists j', au_{i,k}(X_{i,j}) \sqcup X_{i',j'} = au_{i,k}(X_{i,j}) \cup X_{i',j'}$, we assign $\sigma_i(j,k)$ to j'
- else:
 - if $m_i < M$, we increment m_i and define $\sigma_i(j, k) = m_i$
 - if $m_i = M$, we define $\sigma_i(j, k) = M$