

EFFICIENT PROCESSING OF ATLAS EVENTS ANALYSIS IN HOMOGENEOUS AND HETEROGENEOUS PLATFORMS WITH ACCELERATOR DEVICES

André Pereira

Prof. Alberto Proença (Advisor)

Prof. António Onofre (Co-Advisor)

Overview

- Motivation
- □ **Structure of** ttH_dilep
 - Analysis of critical regions
- Improving efficiency through parallelism
 - On shared memory homogeneous systems
 - On heterogeneous systems with a GPU accelerator
 - On heterogeneous systems with a MIC accelerator
 - Efficient data & workload scheduling

Motivation

The target model for an event

- Reconstruction of the Top Quarks (t&\(\bar{\psi}\)) system with Higgs boson
 - the analysis and reconstruction code => ttH_dilep
- Goal: to improve the efficiency of ttH_dilep

Structure of ttH_dilep (3)

Critical regions

variations per event

Improving efficiency with parallelism...

Sequential

Parallel

... no way with single global state!

Sequential

Parallel

Approach 1: parallelize KinFit, shared memory, no h/w accelerators

Sequential

Parallel

- Selects all sets of <u>2 jets & 2 leptons</u>, and builds a new data structure for each set
- In parallel:
 - applies a tolerance (variation) to each measure
 - performs a kinematical and Higgs boson reconstructions
 - selects the best solution (reduction)
- The new data structure:
 - all data are replicated; or
 - common data share a pointer

Performance analysis (1)

System: 2 x Intel E5-2670 (total 16 cores, 32 threads)

Plots: speedup versus the original sequential version

Approach 2: parallelize KinFit, with GPU accelerator (distributed memory)

Parallel, no accelerator

Parallel: multicore + GPU

- Data (un)marshalling:
 - Transform ROOT (and application classes) in arrays to transfer to and from the GPU
- In the GPU:
 - Apply the variance on the inputs
 - Perform the kinematical reconstruction
- Parallel reconstruction of the Higgs boson on CPU

Performance analysis (1)

System: 2 x AMD Opteron 6174 (total 24 cores) and NVidia Tesla Fermi C2050 GPU

Performance analysis (2)

For 256 variations the CPU is idle 31% of the time...

KinFit

A single global state **prevents** simultaneous CPU & GPU processing

Approach 3: events from different files

Performance analysis (1)

System: 2x Intel E5-2670 (total 16 cores, 32 threads)

of variations

Conclusions

- Homogeneous systems
 - All data replicated provides the best performance (multiple CPUs)
 - Pointer to shared data provides the best efficiency (single CPU)
- Heterogeneous systems
 - Unefficient GPU usage due to the lack of a global data structure
 - Xeon Phi preliminary implementation limited by the drivers
- Scheduler provides the best efficiency for multi-CPU systems
 - Allied to a parallelization of LipMiniAnalysis a tool can be developed that automatically extracts parallelism

EFFICIENT PROCESSING OF ATLAS EVENTS ANALYSIS IN HOMOGENEOUS AND HETEROGENEOUS PLATFORMS WITH ACCELERATOR DEVICES

André Pereira

Prof. Alberto Proença (Advisor)

Prof. António Onofre (Co-Advisor)