- F: V -> V
 - lineare Selbstabbildung
 - $-Av = \lambda v$
 - * v Eigenvektor
 - $* \lambda$ Eigenwert
 - * A quadratisch
 - $-\dim(V)$ endlich ==> EW/EV Problem für Matrizen

Eigenwert/Eigenvektor-Problem

- $Av = \lambda v = \lambda Iv = > (A \lambda I)v = 0$
 - homogenes lineares Gleichungssystem
 - nichttriviale Lösung $v \neq 0$, wenn $det(A \lambda I) = 0$
 - * $det(A \lambda I) = 0$ charakteristische Gleichung
 - * $P(\lambda) = det(A \lambda I)$ charakteristisches Polynom
 - * $P(\lambda) = (-1)^n \lambda^n + b_{n-1} \lambda^{n-1} + \dots + b_1 \lambda + b_0$
 - * Polynomgleichung mit reellen Koeffizienten ==> genau $A^{n\times n}$ hat
n Eigenwerte
 - ♦ mit Vielfachheit gezählt
- $\bullet \ P(\lambda) = (\lambda \lambda_1)^{k1}...(\lambda \lambda_r)^{kr}$
 - $-\ \lambda_1 \neq \lambda_2 \neq \ldots \neq \lambda_r$
 - λ_n hat algebraische Vielfachheit k_n
 - * algebraische Vielfachheit
 - \bullet wie oft λ_1 Lösung $P(\lambda)=0$ ist
 - \bullet wie oft ein λ_1 vorkommt bzw. Exponent von $(\lambda-\lambda_1)^k$
- $Av = \lambda v ==>$ Eigenvektoren spannen zum Eigenwert einen Unterraum von \mathbb{C}^n
 - $Eigen(\lambda, A) := v \in \mathbb{C}^n : Av = \lambda v = Kern(A \lambda I)$
 - geometrische Vielfachheit Dimension des Eigenraum

Vorgehensweise

- Eigenwerte bestimmen
 - Lösen der charakteristischen Gleichung $det(A-\lambda I)=0$
 - Polynom als Lösung
 - dessen Nullstellen/Eigenwerte und Vielfachheiten bestimmen
- Eigenvektoren bestimmen
 - Gleichung $(A \lambda I)v = 0$ für alle Eigenwerte lösen
 - * ∞ Lösungen
 - Eigenraum/span/Dimensionen bestimmen
 - $*\ Eigen(\lambda_*,A) = Span(v_1,...,v_n)$
 - * geometrische Vielfachheit = $dimEigen(\lambda_*,A)$

Sonstiges

- $1 \le \text{geom } V(\lambda) \le \text{alg } V(\lambda)$
 - $\text{ alg } V(\lambda) = 1 <==> \text{ geom } V = 1$
 - geom V(\lambda) = alg V(\lambda) für alle EW von A ==> $A^{n\times n}$ besitzt n l. u. EV * n l. u. EV, wenn alle EW verschieden
- $\operatorname{Det}(\mathbf{A}) = \prod_{j=1}^n \lambda_j$ $\operatorname{Spur}(\mathbf{A}) = \sum_{j=1}^n \lambda_j = \operatorname{Summe} \ \operatorname{der} \ \operatorname{Haupt diagonal elemente}$