Adversarial Techniques for Visual Domain Adaptation

Kate Saenko

Has deep learning solved Al?

Test on MNIST: 99% accuracy

Test on USPS: 68% accuracy

"What you saw is not what you get"

What your net is trained on

What it's asked to label

Problem: Domain Shift

Input Image

Output of model

Problem: Domain Shift

Input Image

True Segmentation

After adaptation

The Good News:

We can recover performance with no additional training and no data augmentation!

WHAT IS DOMAIN ADAPTATION?

ADVERSARIAL TECHNIQUES

FEATURE ALIGNMENT ADVERSARIAL DROPOUT

OPEN PROBLEMS

Domain Adaptation: transfer models

From dataset to dataset

From RGB to depth

From simulated to real control

From CAD models to real images

How to adapt a deep network?

How to adapt a deep network?

How to adapt a deep network?

.....Zero or few labels in target domain

Solution: align deep feature distributions

by minimizing distance between distributions, e.g.

...or by adversarial domain alignment, e.g.

WHAT IS DOMAIN ADAPTATION

► ADVERSARIAL TECHNIQUES

FEATURE ALIGNMENT ADVERSARIAL DROPOUT

OPEN PROBLEMS

WHAT IS DOMAIN ADAPTATION

ADVERSARIAL TECHNIQUES

FEATURE ALIGNMENT
ADVERSARIAL DROPOUT

OPEN PROBLEMS

Adversarial networks

Adversarial networks

Encoder
Generates features such
that their distribution P
matches reference
distribution Q

Adversary
Tries to discriminate
between samples from P and
samples from Q

Adversarial networks

Encoder

Generates features such that their distribution P matches reference distribution Q

fools adversary

Adversary

Tries to discriminate between samples from P and samples from Q

tries harder

Design choices

ADDA: Adaptation on digits

[Tzeng, Hoffman, Darrell, Saenko CVPR17]

	$\begin{array}{c} \text{INIST} \rightarrow \text{USPS} \\ \textbf{7 3} \rightarrow \textbf{1 0 5} \end{array}$	USPS \rightarrow MNIST \rightarrow 7 3	$\begin{array}{c} \text{SVHN} \rightarrow \text{MNIST} \\ \hline \textbf{13} & \hline \textbf{5} \rightarrow \textbf{7} & \textbf{7} & \textbf{3} \\ \end{array}$
Source only	0.752 ± 0.016	0.571 ± 0.017	0.601 ± 0.011
Gradient Reversal [Ganin'15]	0.771 ± 0.018	0.730 ± 0.020	0.739 [<mark>16</mark>]
Domain Confusion [Tzeng'15]	0.791 ± 0.005	0.665 ± 0.033	0.681 ± 0.003
CoGAN	0.912 ± 0.008	0.891 ± 0.008	did not converge
ADDA (ours)	0.894 ± 0.002	0.901 ± 0.008	0.760 ± 0.018

ADDA: Adaptation on RGB-D

[Tzeng, Hoffman, Darrell, Saenko CVPR17]

Train on RGB

Test on depth

	bathtub	peq	bookshelf	box	chair	counter	desk	door	dresser	garbage bin	lamp	monitor	night stand	pillow	sink	sofa	table	television	toilet	overall
# of instances	19	96	87	210	611	103	122	129	25	55	144	37	51	276	47	129	210	33	17	2401

Source only 0.000 0.010 0.011 0.124 0.188 0.029 0.041 0.047 0.000 0.000 0.069 0.000 0.039 0.587 0.000 0.008 0.010 0.000 0.000 0.139 ADDA (Ours) 0.000 0.146 0.046 0.229 0.344 0.447 0.025 0.023 0.000 0.018 0.292 0.081 0.020 0.297 0.021 0.116 0.143 0.091 0.000 0.211

Train on target 0.105 0.531 0.494 0.295 0.619 0.573 0.057 0.636 0.120 0.291 0.576 0.189 0.235 0.630 0.362 0.248 0.357 0.303 0.647 0.468

Recent work on adversarial deep alignment

- Learning Transferrable Representations for Unsupervised Domain Adaptation,
 Ozan Sener, Hyun Oh Song, Ashutosh Saxena, Silvio Savarese, NIPS 2016
- Unsupervised Image-to-Image Translation Networks, Ming-Yu Liu, Thomas Breuel, Jan Kautz, 2017
- Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks, Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, Dilip Krishnan, CVPR 2017
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros
- and more...

WHAT IS DOMAIN ADAPTATION

ADVERSARIAL TECHNIQUES

FEATURE ALIGNMENT

OPEN PROBLEMS

Problem: ambiguous features

Goal: avoid generating ambiguous features

Solution: Train a discriminator sensitive to target samples near decision boundary Train a generator to fool the critic

Sample classifiers C₁, C₂ from the same

Adversarial Dropout Regularization

[Saito, Ushiku, Harada, Saenko ICLR18]

- 1. Fix **G** and train **C** to maximize **d(p₁,p₂)** for target samples.
- 2. Train **G** and **C** to minimize CrossEntropy for source samples.
- 3. Fix **C** and train **G** to minimize **d(p₁,p₂) for target**.

ADR on Digits Classification

[Saito, Ushiku, Harada, Saenko ICLR18]

USPS 4 6 3 5 4 6

SVHN

	SVHN	USPS	MNIST
METHOD	to	to	to
	MNIST	MNIST	USPS
Source Only	67.1	68.1	77.0
ATDA (Saito et al. (2017))	86.2†	-	-
DANN (Ganin & Lempitsky (2014))	73.9	73.0 ± 2.0	77.1 ± 1.8
DoC (Tzeng et al. (2014))	68.1 ± 0.3	66.5 ± 3.3	79.1 ± 0.5
ADDA (Tzeng et al. (2017))	76.0 ± 1.8	90.1 ± 0.8	89.4 ± 0.2
CoGAN (Liu & Tuzel (2016))	did not converge	89.1 ± 0.8	91.2±0.8
DTN (Taigman et al. (2016))	84.7	-	-
Ours	96.7 ±1.85	91.5 ±3.61	91.3 ±0.65

Simulation to reality

Frame from the Grand Theft Auto game

ADR Sim2real classification results

[Saito, Ushiku, Harada, Saenko ICLR18]

VisDA Challenge 2017 Object Classification

Sim2real classification: adapted features

[Saito et al. ICLR18]

Sim2real transfer for semantic segmentation

[Saito et al. ICLR18]

WHAT IS DOMAIN ADAPTATION

ADVERSARIAL TECHNIQUES

FEATURE ALIGNMENT ADVERSARIAL DROPOUT

OPEN PROBLEMS

Is pixel-to-pixel adaptation better? [Hoffman et al. 2017]

Source only

Source: SVHN

Target Accuracy: 62.3%

CyCADA

Target: MNIST

Target Accuracy: 86.6%

Many open problems

Is adversarial learning the answer?

improve stability, e.g. [Usman, Kulis, Saenko ICLRW'18]

Can we handle unknown classes? What about tasks beyond classification, e.g., object detection, pose estimation?

VisDA: domain adaptation challenge May-Sep 2018

Can DA be applied to robotic manipulation strategies?

Learn to grasp objects in simulation, transfer to real world

http://ai.bu.edu/visda-2018/

Thanks

Kuniaki Saito

Eric Tzeng

Judy Hoffman

AIR: AI Research Initiative at BU

 Started by a core group of CS/EE faculty doing research on learning for vision, language, robotics

Stan Sclaroff Kate Saenko Margrit Betke Brian Kulis

Promote AI research, seminars, teaching, industry outreach

References

- Eric Tzeng, Judy Hoffman, Trevor Darrell, Kate Saenko, Simultaneous Deep Transfer Across Domains and Tasks, ICCV 2015
- Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko, Trevor Darrell,
 Adapting Deep Visuomotor Representations with Weak Pairwise Constraints, WAFR 2016
- Baochen Sun, Jiashi Feng, Kate Saenko, Return of Frustratingly Easy Domain Adaptation, AAAI 2016
- Baochen Sun, Kate Saenko, Deep CORAL: Correlation Alignment for Deep Domain Adaptation, TASK-CV Workshop at ICCV 2016
- Eric Tzeng, Judy Hoffman, Trevor Darrell, Kate Saenko, Adversarial Discriminative Domain Adaptation, accepted to CVPR 2017
- Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks, arxiv.org

VisDA Challenge 2017

Classification Track

Semantic Segmentation Track

Grand Theft Auto

Real Dashcam Video

Source Domain

Target Domain

Sim 2 Real

Dual formulation for Stable alignment [Usman et al. 17]

- turn the adversarial min-max problem into a min-min problem by replacing the maximization part with its dual
- empirically improves the quality of the resulting alignment

Usman et al., Stable Distribution Alignment Using the Dual of the Adversarial Distance. https://arxiv.org/pdf/1707.04046.pdf