

# Discrete verdelingen

#### Continue verdelingen

Totale opp. onder for is &

$$\int (x) = P(x = x)$$

met Strikt positieve kant"

$$P(\alpha \leq x \leq \beta) = \sum_{k=\alpha}^{\beta} P(x = k)$$

$$P(\alpha \leq x \leq \theta) = ?$$

$$P(-\infty \leq x \leq +\infty) = 1$$

Totale Som = 1

$$P(a \leq x \leq b) = \int_{a}^{b} \int_{(x)}^{(x)} dx$$

$$\int_{-\infty}^{-\infty} \int_{0}^{\pi} (x) dx = 1$$

# Discrete verdelingen $F_{x}(x) = P(x \leq g\omega)$

# Continue verdelingen

$$F(x) = P(x \le x)$$

$$= P(-\infty < X < x)$$

$$= P(-\infty < X < x)$$

$$V \cap C(x) = \mathbb{E}[x] - \mathbb{E}[x]^2$$

$$V \cap V(x) = \int_{-\infty}^{\infty} x^{2} \int_{x} (x) dx - [E[x]^{2}]$$

 $\mathbb{E}[x] = \int_{0}^{\infty} x \int_{0}^{x} (x) dx$ 

 $\frac{1}{b-a} \qquad \int_{x} (x) = \frac{1}{b-a} \cdot \frac{1}{b-a} (x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$ 

 $\int \int (x) dx = \int \frac{1}{b-a} dx = \frac{1}{b-a} [x]_{a}^{b} = \frac{1}{b-a} (b-a) = 1$ 

 $\begin{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} x \\$ 

 $= \frac{1}{3(b-a)} \left( b^{3} - a^{3} \right) - (a+b)^{2} = \frac{(b^{2} + ab + a^{2}) - (a+b)^{2}}{b} = \frac{a^{2} - 2ab + b^{2}}{4z} = \frac{(a-b)^{2}}{4z}$   $= \frac{1}{3(b-a)} \left( b^{2} + ab + a^{2} \right) - (a+b)^{2} = \frac{a^{2} - 2ab + b^{2}}{4z} = \frac{(a-b)^{2}}{4z}$ 

 $VAY(x) = \frac{1}{|x|^2 + |x|^2} = \int x^{\epsilon} \int_x^{(x)} dx - |E[x]^2 = \int_x^{(x)} dx - \frac{(b+a)^2}{2} = \frac{1}{|b-a|^2} \int_a^{\frac{a^2}{2}} \left(\frac{b+a}{2}\right)^2 dx$ 

Algemeen

X~ V( [a, 6])

$$\int_{A}^{1} \ln x = A \qquad (x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & x \notin [0, 1] \end{cases}$$

x £[0,6]





$$f(x) = 1 e^{-x^2/2} \sim 0.35$$
klokcurve van Gavan

$$1 e^{-x\frac{1}{2}} dx = 1$$

Quantidelde: 
$$VAC \cdot a + ie$$

$$VAC \cdot$$

 $= \int_{-\infty}^{\infty} x^{\frac{1}{2}} \frac{1}{2\sqrt{2\pi}} e^{-x^{2}/2} dx$ 

$$\begin{aligned}
\mathbf{E}[x] &= \int_{-\infty}^{+\infty} x & \int_{x}^{+\infty} (x) dx \\
&= \int_{-\infty}^{+\infty} \frac{1}{2\pi} x & e^{-x^{2}} dx & \text{SubStitutie} \\
&= -x^{2}
\end{aligned}$$

normale verdeling



X~N(180,7)

gemmuleld

Algeneen

$$\int_{x} c_0 = \frac{\sqrt{2\pi}}{4} = \frac{\sqrt{2\pi}}{(x-h)_2} = \frac{\sqrt{2\pi}}{(x-h)_2}$$

$$|E[x] = h$$

$$X \sim N(p_1 \sigma)$$
  $VA(\alpha) = \sigma^2$   $O_{\alpha}(x) = \sigma$ 

Berckeningen

$$P(183 \le x \le 193,5)$$

$$Omzetton nc 2-3coren 2 = x-N$$

$$= P\left(\frac{153 - 180}{7} \le \frac{x - 150}{7} \le \frac{197.5 - 160}{7}\right)$$

$$= P(1 \le Z \le 2,5) = \Phi(2,5) - \overline{\Phi}(1) = 0,9938 - 0,8413 = 0,1525$$

$$a_{11} = 0,1525$$

$$a_{12} = 0,1525$$

#### Cumulative Normal Distribution (continued)



| z   | 0.00   | 0.01  | 0.02  | 0.03    | 0.04   | 0.05  | 0.06  | 0.07  | 0.08  | 0.09  |
|-----|--------|-------|-------|---------|--------|-------|-------|-------|-------|-------|
| 0.0 | .5000  | .5040 | .5080 | .5120   | .5160  | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398  | .5438 | .5478 | .5517   | .5557  | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793  | .5832 | .5871 | .5910   | (5948) | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179  | .6217 | .6255 | .6293   | .6331  | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554  | .6591 | .6628 | .6664   | .6700  | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915  | .6950 | .6985 | .7019   | .7054  | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257  | .7291 | .7324 | .7357   | .7389  | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580  | .7611 | .7642 | (.7673) | .7704  | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881  | .7910 | .7939 | .7967   | .7995  | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159  | .8186 | .8212 | .8238   | .8264  | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413  | .8438 | .8461 | .8485   | .8508  | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643  | .8665 | .8686 | .8708   | .8729  | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849  | .8869 | .8888 | .8907   | .8925  | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032  | .9049 | .9066 | .9082   | .9099  | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192  | .9207 | .9222 | .9236   | .9251  | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332  | .9345 | .9357 | .9370   | .9382  | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452  | .9463 | .9474 | .9484   | .9495  | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554  | .9564 | .9573 | .9582   | .9591  | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641  | .9649 | .9656 | .9664   | .9671  | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713  | .9719 | .9726 | .9732   | .9738  | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772  | .9778 | .9783 | .9788   | .9793  | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821  | .9826 | .9830 | .9834   | .9838  | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861  | .9864 | .9868 | .9871   | .9875  | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893  | .9896 | .9898 | .9901   | .9904  | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918  | .9920 | .9922 | .9925   | .9927  | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | (9938) | .9940 | .9941 | .9943   | .9945  | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953  | .9955 | .9956 | .9957   | .9959  | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965  | .9966 | .9967 | .9968   | .9969  | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974  | .9975 | .9976 | .9977   | .9977  | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981  | .9982 | .9982 | .9983   | .9984  | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987  | .9987 | .9987 | .9988   | .9988  | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990  | .9991 | .9991 | .9991   | .9992  | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993  | .9993 | .9994 | .9994   | .9994  | .9994 | .9994 | .9995 | .9995 | .9995 |
| 3.3 | .9995  | .9995 | .9995 | .9996   | .9996  | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997  | .9997 | .9997 | .9997   | .9997  | .9997 | .9997 | .9997 | .9997 | .9998 |
| 3.5 | .9998  | .9998 | .9998 | .9998   | .9998  | .9998 | .9998 | .9998 | .9998 | .9998 |
| 3.6 | .9998  | .9998 | .9999 | .9999   | .9999  | .9999 | .9999 | .9999 | .9999 | .9999 |
| 3.7 |        |       |       |         |        |       |       |       |       |       |
| or  | .9999  |       |       |         |        |       |       |       |       |       |
|     |        |       |       |         |        |       |       |       |       |       |

$$\Phi(z) = F_Z(z) \text{ is}$$



重 (0,73) = 0,7673

= 1- 1 (0,24) = 1-5948 = 0,4052

P(a< Z < b)

$$= \Phi(\mathcal{E}) - \overline{\Phi}(a)$$



Egenschap

Bewija

(VARK: 
$$n \ge 30$$
  $n.p \le 5$ )  $P(x \le k) = e^{-k} \frac{\lambda^k}{k!}$  Alode

$$P(x=k) = {k \choose k} e^{-an-k}$$
 Formules op elkear lijken

$$\lim_{\substack{n\to\infty\\ 0\to\infty}} \binom{n}{k} p^{k} (1-p)^{n-k} = e^{-y} \frac{y^{k}}{y^{k}}$$

$$= \left( \begin{array}{c} 1 \\ 2 \end{array} \right) \left( \begin{array}{c} 1 \end{array} \right) \left( \begin{array}{c} 1 \\ 2 \end{array} \right) \left( \begin{array}{c} 1 \end{array} \right) \left( \begin{array}{c} 1 \\ 2 \end{array} \right) \left( \begin{array}{c} 1 \end{array} \right) \left( \begin{array}{c} 1 \\ 2 \end{array} \right) \left( \begin{array}{c} 1 \end{array} \right) \left( \begin{array}{c}$$

$$= U_i \quad y_r \quad (\sim - y)$$

$$= \underbrace{y_{F}}_{A2F} \underbrace{(u_{-F})i_{V_{F}}}_{V_{F}} \underbrace{(u_{-F})i_{V_{F}}}_{V_{F}} \underbrace{u_{F}}_{V_{F}} \underbrace{u_{F}}_{V_{F$$

7=0.0

 $P = \frac{\lambda}{2}$ 

$$= 1 \left( 1 - \frac{1}{1} \right) \left( 1 - \frac{1}{2} \right) \dots \left( 1 - \frac{1}{2} \right) \frac{1}{2}$$

$$B = \left(1 - \frac{\lambda}{n}\right)^n = \left(1 + \left(\frac{-\lambda}{n}\right)^n * \frac{n - \lambda \infty}{n} e^{-\lambda}$$

$$\lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n = e^{\frac{1}{n}} \lim_{n\to\infty} \left( 1 + \frac{1}{x} \right)^n = e^{\frac{1}{n}}$$

$$C = \left( 1 - \frac{1}{n} \right)^{-\frac{1}{n}} \frac{n + n + \infty}{n + \infty}$$

$$0 \text{ if Norolledge het bowy}$$



P(60 < x < 75) > P(60 < x' < 75)

0/5436 #

 $= \overline{\Phi}(0) - \overline{\Phi}(-2) = \underline{I}(0) - (1 - \overline{\Phi}(2)) = 0.5 - (4 - 0.9732)$ 

$$x \sim B(n, p)$$
  $P(a \leq x \leq e)$ 

$$x' \sim N(n_P, \sqrt{n_{PQ}})$$
  $P(a-\frac{1}{2} \leq x \leq b+\frac{1}{2})$ 

# Alm $P(a < x < b) \approx P(a + \frac{1}{2} \le x' \le b - \frac{1}{2})$

