

Informe N° 6

Ensayo comportamiento del compresor de tornillo

Laboratorio de Máquinas (ICM 557)

Segundo Semestre 2020

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: Gustavo Sáez

Índice

1.		Intro	oducción	3
2.		Obje	etivos	3
3.		Met	odología / Procedimientos	4
4.		Resu	ultados	5
	4.1	1	Tabla de Valores Medidos	5
	4.2	2	Tabla de Valores Calculados	5
	4.3	3	Describa utilizando un esquema del compresor y su operación	6
	4.4	4	Gráfica de Caudal Corregido en Función de la Presión de Descarga	7
	4.5	5	¿Qué significa el Punto de Rocío?	9
5.		Ane	xos	. 10
6.		Cond	clusiones	. 11
7.		Refe	erencias	. 11

1. Introducción

El propósito de este ensayo es comprender en profundidad el funcionamiento de un compresor de tornillo. Gracias a las imágenes suministradas por la escuela, se buscará entender el funcionamiento de esta máquina, y también mediante el experimento se obtendrán valores, que luego serán analizados y comparados por los suministrados por un catálogo del fabricante.

2. Objetivos

Los objetivos a realizar en este informe son los siguientes:

- a) Analizar el comportamiento del compresor de tornillo como máquina de una instalación industrial.
- b) Determinar la capacidad a distintas presiones.

3. Metodología / Procedimientos

Los	procedimientos	a realizar en	laboratorio son:

- a)
- 3.1 Poner en marcha la instalación, programando el compresor a una presión de 7 [bar].
- 3.2 Cerrar la descarga del estanque de almacenamiento.
- 3.3 Descargar parcialmente el estanque y observar cómo actúan los sistemas automáticos.
- b)
- 3.4 Programar el compresor a una presión de 5,5 [bar] y regular el caudal de descarga para que se mantenga a esa presión con el máximo caudal posible.

Medir:

- Presión de descarga, [bar].
- Velocidad del compresor, [rpm].
- Temperatura ambiente, [C].
- Temperatura de descarga del compresor, [C].
- Temperatura de PRP secador, [C].
- Temperatura del estanque de baja presión, [C].
- Presión en el estanque de baja presión, [cmca].
- Corriente eléctrica, [A].
- Se repiten las mediciones para las presiones 6, 7, 8 y 9 [bar].

La presión atmosférica, [mmHg], se mide al inicio del ensayo.

4. Resultados

4.1 Tabla de Valores Medidos

	Tabla de Valores Medidos									
P.Des	Veloc.	Temp	Hum. Amb.	Temp	Punto	Temp.	Pres.	Corriente	Caudal	Pres.
r.Des	V eloc.	Amb	rium. Amo.	Desc.	Rocio	EBP	EBP	Contente		Atm
Pd	n	t _{amb}	H _{amb}	t _{desc}	PRP	t _{EBP}	Δh	I	Q	P _{atm}
[bar]	[rpm]	[°C]	%	[°C]	[°C]	[°C]	[mm _{ea}]	[A]	[%]	[mm _{H-g}]
5.5	4315	18	59.4	73	4	20	476	17	98	759.5
6	4350	19	58.9	73	4	20	484	16	100	759.5
7	4350	18	58.6	75	4	21	464	17	100	759.5
8	4176	18	58.9	76	4	21.5	406	17	100	759.5
9	3984	19	58.9	77	4	21	348	17	100	759.5

Tabla 4.1 – Tabla de Valores Medidos en Laboratorio.

Gracias a los datos medidos en laboratorio, y la fórmula incluida en el Anexo de este informe, se pudo calcular el Caudal de aire libre, y se presenta a continuación:

4.2 Tabla de Valores Calculados

Tabla de Valores Calculados							
p Desc	Cat	ıdal	Velocidad				
p_d	Q	Q	n				
[bar]	[bar] [m^3/h]		[rpm]				
5.5	71.7267408	98	4315				
6	6 72.5755214		4350				
7	7 70.6963116		4350				
8	8 66.0741825		4176				
9	61.4351963	100	3984				

Tabla 4.2 – Tabla de Valores Calculados en base a las medidas de Laboratorio.

4.3 Describa utilizando un esquema del compresor y su operación

Figura 4.1 – Esquema de Funcionamiento del Compresor.

El compresor posee una pantalla en la que se deben fijar las condiciones de operación tal como las presiones en los distintos Puntos de Ajuste, y paradas Directas e Indirectas, velocidad del motor principal e intensidad, entre otros. Luego de fijar las condiciones de operación, comienza el proceso.

El aire ingresa a través de una rejilla que posee un sensor de un higrómetro que determina la humedad relativa del aire entrante. Detrás de esta rejilla hay un sensor de temperatura del aire entrante.

El sistema además posee un radiador para enfriar el aire comprimido, y otro separado para el aceite. El aire y el aceite son comprimidos, y pasan por un separador centrífugo, pasando por un filtro que se

encarga de separar el aire y el aceite. Luego, se produce la salida del aire sin aceite hacia el radiador, y la salida del aceite hacia el radiador. También hay aceite enfriado que entra en el filtro de aceite. También hay presencia de un condensador de sistema frigorífico.

El aumento de la presión y enfriamiento del aire producen la condensación de la humedad del aire, generando un aire bastante seco, con un punto de rocío de app. 4ºC. En el fondo del sistema hay un estanque de acumulación, del cual sale el aire pasando por dos filtros DD/PD. De allí, el aire pasa al sistema de medición del caudal de aire. El aceite, después de enfriado va a un filtro, y posteriormente se inyecta nuevamente en el compresor. También es muy importante mencionar un elemento fundamental, como es el motor, el cual es un motor trifásico alimentado por un sistema de partida suave y variación de la frecuencia.

Finalmente, el aire que sale de las zonas calientes: radiadores y cubículo eléctrico, se elimina por una abertura en el techo del contenedor.

4.4 Gráfica de Caudal Corregido en Función de la Presión de Descarga

Figura 4.2 – Gráfico de Caudal Corregido vs Presión de Descarga.

Para realizar una comparación con los datos de fabricante, utilizaremos el compresor GA 7-37 VSD+.

A continuación, se presenta la información correspondiente a este compresor:

ESPECIFICACIONES TÉCNICAS GA 7-37 VSD+										
Тіро	Presión (de trabajo	Capac	idad FAD* (min.	-máx.)	Potencia insta	lada del motor	Nivel sonoro**	Peso, WorkPlace	Peso, WorkPlace Full-Feature
	bar(e)	psig	l/s	m³/h	cfm	kW	cv	dB(A)	kg	kg
Versión a 50/60 l	Hz									
	5,5	80	7,2-21,9	25,9-78,8	15,2-46,4	7,5	10	62	193	277
GA 7 VSD*	7	102	7,0-21,7	25,2-78,1	14,8-46,0	7,5	10	62	193	277
GA / VSD*	9,5	138	6,8-18,0	24,5-64,8	14,4-38,1	7,5	10	62	193	277
	12,5	181	7,3-14,2	26,3-51,12	15,5-30,1	75	10	62	193	277

Figura 4.3 – Especificaciones de catálogo para el compresor GA 7-37 VSD+.

En base a estos valores, se puede obtener la siguiente tabla:

Tabla de Comparación							
Datos de l	Fabricante	Datos del Ensayo					
p Desc	Caudal	p Desc	Caudal				
$p_{\rm d}$	Q	p_{d}	Q				
[bar]	[m^3/h]	[bar]	[m^3/h]				
5.5	78.8	5.5	71.7267408				
6	78.56	6	72.5755214				
7	78.1	7	70.6963116				
8	78.78	8	66.0741825				
9	67.46	9	61.4351963				

Tabla 4.3 – Tabla Comparativa de Fabricante y Ensayo.

Si comparamos las mediciones obtenidas en el ensayo con las del fabricante, se puede apreciar que ambas opciones siguen una tendencia similar. Se puede ver que el caudal es menor en los datos del ensayo. Esto puede deberse a diversos factores humanos a la hora de realizar el experimento.

4.5 ¿Qué significa el Punto de Rocío?

El punto de rocío o temperatura de rocío es la más alta temperatura a la que empieza a condensarse el vapor de agua contenido en el aire, produciendo rocío, neblina, cualquier tipo de nube o, en caso de que la temperatura sea lo suficientemente baja, escarcha.

Para una masa dada de aire, que contiene una cantidad dada de vapor de agua (humedad absoluta), se dice que la humedad relativa es la proporción de vapor contenida en relación a la necesaria para llegar al punto de saturación, es decir, al punto de rocío, y se expresa en porcentaje. Así cuando el aire se satura (humedad relativa igual al 100 %) se llega al punto de rocío. La saturación se produce por un aumento de humedad relativa con la misma temperatura, o por un descenso de temperatura con la misma humedad relativa.

El punto de rocío se puede calcular como:

$$Pr = \sqrt[8]{\frac{H}{100}} * (110 - T) - 110$$

Donde:

Pr = Punto de rocío.

T = Temperatura en ºC.

H = Humedad relativa (expresada en porcentaje).

Si extraemos la Presión de Saturación de la tabla A-4 del libro Cengel (utilizando interpolación), y una vez recopilados todos los datos, podemos obtener la siguiente tabla:

P.Des	HR Ent	HR Sal	P Sat Ent	P Sat Sal	H Ent	H Sal
[bar]	[%]	[%]	[Pa]	[Pa]	[kgH20/kgAireSeco]	[kgH20/kgAireSeco]
5.5	59.4	2.27	2085.8	37118	0.00771	0.00095
6	58.9	2.27	2212.5	37118	0.00802	0.00087
7	58.6	2.08	2085.8	38597	0.00759	0.00071
8	58.9	1.99	2085.8	40360.8	0.00764	0.00063
9	58.9	1.91	2212.5	42124.6	0.00811	0.00055

Tabla 4.4 – Tabla de Valores Obtenidos para Punto de Rocío.

5. Anexos

La fórmula para calcular la capacidad o caudal de aire libre se muestra a continuación:

$$\dot{V} = 8,62 * \alpha * S * T_a * \sqrt{\frac{H}{T * P_a}}$$

Donde:

V: Capacidad, caudal de aire libre [m3/h]

 α = 0,600 coeficiente de caudal del diafragma

S: sección del orificio del diafragma en [cm2], el diámetro del orificio es de 22 [mm]

T_a: temperatura absoluta de aspiración del compresor [K]

T: Temperatura absoluta del estanque de baja presión [K]

H: presión en el manómetro diferencial [cmagua]

Pa: presión barométrica [cmagua]

Tabla de Presiones de Saturación para distintas temperaturas:

TABLA A-4

Agua saturada. Tabla de temperaturas

		Volumen específico, m³/kg			
	Pres.	Líq.	Vapor		
Temp.,	sat.,	sat.,	sat.,		
T °C	P _{sat} kPa	V_f	V_g		
0.01	0.6117	0.001000	206.00		
5	0.8725	0.001000	147.03		
10	1.2281	0.001000	106.32		
15	1.7057	0.001001	77.885		
20	2.3392	0.001002	57.762		

6. Conclusiones

Una vez realizado este ensayo, se logra entender un poco más el funcionamiento de el compresor de tornillo. Mediante el aprendizaje de funcionamiento de este sistema, y a la vez de los datos obtenidos en la experiencia, se puede adquirir mayor conocimiento.

Con respecto a los valores en concreto, se aprecia que los valores obtenidos en el ensayo siguen la misma tendencia de los suministrados por el fabricante, con valores diferentes pero que siguen una misma línea.

7. Referencias

- Libro Cengel de Termodinámica
- Valores obtenidos de experiencia Aula Virtual
- https://www.vaisala.com/es/blog/2019-10/que-es-el-punto-de-rocio-y-como-medirlo