

Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

Alexandre Langlois^{1,2} Prof. Université de Sherbrooke

Alain Royer^{1,2}, Benoît Montpetit³, Cheryl-Ann Johnson⁴, Ludovic Brucker⁵, Caroline Dolant^{1,2}, Agnes Richards⁶, Alexandre Roy^{1,2}

¹Centre d'Applications et de Recherches en Télédétection (CARTEL), Université de Sherbrooke, Quebec, Canada.

²Centre d'étude nordiques, Quebec, Canada ³ Canadian Ice Service, Ottawa, ON, Canada ⁴Canadian Wildlife Service, Environment Canada, Ottawa, ON ⁵ NASA Goddard, Greenbelt, USA ⁶ Canadian Center for Inland Waters, Env. Can., Toronto, Canada

Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

Outline

PART I: Arctic context

- 1. Motivation and study sites
- 2. Algorithm development

PART II: Some occurrence numbers 1979-2011

- 3. Rain-on-snow
- 4. Ice layers
- 5. Perspective

1. Motivation and study sites

- increased occurrence of rain-on-snow
- increased occurrence of strong wind events
 - → both leading to snow densification
- Changing rapidly, with significant consequences:
 - Grazing conditions under ice for ungulates;
 - Changes in snow cover affects permafrost and sea ice regimes.
- Need for global information of snow information
 - Passive microwave remote sensing;
 - Snow modeling / climate model coupling.

ROS events are projected to be more frequent over a wider spatial extent (Semmens et al., 2013): need for a satellite-based detection approach

1. Motivation and study sites

- Peary caribou population affected by snow conditions:

Ouellet et al., 2015

Need to develop ROS and ice tracking approaches in the Arctic...

2. Algorithm development: ROS

Empirical approach from case study: January 30th – February 2nd 2013:

Figure 5: General scheme of the snow microwave response; (1) basic snowpack, (2) snowpack with ice crust or wet snow

Dolant et al., 2015

2. Algorithm development: ROS

2. Algorithm development: Ice Detection Index (IDI)

Polarization ratio (PR):
$$PR(f) = \frac{T_B(f, V - Pol) - T_B(f, H - Pol)}{T_B(f, V - Pol) + T_B(f, H - Pol)}$$

Horizontal polarization more sensitive to ice layers and vertical dielectric contrast, threshold established from the following (PR simulated with ice vs

PR without ice):

2. Algorithm development: Ice Detection Index (IDI)

Remote Sensing of the Cryosphere I, Wednesday Dec. 16th 2015

	79.	80- 81	81 51	82 83	83-	84- 85	8\$- 86	36- 51	57- 58	88-	89- 90	90-	91 92	92.	93-	96-	Turals 79-85	
821	- 0-		0-	- ti	- 6	0	- 6	- û	ii .	- 5	0	- 0	-0-	.0	13	0	1.3	
2W1	. 0	. 6	-0-	- ii-	-0-	- 0:	. 6	-0-	- ii-	- 1	- 0	- 0	-0-	-0-	3	-0-	-	
-50	. 0	101	-0.	0	-0:	.0	- 0	-0.4	0	2	.0	0	-0=	10	3	0	- 5	
AHI	.0.1	- 6	0.	0	4.	19.1	- 0	-0	0	2.	19:1	10	0	0	. 0	0	2	
SEL	0	1.01	-0=	0	101	0.1	- 4	≥0≤	0		0.1	0	-0=	0	2	-0-	2	
CET	0 -	1.0	0.	0.		0.0	1.0	1 ≥ 0 ≤	- D.	- 3.	0.0	Û	201	0	- 6-	0-	3	
2011	0 :	- 0	-0-	10	- II	0 :	- 0	-0-	10	- 5	0 :	0	-0-	0	0 -	0	5	
2211	0	- 0	-0-	- 10	0	. 0	- 0	-0-	- 10	-4:	.0	0	0 -	0.	0	0	4	
Egil	- 0-	- 6	-0-	Ü-	4	0-	- 0	-0-	- 0	4	0-	-6	-0-	0	4.	-0-	- 4	
Emili	0	-,4	-0-	Ü-	-6	- 0-	-,4 -	-0-	0	- 0	0	.0	-0-	.0-	. 9	0	4	
BMII	.0		-0	0	- 6	-1	.0	-0-	0	- 6	11.1	0	-0	.0	- 6	0	2	
DIL		1.6	0.0	-0	-8.		4.0	0	0	-4		0	0		-4	-0	4.0	
LH	0	1.01	-0-	.0.	10%	0	1.0	0.0	.0.	10.	0.1	.0	0	0	0.7	-0	- 4	
CII	- Q :	1.01	-0	10.	10.1	. 0 :		-0	10.	1.0	. 0 :	1.1	1.1	Q	1.	0	1.1	
HIN	0	0	0	- 18	0.0	0:::	0	0	- 18	.0	0::	-0-	- 0	0	.0.	0 .	1.0	
BIC1	0	_d_	0 -	- 18	0	0 :	d	0 -	- 18	- 0	0	0	0	0	.0	-0-	9	
BIT	- 0:	. 6	-0-	- 0	- 5	.0	- 6	-0-	- U	- 1	- 0	- 0	-0	.0-	12	0	13	H.
- M1-	- 0:		-0-	- 0	-5-	0		0	- U	-4-	0	0.	-0-	.0.	- 4	0	- 3	
Temb	- 1	4	D.	0	100	1		D.	0	19	1	1	-1	- 81	2.5	0	96	
	95-	96-	97-	98-	99-	08-	01-	92-	93.	84-	05-	36-	47-	05-	09-	10-	Terab	1076-
	94	91	98	49	100	91	02	. 93	94	05	95	.47	98	0.5	10	11	95.11	2011
BP1	0	-01	2	- 2	0	0	- d	- 0	- 8	- II	0	_ 0	12	0.	.0	0	19	-12
PWI	0.	- 0	-0-	- 0	4	.0	- 0	-0-	- 0	- 10	.0	0	0 -	0.	0	0		4
SH	- 0	-,4	1	0	- 6	0	-,4 -	-0-	D -	- 6	0	- 0	-0-	.0	- 6	0	1	- 6
AH!	0.0	.0	-0.	0	- 8	-0-	0	10.	0	- 7.4	- 0	.0.	0		-6-	0	11	LY
SEL	0.0	1.6	0	-0	-8	0.1	1.6	0.	0	-81		11	0	0.0	6	0	- 21	7
CET		1.0-1	0.4	.0.	101	9.1		-0.4	- A.	10.	9.1	0.0	-0=	0	116	-0	200	
MIT	9	1.0	-0	0.	100	. 0 :		-0	10.11	101	. 0 :	Û	0	0	10.0	0	100	- 5
5511	0:	0	0	10.	.0	0;	0	0	18	.0	0,	0.	0	0.	0.	0	-	3
Egi!	0 :	- 0	0-	- 18	.0-	0	- 0	=1 =	- 1-	-0-	0:	0	0	3	.0	-0-	5	5
Emili	0	. 0	-0-		-5	0:		Ü	10	- 5	0	0	0	3	5 .	0	- 4	- 6
BVIII	-1-	1.3	-0-	2.6	3-	- 6	3	-0-	u-	9 -	- 0	. 0	0-	-0	9.	-0-	- 34	30
DIL	. 0	12	-0-	0	-8	-9.		=0=	-D	4.0	-9.1	0	0	9	-8	0	1	1
LIL	- 9	. 4	-0.	43	18	29.1	- 6	-0	- H-	. 8.	29.1	70	0	4	. 4.	19	28 -	200
CH	0	2	0 <	- W	3	.0	3	20 %	0	-0.	.0	-0	205	- 5	-0-	-0-	19	22
HIT	D -	1.01	0.	16.7	2	D:	T	0.0	0	- 6	D:	_0	0.		- 6-	D-	1.040	7
BICT	0 :	0	-0-	1	- II	.0	0	-0-	0.0	- II	0	_ 0:	-0-	0.	.0	0	1	1_
BII	0	- 0	2	2	0	.0:	- 0	-0-	7.	- II	.0.	- 0	-0-	3	0	0	14	17
VII	· 0	.0	- Û	- fi	- 6	D	- 6	- û -	- 8	- 6	2	.6	-0-	-10-	- 6	1	127	27
Totals	12.00	- 4	3	331	8.50	102.00	1000	11	17.	10.0	15,000	- 6	2.5	25	196	4	146	133

Islands with most combined occurrences:

- Boothia Peninsula (Ouellet et al., 2015 SNOWPACK)
- Axel Heiberg
- Byram Martin
- Lougheed + Cornwallis
- Banks + Victoria

Future outcome and concluding remarks

More on GRP threshold, with observed events:

Future outcome and concluding remarks

Plans for 2016:

- Dysdrometer installation in Cambridge Bay along with passive microwave radiometers (19-37-89 GHz);
- More on climatology assessment, tracking origin of ROS and LPDs;
- New PhD student working on the modeling of ROS-snow interactions using the SNOWPACK model.

Acknowledgements

Funding and logistics:

National Search and Rescue Secretariat

Environment Canada

Parks Canada

Canadian High Arctic Research Station

Natural Sciences and Engineering Research Council of Canada (NSERC)

Canada Foundation for Innovation

National Search and Rescue Secretariat (SAR-NIF)

Centre d'études nordiques (CEN)

National Aeronautics and Space Administration (NASA)

Mitacs scholarship program

Hydro-Québec

Polar Continental shelf Program

Environment Canada

Environnement Canada

