Formularium Wiskunde

Ian Claesen

20 oktober 2025

Inhoudsopgave

1	Algebra31.1 Volgorde van Bewerking31.2 Absolute Waarde3
2	Machten en wortels32.1 Machten met Gehele Exponenten32.2 Vierkantswortel in \mathbb{R} 32.3 N-de machtswortel in \mathbb{R} 32.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R} 4
3	Veeltermen 4 3.1 Vierkantsvergelijking 4 3.2 Merkwaardige Producten en Ontbinding in Factoren 4 3.3 Euclidische Deling 5 3.4 Schema van Horner 5
4	Complexe getallen64.1 Rechthoekige coordinaten64.2 Poolcoördinaten6
5	Goniometrie 7 5.1 De Goniometrische Cirkel 7 5.2 formules uit de goniometrie 7 5.3 Verwante hoeken 8 5.4 Belangrijke goniometrische waarden 9 5.5 Radiaal 9 5.6 Goniometrische formules 10 5.7 Cyclometrische formules 11
6	Matrices 12 6.1 Symbolen 12 6.2 Rekenregels 12 6.3 Cofactor-tekenpatroon $(-1)^{i+j}$ 12
7	Determinanten 13
8	Stelsels oplossen148.1 Rang van een matrix148.2 n vergelijkingen met n onbekenden, $ A \neq 0$ (Cramer)148.3 Homogene 2×3 -stelsels148.4 $n+1$ vergelijkingen met n onbekenden14
9	Meetkunde 15 9.1 De cirkel 15 9.2 De parabool 15 9.3 De ellips 15 9.4 De hyperbool 16 9.5 Oppervlakte Formules 16 9.6 Volume Formules 16

	17
10.1 Vectoren	17
10.1.1 Inwendige product (inproduct, scalaire product)	17
10.1.2 Vectorieel product van vectoren (kruisproduct)	17
	18
	18
10.3.1 Snjilijn 2 vlakken	18
	18
	18
10.3.3 Loodlijn op een vlak / loodvlak op een rechte	
10.3.4 Relatie tussen twee vlakken α, β in \mathbb{R}^3	19
10.4 Bol	20
10.5 Basis reële functies	21
11 Analyse	22
	22
11.2 Limieten van functies	22
11.3 Limieten van goniometrische functies	22
11.4 Methodes bij het berekenen van limieten van functies	23
11.5 Afgeleiden - differentialen	25
11.6 Afgeleiden - fundamentele integralen	26
11.7 Partiële integratie	26
12 Statistiek	27
12.1 Test van een hypothese over het gemiddelde van een normaalverdeling	27
12.2 Test van een hypothese over een populatieproportie	27
12.3 Test van een hypothese over het gemiddelde van een normaalverdeling via de P-waarde	28
12.4 Test van een hypothese over een populatieproportie via de P-waarde	28
12.4 Test van een nypotnese over een populatieproportie via de r-waarde	20
13 Diversen	29
13.1 Wiskundige Symbolen (ISO 31/XI)	29
13.2 Logische symbolen	29

1 Algebra

1.1 Volgorde van Bewerking

Haakjes wegwerken, machtsverheffen, worteltrekken, vermenigvuldigen en delen, optellen en aftrekken.

1.2 Absolute Waarde

De absolute waarde van een getal a wordt genoteerd als |a| en is altijd positief.

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

2 Machten en wortels

2.1 Machten met Gehele Exponenten

$$\forall a \in \forall n \in \mathbb{N}_0 : a^n = \underbrace{a.a. \dots .a}_{n \text{ factoren}}$$

$$\forall a \in \mathbb{R} : a^1 = a$$

$$\forall a \in \mathbb{R}_0 : a^0 = 1$$

$$\forall a \in \mathbb{R}_0, \forall n \in \mathbb{N} : a^{-n} = \frac{1}{a^n}$$

$$(a.b)^n = a^n$$

$$(a.b)^n = a^n$$

$$(a.b)^n = a^n \cdot b^n$$

2.2 Vierkantswortel in \mathbb{R}

$$\forall a \in \mathbb{R}^+, \forall b \in \mathbb{R} :$$

$$b = \sqrt{a} \Leftrightarrow b^2 = a \land (b \ge 0)$$

$$\forall a, b \in \mathbb{R}^+ :$$

$$\sqrt{a^2} = a$$

$$(\sqrt{a})^2 = a$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \land b \ne 0$$

$$\forall a \in \mathbb{R} :$$

$$\sqrt{a^2} = |a| \implies \begin{cases} \sqrt{a^2} = a & \text{als } a \ge 0, \\ \sqrt{a^2} = -a & \text{als } a \le 0. \end{cases}$$

2.3 N-de machtswortel in \mathbb{R}

$$n \ even \Rightarrow \sqrt[n]{a^n} = |a| \to \begin{cases} \sqrt[n]{a^n} = a & \land a \ge 0 \\ \sqrt[n]{a^n} = -a & \land a \le 0 \end{cases}$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$\sqrt[n]{a^n} =$$

2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}

$\forall a \in \mathbb{R}_0^+, \forall m \in \mathbb{Z}, \forall n \in \mathbb{N}_0 : a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\forall a, b \in \mathbb{R}_0^+, \forall m, n \in \mathbb{Q} :$ $a^m.a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^{m-n}$ $(a^m)^n = a^m.n$ $(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
	$(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

3 Veeltermen

3.1 Vierkantsvergelijking

 $Een\ vierkants vergelijking\ is\ van\ de\ vorm:\ ax^2+bx+c=0\ ,\ met\ D=b^2-4ac$

$x \in \mathbb{R}$	$x \in \mathbb{C}$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$	$x_{1,2} = \frac{-b \pm i\sqrt{-D}}{2a}$
$P = \frac{c}{a} = x_1 \cdot x_2 , S = -\frac{b}{a} = x_1 + x_2$	
$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - Sx + P)$	

3.2 Merkwaardige Producten en Ontbinding in Factoren

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a + b)^{n} = a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{n-1}a^{2}b^{n-1} + b^{n} \quad \land \quad C_{n}^{p} = \frac{n!}{(n-p)!p!}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{2n+1} + b^{2n+1} = (a + b)(a^{2n} - a^{2n-1}b + a^{2n-2}b^{2} - a^{2n-3}b^{3} + \dots - ab^{2n-1} + b^{2n})$$

3.3 Euclidische Deling

We gaan de derdegraadsveelter
m $2x^3+3x^2-4x+5$ delen door de eerstegraadsveelter
mx+2met behulp van de praktische werkwijze van lange de
ling.

$$\begin{array}{c|ccccc}
2x^3 + 3x^2 - 4x + 5 & x + 2 \\
\hline
-2x^3 - 4x^2 + 0x + 0 & 2x^2 \\
\hline
-1x^2 - 4x + 5 & \\
+1x^2 + 2x + 0 & -x \\
\hline
-2x + 5 & \\
2x + 4 & -2 \\
\hline
9 & \\
\end{array}$$

We kunnen de deling als volgt uitdrukken:

$$2x^3 + 3x^2 - 4x + 5 = (x+2)(2x^2 - x - 2) + 9$$

De rest is 9, wat een graad heeft die kleiner is dan de graad van de deler x + 2.

3.4 Schema van Horner

$$\frac{(3x^3 - 5x^2 + 10x - 5)}{(x - 2)}$$

4 Complexe getallen

4.1 Rechthoekige coordinaten

Bewerking	Formule
Optelling/Aftrekking	$(a+j.b) \pm (c+j.d) = (a+c) \pm j(b+d)$
Vermenigvuldiging	$(a+j.b) \cdot (c+j.d) = (ac-bd) + j(ad+bc)$
Deling	$\frac{(a+j.b)}{(c+j.d)} = \frac{(a+j.b)\cdot(c-j.d)}{(c+j.d)\cdot(c-j.d)} = \left(\frac{ac+bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$
Toegevoegde van	$\overline{(a+j.b)} = (a-j.b)$
	$\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}, \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$
Inverse	$z = a + bi \implies z^{-1} = \frac{a - bi}{a^2 + b^2}$
Wortel	$\sqrt{a} \wedge a < 0 \implies \sqrt{a} = \pm i\sqrt{-a}$
	$\sqrt{a+bi} = x+yi \iff (x+yi)^2 = a+bi$
Macht	$(a+bi)^0=1 \forall n \in \mathbb{N}_0:$
	$(a+bi)^n = (a+bi) \cdot (a+bi) \cdots (a+bi)$
Machten of i	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$

4.2 Poolcoördinaten

$$z = a + i.b = r\left(\cos(\varphi) + i.\sin(\varphi)\right) = r\angle\varphi, \quad \tan(\varphi) = \frac{b}{a}, \quad r = \sqrt{a^2 + b^2}$$

Bewerking	Formule		
Vermenigvuldiging	$z_1 \cdot z_2 = r_1 \cdot r_2 \angle \varphi_1 + \varphi_2$		
Deling	$\frac{z_1}{z_2} = \frac{r_1 \angle \varphi_1}{r_2 \angle \varphi_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$		
Inverse	$z^{-1} = \frac{1}{r} \angle - \varphi$		
Macht	$z^n = r^n \left[\cos (n \cdot \varphi) + i \sin (n \cdot \varphi) \right] n \in \mathbb{N}$		
Wortel	$\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right)$		
$\sqrt[n]{r\left(\cos\varphi + i\sin\varphi\right)} = \sqrt[n]{r}\left(\cos\frac{\varphi + k \cdot 2\pi}{n} + i\sin\frac{\varphi + k \cdot 2\pi}{n}\right) \land k = 0, 1, \dots, n$			

5 Goniometrie

5.1 De Goniometrische Cirkel

5.2formules uit de goniometrie

 $\csc \beta$ $sec\beta$ $\cot \beta$ oa $\tan \beta$ $\sin \beta$ $\cos \beta$

 $egin{array}{l} o: & \text{overstaande rechthoekszijde} \\ s: & \text{schuine zijde (hypotenusa)} \\ a: & \text{aanliggende rechthoekszijde} \\ \end{array}$

$\sin \beta = \frac{b}{a}$	$\cos \beta = \frac{c}{a}$	$\tan \beta = \frac{b}{c}$
$\csc \beta = \frac{a}{b}$	$\sec \beta = \frac{a}{c}$	$\cot \beta = \frac{c}{b}$
$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$	$\cot \alpha = \frac{1}{\tan \alpha}$
$\sec \alpha =$	$=\frac{1}{\cos\alpha}$ $\csc\alpha$	$=\frac{1}{\sin\alpha}$

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$\tan^2 \alpha + 1 = \sec^2 \alpha$$

$$1 + \cot^2 \alpha = \csc^2 \alpha$$

5.3 Verwante hoeken

gelijkehoeken	supplementairehoeken	complementairehoeken
$\sin\left(\alpha + k2\pi\right) = \sin\alpha$	$\sin(\pi - \alpha) = \sin\alpha$	$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$
$\cos\left(\alpha + k2\pi\right) = \cos\alpha$	$\cos(\pi - \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$
$\tan\left(\alpha + k2\pi\right) = \tan\alpha$	$\tan (\pi - \alpha) = -\tan \alpha$	$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$
$\cot\left(\alpha + k2\pi\right) = \cot\alpha$	$\cot(\pi - \alpha) = -\cot\alpha$	$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$
$\sec\left(\alpha + k2\pi\right) = \sec\alpha$	$\sec(\pi - \alpha) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} - \alpha\right) = \csc\alpha$
$\csc\left(\alpha + k2\pi\right) = \csc\alpha$	$\csc(\pi - \alpha) = \csc\alpha$	$\csc\left(\frac{\pi}{2} - \alpha\right) = \sec\alpha$

tegengesteldehoeken	antisupplementairehoeken	anticomplementairehoeken		
$\sin\left(-\alpha\right) = -\sin\alpha$	$\sin\left(\pi + \alpha\right) = -\sin\alpha$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$		
$\cos\left(-\alpha\right) = \cos\alpha$	$\cos(\pi + \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$		
$\tan\left(-\alpha\right) = -\tan\alpha$	$\tan\left(\pi + \alpha\right) = \tan\alpha$	$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$		
$\cot\left(-\alpha\right) = -\cot\alpha$	$\cot\left(\pi + \alpha\right) = \cot\alpha$	$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$		
$\sec\left(-\alpha\right) = \sec\alpha$	$\sec\left(\pi + \alpha\right) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} + \alpha\right) = -\csc\alpha$		
$\csc\left(-\alpha\right) = -\csc\alpha$	$\csc\left(\pi + \alpha\right) = -\csc\alpha$	$\csc\left(\frac{\pi}{2} + \alpha\right) = \sec\alpha$		

5.4 Belangrijke goniometrische waarden

Angle	0°	30°	45°	60°	90°	180°	270°	360°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	/	0	/	0

θ	$\cos \theta$	$\sin \theta$
60°	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
30°	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{2}$

5.5 Radiaal

5.6 Goniometrische formules

Sinusregel:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$
Cosinusregel:
$$\begin{cases} a^2 = b^2 + c^2 - 2bc\cos\alpha \\ b^2 = c^2 + a^2 - 2ca\cos\beta \\ c^2 = a^2 + b^2 - 2ab\cos\gamma \end{cases}$$

B

$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2} (*)$	Verdubbelingsformules $f(\tan \alpha)$	t-formules,	$\tan\frac{\alpha}{2} = t$
$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2} (**)$	$\sin 2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}$	$\sin \alpha = \frac{2t}{1 + t^2}$	
Halverings formules	$\cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$	$\cos \alpha = \frac{1 - t^2}{1 + t^2}$	
$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	$\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}$	$\tan \alpha = \frac{2t}{1 - t^2}$	
$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$			

	Omgekeerde formules van Simpson
$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$	$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$
	$\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2\cos\alpha\sin\beta$
$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$	$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$
	$\cos(\alpha + \beta) - \cos(\alpha - \beta) = -2\sin\alpha\sin\beta$

Formules van Simpson
$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) \left| \cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) \right|$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right) \left| \cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right) \right|$$

5.7 Cyclometrische formules

$$\begin{array}{ll} y = Bgsinx \iff x = \sin y, & \text{met } y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \ x \in [-1, 1] \\ y = Bgcosx \iff x = \cos y, & \text{met } y \in [0, \pi], \ x \in [-1, 1] \\ y = Bgtanx \iff x = \tan y, & \text{met } y \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[, \ x \in \mathbb{R} \\ y = Bgcotx \iff x = \cot y, & \text{met } y \in \left]0, \pi\left[, \ x \in \mathbb{R}\right] \end{array}$$

$$\forall a \in \mathbb{R}_0^+: Bgcot(a) = Bgtan\left(\frac{1}{a}\right)$$

$$\forall a \in \mathbb{R}_0^-: Bgcot(a) = \pi + Bgtan\left(\frac{1}{a}\right)$$

$$\begin{array}{l} \sin(Bgsin(x)) = x, \ x \in [-1,1] \\ \cos(Bgcos(x)) = x, \ x \in [-1,1] \\ \tan(Bgtan(x)) = x, \ x \in \mathbb{R} \\ \cot(Bgcot(x)) = x, \ x \in \mathbb{R} \\ \cos(bgsin(x)) = \sqrt{1-x^2}, \ x \in [-1,1] \\ \sin(bgcos(x)) = \sqrt{1-x^2}, \ x \in [-1,1] \\ \sin(bgcos(x)) = \frac{1}{x}, \ \forall x \in \mathbb{R}_0 \\ \tan(bgcot(x)) = \frac{1}{x}, \ \forall x \in \mathbb{R}_0 \\ \cos(Bgtan(x)) = \frac{1}{\sqrt{1+x^2}}, \ x \in \mathbb{R} \\ \sin(Bgtan(x)) = \frac{x}{\sqrt{1+x^2}}, \ x \in \mathbb{R} \end{array}$$

$$Bgsin(sin(x)) = x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$Bgcos(cos(x)) = x, 0 \le x \le \pi$$

$$Bgtan(tan(x)) = x, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$Bgcot(cot(x)) = x, 0 < x < \pi$$

$$Bgsin(-x) = x, 0 < x < \pi$$

$$Bgsin(x) + Bgsin(x), x \in [-1, 1]$$

$$Bgsin(x) + Bgcos(x) = \frac{\pi}{2}, x \in [-1, 1]$$

$$Bgsin(x) + Bgcos(x) = \frac{\pi}{2}, x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgsin(x) + Bgcos(x) = \frac{\pi}{2}, x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgsin(x) + Bgcos(x) = \frac{\pi}{2}, x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgsin(x) + Bgcos(x) = \frac{\pi}{2}, x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x), x \in [-1, 1]$$

$$Bgcos(-x) = \pi - Bgcos(x)$$

$$Bgcos(-x) = \pi -$$

6 Matrices

6.1 Symbolen

A = matrix A

 a_{ij} het element op rij i en in kolom j

 A_{ij} cofactor van het element op rij i en in kolom j

I de eenheidsmatrix

 A^{-1} de inverse matrix

 A^T de getransponeerde matrix

 $\det A$ determinant van de vierkante matrix A

6.2 Rekenregels

Opgelet: onderstaande regels gelden enkel onder de juiste voorwaarden.

$$A + B = B + A$$

$$A + (B+C) = (A+B) + C$$

$$A \cdot I = A = I \cdot A$$

$$A(BC) = (AB)C$$

$$A(B+C) = AB + AC$$

$$(B+C)A = BA + CA$$

$$AB \neq BA$$

$$(A+B)^T = A^T + B^T$$

$$(cA)^T = cA^T$$

$$(AC)^T = C^T A^T$$

$$(A^T)^T = A$$

$$I^T = I$$

$$A \cdot A^{-1} = I = A^{-1} \cdot A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$B = C \Rightarrow AB = AC$$
 en $BA = CA$ A regulier

commutativiteit van de optelling

associativiteit van de optelling

eenheidsmatrix

associativiteit van de vermenigvuldiging

linker distributiviteit

rechter distributiviteit

niet-commutatief in het algemeen

6.3 Cofactor-tekenpatroon $(-1)^{i+3}$

7 Determinanten

8 Stelsels oplossen

8.1 Rang van een matrix

rang(A) = het aantal lineair onafhankelijke rijen van A

- 1. Breng de matrix in **gereduceerde rij-echelonvorm** (RREF=Reduced Row-Echelon Form).
- 2. Het aantal niet-nulrijen in deze trapvorm is de rang van A.

8.2 n vergelijkingen met n onbekenden, $|A| \neq 0$ (Cramer)

Voor $AX = B \text{ met } A \in \mathbb{R}^{n \times n} \text{ en } \det(A) \neq 0 \text{ geldt}$

$$x_j = \frac{\det(A_j)}{\det(A)}$$
 $(j = 1, \dots, n),$

waar A_j ontstaat uit A door de j-de kolom te vervangen door de vector B.

8.3 Homogene 2×3 -stelsels

$$a_1x + b_1y + c_1z = 0,$$

 $a_2x + b_2y + c_2z = 0.$

Indien
$$\det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \neq 0$$
, dan is de oplossingenverzameling

$$V = \{ \lambda \cdot (\det \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix}, -\det \begin{pmatrix} a_1 & c_1 \\ a_2 & c_2 \end{pmatrix}, \det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}) \mid \lambda \in \mathbb{R} \}.$$

8.4 n+1 vergelijkingen met n onbekenden

Een stelsel van de vorm

$$a_1x + b_1y + c_1 = 0,$$

 $a_2x + b_2y + c_2 = 0,$
 $a_3x + b_3y + c_3 = 0$

heeft één oplossing ⇔

$$\det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = 0.$$

9 Meetkunde

Afstand 2 punten	$ P_1(x_1, y_1), P_2(x_2, y_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	$ P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2) =$
	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
Midden v/e lijnstuk	$co(M) = (\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2})$
Zwaartepunt v/e driehoek	$co(Z) = (\frac{(x_1 + x_2 + x_3)}{3}, \frac{(y_1 + y_2 + y_3)}{3})$

Vergelijking v/e rechte dr punt met rico m	$y - y_1 = m(x - x_1)$
Vergelijking v/e rechte dr punt met rico m	$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$
Vergelijking v/e rechte dr snijpunt met x-as (r,0) en y-as (0,s)	$\frac{x}{r} + \frac{y}{s} = 1$
Hoek tussen twee rechten a,b met rico m1,m2	$\cos(\hat{ab}) = \frac{ 1+m_1m_2 }{\sqrt{1+m_1^2}\sqrt{1+m_2^2}}$
Afstand tussen rechte a \leftrightarrow ux+vy+w=0 en P(x1,y1)	$d(P,a) = \frac{ ux_1 + vy_1 + w }{\sqrt{u^2 + v^2}}$

9.1 De cirkel

Cartesiaanse vergelijking	$(x - x_1)^2 + (y - y_1)^2 = r^2$
Algemene vergelijking	$x^{2} + y^{2} + 2ax + 2by + c = 0$ \wedge $a^{2} + b^{2} - c \ge 0$
Parameter vergelijking	$\begin{cases} x = x_M + r \cdot \cos t \\ y = y_M + r \cdot \sin t \end{cases} met \ t \in [0, 2\pi[$

9.2 De parabool

Top vergelijking	$y^2 = 2px$	
Parameter vergelijking	$x = 2p\lambda^2$	$met \ \lambda \in \mathbb{R}$
i arameter vergenjanig	$y = 2p\lambda$	

9.3 De ellips

$$\begin{aligned} &Cartesia ansevgl.: \frac{x^2}{a^2} + \frac{y}{b^2}^2 = 1 \\ &Parameter vgl.: \\ &\left\{ \begin{array}{l} x = a.\cos t \\ y = b.\sin t \end{array} \right. \end{aligned} met \ t \in [0, 2\pi[$$

9.4 De hyperbool

$$\begin{aligned} &Cartesia ansev gl.: \frac{x^2}{a^2} - \frac{y}{b^2}^2 = 1 \\ &Parameter vgl.: \\ &\left\{ \begin{array}{l} x = a. \sec t \\ y = b. \tan t \end{array} \right. \end{aligned} met \ t \in \left] \frac{-\pi}{2}, \frac{3\pi}{2} \right[\setminus \left\{ \frac{\pi}{2} \right\} \end{aligned}$$

9.5 Oppervlakte Formules

Vorm	Formule	Variabelen
Vierkant	$A = s^2$	s: zijlengte
Rechthoek	A = l.w	l: lengte, w: breedte
Driehoek	$A = \frac{1}{2}b.h$	b: basis, h: hoogte
Cirkel	$A = \pi r^2$	r: straal
Parallellogram	A = b.h	b: basis, h: hoogte
Trapezium	$A = \frac{1}{2}(b_1 + b_2).h$	b_1, b_2 : bases, h : hoogte
Ellips	$A = \pi a.b$	a, b: halve grote en halve kleine as
Regelmatig Veelhoek	$A = \frac{1}{2}P.a$	P: omtrek, a: apothema

9.6 Volume Formules

Vorm	Formule	Variabelen
Kubus	$V = s^3$	s: zijlengte
Rechthoekig Prisma	$V = l \times w \times h$	l: lengte, w: breedte, h: hoogte
Bol	$V = \frac{4}{3}\pi r^3$	r: straal
Cilinder	$V = \pi r^2 h$	r: straal, h: hoogte
Kegel	$V = \frac{1}{3}\pi r^2 h$	r: straal, h: hoogte
Piramide	$V = \frac{1}{3}B \times h$	B: basisoppervlakte, h: hoogte
Ellipsoïde	$V = \frac{4}{3}\pi abc$	a, b, c: halve hoofdaslengtes
Prisma	$V = B \times h$	B: basisoppervlakte, h: hoogte

10 Ruimte meetkunde

10.1 Vectoren

10.1.1 Inwendige product (inproduct, scalaire product)

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta = u_x \cdot v_x + u_y \cdot v_y + u_z \cdot v_z$$

10.1.2 Vectorieel product van vectoren (kruisproduct)

$$\vec{u} \times \vec{v} \stackrel{\text{def}}{=} \left(u_y v_z - u_z v_y, \ u_z v_x - u_x v_z, \ u_x v_y - u_y v_x \right) = \left(\begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix}, \begin{vmatrix} u_z & u_x \\ v_z & v_x \end{vmatrix}, \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} \right) \in \mathbb{R}^3$$

10.2 Rechte

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + k \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} \quad e \leftrightarrow \frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

10.3 Vlak

$$\alpha \leftrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + r \cdot \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix} + s \cdot \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix} \quad \alpha \leftrightarrow \begin{bmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ a_1 & b_1 & c_1 & 0 \\ a_2 & b_2 & c_2 & 0 \end{bmatrix} = 0$$

$$\alpha \leftrightarrow ux + vy + wz + t = 0 \qquad normaal \leftrightarrow \vec{N}(u, v, w)$$

10.3.1 Snijlijn 2 vlakken

$$\begin{bmatrix} \alpha \leftrightarrow u_1 x + v_1 y + w_1 z + t_1 = 0 \\ \beta \leftrightarrow u_2 x + v_2 y + w_2 z + t_2 = 0 \end{bmatrix} d \leftrightarrow \begin{cases} u_1 x + v_1 y + w_1 z + t_1 = 0 \\ u_2 x + v_2 y + w_2 z + t_2 = 0 \end{cases}$$

10.3.2 Vlakkenwaaier van 2 vlakken

$$k(u_1x + v_1y + w_1z + t_1) + m(u_2x + v_2y + w_2z + t_2) = 0 \quad (k, m \in \mathbb{R})$$

10.3.3 Loodlijn op een vlak / loodvlak op een rechte

$$e \leftrightarrow \frac{x - x_1}{u} = \frac{y - y_1}{v} = \frac{z - z_1}{w} \mid \alpha \leftrightarrow a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

10.3.4 Relatie tussen twee vlakken α, β in \mathbb{R}^3

$$\alpha: u_1x + v_1y + w_1z + t_1 = 0$$
 $\beta: u_2x + v_2y + w_2z + t_2 = 0$

$$\alpha_0: u_1x + v_1y + w_1z = 0$$
 $\beta_0: u_2x + v_2y + w_2z = 0$ (vlakken door O)

Evenwijdig, niet Samenvallend Snijdend (lijn) samenvallend α_0

 $RREF(\alpha_0 \cap \beta_0)$

 $RREF(\alpha \cap \beta)$

$$\alpha_0 \cap \beta_0 \quad \Rightarrow \quad \begin{bmatrix} u_1 & v_1 & w_1 & \vdots \\ u_2 & v_2 & w_2 & \vdots \end{bmatrix} \quad \begin{array}{c} \alpha_0 \\ \beta_0 \end{array}$$

 $RREF(\alpha_0 \cap \beta_0)$

 $RREF(\alpha \cap \beta)$

$$\begin{bmatrix} u' & v' & w' & t' & \vdots \\ 0 & 0 & 0 & 0 & \vdots \end{bmatrix} \Rightarrow \alpha = \beta$$

$$\begin{bmatrix} u' & v' & w' & \vdots \\ 0 & v" & w" & \vdots \end{bmatrix} \Rightarrow \alpha_0 \cap \beta_0 = d_0$$

 $RREF(\alpha \cap \beta)$

$$\begin{bmatrix} u' & v' & w' & t' & \vdots \\ 0 & v'' & w'' & t'' & \vdots \end{bmatrix} \Rightarrow \alpha \cap \beta = d$$

10.4 Bol

Bol met middelpunt $M(x_M, y_M, z_M)$ en straal = r

$$[(x - x_M)^2 + (y - y_M)^2 + (z - z_M)^2 = r^2]$$

$$x^2 + y^2 + z^2 + 2ax + 2by + 2cz + d = 0$$

$$\wedge \quad a^2 + b^2 + c^2 - d \ge 0$$

$$\downarrow \downarrow$$

$$M(-a, -b, -c) \quad \text{en} \quad r = \sqrt{a^2 + b^2 + c^2 - d}$$

10.5 Basis reële functies

Functie	Definitie
Identiteitsfunctie	f(x) = x
Constante functie	$f(x) = c, \ c \in \mathbb{R}$
Lineaire functie	$f(x) = mx + b, \ m, b \in \mathbb{R}$
Kwadratische functie	$f(x) = ax^2 + bx + c, \ a, b, c \in \mathbb{R}, \ a \neq 0$
Cubische functie	$f(x) = ax^3 + bx^2 + cx + d, \ a, b, c, d \in \mathbb{R}, \ a \neq 0$
Polynoomfunctie	$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in \mathbb{R}$ $a_n \neq 0$
Rationale functie	$f(x) = \frac{P(x)}{Q(x)}, \ P(x), Q(x)$ zijn polynomen, $Q(x) \neq 0$
Exponentiële functie	$f(x) = a^x, \ a > 0, \ a \neq 1$
Logaritmische functie	$f(x) = \log_a(x), \ a > 0, \ a \neq 1, \ x > 0$
Absolute-waarde functie	$f(x) = x = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$
Goniometrische functies	$f(x) = \sin(x)$ $f(x) = \cos(x)$ $f(x) = \tan(x) \ x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
Inverse goniometrische functies	$f(x) = \arcsin(x), \ x \in [-1, 1]$ $f(x) = \arccos(x), \ x \in [-1, 1]$ $f(x) = \arctan(x), \ x \in \mathbb{R}$
Hyperbolische functies	$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$ $f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$ $f(x) = \tanh(x) = \frac{\sinh(x)}{\cosh(x)}, \ x \in \mathbb{R}$
Stukjesfunctie	$f(x) = \begin{cases} x^2, & x < 0 \\ x + 1, & x \ge 0 \end{cases}$

11 Analyse

11.1 Limieten van rijen)

$$\lim_{n \to \pm \infty} \left(a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 \right) = \lim_{n \to \pm \infty} a_m n^m$$

$$\lim_{n \to \pm \infty} \frac{\left(a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 \right)}{\left(b_q n^p + b_{q-1} n^{p-1} + \dots + b_1 n + b_0 \right)} = \lim_{n \to \pm \infty} \frac{a_m n^m}{b_q n^p}$$

11.2 Limieten van functies

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n \quad (n \in _0)$$

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$\lim_{x \to \pm \infty} \left(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\right) = \lim_{x \to \pm \infty} a_n x^n$$

$$\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

11.3 Limieten van goniometrische functies

$$\lim_{x \to a} \sin(x) = \sin(a) \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$\lim_{x \to a} \cos(x) = \cos(a) \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

11.4 Methodes bij het berekenen van limieten van functies

<u>Veeltermfunctie</u>: $\lim_{x \to a} f(x) = \text{Eindige a limiet} = \text{functiewaarde}$

Oneindige a limiet = limiet van de hoogstegraadsterm

Gebroken rationale functie:

Eindige a

$a \in \operatorname{dom} f(x)$	limiet = functiewaarde
geval $\frac{r}{0} \wedge r \in \mathbb{R}$	linker- en rechterlimiet zijn ∞ ; teken afleiden uit het teken van r en de noemer
geval $\frac{0}{0}$	deel teller en noemer door $(x-a)$, bereken de limiet van de bekomen functie

One indige a

limiet = limiet van quotiënt hoogste graadstermen

<u>Irrationale functie</u>:

Eindige a

$a \in \operatorname{dom} f(x)$	limiet = functiewaarde
$a \in \operatorname{adh} \operatorname{dom} f(x)$ $\frac{r}{0} \wedge r \in \mathbb{R}$	linker- en rechterlimiet zijn ∞ ; teken afleiden uit het teken van r en de noemer
$a \in \operatorname{adh} \operatorname{dom} f(x)$ $\frac{0}{0} \wedge r \in \mathbb{R}$	vermenigvuldig teller en noemer met de toegevoegde wortelvorm, deel teller en noemer door $(x-a)$, bereken de limiet van de bekomen functie
$a \notin \operatorname{adh} \operatorname{dom} f(x)$	geen limiet

One indige a

Onemaige w	
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ en $f(\pm \infty)$ is te berekenen	limiet = resultaat berekening
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ geval $\frac{\infty}{\infty}$	zet in de teller en de noemer de hoogste macht van \boldsymbol{x} voorop, vereenvoudig en bereken de limiet van de bekomen functie
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ geval $\infty - \infty$	herleid tot het vorige geval door teller en noemer te vermenigvuldigen met de toegevoegde wortelvorm
$a \notin \operatorname{adh} \operatorname{dom} f(x)$	geen limiet

Regel l'Hôptal:

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad \forall \quad \pm \infty$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Bewerkingen met oneindig en onbepaalde vormen:

Bewerkingen	Geen betekenis
$x + (-\infty) = -\infty + x = (-\infty) + x$	$(+\infty) + (-\infty)$
$x + (+\infty) = +\infty + x = (+\infty) + x$	$(-\infty) + (+\infty)$
$x \cdot (+\infty) = (+\infty) \cdot x = +\infty \text{ als } x > 0$	$0 \cdot (+\infty), (+\infty) \cdot 0$
$x \cdot (+\infty) = (+\infty) \cdot x = -\infty \text{ als } x < 0$	$0 \cdot (-\infty), (-\infty) \cdot 0$
$x \cdot (-\infty) = (-\infty) \cdot x = -\infty \text{ als } x > 0$	$\frac{1}{0}$
$x \cdot (-\infty) = (-\infty) \cdot x = +\infty \text{ als } x < 0$	1 ^{+∞}
$(+\infty) + (+\infty) = +\infty$	0_0
$(-\infty) + (-\infty) = -\infty$	$(+\infty)^0$
$(+\infty)\cdot(+\infty)=(-\infty)\cdot(-\infty)=+\infty$	
$(+\infty)\cdot(-\infty)=(-\infty)\cdot(+\infty)=-\infty$	
$(+\infty)^n = +\infty$ als n even is	
$(-\infty)^n = -\infty$ als n oneven is	
$\frac{1}{+\infty} = \frac{1}{-\infty} = 0$	
$\sqrt[n]{+\infty} = +\infty$	
$\sqrt[n]{-\infty} = -\infty$ als n oneven is	

11.5 Afgeleiden - differentialen

$$Dc = 0$$

$$D(c.f) = c.Df$$

$$D(f \pm g) = Df \pm Dg$$

$$D(f.g) = fDg + gDf$$

$$D(f.g) = \frac{gDf - fDg}{g^2}$$

$$Dx^n = nx^{n-1}$$

$$Dx^{-1} = -1.x^{-2}$$

$$D \sin x = \cos x$$

$$D \tan x = \sec^2 x = \frac{1}{\sin^2 x}$$

$$D \cot x = -\csc^2 x = \frac{-1}{\sin^2 x}$$

$$D \operatorname{Bgsinx} = \frac{1}{1+x^2}$$

$$D \operatorname{Bgtanx} = \frac{1}{1+x^2}$$

$$D \operatorname{ch} x = \operatorname{sh} x$$

$$D \operatorname{ch} x = \operatorname{sh} x$$

$$D \operatorname{ch} x = \frac{1}{cos^2 x}$$

$$D \operatorname{de} x = \frac{1}{\sin^2 x} dx$$

$$d \operatorname{de} x = -\sin x dx$$

$$d \operatorname{de} x = -\csc^2 x dx = \frac{-1}{\cos^2 x} dx$$

$$d \operatorname{Bgsinx} = \frac{dx}{\sqrt{1-x^2}}$$

$$d \operatorname{Bgcosx} = \frac{-dx}{\sqrt{1-x^2}}$$

$$d \operatorname{Bgtanx} = \frac{dx}{1+x^2}$$

$$d \operatorname{Bgtanx} = \frac{dx}{1+x^2}$$

$$d \operatorname{ch} x = \operatorname{sh} x dx$$

$$d \operatorname{ch} x = \frac{dx}{x \ln a}$$

$$d \operatorname{ch} x = \frac{dx}{x$$

11.6 Afgeleiden - fundamentele integralen

Bg = arc

Afgeleiden	Integraal
D[c] = 0	$\int dx = x + C$
$D[x^n] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C (n \neq -1)$
$D[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$D[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$D[\tan x] = \sec^2 x = \frac{1}{\cos^2 x}$	$\int \frac{1}{\cos^2 x} dx = \tan x + C$
$D[\cot x] = -\csc^2 x = \frac{-1}{\sin^2 x}$	$\int \frac{1}{\sin^2 x} dx = -\cot x + C$
$D[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$
$D[\arccos x] = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{1-x^2}} = -\arccos x + C$
$D[\arctan x] = \frac{1}{1+x^2}$	$\int \frac{dx}{1+x^2} = \arctan x + C$
$D[e^x] = e^x$	$\int e^x dx = e^x + C$
$D[a^x] = a^x \ln a$	$\int a^x dx = \frac{a^x}{\ln a} + C$
$D[\ln x] = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$
$D\left[\ln\left x + \sqrt{x^2 + k}\right \right] = \frac{1}{\sqrt{x^2 + k}}$	$\int \frac{dx}{\sqrt{x^2 + k}} = \ln\left x + \sqrt{x^2 + k}\right + C$
$D^a \log x = \frac{1}{x \ln a}$	*

11.7 Partiële integratie

$$\int f(x) d(g(x)) = f(x).g(x) - \int g(x) d(f(x))$$
$$\int u dv = u.v - \int v du$$

12 Statistiek

12.1 Test van een hypothese over het gemiddelde van een normaalverdeling

Dit is een test van een steekproefgemiddelde \bar{x} volgens steekproefgemiddeldeverdeling $X \approx \mathcal{N}(\mu_{\bar{x}}, \sigma_{\bar{x}}) \approx \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$ in de populatie $\mathcal{N}(\mu, \sigma)$. Gebruikmakend van significantieniveau α .

Twee-zijdige test	Links-zijdige test	Rechts-zijdige test
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_A: \mu eq \mu_0$	$H_A: \mu < \mu_0$	$H_A: \mu > \mu_0$
$\mathcal{N}(\mu_{\overline{x}}, \sigma_{\overline{x}})$ $\alpha/2$ g g_+	$\mathcal{N}(\mu_{\overline{x}}, \sigma_{\overline{x}})$	$\mathcal{N}(\mu_{\overline{x}}, \sigma_{\overline{x}})$ g_+
$H_A: z_{\bar{x}} \le g \ \lor \ \bar{x} \ge g_+$	$H_A: z_{\bar{x}} \le g$	$H_A: z_{\bar{x}} \ge g_+$

12.2 Test van een hypothese over een populatieproportie Dit is een test op een populatieproportie \hat{p} volgens een binomiaalverdeling $X \approx \mathcal{B}(n,p) \approx \mathcal{N}(np,\sqrt{n}.\sqrt{p(1-p)})$. Gebruikmakend van significantieniveau α .

Twee-zijdige test	Links-zijdige test	Rechts-zijdige test
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$
$H_A: p \neq p_0$	$H_A: p < p_0$	$H_A: p > p_0$
$\alpha/2$ g g_+	α g_{-}	g_+
$H_A: \hat{p} \leq g \ \lor \ \hat{p} \geq g_+$	$H_A: \hat{p} \leq g$	$H_A: \hat{p} \geq g_+$

12.3 Test van een hypothese over het gemiddelde van een normaalverdeling via de P-waarde

Twee-zijdige toets	Links éénzijdige toets	Rechts éénzijdige toets
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_1: \mu \neq \mu_0$	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$
Als $\bar{x} < \mu \to P = 2 \cdot P(X \le \bar{x})$	$P = P(X \le \bar{x})$	$P = P(X \ge \bar{x})$
Als $\bar{x} > \mu \to P = 2 \cdot P(X \ge \bar{x})$	$I = I (X \leq x)$	$I - I (A \ge x)$
$P \leq \alpha$	$P \le \alpha$	$P \le \alpha$

12.4 Test van een hypothese over een populatieproportie via de P-waarde

Twee-zijdige toets	Linkszijdige toets	Rechtszijdige toets
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$
$H_1: p \neq p_0$	$H_1: p < p_0$	$H_1: p > p_0$
Als \hat{p}	$P = P(X \le \hat{p})$	$P = P(X \ge \hat{p})$
Als $\hat{p} > p \to P = 2 \cdot P(X \ge \hat{p})$	$I = I (X \leq p)$	$I - I (X \ge p)$
Vergelijk: $P \leq \alpha$	Vergelijk: $P \leq \alpha$	Vergelijk: $P \leq \alpha$

13 Diversen

13.1 Wiskundige Symbolen (ISO 31/XI)

	120 01/111)
$x \in A$	is een element van de verzameling
$x \not\in A$	is geen element van de verzameling
$ \begin{cases} \{x_1, x_2, \dots, x_n\} \end{cases} $	de verzameling door opsomming
$\{x \in A p(x)\}$	de verzameling waar de elementen voldoen aan de eigenschap $p(x)$
Ø	de lege verzameling
N	de natuurlijke getallen $(0,1,2,\dots)$
\mathbb{Z}	de gehele getallen $(\ldots, -2, -1, 0, 1, 2, \ldots)$
Q	de rationale getallen (breuken van \mathbb{Z})
\mathbb{R}	de reële getallen
\mathbb{C}	de complexe getallen
$B \subseteq A$	B behoort tot A (kan er mee samenvallen)
$B \subset A$	B behoort strikt tot A
$A \cup B$	samenvoeging van A en B (unie)
$A \cap B$	doorsnede van A en B (de gemeenschappelijke elementen)
$A \setminus B$	A verschilt B , wat tot A behoort en niet tot B
$C_U A$	het complement van A in het universum U
(a,b)	het geordend paar
(a_1, a_2, \dots, a_n)	een geordend n -tal
$A \times B$	de productverzameling van A en B
#	rangnummer of aantal

13.2 Logische symbolen

$p \wedge q$	conjunctie, de beweringen p en q zijn geldig
$p \lor q$	disjunctie, de bewering p of q is geldig
$\neg p$	negatie, de bewering p is niet geldig
$p \Rightarrow q$	implicatie, als p dan q
$p \Leftrightarrow q$	equivalentie, de beweringen p en q zijn gelijkwaardig
$\forall x$	universele kwantor, voor alle elementen geldt
$\exists x$	existentiële kwantor, er zijn elementen die voldoen aan