Codility_

Candidate Report: training2VKJMY-JT6

Check out Codility training tasks

Test Name:

Feedback Summary Timeline

Tasks Details

1. Distinct Task Score Correctness Performance Compute number of distinct values in an 100% 100% array.

Task description

Write a function

class Solution { public int solution(int[] A); }

that, given an array A consisting of N integers, returns the number of distinct values in array A.

For example, given array A consisting of six elements such that:

$$A[0] = 2$$
 $A[1] = 1$ $A[2] = 1$
 $A[3] = 2$ $A[4] = 3$ $A[5] = 1$

the function should return 3, because there are 3 distinct values appearing in array A, namely 1, 2 and 3.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [-1,000,000..1,000,000].

Copyright 2009-2020 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

100%

```
using System;
     using System.Linq;
3
     {\bf using} \ {\bf System. Collections. Generic;}
     // you can also use other imports, for example:
     // using System.Collections.Generic;
     // you can write to stdout for debugging purposes, e.g.
     // Console.WriteLine("this is a debug message");
8
10
     class Solution {
           public int solution(int[] A)
11
                 List<int> lst = new List<int>();
13
14
                 if (A == null || A.Length == 0)
15
                      return 0;
16
17
18
                 return A.ToList().Distinct().Count(); ;
19
20
             }
21
22
     }
```

Analysis summary

The solution obtained perfect score.

Analysis 👩

Detected time complexity:

O(N*log(N)) or O(N)

expar	nd all Exam	ple tests
•	example1 example test, positive answer	√ OK
expar	nd all Correct	ness tests
>	extreme_empty empty sequence	√ OK
>	extreme_single sequence of one element	√ OK
•	extreme_two_elems sequence of three distinct elements	√ OK s
•	extreme_one_value sequence of 10 equal elements	√ OK
•	extreme_negative sequence of negative elements, len	✓ OK agth=5
•	extreme_big_values sequence with big values, length=5	√ OK
•	medium1 chaotic sequence of value sfrom [0 length=100	√ OK 1K],
>	medium2 chaotic sequence of value sfrom [0 length=200	√ OK 1K],
•	medium3 chaotic sequence of values from [0 length=200	✓ OK 10],

expar	nd all Performance te	ests
•	large1 chaotic sequence of values from [0100K], length=10K	√ OK
•	large_random1 chaotic sequence of values from [-1M1M], length=100K	✓ OK
•	large_random2 another chaotic sequence of values from [-1M1M], length=100K	✓ OK

The PDF version of this report that may be downloaded on top of this site may contain sensitive data including personal information. For security purposes, we recommend you remove it from your system once reviewed.