Теория вероятностей и математическая статистика—2

Винер Даниил @danya_vin

Версия от 20 января 2025 г.

Содержание

1	Зак	он больших чисел. Центральная предельная теорема	4
	1.1	Закон больших чисел в форме Бернулли	6
		Центральная предельная теорема	
		Теорема Муавра-Лапласа	
	1.4	Неравенство Берри-Эссена	;
2	Мн	огомерное нормальное распределение	4
2		огомерное нормальное распределение Одномерное нормальное распределение	4
2	2.1		
2	2.1 2.2	Одномерное нормальное распределение	4

1 Закон больших чисел. Центральная предельная теорема

1.1 Закон больших чисел в форме Бернулли

Пусть имеются некоторые случайные величины $\xi_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$, где p — вероятность, что какое-то событие произошло. Тогда $\mathbb{E}\left[\xi\right] = p, \, \mathbb{D}\left[\xi\right] = p(1-p) \leqslant \frac{1}{4}$

Теорема. Пусть $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ — доля успехов в n испытаниях Бернулли, тогда $\hat{p} \stackrel{p}{\longrightarrow} p$

Доказательство. Распишем по неравенству Чебышёва:

$$\mathbb{P}(|\hat{p} - p| \geqslant \varepsilon) \leqslant \frac{p(1 - p)}{n\varepsilon^2} \leqslant \frac{1}{4n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0$$

Пример

Пусть 87% новорожденных доживают до 50 лет. Тогда p=0,87 — вероятность дожить до 50. Рассмотрим n=1000 новорожденных

Опредедлим с какой вероятностью данная случайная величина отклонится от своего математического ожидания не более, чем на $0,04 - \mathbb{P}(|\hat{p}-0,87| \leq 0,04)$. По Чебышёву:

$$\mathbb{P}(|\hat{p} - p| \le 0, 04) \ge 1 - \frac{\mathbb{D}[\hat{p}]}{(0, 04)^2} = 1 - \frac{0.87 \cdot 0.13}{0.0016 \cdot 1000} = 0.929$$

1.2 Центральная предельная теорема

Рассмотрим сумму независимых одинаково распределенных случайных величин:

$$S_n = \xi_1 + \ldots + \xi_n,$$

при этом существует $\mathbb{D}\left[\xi_{i}\right]\leqslant c,\,\mathbb{E}\left[\xi_{i}\right]=\mu,\,\mathbb{D}\left[\xi_{n}\right]=\sigma^{2}$

Тогда, $Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{d} Z$, где $Z \sim \mathcal{N}(0;1)$ — имеет стандартное нормальное распределение

Функция плотности:

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}}$$

1.3 Теорема Муавра-Лапласа

Теорема. Имеется $\xi_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$. $S_n = \sum \xi_i$ — число успехов в n испытаниях. Тогда

$$Z_n = \frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow{d} Z \sim \mathcal{N}(0;1)$$

Пример

Проходит суд над Бенджамином Споком. Из 300 человек 90 — женщины, которые симпатизируют Споку, при этом 12 присяжных будут судить Спока. Требуется определить мог ли отбор присяжных быть случайным.

Число успехов в данном случае — число женщин среди 300 присяжных. Будем считать, что p=0.5, то есть половина женщин.

$$\mathbb{P}\left(\frac{S_{300} - 150}{\sqrt{0.5 \cdot 0.5 \cdot 300}} \leqslant \frac{90 - 150}{\sqrt{75}}\right) \simeq \Phi(-6.93) \simeq 2.3 \cdot 10^{-12}$$

Значит, практически невозможно случайным образом выбрать 90 или меньше женщин среди 300 присяжных при справедливом распределении, то есть отбор был предвзятым

1.4 Неравенство Берри-Эссена

$$|F_n - \Phi| \leqslant \frac{C_0 \cdot \mathbb{E}\left[|\xi_1 - \mu|^3\right]}{\sigma^3 \sqrt{n}}, \text{ где } \begin{cases} F_n - \text{функция распределения стандартизированной CB} \\ C_0 - \text{константа} \\ \mathbb{E}\left[|\xi_1 - \mu|^3\right] - \text{третий абсолютный центральный момент} \end{cases}$$

Пример

Пусть имеется n=1000 заключенных договоров страхования с 1 января на 1 год. С вероятностью p=0.05 произойдет страховой случай, выплаты по каждому договору — 2000 у.е. R — резерв страховой компании

Требуется определить какой должен быть размер резерва, чтобы страховая компания выполнила свои обязательства с вероятностью 0.99

$$S_n = 2000(\xi_1 + \ldots + \xi_n), \, \xi_i \sim Bi(p = 0.05)$$

$$\mathbb{P}\left(S_n \leqslant R\right) = \mathbb{P}\left(\frac{\sum \xi_i - 0.05 \cdot 1000}{\sqrt{1000 \cdot 0.05 \cdot 0.95}} \leqslant \frac{\frac{R}{2000} - 0.05 \cdot 1000}{\sqrt{1000 \cdot 0.05 \cdot 0.95}}\right) \geqslant 0,99$$

Значит, требуется найти квантиль уровня 0.99. Он равен 2.33, тогда

$$\frac{\frac{R}{2000} - 0.05 \cdot 1000}{\sqrt{1000 \cdot 0.05 \cdot 0.95}} = 2.33 \Longrightarrow R = 132117$$

То есть, для покрытия 99% страховых случаев у страховой компании резерв должен быть размером 132117 у.е. Напротив, для покрытия всех случаев R=2000000

2 Многомерное нормальное распределение

2.1 Одномерное нормальное распределение

Определение. Случайная величина имеет нормальное распределение $X \sim \mathcal{N}(\mu, \sigma^2),$ если функция плотности равна

 $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

Многомерное нормальное распределение

Определение. Пусть случайные величины z_1, \ldots, z_n независимы и $\sim N(0,1)$. Тогда $z = \begin{pmatrix} z_1 \\ \vdots \end{pmatrix}$ имеет многомерное нормальное распределение N(0, I), где I — единичная матрица

Функция плотности:

$$f_Z(z) = \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2} \sum_{i=1}^n z_i^2} = \frac{1}{(\sqrt{2\pi})^n} e^{-0.5Z^T Z}$$

Примечание. Пусть $Z \sim N(0, I), A \in \mathrm{Mat}_{k \times n}$ — матрица полного ранга и k < n, то есть $\mathrm{rank} A = k$. Тогда

$$Y = AZ + b \sim N(b, AA^T)$$

$$f_Y(y) = \frac{1}{|\det A|} f_Z(A^{-1}(y - b))$$

$$= \frac{1}{(\sqrt{2\pi})^n} \frac{1}{|\det A|} e^{-0.5(y - b)^T (A^{-1})^T A^{-1}(y - b)}$$
пусть $AA^T = C$

$$= \frac{1}{(\sqrt{2\pi})^n} \frac{1}{\sqrt{|C|}} e^{-0.5(y - b)^T C^{-1}(y - b)}$$

Определение. Случайная величина $Y \sim N(b, C)$, если

$$f_Y(y) = \frac{1}{(\sqrt{2\pi})^n} \frac{1}{\sqrt{|C|}} e^{-0.5(y-b)^T C^{-1}(y-b)}$$

Определение. Случайный вектор $Y \sim N(0, C)$, если $\forall a_1, \dots, a_n$

$$a_1Y_1 + a_2Y_2 + \ldots + a_nY_n$$

либо $N(0,\dot{})$ либо const

2.3 Свойства многомерного нормального распределения

Пусть $Y \sim N(b, C)$

1. $\mathbb{E}[Y] = b, cov(Y) = C$

Доказательство. $Y = AZ + b, Z \sim N(0, I)$

$$cov(Y) = \mathbb{E}\left[(AZ + b - \mathbb{E}\left[AZ + b\right])(AZ + b - AEZ - b)^{T}\right] = AcovZA^{T} = AA^{T} = C$$

2. Любое линейное невырожденное преобразование многомерного нормаьного дает многомерный нормальный вектор

4

$$\forall B, a : BY + a \sim N(Bb + a, BCB^T)$$

3. ∀ подвектор нормального вектора нормален

4. Если $Y \sim N(b, D)$, то его компоненты независимы **Примечание.** Некоррелированность = независимость

Доказательство.

$$f_Y(y) = \frac{1}{(\sqrt{2\pi}^n)} e^{-0.5(y-b)^T D^{-1}(y-b)}$$

$$= \frac{1}{(\sqrt{2\pi}^n)} e^{-0.5 \sum_{i=1}^{n} \left(\frac{y_i - b_i}{\sigma_i}\right)^2}$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-0.5\left(\frac{y_i - b_i}{\sigma_i}\right)^2}$$

Пример.
$$Y_1 \sim N(0,1), \; \lambda = \begin{cases} 1, & p = 0.5 \\ -1, & p = 0.5 \end{cases}, \; Y_2 = 2Y_1$$

$$\mathbb{P}\left(Y_2 \leqslant y\right) = \mathbb{P}\left(Y_1 \leqslant y | \alpha = 1\right) \cdot \mathbb{P}\left(\alpha = 1\right) + \mathbb{P}\left(-Y_1 \leqslant y | \alpha = -1\right) \cdot \frac{1}{2}$$

$$= \Phi(y)$$

 $cov(Y_1,Y_2)=cov(Y_1,2Y_1)=\mathbb{E}\left[\alpha Y_1^2\right]-\mathbb{E}\left[Y\right]\mathbb{E}\left[\alpha Y_1\right]=0.$ То есть они не коррелированы

2.4 Условное нормальное распределение

Имеется случайный вектор $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$, пишут $\Phi_2(z_1,z_2;\rho)$

Допустим, что z_2 фиксирован, тогда $z_2|z_1=z\sim N(\rho z,1-\rho^2)$

 $z_2 = \rho z_1 + u$, где z_1 и u независимы и $u \sim N(.,.)$