Теоритично контролно №2, І, Информатика

Иван Йочев

11 май 2019 г.

1 Действие на група върху множество

1.1 Определение

Нека G - група и M - множество

 $f: G \times M \to M$

G действа върху M, ако:

- $0) \exists f: G \times M \to M$
- 1) $\forall g \in G \ \forall m \in M \ f(g, m) \in M$
- 2) $\forall g_1, g_2 \in G \ \forall m \in M \ f(g_1g_2, m) = f(g_1, f(g_2, m))$
- 3) $\forall m \in M \ f(e_H, m) = m$

1.2 Стабилизатор на елемент

Нека G - група, M - множество и G действа върху М $f:G\times M\to M$ е действие на група върху множество Нека $x\in M$ $St_G(x)=\{g\in G|f(g,x)=x\}\subseteq G$

1.3 Орбита на елемент

Нека G - група и M - множество и G действа върху М $f:G\times M\to M$ е действие на група върху множество Нека $x\in M$ $O_G(x)=\{f(g,x)|g\in G\}\subseteq M$

1.4 Изразяване на дължина на орбита

Нека G - група и M - множество и G действа върху M Нека $x \in M$ $|O_G(x)| = |G|: St_G(x)|$

1.5 Действие на група върху себе си чрез спрягане

Нека G - група $\forall g \in G \text{ дефинираме } \phi_g: G \to G$ $\phi_g(x) = gxg^{-1}$ Тогава gxg^{-1} наричаме спрегнат на x по g

1.6 Клас спрегнати елементи

Нега G е група Тогава за $x \in G$ $C_x = O_G(x) = \{gxg^{-1} \mid g \in G\}$ наричаме клас спрегнати с x елементи

1.7 Централизатор

Нега G е група и G действа върху себе си, чрез спрягане Тогава за $x \in G$ $C_G(x) = St_G(x) = \{g \in G \mid gxg^{-1} = x\}$ наричаме централизатор на x в G

1.8 Център на група

Нека G е група Множеството $Z(G)=\{z\in G|\ \forall g\in G\ zg=gz\}$ наричаме център на групата G Z(G)=G, когато G е абелева

1.9 Формула за класовете

Нека G е група и G действа върху M - множество. $|M| = n < \infty$ $M = \{x_1, x_2, ..., x_n\}$ $\forall i \in \mathbb{N} \ \forall j \in \mathbb{N} \ O(x_i) \cap O(x_j) = \emptyset$ $M = \bigcup_{i=1}^n O(x_i)$ $Z(G) = \{x_{i_1}, ..., x_{i_t}\}, t \leq n$ $|M| = \sum_{i=1}^n |O(x_i)| = \sum_{i=1}^n |G: St_G(x_i)|$ Ако $G \equiv M$ и G действа върху себе си, чрез спрягане $|M| = |Z(G)| + \sum_{j=1}^t |C_{x_{i_j}}|$

2

1.10 Теорема на Кейли

Нека G - група
$$|G|=n<\infty$$
 \Rightarrow \exists $G'\leq S_n:G\cong G'$

2 Пръстени

2.1 Определение

 $(R, +, \cdot)$ е пръстен, ако: 0) (R, +) е абелева група

1) $(\forall a \in R \ \forall b \in R)ab \in R$ затвореност относно умножение

2) $(\forall a \in R \ \forall b \in R \ \forall c \in R)$ a(bc) = (ab)c = abc асоциативност за умножение

3) $(\forall a \in R \ \forall b \in R \ \forall c \in R)$ $(a+b)c = ac + bc \ \land a(b+c) = ab + ac$ дистрибутивност за умножение

2.2 Пръстен с единица

 $(R, +, \cdot)$ е пръстен с единица, ако:

- 0) $(R, +, \cdot)$ е пръстен
- 1) $\exists e \in R \ \forall a \in R \ ae = ea = a$

2.3 Комутативен пръстен

 $(R, +, \cdot)$ е комутативен пръстен, ако:

- 0) $(R, +, \cdot)$ е пръстен
- 1) $\forall a \in R \ \forall b \in R : ab = ba$

2.4 Област на цялост (област)

Нека $(R,+,\cdot)$ - комутативен пръстен

R е област, ако

- 0) $R \neq \{0\}$
- 1) Нека $a \in R$, $0_R \neq b \in R$

 $(ab = 0_R) \to (a = 0_R)$

(в R има единствен делител на нулата и това е 0_R)

2.5 Делител на нулата

Нека $(R, +, \cdot)$ - комутативен пръстен, и $a \in R$ а е делител на нулата, ако $\exists b \in R, b \neq 0_R : ab = ba = 0_R$

2.6 Поле

Нека $(R,+,\cdot)$ е пръстен

R е поле ако:

- 1) R е комутативен
- R е тяло

2.7 Тяло

 $(R,+,\cdot)$ е тяло, ако:

- 0) $(R, +, \cdot)$ е пръстен
- 1) $\exists 0 \in R \land \exists 1 \in R \land 0_R \neq 1_R$
- 2) $\forall a \in R \ \exists a' \in R : aa' = a'a = 1_R$

2.8 Подпръстен

Нека $(R,+,\cdot)$ е пръстен и нека $S\subseteq R,S\neq\emptyset$ S е подпръстен, ако $(\forall a\in S\ \forall b\in S)$ $(a\pm b\in S)\wedge(ab\in S)$

2.9 Мултипликативна група на пръстен

Нека $(R,+,\cdot)$ е пръстен с единица $R^*=\{a\in R\mid \exists a'\in R: aa'=a'a=1_R\}$ R^* се нарича мултипликативна група на пръстен R

3 Полета

3.1 Характеристика на поле

Нека F е поле

Нека $m\in Fn\in F, m\neq n$ Ако $m.1_R\neq n.1_R$, то charF=0Ако $m.1_R=n.1_R$, то charF=|m-n|

Алтернативна дефиниция: $char F = |1|_{F^+}$

3.2 Общ вид на характеристика на поле

Нека F е поле char F = 0 или char F = p - просто

3.3 Подполе

Нека F е поле Нека $K \subset q, F, |K| \ge 2$ К е подполе $(K \le F)$, ако: 1) $\forall a \in K \forall b \in K \ a \pm b \in K$ 2) $\forall a \in K \forall b \in K \ ab \in K$ 3) $\forall a \in K \ a^{-1} \in K$

Нека F е поле и $K \leq F$ F наричаме разширение на K

Разширение на поле

3.5 Просто поле

Нека F е поле F е просто, ако $(\forall K \leq F) \ K = F$

3.4

3.6 Възможни прости подполета

5

Нека F е поле $P = \bigcap_{K \leq F} K$ P е единствено просто подполе на F

4 Хомоморфизъм на пръстени

4.1 Определение

Нека R и R' са пръстени Нека $\phi: R \to R'$ ϕ е хомоморфизъм, ако 1) $\forall a \in R \ \forall b \in R \ \phi(a+b) = \phi(a) + \phi(b)$ 2) $\forall a \in R \ \forall b \in R \ \phi(ab) = \phi(a)\phi(b)$

4.2 Изоморфизъм

Нека R и R' са пръстени Нека $\phi: R \to R'$ ϕ е изоморфизъм, ако 1) ϕ е хомоморфизъм 2) ϕ е биекция

4.3 Ядро на хомоморфизъм

Нека R и R' са пръстени Нека $\phi: R \to R'$ - хомоморфизъм $Ker \phi = \{a \in R \mid \phi(a) = 0_{R'}\}$

4.4 Образ на хомоморфизъм

Нека R и R' са пръстени Нека $\phi: R \to R'$ - хомоморфизъм $Im\phi = \{\phi(a) \in R' \mid a \in R\}$

5 Идеали

5.1 Определение за ляв(десен) идеал

Нека R - пръстен $I \leq R$, ако $0) \emptyset \neq I \subseteq R$ $1) \forall a \in I \ \forall b \in I \ a - b \in I$ $2) \forall a \in I \ \forall r \in R$ $ra \in I$ (дяв идеал) $ar \in I$ (десен идеал)

5.2 Определение за двустранен идеал

Нека R - пръстен $I \leq R$, ако $0) \emptyset \neq I \subseteq R$ $1) \forall a \in I \ \forall b \in I \ a-b \in I$ $2) \forall a \in I \ \forall r \in R \ ra \in I \ \land \ ar \in I$

5.3 Сума на идеали

Нека R - пръстен $I \leq R, J \leq R$ $I+J=\{i+j|i\in I, j\in J\} \leq R$ I+J се нарича сума на идеали

5.4 Главен идеал, породен от елемент

Нека R е комутативен пръстен с единица Нека $a \in R$ $(a) = \{ar | r \in R\}$ (a) се нарича главен идеал породен от елемента а

5.5 Идеали в пръстена $\mathbb Z$

Нека $I \leq \mathbb{Z}$ $\Rightarrow I = (n) = n\mathbb{Z}, n \in \mathbb{N} \cup 0_Z$

5.6 Събиране в факторпръстен

Нека R - пръстен $I \leq R$ Нека $a \in R$ и $b \in R$ $\bar{a} = a + I$ $\bar{b} = b + I$ $\bar{a} + \bar{b} = (a + I) + (b + I)$ $= (a + b) + I = \overline{a + b}$

5.7 Умножение в факторпръстен

```
Нека R - пръстен I \leq R 
Нека a \in R и b \in R 
\bar{a} = a + I 
\bar{b} = b + I 
\bar{a} \cdot \bar{b} = (a + I)\underline{(b + I)} 
= (ab) + I = \overline{ab}
```

5.8 Теорема за хомоморфизмите за пръстени

Нека R, R' - пръстени Нека $\phi:R\to R'$ - хомоморфизъм на пръстени Нека $\mathrm{Ker}\phi=I$ $\Rightarrow I \trianglelefteq R$ и $R/I\cong Im\phi$

6 Доказателства

6.1 Поле няма нетривиални идеали

```
Нека R е поле \{0\} \neq I \leq R a \in I, a \leq 0 \Rightarrow 1 = a^{-1}a \in I \Rightarrow 1 \in I \Rightarrow R = (1) \subseteq I \land I \subseteq R \Rightarrow I = R
```

6.2 Ако комутативен пръстен с единица няма нетривиални идеали, той е поле

Нека R е пръстен и R няма нетривиални идеали Нека $0 \neq a \in R$ $\Rightarrow (a) \neq \{0\}$ $\Rightarrow (a) = R = (1)$ $\Rightarrow \exists a' \in R : aa' = a'a = 1$ \Rightarrow а е обратим и $a^{-1} = a'$ $\Rightarrow \forall a \in R$ е обратим \Rightarrow R е поле

6.3 Всяко поле съдържа едниствено просто подполе

Нека R е поле. Ще докажем, че единственото просто подполе на R е $P = \bigcap_{K \leq R} K$ Да допуснем, че $\exists X : X < P$ (P не е просто поле)

$$\Rightarrow X < R$$
 $(P = \bigcap_{K \le R} K) \to X \supseteq P$, но по допускане $X < P$ $\Rightarrow X = P$

Следователно Р е единствено просто подполе