- 1. Untersuchen Sie die gegenseitige Lage der Geraden g und h. Geben Sie, wenn möglich, den Schnittpunkt an. (6 BE)
 - a) S(1|3|5) b) windschief c) parallel
- 2. Untersuchen Sie die gegenseitige Lage der Ebenen. (7 BE)
 - a) parallel b) schneiden sich c) parallel
- 3. Untersuchen Sie die Lage der Geraden zur Ebene. Geben Sie, wenn möglich, den (6 BE) Schnittpunkt an.
 - a) g liegt in E b) g ist parallel zu E c) S(-57|76|-106)
- 4. Bestimmen Sie t so, dass die Gerade und die Ebene orthogonal zueinander sind. (2 BE)
 - a) t = -2 b) t = 4
- 5. Zeichnen Sie die Ebenen mit Hilfe ihrer Spurpunkte in jeweils ein kartesisches (4 BE) Koordinatensystem ein.
 - a) $S_x(6|0|0), S_y(0|-3|0), S_z(0|0|6)$
 - b) $S_x(6|0|0), S_y(0|4|0), S_z(0|0|-6)$
- 6. Bestimmen Sie die Koordinatenform der Ebene, deren Ausschnitt abgebildet ist. (4 BE)
 - a) 4y + 3z = 12 b) x = 3 c) 3x + 1y = 3 d) 2x + 1z = 4

7. Die Geraden
$$g: \vec{x} = \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$$
 und $h: \vec{x} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -4 \\ -2 \\ 8 \end{pmatrix}$ sind (4 BE)

parallel zueinander. Bestimmen Sie die Ebenengleichung in Parameter- und Koordinatenform.

$$E: \vec{x} = \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 0 \\ -6 \end{pmatrix} \qquad E: 16x + 16y + z = 75$$

Gesamtpunktzahl: 33 BE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
32,5	32	31,5	29,5	27,5	25,5	23,5	21,5	19,5	17,5	15,5	13,5	11,5	9	7

