[19]中华人民共和国国家知识产权局

[51] Int. Cl6

H04N 7/24 H04N 7/26

[12] 发明专利申请公开说明书

[21] 申请号 98103216.8

[43]公开日 1999年3月24日

[11]公开号 CN 1211877A

[22]申请日 98.7.15 [21]申请号 98103216.8

[71]申请人 国家科学技术委员会高技术研究发展中心

地址 100862 北京市海淀区复兴路乙 15号

[72] 表明人 孙 罕 虞正华 叶 琦

[74]专利代理机构 北京邦大专利事务所 代理人 魏殿绰

权利要求书3页 说明书6页 附图页数3页

[54]发明名章 MPEG-2 视频解码器及其输入缓冲器的 控制方法

[57]捕具

一种 MPEG-2 视频解码器,它由去复用器(1),输入 键冲器(2),视 照解码单元(3)和系统控制器(4)组成:其中,输入码流 TS 被送到去复 用器(1),经过去复用后,送 到输入缓冲器(2)中、视频解码单元(3) 从输入缓冲器(2)中取出码流进行解码;系统控制器(4)对去复用器(1)

输入缓冲器(2)和视照解码单元(3)进行控制;其符征在于:系统控 倒铅(4)通过 I/O 按口与视频解码单元(3) 调信,读/写视照解码单元(3)中的寄存器,从面码知输入缓冲器(2)的读写指针,从前可实行对输入缓冲器的控制,使视照解码器进行解码,停止解码,跳帧等。

专利文献出版社出版

1,一种MPEG-2视频解码器,它是一个SDTV视频解码器,它由去复用器(1),输入缓冲器(2),视频解码单元(3)和系统控制器(4)组成;其中,输入码流TS被送到去复用器(1),经过去复用后,送到输入缓冲器(2)中、视频解码单元(3)从输入缓冲器(2)中取出码流进行解码,系统控制器(4)对去复用器(1),输入缓冲器(2)和视频解码单元(3)进行控制;其特征在于。

系统控制器 (4) 通过I/0接口与视频解码单元 (3) 通信,读/写视频解码单元 (3) 中的寄存器,从而得知输入缓冲器 (2) 的读写指针,从而可实行对输入缓冲器的控制,使视频解码器进行解码,停止解码,跳顿等。

2,一种MPEG-2视频解码器的输入缓冲器的控制方法,其中所说视频解码器是一个SDTV视频解码器,它由去复用器(1),输入缓冲器(2),视频解码单元(3)和系统控制器(4)组成;其特征在于;所说方法包括下列步骤;

步骤 1 1, 在每一帧解码时, 系统控制器 (4) 通过视频解码单元 (3) 获取所解码帧的帧类型, 并暂时存储起来;

步骤 1 2, 在每帧解码开始前,系统控制器(4)判断前一解码帧的帧类型是否为 1 帧,如果前一帧为 1 帧,则进入步骤 1 3,如果前一帧不是 1 帧,则重复执行此步骤;

步驟 1 3, 系统控制器 (4) 通过解码单元 (3) 读取输入缓冲器 (2) 的读写指针,以便判断缓冲器的充盈度;

步骤14,判断输入缓冲器(2)中的内容是否小于一个P帧的大小,如果是,则缓冲器可能下溢,这时系统控制器(4)控制解码单元(3)停止~ 帧解码,并重复显示上一帧的内容,然后回到步骤12,如果不是,则进入步骤15.

步骤 1 5, 判断输入缓冲器 (2)的内容是否连续 3 帧小于1.2个 P 帧大小,如果是,则系统控制器 (4)控制解码单元 (3)停止一帧解码,并重复显示上一帧的内容,然后回到步骤 1 2,如果不是,则进入步骤 1 6;

步驟 1 6 , 判断输入缓冲器的剩余空间是否小于一个 I 顿大小, 如果是,则系统控制器 (4) 控制视频解码单元 (3) 跳过一个 B 顿, 然后回到步骤 1 2 ; 如果不是,则进入步骤 1 7 ;

步骤 1 7, 判断输入缓冲器的剩余空间是否连续 3 帧小于一个 I 帧加一个 B 帧大小,如果是,则系统控制器 (4)控制视频解码单元 (3) 跳过一个 B 帧,然后回到步骤 1 2;如果不是,则进入步骤 1 8;

步骤18,系统控制器(4)控制视频解码单元(3)执行随后的解码处 理。

3,一种MPEG-2视频解码器,所说视频解码器是一个HDTV视频解码器。它包括去复用器(12),1/4电路(5)。四个输入缓冲器(21-24),四个视频解码单元(31-34)。合成单元(6),以及系统控制器(42)。其中,输入码流TS被送到去复用器(12),经过去复用后,被送到1/4电路(5),在1/4电路(5)中。将HDTV图象分成四个SDTV子图象;由1/4电路(5)分割的四个子图象分别送到在四个视频解码单元(31-34)之前分别连接的四个输入缓冲器(21-24)。缓冲后,再由四个SDTV视频解码单元(31-34)进行平行解码。最后,将分别经过各个视频解码单元(31-34)解码的这些低分辩率的了图象数字视频信号送到合成单元(6),以合成为一路高清晰度电视信号;系统控制器(42)控制去复用器(12),1/4电路(5),四个输入缓冲器(21-24),四个视频解码单元(31-34)。合成单元(6),其特征在于:

系统控制器(42)通过I/0接口与视频解码单元(31-34)通信,读/写视频解码单元(31-34)中的寄存器,以得知输入缓冲器(21-24)的读写指针,从而可实行对输入缓冲器的控制,使视频解码器进行解码。停止解码,跳帧等。

4,一种MPEG-2视频解码器的输入缓冲器的控制方法,其中,所说视频解码器是一个HDTV视频解码器,它包括去复用器(12),1/4电路(5),四个输入缓冲器(21-24),四个视频解码单元(31-34),合成单元(6),以及系统控制器(42);其特征在于,所说方法包括下列步骤;

步骤 2 1, 在第一帧解码前, 对四个视频解码单元(21-24) 复位;

步驟 2 2. 在每帧解码开始前,系统控制器 (4 2) 判断前一解码帧的帧 类型是否为 I 帧,如果前一帧为 I 帧,则进入步骤 2 3,如果前一帧不是 I 帧,则重复执行此步骤:

步骤 2 3. 系统控制器 (4 2)通过各个视频解码单元 (31-34) 读取各个输入缓冲器 (21-24) 的读写指针,以便判断各个缓冲器的充盈度:

步骤 2 4, 判断各个输入缓冲器 (21-24) 中的内容是否至少有一个小干一个户帧的大小,如果是,则缓冲器可能下溢,这时系统控制器 (4 2) 控制四个视频解码单元 (31-34) 停止一帧解码,并重复显示上一帧的内容,然后回到步骤 2 2,如果不是,则进入步骤 2 5;

步骤 2 5. 判断各个输入缓冲器 (21-24) 中的内容是否至少一个连续 3 帧小于1.2个P帧大小,如果是,则系统控制器 (4 2) 控制四个解码单元 (31-34) 停止一帧解码,并重复显示上一帧的内容,然后回到步骤 2 2;如果不是,则进入步骤 2 6;

步骤 2 6, 判断各个输入缓冲器 (21-24) 的剩余空间是否至少有一个小于一个 I 帧大小, 如果是, 则系统控制器 (4 2) 控制四个视频解码单元 (31-34) 跳过一个 B 帧, 然后回到步骤 2 2; 如果不是, 则进入步骤 2 7;

步骤 2 7, 判断各个输入缓冲器 (21-24) 的剩余空间是否至少有一个连续 3 帧小于一个 I 帧加一个 B 帧大小, 如果是, 则系统控制器 (4 2) 控制四个

视频解码单元 (31-34) 跳过一个B帧, 然后回到步骤 2 2; 如果不是, 则进入步骤 2 8;

步骤 2 8, 系统控制器 (4 2) 控制四个视频解码单元 (31-34) 执行随后的解码处理。

说

MPEG-2视频解码器及其输入缓冲器的控制方法

本发明涉及视频解码技术,具体地涉及到MPEG-2视频解码器及其输入缓冲器的控制方法。

当前,通用的数字高清晰度电视编码技术是MPEG-2技术。它由150/1EC 13818文件描述。在MPEG-2的系统部分(13818-1)中, 定义了假想的传输流系统目标视频解码器(T-STD), 以描述解码过程。在T-STD中, 对视频, 音频和系统控制信息均定义了输入缓冲器及其处理过程。在满足一系列假定的前提下, 不需采取缓冲器控制措施, 输入缓冲器也不会上溢或下溢。

但是,这些假定在实际情况下是不存在的。 1 ,T-STD假定单路视频码流以不高于Rmax的恒定码率输入. 由于实际通信网络的关系, 输入码流可能间断, 也可能在一定时间内以远高于Rmax的码率输入: 2 ,无法精确控制开始解码的时间, 开始解码的时刻必定在一帧同步的开始: 3 ,解码显示不是瞬间完成的。因此, 在实际应用中, 如果对视频输入缓冲器不加控制的话, 可能出现输入缓冲器的上溢或下溢。

因此,本发明的目的是提供一种MPEG-2视频解码器及其输入缓冲器的控制 方法,以克服上述缺点。

按照本发明的第一个方面的MPEG-2视频解码器,它是一个SDTV视频解码器,它由去复用器,输入缓冲器、视频解码单元和系统控制器组成;其中,输入码流TS被送到去复用器、经过去复用后,送到输入缓冲器中,视频解码单元从输入缓冲器中取出码流进行解码;系统控制器对去复用器,输入缓冲器和视频解码单元进行控制;其特征在于:

系统控制器通过I/0接口与视频解码单元通信,读/写视频解码单元中的寄存器,从而得知输入缓冲器的读写指针,从而可实行对输入缓冲器的控制,使视频解码器进行解码,停止解码,跳帧等。

根据本发明第一个方面的MPEG-2视频解码器的输入缓冲器的控制方法,其中所说视频解码器是一个SUTV视频解码器,它由去复用器,输入缓冲器、视频解码单元和系统控制器组成,其特征在于:所说方法包括下列步骤:

步骤 1 1, 在每一帧解码时, 系统控制器通过视频解码单元获取所解码帧的帧类型, 并暂时存储起来;

步骤 1 2, 在每帧解码开始前, 系统控制器判断前一解码帧的帧类型是否为 I 帧, 如果前一帧为 I 帧,则进入步骤 1 3,如果前一帧不是 I 帧,则重复执行此步骤;

步驟 1 3. 系統控制器通过解码单元读取输入缓冲器的读写指针,以便判断缓冲器的充盈度,

步骤 1 4, 判断输入缓冲器中的内容是否小于一个 P 帧的大小,如果是,则缓冲器可能下溢,这时系统控制器控制解码单元停止一帧解码,并重复显示上一帧的内容,然后回到步骤 1 2;如果不是,则进入步骤 1 5;

步骤 1 5 , 判断输入缓冲器的内容是否连续 3 顿小于1.2个 P 顿大小, 如果是,则系统控制器控制解码单元停止一顿解码,并重复显示上一顿的内容,然后间到步骤 1 2 ; 如果不是,则进入步骤 1 6 ;

步骤 1 6, 判断输入缓冲器的剩余空间是否小于一个 I 顿大小,如果是,则系统控制器控制视频解码单元跳过一个 B 顿,然后回到步骤 1 2:如果不是,则进入步骤 1 7:

步骤 1 7, 判断输入缓冲器的剩余空间是否连续 3 帧小于一个 I 帧加一个 B 帧大小,如果是,则系统控制器控制视频解码单元跳过一个 B 帧, 然后回到步骤 1 2;如果不是,则进入步骤 1 8;

步骤 1 8 , 系统控制器控制视频解码单元执行随后的解码处理。

根据本发明第二方面的MPEG-2视频解码器,所说视频解码器是一个HDTV视频解码器。它包括去复用器。1/4电路,四个输入缓冲器,四个视频解码单元,合成单元,以及系统控制器;其中,输入码流TS被送到去复用器,经过去复用后,被送到1/4电路;在1/4电路中,将HDTV图象分成四个SDTV子图象;由1/4电路分割的四个子图象分别送到在四个视频解码单元之前分别连接的四个输入缓冲器;缓冲后,再由四个SDTV视频解码单元进行平行解码:最后,将分别经过各个视频解码单元解码的这些低分辨率的子图象数字视频循号送到合成单元,以合成为一路高清晰度电视信号;系统控制器控制去复用器。1/4电路,四个输入缓冲器,四个视频解码单元,合成单元,其特征在于:

系统控制器通过I/0接口与视频解码单元通信,读/写视频解码单元中的寄存器,以得知输入缓冲器的读写指针,从而可实行对输入缓冲器的控制,使视频解码器进行解码,停止解码,跳帧等。

根据本发明第二方面的MPEG-2视频解码器的输入缓冲器的控制方法,其中,所说视频解码器是一个HDTV视频解码器,它包括去复用器,1/4电路,四个输入缓冲器,四个视频解码单元,合成单元,以及系统控制器;其特征在于;所说方法包括下列步骤;

步骤21,在第一帧解码前,对四个视频解码单元复位;

步骤 2 2, 在每帧解码开始前, 系统控制器判断前一解码帧的帧类型是否为 1 帧, 如果前一帧为 I 帧, 则进入步骤 2 3, 如果前一帧不是 I 帧, 则重复执行此步骤;

步骤 2 3 . 系统控制器通过各个视频解码单元读取各个输入缓冲器的读写 指针,以便判断各个缓冲器的充盈度;

步骤 2 4 , 判断各个输入级冲器中的内容是否至少有一个小于--个 P 帧的大小,如果是,则级冲器可能下溢,这时系统控制器控制四个视频解码单元停止一帧解码,并重复显示上一帧的内容,然后回到步骤 2 2;如果不是,则进入步骤 2 5;

步骤 2 5, 判断各个输入继冲器中的内容是否至少一个连续 3 帧小于1.2个 P 帧大小,如果是,则系统控制器控制四个解码单元停止一帧解码,并重复显示上一帧的内容,然后回到步骤 2 2;如果不是,则进入步骤 2 6;

步骤 2 8 , 判断各个输入缓冲器的剩余空间是否至少有一个小于一个 1 帧 大小,如果是,则系统控制器控制四个视频解码单元跳过一个 B 帧,然后回到 步骤 2 2 ,如果不是,则进入步骤 2 7;

步骤27,判断各个输入缓冲器的剩余空间是否至少有一个连续3帧小于一个 I 帧加一个 B 帧大小,如果是,则系统控制器控制四个视频解码单元跳过一个B 帧,然后回到步骤22,如果不是,则进入步骤28;

步驟28,系统控制器控制四个视频解码单元执行随后的解码处理。

下面将结合附图对本发明的最佳实施例进行描述。

图 1 是按照本发明第一实施例的MPEG-2视频解码器的方框图;

图 2 是按照本发明第一实施例的MPEG-2视频解码器的输入缓冲器的控制方法的流程图。

图 3 是按照本发明第二实施例的MPEG-2视频解码器的方框图:

图 4 是按照本发明第二实施例的MPEG-2视频解码器的输入缓冲器的控制方法的流程图。

图1显示了按照本发明第一实施例的MPEG-2视频解码器的结构。它是一个SDTV视频解码单元,它由去复用器1,输入缓冲器2,视频解码单元3和系统控制器4组成。去复用器1可采用专用芯片比如L64007构成,视频解码单元3可以采用专用芯片L64002构成。在该图中,输入码流是TS流,它被送到去复用器1,经过去复用后,以码率R1输出PES流到输入缓冲器2中,视频解码单元3以码率R2从输入缓冲器2中取出码流进行解码。系统控制器4对去复用器1,输入缓冲器2和视频解码单元3进行控制。在本实施例中,对去复用器2的缓冲大小不作要求。因此,根据通信网络的情况,输入码流的码率R1变化会很不均匀。输入缓冲器2的大小为MPEG-2规定的VBV 缓冲器最低值。输入缓冲器2由解码单元3控制,它的读写指针存储在解码单元3中。系统控制器4包含有主控芯片(未显示),它通过I/0接口(未显示)与视频解码单元通信,可以读/写视频解码单元中的寄存器(未显示),从而得知输入缓冲器的读写指针。从而可实行对输入缓冲器的控制,使视频解码器开始解码,停止解码,既帧等。

下面参见图 2 所示的流程图描述本实施例的MPEG-2视频解码器的输入级冲器的控制方法。

根据MPEG-2的规定,每帧码流的头部均有帧类型指示。在每一帧解码时,系统控制器 4 通过视频解码单元 3 获得当前帧的帧类型,并暂时存储起来。在开始新的一帧解码之前,判断上一帧的帧类型。由于一般开始解码的时刻为帧同步产生的时刻,所以系统控制器 4 的判断可以在帧消隐期间进行。如果上一帧

为 1 帧,则系统控制器 4 通过解码单元 3 去读取输入缓冲器的读写指针。根此可知输入缓冲器 2 的充盈度。

按照本实施例的MPEG-2视频解码器的输入缓冲器的控制方法具体包括下列步骤。

步骤 1 1. 在每一帧解码时,系统控制器 4 通过视频解码单元 3 获取所解码帧的帧类型,并暂时存储起来。

步驟12,在每顿解码开始前,系统控制器4判断前一解码帧的帧类型是否为 I 帧,如果前一帧为 I 帧,则进入步骤13.如果前一帧不是 I 帧,则重复执行此步骤;

步驟 1 3 , 系统控制器 4 通过解码单元 3 读取输入缓冲器 2 的读写指针, 以便判断缓冲器的充盈度;

步骤 1 4 , 判断输入缓冲器 2 中的内容是否小于一个 P 帧的大小,如果 匙,则缓冲器可能下溢,这时系统控制器 4 控制解码单元 3 停止一帧解码,并 重复显示上一帧的内容,然后回到步骤 1 2;如果不是,则进入步骤 1 5;

步骤 1 5, 判断输入缓冲器 2 的内容是否连续 3 帧小于1.2个 P 帧大小,如果是,则系统控制器 4 控制解码单元 3 停止一帧解码,并重复显示上一帧的内容,然后回到步骤 1 2;如果不是,则进入步骤 1 6;

步骤 1 6, 判断输入级冲器的剩余空间是否小于一个 I 帧大小,如果是,则系统控制器 4 控制视频解码单元 3 跳过一个 B 帧,然后回到步骤 1 2;如果不是,则进入步骤 1 7;

步骤 1 7, 判断输入级冲器的剩余空间是否连续 3 帧小于一个 L 帧加一个 B 帧大小,如果是,则系统控制器 4 控制视频解码单元 3 跳过一个 B 帧,然后 回到步骤 1 2;如果不是,则进入步骤 1 8;

步骤18,系统控制器4控制视频解码单元3执行随后的解码处理。

这里所指的 I , B , P 帧大小由前几个GOP的平均值决定。系统控制器 4 根据每次开始解码前的缓冲器的状态可推知出它们的大小。

按照图1的框图,缓冲器大小为228KB,输入码流为周期的,其周期在30-200之间变化,变化率为20/S。输入码流平均速率为5.25Mbps,码流极不平均。在40ms内,输入码流平均速率为13.5Mbps。突发速率为27Mbps。突发速率维持时间可大于10ms。在另一个40ms内,输入码流可能中断,输入码流1,P,B帧的大小比率可从7:1:1变化为3:1.5:1。在这种情况下,不采用缓冲器控制方法。在30s之内,缓冲器会上溢或下下溢。采用本发明的缓冲器控制方法,在15分钟内可保持不上溢或下溢。

图 3 显示了按照本发明另一实施例的MPEG-2视频解码器的方框图。该视频解码器是一个HDTV视频解码器,它包括去复用器 1 2 , 1/4电路 5 , 四个输入缓冲器 21-24,四个视频解码单元31-34,合成单元 6 , 以及系统控制器 4 2 . 输入码流TS被送到去复用器 1 2 。经过去复用后,被送到1/4电路 5 。 鉴于MPEG-2 HDTV视频解码器的巨大计算量和计算速度,在1/4电路 5 中,将HDTV图象分成四

个SDTV子图象。由1/4电路 5 分割的四个子图象分别送到在四个视频解码单元31-34之前分别连接的四个输入缓冲器21-24。 缓冲后,再由四个SDTV视频解码单元31-34进行平行解码。最后,为了显示高清晰度电视画面,将分别经过各个视频解码单元31-34解码的这些低分辩率的子图象数字视频信号送到合成单元6,以合成为一路高清晰度电视信号。系统控制器(一个主控芯片)4 2 控制去复用器 1 2 , 1/4电路 5 , 四个输入缓冲器21-24。四个视频解码单元31-34,合成单元6。

下面结合图 4 所示的流程图来描述图 3 所示的HDTV视频解码器的工作,如下:在第一帧开始解码前,读这四个视频解码单元的帧类型,如果它们不是同一帧,则复位四个输入缓冲器21-24: 重新开始解码, 执行上述输入缓冲器的控制步骤, 如果有一路可能下溢, 那么四路均停止解码, 重复前一帧, 如果有一路可能上溢, 那么四路都跳一个B帧。

根据如图 4 所示的按照本发明第二实施例的MPEG-2视频解码器的输入缓冲器的控制方法的流程图,本实施例的MPEG-2视频解码器的输入缓冲器的控制方法具体包括下列步骤。

步骤 2 1, 在第一帧解码前, 对四个视频解码单元21-24复位;

步骤 2 2, 在每帧解码开始前,系统控制器 4 2 判断前一解码帧的帧类型 是否为 1 帧,如果前一帧为 1 帧,则进入步骤 2 3,如果前一帧不是 1 帧,则 重复执行此步骤;

步骤 2 3, 系统控制器 4 2 通过各个视频解码单元31-34读取各个输入缓冲器21-24的读写指针,以便判断各个缓冲器的充盈度;

步骤 2 4, 判断各个输入缓冲器21-24中的内容是否至少有一个小于一个P 帧的大小,如果是,则缓冲器可能下溢,这时系统控制器 4 2 控制四个视频解码单元31-34停止一帧解码,并重复显示上一帧的内容,然后回到步骤 2 2; 如果不是,则进入步骤 2 5;

步骤 2 5, 判断各个输入缓冲器21-24中的内容是否至少一个连续 3 帧小于 1.2个 P 帧大小,如果是,则系统控制器 4 2 控制四个解码单元31-34停止一帧解码,并重复显示上一帧的内容,然后回到步骤 2 2;如果不是,则进入步骤 2 6;

步骤 2 6, 判断各个输入缓冲器21-24的剩余空间是否至少有一个小于一个 1 帧大小,如果是,则系统控制器 4 2 控制四个视频解码单元31~34跳过一个 B 帧, 然后回到步骤 2 2; 如果不是,则进入步骤 2 7;

步骤 2 7, 判断各个输入缓冲器21-24的剩余空间是否至少有一个连续 3 帧小于一个 1 帧加一个 B 帧大小,如果是,则系统控制器 4 2 控制四个视频解码单元31-34跳过一个 B 帧,然后回到步骤 2 2;如果不是,则进入步躁 2 8;

步驟 2 8, 系统控制器 4 2 控制四个视频解码单元31-34执行随后的解码处理。

本发明的MPEG-2解码器采用了对输入缓冲器进行控制的方法。在I帧解码后,下一帧开始解码前,进行判决:如果输入缓冲器内容小于阈值。可能下溢。则停止一帧解码,重复上一帧,如果输入缓冲器的剩余空间小于阈值。可能上溢。则跳过一个B帧。从面控制输入缓冲器不出现上溢或下溢。本方法实用有效,对主控芯片运算能力要求不高。

图 2

图 4

Cite No. 1

English Abstract:

A MPEG-2 video decoder is composed of demultiplexer, input buffer, video decode unit and system controller. After demultiplexing, the input transport stream is transferred to input buffer. The video decode unit receives the transport stream from the input buffer and decodes it. The system controller controls the video decode unit in such manner that it communicates with the video decode unit via 1/0 interface to read/write the register in the video decode unit, so the status of Read/Wright pointer of the input buffer is known. Thereby, the controller can control the video decode unit to active decode process, to stop decode process or to jump over field.