

Functional Analysis I

Homework Assignment 4

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 5 Points

Let E be a normed space and let $\varphi: E \to \mathbb{K}$ be a linear functional $\varphi \neq 0$. Prove the following statements:

- (i) There exists $x_0 \in E$ with $\varphi(x_0) = 1$.
- (ii) $E = \ker \varphi + \operatorname{span}(x_0)$ (direct sum).
- (iii) $\varphi \in E^*$ if and only if ker φ is closed.
- (iv) $\varphi \notin E^*$ if and only if $\overline{\ker \varphi} = E$.

Exercise 2: 5 Points

Let X be a non-trivial normed space and $P, Q: X \to X$ be linear such that

$$PQ - QP = Id_X$$
.

Then it is not possible that both P and Q are continuous. *Hint:* Show and use that for all $n \in \mathbb{N}$ there holds $PQ^n - Q^nP = nQ^{n-1}$.

Exercise 3: 5 Points

Let $1 \le p < \infty$ and let (c_n) be a sequence of numbers in \mathbb{K} . Let $\mathcal{L}_p := \{(x_n) \in \ell_p : (c_n x_n) \in \ell_p\}$ and define the linear operator

$$T_p: \ell_p \supset \mathcal{L}_p \to \ell_p, \quad T_p((x_n)) := (c_n x_n).$$

Prove that $T_p \in L(\ell_p)$ (this includes $\mathcal{L}_p = \ell_p!$) if and only if $(c_n) \in \ell_\infty$. Let $(c_n) \in \ell_\infty$. Show that $||T_p|| = ||(c_n)||_\infty$. Moreover, identifying ℓ_p^* with ℓ_q , prove that $T_p^* = T_q$.

Exercise 4: 5 Points

Let X,Y,Z be Banach spaces and $T\in L(X,Y)$ such that the closure of T(A) is compact in Y for every bounded set $A\subset X$. Furthermore, let $J\in L(Y,Z)$ such that J is injective. Show, that for all $\epsilon>0$ there exists some $C_{\epsilon}>0$ with

$$||Tx|| \le \epsilon ||x|| + C_{\epsilon} ||JTx||$$
 for all $x \in X$.

The following bonus exercise will only be corrected, if you have reached at least 15 points in Exercise 1-4.

Bonus Exercise*: +5 Points

Let X:=C[0,1] be endowed with the maximum norm. We define the *Volterra integral operator* $K:X\to X$ by

$$(Kf)(x) := \int_0^x f(y) \, dy, \quad x \in [0, 1], f \in X.$$

Prove the following statements:

- $K \in L(X)$ with ||K|| = 1.
- The range (i.e., the image) of K is not closed in X.
- The perturbation operator of the identity Id by K, i.e. T = Id + K, is surjective.

Please submit your homework in the BEGINNING of the big exercise on Monday, May 13th.