Абстрактные группы

30 ноября • 8 класс

Разбор

Определение. Пусть X — множество. **Бинарной операцией** на множестве X называется любое отображение $\bullet \colon X \times X \to X$. Хотя по смыслу \bullet это просто функция двух аргументов и её следовало бы записывать $\bullet(g_1,g_2)$, для удобства пишут $g_1 \bullet g_2$, как с арифметическими операциями.

Пример 1. + (сложение) и · (умножение) — бинарные операции на множестве целых чисел \mathbb{Z} .

Пример 2. Пусть M — любое множество. Тогда \circ (композиция) — бинарная операция на множестве отображений из M в M.

Определение. Непустое множество G, снабжённое бинарной операцией \bullet , называется **группой**, если выполнены **аксиомы** (G1), (G2) и (G3).

(G1) Операция • ассоциативна:

$$(\forall g, h, k \in G): (g \bullet h) \bullet k = g \bullet (h \bullet k).$$

(G2) Существует **нейтральный** элемент e_G для •:

$$(\exists e_G \in G)(\forall g \in G): e_G \bullet g = g = g \bullet e_G.$$

(G3) Каждый элемент в G имеет **обратный** относительно •:

$$(\forall g \in G)(\exists g^{-1} \in G): \quad g^{-1} \bullet g = e_G = g \bullet g^{-1}.$$

Для краткости выкладок вы можете опускать значок операции, когда это не приводит к путанице, как с умножением: вместо $(g \bullet h) \bullet k$ писать (gh)k. Также можно писать просто e вместо e_G .

Пример 3. Пусть $G = \{e_G\}$ (множество из одного элемента), а \bullet определена единственным возможным образом (каким?). Тогда для G тривиально выполнены все аксиомы, так что G — группа.

Задача 1. (а) Докажите, что $\mathbb Z$ с операцией + является группой.

(b) Докажите, что $\mathbb Z$ с операцией \cdot не является группой.

Решение: (a) Ассоциативность сложения целых чисел всем известна. Нейтральный элемент по сложению — 0. Обратный элемент по сложению к n — -n.

(b) Не существует такого целого числа 2^{-1} , что $2 \cdot 2^{-1} = 1$ (потому что левая часть равенства всегда делится на 2, а правая — нет), так что (\mathbb{Z},\cdot) — не группа.

Задача 2. (а) Докажите, что в группе только один нейтральный элемент.

(b) Докажите, что у каждого элемента группы только один обратный элемент.

Решение: (a) Пусть e и e' — нейтральные элементы. Тогда

$$e = e \bullet e' = e',$$

где первое равенство следует из нейтральности e', а второе — из нейтральности e. (b) Пусть h и k — обратные к g. Тогда

 $h = h \cdot e$ (определение нейтрального) $= h \cdot (g \cdot k)$ (определение обратного) $= (h \cdot g) \cdot k$ (ассоциативность) $= e \cdot k$ (определение обратного) = k (определение нейтрального).

Задача 3. Докажите, что $D_n = \operatorname{Sym}(P_n)$ (группа симметрий правильного n-угольника) в самом деле является группой.

Решение: Знаем, что композиция отображений ассоциативна, а симметрии — частный случай отображений, так что (G1) выполнена. Тождественное движение удовлетворяет аксиоме (G2). В листке про группы симметрий доказывали, что у движений есть обратные, так что (G3) выполнена.

Определение. Пусть (G, ullet) — группа. Подмножество $H \subseteq G$ называется **подгруппой**, если

$$e_G \in H,$$

$$(\forall h \in H): \quad h^{-1} \in H,$$

$$(\forall h_1, h_2 \in H): \quad h_1 \bullet h_2 \in H,$$

то есть «операция не выводит за пределы H».

Пример 4. В предыдущем листке доказывалось, что произведение чётных перестановок — чётная перестановка. Следовательно, подмножество всех чётных перестановок из S_n — подгруппа. Она обозначается A_n .

Задача 4. Найдите все подгруппы в D_3 , выпишите количества элементов в них.

Решение: Обозначим один из поворотов через r, а одну из осевых симметрий через s. Тогда r^2 — второй поворот, а rs и r^2s — вторая и третья симметрии. Таким образом наша группа состоит из следующих элементов: $D_3 = \{e, r, r^2, s, rs, r^2s\}$.

Хотим перечислить всевозможные $H \subseteq D_3$. Переберём случаи.

- Допустим, $r \in H$. Тогда $r^2 \in H$.
 - Допустим, $s \in H$. Тогда $rs, r^2s \in H$, так что $H = D_3$.
 - Допустим, $s \notin H$. Тогда $rs, r^2s \notin H$, так что $H = \{e, r, r^2\}$.
- Допустим, $r \notin H$. Тогда $r^2 \notin H$.
 - Допустим, одна из осевых симметрий лежит в H. Тогда остальные две не лежат, иначе r и r^2 тоже попали бы в H. Следовательно H состоит только из этой осевой симметрии и e, то есть $H = \{e, s\}$, или $H = \{e, rs\}$, или $H = \{e, r^2s\}$.

– Допустим, ни одна из симметрий не лежит в H. Тогда $H = \{e\}$.

Таким образом, все возможные подгруппы: $\{e\}$, $\{e,s\}$, $\{e,rs\}$, $\{e,r^2s\}$, $\{e,r,r^2\}$ и D_3 . \square

Задача 5. Пусть $g_1, g_2, g_3, g_4 \in G$, где (G, \bullet) — какая-то группа. Придайте однозначный смысл выражению $g_1 \bullet g_2 \bullet g_3 \bullet g_4$.

Решение: Значение этого выражения можно определить любым из пяти способов: $((g_1 \bullet g_2) \bullet g_3) \bullet g_4, (g_1 \bullet (g_2 \bullet g_3)) \bullet g_4, (g_1 \bullet g_2) \bullet (g_3 \bullet g_4), g_1 \bullet ((g_2 \bullet g_3) \bullet g_4)$ или $g_1 \bullet (g_2 \bullet (g_3 \bullet g_4).$ Из-за ассоциативности, ответ получится одним и тем же.

$$(g_1 \bullet (g_2 \bullet g_3)) \bullet g_4 = ((g_1 \bullet g_2) \bullet g_3) \bullet g_4$$
 (ассоциативность $= (g_1 \bullet g_2) \bullet (g_3 \bullet g_4)$ (ассоциативность $= g_1 \bullet (g_2 \bullet (g_3 \bullet g_4))$ (ассоциативность) $= g_1 \bullet ((g_2 \bullet g_3) \bullet g_4)$ (ассоциативность)

Определение. Для элемента g группы (G, \bullet) и натурального числа n запись g^n обозначает $\underbrace{g \bullet g \bullet \cdots \bullet g}_{n \text{ раз}}$, а запись g^{-n} обозначает $\underbrace{g^{-1} \bullet g^{-1} \bullet \cdots \bullet g^{-1}}_{n \text{ раз}}$.

Теорема 1. В группах можно сокращать множители справа, то есть для любых трёх элементов g,h,k группы (G,\bullet) имеем

$$g \bullet k = h \bullet k \implies g = h.$$

Доказательство. Так как G — группа, у элемента k существует обратный k^{-1} . Тогда имеем

$$g \bullet k = h \bullet k \Rightarrow$$
 $(g \bullet k) \bullet k^{-1} = (h \bullet k) \bullet k^{-1} \Rightarrow$ (пользуемся ассоциативностью) $g \bullet (k \bullet k^{-1}) = h \bullet (k \bullet k^{-1}) \Rightarrow$ (определение обратного) $g \bullet e_G = h \bullet e_G \Rightarrow$ (определение нейтрального) $g = h$.

Теорема 2. В группах можно сокращать множители слева, то есть для любых трёх элементов q, h, k группы (G, \bullet) имеем

$$k \bullet g = k \bullet h \ \Rightarrow \ g = h.$$

Это первый (но далеко не последний) пример пользы от изучения групп в целом, вместо изучения конкретных интересующих нас групп. Раньше мы отдельно доказывали, что можно сокращать множители в группе симметрий фигуры и в группе перестановок. Теперь мы доказали это разом для всех групп. Так что, когда в будущем нам потребуется изучить какую-нибудь новую группу (например, группу всех вращений куба или группу всех преобразований кубика Рубика), мы сразу будем знать про неё кучу полезных фактов.

Г

Задачи для самостоятельного решения

Задача 1. Придумайте ещё 2 бинарных операции на множестве \mathbb{Z} .

Задача 2. Сколько всего бинарных операций на множестве из n элементов?

Задача 3. Докажите, что S_n (группа перестановок n элементов) в самом деле является группой.

Задача 4. Докажите, что для любых двух элементов g,h любой группы (G,ullet) выполнено

$$(g \bullet h)^{-1} = h^{-1} \bullet g^{-1}.$$

Определение. Группа (G, \bullet) называется **коммутативной**, если выполнена аксиома (G4).

(G4) Операция • коммутативна:

$$(\forall g, h \in G): g \bullet h = h \bullet g.$$

Задача 5. (a) Докажите, что группа A_3 коммутативна.

(b) Докажите, что группа A_4 не коммутативна.

Задача 6 (3 балла). Пусть группа (G, \bullet) такова, что для всех $g \in G$ выполнено $g^2 = e_G$. Покажите, что G коммутативна.

Задача 7. (а) Найдите все подгруппы в S_3 , количества элементов в них. (b) Найдите все подгруппы в A_4 , количества элементов в них.

Задача 8. Докажите теорему 2.

В предыдущих листках мы уже выписывали таблицы умножения для некоторых групп. Можно сделать это для любой группы.

•	e	 h	
e	e	 h	
•••		 • • •	
g	g	 $g \bullet h$	
•••		 •••	• • •

Задача 9. Покажите, что в каждая строка и каждый столбец содержат все элементы группы ровно по одному разу. (прямо как судоку!)

Задача 10. (а) Покажите, что есть лишь одна возможная таблица умножения для группы из 2 элементов. (b, 2 балла) Покажите, что есть лишь одна возможная таблица умножения для группы из 3 элементов. (c, 4 балла) Найдите все возможные таблицы умножения для группы из 4 элементов.