Machine Learning Giriş

BTK Akademi

Büyük Veri Dönemi

- İnsanlığın ürettiği veri miktarı eksponansiyel olarak artmakta.
- Üretilen verinin karmaşıklığı da veri miktarıyla birlikte artmakta.
- Mevcut veri miktarını insan eliyle incelemek maliyetli, zaman alıcı ve istenen performansı vermemekte.
- Mevcut veri miktarını insan eliyle incelemek maliyetli, zaman alıcı ve istenen performansı vermemekte.
- Yeni teknolojiyle birlikte büyük miktarda verileri işleyebilecek işlemciler ucuza üretilebilmekte.
- Makine öğrenimi, bu yeni dönemin olmazsa olmaz bir parçası olmuş durumda.

Pek çok sektörde düzenli olmayan ve insan eliyle işlenemeyen büyük miktarda veri bulunmakta.

- Ticari Faaliyetler
 - Speech recognition
 - Reklamcılık, kişiye özel pazarlama, kişiye özel sağlık hizmetleri
- Güvenlik Faaliyetleri
 - Spam mail tespiti, dolandırıcılık faaliyetleri tespiti
 - Görüntü işleme, gözetleme, takip faaliyetleri
- Bilimsel Faaliyetler
 - Ekonomik faaliyetler, piyasa tahmini
 - Biyoloji, astronomi, jeoloji, neuroscience, fizik, vb.

Speech recognition: http://y2u.be/JvbHu_bVa_g Görüntü işleme: http://y2u.be/50NPqEla0CQ İniş yapan roketler: http://y2u.be/gsliniJMr3E

80% of the stock market is now on autopilot

PUBLISHED SAT, JUN 29 2019-8:30 AM EDT | UPDATED SAT, JUN 29 2019-8:31 AM EDT

STM TOGAN

Spam Mail Tespiti

Russell, Leah Louise

☐ ☆ ➤ Managing Editor (SDI)

Biophysical Society

[DCB-Seminar] CPCB Seminar Speaker - Carlos Camacho - TODAY - Just a reminder! This is TODAY at 11am in 6014 BST3. Thanks!

British Journal of Medicine and Medical Research : An OPEN peer reviewed journal - Dear Colleague, British Journal of Medicine and Mi

The latest Microbiology and Infectious Diseases Impact Factors - BioMed Central Dear Dr Tastan, We are delighted to share with you the

October 1 Abstract Deadline Biophysical Society 2014 Annual Meeting - Dr. Tastan, October 1 is the deadline to submit an abstract for

Varlık İsmi Tanıma

Autocomplete

Öneri Sistemleri

Yüz Tespiti

Resim Sınıflandırma

Makine Çevirisi

Kanserli Hücre Tespiti

Görselden Metne Çevirme

Automatically captioned: "Two pizzas sitting on top of a stove top oven"

FMRI Görsellerinin Analizi / Hastalık Tespiti

Sağlık

Görüntü Yaratma

Deepfake

https://www.youtube.com/watch?v=F4G6GNFz0O8&ab_channel=DiepNep

Star Wars: Rogue One, Princess Leia (Carrie Fisher)

The Mandalorian: Book of Boba Fett, Luke Skywalker (Mark Hamill)

Makine Öğrenimi

Makine öğrenimi ne zaman kullanışlıdır?

- İnsan bilgisi ve uzmanlığı yeterli değil.
 - Marsa yolculuk
 - İnsanüstü satranç becerisi
- İnsan bilgisi ve uzmanlığı var, fakat modellenebilir değil.
 - Speech-to-text
 - speech recognition
 - image recognition
- Belirli bir alanda insan bilgisi ve uzmanlığı var, fakat farklı bir alana aktarılmak isteniyor.
 - Kişiselleştirilmiş araçlar

Makine Öğrenimi

Makineler nasıl "öğrenir"?

• İnsanlar yeteneklerini geliştirmeyi zaman içerisinde pratikle öğrenirler.

- Makine öğrenmesinin amacı tecrübe ile gelişebilen algoritmalar kurmaktır.
 - Makine öğrenmesi algoritmaları için tecrübe verilerden gelir.

- Veriler nereden gelir?
 - İnsanlar tarafından yapılan veri etiketlemeleri
 - Otonom veri toplama/üretme

Makine Öğrenimi

Makine öğrenimi amaçları nelerdir?

- Algoritmalar:
 - Büyük çapta problemlere hızlı çalışan, yüksek başarımlı, genelleştirilmiş çözümler sunmak
 - Daha önce görmediği örneklerde de başarılı tahminler yapmak
 - o Farklı alanlarda ve problemlerde kullanılabilir olmak

Örnek:

Veri içerisindeki tek bir obje veya sayır

Feature (Öznitelik) (X ile gösterilir):

- Bir örneğe ait olan, genellikle numerik formda bulunan özellik. Örneğe ait bilgi. Örn. bir kişiye ait boy, yaş, kilo, cinsiyet

Label (Etiket) (Y):

- Öznitelikler aracılığıyla tahmin edilmek veya bulunmak istenen bilgi.
- Sınıflandırma problemlerinde örneğin ait olduğu kategori bilgisi
- Regresyon problemlerinde numerik bir değer

Eğitim veti seti:

Model eğitimi amacıyla kullanılan veri seti

Test veri seti:

Model başarımını ölçmek amacıyla kullanılan veri seti

Feature Extraction (Veri Çıkarma):

- Ham haldeki veri içerisinden çıkarılan anlamlı bilgiler, veriyi işlenebilir hale getirme, veri içerisinden öznitelikler yaratma işlemi

Feature Extraction (Veri Çıkarma):

Örnek: Çiçek sınıflandırma

Setosa

Versicolor

Virginica

Feature Extraction (Veri Çıkarma):

Örnek: El Yazısı Tanıma

Feature Extraction (Veri Çıkarma):

Örnek: El Yazısı Tanıma

$$Y \in \{0, 1, \dots, 9\}$$

Bu örneğin etiketi: 6

Feature Extraction (Veri Çıkarma):

Örnek: El Yazısı Tanıma

Training set

$$D_{train} = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$$

Test set

$$D_{test} = \{(X_1, Y_1), \dots, (X_m, Y_m)\}$$

Should not be overlapping

Bu Örneği Nasıl Sınıflandırırsınız?

Nearest Neighbor Classifiers

Temel fikir: Ördek gibi yürüyorsa, ördek gibi ses çıkarıyorsa, ördek gibi yüzüyorsa, o zaman bir ördektir.

Nearest Neighbor Classifiers

KNN Sınıflandırıcı

Gelen bir örneği sınıflandırmak için örneğin vektör uzayındaki konumunu analiz et ve en yakınındaki örneklere göre bir sınıf ata.

1-NN (K=1)

3-NN (K=3)

5-NN (K=5)

Performans Metrikleri

Performans Metrikleri

Fonksiyonel Temsil

Problemi modellerken amaç öznitelikler (X) ile etiketler (Y) arasında bir fonksiyon öğrenebilmektir.

Örneğin:

X = [yaş, kilo, kan şekeri oranı, ...], y= {diyabet hastası, sağlıklı}

Modelleme yapılırken X ile Y arasında bir ilişki olduğu varsayımı yapılmaktadır. **Örnek hipotez:** yaşı yüksek, kilosu fazla ve kan şekeri oranı yüksek kişilerin diyabet hastası olma olasılığı daha yüksek olabilir.

Bu ilişki matematiksel olarak P(X, Y) olarak ifade edilebilir.

Farklı Öğrenme Yöntemleri

Etiketin var olup olmamasına göre öğrenme biçimleri:

Supervised Learning: $\{(X_1, Y_1), (X_2, Y_3), ..., (X_n, Y_n)\}$

Unsupervised Learning: $\{(X_1, X_2, ..., X_n)\}$

Semi-supervised Learning: ikisinin karışımı.

Farklı Öğrenme Yöntemleri

Etiket Tipleri:

- ullet Binary Classification $Y \in \{0,1\}$
- Multi class Classification $Y \in \{0, 1, ...K\}$
- Regression $Y \in \Re$
- Structure Prediction Y kompleks bir yapıya sahip (graph, multi dim array vb.)

Regresyon problemleri

- Geçmiş verilerden yola çıkarak önümüzdeki haftaki bitcoin fıyatını tahmin etmek.
- Youtube geçmişinden yola çıkarak kişinin yaşını tahmin etmek.
- Dinlediği müziklerden yola çıkarak kişinin ne kadar mutlu olduğunu tahmin etmek.
- Bir kişinin video görüntülerinden yola çıkarak odanın sıcaklığını tahmin etmek.

Sınıflandırma problemleri

- Çalışan verisi kullanarak kişinin işten ayrılıp ayrılmayacağını tespit etmek
- Spam mail tespiti
- Fotoğrafta kedi mi var köpek mi var tespiti

Linear Regression

$$y(x) = w_0 + w_1 * x$$

Linear Regression

Karşılaşılabilecek Sıkıntılar

Overfitting / Underfitting: Hangi görseldekini tercih ederdiniz?

Karşılaşılabilecek Sıkıntılar

Overfitting / Underfitting: Hangi görseldekini tercih ederdiniz?

Karşılaşılabilecek Sıkıntılar

Bias / Variance

Model Seçimi ve Değerlendirmesi

Altın kural: ASLA test verisi ile model eğitme!

Test verisi farklı şekillerde seçilebilir.

- Random bir şekilde train-test diye iki sete bölmek.
- K-Fold Cross-Validation kullanmak.

Curse of Dimensionality

Büyük boyutun laneti:

- Veriye her bir yeni öznitelik eklendiğinde vektör uzayı iki katına çıkar.
- Vektör uzayı iki katına çıkarken verideki örnek sayısı bunu karşılayamazsa veri seyrekleşir, ve performans kaybı yaşanır.

Curse of Dimensionality

Büyük boyutun laneti:

- Veriye her bir yeni öznitelik eklendiğinde vektör uzayı iki katına çıkar.
- Vektör uzayı iki katına çıkarken verideki örnek sayısı bunu karşılayamazsa veri seyrekleşir, ve performans kaybı yaşanır.

Laneti Kırma Yöntemleri:

- Feature Selection: Veri içerisinden en değerli özniteliklerin tespit edilmesi ve bunlarla bir model eğitilmesi. Yapılması uzun süren maliyetli bir işlemdir.
- **Dimensionality Reduction:** Veri içerisindeki belli desenleri tespit ederek minimum bilgi kaybıyla aynı veriyi daha az öznitelikle temsil etme işlemidir.
 - Principal Component Analysis (PCA)
 - Singular Value Decomposition (SVD)

PCA

Yapay Zeka vs Makine Öğrenimi vs Derin Öğrenme

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Kurs Kapsamı

Kurs ne içeriyor?

- Keşifçi Veri Analizi
 - Python ile veri analizi, veri görselleştirme
 - Veri içerisindeki ilişkilerin tespiti
- Veri Mühendisliği
 - Feature Extraction (Öznitelik Çıkarma Teknikleri)
 - Feature Selection (Öznitelik Seçme Teknikleri)
- Yapay Zeka Modelleri Eğitimi Pratik Bilgiler
 - Az teori ve çok pratik ile makine öğrenimi uygulamaları,
 - Farklı makine öğrenimi ve derin öğrenme modelleri hakkında genel bilgi
 - Model başarım metrikleri, model başarım ölçümü
 - Model optimizasyonu
- Model Serving
 - FastAPI aracılığıyla eğitilen modelin kullanıcılara sunulması

Kurs Kapsamı

Kurs ne içermiyor?

- Python dersleri
- Makine öğrenimi modelleriyle ilgili derinlemesine teorik bilgiler
- Unsupervised learning, semi-supervised learning, reinforcement learning
- CNN, RNN, LSTM, BERT, GPT gibi derin öğrenme modellerinin teknik anlatımları (genel bilgi olarak anlatılacak)

Q&A