Lemme: soient E et F des ensembles équipotents, non vides et non réduits à un singleton Si $a \in E$ et $b \in F$, alors $E \setminus \{a\}$ et $F \setminus \{b\}$ sont équipotents.

Soit $f: E \to F$ une bijection. Posons b' = f(a)

- Si b' = b, alors f induit une bijection $\tilde{f} : E \setminus \{a\} \to F \setminus \{b\}$
- Si $b' \neq b$, alors considérons la bijection $\tau : F \to F$ qui échange b et b'. $(\tau(b) = b', \ \tau(b') = b$ et $\forall k \notin \{b, b'\}, \ \tau(k) = k$. On a $\tau^{-1} = \tau$).

Posons alors $g = \tau \circ f : E \to F :$ c'est une bijection (par composée) vérifiant g(a) = b : on est ramené au cas précédent : g induit une bijection $\tilde{g} : E \setminus \{a\} \to F \setminus \{b\}$

Théorème : si $n \neq m$, alors [1, n] n'est pas équipotent à [1, m]

Par symétrie de la relation d'équipotence, il suffit de montrer pour tout $n \in \mathbb{N}^*$ le prédicat P(n) suivant :

$$\forall m \geqslant n, [1, n] \simeq [1, m] \Rightarrow n = m$$

- Initialisation: $P(1): \forall m \geqslant 1, \ \{1\} \simeq [\![1,m]\!] \Rightarrow m=1.$ En effet si $m \in \mathbb{N}^*$ et $\varphi: \{1\} \to [\![1,m]\!]$ bijective, alors m et 1 ont le même antécédent par φ et donc m=1.
- <u>Hérédité</u>: soit $n \ge 2$. On suppose P(n-1). Montrons P(n). Soit donc $m \ge n$. Si $[\![1,n]\!] \simeq [\![1,m]\!]$, alors (lemme) $[\![1,n-1]\!] \simeq [\![1,m-1]\!]$ Par hypothèse de récurrence n-1=m-1, i.e. n=m CQFD

Au total, dans tous les cas P(n) est démontrée.

Si card $E = n \in \mathbb{N}^*$, et $a \in E$, alors $E \setminus \{a\}$ est fini et card $(E \setminus \{a\}) = n - 1$

- Si card E = 1, alors $E \setminus \{a\} = \emptyset$ et le résultat est acquis.
- Si card E > 1, alors $E \simeq [[1, n]]$, donc (lemme) $E \setminus \{a\} \simeq [[1, n-1]]$: d'où card $E \setminus \{a\} = n-1$ CQFD.

Si E est fini de cardinal $n \ge 1$ et A un sous ensemble de E.

Alors A est fini, card $A \leqslant \operatorname{card} E$ et card $A = \operatorname{card} E \iff A = E$

Par récurrence sur $n = \operatorname{card} E$:

- Pour n=1, c'est banal, puisque les sous ensembles de E sont E et \varnothing .
- Soit $n \ge 2$. Supposons le résultat vrai pour les ensembles de cardinal n-1, et prouvons le pour un ensemble E de cardinal n: soit A un sous ensemble de E.
 - Si A = E, c'est réglé.
 - Si $A \neq E$, alors il existe un élément a dans $A \setminus F$. Mais alors A est un sous ensemble de $E \setminus \{a\}$. Par hypothèse de récurrence, A est fini et $\operatorname{card} A \leqslant n-1$, donc $\operatorname{card} A < n$ CQFD

Dans tous les cas le résultat est acquis.

Dénombrements : démonstrations

Soient E et F deux ensembles finis.

- 1. Si $f: E \to F$ est injective, alors card $E \le \operatorname{card} F$. Il y a égalité si et seulement si f est bijective.
- 2. Si $f: E \to F$ est surjective, alors card $E \geqslant \operatorname{card} F$. Il y a égalité si et seulement si f est bijective.
- **1.** Si $f: E \to F$ est injective, alors f induit une bijection $\tilde{f}: E \to f \langle E \rangle$. Donc card $E = \operatorname{card} f \langle E \rangle \leqslant \operatorname{card} F$ De plus il y a égalité si et seulement si $f \langle E \rangle = F$, *i.e.* f surjective.
- **2.** Si $f: E \to F$ est surjective. Posons $F = \{y_1, \dots, y_n\}$ et choisissons pour tout $i \in [1, n]$ un antécédent x_i de y_i par f (les x_i sont évidemment tous distincts).

Posons $A = \{x_1, \dots, x_n\}$: alors f induit une bijection $\tilde{f} : A \to F$. Donc $\operatorname{card} F = \operatorname{card} A \leqslant \operatorname{card} E$ De plus il y a égalité si et seulement si A = E, autrement dit lorsque $f = \tilde{f}$ est bijective.

Si $A \cap B = \emptyset$ alors card $(A \cup B) = \operatorname{card} A + \operatorname{card} B$

Soient p et q les cardinaux de A et B. On considère deux énumérations

$$\varphi: [1,p] \to A$$
 et $\psi: [1,q] \to B$

Posons

$$f: \quad \llbracket 1, p+q \rrbracket \to A \cup B$$

$$k \mapsto \begin{cases} \varphi(k) \text{ si } k \in \llbracket 1, p \rrbracket \\ \psi(k-p) \text{ si } k \in \llbracket p+1, p+q \rrbracket \end{cases}$$

Alors f est bijective de réciproque

$$g: A \cup B \to [1, p+q]]$$

$$x \mapsto \begin{cases} \varphi^{-1}(x) & \text{si } x \in A \\ \psi^{-1}(x) + p & \text{si } x \in B \end{cases} \quad (x \text{ est soit dans } A \text{ soit dans } B)$$

$$k \in [1, p+q]]$$

En effet, soit $k \in [1, p+q]$,

- Si $k \in [1, p]$, alors $f(k) \in A$ donc $g(f(k)) = \varphi^{-1}(\varphi(k)) = k$
- Si $k \in [[p+1, p+q]]$, alors $f\left(k\right) \in B$ donc $g\left(f\left(k\right)\right) = \psi^{-1}\left(\psi\left(k\right)\right) = k$

Donc $g \circ f = \mathrm{id}_{\llbracket 1, p+q \rrbracket}$. De même, si $x \in A \cup B$

- Si $x \in A$, alors $q(x) = \varphi^{-1}(x) \in [1, p]$ donc $f(q(x)) = \varphi(\varphi^{-1}(x)) = x$
- Si $x \in B$, alors $g(x) = \psi^{-1}(x) \in [p+1, p+q]$ donc $f(g(x)) = \psi(\psi^{-1}(x)) = x$

Donc $f \circ g = \mathrm{id}_{A \cup B}$.

Cette relation d'équipotence entre $A \cup B$ et [[1, p+q]] permet donc de conclure : $\operatorname{card}(A \cup B) = p+q$ CQFD

Soient E et F des ensembles finis, . Alors card $(E \times F) = \operatorname{card}(E) \times \operatorname{card}(F)$

Soient
$$n=\operatorname{card}\left(E\right)$$
 et $p=\operatorname{card}\left(F\right)$. On énumère $E:E=\{x_1,\ldots,x_n\}$. Pour $i\in\left[\left[1,n\right]\right]$, posons
$$A_i=\{(x_i,y)\,,\,y\in F\}$$

Il est facile de voir que (A_1, \ldots, A_n) forme une partition de $E \times F$.

De plus $\forall i, F \simeq A_i$ par $y \mapsto \varphi(y) = (x_i, y)$. Donc $\#A_i = p$ et le principe des bergers s'applique :

$$\operatorname{card}(E \times F) = \sum_{i=1}^{n} \operatorname{card} A_i = np$$
 CQFD.

Si card (E) = n, et $p \in \mathbb{N}^*$, alors le nombre de p-uplets de E est n^p , soit card $(E^p) = \operatorname{card}(E)^p$

Par récurrence sur p:

• p = 1: card $E^1 = \text{card}(E) = n$

• Soit $p \geqslant 1$. Supposons $\operatorname{card}(E^p) = n^p$ et prouvons $\operatorname{card}(E^{p+1}) = n^{p+1}$ L'application $\varphi: E^{p+1} \to E^p \times E$ définie par $\varphi(x_1, \dots, x_{p+1}) = ((x_1, \dots, x_p), x_p)$ est assez clairement bijective, ce qui démontrer que

$$\operatorname{card}(E^{p+1}) = \operatorname{card}(E^p \times E) = n^p \times n = n^{p+1}$$

Remarque : version naïve : pour construire un p-uplet (x_1, \ldots, x_p) :

On choisit $x_1 : n$ choix possibles, puis $x_2 : n$ choix possibles... puis $x_p : n$ choix possibles.

Par principe de produit, il y a $n \times ... \times n = n^p$ possibilités pour $(x_1, ..., x_p)$.

Soit E un ensemble fini de cardinal n et $p \leqslant n$. Alors $\operatorname{card} \mathcal{A}_{p}\left(E\right) = A_{n}^{p} = \frac{n!}{(n-p)!}$

<u>Version naïve</u>: pour construire un p-arrangement de E, i.e. p-uplet (x_1, \ldots, x_p) d'éléments distincts:

On choisit $x_1:n$ choix possibles, puis $x_2:n-1$ choix possibles... puis $x_p:n-p+1$ choix possibles.

Par principe de produit, il y a $n \times (n-1) \dots \times (n-p+1)$ possibilités pour (x_1, \dots, x_p) .

Version par récurrence sur p

• On a clairement ${\cal A}_n^1=n$ (et même ${\cal A}_n^0=1$ par convention)

• Supposons $A_n^{p-1} = \frac{n!}{(n-p-1)!}$ pour un $p \in [[2,n]]$.

L'application $\pi: \mathcal{A}_p(E) \to \mathcal{A}_{p-1}(E)$ qui à un p-arrangement $a=(x_1,\ldots,x_p)$ associe $\pi(a)=(x_1,\ldots,x_{p-1})$ est clairement surjective, et $\pi^{-1}\left\langle\{(x_1,\ldots,x_{p-1})\}\right\rangle$ est l'ensemble des arrangements de la forme (x_1,\ldots,x_{p-1},x) , où x est dans $E\setminus\{x_1,\ldots,x_{p-1}\}$. Donc $\operatorname{card} \pi^{-1}\left\langle\{(x_1,\ldots,x_{p-1})\}\right\rangle=n-p+1$ et

$$\operatorname{card} \mathcal{A}_{p}\left(E\right) = \sum_{c' \in \mathcal{A}_{p-1}(E)} \pi^{-1} \left\langle \left\{c'\right\}\right\rangle = (n-p+1) \operatorname{card} \mathcal{A}_{p-1}\left(E\right)$$

Par hypothèse de récurrence, on a donc $\operatorname{card} \mathcal{A}_p\left(E\right) = (n-p+1) \frac{n!}{(n-p+1)!} = \frac{n!}{(n-p)!}$ CQFD.

Soit E un ensemble fini de cardinal n et $p \leqslant n$. Alors $\operatorname{card} \mathcal{P}_p\left(E\right) = C_n^p = \binom{n}{p}$

Soit $f: \mathcal{A}_p(E) \to \mathcal{P}_p(E)$ l'application définie, pour $f(x_1, \dots, x_p) = \{x_1, \dots, x_p\}$.

Si $c = \{x_1, \dots, x_p\}$, alors les antécédents de c par f sont tous les p-arrangements d'éléments de c, i.e. les permutations de c Ainsi

$$\operatorname{card} f^{-1} \langle \{c\} \rangle = p!$$

On écrit alors

$$\operatorname{card} \mathcal{A}_{p}\left(E\right) = \sum_{c \in \mathcal{P}_{p}\left(E\right)} f^{-1}\left\langle\left\{c\right\}\right\rangle = p! \operatorname{card} \mathcal{C}_{p}\left(E\right)$$

Ainsi

$$C_n^p=rac{A_n^p}{p!}=rac{n!}{(n-p)!p!}=inom{n}{p}$$
 cqfd.

<u>Version naïve</u>: pour construire un p-arrangement de E, i.e. p-uplet (x_1, \ldots, x_p) d'éléments distincts:

On choisit l'ensemble des éléments distincts $\{x_1,\ldots,x_p\}$: il y a $\binom{n}{p}$ choix (p-combinaison de E)

On l'ordonne : p! choix (permutation de $\{x_1, \ldots, x_p\}$)

Par principe de produit : $A_n^p = p! \binom{n}{p}$ CQFD.

Nombre d'applications : si #E=p et #F=n, alors $\#\mathcal{F}\left(E,F\right)=n^{p}$

On note $E = \{x_1, \dots, x_p\}$, et on considère $\varphi : \mathcal{F}(E, F) \to F^p$ définie par $\varphi(f) = (f(x_1), \dots, f(x_n))$. Alors φ est une bijection :

- Alors φ est une bijection : $\underbrace{ \text{Injectivit\'e}}_{f \text{ et } g \text{ co\"incident sur } E \text{ donc sont \'egales CQFD.} } \left\{ \begin{array}{l} f\left(x_{1}\right) = g\left(x_{1}\right) \\ \vdots \\ f\left(x_{n}\right) = g\left(x_{n}\right) \end{array} \right. .$
- Surjectivité: si $Y=(y_1,\ldots,y_n)\in F$, on peut définir $f:E\to F$ par $\begin{cases} f\left(x_1\right)=y_1\\ \vdots\\ f\left(x_n\right)=y_n \end{cases}$ En d'autres termes, la donnée de f équivaut à la donnée de la liste des images des éléments de E. On en déduit que $\operatorname{card}\mathcal{F}(E,F)=\operatorname{card}(F^p)=n^p$

Si $\mathcal{I}(E,F)$ est l'ensemble des injections de E dans F,#E=p et #F=n, alors $\#\mathcal{I}(E,F)=A_n^p$

On note $E=\{x_1,\ldots,x_p\}$ et soit $\varphi:\mathcal{I}(E,F)\to F^p$ définie par $f\to\varphi(f)=(f(x_1),\ldots,f(x_n))$. On a vu que φ est injective, donc elle induit une bijection de $\mathcal{I}(E,F)$ sur son image notée $H\subset E$. Or pour f injective, $\varphi(f)$ est une liste d'éléments distincts de F, et inversement (à toute liste d'éléments distincts (y_1,\ldots,y_n) de F on peut associer l'unique injection $f:E\to F$ définie comme plus haut).

Ainsi H est l'ensemble des p-arrangements de E, et on dispose de la bijection $\widetilde{\varphi}: \mathcal{I}(E,F) \to H$. Donc

$$\operatorname{card} \mathcal{I}(E, F) = \operatorname{card} H = A_n^p$$

Formule de Pascal :
$$1 \leqslant p \leqslant n : \binom{n-1}{p-1} + \binom{n-1}{p} = \binom{n}{p}$$

On cherche le cardinal de $\mathcal{P}_{p}\left(\llbracket 1,n
rbracket]
ight)$ que l'on partitionne en

- L'ensemble A des p-combinaisons de [1, n] qui ne contiennent pas n: c'est $A = \mathcal{P}_p([1, n-1])$
- L'ensemble B des p-combinaisons de $[\![1,n]\!]$ qui contiennent n:

 Une fois fixé n, il faut choisir une (p-1)-combinaison de $[\![1,n-1]\!]$. d'où $B\simeq \mathcal{P}_{p-1}$ ($[\![1,n-1]\!]$)

 Alors $\operatorname{card} \mathcal{P}_p$ ($[\![1,n]\!]$) = $\operatorname{card} A + \operatorname{card} B$, i.e. $\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$

La formule de Vandermonde: on suppose
$$n \in [0, p+q]$$
. Alors $\sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k} = \binom{p+q}{n}$

Soit E un ensemble de cardinal p+q, et A un sous-ensemble de E de cardinal p (d'où $\#\overline{A}=q$) Dénombrons $\mathcal{P}_n\left(E\right)$ par partition : si $k\in [\![0,n]\!]$, on pose $A_k=\{\Gamma\in\mathcal{P}_n\left(E\right)\ /\ \#\left(A\cap\Gamma\right)=k\}$.

Il est clair que l'on a $\#\mathcal{C}_n(E) = \binom{p+q}{n} \neq \sum_{k=0}^n \#A_k$. Or pour choisir un élément de A_k il faut choisir in-

dépendamment une k-combinaison de A et une (n-k)-combinaison de \overline{A} . Il s'ensuit que $\#A_k = \binom{p}{k} \binom{q}{n-k}$, et le résultat cherché en découle.