Мухамадиев Владимир

Задание 3

Загрузка и предварительная обработка

```
In[1]:= data1 = Import[NotebookDirectory[] <> "\\assoc.txt", "Data"];
              импорт Директория файла блокнота
ln[2]:= el1 = Table[data1[i, 1] → data1[i, 2], {i, 1, Length[data1]}];
           таблица значений
In[3]:= g1 = Graph[el1];
          граф
ln[4]:= data2 = Import[NotebookDirectory[] <> "\\bio-celegans.txt", "Data"];
             импорт директория файла блокнота
ln[5]:= el2 = Table[data2[i, 1]] \leftrightarrow data2[i, 2], {i, 1, Length[data2]}];
           таблица значений
In[6]:= g2 = Graph[e12];
          граф
ln[7]:= data3 = Import[NotebookDirectory[] <> "\\bio-diseasome.txt", "Data"];
             импорт директория файла блокнота
ln[8]:= el3 = Table[data3[i, 1]] \leftrightarrow data3[i, 2]], {i, 1, Length[data3]}];
           таблица значений
                                                        I лпина
In[9]:= g3 = Graph[e13];
          граф
In[10]:= data4 = Import[NotebookDirectory[] <> "\\ca-AstroPh.txt", "Data"];
             импорт директория файла блокнота
ln[11]:= el4 = Table[data4[i, 1]] → data4[i, 2], {i, 1, Length[data4]}];
           таблица значений
ln[12]:= g4 = Graph[e14];
In[13]:= data5 = Import[NotebookDirectory[] <> "\\facebook.txt", "Data"];
             импорт директория файла блокнота
ln[14]:= el5 = Table[data5[i, 1] → data5[i, 2], {i, 1, Length[data5]}];
In[15]:= g5 = Graph[e15];
ln[16]:= data6 = Import[NotebookDirectory[] <> "\\proteins.txt", "Data"];
             импорт директория файла блокнота
log[17] = el6 = Table[data6[i, 1]] \leftrightarrow data6[i, 2], {i, 1, Length[data6]}];
           таблица значений
In[18]:= g6 = Graph[e16];
          граф
```

1. Эволюция графа Эрдеша-Реньи и фазовый переход

Генерация случайного графа Эрдеша-Реньи заданного размера за заданное время

In[20]:= AdjacencyGraph[ErdősRenyiGraph[500, 500]]

граф по матрице смежности

Генерация эволюции случайного графа Эрдеша-Реньи заданного размера за заданное время

```
In[21]:= ErdősRenyiGraphList[n_, t_] :=
       Module \left[\left\{\text{maxe} = \frac{n \left(n-1\right)}{2}, \text{ am} = \text{Table}[0, \{i, 1, n\}, \{j, 1, n\}], \right\}\right]
                                          таблица значений
          aml = {}, ne = Sort[RandomSample[Range[n], 2]]}, AppendTo[aml, am];
                          сор… случайная вы… диапазон
                                                                   добавить в конец к
         If[t > maxe, Print["Error: t>n(n-1)/2"],
         условный оп··· печатать
          Do[While[am[ne[1]], ne[2]]] \neq 0, ne = Sort[RandomSample[Range[n], 2]]];
          _... _цикл-пока
                                                   сор… случайная вы… диапазон
            am[ne[1], ne[2]]] = 1;
            am[ne[2], ne[1]] = 1;
            AppendTo[aml, am], {k, 1, t}];
           добавить в конец к
          aml]
In[22]:= ergl = ErdősRenyiGraphList[25, 25];
In[23]:= Manipulate[AdjacencyGraph[ergl[[1]]], {1, 1, Length[ergl], 1}]
      варьировать граф по матрице смежности
                                                                         0
                                                                     Out[23]=
```

Генерация случайного связного графа Эрдеша-Реньи заданного размера

```
In[24]:= ErdősRenyiConnectedGraph[n_] :=
       Module[{am = Table[0, {i, 1, n}, {j, 1, n}], ne = Sort[RandomSample[Range[n], 2]]},
       программный… _ таблица значений
                                                           сор… случайная вы… диапазон
        While[ConnectedGraphQ[AdjacencyGraph[am]] # True,
                                граф по матрице смежности _истина
        цикл… связный граф?
         While [am[ne[1]], ne[2]] \neq 0, ne = Sort [RandomSample[Range[n], 2]]];
         цикл-пока
                                            сор… случайная вы… диапазон
         am[ne[1]], ne[2]]] = 1;
         am[[ne[[2]], ne[[1]]]] = 1];
        am]
In[25]:= AdjacencyGraph[ErdősRenyiConnectedGraph[25]]
     граф по матрице смежности
Out[25]=
```

Генерация эволюции случайного графа Эрдеша-Реньи заданного размера до связного состояния

```
In[26]:= ErdősRenyiConnectedGraphList[n_] := Module[{am = Table[0, {i, 1, n}, {j, 1, n}],
                                            программный… таблица значений
        aml = {}, ne = Sort[RandomSample[Range[n], 2]]}, AppendTo[aml, am];
                       сор… случайная вы… диапазон
                                                            добавить в конец к
       While[ConnectedGraphQ[AdjacencyGraph[am]] # True,
       цикл… связный граф?
                               граф по матрице смежности истина
        While [am[ne[1]], ne[2]] \neq 0, ne = Sort [RandomSample[Range[n], 2]]];
        цикл-пока
                                          сор… случайная вы… диапазон
        am[ne[1]], ne[2]]] = 1;
        am[ne[2], ne[1]] = 1;
        AppendTo[aml, am]];
        добавить в конец к
       aml]
In[27]:= ercgl = ErdősRenyiConnectedGraphList[25];
```

In[28]:= Manipulate[AdjacencyGraph[ercgl[[1]]], {1, 1, Length[ercgl], 1}] варьировать Граф по матрице смежности длина

Генерация эволюции размеров связных компонент случайного графа Эрдеша-Реньи заданного размера за заданное время

```
In[29]:= ConnectedComponentsErdősRenyiGaph[n_, t_] :=
                            Module[\{am = Table[0, \{i, 1, n\}, \{j, 1, n\}], gc = Table[1, \{i, 1, n\}
                           программный… таблица значений
                                                                                                                                                                                                                                                           таблица значений
                                      gcl = {}, ne = Sort[RandomSample[Range[n], 2]]}, AppendTo[gcl, gc];
                                                                                                      сор… случайная вы… диапазон
                                                                                                                                                                                                                                                                          добавить в конец к
                                 Do [While [am [ne[1]], ne[2]] \neq 0, ne = Sort[RandomSample[Range[n], 2]]];
                                 ... цикл-пока
                                                                                                                                                                                                  сор… случайная вы… диапазон
                                      am[ne[1], ne[2]] = 1;
                                      am[ne[2], ne[1]]] = 1;
                                      gc = Map[Length, ConnectedComponents[AdjacencyGraph[am]], {1}];
                                                         п… длина связные компоненты
                                                                                                                                                                                                                  граф по матрице смежности
                                      AppendTo[gcl, gc], {k, 1, t}];
                                      добавить в конец к
                                 gcl]
```

График эволюции размеров связных компонент случайного графа Эрдеша-Реньи

```
In[30]:= ConnectedComponentsErdősRenyiGaphPlot[sim_] :=
                 Module \left[ \left\{ p0 = \left\{ \frac{\text{Length}[\text{sim}]}{2}, \text{sim} \left[ 1, \frac{\text{Length}[\text{sim}]}{2} + 1 \right] \right\} \right]
                        p1 = {ReverseSortBy[{Range[Length[sim[2]]], sim[2]}, Last][1, 1],
                                       сортировка в обр… диап… длина
                              sim[1, ReverseSortBy[{Range[Length[sim[2]]], sim[2]}<sup>T</sup>, Last][1, 1] + 1]},
                                                сортировка в обр… диап… длина
                        p2 = {Length[sim], sim[1, Length[sim] + 1]]}},
                                      длина
                    Show[ListLinePlot[Table[{Range[0, Length[sim[1]]] - 1, 1], sim[i]}]^\intercal, \{i, 1, 5\}],
                    _пок··· _линейный гра··· _таблиц·· _диапазон __длина
                            PlotRange \rightarrow \{\{0, Length[sim[1]]\}, \{0, Length[sim]\}\}, AspectRatio \rightarrow \{\{0, Length[sim]\}\}, AspectRatio \rightarrow \{\{0, Length[sim]\}\}, \{0, Length[sim]\}\}, AspectRatio \rightarrow \{\{0, Length[sim]\}, AspectRatio \rightarrow \{\{0, Length[sim]\}\}, AspectRatio \rightarrow \{\{0, Length[sim]\}, AspectRatio \rightarrow 
                                                                                                                                                                 [acпектное отношен ength[sim[1]]]
                          отображаемый диа··· длина
                                                                                                                                     длина
                           GridLines \rightarrow \{p0, p1, p2, \{Length[sim[1]] - 1, Length[sim]\}\}^T,
                          линии координатной сетки длина
                           Ticks \rightarrow {p0, p1, p2, {Length[sim[1]]] - 1, Length[sim]}, {0, 0}}, PlotLabel \rightarrow
                              "График изменения размера пяти самых больших связных компонент в графе",
                           AxesLabel → {"Время", "Размер компоненты\n(Число вершин)"},
                          обозначения на осях
                           PlotLegends → PointLegend[{Red, Green, Blue},
                          легенды графика поточечная ле… кр… зелё… синий
                                  {"Теоретическое время появления гигантской компоненты",
                                     "Время начала убывания второй по размеру компоненты",
                                     "Время равно общему числу вершин в графе"}, Joined → False]],
                        Graphics[{PointSize[Medium], Red, Point[p0], Green, Point[p1], Blue, Point[p2]}],
                       _графика __размер то⋯ _средний __кр⋯ __точка ____зелё⋯ __точка ____синий __точка
                       ImageSize → Full]]
                       размер изоб… в полном объеме
              Однократная генерация
ln[31]:= sim1 = Import[NotebookDirectory[] <> "\\sim1.m"];
                               импорт Директория файла блокнота
               (*sim1=N[PadRight[ConnectedComponentsErdősRenyiGaph[500,1500]]]<sup>™</sup>;*)
                                  .. заполнить справа
```

In[32]:= ConnectedComponentsErdősRenyiGaphPlot[sim1]

- Теоретическое время появления гигантской компоненты
- Время начала убывания второй по размеру компоненты
- Время равно общему числу вершин в графе

Среднее по 10 генерациям

In[33]:= sim10 = Import[NotebookDirectory[] <> "\\sim10.m"];(*sim10= импорт директория файла блокнота Map [Mean, Table [N [PadRight [ConnectedComponentsErdősRenyiGaph [500,1500]]], {1,1,10}] ,

_п··· _ сре··· _табл··· _ · · _заполнить справа $\{1\}]^{\mathsf{T}};*)$

In[34]:= ConnectedComponentsErdősRenyiGaphPlot[sim10]

- Теоретическое время появления гигантской компоненты
- Время начала убывания второй по размеру компоненты
- Время равно общему числу вершин в графе

Среднее по 100 генерациям

```
In[35]:= sim100 = Import[NotebookDirectory[] <> "\\sim100.m"];
               импорт директория файла блокнота
      (*sim100=Map[Mean,Table[N[PadRight[ConnectedComponentsErdősRenyiGaph[500,1500]]],
                п… сре… табл… . заполнить справа
             \{1,1,100\}]^{\mathsf{T}},\{1\}]^{\mathsf{T}};*)
```

In[36]:= ConnectedComponentsErdősRenyiGaphPlot[sim100]

- Теоретическое время появления гигантской компоненты
- Время начала убывания второй по размеру компоненты
- Время равно общему числу вершин в графе

Среднее по 1000 генерациям

```
In[37]:= sim1000 = Import[NotebookDirectory[] <> "\\sim1000.m"];
                 импорт Директория файла блокнота
      (*sim1000=Map[Mean, Table[N[PadRight[ConnectedComponentsErdősRenyiGaph[500,1500]]],
                  _п··· _ сре··· _ табл··· _ ·· _ заполнить справа
              \{1,1,1000\}]^{\mathsf{T}},\{1\}]^{\mathsf{T}};*)
```

In[38]:= ConnectedComponentsErdősRenyiGaphPlot[sim1000]

- Теоретическое время появления гигантской компоненты
- Время начала убывания второй по размеру компоненты
- Время равно общему числу вершин в графе

2. Малый мир сложных сетей

Средний кратчайший путь в графе

```
In[39]:= MeanShortestPath[graph_] :=
    cgc = ConnectedGraphComponents[graph];
         связные граф-компоненты
      cgcd = Table[GraphDistanceMatrix[cgc[i]]], {i, 1, Length[cgc]}];
          табл... матрица расстояний на графе
      cgcdt =

      Length[cgcd[i]] (Length[cgcd[i]] - 1)
      2
      }], {i, 1, Length[cgcd]}];

          Total[Table[cgcdt[i, 1] cgcdt[i, 2], {i, 1, Length[cgcdt]}]]
Total[cgcdt[All, 2]]
     out
```

Оценка среднего кратчайшего пути в графе

```
In[40]:= EstimatedAveragePath[graph_, numberofvertexpairs_] :=
                     Module [ { maxnvp =
     программный модуль
       eal = Table[0, {i, 1, numberofvertexpairs}], rvp = {}, rvpl = {}},
            таблица значений
      If [number of vertex pairs > maxnvp, Print["Error: number of vertex pairs > n(n-1)/2"],
       rvp = Sort[RandomSample[gvl, 2]];
            сор ... случайная выборка
       \label{lemberQ[rvpl, rvp] == True | | FindShortestPath[graph, rvp[1]], rvp[2]] == {}, \\
                                    истина найти кратчайший путь
          цикл… элемент списка?
          rvp = Sort[RandomSample[gvl, 2]]];
              сор… случайная выборка
        AppendTo[rvpl, rvp];
        добавить в конец к
        eal[i] = Length[FindShortestPath[graph, rvp[1]], rvp[2]]] - 1,
                {i, 1, numberofvertexpairs}];
       N[Mean[eal]]]
       .. среднее значение
In[41]:= rg = RandomGraph[{35, 100}]
        случайный граф
```


In[42]:= EstimatedAveragePath[rg, 100]

Out[42]= 2.27

In[43]:= EstimatedAveragePath[rg, 595]

Out[43]= 2.19664

```
In[44]:= MeanShortestPath[rg]
Out[44] = 2.19664
```

Мера малого мира

```
In[45]:= Sigma[graph_] :=

      Module [{c = Mean[LocalClusteringCoefficient[graph]], cr = 
      Mean[VertexDegree[graph]]

      _ программны... | сре... | коэффициент локальной кластеризации
      VertexCount[graph]

                 1 = MeanShortestPath[graph], lr = \frac{Log[VertexCount[graph]] - EulerGamma}{Log[Mean[VertexDegree[graph]]]} + \frac{1}{2}, \frac{c lr}{crl} \Big]
```

Параметры графа

```
In[46]:= GraphParameters[graph_, pairscount_] :=
      \{VertexCount[graph], EdgeCount[graph], EstimatedAveragePath[graph, pairscount], \\
                             число рёбер
       Mean Shortest Path [graph], \\ N[Log[VertexCount[graph]]], \\ Sigma[graph]\}
                                   ... на... число вершин
```

```
In[47]:= Grid[Prepend[{Prepend[GraphParameters[g1, 100], "assoc"],
     таб… добавить … добавить в начало
        Prepend[GraphParameters[g2, 100], "bio-celegans"],
        добавить в начало
        Prepend[GraphParameters[g3, 100], "bio-diseasome"],
        Prepend[GraphParameters[g4, 100], "ca-AstroPh"],
        добавить в начало
        Prepend[GraphParameters[g5, 100], "facebook"],
        добавить в начало
        Prepend[GraphParameters[g6, 100], "proteins"]},
       {"Name", "Vertex count", "Edge count", "Estimated average path",
         "Mean shortest path", "ln(vertex count)", "Small-world measure"}],
         среднее значение
                                                      малый
      Background → {None, {{{Pink, Lighter[Blue, 0.7]}}, {1 → Gray}}},
                    ни одног… роз… более с… синий
                                                                 серый
      Dividers \rightarrow All, Spacings \rightarrow {1, 1}]
      разделители всё размер зазора
```

Out[47]=	Name	Vertex count	Edge count	Estimated average path	Mean shortest path	ln(vertex count)	Small- world measure
	assoc	6437	36 921	3.76	3.80954	8.76982	70.2352
	bio- celegans	453	2025	2.71	2.66379	6.11589	37.2392
	bio-disea: some	516	1188	6.46	6.50899	6.24611	46.1102
	ca-AstroPh	18 771	198 050	4.17	4.19399	9.84007	473.183
	facebook	4039	88 234	3.67	3.69251	8.30375	38.5921
	proteins	335	1792	4.79	4.82131	5.81413	11.4945

3. Устойчивость малого мира сложных сетей

Удаление заданного процента ребер в графе

```
In[48]:= DeletePercentEdges[graph_, percent_] :=
      EdgeDelete[graph, RandomSample[EdgeList[graph], Round[EdgeCount[graph]]
                        случайная вы… список рёбер
                                                        окру… число рёбер
      удалить ребро
```

Сравнение параметров графа и графа с уменьшенным числом ребер

```
In[49]:= ChangeGraphParameters[graph_, percent_] :=
      Module[{mg = DeletePercentEdges[graph, percent]}, {MeanShortestPath[graph],
      программный модуль
        MeanShortestPath[mg], N[Mean[LocalClusteringCoefficient[graph]]],
                                ·· cpe··· коэффициент локальной кластеризации
        N[Mean[LocalClusteringCoefficient[mg]]], Sigma[graph], Sigma[mg]}]
        . сре. коэффициент локальной кластеризации
```

```
In[50]:= Grid[Prepend[{Prepend[ChangeGraphParameters[g1, 10], "assoc"],
    таб… добавить и добавить в начало
       Prepend[ChangeGraphParameters[g2, 10], "bio-celegans"],
       добавить в начало
       Prepend[ChangeGraphParameters[g3, 10], "bio-diseasome"],
       Prepend[ChangeGraphParameters[g4, 10], "ca-AstroPh"],
       Prepend[ChangeGraphParameters[g5, 10], "facebook"],
       добавить в начало
       Prepend[ChangeGraphParameters[g6, 10], "proteins"]},
       добавить в начало
       {"Name", "Mean shortest path", "Mean shortest path (-10%)",
                среднее значение
                                     среднее значение
        "Mean Clustering Coefficient", "Mean Clustering Coefficient (-10%)",
        "Small-world measure", "Small-world measure (-10%)"}],
        малый
                               малый
     Background → {None, {{{Pink, Lighter[Blue, 0.7]}}, {1 → Gray}}},
                  ни одног… роз… более с… синий
     Dividers \rightarrow All, Spacings \rightarrow {1, 1}]
     разделители всё размер зазора
```

Name	Mean shortest path	Mean shortest path (-10%)	Mean Cluster ing Coeffic ient	Mean Cluster ing Coeffic ient (-10%)	Small- world measure	Small- world measure (-10%)
assoc	3.80954	3.884	0.123601	0.107829	70.2352	69.3985
bio- celegans	2.66379	2.73836	0.646463	0.56985	37.2392	36.9625
bio-disea: some	6.50899	6.79761	0.63583	0.530088	46.1102	43.584
ca-AstroPh	4.19399	4.29093	0.630627	0.553445	473.183	464.847
facebook	3.69251	3.88242	0.605547	0.538331	38.5921	37.0915
proteins	4.82131	5.00884	0.653178	0.580317	11.4945	11.3346

Out[50]=