	Introduction to Neural
	Networks
1	Feed forward Network Functions.
	The linear models for regression and classification
+	and based on linear combinations of fixed non
1	are based on linear combinations of fixed non linear basis functions q.(n) and take The form
-	$y(n, w) = f\left(\sum_{i \geq 1}^{M} w_i \phi_i(n)\right)$
	f(x, y) = f(x, y)
-	where f(') is a nonlinear activation function
	in the case of classification and is the identity
1	in the case of regression.
	0 0
	Our goal is to make rather extend this
	and less as change the board hunchous of co
_	depend on parameters and then to allow
_	Thise parameter to be adjusted, along with
_	depend on parameters and then to allow these parameter to be adjusted, along wither the coefficients of will, during training."
	This leads to the basic neural network model, functional which can be described as a series of transformation
-	Pirst we construct M linear combinations of the
	input variables x_1, \dots, x_p in the form
_	
	$aj = \sum_{i=1}^{D} w_{ji}(x_i) + w_{jo}$
	where j = 1. H. and superscript (1)
	where j = 1. H. and superscript (1) indicates that the corresponding params are of
	Scanned with CamScanned

1000	
	These activation functions are then transfirmed
	using a differentiable, nonlinear activation
	These activation functions are then transformed using a differentiable, nonlinear activation functions has to give
	2; = h(aj).
	The author of
	These quantities correspond to output of
	Basis functions, in context of nectal
	These quantities correspond to output of basis functions, in context of neural networks, known as hidden write.
	Some h(.) functions are -
	- +
	- tanh
	- Sigmoid - ReLu
	- Maxout
	- Leaky Relvet.
	0
	These values are again linearly combined to give output unit activations.
	to give output unit activations.
	M (2)
	$a_{k} = \sum_{i=1}^{K} w_{kj}^{(2)} z_{j} + w_{k0}^{(2)}$
	V
	when K= 1,, K and K is the
	total number of outputs.
	The choice of activation function is
	determined by the nature lof the data
	The choice of activation function is determined by the nature of the data and the assumed distribution of target
	variables.

Thus, for standard regression problems, the activation is the identity so that

y = ax. For classification problems y = o(ak). 1 + exp(-a) complete Picture $y(\chi,w) = \sigma \left(\sum_{j=1}^{M} w_{kj} h \left(\sum_{i=1}^{M} w_{ji} \chi_i + w_{j0} \right) + w_{k0}^{(2)} \right)$ Thus, the neural netrodak model & simply a non-linear function from a set of input variable fyz controlled by a vector w of adjustable parameter. The process of evaluating (1) can be interpreted as a forward propagation of information through the network.

