

Circular N.º 5 - SGRH/2023, de 09 de outubro

ADSE - Manutenção da qualidade de beneficiário familiar maiores de 18 anos

Os descendentes e equiparados a descendentes, <u>entre os 18 e os 26 anos</u>, podem manter a qualidade de beneficiários familiares, desde que frequentem cursos de nível secundário, médio ou superior. Para tal, os beneficiários titulares têm de entregar os seguintes documentos:

- Comprovativo de matrícula do descendente no ano letivo 2023/2024;
- Formulário de autorização de consulta na Segurança Social dos registos de rendimentos e demais prestações, ou
- Declaração da Segurança Social, em como o beneficiário familiar não se encontra abrangido por regime de Segurança Social de Inscrição obrigatória.

O formulário acima referido, encontra-se disponível no Rhumo (https://rhumo.ua.pt/Login.aspx), e deverá ser devidamente preenchido e assinado pelo descendente. Caso o descendente já tenha dado autorização de consulta na Segurança Social dos registos de rendimentos está dispensado da apresentação deste documento.

A documentação solicitada deverá ser enviada até 30-11-2023 para o email <u>sgrh-avct-beneficios-sociais@ua.pt</u>, podendo, igualmente, ser remetido por correio interno para os Serviços de Gestão de Recursos Humanos, Área de Vínculos e Condições de Trabalho.

Chefe de Divisão da Área de Vínculos e Condições de Trabalho

Assinado na versão original

(Cátia Pôncio)

ACÇÕES DO VENTO

ref. <u>Eurocódigo 1</u> – Acções em estruturas. <u>Parte 1-4</u> – Acções do vento

Aplicável a edifícios e pontes correntes.

Não é aplicável diretamente a:

- construções com altura superior a 200 m;
- mastros espiados, torres em treliça e postes de iluminação;
- pontes suspensas, de tirantes ou pontes com tramo(s) de vão superior a 200 m;
- vibrações de torção ou situações em que seja necessário considerar outros modos de vibração para além do modo fundamental.

Tacoma Narrows Bridge, EUA (opened 1-7-1940; collapsed 7-11-1940)

Dimensionamento de Estruturas 2020/2021

Aula T12 2/21

- Qual o comportamento da estrutura durante a acção do vento? Qual a velocidade crítica?
- Existe interacção entre modos de vibração que conduza a fenómenos de ressonância?

Ensaios em túnel de vento permitem detectar estes fenómenos

Aula T12 3/21

Dimensionamento de Estruturas 2020/2021

Aula T12 4/21

ACÇÕES DO VENTO

ref. <u>Eurocódigo 1</u> – Acções em estruturas. <u>Parte 1-4</u> – Acções do vento

Por aplicação do teorema de Bernoulli, se a energia cinética do escoamento associada à velocidade V_0 é integralmente convertida em energia de pressão (zona de estagnação do escoamento), tem-se:

$$\frac{V_0^2}{2} + \frac{p_0}{\rho} = \frac{V_0^2}{2} + \frac{p_A}{\rho} \quad \therefore \quad \Delta p = \frac{1}{2} \ \rho \cdot V_0^2 = q_0$$

em que

ho a massa volúmica do ar (admite-se que o ar se comporta como um fluido homogéneo e incompressível, $ho=1,25~{
m kg/m^3})$

 V_0 a velocidade do vento admitindo um escoamento unidireccional

$$q_0 = \frac{1}{2} \rho \cdot V_0^2 = 0.625 \ V_0^2$$
 pressão dinâmica

Aula T12 6/21

ACÇÕES DO VENTO

ref. Eurocódigo 1 – Acções em estruturas. Parte 1-4 – Acções do vento

A velocidade do vento é dada pela soma da velocidade média $V_{\rm m}$ com flutuações de velocidade, ao longo do tempo, v(t), i.e.

$$V_0(t) = V_{\rm m} + v(t)$$

A velocidade média é obtida a partir da velocidade base $V_{
m b}$ por

$$V_{\rm m}(z) = c_{\rm r}(z) \cdot c_{\rm o}(z) \cdot V_{\rm b}$$

Em que

- $c_{\rm o}(z)$ coeficiente de orografia, igual a 1,0 a não ser que, devido à orografia local (colinas ou falésias, por exemplo)
- $c_{\rm r}(z)$ coeficiente de rugosidade, obtido para $z_{\rm min} \le z \le 200$ m) por:

$$c_{\rm r}(z) = 0.19 \left(\frac{z_0}{z_{0.\rm II}}\right)^{0.07} \cdot \ln\left(\frac{z}{z_0}\right)$$
 se $z \ge z_{\rm min}$

Dimensionamento de Estruturas 2020/2021

Categorias de terreno para a determinação da acção do vento

categorias de terreno para a determinação da acção do vento					
	Categoria de terreno	z_0 [m]	z_{\min} [m]		
I	Zona costeira exposta aos ventos de mar	0,005	1		
II	Zona de vegetação rasteira, tal como erva, e obstáculos isolados (árvores, edifícios) com separa- ções entre si de, pelo menos, 20 x altura	0,05	3		
III	Zona com uma cobertura regular de vegetação ou edifícios, ou com obstáculos isolados com separações entre si de, no máximo, 20 x altura (por exemplo: zonas suburbanas, florestas permanentes)	0,3	8		
IV	Zona na qual pelo menos 15% da superfície está coberta por edifícios com uma altura média superior a 15 m	1,0	15		

O valor da <u>velocidade base do vento</u>, $V_{\rm b}$, é dado por,

$$V_{\rm b} = c_{\rm dir} \cdot c_{\rm season} \cdot V_{\rm b,0}$$

em que:

 $V_{\rm b,0}$ — valor característico da velocidade média do vento referida a períodos de 10 minutos, independentemente da direcção do vento e da época do ano, a uma altura de 10 m acima do solo em terreno do tipo campo aberto — da categoria II)

 $c_{\rm dir}$ – coeficiente de direcção (≥ 0.85 ; em geral, é tomado igual a 1,0);

 $c_{\rm season}$ coeficiente de sazão (≥ 0.90 ; em geral, é tomado igual a 1,0).

Em Portugal, $V_{\rm b,0}$ é obtido em função das duas zonas seguintes:

• Zona A – a generalidade do território, excepto as regiões pertencentes à zona B,

$$V_{\rm b,0} = 27 \, \rm m/s$$

 Zona B – regiões do continente situadas na faixa costeira com 5 km de largura ou a altitudes superiores a 600 m + Açores e da Madeira.

$$V_{\rm b,0} = 30 \, \rm m/s$$

Dimensionamento de Estruturas 2020/2021

Aula T12 8/21

A velocidade dinâmica de pico à altura z acima do solo, $v_{\rm p}(z)$, é definida em função da velocidade média $V_{\rm m}(z)$ e da intensidade de turbulência $I_{\rm v}(z)$ por:

$$v_{\rm p}(z) = [1 + 7 I_{\rm v}(z)]^{0.5} V_{\rm m}(z)$$

Em que a turbulência $I_v(z)$ é dada por:

$$I_{v}(z) = \frac{1,0}{c_{o}(z) \cdot \ln\left(\frac{z}{z_{0}}\right)}$$

Perfis das velocidades média e de pico para a zona A ($V_b = 27 \text{ m/s}, c_0 = 1,0$)

A <u>pressão dinâmica de pico</u> à altura z acima do solo, $q_{\rm p}(z)$, pode ser definida a partir da velocidade média $V_{\rm m}(z)$, da intensidade de turbulência $I_{\rm v}(z)$ e da massa volúmica do ar (ρ) através de:

$$q_{p}(z) = [1 + 7 I_{v}(z)] \cdot \frac{1}{2} \rho \cdot V_{m}^{2}(z)$$

$$= \left[1 + \frac{7}{c_{o}(z) \cdot \ln\left(\frac{z}{z_{o}}\right)} \right] \cdot \frac{1}{2} \rho \cdot [c_{r}(z) \cdot c_{o}(z) \cdot V_{b}]^{2}$$

Ou simplesmente,

$$q_{\rm p}(z) = c_{\rm e}(z) \, 0.625 \, V_{\rm b}^2$$

em que o coeficiente de exposição $c_{\mathrm{e}}(z)$, é dado por:

$$c_{\rm e}(z) = \frac{q_{\rm p}(z)}{q_{\rm b}} = [1 + 7 I_{\rm v}(z)] \cdot c_{\rm r}^2(z) \cdot c_{\rm o}^2(z)$$

Perfis em altura do coeficiente de exposição ($c_0=1.0$)

Dimensionamento de Estruturas 2020/2021

TÉCNICO LISBOA

Aula T12 10/21

Zona A	Velocidade média [m/s]				Pressão de pico [kN/m²]			
z [m]	I	II	III	IV	I	II	III	IV
2	26,2	21,0	19,1	17,1	0,93	0,75	0,71	0,66
5	30,2	23,6	19,1	17,1	1,14	0,88	0,71	0,66
10	33,2	27,2	20,4	17,1	1,32	1,07	0,78	0,66
15	35,0	29,3	22,8	17,1	1,43	1,19	0,90	0,66
20	36,2	30,7	24,4	19,0	1,51	1,28	0,99	0,75
25	37,2	31,9	25,7	20,4	1,57	1,35	1,07	0,82
30	38,0	32,8	26,8	21,5	1,63	1,41	1,13	0,89
40	39,2	34,3	28,5	23,3	1,71	1,50	1,23	0,99
50	40,2	35,4	29,8	24,8	1,78	1,58	1,31	1,07
60	41,0	36,4	30,8	25,9	1,83	1,64	1,38	1,14
80	42,3	37,8	32,5	27,7	1,92	1,74	1,49	1,25
100	43,2	39,0	33,8	29,1	1,99	1,83	1,57	1,34

100 ΙV III II altura acima do solo, z [m] 80 60 40 20 z =12m 0,7 0,8 0,9 1,0 1,5 1,6 1,7 0,6 1.12 pressão dinâmica de pico, q_p [kN/m²]

NOTA: velocidade (zona B) = (30/27) velocidade (zona A)

pressão dinâmica (zona B) = $(30/27)^2$ pressão dinâmica (zona A)

Perfis da pressão dinâmica de pico, $q_{\rm p}(z)$, para a zona A ($V_{\rm b}=27~{\rm m/s},\,c_{\rm o}=1.0$)

Pressões

internas positivas

internas

negativas

- neg

neg

Acção estática equivalente - Pressão normal às superficies dada em [N/m²] por:

Exterior
$$w_{\rm e} = c_{\rm pe} \cdot q_{\rm p}(z_{\rm e})$$

Interior
$$w_{\rm i} = c_{\rm pi} \cdot q_{\rm p}(z_{\rm i})$$

em que:

é o coeficiente de pressão exterior à altura $z_{
m e}$ $c_{\rm pe}$ é o coeficiente de pressão interior à altura z_i $c_{\rm pi}$

NOTA – Os efeitos da pressão interior devem somar-se vectorialmente aos da pressão exterior se forem desforáveis na maioria das faces.

Dimensionamento de Estruturas 2020/2021

Aula T12 12/21

Em relação aos coeficientes de pressão interiores, $c_{
m pi}$, são aplicáveis as seguintes regras simplificadas para edifícios correntes:

- Quando a razão Ω = área de aberturas da face predominante / área total das aberturas nas faces restantes \geq 2 então $c_{
 m pi} = \chi \cdot c_{
 m pe}$, tal que, $\chi(\Omega = 2) = 0.75 \text{ e } \chi(\Omega \ge 3) = 0.90$
- Quando não existir uma face predominante, o valor de $c_{
 m pi}$ pode ser mas igual em todas as faces

tomado com o valor de +0.2 ou -0.3 consoante for mais desfavorável,

No caso dos coeficientes de pressão exteriores $c_{
m pe}$, devem considerar-se:

- $c_{
 m pe,10}$ coeficientes para determinação dos <u>efeitos globais</u> numa estrutura da acção do vento
- $c_{
 m pe,1}$ coeficientes para determinação dos <u>efeitos locais</u> numa estrutura para a acção do vento (superfícies com área igual ou inferior a 1 m²); ex. dimensionamento de revestimentos

vento

vento

Coeficientes de pressão exterior para coberturas de duas vertentes

Aula T12 13/21

	direcção do vento $ heta=0^\circ$									
ângulo $lpha$	F		G		Н		I		J	
ca .	$c_{\mathrm{pe,10}}$	$c_{\mathrm{pe,1}}$	$c_{\mathrm{pe,10}}$	$c_{\mathrm{pe,1}}$	c _{pe,10}	$c_{\mathrm{pe,1}}$	$c_{\mathrm{pe,10}}$	$c_{\mathrm{pe,1}}$	$c_{\mathrm{pe,10}}$	$c_{\mathrm{pe,1}}$
-30°	- 1,1	- 2,0	- 0,8	- 1,5	- 0),8	- 0	,6	- 0,8	- 1,4
-15°	- 2,5	- 2,8	- 1,3	- 2,0	- 0,9	- 1,2	- 0,5		- 0,7	- 1,2
-5°	- 2,3	- 2,5	- 1,2	- 2,0	- 0,8	- 1,2	- 0,6		- 0,6	
-5"							+ 0,2		+ 0,2	
00	- 1,8	.,8 - 2,5	- 1,2	- 2,0	- 0,7	4.3	- 0	,2	- C),2
0°						- 1,2	+ (),2	+ (),2
5°	- 1,7	- 2,5	- 1,2	- 2,0	- 0,6	- 1,2	0.6		- C),6
5	+ 0,0		+ 0,0		+ 0,0		- 0,6		+ 0,2	
15°	- 0,9	- 2,0	- 0,8	- 1,5	- (),3	- 0,4		- 1,0	- 1,5
15°	+ 0,2		+ 0,2		+ 0,2		+ (),0	+ 0,0	+ 0,0
200	- 0,5	- 1,5	- 0,5	- 1,5	- (),2	- 0	,4	- C),5
30°	+ (0,7	+ (),7	+ (0,4	+ (),0	+ (),0

Notas: a) Para α ≥ −5° são fornecidos valores positivos e negativos para algumas zonas da cobertura. (θ=0°) Nestas condições, devem ser considerados quatro casos de carregamento combinando os valores positivos ou negativos nas áreas F, G e H (vertente de barlavento) com os valores positivos ou negativos nas áreas I e J (vertente de sotavento),mas sem misturar, numa mesma vertente, a consideração de valores positivos com valores negativos.

b) Para ângulos intermédios efectuar interpolação linear entre valores de $c_{
m pe}$ com o mesmo sinal.

Dimensionamento de Estruturas 2020/2021

Coeficientes de pressão exterior para as paredes de barlavento e sotavento

h / d	parede de	parede de sotavento			
h/d	$c_{\mathrm{pe,b,10}}$ $c_{\mathrm{pe,b,1}}$		$c_{\mathrm{pe,s,10}}$	$c_{\mathrm{pe,s,1}}$	
5	+ 0,8		- 0,7		
1	+ 0,8	+ 1,0	- 0,5		
≤ 0,25	+ 0,7		- 0,3		

Notas: a) A variável d representa a dimensão do edifício, em planta, segundo a direcção do vento considerada (a largura das paredes de barlavento e sotavento é indicada por b).

b) Para valores intermédios de h/d, pode ser utilizada interpolação linear.

Aula T12 14/21

Para alguns casos o EC1-1-4 fornece coeficientes de força, $c_{\rm f}$, quantificando de forma global o efeito da acção do vento numa face da estrutura através da força $F_{\rm w}$ obtida por:

$$F_{\rm w} = c_{\rm f} \cdot q_{\rm p}(z_{\rm e}) \cdot A_{\rm ref}$$

Exemplo – Painel de sinalização tem-se:

$$c_{\rm f} = 1.80$$

$$e = \pm b/4$$

Altura de referência: $z_e = z_g + h/2$.

Área de referência: $A_{ref} = b \cdot h$.

Dimensionamento de Estruturas 2020/2021

Exemplo de quantificação da acção do vento

Aula T12 16/21

Edifício industrial com planta rectangular ($16 \times 30 \text{ m}^2$) em Leiria, a construir num terreno da categoria II em termos de rugosidade aerodinâmica. A estrutura principal do edifício é composta por pórticos paralelos afastados entre si de 6,00 m.

Objectivo – Definir para um pórtico intermédio a acção do vento para $\theta=0^\circ$, considerando os coeficientes $c_{\rm dir}$, $c_{\rm season}$ e $c_{\rm o}(z)$ unitários.

1] Pressão dinâmica

- Leiria Zona A => $V_{\rm b} = V_{\rm b,0} = 27.0 \text{ m/s}$
- Terreno de categoria II => $c_e(z_e = 6 \text{ m}) = 2.04$
- Pressão dinâmica de pico à cota $z_{\rm e}$:

$$q_{\rm p}(z_{\rm e}) = 2.04 \times 0.625 \times 27.0^2 = 929 \,\mathrm{N/m^2}$$

Exemplo de quantificação da acção do vento

Dimensionamento de Estruturas 2020/2021

Exemplo de quantificação da acção do vento

Aula T12 18/21

2] Coeficientes de pressão interiores c_{pi}

O edifício não tem uma face predominante logo $c_{\rm pi} \, = +0.2 \quad {\rm ou} \quad c_{\rm pi} = -0.3.$

3] <u>Coeficientes de pressão exteriores</u> $c_{ m pe,10}$

Nas paredes

•
$$d = 16 \text{ m}$$
; $b = 30 \text{ m}$

•
$$h = 6 \text{ m} < b \Rightarrow q_p(z) = q_p(h)$$

•
$$h/d = 6/16 = 0.38$$

Logo Interpolação linear entre 0,25 e 1,0

Coeficientes de pressão exterior para as paredes de barlavento e sotavento

h/d	parede de	parede de sotavento			
πγα	$c_{\mathrm{pe,b,10}}$	$c_{\mathrm{pe,b,1}}$	$c_{\mathrm{pe,s,10}}$	$c_{\mathrm{pe,s,1}}$	
5	+ 0,8		- 0,7		
1	+ 0,8	+ 1,0	- 0,5		
≤ 0,25	+ 0,7		- 0,3		

Notas: a) A variável d representa a dimensão do edifício, em planta, segundo a direcção do vento considerada (a largura das paredes de barlavento e sotavento é indicada por b).

b) Para valores intermédios de h/d, pode ser utilizada interpolação linear.

Aula T12 19/21

Exemplo de quantificação da acção do vento

Na cobertura

Nas zonas G, H, I e J da cobertura com $\alpha=10^\circ$, os valores de $c_{\rm pe.10}$ devem considerar dois casos distintos:

1) caso 1- pressões exteriores negativas nas duas vertentes

2) caso 2 - pressões exteriores positivas na vertente de sotavento

Dimensionamento de Estruturas 2020/2021

Exemplo de quantificação da acção do vento

Aula T12 20/21

4] Soma dos coeficientes de pressão ($c_{
m pe} \pm c_{
m pi}$)

Os dois casos relativos às pressões exteriores devem ser conjugados com outros dois casos distintos relativos às pressões interiores, em correspondência com os valores (i) $c_{\mathrm{pi}}=+0.2$ e (ii) $c_{\mathrm{pi}}=-0.3$, dando origem aos quatro casos distintos.

Exemplo de quantificação da acção do vento

5] Cargas a aplicar num dos pórticos intermédios ($\theta = 0^{\circ}$, caso 1.a)

Tendo em conta o valor da pressão dinâmica de pico à altura de referência, $q_{\rm p}(z_{\rm e})=929~{\rm N/m^2}$, e o valor do afastamento entre pórticos é igual a 6,0 m, obtêm-se as cargas a aplicar num pórtico [kN/m]

Dimensionamento de Estruturas 2020/2021