1. Формулировки на принципите на изброителната комбинаторика - принцип на Дирихле, принцип на биекцията, принцип на събирането, принцип на изваждането, принцип на умножението, принцип на делението, принцип за включване и изключване (с доказателство).

- принцип на Дирихле

Ако X и Y са крайни множества и |X|>|Y|, то не съществува инекция $f:X\to Y$.

Алтернативна формулировка: ако има m ябълки в n чекмеджета и m > n, то в поне едно чекмедже има повече от една ябълка.

Обобщен принцип на Dirichlet: ако има kn + 1 ябълки в n чекмеджета, то в поне едно чекмедже има повече от k ябълки.

- принцип на биекцията

Четвърти принцип: Принцип на биекцията. Нека A и B са множества. |A| = |B| тогава и само тогава, когато съществува биекция $f: A \to B$.

Това е очевидно и го приемаме без доказателство.

Този принцип е много полезен, когато, за да изброим някакви обекти, изброяваме други обекти и показваме, че съществува биекция между двете множества от обекти.

- принцип на събирането

Втори принцип: Принцип на разбиването. Дадено е множество X и разбиване $\mathcal{Y} = \{Y_1, \dots, Y_k\}$ на X. Тогава

$$|X| = |Y_1| + \dots + |Y_k|$$
 (1)

Забележете, че това остава в сила дори някои от множествата Y_1, \ldots, Y_k да са празни. Съгласно формалната дефиниция, това не би било разбиване, но (1) остава в сила: мощностите на празните Y_i са нули и те не се отразяват на сумата.

Приемаме този принцип за очевиден и няма да правим доказателство.

- принцип на изваждането

Това е тривиално следствие от принципа на разбиването. Нека е дадено множество A в универсум U. Тогава

$$|A| = |U| - |\overline{A}| \tag{2}$$

Очевидно $\{A, \overline{A}\}$ е разбиване на универсума, така че от принципа на разбиването имаме $|U| = |A| + |\overline{A}|$.

Не е невъзможно \overline{A} да е празно, но и тогава (2) остава в сила.

- принцип на умножението

Трети принцип: Принцип на умножението. Нека A и B са множества. Тогава

$$|A \times B| = |A| \cdot |B|$$

Приемаме го за очевиден и без доказателство.

Естествено обобщение е следното. Ако A_1, \ldots, A_k са множества, то

$$|A_1 \times \cdots \times A_k| = |A_1| \cdot \cdot \cdot \cdot |A_k|$$

Написано по по-икономичен начин:

$$\left| \times_{i=1}^k A_i \right| = \prod_{i=1}^k |A_i|$$

- принцип на делението

Пети принцип: Принцип на делението. Нека A е множество. Нека $R \subseteq A^2$ е релация на еквивалентност. Нека A има k класа на еквивалентност и всеки клас на еквивалентност има кардиналност m. Тогава

$$m = \frac{|A|}{k}$$

- принцип на включване и изключване

Шести принцип: Принцип на включването и изключването. Явява се обобщение на принципа на разбиването. При разбиването намираме кардиналност на множество като сума от кардиналностите на дяловете на някое негово разбиване. Сега е дадено покриване на множеството и намираме кардиналността на множеството, като събираме и изваждаме кардиналностите на дяловете на покриването, техните сечения по двойки, по тройки и така нататък.

Дадена е група студенти. 10 от тях посещават практикум по Java, 12 посещават практикум по С и е известно, че всеки студент посещава поне един практикум. От колко студента се състои групата?

Нека групата е A. Очевидно $12 \leqslant |A| \leqslant 22$, като тези граници са точни.

Ако обаче е известно, че точно 2-ма студенти посещават и Java, и C, веднага следва, че |A|=20. По-подробно, |A|=10+12-2=20.

Сумата 10 + 12 = 22 брои прекалено много (overcounting). Тя брои райони I и II правилно, по веднъж, но брои район III неправилно: два пъти.

Сумата 10 + 12 - 2 = 20 брои всеки район точно веднъж.

Дадена е група студенти. 20 посещават практикум по Java, 19 по С и 17 по РНР. 8 посещават Java и С, 7 посещават Java и РНР, 8 посещават С и РНР. 3 посещават и трите практикума. Групата се състои от 46 студенти. Колко студенти не посещават нито един от трите практикума?

Отговорът е

$$46 - (20 + 19 + 17) + (8 + 7 + 8) - 3 = 46 - 56 + 23 - 3 = 10$$

(20+19+17)-(8+7+8)+3=36 е броят на студентите в поне един практикум. Да видим защо.

Търсим кардиналността на обединението на Java, С и PHP.

п. . . . , vіії са районите.
 п. са тези, които ходят само на Java, v са само на Java и С, и т.н. Ние не знаем кардиналностите на районите, освен на vії. Ако ги знаехме, задачата щеше да е много лесна.

Сумата 20 + 19 + 17 брои і, ії и ії по един път, но іv, v и vі биват броени по два пъти, а тримата студенти от vії биват броени три пъти от тази сума.

Заради това 56 е повече от кардиналността на обединението.

Теорема 1

 $egin{aligned} egin{aligned} eta_1 & \text{всеки } n \end{aligned} & \mathbf{M} + \mathbf{D} \times \mathbf{M} + \mathbf{D} \times \mathbf{M} \\ & \mathbf{M} + \mathbf{D} \times \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} \\ & \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} \\ & \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} \\ & \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} \\ & \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} \\ & \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} \\ & \mathbf{M} \\ & \mathbf{M} + \mathbf{M} \\ & \mathbf{$

$$|A_1 \cup \dots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|$$
 (3)

Доказателството е с индукция по n.

Базата е
$$n=1$$
. (3) става $|A_1|=|A_1|$. \checkmark

Индукционното предположение е, че за всеки n-1 множества:

$$|A_1 \cup \dots \cup A_{n-1}| = \sum_{1 \le i \le n-1} |A_i| - \sum_{1 \le i < j \le n-1} |A_i \cap A_j| - \dots + (-1)^{n-2} |A_1 \cap \dots \cap A_{n-1}|$$
(4)

Индукционната стъпка е за стойност на аргумента n.

В сила е

$$|A_{1} \cup \cdots \cup A_{n-1} \cup A_{n}| = |\underbrace{(A_{1} \cup \cdots \cup A_{n-1})}_{X} \cup \underbrace{A_{n}}_{Y}| = |\underbrace{(A_{1} \cup \cdots \cup A_{n-1})}_{X}| = |\underbrace$$

тъй като $|X \cup Y| = |X| + |Y| - |X \cap Y|$ (от (3) при n = 2).

Знаем колко е $|A_1 \cup \cdots \cup A_{n-1}|$ от (4). Да разгледаме $|(A_1 \cup \cdots \cup A_{n-1}) \cap A_n|$.

В сила е

$$(A_1 \cup \cdots \cup A_{n-1}) \cap A_n = (A_1 \cap A_n) \cup \cdots \cup (A_{n-1} \cap A_n)$$
 (6)

заради дистрибутивността на сечението спрямо обединението.

Дясната страна на (6) е обединение на n-1 множества и (4) е в приложимо. Съгласно (4):

$$|(A_{1} \cap A_{n}) \cup \cdots \cup (A_{n-1} \cap A_{n})| = + \sum_{1 \leq i \leq n-1} |A_{i} \cap A_{n}|$$

$$- \sum_{1 \leq i < j \leq n-1} |(A_{i} \cap A_{n}) \cap (A_{j} \cap A_{n})| +$$

$$+ \sum_{1 \leq i < j < k \leq n-1} |(A_{i} \cap A_{n}) \cap (A_{j} \cap A_{n}) \cap (A_{k} \cap A_{n})|$$

$$\cdots$$

$$+ (-1)^{n-2} |(A_{1} \cap A_{n}) \cap \cdots \cap (A_{n-1} \cap A_{n})| \qquad (7)$$

Опростявайки дясната страна на (7) и предвид (6), получаваме

$$|(A_{1} \cup \cdots \cup A_{n-1}) \cap A_{n}| = + \sum_{1 \leq i \leq n-1} |A_{i} \cap A_{n}|$$

$$- \sum_{1 \leq i < j \leq n-1} |A_{i} \cap A_{j} \cap A_{n}| +$$

$$+ \sum_{1 \leq i < j < k \leq n-1} |A_{i} \cap A_{j} \cap A_{k} \cap A_{n}|$$

$$\cdots$$

$$+ (-1)^{n-2} |A_{1} \cap A_{2} \cap \cdots \cap A_{n-1} \cap A_{n}|$$
 (8)

В дясната страна на (5) заместваме съгласно (4) и (8) и получаваме

$$|A_{1} \cup \cdots \cup A_{n-1} \cup A_{n}| = \left(\sum_{1 \leq i \leq n-1} |A_{i}| - \sum_{1 \leq i < j \leq n-1} |A_{i} \cap A_{j}| + \cdots + (-1)^{n-2} |A_{1} \cap \cdots \cap A_{n-1}| \right) + |A_{n}| - \left(\sum_{1 \leq i \leq n-1} |A_{i} \cap A_{n}| - \cdots + (-1)^{n-2} |A_{1} \cap A_{2} \cap \cdots \cap A_{n-1} \cap A_{n}| \right) = \sum_{1 \leq i \leq n} |A_{i}| - \sum_{1 \leq i < j \leq n-1} |A_{i} \cap A_{j}| + \cdots + (-1)^{n-2} |A_{1} \cap \cdots \cap A_{n-1}| - \sum_{1 \leq i \leq n-1} |A_{i} \cap A_{n}| + \cdots + (-1)^{n-1} |A_{1} \cap A_{2} \cap \cdots \cap A_{n-1} \cap A_{n}|$$

$$(9)$$

В дясната страна на (9) групираме събираемите от горния и долния ред по подходящ начин:

Получихме дясната страна на (3).

Символно, групирания и опростявания в дясната страна на (9) са следните

$$\begin{split} &\sum_{1\leqslant i\leqslant n}|A_i| \text{ не се групира с нищо;} \\ &-\sum_{1\leqslant i< j\leqslant n-1}|A_i\cap A_j|-\sum_{1\leqslant i\leqslant n-1}|A_i\cap A_n|=-\sum_{1\leqslant i< j\leqslant n}|A_i\cap A_j|; \\ &\sum_{1\leqslant i< j< k\leqslant n-1}|A_i\cap A_j\cap A_k|+\sum_{1\leqslant i< j\leqslant n-1}|A_i\cap A_j\cap A_n|=\sum_{1\leqslant i< j< k\leqslant n}|A_i\cap A_j\cap A_k|; \\ &\cdots \\ &\cdots \\ &(-1)^{n-2}|A_1\cap \cdots \cap A_{n-1}| \text{ се групира с } (-1)^{n-2}\sum_{1\leqslant i_1<\cdots< i_{n-2}\leqslant n-1}|A_{i_1}\cap \cdots \cap A_{i_{n-2}}\cap A_n|; \\ &(-1)^{n-1}|A_1\cap A_2\cap \cdots \cap A_{n-1}\cap A_n| \text{ не се групира с нищо.} \end{split}$$

2. Основните комбинаторни конфигурации: с или без наредба, с или без повтаряне.

- с наредба и повтаряне

Множеството от конфигурациите с наредба и повтаряне с големина m над опорно множество с кардиналност n означаваме с " $K_{H,\Pi}(n,m)$ ". Елементите му са наредените m-торки (векторите с големина m), чиито елементи са от опорното множество A. Лесно се вижда, че $K_{H,\Pi}(n,m) = A^m$.

Интересува ни $|K_{H,\Pi}(n,m)|$. С обобщения принцип на умножението извеждаме

$$K_{\mathsf{H},\mathsf{\Pi}}(n,m)| = |A^m| = n^m \tag{1}$$

Нека
$$A = \{a, b, c\}$$
. Нека $m = 2$. Тогава $K_{H,\Pi}(3, 2) = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}.$

- с наредба и без повтаряне

Множеството от конфигурациите с наредба, без повтаряне с големина m над опорно множество с кардиналност n означаваме с " $K_{\rm H}(n,m)$ ". Елементите му са наредените m-торки (векторите с големина m) без повтаряне, чиито елементи са от опорното множество A.

Интересува ни $|K_H(n,m)|$. Представяме си процеса на изграждането на някой от тези вектори. За първата позиция можем да изберем всеки елемент на A, следователно имаме n възможности. За втората позиция имаме само n-1 възможности, защото елементът от A, избран за първата позиция, вече не може да се ползва. Аналогично, за третата позиция има само n-2 възможности, и така нататък, за m-тата позиция имаме само n-(m-1) възможности.

Виждаме, че

$$|K_{\mathsf{H}}(n,m)| = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-m+1) \tag{2}$$

n - m + 1 идва от n - (m - 1).

Дясната страна на (2) може да се напише и като $\prod_{k=0}^{m-1} (n-k)$, а освен това и като $n^{\underline{m}}$. Последното се чете "n на падаща степен m".

Този резултат не се получава от принципа на умножението.

Резултатът остава в сила и при m > n. Тогава дясната страна на (2) е нула.

Нека
$$A = \{a, b, c\}$$
. Нека $m = 2$. Тогава $K_H(3, 2) = \{(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)\}$.

Това не е изведено чрез принципа на умножението. Имаме $|K_{H}(3,2)| = 3 \cdot 2 = 3^2 = 6$, но $K_{H}(3,2)$ не е декартово произведение нито на триелементно и двуелементно множество, нито на шестелементно и едноелементно множество. Както на първа, така и на втора позиция се срещат и трите елемента на A.

Нека $A = \{a, b, c\}$. Нека m = 4. Но $K_H(3, 4) = \emptyset$, тъй като е невъзможно да не потворим елемент от A съгласно принципа на Dirichlet.

Забележете, че дясната страна на (2) става именно нула:

$$3^4 = 3 \cdot 2 \cdot 1 \cdot 0 = 0$$

Не е необходимо да изискваме $m \le n$.

Важен частен случай е n=m. Тогава векторите се наричат пермутации. Пермутациите на n на брой, два по два различни обекта (pairwise dictinct), са разполаганията в линейна наредба на тези обекти.

Дясната страна на (2) става $n \cdot (n-1) \cdot \cdots \cdot 2 \cdot 1$. Това бележим с "n!". Чете се "ен-факториел", на английски е factorial. И така,

$$|K_{\mathsf{H}}(n,n)| = n!$$

Примерно, по колко начина могат да се наредят 12 човека в редица? Отговорът е $12! = 12 \cdot 11 \cdot 10 \cdot \cdots \cdot 2 \cdot 1 = 479\,001\,600$.

В сила е 0!=1. Комбинаторно, това може да се изведе така: по колко начина можем да разположим нула обекта в редица? Отговор: по един начин, а именно празния начин.

Алгебрично, същото можем да изведем така:

$$\prod_{k\in\emptyset}k=1$$

Вземаме неутралния елемент на умножението, който е единица, а не нула. Нулата е неутрален например на събирането.

- без наредба и без повтаряне

Множеството от конфигурациите с наредба, без повтаряне с големина m над опорно множество с кардиналност n означаваме с "K(n,m)". Елементите му са m-елементните подмножества на опорното множество A.

Наричат се още комбинации. Този термин обаче се използва широко за какво ли не. Точният термин е "подмножество".

Интересува ни |K(n,m)|. Пресмята се от $|K_H(n,m)|$ чрез принципа на делението. Въвеждаме релация $R \subseteq K_H(n,m) \times K_H(n,m)$ така:

$$\forall X,Y\in K_{\mathsf{H}}(\mathit{n},\mathit{m}):X\,R\,Y\iff X$$
 и Y имат едни и същи елементи

R е релация на еквивалентност. Всеки неин клас на еквивалентност има кардиналност m!, а |K(n,m)| е броят на класовете на еквивалентност, като

$$|K(n,m)| = \frac{|K_{H}(n,m)|}{m!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-m+1)}{m!}$$
 (3)

Пример с фиш от тото 6/49. Колко са възможните фишове? Отговорът $49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44 = 10068347520$ е грешен.

Верният отговор е

$$\frac{10\,068\,347\,520}{6!} = \frac{10\,068\,347\,520}{720} = 13\,983\,816$$

Причината да делим на 6! = 720 е, че няма значение в какъв ред се изтеглят числата. Ако и редът на изтегляне имаше значение, фишовете наистина щяха да са $10\,068\,347\,520$. Но това би била друга игра.

- без наредба и с повтаряне

Komo Kond c noer, Jesty. Kn (n, m)

Enemettate ca
Myntum. Bata/c rome mutic m
thad n-en. onepto m. 60.

| Kn(n,m) =?

Hera $A = \{a, b\}$, kera M = 5. $K_{\Pi}(2,5) = \{\{a,a,a,a,a\}m, \{a,a,a,b\}m, \{a,a,a,b,b\}m, \{a,a,a,b,b\}m, \{a,a,b,b,b\}m, \{a,b,b,b\}m, \{a,b,b,b,b\}m\}$ 12 еднакви билета се раздават на 10 човека. По колко начина може да стане това?

Решение: множеството от хората е опорното множество. Броят на билетите е големината на конфигурацията. Тогава n=10, m=12. Отговорът е

$$\binom{12+10-1}{12} = \binom{12+10-1}{10-1} = 293\,930$$

Едно от раздаванията:

Първи човек с два билета; втори, трети и четвърти с по нула билети, петия човек с три билета, шестият без билети, седмият с един билет, осмият с пет билета, деветият с един билет и десетият без билети.

Колко са фишовете в 6 от 49, ако след изтегляне на топка тя бива връщана отново в сферата?

Отговор:

$$\binom{49+6-1}{6} = 25\,827\,165$$

3. Извеждане на формулите за броя на основните комбинаторни конфигурации.

- с наредба и с повтаряне

Множеството от конфигурациите с наредба и повтаряне с големина m над опорно множество с кардиналност n означаваме с " $K_{H,\Pi}(n,m)$ ". Елементите му са наредените m-торки (векторите с големина m), чиито елементи са от опорното множество A. Лесно се вижда, че $K_{H,\Pi}(n,m) = A^m$.

Интересува ни $|K_{H,\Pi}(n,m)|$. С обобщения принцип на умножението извеждаме

$$K_{H,\Pi}(n,m)| = |A^m| = n^m$$
 (1)

- с наредба и без повтаряне

Множеството от конфигурациите с наредба, без повтаряне с големина m над опорно множество с кардиналност n означаваме с " $K_{\rm H}(n,m)$ ". Елементите му са наредените m-торки (векторите с големина m) без повтаряне, чиито елементи са от опорното множество A.

Интересува ни $|K_H(n,m)|$. Представяме си процеса на изграждането на някой от тези вектори. За първата позиция можем да изберем всеки елемент на A, следователно имаме n възможности. За втората позиция имаме само n-1 възможности, защото елементът от A, избран за първата позиция, вече не може да се ползва. Аналогично, за третата позиция има само n-2 възможности, и така нататък, за m-тата позиция имаме само n-(m-1) възможности.

Виждаме, че

$$|K_{\mathsf{H}}(n,m)| = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-m+1) \tag{2}$$

n - m + 1 идва от n - (m - 1).

Дясната страна на (2) може да се напише и като $\prod_{k=0}^{m-1}(n-k)$, а освен това и като $n^{\underline{m}}$. Последното се чете "n на падаща степен m".

Този резултат не се получава от принципа на умножението.

Резултатът остава в сила и при m > n. Тогава дясната страна на (2) е нула.

- без наредба и без повтаряне

Интересува ни |K(n,m)|. Пресмята се от $|K_{\mathsf{H}}(n,m)|$ чрез принципа на делението. Въвеждаме релация $R \subseteq K_{\mathsf{H}}(n,m) \times K_{\mathsf{H}}(n,m)$ така:

$$\forall X,Y \in K_{\mathsf{H}}(n,m): X\,R\,Y \iff X$$
 и Y имат едни и същи елементи

R е релация на еквивалентност. Всеки неин клас на еквивалентност има кардиналност m!, а |K(n,m)| е броят на класовете на еквивалентност, като

$$|K(n,m)| = \frac{|K_{H}(n,m)|}{m!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-m+1)}{m!}$$
(3)

- без наредба и с повтаряне

$$K_{\Pi}(n,m) = \binom{n+m-1}{n-1} = \binom{n+m-1}{m}$$

4. Биномни коефициенти и теорема на Нютон.

Понякога (3) се записва така:

$$|K(n,m)| = \frac{n!}{(n-m)!m!}$$
 (4)

Въпреки че (4) е по-кратък и "по-спретнат" запис, като алгоритъм (3) е по-бърз.

Дясната страна на (3) и (4) се нарича биномен коефициент, на английски binomial coefficient, и се бележи кратко с " $\binom{n}{m}$ ". Чете се "ен-над-ем", на английски "n-choose-m". И така,

$$\binom{n}{m} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-m+1)}{m!}$$

n е *горен индекс*, а m е *долен индекс*. Да не се бърка $\binom{n}{m}$ с $\left(\frac{n}{m}\right)$.

Дефинираме $\binom{n}{m}$ за $m, n \in \mathbb{N}$. Ако m > n, то $\binom{n}{m} = 0$, което има комбинаторен смисъл: има нула начина да изберем m елементно подмножество на A, ако |A| = n и m > n.

 $\binom{n}{0} = \binom{n}{n} = 1$. Също има комбираторен смисъл: има точно един начин да изберем нула неща от n (не избираме нищо, тоест избираме празното множество) и има точно един начин да изберем n неща от n (избираме всичко).

 $\binom{n}{1} = \binom{n}{n-1} = n$. Има n начина да изберем едно нещо от n. Има n начина да изберем n-1 неща от n.

Изобщо, при $m \leqslant n$, в сила е $\binom{n}{m} = \binom{n}{n-m}$. Това също има комбинаторен смисъл: като брой начини да го сторим, все едно е дали избираме m неща от n или n-m неща от n. Примерно, тото 6/49 можеше да е 43/49.

При фиксиран горен индекс n, сумата от всички биномни коефициенти е 2^n :

$$\underbrace{\binom{n}{0}}_{1} + \underbrace{\binom{n}{1}}_{n} + \underbrace{\binom{n}{2}}_{\frac{n(n-1)}{2}} + \dots + \underbrace{\binom{n}{n-2}}_{\frac{n(n-1)}{2}} + \underbrace{\binom{n}{n-1}}_{n} + \underbrace{\binom{n}{n}}_{1} = 2^{n}$$
(5)

И това има комбинаторен смисъл. Дясната страна брои всички подмножества на n-елементно множество, а знаем, че те са 2^n ; това се извежда тривиално с броене на характеристичните вектори с дължина n, които са $|\{0,1\}^n|=|\{0,1\}|^n=2^n$. Лявата страна брои разбиването на всички подмножества по кардиналности.

Това е пример за доказателство с комбинаторни съображения, или принцип на двукратното броене.

Ако $n, m \ge 1$, в сила е

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} \tag{6}$$

Доказателство: с комбинаторни съображения. Лявата страна брои m-елементните подмножества на n-елементно множество A. Дясната страна брои същото, но по-детайлно. Фиксираме произволен $a \in A$.

- m-елементните подмножества, които **не съдържат** a, са $\binom{n-1}{m}$, защото $|A\setminus\{a\}|=n-1$, а $A\setminus\{a\}$ е множеството, от което можем да избираме.
- m-елементните подмножества, които **съдържат** a, са $\binom{n-1}{m-1}$, защото след като изберем a, останалите m-1 на брой пак избираме от $A\setminus\{a\}$.

По принципа на разбиването $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$.

Клетката на ред n и колона k съдържа $\binom{n}{k}$. Всеки "вътрешен" елемент е сумата от елемента над него и елемента горе вляво; тоест, $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$.

n k													
n	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0
2	1	2	1	0	0	0	0	0	0	0	0	0	0
3	1	3	3	1	0	0	0	0	0	0	0	0	0
4	1	4	6	4	1	0	0	0	0	0	0	0	0
5	1	5	10	10	5	1	0	0	0	0	0	0	0
6	1	6	15	20	15	6	1	0	0	0	0	0	0
7	1	7	21	35	35	21	7	1	0	0	0	0	0
8	1	8	28	56	70	56	28	8	1	0	0	0	0
9	1	9	36	84	126	126	84	36	9	1	0	0	0
10	1	10	45	120	210	252	210	120	45	10	1	0	0
11	1	11	55	165	330	462	462	330	165	55	11	1	0
12	1	12	66	220	495	792	924	792	495	220	66	12	1

Teopeма 1 (Newton)

$$\forall x, y \in \mathbb{R} \ \forall n \in \mathbb{N} : (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

"Бином" означава буквално "двуименник". На български е прието "двучлен". Имената са x и y.

Доказателство: с комбинаторни съображения. Лявата страна записваме като

$$\underbrace{(x+y)\cdot(x+y)\cdot\cdots\cdot(x+y)\cdot(x+y)}_{q,\text{ MHOWMTERS}}$$

Очевидно след отварянето на скобите ще се получи сума от 2^n събираеми от вида $x^k y^{n-k}$, по всички $k \in \{0, \dots, n\}$.

Разбиваме множеството от събираемите в n+1 множества по степента на x (която диктува степента на y): x^0y^n , x^1y^{n-1} , ..., x^ny^0 . Коефициентът пред x^ky^{n-k} е броят на появите на това събираемо. За да определим този брой, съобразяваме, че x^k "идва" от k на брой множителя (останалите множители дават y^{n-k}). А тези k множителя можем да изберем от всички n множителя по $\binom{n}{k}$ начина.

Примерно, x^ny^0 се появява само веднъж, понеже за него трябва да "дойде" x от всеки множител. $x^{n-1}y^1$ се появява точно n пъти, защото от един множител "идва" y, от останалите, x, а този един множител можем да изберем по n начина. И така нататък.

С Теоремата на Newton лесно извеждаме (5): полагаме x = y = 1.

Лесно доказваме и

$$3^n = \sum_{k=0}^n \binom{n}{k} 2^k$$

Записваме лявата страна като $(2+1)^n$, дясната страна като $\sum_{k=0}^n \binom{n}{k} 2^k 1^{n-k}$ и прилагаме Теорема 1.

По колко начина можем да сложим p единици и q нули в редица?

Общо p+q булеви цифри. Това са характеристичните вектори с дължина p+q и точно p единици. Те съответстват биективно на p-елементните подмножества на (p+q)-елементно множество. Ние вече знаем колко са тези подмножества: $\binom{p+q}{p}$. Тогава и въпросните характеристични вектори са толкова.

Можем да го запишем и като $\binom{p+q}{a}$.

5. Доказателства на комбинаторни тъждества чрез комбинаторни разсъждения (принцип на двукратното броене).

При фиксиран горен индекс n, сумата от всички биномни коефициенти е 2^n :

$$\underbrace{\binom{n}{0}}_{1} + \underbrace{\binom{n}{1}}_{n} + \underbrace{\binom{n}{2}}_{\frac{n(n-1)}{2}} + \dots + \underbrace{\binom{n}{n-2}}_{\frac{n(n-1)}{2}} + \underbrace{\binom{n}{n-1}}_{n} + \underbrace{\binom{n}{n}}_{1} = 2^{n}$$
(5)

И това има комбинаторен смисъл. Дясната страна брои всички подмножества на n-елементно множество, а знаем, че те са 2^n ; това се извежда тривиално с броене на характеристичните вектори с дължина n, които са $|\{0,1\}^n|=|\{0,1\}|^n=2^n$. Лявата страна брои разбиването на всички подмножества по кардиналности.

Това е пример за доказателство с комбинаторни съображения, или принцип на двукратното броене.

Ако $n, m \ge 1$, в сила е

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} \tag{6}$$

Доказателство: с комбинаторни съображения. Лявата страна брои m-елементните подмножества на n-елементно множество A. Дясната страна брои същото, но по-детайлно. Фиксираме произволен $a \in A$.

- m-елементните подмножества, които не съдържат a, са $\binom{n-1}{m}$, защото $|A\setminus\{a\}|=n-1$, а $A\setminus\{a\}$ е множеството, от което можем да избираме.
- m-елементните подмножества, които **съдържат** a, са $\binom{n-1}{m-1}$, защото след като изберем a, останалите m-1 на брой пак избираме от $A\setminus\{a\}$.

По принципа на разбиването $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$.

Teopeма 1 (Newton)

$$\forall x, y \in \mathbb{R} \ \forall n \in \mathbb{N} : (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

"Бином" означава буквално "двуименник". На български е прието "двучлен". Имената са x и y.

Доказателство: с комбинаторни съображения. Лявата страна записваме като

$$\underbrace{(x+y)\cdot(x+y)\cdot\cdots\cdot(x+y)\cdot(x+y)}_{n \text{ множителя}}$$

Очевидно след отварянето на скобите ще се получи сума от 2^n събираеми от вида $x^k y^{n-k}$, по всички $k \in \{0, \dots, n\}$.

Разбиваме множеството от събираемите в n+1 множества по степента на x (която диктува степента на y): x^0y^n , x^1y^{n-1} , ..., x^ny^0 . Коефициентът пред x^ky^{n-k} е броят на появите на това събираемо. За да определим този брой, съобразяваме, че x^k "идва" от k на брой множителя (останалите множители дават y^{n-k}). А тези k множителя можем да изберем от всички n множителя по $\binom{n}{k}$ начина.

Примерно, $x^n y^0$ се появява само веднъж, понеже за него трябва да "дойде" x от всеки множител. $x^{n-1}y^1$ се появява точно n пъти, защото от един множител "идва" y, от останалите, x, а този един множител можем да изберем по n начина. И така нататък.

6. Алгоритъм за решаване на линейни рекурентни уравнения с константни коефициенти - хомогенни и нехомогенни.

Дадено е рекурентно уравнение

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
 (3)

където c_1, \ldots, c_k са (целочислени) константи, като $c_k \neq 0$, и k е константа. Това е линейно рекурентно уравнение от k-ти ред c константни коефициенти и крайна история.

Началните условия са $a_1=q_1,\ldots, a_k=q_k$, където q_i са цели числа. Или $a_0=q_0,\ldots, a_{k-1}=q_{k-1}$. Същественото е да са k на брой.

Първата стъпка от решаването на (3) е да конструираме характеристичното уравнение. Заместваме a_n с x^n , a_{n-1} с x^{n-1} и така нататък и получаваме

$$x^{n} = c_{1}x^{n-1} + c_{2}x^{n-2} + \dots + c_{k-1}x^{n-k+1} + c_{k}x^{n-k}$$
 (4)

Делим на x^{n-k} и получаваме

$$x^{k} = c_{1}x^{k-1} + c_{2}x^{k-2} + \dots + c_{k-1}x + c_{k}$$
 (5)

Алтернативен запис е

$$x^{k} - c_{1}x^{k-1} - c_{2}x^{k-2} - \dots - c_{k-1}x - c_{k} = 0$$
 (6)

Това е характеристичното уравнение.

Съгласно *основната теорема на алгебрата*, характеристичното уравнение има k на брой, не непременно различни, комплексни корени.

Нека $\{\alpha_1, \alpha_2, \dots, \alpha_k\}_M$ е мултимножеството от корените.

Теорията казва, че ако корените са два по два различни, общото решение е

$$a_n = A_1 \alpha_1^n + A_2 \alpha_2^n + \dots + A_k \alpha_k^n \tag{7}$$

където A_1, \ldots, A_k са неизвестни константи. Ако началните условия не са дадени, не можем да намерим тези константи и най-доброто решение е именно (7).

Ако обаче началните условия, k на брой, са дадени, можем да намерим A_1, \ldots, A_k , замествайки n със стойностите на аргумента в началните условия. Ще получим система от k линейни (алгебрични) уравнения с k неизвестни (а именно, A_1, \ldots, A_k). Рашавайки системата, ще намерим A_1, \ldots, A_k , а оттам и точното решение на рекурентното уравнение.

Нека различните корени са β_1, \ldots, β_t , където $t \leqslant k$. Нека β_i има кратност r_i , за $1 \leqslant i \leqslant t$. Очевидно, $r_1 + \cdots + r_t = k$. Общото решение тогава е

$$a_{n} = A_{1,1}\beta_{1}^{n} + A_{1,2}n\beta_{1}^{n} + \dots + A_{1,r_{1}}n^{r_{1}-1}\beta_{1}^{n} + A_{2,1}\beta_{2}^{n} + A_{2,2}n\beta_{2}^{n} + \dots + A_{2,r_{2}}n^{r_{2}-1}\beta_{2}^{n} + \dots + A_{t,t_{1}}\beta_{t}^{n} + A_{t,2}n\beta_{t}^{n} + \dots + A_{t,r_{t}}n^{r_{t}-1}\beta_{t}^{n}$$

$$(8)$$

Двойно индексираните константи $A_{i,j}$ са точно k на брой и може да бъдат намерени от началните условия по начина, който вече разгледахме.

- пример

Нека

$$a_n = 12a_{n-1} - 51a_{n-2} + 92a_{n-3} - 60a_{n-4}$$

с начални условия $a_1 = 1$, $a_2 = 2$, $a_3 = 4$, $a_4 = 6$.

Характеристичното уравнение е

$$x^4 - 12x^3 + 51x^2 - 92x + 60 = 0 \iff (x - 2)^2(x - 3)(x - 5) = 0$$

Мултимножеството от корените му е $\{2, 2, 3, 5\}_M$.

Общото решение е

$$a_n = A2^n + Bn2^n + C3^n + D5^n (9)$$

за някакви константи A, B, C и D.

Константите определяме от началните условия. Замествайки в (9) n c 1, 2, 3 и 4, получаваме

$$a_1 = A2^1 + B \cdot 1 \cdot 2^1 + C3^1 + D5^1$$

$$a_2 = A2^2 + B \cdot 2 \cdot 2^2 + C3^2 + D5^2$$

$$a_3 = A2^3 + B \cdot 3 \cdot 2^3 + C3^3 + D5^3$$

$$a_4 = A2^4 + B \cdot 4 \cdot 2^4 + C3^4 + D5^4$$

Знаем, че
$$a_1=1$$
, $a_2=2$, $a_3=4$, $a_4=6$, така че
$$1=2A+2B+3C+5D$$

$$2=4A+8B+9C+25D$$

$$4=8A+24B+27C+125D$$
 $6=16A+64B+81C+625D$

Решението е $A=\frac{2}{9}$, $B=-\frac{1}{6}$, $C=\frac{1}{3}$, $D=-\frac{1}{45}$. Заместваме в (9) и получаваме

$$a_n = \frac{2^{n+1}}{9} - \frac{n2^n}{6} + 3^{n-1} - \frac{5^n}{45}$$

- нехомогенни

Дадено е рекурентно уравнение

$$a_n = \underbrace{c_1 a_{n-1} + \dots + c_k a_{n-k}}_{\text{хомогенна част}} + \underbrace{\rho_1(n) \cdot b_1^n + \dots + \rho_\ell(n) \cdot b_\ell^n}_{\text{нехомогенна част}} \tag{10}$$

където k и ℓ са константи, c_1, \ldots, c_k са константи, b_1, \ldots, b_ℓ са две по две различни константи, а $p_1(n), \ldots, p_\ell(n)$ са полиноми на n.

Съставя се характеристично уравнение само от хомогенната част—за момент забравяме за нехомогенната част—и се намира мултимножеството X от корените, точно както преди.

Нека Y мултимножеството от числата b_1, \ldots, b_ℓ , всяко от които има кратност колкото е степента на съответния полином плюс едно. Обединяваме мултимножествата X и Y и съставяме общото решение спрямо това обединение по същия начин, както преди. Неизвестните константи се намират чрез началните условия. Има една особеност: дадените начални условия са k, докато обединението на X и Y има кардиналност $k+\ell$, така че неизвестните константи са $k+\ell$ на брой. За да ги намерим си правим още ℓ начални условия от (10).

Обединението на мултимножества е мултимножеството, в което кратността на всеки елемент е сумата от кратностите му в дадените мултимножества.

- пример 1

Ще решим

$$L(n) = egin{cases} L(n-1) + n, & ext{ako } n \in \mathbb{N}^+ \ 1, & ext{ako } n = 0 \end{cases}$$

чрез метода с характеристичното уравнение. Първо да се убедим, че формата на рекурентното уравнение е подходяща. Преписваме го така

$$L(n) = \underbrace{L(n-1)}_{\text{хомогенна част}} + \underbrace{n^1 \cdot 1^n}_{\text{нехомогенна част}}$$

Характеристичното уравнение е x-1=0 с мултимножество от корените $X=\{1\}_M$.

От нехомогенната част образуваме мултимножеството $Y = \{1,1\}_M$. То съдържа единици, защото основата на експонентата е единица, а броят им е две, защото степента на полинома е едно. Обединението на X и Y е $\{1,1,1\}_M$. Общото решение е $L(n) = A1^n + Bn1^n + Cn^21^n = A + Bn + Cn^2$.

За да намерим A, B и C не е достатъчно даденото начално условие L(0)=1. Правим още две начални условия: L(1)=2 и L(2)=4 и съставяме системата

$$1 = A + B \cdot 0 + C \cdot 0^{2} = A$$

$$2 = A + B \cdot 1 + C \cdot 1^{2} = A + B + C$$

$$4 = A + B \cdot 2 + C \cdot 4$$

Намираме $A=1,\ B=C=\frac{1}{2}$, откъдето

$$L(n) = A + \frac{n+n^2}{2}$$

То е практически същото като (1).

- пример 2

Решаваме

$$H(n) = \begin{cases} 2H(n-1) + n^0 \cdot 1^n, & \text{ako } n \ge 2, \\ 1, & \text{ako } n = 1 \end{cases}$$

Характеристичното уравнение е x-2=0 с мултимножество от корените $\{2\}_M$. От нехомогенната част генерираме мултимножеството $\{1\}_M$: степенната основа е единица, а степента на полинома е нулева. Обединението им е $\{1,2\}_M$, откъдето общото решение е $H(n)=A1^n+B2^n=A+B2^n$. $H(1)=1,\ H(2)=3$ и оттук $1=A+2B,\ 3=A+4B,$ откъдето $A=-1,\ B=1$ и $H(n)=1-2^n$, точно като (2).

- пример 3

Намерете сумата $1^4 + 2^4 + \cdots + n^4$.

Нека
$$S(n)=1^4+2^4+\cdots+(n-1)^4+n^4$$
. Тогава $S(n-1)=1^4+2^4+\cdots+(n-1)^4$ и

$$S(n) - S(n-1) = n^4 \leftrightarrow S(n) = S(n-1) + n^4$$

с начално условие S(1) = 1.

Вече знаем как се решава такова рекуренто уравнение. Има и още един начин за решаване: с Maple(tm). Кодът е

$$rsolve({S(1) = 1, S(n) = S(n-1)+n^4}, {S});$$

Решението на Maple(tm) е $S(n) = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$.

Уравнения като $T(n)=2T(n-1)+\lceil \sqrt{n}\rceil$ или $S(n)=S(n-1)+\frac{1}{n}$ не може да бъдат решени чрез показания алгоритъм, понеже нехомогенната част няма фо́рмата, която се иска в (10).

Уравнението $A(n)=2A(n-1)+2^{2n+3}n$ може да бъде решено с показания алгоритъм, но първо нехомогенната част трябва да бъде приведена в правилна форма: $A(n)=2A(n-1)+(8n)\cdot 4^n$. Основата на експонентата в нехомогенната част е 4, а не 2. Степента на полинома е 1, с или без множителя 8.

Аналогично, $B(n)=2B(n-1)+2^{\frac{n}{2}}$ трябва да бъде преписано като $B(n)=2B(n-1)+(n^0)\cdot\sqrt{2}^n$, за да е ясно, че основата на експонентата е $\sqrt{2}$, а не 2, а степента на полинома е 0.