Discussion Week 4

Overview

- KNN
- Similarity Metrics
- Classification Evaluation

KNN

KNN Algorithm

- classify an unknown example with the most common class among k closest examples
 - "tell me who your neighbors are, and I'll tell you who you are"
- Example
 - k = 3
 - 2 sea bass, 1 salmon
 - Classify as sea bass

KNN: Multiple Classes

Easy to implement for multiple classes

- Example for k = 5
 - 3 fish species: salmon, sea bass, eel
 - 3 sea bass, 1 eel, 1 salmon ⇒ classify as sea bass

- In theory, if infinite number of samples available, the larger the k, the better is classification
- Caveat: all k neighbors have to be close
 - Possible when infinite # samples available
 - Impossible in practice since # samples is finite
- Should we "tune" k on training data?
 - Issue: overfitting
- k = 1 is efficient, but sensitive to "noise"

- Larger k gives smoother boundaries, better for generalization
 - Only if locality is preserved
 - k too large => end up looking at samples too far away not from the same class
- Can choose k through cross-validation

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

KNN: Multi-Modal Distributions

 Many classification models would not work for this 2 class classification problem

 Nearest neighbors will do reasonably well, provided we have a lot of samples

Decision Boundaries

Voronoi diagram is useful for visualization

Decision Boundaries

- Decision boundaries are formed by a subset of the Voronoi diagram of the training data
- Each line segment is equidistant between two points of opposite class
- The more examples that are stored, the more fragmented and complex the decision boundaries can become.

KNN Selection of Distance

 So far we assumed we use Euclidian Distance to find the nearest neighbor:

$$D(a,b) = \sqrt{\sum_{k} (a_k - b_k)^2}$$

- Euclidean distance treats each feature as equally important
- However some features (dimensions) may be much more discriminative than other features

KNN Distance Selection: Extreme Example

- feature 1 gives the correct class: 1 or 2
- feature 2 gives irrelevant number from 100 to 200
- dataset: [1 150], [2 110]
- classify [1 100] $D\left(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 1\\150 \end{bmatrix}\right) = \sqrt{(1-1)^2 + (100-150)^2} = 50$ $D\left(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 2\\110 \end{bmatrix}\right) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5$
- [1 100] is misclassified!
- The denser the samples, the less of this problem
- But we rarely have samples dense enough

KNN Distance Selection: Extreme Example

- Decision boundary is in red, and is really wrong because
 - feature 1 is discriminative, but it's scale is small
 - feature 2 gives no class information but its scale is large, it dominates distance calculation

KNN: Feature Normalization

- Notice that 2 features are on different scales
- First feature takes values between 1 or 2
- Second feature takes values between 100 to 200
- Idea: normalize features to be on the same scale
- Different normalization approaches
- Linearly scale the range of each feature to be, say, in range [0,1]

$$f_{new} = \frac{f_{\text{old}} - f_{\text{old}}^{\min}}{f_{\text{old}}^{\max} - f_{\text{old}}^{\min}}$$

KNN: Feature Normalization

- Linearly scale to 0 mean variance 1
- If ${\bf z}$ is a random variable of mean μ and variance σ^2 , then $({\bf z} \mu)/\sigma$ has mean 0 and variance 1
- For each feature f let the new rescaled feature be

$$f_{new} = \frac{f_{\text{old}} - \mu}{\sigma}$$

Let us apply this normalization to previous example

KNN: Feature Normalization

KNN: Selection of Distance

 Feature normalization does not help in high dimensional spaces if most features are irrelevant

•
$$D(a,b) = \sqrt{\sum_k (a_k - b_k)^2} = \sqrt{\sum_i (a_i - b_i)^2 + \sum_j (a_j - b_j)^2}$$

Discriminative Noisy features

• If the number of useful features is smaller than the number of noisy features, Euclidean distance is dominated by noise

KNN: Feature Weighting

Scale each feature by its importance for classification

$$D(a,b) = \sqrt{\sum_{k} w_k (a_k - b_k)^2}$$

- Can use prior/domain knowledge
 - which features are more important
- Can learn the weights w_k using cross-validation

KNN: Computational Complexity

- Basic KNN algorithm stores all examples
- Suppose we have n examples each of dimension d
- For each point to be classified
 - O(d) to compute distance to one example
 - O(nd) to compute distances to all examples
 - O(nk) time to find k closest examples
 - Total time: O(nk+nd)
- Very expensive for a large number of samples
- But we need a large number of samples for kNN to work well!

Reducing Complexity

- Various exact and approximate methods for reducing complexity
- Reduce dimensionality of the data
 - find projection to a lower dimensional space so that the distances between samples are approximately the same
 - PCA
 - Projection to a Random subspace
- Use smart data structures, like kd trees

KNN Summary

Advantages

- Can be applied to the data from any distribution
 - data does not have to be separable with a linear boundary
- Simple and intuitive
- Good classification with large number of samples

Disadvantages

- Choosing k may be tricky
- Test stage is computationally expensive
 - No training stage, all the work is done during the test stage
 - This is actually the opposite of what we want. Usually we can afford training step to take
 a long time, but we want a fast test step
- Need large number of samples for accuracy

References

- http://www.csd.uwo.ca/courses/CS9840a/Lecture2 knn.pdf
- http://classes.engr.oregonstate.edu/eecs/spring2012/cs534/notes/kn n.pdf
- http://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture10.p
 df

Similarity Metrics

• Dissimilarity?

•
$$\begin{bmatrix} 3 & 5 \\ 6 & 9 \\ 11 & 21 \end{bmatrix}$$

• How much input?

• Dissimilarity?

•
$$\begin{bmatrix} 3 & 5 \\ 6 & 9 \\ 11 & 21 \end{bmatrix}$$

- How much input?
 - 3 < x_1 , x_2 > pairs

• Dissimilarity?

$$\bullet \begin{bmatrix} 3 & 5 \\ 6 & 9 \\ 11 & 21 \end{bmatrix}$$

Dissimilarity matrix size?

• Dissimilarity?

$$\begin{bmatrix}
3 & 5 \\
6 & 9 \\
11 & 21
\end{bmatrix}$$

- Dissimilarity matrix size?
 - $3^2 = 9$

Dissimilarity?

$$\bullet \begin{bmatrix}
0 & 0 & 0 \\
d(2,1) & 0 & 0 \\
d(3,1) & d(3,2) & 0
\end{bmatrix}$$

Dissimilarity?

$$\bullet \begin{bmatrix} 3 & 5 \\ 6 & 9 \\ 11 & 21 \end{bmatrix}$$

•
$$\begin{bmatrix} 0 & 0 & 0 \\ \sqrt{(3-6)^2 + (5-9)^2} & 0 & 0 \\ \sqrt{(3-11)^2 + (5-21)^2} & \sqrt{(11-6)^2 + (21-9)^2} & 0 \end{bmatrix}$$

• Dissimilarity?

$$\bullet \begin{bmatrix} 3 & 5 \\ 6 & 9 \\ 11 & 21 \end{bmatrix}$$

• Other distance functions?

• Dissimilarity?

$$\bullet \begin{bmatrix} 3 & 5 \\ 6 & 9 \\ 11 & 21 \end{bmatrix}$$

•
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ |3-6|+|5-9| & 0 & 0 \\ |3-11|+|5-21| & |11-6|+|21-9| & 0 \end{bmatrix}$$

Nominal Attributes

• Dissimilarity between apple and orange?

Nominal Attributes

• Dissimilarity between apple and orange?

- Student 1: likes jazz, eats pizza, roots for the cubs, wears socks
- Student 2: likes rock, eats pizza, roots for the cubs, goes barefoot
- d(Student 1, Student 2)?

- Student 1: likes jazz, eats pizza, roots for the cubs, wears socks
- Student 2: likes rock, eats pizza, roots for the cubs, goes barefoot
- d(Student 1, Student 2)?
 - m: # of matches?

- Student 1: likes jazz, eats pizza, roots for the cubs, wears socks
- Student 2: likes rock, eats pizza, roots for the cubs, goes barefoot
- d(Student 1, Student 2)?
 - m: # of matches?
 - 2

- Student 1: likes jazz, eats pizza, roots for the cubs, wears socks
- Student 2: likes rock, eats pizza, roots for the cubs, goes barefoot
- d(Student 1, Student 2)?
 - m: # of matches?
 - 2
 - p: total # of variables?
 - 4

- Student 1: likes jazz, eats pizza, roots for the cubs, wears socks
- Student 2: likes rock, eats pizza, roots for the cubs, goes barefoot
- d(Student 1, Student 2)?
 - m: # of matches?
 - 2
 - p: total # of variables?
 - 4
 - $\frac{4-2}{4} = 0.5$

• apple, banana, pear in binary?

- apple, banana, pear in binary?
 - apple = 00
 - banana = 01
 - pear = 10

• symmetric?

- symmetric?
 - both outcomes equally important
 - Male/Female

- symmetric?
 - both outcomes equally important
 - Male/Female
- asymmetric?
 - not equally important
 - HIV positive/negative

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 0...why not Jack=M and Mary=F

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 0
 - How many negative for jack, positive for mary (s)?

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 0
 - How many negative for jack, positive for mary (s)?
 - 1

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 0
 - How many negative for jack, positive for mary (s)?
 - 1
 - How many positive for both? (q)

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 0
 - How many negative for jack, positive for mary (s)?
 - •
 - How many positive for both? (q)
 - 2

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)? r=0, s=1, q=2
 - $\frac{0+1}{2+0+1}$

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 1

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 1
 - How many negative for jack, positive for mary (s)?

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 1
 - How many negative for jack, positive for mary (s)?
 - 0

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 1
 - How many negative for jack, positive for mary (s)?
 - 0
 - How many positive for both? (q)

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 1
 - How many negative for jack, positive for mary (s)?
 - (
 - How many positive for both? (q)
 - 0

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)?
 - How many positive for jack, negative for mary (r)?
 - 1
 - How many negative for jack, positive for mary (s)?
 - (
 - How many positive for both? (q)
 - 0
 - How many negative for jack, negative for mary (t)?
 - 0

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- d(jack, mary)? r=1, s=0, q=0,t=0

•
$$\frac{1+0}{0+1+0+0}$$

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- J(jack, mary)? r=0, s=1, q=2

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is symmetric, remaining asymmetric
- M, Y, P = 1 (positive), F,N (negative),N (no) = 0 (negative)
- J(jack, mary)? r=0, s=1, q=2
 - $\frac{2}{2+0+1}$

- Have order
 - freshman, sophomore, junior, senior

- Have order
 - freshman, sophomore, junior, senior
- freshman, sophomore, junior, senior mapped?

- Have order
 - freshman, sophomore, junior, senior
- freshman, sophomore, junior, senior mapped?
 - 1, 2, 3, 4

- Have order
 - freshman, sophomore, junior, senior
- freshman, sophomore, junior, senior mapped?
 - 1, 2, 3, 4
- Mapped onto [0,1]?

- Have order
 - freshman, sophomore, junior, senior
- freshman, sophomore, junior, senior mapped?
 - 1, 2, 3, 4
- Mapped onto [0,1]?
 - $\frac{1-1}{4-1}$, $\frac{2-1}{4-1}$, $\frac{3-1}{4-1}$, $\frac{4-1}{4-1}$

- Have order
 - freshman, sophomore, junior, senior
- freshman, sophomore, junior, senior mapped?
 - 1, 2, 3, 4
- Mapped onto [0,1]?
 - $\frac{1-1}{4-1}$, $\frac{2-1}{4-1}$, $\frac{3-1}{4-1}$, $\frac{4-1}{4-1}$
- Dissimilarity?

All Together

Object	test-l	test-2	test-3
ldentifier	(nominal)	(ordinal)	(numeric)
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code A	excellent	28

All Together

Object	test-l	test-2	test-3
ldentifier	(nominal)	(ordinal)	(numeric)
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code A	excellent	28

[•] d(3,1)?

All Together
$$\begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 1 & 1 & 0 & \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

[0			٦
1.0	0		
0.5	0.5	0	
	1.0	0.5	0

Object	test-l	test-2	test-3
ldentifier	(nominal)	(ordinal)	(numeric)
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code A	excellent	28

• d(3,1)?

0			٦
1.0	0		
0.5	0.5	0	
0	1.0	0.5	0

Object	test-l	test-2	test-3
•	(nominal)	(ordinal)	(numeric)
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code A	excellent	28

$$\begin{bmatrix} 0 \\ 0.55 & 0 \\ 0.45 & 1.00 & 0 \\ 0.40 & 0.14 & 0.86 & 0 \end{bmatrix}$$

• d1: I like to go the store

• d2: I like the cubs, go cubs go

• d1: I like to go to the store

• d2: I like the cubs, go cubs go

Document	I	like	to	go	the	store	cubs
d1	1	1	2	1	1	1	0
d2	1	1	0	2	1	0	2

• d1: I like to go to the store

• d2: I like the cubs, go cubs go

Document	I	like	to	go	the	store	cubs
d1	1	1	2	1	1	1	0
d2	1	1	0	2	1	0	2

• cos(d1, d2)?

• d1: I like to go to the store

• d2: I like the cubs, go cubs go

Document	I	like	to	go	the	store	cubs
d1	1	1	2	1	1	1	0
d2	1	1	0	2	1	0	2

• cos(d1, d2)?

$$\frac{1 \cdot 1 + 1 \cdot 1 + 2 \cdot 0 + 1 \cdot 2 + 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 2}{\sqrt{1^2 + 1^2 + 2^2 + 1^2 + 1^2 + 1^2 + 0^2} \cdot \sqrt{1^2 + 1^2 + 0^2 + 2^2 + 1^2 + 0^2 + 2^2}}$$

Classification Evaluation

Validation for Accuracy Estimation

- Holdout method
 - (Randomly) partition data into two independent set
 - Train/test split
- Cross-validation (K-Fold CV)
 - Randomly partition the data into K mutually exclusive subsets
 - Iteratively use each subset as the test set and others as the training set
 - Leave-out-out (LOO): Let K be the number of instances

Holdout Method

Cross Validation

When to use holdout instead of CV?

- Cross validation is generally more comprehensive
- Some experimental settings may not allow to shuffle data.
 - Stock price prediction
 - Weather forecasting
 - ...

Leave-One-Out (LOO) Cross Validation

- The most comprehensive evaluation approach
- Time-consuming if training the model is also time consuming.

iteration 1/N:	
	П
iteration 2/N:	
iteration 3/N:	
	•
	•
:	
iteration N/N:	

Confusion Matrix

- Also called error matrix
- Usually used for binary classification
- Visualize information needed for performance evaluation
- Categorize predictions with correctness and classes

Actual class\Predicted class	C ₁	¬ C ₁
C ₁	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Accuracy and Error Rate

- Accuracy = (TP + TN)/ALL
 - (6954+2588)/10000 = 0.9542
- Error rate = (FP + FN)/ALL = 1 Accuracy
 - (412+46) / 10000 = 0.0458

A\P	С	¬C	
С	TP	FN	P
¬C	FP	TN	N
	Ρ̈́	N'	All

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Problem of Imbalance Data

- Some classes may be much rare
 - Fraud, HIV-positive
- High accuracy but unsatisfactory
 - 99% accuracy with all ~C predictions.
- Sensitivity: TP recognition rate
 - TP/P = 0/1 = 0%
- Specificity: TN recognition rate
 - TN/N = 99/99 = 99%

A\P	С	¬C	
C	TP	FN	P
¬C	FP	TN	N
	Ρ'	N'	All

A\P	С	~C	
С	0	1	1
~C	0	99	99
	0	100	100

Precision and Recall

- Focus on a single class (usually positive class in binary classification)
- Precision: exactness, precision of positive predictions
 - TP / (TP + FP) = 6954 / (6954 + 412) = 0.9440
- Recall: completeness, recall for positive instances

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
Class	- yes	- 110	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

F-measures

- Consider both precision (P) and recall (R)
- F₁ or F-score

•
$$F = \frac{2 \times P \times R}{P + R} = \frac{2 \cdot 0.9440 \cdot 0.9934}{0.9440 + 0.9934} = 0.9681$$

A\P	С	¬C	
C	TP	FN	Р
٦ ر	FP	TN	N
	P'	N'	All

• F_{β} : weighted combination • $F = \frac{(1+\beta^2)\times P\times R}{\beta^2\times P+R}$

•
$$F = \frac{(1+\beta^2) \times P \times R}{\beta^2 \times P + R}$$

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

ROC Curves

- ROC (Receiver Operating Characteristics) curves
- Show the trade-off between true positive rate and false positive rate

Example of plotting an ROC curve

Tuple #	Class	Prob.	TP	FP	TN	FN	TPR	FPR
1	р	0.9	1	0	5	4	0.2	0
2	p	0.8	2	0	5	3	0.4	0
3	n	0.7	2	1	4	3	0.4	0.2
4	p	0.6	3	1	4	2	0.6	0.2
5	p	0.55	4	1	4	1	0.8	0.2
6	n	0.54	4	2	3	1	0.8	0.4
7	n	0.53	4	3	2	1	0.8	0.6
8	n	0.51	4	4	1	1	0.8	0.8
9	p	0.50	5	4	0	1	1.0	0.8
10	n	0.4	5	5	0	0	1.0	1.0

Accuracy vs. ROC Curves

• Case 1:

- You use an algorithm to identify students who are at risk of not continuing to the next term.
- Following the case study, 10% of students do not persist.
- You test your predictive model on the data and find that you made correct predictions 92% of the time.

A crackpot scientist tells you,

 "I could've gotten 90% accuracy just by predicting everyone will persist. After all the math, you gained only 2%?!"

- Don't give up yet!
- Your predictive model is still helpful.

 You have a team of advisors, and they have time to reach out to 1,250 students to suggest ways they can increase their likelihood of persisting

= 100 students

• Without the predictive model, you have to pick 1,250 students at random to assist. If 10% of them are expected to not persist, only 125 students would be likely to benefit from the intervention.

- With the predictive model, you can choose the 1,250 students by ordering them by the highest predicted risk score.
- The test case reveals 600 of these students are at risk and would be most likely to benefit from the right intervention at the right time.

The ROC Curve Trade-off

Students most likely to benefit from an intervention

WITHOUT

PREDICTIVE MODEL

125 students WITH

PREDICTIVE MODEL

600 students

~5x improvement

Area under a ROC Curve (AUC)

- A standard evaluation metric with a ROC curve
- Can be computed while constructing RUC curves
- From 0 (worst) to 1 (best)
- Equivalent to pairwise accuracy

Reference

- http://web.cs.ucla.edu/~yzsun/classes/2017Fall CS145/Slides/08Eval uation Classification.pdf
- https://www.slideshare.net/KristenHunter/civitas-learningunderstanding-roc-curves
- https://web.uvic.ca/~maryam/DMSpring94/Slides/9 roc.pdf