Assignment 3

Qn 1

Using the camera setting below:

glLookAt (100, 0, 100, 20, 0, 20, 0, 1, 0);

Modify the above code and write the *glutIdleFunc* (animate) function to accelerate from the original position at t = 0 sec to (200, 0, 100) at t = 2 sec. Include a term which can control the rate of acceleration.

Qn 2

a) Write OpenGL code which sets up the following lighting:

A distant light at with lighting direction (0, 1, 0)

The R, G B components all have the same intensity.

The ambien Softing In Thecalar component at the intensity.

The ambien Softing In Thecalar component at the intensity.

- b) Write OpenGL co
 - The R, G, B com https://eduassistpro.github.io/ Ambient reflection coefficient $k_a = 0.1$ Diffuse reflection coefficient $k_a = 0.3$ Specular reflection coefficient $k_a = 0.3$ Specular reflection exponent $n_s = 2$
- c) Derive the R intensity at a point on an object positioned at (0, 0, 0) with outward surface normal vector $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$. The camera in Qn 1 is used.
- d) What kind of shading method will you recommend for this object? Why?

Qn 3

The triangle below is part of a quadrilateral mesh. It is scanned from left to right, top to bottom:

- a) Let Gouraud shading be used. If the intensities at vertex A and C are $I_A = 0.5$ and $I_C = 1.0$ respectively, what is the intensity at D^2
- b) Let Phong Shading be used. If the unit normal at D and E are Help

$$N_D = (0,0,1)$$

Derive the incremhttps://eduassistpro.githeulosego.ht

Add WeChat edu_assist_pro

Qn 4 (This question requires knowledge of Lecture 8

- a) The point in Qn 2 c) is not hidden. How do you know that? What technique is involved?
- b) An object is composed of a 100×100 quadrilateral mesh. On average, each quadrilateral in the mesh projects to 500 pixels. There are 30 objects in the scene. The graphics monitor has resolution 2560×1440 . Estimate the number of elementary operations needed by
 - i) Z buffer
 - ii) Ray casting for which the objects are all spheres
 - iii) Ray casting for which the objects are all complex. For this question, assume that it is easy to test whether a pixel ray intersects a triangle.