Homework 6

Kevin Guillen

MATH 202 — Algebra III — Spring 2022

Problem 14.2.17 Let K/F be any finite extension and let $\alpha \in K$. Let L be a Galois extension of F containing K and let $H \leq Gal(L/F)$ be the subgroup corresponding to K. Define the norm of α from K to F be

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha)$$

where the product is taken over all the embeddings of K into an algebraic closure of F (so over a set of coset representatives for H in Gal(L/F) by the Fundamental Theorem of Galois Theory). This is a product of Galois conjugates of α . In particular, if K/F is Galois this is $\prod_{\sigma \in Gal(K/F)} \sigma(\alpha)$.

Proof. We see that the product of this norm is well defined since K is the fixed field of H, and the elements of a coset $\sigma H \subset Gal(L/F)$ all correspond to the same embedding of σ . This means then that if I and J were to be two sets of coset representatives of H,

$$\prod_{\sigma \in J} \sigma(\alpha) = \prod_{\sigma \in J} \sigma(\alpha).$$

Next, if J is a set of coset representatives for H, we see that for any $\pi \in Gal(L/F)$ that πJ is also a complete set of representatives, which we will refer to as M. Meaning then that,

$$\begin{split} \pi N_{K/F}(\alpha) &= \pi \prod_{\sigma \in J} \sigma(\alpha) \\ &= \prod_{\sigma \in J} \pi \sigma(\alpha) \\ &= \prod_{\sigma \in M} \sigma(\alpha) \\ &= N_{K/F}(\alpha). \end{split}$$

Showing us that $N_{K/F}(\alpha)$ lies in F, since it is fixed by Gal(L/F).

We see through the following that the norm is multiplicative, let α , $\beta \in K$,

$$\begin{split} N_{K/F}(\alpha\beta) &= \prod_{\sigma} \sigma(\alpha\beta) \\ &= \prod_{\sigma} \sigma(\alpha)\sigma(\beta) \\ &= \prod_{\sigma} \sigma(\alpha) \prod_{\sigma} \sigma(\beta) = N_{K/F}(\alpha)N_{K/F}(\beta). \end{split}$$

Now if $K = F(\sqrt{D})$ is a quadratic extension of F, then we'd have that K/F is Galois. In this scenario the only non-identity element of Gal(K/F) is the map $\sqrt{D} \mapsto -\sqrt{D}$, and therefore $(\alpha \in K)$,

$$\begin{aligned} N_{K/F}(\alpha) &= N_{K/F}(\alpha + b\sqrt{D}) \\ &= (\alpha + b\sqrt{D})(\alpha - b\sqrt{D}) \\ &= \alpha^2 - Db^2 \end{aligned}$$

Let $d = [F(\alpha): F]$ and n = [K: F], then it is clear that $d \mid n$ since $F \subseteq F(\alpha) \subseteq K$. We have $F \subseteq K \subseteq L$ and since L is Galois over F, we have L is separable over F, therefore K must also be separable over F. Recall that the roots of the minimal polynomials must precisely be the Galois conjugates of α , and m_{α} doesn't have multiple roots (m_{α} being the minimal polynomial). We know there must d of them since $deg(m_{\alpha}) = d$. We also have that there are n embeddings of K into an algebraic closure of K, and that each of these embeddings sends K to a Galois conjugate, therefore each conjugate appears K times in the product of the norm. Let K K in K be the roots of K and K then we have,

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha) = \left(\prod_{i=1}^d \alpha_i\right)^{n/d}.$$

Consider that $a_0 = (-1)^d \prod_{i=1}^d \alpha_i$ we have,

$$N_{K/F}(\alpha) = (-1)^n \alpha_0^{n/d}$$

as desired.

Problem 14.5.5 Let p be a prime and let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{p-1}$ denote the primitive p^{th} roots of unity. Set $p_n = \varepsilon_1^n + \varepsilon_2^n + \cdots + \varepsilon_{p-1}^n$, the sum of the n^{th} powers of the ε_i . Prove that $p_n = -1$ if p does not divide n and that $p_n = p-1$ if p does not divide n. [One approach: $p_1 = -1$ from $\phi_p(x)$; show that p_n is a Galois conjugate of p_1 for p not dividing n, hence is also -1.]

Proof. Because $\phi_p = x^{p-1} + x^{p-2} + \dots + 1$ we have $\phi(\zeta_p) = 0 = p_1 + 1 \implies p_1 = -1$. Recall though that the elements of the Cyclotomic Galois group are defined by $\sigma_\alpha(\zeta_p) = \zeta_p^\alpha$ where $p \nmid \alpha$, therefore we have $\sigma_\alpha(p_1) = p_\alpha$ and so for $p \nmid \alpha$ we have that $p_\alpha = -1$.

In the case that $\mathfrak{p} \mid \mathfrak{a}$ we have $\varepsilon_{\mathfrak{i}}^{\mathfrak{a}} = (\varepsilon_{\mathfrak{i}}^{\mathfrak{p}})^{\mathfrak{m}} = 1^{\mathfrak{m}} = 1 \implies \mathfrak{p}_{\mathfrak{a}} = \mathfrak{p} - 1.$

Problem 14.5.10 Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q} .

Proof. We know from the text that the Cyclotomic fields $\mathbb{Q}(\zeta_n)$ are Galois extensions of \mathbb{Q} with abelian Galois groups. If $\mathbb{Q}(\zeta_n)$ were to contain $\mathbb{Q}(\sqrt[3]{2})$ it would have to contain its Galois closure over \mathbb{Q} , which is the splitting field of $x^3 - 2$, but that is an extension with Galois group isomorphic to S_3 . Therefore by the Fundamental Theorem of Galois Theory, this would imply that the abelian group $\mathrm{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ contains a subgroup isomorphic to S_3 , which is a contradiction!

Problem 14.5.11 Prove that the primitive n^{th} roots of unity form a basis over \mathbb{Q} for the cyclotomic field of n^{th} roots of unity if and only if n is squarefree (i.e., n is not divisible by the square of any prime).

Proof. Let p be a prime, and suppose that $p^2 \mid n$. We have then that $\zeta_n^{n/p}$ is a primitive p^{th} root of unity. Which gives us,

$$\sum_{i=0}^{p-1} \zeta_n \zeta_n^{ni/p} = \zeta_n \left(\sum_{i=0}^{p-1} \zeta_n^{ni/p} \right) = \zeta_n 0 = 0$$

and that $\zeta_n \zeta_n^{\mathfrak{n}\mathfrak{i}/p} = \zeta_n^{1+\mathfrak{n}\mathfrak{i}/p}$ are primitive \mathfrak{n}^{th} roots of unity for all $0 \leqslant \mathfrak{i} < \mathfrak{p}$ since the prime factors of \mathfrak{n} are factors of \mathfrak{n}/p . Therefor there are linear dependencies over \mathbb{Q} between the primitive \mathfrak{n}^{th} roots of unity, so they can't form a basis.

Now suppose the conclusion hold for product of less than x primes and let n=mp for prime p, and m the product of x-1 distinct primes. By induction $\left\{\zeta_p^i\mid 1\leqslant i\leqslant p,\ (i,p)=1\right\}$ is a basis of $\mathbb{Q}(\zeta_p)$ and $\left\{\zeta_m^j\mid 1\leqslant j\leqslant m,(j,m)=1\right\}$ is a basis of $\mathbb{Q}(\zeta_m)$. Because $\mathbb{Q}(\zeta_p)\cap\mathbb{Q}(\zeta_m)=\mathbb{Q}$ we have that a basis $\mathbb{Q}(\zeta_m)\mathbb{Q}(\zeta_p)=\mathbb{Q}(\zeta_m,\zeta_p)=\mathbb{Q}(\zeta_n)$ which is

$$\left\{\zeta_p^{\mathfrak{i}}\,\zeta_{\mathfrak{m}}^{\mathfrak{j}}\mid 1\leqslant \mathfrak{i}\leqslant \mathfrak{p}, 1\leqslant \mathfrak{j}\leqslant \mathfrak{m}, (\mathfrak{j},\mathfrak{m})=1, (\mathfrak{i},\mathfrak{p})=1\right\}.$$

Then by taking mod m and mod p of mi + pj we have that the exponents of mi + pj are relatively prime top n so this basis consist of primitive nth roots of unity. Taking the mods we can again see all these exponents are distinct, so that there are $\phi(p)\phi(m) = \phi(n)$ elements in this basis, meaning it is composed of all the primitive nth roots of unity.

Problem 14.5.12 Let σ_p denote the Frobenius automorphism $x \mapsto x^p$ of the finite field \mathbb{F}_q of $q = p^n$ elements. Viewing \mathbb{F}_q as a vector space V of dimension n over \mathbb{F}_p we can consider σ_p as a linear transformation σ_p is diagonalizable over \mathbb{F}_p if and only if n divides p-1, and is diagonalizable over the algebraic closure of \mathbb{F}_p if and only if (n,p)=1.

Proof. Since for all $x \in \mathbb{F}_{p^n}$, we have $x^{p^n} - x = 0$ we have that σ_p satisfies $x^n - 1$. Since this is a degree n polynomials it is the characteristic polynomial. Now recall that σ_p is diagonalizable if and only if the characteristic polynomial splits completely in \mathbb{F}_p .

Now we observe that σ_p is diagonalizable if and only if \mathbb{F}_p contains all the \mathfrak{n}^{th} roots of unity, if and only if \mathbb{F}_p^\times contains a copy of $\mathbb{Z}/n\mathbb{Z}$. We have then by the Fundamental Theorem of Cyclic Groups this is the case if and only if $\mathfrak{n} \mid (p-1)$.

The linear transformation is diagonalizable over the closure of \mathbb{F}_p if and only if $x^n - 1$ is separable. This is true if and only if it is relatively prime to its derivative nx^{n-1} , but the this is only true if and only if $nx^{n-1} \neq 0$ and this is true if and only if $p \nmid n$.

Problem 14.6.2 Determine the Galois groups of the following polynomials

(a)
$$x^3 - x^2 - 4$$

(b)
$$x^3 - 2x + 4$$

(c)
$$x^3 - x + 1$$

(d)
$$x^3 + x^2 - 2x - 1$$

Proof. We know from the textbook that a reducible cubic has trivial Galois group if it is factored as three linear components and has Galois group \mathbb{Z}_2 if it is factored as a cubic and a linear polynomial. An irreducible cubic polynomial has Galois group either A_3 or S_3 and it is A_3 if and only if the discriminant $D = \alpha^2b^2 - 4b^3 - 4\alpha^3c - 27c^2 + 18\alpha bc$ is a square.

- (a) We have that $x^3 x^2 4 = (x^2 + x + 2)(x 2)$ and applying the quadratic formula we see the quadratic has complex roots, so its Galois group is \mathbb{Z}_2 .
- (b) We have $x^3 2x + 4 = (x^2 2x + 2)(x + 2)$ and the quadratic polynomials has complex roots by the quadratic formula, so like before, its Galois group is \mathbb{Z}_2 .
- (c) The polynomial $x^3 x + 1$ is irreducible in \mathbb{Q} . This is because for $a, b \in \mathbb{Z}$ where $b \neq 0$ and (a, b) = 1 and

$$\frac{a^3}{b^3} - \frac{a}{b} + 1 = 0 \implies a^3 = (a - b)b^2$$

meaning that $b^2 \mid a^3$ which contradicts (a, b) = 1. We see the discriminant of $x^3 - x + 1$ is 4 - 27 = -23 which is not a square, so its Galois group is S_3 .

(d) We have $x^3 + x^2 - 2x - 1$ to be irreducible in \mathbb{Q} since as before if (a, b) = 1 we see if,

$$\frac{a^3}{b^3} + \frac{a^2}{b^2} - \frac{2a}{b} - 1 = 0$$

this would imply $a^3 = (-a^2 + 2ab + b^2)$, which means $b \mid a^3$ which goes against the assumption that a and b are relatively prime.

The discriminant of $x^3 + x^2 - 2x - 1$ is $4 + 32 + 4 - 27 + 36 = 7^2$, which is a square, therefore its Galois group is A_3

Problem 14.6.5 Determine the Galois group of $x^4 + 4$

Proof. Let $p(x) = x^4 + 4$ we see that it can be factored into,

$$p(x) = x^4 + 4 = (x^2 - 2x + 4)(x^2 + 2x + 2)$$

which shows us that the roots of p(x) are $\pm 1, \pm i$. Meaning the splitting field is $\mathbb{Q}(i)$, which is of degree 2 over \mathbb{Q} . This gives us then that the Galois group of p(x) is cyclic of order 2, which is \mathbb{Z}_2 .

Problem 14.6.10 Determine the Galois group of $x^5 + x - 1$

Proof. Let $p(x) = x^5 + x - 1$. We see that p(x) can be factored as,

$$p(x) = x^5 + x - 1 = (x^3 + x^2 - 1)(x^2 - x + 1)$$

We see that the discriminant of $x^2 - x + 1$ is -3 giving us that it is irreducible and its Galois group is simply \mathbb{Z}_2 . Next we see that $x^3 + x^2 - 1$ is irreducible through mod 2, and its discriminant is -23 so its Galois group is S_3 .

Now let K and E be the splitting field of x^2-x+1 and x^3+x^2-1 respectively. Now suppose the intersection between K and E is non-trivial. Because $[K:\mathbb{Q}]=2$ and $[E:\mathbb{Q}]=6$ the intersection begin non-trivial would imply K<E and therefore E is an extension of degree 3 on K. This gives us that Gal(E/K) is some subgroup of $Gal(E/\mathbb{Q})\cong S_3$ of order 3, and there is a unique subgroup satisfying this, A_3 . Giving us $Gal(E/K)\cong A_3$. This is only possible though if the discriminant of x^3+x^2-1 is a square in $K=\mathbb{Q}(i\sqrt{3})$.

Now let $a, b, c, d \in \mathbb{Z}$ and $b, d \neq 0$, suppose then that

$$\left(\frac{a}{b} + \frac{c}{d}i\sqrt{3}\right)^2 = -23$$

for some $\frac{a}{b},\frac{c}{d}\in\mathbb{Q}(i\sqrt{3})$ in lowest terms. This would give us,

$$(ad)^2 - 3(cb)^2 + abcd2i\sqrt{3} = -23$$

so either a = 0 or c = 0, but both lead to contradiction.

Therefore we have that $K \cap L$ must be trivial, giving us the Galois group to be $\mathbb{Z}_2 \times S_3$.

Problem 14.6.11 Let F be an extension of \mathbb{Q} of degree 4 that is not Galois over \mathbb{Q} . Prove that the Galois closure of F has Galois group either S_4 , A_4 or the dihedral group D_8 of order 8. Prove that the Galois group is dihedral if and only if F contains a quadratic extension of \mathbb{Q} .

Proof. Say that $E/\mathbb{Q}=\overline{F}$. Now for some $\alpha\in F$ that is a root, we can say that $F=\mathbb{Q}(\alpha)$, and so E is the splitting field of the minimal polynomial of α . We know this polynomial is of degree 4, we know then that $G=Gal(E/\mathbb{Q})$ is a subgroup of S_4 .

Because E has a subfield that is 4th degree in \mathbb{Q} , G must have a subgroup of index 4. Since F is given to not be Galois over \mathbb{Q} , we have that |G| > 4. So we have then that the order of G must be 8, 12, or 24.

If we have the order to be 8, we have $G = D_8$, the only group of order 8 that has a subgroup which is not normal and therefore corresponds to F. If the order were to be 24 we'd have G to be S_4 itself. If the order were to be 12 it is just the only index 2 subgroup of S_4 , A_4 .

F contains a quadratic extension of \mathbb{Q} if and only if each index 4 subgroup of G is contained in an index 2 subgroup. Notice though that S_4 and A_4 fail this, but each element of D_8 having order 2 is contained in a subgroup of order 4.