# Medical Image Processing for Interventional Applications Feature Detectors

Online Course – Unit 10 Andreas Maier, Sebastian Bauer, Frank Schebesch Pattern Recognition Lab (CS 5)













# **Topics**

#### **Feature Detectors**

**Initial Considerations** 

Harris Corner Detector

## Summary

Take Home Messages

**Further Readings** 







## **Feature Detectors**

How to identify distinctive locations efficiently?



intensity profile







#### **Feature Detectors**

#### How to identify distinctive locations efficiently?



- First order derivatives
- Second order derivatives
- Structure tensor, Hessian matrix









## Feature Detectors: Benchmark Study by Schmid, Mohr, and Bauckhage (2000)

#### Which one to choose?



Figure 2: Rotation invariance



Figure 3: **Scale** invariance







## Feature Detectors: Benchmark Study by Schmid, Mohr, and Bauckhage (2000)

#### Which one to choose?



Figure 4: Illumination invariance



Figure 5: **Noise** invariance







Basic idea (Harris and Stephens, 1988): A corner point should have large intensity changes in all directions.

Gradient approximation:

$$\mathbf{g}(x,y) = \nabla f(x,y) = \begin{pmatrix} f_x(x,y) \\ f_y(x,y) \end{pmatrix}$$

Structure tensor (autocorrelation):

$$\mathbf{G}(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(x,y) \mathbf{g}(x+i,y+j) \mathbf{g}^{T}(x+i,y+j)$$

$$= \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(x,y) \begin{bmatrix} (g_{x}(...))^{2} & g_{x}(...)g_{y}(...) \\ g_{x}(...)g_{y}(...) & (g_{y}(...))^{2} \end{bmatrix}$$







Eigenvectors and eigenvalues of structure tensor **G** describe predominant directions of the gradient:





Figure 6: Schematic of relationship between feature categories and eigenvalues (left), example image with a corner, edges and flat areas (right)







Eigenvectors and eigenvalues of structure tensor **G** describe predominant directions of the gradient:

$$H(x,y) = \det(\mathbf{G}(x,y)) - \nu \left( \operatorname{tr}(\mathbf{G}(x,y)) \right)^{2}$$





Figure 7: Structure described by value of *H* (left), example image with a corner, edges and flat areas (right)







Eigenvectors and eigenvalues of structure tensor **G** describe predominant directions of the gradient:

$$H(x,y) = \det(\mathbf{G}(x,y)) - \nu \left( \operatorname{tr}(\mathbf{G}(x,y)) \right)^2 = \lambda_1 \lambda_2 - \nu (\lambda_1 + \lambda_2)^2$$





Figure 7: Structure described by value of *H* (left), example image with a corner, edges and flat areas (right)









Figure 8: What about noise?









Figure 9: Edge-preserving denoising









Figure 10: Corner response









Figure 11: Corner localization, non-maximum suppression









Figure 12: Corner selection







# **Topics**

#### **Feature Detectors**

**Initial Considerations** 

Harris Corner Detector

## Summary

Take Home Messages

Further Readings







## **Take Home Messages**

- An analysis of the derivatives in an image yields important information to build a feature detector.
- Best choose features which are invariant to certain transformations.
- The Harris corner detector utilizes the structure tensor to determine image points to be corners, edges or rather part of flat and homogeneous areas.

#### Credits:

We acknowledge the contributions of F.F. Li, E. Angelopoulou, D. Lowe, and A. Berg for their material in units 9-14 (on feature detectors/descriptors).







## **Further Readings**

- Cordelia Schmid, Roger Mohr, and Christian Bauckhage. "Evaluation of Interest Point Detectors". In: *International Journal of Computer Vision* 37.2 (June 2000), pp. 151–172. DOI: 10.1023/A:1008199403446
- Chris Harris and Mike Stephens. "A Combined Corner and Edge Detector". In: Proceedings of Fourth Alvey Vision Conference. 1988, pp. 147–152