EMI MEASUREMENT AND TEST REPORT For

Hangzhou Tuolima Network Technologies Co., Ltd.

608, Zhejiang Enterprise Center, 555 Wensan Road, Hangzhou, China

FCC ID: XYWGSM

Dec.10, 2009

This Report Concerns: Equipment Type: Original Report GSM Voice Modem

Test Engineer: Eric Li

Report No.: BST09113832410R-3

Receive EUT

Date/Test Date: Dec.02,2009/ Dec.02-10,2009

Reviewed By: Christina Christina

Shenzhen BST Technology Co.,Ltd.

Prepared By:

3F, Weames Technology Building,
No. 10 Kefa Road, Science Park,
Nanshan District Shanghan Guang

Nanshan District, Shenzhen, Guangdong, China

Tel: 0755-26747751 ~ 3

Fax: 0755-26747751 ~ 3 ext.826

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Shenzhen BST Technology Co.,Ltd. This report must not be used by the client to claim product certification,approval,or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

1.	GEN	ERAL INFORMATION	3
	1.1.	Report infor mation	3
	1.2.	Measurement Uncertainty	
2.	PRO	DUCT DESCRIPTION	
_•	2.1.	EUT Description	
	2.2.	Block Diagram of EUT Configuration	
	2.3.	Test Conditions	
3.		ID LABEL	
4.		Γ RESULTS SUMMARY	
	Modi	fications	6
5.		F EQUIPMENT USED	
6.		07 CONDUCTED EMISSION TEST	
U.	6.1.	Applicable Standard	
	6.2.	Test Procedure	
	6.3.	Test Data	
	6.4.	Plot(s) of Test Data	
7.		10 - RF EXPOSURE (MPE)	
/•	7.1.	Applicable Standard	
	7.1. 7.2.	Test Data	
8.		046& § 24.232 (C) - RF OUTPUT POWER	
0.			
	8.1. 8.2.	Applicable Standard	
	8.2. 8.3.	Test Procedure	
Λ			
9.		OULATION CHARACTERISTIC	
10.	-	49& §24.238 - OCCUPIED BANDWIDTH	
	10.1.	Applicable Standards	
	10.2.	Test Procedure	
	10.3.		
11.	§2.10	51&§24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	11.1.	Applicable Standards	
	11.2.	Test Procedure	
	11.3.		
12.	§2.10	53§24.238 - SPURIOUS RADIATED EMISSIONS	
	12.1.	Applicable Standards	
	12.2.	Test Procedure	
	12.3.	Test Data	
13.	§2.10	55& §24.235 - FREQUENCY STABILITY	29
	13.1.	Applicable Standard	29
	13.2.	Test Data	29

1. GENERAL INFORMATION

1.1. Report infor mation

- 1.1.1. This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that BST approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that BST in any way guarantees the later performance of the product/equipment.
- 1.1.2. The sample/s mentioned in this report is/are supplied by Applicant, BST therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.

Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through BST, unless the applicant has authorized BST in writing to do so.

Test Facility -

The test site used to collect the radiated data is located on the address of emitel (Shenzhen) Limited

(FCC Registered Test Site Number: 746887) on

Building 2, 171 Meihua Road, Futian District, Shenzhen, 518049 China

The Test Site is constructed and calibrated to meet the FCC requirements.

1.2. Measurement Uncertainty

Available upon request.

2. PRODUCT DESCRIPTION

2.1. EUT Description

Description : GSM Voice Modem

Applicant : Hangzhou Tuolima Network Technologies Co., Ltd.

608, Zhejiang Enterprise Center, 555 Wensan Road,

Hangzhou, China

Model Number : GSM Voice Modem

Additional Information

Frequency : 1850.2MHZ-1909.8MHZ

Power Supply : DC5V(PC)

2.2. Block Diagram of EUT Configuration

2.3. Test Conditions

Temperature: 23~25

Relative Humidity: 55~63 %

3. FCC ID LABEL

FCC ID: XYWGSM

:

Label Location on EUT

EUT Bottom View/ FCC ID Label Location

4. TEST RESULTS SUMMARY

FCC PART 24E

FCC Rules	Description of Test	Result
§15.107	Conducted Emission	Compliant
§1.1310	RF Exposure (MPE)	Compliant
\$2.1046; \$ 24.232 (c)	RF Output Power	Compliant
§ 2.1047	Modulation Characteristics	N/A
§ 2.1049 § 24.238	99% & -26 dB Occupied Bandwidth	Compliant
§ 2.1051, § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliant
§ 2.1053 § 24.238 (a)	Field Strength of Spurious Radiation	Compliant
§ 2.1055 § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant

Modifications

No modification was made.

5. TEST EQUIPMENT USED

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052604	2009-09-25	2010-09-25
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-03-11	2010-03-11
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-05-09	2010-05-09
HP	Preamplifier	8449B	3008A00277	2009-09-29	2010-09-29
HP	Signal Generator	HP8657A	2849U00982	2009-10-16	2010-10-16
HP	Amplifier	HP8447D	2944A09795	2009-11-15	2010-11-15
Giga-tronics	Signal Generator	1026	270801	2009-09-29	2010-09-29
COM POWER	Dipole Antenna	AD-100	041000	2009-09-25	2010-09-25
A.H. System	Horn Antenna	SAS-200/571	135	2009-05-17	2010-05-17
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	1100.0008.02	2009-06-21	2010-06-21
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-10-16	2010-10-16
WUHUAN	Temperature & Humidity Chamber	HTP205	20021115	2008-12-28	2009-12-28

6. §15.107 CONDUCTED EMISSION TEST

6.1. Applicable Standard

According to FCC §15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the

following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV), Class B digital device					
(MHz)	Quasi-peak	Average				
0.15 - 0.50	66 to 56	56 to 46				
0.50 - 5	56	46				
0.50 - 30	60	50				

6.2. Test Procedure

a. The EUT was placed on a 0.8m high insulating table and kept 0.4 meters from the conducting

wall of shielded room.

- b. The EUT was connected to the power mains through a line impedance stabilization network (LISN). The LISN provide $50\Omega/50\mu H$ of coupling impedance for the measuring instrument.
- c. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- d. The frequency range from 150 kHz to 30 MHz was searched using CISPR Quasi-Peak and Average detector.

6.3. Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Test Mode: Operating

Test Mode: C		nducted Emissions		FCC PA	ART 15
Frequency (MHz)	Amplitude (dBµV)	Detector (QP/AV)	Conductor (Line/Neutral)	Limit (dBµV)	Margin (dB)
26.235	52.10	QP	Neutral	60.00	7.90
0.435	40.30	QP	Neutral	57.20	16.90
0.435	39.60	QP	Line	57.20	17.60
25.875	41.90	QP	Line	60.00	18.10
0.435	28.00	AV	Line	47.20	19.20
0.435	27.50	AV	Neutral	47.20	19.70
3.720	36.20	QP	Neutral	56.00	19.80
13.145	39.90	QP	Neutral	60.00	20.10
25.810	28.90	AV	Line	50.00	21.10
26.235	28.80	AV	Neutral	50.00	21.20
13.085	38.60	QP	Line	60.00	21.40
0.305	38.10	QP	Neutral	60.10	22.00
0.720	33.90	QP	Neutral	56.00	22.10
0.325	37.10	QP	Line	59.60	22.50
0.645	32.40	QP	Line	56.00	23.60
2.810	30.90	QP	Line	56.00	25.10
2.815	19.90	AV	Line	46.00	26.10
3.725	19.30	AV	Neutral	46.00	26.70
0.650	17.80	AV	Line	46.00	28.20
0.305	21.10	AV	Neutral	50.10	29.00
0.720	15.50	AV	Neutral	46.00	30.50
13.145	19.50	AV	Neutral	50.00	30.50
0.325	18.80	AV	Line	49.60	30.80
13.145	15.60	AV	Line	50.00	34.40

6.4. Plot(s) of Test Data

Plot(s) of Test Data is presented hereinafter as reference.

Line:

7. §1.1310 - RF EXPOSURE (MPE)

7.1. Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Radio frequency radiation exposure was calculated based on § 1.1310 limits.

Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m) Limits for Genera	Magnetic Field Strength (A/m) al Polulation/Uncontro	Power Density (mW/cm²)	Averaging Time (minute)
0.3 - 1.34	614	1.63	*(100)	30
1.34 - 30	842/f	2.19/f	*(180/ f²)	30
30 - 300	27.5	0.073	0.2	30
300 - 1500	/	/	f/1500	30
1500 - 100,000	/	/	1.0	30

f = frequency in MHz

7.2. Test Data

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

The maximum antenna gain is -3.0dBi

^{* =} Plane-wave equivalent power density

Maximum peak output power at antenna input terminal: 28.44(dBm) Maximum peak output power at antenna input terminal: 698 (mW) Prediction distance: 20(cm) Predication frequency: 1909.8 (MHz) Antenna Gain (typical): -3 (dBi) Antenna Gain (typical): 0.5(numeric) The worst case is power density at predication frequency at 20 cm: 0.0695(mW/cm²)
MPE limit for general polulation/uncontrolled exposure at prediction frequency: 1.0 (mW/cm ²)
Result: This MPE level is below the MPE Limit at 20 cm distance for General Population / Uncontrolled Exposure as stated in OET 65-C. The precautions are outlined in the User's Manual to prevent exposure to high levels of RF energy.

8. § 2.1046& § 24.232 (C) - RF OUTPUT POWER

8.1. Applicable Standard

According to FCC §2.1046 and §24.232 (C), in no case may the peak output power of a base station transmitter exceed 2 watt EIRP.

8.2. Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method:

TIA 603-C section 2.2.17

8.3. Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (dBm)
Low	1850.2	28.31	0.678	33
Middle	1880.0	28.34	0.682	33
High	1909.8	28.44	0.698	33

Low Channel

Middle Channel

High Channel

E.I.R.P

Indicated		Table	Te Ante		Su	ıbstituted			Cable	Absolute Level	Limit
Frequency MHz	Ampl dBuV/m	_	_		Frequency MHz	Level dBm	Polar H/V	Gain Correction	Loss dB	dBm	(dBm)
					F	requency	in Low	Channel			
1850.2	87.95	19	1.6	Н	1850.2	19.67	Н	6.2	1.02	24.85	33
1850.2	88.41	84	2.0	V	1850.2	20.01	V	6.2	1.02	25.19	33
					Fr	equency i	n Middl	e Channel			
1880	87.74	42	1.8	Н	1880	19.62	Н	6.2	1.03	24.79	33
1880	89.29	321	2.0	V	1880	21.35	V	6.2	1.03	26.52	33
	Frequency in High Channel										
1909.8	82.84	69	1.9	Н	1909.8	17.78	Н	6.2	1.03	22.95	33
1909.8	86.63	271	1.2	V	1909.8	19.32	V	6.2	1.03	24.49	33

N	MODULATION CHARACTERISTIC
	According to FCC § 2.1047(d), 24E there is no specific requirement for digital modulation therefore modulation characteristic is not presented.

10. §2.1049& §24.238 - OCCUPIED BANDWIDTH

10.1.Applicable Standards

CFR 47 §2.1049, §24.238.

10.2.Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 30 kHz (Cellular /PCS) and the 26 dB & 99% bandwidth was recorded.

10.3.Test Data

10.3.1. Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Occupied Bandwidth For PCS band(part 24E) GMSK modulation:

Channel	Channel	99% Power	26dB Bandwidth		
	frequency(MHz))	Bandwidth (kHz)	(kHz)		
Channel 661	1880.0	246.0	330.0		

11. §2.1051&§24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

11.1.Applicable Standards

CFR 47 §2.1051and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

11.2.Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

11.3.Test Data

11.3.1.

11.3.2.Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Please refer to the hereinafter plots.

For GSM 1900:

30MHz-1000MHz - Middle Channel

1GHz-1.9GHz - Middle Channel

12. §2.1053§24.238 - SPURIOUS RADIATED EMISSIONS

12.1.Applicable Standards

CFR 47 § 2.1053and § 24.238.

12.2.Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

12.3.Test Data

12.3.1.

12.3.2.Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Test mode: Transmitting

Indicate	ed	Table	Test An	itenna		Substituted		Cabl e	Absolute	Limit	Margin
Frequency (MHz)	Amp. (dBuV)	Angle Degree	Height (M)	Polar H/V	Frequency (MHz)	Level (dBm)	Antenna Gain Correction	Loss (dB)	Level (dBm)	(dBm)	(dB)
705.52	45.14	0	1.2	V	705.52	-53.67	0	0.70	-54.37	-13	41.37
763.40	47.35	102	1.3	V	763.40	-51.23	0	0.76	-51.99	-13	38.99
709.25	42.32	158	1.8	Н	709.25	-56.78	0	0.70	-57.48	-13	44.48
765.32	43.10	77	1.6	Н	765.32	-55.47	0	0.76	-56.23	-13	43.23

GSM1900 (Above 1 G) Middle Channel Test mode: Transmitting

Indica	ted	Table	Test An	itenna	Substituted			Cable	Absolute	Limit	Margin
Frequen cy (MHz)	Amp. (dBu)V	Angle Degree	Height (M)	Polar H/V	Frequency (MHz)	Level (dBm)	Antenna Gain Correction	Loss dB	Level (dBm)	(dBm)	(dB)
3760	60.10	231	2.0	Н	3760	-44.21	6.9	1.47	-38.78	-13	25.78
3760	57.551	205	2.0	V	3760	-46.52	6.9	1.47	-41.09	-13	28.09
5640	44.56	261	1.8	Н	5640	-57.34	8.3	1.76	-50.8	-13	37.8
5640	46.43	213	1.9	V	5640	-56.09	8.3	1.76	-49.55	-13	36.55
7520	45.32	164	2.2	Н	7520	-55.12	7.6	2.09	-49.61	-13	36.61
7520	44.16	0	1.4	V	7520	-56.23	7.6	2.09	-50.72	-13	37.72

13. §2.1055& §24.235 - FREQUENCY STABILITY

13.1.Applicable Standard

CFR47 § 2.1055 (a), § 2.1055 (d)§24.235

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

13.2.Test Data

13.2.1.

13.2.2.Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Middle channel								
f _o =1880.0MHz;								
Temperature ()	Power Supplied (V)	Frequency Error (Hz)	Error(ppm)	Limit (ppm)				
-30	5	-30	-0.016	2.5				
-30	4.5	-33	-0.0176	2.5				
-20	5	-17	-0.009	2.5				
-20	4.5	-20	-0.0106	2.5				
-10	5	-20	-0.0106	2.5				
-10	4.5	-17	-0.009	2.5				
0	5	-18	-0.0096	2.5				
0	4.5	-16	-0.0085	2.5				
10	5	-17	-0.009	2.5				
10	4.5	-15	-0.008	2.5				
20	5	-18	-0.0096	2.5				
20	4.5	-17	-0.009	2.5				
20	5	-17	-0.009	2.5				
30	4.5	-16	-0.0085	2.5				
40	5	-17	-0.009	2.5				
40	4.5	-16	-0.0085	2.5				
E.F.	5	-18	-0.0096	2.5				
55	4.5	-19	-0.0101	2.5				