Практикум №1 Регулярные выражения

Мещеряков Евгений, 696

8 ноября 2017г.

Задача 8: Даны α , буква x и натуральное число k, где α - регулярное выражение в обратной польской записи, задающее язык L. Вывести длину кратчайшего слова из языка L, содержащего суффикс x^k .

Алгоритм

Пусть degree = k. Будем оперировать объектами класса Lexeme:

```
class Lexeme:
def __init__(self , id , operation , operands):
    self.id = id
    self.operation = operation
    self.operands = operands
    self.shortest_word_len_with_prefix = []
```

Преобразуем обратную польскую запись регулярного выражения в лист лексем с помощью стека, попутно присваивая каждой лексеме приоритет вычисления (задается листом $calculation_priority$ пар $[lexeme_id, priority]$). Сводим нашу задачу к задаче поиска кратчайшего слова с префиксом x^k путём обращения листа operands в каждой лексеме с конкатенацией. Полученную задачу решаем динамикой.

Каждая лексема имеет лист $shortest_word_len_with_prefix$ размера degree+1. Для краткости обозначим $shortest_word_len_with_prefix$ как $list.\ list[prefix_len]=$ длина кратчайшего слова, принадлежащего языку, задаваемому лексемой с префиксом x^k . Вычисление list[degree] для лексемы, соответствующей всему регулярному выражению дает ответ на задачу. Переберём все лексемы в порядке приоритета, вычисляя для каждой list. Для букв и пустого слова вычисление тривиально. Разберем вычисление для операций.

• '+': Перебираем $prefix_len$. Если для обоих операндов значение $list[prefix_len]$ определено, то выбирается минимум значений. Если значение $list[prefix_len]$ определено лишь для одного операнда, то выбирается оно. Если для обоих операндов значения не определены, то значение $list[prefix_len]$ для текущей лексемы тоже не определено.

• '.': Перебираем индексы f_prefix_len и s_prefix_len (f-first, s-second) для левого и правого операндов конкатенации. Обозначим листы операндов и текущей лексемы соответственно $list_f, list_s$ и $list_res$. Вычисление производится согласно утверждениям:

Пусть значения $list_f[f_prefix_len]$ и $list_s[s_prefix_len]$ определены, тогда: 1) $list_res[f_prefix_len] \leq list_f[f_prefix_len] + list_s[s_prefix_len]$ (префикс конкатенации равен префиксу левого операнда конкатенации) 2) Пусть $prefix_len = min(f_prefix_len + s_prefix_len, degree)$. Если $f_prefix_len = list_f[f_prefix_len]$, то $list_res[prefix_len] \leq f_prefix_len + list_s[s_prefix_len]$. Действительно, если $f_prefix_len = list_f[f_prefix_len]$, то конкатенируемая слева строка есть $x^f_prefix_len$, а, значит, конкатенируя справа строку с префиксом длины s_prefix_len , получаем строку с префиксом длины $f_prefix_len + s_prefix_len$. После перебора, проходя по list текущей лексемы от конца к началу, восстанавливаем следующий ивариант: Пусть значения list[i] и list[k] определены, тогда: $i \leq k \Rightarrow list[i] \leq list[k]$ (Слово, содержащее префикс

 \bullet '*': Инициализируем list текущей лексемы listом её операнда, так же присваиваем list[0] нуль, так как пустое слово лежит в языке вида L^* . Далее вычисляем list для степеней 2...degree операнда алгоритмом для конкатенации.

длины k, содержит префикс меньшей длины)