Workshop Week 10

COMP20008 2021S2

Clustering

Q1: Consider the 1-dimensional data set with 10 data points $\{1,2,3,...10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

- Iteration 1 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 1, 1, 1, 1, 1, 1, 1, 1] Centroids: [1.0, 6.0]
- 0 means 1, 1 means cluster 2
- Iteration 2 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 0, 0, 1, 1, 1, 1, 1, 1, 1] Centroids: [2.0, 7.0]
- Iteration 3 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 0, 0, 0, 1, 1, 1, 1, 1, 1] Centroids: [2.5, 7.5]

Consider the 1-dimensional data set with 10 data points {1,2,3,...10}. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to {1, 2}.

• Iteration 4 Data points: [1 2 3 4 5 6 7 8 9 10]
Assignments: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Centroids: [3.0, 8.0]

Iteration 5 Data points: [1 2 3 4 5 6 7 8 9 10]
 Assignments: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Centroids: [3.0, 8.0]

Q2: Repeat Exercise 1 using agglomerative hierarchical clustering and Euclidean distance, with single linkage (min) criterion.

	1	2	3	4	5	6	7	8	9	10		1	2	3	4	5	6	7	8	9	10
1	0										1	0	1	2	3	4	5	6	7	8	9
2	1	0			ially ster						2	1	0	1	2	3	4	5	6	7	8
3	2		0	Cius	ster.	s uc	VVE	· IIa	ve:		3	2	1	0	1	2	3	4	5	6	7
4	3			0							4	3	2	1	0	1	2	3	4	5	6
5	4				0						5	4	3	2	1	0	1	2	3	4	5
6	5					0					6	5	4	3	2	1	0	1	2	3	4
7	6						0				7	6	5	4	3	2	1	0	1	2	3
8	7							0			8	7	6	5	4	3	2	1	0	1	2
9	8								0		9	8	7	6	5	4	3	2	1	0	1
10	9									0	10	9	8	7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step1: Calculate Distances between every pair of observation: Euclidean Distance

	1	2	3	4	5	6	7	8	9	10
1	0	1	2	3	4	5	6	7	8	9
2	1	0	1	2	3	4	5	6	7	8
3	2	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4
7	6	5	4	3	2	1	0	1	2	3
8	7	6	5	4	3	2	1	0	1	2
9	8	7	6	5	4	3	2	1	0	1
10	9	8	7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step 2: Choose the most similar two observations to merge (i.e. Closest)

(i.e. pair with the minimum distance in Dissimilarity Matrix)

	1	2	3	4	5	6	7	8	9	10
1	0	1	2	3	4	5	6	7	8	9
2	1	0	1	2	3	4	5	6	7	8
3	2	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4
7	6	5	4	3	2	1	0	1	2	3
8	7	6	5	4	3	2	1	0	1	2
9	8	7	6	5	4	3	2	1	0	1
10	9	8	7	6	5	4	3	2	1	0

	12	3	4	5	6	7	8	9	10
12	0	1							
3	1	0	1	2	3	4	5	6	7
4		1	0	1	2	3	4	5	6
5		2	1	0	1	2	3	4	5
6		3	2	1	0	1	2	3	4
7		4	3	2	1	0	1	2	3
8		5	4	3	2	1	0	1	2
9		6	5	4	3	2	1	0	1
10		7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)

	1	2	3	4	5	6	7	8	9	10
1	0	1	2	3	4	5	6	7	8	9
2	1	0	1	2	3	4	5	6	7	8
3	2	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4
7	6	5	4	3	2	1	0	1	2	3
8	7	6	5	4	3	2	1	0	1	2
9	8	7	6	5	4	3	2	1	0	1
10	9	8	7	6	5	4	3	2	1	0

	12	3	4	5	6	7	8	9	10
12	0	1	2	3	4	5	6	7	8
3	1	0	1	2	3	4	5	6	7
4	2	1	0	1	2	3	4	5	6
5	3	2	1	0	1	2	3	4	5
6	4	3	2	1	0	1	2	3	4
7	5	4	3	2	1	0	1	2	3
8	6	5	4	3	2	1	0	1	2
9	7	6	5	4	3	2	1	0	1
10	8	7	6	5	4	3	2	1	0

Inter-point distance Matrix

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)

How many clusters do we have now?

Updated Dissimilarity Matrix

	12	3	4	5	6	7	8	9	10
12	0	1	2	3	4	5	6	7	8
3	1	0	1	2	3	4	5	6	7
4	2	1	0	1	2	3	4	5	6
5	3	2	1	0	1	2	3	4	5
6	4	3	2	1	0	1	2	3	4
7	5	4	3	2	1	0	1	2	3
8	6	5	4	3	2	1	0	1	2
9	7	6	5	4	3	2	1	0	1
10	8	7	6	5	4	3	2	1	0

Updated distance Matrix

Extended Dendrogram Plot
X-axis → observations , Y-axis → distances

Repeat Step 2: Choose the most similar two observations to merge (i.e. Closest) (i.e. pair with the minimum distance in Dissimilarity Matrix)

	12	3	4	5	6	7	8	9	10				
							J				12	34	
12	0	1	2	3	4	5	6	7	8	12	0		
3	1	0	1	2	3	4	5	6	7	34		0	
4	2	1	0	1	2	3	4	5	6	5	3		
5	3	2	1	0	1	2	3	4	5	6	4		
6	4	3	2	1	0	1	2	3	4	7	5		
7	5	4	3	2	1	0	1	2	3	8	6		
8	6	5	4	3	2	1	0	1	2				
9	7	6	5	4	3	2	1	0	1	9	7		
	•			•	J	_	_	J	_	10	8		
10	8	7	6	5	4	3	2	1	0				

Inter-point distance Matrix

Repeat Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate single linkage using min)

	12	3	4	5	6	7	8	9	10
12	0	1	2	3	4	5	6	7	8
3	1	0	1	2	3	4	5	6	7
4	2	1	0	1	2	3	4	5	6
5	3	2	1	0	1	2	3	4	5
6	4	3	2	1	0	1	2	3	4
7	5	4	3	2	1	0	1	2	3
8	6	5	4	3	2	1	0	1	2
9	7	6	5	4	3	2	1	0	1
10	8	7	6	5	4	3	2	1	0

	12	34	5	6	7	8	9	10
12	0	1	3	4	5	6	7	8
34	1	0	1	2	3	4	5	6
5	3	1	0	1	2	3	4	5
6	4	2	1	0	1	2	3	4
7	5	3	2	1	0	1	2	3
8	6	4	3	2	1	0	1	2
9	7	5	4	3	2	1	0	1
10	8	6	5	4	3	2	1	0

Let's see some python code

Inter-point distance Matrix

Repeat Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)