Package STAR Technical Documents

Package "STAR" December 2012

Type Package
Title Statistical Tools for Agricultural Research
Depends R (>= 2.15.1), cluster, lme4, multcomp
Description A package for data management and basic statistical analysis of experimental d
Version
Date
Author
Maintainer
License

R topics documented:

STAR package Statistical Tool for Agricultural Research	6
ad.test Anderson-Darling test for normality	7
AggregateData Compute Summary Statistics of Data Subsets	8
AOVTest Performs Analysis of Variance	10
AppendData Append Two Data Frames	14
bcPower	15
BIBDTest Analysis of Variance for Balanced Incomplete Block Design	16
BivariateCorrelationTest Test of Association between paired samples	17
BoxsMTest	19
bptest	20
buildAOVModel	20
ClassInformation	21
ClusterAgglo	22
ClusterDivisive	23
ClusterKmeans	24
coef	24
combAOVTest	25
CombineFactorLevels Combine Levels of Several Factors	28
CompareMeans Student's t-Test	30
CompareMedian	32
CompareProportion	33
ConstructAOVTable	34
ContingencyCoef Contingency Coefficient	34
ContrastCompute	35
CramersV Cramer's V Statistics	36
Crosstab Cross tabulation	37
css Corrected Sum of Squares	38
cv Coefficient of Variation	39
DataAttribute Data Attributes	40
DataTransformation Data Transformation	41
DescriptiveStatistics Numerical Descriptive Statistics	42
designAlphaLattice Randomization for Alpha Lattice Design	43
designAugmented Randomization for Augmented Design	45

designBIBD Randomization for Balanced Incomplete Block Design	46
designCRD Randomization for Completely Randomized Design	49
designLattice Randomization for Lattice Design	50
designLSD Randomization for Latin Square Design	51
designRCBD Randomization for Randomized Complete Block Design	52
designSplit Randomization for Family of Split Plot Design	53
designStrip Randomization for the Family of Strip Plot Design	55
FactorList List of Factors and its levels	56
GenerateFactor Generate levels a factor	57
HeteroskedasticityTest Test for Homogeneity of Variances	58
is.valid.name	59
is.wholenumber Wholenumber	60
kurtosis Kurtosis	61
LikelihoodRatioTest Likelihood Ratio Test	62
LinearRegressionAnalysis	62
MergeData Merge Dataframe	64
modalValue Mode	65
NormalityTest Test for Normality	66
PhiCoef Phi Coefficient	67
printCorrMatrix Print the Correlation Matrix	68
printDataFrame Printing Data Frames	69
randomizeLattice Randomization for Lattice Design	69
skewness Skewness Coefficient	70
SortCases Sort the observation of a dataset	71
stdkurtosis Standard Error of Kurtosis	72
stdmean Standard Error of the Mean	73
stdskewness Standard Error of Skewness	74
ToLong Restructure Data Frame to Long Format	75
ToWide Restructure Data Frame to Wide Format	76
ucss Uncorrected Sum of Squares	77
Gerua Gerua	79
Insecticides	79
Maize Maize	80
SeedingRate Seeding Rate	81

Gerua	Gerua	83
Insectici	ides	83
Maize	Maize	84
Seeding	gRate Seeding Rate	85

STAR package

Description

This package is designed for data management and basic statistical analysis.

The package provides modules for generating randomization and layout of experimental designs commonly used in crop research, data management with a spreadsheet and basic statistical analysis including descriptive statistics, balanced analysis of variance, single site analysis, multi-environment analysis, correlation analysis, regression analysis and non-parametric data analysis.

Details

Package STAR

Version 0.1

Date December 2012

Depends R (>= 2.11.1), tcltk

Suggests

LazyLoad

License

Requirements

This package requires the tcltk package and tkrplot package.

Future Direction

Modules for general linear models, mixed models, combined analysis, multivariate analysis and G x E analysis will also be included in succeeding versions.

License

The release of this package is licensed under GPL version 2 or newer.

Warning

Classes and methods are considered either to be in its beta or alpha (pre-beta) stage.

Author(s)

Alaine A. Gulles <a.gulles@irri.org>, Violeta I. Bartolome, Leilani A. Nora, Christoffer Edd N. Relente and Guoyou Ye of the International Rice Research Institute

Reference(s)

ad.test

Anderson-Darling test for normality

Description

Performs the Anderson-Darling test for the composite hypothesis of normality, see e.g. Thode (2002, Sec. 5.1.4).

Usage

ad.test(x)

Arguments

X

a numeric vector of data values, the number of which must be greater than 7. Missing values are allowed.

Details

The Anderson-Darling test is an EDF omnibus test for the composite hypothesis of normality. The test statistic is

$$A = -n - \frac{1}{n} \sum_{i=1}^{n} [2i - 1] [\ln(p_{(i)}) + \ln(1 - p_{(n-i+1)})],$$

where $p_{(i)} = \Phi([x_{(i)} - \overline{x}]/s)$. Here, Φ is the cumulative distribution function of the standard normal distribution, and \overline{x} and s are mean and standard deviation of the data values. The p-value is computed from the modified statistic $Z = A(1.0 + 0.75/n + 2.25/n^2) \setminus \text{according to Table 4.9 in Stephens (1986)}$.

Value

A list with class "htest" containing the following components:

statistic the value of the Anderson-Darling statistic.

p.value the p-value for the test.

method the character string "Anderson-Darling normality test".

data.name a character string giving the name(s) of the data.

Note

The Anderson-Darling test is the recommended EDF test by Stephens (1986). Compared to the Cramer-von Mises test (as second choice) it gives more weight to the tails of the distribution.

Author(s)

Juergen Gross from the package "nortest"

Reference(s)

Stephens, M.A. (1986): Tests based on EDF statistics. In: D'Agostino, R.B. and Stephens, M.A., eds.: Goodness-of-Fit Techniques. Marcel Dekker, New York.

Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York.

See Also

shapiro.test for performing the Shapiro-Wilk test for normality. cvm.test, lillie.test, sf.test for performing further tests for normality. qqnorm for producing a normal quantile-quantile plot.

Examples

```
ad.test(rnorm(100, mean = 5, sd = 3))
ad.test(runif(100, min = 2, max = 4))
```

AggregateData

Compute Summary Statistics of Data Subsets

Description

This function computes summary statistics for each subsets or group and creates a new aggregated file or creates a new variable in the existing data file that contains the aggregated data.

Usage

```
AggregateData(data, var, grp, stat = c("mean"), append = FALSE)
```

Arguments

data	a non-null character string which indicate the name of the data frame		
var	a non-empty character vector which indicates the variables to aggregate		
grp	a non-empty character vector which indicates the grouping factor		
stat	a character string or vector which indicates the statistics that will be computed for each of the variables indicated in ${\tt var}$		
append	logical: should the aggregated data be appended to the original data set?		

Details

Observations are grouped together based on the values of the grouping factor (grp). Each unique combination of grouping factor values defines a group.

Variables to aggregate (var) are used with the statistics to create new aggregate variables. The available statistics for this function are: minimum, maximum, mean,

median, sum, variance and standard deviation. The default statistics that will be computed is the mean.

If <code>append</code> is <code>FALSE</code> then a new data frame is created which contains only the aggregated data. If <code>append</code> is <code>TRUE</code> then new columns which contains the aggregated data will be added to the existing data.

Value

A data frame which contains the aggregated data only or the original data frame with the aggregated data.

Author(s)

Alaine A. Gulles

Reference(s)

See Also

aggregate

Examples

```
## load the dataset "Gerua" from the STAR package
```

```
data(Gerua)
```

create a new data frame which computes the default statistics ("mean") of variable "GRNYLD" in the data frame "Gerua", grouped according to "TPL"

```
AggregateData(data = 'Gerua', var = 'GRNYLD', grp = 'TPL')
```

create a new data frame which contains the mean and the standard deviation of the different variables in "Gerua", grouped according to "TPL" and "CULT" and save the result in the data frame named "aggrData1"

computes the mean and standard deviation of the different variables in "Gerua", grouped according to "TPL" and "CULT" and the result is appended to the original data frame and save in the data frame named "aggrData2"

	$\overline{}$		
/\	()	11/	LACT
$\overline{}$	$\mathbf{-}$	v	Γest

Performs Analysis of Variance

Description

Performs analysis of variance with factors treated as fixed.

Usage

```
AOVTest(data, design, respvar, factor1, factor2 = NULL, factor3 =
        NULL, factor4 = NULL, rep1 = NULL, rep2 = NULL, set =
        NULL, descriptive = FALSE, normality = FALSE, homogeneity
        = FALSE, pwTest = NULL, pwVar = NULL, contrastOption =
        NULL, sig = 0.05, outputPath = NULL)
```

Ar

Arguments	
data	a non-null character string which indicates the name of the data frame containing the variables specified in respvar, factor1, factor2, factor3, factor4, rep1 and rep2.
design	a character string indicating the experimental design to be used and must be one of the following: "CRD" (Completely Randomized Design), "RCBD" (Randomized Complete Block Design), "LSD" (Latin Square Design), "SplitCRD" (Split Plot in CRD), "SplitRCBD" (Split Plot in RCBD), "SplitLSD" (Split Plot in LSD), "Strip" (Strip Plot Design), "Split2CRD" (Split-Split Plot in CRD), "Split2RCBD" (Split-Split Plot in RCBD), "Split2LSD" (Split-Split Plot in LSD), "Strip-Split" (Strip-Split Plot Design), "Split3CRD" (Split-Split-Split Plot in CRD), "Split3RCBD" (Split-Split-Split Plot in CRD), "Split3RCBD" (Split-Split-Split Plot in CRD), or "Strip-Split2" (Strip-Split-Split Plot Design).
respvar	a non-empty character vector which indicates the response variable(s) to be used in the analysis
factor1	a non-empty character vector which indicates the factor(s) to be used for CRD, RCBD and LSD or the main plot factor(s) for Split Family of Design, or the vertical factor(s) for the Strip Family of Design
factor2	NULL for CRD, RCBD or LSD; or a character vector which indicate the sub plot factor(s) for Split Family of Design, or the horizontal factor(s) for the Strip Family of Design
factor3	NULL for CRD, RCBD, LSD, Split Plot or Strip Plot; or a character vector which indicate the sub-sub plot factor(s) for Split-Split Design and Split-Split-Split Design; or the sub plot factor(s) for the Strip-Split Family of Design
factor4	NULL for CRD, RCBD, LSD, Split Plot, Strip Plot, Split-Split Plot or Strip-Split Plot; or a character vector which indicate the sub-

		sub-sub plot factor(s) for Split-Split Design; or the sub-sub plot factor(s) for the Strip-Split-Split Design		
rep1		${\tt NULL}$ or a character vector which indicate the blocking factor or the row blocking factor		
rep2		NULL or a character factor	er vector which indicate the column blocking	
set		NULL or a character	vector which indicate the by variable	
descrip	tive	logical indicating who	ether the summary statistics will be computed	
normali	ty	logical indicating whether normality test of the residuals using Shapiro-Wilk test will be performed		
homogen	eity	logical indicating whether homogeneity test of the residuals using Bartlett's test will be performed		
pw.test		a character vector indicating the pairwise mean comparison procedure that will be performed or \mathtt{NULL}		
pw.var		a character vector indicating the response variable where the pairwise mean comparison procedure specified in the argument $pw.\texttt{test}$ will be performed or \mathtt{NULL}		
contras	tOption	NULL or a list containing the following components:		
		contrast.type	a numeric vector which indicates the code of the contrast analysis to be performed	
		contrast.f	a character string which indicates the factors where the contrast analysis will be performed	
		contrast.l	a character string	
sig		a single numeric value indicating the level of significance to be used to determine whether the effect is significant when the analysis of variance is performed and the level of significance to be used when one perform the pairwise mean comparison		
outputP	ath	NULL or path when predicted values will	re the dataset containing the residuals and be saved	

Details

If at least one of the pw.test and pw.test is NULL, the default pairwise mean comparison will be performed for all significant effect in the analysis. If the level of the factor is less than or equal to 5, the Least Significant Difference test will be performed; otherwise, the Tukey's Honest Significant Difference test will be performed.

If both <code>pw.test</code> and <code>pw.test</code> are not <code>NULL</code>, <code>pw.test</code> is a character string which indicate the pairwise mean comparison method to be performed and can be any one of the following: <code>'LSD'</code> (Least Significant Difference test), <code>'duncan'</code> (Duncan Multiple Range Test), <code>'HSD'</code> (Tukey's Honest Significant Difference test), <code>'SNK'</code> (Student Newman-Keul's

Test), and/or 'scheffe' (Scheffe's test). The pw.var is a character string which indicates the response variables where the speficied pairwise mean comparison method will be performed.

If contrastOption is not NULL, contrast.type is a numeric vector which indicates the code of the contrast analysis to be performed; the codes are: 2 for compare with control, 3 for orthogonal polynomial and 4 for user-specified contrast. The option orthogonal polynomial can only be performed if the levels of the factor are numeric. The contrast.f is a character string which indicates the factors where the contrast analysis will be performed. Only factors with more than two levels should be indicated. If compare with control will be performed, the contrast.1 should contain the level of the factor which pertains to the control. If orthogonal polynomial will be performed, the contrast.1 should contain the degree of orthogonal polynomial that will be performed. If user-specified contrast will be performed, the contrast.1 should contain the number of contrast to be performed. The maximum number of contrast and the highest degree of orthogonal polynomial that can be performed is equal to the degrees of freedom of the factor being considered or the number of levels minus 1 of the factor being considered.

Value

A list containing the following components:

data	a data frame containing the original data set with the predicted values and residual
aovObject	a list of R object of class c('aov', 'lm') which contains the

ANOVA table of each response variable

rvWithSigEffect a character vector indicating the response variable with at least one significant effect

a list of R object of class c ('anova', 'data.frame') aovTable

a named list which contain the response variable, pariwise mean pwOption

comparison procedure requested by user, a character vector

contain the significant effect

formula used when one perform analysis of variance model

model2

the level of significance used for the analysis alpha

Author(s)

Reference(s)

See Also

Examples

```
## Example 1: Completely Randomized Design
## load the dataset "Insecticides" from the STAR package
data(Gerua)
## perform the analysis of variance in CRD using the default option with Insecticide
AOVTest (data = 'Insecticides', design = 'CRD', respvar =
   'GrainYield', factor1 = 'Insecticide')
## Example 2: Randomized Complete Design
## load the dataset "Gerua" from the STAR package
data(Gerua)
## perform the analysis of variance in RCBD using the default function with TPL and
   CULT as factors and REP as the blocking factor
AOVTest(data = 'Gerua', design = 'RCBD', respvar = c('GRNYLD',
   'PNCLE'), factor1 = c('TPL', 'CULT')), rep1 = 'REP')
## perform the analysis of variance in RCBD that display the descriptive statistics of the
   response variable, test for normality of the residual and test for equality of variances
AOVTest(data = 'Gerua', design = 'RCBD', respvar = c('GRNYLD',
   'PNCLE'), factor1 = c('TPL', 'CULT')), rep1 = 'REP',
   descriptive = TRUE, normality = TRUE, homogeneity = TRUE)
## perform the analysis of variance in RCBD with user's choice of pairwise mean
   comparison method
AOVTest(data = 'Gerua', design = 'RCBD', respvar = c('GRNYLD',
   'PNCLE'), factor1 = c('TPL', 'CULT')), rep1 = 'REP', pw.test =
   c('LSD', 'duncan', 'HSD', 'SNK', 'scheffe'), pw.var =
   c('GRNYLD'), sig = 0.05)
## perform the analysis of variance in RCBD with contrast analysis (compare with
   control and orthogonal polynomial)
aovTest(design = 'RCBD', data = 'factor_4', respvar = c('wexr'),
  factor1 = c('var', 'wregime', 'das', 'depth'), rep1 = 'rep',
   contrastOption = list(contrast.type = c(2,3), contrast.f =
   c("das", "depth"), contrast.l = c("14", "1")))
```

AppendData

Append Two Data Frames

Description

Append two data frame by common columns.

Usage

AppendData (MasterData, TransactionData, byMaster, byTransact, MasterVarKeep = NULL, TransactVarKeep = NULL)

Arguments

MasterData, TransactionData a non-null character string which indicate

the name of the data frame to be coerced to

one

byMaster, byTransact a character vector which indicate the name

of the column in MasterData and TransactionData, respectively, which will be treated as common columns. See

'Details'.

MasterVarKeep, TransactVarKeep NU

NULL or list of variables in MasterData and TransactionData, respectively, that will be included aside from the common

columns

Details

The byMaster and byTransact are both character vectors which specify the column names that will be combined as one. If byMaster and byTransact have different column names, the column names of the byMaster will be followed.

Value

A data frame. The columns are the columns that were combined followed by the remaining columns in the MasterData and then those from the TransactionData. If matching column names are included in the MasterVarKeep and TransactVarKeep these column names will have suffixes (".1" and ".2") appended to make the names of the resulting data frame unique. Additional column will be added (Source) which indicate from what data the observation came from. The column will have a value 1 which indicates that it came from the MasterData data frame and 2 which indicate that it came from the TransactionData data frame.

Author(s)

Alaine A. Gulles

Reference(s)	
See Also	
Examples	
bcPower	
Description	
Usage	
Arguments	
Details	
Value	
Author(s)	
Reference(s)	
See Also	
Examples	

BIBDTest

Analysis of Variance for Balanced Incomplete Block Design

Description

Perform analysis of variance for Balanced Incomplete Block Design and pairwise mean comparison on the adjusted means.

Usage

BIBDTest(data, respvar, trmt, block, method = NULL, descriptive = FALSE, alpha = 0.05)

Arguments

9	
data	a non-null character string which indicates the name of the data frame
respvar	a non-empty character vector which indicates the name of the response variable
trmt	a non-null character string which indicates treatment
block	a non-null character string which indicates the block
method	NULL or a character vector which indicates method of pairwise mean comparison that will be performed. Valid value are: "lsd", "tukey", "snk" and "duncan".
descriptive	logical: should descriptive statistics of the response variable be displayed?
alpha	a numeric value which indicate the level of significance. See

Details

The alpha indicates the level of significance that will be used to determine whether the treatment effect is significant or not. This will also be the level of significant that will be used when performing pairwise mean comparison.

By default, the function will display a pairwise mean comparison. If the levels of the treatment is less than or equal to 5, the Least Significant Difference Test will be computed. Otherwise, the Tukey's Honest Significant Difference Test will be performed.

Value

A list containing the following components:

'Details'.

anovaTable a list which contains the ANOVA table of each response variable

trmtStatistic a data frame which contains the treatment mean, adjusted treatment mean and adjust treatment effect for all response variable per levels of the treatment

stdErr	a data frame which	contains the standard	I error of the difference,
--------	--------------------	-----------------------	----------------------------

standard error of the adjusted treatment effect and standard error

of the adjusted treatment mean for all response variable

InterBlkEst a data frame which contains the interblock estimate for all

response variable

alpha a numeric value which indicate the level of significance used

pairwise NULL or a list which contains the result of the pairwise mean

comparison for all response variable. The list contains the method used, the critical value or critical range and the summary of the

result of the pairwise mean comparison

Author(s)

Alaine A. Gulles

Reference(s)

See Also

Examples

```
## read the data set
```

```
dataTime <- read.csv(file = 'E:/BIB TIME.csv')</pre>
```

using the default option (descriptive statistics of the response variable is not displayed and perform the default pairwise mean comparison procedure)

perform Duncan Multiple Range Test and uses 10% as the level of significance

BivariateCorrelationTest

Test of Association between paired samples

Description

Perform test for association between paired samples using the Pearson's product moment correlation coefficient, Kendall's tau and Spearman's rho.

Usage

Arguments

data a non-null character string which indicates the name of the data frame

containing the variables specified in var

var a non-empty character vector which indicates the name of the

variables where test of association will be performed

method a character vector indicating which correlation coefficient is to be used

for the test and must be at least one of the following: "pearson"

(default), "kendall" and/or "spearman"

alternative a character string indicating the alternative hypothesis to be used and

must be one of the following: "two.sided" (default), "greater" or

"less"

statistics logical indicating whether summary statistics will be computed for

each of the variables in the object var

Details

Value

A list containing the following components:

procedure a character string indicating the method used for measure the

association between paired of variables

estimate a matrix of the correlation coefficient between variables

pvalue a matrix of the p-value of the test

nobs a matrix of the number of paired observation used in measuring the

association between pair of variables

alternative a character string indicating the alternative hypothesis used

Author(s)

Alaine A. Gulles

Reference(s)

See Also

cor

```
cor.test
```

Examples

BoxsMTest

Description

Usage

Arguments

Details

Value

Author(s)

Reference(s)

See Also

Examples
bptest
Description
Usage
Arguments
Details
Value
Author(s)
Reference(s)
See Also
Examples
buildAOVModel
Description

Usage
Arguments
Details
Value
Author(s)
Reference(s)
See Also
Examples
ClassInformation
Description
Usage
Arguments
Details

Value		
Author(s)		
Reference(s)		
See Also		
Examples		
ClusterAgglo		
Description		
Usage		
Arguments		
Details		
Value		
Author(s)		
Reference(s)		

See Also	
Examples	
ClusterDivisive	
Description	
Usage	
Arguments	
Details	
Value	
Author(s)	
Reference(s)	
See Also	
Examples	

Arguments Details Value Author(s) Reference(s) See Also Examples

combAOVTest

Description

Performs analysis of variance with factors treated as fixed.

Usage

```
combAOVTest(data, design, respvar, factor1, factor2 = NULL,
    factor3 = NULL, factor4 = NULL, rep1 = NULL, rep2 = NULL,
    set, descriptive = FALSE, normality = FALSE, homogeneity
    = FALSE, pwTest = NULL, pwVar = NULL, contrastOption =
    NULL, sig = 0.05, outputPath = NULL)
```

Arguments

data	a non-null character string which indicates the name of the data
	frame containing the variables specified in respvar, factor1,

factor2, factor3, factor4, rep1 and rep2.

design a character string indicating the experimental design to be used

and must be one of the following: "CRD" (Completely Randomized

respvar

factor1

factor2

factor3

factor4

rep1

rep2

set

descriptive

homogeneity

contrastOption

pw.test

pw.var

normality

Design), "RCBD" (Randomized Complete Block Design), "LSD" (Latin Square Design), "SplitCRD" (Split Plot in CRD), "SplitRCBD" (Split Plot in RCBD), "SplitLSD" (Split Plot in LSD), "Strip" (Strip Plot Design), "Split2CRD" (Split-Split Plot in CRD), "Split2RCBD" (Split-Split Plot in RCBD), "Split2LSD" (Split-Split Plot in LSD), "Strip-Split" (Strip-Split Plot Design), "Split3CRD" (Split-Split-Split Plot in CRD), "Split3RCBD" (Split-Split-Split Plot in CRD), "Split3RCBD" (Split-Split-Split Plot in CRD), or "Strip-Split2" (Strip-Split-Split Plot Design).
a non-empty character vector which indicates the response variable(s) to be used in the analysis
a non-empty character vector which indicates the factor(s) to be used for CRD, RCBD and LSD or the main plot factor(s) for Split Family of Design, or the vertical factor(s) for the Strip Family of Design
NULL for CRD, RCBD or LSD; or a character vector which indicate the sub plot factor(s) for Split Family of Design, or the horizontal factor(s) for the Strip Family of Design
NULL for CRD, RCBD, LSD, Split Plot or Strip Plot; or a character vector which indicate the sub-sub plot factor(s) for Split-Split Design and Split-Split Design; or the sub plot factor(s) for the Strip-Split Family of Design
NULL for CRD, RCBD, LSD, Split Plot, Strip Plot, Split-Split Plot or Strip-Split Plot; or a character vector which indicate the subsub-sub plot factor(s) for Split-Split-Split Design; or the sub-sub plot factor(s) for the Strip-Split-Split Design
${\tt NULL}$ or a character vector which indicate the blocking factor or the row blocking factor
${\tt NULL}$ or a character vector which indicate the column blocking factor
a non-empty character string which indicate the by variable
logical indicating whether the summary statistics will be computed
logical indicating whether normality test of the residuals using Shapiro-Wilk test will be performed
logical indicating whether homogeneity test of the residuals using Bartlett's test will be performed
a character vector indicating the pairwise mean comparison procedure that will be performed or \mathtt{NULL}
a character vector indicating the response variable where the pairwise mean comparison procedure specified in the argument pw.test will be performed or \mathtt{NULL}
NULL or a list containing the following components:

contrast.type a numeric vector which indicates the code

of the contrast analysis to be performed

contrast.f a character string which indicates the

factors where the contrast analysis will be

performed

contrast.l a character string

sig a single numeric value indicating the level of significance to be

used to determine whether the effect is significant when the analysis of variance is performed and the level of significance to

be used when one perform the pairwise mean comparison

outputPath NULL or path where the dataset containing the residuals and

predicted values will be saved

Details

If at least one of the pw.test and pw.test is NULL, the default pairwise mean comparison will be performed for all significant effect in the analysis. If the level of the factor is less than or equal to 5, the Least Significant Difference test will be performed; otherwise, the Tukey's Honest Significant Difference test will be performed.

If both <code>pw.test</code> and <code>pw.test</code> are not <code>NULL</code>, <code>pw.test</code> is a character string which indicate the pairwise mean comparison method to be performed and can be any one of the following: <code>'LSD'</code> (Least Significant Difference test), <code>'duncan'</code> (Duncan Multiple Range Test), <code>'HSD'</code> (Tukey's Honest Significant Difference test), <code>'SNK'</code> (Student Newman-Keul's Test), <code>and/or 'scheffe'</code> (Scheffe's test). The <code>pw.var</code> is a character string which indicates the response variables where the speficied pairwise mean comparison method will be performed.

If contrastOption is not NULL, contrast.type is a numeric vector which indicates the code of the contrast analysis to be performed; the codes are: 2 for compare with control, 3 for orthogonal polynomial and 4 for user-specified contrast. The option orthogonal polynomial can only be performed if the levels of the factor are numeric. The contrast.f is a character string which indicates the factors where the contrast analysis will be performed. Only factors with more than two levels should be indicated. If compare with control will be performed, the contrast.l should contain the level of the factor which pertains to the control. If orthogonal polynomial will be performed, the contrast.l should contain the degree of orthogonal polynomial that will be performed. If user-specified contrast will be performed, the contrast.l should contain the number of contrast to be performed. The maximum number of contrast and the highest degree of orthogonal polynomial that can be performed is equal to the degrees of freedom of the factor being considered or the number of levels minus 1 of the factor being considered.

Value

A list containing the following components:

data	a data frame containing the original data set with the predicted values and residual
aovObject	a list of R object of class c('aov', 'lm') which contains the ANOVA table of each response variable
rvWithSigEffect	a character vector indicating the response variable with at least one significant effect
aovTable	a list of R object of class c ('anova', 'data.frame')
pwOption	a named list which contain the response variable, pariwise mean comparison procedure requested by user, a character vector contain the significant effect
model	formula used when one perform analysis of variance
model2	

the level of significance used for the analysis

Author(s)

alpha

Reference(s)

See Also

Examples

```
## Example 1: Completely Randomized Design
## load the dataset "Insecticides" from the STAR package
data(Gerua)
## perform the analysis of variance in CRD using the default option with Insecticide
    as factor

AOVTest(data = 'Insecticides', design = 'CRD', respvar =
    'GrainYield', factor1 = 'Insecticide')
```

CombineFactorLevels Combine Levels of Several Factors

Description

This function concatenates the levels of two or more variables of a data frame.

Usage

```
CombineFactorLevels(data, concatVar, targetName = NULL)
```

Arguments

data a data frame

concatVar names of two or more columns in the data frame that identify the

variables whose levels will be concatenated

targetName NULL or a character string which indicate the name of the new

variable that will be created

Details

The values of concatVar will be combined by "_". If targetName is NULL the name of the new column that contains the combined levels is NewVar.

Value

A data frame with the new factor.

Author(s)

Alaine A. Gulles

Reference(s)

See Also

Examples

Com	pareMean	S
-----	----------	---

Student's t-Test

Description

Performs one and two sample t-tests for paired and independent samples.

Usage

```
CompareMeans(data, varX, varY = NULL, grp = NULL, testVal = 0,
    procedure = c("one", "paired", "independent"),
    alternative = c("two.sided", "greater", "less"),
    statistics = FALSE, CI = FALSE, confLevel = 0.95,
    normality = NULL, alpha = 0.05)
```

Arguments

guments	
data	a non-null character string which indicates the name of the data frame
varX	a non-empty character vector which indicates the response variables. See 'Details'.
vary	${\tt NULL}$ or a non-empty character vector which indicates the response variables. See 'Details'.
grp	${\tt NULL}$ a non-empty character vector which indicates the grouping variable. See 'Details'.
testVal	a single number indicating the hypothesized value of the mean (or difference in means if one is performing a two sample t-test)
procedure	a character string which indicates type of t-test to be performed. Must be one of the following: "one"(one sample t-test; default), "paired" (related sample t-test). or "independent" (two independent sample t-test).
alternative	a character string indicating the alternative hypothesis to be used. Must be one of the following: "two.sided" (default), "greater" or "less"
statistics	logical: should summary statistics will be computed for each of the variables in the object ${\tt varX}$ and/or ${\tt vary}$?
CI	logical: should confidence interval will be computed?
confLevel	a single number indicating confidence level of the interval
normality	NULL (default) or a character string indicating which method to be used to test for normality; must be one of the following: "swilk", "sfrancia", "cramer", "anderson" and/or "ks".
alpha	a single number indicating the level of significance when performing test on equality of variance for two independent sample

Details

If procedure is paired then both varX and varY must be specified and they must be of the same length.

If procedure is independent then grp must be specified.

If ${\tt CI}$ is TRUE then confidence interval of the mean or mean difference will be computed. By default, a 95% confidence interval is computed. To construct other confidence interval, another value of ${\tt conflevel}$ must be specified.

If statistics is TRUE then numerical descriptive statistics (number of observation, mean or mean difference, standard deviation and standard error) will be computed for all variables specified in the argument varX.

Value

A list containing the following components:

statistics	a data frame of the result of the t-test which include the following columns:
equalVariance	a data frame of the result of the equality of variance when two independent sample test was performed
alpha	the level of significance used in testing for the equality of variance when two independent sample test was performed
estimate	a data frame of the descriptive statistics of the variable
confLevel	the confidence level used when the confidence interval of the mean or mean difference was performed
nullValue	the specified hypothesized value of the mean or mean difference depending a one-sample test or two-sample test
alternative	a character string describing the alternative hypothesis used
method	a character string indicating the type of t-test performed

Author(s)

Reference(s)

See Also

t.test
var.test
FoldedFTest

Examples

```
## load the dataset 'Gerua' from the STAR package
   data(Gerua)
   ## perform one sample t-test for the variables
   CompareMeans(data = 'Gerua', varX = c('DFF', 'PLHT', 'PNCLE',
                  'GRNYLD', testVal = 0, procedure = 'one',
                  alternative = 'two.sided')
   ## perform one sample t-test and display the summary statistics of the variables,
      construct a 90% confidence interval and request for test of normality using the
      Shapiro-Wilk
   CompareMeans(data = 'Gerua', varX = c('DFF', 'PLHT', 'PNCLE',
                  'GRNYLD', testVal = 0, procedure = 'one',
                  alternative = 'two.sided', statistics = TRUE, CI =
                  TRUE, confLevel = 0.90, normality = 'swilk')
   ## perform two independent sample t-test
   CompareMeans(data = 'Gerua', varX = c('DFF', 'PLHT', 'PNCLE',
                  'GRNYLD', grp = 'TPL', procedure = 'independent',
                  alternative = 'two.sided', alpha = 0.05)
CompareMedian
Description
Usage
Arguments
Details
Value
Author(s)
Reference(s)
```

See Also
Examples
CompareProportion
Description
Usage
Arguments
Details
Value
Author(s)
Reference(s)
See Also
Examples

Usage

Description

Arguments

Details

Value

Author(s)

Reference(s)

See Also

Examples

ContingencyCoef

Contingency Coefficient

Description

Usage

ContingencyCoef(x, y = NULL)

Arguments

Value

	x a vector or a matrix
	y a vector; ignored if x is a matrix
De	tails
	If $$ x is a matrix it should have at least two rows and columns. Otherwise, $$ x and $$ y must be vectors or factors of the same length.
Va	lue
Au	thor(s)
R۵	ference(s)
110	
Se	e Also
	CramersV, LikelihoodRatioTest, PhiCoef
Ex	amples
Co	ontrastCompute
De	scription
Us	age
Ar	guments
De	tails

Author(s)

Reference(s)

See Also

Examples

CramersV

Cramer's V Statistics

Description

Computes the Cramer's V statistics.

Usage

```
CramersV(x, y = NULL)
```

Arguments

x a vector or a matrix

y a vector; ignored if x is a matrix

Details

If $\ x$ is a matrix it should have at least two rows and columns. Otherwise, $\ x$ and $\ y$ must be vectors or factors of the same length.

Value

A single numeric value which indicates the Cramer's V statistics.

Author(s)

Reference(s)

See Also

ContingencyCoef, LikelihoodRatioTest, PhiCoef

Examples

Crosstab	Cross tabulation

Description

Performs cross tabulation and test of association for two-way table.

Usage

Arguments

data	a non-null character string which indicates the name of the data frame containing the variables specified in rowVar and colVar
rowVar	a non-empty character vector which indicates the row variable(s)
colVar	a non-empty character vector which indicates the column variable(s)
obsFreq	a logical value. If $\mathtt{TRUE},$ the observe frequency will be displayed
expFreq	a logical value. If $\mathtt{TRUE},$ the expected frequency will be displayed
totPercent	a logical value. If $\mathtt{TRUE},$ the percentage total will be displayed
rowPercent	a logical value. If TRUE, the row percentage will be displayed
colPercent	a logical value. If $\mathtt{TRUE},$ the column percentage will be displayed
chisq	a logical value. If $\mathtt{TRUE},\ $ the result of the chi-square test of independence will displayed
phi	a logical value. If $\mathtt{TRUE},$ the result of the phi coefficient will be displayed
cramersv	a logical value. If ${\tt TRUE},$ the result of the cramer's V statistics displayed
contingency	a logical value. If $\mathtt{TRUE},$ the result of the contingency coefficient will be displayed

Details

Value

Author(s)

Reference(s)

See Also

Examples

```
Tenure_Status_and_Adoption <- read.csv(file =
    'E:/TenureStatusandAdoption.csv', header = TRUE, sep = ',',
    quote = '"', na.strings = c('NA', '.', '', ''))

Crosstab(rowVar = c('TenureStatus'), colVar = c('FarmerClassif'),
    data = 'Tenure_Status_and_Adoption', obsFreq = TRUE,
    expFreq = TRUE, totPercent = TRUE, rowPercent = TRUE,
    colPercent = TRUE, chisq = TRUE, phi = TRUE,
    cramersv = TRUE, contingency = TRUE)</pre>
```

CSS

Corrected Sum of Squares

Description

Compute the corrected sum of squares.

Usage

```
css(x, na.rm = TRUE)
```

Arguments

x a numeric vector or data frame

na.rm a logical value indicating whether NA values should be remove before computation proceeds

Details

Value Author(s) Reference(s) See Also **Examples** Coefficient of Variation CV **Description** Computes the coefficient of variation. Usage cv(x, na.rm = TRUE)**Arguments** a numeric vector or data frame a logical value indicating whether NA values should be remove before na.rm computation proceeds **Details** Value Author(s)

See Also

Examples

_		_
Data	Λttri	huta
vala	muu i	nuic

Data Attributes

Description

This function determines the variables in the data frame and the type of the variable.

Usage

DataAttribute(data)

Arguments

data

a data frame or a character string indicating the name of the data frame that will be used

Details

Value

A data frame containing the following columns:

VAR NAME all the variable names in the data frame

TYPE type of the variable e.g. (factor, integer, numeric, logical, etc)

 ${\tt NLEVELS} \qquad \text{if the variable is a factor, how many categories the variable has} \\$

LEVELS if the variable is a factor, contains the list of the levels of the factor

Author(s)

Reference(s)

See Also

Examples

```
GERUA <- read.csv(file = 'E:gerua_split.csv')
DataAttributes(GERUA)</pre>
```

DataTransformation

Data Transformation

Description

This function performs data transformation using the logarithm, natural logarithm, square root, exponential, power transformation and standardize.

Usage

Arguments

data a data frame.

var a non-empty character string which indicates the variable that will

be transformed

transformation a character string which indicates the method of transformation

that will be used. Possible values are: log (logarithm), ln (natural logarithm), sqrt (square root), exp (exponential),

power (power) and standardize (standardize).

Details

This function requires that the variable to be transformed should be non-negative values.

The power transformation makes use of the Box-Cox transformation method.

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

See Also

Examples

DescriptiveStatistics

Numerical Descriptive Statistics

Description

It displays univariate summary statistics for several variables per levels of a grouping variable in a single table.

Usage

Arguments

data	a non-null character string which indicates the name of the data frame containing the variables specified in ${\tt var}$ and ${\tt grp}$
var	a non-empty character vector which indicates the name of the variable(s) where summary statistics will be computed
grp	${\tt NULL}$ (default) or a character vector which indicates the name of the variable(s) whose value define the subgroup for generating the descriptive statistic
statistics	a non-empty character vector which indicates the statistics to be computed. Must be at least one of the following: "n", "nnmiss", "nmiss", "sum", "css", "ucss", "se.skew", "se.kurtosis", "range", "iqr", "var", "sd", "se.mean", "cv", "mean", "median", "mode", "min", "max", "q1", "q3", "skew" and/or "kurtosis".

Details

The elements of var should correspond to numeric variable in the data frame.

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

See Also

Examples

design.alpha

Description

Usage

Arguments

Details

Value

Author(s)

See Also

Examples

		-				
des	ıan	Α	Int	าลเ	∟att	ıce

Randomization for Alpha Lattice Design

Description

Generate randomization for Alpha Lattice Design.

Usage

```
designAlphaLattice(generate, blksize, r = 2, trial = 1, file = NULL)
```

Arguments

generate	a list of named object that specify the factors whose levels are to be generated. The component of should be either <i>i</i>) a single numeric value that is the number of levels or <i>ii</i>) a character vector that contains the labels of the levels of the factors
blksize	number of plot per block
r	a single numeric value which indicates the number of replicates
trial	a single numeric value which indicates the number of trial
file	a character string indicating the labels for the factors or ${\tt NULL}$

Details

Value

A data frame.

Author(s)

Alaine A. Gulles

Package agricolae

See Also

```
designAugmented, designLattice, designLSD, designRCBD,
designSplit, designStrip
```

Examples

```
## generate 10 levels of a factor
```

```
designAlphaLattice(list(Treatment = 1:30), blksize = 3, r = 2, trial = 1)
```

designAugmented

Randomization for Augmented Design

Description

Generates randomization for augmented design in randomized complete block and Latin Square.

Usage

Arguments

checkTrmt	a non-null character strings which indicates the replicated treatment level or a single numeric value which indicates the number of levels of the replicated treatment
newTrmt	a non-null character strings which indicates the level of the unreplicated treatment or a single numeric value which indicates the number of levels of the unreplicated treatment
r	a single numeric value which indicates the number of replicate or ${\tt NULL}$
trial	a single numeric value which indicates the number of trial
design	a character string which indicate the experimental design used. Must be any one of the following: 'rcbd' (for randomized complete block design) or 'lsd' (Latin Square design)
display	logical which indicate whether an output should be displayed in the R console
file	a character string indicating the labels for the factors or NULL

Details

If the design is 'rcbd', r should be a numeric value. Otherwise, NULL.

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

Package agricolae

See Also

```
designAugmented, designLattice, designLSD, designRCBD,
designSplit, designStrip
```

Examples

generate randomization for augmented RCBD wherein replicated treatment has 6 levels replicated 5 times and unreplicated treatment has 60 levels

```
designAugmented(checkTrmt = 6, newTrmt = 60, r = 5, trial = 2,
    design = "rcbd")
```

designAugmentedLSD

Description

Usage

Arguments

Details

Value

Author(s)		
Reference(s)		
See Also		
Examples		
designAugmentedRCB		
Description		
Usage		
Arguments		
Details		
Value		
Author(s)		
Reference(s)		
See Also		

Examples

designBIBD

Randomization for Balanced Incomplete Block Design

Description

Generate randomization for balanced incomplete block design.

Usage

Arguments

generate	a list that specify the factor. See details.
blkSize	a single numeric value which indicates the plots per block or the block size. See details.
trial	a single numeric value which indicates the number of trial
display	logical which indicate whether an output should be displayed in the R console
file	a character string indicating the labels for the factors or NULL

Details

The generate is a list of named object that specify the factors whose levels are to be generated. The component of should be either *i*) a single numeric value that is the number of levels or *ii*) a character vector that contains the labels of the levels of the factors

The blkSize should be less than the number of treatment.

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

Package agricolae

See Also

```
designAugmented, designLattice, designLSD, designRCBD,
designSplit, designStrip
```

Examples

```
## generate 10 levels of a factor
```

```
designCRD(list(variety = 10))
```

designCRD

Randomization for Completely Randomized Design

Description

Generate randomization for completely randomized design for any number of factors.

Usage

```
designCRD(generate, r = 2, trial = 1, display = TRUE, file = NULL)
```

Arguments

generate	a list of named object that specify the factors whose levels are to be generated. The component of should be either <i>i</i>) a single numeric value that is the number of levels or <i>ii</i>) a character vector that contains the labels of the levels of the factors
r	a single numeric value which indicates the number of replicates
trial	a single numeric value which indicates the number of trial
display	logical which indicate whether an output should be displayed in the R console
file	a character string indicating the labels for the factors or ${\tt NULL}$

Details

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

Package agricolae

See Also

```
designAugmented, designLattice, designLSD, designRCBD,
designSplit, designStrip
```

Examples

```
## generate 10 levels of a factor replicated twice for 1 trial
```

```
designCRD(list(variety = 10))
```

generate a randomization for treatment combination of a 10 x 5 factorial experiment replicated 5 times for 3 trials

```
designCRD(generate = list(variety = 1:10, fertilizer = 5), r = 5,
    trial = 3)
```

designLattice

Randomization for Lattice Design

Description

Generates randomization for partial and balanced lattice designs.

Usage

```
designLattice(generate, r = 1, trial = 1, file = NULL)
```

Arguments

generate	a list of named object that specify the factors whose levels are to be generated. The component of should be either <i>i</i>) a single numeric value that is the number of levels or <i>ii</i>) a character vector that contains the labels of the levels of the factors
r	a single numeric value which indicates the number of replicates
trial	a single numeric value which indicates the number of trial
file	a character string indicating the labels for the factors or ${\tt NULL}$

Details

Value

A data frame.

Author(s)

Alaine A. Gulles

Package agricolae

See Also

```
designAugmented, designLattice, designCRD, designRCBD,
designSplit, designStrip
```

Examples

generate 10 levels of a factor

	\mathbf{a}
designLS	.,

Randomization for Latin Square Design

Description

Generate randomization for Latin Square design for any number of factors.

Usage

```
designLSD(generate, trial = 1, display = TRUE, file = NULL)
```

Arguments

generate	a list of named object that specify the factors whose levels are to be generated. The component of should be either <i>i</i>) a single numeric value that is the number of levels or <i>ii</i>) a character vector that contains the labels of the levels of the factors
trial	a single numeric value which indicates the number of trial
display	logical which indicate whether an output should be displayed in the R console
file	a character string indicating the labels for the factors or ${\tt NULL}$

Details

Value

A data frame.

Author(s)

Alaine A. Gulles

Package agricolae

See Also

```
designAugmented, designLattice, designCRD, designRCBD,
designSplit, designStrip
```

Examples

```
## generate 10 levels of a factor
```

```
designLSD(list(variety = 10))
```

generate a randomization for treatment combination of a 10 x 5 factorial experiment replicated 5 times for 3 trials

designRCBD

Randomization for Randomized Complete Block Design

Description

Generate randomization for randomized complete block design for any number of factors.

Usage

```
designRCBD(generate, r = 2, trial = 1, display = TRUE, file = NULL)
```

Arguments

generate	a list of named object that specify the factors whose levels are to be generated. The component of should be either <i>i</i>) a single numeric value that is the number of levels or <i>ii</i>) a character vector that contains the labels of the levels of the factors
r	a single numeric value which indicates the number of replicates
trial	a single numeric value which indicates the number of trial
display	logical which indicate whether an output should be displayed in the R console
file	a character string indicating the labels for the factors or \mathtt{NULL}

Details

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

Package agricolae

See Also

```
designAugmented, designLattice, designCRD, designLSD, designSplit, designStrip
```

Examples

```
## generate 10 levels of a factor
```

```
designRCBD(list(variety = 10))
```

generate a randomization for treatment combination of a 10 x 5 factorial experiment replicated 5 times for 3 trials

```
designRCBD (generate = list(variety = 1:10, fertilizer = 5), r =
    5, trial = 3)
```

designSplit

Randomization for Family of Split Plot Design

Description

Generates randomization for split plot design, split-split plot design and split-split plot design in complete block design (CRD), randomized complete block design (RCBD) or Latin Square design (LSD).

Usage

Arguments

```
    main
    a list that specify the main plot factor. See details.
    sub
    a list that specify the sub plot factor. See details.
    ssub
    NULL or a list that specify the sub-sub plot factor. See details.
    sssub
    NULL or a list that specify the sub-sub-sub plot factor. See details.
```

r	NULL or a single numeric value which indicates the number of replicates. See details.
trial	a single numeric value which indicates the number of trial
design	a character string indicating the experimental design to be used and must be one of "crd" (default), "rcbd", or "lsd".
display	logical which indicate whether an output should be displayed in the R console
file	a character string indicating the labels for the factors or NULL

Details

The main, sub, ssub and sssub are list of named object that specify the factors whose levels are to be generated. The component of should be either *i*) a single numeric value that is the number of levels or *ii*) a character vector that contains the labels of the levels of the factors

If the design is crd or rcbd , r should be non-null. Otherwise, r should be equal to NULL .

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

Package agricolae

See Also

```
designAugmented, designLattice, designLSD, designRCBD, designSplit, designStrip
```

Examples

generate a randomization for split-plot design in CRD with variety (with 5 levels) as main plot factor and nitrogen (with 4 levels) as subplot factor, replicated 3 times conducted for 2 trials

generate a randomization for split-split-plot design in RCBD with A (with 5 levels) as main plot factor, B (with 4 levels) as subplot factor, and C (with 2 levels) as sub-sub plot factor with 3 blocks conducted for 2 trials

```
designSplit(main = list(A = 5), sub = = list(B = 4), ssub = list(C = 2), r = 3, trial = 2, design = 'rcbd')
```

generate a randomization for split-split-split-plot design in LSD with A (with 5 levels) as main plot factor, B (with 4 levels) as subplot factor, C (with 2 levels) as sub-sub plot factor and D (with 2 levels) as sub-sub-sub plot factor conducted for 2 trials

```
designSplit(main = list(A = 5), sub = = list(B = 4), ssub = list(C = 2), ), sssub = list(D = 2), trial = 2, design = 'lsd')
```

designStrip

Randomization for the Family of Strip Plot Design

Description

Generate randomization for strip plot design, strip-split plot design and strip-split-split plot design

Usage

Arguments

vertical	a list that specify the vertical factor. See details.
horizontal	a list that specify the horizontal factor. See details.
sub	NULL or a list that specify the sub plot factor. See details.
ssub	${\tt NULL}$ or a list that specify the sub-sub plot factor. See details.
r	a single numeric value which indicates the number of blocks
trial	a single numeric value which indicates the number of trial
display	logical which indicate whether an output should be displayed in the R console
file	a character string indicating the labels for the factors or ${\tt NULL}$

Details

The <code>vertical</code>, <code>horizontal</code>, <code>sub</code> and <code>ssub</code> are list of named object that specify the factors whose levels are to be generated. The component of should be either <code>i</code>) a single numeric value that is the number of levels or <code>ii</code>) a character vector that contains the labels of the levels of the factors

Value

A data frame.

Author(s)

Alaine A. Gulles

Package agricolae

See Also

```
designAugmented, designLattice, designLSD, designRCBD, designSplit, designStrip
```

Examples

```
## generate 10 levels of a factor
```

```
designCRD(list(variety = 10))
```

generate a randomization for treatment combination of a 10 x 5 factorial experiment replicated 5 times for 3 trials

```
designCRD(generate = list(variety = 1:10, fertilizer = 5), r = 5,
    trial = 3)
```

FactorList

List of Factors and its levels

Description

Generate a named list which contains the levels of a factor.

Usage

```
FactorList(generate)
```

Arguments

generate

a list of named object that specify the factors whose levels are to be generated. The component of should be either *i*) a single numeric value that is the number of levels or *ii*) a character vector that contains the labels of the levels of the factors

Details

If the input is a numeric value, the levels of the factor that will be generated is

Value

A named list which contain the levels of one of more factors.

Author(s)

Alaine A. Gulles

Reference(s)

Package dae

See Also

GenerateFactor

Examples

```
## if the input is a numeric value, output will be a list named A with levels A1, A2,
        A3, A4, A5
generate1 = list(A = 5)
FactorList(generate1)
## output will be a list with two elements named variety with levels variety1,
        variety2, variety3, variety4, variety5 named nitrogen with levels 1,
        2, 3, 4, 5
FactorList(list(variety = 5, nitrogen = 1:5))
```

GenerateFactor

Generate levels a factor

Description

Generate the levels of the treatment or levels of the treatment combination.

Usage

```
GenerateFactor(generate, times = 1)
```

Arguments

generate a list of named object that specify the factors whose levels are to be generated. The component of should be either i) a single numeric value

that is the number of levels or *ii*) a character vector that contains the

labels of the levels of the factors

times the number of times to repeat the whole generated patter of levels

generated

Details

Value

A data frame of generated levels with columns corresponding to the name of the factors in the generate list.

Warning

Do not use the factor labels F and T as these might be confused with FALSE and TRUE.

Author(s)

Alaine A. Gulles

Reference(s)

Package dae

See Also

FactorList

Examples

HeteroskedasticityTest

Test for Homogeneity of Variances

Description

Perform test for homogeneity of variance using the Bartlett's test and Levene's test.

Usage

```
HeteroskedasticityTest(data, var, grp, method = "bartlett")
```

Arguments

data	a non-null character string which indicates the name of the data frame containing the variables specified in ${\tt var}$ and ${\tt grp}$		
var	a non-empty character vector which indicates the name of the variable(s)		
grp	a non-null character string which indicates the grouping variable		
method	a character string indicating which method to be used for testing the equality of variances; must be one of the following: "bartlett" (default) and/or "levene"		

Details

Value

Details Value A data frame Author(s) Reference(s) See Also bartlett.test, levene.test **Examples** ## read the data set Gerua <- read.csv(file = 'E:/gerua_split.csv')</pre> ## perform heteroskedasticity test for variables DFF and PLHT per level of TPL HeteroskedasticityTest(data = 'Gerua', var = c('DFF', 'PLHT'), grp = c('TPL'), method = c('bartlett', 'levene')) is.valid.name Description Usage **Arguments**

•
Author(s)
Reference(s)
See Also
Examples
is.wholenumber Wholenumber
<pre>Description Determine if the input is a wholenumber or not. Usage is.wholenumber(x, tol = .Machine\$double.eps^0.5)</pre>
Arguments
x an object to be tested
tol a numerical tolerance
Details
Value
Author(s)
Reference(s)
See Also

Examples

kurtosis

Kurtosis

Description

Computes the kurtosis coefficient of a variable.

Usage

```
kurtosis(x, na.rm = TRUE)
coefKurtosis(x, na.rm = TRUE)
```

Arguments

x a numeric vector or data frame

 ${\tt na.rm}$ a logical value indicating whether NA values should be remove before computation proceeds

Details

Value

Author(s)

Reference(s)

See Also

Examples

LikelihoodRatioTest

Likelihood Ratio Test

Description

Usage

```
LikelihoodRatioTest(x, y = NULL)
```

Arguments

- x a vector or a matrix
- y a vector; ignored if x is a matrix

Details

If x is a matrix it should have at least two rows and columns. Otherwise, x and y must be vectors or factors of the same length.

Value

Author(s)

Reference(s)

See Also

```
ContingencyCoef, CramersV, PhiCoef
```

Examples

LinearRegressionAnalysis

Description

Perform linear regression analysis.

Usage

LinearRegressionAnalysis(data, depVar, indepVar, constant = TRUE, statistics = TRUE, confInt = FALSE, confLevel = 0.95, covMatrix = FALSE, normality = NULL, heteroskedasticity = NULL, autoCorr = FALSE, VIF = FALSE, COOKS = FALSE, leverage = FALSE)

Arguments

J	
data	a non-null character string which indicates the name of the data frame
depVar	a non-empty character vector which indicates the dependent variable
indepVar	a non-empty character vector which indicates the independent variable
statistics	logical: should descriptive statistics of the dependent and independent variables be displayed? Default is ${\tt FALSE}.$ See 'Details'.
confInt	logical: should confidence interval of the regression constant be computed? Default is ${\tt FALSE}.$ See 'Details'.
confLevel	a single numeric value which indicate the level of confidence to be used when computing the confidence interval of the regression coefficient
covMatrix	logical: should the covariance matrix of the dependent and independent variables be displayed? Default is ${\tt FALSE}.$
normality	${\tt NULL}$ (default) or a non-empty character vector which indicates test for normality to be performed
heteroskedasticity	${\tt NULL}$ (default) or $$ non-empty character vector which indicates test for heteroskedasticity to be performed
autoCorr	logical: should durbin Watson statistics be computed? Default is ${\tt FALSE}.$ See 'Details'.
VIF	logical: should variance inflation factor be computed? Default is ${\tt FALSE}.$ See 'Details'.
COOKS	logical: should Cook's distance be save? Default is FALSE.
leverage	logical: should leverage value be save? Default is FALSE.

Details

Value

A list with the following components:

dataframe data frame of the original data set with the predicted and residual values.

```
modelFit R object
```

Author(s)

Reference(s)

See Also

Examples

MergeData

Merge Dataframe

Description

Merge two data frame.

Usage

Arguments

```
MasterData
TransactionData
byMaster, byTransact
MasterVarInclude = names(MasterData)
TransactVarInclude = names(TransactionData)
allMaster = FALSE
allTransact = FALSE
```

Details Value Author(s) Reference(s) See Also **Examples** modalValue Mode **Description** Determine the modal value of a variable if it exist. **Usage** modalValue(x, na.rm = TRUE)**Arguments** a numeric vector or data frame a logical value indicating whether NA values should be remove before na.rm computation proceeds **Details** Value

Technical Documents Page | 65

Author(s)

See Also

Examples

			_
	rma	1:4. <i>.</i> 7	1
NO	rma	IITV I	I DCT

Test for Normality

Description

Performs test for normality using the Wilk-Shapiro, Shapiro-Francia, Cramer-von Mises, Anderson-Darling and Kolmogorov-Smirnov test.

Usage

```
NormalityTest(data, var, grp = NULL, method = "swilk")
```

Arguments

data	a non-null character string which indicates the name of the data frame containing the variables specified in ${\tt var}$ and ${\tt grp}$		
var	a non-empty character vector which indicates the name of the variable(s)		
grp	NULL or a character string which indicates the grouping variable		
method	a character string indicating which method to be used to test for normality; must be one of the following: "swilk" (default), "sfrancia", "cramer", "anderson" and/or "ks".		

Details

Value

A data frame.

Author(s)

Package 'nortest'

See Also

Examples

PhiCoef

Phi Coefficient

Description

Usage

```
PhiCoef(x, y = NULL)
```

Arguments

- x a vector or a matrix
- y a vector; ignored if x is a matrix

Details

If x is a matrix it should have at least two rows and columns. Otherwise, x and y must be vectors or factors of the same length.

Value

Author(s)

See Also

```
ContingencyCoef, CramersV, LikelihoodRatioTest
```

Examples

nrin	t(:n	rrM	atrix

Print the Correlation Matrix

Description

Display the correlation matrix with its p-value and number of observation like SAS.

Usage

```
printCorrMatrix(coef, pval = NULL, n)
```

Arguments

coef a matrix of the correlation coefficient

pval NULL or a matrix p-value

n a matrix of the number of observation

Details

Value

Author(s)

Reference(s)

See Also

cor

cor.test

Examples

printDataFrame

Printing Data Frames

Description

Print a data frame.

Usage

printDataFrame(data)

Arguments

data

object of class data.frame

Details

Value

Author(s)

Reference(s)

See Also

print

data.frame

Examples

randomizeLattice

Randomization for Lattice Design

Description

Usage **Arguments Details** Value Author(s) Reference(s) See Also **Examples** Skewness Coefficient skewness

Description

Computes for the skewness coefficient.

Usage

```
skewness(x, na.rm = TRUE)
skew(x, na.rm = TRUE)
```

Arguments

x a numeric vector or data frame

na.rm a logical value indicating whether NA values should be remove before computation proceeds

Details

Value

Author(s)

Reference(s)

See Also

Examples

SortCases

Sort the observation of a dataset

Description

This function rearranges the observation of the data frame based on the value of one or more sorting variables.

Usage

```
SortCases(data, var, grp, sortBy = "ascending")
```

Arguments

data a data frame or name of the data frame

var a non-empty character vector which indicates the variable(s) which will be

the basis for sorting the data frame

sortBy a character string or vector which indicates the order by which the

variable will be sorted. Possible value are "ascending" and/or

"descending"

Details

If var contains more than one item, observations are sorted for each variable within categories of the preceding variable of the argument var. Further, each variable can be rearrange in ascending or descending order, with ascending order as the default option.

The default value for <code>sortBy</code> is <code>ascending</code>. The arguments <code>var</code> and <code>sortBy</code> must be of the same length. Incase <code>var</code> contains more than one item and <code>sortBy</code> has only one item, the variables will be rearrange according to <code>sortBy</code>. If <code>sortBy</code> contains more items than <code>var</code>, the programs creates a new vector of <code>sortBy</code> with the same length as <code>var</code>. If <code>var</code> contains more items than <code>sortBy</code>, the programs creates a new vector of <code>sortBy</code> with the same length as <code>var</code>.

Value

A data frame.

Author(s)

Alaine A. Gulles

Reference(s)

See Also

Examples

stdkurtosis

Standard Error of Kurtosis

Description

Computes for the standard error of kurtosis.

Usage

```
stdkurtosis(x, na.rm = TRUE)
se.kurtosis(x, na.rm = TRUE)
```

Arguments

x a numeric vector or data frame

 ${\tt na.rm}$ a logical value indicating whether NA values should be remove before computation proceeds

Details

Value

Author(s)

Reference(s)

See Also

Examples

stdmean

Standard Error of the Mean

Description

Computes for the standard error of the mean.

Usage

```
stdmean(x, na.rm = TRUE)
se.mean(x, na.rm = TRUE)
```

Arguments

x a numeric vector or data frame

na.rm a logical value indicating whether NA values should be remove before computation proceeds

Details

Value

Author(s)

Alaine A. Gulles

Reference(s)

See Also

Examples

stdskewness

Standard Error of Skewness

Description

Computes for the standard error of skewness.

Usage

```
stdskewness(x, na.rm = TRUE)
se.skewness(x, na.rm = TRUE)
```

Arguments

x a numeric vector or data frame

 ${\tt na.rm}$ a logical value indicating whether NA values should be remove before computation proceeds

Details

Value

Author(s)

Alaine A. Gulles

Reference(s)

See Also

ToLong	Restructure Data Frame to Long Format
--------	---------------------------------------

Description

This function restructures a data frame from wide format to long format.

Usage

```
ToLong(data, varying, timevar, vnames, idvar, label = NULL)
```

Arguments

data	a data frame or name of the data frame
varying	names of one or more variables in the long format that identify multiple records form the same group/individual
timevar	the variable in long format that differentiates the multiple records from the same group or individual
vnames	names of the variables in the long format that corresponds to multiple variables in the wide format
idvar	names of one or more variables in the long format that identify multiple records form the same group/individual
label	NULL or a character vector which contains the levels of the vnames

Details

Value

The restructured data frame.

Author(s)

Alaine A. Gulles

Reference(s)

See Also

reshape, ToWide

ToWide

Restructure Data Frame to Wide Format

Description

This function restructures a data frame from long format to wide format. This functions can be used when there are groups of related rows in the data and the user want to appear in groups of columns in the new data file.

Usage

```
ToWide (data, vnames, timevar, idvar)
```

Arguments

•	
data	a data frame or name of the data frame
vnames	name of one or more variables in the long format that which is to be divided into two or more columns in the wide format
timevar	the variable in long format that differentiates the multiple records from the same group or individual; name of one or more variables in the long format which will determine the groupings of the values of the variable(s) to be reshape
idvar	names of one or more variables in the long format that will be retained to describe the individual cases or observations in the wide format

Details

Value

The restructured data frame.

Author(s)

Alaine A. Gulles

Reference(s)

See Also

```
reshape, ToLong
```

ucss

Uncorrected Sum of Squares

Description

Compute the uncorrected sum of squares.

Usage

```
ucss(x, na.rm = TRUE)
```

Arguments

x a numeric vector or data frame

 ${\tt na.rm}$ a logical value indicating whether NA values should be remove before computation proceeds

Details

Value

Author(s)

Alaine A. Gulles

Reference(s)

See Also

Examples

Statistical Tool for Agricultural Research Beta Version	
Description	
Usage	
Arguments	
Details	
Details	
Value	
Author(s)	
Alaine A. Gulles	
Defense and a	
Reference(s)	
See Also	
Examples	

DATA SET

Gerua	Gerua
Description	
The Gerua C	lata frame has 156 rows and 7 variables.
Formats	
This data fra	me contains the following columns:
REP	a factor with 3 levels (1 to 3) denoting the replicates
TPL	a factor with 2 levels (D and N)
CULT	a factor with 26 levels
DFF	a numeric vector of number of days after flowering
PLHT	a numeric vector of plant height
PNCLE	a numeric vector of number of panicle
GRNYLD	a numeric vector of grain yield
Details	
Source	
Examples	
Insecticides	

Description

The Insecticides data frame has 28 rows and 3 variables.

Formats

This data frame contains the following columns:

Treatment a factor with 7 levels (Azodin, DDT + γ -BHC, Dimercon-Boom,

Dimercon-Knap, Dol-Mix (1 kg), Dol-Mix (2 kg) and Control) denoting

the Different Foliar and Granular Insecticides

Rep a factor with 4 levels (1 to 4) denoting the replicates

GrainYield a numeric vector of grain yield in kg/ha

Details

Grain yield of rice resulting from use of different foliar and granular insecticides for the control of brown planthoppers and stem borers from a Completely Randomized Design Experiment with Four Replicates and 7 treatments.

Source

Gomez, Kwanchai A. and Arturo A. Gomez. (1984) *Statistical Procedures for Agricultural Research 2nd Edition.*

Examples

Maize	Maize

Description

The Maize data frame has 16 rows and 4 variables.

Formats

This data frame contains the following columns:

Maize a factor with 4 levels denoting the Maize Hybrids (A, B, and D) and a

Check Variety (C)

Row a factor with 4 levels (1 to 4) denoting the row blocking factor

Column a factor with 4 levels (1 to 4) denoting the column blocking factor

GrainYield a numeric vector of grain yield in kg/ha

Details

Grain yield of three promising maize hybrids and a check variety from an experiment with Latin Square design.

Source

Gomez, Kwanchai A. and Arturo A. Gomez. (1984) *Statistical Procedures for Agricultural Research 2nd Edition.*

SeedingRate	Seeding Rate

Description

The SeedingRate data frame has 24 rows and 3 variables.

Formats

This data frame contains the following columns:

SeedingRate a factor with 6 levels (25, 50, 75, 100, 125 and 150) denoting the

Seeding Rate (treatment) in kg seed/ha

Rep a factor with 4 levels (1 to 4) denoting the replicates

GrainYield a numeric vector of grain yield in kg/ha

Details

Grain Yield of Rice Variety IR8 with Six Different Rates of Seeding, from a Randomized Complete Block Design Experiment with Four Replicates.

Source

Gomez, Kwanchai A. and Arturo A. Gomez. (1984) *Statistical Procedures for Agricultural Research 2nd Edition*.

Examples

Statistical Tool for Agricultural Research Beta Version
Description
Usage
Arguments
Details
Value
Author(s)
Reference(s)
See Also
Examples

DATA SET

Gerua Gerua

Description

The Gerua data frame has 156 rows and 7 variables.

Formats

This data frame contains the following columns:

REP a factor with 3 levels (1 to 3) denoting the replicates

TPL a factor with 2 levels (D and N)

CULT a factor with 26 levels

DFF a numeric vector of number of days after flowering

PLHT a numeric vector of plant height

PNCLE a numeric vector of number of panicle

GRNYLD a numeric vector of grain yield

Details

Source

Examples

Insecticides

Description

The Insecticides data frame has 28 rows and 3 variables.

Formats

This data frame contains the following columns:

Treatment a factor with 7 levels (Azodin, DDT + γ -BHC, Dimercon-Boom,

Dimercon-Knap, Dol-Mix (1 kg), Dol-Mix (2 kg) and Control) denoting

the Different Foliar and Granular Insecticides

Rep a factor with 4 levels (1 to 4) denoting the replicates

GrainYield a numeric vector of grain yield in kg/ha

Details

Grain yield of rice resulting from use of different foliar and granular insecticides for the control of brown planthoppers and stem borers from a Completely Randomized Design Experiment with Four Replicates and 7 treatments.

Source

Gomez, Kwanchai A. and Arturo A. Gomez. (1984) *Statistical Procedures for Agricultural Research 2nd Edition*.

Examples

|--|

Description

The Maize data frame has 16 rows and 4 variables.

Formats

This data frame contains the following columns:

Maize a factor with 4 levels denoting the Maize Hybrids (A, B, and D) and a

Check Variety (C)

Row a factor with 4 levels (1 to 4) denoting the row blocking factor

Column a factor with 4 levels (1 to 4) denoting the column blocking factor

GrainYield a numeric vector of grain yield in kg/ha

Details

Grain yield of three promising maize hybrids and a check variety from an experiment with Latin Square design.

Source

Gomez, Kwanchai A. and Arturo A. Gomez. (1984) *Statistical Procedures for Agricultural Research 2nd Edition.*

Examples

SeedingRate	Seeding Rate	

Description

The SeedingRate data frame has 24 rows and 3 variables.

Formats

This data frame contains the following columns:

SeedingRate a factor with 6 levels (25, 50, 75, 100, 125 and 150) denoting the

Seeding Rate (treatment) in kg seed/ha

Rep a factor with 4 levels (1 to 4) denoting the replicates

GrainYield a numeric vector of grain yield in kg/ha

Details

Grain Yield of Rice Variety IR8 with Six Different Rates of Seeding, from a Randomized Complete Block Design Experiment with Four Replicates.

Source

Gomez, Kwanchai A. and Arturo A. Gomez. (1984) *Statistical Procedures for Agricultural Research 2nd Edition.*

Examples

Statistical Tool for Agricultural Research Beta Version	
Description	
Usage	
Arguments	
Details	
Value	
Author(s)	
Reference(s)	
See Also	
Examples	