Universidade Estadual Paulista "Júlio de Mesquita Filho"

Notas de aula Sistemas p-fuzzy

Prof. Dr. Vinícius Francisco Wasques viniciuswasques@gmail.com

14 de janeiro de 2022

Propriedades de operações entre conjuntos fuzzy

Na última aula fizemos um exercício sobre modelagem do conjunto fuzzy das pessoas jovens e idosas. É possível perceber que $\varphi_A(x) + \varphi_B(x) = 1$. Isso significa que podemos escrever o seguinte:

$$\varphi_A(x) = 1 - \varphi_B(x)$$
 e também $\varphi_B(x) = 1 - \varphi_A(x)$.

Em outras palavras, os conjuntos fuzzy A e B são complementares em U. Isto é, $A=B^c$ e $B=A^c$. Vimos através do item g) do exercício da última aula, que a função de pertinência de $A\cap B$ é não nula. Portanto, a intersecção é diferente do vazio. Com isso temos que para conjuntos fuzzy

$$A \cap A^c \neq \emptyset$$
.

Na teoria conjuntista clássica temos que $A \cup A^c = U$, para qualquer conjunto A. Por outro lado, na teoria de conjuntos fuzzy essa propriedade não é válida, isto é, $A \cup A^c \neq U$, como é possível perceber no item g) do exercício da última aula. Veja que no intervalo entre 30 e 50, a função de pertinência da união $A \cup B$ é diferente da função constante igual a 1.

Pergunta: Quais propriedades da teoria clássica também são válidas na teoria de conjuntos fuzzy?

Propriedades: Sejam $A, B \in C$ conjuntos fuzzy quaisquer. Então são válidas as seguintes propriedades:

- 1. $A \cup B = B \cup A$:
- 2. $A \cap B = B \cap A$;
- 3. $\emptyset \subseteq A \subseteq U$;
- 4. Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$;
- 5. $(A \cup B) \cup C = A \cup (B \cup C)$;
- 6. $(A \cap B) \cap C = A \cap (B \cap C)$;
- 7. $A \cup A = A$;
- 8. $A \cap A = A$;
- **9**. $\emptyset \cup A = A$:
- 10. $U \cap A = A$;
- **11.** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$
- **12.** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$
- 13. $(A \cup B)^c = A^c \cap B^c$ e $(A \cap B)^c = A^c \cup B^c$ (Leis de De Morgan).

Demonstração:

- 1. Note que $\varphi_{A\cup B}(x) = \max\{\varphi_A(x), \varphi_B(x)\} = \max\{\varphi_B(x), \varphi_A(x)\} = \varphi_{B\cup A}(x)$.
- 2. Análogo ao item anterior.
- 3. Veja que $\varphi_{\emptyset}(x)=0$, para todo $x\in U$. Também, $\varphi_U(x)=1$, para todo elemento $x\in U$. Agora perceba que para qualquer conjunto fuzzy A, temos que $0\leq \varphi_A(x)\leq 1$, uma vez que $\varphi_A:U\to [0,1]$. Sendo assim,

$$\varphi_{\emptyset}(x) = 0 \le \varphi_A(x) \le 1 = \varphi_U(x).$$

Portanto, $\emptyset \subseteq A \subseteq U$.

- 4. Exercício.
- 5. Temos que $\varphi_{(A \cup B) \cup C}(x) = \max\{\varphi_{A \cup B}(x), \varphi_{C}(x)\} = \max\{(\max\{\varphi_{A}(x), \varphi_{B}(x)\}), \varphi_{C}(x)\}$. Por outro lado, $\varphi_{A \cup (B \cup C)}(x) = \max\{\varphi_{A}(x), \varphi_{B \cup C}(x)\} = \max\{\varphi_{A}(x), (\max\{\varphi_{B}(x), \varphi_{C}(x)\})\}$. Vamos supor então os seguintes casos:
 - (a) $\varphi_A(x) \leq \varphi_B(x) \leq \varphi_C(x)$
 - (b) $\varphi_A(x) \le \varphi_C(x) \le \varphi_B(x)$
 - (c) $\varphi_B(x) \leq \varphi_A(x) \leq \varphi_C(x)$
 - (d) $\varphi_B(x) \le \varphi_C(x) \le \varphi_A(x)$
 - (e) $\varphi_C(x) \leq \varphi_B(x) \leq \varphi_A(x)$
 - (f) $\varphi_C(x) \leq \varphi_A(x) \leq \varphi_B(x)$

Vejamos o caso (a). Assim,

$$\varphi_{(A \cup B) \cup C}(x) = \max\{(\max\{\varphi_A(x), \varphi_B(x)\}), \varphi_C(x)\} = \max\{\varphi_B(x), \varphi_C(x)\} = \varphi_C(x).$$

Por outro lado,

$$\varphi_{A \cup (B \cup C)}(x) = \max\{\varphi_A(x), (\max\{\varphi_B(x), \varphi_C(x)\})\} = \max\{\varphi_A(x), \varphi_C(x)\} = \varphi_C(x).$$

Analogamente, pode-se mostrar para os demais casos. Logo, segue a igualdade.

Exercício (para entregar): Demonstre as propriedades 4, 7, 10 e 13.

Dica para o item 13: o máximo entre duas funções pode ser escrito da seguinte forma:

$$\max\{f(x), g(x)\} = \frac{1}{2} (f(x) + g(x) + |f(x) - g(x)|)$$

e o mínimo é pode ser escrito como

$$\min\{f(x), g(x)\} = \frac{1}{2} \left(f(x) + g(x) - |f(x) - g(x)| \right)$$