

CERAMICS

A MANUAL FOR

CHEMISTS, ENGINEERS AND MANUFACTURERS

Including a Collection of Tables and Problems for Laboratory and Plant Use

WITH A DICTIONARY OF USEFUL MINERALS

BY

A. MALINOVZSKY, Ceramist

Member, American Ceramic Society, English Ceramic Society, American Chemical Society, etc.

ILLUSTRATED

NEW YORK
D. VAN NOSTRAND COMPANY
EIGHT WARREN STREET
1921

Copyright, 1921 BY D. VAN NOSTRAND COMPANY

25756

THIS LITTLE BOOK IS RESPECTFULLY DEDICATED TO

THOSE WHO ARE SEEKING SUCCESS IN THE SOLUTION OF NATURE'S LAW AND

WHO WISH TO UNFOLD AND COMMAND ITS DEEPEST SECRET.

Digitized by the Internet Archive in 2010

PREFACE

CERAMICS includes all industries manufacturing silicate ware, and all kinds of clay products, glasses, enamels, cements, mortars, etc.

The ceramic industry is one of the oldest in the world, its beginning might almost be said to have been coincident with the birth of humanity, since it was the first industry in which our early ancestors engaged. To-day it ranks third in importance.

The author has attempted to write a condensed book on the silicate industries, including the methods of qualitative and quantitative analysis of silicates and chemical and ceramic calculations in use in every day practice in the silicate industry. As success in the manufacture of clay products depends largely upon the accuracy of the calculations, it is hoped that this book will be found valuable by chemists and ceramic engineers as an aid for the solution of the various mathematical problems that arise.

Beginners preparing for a career in ceramic engineering will find this book of service not only for its mathematics, but for its presentation of the fundamentals of ceramic laboratory procedure as combined with the elementary laws of chemistry.

The author has made free use of original formulas and tables from the following works: Keramische Rundschau, Sprechsaal Kalendar, Grunwald; Enamel Industry Trans. American Ceramic Society. H. Ries; Clays, their Occurrence, Properties and Use. E. Bourry; A Treatise on Ceramic Industry. Havard; Refractory and Furnace. J. W. Mellor; Treatise on the Ceramic Industries.

He wishes to express here his thanks to Mr. J. E. Boynton, Mechanical Engineer, for furnishing valuable formulas for calculations, and also to Professor M. J. Campbell for valuable assistance.

ANDREW MALINOVZSKY.

Bellville, Ill., April, 1921.

CONTENTS

CLAYS	AGE
Weathering. Soaking. Molding and Drying. Burning. Glazes. Fritting. Crystals.	
REFRACTORY WARES	18
Some Defects and Their Remedies	36
QUALITATIVE ANALYSIS	43
QUANTITATIVE ANALYSIS	66
Notes on Calculations of the Results of Analysis Calculating the Rational Analysis from an Ultimate Analysis. Calculating Ceramic Bodies. Limited Value for Compounding Glazes. Enamels. Colors. Analysis of Known Refractory Clays. The Relation of Formula Quantities to Percentage Composition. Calculating the Per Cent and Cost of the Raw Material. Calculations of Slip. Calculating the Refractory Value of Fire Clay. Cement. Cost of Manufacture of Ceramic Bodies. Calculation of B.t.u. of Coal from Proximate and Elementary Analysis. Chemical Formula, Atomic or Molecular Weight and Logarithms of Various Substances	82

CONTENTS

D. D.	PAGE
Physical Properties	
SEGER CONES AND THEIR FUSING-POINTS	173
MINERALS USED IN THE CERAMIC INDUSTRY	175
Formation and Melting Temperature of Silicates	203
Melting Points of Feldspars and Silicates	204
Weight of a Cubic Foot of Various Materials	216
MENSURATION	218
Size of Bins and Tanks	222
Logarithms	228
Transmission of Power	253
CALCULATING THE NUMBER OF BRICKS IN THE CROWN OF A CIRCULAR KILN	263
METRIC MEASURES	265
Useful Information	268
INDEX	271

CERAMIC INDUSTRIES

CLAYS

CLAY is a term familiar to everyone. It designates a tenacious earthy substance, composed chiefly of a mixture of silica and alumina in various proportions and in a variety of colors. Clay when wet is plastic and can be molded by hand or machine into any desired shape and it will preserve that form until dry enough to be handled and made permanently hard by fire. It is this property of plasticity that makes clay so valuable to man.

Clays have been formed by the disintegration of rocks (especially aluminous rocks) by the forces of nature, such as rain, snow, freezing, and thawing. Some clays have been carried in suspension in water for considerable distances from the mother rocks from which they were formed. These clays are known as transported clay. Then again, clay has been carried far from the mother rock by the action of glaciers. This clay is known as boulder or till. Where the clay has not been transported so far but that it can be traced to its mother rock, it is known as residual clay.

Owing to the difference in composition of the mother rocks and because of the rocky debris and other foreign material with which they become mixed in *transportation* clays differ very much in their chemical and

physical properties. They generally contain various impurities such as iron, lime, magnesia, potassium, sodium, titanium, etc., and also organic matter.

Pure clay, known technically as kaolin, is a hydrated silica of aluminum having the formula

$$Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$$
.

This is the basis of all the clays which are designated by the following names: ball, pottery, pipe, stoneware, fire, flint, slip, and brick clays, loam, marl, shale, etc. All of these clays range through all stages of impurity down to a point where the material contains but little or none of the clay base, and therefore cannot be technically classed as a clay.

Weathering.—Clays brought from the mine or bank and worked up at once usually crack in cubes very badly. So it is customary for the clay to be exposed to the weather some time before being manufactured into clay wares. The clay is exposed to rain, snow, freezing, thawing, etc., for a certain length of time, according to the purpose for which it is to be used. This is known as the weathering process.

The rain and snow are known as acid carriers. The snow acts the more energetically, as it often lies for months on the clay and as it melts in the spring, the melted snow percolates more uniformly through the clay and dissolves more of the impurities such as the alkaline earths and compounds of iron, sulphur, etc. At the same time vegetable substances and other organic compounds are decomposed. By this process the clay is rendered purer, the proportion of the colloid substance is increased, and therefore the clay becomes more plastic.

Soaking.—Another method of preparing clay is the so-called *soaking* process. The clay is placed in a pit and allowed to remain covered with water from twenty-four to seventy-two hours. To get the best results by this process the clay should be finely ground before being placed in the pit and enough water added so that no more water will be necessary when the wet clay is transferred to the pug mill.

Many manufacturers soak the clay only one night and then transfer it to the wet pan. This is the practice especially with shales, some of which are very hard and unless finely ground absorb the water slowly.

If the clay contains gravel or other rock fragments, this coarse material must be removed or else ground fine before the clay is used for manufacturing purposes. This is especially true of limestone.

The weathering, soaking, and tempering of the clay should never be neglected but should always be carefully carried out in the preparation of any clay or clay mixtures. Neglect in this particular spells failure.

As an example, the author had an experience with some washed clay which had been shipped into the factory. It was mixed and pressed. When examined the next day everything was found cracked. The whole was placed in a wet pan, then in the pug mill. After the clay rested for a week, it was reduced, sieved and pressed again. The articles then proved satisfactory.

The thoroughness of this process may be tested by pressing or molding some of the clay into brick shapes by hand and letting them dry. If the bricks crack in cube shapes, it is an indication that the clay has not been tempered and weathered sufficiently or that it is

too plastic or too fine. This is true of any mixture of clays.

Weathering or soaking is necessary even in the dry or semi-dry process.

In preparing clays or body mixtures, cleanliness and exactness must be practiced in every stage of the process throughout the whole plant. This is especially true in the manufacture of porcelain or stoneware or refractory. No ceramic engineer can hope to be successful unless every step of the process is put under his control and he sees to it that everything is done according to his instructions.

Molding and Drying.—When the weathering or soaking process is completed and the clay or body mixture is carefully prepared to a workable condition, the clay or mixture is then shaped by hand or machine and allowed to dry.

All clays or mixed bodies that are molded wet will contract on drying. This is called air shrinkage or dry shrinkage. Some bodies will shrink more on drying than others—the shrinkage depending on the amount of water that was used in working up the clay and the amount that was evaporated in drying.

All clays contain two kinds of water; namely, hydroscopic water and chemically combined water.

After the molded articles are dried they still contain moisture, although they feel bone dry. This moisture is driven off in the kiln. Some clays dry faster than others. As a rule the finer and more plastic clay gives off moisture more slowly and therefore has to be dried very carefully. The addition of "grog" or sand will open the clay so that the water can pass through the capillary channels to the surface more freely and thus dry more rapidly.

The clay or mixture should always be carefully tested out as to how quickly it may be dried.

In the dry or semi-dry process the brick or other articles are placed in the kiln immediately after being molded. But this does not preclude the necessity of care in drying. The only difference is that the articles made by the *plastic* method have to be placed in a specially designed dryer; while in the dry or semi-dry methods the articles are dried in the kiln.

The best results by the *press* method are obtained with the semi-dry process. The clay or body mixture should be wet just enough for the particles to stick together when pressed by hand. Successful operation is secured by leaving the clay after it is mixed with water to rest for twenty-four to forty-eight hours before pressing. This will give a uniformly moistened mass and entirely eliminate lamination troubles.

The difference between the articles made by the "plastic" method and those made by the "semi-dry" method is that all articles made by the plastic method have a *cohesive* structure, whereas those made by the semi-dry process have an *adhesive* structure. The explanation follows:

In the plastic process, the great amount of water added to bring the clay to its working consistency dissolves some of the fine mineral particles of the clay and forms a slurry-like mass which surrounds the coarser particles. When the article is burnt in the kiln, this slurry-like mass fuses and forms a magmatic solution which binds all the coarser grains in a hard dense body.

In the semi-dry process, not enough water has been added to form this slurry-like mass, but the grains have been forced together with the powerful pressure of the press and are held together principally by the interlocking of the grains and by the little colloid material present in the clay.

In the dry process where no water is added at all, the fine particles of dust are forced between the coarser grains and are held together by their interlocking only.

Lamination troubles must be guarded against in all of these methods. In the dry process the inlocked air is more difficult to overcome than in either the plastic or the semi-dry method. When the semi-dry method is carefully conducted, it gives no trouble and a first-class product may be obtained. Very plastic clay is not suited to the dry or the semi-dry process. Material that is not very plastic is not suited to the plastic method, but will give better results with the dry or semi-dry process. Ceramic engineers should make numerous tests before deciding on the process to be used with the material at hand.

Burning.—After the articles have been dried sufficiently, they are placed in the kiln for burning. In setting saggers, bricks, etc., in the kiln sufficient space must be left for the free passage of the smoke and flames among the articles. Only practical experience can teach one how to set and support the articles in the kiln so that there may be a good draught and an even distribution of heat to all parts of the kiln. As a rule, half an inch or the thickness of a finger is ample space to leave between the articles.

Special care sould be taken in placing wet articles, especially brick, in a kiln, as not all brick can be set flat for flashing purposes. Brick made from a short or very fine plastic clay will crack, especially when pressed.

After the burning and the articles are being removed, those who set the articles in the kiln should note carefully the results of the burning and thus be able to place the articles in the next kiln so as to get a greater number of perfect articles out of it. Articles that were not sufficiently burned should be set more openly; and more closely if burned too much.

When the kiln is all charged and ready for firing, everything should be carefully inspected before starting the fire. Be sure that all flues, grate bars, and dampers are as they should be and that there is no leakage. The kiln should be provided with draught gage, pyrometer cones, and trial pieces.

The burning is generally divided into three stages known as dehydration, oxidation, and vitrification. During the first stage the heat must be raised very slowly. This is the stage when the moisture is driven out of articles and the temperature should not be raised much above 100° C. (212° F.) until all this moisture is driven off. Otherwise the surface pores will be closed and when the articles are heated still more, the inlocked moisture will turn to steam and burst the articles. This stage, sometimes known as "water smoking," may require from forty-eight to ninety-six hours. The heat should not be raised above 125° C. until the burner in charge is sure that no more moisture is present in the kiln. This may be determined in two ways. Firstly, by the appearance of the smoke issuing from the smoke stalk; and secondly, by placing a dry iron rod in the kiln and leaving it there for a short time. The rod remaining dry is an indication that there is no moisture in the kiln. This ends the first stage or the dehydration. The heat may now be raised

but slowly so as to avoid cracking the goods. The thicker the articles, the more slowly should the heat be increased. After the temperature reaches 400° C. the heat may be increased more rapidly provided the material is free from sulphur, especially pyrites.

When pyrites is present, and a temperature of 500° C. has been reached, the temperature should not be increased until the pyrites has been broken up. The equation for the reaction is as follows: FeS₂=FeS+S. FeS is known as black iron sulphide and will not give up the rest of the sulphur until a temperature of 800° C. to 1000° C. is reached, and then only in a good oxidizing atmosphere. When this atom of sulphur is not driven off it will melt with the iron to form a black slag.

After the iron pyrites has been reduced to black iron sulphide, the temperature of the kiln should be raised to 800° C. and held at this temperature until oxidation (the second stage of the burning) is completed. At this point the carbonates are converted into oxides as shown by the following equations:

The lower oxides are oxidized to high oxides:

$$_{4}\text{FeO} + O_{2} = _{2}\text{Fe}_{2}O_{3}.$$

Also, all the carbon from the carbonaceous compounds is driven off as CO₂. Therefore an abundance of air should be admitted to the kiln during this stage of the burning so as to supply the oxygen necessary for the oxidation of these substances. It is during this and the following period that the clay mixtures undergo most of their chemical and physical changes.

Before the heat is raised further, a trial piece should be taken from the kiln and carefully examined to see if all the carbon has been driven off. If the trial piece is found to have a black core when broken the oxidation is not complete. The heating should be continued at a temperature of 800° C. to 850° C., until a trial piece when broken has no black coloration but is uniform in color all the way through.

When this is accomplished, the heat can be raised to 900° C. to 950° C. so as to drive off the second atom of sulphur. This is shown by watching the blue color of the smoke from the smokestack, which is an evidence that sulphur is still present. The burner must be sure that oxidation is complete before increasing the heat any further. Should the next stage be attempted before oxidation is complete, the ware will be blown, cracked and worthless. This may result either from heating too short a time at the oxidizing temperature or from an insufficient supply of oxygen furnished to the wares.

The last stage is known as vitrification. The word vitrification means the act of changing by heat or fusion into glass or a glassy substance. This is done by raising the temperature to a point which has been determined by experiment with the materials used.

The fine mineral particles and the silicates which have the lowest fusing point naturally will fuse first, and the other materials in the order of their fusing points until the required result is obtained.

This vitrification process should be well understood. It is very interesting to consider the action which takes place between the alkaline earth and the metals and the

oxides of silica, aluminium, and iron during the vitrification period.

In the manufacture of vitrified ware, it is very essential that the limit of the burning of the clay or mixture be known definitely. It is necessary to determine at what point the clay or body mix will collapse. The degree of heat or the number of the cone of the fusing point and the deformation point must be determined by experiment.

The best method of testing for the range between sound vitrification and deformation is to make from the mixture under investigation bars 12 mm. ($\frac{1}{2}$ inch) square and 15 cm. (6 inches) long. The material before being made into bars should be tested with the sieve to determine the proportions of fine and coarse grains. Bars should be made of different proportions so that the best proportion may be determined by the test.

These bars should be placed on two wedge-shaped blocks made from good refractory clay 4 cm. high as shown in the following diagram.

Set different cones near the bar and watch carefully

for the temperature or cone at which the bar begins to sag, thus indicating that the mineral particles of the

clay have commenced to soften.

If the bar should sag only 1 cm. in an interval of 4 to 5 cones from the cone where the sagging commenced, the clay can be burned to sound vitrification without any danger. Should the bar break, it is an indication of a short or sandy clay, although coarsegrained clay may sometimes break.

If the bar sags not more than 1 cm. in an interval of six or seven cones from the cone where the sagging started, the clay will stand vitrification. When the bar bends about 3 cm. in an interval of one or two cones, the clay will not stand vitrification.

It the bar stood the above test satisfactorily, a few balls about 4 cm. in diameter should be made and burned hard, dense, and then well annealed. After the ball has become cold, it should be dropped a number of times from a height of 75 cm. to a hard floor. If the ball bounces back without breaking, the articles will not be brittle when burned to vitrification.

All tests should be recorded so that no mistakes may result from faulty memory of what were the proportions used to get the best results.

It is well known to ceramists that the greater the proportion of undissolved material present in the clay or the mixture, the longer will the material resist deformation. Therefore, it is essential to learn how to correlate the material in such molecular proportions as to preserve the form of the molded articles when under the high heat in the kiln, and to keep the temperatures far apart between sound vitrification and deformation.

Many minerals present in the clay mixture contain occult gases which are given off only at a high temperature. When the heat is raised to complete vitrification, the articles are dense and hard; but if the temperature is further raised and the coarse grains begin to soften, then the clay warps, sags, blisters, becomes honeycombed and worthless.

The foregoing tests should be applied to the dry and semi-dry processes. The articles made by these processes have to be burned to a higher temperature and then obtain only a sintering between the mineral particles without a glassy bond. For this reason articles made by either the dry or semi-dry process are seldom vitrified.

After the vitrification has been completed and the firing has ceased, the cooling process begins. It is very essential that the cooling be under as good control as the firing. This is especially true in the manufacture of porcelain, terra cotta, stoneware bricks, glass, etc. The ceramist must know at what stage the cooling may be rapid, at what stage it must be slow and how slow. Too slow cooling will cause too great a crystallization of the magma or molten material. Therefore, the cooling can proceed very rapidly until the temperature has fallen to red heat, at which temperature the fusing temperature of the eutectic has been reached. From that stage, the cooling must proceed slowly especially when the body is high in silica. Most clays or body mixtures can be cooled rapidly from 800° C. to 600° C. From then on precautions should be taken to avoid too rapid cooling or the ware will be brittle and liable to crack.

This slow cooling or annealing process permits the silicates in the molten glass and vitrified bodies to settle and arrange themselves in an orderly manner, and thus avoid molecular strain. This annealing is of the highest importance, although it is not well understood and too little attention is paid to it by many manufacturers.

The importance of this annealing process is exemplified in the case of glass tiles on sidewalks. Many of these have become broken or even disintegrated into powder. The reason for this arises from the method

of manufacture. The glass in the molten state was poured into steel molds and pressed. In this way the glass cooled quickly and the molecules of the outside solidified instantly which prevented the orderly arrangement and uniting of the molecules of the interior of the glass, thus producing internal stress. The glass is in a state of continual strain and is prevented from breaking only by the intense rigidity of the external walls. If this hard surface of the glass is damaged, the tile breaks into pieces and the interior crumbles to powder.

Vitrified ware does not crumble to powder but invisible cracks will occur which can be determined only by knocking or hitting with an iron. Careful cooling gives a sound product. Every precaution should be taken to secure a perfect ware.

GLAZES

Glazes are compounds of silicates consisting of a mixture of silica, bases, and metallic oxides. Silica is the acid part, which is mixed with the basic materials that will fuse to a glass when heated.

In mixing glazes it is very important to know how to compound one that will have the same coefficient of expansion and contraction as that of the body to be glazed. Otherwise the result will be a defective product.

It is more difficult to mix a glaze for a porous body than for a vitrified body or for iron. A porous body will expand more when heated and contract more when cooled than a vitrified body. If the glaze does not contract as much on cooling as the body, the glaze will scale or "shiver." If it contracts more than the body it will crack or craze as it is called. Both result in an unsatisfactory product.

To adjust the glaze to the body to be glazed, repeated tests must be made. New tests must be made every time a change is made in the formula for the body or the glaze. With every change in composition there is a change in the coefficient of expansion and contraction.

The following facts will help in adjusting the glaze to the new product. The addition of silica, silicious clay, or grog to the *body* material will increase the coefficient of expansion. The coefficient of expansion of the *glaze* should be increased by the addition of silica or boric acid.

The addition of lime or alkali to the body material can be offset or remedied by the addition of lime, lead, or alkali to the glaze. The addition of boric acid, silica, and lime also increase the fusibility of the glaze.

Crazing can also be prevented by grinding the silica finer. Scaling can be prevented by grinding coarser. The addition of certain metallic oxides for coloring the glaze sometimes cause crazing.

To adjust a glaze to a given body mixture, a systematic study should be made by firing to different cone temperatures. If the pieces are fired insufficiently, the glaze will scale; if heated too high it will scale. Between the two may be found good specimens on which the glaze is thoroughly vitrified and the agreement between the body and the glaze is satisfactory. These specimens give the information desired as to the temperature necessary for good results.*

From the above it will be seen that it is impossible . to give a receipt for a universally satisfactory glaze.

^{*} See E. Bourry, "A Treatise on Ceramic Industries."

Each manufacturer must work out his own mixture according to the foregoing principles.

Engobe is a fusible mixture, not as fusible as glass or enamel. It consists of clay, feldspar, and silica and is usually opaque.

Enamel is a more fusible mixture then engobe. It is a fused glass of calx, feldspar, silica, together with basic materials as lime, etc., and metallic oxides. It also contains tin, zinc, alumina, calcium phosphates, etc., to destroy the transparency and make the mixture opaque.

(N.B.—Bodies, engobes, glazes and enamels should be mixed in quantities sufficiently large to last one or more weeks.)

Transparent glazes are mixtures of clay, feldspar, silica, calcium, lead, boric acid, etc., and must be ground very fine. The addition of lead and boric acid increases the brilliancy of the glass.

The purpose of glazing may be for decoration, or as a preventive of disintegration, or for the purpose of rendering porous bodies impervious to liquids or acids.

The glaze is applied as a very thin coat on the surface of the ware by spraying or dipping, and must possess the property of flowing evenly when fused.

Some manufacturers burn the body and glass in one operation—that is, the glass is applied on the ware when still green. But others burn the body first, then apply the engobe and glaze, and burn again.

FRITTING

Oftentimes there is a general advantage in *fritting* the glaze. The silica and bases fuse so that the base is not volatilized in the furnace, and at the same time rendering the soluble material insoluble.

The raw materials are ground very fine, thoroughly mixed, placed in a crucible, and the crucible and contents placed in a specially designed fritting oven. The heat is raised until the contents of the crucible fuse and runs through a hole in the bottom of the crucible into a pan of water.

The water shatters the vitreous material and makes it more easily ground. This "fritted" glaze may be applied alone or it may be mixed with raw glass and then applied.

CRYSTALS

Crystals in the glaze are usually produced by cooling very slowly so that the silicates separate from the soluble glass. They may also be produced when the glaze has been applied in a very thick layer.

Crystallization is also promoted by the addition of oxide of zinc or of titanium (rutile). Crystallization seldom occurs if the glaze has been applied in a very thin coat.*

^{*} See "Crystalline Glazes," by R. C. Purdy, and J. F. Kochbiel, University of Illinois, Bulletin 12, Trans. Amer can Ceramic Society, Vols. 6 and 8.

CLAY PRODUCTS

REFRACTORY WARES

REFRACTORY wares are those that possess the property of withstanding a high temperature combined with load and pressure.

The most highly refractory ware is manufactured from fire clay. For high grade refractories the fire clay is mixed with flint clay or bauxite. Silica wares are made from quartz, or quarzite or ganister. Chrome, magnesia, dolomite, carbon, carborundum, corundum, alundum, and zirconium are also used.

Crucibles of refractory ware must not only be able to withstand a high temperature, but they must be able to stand the pressure of their own weight and that of their contents. Fire brick should have been brought to their greatest degree of hardness and must have contracted to their full extent before they are suitable for use in a furnace.

Refractories are divided into 3 classes: acidic, basic. and neutral. Acidic refractories are composed chiefly of silica combined with 1 to 2 per cent of lime, or 5 to 10 per cent of good plastic clay. If clay is used, it must be selected with great care. The writer at one time tested a mixture of 15 per cent of plastic fire clay with 85 per cent quartz. The colloid of the clay had contracted too much for the expansion of the quartz which resulted in a brick of loose and open structure. On reheating, the silica expanded further while the clay contracted, making the brick absolutely worthless.

This difference in behavior of the clay and quartz in ceramic bodies is responsible for many of the troubles in the industry.

The best acidic refractories (silica brick) are made by mixing silica and lime. To be successful this must be done carefully. The silica grains should be angular and mixed with milk of lime. In this way every grain will be covered with a thin coating of the lime. When this is heated, the lime and the fine silica will combine, forming a net-like bond which cements together the coarser grains. This bond is readily seen with a microscope. The best silica brick are made by heating to cone No. 20, as at this temperature the greater part of the silica has been transformed to tridymite and crys oballite.*

The author made some experiments with sand-lime bricks to determine their refractory qualities. In all sixteen tests were made from four different sand mixtures containing 6, 8, 10, and 12 per cent of lime. In some mixtures the sand, calcined lime, and water were mixed and left to stand overnight; in the other mixtures, the lime was first slaked with the water then mixed with sand and water, and afterwards pressed and steam cured. To these mixtures feldspar or finely ground granite was added. The feldspar and granite were mixed with lime and water before being added to the sand-lime mixture. These mixtures were next made into brick by the power press and then exposed to steam of 100, 125, and 150 pounds for eight, ten, and twelve hours.

The brick were burned in a little test kiln holding

^{*} See "Study of the Silica Refractory," by J. Spotts McDowell, American Institute of Mining Engineers, November, 1916.

about 400 bricks. The brick were burned for seventy-two hours and allowed to cool for seventy-two hours. Trial pieces were drawn at 200, 300, 400, 500, 700, 800, 900, 1000 and 1200° C., and when cone No. 11 was fused down flat.

The first trial piece, drawn at 200° C., showed the beginning of disintegration of the bond. At 400 and 500° the bond was practically destroyed. All the trial pieces drawn up to 1000° C. were very soft and crumbled on exposure to the air. At 1200°, the trial piece showed some surface fusion; and at cone No. 11 the brick were seriously deformed. This test showed that the lime was affected and its binding power destroyed by the early firing.

After the kiln had been allowed to cool down to the temperature of the room and opened, all the brick were found cracked and worthless. Some were only slightly imperfect, but many were soft and crumbled. The brick had been badly affected by the moisture, gases and acids.

While all the brick were worthless in the end, there was quite a difference in the behavior in those containing feldspar and the ones containing granite. Those containing 10 to 25 per cent of feldspar softened during the steam curing, but behaved better in the burning. The trouble was that the fusion and deformation temperatures were so near together that it was impossible to control the result.

The brick in which granite was used instead of feldspar behaved better in both the curing and the burning but still the brick were a failure.

Mixtures which contained from 10 to 16 per cent of alumina (Al₂O₂) were soft when they came out of the

steam curing cylinder, but behaved very well in the burning. Some of these brick were glazed, placed in sagger and burned to cone No. 11. They came out in good shape, the glaze covered the brick evenly and smoothly, had not been absorbed by the body at all, had a nice gloss free from all defects, and the shape was well preserved.

Brick made from a clean sand which was 97 per cent silica (SiO₂) mixed with 10 per cent of lime rang like steel when struck with iron after being cured for twelve hours under a pressure of 125 pounds of steam. But on heating, the cementing power of the lime was destroyed and the brick cracked as in the other samples.

A few brick were also made with pure sand, lime, and asbestos (serpentine). In this mixture the quality and hardness were an improvement over that in which feldspar, granite, or alumina were used.

All acid refractory ware has the power of combining at a high heat with basic oxides. Nearly all fire clay is acidic. So it is necessary in the manufacture of silica refractories to try out the silica grains as to their structure, their purity, and their behavior when heated. All materials and mixtures must be thoroughly tested.

NEUTRAL REFRACTORIES

Neutral refractories are those that resist the action of basic and acidic substances. *Chrome* brick are used to form a neutral line between magnesite and fire clay bricks in the basic open-hearth steel furnace and in other furnaces. The chrome brick is the most economical brick to use for this purpose, although a mixture of fire clay and bauxite brick or a silica brick may be used.

Chrome brick is valuable in metallurgy especially for repairing furnaces at a working heat as it is not affected by sudden changes in temperature. Like magnesite, it stands a high temperature but will not withstand a heavy load.

But in the industries, fire clay brick are most commonly used. As the fire clay is expected to stand a high temperature, it is important that it should be free from impurities that are easily fused. It should be kept in mind that clay is a mixture of complex silicates, each one of which has a different chemical and physical behavior when heated. Some may have a tendency to promote a certain physical or chemical change while others to hinder the change. Some clays that have almost the same chemical composition, set very different when heated. When fire clay is heated some of the flux may begin to melt at 1000° C. and will attack some of the refractory particles. Some of this fluxing action is necessary to bind the brick together; but if too much flux is present, it will lower the refractory properties of the brick and cause it to deteriorate more rapidly under the influence of the flue ash, vapors, slags, etc., of the furnace.

Only one experienced with refractory ware should be employed to make the necessary tests for the manufacturer. Too many add grog or quartz to the clay without testing the properties of the grog or quartz. If the grog is not fired higher than the bond clay of the refractory, the strength or load carrying capacity is not improved at all. Nor will the refractory quality of the ware be improved by the addition of grog of the same clay as is used for binder. The grog will serve only to promote the drying, at the same time opening,

the body and thus controlling the shrinkage during drying and burning, but not increasing the refractory qualities. If highly calcined flint clay, bauxite, or high fire clay are used as grog the fire and slag resistance qualities are greatly increased. If the grains are properly bound with a highly plastic fire clay and burned hard at a high temperature, the body will have a very small contraction.

The author has used old silica brick free from injurious material as a grog with good results. Practically all the silica was converted into tridymite and crystoballite. Care must be taken in using old silica bricks as a grog, that they do not contain fluxes which will lower the fusing point of the refractory.

Refractories containing coarse grains will resist sudden changes of temperature, but are more rapidly disintegrated by the action of fumes, gases, ashes, vapors, flue dust, cinders, etc. Finer grained bodies will the better resist abrasion, slags, fumes, gases, etc., of the furnace.

Chemical analysis will give better guidance in the selection of the raw materials by the ceramic engineer than any other method. The methods of calculation as for instance the calculation of the "refractory quotient," etc., are for the most part misleading. Also, what is known as the "rational analysis" is seriously in error and should not be used at all. This "rational analysis" is a laborious process and the results are not dependable. We frequently notice in the report of an analysis by this method where sulphuric acid is used, the term free silica is mentioned. When the sulphuric acid is applied, mica, feldspar, hornblende, augite, and other rock or mineral debris

present in the clay are also attacked, and the same is just as much combined as the silica in the kaolin.

Ceramic engineers should not overlook the kind of mortar that is o be used in the laying of the fire brick. The material of this mortar is just as important as the material of the brick. The mortar for laying silica bricks should be high in silica and very low in alumina and other impurities such as iron and alkalies. Fire bricks should be laid with the same material as that of which the bricks are made; or a mixture of the brick finely ground (x : x) may be added to the mortar so as to balance the contraction between the brick and the mortar.

In the building of furnaces the ceramic engineer must select the materials suitable to the kind of furnace to be installed. An unsuitable mortar will give way and leave crevices where the destructive agents will find lodging and, acting as a flux, will fuse cavities in the brick which will weaken the whole structure. The mortar for silica bricks should not contain more than 10 per cent of alumina or it will act as a flux and slag the brick.

The analysis of the clay as suggested in this book will be of assistance to the ceramic engineer in giving him an idea of the proportions of the materials such as feldspar in the clay. But this, as has already been said, is not the only guide to be used. Chemical and microscopic analyses will give many important points. But the physical and mechanical test is the only reliable one. The chemical test is the forerunner in the investigation of the raw material and will tell the purity of the material. The microscope will tell of the mineral constituents, and the shape of the grains. Then the

material is prepared and burned at different temperatures; holes are drilled in the samples before and after burning, filled with finely powdered slags of different kinds and burned against a high temperature so as to fuse the slag; after which the samples are allowed to cool and then examined to determine how far the slag penetrated into the body of the refractory samples. These tests give the reliable data as to the uses that may be made of the material tested.

In order for the ceramic engineer to give satisfactory information, he must know the kind of furnace in which the refractory is to be used and also in what part of the furnace. For some refractory ware will stand up in one furnace under one set of conditions and fail in another under other conditions.

Refractory wares are also made from the oxides of the rare metals zirconium, thorium, yttrium and beryllium. Among these zirconium has been most developed. It has a very high melting point and resists all acid and basic slags. It is recorded that the lining of a hearth of a Siemens-Martin furnace in a steel works at Renscheid, Germany, after four months of continuous service at a high temperature was apparently in a condition good enough to last another four months. Its heat conductivity is low, it has a small coefficient of expansion, and for these reasons makes a superior lining for an electric furnace of the arc type.*

Zirconium is widely distributed but usually in small quantities chiefly in the form of zirconium silicate ZrSiO₄. Zirconia, the oxide of zirconium is commonly used. It is obtained mostly from baddeleyite, which

^{*} This is the same metal that is used in the filaments of Nernst, Sanders and Ternig electric lamps.

was discovered in Southern Brazil in 1892 by Hussak and is composed of from 80 to 94 per cent of zirconia.

In Germany several patents have been taken out for the use of zirconia in refractory ware and for other purposes. It is mixed with clay, alumina, thoria, yttria, and beryllium. The raw zirconia when fired to 1800° to 1850° C. gives a dense mass, and the silica which was present as a binding material is volatilized. Zirconium is also used in glass and glazes. Siloxide is a zircon product resembling opaque quartz glass.

It is very interesting to note the changes which take place in refractory bricks when re-heated several times. The writer read a paper in 1917 at the Exposition of National Chemical Industry at New York on refractories and showed the following analyses of refractories on heating and the action of slag.

The following test was made of fire brick shipped to the Malinite Co. Analyses were made of the raw clay from which the brick was made and also of the brick. The analyses were made of the same kind of brick after being heated ten times and one analysis was made of the brick after two years of use in the fire box of our own kiln. On inspection it showed that the raw clay and brick contained flint clay. The results of the four analyses are given on the following page.

The analyses show that when fire bricks are subjected to prolonged heating at high temperatures they lose some of the alkalies by volatilization, which indicates a source of weakening the structure. On the other hand when bricks are subjected to slag, as for instance in furnaces, they will gradually melt away, especially when porous and when the content of free silica is high.

The fourth analysis shows how the brick increased in iron and alkalies. The brick weighed 6 pounds when placed in the fire box, after two years it weighed 4.9 pounds, a loss of nearly 25 per cent.

	Raw Clay.	Brick.	Brick after being H ated Ten Times.	Brick after Two Years' Use.
SiO ₂	48.26	54.94	55.36	51.38
Al_2O_3	33.59	38.37	38.75	31.69
Fe ₂ O ₃	2.22	2.48	2.42	6.74
CaO	. 54	. 59	. 52	3.01
MgO	.57	. 63	. 59	3.18
Alk	.92	.97	. 54	1.74
$\text{TiO}_2 \dots$	1.92	2.00	1.82	1.75
SO₃	. 19	.04		.81
H ₂ O	11.76			
	100.00	100.00	100.00	100.00

ANALYSES OF COAL ASH

	Lincoln, Ill., Coal Ash. Per Cent.	Franklin Co., Ill., Coal Ash. Per Cent.
SiO ₂	41.40	54.30
Al ₂ O ₃	13.82	21.40
Fe ₂ O ₃	14.78	3.25
CaO	13.70	5.20
MgO	2.14	1.96
Alkalies	2.40	3.16
TiO ₂	0.60	3.15
SO ₃	0.87	0.00
CO ₂	5.34	2.67
Moisture	4.80	4.80
Loss on ignition	0.15	0.11

The preceding two samples of coal ash analysis, made by the author, will show why some cinders or slag attack the refractory material more than others.

BASIC REFRACTORIES

Basic refractories resist the action of metallic oxides; but are attacked by silica at a high temperature. The materials for basic refractories are magnesite, dolomite, and limestone. Magnesite is most commonly used both for electric furnaces and all others where a basic refractory is required. For research work magnesite bricks are very valuable owing to their great resistance to high temperatures. But their use in the industries is limited because of their tendency to spall or chip when subjected to sudden changes of temperature, and their liability to fail suddenly at a high temperature when under pressure.

Magnesite bricks are manufactured by calcining the raw material at a white heat, crushing this when cool and then adding magnesite calcined at a low temperature to serve as a binder, and then water. This material is then mixed and molded into bricks by hand or machine. Usually the bricks are molded under high pressure, dried, and burned at a very high heat to convert the greatest part to periclase.

The calcined magnesite may also be mixed with surface clay, or magnesium chloride, or sodium silicate, and with iron solution or iron scale or iron powder. The surface clay when used should be of the right proportions of silica, iron, etc.

Furnace bot oms are usually made of calcined magnesite mixed with iron ore, basic steel slag, and hot boiled tar.

Dolomite is also used in making basic refractories. First the dolomite is calcined (dead burned) at a high heat, mixed with tar, and again burned at a high temperature. The calcium combines more or less with the magnesia which prevents the slaking or carbonizing of the lime. Limestone itself has great refractory properties and does not fuse or soften except in an electric furnace.

GRAPHITE REFRACTORIES

Graphite refractories are usually in the form of crucibles. Native graphite contains from 1 to 48 per cent of alumina. As graphite is unctuous (like grease or oil), it has no binding properties and must be mixed with a very plastic fire clay which has a high drying and heat shrinkage.

The clay used to mix with the graphite formerly came from Klingenberg, Germany. From 25 to 75 per cent of clay is mixed dry with the graphite. To this mixture, quartz (free from dust), grog, or asbestos with short fibers (serpentine) is added in different proportions according to the purpose for which the crucible is to be used. The materials are then wet and pressed, or shaped on the jolley.

ANALYSES OF VARIOUS CRUCIBLES *

51.40	45.10	50.00
22.00	16.65	20.00
3.50	0.95	1.50
20.00	34.00	25.50
0.20		
1.80	2.50	3.00
98.90	99.20	100.00
	22.00 3.50 20.00 0.20 1.80	22.00 16.65 3.50 0.95 20.00 34.00 0.20 1.80 2.50

^{*} Handbuch der gesammten Thonwarenindustrie," E. Cramer, Bruno Kerl and Dr. H. Hecht.

In the United States much artificial graphite is made from anthracite coal by means of the electric furnace.

The use of none but imported clay was not necessary. By actual experiment the author got good results by the use of a mixture of Kentucky ball clay and Georgia kaolin. There are many good clays which can be synthesized to produce the same results as those obtained with the Klingenberg clay.

RECENTLY MADE ANALYSES

		meroder	Rein- ischer.	Düssel- dorfer.
SiO ₂	25.91	27.22	33 · 44	34.03
Fe ₂ O ₃	o.48 and Tr	0.51 Tr	15.70	12.95
Graphite Water	58.24 2.77	62.54	48.15	50.18 1.63
	97.66	99.72	98.06	98.79
	German Crucible Used 18 Times.	Londoner (Morgan).	English.	American.
SiO ₂	32.67	37.09	31.40	31.31
Al_2O_3	2.79	14.58	19.57 1.78 0.30CaO	17.30
Graphite	48.68 1.50	44.40	0.80 MgO 42.08 1.20	47.40 3.42
	97.16	98.99	97.13	99 · 43

CHEMICAL STONEWARE

The manufacture of chemical stoneware is an industry of considerable proportions and importance. Skilled workmen are required to make the many shapes, some of which are quite difficult. Then there must be the ceramic engineer to select the raw materials so as to produce a satisfactory ware. When finished the ware must resist the action of all acids and bases whether hot or cold—except hydrofluoric acid. It must not break under sudden changes of temperature. It must not absorb moisture.

It is usually the practice in making chemical stoneware to mix different clays so as to produce a body mixture similar in character to porcelain. So stoneware clays which contain enough flux to produce a very close structure at a high temperature are commonly used.

If stoneware clay is not at hand, a low grade of fire clay can be substituted. The fire clay is burned to a temperature of from 1400 to 1500° C., at which temperature the iron content of the clay will act as a flux. Or the fire clay can be mixed with an impure clay of low fusing point, in which case the fire clay acts as a skeleton to preserve the shape of the body, while the impure clay serves as the flux which at a high temperature binds the particles of the fire clay into an impervious body. Lime or furnace slags or other cheap fluxes can be used where the color is of no importance.

In the manufacture of chemical stoneware it is essential to produce a uniform body. The best results are obtained by plunging all the material and then screening so as to remove all the coarse particles. The

surplus water is then removed by the filter press. Sometimes only the fusible clay is plunged, but it is better to plunge all the material.

It is especially necessary to remove all the coarse particles if tightly fitting taps are required. The spigots and faucets are usually made from the same materials as the body. Sometimes the materials are ground finer for the spigot and faucet than for the body. The spigot and faucet are ground with sand or emery and water, so as to make them tight fitting.

The body mixture should be high in silica and yet plastic enough to permit the shaping of large pipes and vessels such as stills, condensers, acid containers, etc. The interval between vitrification and deformation should be between 200 and 300° C.

SEWER PIPES

Sewer pipes are manufactured from stoneware clay, shale, or a mixture of fire clay and surface clay in such proportions as experiment has determined to be best. Sometimes, sand or grog is added to hasten drying and to control the shrinkage.

The clay is ground and thoroughly mixed, after which water is added and the clay tempered. Then the clay is pressed into the molds which give it its shape. The material must be plastic enough to retain its shape when released from the mold and strong enough to withstand rough handling.

After the pipes leave the press they may be trimmed and joined together so as to form elbows or junctions. When dry the pipes are placed in the kiln for burning. They are placed upright with the smaller pipes inside the larger to a height of 12 to 16 feet, and so arranged that the hot gases can circulate freely around and inside the pipes to insure an even distribution of the heat

Great care must be exercised at the beginning of firing. Air spaces are often produced in the material when fed into the pipe molds in balls as large as a man's fist or larger, which prevent all of the air from escaping as the pressure is applied. The walls of the pipe will then contain "air pockets" even after it is dried. When the heat in the kiln rises, the entrapped air expands and at a temperature of 600° C. or higher may force large pieces from the pipe, causing noises like small explosions.

To prevent "slabbing" it is essential that great care be used in the preparation of the raw material from the pit or mine to the factory. It is important that the mixture should be as uniform and homogenic as possible. Weathered clay should be used if possible. Imperfect mixing or unevenly watered and tempered clay will cause slabbing and cracking. Some of the clay being too wet or too dry will cause slabbing or longitudinal cracks in drying and as the pipe comes from the kiln. Slabbing may be caused by the presence of organic matter or sulphides in the material, but the above causes are the usual ones.

Pipes that are broken before being burned should never be returned to the mixer or press before being pugged or retempered.

When the pipes are drying and being placed in the kiln, they should be watched for signs of "air pockets" in the walls. When noticed, the blisters or air pockets should be punctured with a needle so that the entrapped

air may escape. Pressing down the spots with a wet sponge after puncturing the blister will also help.

Salt glazing is usually applied just a few hours before it is time to close the kiln. Before throwing in the salt, the fire boxes should be cleaned out so as to have a clean hot fire. Then about three shovelfuls of common salt (NaCl) is thrown into each fire box. The chlorine is liberated by the intense heat and the sodium combines with the silica, forming on the surface of the pipes a sodium silicate glaze. Trial pieces should be drawn out to see if the glaze is uniform and sufficient.

CASTING

By casting is meant the molding of articles by filling a dry plaster mold with a liquid body, known as slip, and allowing it to stand until a coating of the required thickness is deposited on the inside of the plaster mold. The time required to obtain a cast of the required thickness must be determined by trial, and depends on the desired thickness of the wall of the cast and the absorbing qualities of the walls of the mold. The mold should be dried as frequently as found necessary.

The best results are obtained by placing the mold in a hermetically sealed box to which a vacuum can be applied. This hastens the absorption by the plaster mold and is especially valuable when a thick cast is desired. The surplus body slip can be removed, after the required thickness has been obtained, through the opening by which it was poured in or through a lower opening which had up to this time been kept closed.

The "cast" is then left in the mold until it becomes

hard enough to be handled. By this method, when all others would be unsuitable, it is possible to make the most difficult pieces with thin or thick walls as desired.

The body slip has to be "lean." No plastic body can be used, as it would form an impermeable coating which would stick to the walls of the mold and prevent absorption. The cast would not shrink away from the mold and therefore crack on removal.

Body slip should contain as little water (never exceeding 30 per cent) as is absolutely necessary to bring the material to a working consistency. In order to produce the proper liquefaction without the addition of too much water, carbonates or hydroxides of sodium, potassium, or lithium together with sod um silicate (water glass) is used. The present practice is to use sodium hydroxide or sodium carbonate with the sodium silicate.

Frank H. Riddle has shown that a body mixture of 22.6 parts of water and 77.4 parts of dry body to which .266 per cent of mixture of equal parts of sodium carbonate and sodium silicate were added will give satisfactory results.*

Simons (Sprechsaal, 1905, No. 31) recommends the following method for the determination of the lique-faction of the body slip with the addition of soda:

In each of six 300 c.c. flasks, 50 gm. of the dry body should be placed. In flask No. 1, 50 c.c. of water is added; in flask No. 2, 49 c.c. of water and 1 c.c. of the sodium solution (5 gms. calcined soda in 1000 c.c. of water) in flask No. 3, 45 c.c. of water and 5 c.c. of the soda solution. The solutions should be shaken vigorously and the results of the liquefaction noticed

^{*} Bureau of Standards, Technologic Paper No. 51.

carefully. The result in No. 3 should be about right. But little variation from this proportion will be found necessary, and can usually be determined by one or two more trials. Generally the 5 gms. of calcined soda in 1000 c.c. of water give good results.

The specific gravity method of determining the proper solution to be added to the dry body is considered the best. The slip should weigh 36 ounces to

the pint.

When casting refractory bodies or other bodies containing grog or other coarse material, the slip must be adjusted to hold the coarse particles in suspension. Otherwise the coarse particles will settle to the bottom and spoil the cast.

SOME DEFECTS AND THEIR REMEDIES

Absorption or Blinding of the Glaze. This is usually caused by the body of the ware being too porous, or the glass too dilute or not enough of it is applied. The trouble may also be caused by heating the goods too long. The cause of the trouble and the remedy can be easily determined by the systematic use of trial pieces. The body and the glaze should be mixed so as to mature at the same time.

Blisters or Blebs. These result from many causes. The body mixture may not be properly prepared as by insufficient pugging, careless mixing, some parts of the body being too wet while others are too dry. They may be caused by the evolution of gas from the organic matter or the sulphates or the sulphides contained in the clay when the goods are placed in the kiln without being sufficiently dry. Again they may be caused by improper firing as when reduction takes place at 800° C. A very plastic clay is more liable to this fault than a lean or short clay. Short clay does not cause this trouble, but will crack and crumble to pieces if overfired.

In the manufacture of pipes, the faulty design of the mold may cause this trouble; or the clay may not have been fed into the mold uniformly and the lack of sufficient clay may result in the particles not being pressed together tightly enough to drive out all the air. Then when heated in the kiln the air will expand and force out pieces from the sides as explained under

the heading of "sewer pipe." Goods that are placed in the kiln too wet may blister, crack, or fall to pieces when heat is applied. These defects can usually be remedied by careful water-smoking, oxidizing, and adding grog to the body mixture.

The author had an experience in the manufacture of sanitary ware in which the grog had been added dry to the bodies. The trouble was not eliminated by pugging and wetting. Good results were obtained only by grinding and wetting the grog on the day before it was to be mixed with body.

Bijsters in the glaze may be caused by applying the glaze to a green body from which gas is liberated from the organic matter contained in the body. Or they may be caused by metallic compounds not suitable at the temperature at which the glaze matures, or by overheating or too rapid heating.

Bricks blister as a result of improper heating, especially vitrified brick. (See under heading of *Brick*.)

Brittleness is caused in vitrified ware high in silica by too rapid cooling as a result of which the goods are not properly annealed. Fire bricks become brittle by repeated alternations of heating and cooling or on cooling too slowly through the critical temperature. A dense clay when heated and cooled rapidly becomes brittle.

Cracks are known by names such as dunt cracks, S cracks, etc. Cracks in the ware may be caused by a poorly designed mold box, by the cutting wire, by a high silica content, by dense clays, careless handling or setting in the kiln, improper drying or burning, from pebbles and limestone in the body mixture. Whatever the cause, the trouble can be cured but may add to the expense of production.

The most difficult cracks to cure are those caused by small stones in the clay which are very hard and in some cases impossible to separate. The only cure is to grind the clay very fine, which adds considerably to the cost.

If limestone is present in the clay it must be ground very fine. Limestone also makes the burning of the ware especially difficult if it is to be vitrified, as it brings the fusion point and the deformation points near together. Lime is known as an active flux for the reason that at a high temperature it acts very suddenly on the silica compounds contained in the clay.

Another cause of trouble is the lack of uniformity in the mixture when sand is added to plastic clay. This mixing may be done in the dry pan or other machines, but in any case the results are not altogether satisfactory. The only means of getting a homogenic body is by plunging, but this makes the cost of production too high to be profitable commercially. Too fine clay is also apt to crack in drying and burning.

"S" cracks in wire-cut or stiff-mud bricks are usually caused by a defective mouth piece or by the axle being too close to the mouth piece. In the latter case, the placing of a piece of metal between the mouth piece and the barrel of the auger will usually remedy the difficulty.

Searle states* that if the cracks are open at the edge, too rapid firing at the beginning of the burning may be suspected. If a dunt is produced in cooling, it will show no opening at the edge of the cracks; and when broken, the edge of the crack will be smooth. If the

^{*} The Clay Worker's Hand Book.

crack was in existence before the firing commenced, the fracture will be much rougher.

The author had an experience with some ware that was high in silica. The goods were stored after being burned and three months later on assorting the goods he heard some cracking sounds, but could discover no cracks in any of the ware. But on striking the goods with a piece of metal some of the pieces gave a "dead" sound, showing that there were hidden cracks.

S cracks in bricks made by the dry press method, are due to the high silica content especially when the silica is too fine, or a cold draft is allowed to strike the brick when they have been cooled down to red heat. The bricks will have cracks in the form of the letter "S" extending all the way through them. This trouble is the result of the high silica content and can be remedied by adding more of the plastic material so as to have a larger proportion of clay.

Crazing. The crazing of the glazes on glazed pottery is caused chiefly by a difference in the expansion and contraction of the glaze and the body. Seger, who studied these defects very carefully, has recommended the following remedies:

- (a) Less of the plastic material in the body of which the goods are made and a large proportion of nonplastic material.
- (b) Grind the body material finer, especially the silica, or use a coarser glaze.
- (c) In non-vitrifying bodies increase the proportion of flux; but in vitrified ware such as porcelain use less flux, especially less feldspar.
- (d) Prolong the heating in the kiln near the finishing point, so as to increase the mobility of the glaze.

- (e) Increase the proportion of flint in the glass.
- (f) Replace all or a part of the silica in the glaze by boric acid. (But even if this ware comes out of the kiln without any defects, it is liable to craze sometime later. The author made some ware with a boron glaze which appeared to be all right for six years after it was burned when it suddenly crazed.)
- (g) Replace some of the alkali of the glaze by a similar substance with a lower molecular weight. Thus, zinc oxide may replace litharge or white lead, or baryta to a small amount; but more than 5 per cent of zinc oxide should never be used for a clear glaze.

Peeling or Scaling. The following remedies for peeling or scaling are suggested:

(a) Reduce the proportion of silica in the body, or increase the proportion of plastic clay.

(b) Substitute leaner clay for the more plastic one in the body.

(c) Increase the proportion of the flux, especially feldspar, in the body.

(d) Use coarser materials.

(e) Finish the burning at a lower temperature.

(f) Increase the fluxes in the glaze or reduce the silica.

(g) Replace part of the alkali by lead or baryta, or replace whiting by baryta.

(h) Avoid polishing the surface of the green goods too highly.

(i) Avoid loose dust or grease on the surface of the goods.

(j) See that the clay is of even composition and that it does not contain stones or roots or other material that can shrink unduly in the kiln.

(k) If the glaze contains gelatine it must be applied as a solid. If applied in the liquid form, the glaze will peel.

Pinholes. Pinholes are usually due to dust on the surface of the goods on which the glaze is applied or they may be due to a hard glaze.

Scum. After careful investigation by many persons interested in the clay industry both in this country and abroad, the following are given as the causes of scum or efflorescence:

- (a) Soluble salts in the clay.
- (b) Condensation on the goods when set in the dryer or the kiln.
- (c) Storing the goods after burning on ground saturated with salts, as near to an ash or cinder pile.
 - (d) The use of improper water in mixing.
- (e) The use of improper mortar when building the bricks into the wall.

The following remedies are considered best. First try to remedy by burning. If pyrites (FeS₂) is present in the clay, stop at 600° C. for about ten hours. Variation of time may be determined by experiment. Then raise the heat to the oxidation stage (800° C.), first cleaning out the fire boxes. Supply the fire with sufficient air so that on the inspection of trial pieces no black core is found. Oxidize and reduce alternately three or four times if necessary for sixteen or thirty hours until the oxidation is completed. Then raise the heat to the finishing temperature.

If burning as above does not remedy the trouble, then the addition of barium chloride or barium carbonate to the mixture should be tried. These form insoluble salts with the sulphates or sulphides. But they must be added in the right proportions or they will increase the trouble instead of remedying it.

The correct proportions may be found as follows:

If barium chloride is to be used, take ro graduated bottles and place in each bottle 100 c.c. of the water to be used in making the ware. As barium chloride is soluble in water, it may be added directly to the water. Put ½ gram of the barium chloride into the first bottle, and $\frac{1}{2}$ gram into the second, 2 in the third, and so on placing ½ gram more in each successive bottle. The last bottle will therefore receive 5 gm. Weigh out 10 piles of 100 gm. each of the clay mixture. Then in order wet the first pile with the water from the first bottle, the second pile with the water from the second bottle and so on till all is used. Press each pile into brick shape dry and burn. Careful inspection after burning will indicate the right proportions.

If barium carbonate is used, it should be added to the clay in the same proportions as given above for the barium chloride. Then the water should be added, the clay pressed, dried and burned.

If the above tests should indicate that not enough barium chloride or barium carbonate had been used, further tests with larger quantities should be made.

Warped or Crooked ware may be caused by the body mixture being too fine or too plastic; or it may be caused by careless placing in the dryer or the kiln; or by faulty workmanship. The cause is usually evident and the trouble can be easily prevented.

QUALITATIVE ANALYSIS

In order to make determinations of the different constituents present, the specimen of clay, rock, glasses or pottery bodies under examination must first be reduced to a liquid state.

Suppose it is desired to find the ingredients of a glass. The sample is reduced to a fine powder and mixed as follows:

Mix 1 gm. of the finely pulverized sample with 5 gms. of sodium carbonate (Na₂CO₃) and 5 gms. of potassium carbonate (K₂CO₃). Fuse this mixture in a platinum crucible for about ten minutes at a low temperature and then for about twenty minutes at a high temperature until no bubbles occur in the crucible.

After the fused mass in the crucible is cool remove it into a beaker, cover it with distilled water and boil until the fused mass is broken up and crumbles. Add hydrochloric acid (HCl) drop by drop until effervescence. Transfer the liquid to an evaporating dish and evaporate to dryness on a water bath. If dry add about 60 c.c. conc. HCl, and evaporate again. When dry add 100 c.c. 10 per cent HCl then heat on water bath for twenty minutes, filter and wash the precipitate (SiO₂) with hot water until free from chlorine; collect in a small test tube of the washing acidified with HNO₃. It shows a form of cloudiness only when AgNO₃ is added and no precipitate is obtained by shaking. Set filtrate aside to be treated for the next group and marked for "Group II."

I. Hydrochloric Acid Group

Place a clean beaker under the funnel, punch a hole in the apex of the filter and with about 50 c.c. hot water wash the precipitate into the beaker. Place on the gauze and heat to boiling while stirring with a glass rod. Filter and wash two or three times with hot water and add to the filtrate H₂SO₄. A white precipitate indicates the presence of Pb. The silicon has to be freed from the lead by washing with hot water, and tested again with H₂SO₄.

After the silica is freed from the lead, about 30 c.c. of NH₄OH is added. If silver is present on the filter it will dissolve and go through the filter.

After NH₄OH is added to the silica on the filter it has to be washed again with about 50 c.c. water and then transferred to the platinum crucible and ignited, heated strongly, moisten with a few drops of dilute H₂SO₄ and about 15 c.c. HF is cautiously added. Evaporate on sand bath to dryness then ignite. The silica is volatilized and a residue of Al₂O₃, Fe₂O₃, and TiO₂ will remain in the crucible if present in the sample.

Silver. If silver is present in the solution it will give the following reactions with the following reagents:

- 1. Hydrochloric acid (HCl) when added to the solution will give a white precipitate of silver chloride (AgCl), insoluble in hot water or in HNO₃, but readily soluble in NH₄OH.
- 2. Hydrogen sulphide (H₂S) or ammonium sulphide (NH₄)₂S, a black precipitate of silver sulphide (Ag₂S) soluble in HNO₃ with the separation of sulphur. The precipitate will not dissolve easily in cold dilute acids.

- 3. Sodium hydroxide (NaOH), a light brown precipitate of silver oxide (Ag₂O), insoluble in NH₄OH.
- 4. Ammonium carbonate (NH₄)₂CO₃, a wh'te precipitate of silver carbonate (AgCO₃) soluble in an excess of the reagent.
- 5. Potassium chromate (K₂CrO₄), a dark red precipitate of silver chromate (Ag₂CrO₄) soluble in hot HNO₃ and on cooling, needle-shaped crystals like sillimanite are crystallized out of the solution.

Lead. Lead, if in a solution, will give the following precipitates with the following reagents:

1. Hydrochloric acid (HCl), a white precipitate of

lead chloride (PbCl₂) soluble in hot water.

- 2. Sulphuric acid (H₂SO₄), a white heavy precipitate of lead sulphate (PbSO₄) almost insoluble in dilute acids, soluble in NaOH. If the PbSO₄ is dissolved in boiling HCl and water is added to the dissolved precipitate and boiled again, needle-shaped crystals of PbCl₂ will be deposited when the solution cools.
- 3. Hydrogen sulphide (H₂S) or ammonium sulphide (NH₄)₂S, a black precipitate of lead sulphide (PbS) insoluble in cold dilute acids or alkalies, soluble in boiling dilute HNO₃.
- 4. Potassium chromate (K₂CrO₄), a bright yellow precipitate of lead chromate (PbCrO₄) readily soluble in NaOH, and re-precipitates if HNO₃ is added.

II. HYDROGEN SULPHIDE GROUP

A little of the filtrate from the beaker which was set aside and marked for Group II is first placed in a test tube and treated with H₂S. If a precipitate is obtained it indicates the presence of lead, copper, bismuth,

cadmium, arsenic, tin, or antimonium. (These are usually found in colored glasses.) If no precipitate is obtained the liquid in the test tube is thrown away and the filtrate in the beaker should be examined for the next Group III.

If a precipitate is obtained it will be better to treat the filtrate with the H₂S gas, as this will give a better and more certain result than a solution of H₂S. When the precipitation is completed allow the precipitate to settle. Decant off the clear liquid, wash the precipitate with hot water two or three times, and set the beaker with the filtrate aside for the "Group III."

The precipitate must be examined carefully to determine what metals are present and to what groups they belong. Therefore, place a little of the precipitate formed by the H₂S into a small porcelain crucible and dissolve the precipitate with 1 c.c. NH₄OH and 1 c.c. yellow (NH₄)₂S₂. Heat and stir continuously with a glass rod. If all the precipitate is dissolved only the following metals of division two are present: arsenic (As), antimony (Sb), and tin (Sn).

If a residue is left, then the metals of division one are present. These are lead (Pb), copper (Cu), bismuth (Bi), and cadmium (Cd). Filter and wash the precipitate with hot water. Collect a little of the filtrate into a test tube and add a few drops of HCl. If a kind of cloudiness appears, the metals of division one only are present. If a yellow precipitate is obtained, the presence of the metals of division two is indicated.

After this test, remove the precipitate from the filter paper to a porcelain evaporating dish. Dissolve with (NH₄)₂S and NH₄OH, 1:1. Place the dish on gauze and asbestos and heat to boiling while stirring

constantly. Filter and wash two or three times with hot water. Set the filtrate aside. Mark the beaker containing the filtrate "division 2." Remove the precipitate to the evaporating dish again and dissolve with a mixture of HNO₃ and water, 1:1. Heat to boiling until all is dissolved. The sulphur is usually thrown out and should be filtered off.

To the filtrate add 6 c.c. of conc. H₂SO₄ and evaporate it on gauze (placing asbestos on gauze) until white fumes are given off. Let it cool, add about 25 to 50 c.c. water and let stand for about three hours. A white precipitate indicates the presence of lead. Filter and wash. Dissolve the precipitate with acetic acid (C₂H₄O₂) and add K₂CrO₄. A yellow precipitate confirms the presence of lead.

Add HN_4OH to the filtrate. A white precipitate indicates that Bi is present. If the solution turns blue on adding NH_4OH , the presence of Cu is established. Filter and wash the precipitate of Bi. If the precipitate is left in the solution and boiled, the precipitate will turn yellow as Bi_2O_3 .

Add to the filtrate KCN solution until the blue color disappears. Then add H₂S. If Cd is present, it will form a yellow precipitate, soluble in HNO₃ insoluble in (NH₄)₂S, KCN and KHS, also in hot H₂SO₄.

Bismuth. If bismuth is present in a solution the following precipitates are obtained with the following reagents:

- 1. Hydrogen sulphide (H₂S) and ammonium sulphide ((NH₄)₂S), a black precipitate of bismuth sulphide (Bi₂S₃), insoluble in cold dilute acids, KHS and KOH, but soluble in boiling HNO₃.
 - 2. Ammonium hydroxide (NH₄OH), and sodium

hydroxide (NaOH), and potassium hydroxide (KOH), a white precipitate insoluble in an excess of any of the reagents.

3. Potassium chromate (K_2CrO_4) a yellow precipitate of basic bismuth chromate $(Bi_2O(CrO_4)_2)$ soluble in HNO₃ but insoluble in NaOH.

Copper. Copper, if in a solution, will give the following reactions with the following reagents:

- 1. Hydrogen sulphide (H₂S) or ammonium sulphide ((NH₄)₂S), a black precipitate of a black copper sulphide (CuS) soluble in HNO₃, KCN and slightly in (NH₄)₂S₃ but insoluble in KHS and H₂SO₄.
- 2. The addition of a small quantity of NH₄OH will precipitate a greenish blue basic salt, soluble in an excess of the reagent giving the solution a dark blue color.
- 3. Sodium hydroxide (NaOH), a light blue precipitate of copper hydroxide (Cu(OH)₂) insoluble in an excess, but soluble in NH₄OH and in acids.
- 4. Potassium hydroxide (KOH) precipitates a pale blue copper hydroxide (Cu(OH)₂) insoluble in an excess of the reagent. On boiling, the precipitate becomes black.
- 5. Potassium cyanide (KCN) a pale greenish precipitate of copper cyanide ($Cu(CN)_2$) soluble in excess. But if KCN is present in a solution (as above where the KCN is added to destroy the color of the solution) and then H_2S is added to precipitate the cadmium as CdS, copper is not precipitated by the addition of KCN.
- 6. Potassium ferrocyanide (K₄Fe(CN)₆), a brownish red precipitate of copper ferrocyanide (Cu₂Fe(CN)₆).
 - 7. If very clean iron such as a penknife is placed in

a solution containing a copper salt, iron will replace some of the copper and the iron will become coated with copper. (CuSO₄+Fe=FeSO₄+Cu.) If the solution is strong, especially in the presence of a little free acid, the reaction is very rapid.

Cadmium. Cadmium, if in a solution, will give the following reactions with the following reagents:

- 1. Hydrogen sulphide (H_2S) , or ammonium sulphide $((NH_4)_2S)$, a yellow precipitate of cadmium sulphide (CdS), insoluble in an excess of either reagent, KHS, KCN, and in cold dilute acids, but soluble in HNO₃ and hot H_2SO_4 .
- 2. Sodium or potassium hydroxide, a white precipitate of cadmium hydroxide (Cd(OH)₂) insoluble in an excess of both reagents.
- 3. Ammonium hydroxide (NH₄OH), a white precipitate of cadmium hydroxide (Cd(OH)₂, soluble in an excess of the reagent.

To the filtrate marked "division 2," add HCl drop by drop. This throws out sulphur which should be filtered off. More HCl is added to the filtrate until the metals are all precipitated. Filter and wash two or three times with hot water. Place the precipitate on an evaporating dish, cover with HCl, place on gauze and heat to boiling. Sn and Sb are dissolved and AsS remains undissolved. Filter and wash two or three times with hot water. Remove the precipitate and the filter paper to an evaporating dish and cover with conc. HNO3. Heat until all of the precipitate is dissolved and the acid driven off. Add about 15 c.c. water and mark "Filtrate from As." Place some of the filtrate in a test tube and add a few drops of magnesium sulphate solution. (Prepare the

solution by dissolving magnesium sulphate in water then adding NH₄OH as long as a precipitate is obtained, and dissolving the precipitate with NH₄Cl solution.) Add this solution to the filtrate in the test tube.

The solution must remain alkaline. Shake vigorously for a few moments. The presence of As is indicated when a white crystalline precipitate is obtained.

To the filtrate in the beaker marked, "Filtrate from As," place a few pieces of Zn. When chemical action commences, hold the cover from the platinum crucible in contact with the zinc for a few seconds. If a black stain is formed on the platinum cover, it indicates the presence of antimony (Sb). Remove the platinum cover. Cover the beaker with a glass funnel and let it rest until the chemical action ceases. Remove all the zinc on which the antimony is deposited as a black powder and the tin as a spongy mass or a gray powder. Then wash every piece of the zinc carefully back into the beaker, being sure to remove all the adhering metals by washing with the wash bottle. When the metals are all settled, decant the clear liquid. Pour hot water in the metals and decant again. Then add conc. HCl and place on gauze, heat to boiling. If tin is present it will be dissolved forming stannous chloride (SnCl₂) and the antimony will remain undissolved.

Dilute the contents of the beaker with water and filter. Wash the precipitate two or three times with hot water. Dissolve the precipitate with three parts of conc. HCl and two parts conc. HNO₃ in a porcelain evaporating dish. Heat to drive off nearly all of the acid. Then dilute with water and add H₂S. A white precipitate confirms the presence of antimony.

Add mercuric chloride (HgCl₂) to the filtrate left from the antimony. A white precipitate indicates the presence of tin (Sn).

Arsenic, Tin, and Antimony. If a solution contains arsenic, tin, and antimony the following reactions will take place if the following reagents are added to the solution:

- Arsenic. 1. Hydrogen sulphide (H_2S), or ammonium sulphide ($(NH_4)_2S$), does not produce a precipitate in a neutral solution. In an acid solution, a yellow precipitate of arsenious sulphide ($A_{S_2}S_3$) soluble in an excess of (NH_4)₂S, in KOH and in HNO₃ but insoluble in HCl;
- Silver nitrate (AgNO₃) in neutral or alkaline solutions, a pale yellow precipitate of silver arsenite (Ag₃AsO₃);
- 3. Copper sulphate (CuSO₄) a green precipitate of copper arsenite (CuHAsO₃) (known as the Scheele's green) soluble in NH₄OH and acids.
- Tin. 1. Hydrogen sulphide (H₂S), or ammonium sulphide ((NH₄)₂S), a brown precipitate of stannous sulphide (SnS). Both soluble in yellow (NH₄)₂S₄, and re-precipitated by HCl as yellow stannic sulphide (SnS₂). If the SnS precipitate is dissolved in KOH, the addition of HCl will produce a brown precipitate of stannous sulphide (SnS);
- 2. Ammonium hydroxide, sodium hydroxide, or potassium hydroxide will produce a white precipitate of stannous hydroxide (Sn(OH)₂). The precipitate with NH₄OH is insoluble in an excess of the reagent but the precipitate with NaOH and KOH is soluble in an excess of the reagent.

Antimony. 1. Hydrogen sulphide (H2S) or am-

monium sulphide ((NH₄)₂S), an orange-red precipitate of antimonium sulphide (Sb₂S₃), insoluble in an excess of H₂S but soluble in an excess of (NH₄)₂S. By adding HCl to the ammonium sulphide solution, Sb₂S₃ is again precipitated;

- 2. Zinc placed in a solution in the presence of HCl and Pt precipitates the antimony as a black powder which adheres to the platinum (as mentioned above when the cover of the platinum crucible was placed in the solution containing Sb). The precipitate is insoluble in HCl but is readily soluble in hot HNO₃;
- 3. Ammonium, sodium or potassium hydroxide, a white precipitate of antimony oxide (Sb₂O₃). The precipitate produced by NH₄OH is not soluble in an excess of the reagent, but the precipitates obtained by the NaOH and KOH are soluble in excesses of the reagents.

III. AMMONIUM HYDROXIDE GROUP

The filter marked "Group III" is now boiled until all the H₂S is driven off. A filter paper saturated with lead or silver chloride, when held in the vapor, will color as long as H₂S is present. If sulphur collects on the surface of the liquid, it should be filtered off.

After all the H₂S is driven off, add to the filtrate NH₄OH drop by drop stirring continuously until the solution turns red litmus paper blue.

Place the beaker on the gauze and gently heat to near the boiling point. Let the precipitate settle and filter as long as warm. Wash the precipitate with hot water until a little filtrate, collected in a test tube, shows no precipitation on adding HNO₃ and AgNO₃.

After shaking, place the filtrate aside and mark "Group IV."

The precipitate should be tested for Mn. To do this a small portion of the precipitate is placed on the platinum lid and fused with Na₂CO₃ and KNO₃. A bluish green mass indicates the presence of Mn.

To be certain that Mn is not being mistaken for Cr place a clean beaker under the funnel and dissolve the precipitate by adding about 15 to 20 c.c. HCl to the filter. It will run through the filter paper. Add to the filtrate about 10 c.c. NH₄Cl solution, boil, add NH₄OH, place the beaker with the contents on gauze and again heat to boiling. Filter and wash again with hot water until the precipitate is free from chloride as before. Add this filtrate to the one previously obtained. The precipitate is now free from Mn.

Half of the precipitate is removed into a beaker. The other half is removed with the paper into the same platinum crucible where the residue from the HF volatilization of SiO₂ was left after it had been ignited, allow to cool. Fuse the residue with KHSO₄ and when cool, remove into a beaker. Add sufficient hot water to cover. Add a few drops of H₂SO₄, boil, and when cool, add hydrogen peroxide (H₂O₂). A yellow color indicates the presence of Ti.

Dissolve the other half of the precipitate which was placed in the beaker with as little diluted HCl as possible. Heat to boiling. Transfer a small portion of the solution into a test tube and add K₄Fe(CN)₆+₃H₂O. A blue precipitate indicates the presence of iron. Add NaOH in excess to the solution of the beaker and heat to boiling. All the alumina will dissolve. Fe and Cr when present will be precipitated. Filter and

wash two or three times with hot water. Transfer the precipitate to the platinum crucible and fuse with Na₂CO₃ and KNO₃. Dissolve the fused mass in water and filter. The residue is Fe. Divide the filtrate into two parts. To one part add AgNO₃. A yellow filtrate with a red precipitate indicates the presence of Cr. Acidify the other part with HCl, add NH₄OH. A white precipitate indicates Al.

Solutions containing aluminum, iron and chromium will give the following reactions with the following reagents:

Aluminum. 1. Ammonium, sodium or potassium hydroxide, a white precipitate of aluminum hydroxide (Al(OH)₃). The precipitate obtained with NH₄OH is not soluble even in excess of the reagent if NH₄Cl is present. The precipitate obtained with NaOH or KOH is soluble in an excess of the reagents and also in acids, even in hot $C_2H_4O_2$;

- 2. Sodium or ammonium carbonate, a white precipitate of aluminum hydroxide (Al(OH)₃. The precipitate obtained with NaOH is soluble in an excess of the reagent, whereas the precipitate obtained with (NH₄)₂CO₃ is insoluble in an excess of the reagent but dissolved in acids;
- 3. Sodium phosphate (Na₂HPO₄) precipitates white aluminum phosphate (Al₂P₂O₈), insoluble in NH₄OH and in hot C₂H₄O₂, Al(HO)₃ dissolves in hot C₂H₄O₂. The precipitate obtained with Na₂HPO₄ dissolves readily in NaOH or KOH and in acids.
- Iron. 1. Ammonium sulphide ((NH₄)₂S), a black precipitate of ferrous sulphide (FeS), soluble in NaOH, KOH, HCl, and H₂SO₄. H₂S gives no precipitate of Fe, Mn, Cr, Zn, Co or Ni, in acid solution;

- 2. Sodium or potassium hydroxide, a white precipitate of ferrous hydroxide (Fe(OH)₂) which readily changes to greenish yellow and then reddish brown, owing to the absorption of oxygen which converts the precipitate into ferric hydroxide (Fe(OH)₃). The precipitate is insoluble in an excess of the reagent.
- 3. Potassium ferrocyanide ($K_4Fe(CN)_6$), a white precipitate of potassium ferrous ferrocyanide ($K_2Fe_2(CN)_6$, which turns blue rapidly by oxidation to $Fe_5(CN)_{12}$ (known as the Prussian blue). Insoluble in acids but dissolves in alkalies;
- 4. Potassium ferric cyanide (K₃Fe(CN)₆), precipitates blue ferric cyanide (Fe₅(CN)₁₂) insoluble in acids, dissolves in alkalies.

Chromium. 1. Ammonium, sodium, or potassium hydroxide, a bluish green precipitate of chromium hydroxide (Cr(OH)₃). The precipitate obtained with NH₄OH is slightly soluble in an excess of the reagent which gives a pink color to the solution, but on heating a complete precipitation of Cr(OH)₃ is obtained. The precipitate obtained with NaOH or KOH is soluble in an excess of the reagent, but on boiling or an addition of NH₄Cl and heating the solution, a complete precipitation of Cr(OH)₃ is obtained;

- 2. Ammonium sulphide ((NH₄)₂S) a greenish blue precipitate of chromium hydroxide (Cr(OH)₃) insoluble in an excess of the reagent;
- 3. Ammonium or sodium carbonate a greenish blue precipitate of a basic carbonate, which is not completely precipitated until allowed to stand for a time.

IV. AMMONIUM SULPHIDE GROUP

Add (NH₄)₂S to the filtrate marked "Group IV." Before adding (NH₄)₂S to the whole filtrate it is advisable to take a little of it in a test tube and to add a few drops of (NH₄)₂S. If a precipitate is obtained it indicates the presence of this group of metals.

Add (NH₄)₂S to the filtrate in the beaker until the metals are completely precipitated. Boil the solution and let the precipitate settle completely. Decant the clear liquid through the filter paper.

Then filter the whole, wash two or three times with hot water, adding always one drop (NH₄)₂S to avoid the precipitate oxidizing to soluble sulphate. The filtrate is set aside and marked for "Group V."

If the precipitate is light in color only Mn and Zn are present. If the color of the precipitate is dark Ni or Co or perhaps all of the group metals are present.

Dissolve the precipitate with cold dilute 1:8 HCl, stirring it for one or two minutes. Filter and wash with dilute HCl. The residue contains Co and Ni, and the filtrate Mn and Zn.

Transfer the precipitate to a porcelain evaporating dish. Dissolve the precipitate in aqua regia (three parts of conc. HCl, to two parts of conc. HNO₃). Evaporate to dryness. Add a little water. Filter and wash. Make filtrate alkaline then add acetic acid, and a few pieces as large as peas of potassium nitrate KNO₂. Let rest for a few hours. A yellow precipitate indicates the presence of Co as double nitrate of potassium and cobalt. Filter, wash, and add NaOH solution to the filtrate. A green precipitate indicates the presence of Ni.

Boil the filtrate from Co and Ni until all (NH₄)₂S is expelled. Add NaOH solution in excess. Filter and wash. A brown precipitate indicates the presence of Mn. Add H₂S to the filtrate. A white precipitate indicates the presence of Zn.

Solutions containing cobalt, nickel, manganese, and zinc will give the following reactions with the following

reagents:

Cobalt. 1. Ammonium, sodium or potassium hydroxide precipitates a blue basic salts, insoluble in excesses of the reagents. The precipitate from NaOH or KOH turns green if exposed to air by oxidation; and on heating changes to red cobaltous hydroxide (Co(OH)₂) which soon changes again to brown cobaltic oxide (Co₂O₃). The precipitate obtained from NH₄OH is easily soluble in an excess of the reagent, giving a reddish brown solution. Adding to this solution KOH or NaOH will produce a precipitate of (Co(OH)₂);

2. Ammonium or sodium carbonate, a reddish precipitate of basic cobalt carbonate. The precipitate from (NH₄)₂CO₃ is soluble in an excess of the reagent, producing a reddish violet solution, but the precipitate from Na₂CO₃ is insoluble in an excess of the

reagent;

3. Ammonium sulphide ((NH₄)₂S), a black precipitate of cobalt sulphide (CoS), insoluble in an excess of the reagent and slightly soluble in HCl, but dissolves in hot HNO₃ and in aqua regia. Dissolve the precipitate of CoS in aqua regia, evaporate to dryness, driving off almost all of the acid. Add a little water and NaOH to make the solution strongly basic. Then add sufficient tartaric acid (H₂C₄H₄O₆) to make the

solution acid. Heat gently and pass H₂S into the solution. A black precipitate of CoS is obtained.

Nickel. 1. Ammonium, sodium, or potassium hydroxide, a green precipitate of nickel hydroxide (Ni(OH)₂). The precipitate produced by NH₄OH is readily soluble in an excess of the reagent yielding a dark blue solution. If to this solution is added NaOH or KOH the Ni is precipitated. The precipitate formed by NaOH or KOH is insoluble in an excess of either reagent and will not change color when exposed to the air;

2. Ammonium or sodium carbonate, precipitates a light green basic nickel carbonate. The precipitate from (NH₄)₂CO₃ is soluble in an excess of the reagent while that from Na₂CO₃ is insoluble;

3. Potassium cyanide (KCN), a green precipitate of Ni(CN)₂ soluble in an excess of the reagent which renders the solution brownish yellow (2KCN+Ni(CN)₂). From this solution the nickel is precipitated by adding dilute HCl or H₂SO₄. If boiled with strong solution of NaClO, a black precipitate of nickel hydroxide is obtained Ni(OH)₃.

Manganese. 1. Ammonium, sodium, or potassium hydroxide, a white precipitate of manganese hydroxide (Mn(OH)₂) insoluble in ail three reagents. These precipitates turn brown rapidly upon exposure to air by absorbing oxygen. NH₄OH gives no precipitate in a solution containing an excess of free acid or NH₄Cl as this retards precipitation; but if the solution is allowed to stand for a while, a dark brown precipitate is formed, which separates out slowly from the solution;

2. Ammonium sulphide ((NH₄)₂S), a flesh-colored precipitate of manganese sulphide (MnS), soluble in acids even in acetic acid;

- 3. Ammonium or sodium carbonate, a white precipitate of manganese carbonate (MnCO₃) insoluble in an excess of either reagents. The absorption of oxygen causes both precipitates to change color to brown.
- Zinc. 1. Ammonium, sodium, or potassium hydroxide, a white precipitate of zinc hydroxide (Zn(OH)₂) soluble in an excess of any of the reagents. NH₄OH gives no precipitate in the presence of free acid or NH₄Cl;
- 2. Ammonium or sodium carbonate, a white precipitate of basic carbonates. The precipitate obtained by $(NH_4)_2CO_3$ is soluble in an excess of the reagent; but the precipitate by Na_2CO_3 is not;
- 3. Ammonium sulphide ((NH₄)₂S), a white precipitate of zinc sulphide (ZnS), insoluble in an excess of the reagent but dissolves in KOH, HCl, HNO₃ and H₂SO₄.

V. AMMONIUM CARBONATE GROUP

The filtrate marked "Group V" is boiled until the (NH₄)₂S is completely driven off. If sulphur is thrown out, it must be filtered off. To the filtrate add NH₄OH and boil. Add (NH₄)₂CO₃, and heat. As soon as it boils, filter and wash two or three times with hot water. Precipitates may contain Ba, Sr, and Ca. Mark filtrate for "Group VI."

Dissolve the precipitate with dilute acetic acid, which will run through the filter paper into a clean beaker placed under the funnel. Add to the filtrate K_2CrO_4 solution. A yellow precipitate indicates the presence of Ba.

Filter and divide into two portions. Add CaSO₄ solution to one portion. Boil a few minutes and allow

to stand for a moment. Filter and wash. A white precipitate shows the presence of Sr.

Add (NH₄)₂C₂O₄ to the other portion. A white crystalline precipitate indicates the presence of Ca. All these metals should be dissolved and tested in a flame.

Solutions containing barium, strontium or calcium will give the following reactions with the following reagents:

Barium. 1. Ammonium, sodium or potassium carbonates, a white precipitate of barium carbonate (BaCO₃), insoluble in an excess of the reagents. The precipitate of (NH₄)₂CO₃ is only slightly soluble in NH₄Cl, but is soluble in acids, that of Na₂CO₃ or K₂CO₃ is also soluble in acids with effervescence;

- 2. Sulphuric acid (H₂SO₄), a heavy white precipitate of barium sulphate (BaSO₄) which is immediately formed and is insoluble in acids and in NH₄Cl. Any soluble sulphates will produce the same reaction as H₂SO₄;
- 3. Ammonium oxalate ((NH₄)₂C₂O₄), a white precipitate of barium oxalate (C₂BaO₄) soluble in HNO₃, HCl and H₄C₂O₂, in a concentrated solution, but no precipitate is formed in a dilute solution;
- 4. Potassium chromate (K₂CrO₄) produces a yellow precipitate of barium chromate (BaCrO₄) insoluble in alkalies and H₄C₂O₂, but soluble in HCl and HNO₃;
- 5. Barium in solution or in the solid form if taken on a platinum wire loop and held in the Bunsen flame a green coloration is obtained. If dipped in HCl and heated again a characteristic yellowish green color is produced due to the formation of the volatile salt of BaCl₂.

- **Strontium.** 1. Ammonium, sodium, or potassium carbonate, a white precipitate of strontium carbonate ($SrCO_3$), insoluble in an excess of the reagent, and only slightly soluble in NH₄Cl, but soluble in HNO₃, HCl and $C_2H_4O_2$;
- 2. Sulphuric acid (H₂SO₄), a white precipitate of strontium sulphate (SrSO₄). In a concentrated solution, the precipitate is formed immediately, but in a dilute solution only after standing for some time. Heating favors precipitation. Calcium sulphate solution also produces a white precipitate of SrSO₄ after standing for some time;
- 3. Potassium chromate (K₂CrO₄) produces only in a concentrated solution a yellow precipitate of strontium chromate (SrCrO₄) which is easily soluble in HNO₃, HCl, and C₂H₄O₂;
- 4. Ammonium oxalate $((NH_4)_2C_2O_4)$, a white precipitate of strontium oxalate (SrC_2O_4) soluble in HNO₃, HCl and slightly in NH₄Cl, and $C_2H_4O_2$.

Strontium in solution or in a solid state gives a crimson color if held in a flame of a Bunsen burner on a platinum wire loop. If the Sr is dipped in dil. HCl a volatile salt of SrCl₂ is produced.

Calcium. 1. Ammonium, sodium or potassium carbonate, a white precipitate of calcium carbonate (CaCO₃). Heating favors the precipitation which becomes crystalline. All the precipitates are dissolved in acids with effervescence;

- 2. Ammonium oxalate $((NH_4)_2C_2O_4)$ produces even in a dilute solution a white precipitate of calcium oxalate (CaC_2O_4) , insoluble in $C_2H_4O_2$, but readily soluble in HCl or HNO₃;
 - 3. Sulphuric acid (H₂SO₄), a white precipitate of

calcium sulphate CaSO₄ from a concentrated solution very slowly. As this precipitate dissolves in excess of water, and in all acids, therefore, no precipitate is obtained from a diluted solution;

4. Sodium phosphate (Na₂HPO₄), a white precipitate of dicalcium phosphate (CaHPO₄) in slightly acid or neutral solutions. The precipitate obtained from an alkaline solution is tricalcium phosphate (Ca₃(PO₄)₂). Both precipitates are soluble in dilute acids and can be re-precipitated by NH₄OH. All volatile calcium salts give a brick-red coloration to the flame if held on a platinum wire loop in a flame of a Bunsen burner.

Magnesium. Add to the filtrate marked for "Group VI," NH₄OH and ammonium sodium phosphate (NaH·NH₄·PO₄) (microcosmic salt). Stir well and let stand for a while to cool. A white precipitate indicates the presence of Mg.

Magnesium in a solution will give the following reactions with the following reagents:

- 1. Sodium ammonium phosphate $(NaH \cdot NH_4 \cdot PO_4)$ a white precipitate of magnesium ammonium phosphate $(MgNH_4PO_4)$, soluble in HCl, HNO₃ and $C_2H_4O_2$ but insoluble in NH₄Cl. The precipitate is very slowly formed in dilute solutions, but by stirring well with a glass rod the precipitation is hastened.
- 2. Sodium phosphate (Na₂HPO₄), a white crystalline precipitate of magnesium ammonium phosphate (MgNH₄PO₄) in an alkaline solution containing NH₄OH and NH₄Cl, but no precipitate is obtained in a solution containing free acids. The precipitate is soluble in HNO₃, HCl, H₂SO₄, and C₂H₄O₂;
 - 2. Ammonium or sodium hydroxide, a white precipi-

tate of magnesium hydroxide (Mg(OH)₂) from neutral solutions or solutions free from acids or NH₄Cl.

SOLUTIONS (WET REAGENTS) REQUIRED

The strength of every solution after it is adjusted and accurately determined should be indicated on the label of the bottle containing it.

Hydrochloric acid (HCl), M.w.=36.5, equ.=36.5, conc. sp. gr.=1.20 13/N (normal). Dilute with 8 volumes of water (1:8), makes 5/N.

Sulphuric acid (H_2SO_4), M.w.=98, equ.=49, conc. sp. gr.=1.84, its strength is 36 normal (36/N). Diluted with 6 volumes of water (1:6)=5/N.

Nitric acid (NHO₃), M.w.=63, equ.=63, conc. sp. gr.=1.40 (handle with great care, as it is very caustic and corrosive, more so than HCl or H_2SO_4). Diluted with two volumes of water (1:2)=5/N.

Acetic acid $(C_2H_4O_2)$, M.w.=60, conc. sp. gr.=1.0 (handle carefully), equ.=60. Diluted with 2.5 volumes of water=5/N.

Ammonium carbonate $(NH_4)_2CO_3$, M.w. = 96, equ. = 48. Dissolve 200 gms. of solid in 500 c.c. of water and 200 c.c. of conc. ammonium hydroxide $(NH_4)OH$, then dilute with water to 1000 c.c.

Ammonium chloride (NH₄)Cl, M.w.=53.5, equ.=53.5. Dissolve 107 gms. of the dry pure salt in 700 c.c. of water, then add enough water to make 1000 c.c. = 2/N. Or $53.5 \times 5 = 267.5$ gms. in 1000 c.c. water = 5/N.

Ammonium hydroxide (NH₄)OH, M.w.=35. conc. sp. gr.=0.90, add 400 c.c. to 600 c.c. water=6/N.

Ammonium sulphide $(NH_4)_2S$, M.w. = 68, equ. = 34, lead sulphurated hydrogen (H_2S) into a bottle containing 70 c.c. 6/N $(NH_4)OH$, until it is saturated (which is indicated by the bubbles rising through the liquid undiminished in size). Then fill the bottle to 1000 c.c. mark 6/N $(NH_4)_2S$.

Yellow ammonium sulphide (NH₄)₂S₂, is made by adding a small quantity of flowers of sulphur to ammonium sulphide, and shaking until dissolved. The solution when properly prepared should have an amber color. Or let the (NH₄)₂S stand, it is slowly decomposed by the atmospheric oxygen, and ammonium yellow sulphide (NH₄)₂S₂, is evolved.

Ammonium nitrate $(NH_4)NO_3$, M.w.=80, dissolve 40 gms. in 1000 c.c. water=N/2. Or neutralize 20 c.c. of the conc. HNO_3 with conc. $(NH_4)OH$. (The solution must show alkaline with litmus.) Dilute to 1000 c.c. with water.

Ammonium oxalate $(NH_4)_2C_2O_4$, M.w. = 142. 35.5 gms. of the salt dissolved in 1000 c.c. water will make an N/2 solution. Place it in a warm place for ten hours occasionally shaking it and when dissolved filter the solution.

Silver nitrate (AgNO₃), M.w.=170, dissolving 17.0 gms. of the salt in 500 c.c. of water will make an N/5 solution.

Barium chloride (BaCl₂·2H₂O), M.w.=244. Dissolve 122 gms. of the salt in 1000 c.c. water 1/N solution.

Potassium permanganate solution (KMnO₄), M.w. = 158, 2KMnO₄=316 (2KMnO₄+3H $_2$ SO₄= K_2 SO₄+2MnSO₄+3H $_2$ O+O $_5$). Dissolve 0.398 gm. of KMnO₄ in 1000 c.c. of pure water, and against pure ferrous ammonium sulphate (Mohr salt)FeSO₄(NH₄) $_2$ SO₄6H $_2$ O

as described in the analysis of clay for iron by the volumetric method.

Standard titanium solution is prepared exactly as described under the determination at TiO₂ in clay (see p. 73).

Potassium ferrocyanide, $K_4Fe(CN)_6 \cdot _3H_2O$, M.w.= 422. Dissolve 105 gms. in 1000 c.c. water= 1/N.

QUANTITATIVE ANALYSIS

Moisture. One gram of sample is carefully weighed heated in a weighed platinum crucible at 110° C. until constant weight is obtained, cooled in desiccator, then weighed.

The loss is recorded as hydroscopic moisture.

Ignition Loss. Heat the residue to redness (900 to 1000° C.). The loss of weight is recorded as chemically combined moisture plus loss due to organic matter, is present. Some of the loss in weight may also be due to carbon dioxide from carbonates or sulphur dioxide from sulphates.

SiO₂. Mix the residue in the crucible with 5 gms. Na₂CO₃ and 5 gms. K₂CO₃; cover the crucible. Fuse over a very small flame for at least five minutes, then over a blast flame until complete fusion is obtained and no bubbles are present. Cool the fused mass by rotating the crucible so as to spread the mass up the side walls of the crucible until it solidifies. (Note the color, a bluish gun-metal color reveals the presence of manganese and brownish indicates iron.) After cooling remove the melted mass into an evaporating dish, add water, place on gauze and heat gently to boiling until all of the material is dissolved. (If some undissolved residue remains, it is better at this stage to filter it off and fuse the residue over again with Na2CO3 and K₂CO₃ dissolve and add it to the filtrate previously obtained.) After cooling, to the filtrate in the evaporating dish add conc. HCl drop by drop from a dropping bottle until no more CO2 is given off and effervescence ceases. Keep the dish covered with a watch glass. (If iron is present the solution will turn to a yellowish straw color.)

Evaporate the contents in the evaporating dish to dryness on a water bath, add 60 c.c. of conc. HCl and evaporate to dryness and until all the fumes of HCl are driven off.

Add 100 c.c. dilute HCl (1:10) and heat on water bath for ten minutes, filter and wash with hot distilled water until the filtrate collected in a test tube gives no precipitate (AgCl) when shaken with a few drops of HNO₃ and AgNO₃, an indication that the precipitate is washed free of chlorides.

Transfer the precipitate with paper into a weighed platinum crucible and ignite until only a white residue of SiO₂ is left. Place in desiccator, allow to cool and weigh. Repeat heating and blasting for five minutes weigh again, and repeat until constant weight is obtained.

Moisten the residue with dilute H₂SO₄. Then 15 to 20 c.c. HF is added cautiously. Evaporate in fume hood on sand bath to dryness and then ignite at high heat. Repeat the heating until a constant weight is obtained.

After cooling weigh and subtract from the former weight. This difference is the weight of the SiO₂. The residue in the crucible may contain Al₂O₃, Fe₂O₃, TiO, etc.

Al₂O₃. Evaporate the filtrate from SiO₂ by boiling from about 500 to 300 c.c. add about 10 c.c. NH₄Cl solution and heat to boiling. Place a piece of red litmus paper in the liquid, add conc. NH₄OH drop by drop while stirring until the paper turns blue. Heat

nearly to boiling, let the precipitate settle and filter while warm. Wash three or four times by decantation with hot solution of ammonium nitrate until free from chlorides, as for SiO₂.

If Mn is present (when the Na₂CO₃ and K₂CO₂ fused cake shows a bluish-green color in the platinum crucible) place a clean beaker under the funnel and dissolve the precipitate with 50 c.c. dilute HCl. Wash the precipitate from the filter paper into the beaker, being careful that all of it is dissolved and passes into the beaker. If some of the precipitate still adheres to the paper add more HCl.

Place a red litmus paper into the filtrate and as before add NH₄OH until the paper turns blue. Warm the solution and filter (into the same beaker containing the filtrate previously obtained), exactly as before. Wash the precipitate with warm ammonium nitrate solution until free from chlorides, indicated by no precipitate forming when HNO₃ and AgNO₃ are added.

Evaporate the filtrate almost to dryness, add a little NH₄OH and continue the evaporation—being sure to keep the solution alkaline. If iron and aluminum are present it will coagulate as iron and aluminum hydroxides. Filter and wash thoroughly free from chlorides as before. Place both precipitate and filter papers on a watch glass in a drying oven until dry. Then place in platinum crucible which contains the residue from ignition of SiO₂. Ignite, cool in desiccator, then weigh as Al₂O₃. Blast for about five minutes and weigh, repeat blasting and weighing until a constant weight is obtained.

Moisten the residue with dilute H₂SO₄, add about 15 c.c. HF. Carefully evaporate, ignite, and weigh,

repeating the blasting and weighing to constant weight. Subtract this weight from the previous weight. The difference in weight is SiO₂. This weight must be added to the weight of SiO₂ previously obtained.

Multiply the weight in grams of residue in the platinum crucible by 12. Add this number of grams of KHSO4. Cover the crucible, heat gently at a very low temperature for about thirty minutes (avoid sputtering). Then raise to dark red heat for one hour or more until all is dissolved. Let it cool, then digest the mass in warm water, add about 5 c.c. conc. H₂SO₄, evaporate to a small volume, then gently heat to a higher temperature until white fumes of SO3 begin to come off. (Be sure that sufficient H₂SO₄ is present to form a pasty mass when cooled.) Place the crucible and contents also the cover into a clean beaker. Cover with hot water and heat gently to boiling. Remove the crucible and cover having washed off all adhering particles into the beaker. Transfer the solution from the beaker into a 400 c.c. Erlenmeyer flask. Dilute the solution to 200 c.c. add 15 c.c. dilute H2SO4 and boil until the liquid commences to clear.

If a residue is left the liquid should be filtered and the residue fused with KHSO₄, treated exactly as before. The quantity of KHSO₄ must be added to the former weight. If a residue is still left it should be filtered again and washed thoroughly. Then placed in a weighed platinum crucible, ignited, cooled and weighed. This weight represents SiO₂. Volatilize with HF as before, ignite and weigh repeat ignition and weighing to constant weight. Subtract this weight from the former weight. The difference is SiO₂. (This weight of SiO₂ should be also subtracted from the final weight

of Al₂O₃) and should be added to the weights previously obtained as the weight of SiO₂. Place a rubber stopper on the flask provided with a Bunsen valve and stand aside.

(The residue left from the KHSO₄ fusion should be examined carefully; the writer has found that the residue contains zirconium, vanadium, cobalt and also manganese.)

Mn. The two combined filtrates from Al₂O₃ are heated to boiling until the NH₄OH is driven off. Be sure no NH₄OH is present. When all is driven off add a few drops of 10 per cent hydrogen peroxide drop by drop while stirring. After gently heating to boiling, NH₄OH is added. As soon as the solution becomes strongly alkaline the Mn will instantly precipitate as a dark brown hydroxide MnO(OH). Filter, wash, ignite in porcelain crucible and weigh as Mn₃O₄. To convert the Mn₃O₄ to MnO multiply the weight of Mn₃O₄ obtained by the factor .9301.

$$\frac{3 \text{MnO}}{\text{Mn}_3 \text{O}_4} = \frac{213}{229} = .9301.$$

CaO. The filtrate from Al₂O₃ and Fe₂O₃ should be evaporated to 200 c.c. about 5 c.c. acetic acid (H₂C₂O₄) is added to the solution and heated to boiling. Add NH₄OH and (NH₄)₂C₂O₄ while continuously stirring. Heat to boiling and place in warm place for about ten hours or overnight. As the precipitate is contaminated with Na, K and Mg salts, the precipitate should be dissolved in 50 c.c. warm dilute HNO₃ (1:5). Pour the 50 c.c. dilute warm HNO₃ into the same beaker in which the calcium was precipitated. Fill the beaker so that the acid wets the sides all around

in order to dissolve any adhering precipitate. Remove the beaker containing the filtrate and cover with a watch glass and mark "Filtrate from CaO."

Place a clean beaker rinsed out with distilled water under the funnel containing the Ca precipitate. Pour the contents of the beaker carefully on the filter to dissolve all the calcium precipitate on the filter paper. If some of the precipitate still adheres to the paper add more of the warm dilute nitric acid. Add a slight excess of NH₄OH and about 15 c.c. of (NH₄)₂C₂O₄ solution. Boil about a minute and allow it to stand in a warm place overnight.

Filter and wash. Pour this filtrate into the beaker containing the filtrate previously obtained. Wash the filter with dilute NH₄OH (1:10) until free from chlorine, place the precipitate with the paper in a weighed platinum crucible. Ignite until all the oxalates are driven off. Cool in desiccator and weigh as CaO. Repeat the ignition and weighing until the weight is constant.

MgO. Evaporate the filtrate from CaO to 200 c.c. add NH₄OH and about 10 to 20 c.c. sodium ammonium phosphate solution (Na(NH₄)HPO_{4·4}H₂O). Stir the solution vigorously for about twenty minutes, being careful not to touch the sides of the beaker with the stirring glass rod as the Mg will crystallize on the sides of the beaker. Stand aside in a cool place for ten hours or overnight.

Filter and dissolve the precipitate in 50 c.c. warm dilute HNO₃ and proceed exactly as with the precipitate of calcium. Add sodium ammonium phosphate solution and NH₄OH. Stir vigorously for twenty minutes. Stand aside for ten hours.

Filter, wash the precipitate with dilute NH₄OH (1:10) dry and ignite in a weighed porcelain or aluminum crucible until constant weight is obtained.

Weigh as Mg₂P₂O₇. From this calculate MgO by using the factor .3606.

$$\frac{2 \text{MgO}}{\text{Mg}_2 \text{P}_2 \text{O}_7} = \frac{80}{222} = 0.3606.$$

Fe₂O₃. To the solution in the Erlenmeyer flask 10 gms. of c.p. mossy zinc is added. Let it stand until all chemical action has ceased. A blank solution is prepared by fusing the same weight of KHSO₄ as before and treated as the former. To this is also added 10 gms. of zinc and placed aside and marked blank solution. When chemical action has ceased in both flasks the solution is filtered and washed as quickly as possible, then titrated with a KMnO₄ V. S.

The KMnO₄ solution is prepared as follows:

Dissolve 1 gm. of KMnO₄ in 1000 c.c. distilled water, let it stand for two or three days in a dark amber-colored bottle, then dissolve 3.924 gms. FeSO₄(NH₄)₂SO₄6H₂O in 1000 c.c. distilled water; both bottles should have glass stoppers to be air tight. Let this solution also stand two or three days.

One c.c. of the FeSO₄(NH₄)₂SO₄6H₂O equal to .0008 gm. Fe₂O₃. Fill into one clean burette the FeSO₄(NH₄)₂SO₄6H₂O solution and into another the KMnO₄ solution.

Let 20 c.c. of the FeSO₄(NH₄)₂SO₄6H₂O solution into a clean beaker, dilute with 20 c.c. distilled water and add 15 c.c. dilute 1: 10 H₂SO₄, then titrate with the KMnO₄ solution. Note carefully how many

cubic centimeters are required to produce the pink color.

Three of five such tests must require the same amount of KMnO₄ solution.

Twenty c.c. of FeSO₄(NH₄)₂SO₄6H₂O×.0008 = .016 gm. Fe₂O₃. If the solution required 10 c.c. KMnO₄ solution, then .016: 10=.0016 gm. Fe₂O₃. This factor .0016 should be marked on the label of the bottle.

Assuming that to the solution which was transferred from the flask into the beaker, 12 c.c. of KMnO₄ was required and the blank 2.3 c.c. of KMnO₄ solution was required 2.3 c.c. has to be subtracted from the 12 c.c.

Then $(12-2.3\times.0016)\times100=1.55$ per cent Fe₂O₃ present in the sample.

TiO₂. This is determined colorimetrically as follows: Transfer the solution in which the Fe₂O₃ was determined into a 500 c.c. graduated flask, dilute it with water make exactly 490 c.c., and add 10 c.c. 3 per cent hydrogen peroxide, shake well and let it stand for a few minutes.

This solution is then compared with the St·S of TiO₂. The St·S is prepared by dissolving I gm. Ti(SO₄)₂ in 1000 c.c. distilled water (the solution should be kept in dark-colored glass-stoppered amber bottle). Pipette 5 c.c. from this solution into a clean 100 c.c. glass-stoppered bottle. Add 5 c.c. peroxide and fill exactly to the 100 mark with distilled water. Each cubic centimeter is then equivalent to 0.0001 gm. of TiO₂.

Place the St·S in the right cylinder of the Kennicott colorimeter and 100 c.c. of the test solution in the left

cylinder. Note the number of cubic centimeters of the St·S required to match the color, multiply the result first by .0001 by 5 and then by 100, which gives the percentage of TiO₂ present in sample. The St·S can be poured back in the 100 c.c. bottle again and used for the next operation.

The amount of TiO₂+Fe₂O₃ is added and subtracted from the amount of Al₂O₃ found gives the exact percentage of Al₂O₃ present in the sample.

S. The filtrate from Mg is heated to boiling. If the solution is 300 c.c. add 15 c.c. HCl and heat again, add BaCl₂ in sufficient excess to precipitate all the S present as BaSO₄. Filter, wash and ignite in a weighed porcelain crucible. Multiplying the result by .13756 gives S or by .3433 gives SO₃.

Alkalies. .5 gm. of the sample taken mixed with .5 gm. of NH₄Cl+₄ gms. CaCO₃. Place in a covered platinum crucible and heat at a low temperature then increase to dull red for one hour. After this treat the contents with hot water in a beaker, boiling until the mass is completely disintegrated. Filter off the insoluble and wash with hot water until a small quantity of the washing collected in a test tube forms no precipitate on adding HNO₃+AgNO₃. Evaporate to 100 c.c., remove from the flame, add NH₄OH+(NH₄)₂CO₃ as long as precipitate is formed, heat to boiling, let precipitate settle, filter and wash with hot water. Evaporate to a small bulk transfer to platinum crucible, evaporate to dryness on water bath, then heat gently to faint red to drive off all ammonium compound.

When cool dissolve residue in 5 c.c. water, add 1 or 2 drops NH₄OH+(NH₄)₂CO₃ and heat on water bath for ten minutes. Filter and wash in a weighed platinum

crucible, add I drop HCl. Evaporate to dryness, drive off all ammonium salt, finally heating to faint red. Cool in desiccator and weigh as the combined chloride of Na+K. Dissolve residue in 5 c.c. water, add PtCl₆ in a sufficient quantity to convert the chlorides into double chlorides of platinum (I c.c. should be sufficient). Place crucible on water bath and evaporate the contents to a pasty substance, add 35 c.c. 80 per cent alcohol and stand the crucible in a warm place for two hours, stirring the contents occasionally. Filter on a weighed filter paper, wash thoroughly with 80 per cent alcohol, dry in air bath at 130° C., weigh as K₂PtCl₆, multiply by .19376, which gives K₂O, or by .30674 to give KCl.

Subtract the latter weight from the weight of the mixed chlorides to give NaCl, which multiplied by .53028 gives Na₂O.

Determination of FeO. Mix .5 gm. of sample with 2 gms. of Na₂CO₃, place the mixture into the platinum crucible, cover the mixture with more Na₂CO₃, cover the crucible and heat gently until the contents in the crucible are all fused.

When cool dissolve the melted mass in a beaker with dilute H₂SO₄. Transfer the solution into a flask and boil until the liquid is clear. Add 10 gms. of zinc, cork with a rubber stopper fitted with a Bunsen valve, and leave in a warm place for about four hours, until all chemical action has ceased.

Titrate with KMnO4 exactly as for Fe₂O₃.

Determination of SO₃. Heat I gm. of the sample to 150° C. Allow to cool in desiccator, then quickly place the sample in a flask, add about 10 c.c. NH₄CO₃ to cover the specimen, cork with a rubber stopper and

let it stand for twenty-four hours, shaking it occasionally.

Filter and wash with warm water. If the solution is 200 c.c. add 10 c.c. HCl, boil, then add BaCi₂ solution, filter and wash. Let precipitate dry, place in a porcelain crucible, ignite, let cool and weigh. The weight of the residue, BaSO₄, multiplied by .3334 and then by 100 gives the percentage of SO₃ present in the sample.

CHROMITE ANALYSIS

Frequently a ceramic chemist is called upon to make an analysis of chrome ore. The following very convenient method gives accurate results:

Place I gm. of the dry pulverized sample in a previously weighed platinum crucible and weigh the crucible with the contents again. Moisten the contents of the crucible with a few drops of water and add 10 to 15 drops concentrated sulphuric acid and stir well with a platinum wire. Now add 6 c.c. of hydrofluoric acid very cautiously and stir very carefully with the platinum wire.

The crucible with the contents is carefully placed on a sand bath and very gently heated at a very low temperature, until the contents in the crucible are dry. (In this way all the silica is volatilized and the acids almost driven off.) Remove the crucible and ignite and blast for about fifteen minutes. Place the crucible with contents in desiccator, allow it to cool, then weigh. The difference between this and the former weight is silica and it is reported as such.

The residue from the platinum crucible is now very carefully washed into a very clean 30 c.c. nickel crucible.

(Do not use a platinum crucible, only nickel, silver or copper will do.) Be sure that every particle from the platinum crucible is washed into the nickel crucible. Place the nickel crucible with its contents on the hot plate until the contents is thoroughly dry.

Mix the dry residue in the crucible with 6 gms. of powdered sodium peroxide (Na₂O₂) and stir thoroughly with a platinum wire from which all adhering particles should be carefully brushed back into the crucible. (Be sure also that the Na₂O₂ is pure and fresh as it decomposes very rapidly forming Na₂CO₃.)

Heat the crucible with its contents with a very low flame, which should be regulated so as to complete the fusion in from ten to fifteen minutes and keep the contents in a fused state for ten minutes to insure complete fusion of every thing. Allow it to cool, place contents in a porcelain dish, add about 150 c.c. water, stir with a glass rod until the contents are all dissolved. Then place the crucible on a gauze and heat to boiling. It should be kept so for about twenty or twenty-five minutes until the Na₂O₂ is all decomposed. Filter and wash the filtrate four or five times with hot water. (It is advisable to fuse the residue on the filter paper again with 3 gms. of Na₂O₂ to make sure that all the Cr is separated and treated in the same manner as before.)

The filtrate will contain the chromium in solution and the residue on the filter paper will contain Fe, Al, Mn, etc. The greater part of the Al went through the filter paper as well as the silica if it was not all volatilized by the hydrofluoric acid treatment.

The filtrate is now acidified with acetic acid and allowed to stand on the hot plate for about fifteen min-

utes; then filtered and washed with hot water. This precipitate is added to the one previously obtained.

The chromium, almost pure, is now in the solution, and can be precipitated with barium chloride (BaCl₂) or with lead acetate (Pb(C₂H₃O₂)₂3H₂O). If BaCl₂ is used then the precipitate is barium chromate (BaCrO₄) and if lead acetate is used then the precipitate formed is lead chromate (PbCrO₄). The precipitate is dried and placed in a weighed porcelain crucible ignited and allowed to cool in desiccator, then weighed. Subtract the weight of the crucible and multiply the result with the factor .45784 if barium chloride were used as a reagent. If lead acetate were used as a reagent then factor 1.56011 is used as the multiplier to convert the lead chromate to CrO₄.

The precipitate of Fe, Al, Mn, etc., is now placed in a weighed platinum crucible and ignited. When cool it is weighed and placed in desiccator. Add a few drops of water and concentrated sulphuric acid as at the beginning and then cautiously add hydrofluoric acid to volatilize all the silica. When the contents of the crucible are dry ignite and blast. Place the crucible with contents into the desiccator. When cool weigh and subtract the loss from the former weight. This is silica and should be added to the former weight of silica obtained.

If Mn should be present and it is desired to separate it from the precipitate use the method described in the clay analysis, but before the ignition and volatization of the second silica, the Fe and Al must be precipitated first from the solution by NH_4OH , and the NH_4OH driven off after the Fe and Al has been precipitated, and H_2O_2 added to precipitate the Mn.

The precipitate is now again placed into the weighed platinum crucible ignited and weighed.

In either case when the Mn is all separated from the Fe and Al precipitate, add eight times the weight of the residue of potassium bisulphate and proceed exactly in the same way as for the determination of Fe by the volumetric method for clay.

If it is desired to determine the chromium by the volumetric method consult any standard work.*

ANALYSIS OF LIMESTONE, CEMENT, AND MAGNESITE

Place I gm. of the dry finely ground sample in a porcelain evaporating dish, add 5 c.c. water and 20 c.c. conc. HCl. Stir well with a glass rod. Before removing the rod from the dish after the stirring is completed wash the rod carefully back into the dish and cover with a watch glass. Place the dish on water bath until effervescence has ceased.

Remove the watch glass carefully wash it into the dish, leaving the dish on the water bath until the contents are dry. Remove the dish from the water bath, place on gauze, and heat gently until almost all the fumes are driven off. (Avoid excessive ignition.)

When cool dilute the residue with about 30 c.c. water and a few drops of HCl. Heat to boiling, filter, and wash till the wash comes through free from chlorides. Place the precipitate with paper in a weighed platinum crucible, dry, ignite, and weigh.

^{*}A Treatise on Quantitative Inorganic Analysis, by J. W. Mellor or Standard Methods of Chemical Analysis, by W. W. Scott.

Add a few drops of water and H₂SO₄ to the residue. Then add about 5 c.c. hydrofluoric acid. Volatilize the silica, ignite and weigh. Subtract the loss from the former weight and report as SiO₂.

Now proceed for determining Al, Fe, Ca, Mg, and alkalies as described under "clay analysis."

If the samples are high in silica it is better to conduct the analysis as we did with the clay making, the sample to fuse in Na₂CO₃ and K₂CO₃.

(For a thorough test and physical analysis on cement consult "Standard Methods of Chemical Analysis," W. W. Scott, D. Van Nostrand Company.)

ZIRCONIUM

Zirconium occurs as a silicate, ZrSiO₄=SiO₂ 32.8, Zr = 67.2, containing also Al_2O_3 , Fe_2O_3 , TiO_2 , and other rare metals. The mineral is decomposed by mixing I gm. of the finely powdered mineral with 5 gms. Na₂CO₃ and 1 gm. K₂CO₃. This mixture is placed in a platinum crucible and heated gradually until fused. The fused cake, when cold, is removed into an evaporating dish in which it is disintegrated in water and hydrochloric acid is added, and if manganese is present a few drops of hydrogen peroxide is added in order to reduce the manganate to a manganous salt. Filter and wash the residue with a solution of sodium hydroxide (NaOH). Silica and zirconium with other impurities as Al₂O₃, Fe₂O₃, TiO₂ and Ba will be on the filter paper. Wash the residue with about 50 c.c. dilute H₂SO₄, being careful to wash every part of the paper. Place a blue litmus paper in the beaker and see that the solution is acidic.

Dry the residue with the paper then ignite in a platinum crucible previously weighed. Allow to cool and weigh. Add a few drops of dilute H₂SO₄, and then about 6 c.c. of hydrofluoric acid. Carefully drive off the silica, ignite and weigh. The loss in weight from the previous weight is the silica, and the residue in the crucible is zirconium with other impurities.

To separate the zirconium from the impurities the reader is referred to the following works: "A Treatise on Quantitative Inorganic Analysis," by J. W. Mellor, and "Standard Methods of Chemical Analysis," by Scott.

The following reagents will produce precipitation as follows:

Ammonium sulphide (NH₄)₂S gives a white precipitate of zirconium hydrate insoluble in excess. KOH, NaCH, and (NH₄)OH give the same precipitate inso'uble in excess.

Hydrogen peroxide gives a bulky white precipitate as hydrate. Sodium and potassium carbonates precipitate zirconium as a flocculent powder soluble in an excess of the reagents. Ammonium carbonate $((NH_4)_2CO_3)$ gives a white precipitate of a basic carbonate which is soluble in an excess of the reagent. From this last solution the zirconium is precipitated as a hydrate on boiling.

NOTES ON CALCULATIONS OF THE RESULTS OF ANALYSIS

X+R of SiO ₂	
X+R left after HF. volt	.449 gm. SiO ₂ 21.404 gms. 20.968
X+R of Al ₂ O ₃ , etc	

 $(.436+.13)\times 100 = 44.90\%$ total SiO₂ I c.c. of KMnO₄ V.S. represents .00258 gm. of Fe₂O₃

The reduction was completed after 10 gms. of Zn had been dissolved in the solution. The solution required 6 c.c. of KMnO4 V.S. Also 10 gms. of Zn was dissolved in the blank solution and to both solutions 15 c.c. dilute 1: 10 H2SO was added. The blank solution required 1.8 c.c.

$$\therefore$$
 (6-1.8×.00258)×100=1.08% Fe₂O₃)

7 c.c. of TiO₂ was required to match the color. I c.c. St·S represents .0001 gm. per cubic centimeter. The test solution was made up to 400 c.c. to which 10 c.c. of 3 per cent peroxide was added. From this 100 c.c. were taken.

$$\therefore (7 \times .0001 \times 5) \times 100 = .35\% \text{ TiO}_2$$
37.40 Al₂O₃ - (1.08 Fe₂O₃ + 0.35 TiO₂) = 35.97% Al₂O₃.

99.96

X+R of CaO
$X+R \text{ of } Mg_2P_2O_7$ II.151 gms. X
$(.034 \times .3627) \times 100 = 1.23\%$ MgO X+R of mixed Cl. 20.967 gms. X 20.947 gms.
Paper w.+R of K ₂ PtCl ₆
.049 gm., .049 \times .3065 = .0150185 \times .6320 = .00949168200 ÷ 500 0.0189 \times 100 = 1.89% \times 100 = 0.99% .0200150185 = .0049815 ÷ 500 = 0.0099 \times 100 = 0.99%
X+ sample
.1235 gm. .1235×100=12.35% moisture. SiO ₂ 44.90
Al_2O_3
MgO. 1.23 K ₂ O. 1.89 Na ₂ O. 0.99
TiO ₂ 0.35 Moisture

CALCULATING THE RATIONAL ANALYSIS FROM AN ULTIMATE ANALYSIS

SiO_2	19.26
Al_2O_3 3	6.64
Fe_2O_3	.46
CaO	.06
MgO	. 04
Alk	1.52
$\mathrm{H}_2\mathrm{O}$	12.02
_	
10	00.00

$$x = \frac{556 \times 1.52}{94} = 8.99$$
 feldspar substance;

This contains:

$$x = \frac{8.99 \times 102}{556} = 1.65 \text{ Al}_2\text{O}_3$$

and

$$x = \frac{8.99 \times 360}{556} = 5.82 \text{ SiO}_2.$$

Subtracting 1.65 Al₂O₃ from the Al₂O₃ in ultimate analysis 36.64 - 1.65 = 34.79 Al₂O₃.

$$X = \frac{34.99 \times 258}{102} = 88.50$$
 clay substance.

Containing:

$$x = \frac{88.50 \times 120}{258} = 41.16 \text{ quartz};$$

and

$$x = \frac{88.50 \times 36}{258} = 12.35$$
 water.

Add the quartz found in the feldspar and clay substance, then subtract from the sum in the ultimate analysis:

$$49.26 - (41.16 + 5.82) = 2.28$$
 free quartz.

Summing up all the data the report is as follows:

Clay substance	88.50
Feldspar sub	8.99
Quartz	2.28
	99.77

Adding the Fe₂O₃+CaO+MgO,

$$99.77 + .56 + .06 + .04 = 100.33$$
.

The ultimate analysis shows only 12.02 per cent H_2O . The calculation shows 12.33 per cent H_2O . 12.35—12.02=.33 per cent too much H_2O or .33 per cent less in the clay. If we subtract this from 100.33 we have exactly 100 per cent. 100.33—.33=100, which is right.

Cone No. 20 has the following formula:

$$\left. \begin{array}{l} \text{0.3 K}_2\text{O} \\ \text{0.7 CaO} \end{array} \right\} \, 3.9 \text{Al}_2\text{O}_3 39 \text{SiO}_2.$$

What is the percentage of the mass?

$$(94 \times .3) + (56 \times .7) + (102 \times 3.9) + (60 \times 39) = 2805.2$$

$$X = \frac{2340 \times 100}{2805.2} = 83.44\% \text{ SiO}_2;$$

$$X = \frac{397.8 \times 100}{2805.2} = 14.18\% \text{ Al}_2\text{O}_3;$$

$$X = \frac{39.2 \times 100}{2805.2} = 1.38\% \text{ CaO};$$

$$X = \frac{28.2 \times 100}{2805.2} = 1.00\% \text{ K}_2\text{O};$$

100.00%

What is the rational analysis of Cone No. 20?

$$x = \frac{556 \times 1}{94} = 5.91\%$$
 F.s.

This contains:

$$x = \frac{5.91 \times 102}{556} = 1.09\% \text{ Al}_2\text{O}_3;$$

$$x = \frac{5.91 \times 360}{556} = 3.83\% \text{ SiO}_2;$$

$$1 K_2O + 1.08 Al_2O_3 + 3.82 SiO_2 = 5.91.$$

Subtracting from the total:

$$14.18 \text{ Al}_2\text{O}_3 - 1.08 \text{ Al}_2\text{O}_3 = 13.10.$$

This is calculated for clay substance as follows:

$$x = \frac{13.10 \times 258}{102} = 33.13\%$$
 C.s.

This contains:

$$X = \frac{33.13 \times 120}{258} = 15.41\% \text{ SiO}_2;$$

 $x = \frac{33.13 \times 36}{258} = 4.62\% \text{ H}_2\text{O};$

$$15/41 \text{ SiO}_2 + 13.10 \text{ Al}_2\text{O}_3 + 4.62 \text{ H}_2\text{O} = 33.13 \text{ C.s.}$$

From 83.44 we subtract the amount of SiO₂ calculated for feldspar and clay substance and the result is the free SiO₂:

$$83.44 - (3.83 + 15.41) = 64.20\%$$
 quarts.

Summing up the whole results:

Clay substance	
Quartz	
	104 620%

The 4.62 per cent H_2O calculated in clay substance has to be subtracted because the percentage calculation does not show any H_2O .

$$104.62 - 4.62 = 100\%$$
—which is correct.

In order to figure out the amounts of the different substances required for ceramic bodies, glazes, enamels, etc., some knowledge of the meanings of chemical formulas and chemical equations is necessary. The chemical equation shows not only what substances enter into the combination and the resulting substances, but also gives the means for determining the relative weights of each substance. These relative weights may be in ounces, pounds, tons, grams, or kilograms as the case may be.

Every element is designated by a definite symbol as: O for oxygen, C for carbon, Fe (ferrum) for iron, K (kalium) for potassium, etc. In the usually accepted sense, these symbols stand for a definite amount of each substance. For example O stands for 16 parts by weight (any unit—ounces, pounds, grams, kilograms, tons, etc.), of oxygen; C stands for 12 parts by weight of carbon; Fe for 56 parts of iron, etc. These numbers are variously designated as atomic weights, reacting weights, combining weights, and equivalent weights. These numbers are given in the table of elements.

In writing formulas small figures are frequently written to the right and below the symbols. For example, we write O_2 or O_3 . This small number is used as a multiplier of the reacting weight as given in the table. O_2 stands for 2×16 parts or 32 parts by weight of oxygen. O_3 stands for 3×16 or 48 parts of

oxygen. Sometimes a large figure is written to the left of a symbol or formula. This number is to be used as a multiplier of the reacting weights of all the elements found in the formula that follow the figure. 2O means 2×16 or 32 parts by weight of oxygen. $2O_2$ means $2\times16\times2$ or 64 parts by weight of oxygen. $3CO_2$ means 3×12 parts of carbon $+3\times16\times2$ parts of oxygen or 36+98=132 parts by weight of carbon dioxide, the symbol of which is CO_2 .

A further study of the following examples of symbols, formulas and equations will serve to make these principles clear:

```
Symbols.
                            Equivalent Weights.
Si = Si
                         = 28 units of silicon;
28=28
  20 = 02
2\times16=16\times2
                         = 32 units of oxygen.
Al = Al
                         = 27 units of aluminum;
27 = 27
 _2Al = Al_2
                         = 54 units of aluminum;
2 \times 27 = 27 \times 2
 Al_2 + O_3 = Al_2O_3
                         = 102 units of aluminum oxide;
27 \times 2 + 163 = 102
H = H
                         = r unit of hydrogen;
r = I
_{2}H + O = H_{2}O
                         = 18 units of water:
2 \times 1 + 16 = 18
Ca = Ca
                         = 40 units of calcium;
40 = 40 }
Ca + O = CaO
                         = 56 units of calcium oxide;
40+16= 56
                             and so on:
Pb + O = PbO = I molecule of lead oxide;
atom+atom = molecule
```

Symbols Equivalent Weights.

Mg + O = MgO = 1 molecule of magnesium oxide; atom+atom = molecule

MgO + CO₂ = MgCO₃ = I molecule of magnesium molecule + molecule = molecule carbonate.

In the above, MgO stands for one molecule of magnesium oxide whose molecular weight is 40, consisting of 24 units of magnesium and 16 units of oxygen. The molecular weight of MgCO₃ is 84, consisting of 24 units of magnesium, 12 of carbon and 48 (3×16) of oxygen.

Kaolin or the clay base is expressed as $Al_2O_3 + 2H_2O + 2SiO_2$ and consists of the following units by weight:

2×27	units o	of $Al =$	54	units, or	grams,	kilos	or tons
3×16	"	0=	48		"	"	66
2×28	"	Si=	56	"	"	"	"
4×16	"	0=	64	"	"	66	"
4× 1	"	H=	4	"	"	66	66
2×16	"	0=	32	"	"	66	"
		_					

258 the molecular weight.

 $Al_2O_3+K_2O+6SiO_2$, molecular weight 556 (orthoclase, sometimes called potash feldspar).

 2×27 units of Al = 54 units, or grams, kilos or tons. 66 66 3×16 0 =48 66 66 K = 782×39 66 66 66 66 0 = 161X16 " 66 66 6×28 Si = 16866 " 66 " O = 10212×16

556 the molecular weight

Examples. We wish to increase 4 per cent of K2O

(potash) into a body mix. How much pure orthoclase feldspar is necessary to give the required amount?

K₂O: feldspar = required weight:
$$x$$
94: $556 = 4$: x

$$x = \frac{556 \times 4}{94} = 23.67$$
. Ans.

Suppose we wish to know how many grams of sulphuric acid (H₂SO₄), and ferrous sulphide (FeS) are necessary to produce 50 grams of hydrogen sulphide (H₂S).

$$FeS+H_2SO_4 = FeSO_4 + H_2S$$

88 + 98 = 152 + 34

34:50=88:x, 129.47 gms. of FeS,

and ...

$$34:50=98:x$$
, 144.12 " H_2SO_4

Or, we wish to find out how much sulphuric acid will be required to dissolve 50 gms. of zinc, how much hydrogen and how much zinc sulphate will be obtained:

$$Zn+H_2SO_4=ZnSO_4+2H$$

65+ 98 = 161 + 2

65: 98 = 50: x, x = 75.38 gms. of H_2SO_4

65: 2=50:x, x=15.38 " H

65: 161 = 50: x, x = 123.85 " ZnSO₄

CALCULATING CERAMIC BODIES

We wish to mix a body containing the following:

$SiO_2 \dots$		68.5
Al_2O_3		23.5
Fe_2O_3		•5
CaO	1 11 2 2 6 1 3 m	.7
Mg		
K_2O		6.8

100.0

The materials on hand from which the mixture is to be prepared are as follows:

	Kaolin.	Feldspar.	Quartz.
SiO ₂	45.78	71.65	98.65
Al ₂ O ₃	36.46	16.10	1.09
Fe_2O_3	1.36	.10	.12
CaO	.50	. 20	
MgO	.14	.00	
K ₂ O	.31	8.59	.00
Na ₂ O		2.98	
TiO ₂		.03	i
Loss on ignition	15.45	∙35	.06
977 77	100.00	100.00	100.00

First we reduce the Fe₂O₃ to the equivalent amount of Al₂O₃ and all of the monoxides to K₂O as follows:

Fe₂O₃
Kaolin = 160: 102 = 1.36:
$$x$$
, x =.87
36.46+.87=37.33

Feldspar =
$$160 : 102 = .10 : x, x = .06$$

 $16.10 + .06 = 16.16$

Quartz =
$$160 : 102 = 12 : x, x = .08$$

 $1.00 + .08 = 1.17$

Body =
$$160 : 102 = .5 : x, x = .32$$

 $23.5 + .32 = 23.82$

CaO

Kaolin =
$$56.94 = .64 : x, x = 1.07$$

1.07+.64=1.71

Feldspar =
$$56.94 = .23 : x, x = 0.39$$

8.59+.39=8.98

Body =
$$56:94=.7:x, x=1.18$$

6.8+1.18-=7.98

Feldspar =
$$62:94=2.98:x$$
, $x=4.52$
 $8.98+4.52=13.50$

MgO

Kaolin =
$$40:94=.14:x, x=.33$$

 $1.71+.33=2.04$

By the above calculations we have obtained the following sums:

	Body.	Kaolin.	Feldspar.	Quartz.
SiO ₂	68.50 23.82 7.98	45.78 37.33 2.04 15.45	71.65 16.16 13.50	98.64 1.17 0.09

 $X \times SiO_2$ x in kaolin+y in feldspar+z in quartz. $X \times Al_2O_3$ x in kaolin+y in feldspar+z in quartz. $X \times K_2O$ x in kaolin+y in feldspar+z in quartz.

Then

$$x45.78 + y71.65 + z98.64 = 68.50$$

$$x37.33 + y16.16 + z \quad 1.17 = 23.82$$

$$x \quad 2.04 + y13.50 + z \quad .09 = 7.98$$

$$45.78x + 71.65y + 98.64z = 68.50 \dots (1)$$

$$37.33x + 16.16y + 1.17z = 23.82 \dots (2) \leftarrow 2.04x + 13.50y + 0.09z = 7.98 \dots (3)$$

$$45.78x + 71.65000y + 98.64000z = 68.50000$$

$$45.78x + 10.81796y + 1.43484z = 29.21188 \leftarrow 2.051764$$

$$51.83204y + 97.20516z = 39.28812 \leftarrow 2.051764$$

$$37.33x + 16.16 \quad y + 1.17 \quad z = 23.82$$

$$230.87676y + .47691z = 122.2061764$$

$$230.87676y + .47691z = 122.2061764$$

$$432.50647z = 52.7958850 \dots (9)$$

$$z = .1220693 \quad (10)$$

$$230.87676y + .05821606 = 122.2061764$$

$$y = .5290613 \quad (11)$$

$$2.04x + (13.50 \times .5290613) + (.09 \times .1220693) = 7.98$$

$$2.04x + 7.14232755 + .01098623 = 7.98$$

$$2.04x = .82668622 \quad (12)$$

$$x = .405238 \quad (13)$$

$$x = .41 + y = .53 + z = .122 = 1.062 \quad (14)$$

$$230.876769 = 5290613 ... (12)$$

$$2.04x + 7.14232755 + .01098623 = 7.98 ... (3)$$

$$2.04x = .826687 ... (13)$$

$$x = .405238 ... (14)$$

$$x = .41 + y = .53 + z = .122 = 1.062$$

$$x = \frac{100 \times .41}{1.062} = 38.60\% \text{ kaolin}$$

$$y = \frac{100 \times .53}{1.062} = 49.90\% \text{ feldspar}$$

$$z = \frac{100 \times .122}{1.062} = 11.49\% \text{ flint}$$

Example. We wish to build up a body as follows: clay substance (C.s.) 50 per cent; feldspar substance (F.s.) 25 per cent; quartz (SiO₂) 25 per cent.

99.99%

A and B raw material on hand:

C.s. =
$$94.12+24.94=50$$

F.s. = $.30+42.64=25$
 $SiO_2 = 5.58+32.42=25$
(1 part of A and x part of B)
 $.9412+x(2494)=2(.003)+x(.4264)$
 $.9412+.2494x=.006$ $+8528x$
 $.8528-.2494x=.9412$ $-.006$
 $.6034x=.9352$
 $.x=1.55$

Clay substance from A	
Feldspar substance from A Feldspar substance from B	
	.6630 F.s. .0558
.6630=feldspar substance .5598=SiO ₂ in A and B	.5598 SiO ₂
$.1032 = SiO_2$ to be added	
Result=1 part of A 1.55 parts of B .1032 part of SiO	2
2.6532	
$\frac{1 \times 100}{2.65} = 37.75\% \text{ of A}$	
$\frac{1.55 \times 100}{2.65}$ = .58.49% of B	
$\frac{.1032 \times 100}{2.65} = 3.76\% \text{ SiO}_2 \text{ to be}$	added
100.00%	

Example. We wish to build up a body which shall contain 70 per cent clay substance, 18 per cent feldspar substance and 12 per-cent quartz.

The raw materials on hand are as follows:

$$x = .5$$

$$y = 1.267$$

$$z = .0915$$

$$x = \frac{100 \times .5}{1.8585} = 26.90\%$$

$$y = \frac{100 \times 1.267}{1.8585} = 68.18\%$$

$$z = \frac{100 \times .0915}{1.8585} = 4.92\%$$

$$100.00\%$$

We have the following raw materials on hand, A and B, which contain:

	A	В
Clay substance	60.45	78.36
Feldspar substance		12.35
Lime as (CaCO ₃)	13.25	
Quartz	23.00	9.29
	100.00	100.00

We wish to prepare a stoneware body from the above to have the following composition:

Clay substance	60.00
Feldspar substance	15.00
Lime as (CaO)	4.00
Quartz	21.00

It is necessary first to calculate the quantity of CaO, but A contains the CaO as CaCO₃ so we must deter-

mine first how much CaCO₃ is needed to introduce 4 per cent CaO.

$$CaCO_3 + heat = CaO + CO_2$$

$$56 + 44$$

$$56 : 100 = 4 : x, x = \frac{100 \times 4}{56} = 7.14.$$

This contains

$$x = \frac{7.14 \times 44}{100} = 3.14\% \text{ CO}_2, x = \frac{7.14 \times 56}{100} = 3.99\% \text{ CaO}$$

Now to obtain 7.14 pounds of CaCO3 from A.

$$x = \frac{7.14 \times 100}{13.25 \, \text{s}} = 53.88$$

It will require 53.88 pounds of A to yield 4 per cent of CaO.

These 53.88 pounds will introduce into the mixture as follows:

$$x = \frac{53.88 \times 60.45}{100} = 32.57\%$$
 clay substance

$$x = \frac{53.88 \times 3.10}{100} = 1.67\% \text{ feldspar substance}$$

$$x = \frac{53.88 \times 13.25}{100} = 7.14\%$$
 lime as (CaCO₃)

$$x = \frac{53.88 \times 23.20}{100} = 12.50\%$$
 quartz

- Subtracting from the required 60 per cent clay sub-

stance -32.57 = 27.43 which clay substance has to be furnished from B.

$$x = \frac{27.43 \times 100}{78.36} = 35$$
 pounds from B

This will introduce the following ingredients:

$$X = \frac{35 \times 12.35}{100} = 4.32\% \text{ feldspar substance}$$

$$x = \frac{35 \times 9.29}{100} = 3.25\% \text{ quartz}$$

$$x = \frac{35 \times 78.36}{100} = 27.43\% \text{ clay substance}$$

$$35.00\%$$

Adding up all the results:

bas

27.43 + 32.57 = 60% clay substance required 15 - (4.32 + 1.67) = 9.01 feldspar to be added 21 - (12.50 + 3.25) = 5.25% SiO₂ to be added

53.88 pounds from A 35.00 pounds from B

9.01 pounds feldspar to be added

5.25 pounds SiO₂

103.14

Subtracting the 3.14 of CO₂, 103.14-3.14=100.00, which makes the mixture exactly 100 per cent.

Example. We wish to mix a stoneware body with the following substance: Clay substance, 48 per cent; felds par substance, 15 per cent; quartz substance, 37 per cent.

We have the following two raw clays on hand:

Clay substance	<i>x</i> 80	у 45
Feldspar substance	15	42
Quartz	3 7 	13
I	00 1	00

Taking 32 per cent clay substance from x:

$$y = \frac{32 \times 100}{80} = 40$$
 pounds.

This will introduce

$$x = \frac{40 \times 15}{100} = 6$$
 pounds SiO₂

and

$$x = \frac{40 \times 5}{100} = 2$$
 pounds feldspar substance.

We now take 16 per cent clay substance from y.

$$y = \frac{16 \times 100}{45} = 36$$
 pounds.

This will introduce into the mixture,

$$y = \frac{36 \times 42}{100} = 15.12$$
 pounds SiO₂

and

$$y = \frac{36 \times 13}{100} = 4.68$$
 pounds feldspar substance.

Adding all of this together we have 15-(4.68+2) = 8.32 pounds of feldspar substance to add and 37-(15.12+6)=15.88 pounds SiO₂.

Clay substance	48.00
Feldspar substance	6.68
Feldspar substance to add	8.32
Quartz	21.12
Quartz to add	15.88
	100.00

Example. We wish to obtain 100 pounds from the above raw material A and B for a body which should contain 50 per cent clay substance regardless of feldspar quartz, etc.

1 part A+xB=(1+x) pounds
.9412+.2494x=5(1+x)
.9412+.2494x=5+.5x
.2506x=.4412

$$x=1.7605$$

1.000 pound of A+1.7605 pounds of B=2.7605 pounds

$$x = \frac{100 \times 1}{2.7605} =$$
 36.22 pounds of A
 $x = \frac{100 \times 1.7605}{2.7605} = \frac{63.78}{100.00}$ pounds of B

Or rounding up the figures to 36+64 = pounds.

Example. We have on hand two different clays, one containing 60 per cent and the other 80 per cent clay substance. We wish to make a body mixture of 100 pounds containing 65 per cent clay substance.

$$x = 100(65-60)(80-60)$$

 $x = \frac{100 \times 5}{20} = 25$ pounds from 80%

100-25=75 pounds from 60%

Proof:

$$\frac{25\times80}{100} = 20\% \text{ clay substance}$$

$$\frac{75\times60}{100} = 45\%$$
 " "

Example. We wish to synthetise a glaze from the following formula:

An examination of this formula indicates that this glaze cannot well be used without fritting. Glazes containing Na₂O and K₂O in proportion as above, cannot be found in any feldspar, therefore the Na₂O must be introduced with (Na₂CO₃) or borax (Na₂B₄O₇·10H₂O).

Assume the following raw materials to be on hand for compounding the above formula:

Boric oxide (B₂O₃) mol. w. 76, feldspar (K₂O, Al₂O₃, 5SiO₂) mol. w. 556, whiting (CaO, CO₂) mol. w. 100, sodium carbonate (Na₂O, CO₂) mol. w. 106, kaolin (Al₂O₃, 2SiO₂, 2H₂O) mol. w. 258, red lead (Pb₃O₄) mol. w. 658, zinc oxide (ZnO) mol. w. 81, flint (SiO₂) mol. w. 60.

All of the bases of RO will be taken to fritt as follows: Construct a chart of squares by drawing as many vertical lines as there are ingredients of the raw material to be mixed, and also the same number of horizontal lines.

FRITT

		11111	•			1.1.	
Fritt Formula.	K ₂ O	Na ₂ O	CaO	ZnO	Al ₂ O ₃	SiO ₂ 2.85	B ₂ O ₃
$\frac{.30 \text{ B}_2\text{O}_3 \times 70}{1} = 21.00$							
$\frac{.15 \text{ K}_2\text{O} \times 556}{1} = 83.40$. 15				.15	.90	
$\frac{.15 \text{ Na}_2\text{O} \times 106}{1} = 15.90$				· ~	٤,	fari, i	
$\frac{.15 \text{ CaO} \times 100}{} = 15.00$. 15				
$\frac{.11 \text{ ZnO} \times 81}{1} = 8.91$.11			

144.21 weight of fritt ... -. 23 -1.95

.15 Al₂O₃ and .90 SiO₂ were introduced in the feldspar which must be subtracted from the original formula:

$$\frac{102 \times .15}{102} = .15 \text{ Al}_2\text{O}_3, \quad \frac{360 \times .15}{60} = .90 \text{ SiO}_2$$

.38 - .15 = :23 Al₂O₃ has to be added in the kaolin.

2.85 - .90 = 1.95 has to be added as at first.

.15 of CaO was mixed in the fritt, leaving .10 of CaO still to be added to the glaze mixture.

We proceed with the calculation of the glaze exactly as above: 7.3.50

GLAZE

Glaze Formula.	CaO .10	PbO •45	Al ₂ O ₃	SiO ₂
$\frac{.10 \text{ CaO} \times 100}{1} = 10$.10			
$\frac{.45 \text{ PbO} \times 685}{3} = 102.75$.45		
$\frac{.230 \text{ Al}_2\text{O}_3 \times 258}{I} = 59.34$. 23	.46
$\frac{1.49 \text{SiO}_2 \times 60}{1} = 89.40$				1.49
Total				1.95

261.49 weight of the glaze.

Assembling all results:

$SiO_2 \dots$.46+1.49+.90	2.85
Al_2O_3	.23+ .15	. 38
CaO	.15+ .10	.25
K_2O	.15	.15
Na_2O	.15	.15
PbO	.45	.45
ZnO	.II	.II
B_2O_3	.30	.30

Mixing a fritt from the following formula representing Cone No. .014:

Name, Molecular Weight and Required Weight.	Na ₂ O	PbO ·5	Al ₂ O ₃ - 5	SiO ₂	B ₂ O ₃
.5 PbO×222 M.v. 1		.5			
$\frac{1 \text{ Na}_{2}\text{B}_{4}\text{O}_{7} \text{ 1oH}_{2}\text{O} \times 382 \text{ M.v.}}{1} = 191$	-5				1.00
.5 Al ₂ O ₃ ×258 M.v. 1 = 129			.5	1.00	
$\frac{3 \operatorname{SiO}_2 \times 60 \text{ M.v.}}{I} = 180$		•	• • •	2.00	
Batch weight611.0	-5	• 5	.5	3.00	1.00

Example. A mixture of window glass is to be compounded from the following raw material on hand and with the following proportions in weight:

Sand = 1000 pounds
Limestone = 400
Sodium sulphate = 400
Coal =
$$25$$
1825 pounds

What will be the glass composition in percentage and the chemical formula after it is fused?

The coal will be completely volatilized and the SO₃ driven off from the sodium sulphate and the CO₂ from the limestone. The whole 1000 pounds of silica will enter into the glass, if the silica sand is pure.

400 pounds of limestone will give:

$$(\text{CaCO}_3 = \text{CaO} - \text{CO}_2)_{400 \times 56}_{100} = 56 - 44 \frac{100}{100} = 224 \text{ pounds CaO}$$

and 400 pounds of sodium sulphate:

$$(Na_2SO_4 = Na_2O - SO_3)_{62 \times 100}$$

 $142 = 62 - 80 \frac{62 \times 100}{142} = 43.7\% Na_2O$

therefore it will require:

$$\frac{400 \times 43.7}{100}$$
 = 175 pounds Na₂O

This sums up 1000 pounds SiO₂

1300 pounds

To calculate the percentage of the glass composition:

1000 SiO =
$$\frac{1000}{1399}$$
 = 71.48% SiO₂
224 CaO = $\frac{224}{1399}$ = 16.00% CaO
175 NaO = $\frac{175}{1300}$ = 12.52% Na₂O

and the chemical formula is then as follows:

$$16.00: 56 = 0.2857 \text{ CaO}$$
 0.2857 CaO 0.2857 CaO 0.2020 Na₂O 0.2020 Na₂O $0.2020 \text{ Na}_2\text{O}$ 1.1913 SiO₂

$$2.52:62 = 0.020 \text{ Na}_2\text{O}$$
 0.2020 Na₂O $\frac{1.1913 \text{ SiO}}{1.1913 \text{ SiO}}$

The loss of raw material is as follows:

$$\frac{1399 \times 100}{1825} = 76.7$$
 pounds

or

$$76.7 \div 1825 = 4.2\%$$

LIMITED VALUE FOR COMPOUNDING GLAZES

Hollow green or bottle glaze:

 $\begin{array}{c} \text{(Na}_2\text{O or } \text{K}_2\text{O) from 0.1 to 0.3} \\ \text{(CaO, MgO, MnO, Fe}_2\text{O}_3, \text{Al}_2\text{O}_3) \text{ 1.00} \end{array} \right\} \begin{array}{c} \text{SiO from 2.2} \\ \text{to 2.6} \end{array}$

Hollow white glaze:

Plate glaze:

 $\begin{array}{c} (Na_2O \text{ or } K_2O) \text{ from 0.6 to 1.0} \\ (CaO) \text{1.0} \\ (Al_2O_3 \text{ Fe}_2O_3) \text{ 1.0} \end{array} \end{array} \right\} \begin{array}{c} SiO_2 \text{ from 4.1} \\ \text{to 6.00} \end{array}$

Lead glaze crystals:

 $(Na_2O \text{ or } K_2O) \text{ from 0.3 to 1.0}$ (PbO) 1.0 $SiO_2 \text{ from 3.3}$ to 6.0

Flint glaze:

 $\begin{array}{c} ({\rm K}_2{\rm O}) \ {\rm from} \ {\rm o.245} \ {\rm to} \ {\rm 3.36} \\ ({\rm PbO}) \ {\rm 1.00} \end{array} \end{array} \right\} \begin{array}{c} {\rm SiO}_2 \ {\rm from} \ {\rm 1.45} \\ {\rm to} \ {\rm 15.15} \\ {\rm B}_2{\rm O}_3 \end{array}$

Window glass: Na₂O, CaO, 6 SiO₂, 75.0 SiO₂, 12.9 Na₂O, 11.6 CaO.

Potassium lead glass: K_2O , PbO, 6 SiO, 53.2 SiO₂, 13.9 K_2O , 32.9 PbO.

Potassium glass: K₂O, CaO, 6 SiO, 70.6 SiO₂, 18.4 K₂O, 11.0 CaO.

Green bottle glass: 66.0 SiO₂, 2.8 K₂O, 2.8 Na₂O, 22.9 CaO, 2.7 Al₂O₃, Fe₂O₃ 2.8.

Jenear glass: 67.3 SiO₂, 2.0 B₂O₃, Na₂O 14.0, CaO 7.0, Al₂O₃ 2.5, Mn₂O₃ 0.3.

This glass mixture will melt at Cone No. 022 to 020.

This mixture will melt at cone 020 to 018.

$$\begin{array}{c} \text{0.15 NaO} \\ \text{0.15 KO} \\ \text{0.60 PbO} \\ \text{0.16 BaO} \end{array} \right\} \text{0.15 AlO} \left\{ \begin{array}{c} \text{2.45 SiO} \\ \text{0.45 BO} \end{array} \right. \\ \text{0.15 NaO} \\ \text{0.15 KO} \\ \text{0.60 PbO} \\ \text{0.10 NaO} \\ \text{0.15 KO} \\ \text{0.10 NaO} \\ \text{0.15 KO} \\ \text{0.15 AlO} \right\} \text{0.15 AlO} \left\{ \begin{array}{c} \text{2.45 SiO} \\ \text{0.50 BO} \end{array} \right. \\ \text{0.15 AlO} \\ \text{0.16 AlO} \\ \text{0.16 BaO} \end{array} \right\} \text{0.15 AlO} \left\{ \begin{array}{c} \text{2.50 SiO} \\ \text{0.40 BO} \end{array} \right. \\ \text{0.40 BO} \right\}$$

This mixture will melt at cone o15.

$$\begin{array}{ccc} \text{0.8 PbO} \\ \text{0.2 BaO} \end{array} \right\} \text{0.15 AlO} \left\{ \begin{array}{c} \text{2.50 SiO} \\ \text{0.40 BO} \end{array} \right. \\ \text{0.9 PbO} \\ \text{0.1 BaO} \end{array} \right\} \text{0.15 AlO} \left\{ \begin{array}{c} \text{2.50 SiO} \\ \text{0.40 BO} \end{array} \right. \\ \text{0.40 BO}$$

(Berdel, Sprechsaal, 1905, No. 8-11.)

ENAMELS

Enamel is vitreous, easily fusible, translucent, or opaque glass, applied on metals, or as a glaze on pottery bodies.

When employed as a coating on the surface of iron or tin, to protect it from rust and corrosion against acids or other chemical agencies, specially cooking utensils, the base of the enamel is usually a transparent glaze in which metallic oxides or salts are in suspension, which render the enamel opaque or semi-opaque and of various colors.

The white or milky enamel is usually produced by the addition of tin oxide, antimony oxide, bone ash, cryolite, etc.

Wondracek * gives the following limited value for ground enamels for cast iron.

$$\left. \begin{array}{c} \text{0.7 -0.5 Na}_{2}O \\ \text{0.15-0.3 K}_{2}O \\ \text{0.15-0.2 CaO} \end{array} \right\} \text{0.25-0.5 Al}_{2}O_{3} \\ \text{0.5-0.8 B}_{2}O_{3} \\ \text{5.0 -9.1 SiO}_{2} \end{array} \right\} \text{0.1 Ca}_{3}(PO_{4})_{2}$$

ENAMEL FOR CAST IRON $0.3-1.0 \text{ Na}_2\text{O}$ $0.0-2.0 \text{ B}_2\text{O}_3$ 0.7-0.0 CaO $2.6-6.3 \text{ SiO}_2$

WHITE ENAMEL FOR CAST IRON

$$\begin{array}{l} \text{5.5-0.7 Na}_{2O} \\ \text{0.2-0.3 K}_{2O} \\ \text{0.3-0.0 CaO} \end{array} \right\} \text{0.15-0.35 Al}_{2O_{3}} \left\{ \begin{array}{l} \text{0.5-1.1 B}_{2}O_{3} \\ \text{2.0-3.1 SiO}_{2} \\ \text{0.0-0.03 F}_{2} \end{array} \right.$$

^{*} Sprechsaal Kalender 1911, pp. 38-39.

WHITE ENAMEL FOR TIN

$$\begin{array}{c} \text{0.45-0.7 Na}_{2}O \\ \text{0.15-0.3 K}_{2}O \\ \text{0.4-0.0 MgO} \end{array} \right\} \text{0.0-0.55 Al}_{2}O_{3} \\ \begin{array}{c} \text{0.15-0.7 B}_{2}O_{3} \\ \text{2.0 -4.3 SiO}_{2} \\ \text{0.0 -0.8 F}_{2} \\ \text{0.3 - SnO}_{2} \end{array}$$

WHITE ENAMEL FOR IRON TILES

$$\left. \begin{array}{l} \text{0.6 PbO} \\ \text{0.3 Na}_2\text{O} \\ \text{0.1 K}_2\text{O} \end{array} \right\} \text{0.1 Al}_2\text{O}_3 \left\{ \begin{array}{l} \text{0.6 B}_2\text{O}_3 \\ \text{0.5 SiO}_2 \end{array} \right.$$

WHITE ENAMEL FOR JEWELRY

WHITE ENAMEL FOR COPPER

$$\begin{array}{c} \text{0.4-0.9 K}_2O \\ \text{0.6-0.1 PbO} \end{array} \right\} \begin{array}{c} \text{0.0-0.2 SnO}_2 \\ \text{1.0-1.2 SiO}_2 \end{array}$$

Shaw gives the following limits for ground enamel:*

$$\begin{array}{c} \text{0.15-0.75 K}_2O \\ \text{0.00-0.66 Na}_2O \\ \text{0.14-0.64 CaO} \\ \text{0.00-0.06 CoO} \\ \text{0.00-0.00 MnO}_2 \end{array} \right\} \\ \text{0.1-0.5 Al}_2O_3 \left\{ \begin{array}{c} \text{1.1-1.7 SiO}_2 \\ \text{0.2-0.5 B}_2O_3 \end{array} \right.$$

Shaw gives the following formula for a cover enamel:

$$\left. \begin{array}{l} \text{0.15 K}_2O \\ \text{0.50 Na}_2O \\ \text{0.35 CaO} \end{array} \right\} \text{0.10 Al}_2O_3 \quad \left\{ \begin{array}{l} \text{1.60 SiO}_2 \\ \text{0.30 B}_2O_3 \end{array} \right.$$

^{*} Trans. American Ceramic Society, 1909, Vol. 9.

$$\begin{array}{c} \text{0.0-0.60 } K_2O \\ \text{0.0-0.65 } Na_2O \\ \text{0.2-0.60 } CaO \end{array} \right\} \text{0.0-0.5 } Al_2O_3 \left\{ \begin{array}{c} \text{1.0-1.8 } SiO_2 \\ \text{0.2-0.5 } B_2O_3 \end{array} \right.$$

Grunwald * gives the following white cover for enameled kitchen utensils:

$$\begin{array}{c} \text{0.195 K}_2O \\ \text{0.683 Na}_2O \\ \text{0.122 CaO} \end{array} \right\} \text{0.34 Al}_2O_3 \left\{ \begin{array}{c} \text{0.571 B}_2O_3 \\ \text{2.315 SiO}_2 \\ \text{1.390 F}_2 \\ \text{0.235 SnO}_2 \end{array} \right.$$

COVER WHITE ENAMEL ON CAST IRON

$$\left. \begin{array}{l} \text{0.19 K}_2\text{O} \\ \text{0.80 Na}_2\text{O} \\ \text{0.01 MgO} \end{array} \right\} \text{0.36 Al}_2\text{O}_3 \left\{ \begin{array}{l} \text{0.42 B}_2\text{O}_3 \\ \text{0.516 SiO}_2 \\ \text{0.16 SnO}_2 \\ \text{0.99 F}_2 \end{array} \right.$$

^{*} Enamel Industry, p. 207.

COLORS

Color effects are applied by incorporating the colors directly with the body, or by applying them on the surface of the body before glazing—by spraying or with brush, or by mixing the colors with the glaze or enamel, then spraying or dipping the articles.

The following colors are most commonly used in

ceramics:

Iron. Red, brown, at moderate oxidizing atmosphere. Violet, bluish, greenish, and blackish in reducing atmosphere at high temperature.

Manganese. Brownish, violet, deep black mixed with cobalt or iron.

Cobalt. Blue, black, gray, mixed with zinc gives ultramarine blue, with manganese deep black, also purple.*

Chromium. Green, bright green with calcium or borax glaze, bluish green in glazes containing alkalies, yellow in reducing atmosphere. If applied on other bodies as white produces a muddy effect. The slightest quantity of iron darkens the color. The colors are very much affected by the influence of the atmospheric conditions inside the kiln at firing.

Uranium. Yellow in oxidizing atmosphere, orange yellow, green and black in reducing atmosphere; very bright yellow when mixed with plumbiferrous glazes in oxidizing atmosphere.

Copper. Black, green, intense green in boric or plumbiferrous glazes in reducing firing. Bluish green

^{*} Trans. A. C. S., Vol. 14, 1912.

in alkaline glazes in oxidizing firing, the only blue is given by the cupric silicates, purple in reducing atmosphere, also red. Copper is usually used in glazes vitrified at a moderate temperature.

Antimony. Yellow, when mixed with lead or with iron, gives different tints. Alone imparts no color to the glazes and is used for opacifying.

Titanium. Yellow in different tints with varying amount of iron.

Lead. Yellow when lead chromate is used.

Nickel. Yellowish, greenish, also blue or purple.*

Silver Chloride. Yellowish, it is seldom used alone, except in addition to purple of cassius.

Gold. Applied in different ways, as dull or brilliant gold, in different tints of violet, purple as (Cassius purple) rose.

Platinum. Silver, gray or black, it resists great heat as does gold.

Iridium. Gray to black.

Zinc. Imparts no color to glass and is used mostly as an opacifying agent the same as antimony.

It should be borne in mind that all the colors in bodies or glazes are confined within certain limits of temperature and are affected by atmospheric conditions inside of the kiln. Faulty fires may make the colors vary or possibly destroy them.

The properties of the different metallic oxides must be understood thoroughly in order to know the temperatures at which they fuse or volatilize. The low fusing colors will run together with the refractory colors at high heat. Metallic combinations produce the following colors: Oxide of chromium, green.

Oxide of iron, red, brown, violet, black, gray, yellow tints.

Oxide of uranium, orange, yellow, black.

Oxide of manganese, violet, brown, black.

Oxide of cobalt, blue, gray, black.

Oxide of antimony, yellow, different tints.

Oxide of titanium, yellow.

Oxide of copper, green suboxide of copper, red.

Sesquioxide of iridium, beautiful black.

Protochromate of iron, brown.

Chromate of lead (and chromate of baryta), yellow.

Chloride of silver, as an addition to carmine and purple.

Purple of Cassius, purple.

ANALYSIS OF KNOWN REFRACTORY CLAYS

REFRACTORY CLAYS

		1				1		
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	K2O	Na ₂ O	TiO ₂
Olive Hill, Ky., plas-								
tic clay	44.52	40.81	1.03	0.62	0.55	0.00	0.00	0.00
Olive Hill, Ky., flint	43.38	40.35	0.85	0.88	0.23			
Strasburgh, O	55.87	41.39	1.60	0.40	0.30	0.29	0.20	0.45
Woodbridge, N. J	56.80	21.83	1.57	0.28	0.24	0.24		1.15
Woodbridge, N. J	47.75	35.83	1.85	0.22	0.18	0.67	0.98	
Carter Co., Ky	68.01	24.09	1.01	3.01				
Clarion Co., Pa	44.61	38.01	1.25	0.08	0.41	1.74		1.02
St. Louis, Mo								
St. Louis, Mo	45.45	38.98	1.42	0.20	0.32	0.83		0.49
Stourbridge, Eng	73.82	15.88	2.95			0.90		
Glenboig, Scotland	65.41	30.55	1.70					1.33
Coblentz, Germany	55.40	31.74	0.59	0.19	0.14	2.94	0.68	
La Bauchade, France	53.40	26.40	4.20	0.69	0.64	0.55		
Jacksonville, Ala	38.92	44.62	0.36	0.14	1.04	0.08		
Fire clay for open								
hearth furnace	44.50	42.50	0.50	1.00	0.50			
For zinc retorts		1		1				
				<u> </u>				

The chemical composition of different porcelain bodies after firing, shown by the following table of analysis:

allalysis.						
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	K ₂ O
Vienna	61.5	31.6	0.8	1.8	1.4	2.2
Berlin	66.6	28.0	0.7	0.3	0.6	3.4
Meisen	57.7	34.2	0.8	0.3	Tr.	5.2
Vienna	59.6	34.2	0.8	1.7	1.4	2.0
Nymphenburg	72.8	18.4	2.5	3.3	0.3	0.6
China vase	70.5	20.7	0.08	0.05	O I	60
Paris	58.0	34.5		4.5		3.0
Sevres	59.6	32.6	0.6	4.5		2.0
Seger	77.2	17.2		0.3	0.2	3.8
English	39.9	21.5		10.6		2.I
English	40.6	24.1		14.2	0.4	5.3
Limoges	66.7	21.6	0.5	0.6	0.4	2.9
Japan	74.5	16.9	1.0	0.1	0.3	4.4
American electrical						
insulation	63.7	29.5	0.2	0.3	0.2	5.3
	Na ₂ O	${ m TiO_2}$	Loos.	Bone.	Anal	yst.
Vienna	Na ₂ O	TiO ₂	Loos.	Bone.	Anal	
Vienna Berlin						
Berlin	0.0	0.0	0.0		Laure	
Berlin	0.0	0.0	0.0		Laure	
Berlin	0.0	0.0	0.0		Laure	
Berlin	0.0	0.0	0.0		Laure " Seger	
Berlin	0.0	0.0	0.0		Laure '' Seger '' Laure	nt nt and
Berlin	0.0	0.0	0.0		Laure '' Seger '' Laure	nt
Berlin	0.0	0.0	0.0		Laure Seger Laure Mala	nt nt and
Berlin	0.0	0.0	0.0		Laure Seger '' Laure Mala	nt nt and
Berlin. Meisen. Vienna. Nymphenburg. China vase. Paris. Sevres Seger.	0.0 1.8 	0.0	0.0		Laure Seger Laure Mala Seger	nt nt and aguti
Berlin. Meisen. Vienna. Nymphenburg. China vase. Paris. Sevres Seger. English	0.0 1.8 	0.0	0.0		Laure Seger Laure Mals Seger	nt nt and aguti
Berlin. Meisen. Vienna. Nymphenburg. China vase. Paris. Sevres Seger.	0.0 1.8 	0.0	0.0	26.44	Laure Seger Laure Mals Seger Cowpo	nt nt and aguti
Berlin. Meisen. Vienna. Nymphenburg. China vase. Paris. Sevres Seger. English English	0.0 1.8 0.7 0.8	0.0	0.0	26.44	Laure Seger Laure Mala Cowpe	nt nt and aguti
Berlin. Meisen. Vienna. Nymphenburg. China vase. Paris. Sevres Seger. English English Limoges.	0.0 1.8 0.7 0.8 	0.0		26.44	Laure Seger Laure Mala Cowpe Cowpe Seger	nt nt and aguti

THE RELATION OF FORMULA QUANTITIES TO PER-CENTAGE COMPOSITION

Analysis of a sample of .500 gm. of feldspar gives .1165 mgm. of mixed chlorides of KCl and NaCl and then .2649 gm. of K₂PtCl₆. What is the percentage of K₂O and Na₂O in feldspar?

The factor for converting K_2PtCl_6 to KCl is .3065. Multiplying this factor by the weight of the precipitate we have $.2649 \times .3065 = .08119185$ mgm. of KCl. Subtracting this weight of KCl from the total weight of the mixed chloride we have .1165 - .0812 = .0353 mgm. for weight of the NaCl.

The factor for converting KCl to K_2O is .6320. Multiplying the result by the weight of KCl obtained above we have: $.0812 \times .6320 = .05131840$ mgm. of K_2O . Dividing the weight of the sample taken (.500 mgm.) and multiplying by 100 we have:

$$.0513184 \div 500 = 0.1026 \times 100 = 10.26\% \text{ K}_2\text{O}$$

Calculating for the Na₂O we use the factor .5308 and we have: $.0353 \times .5308 = .01873724$ mgm.

Dividing by the weight of the sample taken and multiplying by 100 we have

$$.01873724 \div .500 = 0.0375 \times 100 = 3.75\%$$
 Na₂O.

Example. A sample of clay analyses gave .220 mgm. $BaSO_4$, how much S is present in 1 gm. of the sample?

Converting BaSO₄ to S we have to multiply by the factor .13756, then multiply the result by 100, and this gives $.220 \times .13756 = .03026320 \times 100 = 3.03\%$ S.

Example. One gram of clay analyzed 3 per cent of SO₃. How much of BaCO₃ must be taken to convert the SO₃ into BaSO₄ and how much BaSO₄ is produced?

$$BaCO_3 + SO_3 = BaSO_4 + CO_2$$

 $197 + 80 = 233. + 44$

80: 3 = 233: x, x = 8.74% of BaSO₄ is produced and requires:

$$233:150=8.74:x, x=5.96 \text{ of BaCO}_3.$$

When BaCl2 is used:

$$BaCl_2+SO_3+O=BaSO_4+Cl_2$$

244 + 80 + 16 = 233 + 73

80: 3=244: x, x=9.105 per cent of BaSO₄ is produced and requires 244: 137=9.105: x, x=5.112 per cent of BaCl₂ to convert the SO₃ into BaSO₄.

Example. One gram of limestone yielded on analysis .5505 mgm. of CaO. Calculate the purity of the sample.

$$x = \frac{.5505 \times 100}{1} = 55.01\%$$
 CaO

Theoretically:

$$CaCO_3 = CaO + CO_2$$

 $100 = 56 - 44$
 $56 : 56 = 100 : x, x = 56\%$

Example. One gram of limestone when analyzed yielded .5234 mgm. of CaO. What percentage of CaO and CaCO₃ is present in the sample and what is the percentage of CO₂?

$$x = \frac{.5234 \times 100}{I} = 52.34\% \text{ CaO}$$

$$x = \frac{52.34 \times 100}{56} = 93.46 \text{ CaCO}_3$$

$$x = \frac{93.46 \times 44}{100} = 41.12 \text{ CO}_2$$

Calculating the molecular formula of the following feldspar from its analysis:

$$SiO_2 = 65.53$$
 $65.33 \div 60 = 1.0922 \div .1738 = 6$
 $Al_2O_3 = 18.12$ $18.12 \div 102 = .1776 \div .1738 = 1$
 $K_2O = 16.35$ $16.35 \div 94 = .1738 \div .1738 = 1$
 100.00 K_2O Al_2O_3 $6SiO_2$

Calculating the formula of a glaze which has the following analysis:

Silica		 . 60.00
Alumina		 . 6.50
Boracic acid		
Lead oxide		~
Lime		_
Potash		
Soda		
	• • • • • • • •	 . 4.23
		100.00

 $\begin{array}{c} \text{SiO}_2 = 60.00 \div \ 60 = 1.0000 \\ \text{Al}_2\text{O}_3 = \ 6.50 \div 102 = .0637 \\ \text{B}_2\text{O}_3 = \ 6.50 \div \ 70 = .0929 \\ \text{PbO} = 10.25 \div 222 = .0461 \\ \text{CaO} = \ 7.25 \div \ 56 = .0129 \\ \text{K}_2\text{O} = \ 5.25 \div \ 94 = .0559 \\ \text{Na}_2\text{O} = \ 4.25 \div \ 62 = .0685 \\ \text{PbO} = .0461 \\ \text{CaO} = .0129 \\ \text{K}_2\text{O} = .0559 \\ \text{Na}_2\text{O} = .0685 \\ \hline \\ \text{Na}_2\text{O} = .0$

$$\begin{array}{c} \text{I.0000} \div . \text{I834} = 5.453 = \text{SiO}_2 \\ .0637 \div . \text{I834} = .347 = \text{Al}_2\text{O}_3 \\ .0929 \div . \text{I834} = .507 = \text{B}_2\text{O}_3 \\ .0461 \div . \text{I834} = .251 = \text{PbO} \\ .0129 \div . \text{I834} = .070 = \text{CaO} \\ .0559 \div . \text{I834} = .305 = \text{K}_2\text{O} \\ .0685 \div . \text{I834} = .374 = \text{Na}_2\text{O} \\ \end{array}$$

CALCULATION OF PERCENTAGE COMPOSITION OF A COMPOUND

Finding the percentage composition of cone number 4.

$$\begin{array}{c} \circ.3 \text{ K}_{2}\text{O} \\ \circ.7 \text{ CaO} \end{array} \} \circ.5 \text{ Al}_{2}\text{O}_{3}, 4 \text{ SiO}_{2} \\ \circ.7 \text{ CaO} \end{cases} \circ.5 \text{ Al}_{2}\text{O}_{3}, 4 \text{ SiO}_{2} \\ (94 \times .3 = 28.2 \text{ K}_{2}\text{O}) + (56 \times .7 = 39.2 \text{ CaO} \\ + (102 \times .5 = 51.0, \text{ Al}_{2}\text{O}_{3}) + (60 \times 4 = 240 \text{ SiO}_{2}) = 358.4 \\ \text{K}_{2}\text{O} = \frac{28.2 \times 100}{358.4} = 7.87\% \\ \text{CaO} = \frac{39.2 \times 100}{358.4} = 10.94\% \\ \text{Al}_{2}\text{O}_{3} = \frac{51.0 \times 100}{358.4} = 14.23\% \\ \text{SiO}_{2} = \frac{240 \times 100}{358.4} = \frac{66.96\%}{358.4} \end{array}$$

Example. A feldspar has the following formula, K_2O , Al_2O_3 , $6SiO_2$. What is the percentage composition?

$$K_{2}O = \frac{94 \times 100}{556} = 16.91\%$$

$$Al_{2}O_{3} = \frac{102 \times 100}{556} = 18.34\%$$

$$SiO_{2} = \frac{360 = 100}{556} = \frac{64.75\%}{100.00}$$

Calculating the percentage of potash alum from the following formula:

$$K_{2}SO \cdot Al_{2}(SO_{4}) + 24H_{2}O = \text{m.w. } 948$$

$$x = \frac{78 \times 100}{948} = 8.23\% \text{ K}$$

$$x = \frac{128 \times 100}{948} = 13.50\% \text{ S}$$

$$x = \frac{54 \times 100}{948} = 5.70\% \text{ Al}$$

$$x = \frac{640 \times 100}{948} = 67.51\% \text{ O}$$

$$x = \frac{48 \times 100}{948} = 5.06\% \text{ H}$$

$$100.00$$

Example. In order to compound 45 pounds of lead chromate, how much of pure lead oxide (litharge) (PbO), and potassium bichromate (K₂CrO₇) should be used?

$$K_2Cr_2O + 2PbO = (PbCrO_4)_2 + K_2O$$

 $295 + \frac{2 \times 222}{444} = \frac{2 \times 323}{646} + 94$
 $646 : 45 = 295 : x, x = 20.55 K_2Cr_2O_7$

646:45=444:x, x=30.93 PbO

Example. Fifteen grams of ferrous sulphide (FeS) treated with sulphuric acid (H_2SO_4) will yield how many grams of ferrous sulphate (FeSO₄), and of hydrogen sulphide (H_2S) . How many grams of sulphuric acid will be required?

FeS+H₂SO₄=FeSO₄+H₂S

$$88+98=152+34$$

 $88: 152=15: x, x=24.77 \text{ gms. of FeSO4}$
 $88.34=15: x, x=5.8 \text{ gms. of H2S}$
 $88: 98=15: x, x=16.70 \text{ gms. of H2SO4}$

CONTRACTION

Example. A dry-press brick when it left the mold measured

$$\frac{8\frac{1}{2} \times 4\frac{5}{16}''}{8.500 \times 4.3125}$$
 after it was burned $\left\{\frac{8\frac{1}{82} \times 4\frac{1}{16}''}{8.125 \times 4.0625}\right\}$

What percentage did it shrink?

8.500 - 8.125 = .375, 8.500 : 100 = .375 : x, x = 4.41 per cent shrinkage.

Example. We wish to make a porcelain tube for electric insulation. It should measure 2 inches in diameter. The body is known to shrink 8 per cent. What should be the size of the mold to make a 2-inch tube?

$$100 - 8 = 92$$
, $92 : 100 = 2 : x$, $x = 2.173$ inches

Example. A brick weighing 5 pounds and 4 ounces when molded, after it was dried weighed 4 pounds 8 ounces, and after it was burned weighed only 4 pounds. What is the percentage loss in weight drying and in burning? What was the total loss?

Convert pounds into ounces.

$$x = \frac{(84 - 72) \times 100}{84} = 14.28\%$$

$$x = \frac{(72 - 64) \times 100}{72} = 11.11\%$$
$$x = \frac{(84 - 64) \times 100}{84} = 23.81\%$$

Example. It is desired to make a slab of the following dimensions, length 18 inches, width 16 inches, thickness 4 inches.

Our body has a shrinkage of 12 per cent. What size must the mold be built to have the above dimensions after the slab is burned?

$$1.00 - .12 = .88$$

Then

$$18.00 \div .88 = 20.4540$$
 inches in length $16.00 \div .88 = 18.1818$ inches in width

$$4.00 \div .88 = 4.545$$
 inches in thickness

Proof:

$$20.4540 \times .12 = 2.4540$$
 $20.4540 - 2.4540 = 18$
 $18.1818 \times .12 = 2.1818$, $18.1818 - 2.1818 = 16$
 $4.545 \times .12 = .545$, $4.545 - .545 = 4$

CALCULATING THE VALUE OF RAW MATERIAL

Example. Two kinds of feldspar are received from the mill both ground wet. One contained 5 per cent moisture, the other 8 per cent moisture.

The feldspar containing 5 per cent cost \$15.00 per ton. What is the other feldspar containing 8 per cent

moisture worth?

$$100-5=95, 100-8=92.$$

$$\frac{92\times15}{95}=\$14.52$$

CALCULATING THE PER CENT AND COST OF THE RAW MATERIAL

A piece of terra cotta was made from the following

formula: Clay substance 50 per cent, feldspar 20 per cent, calcium oxide (CaO) 5 per cent, and quartz 25 per cent, and weighed 700 pounds.

The raw material on hand from which the above formula should be mixed is as follows:

	Clay, Per Cent.	Feldspar, Per Cent.		Chalk. Per Cent.
Clay substance. Feldspar Chalk Quartz		6 83 		100 as (CaCO ₃)
	100	100	99.98	100

Then

$$x = \frac{20 \times 100}{83} = 24.1$$
 pounds feldspar

This will introduce the following:

$$x = \frac{24.1 \times 6}{100} = 1.45\%$$
 clay substance

$$x = \frac{24.1 \times 11}{100} = 2.65\%$$
 quartz.

Subtracting: 50-1.45=48.55 per cent of clay substance has to be taken from the clay.

$$x = \frac{48.55 \times 100}{94} = 51.65$$
 pounds of clay.

This will bring into the mixture:

$$x = \frac{51.65 \times 6}{100} = 3.1\%$$
 of SiO₂

2.65-3.1=5.75 SiO₂ which has to be subtracted from the amount of the 25 per cent SiO₂ required in the formula.

25-5.75=19.25 pounds of SiO₂ has to be added to the mixture as flint and 9 pounds of chalk.

$$x = \frac{5 \times 100}{56} = 9$$
 pounds.

This will introduce,

or

$$x = \frac{44 \times 9}{100} = 3.96\%$$
 CO₂ or 4%

$$x = \frac{56 \times 9}{100} = 5.04\%$$
 CaO or 5%

How much will the body mixture cost for the above terra cotta piece, when the clay costs \$8.00 per ton, feldspar \$12.00, and chalk \$9.00, and flint \$14.00

We used for the body mixture 24.1 pounds of feldspar, 48.55 pounds of clay, and 9 pounds of whiting, and 19.25 pounds of flint. Cost per 100 pounds terra cotta=

$$\frac{24.1 \times 12}{2000} + \frac{51.65 \times 8}{2000} + \frac{19.25 \times 14}{2000} + \frac{9 \times 9}{2000} = 53 \text{ cents}$$

$$\frac{(24.1\times12)+51.65\times8)+(19.25\times14)+(9\times9)}{2000}=53 \text{ cents}$$

per 100 pounds

As the piece weighs 700 pounds it has to be multiplied by 7.

 \therefore 7×.53=3.71, the raw material entered in the piece will cost \$3.71. Had the piece only weighed 7 pounds, it would have cost .07×.53=\$0.0371.

CALCULATIONS OF SLIP

A slip is known to contain the following quantities:

Ball clay	24 ounces	per pint
Kaolin	26	"
Feldspar	32	"
Flint	32	"

To convert the ounces per pint to grams per liter multiply the number of ounces per pint by 5 (1 pint = 5.5 deciliter, as 2 pints make 1.10 liters we discard the .5 and multiply only by 5) as follows:

Ball clay... 24 ounces per pint
$$\times$$
5=1200 gms. per liter
Kaolin.... 26 ounces per pint \times 5=1300 "
Feldspar... 32 ounces per pint \times 5=1600 "

Flint..... 32 ounces per pint
$$\times$$
5=1600 "

If we wish to know the depth of the slip in the slip tank. Assuming that the above proportions are mixed in dry state as follows:

Ball clav=2 parts
Kaolin =
$$I$$
 part
Feldspar = I "

Flint = I "

Then the wet inches may be found as follows:

Ball clay =
$$\frac{2}{(24-20)}$$
 = $\frac{1}{2}$ wet inch

Kaolin
$$=\frac{1}{(26-20)} = \frac{1}{6}$$
 wet inch
Feldspar $=\frac{1}{(32-20)} = \frac{1}{12}$ "

Flint $=\frac{1}{(32-20)} = \frac{1}{12}$ "

To convert the above fractions into round numbers multiply all by twelve, then:

Ball
$$clay = 6$$

$$Feldspar = r$$

Flint
$$= 1$$

To convert wet inches to dry parts by weight:

$$(24-20)\times 6=24$$
 parts by weight of ball clay

$$(26-20)\times 2=12$$
 " kaolin

$$(32-20)\times 1=12$$
 " feldspar

$$(32-20) \times 1 = 12$$
 "flint

Example. To mix 5000 liters of slip for sanitary ware, what will be its weight when the following receipt is used?

Kaolin = 40% which as a slip weighs 1.300 kgs. to liter

Ball clay =
$$16\%$$
 " " 1.200 "
Feldspar = 20% " " 1.600 "

Flint =
$$24\%$$
 " 1.600 "

$$\frac{(1.300\times40)\times5000}{100} = 2600 \text{ kilograms}$$

$$\frac{(1.200\times16)\times5000}{100} = 960 \qquad \text{``}$$

$$\frac{(1.600\times20)\times5000}{100} = 1600 \qquad \text{``}$$

$$\frac{(1.600\times24)\times5000}{100} = 1920 \qquad \text{``}$$

$$\frac{(1.600\times24)\times5000}{100} = 1920 \qquad \text{``}$$

$$\frac{(1.600\times24)\times5000}{100} = 1920 \qquad \text{``}$$

To determine the dry contents of the above slip apply the following methods:

Stir up the slip well and transfer 100 c.c. of it into a graduated glass cylinder, which must be filled with slip exactly to the 100 c.c. mark.

Then transfer the slip from the cylinder into a weighed porcelain evaporating dish. (Be careful to wash all mineral particles from the cylinder into the dish.)

Place the dish in drying oven and heat gently to 105° C. until all the water is driven off. Allow to cool and weigh. Subtract the weight of the dish. The remainder is the weight of the dry slip.

For instance 100 c.c. of slip was transferred into a dish, which weighed 65 gms. After the moisture was all driven off the dish and contents weighed 125 gms. Subtracting the weight of the dish from 125-65=60 gms. which is the weight of the dry materials present in the slip and the water weighed 40 gms.

We will now be able to find the proportion of the kaolin, ball clay, feldspar and flint, as follows:

$$x = \frac{40 \times 60}{100} = 24.0\% \text{ kaolin}$$

$$x = \frac{16 \times 60}{100} = 9.6\% \text{ ball clay}$$

$$x = \frac{20 \times 60}{100} = 12.0\% \text{ feldspar}$$

$$x = \frac{24 \times 60}{100} = 14.4\% \text{ flint}$$

$$\frac{60.0}{40.0\%} \text{ water}$$

$$100.0$$

CALCULATING 1HE REFRACTORY VALUE OF FRE CLAY

Bischoff's formula $Qu = \frac{a^2}{bc}$ for determining the refractory value of a fire clay.

Professor Bischoff derived the refractory coefficient by the relation of Al_2O_3 to the fluxes and the relation of SiO_2 to the Al_2O_3 and by dividing the latter into the former he obtained the refractory quotient.

$$Qu = \frac{O \text{ in } Al_2O_3}{O \text{ in } RO} \div \frac{O \text{ in } SiO_2}{O \text{ in } Al_2O_3}$$

In this formula the O in RO must be multiplied by 3.

$$\therefore \quad Qu = \frac{O \text{ in } Al_2O_3}{3 \times O \text{ in FeO}} \div \frac{O \text{ in } SiO_2}{O \text{ in } Al_2O_3}$$

$$= \frac{(O \text{ in } Al_2O_3)}{(3 \times O \text{ in FeO}) \times (O \text{ in } SiO_2)}.$$

As an example, assuming a clay containing 48.5 per cent SiO₂, 38 per cent Al₂O₃, and 1.5 per cent Fe₂O₃.

The first step in the calculation is to convert the Fe_2O_3 into its equivalent in FeO by multiplying by .9 which will give $1.5\times.9=1.35$ per cent FeO. Now the oxygen in the SiO_2 is 25.87 per cent (48.5×.5333).

The oxygen in FeO is .3 per cent $(1.5 \times .222)$.

The oxygen in Al₂O₃ is 17.88 per cent $(38 \times .4706)$.

The oxygen in Al_2O_3 is 17.28 per cent (38×.4706). Then

$$Qu = \frac{(17.28)^2}{(.9 \times 25.87)} = \frac{298.59}{23.28} = 12.82$$

12.82 is the refractory quotient which, after Bischoff, is very good.

Bischoff classified the clay after its refractory quotient as follows:

A clay with a refractory quotient from 2 to 4 is placed as a third-class ware, a coefficient from 4 to 6 second-class, and from 6 to 14 as a first-class. This, however, is not exact, as it does not take into consideration the physical characters of the clay as the size of grains, or density or porosity. But it is fairly good for a quick knowledge of the ware for many commercial purposes.

The following analysis of fire clay is shown to exemplify the above.*

$$SiO_2 = 59.92$$

 $Al_2O_3 = 27.56$
 $Fe_2O_3 = 1.03$
 $CaO = Tr.$
 $MgO = Tr.$

^{*} Ries, "Clays, Their Occurrence and Properties."

$$K_2O = .67$$
 $Na_2O = Tr.$
 $H_2O = 9.70$
 $Moisture = 1.12$

To find the refractory quotient of the above clay proceed as follows:

$$59.92 \times .5333 = 31.96\%$$
 O in SiO₂
 $27.56 \times .4706 = 12.97\%$ O in Al₂O₃
the square of $(12.97)^2 = 168.5009$
 $(1.03 \text{ Fe}_2\text{O}_3 \times .222) = .228866\%$ O in FeO
 $(0.67 \text{ K}_2\text{O} \times .1702) = .114034\%$ O in K₂O
 $(.23 \text{ FeO} + .11 \text{ K}_2\text{O}) = .34\%$ in RO×3=1.02
 $(31.96 \times 1.02) = 32.59$
 $(168.5009 \div 32.59) = 5.17$

5.17 is the refractory quotient of the above clay, which therefore is placed as second class.

The following table gives all the factors used to calculate the refractory quotient of any clay:

O in SiO₂ =
$$\times$$
.5333 = $\frac{32}{60}$ = .5333 factors
O in Al₂O₃ = \times .4706 = $\frac{48}{102}$ = .4706 "
O in FeO-Fe₂O₃ = \times .2222 = $\frac{160}{72}$ = .2222 "
O in CaO = \times .2857 = $\frac{16}{56}$ = .2857 "
O in MgO = \times .4000 = $\frac{16}{40}$ = .4000 "
O in MnO = \times .2254 = $\frac{16}{70}$ = .2254 "
O in K₂O = \times .1702 = $\frac{16}{94}$ = .1702 "
O in Na₂O = \times .2580 = $\frac{16}{62}$ = .2580 "
O in TiO₂ = \times .4000 = $\frac{32}{80}$ = *.4000 "

The originator of the following chart was the German scientist, Ludwig, who based the refractory value of clay more according to modern chemical theories as follows.

Ludwig's isotectic lines of refractory clays.

The following analysis, made by the author, is of a clay from St. Louis, Mo.:

$$SiO_2 = 46.47$$
 $Al_2O_3 = 27.06$
 $Fe_2O_3 = 4.45$
 $CaO = 1.00$
 $MgO = 1.05$
 $Alk. = 1.80$

$$TiO_2 = 3.85$$

 $SO_3 = .51$
 $Moisture = 13.72$

The following gives the method for the calculations:

$$Al_{2}O_{3} = \frac{27.06}{102} = .2653, \quad \frac{.2653}{.2653} = I$$

$$SiO_{2} = \frac{46.47}{60} = .7745, \quad \frac{.7745}{.2653} = 2.92$$

$$Fe_{2}O_{3} = \frac{4.45}{80} = .0556, \quad \frac{.0556}{.2653} = .0209$$

$$CaO = \frac{1.00}{56} = .0178, \quad \frac{.0178}{.2653} = .067I$$

$$MgO = \frac{1.05}{40} = .0262, \quad \frac{.0262}{.2653} = .0987$$

$$K_{2}O = \frac{1.89}{94} = .020I, \quad \frac{.020I}{.2653} = .0757$$

$$TiO_{2} = \frac{3.85}{80} = .048I, \quad \frac{.048I}{.2653} = .018I$$

The following calculation shows the equivalent of the basic to the acidic which is really very useful to clay workers:

2.9200 SiO₂=
$$\times$$
2=5.8400 acid equivalent 0.0181 TiO₂= \times 2=0.0362 acid equivalent 5.8762

0.2415 RO =
$$\times$$
2=0.4830
1.0000 Al₂O₃ = \times 6=6.0000
0.0209 Fe₂O₃n = \times 6=0.1254

$$\frac{5.8762}{6.6084}$$
=0.8892

This shows that 6.6084 of basic are contained 0.8892 times in the 5.8762 acidic equivalents and also gives us an idea of the proportion of RO, R₂O₃ to SiO₂.

CEMENT

The essential ingredients of Portland cement are silica, alumina, calcium. Usually other ingredients in small quantities are present, as iron oxide, magnesia, sulphur anhydride, and alkalies.

Bleininger gives the following proportions for Portland cement:

$$SiO_2 = 18 \text{ to } 26\%$$
 $Al_2O_3 = 4 \text{ to } 5\%$
 $Fe_2O_3 = 2 \text{ to } 5\%$
 $CaO = 58 \text{ to } 67\%$
 $MgO = 0 \text{ to } 5\%$
 $Alk. = 0 \text{ to } 3\%$
 $SO_3 = 0 \text{ to } 2.5\%$

The product of Portland cement is obtained from a mixture of argillaceous and calcareous substances ground fine and thoroughly mixed then burned to incipient vitrification. The clinker so obtained is then ground to an impalpable powder.* W. B. Newberry shows that the Portland cement consists of tricalcium silicate, and dicalcium aluminate, the composition being expressed by the following formula:

^{*} Eckel, "Cements and Limes and Plaster."

To synthetize a mixture of Portland cement the following method for calculation is convenient:

$$3\text{CaO} \cdot \text{SiO}_2 = \frac{56 \times 3}{60} = 2.8$$

This shows that to every pound of SiO₂ 2.8 pounds of CaO must be present to form tricalcium silicate.

2.8 pounds CaO=
$$\frac{2.8 \times 100}{56}$$
= 5 pounds of CaCO₃

Therefore 5 pounds of CaCO₃ must be present to every pound of SiO₂ if the lime is calculated as CaCO₃.

$${}_{2}\text{CaO} \cdot \text{Al}_{2}\text{O}_{3} = {}_{5}6 \times {}_{2} = 1.1 \text{ pounds to every pound of}$$

 $(2 \times 56) + 102 = 1.1 \text{ pounds to every pound of}$
 $\text{Al}_{2}\text{O}_{3}$

1.1 pound of CaO must be present to form decalcium aluminate.

1.1 pounds
$$CaO = \frac{1.1 \times 100}{56} = 1.96$$
 pounds of $CaCO_3$.

It is more convenient to calculate all the way through by using the equivalent of CaCO₃.

As for example: The raw materials on hand from which the Portland cement should be compounded are the following:

	Cement Rock. Per Cent.	Limestone. Per Cent.
SiO ₂	18.84	1.98
Al_2O_3	6.04	.85
Fe ₂ O ₃	1.50	- 35
CaCO ₃	71.12	96.42
MgCO ₃	2.50	.60

LIMESTONE

CaCO ₃ needed for 1.98 pounds SiO ₂ in limestone = 1.98 \times 5 = 9.90 CaCO ₃
CaCO ₂ needed for .65 pound Al ₂ O ₃ in
limestone = $.65 \times 1.96 = 1.27$
11.17 CaCO ₃
CaCO ₃ present in limestone 96.42
CaCO ₃ needed for SiO ₂ +Al ₂ O ₃ present in lime-
stone 11.17
0.00
CaCO ₃ available85.25
CEMENT ROCK
CaCO ₃ needed for 18.84 pounds SiO ₂ present in rock = 18.84×5 = 94.20 CaCO ₃
CaCO ₃ needed for 6.04 pounds Al ₂ O ₃
present in rock = $6.04 \times 1.96 = 11.84$
106.04 CaCO ₃
106.04 pounds of CaCO3 needed for the present of SiO2
$-Al_2O_3$ in the cement rock
CaCO ₃ present in the cement rock 71.12
CaCO ₃ required to every 100 pounds of rock 34.92
To every 100 pounds of cement rock 40.96 pounds of lime has to be added.
Therefore available CaCO ₃ from limestone $\frac{34.92 \times 100}{85.25} = 40.96$ lbs.
a tanasio ca co o mon minestone o j.2 j

of limestone will contain as follows:

100:
$$1.98 = 40.90$$
: x , $x = -00.81$ SiO₂
100: $0.65 = 40.96$: x , $x = -00.27$ Al₂O₃
100: $0.35 = 40.96$: x , $x = -00.14$ Fe₂O₃
100: $96.42 = 40.96$: x , $x = -39.49$ CaCO₃
100: $0.60 = 40.96$: x , $x = -00.25$ MgCO₃
40.96 pounds

The raw mixture will analyze as follows:

39.49 pounds CaCO₃ from limestone+71.12 pounds CaCO₃ present in the cement rock=110.61 pounds CaCO.

100 pounds of cement rock+40.96 of limestone=140.96 pounds of mixture. Therefore

140.96: 110.68 = 100:
$$x$$
, $x = 78.47\%$ CaCO₃

This mixture after being burned should give an analysis, theoretically, as follows:

SiO₂ from limestone 0.81+

18.84 from cement rock = 19.65 pounds SiO₂

 Al_2O_3 from limestone 0.27+

6.04 from cement rock = 6.31 pounds Al_2O_3

Fe₂O₃ from limestone 0.14+

1.50 from cement rock = 1.64 pounds Fe₂O₃

CaCO₃ from limestone 71.12+

39.49 from cement rock=110.61 pounds CaCO3

MgCO₃ from limestone 2.50+

o.60 from cement rock = 3.10 pounds MgCO

141.31 pounds

110.61 pounds of CaCO₃ give 61.94 pounds of CaO, and 46.67 pounds of CO₂ which is driven off by heat.

100: 110.61=44:
$$x$$
, $x = 48.67$ pounds of CO₂.
100: 110.61=56: x , $x = 61.94$ pounds of CaO

110.61 pounds

3.10 pounds of MgCO₃ give 1.48 pounds MgO and 1.62 pounds of CO₂.

84: 3.10=40:
$$x$$
, $x=1.48$ pounds of MgO
84: 3.10=44: x , $x=1.62$ pounds of CO₂
3.10 pounds

As the CO₂ is driven off from CaCO₃ and MgCO₃ then, theoretically, the analysis will be as follows:

SiO₂ = 19.65: 91.02=
$$x$$
: 100, x = 21.58% SiO₂
Al₂O₃ = 6.31: 91.02= x : 100, x = 6.94% Al₂O₃
Fe₂O₃ = 1.64: 91.02= x : 100, x = 1.81% Fe₂O₃
CaO = 61.94: 91.02= x : 100, x = 68.04% CaO
MgO = 1.48: 91.02= x : 100, x = 1.63% MgO

By the above calculation the highest amount of lime is given under the best possible working conditions, by grinding, mixing and burning and therefore the limestone should be reduced about 10 per cent. (See Eckel, Cement and Plaster, page 393.)

COST OF MANUFACTURE OF CERAMIC BODIES

Example. A piece of porcelain body was made for electric insulation, the raw material used for compounding the body was as follows:—

32	pounds of	China clay
15	"	ball clay
23	"	flint
30	"	feldspar

100 pounds

The piece after it was drawn from the kiln weighed 50 pounds.

The China clay lost 25 per cent during firing and cost \$12.00 per ton.

The ball clay lost 28 per cent during firing and cost \$10.00 per ton.

The flint lost 5 per cent during firing and cost \$15.00 per ton.

The feldspar lost 12 per cent during firing and cost \$14.00 per ton.

It is desired to determine the cost of manufacture and the proportions of the raw materials that entered into the piece weighing 50 pounds, and what the cost of the raw material was.

$$100-25\%$$
 lost $=75\%$ China clay $100-28\%$ " $=72\%$ ball clay $100-5\%$ " $=95\%$ flint $100-12\%$ " $=88\%$ feldspar 140

$$\frac{75\times3^{2}}{100} = 24.00 \text{ pounds China clay}$$

$$\frac{72\times15}{100} = 10.80 \quad \text{``ball clay}$$

$$\frac{95\times23}{100} = 21.85 \quad \text{``flint}$$

$$\frac{88\times30}{100} = 26.40 \quad \text{``feldspar}$$

$$\frac{83.05}{100} = 8.00 \quad \text{``lost in kiln of China clay}$$

$$\frac{25\times3^{2}}{100} = 8.00 \quad \text{``ball clay}$$

$$\frac{28\times15}{100} = 4.20 \quad \text{``ball clay}$$

$$\frac{23\times5}{100} = 1.15 \quad \text{``flint}$$

$$\frac{12\times30}{100} = 3.60 \quad \text{``feldspar}$$

$$100.00 \text{ pounds}$$

Fifty pounds has therefore required the following number of pounds of the raw materials:

$$\frac{24.00 \times 50}{83.05} = 14.45 \text{ pounds China clay}$$

$$\frac{10.80 \times 50}{83.05} = 6.51 \quad \text{``ball clay}$$

$$\frac{21.85 \times 50}{83.05} = 13.15 \quad \text{``flint}$$

$$\frac{26.40 \times 50}{83.05} = \frac{15.89}{50.00} \quad \text{``feldspar}$$

The cost of the raw material should be calculated as it arrives at the plant.

Therefore:

Cost of China clay which entered into the 50 bbls.

Cost of ball clay which entered into the 50 bbls.

Cost of flint stone which entered into the 50 bbls.

Cost of feldspar which entered into the 50 bbls.

Say 0.54 cent is the cost of the raw material required to produce the insulating piece weighing 50 pounds.

The above prices on all the raw material are figured as at mill, and therefore the freight has to be added as incoming and outgoing freight.

Incoming freight of

China clay, \$0.08 per 100 lbs. = \$1.60 per ton (2000 lbs.)

Ball clay, 0.08 " = 1.60 " "

Flint stone, 0.09 " = 1.80 " "

Feldspar. 0.09 " = 1.80 " "

Incoming freight:

				0					
24.	00	bbls.	China c	:lay×	\$.08	per	100	lb.	= .0192
10.	80	"	ball cla	y ×	.08		"		= .0080
21.	85	"	flint sto	ne ×	.09		"		= .0197
26.	40	"	feldspar	: ×	.09		"		=.0238
									. 0707

Outgoing freight on finished product: 0.17 per 100 pounds,

$$\frac{.17\times50}{100} = .08\frac{1}{2}$$

The whole sums up $3.19 \times .50\% = 1.60$. \$3.19 +\$1.60 = \$4.79.

The charge of 50 per cent for overhead would seem to be high but on pieces that are very difficult to make and pack for transportation the overhead is sometimes figured at as high as 100 or 125 per cent. The loss in handling and burning should be calculated, therefore in charging the overhead expenses at 50 per cent it is not high.

The raw material for the 50 pounds cost	\$0.54
The incoming freight for the 50 pounds cost	0.07
Outgoing freight for the 50 pounds cost	$0.08\frac{1}{2}$
Cost of production for the 50 pounds is	2.50
Overhead charges including lost 50 per cent	1.60
Total cost	\$4.705

The finished insulator will weigh 50 pounds and cost four dollars and eighty cents (\$4.80).

CALCULATION OF B.t.u. OF COAL FROM PROXIMATE AND ELEMENTARY ANALYSIS

The only reliable and accurate method of ascertaining the calorific power of coal is by direct determination by burning in compressed oxygen in a bomb calorimeter. When this is impossible an approximation to the calorific power may be calculated from the chemical analysis so that clay workers may know how much they pay for their coal.

Comparison of many experiments has resulted in several methods of estimating the calorific value of coals from the proximate analysis. Three well known formulas and methods are known as the Dulong, Mahler, and Goutal formulas.

To prove the accuracy of these formulas the author made two different analyses from the Latham Coal Mine at Lincoln, Illinois. The analysis was performed from 1000 pounds of nut coal, which, as is usually done, was powdered and quartered. 1.5 gms. of the powdered coal was placed in a 26 c.c. platinum crucible then put in a drying oven and heated for twenty-five minutes at 105° C., then cooled in a desiccator. The following weights were recorded:

Crucible, cover and coal	26.257	gms.
Crucible and cover	24.757	66

^{1.500} gms.

Crucible, cover and coal before drying. 26.257 gms. Crucible, cover and coal after drying. 26.032 "

Moisture..... 0.225 gm.

Per cent of moisture $\frac{.225 \times 100}{1.5} = 15\%$

The crucible with the dry coal contents was heated over a Bunsen burner for four minutes, then over the blast lamp for three minutes then cooled in the desiccator.

Crucible, cover and coal before heating . . 26.032 gms. Crucible, cover and coal after heating . . . 25.492

Per cent of volatile and combustible matter and onehalf sulphur

$$\frac{0.540 \times 100}{1.5} = 36\%$$

Crucible, cover and coal before complete combustion..... 25.492 gms.

Fixed carbon and one-half sulphur... o.560 gm. Per cent of fixed carbon and one-half sulphur

$$\frac{0.560 \times 100}{1.5} = 37.3\%$$

Crucible, cover and coal after complete

combustion (ash)		
Crucible and cover.	24.757	
Ash	0.175	gm.

Per cent of ash
$$\frac{0.175\times100}{1.5}$$
 = 11.67%

The sulphur was determined by taking I gm. of the finely powdered coal mixed with 10 gms. of sodium carbonate and 5 gms. of potassium nitrate and placed in a platinum crucible in small portion, heated to red heat for ten minutes, cooled and the contents with the crucible placed into a beaker containing 100 c.c. of water then warmed until the mass dissolved. The crucible was then removed from the beaker and washed with hot water, the washing allowed to run into the beaker. The solution was then filtered and acidified with hydrochloric acid, boiled and then barium chloride solution was added in slight excess; this was allowed to stand twelve hours; filtered, washed, dried, ignited and weighed as barium sulphate and calculated for sulphur.

Crucible, cover and residue of BaSO₄.... 25.211 gms. Crucible, cover and residue of BaSO₄.... 24.757 "

Multiplied by the factor 0.1373 for sulphur
Per cent of sulphur .1372×.454×100=6.24% S.
Volatile and combustible matter and one-half

 sulphur.
 36.00

 Less one-half sulphur.
 3.12

Per cent of volatile matter..... 32.88

1	47
	7.0

CERAMICS

Fixed carbon and one-half sulphur 37.30
Less one-half sulphur
Per cent of fixed carbon 34.18
Hence the analysis is:
Moisture 15.00%
Volatile and combustible matter 32.88
Fixed carbon
Sulphur
1
Ash
99.97%
An elementary analysis of the same coal was made in
the usual way in a combustion furnace.
Amount of coal taken 0.500 gm.
Calcium chloride tube and H ₂ O 42.184 "
Calcium chloride+tube 42.1584 "

H ₂ O
.0256×2 .0283H×100
$\frac{.0256 \times 2}{18} = \frac{.0283 \text{H} \times 100}{.500} = 5.66\% \text{ H}$
<u> </u>
The potassium bulbs+CO ₂
The potassium bulbs 37.2370
CO ₂ 1.0584
1.0584×12 .2832 C×100
$\frac{1.0584 \times 12}{44} = \frac{.2832 \text{ C} \times 100}{.500} = 56.64\% \text{ C}$
-
Porcelain tube—residue (ash) 10.0473
Porcelain tube 9.4638
Ash
.5835×100
$\frac{.5835 \times 100}{.500} = 11.67\%$ ash
1,100

Coal taken (dried)	. 500 gm.
H ₂ SO ₄ solution taken	30.000 c.c.
Normal soda solution required to neutralize	
free acid	29.536 c.c.
$\mathrm{H}_2\mathrm{SO}_4$.464 c.c.

Solution neutralized by the ammonia:

If r c.c. H_2SO_4 solution=0.049 gm. H_2SO_4 then 0.464 c.c. \times .049=.0227 gm. H_2SO_4 .

$$0.0306 \times .0227 = 0.0306$$

 0.0306×34
 $13^2 = .00788 \text{ NH}_3$
 $0.8235 \times .00788 = 0.00649 \text{ N}$

$$\frac{.00649 \times 100}{.500} = 1.29\% \text{ N}$$

The constituents in the dried coal are:

$$C = 56.64\%$$

$$H = 5.66$$

$$N = 1.29$$

$$S = 6.21$$

$$Ash = 11.67$$

$$81.47\%$$

The oxygen is estimated by subtracting the sum of the other constituents from 100 as follows: 100-81.47 = 18.53.

$$C = 56.64\%$$

$$H = 5.66$$

$$N = 1.29$$

$$S = 6.21$$

$$Ash = 11.67$$

$$O = 18.53$$

$$100.00\%$$

Thus far all but the moisture which is hygroscopic of the constituents in the dried sample have been accounted for.

This moisture in the coal since it absorbs heat is a direct loss in the calorific power.

$$\frac{.209 \times 100}{1.5}$$
 = 13.93% moisture

The analysis including moisture is then as follows:

100:
$$56.64 = 13.93$$
: x . $x = 48.76\%$ C
100: $5.68 = 13.93$: x . $x = 4.88\%$ H
100: $1.29 = 13.93$: x . $x = 1.12\%$ N
100: $6.21 = 13.93$: x . $x = 5.34\%$ S
100: $11.67 = 13.93$: x . $x = 10.04\%$ Ash
100: $18.51 = 13.93$: x . $x = 15.93\%$ O
13.93% H₂O

100.00

100.00

From the complete analysis of the coal, the heating value was calculated as follows, by Dulong's formula:

Then

 $48.76 \times 81 = 3949.56$

$$8i C + 290 \left(H - \frac{O}{8}\right) + 25 S - 6 W$$

15.93:
$$8=1.99$$
. $4.88-1.99$
 $=2.89$. $2.89 \times 290 = 738.10$
 $5.34 \times 25 = 133.50$
 $3949.56 + 738.10 + 133.50 = 4821.16$
 $13.93 \times 6 = 83.58$
 $=4737.58$ calories

The heating value of the same sample after Mahlet's formula, whose proximate analysis is as above, fixed carbon 34.18 per cent, volatile matter 32.88 per cent, ash 11.67 per cent, moisture 15 per cent. The combustible portion amounts to 32.88+34.18=67.06.

 $\frac{4737 \cdot 58 \times 9}{5} = 8529.8 \text{ B.T.U.}$

Fixed Carbon in Coal, Dry and Free of Ash.	Heating Value per Pound of Combustible.
Per Cent.	B.T.U.
100	14,600
97	14,940
94	15,210
90	15,480
87	15,660
80	15,840
72	15,660
68	15,480
63	15,120
60	14,580
57	14,040
55	13,320
53	12,600
51	12,240

From the above table we find the nearest value for the combustible portion of this coal to have a heat value of \$208.14 B.T.U. Hence the heating value of the coal per pound is 12.240×.6706=8208.14 B.T.U. with 321.66 B.T.U. less than in the former calculation.

Goutal gives the carbon a fixed value and considers the heat value of the volatile matter a function of its percentage referred to combustible, and evolves the following formula:

B.T.U. = 14,760
$$C + AV$$

in which C=percentage of fixed carbon. in coal A= variable depending on ratio; R of volatile matter to combustible; V=percentage of volatile matter in coal. The value A corresponding to R for several values of V and C are given in the following table:

$R = \frac{V}{V + C}$	A
.05	26,1.0
.10	23,400
.15	21,060
.20	19,620
.25	18,540
.30	17,640
∙35	16,920
. 38	15,300
.40	14,400
•49	9,150

As the table is calculated only to .40 it was necessary to calculate the value of R to A at .49 by the following method:

B.T.U.=
$$14,760C + AV$$

 $8208.14 = 14,760 \times .3418 + A .3288$
 $8208.14 = 5030 + .3288 A$
 $.3288 A = 8208.14 - 5030$
 $.3288 A = 3178.14$
 $A = 9.150$

Now if this calculation is correct, then we have:

$$C = 34.18 \quad V - 32.88$$

Therefore

$$R = \frac{.3288}{.3418 = .3288} = .49$$

Or
$$A = 8053.00 \text{ B.T.U.}$$

With 154.15 B.T.U. less than in the following calculations made after Mahler's formula, and with 475.81 B.T.U. less than the calculation made after Dulong's formula.

It can be clearly seen from the above that the calculations are very close and reliable and that the coal should be bought for its calorific value.

It is simpler to calculate the heat value of coal and the flame temperature by the following method:

The coal from Franklin County, Ill., has the following analysis:

Moisture	7.30%
Volatile matter	28.67
Fixed carbon	54.59
Ash	7.74
Sulphur	0.48
Nitrogen	I.22
	100.00%

Table of heating value given by J. J. Koch * are as follows:

		Heat Units per lb., in B.T.U.
C bur	ning to	CO ₂ 14,500
CO	"	CO ₂ 4,500
C	"	CO 4,000
H	"	water (vapor) 52,000
H	"	water (liquid) 62,032
S	66	SO ₂ 4,100
	* T	he Clay Worker, 1913.

From the following chemical equation $C+O_2=CO_2$ it can be seen that 12 units by weight (grams, kilos, or ounces, pounds, or tons) require for complete combustion 32 units by weight of oxygen to produce CO_2 .

The equivalent weights are as follows: $\frac{32}{12}$ or 2.667 pounds of oxygen+1 pound of C=3.667 pounds of CO₂.

The equivalent weight of C to CO is 12 pounds or C to 16 pounds of O=28 pounds of CO, $\frac{16}{12}$ or 1.333 pounds of oxygen+1 pound of C=2.333 pounds of CO.

And the equivalent of CO to CO₂ requires $\frac{16}{28}$ or 0.571 pounds of O+1 pound of CO=1.571 pounds of CO₂.

From the above table of heating values can be seen (as Koch states) that when burning 1 pound of C to CO 4000 B.T.U. is generated (8100 gram calories per gram of carbon) and weighs 2.333 pounds, if CO is burned to CO_2 4500 B.T.U. is given up thus producing $4500\times2.333=10,498.500$ B.T.U. or 10,500 B.T.U. which when added to the 4000 B.T.U. produced by primary burning gives 14,500 B.T.U. just as C burns to CO_2 .

AIR NEEDED FOR COMBUSTION

In air containing 23 per cent of oxygen and 77 per cent of nitrogen (Molinari) the equivalent of nitrogen to oxygen is $\frac{77}{23}$ or 3.335+1 pound O=4.335 pounds of air.

If the oxygen requirement should be figured only for CO to form CO₂, then 0.571 is multiplied by 4.335 = 2.475 pounds of air necessary.

When hydrogen is burned to water for every 2 pounds

of hydrogen, 16 pounds of oxygen will be required or every pound of hydrogen will require 8 pounds of oxygen, 4.335×8=34.68 pounds of air.

To calculate the heating value of the above coal proceed as follows:

The volatile matter is usually calculated as marsh gas, CH₄, showing that 4 units by weight of H, to 12 units by weight of C, or $\frac{12}{4}$ =3, 3 of C to 1 of H. This will then change the 28.67 per cent of volatile matter into 28.67: 4=7.14 of H, and 28.67-7.17=21.50 of C, and the analysis will be as follows:

Moisture	7.30%
Carbon (21.50+54.59)	76.09
Hydrogen	7.17
Ash	7.14
Sulphur	0.48
Nitrogen	I.22
	100.00%

Considering only hydrogen and carbon to be involved in generating heat by the combustion of I pound of fuel, the theoretical calculations will then give the following results:

76.09: 100=0.7609 C burning to CO₂

$$\times$$
14,500=11,033 B.T.U.
7.17: 100=0.0717 H burning to H₂O
 \times 52,000= $\frac{3,728 \text{ B.T.U.}}{14,761 \text{ B.T.U.}}$

TABLE OF SPECIFIC HEAT *

Water	1.0000
Air	0.2375
Carbon (graphite)	0.160
Carbon at 977° C	0.467
Carbon monoxide	0.2425
Carbon dioxide	0.2025
Hydrogen	3.4000
Nitrogen	0.2438
Sulphur dioxide	0.1544
Oxygen	
Coke	
Ashes	0.2000
Fire brick	
Superheated steam	0.4825

THEORETICAL TEMPERATURE

The following method after Koch will calculate the temperature with sufficient accuracy for commercial purposes: Divide the heat units developed by the combustion of I pound of the fuel by the number obtained by multiplying the weight of the product in pounds by its specific heat. For example:

Ánalysis of Coal.	Air Required for Combustion.	Weight of Prod. of Com.	Sp. Ht. of Gases.	Furnace Gases Times Sp. Ht.
H = .0717	+ +0.5738 oxygen +2.0293 oxygen	=0.6453 H ₂ O =2.0293 CO ₂	X.480 X.2025	
	Air required	11.2836		2.87206

^{*} Hand-book of Chemistry and Physics.

Dividing the product of 14,761 B.T.U. obtained above by the product of 2.87206=5140° F.

But as it is the practice in commercial kiln firing to direct twice the amount of air that is necessary, then 11.2836 pounds of air×.2375=2.6799, adding this product to the product of 2.87206=5.55196.

Dividing again 14,761 by the product of 5.55196=2658° F. which is approximately the temperature of the products of combustion.

HEAT UNITS

Converting Fahrenheit into Centigrade:

$$F = \frac{9}{5} = C + 32$$

and Centigrade into Fahrenheit:

$$C = \frac{5}{9}(F - 32)$$

Example. What temperature on the Centigrade scale is equal to 350° F.

$$\frac{(350-32)\times 5}{9}$$
 = 176.7 C.

or

$$(350-32) \div 1.8 = 176.7 \text{ C}.$$

What temperature on Fahrenheit scale is equal to 100° C. (boiling point of water in centigrade)?

$$\left(\frac{100\times 9}{5}\right) + 32 = 212$$
 (boiling point of water in Fahrenheit of $(100\times 1.8) + 32 = 212$.

The British thermal unit (B.T.U.) is the quantity of heat required to raise the temperature of 1 pound of water 1° F. For instance we wish to raise 75 pounds of water from 60° F. to 150° F. we have to raise only 90° F. then and will require 75×90=6750 B.T.U.

The small *caloric* (denoted by cal.) represents the quantity of heat necessary to raise 1 gm. of water one degree Centigrade.

The kilogram calorie or large calorie (which is always abbreviated Cal. and is 1000 times larger than the small calorie) represents the quantity of heat necessary to raise the temperature of 1 kilogram of water one degree Centigrade.

To convert cal. into B.T.U. multiply the amount of cal. by 3.968 or by 2.2 and then by $\frac{9}{5}$. One kilogram = 2.2 pounds and 1° C.= $\frac{9}{5}$ ×1° F. Therefore 1 cal. = 2.2× $\frac{9}{5}$ = 3.968 B.T.U.

Example: How many B.T.U. is 75 cal.

$$75 \times 3.968 = 297.6$$
 B.T.U.

or

$$\frac{(75\times2.2)\times9}{5}$$
 = 297 B.T.U.

reverse,

$$(297 \text{ B.T.U.} \times \frac{5}{9}) \div 2.2 = 75 \text{ cal.}$$

The specific heat of a substance is the number of small calories required to raise one gram of the substance one degree Centigrade; or the number of large calories (Cal.) to raise I Kgr. of the substance I degree Centigrade.

Example. The specific heat of a fire brick which weighs 3 kilograms is .2000. How many Cal. will it require to raise the heat to 800° C.?

Since it takes .2000 Cal. to raise one kilogram of the fire brick 1° C. then it will take .2000 $\times 3 \times 800$ to raise the fire brick to 800° C. $(.2000 \times 3) \times 800 = 480$

Cal. What will it be required in B.T.U.? $3\times2.2=6.6$ pounds brick weight, and 800° C.= 1472° F.

$$\therefore$$
 (.200×6.6)×1472=1943.04 B.T.U.

Example. A piece of terra cotta weighs 500 pounds and we wish to know how many heat units it will require to burn the piece from room temperature (60° F.) to 2100° F.—assuming that after the piece was dried it still contained 6 per cent moisture.

Knowing the analysis of the different ingredients in the mixture the specific heats of the elements and the temperature range, the number of heat units required may be readily calculated as follows:

Analysis.		Average Specific Heat.	Pounds.	
SiO_2	66	. 2030	330	66.9900
Al_2O_3	18	. 2143	90	19.2870
Fe ₂ O ₃	3	.1138	15	1.7070
CaO	5	.1743	25	4.3575
MgO	I	. 2440	05	1.2200
K ₂ O-Na ₂ O	4	. 1650	20	3.3100
Imp	3	. 1700	15	2.5500
			Total	99.4215

To raise the temperature

To evaporate 30 pounds of water=1117.7=33531.0 B.T.U.

To burn the above terra cotta piece will require 33531.0+202819.8600=236350.8600 B.T.U.

FACTORS AND THEIR LOGARITHMS

Found A.	Sought B.	Factor Converting A into B.	Log.	Factor Converting B into A.	Log.
AgCl	Ag	0.75216	87656	1.32870	12343
Al_2O_3	Al	0.53033	72455	1.88560	27545
Al_2O_3	AlC	0.70646	84909	1.41550	15091
AlPO ₄	Al	0.22193	34621	0.45060	65379
BaSO ₄	Ba	0.58851	76975	1.70100	23025
BaSO ₄	BaO	0.65705	81756	1.52190	18240
BaSO ₄	BaCO ₃	0.84555	92714	1.18270	07286
BiOCl	Ві	0.80166	90399	1.24740	09601
CaSO ₄	CaO	0.41186	61475	2.42800	38525
CaCO ₃	CaO	0.56039	74843	1.78470	25157
C1	AgCl	0.24738	39337	4.03950	60633
Fe ₂ O ₃	Fe	0.69940	84473	1.42977	15527
KCl	K_2I	0.63169	80051	1.58300	19949
K ₂ PtCl ₆	K_2O	0.19376	28727	5.16100	71273
K₂PtCl ₆	KCl	0.30674	48676	3.26015	51324
$\mathrm{Mg_2P_2O_7}$.	MgO	0.36207	55879	2.76189	44121
NaCl	Na_2O	0.53028	72451	1.88580	27549
NiO	Ni	0.78576	89529	1.27260	10471
$Mg_2P_2O_7$	P	0.27873	44511	3.58766	55481
$Mg_2P_2O_7$	P_2O_5	0.63852	80517	1.56615	19483
PbSO ₄	Pb	0.68311	83449	1.46390	16551
PbCO ₂	PbO	0.83528	92183	1.19720	07817
BaSO ₄	S	0.13738	13793	7.27900	86207
BaSO ₄	SO_3	0.34300	53530	2.91540	46470
$SiO_2 \dots$	Si	0.46933	67147	2.13070	32853
SnO	Sn	0.88149	94522	1.13440	05478
SrSO ₄	Sr	0.47703	67855	2.09629	32145
SrSO ₄	SrO	0.56415	75140	1.77257	24860
TiO_2	Ti	0.60051	77852	1.66520	22148
BaSO ₄	ZnS	0.41742	62057	2.39570	37943
ZnS	Zn	0.67087	82664	1.49060	17336
ZnS	ZnO	0.83507	92172	1.19750	07820
ZrO_2	Zr	0.73899	86864	1.35320	13136

To use the factors from the above table, multiply the weight found by the factor from the table and then by 100.

For example: One gram clay was taken for analysis and it yielded .028 gm. of Mg₂P₂O₇. It is necessary to convert the Mg₂P₂O₇ to MgO. To do it we will simplify our work and save time by looking in the table for the right factor which we will find to be 0.36207. Then we proceed as follows:

 $(.028 \times .36207) \times 100 = 1.01\% \text{ MgO}$

CHEMICAL FORMULA, ATOMIC OR MOLECULAR WEIGHT AND LOGARITHMS OF VARIOUS SUBSTANCES

Substances.	Formula.	Molecu- lar or Atomic Weight.	Log.
Acetic acid	$HC_2H_3O_2$	60.00	77815
Aluminum	Al	27.00	43297
" chlorides	Al ₂ Cl ₆	267.00	42651
" chlorides	Al ₂ Cl ₆ 1 2H ₂ O	483.00	68395
" hydroxide.	Al ₂ (OH) ₆	78.00	89209
" oxide	Al ₂ O ₃	102.00	00945
" mono silica	Al ₂ SiO ₅	162.00	20952
" sulphate	Al ₂ (SO ₄) ₃	342.00	53403
" sulphate	Al ₂ (SO ₄) ₃ 18H ₂ O	667.00	82393
" sulphide	Al ₂ S ₃	150.00	17609
Ammonia	NH ₃	17.00	23045
" alum	Al ₂ (SO ₄) ₃ (NH ₄) ₃		
	SO ₄ 24H ₂ O	904.00	95617
" ammonium.	NH4	18.00	25527
" bichromate.	$(NH_4)_2Cr_2O_7$	253.00	40312
" chloride	NH4Cl	53.00	72835
" hydroxide	NH4OH	35.00	54407
" nitrate	NH ₄ NO ₃	80.00	90309
" sulphate	(NH ₄) ₂ SO ₄	132.00	12057
Antimony	Sb	120.00	07918
" oxide	Sb ₂ O ₃	287.00	45788
Arsenic	As	75.00	87506
" oxide	As ₂ O ₅	230.00	36173
Arsenious oxide	As_2O_3	198.00	29667
Barium	Ba	137.00	13672
" carbonate	BaCO ₃	197.00	29447
" chloride	BaCl ₂	208.00	31806
" chromate	BaCrO ₄	253.00	40312
" chloride	BaCl ₂ 2·HO	244.00	38739
" oxide	BaO	153.00	18469
" peroxide	BaO_2	169.00	22789
" sulphate		233.00	36736
Bismuth	Bi	207.50	31597

Substances.	Formula.	Molecu- lar or Atomic Weight.	Log.
Bismuth oxide	$\mathrm{Bi_2O_3}$	468.00	67025
Borax	Na ₂ B ₄ O ₇ 10H ₂ O	382.00	58206
" oxide	B_2O_3	70.00	84510
" acid	H ₃ BO ₃	62.00	79239
Boron	В	11.00	04139
Cadmium carbonate	CdCO3	172.00	23553
" chloride	$CdCl_2$	183.∞	26245
" chloride	CdCl ₂ 2H ₂ O	219.00	34044
" sulphide	CdS	144.∞	15836
Calcium	Ca	40.∞	60206
" carbonate	CaCO ₃	100.00	00000
" chloride			
(fused)	CaCl ₂	111.00	04532
" chloride	CaCl ₂ 6H ₂ O	219.00	34044
" fluoride	CaF_2	78.∞	89209
" oxide (lime)	CaO	56.00	74819
" hydroxide	Ca(OH) ₂	74.00	86923
" phosphate	$Ca_3(PO_4)_2$	310.∞	49136
" sulphate	CaSO ₄	136.∞	13354
'' sulphate			
(gypsum)	CaSO ₄₂ H ₂ O	172.00	23353
Carbon	C	12.00	07918
" dioxide	CO_2	44.00	64345
" monoxide	CO	28.00	44716
Carborundum	SiC	40.00	60206
Chlorine	Cl	35.50	54407
Chrome oxide	Cr ₂ O ₃	153.00	18469
Chromium	Cr	52.00	71600
" sulphate	$Cr(SO_4)_318H_2O$	717.50	85582
" trioxide	CrO ₃	100.00	00000
Citric acid	$H_3C_6H_5O_7$	192.∞	28330
Cobalt	Co	58.50	76716
" carbonate	CoCO ₃	118.50	07372

Substances.	Formula.	Molecu- lar or Atomic Weight.	Log.
Cobalt chloride '' chloride '' nitrate '' oxide (black)	Co ₂ Cl ₆	329.00 237.00 290.00 165.00	51720 37475 46240 21748
" oxide (prep.) " sulphate Copper	CoO	74.50 280.00 63.00	87216 44716 79934
" chloride " chloride " oxide	CuCl ₂ 2H ₂ O Cu ₂ Cl ₂ CuO Cu ₂ O	170.50 198.00 79.50	23172 29667 90037
sulphate (blue vitriol) sulphate	CuSO ₄₅ H ₂ O	143.00 249.00	15534 39707 20276
cyanogen Ferric oxide	CuS	95.50 26.00 160.00	98000 41497 20412
Ferrous oxide ferric oxide carbonate	FeO. Fe ₃ O ₄ . FeCO ₃ .	72.00 232.00 116.00	85733 36549 06446 18184
" sulphate " sulphate " sulphide Ammonium sulphate	FeSO ₄ 7H ₂ O	152.00 278.00 88.00 392.00	10104 44404 94448 59329
Gold	Au	169.50 339.00 81.00	29336 53020 90849
Hydrochloric acid Hydrocyanic acid Hydrofluoric acid Hydroiodic acid	HClHCNHFHI	36.50 27.00 20.00	56229 43136 30103 10380
Hydrogen peroxide '' sulphide	H_2O_3	34.00	53148

Substances.	Formula.	Molecu- lar or Atomic Weight.	Log.
Iodine	I	126.00	10037
Iridium	Ir	192.50	28443
Iron	Fe	56.00	74819
Lead	Pb	207.00	31597
" carbonate	PbCO ₃	267.00	42651
" (Basic white lead)			
carbonate	Pb(OH) ₂ 2PbCO ₃	773.00	- 88818
" chloride	PbCl ₂	277.00	44248
" chromate	PbCrO ₄	323.00	50920
oxide (litharge)	PbO	222.00	34635
" red (meninge)	Pb ₃ O ₄	685.00	83569
" peroxide	PbO ₂	239.00	37840
" sulphate	PhSO ₄	302.00	48001
" sulphide (galena)	PbS	239.00	37840
Magnesium	Mg	24.00	38021
" carbonate	MgCO ₃	84.00	92428
'' chloride	MgCl ₂	95.00	97772
" chloride	MgCl ₂ 6H ₂ O	203.00	30750
" oxide	MgO	40.00	60206
" sulphate	MgSO ₄	120.00	07918
" sulpliate	MgSO ₄₇ H ₂ O	246.50	53970
Malic acid	$H_2C_4H_4O_5$	134.00	12710
Manganese	Mn	55.00	74036
" carbonate.	MnCO ₃	115.00	06070
" chloride	MnCl ₂	126.00	10037
" oxide			
(braunite).	Mn_2O_3	158.00	19866
" peroxide	MnO_2	87.00	93952
" sulphate	MnSO ₄	151.00	17898
Trimanganic tetraox-			
ide	Mn ₃ O ₄	229.00	35984
Mercury	Hg	200.00	30103
Mercuric chloride	HgCl ₂	271.50	43377

· Substances.	Formula.	Molecu- lar or Atomic Weight.	Log.
Mercurous chloride Nickel " oxide " sulphate " sulphate " sulphate Nitric acid Nitrogen trioxide Nitrogen Oxygen Oxalic acid Oxalic acid Phosphoric acid Phosphorus Platinum " chloride Potassium " oxide " hydroxide " carbonate " sulphate	Formula. Hg ₂ Cl ₂ Ni NiO NiSO ₄ 6H ₂ O NiSO ₄ 7H ₂ O HNO ₃ N ₂ O ₃ N ₂ O ₅ HNO ₂ N O N ₂ C ₂ O ₄ N ₂ C ₂ O ₄ 2H ₂ O H ₂ PO ₄ P Pt Pt PtCl ₄ 5H ₂ O K ₂ CO ₃ K ₂ SO ₄	Atomic	Cog. 67302 77085 97506 41906 44871 79934 88081 03342 67210 14613 20412 95424 10037 99123 49136 2878c 62992 59106 97313 74819 13988 24055
" chloride " chlorate " antimoniate. " alum " bicarbonate. " bicarbonate. " chromate " chrome alum " chlorate " perchlorate	KCl. KHSO ₄ . KSbO ₃ . K ₂ SO ₄ Al ₂ (SO ₄) 2 ₄ H ₂ O K ₂ CO ₃ . K ₂ Cr ₂ O ₇ . K ₂ CrO ₄ . K ₂ SO ₄ Cr ₂ (SO ₄) 2 ₄ H ₂ O KClO ₃ . KClO ₄ .	74.50 136.00 206.00 948.00 100.00 295.00 194.00 999.00 122.50 138.50	86953 13354 31387 97681 00000 46982 28892 99957 08814 14146

Substances.	Formula.	Molecu- lar or Atomic Weight.	Log.
Potassium cyanide	KCN	65.00	81291
" ferricyanide	K ₃ Fe(CN) ₆	329.00	51720
" ferrocyanide	K ₄ Fe(CN) ₆	366.00	56348
" ironsulphate	K ₂ SO ₄ Fe ₂ (SO ₄)24H ₂ O	1006.50	002814
" nitrate	KNO ₃	101.00	00432
" nitrite	KNO ₂	85.00	92942
" permangan-			
ate	KMnO ₄	158.00	19866
" platinum			
chloride	K₂PtCl ₆	485.00	68574
" sulphide	K ₂ S	110.00	04139
" sulphocyan-			
ide	(KCNS)KSCN	97.00	98677
Silver	Ag	108.00	03342
" nitrate	AgNO ₃	170.00	23045
Silica	SiO ₂	60.00	77815
Silicilic acid	H ₂ SiO ₃ , etc	Varies	
Silicon	Si	28.00	44716
'' tetrafluoride	SiF ₄	104.00	01703
Sodium	Na	23.00	36173
" biborate (borax)	Na ₂ B ₄ O ₇ 10H ₂ O	392.00	58206
" bicarbonate	NaHCO ₃	84.00	92428
" bichromate	Na ₂ Cr ₂ O ₇ 2H ₂ O	299.00	47567
" carbonate (ash)	Na ₂ CO ₃	106.00	02531
" carbonate (crys-			
tals)	Na ₂ CO ₃ 10H ₂ O	286.00	45637
" chloride	NaCl	58.50	76716
" chromate	NaCrO410H2O	342.50	53466
" hydroxide	NaOH	40.00	60206
" nitrate	NaNO ₃	85.00	92942
" nitrate	NaNO ₂	69.00	83885
" oxalate	$Na_2C_2O_4$	134.00	12710
" oxide	Na ₂ O	62.00	79239

Substances.	Formula.	Molecu- lar or	Log.
outstances.	1 ormula	Atomic Weight.	
Sodium ammonium			
phosphate	NH ₄ NaHPO ₄₄ H ₂ O	210.00	32222
" silicate (water			
glass)	Na ₂ Si ₄ O ₉	301.00	47857
" sulphide	Na ₂ S	78.00	89209
" sulphate	Na ₂ SO ₄	142.00	15229
" acid sulphate	NaHSO ₄	120.00	07918
" thiosulphate	Na ₂ S ₂ O ₃ 5H ₂ O	248.00	39445
" sulphate	Na ₂ SO ₄ 10H ₂ O	322.00	50786
Stannous chloride	SnCl ₂	189.50	27761
" chloride	SnCl ₂ 2H ₂ O	225.50	27761
oxide	SnO.:	135.00	13033
Sulphur	S	32.00	50515
" dioxide	SO_2	64.00	80618
" acid (ic)	H_2SO_4	98.00	99123
" trioxide	SO ₃	80.00	90309
" acid (ous)	H_2SO_3	82.00	91381
Hydrogen sulphide	H_2S	34.00	53148
Tartaric acid	$H_2C_4H_4O_6$	150.00	17609
Tin	Sn	119.00	07555
" oxide	SnO ₂	150.00	17609
Titanium oxide	TiO ₂	80.00	90309
Uranium	<u>U</u>	240.00	38021
oxide	UO_2	272.00	43457
Zinc	Zn	65.00	81291
carbonate	ZnCO ₃	125.00	09691
Cinoride	ZnCl ₂	136 00	13354
Oxide	ZnO	81.00	90840
sulphate	ZnSO ₄ ZnSO ₄ 7H ₂ O	161.00	20412
" sulphate	Zii.5O47H2O	287.50	45864

PHYSICAL PROPERTIES MODULUS OF RUPTURE

The modulus of rupture is calculated from the following formula:

 $R = \frac{3WD}{2bt^2}$

in which R = modulus of rupture; W = the required pressure to break the brick, D = distance between the supporting knife edges, b = breadth of the brick, t = thickness of the brick.

The above formula explains that the modulus of rupture is three times the pressure in pounds multiplied by the distance between the supports divided by twice the breadth of the brick multiplied by the square of the thickness.

For example it was necessary to apply a pressure of 2450 pounds to break a brick. The distance between the supports was 6 inches. The width of the brick was 4.25 inches and the thickness was 2.25 inches.

The modulus of rupture (R) is calculated as follows:

$$R = \frac{3 \times 2450 \times 6}{2.25 \times 4.25 \times 2^2} = \frac{44100}{38.2500} = 1152.94$$

POROSITY

The porosity of fired and unfired bodies is determined by two methods. The following formula is for burned clay or bodies:

Porosity =
$$\frac{\text{(Wt. saturated in water-Wt. dry)} \times \text{100}}{\text{Wt. dry}}$$
.

For example a piece of a burned body weighing 40 gms.,

after being saturated in water for forty-eight hours weighs 54.56 gms. 54.56-50=4.56, 50:4.56=100:x.

$$\therefore \frac{4.56 \times 100}{50} = 9.12\%$$

The porosity of an unfired clay or body can be determined at any stage of dryness by the following formula:

Porosity =
$$\frac{\text{(Wt. saturated - Wt. dry)} \times \text{100}}{\text{(Wt. Dry - Wt. suspended)}}$$
.

For example a piece of dry clay or body weighs 66 gms. After being saturated in paraffin it weighs 72 gms. and when suspended weighs 47 gms.

Porosity =
$$\frac{(72-66)=6 \times 100}{(72-47)=25}$$
 = 24%

SPECIFIC GRAVITY

By the specific gravity of a body we understand the ratio between its weight and the weight of a like volume of pure water at 4° C. Or in other words the weight in air divided by the volume of water displaced by the body.

Example. Assuming that a piece of burned brick weighed in air 4.556 gms. After having been immersed in water for twenty-four or forty-eight hours it were placed in a glass of water by holding it by a very fine wire or thread from a balance beam it weighed 2.733 gms.

The specific gravity of the brick is then calculated by the tollowing rule: W = weight of body in air. W' = weight of body in water.

Sp. gr. =
$$\frac{W}{W'-W}$$
 = $\frac{4.556}{4.556-2.733}$ = $\frac{4.556}{1.822}$ = 2.5.

To find the specific gravity of a substance in powder form. First weigh the dry substance in air, then weigh a flask filled with water. Then weigh the flask containing the substance previously weighed and filled full of water.

Example. Assuming that we wish to find the specific gravity of a sample of sand, the weights are as follows: dry sand weighs 6.666 gms. Bottle filled with water 100 gms. Weight of bottle containing sand and water 103.029 gms.

The specific gravity is then found by the following rule: Ws = weight of substance in air. Ww = weight of flask and water. W = weight of flask containing water and substance.

$$\frac{Ws}{Ws - (W - Ww)} = \frac{6.666}{6.666 - (103.029 - 100)} = 2.27 \text{ sp. gr.}$$

To find the cubic weight in pounds of a substance, use the following formula:

Specific gravity \times 62.4=weight in pounds of a cubic foot of the substance.

Example. The specific gravity of zircon is 4.7, and a cubic foot of water weighs 62.4 pounds.

 \therefore 62.4 \times 4.7=293.28 pounds. Therefore a cubic foot of zircon will weigh 293.28 pounds.

The specific gravity of a substance when the weight of a cubic foot is known is found from the following formula:

$$\frac{\text{Wt. in pounds of a cubic foot}}{62.4} = \text{Sp. gr.}$$

Example. One cubic foot of quartz weighs 165 pounds, what is the specific gravity?

$$165 \div 62.4 = 2.64$$

Example. We wish to know the weight in pounds of a ceramic block which after it is burned measures 4565 cubic inches, the specific gravity of the block is 2.15. One cubic foot of water weighs 62.4 pounds and I cubic foot contains 1728 cubic inches.

$$\therefore \frac{4565 \times 62.4}{1728} = \frac{284856.0}{1728} = 164.85$$

 $164.85 \div 2.15 = 837.067$ pounds, weight of the block.

SEGER CONES AND THEIR FUSING-POINTS

Cono No	Molecular Composition.						Fusing-
Cone No.	Na ₂ O	PbO	Al ₂ O ₃	Fe ₂ O ₃	B_2O_3	SiO ₂	point in C.
022	0.5	0.5			1.0	2.0	590
021	0.5	0.5	0.I		1.0	2.2	620
020	0.5	0.5	0.2		1.0	2.4	650
019	0.5	0.5	0.3		1.0	2.6	68o
018	0.5	0.5	0.4		I.O	2.8	710
017	0.5	0.5	0.5		I.O	3.0	740
016	0.5	0.5	0.55		I . O	3.I	770
015	0.5	0.5	0.6		I.O	3.2	800
014	0.5	0.5	0.65		I . O	3.3	830
013	0.5	0.5.	0.7		1.0	3.4	860
012	0.5	0.5	0.75		1.0	3.5	890
011	0-5	0.5	0.8		1.0	3.6	920
	K ₂ O	CaO		•	* Ansa		,
010	0.3	0.7	0.3	0.2	0.50	3.50	950
09	0.3	0.7	0.3	0.2	0.45	3 · 55	970
o 8	0.3	0.7	0.3	0.2	0.40	3.60	990
07	0.3	0.7	0.3	0.2	0.35	3.65	1010
06	0.3	0.7	0.3	0.2	0.30	3.70	1030
05	0.3	0.7	0.3	0,2	0.25	3.75	1050
04	0.3	0.7-	0.3	0.2	0.20	3.80	1070
03	0.3	0.7	0.3	0.2	0.15	3.85	1090
02	0.3	0.7	0.3	0.2	0.10	3.90	1110
01	0.3	0.7	0.3	0.2	0.5	3.95	1130
I	0.3	0.7	0.3	0.2		4	1150
2	0.3	C.7	0.4	O. I		4	1170
3	0.3	0.7	0.45	0.05		4	1100
4	0.3	0.7	0.50			4	1210
-5	0.3	0,7	0.55			5_6	1230
	0.3	0.7	0.60				1250
7 8	0.3	0.7	0.70			7	1270
	0.3	0.7	0.80			8	1290
9	0.3	0.7	0.90			9	1310
io	0.3	0.7	1.00			10	1330

Cone No.	K ₂ O	CaO	Al ₂ O ₃	SiO ₂	Fusing-point in C.
11	0.3	0.7	1.2	12.0	1350
12	0.3	0.7	1.4	14.0	1370
13	0.3	0.7	1.6	16.0	1390
14	0.3	0.7	1.8	18.0	1410
15	0.3	0.7	2.I	21.0	1430
16	0.3	0.7	2.4	24 0	1450
17	0.3	0.7	2.7	27.0	1470
18	0.3	0.7	3.1	31.0	1490
19	0.3	0.7	3.5	35.0	1510
20	0.3	0.7	3.9	39.0	1530
21	0.3	0.7	4.4	44.0	1550
22	0.3	0.7	4.9	49.0	1570
23	0.3	0.7	5 · 4	54.0	1590
24	0.3	0.7	6.0	60.0	1610
25	0.3	0.7	6.6	66.0	1630
26	0.3	0.7	7.2	72.0	1650
27	0.3	0.7	20.0	200.0	1670
					
28			1.0	10.0	1690
29			1.0	8.0	1710
30			1.0	6.0	1730
31			1.0	5.0	1750
32			1.0	4.0	1770
33			1.0	3.0	1790
34			1.0	2.5	1810
35			1.0	2.0	1830
36			1.0	1.5	1850
37			1.0	1.33	1870
38			1.0	1.00	1890
39			1.0	0.66	1910
40			1.0	0.33	1940
41			1.0	.13	1970
42			1.0		2000

MINERALS USEFUL IN THE CERAMIC INDUSTRY

Actinolite. A member of the amphibol group. Sp. gr.=3, H.=5-6. Comp. Ca(MgFe)₃(SiO₃)₄, SiO₂ =59.7, CaO=14.25, MgO=21.6, FeO=3.9, Mn₂O₃ =.55. Luster pearly to vitreous, transparent to opaque; fracture conchoidal to uneven; texture granular; color white or gray, pale green to dark green. Fuses with difficulty on the edges.

Agate. A variegated chalcedony. Sp. gr. = 2.6, H.=7. Comp. SiO₂. Luster vitreous, translucent to transparent; color, all kinds with different shades of streaks; feels harsh; fracture uneven; texture massive crystalline. Infusible.

Alabaster. A white compact gypsum, having a very fine grain. Sp. gr. = 2.3, H. = 1.5. Comp. CaSO₄, 2H₂O, CaO=32.6, SO₃=46.5, H₂O=20.9. Luster pearly, subvitreous, opaque to translucent. Color white to pink, yellow or bluish, feels smooth to harsh; fracture uneven, texture massive, granular. Fuses and exfoliates B.B.

Albite. Soda feldspar. Sp. gr. = 2.5-2.65, H. = 6-7. Comp. Na₂O, Al₂O₃, $6SiO_2 \cdot SiO_2 = 68.6$, Al₂O₃=19.6, Na₂O=11.8. Triclinic massive, either granular or lamellar. Luster pearly vitreous. Color white, bluish, gray, green or reddish; fracture uneven. Fusible B.B. to a colorless glass.

Allanite. Sp. gr. = 3-4, H. = 5.5-6. Comp. varies, $(CaFe)_2(AlCeFe)_3(OH)(SiO_4)_3$ SiO₂=35, Al₂O₃=15, Fe₂O₃=20, CaO=14, CaO=12, H₂O=4. Luster sub-

metallic; resinous; color brown, black, greenish; fracture uneven. Easily fusible B.B. to a dark glass.

Allophane. Sp. gr. = 1.9, H. = 2-3. Comp. Al₂SiO₅· $_{5}$ H₂O, SiO₂ = 23.75, Al₂O₃ = 40.62, H₂O = 35.63. Luster vitreous; color white, pale blue, green; fracture conchoidal infusible B.B.

Allunite. Sp. gr. = 2.8, H. = 3.5-4. Comp. K_2O , $3Al_2O_3$, $4SO_3$, $6H_2O$, $Al_2O_3 = 37.1$, $K_2O = 11.4$, $SO_3 = 38.5$, $H_2O = 13$, Color white or gray, fracture uneven. Infusible B.B.

Alum. Sp. gr.=1.8, H.=2. Comp. K₂SO₄, Al₂(SO₄)₃, 24H₂O. Potash sulphate=18, aluminous sulphate=36 and water =46. Luster translucent, color white, feels smooth, fracture uneven, texture crystalline.

Amblygonite. (Very much like apatite.) Sp. gr. = 3, H.=6. Comp. LiAl(FOH)PO₄. Contains 50 per cent phosphoric acid. The lithium, is often partly replaced by sodium. Color white or grayish white. Easily fusible B.B.

Amethyst. Sp. gr. = 2.6, H. = 7. Comp. $SiO_2 = 100$. Luster vitreous, transparent; color purple violet; feels harsh; fracture uneven; texture massive.

Amphibol. Sp. gr. = 2.9-3.3, H. = 5-6. Comp. vary very widely RSiO₃·R·CaMgFe. Luster vitreous, in fibrous varieties silky color white green, yellow, black. Monoclinic imperfectly crystalline, fibrous columnar, massive granular. Fusible B.B. the fusibility varies indefinitely.

Analcite. Sp. gr.=2.2-2.3, H.=5-5.5. Comp. NaAl(SiO₃)₂, SiO₂=54.46, Al₂O₃=23.30, Na₂O=14.08, H₂O=8.16. Luster vitreous. Color colorless or some-

times reddish, yellowish, grayish. Fracture subconchoidal uneven. Fusible to a colorless glass.

Andalusite. Sp. gr.=3-3.4, H.=7.5. Comp. Al₂SiO₅, SiO₂=36.8, Al₂O₃=63.2. Luster vitreous, fracture subconchoidal. Color white, violet, red, green and brown, usually gray. Translucent to opaque. Infusible B.B.

Andesite. Sp. gr.=2.6-2.8, H.=5-6. Comp. (CaNa₂)O, Al₂O₃, $_4$ SiO₂, SiO₂=59.8, Al₂O₃=25.5, CaO=7, Na₂O=7.7. A dark grayish rock consisting essentially of triclinic feldspar. Fusible B.B.

Anglesite. Sp. gr.=6-6.4, H.=3. Comp. PbSO₄, PbO=73.6, SO₃=26.4. Luster resinous vitreous. Color white or gray fracture, conchoidal. Easily fusible B.B.

Anhydrite. Sp. gr.=2.9, H.=3-3.5. Comp. CaSO₄, $_2H_2O$, CaO= $_4I.2$, SO₃= $_58.8$. Luster vitreous, pearly. Color white gray, bluish reddish; fracture uneven. Fuses B.B.

Annalbergite. Comp. $Ni_3As_2O_8$, $8H_2O$, $H_3AsO_4 = 38.6$, NiO = 37.2, $H_2O = 24.2$. Fracture uneven. Color green, with streaks of greenish white. Fusible B.B.

Anorthite. Sp. gr.=2.66-2.78, H=6. Comp. CaO, Al₂O₃, 2SiO₂, SiO₂=43.1, Al₂O₃=36.8, CaO=20.1. White, grayish, reddish lime feldspar. Fuses with difficulty B.B. to a colorless glass.

Antimony. Sp. gr. = 6.7, H=3.5-4. Comp. Sb=100. Luster metallic, fracture uneven. Color tin white on charcoal easily volatilize.

Antimony glance. (Gray antimony.) Sp. gr. = 4.5, H=2. Comp. Sb_2S_3 , Sb=72, S=28. Luster metallic color gray, fracture conchoidal. Fuses readily in flame.

Apatite. Sp. gr.=3-3.5, H=5. Comp. Ca(FCl), Ca₄(PO₄)₃, CaO=53.80, P₂O₅=40.92, Cl=6.82, usually contains calcium phosphate with calcium chloride or fluoride or both. Luster, vitreous to resinous, transparent to opaque, color blue green, white, gray or yellow, brown; fracture uneven to conchoidal. Infusible B.B. except on the edges.

Aragonite. Sp. gr.=2.95, H=3.5-4. Comp. $CaCO_3$, CaO=56, $CO_2=44$. Luster vitreous to resinous. Color white, gray, green, yellow. Fracture conchoidal. Infusible B.B.

Asbestos. Dana includes the fibrous varieties of both pyroxine and hornblende. (See Hornblende.)

Augite. Sp. gr. = 3-3.5, H. = 5-6. Comp. varies widely in the different varieties.

CaMg(SiO₃)₂(MgFe)(AlFe)₂SiO₆,

 $SiO_2=45$, $Al_2O_3=13$, MgO=13, CaO=12. (FeO+Fe₂O₃)=12, (K₂O+Na₂O)=5. Luster to vitreous transparent to opaque. Fracture conchoidal to uneven, texture granular or fibrous or columnar. Color dark green, brown, black. Fuses B.B. to a black glass.

Aximite. Sp. gr.=3.3, H=6.5-7. Comp. in varying proportion. $HCa_2(FeMn)Al_2B(SiO_4)_4$, $SiO_2=43.68$, $B_2O_3=5.61$, $Al_2O_3=15.63$, $Fe_2O_3=9.45$, $Mn_2O_3=3.05$, CaO=20.67, MgO=1.70, $K_2O=.64$. Luster glassy; fracture conchoidal. Color, greenish brown, blue, gray. Easily fusible with intumescence to a dark glass.

Azurite. Sp. gr. = 3.5-3.8, H=4. Comp. Cu₃(OH)₂, (CO₃)₂CuO=69.2, CO₂=25.6, H₂O=5.2. Luster vitreous; fracture conchoidal. Color deep blue. Easily fusible B.B.

Barite. Also known as heavy spar, barytes, barium sulphate. Sp. gr.=4.5, H=3-3.5. Comp. BaSO₄, BaO=65.7, SO₃=34.3. Sr and Ca often replace part of Ba. Luster vitreous, translucent to opaque. Color white, yellowish, reddish bluish, feels smooth to harsh; fracture uneven. Fusible B.B.

Basalt. Sp. gr.=3.15, H.=6. Glassy dense dark colored basic volcanic rock. Consists of the minerals of soda-lime feldspar. Augite, pyroxene, with or without olivine in very various proportions. The following analysis showing the constituents of the basalt rock from California, SiO₂=47.95, Al₂O₃=18.90, FeO=8.59, Fe₂O₃=2.21, CaO=9.86, MgO=8.21, K₂O=2.9, Na₂O=2.81, TiO₂=.57, P₂O₅=.15, H₂O=1.31. Color dark gray or greenish gray, very crystalline and finely granular in texture. Fuses B.B. to a dark glass.

Bauxite. Sp. gr. = 2.5, H. = 1-3. Comp. essentially Al₂O₃2H₂O in various proportions, also containing iron hydroxide with hydrous aluminum silicate. Color white, yellowish, pale red brownish red. Luster dull, and earthy. Infusible B.B.

Bentonite. Medicinal clay, very plastic and swells immensely upon wetting. One analysis gave: $SiO_2 = 66.70$, $Al_2O_3 = 12.90$, $Fe_2O_3 = 2.46$, CaO = .82, MgO = 2.00, $K_2O = .26$, $Na_2O = .66$, $H_2O = 13.80$.

Biotite. A member of the mica group. Sp. gr.= 2.5-3, H.=2.5-3.1. Comp. in varying proportion $(HK)_2(MgFe)_2 \cdot Al_2(SiO_4)_3$. One analysis gave: $SiO_2 = 36$, $Al_2O_3 = 20$, FeO, $Fe_2O_3 = 22$, MgO = 5, $K_2O = 10$, $Na_2O = 3$, $TiO_2 = 2$, MnO = 1, FCl = 1. Luster vitreous, submetallic; fracture lamellar. Color, brown red, black, greenish, white. Fuses B.B. with difficulty on the edges.

Blende. Zinc sulphide also called sphalerite and black Jack in the mines. Sp. gr.=4.1, H.=3.5-4. Comp. ZnS, Zn=67, S=33, Luster resinous, translucent. Color whitish-yellow to brown; feels harsh; fracture conchoidal, texture granular, crystalline. Fuses B.B. on charcoal yields fumes of zinc.

Boracite. Sp. gr. = 2.9, H. = 6.5-7. Comp. $Mg_7Cl_2 B_{16}O_{30}$ or $2(Mg_3B_8O_{15})MgCl_2$, $B_2O_3=62$, MgO=31, Cl=7. Massive, in crystals translucent. Color white or grayish, yellowish, or greenish. Luster vitreous. Fuses B.B. very easily with intumescence.

Borax. (Boric acid, or Tinkal.) Sp. gr.=1.7, H.=2-2.5. Comp. $Na_2B_4O_7$, $1oH_2O$, $B_2O_3=36.6$, $Na_2O=16.2$, $H_2O=47.2$, Luster resinous to vitreous, subtranslucent. Color white; feels harsh; fracture conchoidal, texture crystalline. Fuses B.B. very easily to a transparent glass.

Boronatrocalcite. (Ulexite.) Sp. gr.=1.6, H.=1. Comp. NaCaB₅O₉8H₂O, B₂O₃=45.6, CaO=12.3, Na₂O=6.8, H₂O=35.5. Luster silky, color white. Fuses very easily with intumescence.

Braunite. Sp. gr.=4.75-4.82, H.=6-6.5. Comp. SiO₂=8.63, BaO=.44, MnO=80.94, CaO=1.91, O=8.8. Luster submetallic. Color dark brownish black, fracture uneven. Infusible B.B.

Brookite. Sp. gr.=4.12-4.17, H.=5.5-6. Comp. TiO₂. Luster metallic, adamantine, color brown yellowish, red, black; fracture uneven; infusible B.B.

Brucite. Sp. gr. = 2.3-2.5, H= 2.5. Comp. MgOH₂O, MgO= 69, H₂O= 31. Luster pearly, translucent, color white, grayish greenish, blackish. Infusible B.B.

Calamine. Sp. gr. = 5-5.5, H = 3-4. Comp.

 $Zn_2(OH)_2SiO_3$, ZnO=67, $SiO_2=25$, $H_2O=8$. Luster vitreous, translucent; color white, feels harsh; fracture uneven; texture granular, crystalline. Alone almost infusible B.B.

Calcite. (Calcspar) Sp. gr.=25-2.8, H.=2.5-3.5 Comp. CaCO₃, CaO=56, CO₂=44. Lustre, subvitreous, translucent; color white; feels meagre to rough; fracture conchoidal; texture granular, crystalline. Infusible B.B.

Caledonite. Sp. gr.=6.4, H.=2.5-3. Comp. $Pb_2SO_5(Cu)n$, PbO=65, CuO=11, $SO_3=19$, $H_2O=5$. Luster resinous color, green; fracture uneven. Fusible B.B.

Casiterite. Sp. gr.=7, H.=6.5-7. Comp. SnO₂, Sn=78, O=22. Luster vitreous to adamantine, translucent to opaque. Color brown to black sometimes gray, red, yellow, feels harsh; fracture uneven; texture massive. Infusible B.B.

Celestite. Sp. gr.=3.9, H.=3-3.5. Comp. SrSO₄, SrO=56, $SO_3=44$. Luster vitreous, translucent, color, Huish white, to reddish white; feels rough; fracture uneven; fusible B.B.

Cement. Hydraulic cements, Portland natural and Puzzolan cements. Essential constituents of hydraulic cements are tricalcium silicate (3CaSiO₃) and dicalcium aluminate (2CaAl₂O₄).

Kaisermann states in (Der Portland Cement) that the constituents of Portland cements are of dicalcium silicate and tricalcium aluminate in the following proportion, 4(2CaSiO₃)₃CaAl₂O₄.

Analysis of slab cement. $SiO_2 = 27.20$, Al_2O_3 , $Fe_2O_3 = 14.18$, CaO = 50.03, MgO = 3.22, S = 1.40. Loss on ig. = 4.25.

Analysis of Portland Cement. $SiO_2 = 21.82$, $Al_2O_3 = 8.03$, $Fe_2O_3 = 2.51$, CaO = 62.19, MgO = 2.17, S = 1.02. Loss ig. 1.05.

Cerolite. Sp. gr. = 2.3-2.4, H. = 2-2.5. Comp. H₂Mg₃Si₂O₈H₂O, SiO₂=44, MgO=43, H₂O=13. Luster pearly translucent to opaque; color usually green; feels smooth; fracture conchoidal. Infusible B.B.

Cerussite. Sp. gr.=5.4-6.5, H.=3-3.4. Comp. PbCO₃, PbO=83.5, CO₂=16.5. Luster, vitreous to resinous, translucent; color light to dark gray; feels smooth; fracture conchoidal; texture massive granular. Fuses easily B.B.

Chabazite. Sp. gr.=2.1-2.19, H.=4.5. Comp. $(CaN_2)Al_2(SiO_3)_46H_2O$, $SiO_2=50.5$, $Al_2O_3=17.26$, CaO=9.43, $K_2O=1.98$, $H_2O=20.83$. Luster vitreous; fracture uneven; color white red. Fuses B.B. with intumescence to a white glass.

Chlorite. Sp. gr. = 2.8, H. = 2-3. Comp. $H_8(MgFe)_5Al_2(SiO_6)_3$, $SiO_2=3_2$, $Al_2O_3=18$, MgO=36, $H_2O=14$, Fe partly replace the Al, and Ca the Mg. Luster pearly to resinous translucent; color green to reddish; feels smooth to harsh; fracture even to uneven texture massive granular. Fusible B.B. with difficulty.

Chloritoid. Sp. gr.=3.5, H.=5.5-6. Comp FeO, Al₂O₃SiO₂H₂O, SiO₂=24, Al₂O₃=41, FeO=28, H₂O = 7. Luster pearly; fracture lamellar; color dark gray green, black. Fuses B.B. with difficulty.

Chromite. Sp. gr. = 4.4, H. = 5.5. Comp. FeCr₂O₄, $Cr_2O_3 = 68$, FeO = 32. Luster, submetallic, opaque, color steel gray to brownish black; feels harsh; fracture uneven. Infusible B.B.

Chrysoberyl. Sp. gr. = 3.7, H. = 8.5. Comp. BeAl₂O₄, Al₂O₃=80, BeO=20. Luster vitreous, transparent to translucent. Color green in many shades; feels smooth; fracture conchoidal. Infusible B.B.

Chrysocolla. Sp. gr. = 2.2, H. = 3. Comp. CuSiO₃, ${}_{2}$ H₂O, SiO₂= 34, CuO=45, H₂O=21. Luster vitreous to earthy, translucent; color green-blue, feels smooth, fracture conchoidal; texture massive, earthy. Infusible B.B.

Chrysolite. Sp. gr. = 3-3.5, H. = 6-7. Comp. H₄Mg₃Si₂O₆, SiO₂=41.3, FeO=2.4, MgO=41.2, H₂O=14.5. Luster vitreous translucent; color yellow, green, brown; feels harsh; fracture conchoidal; Infusible B.B.

Cinnabar. Sp. gr. = 8-8.2, H. = 2-2.5. Comp. HgS, Hg=86, S=14. Luster metallic, opaque to translucent; color scarlet red, black when impure; feels harsh; fracture uneven; B.B. volatize.

Cobait Glance. Sp. gr.=6.2, H.=5.5. Comp. CoAs₂CoS₂, As=45, Co=35, S=20. Luster metallic, opaque; color white to reddish gray; feels harsh; fracture uneven. Fuses B.B.

Cobalt Bloom. Sp. gr.=3, H.=2. Comp. 3CoO, As₂O₅, 8H₂O, AsO=38, CoO=38, H₂O=24. Luster pearly to vitreous to full, transparent to subtranslucent, color crimson red, bluish to greenish; feels smooth; fracture mixed even to uneven. Fuses B.B.

Colomanite. Sp. gr. = 2.4, H. = 4.5. Comp. $Ca_2B_6O_{11}$, $5H_2O$, $B_2O_3=48$, CaO=32, $H_2O=20$. Colorless or white; fuses easily with exfoliation.

Columbite. Sp. gr. = 3.3-6.5, H. = 6. Comp. $(FeMn)(NbTa)_2O_6NbO_5 = 51.53$, $TaO_5 = 28.55$, $WO_3 = .76$, $SnO_2 = .34$, Zr = .34, FeO = 13.54, MnO = 4.97,

H₂O=.16. Luster submetallic, fracture conchoidal; color black; infusible B.B.

Cookeite. Sp. gr. = 2.7, H. = 2.5. Comp. Al₃LiH(SiO₄)₂(OH)₃H₂O, SiO₂=35.53, Al₂O₃=44.23, LiO₂=2.73, Na₂O=2.11, K₂O=.31, F=1.46, H₂O=14.18. Luster pearly; color white to yellowish green; fuses with difficulty and exfoliates.

Corundum. Sp. gr. = 3.9-4, H. = 9. Comp. Al₂O₃ = 100. Luster vitreous subtranslucent; color white, gray, yellow, red; feels harsh; fracture conchoidal, uneven, infusible B.B.

Copper glance. Sp. gr. = 5.5-5.8, H. = 2.3-3. Comp. Cu₂S, Cu = 80, S = 20. Luster metallic, opaque; color gray; feels harsh; fracture conchoidal; fuses easily B.B.

Cryolite. Sp. gr. = 2.9-3, H. = 2.5-3. Comp. Al₂F₆6NaF, F=54, Al₂O₃=13, Na₂O=33. Luster vitreous, translucent; color white; feels smooth; fracture uneven to conchoidal; texture massive crystalline. Fusible in the flame of a candle.

Cuprite. Sp. gr.=6, H.=3.5-4. Comp. Cu₂O, Cu=89, O=11. Luster adamantine, submetallic; fracture conchoidal; uneven; color red to brownish red. On charcoal fuses to a copper bottom.

Danburite. Sp. gr. = 2.9, H. = 7. Comp. SiO_2 = 48.9, B_2O_3 = 28.4, CaO = 22.7. Luster vitreous; yellowish, whitish. Fuses B.B. easily to colorless glass.

Deweylite. Sp. gr.=2.1-2.3, H.=2-2.5. Comp. SiO_2 =40, MgO=36, H_2O =24. Luster whitish, yellowish, greenish, reddish, fuses B.B. with difficulty.

Diabase. A dark greenish crystalline igneous rock composed chiefly of plagioclase, augite, magnetite, and sometimes olivine. Their range of composition is very varying. One analysis gave: $SiO_2 = 57.21$, $Al_2O_3 = 12.99$, $Fe_2O_3 = 3.28$, FeO = 10.18, CaO = 5.97, MgO = 1.59, $K_2O = 1.61$, $Na_2O = 3.07$, $TiO_2 = 1.72$, MnO = .24 $H_2O = 2.05$. Fuses B.B. to a dark-colored glass.

Diaspore. Sp. gr. = 3-3.5, H. = 6.5-7. Comp. Al(OH)₃, Al₂O₃=85, H₂O $\stackrel{\bullet}{=}$ 15. Luster vitreous, pearly, fracture uneven; color colorless, white gray and pale colors. Infusible B.B.

Dicryte. Is a feldspatic dark-speckled greenish or grayish black rock. Sp. gr. = 2.66-3, H. = Comp. SiO₂=54.65, Al₂O₃=15.72, Fe₂O₃=2, FeO=6.26, MnO=.12, MgO=5.79, CaO=7.83, K₂O=3.79, Na₂O=2.90. Texture granular, fuses B.B. to a colorless glass.

Dolomite. Sp. gr. = 2.8, H.=3.5-4. Comp. CaMg(CO₃)₂CaCO₃=54.35, MgCO₃=45.65. Luster vitreous, translucent; color white; feels rough; infusible B.B.

Ekebergite. Sp. gr. = 2.7, H. = 5.5-6. Comp. $SiO_2 = 52$, $Al_2O_3 = 23$, CaO = 16, $Na_2O = 6$. Luster vitreous; feels soapy; fracture sub-conchoidal color; white gray, greenish, reddish; fuses with intumescence.

Enstatite. Sp. gr. 3.3, H.=5.5-6. Comp. MgSiO₃, SiO₂=60, MgO=40. Luster pearly, vitreous; fracture conchoidal to even; color white, gray, green, brown; feels soapy; fusible B.B. with difficulty on the edges.

Epidote. Sp. gr. = 3.4, H. = 6.5. Comp. $Ca_2(AlFe)_3(OH)(SiO_4)_3SiO_2 = 38$, $Al_2O_3 = 22$, $Fe_2O_3FeO_3 = 12$, CaO=25, $H_2O=3$. Luster, vitreous, waxy, translucent to opaque; color yellow, green, brown, black; feels smooth; fracture uneven; fuses B.B. to a colored glass with intumescence.

Fahlunite. Sp. gr.=2.6-2.8, H.=3.5-5. Comp. $SiO_2=45$, $Al_2O_3=30$, FeO=4, CaO=1, MnO=2.3, MgO=7, $K_2O=2$, $H_2O=11$, Luster waxy; fracture lamellar; color of various shades of green, brown; fuses B.B. to white glass.

Feldspar. Includes: Orthoclase, which is a potash feldspar (see orthoclase). Albite is a soda feldspar (see albite). Anorthite is a lime soda feldspar (see anorthite). Andesite is also lime soda feldspar (see andesite). Oligoclase is also lime soda feldspar (see oligoclase). Hyalophane is a barytic potash feldspar (see Hyalophane).

Flint. Sp. gr.=2.63, H.=7. Comp. SiO₂=100. (Hornstone, chert.) Massive compact silica rock, translucent to opaque. Luster vitreous; fracture conchoidal; color of dark shades of smoky gray, brown, even black; infusible B.B.

Fluorspar (Fluorite). Sp. gr. = 3-3.25, H. = 4. Comp. CaF₂, F=49, Ca=51. Luster vitreous; fracture conchoidal; color white, yellow, green, rose red, feels rough; fuses B.B. to an white enamel.

Fosterite. Sp. gr. = 3-3.5, H. = 4. Comp. Mg₂SiO₄, SiO₂ = 42.86, MgO = 47.14. Luster vitreous; fracture conchoidal. Color white, yellow, gray greenish. Infusible B.B.

Gabbro. Sp. gr.=2.7-3.1, H.=6-7. One analysis gave: $SiO_2=46$, $Al_2O_3=30$, FeO=1, $Fe_2O_3=1$, CaO=17, MgO=2, $Na_2O=2K_2O=1$. Color all shades of flesh and red. Fuses B.B. to a colored glass.

Gahnite (Zinc spinal). Sp. gr. = 4-4.6, H. = 7.5-8. Comp. SiO₂ = 25, ZnO = 67, H₂O = 8. Luster vitreous, translucent; fracture uneven; color white; feels harsh; infusible B.B.

Galena. Sp. gr.=7.5, H.=2.5. Comp. PbS, Pb =87, S=13. Luster metallic, opaque; color leaden gray; feels smooth; fracture even to sub-conchoidal. Easily fusible giving on charcoal a malleable button.

Ganister. (See Quartzite.)

Garnet. Sp. gr.=4.1, H=7. Comp. varies widely, R¹¹₃R¹¹¹₂(SiO₄)₃, SiO₂=36, Al₂O₃=21. FeO, Fe₂O₃=43. Luster vitreous, resinous; fracture conchoidal to uneven. Color nearly in all shades, red, brown, green, yellow, white and black; feels smooth; testure crystalline; fuses B.B. readily to a dark brown blackish glass.

Geocronite. Sp. gr. = 6.4-6.6, H. = 2-3. Comp. Pb = 67, Sb = 17, S = 16. Luster metallic, fracture uneven, color lead gray or bluish gray. Fuses B.B. easily.

Gibbsite. Al₂O₃, $_3$ H₂O, Al₂O₃=66.5, H₂O=34.5. Luster pearly vitreous; color white, grayish, reddish; infusible B.B.

Giauconite. A green sand essentially a hydrous silicate of iron and potassium. Sp. gr. = 2.2-2.5, H. = 2. Comp. RR₂O₄(SiO₂)₄₃H₂O, one analysis gave: SiO₂ = 56, Al₂O₃=8, FeO, Fe₂O₃=12, CaO=4, MgO=5, K₂O=12, H₂O=3. Luster dull, color in various shades of green brownish, reddish. Fusible B.B. very easily.

Gneiss. Metamorphic rock, the chemical composition varying widely, one analysis gave: $SiO_2 = 77.53$, $Al_2O_3 = 13.75$, $FeOFe_2O_3 = .35$, CaO = .65, $K_2O = 4.32$, $Na_2O = 2.68$, $TiO_2 = .64$.

Granite. A granular igneous rock consisting of quartz, feldspar, and mica; the mica may be either biotite or muscovite, or both. The feldspar usually orthoclase. The quartz is generally white, the feldspar

white or pinkish, and the mica is usually lead colored, of tan dark brown, or even black, and gives the ruling color to the rock. The following analysis is of dark Barre granite. (Vermont State Geologist, 1909–1910.) SiO₂=69.89, Al₂O₃=15.08, Fe₂O₃=1.04, FeO=1.46, MgO=.66, CaO=2.07, Na₂O=4.73, K₂O=4.29, H₂O=54. Estimated mineral percentage in the same granite. Feldspar: 65.522, quartz=26.578, mica=7.900. The writer made some fusing tests, of three samples. All three fused at cone 10 to 11 to a dark-colored glass.

Graphite. Sp. gr. 2.1-2, H.=1-2. Comp. C=100. Luster metallic, opaque; color black, grayish; feels very greasy; fracture uneven; texture foliated; infusible.

Gypsum. Sp. gr.=2.3, H.=2. Comp. CaSO₄, $_2H_2O$, CaO=33, SO₃=46, $_2O$ =2.1. Luster vitreous to pearly, opaque; fracture uneven; color white, gray, light yellow; feels meager; easily fusible B.B.

Halite. Sp. gr. = 2.1-2.25. Comp. NaCl, Na = 39, Cl = 61. Luster vitreous; fracture conchoidal, fusible. Color white often tinted.

Halloysite. Sp. gr.=1.9-2.1, H.=1.5-2.5. Comp. Al_2O_3 2SiO₂, $_4H_2O$, SiO₂=40.8, Al_2O_3 =43.7, H_2O =24.5. Luster pearly dull; fracture conchoidal, massive earthy; color white, bluish, yellowish, reddish, greenish; infusible B.B.

Hausmannite. Sp. gr.=4.7, H.=5-5.5. Comp. Mn₃O₄, Mn=72, O=28. Luster submetallic; fracture uneven; color brownish black; infusible B.B.

Hayseine. (Boro calcite.) Sp. gr.=2.62, H.=1. Comp. CaB₄O₇6H₂O; color white chalky; fuses to a colorless glass.

Hematite. Sp. gr. = 5.19-5.28, H. = 5.5-6.5. Comp. Fe₂O₃, Fe=70, O=30. Luster metallic, opaque to subtranslucent; color rusty gray; feels harsh; fracture uneven, sub-conchoidal; infusible B.B.

Heavy Spar. (See Barytes: BaSO₄.)

Heulandite. Sp. gr.=2.2, H.=3.5-4. Comp. $H_4CaAl_2(SiO_3)_{63}H_2O$, $SiO_2=59$, $Al_2O_3=17$, CaO=9, $H_2O=15$. Luster pearly, vitreous; fracture subchonchoidal to uneven. Color white, gray, red, brown. Fuses B.B. exfoliates, and curves into vernicular forms, and fuses to a white enamel.

Hornblende. Sp. gr.=3.2, H.=5.5. Comp. varying very widely (Ca, Mg, Fe)O, SiO₂. One analysis gave: SiO₂=45, Al₂O₃=13, FeO, Fe₂O₃=12, CaO=12, MgO=13, K₂O=5. Luster pearly to vitreous, transparent to opaque; fracture conchoidal to uneven; texture granular, slaty, fibrous or columnar; color green, brown, black. Feels smooth to harsh. Fuses B.B. to a black glass.

Hyalite. (opal). Sp. gr.=2.1, H.=5.5-6.5. Comp. SiO₂nH₂O, SiO₂=85 to 97, H₂O=15 to 3. Luster, pearly vitreous, opaline transparent; fracture conchoidal to even. Massive crystalling. Color white, pale yellow, gray, green, red; feels smooth; infusible B.B.

Hydromagnesite. Sp. gr.=2.1, H.=1-3. Comp. $Mg_4(OH)_2(CO_3)_3_3H_2O$; MgO=44, $CO_2=36$, $H_2O=20$. Luster vitreous, silky; fracture flat. Color white; infusible.

Ilmenite (titaniferous ore). Sp. gr.=4.5-5, H.=5-6. FeTiO₃. Luster, submetallic, or metallic. Fe₂O₃ = 53.7, FeO=22.4, TiO₂=23.7, MnO=.3. Infusible. Iolite. Sp. gr.=2.6, H=7-7.5. Comp.

(MgFe)₄Al₈(OH)₂(SiO₇)₅. SiO₂=49, Al₂O₃=34, MgO =9, FeO=8. Luster vitreous; fracture subconchoidal; color yellowish gray, brownish yellow; blue.

Kaolinite (kaolin). Sp. gr.=2.21-2.26, H.=1. Comp. Al_2O_3 , $_2SiO_2$, $_2H_2O_3$, $SiO_2=_{47}$, $Al_2O_3=_{40}$, $H_2O=_{13}$. Luster pearly to dull, opaque, color white to grayish, yellowish, feels greasy, fracture uneven; conchoidal; texture earthy massive; infusible B.B.

Kieselguhr. (Amorphous silica.)

Laboradorite. Sp. gr. = 2.6-2.75, H. = 5-6. Comp. (Na₂Ca)O, Al₂O₃, SiO₂, SiO₂ = 53, Al₂O₃ = 30, CaO = 12, Na₂O = 5. Luster, pearly, vitreous; fracture conchoidal, uneven; color white, gray, greenish, brown, fuses B.B. to colorless glass.

Laumonite. Sp. gr. = 2.3, H. = 3-4. Comp. $H_4CaAl_2(SiO_7)_2$, $_2H_2O$, $SiO_2=_5\tau$, $Al_2O_3=_2\tau$, $CaO=_{12}$, $H_2O=_{15}$. Luster vitreous; fracture uneven; color white or reddish. Fuses B.B. with swelling to a white enamel.

Lazulite. Sp. gr. = $_3$, H. = $_5$ -6. Comp. RAl $_2$ O $_4$ P $_2$ O $_5$, H $_2$ O, P $_2$ O $_5$ = $_4$ 7, Al $_2$ O $_3$ = $_3$ 4, MgO= $_1$ 3, H $_2$ O= $_6$.

Lead. (See Cerussite, Galena.)

Limestone. A rock composed mainly of CaCO₃. Includes lithographic limestone, a very fine-grained rock. Oolitic limestone. Compact and often composed of concretionary grains, resembling the roe of a fish. Chalk a compact but soft variety. Travertine (Mexican marble) is the ornamental marble deposited from rivers and springs, often in variegated layers. Stalactites and Stalagmites. The cones and cylinders found in many caves, some which represent beautiful figures. Calcerous tufa an irregular porous deposited rock. Rock milk, a white earthy-like chalk but

softer. Iceland spare, a crystalline rock. Dog-tooth spar, consisting of crystals. Satin spar, a fibrous variety. (Calc spar, or calcite.) Marl, a soft earthy deposit of CaCO₃ containing more or less clay and sand. Luster vitreous, translucent; fracture uneven; color deep blue; infusible B.B.

Lepidolite. (Lithia-mica.) Sp. gr. = 2.6-2.75, H. = 2.5-4. Comp. Li, K, Al₂, (FOH)₂₃SiO₂, SiO₂=50.4, Al₂O₃=28.1, Mn₂O₃=.9, MgO=1.4, K₂O=10.6, Na₂O=1.5, Li=1.2, F=4.9. Luster pearly, color pink, red, lilac, white gray and green. Fuses B.B. easily with intumescence to a white glass.

Leucite. Sp. gr. = 2.4-2.5, H. = 5.5-6. Comp. K_2O , $Al_2O_3 + SiO_2 = 55.40$, $Al_2O_3 = 23.60$, CaO = .16, $K_2O = 19.54$, $Na_2O = 1.25$. Color white to gray, fuses about 1420° C. to a glass.

Limonite. Sp. gr. = 3.8, H. = 5.5. Comp. $_2$ Fe(OH) $_3$, Fa $_2$ O $_3$ =86, H $_2$ O=14. Luster metallic to dull, opaque, color dull brown or yellowish red, fracture uneven; infusible B.B.

Magnesite. Sp. gr. = 3.1, H. = 4-5.5. Comp. MgCO₃, MgO=47.6, Co₂=52.4. Luster vitreous silky; color white yellowish, white brown, fracture conchoidal, infusible.

Magnetite. Sp. gr. = 5.1, H. = 6. Comp. Fe·Fe₂O₄(Fe₃O₄), Fe=72, O=28. Luster submetallic, opaque; color black to dark brown; fracture uneven, subconchoidal; fuses B.B. with great difficulty.

Malachite. Sp. gr. = 3.9, H. = 3.5-4. Comp. $Cu_2(OH)_2CO_3$, CuO=72, $CO_2=2O$, $H_2O=8$. Luster vitreous, adamantine, translucent; fracture uneven, conchoidal. Color green, easily fusible B.B.

Manganite. Sp. gr. = 4.3, H. = 4. Comp.

 $Mn(OH)_3Mn_2O_3$, $Mn_2O_3=90$, $H_2O=10$. Luster submetallic; color gray to black; fracture uneven; infusible B.B.

Marble. Sp. gr.=2.5-2.8, H.=2.7-3.3. Comp. varies CaCO₃, CaO=56, CO₂=44. Luster subvitreous, translucent, color, white fracture conchoidal; texture crystalline, granular.

Marcasite. Sp. gr.=4.9, H.=6-6.5. Comp. FeS, Fe=47, S=53. Luster metallic, fracture uneven; color pale brass yellow, with a greenish tinge.

Margarite. Sp. gr. = 3, H. = 3.5-4.5. Comp. $H_2CaAl_4(SiO_6)_2$, $SiO_2 = 30$, $Al_2O_3 = 51$, CaO = 12, $Na_2O = 3$, $H_2O = 4$. Luster pearly vitreous, color gray, pink, white, yellowish, reddish; fuses with difficulty.

Meerschaum. Sp. gr. = 2, H. = 2-2.5. Comp. $H_4Mg_2Si_3O_{10}$, $SiO_2=61$, MgO=27, $H_2O=12$. Luster refined earthy; fracture flat to conchoidal; fuses B.B. only on the edges.

Messolite. Sp. gr.=2.2-2.4, H.=5. Comp. SiO₂ = 46, Al₂O₃=26, CaO=10, Na₂O=5, H₂O=13. Luster vitreous silky; color, white, grayish or yellowish; fuses easily B.B.

Mica. (See Ciotite, Muscovite, Lepidolite, Phlogopite.)

Microcline. Sp. gr.=2.5, H.=6. Comp. KAlSi₃O₈, SiO₂=68.48, Al₂O₃=16.11, Fe₂O₃=.37, K₂O=13.20, Na₂O=1.82. Luster pearly to vitreous; color white gray, reddish green. Fracture uneven, fuses with difficulty B.B. to a colorless glass.

Mispickel. (arsenopyrite). Sp. gr.=6, H=5.5-6. Comp. FeAsS, As=46, Fe=34, S=20. Luster metallic, opaque; color grayish white; fracture, uneven. On charcoal fuses to a magnetic globule, and gives off As.

Monazite. Sp. gr. = 5.1, H. = 5. Comp. (CeLaDi)PO₄. Phosphate rock of the cerium metals (cerium, didimium, lanthanum) including thorium and silica. Luster resinous, color yellow, yellowish brown or reddish brown. Infusible.

Muscovite. Sp. gr. = 2.8, H. = 2-2.5. Comp. $H_2KAl_3(SiO_4)_3$, $SiO_2=47$, $Al_2O_3=34$, $K_2O=9$ (MgO, CaO, FeO, Fe₂O₃)=6, Na₂O=2, $H_2O=2$. Luster pearly, translucent to transparent; fracture uneven; texture foliated. Color colorless white, green, yellow, black; feels smooth. Fuses difficulty on edges.

Natrolite. Sp. gr. = 2.2, H = 5. Comp. $Na_2Al_2Si_3O_{10}2H_2O$, $SiO_2=47$, $Al_2O_3=27$, $Na_2O=16$, $H_2O=10$. Luster vitreous; fracture conchoidal, uneven; color colorless or white, sometimes grayish, yellowish. Fuses B.B.

Nephthelite. Sp. gr.=2.6, H.=5.5-6. Comp. NaAlSiO₄, SiO₂=44, Al₂O₃=34, Na₂O=17, K₂O=5. Luster vitreous, waxy, fracture subconchoidal; color white, gray or reddish. Fuses B.B. to a colorless glass.

Niccolite. Sp. 7.5, H. = 5.5. Comp. NiAs, As = 56, Ni = 44. Luster metallic; fracture uneven; color pale copper red. Fuses B.B.

Obsidian. A lava or volcanic glass which has been completely fused and cooled rapidly. Fracture conchoidal; color gray to black, opaque, composed essentially of orthoclase. One analysis gave: $SiO_2 = 73$, $Al_2O_3 = 13$, $Fe_2O_3 = 2$, FeO = 1, CaO = 2, MgO = 1, $K_2O = 3$, $Na_2O = 5$. Fuses B.B. to a colored glass.

Ocher. Includes, umber, sienna, these are earthy varieties, a mixture of limonite and hematite, with clay and other impurities. Color yellowish, brown, occurring in earthy or pulverulent state.

Oligoclase. Sp. gr. = 2.65, H. = 6-7. Comp. Ab₆An, to Ab₃An. 2(Na₂Ca)O, 2Al₂O₃, 9SiO₂, SiO₂ = 62, Al₂O₃ = 24, CaO = 3, Na₂O = 11. Luster vitreous to waxy; fracture, conchoidal, uneven; color, colorless, white, greenish, or reddish. Fuses B.B.

Olivine. Sp. gr.=3.3, H.=6.5-7. Comp. (MgFe)₂ SiO₄, SiO₂=41, FeO=8, MgO=51. Color yellowish, green to bottle green. Infusible B.B.

Opal. (See Hyalite.)

Orthoclase. Sp. gr.=2.4-2.7, H.=6-6.5. Comp. K_2O , Al_2O_3 , $6SiO_2$, $SiO_2=64.7$, $Al_2O_3=18.4$, $K_2O=16.9$. Sodium oxide sometimes replaces part of the potassium oxide. Luster pearly to vitreous, translucent, fracture uneven, texture tabular. Color, white, red, pink, green, yellowish, feels smooth to harsh. Fuses B.B.

Pegmatite. A very coarse-grained, ill-regulated rock. The greatest part of the mass consists of feldspar (usually orthoclase) quartz in very large crystals and mica, the color mostly yellowish, grayish, reddish. The following analysis gives: SiO₂=71.19, Al₂O₃=15.71, FeO=.13, Fe₂O₃=.21, CaO=.70, MgO=.03, K₂O=8.60, Na₂O=2.61, H₂O=.27, CO₂=.22, TiO₂=.03, P₂O₅=.11, SO₃=.05, MnO=.02, BaO=.14 (Geological Survey of New Jersey, 1908).

Pegtolite. Sp. gr. = 2.7, H. = 4.5-5. Comp. HNaCa₂(SiO₃)₃, SiO₂=54, CaO=34, Na₂O=9, H₂O=3. Luster, sub-vitreous silky; fracture fibrous; color white gray, brown; easily fusible B.B.

Phlogopite. Sp. gr. = 2.8, H. = 2.5–3. Comp. $H_2KMg_3Al(SiO_4)_3$, $SiO_2=40.7$, $Al_2O_3=13.9$, MgO=32.6, $K_2O=12.8$. Luster, sub-metallic, pearly; color pale brass, yellow, brown. Fuses B.B. on the tin edges.

Pholerite. Sp. gr.=2.5, H.=1-2.5. Comp. SiO₂ = 39, Al₂O₃=45, H₂O=16. Luster pearly, earthy, fracture scaly; color white, grayish, yellowish, violet, brown. Infusible B.B.

Phonolite. Compact grayish-blue or brown feld-spatic rock. One analysis gave: $SiO_2 = 54$, $Al_2O_3 = 21$, $Fe_2O_3 = 3$, FeO = 1, CaO = 1, $K_2O = 5$, $Na_2O = 10$, $H_2O = 4$. Fuses B.B. colored glass.

Phosphate Rock. (See Apatite.)

Pitchblende. Like uranite, sp. gr.=7.5-9.5, H.=5.5. Comp. UO₃UO₂Pb. Luster submetallic or pitchlike; color dark brown to black, greenish consisting largely of uranium; texture massive. Infusible B.B.

Porphyry. An igneous rock, consisting entirely of large feldspar crystals, which are embedded in a compact dark glassy ground mass. One analysis gave $SiO_2 = 71$, $Al_2O_3 = 13$, FeO, $Fe_2O_3 = 4$, CaO = 1, MgO = 1, $K_2O = 2$, $Na_2O = 5$, $TiO_2 = 1$, $H_2O = 2$.

Prehnite. Sp. gr. = 2.9, H. = 6-6.5. Comp. $H_2Ca_2Al_2(SiO_4)_3$, $SiO_2=44$, $Al_2O_3=25$, CaO=27, $H_2O=4$. Lustre vitreous, pearly; fracture uneven. Color smoky gray, green, brown, violet. Easily fusible B.B. with intumescence.

Psilomelane. Sp. gr. = 4.2, H. = 5-6. Comp. $_4$ MnO₂(BaK₂)O, H₂O, MnO₂=70 to 90 per cent, many varieties containing Ba, K₂O and H₂O in varying proportion. Luster submetallic to dull. Opaque, color black to gray. Infusible B.B.

Pumice. A vesicular or cellular glassy lava or volcanic ash. One analysis gave: $SiO_2 = 66.54$, $Al_2O_3 = 16.12$, FeO, Fe₂O₃=2.17, CaO=1.59, MgO=.58, $K_2O = 6.69$, Na₂O=4.23, TiO₂=.47. Loss on ig.=1.61.

Pyrites. Sp. gr. = 4.8-5.2. H = 6-6.5. Comp. FeS₂, Fe=46.7, S=53.3. Luster metallic; fracture conchoidal, uneven opaque; color brassy yellow; feels harsh to smooth; texture cubic granular. Fuses B.B.

Pyrolusite. Sp. gr.=4.8, H=1-2. Comp. MnO₂, Mn=63, O=37. Luster metallic; fracture uneven. Opaque, color grayish or bluish black; feels harsh, texture granular massive. Infusible.

Pyroxene. Sp. gr.=3.2-3.5, H=5-6. Comp. consists of silicates of various bases, Ca, Mg, Fe, Al, Mn, etc. One analysis gave: $SiO_2=44$, $Al_2O_3=12$, MgO=16, CaO=11, FeO, $Fe_2O_3=14$, MnO=1, K_2O , Na₂O=2. Luster vitreous to waxy; fracture conchoidal, uneven. Color white green to black; the fusibility varies almost to infusible.

Quartz. Includes, rock crystal, which is pure quartz, amethyst, rose quartz. Smoky quartz, milky quartz, cat's eye, chalcedony, agate, onyx, carnelian, sard, chrysoprase, flint, jasper, heliotrope or bloodstone, granular quartz, sp. gr.=2.66, H.=7. Comp. SiO₂ conchoidal; color colorless, white, yellow, red, violet, brown, green, blue, gray, black, streaked with various shades. Infusible.

Quartzite. Composed essentially of quartz, exceedingly refractory. Infusible B.B. One analysis gave $SiO_2=84.69$, $Al_2O_3=7.50$, Fe_2O_3 , FeO=1.92, MgO=28, CaO=31, $K_2O=2.36$, $Na_2O=2.27$.

Realgar. Sp. gr.=3.5, H=1.5-2. Comp. AsS, As=70, S=30. Luster resinous, translucent. Fuses on charcoal and volatilize.

Rhodonite. Sp. gr. = 3.6, H. = 5.5-6.5. Comp. $MnSiO_3$, $SiO_2 = 46$, Mn = 54. Luster pearly; fracture

lamellar. Color pink or red when impure, greenish or yellowish, often stained black. CaO and Fe is usually present. Fuses B.B. to a dark glass.

Rhyolite. The most common volcanic rock. A highly siliceous compact or porphyritic variously colored volcanic rock (equivalent to granite).

Ripidolite. Sp. gr. = 2.65-2.75, H. = 2-2.5. Comp. SiO₂=33, Al₂O₃=19, MgO=36, H₂O=12. Luster pearly; fracture lamellar; feels smooth, color red, rose, violet, green. Fuses B.B. difficulty.

Rutile. Sp. gr.=4.2, H.=6-6.5. Comp. TiO₂. Luster metallic adamantine; fracture subconchoidal, uneven. Color, reddish brown, yellowish, black. Infusible B.B.

Salt. (See Halite.) Sp. gr. = 2.1-2.5, H. = 2.5. Comp. NaCl.

Sanidine. Sp. gr.=2.5, H.=6. Comp. as orthoclase. Luster vitreous, fracture conchoidal, uneven, transparent and glassy.

Serpentine. Sp. gr. = 2.5-2.65, H. = 2.5-4. Comp. 3MgO, 2SiO₂, 2H₂O, usually also contains Fe, Ca, and Al. Luster pearly to subvitreous, translucent to opaque; fracture conchoidal uneven, splintery. Texture fibrous, granular (when it is streaked with magnesian marble called Verde antique); color green, whitish, brownish red, yellowish, grayish, blackish, feels soapy to harsh. Fusible B.B. with difficulty. One analysis from Vermont gave SiO₂=40.52, Al₂O₃=2.10, FeO=1.97, MgO=52.05, H₂O=13.46.

Sepiclite. (See Meerschaum.)

Shale. A plastic rock formed by the consolidation of fine aluminous sediments.

Schist. Fiely laminated metaphoric rock (see Mus-

covite, Biotite, Chlorite, Talc). One analysis gave: $SiO_2=67$, $Al_2O_3=16$, FeO, $Fe_2O_3=7$, CaO=1, MgO = 3, K_2O , $Na_2O=4$, $H_2O=2$.

Shorle. (See Tourmaline.)

Siderite. Sp. gr.=3.8, H.=3.5-4. Comp. FeCO₃, FeO=62, CO₂=38. Luster to dull, opaque to translucent; fracture uneven; texture granular; color whitegray, light-brown, red. Fuses B.B. with difficulty.

Silica. (See Quartz.)

Silex. (See Quartz.)

Sillimanite. Sp. gr. = 3.2, H. = 6.5. Comp. Al₂SiO₅, SiO₂ = 37, Al₂O₃ = 63. Color brown, gray or white. Infusible B.B.

Slate. Thinly cleavable, fine-grained metamorphic rocks formed from shales. One analysis gave: SiO₂ = 63.52, Al₂O₃, TiO₂=16.34, FeO, Fe₂O₃=6.79, CaO = .98, MgO=2.50, CO₂, H₂O=4.86. (The structural and industrial material of California, 1906.)

Smaltite. Sp. gr. = 6.2-7, H. = 5.5-6. Comp. (CoNi)As₂, Fe and S, are usually present in small amounts. One analysis gave: Co=14, Ni=6, As=70, Fe=9.5, S=.5. Luster metallic; fracture uneven; texture granular, color green brown, grayish, white; feels harsh. Fusible on charcoal gives off As.

Smithsonite. (See Zinc spar.)

Soapstone. Sp. gr. = 2.7, H. = 1, sometimes 4. Comp. $H_2MgO_3(SiO_3)_4$, $SiO_2 = 62$, MgO = 33, $H_2O = 5$. Luster pearly; fracture scaly, earthy; color white, gray, green, brown, red, yellowish. Fusible B.B. on the edge.

Sodalite. Sp. gr. = 2.3, H. = 5.5-6. Comp. $Na_4Al_3Cl(SiO_4)_3$, $SiO_2=37$, $Al_2O_3=32$, $Na_2O=19$

uneven, color, colorless, blue, gray, white, reddish. Fuses B.B. with intumescence to a colorless glass.

Spinel. Sp. gr.=3.5, H.=8, Comp. MgAl₂O₄, Al₂O₃=72, MgO=28. Luster vitreous; fracture conchoidal; color red, blue, yellow, green, black; infusible B.B.

Steatite. (See Soapstone.)

Stibnite. Sp. gr.=4.5, H.=2. Comp. Sb₂S₃, Ab = 72, S=28. Luster metallic, opaque; fracture conchoidal; texture granular to massive; feels smooth to harsh. Color lead gray. On charcoal easily fusible.

Strontia. (See Clestite.) Sr. = 56, S=44.

Strontianite. Sp. gr. = 3.7, H. = 3.5-4. Comp. $SrCO_3$, SrO=70, $CO_2=30$. Luster vitreous, to resinous, translucent; fracture uneven; texture fibrous, granular. Color, bluish, white to reddish, green, yellow, brown. Infusible B.B. but swells up, giving a crimson flame.

Syenite. An igneous rock composed mostly of feldspar with an amount of black ferromagnesian silicates as, hornblende, augite and biotite; texture granular. Fuses B.B. to a dark colored glass. A specimen gave the following analysis: SiO₂=66.64, Al₂O₃=16.18, FeO, Fe₂O₃=2.94, CaO=2.36, MgO=1.30, K₂O=3.91, Na₂O=5.06, TiO₂=1.04.

Talc. (See Soapstone.)

Terra Sienna. (See Ocher.)

Tetrahedrite. Sp. gr.=4.5-5.1, H.=3-4.5. Comp. Cu₃SbS₃. The Cu is often replaced by Fe, Zn, Ag, Hg, and the Sb by As. One analysis gave: Cu=35, Sb=20, S=20, As=7, FeO=5, Zn=3. Luster metallic opaque; fracture conchoidal to uneven. Texture

granular to massive; color dark iron gray, feels harsh. Easily fusible B.B.

Thoria. (See Monazite.)

Tincal. (See Borax.)

Titanite. Sp. gr. = 3.5, H. = 5-5.5. Comp. CaTiSiO₅, SiO₂=31, TiO₂=41, CaO=28. Luster resinous adamantine; fracture subchoidal to uneven; color varying tints and shades of brown, red, yellow, white gray, green to black. Fusible B.B. to a colored glass.

Topaz. Sp. gr. = 3.5, H. = 8. Comp. $Al_2P_2SiO_5$ or $2AlF_3$, $Al_4(SiO_4)_3$, $SiO_2=1_5$, $Al_2O_3=3_0$, $F=2_0$, $O=3_5$. Luster vitreous; fracture, subconchoidal to uneven, transparent; texture crystalline; color white to colorless, yellowish, bluish, reddish. Infusible B.B.

Tourmaline. Sp. gr. = 3.1, H. = 7-7.5. Comp. $R_9Al_3B_2(OH)_2Si_4O_{19}$, $SiO_2=35$, $Al_2O_3=35$, $B_2O_3=10$, FeO=8, MgO=5, $H_2OLi=7$. Luster vitreous, transparent, fracture, subconchoidal, to uneven. Color colorless, white, yellow, green, blue, red, black; feels smooth; fusible to infusible.

Sphene. (See Titanite.)

Trachyte. A light-colored ash-gray or pale-blue and sometimes yellowish or reddish, volcanic porous and light-weight rock composed of feldspar with some hornblende and also mica, a specimen gave the following analysis: $SiO_2=61.20$, $Al_2O_3=16.35$, FeO, Fe₂O₃ = 4.43, CaO=2.56, MgO=2.98, $K_2O=3.75$, $Na_2O=4.16$, $TiO_2=1.96$, $H_2O=2.61$.

Trap. A general name given for a dark fine-grained igneous rock, particularly lavas, or dikes of basalt. One analysis gave $SiO_2 = 52.45$, $Al_2O_3 = 16.04$, FeO, Fe₂O₃ = 10.36, MnO = .46, CaO = 6.85, MgO = 4.79, K₂O = 1.18, Na₂O = 4.94, TiO₂ = 1.35. Loss on ig. = 1.54.

Trydimite. Sp. gr. = 2.25-2.3, H. = 7. Comp. SiO₂ is a variety of Si whose crystalline form belongs to the liexagonal system found in vitreous bodies also in fire bricks.

Umber. (See Ocher.)

Vesuvianite. Sp. gr.=3.4, H.=6.5. Comp. Ca₆, Al₂O₃(FOH)(SiO₄)₅, SiO₂=37, Al₂O₃=17, FeO, Fe₂O₃=7, CaO=35, MgO=2, Na₂OK₂O=1, H₂O=1. Luster vitreous to resinous; fracture conchoidal to uneven. Color green, greenish-brown, yellow-brown, blue, fuses B.B. with intumescence to a colored glass.

Volcanic Ash. Includes volcanic tuff, pumice, or rocks consisting of small fragments and dust of lava material ejected from volcanoes, glassy in character. One analysis gave $SiO_2=63.35$, $Al_2O_3=15.76$, FeO, $Fe_2O_3=3.12$, MnO=.12, CaO=3.88, MgO=1.97, $K_2O=4.15$, $Na_2O=3.71$, $TiO_2=1.09$. Loss on ig.=1.85.

Wad. Sp. gr.=3-4.5, H.=1-3. Comp. MnO₂H₂O (impure) composed of different exide Fe, Cu, Co, Li or Ba, chiefly of manganese (H₂O=10 to 20 per cent). Color black, bluish, or brownish black. Luster dull. Infusible B.B.

Willemite. Sp. gr.=4.1, H.=5.5. Comp. Zn_2SiO_4 , $SiO_2=27$, ZnO=73. Luster vitreous; fracture conchoidal; color pale red, yellow to green. Fuses B.B. with difficulty.

Wither te. Sp. gr.=4.3, H.=3.5 Comp. BaCO₃, BaO=78, CO₂=22. Luster vitreous, faint resinous; fracture uneven. Color white or gray. Easily fusible B.B.

Wollastonite. Sp. gr.=2.9, H.=4.5-5. Comp. CaSiO₂, SiO₂=52, CaO=48. Luster pearly vitreous;

fracture uneven. Color white or gray. Fuses B.B. to a white glass.

Zinc Blende. Sp. gr.=4.1, H.=3.7. Comp. ZnS, Zn=67, S=33. Luster resinous, translucent; fracture conchoidal, color whitish, yellow to brown.

Zinc Spar. (Smithsonite.) Sp. gr.=4.4; H.=5. Comp. ZnCO₃, ZnO=65, CO₂=35. Luster vitreous, translucent; fracture uneven. Color gray, white, yellow sometimes blue or green. Infusible B.B.

Zircon. Sp. gr.=4.6, H.=7.5. Comp. ZrSiO₄SiO₂ = 33, Zr=67. Luster vitreous, adamantine, transparent; fracture conchoidal, texture crystalline, color yellow, red, brown, pink, infusible.

Ziosite. Sp. gr. = 3.3, H. = 6-6.5. Comp. HCa₂Al₃(SiO₄)₃, SiO₂=40, Al₂O₃=23, CaO=37. Luster pearly, vitreous; fracture uneven, translucent; color usually gray, sometimes white, yellow brown, red, green. Fuses B.B. with intumescence to a white glass.

FORMATION AND MELTING TEMPERATURE OF SILICATES

Description.	Formation Temperature Degrees C.	Melting Temperature Degrees C.
EUROPE:	1392	1 208
Iron slag		
50% SiO ₂ , 17% Al ₂ O ₃ , 3%		
FeO, 30% CaO	1 2 20	1160
Lead slag		
36% SiO ₂ , 40% FeO, 8.5%		
Al ₂ O ₃ , 4% CaO, 3% MgO,		
7.5% CaO	1273	1166
Copper slag		
33% SiO ₂ , 60% 3FeO, 7%		
$\mathrm{Al_2O_3}$		1130-1160
Syenite (Tharandt)		1130-1166
Hornblende	Begins to fuse	1227
Mica porphyry	1570	
2CaSiO ₂	1451	1367 iron blast
$(CaO, Al_2O_3)SiO_2CaO : Al_2O_3 :$		furnace slag
4: 1(CaO, Al ₂ O ₃)SiO ₂	4110	1203
$CaO: Al_2O_3 :: 1:1$		
AMERICA:		
Iron slag	1450	1250 bisilicate
43.9% SiO ₂ , 8.6 Al ₂ O ₃ , 31.4		
CaO, 10.2 MgO, 0.3 MnO, 4.5		
FeO, SiO_2 27 to 35, Al_2O_3 +		
Fe ₂ O ₃ 8 to 20, CaO 44 to 5,		
MgO .6-2.5, SO ₃ 1 to 3		
Lead furnace slag	1190	
31.47% SiO ₂ , 45.68 FeO, 22.85		
CaO		
A possible copper furnace slag		
48.80 SiO ₂ , 39.46 FeO, 19.74		
CaO	1160	

MELTING POINTS OF FELDSPARS AND SILICATES

Substance.	Melting-point Degrees C.	Cone No.	
Orthoclase	1350	About 11	
Anorthite	1250	" 6	
Labradorite	1190	" 3	
Oligoclase	1170	" 2	
Albite	1130	.01	
CaSiO3	1500	" 18	
² CaO, ₃ SiO ₂	1410	" 14	
4CaO, 3SiO ₂	1450	" 16	
2CaO, SiO₂		" 40	
3CaO, SiO2	1960	" 41	
SrSiO ₃	1287	" 8	
BaSiO ₃	1368	" 12	
${ m MgSiO_3}$	1565	" 22	
MnSiO ₃		" 17	
FeSiO ₃	1	" 21	
ZnSiO ₃	1479	" 17	
BeSiO ₃	2000	" 42	
2BeOSiO2		" 42	
2MgOSiO ₂		" 38	
2ZnOSiO2		" 18	
2SrOSiO ₂		" 38	
Al ₂ SiO ₅	1830	" 35	

In the following tables are the results of many experiments made by different ceramists upon the meltingpoints of silicates of different mixtures of various oxides.

TABLE I

No.	Zitt Litz Kaolin	Quartz	Feldspar	Fusing-point (Seger Cone)
I		15	85	9-10
2		30	70	14
3		45	55	15-16
4		55	45	17
5		70	30	26-27
6		85	15	30-31
7	15		85	9
8	15	15	70	10–11
9	15	30	55	13-14
10	15	45	40	15
II	15	55	30	17-18
I 2	15	70	15	26
13	15	85		28-29
14	30		70	14
15	30	15	55	16-17
16	30	30	40	17-18
17	30	45	25	26
18	30	55	15	26
19	30	70		27
20	45		55	26+
21	45	15	40	26-27
22	45	30	25	27-28
23	45	45	10	29
24	45	55		29-30
25	55		45	28
26	55	15	30	29-30
27	55	30	15	30+
28	55	45		30-31
29	70		30 °	31+
30	70	15	15	32
31	70	30		32+
32	85		15	33-34
33	85	15		33-34

TABLE II

Mol. CaO to 1 Mol. Al ₂ O ₃ SiO ₂	Per Cent Al ₂ O ₃	Per Cent SiO ₂	Per Cent CaO	Fusing-point (Seger Cones)
0.0	62.9	37.I		38
0.1	60.8	35.9	3-3	34
0.25	57.9	34.2	7.9	27-28
0.5	53.6	31.7	14.7	10
0.75	50.0	29.5	20.5	14-15
0.9	48.0	28.3	23.7	11-12
1.0	46.7	27.7	25.6	9-10
1.1	45.6	26.9	27.5	11
1.5	41.4	24.5	34.1	16
1.9	38.0	22.5	39.5	20
2.0	37.2	22.0	40.8	26
2.I	36.5	21.5	42.0	+20
2.5	33.8	20.0	46.2	17
2.75	32.3	19.1	48.6	+14
2.9	31.4	18.6	50.0	12
3.0	30.9	18.3	50.8	11
3.1	30.4	18.0	51.6	11-12
3.5	28.5	16.8	54.7	12-13
4.0	26.4	15.6	58.0	13-14
4.5	24.6	14.6	60.0	14-15
5.0	23.1	13.6	63.3	15
5.5	21.7	12.8	65.5	16
6.0	20.5	12.1	67.4	16-17
6.5	10.4	11.5	69.I	+17
7.0	18.4	10.9	70.7	18
7.5	17.5	10.4	72.I	+19
8.0	16.7	9.9	73.4	17
9.0	15.3	9.1	75.6	19-20
10.0	14.1	8.4	77.5	20-26
11.0	13.1	7.8	79.1	26
12.0	9.9	5.8	84.3	26-27

TABLE III

Mol. CaO to 1 Mol. Al ₂ O ₃ , Si ₂ , SiO ₂	Per Cent Al ₂ O ₃	Per Cent SiO ₂	Per Cent CaO	Fusing-point (Seger Cones)
0.0	45.8	54.2		35
0.1	44.7	52.9	2.4	34
0.2	43.6	51.6	4.8	31
0.25	43. I	51.0	5.9	28-29
0.3	42.6	50.4	7.0	26-27
0.4	41.7	49.2	9. I	18
0.45	41.2	48.7	10.1	15
0.5	40.7	48.1	11.2	15-16
0.55	40.3	47.4	12.4	16
0.75	38.6	45.6	15.8	17
0.8	38.2	45.1	16.7	17
0.9	37.4	44.2	18.4	18
1.0	36.6	43 - 3	20. I	18-19
1.1	35.9	42.5	21.6	17
1.25	34.9	41.2	23.9	15
1.5	33.3	39.3	27.4	13
1.75	31.8	37.7	30.5	9
1.9	31.0	36.7	32.3	7-8
2.0	30.5	36.I	33 · 4	7
2.1	30.0	35 · 5	34.5	7
2.25	29.3	34.6	36.0	8
2.5	28.1	33 · 3	38.6	9
3.0	26.1	30.9	43.0	II-I2
3.1	25.8	30.4	43.8	I 2
3.5	24.4	28.8	46.8	15
3.75	23.6	27.9	48.5	17
3.9	23.I	27.4	49 - 5	18-19
4.0	22.9	27.0	50.1	19
4.1	22.6	26.7	50.7	18-19
4.3	22.0	26.1	51.9	18
4.5	21.5	25.4	53.1	17-18
4.6	21.3	25.I	53.6	17

TABLE III—Continued

Mol. CaO to 1 Mol. Al ₂ O ₃ , Si ₂ , SiO ₂	Per Cent Al ₂ O ₃	Per Cent SiO ₂	Per Cent CaO	Fusing-point (Seger Cones)
4.8	20.8	24.6	54.6	16-17
5.0	20.3	24.0	55.7	16
5.1	20. I	23.7	56.2	15-16
5.3	19.7	23.2	57.1	15
5.5	19.2	22.8	58.0	14-15
5 · 75	18.7	22.2	59.I	13-14
5.9	18.5	21.8	59 - 7	13
6.0	18.3	21.6	60.1	14
6.25	17.8	21.1	61.1	15-16
7.5	17.4	20.6	62.0	16-17
7.0	16.6	19.6	63.8	18
7.5	15.9	18.8	65.3	19
7.75	15.5	18.4	66.1	19-20
8.0	15.2	18.0	56.8	20
8.25	14.9	17.6	67.5	20
8.5	14.6	17.3	68. I	20-26
8.75	14.3	17.0	68.7	26
9.0	14.1	16.6	69.3	26
9.25	13.8	16.3	69.9	26-27
9.5	13.5	16.0	70.5	27
10.0	13.1	15.4	71.5	27
12.	11.4	13.5	75.1	27

TABLE IV

Mol. CaO to I Mol. Al ₂ O ₃ , SiO ₂	Per Cent Al ₂ O ₃	Per Cent SiO ₂	Per Cent CaO	Fusing-point (Seger Cones)
ı Mol.				Fusing-point (Seger Cones) 33 31 30 29 28 19 16-17 14-15 15 15 15-16 15-16 15-16 15-16 17 19 9-10 9-10 9-10 9-10 9-10 9-10 9-10 9
6.25 6.5 7.0 7.5 8.0 9.0	16.1 15.8 15.1 14.5 14.0 13.0 12.1 10.7	28.6 28.0 26.8 25.8 24.8 23.0 21.5	55.3 56.2 58.1 59.7 61.2 64.0 66.4 70.3	19 19 19 20 20–26 27–28 29 31–32

TABLE V

Mol. CaO to 1 Mol. Al ₂ O ₃ , SiO ₂	Per Cent Al ₂ O ₃	Per Cent SiO ₂	Per Cent CaO	Fusing-point (Seger Cones)
0.0	29.7	70.3	0.0	32
0.25	28.6	67.5	3.9	27
0.5	27.5	64.9	7.6	12
1.0	25.6	60.4	14.0	10
1.5	23.9	56.4	19.7	8
2.0	22.4	53.0	24.6	5-6
2.5	21.1	49.9	29.0	6
3.0	20.0	47.I	32.9	5
4.0	18.0	42.5	39.5	6
5.0	16.4	38.7	44.9	7
6.0	15.0	35.6	49 - 4	7-8
8.0	12.9	30.5	56.6	17-18
10.0	11.3	26.7	62.0	26

TABLE VI

Molecular Composition, Al ₂ O ₃	Per Cent Alumina, Al ₂ O ₃	Per Cent Silica, SiO ₂	Melting-point (Seger Cones)
Al ₂ O ₃	100.0		42
$A!_2O_3 + 0.13 SiO_2$	92.9	7 · 4	41
" + 0.33 "	82.0	18.0	40
" + 0.66 "	71.9	28. I	39
" + I.00 "	62.9	37.I	38
" + 1.33 "	56.0	4.1.0	37
" + 1.66 "	50.5	49.5	36
" + 2.00 "	45.8	54.2	35
" + 2.50 "	40.4	59.6	34
" + 3.00 "	36.1	63.9	33
" + 4.00 "	29.7	70.3	32
"+5.00"	25.3	74.7	31
" + 6.00 "	22.0	78.0	30
" + 8.00 "	17.5	82.5	29
" +10.00 "	14.5	85.5	28
" +13.00 "	12.8	87.2	+27
" +15.00 "	10.1	89.9	27
" +20.00 "	8.4	91.6	30
" +23.00 "	6.5	93.5	32
SiO		100.0	35
	1		!

TABLE VII

Per Cent of Magnesite.	Added to 100 Parts of Kaolin.	Fusing-point (Seger Cones)
I	. 1 part magnesite	34
3	3.1	33
5	5.3	32
10	11.1	28-29
15	17.6	26-27
20	25.0	16-17
25	33.3	15
30	42.9	13
35	53.8	II
40	66.7	. 10
45	81.8	. 10
50	100.0	12
52	108.3	14
54	117.3	16-17
55	122.2	18
56	127.3	19
58	138.1	20
60	150.0	. 26
62	163.2	28
64	177.8	29

TABLE VIII

Mol. Ratio of Different Compounds.	Reaction Commence ° C.	Reaction Complete ° C.	Product.
ICaCO ₃ +1 SiO ₂ .	800	1400	CaO. SiO. formed
1CaC03 + 1oSi02.	008	1250	Soluble in acid
1CaCO ₄ + 10SiO ₂ 3CaCO ₃ + 1SiO ₂	1000-1020 800	1300) (1) (2) (3) (4) (4)
3CaCO ₂ + 10SiO ₂	About 1000		zcao, sioz iormeu
1Na ₂ CO ₃ +1SiO ₂ . 1Na ₂ CO ₃ +1oSiO ₂ .	0 00 00 00 00 00 00 00 00 00 00 00 00 0	950	Na ₂ O, SiO ₂ formed Na ₂ O, 4SiO ₂ formed
1Na2SO4+10SiO2.	1120	:	Na ₂ O, SiO ₂ formed
INa ₂ SO ₄ +IoSiO ₂ . INa ₂ CO ₃ +IoA ₂ O ₃ .	1080-1100 800	0001	Na2O, Al2O3 formed
1 Na ₂ CO ₃ +1 Ca CO ₃ +10SiO ₂	800	0001	crumble at 1150 C. Insoluble in acid
$1 \text{Na}_2 \text{SO}_4 + 1 \text{CaSO}_4 + 1 \text{OSIO}_2$ $1 \text{Na}_2 \text{CO}_3 + 1 \text{Al}_2 \text{O}_3 + 1 \text{OSIO}_2$.	930-950	1000	Insoluble in acid
1Na ₂ SO ₄ +1Al ₂ O ₃ +1oSiO ₂ . 1CaCO ₃ +1Al ₂ O ₃ +1oSiO ₂ .	935-955 800	1300	
1CaSO ₄ +1Al ₂ O ₃ +1oSiO ₂ 1Na ₂ CO ₂ +1CaCO ₂ +1Al ₂ O ₂ +1oSiO ₂	1000-1020	1300	Insoluble in acid

TABLE IX *

Substance.	Melting Temp. Degrees C.	Cone No.
$\begin{array}{c} Al_2O_3 + SiO_2 + CaO \\ 60 + 10 + 30 \\ 60 + 20 + 20 \\ 60 + 30 + 10 \\ 30 + 60 + 10 \\ 20 + 60 + 20 \\ 10 + 60 + 30 \\ 30 + 10 + 60 \\ 20 + 20 + 60 \\ 10 + 30 + 60 \\ \end{array}$	1400 1500 1600 1450 1300-1325 1400 1400-1425 1450-1475 1650	About 14 " 19 " 24 " 16 " 9-10 " 14 " 14-15 " 16-17 26

^{*} Der elektrische Ofen (p. 45).

TABLE X

Melting-point.	° C.	° F.
First-class fire brick	1650-1730	3002-3146
Second-class fire brick	1570-1630	2858-2966
Kaolin class fire brick	1740	3146
Pure alumina	2050	3722
Bauxite brick	1820	3308
Bauxite clay brick	1795	3263
Pure silica brick	1750	3182
Chromite brick	2180	3956
Magnesium oxide	28oc	5072
Magnesia brick	2000	3632
Calcium oxide	2572	4662
Carbon	3600	6500
Carbon arc	3500	6330
Platinum	1755	3182
Iridium	2350	4262
Tungsten	3000	5430
Titanium	1800	3272
Beryllium oxide	Over 2000	3632
Lanthanum pentoxide	1840	3344
Thorium oxide	2470	*4478
Yttrium oxide	2400	4352
Zirconium oxide	2570	4658
Zirconium brick	About 2000	3632

WEIGHT OF A CUBIC FOOT OF VARIOUS MATERIALS

Pou	ınds	Pou	inds
Aluminum	162	Cork	15
Anthracite, solid	93	Earth loam, dry loose	76
" broken, loose	54	" packed	95
Ash, white dry	38	" soft, loose	
Asphaltum	87	mud	108
Brass, cast	504	" dense mud	126
" rolled	524	Ebony, dry	76
Brick, best pressed	150	Elm, dry	35
" common hard	125	Flint	162
" common red	100	Glass, common window	157
" fire clay	150	" plate	172
" fire	I 20	" flint	192
Silica	128	" floor or skylight	156
Chrome	175	Gneiss	168
Magnesia	160	Granite	170
Cement, hydraulic	60	Gravel 90	-106
" Portland	70	Gypsum	142
Chalk	145	Hemlock, dry	25
Cherry, dry	42	Hickory, dry	53
Chestnut, dry	41	Hornblende	203
Clay, pottery, dry	119	Ice	59
Fire clay, ground	85	Iron, case	450
Clay in lumps, loose	63	" wrought	485
Silica cement	126	Lead	711
Chrome cement	134	Lime, quick, ground, loose	53
Grain magnesite	112	" slaked	75
Coal, bituminous, solid	84	" stone large	168
" loose	49	" stone, irregular	
Coke, loose	26	lumps	96
Charcoal	18	Magnesium	109
Concrete	154	Masonry, granite or lime-	
Copper, cast	542	stone	165
" rolled	548	Mortar, rubble	154

CERAMICS

Pounds	Pounds
Sandstone, dressed 144	Slate 175
Mercury at ° C 849	Sand, dry and loose90-106
Mica 183	" dry and packed 110
Mortar, hardened 103	" wet and packed 130
Mud, dry, close80-110	Snow, freshly fallen5-12
Oak, white dry 50	" moist and compact-
Oils, engine 55	ed by rain12-50
" other kinds32-45	Steel 490
" crude 48	Sulphur 125
" petroleum 55	Tar 62
" gasoline 43	Turf or peat, dry 20-30
Pumicestone 57	Walnut, black, dry 38.
Quartz	Water 62
Salt, coarse 45	Wax 60
" fine 49	Zinc 437
Shales 162	431

MENSURATION

In the following formulas the letters have the meanings indicated below:

D = large diameter;

d = small diameter;

R = radius corresponding to D;

r =radius corresponding to d;

p = perimeter of circumference;

C = area of convex surface;

S =area of entire surface = C + area of the end or ends;

A =area of plane figure;

 $\pi = 3.1416 = \text{ratio of nearly any circumference to its}$ diameter;

V = volume of solid;

h = height;

b = base.

$$A = a \times a = a^2$$

$$A = a \times b$$

$$A = a \times h$$

Triangle

$$A = \frac{c \times h}{2}$$

Triangular Prism

$$V = b \times h$$

Cylinder

$$V = b \times h$$

Pyramid

$$V = \frac{b \times h}{3}$$

Cone

$$V = \frac{b \times h}{3}$$

Segment

$$A = \left(\frac{\alpha \times \pi}{180} - \sin \alpha\right) \frac{r^2}{2}$$

Cube

$$V = a \times a \times a = a^3$$

Rectangular Prism

$$C = p \times h$$

$$S = ph + 2b$$

$$V = b \times h$$

General Prism

$$C = p \times h$$

$$S = ph + 2b$$

$$V = b \times h$$

Frustum of Cone

$$V = \frac{\pi h}{3} (R^2 + r^2 + (R \times r))$$

Frustum of Pyramid

$$V = \frac{h}{3}(B + b + \sqrt{B \times b})$$

B = area of lower base b = area of upper base

Sphere

$$S = \pi d^2$$
, or $4\pi r^2$, or 12.5664 r^2
 $V = \frac{1}{6}\pi d^3$, or $\frac{4}{3}\pi r^3$, or .5236 d^3 or 4.1888 r^3

Barrel

$$V = \frac{\pi L}{3} (r^2 + 2R^2)$$

Trapezoid

$$A = \frac{1}{2}h(a+b)$$

Trapezium

$$A = \frac{1}{2}bh' + \frac{1}{2}a(h'+h) + \frac{1}{2}ch$$

Circle

$$A = R^2 \times \pi \text{ or } \frac{D \times \pi}{4}$$

$$p = 2R \times \pi \text{ or } D \times \pi$$

Ellipse

$$A = R \times r \times \pi$$

Sector

$$A = \frac{\alpha \times \pi \times r^2}{360}$$

SIZE OF BINS AND TANKS

Bins are constructed to hold some more or less dry substances, such as sand, clay, etc., and their capacities are rated in cubic feet, cubic yards, or tons.

If, however, they are watertight and are used for storing liquids, they are known as tanks, and their capacities are given in gallons or barrels.

When installing a bin or tank, either the desired capacity, or the dimensions of the available space into which it is to fit, are known, and the problem is to find the size in the former case, or the capacity in the latter.

BINS

Rectanguar. Bins are usually built with square corners, since planks fit best in that shape. Such concrete forms are easier and cheaper to construct and a wall of the building is frequently utilized as one side, often the bin is in a corner and two sides are in place.

The capacity of a given bin, therefore, being its volume, if

l = length of bin in feet;

b = breadth of bin in feet;

h = height of bin in feet;

v = volume, or capacity, in cubic feet;

V = volume, or capacity, in cubic yards;

w = weight in pounds per cubic yard of material to be stored;

T =capacity in tons.

Then

$$v=l\times b\times h;$$
 (1)

$$V = \frac{l \times b \times h}{27}; \quad \dots \qquad (2)$$

$$T = \frac{l \times b \times h \times w}{27 \times 2000}$$
 or $\frac{l \times b \times h \times w}{54000}$. (3)

Example. What is the capacity of a rectangular bin 20 feet wide, 30 feet long, and 10 feet high?

From Equation (1): $v = 30 \times 20 \times 10 = 6000$ cu.ft.

From Equation (2):
$$V = \frac{30 \times 20 \times 10}{27} = 222.22$$
 cu. yds.

Example. If clay weighing 3000 pounds per cubic yard is to be stored in it, how many tons will it hold?

From Equation (3):

$$T = \frac{30 \times 20 \times 10 \times 3000}{54000} = 333.33 \text{ tons}$$

In practice, however, the condition is usually a desire to store a given quantity of material in a given location, and the form of the bin must be fitted to the local conditions.

Example. It is desired to store 100 tons of sand, weighing 2000 pounds per cubic yard in the end of a building 20 feet of which is available for the length of the bin, shafting overhead limits the height of the bin to 8 feet, how wide must it be made?

From Equation (3):
$$100 = \frac{20 \times b \times 8 \times 2000}{54000} = 5.926 \times b$$

$$b = \frac{100}{5.926} = 16.89$$
 feet or 16 feet $10\frac{1}{2}$ inches.

Cylindrical. If the bin is to be made of metal sheets, then the cylindrical shape is usually adopted, for the reasons that it is as easy to form, gives a greater capacity for like amount of metal, and the pressure being exerted equally in all directions, there is no danger of bulging.

The capacity of a cylindrical bin is likewise its

volume, if

l=length of bin in feet;

d = diameter of bin in feet;

v = volume, or capacity, in cubic feet;

V =volume, or capacity in cubic yards;

w = weight in pounds per cubic yard of material to be stored;

T =capacity of tons.

Then

$$v = .7854 \times d^2 \times I; \ldots \ldots (4)$$

$$V = \frac{.7854 \times d^2 \times l}{27} = .02909 \times d^2 \times l; \quad . \quad . \quad . \quad (5)$$

$$T = \frac{.02909 \times d^2 \times l \times w}{2000} = .000014545 \times d^2 \times l \times w. (6)$$

Example. What is the capacity of a cylindrical bin 10 feet in diameter and 20 feet high?

From Equation 4: $v = .7854 \times 10^2 \times 20 = 1570.8$ cu. ft. From Equation (5): $V = .02909 \times 10^2 \times 20 = 58.18$ cu.yds.

Example. The top of an elevator is 20 feet above the ground. It is desired to construct a cylindrical concrete bin into which the elevator can discharge, and the raw material be withdrawn at the bottom. If the bin is to hold 50 tons of crushed quartz weighing 2700 pounds per cubic yard, what must be the diameter?

From Equation (6):

50=.000014545
$$\times$$
d² \times 20 \times 2700
50=.78543 \times d²
d=63.65
d=7.97 feet practically 8 feet

TANKS

The volume of a tank is calculated just as if it were a bin, and the capacity in gallons is the volume in cubic feet multiplied by 7.48 (the number of gallons in 1 cubic foot); and the capacity in barrels may then be found by dividing this result by 231 (the number of gallons in 1 standard barrel. This latter unit is seldom used, however, since all barrels are not of the same size).

Rectangular. From Equation (1), if

G=volume or capacity in gallons;

B = volume, or capacity, in barrels.

$$G=l\times b\times h\times 7.48$$
 (7)

$$B = \frac{l \times b \times h \times 7.48}{231} = l \times b \times h \times .03238. \quad . \quad . \quad (8)$$

Example. How many gallons will a tank 10 feet long, 6 feet wide, and 4 feet deep, hold?

Equation (7): $G = 10 \times 6 \times 4 \times 7.48 = 1795.2$ gallons.

Example. The trusses of a roof are 10 feet apart, the struts and ties will allow a tank 4 feet wide and 3 feet high to rest in them. What should be the dimensions of a tank to be supported on two trusses and hold 500 gallons?

It would be good designing to allow the tank to project at each end to insure a good support and reduce the liability to slip off, therefore, for example, assume length 12 feet.

From Equation (7):

$$500 = 12 \times b \times h \times 7.48$$
$$500 = 89.76 \times b \times h$$
$$b \times h = 5.57$$

It is evident from the result that any number of combinations may be used, the only restrictions being that the product of the breadth and the height $(b \times h)$ must equal 5.57.

If breadth be taken as 3 feet, then:

$$3 \times h = 5.57$$

h=1.85 feet or 1 feet $10\frac{1}{2}$ inches

Cylindrical. From equation (4), if

G= volume, or capacity, in gallons

B = volume, or capacity, in barrels

$$G = .7854 \times d \times 1 \times 7.48 = 5.87479 \times d \times l$$
 . (9)

$$B = \frac{5.87479 \times d \times l}{231} = .02543 \times d \times l. \quad . \quad . \quad (10)$$

Example. It is desired to install a settling tank, cylindrical in shape, 5 feet high, and holding 100,000 gallons, what must be the diameter?

From Equation (9):

$$100,000 = 5.87479 \times d \times 5$$

 $29.37395 \times d = 100,000$

$$d = 3404$$

d = 58.34 feet, or 58 feet 4 inches.

Example. There is available in a corner a space sufficient to install a vertical cylindrical tank 5 feet in diameter, if it is to hold 1500 gallons, how high must it be?

From Equation (9):

 $1500 = 5.87479 = 25 \times 1$

 $146.8697 \times 1 = 1500$

I = 10.21 feet or 10 feet $3\frac{1}{2}$ inches

LOGARITHMS

By the use of logarithms, many mathematical calculations can be simplified. Multiplication and division are accomplished by addition and subtraction and involution and evolution solved by multiplication and division. A logarithm is the power to which a given base must be raised to produce a given number. Every logarithm consists of two parts, a positive or negative whole number called the *characteristic* or index, and a positive fraction called the *mantissa*. The mantissa is always expressed as a decimal and is the part which is given in the tables appearing without the decimal point in the columns headed o to 9. The numbers of the corresponding logs are shown in the column headed N.

In common logarithms the base is 10 since:

Log.	I = 0	Log.	o. I = -I
"	i = 0	"	0.01 = -2
"	100 = 2	"	0.001 = -3
"	1000=3	"	0.0001 = -4

or from 1 to 9.99 it is 0, from 10 to 99.99 it is 1, and from 100 to 999.99 it is 2 and so on.

From 0.1 to 0.99 it is -1, from 0.01 to 0.099 it is -2, and from 0.001 to 0.0099 it is -3, etc.

The following table will help to explain the rule that the characteristic of a number is always *one less* than the number of its digits and that it is positive or negative according to whether it is more or less than one. The mantissa is never negative.

```
characteristic

mantissa

Log. of 3000 is 3.47712

300 is 2.47712

301 is 1.47712

302 is 1.47712

303 is 1.47712

3047712

305 is -1.47712 or 9.47712-10

307 is -1.47712 or 8.47712-10

0.003 is -2.47712 or 7.47712-10

0.0003 is -3.47712 or 7.47712-10
```

From the tables of logarithms on the following pages, the mantissa of any number up to 1000 may be had by direct reading, as for example, the mantissa 355 is found by looking in the N column to 355 and opposite in the O column is its log which is 55023. For numbers of more than four figures, the operation is somewhat more complicated. The mantissa of 4253 is found by looking up the first three digits (425) in the N column opposite which in the O column is 62 and in the same line in the 3 column we find 870. Putting them together we have 62870.

Multiplication by the use of logarithms performed by adding together the logarithms of the numbers and then finding the number that corresponds to the log.

Example. Multiply 250 by 3.05.

characteristic

mantissa

Log.
$$250 = 2.39794$$
 $3.05 = 0.48430$
 2.88224

Now find the number corresponding to 2.98224. First find 88 in the O column and on the same line with it the 224 in the 5 column corresponding with 762 in the N column. The number we require therefore is 7625. But the decimal point must now be fixed. The characteristic of our answer being 2 we know that it represents a number of three digits. Placing the decimal point three places to the left, the result is 762.5.

Proof: $250 \times 3.05 = 762.5$.

Example. Find the product
$$3\times5\times6$$
.
Log. $3=0.47712$

$$1.95424 = \log.90.00$$

which is correct shown by the following:

Proof: $3 \times 5 = 15$, $15 \times 6 = 90.00$.

This method may be used for the multiplication of larger numbers by others equally large and the answers will be correct.

To divide one number by another, subtract the logarithm of the latter from that of the former.

The characteristic being 1, it is necessary to point

off two places to the left of the decimal point which gives as the quotient 37.50.

Proof: $150 \div 4 = 37.5$.

To raise a number to any power, multiply its logarithm by the number of the desired power and then find of what number the result is the logarithm.

Example. Raise 5 to the fifth power.

$$Log. 5 = 0.69897$$

$$\frac{5}{3.49485}$$

3.49485 is the log of 3125 which is the fifth power of 5. Proof. $5\times5\times5\times5\times5=3125$.

Similarly to find the root of any number, divide its logarithm by the number of the desired root and find of what number the result is the logarithm.

Example. Find the cube root of 512.

$$Log. 512 = 2.70927$$
$$2.70927 \div 3 = 90309$$

Referring to the table, we find that 90307 is the log. of 8 which is the cube root of 512.

Proof: $(8\times8\times8) = 512$.

Example. By an analysis we find that a sample of clay gives us .029 gm. of $Mg_2P_2O_7$ how much MgO does the sample of clay contain? To convert $Mg_2P_2O_7$ to MgO, we use the factor .36207, whose mantissa is = 55879, and .029 has 46240 for a mantissa.

Therefore, log.
$$.36207 = -1.55879$$

" $.029 = -2.46240$
 $-4 02119 = log.$ we find

by looking in column headed O, 02119 and opposite in column headed N we find 105 the characteristic is -4, so we have to add 5 zeros to left of the quotient which will be then .0105, multiplying this by 100 we get the percentage of the MgO present in the sample=1.05.

Proof: $(.36207 \times .029) \times 100 = 1.05\%$ MgO.

Example. The ultimate analysis of a sample of clay shows 2.00 per cent of K_2O . To find the amount of feldspar substance present in the clay we proceed as follows:

Mol. W. for orthoclase feldspar=556, and for K_2O = 94.

The log. for 94 is 1.97313 which must be subtracted from the above quotient as follows:

Log. of
$$1112 = 3.04610$$

"
 $94 = 1.97313$
 $1.07297 = log. 11.83$, which is correct.

The clay theoretically contains 11.83 per cent of feldspar substances.

Prove:
$$\frac{556 \times 2}{94} = 11.83$$
.

All of the above examples have been selected for their simplicity, but the use of logarithms in making calculations will be found especially helpful when the problems are complex.

COMMON LOGARITHMS OF NUMBERS (Base 10)

N	0	1	2	3	4	5	6	7	8	9
100 101 102 103 104	00 432 00 860 01 284	00 475 00 903 01 326	00 518 00 945 01 368	00 561 00 988 01 410	00 604 01 030 01 452	00 647 01 072 01 494	00 689 01 115 01 536	00 732 01 157 01 578	01 620	00 817
105 106 107 108 109	02 531 02 938 03 342	02 572 02 979 03 383	02 612 03 019 03 423	02 653 03 060 03 463	02 694 03 100 03 503	02 735 03 14i 03 543	02 776 03 181 03 583	02 816 03 222 03 623	02 449 02 857 03 262 03 663 04 060	02 898 03 302 03 703
110 111 112 113 114	04 532 04 922 05 308	04 571 04 961 05 346	04 610 04 999 05 385	04 650 05 038 05 423	04 689 05 077 05 461	04 727 05 115 05 500	04 766 05 154 05 538	04 805 05 192 05 576	04 454 04 844 05 231 05 614 05 994	04 883 05 269 05 652
115 116 117 118 119	06 446 06 819 07 188	06 483 06 856 07 225	06 521 06 893 07 262	06 558 06 930 07 298	06 595 06 967 07 335	06 633 07 004 07 372	06 670 07 041 07 408	06 707 07 078 07 445	06 371 06 744 07 115 07 482 07 846	06 781 07 151 07 518
120 121 122 123 124	08 279 08 636 08 991	08 314 08 672 09 026	08 350 08 707 09 061	08 386 08 743	08 422 08 778 09 132	08 458 08 814 09 167	08 493 08 849 09 202	08 529 08 884 09 237	08 207 08 565 08 920 09 272 09 621	08 600 08 955 09 307
125 126 127 128 129	10 037 10 380 10 721	10 072 10 415 10 755	10 106 10 449 10 7 89	10 140 10 483	10 175 10 517 10 857	10 209 10 551 10 890	10 243 10 585 10 924	10 278 10 619 10 958	09 968 10 312 10 653 10 992 11 327	10 346 10 687 11 025
130 131 132 133 134	11 727 12 057 12 385	11 760 12 090 12 418	11 793 12 123 12 450	11 826 12 156 12 483	11 860 12 189 12 516	11 893 12 222 12 548	11 926 12 254 12 581	11 959 12 287 12 613	11 661 11 992 12 320 12 646 12 969	12 024 12 352 12 678
135 136 137 138 139	13 354 13 672 13 988	13 386 13 704 14 019	13 418 13 735 14 051	13 450 13 767 14 082	13 481 13 799 14 114	13 513 13 830 14 145	13 545 13 862 14 176	13 577 13 893 14 208	13 290 13 609 13 925 14 239 14 551	13 640 13 956 14 270
140 141 142 143 144	14 922 15 229 15 534	14 953 15 259 15 564	14 983 15 290 15 594	15 014 15 320 15 625	15 045 15 351 15 655	15 076 15 381 15 685	15 106 15 412 15 715	15 137 15 442 15 746	14 860 15 168 15 473 15 776 16 077	15 198 15 503 15 806

· (Continued)

N	0	11	2	3	4	5	6	7	8	9
145 146 147 148 149	16 435 16 732 17 026	16 465 16 761 17 056	16 495 16 791 17 085	16 524 16 820 17 114	16 554 16 850 17 143	16 584 16 879 17 173	16 316 16 613 16 909 17 202 17 493	16 643 16 938 17 231	16 673 16 967 17 260	16 702 16 997 17 289
150 151 152 153 154	18 184 18 469	17 926 18 213 18 498	17 955 18 241 18 526	17 984 18 270 18 554	18 013 18 298 18 583	18 041 18 327 18 611	17 782 18 070 18 355 18 639 18 921	18 099 18 384 18 667	18 412 18 696	18 156 18 441 18 724
155 156 157 158 159	19 312 19 590 19 866	19 340 19 618 19 893	19 368 19 645 19 921	19 396 19 673 19 948	19 424 19 700 19 976	19 451 19 728 20 003	19 201 19 479 19 756 20 030 20 303	19 507 19 783 20 058	19 535 19 811 20 085	19 56. 19 83 20 11
160 161 162 163 164	20 683 20 952 21 219	20 710 20 978 21 245	20 737 21 005 21 272	20 763 21 032 21 299	20 790 21 059 21 325	20 817 21 085 21 352	20 575 20 844 21 112 21 378 21 643	20 871 21 139 21 405	20 898 21 165 21 431	20 92 21 19 21 45
165 166 167 168 169	22 011 22 272 22 531	22 037 22 298 22 557	22 063 3 22 324 22 583	22 089 22 350 22 608	22 115 22 376 22 634	22 141 22 401 22 660	21 906 22 167 22 427 22 686 22 943	22 194 22 453 22 712	22 220 22 479 22 737	22 24 22 50 22 76
170 171 172 173 174	23 300 23 553 23 805	23 325 23 578 23 830	23 350 23 603 23 855	23 376 23 629 23 880	23 401 23 654 23 905	23 426 23 679 23 930	23 198 23 452 23 704 23 955 24 204	23 477 23 729 23 980	23 502 23 754 24 005	23 52 23 77 24 03
175 176 177 178 179	24 551 24 797 25 042	24 576 24 822 25 066	24 601 24 846 25 091	24 629 24 871 25 119	24 650 24 895 25 139	24 674 24 920 25 164	24 452 24 699 24 944 25 188 25 431	24 724 24 969 3 25 212	24 748 24 993 2 25 237	24 77 25 01 25 26
181 182 183 184	25 768 26 007 26 245	25 792 26 031 26 269	25 816 26 055 26 293	25 840 26 079 26 316	25 864 26 102 26 340	25 888 26 126 26 364	3 25 672 3 25 912 5 26 150 1 26 387 0 26 623	25 935 26 174 26 411	25 959 26 198 1 26 439	25 98 26 22 26 45
185 186 187 183 189	26 951 27 184 27 416	26 975 27 207 27 439	26 998 27 23 1 27 462	27 021 27 254 227 485	27 045 27 277 27 508	27 068 27 300 27 531	26 858 3 27 091 0 27 323 27 554 27 784	27 114 27 346 27 577	27 138 27 370 27 600	27 16 27 39 27 62

(Continued)

N	0	1	2	3	4	5	6	7	8	9
190 191 192 193 194	28 330 28 556		28 149 28 375 28 601	28 171 28 398 28 623	28 194 28 421 28 646	28 217 28 443 28 668	28 012 28 240 28 466 28 691 28 914	28 262 28 488 28 713	28 285 28 511 28 735	28 307 28 533 28 758
195 196 197 198 199	29 226 29 447 29 667	29 248 29 469	29 270 29 491 29 710	29 292 29 513 29 732	29 314 29 535 29 754	29 336 29 557 29 776	29 137 29 358 29 579 29 798 30 016	29 380 29 601 29 820	29 403 29 623 29 842	29 425 29 645 29 863
200 201 202 203 204	30 320 30 535 30 750	30 341 30 557 30 771	30 363 30 578 30 792	30 384 30 600 30 814	30 406 30 621 30 835	30 428 30 643 30 856	30 664 30 878	30 471 30 685 30 899	30 492 30 707 30 920	
205 206 207 208 209	31 387 31 597 31 806	31 408 31 618 31 827	31 429 31 639 31 848	31 450 31 660 31 869	31 471 31 681 31 890	31 492 31 702 31 911	31 723	31 534 31 744 31 952	31 555 31 765 31 973	31 576 31 785 31 994
210 211 212 213 214	32 428 32 634 32 838	32 449 32 654 32 858	32 469 32 675 32 879	32 490 32 695 32 899	32 510 32 715 32 919	32 531 32 736 32 940	32 552 32 756 32 960	32 572 32 777 32 960	32 593 32 7 97 33 001	32 408 32 613 32 818 33 021 33 224
215 216 217 218 219	33 449 33 646 33 846	33 465 33 666 33 866	33 486 33 686 33 885	33 506 33 706 33 905	33 526 33 726 33 925	33 546 33 746 33 945	33 566 33 766	33 586 33 786 33 985	33 606 33 806 34 005	33 826 34 025
220 221 222 223 224	34 635 34 830	34 459 34 655 34 850	34 479 34 674 34 869	34 498 34 694 34 889	34 518 34 713 34 908	34 537 34 7 33 34 928	34 753 34 947	34 577 34 772 34 967	34 596 34 792 34 986	34 616 34 811
225 226 227 228 229	35 411 35 603 35 793	35 430 35 622 35 813	35 449 35 641 35 832	35 468 35 660 35 851	35 488 35 679 35 870	35 507 35 698 35 889	35 717 35 908	35 545 35 736 35 927	35 564 35 755 35 946	35 392 35 583 35 774 35 965 36 154
230 231 232 233 234	36 36 36 549 36 736	36 380 36 568 36 7 54	36 399 36 586 36 773	36 418 36 609 36 791	36 436 36 624 36 810	36 455 36 642 36 829	36 286 36 474 36 661 36 847 37 033	36 493 36 680 36 866	36 511 36 698 36 884	36 530 36 717

(Continued)

N	0	ī	2	3	4	5	6	7	8	9
235 236 237 238 239	37 658	37 310 37 493 37 676	37 144 37 328 37 511 37 694 37 876	37 346 37 530 37 712	37 365 37 548 37 731	37 383 37 566 37 749	37 401 37 585 37 767	37 420 37 603 37 785	37 438 37 621 37 803	37 45 37 63 37 82
240 241 242 243 244	38 382 38 561	38 220 38 399 38 578	38 057 38 238 38 417 38 596 38 775	38 256 38 435 38 614	38 274 38 453 38 632	38 292 38 471 38 650	38 310 38 489 38 668	38 328 38 507 38 686	38 346 38 525 38 703	38 36 38 54 38 7 2
245 246 247 248 249	39 094 39 270 39 445	39 111 39 287 39 463	38 952 39 129 39 305 39 480 39 655	39 146 39 322 39 498	39 164 39 340 39 515	39 182 39 358 39 533	39 199 39 375 39 550	39 217 39 393 39 568	39 235 39 410 39 585	39 25 39 42 39 60
250 251 252 253 254	39 967 40 140 40 312	39 985 40 157 40 329	39 829 40 002 40 175 40 346 40 518	40 019 40 192 40 364	40 037 40 209 40 381	40 054 40 226 40 398	40 071 40 243 40 415	40 088 40 261 40 432	40 106 40 278 40 449	40 12 40 29 40 46
255 256 257 258 259	40 824 40 993 41 162	40 841 41 010 41 179	40 688 40 858 41 027 41 196 41 363	40 875 41 044 41 212	40 892 41 061 41 229	40 909 41 078 41 246	40 926 41 096 41 263	40 943 41 111 41 280	40 960 41 128 41 296	40 97 41 14 41 31
260 261 262 263 264	41 664 41 830 41 996	41 681 41 847 42 012	41 531 41 697 41 863 42 029 42 193	41 714 41 880 42 045	41 73 1 41 896 42 062	41 747 41 913 42 078	41 764 41 929 42 095	41 780 41 946 42 111	41 797 41 963 42 127	41 81 41 97 42 14
265 266 267 263 269	42 488 42 651 42 813	42 504 42 667 42 830	42 357 42 521 42 684 42 846 43 008	42 537 42 700 42 862	42 553 42 716 42 878	42 570 42 732 42 894	42 586 42 749 42 911	42 602 42 765 42 927	42 619 42 781 42 943	42 63 42 79 42 95
270 271 272 273 274	43 297 43 457 43 616	43 313 43 473 43 632	43 169 43 329 43 489 43 648 43 807	43 345 43 505 43 664	43 361 43 521 43 680	43 377 43 537 43 696	43 393 43 553 43 712	43 409 43 569 43 7 27	43 425 43 584 43 743	43 44 43 60 43 75
275 276 277 278 279	44 091 44 248 44 404	44 107 44 264 44 420	43 965 44 122 44 279 44 436 44 592	44 138 44 295 44 451	44 154 44 311 44 467	44 170 44 326 44 483	44 185 44 342 44 498	44 201 44 358 44 514	44 217 44 373 44 529	44 23 44 38 44 54

COMMON LOGARITHMS OF NUMBERS (Continued)

						1	1		1	1
N	0	1	2	3	4	5	6	7	8	9
280 281 282 283 284	44 871 45 025 45 179	44 886 45 040 45 194	44 902 45 056 45 209	44 762 44 917 45 071 45 225 45 378	44 932 45 086 45 240	44 948 45 102 45 255	44 963 45 117 45 271	44 979 45 133 45 286	44 994 45 148 45 301	45 010 45 163 45 317
285 286 287 288 289	45 637 45 788 45 939	45 652 45 803 45 954	45 667 45 818 45 969	45 530 45 682 45 834 45 984 46 1 3 5	45 697 45 849 46 000	45 712 45 864 46 015	45 728 45 879 46 030	45 743 45 894 46 045	45 758 45 909 46 060	45 773 45 924 46 075
290 291 292 293 294	46 389 46 538 46 687	46 404 46 553 46 702	46 419 46 568 46 716	46 285 46 434 46 583 46 731 46 879	46 449 46 598 46 746	46 464 46 613 46 761	46 479 46 627 46 776	46 494 46 642 46 7 90	46 509 46 657 46 805	46 523 46 672 46 820
295 296 297 298 299	47 129 47 276	47 144 47 290 47 436	47 159 47 305 47 451	47 026 47 173 47 319 47 465 47 611	47 188 47 334 47 480	47 202 47 349 47 494	47 217 47 363 47 509	47 232 47 378 47 524	47 246 47 392 47 538	47 261 47 407 47 553
300 301 302 303 304	47 857 48 001 48 144	47 871 48 015 48 159	47 885 48 029 48 173	47 756 47 900 48 044 48 187 48 330	47 914 48 058 48 202	47 929 48 073 48 216	47 943 48 087 48 230	47 958 48 101 48 244	47 972 48 116 48 259	47 986 48 130 48 273
305 306 307 308 309	48 572 48 714 48 855	48 586 48 728 48 869	48 601 48 742 48 883	48 473 48 615 48 756 48 897 49 038	48 629 48 770 48 911	48 643 48 785 48 926	48 657 48 799 48 940	48 671 48 813 48 954	48 686 48 827 48 968	48 700 48 841 48 982
310 311 312 313 314	49 276 49 415 49 554	49 290 49 429 49 568	49 30 4 49 443 49 582	49 178 49 318 49 457 49 596 49 73 4	49 332 49 471 49 610	49 346 49 485 49 624	49 3 60 49 499 49 638	49 37 4 49 5 13 49 6 51	49 388 49 527 49 665	49 402 49 541 49 679
315 316 317 318 319	49 969 50 106 50 243	49 982 50 120 50 256	49 996 50 133 50 270	49 872 50 010 50 147 50 284 50 420	50 024 50 161 50 297	50 037 50 174 50 311	50 051 50 188 50 325	50 065 50 202 50 338	50 079 50 215 50 352	50 092 50 229 50 365
320 321 322 323 324	50 651 50 786 50 920	50 664 50 7 99 50 934	50 678 50 813 50 947	50 556 50 691 50 826 50 961 51 095	50 705 50 840 50 974	50 718 50 853 50 987	50 732 50 866 51 001	50 745 50 880 51 014	50 759 50 893 51 028	50 772 50 907 51 041

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
325 326 327 323 329	51 188 51 322 51 455 51 587 51 720	51 335 51 468 51 601	51 348 51 481 51 614	51 495 51 627	51 375 51 508 51 640	51 255 51 388 51 521 51 654 51 786	51 534 51 667	51 415 51 548 51 680	51 428 51 5 61 51 693	51 574
330 331 332 333 334	52 244	51 996 52 127 52 257	52 009 52 140 52 270	52 153 52 284	52 035 52 166 52 297	51 917 52 048 52 179 52 310 52 440	52 061 52 192 52 323	52 205 52 336	52 088 52 218 52 349	52 101 52 231 52 362
335 336 337 338 339	52 634 52 763 52 892	52 647 52 776 52 905	52 660 52 789 52 917	52 673 52 802 52 930	52 686 52 815 52 943	52 569 52 699 52 827 52 956 53 084	52 711 52 840 52 969	52 724 52 853 52 982	52 737 52 866 52 994	52 750 52 879 53 007
340 341 542 343 344	53 275 53 403 53 529	53 415 53 542	53 301 53 428 53 555	53 314 53 441 53 567	53 326 53 453 53 580	53 212 53 339 53 456 53 593 53 719	53 352 53 479 53 605	53 364 53 491 53 618	53 377 53 504 53 631	53 390 53 517 53 643
345 346 347 348 349	53 908 54 033 54 158	53 920 54 045 54 170	53 933 54 058 54 183	53 945 54 070 54 195	53 958 54 083 54 208	53 845 53 970 54 095 54 220 54 345	53 983 54 108 54 2 33	53 995 54 120 54 2 45	54 008 54 133 54 258	54 020 54 145 54 270
350 351 352 353 354	54 531 54 654 54 777	54 543 54 667 54 790	54 555 54 679 54 802	54 563 54 691 54 814	54 580 54 704 54 827	54 469 54 593 54 716 54 839 54 962	54 605 54 728 54 851	54 617 54 741 54 864	54 630 54 753 54 876	54 642 54 765 54 888
355 356 357 358 359	55 145 55 267	55 157 55 279 55 400	55 169 55 291 55 413	55 182 55 303 55 425	55 194 55 315 55 437	55 084 55 203 55 328 55 449 55 570	55 218 55 340 55 461	55 230 55 352 55 473	55 242 55 364 55 485	55 255 55 376 55 497
360 361 362 363 364	55 751 55 871 55 991	55 763 55 883 56 003	55 775 55 895 56 015	55 787 55 907 56 027	55 7 99 55 919 56 038	55 691 55 811 55 931 56 050 56 170	55 823 55 943 56 062	55 835 55 955 56 074	55 847 55 967 56 086	55 859 55 979 56 098
365 366 367 368 369	56 348 56 467 56 585	56 478 56 597	56 372 56 490 56 608	56 384 56 502 56 620	56 396 56 514 56 632	56 289 56 407 56 526 56 644 56 761	56 419 56 538 56 656	56 431 56 5 49 56 66 7	56 443 56 561 56 679	56 455 56 573 56 691

CERAMICS

COMMON LOGARITHMS OF NUMBERS

(Continued)

N	0	1	2	3	4	5	6	7	8	9
370 371 372 373 374	57 054 57 171	56 949 57 066 57 183	57 078 57 194	56 972 57 089 57 206	56 984 57 101 57 217	56 879 56 996 57 113 57 229 57 345	57 008 57 124 57 241	57 019 57 136 57 252	57 031 57 148	57 043 57 159 57 276
375 376 377 378 379	57 519 57 634 57 749	57 530 57 646 57 761	57 542 57 657 57 772	57 553 57 669 57 784	57 565 57 680 57 795	57 461 57 576 57 692 57 807 57 921	57 588 57 703 57 818	57 600 57 715 57 830	57 726 57 841	57 623 57 738 57 852
380 381 382 383 384	58 092 58 206 58 320	58 104 58 218 58 331	58 115 58 229 58 343	58 127 58 240 58 354	58 138 58 252 58 365	58 035 58 149 58 263 58 377 58 490	58 161 58 274 58 388	58 172 58 286 58 399	58 070 58 184 58 297 58 410 58 524	58 195 58 309 58 422
385 386 387 388 389	53 771 58 883	58 670 58 782 58 894	58 794 58 906	58 692 58 805 58 917	58 704 58 816 58 928	58 602 58 715 58 827 58 939 59 051	58 726 58 838 58 950	58 737 58 850 58 961	58 749 58 861 58 973	58 760 58 872
390 391 392 393 394	59 218 59 329 59 439	59 229 59 340 59 450	59 240 59 351 59 461	59 251 59 362 59 472	59 262 59 373 59 483	59 162 59 273 59 384 59 494 59 605	59 284 59 395 59 506	59 295 59 406 59 517	59 306 59 417 59 528	59 318 59 428 59 539
395 396 397 398 399	59 770 59 879 59 988	59 780 59 890 59 999	59 7 91 59 901 60 010	59 802 59 912 60 021	59 813 59 923 60 032	59 715 59 824 59 934 60 043 60 152	59 835 59 945 60 054	59 846 59 956 60 065	59 857 59 966 60 076	59 868 59 977 60 086
400 401 402 403 404	60 314 60 423 60 531	60 325 60 433 60 541	60 336 60 444 60 552	60 347 60 455 60 563	60 358 60 466 60 574	60 260 60 369 60 477 60 584 60 692	60 379 60 487 60 595	60 390 60 498 60 606	60 401 60 509 60 617	60 412 60 520 60 627
405 406 407 408 409	60 853 60 959 61 066	60 863 60 970 61 077	60 874 60 981 61 087	60 885 60 991 61 098	60 895 61 002 61 109	60 799 60 906 61 013 61 119 61 225	60 917 61 023 61 130	60 927 61 034 61 140	60 938 61 045 61 151	60 949 61 055 61 162
410 411 412 413 414	61 384 61 490 61 595	61 395 61 500 61 606	61 405 61 511 61 616	61 416 61 521 61 627	61 426 61 532 61 637	61 331 61 437 61 542 61 648 61 752	61 448 61 553 61 658	61 458 61 563 61 669	61 469 61 574 61 679	61 479 61 584 61 690

(Continued)

N	0	1	2	3	4	5	6	7	8	9
415 416 417 418 419	61 909 62 014 62 118	61 815 61 920 62 024 62 128 62 232	61 930 62 034 62 138	61 941 62 045 62 149	61 951 62 055 62 159	61 962 62 066 62 170	61 972 62 076 62 180	61 982 62 086 62 190	61 993 62 097 62 201	62 003 62 107 62 211
420 421 422 423 424	62 428 62 531 62 634	62 335 62 439 62 542 62 644 62 747	62 449 62 552 62 655	62 459 62 562 62 665	62 469 62 572 62 675	62 480 62 583 62 685	62 490 62 593 62 696	62 500 62 603 62 706	62 511 62 613 62 716	62 521 62 624 62 726
425 426 427 428 429	62 941 63 043 63 144	62 849 62 951 63 053 63 155 63 256	62 961 63 063 63 165	62 972 63 073 63 175	62 982 63 083 63 185	62 992 63 094 63 195	63 002 63 104 63 205	63 012 63 114 63 215	63 022 63 124 63 225	63 033 63 134 63 230
430 431 432 433 434	63 448 63 548 63 649	63 357 63 458 63 558 63 659 63 759	63 468 63 568 63 669	63 478 64 579 63 679	63 488 63 589 63 689	63 498 63 599 63 699	63 508 63 609 63 7 09	63 518 63 619 63 719	63 528 63 629 63 729	63 53 63 63 63 73
435 436 437 438 439	63 949 64 048 64 147	63 859 63 959 64 058 64 157 64 256	63 969 64 068 64 167	63 979 64 078 64 177	63 988 64 088 64 187	63 998 64 098 64 197	64 008 64 108 64 207	64 018 64 118 64 217	64 028 64 128 64 227	64 03 64 13 64 23
440 441 442 443 444	64 444 64 542 64 640	64 355 64 454 64 552 64 650 64 748	64 464 64 562 64 660	64 473 64 572 64 670	64 483 64 582 64 680	64 493 64 591 64 689	64 503 64 601 64 699	64 513 64 611 64 70 9	64 523 64 621 64 71 9	64 53 64 63 64 72
445 446 447 448 449	64 933 65 031 65 128	64 846 64 943 65 040 65 137 65 234	64 953 65 050 65 147	64 963 65 060 65 157	64 972 65 070 65 167	64 982 65 079 65 176	64 992 65 089 65 186	65 002 65 099 65 196	65 011 65 108 65 205	65 02 65 11 65 21
450 451 452 453 454	65 418	65 331 65 427 65 523 65 619 65 715	65 437 65 533 65 629	65 447 65 543 65 639	65 456 65 552 65 648	65 466 65 562 65 658	65 475 65 571 65 667	65 485 65 581 65 677	65 495 65 591 65 686	65 50 65 60 65 69
455 456 457 458 459	65 896 65 992 66 087	65 811 65 906 2 66 001 7 66 096	65 916 66 011	65 925 66 020 66 115	65 935 66 030 66 124	65 944 66 039 66 134	65 954 66 049 66 143	65 963 66 058 66 153	65 973 66 068 66 162	65 98 66 07 66 17

CERAMICS

N	0	1	2	3	4	5	6	7	8	9
460 461 462 463 464	66 370 66 464 66 558	66 380 66 474 66 567	66 295 66 389 66 483 66 577 66 671	66 398 66 492 66 586	66 408 66 502 66 596	66 417 66 511 66 605	66 427 66 521 66 614	66 436 66 530 66 624	66 445 66 539 66 633	66 455 66 549 66 642
465 466 467 468 469	66 839 66 932 67 025	66 848 66 941 67 034	66 764 66 857 66 950 67 043 67 136	66 867 66 960 67 052	66 876 66 969 67 062	66 885 66 978 67 071	66 894 66 987 67 080	66 904 66 997 67 089	66 913 67 006 67 099	66 922 67 015 67 108
470 471 472 473 474	67 302 67 394 67 486	67 311 67 403 67 495	67 228 67 321 67 413 67 504 67 596	67 330 67 422 67 514	67 339 67 431 67 523	67 348 67 440 67 532	67 357 67 449 67 541	67 367 67 459 67 550	67 376 67 468 67 560	67 385 67 477 67 569
475 476 477 478 479	67 761 67 852 67 943	67 770 67 861 67 952	67 688 67 779 67 870 67 961 68 052	67 788 67 879 67 970	67 797 67 888 67 979	67 806 67 897 67 988	67 815 67 906 67 997	67 825 67 916 68 006	67 834 67 925 68 015	67 843 67 934 68 024
480 481 482 483 484	68 215 68 305 68 395	68 224 68 314 68 404	68 142 68 233 68 323 68 413 68 502	68 242 68 332 68 422	68 251 68 341 68 431	68 260 68 350 68 440	68 269 68 359 68 449	68 278 68 368 68 458	68 287 68 377 68 467	68 296 68 386 68 476
485 486 487 488 489	68 664 68 753 68 842	68 673 68 762 68 851	68 592 68 681 68 771 68 860 68 949	68 690 68 780 68 869	68 699 68 789 68 878	68 708 68 797 68 886	68 717 68 806 68 895	68 726 68 815 68 904	68 735 68 824 68 913	68 744 68 833 68 922
490 491 492 493 494	69 108 69 197 69 285	69 117 69 205 69 294	69 037 69 126 69 214 69 302 69 390	69 135 69 223 69 311	69 144 69 232 69 320	69 152 69 241 69 329	69 161 69 249 69 338	69 170 69 258 69 346	69 179 69 267 69 355	69 188 69 276 69 364
495 496 497 498 499	69 548 69 636 69 723	69 557 69 644 69 732	69 478 69 566 69 653 69 740 69 827	69 574 69 662 69 749	69 583 69 671 69 758	69 592 69 679 69 767	69 601 69 688 69 77 5	69 609 69 697 69 784	69 618 69 705 69 793	69 627 69 714 69 801
500 501 502 503 504	69 984 70 070 70 157	69 992 70 079 70 169	69 914 70 001 70 088 70 174 270 260	70 010 70 096 70 183	70 018 70 109 70 191	70 027 70 114 70 200	70 036 70 122 70 209	70 044 70 131 70 217	70 053 70 140 70 226	70 062 70 148 70 234

Ŋ	0	1	2	3	4	5	6	7	8	9
505 506 507 508 509	70 415 70 501 70 586	70 424 70 509 70 595	70 432 70 518 70 603	70 441 70 526 70 612	70 449 70 535 70 621	70 458 70 544 70 629	70 467 70 552 70 638	70 389 70 475 70 561 70 646 70 731	70 484 70 569 70 655	70 492 70 578 70 663
510 511 512 513 514	70 842 70 927 71 012	70 851 70 935 71 020	70 859 76 944 71 029	70 868 70 952 71 037	70 876 70 961 71 046	70 885 70 969 71 054	70 893 70 978 71 063	70 817 70 902 70 986 71 071 71 155	70 910 70 995 71 079	70 919 71 003 71 083
515 516 517 518 519	71 265 71 349 71 433	71 441	71 282 71 366 71 450	71 290 71 374 71 458	71 299 171 383 171 466	71 307 71 391 71 475	71 315 71 399 71 483	71 240 71 324 71 408 71 492 71 575	71 416 71 500	71 341 71 425 71 508
520 521 522 523 524	71 684 71 767 71 850	71 692 71 775 71 858	71 700 71 784 71 867	71 709 71 792 71 875	71 717 71 800 71 883	71 725 71 809 71 892	71 734 71 817 71 900	71 659 71 742 71 825 71 908 71 991	71 750 71 834 71 917	71 759 71 842 71 925
525 526 527 528 529	72 099 72 181 72 263	72 107 72 189 72 272	72 115 72 198 72 280	72 123 72 206 72 288	72 132 72 214 72 2 96	72 140 72 222 72 304	72 148 72 230 72 313	72 074 72 156 72 239 72 321 72 403	72 165 72 247 72 329	72 173 72 255 72 337
530 531 532 533 534	72 509 72 591 72 673	72 518 72 599 72 681	72 526 72 607 72 689	72 534 72 616 72 697	72 542 72 624 72 705	72 550 72 632 72 713	72 558 72 640 72 72 722	72 485 72 567 72 648 72 730 72 811	72 575 72 656 72 738	72 583 72 665 72 746
535 536 537 538 539	72 916 72 997 73 078	72 925 73 006 73 086	72 933 73 014 73 094	72 941 73 022 73 102	72 949 73 030 73 111	72 957 73 038 73 119	72 965 3 73 046 73 127	72 892 72 973 73 054 73 135 73 215	72 981 73 062 73 143	72 989 73 070 73 151
540 541 542 543 544	73 320 73 490 73 480	73 328 73 403 73 485	73 336 73 416 73 496	73 344 73 424 73 504	73 352 73 432 73 513	73 360 73 440 73 520	73 368 73 448 73 528	73 296 73 376 73 456 73 536 73 616	73 384 73 464 73 544	73 392 73 472 73 552
545 546 547 548 549	73 719 73 799 73 878	73 727 73 807 8 73 886	73 735 73 815 73 894	73 743 73 823 73 902	73 751 73 830 2.73 910	73 759 73 838 73 918	73 767 3 73 846 3 73 926	7 73 699 7 73 775 6 73 854 6 73 933 6 74 013	73 7 83 73 862 73 941	73 791 2 73 87 0 73 949

N	0	1	2	3	4	5	6	7	8	9
550 551 552 553 554	74 115 74 194 74 273	74 123 74 202 74 280	74 131 74 210 74 288	74 060 74 139 74 218 74 296 74 374	74 147 74 225 74 304	74 155 74 233 74 312	74 162 74 241 74 320	74 170 74 249 74 327	74 178 74 257 74 335	74 186 74 265 74 343
555 556 557 558 559	74 507 74 586 74 663	74 515 74 593 74 671	74 523 74 601 74 679	74 453 74 531 74 609 74 687 74 764	74 5 39 74 617 74 695	74 547 74 624 74 702	74 554 74 632 74 710	74 562 74 640 74 718	74 570 74 648 74 726	74 578 74 656 74 733
560 561 562 563 564	74 896 74 974 75 051	74 904 74 981 75 059	74 912 74 989 7 5 066	74 842 74 920 74 997 75 074 75 151	74 927 75 005 75 082	74 935 75 012 75 089	74 943 75 020 75 097	74 950 75 028 75 105	74 958 75 035 75 113	75 043 75 120
565 566 567 568 569	75 282 75 358 75 435	75 289 75 366 75 442	75 297 75 374 75 450	75 228 75 305 75 381 75 458 75 534	75 312 75 389 75 465	75 320 75 397 75 473	75 328 75 404 75 481	75 335 75 412 75 488	75 343 75 420 75 496	75 427 75 504
570 571 572 573 574	75 664 75 7 40 75 815	75 671 75 747 75 823	75 679 75 755 75 831	75 610 75 686 75 762 75 838 75 914	75 694 75 770 75 846	75 702 75 778 75 853	75 709 75 785 75 861	75 717 75 793 75 868	75 724 75 800 75 876	75 808 75 884
575 576 577 578 579	76 042 76 118 76 193	76 050 76 125 76 200	76 057 76 133 76 208	75 989 76 065 76 140 76 215 76 290	76 072 76 148 76 223	76 080 76 155 76 230	76 087 76 163 76 238	76 095 76 170 76 245	76 103 76 178 76 253	76 110 76 185 76 260
580 581 582 583 584	76 418 76 492 76 567	76 425 76 500 76 5 74	76 433 76 507 76 582	76 365 76 440 76 515 76 589 76 664	76 448 76 522 76 597	76 455 76 530 76 604	76 462 76 537 76 612	76 470 76 545 76 619	76 477 76 552 76 626	76 485 76 559 76 634
585 586 587 588 589	76 790 76 864 76 938	76 797 76 871 76 945	76 805 76 879 76 953	76 738 76 812 76 886 76 960 77 034	76 819 76 893 76 967	76 827 76 901 76 975	76 834 76 908 76 982	76 842 76 916 76 989	76 849 76 923 76 997	76 856 76 930 77 004
590 591 592 593 594	77 159 77 232 77 305	77 166 77 240 77 313	77 173 77 247 77 320	77 107 77 181 77 254 77 327 77 401	77 188 77 262 77 335	77 195 77 269 77 342	77 203 77 276 77 349	77 210 77 283 77 357	77 217 77 291 77 364	77 225 77 298 77 371

N	0	1_1_	2	3	4	5	6	7	8	9
595 596 597 598 599	77 670	77 532 77 605 77 677	77 466 77 539 77 612 77 685 77 757	77 546 77 619 77 692	77 554 77 627 77 699	77 561 77 634 77 706	77 641 77 714	77 576 77 648 77 721	77 656 77 728	77 590 77 663 77 735
609 601 602 603 604	78 032	77 895 77 967 78 039	77 830 77 902 77 974 78 046 78 118	77 909 77 981 78 053	77 916 77 988 78 061	77 924 77 996 78 068	77 931 78 003 78 075	77 938 78 010 78 082	77 945 78 017 78 039	77 952 78 025 78 097
605 606 607 608 609	78 247 78 319 78 390	78 254 78 326 78 398	78 190 78 262 78 333 78 405 78 476	78 269 78 340 78 412	78 276 78 347 78 419	78 283 78 355 78 426	78 290 78 362 78 433	78 297 78 369 78 440	78 305 78 376 78 447	78 312 78 383 78 455
610 611 612 613 614	78 604	78 611 78 682 78 753	78 547 78 618 78 689 78 760 78 831	78 625 78 696 78 767	78 633 78 704 78 774	78 640 78 711 78 781	78 647 78 718 78 789	78 654 78 725 78 796	78 661 78 732 78 803	78 668 78 739 78 810
615 616 617 618 619	78 958 79 029 79 099	78 965 79 036 79 106	78 902 78 972 79 043 79 113 79 183	78 979 79 050 79 120	78 986 79 057 79 127	78 993 79 064 79 134	79 000 79 071 79 141	79 007 79 078 79 148	79 014 79 085 79 155	79 021 79 092 79 162
620 621 622 623 624	79 309 79 379 79 449	79 316 79 386 79 456	79 253 79 323 79 393 79 463 79 532	79 330 79 400 79 470	79 337 79 407 79 477	79 344 79 414 79 484	79 351 79 421 79 491	79 358 79 428 79 498	79 365 79 435 79 505	79 372 79 442 79 511
625 626 627 628 629	79 657 79 727 79 796	79 664 79 734 79 803	79 602 79 671 79 741 79 810 79 879	79 678 79 748 79 817	79 685 79 7 54 79 824	79 692 79 761 79 831	79 699 79 768 79 837	79 706 79 775 79 844	79 713 79 782 79 851	79 720 79 789 79 858
630 631 632 633 634	80 003 80 072 80 140	80 010 80 079 80 147	79 948 80 017 80 085 80 154 80 223	80 024 80 092 80 161	80 030 80 099 80 168	80 037 80 106 80 175	80 044 80 113 80 182	80 051 80 120 80 188	80 058 80 127 80 195	80 065 80 134 80 202
635 636 637 638 639	80 346 80 414 80 482	80 353 80 421 80 489	80 291 80 359 80 428 80 496 80 564	80 366 80 434 80 502	80 373 80 441 80 509	80 380 80 448 80 516	80 387 80 455 80 523	80 393 80 462 80 530	80 400 80 468 80 536	80 407 80 475 80 543

CERAMICS

N	0	1	2	3	4	5	6	7	8	9
640 641 642 643 644	80 686 80 754 80 821	80 760 80 828	80 699 80 767 80 835	80 706 80 774 80 841	80 713 80 781 80 848	80 652 80 720 80 787 80 855 80 922	80 726 80 794 80 862	80 733 80 801 80 868	80 740 80 808 80 875	80 747 80 814 80 882
645 646 647 648 649	81 023 81 090 81 158	81 030 81 097 8! 164	81 037 81 104 81 171	81 043 81 111 81 178	81 050 81 117 81 184	80 990 81 057 81 124 81 191 81 258	81 064 81 131 81 198	81 070 81 137 81 204	81 077 81 144 81 211	81 084 81 151 81 218
650 651 652 653 654	81 425 81 491	81 365 81 431 81 498	81 305 81 371 81 438 81 505 81 571	81 445 81 511	81 385 81 451 81 518	81 325 81 391 81 458 81 525 81 591	81 398 81 465 81 531	81 405 81 471 81 538	81 411 81 478 81 544	81 418 81 485 81 551
655 656 657 658 659	81 690 81 757 81 823	81 697 81 763 81 829	81 704 81 770 81 836	81 710 81 776 81 842	81 717 81 783 81 849	81 657 81 723 81 790 81 856 81 921	81 730 81 796 81 862	81 737 81 803 81 869	81 743 81 809 81 875	81 750 81 816 81 882
660 661 662 663 664	82 020 82 086 82 151	82 027 82 092 82 158	82 033 82 099 82 164	82 040 82 105 82 171	82 046 82 112 82 178	81 987 82 053 82 119 82 184 82 249	82 060 82 125 82 191	82 066 82 132 82 197	82 073 82 138 82 204	82 079 82 145 82 210
665 666 667 668 669	82 347 82 413 82 478	82 354 82 419 82 484	82 360 82 426 82 491	82 367 82 432 82 497	82 373 82 439 82 504	82 315 82 380 82 445 82 510 82 575	82 387 82 452 82 517	82 393 82 458 82 523	82 400 82 465 82 530	82 406 82 471 82 536
670 671 672 673 674	82 672 82 737 82 802	82 679 82 743 82 808	82 685 82 750 82 814	82 692 82 756 82 821	82 698 82 763 82 827	82 640 82 705 82 769 82 834 82 898	82 711 82 776 82 840	82 718 82 782 82 847	82 724 82 789 82 853	82 730 82 795 82 860
675 676 677 678 679	82 995 83 059 83 123	83 001 83 065 83 129	83 008 83 072 83 136	83 014 83 078 83 142	83 020 83 085 83 149	82 963 83 027 83 091 83 155 83 219	83 033 83 097 83 161	83 040 83 104 83 168	83 046 83 110 83 174	83 052 83 117 83 181
680 681 682 683 684	83 378 83 442	83 321 83 385 83 448	83 327 83 391 83 455	83 334 83 398 83 461	83 340 83 404 83 467	83 283 83 347 83 410 83 474 83 537	83 353 83 417 83 480	83 359 83 423 83 487	83 366 83 429 83 493	83 372 83 436 83 499

N	0		1			2		3		4		5		6		7		8		9
685 686 687 688 689	83 56 83 69 83 7 83 82	32 8 96 8 59 8	33 6 33 7 33 7	639 702 765	83 83 83	645 708 771	83 83 83	651 715 778	83 83 83	658 721 784	83 83 83	664 727 790	83 83 83	670 734 797	83 83 83	677 740 803	83 83 83	683 746 809	83 83 83	68° 75° 81°
690 691 692 693 694	83 88 83 9- 84 0 84 0 84 13	18 3 11 8 73 8	33 9 34 0 34 0)17)89	83 84 84	960 023 086	83 84 84	967 029 092	83 84 84	9 7 3 036 098	83 84 84	979 042 105	83 84 84	985 048 111	83 84 84	992 055 117	83 84 84	998 061 123	34 84 84	00 06 13
695 696 697 698 699	84 19 84 26 84 32 84 38 84 44	51 8 23 8 36 8	34 2 34 3 34 3	67 30 92	84 84 84	273 336 398	84 84 84	280 342 404	84 84 84	286 348 410	84 84 84	292 354 417	84 84 84	298 361 423	84 84 84	305 367 429	84 84	311 373 435	84 84 84	31 37 44
700 701 702 703 704	84 51 84 57 84 63 84 69 84 75	72 8 34 8 95 8	34 5 34 6 34 7	78 40 02	84 84 34	584 646 708	84 84 84	590 652 714	84 84 84	597 658 720	84 84 84	603 665 726	84 84 84	609 671 733	84 84 84	615 677 7 39	84 84 84	621 683 745	84 84 84	62 68 75
705 706 707 708 709	84 81 84 88 84 94 85 00 85 00	30 8 42 8 03 8	34 8 34 9 35 0	87 48 139	84 84 85	893 954 016	84 84 85	899 960 022	84 84 85	905 967 028	84 84 85	911 973 034	84 84 85	917 979 040	84 84 85	924 985 046	84 84 85	830 991 052	84 84 85	93 99 05
710 711 712 713 714	85 1: 85 1: 85 2: 85 3: 85 3:	87 8 48 8 09 8	85 1 85 2 85 3	193 254 315	85 85 85	199 260 321	85 85 85	205 266 327	85 85 85	211 272 333	85 85 85	217 278 339	85 85 85	224 285 345	85 85 85	230 291 352	85 85 85	236 297 358	85 85 85	24 30 36
715 716 71 7 718 719	85 4: 85 4: 85 5: 85 6: 85 6:	52 9 12 9	35 4 35 5 35 6	197 558 518	85 85 85	503 564 625	85 85 85	509 570 631	85 85 85	516 576 637	85 85 85	522 582 643	85 85 85	528 588 649	85 85 85	534 594 655	85 85 85	540 600 661	85 85 85	54 60 66
720 721 722 723 724	85 77 85 79 85 83 85 9 85 97	94 8 54 8 14 8	35 8 35 8 35 9	300 360 20	85 85 85	805 866 926	85 85 85	812 872 932	85 85 85	818 878 938	85 85 85	824 884 944	85 85 85	830 890 950	85 85 85	836 896 956	85 85 85	842 902 962	85 85 85	84 90 96
725 726 727 728 729	86 0 86 0 86 1 86 2 86 2	94 8 53 8	36 1 36 1 36 2	100 159 219	86 86 86	106 165 225	86 86	112 171 231	86 86 86	118 177 237	86 86 86	124 183 243	86 86 86	130 189 249	86 86 86	136 195 255	86 86 86	141 201 261	86 86 86	19 27 20

N	0	1	2	3	4	5	6	7	8	9
730 731 732 733 734	86 451 86 510	86 398 86 457 86 516	86 404 86 463 86 522	86 410 86 469 86 528	86 415 86 475 86 534	86 421 86 481 86 540	86 427 86 487 86 546	86 433 86 493 86 552	86 380 86 439 86 499 86 558 86 617	86 445 86 504 86 564
735 736 737 738 739	86 688 86 747 86 806	86 694 86 753 86 812	86 700 86 759 86 817	86 705 86 764 86 823	86 711 86 770 86 829	86 717 86 776 86 835	86 723 86 782 86 841	86 729 86 788 86 847	86 676 86 735 86 794 86 853 86 911	86 741 86 800 86 859
740 741 742 743 744	86 982 87 040 87 099	86 988 87 046 87 105	86 994 87 052 87 111	86 999 87 058 87 116	87 005 87 064 87 122	87 011 87 070 87 128	87 017 87 075 87 134	87 023 87 031 87 140	8) 970 8) 029 87 87 87 46 87 114	87 035 87 093 87 151
745 746 747 748 749	87 274 87 332 87 390	87 280 87 338 87 396	87 286 87 344 87 402	87 291 87 349 87 408	87 297 87 355 87 413	87 361 87 419	87 369 87 367 87 425	87 315 87 373 87 431	87 28 87 32 87 379 87 437 87 495	87 326 17 384 7 442
750 751 752 753 754	37 564 87 622 87 679	87 570 87 628 87 685	87 576 87 633 87 691	87 581 87 639 87 697	87 587 87 645 87 702	87 593 87 651 87 708	87 599 87 656 87 714	87 604 87 662 87 720	87 552 87 610 87 668 87 726 87 783	87 16 87 14 87 71
755 756 757 758 759	87 852 87 910 87 967	87 858 87 915 87 973	87 864 87 921 87 978	87 869 87 927 87 984	87 875 87 933 8 7 9 90	87 881 87 938 87 996	87 887 87 944 88 CO1	87 892 87 950 88 007	87 841 87 898 87 955 88 013 88 070	87 90 87 96 38 01
760 761 762 763 764	88 138 88 195 88 252	88 144 88 201 88 258	88 150 88 207 88 264	83 156 88 213 88 270	88 161 88 218 88 275	88 167 88 224 88 281	88 173 88 230 88 287	88 178 88 235 88 292	88 127 88 184 88 241 88 298 88 355	88 24 88 30
765 766 767 768 769	88 423 88 489 88 536	88 429 88 485 88 542	88 434 88 491 88 547	88 449 88 497 88 553	88 446 88 502 88 559	88 451 88 508 88 564	88 457 88 513 88 570	88 463 88 519 38 576	88 412 88 468 88 525 88 581 88 638	88 47 88 53 88 58
770 771 772 773 774	88 705 88 762 88 818	88 711 88 767 88 824	88 717 88 773 88 829	88 722 88 779 88 83 5	88 728 88 784 88 840	88 734 88 790 88 846	88 739 88 79 88 85	88 745 88 801 2 88 857	88 694 88 750 88 807 88 863 88 919	88 75 88 81 88 86

N	0	1	2	3	4	5	6	7	8	9
775 776 777 778 779	88 986 89 042 89 098	88 992 89 048 89 104	88 997 89 053 89 109	88 947 89 003 89 059 89 115 89 170	89 009 89 064 89 120	89 014 89 070 89 126	89 020 89 076 89 131	89 025 89 081 89 137	89 031 89 087 89 143	89 03 89 09 89 14
780 781 782 783 784	89 265 89 321 89 376	89 271 89 326 89 382	89 276 89 332 89 387	89 226 89 282 89 337 89 393 89 448	89 287 89 343 89 398	89 293 89 348 89 404	89 298 89 354 89 409	89 304 89 360 89 415	89 310 89 365 89 421	89 31 89 37 89 42
785 786 787 788 789	8' 597 F) 653	89 548 89 603 89 658	89 553 89 609 89 664	89 504 89 559 89 614 89 669 89 7 24	89 564 89 620 89 675	89 570 89 625 89 680	89 575 89 631 89 686	89 581 89 636 89 691	89 586 89 642 89 697	89 59 89 64 89 70
790 791 792 791 791	89 873 89 9 27	89 823 89 878 89 933	89 829 89 883 89 938	89 779 89 834 89 889 89 944 89 998	89 840 89 894 89 949	89 845 89 900 89 955	89 851 89 905 89 960	89 856 89 911 89 966	89 862 89 916 89 971	89 86 89 92 89 97
795 96 197 798 799	90 091 90 146 90 200	90 097 90 151 90 206	90 102 90 157 90 211	90 053 90 108 90 162 90 217 90 271	90 113 90 168 90 222	90 119 90 173 90 227	90 124 90 179 90 233	90 129 90 184 90 238	90 135 90 189 90 244	90 14 90 19 90 24
800 801 802 803 804	90 363 90 417 90 472	90 369 90 423 90 477	90 374 90 428 90 482	90 325 90 380 90 434 90 488 90 542	90 385 90 439 90 493	90 390 90 445 90 499	90 396 90 450 90 504	90 401 90 455 90 509	90 407 90 461 90 515	90 41 90 46 90 52
805 806 807 808 809	90 634 90 687 90 7 41	90 639 90 693 90 747	90 644 90 698 90 752	90 596 90 650 90 703 90 757 90 811	90 655 90 709 90 763	90 660 90 7 14 90 7 68	90 666 90 720 90 773	90 671 90 725 90 779	90 677 90 730 90 784	90 68 90 73 90 78
810 811 812 813 814	90 902 90 956 91 009	90 907 90 961 91 014	90 913 90 966 91 020	90 865 90 918 90 972 91 025 91 078	90 924 90 977 91 030	90 929 90 982 91 036	90 934 90 988 91 041	90 940 90 993 91 046	90 945 90 998 91 052	90 95 91 00 91 05
815 816 817 818 819	91 169 91 222 91 275	91 174 91 228 91 281	91 180 91 233 91 2 86	91 132 91 185 91 238 91 291 91 344	91 190 91 243 91 297	91 196 91 249 91 302	91 201 91 254 91 307	91 206 91 259 91 312	91 212 91 265 91 318	91 21 91 27 91 32

					1		,			
N	0	1	2	3	4	5	6	7	8	9
820 821 822 823 824	91 434 91 487 91 540	91 440 91 492 91 545	91 445 91 498 91 551	91 450 91 503 91 556	91 455 91 508 91 561	91 461 91 514 91 566	91 413 91 466 91 519 91 572 91 624	91 471 91 524 91 577	91 477 91 529 91 582	91 482 91 535
825 826 827 828 829	91 698 91 751 91 803	91 703 91 756 91 808	91 709 91 761 91 814	91 714 91 766 91 819	91 719 91 772 91 824	91 724 91 777 91 829	91 730 91 782 91 834	91 735 91 787 91 840	91 740 91 793 91 845	91 693 91 745 91 798 91 850 91 903
830 831 832 833 834	91 960 92 012 92 065	91 965 92 018 92 070	91 971 92 023 92 075	91 976 92 028 92 080	91 981 92 033 92 085	91 986 92 038 92 091	91 991 92 044 92 096	91 997 92 049 92 101	92 002 92 054 92 106	91 955 92 007 92 059 92 111 92 163
835 836 837 838 839	92 221 92 273 92 324	92 226 92 278 92 330	92 231 92 283 92 335	92 236 92 288 92 340	92 241 92 293 92 345	92 247 92 298 92 350	92 252 92 304 92 355	92 257 92 309 92 361	92 262 92 314 92 366	92 215 92 267 92 319 92 371 92 423
840 841 842 843 844	92 480 92 531 92 583	92 485 92 536 92 588	92 490 92 542 92 593	92 495 92 547 92 598	92 500 92 552 92 603	92 505 92 557 92 609	92 511 92 562 92 614	92 516 92 567 92 619	92 521 92 572 92 624	92 474 92 526 92 578 92 629 92 681
845 846 847 848 849	92 737 92 788 92 840	92 742 92 793 92 845	92 747 92 799 92 850	92 752 92 804 92 855	92 758 92 809 92 860	92 763 92 814 92 865	92 768 92 819 92 870	92 773 92 824 92 875	92 778 92 829 92 881	92 732 92 783 92 834 92 886 92 937
850 851 852 853 854	92 993 93 044 93 095	92 998 93 049 93 100	93 003 93 054 93 105	93 008 93 059 93 110	93 013 93 064 93 115	93 018 93 069 93 120	93 024 93 075 93 125	93 029 93 080 93 131	93 034 93 089 93 136	92 988 93 039 93 090 93 141 93 192
855 856 857 858 859	93 247 93 298 93 349	93 252 93 303 93 354	93 258 93 308 93 359	93 263 93 313 93 364	93 268 93 318 93 369	93 273 93 323 93 374	93 278 93 328 93 379	93 283 93 334 93 384	93 288 93 339 93 389	93 242 93 253 93 344 93 394 93 445
860 861 862 863 864	93 500 93 551 93 601	93 505 93 556 93 606	93 510 93 561 93 611	93 515 93 566 93 616	93 520 93 571 93 621	93 526 93 576 93 626	93 531 93 58! 93 631	93 536 93 586 93 636	93 54 93 59 93 64	93 495 93 546 93 596 93 646 93 697

N	0	1	2	3	4	5	6	7	8	9
865 866 867 868 869	93 752 93 802 93 852	93 807 93 857	93 712 93 762 93 812 93 862 93 912	93 81 7 93 867	93 772 93 822 93 872	93 777 93 827 93 877	93 782 93 832 93 882	93 837 93 887	93 792 93 842 93 892	93 79 93 84 93 89
870 871 872 873 874	94 002 94 052 94 101	94 007 94 057 94 106	93 962 94 012 94 062 94 111 94 161	94 017 94 067 94 116	94 022 94 072 94 121	94 027 94 077 94 126	94 032 94 082 94 131	94 037 94 086 94 136	94 042 94 091 94 141	94 04 94 09 94 14
875 876 877 878 879	94 250 94 300 94 349	94 255 94 305 94 354	94 211 94 260 94 310 94 359 94 409	94 265 94 315 94 364	94 270 94 320 94 369	94 275 94 325 94 374	94 280 94 330 94 379	94 285 94 335 94 384	94 290 94 340 94 389	94 29 94 34 94 39
880 881 882 883 884	94 498 94 547 94 596	94 503 94 552 94 601	94 458 94 507 94 557 94 606 94 655	94 512 94 562 94 611	94 517 94 567 94 616	94 522 94 571 94 621	94 527 94 576 94 626	94 532 94 581 94 630	94 537 94 586 94 635	94 5 94 5 94 6
885 886 887 888 888	94 743 94 7 92 94 841	94 748 94 797 94 846	94 704 94 753 94 802 94 851 94 900	94 75 8 94 807 94 856	94 763 94 812 94 861	94 7 68 94 817 94 866	94 773 94 822 94 8 71	94 778 94 827 94 876	94 783 94 832 94 880	94 78 94 83 94 88
890 891 892 893 894	94 988 95 036 95 085	94 993 95 041 95 090	94 949 94 998 95 046 95 095 95 143	95 002 95 051 95 100	95 007 95 056 95 105	95 012 95 061 95 109	95 017 95 066 95 114	95 022 95 071 95 119	95 027 95 075 95 124	95 03 95 08 95 12
895 896 897 898 899	95 231 95 279 95 328	95 236 95 284 95 332	95 192 95 240 95 289 95 337 95 386	95 245 95 294 95 342	95 250 95 299 95 347	95 255 95 303 95 352	95 260 95 308 95 357	95 265 95 313 95 361	95 270 95 318 95 366	95 27 95 37 95 37
900 901 902 903 904	95 424 95 472 95 521 95 569 95 617	95 477 95 525 95 574	95 482 95 530 95 578	95 487 95 535 95 583	95 492 95 540 95 588	95 49 7 95 545 95 593	95 501 95 550 95 598	95 506 95 554 95 602	95 511 95 559 95 60 7	95 5 95 5 95 6
905 906 907 908 909	95 761	95 718 95 766 95 813	95 722 95 770 95 818	95 727 95 775 95 823	95 7 32 95 7 80 95 828	95 737 95 7 85 95 832	95 7 42 95 7 89 95 837	95 746 95 7 94 95 842	95 751 95 799 95 847	95 7 5 95 80 95 85

CERAMICS

N	0	- 1	2	3	4	5	6	7	8	9
910 911 912 913 914	95 952 95 999 96 047	95 957 96 004 96 052	95 961 96 009 96 057	95 918 95 966 96 014 96 061 96 109	95 971 96 019 96 066	95 976 96 023 96 071	95 980 96 028 96 0 7 6	95 985 96 033 96 080	95 990 96 038 96 085	95 96 96 0 96 0
915 916 917 918 919	96 190 96 237 96 284	96 194 96 242 96 289	96 199 96 246 96 294	96 156 96 204 96 251 96 298 96 346	96 209 96 256 96 303	96 213 96 261 96 308	96 218 96 265 96 313	96 223 96 270 96 317	96 227 96 275 96 322	96 2 96 2 96 3
920 921 922 923 924	96 426 96 473 96 520	96 431 96 478 96 525	96 435 96 483 96 530	96 393 96 440 96 487 96 534 96 581	96 445 96 492 96 539	96 450 96 497 96 544	96 454 96 501 96 548	96 459 96 506 96 553	96 464 96 511 96 558	96 4 96 5 96 5
925 926 927 928 929	96 661 96 708 96 755	96 666 96 713 96 7 59	96 670 96 717 96 764	96 628 96 675 96 722 96 769 96 816	96 680 96 727 96 774	96 685 96 731 96 778	96 689 96 736 96 783	96 694 96 741 96 788	96 699 96 7 45 96 7 92	96 7 96 7 96 7
930 931 932 933 934	96 895 96 942 96 988	96 900 96 946 96 993	96 904 96 951 96 997	96 862 96 909 96 956 97 002 97 049	96 914 96 960 97 007	96 918 96 965 97 011	96 923 96 970 97 016	96 928 96 974 97 021	96 932 96 979 97 025	96 9: 96 9: 97 0:
935 936 937 938 939	97 128 97 174 97 220	97 132 97 179 97 225	97 137 97 183 97 230	97 095 97 142 97 188 97 234 97 280	97 146 97 192 97 239	97 151 97 197 97 243	97 155 97 202 97 248	97 160 97 206 97 253	97 165 97 211 97 257	97 1 97 2 97 2
940 941 942 943 944	97 359 97 405 97 451	97 364 97 410 97 456	97 368 97 414 97 460	97 327 97 373 97 419 97 465 97 511	97 377 97 424 97 470	97 382 97 428 97 474	97 387 97 433 97 479	97 391 97 437 97 483	97 396 97 442 97 488	97 4 97 4 97 4
945 946 947 948 949	97 589 97 635 97 681	97 594 97 640 97 685	97 598 97 644 97 690	97 557 97 603 97 649 97 695 97 740	97 607 97 653 97 699	97 612 97 658 97 704	97 617 97 663 97 708	97 621 97 667 97 713	97 626 97 672 97 717	97 6 97 6
950 951 952 953 954	97 818 97 864 97 909	97 823 97 868 97 914	97 827 97 873 97 918	97 786 97 832 97 877 97 923 97 968	97 836 97 882 97 928	97 841 97 886 97 932	97 845 97 891 97 937	97 850 97 896 97 941	97 855 97 900 97 946	97 8 97 9 97 9

	1	1	1	1	1	1	1			1
N	0	1	2	3	4	5	6	7	8	9
955 956 957 958 959	98 046 98 091 98 137	98 005 98 050 98 096 98 141 98 186	98 055 98 100 98 146	98 059 98 105 98 150	98 064 98 109 98 155	98 068 98 114 98 159	98 073 98 118 98 164	98 078 98 123 98 168	98 082 98 127 98 173	98 08 7 98 13 2 98 177
960 961 962 963 964	98 272 98 313 98 363	98 232 98 277 98 322 98 367 98 412	98 281 98 327 98 372	98 286 98 331 98 376	98 290 98 336 98 381	98 295 98 340 98 385	98 299 98 345 98 390	98 304 98 349 98 394	98 354 98 399	98 313 98 358 98 403
965 966 967 968 969	98 498 93 543 98 588	98 457 98 502 93 547 98 592 98 637	98 507 98 552 98 597	98 511 98 556 98 601	98 516 98 561 98 605	98 520 98 565 98 610	98 525 98 570 98 614	98 529 98 574 98 619	98 534 98 579 98 623	98 538 98 583 98 628
970 971 872 973 974	98 722 98 767 98 811	98 682 98 726 98 771 98 816 98 860	98 731 98 7 76 98 820	98 7 35 98 7 80 98 8 25	98 7 40 98 7 84 98 829	98 744 98 789 98 834	98 7 49 98 7 93 98 838	98 7 53 98 7 98 98 843	98 758 98 802 98 847	98 762 98 807 98 851
975 976 977 978 979	98 945 98 989 99 03 4	98 905 98 949 98 994 99 038 99 083	98 954 98 998 99 043	98 958 99 003 99 047	98 963 99 007 99 052	98 967 99 012 99 056	98 972 99 016 99 061	98 976 99 021 99 065	98 981 99 025 99 069	98 985 99 029 99 074
980 981 982 983 984	99 167 99 211 99 255	99 127 99 171 99 216 99 260 99 304	99 176 99 220 99 264	99 180 99 224 99 269	99 185 99 229 99 273	99 189 99 233 99 277	99 193 99 238 99 282	99 198 99 242 99 286	99 202 99 247 99 291	99 20 7 99 251 99 295
985 936 987 988 989	99 432 99 476	99 348 99 392 99 436 99 480 99 524	99 396 99 441 99 484	99 401 99 445 99 489	99 405 99 449 99 493	99 410 99 454 99 498	99 414 99 458 99 502	99 419 99 463 99 506	99 423 99 467 99 511	99 427 99 471 99 515
990 991 992 993 994	99 607 99 651 99 695	99 568 99 612 99 656 99 699 99 743	99 616 99 660 99 704	99 621 99 664 99 708	99 625 99 669 99 712	99 629 99 673 99 717	99 6 34 99 6 77 99 7 21	99 638 99 682 99 726	99 642 99 686 99 7 30	99 64 7 99 691 99 734
995 996 997 998 999	99 826 99 870 99 913	99 787 99 830 99 874 99 917 99 961	99 835 99 878 99 922	99 839 99 883 99 926	99 843 99 887 99 930	99 848 99 891 99 935	99 852 99 896 99 939	99 856 99 900 99 944	99 85! 99 904 99 948	59 865 99 909 99 952
1000	00 000	00 004	00 009	00 013	00 017	00 022	00 026	00 030	00 035	00 039

TRANSMISSION OF POWER

SHAFTS

Power is transmitted along a straight line by means of shafts which should be of sufficient size to resist the torsional strains set up in them. These shafts, if horizontal, are supported by hangers, which are fitted with suitable bearings and should be close enough to one another to prevent any appreciable sag to the shaft, for such conditions not only cause a liability to spring, but wear the bearings bell shaped at the edges. No fixed distance can be given for hangers, to be used in all cases, since the number, size, and arrangement of pulleys on the shafts are vital factors and so each case must be left to the judgment or calculation of an experienced engineer. In general, though, hangers should not be placed more than 6 or 8 feet apart.

Power is taken from shafts either by means of gears, pulleys and belts, or sprockets and chains.

GEARS

Gears are wheels or pulleys upon the rim of which are projections called teeth. All of the teeth on a given gear are exactly alike, and the spaces between are of sufficient size to permit the teeth of a corresponding gear to fit into them without binding and yet without excess play—thus the gears are said to roll together, to mate, or to mesh. The size of the teeth varies for different kinds of work and conditions of operation, and are designated by a factor called the *pitch*.

There are two systems of pitches in use to-day:

To determine the circular pitch of a given gear, then, with a pair of dividers find the point at which the tooth and the space are the same size, draw on a piece of paper an arc with a radius equal to the distance from this point to the center of the gear, lay off a definite arc by stepping the dividers twice, and then carefully measure this arc—this distance is the circular pitch. For instance if it should seem to be $1\frac{1}{64}$ inches, then, in all probability the real circular pitch is 1 inch, and the $\frac{1}{64}$ inch represents an error due to wear of the gear, or in laying off.

2. Diametral pitch, which is the number of teeth per inch of diameter of the pitch circle which is as described above. For instance if the pitch diameter (diameter of the pitch circle) is 12 inches and the number of teeth is 72, then the diametral pitch is 72 divided by 12 or 6. In general the length of the teeth is such that the outside diameter of the gear (from tip of tooth to tip of tooth) is equal to the *number of teeth plus 2*

divided by the diametral pitch; for example, if the gear has 72 teeth of 6 diametral pitch, then the outside diameter would be $72+2\div6$, or 12.33 inches.

To determine the diametral pitch of a given gear, then; count the number of teeth, add two to this number, and divide by the outside diameter carefully measured. In standard practice the diametral pitch is given in simple fractions of the inch, or in whole inches. For example if the number of teeth is 88 and the outside diameter is 11.25 inches, then the diametral pitch is 88+2÷11.25 or 8.

All gears of any pitch (either circular or diametrical) no matter what may be the number of teeth, will mesh with one another.

In two gears working together, it is evident that when a tooth of one passes through any certain distance, a tooth of the other must necessarily pass through a similar distance, and, therefore if one gear has 24 teeth and the other 12, when 12 teeth of the former have passed a given point, 12 of the latter also will have passed a given point; the former will have made a half revolution, and the latter a complete revolution. From this it will be seen that the number of revolutions, or the angular velocities of two meshing gears are indirectly as the number of teeth, and may be expressed in a proportion as follows: if

n = number of teeth of the one from which power is to be taken

N = number of teeth $\begin{cases} \text{the one to which power is to be} \\ \text{delivered} \end{cases}$

v = number of revolutions per minute of driver;

V = number of revolutions per minute of driven; then

Example. If a 15-tooth pinion on a motor has a speed of 1150 r.p.m., is to mesh with a gear on a grinder shaft and give to it a velocity of 200 r.p.m., how many teeth must the latter have?

V: v = n: N200: 1150::15: N200 N = 17250N = 86.25

That is $86\frac{1}{4}$ teeth. It is impossible to have a fraction of a tooth, and so the gear should have 86 teeth, and the speed of the grinder will be a little in excess of 200 r.p.m.

V: 1150::15:86 86V=17250 V=200.58 r.p.m.

Example. If the diametral pitch of the teeth is 3, how far from the center of the grinder shaft should the motor shaft be placed?

Note.—The pitch circles should roll together, so that the distance would be equal to the sum of their radii.

 $15 \div 3 = 5$ pitch diameter of pinion, or driver 2.5 pitch radius of pinion, or driver $86 \div 3 = 28.66$ pitch diameter of spur, or driven

14.33 pitch radius of spur, or driven 2.5+14.33=16.83 inches, distance between shafts.

It will be noted that as far as the speed is concerned the size of the teeth makes no difference. They are controlled by the conditions under which the gears are to work, and should be left to a competent engineer. It often happens, however, that a machine is to be fitted up for operation, and the gear to be driven is already in place; in which case it may be assumed safely that the designer has considered the matter of strength and provided correct teeth, so no ill results should follow using them.

PULLEYS

Pulleys accomplish the same results as do gears with the advantage that they do not require a fixed distance between centers, since a belt traverses the intervening space, and they may be used to transmit power considerable distances. It is assumed that the belt does not slip upon the pulleys, and so a similar proportion for relative speeds may be written for pulleys as for gears if

d = the diameter of the driver in inches;

D = the diameter of the driven in inches;

v = number of revolutions per minute of driver;

V = number of revolutions per minute of driven;

V:v::d:D

Example. The pulley on a dry-pan is 36 inches in diameter should make 150 r.p.m. The line shaft from which power is to be taken makes 250 r.p.m., what size pulley should be ordered for the shaft?

V:v::d:D

150: 250::*d*: 36

250d = 5400

d = 21.6 inches

The nearest standard size to this should be used, perhaps 22 inches.

The width of the pulley should be slightly greater than the width of belt to be used upon it in order to protect the edges of the latter.

The width of belt is controlled by the amount of power to be transmitted, the velocity, and the tensile strength of the belt, and may be determined best from the specifications of the maker of the belt to be used, usually printed in a circular or catalog.

In the case of a machine, the face of the pulley is always given, and the designer has considered the power and provided for it, so a belt to fit the pulley is usually the correct width. The thickness of the belt, or the "ply" can be determined from the catalog.

The length of the belt is the commonest question to arise, and if both pulleys are in place, the simplest method is to measure the length directly by stretching a tape-line over them. A fine wire, or inelastic cord may be used in place of the tape, and the length carefully measured.

It often happens, however, that it is desired to place the order for the belt before the pulleys are in place, or even on hand, and then calculations must be resorted to for a length.

These are divided into three cases:

I. Open belt and both pulleys the same size. The belt passes around one-half of each pulley, an equivalent of once around one, and twice across the distance between centers, so that if

D = diameter of the pulleys in inches;

B = distance between centers in feet;

L =length of belt in *feet*;

then

$$L = (.2618 \times D) + (2 \times B)$$

Example. A line shaft has a speed of 250 r.p.m.; it is desired to operate a jack-shaft 15 feet from it at the same speed and two pulleys each 2 feet in diameter are on hand; how long should an open belt be?

$$L = (.2618 \times D) + (2 \times B);$$

$$L = (.2618 \times 24) + (2 \times 15);$$

L=6.28+30 or 36.28 feet or 36 feet $3\frac{3}{8}$ inches.

2. Open belt and both pulleys not the same size.

It is evident in this case that the belt passes around more than one-half of the larger and less than one-half of the smaller, and that the lengths of straight belt are not equal to the distance between the centers.

Let D = diameter of larger pulley in inches;

R= radius of larger pulley in inches;

d = diameter of smaller pulley in inches;

r = radius of smaller pulley in inches;

B = distance between centers of pulleys in inches;

L = length of belt in feet;

then

 $\frac{R-r}{B}$ = cosine of one-half the angle representing the part of the larger pulley *not covered* by the

belt, and also the part of the smaller that is covered.

From a table of Natural Trigonometrical Functions find the angle whose cosine is $\frac{R-r}{B}$ and multiply this by 2, call this angle A and reduce it to degrees of a decimal of degrees. (Note.—Do not multiply $\frac{R-r}{B}$ by 2, and then find angle, for there will be a wide difference.) 3.1416 $\times D$ = circumference of larger pulley.

$$\frac{3.1416 \times D \times (360 - A)}{360} \text{ or } .00872 \times D \times (360 - A) = \text{inches}$$
around larger pulley;

$$\frac{3.1416 \times d \times A}{360}$$
 or .00872×d×A = inches around smaller pulley;

$$\sqrt{B^2-(R-r)^2}$$
 = length of each straight part of belt.
((.00872×D×(360-A))+(.00872×d×A)
+2 $\sqrt{B^2-(R-r)^2}$ = total length of belt in inches.

$$\frac{((.00872 \times D \times (360 - A)) + (.00872 \times d \times A) + 2\sqrt{B^2 - (R - r)^2}}{12} =$$

total length of belt in feet.

Example. One pulley 48 inches in diameter and 10 feet from another 12 inches in diameter is to be driven from it by an open belt; how much belt should be ordered?

$$D=48$$
 inches
 $R=24$ "
 $d=12$ "
 $r=6$ "
 $B=10$ feet or 120 inches
 $-r=24-6$ 18

$$\frac{R-r}{B} = \frac{24-6}{120} = \frac{18}{120} = .15000$$

From table's angle whose cosine is .15000=about $81^{\circ}-22\frac{1}{2}'$ or 81.374° 2×81.374=162.748=angle A

$$\frac{((.00872 \times D \times (360 - A)) + (.00872 \times d \times A) + 2\sqrt{B^2 - (R - r)^2}}{12} =$$

total length of belt in feet.

$$+\frac{\frac{(.00872\times48\times(360-162.748))}{12}}{\frac{(.00872\times12\times162.748)+2\sqrt{120^2-(24-6)^2}}{12}}{82.5600+17.0299+237.2846}$$

$$=\frac{336.8745}{12}$$
 = 28.072 feet or 28 feet $\frac{7}{8}$ inch.

3. Crossed belt, pulleys any size.

In this case the belt passes around more than onehalf of each pulley, and the angle left uncovered is the same for both no matter what the sizes may be, and as in case 2, the lengths of straight belt are not equal to the distance between centers.

Using same notation as in case 2 then $\frac{R+r}{B}$ = cosine of one-half of the angle uncovered in each pulley and two times angle whose cosine is $\frac{R+r}{B}$ = angle A

$$\frac{3.1416 \times D(360 - A)}{360} \text{ or } .00872 \times D \times (360 - A) = \text{inches}$$
around larger pulley
$$\frac{3.1416 \times d(360 - A)}{360} \text{ or } .00872 \times d \times (360 - A) = \text{inches}$$
around smaller pulley
$$\sqrt{B^2 - (R + r)^2} = \text{length of each straight part of belt}$$

$$((.00872 \times D) \times (3(00 - A)) + ((.00872 \times d) \times (360 - A))$$

((.00872×D×(360-A))+((.00872×d×(360-A))
+2
$$\sqrt{B^2-(R+r)^2}$$

or

$$(.00872 \times (360 - A) \times (D+d) + 2\sqrt{B^2 - (R+r)^2}$$

$$(.00872 \times (360 - A) \times (D+d) + 2\sqrt{B^2 - (R+r)^2}$$
12

= total length in feet.

Example. Same as last example, but substitute crossed belt for open.

$$\frac{R+r}{B} = \frac{24+6}{120} = \frac{30}{120} = .25000$$

From table angle whose cosine is $.35000 = \text{about } 75 - 31\frac{1}{2}$ or 75.524, $2 \times 75.524 = 151.048 = \text{angle A}$.

$$\frac{(.00872 \times (360 - A) \times (D + d) + 2\sqrt{B^2 - (R + r)^2}}{12}$$

= total length in feet

$$\frac{((.00872(360-151.048)\times(48+12))+2\sqrt{120^2-(24+6)^2}}{12}$$

$$\frac{109.3236 + 232.3790}{12} = \frac{341.7026}{12} = 28.45 \text{ feet or } 28 \text{ feet}$$

$$\frac{5\frac{1}{2} \text{ inches}}{1}$$

CALCULATING THE NUMBER OF BRICKS IN THE CROWN OF A CIRCULAR KILN

If the crown is part of a true sphere, then its surface is a zone and its area is equal to the circumference of

the sphere times the altitude of the zone. The circumference of the sphere is equal to the diameter times 3.1416, or twice the radius times 3.1416, and the altitude of the zone is equal to

the rise of the crown, so that the area then, may be expressed by the equation:

Area = diameter \times 3.1416 \times rise,

or

Area = $rad. \times 3.1416 \times rise$,

or

Area = $6.2832 \times \text{rad.} \times \text{rise.}$

If the bricks are placed on end, as usual, and they are 2.5×4.5 inches, then the area of each brick is 2.5×4.5 inches or 11.25 square inches, and there being 144 square inches in a square foot there will be 144÷11.25 or 12.8 bricks required per square foot of crown area.

The total number of bricks, therefore, will be equal to the area of the crown times the number of bricks per foot, or Area×12.8, and the third equation above then becomes

Number of bricks = $(6.2832 \times \text{rad.} \times \text{rise}) \times 12.8$ or

Number of bricks = 80.42 × rad. × rise.

For a crown of radius of 16 feet and a rise of 9 feet then

Number of bricks= $80.42 \times 16 \times 9$

or

Number of bricks=11,580, not allowing for broken ones that may not be used.

Bricks required in plain walls: 1 square foot $4\frac{1}{2}$ -inch wall require 7 bricks.

I square foot 9-inch wall requires 14-inch bricks. I square foot $13\frac{1}{2}$ -inch wall requires 21 bricks. 30 bricks per square foot of 18-inch wall, I cubic foot brick work requires 17 9-inch bricks; $7\frac{1}{2}$ bricks to each additional 4 or $4\frac{1}{2}$ inches in thickness of plain walls per square foot.

To lay 1000 bricks requires from 250 to 320 pounds of fire clay or silica cement,

METRIC MEASURES

LINEAR

10 millimeters (mm.) = 1 centimeter (cm.)
10 centimeters = 1 decimeter (dm)
10 decimeters = 1 meter (m.)
10 meters = 1 dekameter (Dm.)
10 dekameters = 1 kilometer (Km.)
10 kilometers = 1 myriameter (Mm.)

SQUARE

100 square millimeters (sq.mm.) = 1 sq. centimeter (sq.cm.) = 1 '' decimeter (sq.dm.) centimeters 100 decimeters meter (sq.m.) 100 = 1 " dekameter (sq.Dm.) 100 meters dekameters = i " hektometer (sq.Hm.) 100 = I " kilometer (sq.Km.) 100 hektometers

WEIGHTS

10 milligrams (mgm.) = 1 centigram (cgm.)
10 centigrams = 1 decigram (dgm.)
10 decigrams = 1 gram (gm.)
10 grams = 1 dekagram (Dgm.)
10 dekagrams = 1 hektogram (Hgm.)
10 hektograms = 1 kilogram (Kgm.)
100 kilograms = 1 metric quintal (Mq.)
1000 kilograms = 1 metric ton (T.)

MEASURE OF VOLUME

1000 cubic millimeters (cu.mm.) = 1 cubic centimeter (c.c.)
1000 '' centimeters = 1 '' decimeter (cu.dm.)
1000 '' decimeters = 1 '' meter (cu.m.)
10 milliliters (ml.) = 1 centiliter (cl.)
265

 10 centiliters
 = 1 deciliter (dl.)

 10 deciliters
 = 1 liter (L.)

 10 liters
 = 1 dekaliter (Dl.)

 10 dekaliters
 = 1 hektoliter (Hl.)

 10 hektoliters
 = 1 kiloliter (Kl.)

CONVERSION OF METRIC TO ENGLISH

LINEAR MEASURES

ı millimeter (mm.) = 0.039 inch \mathbf{r} centimeter (cm.) = 0.3937 inch r centimeter (cm.) = 0.0328 foot I meter (m.) 3.28 feet = 1.09 yards I meter (m.) I kilometer (km.) = 0.621 mile I inch (in.) 2.54 centimeters = I foot (ft.) 30.48 centimeters = I yard (yd.) o.914 meter = mile (m.) = 1600.33 meters

SQUARE MEASURE

 $\mathbf{1}$ sq. centimeter (sq.cm.) = 0.155 sq. in. = 10.764 sq. ft. I sq. meter (sq. cm.) 1.196 sq. yd. I sq. meter (sq. M.) = ı sq. kilomèter (sq.KM.) = 0.3861 sq. mile 6.451 sq. cm. I sq. inch (sq. in.) I sq. foot (sq.ft.) 020 sq. cm. 1 sq. yard (sq.yd.) =8361.13 sq. cm. =4046.7 sq. M.I sq. acre (sq.ac.) I sq. mile (sq.M.) 2.50 sq. KM. =

CUBIC MEASURE

 I cubic centimeter (c.c.)
 = 0.061 cu. in

 I cubic meter (C.M.)
 = 35.29 cu. ft.

 I cubic meter (C.M.)
 = 1.308 cu. yds.

 I cubic inch (cu.in.)
 = 16.383 c.c.

 I cubic foot (cu.ft.)
 = 28316 c.c.

 I cubic foot (cu.ft.)
 = 0.28 C.M.

 I cubic yard (cu.yd.)
 = .765 C.M.

```
I Litre (L.)
                                     61.027 cu. in.
I Litre (L.)
                                      0.0352 cu.ft.
1 Litre (L.)
                                      0.2642 gallon (U.S.)
I Litre (L.)
                                      2,202 pounds of water
                                               at 62° F.
I Litre (L.)
                                      1.06 pints
I Litre (L.)
                                       . 22 gallon
I pint
                                   568.23 CC.
I gallon (U.S.) of water weighs =
                                     8.385 pounds
I gallon
                                           CC.
                                  454I
I gallon (U.S.)
                                      3.785 litre
I cu.ft. of water weight
                                    62.278 pounds
T cu.ft.
                                     28.32 litres
I N. S. liquid oz.
                                     29.574 CC.
I cubic inch of water
                                       .3617 lb.
I gallon of water
                                   231 cu. in.
I cubic foot of water
                               = 1728 cu. in.
r cubic foot of water
                                      7.4805 gallons
```

WEIGHTS

ı gram 15.432 grains ı gram .0353 ounce i kilogram = 2.204 pounds ı kilogram = 35.274 ounces 1 kilogram = .ooii ton = 2000 pounds I ton 1 ounce = 28.35 gms. 1 pound = 453.50 gms. .454 K.gm. 1 pound = 907.18 K.gms. I ton

USEFUL INFORMATION

To find diameter of a circle multiply circumference by .31831.

To find circumference of a circle multiply diameter by 3.1416.

To find area of a circle multiply square of diameter by .7854.

To find surface of a ball multiply square of diameter by 3.1416.

To find side of an equal square multiply diameter by .8862.

To find cubic inches in a ball multiply cube of diameter by .5236.

Doubling the diameter of a pipe increases its capacity four times.

Double riveting is from 16 to 20 per cent stronger than single.

A gallon of water (U. S.) standard weighs $8\frac{1}{3}$ pounds and contains 231 cubic inches.

There are 9 square feet of heating surface to each square foot of grate surface.

A cubic foot of water contains $7\frac{1}{2}$ gallons, 1728 cubic inches and weighs $62\frac{1}{2}$ pounds.

Each nominal horse-power of a boiler requires 30 to 35 pounds of water per hour.

A horse-power is equivalent to raising 33,000 pounds I foot per minute, or 550 pounds I foot per second.

The average consumption of coal for a steam boiler is 12 pounds per hour for each square of grate surface.

To find the pressure in pounds per square inch of a column of water, multiply the height of the column in feet by .434.

Steam rising from water at its boiling-point (212° F.) has a pressure equal to the atmosphere (14.7 pounds

to the square inch).

To evaporate I cubic foot of water requires the consumption of $7\frac{1}{2}$ pounds of ordinary coal, or about I pound of coal to I gallon of water.

One-sixth of tensile strength of plate multiplied by thickness and divided by one-half the diameter of boiler gives the safe working pressure for tubular boilers. For marine boilers add 20 per cent for drilled holes.

INDEX

	PAGE
Analyses, Cement	79
-, Chromium	76
—, Clay,	115
—, Coal	144
—, Lime Stone	79
-, Magnesite	79
-, Porcelain	116
-, Qualitative	43
-, Quantitative	66
-, Řefractory Clays	115
-, Zirconium	80
—, Zircomuni	00
Coloulations Analyses	82
Calculations, Analyses	
-, Bins, Cylindrical	224
-, -, Rectangular	222
-, Bricks in Crown of a Circular Kiln	263
-, B.T.U. in Coal	144
—, Cement	135
-, Ceramic Bodies	IOI
-, Chemical Equivalents, Atomic and Molecular	
Weights	90
—, Contractions	122
-, Cost of Manufacture of Ceramic Bodies	140
—, Glass	105
-, Glass Mixture	102
—, Heating Value of Coal	135
—, Modulus of Rupture	169
-, Percentage Composition of a Compound	120
—— — of Mass	85
, and Cost of Raw Material	123
—, Porosity	160
—, Rational Analyses of Clay	84
Cone No 20	
— — — —, Cone No. 20 —, Refractory Value of Fire Clay (Bischof)	120
—, Slip	126
—, Specific Gravity	170

	PAGE
Calculations, Tanks Cylindrical	226
— —, Rectangular —, Transmission of Power, Belt —	225
- Transmission of Power Relt	258
, Gears	
Dullana	253
, Pulleys	257
, Shaft	257
-, Value of Raw Material	123
Chemical Formula, Atomic or Molecular Weight of	
Substances	162
Clays	I
-, Analysis	66
—, Burning	6
C-stine	_
—, Casting	33
-, Drying	4
—, Modulus of Rupture	169
—, Molding	4
, Molding	169
—, Porosity	169
, Refractory	115
-, Soaking	
Cif- Cit-	3
, Specific Gravity , Testing	170
—, lesting	10
—, Weathering	2
Colors Converting, B.T.U. in Cal.	112
Converting, B.T.U. in Cal	158
-, Fahrenheit in Centigrade	157
Crystals	16
01/34413	•
Defects and their Remedies	26
Defects and their Remedies	36
The state of the s	
Enamels	109
Factors	160
Formation and Melting Temperature of Silicates	203
Fritting	16
111111111111111111111111111111111111111	10
Glazes	T 0
Glazes	13
Heat Units	
Heat Units	157
Limited Values for Compounding Glazes	107
Logarithms	228
Ludwig's Isotetic Lines	132
Eddwig 5 130tette Ellies	132
Malting Daints Alumina and Cilias	017
	211
— —, Alumina, Silica and Calcium	214

	PAGE
Melting Points, Brick and Oxides	215
— —, Calcium and Silica	206
Feldspars and Silicates	204
, Magnesium and Kaolin	212
— —, Seger Cones	173
Mensuration	218
Metric Measure, Linear	265
, Square	265
— —, Volume	265
— —, Weights	265
-, Conversion, Linear	266
— —, Square	266
— —, Cubic	266
— —, Weights	267
Minerals	
Modulus of Dusting	175
Modulus of Rupture	169
Molecular Ratio of Different Compounds and Products	213
Porosity	169
Qualitative Analyses	43
—, Alumina	54
—, Antimony	51
-, Arsenic	51
—, Barium	60
—, Bismuth	
Cadanian	47
—, Cadmium	49
Calcium	61
—, Chromium	55
—, Cobalt	57
–, Copper	48
—, Iron	54
—, Lead	45
—, Magnesium	62
—, Manganese	58
—, Nickel	58
—, Silica	43
—, Silver	44
—, Strontium	61
—, Tin	51
—, Zinc	59
Ouantitative Analyses	66
—, Determination of Alumina	67
— — —, Calcium	70
Cement	79
Chromium	76

INDEX

PAGE
Quantitative Analysis, Determination of Clay
— — —, Iron
, Lime Stone
— — —, Loss
— — —, Manganese 70
— — —, Potash 74
———, Silica
— — —, Sodium
, Titanium 73
— — —, Zirconium 80
Reagents (solution) 63 Refractories, Acidic, Silica 18 —, Basic, Magnesite, Dolomite, Lime 27 —, Graphite, Crucibles 28 —, Neutral 17
Relation of Formula Quantities to Percentage Composition
Sewer Pipe
Useful Informations
Weight of Cubic foot of various Materials 216

D. VAN NOSTRAND COMPANY

are prepared to supply, either from their complete stock or at short notice,

Any Technical or Scientific Book

In addition to publishing a very large and varied number of Scientific and Engineering Books, D. Van Nostrand Company have on hand the largest assortment in the United States of such books issued by American and foreign publishers.

All inquiries are cheerfully and carefully answered and complete catalogs sent free on request.

Date Due

1		
MAR 4 100		
№ 8 °75		
•		

SURJECT DELLEGE

TP807 M295

25756

