

Paul Chow

http://www.eecg.toronto.edu/~pc

November 15, 2006

Today's Issues

- Uniprocessor performance has slowed significantly
- Heat is the issue
- Microprocessors are going multi-core
- Parallelism does not solve all problems

Other Approaches

- Heterogeneity
- More customized solutions can be faster and more efficient
 - But less general
- Clearspeed, vector, Cell, GPU
- FPGAs

Background: Classes of HPC Machines

Class 1 Machines

Supercomputers or clusters of workstations

Background: Classes of HPC Machines

Class 1 Machines

• Supercomputers or clusters of workstations

Class 2 Machines

- Hybrid network of CPU and FPGA hardware
- FPGA acts as external co-processor to CPU

Background: Classes of HPC Machines

Class 1 Machines

Supercomputers or clusters of workstations

Class 2 Machines

- Hybrid network of CPU and FPGA hardware
- FPGA acts as external co-processor to CPU

Class 3 Machines

- FPGA-based multiprocessor
- Recent area of academic and industrial focus

What are the Architecture Issues?

- Interconnect between FPGA and processors (Class 2)
 - Custom and commodity
 - HyperTransport (AMD)
 - XtremeData, DRC, Celoxica
 - PCIe, FSB

The Research

- Map applications
- What are the issues?
- Model
- Better solutions
- How do you program these things?