

Barramento dos sistemas

Alunos:

Cláudio André Rocha Alvares de Oliveira Luís Henrique Nunes da Silva Gustavo José Pimentel Brasileiro Organização e Arquitetura de Computadores 2021.1

Barramento dos sistemas

Componentes do computador

- John von Neumann (Arquitetura Von Neumann)
- Programa
- sistema aceita dados e produz resultados

Barramento dos sistemas

Componentes do computador

- John von Neumann (Arquitetura Von Neumann)
- Programa
- sistema aceita dados e produz resultados
- Código de instrução

Componentes do computador

- Componentes de E/S
- Armazenamento de instruções e dados (Memória)
- Registrador de Endereço de memória
- Registrador de buffer de
- memória

Função do Computador

- Leitura e Execução
- Ciclo de instrução
- Ciclo de busca e Ciclo de execução
- Contador de Programa
- Registrador de Instrução
- Processador-memória
- Processador E/S
- Processamento de dados
- Controle

Função do Computador

Ciclo de Busca e execução de instruções

Função do Computador

Ciclo de Busca e execução de instruções

Classes de interrupções.

Programa	Gerada por alguma condição que ocorre como resultado da execução de uma instrução, como o overflow aritmético, divisão por zero, tentativa de executar uma instrução de máquina ilegal ou referência fora do espaço de memória permitido para o usuário.	
Timer	Gerada por um timer dentro do processo. Isso permite que o sistema operacional realize certas funções regularmente.	
E/S	Gerada por um controlador de E/S para sinalizar o término normal de uma operação ou para sinalizar uma série de condições de erro.	
Falha de hardware	Gerada por uma falha como falta de energia ou erro de paridade de memória.	

(a) Sem interrupções

(b) Interrupções; curta espera de E/S

(c) Interrupções; longa espera de E/S

PROGRAMA DO USUÁRIO

```
comando
             Segmento de
 comando
              código 1
 comando
WRITE
 comando
             Segmento de
 comando
              código 2
 comando
WRITE
 comando
             Segmento de
 comando
              código 3
 comando
```

PROGRAMA DE E/S

Comando de E/S

Ciclo de instruções com interrupções

(b) Interrupções; curta espera de E/S

(c) Interrupções; longa espera de E/S

Interrupções Multíplas

Técnica 1

Técnica 2

(b) Processamento de internunção aninhado

Interrupções Multíplas

Sistema com 3 Dispositivos de E/S

Estruturas de interconexões

- •São os diferentes caminhos pelo qual os módulos se comunicam;
- Essa comunicação é feita através de endereços e sinais de controle.

Estruturas de interconexões

Troca de informações necessárias

Estruturas de interconexões

- Uma estrutura de interconexão deve obedecer aos seguintes tipos de comunicação:
- Memória para o processador;
- Processador para memória;
- E/S para o processador;
- Processador para E/S.

Interconexões de barramento

- Um barramento é um caminho que conecta dois ou mais dispositivos
- Meio de transmissão compartilhado
- Um sinal transmitido por qualquer dispositivo estará disponível para recepção de qualquer outro;
- Só um dispositivo por vez;
- Múltiplos caminhos conduzindo bits;
- Várias linhas transmitindo.
- Barramento de sistema
- Conecta memória, processador e E/S.

Estruturas de barramentos

ØDe 50 a centenas de linhas.

ØCada linha com uma função em particular:

- Linhas de dados 32, 64, 128 ou mais linhas:
- Largura determina geral o desempenho do sistema
- Linhas de endereços 8, 16 ou 32:
- Endereça memória, E/S destino dos dados;
- Largura determina a capacidade de memória máxima do sistema.

·Linhas de controle:

- Transmitem informações de comando e sincronização;
- Sincronização validade das informações de dados e endereços;
- Comando especificam operações a serem realizadas

Hierarquia de múltiplos barramentos

Configuração de barramento de arquitetura tradicional

Hierarquia de múltiplos barramentos

Configuração de barramento de arquitetura de alto desempenho

TIPO	LARGURA DO BARAMENTO
Dedicado	Endereço
Multiplexado	Dados
MÉTODO DE ARBITRAGEM	TIPO DE TRANSFERÊNCIA DE DADOS
Centralizado	Leitura
Distribuído	Escrita
SINCRONIZAÇÃO	Ler-modificar-escrever
Síncrona	Leitura-após-escrita
Assíncrona	Bloco

Referente ao tipo

1.Dedicado

Função fixa, cada caminho executa sua função.

üVantagem: Altas taxas de transferências

üDesvantagens: Aumento do tamanho e custo do sistema

2. Multiplexado

Os caminhos são compartilhados em tempos definidos.

üVantagem: Espaço e custos.

üDesvantagem: Mais complexo.

Referente a arbitração

1.Centralizado

 Um árbitro é responsável por alocar tempo de utilização do barramento a cada módulo do sistema.

2. Distribuído

 Não existe controle central. Onde cada módulo contém uma lógica de controle de acesso e os módulos agem de forma conjunta para compartilhar o barramento.

Referente a temporização

Modo pelo qual os eventos no barramento são coordenados

1.Síncrona

 Determinado pelo relógio. Uma transmissão de 1 ou 0 é chamado de ciclo de barramento.

2. Assíncrona

 A ocorrência de um evento no barramento depende de um evento ocorrido anteriormente.

Referente a largura de barramento

Quando maior a largura do barramento de dados, maior o número de bits transferidos e quanto maior a largura do barramento de endereço, maior o número de posições de memória que podem ser endereçadas

Referente a transferência de dados

- Operações de leitura e escrita;
- Operação de leitura-modificação-escrita;
- Operação de leitura-após-escrita;
- Transferência em bloco de dados.

Interconexão Ponto a Ponto

- Restrições Elétricas
- Latência
- Tempo de sincronização
- Maior taxa de dados

Uma técnica muito importante desses sistemas é o QPI (QuickPath Interconnection) criado pela Intel.

QPI - QuickPath Interconnection

- Conexões Diretas Múltiplas
- Arquitetura de protocolos em camadas
- Transferência de dados em pacotes

QPI - Camadas

Surgiu em 1990 para sistemas baseados em Pentium

- Surgiu em 1990 para sistemas baseados em Pentium
- Grande largura de banda e alta velocidade

- Surgiu em 1990 para sistemas baseados em Pentium
- Grande largura de banda e alta velocidade
- Permite melhor desempenho para aplicações periféricas
- Redução de custos

PCI Express

Mesmo com a independência na velocidade do barramento, o esquema PCI não conseguiu manter o ritmo das demandas de taxa de dados solicitados nos dias de hoje. Para atender essa nova demanda, surgiu uma nova versão: o PCI Express (PCIe).

PCI Express - Arquitetura

PCI Express - Camadas

Questões

- 1) Considere um microprocessador hipotético gerando um endereço de 16 bits (por exemplo, suponha que o contador de programa e os registradores de endereço tenham 16 bits de largura) e tendo um barramento de dados de 16 bits.
- a. Qual é o espaço de endereço de memória máximo que o processador pode acessar diretamente se estiver conectado a uma "memória de 16 bits"?
- b. Qual é o espaço de endereço de memória máximo que o processador pode acessar diretamente se estiver conectado a uma "memória de 8 bits"?
- c. Que recursos de arquitetura permitirão que esse microprocessador acesse um "espaço de E/S" separado?
- d. Se uma instrução de entrada e saída pode especificar um número de porta de E/S de 8 bits, quantas portas de E/S de 8 bits o microprocessador pode aceitar? Quantas portas de E/S de 16 bits? Explique.

Questões

- 2) Explique o que é uma interrupção, quais suas vantagens e desvantagens e como o ciclo de interrupção é adicionado sobre ao ciclo normal de uma interrupção. Fale sobre as múltiplas interrupções.
- 3) Considere um microprocessador de 32 bits, com um barramento de dados externo de 16 bits, dirigido por um relógio externo de 8 MHz. Suponha que esse microprocessador tenha um ciclo de barramento cuja duração mínima é de quatro ciclos de relógio. Qual é a taxa máxima de transferência de dados que esse microprocessador pode sustentar? Para aumentar seu desempenho, seria melhor aumentar a largura do seu barramento de dados externo de 16 para 32 bits ou dobrar a freqüência do relógio externo fornecido ao microprocessador?

