EE2023 Signals & Systems Quiz Semester 1 AY2011/12

Date: 6 October 2011 Time Allowed: 1.5 hours

Instructions:

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz.
- 3. No programmable or graphic calculators allowed.
- 4. Please enter your name and matric number in the spaces below.
- 5. Please staple this page to your written answer scripts.

Name :	
Matric # :	
Lecture Group # :	-

Question #	Marks
1	
2	
3	
4	
Total Marks	

For your information :

Group 1: A/Prof Loh Ai Poh

Group 2: A/Prof Ng Chun Sum

Group 3: A/Prof Tan Woei Wan

Group 4: Prof Lawrence Wong

EE2023 Signals & Systems Quiz

Semester 1 AY2011/12

Date: 6 October 2011 Time Allowed: 1.5 hours

Answer all 4 questions. All questions carry equal marks. Total marks: 40

Q1. Consider the periodic signal x(t) given by the expression

$$x(t) = (2+2j)e^{-j3t} - 3je^{-j2t} + 5 + 3je^{j2t} + (2-2j)e^{j3t}$$

- a) What is the fundamental period and fundamental frequency of x(t)?
- b) Sketch the amplitude and phase spectra of x(t).
- c) Is x(t) a real signal? Justify your answer.
- d) What is the power of x(t)?

Q2. Derive the Fourier transform of the signal x(t) shown in Figure Q-2-1.

rigule Q2-

[Hint: $rect(t/T) \Leftrightarrow T.sinc(fT)$ and $u(t) \Leftrightarrow 0.5[\delta(f) + 1/(j\pi f)]$

Derive the Fourier transform of the periodic signal y(t) shown in Figure Q2-2.

- Q3. A signal is modeled by $x(t) = 2rect\left(\frac{t}{2}\right) * rect\left(\frac{t}{2}\right)$ where * denotes convolution. Determine the spectrum, X(f), of x(t). Sketch and label the Energy Spectral Density (ESD) and Power Spectral Density (PSD) of x(t) for frequencies between -2Hz and 2Hz.
- Q4. Consider 2 signals, $x_1(t) = \sin 4\pi t$, $x_2(t) = 2\cos 8\pi t$. Suppose $y(t) = x_1(t)x_2(t)$. Write down the Fourier Transforms, $X_1(f)$, $X_2(f)$ and Y(f) where $X_1(f) \Leftrightarrow x_1(t)$, $X_2(f) \Leftrightarrow x_2(t)$ and $Y(f) \Leftrightarrow y(t)$. Sketch their amplitude spectra.

Assume that y(t) is sampled with a sampling frequency of $f_s = 10$ Hz. Sketch the amplitude spectrum of the sampled signal. Can y(t) be reconstructed completely from the sampled signal?