

Linear Algebra - Exam #1 - A. Terras, April 27, 2007

The exam is closed book, no calculators, no computers, no notes,

- 1) Define the following and give an example.
 - a) linearly independent vectors in a vector space V
 - c) linear transformation $T:V \rightarrow W$ where V and W are vector spaces
- 2) Given the matrix A below, find the reduced echelon form of A and then find a basis for the column space ColA and a basis for the null space NulA.

$$A = \begin{bmatrix} -3 & 9 & -2 & -6 \\ 6 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{bmatrix}.$$

- 3) True-False. Tell whether the following statements are true or false. If true, give a brief explanation and if false, give a counterexample.
 - a) The plane consisting of vectors (x,y,z) such that x+y+z=1 is a subspace of \mathbb{R}^3 .
 - b) Suppose W is a subspace of V and W^{\perp} denotes the orthogonal complement of W. Then $\dim(W) + \dim(W^{\perp}) = \dim(V)$.
 - c) Suppose A and B are nxn matrices. Then AB=BA.
- 4) Let \mathbb{P}_n be the vector space of polynomials of degree less than or equal to n.
 - a) What is the standard basis B_n for \mathbb{P}_n ?
 - b) Let $L:\mathbb{P}_2 \to \mathbb{P}_3$ be the function defined by $Lp(x) = \int\limits_0^x p(t)dt$.

Find the matrix of L using the basis $\,B_2\,$ for $\,\mathbb{P}_2\,$ and $\,B_3\,$ for $\,\mathbb{P}_3\,$.

- 5) Suppose that A is an mxm real matrix. Show that the following statements are equivalent.
 - i) The columns of A span \mathbb{R}^m .
 - ii) The equation $A\vec{x} = \vec{0}$ has a unique solution $\vec{x} = \vec{0}$.
