Interface driver for microcomputer peripheral and display devices BA13002F

The BA13002F is a high current transistor array consisting of six circuits of Darlington transistors. Because it incorporates built-in surge-absorbing diodes and base current-control resistors needed when using inductive loads such as relay coils, attachments can be kept to a minimum.

With an output withstanding voltage as high as 20V and an output current (sink current) of 320 mA, this product is ideal for use with various drivers and as an interface with other elements.

Applications

Drivers for LEDs, lamps, relays and solenoids Interface with other elements

Features

- 1) Output withstanding voltage (BVceo) of 20V.
- 2) High output current (lo) of 320 mA (Max.).
- 3) High current transfer ratio (hfe) of 1000 (Min.).
- 4) Wide range of voltages (- 25 to 20 V) can be applied to input.
- Equipped with output surge-absorbing clamp diode. (Note: Refer to the "Operation notes.")
- 6) Equipped with strobe input pin.

◆Absolute maximum ratings (Ta = 20°C to + 75°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	10	V
Output withstanding voltage	Vceo	- 0.5 ~ + 20	V
Output current	lo	320	mA
Input voltage	Vı	- 25 ~ + 20	V
Strobe input voltage	VI (STB)	20	V
Clamp diode reverse voltage	V _{R (D)}	20	V
Clamp diode forward current	I _{F (D)}	320	mA
Power dissipation (Ta = 25°C)	Pd	500*1	mW
Operating temperature	Topr	- 20 ~ + 75	°C
Storage temperature	Tstg	- 55 ~ + 125	°C

^{*1} Reduced by 5.0mW for each increase in Ta of 1°C over 25°C. (when mounted on a 50 × 50 × 1.6mm glass epoxy board).

●Block diagram

●Recommended operating conditions (Ta = -20°C to +75°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Power supply voltage	Vcc	3	_	8	V	_
Output voltage	Vo	0	_	20	V	_
Output current Io	1-	0	_	300	mA	Duty cycle of 20% or less: Vcc = 6.5V
Output current	out current Io	0	_	150	mA	Duty cycle of 40% or less: Vcc = 6.5V
Input high level voltage (strobe)	V _{IH} (STB)	2.4	_	18	V	_
Input low level voltage (strobe)	VIL (STB)	0	_	0.2	V	_
Input high level voltage	ViH	3.2	_	18	V	lo = 300mA
Input low level voltage	VIL	0	_	0.7	V	Io (leak) = 50μA

Internal circuit configuration

BA13002F

●Electrical characteristics (unless otherwise noted, Ta = – 25°C to + 75°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		Measurement circuit
Output withstanding voltage	VCEO	20	_	_	V	$\label{eq:Vcc} \begin{array}{l} \mbox{Vcc} = 8\mbox{V, Vi} = 18\mbox{V, Vi} (\mbox{STB}) = 0.2\mbox{V,} \\ \mbox{Iceo} = 100\mbox{\mu}\mbox{A} \end{array}$		Fig. 1
		_	0.6	1.0	V	Vi = 7V Vi (STB) = 2.4V	Vcc = 6.5V, lo = 300mA	
Output saturation voltage	VCE (sat)	_	0.5	0.85	V		Vcc = 6.5V, lo = 250mA	
		_	0.3	0.5	V		Vcc = 3V, lo = 120mA	
Clamp diode forward voltage	V _F (D)	_	1.4	2.4	V	I _{F (D)} = 320mA		Fig. 5
Clamp diode reverse voltage	V _R (D)	20	40	_	V	$I_{R(D)} = 100 \mu A$		Fig. 6
Power supply current	Icc	_	120	200	mA	Vcc = 8V, V _I = 7V (all inputs), V _I (STB) = 2.4V		Fig. 7
DC current transfer ratio	hfe	1000	3000	_	_	Vce = 4V, Vcc = 6.5V, Io = 300mA, Ta = 25°C		Fig. 2
Turn-on time	ton	_	0.1	_		Refer to measurement circuit. Fig.		F:- 0
Turn-off time	toff	_	0.1	_	μs			Fig. 8
Input current	lı	_	0.5	1.4	mA	Vcc = 8V, Vı = 3.2V, Vı (STB) = 2.4V		F:- 0
Input reverse current	lr	_	_	- 20	μΑ	Vcc = 8V, Vı = - 25V		- Fig. 3
Strobe input current	Iı (STB)	_	- 7.9	_	mA	Vcc = 8V, V _I = 3.2V (all inputs), V _I (STB) = 0.2V Fig. 4		Fig. 4
Strobe input reverse current	IR (STB)		_	20	μΑ	Vcc = 8V, Vı = 0V, Vı (STB) = 20V		

Measurement circuits

Fig. 1 Output withstanding voltage VCEO

Fig. 3 Input current I . • Input reverse current IR

Fig. 5 Clamp diode forward voltage V_{F (D)}

Fig. 7 Power supply current Icc

Circuit operation

Input / output logic table

IN	STB	OUT
L	L	Н
Н	L	Н
L	Н	Н
Н	Н	L

The driver operates based on the logic in the above table.

Fig. 2 Output saturation voltage V_{CE} (sat) • DC current transfer ratio h_{FE}

Fig. 4 Strobe input current I_{I (STB)} • Strobe input reverse current I_{R (STB)}

Fig. 6 Clamp diode reverse voltage VR (D)

Fig. 8 Turn-on time ton Turn-off time toff

(Note 1) Pulse width: $10\mu s$, duty cycle $\leq 5\%$ (Note 2) Including probe capacitance

Application example

BA13002F

Fig. 9

Operation notes

Make sure that the duty cycle – output current characteristic range is not exceeded.

Figure 10 shows the configuration of the on-chip diode for surge absorption. In the construction of the surge-absorbing diode, there is an N-P junction between the N-layer (N-well + BL) and the substrate (P-sub) so that when the diode is on, current flows from the output pin to the substrate. In terms of the vertical construction, this diode is configured similar to a PNP transistor.

When using the surge-absorbing diode, take appropriate measures regarding the thermal characteristics of the design considering the current that will be handled. Also, if motor back-rush current or other conditions that will result continued surge current to flow to the surge-absorbing diode can be foreseen, we strongly recommend connecting a Schottky barrier diode (or other type of diode with a low forward voltage) in parallel with the surge-absorbing diode to construct a bypass route for the surge current.

Fig. 11

Fig. 10 Vertical construction of the surge-absorbing diode

Electrical characteristic curves

Fig. 12 Duty cycle vs. collector current (I)

Fig. 13 Duty cycle vs. collector current (II)

Fig. 14 Output current vs. input voltage

Fig. 15 Output saturation voltage vs. output current

Fig. 16 Input current vs. input voltage

Fig. 17 Power supply current vs. power supply voltage

Fig. 18 Output current vs. input voltage (I)

Fig. 19 Output current vs. input voltage (I)

Fig. 20 Input current vs. input voltage

Fig. 21 Strobe terminal input current vs. input voltage

Fig. 22 DC current transfer ratio

External dimensions (Units: mm)

