HAX501X – Groupes et anneaux 1

Contrôle continu 2 - Correction

Exercice 1 : anneaux noethériens, et non noethériens. On rappelle une définition entrevue en cours : un anneau commutatif A est dit noethérien si toute suite croissante d'idéaux de A est stationnaire, c'est-à-dire si pour toute suite croissante

$$I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n \subset I_{n+1} \subset \cdots$$

d'idéaux de A, il existe un $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $I_n = I_N$.

- 1) On redémontre le fait, vu en cours, qu'un anneau principal est noethérien. Soit A un anneau principal, et soit $(I_n)_{n\in\mathbb{N}}$ une suite croissante d'idéaux de A comme ci-dessus.
 - a) Rappeler la définition de la notion d'anneau principal.

Voir le cours.

b) On pose $I = \bigcup_{n \in \mathbb{N}} I_n$. Montrer que I est un idéal de A.

Voir le cours.

c) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est stationnaire.

Voir le cours.

- 2) On considère l'anneau $\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} dans \mathbb{R} . Pour E une partie de \mathbb{R} , on note I(E) l'ensemble des applications $f: \mathbb{R} \to \mathbb{R}$ qui vérifient : $\forall x \in E, f(x) = 0$.
 - a) Montrer que I(E) est un idéal de $\mathbb{R}^{\mathbb{R}}$.
 - \triangleright Clairement, la fonction nulle $0 \in \mathbb{R}^{\mathbb{R}}$ est dans I(E).
 - \triangleright Soient $f, g \in I(E)$. Alors pour tout $x \in E$ on a f(x) = 0 et g(x) = 0, donc (f+g)(x) = f(x) + g(x) = 0. On en déduit que $f+g \in I(E)$.
 - \triangleright Soit $f \in I(E)$. Alors pour tout $x \in E$ on a f(x) = 0, donc (-f)(x) = -f(x) = 0. On en déduit que $-f \in I(E)$.
 - \triangleright Soit $f \in I(E)$, et soit $g \in \mathbb{R}^{\mathbb{R}}$ quelconque. Alors pour tout $x \in E$ on a f(x) = 0, et donc (fg)(x) = f(x)g(x) = 0. On en déduit que $fg \in I(E)$.
 - b) Montrer que c'est un idéal principal.

On note $\chi_{\mathbb{R}\setminus E}$ la fonction indicatrice de l'ensemble $\mathbb{R}\setminus E$, définie par

$$\chi_{\mathbb{R}\backslash E} = \begin{cases} 0 & \text{si } x \in E; \\ 1 & \text{si } x \notin E. \end{cases}$$

Clairement, $\chi_{\mathbb{R}\setminus E} \in I(E)$, et donc, comme I(E) est un idéal, on a l'inclusion

$$(\chi_{\mathbb{R}\backslash E})\subset I(E).$$

Réciproquement, on voit qu'une application $f \in I(E)$ vérifie $f = \chi_{\mathbb{R} \setminus E} f$, et donc appartient à $(\chi_{\mathbb{R} \setminus E})$. On a donc l'inclusion :

$$I(E) \subset (\chi_{\mathbb{R}\setminus E}).$$

Conclusion : on a l'égalité

$$I(E) = (\chi_{\mathbb{R} \setminus E}),$$

et donc I(E) est un idéal principal, engendré par $\chi_{\mathbb{R}\backslash E}$.

c) Montrer que l'anneau $\mathbb{R}^{\mathbb{R}}$ n'est pas noethérien.

Pour des ensembles $E \subset F \subset \mathbb{R}$, on a l'inclusion $I(F) \subset I(E)$. De plus :

si
$$E \subsetneq F$$
 alors $I(F) \subsetneq I(E)$,

où \subsetneq symbolise une inclusion stricte. En effet, la fonction indicatrice $\chi_{\mathbb{R}\backslash E}$ est alors dans I(E) mais pas dans I(F), car pour un $x\in F\setminus E$ on a $\chi_{\mathbb{R}\backslash E}(x)=1$.

Soit une partie strictement décroissante (pour l'inclusion) de parties de \mathbb{R} :

$$E_0 \supseteq E_1 \supseteq E_2 \supseteq \cdots \supseteq E_{n-1} \supseteq E_n \supseteq \cdots$$
.

(Par exemple, on peut définir $E_n = [0, 1 + \frac{1}{n+1}]$ pour tout n.) Alors par la discussion qui précède, on a une suite *strictement* croissante (pour l'inclusion) d'idéaux de $\mathbb{R}^{\mathbb{R}}$:

$$I(E_0) \subsetneq I(E_1) \subsetneq I(E_2) \subsetneq \cdots \subsetneq I(E_{n-1}) \subsetneq I(E_n) \subsetneq \cdots$$

Conclusion : l'anneau $\mathbb{R}^{\mathbb{R}}$ n'est pas noethérien.

Exercice 2 : automorphismes de groupes. Pour un groupe G, on note Aut(G) l'ensemble des automorphismes de groupes de G.

1) Montrer que Aut(G) est un sous-groupe de Bij(G), le groupe des permutations de G.

On rappelle que Aut(G) est l'ensemble des éléments de Bij(G) qui sont des morphismes de groupes.

- \triangleright L'élément neutre de Bij(G), qui est l'identité id_G , est bien un morphisme de groupe, donc est dans $\mathrm{Aut}(G)$.
- \triangleright Soient $\varphi, \psi \in \operatorname{Aut}(G)$. Comme la composée de morphismes de groupes est un morphisme de groupes, on a que $\varphi \circ \psi \in \operatorname{Aut}(G)$.
- \triangleright Soit $\varphi \in \operatorname{Aut}(G)$. Comme la réciproque d'un morphisme de groupes bijectif est un morphisme de groupes, on a que $\varphi^{-1} \in \operatorname{Aut}(G)$.
- 2) Pour un élément $g \in G$ on définit une application

$$\gamma_g: G \to G \ , \ x \mapsto gxg^{-1}.$$

Montrer que γ_q est un automorphisme de G. On l'appelle la conjugaison par g dans G.

 \triangleright On montre que γ_q est un morphisme de groupes. Pour $x,y\in G$, on a :

$$\gamma_g(xy) = gxyg^{-1}$$
 et $\gamma_g(x)\gamma_g(y) = (gxg^{-1})(gyg^{-1}) = gx(g^{-1}g)yg^{-1} = gxyg^{-1}$.

 \triangleright On montre que γ_g est une bijection. On peut montrer à la main que γ_g est injectif et bijectif, ou remarquer qu'on a :

$$\gamma_g \circ \gamma_{q^{-1}} = \mathrm{id}_G \quad \text{ et } \quad \gamma_{q^{-1}} \circ \gamma_g = \mathrm{id}_G.$$

En effet, pour la première égalité par exemple, on calcule, pour $x \in G$:

$$(\gamma_q \circ \gamma_{q^{-1}})(x) = \gamma_q(g^{-1}xg) = g(g^{-1}xg)g^{-1} = x.$$

3) Montrer que l'application

$$C: G \to \operatorname{Aut}(G) \ , \ g \mapsto \gamma_g$$

est un morphisme de groupes. Quel est son noyau?

Soient $g, h \in G$. On veut montrer que $\gamma_{gh} = \gamma_g \circ \gamma_h$. On calcule, pour $x \in G$:

$$\gamma_{gh}(x) = (gh)x(gh)^{-1} = ghxh^{-1}g^{-1}$$
 et $(\gamma_g \circ \gamma_h)(x) = \gamma_g(hxh^{-1}) = g(hxh^{-1})g^{-1}$.

On a donc bien $\gamma_{gh}=\gamma_g\circ\gamma_h$, c'est-à-dire $C(gh)=C(g)\circ C(h)$. Donc C est un morphisme de groupes.

Le noyau de C est l'ensemble des $g\in G$ tels que $\gamma_g=\mathrm{id}_G.$ Dit autrement :

$$g \in \ker(C) \iff \forall x \in G, gxg^{-1} = x.$$

Ou encore:

$$g \in \ker(C) \iff \forall x \in G, gx = xg.$$

Conclusion : le noyau de C est le centre de G, qu'on a vu en TD et qu'on a noté Z(G).