Complexity

Department of Computer Science, Tsinghua University

Complexity

Algorithm Complexity

- Let $T_A(n)$ = the computational cost for solving an problem instance of size n by algorithm A.
 - \triangleright Shorted as T(n)

```
1   candidate = NIL
2   count = 0.
3   for i = 1 to n.
4          if count == 0.
5                candidate = A[i].
6          if candidate == A[i].
7                count = count + 1.
8          else count = count - 1.
```


Pre-requisite

```
Type Exponentiation (Type x, int n) // n is even.
       int m = n; Type power = 1, z = x; q=0;
       while (m > 0) {
                                                       Hint
               while (!(m%2)) {
                      m /= 2; z *= z; q=q+1;
               m--; power *= z;
       return power;
```

Hint: $b_k b_{k-1} \cdots b_1$ is the binary representation of n, $x^n = x^{\sum_{q=0}^k b_q 2^q} = (x)^{b_0} * x^{2b_1} * x^{4b_2} * \cdots * x^{2^k b_k}$

What?

Not Enough! Different instants of the same size may lead to very different computational costs.

Worst-case running time: (usually)

• T(n) = the maximum running time of an algorithm on any input of size n.

Average-case running time: (sometimes)

- T(n)= the expected running time of an algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case running time: (rare)

• T(n) = the minimum running time of an algorithm on any input of size n.

How?

- Measure the running time?
 - Implemented by different people, language, complier...
 - Different: architecture, operating systems...
- Need to compare on an ideal platform or model:
 - Human, language, machine-independent
 - Describe algorithms directly and precisely

RAM

- RAM Model = Random Access Machine
 - Each instruction takes a constant amount of time.
 - Read/Write Memory cell | Arithmetic | Comparison | goto | call
 - No concurrent operations
- Why RAM model
 - Simplification and abstraction of computing platform
 - Assess the efficiency of algorithms by running time
 - Machine-independent time, to compare the efficiency of algorithms
 - ▶ Running time ∞ # of basic operations

Asymptotic Analysis

- We are more interested in big enough problems.
 - Asymptotic Analysis: when the problem size is big enough, how does computational cost grow? Look at the **growth** of T(n) as n is growing bigger.
- Can be used to compare the complexity of two algorithms: "When n gets large enough, a $\theta(n^2)$ algorithm always beats a $\theta(n^3)$ algorithm."

Complexity

⊕-notation

Θ-notation

 $f(n) = \theta(g(n))$, iff there exist positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

⊕-notation

- Example: $f(n) = \frac{1}{2}n^2 3n$, $g(n) = n^2$
- ▶ Show that $f(n) = \theta(g(n))$
- We need to show that there exist positive constants c_1 , c_2 , and n_0 such that
 - $c_1 n^2 \le \frac{1}{2} n^2 3n \le c_2 n^2$ for all $n \ge n_0$.

⊕-notation

Asymptotic notation in equations

$$T(n) = 2n^2 + 3n + 1 = 2n^2 + \theta(n) = \theta(n^2)$$

Transitivity

•
$$f(n) = \theta(g(n))$$
 and $g(n) = \theta(h(n))$ imply $f(n) = \theta(h(n))$

Reflexivity

$$f(n) = \theta(f(n))$$

Symmetry

$$f(n) = \theta(g(n)) \iff g(n) = \theta(f(n))$$

Big-O notation

- Big-O notation
 - f(n) = O(g(n)) iff there exist positive constants c and n_0 , such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

little-o notation

- Little-o notation (asymptotic strict upper bound)
 - f(n) = o(g(n)) iff for any positive constant c > 0, there exists a constant $n_0 > 0$, such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.
- For example:
 - $2n = o(n^2) \text{ but } 2n^2 \neq o(n^2)$
- Relation to limit:
 - $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$

Big- Ω notation

- Big-Ω notation
 - $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 , such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

Ω , θ , and O

- The running time of A is $\Omega(g(n))$ means no matter what particular input of size n is chosen for each value of n, the running time on that input is at least a constant times g(n), for sufficiently large n.
- In-class exercise: True or False? when you are talking about the best-case/average-case/worst-case of an algorithm A
 - The best-case running time of A is $\Omega(g(n))$ implies the running time of A is $\Omega(g(n))$.
 - The best-case running time of A is O(g(n)) implies the running time of A is O(g(n)).
 - The worst-case running time of A is $\Omega(g(n))$ implies the running time of A is $\Omega(g(n))$.
 - The worst-case running time of A is O(g(n)) implies the running time of A is O(g(n)).
- The running time of A is $\Theta(g(n))$ implies?

Speed of Growth

Constant function

- \triangleright 2 = $\Theta(1)$, 2020 = $\Theta(1)$, 2020²⁰²⁰ = $\Theta(1)$
- ▶ Logarithm $\theta(\log_a n) = \theta(\lg n) = \theta(\ln n)$
 - Irrelevant to constant bases
 - $\forall n > 0$, $\log_a n = \log_a b \times \log_b n = \theta(\log_b n)$
 - \forall constant a, b > 0, $\frac{\ln a}{\ln b} = \log_a b = \theta(1)$
 - Irrelevant to constant exponents of n
 - \forall constant c > 0, $\lg n^c = c \times \lg n = \theta(\lg n)$
- Polynomial function
 - $a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 = \theta(n^k), a_k > 0$
- Exponential function
 - $\forall c > 1, n^c = O(2^n)$ from $O(n^c)$ to $O(2^n)$, big step!

Speed of Growth

Annotate on each line from the following functions: $\lg n$, \sqrt{n} , n, $n \lg n$, n^2 , n^3 , 2^n

Hierarchy of Complexity

0(1)	constant	You are lucky!	Basic operations to data structures
$O(\lg n)$	logarithm	Close to constant, and not rare	Binary Search, insertion/deletion in a dictionary
0 (n)	linear	A good goal	Traversal of tree, graph
$O(n \log n)$		Quite often	Sorting, Huffman code
$O(n^2)$	quadratic	Pair-wise operations of input	Dijkstra Algorithm
$O(n^3)$	cubic	Often seen in DP	Floyd-Warshall
$O(n^c)$	polynomial	P problem = solvable by a polynomial algorithm	
$O(2^n)$	Exponential	Trivial algorithms to many NP optimization problems	
•••		***	

Problem Complexity

- Problem complexity vs. Algorithm complexity
 - How do you know your algorithm is the fastest one for a problem?
- Given a problem and a function f(n), if f(n) is the lower bound of any algorithm that solves the problem in the worst case, we call f(n) is the lower bound of the problem.
 - Ideal case: both f(n) and the algorithm achieving f(n) are known.

Problem Complexity

Reduction ∝

- Reduction is a way to compare the complexity of two problems.
- Given two problems A and B, we reduce A to B as follows:
 - ① Convert the input of A into a suitable input to problem B.
 - \bigcirc Solve problem B.
 - 3 Convert the output of B into a correct solution to problem A.

In order to achieve a g(n) time reduction, Steps 1 and 3 must be performed in $\theta(g(n))$ time. We say problem A can be reduced to problem B in g(n) time, and denote it by $A \propto_{g(n)} B$

$A \propto_{g(n)} B$

- For example: solving linear equations \propto_c solving quadratic equations.
 - For any linear equation ax + b = 0, we can transform it to $0x^2 + ax + b = 0$ in constant time, whose solution provides a solution to ax + b = 0.
- ▶ Homework: Majority Element \propto_n Sorting.

$A \propto_{g(n)} B$

- Suppose A has a lower bound of $\Omega(f(n))$ and g(n) = o(f(n)), then $A \propto_{g(n)} B$ implies B has a lower bound of $\Omega(f(n))$ as well.
 - Otherwise, we can construct a more efficient algorithm to solve A by following the reduction procedure.

$SORTING \propto_n Convex Hull$

Sorting:

- Input: a sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$
- Output: a permutation of the input sequence $< a'_1, a'_2, \cdots, a'_n >$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Convex Hull (p1029):

The convex hull of a set *Q* of points is the smallest convex polygon *P* for which each point in *Q* is either on the boundary of *P* or in its interior.

$SORTING \propto_n Convex Hull$

Reduction:

- Step1: For a sequence of n numbers $\langle a_1, a_2, \cdots, a_n \rangle$, construct n points in the two dimensional plane $\langle (a_1, a_1^2), (a_2, a_2^2), \cdots, (a_n, a_n^2) \rangle$, which is an input of the Convex Hull problem.
- Step2: Using any algorithm for the Convex Hull problem to solve the constructed instance, the output will be a list of the constructed points sorted by their x-coordinates.
- Step3: Traversing the list and outputting the fist coordinate of each point gives the correct output of the sorting problem.

Graham's Scan

- We know the sorting problem (comparison-based) has a lower bound of $\Omega(n \lg n)$.
- ▶ $SORTING \propto_n Convex Hull$
- The Convex Hull problem has a lower bound of $\Omega(n \lg n)$.
- The famous Graham's Scan algorithm achieves this lower bound.

http://courses.washington.edu/css503

Summary

