Dérivées usuelles

f(x)	f'(x)	Opération	Dérivée
x^n	nx^{n-1}	u^n	$n.u'.u^{n-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\frac{u}{v}$	$\frac{u'v-uv'}{v^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
ln(x)	$\frac{1}{x}$	$\ln(u)$	$\frac{u'}{u}$
e^x	e^x	e^u	$u'.e^u$
$\sin(x)$	$\cos(x)$	$\sin(u)$	$u'.\cos(u)$
$\cos(x)$	$-\sin(x)$	$\cos(u)$	$-u'.\sin(u)$

Dérivée d'une fonction composée

Si
$$h(x) = g \circ f(x) = g(f(x))$$
 alors $h'(x) = f'(x) \cdot (g' \circ f(x)) = f'(x) \cdot g'(f(x))$

Exemples

$$(4x^{3} + 17x^{2})' = (4x^{3})' + (17x^{2}) \qquad ln(x^{2})' = ln(u)' \qquad \left(\frac{x}{ln(x^{2})}\right)' = \left(\frac{u}{v}\right)'$$

$$= 4(x^{3})' + 17(x^{2})' \qquad = \frac{u'}{u}$$

$$= 4.3.x^{2} + 17.2.x \qquad = \frac{2x}{x^{2}}$$

$$= 12.x^{2} + 34.x \qquad = \frac{2}{x}$$

$$= \frac{2}{x}$$

$$= \frac{1.ln(x^{2}) - x.\frac{2}{x}}{ln^{2}(x^{2})}$$

$$= \frac{ln(x^{2}) - 2}{ln^{2}(x^{2})}$$

Exercices

Élémentaire

$$\tan(x)$$
, $x^2 + \sqrt{x}$, e^{x^2} , $\sin(e^x)$, $\frac{1}{\ln(x)}$, e^{-x} , e^2 , $x.\ln(x)$

Facile

$$\frac{3x^2+47}{x^3-x}$$
, $e^{x^2 \cdot ln(x)}$, $\frac{1}{\sqrt{x}}$, $\frac{e^x+e^{-2x}}{\sqrt{x}}$

Annales Bac S

$$\frac{105}{x}\left(1 - e^{-\frac{3}{40}x}\right), \quad 20e^{-x}\left(1 - 0, 1e^{0,9x}\right), \qquad \frac{1}{1 + e^{1-x}}$$

Asie 2017

Moins facile

$$2^x$$
, $sin(cos(x))$, x^x , x^{x^x} , $sin\left(\frac{\sqrt{x^2+e^x}}{sin(x).cos(x)}\right)$