CS 70 - Foundations Of Applied Computer Science

Carter Kruse

Reading Assignment 1

Vectors

CS70 - Chapter 1

Definition: A vector space V is any set of objects (vectors) on which two operations are defined: addition, and multiplication by real numbers called scalars. For all vectors u, v, w and scalars α, β , the following properties must hold:

- Commutativity: u + v = v + u and $\alpha u = u\alpha$
- Associativity: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ and $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$
- Distributivity: $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$ and $(\alpha + \beta) \mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$
- Multiplicative Identity: 1u = u
- ullet Additive Identity: There is a zero vector $oldsymbol{0}$ such that $oldsymbol{u}+oldsymbol{0}=oldsymbol{u}$
- Additive Inverse: There is a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Any collection of objects satisfying all of these properties is a vector space.

Definition: A *norm* is any function that assigns a number to each vector and satisfies these properties (for all vectors u, v and scalars α):

- Non-Negativity: $|\boldsymbol{u}| \geq 0$
- Norm Of Zero Vector: $|u| = 0 \iff u = 0$
- Distributivity Of Multiplication: $|\alpha \mathbf{u}| = |\alpha| |\mathbf{u}|$
- Triangle Inequality: $|\boldsymbol{u}| + |\boldsymbol{v}| \ge |\boldsymbol{u} + \boldsymbol{v}|$

Definition: An *inner product* is any function that assigns to any two vectors u, v a number $\langle u, v \rangle$ satisfying the following properties:

- Symmetry: $\langle u, v \rangle = \langle v, u \rangle$
- Non-Negativity Of Inner Product With Self: $\langle u, u \rangle \geq 0$
- Inner Product Of Zero Vector: $\langle u, u \rangle = 0 \iff u = 0$
- Distributivity Of Multiplication: $\langle \alpha \boldsymbol{u}, \boldsymbol{v} \rangle = \alpha \langle \boldsymbol{u}, \boldsymbol{v} \rangle$
- Distributivity Of Addition: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$

Definition: A set of vectors u_1, \ldots, u_n is *linearly independent* if the equation

$$\alpha_1 \boldsymbol{u}_1 + \dots + \alpha_n \boldsymbol{u}_n = \sum_{i=1}^n \alpha_i \boldsymbol{u}_i = \boldsymbol{0}$$

can only be satisfied by setting all the coefficients $\alpha_1 = \cdots = \alpha_n = 0$.

Numerical Methods

Preliminaries: Numbers & Sets

• Natural Numbers: $\mathbb{N} = \{1, 2, 3, \ldots\}$

• Integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

• Rational Numbers: $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$

• Real Numbers: Encompasses \mathbb{Q} as well as *irrational* numbers like π and $\sqrt{2}$.

• Complex Numbers: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$, where $i = \sqrt{-1}$

Definition: The *span* of a set $S \subseteq V$ of vectors is the set

span
$$S = \{a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k : \mathbf{v}_i \in S \text{ and } a_i \in \mathbb{R} \text{ for all } i\}$$

Definition: The dimension of V is the maximal size |S| of a linearly independent set $S \subset V$ such that span S = V. Any set S satisfying this property is called a basis for V.

Definition: Two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ are perpendicular, or *orthogonal*, when $\mathbf{a} \cdot \mathbf{b} = 0$.

Definition: The *transpose* of a matrix $A \in \mathbb{R}^{n \times m}$ is a matrix $A^T \in \mathbb{R}^n \times \mathbb{R}^n$ with elements $(A^T)_{ij} = A_{ji}$.

Geometry Of Linear Equations

CS70 - Chapter 2

Matrix Formulation - Put all of the coefficients into a box of numbers A and all of the constants into a column of numbers b.

The original system of equations is represented as Ax = b.

The "Row" View: The row view considers each equation (row of A and corresponding element in b) of the linear system one by one.

The "Column" View: The column view considers the system of equations to be a single vector equation, producing a linear combination.

Do solutions always exist? No