ML101-evaluated

October 13, 2016

1 Some Python Data Science Resources

1.1 Python

Use a scientific Python distribution Anaconda (I use Python 2.7 version) which comes together with lots of libraries, jupyter notebook.. The distribution can be installed locally in the home directory..

1.1.1 General libraries

- numpy: fast array library
- scipy: various higher level scientific routines
- matplotlib: a plotting library

1.1.2 More specialized libraries

- scikit-learn: machine learning library lots of implemented machine learning algorithms
- pandas : R-like concepts like data.frame
- scikit-image: various computer vision algorithms
- opency: bindings to a powerful C++ computer vision library
- ...

1.1.3 Neural networks

- keras : very easy to use and flexible
- lasagne
- caffe
- mxnet : fast and efficient

1.1.4 Other

- xgboost: very good and fast gradient boosted trees
- rpy2 : do computations using R from Python...
- mne-python: library for analyzing/plotting EEG/MEG data
- pyeeg: some utilities for analyzing (EEG) time-series data
- •

2 scikit-learn examples

scikit-learn implements a bewildering number of algorithms. It has a very good user manual but it is very easy to get lost which algorithms to use...

Fortunately it is enough to use just a basic few:

classification: Logistic Regression, Support Vector Machine, Nearest Neighbour, Random Forest, Gradient Boosted Trees

regression: Ridge, regression versions of the above

unsupervised: RandomizedPCA, FastICA, K-Means (clustering)

For neural networks and gradient boosted trees for large datasets its better to use other libraries (keras, xgboost)

2.1 Example: recognizing handwritten digits

Load necessary libraries:


```
In [4]: print digits.target[:40]
[0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 9 5 5 6 5 0
9 8 9]
```

2.1.1 Prepare data

It may be good to shuffle the data...


```
[4 3 5 2 0 3 7 3 1 4 4 5 2 6 8 5 9 9 3 6 1 6 8 0 0 2 3 2 0 2 1 6 0 3 7 5 8 2 8 0]
```

Most classifiers require vectors of numbers - transform images to 64 element vectors **Note:** in this way we loose geometrical information which pixels are neighbouring.. (this is only recovered in Convolutional Neural Networks - see later)

```
0.0 16.0
```

0.0 1.0

```
Normalize to the interval [0,1]

In [9]: data[:,:]=data/16.0
    print amin(data), amax(data)
```

2.1.2 Create training and test data

Never test your model on the same data that you used to train it - split the whole dataset into a separate train and test set. The best way to do it is to use say 5-fold cross-validation (CV): split data into 5 chunks and then make 5 splits into train/test datasets.

Then choose classifier and its parameters based on its performance on all the 5 splits..

```
In [10]: from sklearn.cross_validation import KFold
        kf=KFold(20, n_folds=5)
        for tr, tst in kf:
            print 'train:', tr, 'test:', tst
                   8 9 10 11 12 13 14 15 16 17 18 19] test: [0 1 2 3]
train: [4 5
train: [ 0
                 3
                      9 10 11 12 13 14 15 16 17 18 19] test: [4 5 6 7]
train: [ 0 1 2 3 4
                           7 12 13 14 15 16 17 18 19] test: [ 8 9 10 11]
train: [ 0 1
              2
                 3 4
                         6 7 8 9 10 11 16 17 18 19] test: [12 13 14 15]
                      5
train: [ 0 1
                 3 4
                      5
                         6 7 8 9 10 11 12 13 14 15] test: [16 17 18 19]
```

There is a more refined version which tries to keep the proportions of the classes same in each fold (KStratifiedFold).

Here for simplicity we will make just a single split...

```
In [11]: nn=2*n/3
     X=data[:nn]
     y=digits.target[:nn]
     Xt=data[nn:]
     yt=digits.target[nn:]
```

2.2 Linear models

The first thing to try is the simplest linear model - for classification this is LogisticRegression, for regression this is Ridge.

- it will be a baseline for more advanced models
- for (noisy) data with lots of features it works remarkably well
- there is only a single parameter to tune (the amount of *regularization* to control overfitting/dependence on outliers)
- for regularization to work one should have all features to have a comparable numerical range
- then the magnitudes of linear coefficients indicate something about the features importance [note: there are much more sophisticated ways for analyzing that]

In [14]: preds=clf.predict(Xt)

In [15]: print accuracy_score(yt,preds)

0.961602671119

In [16]: print preds[10:30], yt[10:30]

[3 9 5 7 1 0 5 9 3 3 9 4 3 3 6 9 4 6 1 8] [3 9 5 7 1 0 5 9 3 3 9 4 3 3 6 9 4 6 3 8]

In [17]: print confusion_matrix(yt,preds)

[[50 0 0 0 0 0 0 0 [0 63 2 0 0 0 1 0 0 [0 0 48 0 0] 0 0 0 0 ΓΟ 1 1 49 0 0 0 2 0 07 [0 1 0 0 67 0 1 1] 0 0 0 0 0 0 65 0 0 0 0 0 0 58 0] [0 0 0 0 0 0 0 63 1 1] [0 3 0 0 0 0 2 0 50 0] 0 2 63]] 1 0 1 0

rows: true classes; columns: predicted classes

We can examine the coefficients corresponding to the class of $\, O \,$

2.3 Support Vector Machines

These can be either linear or nonlinear - here the default is nonlinear and the nonlinearity is parametrized by a gaussian kernel (kernel=rbf - radial basis functions). One has to set two parameters: regularization parameter C and the width of the gaussian

```
In [34]: from sklearn.svm import SVC
        clf = SVC(C=100,gamma=0.01)
        clf.fit(X,y)
        preds=clf.predict(Xt)
In [35]: print accuracy_score(yt,preds)
0.986644407346
In [36]: print confusion_matrix(yt,preds)
[[50 0
        0
           0
              0
                          0
                             0]
                 0
                    0
                       0
Γ 0 66
       0
           0
              0
                 0
                    0
                             0]
[ 0 0 48 0
              0
                 0
                    0
                             0]
 [ 0 0 0 52
              0
                 0
                    0
                       0
                             0]
 [ 0
     0
       0
          0 70
                 0
                    0
                       0
                          0
                             0]
 0 0 0
           0
              0 64
                    0
                       0
                             1]
 [ 0
           0
              0
                 0 58
                            01
[0 0 0 0
              0
                 0 0 64 0 17
 [ 0 1
           0
              1
                 0 0 0 53 0]
 [ 0 0 0 1
              0
                 1 0 0 0 66]]
  Default parameters:
In [24]: clf = SVC()
        clf.fit(X,y)
        preds=clf.predict(Xt)
        print accuracy_score(yt,preds)
```

0.954924874791

2.4 Random Forest

Very good strictly nonlinear classifier, essentially one key parameter n_{-} estimators (number of trees) - the more the better...

0.976627712855

2.5 Gradient Boosted Trees

Very good nonlinear classifier (often better than Random Forest) - more parameters to tune: number of trees, learning rate, size of the trees.

For more complex datasets often much better than linear models...

2.6 Nearest neighbours

Makes classification according to k nearest neighbours.

Note: Problems for high dimensional data: * The curse of dimensionality *

```
[[50 0 0 0 0 0 0 0 0 0 0 0]
[0 66 0 0 0 0 0 0 0 0 0 0]
[0 0 48 0 0 0 0 0 1 0 0]
[0 0 0 52 0 0 0 1 0 0]
[0 0 0 0 69 0 0 1 0 0]
[0 0 0 0 0 65 0 0 0 0]
[0 0 0 0 0 59 0 0 0]
[0 0 0 0 0 0 0 59 0 0 0]
[0 0 0 0 0 0 0 0 64 0 1]
[0 1 0 0 0 0 0 0 0 67]]
```

3 Neural networks

keras - a very good neural network library

- very easy to use
- can use graphic card GPU's (NVIDIA only!) for computation **crucial** for larger convolutional networks
- can produce more involved network topologies (multiple inputs/outputs, merges between various layers)
 so called Functional API
- includes all basic layer types including convolutional, recurrent
- based either on Theano or TensorFlow low-level backend

There exist other possibilities: caffe, lasagne, mxnet,...

```
In [37]: from keras.models import Sequential
        from keras.layers.core import Dense, Dropout, Activation
        from keras.optimizers import SGD, Adam, RMSprop
        from keras.layers.advanced_activations import *
Using Theano backend.
In [39]: model = Sequential()
        model.add(Dense(64, input_dim=X.shape[1], activation='relu'))
        model.add(Dense(64, activation='relu'))
        model.add(Dense(10))
       model.add(Activation('softmax'))
In [40]: model.compile(optimizer='adam',
                    loss='sparse_categorical_crossentropy',
                    metrics=['accuracy'])
In [41]: from keras.utils.np_utils import to_categorical
       ys=to_categorical(y)
In [42]: print y[1], ys[1]
3 [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
In [43]: model.fit(X, y, nb_epoch=30, batch_size=128, validation_data=(Xt,yt))
Train on 1198 samples, validate on 599 samples
Epoch 1/30
Epoch 2/30
1198/1198 [===========] - Os - loss: 2.0808 - acc: 0.4249 - val_loss: 1.9894 - val_acc
```

```
Epoch 3/30
1198/1198 [============] - Os - loss: 1.6721 - acc: 0.6953 - val_loss: 1.5535 - val_acc
Epoch 5/30
1198/1198 [============] - Os - loss: 1.4208 - acc: 0.7588 - val_loss: 1.2931 - val_ac
Epoch 6/30
1198/1198 [============] - Os - loss: 1.1607 - acc: 0.7880 - val_loss: 1.0398 - val_ac
Epoch 7/30
1198/1198 [============] - Os - loss: 0.9181 - acc: 0.8239 - val_loss: 0.8147 - val_acc
Epoch 8/30
Epoch 9/30
1198/1198 [============== ] - Os - loss: 0.5689 - acc: 0.8973 - val_loss: 0.5195 - val_ac
Epoch 10/30
1198/1198 [============== ] - Os - loss: 0.4625 - acc: 0.9098 - val_loss: 0.4342 - val_ac
Epoch 11/30
1198/1198 [==============] - Os - loss: 0.3880 - acc: 0.9157 - val_loss: 0.3752 - val_ac
Epoch 12/30
Epoch 13/30
1198/1198 [============] - Os - loss: 0.2851 - acc: 0.9424 - val_loss: 0.2967 - val_ac
Epoch 14/30
Epoch 15/30
1198/1198 [============== ] - Os - loss: 0.2269 - acc: 0.9583 - val_loss: 0.2471 - val_ac
Epoch 16/30
1198/1198 [============] - Os - loss: 0.2050 - acc: 0.9583 - val_loss: 0.2360 - val_acc
Epoch 17/30
1198/1198 [============== ] - Os - loss: 0.1924 - acc: 0.9574 - val_loss: 0.2186 - val_ac
Epoch 18/30
1198/1198 [============] - Os - loss: 0.1735 - acc: 0.9674 - val_loss: 0.2077 - val_acc
1198/1198 [============= ] - Os - loss: 0.1607 - acc: 0.9691 - val_loss: 0.1963 - val_ac
Epoch 20/30
1198/1198 [============== ] - Os - loss: 0.1401 - acc: 0.9725 - val_loss: 0.1804 - val_ac
Epoch 22/30
1198/1198 [============== ] - Os - loss: 0.1304 - acc: 0.9783 - val_loss: 0.1760 - val_ac
Epoch 23/30
1198/1198 [============== ] - Os - loss: 0.1239 - acc: 0.9775 - val_loss: 0.1697 - val_ac
Epoch 24/30
1198/1198 [============== ] - Os - loss: 0.1189 - acc: 0.9775 - val_loss: 0.1644 - val_ac
Epoch 25/30
1198/1198 [============= ] - Os - loss: 0.1129 - acc: 0.9800 - val_loss: 0.1605 - val_ac
Epoch 26/30
1198/1198 [============] - Os - loss: 0.1048 - acc: 0.9825 - val_loss: 0.1537 - val_acc
Epoch 27/30
1198/1198 [============== ] - Os - loss: 0.0998 - acc: 0.9833 - val_loss: 0.1490 - val_ac
Epoch 28/30
1198/1198 [============== ] - Os - loss: 0.0954 - acc: 0.9825 - val_loss: 0.1452 - val_ac
Epoch 29/30
1198/1198 [============] - Os - loss: 0.0900 - acc: 0.9808 - val_loss: 0.1446 - val_acc
```

3.0.1 Comments

- this dataset is very simple and small
- therefore simpler models work as well or better than more complex ones
- \bullet for various kinds of datasets various algorithms are best there is no single best one