MATH H113: Honors Introduction to Abstract Algebra

2016-02-26

• Subgroups and quotient groups

Homework due 2016-03-04:

- 2.5: 5, 10
- 3.1: 22, 24, 31, 39
- 3.2: 9, 12, 20

For groups G

- 1. What groups can G map onto?
- 2. Which subgroups of G can be kernels of homomorphisms?
- 3. How is the image of a homomorphism $G \to H$ related to its kernel?

Example of question (1).

For $G = \mathbb{Z}$, we know that \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ can occur as images of homomorphisms from \mathbb{Z} and no other groups (\mathbb{Z} is cyclic, so $\phi(\mathbb{Z})$ must also be cyclic) can (up to isomorphism).

Let $\phi: G \to H$ be a homomorphism. We may assume that ϕ is onto (otherwise replace H with the image of ϕ).

Then we can think of ϕ like this: (see fig 1.) For all $a \in H$, define X_a to be the fiber over a:

$$X_a = \phi^{-1}(a) = \{g \in G : \phi(g) = a\}.$$

Let $K = \ker \phi = \text{the kernel of } \phi = \{g \in G : \phi(g) = 1\} = X_1$

Definition: G/K is the set $\{X_a : a \in H\}$.

Define a binary operation \star on G/K by $X_a \star X_b = X_{ab}$. (It's well defined because $X_a = X_b$ can only happen if a = b; if ϕ was not onto, this would not be true). This makes G/K into a group because:

1. \star is associative:

$$(X_a \star X_b) \star X_c = X_a b \star X_c = X_{(ab)c} = X_{a(bc)} = X_a \star X_{bc} = X_a \star (X_b \star X_c).$$

- 2. * has an identity: $X_a * X_1 = X_{a1} = X_a$, similarly for $X_1 * X_a$.
- 3. * has an inverse $X_a^{-1} = X_{a^{-1}}$ because $X_a X_{a^{-1}} = X_{aa^{-1}} = X_1$ and $X_{a^{-1}} X_a = X_{a^{-1}a} = X_1$ $\therefore G/K$ is a group.

Define $\psi: G/K \to H$ by $\phi(X_a) = a$. Then ψ is a homomorphism (by def. of \star), it is onto $(\psi(X_a) = a \ \forall a \in H)$, and its 1-1 $(\psi(X_a) = \psi(X_b) \implies a = b \implies X_a = X_b)$.

So $G/K \cong H$ (again, this assumes that ψ is onto).

Next step: Eliminate ϕ from the picture. Try to do all of this (define G/K) with just G and K.

Notice that the set G/K is a collection of nonempty subsets of G; in fact, G/K (the set) is a partition of G.

What equivalence relation on G gives us this partition?

(Think of the example $\phi: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $n \mapsto \bar{n}$ (see fig 2)).

Proposition: Let H be any subgroup of a group G. Let \sim be the relation $u \sim v \iff u^{-1}v \in H$. Then \sim is an equivalence relation on G:

Proof:

- 1. reflexive: $u^{-1}u = 1 \in H$, so $u \sim u \ \forall u \in G$
- 2. symmetric: $u \sim v \implies u^{-1}v \in H \implies v^{-1}u = (u^{-1}v)^{-1} \in H \implies v \sim u$
- 3. transitive: $u \sim v \wedge v \sim w \implies v^{-1}u, w^{-1}v \in H \implies (w^{-1}v)(v^{-1}u) \in H \implies w^{-1}u \in H \implies u \sim w$

Proposition: For any $u \in G$, the equivalence class of u is $\bar{u} = \{uh : h \in H\}$ **Proof**: $v \in \bar{u} \iff u \sim v \iff u^{-1}v \in H \iff u^{-1}v = h$ for some $h \in H \iff v = uh$ for some $h \in H \iff v \in \{uh : h \in H\}$. \therefore $\bar{u} = \{uh : h \in H\}$

Definition: The *left coset gH* is $\{gh : h \in H\}$

The right coset Hg is $\{hg : h \in H\}$

 $\textit{Useful fact: } uH = vH \iff \bar{u} = \bar{v} \iff u \sim v \iff v \in uH \iff u \in vH.$

Back to G/K (defined using ϕ).

I claim that $X_a = uK$ for any $u \in X_a$, because

$$v \in X_a$$

$$\iff \phi(v) = a = \phi(u)$$

$$\iff \phi(u)^{-1}\phi(v) = 1$$

$$\iff \phi(u^{-1}v) = 1$$

$$\iff u^{-1}v \in K \ (K = \ker \phi)$$

$$\iff u \sim v \iff v \in \bar{u} = uK.$$

So, for a subgroup H of K, can we define $uH \star vH = (uv)H$? (In other words, is it well defined?)

Check: if $uH = u'H \implies u' = uh$ and $vH = v'H \implies v'k$, is $(uv)H = (u^{-1}v^{-1})H \ \forall h, k \in H$?

Is $uhvk \in (uv)H$?

Is $\psi h v k = (\psi v) h'$ for some $h' \in H$?

Is $v^{-1}hvk = h'$ for some $h' \in H$?

Is $v^{-1}hv = h'k^{-1}$ for some $h' \in H$?

Is $v^{-1}hv \in H$ for some $h' \in H$?

We'd need this to be true $\forall v \in G, \forall h \in H$, so (let $g = v^{-1}$): we need $ghg^{-1} \in H$ for all $h \in H$ in other words, we need $gHg^{-1} \subseteq H \ \forall g \in G$.

Definition: Let G be a group.

- a. If $g, n \in G$ then gng^{-1} is the *conjugate* of n by g;
- b. Let $N \leq G$ and $g \in G$. Then $gNg^{-1} = \{gng^{-1} : n \in N\}$ is the conjugate of N by g;
- c. Let $N \leq G$ and $g \in G$. Then g normalizes if $gNg^{-1} = N$.
- d. A subgroup $N \leq G$ is a *normal* subgroup of G if g normalizes $N \ \forall g \in G$. If this is true, we write $N \subseteq G$.

Examples:

- 1. $\{1\} \subseteq G$ and $G \subseteq G$ for all groups G.
- 2. In an abelian group, all subgroups are normal subgroups of the group.
- 3. Let $G = S_3$ and $H = \langle x \rangle$, where $x = (1\ 2)$. Then H is not normal in G, because (let $y = (1\ 3)$) $yxy^{-1} = (1\ 3)(1\ 2)(1\ 3) = (1)(2\ 3) \not\in H$. So $yHy^{-1} \neq H$.

Note: H is not normal in G, but H is a normal subgroup of itself. In particular: if $N_1 \subseteq N_2$ and $N_2 \subseteq G$, it may be false that $N_1 \subseteq G$.

Theorem: Let G be a group and N a subgroup of G. Then the following are equivalent:

- 1. $N \subseteq G$;
- 2. $N_G(N) = G$;
- 3. $gN = Ng \ \forall g \in G$;
- 4. $gNg^{-1} \subseteq N \ \forall g \in G$.

Proof:

- (1) \iff (2): $N \leq \iff gNg^{-1} = N \ \forall g \in G \iff g \in N_G(N) \ \forall g \in G \iff N_G(N) = G.$
- (1) \iff (4): Let $g \in G$ and $n \in N$. Want to show $n \in gNg^{-1}$. In fact since $g^{-1}N(g^{-1})^{-1} \leq N$, $g^{-1}ng \in N$, so $g(g^{-1}ng)g^{-1} = n \in gNg^{-1}$. $\therefore N \subseteq gNg^{-1}$.
- (2) \iff (3): (1) $\implies gNg^{-1} = N \ \forall g \in G \implies gNg^{-1}g = Ng \ \forall g \in G \implies gN = Ng \ \forall g \in G.$ (3) \implies (1) is similar.

Note: In general, if A, B are subsets of G, $AB = \{ab : a \in A, b \in B\}$ and $gA = \{ga : a \in A\}$, $Ag = \{ag : a \in A\}$, and these are associative: (AB)C = A(BC), g(AB) = (gA)B, etc.