Hybrid Uplink-Downlink NOMA for Secure Coordinated Multi-Point Networks

Xin Fan¹, Yue Wang², Guangkai Li³, Yan Huo¹, and Zhi Tian²

¹Beijing Jiaotong University, China

²George Mason University, USA

³National Computer Network Emergency Response Technical Team/Coordination Center of China, China

- Introduction
- Hybrid Uplink-Downlink NOMA
- Secrecy Analysis
- Numerical results
- Conclusion

- Introduction
- Hybrid Uplink-Downlink NOMA
- Secrecy Analysis
- Numerical results
- Conclusion

- Multiple cells
- Large-scale access
- Edge user
- Spectral efficiency
- Coordinated multi-point (CoMP)

- Motivation
 - Conventional OMA-CoMP
 - BS₂ can only help U₁ in another time slot
 - When helping U₁, BS₂ can not serve U₂
 - A quick decrease in spectral efficiency as the number of cell-edge users increases
 - NOMA-CoMP
 - Avoid the exclusivity of OMA's channels
 - Security

Conventional OMA-CoMP

NOMA-CoMP

• Downlink NOMA V.S. Uplink NOMA

- The basic idea of our Hybrid Uplink-Downlink NOMA (HUD-NOMA)
 - Downlink NOMA
 - Help U₁ and provide service to U₂
 - Uplink NOMA
 - Save time slots

- Introduction
- Hybrid Uplink-Downlink NOMA
- Secrecy Analysis
- Numerical results
- Conclusion

Hybrid Uplink-Downlink NOMA

System model

- U₁ is a cell-edge user served by BS₁
- U₂ is not a cell-edge user served by BS₂
- A network controller coordinate all the nodes
- All nodes with single antenna
- Joint transmission includes two phases

The first phase

- U₁ broadcasts its uplink signal c₁
- BS₂ broadcasts the downlink signal s₂₁ of U₁, and the downlink signal s₂ of U₂

The second phase

- BS₁ broadcasts the downlink signal of U₁
- U $_2$ broadcasts its uplink signal c $_2$, and $\phi=s_{21}\oplus c_1$, where \oplus is XOR operation in network coding.

Hybrid Uplink-Downlink NOMA

• The received signal in the first phase

$$y_{BS_1} = h_{U_1, BS_1} \sqrt{Q_1} c_1 + n_{BS_1}$$

$$y_{U_2} = h_{BS_2, U_2}(\sqrt{P_2}s_2 + \sqrt{P_{21}}s_{21}) + h_{U_1, U_2}\sqrt{Q_1}c_1 + n_{U_2}$$

- SINR in the first phase
 - At BS₁: $SINR_{c_1}^{BS_1} = \frac{Q_1|h_{U_1,BS_1}|^2}{\sigma^2}$
 - At U₂:
 - W.l.o.g., assume $Q_1|h_{U_1,U_2}|^2>P_2|h_{BS_2,U_2}|^2>P_{21}|h_{BS_2,U_2}|^2$
 - Decode c₁, s₂, s₂₁ in order

$$SINR_{c_{1}}^{U_{2}} = \frac{Q_{1}|h_{U_{1},U_{2}}|^{2}}{(P_{21} + P_{2})|h_{BS_{2},U_{2}}|^{2} + \sigma^{2}},$$

$$SINR_{s_{2}}^{U_{2}} = \frac{P_{2}|h_{BS_{2},U_{2}}|^{2}}{P_{21}|h_{BS_{2},U_{2}}|^{2} + \sigma^{2}},$$

$$SINR_{s_{21}}^{U_{2}} = \frac{P_{21}|h_{BS_{2},U_{2}}|^{2}}{\sigma^{2}}$$

Hybrid Uplink-Downlink NOMA

The received signal in the second phase

$$y_{BS_2} = h_{BS_2, U_2}(\sqrt{Q_2}c_2 + \sqrt{Q_\phi}\phi) + n_{BS_2},$$

$$y_{U_1} = h_{U_1, U_2}(\sqrt{Q_2}c_2 + \sqrt{Q_\phi}\phi) + h_{U_1, BS_1}\sqrt{P_1}s_1 + n_{U_1}$$

- SINR in the second phase
 - At BS₂: assume $Q_2 > Q_{\phi}$

$$SINR_{c_2}^{BS_2} = \frac{Q_2|h_{BS_2,U_2}|^2}{Q_\phi|h_{BS_2,U_2}|^2 + \sigma^2},$$

$$SINR_\phi^{BS_2} = \frac{Q_\phi|h_{BS_2,U_2}|^2}{\sigma^2}.$$

- At U₁:
 - W.l.o.g., assume $P_1|h_{U_1,BS_1}|^2>Q_2|h_{U_1,U_2}|^2>Q_{\phi}|h_{U_1,U_2}|^2$
 - Decode s_1 , c_2 , and ϕ in order

$$SINR_{s_1}^{U_1} = \frac{P_1 |h_{U_1, BS_1}|^2}{(Q_2 + Q_{\phi})|h_{U_1, U_2}|^2 + \sigma^2},$$

$$SINR_{c_2}^{U_1} = \frac{Q_2 |h_{U_1, U_2}|^2}{Q_{\phi} |h_{U_1, U_2}|^2 + \sigma^2},$$

$$SINR_{\phi}^{U_1} = \frac{Q_{\phi} |h_{U_1, U_2}|^2}{\sigma^2}.$$
¹¹

- Introduction
- Hybrid Uplink-Downlink NOMA
- Secrecy Analysis
- Numerical results
- Conclusion

- Eavesdroppers (Eves)
 - Randomly location
 - Multiple
 - Single antenna
 - Homogeneous Poisson point process (HPPP)
- The received signal at Eve_i

$$y_{Eve_{i}}^{1} = h_{BS_{2},Eve_{i}}(\sqrt{P_{2}}s_{2} + \sqrt{P_{21}}s_{21})$$

$$+ h_{U_{1},Eve_{i}}\sqrt{Q_{1}}c_{1} + n_{Eve_{i}},$$

$$y_{Eve_{i}}^{2} = h_{Eve_{i},U_{2}}(\sqrt{Q_{2}}c_{2} + \sqrt{Q_{\phi}}\phi)$$

$$+ h_{Eve_{i},BS_{1}}\sqrt{P_{1}}s_{1} + n_{Eve_{i}},$$

Definition of secrecy outage

Definition 1. During each transmission, Eves may receive many signals. If any useful signal is decoded by Eves, then the secure transmission is interrupted, i.e., secrecy outage.

Secrecy Outage Probability

• The achievable secrecy rate of a legitimate user can be given by

$$R_s = \max\{R_b - R_e, 0\},$$
 where $R_b = \log(1 + SINR_b)$ and $R_e = \log(1 + SINR_e)$

Given a target secrecy rate R_{th}, SOP

$$\varepsilon = Pr\{R_s < R_{th}\} = Pr\{SINR_e > 2^{R_{th} + R_b} - 1\}.$$

• When multiple Eves,

$$\varepsilon = Pr\{\max_{e \in \psi} SINR_e > 2^{R_b + R_{th}} - 1\}.$$

The received signal at Eve;

$$\begin{aligned} y_{Eve_i}^1 = & h_{BS_2, Eve_i} (\sqrt{P_2} s_2 + \sqrt{P_{21}} s_{21}) \\ & + h_{U_1, Eve_i} \sqrt{Q_1} c_1 + n_{Eve_i}, \\ y_{Eve_i}^2 = & h_{Eve_i, U_2} (\sqrt{Q_2} c_2 + \sqrt{Q_{\phi}} \phi) \\ & + h_{Eve_i, BS_1} \sqrt{P_1} s_1 + n_{Eve_i}, \end{aligned}$$

- SINR at Eve_i
 - The first phase
 - Recall the previous assumption that $Q_1|h_{U_1,U_2}|^2>P_2|h_{BS_2,U_2}|^2>P_{21}|h_{BS_2,U_2}|^2$
 - First to decode s₂ and first to decode c₁
 - The second phase
 - First to decode s₁ and first to decode c₂

$$SINR_{s_2}^{Eve_i} = \frac{P_2 |h_{BS_2, Eve_i}|^2}{P_{21} |h_{BS_2, Eve_i}|^2 + Q_1 |h_{U_1, Eve_i}|^2 + \sigma^2}$$

$$SINR_{c_1}^{Eve_i} = \frac{Q_1 |h_{U_1, Eve_i}|^2}{(P_{21} + P_2)|h_{BS_2, Eve_i}|^2 + \sigma^2}$$

$$SINR_{s_1}^{Eve_i} = \frac{P_1 |h_{Eve_i, BS_1}|^2}{(Q_2 + Q_\phi) |h_{Eve_i, U_2}|^2 + \sigma^2}$$

$$SINR_{c_2}^{Eve_i} = \frac{Q_2 |h_{Eve_i, U_2}|^2}{Q_{\phi} |h_{Eve_i, U_2}|^2 + P_1 |h_{Eve_i, BS_1}|^2 + \sigma^2}$$

- SOP Analysis
 - Channel model

$$h_{i,j} = g_{i,j} \sqrt{\eta \|\mathbf{L}_i - \mathbf{L}_j\|^{-\alpha}},$$

- HPPP with density λ
- The first phase

Theorem 1. Given the maximum acceptable SINR for s_2 and c_1 at Eves, $\mu_{s_2} = 2^{R_{th} + log(1 + SINR_{s_2}^{U_2})} - 1$ and $\mu_{c_1} = \max\{2^{R_{th} + log(1 + SINR_{c_1}^{U_2})} - 1, 2^{R_{th} + log(1 + SINR_{c_1}^{BS_1})} - 1\}$, the exact expression of the SOP at the first phase is given by

$$\varepsilon_1 = 1 - (1 - \varepsilon_{s_2})(1 - \varepsilon_{c_1}), \tag{24}$$

The second phase

Theorem 2. Given the maximum acceptable SINR for s_1 and c_2 at Eves, $\mu_{s_1} = 2^{R_{th} + log(1 + SINR_{s_1}^{U_1})} - 1$ and $\mu_{c_2} = \max\{2^{R_{th} + log(1 + SINR_{c_2}^{U_1})} - 1, 2^{R_{th} + log(1 + SINR_{c_2}^{BS_2})} - 1\}$, the exact expression of the SOP at the second phase is given by

$$\varepsilon_2 = 1 - (1 - \varepsilon_{s_1})(1 - \varepsilon_{c_2}), \tag{26}$$

- Introduction
- Hybrid Uplink-Downlink NOMA
- Secrecy Analysis
- Numerical results
- Conclusion

Numerical results

- Conventional OMA is compared.
- The thermal noise power to −170 dBm/Hz.
- The carrier frequency is $f_c = 2.4$ GHz.
- $P_{max} = 1$ W and $Q_{max} = 0.5$ W are the maximum transmit power of the base stations and the users.
- α = 3, R = 1000 m, λ = 10⁻⁶ /m², R_{th} = 1 bit/s/Hz, P₁ = P_{max}, P₂ = 0.9P_{max}, P₂₁ = 0.1P_{max}, Q₁ = Q_{max}, Q₂ = 0.9Q_{max}, and Q_{ϕ} = 0.1Q_{max}.
- 10⁵ independent Monte Carlo trials.

Numerical results

Fig. 2: Transmission rates v.s. P_{max} .

Fig. 3: Transmission rates v.s. Q_{max} .

Numerical results

Fig. 5: SOP v.s. P_{max} .

Fig. 6: SOP v.s. Q_{max} .

- Introduction
- Hybrid Uplink-Downlink NOMA
- Secrecy Analysis
- Numerical results
- Conclusion

Conclusion

- We propose a secure HUD-NOMA scheme for CoMP networks in the presence of multiple random located passive eavesdroppers.
- By using NOMA and network coding technologies, the proposed HUD-NOMA scheme not only improve the transmission rate of cell-edge users, but also enhance the secrecy rate of the system.
- It may be a promising direction to promote our scheme to multiantenna scenarios.

THANKYOU

 $Xin\ FAN$

Email: fanxin@bjtu.edu.cn