

Continuous Assessment Test (CAT) – II - Mar 2025

Programme	:	B.Tech (CSE)	Semester	:	WS 2024-25
Course Code & Course Title		BCSE305L & EMBEDDED SYSTEMS	Class Number	:	CH2024250501594 CH2024250501599 CH2024250501619 CH2024250501627 CH2024250501632 CH2024250501596
Faculty	:	VIJAYKUMAR P NITISH KATAL SINDHUJA M KIRAN KUMAR M SUHASINI SHARON GIFTSY A L	Slot	:	E1+TE1
Duration	:	90 Minutes	Max. Mark	1:	50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer all questions

Q. No	Sub Sec.	Description	Marks	Blooms Taxonomy Level
1.		Consider the given string "AAAAABBBBCCCCDDDD". i)Apply Run-Length Encoding (RLE) and LZ78 compression techniques. Which method achieves better compression, and why? [8M] ii)Compute the final compressed sizes for each.[2M]	10	К3
2.		A special-purpose computing system (handheld health monitoring device) needs to capture ECG, blood pressure, and temperature data while syncing with a mobile app over Bluetooth. i) Propose an optimized architecture that balances performance, cost, and power. [4M] ii) Explain your component selection, highlighting the requirements, challenges, and constraints. [6M]	10	K4
3.		You are working on an embedded system with limited memory and processing power. You are given the following code: int $x = 10$; int $y = x + 5$; int $z = y * 2$; int $w = z - x$; if $(w > 20)$ { int $a = w + 10$;	10	КЗ

	<pre>int b = a * 2; printf("%d", b); } else { int c = w * 3; printf("%d", c); } for (int i = 0; i < 1 arr[i] = i * w; } Write the optimiz techniques for to optimization techniques.</pre>	ency of			
4.	A large multi-sp transformation to satisfaction. As a key interactions the including patients pharmacies, and is represent how the services or process onboarding to management exp online, and autom the appropriate Uprocess.	patient out all holders c labs, visually hat key patient hospital person, dentify	K4		
	Given the followi	10	К3		
	Process	Computation Time(ms)	Period(ms)		
5.	P1	1	4		
	P2	2	5		
	P3	1	10		
	a) Determine if the b) Calculate the C	. [2M]			
	c) Draw the time	RMS.			
		starts at 0. [6M]			