Adaptation Aftereffects as a Result of Bayesian Categorization

Marina Dubova dubova_marina marina.dubova.97@gmail.com
Saint Petersburg University

Arseny Moskvichev amoskvic@uci.edu UC Irvine

arseny_mo

Introduction

Short-term perceptual history (what we saw) affects subsequent perceptual processing (what we see) in two ways:

- Contrastive effects: New object features are shifted away from the previously perceived ones: new object seems more different.
- Assimilative effects: New object features are shifted towards the previously perceived ones: new object seems more similar.

These two types of effects could occur in very similar and even identical experimental settings (Uznadze, 1958; Fritsche et al., 2017; Chopin & Mamassian, 2012).

What determines the aftereffect type?

REPLICATION 1 & 2 (Uznadze, 1958):

- 1. the number of adaptive stimuli seen
- 2. the difference between previous and the new stimuli

probability of contrastive effects probability of assimilative effects

Results

	number of adapta- tion trials	difference between adaptive and test stimuli
Replication 1	p < .001	p < .001
(N = 26, conditions per	BF = 2.5	BF = 47995
participant = 24)		
Replication 2	p < .001	p < .05
(N = 50, conditions per	BF = 56.3	BF = 4.8
participant = 30)		

Note: half of our data consists of trials where no illusion was reported

We propose a uniform explanation of both assimilative and contrastive visual aftereffects

Adaptation aftereffects may be seen as a consequence of rational categorical perception

Code, data, and other materials

Can adaptation aftereffects support perception efficiency?

The goal of perception is to reconstruct incoming noisy perceptual signals as accurately as possible. Utilizing high-level prior knowledge could make perception more efficient. We show how contrastive and assimilative aftereffects could result from assuming categorical structure of the environment.

Rational model

- 1. Inter-category distance assumption: An observer assumes that centers of any two categories are more likely to be relatively distant from each other in perceptual space than to be close \rightarrow acquisition of a new category shifts the expectations of the unknown ones.
- 2. Adaptation phase: A rational observer forms a category of "typical" stimuli using Bayesian inference.
- 3. **Test phase:** When an observer sees a new stimulus she decides which category it most likely belongs to.
- 4. **Perceptual inference:** An observer reconstructs the most likely perceptual characteristics of the stimulus combining the actual perception and prior expectations of the assigned category ("typical" or unknown).

Model Analysis

- Cross-validation. Cognitive model predicts hold-out data better than logistic regression based on *precision* and *recall*
- Qualitative patterns. Cognitive model repeats the main regularities in data replicated in two experiments

	Measure	Bayesian LR	Cognitive Model
Experiment 1: assimilative	Recall	0.296 (0.086)	0.577 (0.082)
	Precision	0.521 (0.12)	0.522 (0.034)
Experiment 1: contrastive	Recall	0.817 (0.065)	0.65 (0.056)
	Precision	0.637 (0.018)	0.701 (0.032)
Experiment 2: assimilative	Recall	0.057 (0.0049)	0.293 (0.057)
	Precision	0.378 (0.228)	0.426 (0.044)
Experiment 2: contrastive	Recall	0.97 (0.03)	0.845 (0.032)
	Precision	0.73 (0.006)	0.754 (0.012)

Further directions

- Testing the model on realistic, multidimensional stimuli (e.g. faces)
- Applying the model to explain other perceptual effects of assimilative and contrastive nature