Physics

Lecture 5 Kinematics of Curvilinear Motion (Polar Coordinates)

Contents

- Polar coordinate system
- Base vectors of polar coordinate system
- Velocity and acceleration in polar coordinates
- Circular motion using polar coordinates

Types of Coordinate Systems

When do we use polar coordinates

- When a motion is constrained through the control of a radial distance and an angular position
- Or when an unconstrained motion is observed by measuring the radial distance and angular position

Polar Coordinates

Characteristics

- Location is specified by a radial coordinate *r* from a fixed origin and a transverse coordinate *θ*, which is the counterclockwise angle between a fixed reference line and the *r* axis
- The positive directions of r and θ coordinates are defined by base vectors \mathbf{e}_r and \mathbf{e}_{θ}

• $\mathbf{e_r}$ is in the direction of increasing r when θ is held fixed, and $\mathbf{e_{\theta}}$ is in a direction of increasing θ when r is held fixed

Base Vectors in Polar Coordinates

- Mutually perpendicular of unit magnitude
- Directions of \mathbf{e}_r and \mathbf{e}_{θ} are NOT fixed

 Directions depend on the location of the particle

What is the difference between e_n and e_t (Base Vectors in path coordinates) and e_r and e_θ

Path Coordinates Vs. Polar Coordinates

- Path coordinates depend on the path, and the direction of motion of the particle, whereas polar coordinates are determined solely by the position of the particle
- In both the coordinate systems, the base vectors possess nonzero derivatives, even though their magnitudes are constant (equal to unity)

Derivative of the Base Vectors

$$\dot{\mathbf{e}}_r = \dot{\theta} \, \mathbf{e}_{\theta}$$

$$\dot{\mathbf{e}}_{\theta} = -\dot{\theta}\,\mathbf{e}_{r}$$

During time Δt

 $\dot{\theta}$ angular velocity

Characteristics of Derivatives of the Base Vectors

Direction of e_r

Direction of \mathbf{e}_{θ}

Velocity in Polar Coordinates

Velocity has two components: radial (v_r) and transverse (v_θ)

The two components of velocity are mutually perpendicular

Acceleration in Polar Coordinates

$$\mathbf{a} = a_r \mathbf{e}_r + a_\theta \mathbf{e}_\theta$$

$$a_r = \ddot{r} - r\dot{\theta}^2$$

$$a_\theta = r\ddot\theta + 2\dot r\dot\theta$$

 $\ddot{ heta}$ angular acceleration

What is the magnitude & direction of acceleration?

$$a = |\mathbf{a}| = \sqrt{a_r^2 + a_\theta^2}$$

Do not Confuse

$$a_r \neq \dot{v}_r$$

$$a_{\theta} \neq \dot{v}_{\theta}$$

Circular Motion using Polar Coordinates

constant radius r

$$v_r = 0$$

$$v_{\theta} = r\dot{\theta}$$

$$a_r = -r\dot{\theta}^2$$

$$a_{\theta} = r\ddot{\theta}$$

