Ejercicio: Jea de IR y comiduo la les recurrente Xn+1 = dxn ln (2+xn2). Entrata el número de puntos fijos y su entabilidad en función de de

Sea Xnt = f(Xn) donde f: R - R viene dada por f(x) = d. x ln(2+x1) YxER

con & ER

Calculema en primer lugar la junta fijer de f:

 $\langle \Rightarrow \begin{cases} x = 0 \\ \alpha | n(2+x^2) = 1 \end{cases} \iff \ln(2+x^2) = \frac{1}{\alpha} \iff 2+x^2 = e^{\frac{1}{\alpha}} \iff$

 $(=) \quad x^2 = e^{\frac{1}{4\alpha}} - 2 \quad (\Rightarrow) \quad x = \pm \sqrt{e^{\frac{1}{4\alpha}} - 2}$

(a) $S_i = 0 < \alpha < \frac{1}{\ln 2}$ =) $X^* = 0$, $X^* = \pm \sqrt{2^i \alpha_i} 2$

parámetro red &

 $f(x) = x \iff x = \alpha \times \ln(2 + x^2) \iff$

x (1-x / (5 fx2)) = 0

(e1/4 - 2 > 0 (o < x < 1/2)

Una vez hallada la junta fija, procedema a entudiar su entotilidad, en función del

Para allo, comenzamos onalizando la siguiente cono:

•) of $=0 \Rightarrow x^*=0$. Aplicamon el certaire el la premera durinda:

 $\int_{0}^{\infty} (x) = \alpha \ln(2+x^{2}) + \alpha \times \frac{2x}{2+x^{2}} = \alpha \ln(2+x^{2}) + \frac{\alpha 2x}{2+x^{2}}$

l'(0) = dln2 = 0 < 1 =) Asintoticamente atable.

•) d∈] 0, 102[→ x *=0 => f'(0) = x ln 2. Para x ∈] 0, 1/2 [se vuifica que 0 < f'(0) < 1

luego, x+ = 0 en anintáticamente estable.

luege, ento me dice que tonto x* = Véx-2 como x* = -Véx-2 son inentable.

· l x ∈]- ∞, o[U[the, tw[

X* = 0 en el único punho fijo. Aglicamon el exiterio de la primera obrivada:

1'(0) = xln(2)

→ Si d ∈]-0, - 102 [=> | f'(0)| > 1 => x+=0 en un punto fijo inculobe

→ $Si \ \alpha \in J - \frac{1}{\ln x}$, of $J = \int_{0}^{x} (0) |x| = 0$ or anin-blicamenta evalue.

→ Si α ∈] 1/10 => 1 8/(0) >1 + x*=0 en inerlable.

 $\int \int \int d = \frac{1}{\ln x} + \int f'(0) = 1 = \int \int \int \partial u du = \partial$

Hemon de necuriir a la segunda devivada:

 $\int_{-\infty}^{\infty} (x) = \frac{2dx}{2+x^2} + \frac{8dx}{(2+x^2)^2}$ $\Rightarrow \int_{-\infty}^{\infty} (0) = 0 \Rightarrow No aporta información, luego recurina$ a la tercua deinada.

 $\int_{0}^{\infty}(x) = \frac{2\kappa(2+x^{2})-2x\cdot 2\times \lambda}{(2+x^{2})^{2}} + \frac{9\kappa(2+x^{2})^{2}-32\kappa x^{2}(2+x^{2})}{(2+x^{2})^{2}} = \int_{0}^{\infty}(0) = 3\kappa$

Para 2 = 1 102 -1 pm(0) > C = Inchable

Para d = . 1) pro(0) <0 =) Arintoticamente utable.