武汉大学 2016-2017 学年第二学期期末考试高等数学 B2 试题(A)

- 1、(8分)设 \vec{a} = (2, -3,1), \vec{b} = (1, -2,3), \vec{c} = (2,1,2),求同时垂直于 \vec{a} 和 \vec{b} ,且在向量 \vec{c} 上投影是 14的向量 \vec{d} .
- 2、(10 分)讨论极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{x^4y^4}{(x^2+y^4)^3}$ 的存在性,若存在求出极限,若不存在说明理由。
- 3、(8 分) 过直线 $l:\begin{cases} x+y-z=0\\ x+2y+z=0 \end{cases}$ 作两个互相垂直的平面,且其中一个过已知点 $M_1(0,1,-1)$,求这两个平面的方程
- 4、(10 分)设函数 f(u,v) 由关系式 f(xg(y),y)=x+g(y) 确定,其中函数 g(y) 可微,且 $g(y) \neq 0$,求 $\frac{\partial^2 f}{\partial v \partial u}$.
- 5、(8分) 设u = f(x, y, z), $y = \ln x$, $h(\sin x, e^y, z) = 0$, 且 $\frac{\partial h}{\partial z} \neq 0$, 求du。
- 6、(10 分) 在椭球面 $2x^2 + 2y^2 + z^2 = 1$ 上求一点,使函数 $f(x, y, z) = x^2 + y^2 + z^2$ 在该点沿方向 $\vec{l} = \vec{i} \vec{j}$ 的方向导数最大。
- 7、(10 分)设区域 $D = \{(x, y) \mid x^2 + y^2 \le 4, x \ge 0\}$,计算二重积分 $\iint_D \frac{1 + xy}{1 + x^2 + y^2} dxdy$ 。
- 8、(8 分) 计算曲线积分 $\int_{L} e^{x} (\cos y dx \sin y dy)$,其中 L 是从坐标原点起,经曲线 $y = x^{2}$ 到点 (a, a^{2}) 的路径.
- 9、(10 分) 试将函数 $f(x) = \ln(1 + x + x^2)$ 展开成 x 的幂级数。
- 10、(10分) 计算曲面积分 $I = \iint_{S} 2x^{3} dydz + 2y^{3} dzdx + 3(z^{2} 1)dxdy$,其中 S 是曲面
- $z = 4 x^2 y^2 (z \ge 0)$ 的上侧。
- 11、(8 分)设 $a_n < b_n < c_n$, n = 1, 2, ..., 证明:若级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} c_n$ 收敛,则必有 $\sum_{n=1}^{\infty} b_n$ 收敛,且

有
$$\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n \le \sum_{n=1}^{\infty} c_n$$
.

武汉大学 2016-2017 学年第二学期期末考试高等数学 B2 试题(A)解答

1、(8分)设 \vec{a} =(2,-3,1), \vec{b} =(1,-2,3), \vec{c} =(2,1,2),求同时垂直于 \vec{a} 和 \vec{b} ,且在向量 \vec{c} 上投影是 14的向量 \vec{d} .

解:设
$$\vec{d} = (x, y, z)$$
,由条件可得
$$\begin{cases} \vec{a} \cdot \vec{d} = 2x - 3y + z = 0 \\ \vec{b} \cdot \vec{d} = x - 2y + 3z = 0 \end{cases}$$
,解之得
$$\vec{c} \cdot \vec{d} = 2x + y + 2z = |\vec{c}| \cdot \text{Pr } \mathbf{j}_{\vec{c}} \vec{d} = 42$$

$$x = 14, y = 10, z = 2.$$
 $total \vec{d} = (14, 10, 2)$

2、(10 分)讨论极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{x^4y^4}{(x^2+y^4)^3}$ 的存在性,若存在求出极限,若不存在说明理由。

解 由于
$$\lim_{\substack{x\to 0\\y=0}} \frac{x^4 y^4}{(x^2 + y^4)^3} = 0$$
 ...5'

$$\lim_{\substack{x=y^2\\y\to 0}} \frac{x^4 y^4}{(x^2 + y^4)^3} = \lim_{\substack{y\to 0}} \frac{y^{12}}{(2y^4)^3} = \frac{1}{8} \qquad \text{ fill } \lim_{\substack{x\to 0\\y\to 0}} \frac{x^4 y^4}{(x^2 + y^4)^3} \text{ π 存在}. \dots 5'$$

3、(8 分) 过直线 l: $\begin{cases} x+y-z=0 \\ x+2y+z=0 \end{cases}$ 作两个互相垂直的平面,且其中一个过已知点 $M_1(0,1,-1)$,求这两个平面的方程。

解 设过 l 的平面方程为 $x+y-z+\lambda(x+2y+z)=0$ 由过 M_1 点,解得: $\lambda=-2$

故过 l 且过 M_1 的平面为 π_1 : x + 3y + 3z = 0

设另一个平面为
$$x+y-z+\mu(x+2y+z)=0$$
由与 π_1 垂直,解得 $\mu=-\frac{1}{10}$ 故平面为 $9x+8y-11z=0$

4、(10 分)设函数 f(u,v) 由关系式 f(xg(y),y)=x+g(y) 确定,其中函数 g(y) 可微,且

$$g(y) \neq 0$$
, $\vec{x} \frac{\partial^2 f}{\partial v \partial u}$.

解: 设
$$\begin{cases} xg(y) = u \\ y = v \end{cases}$$
 得 $f(u,v) = \frac{u}{g(v)} + g(v)$, 关于 v 求导得 $\frac{\partial f}{\partial u} = \frac{1}{g(v)}$,5'

因此
$$\frac{\partial^2 f}{\partial v \partial u} = -\frac{g'(v)}{g^2(v)}$$
....5'

5、(8分) 设
$$u = f(x, y, z)$$
, $y = \ln x$, $h(\sin x, e^y, z) = 0$, 且 $\frac{\partial h}{\partial z} \neq 0$, 求 d u .

解: 法一: 对 $y = \ln x$ 两边对 x 求导数,有 $y' = \frac{1}{x}$,对 $h(\sin x, e^y, z) = 0$ 两边对 x 求导数,

有 $h_1 \cdot \cos x + h_2 \cdot e^y \cdot y' + h_3 \cdot z' = 0$,注意由 $y = \ln x$ 可知 $e^y = x$,从而 $z' = -\frac{\cos x \cdot h_1 + h_2}{h_2}$ 。 对u = f(x, y, z) 两边同时对x求导,得

$$du = (f_1 + f_2 \cdot y' + f_3 \cdot z') dx = (f_1 + f_2 \cdot \frac{1}{x} + f_3 \cdot \left(-\frac{\cos x \cdot h_1 + h_2}{h_3} \right)) dx$$

法二 由 $du = f_x(x, y, z)dx + f_y(x, y, z)dy + f_z(x, y, z)dz$

$$\mathbb{Z} e^{y} = x$$
, $dy = \frac{1}{x} dx$, $h_{1} \cos x dx + h_{2} e^{y} dy + h_{3} dz = 0$ by $dz = -\frac{h_{1} \cos x dx + h_{2} dx}{h_{3}}$

所以有
$$du = (f_x + \frac{f_y}{x} - f_z \frac{h_1 \cos x + h_2}{h_3}) dx$$

6、(10 分) 在椭球面 $2x^2 + 2y^2 + z^2 = 1$ 上求一点,使函数 $f(x, y, z) = x^2 + y^2 + z^2$ 在该点沿 \overrightarrow{j} \overrightarrow{j} \overrightarrow{j} \overrightarrow{j} 的方向导数最大。

解: 函数
$$f(x, y, z)$$
 的方向导数的表达式为 $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$ 。

其中:
$$\cos \alpha = \frac{1}{\sqrt{2}}$$
, $\cos \beta = -\frac{1}{\sqrt{2}}$, $\cos \gamma = 0$ 为方向 \overrightarrow{l} 的方向余弦。因此 $\frac{\partial f}{\partial l} = \sqrt{2}(x-y)$ 。…5

于是,按照题意,即求函数 $\sqrt{2}(x-y)$ 在条件 $2x^2+2y^2+z^2=1$ 下的最大值。设

$$F(x, y, z, \lambda) = \sqrt{2}(x - y) + \lambda(2x^2 + 2y^2 + z^2 - 1)$$
, 则由

$$\begin{cases} \frac{\partial f}{\partial x} = \sqrt{2} + 4\lambda x = 0\\ \frac{\partial f}{\partial y} = -\sqrt{2} + 4\lambda y = 0 \end{cases}$$

$$\frac{\partial y}{\partial y} = \sqrt{2 + 4\lambda t} y = 0$$

$$\begin{cases} \frac{\partial f}{\partial z} = 2\lambda z = 0 \\ \frac{\partial f}{\partial z} = 2\lambda z = 0 \end{cases}$$

$$\frac{\partial f}{\partial \lambda} = 2x^2 + 2y^2 + z^2 - 1 = 0$$

得
$$z = 0$$
 以及 $x = -y = \pm \frac{1}{2}$,即得驻点为 $M_1 = \left(\frac{1}{2}, -\frac{1}{2}, 0\right)$ 与 $M_2 = \left(-\frac{1}{2}, \frac{1}{2}, 0\right)$ 。因最大值必存

在,故只需比较
$$\frac{\partial f}{\partial l}\Big|_{M_1} = \sqrt{2}$$
, $\frac{\partial f}{\partial l}\Big|_{M_2} = -\sqrt{2}$ 的大小。由此可知 $M_1 = \left(\frac{1}{2}, -\frac{1}{2}, 0\right)$ 为所

7、(10 分)设区域
$$D = \{(x, y) \mid x^2 + y^2 \le 4, x \ge 0\}$$
,计算二重积分 $\iint_{D} \frac{1 + xy}{1 + x^2 + y^2} dxdy$ 。

解:由于积分区域关于
$$x$$
轴对称,函数 $\frac{1}{1+x^2+y^2}$ 是变量 y 的偶函数, $\frac{xy}{1+x^2+y^2}$ 是变量 y 的

奇函数,则
$$\iint_{D} \frac{xy}{1+x^2+y^2} dxdy = 0.........5$$

$$\iint_{D} \frac{1}{1+x^{2}+y^{2}} dxdy = 2\iint_{D} \frac{1}{1+x^{2}+y^{2}} dxdy = 2\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2} \frac{rdr}{1+r^{2}} = \frac{\pi}{2} \ln 5,$$

8、(8 分) 计算曲线积分 $\int_{L} e^{x} (\cos y dx - \sin y dy)$, 其中 L 是从坐标原点起,经曲线 $y = x^{2}$ 到点 (a, a^{2}) 的路径.

解: 因 $\frac{\partial}{\partial x}(-\sin ye^x) = -\sin ye^x = \frac{\partial}{\partial y}(e^x \cos y)$,所以积分与路径无关,取路径为如下折线

$$(0,0) \to (a,0) \to (a,a^2)$$
,则有
$$\int_{a}^{b} e^{x} (\cos y dx - \sin y dy) = \int_{0}^{a} e^{x} dx - \int_{0}^{a^2} e^{a} \sin y dy = e^{a} \cos a^{2} - 1$$

9、(10 分) 试将函数 $f(x) = \ln(1 + x + x^2)$ 展开成 x 的幂级数。

解: 由于
$$f(x) = \ln(1-x^3) - \ln(1-x)$$
 利用 $\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$ $x \in (-1,1).....5$

得
$$f(x) = -\sum_{n=1}^{\infty} \frac{x^{3n}}{n} + \sum_{n=1}^{\infty} \frac{x^n}{n} = \sum_{k=0}^{\infty} \left(\frac{x^{3k+1}}{3k+1} + \frac{x^{3k+2}}{3k+2} - \frac{2x^{3k+3}}{3(k+1)} \right)$$
 $x \in (-1, 1).....5'$

10、(10 分) 计算曲面积分 $I = \iint_S 2x^3 dydz + 2y^3 dzdx + 3(z^2 - 1)dxdy$,其中 S 是曲面

$$z = 4 - x^2 - y^2 (z \ge 0)$$
 的上侧。

解 补辅助面 S_1 : $\begin{cases} x^2+y^2=1, \\ z=0 \end{cases}$, 法向量向下,形成封闭曲面 Ω , 在 Ω 上运用高斯公式可得

$$J = \iint_{S \cup S_1} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy = \iiint_{\Omega} 6(x^2 + y^2 + z) dx dy dz, \dots5'$$

作柱坐标变换得

$$J = 6 \int_0^{2\pi} d\theta \int_0^2 dr \int_0^{1-r^2} (r^2 + z) r dz = 128\pi , \ \overline{m}$$

$$J_1 = \iint_{S_1} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy = -\iint_{S_1} 3 dx dy = -\iint_{D} -3 dx dy = 12\pi, 所以$$

$$I = J - J_1 = 116\pi \dots 5'$$

11、(8 分)设 $a_n < b_n < c_n$, n = 1, 2, ...,证明:若级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} c_n$ 收敛,则必有 $\sum_{n=1}^{\infty} b_n$ 收敛,且

有
$$\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n \leq \sum_{n=1}^{\infty} c_n$$
.

证明: 由 $a_n < b_n < c_n$ 可得 $0 < b_n - a_n < c_n - a_n$,由 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} c_n$ 收敛知道 $\sum_{n=1}^{\infty} (c_n - a_n)$ 收敛,由

正项级数比较判别法知道 $\sum_{n=1}^{\infty} (b_n - a_n)$ 收敛,从而 $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} [a_n + (b_n - a_n)]$ 收敛。另外设

 A_n, B_n, C_n 分别是 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, $\sum_{n=1}^{\infty} c_n$ 的部分和数列,则 $A_n < B_n < C_n$,由数列极限的性质知道

$$\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n \le \sum_{n=1}^{\infty} c_n$$

满绩小铺QQ: 1433397577, 搜集整理不易,资料自用就好,谢谢!