Einige Typen von Differentialgleichungen 1. Ordnung

 $y' = f(\frac{y}{x})$. Setze $u := \frac{y}{x}$. Dies führt auf eine Differentialgleichung mit getrennten Verän-

Beispiel

AWP:
$$\begin{cases} y' = \frac{y}{x} - \frac{x^2}{y^2} \\ y(1) = 1 \end{cases}$$

$$\begin{aligned} u &:= \frac{y}{x} &\implies y = xu \\ y' &= u + xu' &\implies u + xu' = u - \frac{1}{u^2} \\ &\implies u' = -\frac{1}{xu^2} \\ &\implies \frac{du}{dx} = -\frac{1}{xu^2} \\ &\implies u^2 du = -\frac{1}{x} dx \\ &\implies \frac{1}{3} u^3 = -\log x + c \\ &\implies u^3 = -3\log x + 3c \ (c \in \mathbb{R}) \end{aligned}$$

$$u(1) = \frac{y(1)}{1} = 1 \implies 1 = u^3(1) = 3c \\ &\implies c = \frac{1}{3}$$

$$u^3 = 1 - 3\log x \implies y(x) = x\sqrt[3]{1 - 3\log x} \ \text{auf} \ (0, \sqrt[3]{e}) \ (\text{L\"osung des AWPs}) \end{aligned}$$

(II) Bernoullische Differentialgleichung: $y' + p(x)y + q(x)y^{\alpha} = 0$, wobei p und q stetig sind und $0 \neq \alpha \neq 1$. Dividiere durch y^{α} und setze $u := y^{1-\alpha}$. Dies führt auf eine lineare Differentialgleichung für u.

Beispiel
$$(*) \ y' - xy + 3xy^2 = 0 \ (\alpha = 2). \ \text{Dann:} \ \frac{y'}{y^2} - \frac{x}{y} + 3x = 0; \ u := \frac{1}{y} \implies u' = -\frac{y'}{y^2} \implies -u' - xu + 3x = 0 \implies u' = -xu + 3x. \ \text{Allgemeine L\"osung hiervon:} \ u(x) = ce^{-\frac{1}{2}x^2} + 3 \ (c \in \mathbb{R}). \ \text{Allgemeine L\"osung von} \ (*): \ y(x) = \frac{1}{ce^{-\frac{1}{2}x^3} + 3} \ (c \in \mathbb{R})$$

(III) Riccatische Differentialgleichung: (*) $y' + g(x)y + h(x)y^2 = k(x)$, wobei g, h, k stetig sind. Sei y_1 eine bekannte Lösung von (*); setze $z := \frac{1}{y-y_1}$. Nachrechnen: (**) z' = (g(x) + y)

9. Einige Typen von Differentialgleichungen 1. Ordnung

 $2y_1(x)h(x))z + h(x)$ (lin. Dgl für z). Die allgemeine Lösung von (*) lautet: $y(x) = y_1(x) + \frac{1}{z(x)}$ wobei z die allgemeinen Lösungen von (**) durchläuft.