Creditworthiness for a Loan

Step 1: Business and Data Understanding

What decisions need to be made?

Suddenly increasing the application for the loan created a demand to build a classification model to predict the applied application creditworthiness to give the loan.

What data is needed to inform those decisions?

Past application data with applicants' details.

Credit-data-training dataset helps build and validate the model

Customers-to-score is the new application to predict creditworthiness.

What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

We are going to predict two values so Binary Model

Step 2: Explore and Cleanup the Data

Build your training set given the data provided to you. The data has been cleaned up for you already so you shouldn't need to convert any data fields to the appropriate data types.

In order to achieve the best predicting model, we have a great data set. When building the dataset I decide to remove some fields and impute one field. Check below.

Age-years - This Field only has 2% null values. So I decided to impute data.

Concurrent-credits - This data field looks very uniform. If I choose to build the model it will skew the model.

Duration-in-Current-Address - It has lots of null values. The best thing to do is remove it.

Foreign-Workers - This data field looks very uniform. If I choose to build the model it will skew the model.

Guarantors - This data field looks very uniform. If I choose to build the model it will skew the model.

I got rounded up at age 36 and 13 columns after cleaning up the dataset.

Step 3. Train your Classification Models

Create all of the following models: Logistic Regression, Decision Tree, Forest Model, Boosted Model

Alteryx Workflow

Logistic regression Model

Min	1Q	Median		3Q	Max
-2.118	-0.712	-0.428		0.721	2.618
Coefficients:					
		Estimate	Std. Error	z value	Pr(> z)
(Intercept)		-3.3658428	1.178e+00	-2.85816	0.00426 **
Account.BalanceSome Balance		-1.5769536	3.263e-01	-4.83298	1.34e-06 ***
Duration.of.Credit.Month		0.0078332	1.376e-02	0.56934	0.56912
Payment.Status.of.Previous.CreditPaid Up		0.4248873	3.857e-01	1.10151	0.27067
Payment.Status.of.Previous.CreditSome Problems		1.3099054	5.350e-01	2.44863	0.01434 *
PurposeNew car		-1.7413765	6.283e-01	-2.77171	0.00558 **
PurposeOther		-0.2316233	8.383e-01	-0.27629	0.78232
PurposeUsed car		-0.7987442	4.152e-01	-1.92361	0.0544 .
Credit.Amount		0.0001534	7.118e-05	2.15479	0.03118 *
Value.Savings.StocksNone		0.6267465	5.115e-01	1.22528	0.22047
Value.Savings.Stocks£100-£1000		0.1628575	5.673e-01	0.28710	0.77404
Length.of.current.employment4-7 yrs		0.5277541	4.918e-01	1.07303	0.28326
Length.of.current.employment< 1yr		0.8054343	3.953e-01	2.03752	0.0416 *
Instalment.per.cent		0.3005638	1.422e-01	2.11366	0.03454 *
Most.valuable.available.asset		0.3057238	1.568e-01	1.94952	0.05123 .
Age.years		-0.0159822	1.555e-02	-1.02768	0.3041
Type.of.apartment		-0.2505608	2.954e-01	-0.84827	0.39629
No.of.Credits.at.this.BankMore than 1		0.3607280	3.830e-01	0.94192	0.34623
No.of.dependents		-0.0247027	4.346e-01	-0.05684	0.95467
Telephone		0.3722599	3.151e-01	1.18131	0.23748

There are 2 variables that are Statistically Significant. There are *Account.Balancesome Balance, Purposenew Car.*

Decision Tree Model

The Important Predictor Variables are *Account.Balancesome Balance*, *Value.Sainfs.tocks,Purposenew Car.* This model has an overall 73% accuracy in predicting creditworthy applications.

Decision Tree Graph

Forest model variable Importance Plot - It seems *Credit.Amount, Age.years, Duration.of.Credit.Month* is a more important variable.

Variable Importance Plot

Credit.Amount

Age.years

Duration.of.Credit.Month

Account.Balance

Most.valuable.available.asset

Payment.Status.of.Previous.Credit

Instalment.per.cent

Value.Savings.Stocks

Purpose

Length.of.current.employment

Type.of.apartment

Telephone

No.of.Credits.at.this.Bank

No.of.dependents

Occupation

Boosted Model Variable Importance Plot - It seems *Account.Balance*, *Credit. Amount* is an essential variable.

Step 4. Writeup

Write a brief report on how you came up with your classification model and write down how many of the new customers would qualify for a loan.

Compare all of the models' performances against each other. Decide on the best model and score your new customers.

Model Comparison Report

Model Comparison Report							
Fit and error measures							
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy		
Logistic_Regression	0.7867	0.8559	0.7149	0.9048	0.5111		
Decision_Tree	0.7467	0.8304	0.7035	0.8857	0.4222		
Forest_Model	0.8067	0.8766	0.7576	0.9810	0.4000		
Boosted_Model	0.7933	0.8670	0.7450	0.9619	0.4000		
belong to Class [class name], this mea AUC: area under the ROC curve, only	of correct predictions of f Class [class name] is de asure is also known as re- available for two-class of recision + recall). The pre-	fined as the r call. lassification. ecision measu	number of cases that ar	e correctly predicted to be Class [class name] divided b actual members of a class that were predicted to be in t	,		

The Forest Model has greater accuracy in predicting creditworthy applications compared to other models. The second-best model is the Boosted model.

Confusion Matrix

Confusion matrix of Boosted_Model		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	27
Predicted_Non-Creditworthy	4	18
Confusion matrix of Decision_Tree		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	93	26
Predicted_Non-Creditworthy	12	19
Confusion matrix of Forest_Model		
Confusion matrix of Forest_Model	Actual_Creditworthy	Actual_Non-Creditworthy
Confusion matrix of Forest_Model Predicted_Creditworthy	Actual_Creditworthy	Actual_Non-Creditworthy
		Actual_Non-Creditworthy 27 18
Predicted_Creditworthy		Actual_Non-Creditworthy 27 18
Predicted_Creditworthy Predicted_Non-Creditworthy		Actual_Non-Creditworthy 27 18 Actual_Non-Creditworthy
Predicted_Creditworthy Predicted_Non-Creditworthy	103 2	27 18

Confusion Matrix shows clearly forest models perform better at validation samples.

Logistic regression - It predicts more non-creditworthy applications but they are creditworthy and seem biased.

Decision Tree - It predicts more creditworthy applications but they are non-creditworthy and it seems biased.

The Forest model looks good at predicting creditworthy applications and it seems not biased.

The booster model is also good at predicting creditworthy applications but comparably it seems low with the forest model.

After comparing and seeing all the charts and numbers the forest model predicted many creditworthy applications without biases so I decided to use the forest model to predict the new applications.

After applying the forest model to the new application it predicted 419 applications for creditworthiness.

Alteryx Workflow

