The basic rules of natural deduction:

1110 84610 1	introduction	elimination
^	$rac{\phi \psi}{\phi \wedge \psi} \wedge \mathrm{i}$	$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$
V	$\frac{\phi}{\phi \vee \psi} \vee_{i_1} \frac{\psi}{\phi \vee \psi} \vee_{i_2}$	$\frac{\phi \lor \psi \begin{array}{ c c c c c c c c c c c c c c c c c c c$
\rightarrow	$\frac{\varphi}{\vdots}$ $\frac{\psi}{\phi \to \psi} \to i$	$\frac{\phi \phi \to \psi}{\psi} \to e$
٦	$egin{pmatrix} \phi \ dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{\phi \neg \phi}{\perp} \neg e$
Τ	(no introduction rule for \perp)	$\frac{\perp}{\phi}$ \perp e
77		$\frac{\neg \neg \phi}{\phi}$ ¬¬e
Some usefu	Il derived rules: $\frac{\phi \to \psi \neg \psi}{\neg \phi} \text{ MT}$	$\frac{\phi}{\neg \neg \phi}$ ¬¬i
	$\frac{\neg \phi}{\vdots}$ $\frac{\bot}{\phi}$ PBC	$\overline{\phi \lor \neg \phi}$ LEM

Figure 1.2. Natural deduction rules for propositional logic.