

Tema 3 (parte 1). Cinemática directa del robot

Introducción a la cinemática del robot

Métodos de resolución del problema cinemático directo

Índice

Cinemática directa mediante matrices de transformación

Notación de Denavit-Hartenberg (D-H). Ejemplos de uso.

Notación URDF

Introducción a la cinemática del robot

La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia, sin considerar las fuerzas que intervienen (de eso se encarga la dinámica del robot).

- Problema cinemático directo: determinar la posición y orientación del elemento terminal conocida la geometría del robot (eslabones y articulaciones) y los valores de las coordenadas articulares (ángulos para rotación, desplazamientos para prismáticas)
- Problema cinemático inverso. Es el opuesto: determinar los valores de las coordenadas articulares conocida la posición y orientación del elemento terminal.

Ejemplo: cinemática del robot PUMA 762 con MATLAB

Métodos de resolución del problema cinemático directo

La obtención del modelo cinemático directo puede ser abordada mediante dos enfoques:

- Métodos geométricos: en robots con pocos
 GDL las relaciones entre la base del robot y el
 elemento terminal se pueden obtener
 simplemente mediante deducciones
 geométricas. Sólo válidos para casos simples
- Métodos basados en el cambio del sistema de referencia: validos para robots con n grados de libertad. Los más utilizados.
 - Usando matrices de transformación. Sencillo (multiplicación matricial). Es el que usaremos aquí.
 - Usando cuaterniones. Eficiente computacionalmente pero poco intuitivo

Robot polar de 2GDL

Robot articular de 2GDL

Cinemática directa mediante matrices de transformación

Basada en buscar una relación entre los sistemas de referencia de la base y del elemento terminal mediante una única matriz de transformación T

Típicamente, un robot con n GDL estará formado por n eslabones (sin contar la base) y n articulaciones simples

- o Para un brazo articulado con 6 GDL: $\mathbf{T} = {}^{0}\mathbf{A}_{6} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} {}^{3}\mathbf{A}_{4} {}^{4}\mathbf{A}_{5} {}^{5}\mathbf{A}_{6}$
- Cada matriz ⁱ⁻¹A_i depende del grado de libertad q_i de la articulación i, luego en en caso general: $\mathbf{T}(q_1 \cdots q_n) = {}^0 \mathbf{A}_1(q_1) \cdot {}^1 \mathbf{A}_2(q_2) \cdots {}^{n-1} \mathbf{A}_n(q_n)$

Ejemplo: obtener la matriz de transformación T en 3D para el robot angular de 2 GDL de la figura (I)

 ○ El paso de S₀ a S₁ se consigue mediante la matriz ⁰A₁: un giro q1 entorno al eje z y una traslación l₁ en el nuevo eje x:

$$= \begin{bmatrix} C_1 & -S_1 & 0 & 0 \\ S_1 & C_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & l_1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_1 & -S_1 & 0 & l_1C_1 \\ S_1 & C_1 & 0 & l_1S_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

El paso de S₁ a S₂ se en el nuevo eje x.

consigue con
$${}^{1}A_{2}$$
: un giro q2 (con respecto a x_{1} y entorno al eje z) y una traslación I_{2} en el nuevo eje x

 ${}^{1}\mathbf{A}_{2} = \mathbf{Rotz}(q_{2}) \cdot \mathbf{T}(l_{2}, 0, 0) =$

Ejemplo: obtener la matriz de transformación T en 3D para el

robot angular de 2 GDL de la figura (II)

 La matriz T que representa el paso de S₀ a S₂ es el producto ⁰A₁ y ¹A₂

$$T = {}^{0}A_{1} {}^{1}A_{2} =$$

$$= \begin{bmatrix} C_1 C_2 - S_1 S_2 & -C_1 S_2 - S_1 C_2 & 0 & l_1 C_1 + l_2 C_{12} \\ S_1 C_2 + C_1 S_2 & -S_1 S_2 + C_1 C_2 & 0 & l_1 S_1 + l_2 S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} C_{12} & -S_{12} & 0 & l_1C_1 + l_2C_{12} \\ S_{12} & C_{12} & 0 & l_1S_1 + l_2S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 La posición P=[x y z]^T y orientación [noa] del elemento terminal con respecto a la base del robot (S₀) vendrán dados por:

$$\begin{bmatrix} \mathbf{n} & \mathbf{o} & \mathbf{a} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{12} & -S_{12} & 0 & l_1C_1 + l_2C_{12} \\ S_{12} & C_{12} & 0 & l_1S_1 + l_2S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x = l_1C_1 + l_2C_{12}$$

$$y = l_1S_1 + l_2S_{12}$$

$$z = 0$$

$$[\mathbf{noa}] = \mathbf{Rotz}(q_1 + q_2)$$

Notación de Denavit-Hartenberg

¿Cómo se escoge la localización de cada sistema de referencia S_i con respecto al eslabón i de la cadena cinemática?

En 1955, Jacques Denavit y Richard Hartenberg introdujeron una propuesta de estandarización: notación de Denavit-Hartenberg (D-H)

- Para cadenas cinemáticas con eslabones rígidos.
- Basada en una sucesión de 4 transformaciones: dos rotaciones y dos traslaciones que relacionan el sistema de referencia del eslabón i con respecto al sistema del eslabón i-1:

$$^{i-1}\mathbf{A}_i = \mathbf{Rotz}(\theta_i) \mathbf{T}(0, 0, d_i) \mathbf{T}(a_i 0, 0) \mathbf{Rotx}(\alpha_i)$$

- 1. Rotación alrededor del eje \mathbf{z}_{i-1} un ángulo θ_i .
- 2. Traslación a lo largo de \mathbf{z}_{i-1} una distancia d_i ; vector $\mathbf{d}_i(0,0,d_i)$.
- 3. Traslación a lo largo de \mathbf{x}_i una distancia a_i vector $\mathbf{a}_i(a_i,0,0)$.
- 4. Rotación alrededor del eje \mathbf{x}_i un ángulo α_i .

Transformaciones de Denavit-Hartenberg

- Ángulo θ: Rotación sobre el eje Z del sistema original hasta que el eje
 X original sea paralelo al eje X final
- 2. Distancia d: Traslación en el eje Z original hasta que los ejes X sean coincidentes
- 3. Distancia a: Traslación en el eje X final hasta que coincidan los orígenes de los sistemas de referencia
- 4. Ángulo α: Rotación sobre el eje X final para que los ejes Z coincidan

Joint i+1

Parámetros de Denavit-Hartenberg

- Los cuatro parámetros de D-H θ_i, d_i, a_i, α_i dependen únicamente de las características geométricas del eslabón i y de la articulación que le une con el anterior.
- Con ellos, la matriz ⁱ⁻¹A_i
 es igual a:

$$^{i-1}$$
A_i = **Rotz** (θ_i) **T** (0, 0, d_i) **T** (a_i 0, 0) **Rotx** (α_i)

$${}^{i-1}\mathbf{A}_i = \begin{bmatrix} \mathbf{C}\theta_i & -\mathbf{S}\theta_i & 0 & 0 \\ \mathbf{S}\theta_i & \mathbf{C}\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \alpha_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \mathbf{C}\alpha_i & -\mathbf{S}\alpha_i & 0 \\ 0 & \mathbf{S}\alpha_i & \mathbf{C}\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{C}\theta_i & -\mathbf{C}\alpha_i\mathbf{S}\theta_i & \mathbf{S}\alpha_i\mathbf{S}\theta_i & a_i\mathbf{C}\theta_i \\ \mathbf{S}\theta_i & \mathbf{C}\alpha_i\mathbf{C}\theta_i & -\mathbf{S}\alpha_i\mathbf{C}\theta_i & a_i\mathbf{S}\theta_i \\ 0 & \mathbf{S}\alpha_i & \mathbf{C}\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Resolución del problema cinemático directo con D-H

Resolución del problema cinemático directo con D-H (I)

El algoritmo completo de resolución consta de 15 pasos:

- **1. Numerar los eslabones**: se llamará "0" a la base fija donde se ancla el robot. "1" será el primer eslabón móvil y "n" el último.
- 2. Numerar las articulaciones: La "1" será el primer grado de libertad, y "n" el último.
- 3. Localizar el eje de cada articulación: Si es rotatoria, será el eje de giro. Si es prismática será el eje a lo largo del cuál se produce el desplazamiento.
- **4. Ejes Z**: Para colocar los sistemas de referencia, el eje coordinado Z_{i-1} estará sobre el eje de giro de la articulación i, con i=1,...,n. Es decir, Z_0 va sobre el eje de la 1^a articulación, Z_1 sobre el de la 2^a , etc.
- **5. Sistema de referencia 0**: Se sitúa el origen en cualquier punto a lo largo de Z₀, normalmente sobre la base del robot. La orientación de X₀ e Y₀ puede ser arbitraria, siempre sea un sistema dextrógiro.
- **6. Resto de sistemas de referencia**: Para el resto de sistemas i = 1,...,N-1, depende de la posición de los dos ejes Z_{i-1} y Z_i
 - a. Si se cortan, el origen se coloca en el punto de corte
 - b. Si se cruzan, el origen se sitúa en la intersección de Z_i con la normal común a Z_{i-1} y Z_i.
 - c. Si son paralelos o coincidentes, se coloca en algún punto de la articulación i+1.

Resolución del problema cinemático directo con D-H (II)

- **8.** Ejes X: Cada X_i va en la dirección de la normal común a Z_{i-1} y Z_i , en la dirección de Z_{i-1} hacia Z_i .
- **9. Ejes Y**: Una vez situados los ejes Z y X, los Y tienen su direcciones determinadas por la restricción de formar un sistema dextrógiro.
- **10. Sistema N del extremo del robot**: El n-ésimo sistema de referencia se coloca en el extremo del robot (herramienta terminal), con su eje Z en la dirección de acción de la herramienta y X e Y en cualquier dirección válida.
- 11. Ángulos θ : Cada θ_i es el ángulo desde X_{i-1} hasta X_i girando alrededor de Z_i .
- 12. Distancias d: Cada d es la distancia desde el sistema i-1 hasta la intersección de las normales común de Z_{i-1} hacia Z_i , a lo largo de Z_{i-1} .
- 13. Distancias a: Cada ai es la longitud de dicha normal común.
- 14. Ángulos α : Ángulo que hay que rotar Z_{i-1} para llegar a Z_i , rotando alrededor de X_i .
- 15. Matrices individuales: Extraer las matrices de transformación ⁱ⁻¹A_i
- 16. Transformación total: La matriz de transformación final que relaciona la posición y orientación del elemento terminal con respecto a la base del robot es la concatenación (multiplicación) de todas las matrices individuales:

$$\mathbf{T} = {}^{0} \mathbf{A}_{1}^{1} \mathbf{A}_{2} \cdots {}^{n-1} \mathbf{A}_{n}$$

Resolución del problema cinemático directo con D-H

Robótica Industrial – Grado en Ingeniería de Robótica Software

Ejemplo 1 de uso de la notación Denavit-Hartenberg

Obtén la representación gráfica del robot definido por la siguiente tabla de parámetros D-H

 El robot tiene tres articulaciones de rotación (3 GDL):

i	θ_{i}	d _i	a _i	α_{i}
1	q_1	0	0.5	0
2	q_2	0	0.3	-90
3	q_3	0.2	0	0

Ejemplo 2 de uso de la notación Denavit-Hartenberg (II)

Obtén la tabla de parámetros D-H correspondiente al robot cilíndrico con giro terminal de la figura, indica sus GDL y resuelve su cinemática directa

- La articulación 1 puede girar en el eje z₀ (q₁)
- Las articulaciones 2 y 3 son prismáticas (d₂ y d₃)
- La articulación 4 puede girar en el eje z₃ (q₄)

i	$\boldsymbol{\theta}_{i}$	d _i	a _i	α_{i}
1	q_1	I ₁	0	0
2	90	d_2	0	90
3	0	d_3	0	0
4	q_4	l ₄	0	0

Importante: recuerda que d_i es la distancia a lo largo del eje **Z**_{i-1} (desde O_{i-1} hasta X_i)

Ejemplo 2 de uso de la notación Denavit-Hartenberg (II)

La resolución de la cinemática directa requiere determinar primero las matrices individuales:

$${}^{0}\mathbf{A}_{1} = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{1}\mathbf{A}_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}\mathbf{A}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

* Dos giros de 90°
$${}^{1}\mathbf{A}_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}\mathbf{A}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{3}\mathbf{A}_{4} = \begin{bmatrix} C_{4} & -S_{4} & 0 & 0 \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 1 & l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	θ_{i}	d _i	a _i	α_{i}
1	q_1	I ₁	0	0
2	90	d_2	0	90
3	0	d_3	0	0
4	q_4	I_4	0	0

Multiplicándolas extraemos la matriz T, que nos permite, dadas q₁, d₂, d₃ y q₄ calcular la localización del elemento terminal respecto a la base del robot:

$$\mathbf{T} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} {}^{3}\mathbf{A}_{4} = \begin{bmatrix} -S_{1}C_{4} & S_{1}S_{4} & C_{1} & C_{1}(d_{3} + l_{4}) \\ C_{1}C_{4} & -C_{1}S_{4} & S_{1} & S_{1}(d_{3} + l_{4}) \\ S_{4} & C_{4} & 0 & d_{2} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ejemplo 3: robot manipulador industrial de 6 ejes Kuka KR5 SIXX R650

Ejemplo 3: robot manipulador industrial de 6 ejes Kuka KR5 SIXX R650

i	$\boldsymbol{\theta}_{i}$	d _i	a _i	α_{i}
1	q_1	335	75	90
2	$q_2 + 90$	0	270	0
3	q_3	0	90	90
4	q ₄ +180	295	0	90
5	q ₅ +180	0	0	90
6	q_6	80	0	0

Ejemplo 3: robot manipulador industrial de 6 ejes Kuka KR5 SIXX R650

i	$\boldsymbol{\theta}_{i}$	d _i	a _i	α_{i}
1	q ₁ +90	335	75	90
2	q ₂ +90	0	270	0
3	q_3	0	90	90
4	q ₄ +180	295	0	90
5	q ₅ +180	0	0	90
6	q_6	80	0	0

Ejemplo 4: Cinemática directa de un robot UR3

Las siguientes figuras muestran la geometría y las manipulador UR3 de Universal Robots. Su TCP está cent

último segmento y puede rotar.

 a) Dibuja un boceto del robot que incluya los sistemas de referencia S_i de acuerdo con el estándar Denavit-Hartenberg.

 b) Extrae su tabla de parámetros de Denavit-Hartenberg.

Ejemplo 4:

Cinemática directa de un robot UR3

i	θ_{i}	d _i	a _i	α_{i}
1	q ₁ -90	152	0	90
2	q ₂ +90	120	244	0
3	q_3	-93	213	0
4	q ₄ +90	83	0	90
5	q ₅ +180	83	0	90
6	q_6	82	0	0
J	4 6	UZ	J	U

Notación URDF

URDF son las siglas de *Unified Robot Descripcion Format.*

Utilizado fundamentalmente para describir el modelo físico del robot, en investigación y desarrollo (ROS, etc.)

- Se trata de un fichero XML que especifica todos los elementos del robot (eslabones, articulaciones) y la relación entre ellos (cinemática y dinámica).
- Permite añadir características que facilitan la simulación del robot, como:
 - Representación visual del mismo (malla, texturas, colores)
 - Modelos de colisión


```
| Sink1 | xyz: 5 3 0 | xyz: -2 5 0 | rpy: 0 -0 0 | rpy: 0 -0 1.57 | | joint2 | | link3 | xyz: 5 0 0 | rpy: 0 0 -1.57 | | joint3 | | link4 | | link4 | | |
```

```
link name="base">
  <inertial>
    <mass value="1"/>
    Sinertia ixx="100" ixy="0"
  <visual>
    <origin xyz="0 0 .15"/>
    <geometry>
      <cvlinder length="0.3"
    </geometry>
    <material name="lewisred"</pre>
      <color rgba="1 0 0 1"/>
    </material>
  </visual>
  <collision>
    <origin xyz-"0 0 .15"/>
    <geometry>
      <cvlinder length="0.3"
    s/decmetry>
  </collision>
</link>
link name="body">
    <mass value="1"/>
```