Independence of π -system

Fu Lingyue X Tang Ze April 20, 2020

In the text book E4.1, the author put forward a theorem as follows:

1 E4.1 in textbook

Theorem 1. $\mathcal{I}_1, \mathcal{I}_2$ and \mathcal{I}_3 are three π -system that satisfy:

(1)
$$\mathcal{I}_k \subseteq \mathcal{F}(k = 1, 2, 3);$$

(2)
$$\Omega \in \mathcal{I}_k(k = 1, 2, 3)$$
. If

$$\forall I_i \in \mathcal{I}_i, P(I_1 \cap I_2 \cap I_3) = P(I_1)P(I_2)P(I_3), \tag{1}$$

then $\sigma(\mathcal{I}_1), \sigma(\mathcal{I}_2), \sigma(\mathcal{I}_3)$ are independent.

Proof. Define $\mathcal{J}_i := \sigma(\mathcal{I}_i)$. Fix $I_1 \in \mathcal{I}_1$ and $I_2 \in \mathcal{I}_2$. Consider maps

$$\mathcal{J}_3 \mapsto P(I_1 \cap I_2 \cap J_3)$$
 and $\mathcal{J}_3 \mapsto P(I_1)P(I_2)P(J_3)$,

then two mapping agree on \mathcal{I}_3 . Also when $I_3 = \Omega$ in equation (1), we can conclude that

$$P(I_1 \cap I_2) = P(I_1 \cap I_2 \cap \Omega) = P(I_1)P(I_2)P(\Omega) = P(I_1)P(I_2),$$

which means, two mapping have the same total mass. Thus we can conclude that $P(I_1 \cap I_2 \cap J_3) = P(I_1)P(I_2)P(J_3)$ holds in the space (Ω, \mathcal{J}_3) .

Similarly, we can conclude the conclusion on both $\sigma(\mathcal{J}_1)$ and $\sigma(\mathcal{J}_2)$. Therefore, $\sigma(\mathcal{I}_1)$, $\sigma(\mathcal{I}_2)$, $\sigma(\mathcal{I}_3)$ are independent.

Question WHY we need the condition " $\Omega \in \mathcal{I}_i$ "?

Solution. In the lemma 1.6 in the textbook, one of the premises is that μ_1 and μ_2 has the same mass on S. Then this condition guarantees that each pair of mapping in our prove has the same mass.

2 Further Discussion

Actually, we can strengthen this theorem:

Theorem 2. $\mathcal{I}_i(i=1,2,3\ldots,n)$ are independent π -system, then $\sigma(\mathcal{I}_1),\sigma(\mathcal{I}_2),\ldots,\sigma(\mathcal{I}_n)$ are independent.

Proof. Simply use the induction.

The textbook has proved n=2, and similar to the