Social Recommendation Using Probabilistic Matrix Factorization

By Hao Ma, Haixuan Yang, Michael R. Lyu, Irwin King

&

Recommender Systems with Social Regularization

By Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, Irwin King

Presented by Kim Han

Contents - SoRec

- 1. Introduction
- 2. Background
- 3. Framework
- 4. Experiment
- 5. Conclusion

Contents - SoReg

- 1. Introduction
- 2. Framework
- 3. Experiment
- 4. Conclusion

Introduction

Problem

Assume that,

- 1. two users have rated at least some items in common
 - → data density < 1%</p>
- 2. all the users are independent and identically distributed
 - → In reality, we are influenced by each other.

Hence,

By using rating records + users' social network information,

→ 1. more accurate and 2. personal taste recommendation system.

Background

	i_1	i_2	i ₃	i ₄	i_5	i ₆	i_{7}	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

	i_1	i ₂	i ₃	i ₄	i ₅	i ₆	i_{7}	i ₈
u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
u_3	4	1.7	2	3.2	3.9	3.0	2	4
u_4	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_5	5	1	2	3.4	4	3	1.5	4.6
u_6	4	3	2.9	2	4	3.4	3	5

(a) Social Network Graph

$$\longrightarrow U^T Z$$

(b) User-Item Matrix

$$\longrightarrow U^T V$$

(c) Predicted User-Item Matrix

U - low-dimensional user latent feature space

Z - factor matrix in the social network graph

V - low-dimensional item latent feature space

	i_1	i_2	<i>i</i> ₃	i4	i_5	i ₆	i_{7}	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

	i_1	i ₂	i ₃	i ₄	i ₅	i ₆	i,	i ₈
u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
u_3	4	1.7	2	3.2	3.9	3.0	2	4
u_4	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_5	5	1	2	3.4	4	3	1.5	4.6
u_6	4	3	2.9	2	4	3.4	3	5

(a) Social Network Graph

(b) User-Item Matrix

(c) Predicted User-Item Matrix

$$U = \begin{bmatrix} 1.55 & 1.22 & 0.37 & 0.81 & 0.62 & -0.01 \\ 0.36 & 0.91 & 1.21 & 0.39 & 1.10 & 0.25 \\ 0.59 & 0.20 & 0.14 & 0.83 & 0.27 & 1.51 \\ 0.39 & 1.33 & -0.43 & 0.70 & -0.90 & 0.68 \\ 1.05 & 0.11 & 0.17 & 1.18 & 1.81 & 0.40 \end{bmatrix}$$

$$V = \begin{bmatrix} 1.00 & -0.05 & -0.24 & 0.26 & 1.28 & 0.54 & -0.31 & 0.52 \\ 0.19 & -0.86 & -0.72 & 0.05 & 0.68 & 0.02 & -0.61 & 0.70 \\ 0.49 & 0.09 & -0.05 & -0.62 & 0.12 & 0.08 & 0.02 & 1.60 \\ -0.40 & 0.70 & 0.27 & -0.27 & 0.99 & 0.44 & 0.39 & 0.74 \\ 1.49 & -1.00 & 0.06 & 0.05 & 0.23 & 0.01 & -0.36 & 0.80 \end{bmatrix}$$

$$G = (V, E)$$

$$V = \{v_i\}_{i=1}^m$$

$$C = \{c_{ik}\} \quad c_{ik} \in (0, 1]$$

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{k=1}^m \mathcal{N}\left[\left(c_{ik}|g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}$$

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I})$$

$$p(Z|\sigma_Z^2) = \prod_{k=1}^m \mathcal{N}(Z_k|0, \sigma_Z^2 \mathbf{I})$$

$$p(U, Z|C, \sigma_C^2, \sigma_U^2, \sigma_Z^2)$$

$$\propto p(C|U, Z, \sigma_C^2) p(U|\sigma_U^2) p(Z|\sigma_Z^2)$$

$$= \prod_{i=1}^m \prod_{k=1}^m \mathcal{N}\left[\left(c_{ik}|g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}$$

$$\times \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \times \prod_{k=1}^m \mathcal{N}(Z_k|0, \sigma_Z^2 \mathbf{I})$$

$$c_{ik}^* = \sqrt{\frac{d^-(v_k)}{d^+(v_i) + d^-(v_k)}} \times c_{ik}$$

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{k=1}^m \mathcal{N}\left[\left(c_{ik}|g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}$$

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^{m} \prod_{j=1}^{n} \mathcal{N} \left[\left(c_{ik}^* | g(U_i^T Z_k), \sigma_C^2 \right) \right]^{I_{ik}^C}$$

$$g(x) = (x-1)/(R_{\text{max}}-1)$$

$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \mathcal{N}\left[\left(r_{ij}|g(U_i^T V_j), \sigma_R^2\right)\right]^{I_{ij}^R}$$

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I})$$

$$p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

$$p(U, V|R, \sigma_R^2, \sigma_U^2, \sigma_V^2)$$

$$\propto p(R|U, V, \sigma_R^2) p(U|\sigma_U^2) p(V|\sigma_V^2)$$

$$= \prod_{i=1}^m \prod_{j=1}^n \mathcal{N}\left[\left(r_{ij}|g(U_i^T V_j), \sigma_R^2\right)\right]^{I_{ij}^R}$$

$$\times \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \times \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

$$\ln p(U, V, Z|C, R, \sigma_C^2, \sigma_R^2, \sigma_U^2, \sigma_V^2, \sigma_Z^2) = \\
- \frac{1}{2\sigma_R^2} \sum_{i=1}^m \sum_{j=1}^n I_{ij}^R (r_{ij} - g(U_i^T V_j))^2 \\
- \frac{1}{2\sigma_C^2} \sum_{i=1}^m \sum_{k=1}^m I_{ik}^C (c_{ik}^* - g(U_i^T Z_k))^2 \\
- \frac{1}{2\sigma_U^2} \sum_{i=1}^m U_i^T U_i - \frac{1}{2\sigma_V^2} \sum_{j=1}^n V_j^T V_j - \frac{1}{2\sigma_Z^2} \sum_{k=1}^m Z_k^T Z_k \\
- \frac{1}{2} \left(\left(\sum_{i=1}^m \sum_{j=1}^n I_{ij}^R \right) \ln \sigma_R^2 + \left(\sum_{i=1}^m \sum_{k=1}^m I_{ik}^C \right) \ln \sigma_C^2 \right) \\
- \frac{1}{2} \left(m \ln \sigma_U^2 + n \ln \sigma_V^2 + m \ln \sigma_Z^2 \right) + \mathcal{C}, \tag{8}$$

$$\lambda_C = \sigma_R^2/\sigma_C^2$$
, $\lambda_U = \sigma_R^2/\sigma_U^2$, $\lambda_V = \sigma_R^2/\sigma_V^2$
 $\lambda_Z = \sigma_R^2/\sigma_Z^2$

$$\lambda_U = \lambda_V = \lambda_Z$$

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2},$$
(9)

$$\frac{\partial \mathcal{L}}{\partial U_{i}} = \sum_{j=1}^{n} I_{ij}^{R} g'(U_{i}^{T} V_{j}) (g(U_{i}^{T} V_{j}) - r_{ij}) V_{j}
+ \lambda_{C} \sum_{j=1}^{m} I_{ik}^{C} g'(U_{i}^{T} Z_{k}) (g(U_{i}^{T} Z_{k}) - c_{ik}^{*}) Z_{k} + \lambda_{U} U_{i},
\frac{\partial \mathcal{L}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij}^{R} g'(U_{i}^{T} V_{j}) (g(U_{i}^{T} V_{j}) - r_{ij}) U_{i} + \lambda_{V} V_{j},
\frac{\partial \mathcal{L}}{\partial Z_{k}} = \lambda_{C} \sum_{i=1}^{m} I_{ik}^{C} g'(U_{i}^{T} Z_{k}) (g(U_{i}^{T} Z_{k}) - c_{ik}^{*}) U_{i} + \lambda_{Z} Z_{k}, (10)$$

$$\frac{\partial \mathcal{L}}{\partial U} = O(\rho_R l + \rho_C l)$$

$$\frac{\partial \mathcal{L}}{\partial V} = O(\rho_R l)$$

$$\frac{\partial \mathcal{L}}{\partial Z} = O(\rho_C l)$$

Computational time: linear with respect to the number of observations in the two sparse matrices.

Thus, the approach can scale on large datasets

- 1. How does our approach compare with the published state-ofthe-art collaborative filtering algorithms?
- 2. How does the model parameter λ _C affect the accuracy of prediction?
- 3. What is the performance comparison on users with different observed ratings?
- 4. Can our algorithm achieve good performance even if users have no observed ratings?
- 5. Is our algorithm efficient for large datasets?

 ${\bf Table~1:~Statistics~of~User\text{-}Item~Rating~Matrix~of~Epinions}$

Statistics	User	Item
Min. Num. of Rated	1	1
Max. Num. of Rated	1022	2018
Avg. Num. of Rated	16.55	4.76

Table 2: MAE comparison with other approaches (A smaller MAE value means a better performance)

Training Data	I	Dimension	nality = 5		Dimensionality $= 10$			
Training Data	MMMF	PMF	CPMF	SoRec	MMMF	PMF	CPMF	SoRec
99%	1.0008	0.9971	0.9842	0.9018	0.9916	0.9885	0.9746	0.8932
80%	1.0371	1.0277	0.9998	0.9321	1.0275	1.0182	0.9923	0.9240
50%	1.1147	1.0972	1.0747	0.9838	1.1012	1.0857	1.0632	0.9751
20%	1.2532	1.2397	1.1981	1.1069	1.2413	1.2276	1.1864	1.0944

(a) Performance Comparison on Different User Rating Scales (99% as Training Data)

(c) Performance Comparison on Different User Rating Scales (80% as Training Data)

(b) Distribution of Testing Data (99% as Training Data)

(d) Distribution of Testing Data (80% as Training Data)

Conclusion

Conclusion

- * Experimental results: the approach outperforms the other state-of-theart collaborative filtering algorithms
- * Complexity analysis: it is scalable to very large datasets.
- * Can also be used to predict connections on social network.

Future work

- * Distrust information
- * Diffusion process

Introduction

Problem

- 1. "trust relationships" are different from "social friendships"
- 2. assumption that users have similar tastes with other users they trust
- 3. online users spend more and more time on social network with real friends

- U low-dimensional user latent feature space
- Z factor matrix in the social network graph
- V low-dimensional item latent feature space

$$\frac{1}{2}||R - U^T V||_F^2$$

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2$$

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2 + \frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2$$

Framework – Social Regularization

$$\min_{U,V} \mathcal{L}_{1}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{1}{|\mathcal{F}^{+}(i)|} \sum_{f \in \mathcal{F}^{+}(i)} U_{f}\|_{F}^{2}
+ \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2},$$
(5)

$$\min_{U,V} \mathcal{L}_{1}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i,f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i,f)} \|_{F}^{2},
+ \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2}.$$
(8)

$$\frac{\partial \mathcal{L}_{1}}{\partial U_{i}} = \sum_{j=1}^{n} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) V_{j} + \lambda_{1} U_{i}
+ \alpha (U_{i} - \frac{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f)})
+ \alpha \sum_{g \in \mathcal{F}^{-}(i)} \frac{-Sim(i, g) (U_{g} - \frac{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f)})}{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f)},
\frac{\partial \mathcal{L}_{1}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$
(9)

Framework – Social Regularization

$$\frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \|U_i - U_f\|_F^2,$$

$$\min_{U,V} \mathcal{L}_{2}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \|U_{i} - U_{f}\|_{F}^{2}
+ \lambda_{1} \|U\|_{F}^{2} + \lambda_{2} \|V\|_{F}^{2}.$$
(11)

Framework - Social Regularization

$$Sim(i, f) = \frac{\sum_{j \in I(i) \cap I(f)} R_{ij} \cdot R_{fj}}{\sqrt{\sum_{j \in I(i) \cap I(f)} R_{ij}^2} \cdot \sqrt{\sum_{j \in I(i) \cap I(f)} R_{fj}^2}}, \quad \forall SS$$

$$Sim(i,f) = \frac{\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i) \cdot (R_{fj} - \overline{R}_f)}{\sqrt{\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i)^2} \cdot \sqrt{\sum_{j \in I(i) \cap I(f)} (R_{fj} - \overline{R}_f)^2}}, \quad \Box PCC \qquad f(x) = (x+1)/2$$

Table 1: Statistics of User-Item Matrix of Douban

Statistics	User	Item
Min. Num. of Ratings	1	1
Max. Num. of Ratings	6,328	49,504
Avg. Num. of Ratings	129.98	287.51

Table 2: Statistics of Friend Network of Douban

Statistics	Friends per User
Max. Num.	986
Avg. Num.	13.07

Table 3: Statistics of User-Item Matrix of Epinions

Statistics	User	Item
Max. Num. of Ratings	1960	7082
Avg. Num. of Ratings	12.21	7.56

Table 4: Statistics of Trust Network of Epinions

Statistics	Trust per User	Be Trusted per User		
Max. Num.	1763	2443		
Avg. Num.	9.91	9.91		

Table 5: Performance Comparisons (Dimensionality = 10)

Dataset	Training	Metrics	UserMean	ItemMean	NMF	PMF	RSTE	$SR1_{vss}$	$\mathrm{SR1}_{\mathrm{pcc}}$	$SR2_{vss}$	$SR2_{pcc}$
	80%	MAE Improve	0.6809 18.59%	0.6288 $11.85%$	$0.5732 \\ 3.30\%$	$0.5693 \\ 2.63\%$	0.5643 1.77%	0.5579	0.5576	0.5548	0.5543
	8070	RMSE Improve	0.8480 17.59%	0.7898 $11.52%$	$0.7225 \\ 3.28\%$	0.7200 $2.94%$	0.7144 $2.18%$	0.7026	0.7022	0.6992	0.6988
Douban	60%	MAE Improve	0.6823 18.02%	$0.6300 \\ 11.22\%$	$0.5768 \\ 3.03\%$	$0.5737 \\ 2.51\%$	0.5698 1.84%	0.5627	0.5623	0.5597	0.5593
Douban	00%	RMSE Improve	0.8505 $17.20%$	0.7926 $11.15%$	0.7351 $4.20%$	$0.7290 \\ 3.40\%$	$0.7207 \\ 2.29\%$	0.7081	0.7078	0.7046	0.7042
	40%	MAE Improve	0.6854 17.06%	0.6317 $10.00%$	$0.5899 \\ 3.63\%$	$0.5868 \\ 3.12\%$	$0.5767 \\ 1.42\%$	0.5706	0.5702	0.5690	0.5685
		RMSE Improve	0.8567 $16.83%$	0.7971 $10.61%$	0.7482 $4.77%$	$0.7411 \\ 3.86\%$	$0.7295 \\ 2.33\%$	0.7172	0.7169	0.7129	0.7125
	90%	MAE Improve	0.9134 9.61%	0.9768 $15.48%$	0.8712 $5.23%$	$0.8651 \\ 4.57\%$	$0.8367 \\ 1.33\%$	0.8290	0.8287	0.8258	0.8256
Epinions	9070	RMSE Improve	1.1688 8.12%	1.2375 $13.22%$	1.1621 $7.59%$	1.1544 $6.97%$	1.1094 3.20%	1.0792	1.0790	1.0744	1.0739
Epinions	80%	MAE Improve	0.9285 9.07%	0.9913 $14.83%$	$0.8951 \\ 5.68\%$	0.8886 $4.99%$	0.8537 $1.10%$	0.8493	0.8491	0.8447	0.8443
	8070	RMSE Improve	1.1817 7.30%	1.2584 $12.95%$	1.1832 $7.42%$	$1.1760 \\ 6.85\%$	$1.1256 \\ 2.68\%$	1.1016	1.1013	1.0958	1.0954

Table 6: Similarity Analysis (Dimensionality = 10)

Dataset	Training	Metrics	SR2	SR2	SR2 _{vss}	SR2 _{pcc}	
Dataset	Training	Wictres	Sim=1	Sim=Ran	DICEVSS	Б162pcc	
	80%	MAE	0.5579	0.5592	0.5548	0.5543	
	8070	RMSE	0.7034	0.7047	0.6992	0.6988	
Douban	60%	MAE	0.5631	0.5643	0.5597	0.5593	
Douban	0076	RMSE	0.7083	0.7098	0.7046	0.7042	
	40%	MAE	0.5724	0.5737	0.5690	0.5685	
	4070	RMSE	0.7195	0.7209	0.7129	0.7125	
	90%	MAE	0.8324	0.8345	0.8258	0.8256	
Epinions	3070	RMSE	1.0794	1.0809	1.0744	1.0739	
Epinions	80%	MAE	0.8511	0.8530	0.8447	0.8443	
	80%	RMSE	1.1002	1.1018	1.0958	1.0954	

Conclusion

Conclusion

- * Two general algorithms are proposed that imposed social regularization using PCC and VSS
- * Quite generic method also can be applied to trust aware recommendation problems
- * Comparison

Future work

- * Categorical cluster
- * Clicking behavior and Tagging record

감사합니다.