machine learning

Rita Ribeiro (coordinator)
Carlos Soares (coordinator)
João Mendes Moreira
Nuno Moniz

introduction to the course

- assumptions
- goals
- plan
- evaluation
- team
- support
- software
- bibliography

we assume superficial knowledge on (from Al course)

- develop simple predictive data mining projects involving the most traditional tasks
 - classification
 - regression

- namely
 - identify problems that can be addressed with predictive DM
 - follow proper methodology to solve DM problems
 - simple
 - evaluate results
 - technical perspective
 - ... and application domain

so, our goals are

(well, your goals, really...)

- consolidate/complete basic skills in DM
 - predictive tasks
 - descriptive tasks
 - project development
- acquire (some) advanced skills in ML/DM
 - including on research topics of the lecturers

plan

week	date T lesson	T lecturer	T session	TP session
1	21/10/2021		Introduction to course. Data mining methodologies. (DM project) introduction	
2	28/10/2021		Classification: introduction, decision trees & evaluation. Scoring with classification model: approach & evaluation	(DM project) suggested goal: dataset(s) based on a single table; 1st kaggle submission;
3	4/11/2021		DM projects: data preparation. Data preparation methods (basic). Data preparation in R	(DM project) suggested goal: datasets based on multiple tables with engineered features
4	11/11/2021		DM projects: data understanding (quality & visualization). Data visualization in R	(DM project) suggested goal: data understanding
5	18/11/2021		Advanced issues in data preparation and modeling (feature selection, dimensionality reduction, imbalanced class distribution)	(DM project) suggested goal: application of methods for class imbalance
6	25/11/2021	CS	Regression. Learning algorithms and ensembles	(DM project) suggested goal: final submission; analysis of models obtained with different algorithms
7	2/12/2021	RR	Clustering	(DM project) suggested goal: customer profiling
8	9/12/2021	RR	Frequent pattern mining	
9	16/12/2021	CS	Recommender Systems	(DM project) close project
-	23/12/2021			
-	30/12/2021			
10	6/1/2022	RR	Anomaly detection	hands-on (FPM + RS)
11	13/1/2022	RR	Neural Networks & Deep Learning	hands-on (AD)
12	20/1/2022	CS	AutoML & Metalearning	hands-on (NN & DeepL)
13	27/1/2022	CS	Seminar	hands-on (autoML & metalearning)

evaluation: test

- model available in moodle
 - sometime soon...
- grade
 - 50% of final grade
 - minimum grade of 7/20

evaluation: competition (1/2)

- goal
 - predict if a loan will be paid or not
- data
 - bank loans
- groups of 3
- grade
 - (60% SA + 20% CS + 20% P) * IF
 - submitted assignment
 - competition score
 - presentation
 - individual factor
 - 50% of final grade
 - minimum grade of 7/20

evaluation: competition (2/2)

```
CS_i = min_j(SA_j) +
CompetitionRank_i*
(max_j(SA_j) - min_j(SA_j) /
#groups
```

- ex.
 - best is max_j(SA_j)=19
 - worst is min_j(SA_j)=16

yes, there's a meme for it

Eu a ouvir este metodo de avaliação

team

Rita Ribeiro

- assistant professor@ FCUP
- director MDS (FCUP)
- researcher @ INESC TEC

Carlos Soares

- associate professor@ FEUP
- external advisor for IS @ Fraunhofer AICOS
- researcher @ LIACC
 & INESC TEC

João Mendes Moreira

- associate professor@ FEUP
- director MDSE (FEUP)
- researcher @ INESC
 TEC

Nuno Moniz

- invited assistant professor
 @ FEUP/FCUP
- researcher @ INESC
 TEC

support

- moodle
 - materials
 - evaluation
 - communication
- ... also on slack
 - https://join.slack.com/t/slack-slack-gif7267/shared_invite/zt-xk1d2c3m-sN126Bu7fCo2GdHSYCOm2A

- mail
 - csoares@fe.up.pt
 - rpribeiro@fc.up.pt
 - jmoreira@fe.up.pt
 - nuno.m.moniz@inesctec.pt
- ... with subject:"[ML@M.EIC]..."

(concepts are more important than)

software

- programming
 - R
 - Python
- ... or point & click
 - RapidMiner
 - https://rapidminer.com/
 - academic licence
 - installation instructions at http://docs.rapidminer.com/studio/installa tion/
 - insert the license key, according to the section "Entering the key in RapidMiner Studio" at http://docs.rapidminer.com/studio/installa tion/manual-license.html

H4sIAAAAAAAAAF2RXXOiMBiF/8oOt9bKhyB0pjOr +IWiqCBi172IJGgsBpoEATv+90XWbWf2vctzzpvcN /kUYhwiwtDEdebCi/C5E1KawCzkFtwJLzuBghTDM valNhnPIE52wtOXx0eU4YSwyvlrJ3Se5cZO+P0tDv DmlVznoAqA+wnEjwQUIohliCpZFyvyKDJFZUVIFsc VYxxQ3gf8bpl0STYkVRbvU2moSDGtl78M7bYmK0 Y934FrhmilVpsRcEZ1GRPQOGE/3ARQxOo66AxwX Gshq+nPCD1n6XPK/+2blsrx3f3vebtVKKz25hRgwt nf9P9AbXpUsPp1NJBRqGoiahqKLDfbahs0AdRRU1 H3MuxobS1SYH0dICTh9Wrs8RY34Ulg+EAAzyig/m mSZ5Km6dvLkB7PUZSzmZfnsKUcBj2+iI3zNDvrl65 Nv0hbTfSQT2UwM/xlcHTh9H01W/i9kcf6uSTRaaS rgmu8ocWbulnlm7F1WQWtj6tpTbRiXLSc93VwW sv2AFs+Op26WxFfzXgsBp1UmuV6B17hfEjIOHBlgs XuRobGSBwCBbwlxGN+LHVcc5b7+gfwNuu8ExXjx aF3WcPV3KA49MhAPGxCmfhyELdLQIuGUrj9pXXs IXbkdhqtyXEiO63RWAoSug3S4miJ+xl24ZA5V8xE7 9JbLR0ajNrnHty3etGGZwdzbWrl6zql2ljLaDRfbe3T 8Kjul8N3W12Odc9Up2VaJHaR57ZiMos4y+0xW76 +Crc/bnxkCRIDAAA=

bibliography

- Moreira, J. M., de Carvalho, A. C. P. L. F., & Horváth, T. (2018). A General Introduction to Data Analytics. A General Introduction to Data Analytics. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119296294
- Data Science for Business, by Foster Provost, Tom Fawcett
 - general book, read from end to end
- Data Mining: The Textbook, by Charu C. Aggarwal.
 - textbook, to place in the shelf and consult frequently
- Data Mining: Concepts and Techniques, 3rd ed, by Jiawei Han, Micheline Kamber and Jian Pei
 - textbook, but I prefer the previous one
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Second Edition), by Trevor Hastie, Robert Tibshirani, Jerome Friedman
 - more fundamental
- Data Mining with R: Learning with case studies, by L. Torgo
 - focused in cases