Assignment - 4

Data Analytics – Python Programming

Assignment Date	18 October 2022			
Student Name	Ms. N.Ashifa			
Student Roll Number	19ITA05			
Maximum Marks	2 Marks			

In [5]: df.describe() Out[5]: Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings count 4177 000000 4177 000000 4177 000000 4177 000000 4177 000000 4177 000000

mean 0.523992 0.407881 0.139516 0.828742 0.359367 0.180594 0.238831 9.933684 std 0.120093 0.099240 0.041827 0.490389 0.221963 0.109614 0.139203 3.224168 min 0.075000 0.055000 0.000000 0.001000 0.000500 0.001500 1.000000 25% 0.450000 0.350000 0.115000 0.441500 0.186000 0.093500 0.130000 8.000000 50% 0.545000 0.425000 0.140000 0.799500 0.336000 0.171000 0.234000 9.000000 75% 0.615000 0.480000 0.165000 1.153000 0.502000 0.253000 0.329000 11.000000									
std 0.120093 0.099240 0.041827 0.490389 0.221963 0.109614 0.139203 3.224168 min 0.075000 0.055000 0.000000 0.002000 0.001000 0.000500 0.001500 1.000000 25% 0.450000 0.350000 0.115000 0.441500 0.186000 0.093500 0.130000 8.000000 50% 0.545000 0.425000 0.140000 0.799500 0.336000 0.171000 0.234000 9.000000 75% 0.615000 0.480000 0.165000 1.153000 0.502000 0.253000 0.329000 11.000000	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
min 0.075000 0.055000 0.00000 0.002000 0.001000 0.000500 0.001500 1.000000 25% 0.450000 0.350000 0.115000 0.441500 0.186000 0.093500 0.130000 8.000000 50% 0.545000 0.425000 0.140000 0.799500 0.336000 0.171000 0.234000 9.000000 75% 0.615000 0.480000 0.165000 1.153000 0.502000 0.253000 0.329000 11.000000	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
25% 0.450000 0.350000 0.115000 0.441500 0.186000 0.093500 0.130000 8.000000 50% 0.545000 0.425000 0.140000 0.799500 0.336000 0.171000 0.234000 9.000000 75% 0.615000 0.480000 0.165000 1.153000 0.502000 0.253000 0.329000 11.000000	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
50% 0.545000 0.425000 0.140000 0.799500 0.336000 0.171000 0.234000 9.000000 75% 0.615000 0.480000 0.165000 1.153000 0.502000 0.253000 0.329000 11.000000	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
75 % 0.615000 0.480000 0.165000 1.153000 0.502000 0.253000 0.329000 11.000000	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
max 0.815000 0.650000 1.130000 2.825500 1.488000 0.760000 1.005000 29.000000	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

Exploratory Data Analysis

```
In [7]: df['age'] = df['Rings']+1.5
df = df.drop('Rings', axis = 1)
```

In [8]: df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 30) Height Whole weight Shucked weight Viscera weight Shell weight Out[9]: Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Sex I 0.427746 0.326494 0.107996 0.431363 0.128182 9.390462 0.191035 0.092010 0.215545 M 0.561391 0.439287 0.151381 0.991459 0.432946 0.281969 12.205497 F 0.579093 0.454732 0.158011 1.046532 0.446188 0.230689 0.302010 12.629304

In [11]: numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns

C:\Users\User\AppData\Local\Temp\ipykernel_5940\3796453440.py:2: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations categorical_features = df.select_dtypes(include = [np.object]).columns

In [12]: numerical_features

In [13]: categorical_features

Out[13]: Index(['Sex'], dtype='object')

In [14]: plt.figure(figsize = (20,7))
sns.heatmap(df[numerical_features].corr(),annot = True)

Out[14]: <AxesSubplot:>

Data Preprocessing

```
In [16]: # outlier handling
df = pd.get_dummles(df)
dummy_df = df
```

```
In [17]: var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
In [19]: var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
In [20]: var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
           20
           15
           10
 In [23]: var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
          20.0
         17.5
         15.0
         12.5
          7.5
          5.0
          2.5
In [25]: var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
           20.0
           17.5
           15.0
           12.5
           10.0
           7.5
           5.0
           2.5
 In [27]:
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```

```
20
18
16
14
12
10
8
6
4
```


Feature Selection and Standardization

```
In [31]: X = df.drop('age', axis = 1)
y = df['age']
```

```
In [32]: from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split, cross_val_score
    from sklearn.feature_selection import SelectKBest
In [33]: standardScale = StandardScaler()
    standardScale.fit_transform(X)
    selectkBest = SelectKBest()
    X_new = selectkBest.fit_transform(X, y)
    X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size = 0.25)
```

Linear Regression

```
In [34]: from sklearn.linear_model import LinearRegression
In [35]: lm = LinearRegression()
lm.fit(X_train, y_train)
Out[35]: LinearRegression()
In [36]: y_train_pred = lm.predict(X_train)
y_test_pred = lm.predict(X_test)
```

```
In [37]: from sklearn.metrics import mean_absolute_error, mean_squared_error
    s = mean_squared_error(y_train, y_train_pred)
    print('Mean Squared error of training set :%2f'%s)

    p = mean_squared_error(y_test, y_test_pred)
    print('Mean Squared error of testing set :%2f'%p)

Mean Squared error of training set :3.544594
    Mean Squared error of testing set :3.618508

In [38]: from sklearn.metrics import r2_score
    s = r2_score(y_train, y_train_pred)
    print('R2 Score of training set:%.2f'%s)

    p = r2_score(y_test, y_test_pred)
    print('R2 Score of testing set:%.2f'%p)u

R2 Score of training set:0.53
    R2 Score of testing set:0.54
```