

GKN - Contactmoment 3

Multilevel Analyse (Deel 1)

Sven De Maeyer & Bea Mertens

18/11/2021

1/49

Opwarmertjes

Multilevel is Everywhere...

Geografisch opwarmertje...

3/49

Virologisch opwarmertje...

4/49

Sportief opwarmertje...

5/49

00W opwarmertje 1...

Welke factoren beïnvloeden de ervaren nood aan opleiding bij kenniswerkers?

Data:

- 289 kenniswerkers
- 33 bedrijven

00W opwarmertje 2...

Hoe sterk is het effect van sociale achtergrond op scores die leerlingen halen voor begrijpend lezen in het PIRLS onderzoek?

Data:

- +/- 319 000 4de jaars
- +/- 12 000 scholen
- 50 landen

7/49

00W opwarmertje 3...

Hoe evolueert de perceptie van teamleden aangaande team reflexiviteit doorheen de tijd?

Data:

- Periode van 10 weken
- twee-dagelijks zeer korte vragenlijst
- 11 teams
- 6 leden per team

Hiërarchie

What's in the word ...?

9 / 49

Multi...levels...

Data in voorbeelden duiden op genestheid Anders gezegd, er zit hiërarchie in de data

Voorbeelden:

- mensen wonend (~ genest in) in straten van wijken van ...
- kenniswerkers tewerkgesteld (~ genest in) in bedrijven

Levels... (2 levels)

Level

11 / 49

Levels... (3 levels)

Level

Soorten hiërarchiën

2 soorten hiërarchieën:

Natuurlijke

- Lln in klassen (in scholen, in landen)
- Werknemers in bedrijven
- Meetpunten in straten, die deel uitmaken van buurten, steden, provincies, ... (zie Curieuzeneuzen)

Door onderzoeksdesign

- Longitudinaal
- Bloksteekproef
- Experimenteel

13 / 49

Hiërarchie... So what?

Het doet er wel degelijk toe!!

Probleem 1.

Hiërarchie in de onderzoeksvraag

Praktisch:

Hoe ga je onderzoeksvragen analyseren indien de vragen kenmerken van het ene niveau linken aan kenmerken van het andere niveau?

Voorbeeld:

Heeft klasgrootte een impact op leerlingenprestaties? (een variabele op klasniveau en een variabele op leerlingniveau)

15 / 49

Oplossing?

lln	Klas	Score wisk
1	1	1
2	1	2
3	1	3
4	2	3
5	2	4
6	2	5
7	3	2
8	3	3
9	3	4

Klas	Klasgrootte
1	18
2	22
3	32

Oude oplossing 1: AGGREGEREN

lln	Klas	Score wisk
1	1	1
2	1	2
3	1	3
4	2	3
5	2	4
6	2	5
7	3	2
8	3	3
9	3	4

Klas	Klasgrootte
1	18
2	22
3	32

Klas	gem. Wisk score	Klasgrootte
1	2	18
2	4	22
3	3	32

17 / 49

Ecological fallacy (~Aggregation bias!)

= 'the invalid transfer of aggregate results to individuals'

Robinson studie (1950) (data van 1930)

Correlatie tussen 'Illiteracy' and 'Nativity' (foreign-born vs. rest):

- at state level = -0.53
- at individual level = 0.12

Oude oplossing 2: DESAGGREGEREN

lln	Klas	Score v	wisk		Klas	Klasgrootte
1	1	1			1	18
2	1	2			2	22
3	1	3			3	32
4	2	3				/
5	2	4				
6	2	5				
7	3	2				
8	3	3				/
9	3	4			/	
					/	
					/	
		lln	Klas	Score	Klasgrootte	
		lln	Klas		Klasgrootte	
		1	1	1	18	
		1 2	1 1	1 2	18 18	
		1	1 1 1	1	18 18 18	
		1 2 3	1 1	1 2 3	18 18	
		1 2 3 4	1 1 1 2	1 2 3 3	18 18 18 22	
		1 2 3 4 5	1 1 1 2 2	1 2 3 3 4	18 18 18 22 22	

19 / 49

Atomistic fallacy

- = 'the invalid transfer of individual results to aggregates'
 - r IQ en Prestaties op leerlingniveau = 0.53
 - Wil niet PER DEFINITIE zeggen dat scholen met een hoger gemiddeld IQ ook gemiddeld hoger gaan scoren op gemiddelde prestatie

Probleem 2.

Hiërarchie heeft statistische gevolgen

Statistisch: Hiërarchie negeren heeft invloed op schattingen

Voorbeeld:

In PIRLS onderzoek, verband tussen SES en score op begrijpend lezen onderzoeken (beide variabelen op leerlingniveau)}

Nog steeds is hiërarchie een probleem! Schattingen zijn niet ok...

21 / 49

Intuïtief

"Everything is related to everything else, but near things are more related than distant things." (Tobler, 1970)

- 2 Studenten uit zelfde school lijken meer op elkaar dan 2 willekeurige leerlingen uit verschillende scholen
- Medewerkers van een bepaald bedrijf ...
- Metingen van zelfde persoon op verschillende tijdstippen ...

⇔ Assumptie bij regressieanalyse: waarnemingen zijn onafhankelijk van elkaar

Een voorbeeld met data (1)

lln	Klas	Score wisk
1	1	1
2	1	2
3	1	3
4	2	3
5	2	4
6	2	5
7	3	2
8	3	3
9	3	4

Hoe groot is de variantie in wiskundescores?

23 / 49

Een voorbeeld met data (2)

lln	Klas	Score wisk
1	1	1
2	1	2
3	1	3
4	2	3
5	2	4
6	2	5
7	3	2
8	3	3
9	3	4

Hoe groot is de variantie in wiskundescores?

Simpele benadering (zonder rekening te houden met hiërarchie)

```
var(c(1,2,3,3,4,5,2,3,4))
```

[1] 1.5

Een voorbeeld met data (3)

lln	Klas	Score wisk
1	1	1
2	1	2
3	1	3
4	2	3
5	2	4
6	2	5
7	3	2
8	3	3
9	3	4

Hoe groot is de variantie in wiskundescores?

Rekening houdend met hiërarchie

```
# Variantie tussen klassen
var(c(2,4,3))

[1] 1

# Variantie binnen klassen
(var(c(1,2,3)) + var(c(3,4,5)) + var(c(2,3,4))) / 3

[1] 1

# Totale variantie:
var(c(2,4,3)) +
  (var(c(1,2,3)) + var(c(3,4,5)) + var(c(2,3,4))) / 3

[1] 2
```

25 / 49

Een voorbeeld met data (4)

lln	Klas	Score wisk
1	1	1
2	1	2
3	1	3
4	2	3
5	2	4
6	2	5
7	3	2
8	3	3
9	3	4

Hoe groot is de variantie in wiskundescores?

• Hiërarchie genegeerd: 1.5

• Hiërarchie in rekening genomen: 2

Variantie wordt onderschat & p-waarde te laag geschat!

27 / 49

Multilevel model

Bring on the power!

Regressieanalyse

 $Eindscore_i = eta_0 + eta_1 * SES_i + \epsilon_i$

29 / 49

Regressieanalyse

 $Eindscore_i = eta_0 + eta_1 * SES_i + \epsilon_i$

3 regressiemodellen

School 1: $Eindscore_i = eta_0 + eta_1 * SES_i + (\epsilon_i)$

School 2: $Eindscore_i = eta_0 + eta_1 * SES_i + (\epsilon_i)$

School 3: $Eindscore_i = eta_0 + eta_1 * SES_i + (\epsilon_i)$

31 / 49

Multilevel model

 $Eindscore_{ij} = eta_0 + eta_1 * SES_{ij} + (\mu_{0j} + \epsilon_{ij})$

Multilevel model - Random Intercepts

33 / 49

Multilevel model - Random Intercepts

 $Eindscore_{ij} = eta_0 + eta_1 * SES_{ij} + (\mu_{0j} + \epsilon_{ij})$

3 scholen, dus 3 verschillende μ_{0j} 's:

- $\mu_{01}pprox-19.39$
- $\mu_{02}^{\circ 1} pprox 0$
- $\mu_{03}pprox19.39$

Variantie tussen scholen (berekend):

$$\sigma^2_{\mu_{0j}} = rac{(\mu^2_{01} + \mu^2_{02} + \mu^2_{03})}{3} pprox 250.56$$

Multilevel model - Random Intercepts

 $Eindscore_{ij} = eta_0 + eta_1 * SES_{ij} + (\mu_{0j} + \epsilon_{ij})$

123 leerlingen, dus 123 verschillende ϵ_{0ij} 's:

Variantie tussen leerlingen (berekend) =

$$\sigma_{\epsilon_{0ij}}^2 = rac{(\epsilon_{011}^2 + \epsilon_{012}^2 + ...)}{123} pprox 327.39$$

35 / 49

ICC

Hoe groot is de impact van scholen?

Uitgedrukt in '% variantie'

$$ICC = rac{\sigma_{\mu_{0j}}^2}{\sigma_{\mu_{0j}}^2 + \sigma_{\epsilon_{0ij}}^2} = rac{var_{scholen}}{var_{scholen} + var_{lln}} = rac{250.56}{250.56 + 327.39} = 0.43$$

Multilevel model - Random Intercepts

Wat wordt geschat (ipv berekend zoals hierboven):

- Fixed effects = het model overheen alle eenheden
- Random effects = verschillende varianties

In ons voorbeeld

- Fixed effects: Intercept + Slope (SES)
- Random effects: (1) Variantie tussen scholen en (2) variantie tussen leerlingen in scholen

37 / 49

Multilevel analyse in R (Ime4)

Let the fun begin...

Pakketten in R

Er bestaan verschillende pakketten in R om multilevel analyses uit te voeren

Wij hanteren lme4 en aanvullend het pakket lmerTest

```
install.packages('lme4', dependencies = T)
install.packages('lmerTest', dependencies = T)
library(lme4)
library(lmerTest)
```

39 / 49

Nulmodel definiëren

Model zonder enige voorspellers.

Doel

Schatten van de 'onconditionele' varianties op de verschillende onderscheiden niveaus (levels)

Enkel een overall gemiddelde en varianties worden geschat...

We zullen straks werken met een PIRLS voorbeeld over leesvaardigheid.

```
Vlaanderen_1_2_3$Leesvaardigheid <- Vlaanderen_1_2_3$ASRREA01
```

Nulmodel definiëren (voorbeeld in Pirls)

```
PIRLS_Model0 <- lmer(
   Leesvaardigheid ~ 1 + (1|IDSCH00L),
   data = Vlaanderen_1_2_3,
   REML = F)
summary(PIRLS_Model0)
# ICC
587.4/(587.4+3095.2)</pre>
```

```
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
 method [lmerModLmerTest]
Formula: Leesvaardigheid ~ 1 + (1 | IDSCHOOL)
  Data: Vlaanderen_1_2_3
             BIC logLik deviance df.resid
56823.7 56843.3 -28408.8 56817.7
Scaled residuals:
  Min 1Q Median
                           3Q
-3.7482 -0.6609 0.0138 0.6875 3.6439
Random effects:
Groups Name
                     Variance Std.Dev.
IDSCHOOL (Intercept) 587.4 24.24
Residual 3095.2 55.63
Number of obs: 5198, groups: IDSCHOOL, 148
Fixed effects:
          Estimate Std. Error df t value Pr(>|t|)
(Intercept) 524.025 2.175 144.014 240.9 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] 0.1595069
```

41 / 49

Nulmodel met 3 levels

Ook variantie tussen klassen?

```
PIRLS_Model1 <- lmer(
    Leesvaardigheid ~ 1 + (1|IDSCHOOL) + (1|IDCLASS),
    data = Vlaanderen_1_2_3,
    REML = F)

summary(PIRLS_Model1)

# ICC klasniveau

166.1/(166.1 + 490.4 + 3016.6)

# ICC schoolniveau

490.4/(166.1 + 490.4 + 3016.6)
```

```
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: Leesvaardigheid ~ 1 + (1 | IDSCHOOL) + (1 | IDCLASS)
   Data: Vlaanderen_1_2_3
            BIC logLik deviance df.resid
56785.5 56811.7 -28388.7 56777.5
Scaled residuals:
   Min 1Q Median
                             3Q
-3.4014 -0.6589 0.0139 0.7004 3.7464
Random effects:
                      Variance Std.Dev.
Groups Name
 IDCLASS (Intercept) 166.1 12.89
IDSCHOOL (Intercept) 490.4
                               22.14
Residual 3016.6 54.92
Number of obs: 5198, groups: IDCLASS, 277; IDSCHOOL, 148
Fixed effects:
           Estimate Std. Error df t value Pr(>|t|) 523.846 2.175 143.213 240.8 <2e-16 ***
(Intercept) 523.846
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] 0.04522066
[1] 0.1335112
```

Welk nulmodel best?

Opnieuw hanteren we het commando anova()

Let op! Modellen moeten op dezelfde data geschat worden

 \rightarrow na.omit() indien nodig

43 / 49

Significantietoetsen voor variantieschattingen

logLik is significant lager voor modellen waarin ofwel variantie tussen scholen of variantie tussen klassen verwijderd worden

 \rightarrow Beide varianties behouden in het model

Voorspellers toevoegen

45 / 49

Voorspellers toevoegen

```
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: Leesvaardigheid ~ 1 + Gender + Ouders_GraagLezenZ + (1 | IDSCHOOL) +
    (1 | IDCLASS)
   Data: Vlaanderen_1_2_3
            BIC logLik deviance df.resid
 50414.6 50453.3 -25201.3 50402.6 4629
Scaled residuals:
   Min 1Q Median 3Q
-3.5382 -0.6457 0.0261 0.6831 3.6867
Random effects:
Groups Name Variance Std.Dev.
IDCLASS (Intercept) 151.2 12.30
IDSCHOOL (Intercept) 420.8 20.51
Residual 2871.3 53.58
Number of obs: 4635, groups: IDCLASS, 275; IDSCHOOL, 147
                       Variance Std.Dev.
Fixed effects:
                Estimate Std. Error df t value Pr(>|t|)
520.8727 2.2258 186.6044 234.011 < 2e-16 ***
10.1501 1 6002 4400 707.
(Intercept)
GenderGirls
                        10.1501
                                     1.6083 4492.7054 6.311 3.04e-10 ***
Ouders_GraagLezenZ 11.4031 0.8162 4546.6389 13.972 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
             (Intr) GndrGr
GenderGirls -0.372
Odrs_GrgLzZ 0.009 -0.010
```

Conditionele varianties vs. onconditionele varianties

Wat valt op als je naar de varianties kijkt?

	Nulmodel (oncond.)	ModelRI (cond.)
Variantie klassen	166.1	151.2
Variantie scholen	490.4	420.8
Variantie leerlingen	3016.6	2871.3

47 / 49

Blik op de toekomst

Mogelijkheid tot peerfeedback op tussentijdse versie van de paper!

Info volgt, maar voor nu alvast:

- deadline indienen paper° zondag 12 december
- peerfeedback via Comproved (maandag 13 december tot zondag 19 december)
- bespreking tijdens C6 (23 december)

[°] Tussentijdse versie = methodologieluik + OV1 + OV2

Time to pRactice!

Oefeningen en respons terug te vinden op BB