

# Global United Technology Services Co., Ltd.

Report No.: GTSE13060093801

# **FCC REPORT**

**Applicant:** SHENZHEN GIEC ELECTRONICS CO., LTD.

Address of Applicant: 24/F, Building A Xinian Center, No. 6021 Shennan Road,

Shenzhen, Guangdong, China

**Equipment Under Test (EUT)** 

Product Name: Tablet PC

Model No.: V7011, GK-MID7011

FCC ID: ZVRTPCV71DKUSA001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2012

Date of sample receipt: July 12, 2013

**Date of Test:** July 15-19, 2013

Date of report issued: July 22, 2013

Test Result: PASS \*

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



### 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | July 22, 2013 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

| Prepared By: | hank yan.        | Date:       | July 22, 2013 |  |
|--------------|------------------|-------------|---------------|--|
|              | Project Engineer | <del></del> |               |  |
| Check By:    | Homs. Hu         | Date:       | July 22, 2013 |  |
|              | Reviewer         | _           |               |  |



### 3 Contents

|   |                |                                | Page |
|---|----------------|--------------------------------|------|
| 1 | COV            | /ER PAGE                       | 1    |
| 2 | VER            | SION                           | 2    |
| 3 | CON            | NTENTS                         | 3    |
| 4 |                | T SUMMARY                      |      |
| 5 | GEN            | IERAL INFORMATION              | 5    |
|   | 5.1            | CLIENT INFORMATION             |      |
|   | 5.2            | GENERAL DESCRIPTION OF EUT     | 5    |
|   | 5.3            | TEST MODE                      |      |
|   | 5.4            | DESCRIPTION OF SUPPORT UNITS   |      |
|   | 5.5            | TEST FACILITY                  |      |
|   | 5.6            | TEST LOCATION                  |      |
| 6 | TES            | T INSTRUMENTS LIST             | 8    |
| 7 | TES            | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 7.1            | ANTENNA REQUIREMENT:           | 9    |
|   | 7.2            | CONDUCTED EMISSIONS            |      |
|   | 7.3            | CONDUCTED PEAK OUTPUT POWER    | 13   |
|   | 7.4            | CHANNEL BANDWIDTH              |      |
|   | 7.5            | Power Spectral Density         |      |
|   | 7.6            | BAND EDGES                     |      |
|   | 7.6.1          |                                |      |
|   | 7.6.2          |                                |      |
|   | 7.7            | Spurious Emission              | _    |
|   | 7.7.1<br>7.7.2 | - Conductor Emergence          |      |
|   |                |                                |      |
| 8 | TES            | T SETUP PHOTO                  | 47   |
| 9 | FUT            | CONSTRUCTIONAL DETAILS         | 49   |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# **5** General Information

### 5.1 Client Information

| Applicant:                | SHENZHEN GIEC ELECTRONICS CO., LTD.                                               |
|---------------------------|-----------------------------------------------------------------------------------|
| Address of Applicant:     | 24/F, Building A Xinian Center, No. 6021 Shennan Road, Shenzhen, Guangdong, China |
| Manufacturer :            | SHENZHEN GIEC ELECTRONICS CO., LTD.                                               |
| Address of Manufacturer : | 24/F, Building A Xinian Center, No. 6021 Shennan Road, Shenzhen, Guangdong, China |

# 5.2 General Description of EUT

| Product Name:          | Tablet PC                                                                                                                                                                                                              |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | V7011, GK-MID7011                                                                                                                                                                                                      |
| Remark:                | Only the Model No. V7011 was tested, since the electrical circuit design, PCB layout, Electrical Parts and Figure are identical to the basic model, except the model name and appearance color for commercial purpose. |
| Operation Frequency:   | 802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz                                                                                                                                                                         |
| Channel numbers:       | 802.11b/802.11g /802.11n(HT20): 11                                                                                                                                                                                     |
| Channel separation:    | 5MHz                                                                                                                                                                                                                   |
| Modulation technology: | 802.11b: Direct Sequence Spread Spectrum (DSSS)                                                                                                                                                                        |
|                        | 802.11g/802.11n(H20):                                                                                                                                                                                                  |
|                        | Orthogonal Frequency Division Multiplexing (OFDM)                                                                                                                                                                      |
| Antenna Type:          | Integral Antenna                                                                                                                                                                                                       |
| Antenna gain:          | 2.0 dBi (declare by Applicant)                                                                                                                                                                                         |
| Power supply:          | Model No. :HK15-HASF0501500                                                                                                                                                                                            |
|                        | Input: AC 100-240V 50/60Hz 0.3A                                                                                                                                                                                        |
|                        | Output: DC 5.0V 1.5A                                                                                                                                                                                                   |
|                        | Or                                                                                                                                                                                                                     |
|                        | DC 3.7V Li-ion Battery                                                                                                                                                                                                 |

Shenzhen, China 518102



| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                   | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                   | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Test channel    | Frequency (MHz)               |
|-----------------|-------------------------------|
| rest channel    | 802.11b/802.11g/802.11n(HT20) |
| Lowest channel  | 2412MHz                       |
| Middle channel  | 2437MHz                       |
| Highest channel | 2462MHz                       |

### 5.3 Test mode

| Transmitting mode | Keep the EUT in continuously transmitting mode |
|-------------------|------------------------------------------------|
|                   |                                                |

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

|           | •       |         |               |
|-----------|---------|---------|---------------|
| Mode      | 802.11b | 802.11g | 802.11n(HT20) |
| Data rate | 1Mbps   | 6Mbps   | 6.5Mbps       |

### 5.4 Description of Support Units

| N | one |
|---|-----|
|---|-----|

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### 5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

### • FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

### 5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.
2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,
Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 54



### 6 Test Instruments list

| Radia | Radiated Emission:               |                  |                             |                  |                        |                            |  |
|-------|----------------------------------|------------------|-----------------------------|------------------|------------------------|----------------------------|--|
| Item  | Test Equipment                   | Manufacturer     | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1     | 3m Semi- Anechoic<br>Chamber     | ZhongYu Electron | 9.0(L)*6.0(W)* 6.0(H)       | GTS250           | Mar. 29 2013           | Mar. 28 2014               |  |
| 2     | Control Room                     | ZhongYu Electron | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |
| 3     | ESU EMI Test Receiver            | R&S              | ESU26                       | GTS203           | Jun. 29 2013           | Jun. 29 2014               |  |
| 4     | BiConiLog Antenna                | SCHWARZBECK      | VULB9163                    | GTS214           | Jun. 29 2013           | Jun. 29 2014               |  |
| 5     | Double -ridged waveguide<br>horn | SCHWARZBECK      | 9120D                       | GTS208           | Jun. 29 2013           | Jun. 29 2014               |  |
| 6     | RF Amplifier                     | HP               | 8347A                       | GTS204           | Jun. 29 2013           | Jun. 29 2014               |  |
| 7     | Preamplifier                     | HP               | 8349B                       | GTS206           | Jun. 29 2013           | Jun. 29 2014               |  |
| 8     | EMI Test Software                | AUDIX            | E3                          | N/A              | N/A                    | N/A                        |  |
| 9     | Coaxial cable                    | GTS              | N/A                         | GTS210           | Jul. 07 2013           | Jul. 06 2014               |  |
| 10    | Coaxial Cable                    | GTS              | N/A                         | GTS211           | Jul. 07 2013           | Jul. 06 2014               |  |
| 11    | Spectrum Analyzer                | Agilent          | E4440A                      | GTS533           | Dec. 06, 2012          | Dec.05, 2013               |  |
| 12    | Horn Antenna                     | ETS-LINDGREN     | 3160                        | GTS217           | Mar. 29 2013           | Mar. 28 2014               |  |
| 13    | Amplifier (18-26GHz)             | Rohde & Schwarz  | AFS33-18002<br>650-30-8P-44 | GTS218           | June 28 2013           | June 27 2014               |  |
| 14    | Band filter                      | Amindeon         | 82346                       | GTS219           | Mar. 30 2013           | Mar. 29 2014               |  |
| 15    | Thermo meter                     | N/A              | N/A                         | GTS256           | Jul. 01 2013           | Jul. 01 2014               |  |

| Conc | Conducted Emission       |                     |                      |                  |                        |                            |  |
|------|--------------------------|---------------------|----------------------|------------------|------------------------|----------------------------|--|
| Item | Test Equipment           | Manufacturer        | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room           | ZhongYu Electron    | 7.3(L)x3.1(W)x2.9(H) | GTS252           | Sep. 08 2011           | Sep. 07 2013               |  |
| 2    | EMI Test Receiver        | R&S                 | ESCS30               | GTS223           | Jun. 29 2013           | Jun. 29 2014               |  |
| 3    | Pulse Limiter            | R&S                 | ESH3-Z2              | GTS224           | Jun. 29 2013           | Jun. 29 2014               |  |
| 4    | Coaxial Switch           | ANRITSU CORP        | MP59B                | GTS225           | Jun. 29 2013           | Jun. 29 2014               |  |
| 5    | Artificial Mains Network | SCHWARZBECK<br>MESS | NSLK8127             | GTS226           | Jun. 29 2013           | Jun. 29 2014               |  |
| 6    | Coaxial Cable            | GTS                 | N/A                  | GTS227           | Jul. 07 2013           | Jul. 06 2014               |  |
| 7    | EMI Test Software        | AUDIX               | E3                   | N/A              | N/A                    | N/A                        |  |
| 8    | Thermo meter             | KTJ                 | TA328                | GTS233           | Jul. 01 2013           | Jul. 01 2014               |  |

| General used equipment: |                |              |           |                  |                        |                            |
|-------------------------|----------------|--------------|-----------|------------------|------------------------|----------------------------|
| Item                    | Test Equipment | Manufacturer | Model No. | Inventory<br>No. | Cal.Date<br>(dd-mm-yy) | Cal.Due date<br>(dd-mm-yy) |
| 1                       | Barometer      | ChangChun    | DYM3      | GTS257           | Jul. 27 2012           | Jul. 27 2013               |



### 7 Test results and Measurement Data

### 7.1 Antenna requirement:

**Standard requirement:** FCC Part15 C Section 15.203 /247(c)

### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### 15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 2.0dBi



Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### 7.2 Conducted Emissions

| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |           |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--|
| Test Method:          | ANSI C63.4:2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |           |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | weep time=auto      |           |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (dBuV)        |           |  |
|                       | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quasi-peak          | Average   |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 to 56*           | 56 to 46* |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56                  | 46        |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                  | 50        |  |
|                       | * Decreases with the logarithn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n of the frequency. |           |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | •         |  |
|                       | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |           |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.</li> </ol> |                     |           |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |           |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |           |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |           |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           |  |

Shenzhen, China 518102



### Measurement data

Line:



Trace: 50

Condition : FCC PART15 CLASSB QP LISN-2012 LINE

Job.No Test mode : 0938RF : WiFi Mode Test Engineer: Yang

|             | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level  | Limit<br>Line | Over<br>Limit | Remark  |
|-------------|-------|---------------|----------------|---------------|--------|---------------|---------------|---------|
|             | MHz   | dBu₹          | dB             | d₿            | dBu₹   | dBuV          | dB            |         |
| 1           | 0.203 | 54.96         | -0.23          | 0.10          | 54.83  | 63.49         |               |         |
| 2<br>3      | 0.203 | 41.64         | -0.23          | 0.10          | 41.51  | 53.49         | -11.98        | Average |
| 3           | 0.270 | 48.76         | -0.22          | 0.10          | 48.64  | 61.12         | -12.48        | QP      |
| 4           | 0.270 | 35.43         | -0.22          | 0.10          | 35.31  | 51.12         | -15.81        | Average |
| 5           | 0.337 | 45.42         | -0.22          | 0.10          | 45.30  | 59.27         | -13.97        | QP _    |
| 4<br>5<br>6 | 0.337 | 34.10         | -0.22          | 0.10          | 33.98  | 49.27         | -15.29        | Average |
| 7           | 0.541 | 44.14         | -0.21          | 0.10          | 44.03  |               | -11.97        |         |
|             | 0.541 | 34.25         | -0.21          | 0.10          | 34.14  | 46.00         | -11.86        | Average |
| 8           | 0.743 | 44.07         | -0.20          | 0.10          | 43.97  |               | -12.03        |         |
| 10          | 0.743 | 31.69         | -0.20          | 0.10          | 31.59  |               |               | Average |
| 11          | 3.381 | 45.52         | -0.26          | 0.10          | 45.36  |               | -10.64        | _       |
| 12          | 3.381 | 33.38         | -0.26          | 0.10          | 33. 22 |               |               | Äverage |



### Neutral:



Trace: 52

Condition : FCC PART15 CLASSB QP LISN-2012 NEUTRAL

Job.No : 0938RF Test mode : WiFi Mode Test Engineer: Yang

|                  | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                  | MHz    | dBuV          | dB             | dB            | dBuV  | dBuV          | dB            |         |
| 1                | 0.202  | 55.25         | -0.09          | 0.10          | 55.26 | 63.54         | -8.28         | QP      |
| 2<br>3           | 0.202  | 41.50         | -0.09          | 0.10          | 41.51 | 53.54         | -12.03        | Average |
| 3                | 0.269  | 48.74         | -0.09          | 0.10          | 48.75 | 61.16         | -12.41        | QP      |
| 4                | 0.269  | 34.40         | -0.09          | 0.10          | 34.41 | 51.16         | -16.75        | Average |
| 4<br>5<br>6<br>7 | 0.336  | 46.92         | -0.09          | 0.10          | 46.93 | 59.31         | -12.38        | QP _    |
| 6                | 0.336  | 31.10         | -0.09          | 0.10          | 31.11 | 49.31         | -18.20        | Average |
| 7                | 0.672  | 47.16         | -0.08          | 0.10          | 47.18 | 56.00         | -8.82         | QP _    |
| 8                | 0.672  | 31.60         | -0.08          | 0.10          | 31.62 | 46.00         | -14.38        | Average |
| 9                | 1.744  | 43.84         | -0.11          | 0.10          | 43.83 | 56.00         | -12.17        | QP      |
| 10               | 1.744  | 22.39         | -0.11          | 0.10          | 22.38 | 46.00         | -23.62        | Average |
| 11               | 3. 224 | 45.44         | -0.13          | 0.10          | 45.41 | 56.00         | -10.59        | QP _    |
| 12               | 3.224  | 24.39         | -0.13          | 0.10          | 24.36 | 46.00         | -21.64        | Average |

### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss



### 7.3 Conducted Peak Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                    |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V02               |  |
| Limit:            | 30dBm                                                                 |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |
| Test results:     | Pass                                                                  |  |

### **Measurement Data**

| Test CH | P       | Peak Output Power (dBm) |               |            | Result |
|---------|---------|-------------------------|---------------|------------|--------|
|         | 802.11b | 802.11g                 | 802.11n(HT20) | Limit(dBm) | result |
| Lowest  | 20.32   | 13.88                   | 14.31         |            |        |
| Middle  | 20.27   | 14.47                   | 14.44         | 30.00      | Pass   |
| Highest | 20.40   | 14.74                   | 14.64         |            |        |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE130600938RF

Page 13 of 54



### Test plot as follows:

Test mode: 802.11b



### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test mode: 802.11g



### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test mode: 802.11n(HT20)



#### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V02               |  |  |
| Limit:            | >500KHz                                                               |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Pass                                                                  |  |  |

### **Measurement Data**

| Test CH | С       | hannel Bandwidth (MH | z)            | Limit(KHz)           | Result |
|---------|---------|----------------------|---------------|----------------------|--------|
|         | 802.11b | 802.11g              | 802.11n(HT20) | Liiiii((\(\)\(\)\(\) | Nesult |
| Lowest  | 9.370   | 16.581               | 17.842        |                      |        |
| Middle  | 9.578   | 16.588               | 17.867        | >500                 | Pass   |
| Highest | 9.110   | 16.589               | 17.862        |                      |        |

### Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE130600938RF

Page 17 of 54



Test mode: 802.11b



#### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test mode: 802.11g



### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test mode: 802.11n(HT20)



#### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V02               |  |  |
| Limit:            | 8dBm                                                                  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Pass                                                                  |  |  |

### **Measurement Data**

| Test CH  | Pow     | er Spectral Density ( | dBm)          | Limit(dBm/3kHz)  | Result |
|----------|---------|-----------------------|---------------|------------------|--------|
| 1631 011 | 802.11b | 802.11g               | 802.11n(HT20) | Limit(dbin/3kmz) | Nesuit |
| Lowest   | 6.90    | -2.17                 | -2.85         |                  |        |
| Middle   | 7.33    | -1.36                 | -1.84         | 8.00             | Pass   |
| Highest  | 7.28    | -1.25                 | -1.72         |                  |        |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Project No.: GTSE130600938RF

### Test plot as follows:

Test mode: 802.11b



### Lowest channel



### Middle channel



Highest channel



Test mode: 802.11g



### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Test mode: 802.11n(HT20)



#### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# 7.6 Band edges

### 7.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V02                                                                                                                                                                                                                                                                                                                                 |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### Test plot as follows:



Mkr → CF

Lowest channel

Highest channel

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE130600938RF

Title

Preferences



### 7.6.2 Radiated Emission Method

| T (D : (              | T 500 D 445 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 45.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.45.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:     | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |
| Test Method:          | ANSI C63.4: 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |
| Test Frequency Range: | All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Value                                                                                                                                                                                                   |
| •                     | Al 4011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak                                                                                                                                                                                                    |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average                                                                                                                                                                                                 |
| Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBuV/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /m @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Value                                                                                                                                                                                                   |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average                                                                                                                                                                                                 |
|                       | Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak                                                                                                                                                                                                    |
| Test setup:           | EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3m 4m 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Antenna Tower  Horn Antenna  Spectrum Analyzer  Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |
| Test Procedure:       | the ground at determine the 2. The EUT was antenna, whi tower.  3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-recesspecified Ball 6. If the emission the limit specified the EUT whave 10dB meak or averasheet.  7. The radiation And found the select was an anterest to the select and select the select and select | t a 3 meter can be position of the set 3 meters ch was mounted the made the | nber. The talle highest race away from the don the top of the top | ble was rotadiation. The interferer of a variable of the field one antenna was arrangents from 1 rigrees to 360 ak Detect Full discounting the emission of the emission of the media of the of the media of the | r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than and the peak values sions that did not using peak, quasi- |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |



### Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

| Test mode: | 802.11b | Test channel:  | Lowest |
|------------|---------|----------------|--------|
| root mode. | 002.110 | 1 oot onamion. | LOWOOL |

### Peak value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2390.00            | 47.13                   | 27.59                       | 5.38                  | 30.18                    | 49.92             | 74.00                  | -24.08                | Horizontal   |
| 2400.00            | 64.04                   | 27.58                       | 5.39                  | 30.18                    | 66.83             | 74.00                  | -7.17                 | Horizontal   |
| 2390.00            | 48.53                   | 27.59                       | 5.38                  | 30.18                    | 51.32             | 74.00                  | -22.68                | Vertical     |
| 2400.00            | 67.22                   | 27.58                       | 5.39                  | 30.18                    | 70.01             | 74.00                  | -3.99                 | Vertical     |

### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2390.00            | 34.63                   | 27.59                       | 5.38                  | 30.18                    | 37.42             | 54.00                  | -16.58                | Horizontal   |
| 2400.00            | 46.44                   | 27.58                       | 5.39                  | 30.18                    | 49.23             | 54.00                  | -4.77                 | Horizontal   |
| 2390.00            | 36.12                   | 27.59                       | 5.38                  | 30.18                    | 38.91             | 54.00                  | -15.09                | Vertical     |
| 2400.00            | 48.05                   | 27.58                       | 5.39                  | 30.18                    | 50.84             | 54.00                  | -3.16                 | Vertical     |

| Test mode: | 802.11b | Test channel: | Highest |
|------------|---------|---------------|---------|
|------------|---------|---------------|---------|

#### Peak value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2483.50            | 46.58                   | 27.53                       | 5.47                  | 29.93                    | 49.65             | 74.00                  | -24.35                | Horizontal   |
| 2500.00            | 43.15                   | 27.55                       | 5.49                  | 29.93                    | 46.26             | 74.00                  | -27.74                | Horizontal   |
| 2483.50            | 48.18                   | 27.53                       | 5.47                  | 29.93                    | 51.25             | 74.00                  | -22.75                | Vertical     |
| 2500.00            | 46.27                   | 27.55                       | 5.49                  | 29.93                    | 49.38             | 74.00                  | -24.62                | Vertical     |

### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2483.50            | 34.57                   | 27.53                       | 5.47                  | 29.93                    | 37.64             | 54.00                  | -16.36                | Horizontal   |
| 2500.00            | 31.03                   | 27.55                       | 5.49                  | 29.93                    | 34.14             | 54.00                  | -19.86                | Horizontal   |
| 2483.50            | 36.16                   | 27.53                       | 5.47                  | 29.93                    | 39.23             | 54.00                  | -14.77                | Vertical     |
| 2500.00            | 32.68                   | 27.55                       | 5.49                  | 29.93                    | 35.79             | 54.00                  | -18.21                | Vertical     |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102



802.11g

Test mode:

Report No.: GTSE13060093801

Lowest

| Peak value:        | :                       |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 58.50                   | 27.59                       | 5.38                  | 30.18                    | 61.29             | 74.00                  | -12.71                | Horizontal   |
| 2400.00            | 66.11                   | 27.58                       | 5.39                  | 30.18                    | 68.90             | 74.00                  | -5.10                 | Horizontal   |
| 2390.00            | 60.10                   | 27.59                       | 5.38                  | 30.18                    | 62.89             | 74.00                  | -11.11                | Vertical     |
| 2400.00            | 69.23                   | 27.58                       | 5.39                  | 30.18                    | 72.02             | 74.00                  | -1.98                 | Vertical     |
| Average va         | lue:                    |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 39.40                   | 27.59                       | 5.38                  | 30.18                    | 42.19             | 54.00                  | -11.81                | Horizontal   |
| 2400.00            | 45.69                   | 27.58                       | 5.39                  | 30.18                    | 48.48             | 54.00                  | -5.52                 | Horizontal   |
| 2390.00            | 40.99                   | 27.59                       | 5.38                  | 30.18                    | 43.78             | 54.00                  | -10.22                | Vertical     |
| 2400.00            | 47.34                   | 27.58                       | 5.39                  | 30.18                    | 50.13             | 54.00                  | -3.87                 | Vertical     |
|                    |                         |                             |                       |                          |                   |                        |                       |              |
| Test mode:         |                         | 802.1                       | 1g                    | Tes                      | st channel:       | F                      | lighest               |              |
| Peak value:        | :                       |                             |                       | _                        |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 63.70                   | 27.53                       | 5.47                  | 29.93                    | 66.77             | 74.00                  | -7.23                 | Horizontal   |
| 2500.00            | 45.21                   | 27.55                       | 5.49                  | 29.93                    | 48.32             | 74.00                  | -25.68                | Horizontal   |
| 2483.50            | 65.30                   | 27.53                       | 5.47                  | 29.93                    | 68.37             | 74.00                  | -5.63                 | Vertical     |
| 2500.00            | 48.33                   | 27.55                       | 5.49                  | 29.93                    | 51.44             | 74.00                  | -22.56                | Vertical     |
| Average va         | lue:                    | 1                           |                       | 1                        | 1                 |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 37.97                   | 27.53                       | 5.47                  | 29.93                    | 41.04             | 54.00                  | -12.96                | Horizontal   |
|                    |                         |                             | - 40                  | 20.02                    | 34.67             | 54.00                  | -19.33                | Horizontal   |
| 2500.00            | 31.56                   | 27.55                       | 5.49                  | 29.93                    | 01.07             | 04.00                  | 10.00                 | Homzontal    |
| 2500.00<br>2483.50 | 31.56<br>39.56          | 27.55<br>27.53              | 5.49<br>5.47          | 29.93                    | 42.63             | 54.00                  | -11.37                | Vertical     |
|                    |                         |                             |                       |                          |                   |                        |                       |              |

Test channel:

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen, China 518102

1.



Test mode:

Peak value:

Report No.: GTSE13060093801

Lowest

| Frequency<br>(MHz)    | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|-----------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2390.00               | 59.85                   | 27.59                       | 5.38                  | 30.18                    | 62.64             | 74.00                  | -11.36                | Horizontal   |
| 2400.00               | 66.38                   | 27.58                       | 5.39                  | 30.18                    | 69.17             | 74.00                  | -4.83                 | Horizontal   |
| 2390.00               | 61.45                   | 27.59                       | 5.38                  | 30.18                    | 64.24             | 74.00                  | -9.76                 | Vertical     |
| 2400.00               | 69.50                   | 27.58                       | 5.39                  | 30.18                    | 72.29             | 74.00                  | -1.71                 | Vertical     |
| Average va            | lue:                    | <u> </u>                    |                       |                          | I.                | I                      |                       |              |
| Frequency<br>(MHz)    | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00               | 38.63                   | 27.59                       | 5.38                  | 30.18                    | 41.42             | 54.00                  | -12.58                | Horizontal   |
| 2400.00               | 44.09                   | 27.58                       | 5.39                  | 30.18                    | 46.88             | 54.00                  | -7.12                 | Horizontal   |
| 2390.00               | 40.22                   | 27.59                       | 5.38                  | 30.18                    | 43.01             | 54.00                  | -10.99                | Vertical     |
| 2400.00               | 45.74                   | 27.58                       | 5.39                  | 30.18                    | 48.53             | 54.00                  | -5.47                 | Vertical     |
| Test mode:            |                         | 000.4                       | 4~/LIT20\             | То                       | st channel:       |                        | li ab a at            |              |
|                       |                         | 802.1                       | 1n(HT20)              | 1 6                      | st channel:       | F                      | Highest               |              |
| Frequency<br>(MHz)    | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50               | 59.81                   | 27.53                       | 5.47                  | 29.93                    | 62.88             | 74.00                  | -11.12                | Horizontal   |
| 2500.00               | 46.98                   | 27.55                       | 5.49                  | 29.93                    | 50.09             | 74.00                  | -23.91                | Horizontal   |
| 2483.50               | 61.41                   | 27.53                       | 5.47                  | 29.93                    | 64.48             | 74.00                  | -9.52                 | Vertical     |
| 2500.00               | 50.10                   | 27.55                       | 5.49                  | 29.93                    | 53.21             | 74.00                  | -20.79                | Vertical     |
| Average va            | lue:                    |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz)    | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50               | 37.42                   | 27.53                       | 5.47                  | 29.93                    | 40.49             | 54.00                  | -13.51                | Horizontal   |
| 2500.00               | 31.22                   | 27.55                       | 5.49                  | 29.93                    | 34.33             | 54.00                  | -19.67                | Horizontal   |
| 2483.50               | 39.01                   | 27.53                       | 5.47                  | 29.93                    | 42.08             | 54.00                  | -11.92                | Vertical     |
| 2500.00               | 32.87                   | 27.55                       | 5.49                  | 29.93                    | 35.98             | 54.00                  | -18.02                | Vertical     |
| Remark:<br>1. Final L | .evel =Recei            | ver Read lev                | vel + Antenr          | na Factor + (            | Cable Loss -      | - Preamplifie          | er Factor             | ,            |

The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:

802.11n(HT20)

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102



### 7.7 Spurious Emission

### 7.7.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V02                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### Test plot as follows:

### Test mode:

### 802.11b



30MHz~10GHz



10GHz~25GHz

### Middle channel

Copyright 2000-2006 Agilent Technologies



30MHz~10GHz



10GHz~25GHz



30MHz~10GHz



10GHz~25GHz



#### Test mode:

### 802.11g

### Lowest channel



30MHz~10GHz

### 

10GHz~25GHz

### Middle channel



30MHz~10GHz



10GHz~25GHz





30MHz~10GHz



10GHz~25GHz

Page 33 of 54



R L

^ Stop 25.00 GH; Sweep 1.434 s (601 pts) Peak Search

Next Pk Right

Next Pk Left

Min Search

Mkr → CF

More 1 of 2

Pk-Pk Search

Next Peak

### Test mode:

### 802.11n(HT20)

🔆 Agilent

Start 10.00 GHz ■Res BW 100 kHz

#### Lowest channel



30MHz~10GHz

## Marker Trace Type X.Avis 1 (1) Freq 23.62 GHz

Atten 30 dB

10GHz~25GHz

### Middle channel



30MHz~10GHz



10GHz~25GHz





30MHz~10GHz



10GHz~25GHz



### 7.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Se                  | ection 15.209              |             |                                  |            |  |  |
|-----------------------|----------------------------------|----------------------------|-------------|----------------------------------|------------|--|--|
| Test Method:          | ANSI C63.4: 200                  | ANSI C63.4: 2003           |             |                                  |            |  |  |
| Test Frequency Range: | 30MHz to 25GHz                   |                            |             |                                  |            |  |  |
| Test site:            | Measurement Dis                  | stance: 3m                 |             |                                  |            |  |  |
| Receiver setup:       | Frequency                        | Frequency Detector RBW VBW |             |                                  | Value      |  |  |
|                       | 30MHz-1GHz                       | Quasi-peak                 | 120KHz      | 300KHz                           | Quasi-peak |  |  |
|                       | Above 1GHz                       | Peak                       | 1MHz        | 3MHz                             | Peak       |  |  |
|                       | Above 1G112                      | Peak                       | 1MHz        | 10Hz                             | Average    |  |  |
| Limit:                | Frequen                          | су                         | Limit (dBuV | /m @3m)                          | Value      |  |  |
|                       | 30MHz-88                         | MHz                        | 40.0        | 0                                | Quasi-peak |  |  |
|                       | 88MHz-216                        | 6MHz                       | 43.5        | 0                                | Quasi-peak |  |  |
|                       | 216MHz-96                        | 0MHz                       | 46.0        | 0                                | Quasi-peak |  |  |
|                       | 960MHz-1                         | GHz                        | 54.0        | 0                                | Quasi-peak |  |  |
|                       | Above 10                         | 2H-7                       | 54.0        | 0                                | Average    |  |  |
|                       | Above 10                         | Above 1GHz 74.00           |             |                                  | Peak       |  |  |
|                       | Tum 0.8m 7able 0.8m A Above 1GHz | 4m                         |             | Search Antenna  RF Test Receiver |            |  |  |

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102



| Test Procedure:   | The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                                                                                                                              |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                            |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                       |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                    |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                           |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. |
|                   | 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.                                                                                                                                                            |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                      |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                      |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                  |

### Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis which it is worse case.



## **Measurement Data**

## ■ Below 1GHz

| _ DC1011           |                         |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 87.11              | 50.02                   | 13.03                       | 1.09                  | 31.73                    | 32.41             | 40.00                  | -7.59                 | Vertical     |
| 98.83              | 49.24                   | 15.10                       | 1.18                  | 31.76                    | 33.76             | 43.50                  | -9.74                 | Vertical     |
| 119.86             | 52.02                   | 12.48                       | 1.36                  | 31.86                    | 34.00             | 43.50                  | -9.50                 | Vertical     |
| 164.91             | 53.59                   | 10.82                       | 1.66                  | 32.03                    | 34.04             | 43.50                  | -9.46                 | Vertical     |
| 263.82             | 54.39                   | 14.17                       | 2.19                  | 32.17                    | 38.58             | 46.00                  | -7.42                 | Vertical     |
| 312.18             | 53.33                   | 15.22                       | 2.42                  | 32.14                    | 38.83             | 46.00                  | -7.17                 | Vertical     |
| 119.86             | 55.16                   | 12.48                       | 1.36                  | 31.86                    | 37.14             | 43.50                  | -6.36                 | Horizontal   |
| 131.76             | 58.25                   | 10.82                       | 1.45                  | 31.91                    | 38.61             | 43.50                  | -4.89                 | Horizontal   |
| 164.91             | 59.33                   | 10.82                       | 1.66                  | 32.03                    | 39.78             | 43.50                  | -3.72                 | Horizontal   |
| 263.82             | 57.63                   | 14.17                       | 2.19                  | 32.17                    | 41.82             | 46.00                  | -4.18                 | Horizontal   |
| 504.71             | 51.22                   | 18.68                       | 3.33                  | 31.53                    | 41.70             | 46.00                  | -4.30                 | Horizontal   |
| 916.07             | 43.17                   | 23.21                       | 4.91                  | 31.19                    | 40.10             | 46.00                  | -5.90                 | Horizontal   |



## ■ Above 1GHz

| Test mode:         |                         | 802.11b                     |                       | Test                     | channel:          | Low                    | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       | •                        |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 32.86                   | 31.28                       | 8.62                  | 24.17                    | 48.59             | 74.00                  | -25.41                | Vertical     |
| 7236.00            | 34.25                   | 35.36                       | 11.68                 | 26.52                    | 54.77             | 74.00                  | -19.23                | Vertical     |
| 9648.00            | 33.10                   | 37.44                       | 14.16                 | 25.44                    | 59.26             | 74.00                  | -14.74                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4824.00            | 34.29                   | 31.28                       | 8.62                  | 24.17                    | 50.02             | 74.00                  | -23.98                | Horizontal   |
| 7236.00            | 35.64                   | 35.36                       | 11.68                 | 26.52                    | 56.16             | 74.00                  | -17.84                | Horizontal   |
| 9648.00            | 31.80                   | 37.44                       | 14.16                 | 25.44                    | 57.96             | 74.00                  | -16.04                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        |                         |                             |                       |                          |                   |                        | _                     |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 19.32                   | 31.28                       | 8.62                  | 24.17                    | 35.05             | 54.00                  | -18.95                | Vertical     |
| 7236.00            | 20.16                   | 35.36                       | 11.68                 | 26.52                    | 40.68             | 54.00                  | -13.32                | Vertical     |
| 9648.00            | 19.23                   | 37.44                       | 14.16                 | 25.44                    | 45.39             | 54.00                  | -8.61                 | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4824.00            | 20.66                   | 31.28                       | 8.62                  | 24.17                    | 36.39             | 54.00                  | -17.61                | Horizontal   |
| 7236.00            | 21.74                   | 35.36                       | 11.68                 | 26.52                    | 42.26             | 54.00                  | -11.74                | Horizontal   |
| 9648.00            | 18.18                   | 37.44                       | 14.16                 | 25.44                    | 44.34             | 54.00                  | -9.66                 | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

## Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11b                     |                       | Test                     | channel:          | Midd                   | le                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 33.29                   | 32.02                       | 8.66                  | 24.12                    | 49.85             | 74.00                  | -24.15                | Vertical     |
| 7311.00            | 34.17                   | 36.64                       | 11.71                 | 26.71                    | 55.81             | 74.00                  | -18.19                | Vertical     |
| 9748.00            | 30.31                   | 38.54                       | 14.25                 | 25.38                    | 57.72             | 74.00                  | -16.28                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4874.00            | 34.25                   | 32.02                       | 8.66                  | 24.12                    | 50.81             | 74.00                  | -23.19                | Horizontal   |
| 7311.00            | 34.46                   | 36.64                       | 11.71                 | 26.71                    | 56.10             | 74.00                  | -17.90                | Horizontal   |
| 9748.00            | 30.36                   | 38.54                       | 14.25                 | 25.38                    | 57.77             | 74.00                  | -16.23                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     | •                           |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 19.75                   | 32.02                       | 8.66                  | 24.12                    | 36.31             | 54.00                  | -17.69                | Vertical     |
| 7311.00            | 20.08                   | 36.64                       | 11.71                 | 26.71                    | 41.72             | 54.00                  | -12.28                | Vertical     |
| 9748.00            | 16.44                   | 38.54                       | 14.25                 | 25.38                    | 43.85             | 54.00                  | -10.15                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 20.62                   | 32.02                       | 8.66                  | 24.12                    | 37.18             | 54.00                  | -16.82                | Horizontal   |
| 7311.00            | 20.56                   | 36.64                       | 11.71                 | 26.71                    | 42.20             | 54.00                  | -11.80                | Horizontal   |
| 9748.00            | 16.74                   | 38.54                       | 14.25                 | 25.38                    | 44.15             | 54.00                  | -9.85                 | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

Shenzhen, China 518102

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11b                     |                       | Te                     | est channel: | High                   | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|------------------------|--------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                        |              |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pream<br>Facto<br>(dB) | '            | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 33.79                   | 32.14                       | 8.70                  | 24.05                  | 50.58        | 74.00                  | -23.42                | Vertical     |
| 7386.00            | 36.06                   | 36.75                       | 11.76                 | 26.90                  | 57.67        | 74.00                  | -16.33                | Vertical     |
| 9848.00            | 29.87                   | 38.79                       | 14.31                 | 25.30                  | 57.67        | 74.00                  | -16.33                | Vertical     |
| 12310.00           | *                       |                             |                       |                        |              | 74.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                        |              | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                        |              | 74.00                  |                       | Vertical     |
| 4924.00            | 35.06                   | 32.14                       | 8.70                  | 24.05                  | 51.85        | 74.00                  | -22.15                | Horizontal   |
| 7386.00            | 36.48                   | 36.75                       | 11.76                 | 26.90                  | 58.09        | 74.00                  | -15.91                | Horizontal   |
| 9848.00            | 30.57                   | 38.79                       | 14.31                 | 25.30                  | 58.37        | 74.00                  | -15.63                | Horizontal   |
| 12310.00           | *                       |                             |                       |                        |              | 74.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                        |              | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                        |              | 74.00                  |                       | Horizontal   |
| Average val        |                         |                             | ,                     |                        |              |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pream<br>Facto<br>(dB) | . I evel     | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 20.25                   | 32.14                       | 8.70                  | 24.05                  | 37.04        | 54.00                  | -16.96                | Vertical     |
| 7386.00            | 21.97                   | 36.75                       | 11.76                 | 26.90                  | 43.58        | 54.00                  | -10.42                | Vertical     |
| 9848.00            | 16.00                   | 38.79                       | 14.31                 | 25.30                  | 43.80        | 54.00                  | -10.20                | Vertical     |
| 12310.00           | *                       |                             |                       |                        |              | 54.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                        |              | 54.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                        |              | 54.00                  |                       | Vertical     |
| 4924.00            | 21.43                   | 32.14                       | 8.70                  | 24.05                  | 38.22        | 54.00                  | -15.78                | Horizontal   |
| 7386.00            | 22.58                   | 36.75                       | 11.76                 | 26.90                  | 44.19        | 54.00                  | -9.81                 | Horizontal   |
| 9848.00            | 16.95                   | 38.79                       | 14.31                 | 25.30                  | 44.75        | 54.00                  | -9.25                 | Horizontal   |
| 12310.00           | *                       |                             |                       |                        |              | 54.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                        |              | 54.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                        |              | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11g                     |                       | Test                     | channel:          | lowes                  | st                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 33.40                   | 31.28                       | 8.62                  | 24.17                    | 49.13             | 74.00                  | -24.87                | Vertical     |
| 7236.00            | 34.88                   | 35.36                       | 11.68                 | 26.52                    | 55.40             | 74.00                  | -18.60                | Vertical     |
| 9648.00            | 33.82                   | 37.44                       | 14.16                 | 25.44                    | 59.98             | 74.00                  | -14.02                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4824.00            | 35.03                   | 31.28                       | 8.62                  | 24.17                    | 50.76             | 74.00                  | -23.24                | Horizontal   |
| 7236.00            | 36.33                   | 35.36                       | 11.68                 | 26.52                    | 56.85             | 74.00                  | -17.15                | Horizontal   |
| 9648.00            | 32.38                   | 37.44                       | 14.16                 | 25.44                    | 58.54             | 74.00                  | -15.46                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 19.86                   | 31.28                       | 8.62                  | 24.17                    | 35.59             | 54.00                  | -18.41                | Vertical     |
| 7236.00            | 20.79                   | 35.36                       | 11.68                 | 26.52                    | 41.31             | 54.00                  | -12.69                | Vertical     |
| 9648.00            | 19.95                   | 37.44                       | 14.16                 | 25.44                    | 46.11             | 54.00                  | -7.89                 | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertica      |
| 4824.00            | 21.40                   | 31.28                       | 8.62                  | 24.17                    | 37.13             | 54.00                  | -16.87                | Horizontal   |
| 7236.00            | 22.43                   | 35.36                       | 11.68                 | 26.52                    | 42.95             | 54.00                  | -11.05                | Horizontal   |
| 9648.00            | 18.76                   | 37.44                       | 14.16                 | 25.44                    | 44.92             | 54.00                  | -9.08                 | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

Shenzhen, China 518102

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11g                     |                       | Test                     | channel:          | Midd                   | le                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 33.76                   | 32.02                       | 8.66                  | 24.12                    | 50.32             | 74.00                  | -23.68                | Vertical     |
| 7311.00            | 34.79                   | 36.64                       | 11.71                 | 26.71                    | 56.43             | 74.00                  | -17.57                | Vertical     |
| 9748.00            | 30.70                   | 38.54                       | 14.25                 | 25.38                    | 58.11             | 74.00                  | -15.89                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4874.00            | 34.86                   | 32.02                       | 8.66                  | 24.12                    | 51.42             | 74.00                  | -22.58                | Horizontal   |
| 7311.00            | 35.21                   | 36.64                       | 11.71                 | 26.71                    | 56.85             | 74.00                  | -17.15                | Horizontal   |
| 9748.00            | 30.70                   | 38.54                       | 14.25                 | 25.38                    | 58.11             | 74.00                  | -15.89                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 20.22                   | 32.02                       | 8.66                  | 24.12                    | 36.78             | 54.00                  | -17.22                | Vertical     |
| 7311.00            | 20.70                   | 36.64                       | 11.71                 | 26.71                    | 42.34             | 54.00                  | -11.66                | Vertical     |
| 9748.00            | 16.83                   | 38.54                       | 14.25                 | 25.38                    | 44.24             | 54.00                  | -9.76                 | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 21.23                   | 32.02                       | 8.66                  | 24.12                    | 37.79             | 54.00                  | -16.21                | Horizontal   |
| 7311.00            | 21.31                   | 36.64                       | 11.71                 | 26.71                    | 42.95             | 54.00                  | -11.05                | Horizontal   |
| 9748.00            | 17.08                   | 38.54                       | 14.25                 | 25.38                    | 44.49             | 54.00                  | -9.51                 | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14622.00           | *                       | _                           |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

Shenzhen, China 518102

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11g                     |                       | Test                     | channel:          | High                   | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 34.63                   | 32.14                       | 8.70                  | 24.05                    | 51.42             | 74.00                  | -22.58                | Vertical     |
| 7386.00            | 36.78                   | 36.75                       | 11.76                 | 26.90                    | 58.39             | 74.00                  | -15.61                | Vertical     |
| 9848.00            | 30.53                   | 38.79                       | 14.31                 | 25.30                    | 58.33             | 74.00                  | -15.67                | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4924.00            | 35.63                   | 32.14                       | 8.70                  | 24.05                    | 52.42             | 74.00                  | -21.58                | Horizontal   |
| 7386.00            | 36.96                   | 36.75                       | 11.76                 | 26.90                    | 58.57             | 74.00                  | -15.43                | Horizontal   |
| 9848.00            | 31.20                   | 38.79                       | 14.31                 | 25.30                    | 59.00             | 74.00                  | -15.00                | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 21.09                   | 32.14                       | 8.70                  | 24.05                    | 37.88             | 54.00                  | -16.12                | Vertical     |
| 7386.00            | 22.69                   | 36.75                       | 11.76                 | 26.90                    | 44.30             | 54.00                  | -9.70                 | Vertical     |
| 9848.00            | 16.66                   | 38.79                       | 14.31                 | 25.30                    | 44.46             | 54.00                  | -9.54                 | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4924.00            | 22.00                   | 32.14                       | 8.70                  | 24.05                    | 38.79             | 54.00                  | -15.21                | Horizontal   |
| 7386.00            | 23.06                   | 36.75                       | 11.76                 | 26.90                    | 44.67             | 54.00                  | -9.33                 | Horizontal   |
| 9848.00            | 17.58                   | 38.79                       | 14.31                 | 25.30                    | 45.38             | 54.00                  | -8.62                 | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11n(H                   | IT20)                 | Test                     | channel:          | Lowe                   | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 32.60                   | 31.28                       | 8.62                  | 24.17                    | 48.33             | 74.00                  | -25.67                | Vertical     |
| 7236.00            | 33.88                   | 35.36                       | 11.68                 | 26.52                    | 54.40             | 74.00                  | -19.60                | Vertical     |
| 9648.00            | 32.66                   | 37.44                       | 14.16                 | 25.44                    | 58.82             | 74.00                  | -15.18                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4824.00            | 33.96                   | 31.28                       | 8.62                  | 24.17                    | 49.69             | 74.00                  | -24.31                | Horizontal   |
| 7236.00            | 35.45                   | 35.36                       | 11.68                 | 26.52                    | 55.97             | 74.00                  | -18.03                | Horizontal   |
| 9648.00            | 31.55                   | 37.44                       | 14.16                 | 25.44                    | 57.71             | 74.00                  | -16.29                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 19.06                   | 31.28                       | 8.62                  | 24.17                    | 34.79             | 54.00                  | -19.21                | Vertical     |
| 7236.00            | 19.79                   | 35.36                       | 11.68                 | 26.52                    | 40.31             | 54.00                  | -13.69                | Vertical     |
| 9648.00            | 18.79                   | 37.44                       | 14.16                 | 25.44                    | 44.95             | 54.00                  | -9.05                 | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4824.00            | 20.33                   | 31.28                       | 8.62                  | 24.17                    | 36.06             | 54.00                  | -17.94                | Horizontal   |
| 7236.00            | 21.55                   | 35.36                       | 11.68                 | 26.52                    | 42.07             | 54.00                  | -11.93                | Horizontal   |
| 9648.00            | 17.93                   | 37.44                       | 14.16                 | 25.44                    | 44.09             | 54.00                  | -9.91                 | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

## Remark:

Shenzhen, China 518102

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11n(H                   | IT20)                 | Tes                      | st channel:       | Midd                   | le                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 32.88                   | 32.02                       | 8.66                  | 24.12                    | 49.44             | 74.00                  | -24.56                | Vertical     |
| 7311.00            | 33.81                   | 36.64                       | 11.71                 | 26.71                    | 55.45             | 74.00                  | -18.55                | Vertical     |
| 9748.00            | 30.00                   | 38.54                       | 14.25                 | 25.38                    | 57.41             | 74.00                  | -16.59                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4874.00            | 33.74                   | 32.02                       | 8.66                  | 24.12                    | 50.30             | 74.00                  | -23.70                | Horizontal   |
| 7311.00            | 34.08                   | 36.64                       | 11.71                 | 26.71                    | 55.72             | 74.00                  | -18.28                | Horizontal   |
| 9748.00            | 30.07                   | 38.54                       | 14.25                 | 25.38                    | 57.48             | 74.00                  | -16.52                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 19.34                   | 32.02                       | 8.66                  | 24.12                    | 35.90             | 54.00                  | -18.10                | Vertical     |
| 7311.00            | 19.72                   | 36.64                       | 11.71                 | 26.71                    | 41.36             | 54.00                  | -12.64                | Vertical     |
| 9748.00            | 16.13                   | 38.54                       | 14.25                 | 25.38                    | 43.54             | 54.00                  | -10.46                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 20.11                   | 32.02                       | 8.66                  | 24.12                    | 36.67             | 54.00                  | -17.33                | Horizontal   |
| 7311.00            | 20.18                   | 36.64                       | 11.71                 | 26.71                    | 41.82             | 54.00                  | -12.18                | Horizontal   |
| 9748.00            | 16.45                   | 38.54                       | 14.25                 | 25.38                    | 43.86             | 54.00                  | -10.14                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

Shenzhen, China 518102

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11n(H                   | IT20)                 | Test                     | channel:          | High                   | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 33.34                   | 32.14                       | 8.70                  | 24.05                    | 50.13             | 74.00                  | -23.87                | Vertical     |
| 7386.00            | 35.50                   | 36.75                       | 11.76                 | 26.90                    | 57.11             | 74.00                  | -16.89                | Vertical     |
| 9848.00            | 29.57                   | 38.79                       | 14.31                 | 25.30                    | 57.37             | 74.00                  | -16.63                | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4924.00            | 34.35                   | 32.14                       | 8.70                  | 24.05                    | 51.14             | 74.00                  | -22.86                | Horizontal   |
| 7386.00            | 35.66                   | 36.75                       | 11.76                 | 26.90                    | 57.27             | 74.00                  | -16.73                | Horizontal   |
| 9848.00            | 29.89                   | 38.79                       | 14.31                 | 25.30                    | 57.69             | 74.00                  | -16.31                | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 19.80                   | 32.14                       | 8.70                  | 24.05                    | 36.59             | 54.00                  | -17.41                | Vertical     |
| 7386.00            | 21.41                   | 36.75                       | 11.76                 | 26.90                    | 43.02             | 54.00                  | -10.98                | Vertical     |
| 9848.00            | 15.70                   | 38.79                       | 14.31                 | 25.30                    | 43.50             | 54.00                  | -10.50                | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4924.00            | 20.72                   | 32.14                       | 8.70                  | 24.05                    | 37.51             | 54.00                  | -16.49                | Horizontal   |
| 7386.00            | 21.76                   | 36.75                       | 11.76                 | 26.90                    | 43.37             | 54.00                  | -10.63                | Horizontal   |
| 9848.00            | 16.27                   | 38.79                       | 14.31                 | 25.30                    | 44.07             | 54.00                  | -9.93                 | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

Shenzhen, China 518102

<sup>1</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2 &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



# 8 Test Setup Photo

Radiated Emission





Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



## Conducted Emission



Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



## 9 EUT Constructional Details

















Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960







Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960













----end-----