In the Claims

1. (Currently amended) A method for encoding a video sequence comprising the steps of:
executing a first phase of motion estimation, the first phase to determininge a set
of field motion vectors describing a relationship between fields of same polarity in two
frames; and

using the results of the first phase of motion estimation to executeing a scene change detection using the set of field motion vectors; and

executing a 3:2 pulldown detection using the set of field motion vectors if no scene change is detected; and

executing a second phase of motion estimation to determine a set of motion vectors describing a relationship between fields of opposite polarity in the two frames and a relationship between the two frames.

2. (Currently amended) The method of claim 1, wherein:

the set of field motion vectors is determined between a first frame and a second frame;

the first frame having a first field and a second field, the second frame having a first field and a second field; and

the set of field motion vectors comprises a first set of motion vectors between the <u>a</u> first field of the <u>a</u> first frame and the <u>a</u> first field of the <u>a</u> second frame, and a second set of motion vectors between the <u>a</u> second field of the first frame and the <u>a</u> second field of the second frame.

3. (Cancelled)

4. (Currently amended) The method of claim 32, wherein executing the second phase of motion estimation further comprises determining the set of motion vectors comprises:

a third set of motion vectors between the first field of the first frame and the second field of the second frame;

a fourth set of motion vectors between the second field of the first frame and the first field of the second frame; and

a fifth set of motion vectors between the first frame and the second frame.

5. (Currently amended) The method of claim 1, further comprising:

executing a 3:2 pulldown detection;

if the 3:2 pulldown detection detects a repeated field, removing the repeated field.

6. (Currently amended) A video encoder comprising:

a motion detection component having a first phase and a second phase, the first phase to determine a-first and second set of motion vectors describing a relationship between fields of same polarity in two frames, and the second phase to determine third and fourth sets of motion vectors describing a relationship between fields of opposite polarity in the two frames, and to determine a fifth set of motion vectors describing a relationship between the two frames;

a scene change detection component to detect a scene change using the first and second set of motion vectors; and

a 3:2 pulldown detection component to detect a repeated field using the first and second set of motion vectors if no scene change is detected;

wherein the motion vectors determined by the first phase are used to execute the scene change detection component and the 3:2 pulldown detection component.

7. (Cancelled)

8. (Currently amended) The video encoder of claim 6, wherein the first <u>set of motion</u> vectors is determined comprises motion vectors between a first field of a first frame and a first field of a second frame, and the second <u>set of motion vectors</u> is determined comprises motion vectors between a second field of the first frame and a second field of the second frame.

- 9. (Original) The video encoder of claim 6, wherein the scene change detection component detects a scene change by comparing a ratio of the first and second motion vectors to a threshold.
- 10. (Original) The video encoder of claim 6, wherein the 3:2 pulldown detection component detects a repeated field by comparing a ratio of the first and second motion vectors to a threshold.
- 11. (Original) The video encoder of claim 10 further comprising a 3:2 pulldown undo component to compensate for finding a repeated field.
- 12. (Original) The video encoder of claim 11, wherein the 3:2 pulldown undo component compensates for finding a repeated field by replacing the repeated field with a reference to a field from which the repeated field is repeated.
- 13. (Currently amended) The video encoder of claim 1611, wherein the 3:2 pulldown undo component compensates for finding a repeated field by averaging the repeated field and a field from which the repeated field is repeated.
- 14. (Original) The video encoder of claim 6, wherein the encoder is embodied in a processor.
- 15. (Currently amended) A computer readable medium storing executable computer program instructions which, when executed by a processor, cause the processor to perform a method comprising:

executing a first phase of motion estimation, the first phase determining a set of field motion vectors describing a relationship between fields of same polarity in two frames; and

using the results of the first phase of motion estimation to executeing a scene change detection using the set of field motion vectors; and

executing a 3:2 pulldown detection using the set of field motion vectors if no scene change is detected; and

executing a second phase of motion estimation to determine a set of motion vectors describing a relationship between fields of opposite polarity in the two frames and a relationship between the two frames.

16. (Cancelled)

17. (Currently amended) The computer medium of claim 15, wherein-

the set of field motion vectors is determined between a first frame and a second frame;

the first frame having a first field and a second field, the second frame having a first field and a second field; and

the set of field motion vectors comprises a first set of motion vectors between the <u>a</u> first field of the <u>a</u> first frame and the <u>a</u> first field of the <u>a</u> second frame and a second set of motion vectors between the <u>a</u> second field of the first frame and the <u>a</u> second field of the second frame.

- 18. (Currently amended) The computer readable medium of claim 1615, wherein the set of motion vectors comprises executing the second phase of motion estimation further comprises determining:
- a third set of motion vectors between the first field of the first frame and the second field of the second frame;
- a fourth set of motion vectors between the second field of the first frame and the first field of the second frame; and
 - a fifth set of motion vectors between the first frame and the second frame.
- 19. (Currently amended) The computer readable medium of claim 16, further comprising: executing a 3:2 pull-down detection;

if the 3:2 pull-down detection detects a repeated field, removing the repeated field.

20. (New) An encoding apparatus comprising:

means for estimating motion comprising first and second phase means, the first phase means for determining a set of field motion vectors describing a relationship between fields of same polarity in two frames and the second phase means for determining a set of motion vectors describing a relationship between fields of opposite polarity in the two frames and a relationship between the two frames;

means to detect a scene change using the set of field motion vectors; and means to detect a repeated field using the set of field motion vectors if no scene change is detected.