Cala	ulus-lecture 11 Pruble literated integrals
9 00 0	olus-lecture 11 Double literated integrals + Thomas, 15.1-2 (or: Adams, 14.1-2)
	(or: maams, 19,1-2)
to the I	DOUBLE INTEGRALS
	* for a function g(x,y), continuous on a region k.
6 8 7	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	a b
	How to calculate $\iint_{R} g(x,y) dA$. Ly we make a partition of R into small rectangles ΔAk , $\Delta A = \Delta x \Delta y$.
+) - x - x	ΔA_k , $\Delta A = \Delta x \Delta y$.
	It- Adia
*: X .	points (xk, yh) in DAk
	points like the
9: H X	$S_{n} = \sum_{k=1}^{\infty} \mathcal{A}(x_{k}, y_{k}) \Delta A_{k}$
	the norm HPII of a partition is max{ Δx_k , $\Delta y_k y$. (maximal) width (height)
	1. It is intercable over B of lim > Y/x u) Mi
	Ly 1s integrable over R if lim & Y(xk, yk) AAk This limit exists IIPII->0 h=1 y(xk, yk) AAk and is finite = lim & f(xk, yk) AAk
	and is finite $= \lim_{n\to\infty} \sum_{k=1}^{n} f(x_k, y_k) \Delta A_k$
	$= \iint_{\mathbb{R}} g(x,y) dA$
	a double integral is the volume under a surface (for f(xy)>0).
r M	de doorde integrate ne me out de la segret ne
	g(xk,yk) DxAq is a volume element
	hu of the Ricmann sum,
Δx	iterated integral
	* How to calculate double integnals? outer integnal inventors?
	Example $g(x,y) = 4-x-y$
10 11	$R = 0 \le x \le 2 \qquad \text{if } x,y dA = x,y $
8.3	inner integral

- Chr. yr.)

If
$$f(x,y)dA = \int \int (4-x-y)dy dx$$

A(x)

A

we girst ealculate a cross-section along y , for fixed x : A(x)

$$\iint_{R} g(x,y) dA = \int_{0}^{2} \left(\int_{0}^{1} (4-x-y) dy \right) dx = \int_{0}^{2} \left(\frac{1}{2} - x \right) dx = \left[\frac{1}{2} x - \frac{x^{2}}{2} \right]_{0}^{2} = \frac{1}{2} - 2 = 5$$

* we can also take a cross-section along x

R
$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x,y) dA = \int_{0}^{1} A(y) dy = \int_{0}^{1} (6-2y) dy = \left[6y - y^{2}\right]_{0}^{1} = 6-1 = 5$$

$$A(y) = \int_{0}^{1} (4-x-y) dx = \left[4x - \frac{x^{2}}{2} - xy\right]_{0}^{2} = (8-2-2y) = 6-2y$$
The outcome is a function of y

-> this is FuBiHi's theorem (the order of integration does not matter)

* If f(x,y) is continuous on the rectangular region $R: a \le x \le b$, $c \le y \le d$, then $\iint_R f(x,y) dA = \iint_A f(x,y) dy dx = \iint_A f(x,y) dx dy$

$$+ \text{ Example}$$

$$\iint_{\mathcal{R}} (x+y) dA = \int_{\mathcal{R}} \int_{\mathcal{R}} (x+y) dx dy = \int_{\mathcal{R}} \left[\frac{x^2}{2} + xy \right]_{\mathcal{R}}^{\alpha} dy = \int_{\mathcal{R}} \left(\frac{a^2}{2} + ay \right) dy = \frac{a^2 \left[y \right]_{\mathcal{R}}^{\alpha} + a \left[\frac{y^2}{2} \right]_{\mathcal{R}}^{\alpha} }{ = \frac{a^3}{2} + \frac{a^3}{2} = a^3 }$$

I DOUBLE INTEGRALS OVER GENERAL REGIONS

double integrals can be defined on more general regions than rectangles

The clouble integral is the limit of the Riemann nons Sig & (x,y) dA = lim Ig(xkiyh) Ak = lim Ig(xhiyh) AAk

+ formally, we only take into account rectangles DAK that are Fully inside R: as IIPII-0, nufficiently regular oreas R

A for g(xy)>0, continuous on R, the integral Sig(xy)dA is the VOLUME between R and the surface of (x, y)

Ato ealculate this volume, we can parametrise the region R

then
$$\iint f(x,y) dA = \iint_{\alpha} A(x) dx$$

 $\lim_{x \to y = g_1(x)} f(x,y) dA = \int_{\alpha} A(x) dx$
with the eross-section $A(x) = \iint_{\alpha} f(x,y) dy$
 $\lim_{x \to y} f(x,y) dx$

then
$$\iint f(x,y) dA = \int A(y) dy$$

Rely)

with the cross-section $A(y) = \int f(x,y) dx$
 $f(x,y) dx$

both results are the name => stronger form of Fubini's throrem.

If f(x,y) is continuous on a region R $\Rightarrow f(R) = f(x,y)$ is defined as $a \le x \le b$, $g_1(x) \le y \le g_2(x)$, with $g_1(x), g_2(x)$ continuous on [a,b], then $\iint_R f(x,y) dA = \iint_R f(x,y) dy dx$ $= g_1(x)$

-> If R is defined as $c \leq y \leq d$, $h_1(y) \leq x \leq h_2(y)$, with $h_1(y), h_2(y)$ continuous on $[C_1, d]$, then $d h_2(y)$ $\int_{R} f(X_1y) dA = \int_{C_1} f(X_1y) dX dy$ $e h_2(y)$

Example

R:
$$X: 0 \to 1$$
 $X: 0 \to 1$
 X

2) R:
$$y: 0 \to 1$$

$$\iint_{R} y(x,y) dA = \iint_{Q} (3-x-y) dx dy = \iint_{Q} [3x - \frac{x^{2}}{2} - xy] dx$$

$$= \iint_{Q} (3-\frac{1}{2}-y) - (3y - \frac{y^{2}}{2} - y^{2}) dy = \frac{5}{2} - 2[y^{2}] + \frac{1}{2}[y^{3}]_{0}^{2}$$

* Properties of double integrals

For f(x,y), g(x,y) continuous on R (bounded)

*
$$\iint_{R} (g(x,y) \pm g(x,y)) dA = \iint_{R} g(x,y) dA \pm \iint_{R} g(x,y) dA$$

R R₁ R₂

From * Triangle inequality | If g(x,y) dA | \le | If |g(x,y)| dA

* integrals correspond to volumes / negative integrals to volumes helow the xy-plane

Examples

$$\int_{0}^{1} \int_{y^{2}}^{y} dx dy$$

$$\int \int x y^2 dy dx$$