Amendments to the Claims

Claims 1-69 (Cancelled).

70. (New) A compound having the structural formula (A),

$$R^{4}$$
 R^{25}
 R^{25}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;
- R¹ is selected from the group consisting of hydrogen, aryl, heterocycle, C₁.C₁₀ alkoxy, C₁.C₁₀ thioalkyl, C₁.C₁₀ alkyl-amino, C₁.C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with one or more R⁶;
- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N; provided that YR¹ is not hydrogen or C₁₋₆ alkyl;
- R^2 and R^4 are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10}

- cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, or heterocycle, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from the group consisting of (=O), (=S), and =N R^{27} ;
- X is selected from the group consisting of C₁.C₁₀ alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is a heterocycle substituted with one or more R¹⁷;
- R⁵ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkynyl, or heterocycle;
- each R^6 is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, C_{1-18} alkylsulfoxide, C_{1-18} alkylsulfone, C_{1-18} halo-alkyl, C_{2-18} halo-alkenyl, C_{2-18} halo-alkynyl, C_{1-18} halo-alkylthio, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, halogen, OH, -CN, cyanoalkyl, - CO_2R^{18} , -NO₂, -NR⁷R⁸, C_{1-18} haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C_{1-18})alkyl, aryl(C_{1-18})alkyloxy, aryl(C_{1-18})alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle, -C(=O)R¹²;
 -C(=S) R¹², an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;

- R⁹ and R¹⁸ are independently selected from the group consisting of hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or -CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocycle, or an amino acid residue;
- R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;
- R^{15} and R^{16} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;
- each R¹⁷ is independently selected from the group consisting of C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₂₋₁₈ halogenated alkenyl, C₂₋₁₈ halogenated alkynyl, C₂₋₁₈ halogenated alkoxy, C₁₋₁₈ halogenated alkylthio, CO₂H, CO₂R¹⁸, arylsulfoxide, arylsulfone, arylsulfonamide, where each of said arylsulfoxide, arylsulfone, arylsulfonamide is optionally substituted with one or more R¹⁹;
- each R^{19} is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkenyl, C_{2-18} alkenyl, C_{2-18} alkenyl, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18})alkylthio or aryl(C_{1-18})alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C_{1-18} alkoxy, heterocycle, C_{1-18}

haloalkyl, heterocycle alkyl, heterocycle connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;

- R^{20} and R^{21} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;
- R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and
- R²⁷ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl(C₁₋₁₈)alkyl; and salts, tautomers, stereoisomers and solvates thereof.
- 71. (New) A compound according to claim 70, being selected from group consisting of examples 120, 288 and 292.

72. (New) A compound having the structural formula (A)

$$R^4$$
 R^5
 R^{25}
 R^2
 R^2

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;
- R¹ is selected from the group consisting of hydrogen, aryl, heterocycle, C₁.C₁₀ alkoxy, C₁.C₁₀ thioalkyl, C₁.C₁₀ alkyl-amino, C₁.C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with one or more R⁶;
- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N; provided that YR¹ is not hydrogen or C₁₋₆ alkyl;
- R^2 and R^4 are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, or heterocycle, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from the group consisting of (=O), (=S), and =NR²⁷;
- X is selected from the group consisting of C₁₋C₁₀ alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is selected from the group consisting of aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocycle, where R³ is substituted with one or more R¹⁷, and provided that for cycloalkenyl the double bond is not adjacent to a nitrogen;

- R⁵ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkynyl, or heterocycle;
- each R^6 is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, C_{1-18} alkylsulfoxide, C_{1-18} alkylsulfone, C_{1-18} halo-alkyl, C_{2-18} halo-alkenyl, C_{2-18} halo-alkynyl, C_{1-18} halo-alkylthio, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, halogen, OH, -CN, cyanoalkyl, - CO_2R^{18} , -NO₂, -NR⁷R⁸, C_{1-18} haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C_{1-18})alkyl, aryl(C_{1-18})alkyloxy, aryl(C_{1-18})alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle, -C(=O)R¹²;
 -C(=S) R¹², an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;
- R⁹ and R¹⁸ are independently selected from the group consisting of hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or -CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R^{10} and R^{11} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, $-C(=O)R^{12}$, heterocycle, or an amino acid residue;
- R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

- R^{15} and R^{16} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;
- each R¹⁷ is independently MQ- wherein Q is a bond or a linking group connecting M to R³ and having 1 to 10 atoms, wherein M is selected from the group consisting of arylsulfoxide, arylsulfone and arylsulfonamide, and wherein each of said arylsulfoxide, arylsulfone or arylsulfonamide is optionally substituted with one or more R¹⁹;
- each R^{19} is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{2-18} alkenyloxy, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, -SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18}) alkyl)oxy, arylthio, aryl(C_{1-18})alkylthio or aryl(C_{1-18})alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C_{1-18} alkoxy, heterocycle, C_{1-18} haloalkyl, heterocycle alkyl, heterocycle connected to R^{17} by alkyl, alkoxyalkoxy or halogen;
- R^{20} and R^{21} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;
- R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and

- R²⁷ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl(C₁₋₁₈)alkyl; and salts, tautomers, stereoisomers and solvates thereof.

73. (New) A compound having the structural formula (A)

$$R^4$$
 R^5
 R^{25}
 R^2
 R^2
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds:
- R¹ is selected from the group consisting of hydrogen, aryl, heterocycle, C₁.C₁₀ alkoxy, C₁.C₁₀ thioalkyl, C₁.C₁₀ alkyl-amino, C₁.C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with one or more R⁶;
- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N; provided that YR¹ is not hydrogen or C₁₋₆ alkyl;
- R^2 and R^4 are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy,

- arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, or heterocycle, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from the group consisting of (=O), (=S), and =N R^{27} ;
- X is selected from the group consisting of C₁.C₁₀ alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is selected from the group consisting of aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocycle, where R³ is substituted with 1 or more R¹⁷, provided that for cycloalkenyl the double bond is not adjacent to a nitrogen;
- R⁵ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkynyl, or heterocycle;
- each R^6 is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, C_{1-18} alkylsulfoxide, C_{1-18} alkylsulfone, C_{1-18} halo-alkyl, C_{2-18} halo-alkenyl, C_{2-18} halo-alkynyl, C_{1-18} halo-alkylthio, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, halogen, OH, -CN, cyanoalkyl, - CO_2R^{18} , -NO₂, -NR⁷R⁸, C_{1-18} haloalkyl, - $C(=O)R^{18}$, - $C(=S)R^{18}$, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C_{1-18})alkyl, aryl(C_{1-18})alkyloxy, aryl(C_{1-18})alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;

- R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle, -C(=O)R¹²;
 -C(=S) R¹², an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;
- R⁹ and R¹⁸ are independently selected from the group consisting of hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or -CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocycle, or an amino acid residue;
- R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;
- R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl,
 C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- each R¹⁷ is independently MQ- wherein M is a 4-, 7-, 8- or 9-membered heterocycle optionally substituted with 1 or more R¹⁹, and Q is a bond or a linking group connecting M to R³ that has 1 to 10 atoms and is optionally substituted with one or more R¹⁹;
- each R^{19} is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{2-18} alkenyloxy, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, -SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18}

 $_{18}$ alkylsulfone, arylsulfoxide, arylsulfonamide, aryl (C_{1-18}) alkyloxy, aryloxy, aryl (C_{1-18}) alkyl)oxy, arylthio, aryl (C_{1-18}) alkylthio or aryl (C_{1-18}) alkyl, where each is optionally substituted with 1 or more =0, -NR 20 R 21 , -CN, C_{1-18} alkoxy, heterocycle, C_{1-18} haloalkyl, heterocycle alkyl, heterocycle connected to R 17 by alkyl, alkoxyalkoxy or halogen;

- R^{20} and R^{21} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;
- R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and
- R²⁷ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl(C₁₋₁₈)alkyl; and salts, tautomers, stereoisomers and solvates thereof.

74. (New) A compound according to claim 73, being selected from the group consisting of examples 102, 103, 106 and 315.

75. (New) A compound having the structural formula (A)

$$R^4$$
 R^5
 R^{25}
 R^2
 R^3
 R^2
 R^2

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;
- R¹ is selected from the group consisting of hydrogen, aryl, heterocycle, C₁.C₁₀ alkoxy, C₁.C₁₀ thioalkyl, C₁.C₁₀ alkyl-amino, C₁.C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with one or more R⁶;
- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N; provided that YR¹ is not hydrogen or C₁₋₆ alkyl;
- R² and R⁴ are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, or heterocycle, provided that when one of R²⁵ or R²⁶ is present, then either R² or R⁴ is selected from the group consisting of (=O), (=S), and =NR²⁷;
- X is selected from the group consisting of C₁₋C₁₀ alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R^3 is a 4-, 7-, 8- or 9-membered heterocycle optionally substituted with one or more R^{17} ;
- R^5 is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy,

- haloalkyl, $-C(=O)R^9$, $-C(=O)OR^9$, $-C(=S)R^9$, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkynyl, or heterocycle;
- each R^6 is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, C_{1-18} alkylsulfoxide, C_{1-18} alkylsulfone, C_{1-18} halo-alkyl, C_{2-18} halo-alkenyl, C_{2-18} halo-alkynyl, C_{1-18} halo-alkylthio, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, halogen, OH, -CN, cyanoalkyl, - CO_2R^{18} , -NO₂, -NR⁷R⁸, C_{1-18} haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C_{1-18})alkyl, aryl(C_{1-18})alkyloxy, aryl(C_{1-18})alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle, -C(=O)R¹²; -C(=S) R¹², an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;
- R^9 and R^{18} are independently selected from the group consisting of hydrogen, OH, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{1-18} alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, $CH_2OCH(=O)R^{9a}$, or - $CH_2OC(=O)OR^{9a}$ where R^{9a} is C_1-C_{12} alkyl, C_6-C_{20} aryl, C_6-C_{20} alkylaryl or C_6-C_{20} aralkyl;
- R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocycle, or an amino acid residue;
- R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

- R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl,
 C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- each R¹⁷ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halogenated alkyl, C₂₋₁₈ halogenated alkenyl, C₂₋₁₈ halogenated alkynyl, C₁₋₁₈ halogenated alkoxy, C₁₋₁₈ halogenated alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkynyl, halogen, -OH, -CN, -CO₂H, -CO₂R¹⁸, -NO₂, -NR⁷R⁸, haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸, -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylthio, heterocycle or C₁₋₁₈ hydroxyalkyl, where each of said aryl, aryloxy, arylalkylthio, heterocycle or C₁₋₁₈ hydroxyalkyl is optionally substituted with one or more R¹⁹;
- each R^{19} is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{2-18} alkenyloxy, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, -SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18}) alkyl)oxy, arylthio, aryl(C_{1-18})alkylthio or aryl(C_{1-18})alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C_{1-18} alkoxy, heterocycle, C_{1-18} haloalkyl, heterocycle alkyl, heterocycle connected to R^{17} by alkyl, alkoxyalkoxy or halogen;
- R^{20} and R^{21} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;

- R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and
- R²⁷ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl(C₁₋₁₈)alkyl; and salts, tautomers, stereoisomers and solvates thereof.

76. (New) A compound according to claim 75, being selected from the group consisting of examples 16, 30, 42 and 318.

77. (New) A compound having the structural formula (A)

$$R^3$$
 X
 R^{25}
 R^{25}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;
- R¹ is selected from the group consisting of hydrogen, aryl, heterocycle, C₁-C₁₀ alkoxy, C₁-C₁₀ thioalkyl, C₁-C₁₀ alkyl-amino, C₁-C₁₀ dialkylamino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with one or more R⁶:

- Y is selected from a single bond, O, S(O)_m, NR¹¹, C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, or C₂₋₁₀ alkynylene, wherein each alkylene, alkenylene or alkynylene optionally includes 1 to 3 heteroatoms selected from O, S or N; provided that YR¹ is not hydrogen or C₁₋₆ alkyl;
- R^2 and R^4 are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, or heterocycle, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from the group consisting of (=O), (=S), and =NR²⁷;
- X is selected from the group consisting of C₁₋C₁₀ alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where each optionally includes one or more heteroatoms selected from the group consisting of O, S, or N, provided any such heteroatom is not adjacent to the N in the imidazopyridyl ring;
- m is any integer from 0 to 2;
- R³ is a 4-, 7-, 8- or 9-membered heterocycle substituted with one or more R¹⁷;
- R^5 is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, -SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkynyl, or heterocycle;
- each R⁶ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -CO₂R¹⁸, -NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, -C(=O)R¹⁸, -C(=S)R¹⁸,

- -SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl (C_{1-18}) alkyl, aryl (C_{1-18}) alkyloxy, aryl (C_{1-18}) alkylthio, heterocycle and C_{1-18} hydroxyalkyl, where each is optionally substituted with one or more R^{19} ;
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocycle, -C(=O)R¹²; -C(=S) R¹², an amino acid residue linked through a carboxyl group thereof, or R⁷ and R⁸ are taken together with the nitrogen to form a heterocycle;
- R^9 and R^{18} are independently selected from the group consisting of hydrogen, -OH, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{1-18} alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, $CH_2OCH(=O)R^{9a}$, or - $CH_2OC(=O)OR^{9a}$ where R^{9a} is C_1-C_{12} alkyl, C_6-C_{20} aryl, C_6-C_{20} alkylaryl or C_6-C_{20} aralkyl;
- R^{10} and R^{11} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, $-C(=O)R^{12}$, heterocycle, or an amino acid residue;
- R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;
- R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl,
 C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- each R¹⁷ is independently MQ- wherein M is a ring optionally substituted with one or more R¹⁹, and Q is a bond or a linking group connecting M to R³ that has 1 to 10 atoms and is optionally substituted with one or more R¹⁹;
- each R^{19} is independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{2-18} alkenyloxy, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸,

- -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, -SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocycle, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18})alkyl)oxy, arylthio, aryl(C_{1-18})alkylthio or aryl(C_{1-18})alkyl, where each is optionally substituted with 1 or more =O, -NR²⁰R²¹, -CN, C_{1-18} alkoxy, heterocycle, C_{1-18} haloalkyl, heterocycle alkyl, heterocycle connected to R^{17} by alkyl, alkoxyalkoxy or halogen;
- R^{20} and R^{21} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;
- R²⁵ and R²⁶ are not present, or are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl and heterocycle, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, -CH₂OH, benzyloxy, and -OH; and
- R²⁷ is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl(C₁₋₁₈)alkyl; and salts, tautomers, stereoisomers and solvates thereof.
- 78. (New) A compound according to claim 77, being selected from the group consisting of examples 2 to 15, 17 to 29, 31 to 41, 43 to 101, 104, 105, 107 to 314, 316, 317, and 319 to 379.
- 79. (New) A compound according to claim 70, wherein R^3 is isoxazolyl substituted with one R^{17} .
- 80. (New) A compound according to claim 72, wherein R^3 is isoxazolyl substituted with one R^{17} .

- 81. (New) A compound according to claim 73, wherein R^3 is isoxazolyl substituted with one R^{17} .
- 82. (New) A compound according to claim 75, wherein R^3 is isoxazolyl substituted with one R^{17} .
- 83. (New) A compound according to claim 77, wherein R³ is isoxazolyl substituted with one R¹⁷.
- 84. (New) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 70.
- 85. (New) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 72.
- 86. (New) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 73.
- 87. (New) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 75.
- 88. (New) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound according to claim 77.