Chapitre 13: Correction des tests

Test 1 (Voir solution.)

Soit X une variable aléatoire de fonction de répartition donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 1 - e^{-x^{2}} & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0. \end{cases}$$

Montrer que X est à densité et déterminer une densité.

Test 2 (Voir solution.)

Montrer que la fonction f suivante est une densité d'une variable aléatoire X:

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & si \ x < -1 \\ 1 + x & si - 1 \le x < 0 \\ 1 - x & si \ 0 \le x < 1 \\ 0 & si \ x \ge 1 \end{cases}.$$

Déterminer la fonction de répartition de X.

Test 3 (Voir solution.)

Montrer que la fonction F suivante est la fonction de répartition d'une variable aléatoire X :

$$\forall x \in \mathbb{R}, \quad F(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ 1 - \frac{1}{2}e^{-x} & \text{si } x \ge 0 \end{cases}.$$

Déterminer une densité de X.

Test 4 (Voir solution.)

Soit X une variable aléatoire à densité dont une densité est la fonction f définie par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 1 \\ \frac{2}{x^3} & \text{si } x \ge 1 \end{cases}.$$

Montrer que 3X – 1 est une variable à densité et en déterminer une densité.

Test 5 (Voir solution.)

Soit X une variable aléatoire de loi $\mathcal{E}(2)$. Déterminer la loi de Y = e^{X} .

Test 6 (Voir solution.)

Soit X suivant une loi uniforme sur [-1,1]. Déterminer la loi de X^2 .

Test 7 (Voir solution.)

 $Soit X \hookrightarrow \mathcal{N}(0,1)$. On pose Y = |X|. Montrer que Y est une variable à densité et déterminer une densité de Y.

Test 8 (Voir solution.)

On considère la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\pi(1+x^2)}.$$

On admet que f est une densité de probabilité et on considère une variable aléatoire à densité X de densité f. La variable aléatoire X possède-t-elle une espérance? Le cas échéant, la calculer.

Test 9 (Voir solution.)

Soit $X \hookrightarrow \mathcal{E}(1)$. La variable $\frac{1}{1+e^{-X}}$ possède-t-elle une espérance? Si oui, la calculer.

Test 10 (Voir solution.)

 $Soit X \hookrightarrow \mathcal{U}([a,b])$ avec a < b deux réels. Montrer que X possède une variance et que cette variance vaut $\frac{(b-a)^2}{12}$.

Test 11 (Voir solution.)

Démontrer la proposition.

Test 12 (Voir solution.)

Soit $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$. Démontrer le cas particulier suivant :

$$X \hookrightarrow \mathcal{N}(0,1) \Longleftrightarrow \sigma X + \mu \hookrightarrow \mathcal{N}(\mu,\sigma^2).$$

Test 13 (Voir solution.)

 $Soit \, X \hookrightarrow \mathcal{E}(\lambda) \ avec \ \lambda > 0. \ Montrer \ que \ X \ possède \ une \ variance \ et \ que \ cette \ variance \ vaut \ \frac{1}{\lambda^2}.$

Test 14 (Voir solution.)

Soient X et Y deux variables aléatoires réelles indépendantes et soit $Z = \max(X, Y)$. Exprimer la fonction de répartition F_Z de X et F_Y de Y.

Test 15 (Voir solution.)

Soient a et b deux réels strictement positifs et $X \hookrightarrow \mathcal{E}(a)$, $Y \hookrightarrow \mathcal{E}(b)$ deux variables aléatoires indépendantes.

- 1. On pose U = max(X, Y). Déterminer la fonction de répartition de U.
- 2. On pose V = min(X, Y).
 - (a) Déterminer la fonction de répartition de V.
 - (b) Reconnaître la loi de V.

1 Correction des tests

Correction du test 1 (Retour à l'énoncé.)

Ici on sait que F_X est une fonction de répartition. Pour vérifier que c'est la fonction de répartition d'une variable aléatoire à densité, il s'agit de montrer que F_X est continue sur $\mathbb R$ et de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points.

1. Montrons que F_X est continue sur \mathbb{R} . La fonction F_X est continue sur $[0, +\infty[$ en tant que composée de fonctions continues sur $[0, +\infty[$ et continue sur $]-\infty, 0[$ car constante sur cet intervalle. Étudions la continuité en 0:

$$\lim_{x \to 0^+} F_X(x) = 0 = F_X(0) = \lim_{x \to 0^-} F_X(x).$$

Ainsi, F_X est continue en 0.

Finalement, F_X est continue sur \mathbb{R} .

2. Montrons que F_X est de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points. La fonction F_X est de classe C^1 sur $]0,+\infty[$ et sur $]-\infty,0[$ en tant que composée de fonctions de classe C^1 sur ces intervalles. Ainsi, F_X est continue sur $\mathbb R$ sauf éventuellement en 0.

Ainsi, X est à densité. De plus :

$$\forall x \in \mathbb{R}^*, \quad \mathbf{F}'_{\mathbf{X}}(x) = \begin{cases} 2xe^{-x^2} & si \ x > 0 \\ 0 & si \ x < 0 \end{cases}$$

Donc, la fonction f définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 2xe^{-x^2} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

est une densité de X.

Correction du test 2 (Retour à l'énoncé.)

- 1. Montrons que f est positive. Sur $]-\infty,-1[$ et sur $[1,+\infty[$, f est positive. De plus, pour tout $x \in [-1,0[$, $f(x)=1+x\geqslant 0$ et pour tout $x\in [0,1[$, $f(x)=1-x\geqslant 0$. Ainsi, f est positive.
- 2. Il est évident que f est continue sur $\mathbb{R}\setminus\{-1,0,1\}$.
- $3. \ \ \textit{Comme f est continue sur} \ \mathbb{R} \setminus \{-1,0,1\}, \ \textit{l'intégrale} \ \int_{-\infty}^{+\infty} f(t) dt \ \text{est impropre en} \ -\infty, -1, 0, 1 \ \text{et} \ +\infty.$
 - Étude de $\int_{-\infty}^{-1} f(t)dt$. Comme f est nulle sur $]-\infty,-1[$, on vérifie facilement que cette intégrale (doublement impropre) converge et vaut 0.
 - Étude de $\int_{-1}^{0} f(t)dt$. Comme f est prolongeable par continuité sur [-1,0] l'intégrale converge et on a :

$$\int_{-1}^{0} f(t)dt = \int_{-1}^{0} (1+t)dt = \frac{1}{2}.$$

• Étude de $\int_0^1 f(t)dt$. Comme f est prolongeable par continuité sur [0,1] l'intégrale converge et on a :

$$\int_0^1 f(t)dt = \int_0^1 (1-t)dt = \frac{1}{2}.$$

• Étude de $\int_{1}^{+\infty} f(t)dt$. Comme f est nulle sur $[1, +\infty[$, on vérifie facilement que cette intégrale converge et vaut 0.

Ainsi, l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et on a :

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{-\infty}^{-1} f(t)dt + \int_{-1}^{0} f(t)dt + \int_{0}^{1} f(t)dt + \int_{1}^{+\infty} f(t)dt = 1.$$

Ainsi, f est bien un densité de probabilité. Soit X une variable aléatoire de densité f. Alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{2} + x + \frac{x^{2}}{2} & \text{si } -1 \le x < 0 \\ \frac{1}{2} + x - \frac{x^{2}}{2} & \text{si } 0 \le x < 1 \\ 1 & \text{si } x \ge 1. \end{cases}$$

Correction du test 3 (Retour à l'énoncé.)

Ici, on ne sait pas a priori que F est une fonction de répartition. Il s'agit donc de montrer que :

- F est croissante sur \mathbb{R} ,
- $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$,
- F est continue sur \mathbb{R} ,
- F est de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points.
- 1. Montrons que F est continue sur \mathbb{R} .

La fonction F est continue sur] $-\infty$, 0[et sur]0, $+\infty$ [car la fonction exponentielle est continue sur ces intervalles. De plus, on a :

$$\lim_{x \to 0^{-}} F(x) = \frac{1}{2} = F(0) = \lim_{x \to 0^{+}} F(x).$$

Donc F est continue en 0. Finalement F est continue sur \mathbb{R} .

- 2. Montrons que F est croissante sur \mathbb{R} .
 - F est croissante sur] $-\infty$,0[car la fonction exponentielle l'est,
 - F est croissante sur $[0, +\infty[$ (en étudiant le signe de la dérivée sur $]0, +\infty[$),
 - · F est continue.

Ainsi F est croissante sur \mathbb{R} .

- 3. Par limites usuelles, on a : $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.
- 4. La fonction F est de classe C^1 sur $]-\infty,0[$ et sur $]0,+\infty[$ car la fonction exponentielle est de classe C^1 sur ces intervalles.

Ainsi F est bien la fonction de répartition d'une variable aléatoire à densité X. Or

$$\forall x \in \mathbb{R}^*, \quad F'(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ \frac{1}{2}e^{-x} & \text{si } x \geqslant 0 \end{cases}.$$

La fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x \leq 0\\ \frac{1}{2}e^{-x} & \text{si } x \geq 0 \end{cases}$$

est une densité de X.

Correction du test 4 (Retour à l'énoncé.)

On sait que la fonction de répartition de X est la fonction F_X définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & si \ x < 1 \\ 1 - \frac{1}{x^{2}} & si \ x \ge 1. \end{cases}$$

On note Y = 3X - 1.

• Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[Y \leqslant t] = [3X - 1 \leqslant t] = \left[X \leqslant \frac{t+1}{3}\right].$$

Donc:

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \mathrm{P}\left(\left[\mathrm{X} \leqslant \frac{t+1}{3}\right]\right) = \mathrm{F}_{\mathrm{X}}\left(\frac{t+1}{3}\right) = \left\{\begin{array}{cc} 0 & si \ t < 2 \\ 1 - \frac{9}{(t+1)^2} & si \ t \geqslant 2 \end{array}\right..$$

- Montrons que Y est une variable à densité. La fonction F_Y est continue sur \mathbb{R} (le vérifier!) et de classe C^1 sauf éventuellement en 2. Ainsi, Y est à densité.
- Déterminons une densité de Y. On a, pour tout $t \in \mathbb{R} \setminus \{2\}$:

$$F'_{Y}(t) = \begin{cases} 0 & \text{si } t < 2\\ \frac{18}{(t+1)^3} & \text{si } t > 2 \end{cases}.$$

Au final, la fonction g définie sur ℝ par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} 0 & \text{si } t < 2\\ \frac{18}{(t+1)^3} & \text{si } t \ge 2 \end{cases}$$

est une densité de Y.

Correction du test 5 (Retour à l'énoncé.)

• Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[Y \leq t] = [e^X \leq t] = \left\{ \begin{array}{cc} [X \leq \ln{(t)}] & si \: t > 0 \\ \varnothing & si \: t \leq 0 \end{array} \right. .$$

Donc

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \left\{ \begin{array}{cc} \mathrm{P}\left([\mathrm{X} \leqslant \ln{(t)}]\right) & si \; t > 0 \\ 0 & si \; t \leqslant 0 \end{array} \right. = \left\{ \begin{array}{cc} \mathrm{F}_{\mathrm{X}}\left(\ln{(t)}\right) & si \; t > 0 \\ 0 & si \; t \leqslant 0 \end{array} \right. .$$

Or, comme X suit la loi exponentielle de paramètre 2, on a

$$F_{X}(\ln(t)) = \begin{cases} 1 - e^{-2\ln(t)} & si \ln(t) \ge 0 \\ 0 & si \ln(t) < 0 \end{cases} = \begin{cases} 1 - \frac{1}{t^{2}} & si \ t \ge 1 \\ 0 & si \ t < 1 \end{cases}.$$

Donc finalement on obtient:

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \left\{ \begin{array}{cc} 1 - \frac{1}{t^2} & si \ t \geq 1 \\ 0 & si \ t < 1 \end{array} \right..$$

- Montrons que Y est une variable à densité.
 La fonction F_Y est continue sur ℝ (le vérifier!) et de classe C¹ sur ℝ\{1}. Ainsi, Y est à densité.
- Déterminons une densité de Y. On a, pour tout $t \in \mathbb{R} \setminus \{1\}$:

$$F'_{Y}(t) = \begin{cases} \frac{2}{t^{3}} & si \ t > 1 \\ 0 & si \ t < 1 \end{cases}.$$

Au final, la fonction g définie sur ℝ par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} \frac{2}{t^3} & \text{si } t \ge 1 \\ 0 & \text{si } t < 1 \end{cases}$$

est une densité de Y.

Correction du test 6 (Retour à l'énoncé.)

• Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[Y \leq t] = [X^2 \leq t] = \begin{cases} \emptyset & \text{si } t < 0 \\ [-\sqrt{t} \leq X \leq \sqrt{t}] & \text{si } t \geq 0 \end{cases}.$$

Donc.

$$\forall t \in \mathbb{R}, \quad \mathcal{F}_{\mathcal{Y}}(t) = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ \mathbb{P}\left(\left[-\sqrt{t} \leqslant \mathcal{X} \leqslant \sqrt{t}\right]\right) & si \ t \geqslant 0 \end{array} \right. = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ \mathbb{F}_{\mathcal{X}}\left(\sqrt{t}\right) - \mathbb{F}_{\mathcal{X}}\left(-\sqrt{t}\right) & si \ t \geqslant 0 \end{array} \right..$$

Or comme X suit la loi uniforme sur [-1,1] donc

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & si \ x < -1 \\ \frac{x+1}{2} & si \ x \in [-1, 1] \\ 1 & si \ x > 1 \end{cases}.$$

Ainsi

$$\forall \, t \in \mathbb{R}, \quad \mathsf{F}_{\mathsf{Y}}(t) = \left\{ \begin{array}{ccc} 0 & si \, t < 0 \\ \frac{\sqrt{t} + 1}{2} - \frac{-\sqrt{t} + 1}{2} & si \, 0 \leqslant t \leqslant 1 \\ 1 & si \, t > 1 \end{array} \right. = \left\{ \begin{array}{ccc} 0 & si \, t < 0 \\ \sqrt{t} & si \, 0 \leqslant t \leqslant 1 \\ 1 & si \, t > 1 \end{array} \right..$$

- Montrons que Y est une variable à densité. La fonction F_Y est continue sur ℝ (le vérifier!) et de classe C¹ sur ℝ sauf éventuellement en 0 et 1. Ainsi, Y est à densité.
- Déterminons une densité de Y. On a :

$$\forall t \in \mathbb{R} \setminus \{0,1\} \quad F_{Y}'(t) = \begin{cases} 0 & \text{si } t < 0 \\ \frac{1}{2\sqrt{t}} & \text{si } 0 < t \le 1 \\ 0 & \text{si } t > 1 \end{cases}.$$

Au final, la fonction g définie sur \mathbb{R} par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} \frac{1}{2\sqrt{t}} & si \ 0 < t \le 1\\ 0 & si \ t \in \mathbb{R} \setminus]0,1] \end{cases}$$

est une densité de Y.

Correction du test 7 (Retour à l'énoncé.)

• Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[\mathbf{Y} \leqslant t] = [|\mathbf{X}| \leqslant t] = \left\{ \begin{array}{cc} \varnothing & \text{si } t < 0 \\ [-t \leqslant \mathbf{X} \leqslant t] & \text{si } t \geqslant 0 \end{array} \right..$$

Donc:

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ \mathrm{P}\left([-t \leqslant \mathrm{X} \leqslant t]\right) & si \ t \geqslant 0 \end{array} \right. = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ \mathrm{F}_{\mathrm{X}}(t) - \mathrm{F}_{\mathrm{X}}(-t) & si \ t \geqslant 0 \end{array} \right. .$$

- Montrons que Y est une variable à densité. Comme X suit une loi normale, elle possède une densité continue sur ℝ donc sa fonction F_X est de classe C¹ sur ℝ. On en déduit que F_Y est de classe C¹ sur ℝ* puis on vérifie que F_Y est continue sur ℝ. Par conséquent, Y est une variable aléatoire à densité.
- Déterminons une densité de Y. On a, pour tout $t \in \mathbb{R}^*$:

$${\bf F}_{\bf Y}'(t) = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ {\bf F}_{\bf X}'(t) + {\bf F}_{\bf X}'(-t) & si \ t > 0 \end{array} \right. .$$

Comme X suit la loi normale centrée réduite, la fonction g définie sur $\mathbb R$ par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} 0 & \text{si } t < 0 \\ \frac{2}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} & \text{si } t \ge 0 \end{cases}$$

est une densité de Y.

Correction du test 8 (Retour à l'énoncé.)

La variable aléatoire X admet une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ converge absolument.

 $Comme \ t \mapsto |tf(t)| \ \text{est continue sur} \ \mathbb{R}, \ l'intégrale \int_{-\infty}^{+\infty} |tf(t)| \ dt \ \text{est impropre en} \ -\infty \ \text{et} \ +\infty.$

Or.

- $|tf(t)| \underset{x \to +\infty}{\sim} \frac{1}{\pi t}$,
- $t \mapsto |tf(t)|$ et $t \mapsto \frac{1}{\pi t}$ sont positives au voisinage de $+\infty$,
- $\int_{1}^{+\infty} \frac{1}{\pi t} dt$ est divergente d'après le critère de convergence des intégrales de Riemann en $+\infty$.

Donc d'après le critère d'équivalence des intégrales de fonctions continues positives, $\int_{1}^{+\infty} |tf(t)| dt$ diverge.

Ainsi $\int_{-\infty}^{+\infty} |tf(t)| dt$ diverge et X ne possède donc pas d'espérance.

Correction du test 9 (Retour à l'énoncé.)

Une densité de X est donnée par la fonction f définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 0 \\ e^{-x} & \text{si } x \ge 0 \end{cases}.$$

La fonction $x \mapsto \frac{1}{1+e^{-x}}$ étant nulle en dehors de $[0, +\infty[$, d'après le théorème de transfert, la variable $\frac{1}{1+e^{-X}}$ possède une espérance si et seulement si $\int_0^{+\infty} \frac{e^{-x}}{1+e^{-x}} dx$ converge absolument. La fonction $x \mapsto \frac{e^{-x}}{1+e^{-x}}$ étant positive et continue sur $[0, +\infty[$, il suffit d'étudier la convergence de $\int_0^{+\infty} \frac{e^{-x}}{1+e^{-x}} dx$, impropre en $+\infty$.

Soit $A \in [0, +\infty[$.

$$\int_{0}^{A} \frac{e^{-x}}{1 + e^{-x}} dx = -\left[\ln\left|1 + e^{-x}\right|\right]_{0}^{A} = \ln(2) - \ln(1 + e^{-A}).$$

Ainsi: $\lim_{A \to +\infty} \int_0^A \frac{e^{-x}}{1 + e^{-x}} dx = \ln(2).$

Finalement, $\int_0^{+\infty} \frac{e^{-x}}{1+e^{-x}} dx$ converge absolument donc $\frac{1}{1+e^{-x}}$ possède une espérance et on a :

$$E\left(\frac{1}{1+e^{-X}}\right) = \ln{(2)}.$$

Correction du test 10 (Retour à l'énoncé.)

Une densité de X est donnée par la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{b-a} & si \ x \in [a,b] \\ 0 & sinon \end{cases}.$$

On sait que X possède une espérance donc par la formule de Koenig-Huygens, X possède une variance si et seulement si $\int_a^b \frac{t^2}{b-a} dt$ converge absolument. Or, la fonction $t\mapsto \left|\frac{t^2}{b-a}\right|$ est continue sur [a,b] donc l'intégrale ne possède pas d'impropreté! Ainsi X possède un moment d'ordre 2 donc une variance. La formule de Koenig-Huygens donne alors :

$$\begin{split} \mathrm{V}(\mathrm{X}) &= \int_{a}^{b} \frac{t^2}{b-a} dt - \mathrm{E}(\mathrm{X})^2 = \frac{b^3 - a^3}{3(b-a)} - \frac{(a+b)^2}{4} = \frac{4(b^3 - a^3) - 3(b-a)(a+b)^2}{12(b-a)} \\ &= \frac{4(b-a)(a^2 + ab + b^2) - 3(b-a)(a+b)^2}{12(b-a)} \\ &= \frac{4(a^2 + ab + b^2) - 3(a^2 + 2ab + b^2)}{12} \\ &= \frac{a^2 - 2ab + b^2}{12} \\ &= \frac{(b-a)^2}{12}. \end{split}$$

Correction du test 11 (Retour à l'énoncé.)

On raisonne par double implication.

 \Rightarrow Supposons que X $\hookrightarrow \mathcal{U}([0,1])$ et notons Y = a+(b-a)X. Rappelons que la fonction de répartition de X est la fonction F_X définie par :

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & si \ x < 0 \\ x & si \ x \in [0, 1] \\ 1 & si \ x > 1 \end{cases}.$$

On va déterminer la fonction de répartition de Y. Soit $t \in \mathbb{R}$. On a

$$[Y \leqslant t] = [a + (b-a)X \leqslant t] = \left[X \leqslant \frac{t-a}{b-a}\right] \quad car \quad b-a > 0.$$

Donc

$$\forall t \in \mathbb{R}, \quad F_{\mathbf{Y}}(t) = \mathbf{P}\left(\left[\mathbf{X} \leqslant \frac{t-a}{b-a}\right]\right) = F_{\mathbf{X}}\left(\frac{t-a}{b-a}\right) = \begin{cases} 0 & \text{si } \frac{t-a}{b-a} < 0\\ \frac{t-a}{b-a} & \text{si } \frac{t-a}{b-a} \in [0,1]\\ 1 & \text{si } \frac{t-a}{b-a} > 1 \end{cases}.$$

Or:

- $\frac{t-a}{b-a} \in [0,1]$ si et seulement si $t \in [a,b]$,
- $\frac{t-a}{b-a} < 0$ si et seulement si t < a
- $\frac{t-a}{b-a} > 1$ si et seulement si t > b.

Donc

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = \begin{cases} 0 & \text{si } t < a \\ \frac{t-a}{b-a} & \text{si } t \in [a,b] \\ 1 & \text{si } t > b \end{cases}.$$

On reconnaît la fonction de répartition de la loi uniforme sur [a,b]. Comme la fonction de répartition caractérise la loi, Y suit une loi uniforme sur [a,b].

 \Leftarrow On suppose que Y = a + (b - a)X suit la loi uniforme sur [a, b]. Sa fonction de répartition est donc:

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = \begin{cases} 0 & \text{si } t < a \\ \frac{t-a}{b-a} & \text{si } t \in [a,b] \\ 1 & \text{si } t > b \end{cases}.$$

Soit $t \in \mathbb{R}$. Alors on a:

$$|X \le t| = [a + (b - a)X \le (b - a)t + a] = |Y \le (b - a)t + a| \quad car \quad b - a > 0.$$

Donc

$$\forall \, t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{X}}(t) = \mathrm{P}\left([\mathrm{X} \leqslant t]\right) = \mathrm{F}_{\mathrm{Y}}((b-a)t+a) = \left\{ \begin{array}{cc} 0 & si \, (b-a)t+a < a \\ \frac{(b-a)t+a-a}{b-a} & si \, (b-a)t+a \in [a,b] \\ 1 & si \, (b-a)t+a > b \end{array} \right. = \left\{ \begin{array}{cc} 0 & si \, t < 0 \\ t & si \, t \in [0,1] \\ 1 & si \, t > 1 \end{array} \right.$$

On reconnaît la fonction de répartition de la loi uniforme sur [0,1]. Comme la fonction de répartition caractérise la loi, X suit une loi uniforme sur [0,1].

Correction du test 12 (Retour à l'énoncé.)

On raisonne par double implication.

 \Rightarrow Supposons que $X \hookrightarrow \mathcal{N}(0,1)$ et notons $Y = \sigma X + \mu$. Rappelons que la fonction de répartition de X est la fonction F_X définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{0}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt.$$

On va déterminer la fonction de répartition de Y. Soit $x \in \mathbb{R}$. Comme $\sigma > 0$ alors :

$$[Y \leqslant x] = [\sigma X + \mu \leqslant x] = \left[X \leqslant \frac{x - \mu}{\sigma}\right].$$

Donc

$$\forall x \in \mathbb{R}, \quad F_{Y}(x) = P\left(\left[X \leqslant \frac{x-\mu}{\sigma}\right]\right) = F_{X}\left(\frac{x-\mu}{\sigma}\right) = \int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt.$$

En effectuant le changement de variable $t = \frac{s-\mu}{\sigma}$ dans cette intégrale on trouve :

$$\forall x \in \mathbb{R}, \quad F_{Y}(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s-\mu)^{2}}{2\sigma^{2}}} ds.$$

On reconnaît la fonction de répartition de la loi $\mathcal{N}(\mu, \sigma^2)$. Comme la fonction de répartition caractérise la loi, Y suit la loi $\mathcal{N}(\mu, \sigma^2)$.

 \Leftarrow On suppose que Y = σ X + μ suit la loi $\mathcal{N}(\mu, \sigma^2)$. Sa fonction de répartition est donc :

$$\forall x \in \mathbb{R}, \quad F_Y(x) = \int_{-\infty}^x \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s-\mu)^2}{2\sigma^2}} ds$$

Soit $x \in \mathbb{R}$. Alors comme $\sigma > 0$:

$$[X \leqslant x] = [\sigma X + \mu \leqslant \sigma x + \mu] = [Y \leqslant \sigma x + \mu].$$

Donc

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = F_{Y}(\sigma X + \mu) = \int_{-\infty}^{\sigma x + \mu} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s - \mu)^{2}}{2\sigma^{2}}} ds.$$

En effectuant le changement de variable $t = \frac{s-\mu}{\sigma}$ dans cette intégrale on trouve :

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{\sigma x + \mu} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s - \mu)^{2}}{2\sigma^{2}}} ds = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt.$$

On reconnaît la fonction de répartition de la loi $\mathcal{N}(0,1)$. Comme la fonction de répartition caractérise la loi, X suit la loi $\mathcal{N}(0,1)$.

Correction du test 13 (Retour à l'énoncé.)

Une densité de X est donnée par la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{sinon} \end{cases}.$$

On sait que X possède une espérance donc par la formule de Koenig-Huygens, X possède une variance si et seulement si $\int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$ converge absolument. Or, la fonction $t\mapsto \lambda t^2 e^{-\lambda t}$ est positive donc il suffit d'étudier si $\int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt$ converge. La seule impropreté de cette intégrale est en $+\infty$. Soit $A\geqslant 0$. En intégrant par parties deux fois de suite on obtient :

$$\begin{split} \int_0^A \lambda t^2 e^{-\lambda t} dt &= \left[-t^2 e^{-\lambda t} \right]_0^A + \int_0^A 2t e^{-\lambda t} dt \\ &= -A^2 e^{-\lambda A} + 2 \left(\left[-t \frac{e^{-\lambda t}}{\lambda} \right]_0^A + \int_0^A \frac{e^{-\lambda t}}{\lambda} dt \right) \\ &= -A^2 e^{-\lambda A} - 2 \frac{A e^{-\lambda A}}{\lambda} + \frac{2}{\lambda^2} - \frac{e^{-\lambda A}}{\lambda^2}. \end{split}$$

Ainsi,

$$\lim_{A \to +\infty} \int_0^A \lambda t^2 e^{-\lambda t} dt = \frac{2}{\lambda^2}.$$

Cela montre que X possède un moment d'ordre 2 et que $E(X^2) = \frac{2}{\lambda^2}$. La formule de Koenig-Huygens donne alors

$$V(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

Correction du test 14 (Retour à l'énoncé.)

Soient X et Y deux variables aléatoires réelles indépendantes et soit $Z = \max(X, Y)$. On note F_Z la fonction de répartition de Z et F_X , F_Y celles de X et de Y.

• Soit $t \in \mathbb{R}$ et montrons que $[Z \le t] = [X \le t] \cap [Y \le t]$. Soit $\omega \in \Omega$; on a :

$$\omega \in [Z \leqslant t] \Longleftrightarrow Z(\omega) \leqslant t \Longleftrightarrow \max(X(\omega), Y(\omega)) \leqslant t \Longleftrightarrow X(\omega) \leqslant t \quad et \quad Y(\omega) \leqslant t \Longleftrightarrow \omega \in [X \leqslant t] \cap [Y \leqslant t].$$

Ainsi $[Z \leqslant t] = [X \leqslant t] \cap [Y \leqslant t]$.

- On en déduit, par indépendance, que pour tout réel t, $P([Z \le t]) = P([X \le t])P([Y \le t])$.
- En d'autres termes,

$$\forall t \in \mathbb{R}, \quad F_{Z}(t) = F_{X}(t)F_{Y}(t).$$

Correction du test 15 (Retour à l'énoncé.)

1. D'après le test 14, comme X et Y sont indépendantes, on a :

$$\forall t \in \mathbb{R}, \quad F_{U}(t) = F_{X}(t)F_{Y}(t).$$

Comme $X \hookrightarrow \mathcal{E}(a)$ et $Y \hookrightarrow \mathcal{E}(b)$, on obtient finalement

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{U}}(t) = \mathrm{F}_{\mathrm{X}}(t) \mathrm{F}_{\mathrm{Y}}(t) = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ (1 - e^{-at})(1 - e^{-bt}) & si \ t \geq 0 \end{array} \right..$$

2. (a) D'après l'exemple 13, comme X et Y sont indépendantes, on a :

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{V}}(t) = 1 - (1 - \mathrm{F}_{\mathrm{X}}(t))(1 - \mathrm{F}_{\mathrm{Y}}(t)).$$

Comme $X \hookrightarrow \mathcal{E}(a)$ et $Y \hookrightarrow \mathcal{E}(b)$, on obtient finalement

$$\forall t \in \mathbb{R}, \quad F_{V}(t) = 1 - (1 - F_{X}(t))(1 - F_{Y}(t)) = \begin{cases} 0 & \text{si } t < 0 \\ 1 - e^{-(a+b)t} & \text{si } t \ge 0 \end{cases}$$

(b) La fonction F_V est la fonction de répartition d'une variable aléatoire suivant la loi $\mathscr{E}(a+b)$. Comme la fonction de répartition caractérise la loi, on en déduit que $V \hookrightarrow \mathscr{E}(a+b)$.