✓ Additionneur 4 bits.
✓ Additionneur –soustracteur.
✓ Comparateur.

1. Additionneur 4 bits:

1-1.introduction:

• Un additionneur sur 4 bits est un circuit qui permet de faire l'addition de deux nombres A et B de 4 bits chacun – A (a3a2a1a0) – B (b3b2b1b0)

En plus il tient en compte de la retenu entrante

- En sortie on va avoir le résultat sur 4 bits ainsi que la retenu (5bits en sortie)
- Donc au total le circuit possède 9 entrées et 5 sorties.
- Avec 9 entrées on a 2^9=512 combinaisons !!!!!! Comment faire pour représenter la table de vérité ?????
- Il faut trouver une solution plus facile et plus efficace pour concevoir ce circuit ?
- •Lorsque on fait l'addition en binaire, on additionne bit par bit en Commençant à partir du poids fiable et à chaque fois on propage la Retenue sortante au bit du rang supérieur.

L'addition sur un bit peut se faire par un additionneur complet sur 1 bit.

Solution:

Pour effectuer l'addition de deux nombres de 4 bits, il suffit de chaîner entre eux par 4 additionneurs 1-bit complets. La retenue est ainsi propagée d'un additionneur à l'autre. Un tel additionneur est appelé un additionneur série.

1-2. Demi-additionneur:

Ce circuit, qui permettrait d'effectuer l'addition des deux bits de plus bas poids est appelé demi-additionneur (Half-Adder). Ecrivons la table de vérité de celui-ci :

1-2-1. Table de vérité/équations/logigramme:

A	В	C	D
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Table 1

Si nous écrivons ces deux fonctions sous leur forme canonique il vient :

$$\begin{cases} D = \overline{A} B + A \overline{B} \\ C = A B \end{cases}$$

Nous reconnaissons pour la sortie D une fonction OU exclusif, donc :

$$\begin{cases} D = A \oplus B \\ C = A B \end{cases}$$

Ce qui peut être réalisé par le circuit schématisé sur le logigramme de la figure 3.

Figure 3

1-2-2.Circuit d'après ms11 (ADD 1 bit) :

1-3. Additionneur complet 1bit:

1-3-1. Table de vérité:

A	В	R	S	C
0	O	O	0	O
O	O	1	1	O
О	1	O	1	O
O	1	1	O	1
1	O	O	1	O
1	O	1	O	1
1	1	O	O	1
1	1	1	1	1

Table 2

Expressions de s & C:

$$\begin{cases} S = \overline{A} \ \overline{B} R + \overline{A} B \overline{R} + A \overline{B} \overline{R} + A B R \\ C = \overline{A} B R + A \overline{B} R + A B \overline{R} + A B R \end{cases}$$

D'après table de karnaugh on obtient :

$$C = A B + A R + B R$$

$$S = (A + B + R) \overline{C} + A B R$$

1-3-2. Circuit intégrer add 1 bit:

D'après les expressions S & C on obtiendra le logigramme suivant :

1-3-3.Circuit d'après ms11 (ADD 1 bit) :

1-4.Additionneur 4 bit :

1-4-1. Association de 4 add 1 bit :

<u>1-4-2.Circuit d'après ms11</u>:

2-Additionneur – Soustracteur:

2-1.Introduction:

Il n'y a pas de circuit soustracteur dans un processeur parce que l'on peut implémenter la soustraction à l'aide de l'additionneur avec des modifications mineures. Pour ce faire, on exploite les propriétés du complément à 2 et le fait que le bit de poids faible de l'additionneur n'a pas de retenue d'entrée. En effet, effectuer X - Y en complément à 2, est équivalent à X + Y' + 1. Pour effectuer la deuxième addition (+1), il suffit d'injecter un 1 en guise de retenue dans l'additionneur de poids faible. On peut donc supposer que l'on dispose d'un signal de contrôle c qui vaut 0 lorsque l'on veut faire une addition, et 1 lorsque l'on veut faire une soustraction. On utilise ce signal c comme retenue du bit de poids faible de l'additionneur. Enfin, pour obtenir Y', il suffit de rajouter un inverseur (une porte XOR) en entrée de chacun des additionneurs 1-bit : yi (+)c ; lorsque c vaut 0, la valeur d'entrée de l'additionneur i est yi, et lorsque c vaut 1, la valeur d'entrée est yi'. Donc, lorsque c vaut 0, l'opération effectuée par le circuit est X + Y, et lorsque c vaut 1, l'opération effectuée est X + Y' + 1.

2-2.Demi-soustracteur 1 bits: 2-2-1. Table de vérité/équations/logigramme:

La table de vérité pour un demi-soustracteur (ne tenant pas compte d'une éventuelle retenue provenant des bits de poids inférieurs) est la suivante :

A	В	D	C
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Table 3

Où D représente le résultat de la soustraction A – B et C la retenue. Nous en déduisons les expressions logiques définissant D et C :

$$\begin{cases} D = \overline{A} B + A \overline{B} = A \oplus B \\ C = \overline{A} B \end{cases}$$

Et le schéma correspondant :

Figure 12

2-2-2. Circuit d'après ms11:

2-3.Additionneur-soustracteur 1bit:

2-3-1. Table de vérité:

	SST	A	b	r'	S	R
A+B	0	A	В	0	S	r
A-B	1	A	$\overline{B_1}$	1	S	0

2-3-2. Circuit d'après Ms11:

3-Comparateur:

3-1.Introduction:

Le comparateur est un circuit arithmétique permettant de comparer deux nombres binaires A et B. A et B doivent avoir la même longueur (nombre de bits). On cherche à savoir si A > B, A<B ou A=B. On comprend donc que le circuit répond à une question à trois choix.

3-2.principe:

Les bits de même rang Ai et Bi des 2 mots à comparer sont analysés par une fonction "OU-exclusif-NON" pour donner en sortie l'indication d'égalité (e=1) ou de non égalité (e=0). Les 2 mots A et B sont égaux si et seulement si tous leurs bits de même rang Ai et Bi sont égaux. En conséquence pour obtenir A=B, il suffit de mettre en condition "ET" les différents résultats.

3-3. comparateur 1bit:

3-3-1. table de vérité / équations / logigramme :

A	В	C (A > B)	D (A < B)	E(A = B)
0	0	0	0	1
0	1	0	1	0
- 1	0	1	0	0
1	1	0	0	1

Note:

La fonction C doit être égale à 1 si et seulement si A > B, la fonction D si et seulement si A < B et la fonction E si et seulement si A = B.

$$\begin{cases} C = A \overline{B} \\ D = \overline{A} B \\ E = \overline{A \oplus B} = \overline{A} \overline{B} + \overline{A} B = \overline{C} + D \end{cases}$$

La figure 14 présente le diagramme d'un bloc logique comparant deux bits A et B.

Figure 14

3-3-2. circuit d'après MS 11 :

