Explainable Deep-learning: Monte Carlo methods for Gravitational-Wave Inference

 2259886^{1}

¹SUPA, School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ, United Kingdom (Dated: March 19, 2021)

My 250 word abstract goes here...

I. INTRODUCTION

Figs: LIGO Cumulative events Figs: Hunter's Vit Schematic

Remember to signpost rest of paper at end of this section!

A. VITAMIN: User-Friendly Inference

II. THEORETICAL FRAMEWORK

Don't apply it to our situation at this stage, just straight theory and equations (Section III deals with taking these eqns arnd applying them to our situation)

A. Monte Carlo Framework

B. SIR Framework

Do theory on normal IS and then say that SIR is an monte carlo approach/approx to normal IS then give equations for bot (talk about the NEW IMPROVED SIR method (link to Section V))

III. METHODOLOGY

A. Model Training

Figs: loss plot, training hypers in table
Figs: initial corner plot? (to talk about params
and how posteriors aren't perfect)

B. Likelihood Estimates

Figs: Monte flowchart

C. Importance Resampling

IV. RESULTS

- A. Self-consistency
- B. Reproducibility
- C. Importance Resampling

Figs: Final corner plot (big)

V. FUTURE WORK

As we find ourself in a proof-of-concept mode, there is justification of a section dedicated to the next steps leading towards production of this code.

VI. CONCLUSIONS

This is section has to encapsulate everything we did so that after the abstract a reader can go here and see if they want to buy the paper or not!

VII. ACKNOWLEDGEMENTS

Thanks to Chris and Hunter and Michael and Daniel. Paragraph on the software used BILBY [1]

[1] G. Ashton, M. Huebner, P. D. Lasky, Colm Talbot, K. Ackley, Sylvia Biscoveanu, Q. Chu, A. Divarkala, P. J. Easter, Boris Goncharov, et al., Astrophys. J. Supp. 241,

27 (2019).