A. BENADDI Lycée Kléber

ECG2 Feuille n°5 2024-2025

1 Représentation graphique d'une fonction de deux variables.

Le graphe d'une fonction de deux variables $(x,y) \longmapsto f(x,y)$ définie sur un ouvert U est la surface S_f de l'espace formée de tous les points $M\begin{pmatrix} x \\ y \\ f(x,y) \end{pmatrix}$ lorsque (x,y) décrit U.

L'une des méthode pour tracer la représentation graphique d'une fonction de deux variables $(x,y) \mapsto f(x,y)$ sur un rectangle $D = [a,b] \times [c,d]$ contenu dans U:

- on définit une subdivision X de [a, b];
- on définit une subdivision Y de [c, d];
- on définit le produit cartésien $X \times Y$ qu'on appel un **maillage** du rectangle D;
- on trace les quadrilatères dont les sommets sont les points $M = \begin{pmatrix} x \\ y \\ f(x,y) \end{pmatrix}$ lorsque (x,y) décrit $[a,b] \times [c,d]$.

1.1 Figures

Soient $X = [x_1, x_2, ...x_m]$ et $Y = [y_1, y_2, ...y_n]$ des subdivisions de [a, b] et [c, d],

$$Z = \begin{bmatrix} z_{1,1} & z_{1,2} & \cdots & z_{1,n} \\ \vdots & \vdots & \cdots & \vdots \\ z_{m,1} & z_{m,2} & \cdots & z_{m,n} \end{bmatrix} \text{ avec } z_{i,j} = f(x_i, y_j).$$

La représentation graphique de f sur le rectangle $[a,b] \times [c,d]$ avec le maillage $X \times Y$.

Le but de cette feuille est de tracer des représentation graphique qui illustrent les notions des fonction à deux variables à l'aide des instructions suivantes :

Afin de représenter une fonction de deux variables à l'aide de Python, nous aurons besoin d'importer les librairies suivantes :

```
import numpy as np  # que vous connaissez très bien
import matplotlib.pyplot as plt
```

Nous aurons également besoin de la fonction Axes3D de la librairie mpl_toolkits.mplot3d, qu'on importe de la façon suivante :

```
from mpl_toolkits.mplot3d import Axes3D
ax=Axes3D(plt.figure())
```

Selon la version de Python utilisée, ces deux dernières lignes de commandes peuvent être remplacées par la suivante :

```
ax = plt.axes(projection = '3d')
```

1.2 Définition.

Soient x, y des vecteurs de taille respective n et m. L'instruction

```
X,Y = np.meshgrid(x,y)
```

permet de construire le maillage $((x_i,y_j))_{(i,j)\in [\![1,n]\!]\times [\![1,m]\!]}.$

Pour tracer la représentation graphique de f $\sup[a,b] \times [c,d]$, on procèdera comme suit :

— On crée deux vecteurs x et y découpant les intervalles [a,b] et [c,d] en n petits intervalles de même longueur comme suit :

```
x=np.linspace(a,b,n)
y=np.linspace(c,d,n)
```

— On crée ensuite un maillage $((x_i, y_j))_{1 \le i, j \le n}$ du domaine $[a, b] \times [c, d]$ avec la commande :

```
X,Y = np.meshgrid(x,y)
```

— On trace avec l'instruction :

```
ax.plot_surface(X,Y,f(X,Y))
plt.show()
```

1.3 Remarque

- La représentation graphique d'une fonction de deux variables n'est autre qu'une succession de rectangles définis par le maillage de la grille. On doit donc veiller à ce que, ce maillage soit suffisamment fin pour donner l'illusion d'une surface lisse.
 - Dans la suite, on prendra n entre 30 et 50 qui est un bon compromis entre la qualité de la représentation du graphe de f et la complexité de calcul pour Python.
- On peut changer de couleurs à l'aide de l'argument cmap :

```
ax.plot_surface(X,Y,f(X,Y),cmap = 'jet')
```

Si les couleurs ne sont toujours pas à vôtre goût, vous pouvez remplacer 'jet' par 'cool', 'winter', 'spring', 'summer', 'autumn', 'hot', 'terrain', 'prism', . . .

Exercice 1

```
Soit la fonction f définie sur : [-1,1] par f:(x,y) \mapsto x \times y.

a) Compléter le programme ci-dessous pour retourner z = f(x,y)

n=21

def f(x,y):

return ....
```

b) Créer un maillage $((x_i, y_j))_{1 \le i, j \le n}$ du domaine $D = [-1, 1] \times [-1, 1]$ par les instructions de la **définition 1.2** puis représenter la fonction sur le domaine D.

```
x=linspace(-1,1,n)
y=...
X,Y = ......
ax.plot_surface(.....)
plt.show()
```

Exercice 2

- a) Ecrire une fonction Python g définit par $g:(x,y)\longmapsto x^2+y^2$, puis Compléter les instructions précédentes pour donner la représentation graphique de la fonction gsur $[-1,1]\times[-1,1]$.
- b) Tracer sur $D = [-5, 5] \times [-5, 5]$, la représentation graphique de la fonction h définit par $(x, y) \mapsto x^2 y^2$ (fonction selle).
 - c) Tracer sur $D = [-6, 6] \times [-6, 6]$, la représentation graphique de la fonction k définit par $(x, y) \longmapsto \sin(x) \times \sin(y)$.

2 Lignes de niveau.

Soit $m \in \mathbb{R}$ l'ensemble $\mathcal{L}_m = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) \in D_f \operatorname{tq} f(x,y) = m \right\}$ formé des points $M(x,y) \in D_f$ pour lesquels f(x,y) = m est une ligne de niveau de f.

On définit l'ensemble $C_m = \left\{ \begin{pmatrix} x \\ y \\ m \end{pmatrix} \in \mathbb{R}^3 \operatorname{tq}(x,y) \in \mathcal{L}_m \right\}$, on remarque que C_m est l'intersection de la surface S_f et du plan d'équation (z=m); on dit que c'est la ligne de niveau tracée dans le plan (z=m).

2.1 Définition.

Soit X, Y un maillage du domaine $[a, b] \times [c, d]$ et f une fonction prenant deux arguments réels. Les commandes plt.contour(X,Y,f(X,Y),N) ou plt.contour(X,Y,f(X,Y),T) tracent les lignes de niveau de la fonction f, avec au choix comme dernier argument de la fonction plt.contour:

- un entier N: dans ce cas, on obtient N-1 lignes de niveau entre les valeurs minimales et maximales de f sur le maillage.
- un tableau T : dans ce cas, on obtient les lignes de niveau associées aux valeurs contenues dans le tableau T.

2.2 Remarque

Pour que les lignes de niveau soient représentées en 2D, il suffit de supprimer la commande ax = Axes3D(plt.figure()) qui permet de tracer en 3D.

Exercice 3

- a) Ecrire un programme qui trace S_f avec la fonction $h:(x,y) \longmapsto \sqrt{1-(x^2+y^2)/2}$, sur le domaine $D=[-1,1] \times [-1,1]$.
- b) En utilisant l'instruction plt.contour(X,Y,f(X,Y),N) (et en tenant compte de la remarque 2.2), tracer quelques lignes de niveau.
 - c) Repérez sur le graphique les valeurs de m des courbes \mathcal{C}_m et \mathcal{L}_m .
- d) Obtenez des lignes de niveau et la surface pour la fonction $f:(x,y)\longmapsto x\times y$ sur le carré $[-1,1]\times[-1,1]$. Enoncez vos observations.
- e) Obtenez des lignes de niveau et la surface pour la fonction $k:(x,y) \mapsto \frac{2xy}{(x^2+y^2)}$ sur $]0,1]\times]0,1]$. Pour cela, prendre x=linspace(0.001,1,...); y=x;

Enoncez vos observations.

Exercice 4

Représenter la fonction $f:(x,y) \mapsto 2 - (x^2 + 2y^2)$ sur $[-1,1] \times [-1,1]$ et les trois lignes de niveau formées des points M de coordonnées (x,y,z) pour les quelles f(x,y) = 1, f(x,y) = 1.25 et f(x,y) = 1.5.

3 Dérivées partielles, gradient.

3.1 Gradient

Pour représenter champ de gradients associé à une fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ sur un plan, on utilise pour cela la commande quiver de la manière suivante :

- on fixe un maillage de points $((x_i, y_j))_{(i,j) \in [\![1,n]\!] \times [\![1,m]\!]}$ du plan
- en chaque point (x_i, y_j) du maillage, on représente le vecteur gradient $\nabla f(x_i, y_j)$.

3.2 Définition

Soient X, Y et dX, dY deux maillages de points de même taille $n \times m$. La commande plt.quiver(X,Y,dX,dY) trace en chaque point (X[i], Y[j]) du plan le vecteur de coordonnées(dX[i], dY[j]) pour tout $(i, j) \in [1, n] \times [1, m]$.

Comment tracer le vecteur gradient $\nabla f(x_i, y_i)$ en Python

Pour tracer dans un plan, le champ de gradients associé à une fonction $f:[a,b]\times[c,d]\to\mathbb{R}$, on procèdera de la manière :

- (i) On crée les fonctions python \mathtt{dxf} et \mathtt{dyf} qui donnent les dérivées partielles $\partial_x f$ et $\partial_y f$.
- (ii) Comme dans les paragraphes 1 et 2 on crée le maillage X,Y du domaine $[a,b] \times [c,d]$ (en prenant garde de ne pas le choisir trop serré) à l'aide des commandes :

```
x = np.linspace(a,b,n)
y = np.linspace(c,d,m)
X,Y = np.meshgrid(x,y)
```

(iii) On obtient alors le champ de vecteurs de f avec l'instruction :

```
plt.quiver(X,Y,dxf(X,Y),dyf(X,Y))
plt.show()
```

Exercice 5 Le bute de cet exercice est d'illustrer la propriété du cours : le gradient est orthogonal aux lignes de niveau et en direction des valeurs croissantes de f

a) Ecrire une fonction Python g définit par $g:(x,y)\longmapsto x^2+y^2$, puis Compléter les instructions précédentes pour donner la représentation graphique de la fonction gsur $[-1,1]\times[-1,1]$.

```
a=...
b=...
n=40
 def g(x,y):
                 return ....
x=np.linspace(a,b,n)
 y=...
 #Tracée de graphe
X,Y = \dots
 Z=...
 ax = Axes3D(plt.figure())
 ax.plot_surface(X,Y,Z,cmap = 'jet')
plt.show()
 # Tracée de contours
 ax.plot_surface(X,Y,Z,cmap = 'autumn')
plt.subplot(2,1,1)
 contour=plt.contour(X,Y,Z,10)
                                                                                                                                                        # trace le contour avec 10 lignes et le stocke dans la variable
 plt.clabel(contour)
                                                                                                                                                        # ajoute les étiquettes
plt.title("Des lignes de niveau") # et un titre
plt.subplot(2,1,2)
 contour=plt.contour(X,Y,Z,10)
                                                                                                                                                        # deuxième graphique : on remplit contour=plt.contourf(X,Y,Z,20) # contour=plt.contourf(X,Y,Z,20) # contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.contour=plt.co
 plt.title("Des lignes de niveau avec barre LATARAL")
```

- b) Reprendre le programme pour les fonctions f, h et k de l'exercice 3.
- c) Représenter la fonction $f:(x,y) \mapsto 2 (x^2 + 2y^2)$ sur $[-1,1] \times [-1,1]$ et les trois lignes de niveau formées des points M de coordonnées (x,y,z) pour les quelles f(x,y) = 1, f(x,y) = 1.25 et f(x,y) = 1.5.

Interpréter le résultat : direction et norme du gradient, repérer le(s) point(s) critique(s) éventuel(s) et leur nature, positions relatives du gradient et des lignes de niveau.

4 Plan tangent à une surface.

Pour tracer en Python le plan affine tangent au graphe d'une fonction f en un point (x_0, y_0) , on définit d'abord, sur Python la fonction affine de deux variables :

$$T_{(x_0,y_0)}:(x,y)\longmapsto f(x_0,y_0)+(x-x_0)\times\partial_x f(x_0,y_0)+(y-y_0)\times\partial_y f(x_0,y_0).$$

On trace la représentation graphique de $T_{(x_0,y_0)}$ sur le même graphe que f en procédant de la même façon que ci-dessus.

Exercice 6

Il est plus simple de reprendre les fonctions étudiées ci-dessus :

q définit par
$$q:(x,y) \longmapsto x^2 + y^2$$

- 1) Calculer le gradient de g en tout point. Quelle est l'interprétation géométrique de ce gradient vis-à-vis des plans tangents à la courbe de g?
 - 2) Montrer que l'équation du plan tangent à la courbe de g au point (3, 1) est : z = 6x + 2y 10.
- 3) Que font les lignes ci-dessous? Complète les lignes suivantes pour représenter le graphe de g et le plan tangent au point :

```
z_mesh2 = 6* x_mesh + 2* y_mesh - 10
ax.plot_surface(x_mesh,y_mesh,z_mesh2,cmap=my_cmap)
```