BIOS 835: Linear Regression and Bayesian Decision Theory

Alexander McLain

August 29, 2023

Outline

Introduction

Least squares solution

Inference in linear regression

Multiple linear regression

Multivariate Regression

Bayesian Decision Theory

Linear Regression

- Linear regression models were developed before computers were around, but are still popular today.
- They are simple and (commonly) adequate and interpretable representations of the real world.
- ► They commonly work as well as difficult non-linear models for prediction, especially when there is limited data and low signal-to-noise ratio.
- Linear models do have assumptions, but many properties are robust to these assumptions (plus we can transform outcomes).

Introduction

Linear Regression model

► A linear regression model is defined as

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$
$$= \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$$
$$= f(\mathbf{X}) + \epsilon$$

- Y is our outcome of interest
- $(X_1, X_2, ..., X_p)$ are our covariates of interest
- \triangleright β_0 : intercept;
- $\beta_i, j = 1, \dots, p$: regression coefficients.
- \triangleright $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$.

Linear Regression model

▶ We can also, define it in matrix form with the following

$$m{X} = \left(egin{array}{cccc} 1 & X_{11} & \dots & X_{1p} \\ 1 & X_{21} & \dots & X_{2p} \\ dots & dots & & & \\ 1 & X_{n1} & \dots & X_{np} \end{array}
ight) \quad m{Y} = \left(egin{array}{c} Y_1 \\ Y_2 \\ dots \\ Y_n \end{array}
ight) \quad m{\epsilon} = \left(egin{array}{c} \epsilon_1 \\ \epsilon_2 \\ dots \\ \epsilon_n \end{array}
ight) \quad m{\beta} = \left(egin{array}{c} eta_0 \\ eta_1 \\ dots \\ eta_p \end{array}
ight)$$

as the covariate data, observations, error term, and parameters in a linear regression model.

The model can be expressed succinctly as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Least squares and RSS

ightharpoonup The residual sum of squares for eta is defined as

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - \mathbf{X}'_i \beta)^2$$
$$= \sum_{i=1}^{n} \{y_i - f(\mathbf{X}_i)\}^2$$
$$= (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta) = ||\mathbf{y} - \mathbf{X}\beta||^2$$

where
$$X_i = (X_{i1}, X_{i2}, \dots, X_{ip})'$$

▶ Using least squares criteria the estimate of β , denoted by $\hat{\beta}$, is the value that minimizes the *RSS*.

Least squares and RSS

The Least Squares Solution

▶ To minimize $RSS(\beta) = (y - X\beta)'(y - X\beta)$ we differentiate with respect to β to get

$$\frac{\partial RSS(\beta)}{\partial \beta} = -2X'(y - X\beta)$$
$$\frac{\partial^2 RSS(\beta)}{\partial \beta \partial \beta'} = 2X'X.$$

If X has full column rank, setting the first derivative to zero yields,

$$0 = \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
 and $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.

Predicted values

- Predicted values at a point x_0 are given by $\hat{f}(x_0) = x_0' \hat{\beta}$.
- ▶ The predicted values for the training data are given by

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

- $\vdash H = X(X'X)^{-1}X'$ is referred to as the "Hat Matrix"
- lacktriangle Geometrically, \hat{eta} is chosen such that $m{y} \hat{m{y}}$ is orthogonal to the subspace of $m{X}$.

Rank Deficiencies

- ► Recall, we said "if **X** has full column rank"
- ▶ When might this not be the case?

"Assumptions" standard regression models

Linear, Independent, Normality, and Equal variance (LINE)

- L: a linear relationship exists between Y and the X's.
- I: the data are independent.
- N: the residuals are normally distributed.
- E: the variance of the residuals is equal for all X's.

Properties of $\hat{\mathbf{y}}$, β and σ^2

ightharpoonup The variance of $\hat{oldsymbol{eta}}$ is

$$Var(\hat{\boldsymbol{\beta}}) = (\boldsymbol{X}'\boldsymbol{X})^{-1}\sigma^2$$

which is estimated using

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Neither of these results requires any additional assumptions.

Properties of $\hat{\mathbf{y}}$, β and σ^2

Once we impose the LINE assumptions we get the following properties

 $\hat{\beta} \sim MVN(\beta, (X'X)^{-1}\sigma^2)$, hypothesis tests and confidence intervals for $\hat{\beta}_j$ can be based on

$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma} v_j} \sim t_{n-p-1}$$

where v_j is the jth diagonal element of $(X'X)^{-1}$

▶ The predicted value at x_0 is $y \sim N\{f(\mathbf{x}_0), \sigma^2(1 + x_0(X'X)^{-1}x_0)\}$

Partial F-test for multiple variables

- Suppose we'd like to test $H_0: \beta_j = \beta_{j+1} = \ldots = \beta_{j+k-1} = 0$ v.s $H_1: \beta_l \neq 0$ for some $l = j, \ldots, j+k-1$ given the other (p-k) variables.
- This can be tested via

$$F_0 = \frac{(RSS_0 - RSS_1)/(p1 - p0)}{RSS_1/(N - p_1 - 1)}$$

where RSS_1 and $p_1 + 1$ are the RSS and number of parameters for the bigger model (similarly for RSS_0 and p_0).

- ▶ Under the Gaussian assumption and the null hypotheses $F_0 \sim F_{p_1-p_0,N-p_1-1}$
- Reject if

$$F_0 > F_{\rho_1 - \rho_0, N - \rho_1 - 1}(1 - \alpha)$$

Gauss-Markov Theorem

- The Gauss-Markov Theorem is one of the most famous results in statistics.
- It states that the least squares estimate $\hat{\beta}$ has the smallest variance among all linear unbiased estimates.
- **>** Specifically, suppose we wish to estimate $\theta = a'\beta$. The least squares estimate is

$$\hat{ heta} = \mathsf{a}'\hat{oldsymbol{eta}} = \mathsf{a}'(oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{y}$$

which is unbiased when the linear model is correct.

▶ The Gauss-Markov Theorem shows that another estimator $\tilde{\theta} = c'y$, which is unbiased for $a'\beta$, will have

$$Var(a'\hat{oldsymbol{eta}}) \leq Var(oldsymbol{c}'oldsymbol{y})$$

Gauss-Markov Theorem

- ▶ What does the Gauss-Markov Theorem not say?
- Consider

$$MSE(\hat{\theta}) = E\{(\hat{\theta} - \theta)^2\}$$

Simple (simple) LR and notation

Consider the following (very) simple LR model with 1 covariate and no intercept

$$Y = X\beta + \epsilon$$

The LS estimate and residual are

$$\hat{\beta} = \frac{\sum_{1}^{n} x_{i} y_{i}}{\sum_{1}^{n} x_{i}^{2}}$$
$$r_{i} = y_{i} - x_{i} \hat{\beta}$$

It is convenient (and more general) to use the following notation

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}' \mathbf{y}, \text{ so } \hat{\beta} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle} = \frac{\mathbf{x}' \mathbf{y}}{\mathbf{x}' \mathbf{x}}$$

MLR for orthgonal vectors

- ▶ Suppose we have $1 = x_0, x_1, \dots, x_p$ inputs are all orthogonal
 - $ightharpoonup \langle {m x}_j, {m x}_k
 angle = 0$ for all $j \neq k$
- ► Then

$$\hat{eta}_j = rac{\langle \pmb{x}_j, \pmb{y}
angle}{\langle \pmb{x}_j, \pmb{x}_j
angle}$$

- What are the impacts of this?
- ► Will this ever happen?

Simple Gram-Schmidt process

Now, suppose we have the SLR model

$$Y = \beta_0 + X\beta_1 + \epsilon$$

How can we make 1 and X orthogonal?

By orthogonalizing we get the coefficient as

$$\hat{eta}_1 = rac{\langle oldsymbol{x} - ar{x} oldsymbol{1}, oldsymbol{y}
angle}{\langle oldsymbol{x} - ar{x} oldsymbol{1}, oldsymbol{x} - ar{x} oldsymbol{1}
angle}$$

which is the coefficient for the model $Y=(x-\bar{x})\beta_1+\epsilon$

Simple Gram-Schmidt process

- ▶ So a way to calculate β_1 is to do the following:
 - 1. regress x on 1, and get the residual $z = x \bar{x}1$
 - 2. regress ${\it y}$ on the residual ${\it z}$ to give the coefficient \hat{eta}_1

where regress y on z means to estimate the "no intercept model" we initially started with.

Gram-Schmidt algorithm

We can generalize this for p non-orthogonal inputs $1=x_0,x_1,\ldots,x_p$

- 1. Set $z_0 = x_0 = 1$
- 2. For $j=1,2,\ldots,p$: regress \mathbf{x}_j on $\mathbf{z}_0,\ldots,\mathbf{z}_{j-1}$, and get the residual $\mathbf{z}_j=\mathbf{x}_j-\sum_{k=0}^{j-1}\hat{\gamma}_{kj}\mathbf{z}_k$ where $\hat{\gamma}_{kj}=\langle\mathbf{z}_k,\mathbf{x}_j\rangle/\langle\mathbf{z}_k,\mathbf{z}_k\rangle$.
- 3. regress y on the residual z_p to give the coefficient

$$\hat{\beta}_{p} = \frac{\langle \boldsymbol{z}_{p}, \boldsymbol{y} \rangle}{\langle \boldsymbol{z}_{p}, \boldsymbol{z}_{p} \rangle}$$

Implications

lacktriangle Another way to express the variability in \hat{eta}_p is

$$Var(\hat{eta}_p) = rac{\sigma^2}{\langle oldsymbol{z}_p, oldsymbol{z}_p
angle} = rac{\sigma^2}{||oldsymbol{z}_p||^2}$$

- ▶ What will z_p look like if x_p is accurately predicted from $x_0, x_1, \ldots, x_{(p-1)}$?
- ▶ What about $||z_p||^2$?
- ▶ How do we get back to the original **x** coefficients?
 - Let $x_{0,1,...,(j-1),(j+1),...,p}$ denote the residual after regression x_j on $x_0, x_1, ..., x_{(j-1)}, x_{(j+1)}, ..., x_p$
 - The *j*th multiple regression coefficient is the univariate regression coefficient of y on $x_{0,1,...,(j-1),(j+1),...,p}$.

Matrix GS with QR decomp

In matrix form, we can represent the second step of the GS algorithm with

$$\boldsymbol{X} = \boldsymbol{Z}\Gamma$$

where Z has columns z_j , and Γ is the upper triangular matrix with entries $\hat{\gamma}_{kj}$.

Let's add in **D** a diagonal matrix with entries $D_{ij} = ||\mathbf{z}_j||$ to get

$$X = ZD^{-1}D\Gamma$$
$$= QR$$

The ${\it QR}$ decomposition of ${\it X}$

Matrix GS with QR decomp

lacktriangle Using the $m{QR}$ decomposition of $m{X}$ we get the following form for $\hat{m{eta}}$ and $\hat{m{y}}$

$$\hat{\beta} = (X'X)^{-1}X'y = \{(QR)'QR\}^{-1}(QR)'y = R^{-1}Q'y, \ \hat{y} = QQ'y$$

This form of $\hat{\beta}$ is a lot easier to solve because R is upper triangular.

Introduction to Multivariate Regression

Now let's consider the more classical multivariate case where we have Y_1, Y_2, \ldots, Y_K and X_0, X_1, \ldots, X_P and the linear model

$$Y_k = \beta_{0k} + \sum_{j=1}^p X_j \beta_{jk} + \epsilon_k = f_k(\boldsymbol{X}) + \epsilon_k$$
 for $k = 1, 2, ..., K$

or in matrix form

$$Y = XB + E$$

where ${\bf Y}$ is $n \times K$ are the outcomes, ${\bf X}$ is $n \times (p+1)$ are the inputs, ${\bf B}$ is an $(p+1) \times K$ matrix of β coefficients and ${\bf E}$ is an $n \times K$ matrix of residuals.

RSS and solution

▶ The RSS for the multivariate case is given by

$$RSS(\mathbf{B}) = \sum_{k=1}^{K} \sum_{i=1}^{n} \{y_{ik} - f_k(x_i)\}^2$$
$$= tr\{(\mathbf{Y} - \mathbf{X}\mathbf{B})'(\mathbf{Y} - \mathbf{X}\mathbf{B})\}$$

lt's rather straightforward to show that RSS(B) is minimized with

$$\hat{\boldsymbol{B}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$$

Implications

▶ More specifically, for the *k*th outcome the coefficient is

$$\hat{\boldsymbol{\beta}}_k = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}_k$$

lacksquare If we were to use the general linear model where $\mathit{Cov}(\epsilon) = \Sigma$ and

$$RSS(\boldsymbol{B}, \Sigma) = tr\{(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{B})'\Sigma^{-1}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{B})\},$$

..... the solution is still the same.

What does this imply about doing regression with multiple outcomes?

Introduction

- ▶ Bayesian Decision Theory is a decision-making framework that combines probability theory and decision theory.
- ▶ It is based on the Bayesian approach to probability, where prior beliefs are updated with new evidence in the form of data to produce posterior beliefs.
- Bayesian Decision Theory provides a formal mechanism for making decisions under uncertainty, weighing the risks of different actions against the posterior beliefs about the state of the world.

Probabilistic Setup

- Let θ be a parameter or state of nature we want to learn about (it could represent various things: the true state of a system, a model parameter, etc.)
- $p(\theta)$ is the prior probability distribution over θ which reflects our beliefs about θ before observing data.
- $p(x|\theta)$ is the likelihood function which provides the probability of observing data x given θ .
- $p(\theta|x)$ is the posterior probability distribution over θ given data x, which is computed using Bayes' theorem:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

where p(x) is the evidence or marginal likelihood.

Decision Making

- Suppose we have a set of possible actions A we can take.
- A loss function $L(\theta, a)$ represents the cost or loss of taking action a when the true state is θ .
- ► The loss function quantifies the "penalty" for making decisions; related to the norms we discussed but more general (e.g., for binary data).
- ► The goal in Bayesian decision theory is to minimize the expected loss. The decision rule is given by:

$$a^* = \arg\min_{a} \mathbb{E}[L(\theta, a)|x]$$

where the expectation is over the posterior distribution of θ given data x.

Example: Binary Hypothesis Testing

Let's consider a simple case where θ can be either H_0 or H_1 .

- ▶ Prior Probabilities: $p(H_0)$ and $p(H_1)$.
- ▶ Likelihoods: $p(x|H_0)$ and $p(x|H_1)$.
- Actions: here we'll consider $A \in \{a_0, a_1\}$, i.e., a "hard" decision.
- Loss function might be defined such that $L(H_0, a_0) = 0$ (no loss for correctly deciding H_0), $L(H_0, a_1) = 1$ (loss for wrongly deciding H_1 when truth is H_0), and similar definitions for decisions regarding H_1 .
 - if $A \in (0,1)$ the other loss functions would be used.

Example: Binary Hypothesis Testing

▶ The Bayesian decision rule will decide a_1 , i.e., H_1 , if:

$$\frac{p(x|H_1)p(H_1)}{p(x)} > \frac{p(x|H_0)p(H_0)}{p(x)}$$

This simplifies to:

$$\frac{p(x|H_1)}{p(x|H_0)} > \frac{p(H_0)}{p(H_1)}$$

Here, $\frac{p(x|H_1)}{p(x|H_0)}$ is the likelihood ratio and $\frac{p(H_0)}{p(H_1)}$ is the prior odds ratio.