

1 **Amendments to the Claims**

3 Claim 1 (canceled): Apparatus for controlling the polarization of an incident beam of
4 electromagnetic radiation comprising:

5 photonic crystal means, and

6 means for directing said incident beam of electromagnetic radiation at said
7 photonic crystal means,

8 wherein said photonic crystal means comprises a crystalline lattice having cells
9 with a defined periodic geometry that produces a polarization-dependent band structure by
10 interference between Bragg reflections from many material interfaces for electromagnetic
11 radiation.

13 Claim 2 (canceled): The apparatus of claim 1 wherein said beam propagates in the
14 plane of periodicity of a two-dimensional (2D) photonic crystal.

16 Claim 3 (canceled): The apparatus of claim 1 wherein said beam propagates in any
17 direction in a three-dimensional (3D) photonic crystal.

19 Claim 4 (canceled): The apparatus of claim 1 wherein said beam is a polarized beam
20 of EM radiation and wherein said photonic crystal means includes a transparent spectral
21 region at a lower frequency than the fundamental band gap or between two band gaps, and
22 that portion of said beam in said transparent spectral region is transmitted through the crystal
23 and the polarization of said transmitted beam is altered by said photonic crystal means,
24 whereby said crystal functions as a waveplate.

1 Claim 5 (currently amended): ~~The apparatus of claim 1~~ Apparatus for controlling the
2 polarization of an incident beam of electromagnetic radiation comprising:
3 photonic crystal means, and
4 means for directing said incident beam of electromagnetic radiation at said
5 photonic crystal means,
6 wherein said photonic crystal means comprises a crystalline lattice having cells
7 with a defined periodic geometry that produces a polarization-dependent band structure by
8 interference between Bragg reflections from many material interfaces for electromagnetic
9 radiation, and wherein that a portion of said beam having said first wavelength is
10 exponentially attenuated by said photonic crystal means and is reflected so that said
11 apparatus functions as a reflection waveplate.

12
13 Claim 6 (currently amended): ~~The apparatus of claim 1~~ Apparatus for controlling the
14 polarization of an incident beam of electromagnetic radiation comprising:
15 photonic crystal means, and
16 means for directing said incident beam of electromagnetic radiation at said
17 photonic crystal means,
18 wherein said photonic crystal means comprises a crystalline lattice having cells
19 with a defined periodic geometry that produces a polarization-dependent band structure by
20 interference between Bragg reflections from many material interfaces for electromagnetic
21 radiation, and wherein said incident beam of EM radiation includes first and second
22 polarization components, and wherein said photonic crystal means reflects said first
23 polarization component and transmits said second polarization component, thereby functioning
24 as a polarizer.

1 Claim 7 (currently amended): The apparatus of claim 5 wherein a portion of said
2 incident beam is transmitted through said crystal, and wherein said transmitted beam and said
3 and reflected portions of said incident beam can have any angle relative to said incident beam,
4 whereby said apparatus is not limited by Brewster's angle.

5

6 Claim 8 (currently amended): An apparatus for maximizing conversion efficiency in
7 nonlinear optical mixing processes between incoming, polarized optical beams and output,
8 polarized optical beams comprising:

9 birefringent photonic crystal means composed of material with optical
10 nonlinearity for achieving phase matching of said output beams with said incoming beams,
11 wherein said birefringent photonic crystal means is adapted to reduce the wavevector
12 mismatch Δk between said incoming and output beams to zero using said photonic crystal
13 birefringence, ~~and wherein said birefringent photonic crystal means is adapted to achieve~~
14 ~~phase matching without the use of or minimal use of angle tuning or temperature tuning.~~

15

16 Claim 9 (canceled)

17

18 Claim 10 (canceled)

19

20 Claim 11 (original): The apparatus of claim 8 wherein said photonic crystal means is
21 composed of material which is not naturally birefringent.

22

23 Claim 12 (canceled)

24

25

26

1 Claim 13 (canceled): An optical apparatus for selectively changing a first known
2 polarization of an input beam to a second, predetermined polarization of an output beam,
3 comprising:

4 a photonic crystal means, and

5 means for directing said input beam at said photonic crystal means,

6 wherein said photonic crystal means comprises a crystalline lattice having cells
7 with a defined periodic geometry that produces a band structure by interference between
8 Bragg reflections from many material interfaces for electromagnetic waves.

9

10 Claim 14 (canceled): A method of converting the polarization of an incoming beam of
11 light from a first, known polarization to a second, selected polarization, comprising the steps:

12 directing said incoming beam of light along a predetermined path,

13 causing said incoming beam to enter a photonic crystal wherein said photonic
14 crystal is adapted to convert said first polarization to said second polarization, and

15 causing a beam of said second selected polarization to either be transmitted
16 through or reflected off of said photonic crystal.

17

18

19

20

21

22

23

24

25

26

1 Claim 15 (original): An optical apparatus for creating a delay line arising from a
2 transfer of energy between two different polarizations of electromagnetic (EM) waves,
3 comprising:

4 birefringent crystal means,

5 polarizer means in series with said birefringent crystal means, and

6 means for directing said EM wave through said birefringent crystal means and
7 said polarizer means,

8 wherein either a delayed or advanced transmitted electromagnetic waveform or
9 wavepacket results by adjusting either the relative angular orientations of said birefringent
10 crystal means, said polarizer means, and/or said incident EM wave polarization.

11

12 Claim 16: (new) The apparatus of claim 8 wherein said photonic crystal means is
13 adapted to achieve phase matching without the use of or minimal use of angle tuning or
14 temperature tuning.

15

16 Claim 17: (new) The apparatus of claim 8 wherein said polarized input beam has
17 frequency w_1 , and first wavevector k_1 , and said polarized output beam has frequency mw_1 , and
18 second wavevector k_2 , wherein said photonic crystal is adapted to reduce the wavevector
19 mismatch between input and output beams to zero.

20

21 Claim 18: (new) The apparatus of claim 8 wherein said photonic crystal means is
22 adapted to eliminate the walk-off of ordinary and extraordinary waves characteristic of phase
23 matching with angle tuning.

24

25

26