COMPUTACIÓN II

PRÁCTICA 2 evaluable (clase 7)

Sistemas de ecuaciones lineales. Método de factorización LU

1. Resuelve sobre papel el siguiente sistema de ecuaciones usando el método de descomposición LU y compara tu resultado con lo que obtienes programando (ayúdate escribiendo la matriz de coeficientes y términos independientes en un fichero cuya primera línea contiene el número de filas y columnas de las matrices):

$$x_1 + x_2 + x_3 = 1$$
$$4x_1 + 3x_2 - x_3 = 6$$
$$3x_1 + 5x_2 + 3x_3 = 4$$

2. En la tabla se muestra el índice de refracción n de un material dado medido para diversas longitudes de onda, λ .

λ (Å)	n
6563	1.50883
6439	1.50917
5890	1.51124
5338	1.51386
5086	1.51534
4861	1.51690
4340	1.52136
3988	1.52546

Utilizando los valores correspondientes a la **segunda, cuarta y séptima** posiciones de la serie de la tabla, y utilizando el método LU determinar las constantes A, B y C de la llamada *ecuación de Cauchy* de ajuste del índice de refracción mediante el método LU:

$$n = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$$

Comprueba numéricamente que tu resultado es correcto y cuantifica esto con un error. Comenta los resultados y grafica la curva resultante $n = n(\lambda)$