Digital Signal Processing Fundamentals (5ESC0)

Discrete-time Signals and Systems

Sveta Zinger, Piet Sommen

s.zinger@tue.nl

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

Discrete-time Signals and Systems

2

- * We will be working in the digital domain, therefore we describe signal x as x[n]
- * We use square brackets and n is the variable indicating a sample taken at n times the intersample distance

TU/e

Fac. EE, SPS

Discrete-time Signals and Systems

- * The intersample distance depends on the time T_s between the taken samples, which depends on the sampling frequency f_s at which the analog to digital converter runs
- * $x[n] \equiv x[n \cdot T_s]$ $h[n] \equiv h[n \cdot T_s]$ $y[n] \equiv y[n \cdot T_s]$
- * Notation: we skip T_s if possible

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

4

3

Discrete-time signals

- Below are some fundamental sequences/signals that you have seen in Signals 1:
- * The delta pulse, which has only a value of 1 for n = 0:

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{elsewhere} \end{cases}$$

* The unit step function (a.k.a. the Heaviside step function) has a value of 1 for all nonnegative n:

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & \text{elsewhere} \end{cases}$$

TU/e

Fac. EE, SPS

Discrete-time signals

* The delta pulse and unit step function can be used to describe each other:

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

$$\delta[n] = u[n] - u[n-1]$$

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

6

Discrete-time signals

* Explanation for

$$\delta[n] = u[n] - u[n-1]$$

TU/e

Fac. EE, SPS

Discrete-time signals

* Explanation for

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

- * For all n < 0, the values for k will be less than zero, hence the delta function will give a value 0 and the sum of these values u[n] will be 0.
- * For all $n \ge 0$, k will be 0 for exactly one of the summed delta functions as k runs from $-\infty$ to some positive n. The delta function $\delta[k]$ where k=0 will give a value of 1 and for all k>0, the delta function will be 0 again. The sum of all these values will be 1. Therefore u[n]=1 for $n\ge 0$.

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

8

Discrete-time signals

- * Below are some fundamental sequences/signals:
- * An exponentially decaying function, which we will use later:

$$x[n] = a^n \cdot u[n]$$
 with $|a| < 1$

* The discrete complex exponential function:

$$e^{jn\omega_0}=\cos(n\omega_o)+j\sin(n\omega_0)$$

Fac. EE, SPS

Discrete-time signals

- * We will also discuss Periodic and Aperiodic sequences/signals:
- * In the digital domain a signal is periodic if for some integer N

$$x[n] = x[n+N]$$

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

Periodic and aperiodic signal examples

- * Periodic if x[n] = x[n+N] for some integer N
- * Example of a periodic signal: $x_1[n] = \sin(\frac{n\pi}{4})$
- * Take N = 8

$$x_1[n] = \sin(\frac{(n+8)\pi}{4}) = \sin(\frac{n\pi}{4} + 2\pi) = \sin(\frac{n\pi}{4})$$

 This signal has a period of 8 samples, so it will repeat its behavior every 8 samples

Fac. EE, SPS

Periodic and aperiodic signal examples

- * Periodic if x[n] = x[n + N] for some integer N
- * Example Aperiodic: $x_2[n] = \sin(n)$
- * To be periodic $\sin(n+N)$ has to equal $\sin(n+2\pi)$ for some N
- * It follows that N has to equal 2π , which is impossible because π is irrational and N is an integer
- * If we look at the function $f(x) = \sin(x)$ which we know from mathematics is periodic, but in the digital domain $x_2[n] = \sin(n)$ is not periodic because of how we sample

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

12

Discrete-time signals

- * Signals or sequences can have forms of symmetry:
- * Even : x[n] = x[-n]
 - Example: $x[n] = \cos[n]$
- * Odd : x[n] = -x[-n]
 - Example: $x[n] = \sin[n]$
- * Conjugate-symmetric : $x[n] = x^*[-n]$
- * Conjugate-antisymmetric : $x[n] = -x^*[-n]$

Fac. EE, SPS

Discrete-time signals

- * Transformation of function variable: y[n] = x[f[n]]
- * This means that we have an x[n] and we change the variable n to find y[n] by using some function f[n]
- * Examples:

Time shifting (delay or advance) : $f[n] = n - n_0$ Time reversal : f[n] = -n

* As you may have already seen, time shifting is useful in Fourier transforms and time reversal is used in convolutions

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / 5ESC0 / Discrete-time Signals and Systems

14

Discrete-time signals

* The figure below shows the signal x[n] together with a delayed and time reversed version

TU/e

Fac. EE, SPS

Discrete-time signals

- * Shifting, Reversal and time-scaling are order dependent
- Because the outcomes of the same operations in a different order are not the same, there is order dependency
- * This is illustrated in the figure below

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

16

Discrete-time signals

- * Shifting, Reversal and time-scaling are order dependent
- * We can see that the two block schemes below do not yield the same outcome by following the mathematics

TU/e

Fac. EE, SPS

Discrete-time signals

- * $x[n] \xrightarrow{\text{delay}} x[n n_0] \xrightarrow{\text{reverse}} x[(-n) n_0] = x[-n n_0]$
- * $x[n] \xrightarrow{\text{reverse}} x[-n] \xrightarrow{\text{delay}} x[-(n-n_0)] = x[-n+n_0]$
- * When a signal is reversed, only the running index is reversed

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

18

Discrete-time signals

- * Operations we can use on discrete-time signals:
 - Addition : $y[n] = x_1[n] + x_2[n]$
 - Multiplication : $y[n] = x_1[n] \cdot x_2[n]$
 - Scaling : $y[n] = c \cdot x[n]$
 - Signal decomposition: $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$
- Signal decomposition: any digital signal can be written as a sum of weighted delta pulses

Fac. EE, SPS

Discrete-time systems

$$\begin{array}{c|c} \hline x[n] \\ \hline T_{\tau}\{\cdot\} \end{array} \xrightarrow{\boldsymbol{y}[n]} = T_{\tau}\{x[n]\}$$

- In general, we apply some transformation on a signal by using systems which can be characterized by the block scheme above
- * It has the following properties

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

20

Discrete-time systems

Properties:

Memoryless : Output at $n = n_0$ depends only on input at $n = n_0$

Additivity : $Tr\{x_1[n] + x_2[n]\} = Tr\{x_1[n]\} + Tr\{x_2[n]\}$

The result of adding two signals at the input is the

same as the sum of their respective outputs

Homogeneity : $Tr\{c \cdot x[n]\} = c \cdot Tr\{x[n]\}$

A scalar multiplication at the input yields a scalar

multiplication at the output

Linearity : $Tr\{a_1x_1[n] + a_2x_2[n]\} = a_1Tr\{x_1[n]\} + a_2Tr\{x_2[n]\}$

A combination of additivity and homogeneity

Time-Invariance : $y[n] = Tr\{x[n]\} \Rightarrow y[n - n_0] = Tr\{x[n - n_0]\}$

A shift at the input yields the same shift at the output

TU/e

Fac. EE, SPS

Discrete-time systems

* Properties:

LTI : Linear Time-Invariance (book: "Shift"-Invariance)

Additive, Homogeneous and Time-Invariant

Causality : Response at n_0 depends on input up to $n = n_0$

In practice we cannot predict sample values, therefore it is important to design causal filters

(BIBO) Stability : For $A, B < \infty, |x[n]| < A \Rightarrow |y[n]| < B$

Input bounded by some number A will yield output

boundedby some number B

Invertibility : Input may be uniquely determined from output

Only one input can be traced back from the output

Fac. EE, SPS

DSP Fundamentals (Signals II) / 5ESC0 / Discrete-time Signals and Systems

22

Important LTI properties

* Impulse response : $h[n] = Tr\{\delta[n]\}$

This is a system's response to a delta

pulse input

* BIBO Stability : $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$

LTI systems are BIBO Stable if the

sum of the impulse response is finite

* Convolution sum

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n]$$

Fac. EE, SPS

Example LTI systems

Determine whether the following system is LTI

$$y[n] = au[n] + b$$

with constant parameters a and b

Solution:

We will check whether the system is linear and time-invariant > Linearity check

The system must have the linearity property:

$$c_1u_1[n] + c_2u_2[n] \rightarrow \boxed{\operatorname{Tr}\{.\}} \rightarrow c_1y_1[n] + c_2y_2[n]$$

where c_1 and c_2 are real coefficients

Fac. EE, SPS

DSP Fundamentals (Signals II) / 5ESC0 / Discrete-time Signals and Systems

24

Example LTI systems

For the input signal equal to $c_1u_1[n] + c_2u_2[n]$, the output will be

$$y[n] = au[n] + b = a(c_1u_1[n] + c_2u_2[n]) + b = ac_1u_1[n] + ac_2u_2[n] + b$$

If the system is linear, we should obtain the same output signal $(ac_1u_1[n] + ac_2u_2[n] + b)$ when considering the sum of outputs $c_1y_1[n] + c_2y_2[n]$, where

$$y_1[n] = au_1[n] + b$$

$$y_2[n] = au_2[n] + b$$

Fac. EE, SPS

Example LTI systems

Let's now calculate the sum of these outputs:

$$y[n] = c_1 y_1[n] + c_2 y_2[n] = c_1 a u_1[n] + c_1 b + c_2 a u_2[n] + c_2 b$$
$$= a(c_1 u_1[n] + c_2 u_2[n]) + (c_1 + c_2) b$$

The expression above is not equal to the previously obtained result

 $(ac_1u_1[n] + ac_2u_2[n] + b)$, so the system is not linear.

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

26

Example: system stability

Determine which of the following systems are stable:

a)
$$y[n] = x^2[n]$$

b)
$$y[n] = cos(x[n])$$

c)
$$y[n] = x[n] * cos(n\pi/8)$$

Solution

When is a system stable?

BIBO stability means Bounded-Input, Bounded-Output.

Fac. EE, SPS

Example: system stability

If a system is BIBO stable, then the output is bounded for every input to the system that is bounded:

$$|x[n]| < \infty \rightarrow |y[n]| < \infty$$

System (a)

Let's consider the first proposed system: $y[n] = x^2[n]$.

Let x[n] be any bounded input with |x[n]| < M.

Then the output, $y[n] = x^2[n]$, will be bounded as well: $|y[n]| = |x[n]|^2 < M^2$.

Therefore, the system is stable.

Fac. EE, SPS

DSP Fundamentals (Signals II) / 5ESC0 / Discrete-time Signals and Systems

28

Example: system stability

System (b)

The second proposed system is y[n] = cos(x[n]).

As $|\cos(x)| \le 1$ for all x, this system is stable.

System (c)

Let's consider the third system: $y[n] = x[n] * cos(n\pi/8)$.

We can see that in this system we are dealing with convolution (marked as "*"). It is an LTI system, because in this system the output is defined as a convolution of input with impulse response:

$$y[n] = x[n] * cos(n\pi/8)$$
output input impulse signal response

Fac. EE, SPS

Example: system stability

For an LTI system to be stable, the following condition should be held for its impulse response:

$$\sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

In our case, $cos(n\pi/8) = h[k]$. We can observe, that $cos(n\pi/8)$ can be depicted as

Sampling this graph and letting k vary from $-\infty$ to ∞ will lead to infinitely large numbers

So we can say that this system is unstable.

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

30

Convolution procedure

* Convolution sum:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- * For finite length sequences: Length(y) = Length(x) + Length(h) 1
- * We have input signal x[n] and impulse response h[n]
- * For the convolution sum we switch n to k

TU/e

Fac. EE, SPS

Convolution procedure

- * We then reverse h[k] and shift by n to obtain h[n-k], where n are the samples of y[n]
- * $h[k] \xrightarrow{\text{reverse}} h[-k] \xrightarrow{\text{delay}} h[-(k-n)] = h[-k+n] = h[n-k]$
- * We then multiply the coefficients of the overlapping samples of h[n-k] and x[k] and sum these to find y[n]

TU/e

Fac. EE, SPS

Convolution procedure

n	-2	-1	0	1	2	3	4	5	6	$\sum_{k=-\infty}^{\infty} x[k]h[n-k]$
x[k]	0	0	0	1	1	1	0	0	0	
h[-1-k]	3	2	1	0	0	0	0	0	0	0
h[0-k]	0	3	2	1	0	0	0	0	0	1
h[1-k]	0	0	3	2	1	0	0	0	0	3
h[2-k]	0	0	0	3	2	1	0	0	0	6
h[3 - k]	0	0	0	0	3	2	1	0	0	5
h[4-k]	0	0	0	0	0	3	2	1	0	3
h[5-k]	0	0	0	0	0	0	3	2	1	0

* $y[n] = \delta[n] + 3\delta[n-1] + 6\delta[n-2] + 5\delta[n-3] + 3\delta[n-4]$

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

34

Convolution example

- * x[n] = u[n]
- * $h[n] = a^n u[n], |a| < 1$

* Find y[n]

Fac. EE, SPS

Convolution example

- * x[n] = u[n] $h[n] = a^n u[n], |a| < 1$
- * $h[n-k] = a^{n-k}u[n-k]$
- * Graphical solution: look at the overlap
- * There is only overlap for k = 0 to k = n
- * For each of the overlapping values x[k] = 1 and $h[n-k] = a^{n-k}$
- * $y[n] = \sum_{k=0}^{n} a^{n-k}$
- * = $a^n \sum_{k=0}^n (a^{-1})^k$ (series that we know)
- * $y[n] = a^n \cdot \frac{1 a^{-(n+1)}}{1 a^{-1}} = \frac{1 a^{n+1}}{1 a}$

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

36

Convolution example

- * x[n] = u[n] $h[n] = a^n u[n], |a| < 1$
- * $h[n-k] = a^{n-k}u[n-k]$
- * Mathematical solution: fill in the convolution sum
- * $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
- * $\sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} u[k]a^{n-k}u[n-k]$
- * We change the bounds to where the unit step functions are 1
- * $\sum_{k=-\infty}^{\infty} u[k] a^{n-k} u[n-k] = \sum_{k=0}^{\infty} a^{n-k} u[n-k] = \sum_{k=0}^{n} a^{n-k}$
- * $y[n] = \frac{1-a^{n+1}}{1-a}$

Fac. EE, SPS

Convolution properties

- * Commutative: x[n] * h[n] = h[n] * x[n]If we visualize the overlap of x[n] and h[n], then the overlap of x[n] over h[n] is the same as the overlap of h[n] over x[n]. This is useful when computing convolutions, because you can choose which signal you reverse.
- * Associative: $\{x[n] * h_1[n]\} * h_2[n] = x[n] * \{h_1[n] * h_2[n]\}$ The overall impulse response of cascaded filters is the convolution of their respective impulse responses.
- * Distributive: $x[n]*h_1[n] + x[n]*h_2[n] = x[n]*\{h_1[n] + h_2[n]\}$ The overall impulse response of parallel filters is the sum of their respective impulse responses.

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

Convolution properties

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

38

Signal flow diagram LTI system

- * Also known as a realization scheme
- * Any Finite Impulse Response (FIR) filter can be represented in this way
- * Difference Equation (DE):

$$y[n] = \sum_{k=0}^{q} b_k x[n-k]$$

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

40

Signal flow diagram LTI system

- * We can also implement feedback loops where the output is recursively coupled back
- * Infinite Impulse Response (IIR)
- * Difference Equation (DE):

$$y[n] = \sum_{k=0}^{q} b_k x[n-k] - \sum_{k=1}^{p} a_k y[n-k]$$

Fac. EE, SPS

Difference equations (DE)

$$y[n] = \sum_{k=0}^{q} b_k x[n-k] - \sum_{k=1}^{p} a_k y[n-k]$$

* FIR=Finite Impulse Response: All $a_k = 0 \rightarrow Nonrecursive DE$

$$y[n] = \sum_{k=0}^{q} b_k x[n-k] \Rightarrow h[n] = \sum_{k=0}^{q} b_k \delta[n-k]$$

- * IIR=Infinite Impulse Response: At least one $a_k \neq 0 \rightarrow Recursive DE$
- * Different methods to solve DE:
 - 1. Evaluate DE for each different n
 - 2. Classical approach via homogeneous and particular solutions
 - 3. Use Z-transform (chapter 4)

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Discrete-time Signals and Systems**

42

Summary

- * We considered discrete-time signals:
 - Denoted by square brackets
 - Some fundamental signals: delta pulse, unit step function, exponentially decaying function and complex exponential
 - Periodicity, symmetry, transformation of function variable and order dependency
- * And discrete-time systems:
 - Properties
 - LTI properties
 - Convolution
 - Convolution properties
 - Signal flow diagrams and difference equations

Fac. EE, SPS