第二章 半导体二极管

序号_55___学号_31902192__ 姓名 **基後兰**___

一、填空题

、	
1	半导体器件中有两种载流子,分别是自由电子和空穴,掺杂半导体可分
	为 P 型和 N 型两种。N 型半导体是在本征半导体中掺入极微量的_五价
	元素组成的。这种半导体内的多数载流子为 自由电子 ,少数载流子
	为 <u>虎</u> ,不能移动的杂质离子带 <u></u> 正 电。P 型半导体是在本征半
	导体中掺入极微量的
	为 <u>坚穴</u> ,少数载流子为 自由电子 ,不能移动的杂质离子带 <u>发</u> 电。
2	PN 结正向偏置时,外电场的方向与内电场的方向_相反_(相反,一致),
	有利于多数载流子的扩散_运动而不利于少数载流子的 <u>操移</u> ; PN 结反
	向偏置时,外电场的方向与内电场的方向一致(相反,一致),有利于
	少子的
	反向饱和 电流。
3	PN 结空间电荷区的电场称为 内建电场 ,其方向从
4	二极管的单向导电性为:外加正向电压时
	截止。
5	稳压二极管的稳压区是其工作在 反向击穿 状态。

二、分析计算

1. 在图 1 所示电路中,假设二极管为理想的,试判断图中各二极管是否导通,并求 V_{Ao} 值。

2. 图 2 所示电路中,假设二极管为理想的,求图中所示的电压和电流值。

3. 图 3 所示电路中,假设二极管为理想的,求图中标记的电压和电流值。

图 3

4. 图 4 所示电路中,假设二极管为理想的,求图中标记的电压和电流值。 **~摊 D₁ . №**

5. 假设图 5 中的二极管是理想的,利用戴维南定理简化电路,并求出图中标记的电压和电流值。

6. 在图 6 所示电路中,已知二极管参数 $V_{D(on)}=0.25V$, $R_D=7\Omega$, PN 结的串联电阻 $r_S=2\Omega$,

 $V_D=1V$, $v_S=20\sin \omega t(mV)$, 试求通过二极管的电流 $i_D=I_{DQ}+i_d$ 。

- 7. 图 7 所示为双向限幅电路,已知二极管参数 $V_{D(on)}$ =0.7V, R_D =100 Ω ,试:
 - (1) 画出 ($V_0 \sim V_I$) 限幅特性曲线;
 - (2) 若 v_l = V_m sin ω t, V_m =5V, 画出 v_O 的波形。

- 8. 图 8 所示电路中,发光二极管导通电压 $V_D=1.5V$,正向电流在 $5\sim15$ mA 时才能正常工作。试问: S 闭合时.
 - (1)开关 S 在什么位置时发光二极管才能发光?
 - (2)R 的取值范围是多少?

12).

··尺的取值范围是 233m~700 n

9. 电路如图 9 所示,已知 E=5V,ui=10sinwtV,二极管为理想元件(即认 为正向导通时电阻 R=0,反向阻断时电阻 $R=\infty$),试画出 uo 的波形。

10. 电路如图 10 所示,电源 ν_s 为正弦波电压,假设二极管是理想的,试绘出负载 R_L 两端的电压波形。

TV 10. 20