Année 2007-2008 1^{ère}S SVT

La démonstration par récurrence

Dans toute la suite n appartient à \mathbb{N} .

La démonstration par récurrence sert lorsqu'on veut démontrer qu'une propriété, dépendant de n, est vraie pour toutes les valeurs de n.

On appelle dans ce cas \mathcal{P}_n la propriété en question.

On est ainsi amené à montrer que la propriété \mathcal{P}_n est vraie **pour toutes les valeurs de n**.

Exemple : Prenons un exemple simple pour illustrer le raisonnement par récurrence.

On veut montrer par récurrence la propriété:

«pour tout entier
$$n$$
 on a: $0+1+2+\cdots+n=\frac{n(n+1)}{2}$.»

Pour n'importe quel entier n on appelle \mathscr{P}_n la propriété (à démontrer): $(1+2+\cdots+n=\frac{n(n+1)}{2})$. On peut à présent démontrer par récurrence que : $(0+1+2+\cdots+n=\frac{n(n+1)}{2})$ pour tout entier n.

La démonstration par récurrence se fait en trois étapes :

• Initialisation:

on vérifie que la propriété est vraie pour la première valeur de n (souvent n=0). On vérifie donc que \mathcal{P}_0 est vraie.

$$\mathscr{P}_0$$
 vraie \mathscr{P}_1 ? \mathscr{P}_2 ? \mathscr{P}_3 ? \mathscr{P}_4 ?

Exemple: • *Initialisation*:

ici
$$n = 0$$
 donc $\frac{n(n+1)}{2} = \frac{0 \times (0+1)}{2} = 0$ et ainsi la propriété \mathcal{P}_0 est vraie.

• Hérédité:

on démontre la propriété suivante : «si la propriété est vraie pour un certain rang k (n'importe lequel) alors la propriété est vraie pour le rang juste après c'est-à-dire pour le rang k+1 ».

$$\mathcal{P}_k$$
 vraie \mathcal{P}_{k+1} ?

La propriété se transmet de la valeur de l'indice k à la valeur de l'indice k+1. On dit que la propriété est *héréditaire*.

Année 2007-2008 1^{ère}S SVT

Exemple: • *Transmission*:

<u>Si</u> la propriété \mathscr{P}_k est vraie *(pour un certain k)* montrons qu'<u>alors</u> \mathscr{P}_{k+1} est vraie aussi . On sait (par hypothèse de récurrence) : $0+1+2+\cdots+k=\frac{k(k+1)}{2}$.

On veut démontrer que : $0+1+2+\cdots+(k+1)=\frac{(k+1)\big((k+1)+1\big)}{2}=\frac{(k+1)(k+2)}{2}$. On a $0+1+2+\cdots+(k+1)=0+1+2+\cdots+k+(k+1)$. Par ailleurs d'après l'hypothèse de récurrence $0+1+2+\cdots+k=\frac{k(k+1)}{2}$ donc $0+1+2+\cdots+(k+1)=\frac{k(k+1)}{2}+(k+1)$.

On a ensuite
$$\frac{k(k+1)}{2} + (k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$
 et donc il suit que $0+1+2+\cdots+(k+1) = \frac{(k+1)(k+2)}{2}$.

La propriété \mathscr{P}_{k+1} est ainsi vraie.

On a donc bien montré que $\underline{si} \ \mathscr{P}_k$ est vraie $\underline{alors} \ \mathscr{P}_{k+1}$ l'est aussi.

• Conclusion:

les deux étapes précédentes permettent de conclure que la propriété est vraie pour tous les entiers n. En effet la propriété est vraie au rang 0 donc avec l'étape d'hérédité elle devient vraie au rang 1. On peut alors réappliquer l'étape d'hérédité au rang 1 et la propriété devient vraie au rang 2.

En réappliquant l'étape d'hérédité de proche de proche, il suit que la propriété est vraie pour tous les entiers n.

$$\mathcal{P}_0$$
 vraie \mathcal{P}_1 vraie \mathcal{P}_2 ? \mathcal{P}_3 ? \mathcal{P}_4 ? $\frac{transmission}{\mathcal{P}_0$ vraie \mathcal{P}_1 vraie \mathcal{P}_2 vraie \mathcal{P}_3 vraie \mathcal{P}_4 ?

Exemple: • *Conclusion*:

On a ainsi pour tout entier n l'égalité : $0+1+2+\cdots+n=\frac{n(n+1)}{2}$