Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3111 - Geometria Analítica

1ª lista de exercícios (versão principal) - Matrizes e operações elementares

Semana 1 (05/08/2019 a 09/08/2019)

- 1. Considere a matriz $A = \begin{bmatrix} 1 & -1/2 \\ 0 & 1/3 \\ 2 & 2 \\ -2 & 1/2 \end{bmatrix}$. Determine o que se pede.
 - (a) a_{12} .

(b) a_{31}

- (c) $a_{12} 3a_{31} + 4a_{42}^2$
- 2. Em cada um dos itens abaixo, construa a matriz $A_{m \times n}$ cujo elemento a_{ij} é dado.
 - (a) m = 3, n = 2 e $a_{ij} = i + j$.
- **(b)** $m = 3, n = 3 e a_{ij} = (-1)^{i+j}$.
- (c) $m = 3, n = 3 e a_{ij} = \begin{cases} i j, & \text{se } i \neq j \\ i + j, & \text{se } i = j \end{cases}$.
- 3. Em cada um dos itens abaixo, determine o(s) valor(es) da(s) incógnita(s) que torna(m) a igualdade verdadeira.
 - (a) $\begin{bmatrix} a & -1 \\ b & 3 \end{bmatrix} = \begin{bmatrix} 2 & c \\ -5 & 3 \end{bmatrix}.$

- (b) $\begin{bmatrix} y+x & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ x-y & z^3 \end{bmatrix}.$
- (c) $\begin{bmatrix} x^2 3x & 0 \\ x^2 6x & 1 \end{bmatrix} = \begin{bmatrix} 2x 6 & 0 \\ -x^2 4 & 1 \end{bmatrix}$.
- **4.** Sabendo que a matriz $A = \begin{bmatrix} 1 & x+2y & z-4 \\ 4 & 5 & 5 \\ 3z+6 & 3x-y & 0 \end{bmatrix}$ é simétrica, determine $x, y \in z$.
- 5. Calcule ou mostre o que se pede.
 - (a) Seja A uma matriz simétrica. Calcule $A-A^t$.
 - (b) Seja A uma matriz quadrada qualquer. Mostre que $B = \frac{A + A^t}{2}$ é uma matriz simétrica.
- 6. Considere as matrizes

$$A = \begin{bmatrix} 2 & 3 & 8 \\ 4 & -1 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & -7 & -9 \\ 0 & 4 & 1 \end{bmatrix} \quad e \quad C = \begin{bmatrix} 0 & 9 & 8 \\ 1 & 4 & 6 \end{bmatrix}.$$

Calcule.

(a) 2A.

(b) -3C

(c) A + B.

- (d) 4A 3B + 5C.
- (e) $(A-C)^t + B^t$.

7. Considere as matrizes

$$A = \begin{bmatrix} 1 & -2 \\ 3 & 1 \\ 7 & -4 \\ 5 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 & -5 & -7 \\ 6 & 2 & -8 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 4 \\ -3 & 5 \end{bmatrix},$$

$$D = \begin{bmatrix} -2 & 1 & 4 \\ 1 & 0 & 3 \\ -2 & 2 & -1 \end{bmatrix}, \quad E = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \quad e \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Calcule.

(a) AB. (b) BA.

(c) $B^t A^t$ (compare com o item (a)). (d) C^2 .

(e) $BAC - C^2 + 3(BA)^t$.

8. Sejam A e B matrizes quadradas de mesma ordem e a e b números reais. Diga se cada uma das afirmações abaixo é verdadeira ou falsa. Justifique.

(a) $-A^t = (-A)^t$.

(b) $(A+B)^t = A^t + B^t$.

(c) Se AB é a matriz nula, então A ou B são a matriz nula.

(d) (aA)(bB) = (ab)AB.

(e) $(AB)^t = A^t B^t$.

(f) (-A)(-B) = -AB.

(g) $(A+B)^2 = A^2 + 2AB + B^2$.

(h) $(A+B)(A-B) = A^2 - B^2$.

9. Uma rede de comunicação possui cinco estações de transmissão. Na matriz A abaixo, $a_{ij} = 1$ significa que a estação i pode transmitir diretamente para a estação j e, $a_{ij} = 0$ significa o contrário.

$$A = \left[\begin{array}{ccccc} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]$$

Algumas observações:

(i) Por exemplo, a estação 1 pode transmitir diretamente para a estação 3 (pois $a_{13} = 1$) e a estação 3 não pode transmitir diretamente para a estação 1 (pois $a_{31} = 0$)

(ii) A diagonal principal de A ser nula significa que uma estação não transmite diretamente para si mesma.

(iii) Como $a_{25} =$, a estação 2 não pode transmitir diretamente para a estação 5. Porém, a estação 5 pode receber informação indiretamente a partir da estação 2 através da transmissão $2 \to 4 \to 5$. Neste caso, dizemos que a estação 2 transmite indiretamente para a estação 5 através de uma transmissão de segunda ordem (porque exigiu duas conexões diretas).

(a) Calcule A^2 . No contexto do exercício, qual o significado dessa matriz?

(b) Denotando $A^2 = (c_{ij})$, qual o significado de $c_{13} = 2$

(c) No contexto do exercício, qual o significado da matriz $A + A^2$? E da matriz A^3 ?

2

(d) Se A fosse simétrica, o que isso significaria no contexto do exercício?