β	J₀(β)	$J_1(\beta)$	$J_2(\beta)$	$J_3(\beta)$	J ₄ (β)	J ₅ (β)	$J_6(\beta)$	$J_7(\beta)$	J ₈ (β)	J ₉ (β)	J ₁₀ (β)	J ₁₁ (β)	$J_{12}(\beta)$	J ₁₃ (β)	J ₁₄ (β)
0.00	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.984	0.124	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.50	0.938	0.242	0.031	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.75	0.864	0.349	0.067	0.008	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.00	0.765	0.440	0.115	0.020	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.25	0.646	0.511	0.171	0.037	0.006	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.50	0.512	0.558	0.232	0.061	0.012	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.75	0.369	0.580	0.294	0.092	0.021	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.00	0.224	0.577	0.353	0.129	0.034	0.007	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.25	0.083	0.548	0.405	0.171	0.052	0.012	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.50	-0.048	0.497	0.446	0.217	0.074	0.020	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.75	-0.164	0.426	0.474	0.263	0.101	0.030	0.007	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3.00	-0.260	0.339	0.486	0.309	0.132	0.043	0.011	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3.25	-0.333	0.241	0.481	0.351	0.167	0.060	0.017	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000
3.50	-0.380	0.137	0.459	0.387	0.204	0.080	0.025	0.007	0.002	0.000	0.000	0.000	0.000	0.000	0.000
3.75	-0.401	0.033	0.419	0.414	0.243	0.105	0.036	0.010	0.003	0.001	0.000	0.000	0.000	0.000	0.000
4.00	-0.397	-0.066	0.364	0.430	0.281	0.132	0.049	0.015	0.004	0.001	0.000	0.000	0.000	0.000	0.000
4.25	-0.369	-0.156	0.296	0.434	0.317	0.162	0.065	0.022	0.006	0.002	0.000	0.000	0.000	0.000	0.000
4.50	-0.321	-0.231	0.218	0.425	0.348	0.195	0.084	0.030	0.009	0.002	0.001	0.000	0.000	0.000	0.000
4.75	-0.255	-0.289	0.133	0.401	0.374	0.228	0.106	0.041	0.013	0.004	0.001	0.000	0.000	0.000	0.000
5.00	-0.178	-0.328	0.047	0.365	0.391	0.261	0.131	0.053	0.018	0.006	0.001	0.000	0.000	0.000	0.000
5.25	-0.093	-0.345	-0.038	0.316	0.399	0.293	0.158	0.069	0.025	0.008	0.002	0.001	0.000	0.000	0.000
5.50	-0.007	-0.341	-0.117	0.256	0.397	0.321	0.187	0.087	0.034	0.011	0.003	0.001	0.000	0.000	0.000
5.75	0.076	-0.318	-0.187	0.188	0.383	0.345	0.216	0.107	0.044	0.016	0.005	0.001	0.000	0.000	0.000
6.00	0.151	-0.277	-0.243	0.115	0.358	0.362	0.246	0.130	0.057	0.021	0.007	0.002	0.001	0.000	0.000
6.25	0.213	-0.221	-0.284	0.039	0.321	0.372	0.274	0.154	0.071	0.028	0.010	0.003	0.001	0.000	0.000
6.50			-0.307		0.275	0.374	0.300	0.180	0.088	0.037	0.013	0.004	0.001	0.000	0.000
6.75	0.289	-0.080	-0.313	-0.105	0.220	0.366	0.322	0.207	0.107	0.047	0.018	0.006	0.002	0.001	0.000
7.00			-0.301		0.158	0.348	0.339	0.234	0.128	0.059	0.024	0.008	0.003	0.001	0.000
7.25	0.292		-0.273		0.092	0.320	0.350	0.259	0.151	0.073	0.031	0.011	0.004	0.001	0.000
7.50	0.266		-0.230		0.024	0.283	0.354	0.283	0.174	0.089	0.039	0.015	0.005	0.002	0.000
7.75	0.225		-0.176			0.238	0.350	0.304	0.199	0.107	0.049	0.020	0.007	0.002	0.001
8.00	0.172		-0.113			0.186	0.338	0.321	0.223	0.126	0.061	0.026	0.010	0.003	0.001
8.25	0.109		-0.046			0.128	0.316	0.332	0.247	0.147	0.074	0.033	0.013	0.005	0.001
8.50	0.042	0.273	0.022	-0.263	-0.208	0.067	0.287	0.338	0.269	0.169	0.089	0.041	0.017	0.006	0.002

Funciones Exponenciales y Logarítmicas

$$\begin{split} \exp(\alpha) \exp(\beta) &= \exp(\alpha + \beta) \\ \frac{\exp(\alpha)}{\exp(\beta)} &= \exp(\alpha - \beta) \\ \ln(\alpha \cdot \beta) &= \ln(\alpha) + \ln(\beta) \\ \ln\left(\frac{\alpha}{\beta}\right) &= \ln(\alpha) - \ln(\beta) \\ \ln(\alpha)^{\beta} &= \beta \cdot \ln(\alpha) \\ \log_{b}(N) &= \log_{a}(N) \cdot \log_{b}(a) = \frac{\log_{a}(N)}{\log_{a}(b)} \end{split}$$

$$\exp(\pm j\theta) = \cos\theta \pm j\sin\theta$$
$$\cos\theta = \frac{1}{2} [\exp(j\theta) + \exp(-j\theta)]$$
$$\sin\theta = \frac{1}{2j} [\exp(j\theta) - \exp(-j\theta)]$$

series y transformadas de Fourier

$$\begin{split} a_0 &= \frac{1}{T_0} \int\limits_{t_1}^{t_1+T_0} x(t) dt & a_n \cos n\omega_0 t + b_n \sin n\omega_0 t = C_n \cos \left(n\omega_0 t + \theta_n\right) \\ a_n &= \frac{2}{T_0} \int\limits_{t_1}^{t_1+T_0} x(t) \cos n\omega_0 t dt & D_n &= \frac{1}{T_0} \int\limits_{T_0} x(t) \exp \left(-jn\omega_0 t\right) dt \\ b_n &= \frac{2}{T_0} \int\limits_{t_1}^{t_1+T_0} x(t) \sin n\omega_0 t dt & x(t) &= \int\limits_{-\infty}^{\infty} X(f) \exp \left(j2\pi f t\right) df \\ &\leftrightarrow X(f) &= \int\limits_{-\infty}^{\infty} x(t) \exp \left(-j2\pi f t\right) dt \end{split}$$

$$\begin{split} s_{DSB}(t) &= A_c m(t) \cos(2\pi f_c t) & s_{AM}(t) = \left[A_c + m(t)\right] \cos(\omega_c t) \\ s_{SSB}(t) &= m(t) \cos 2\pi f_c t \mp m_h(t) \sin 2\pi f_c t & s_{SSB+C}(t) = A_c \cos \omega_c t + \left[m(t) \cos \omega_c t \mp m_h(t) \sin \omega_c t\right] \\ S_{VSB}(f) &= \left[M(f+f_c) + M(f-f_c)\right] H_i(f), & H_o(f) &= \frac{1}{H_i(f+f_c) + H_i(f-f_c)} & |f| \leq B \\ s_{QAM}(t) &= A_c m_1(t) \cos \omega_c t + A_c m_2(t) \sin \omega_c t & s_{PM}(t) = A_c \cos\left[\omega_c t + k_p m(t)\right] \\ s_{FM}(t) &= A_c \cos\left(\omega_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right) & s_{FM}(t) \approx A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t & \text{de banda angosta} \\ BW &= 2\left(\Delta f + f_m\right) = 2f_m(1+\beta) & \text{regla de Carson} \\ \beta &= \begin{cases} k_p a & para PM \\ \frac{k_f a}{f_m} & para FM \\ \vdots & \vdots \end{cases} & \beta = \frac{\Delta f}{f_m}; & \Delta f = |f_i - f_c|_{\max} \end{split}$$

Identidades Trigonométricas

 $\exp(\pm j\theta) = \cos\theta \pm j \sin\theta$ $\cos\theta = \frac{1}{2} [\exp(j\theta) + \exp(-j\theta)]$ $\sin\theta = \frac{1}{2j} [\exp(j\theta) - \exp(-j\theta)]$ $\sin^2\theta + \cos^2\theta = 1$ $\cos^2\theta - \sin^2\theta = \cos 2\theta$ $\cos^2\theta = \frac{1}{2} [1 + \cos 2\theta]$ $\sin^2\theta = \frac{1}{2} [1 - \cos 2\theta]$ $2\sin\theta\cos\theta = \sin 2\theta$ $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$ $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$ $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$ $\sin\alpha\sin\beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$ $\cos\alpha\cos\beta = \frac{1}{2} [\cos(\alpha - \beta) + \sin(\alpha + \beta)]$ $\sin\alpha\cos\beta = \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)]$

Algunas transformadas de Fourier útiles

x(t)	X(f)
1	$\delta(f)$
$\mathcal{S}(t)$	1
$\delta(t-t_0)$	$\exp(-j2\pi j \hat{t}_0)$
$\exp(j2\pi f_0 t)$	$\mathcal{S}(f-f_0)$
$\exp(-at) \ u(t)$	$\frac{1}{a+j2\pi f}$
$\exp\bigl(\!-a\big t\big \bigr)$	$\frac{2a}{a^2 + (2\pi f)^2}$
$\exp\left[-\pi\left(\frac{t}{T}\right)^2\right]$	$T \exp \left(-\pi (fT)^2\right)$
$t \exp(-at) u(t)$	$\frac{1}{(a+j2\pi f)^2}$
u(t)	$\frac{1}{2}\mathcal{S}(f) + \frac{1}{j2\mathrm{T}\!f}$
$\cos(2\pi\!f_0t)$	$\frac{1}{2} \big[\mathcal{S} \big(f - f_0 \big) + \mathcal{S} \big(f + f_0 \big) \big]$
$\sin(2\pi f_0 t)$	$\frac{1}{2j} \big[\mathcal{S} \big(f - f_0 \big) - \mathcal{S} \big(f + f_0 \big) \big]$
$rect\left(\frac{t}{T}\right)$	T $sinc(fT)$
sinc(2Wt)	$\frac{1}{2W} rect \left(\frac{f}{2W} \right)$
$\cos(2\pi f_0 t) \operatorname{rect}\!\left(\frac{t}{T}\right)$	$\frac{T}{2} \left[sinc(f - f_0)T + sinc(f + f_0)T \right]$
$\Delta\!\!\left(\frac{t}{T}\right)$	$T sinc^2(fT)$
$\sum_{m=-\infty}^{\infty} \mathcal{S}(t-mT_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_0} \right)$
$\mathrm{sgn}(t)$	$\frac{1}{j\pi f}$
$\frac{1}{\pi t}$	$-j{\rm sgn}(f)$

Integrales

Integrales definidas $\int_{0}^{\infty} \frac{x \sin(ax)}{b^{2} + x^{2}} dx = \frac{\pi}{2} \exp(-ab), \quad a > 0, b > 0$ $\int_{0}^{\infty} \frac{\cos(ax)}{b^{2} + x^{2}} dx = \frac{\pi}{2b} \exp(-ab), \quad a > 0, b > 0$ $\int_{0}^{\infty} \frac{\cos(ax)}{(b^{2} - x^{2})^{2}} dx = \frac{\pi}{4b^{3}} [\sin(ab) - ab \cos(ab)], \quad a > 0, b > 0$ $\int_{0}^{\infty} \sin(x) dx = \int_{0}^{\infty} \sin^{2}(x) dx = \frac{1}{2}$ $\int_{0}^{\infty} \exp(-ax)^{2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a > 0$ $\int_{0}^{\infty} x^{2} \exp(-ax)^{2} dx = \frac{1}{4a} \sqrt{\frac{\pi}{a}}, \quad a > 0$

Integrales indefinidas

$$\int x \sin(ax) dx = \frac{1}{a^2} \left[\sin(ax) - ax \cos(ax) \right]$$

$$\int x \cos(ax) dx = \frac{1}{a^2} \left[\cos(ax) + ax \sin(ax) \right]$$

$$\int x \exp(ax) dx = \frac{1}{a^2} \exp(ax) (ax - 1)$$

$$\int x \exp(ax^2) dx = \frac{1}{2a} \exp(ax^2)$$

$$\int \exp(ax^2) \sin(bx) dx = \frac{1}{a^2 + b^2} \exp(ax) \left[a \sin(bx) - b \cos(bx) \right]$$

$$\int \exp(ax^2) \cos(bx) dx = \frac{1}{a^2 + b^2} \exp(ax) \left[a \cos(bx) + b \sin(bx) \right]$$

$$\int \frac{dx}{a^2 + b^2 x^2} = \frac{1}{ab} \tan^{-1} \left(\frac{bx}{a} \right)$$

$$\int \frac{x^2 dx}{a^2 + b^2 x^2} = \frac{x}{b^2} - \frac{a}{b^3} \tan^{-1} \left(\frac{bx}{a} \right)$$

Fourier Transform Properties

a > 0

a > 0

Property Name	Property						
Linearity	ax(t) + bv(t)	$aX(\omega) + bV(\omega)$					
Time Shift	x(t-c)	$e^{-j\omega}X(\omega)$					
Time Scaling	$x(at), a \neq 0$	$\frac{1}{a}X(\omega/a), a \neq 0$					
Time Reversal	x(-t)	$X(-\omega)$					
		$\overline{X(\omega)}$ if $x(t)$ is real					
Multiply by <i>t</i> ⁿ	$t^n x(t), n = 1, 2, 3, \dots$	$j^n \frac{d^n}{d\omega^n} X(\omega), n = 1, 2, 3, \dots$					
Multiply by Complex Exponential	$e^{j\omega_o t}x(t)$, ω_o real	$X(\omega - \omega_o)$, ω_o real					
Multiply by Sine	$\sin(\omega_o t)x(t)$	$\frac{j}{2} [X(\omega + \omega_o) - X(\omega - \omega_o)]$					
Multiply by Cosine	$\cos(\omega_o t)x(t)$	$\frac{1}{2} \big[X(\omega + \omega_o) + X(\omega - \omega_o) \big]$					
Time Differentiation	$\frac{d^n}{dt^n}x(t), n=1, 2, 3, \dots$	$(j\omega)^n X(\omega), n=1,2,3,\ldots$					
Time Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$					
Convolution in Time	x(t) * h(t)	$X(\omega)H(\omega)$					
Multiplication in Time	x(t)w(t)	$\frac{1}{2\pi}X(\omega)^*W(\omega)$					
Parseval's Theorem (General)	$\int_{-\infty}^{\infty} x(t)\overline{v(t)}dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)\overline{V(\omega)}d\omega$						
Parseval's Theorem (Energy)	$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega \text{if } x(t) \text{ is real}$						
	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$						
Duality: If $x(t) \leftrightarrow X(\omega)$	X(t)	$2\pi x(-\omega)$					