TD N° 3: Modèles à effets aléatoires

EXERCICE 1. Soit $\mathbb{1}_n \in \mathbb{R}^n$ le vecteur de taille n ne contenant que des 1. On définit alors la matrice J_n par $J_n = \mathbb{1}_n \mathbb{1}_n^\top \in \mathbb{R}^n$.

- 1) Montre que la matrice J_n est symétrique définie positive, et donner J_n^2 . Qu'en est il pour $\bar{J_n}^2$ avec $\bar{J_n} = \frac{1}{n} J_n$?
- 2) Interpréter géométriquement \bar{J}_n et $\bar{C}_n = \mathrm{Id}_n \bar{J}_n$.
- 3) Donner rang (J_n) et rang $(\bar{J_n}^2)$.
- 4) Vérifier que

$$J_n = H_n^{\top} \operatorname{diag}(n, 0, \dots, 0) H_n , \qquad (1)$$

$$\bar{J}_n = H_n^{\top} \operatorname{diag}(1, 0, \dots, 0) H_n . \tag{2}$$

où $H_n \in \mathbb{R}^{n \times n}$ est la matrice de Helmert d'ordre n, c'est-à-dire la matrice orthogonale définie par :

$$H_n = \begin{bmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{n}} & \frac{-1}{\sqrt{n}} & 0 & 0 & \cdots & 0 & 0 \\ \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & 0 & \cdots & 0 & 0 \\ \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{-3}{\sqrt{12}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \cdots & \frac{1}{\sqrt{n(n-1)}} & \frac{-(n-1)}{\sqrt{n(n-1)}} \end{bmatrix}$$

5) Montrer les propriétés suivantes pour tout $(a, b, a', b') \in \mathbb{R}^4$,

$$(a\operatorname{Id}_n + bJ_n)(a'\operatorname{Id}_n + b'J_n) = aa'\operatorname{Id}_n + (ab' + a'b + nbb')J_n,$$
(3)

$$(a\operatorname{Id}_n + bJ_n)^{-1} = \frac{1}{a}\left(\operatorname{Id}_n - \frac{b}{a+nb}J_n\right), \quad \text{pour } a \neq 0 \text{ et } a \neq -nb,$$
(4)

$$a \operatorname{Id}_n + b J_n = H_n^{\top} \operatorname{diag}(a + nb, \underbrace{a, \dots, a}_{(n-1) \text{fois}}) H_n, \quad \text{(décomp. spectrale)}$$
 (5)

EXERCICE 2. Prenons un modèle à effet aléatoire pour une catégorie à J modalités C_1, \ldots, C_J et n observations (avec $n = n_1 + \cdots + n_J$):

$$y = \mu \mathbb{1}_n + \sum_{j=1}^J \mathbb{1}_{C_j} A_j + \varepsilon . \tag{6}$$

avec $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2 \operatorname{Id}_n)$ et $A \sim \mathcal{N}(0, \sigma_A^2 \operatorname{Id}_J)$.

- 1) Expliciter Var(y), la matrice de covariance de $y \in \mathbb{R}^n$.
- 2) En déduire grâce à l'exercice précédent l'expression de l'inverse de cette matrice de covariance.

EXERCICE 3. Montrer que le gradient (pour le produit scalaire $\langle A, B \rangle = \operatorname{tr}(A^{\top}B)$) de la fonction logdet définie par

logdet :
$$S_n^{++} \mapsto \mathbb{R}^{++}$$

 $X \to \log(\det(X))$.

_ page 1

est donné par

$$\nabla \operatorname{logdet}(X) = X^{-1}$$
.

EXERCICE 4. On suppose que l'on observe un n-échantillon x_1, \ldots, x_n de la loi gaussienne $\mathcal{N}(\mu, \Lambda^{-1})$, avec $\mu \in \mathbb{R}^d$ et $\Lambda \in \mathcal{S}_d^{++}$. La matrice Λ s'appelle la matrice de précision et est l'inverse de la matrice de variance-covariance Σ . Donner alors l'estimateur $(\hat{\mu}, \hat{\Lambda})$ du maximum de vraisemblance du couple (μ, Λ) .