

### Introducción a Machine Learning

Aprendizaje de Máquina – Árboles de Decisión MSc. Marco Sobrevilla

### Objetivo



- Aprender conceptos relacionados a Árboles de decisión
  - Entropía
  - Ganancia de Información

### Agenda



- Árbol de Decisión
- Entropía
- Ganancia de Información
- Ejemplo de algoritmo ID3



- Método para inferencia inductiva
  - Ayuda a predecir la clase de un objeto en estudio con base en un entrenamiento previo
- Un árbol representa una función discreta para aproximar/representar los datos de entrenamiento
- Árboles de Decisión clasifican instancias ordenándolas desde la raíz hasta algún nodo hoja
  - Cada nodo del árbol representa un atributo







- Consideremos la toma de decisión para el problema «Jugar Tenis»
  - Clasificar si un día es adecuado o no para jugar tenis



- Por ejemplo, si tenemos la instancia:
  - Panorama: Ensolarado, Umidade: Alta
  - ¿Cuál sería nuestra salida?



 Puede crearse una expresión para verificar cuándo es posible jugar tenis.



- Si (panorama: ensolarado AND umidade: Normal) OR panorama: nublado OR (panorama: chuvoso AND vento: Fraco)
- Podemos crear árboles de decisión y extraer reglas que nos ayuden a clasificar instancias nunca vistas



- Son adecuados para problemas en que:
  - Instancias son representadas por pares atributos-valor
    - Hay un conjunto fijo de atributos (Ejm: Umidade) y sus valores (Ejm: Alta, Normal)
    - Situación ideal es cuando cada atributo puede asumir pocos valores (discretos)
  - La función a ser aproximada tiene valores discretos
    - En el ejemplo: "Sí o no"
    - Puede ser fácilmente extendible para producir más de 2 valores de salida
    - Se vuelven más complejas y menos utilizables en contextos con variables continuas



- Aplicaciones Comunes
  - Diagnóstico de Pacientes
  - Análisis de Crédito
  - Problemas en equipamientos mecánicos

- Algoritmos más conocidos
  - **ID3** (Quinlan, 1986) e C4.5 (Quinlan, 1993)



### Algoritmo ID3

- Considera un conjunto de datos para el entrenamiento
- Construye un árbol usando un enfoque top-down considerando la pregunta: "¿Cuál es el atributo más importante?" -> Raíz del árbol
- Cada atributo es probado y su capacidad para volverse nodo raíz es evaluada
- Se crean tantos nodos hijos de la raíz cuanto valores posibles pueda asumir el atributo (caso discreto)
- Se repite el proceso para cada nodo hijo de la raíz y así sucesivamente



- ¿ID3 cómo evalúa cuál es el atributo más adecuado?
  - Usando la medida ganancia de información

#### Un momento!

 Para conocer qué es ganancia de información primero tenemos que saber ¿Qué es entropía?

## Entropía en Teoría de la Información



Para entender entropía, consideremos el siguiente sistema:



• Ahora considere que el sistema alteró su comportamiento:



## Entropía



 Ahora consideremos la fórmula de Shannon para calcular la entropía:

$$E = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}$$

- Esa expresión mide la energía total de un sistema:
  - Considerando que el sistema está en el estado «i» y ocurre una transición al estado «j»
  - La función log2 es usada para cuantificar la entropía en términos de bits

## Entropía







$$E = -(1\log_2(1) + 0.5\log_2(0.5) + 0.5\log_2(0.5)) =$$

Al modificar su comportamiento, el sistema agregó mayor nivel de incerteza o mayor energía





- Considere una colección S de instancias com ejemplos positivos y negativos
  - Con 2 clases distintas
- En este caso, se asume la probabilidad de pertenecer a una clase (positiva o negativa) de S
  - Entonces, la entropia, en ese contexto, es dada por:

$$E(S) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$





- Considere el conjunto S con 14 ejemplos de algún concepto boleano
  - 9 positivos
  - 5 negativos
- Entonces, la entropía de esse conjunto es dada por:

$$E(S) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94$$





- En otros casos:
  - Para [7+, 7-]

$$E(S) = -\frac{7}{14}\log_2\frac{7}{14} - \frac{7}{14}\log_2\frac{7}{14} = 0.99\ldots \approx 1$$

• Para [0+, 14-] ou [14+, 0-]

$$E(S) = -\frac{14}{14}\log_2\frac{14}{14} = 0$$

• La entropía mide el **nivel de certeza** que tenemos sobre un evento





• Podemos generalizar para más de 2 posibles clases:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- ¿Por qué el uso de la función Log?
  - En Teoría de la Información se mide la información proveniente de una fuente en bits





- Ahora sí... ¿Qué es ganancia de información?
  - Mide la efectividad de un atributo en clasificar un conjunto de entrenamiento
  - Ganancia de información de un atributo A:
    - Mide la reducción de la entropía, causada por la partición de ejemplos de acuerdo con este atributo

$$GI(S, A) = E(S) - \sum_{v \in Valores(A)} \frac{S_v}{S} E(S_v)$$

- El segundo término mide la entropía partiendo el conjunto de entrenamiento de acuerdo con el atributo A
- Gl mide la reducción de la entropía (la incerteza) al seleccionar el atributo A





- Por ejemplo, considere S un conjunto de entrenamiento conteniendo el atributo viento («vento») que puede asumir los valores de «fraco» y «forte»
  - S contiene 14 ejemplos (9 positivos y 5 negativos)
  - Ahora considere que:
    - 6 de los ejemplos positivos y 2 de los ejemplos negativos son definidos por vento = fraco (8 en total)
    - 3 ejemplos definidos por vento = forte tanto para la clase positiva cuanto para la clase negativa (6 en total)
  - La ganancia de información al seleccionar el atributo «vento» en la raíz del árbol es dada por:

$$S = [9+, 5-]$$

$$S_{fraco} \leftarrow [6+, 2-]$$

$$S_{forte} \leftarrow [3+, 3-]$$

$$\mathbf{GI}(S, A) = E(S) - \sum_{v \in \mathbf{Valores}(A)} \frac{S_v}{S} E(S_v)$$





$$S = [9+, 5-]$$
  
 $S_{fraco} \leftarrow [6+, 2-]$   
 $S_{forte} \leftarrow [3+, 3-]$ 

$$\mathbf{GI}(S, A) = E(S) - \sum_{v \in \mathbf{Valores}(A)} \frac{S_v}{S} E(S_v)$$

$$GI(S, A) = 0.94 - \frac{8}{14}E(S_{fraco}) - \frac{6}{14}E(S_{forte})$$

$$S = [9+, 5-]$$
  
 $S_{fraco} \leftarrow [6+, 2-]$   
 $S_{forte} \leftarrow [3+, 3-]$ 

$$E(S_{fraco}) = -\frac{6}{8}\log_2\frac{6}{8} - \frac{2}{8}\log_2\frac{2}{8} = 0.811$$
$$E(S_{forte}) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1.00$$

$$GI(S, A) = 0.94 - \frac{8}{14}0.811 - \frac{6}{14}1.00 = 0.048$$

- Ganancia de Información es usada por ID3 en cada paso de la generación del árbol de decisión
  - Reducimos muy poco el nivel de incerteza.
  - «Vento» no es buen atributo





• Consideremos que queremos saber cuándo se jugará tenis

| Dia | Panorama   | Temperatura   | Umidade | Vento | Jogar Tênis |
|-----|------------|---------------|---------|-------|-------------|
| 1   | Ensolarado | Quente        | Alta    | Fraco | Não         |
| 2   | Ensolarado | Quente        | Alta    | Forte | Não         |
| 3   | Nublado    | Quente        | Alta    | Fraco | Sim         |
| 4   | Chuvoso    | Intermediária | Alta    | Fraco | Sim         |
| 5   | Chuvoso    | Fria          | Normal  | Fraco | Sim         |
| 6   | Chuvoso    | Fria          | Normal  | Forte | Não         |
| 7   | Nublado    | Fria          | Normal  | Forte | Sim         |
| 8   | Ensolarado | Intermediária | Alta    | Fraco | Não         |
| 9   | Ensolarado | Fria          | Normal  | Fraco | Sim         |
| 10  | Chuvoso    | Intermediária | Normal  | Fraco | Sim         |
| 11  | Ensolarado | Intermediária | Normal  | Forte | Sim         |
| 12  | Nublado    | Intermediária | Alta    | Forte | Sim         |
| 13  | Nublado    | Quente        | Normal  | Fraco | Sim         |
| 14  | Chuvoso    | Intermediária | Alta    | Forte | Não         |

### Ejemplo - ID3



- Primer paso:
  - Calculamos la ganancia de información de cada atributo

```
GI(S, Panorama) = 0.246

GI(S, Umidade) = 0.151

GI(S, Vento) = 0.048

GI(S, Temperatura) = 0.029
```

- Atributo con mayor ganancia de información es seleccionado como raíz del árbol
  - El que más reduce el nivel de incerteza
  - Panorama es escogido
  - Creamos los nodos hijos a partir de la raíz con los posibles valores asumidos por Panorama

### Ejemplo - ID3



- Ahora tenemos la raíz
  - Proceder de la misma forma por las ramas de la raíz
  - En cada rama consideramos solo los ejemplos contenidos en ella
    - Desde que haya divergencia entre las clases de salida







 Una de las ramas no tiene divergencia entre las clases de salida, o sea, Entropía igual a cero



 Atributos existentes incorporados encima de determinado nodo no entran la evaluación de la ganancia de información del siguiente







- Calculando la ganancia de información para la rama «ensolarado» tenemos:
  - Calculamos la entropía para E(S = Ensolarado)
    - Nivel de incerteza del panorama «ensolarado»

$$E(S = Ensolarado) = -\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5} = 0.97$$





 Calculando la ganancia de información para la rama «ensolarado», tenemos:

$$\begin{aligned} \mathbf{GI}(S, \mathbf{Umidade}) &= 0.97 - \frac{3}{5}0.0 - \frac{2}{5}0.0 = 0.97 \\ \mathbf{GI}(S, \mathbf{Temperatura}) &= 0.97 - \frac{2}{5}0.0 - \frac{2}{5}1.0 = 0.57 \\ \mathbf{GI}(S, \mathbf{Vento}) &= 0.97 - \frac{2}{5}1.0 - \frac{3}{5}0.918 = 0.019 \end{aligned}$$

 Seleccionamos «Umidade» porque es la que tiene mayor ganancia (reduce más la entropía)





Continuando...







Continuando...







- El algoritmo continua hasta que una de 2 condiciones sea satisfecha:
  - Todos los atributos fueron incluídos en el camino de la raíz hasta las hojas
  - Ejemplos de entrenamiento asociados con una rama presentan el mismo valor de salida

### **Observaciones-ID3**



- ID3 crece lo suficiente para abarcar todos los ejemplos del entrenamiento
  - ¿Esto es bueno?
  - ¿Qué puede ocurrir?
    - Overfitting a los datos de entrenamiento
    - Problemas de generalización
- Ruído en los datos
  - Construcción de árbol más compleja
  - Se adecua a los ejemplos pero no generalizará

### **Observaciones-ID3**



- Otro problema:
  - Underfitting -> Pocos datos de entrenamiento

- ¿Cómo solucionarlo?
  - − Podando ©
  - C4.5 supera estas limitaciones





 Diseñar el árbol ID3 para el problema de clasificación, considerando que la clase de salida decide si administramos o no tratamiento

| Paciente | Presión | Urea en | Gota | Hipotiroidismo | Administrar |
|----------|---------|---------|------|----------------|-------------|
|          | Aterial | sangre  |      |                | Tratamiento |
| 1        | Alta    | Alta    | Sí   | No             | No          |
| 2        | Alta    | Alta    | Sí   | Sí             | No          |
| 3        | Normal  | Alta    | Sí   | No             | Sí          |
| 4        | Baja    | Normal  | Sí   | No             | Sí          |
| 5        | Baja    | Baja    | No   | No             | Sí          |
| 6        | Baja    | Baja    | No   | Sí             | No          |
| 7        | Normal  | Baja    | No   | Sí             | Sí          |
| 8        | Alta    | Normal  | Sí   | No             | No          |
| 9        | Alta    | Baja    | No   | No             | Sí          |
| 10       | Baja    | Normal  | No   | No             | Sí          |
| 11       | Alta    | Normal  | No   | Sí             | Sí          |
| 12       | Normal  | Normal  | Sí   | Sí             | Sí          |
| 13       | Normal  | Alta    | No   | No             | Sí          |
| 14       | Baja    | Normal  | Sí   | Sí             | No          |



## Fin <sup>©</sup>

### Bibliografía



- Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 44 (1.2), 206-226.
- Anderson, J. R. (1986). Machine learning: An artificial intelligence approach (Vol. 2). R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.). Morgan Kaufmann