

第11讲 牛顿法

第3章 无约束问题算法(I)

- 一、最速下降法
- 二、Newton法及其修正形式

给定无约束问题

$$\min_{x \in R^n} f(x) \tag{3.1}$$

下降算法的结构: $x_{k+1} = x_k + \alpha_k d_k$

- (1) 步长αk 计算方法: Armi jo法, Wolfe-Powell法
- (2)下降方向d_k的计算方法,在后面的几章里来介绍.下降方向的计算是整个最优化方法的核心,不同计算方式对应不同的最优化算法,相应算法的收敛性理论和数值效果有很大区别

下降算法收敛性结果

定理2.4.1-2.4.2 设假设2.4.1成立,序列 $\{x_k\}$ 由算法2.1产生,其中步长 α_k 由精确搜索或Wolfe-Powell搜索产生,则

$$\sum_{k=0}^{\infty} \|\nabla f(x_k)\|^2 \cos^2 \theta_k < +\infty \tag{2.13}$$

特别地, 若存在常数 $\delta > 0$ 使得 $\cos \theta_{k} \geq \delta$,则

$$\lim_{k \to \infty} \|\nabla f(x_k)\| = 0 \tag{2.14}$$

定理2.4.3 设假设2.4.1成立, 序列 $\{x_k\}$ 由算法2.1产生, 其中步长 α_k 由Armijo搜索产生, 且存在常数C>0, 使得

$$\|\nabla f(x_k)\| \le C \|d_k\| \tag{2.17}$$

则定理2.4.1的结论成立

下降算法收敛性结果

定理2.4.4 设假设2.4.1成立,序列 $\{x_k\}$ 由算法2.1产生,其中步长 α_k 由精确搜索或Wolfe-Powell搜索或Armijo搜索确定且(2.17)成立. 若进一步

$$\lim_{k\to\infty}\inf\cos\theta_k>0$$

(2.18)

则

$$\lim_{k \to \infty} \inf ||\nabla f(x_k)|| = 0 \tag{2.19}$$

特别的,若存在常数 $\eta > 0$,使得下式满足,则(2.18)成立

$$\prod_{i=1}^{k-1} \cos \theta_i \ge \eta^k \tag{2.20}$$

什么影响算法的收敛性?

下降算法收敛速度结果

定理2.5.1 设假设2.5.1的条件成立,点列 $\{x_k\}$ 由下降算法2.1产生其中步长 α_k 由Armijo搜索或Wolfe-Powell搜索确定。若存在常数 $\eta > 0$,使得 $\prod_{i=0}^{k-1} \cos \theta_i \geq \eta^k$,则存在常数b > 0, $r \in (0,1)$,使得当 k 充分大时,

$$|| x_{k+1} - x^* || \le br^k$$

该结果说明什么?

下降算法的收敛速度是R线性收敛的。

下降算法收敛速度结果

定理2.5.2 设函数f二次连续可微,点列 $\{x_k\}$ 由算法2.1产生其中步长 α_k 由Armijo搜索或Wolfe-Powell搜索确定,其中 $\sigma_1 \in (0,1/2)$. 设 $\{x_k\} \to x^*$,且 $\nabla f(x^*) = 0$, $\nabla^2 f(x^*)$ 正定. 若

$$\lim_{k \to \infty} \frac{\|\nabla f(x_k) + \nabla^2 f(x_k) d_k\|}{\|d_k\|} = 0$$

则

- (1) 当k充分大时, $\alpha_k = 1$;
- (2) 序列 $\{x_k\}$ 超线性收敛于 x^* ;
- (3) 若 $\nabla^2 f(x)$ 在 x^* 处Lipschitz连续,且

$$\delta_k = \frac{\|\nabla f(x_k) + \nabla^2 f(x_k) d_k\|}{\|d_k\|} = O(\|x_k - x^*\|)$$

则 x_k 二次收敛于 x^* .

思考

下降方向d_k如何选取?

最速下降法

$$d_k = -\nabla f(x_k)$$

最古老的优化方法。十九世纪中叶由Cauchy提出

1、 思想 : 每次沿负梯度方向进行搜索

2、 算法步骤

算法3.1 (最速下降法)

步1 给定初始点 $x_0 \in \mathbb{R}^n$,精度 $\varepsilon > 0$.令k = 0;

步2 若 $\|\nabla f(x_k)\| \le \varepsilon$,则得解 x_k ,算法终止.否则 计算 $d_k = -\nabla f(x_k)$,然后转步3;

步3 由线性搜索计算步长 α_k ;

步4 令 $x_{k+1} = x_k + \alpha_k d_k, k := k+1, 转步2.$

两点步长梯度法(BB法)

Barzilai 和 Borwein (1988) 提出两点步长梯度法,其基本思想是利用迭代当前点以及前一点的信息来确定步长因子,迭代公式 $x_{k+1} = x_k - \alpha_k g_k$ 可以看成是

$$x_{k+1} = x_k - D_k g_k,$$

其中 $D_k = \alpha_k I$ 是一个矩阵,为了使矩阵 D_k 具有拟牛顿性质 (拟牛顿法将在第五章讨论), 计算 α_k 使得

$$\min \|s_{k-1} - D_k y_{k-1}\|,$$

$$s_{k-1} = x_k - x_{k-1}, \quad y_{k-1} = g_k - g_{k-1}.$$

$$\alpha_k = s_{k-1}^T y_{k-1} / ||y_{k-1}||^2$$
(3.1.37a)

步长采用上一步的最佳步长

$$x_k + \alpha_k(-g_k) = x_{k-1} + \alpha_k(-g_{k-1}),$$

$$g_k := -\nabla f(x_k)$$

算法 3.1.7 (两点步长梯度法)

步 1 给出 $x_0 \in \mathbb{R}^n$, $0 \leqslant \varepsilon \ll 1$, k := 0;

步 2 计算 $d_k = -g_k$; 如果 $||g_k|| \le \epsilon$, 则停止;

步 3 如果 k=0, 利用一维搜索求 α_0 ; 否则,利用 (3.1.37a) 或 (3.1.37b) 计算 α_k .

步 4 $x_{k+1} = x_k + \alpha_k d_k;$

步 5 k := k + 1, 转步 2.

$$\alpha_k = s_{k-1}^T y_{k-1} / ||y_{k-1}||^2$$
 (3.1.37a)

$$\alpha_k = ||s_{k-1}||^2 / s_{k-1}^T y_{k-1}.$$
 (3.1.37b)

超线性收敛

$$s_{k-1} = x_k - x_{k-1}, \quad y_{k-1} = g_k - g_{k-1}.$$

二、Newton法及其修正形式

1、思想:用近似二次函数的极小点作为原问题的新的近似解

考虑从 x_k 到 x_{k+1} 的迭代过程,在 x_k 处对f(x)用与它最密切的二次函数Q(x)来近似,把二次函数的极小点作为 x_{k+1}

几何解释:

$$d_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

f(x)在 χ_k 处二阶泰勒展开式为

$$f(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k) + o(\|x - x_k\|^2)$$

二次近似函数

$$Q(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

L
$$\nabla Q(x) = \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k)$$

若 $\nabla^2 f(x_k)$ 正定,则Q(x)的极小点 \bar{x} 为

$$\nabla f(x_k) + \nabla^2 f(x_k)(x - x_k) = 0$$

的解,即
$$\overline{x} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

把二次函数的极小点作为 X_{k+1} ,则

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

我们称迭代公式

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

为古典Newton法的迭代公式. 其中

$$d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

称为 x_{k} 处的Newton方向.

若 $\nabla^2 f(x_k)$ 正定,则Newton方向是函数f在 x_k 处的一个下降方向、并且是下列线性方程组的解

$$\nabla^2 f(x_k)d + \nabla f(x_k) = 0$$

为确保算法的下降性,我们在古典Newton法中加入线性搜索,得到Newton迭代公式如下:

$$x_{k+1} = x_k - \alpha_k \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

2、Newton法的算法步骤

算法3.2 (Newton法)

步1 给定初始点 $x_0 \in \mathbb{R}^n$, 精度 $\varepsilon > 0$. 令k = 0;

步2 若 $\|\nabla f(x_k)\| \leq \varepsilon$,则得解 x_k ,算法终止. 否则

解线性方程组

$$\nabla^2 f(x_k) d + \nabla f(x_k) = 0 \tag{3.3}$$

得解 d_k ;

步3 由线性搜索计算步长 α_k ;

少4 令
$$x_{k+1} = x_k + \alpha_k d_k, k := k+1$$
, 转步2.

步长 α 分别采用:

(1) 黄金分割法, (2) Armijo算法, (3) Wolfe-Powell法

例3.2.1 用精确搜索的Newton法求解下面的最优化问题:

$$\min f(x) = \frac{1}{2}x_1^2 + x_2^2 - x_1x_2 - x_1$$

初始点分别取 $\chi^{(0)} = (0, 0)^T n(1, 1)^T$. 该问题的最优解为

$$x^* = (2, 1)^T$$

解 经计算得:
$$\nabla f(x) = \begin{pmatrix} x_1 - x_2 - 1 \\ -x_1 + 2x_2 \end{pmatrix}$$
, $Q = \nabla^2 f(x) = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$

采用精确搜索极小化二次函数的步长公式为

$$\alpha = -\frac{\nabla f(x)^T d}{d^T Q d} = -\frac{(x_1 - x_2 - 1)d_1 + (-x_1 + 2x_2)d_2}{d_1^2 + 2d_2^2 - 2d_1d_2}$$

又Newton方向的表达式为

$$d^{(k)} = -\nabla^2 f(x_k)^{-1} \nabla f(x_k) = -\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} x_1^{(k)} - x_2^{(k)} - 1 \\ -x_1^{(k)} + 2x_2^{(k)} \end{pmatrix} = -\begin{pmatrix} x_1^{(k)} - 2 \\ x_2^{(k)} - 1 \end{pmatrix}$$

表 3.1 例 3.2.1 的计算结果

$x^{(0)}$	\boldsymbol{k}	$x^{(k)}$	$f(x^{(k)})$	$ abla f(x^{(k)})$	$d^{(k)}$	α_k
$(0,0)^{T}$	0	$(0,0)^{T}$	0	$(-1,0)^T \\ (0,0)^T$	$(2,1)^T$	1
	1	$(2,1)^T$	-1	$(0,0)^{T}$		
$(1,1)^T$	0	$(1,1)^{T}$	-1/2	$(-1,1)^T$	$(1,0)^{T}$	1
	1	$(2,1)^{T}$	-1	$(0,0)^T$		

对不同的两个初始点, 经一次迭代求出最优解,

这是偶然还是必然的呢?

定理3.2.1 设

$$f(x) = \frac{1}{2}x^T Q x + q^T x$$

其中Q是n阶对称正定矩阵.则从任意初始点 x_0 出发,采用精确搜索的Newton法最多经一次迭代即可达到f的最小值点.

证明: 由于 $\nabla f(x) = Qx + q, \nabla^2 f(x) = Q$ 正定,即f严格凸

如果 $x_{k+1} = x_k + \alpha_k d_k$, 则 $\nabla f(x_{k+1}) = \nabla f(x_k) + \alpha_k Q d_k$

若 $\nabla f(x_0) = 0$,则 x_0 已经是最优解,即f的最小点;

若 $\nabla f(x_0) \neq 0$,则 $d_0 = -Q^{-1}\nabla f(x_0) \neq 0$ 且精确搜索的步长

$$\alpha_0 = \frac{-\nabla f(x_0)^{\mathrm{T}} d_0}{d_0^{\mathrm{T}} Q d_0} = \frac{\nabla f(x_0)^{\mathrm{T}} Q^{-1} \nabla f(x_0)}{\nabla f(x_0)^{\mathrm{T}} Q^{-1} \nabla f(x_0)} = 1$$

所以

$$\nabla f(x_1) = \nabla f(x_0) + \alpha_0 Q d_0 = \nabla f(x_0) - Q Q^{-1} \nabla f(x_0) = 0$$

即次是最小点

定义3.2.1 若一个算法求解严格凸二次函数极小化问题时, 从任意初始点出发,算法经有限次迭代后可达到函数的最 小值点,则称该算法具有二次终止性

是否具有二次终止性可作为算法有效性的一个标准 最速下降法对一般的严格凸函数不具有二次终止性, 而Newton法具有二次终止性。我们后面要介绍的许多 算法也具有二次终止性。

下面我们来看看最速下降法与Newton法求解二次 函数的比较

考察R2中的二次函数:注意等值线的形状

3、Newton 的收敛性

由前面介绍的下降算法的收敛性,我们很容易得到 Newton法关于非二次函数的全局收敛性结果如下:

定理3.2.2设函数f二次连续可微,且存在常数m > 0,使得 $d^T \nabla^2 f(x) d \geq m \|d\|^2, \forall d \in R^n, x \in \Omega$ (3.4) 其中: $\Omega = \{x | f(x) \leq f(x_0)\}$ 设序列 $\{x_k\}$ 由Newton算法3.2产生,其中步长 α_k 由精确搜索,或 Armijo型搜索,或Wolfe-Powell型搜索确定.则 $\{x_k\}$ 收敛到f在 Ω 中的惟一全局最小点.

4、局部二次收敛性

定理3.2.3 设f在 $\chi^* \in R^n$ 的某个邻域内二次连续可微且 χ^* 满足

 $\nabla f(x^*) = 0, \nabla^2 f(x^*)$ 正定.则存在常数 $\delta > 0$,使得当

$$x_0 \in U_{\delta}(x^*) = \{x \mid ||x - x^*|| < \delta\}$$

时,由单位步长Newton法(古典Newton法)

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k), k = 0, 1, 2, \dots$$

产生的序列 $\{x_k\}$ 超线性收敛于 x^* .此外,若 $\nabla^2 f$ 在 x^* Lipschtiz 连续,

即存在常数L>0, 使得

$$\|\nabla^2 f(x) - \nabla^2 f(x^*)\| \le L \|x - x^*\|, \forall x \in U_{\delta}(x^*)$$

则序列 $\{x_k\}$ 二次收敛于 x^*

定理的证明:(1)收敛性

证明:由于 $\nabla f(x^*) = 0$,且存在常数M > 0使得

$$\|\nabla^2 f(x_k)^{-1}\| \le M, \forall x_k \in U_{\delta}(x^*) = U(x^*, \delta)$$

所以

$$||x_{1}-x^{*}|| = ||x_{0}-x^{*}-\nabla^{2}f(x_{0})^{-1}[\nabla f(x_{0})-\nabla f(x^{*})]|$$

$$= ||\nabla^{2}f(x_{0})^{-1}[\nabla f(x_{0})-\nabla f(x^{*})-\nabla^{2}f(x_{0})(x_{0}-x^{*})]||$$

$$\leq M ||\nabla f(x_{0})-\nabla f(x^{*})-\nabla^{2}f(x_{0})(x_{0}-x^{*})||$$

$$= M ||\int_{0}^{1} ||\nabla^{2}f(x_{0}+t(x^{*}-x_{0}))dt - ||\nabla^{2}f(x_{0})|| ||x_{0}-x^{*}||$$

$$\leq \frac{1}{2}||x_{0}-x^{*}||$$

因为当 x_0 充分靠近 x^* , $||x_0-x^*|| \leq \delta$, δ 充分小时,

$$\|\nabla^2 f(x_0 + t(x^* - x_0)) - \nabla^2 f(x_0)\| \le \frac{1}{2\mathbf{M}}$$

定理的证明:

(2) 收敛速度

证明: 由于 $\nabla f(x^*) = 0$, 且存在常数M > 0 使得 $\|\nabla^2 f(x_k)^{-1}\| \leq M, \forall x_k \in U_\delta(x^*) = U(x^*, \delta)$

所以

$$\| x_{k+1} - x^* \| = \| x_k - x^* - \nabla^2 f(x_k)^{-1} [\nabla f(x_k) - \nabla f(x^*)]$$

$$= \| \nabla^2 f(x_k)^{-1} [\nabla f(x_k) - \nabla f(x^*) - \nabla^2 f(x_k) (x_k - x^*)] \|$$

$$\leq M \| \nabla f(x_k) - \nabla f(x^*) - \nabla^2 f(x_k) (x_k - x^*) \|$$

$$= M * o(\| x_k - x^* \|)$$

即 χ_k 超线性收敛到到 χ^*

如果进一步 $\nabla^2 f(x)$ 在该领域内Lipschitz连续,则有

$$\|x_{k+1} - x^*\| = \|\nabla^2 f(x_k)^{-1} \left[\nabla f(x_k) - \nabla f(x^*) - \nabla^2 f(x_k)(x_k - x^*)\right] \|$$

$$= \|\nabla^2 f(x_k)^{-1} \left[\int_0^1 \nabla^2 f(x^* + \theta(x_k - x^*)) d\theta - \nabla^2 f(x_k)\right] (x_k - x^*) \|$$

$$\leq ML \|x_k - x^*\|^2$$

即 X_k 二次收敛到到 X^*

由定理3.2.2, 我们看到,当函数f 的Hessian矩阵在 Ω 上一致正定时,Newton法是收敛的. 然而当这一条件不满足时,Newton法可能失效.

例题:考察从初始点 $x^{(0)}=(1,1)^{\mathrm{T}}$ 出发的Newton法求解问题 $\min_{x\in R^2}f(x)=x_1^3+x_1x_2-x_1^2x_2^2$

时,一个精心编制的Newton法计算机程序不成功,试分析失败的大致原因.

$$\mathbf{A}\mathbf{F}: \nabla f(x) = \begin{pmatrix} 3x_1^2 + x_2 - 2x_1x_2^2 \\ x_1 - 2x_1^2x_2 \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} 6x_1 - 2x_2^2 & 1 - 4x_1x_2 \\ 1 - 4x_1x_2 & -2x_1^2 \end{pmatrix}, \quad \nabla^2 f(1,1) = \begin{pmatrix} 4 & -3 \\ -3 & -2 \end{pmatrix}$$

由于 $\nabla^2 f(1,1)$ 是不定的,故在 $x^{(0)}$ 处Newton方向不一定是下降方向,所以…

5、Newton法的修正形式:如何有效计算下降方向

Newton 法要求 $\nabla^2 f(x_k)$ 正定,否则失效

最速下降 - Newton法: 用最速下降方向 替换Newton方向

算法3.3 (修正Newton法)

步1 给定初始点 $x_0 \in \mathbb{R}^n$, 精度 $\varepsilon > 0$. 令k = 0;

步2 若 $\|\nabla f(x_{\iota})\| \leq \varepsilon$, 则得解 x_{ι} , 算法终止. 否则

解线性方程组

$$A_k d + \nabla f(x_k) = 0 \tag{3.3}$$

得解 d_k ,其中 $A_k = \nabla^2 f(x_k) + v_k I, v_k > 0$ 使得 A_k 正定;

步3 由线性搜索计算步长 α_k ;

少4 令 $x_{k+1} = x_k + \alpha_k d_k, k := k+1, 转步2.$

在修正Newton法中,为确保 A_k 的正定性而要求 $v_k>0$ 足够大,而为确保算法的收敛性又要求 v_k 不能太大,即要求

$$v_k \le C \| \nabla f(x_k) \|,$$

C为一常数,但C的确定是一件困难的事情.

算法3.4 (Newton-最速下降法)

步1 给定初始点 $x_0 \in \mathbb{R}^n$,精度 $\varepsilon > 0$.令k = 0;

步2 若 $\|\nabla f(x_k)\| \leq \varepsilon$, 则得解 x_k , 算法终止. 否则

解线性方程组

$$\nabla^2 f(x_k) d + \nabla f(x_k) = 0 \tag{3.5}$$

若有解 d_k 且满足 $\nabla f(x_k)^{\mathrm{T}}d_k < 0$,转步3,

否则取 $d_k = -\nabla f(x_k)$;

步3 由线性搜索计算步长 α_k ;

步4 令 $x_{k+1} = x_k + \alpha_k d_k, k := k+1,$ 转步2.

该算法有较好的稳定性及较快的收敛速度

上面的Newton法的两种修正形式, 在较弱的条件下具有超线性收敛性或二次收敛性.

还有很多其他的修正形式

注意: 当次, 为鞍点时, 即

$$\nabla f(x_k) = 0$$
,但 $\nabla^2 f(x_k)$ 不定

所有修正失效.这时 d_k 可取负曲率方向,即 d_k 满足

$$d_k^T \nabla^2 f(x_k) d_k < 0$$

沿着此方向搜索目标函数值必下降?

Newton法 的优点:收敛快;

缺点:对初始点要求很高。而且

计算量大

从Newton法出发进行修改,利用其优点,克服 其缺点,产生很多效果非常好的其他新算法

作业

- 习题3(李董辉编著)1,8,12,15.
- 思考题: 14 (d(k)满足条件该如何修改才有结论?)
- 练习Matlab编程,分别编写最速下降法,BB法和Newton法的程序,计算11,以及Rosenbock函数的极小值点: $\min f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$

初始点分别取(1.2, 1.2)和(-1.2, 1)。 列出每一步的步长。比较三种算法的优劣。