$E.\frac{2}{9}$

抱佛脚第十一次直播数学练习题解析

 $D.\frac{1}{6}$

1. 甲、乙两人一起去游世博会,他们约定,各自独立从1到6号任选四处进行游览,则

 $C.\frac{5}{36}$

他们最后一个景点相同的概率是().

A. $\frac{1}{36}$ B. $\frac{1}{9}$

【答案】D

	【解析】本题符合古典概型概率.				
	①计算总方法数:两人按照不同顺序任意选景点的方法共有A ₆ A ₆ 4种.				
	②计算满足要求的方法数:两人最后一个景点相同的情况共有 $C_6^1A_5^3A_5^3$ 种.				
	③相除得概率 $P = \frac{C_6^1 A_5^3 A_5^3}{A_6^4 A_6^4} = \frac{1}{6}$.				
	$A_6^4 A_6^4 = 6$				
2.	【2018.12】从标号为1到10的10张卡片中随机抽取2张,它们的标号之和能被5整				
۷.	除的概率为().				
			~ 2	_ 2	_ 7
	$A.\frac{1}{5}$	B. - 9	$2.\frac{2}{9}$	$D.\frac{2}{15}$	$E.\frac{7}{45}$
	【答案】A				
	【解析】本题符合使用穷举法的古典概型.				
	①计算总方法数: 由题意可得从 1 到 10 随便抽取 2 张卡片,有 $C_{10}^2 = 45$ 种方法.				
	②穷举计算满足要求的方法数.				
	两张卡片标号和等于 5 的取法有(1,4)、(2,3)共 2 种;				
	两张卡片标号和等于 10 的取法有(1,9)、(2,8)、(3,7)、(4,6)共 4 种.				
	两张卡片标号和等于 15 的取法有(5, 10)、(6, 9)、(7, 8)共 3 种.				
	所以抽到2张卡片标号加起来能被5整除的方法数一共有2+4+3=9(种).				
	③相除得概率. $P = \frac{2+4+3}{C_{10}^2} = \frac{9}{45} = \frac{1}{5}$.				
3.	设 3 次独立重复试验中,事件 A 发生的概率相等.若 A 至少发生一次的概率为 $\frac{19}{27}$,则事件				
	A发生的概率为 ().				
	$A.\frac{1}{9}$	$B.\frac{2}{9}$	$C.\frac{1}{3}$	$D.\frac{4}{9}$	E. 5
	【答案】C				
	【解析】【标志词汇】至少问题⇒对立事件法 (此即:正难则反)				
	设每次独立重复试验中事件 A 发生的概率为 p ,则有 $1-(1-p)^3=\frac{19}{27}$,解得 $p=\frac{1}{3}$.				
	27 3				

4. 若x,y是实数,则整式5 $x^2 + y^2 - 4xy - 4x + 9$ 的最小值为().

A.3

- B.4
- C.5
- D.6
- E.7

【答案】C

【解析】【标志词汇】利用完全平方公式求代数最值⇒①变形为[常数+()²]求最小值

 $5x^2 + y^2 - 4xy - 4x + 9 = 4x^2 - 4xy + y^2 + x^2 - 4x + 4 + 5 = (2x - y)^2 +$ $(x - 2)^2 + 5 \ge 5$,故所求代数式最小值为 $5. \oplus 2x - y = 0$ 且x - 2 = 0,即x = 2,y = 4时,可取到此最小值.

5. 已知x > 0, y > 0, 点(x,y)在曲线xy = 2上移动,则 $\frac{1}{x} + \frac{1}{y}$ 的最小值是().

 $A.\sqrt{3}$

- $B.\sqrt{5}$
- C.√6
- $D.\sqrt{2}$
- E.2

【答案】D

【解析】此题符合【标志词汇】限制为正+求最值 ⇒ 均值定理.

x > 0,y > 0,满足均值定理使用的前提条件, $\frac{1}{x} + \frac{1}{y} \ge 2\sqrt{\frac{1}{x} \cdot \frac{1}{y}} = 2\sqrt{\frac{1}{xy}} = \frac{2}{\sqrt{2}} = \sqrt{2}$,当且仅当 $\frac{1}{x} = \frac{1}{y}$ 时, $\frac{1}{x} + \frac{1}{y}$ 取最小值 $\sqrt{2}$.