HOMEWORK 3

9.76 The sinusoidal voltage source in the circuit seen in Fig. P9.76 is operating at a frequency of 200 krad/s. The coefficient of coupling is adjusted until the peak amplitude of i_1 is maximum.

- a) What is the value of k?
- b) What is the peak amplitude of i_1 if $v_g = 560 \cos(2 \times 10^5 t) \text{ V}$?

Figure P9.76

9.79 The value of k in the circuit in Fig. P9.79 is adjusted so that $Z_{\rm ab}$ is purely resistive when $\omega=4$ krad/s. Find $Z_{\rm ab}$.

Figure P9.79

9.83 Find the impedance $Z_{\rm ab}$ in the circuit in Fig. P9.83 if $Z_L = 80 / 60^{\circ} \ \Omega$.

Figure P9.83

- 10.51 The values of the parameters in the circuit shown in Fig. P10.51 are $L_1=8\,\mathrm{mH}$; $L_2=2\,\mathrm{mH}$; k=0.75; $R_g=1\,\Omega$; and $R_L=7\,\Omega$. If $v_g=54\sqrt{2}\cos1000t\,\mathrm{V}$, find
 - a) the rms magnitude of v_o
 - b) the average power delivered to $R_{\rm L}$
 - c) the percentage of the average power generated by the ideal voltage source that is delivered to $R_{\rm L}$.

Figure P10.51

- 10.58 The sinusoidal voltage source in the circuit in Fig. P10.58 is operating at a frequency of 20 krad/s. The variable capacitive reactance in the circuit is adjusted until the average power delivered to the 100Ω resistor is as large as possible.
 - a) Find the value of C in microfarads.
 - b) When C has the value found in (a), what is the average power delivered to the 100Ω resistor?
 - c) Replace the 100 Ω resistor with a variable resistor R_o . Specify the value of R_o so that maximum average power is delivered to R_o .
 - d) What is the maximum average power that can be delivered to R_o ?

Figure P10.58

