Statistical Machine Learning (SML)

Winter 2021

Assignment 3

Maximum Marks - 100

Due Date: 23.59 hrs., 31st March,21

Instructions:

- 1. You are free to use either python or MATLAB for this assignment.
- 2. You can use inbuilt libraries for Math, plotting, and handling the data (eg. NumPy, Pandas, Matplotlib).
- 3. Usage instructions for other libraries can be found in the question.
- 4. Only (*.py) and (*.m) files should be submitted for code.
- 5. Create a (*.pdf) report explaining your assumptions, approach, results, and any further detail asked in the question.
- 6. You should be able to replicate your results if required.
- 1. Use MNIST data for this question, and perform the following tasks.
 - a. [5] Visualize 5 samples from each class in the form of images.
 - [10] Implement FDA for multiple classes from scratch, and find the coefficient vector W.
 Note: computation of W will use training samples only.
 - c. [3] Project the training data (X) using W, and call the projection Y.
 - d. [10] Use the projected data Y to classify the testing samples using QDA (Quadratic Discriminant Analysis).
 - Note: You can reuse the implementation of QDA from assignment 2.
 - e. [2] Report the accuracy (the ratio of correctly classified samples to the total number of samples tested).
- 2. In this problem, you will explore **Gaussian process regression** (GPR).
 - a. [5] Generate 5 random samples from a uniform distribution in [0,10], call it X_train. Generate Y train using Y train = X train *exp(X train).
 - b. [10] Compute the matrices K, K*, K** and use cross-validation for obtaining σ and I →
 the parameters of RBF kernel. Consider a range of values for σ and I.
 Perform cross-validation as follows:
 - b.1 For a particular combination of σ and I, take 4 samples to train the GPR and call the remaining sample test point, compute prediction for the test point, and run this 5 times, each time take a different set of samples as training and testing points. Find the error for each run and compute their mean.
 - b.2 Repeat b.1 for each combination of σ and I and choose the values which result in a minimum mean error.

- c. [5] Generate 50 random samples from a uniform distribution in [0,10] and call them X_test. Generate Y_test using Y_test = Y_test * exp (X_test).
- d. [5] Compute the prediction Y_pred for test samples.
- e. [5] Plot the actual values(Y_test) and predicted values(Y_pred) of test samples.

Note: 1) B0 and B* are bias.

2) σ denotes sigmoid functions.

Refer to the given network to perform the following tasks:

a. [10] Determine an expression for all the weights using backpropagation. (Pen-Paper problem)

b. [5] Generate X: Sample 100 points from
$$N(\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

Generate Y: Sample 100 random points from Gaussian distribution (1 dimension), which acts as a label for X.

Use 50 of those samples for training and remaining for testing.

- c. [10] Implement the expression obtained in part a.
- d. [10] Cycle through each point and make an update for the complete training set. Call this as epoch, and do 5 such epoch.
- e. [5] Compute MSE for the test set.