Data Science

Comisión 29825

Predicción de precios de automóviles usados

Integrantes:

- Diego Pokorski
- Edgar García Ramírez

Tutor

• Néstor Jesus Ramírez Reyes

Abstract

Actualmente el uso del automóvil se ha vuelto importante para la vida cotidiana y laboral; por tal motivo se requiere conocer en qué momento y en qué circunstancias es viable comprar un automóvil para cuidar la salud financiera de las personas.

Precisamente hacia esta directriz está encaminado el presente estudio. El estudio muestra el comportamiento de los precios a lo largo de los últimos años, considerando factores como: modelo, fabricante, año, etc. para conocer a fondo la toma de decisiones de este caso de estudio.

En este proyecto se tratará de predecir el precio del próximo año 2023 en base a los datos obtenidos en el dataset.

Es importante mencionar que los datos obtenidos del dataset son de Estados Unidos de América.

Objetivo

Diseñar un modelo de aprendizaje supervisado que permita predecir mediante métodos de regresión el precio de un automóvil en el 2023.

Contexto Comercial

Actualmente el uso del automóvil se ha vuelto importante para la vida cotidiana y laboral; por tal motivo se requiere conocer en qué momento y en qué circunstancias es viable comprar un automóvil para cuidar la salud financiera de las personas.

Precisamente hacia esta directriz está encaminado el presente estudio. El estudio muestra el comportamiento de los precios a lo largo de los últimos años, considerando factores como: modelo, fabricante, año, etc. para conocer a fondo la toma de decisiones de este caso de estudio.

Data Acquisition

Los datos adquiridos son recopilación tipo **Third-Party Data** porque provienen de un website llamada kaggle, es una fuente de datos externa.

Dataset - Used Cars

- enlace: https://www.kaggle.com/datasets/austinreese/craigslist-carstrucks-data
- columnas: 25
- renglones: 426,881
- tamaño: 1.45Gb

Tipo de columnas - Diccionario de datos

id: [INT] auto increment

url: [STRING] URL del website

region: [STRING] Región de la venta

region_url: [STRING] Website de la venta

price: [INT] Precio del automóvil usado

year: [INT] Año de la venta

manufacturer: [STRING] Fabricante

model: [STRING] Modelo

condition: [STRING] Condición: Excellent, fair, good and new

cylinders: [STRING] Números de cilindros

fuel: [STRING] Gasolina: Diesel, electric, gas and hybrid

odometer: [INT] Odometro

title_status: [STRING] Estatus del automóvil: Clean, lien, missing, part only

transmission: [STRING] Transmisión: Automatic or manual

VIN: [STRING] VIN

drive: [STRING] 4wd, fwd, rwd

size: [STRING] Tamaño: Compact, Full-size, mid-size, sub-compact

type: [STRING] Tipo: bus, pickup, van, etc

paint_color: [STRING] Color

image_url: [STRING] URL de la imagen

description: [STRING] Descripción

country: [STRING] País

state: [STRING] Estado

lat: [STRING] Latitud

long: [STRING] Longitud

posting_date: [STRING] Fecha de registro

Exploratory Data

	_																		
id	url	region	region_url	price	year	manufacturer	model	condition	cylinders	size	type	paint_color	image_url	description	county	state	lat	long	posting_date
0 7222695916	https://prescott.craigslist.org/cto/d/prescott	prescott	https://prescott.craigslist.org	6000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	az	NaN	NaN	NaN
1 7218891961	https://fayar.craigslist.org/ctd/d/bentonville	fayetteville	https://fayar.craigslist.org	11900	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	ar	NaN	NaN	NaN
2 7221797935	https://keys.craigslist.org/cto/d/summerland-k	florida keys	https://keys.craigslist.org	21000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN
3 7222270760	https://worcester.craigslist.org/cto/d/west-br	worcester / central MA	https://worcester.craigslist.org	1500	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	ma	NaN	NaN	NaN
4 7210384030	https://greensboro.craigslist.org/cto/d/trinit	greensboro	https://greensboro.craigslist.org	4900	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN
5 rouge v 26 column	nc																		

Devuelve información (número de filas, número de columnas, índices, tipo de las columnas y memoria usado) sobre el DataFrame df.

>>> df.info()

id	0
url	9
region	9
region_url	9
price	9
year	1205
manufacturer	17646
model	5277
condition	174104
cylinders	177678
fuel	3013
odometer	4400
title_status	8242
transmission	2556
VIN	161042
drive	130567
size	306361
type	92858
paint_color	130203
image_url	68
description	70
county	426880
state	0
lat	6549
long	6549
posting_date	68
dtype: int64	

Mostrar la suma de las columnas null or NA del dataset.

>>> df.isnull().sum()

<class 'pandas.core.frame.dataframe'=""></class>								
	Index: 426880			879				
Data	columns (total							
	Column	Non-Nul	ll Count	Dtype				
	id	426880	non-null	int64				
	url	426880	non-null	object				
	region	426880	non-null	object				
	region_url	426880	non-null	object				
	price	426880	non-null	int64				
	year	425675	non-null	float64				
	manufacturer	409234	non-null	object				
	model	421603	non-null	object				
	condition	252776	non-null	object				
	cylinders	249202	non-null	object				
10	fuel	423867	non-null	object				
	odometer	422480	non-null	float64				
12	title_status	418638	non-null	object				
	transmission	424324	non-null	object				
14	VIN	265838	non-null	object				
	drive	296313	non-null	object				
16	size	120519	non-null	object				
17	type	334022	non-null	object				
18	paint_color	296677	non-null	object				
19	image_url	426812	non-null	object				
20	description	426810	non-null	object				
	county	0 non-r	null	float64				
	state	426880	non-null	object				
	lat	420331	non-null	float64				
24	long	420331	non-null	float64				
	posting_date	426812	non-null	object				
dtypes: float64(5), int64(2), object(19)								
memor	v usage: 84 74	- MR						

Devuelve una tupla con el número de filas y columnas del DataFrame df.

>>> df.shape

(426880, 26)

Contiene 426,880 filas y 26 columnas el dataset

Data Wrangling

Validar si existen datos duplicados.

>>> df.duplicated().value_counts()

False 426880 dtype: int64

Determinamos que no existen renglones o registros duplicados.

Mostrar datos con valores NAN (missing values).

>>> df.isna().sum().to_frame()

Mostrar en forma gráfica los missing values

Se validó cuántos valores nulos existen en el dataset con isna() y isnull(). Podemos observar que el campo 'price' no contiene valores nulos, lo que nos indica que tiene valores consistentes. Se eliminarán los registros que tengan NAN en el campo Year debido a que este campo debería de estar con información para que sea útil para el análisis. Podemos observar que las columnas con mayor missing Values son: condition cylinders, VIN, drive, size, type, paint color y country. La única columna que se eliminará porque se encuentra vacía es: county.

posting_date

Dependiente

• price: Cuantitativa continua

Independientes

- year: Cuantitativa discreta
- manufacturer: Cualitativa nominal
- model: Cualitativa nominal
- condition: Cualitativa ordinal
- cylinders: Cualitativa nominal
- fuel: Cualitativa nominal
- odometer: Cuantitativa continua
- title_status: Cualitativa nominal
- transmission: Cualitativa nominal
- drive: Cualitativa nominal
- size: Cualitativa nominal
- type: Cualitativa nominal
- paint_color: Cualitativa nominal
- county: Cualitativa nominal
- state: Cualitativa nominal

Otro

- id
- url
- region
- region_url
- VIN
- image_url
- description
- lat
- long
- posting_date

Análisis exploratorio de datos (EDA)

El resultado final se tiene un dataset con 14 variables y 263,000 registros para el entrenamiento de algoritmos.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 263000 entries, 27 to 426879
Data columns (total 14 columns):
    Column
                  Non-Null Count Dtype
    price
                 263000 non-null int64
                  263000 non-null float64
    manufacturer 263000 non-null object
    mode1
                  263000 non-null object
    condition 263000 non-null object
    cvlinders
                  263000 non-null object
   fuel
                  263000 non-null object
    odometer
                  263000 non-null float64
    title_status 263000 non-null object
    transmission 263000 non-null object
    drive
                 263000 non-null object
11 type
                 263000 non-null object
    paint_color 263000 non-null object
                  263000 non-null object
dtypes: float64(2), int64(1), object(11)
memory usage: 38.2+ MB
```

Resultados

Se realizó la comparación de varios modelos para poder determinar los 4 mejores.

			war						
	models	MSE-test	MSE-train	MAE-test	MAE-train	MAPE-test	MAPE-train	R2-test	R2-train
3	RandomForestRegressor	1.561569e+07	2.284752e+06	2070.953664	778.687233	23.923205	10.529530	0.880907	0.982689
8	BaggingRegressor	1.733819e+07	3.297504e+06	2215.802827	898.490586	22.437685	10.011483	0.867771	0.975016
11	HistGradientBoostingRegressor	2.792163e+07	2.733416e+07	3466.596810	3443.282776	52.424496	52.678377	0.787056	0.792900
10	GradientBoostingRegressor	3.773564e+07	3.750435e+07	4219.852572	4216.961645	79.587147	78.921768	0.712210	0.715844
4	XGBoost	3.776829e+07	3.751762e+07	4223.087198	4221.315063	79.699944	79.041793	0.711961	0.715743
2	KNeighborsRegressor	4.170302e+07	2.620211e+07	3924.933749	3013.264025	34.904382	24.874665	0.681953	0.801477
9	AdaBoostRegressor	5.899451e+07	5.941448e+07	6105.023198	6121.123499	74.794589	74.667208	0.550079	0.549839
1	DecisionTreeRegressor	6.649062e+07	6.616107e+07	6223.134205	6214.139927	86.600596	86.276622	0.492910	0.498723
12	MLPRegressor	7.531137e+07	7.613092e+07	6679.530409	6712.773770	79.182122	78.241575	0.425639	0.423185
0	LinearRegression	8.051063e+07	8.098795e+07	6921.343891	6951.709956	90.844037	88.614647	0.385987	0.386385
5	Ridge	8.051063e+07	8.098795e+07	6921.345577	6951.711660	90.843923	88.614551	0.385987	0.386385
6	Lasso	8.051072e+07	8.098796e+07	6921.502170	6951.862283	90.837392	88.608314	0.385986	0.386385
7	BayesianRidge	8.051082e+07	8.098796e+07	6921.417651	6951.784457	90.839059	88.610442	0.385985	0.386385

	models	MSE-test	MSE-train	MAE-test	MAE-train	MAPE-test	MAPE-train	R2-test	R2-train
0	GridSearchCV para ajustar los hiperparámetros	8.051063e+07	8.098795e+07	6921.343891	6951.709956	90.844037	88.614647	0.385987	0.386385
1	GridSearchCV para ajustar los hiperparámetros	1.431249e+07	1.182778e+05	1891.342383	13.430851	19.902864	3.102846	0.890846	0.999104

El análisis anterior nos muestra que los 4 modelos con mejores resultados, según la métrica de R2 son:

 $Hiperparámetros\ del\ modelo\ Random Forest Regressor(),\ Random Forest Regressor(),\ Bagging Regressor(),\ Hist Gradient Boosting Regressor()$

Análisis de los modelos

H. RandomForestRegressor()

RandomForestRegressor()

BaggingRegressor()

HistGradientBoostingRegressor()

El modelo de aprendizaje automático más eficaz parece ser el modelo **Random Forest Regressor**, que tiene los parámetros de evaluación más bajos.

Ejemplo

Automóvil con las siguientes características:

- Año: 2020
- Cilindros: 4,
- Kilometraje: 100000.0,'
- Marca: nissan'
- Modelo: maxima
- Estado del automóvil: good
- Tipo de combustible: gas
- Estatus: clean
- Transmisión: automatic'
- Modo de tracción trasera: rwd
- Tipo de carrocería: sedan
- Color: blue
- Estado: ca

Predicción: \$26,093.92

	models	Precio estimado
0	Hiperparámetros del modelo RandomForestRegress	26093.92

Insights

- Los campos del dataset: 'id', 'url', 'region_url', 'VIN', 'image_url', 'description', 'lat', 'long', 'posting_date', 'size', 'region', 'posting_date', 'posting_date_format' después del análisis se determinó que no son aptos para obtener una predicción de precios
- La mayor concentración de precios se encuentra entre 2,500.00-44,512.00 USD, 1er y 3er cuartil respectivamente
- La transmisión automática es la que contiene más outliers por arriba de los \$100,000
- En los datos del dataset no existieron rows duplicados, pero si missing values
- 'Good' es la condición más frecuente que se encuentran los automóviles usados, siendo 'New' la menos presente
- '6 Cylinders' tiene mayor presencia en este dataset por lo tanto es directamente proporcional al fuel 'Gas'
- El '4wd' y 'fwd' tienen una presencia similar en el dataset
- 'Sedan' es el tipo de automóvil que más tiene automóviles usados
- 'Silver', 'White' y 'Black' son los colores con mayor presencia en este dataset
- 'Ford', 'Chevrolet' y 'Toyota' tiene los 3 primeros lugares en automóviles usados
- El estado con mayor cantidad de automóviles usados es 'CA' (California)
- Las medidas de tendencia central son: Media = 17,389.72, Mediana = 15,499.00, Moda = \$29,990.00, por lo que obtenemos una curva de asimetría positiva
- Al finalizar las pruebas con diferentes métricas, se concluyó que RandomForestRegressor(), BaggingRegressor() y
 HistGradientBoostingRegressor() son los más óptimos a utilizar para el entrenamiento en este ejemplo

Conclusión

El modelo de aprendizaje automático más eficaz es el modelo **Random Forest Regressor** (optimización GridSearchCV) con una precisión estimada del 89.3% según la métrica R2