• Za ravan α : $2y-5z=1$ napisati jedan njen vektor normale $\vec{n}_{\alpha}=(0,2,-5)$ i koordinate jedne njene tačke $A(0,3,1)$
• Za koje vrednosti parametra $a \in \mathbb{R}$ je sistem linernih jednačina $x+y+z=a \wedge ax+ay+az=1$ nad poljem realnih brojeva: 1) neodređen: $a=1 \vee a=-1$ 2) određen: $nikada$ 3) kontradiktoran: $a \neq 1 \wedge a \neq -1$
• Za vektore $\vec{a}=(1,1,-3)$ i $\vec{b}=(-2,-2,6)$ važi: $\boxed{1}$ $\vec{a}\parallel\vec{b}$ $\boxed{2}$ $\vec{a}\perp\vec{b}$ $\boxed{3}$ $\vec{a}\not\parallel\vec{b}$ $\boxed{4}$
• Koje su od sledećih uređenih n -torki baze vektorskog prostora \mathbb{R}^3 : 1) $\Big((0,0,1),(0,1,0),(1,0,0)\Big)$ 2) $\Big((1,0,0),(0,-1,0)\Big)$ 3) $\Big((0,0,1),(0,1,0),(1,0,0),(1,2,3)\Big)$ 4) $\Big((1,1,1),(2,2,2),(3,3,3)\Big)$
$\bullet \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 3 & 1 & 4 \end{bmatrix} \qquad \begin{vmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 1 \end{vmatrix} = -1 \qquad \begin{bmatrix} 8 & -7 \\ 9 & -8 \end{bmatrix}^{-1} = \begin{bmatrix} 8 & -7 \\ 9 & -8 \end{bmatrix}$
• Ako je $\vec{a} = (0, 1, -3)$ i $\vec{b} = (-1, 1, 2)$, tada je $\vec{a}\vec{b} = -5$ i $\vec{a} \times \vec{b} = (5, 3, 1)$.
• Matrice linearnih transformacija $f(x,y,z) = x + y + z$ i $g(x,y,z) = x$ su:
$\left[\begin{array}{cccc} 1 & 1 & 1 \end{array}\right] \qquad \left[\begin{array}{cccc} 1 & 0 & 0 \end{array}\right]$
• Ispod svake matrice napisati broj koji predstavlja njen rang.
$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $3 \qquad 2 \qquad 2 \qquad 1 \qquad 1 \qquad 2 \qquad 2 \qquad 1 \qquad 0$
* * * * * * * * * * * * * * * * * * * *
• Odrediti vrednosti parametara $a, b \in \mathbb{R}$ za koje je sis- tem
• Neka je $ABCD$ paralelogram, a tačka T težište trougla ACD (BD je dijagonala paralelograma). Izraziti vektor \overrightarrow{AT} kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AB}$ i $\overrightarrow{b} = \overrightarrow{BC}$. $\overrightarrow{AT} = \frac{1}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$
• Izračunati ugao između vektora $\vec{a}=(-1,-1,0)$ i $\vec{b}=(2,0,2)$: $\angle(\vec{a},\vec{b})=\frac{2\pi}{3}$
 U vektorskom prostoru slobodnih vektora, trojka vektora (a, b, c) je: 1) uvek baza, 2) nikad baza, 3) može ali ne mora da bude baza.
 U vektorskom prostoru slobodnih vektora, trojka vektora (a, b, 0) je: 1) uvek nezavisna, 2) uvek zavisna, 3) nekad nezavisna a nekad zavisna.
• Neka je u k -dimenzionalnom vektorskom prostoru V , n -torka vektora (a_1, \ldots, a_n) generatorna za V . Tada je: 1) $k < n$ 2) $k \le n$ 3) $k = n$ 4) $k > n$ 5) $k \ge n$ 6) ništa od prethodnog
• Koji od vektora su karakteristični vektori za matricu $\begin{bmatrix} -1 & 2 \\ 4 & 1 \end{bmatrix}$? 1) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 2) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 3) $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
• Koje od tvrđenja je tačno ako je matrica A' dobijena od matrice A elementarnim transformacijama. 1) $det(A) = det(A')$ 2) $Rang(A) = Rang(A')$ 3) $A \cdot A' = I$ 4) $A = \alpha A'$ za neki skalar α

1) det(A+B) = det(A) + det(B) 2) $det(\lambda A) = \lambda det(A)$ 3) det(AB) = det(A)det(B)4) rang(A+B) = rang(A) + rang(B) 5) rang(AB) = rang(A)rang(B) 6) A(BC) = (AB)C7) A(B+C) = AB + AC 8) AB = BA 9) A + B = B + A

• Koje od tvrđenja je tačno za bilo koje kvadratne matrice A,B,C reda 2 i svaki skalar λ :

- Za svaku linearnu transformaciju $f: \mathbb{R} \to \mathbb{R}$ i svako $x, y \in \mathbb{R}$ tačno je: 1) f(1) = 1 2) |f(0) = 0 3) f(0) = 1 $\boxed{\mathbf{5}}$ f(xy) = x f(y) $\mathbf{6}$ f(-x) = -x $\boxed{\mathbf{7}}$ $f(\lambda + v) = f(\lambda) + f(v)$ za svako $\lambda, v \in \mathbb{R}$ **4)** f(xy) = f(x)f(y)
- ullet Za koje vrednosti parametara $a,b\in\mathbb{R}$ su navedene funkcije linearne transformacije, i za one koje jesu, naći odgovarajuću matricu i diskutovati njen rang:

$$f:\mathbb{R}^3\to\mathbb{R}^2,\ \ f(x,y,z)=(x\sin(a+b)-y-z,y)\qquad (\forall a,b\in\mathbb{R}),\qquad \left[\begin{array}{ccc} \sin(a+b) & -1 & -1)\\ 0 & 1 & 0 \end{array}\right],\quad r=2$$

$$f:\mathbb{R}^2\to\mathbb{R}^2,\ \ f(x,y)=((a-bx)y,x+ab)\qquad b=0,\qquad \left[\begin{array}{cc} 0&a\\1&0\end{array}\right],\quad a=0\Rightarrow r=1,\quad a\neq 0\Rightarrow r=2$$

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = ax + bxy + cy \ b = 0, \ [a \ c], \ (a = 0 \land c = 0) \Rightarrow r = 0, \ (a \neq 0 \lor c \neq 0) \Rightarrow r = 1$$

- Ako je f(0) = 0, tada funkcija f: 1) sigurno jeste linearna transformacija 2) sigurno nije linearna transformacija 3) može a ne mora biti linearna transformacija
- U koji potskup \mathcal{S} skupa tačaka iz \mathbb{R}^2 se funkcijom $f:\mathbb{R}^2\to\mathbb{R}^2, f(x,y)=(x+y,y)$ preslikava unutrašnjost trougla sa temenima u tačkama (-1,0), (1,0) i (0,1)? Skup \mathcal{S} je: unutrašnjost trougla (-1,0), (1,0) i (1,1)
- Koji od sledećih podskupova $U \subseteq \mathbb{R}^3$ je potprostor:
- Neka je a = (0,0,0), b = (1,0,1), c = (1,0,-1), d = (-1,0,1), e = (1,1,1), f = (1,0,0), g = (2,0,2). Odrediti dimenzije sledećih potprostora V vektorskog prostora \mathbb{R}^3 :
 - 1) $V = L(a) \Rightarrow dim(V) = 0$ 2) $V = L(a,b) \Rightarrow dim(V) = 1$
 - **3)** $V = L(a, b, c) \implies dim(V) = 2$ **4)** $V = L(b, c, d) \implies dim(V) = 2$
 - **5)** $V = L(b, c, e) \implies dim(V) = 3$ **6)** $V = L(e, f, q) \implies dim(V) = 3$
- Zaokruži skupove \mathcal{A} za koje je uređna četvorka $(\mathcal{A}, \mathbb{R}, +, \cdot)$ potprostor vektorskog prostora $(\mathcal{F}, \mathbb{R}, +, \cdot)$, gde je $\mathcal{F} = \{f \mid \mathbb{R} \to \mathbb{R}\}, \text{ i za sve } \lambda \in \mathbb{R} \text{ i sve } f, g \in \mathcal{F} \text{ je } (\lambda f)(x) = \lambda f(x), x \in \mathbb{R} \text{ i } (f+g)(x) = f(x) + g(x), x \in \mathbb{R} :$ $\mathcal{A} = \{ f \mid \mathbb{Z} \to \mathbb{Z} \} \quad \boxed{\mathbf{2}} \quad \mathcal{A} = \{ f \in \mathcal{F} \mid a \in \mathbb{R}, \ f(x) = ax \} \quad \boxed{\mathbf{3}} \quad \mathcal{A} = \{ f \in \mathcal{F} \mid a, b \in \mathbb{R}, \ f(x) = a\sin x + b\cos x \}$
 - $\boxed{\mathbf{4)} \quad \mathcal{A} = \{ f \in \mathcal{F} \mid n \in \mathbb{N}, \ p_i \in \mathbb{R}, \ f(x) = p_n x^n + \ldots + p_1 x + p_0 \} } \qquad \boxed{\mathbf{5)} \quad \mathcal{A} = \{ f \in \mathcal{F} \mid a \in \mathbb{R}, \ f(x) = a \} }$
 - 6) $A = \{f \in \mathcal{F} \mid n \in \mathbb{N}, p_i \in \mathbb{Z}, f(x) = p_n x^n + \ldots + p_1 x + p_0\}$ 7) $A = \{f \in \mathcal{F} \mid a \in \mathbb{R}, f(x) = \sin(ax)\}$