

Course: Special Topics (5000)- Big Data

Instructor: Rajeev Maharaj

Presenter: Kiko

Table of contents

Improvements for Data Analysis of Food Industry

Trading Strategy

02

Project Improvements

Check for the Null values data

Scatter between the GDP and Food Expenditures

Standardized/Normalized Coefficients

Standardized Coefficients

const	-2.804359
GDP	8.639437
S&P 500	9.840898
Home Price Index	3.802038
Unemployed Rate	15.157339
Real Personal Income	-0.450195
Retail Sales	-1.302611
CPI	3.686326
dtype: float64	

Normalized Coefficients

GDP	0.201485
S&P 500	0.229505
Home Price Index	0.088669
Unemployed Rate	0.353492
Real Personal Income	0.010499
Retail Sales	0.030379
CPI	0.085971
dtype: float64	

- Standardized coefficients are expressed in units of standard deviations of the IVs and DV, particularly useful when the IVs are measured on different scales or units, as it allows us to standardize the scale and compare the effect sizes
- Normalized coefficients are scaled to the range [0,1], allow us to evaluate the proportional
 contribution of each IV to the overall variation in the DV, while holding all other predictors constant
 and scaling the IVs to the same range.

Compare OLS models

OLS Regression Results							
Dep. Variable:	Food Expendit	ures	R-sau	ared:		0.995	
Model:	room Emponers			R-squared:		0.995	
Method:	Least Squ					1.126e+04	
Date:	Thu, 04 May):	0.00	
Time:				ikelihood:	, -	-1581.3	
No. Observations:			AIC:			3179.	
Df Residuals:		366	BIC:			3210.	
Df Model:		7					
Covariance Type:	nonro	bust					
	coef	std	err	t	P> t	[0.025	0.975]
const						-152.412	
GDP						0.023	
S&P 500				9.841			0.049
Home Price Index						0.121	
Unemployed Rate						9.545	
Real Personal Income							
Retail Sales						-0.000	
CPI	1.4669	0 .	.398	3.686	0.000	0.684	2.249
Omnibus:			Durbin-Watson:		1.266		
Prob(Omnibus):			Jarque-Bera (JB):				
Skew:			Prob(JB):			0.00	
Kurtosis:	91	.619	Cond.	No.		1.41e+07	

OLS Regression Results							
	Food Expendi	tures	R-sq	uared:		0.994	
Model:		OLS	Adj.	R-squared:		0.993	
Method:	Least Sq	uares	F-st	atistic:		777.0	
Date:	Sat, 25 Mar	2023	Prob	(F-statistic)	:	1.00e-34	
Time:	22:	04:09	Log-	Likelihood:		-153.62	
No. Observations:		41	AIC:			323.2	
Df Residuals:		33	BIC:			336.9	
Df Model:		7					
Covariance Type:	nonr	obust					
	coef	std	err	t	P> t	[0.025	0.975]
const	-352.4315	170.	300			-698.909	-5.955
GDP	-0.0074	0.	.013	-0.580	0.566	-0.033	0.019
S&P 500	0.0270	0.	012	2.241	0.032	0.002	0.052
Home Price Index	0.8567	0.	465	1.844	0.074	-0.088	1.802
Unemployed Rate	4.8120	2.	955	1.628	0.113	-1.200	10.824
Real Personal Income	0.0197	0.	.005	3.599	0.001	0.009	0.031
Retail Sales	8.234e-05	0.	.000	0.435	0.666	-0.000	0.000
CPI	3.5342	1.	355	2.608	0.014	0.777	6.292
Omnibus:		8.592	Durb	in-Watson:	.=====	1.825	
Prob(Omnibus):		0.000	Jara	ue-Bera (JB):		29.187	
Skew:		1.261				4.59e-07	
Kurtosis:		6.275	Cond	. No.		4.87e+07	

OLS Model with Monthly Data

OLS Model with Quarterly Data

Bigger sample size, higher R-squared, better and more accurate prediction

VIF Comparison

	variables	VIF
0	GDP	12197.642069
1	S&P 500	325.994025
2	Home Price Index	1689.876666
3	Unemployed Rate	57.352612
4	Real Personal Income	1411.197878
5	Retail Sales	2677.502748
6	CPI	5548.297449

	variables	VIF
0	GDP	749.895225
1	S&P 500	58.660310
2	Home Price Index	135.346486
3	Unemployed Rate	18.375398
4	Real Personal Income	685.659645
5	Retail Sales	1881.955387
6	CPI	956.176722
1		

VIF for Quarterly Data

VIF for Monthly Data

Bigger sample size, lower VIF, mitigating risks of multicollinearity

Autoregression Model

-0.1707

0.1707

What does this mean?

	AutoReg Model Results							
		Expendit	ures	No.	Observations:		272	
Model:		AutoRe	g(8)	Log	Likelihood		-692.995	
Method:	Co				. of innovatio		3.340	
Date:	Thu	, 04 May	2023	AIC			1405.991	
Time:		19:4	7:32	BIC			1441.750	
Sample:			8	HQIO	2		1420.360	
-			272					
THE WAS PROPERTIES AND PROPERTY.		coef	std	err	z	P> z	[0.025	0.975]
const		0.6801	0	.882	0.771	0.441		
Food Expendit	ures.L1	0.5602	0	061	9.225	0.000	0.441	0.679
Food Expendit	ures.L2	0.3304	0	070	4.741	0.000	0.194	0.467
Food Expendit	ures.L3	0.1904	0	073	2.620	0.009	0.048	0.333
Food Expendit	ures.L4	0.0522	0	074	0.709	0.478	-0.092	0.196
Food Expendit	ures.L5	-0.0175	0	074	-0.238	0.812	-0.162	0.127
Food Expendit	ures.L6	-0.0199	0	.073	-0.274	0.784	-0.162	0.122
Food Expendit	ures.L7	0.0692	0	070	0.992	0.321	-0.067	0.206
Food Expendit	ures.L8	-0.1631	0	.061	-2.688	0.007	-0.282	-0.044
			Roo					
	Real	I	magina	ary	Modul	us	Frequency	
AR.1					1.26			
AR.2	-1.1555		+0.512	20j	1.26	38	0.4336	
AR.3	-0.4067		-1.208	35j	1.27	51	-0.3017	
AR.4	-0.4067				1.27			
AR.5	0.9981		-0.000	00j	0.99	81	-0.0000	
AR.6	1.2210		-0.000	00 i	1.22	10	-0.0000	

-1.2227j

+1.2227

The autoregression model shows that past values of Food Expenditures have a significant impact on current values

With the strongest impact coming from the first and second lagged variables. The model can be used to predict future values of Food Expenditures based on past values.

Rapidminer Comparison

←

Comparison

Rapidminer

Attribute	Weight
СРІ	12,988,241
Home Price Index	1,432,044
S&P 500	106,616
Unemployment Rate	73,757
GDP	35,991
Retail Sales	30,543
Real Personal Income	7,459

Linear Model

Attribute	Weight
Unemployment Rate	15.16
S&P 500	9.84
GDP	8.64
Home Price Index	3.80
СЫ	3.69
Retail Sales	1.30
Real Personal Income	0.45

Comparison

Criterion	Value from Rapidminer	Value from Linear Model
Root Mean Squared Error	1.581	12.883
Relative Error	0.16% +/- 0.17%	1.63%
Squared Error	2.501 +/- 6.591	165.961
Squared Correlation	1.000	0.99745

Cluster & Regression

```
Cluster centers:
```

```
[[1.80161587e+02 2.59651436e+06]
```

[1.78874588e+02 1.51909333e+07]

[1.75745935e+02 4.94874783e+06]]

Cluster center with the highest 'Adj Close' value (1.801) and the lowest 'Volume' value (2.59 million) represents a group of stocks with high prices but low trading activity;

Cluster center with the lowest 'Adj Close' value (1.75) and the highest 'Volume' value (4.94 million) represents a group of stocks with lowest price but high trading activity;

A unit increase in the 'Adj Close' feature, the model predicts an increase of 0.9677 in the Close, holding all other features constant.

Coefficients: [9.67770334e-01 -1.17146491e-07 2.19059972e

Intercept: 8.700571860585171

For a unit increase in the 'Volume' feature, the model predicts an increase of 2.1906 in the Close, holding all other features constant.

Regression Model Summary

OLS Regression Results							
Dep. Varia	Dep. Variable: Close			R-squared:			0.972
Model:			OLS	Adj.	R-squared:		0.971
Method:		Least Squa	ares	F-sta	tistic:		2817.
Date:	I	Fri, 05 May 2	2023	Prob	(F-statisti	(c):	1.17e-190
Time:		14:13	L:58	Log-L	ikelihood:		-497.09
No. Observ	ations:		251	AIC:			1002.
Df Residua	ls:		247	BIC:			1016.
Df Model:			3				
Covariance	Type:	nonrol	oust				
				======			
	coef	std err			P> t	[0.025	0.975]
const	8.7006	1.951				4.857	12.544
Adj Close	0.9678	0.011	9	0.555	0.000	0.947	0.989
Volume	-1.171e-07	7.5e-08	-	1.562	0.120	-2.65e-07	3.06e-08
cluster	0.2191	0.175		1.250	0.213	-0.126	0.564
Omnibus:		113.	399	Durbi	======= n-Watson:		0.039
Prob(Omnib	Prob(Omnibus): 0.000			Jarqu	e-Bera (JB)	:	15.754
Skew:					0.000379		
Kurtosis:		1.	821	Cond.	No.		6.39e+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.39e+07. This might indicate that there are strong multicollinearity or other numerical problems.

R-squared value of 0.972 indicates that 97.2% of the variation in the 'Close' stock price is explained by the predictor variables included in the model.

F-statistic of 2817 and its associated probability (p-value) of 1.17e-190 indicate that the overall model is statistically significant and the predictor variables are jointly significant in predicting the 'Close' stock price.

Cluster - Amazon Stock

Data range: 2021-04-27 - 2023-04-26

Distribution of Daily Returns for AMZN 70 20 10 -0.050.00 0.10 Daily Returns

Mean Daily Return: -0.00063726866387762 Standard Deviation of Daily Return: 0.025729389715897808

Positively Skewed (Skewed to the right)

Normal Distribution

Cluster - Amazon Stock

Data range: 2021-04-27 - 2023-04-26

Positively Skewed (Skewed to the right)

Moving Averages

```
5-day roving average:
Date
2021-04-27
                      NaN
2021-04-28
                      NaN
2021-04-29
                      NaN
2021-04-30
                      NaN
2021-05-03
              172.011502
                  . . .
2023-04-20
              103.132001
2023-04-21
              104.022000
2023-04-24
              104.716000
2023-04-25
              104.770000
2023-04-26
              104.906000
Name: Adj Close, Length: 504, dtype: float64
10-day moving average:
Date
2021-04-27
                      NaN
2021-04-28
                      NaN
2021-04-29
                      NaN
2021-04-30
                      NaN
2021-05-03
                      NaN
                  . . .
2023-04-20
              102.004000
2023-04-21
              102.494000
2023-04-24
              102.898000
2023-04-25
              103.163001
2023-04-26
              103.878001
Name: Adj Close, Length: 504, dtype: float64
20-day moving average:
рате
2021-04-27
                   NaN
2021-04-28
                   NaN
2021-04-29
                   NaN
2021-04-30
                   NaN
2021-05-03
                   NaN
                . . .
2023-04-20
              101.2580
2023-04-21
              101.6705
2023-04-24
              102.0745
2023-04-25
              102.3010
2023-04-26
              102.6880
Name: Adj Close, Length: 504, dtype: float64
```

```
50-day moving average:
Date
2021-04-27
                  NaN
2021-04-28
                  NaN
2021-04-29
                  NaN
2021-04-30
                  NaN
2021-05-03
                  NaN
               . . .
2023-04-20
              98.1482
2023-04-21
              98.2864
2023-04-24
              98.4458
2023-04-25
              98.5450
2023-04-26
              98.6538
Name: Adj Close, Length: 504, dtype: float64
100-day noving average:
Date
2021-04-27
                  NaN
2021-04-28
                  NaN
2021-04-29
                  NaN
2021-04-30
                  NaN
2021-05-03
                  NaN
               . . .
2023-04-20
              95.4062
2023-04-21
              95.5417
2023-04-24
              95.6643
2023-04-25
              95.7658
2023-04-26
              95.8502
Name: Adj Close, Length: 504, dtype: float64
200-day noving average:
Date
2021-04-27
                    NaN
2021-04-28
                    NaN
2021-04-29
                    NaN
2021-04-30
                    NaN
2021-05-03
                    NaN
                . . .
2023-04-20
              107.03585
2023-04-21
              106.99900
2023-04-24
              106.94840
2023-04-25
              106.88355
2023-04-26
              106.84970
Name: Adj Close, Length: 504, dtype: float64
```


Distance From Moving Average

```
Distance from 5-day moving average:
Date
2021-04-27
                   NaN
2021-04-28
                   NaN
2021-04-29
                   NaN
2021-04-30
                   NaN
2021-05-03
             -2.687009
                 . . .
2023-04-20
              0.677997
2023-04-21
              2.937999
2023-04-24
              1.493999
2023-04-25
             -2.200000
2023-04-26
              0.074003
Name: Adi Close, Length: 504, dtvpe: float64
Distance from 10-day moving average:
Date
2021-04-27
                   NaN
2021-04-28
                   NaN
2021-04-29
                   NaN
2021-04-30
                   NaN
2021-05-03
                   NaN
                . . .
2023-04-20
              1.805998
2023-04-21
              4.465999
2023-04-24
              3.311999
2023-04-25
             -0.593001
2023-04-26
              1.102002
Name: Adj Close, Length: 504, dtype: float64
Distance from 20-day moving average:
Date
2021-04-27
                   NaN
2021-04-28
                   NaN
2021-04-29
                   NaN
2021-04-30
                   NaN
2021-05-03
                   NaN
                . . .
2023-04-20
              2.551998
2023-04-21
              5.289499
2023-04-24
              4.135499
              0.269000
2023-04-25
2023-04-26
              2,292003
Name: Adj Close, Length: 504, dtype: float64
```

```
Distance from 50-day moving average:
 Date
2021-04-27
                   NaN
2021-04-28
                   NaN
2021-04-29
                   NaN
2021-04-30
                   NaN
2021-05-03
                   NaN
                . . .
2023-04-20
              5.661798
2023-04-21
              8.673599
2023-04-24
              7.764199
              4.025000
2023-04-25
2023-04-26
              6.326203
Name: Adj Close, Length: 504, dtype: float64
Distance from 100-day moving average:
Date
2021-04-27
                    NaN
2021-04-28
                    NaN
2021-04-29
                    NaN
2021-04-30
                    NaN
2021-05-03
                    NaN
2023-04-20
               8.403798
              11.418299
2023-04-21
2023-04-24
              10.545699
2023-04-25
               6.804200
2023-04-26
               9.129803
Name: Adi Close, Length: 504, dtvpe: float64
Distance from 200-day moving average:
 Date
2021-04-27
                   NaN
2021-04-28
                   NaN
2021-04-29
                   NaN
2021-04-30
                   NaN
2021-05-03
                   NaN
2023-04-20
             -3.225852
2023-04-21
             -0.039001
2023-04-24
             -0.738401
2023-04-25
             -4.313550
2023-04-26
             -1.869697
Name: Adj Close, Length: 504, dtype: float64
```


Standard Deviation

```
# Calculate standard deviation of the stock
std = df['Close'].std()
print(std)
31.408318029079926
```

The closing prices of the AMZN stock are spread out or dispersed on average by 31.4 units away from the mean.

If standard deviation is high, it indicated the stock price is highly volatile and can fluctuate widely from the average price;

If the standard deviation is low, the stock price is less volatile and tends to be stable;

It is a critical tool to assess the degrees of the risk;

Create Signal

```
Signal based on 5-day moving average:
 Date
2021-04-27
2021-04-28
2021-04-29
              sell
2021-04-30
              sell
2021-05-03
2023-04-20
2023-04-21
2023-04-24
               buv
2023-04-25
              sell
2023-04-26
               buy
Name: signal ma5, Length: 504, dtype: object
Signal based on 10-day moving average:
2021-04-27
              sell
2021-04-28
              sell
2021-04-29
2021-04-30
              sell
2021-05-03
              sell
2023-04-20
2023-04-21
2023-04-24
               buy
2023-04-25
              sell
2023-04-26
               buy
Name: signal mal0, Length: 504, dtype: object
Signal based on 20-day moving average:
 Date
2021-04-27
              sell
2021-04-28
2021-04-29
              sell
2021-04-30
              sell
2021-05-03
              sell
2023-04-20
2023-04-21
2023-04-24
2023-04-25
2023-04-26
               buy
Name: signal ma20, Length: 504, dtype: object
```

```
Signal based on 50-day moving average:
 Date
2021-04-27
              sell
2021-04-28
              sell
2021-04-29
              sell
2021-04-30
              sell
2021-05-03
              sell
2023-04-20
               buy
2023-04-21
2023-04-24
               buy
2023-04-25
               buy
2023-04-26
               buy
Name: signal ma50, Length: 504, dtype: object
Signal based on 100-day moving average:
Date
2021-04-27
              sell
2021-04-28
              sell
2021-04-29
              sell
2021-04-30
              sell
2021-05-03
              sell
2023-04-20
2023-04-21
               buy
2023-04-24
               buy
2023-04-25
               buy
2023-04-26
               buy
Name: signal ma100, Length: 504, dtype: object
Signal based on 200-day moving average:
 Date
2021-04-27
              sell
2021-04-28
              sell
2021-04-29
              sell
2021-04-30
              sell
2021-05-03
              sell
2023-04-20
              sell
2023-04-21
              sell
2023-04-24
              sell
2023-04-25
              sell
2023-04-26
              sell
Name: signal ma200, Length: 504, dtype: object
```

trading above a particular moving average can be a useful strategy

it suggests that the stock is in an uptrend and has upward momentum

When the stock price is consistently above the moving average, it indicates that the trend is up, and traders may consider buying the stock in anticipation of further price increases.

More factors to consider: company fundamental, economic conditions, overall marketing trends, etc.

←

Rapidminer

Criterion	Value from Rapidminer
Root Mean Squared Error	6.40
Relative Error	2.9% +/- 2.16%
Squared Error	40.959 +/- 52.167
Squared Correlation	0.965

Attribute	Weight
ma_5	492,223
ma_100	31,373
ma_50	7,788
ma_200	1,667
ma_20	753
ma_10	752

Correlation

```
AMZN
              BAC
                                          INT
                                                            TSLA \
         0.316050
                  0.207868 0.241136 0.269406
                                              0.476263 0.477203
0.316050 1.000000 0.683110 0.694206 0.469716
                                              0.522982 0.284419
0.207868 0.683110 1.000000 0.609137 0.425959
                                              0.423944 0.254490
0.241136 0.694206 0.609137 1.000000 0.380753 0.486613 0.244797
0.269406 0.469716 0.425959 0.380753 1.000000
                                              0.390823 0.136380
0.476263 0.522982 0.423944 0.486613 0.390823
                                              1,000000 0,357895
0.477203 0.284419 0.254490 0.244797 0.136380
                                              0.357895 1.000000
0.331206 0.542879 0.531661 0.436342 0.622621
                                              0.470866 0.257951
0.446870 0.653686 0.564129 0.558591 0.521647
                                              0.608410 0.382373
0.191731 0.648667 0.867385 0.598655 0.343339 0.391003 0.189226
     UNH
                       XOM
0.331206
         0.446870 0.191731
0.542879 0.653686 0.648667
                  0.867385
0.531661 0.564129
0.436342 0.558591 0.598655
0.622621 0.521647 0.343339
0.470866 0.608410 0.391003
0.257951 0.382373 0.189226
1.000000 0.596118 0.429546
0.596118 1.000000 0.497600
0.429546 0.497600 1.000000
```

Cluster Choose

According to Elbow Curve, We Believed that cluster of 3 would be optimal

Cluster

3	Ticker	Cluster	
0	AMZN	1	
1	BAC	2	
2	CVX	2 2 2	
3	GE	2	
4	JNJ	0	
5	NKE	0	
6	TSLA	1	
7	UNH	0	
8	V	0	
9	XOM	2	

