Homework 2

1.

(a) Let $f(n) = 3^{n+1}$ and $g(n) = 3^n$. Examine

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3^{n+1}}{3^n}$$

$$= \lim_{n \to \infty} \frac{3 \cdot 3^n}{3^n}$$

$$= \lim_{n \to \infty} 3$$

$$= 3$$

Since 3 is a constant, then $f(n) \in \Theta(g(n))$

(b) Let $f(n) = 3^{3n}$ and $g(n) = 3^n$. Examine

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3^{3n}}{3^n}$$

$$= \lim_{n \to \infty} \frac{(3^n)^3}{3^n}$$

$$= \lim_{n \to \infty} 3^{2n}$$

$$= \infty$$

So $f(n) \in \Omega(g(n))$.

2.

The list of functions ranked from smallest order of growth to largest is below.

1000,
$$\ln(\ln n)$$
, $\sqrt{\ln(n)}$, $\{\log_5 n, \lg n\}$, $(\lg n)^2$, $(\sqrt{2})^{\lg n}$, $\{n, 1000n + 3, 2^{\lg n}\}$, $\{n \cdot \lg n, \ln(n!)\}$, $\{n^2, 4^{\lg n}\}$, n^3 , $(\frac{3}{2})^n$, 2^n , $n2^n$, e^n , $n!$, $(n+1)!$

3.