CSC165: Problem Set 3

Tiago Ferreira, Pan Chen, Hyun Hak Shin

March 7, 2019

1. (a) **Define** P(n): " $d_{2n-1} \le \sqrt{2n-1}$ ", where $n \in \mathbb{Z}^+$. We want to prove that $\forall n \in \mathbb{Z}^+$, P(n). We are going to use proof by induction on n to prove this statement

Base Case: Let n = 1. Then we have that $d_{2\times 1-1} = d_1 = \frac{1}{d_0} = \frac{1}{1} = 1$. This conclusion comes from the way we defined d_n . We also notice that $\sqrt{2n-1} = \sqrt{1} = 1$. Therefore $1 \le 1$ So, $d_{2n-1} \le \sqrt{2n-1}$ for the base case, as required.

Induction Hypothesis: Let $k \in \mathbb{Z}^+$. We assume P(k), i.e, $d_{2k-1} \le \sqrt{2k-1}$. We want to show P(k+1), i.e. that $d_{2(k+1)-1} \le \sqrt{2(k+1)-1}$. That is, we want to show $d_{2k+1} \le \sqrt{2k+1}$. We notice by the definition of d_n that $d_{2k+1} = \frac{2k+1}{d_{2k}}$ and that $d_{2k} = \frac{2k}{d_{2k-1}}$. This is true because both subscripts are greater than 0(because k is a positive integer, 2k+1>0 and 2k-1>0). Combining these two and because we assume P(k) and both sides are greater than zero for every n in the positive integers, we notice that:

$$d_{2k+1} = \frac{(2k+1) \cdot d_{2k-1}}{2k}$$

$$\leq \frac{(2k+1) \cdot \sqrt{2k-1}}{2k} \text{ (Because from our inductive hypothesis , we know } d_{2k-1} \leq \sqrt{2k-1})$$

Then, we can calculate:

$$d_{2k+1} \leq \frac{(2k+1) \cdot \sqrt{2k-1}}{2k}$$

$$\leq \sqrt{\frac{(2k+1)^2 \cdot (2k-1)}{4k^2}}$$

$$\leq \sqrt{\frac{(2k+1) \cdot (2k+1) \cdot (2k-1)}{4k^2}}$$

$$\leq \sqrt{\frac{(2k+1) \cdot (4k^2-1)}{4k^2}} \quad (Because \ (2k+1)(2k-1) = 4k^2 - 1)$$

$$\leq \sqrt{\frac{(2k+1) \cdot (4k^2-1)}{4k^2}} \quad (Since \ k \in \mathbb{Z}^+, 4k^2 \geq 4k^2 - 1 \ and \ they \ are \ both \ greater \ than \ 0, so \ \frac{1}{4k^2} \leq \frac{1}{4k^2-1}$$

$$\leq \sqrt{(2k+1)}$$

Therefore we have showed that P(k+1) holds which leads to conclude that $\forall n \in \mathbb{Z}^+$, P(n).

(b) *Proof.* Let us start by defining the predicate:

P(n): " $d_{2n} > \sqrt{2n}$ ", where $n \in \mathbb{N}$.

We will prove, $\forall n \in \mathbb{N}, P(n)$ by induction on n.

<u>Base Case:</u> Let n = 0. Then by definition, we know $d_{2n} = d_0 = \sqrt{0} = 1$. And $\sqrt{2n} = \sqrt{2 \times 0} = \sqrt{0} = 0$. So, $d_{2n} > \sqrt{2n}$.

Hence, P(0) holds.

Inductive Step: Let $k \in \mathbb{N}$ and assume P(k), i.e, that $d_{2k} > \sqrt{2k}$. We want to show that P(k+1), i.e, $d_{2(k+1)} > \sqrt{2(k+1)}$.

First, by definition of d_n , we have:

$$d_{2(k+1)} = \frac{2(k+1)}{d_{2(k+1)-1}}$$

$$d_{2(k+1)} = \frac{2(k+1)}{d_{2k+1}}$$

$$d_{2(k+1)} = \frac{2k+2}{d_{2k+1}}$$

And since $k \in \mathbb{N}$, then $k+1 \in \mathbb{Z}^+$, so from the conclusion of (a), we know that $d_{2(k+1)-1} \leq$ $\sqrt{2(k+1)-1}$. That is, $d_{2k+1} \leq \sqrt{2k+1}$. And also by the definition of d_n , we know that, since $k \in \mathbb{N}$, then 2k + 1 > 0 and $d_{2k+1} > 0$. So, we get $\frac{1}{d_{2k+1}} \ge \frac{1}{\sqrt{2k+1}}$.

And we know that
$$d_{2(k+1)} = \frac{2k+2}{d_{2k+1}}$$

So, $d_{2(k+1)} \ge \frac{2k+2}{\sqrt{2k+1}}$ (since $\frac{1}{d_{2k+1}} \ge \frac{1}{\sqrt{2k+1}}$)
So $d_{2(k+1)} > \frac{2k+1}{\sqrt{2k+1}}$ (Because $2k+2 > 2k+1$)
 $d_{2(k+1)} > \frac{(2k+1)\sqrt{2k+1}}{\sqrt{2k+1}\sqrt{2k+1}}$
 $d_{2(k+1)} > \frac{(2k+1)\sqrt{2k+1}}{2k+1}$
 $d_{2(k+1)} > \sqrt{2k+1}$
Therefore $P(k+1)$ also holds. So we comple

So
$$d_{2(k+1)} > \frac{2k+1}{\sqrt{2k+1}}$$
 (Because $2k+2 > 2k+1$)

$$d_{2(k+1)} > \frac{(2k+1)\sqrt{2k+1}}{\sqrt{2k+1}\sqrt{2k+1}}$$

$$d_{2(k+1)} > \frac{(2k+1)\sqrt{2k+1}}{2k+1}$$

$$d_{2(k+1)} > \sqrt{2k+1}$$

Therefore, P(k+1) also holds. So we completed the proof for $\forall n \in \mathbb{N}, P(n)$.

2. (a) (i): The decimal value of the balanced ternary number $(T011T)_{bt}$ is:

$$(-1) \times 3^4 + 0 \times 3^3 + 1 \times 3^2 + 1 \times 3^1 + (-1) \times 3^0$$

= $-81 + 0 + 9 + 3 - 1$

$$= -70$$

(ii): Because we know that:

$$210 = 243 - 27 - 9 + 3$$

$$= 1 \times 3^5 - 1 \times 3^3 - 1 \times 3^2 + 1 \times 3^1$$

$$= 1 \times 3^5 + 0 \times 3^4 + (-1) \times 3^3 + (-1) \times 3^2 + 1 \times 3^1 + 0 \times 3^0$$

So, by the definition of balanced ternary, we know that 210 can be represented as $(10TT10)_{bt}$.

(b) *Proof.* We will Use proof by induction for this proof

Define Predicate:

$$P(n)$$
: "6 | $3^n - 3$ ", where $n \in \mathbb{Z}^+$

We want to show $\forall n \in \mathbb{Z}^+, P(n)$

Base case:

Let n = 1. We want to prove P(1). $3^n - 3 = 3^1 - 3 = 3 - 3 = 0$

We will show $6 \mid 0$. That is, $\exists k \in \mathbb{Z}, 0 = 6k$. Let k = 0. Then we have $0 = 6 \cdot 0 = 6k$. So, $6 \mid 3^n - 3$. Base case holds.

Inductive Step:

We want to show $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$.

Let $k \in \mathbb{N}$ and assume P(k) is true. We want to show P(k+1). That is, $\exists t \in \mathbb{Z}, 3^{k+1} - 3 = 6t$.

From inductive hypothesis we know, $6 \mid 3^k - 3$. So we know there exist $t_0 \in \mathbb{Z}$ such that $3^k - 3 = 6 \cdot t_0$. Let $t = 3 \cdot t_0 + 1$. Then,

$$3^{k} - 3 = 6t_{0}$$

$$3(3^{k} - 3) = 6t_{0} \cdot 3$$

$$3^{k+1} - 9 = 18 \cdot t_{0}$$

$$3^{k+1} - 9 + 6 = 18t_{0} + 6$$

$$3^{k+1} - 3 = 18t_{0} + 6$$

$$3^{k+1} - 3 = 6(3t_{0} + 1)$$

$$3^{k+1} - 3 = 6t$$

Hence, $6 \mid 3^{k+1} - 3$. So, P(k+1) holds.

We have shown $\forall n \in \mathbb{Z}^+, 6 \mid 3^n - 3$. The proof is completed.

(c) Proof. We will Use proof by induction on n for this proof

Define Predicate:

 $P(n): "\forall x \in \mathbb{N}, \left(\exists d_0, d_1, \dots, d_{n-2}, d_{n-1} \in \{0, 1\}, x = \sum_{i=0}^{n-1} d_i \cdot 3^i\right) \Longrightarrow \left(6 + x - 2 \wedge 6 + x - 5\right)", \text{ where } n \in \mathbb{Z}^+.$

Also, we say a positive integer x is n-positively balanced if and only if $\exists d_0, d_1, \dots, d_{n-2}, d_{n-1} \in \{0, 1\}$ such that x can be expressed as $(d_{n-1}d_{n-2}\cdots d_0)_{bt}$. In this case, $x = \sum_{i=0}^{n-1} d_i \cdot 3^i$.

Base case:

Let n = 1. We want to show P(1) is true.

That is, Let $x \in \mathbb{N}$, assume x is 1-digit positively balanced. We want to show $6 \nmid x - 2 \land 6 \nmid x - 5$. Since x is 1-digit positively balanced, $x = (0)_{bt}$ or $x = (1)_{bt}$. We are going to show that base case holds in two parts.

Part 1:
$$x = (0)_{bt}$$

 $x = (0)_{bt} = 0 \cdot 3^0 = 0$
If $x = 0$, then $\frac{x-2}{6} = \frac{0-2}{6} = -\frac{2}{6} \notin \mathbb{Z}$
Also, $\frac{x-5}{6} = \frac{0-5}{6} = -\frac{5}{6} \notin \mathbb{Z}$
So, $6 + x - 2 \wedge 6 + x - 5$
Part 2: $x = (1)_{bt}$
 $x = (1)_{bt} = 1 \cdot 3^0 = 1$
If $x = 1$, then $\frac{x-2}{6} = \frac{1-2}{6} = -\frac{1}{6} \notin \mathbb{Z}$
Also, $\frac{x-5}{6} = \frac{1-5}{6} = -\frac{4}{6} \notin \mathbb{Z}$
So, $6 + x - 2 \wedge 6 + x - 5$

Therefore we have shown the base case P(1) holds.

Inductive Step:

 $\overline{\text{Let } k \in \mathbb{Z}^+}$. We want to show $P(k) \Longrightarrow P(k+1)$ for all $k \in \mathbb{Z}^+$.

Assume P(k) is true. That is, $\forall x \in \mathbb{N}$, $(x \text{ is k-digit positively balanced}) <math>\Rightarrow 6 \nmid x - 2 \land 6 \nmid x - 5$. We want to show P(k+1). That is, $\forall x \in \mathbb{N}, (x \text{ is } (k+1)\text{-digit positively balanced}) \Rightarrow 6 + x - 2 \land 6 + x - 5.$

Let $y \in \mathbb{N}$ and assume y is k+1 digit positively balanced which can be expressed as $(d_k d_{k-1} \cdots d_0)_{bt}$ where $d_i \in \{0, 1\}$

We want to show that $6 \nmid y - 2 \land 6 \nmid y - 5$.

Also, let $t = (d_{k-1}d_{k-2} \cdots d_0)_{bt}$, by definition of positively balanced, we know that t is k-digit positively balanced.

Then we know from inductive hypothesis that $\forall x \in \mathbb{N}, (x \text{ is k-digit positively balanced}) \Rightarrow 6 \neq$ $x-2 \land 6 \nmid x-5$, and since from our assumption t is k-digit positively balanced, so $6 \nmid t-2 \land 6 \nmid t-5$.

And since $t = (d_{k-1}d_{k-2}\cdots d_0)_{bt}$, and $y = (d_kd_{k-1}\cdots d_0)_{bt}$, so from the definition of balanced ternary and positively balanced, we know that d_k is 0 or 1. And $y = t + d_k \times 3^k$

We will use prove $6 + y - 2 \land 6 + y - 5$ by cases depending on the value of d_k ; $d_k = 0$ and $d_k = 1$.

Case 1: $d_k = 0$

Then, $y = t + 0 \times 3^k = t$

From our induction hypothesis, we know that $6 + t - 2 \wedge 6 + t - 5$.

Therefore, $6 + y - 2 \wedge 6 + y - 5$.

Case 2: $d_k = 1$

Then, $y = t + 1 \times 3^k = t + 3^k$

we are going to show that $6 \nmid y - 2 \land 6 \nmid y - 5$.

Part 1: Prove $6 \nmid y - 2$

From b), we know since $k \in \mathbb{Z}^+$, then $6 \mid 3^k - 3$. So, $\exists m \in \mathbb{Z}, 3^k - 3 = 6m$.

Then,
$$y-2 = t + 3^{k} - 2$$
$$y-2 = t + (3^{k} - 3) + 1$$
$$y-2 = t + 6m + 1$$
$$\frac{y-2}{6} = \frac{t+1}{6} + m \tag{1}$$

We will show that $\frac{y-2}{6} \notin \mathbb{Z}$: From Quotient Remainder Theorem (QRT), we know since $t \in \mathbb{Z}$ and $6 \in \mathbb{Z}^+$, there exist $q, r \in \mathbb{Z}$ such that t = 6q + r and $0 \le r < 6$ where r is unique. We will show $r \ne 5$ by contradiction.

Assume r = 5, then $t = 6 \cdot q + 5$.

We will show that $6 \mid t - 5$, i.e, $i \in \mathbb{Z}, t - 5 = 6 \times i$.

Let i = q. Then, we have:

t - 5 = 6q + 5 - 5 = 6q = 6i

So, $6 \mid t-5$ and this is contradiction to our previous conclusion $6 \nmid t-5$..

Therefore, $r \neq 5$.

Now, back to (1),
$$\frac{y-2}{6} = \frac{t+1}{6} + m$$

$$= \frac{6q+r+1}{6} + m$$

$$= \frac{r+1}{6} + q + m$$

Since $r \in \mathbb{Z}, 0 \le r < 6$ and $r \ne 5$, r can only be 0, 1, 2, 3, 4. But we know that:

$$\frac{0+1}{6} = \frac{1}{6} \notin \mathbb{Z}$$

$$\frac{1+1}{6} = \frac{1}{3} \notin \mathbb{Z}$$

$$\frac{2+1}{6} = \frac{1}{2} \notin \mathbb{Z}$$

$$\frac{3+1}{6} = \frac{2}{3} \notin \mathbb{Z}$$

$$\frac{4+1}{6} = \frac{5}{6} \notin \mathbb{Z}$$

So, there is no integer r that satisfies $\frac{r+1}{6} \in \mathbb{Z}$. Therefore, $\frac{r+1}{6} \notin \mathbb{Z}$, then $\frac{r+1}{6} + q + m \notin \mathbb{Z}$ (since $m, q \in \mathbb{Z}$). And also from our previous induction we know that $\frac{y-2}{6} = \frac{r+1}{6} + q + m$, so $6 \nmid y-2$.

Part 1: Prove $6 \nmid y - 5$

From b), we know $6 \mid 3^k - 3$. since $k \in \mathbb{Z}^+$ So, $\exists m \in \mathbb{Z}, 3^k - 3 = 6m$.

Then,
$$y-5 = t+3^{k}-5$$
$$y-5 = t+6m-2$$
$$\frac{y-5}{6} = \frac{t-2}{6} + m$$
 (2)

We will show that $\frac{y-5}{6} \notin \mathbb{Z}$: From Quotient Remainder Theorem (QRT), we know since $t \in \mathbb{Z}$ and $6 \in \mathbb{Z}^+$, there exist $q, r \in \mathbb{Z}$ such that t = 6q + r and $0 \le r < 6$ where r is unique. We will show $r \ne 5$ by contradiction.

Assume r = 2, then $t = 6 \cdot q + 2$. We will show that $6 \mid t - 5$, i.e, $i \in \mathbb{Z}, t - 5 = 6 \times i$. Let i = q. Then, we have: t - 2 = 6q + 2 - 2 = 6q = 6i

So, $6 \mid t-2$ and this is contradiction to our previous conclusion $6 \nmid t-2$.. Therefore, $r \neq 2$.

Now, back to (2),
$$\frac{y-5}{6} = \frac{t-2}{6} + m$$

$$= \frac{6q+r-2}{6} + m$$

$$= \frac{r-2}{6} + q + m$$

Since $r \in \mathbb{Z}$, $0 \le r < 6$ and $r \ne 2$, r can only be 0, 1, 3, 4, 5. But we know that:

$$\frac{0-2}{6} = -\frac{1}{3} \notin \mathbb{Z}$$

$$\frac{1-2}{6} = -\frac{1}{6} \notin \mathbb{Z}$$

$$\frac{3-2}{6} = \frac{1}{6} \notin \mathbb{Z}$$

$$\frac{4-2}{6} = \frac{1}{3} \notin \mathbb{Z}$$

$$\frac{5-2}{6} = \frac{1}{2} \notin \mathbb{Z}$$

So, there is no integer r that satisfies $\frac{r-2}{6} \in \mathbb{Z}$. Therefore, $\frac{r-2}{6} \notin \mathbb{Z}$, then $\frac{r-2}{6} + q + m \notin \mathbb{Z}$ (since $m, q \in \mathbb{Z}$). And also from our previous induction we know that $\frac{y-5}{6} = \frac{r-2}{6} + q + m$, so 6 + y - 5.

Hence, we have proven that $\forall k \in \mathbb{Z}^+, \forall y \in \mathbb{N}, (y \text{ is } (k+1)\text{-digit positively balanced}) \Rightarrow 6 \nmid y-2 \land 6 \nmid y-5.$

Combined with our basic case, we have completed the proof that $\forall n \in \mathbb{Z}^+, \forall x \in \mathbb{N}, (x \text{ is } n\text{-digit positively balanced}) \Rightarrow 6 \nmid x - 2 \land 6 \nmid x - 5.$

3. (a) We are going to disprove it by proving its negation: $\forall k \in \mathbb{N}, n^n \notin \mathcal{O}(n^k)$, i.e, $\forall k \in \mathbb{N}, \forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \geq n_0 \wedge n^n > c \cdot n^k$.

Let $k \in \mathbb{N}$. Also let $c, n_0 \in \mathbb{R}^+$. We want to show that $\exists n \in \mathbb{N}, n \ge n_0 \land (n^n > c \cdot n^k)$.

Let
$$n = [n_0 + c + k + 1].$$

Since we know that $n_0, c \in \mathbb{R}^+$, so, $n_0 > 0, c > 0$.

And since $k \in \mathbb{N}$, so $k \ge 0$, then $k + 1 \ge 1$.

Therefore, $n_0 + c + k + 1 > n_0$, $n_0 + c + k + 1 > c$, and $n_0 + c + k + 1 > k + 1$.

So, by the definition of ceiling, we know that:

$$\begin{bmatrix}
 n_0 + c + k + 1
 \end{bmatrix} \ge n_0 + c + k + 1 > n_0
 [n_0 + c + k + 1] \ge n_0 + c + k + 1 > c
 [n_0 + c + k + 1] \ge n_0 + c + k + 1 > k + 1$$

Thus, $n > n_0$, n > c, and n > k + 1. First, $n \ge n_0$ is satisfied.

And since n > k + 1 and $k \ge 0$, so n > 1. Note that we define $0^0 = 0$ for this question.

Then we can calculate:

$$n^{n} = n \cdot n^{n-1}$$

 $n^{n} > c \cdot n^{n-1}$ (Because $n > c$ from our previous induction)
 $n^{n} > c \cdot n^{k}$ (Because $n > k+1$, so $n-1 > k$)

Therefore we have proved the negation as required, which disproves the original statement.

(b) We are going to prove that $165n^5 + n^2 \in \mathcal{O}(n^5 - n^3)$, i.e, $\exists n_0, c \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow 165n^5 + n^2 \le c \cdot (n^5 - n^3)$.

Let $n_0 = 3$, c = 200. And Let $n \in \mathbb{N}$, assume $n \ge n_0$. So, we have:

$$c \cdot (n^{5} - n^{3}) = 200 \cdot (n^{5} - n^{3})$$

$$= 200n^{5} - 200n^{3}$$

$$= 165n^{5} + 35n^{5} - 200n^{3} \ (Because \ 200n^{5} = 165n^{5} + 35n^{5})$$

$$= 165n^{5} + 35n^{2} \cdot n^{3} - 200n^{3} \ (Because \ n^{5} = n^{2} \cdot n^{3})$$

$$\geq 165n^{5} + 35 \times 9 \cdot n^{3} - 200n^{3} \ (Since \ n \geq n_{0} \ and \ n_{0} = 3, \ so \ n \geq 3. \ Thus, \ n^{2} \geq 3^{2}, \ so \ n^{2} \geq 9)$$

$$\geq 165n^{5} + 315n^{3} - 200n^{3}$$

$$\geq 165n^{5} + 115n^{3}$$

$$\geq 165n^{5} + 115 \cdot n \cdot n^{2}$$

$$\geq 165n^{5} + n^{2} \ (Because \ n \geq 3 \ so \ 115 \cdot n \geq 1)$$

Hence, we have proved that $\exists n_0, c \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow 165n^5 + n^2 \leq c \cdot (n^5 - n^3)$. That is, $165n^5 + n^2 \in \mathcal{O}(n^5 - n^3)$.

(c) We will be disproving the statement: $4^{n^2} \in \Theta(4^{n^2+n})$ by proving its negation: $4^{n^2} \notin \Theta(4^{n^2+n})$, i.e, $4^{n^2} \notin \mathcal{O}(4^{n^2+n}) \vee 4^{n^2} \notin \Omega(4^{n^2+n})$.

For the negation to be true we just need to prove $4^{n^2} \notin \mathcal{O}(4^{n^2+n})$ or $4^{n^2} \notin \Omega(4^{n^2+n})$. We will prove $4^{n^2} \notin \Omega(4^{n^2+n})$, i.e. $\forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \geq n_0 \wedge 4^{n^2} < c \cdot 4^{n^2+n}$.

Let $c, n_0 \in \mathbb{R}^+$. Let $n = max(\lceil n_0 \rceil, \lceil -log_4c \rceil + 1)$. By the way we defined $n, n \ge \lceil n_0 \rceil \land n \ge (\lceil -log_4c \rceil + 1)$ So, $n \ge n_0 \land n \ge -log_4c + 1$, by the definition of ceiling functions.

And since $n \ge -log_4c + 1$, we know that $n > -log_4c$.

Then we can calculate:

$$n > -log_4c$$

$$n + log_4c > 0$$

$$n^2 + n + log_4c > n^2$$

Rewrite $n^2 + n$ as $log_4(4^{n^2+n})$ and rewrite n^2 as $log_44^{n^2}$ which we can do by properties of logarithmic functions. We have:

$$log_44^{n^2+n} + log_4c > log_44^{n^2}$$

 $log_4c \cdot 4^{n^2+n} > log_44^{n^2}$ (from the properties of logarithms).

And we then notice that because the base 4 > 1, so, log_4n is a strictly increasing function (non-decreasing). So, $\forall x, y \in R^{\geq 0}, x \leq y \Rightarrow log_4x \leq log_4y$. And the contrapositive is $\forall x, y \in R^{\geq 0}, log_4x > log_4y \Rightarrow x > y$

And we know since $c \in \mathbb{R}^+$, $n \in \mathbb{N}$, so $c \cdot 4^{n^2+n}$, $4^{n^2} \in \mathbb{R}^+$. And because $\log_4 c \cdot 4^{n^2+n} > \log_4 4^{n^2}$, so $c \cdot 4^{n^2+n} > 4^{n^2}$. That is, $4^{n^2} < c \cdot 4^{n^2+n}$.

Therefore we have proved the negation as required, which disproves the original statement.

(d) We want to prove that for every function $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$, if f is non-decreasing and $f(n) = n^2$ for every $n \in \mathbb{N}$ that is a power of two, then $f \in \Theta(n^2)$, i.e we want to prove:

 $\forall f: \mathbb{N} \to \mathbb{R}^{\geq 0}, (\forall x, y \in \mathbb{N}, x \leq y \Rightarrow f(x) \leq f(y)) \land (\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 2^k) \Rightarrow f(n) = n^2) \Rightarrow f \in \mathcal{O}(n^2) \land f \in \Omega(n^2).$

proof:

Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$. Assume $(\forall x, y \in \mathbb{N}, x \leq y \Rightarrow f(x) \leq f(y))$ and $(\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 2^k) \Rightarrow f(n) = n^2)$. We want to show $f \in \mathcal{O}(n^2) \land f \in \Omega(n^2)$.

Part 1: $(f \in \mathcal{O}(n^2))$: We are going to prove $f \in \mathcal{O}(n^2)$, i.e, $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \leq c \cdot n^2$.

Let $c = 4, n_0 = 1$. Let $n \in \mathbb{N}$, and assume that $n \ge n_0$. We are going to show that $f(n) \le c \cdot n^2$

First, Since we know that $n = 2^{\log_2 2^n}$ by properties of logarithmic functions and by the definition of ceiling we know that $\log_2 2^n \leq \lceil \log_2 2^n \rceil$, then $n = 2^{\log_2 2^n} \leq 2^{\lceil \log_2 2^n \rceil}$

And since from our assumption, we know that $\forall x, y \in \mathbb{N}, x \leq y \Rightarrow f(x) \leq f(y)$, so we get $f(n) = f(2^{\log_2 2^n}) \leq f(2^{\lceil \log_2 2^n \rceil})$.

Since base 2 > 0, $\lceil log_2 2^n \rceil \ge \lceil log_2 2^0 \rceil$ (because $n \in \mathbb{N}$, so $n \ge 0$), so $\lceil log_2 2^n \rceil \ge 0$, Therefore $\lceil log_2 2^n \rceil \in \mathbb{N}$.

And we are going to show that $2^{\lceil \log_2 2^n \rceil}$ is a power of 2, i.e, $\exists k \in \mathbb{N}, 2^{\lceil \log_2 2^n \rceil} = 2^k$.

Let $k = \lceil log_2 2^n \rceil$.

Then, $2^{\lceil log_2 2^n \rceil} = 2^k$. So, $2^{\lceil log_2 2^n \rceil}$ is a power of two.

So by assumption, since we have proven that $2^{\lceil \log_2 2^n \rceil}$ is a power of two, then we can say that $f(2^{\lceil \log_2 2^n \rceil}) = (2^{\lceil \log_2 2^n \rceil})^2$.

And since from our previous induction, we know that $f(n) \leq f(2^{\lceil \log_2 2^n \rceil})$, we have $f(n) \leq (2^{\lceil \log_2 2^n \rceil})^2$.

And since from the definition of ceiling, we know $\exists \epsilon \in \mathbb{R}, \lceil log_2 2^n \rceil = log_2 2^n + \epsilon \land 0 \le \epsilon < 1$. So we will rewrite $\lceil log_2 2^n \rceil$ as $log_2 2^n + \epsilon$.

Then we can calculate:

$$f(n) \leq f(2^{\lceil \log_2 2^n \rceil})$$

$$\leq (\lceil \log_2 2^n \rceil)^2 \text{ (Because from our previous assumption we know } 2^{\lceil \log_2 2^n \rceil} \text{ is a power of 2})$$

$$\leq (2^{\log_2 2^n + \epsilon})^2 \text{ (Since } \lceil \log_2 2^n \rceil = \log_2 2^n + \epsilon)$$

$$\leq (2^{\log_2 2^n + 1})^2 \text{ (Because } \epsilon < 1, \text{ so } \epsilon \le 1)$$

$$\leq (2 \times 2^{\log_2 2^n})^2$$

$$\leq (2 \cdot n)^2$$

$$\leq 4 \cdot n^2$$

$$\leq c \cdot n^2 \text{ (Because } c = 4)$$

So, we have prove that $\forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \leq c \cdot n^2$, so $f(n) \in \mathcal{O}(n^2)$

Part 2: $(f \in \Omega(n^2))$: We are going to prove $f \in \Omega(n^2)$, i.e, $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \geq c \cdot n^2$.

Let $c = \frac{1}{2}$, $n_0 = 1$. Let $n \in \mathbb{N}$, and assume that $n \ge n_0$. We are going to show that $f(n) \ge c \cdot n^2$

First, Since we know that $n = 2^{\log_2 2^n}$. And by the definition of floor, we know that $\log_2 2^n \ge \lfloor \log_2 2^n \rfloor$. Hence, $n = 2^{\log_2 2^n} \ge 2^{\lfloor \log_2 2^n \rfloor}$

From our assumption, we know that $\forall x, y \in \mathbb{N}, x \leq y \Rightarrow f(x) \leq f(y)$, so we get $f(n) = f(2^{\log_2 2^n}) \geq f(2^{\lfloor \log_2 2^n \rfloor})$ because $n \geq 0$.

Notice also that $\lfloor log_2 2^n \rfloor \in \mathbb{N}$ by the definition of the floor function. We now are going to show that $2^{\lfloor log_2 2^n \rfloor}$ is a power of 2, i.e, $\exists k \in \mathbb{N}, 2^{\lfloor log_2 2^n \rfloor} = 2^k$ using this fact.

Let $k = \lfloor \log_2 2^n \rfloor$.

Then, $2^{\lfloor \log_2 2^n \rfloor} = 2^k$. So, $2^{\lfloor \log_2 2^n \rfloor}$ is a power of two.

So by assumption, since $2^{\lfloor \log_2 2^n \rfloor}$ is a power of two, then we can say that $f(2^{\lfloor \log_2 2^n \rfloor}) = (2^{\lfloor \log_2 2^n \rfloor})^2$.

And since from our previous induction, we know that $f(n) \ge f(2^{\lfloor \log_2 2^n \rfloor})$, we have $f(n) \ge (2^{\lfloor \log_2 2^n \rfloor})^2$.

And since from the definition of flooring, we know $\exists \epsilon \in \mathbb{R}, \lfloor log_2 2^n \rfloor = log_2 2^n - \epsilon \wedge 0 \leq \epsilon < 1$. So we will rewrite $\lfloor log_2 2^n \rfloor$ as $log_2 2^n - \epsilon$.

Then we can calculate:

$$\begin{split} f(n) &\geq f(2^{\lfloor \log_2 2^n \rfloor}) \\ &\geq (\lfloor \log_2 2^n \rfloor)^2 \; (Because \; from \; our \; previous \; assumption \; we \; know \; 2^{\lfloor \log_2 2^n \rfloor} \; is \; a \; power \; of \; 2) \\ &\geq (2^{\log_2 2^n - \epsilon})^2 \; (Since \; \lfloor \log_2 2^n \rfloor = \log_2 2^n - \epsilon) \\ &\geq (2^{\log_2 2^n - 1})^2 \; (Because \; \epsilon < 1, \; so \; \epsilon \leq 1) \\ &\geq (2^{-1} \times 2^{\log_2 2^n})^2 \\ &\geq (\frac{1}{2} \cdot n)^2 \\ &\geq \frac{1}{4} \cdot n^2 \\ &\geq c \cdot n^2 \; (Because \; c = \frac{1}{4}) \end{split}$$

So, we have prove that $\forall n \in \mathbb{N}, n \ge n_0 \Rightarrow f(n) \ge c \cdot n^2$, so $f(n) \in \Omega(n^2)$ Therefore, we have proved that $f(n) \in \mathcal{O}(n^2)$ and $f(n) \in \Omega(n^2)$. So, $f(n) \in \Theta(n^2)$ as required.