

Modelling and Simulating Social Systems with MATLAB

**14 December 2015** 

XINGLIANG FANG SEOHO JUNG HUITING ZHANG

# **Presentation Overview**

#### 1. Model



### 2. Implementation

- Driving Profile

- SOC



#### 3. Results and Discussion



- Improved Grid Robustness
- Reduced Cost

## Introduction



### **Solutions**

• Increasing generation

- Managing demand effectively
- -> Underutilization of Facilities

# Model



#### **EV Agent Model**

Every EV receives a charging plan from *EV agent* 

Our interests

: **alleviating peak load** by shifting power consumption of some EVs (improving grid robustness)

: reducing cost of charging

#### **Assumptions**

- EVs only charge at home
- EVs start charging immediately
- All vehicles are Tesla Model S (2015 85D)
- Our analysis is based on electricity pricing and driving profile in Texas

# **IMPLEMENTATION**



# **IMPLEMENTATION**



# **IMPLEMENTATION**



# **A**LTERNATIVE **P**LANS





|                    | Start     | Number of Steps |  |
|--------------------|-----------|-----------------|--|
| Original Plan      | Immediate | 1               |  |
| Alternative Plan 1 | Random    | 1               |  |
| Alternative Plan 2 | Immediate | 2               |  |
| Alternative Plan 3 | Random    | 2               |  |
| Alternative Plan 4 | Immediate | 3               |  |
| Alternative Plan 5 | Random    | 3               |  |

# **RESULTS: PRELIMINARY EXPERIMENT**

### **Original**

- Peak Valley
- -> Robustness of the grid
- Off-Peak Pricing
- -> Cost for the customers
- Diurnal Driving



# **RESULTS: PRELIMINARY EXPERIMENT**

#### **Results**

- Optimization for Robustness
- Scheme 1 (0,1,1,1): AP1 most effective
- Schemes 2 (0,2,2,2)
   and 3 (0,4,4,4)
   : Improvement expected 100
   if first steps determined
   randomly
- Optimization for cost



| Plan | Start     | Steps |
|------|-----------|-------|
| 0    | Immediate | 1     |
| 1    | Random    | 1     |
| 2    | Immediate | 2     |
| 4    | Immediate | 3     |

# **RESULTS: IMPROVING ROBUSTNESS**

|                    | Start     | Steps |
|--------------------|-----------|-------|
| Benchmark          | Immediate | 1     |
| Alternative Plan 1 | Random    | 1     |
| Alternative Plan 3 | Random    | 2     |
| Alternative Plan 5 | Random    | 3     |



1200

1000

800

400

200

0:00

2:00

4:00

POWER/KW

Scheme [0,5,5,5]

Scheme [0,1,3,5]

6:00

8:00

Benchmark

- (a) All four schemes with alternative plans can significantly improve robustness throughout the day
- (b) The number of charging steps in alternative charging plans does not make significant differences



# **RESULTS: IMPROVING ROBUSTNESS**

| Experiment Variables        | Values                          |  |  |
|-----------------------------|---------------------------------|--|--|
| Number of<br>"Flexible" EVs | 0%, 20%, 40%,<br>60%, 80%, 100% |  |  |
| Scheme                      | [0, 1, 3, 5]                    |  |  |

(c) The **more EVs** accept alternative plans, the **more robust** the grid becomes



# **RESULTS: IMPROVING ROBUSTNESS**



(d) The grid robustness, measured in standard deviation, has a **negative near-linear correlation** with the percentage of flexible EVs

# RESULTS: MINIMIZING COST

- (a) Cost decreases as optimization is performed. (32.6% cost saved, when best and worse cases are compared)
- **(b) The higher** the percentage of flexible EVs, **the lower** the total cost





# RESULTS: MINIMIZING COST

(c) Cost minimization has an **impact on grid robustness** 

! Can be a positive influence

! Can be a negative effect (when too many EVs participate)

| Flexibility | 0% (benchmark) | 20%        | 40%        | 60%        | 80%        | 100%       |
|-------------|----------------|------------|------------|------------|------------|------------|
| Average/KW  | 496.037804     | 495.924392 | 495.804309 | 495.644197 | 495.597498 | 495.55747  |
| SDV/KW      | 450.0195038    | 366.037821 | 295.897607 | 255.979446 | 259.316847 | 277.148421 |



# **SUMMARY AND OUTLOOK**

### **Conclusion**

(1) Our smart microgrid improves grid robustness significantly by assigning alternative charging plans to EVs

As more EVs participate,

- (2) Robustness ↑
- (3) Total energy cost  $\downarrow$ , but robustness might  $\downarrow$

### **Outlook**

- (1) Optimization of both cost and robustness
- (2) Easy execution in real life

# **S**OURCES

- [1] Image on Page 1: https://www.teslamotors.com/model-charging
- [2] Power Consumption Graph on Page: R. E. Brown, J. G. Koomey, Electricity Use in California: Past Trends and Present Usage Patterns (2002)