

CURSO: Estruturas de Dados

GRAFOS

-- TEORIA --

Introdução

Um grafo é um conjunto de elementos interconectados de forma matricial, podendo um dado elemento ter apenas uma conexão com outro elemento, como também ter diversas conexões com outros elementos do conjunto.

Figura 1

Na teoria dos grafos, cada elemento é denominado "vértice" e cada conexão é denominada "aresta".

No grafo da Figura 1 - A e B são vértices que se conectam, cada um deles, a outros três; C se conecta somente a D; D, por sua vez, se conecta a todos os demais do conjunto.

Costuma-se manter a representação do idioma inglês, denominando as arestas pela letra **E** (*edge*). A palavra vértice coincide com a do inglês, portanto mantém-se a letra **V**.

Pode-se designar um vértice apenas pela sua identificação, p. ex. A, ou como por V(A). As arestas são designadas pela letra E com as identificações dos dois vértices conectados, p. ex. E(A,B).

Observe que a aresta é graficamente representada como uma linha de ligação entre dois vértices, comumente designada "arco", mas a linha em si só tem sentido se designada pelos seus dois vértices.

Grafos direcionados

No grafo da Figura 1, não há uma representação de direção nas suas arestas. Ou seja, entende-se que se pode, p. ex., ir de A para B e vice-versa.

Um grafo direcionado é aquele em que suas arestas só possibilitam a comunicação entre os vértices em determinada direção, não o podendo no sentido contrário. Se houver necessidade de comunicação nos dois sentidos, representa-se a conexão por meio de duas arestas, E(D,B) e $E(B,D)^1$

Figura 2

No grafo da Figura 2, do vértice ${\bf D}$ consegue-se acessar diretamente qualquer outro vértice. Já os vértices ${\bf C}$ e ${\bf E}$ somente recebem acessos, não podendo acessar ninguém.

Usos

De forma geral, os grafos são utilizados para representar sistemas de elementos interconectados.

- Relações amizades/conhecimentos entre pessoas, como nas redes sociais.
- Sistemas de transportes, como malhas rodoviárias, metroviárias, aéreas etc.
- Redes de computadores, sendo a maior delas a internet.
- Redes de abastecimento de água e também as de energia elétrica nas cidades.

¹ Em algumas notações, costuma-se representar a conexão bidirecional com um único segmento de reta sem indicação de direção, mas o mais comum é por meio de dois segmentos apontando para os lados opostos.

Além da mera representação, os grafos são utilizados para resolver problemas de busca e roteamento. P. ex., localizar o caminho mais curto entre dois pontos, ou o caminho mais curto para passar por determinados pontos pré-determinados. Também existe o problema de se encontrar rotas alternativas para o caso de interrupção em uma rota principal.

Além da direção, a aresta pode conter o atributo de "capacidade", ou seja, é capaz de transportar um determinado volume de itens por unidade de tempo. Em malhas rodoviárias, p. ex., uma determinada estrada comporta 100 carros por minuto, já a outra comporta 500.

Conceitos adicionais

Grau (de um vértice): é a quantidade de conexões de um determinado vértice. No caso dos grafos direcionados, divide-se em **Grau de Saída** e **Grau de Entrada**.

Caminho: é um percurso entre dois vértices, não obrigatoriamente o mais curto.

- Caminho euleriano passa por cada aresta apenas uma vez.
- Caminho hamiltoniano passa por cada vértice apenas uma vez; um caminho hamiltoniano sempre é euleriano.

Ciclo: é um percurso fechado, iniciando em um vértice e acabando neste mesmo vértice.

♣ Laço: tipo particular de ciclo em que a aresta conecta um vértice a ele mesmo, p. ex., E(A,A).

Adjacência: vértices conectados são ditos adjacentes; no caso de grafos orientados, a adjacência também é direcional – no grafo da Figura 2, **B** e **D** são adjacentes entre si, mas **D** é adjacente de **C** e a recíproca não é verdadeira.

Tipos de grafos

A teoria dos grafos cita uma grande quantidade de tipos de grafos, a que não vamos nos ater aqui. Para citar apenas os principais:

Grafo simples: 2 vértices se conectam por apenas uma aresta e não existem laços.

Multigrafo: 2 vértices podem se conectar por diversas arestas.

Grafo completo: todos os vértices se interconectam a todos os demais.

Árvore: já vimos na seção anterior.

Grafo planar: pode ser representado no plano sem que haja cruzamentos entre arestas. Grafos completos com mais de quatro elementos não são planares.

Grafo bipartido: é composto por elementos de 2 conjuntos disjuntos² de forma que as arestas só conectam os elementos inter-conjuntos (não há arestas entre elementos do mesmo conjunto).

Figura 3³

Grafo conexo: quando há pelo menos um vértice a partir do qual se pode alcançar todos os demais.

Grafo totalmente conexo: quando se pode alcançar qualquer vértice a partir de qualquer outro do grafo.

Grafo acíclico: quando não há nenhum ciclo no grafo.

Figura 4

³ Extraída de https://pt.wikipedia.org/wiki/Teoria dos grafos

² Que não tem elementos em comum.

Representação Computacional dos Grafos

Há mais de uma forma de se representar um grafo em memória. Uma forma simples é a chamada Matriz de Adjacência.

Em um grafo com N vértices, a matriz de adjacência terá a dimensão $N \times N$ onde os vértices são representados nas linhas e repetidos nas colunas.

A matriz contém, em primeiro lugar, a informação de conexão entre vértices (arestas), onde um vértice representando uma linha se conecta a outro representado em uma coluna. A seguir a Matriz de Adjacência referente ao grafo da Figura 2.

Tabela 1

	Α	В	С	D	Ε
Α	0	1	0	0	1
В	0	0	0	1	1
С	0	0	0	0	0
D	1	1	1	0	1
Е	0	0	0	0	0

Se o grafo for composto por objetos de dados, na diagonal da matriz de adjacência podem-se instalar os ponteiros para esses objetos, ou ainda criar-se uma coluna adicional específica para esse fim.

Algoritmo de busca

Para se determinar os caminhos para atingir um determinado vértice, procede-se pelo caminho inverso. Exemplo: como chegar ao vértice **E**?

1. Verificar na coluna E quais vértices se conectam a ele: A, B e D.

Figura 5

2. Verificar nas colunas de A, B e D, quem se conecta a eles.

Figura 6

Na Figura 6 foram representados os passos, a serem dados, em colunas, de forma que ocorreu repetição de vértices já desenhados. Os vértices repetidos podem ser desconsiderados para obtenção do caminho mais curto. Logo, para se chegar a E, as possibilidades são sair de A, de B ou de D.

Esse exemplo ficou simples porque há abundância de conexão. Vejamos o exemplo a seguir:

A matriz de adjacência ficaria da seguinte forma:

	Α	В	С	D	Ε
Α	0	1	0	0	0
В	0	0	0	1	1
С	0	0	0	0	0
D	1	0	1	0	0
E	0	0	0	0	0

Então, quais seriam os possíveis caminhos para se chegar a E?

Pela matriz de adjacência:

- ♣ O único adjacente a E é o B.
- 🖶 O único adjacente a B é o A.
- ♣ O único adjacente a A é o D.
- ♣ O único adjacente a **D** é o **B** (repetiu).

Portanto, as possibilidades de se chegar a E são partindo-se de B, A ou D.

E qual seria o algoritmo para se visitar um determinado conjunto de vértices perfazendo-se o caminho mais curto?

Bom, esse é o clássico problema do caixeiro viajante, em que ele tem que passar em diversas localidades onde estão os seus clientes e, naturalmente, otimizar o seu trajeto. Obviamente que se o trajeto for uma única estrada, a solução é simples, mas se as localidades forem muitas e espalhadas, com diversas possibilidades de conexão (p. ex. rodoviária), o problema se torna complexo na medida em que a quantidade de localidades aumenta. Com muitas localidades (p. ex. 100) e uma malha rodoviária bastante grande, um computador poderoso pode levar semanas, meses ou até anos para conseguir chegar à melhor solução.

Existem algoritmos que obtêm soluções próximas da solução ótima. Mas este tópico cabe em um curso específico, portanto não iremos nos aprofundar mais.