

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100983

SPECTRUM REPORT (GSM)

Applicant: Nebra LTD.

Address of Applicant: Unit 4 Bells Yew Green Business Court, Bells Yew Green,

Tunbridge Wells TN3 9BJ United Kingdom

Equipment Under Test (EUT)

Product Name: Nebra Smart Outdoor LoRa Gateway / Nebra HNT Outdoor

Hotspot Miner

Model No.: HNTOUT-868-G-LT+, HNTOUT-868-G-LT, HNTOUT-868-LT+,

HNTOUT-868-G, HNTOUT-868-LT, HNTOUT-868

Trade mark: Nebra

Applicable standards: ETSI EN 301 511 V12.5.1 (2017-03)

Date of sample receipt: 31 May, 2021

Date of Test: 31 May, to 08 Jul., 2021

Date of report issue: 09 Jul., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 Jul., 2021	Original

Remark:

The SGS-CSTC Standards Technical Services Co.,Ltd. Shenzhen Branch of the BLE module quoted in this report is: HR/2019/1001401. The difference between the two is as follows: It is now used inside the whole machine. Therefore, the AC Power Line Conducted Emission and the Radiated Spurious Emission are retested.

Tested by:	Covey Chen	Date:	09 Jul., 2021
	Test Engineer		
Reviewed by:	Winner Thang	Date:	09 Jul., 2021
	Project Engineer		

Contents

			Page
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
4	T	EST SUMMARY	4
5	G	SENERAL INFORMATION	6
	5.1	CLIENT INFORMATION	
	5.2 1.1	GENERAL DESCRIPTION OF E.U.T. TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	R	RADIO REQUIREMENTS SPECIFICATION IN ETSI EN 301 511	9
	6.1	JUSTIFICATION	9
	6.2	TEST CONFIGURATION OF EUT	9
	6.3	TEST SETUP BLOCK	
	6.4	TEST RESULTS	
	6.4.1		
	6.4.2		
	6.4.3		
7	T	EST SETUP PHOTO	17
Ω	F	UIT CONSTRUCTIONAL DETAILS	10

Tel: +86-755-23118282, Fax: +86-755-23116366

Test Summary

Clauses	Description of Test	Result
Clause 4.2.1	Transmitter – Frequency error and phase error	PASS*
Clause 4.2.2	Transmitter – Frequency error under multi path and interference conditions	PASS*
Clause 4.2.3	Transmitter – Frequency error and Phase Error in HSCSD Multi slot Configuration	N/A
Clause 4.2.4	Frequency error and phase error in GPRS multi slot configuration	PASS*
Clause 4.2.5	Transmitter output power and burst timing	PASS*
Clause 4.2.6	Transmitter – Output RF spectrum	PASS*
Clause 4.2.7	Transmitter output power and burst timing in HSCSD multi slot configuration	N/A
Clause 4.2.8	Transmitter – Output RF spectrum in HSCSD multi slot configuration	N/A
Clause 4.2.9	Transmitter – Output RF spectrum for MS supporting the R-GSM or ER-GSM frequency band	N/A
Clause 4.2.10	Transmitter output power in GPRS multi slot configuration	PASS*
Clause 4.2.11	Output RF spectrum in GPRS multi slot configuration	PASS*
Clause 4.2.12	Conducted spurious emissions – MS allocated a channel	PASS*
Clause 4.2.13	Conducted spurious emission – MS in idle mode	PASS*
Clause 4.2.14	Conducted spurious emissions for MS supporting the R-GSM or ER-GSM frequency band – MS allocated a channel	N/A
Clause 4.2.15	Conducted spurious emissions for MS supporting the R-GSM or ER-GSM frequency band – MS in idle mode	
Clause 4.2.16	Radiated spurious emissions – MS allocated a channel	
Clause 4.2.17	Radiated spurious emissions – MS in idle mode	PASS
Clause 4.2.18	Radiated spurious emissions for MS supporting the R-GSM or ER-GSM frequency band – MS allocated a channel	
Clause 4.2.19	Radiated spurious emissions for MS supporting the R-GSM or ER-GSM frequency band – MS in idle mode	
Clause 4.2.20	Receiver blocking and spurious responses – speech channels	
Clause 4.2.21	Receiver blocking and spurious response – speech channels for MS supporting the R-GSM or ER-GSM frequency band	N/A
Clause 4.2.22	Improved Receiver Blocking and spurious response - speech channels for 8W MS supporting the R-GSM or ER-GSM frequency band	N/A
Clause 4.2.23	Improved Receiver Blocking and spurious response – speech channels for 2W MS supporting the R-GSM or ER-GSM frequency band	N/A
Clause 4.2.24	Improved Receiver Blocking and spurious response – control channels for 8W MS supporting the R-GSM or ER-GSM frequency band not supporting speech	
Clause 4.2.25	Improved Receiver Blocking and spurious response – control channels for 2W MS supporting the R-GSM or ER-GSM frequency band not supporting speech	
Clause 4.2.26	Frequency error and Modulation accuracy in EGPRS Configuration	
Clause 4.2.27	Frequency error under multipath and interference conditions in EGPRS Configuration	PASS*
Clause 4.2.28	EGPRS Transmitter output power	PASS*

Tel: +86-755-23118282, Fax: +86-755-23116366

Clause 4.2.29	Output RF spectrum in EGPRS configuration	PASS*
Clause 4.2.30	Blocking and spurious response in EGPRS configuration	PASS*
Clause 4.2.31	Blocking and spurious response in DLMC configuration	N/A
Clause 4.2.32	Intermodulation rejection - speech channels	PASS
Clause 4.2.33	Intermodulation rejection - control channels	N/A
Clause 4.2.34	Intermodulation rejection - EGPRS	PASS*
Clause 4.2.35	AM suppression - speech channels	PASS*
Clause 4.2.36	AM suppression - control channels	N/A
Clause 4.2.37	7 AM suppression - packet channels	
Clause 4.2.38	Adjacent channel rejection - speech channels (TCH/FS)	PASS*
Clause 4.2.39	Adjacent channel rejection - control channels	
Clause 4.2.40	2.40 Adjacent channel rejection - EGPRS	
Clause 4.2.41	use 4.2.41 Adjacent channel rejection in DLMC configuration	
Clause 4.2.42	Reference sensitivity - TCH/FS	PASS*
Clause 4.2.43	Reference sensitivity - FACCH/F	PASS*
Clause 4.2.44	Minimum Input level for Reference Performance - GPRS	PASS*
Clause 4.2.45	Minimum Input level for Reference Performance - EGPRS	PASS*
Clause 4.2.46	Reference sensitivity - TCH/FS for MS supporting the R-GSM or ER-GSM band	N/A

Remark:

Pass: Meet the requirement.

PASS*: Refer to the Report No.: HR/2019/1001401

N/A: Not Applicable.

Tel: +86-755-23118282, Fax: +86-755-23116366

Report No: JYTSZB-R12-2100983

5 General Information

5.1 Client Information

Applicant:	Nebra LTD.	
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ United Kingdom	
Manufacturer:	Nebra LTD.	
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ United Kingdom	
Factory:	SUNSOAR TECH CO., LIMITED	
Address:	4/F, Block E, Fengze Building, Huafeng No.2 Industrial Park, Hangkong Road, XiXiang Town, BaoAn District, Shenzhen, China	

5.2 General Description of E.U.T.

Product Name:	Nebra Smart Miner	Nebra Smart Outdoor LoRa Gateway / Nebra HNT Outdoor Hotspot Miner			
Model No.:	HNTOUT-868	HNTOUT-868-G-LT+, HNTOUT-868-G-LT, HNTOUT-868-LT+, HNTOUT-868-G, HNTOUT-868-LT, HNTOUT-868			
Hardware version:	V01-16-2021-				
Software version:	4dc8745				
GPRS class	12				
EGPRS class	12				
Modulation technology	□GSM	GMSK			
	⊠ GPRS:	☐ GMSK (CS1 ~ CS4)	⊠Uplink	⊠Downlink	
	MECANO	GMSK (MCS1 ~ MCS5)	Uplink	Downlink	
	☐ EGPRS	⊗ 8PSK (MCS6 ~ MCS9)	⊠Uplink	⊠Downlink	
Operating frequency bands	E-GSM900	Tx: 880915MHz	Rx: 925		
	DCS1800 Tx: 17101785 MHz Rx: 18051880 MHz				
Antenna Type:	External anter	nna			
Antenna Gain:	E-GSM900:	1.99 dBi (declare by Applica	nt)		
	DCS1800:	2.31 dBi (declare by Applica	nt)		
Power supply:	AC: AC 230V	/ 50Hz			
	POE: DC48V				
AC adapter:					

Tel: +86-755-23118282, Fax: +86-755-23116366

1.1 Test environment and mode, and test samples plans

Temperature:	Normal: 15° C ~ 35° C, Extreme: -20° C ~ $+55^{\circ}$ C
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	POE: Nominal: 48Vdc, Extreme: Low 44Vdc, High 53Vdc
Test mode:	
GPRS mode	Keep the EUT communication with simulated station in GPRS mode
EGPRS mode	Keep the EUT communication with simulated station in EGPRS mode

5.3 Description of Support Units

Test Equipment	Manufacturer	Model No.	Serial No.
Simulated Station	Anritsu	MT8820C	6201026545
Simulated Station	Rohde & Schwarz	CMU200	122477

5.4 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Radio Frequency	±1.2 *10 ⁻⁹
RF Power, Conducted	±0.64 dB
Spurious emission, Conducted	±1.18 dB
Temperature	±0.3 °C
Voltage	±0.1 %
Humidity	±2 %
Time	±10 %
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Tel: +86-755-23118282, Fax: +86-755-23116366

5.6 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.7 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
biconicai Antenna	SCHWARZBECK	VUDA9117	309	06-17-2021	06-16-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
потп Апцеппа	SCHWARZBECK	DDHA9120D	1605	06-17-2021	06-16-2022
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	Rohde & Schwarz	SMR20	1008100050	03-03-2021	03-02-2022
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-16-2020	11-15-2021
Vector Signal Generator	Agilent	N5182A	MY49060014	11-16-2020	11-15-2021
Signal Generator	Rohde & Schwarz	SMR20	1008100050	03-03-2021	03-02-2022
Simulated Station	Rohde & Schwarz	CMW500	140493	06-18-2020	06-17-2021
RF Control Box	MWRF-test	MW200-RFCB	MW201013JYT	N/A	N/A
Automatic Filter Box	MWRF-test	MW200-SFCB	MW201019JYT	N/A	N/A
Test Software	MWRF-test	MTS8200	Version: 2.0.0.0		
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-23-2020	09-22-2021
Temperature Humidity Chamber	Zhongzhi	CZ-C-150D	ZH16491	09-23-2020	09-22-2021

Tel: +86-755-23118282, Fax: +86-755-23116366 Page 8 of 18

Radio Requirements Specification in ETSI EN 301 511

6.1 Justification

The EUT and test equipment were configured for testing according to ETSI EN 301 511 V12.5.1 (2017-03) and ETSITS 151 010-1.

The EUT was tested in the normal operating mode to represent worst-case results during the final qualification test.

The EUT was tested with a dummy battery.

6.2 Test Configuration of EUT

	EGSM 900		DCS 1800				
Channel Number		Frequency (MHz)	Channel Number		Frequency (MHz)		
Low channel	975	880.2	Low channel	512	1710.2		
Middle channel	60	902.0	Middle channel	700	1747.8		
High channel	124	914.8	High channel	885	1784.8		

Clause	Test Conditions					Test Channel		Modulation		Uplink Slot Allocation			
	NTNV	LTLV	LTHV	HTLV	HTHV	Vib.	Low	Middle	High	GMSK	8PSK	1 slot	4 slots
4.2.1	V	1	V	√	√	√	V	√	1	√		√	
4.2.2	V	V	V	√	√		√	√	√	√		√	
4.2.4	V	V	V	√	√	V	√	√	√	√			√
4.2.5	V	V	V	V	$\sqrt{}$		√	√	V	√		√	
4.2.6	√	1	V	√	√		√	√	√	√		√	
4.2.10	V	V	V	V	$\sqrt{}$		√	√	$\sqrt{}$	√			√
4.2.11	V	V	V	V	$\sqrt{}$		√	√	$\sqrt{}$	√			√
4.2.12	V	$\sqrt{}$	V					√		√		√	
4.2.13	V		V					V		√		√	
4.2.16	1		V					V		√		√	
4.2.17	V	$\sqrt{}$	V					√		√		√	
4.2.20	V							√		√		√	
4.2.26	V	$\sqrt{}$	V	V	$\sqrt{}$		√	√	√		$\sqrt{}$		√
4.2.27	V	1	V	V	$\sqrt{}$		√	V	√		V		√
4.2.28	V	$\sqrt{}$	V	V	$\sqrt{}$		√	√	√		$\sqrt{}$		√
4.2.29	V	V	V	V	$\sqrt{}$		√	√	$\sqrt{}$		√		√
4.2.30	V							√			√		√
4.2.32	V							√		√		√	
4.2.34	V							√			$\sqrt{}$		√
4.2.35	V							√		√		√	
4.2.38	V							√		√		√	
4.2.40	V							√			√		√
4.2.42	V							√		√		√	
4.2.43	V							√		√		√	
4.2.44	V							V		√		√	
4.2.45	V							√			√		√
Note:													

Tel: +86-755-23118282, Fax: +86-755-23116366

^{1. &}quot; $\sqrt{}$ " means that this configuration is chosen for test.

[&]quot;NTNV" means Normal Temperature Normal Voltage, "LTLV" means Low Temperature Low Voltage, "LTHV" means Low Temperature High Voltage, "HTLV" means High Temperature Low Voltage, "HTHV" means High Temperature High Voltage."Vib." means Vibration.

6.3 Test Setup Block

6.4 Test Results

6.4.1 Test Result Summary

			Test Band			
Clause No.	Test Mode	Test Condition	GSM900, DCS1800			
			Test Data	Verdict		
		NTNV		Pass		
		LTLV		Pass		
404	0014	LTHV	Refer to the Report No.:	Pass		
4.2.1	GSM	HTLV	HR/2019/1001401	Pass		
		HTHV		Pass		
		Vib.		Pass		
		NTNV		Pass		
		LTLV		Pass		
4.2.2	GSM	LTHV	Refer to the Report No.:	Pass		
		HTLV	HR/2019/1001401	Pass		
		HTHV		Pass		
		NTNV		Pass		
		LTLV		Pass		
		LTHV	Refer to the Report No.:	Pass		
4.2.4	GPRS	HTLV	HR/2019/1001401	Pass		
		HTHV	1117201071001101	Pass		
		Vib.		Pass		
	GSM	NTNV		Pass		
		LTLV		Pass		
4.2.5		LTHV	Refer to the Report No.:	Pass		
4.2.0		HTLV	HR/2019/1001401	Pass		
		HTHV		Pass		
	GSM	NTNV		Pass		
		LTLV		Pass		
4.2.6		LTHV	Refer to the Report No.:	Pass		
4.2.0		HTLV	HR/2019/1001401	Pass		
		HTHV		Pass		
		NTNV		Pass		
		LTLV		Pass		
4.2.10	GPRS	LTHV	Refer to the Report No.:	Pass		
4.2.10	GFKS	HTLV	HR/2019/1001401	Pass		
		HTHV		Pass		
		NTNV		Pass		
		LTLV		Pass		
4.2.11	GPRS	LTHV	Refer to the Report No.:	Pass		
4.2.11	GFNS	HTLV	HR/2019/1001401	Pass		
		HTHV		Pass		
		NV		Pass		
4.2.12	GSM	LV	Refer to the Report No.:	Pass		
4.2.12	GSIVI	HV	HR/2019/1001401			
		NV		Pass		
4 2 4 2	CCM	LV	Refer to the Report No.:	Pass		
4.2.13	GSM	HV	HR/2019/1001401	Pass		
			Soc Section 6.4.2	Pass		
1216	CCNA	NV LV	See Section 6.4.2 See Section 6.4.2	Pass		
4.2.16	GSM			Pass		
		HV	See Section 6.4.2	Pass		
4047	CCN4	NV	See Section 6.4.3	Pass		
4.2.17	GSM	LV	See Section 6.4.3	Pass		
		HV	See Section 6.4.3	Pass		

Continued

			Test Band			
Clause No.	Test Mode	Test Condition	GSM900, DCS1800			
			Test Data	Verdict		
4.2.20	GSM	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
		NTNV		Pass		
		LTLV	Pofor to the Poport No :	Pass		
4.2.26	EGPRS	LTHV	Refer to the Report No.: HR/2019/1001401	Pass		
		HTLV	110/2019/1001401	Pass		
		HTHV		Pass		
		NTNV		Pass		
		LTLV	Defer to the Depart No.	Pass		
4.2.27	EGPRS	LTHV	Refer to the Report No.: HR/2019/1001401	Pass		
		HTLV	110/2019/1001401	Pass		
		HTHV		Pass		
		NTNV		Pass		
		LTLV	Defer to the Desert No.	Pass		
4.2.28	EGPRS	LTHV	Refer to the Report No.: HR/2019/1001401	Pass		
		HTLV		Pass		
		HTHV		Pass		
	EGPRS	NTNV		Pass		
		LTLV	Defeate the Depart No.	Pass		
4.2.29		LTHV	Refer to the Report No.: HR/2019/1001401	Pass		
		HTLV	HR/2019/1001401	Pass		
		HTHV		Pass		
4.2.30	EGPRS	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.32	GSM	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.34	EGPRS	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.35	GSM	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.38	GSM	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.40	EGPRS	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.42	GSM	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.43	GSM	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.44	GPRS	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		
4.2.45	EGPRS	NTNV	Refer to the Report No.: HR/2019/1001401	Pass		

Page 12 of 18

6.4.2 Radiated spurious emissions - MS allocated a channel

	GSM 900 ban	d: Middle Channel	, Normal Voltage		
	Took Doorell				
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result	
623.93	Vertical	-58.33	-36.00		
720.16	V	-59.11	-36.00		
1804.00	V	-48.66			
2706.00	V	-46.92	-30.00		
3608.00	V	-58.70		Pass	
320.03	Horizontal	-58.33	20.00	Pass	
660.99	Н	-58.14	-36.00		
1804.00	Н	-42.97			
2706.00	Н	-45.70	-30.00		
3608.00	Н	-61.31			
	GSM 900 ba	nd: Middle Channe	el, Low Voltage		
_	Spurious	Emission		Test Result	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)		
623.93	Vertical	-57.95	-36.00	— Pass	
720.16	V	-58.63	-36.00		
1804.00	V	-48.57			
2706.00	V	-46.75	-30.00		
3608.00	V	-58.53			
320.03	Horizontal	-58.64	20.00		
660.99	Н	-58.22	-36.00		
1804.00	Н	-43.17			
2706.00	Н	-46.05	-30.00		
3608.00	Н	-61.44			
	GSM 900 ba	nd: Middle Channe	el, High Voltage		
F.,,, (8411-)	Spurious	Emission	Limit (dDm)	Took Doould	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result	
623.93	Vertical	-58.81	-36.00		
720.16	V	-58.68	-36.00		
1804.00	V	-49.02			
2706.00	V	-47.16	-30.00		
3608.00	V	-58.99		D	
320.03	Horizontal	-57.89	00.00	Pass	
660.99	Н	-58.38	-36.00		
1804.00	Н	-43.19			
2706.00	Н	-45.23	-30.00		
3608.00	Н	-61.42			

Tel: +86-755-23118282, Fax: +86-755-23116366 Page 13 of 18

	DCS 1800 bar	nd: Middle Chann	el, Normal Voltage		
Fraguency (MU=)	Spurious	Emission	Limit (dDm)	Test Result	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	rest Result	
623.93	Vertical	-58.45	-36.00		
720.16	V	-59.16	-36.00		
3495.60	V	-36.89	-30.00	Door	
320.03	Horizontal	-58.93	20.00	Pass	
660.99	Н	-58.76	-36.00		
3495.60	Н	-38.98	-30.00		
	DCS 1800 ba	and: Middle Char	nel, Low Voltage		
Francisco (MIII-)	Spurious	Emission	Limit (dDm)	Test Result	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)		
623.93	Vertical	-58.25	-36.00		
720.16	V	-59.35	-36.00		
3495.60	V	-36.62	-30.00	Pass	
320.03	Horizontal	-59.31	-36.00	Pass	
660.99	Н	-59.13	-36.00		
3495.60	Н	-38.57	-30.00		
	DCS 1800 ba	and: Middle Chan	nel, High Voltage		
Eroguanov (MHz)	Spurious	Emission	Limit (dPm)	Test Result	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	rest Result	
623.93	Vertical	-58.32	20.00		
720.16	V	-58.86	-36.00		
3495.60	V	-36.73	-30.00	Door	
320.03	Horizontal	-59.10	36.00	Pass	
660.99	Н	-58.49	-36.00		
3495.60	Н	-38.63	-30.00		

Tel: +86-755-23118282, Fax: +86-755-23116366

6.4.3 Radiated spurious emissions - MS in idle mode

	GSM 900 ban	d: Middle Channe	l, Normal Voltage		
Fraguency (MH=)	Spurious	Emission	Limit (dPm)	Toot Beaut	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result	
623.93	Vertical	-58.52	-57.00		
720.16	V	-58.86	-57.00		
1804.00	V	-61.79	-47.00	Pass	
320.03	Horizontal	-58.51	-57.00	Pa55	
660.99	Н	-58.99	-57.00		
1804.00	Н	-63.60	-47.00		
	GSM 900 ba	nd: Middle Chanr	nel, Low Voltage		
Eroguanov (MU=)	Spurious Emission		Limit (dDm)	Took Bookl	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result	
623.93	Vertical	-58.58	-57.00		
720.16	V	-58.98	-57.00		
1804.00	V	-62.21	-47.00	Pass	
320.03	Horizontal	-58.98	-57.00	– Pass	
660.99	Н	-58.86	-57.00		
1804.00	Н	-63.45	-47.00		
	GSM 900 ba	nd: Middle Chann	el, High Voltage		
Frequency (MHz)	Spurious	Emission	l imit /dDm\	Test Result	
Frequency (WIHZ)	polarization	Level(dBm)	Limit (dBm)	Test Result	
623.93	Vertical	-58.97	57.00		
720.16	V	-58.39	-57.00		
1804.00	V	-61.36	-47.00	Door	
320.03	Horizontal	-58.35	F7.00	– Pass	
660.99	Н	-59.47	-57.00		
1804.00	Н	-63.24	-47.00		

Tel: +86-755-23118282, Fax: +86-755-23116366

	DCS 1800 bar	nd: Middle Chann	el, Normal Voltage		
Francisco (MIII-)	Spurious	Emission	l imit (dDm)	Test Result	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	l'est Result	
623.93	Vertical	-58.17	-57.00		
720.16	V	-58.38	-57.00		
3495.60	V	-61.23	-47.00	Pass	
320.03	Horizontal	-58.20	-57.00	Pass	
660.99	Н	-58.67	-57.00		
3495.60	Н	-63.12	-47.00		
	DCS 1800 b	and: Middle Char	nnel, Low Voltage	·	
F== (8411=)	Spurious Emission		Limit (dDm)	Total Books!	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result	
623.93	Vertical	-58.16	57.00		
720.16	V	-58.89	-57.00		
3495.60	V	-61.34	-47.00	Door	
320.03	Horizontal	-58.21	F7.00	Pass	
660.99	Н	-59.19	-57.00		
3495.60	Н	-63.29	-47.00		
	DCS 1800 ba	and: Middle Chan	nel, High Voltage	·	
Eroguanay (MU=)	Spurious	Emission	Limit (dDm)	Test Result	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	rest Result	
623.93	Vertical	-58.13	57.00		
720.16	V	-58.58	-57.00		
3495.60	V	-61.64	-47.00	Door	
320.03	Horizontal	-58.41	-57.00	— Pass	
660.99	Н	-59.46	-57.00		
3495.60	Н	-63.64	-47.00		

Page 16 of 18

Test Setup Photo

Tel: +86-755-23118282, Fax: +86-755-23116366

8 EUT Constructional Details

Reference to the test report No. JYTSZB-R01-2100336

-----End of report-----