EXTRACTION OF $R=\frac{\sigma_L}{\sigma_T}$ FROM CCFR ν_μ -Fe and $\overline{\nu}_\mu$ -Fe DIFFERENTIAL CROSS SECTIONS

```
A. Bodek, T. Adams, A. Alton, C. G. Arroyo, S. Avvakumov, L. de Barbaro, P. de Barbaro, A. O. Bazarko, R. H. Bernstein, T. Bolton, J. Brau, D. Buchholz, H. Budd, L. Bugel, J. Conrad, R. B. Drucker, B. T. Fleming, J. A. Formaggio, R. Frey, J. Goldman, M. Goncharov, D. A. Harris, R. A. Johnson, J. H. Kim, B. J. King, T. Kinnel, S. Koutsoliotas, M. J. Lamm, W. Marsh, D. Mason, K. S. McFarland, C. McNulty, S. R. Mishra, D. Naples, P. Nienaber, A. Romosan, W. K. Sakumoto, H. Schellman, F. J. Sciulli, W. G. Seligman, M. H. Shaevitz, W. H. Smith, P. Spentzouris, E. G. Stern, N. Suwonjandee, A. Vaitaitis, M. Vakili, U. K. Yang, J. Yu, G. P. Zeller, and E. D. Zimmerman (Presented by A. Bodek for the CCFR/NuTeV Collaboration)

1 University of Cincinnati, Cincinnati, OH 45221

2 Columbia University, New York, NY 10027

3 Fermi National Accelerator Laboratory, Batavia, IL 60510

4 Kansas State University, Manhattan, KS 66506

5 Northwestern University, Evanston, IL 60208

6 University of Oregon, Eugene, OR 97403

7 University of Rochester, Rochester, NY 14627

8 University of Wisconsin, Madison, WI 53706
```

We report on the extraction of $R=\frac{\sigma_L}{\sigma_T}$ from CCFR ν_μ -Fe and $\overline{\nu}_\mu$ -Fe differential cross sections. R as measured in ν_μ scattering is in agreement with R as measured in muon and electron scattering. All data on R for $Q^2>1$ GeV² are in agreement with a NNLO QCD calculation which uses NNLO PDFs and includes target mass effects. We report on the first measurements of R in the low x and $Q^2<1$ GeV² region (where an anomalous large rise in R for nuclear targets has been observed by the HERMES collaboration).— UR-1635, Proceedings of DIS2001, Bologna April 2001

The ratio of longitudinal and transverse structure function, $R = (-F_L/2xF_1)$ in deep inelastic lepton-nucleon scattering experiments is a sensitive test of the quark parton model of the nucleon. Recently, there has been a renewed interest in R at small values of x and Q^2 , because of the large anomalous nuclear effect that has been reported by the HERMES experiment 1 . A large value of R in nuclear targets could be interpreted as evidence for non spin 1/2 constituents, such as ρ mesons in nuclei 2 . Previous measurements of R in muon and electron scattering $(R^{\mu/e})$ are well described by the $R^{\mu/e}_{world}$ QCD inspired empirical fit. The $R^{\mu/e}_{world}$ fit is also in good agreement with recent NMC muon data for R at low x, and with theoretical predictions 4 $R^{\mu/e}_{NNLO+TM}$ (a Next

to Next to Leading (NNLO) QCD calculation using NLO Parton Distribution Functions (PDFs), and including target mass effects). Very recently the NNLO calculations for F_L and F_2 have been updated 6 to include estimates of the contribution from NNLO PDFs. The quantity $R_{NNLOpdfs+TM}^{\mu/e}$ is extracted by adding target mass effects to these calculations of F_L . For x>0.1 it is expected that R^{ν} should be the same as $R^{\mu/e}$. However, for x<0.1 and low Q^2 (in leading order), R^{ν} is expected to be larger than $R^{\mu/e}$ because of the production of massive charm quarks in the final state. We calculate a correction to $R_{world}^{\mu/e}$ for this difference using a leading order slow rescaling model with a charm mass, $m_c(=1.3~{\rm GeV})$ and obtain an effective R_{world} for ν_{μ} scattering (R_{eff}^{ν}) . Here, we report on an extraction of R in neutrino scattering (R^{ν}) , extending to low x and Q^2 , ad compare to $R^{\mu/e}$ data and to predictions from R_{eff}^{ν} , $R_{world}^{\mu/e}$, and $R_{NNLOpdfs+TM}^{\mu/e}$).

The sum of ν_{μ} and $\overline{\nu}_{\mu}$ differential cross sections for charged current interactions on isoscalar target is related to the structure functions as follows:

$$F(\epsilon) \equiv \left[\frac{d^2 \sigma^V}{dxdy} + \frac{d^2 \sigma^V}{dxdy}\right] \frac{(1-\epsilon)\pi}{y^2 G_F^2 M E}$$
$$= 2xF_1[1+\epsilon R] + \frac{y(1-y/2)}{1+(1-y)^2} \Delta x F_3. \tag{1}$$

Here G_F is the weak Fermi coupling constant, M is the nucleon mass, E_{ν} is the incident energy, the scaling variable $y=E_h/E_{\nu}$ is the fractional energy transferred to the hadronic vertex, E_h is the final state hadronic energy, and $\epsilon \simeq 2(1-y)/(1+(1-y)^2)$ is the polarization of virtual W boson. The structure function $2xF_1$ is expressed in terms of F_2 by $2xF_1(x,Q^2)=F_2(x,Q^2)\times \frac{1+4M^2x^2/Q^2}{1+R(x,Q^2)}$, where Q^2 is the square of the four-momentum transfer to the nucleon, $x=Q^2/2ME_h$ (the Bjorken scaling variable) is the fractional momentum carried by the struck quark, and $R=\frac{\sigma_L}{\sigma_T}=\frac{F_L}{2xF_1}$.

Values of R (or equivalently F_L) and $2xF_1$ are extracted from the sums of the corrected ν_{μ} -Fe and $\overline{\nu}_{\mu}$ -Fe differential cross sections at different energy bins according to Eq. (1). An extraction of R using Eq. (1) requires a knowledge of ΔxF_3 term, which in leading order $\simeq 4x(s-c)$. We obtain ΔxF_3 from theoretical predictions 5 for massive charm production using the TR-VFS NLO calculation with the extended MRST99 and the suggested scale $\mu=Q$. This prediction is used as input to Eq. (1) in the extraction of R^{ν} . This model yields ΔxF_3 values similar to the NLO ACOT Variable Flavor Scheme (implemented with CTEQ4HQ and the recent ACOT suggested scale $\mu=m_c$ for $Q < m_c$, and $\mu^2 = m_c^2 + 0.5Q^2(1-m_c^2/Q^2)^n$ for $Q < m_c$ with n=2). A discussion of the various theoretical schemes for massive charm production is given in a previous communication 5 . Because of a positive correlation between R and ΔxF_3 , the uncertainty of ΔxF_3 play as a major systematic error at low

Figure 1: CCFR measurements of R^{ν} as a function of Q^2 for fixed x, compared with electron and muon data, with the $R^{\mu/e}_{world}$ and R^{ν}_{eff} ($m_c=1.3$) fits, and with the $R^{\mu/e}_{NNLOpdfs+TM}$) QCD calculation including NNLO PDFs (dashed line). The inner errors include both statistical and experimental systematic errors added in quadrature, and the outer errors include the additional $\Delta x F_3$ model errors (added linearly). Also shown are the HERMES results for R^e_{N14} at small x and Q^2 .

x region. However, for x>0.1, the ΔxF_3 term is small, and the extracted values of R^{ν} are not sensitive to ΔxF_3 . For a systematic error on the assumed level of ΔxF_3 , we vary strange sea and charm sea by $\pm 50~\%$ (ΔxF_3 is directly sensitive to the strange sea minus charm sea). Note that the extracted value of R is larger for a larger input ΔxF_3 (i.e. a larger strange sea).

The extracted values of R^{ν} are shown in Fig. 1 for fixed x versus Q^2 . The inner errors include both statistical and experimental systematic errors added in quadrature, and the outer errors include the additional $\Delta x F_3$ model errors (added linearly).

At the very lowest Q^2 values, the model error is reduced because all models for $\Delta x F_3$ approach zero around $Q^2 = 0.4$. This is because the strange quark

distribution is expected to approach zero for Q values close to twice the mass of the strange quark. In addition, the very low Q^2 region is below charm production threshold. Note that the very low Q^2 and low x region is of interest because it is where HERMES reports 1 an anomalous increase in R^e for nuclear targets.

The CCFR R^{ν} values are in agreement with measurements of $R^{\mu/e}$, and also in agreement with both the $R^{\mu/e}_{world}$ and R^{ν}_{eff} fits. At low x, there are indications that the data may be lower than these two model predictions. New QCD calculation 6 of F_L and F_2 including both the NNLO terms and estimates of NNLO PDFs are used to determine $R^{\mu/e}_{NNLOpdfs+TM}$, by including target mass effects. These are shown as dashed lines in Fig. 1. There are large uncertainties in F_L from the NNLO gluon distribution at low x for $Q^2 < 5~{\rm GeV}^2$. Specifically, for $Q^2 = 2~{\rm GeV}^2$ and 0.001 < x < 0.01 the NNLO calculation with NNLO PDFs results in a dip in F_L with F_L approaching zero. It is interesting that there is also a dip in our measured values of R for x=0.019 and $Q^2 = 3~{\rm GeV}^2$. However, for $Q^2 < 2~{\rm GeV}^2$ and 0.001 < x < 0.01 the NNLO calculation with NNLO PDFs also yields an unphysical negative value for F_L , which implies large uncertainties in the calculation. Another recent QCD calculation within a ln(1/x) resummation framework (with resummed PDFs) also predicts 7 that R at small x and low Q^2 is lower than $R^{\mu/e}_{world}$. Also shown are the HERMES electron scattering results in nitrogen. The

Also shown are the HERMES electron scattering results in nitrogen. The HERMES data ¹ for R are extracted from their ratios for R_{N14}/R_{1998} by multiplying by the values from the R_{1998} fit. The CCFR data do not clearly show a large anomalous increase at very low Q^2 and low x. It is expected that any nuclear effect in R would be enhanced in the CCFR iron target with respect to the nitrogen target in HERMES. However, depending on the origin, the effects in electron versus ν_{μ} charged current scattering could be different.

References

- 1. K. Ackerstaff et al., Phys. Lett. **B475**, 386 (1999).
- 2. G. Miller, S. Brodsky, and M. Karliner, Phys. Lett. **B481**, 245 (2000).
- 3. L. W. Whitlow et al., Phys. Lett. **B250**, 193 (1990).
- U. K. Yang and A. Bodek, Phys. Rev. Lett. 82, 2467 (1999); Eur. Phys, J. C13, 241 (2000).
- 5. U. K. Yang et al. Phys. Rev. Lett. 86, 2742 (2001).
- 6. A. D. Martin et al., Eur. Phys. J. C18, 117 (2001).
- R. S. Thorne , Phys. Lett. B474, 372 (2000); A. M. Cooper-Sarkar, hep-ph/0102151 (Feb. 2001).