微纳光电子材料与器件工艺原理

Doping 掺杂

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Semiconductor PN Junctions

E-field force on holes

E-field force on electrons

CMOS Transistors

CMOS Transistors

Doping

Doping in Silicon

For silicon:

p dopant: B, Al, Ga, ...

n dopant: P, As, Sb, ...

germanium is similar to Si.

					He 2
5 B	C 6	7 N	0 8	9 F	10 Ne
13 Al	14 Si	15 P	16 S	17 CI	18 Ar
31	32	33	34	35 D-	36
Ga	Ge	As	Se	Br	Kr
ცа 49 In	Ge 50 Sn	As 51 Sb	52 Te	53 	Ar 54 Xe

Doping in Silicon

For silicon:

p dopant: B, Al, Ga, ...

n dopant: P, As, Sb, ...

Doping in GaAs

For GaAs:

p dopant:

replace Ga: Mg, Zn, Be

replace As: C

•••

					2 He
5	6	7	8	9	10
B	C	N		F	Ne
13	14	15	16	17	18
Al	Si	P	S	CI	Ar
31	32	33	34	յ <u>5</u>	36
Ga	Ge	As	Se	Br	Kr
49	50	51	52	53	54
In	Sn	Sb	Te		Xe
81	82	83	84	85	86
TI	Pb	Bi	Po	At	Rn

n dopant:

replace As: Se

replace Ga: Si, Ge

...

Doping Methods

Thermal diffusion

Ion implantation

In situ growth

Sources

- Phosphorus (P)
 - Liquid POCI₃
 - □ Gas PH₃
- Boron (B)
 - Liquid BBr₃
 - □ Solid B₂O₃
 - \Box Gas B₂H₆
- Arsenic (As)
 - □ Solid As₂O₃
 - □ Gas AsH₃

Gas Source Diffusion

2PH₃ (g) → 2P (in Si) + 3H₂

Liquid Source Diffusion

Solid Source Diffusion

Fig. 4.26 Solid-source diffusion system.

Spin-on doping

Thermal Diffusion

Process Parameters

- Time
- Temperature
- Gas pressure
- Gas flow rate

Control Parameters

- Junction depth
- Doping concentration
- Doping profile

Distance into the Substrate (x)

Diffusion Law

- C concentration (mol/m³)
- J diffusion flux (mol/m²/s)
- D diffusivity (m²/s)

Diffusion Law

Fick's first law

1D
$$J = -D \frac{\partial C}{\partial x}$$
 3D $J = -D\nabla C$

Fick's second law

1D
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$
 3D $\frac{\partial \mathbf{C}}{\partial t} = \mathbf{D} \nabla^2 \mathbf{C}$

J: mol/m²/s

D: m²/s

C: mol/m³

Dopant Diffusivity in Silicon

- Diffusivity (扩散系数) D
 - rate of spread
 - unit: cm²/s

$$D = D_0 \exp(-\frac{E_A}{kT})$$

Diffusion length L

$$L = \sqrt{Dt}$$

Dopant Diffusivity in Silicon

(a) Vacancy mechanism

B, P, As, Sb, Si, ...

(b) Interstitial mechanism

Cu, Fe, Li, H, Au, ...

Dopant Solubility in Silicon

maximum dopant amount in silicon

when the source is semi-infinite, and the surface is at the solubility limit C_{ss}

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

$$C(x > 0, t = 0) = 0$$

$$C(x = +\infty, t > 0) = 0$$

$$C(x = 0, t > 0) = C_{ss}$$

$$C(x, t) = C_{ss} \cdot \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

$$C(x,t) = C_{ss} \cdot \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

when the source is semi-infinite, and the surface is at the solubility limit C_{ss}

$$C(x,t) = C_{ss} \cdot \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

when the source is limited,

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

$$C(x = 0, t = 0) = Q$$

$$C(x > 0, t = 0) = 0$$

$$C(x = +\infty, t > 0) = 0$$

$$C(x = 0, t = 0) = Q$$

$$C(x, t) = \frac{Q}{\sqrt{\pi Dt}} \cdot \exp\left(-\frac{x^2}{4Dt}\right)$$

$$C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \cdot \exp\left(-\frac{x^2}{4Dt}\right)$$

when the source is limited,

Diffusion Masks

 SiO_2 can provide a selective mask against diffusion at high temperatures. ($D_{SiO2} << D_{si}$) Oxides used for masking are ~ 0.5 -1 μ m thick.

Dopants	Diffusion Constants at 1100 °C (cm²/s)		
B Ga P	3.4 × 10 ⁻¹⁷ – 2.0 × 10 ⁻¹⁴		
Ga	5.3 × 10 ⁻¹¹ (not good for Ga)		
Р	2.9 × 10 ⁻¹⁶ – 2.0 × 10 ⁻¹³		
As Sb	$1.2 \times 10^{-16} - 3.5 \times 10^{-15}$		
Sb	9.9 × 10 ⁻¹⁷		

Q: why not photoresist?

Laser Assisted Annealing

local heating

Doping Methods

Thermal diffusion

Ion implantation

In situ growth

Ion Implantation (离子注入)

- Precise control of dose, depth and profile
- Low temperature process
- Tailor lateral distribution
- Wide selection of dopants

Precise control of dose, depth and profile

Thermal diffusion

Ion implantation

- Low temperature process
 - implantation at room temperature
 - mask materials: photoresist, SiO₂, metal, ...

Lateral distribution

Thermal diffusion

Ion implantation

- Low temperature process
 - implantation at room temperature
 - mask materials: photoresist, SiO₂, metal, ...

Lateral distribution

shadow effect

Self Alignment

Dopant Distribution

Process Parameters

- □ dopant type (B, P, As, Sb, ...)
- implantation dose (# /cm²)
- energy (eV)
- substrate orientation
- anneal time, temperature

Control Parameters

- Junction depth
- Doping concentration
- Doping profile

Simulation Software - SRIM

http://www.srim.org

Dopant Distribution

dopant type

dose

Ideal case: Gaussian profile

$$N(x) = \exp \left[-\frac{1}{2} \left(\frac{x - R_p}{\Delta R_p} \right)^2 \right]$$

Light atoms (e.g. B): back scattering Heavy atoms (e.g. Sb): forward scattering

(110) axial

Ion Channeling

(沟道效应)

implantation is generally carried out with wafers tilted a few degrees relative to the beam

Reduce Channeling Effects

tilt the crystal

form a thin oxide layer

damage the surface by implantation

Implantation Damage

Implantation Damage

Figure 6.43 Evolution of Gaussian profile after annealing. The Gaussian preserves its shape as it diffuses in an infinite medium.

Effect of Annealing

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

$$C(x,t=0) = C_0(x)$$
$$C(x=+\infty, t>0) = 0$$

$$C(x = +\infty, t > 0) = 0$$

$$C(x,t) = C_0(x) \cdot \exp\left(-\frac{x^2}{4Dt}\right)$$

$$N(x) = \exp \left[-\frac{1}{2} \left(\frac{x - R_p}{\Delta R_p} \right)^2 \right]$$

Figure 6.43 Evolution of Gaussian profile after annealing. The Gaussian preserves its shape as it diffuses in an infinite medium.

Make Silicon-on-Insulator (SOI)

Oxygen rich layer

Silicon wafer

'SIMOX'

Separation by IMplanted OXygen

Silicon wafer

Make Silicon-on-Insulator (SOI)

'Smart-Cut'

After low temperature splitting, SOI wafer (B) is annealed ~1100°C to strengthen the bond, whereas wafer A is reused. SOI film thickness set by H2 implant energy and BOX thickness

Doping Methods

Thermal diffusion

Ion implantation

In situ growth

Doping of Gallium Arsenide (GaAs)

GaAs growth

- □ MOCVD: $Ga(CH_3)_3 + AsH_3 \rightarrow GaAs + 3CH_4$
- add dopant gas: SiH₄, Mg, Zn, ...
- vertical structures with high quality thin-films

materials	thickness (nm)	doping (cm ⁻³)	dopant
n+ GaAs contact	200	6e 18	Si
n+ InGaP window	30	2e 18	Si
n+ GaAs emitter	100	2e 18	Si
p- GaAs base	2500	1e17	Zn
p+ Al _{0.3} Ga _{0.7} As BSF	100	5e18	Mg
p+ GaAs substrate	-	5e18	Mg

Example: GaAs solar cell

GaAs VCSEL

- Vertical Cavity Surface Emitting Laser
 - growth with in situ doping
 - isolation by ion implantation

ion implanted (H⁺, O⁻, ...) region for isolation

highly damaged and resistive region

Doping of Gallium Nitride (GaN)

- n-GaN is easy
 - use Si to replace Ga
- p-GaN is very difficult
 - use Mg to replace Ga, but ...
- H. Amano, et al., Jpn. J. Appl. Phys. 28, L2112 (1989)
- S. Nakamura, et al., Appl. Phys. Lett. 64, 1687 (1994)

I. Akasaki H. Amano

S. Nakamura

2014 Nobel Prize in Physics

Doping Measurement

TABLE 4 Commonly used diffusion profile measurement techniques

Profile techniques	Characteristics	
Capacitance-Voltage	Carrier concentration at the edge of the depletion layer of a pn junction. Maximum total dopants 2 × 10 ¹² atoms/cm ² .	
Differential conductance	Resistivity and Hall effect mobility of net electrically active species. Requires thin-layer removal, concentration range from 10 ²⁰ to 10 ¹⁸ atoms/cm ³ .	
Spreading resistance	Resistance on angle-beveled sample. Good for comparison with known profiles and quick semi quantative evaluation. $x_j \ge 1 \mu m$.	
SIMS	High sensitivity on many elements; for B and As detection limit is 5 × 10 ¹⁵ cm ⁻³ . Capable of measuring total dopant profiles in 1000Å range. Needs standards.	
Radioactive tracer analysis	Total concentration. Lower limit is 10 ¹⁵ cm ⁻³ . Limited to radioactive elements with suitable half-life times: P, As, Sb, Na Cu, Au, etc.	
Rutherford backscattering	Applicable only for elements heavier than Si.	
Nuclear reaction	Measures total boron through ${}^{10}B(n, {}^{4}He)^{7}Li$, or ${}^{11}B(p, \alpha)$. Needs Van de Graaff generator.	

Resistivity

Four Point Probe Measurement

conductivity

$$\sigma(x) = e \cdot \mu \cdot C(x) = \frac{1}{\rho(x)}$$

sheet resistance

$$R_{s} = \frac{\rho}{x} = \frac{1}{\int_{0}^{t} \sigma(x) dx}$$

SIMS

- SIMS: Secondary Ion Mass Spectroscopy
 - equipment similar with ion implantation

Thank you for your attention