Numerical Analysis – Lecture 1

1 LU factorization of matrices

1.1 Definition and applications

Let A be a real $n \times n$ matrix. We say that the $n \times n$ matrices L and U are an LU factorization of A if (1) L is lower-triangular (i.e., $L_{i,j} = 0$, i < j), (2) U is upper-triangular, $U_{i,j} = 0$, i > j, and (3) A = LU. Therefore the factorization takes the form

Application 1 Calculation of a determinant: det $A = \det L \det U = \prod_{k=1}^n L_{k,k} \prod_{k=1}^n U_{k,k}$.

Application 2 Testing nonsingularity: A = LU is nonsingular iff all the diagonal elements of L and U are nonzero.

Application 3 Solution of linear systems: Let A = LU and suppose we wish to solve $A\mathbf{x} = \mathbf{b}$. This is the same as $L(U\mathbf{x}) = \mathbf{b}$, which we decompose into $L\mathbf{y} = \mathbf{b}$, $U\mathbf{x} = \mathbf{y}$. Both latter systems are triangular and can be calculated easily. Thus, $L_{1,1}y_1 = b_1$ gives y_1 , next $L_{2,1}y_1 + L_{2,2}y_2 = b_2$ yields y_2 etc. Having found \mathbf{y} , we solve for \mathbf{x} by reversing the order: $U_{n,n}x_n = y_n$ gives x_n , $U_{n-1,n-1}x_{n-1} + U_{n-1,n}x_n = y_{n-1}$ produces x_{n-1} and so on.

Application 4 The inverse of A: It is straightforward to devise a direct way of calculating the inverse of triangular matrices, subsequently forming $A^{-1} = U^{-1}L^{-1}$.

1.2 The calculation of LU factorization

We denote the *columns* of L by l_1, l_2, \ldots, l_n and the *rows* of U by $u_1^{\mathrm{T}}, u_2^{\mathrm{T}}, \ldots, u_n^{\mathrm{T}}$. Hence

$$A = LU = \begin{bmatrix} \mathbf{l}_1 & \mathbf{l}_2 & \cdots & \mathbf{l}_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\mathrm{T}} \\ \mathbf{u}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{u}_n^{\mathrm{T}} \end{bmatrix} = \sum_{k=1}^n \mathbf{l}_k \mathbf{u}_k^{\mathrm{T}}.$$
 (1.1)

Since the first k-1 components of l_k and u_k are all zero, each rank-one matrix $l_k u_k^{\mathrm{T}}$ has zeros in its first k rows and columns.

Assume that the factorization exists and that A is nonsingular. Since $\boldsymbol{l}_k \boldsymbol{u}_k^{\mathrm{T}}$ stays the same if we replace $\boldsymbol{l}_k \to \alpha \boldsymbol{l}_k$, $\boldsymbol{u}_k \to \alpha^{-1} \boldsymbol{u}_k$, where $\alpha \neq 0$, we may assume w.l.o.g. that all diagonal elements of L equal one. In other words, the kth row of $\boldsymbol{l}_k \boldsymbol{u}_k^{\mathrm{T}}$ is $\boldsymbol{u}_k^{\mathrm{T}}$ and its kth column is $U_{k,k}$ times \boldsymbol{l}_k .

We commence from k = 1. Since the first elements of l_k and u_k are zero for $k \geq 2$, it follows from (1.1) that u_1^{T} is the first row of A and l_1 is the first column of A, divided by $A_{1,1}$ (so that $L_{1,1} = 1$!).

Having found \boldsymbol{l}_1 and \boldsymbol{u}_1 , we form the matrix $A - \boldsymbol{l}_1 \boldsymbol{u}_1^{\mathrm{T}} = \sum_{k=2}^n \boldsymbol{l}_k \boldsymbol{u}_k^{\mathrm{T}}$. The first row & column of A are zero and it follows that $\boldsymbol{u}_2^{\mathrm{T}}$ is the second row of $A - \boldsymbol{l}_1 \boldsymbol{u}_1^{\mathrm{T}}$, while \boldsymbol{l}_2 is its second column, scaled so that $L_{2,2} = 1$.

The LU algorithm: Set $A_0 := A$. For all k = 1, 2, ..., n set $\boldsymbol{u}_k^{\mathrm{T}}$ to the kth row of A_{k-1} and \boldsymbol{l}_k to the kth column of A_{k-1} , scaled so that $L_{k,k} = 1$. Further, calculate $A_k := A_{k-1} - \boldsymbol{l}_k \boldsymbol{u}_k^{\mathrm{T}}$ before incrementing k.

Note that all elements in the first k rows & columns of A_k are zero. Hence, we can use the storage of the original A to accumulate L and U.

1.3 Relation to Gaussian elimination

The equation $A_k = A_{k-1} - l_k u_k^{\mathrm{T}}$ has the property that the *j*th row of A_k is the *j*th row of A_{k-1} minus $L_{j,k}$ times u_k^{T} (the *k*th row of A_{k-1}). Moreover, the multipliers $L_{k,k}, L_{k+1,k}, \ldots, L_{n,k}$ are chosen so that the outcome of this elementary row operation is that the *k*th column of A_k is zero. This construction is analogous to Gaussian elimination for solving Ax = b. An important difference is that in LU we do not consider the right hand side b until the factorization is complete. This is useful e.g. when there are many right hand sides, in particular if not all the b's are known at the outset.

1.4 Pivoting

Naive LU factorization fails when, for example, $A_{1,1} = 0$. The remedy is to exchange rows of A, a technique called *column pivoting*. This is equivalent to picking a suitable equation for eliminating the first unknown in Gaussian elimination. Specifically, column pivoting means that, having obtained A_{k-1} , we exchange two rows of A_{k-1} so that the element of largest magnitude in the kth column is in the 'pivotal position' (k, k). In other words,

$$|(A_{k-1})_{k,k}| = \max\{|(A_{k-1})_{j,k}| : j = 1, 2, \dots, n\}.$$

Of course, the same exchange is required in the part of L that has been formed already (i.e., the first k-1 columns). Also, we need to record the permutation of rows to solve for the right hand side and/or to compute the determinant.

This procedure copes with zeros at the pivot position, except when the whole kth column of A_k is zero – in that case it is usual to let l_k be the kth unit vector (and, as before, choose u_k^{T} as the kth row of A_k).

An important advantage of this procedure is that every element of L has magnitude at most one. This avoids not just division by zero but also tends to reduce the chance of very large numbers occurring during the factorization, a phenomenon that might lead to accumulation of roundoff error and to ill conditioning.

In row pivoting one exchanges columns of A_{k-1} , rather than rows (sic!), whereas total pivoting corresponds to exchange of both rows and columns, so that the modulus of the pivotal element $(A_{k-1})_{k,k}$ is maximized.

This and subsequent handouts will be available at the WWW site http://www.damtp.cam.ac.uk/DAMTP/user/na/PartIB/Handouts.html