Chapter II Inequality Constraints

March 11, 2023

1 Optimality Conditions

2.1.1

Prove the normal cone is a closed convex cone.

Proof: Let $C \subseteq \mathbb{E}$ be a convex set and $\bar{x} \in C$. Then

$$N_C(\bar{x}) = \{d \in \mathbb{E} : \langle d, x - \bar{x} \rangle < 0\}.$$

If $d \in N_C(\bar{x})$, then obviously $\alpha d \in N_C(\bar{x})$ for $\alpha \geq 0$. Also, if $d_i \in N_C(\bar{x})$ and $d_i \to d \in \mathbb{E}$, then for a fixed $x \in C$,

$$\langle d_i, x - \bar{x} \rangle \to \langle d, x - \bar{x} \rangle,$$

and since $\langle d_i, x - \bar{x} \rangle \leq 0$, $\langle d, x - \bar{x} \rangle \leq 0$. Thus $d \in N_C(\bar{x})$ and so $N_C(\bar{x})$ is closed. Convexity is also clear.

2.1.3 Self-dual cones

Prove that each of the following cones K satisfy the relationship $N_K(0) = -K$.

 $\bullet \mathbb{R}^n_{\perp}$

Proof: Recall that

$$N_K(\bar{x}) = \{ d \in \mathbb{E} : \langle d, x - \bar{x} \rangle \le 0 \}.$$

Thus, $d \in N_{\mathbb{R}^n_+}(0)$ if and only if

$$\langle d, x \rangle \le 0 \quad \forall x \in \mathbb{R}^n_+.$$

So, for $x = e_i$, we realize that $x_i \leq 0$ and hence $x \in -\mathbb{R}^n_+$. Conversely, for all $x \in -\mathbb{R}^n_+$ and all $d \in \mathbb{R}^n_+$ we clearly have $\langle d, x \rangle \leq 0$. Thus $N_{\mathbb{R}^n_+}(0) = -\mathbb{R}^n_+$.

 \bullet \mathbb{S}^n_{\perp}

Proof: Recall that

$$N_{\mathbb{S}^n_+}(0) = \{ X \in \mathbb{S}^n : \langle X, A \rangle \le 0 \} \quad \forall A \in \mathbb{S}^n_+.$$

So clearly if $-X \in \mathbb{S}^n_+$ then $X \in N_{\mathbb{S}^n_+}(0)$. Conversely, suppose $X \in N_{\mathbb{S}^n_+}(0)$, then

$$a^T X a \leq 0 \quad \forall a \in \mathbb{R}^n \text{ or equivalently } a^T (-X) a \geq 0 \quad \forall a \in \mathbb{R}^n.$$

Thus by definition $-X \in \mathbb{S}^n_+$.

• $K = \{x \in \mathbb{R}^n : x_1 \ge 0, x_1^2 \ge x_2^2 + \dots + x_n^2\}$

Proof: Let $y \in N_K(0)$. Then

$$\inf \langle -y, x \rangle$$
$$x_1^2 \ge x_2^2 + \dots + x_n^2$$

has nonnegative optimum value. Note that if \bar{x} is a local minimum of the function $f(x) := \langle -y, x \rangle$, then if $\bar{x} \neq 0$ then $\bar{x}_1 \neq 0$ as otherwise since $\bar{x}_1^2 \geq \bar{x}_2^2 + \cdots + \bar{x}_n^2$, $\bar{x} = 0$. So $y \in N_K(0)$ if and only if the following problem has optimum value at least 0,

$$\inf -y_1 - \sum_{i=2}^n y_i x_i$$

$$1 \ge x_2^2 + \dots + x_n^2.$$

However,

$$\sum_{i=2}^{n} y_i x_i \le (x_2^2 + \dots + x_n^2)^{\frac{1}{2}} (y_2^2 + \dots + y_n^2)^{\frac{1}{2}} \le (y_2^2 + \dots + y_n^2)^{\frac{1}{2}}.$$

Now let $\bar{x} = (1, 0, 0, \dots, 0)$ and so $-y_1 \ge 0$. Now let $x_i = \frac{y_i}{\sqrt{\sum_{i=2}^n y_i^2}}$ for $2 \le i \le n$, the above inequality holds with equality. Thus,

$$\sup \sum_{i=2}^{n} x_i y_i$$

$$1 \ge x_2^2 + \dots + x_n^2,$$

has optimum value $(y_2^2 + \cdots + y_n^2)^{\frac{1}{2}}$. Thus, $y \in N_K(0)$ if and only if $(y_2^2 + \cdots + y_n^2)^{\frac{1}{2}} \leq -y_1$ or equivalently $-y \in N_K(0)$.

2.1.7

Suppose a convex function $g:[0,1]\to\mathbb{R}$ satisfies g(0)=0. Prove the function $t\in(0,1]\mapsto g(t)/t$ is nondecreasing. Hence prove that for a convex function $f:C\to\mathbb{R}$ and points $\bar x,x\in C\subseteq\mathbb{E}$, the quotient $(f(\bar x+t(x-\bar x)-f(\bar x))/t$ is nondecreasing as a function of t in (0,1], and complete the proof of Proposition 2.1.2.

Proof: Note that g is convex and thus $g(ts) \le tg(s)$ for all $t, s \in [0, 1]$. Thus if $t, s \ne 0$ then

$$\frac{g(ts)}{ts} \le \frac{g(s)}{s}$$

and this means that g is nondecreasing. The rest is clear as $t \in (0,1] \mapsto (f(\bar{x}+t(x-\bar{x}))-f(\bar{x})/t)$ is convex. Hence, since $f'(\bar{x},x-\bar{x})=\lim_{t\to 0}(f(\bar{x}+t(x-\bar{x}))-f(\bar{x})/t) \geq 0$, we conclude that $(f(\bar{x}+1(x-\bar{x}))-f(\bar{x})/t) \geq 0$ or equivalently $f(x) \geq f(\bar{x})$.

2.1.10

- Prove the function $f: \mathbb{S}_{++}^n \to \mathbb{R}$ defined by $f(X) = \text{Tr}(X^{-1})$ is differentiable on \mathbb{S}_{++}^n .
- Define a function $f: \mathbb{S}^n_{++} \to \mathbb{R}$ by $f(X) = \log \det(X)$. Prove $\nabla f(I) = I$. Deduce $\nabla f(X) = X^{-1}$ for any X in \mathbb{S}^n_{++} .

Proof:

• Let $f(X) = \text{Tr}(X^{-1})$. Note that for $H \in \mathbb{S}^n$ and small enough |t|,

$$\operatorname{Tr}((X+tH)^{-1}) = \operatorname{Tr}(X^{-\frac{1}{2}}(I+tX^{-\frac{1}{2}}HX^{-\frac{1}{2}})^{-1}X^{-\frac{1}{2}}) =$$

$$\operatorname{Tr}(X^{-\frac{1}{2}}(I-tX^{-\frac{1}{2}}HX^{-\frac{1}{2}}+O(t^2))X^{-\frac{1}{2}}) = \operatorname{Tr}(X^{-1}) - t\operatorname{Tr}(X^{-2}H) + O(t^2).$$

Hence, $\nabla f(X)[H] = \text{Tr}(-X^{-2}H)$. Thus, $\nabla f(X) = -X^{-2}$.

• Note that for $H \in \mathbb{S}^n$,

$$\log \det(X + tH) = \log(1 + t \operatorname{Tr}(X^{-\frac{1}{2}}HX^{-\frac{1}{2}}) + O(t^2)) + \log \det(X)$$

So,

$$\begin{split} \nabla f(X)(H) &= \lim_{t \to 0} \frac{1}{t} \log(1 + t \operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) + O(t^2)) \\ &= \lim_{t \to 0} \frac{\operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) + O(t)}{1 + t \operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) + O(t^2)} = \operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) = \operatorname{Tr}(X^{-1} H). \end{split}$$

Thus $\nabla f(X) = X^{-1}$.

Side: This is also an immediate consequence of chain rule via using the fact $\nabla \det(X) = adj(X)$.

2.1.10 Matrix completion

For a set $\Delta \subseteq \{(i,j) : 1 \le i \le j \le n\}$, suppose the subspace $L \subseteq \mathbb{S}^n$ of matrices with (i,j)th entry of zero for all (i,j) in Δ satisfies $L \cap \mathbb{S}^n_{++} \ne \emptyset$. By considering the problem (for $C \in \mathbb{S}^n_{++}$)

$$\inf\{\langle C, X \rangle - \log \det X : X \in L \cap \mathbb{S}^n_{++}\},\tag{1}$$

prove there exists a matrix X in $L \cap \mathbb{S}^n_{++}$ with $C - X^{-1}$ having (i,j)th entry of zero for all (i,j) not in Δ . We now the function $X \in \mathbb{S}^n_{++} \mapsto \langle C, X \rangle - \log \det(X)$ has compact level sets. Now let $A_{i,j} \in \mathbb{S}^n$ be symmetric matrices with (i,j)th and (j,i)th entry equals to 1 and 0 elsewhere. Then

$$L = \{ X \in \mathbb{S}^n : \langle A_{i,j}, X \rangle = 0 \ \forall \ (i,j) \in \Delta \},\$$

which is a closed subspace of \mathbb{S}^n . So the level sets of 1 are also compact and thus there exists a global minimizer \bar{X} in $L \cap \mathbb{S}^n_{++}$. So due to "First order conditions for linear constraints" there exists $y_{i,j}$ for all $(i,j) \in \Delta$ such that

$$C - \bar{X}^{-1} = \sum_{(i,j)\in\Delta} y_{i,j} A_{i,j}.$$

 \bar{X} satisfies the desired property.

2.1.13. BFGS update Given a matrix C in \mathbb{S}^n_{++} and vectors s and y in \mathbb{R}^n satisfying $\langle s, y \rangle > 0$, consider the problem

$$\inf\{\langle C, X \rangle - \log \det(X) : Xs = y, X \in \mathbb{S}_{++}^n\}.$$

• Prove that for the problem above, the point

$$X = \frac{(y - \delta s)(y - \delta s)^{T}}{\langle s, y - \delta s \rangle} + \delta I$$

is feasible for small $\delta > 0$.

- Prove problem has an optimal solution.
- Use "First order conditions for linear constraints" to find the solution. (The solution is called BFGS update of C^{-1} under the secant condition Xs = y.)

Proof:

• Note that

$$Xs = \frac{(y - \delta s)(y - \delta s)^T s}{\langle s, y - \delta s \rangle} + \delta X = y - \delta X + \delta X = y.$$

Also, for $\delta > 0$ small enough, $\langle s, y - \delta s \rangle > 0$ and thus X will be the sum of a positive semi-definite matrix with δI and thus positive definite. Therefore, X is feasible for small $\delta > 0$.

- We know the map $X \in \mathbb{S}^n_{++} \mapsto \langle C, X \rangle \log \det(X)$ has compact level sets and also $\{X \in \mathbb{S}^n : Xs = y\}$ is a closed affine subspace of \mathbb{S}^n . Thus the map $X \in \mathbb{S}^n_{++} \cap \{X \in \mathbb{S}^n : Xs = y\} \mapsto \langle C, X \rangle \log \det(X)$ has compact level sets.
- ullet From "First order conditions for linear constraints" for a local minimum \bar{X} we know there exists w such that

$$C - \bar{X}^{-1} = sw^T + ws^T \Rightarrow (C - (sw^T + ws^T))^{-1} = \bar{X}.$$

Therefore,

$$(C - (sw^T + ws^T))y = s \Rightarrow (sw^T + ws^T)y = Cy - s.$$

So.

$$y^T(sw^T + ws^T)y = y^TCy - y^Ts \Rightarrow 2\langle y, s \rangle \langle y, w \rangle = y^TCy - y^Ts.$$

Now,

$$\langle w, y \rangle = \frac{y^T C y - \langle s, y \rangle}{2 \langle s, y \rangle}.$$

2.1.15. Nearest polynomial with a given root

Consider the Euclidean space of complex polynomials of degree no more than n, with inner product

$$\left\langle \sum_{j=0}^{n} x_j z^j, \sum_{j=0}^{n} y_j z^j \right\rangle = \sum_{j=0}^{n} \overline{x_j} y_j.$$

Given a polynomial p in this space, calculate the nearest polynomial with a given complex root α , and prove the distance to this polynomial is

$$\left(\sum_{j=0}^{n} |\alpha|^{2j}\right)^{-\frac{1}{2}} ||p(\alpha)||.$$

Proof: The problem translates into the following optimization problem

$$\inf\{\sum_{i=0}^{n}||a_i - b_i||^2 : \langle b, \overline{\tilde{\alpha}} \rangle = 0\},\,$$

where $p(x) = \sum_{j=0}^{n} a_i x^i$ and $\tilde{\alpha} = (1, \alpha, \dots, \alpha^n)^T \in \mathbb{R}^{2n+2}$. Note that $\langle ., . \rangle : \mathbb{R}^{2n+2} \to \mathbb{R}^2$ is a linear map. Then for $b \in \mathbb{R}^{2n+2}$ a local minimizer to the above problem, we have

$$b-a=z\tilde{\alpha}$$
 for some $z\in\mathbb{C}$

Now note that

$$b_i - a_i = z\alpha^i \Rightarrow 0 = \sum_{i=0}^n b_i \alpha^i = p(\alpha) + z \sum_{i=0}^n ||\alpha||^{2i}$$

So.

$$\sum_{i=0}^{n} ||a_i - b_i||^2 ||z||^2 \sum_{i=0}^{n} |\alpha|^{2i} \Rightarrow \sqrt{\sum_{i=0}^{n} ||a_i - b_i||^2} = \left(\sum_{j=0}^{n} |\alpha|^{2j}\right)^{-\frac{1}{2}} ||p(\alpha)||.$$

2 Max Functions

2.3.3

Prove by induction that if the functions $g_1, \dots, g_m : \mathbb{E} \to \mathbb{R}$ are all continous at the point \bar{x} then so is the max-function $g(x) = \max_i \{g_i(x)\}.$

Proof: It is clearly enough to prove the question for m=2. If $g_1(\bar{x}) \neq g_2(\bar{x})$ then for instance if $g_1(\bar{x}) < g_2(\bar{x})$, then due to continuity for a small neighborhood about \bar{x} , g_1 is smaller than g_2 and thus g is equal to g_2 . Since g_2 is continuous at \bar{x} so is g.

So suppose that $g_1(\bar{x}) = g_2(\bar{x})$ and let $x^k \in \mathbb{E}$ be a converging sequence to \bar{x} . We aim to show $g(x^k) \to g(\bar{x})$. However, let R_1, R_2 be two subsequences of \mathbb{N} such that for all $r \in R_i$, $g(x^r) = g_i(x^r)$, note that $R_1 \cap R_2$ is not necessarily empty, but $R_1 \cup R_2 = \mathbb{N}$. Now, suppose R_1 and R_2 are both infinite sized, then $g(x^k)$ is divided into two subsequences which both converge to $g(\bar{x}) = g_1(\bar{x}) = g_2(\bar{x})$. If only one of R_1 and R_2 are infinite, say for instance R_1 , then $\lim g(x^k) = \lim g_1(x^k) = g_1(\bar{x})$ which equals to $g(\bar{x})$. The proof is complete.

2.3.5. Cauchy-Schwarz and steepest descent

For a nonzero vector y in \mathbb{E} , use Karush-Kuhn-Tucker conditions to solve the problem

$$\inf\{\langle y, x \rangle : ||x||^2 < 1\}$$

Deduce the Cauchy-Schwarz inequality.

Proof: Note that the feasible region is compact and the objective function is linear and thus continuous. So there exists an optimal solution, not necessary unique, detoned by \bar{x} . Suppose $\bar{x} \neq 0$, then $\langle \nabla g(\bar{x}), -\bar{x} \rangle = 2\langle \bar{x}, -\bar{x} \rangle < 0$ and thus Mangasarian-Fromovitz constraint qualification holds at \bar{x} . Hence, there exists $\lambda \in \mathbb{R}_+$ such that

$$y + \lambda \bar{x} = 0.$$

So, since $y \neq 0$, λ is also nonzero and thus $||\bar{x}|| = 1$ and also $\bar{x} = -\frac{1}{\lambda}y$. Thus $\lambda = ||y||$. Hence, the objective value at \bar{x} equals to

$$\langle y, \frac{-y}{||y||} \rangle = -||y|| < 0,$$

which is negative and thus the assumption that $\bar{x} \neq 0$ is justified. Finally we have for $x \neq 0$

$$\langle y, \frac{x}{||x||} \rangle \geq -||y|| \Rightarrow \langle y, x \rangle \geq -||y||||x||.$$

Intechanging x with -x results in, which also holds for $x \neq 0$.

$$-||y||||x|| \le \langle y, x \rangle \le ||y||||x||.$$

2.3.7.

Consider a matrix $A \in \mathbb{S}_{++}^n$ and a real b > 0.

• Assuming the problem

$$\inf\{-\log \det X : \operatorname{Tr} AX \leq b, X \in \mathbb{S}^n_{++}\}\$$

has a solution, find it.

• Repeat using the objective function $Tr(X^{-1})$.

Proof:

• Note that $X \mapsto A^{\frac{1}{2}}XA^{\frac{1}{2}}$ is a homeomorphism and thus the following problem has a solution

$$\inf\{-\log\det(A^{\frac{1}{2}}XA^{\frac{1}{2}}): \operatorname{Tr} A^{\frac{1}{2}}XA^{\frac{1}{2}} \leq b, A^{\frac{1}{2}}XA^{\frac{1}{2}} \in \mathbb{S}^{n}_{++}\}.$$

Thus without loss of generality suppose that A = I. Thus we know the problem

$$\inf\{-\log \det X : \operatorname{Tr} X \leq b, X \in \mathbb{S}_{++}^n\}$$

has a solution. Now, for any feasible matrix X, we have

$$\sqrt[1/n]{\det(X)} \leq \frac{1}{n}\operatorname{Tr}(X) \leq \frac{b}{n} \Rightarrow \det(X) \leq (\frac{b}{n})^{1/n} \Rightarrow -\log\det(X) \geq -\log(\frac{b}{n})^{1/n}.$$

However, in the above equation, equality happens if and only if $\lambda_1(X) = \cdots = \lambda_n(X)$ and also $\operatorname{Tr}(X) = b$. So the optimal solution equals to $\bar{X} = \frac{b}{n}I$.

Now for the original problem if X is the optimal solution \bar{X} , then $A^{\frac{1}{2}}XA^{\frac{1}{2}}=\frac{b}{n}I$ and so $\bar{X}=\frac{b}{n}A^{-1}$.

• Note that $\langle A, -A \rangle < 0$ and thus MFCQ holds at any $X \in \mathbb{S}^n_{++}$. Now note that if \bar{X} is a local minimizer for the problem then since MFCQ holds at \bar{X} there exists $\lambda \geq 0$ such that

$$-\bar{X}^{-1} + \lambda A = 0 \Rightarrow \bar{X}^{-1} = \lambda A$$

Note that λ can't be zero and so $\operatorname{Tr}(A\bar{X}) = b$. Hence, $\operatorname{Tr}(\frac{1}{\lambda}I) = b$ and so $\lambda = \frac{n}{b}$. Finally, $\bar{X} = \frac{b}{n}A^{-1}$.

2.3.8. Minimum volume ellipsoid

• For a $y \in \mathbb{R}^n$ and the function $g : \mathbb{S}^n \to \mathbb{R}$ defined by $g(X) = ||Xy||^2$, prove $\nabla g(X) = Xyy^T + yy^TX$ for all the matrices X in \mathbb{S}^n .

- Consider a set $\{y^1, \dots, y^m\} \subseteq \mathbb{R}^n$. Prove this set spans \mathbb{R}^n if and only if the matrix $\sum_i y^i (y^i)^T$ is positive definite.
- Prove the problem

$$\inf - \log \det X$$
 subject to $||Xy^i||^2 - 1 \le 0$ for $i = 1, 2, \dots, m$
$$X \in \mathbb{S}^n_{++}$$

has an optimal solution.

- Show that the Mangasarian-Fromovitz constraint qualification holds at \bar{X} by considering the direction $d=-\bar{X}$.
- Write down the KKT conditions that \bar{X} must satisfy.
- When $\{y^1, \dots, y^n\}$ is the standard basis of \mathbb{R}^n , the optimal solution of the problem in part (c) is $\bar{X} = I$. Find the corresponding Lagrange multiplier vector.

Proof:

• Let $A = yy^T \in \mathbb{S}^n$, then g(X) = Tr(XAX) and thus

$$\lim_{t\to 0}\frac{1}{t}(g(X+tY)-g(X))=\lim_{t\to 0}\frac{1}{t}(t\operatorname{Tr}(XAY)+\operatorname{Tr}(AXY)+t^2\operatorname{Tr}(YAY))=\operatorname{Tr}((XA+AX)Y).$$

Thus $\nabla g(X) = XA + AX$. Note that in the above equation we are using the fact that Tr(YAX) = Tr(AXY).

• Clearly, $\sum_i y^i(y^i)^T \succeq 0$, also note that

$$x^T \left[\sum_i y^i (y^i)^T \right] x = \sum_i \langle x, y^i \rangle^2 \Rightarrow \left[\sum_i y^i (y^i)^T \right] x = 0 \iff \langle x, y^i \rangle = 0 \; \forall i$$

So $\operatorname{Ker}(\sum_i y^i(y^i)^T) = 0$ if and only if it doesn't exist a vector x such that $\langle x, y^i \rangle = 0$ for all i and this holds if and only if the set $\{y^1, \cdots, y^m\} \subseteq \mathbb{R}^n$ spans \mathbb{R}^n .

Now suppose the vector y^1, \dots, y^m span \mathbb{R}^n .

• Denote the feasible region of the above problem by Ω . Let $A = \sum_i y^i (y^i)^T$. Then as y^1, \dots, y^m span \mathbb{R}^n , we have $A \succ 0$. Also for $X \in \Omega$, we have $\langle X^2, A \rangle \leq n$. Thus if for $X \in \Omega$, $-\log \det X \leq c$ for some $c \in \mathbb{R}$, then

$$\langle A, X^2 \rangle - \log \det X^2 \le n - \frac{1}{2} \log \det X \le n - \frac{1}{2} c.$$

But we know that the level sets of $\langle C, X \rangle - \log \det X$ are compact for any $C \in \mathbb{S}^n_{++}$ from section 1.2, Question 14. However, $X \mapsto X^2$ is a homeomorphism from \mathbb{S}^n_{++} to \mathbb{S}^n_{++} . Thus the set of $x \in \Omega$ which satisfies $-\log \det X \leq c$ lie in a compact set. Thus the optimum is obtained.

Now suppose that \bar{X} is an optimal solution for the problem in part (c).

 \bullet Note that for all i

$$\langle \bar{X}y^{i}(y^{i})^{T} + y^{i}(y^{i})^{T}\bar{X}, -\bar{X}\rangle = -2\operatorname{Tr}(\bar{X}y^{i}(y_{i})^{T}\bar{X}) = -2 < 0.$$

• The KKT conditions are as the followings

$$\bar{X} \in \mathbb{S}^n_{++}$$

$$||\bar{X}y^i||^2 - 1 \le 0 \text{ for } i = 1, 2, \dots, m$$

$$\exists \lambda \in \mathbb{R}^m_+, \ s.t. \ -\bar{X}^{-1} + \sum_i \lambda_i (\bar{X}y^i(y^i)^T + y^i(y^i)^T \bar{X}) = 0$$

$$\lambda_i (||Xy^i||^2 - 1) = 0 \ \forall i$$

• Note that $I \in \Omega$ and $\log \det I = 0$. So we need to show that for $X \in \Omega$ we have $\log \det X \leq 0$ or equivalently $\det X \leq 1$. However, as we mentioned before, $\langle X, \sum_i y^i (y^i)^T \rangle \leq n$, but $\sum_i y^i (y^i)^T = I$ and thus $\langle X, I \rangle = \operatorname{Tr}(X) \leq n$. Now if $\lambda_1(X), \cdots, \lambda_n(X) > 0$ are the eigenvalues of X, the we have

$$\sqrt[1/n]{\prod_{i}\lambda_{i}(X)} \leq \frac{1}{n}(\sum_{i}\lambda_{i}(X)) = \frac{1}{n}\operatorname{Tr}(X) \leq 1 \Rightarrow \det(X) = \prod_{i}\lambda_{i}(X) \leq 1.$$

So I is the optimal solution. Now if $\lambda \in \mathbb{R}^n_+$ is a Lagrange multiplier then

$$-I + 2\operatorname{diag}(\lambda) = 0 \Rightarrow \lambda_i = \frac{1}{2} \,\forall i.$$