Module 10: Biomaterials and Host Integration Assignment

Total Point Value = 30

Due by midnight on Day 7 of Module 10

This should be submitted to Blackboard as a pdf.

- 1. The company Baxter received approval for its Fibrin Sealant (Tisseel®) in July, 2000 for application in surgical procedures. Features of this produce can be found at the website (http://tisseel.com/us/index.html). This material is being evaluated for a number of tissue engineering applications. Consider its use as a possible material in which to deliver tendon cells to a defect between bone and avulsed tendon. With regard to this prospective biomaterial application, please answer the following questions. Remember to give references when appropriate.
 - a. What type of biomaterial is Tisseel® and what are its components?

Sealer Protein Solution:

Total protein: 96-125 mg/mL
Fibrinogen: 67-106 mg/mL
Aprotinin: 2250-3750 KIU/mL

Thrombin Solution:

Thrombin (Human): 400-625 units/mL CaCl₂: 36-44 umol/mL

http://www.baxterpi.com/pi-pdf/Tisseel PI.pdf

b. What reaction does Tisseel® undergo to form a sealant?

Tisseel undergoes a polymerization reaction. Fibrinogen is converted into fibrin monomers, which aggregate to form a gel. Thrombin transforms Factor XIII to Factor XIIIa in the presence of calcium ions. Factor XIIIa crosslinks the aggregated fibrin monomers to a high molecular weight polymer.

c. How quickly does Tisseel® degrade?

Tisseel degrades when plasmin cleaves the polymerized fibrin into fibrin monomers. This takes 10-14 days in the body. Aprotinin is a protease inhibitor but instead of inhibiting this it is cleared by the kidney in ~ 30 min-60 min. The shelf-life of the product is 2 years at 8 degC.

- d. What surface properties would be desirable for such an application? Does the product have such properties?
 - Rapid protein adsorption and adhesion, geometrically consistent with natural tendon structure, stimulates cell migration and proliferation, bacterial resistance
- e. What bulk properties would be desirable for such an application? Does the product have such properties?
 - Elastic, high tensile strength, modulus similar to normal tissue, homogeneous, large pores for cell migration.
- 2. In lecture 1 we discuss the use of lithographic methods for tailoring biomaterials at the cellular level. Please briefly describe one technique each for tailoring biomaterials at the subcellular and supracellular length scales. 2-3 sentences each MAX.

There are many answers to the question. Some possibilities include:

Subcellular

Peptide protein grafting, Molecular imprinting

Supracellular

Solvent casting, extrusion, insoluble gradients, Rapid prototyping

- 3. Name the immunomodulatory strategy based on the description:
 - a. Encapsulation of cells with semipermeable material Physical Immunoisolation
 - b. Blocking co-stimulators of T-cell activation

Tolerance induction

c. Use of corticosteroids

Pharmacological treatment

d. Forced expression of human proteins in xenograft cells Genetic modification

References:

Question 1 adapted from *Tissue Engineering, Palsson and Bhatia*

Assignment Rubric

Question	Component	Total Point Value
1	a	2
	b	2
	С	2
	D	2
	E	2
2	Subcellular	6
	supracellular	6
3	Α	2
	В	2
	С	2
	D	2

Total Point Value = 30