I Coupe minimum

Soit G = (S, A) un multigraphe (G peut avoir plusieurs arêtes entre deux sommets), n = |S| et p = |A|. Une coupe de G est une partition $C = (S_1, S_2)$ de S telle que $S_1 \neq \emptyset$ et $S_2 \neq \emptyset$. Sa taille |C| est le nombre d'arêtes entre S_1 et $S_2 : |C| = \{\{u, v\} \in A \mid u \in S_1 \text{ et } v \in S_2\}$. C est une coupe minimum si elle minimise |C|.

Soient $u, v \in S$. La contraction $G/\{u, v\}$ de $\{u, v\}$ dans G est le multigraphe obtenu à partir de G en fusionnant u et v en un nouveau sommet uv, en supprimant les arêtes entre u et v, et en remplaçant chaque arête $\{u, x\}$ ou $\{v, x\}$ par une arête $\{uv, x\}$.

1. Dessiner $G/\{3,4\}$ si G est le multigraphe suivant :

2. On tire aléatoirement et uniformément une coupe C. Montrer que $\mathbb{P}(C$ est une coupe minimum) $\geq \frac{1}{2^n}$.

On propose l'algorithme suivant, où on note S(G) l'ensemble des sommets et A(G) l'ensemble des arêtes d'un graphe G:

Entrée : Graphe connexe GSortie : Coupe de G $H \leftarrow G$ Tant que |S(H)| > 2:

Choisir aléatoirement une arête $\{u, v\}$ de H $H \leftarrow H/\{u, v\}$ Renvoyer S(H)

- 3. Montrer l'invariant : « H est connexe ».
- 4. On note c(G) la taille minimum d'une coupe de G. Montrer l'invariant : « $c(H) \ge c(G)$ ». Peut-on avoir c(H) > c(G)?
- 5. Expliquer comment implémenter cet algorithme en $O(n^2)$.

Soit C une coupe minimum et k = |C|.

- 6. Montrer que $p \ge \frac{nk}{2}$.
- 7. Montrer que la probabilité de ne pas choisir une arête de C lors de la première contraction est au moins $1 \frac{2}{n}$.
- 8. Montrer $\mathbb{P}(S(H) \text{ est une coupe minimum}) \geq \frac{2}{n(n-1)}$.
- 9. En déduire un algorithme probabiliste pour trouver une coupe minimum de G avec une probabilité au moins $1 \frac{1}{n}$.

 On pourra utiliser l'inégalité : $(1 \frac{1}{x})^x \leq \frac{1}{e}$.
- 10. Déterminer le nombre maximum de coupes minimums dans un multi-graphe connexe d'ordre n.

II Ensemble indépendant

Soit G = (S, A) un graphe non-orienté. Un ensemble indépendant (ou : stable) de G est un sous-ensemble $I \subseteq S$ tel que $\forall u, v \in I, \{u, v\} \notin A$. On note $\alpha(G)$ la taille du plus grand ensemble indépendant de G.

On considère les problèmes de décision suivants :

Théorème: INDEPENDANT

Entrée : un graphe G et un entier k.

Sortie : est-ce que $\alpha(G) \geqslant k$?

Théorème: CLIQUE

Entrée : un graphe G et un entier k.

Sortie : est-ce que G possède une clique de taille k, c'est-à-dire un sous-ensemble $C \subseteq S$ tel que $\forall u, v \in C, \{u, v\} \in A$?

- 1. On admet que CLIQUE est NP-complet. Montrer que INDEPENDANT est NP-complet.
- 2. Décrire un algorithme efficace pour calculer $\alpha(G)$ si G est un arbre.

On considère l'algorithme suivant pour INDEPENDANT, où $p \in [0, 1]$:

$I \leftarrow \text{ensemble obtenu en prenant chaque sommet de } S \text{ avec probabilité } p$ $\mathbf{Pour} \ \{u,v\} \in A :$ $\mid \mathbf{Si} \ u \in I \text{ et } v \in I :$ $\mid \mathbf{Supprimer aléatoirement } u \text{ ou } v \text{ de } I$

Renvoyer I

- 3. Quelle est l'espérance de |I| juste avant de rentrer dans la boucle Pour ?
- 4. Montrer que l'espérance de |I| renvoyé par l'algorithme 1 est au moins $p|S|-p^2|A|$.
- 5. Montrer que $\alpha(G) \geqslant \frac{|S|^2}{4|A|}$.

On considère un autre algorithme pour INDEPENDANT, pour un graphe G = (S, A):

Algorithme 2

 $S \leftarrow$ sommets de S ordonnés selon un ordre quel
conque $I \leftarrow \emptyset$

Pour $v \in S$:

 $I \leftarrow I \cup \{v\}$

Supprimer v et ses voisins de S

Renvoyer I

- 6. Montrer que l'algorithme 2 donne une $\frac{1}{\Delta+1}$ -approximation de $\alpha(G)$, où Δ est le degré maximum des sommets de G.
- 7. On ordonne les sommets de S suivant une permutation uniformément aléatoire.

Calculer l'espérance de |I| puis montrer que $\alpha(G) \geqslant \sum_{i=1}^{|S|} \frac{1}{d_i + 1}$, où d_i est le degré du i-ème sommet.