COMPUTER VISION

Task Agnostic and Post-hoc Unseen Distribution Detection

Radhika Dua, Seongjun Yang, Yixuan Li, Deward Choi

2023 / OUTTA PAPER REVIEW

* AN OVERVIEW

최근 out-of-distribution(OOD) detection, anomaly detection 그리고 uncertainty estimation task의 발전에도 불구하고 task에 구 애받지 않는 post-hoc 방식은 존재하지 않는다. 이러한 한계를 해결하기 위해, 특정 작업에 대해 훈련된 model에서 추출된 기능을 활용하는 Task Agnostic 그리고 Post-hoc Unseen Distribution Detection(TAPUDD)라는 새로운 clustering 기반 ensembling 방법을 설계합니다.

COMPUTER VISION

Deeplearning model의 안전성을 위해 비정상 sample 분류

	비정상 sample
Novelty	normal class에 없는 형태의 강아지 종류의 sample
Anomaly	normal class와 상관없는 아예 다른 sample

Out-of-distribution은 test 단계에서 위와 같은 종류의 비정상 sample을 detection하는 것입니다.

1

TAPUDD

정상적인 image와 너무 밝아 비정상적인 image를 가지고 특징을 추출한 뒤, 추출된 feature를 사용하여 가우스 혼합 모델을 만들고 주어진 feature vector에 대한 최소 마할라노비스 거리를 계산합니다. 클러스터수(k1~kn)에 대해 TAP-마할라노비스 거리를 집계하여 신뢰성을 높입니다.

01

TAP-Mahalanobis

Mahalanobis 거리는 데이터 맥락에 따른 상대적 거리를 뜻하며 좌측 상단에 있는 그래프에선 주황 색 점이 노란색 점보다 더 가까이 있다고 할 수 있

이러한 TAP-Mahalanobis 모듈로 전달이 되면 Gaussian Mixture Model(GMM)을 사용하여 분 포 내 데이터의 특징을 k개의 군접으로 분할하고 각 클러스터의 특징을 다변량 gaussian으로 독립 적으로 모델링하고 훈련 샘플과 해당 클러스터 레 이블의 평균과 공분산 계산합니다. 그런 다음 크러 스터의 중심에서 mahalanobis 거리의 음의 최소 값을 얻습니다.

 $\mathcal{S}_{\text{TAP-Mahalanobis}} = -\min(f(\mathbf{x}_{test}) - \mu_c)^T \Sigma_c^{-1} (f(\mathbf{x}_{test}) - \mu_c)$

그러나 TAP-Mahalanobis의 000 탐지 성능이 task와 Dataset에 최적인 클러스터 k 값을 결정하는 것은 간단하지 않으므로 신뢰성을 향상시키고 최적의 클러스터 수를 결정할 필요성을 없애기 위해 Ensembling 모듈을 제시합니다.

COMPUTER VISION

02

Ensembling

k의 최적 값을 결정할 필요가 없을 뿐만 아니라 더 신뢰할 수 있는 결과를 제공합니다.

TAP-Mahalanobis가 k의 일부 값에 대해 잘 수행 되지 않는 반면 모든 Ensembling 전략을 가진 TAPUDD는 더 잘 수행된다는 것을 나타냅니다.

Texture에서 가장뛰어남

Can we design a task-agnostic, and post-hoc approach for unseen distribution detection?

보이지 않는 분포에서 sample을 처리하기 위해 노력하여 안전에 중 요한 aplication에서 신뢰할 수 없 는 예측과 치명적인 오류 초래를 막기위해 고안되었습니다. 향후 TAPUDD는 자연어 처리, 3D Vision 및 의료에서 보이지 않는 분 포의 sample을 탐지하는데 용이 할 것 입니다.