MA 544: Homework 5

Carlos Salinas

February 15, 2016

PROBLEM 5.1 (WHEEDEN & ZYGMUND §3, Ex. 14)

Show that the conclusion of part (ii) of Exercise 13 (Problem) is false if $|E|_e = +\infty$.

Proof. Let $V \subset [0,1]$ denote the Vitali set defined in 3.38 and consider the union $E := V \cup (2,\infty)$. It is clear that the inner and outer measure of E is ∞ . However, E itself is unmeasurable since otherwise $E \cap [0,1] = V \cap [0,1] = V$ would be measurable.

PROBLEM 5.2 (WHEEDEN & ZYGMUND §3, Ex. 16)

Prove (3.34).

Proof.

Lemma. |P| = v(P).

The result is trivial by 3.36, but then again, it is used to prove 3.36.

Let $\{\mathbf{e}_k\}_{k=1}^n$ be a set of orthogonal vectors emenating from a point in \mathbb{R}^n . The closed parallelapiped corresponding to $\{\mathbf{e}_k\}_{k=1}^n$ is the set

$$P = \left\{ \mathbf{x} \mid \mathbf{x} = \sum_{k=1}^{n} t_k \mathbf{e}_k, \ 0 \le t \le 1 \right\}. \tag{1}$$

Let's do it this way. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the map which sends the standard basis of \mathbb{R}^n to $\{\mathbf{e}_k\}_{k=1}^n$. Then

PROBLEM 5.3 (WHEEDEN & ZYGMUND §3, Ex. 18)

Prove that outer measure is *translation invariant*; that is, if $E_{\mathbf{h}} := \{ \mathbf{x} + \mathbf{h} \mid \mathbf{x} \in E \}$ is the translate of E by \mathbf{h} , $\mathbf{h} \in \mathbb{R}^n$, show that $|E_{\mathbf{h}}|_e = |E|_e$. If E is measurable, show that $E_{\mathbf{h}}$ is also measurable. [This fact was used in proving (3.37).]

Proof. By 3.6, given $\varepsilon > 0$, there exists an open set $G \supset E$ with $|G|_e \le |E|_e + \varepsilon$. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ denote the linear transformation $\mathbf{x} \mapsto \mathbf{x} + \mathbf{h}$, $\mathbf{h} \in \mathbb{R}^n$. By 3.35 we have $|G|_e = |G| = |T(G)| = |T(G)|_e$ and T(G) is an open set containing $E_{\mathbf{h}}$. Hence, we have an upper bound on the outer measure of $E_{\mathbf{h}}$ given by the inequality

$$|E_{\mathbf{h}}|_{e} \le |T(G)|_{e} = |G|_{e} \le |E|_{e} + \varepsilon. \tag{2}$$

On the other hand, by 3.6 there exists an open set $H \supset E_{\mathbf{h}}$ with $|H|_e \leq |E_{\mathbf{h}}| + \varepsilon$. Then by 3.35, we get the inequality

$$|E|_e \le |T^{-1}(H)|_e = |H|_e \le |E_{\mathbf{h}}|_e + \varepsilon. \tag{3}$$

Putting (2) and (3) we have

$$|E|_e - \varepsilon \le |E_{\mathbf{h}}|_e \le |E|_e + \varepsilon.$$

Letting $\varepsilon \to 0$, we have $|E|_e = |E_{\mathbf{h}}|_e$. It then follows that if E is measurable then $E_{\mathbf{h}}$ is measurable since $E_{\mathbf{h}} = T(E)$ and T is a Lipschitz transformation and $|E| = |E_{\mathbf{h}}|$.

Problem 5.4 (Wheeden & Zygmund §4, Ex. 1)

Prove corollary (4.2) and theorem (4.8)

Proof.

Corollary (Wheeden & Zygmund, 4.2). If f is measurable, then $\{f > -\infty\}$, $\{f < +\infty\}$, $\{f = +\infty\}$, $\{a \le f \le b\}$, $\{f = a\}$, etc., are all measurable. Moreover f is measurable if and only if $\{a < f < +\infty\}$ is measurable for every finite a.

Suppose that f is measurable. By 4.1, we have $\{f \geq a\}$ and $\{f \leq a\}$ are measurable so

$$\{f = a\} = \{f \ge a\} \cap \{f \le a\}$$
 (4)

is measurable and for b > a

$$\{a \le f \le b\} = \{f \ge a\} \cap \{f \le b\}.$$
 (5)

Proof of corollary 4.2. Now, consider the sequence of measurable sets $\{E_k\}_{k=0}^{\infty}$ where $E_k := \{f < a + k\}$. Then $\{f < \infty\} = \bigcup_{k=0}^{\infty} E_k$ and since $E_k \nearrow \{f < \infty\}$ (take $\mathbf{x} \in E_k$ then $f(\mathbf{x}) < a + k$ so $f(\mathbf{x}) < a + k + 1 \implies \mathbf{x} \in E_{k+1}$), by 3.26, we have $\{f < \infty\}$ is measurable.

Similarly for $\{f > -\infty\}$ we may consider the family $\{E_k\}_{k=0}^{\infty}$ where $E_k := \{f > a - k\}$ (take $\mathbf{x} \in E_k$ then $f(\mathbf{x}) > a - k$ so $f(\mathbf{x}) > a - k - 1 \implies \mathbf{x} \in E_{k+1}$) and taking the limit as $k \to \infty$ we have $\{f > -\infty\}$ is measurable.

Last but not least, since $\{f < \infty\}$ is measurable, $\{f = \infty\} = \{f < \infty\}^{\complement}$ is measurable.

Now, \Longrightarrow suppose f is measurable. Then $\{a < f < b\} = \{a \le f \le b\} \cap \{f = a\}^{\complement} \cap \{f = b\}^{\complement}$ is measurable for all finite a < b. Moreover, the family $\{E_k\}_{k=0}^{\infty}$ of sets $\{E_k\}_{k=0}^{\infty}$ where $E_k := \{a \le f < b + k\}$ is measurable for all k so, by 3.26, $\{a \le f < \infty\}$ is measurable since $E_k \nearrow \{a \le f < \infty\}$.

 \Leftarrow On the other hand, suppose that $\{a \leq f < \infty\}$ is measurable for every finite a. Then, for fixed $a \in \mathbb{R}$ the family $\{E_k\}_{k=0}^{\infty}$ where $E_k := \{a - k \leq f < \infty\}$ is measurable. By 3.26, $\{f < \infty\}$ is measurable so $\{f = \infty\} = \{f < \infty\}^{\complement}$ is measurable. Thus,

$$\{ f > a \} = \{ a < f < \infty \} \cup \{ f = \infty \}$$

is measurable so f is measurable.

Theorem (Wheeden & Zygmund, 4.8). If f is measurable and λ is any real number, then $f + \lambda$ and λf are measurable.

Proof of theorem 4.8. If f is measurable, then $\{f > a\}$ is measurable for all a so $\{f > a - \lambda\} = \{f + \lambda > a\}$ is measurable for all a. Hence, $f + \lambda$ is measurable.

If $\lambda \neq 0$, then $\{f > a/\lambda\}$ is measurable for all a so λf is measurable. If $\lambda = 0$ then $\lambda f = 0$ is clearly measurable since $\{0 > a\} = (a, 0)$ is open for all a (possibly empty if $a \geq 0$, but still an open set).

Thus, $f + \lambda$ and λf are measurable.

PROBLEM 5.5 (WHEEDEN & ZYGMUND §4, Ex. 2)

Let f be a simple function, taking its distinct values on disjoint sets $E_1, ..., E_N$. Show that f is measurable if and only if $E_1, ..., E_N$ are measurable.

Proof. \Longrightarrow Suppose f is a simple function taking distinct values on disjoint sets $E_1,...,E_N$. Then $f = \sum_{k=1}^N a_k \chi_{E_k}$. If f is measurable, $\{f > a\}$ is measurable for all finite a. In particular, $\{f > a_k\} = E_k$ is measurable.

 \Leftarrow On the other hand, suppose that E_k is measurable for all $1 \le k \le N$. Then χ_{E_k} is measurable and by Problem 5.4, the sum $f = \sum_{k=1}^{N} a_k \chi_{E_k}$ is measurable.