Estrutura do tema ISC

- 1. Representação de informação num computador
- 2. Organização e estrutura interna dum computador
- 3. Execução de programas num computador
- 4. O processador e a memória num computador
- 5. Evolução da tecnologia e da eficiência

AJProença, Sistemas de Computação, UMinho, 2017/18

Análise de componentes num computador

Componentes (físicos) a analisar:

- a unidade de processamento / o processador:
 - ➤o nível ISA (*Instruction Set Architecture*): tipos e formatos de instruções, acesso a operandos, ...
 - CISC versus RISC
 - paralelismo no processador: pipeline, super-escalaridade, ...
 - paralelismo fora do processador: on-chip e off-chip
- a hierarquia de memória:

cache, memória virtual, ...

- periféricos:
 - interfaces humano-computador (HCI)
 - arquivo de informação
 - comunicações

pushl

movl

movl

addl

movl

popl ret

(Instruction Set Architecture) (1)

Mesmo código em assembly

%esp,%ebp

%ebp,%esp

12 (%ebp), %eax

8 (%ebp), %eax

%ebp

%ebp

人入

Ex. de código C

```
int sum(int x, int y)
{
  int t = x+y;
  return t;
}
```

- operações num processador?
- como aceder a operandos?
- registos visíveis ao programador?
- tipos de instruções presentes num processador?
- formatos de instruções em linguagem máquina?
- instruções de input/output ?
- escalares multi-byte em memória?

AJProença, Sistemas de Computação, UMinho, 2017/18

3

operações num processador?
 como aceder a operandos?
 registos visíveis ao programador?

O processador: análise do nível ISA (Instruction Set Architecture) (2)

XX

Operações lógicas/aritméticas num processador

- operações mais comuns:
 - lógicas: not, and, or, xor, ...
 - aritméticas: inc/dec, neg, add, sub, mul, ...
- nº de operandos em cada operação
 - 3-operandos (RISC, ...)
 - 2-operandos (IA-32, ...)
 - 1-operando (microcontroladores, ...)
 - 0-operandos (stack-machine, ...)
- localização dos operandos
 - variáveis escalares (registos...)
 - variáveis estruturadas (memória...)

O processador: análise do nível ISA (Instruction Set Architecture) (3)

/

Modos de aceder a operandos

- em arquiteturas RISC
 - em operações aritméticas/lógicas: operandos sempre em registo
 - em load/store:1 ou 2 modos de especificar o endereço de memória
- em CISC, exemplo: IA-32 (Intel Architecture 32-bits)

Type	Form	Operand value	Name
Immediate	\$Imm	Imm	Immediate
Register	\mathbf{E}_a	$R[E_a]$	Register
Memory	Imm	M[Imm]	Absolute
Memory	(\mathbf{E}_{a})	$M[R[\mathbf{E}_a]]$	Indirect
Memory	$Imm(\mathbf{E}_b)$	$M[Imm + R[E_b]]$	Base + displacement
Memory	$(\mathbf{E}_{b},\mathbf{E}_{i})$	$M[R[E_b] + R[E_i]]$	Indexed
Memory	$Imm(\mathbf{E}_b,\mathbf{E}_i)$	$M[Imm + R[E_b] + R[E_i]]$	Indexed
Memory	$(, \mathbf{E}_i, s)$	$M[R[E_i] \cdot s]$	Scaled indexed
Memory	$Imm(, \mathbf{E}_i, s)$	$M[Imm + R[\mathtt{E}_i] \cdot s]$	Scaled Indexed
Memory	$(\mathbf{E}_{b},\mathbf{E}_{i},s)$	$M[R[E_b] + R[E_i] \cdot s]$	Scaled indexed
Memory	$Imm(\mathbf{E}_b,\mathbf{E}_i,s)$	$M[Imm + R[E_b] + R[E_i] \cdot s]$	Scaled indexed

AJProença, Sistemas de Computação, UMinho, 2017/18

5

- operações num processador?
- como aceder a operandos?
- registos visíveis ao programador?

O processador: análise do nível ISA (Instruction Set Architecture) (4)

众人

Registos visíveis ao programador (inteiros)

- em arquiteturas RISC: 32 registos genéricos...
- no IA-32:

regisios visiveis ao programadoi :

- tipos de instruções presentes num processador?
- formatos de instruções em linguagem máquina?

O processador: análise do nível ISA (Instruction Set Architecture) (5)

众入

Tipos de instruções presentes num processador

- transferência de informação
 - de/para registos/memória, ...
- operações aritméticas e lógicas
 - soma, subtração, multiplicação, divisão, ...
 - AND, OR, NOT, XOR, comparação, ...
 - · deslocamento de bits, ...
- controlo do fluxo de execução
 - para apoio a estruturas de controlo
 - para apoio à invocação de procedimentos/funções
- outras...

AJProença, Sistemas de Computação, UMinho, 2017/18

7

O processador: análise do nível ISA (Instruction Set Architecture) (6)

众人

Ex: instruções de transferência de info no IA-32

mov	S, D	D←S	Move (byte,word,long_word)
movzbl movsbl	,	D←ZeroExtend(S) D←SignExtend(S)	Move Byte-Long Zero-Extended Move Byte-Long Sign-Extended
push pop	S D	%esp ← %esp - 4; Mer D←Mem[%esp]; %esp	
lea	S, D	D← &S	Load Effective Address / Pointer

D – destino: [Reg | Mem] **S** – *source*, fonte: [Imm | Reg | Mem]

D e S não podem ser ambos operandos em memória no IA-32

人入

Ex: instruções aritméticas/lógicas no IA-32

inc dec neg not	D D D	D← D +1 D← D −1 D← -D D← ~D	Increment Decrement Negate Complement
add	S, D	D← D + S	Add
sub	S, D	D← D - S	Subtract
imul	S, D	D← D * S	32 bit Multiply
and	S, D	D←D&S	And
or	S, D	D←D S	Or
xor	S, D	D←D^S	Exclusive-Or
shl	k, D	$D \leftarrow D << k$	Left Shift
sar	k, D	$D \leftarrow D >> k$	Arithmetic Right Shift
shr	k, D	$D \leftarrow D >> k$	Logical Right Shift

AJProença, Sistemas de Computação, UMinho, 2017/18

O processador: análise do nível ISA (Instruction Set Architecture) (8)

XX

Ex: instruções de controlo de fluxo no IA-32

jmp	Label	%eip ← Label	Unconditional jump
je js jg jge ja	Label Label Label Label Label		Jump if Zero/Equal Jump if Negative Jump if Greater (signed >) Jump if Greater or equal (signed >=) Jump if Above (unsigned >)
call ret	Label	pushl %eip; %e popl %eip	eip ← Label Procedure call Procedure return

registos visiveis ao programador?

- tipos de instruções presentes num processador?
- formatos de instruções em linguagem máquina?
 instruções de input/output?

O processador: análise do nível ISA (Instruction Set Architecture) (9)

众人

Formatos de instruções em linguagem máquina

– campos duma instrução

- comprimento das instruções
 - variável (prós e contras; IA-32...)
 - fixo (prós e contras; RISC...)
- exemplos de formatos de instruções

AJProença, Sistemas de Computação, UMinho, 2017/18

11

O processador: análise do nível ISA (Instruction Set Architecture) (10)

众人

Formatos de instruções no IA-32

bytes 0 or 1 0 or 1 0 or 1 0 or 1

Instruction Prefix Segment Override Size Override

(a) Prefix

Formatos de instruções no MIPS (RISC)

AJProença, Sistemas de Computação, UMinho, 2017/18

13

Tormatos de instruções em imguagi

- instruções de input/output?
- escalares multi-byte em memória?

O processador: análise do nível ISA (Instruction Set Architecture) (12)

众人

Instruções de input/output

- finalidade
 - escrita de comandos
 - leitura de estado
 - escrita/leitura de dados
- específicas (requer sinais de controlo no bus...) ; ou
- idênticas ao acesso à memória
 - » memory mapped I/O

Escalares multi-byte em memória (como ordená-los)

- little-endian
- big-endian