Page: 1 of 21

FCC TEST REPORT

FCC ID · ZTJ-UB5

: Shenzhen Uniwisdom Technologies Co., Ltd. **Applicant**

: Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an Address

District, Shenzhen, P.R.China

Equipment Under Test (EUT):

Product Name : Wireless Microphone System

Model No. : UB-5 LT; UB-5 GT; PV-1 U1 BL(Transmitter);

PV-1U1 BHS(Transmitter); PV-1 U1 BG(Transmitter)

Standards : FCC Part 15 Subpart C:2009

Date of Test : July 18, 2011 ~ July 20, 2011

Date of Issue : July 26, 2011

Test Engineer : Hunk yan

Takko zhang : Philo zhong **Reviewed By**

Test Result : PASS

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488

Fax:+86-755-27553868

♦ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

WALTEK SERVICES

2 Test Summary

FCC Part 15 Subpart C Requirements							
Test Items	Test Requirement Test Method		Result				
Conducted Emission (150KHz to 30MHz)	FCC Part 15.207	ANSI C63.4: 2003	N/A				
Radiated Emission (30MHz to 10GHz)	FCC Part 15.209	ANSI C63.4: 2003	PASS				
20 dB Bandwidth	FCC Part 15.249	ANSI C63.4: 2003	PASS				

WALTEK SERVICES

3 Contents

1	C	OVER PAGE	1
2	T	EST SUMMARY	2
3	C	CONTENTS	3
4	G	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	DETAILS OF E.U.T.	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING	
	4.6	TEST FACILITY	
	4.7	TEST LOCATION	5
5	E	QUIPMENT USED DURING TEST	6
6	A	NTENNA REQUIREMENT	8
_	~		
7	C	CONDUCTED EMISSION	8
8	R	ADIATION EMISSION DATA	8
	8.1	TEST EQUIPMENT	8
	8.2	MEASUREMENT UNCERTAINTY	8
	8.3	EUT Setup	
	8.4	SPECTRUM ANALYZER SETUP	
	8.5	TEST PROCEDURE.	
	8.6 8.7	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	8.8	TEST RESULTS	
	8.9	PHOTOGRAPH – RADIATION EMISSION TEST SETUP	
9		0 DB BANDWIDTH	
9			
	9.1	TEST EQUIPMENT	
	9.2	TEST PROCEDURE.	
	9.3	TEST RESULT	
10		HOTOGRAPHS - CONSTRUCTIONAL DETAILS	
	10.1	PRODUCT VIEW	
	10.2		
	10.3		
	10.4 10.5		
	10.5		
	10.0	1 CD DACK TILW	20

4 General Information

4.1 Client Information

Applicant: Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Applicant : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an

District, Shenzhen, P.R.China

Manufacturer : Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Manufacturer: Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an

District, Shenzhen, P.R.China

4.2 General Description of E.U.T.

Product Name : Wireless Microphone System

Model No. : UB-5 LT; UB-5 GT; PV-1 U1 BL(Transmitter);

PV-1U1 BHS(Transmitter); PV-1 U1 BG(Transmitter)

Differences describe : All of the models have the same circuit and apparence, only the apparence of

the plug phone is different.

Operation Frequency : 906MHz ~ 928MHz

4.3 Details of E.U.T.

Technical Data: : DC 3.0V (2 * 1.5V "AA" Size Battery)

4.4 Description of Support Units

The EUT has been tested as an independent unit. All the test was performed in the condition of DC 3.0V input.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Wireless Microphone System. The standards used were FCC Part 15 Subpart C:2009.

WALTEK SERVICES

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, Aug.03, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

Equipment	Manufacturer	Equipment	Internal No	Specification	Cal.	Due	Cert. No	Uncertainty
Name EMC	Model	No N		~ P * * * * * * * * * * * * * * * * * *	Date	Date		
Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug- 2010	Aug- 2011	Wws200 81596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug- 2010	Aug- 2011	-	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug- 2010	Aug- 2011	-	f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug- 2010	Aug- 2011	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug- 2010	Aug- 2011	-	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug- 2010	Aug- 2011	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	N/A	N/A	-	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	N/A	N/A	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug- 2010	Aug- 2011	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	KH3931	-	9k-1GHz	Aug- 2010	Aug- 2011	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug- 2010	Aug- 2011	Wws200 80941	±10%
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0- 300V Freq_range: 10-80Hz	Aug- 2010	Aug- 2011	Wwd200 81185	Voltage distinguish:0 .025% Power_freq
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0- 300V Power_freq: 10-80Hz				distinguish:0 .02Hz

WALTEK SERVICES

Equipment	Manufacturer	Equipment			Cal.	Due		
Name	Model	No	Internal No	Specification	Date	Date	Cert. No	Uncertainty
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: - 60 dBm- +10dBm	Aug- 2010	Aug- 2011	Wws200 81890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug- 2010	Aug- 2011	Wwc200 82396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range: 0.15-1000 MHz	Aug- 2010	Aug- 2011	Wwc200 82397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365	-	-	Aug- 2010	Aug- 2011	Wws200 81597	-
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V- 4.4KV Pulse current: 100A-2.2KA	Aug- 2010	Aug- 2011	Wwc200 82401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311	-	-	Aug- 2010	Aug- 2011	Wwc200 82398	-
Signal and Data Line Coupling Network	SCHAFFNE R/ CDN 117	25627	W2008011	1.2/50μS	Aug- 2010	Aug- 2011	Wwc200 82399	-

6 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has an antenna that uses a unique coupling to it, fulfill the requirement of this section.

7 Conducted Emission

Test Requirement: FCC Part15.207
Test Method: ANSI C63.4:2003

Test Result: N/A

Remark: Because the EUT is DC input, this test is not applicable.

8 Radiation Emission Data

Test Requirement: FCC Part15.249
Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 30MHz to 10GHz

Measurement Distance: 3m

8.1 Test Equipment

Plesse refer to Section 5 of this report.

8.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ± 5.03 dB.

WALTEK SERVICES

8.3 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15.249 and Part 15.209 limits.

The EUT was placed on the test table in shielding room.

8.4 Spectrum Analyzer Setup

According to FCC Part15 B Rules, the system was tested 30 to 10000MHz.

Below 1GHz

Start Frequency	30 MHz
Stop Frequency	1000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	1000 MHz
Stop Frequency	10000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	1MHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

8.5 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report. Only the worst case is shown in the report.

WALTEK SERVICES

8.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

8.7 Radiated Emissions Limit

A. FCC Part 15.249 Limit

Fundamental Frequency	Field Strength of	Fundamental	Field Strength of Harmonic		
(MHz)	mV/m	dBuV/m	uV/m	dBuV/m	
902 – 928	50	94	500	54	
2400 – 2483.5	50	94	500	54	
5725 – 5875	50	94	500	54	
24000 - 24250	250	108	2500	68	

- **Note:** (1) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
 - (2)The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
 - (3) Above 1GHz,do a Peak and average measurements for all emissions,Limit for peak is 94dBuvV/m,According to Part15.35(b) and average is 54BuvV/m.
 - (4) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation

WALTEK SERVICES

B. FCC Part 15.209 Limit

Frequency (MHz)	Distance (m)	Field Strength (dBuV/m)
30 – 88	3	40.0
88 – 216	3	43.5
216 – 960	3	46.0
Above 960	3	54.0

Note: (1) In the Above Table, the tighter limit applies at the band edges.

(2) Distance refers to the distance in meters between the measuring instrument antenna.

8.8 Test Results

Formula of conversion factors: the field strength at 3m was established by adding The meter reading of the spectrum analyzer (which is set to read in units of dBuV) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

Example:

Freq(MHz) Meter Reading +ACF=FS

33 20dBuV+10.36dB=30.36dBuV/m @3m

Radiated Emission Test Data

Test Mode: TX On
Temperature: 25.5 °C
Humidity: 51%RH
Test Result: PASS

WALTEK SERVICES

Test Data

	1	Ι	1	T		<u> </u>			
Frequency (MHz)	Detector	Ant. Pol	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Turntabl e Angle		
, ,			(dBuV/m)	,		(m)	(°)		
	Low Channel: 906MHz								
906.00	Peak	V	106.03	114.00	-7.97	1.0	95		
1812.00	Peak	V	50.45	74.00	-23.55	1.1	270		
2718.00	Peak	V	49.24	74.00	-24.76	1.0	160		
4530.00	Peak	V	49.64	74.00	-24.36	1.2	220		
6342.00	Peak	V	48.74	74.00	-25.26	1.1	180		
8154.00	Peak	V	46.54	74.00	-27.46	1.4	210		
906.00	Peak	Н	98.74	114.00	-15.26	1.8	240		
1812.00	Peak	Н	51.12	74.00	-22.88	1.5	80		
2718.00	Peak	Н	49.65	74.00	-24.35	2.0	190		
4530.00	Peak	Н	47.63	74.00	-26.37	2.2	140		
6342.00	Peak	Н	46.95	74.00	-27.05	1.9	60		
8154.00	Peak	Н	46.10	74.00	-27.90	1.7	310		
906.00	AVG	V	90.24	94.00	-3.76	1.0	95		
1812.00	AVG	V	40.28	54.00	-13.72	1.1	270		
2718.00	AVG	V	39.87	54.00	-14.13	1.0	160		
4530.00	AVG	V	38.57	54.00	-15.43	1.2	220		
6342.00	AVG	V	37.86	54.00	-16.14	1.1	180		
8154.00	AVG	V	37.85	54.00	-16.15	1.4	210		
906.00	AVG	Н	87.21	94.00	-6.79	1.8	240		
1812.00	AVG	Н	40.39	54.00	-13.61	1.5	80		
2718.00	AVG	Н	39.83	54.00	-14.17	2.0	190		
4530.00	AVG	Н	38.25	54.00	-15.75	2.2	140		
6342.00	AVG	Н	37.15	54.00	-16.85	1.9	60		
8154.00	AVG	Н	35.82	54.00	-18.18	1.7	310		
		Mid	dle Chann	el: 915.4M	Hz				
915.40	Peak	V	104.86	114.00	-9.14	1.2	100		
1830.80	Peak	V	51.36	74.00	-22.64	1.4	120		
		_			_	-			

WALTEK SERVICES

2746.20	Peak	V	49.87	74.00	-24.13	1.5	280
4577.00	Peak	V	48.47	74.00	-25.53	1.3	75
6407.80	Peak	V	48.12	74.00	-25.88	1.1	160
8238.60	Peak	V	44.23	74.00	-29.77	1.5	240
915.40	Peak	Н	95.87	114.00	-18.13	2.0	90
1830.80	Peak	Н	48.25	74.00	-25.75	1.8	160
2746.20	Peak	Н	46.53	74.00	-27.47	1.9	80
4577.00	Peak	Н	46.12	74.00	-27.88	2.2	270
6407.80	Peak	Н	44.12	74.00	-29.88	2.1	300
8238.60	Peak	Н	43.85	74.00	-30.15	1.7	210
915.40	AVG	V	88.75	94.00	-5.25	1.2	100
1830.80	AVG	V	39.52	54.00	-14.48	1.4	120
2746.20	AVG	V	38.62	54.00	-15.38	1.5	280
4577.00	AVG	V	37.56	54.00	-16.44	1.3	75
6407.80	AVG	V	36.96	54.00	-17.04	1.1	160
8238.60	AVG	V	32.14	54.00	-21.86	1.5	240
915.40	AVG	Н	83.62	94.00	-10.38	2.0	90
1830.80	AVG	Н	36.30	54.00	-17.70	1.8	160
2746.20	AVG	Н	34.58	54.00	-19.42	1.9	80
4577.00	AVG	Н	34.74	54.00	-19.26	2.2	270
6407.80	AVG	Н	32.52	54.00	-21.48	2.1	300
8238.60	AVG	Н	31.69	54.00	-22.31	1.7	210
		Hiş	gh Channe	l: 927.2MI	Hz		
927.20	Peak	V	104.74	114.00	-9.26	1.5	250
1854.40	Peak	V	50.35	74.00	-23.65	1.2	130
2781.60	Peak	V	49.43	74.00	-24.57	1.0	230
4636.00	Peak	V	48.26	74.00	-25.74	1.4	140
6490.40	Peak	V	47.26	74.00	-26.74	1.6	40
8344.80	Peak	V	46.12	74.00	-27.88	1.0	200
927.20	Peak	Н	97.54	114.00	-16.46	2.4	210
1854.40	Peak	Н	48.67	74.00	-25.33	2.1	140
2781.60	Peak	Н	47.39	74.00	-26.61	1.9	220
4636.00	Peak	Н	46.25	74.00	-27.75	1.7	50

WALTEK SERVICES

Page:15 of 21

6490.40	Peak	Н	45.14	74.00	-28.86	2.0	330
8344.80	Peak	Н	44.10	74.00	-29.90	2.2	80
927.20	AVG	V	90.85	94.00	-3.15	1.5	250
1854.40	AVG	V	38.65	54.00	-15.35	1.2	130
2781.60	AVG	V	38.74	54.00	-15.26	1.0	230
4636.00	AVG	V	35.12	54.00	-18.88	1.4	140
6490.40	AVG	V	36.53	54.00	-17.47	1.6	40
8344.80	AVG	V	35.21	54.00	-18.79	1.0	200
927.20	AVG	Н	85.31	94.00	-8.69	2.4	210
1854.40	AVG	Н	37.42	54.00	-16.58	2.1	140
2781.60	AVG	Н	35.26	54.00	-18.74	1.9	220
4636.00	AVG	Н	36.19	54.00	-17.81	1.7	50
6490.40	AVG	Н	33.75	54.00	-20.25	2.0	330
8344.80	AVG	Н	32.24	54.00	-21.76	2.2	80

8.9 Photograph – Radiation Emission Test Setup

Below 1GHz

Above 1GHz

WALTEK SERVICES

9 20 dB Bandwidth

9.1 Test Equipment

Please refer to Section 5 of this report

9.2 Test Procedure

- 1. The EUT, peripherals were put on the turntable which table size is 1mX1.5m, table high 0.8m. All set up is according to ANSI C63.4: 2003.
- 2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

9.3 Test Result

Frequency (MHz)	Bandwidth (kHz)
906.0	280
915.4	278
927.2	278

Remark: The follow graph show the worst case 906MHz only.

WALTEK SERVICES

10 Photographs - Constructional Details

10.1 Product View

10.2 EUT – Front View

WALTEK SERVICES

10.3 EUT – Back View

10.4 EUT – Open View

10.5 PCB – Front View

10.6 PCB – Back View

11 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

