Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1-27. (canceled)

28. (currently amended) A composition for delivering an agent to cells, the composition comprising the agent and a delivery enhancing compound of formula:

$$\begin{array}{c} \begin{array}{c} O \\ X_1 & C \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} X_3 \\ \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} X_1 & C \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} X_1 & C \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} O \\ X_3 \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} O \\ X_2 \\ \end{array} \\ \begin{array}{c} O \\ X_3 \\ \end{array} \\ \begin{array}{c} O \\ X_4 \\ \end{array} \\ \begin{array}{c} O \\ X_5 \\ \end{array} \\$$

Amdt. dated October 12, 2007

Reply to Office Action of September 10, 2007

wherein:

X is Cl a counterion;

m and n are the same or different and each is an integer from 2-8;

X₁ is selected from the group consisting of

$$\begin{array}{c} CH_3 \\ OH \\ CH_2 \end{array} CH_2 \\ \text{and} \\ HO^{\text{IV}} \\ \end{array}$$

 X_2 , and X_3 are each independently selected from the group consisting of a saccharide group,

$$\begin{array}{c} CH_3 \\ OH \\ CH_2 \end{array}$$
 and
$$\begin{array}{c} CH_3 \\ OH \\ CH_2 \end{array}$$

wherein at least one of X_2 and X_3 is a saccharide group when X_3 is present, and wherein said agent is a member selected from the group consisting of a therapeutic protein, a therapeutic gene, a vector and an antisense nucleic acid.

- 29. (previously presented) The composition according to claim 28, wherein the saccharide group has between one to eight monosaccharide groups.
- 30. (original) The composition according to claim 29, wherein the saccharide group is selected from the group consisting of pentose monosaccharide groups, hexose monosaccharide groups, pentose-pentose disaccharide groups, hexose-hexose disaccharide groups, pentose-hexose disaccharide groups, and hexose-pentose disaccharide groups.

- 31. (original) The composition according to claim 28, wherein the saccharide group is a trisaccharide.
- 32. (original) The composition according to claim 28, wherein the concentration of the delivery enhancing compound is about 0.002 to about 2 mg/ml.
- 33. (original) The composition according to claim 32, wherein the concentration of the delivery enhancing compound is about 0.2 to 2 mg/ml.
- 34. (original) The composition according to claim 28, wherein the agent modulates a biological process in a cell when the agent is present in the cell.
- 35. (original) The composition according to claim 34, wherein the biological process is selected from the group consisting of cell growth, differentiation, proliferation, a metabolic or biosynthetic pathway, gene expression, a disease-associated process, and an immune response.
- 36. (original) The composition according to claim 28, wherein the agent comprises a polynucleotide.
- 37. (previously presented) The composition according to claim 36, wherein the polynucleotide is selected from the group consisting of a triplex-forming nucleic acid, and a nucleic acid that comprises a gene which encodes a polypeptide.
- 38. (original) The composition according to claim 37, wherein the gene is a tumor suppressor gene.
- 39. (original) The composition according to claim 37, wherein the tumor suppressor gene is selected from the group consisting of a retinoblastoma gene and a p53 gene.
- 40. (original) The composition according to claim 28, wherein the composition further comprises a polymeric matrix.

- (original) The composition according to claim 28, wherein the composition further comprises a mucoadhesive.
 - 42. (currently amended) A delivery enhancing compound of formula:

$$X_{1}$$
— C — N — $(CH_{2})_{\overline{m}}$ — N — $(CH_{2})_{\overline{n}}$ — NH — C — X_{3}
 C = O
 X_{2}
,

 X_{1} — C — N — $(CH_{2})_{\overline{m}}$ — N — $(CH_{2})_{\overline{n}}$ — $NH_{3}^{+}X^{-}$
 C = O
 X_{2}
, or

$$X_1 - C - N - (CH_2)_{\overline{m}} - N - (CH_2)_{\overline{n}} - NH_3^{+}X^{-}$$
 $C - O$
 X_2
, or

$$X_1$$
— C — N — $(CH_2)_{\overline{m}}$ — N — $(CH_2)_{\overline{n}}$ — $N^+(CH_3)_3X^ C$ = O
 X_2

wherein:

X is a counterion;

m and n are the same or different and each is an integer from 2-8;

X₁ is selected from the group consisting of

$$\begin{array}{c} CH_3 \\ OH \\ CH_2 \end{array} CH_2 \\ CH_2 \end{array}$$
 and
$$\begin{array}{c} CH_3 \\ OH \\ CH_2 \end{array} CH_2 \\ HO^{VI} \\ \end{array}$$

 X_2 , and X_3 are each independently selected from the group consisting of a saccharide group,

wherein at least one of X_2 and X_3 is a saccharide group when X_3 is present and the saccharide group is a hexose monosaccharide group or has from two to eight monosaccharide groups.

43. (previously presented) The compound of claim 42, wherein the compound is of the formula:

$$X_1$$
— C — N — $(CH_2)_{\overline{m}}$ — N — $(CH_2)_{\overline{n}}$ — $NH_3^+X^ C$ = O
 X_2
or

Amdt. dated October 12, 2007

Reply to Office Action of September 10, 2007

$$X_1$$
— C — N — $(CH_2)_{\overline{m}}$ — N — $(CH_2)_{\overline{n}}$ — $N^+(CH_3)_3X^ C$ — O
 X_2

- 44 (currently amended). The compound of claim 42, wherein the saccharide group has between one from two to eight monosaccharide groups.
 - 45. (currently amended) The compound of claim
- 44, wherein the saccharide group is selected from the group consisting of-pentose monosaccharide groups, hexose monosaccharide groups, pentose-pentose disaccharide groups, hexose-hexose disaccharide groups, pentose-hexose disaccharide groups, and hexose-pentose disaccharide groups.
- 46. (original) The compound of claim 42, wherein the saccharide group comprises between three and about eight monosaccharide residues.
- 47. (original) The compound of claim 46, wherein the saccharide group is a trisaccharide.
- 48. (previously presented). The compound of claim 42, wherein X_3 is a disaccharide group.
- 49. (original) The compound of claim 42, wherein m and n are each independently 2 or 3.
- 50. (previously presented) The compound of claim 42, wherein both X_1 and X_2 are both

and X₃ is the saccharide group.

- 51. (original) The compound of claim 42, wherein the saccharide group is a hexose-hexose disaccharide group.
 - 52. (canceled).
- 53. (previously presented) The compound of claim 42, wherein m and n are each 3,

X₁ and X₃ are both

and X₂ is a hexose monosaccharide group.

54. (previously presented) The compound of claim 42, wherein m and n are each 3,

 X_1 and X_2 are both

Appl. No. 10/055,863 Amdt. dated October 12, 2007

Reply to Office Action of September 10, 2007

and X₃ is a hexose-hexose disaccharide group.

55. (previously presented) The compound of claim 42, wherein m and n are each 3, X_1 and X_3 are both

X₂ is a hexose-hexose disaccharide group.

56. (previously presented) The composition according to claim 28, wherein the compound has a Formula III:

57. (previously presented) The composition according to claim 28, wherein the compound has a Formula IV:

Appl. No. 10/055,863

Amdt. dated October 12, 2007

Reply to Office Action of September 10, 2007

58. (previously presented) The composition according to claim 28, wherein the compound has a Formula V:

59-81. (canceled)

- 82. (currently amended) The composition according to claim 28, wherein the agent is selected from the group consisting of α -interferon, β -interferon, δ -interferon, and γ interferon. a gene encoding an interferon.
 - 83. (canceled)
- 84. (previously presented) The composition according to claim 83, wherein the interferon is α -interferon.

Appl. No. 10/055,863 Amdt. dated October 12, 2007

Reply to Office Action of September 10, 2007

- 85. (previously presented) The composition according to claim 28, wherein the gene is incorporated into a vector.
- 86. (previously presented) The composition according to claim 28, wherein the vector is a recombinant viral vector.
- 87. (previously presented) The composition according to claim 86, wherein the recombinant viral vector is selected from the group consisting of a herpes viral vector, retroviral vector, vaccinia viral vector and an adenoviral vector.
- 88. (previously presented) The composition according to claim 87, wherein the recombinant viral vector is an adenoviral vector.
- 89. (previously presented) The composition according to claim 88, wherein the adenoviral vector has a deletion of the protein IX gene.
- 90. (previously presented) The composition according to claim 32, wherein the concentration of the delivery enhancing compound is about 0.1 to 1 mg/ml.
- 91. (previously presented) The composition according to claim 28, wherein the therapeutic gene is selected from the group consisting of a tumor suppressor gene, a suicide gene, a triplex forming nucleic acid molecule, a gene encoding a cytokine, a gene encoding an interleukin, and a gene encoding a colony stimulating factor.
- 92. (previously presented) The composition according to claim 28, wherein the agent is an antisense nucleic acid molecule.
- 93. (previously presented) The composition according to claim 28, wherein the agent is a therapeutic protein.

Appl. No. 10/055,863 Amdt. dated October 12, 2007

Reply to Office Action of September 10, 2007

- 94. (previously presented) The composition according to claim 35, wherein the proliferation is a neoplatic disorder.
- 95. (previously presented) The composition according to claim 94, wherein the neoplastic disorder is cancer.
- 96. (previously presented) The composition according to claim 91, wherein the gene encoding a cytokine is selected from the group consisting of interferons α , β , δ , and γ .
- 97. (previously presented) The composition according to claim 91, wherein the gene encoding an interleukin is selected from the group consisting of IL-1, IL-2, IL-4, IL-6, IL-7 and IL-10.
 - 98. (previously presented) A composition, the composition comprising: a compound having the formula

an agent selected from the group consisting of a therapeutic protein, a therapeutic gene, a vector and an antisense nucleic acid.

99. (currently amended) The composition according to claim 98, wherein the therapeutic gene encodes an interferon selected from the group consisting of α -interferon, δ -interferon, and γ -interferon.

Appl. No. 10/055,863

Amdt. dated October 12, 2007

Reply to Office Action of September 10, 2007

- 100. (previously presented) The composition according to claim 99, wherein the interferon is α -interferon.
- 101. (previously presented) The composition according to claim 99, wherein the interferon is β -interferon.
- 102. (previously presented) The composition according to claim 99, wherein the interferon is δ -interferon.
- 103. (previously presented) The composition according to claim 99, wherein the interferon is γ -interferon.
- 104. (previously presented) The composition according to claim 99, wherein the gene encoding interferon is incorporated in a viral vector.
- 105. (previously presented) The composition according to claim 104, wherein the viral vector is an adenoviral vector.
- 106. (previously presented) The composition according to claim 105, wherein the adenoviral vector comprises a CMV promoter.
- 107. (previously presented) The composition according to claim 105, wherein the adenoviral vector has a deletion of the protein IX gene.
- 108. (previously presented) The composition according to claim 105, wherein the composition comprises about 1.0×10^8 particles/ml to 1.0×10^{12} particles/ml of the adenoviral vector.
- 109. (previously presented) The composition according to claim 105, wherein the composition comprises about 1.0×10^9 particles/ml to 1.0×10^{11} particles/ml of the adenoviral vector.

- 110. (previously presented) The composition according to claim 105, wherein the composition comprises about 1.0×10^8 particles/ml to 5.0×10^{11} particles/ml of the adenoviral vector.
- 111. (previously presented) The composition according to claim 105, wherein the composition comprises about 5.0×10^{11} particles/ml of the adenoviral vector.
- 112. (previously presented) The composition according to claim 98, wherein the composition further comprises a buffer.
- 113. (previously presented) The composition according to claim 99 [[98]], wherein said compound of formula III and the gene encoding interferon are mixed just prior to administration to the patient.
- 114. (previously presented) The composition according to claim 98, wherein the concentration of the compound is about 0.002 to about 2 mg/ml.
- 115. (previously presented) The composition according to claim 114, wherein the concentration of the compound is about 0.2 to 2 mg/ml.
- 116. (previously presented) The composition according to claim 114, wherein the concentration of the compound is about 0.1 to 1 mg/ml.
- 117. (previously presented) The composition according to claim 98, wherein the therapeutic gene is selected from the group consisting of a tumor suppressor gene, a suicide gene, a triplex forming nucleic acid molecule, a gene encoding a cytokine, a genes encoding an interleukin, and a gene encoding a colony stimulating factor.
- 118. (previously presented) The composition according to claim 117, wherein the gene encoding an interleukin is selected from the group consisting of IL-1, IL-2, IL-4, IL-6, IL-7 and IL-10.

PATENT

- 119. (previously presented) The composition according to claim 98, wherein the agent is an antisense nucleic acid.
- 120. (previously presented) The composition according to claim 98, wherein the agent is a therapeutic protein.