Assignment 7,8 + Text Classification Basics (SNLP Tutorial 7)

Vilém Zouhar

15th, 17th June

Overview

- Task, approaches
- Features
- Document Frequency
- Information Gain
- Pointwise Mutual Information
- \bullet χ^2
- Term Strength
- Homework

Text Classification

Fill in the classes:

```
• f: \text{Text} \to C \text{ (classes/categories)}

    Topic detection: Document →

       {politics, NLP, healthcare, sport, . . .}
• Spam detection: Document \rightarrow
       {SPAM, BENIGN, MARKETING}
• Author identification/profiling: Document(s) \rightarrow
       {F. Bacon, W. Shakespeare, ...}
ullet Native language identification: Document 	o
       {German, Polish, . . . }

    POS Tagging: Sentence →

       \{NN, VERB, PART, \ldots\}^{|S|}

    Sense Disambiguation: Word+sentence →

       Senses of Word
```

Issues with this?

Classification vs. Clustering

	Classification	Clustering
Method	???	???
Classes	???	???
# Classes	???	???

	Classification	Clustering
Method	Supervised	Unsupervised
Classes	Given	Unknown
# Classes	Given	(Mostly) unknown

Binary vs. Multi-Class Classification

Multi-Class

• $f: D \rightarrow \{\text{politics}, \text{NLP}, \text{healthcare}, \text{sport}, \ldots\}$

How to turn this into a binary classification?

Binary

- $f_1: D \to \{\text{politics}, \text{not politics}\}$
- $f_2: D \rightarrow \{\mathsf{NLP}, \mathsf{not} \; \mathsf{NLP}\}$
- $f_3: D \rightarrow \{\text{healthcare}, \text{not healthcare}\}$
- . . .

How to turn multiple multi-class into a single multi-class?

Flat vs. Hiearchical

TODO

Single-Category vs Multi-Category

- $f: D \rightarrow 2^C$
- $\bullet \ \, \mathsf{Topic} \ \, \mathsf{detection:} \ \, \mathsf{Document} \to 2^{\{\mathsf{politics},\mathsf{NLP},\mathsf{healthcare},\mathsf{sport},\ldots\}} \\$
- $\bullet \ \, \mathsf{Sentiment} \ \, \mathsf{analysis:} \ \, \mathsf{Document} \to 2^{\{\mathsf{positive},\mathsf{negative},\mathsf{interested},\ldots\}}$

TODO

Feature Extraction

- Move from text to more processable domain
- How? (at least three "approaches")

Binary/indicator features

$$f_b(doc) = egin{cases} 1 & ext{ Contains string "Super free $$$ discount"} \ 0 & ext{ Otherwise} \end{cases}$$

Integer features

 $f_i(doc) = \text{Number of occurences of "buy"}$

Real-valued features

$$f_r(doc) = \frac{\text{Number of occurences of "buy"}}{|doc|}$$

Feature Selection

TODO

Document Frequency

DF

$$\textit{df(term)} = \frac{|\{\textit{doc}|\textit{term} \in \textit{doc}, \textit{doc} \in \textit{D}\}|}{|\textit{D}|}$$

- Remove rare items $(df \le \frac{2}{|D|})$ Won't occur in new documents anyway
- Remove frequent items (df = 1)
 Usually stop words
 No information
- Sometimes not a good idea (interaction with other terms, etc.)
- Stopword distribution gives information in author identification

Information Gain

• Information gained (reduction in entropy) by knowing term present or not

$$G(C, t) = H(C) - H(C|t)$$

$$= -\sum_{i} p(c_{i}) \log p(c_{i})$$

$$+ p(t) \sum_{i} p(c_{i}, t) \log p(c_{i}, t)$$

$$+ p(\overline{t}) \sum_{i} p(c_{i}, \overline{t}) \log p(c_{i}, \overline{t})$$

Pointwise Mutual Information

Difference between observed distribution and independent

$$\mathsf{pmi}(c_i,t) = \log rac{p(c_i,t)}{p(c_i) \cdot p(t)}$$

- TODO (expansion using Bayes)
- TODO (average, max)
- TODO (relation to mutual information)

$$\chi^2$$

$$\chi^2(c_1,c_2) = \sum_{tt,tf,ft,ff} (O-E)^2$$

- TODO example
- TODO table
- χ^2 avg vs. χ^2 max (multiple categories)

Term Strength

- Two documents: d_1, d_2
- Term t
- $p(t \in d_2 | t \in d1)$
- What is the probability that the term t will be in d_2 given that it is in d_1 ?
- ullet If two documents related o high probability
- ullet If two documents not related o low probability
- "Constant" with stop words

Resources