

Week 6 notes:

- https://github.com/sta426hs2017/material/blob/master/week03_02oct2017/ brainstorm modified.md
- assignments:
 - i) there should be no more pull requests, all further assignments will be done via GitHub classroom links
 - ii) i am organising the marks and can release them individually
- Journal clubs start next week: some parameters
- Part 2 of the guts of limma

Mark D. Robinson

Statistical Bioinformatics // Institute of Molecul

Journal clubs

- Starts next week!
- Aim for 20 minutes + 5 mins discussion
- Goal of audience: learn a few things about the topic + give feedback on content, clarity, etc.

	23.10.2017	Mark	limma 2		
I	30.10.2017	Hubert	RNA-seq quantification	Assessment of batch- correction methods for scRNA- sec data with a new test metric (EC)	
	06.11.2017	Mark	edgeR+friends 1	Why Most Published Research Findings Are False; Is most published research really false? (PM, SS)	Gene-level differential analysis at transcript-level resolution (CL)
	13.11.2017	Charlotte	hands-on session #1: RNA- seq	×	×
	20.11.2017	Mark	edgeR+friends 2	High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression- link (TF, YY)	ESmooth: from whole genome bisulfite sequencing reads to differentially methylated regions (SO)
	27.11.2017	Hubert	classification	Bayesian approach to single- cell differential expression analysis (UJ)	Guidance for RNA-seq co- expression network construction and analysis: safety in numbers (CS)
	04.12.2017	Mark	single-cell	Removal of batch effects using distribution-matching residual networks (MH, SG)	DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning (DR)
	11.12.2017	Gosia	hands-on session #2: mass cytometry	x	х
	18.12.2017	Mark	epigenomics, DNA methylation, ChIP data, gene set analysis	Linear models enable powerful differential activity analysis in massively parallel reporter assays (DP, ZY)	

Journal club expectations (from week 1 lecture)

Statistical Bioinformatics // Institute of Molecular Life Sciences

Statistical Bioinformatics // Institute of Molecular Life Sciences

Expectations: journal club presentation

- 20-25 minutes (+5 minutes discussion)
- MUST:
 - be a paper about a statistical method in genomics
 - be approved by Mark/Hubert
- Should:
 - describe the biological context
 - describe the (new) model used
 - describe comparisons to existing methods
- Should not:
 - be one of the papers discussed in detail in lectures: limma, edgeR, DEXSeq, etc.
- (new for 2017) Expectations of observers: fill out feedback form

Differential expression, small sample inference

- Table of data (e.g., microarray gene expression data with replicates of each of condition A, condition B)
 - rows = features (e.g., genes), columns = experimental units (samples)
- Most common problem in statistical bioinformatics: want to infer whether there is a change in the response
 a statistical test for each row of the table.

What test might you use? Why is this hard? What issues arise? How much statistical power is there [1]?

```
> head(y)
          group0
                     group0
                                 group0
                                            groupl
                                                       groupl
                                                                    groupl
genel -0.1874854 0.2584037 -0.05550717 -0.4617966 -0.3563024 -0.03271432
gene2 -3.5418798 -2.4540999
                             0.11750996 -4.3270442 -5.3462622 -5.54049106
gene3 -0.1226303 0.9354707 -1.10537767 -0.1037990 0.5221678 -1.72360854
gene4 -2.3394536 -0.3495697 -3.47742610 -3.2287093 6.1376670 -2.23871974
gene5 -3.7978820
                  1.4545702 -7.14796503 -4.0500796
                                                    4.7235714 10.00033769
gene6
       1.4627078 - 0.3096070 - 0.26230124 - 0.7903434
                                                    0.8398769 - 0.96822312
```


Ordinary t-tests (1-colour)

$$t_{g}=rac{\overline{y}_{
m mu}-\overline{y}_{
m wt}}{s_{g}\,c}$$

give very high false discovery rates

$$c=\sqrt{rac{1}{n_1}+rac{1}{n_2}}$$
 Residual df = 2

t-tests with common variance

$$t_{g, ext{pooled}} = rac{\overline{y}_{ ext{mu}} - \overline{y}_{ ext{wt}}}{s_0 \, c}$$

with residual standard deviation across genes

 s_0

pooled

More stable, but ignores gene-specific variability

$$c = \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

A better compromise

Shrink standard deviations towards common value

$$\tilde{s}_{g}^{2} = \frac{d_{0}s_{0}^{2} + d_{g}s_{g}^{2}}{d_{0} + d_{g}}$$

Moderated t-statistics

$$ilde{t}_{\!\scriptscriptstyle g} = rac{\overline{y}_{
m mu} - \overline{y}_{
m wt}}{ ilde{s}_{\!\scriptscriptstyle g} \, u}$$

d = degrees of freedom

Shrinkage of standard deviations

The **data decides** whether $ilde{t}_g$ should be closer to $t_{g,pooled}$ or t_g

Hierarchical model for variances

Data	$s_g^2 \sim \sigma_g^2 rac{\chi_{d_g}^2}{d_g}$
Prior	$rac{1}{\sigma_g^2} \sim s_0^2 rac{\chi_{d_0}^2}{d_0}$
Posterior	$E\!\left(\!rac{1}{\sigma_g^2} s_g^2\! ight)\!=\!rac{d_0+d_g}{s_0^2d_0+s_g^2d_g}$

Posterior Statistics

Posterior variance estimators

$$ilde{s_g^2} = rac{s_0^2 d_0^{} + s_g^2 d_g^{}}{d_0^{} + d_g^{}}$$

Moderated t-statistics

$$ilde{t}_{\!\scriptscriptstyle gj} = rac{\hat{eta}_{\!\scriptscriptstyle gj}}{ ilde{s}_{\!\scriptscriptstyle g} \sqrt{c_{\!\scriptscriptstyle gj}}}$$

Baldi & Long 2001, Wright & Simon 2003, Smyth 2004

Exact distribution for moderated t

An unexpected piece of mathematics shows that, under the null hypothesis,

$$ilde{t}_g \sim t_{d_0+d_g}$$

The degrees of freedom add!

The Bayes prior in effect adds d₀ extra arrays for estimating the variance.

Wright and Simon 2003, Smyth 2004

Linear Models

- In general, need to specify:
 - Dependent variable
 - Explanatory variables (experimental design, covariates, etc.)

estimate

• More generally: $y = X\beta + \epsilon$ vector of observed design vector of observed matrix parameters to

data

Design → Linear models

WT x 2

Mutant x 2

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} \qquad \beta_1 = \text{wt log-expression}$$

$$\beta_2 = \text{mutant} - \text{wt}$$

$$\beta_1$$
 = wt log-expression

$$\beta_2$$
 = mutant – wt

$$E[y_1]=E[y_2]=\beta$$

$$E[y_1]=E[y_2]=\beta_1$$
 $E[y_3]=E[y_4]=\beta_1+\beta_2$

What layers to add today

- Where does the moderated variance come from?
- Why the degrees of freedom add: d₀ + d
- empirical Bayes: how to estimate the hyperparameters (d₀ and s₀)
- Design matrices + contrast matrices in practice

In-class Exercise: where does the t-distribution come from?

10-15 minutes: discuss with your neighbour, use the resources provided and/or search the web to explain .. where does the t-distribution originate from?

The construction of the classical t-statistic:

$$Z = \left(\overline{X}_n - \mu\right) \frac{\sqrt{n}}{\sigma}$$

$$V = (n-1)\frac{S_n^2}{\sigma^2}$$

$$T \equiv \frac{Z}{\sqrt{V/\nu}} = \left(\overline{X}_n - \mu\right) \frac{\sqrt{n}}{S_n},$$

Stated another way → Exercise (optional): what are a, b above?

If T is distributed as $(a/b)^{1/2}Z/U$ where $Z \sim N(0,1)$ and $U \sim \chi_{\nu}$, then T has density function

$$p(t) = \frac{a^{\nu/2}b^{1/2}}{B(1/2, \nu/2)(a+bt^2)^{1/2+\nu/2}}$$

Statistical Bioinformatics // Institute of Molecular Life Sciences

Optional exercise: Derive the posterior

Data

Prior

 $s_g^2 \sim \sigma_g^2 rac{\chi_{d_g}^2}{d_g}$

$$rac{1}{\sigma_g^2}\!\sim s_0^2rac{\chi_{d_0}^2}{d_0}$$

$$p(\theta|x) = \frac{f(x|\theta)p(\theta)}{\int f(x|\theta)p(\theta)d\theta}$$

Posterior

$$E\!\left(\!rac{1}{\sigma_g^2}\!\mid\! s_g^2
ight)\!=\!rac{d_0+d_g}{s_0^2d_0+s_g^2d_g}$$

Optional exercise

Sketch: i) Let $x=s^2$, $\theta=\sigma^{-2}$; ii) Using the functional form of chi-squared distribution, calculate only the numerator (since denominator does not contain θ); iii) collect terms and see if you can identify the distribution and the parameters of it; iv) What is the mean of this distribution?

Linear Models

- In general, need to specify:
 - Dependent variable
 - Explanatory variables (experimental design, covariates, etc.)

Obtain a linear model for each gene g

$$E(y_g) = X lpha_g$$
 $ext{var}(y_g) = W_g^{-1} \sigma_g^2$

Contrasts -- contrasts.fit()

A contrast is any linear combination of the coefficients a which we want to test equal to zero.

Define contrasts

$$eta_g = C^T lpha_g$$

were C is the contrast matrix.

Want to test

$$II_0:\beta_{gj}=0$$

VS

$$II_0: \beta_{gj} = 0$$

$$II_a: \beta_{gj} \neq 0$$

$$p(\hat{\beta}, s^2 \mid \beta = 0) = \int p(\hat{\beta} \mid \sigma^{-2}, \beta = 0) p(s^2 \mid \sigma^{-2}) p(\sigma^{-2}) d(\sigma^{-2})$$

The integrand is

$$\begin{split} &\frac{1}{(2\pi v\sigma^2)^{1/2}}\exp\left(-\frac{\hat{\beta}^2}{2v\sigma^2}\right)\\ \times &\left(\frac{d}{2\sigma^2}\right)^{d/2}\frac{s^{2(d/2-1)}}{\Gamma(d/2)}\exp\left(-\frac{ds^2}{2\sigma^2}\right)\\ \times &\left(\frac{d_0s_0^2}{2}\right)^{d_0/2}\frac{\sigma^{-2(d_0/2-1)}}{\Gamma(d_0/2)}\exp\left(-\sigma^{-2}\frac{d_0s_0^2}{2}\right)\\ = &\frac{(d_0s_0^2/2)^{d_0/2}(d/2)^{d/2}s^{2(d/2-1)}}{(2\pi v)^{1/2}\Gamma(d_0/2)\Gamma(d/2)}\\ &\sigma^{-2(1/2+d_0/2+d/2-1)}\exp\left\{-\sigma^{-2}\left(\frac{\hat{\beta}^2}{2v}+\frac{ds^2}{2}+\frac{d_0s_0^2}{2}\right)\right\} \end{split}$$

$$p(\hat{\beta}, s^2 \mid \beta = 0) = \int p(\hat{\beta} \mid \sigma^{-2}, \beta = 0) p(s^2 \mid \sigma^{-2}) p(\sigma^{-2}) d(\sigma^{-2})$$

$$= \frac{(d_0 s_0^2/2)^{d_0/2} (d/2)^{d/2} s^{2(d/2-1)}}{(2\pi v)^{1/2} \Gamma(d_0/2) \Gamma(d/2)}$$

$$\sigma^{-2(1/2+d_0/2+d/2-1)} \exp\left\{-\sigma^{-2} \left(\frac{\hat{\beta}^2}{2v} + \frac{ds^2}{2} + \frac{d_0 s_0^2}{2}\right)\right\}$$

1

 σ^{-2} is chi-squared (or gamma)

$$f(x; k) = \begin{cases} \frac{x^{(k/2)-1}e^{-x/2}}{2^{k/2}\Gamma(\frac{k}{2})}, & x \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

$$p(\hat{\beta}, s^2 \mid \beta = 0) = \int p(\hat{\beta} \mid \sigma^{-2}, \beta = 0) p(s^2 \mid \sigma^{-2}) p(\sigma^{-2}) d(\sigma^{-2})$$

$$\begin{split} p(\hat{\beta}, s^2 \,|\, \beta &= 0) \\ &= \frac{(1/2v)^{1/2} (d_0 s_0^2/2)^{d_0/2} (d/2)^{d/2} s^{2(d/2-1)}}{D(1/2, d_0/2, d/2)} \left(\frac{\hat{\beta}^2/v + d_0 s_0^2 + ds^2}{2} \right)^{-(1+d_0+d)/2} \end{split}$$

$$p(\hat{\beta}, s^2 \mid \beta = 0)$$

$$= \frac{(1/2v)^{1/2} (d_0 s_0^2 / 2)^{d_0 / 2} (d/2)^{d/2} s^{2(d/2-1)}}{D(1/2, d_0 / 2, d/2)} \left(\frac{\hat{\beta}^2 / v + d_0 s_0^2 + ds^2}{2}\right)^{-(1+d_0+d)/2}$$

The null joint distribution of \tilde{t} and s^2 is

$$p(\tilde{t}, s^2 | \beta = 0) = \tilde{s}v^{1/2}p(\hat{\beta}, s^2 | \beta = 0)$$

http://en.wikipedia.org/wiki/Random_variable#Distribution_functions_of_random_variables

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$$

If T is distributed as $(a/b)^{1/2}Z/U$ where $Z \sim N(0,1)$ and $U \sim \chi_{\nu}$, then T has density function $p(t) = \frac{a^{\nu/2}b^{1/2}}{B(1/2,\nu/2)(a+bt^2)^{1/2+\nu/2}}$

$$\begin{split} p(\tilde{t},s^2\,|\,\beta=0) &= \frac{(d_0s_0^2)^{d_0/2}d^{d/2}s^{2(d/2-1)}}{B(d/2,d_0/2)(d_0s_0^2+ds^2)^{d_0/2+d/2}} \\ \times \frac{(d_0+d)^{-1/2}}{B(1/2,d_0/2+d/2)} \left(1+\frac{\tilde{t}^2}{d_0+d}\right)^{-(1+d_0+d)/2} \end{split}$$

This shows that \tilde{t} and s^2 are independent with

$$s^2 \sim s_0^2 F_{d,d_0}$$

and

$$\tilde{t} \mid \beta = 0 \sim t_{d_0 + d}.$$

Linear Models

- In general, need to specify:
 - Dependent variable
 - Explanatory variables (experimental design, covariates, etc.)

Obtain a linear model for each gene g

$$E(y_g) = X lpha_g$$
 $ext{var}(y_g) = W_g^{-1} \sigma_g^2$

Analysis of Variance → **Linear model**

WT x 2

Cond A x 2

Cond B x 2

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \end{bmatrix}$$

$$\alpha_1 = \text{wt log-expression}$$

$$\alpha_2 = \text{Cond A - wt}$$

$$\alpha_3 = \text{Cond B - wt}$$

$$a_1$$
 = wt log-expression

$$a_2 = Cond A - wt$$

$$a_3 = Cond B - wt$$

$$E[y_1]=E[y_2]=\alpha_1$$

$$E[y_3] = E[y_4] = \alpha_1 + \alpha_2$$

$$E[y_3] = E[y_4] = \alpha_1 + \alpha_2$$
 $E[y_5] = E[y_6] = \alpha_1 + \alpha_3$

Analysis of Variance → **Linear model, alternative parameterization**

WT x 2

Cond A x 2

Cond B x 2

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \end{bmatrix} \qquad \begin{aligned} \alpha_1 &= \text{ wt log-expression} \\ \alpha_2 &= \text{Cond A log-expression} \\ \alpha_3 &= \text{Cond B log-expression} \end{aligned}$$

$$a_1$$
 = wt log-expression

$$\alpha_2$$
 = Cond A log-expressior

$$a_3$$
 = Cond B log-expression

$$E[y_1]=E[y_2]=\alpha_1$$
 $E[y_3]=E[y_4]=\alpha_2$ $E[y_5]=E[y_6]=\alpha_3$

$$E[y_3] = E[y_4] = \alpha_2$$

$$E[y_5] = E[y_6] = \alpha_3$$

Linear Model Estimates - lmFit()

Obtain a linear model for each gene g

$$E(\underbrace{y_g}) = X \underline{\alpha}_g$$
 $\operatorname{var}(\underbrace{y_g}) = W_g^{-1} \sigma_g^2$

Estimate:

coefficients

 \hat{lpha}_{gj}

standard deviations

 s_{q}

standard errors

$$\operatorname{se}(\hat{\beta}_{gj})^2 = c_{gj} s_g^2$$

An example use of design and contrast matrices

design matrix

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \end{bmatrix}$$

$$E[y_1] = E[y_2] = \alpha_1$$

$$E[y_3] = E[y_4] = \alpha_2$$

$$E[y_5] = E[y_6] = \alpha_3$$

$$E[y_1] = E[y_2] = a_1$$

 $E[y_3] = E[y_4] = a_2$
 $E[y_5] = E[y_6] = a_3$

$$\beta = C\alpha = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} \alpha_2 - \alpha_1 \\ \alpha_3 - \alpha_2 \end{bmatrix}$$

Contrasts -- contrasts.fit()

A contrast is any linear combination of the coefficients a which we want to test equal to zero.

Define contrasts

$$eta_g = C^T lpha_g$$

were C is the contrast matrix.

Want to test

$$II_0: \beta_{gj} = 0$$

$$II_a: \beta_{gj} \neq 0$$

VS

$$II_a:\beta_{gi}\neq 0$$

Limma / Analysis of Variance

$$F = \frac{\text{variance between treatments}}{\text{variance within treatments}}$$

$$F = rac{MS_{
m Treatments}}{MS_{
m Error}} = rac{SS_{
m Treatments}/(I-1)}{SS_{
m Error}/(n_T-I)}$$

The moderated t-statistics also lead naturally to moderated F-statistics which can be used to test hypotheses about any set of contrasts simultaneously. Appropriate quadratic forms of moderated t-statistics follow F-distributions just as do quadratic forms of ordinary t-statistics. Suppose that we wish to test all contrasts for a given gene equal to zero, i.e., $H_0: \beta_g = 0$. The correlation matrix of $\hat{\boldsymbol{\beta}}_g$ is $R_g = U_g^{-1}C^TV_gCU_g^{-1}$ where U_g is the diagonal matrix with unscaled standard deviations $(v_{g_l})^{1/2}$ on the diagonal. Let r be the column rank of C. Let Q_g be such that $Q_g^TR_gQ_g = I_r$ and let $\mathbf{q}_g = Q_g^T\mathbf{t}_g$. Then

$$F_g = \mathbf{q}_g^T \mathbf{q}_g / r = \mathbf{t}_g^T Q_g Q_g^T \mathbf{t}_g / r \sim F_{r,d_0 + d_g}$$

Aside: Marginal Distributions to calculate

Fun fact: Under usual likelihood model, s_g is independent of the estimated coefficients.

Under the hierarchical model, s_g is independent of the moderated t-statistics instead

$$s_g^2 \sim s_0^2 F_{d,d_0}$$

Thus, the set of s_g can be used to estimated d_0 and s_0

Section 6.2 limma paper: other tricks, such as Fisher's z distribution to estimate d₀ and s₀

Institute of Molecular Life Sciences

Relate to limma objects

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \end{bmatrix}$$

$$E[y_1]=E[y_2]=\alpha_1$$

 $E[y_3]=E[y_4]=\alpha_2$
 $E[y_5]=E[y_6]=\alpha_3$

$$\beta = C\alpha = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} \alpha_2 - \alpha_1 \\ \alpha_3 - \alpha_2 \end{bmatrix}$$

$$\begin{bmatrix} 1,] & -0.07 & 2.03 & -0.16 \\ [2,] & -4.73 & -5.75 & 2.67 \\ [3,] & -16.04 & 8.85 & -13.74 \end{bmatrix}$$

```
> design
  alpha1 alpha2 alpha3
> cont.matrix <- makeContrasts(beta1="alpha2-alpha1",</pre>
                beta2="alpha3-alpha2",levels=design)
> cont.matrix
       Contrasts
Levels
        beta1 beta2
 alpha1
 alpha2
                 -1
 alpha3
                  1
fit <- lmFit(y,design)</pre>
fit.c <- contrasts.fit(fit, cont.matrix)</pre>
fit.c <- eBayes(fit.c)</pre>
> head(round(y,2),3)
           [,2] [,3] [,4]
                                       [,6]
[1,] -1.62 1.49 2.50 1.57 -0.71
                                       0.38
[2,] -4.50 -4.95 -3.66 -7.83 -1.59
                                       6.94
[3,] -10.17 -21.90 14.03 3.66 -12.21 -15.26
> head(round(fit$coef,2),3)
     alpha1 alpha2 alpha3
> head(round(fit.c$coef,2),3)
     Contrasts
       beta1 beta2
  [2,] -1.02
              8.42
  [3,] 24.89 -22.59
```


Institute of Molecular Life Sciences

Affymetrix + RMA + IRLS

Other statistical aspects that are useful to know w.r.t. microarray data

Affymetrix probe design

Early platforms (11 or 20 probes in a set), 25bp probes, 3' biased

Figure 1.1: Multiple probes interrogating the sequence for a particular gene make up probesets.

TGTACCTAGTACTGGCTAGTAAGCCGTCTATCGGTATC

Perfect Match CATGATGACCGATCATTCGGCAGAT

Mismatch CATGATGACCGAGCATTCGGCAGAT

Figure 1.2: Pefect Match and Mismatch Probes.

Latest Affymetrix design: "whole transcript" arrays

Still 25 base pair probes, multiple probes per transcript ("probesets") No more mismatch probes.

- HuExon: Human Exon 1.0 ST (~40 probes per gene, 4 probes per "exon", annotated and predicted transcripts)
- HuGene: Human Gene 1.0 ST (~25 probes per gene, annotated genes only)

The nature of Affymetrix Probe Level Data

Statistical Bioinformatics // Institute of Molecular Life Sciences

- Data for one gene that is differentially expressed between heart (red is 100% heart) and brain (blue is 100% brain).
- 11 mixtures x 3 replicates = 33 samples (33 lines)
- Note the parallelism: probes have different affinities

"Summarization": Going from probesets to summarized expression level

$$AvDiff = \frac{1}{|A|} \sum_{j \in A} (PM_j - MM_j)$$

$$CT_{j} = \begin{cases} MM_{j}, & \text{if } MM_{j} < PM_{j} \\ \text{less than } PM_{j}, & \text{if } MM_{j} \ge PM_{j} \end{cases}$$

$$signal = TukeyBiweight\{log(PM_j - CT_j)\}$$

$$PM_{ij} - MM_{ij} = \theta_i \cdot \phi_j + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$$

- θ_i expression index
- ϕ_i probe-specific affinity
- ε_{ij} noise component

RMA, GCRMA

Robust multichip analysis (RMA)

Exploration, normalization, and summaries of high density oligonucleotide array probe level data

RAEAEL A. IRIZARRY*

Department of Biostatistics, Johns Hopkins University, Baltamore MD 21295, USA rafa@jhu.edu

BRIDGET HORBS

Division of Genetics and Bininformatics, WEHI, Melbourne, Australia

FRANCOIS COLLIN

Gene Logic Inc., Berkeley, CA, USA

YASMIN D. BEAZER-BARCLAY, KRISTEN J. ANTONELLIS, UWE SCHERF

Gene Logic Inc., Gaithersburg, MD, USA

TERENCE P. SPEED

Division of Genetics and Bioinformatics, WEIH, Melbourne, Australia, Department of Statistics, University of California at Berkeley

Biostatistics 2003

Encompasses 3 steps

- background correction
- normalization
- probe level model fit ("summarization")

Linear model decomposes the probe-level data into PROBE effects and CHIP effects

Linear model:

$$y_{ik} = g_i + p_k + e_{ik}$$

Robust Multichip Analysis (RMA) uses this model. Irizarry et al. 2003, Biostatistics

Parameters are estimated robustly, meaning a small number of outliers have minimal effect

Institute of Molecular Life Sciences

Robust regression – motivating example

Χ

OLS = ordinary least squares

The OLS estimator is ... optimal in the class of linear unbiased estimators when the errors are homoscedastic and serially uncorrelated ... OLS provides minimum-variance meanunbiased estimation when the errors have finite variances.

i.e., OLS has good properties, when the data is "nice".

Statistical Bioinformatics // Institute of Molecular Life Sciences

Replace:

$$\underset{\text{with:}}{\operatorname{arg min}_{\beta}} \sum_{i=1}^{n} (y_i - f_i(\beta))^2$$

$$\arg\min_{\beta} \sum_{i=1}^{n} w_i(\beta) (y_i - f_i(\beta))^2$$

Robust regression – mechanics of <u>iteratively reweighted least squares</u>

Residuals

Sketch of IRLS:

Calculate initial estimates of parameters

Repeat until very little change:

Calculate residuals

Using standardized residuals, weight observations Re-estimate parameters


```
# this construction only works for the
# 1-parameter no-intercept linear model
tukey <- function(r,k=1.345) {
  abs(r) < k + k/abs(r)*(abs(r)>k)
w < -1
niter <- 2
b \leftarrow sum(w*y*x)/sum(w*x^2)
for(i in 1:niter) {
  r <- y-b*x
  w <- tukey( r/mad(r) )</pre>
  b \leftarrow sum(w*y*x)/sum(w*x^2)
par(mfrow=c(2,1))
plot(r,type="h",ylim=c(-3,3))
barplot(w)
```


More details – weight functions (as function of standardized residuals)

