SE 2XB3 Group 4 Report 5

Huang, Kehao 400235182 huangk53@mcmaster.ca L01 $\begin{array}{c} {\rm Jiao,\,Anhao} \\ 400251837 \\ {\rm jiaoa3@mcmaster.ca} \\ {\rm L}01 \end{array}$

 $Ye, Xunzhou \\ 400268576 \\ \texttt{yex33@mcmaster.ca} \\ L01$

 $26~{\rm February}~2021$

1 Building Heaps

build_heap_1 A loose upper bound is easy to establish since sink is $\mathcal{O}(\lg n)$ and less than n nodes are non-leaf nodes. Therefore, this algorithm takes at most $\mathcal{O}(n \lg n)$. However, to develop a tight upper bound, notice that different sink calls operate on "mini-heaps" of different n. For example, for the first non-leaf node, the height, or $\lg n$, of the heap containing this node and it children is only 1. The complexity of all sink operations on a heap with n non-leaf nodes can be expressed as the sum of a series:

$$\sum_{h=0}^{\lg n} 2^h (\lg n - h) = 2n - \lg n - 2$$

Each level of height h has at most 2^h nodes. Sinking each node on the hth level takes at most $\lg n - h$ swaps. Therefore, the tight bound of build_heap_1 is concluded to be $\mathcal{O}(n)$.

build_heap_2 Assume appending a node to the bottom of the heap takes the amortized time $\mathcal{O}(1)$. The complexity of the insert operation is the complexity of bubble_up/swim, $\mathcal{O}(\lg n)$. Since n nodes would be inserted to build the heap, a loose upper bound of this heap building algorithm is $\mathcal{O}(n \lg n)$.

build_heap_3 One round of calling sink/heapify on every node has complexity of $\mathcal{O}(\lg n)$ sink operations times n nodes, $\mathcal{O}(n\lg n)$. Each round of sink operations is able to move a node up only one level in the heap. In the worst case, for the actual root (maximum/minimum) of the heap to travel from the bottom level to the top level, $\lg n$ (the height of the heap) rounds of sink operations are required. Though there is also a helper function is_heap in each round of the n sink operations, contributing a $\mathcal{O}(n)$ complexity to build_heap_3, it is on a smaller scale compared to the complexity of the sink operations. Thus, the expected complexity of this heap building algorithm is $\mathcal{O}(n(\lg n)^2)$.

$\mathbf{2}$ k-Heap

The asymptotic complexity of sink is believed to be $\mathcal{O}(k \log_k n)$. In a k-heap, the nodes are organized in a complete k-ary tree of height $\log_k n$. In the worst case, a node e, needs to "sink" through $\log_k n$ levels. On each level, k comparisons are required to find the maximum element on the level. The maximum would then be swapped with node e. Hence, the complexity of sink is k comparisons times $\log_k n$ levels, $\mathcal{O}(k \log_k n)$.

A k-heap is essentially a k-ary tree. The height of a k-ary tree is $\log_k n$, which is smaller than that of a binary tree (heap), $\lg n$. The swim operation on a k-ary heap is $\mathcal{O}(\log_k n)$. On the other hand, a larger k results in requiring more comparisons for sink on each level of the tree. Therefore, in cases where applications depending solely on the swim operation are prioritized over all other operations, k-heaps of a large k have a huge advantage over binary heaps. In other cases where sink or both swim and sink are heavily used, such as Heapsort, k-heaps of any k are not significantly better than binary heaps. In fact, the function family

 $y = k \log_k x$ minimizes for $k \in \mathbb{N}$ at k = 3, which means 3-ary heap is better than binary heap in most aspects, and any k-heap of k > 3 trades off its sink performance for that of swim.