Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise

Paul S. Julienne

Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md

Thanks to

Eite Tiesinga (NIST), Svetlana Kotochigova (Temple/NIST) Bo Gao (U. Toledo), Thorsten Köhler (Oxford) Roman Ciurylo (Torun), Pascal Naidon (NIST)

M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi (Kyoto University)

Looking for good students/postdocs

Joint Quantum Institute, NIST/University of Maryland

http://www.jqi.umd.edu/ http://physics.nist.gov/

Cold alkali atoms and molecules

Widely used in forefront experiments

Ultra-cold Bose or Fermi gases

Optical lattices and reduced dimensional structures

Precision measurements

Multidisciplinary studies and applications

Control interaction properties

by static or dynamic electromagnetic fields

s-wave scattering length (a quantum phase shift)

Complex calculations required

coupled channels methods

ab initio structure and properties

But remain amenable to simple models

based on long range potentials

Interior of sun

Surface of sun Room temperature

Outer space (3K) Cold He

Laser cooled atoms
Atomic clock atoms
Fermionic quantum gases
Bose-Einstein condensates

Molecules

Buffer gas cooling

Photoassociated atoms

Decelerated beams

Feshbach molecules
Molecular BEC

From Wolfgang Ketterle Group, MIT

²³Na BEC

BEC of molecules of paired ⁶Li

Superfluid pairing of ⁶Li atoms

An Optical Lattice

2 atoms in a cell

Put a BEC in a Lattice

from H. T. C. Stoof, in News and Views, Nature **415**, 25 (2002)

Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms

Greiner, Mandel, Esslinger, Haensch, and Bloch Nature 415, 39, (2002) PRL 96, 050402 (2006)

PHYSICAL REVIEW LETTERS

week ending 10 FEBRUARY 2006

Long-Lived Feshbach Molecules in a Three-Dimensional Optical Lattice

G. Thalhammer, ¹ K. Winkler, ¹ F. Lang, ¹ S. Schmid, ¹ R. Grimm, ^{1,2} and J. Hecker Denschlag ¹

Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria

²Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria (Received 27 October 2005; published 8 February 2006)

We have created and trapped a pure sample of ⁸⁷Rb. Feshbach molecules in a three-dimensional optical lattice.

 87 Rb $_2$

PRL 97, 120402 (2006)

PHYSICAL REVIEW LETTERS

week ending 22 SEPTEMBER 2006

Ultracold Heteronuclear Molecules in a 3D Optical Lattice

C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, and K. Bongs Institut für Laserphysik, Luruper Chaussee 149, 22761 Hamburg, Germany (Received 22 July 2006; published 18 September 2006)

We report on the creation of ultracold heteronuclear molecules assembled from fermionic 40 K and bosonic 87 Rb atoms in a 3D optical lattice.

40K87Rb

Semi-empirical
Ab initio
"Complex"

"Size" of $-C_6/R^6$ van der Waals potential V(R)

$$R_{\text{vdw}} = \frac{1}{2} \left(\frac{2\mu C_6}{\hbar^2} \right)^{\frac{1}{4}} \qquad E_{\text{vdw}} = \frac{\hbar^2}{2\mu R_{\text{vdw}}^2}$$

	$R_{vdw}(a_0)$	$E_{vdw}(mK)$
⁶ Li	31	29
⁴⁰ K	65	1.0
85 Rb	83	0.35
¹³³ Cs	101	0.13

See Jones, Lett, Tiesinga, Julienne, Rev. Mod. Phys. 78, 483 (2006)

Bound states from van der Waals theory

Adapted from Gao, Phys. Rev. A 62, 050702 (2000); Figure from E. Tiesinga

See Jones, Lett, Tiesinga, Julienne, Rev. Mod. Phys. 78, 483 (2006)

From M. Bartenstein, et al., Phys. Rev. Lett. 94, 103201 (2005)

Atoms (MHz)	B (mT)	Molecules (MHz)	Theory (MHz)
82.96808(20)	66.1436(20)	$83.6645(3)^a$	83.6640(10)
82.83184(30)	67.6090(30)	$83.2966(5)^a$	83.2973(10)
82.66686(30)	69.4826(40)	$82.9438(20)^b$	82.9422(13)
82.45906(30)	72.0131(40)	$82.5928(20)^b$	82.5910(13)

 $^{^{}a}$ bound-bound transition frequency.

 $^{1}\Sigma_{\rm g}^{+}$ scattering length: 45.167(8) a_0

 $^3\Sigma_{\rm u}^{+}$ scattering length: -2140(18) a_0

ab resonance: 834.1(1.5) Gauss

ac resonance: 690.4(5) Gauss

^b bound-free transition threshold.

⁶Li *a+b* Scattering Length vs. B

Julienne and Gao, Atomic Physics 20, AIP, (2006) and physics/0609013

Cesium threshold resonance spectroscopy

5 mK trap

Tune magnetic field

Measure collision rates

Fit theoretical model parameters *

$$A(^{1}\Sigma_{g}^{+}) = +280(10) a_{0}$$

 $A(^{3}\Sigma_{u}^{+}) = +2400(100) a_{0}$
 $C_{6} = 6890(35) a.u.$

Leo, Williams, Julienne, *Phys. Rev. Lett.* **85**, 2721 (2000) Vuletic, Kerman, Chin, Chu, *Phys. Rev. Lett.* **85**, 2717 (2000))

Level Diagram of Yb

From M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi (Kyoto University)

Mass number	168	170	171	172	173	174	176
Nuclear spin <i>i</i>	0	0	1/2	0	5/2	0	0
Abundance(%)	0.13	3.05	14.3	21.9	16.2	31.8	12.7

All-optical Yb trap Few μ K

Optical fiber Optical fiber AOM 1 PBS AOM 2 Mirror From Dye laser

2-color photoassociation

12 PA lines among 6 different isotopes

Model: LJ 6-12 + C₈ van der Waals 1 potential + reduced mass

 $C_6=1932(15)$ au $C_8=1.9(5)x10^5$ au N=72 bound states in $^{174}Yb_2$

isotope	\overline{v}	\overline{J}	method	$E_b \text{ (MHz)}$	E_b (MHz)	Difference
				experiment	theory	(MHz)
$^{-170}\mathrm{Yb}$	1	0	R	-27.661(23)	-27.755	0.094
		2	R	-3.651(26)	-3.683	0.032
$^{171}\mathrm{Yb}$	1	0	AT	-64.418(40)	-64.548	0.130
		2	AT	-31.302(50)	-31.392	0.090
$^{172}\mathrm{Yb}$	1	0	AT	-123.269(26)	-123.349	0.080
		2	R	-81.786(19)	-81.879	0.093
$^{173}\mathrm{Yb}$	1	0	\mathbf{R}	-1.539(74)	-1.613	0.074
$^{174}\mathrm{Yb}$	1	0	R	-10.612(38)	-10.642	0.030
	1	0	AT	-10.606(17)	-10.642	0.036
	2	0	${ m R}$	-325.607(18)	-325.607	0.000
	2	2	R	-268.575(21)	-268.576	0.001
$^{176}\mathrm{Yb}$	1	0	${ m R}$	-70.404(11)	-70.405	0.001
	1	2	R	-37.142(13)	-37.118	-0.024

 $C_6 + N_{C_8}$

Last bound state energies versus mass

Solid: J=0

Dashed: J=2

Scattering lengths for Yb ground state model (in a₀ units)

	168	170	171	172	173	174	176
168	252(6)	117(1)	89(1)	65(1)	39(1)	2(2)	-360(30)
170	117	64 (1)	37(1)	-2 (2)	-81 (4)	-520(50)	209(4)
171	89	37	-3(2)	-84(5)	-580(60)	430(20)	142(2)
172	65	- 2	-84	-600(60)	420 (20)	201(3)	106(1)
173	39	-81	-580	420	199(3)	139(2)	80(1)
174	2	-520	430	201	139	105(1)	55(1)
176	-360	209	142	106	80	55	-24(2)

Variation of scattering length with mass

Gribakin and Flambaum

Phys. Rev. A 48, 546 (1993)

$$a = \bar{a} \left(1 - \tan \left(\Phi - \frac{\pi}{8} \right) \right)$$

$$\bar{a} = \frac{1}{2^{3/2}} \frac{\Gamma(3/4)}{\Gamma(5/4)} \left(\frac{2\mu C_6}{\hbar^2}\right)^{1/4}$$

$$\Phi = \int_{r_{in}}^{\infty} \left(\frac{2\mu}{\hbar^2} (-V(R))\right)^{1/2} dR$$

Number of bound states in V(R) =
$$\operatorname{Int} \left[\frac{\Phi}{\pi} - \frac{5}{8} \right] + 1$$

Pure van der Waals theory

(Gribakin-Flambaum and B. Gao)

$$V(R) = -\frac{C_6}{R^6}$$
 for $R_{in} < R \le \infty$

$$V(R) = \infty \text{ for } 0 < R \le R_{in}$$

Species	Spin %	Abundance	Species	Spin ⁹	& Abundance
⁸⁴ Sr	0	0.6	¹⁰⁶ Cd	0	1.3
⁸⁶ Sr	0	9.9	¹⁰⁸ Cd	0	0.9
⁸⁷ Sr	9/2	7.0	¹¹⁰ Cd	0	12.5
⁸⁸ Sr	0	82.6	¹¹¹ Cd	1/2	12.8
			¹¹² Cd	0	24.1
¹³⁰ Ba	0	0.1	¹¹³ Cd	1/2	12.2
¹³² Ba	0	0.1	¹¹⁴ Cd	0	28.7
¹³⁴ Ba	0	2.4	¹¹⁶ Cd	0	7.5
¹³⁵ Ba	3/2	6.6			
¹³⁶ Ba	0	7.9	¹⁹⁶ Hg	0	0.2
¹³⁷ Ba	3/2	11.2	¹⁹⁸ Hg	0	10.0
¹³⁸ Ba	0	71.7	¹⁹⁹ Hg	1/2	16.9
			²⁰⁰ Hg	0	23.1
			²⁰¹ Hg	3/2	13.2
			²⁰² Hg	0	29.9
			²⁰⁴ Hg	0	6.9