Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-229. Вариант 6

- 1. Пусть $z = \sqrt{3} i$. Вычислить значение $\sqrt[4]{z^2}$, для которого число $\frac{\sqrt[4]{z^2}}{2 + 2\sqrt{3}i}$ имеет аргумент $-\frac{11\pi}{12}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(13+13i) + y(3+2i) = -44+131i \\ x(3-15i) + y(6-11i) = 115-52i \end{cases}$$

- 3. Найти корни многочлена $2x^6 4x^5 12x^4 192x^3 + 1216x^2 4608x + 10240$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -4 + 4i$, $x_2 = 1 + 3i$, $x_3 = 4$.
- 4. Даны 3 комплексных числа: -19+2i, 11+i, -11-21i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \sqrt{3} + i$, $z_2 = -1 + \sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3+i| < 2\\ |arg(z+5)| < \frac{\pi}{2} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (4, -5, 0), b = (5, -6, -2), c = (1, -1, -8). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-3,-12,5) и плоскость P: 14x 34y + 34z + 718 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(8,4,5), $M_1(0,3,-6)$, $M_2(-6,-1,-6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 5x - 34y - 3z - 724 = 0 \\ 19x - 17y - 18z - 593 = 0 \end{cases} \qquad L_2: \begin{cases} -14x - 17y + 15z + 4129 = 0 \\ 2x + 4y + 3z - 278 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.