Summer Camp 2021

Object Detectors overview

Davidyuk Igor

Agenda

- Problem statement
- Classical approaches
- Deep Learning approaches

intel

Problem Definition

- Find objects on the image
 - Coordinates of bounding boxes
 - Class probabilities
- Basically, used in conjunction with other algorithms

Internet of Things Group intel®

Object detection

Localization

 Generate hypothesis about object location

Classification

Hypothesis verification

Images credit: J.R.R. Uijlings et al. "Selective Search for Object Recognition", Y. LeCun "Gradient-based learning applied to document recognition"

Example: face detection (one class)

Images credit: P. Hu and D. Ramanan "Finding Tiny Faces". World's largest selfie

What objects are where?

Connected problems

(a) Image Classification

(b) Object Detection

(c) Semantic Segmentation

(d) Instance Segmentation

Agenda

- Problem statement
- Classical approaches
- Deep Learning approaches

intel

Localization: sliding window

To find the coordinates of the object, a "sliding window" is used: the classifier is applied to every possible window arrangement

To detect objects of different sizes, a pyramid of images is used.

Binary classification: features

Training dataset: set of object-label pairs : (x_i, y_i) , i=1..N.

 x_i – feature-vector $\in \mathbb{R}^n$, y_i – object class $\in \{0,1\}$.

 x_i = (128, 128, 60, ..., 0, 0), features – values of pixels.

 $y_i = 1.$

16x16 pixels

Feature-vector has the same size for any object

Generating features

Images credit: Niall O' Mahony et al. "Deep Learning vs. Traditional Computer Vision"

Viola Jones Face Detector: CVPR 2001

- Classifier input resolution is 24x24
- Over 170000 Haar-like features extracted
- Preparing integral images optimizes calculations

(Grayscale)

$$D = 4 - 2 - 3 + 1$$
$$= 4 + 1 - (2 + 3)$$

Minimizing: $\sum_{i=1}^{N} |label_{gt} - label_{predicted}|$

- AdaBoost algorithm used to produce strong classifiers (around 6000 features left)
- Cascade Classifier was constructed to process many negative examples.
 Original implementation has 38 stages
- Detector can process 15 images (384x288) per second running on a 700Mhz Pentium III CPU

Histogram of Oriented Gradients (HOG) - 2005

1. Filter images with kernels:

- 3. Divide the image into 8x8 cells
- 5. Normalize histograms for each block
- 7. Train an SVM

2. Calculate the magnitude and orientation of the gradient:

$$g = \sqrt{g_x^2 + g_y^2}$$
$$\theta = \arctan \frac{g_y}{g_x}$$

- 4. Calculate 9-bin histogram of gradients in these cells
- 6. Concatenate histograms feature vector is ready!

Attempts to make features invariant to translation, scale, illumination

Deformable Part-based Models (2008)

- the peak of the traditional (pre-DL)
 object detection methods. Winner of
 VOC-09 detection challenge.
- star-structured part-based model defined by a "root" filter + a set of parts filters + associated deformation models
- sliding window + feature pyramid
- representation of the class of models by a mixture of star models (different viewpoints, occlusions etc.)

detection

root filter

part filters deformation models

- Learn model structure, filters and deformation cost.
- R. Girshick further formulated important techniques such as "hard negative mining" and "bounding box regression".

What is the difference between features?

Good features are invariant:

- To light conditions
- To scale
- To rotation

Popular features:

LBP: Local Binary Patterns (1994) - T. Ojala et al. "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions".

HOG: Histogram of Oriented Gradients (2005) - N. Dalal et al. "Histograms of Oriented Gradients for Human Detection".

ICF: Integral Channel Features (2009) - P. Dollár et al. "Integral Channel Features".

FCF: Filtered Channel Features (2015) - S. Zhang et al. "Filtered Channel Features for Pedestrian Detection".

Internet of Things Group intel

Measure of localization accuracy: IoU

Ground-truth bounding boxes are hand labeled

Predictions are generated by the model

Intersection over union (IoU)

"Correct" if $IoU \ge 0.5$

Thresholding IoU gives us a measure of TP, FP and FN.

Precision and recall

TP = True positive

TN = True negative

FP = False positive

FN =False negative

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

True positive only counted if class prediction matches label

		Predicted Label				
		Positive	Negative			
Actual Label	Positive	TRUE POSITIVE TP	FALSE NEGATIVE FN			
	Negative	FALSE POSITIVE FP	TRUE NEGATIVE TN			

Metric to measure localization + classification

Average precision for each class

$$AP = \frac{1}{11} \times \left(AP_r(0) + AP_r(0.1) + \dots + AP_r(1.0) \right)$$

class: 62.31% = pottedplant AP

$$mAP = \frac{1}{n} \sum_{k=1}^{k=n} AP_k$$

$$AP_k = the AP of class k$$

$$n = the number of classes$$

Popular object detection datasets

Dataset	train		validation		trainval		test		classes
Dataset	images	objects	images	objects	images	objects	images	objects	Classes
VOC-2007	2,501	6,301	2,510	6,307	5,011	12,608	4,952	14,976	20
VOC-2012	5,717	13,609	5,823	13,841	11,540	27,450	10,991	-	20
ILSVRC-2014	456,567	478,807	20,121	55,502	476,688	534,309	40,152	-	
ILSVRC-2017	456,567	478,807	20,121	55,502	476,688	534,309	65,500	-	
MS-COCO-2015	82,783	604,907	40,504	291,875	123,287	896,782	81,434	-	80
MS-COCO-2018	118,287	860,001	5,000	36,781	123,287	896,782	40,670	-	80
OID-2018	1,743,042	14,610,229	41,620	204,621	1,784,662	14,814,850	125,436	625,282	600

+ numerous specialized datasets

Agenda

- Problem statement
- Classical approaches
- Deep Learning approaches

Table credit: https://github.com/hoya012/deep_learning_object_detection

```
SPP-Net → MR-CNN → DeepBox → AttentionNet →
  R-CNN → OverFeat → MultiBox →
                                                                          ICCV' 15
                                                                                                                 ICCV' 15
                                    CVPR' 14
                                                       ECCV' 14
                                                                                            ICCV' 15
                  ICLR' 14
   2013.11
 Fast R-CNN → DeepProposal → Faster R-CNN → OHEM → YOLO v1 → G-CNN → AZNet →
                                                                                                      CVPR' 16
                                                                                                                   CVPR' 16
                                                                                     CVPR' 16
                                                                      CVPR' 16
     ICCV' 15
                             ICCV' 15
 Inside-OutsideNet(ION) \rightarrow HyperNet \rightarrow CRAFT \rightarrow MultiPathNet(MPN) \rightarrow SSD \rightarrow
                                                                                                                  GBDNet →
                                                                                                    ECCV' 16
                                                                                                                    ECCV' 16
                                                                              BMVC' 16
             CVPR' 16
                                        CVPR' 16
                                                         CVPR' 16
 \mathsf{CPF} \to \mathsf{MS-CNN} \to \mathsf{R-FCN} \to \mathsf{PVANET} \to \mathsf{DeepID-Net} \to \mathsf{NoC} \to \mathsf{DSSD} \to \mathsf{TDM} \to
                                                                                                                YOLO v2 →
                                                                                                                    CVPR' 17
                                                                                                    CVPR' 17
                                           NIPSW' 16
                                                             PAMI' 16
 ECCV' 16
             ECCV' 16
                             NIPS' 16
                                        RON → DCN → DeNet → CoupleNet → RetinaNet → DSOD →
Feature Pyramid Net(FPN) →
                                                                                                       ICCV' 17
                                                                                                                      ICCV' 17
                                                                                    ICCV' 17
                                                      ICCV' 17
                                                                    ICCV' 17
              CVPR' 17
                                         CVPR' 17
Mask R-CNN \rightarrow SMN \rightarrow YOLO v3 \rightarrow SIN \rightarrow STDN \rightarrow RefineDet \rightarrow MLKP \rightarrow Relation-Net \rightarrow
                                                                                                                  CVPR' 18
                                                    CVPR' 18
                                                                  CVPR' 18
                                                                                 CVPR' 18
     ICCV' 17
                        ICCV' 17
                                       arXiv' 18
Cascade R-CNN \rightarrow RFBNet \rightarrow CornerNet \rightarrow PFPNet \rightarrow Pelee \rightarrow HKRM \rightarrow R-DAD \rightarrow
                                                                                                                 M2Det ···
                                                                                                    AAAI' 19
                                                                                                                   AAAI' 19
                                                                                      NIPS' 18
                           ECCV' 18
                                           ECCV' 18
                                                             ECCV' 18
                                                                           NIPS' 18
       CVPR' 18
```

Revolution in object detection

Handcrafting features is hard, yet accuracy stays low

Could we somehow find good features automatically?

Object detection accuracy improvements

Non-Maximum Suppression (NMS)

- Detector outputs multiple detections for the same object
- NMS discards all except one with the best features, e.g. with the highest score
- Can be learnable

Step 1: Selecting Bounding box with highest score

Step 3: Delete Bounding box with high overlap

Step 5: Final Output

Convolution

24 Internet of Things Group

Filters from first convolution layer in AlexNet

Images credit: https://towardsdatascience.com/visualizing-convolution-neural-networks-using-pytorch-3dfa8443e74e

Internet of Things Group intel®

R(egion based)-CNN (CVPR, 2014)

R-CNN: Regions with CNN features

Motivation:

- Deep learning-based classifiers are known to be powerful but quite slow
 - Operating in a sliding window fashion seems to be very slow
 - Good proposal generation stage can potentially resolve the issue

Internet of Things Group intel

Selective Search for Object Detection

- Color similarity
- Texture similarity
- Size similarity
- Shape similarity
- A final meta-similarity, which is a linear combination of the above similarity measures

Internet of Things Group intel®

R(egion based)-CNN (CVPR, 2014)

- Region proposal algorithm -Selective Search is used to generate Regions of Interest (RoI)
- Off-the-shelf image classification net - AlexNet is used to extract features for every Rol
- SVM classifier is used to classify Rols as objects or background
- Linear regression is applied to localize bounding boxes inside Rols

R(egion based)-CNN (CVPR, 2014)

- It still takes a huge amount of time to train the network as you would have to classify 2000 region proposals per image.
- It cannot be implemented real time as it takes around 47 seconds for each test image.
- The selective search algorithm is a fixed algorithm. Therefore, no learning is happening at that stage. This could lead to the generation of bad candidate region proposals.
- SVM is trained separately

intel Internet of Things Group

Fast R-CNN (2015)

Drawbacks of R-CNN:

- Complicated multi-stage model is hard to train
- Despite the use of Selective Search is slow at test time

Solution – Fast R-CNN:

- Merge classifier and regressor to the Networks and train it end-to-end (removing SVM)
- Apply feature extractor to the whole image and crop Rols on high-level feature map to make detection faster

intel Internet of Things Group

Mapping an image to a feature map with convolution

Fast R-CNN (2015)

Deep features are calculated once per image, not per proposal.

Rol pooling outputs vectors of the same length for any proposal.

Internet of Things Group intel

Faster R-CNN (2015)

Drawbacks of Fast R-CNN:

 25x faster then R-CNN, but still too slow. Mostly because of the Selective Search now (~2s per VGA image)

Solution – Faster R-CNN:

Merge region proposal stage into the net as well

Result:

• The first end-to-end, and the first near-realtime deep learning detector

intel Internet of Things Group

Faster R-CNN (2015)

Faster R-CNN pipeline

Objectness threshold and NMS are applied to proposals

Region Proposals Network

Receptive field

The **receptive field** is defined as the region in the input space that a particular CNN's feature is affected by.

Inference time comparison

R-CNN Test-Time Speed

Internet of Things Group intel®

Single Shot Multibox Detector

Motivation:

- Region proposal net can be eliminated at all introduce anchor boxes
- Make multi-scale detection efficient

Internet of Things Group intel® 3

Single Shot Multibox Detector

RetinaNet

$$p_{\rm t} = \begin{cases} p & \text{if } y = 1 \\ 1 - p & \text{otherwise,} \end{cases}$$

$$\text{CE}(p, y) = \text{CE}(p_{\rm t}) = -\log(p_{\rm t}).$$

Suppressing easy samples with Focal Loss

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t).$$

- 100000 easy: 100 hard examples
- 40x bigger loss from easy examples

CenterNet: Objects as Points

- No anchor boxes
- No NMS needed

Internet of Things Group intel® 41

Detectors Speed-Accuracy trade-offs

Transfer Learning

- Very few people train an entire Convolutional Network from scratch (with random initialization)
- It is common to pre-train a ConvNet on a very large dataset (e.g. ImageNet), and then use the ConvNet for the task of interest, major scenarios:
 - ConvNet as fixed feature extractor
 - Take a ConvNet pre-trained on ImageNet, remove the classification layer (which outputs the 1000 class scores), then treat the rest of the ConvNet as a fixed feature extractor for the new dataset
 - Fine-tuning the ConvNet
 - Not only replace and retrain the classifier on top of the ConvNet on the new dataset, but to also fine-tune the weights of the pre-trained network
 - Pre-trained models
 - Use one of the uploaded pre-trained models for own task

Internet of Things Group intel

Popular OD repositories

- Tensorflow Object Detection API: <u>https://github.com/tensorflow/models/tree/master/research/object</u> <u>detection</u>
- Detectron (Caffe2): https://github.com/facebookresearch/Detectron
- mmdetection (PyTorch): https://github.com/open-mmlab/mmdetection

Internet of Things Group intel

OpenVINO OD models

- OpenVINO: https://github.com/openvinotoolkit/openvino
- Open Model Zoo: https://github.com/opencv/open_model_zoo
 - Face detection (2 variants)
 - Person detection (2 variants)
 - Vehicle detection (3 variants)
 - Public models: SSD, Faster-RCNN, R-FCN, etc.

Internet of Things Group intel

Q&A

intel

EfficientDet

intel

Feature Pyramid Network (FPN)

Motivation:

- Leverage the pyramidal shape of a ConvNet's feature hierarchy
- Provide strong semantics at all scales

Internet of Things Group intel®

Haar features (2004)

Feature-vector is formed from the values of the convolution with one of the predefined kernels. Kernels (black = -1, white -1).

Images credit: https://www.youtube.com/watch?v=zLBAJ93-AEQ

Haar features (2004)

Feature-vector is formed from the values of the convolution with one of the predefined kernels calculated in each position on the image

Internet of Things Group