Poznámka

Topology...

Definice 0.1 (Topological vector space (TVS))

A Topological vector space over \mathbb{F} is a pair (X, τ) , where X is a vector space over \mathbb{F} and τ is a topology on X with the following two properties:

- 1. The mapping $(x,y) \mapsto x + y$ is a continuous mapping of $X \times X$ into X;
- 2. The mapping $(t, x) \mapsto tx$ is a continuous mapping of $\mathbb{F} \times X$ into X;

We also denote Hausdorff topological vector space by HTVS. And the symbol $\tau(\mathbf{o})$ will denote the family of all the neighbourhoods of \mathbf{o} in (X, τ) .

Definice 0.2 (Locally convex (LCS, HLCS))

Let (X, τ) be a TVS. The space X is said to be locally convex, if there exists a base of neighbourhoods of zero consisting of convex sets.

Poznámka

Two homework (in Moodle) and one presentation.

Například

Let $(X, \|\cdot\|)$ be a normed linear space. Let τ be the topology induced by $\|\cdot\|$. The (X, τ) is HLCS.

Důkaz

 $\varrho(x,y) = ||x-y||$ metric induced by $||\cdot||$. τ induced by ϱ . This τ is Hausdorff. Continuity of the operations: (from Funkcionalka)

$$x_n \to x, y_n \to y, t_n \to t \implies x_n + y_n \to x + y \land t_n x_n \to tx.$$

So, it is a HTVS. Base of neighbourhood of \mathbf{o} is e. g. U(0,r), r > 0, which is convex. \Box

Let Γ be any nonempty set, $X = \mathbb{F}^{\Gamma}$ (= all functions $\Gamma \to \mathbb{F}$) with point-wise operations, so it is a vector space over \mathbb{F} . It is a HLCS.

Důkaz

"Continuity of addition:" $x, y \in \mathbb{F}^{\Gamma}$, U a neighbourhood of $x + y \implies \exists F \subset \Gamma$ finite $\exists \varepsilon > 0$ such that

$$U_{\mathbf{o}} = \left\{ z \in \mathbb{F}^{\Gamma} \middle| \forall \gamma \in F : |z(\gamma) - (x(\gamma) + y(\gamma))| < \varepsilon \right\} \subset U$$

$$U_{x} = \left\{ z \in \mathbb{F}^{\Gamma} \middle| \forall \gamma \in F : |z(\gamma) - x(\gamma)| < \frac{\varepsilon}{2} \right\}$$

$$U_{y} = \left\{ z \in \mathbb{F}^{\Gamma} \middle| \forall \gamma \in F : |z(\gamma) - y(\gamma)| < \frac{\varepsilon}{2} \right\}$$

 $\implies V_x$ is neighbourhood of x, and V_y is neighbourhood of y, and $U_x + U_y \subset U_0 \subset U$. Thus $z_1 \in V_x$, $z_2 \in V_y \implies z_1 + z_2 \in U_0 \subset U$.

"Continuity of multiplication": $\lambda \in \mathbb{F}, x \in \mathbb{F}^{\Gamma}, U$ a neighbourhood of $\lambda x \implies \exists F \subset \Gamma$ finite $\exists \mu > 0$ such that

$$U_0 = \left\{ z \in \mathbb{F}^{\Gamma} \middle| \forall \gamma \in F : |z(\gamma) - \lambda x(\gamma)| < \varepsilon \right\} \subset U$$
$$|\mu z(\gamma) - \lambda x(\gamma)| \le |\mu| \cdot |z(\gamma) - x(\gamma)| + |\mu - \lambda| \cdot |x(f)|$$
$$M := \max_{\gamma \in F} |x(\gamma)|.$$

$$V = \left\{ \mu \in \mathbb{F} \middle| |\mu - \lambda| < \frac{\varepsilon}{2(M+1)} \right\}, \qquad W = \left\{ z \in \mathbb{F}^{\Gamma} \middle| \forall \gamma \in F : |z(\gamma) - x(\gamma)| < \frac{\varepsilon}{2(|\lambda| + \frac{\varepsilon}{2(M+1)})} \right\}$$

$$\mu \in V, z \in W \implies \mu z \in U_0 \subset U.$$

"Local convexity": Base of neighbourhoods of \mathbf{o} : $\{x \in \mathbb{F}^{\Gamma} | \forall \gamma \in F : |x(\gamma)| < \varepsilon\}$, $F \subset \Gamma$ finite, $\varepsilon > 0$, consists of convex sets.

"Hausdorff":
$$x \neq y \implies \exists \gamma \in \Gamma : x(\gamma) \neq y(\gamma)$$
. Take $\varepsilon = \frac{|x(\gamma) - y(\gamma)|}{2}$.

$$U = \left\{z \in \mathbb{F}^{\Gamma} \big| |z(\gamma) - x(\gamma)| < \varepsilon \right\}, V = \left\{z \in \mathbb{F}^{\Gamma} \big| |z(\gamma) - y(\gamma)| < \varepsilon \right\} \implies U \cap V = \varnothing.$$

 $X = C(\mathbb{R}, \mathbb{F}) = \{ f : \mathbb{R} \to \mathbb{F} \text{ continuous} \},$

$$\varrho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \min \left\{ 1, \max_{t \in [-n,n]} \left\{ |f(t) - g(t)| \right\} \right\} =: \sum_{N=1}^{\infty} \frac{1}{2^N} \min \left\{ 1, p_N(f-g) \right\}$$

is translation invariant (that implies addition is continuous, see lecture) metric.

Důkaz

 $f_n \to f$ in $\varrho \Leftrightarrow \forall N : f_n \rightrightarrows f$ on [-N, N].

 $,f_n \to f, \lambda_n \to \lambda \implies \lambda_n f_n \to \lambda f$ ": Let $N \in \mathbb{N}$. We will show $\lambda_n f_n \rightrightarrows \lambda f$ in [-N,N]. $x \in [-N,N]$:

$$|\lambda_n f_n(x) - \lambda f(x)| \leq |\lambda_n| \cdot |f_n(x) - f(x)| + |\lambda_n - \lambda| \cdot |f(x)| \leq c \cdot p_N(f_n - f) + |\lambda_n - \lambda| \cdot p_N(f) \to 0.$$

Hence, X is HTVS. "Local convexity": $U_{N,\varepsilon} = \{f \in X | p_N(t) < \varepsilon\}$, clearly $U_{N,\varepsilon}$ is a convex set and $U_{N,\varepsilon}$ is neighbourhood of \mathbf{o} . If $\varepsilon < \lambda$, then $\{f | \varrho(f, \mathbf{o}) < \frac{\varepsilon}{2^N}\} \subset U_{N,\varepsilon}$, because for $\varrho(f, \mathbf{o}) < \frac{\varepsilon}{2^N}$ it is $\frac{1}{2^N} p_N(f) < \frac{\varepsilon}{2^N}$. "they form a base": $f \in U_{N,\varepsilon} \Longrightarrow \varrho(f, \mathbf{o}) < \varepsilon + \frac{1}{2^N}$. Hence fix r > 0 and take $N \in \mathbb{N}$ such that $\frac{1}{2^N} < \frac{r}{2}$. Then $U_{N,\frac{r}{2}} \subset \{f | \varrho(f, \mathbf{o}) < r\}$

 (Ω, Σ, μ) a measure space, $p \in (0, 1)$. $L^p(\Omega, \Sigma, \mu) = \{f : \Omega \to \mathbb{F} \text{ measurable} | \int |f|^p d\mu < \infty \}$ (we identify functions equal almost everywhere). $\varrho(f, g) = \int |f - g|^p d\mu$ is a metric making $X = L^p(\Omega, \Sigma, \mu)$ a HTVS (but not locally convex).

 $D\mathring{u}kaz$

" ϱ is a metric": " \triangle -inequality": $a,b \in [0,\infty)$: $(a+b)^p \leqslant a^p + b^p$. (Fix $a \geqslant 0$, take $\varphi_a(b) = (a+b)^p - a^p - b^p \implies \varphi_a$ is continuous on $[0,\infty)$, $\varphi_a(0) = 0$. For b > 0: $\varphi_a(b) = p(a+b)^{p-1} - pb^{p-1} = p \cdot ((a+b)^{p-1} - b^{p-1}) < 0$ as $p-1 < 0 \implies \varphi_a$ decreasing on $[0,\infty)$ and $\varphi_a \leqslant 0$.)

 φ is translation invariant \implies addition is continuous. "Multiplication": We can see that $\rho(\lambda f, \mathbf{o}) = |\lambda|^p \rho(f, \mathbf{o})$. $f_n \to f$, $\lambda_n \to \lambda$:

$$\varrho(\lambda_n f_n, \lambda f) \leqslant \varrho(\lambda_n f_n, \lambda_n f) + \varrho(\lambda_n f, \lambda f) = |\lambda_n|^p \varrho(f_n, f) + |\lambda_n - \lambda|^p \varrho(f, \mathbf{o}) \to 0.$$

Hence, we have a HTVS.

Tvrzení 0.1 (Observation)

If (X, τ) is a LCS, then τ is translation invariant $(U \subset X, x \in X \implies (U \in \tau \Leftrightarrow x + U \in \tau))$. Hence τ is determined by $\tau(\mathbf{o})$.

Definice 0.3 (convex, symmetric, balanced, absolutely convex, and absorbing set)

X is a vector space, $A \subset X$. Then A is

- convex if $tx + (1-t)y \in A$ for $x, y \in A$, $t \in [0, 1]$;
- symmetric if A = -A;
- balanced if $\alpha A \subset A$ for $\alpha \in \mathbb{F}$, $|\alpha| \leqslant 1$;
- absolutely convex if it is convex and balanced;

• absorbing if $\forall x \in X \ \exists t > 0 : \{sX | s \in [0, t]\} \subset A$.

Definice 0.4

co(A) = convex hull, b(A) = balanced hull, aco(A) = absolutely convex hull.

Tvrzení 0.2

X is a metric space over \mathbb{F} , $A \subset X$. Then:

(a) If $\mathbb{F} = \mathbb{R}$, it holds A is absolutely convex \Leftrightarrow A is convex and symmetric.

(b) co
$$A = \{t_1 x_1 + \ldots + t_k x_k | x_1 \ldots x_k \in A, t_1 \ldots t_k \ge 0, t_1 + \ldots + t_k = 1, k \in \mathbb{N}\}.$$

(c)
$$b(A) = {\alpha x | x \in A, \alpha \in \mathbb{F}, |\alpha| \leq 1}.$$

(d)
$$aco(A) = co(b(A))$$
.

(e) A is convex \Leftrightarrow (s+t)A = sA + tA for all s, t > 0.

 $D\mathring{u}kaz$ (a)

" \Longrightarrow ": trivial (and it also holds for $\mathbb{F} = \mathbb{C}$). " \Longleftarrow ": Assume A is convex and symmetric. We show that A is balanced:

$$x \in A, \alpha \in \mathbb{R}, |\alpha| \leq 1 \implies \alpha \in [-1, 1].$$

And $x \in A, -x \in A$, so the segment from x to -x is contained in A ($\alpha x = \frac{1-\alpha}{2}(-x) + \frac{(1+\alpha)}{2}x \in A$).

 $D\mathring{u}kaz$ (b)

 \subseteq ": by induction on k:

$$t_1x_1 + \ldots + t_{k+1}x_{k+1} = (t_1 + \ldots + t_k)\frac{t_1x_1 + \ldots + t_kx_k}{t_1 + \ldots + t_k} + t_{k+1}x_{k+1}.$$

"⊇": the set on the RHS is convex and contain A.

Důkaz (c)

,,, ⊇": clear. ,, ⊆": RHS is a balanced set.

D ukaz (d)

" \supseteq ": clear. " \subseteq " the set on the RHS is absolutely continuous (Clearly RHS is convex. "balanced": using (b) and (c): $co(b(A)) = \{t_1\alpha_1x_1 + \ldots + t_k\alpha_kx_k | x_1, \ldots, x_k \in A, |\alpha_j| \le 1, t_j \ge 0, t_1 + \ldots + t_k + t_$

```
D\mathring{u}kaz \text{ (e)}
"": "": "": sa_1 + ta_2 = (s+t) \cdot \left(\frac{s}{s+t}a_1 + \frac{t}{s+t}a_2\right).
"": in particular <math>\forall t \in (0,1): tA + (1-t)A \subset A, \text{ it is the definition of convexity.} \quad \square
```

Tvrzení 0.3

Let (X, τ) be a LCS, $U \in \tau(\mathbf{o})$. Then

- (i) U is absorbing.
- (ii) $\exists V \in T(0) : V + V \subset U$.
- (iii) $\exists V \in \tau(\mathbf{o})$ absolutely convex, open: $V \subset U$.

Důkaz (i)

 $x \in X \implies 0 \cdot x = \mathbf{o} \in U \implies \exists V \text{ a neighbourhood of } 0 \text{ in } \mathbb{F} : V \cdot x \subset U \implies \exists t > 0 : [0, t] \not\subset V$

Důkaz (ii)

 $\mathbf{o} + \mathbf{o} = \mathbf{o} \in U \implies \exists W_1, W_2 \text{ neighbourhoods of } \mathbf{o} : W_1 + W \subset U.$

Take $V = W_1 \cap W_2$.

 $D\mathring{u}kaz$

 $\exists U_0 \in \tau(\mathbf{o}) \text{ convex}, U_0 \subset U : \mathbf{o} \cdot \mathbf{o} = \mathbf{o} \in U_0 \implies \exists c > 0 \ \exists W \in \tau(\mathbf{o}) \text{ open} :$

$$\forall \lambda, |\lambda| < c : \lambda W \subset U_0.$$

 $V_1 := \bigcup_{0 < |\lambda| < 1} \lambda W$. Then $V_1 \in \tau(0)$ open, balanced, $V_1 \subset U_0$. Let $V := \operatorname{co} V_1$. Then V is absolutely convex (the previous proposition (d)), $V \subset U_0 \subset U$ (as V_0 is convex). $V \in \tau(\mathbf{o})$ as $V \supset V_1$. "V is open":

$$V = \bigcup \{t_1 x_1 + \ldots + t_n x_n + t_{n+1} V_1 | t_1, \ldots, t_{n+1} \ge 0, t_1 + \ldots + t_{n+1} = 1, x_1, \ldots, x_n \in V_1\}$$

Věta 0.4

- 1. Let (X,τ) be a LCS. Then there is \mathcal{U} , a base of neighbourhoods of \mathbf{o} with properties:
 - the elements of \mathcal{U} are absorbing, open, absolutely convex;
 - $\forall U \in \mathcal{U} \ \exists V \in \mathcal{U} : 2V \subset U$.

If X is Hausdorff, then $\bigcap \mathcal{U} = \{\mathbf{o}\}.$

- 2. Let X be a vector space, \mathcal{U} a nonempty family of subsets of X satisfying:
- the elements of \mathcal{U} are absorbing and absolutely convex;
- $\forall U \in \mathcal{U} \ \exists V \in \mathcal{U} : 2V \subset U;$
- $\forall U, V \in \mathcal{U} \ \exists W \in \mathcal{U} : W \subset U \cap V$.

Then there is a unique topology τ on X such that (X,τ) is LCS and \mathcal{U} is a base of neighbourhoods of \mathbf{o} . Further, if $\bigcap \mathcal{U} = \{\mathbf{o}\}$, the τ is Hausdorff.

 $D\mathring{u}kaz$ (1.)

Let \mathcal{U} be the family of all open absolutely convex neighbourhoods of \mathbf{o} . The previous proposition (iii) gives us \mathcal{U} is a base of neighbourhoods of \mathbf{o} , (1) gives us elements of \mathcal{U} are absorbing, so the first item holds. (ii) gives us $U \in \mathcal{U} \implies \frac{1}{2}U \in \mathcal{U}$.

Assume X i Hausdorff: $x \in X \setminus \{\mathbf{o}\} \stackrel{\text{Hausdorff}}{\Longrightarrow} \exists U \in \tau(\mathbf{o}) : x \notin U \implies \exists V \in \mathcal{U} : V \subset U : x \notin V.$

 $D\mathring{u}kaz$ (2.)

Set $\tau = \{G \subset X | \forall x \in G \ \exists U \in \mathcal{U} : x + U \subset G\}$. This is a unique possibility so uniqueness is clear.

" τ is topology": \emptyset , $X \in \tau$ and τ is closed to arbitrary union (clear). τ is closed to finite intersections by third item $(G_1, g_2 \in \tau, x \in G_1 \cap G_2 \dots U_1, U_2 \in \tau, x + U_1 \subset G_1, x + U_2 \subset G_2; \exists V \in \mathcal{U} : V \subset U_1 \cap U_2$, then $x + V \subset (x + U_1) \cap (x + U_2) \subset G_1 \cap G_2 \Longrightarrow G_1 \cap G_2 \in \tau$).

"Elements of \mathcal{U} are neighbourhoods of \mathbf{o} ": $U \in \mathcal{U}$. $V := \{x \in U | \exists W \in \mathcal{U} : x + W \subset U\}$. Then $V \subset U$, $0 \in V$ (take W = U). $V \in \tau$ ($x \in V \implies \exists W \in \mathcal{U} : x + W \subset U$; let $\tilde{W} \in \mathcal{U}$ such that $2\tilde{W} \subset W$, then $x + \tilde{W} \subset V$, because $y \in \tilde{W} \implies X + y + \tilde{W} \subset x + \tilde{W} + \tilde{W} \subset x + W \subset U$).

 $_{,,\mathcal{U}}$ is a base of neighbourhood of \mathbf{o} ": now clear.

$$\implies \mu y - \lambda x = \underbrace{(\mu - \lambda)y}_{(\mu - 1) \cdot \left(\mu + \frac{1}{|\lambda| + 1}\right)V} + \underbrace{\lambda(y - x)}_{\in \frac{\lambda}{|\lambda| + 1}V \subset V}.$$

"Local convexity": by first item: $\forall U \in \mathcal{U} : U$ is convex.

Assume $\bigcap \mathcal{U} = \{\mathbf{o}\}$. Take $x, y \in X, x \neq y \implies x - y \neq \mathbf{o} \implies \exists U \in \mathcal{U} : x - y \notin U$. Take $V \in \mathcal{U} : 2V \subset U$. Then if $(x + V) \cap (y + V) = \emptyset$, $x + v_1 = y + v_2$, $x - y = v_2 - v_1 \in V + V = 2V \subset U$ 4.

Věta 0.5

Let X be a vector space and let \mathcal{P} be a family of seminorms on X. The there is a unique topology τ on X such that (X,τ) is a LCS and $\mathcal{U} = \{\{x \in X | p_1(x) < c_1, \dots, p_k(x) < c_k\} | p_1, \dots, p_k \in \mathcal{P}, c_1, \dots, c_k\}$ is a base of neighbourhood of \mathbf{o} .

 (X, τ) is Hausdorff $\Leftrightarrow \forall x \in X \setminus \{\mathbf{o}\} \ \exists p \in \mathcal{P}, p(x) > 0.$

 $D\mathring{u}kaz$

Use the previous theorem (2.) on \mathcal{U} : The sets are absolutely convex (by properties of seminorms). "Absorbing": $U = \{x \in X | p_1(x) < c_1, \ldots, p_k(x) < c_k\}$. Take $x \in X$?, $j \in [k]$. Then $p_j(x) \in (0, \infty)$ as for t > 0: $p_j(t \cdot x) = t \cdot p_j)_x$ and $\exists c > 0$ such that $c \cdot p_j(x) < c_j$ for $j \in [k]$. Now for $t \in [0, c]$: $tx \in U$.

$$U = \{x \in X | p_1(x) < c_1, \dots, p_k(x) < c_k\}$$
. Take $V = \{x \in X | p_1(x) \subset \frac{c_1}{2}, \dots, p_k(x) < \frac{c_k}{2}\}$.

$$U, V \in \mathcal{U} \implies U \cap V \in \mathcal{U}$$
 trivially.

"Hausdorffness":

$$\bigcap U = \{x \in X | \forall p \in \mathcal{P} : p(x) = 0\}.$$

"⊇" clear. "⊆": Assume $y \in X, p \in \mathcal{P}: p(y) > 0$: $U = \{x \in X | p(x) < p(y)\} in\mathcal{U} \implies y \notin U$.

Například

 $(X, \|\cdot\|)$ is a normed space, then its topology is generated by $\mathcal{P} = \{\|\cdot\|\}$.

The topology on \mathbb{F}^{Γ} is generated by seminorms $p_{\gamma}(f) = |f(\gamma)|, f \in \mathbb{F}^{\Gamma} \ (\gamma \in \Gamma).$

 $C(\mathbb{R}, \mathbb{F})$ the topology is generated by this sequence of seminorms: $p_N(f) = \max_{x \in [-N,N]} |f(x)|$.

Definice 0.5 (Minkowski functional)

X vector space, $A \subset X$ convex absorbing. Then

$$p_A(x) := \inf \{ \lambda > 0 | x \in \lambda \cdot A \}.$$

Lemma 0.6

Let X be LCS, $A \subset X$ convex set.

$$x\in \overline{A}, y\in \operatorname{int} A \implies \{tx+(1-t)y|t\in [0,1)\}\subset \operatorname{int} A.$$

Důkaz

WLOG y = 0. t = 0 clear, $0 \in \text{int } A$. $t \in (0, 1)$:

Fix U, an open absolutely convex neighbourhood of \mathbf{o} such that $U \subset A$. Then $x + \frac{1-t}{t}U$ is a neighbourhood of $x \implies \exists$

TODO!!!

TODO!!!

Důkaz (Continuity of multiplication? Theorem 4. TODO?)

"U is a neighbourhood of \mathbf{o} in τ , $\lambda > 0 \implies \lambda U$ is neighbourhood of \mathbf{o} ": $\lambda \geqslant 1$: $\exists V \in \mathcal{U}: V \subset U \implies V \subset \lambda V \subset \lambda U$ (V is absolutely convex) $\implies \lambda U$ is neighbourhood of \mathbf{o} . $\lambda = \frac{1}{2}$: $\exists V \in \mathcal{U}: V \subset U$, then $\exists W \in \mathcal{U}: 2W \subset V$, then $W \subset \frac{1}{2}V \subset \frac{1}{2}U \implies \frac{1}{2}U$ is a neighbourhood of \mathbf{o} . Now by induction for $\lambda = \frac{1}{2^n}$. For $\lambda > 0$ find $n \in \mathbb{N}$ such that $\lambda > \frac{1}{2^n}$.

 $\lambda x \in G \ (\lambda \in \mathbb{F}, x \in X, G \in \tau) \implies \exists U \in \mathcal{U} : \lambda x + U \in G.$ Find $V \in \mathcal{U} : 2V \subset U$ such that V is absorbing ($\implies \exists c > 0 \ \forall t \in [0, c] : tx \in V$) and V is balanced ($\implies \forall \mu \in \mathbb{F}, |\mu| \leq c : \mu x \in V$). Let $\mu \in F, y \in X$ such that

$$|\mu - \lambda| < c \land y \in x + \frac{1}{|\lambda| + c}V$$
 (a neighbourhood of **o**)

$$\implies \mu y - \lambda x = \mu (y - x) + (\mu - \lambda) x \in V + V = 2V \subset U \implies \mu y \in \lambda x + U \subset G.$$

Tvrzení 0.7 (8. see notes of lecturer)

Let X be LCS, $A \subset X$ a convex neighbourhood of **o**.

Clearly: $[p_A \subset 1] \subset A \subset [p_A \leqslant 1]$.

 $D\mathring{u}kaz$

 $,[p_a < 1] = \operatorname{int} A^{"}: ,[\subseteq ": p_A(x) < 1 \implies \exists c > 1 \text{ such that } cx \in A \implies x = \frac{1}{c}cx \in \operatorname{int} A.$ $,[\supseteq ": x \in \operatorname{int} A \implies \exists U \in \tau(\mathbf{o}) : x + U \subset A. \ U \text{ absorbing} \implies \exists \alpha > 0 : \alpha x \in U. \text{ Then}$ $(1 + \alpha)x \in A \implies p(x) \leqslant \frac{1}{1+\alpha} < 1.$

 p_A is continuous on X.

 $D\mathring{u}kaz$

 $[p_A < c] = \emptyset$ if $c \le 0$ and $c \cdot \text{int } A$ if c > 0. $[p_A > c] = X$ if c < 0, $X \setminus (c \cdot \overline{A})$ if c > 0, and $\bigcup_{t>0} X \setminus t\overline{A}$ if c = 0. All these sets are open.

 $p_A = p_{\overline{A}} = p_{\text{int } A}.$

 $D\mathring{u}kaz$

int $A \subset A \subset \overline{A} \Longrightarrow p_{\overline{A}} \leqslant p_A \leqslant p_{\text{int }A}$. "Conversely": Assume that $p_{\overline{A}}(x) < c \Longrightarrow \exists d < c : x \in d \cdot \overline{A} \Longrightarrow \forall n \in \mathbb{N} : \left(1 - \frac{1}{n}\right) x \in d \text{ int } A \Longrightarrow \left(1 - \frac{1}{n}\right) p_{\text{int }A}(x) \leqslant d \Longrightarrow p_{\text{int }A}(x) \leqslant d < c.$

Důsledek

Any LCS (X) is completely regular.

Důkaz

 $x \in X$, U an open neighbourhood of x. Take V a convex neighbourhood of \mathbf{o} such that $x + V \in U$. $f(y) := \min\{1, p_V(y - x)\}$. The f is continuous by the previous proposition, f(x) = 0.

$$y \in X \setminus U \implies y - x \notin V \implies p_V(y - x) \geqslant 1 \implies f(y) = 1.$$

Věta 0.8

TODO!!! The topology generated by \mathcal{P}_{τ} coincides with τ .

$D\mathring{u}kaz$

Let τ_1 be topology induced by \mathcal{P}_{τ} . $\tau_1 \subset \tau$ (seminorms from \mathcal{P}_{τ} are τ -continuous, hence the sets from theorem 5? are τ -open). " $\tau \subset \tau_1$ ": Let $U \in \tau(\mathbf{o}) \Longrightarrow \exists V$ a neighbourhood of \mathbf{o} such that $V \subset U$. The $p_V \in \mathcal{P}_{\tau}$ (from the previous proposition is continuous) \Longrightarrow $[p_V < 1] = V \subset U \Longrightarrow U \in \tau_1(\mathbf{o})$.

Tvrzení 0.9

X a vector space.

- 1. p is seminorm $\implies [p < 1]$ is absolutely convex, absorbing, and $p_{[p < 1]} = p$.
- 2. p,q are seminorms, then $p\leqslant q \Leftrightarrow [p<1]\supset [q<1]$.
- 3. \mathcal{P} a set of seminorms generated by a topology τ . p a seminorm on X. Then p is τ -continuous $\Leftrightarrow \exists p_1, \ldots, p_k \in \mathcal{P} \ \exists c > 0 : p \leqslant c \cdot \max\{p_1, \ldots, p_k\}.$

Důkaz (1.)

Absolutely convex and absorbing is clear.

$$p_{[p<1]}(x) = \inf\{\lambda > 0 | x \in \lambda[p<1]\} = \inf\{\lambda > 0 | x \in [p<\lambda]\} = p(x).$$

 $D\mathring{u}kaz$ (3.) " \iff ": $A := [p < 1] \implies A \supset [c \cdot \max\{p_1, \dots, p_k\} < 1] = [p_1 < \frac{1}{c}, \dots, p_k < \frac{1}{c}]$, which is a τ -open set \implies A is a neighbourhood of $\mathbf{o} \implies p = p_A$ is continuous (by 1. and the previous proposition).

1 Continuous and bounded linear mapping

Tvrzení 1.1

 $(X,\tau),(Y,\mathcal{U})$ LCS, $L:X\to Y$ linear. Then the following assertions are equivalent:

- 1. L is continuous;
- 2. L is continuous at **o**;
- 3. L is uniformly continuous.

 $D\mathring{u}kaz$

"1. \Longrightarrow 2." trivial, "2. \Longrightarrow 3." assume L continuous at \mathbf{o} . Then, given $U \in \mathcal{U}(\mathbf{o})$, there is $V \in \tau(\mathbf{o})$ such that $L(V) \subset U$. Take $x, y \in X$ such that $x - y \in V$. Then $L(x) - L(y) = L(x - y) \in U$ and that's continuous. "3. \Longrightarrow 1." trivial.

Tvrzení 1.2

 $L: X \to Y$ linear. L is continuous $\Leftrightarrow \forall q$ a continuous seminorm on $Y \exists p$ a continuous seminorm on $X: \forall x \in X: q(L(x)) \leqslant p(x)$.

 $D\mathring{u}kaz$

" \Longrightarrow ": L continuous, q a continuous seminorm on Y, the p(x)=q(L(x)) is a continuous seminorm on X. " \Longleftrightarrow ": By the previous proposition it is enough "L is continuous at \mathbf{o} ": U neighbourhood of \mathbf{o} in Y, $\exists V \subset U$ an absolutely convex neighbourhood of \mathbf{o} . $q:=p_V$ is a continuous seminorm. Let p be a continuous seminorm on X such that $q \circ L \leqslant p$. W:=[p<1] a neighbourhood of \mathbf{o} in X and $L(W) \subset V \subset U$. $x \in W \Longrightarrow p(x) < 1 \Longrightarrow q(L(x)) < 1 \Longrightarrow L(x) \in V \subset U$.