

UNLP. Facultad de Informática

Fundamentos de Teoría de la Computación

Temario

- Lógica de Enunciados. El lenguaje de la Lógica. Representación Simbólica - Enunciados y conectivas. Funciones de verdad y tablas de verdad. Tautologías, contradicciones, equivalencias lógicas. Reglas de manipulación y sustitución.

Bibliografía

- Hamilton. Lógica para matemáticos. Capítulo 1.
- Pons, Rosenfeld, Smith. Lógica para Informática. Capítulo 1.

Ejercicios

- 1. Retome el Ejercicio 1 de la Práctica 1:
 - a) Seleccione un par de enunciados que sean lógicamente equivalentes (que tengan el mismo significado). Demuéstrelo mediante tablas de verdad.
 - b) Para el ítem ii, construya dos enunciados que sean lógicamente equivalentes.
 - c) Para el ítem vii, construya dos enunciados que sean lógicamente equivalentes.
- 2. Sean \mathscr{A} , \mathscr{B} fbfs que cumplen que $(\neg \mathscr{A} \vee \mathscr{B})$ es tautología. Sea \mathscr{C} una fbf cualquiera. Determinar, si es posible, cuáles de las siguientes fbfs son tautologías y cuáles contradicciones. Justificar las respuestas.

i-
$$((\neg(\mathscr{A} \to \mathscr{B})) \to \mathscr{C})$$

ii- $(\mathscr{C} \to ((\neg\mathscr{A}) \lor \mathscr{B}))$
iii- $((\neg\mathscr{A}) \to \mathscr{B})$

- 3. ¿Es cierto que dadas \mathscr{A} y \mathscr{B} fbfs cualesquiera, siempre ocurre que si \mathscr{A} y $\mathscr{A} \to \mathscr{B}$ son tautologías entonces \mathscr{B} también lo es? Fundamentar. Ejemplificar con algunos ejemplos concretos escritos en lenguaje natural.
- 4. Sea \mathscr{A} una fbf donde aparecen sólo los conectivos \wedge , \vee , \neg . Sea \mathscr{A}' la fbf que se obtiene a partir de \mathscr{A} reemplazando cada \wedge por \vee y cada \vee por \wedge . ¿Si \mathscr{A} es una tautología, \mathscr{A}' también lo es? Justificar. Ejemplificar con algunos ejemplos escritos en lenguaje natural.
- 5. Demostrar que cualquier tautología proposicional que esté escrita usando los conectivos ¬, ∨, ∧, → contiene alguna ocurrencia ya sea del símbolo "¬.º del símbolo "→".

Idea: Demostrar que cualquier fórmula que contenga sólo la conjunción y disyunción puede tomar el valor F.

- 6. ¿Es cierto que en el Cálculo de Enunciados pueden escribirse dos fbfs que tengan diferentes letras de proposición y aún así ambas fbfs sean lógicamente equivalentes?. Fundar.
- 7. Para las tablas dadas a continuación, encontrar al menos dos fbf del Cálculo de Enunciados que las tenga por tablas de verdad.

Ayuda: alcanza con usar p, q, \neg , \wedge , \vee .

р	q	f?
V	V	V
V	F	V
F	V	V
F	F	V

q	f?
V	V
F	F
V	V
F	F
	V F V

р	q	f?
V	V	V
V	F	V
F	V	F
F	F	F

8. Determinar cuáles de las siguientes fbfs son lógicamente implicadas por la fbf $(\mathscr{A} \wedge \mathscr{B})$. Fundamentar. Def. de implicación lógica, ver def. 1.7 del Hamilton.

i-
$$\mathscr{A}$$

iv- $\neg \mathscr{A} \vee \mathscr{B}$
vii- $\mathscr{A} \to \mathscr{B}$

ii-
$$\mathscr{B}$$

v- $\neg \mathscr{B} \to \mathscr{A}$
viii $\neg \mathscr{B} \to \neg$

$$\begin{array}{lll} \text{ii-} & \mathcal{B} & & \text{iii-} & \mathcal{A} \vee \mathcal{B} \\ \text{v-} \neg \mathcal{B} \rightarrow \mathcal{A} & & \text{vi-} & \mathcal{A} \leftrightarrow \mathcal{B} \\ \text{viii-} \neg \mathcal{B} \rightarrow \neg \mathcal{A} & & \text{ix-} & \mathcal{B} \rightarrow \neg \mathcal{A} \end{array}$$

- 9. Sea la relación \leq tal que dadas fbfs \mathscr{A} , \mathscr{B} se cumple que $\mathscr{A} \leq \mathscr{B}$ sii $\mathscr{A} \to \mathscr{B}$ es una tautología. Dadas las fbfs: $p, p \to q, \neg p, p \land \neg p, r \lor \neg r$, organizarlas bajo la relación \leq . Representar gráficamente.
- 10. Sea \mathscr{A} una fbf donde aparecen sólo los conectivos \wedge, \neg . Sea \mathscr{A}' la fbf que se obtiene a partir de ∉ reemplazando cada ∧ por ∨ y cada letra de proposición por su negación (o sea, cada p por $\neg p$, cada q por $\neg q$, etc.). ¿Es cierto que \mathscr{A}' es lógicamente equivalente a $\neg \mathscr{A}$? Fundamentar. Ejemplificar con algunos ejemplos concretos escritos en lenguaje natural.
- 11. Sea # el operador binario definido como $p\#q=_{def}(p\wedge \neg q)\vee (\neg p\wedge q)$. Def. de implicación lógica, ver def. 1.7 del Hamilton.
 - i- Probar que # es asociativo, es decir, x#(y#z) es lógicamente equivalente a (x#y)#z.
 - ii- Probar que # es conmutativo, es decir, y#z es lógicamente equivalente a
- 12. Demostrar que las siguientes fórmulas son lógicamente equivalentes.
 - i- $(p \to q)$ es lógicamente equivalente a $(\neg p \lor q)$
 - ii- $(p \leftrightarrow q)$ es lógicamente equivalente a $((p \to q) \land (q \to p))$
 - iii- $(\neg(p \land q))$ es lógicamente equivalente a $(\neg p \lor \neg q)$
 - iv- $(\neg(p \lor q))$ es lógicamente equivalente a $(\neg p \land \neg q)$