Seismic Evidence for Partial Melt at the Base of Earth's Mantle

Q.Williams & E.Garnero

Science, vol.273, 1996

Erwan MAZARICO

Ultra-Low Velocity Zone (ULVZ)

- Anomalously slow V_P at the base of the mantle
 - discrete layer
 - SKS, PcP precursors
 - sharp transition
 - thickness
 - 5 to 40km
 - correlated with mantle upwellings

Possible Explanations

- Partial melting
- Chemical discontinuity
- Phase transition at 135GPa
 - "unlikely" because not observed
 - CaCl₂ structure stable up to 130GPa
- Anisotropy
 - no SP_{diff}KS or PcP splitting

Partial Melting: Melt Model

- Aggregate-induced density change assumed small (Δρ ~ 1%)
- Solid-liquid aggregate geometry
 - spherical melt inclusions
 - melt film
- K of melt ≈ 650 GPa
 - good for Fe-rich melt
 - Likely for u-mafic silicate melt

melt film aspect ratio = $0.01 \Rightarrow 5\%$ melt worst case $\Rightarrow 30\%$ melt

Partial Melting: Fe-rich fluid?

- intercalated melt
 - higher $\rho \Rightarrow 20\%$ melt

- wetting of grain boundaries
 - same as silica melt

- stability ??
 - High ρ , low $\eta \Rightarrow$ descent to outer core

Partial Melting: Testing

- the partial melting model predicts S-wave velocities anomaly of 30%
 - no measure available at the time of the paper
 - now an observation!

Chemical Discontinuity: solid reaction

Possible reaction:

$$(Mg_xFe_{1-x})SiO_3 + 3(1-x-s)Fe = xMgSiO_3 + (1-x-s)FeSi + sSiO_2 + [3(1-x)-2s]FeO$$

very small P-wave velocity variations (<4%)

Chemical Discontinuity: solid alloy

- Solidified core or Fe-rich alloy in ULVZ
 - 20 to 75 % (depending on shear modulus and outer core material liquidus)
- Implies complex velocity structure
- Needs the top of the outer core to be close to liquidus

More about the Melting

- Abrupt transition if geotherm intersects eutectic temperature
 - global character
 - thickness varies with T anomalies (upwellings)
- Constraint on mantle mineralogy
 - magnetowüstite ≈ 5-30%
- Phase diagram at CMB conditions uncertain

Consequences of a melt layer

- viscosity of mantle drops
- modification of heat transport
- stability of thermal boundary layer
- higher electrical conductivity
 - Influence on geomagnetic field

Summary

- Partial melting explains P- and S-waves velocities anomalies
- Melt fraction depends largely on melt layer structure
- Important geodynamical consequences