安徽大学 20<u>21</u>—20<u>22</u>学年第<u>1</u>学期

《 数字逻辑 》(A 卷)考试试题参考答案及评分标准

一、解答题(共35分)

- 1. (5 分) 解答: $F = AC + \overline{AC} + \overline{D}$
- 2. (5 分) 解答: $F(A,B,C) = \overline{AD} + C\overline{D} + \overline{BD}$
- 3. (8分) 解答:将三种门分别代入,列真值表,或者用函数表达式和题中真值表或其表达式对比均可,此过程分值 4分。结论为异或门,分值 4分。

4. (8 分) 解答: (1)
$$a=b=0, c=1$$
 时,最简 $F(A,B,C,D)=CD+\overline{ABD}$ (4 分)

(2)
$$a=1,b=0,c=1$$
 时,最简 $F = \overline{AB} + CD$ (4分)

5. (9分) 解答: (1) 隐含表如下----3分

B∉	CE√₽	₽	42	₽	e)	47	P
C+	X₽	ΧĐ	₽	42	47	₽	P
D↔	×Θ	×₽	Χ₽	42	ø	₽	P
E↔	×₽	ΧĐ	AF√₽	×₽	Ð	47	ø
F↔	BF√₽	CE/AF√+	ΧĐ	X₽	×₽	₽	P
G↔	X₽	×₽	Χ₽	CG/FG×₽	×₽	×₽	φ
P	A↔	B₽	C↔	D₽	E₽	F₽	40

(2) 等效对和最大等效类: -----2 分

等效状态对: (A, B)(A, F)(B, F)(C,E) ↔

最大等效类: (A, B, F)(C,E)(D)(G) ↔

最小化状态表: A:(A, B, F) C:(C,E) D:(D) B:(G)

(3) 状态合并和最小化状态表----2 分

· 如太 。	次态/输出→		
£20ios**	x=0€	x=1₽	4
A₽	C/0₽	A/1₽	4
B₽	B/1₽	A/0₽	4
C₽	A/0₽	B/0₽	- 0
D₽	C/1₽	B/0₽	

(4) 至少需要两个触发器。----2分

二、组合电路分析题(共10分)

[解答]

(1) 写出逻辑函数表达式: (3分)

(2) 列出真值表; (5分)

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

开锁规则 (2分): 同时按下 A、D 两个键; 或者同时按下 A、B 两个键; 或者同时按下 B、C、D 三个键。都可以打开此密码锁。(使用其它能够清楚表达出开锁条件的表述方式均可) 三、组合电路设计题(共 15 分)

(1) 真值表; (5分)

A	В	C	M	N
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(2) 最优方案的表达式为(5分)

M =
$$A\bar{B}\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}C + ABC = A \oplus B \oplus C$$
2 $\%$

$$N = \overline{(A \oplus B) \cdot C \cdot AB}$$
-----3 $\%$

其中将 N 的表达式写成 $N = \overline{AB \cdot AC \cdot BC}$ 的,给 2 分。

(3) 用译码器 74LS138 实现输出函数, 画出电路图。(5分)

其中使能信号和输入信号如果有漏接的,扣除1分。

四、时序电路分析题(共15分)

[解答]

(1) 激励函数、输出函数表达式(5分): 每个表达式占1分。

$$\begin{array}{ll} J_1 = x \downarrow & J_2 = y_1 \cdot x \psi \\ K_1 = \bar{x} \psi & K_2 = \bar{x} \psi \\ & Z = y_2 \cdot \bar{x} \psi \end{array}$$

(2) 画出状态表和状态图(8分): 状态表和状态图各占4分。

现态	次态 y2 ⁽ⁿ⁺¹⁾ y1 ⁽ⁿ⁺¹⁾ /Z			
<i>y2y1</i>	x=0	x=1		
00	00/0	01/0		
01	00/0	11/0		
11	00/1	11/0		
10	00/1	11/0		

(3)凡在输入序列中出现两个或者两个以上 1 之后再出现一个 0 的,输出就为 1 。检测序列可以描述为 11 (连续两个或两个以上 1)0 。 (2 分)

五、时序电路设计题(共20分)

[解答]

(1)(6分)

	现态₽		次杰↩			
y₃₽	y ₂ ¢ ³	y ₁ ↔	y ₃ (n+1) _€ 3	y ₂ (n+1) ₄ 3	y ₁ (n+1) ₄ ⊃	
043	0₽	040	d₽	d₽	d₽	
0↔	0₽	1₽	d↔	d₽	d₽	
0↔	1₽	0₽	1₽	1₽	1€	
043	1₽	1₽	0↔	1₽	0₽	
1₽	0₽	0↔	1₽	0↔	1₽	
1₽	043	1₽	1₽	1₽	0₽	
1₽	1₽	0₽	0₽	1₽	1₽	
1₽	1₽	1₽	1₽	0₽	0↔	

表中没有列出两个无效状态的,扣除1分。

(2)因为本题没有特别要求所设计电路能够自启动,所以只要所设计电路的六个有效状态的状态转换关系正确即可得9分,相应的激励函数表达式不唯一。三个JK 触发器的激励函数表达式,按照每组3分分配。这里给出一组参考答案,其它答案老师酌情给分。

$$J_3 = \overline{y_1 y_2}$$
, $K_3 = y_2 \overline{y_1}$
 $J_2 = \overline{y_3 y_1}$, $K_2 = y_1 y_3$
 $J_1 = K_1 = 1$

六、综合设计题(共20分)

(1) 根据题目要求,做出原始状态图和原始装态表;(6分)

S	K	L	V	A	В	C	D
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	1	0	0	0
0	0	1	1	0	1	0	0
0	1	0	0	1	0	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	0	1	0
0	1	1	1	0	1	0	0
1	0	0	0	0	0	1	0
1	0	0	1	0	1	0	0
1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	0	1	0	1	0	0
1	1	1	0	0	0	0	1
1	1	1	1	0	1	0	0

说明:最后四行填任意值也对。共 16 行,每行分值分配相同,得分值计算方式: 6*完全正确的行数/16,将结果四舍五入。

(2) 最简与或表达式: (4分)

$$A = \overline{slv} + \overline{skv}$$

$$B = v$$

$$C = s\overline{k}\overline{l}\overline{v} + \overline{s}k\overline{l}\overline{v}$$

$$D = s\bar{lv} + s\bar{kv}$$

说明: 4个表达式分值各占1分。如果因为第(1)题中的真值表填写错误太多,导致没有一个表达式和答案一致的,在学生的最简表达式符合自己的真值表的前提下,可以酌情给分,但总分值不超过2分。