Ao LIU

Ph.D. in Computer Science

Summary

Research Machine Learning (Recommendation Systems, Learning to Rank, Algorithm Design, etc.),

Interests Differential Privacy, Computational Social Choice, and Quantum Computation

Experience 1+ years of industry experience in machine learning (personalized recommendation)

Hands-on experience in recommendation systems, LLM, and theoretical computer science

Academia Published more than 20 papers and received more than 250 citations to date.

Reviewed more than 50 papers for top AI conferences or journals.

Education

01/2018 – 05/2023 Ph.D. in Computer Science, Rensselaer Polytechnic Institute (RPI) Troy, NY

Thesis: Group Decision Makings from Partial Preferences [Link]

08/2015 – 05/2018 M.Eng. in Material Physics, Rensselaer Polytechnic Institute (RPI) Troy, NY

08/2010 – 05/2014 B.S. in Mathematics and Physics, Tsinghua University Beijing, China

Minor in Computer Technology, and in Academic Talent Program

Experience

07/2023 – Present Software Engineer at Google Core ML Mountain View, CA

Design and Research More Efficient Transformers for Recommendation Systems

05/2022 – 08/2022 Research Intern at Google Core ML Mountain View, CA Project: A More Accurate Position Bias Estimator for Unbiased Learning to Rank

 \circ Significant accuracy improvement (\sim 8%) v.s. state-of-the-art without extra computational resources.

- Significant accuracy improvement ($\sim 8\%$) v.s. state-of-the-art without extra computational resources

 Proposed a more accurate model for position bias in recommendation systems. (user-modeling)
 - Designed a new machine learning framework based on the proposed position bias model and
 - two-tower model. (algorithm design, statistics)

 Implemented a data pipeline to extract the required features from data. (C/C++)
- Implemented the machine learning framework, tested on Yahoo! dataset and integrated it into Google codebase. (Python, TensorFlow, GoogleTest)

08/2018 - 12/2018 Visiting Scholar at MIT-IBM Watson AI Lab

Cambridge, MA

Project: Certifiably Robust Interpretation via Rényi Differential Privacy

05/2019 - 08/2019 O Significant robustness improvement ($\sim 12\%$) plus accuracy improvement v.s. state-of-the-art.

- Yes! We improved both robustness and accuracy at the same time! Note that accuracy and robustness are trade-offs in machine learning.

- Theoretically connected Rényi differential privacy and interpretation robustness.

- Designed a new robust algorithm to interpret neural networks for image classifications.
- Implemented the proposed robust algorithm and tested it on VOC2007 dataset for various properties, including robustness, accuracy, and computational efficiency. (*Python, PyTorch, TorchRay, TensorFlow*)
- O Delivered one academic paper (on top AI journal) and two patents.

Skills

and

Implementation Programming languages: Python, C/C++, MATLAB

Tools and platforms: TensorFlow, PyTorch, TorchRay, LATEX, GoogleTest

Design/ Theory Algorithm design, Statistics, Time/Sample-complexity analysis, User-modeling, Markov chain Mount-Carlo (MCMC), Differential privacy analysis, Robustness analysis, Model identifiability.

Review Services

Journal Information Sciences, TMLR, ACM ToIS, Sankhya B

Conference NeurIPS (20,21,22&23), ICML (22,23&24), ICLR (23&24), AAAI (21&22), IJCAI-22

TMLR	Smoothed Differential Privacy [PDF] <u>Ao Liu</u> , Yu-Xiang Wang, and Lirong Xia
UAI-23	Accelerating Voting by Quantum Computation [PDF] <u>Ao Liu</u> , Qishen Han, Lirong Xia, and Nengkun Yu
AIJ	Certifiably Robust Interpretation via Rényi Differential Privacy [Link] [ArXiv] <u>Ao Liu</u> , Xiaoyu Chen, Sijia Liu, Lirong Xia, and Chuang Gan Also in proceedings of AAAI-23 Journal Track (oral presentation)
AAAI-23 (oral)	Differentially Private Condorcet Voting [PDF] Zhechen Li, <u>Ao Liu</u> , Lirong Xia, Yongzhi Cao, and Hanpin Wang
AAAI-22	The Semi-Random Likelihood of Doctrinal Paradoxes [PDF] $\underline{Ao\ Liu}$, and Lirong Xia
IJCAI-22 (oral)	Learning Mixtures of Random Utility Models with Features from Incomplete Preferences [PDF] Zhibing Zhao, <u>Ao Liu</u> , and Lirong Xia
JAIR	Learning to Design Fair and Private Voting Rules [PDF] Farhad Mohsin, <u>Ao Liu</u> , Pin-Yu Chen, Francesca Rossi, and Lirong Xia
UAI-20 (oral)	How Private Are Commonly-Used Voting Rules? [PDF] Farhad Mohsin, <u>Ao Liu</u> , Pin-Yu Chen, Francesca Rossi, and Lirong Xia
ETRA-20 $Adjunct$	Let It Snow: Adding Pixel Noise to Protect the Users Identity [Link] Brendan John, <u>Ao Liu</u> , Lirong Xia, Sanjeev Koppal, and Eakta Jain
AAAI-19 (oral)	Near-Neighbor Methods in Random Preference Completion [PDF] <u>Ao Liu</u> , Qiong Wu, Zhenming Liu, and Lirong Xia
AAAI-19 (oral)	Learning Plackett-Luce Mixture from Partial Preferences [PDF] <u>Ao Liu</u> , Zhibing Zhao, Chao Liao, Pinyan Lu, and Lirong Xia
ETRA-19 (oral)	Differential Privacy for Eye-Tracking Data [PDF] <u>Ao Liu</u> , L. Xia, A. Duchowski, R. Bailey, K. Holmqvist, and E. Jain
US Patent	Certifiably Robust Interpretation [PDF] <u>Ao Liu</u> , Sijia Liu, Bo Wu, Lirong Xia, Qi Cheng Li, and Chuang Gan
US Patent	Interpretation Maps with Guaranteed Robustness [PDF] <u>Ao Liu</u> , Sijia Liu, Abhishek Bhandwaldar, Chuang Gan, Lirong Xia, and Qi Cheng Li
	Awards and Teaching
09/2019 - 05/2022	RPI-IBM AI Horizon Scholarship 3-year scholarship supported by Rensselaer-IBM Artificial Intelligence Research Collaboration
09/2016 - 05/2017	RPI Presidential Graduate Research Fellowship A One-Year Fellowship for Outstanding Graduate Students [Certificate]
Spring 2023	Teaching Assistant of CSCI 4150: Introduction to AI Instructor: Lirong Xia
04/2021	Guest Lecture at CSCI 4967/6967: Economics and Computation Topic: The Semi-Random Likelihood of Doctrinal Paradoxes
Spring 2023	Teaching Assistant of MATH 1020: Calculus II

Selected Publication

Instructor: David A. Schmidt