DISEÑO DE UN **ALGORITMO** PARA PREDECIR **EL ÉXITO EN LAS PRUEBAS SABER PRO**

Presentación del equipo

Dennis Castrillon

Sebastian Castaño

Miguel Correa

Mauricio Toro

Diseño del Algoritmo

Algoritmo para construir un árbol binario de decisión usando C4.5. En este ejemplo, mostramos un modelo para predecir si uno debe o no adquirir un material específico en una compañía, dependiendo de la calidad del material, precio y relación con el proveedor.

División de un nodo

Esta división está basada en la condición "Estudiante trabaja?". Para ester caso la impureza de Gini del nodo de la izquierda es de 0.5 y para el nodo de la derecha es 0.41. Finalmente, la impureza de Gini ponderada es de 0.44

Complejidad del Algoritmo

	Complejidad en tiempo	Complejidad en memoria
Entrenamiento del modelo	O(N ² *M*2 ^M)	O(N*M*2 ^M)
Validación del modelo	O(N*M)	O(1)

Algoritmo (operación)	La complejidad del tiempo	
Insertar	O(n*m)	
Buscar	O(n*m)	
Borrar	O(n)	

	Conjunto 1		Conjunto 2		Conjunto 3	
Tipo	Test	Train	Test	Train	Test	Train
Consumo en MB	21,52	62,46	62,46	180,64	180,64	587,02

Complejidad en tiempo y memoria del algoritmo, en este caso n representa el número de estudiantes y m el tamaño del árbol de decision creado (cantidad de preguntas).

Modelo de Árbol de Decisión


```
Is punt matematicas >= 49.0?
--> True:
 Is punt fisica >= 45.0?
  --> True:
    Is punt_ciencias_sociales >= 48.0?
    --> True:
     Is cole jornada == COMPLETA?
      --> True:
       Is cole caracter == TÉCNICO/ACADÉMICO?
         Is cole depto ubicacion == CESAR?
          --> True:
            Predict {'1': 1}
          --> False:
            Predict {'0': 5}
        --> False:
         Is fami educacionpadre.1 == Primaria completa?
          --> True:
           Predict {'0': 2}
          --> False:
           Is cole_nombre_sede == INST TEC COLOMBO SUECO?
            --> True:
             Predict {'0': 1}
            --> False:
              Predict {'1': 9}
```

Un árbol de decisión para predecir el resultado del Saber Pro usando los resultados del Saber 11.

Características Más Relevantes

Lenguaje

Inglés

Ciencias sociales

Funciones

- ✓ Read Data: Lee el archivo CSV, almacena los datos en un arreglo de arreglos y depura el archivo.
- ✓ Division: Separa nodos falsos y verdaderos de acuerdo a la condición.
- ✓ Gini: Calcula la impureza para un nodo específico
- ✓ Info_gain: Calcula la impureza ponderada.
- ✓ Best_división: Selecciona la condición que mejor divide el conjunto, a través de la ganancia.
- ✓ Accuracy: Calcula la exactitud
- ✓ Tree: Construye el árbol
- ✓ Print tree: Dibuja el árbol

Métricas de Evaluación

$$Precisi\'on = rac{Verdaderos\ positivos}{Verdaderos\ positivos + Falsos\ positivos}$$

$$Sensibilidad = \frac{Verdaderos\,positivos}{Verdaderos\,positivos + Falsos\,negativos}$$

$$Exactitud = \frac{VP + VN}{VP + VN + FP + FN}$$

Métricas de Evaluación

	Conjunto 1		Conjunto 2		Conjunto 3	
	Test	Train	Test	Train	Test	Train
Cantidad datos	5000	15000	15000	45000	45000	135000

	Conjunto de datos 1	Conjunto de datos 2	Conjunto de datos 3
Exactitud	0.87	0.82	0.78
Precisión	0.88	0.87	0.86
Sensibilidad	0.92	0.92	0.91

Métricas de evaluación obtenidas para los conjuntos de datos propuestos.

Consumo de tiempo y memoria

Consumo de tiempo

Solicitud de reporte en arXiv

¡GRACIAS!