FMI, Info, Anul I

Logică matematică și computațională

Seminar 1

(S1.1) Fie T o mulţime şi $A, B, X \subseteq T$ cu $A \cap B = \emptyset$ şi $A \cup (B \setminus X) = B \cup X$. Să se arate că X = A.

Demonstrație: Arătăm egalitatea prin dublă incluziune.

Fie întâi $x \in X$. Atunci $x \in B \cup X = A \cup (B \setminus X)$. Cum $x \in X$, $x \notin B \setminus X$, deci $x \in A$. Luăm acum $x \in A$. Atunci $x \in A \cup (B \setminus X) = B \cup X$. Cum $A \cap B = \emptyset$, $x \notin B$, deci $x \in X$.

(S1.2) Fie X o mulţime. Să se arate că nu există o funcţie surjectivă cu domeniul X şi codomeniul $\mathcal{P}(X)$.

Demonstrație: Presupunem că ar exista, și fie $f: X \to \mathcal{P}(X)$ surjectivă. Fie mulțimea

$$A = \{ t \in X \mid t \notin f(t) \} \in \mathcal{P}(X).$$

Dat fiind că f este surjectivă, există $x \in X$ cu f(x) = A. Dar atunci: $x \in A \Leftrightarrow x \notin f(x) = A \Leftrightarrow x \notin A$, ceea ce este o contradicție.

- (S1.3) Două mulțimi sunt echipotente dacă există o bijecție între ele.
 - (i) Demonstrați că orice intervale deschise (a, b), (c, d) ale lui \mathbb{R} sunt echipotente.
 - (ii) Demonstrați că (0,1), (0,1], [0,1), [0,1] și \mathbb{R} sunt echipotente.

Demonstrație:

(i) Definim

$$f:(a,b)\to(c,d), \quad f(x)=rac{d-c}{b-a}(x-a)+c \ \ {
m pentru\ orice}\ x\in(a,b).$$

Definiția lui f este corectă: dacă a < x < b, avem că 0 < x - a < b - a și $0 < \frac{d-c}{b-a}(x-a) < d-c$, deci c < f(x) < d. Definim

$$g:(c,d)\to(a,b), \quad g(y)=\frac{b-a}{d-c}(y-c)+a \text{ pentru orice } y\in(c,d).$$

Se observă uşor că f şi g sunt inverse una celeilalte. Prin urmare, |(a,b)| = |(c,d)|.

(ii) Ştim că tan : $(-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ este bijectivă, iar din punctul anterior avem că $(-\frac{\pi}{2}, \frac{\pi}{2})$ este echipotent cu (0, 1).

O soluție directă este: se ia funcția $f:(0,1)\to\mathbb{R}$, definită, pentru orice $x\in(0,1)$, prin:

$$f(x) = \begin{cases} 2 - \frac{1}{x}, & \text{dacă } 0 < x < \frac{1}{2} \\ \frac{1}{1 - x} - 2, & \text{altminteri} \end{cases}$$

ce are inversa $f^{-1}: \mathbb{R} \to (0,1)$, definită, pentru orice $y \in \mathbb{R}$, prin:

$$f^{-1}(y) = \begin{cases} \frac{1}{2-y}, & \text{dacă } y < 0\\ 1 - \frac{1}{2+y}, & \text{altminteri.} \end{cases}$$

Prin urmare, (0,1) și \mathbb{R} sunt echipotente.

Se ia apoi funcția $h:(0,1]\to(0,1)$, definită, pentru orice $x\in(0,1]$, prin:

$$h(x) = \begin{cases} \frac{1}{n+1}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } x = \frac{1}{n} \\ x, & \text{altminteri.} \end{cases}$$

Inversa sa $h^{-1}:(0,1)\to(0,1]$ este definită, pentru orice $y\in(0,1)$, prin:

$$h^{-1}(y) = \begin{cases} \frac{1}{n-1}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } y = \frac{1}{n} \\ y, & \text{altminteri} \end{cases}$$

Prin urmare, (0,1] și (0,1) sunt echipotente.

Considerăm apoi funcția $j:[0,1]\to(0,1)$, definită, pentru orice $x\in[0,1]$, prin:

$$j(x) = \begin{cases} \frac{1}{2}, & \text{dacă } x = 0\\ \frac{1}{n+2}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } x = \frac{1}{n}\\ x, & \text{altminteri.} \end{cases}$$

Inversa sa $j^{-1}:(0,1)\to[0,1]$ este definită, pentru orice $y\in(0,1)$, prin:

$$j^{-1}(y) = \begin{cases} \frac{1}{n-2}, & \text{dacă există } n \in \mathbb{N} \setminus \{0, 1, 2\} \text{ a.î. } y = \frac{1}{n} \\ 0, & \text{dacă } y = \frac{1}{2} \\ y, & \text{altminteri} \end{cases}$$

Prin urmare, (0,1) şi [0,1] sunt echipotente.

În sfârşit, se observă uşor că funcția $F:(0,1]\to [0,1), F(x)=1-x$ este bijectivă (inversa lui F fiind tot F). Prin urmare, (0,1] și [0,1) sunt echipotente.