COSE221 Digital Logic Design

College of Informatics Korea University

Syllabus

- Official course name and code
 - 논리회로설계(영강) Digital Logic Design, COSE221
- Meeting time
 - Tue 6, Thur 6
- Instructor
 - Seung Jun Baek (sjbaek@korea.ac.kr)
 - Office: Science Library 404C
 - o tel. 3290-4847
- Teaching Assistant
 - Chankyu Pyoung (pyoung1101@korea.ac.kr)
 - Seung Hyun Kwawk (kwaksh2319@naver.com)

Textbooks

- Main textbook
 - "Digital Design with introducti on to Verilog HDL"
 by Mano & Cletti
- Reference textbooks
 - Fundamentals of logic design by Roth
 - Digital Design Principles by Wakerly

- O Homework
 - Every 1-2 weeks hand-written homeworks will be assi gned
 - Collaboration is OK
 - Final submission must be your own work
 - Work must be done in English
 - HW submission is due at the <u>beginning</u> of class
 - No late submission allowed
 - Work hard on homeworks, because exam proble ms will look similar to those assignments!

• Exams

- 1 Midterm, 1 Final
- All exams are closed book, closed notes
- All exams will be administered in class. Absence at the e exams will be pardoned only under excruciating circ umstances, and the student must get consent from the e instructor BEFORE the exam. Otherwise the exam will be graded as zero.
- When the absence is approved, your score will be the average of your rest of the exam, or the class averag e, whichever is smaller (0 for non-approved absence)
- If you get 0 in your exam, it is simply counted as zero towards total score, but it does not necessarily mean

• Grading

- HW 5%, Exams 95%
- After your grade is assigned in the end of semester, it cannot be changed unless there is some serious error
- This, of course, means that you cannot ask for grade r aise.
- Also means that you cannot ask for lowering the grad e!
 - EX) I cannot take C from the class, so I want rather F => NE
 VER allowed
- These requests may be reported to the univer sity

- Update your email address at BlackBoard (BB):
 - Throughout this course, e-mail will be the primary sou rce of communications, for example: important annou ncements.
 - Update your primary email on Black- Board so that yo u check the mail on a daily basis (some e-mail provid ers are sometimes unreachable, please check it).
- Course slides: Slides will be uploaded at BlackBoard wit hout notice, so please check them occasionally

Why learn digital logic design?

- Computer technology lies in the heart of modern industry revolution
- Digital logic is the very basic component of computer hard ware theory

Why learn digital logic design?

- What is implemented in a massive scale on this silicon die
 millions of switches are being "On" or "Off"
- "On-Off" represents the state of voltage levels
 - Circuit level
- Mathematically, they are 1-0
 - Binary logic

• Systems that use discrete numbers (2 or 10) for computati on is called digital systems

What do we learn digital logic design?

• Learn how computation is done based on 0-1 "logic" for d igital systems

- Learn basic arithmetic operations
 - AND. OR. NAND, NOR, XOR.

- less switches => less power, cheaper system
- Build systems
 - HDL (Hardware Description Language)

Integrated Circuit Design Flow

Course outline

- Binary number systems
- Logic gates
- Design optimization
- Combinational logic
- Sequential logic
- HDL (limited coverage..)
 - Verilog HDL

1. Digital System & Binary Numbers

1.1 Digital System

- Digital System
 - Communication, Business transaction, Traffic control , other commercial, industrial, scientific enterprises et c.
 - Discrete elements of information
- Signal
 - Discrete elements of information are represented in a digital system by physical quantities
- Binary Code
 - Discrete elements of information are represented wit h groups of bits
 - bit : binary + digit

1.2 Binary Number

o
$$a_5a_4a_3a_2a_1a_0.a_{-1}a_{-2}a_{-3}$$
 (suppose this is r-ary number, $0 \le a_k < r$)
$$= a_n r^n + a_{n-1} r^{n-1} + ... + a_2 r^2 + a_1 r + a_0 + a_{-1} r^1 + a_{-2} r^2 + ... + a_{-m} r^m$$

$$7392 = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$$

$$(11010.11)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2_0 + 1 \times 2_{-1} + 1 \times 2_{-2}$$

$$= (26.75)_{10}$$

$$2^{10}$$
 = 1Kilo
 2^{20} = 1Mega
 2^{30} = 1Giga

Table 1-1
Powers of Two

n	2^n	n	2^n	n	2^n
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

1.2 Binary Number

Augend 101101 Minuend: 101101 Multiplicand: 1011 Addend +100111 Subtrahend: -100111 Multiplier: \times 101 1010100 Difference: 000110 sum 1011 0000 addition may generate carry 1011

Product:

110111

subtraction may generate borrow

1.3 Number Base Conversions

Ex 1-1) Convert decimal 41 to binary.

	Integer		Remainder	Coefficient	Integer	Remainder	
	Quotient				41		
41/2 =	20	+	1/2	$a_0 = 1$	20	1	
20/2 =	10	+	0	$a_1 = 0$	20		
10/2 =	5	+	0	$a_2 = 0$	10	0	
5/2 =	2	+	1/2	$a_3 = 1$	5	0	
2/2 =	1	+	0	$a_4 = 0$			
1/2 =	0	+	1/2	$a_5 = 1$	2	1	
					1	0	
					0	1	
						l	

answer: $(41)_{10} = (a_5 a_4 a_3 a_2 a_1 a_0)_2 = (101001)_2$ Answer = 101001

1.3 Number Base Conversions

Ex 1-2) Convert decimal 153 to octal.

• Ex 1-3) Convert (0.6875)₁₀ to binary.

	Integer		Fraction	Coefficient
0.6875*2 =	1	+	0.3750	a ₋₁ = 1
0.3750*2 =	0	+	0.7500	a ₋₂ = 0
0.7500*2 =	1	+	0.5000	a ₋₃ = 1
0.5000*2 =	1	+	0.0000	a ₋₄ = 1

Answer: $(0.6875)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.1011)_2$

1.4 Octal and Hexadecimal Numbers

Table 1-2 *Numbers with Different Bases*

iumbers with Di					
Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)		
00	0000	00	0		
01	0001	01	1		
02	0010	02	2		
03	0011	03	3		
04	0100	04	4		
05	0101	05	5		
06	0110	06	6		
07	0111	07	7		
08	1000	10	8		
09	1001	11	9		
10	1010	12	A		
11	1011	13	B		
12	1100	14	С		
13	1101	15	D		
14	1110	16	E		
15	1111	17	F		

$$(10 \ 110 \ 001 \ 101 \ 011 \ . \ 111 \ 100 \ 000 \ 110)_2 = (26153.7460)_8$$
 $2 \ 6 \ 1 \ 5 \ 3 \ 7 \ 4 \ 0 \ 6$
 $(10 \ 1100 \ 0110 \ 1011 \ . \ 1111 \ 0010)_2 = (2C6B.F2)_{16}$
 $2 \ C \ 6 \ B \ F \ 2$

1.5 Complements - Diminished Radix Complement

- (r-1)'s complements of n-digit base-r number N is (rⁿ-1)-N
- r=10, r-1=9, 9'complements of N is (10ⁿ-1)-N
 Ex) the 9's complements of 546700 is 999999-546700 = 453299
 the 9's complements of 012398 is 999999-012398 = 987601
- For binary number, r=2, r-1=1
 1'complements of N is (2ⁿ-1)-N
 Ex) the 1's complements of 1011000 is 0100111 (bit-flip) the 1's complements of 0101101 is 1010010

1.5 Complements - Radix Complement

- The r's complements of n-digit base-r number N is rⁿ-N, N≠0
 0, N=0
- rⁿ-N=[(rⁿ-1)-N]+1
 → The r's complements is obtained by adding 1 to the (r-1)'s complements
- Ex) The 10's complements of 012398 is 987602 The 10's complements of 246700 is 753300

```
The 2's complements of 1101100 is 0010100 (bit-flip, then +1) The 2's complements of 0110111 is 1001001
```

- Subtraction operation is simplified using complements
- Also useful to represent negative numbers!

1.5 Complements - Subtraction with Complements

Ex1-5) using 10's complement, subtract 72532-3250.

$$M = 72532$$

10's complement of N = + 96750

Sum = 169282

Discard end carry $10^5 = -100000$

Answer = 69282

Ex1-6) Using 10's complement, subtract 3250-72532.

$$M = 03250$$

$$10's complement of N = +27468$$
There is no end carry
$$Sum = 30718$$

Therefore, the answer is –(10's complement of 30718)=-69282

(minus number?-more later..)

1.5 Complements – Subtraction with Complements

• Ex1-7) X=1010100, Y=1000011, (a) X-Y, (b) Y-X

(a) X-Y
$$X = 1010100$$

2's complement of Y = +0111101

Sum = 10010001

Discard end carry $2^7 = -10000000$

Answer: X-Y = 0010001

(b) Y-X $Y = 1000011$

2's complement of X = +0101100

There is no carry.

The answer is Y-X = -(2)'s complement of 1101111)=-0010001

1.5 Complements - Subtraction with Complements

Ex1-8) Repeat Example 1-7 using 1'complement.

(a) X-Y = 1010100-10000011

$$X = 1010100$$

1's complement of Y = +0111100

Sum = 10010000

End-around carry = + 1

Answer: X-Y = 0010001

(b) Y-X = 10000011-1010100

Y = 1000011

1's complement of X = +0101011

Sum = 1101110

There is no carry.

The answer is Y-X = -(1's complement of 1101110) = -0010001

1.6 Signed Binary Numbers

- Only use binary numbers to represent both positive and negative numbers
- Ex) The number 9 represented in binary with eight bit

+9:00001001

-9: 10001001 (signed-magnitude representation)

11110110 (signed-1's-complement representation)

11110111 (signed-2's-complement representation)

Table 1-3 *Signed Binary Numbers*

Decimal	Signed-2's complement	Signed-1's complement	Signed magnitude	
+7	0111	0111	0111	
+6	0110	0110	0110	
+5	0101	0101	0101	
+4	0100	0100	0100	
+3	0011	0011	0011	
+2	0010	0010	0010	
+1	0001	0001	0001	
+0	0000	0000	0000	
-0	(1000) 1210/09/01/01/03	1111	1000	
-1	1111	1110	1001	
-2	1110	1101	1010	
-3	1101	1100	1011	
-4	1100	1011	1100	
-5	1011	1010	1101	
-6	1010	1001	1110	
-7	1001	1000	1111	
-8	1000	s amand su lt i risestast	of lateral to	

1.6 Signed Binary Numbers

- Arithmetic Addition
 - signed-magnitude system follows the rules of ordinary arithmetic.
 - signed-complement system requires only addition.

+6	00000110	-6	11111010
+13	00001101	+13	00001101
+19	00010011	+7	00000111
+6	00000110	-6	11111010
-13	11110011	-13	11110011
-7	11111001	-19	11101101

Arithmetic Subtraction

$$(\pm A)-(+B) = (\pm A)+(-B)$$

 $(\pm A)-(-B) = (\pm A)+(+B)$

Only Adder is needed for 2's complement systems

1.7 Binary Code-BCD code

- the 4-bit code for one decimal

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_{2}$$

Table 1-4 *Binary Coded Decimal (BCD)*

• BCI	O Addition					Decimal symbol	BCD digit
4	0100	4	0100	8	1000	0	0000
+5	+0101	+8	+1000	+9	+1001	2	0001 0010
						3	0011 0100
9	1001	12	1100	17	10001	5	0101
			+0110		+0110	6 7	0110 0111
			10010		10111	8	1000
						9	1001

- if the binary sum is greater or equal to 1010, we add 0110 to obtain the corr ect BCD

1.7 Binary Code-Other Decimal Codes

Table 1-5Four Different Binary Codes for the Decimal Digits

Decimal digit	BCD 8421	2421	Excess-3	8 4-2-1
0	0000	0000	0011	0 0 0 0
1	0001	0001	0100	0 1 1 1
2	0010	0010	0101	0 1 1 (
3	0011	0011	0110	0 1 0 1
4	0100	0100	0111	0 1 0 (
5	0101	1011	1000	1 0 1 1
6	0110	1100	1001	1 0 1 0
7	0111	1101	1010	1 0 0
8	1000	1110	1011	1 0 0 0
9	1001	1111	1100	1 1 1
	1010	0101	0000	0 0 0
Jnused	1011	0110	0001	0 0 1 (
oit	1100	0111	0010	0 0 1
combi-	1101	1000	1101	1 1 0 (
nations	1110	1001	1110	1 1 0
	1111	1010	1111	1 1 1 (

1.7 Binary Code-Gray Code

Table 1-6 Gray Code

Gray code	Decimal equivalent	
0000	0	
0001	non börte e <mark>l</mark> ið nen	
0011	2	
0010	3	
0110	4	
0111	5	
0101	6	
0100	7	
1100	8	
1101	9	
1111	10	
1110	11	
1010	12	
1011	13	
1001	14	
1000	15	

Only one bit changes as the number progresses

1.7 Binary Code-ASCII Character Code

Table 1-7 *American Standard Code for Information Interchange (ASCII)*

9	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	noi m	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	Е	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB		7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	i	Z
1011	VT	ESC	+	;	K		k	{
1100	FF	FS	,	<	L	\	1	ì
1101	CR	GS	-	$a_{i,j} = a_{i,j} = a_{i,j} \cdot a_{i,j}$	M	1	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	0	DEL

1.7 Binary Code - Error-Detecting Code

Error-Detecting Code

	With even parity	With odd parity
ASCII A = 1000001	01000001	11000001
ASCII T = 1010100	11010100	01010100

1.8 Binary Storage and Registers

- Registers A register with n cells can store any discrete quantity of information that contains n bits.
- Register Transfer

Fig. 1-1 Transfer of information with registers

Fig. 1-2 Example of binary information processing

1.9 Binary Logic

Definition of Binary Logic – takes multiple binary inputs, produces output

Table 1-8 *Truth Tables of Logical Operations*

AND			OR			NOT		
x y	$x \cdot y$	x	у	x + y		X	x'	
0 0	0	0	0	0		0	1	
0 1	0	O	1	1		1	0	
1 0	0	1	0	1				
1 1	1	1	1	1				

Logic Gates

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

Fig. 1-4 Symbols for digital logic circuits

1.9 Binary Logic

Fig. 1-5 Input-output signals for gates

Fig. 1-6 Gates with multiple inputs

