Nieporządki

Definicja. Nieporządkiem na danym zbiorze nazywamy permutację jego elementów bez punktów stałych.

A shakaay 26:00 Aemutage = bipdige A -> A

Liczba nieporządków

Twierdzenie. Liczba D_n nieporządków na zbiorze n-elementowym wynosi

$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} + \dots + (-1)^n \frac{1}{n!} \right).$$

Dowód. Zbiór S_n wszystkich permutacji ma moc n!. Niech Z(i) bedzie zniorem tych permutacji, w których i zostaje na swoim miejscu. Zauważmy, że |Z(i)| = |Z(i)| + |Z(i)| + |Z(i)| = |Z(i)| + |Z(i)| +

$$D_n = |S_n| - |Z(1) \cup Z(2) \cup \ldots \cup Z(n)|.$$

Mamy Z(i) = (n-1)! $Z(i) \cap Z(j) = (n-2)!$ dla $i \neq i$ etc.

Dlatego z zasady włączeń i wyłączeń wynika

$$\begin{split} & \left| Z(1) \cup Z(2) \cup \ldots \cup Z(n) \right| = \\ & = \underbrace{n \cdot (n-1)! - \binom{n}{2} (n-2)! + \binom{n}{3} (n-3)! + \ldots + (-1)^{n+1} \binom{n}{n} 0!}_{=:} = n! \left(1 - \frac{1}{2!} + \frac{1}{3!} + \ldots + (-1)^{n+1} \frac{1}{n!} \right). \end{split}$$

Dlatego

$$D_{n} = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} + \dots + (-1)^{n} \frac{1}{n!} \right). \qquad e^{\chi} = \sum_{\mathbf{M}} \frac{\chi^{n}}{\mathbf{M}!}$$

$$\Lambda - \frac{1}{\Lambda!} + \frac{1}{2!} - \frac{1}{2!} + \dots \iff \frac{1}{e}$$

$$\frac{\nabla_{\mathbf{M}}}{\mathbf{M}!} \approx \frac{1}{e}$$

Rekurencje

Proposed
$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{q}{x_{n-1}} \right)$$

$$y = \frac{1}{2} \left(g + \frac{q}{g} \right)$$

$$y = \sqrt{\alpha}$$

Przykład: ciąg Fibonacciego. Ile jest ciągów o wyrazach 1, 2, których suma wynosi n?

Niech
$$x_n$$
 będzie szukaną liczbą. Wtedy dla $n > 2$ mamy $x_n = x_{n-1} + x_{n-2}$ $x_n = x_{n-1} + x_{n-2}$ $x_n = x_{n-1} + x_{n-2}$

Ponieważ $x_1 = 1, x_2 = 2$ więc ciąg x_n jest jednoznacznie wyznaczony przez równanie rekurencyjne. Zauważmy, że można przyjąć

$$x_0 = 1.$$
 $x_0 = 1.$ $x_0 = 1.$

Du - linba meporadio no stione mel.

Myślenie rekurencyjne ma przyszłość

Nieporządki raz jeszcze. dla $n \ge 3$ zachodzi

$$D_n = (n-1)(D_{n-2} + D_{n-1}).$$

Viepovschi ne
$$\{1, \dots, n\}$$
 duelig ne 2 bles y

T $n \longrightarrow i < n$ $\{5, 5, 5, \dots, n-1\}$

Yest $\{n-1\} \cdot D_{n-2} + \text{drich nepovschiop}$.

II $n \longrightarrow i < n$

Jest $\{n-1\} \cdot D_{n-1} + \text{drich nepovs}$.

Przykład. Na ile sposobów można połączyć elementyzbioru mocy 2n w pary?

$$(2n) (2n-2) \cdot (2n-4) - (2)$$

$$M \cdot (2n-2) \cdot (2n-4) - (2)$$

$$M \cdot (2n-2) \cdot (2n-2) - (2n-2)$$

$$M \cdot (2n-2) \cdot (2n-2) - (2n-2) - (2n-2)$$

$$M \cdot (2n-2) \cdot (2n-2) - ($$

Wieże w Hanoi

Ile ruchów wymaga przełożenie n krążków z wieży A na wieżę Bza pomocą wieży C? Homoi (m, A,B,c) H(n) = 1Hausi (m-1, A, C, B) (m-1) + 1 + H(m-1) (m-1) + H(m-1)

Układy równań rekurencyjnych

Przykład. Ile jest ciągów długości n o wyrazach z $\{0, 1, 2\}$, takich że każdy następny wyraz jest o 1 większy lub o 1 mniejszy?

