Calculus I Integral substitution rule

Todor Milev

2019

Outline

- The Substitution Rule
 - Substitution rule and definite Integrals

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

The Substitution Rule

• How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $d_{u} = d(1 + x^{2})$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = ? dx$.

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2xdx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x=\int ?$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2xdx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x=\int\sqrt{u}\,\mathbf{?}$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2xdx$.
- Substitute into the integral:

$$\int \frac{2x}{\sqrt{1+x^2}} \, \mathrm{d}x = \int \sqrt{u} \, ?$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2xdx$.
- Substitute into the integral:

$$\int 2x \sqrt{1 + x^2} \, \mathrm{d}x = \int \sqrt{u} \, \mathrm{d}u$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2xdx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2xdx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2} \, dx = \int \sqrt{u} \, du = \int u^{\frac{1}{2}} du = ?$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,dx = \int \sqrt{u}\,du = \int u^{\frac{1}{2}}du = \frac{2}{3}u^{\frac{3}{2}} + C$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

The Substitution Rule

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
 - Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

Is this procedure justified?

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}}+C\right)$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}}+C\right) = \frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{2}{3}u^{\frac{3}{2}}\right)$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}}+C\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{2}{3}u^{\frac{3}{2}}\right)$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative using the Chain Rule:

$$\frac{d}{dx} \left(\frac{2}{3} \left(1 + x^2 \right)^{\frac{3}{2}} + C \right) = \frac{d}{dx} \left(\frac{2}{3} u^{\frac{3}{2}} \right) = \frac{2}{3} \cdot \frac{3}{2} u^{\frac{1}{2}} \frac{du}{dx}$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative using the Chain Rule:

$$\frac{d}{dx} \left(\frac{2}{3} \left(1 + x^2 \right)^{\frac{3}{2}} + C \right) = \frac{d}{dx} \left(\frac{2}{3} u^{\frac{3}{2}} \right) = \frac{\cancel{2}}{\cancel{3}} \cdot \frac{\cancel{3}}{\cancel{2}} u^{\frac{1}{2}} \frac{du}{dx}$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\,\mathrm{d}u = \int u^{\frac{1}{2}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative using the Chain Rule:

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}}+C\right) = \frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{2}{3}u^{\frac{3}{2}}\right) = \frac{2}{2}\cdot\frac{2}{2}u^{\frac{1}{2}}\frac{\mathsf{d}u}{\mathsf{d}x}$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\mathrm{d}u = \int \frac{u^{\frac{1}{2}}}{u^{\frac{1}{2}}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative using the Chain Rule:

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}}+C\right) = \frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{2}{3}u^{\frac{3}{2}}\right) = \frac{2}{2}\cdot\frac{2}{2}u^{\frac{1}{2}}\frac{\mathsf{d}u}{\mathsf{d}x}$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2x dx$.
- Substitute into the integral:

$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x = \int \sqrt{u}\,\mathrm{d}u = \int \frac{u^{\frac{1}{2}}}{u^{\frac{1}{2}}}\mathrm{d}u = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative using the Chain Rule:

$$\frac{d}{dx}\left(\frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}}+C\right)=\frac{d}{dx}\left(\frac{2}{3}u^{\frac{3}{2}}\right)=\frac{2}{3}\cdot\frac{2}{2}u^{\frac{1}{2}}\frac{du}{dx}=\sqrt{1+x^2}(2x)$$

- How do we integrate $\int 2x\sqrt{1+x^2} \, dx$?
- Introduce a new variable $u = 1 + x^2$.
- Then $du = d(1 + x^2) = (1 + x^2)' dx = 2xdx$.
- Substitute into the integral:

$$\int \frac{2x}{\sqrt{1+x^2}} \, \mathrm{d}x = \int \sqrt{u} \, \, \mathrm{d}u = \int u^{\frac{1}{2}} \, \mathrm{d}u = \frac{2}{3} u^{\frac{3}{2}} + C = \frac{2}{3} \left(1+x^2\right)^{\frac{3}{2}} + C$$

- Is this procedure justified?
- Take the derivative using the Chain Rule:

$$\frac{d}{dx}\left(\frac{2}{3}\left(1+x^2\right)^{\frac{3}{2}}+C\right)=\frac{d}{dx}\left(\frac{2}{3}u^{\frac{3}{2}}\right)=\frac{\cancel{2}}{\cancel{3}}\cdot\frac{\cancel{3}}{\cancel{2}}u^{\frac{1}{2}}\frac{du}{dx}=\sqrt{1+x^2}(2x)$$

Theorem (The Substitution Rule)

Let u = g(x) be a differentiable function whose range is an interval I and let f be a function continuous on I. Then

$$\int f(g(x))g'(x)\,\mathrm{d}x = \int f(u)\,\mathrm{d}u$$

Theorem (The Substitution Rule)

Let u = g(x) be a differentiable function whose range is an interval I and let f be a function continuous on I. Then

$$\int f(g(x))g'(x)\,\mathrm{d}x = \int f(u)\,\mathrm{d}u$$

Theorem (The Substitution Rule)

Let u = g(x) be a differentiable function whose range is an interval I and let f be a function continuous on I. Then

$$\int f(g(x))g'(x) dx = \int f(u) du$$

Theorem (The Substitution Rule)

Let u = g(x) be a differentiable function whose range is an interval I and let f be a function continuous on I. Then

$$\int f(g(x))g'(x)\,\mathrm{d}x = \int f(u)\,\mathrm{d}u$$

This is the integration counterpart of the Chain Rule.

Find
$$\int x^3 \cos(x^4 + 3) dx$$
.

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
 Let $u = ?$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
 Let $u = x^4 + 3$.

Find
$$\int x^3 \cos(x^4 + 3) dx$$
.
Let $u = x^4 + 3$.
Then $du = ?$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
 Let $u = x^4 + 3$. Then $du = 4x^3 dx$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
Let $u = x^4 + 3$.
Then $du = 4x^3 dx$

$$x^3 dx = ?$$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
 Let $u = x^4 + 3$. Then $du = 4x^3 dx$
$$x^3 dx = \frac{1}{4} du.$$

Find
$$\int x^3 \cos(x^4+3) dx.$$
 Let $u=x^4+3$. Then $du=4x^3 dx$
$$x^3 dx=\frac{1}{4} du.$$
 Substitute:
$$\int x^3 \cos(x^4+3) dx=\int \cos u?$$

Find
$$\int x^3 \cos(x^4+3) \mathrm{d}x.$$
 Let $u=x^4+3$. Then $\mathrm{d}u=4x^3 \mathrm{d}x$
$$x^3 \mathrm{d}x=\frac{1}{4} \mathrm{d}u.$$
 Substitute:
$$\int x^3 \cos(x^4+3) \mathrm{d}x=\int \cos u$$
?

Find
$$\int x^3 \cos(x^4+3) dx.$$
 Let $u=x^4+3$. Then $du=4x^3 dx$
$$x^3 dx=\frac{1}{4} du.$$
 Substitute:
$$\int x^3 \cos(x^4+3) dx=\int \frac{1}{4} \cos u du$$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
 Let $u = x^4 + 3$. Then $du = 4x^3 dx$
$$x^3 dx = \frac{1}{4} du.$$
 Substitute:
$$\int x^3 \cos(x^4 + 3) dx = \int \frac{1}{4} \cos u du$$

$$= ?$$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
 Let $u = x^4 + 3$. Then $du = 4x^3 dx$
$$x^3 dx = \frac{1}{4} du.$$
 Substitute:
$$\int x^3 \cos(x^4 + 3) dx = \int \frac{1}{4} \cos u du$$

$$= \frac{1}{4} \sin u$$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
 Let $u = x^4 + 3$. Then $du = 4x^3 dx$
$$x^3 dx = \frac{1}{4} du.$$
 Substitute:
$$\int x^3 \cos(x^4 + 3) dx = \int \frac{1}{4} \cos u du$$

$$= \frac{1}{4} \sin u + C$$

Find
$$\int x^3 \cos(x^4 + 3) dx.$$
Let $u = x^4 + 3$.

Then $du = 4x^3 dx$

$$x^3 dx = \frac{1}{4} du.$$
Substitute:
$$\int x^3 \cos(x^4 + 3) dx = \int \frac{1}{4} \cos u du$$

$$= \frac{1}{4} \sin u + C$$

$$= \frac{1}{4} \sin(x^4 + 3) + C.$$

Find
$$\int \sqrt{2x+1} dx$$
.

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u =$?

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u = 2x+1$.

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=$?

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=$?

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=\frac{1}{2}du$.

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=\frac{1}{2}du$.
Substitute: $\int \sqrt{2x+1} dx = \int \sqrt{u}$?

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=\frac{1}{2}du$.
Substitute: $\int \sqrt{2x+1} dx = \int \sqrt{u}$?

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=\frac{1}{2}du$.
Substitute: $\int \sqrt{2x+1} dx = \int \frac{1}{2} \sqrt{u} du$

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=\frac{1}{2}du$.
Substitute: $\int \sqrt{2x+1} dx = \int \frac{1}{2} \sqrt{u} du$
 $=$

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=\frac{1}{2}du$.
Substitute: $\int \sqrt{2x+1} dx = \int \frac{1}{2} \sqrt{u} du$
 $=\frac{1}{2} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}}$

Find
$$\int \sqrt{2x+1} dx$$
.
Let $u=2x+1$.
Then $du=2dx$
 $dx=\frac{1}{2}du$.
Substitute: $\int \sqrt{2x+1} dx = \int \frac{1}{2} \sqrt{u} du$
 $=\frac{1}{2} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C$

Find
$$\int \sqrt{2x+1} dx.$$
Let $u = 2x+1$.
Then $du = 2dx$

$$dx = \frac{1}{2}du.$$
Substitute:
$$\int \sqrt{2x+1} dx = \int \frac{1}{2} \sqrt{u} du$$

$$= \frac{1}{2} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C$$

$$= \frac{1}{3} (2x+1)^{\frac{3}{2}} + C.$$

Find
$$\int \sqrt{2x+1} dx.$$
Let $u = 2x+1$.
Then $du = 2dx$

$$dx = \frac{1}{2}du.$$
Substitute:
$$\int \sqrt{2x+1} dx = \int \frac{1}{2} \sqrt{u} du$$

$$= \frac{1}{2} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C$$

$$= \frac{1}{3} (2x+1)^{\frac{3}{2}} + C.$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx$$
.

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
 Let $u = ?$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
 Let $u = 3 - 4x^2$.

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
 Let $u = 3 - 4x^2$. Then $du = ?$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3 - 4x^2$.
Then $du = -8xdx$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3-4x^2$.
Then $du = -8xdx$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3-4x^2$.
Then $du = -8x dx$

$$x dx = -\frac{1}{8} du.$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3-4x^2$.
Then $du = -8xdx$

$$xdx = -\frac{1}{8}du.$$
Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \frac{1}{\sqrt{u}}$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
 Let $u=3-4x^2$. Then $du=-8xdx$
$$xdx=-\frac{1}{8}du.$$
 Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \frac{1}{\sqrt{u}}$$
?

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
 Let $u=3-4x^2$. Then $du=-8xdx$
$$xdx=-\frac{1}{8}du.$$
 Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \left(-\frac{1}{8}\right) \frac{1}{\sqrt{u}} du$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3 - 4x^2$.
Then $du = -8x dx$

$$x dx = -\frac{1}{8} du.$$
Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \left(-\frac{1}{8}\right) \frac{1}{\sqrt{u}} du$$

$$= ?$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3-4x^2$.
Then $du = -8x dx$

$$x dx = -\frac{1}{8} du.$$
Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \left(-\frac{1}{8}\right) \frac{1}{\sqrt{u}} du$$

$$= -\frac{1}{8} \cdot \frac{u^{\frac{1}{2}}}{\frac{1}{2}}$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3-4x^2$.
Then $du = -8x dx$

$$x dx = -\frac{1}{8} du.$$
Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \left(-\frac{1}{8}\right) \frac{1}{\sqrt{u}} du$$

$$= -\frac{1}{8} \cdot \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3 - 4x^2$.
Then $du = -8x dx$

$$x dx = -\frac{1}{8} du.$$
Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \left(-\frac{1}{8}\right) \frac{1}{\sqrt{u}} du$$

$$= -\frac{1}{8} \cdot \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C$$

$$= -\frac{1}{4} \sqrt{3-4x^2} + C.$$

Find
$$\int \frac{x}{\sqrt{3-4x^2}} dx.$$
Let $u = 3-4x^2$.
Then $du = -8xdx$

$$xdx = -\frac{1}{8}du.$$
Substitute:
$$\int \frac{x}{\sqrt{3-4x^2}} dx = \int \left(-\frac{1}{8}\right) \frac{1}{\sqrt{u}} du$$

$$= -\frac{1}{8} \cdot \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C$$

$$= -\frac{1}{4}\sqrt{3-4x^2} + C.$$

Find
$$\int e^{3x} dx$$
.

Find
$$\int e^{3x} dx$$
.
Let $u =$?

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.
Then $du = ?$

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.
Then $du = 3dx$

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.
Then $du = 3dx$
 $dx =$?

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.
Then $du = 3dx$
 $dx = \frac{1}{3}du$.

Find
$$\int e^{3x} dx$$
.
Let $u=3x$.
Then $du=3dx$
 $dx=\frac{1}{3}du$.
Substitute: $\int e^{3x} dx = \int e^{u}$?

Find
$$\int e^{3x} dx$$
.
Let $u=3x$.
Then $du=3dx$
 $dx=\frac{1}{3}du$.
Substitute: $\int e^{3x} dx = \int e^{u}$?

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.
Then $du = 3dx$
 $dx = \frac{1}{3}du$.
Substitute: $\int e^{3x} dx = \int \frac{1}{3}e^{u} du$

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.
Then $du = 3dx$
 $dx = \frac{1}{3}du$.
Substitute: $\int e^{3x} dx = \int \frac{1}{3} e^{u} du$
 $=$?

Find
$$\int e^{3x} dx$$
.
Let $u=3x$.
Then $du=3dx$
 $dx=\frac{1}{3}du$.
Substitute: $\int e^{3x} dx = \int \frac{1}{3} e^{u} du$
 $=\frac{1}{3} e^{u}$

Find
$$\int e^{3x} dx$$
.
Let $u=3x$.
Then $du=3dx$
 $dx=\frac{1}{3}du$.
Substitute: $\int e^{3x} dx = \int \frac{1}{3}e^{u} du$
 $=\frac{1}{3}e^{u}+C$

Find
$$\int e^{3x} dx$$
.
Let $u = 3x$.
Then $du = 3dx$
 $dx = \frac{1}{3}du$.
Substitute: $\int e^{3x} dx = \int \frac{1}{3}e^{u} du$
 $= \frac{1}{3}e^{u} + C$
 $= \frac{1}{3}e^{3x} + C$.

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Let
$$u = ?$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Let
$$u = 1 + x^3$$
.

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.
Let $u=1+x^3$.
Then $du=$?

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx.$$
 Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int \frac{3x^2}{x^3} \sqrt{1 + x^3} dx.$$
 Let $u = 1 + x^3$.
Then $du = \frac{3x^2}{x^3} dx$.

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=\red{7}.$$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=u-1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int \sqrt{u}$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=u-1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1) \sqrt{u}$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=u-1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1)\sqrt{u} du$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
Let $u = 1+x^3$.
Then $du = 3x^2 dx$.
$$x^3 = u - 1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1)\sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=u-1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1)\sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx.$$
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
$$x^3 = u - 1.$$

$$\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

$$= \left(? - ?\right)$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx.$$
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
$$x^3 = u - 1.$$

$$\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

$$= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{2}{2}\right)$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx.$$
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
$$x^3 = u - 1.$$

$$\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

$$= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{2}{2}\right)$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$
 $= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right)$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$
 $= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$

The Substitution Rule 10/13

Example (Substitution Rule, more factors)

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.

$$\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

$$= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$$

$$= \frac{2}{5} \left(1 + x^3\right)^{\frac{5}{2}} - \frac{2}{3} \left(1 + x^3\right)^{\frac{3}{2}} + C$$
.

There are two ways to find a definite integral with the Substitution Rule:

First evaluate the indefinite integral, then use the FTC.

There are two ways to find a definite integral with the Substitution Rule:

First evaluate the indefinite integral, then use the FTC.

$$\int_0^4 \sqrt{2x+1} \, dx = \left[\int \sqrt{2x+1} \, dx \right]_0^4$$

There are two ways to find a definite integral with the Substitution Rule:

• First evaluate the indefinite integral, then use the FTC.

$$\int_0^4 \sqrt{2x+1} \, dx = \left[\int \sqrt{2x+1} \, dx \right]_0^4 = \left[\frac{1}{3} (2x+1)^{3/2} \right]_0^4$$

There are two ways to find a definite integral with the Substitution Rule:

First evaluate the indefinite integral, then use the FTC.

$$\int_0^4 \sqrt{2x+1} \, dx = \left[\int \sqrt{2x+1} \, dx \right]_0^4 = \left[\frac{1}{3} (2x+1)^{3/2} \right]_0^4$$
$$= \frac{1}{3} (2 \cdot 4 + 1)^{3/2} - \frac{1}{3} (2 \cdot 0 + 1)^{3/2}$$

There are two ways to find a definite integral with the Substitution Rule:

First evaluate the indefinite integral, then use the FTC.

$$\int_0^4 \sqrt{2x+1} \, dx = \left[\int \sqrt{2x+1} \, dx \right]_0^4 = \left[\frac{1}{3} (2x+1)^{3/2} \right]_0^4$$
$$= \frac{1}{3} (2 \cdot 4 + 1)^{3/2} - \frac{1}{3} (2 \cdot 0 + 1)^{3/2}$$
$$= \frac{1}{3} (9)^{3/2} - \frac{1}{3} (1)^{3/2} = \frac{1}{3} (27 - 1) = \frac{26}{3}$$

There are two ways to find a definite integral with the Substitution Rule:

First evaluate the indefinite integral, then use the FTC.

$$\int_0^4 \sqrt{2x+1} \, dx = \left[\int \sqrt{2x+1} \, dx \right]_0^4 = \left[\frac{1}{3} (2x+1)^{3/2} \right]_0^4$$
$$= \frac{1}{3} (2 \cdot 4 + 1)^{3/2} - \frac{1}{3} (2 \cdot 0 + 1)^{3/2}$$
$$= \frac{1}{3} (9)^{3/2} - \frac{1}{3} (1)^{3/2} = \frac{1}{3} (27 - 1) = \frac{26}{3}$$

Change the limits of integration when the variable is changed.

There are two ways to find a definite integral with the Substitution Rule:

First evaluate the indefinite integral, then use the FTC.

$$\int_0^4 \sqrt{2x+1} \, dx = \left[\int \sqrt{2x+1} \, dx \right]_0^4 = \left[\frac{1}{3} (2x+1)^{3/2} \right]_0^4$$
$$= \frac{1}{3} (2 \cdot 4 + 1)^{3/2} - \frac{1}{3} (2 \cdot 0 + 1)^{3/2}$$
$$= \frac{1}{3} (9)^{3/2} - \frac{1}{3} (1)^{3/2} = \frac{1}{3} (27 - 1) = \frac{26}{3}$$

Change the limits of integration when the variable is changed.

Theorem (The Substitution Rule for Definite Integrals)

If g' is continuous on [a,b] and f is continuous on the range of g, then letting u=g(x) we get

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let *u* = ?
- Then du = ?.

Find
$$\int_0^4 \sqrt{2x+1} \ dx$$
.

- Let *u* = ?
- Then du = ?.

Find
$$\int_0^4 \sqrt{2x+1} \, \mathrm{d}x$$
.

- Let u = 2x + 1.
- Then du = ?.

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = ?.

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore dx = ?.

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.

Find
$$\int_0^4 \sqrt{2x+1} \, \mathrm{d}x$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = ?.
- When x = 4, u = ?.

Find
$$\int_0^4 \sqrt{2x+1} \, dx.$$

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = ?.

Find
$$\int_0^4 \sqrt{2x+1} \, \mathrm{d}x$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = ?.

Find
$$\int_0^4 \sqrt{2x+1} \, dx.$$

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, \mathrm{d}x = \int \sqrt{}$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, \mathrm{d}x = \int \sqrt{u}$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx.$$

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, \mathrm{d}x = \int \frac{1}{2} \sqrt{u} \, \mathrm{d}u$$

Find
$$\int_0^4 \sqrt{2x+1} \, \mathrm{d}x$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{\infty} \frac{1}{2} \sqrt{u} \, du$$

Find
$$\int_0^4 \sqrt{2x+1} \, \mathrm{d}x$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du$$

Find
$$\int_0^4 \sqrt{2x+1} \, \mathrm{d}x$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} u^{\frac{1}{2}} du$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} \frac{1}{u^{\frac{1}{2}}} du$$
$$= \left[\frac{1}{2} \cdot ?\right]_{1}^{9}$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} \frac{u^{\frac{1}{2}} du}{u^{\frac{1}{2}} du}$$
$$= \left[\frac{1}{2} \cdot \frac{2}{3} (u)^{\frac{3}{2}} \right]_{1}^{9}$$

Find
$$\int_0^4 \sqrt{2x+1} \, \mathrm{d}x$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} u^{\frac{1}{2}} du$$
$$= \left[\frac{1}{2} \cdot \frac{2}{3} (u)^{\frac{3}{2}} \right]_{1}^{9}$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} u^{\frac{1}{2}} du$$
$$= \left[\frac{1}{2} \cdot \frac{2}{3} (u)^{\frac{3}{2}} \right]_{1}^{9}$$
$$= \frac{1}{3} (9)^{\frac{3}{2}} - \frac{1}{3} (1)^{\frac{3}{2}}$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} u^{\frac{1}{2}} du$$
$$= \left[\frac{1}{2} \cdot \frac{2}{3} (u)^{\frac{3}{2}} \right]_{1}^{9}$$
$$= \frac{1}{2} (9)^{\frac{3}{2}} - \frac{1}{2} (1)^{\frac{3}{2}}$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} u^{\frac{1}{2}} du$$

$$= \left[\frac{1}{2} \cdot \frac{2}{3} (u)^{\frac{3}{2}} \right]_{1}^{9}$$

$$= \frac{1}{2} (9)^{\frac{3}{2}} - \frac{1}{2} (1)^{\frac{3}{2}} = \frac{1}{2} (27 - 1)$$

Find
$$\int_0^4 \sqrt{2x+1} \, dx$$
.

- Let u = 2x + 1.
- Then du = 2dx.
- Therefore $dx = \frac{1}{2}du$.
- When x = 0, u = 1.
- When x = 4, u = 9.

$$\int_{x=0}^{x=4} \sqrt{2x+1} \, dx = \int_{u=1}^{u=9} \frac{1}{2} \sqrt{u} \, du = \int_{1}^{9} \frac{1}{2} u^{\frac{1}{2}} du$$

$$= \left[\frac{1}{2} \cdot \frac{2}{3} (u)^{\frac{3}{2}} \right]_{1}^{9}$$

$$= \frac{1}{3} (9)^{\frac{3}{2}} - \frac{1}{3} (1)^{\frac{3}{2}} = \frac{1}{3} (27-1) = \frac{26}{3}$$

Find
$$\int_{1}^{2} \frac{\mathrm{d}x}{(2-3x)^{2}}$$
.

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = ?
- Then du = ?

Find
$$\int_1^2 \frac{\mathrm{d}x}{(2-3x)^2}.$$

- Let u = ?
- Then du =?

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = ?

Find
$$\int_{1}^{2} \frac{\mathrm{d}x}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = ?

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore dx = ?

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.

Find
$$\int_1^2 \frac{\mathrm{d}x}{(2-3x)^2}.$$

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = ?.
- When x = 2, u = ?.

Find
$$\int_{1}^{2} \frac{\mathrm{d}x}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = ?.

Find
$$\int_1^2 \frac{\mathrm{d}x}{(2-3x)^2}.$$

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = ?.

Find
$$\int_1^2 \frac{\mathrm{d}x}{(2-3x)^2}.$$

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{\mathrm{d}x}{(2-3x)^2} = \int -$$

Find
$$\int_1^2 \frac{\mathrm{d}x}{(2-3x)^2}.$$

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = \int \frac{u^2}{u^2}$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int \frac{du}{u^2}$$

Find
$$\int_1^2 \frac{\mathrm{d}x}{(2-3x)^2}.$$

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1} \frac{du}{u^2}$$

Find
$$\int_1^2 \frac{\mathrm{d}x}{(2-3x)^2}.$$

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{\mathrm{d}x}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{\mathrm{d}u}{u^2}$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$
$$= -\frac{1}{3} \cdot \left[? \right]_{-1}^{-4}$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$
$$= -\frac{1}{3} \cdot \left[-\frac{1}{u} \right]_{-1}^{-4}$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$
$$= -\frac{1}{3} \cdot \left[-\frac{1}{u} \right]_{-1}^{-4} = \frac{1}{3} \left[\frac{1}{u} \right]_{-1}^{-4}$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$
$$= -\frac{1}{3} \cdot \left[-\frac{1}{u} \right]_{-1}^{-4} = \frac{1}{3} \left[\frac{1}{u} \right]_{-1}^{-4}$$
$$= \frac{1}{3} \left(\frac{1}{-4} - \frac{1}{-1} \right)$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$
$$= -\frac{1}{3} \cdot \left[-\frac{1}{u} \right]_{-1}^{-4} = \frac{1}{3} \left[\frac{1}{u} \right]_{-1}^{-4}$$
$$= \frac{1}{3} \left(\frac{1}{-4} - \frac{1}{-1} \right)$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$
$$= -\frac{1}{3} \cdot \left[-\frac{1}{u} \right]_{-1}^{-4} = \frac{1}{3} \left[\frac{1}{u} \right]_{-1}^{-4}$$
$$= \frac{1}{3} \left(\frac{1}{-4} - \frac{1}{-1} \right) = \frac{1}{3} \left(1 - \frac{1}{4} \right)$$

Find
$$\int_{1}^{2} \frac{dx}{(2-3x)^2}$$
.

- Let u = 2 3x.
- Then du = -3 dx.
- Therefore $dx = -\frac{1}{3}du$.
- When x = 1, u = -1.
- When x = 2, u = -4.

$$\int_{x=1}^{x=2} \frac{dx}{(2-3x)^2} = -\frac{1}{3} \int_{u=-1}^{u=-4} \frac{du}{u^2} = -\frac{1}{3} \int_{-1}^{-4} u^{-2} du$$
$$= -\frac{1}{3} \cdot \left[-\frac{1}{u} \right]_{-1}^{-4} = \frac{1}{3} \left[\frac{1}{u} \right]_{-1}^{-4}$$
$$= \frac{1}{3} \left(\frac{1}{-4} - \frac{1}{-1} \right) = \frac{1}{3} \left(1 - \frac{1}{4} \right) = \frac{1}{4}.$$