Einführung in die Geometrie und Topologie Blatt 4

Jendrik Stelzner

13. Mai 2014

Aufgabe 4.1:

1

Es sei $W\subseteq X\times Y$ offen und beliebig aber fest. Da die Mengen der Form $U\times V\subseteq X\times Y$ mit $U\subseteq X$ offen und $V\subseteq Y$ offen eine topologische Basis von $X\times Y$ bilden, gibt es offene Mengen $\{U_i|i\in I\}\subseteq X$ und $\{V_i|i\in I\}\subseteq Y$ mit

$$W = \bigcup_{i \in I} (U_i \times V_i).$$

Daher sind

$$p_1(W) = \bigcup_{i \in I} U_i \subseteq X \text{ und } p_2(W) = \bigcup_{i \in I} V_i \subseteq Y$$

in den jeweiligen Räumen offen. Wegen der Beliebigkeit von W folgt, dass p_1 und p_2 offen sind.

Aufgabe 4.3:

Für alle $j \in I$ bezeichnen wir die kanonische Projektion $\prod_{i \in I} X_i \to X_j$ mit π_j , und für alle $i \in I$ setzen wir $f_i := f \circ \pi_i$. Ist f stetig, so ist f_i als Verknüpfung stetiger Funktionen für alle $i \in I$ stetig.

Angenommen f_i ist für alle $i\in I$ stetig. Für paarweise verschiedene Indizes $i_1,\ldots,i_n\in I$ und beliebige offene Mengen $U_1\in X_{i_1},\ldots,U_n\in X_{i_n}$ setzen wir

$$P_{i_1,\dots,i_n}^{U_1,\dots,U_n} = \prod_{i\in I} \begin{cases} U_k & \text{falls } i=i_k, \\ X_i & \text{sonst}, \end{cases} \subseteq \prod_{i\in I} X_i.$$

Da die Mengen dieser Form eine topologische Basis von $\prod_{i\in I}X_i$ bilden, genügt es zum Nachweis der Stetigkeit von f zu zeigen, dass

$$f^{-1}\left(P_{i_1,\dots,i_n}^{U_1,\dots,U_n}\right) \subseteq T$$

offen ist für alle paarweise verschiedenen Indizes $i_1,\ldots,i_n\in I$ und beliebige offene Mengen $U_1\in X_{i_1},\ldots,U_n\in X_{i_n}$.

Seien also i_1,\ldots,i_n und U_1,\ldots,U_n wie zuvor beliebig aber fest. Wir bemerken, dass

$$P_{i_1,\dots,i_n}^{U_1,\dots,U_n} = \bigcap_{k=1}^n \pi_{i_k}^{-1}(U_k),$$

und deshalb

$$f^{-1}\left(P_{i_1,\dots,i_n}^{U_1,\dots,U_n}\right) = f^{-1}\left(\bigcap_{k=1}^n \pi_{i_k}^{-1}(U_k)\right) = \bigcap_{k=1}^n (\pi_{i_k} \circ f)^{-1}(U_k) = \bigcap_{k=1}^n f_{i_k}^{-1}(U_k).$$

Da U_k für alle $1 \leq k \leq n$ offen ist, und die f_i alle stetig sind, ist $f_{i_k}^{-1}(U_k)$ für alle $1 \leq k \leq n$ offen, also $f^{-1}(P_{i_1,\ldots,i_n}^{U_1,\ldots,U_n})$ als endlicher Schnitt offener Mengen offen. Wegen der Beliebigkeit von i_1,\ldots,i_n und U_1,\ldots,U_n zeigt dies die Stetigkeit von f