Design and Performance Report

On

Parallel Sieve of Eratosthenes

by

SHIVANKIT GAIND 2015A7PS0076P ROHIT GHIVDONDE 2015A7PS0077P

For the partial fulfilment of the course on

Parallel Computing

Submitted to Prof. Shan Sundar Balasubramaniam

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI February, 2018

Design

- 1. The task for finding all prime numbers less than N is divided among processes.
- 2. The design involves using each process to apply the sieve of eratosthenes algorithm independently on the range of values assigned to it.
- 3. The range of numbers from 1 to N is divided into two ranges:
 - a. 1 to \sqrt{N} (range 1)
 - b. $(\sqrt{N} + 1)$ to N (range 2)
- 4. Each process is allotted two range of numbers:
 - a. Range 1
 - b. (Range 2)/(Number of processes)
- 5. The reasons behind dividing the ranges this way:
 - a. All the non primes till number N can be sieved by using numbers between 1 to \sqrt{N} . Therefore each process uses this range independently to sieve the rest of the numbers.
 - b. Remaining numbers need to be divided equally among all the processes to balance the work done by each process.
- 6. Each process traverses range 1 and uses the first unmarked number (a prime number) to sieve the rest of the numbers to the right of it in range 1 and all the numbers in range 2.
- 7. Step 5 continues till the end of range 1 (i.e \sqrt{N}) is reached.
- 8. When the sieving process ends, all the unmarked numbers are primes and all the marked numbers are non primes.

Performance Evaluation

A. The performance measurements for different values of p (where p is the number of nodes used) at every value of N from 10^5 to 10^10 is given below:

⇒ If only one core per node was used (means p = 2 corresponds to 2 processes):

p/N	10^5	10^6	10^7	10^8	10^9	10^10
P = 1	0.000621	0.007040	0.077178	0.961129	10.545066	125.850458
P = 2	0.000501	0.003405	0.037459	0.493092	5.346813	59.399659
P = 4	0.000526	0.002003	0.018236	0.225241	2.650449	28.195559
P = 8	0.000754	0.001277	0.010046	0.111235	1.375004	14.554182

⇒ If all 4 cores per node were used (means p = 2 corresponds to 8 processes):

p/N	10^6	10^7	10^7	10^8	10^9	10^10
P = 1	0.00020504	0.00182884	0.019794	0.407233	4.66749	54.191013
P = 2	0.000432014	0.00111485	0.018520	0.195226	2.35306	27.704572
P = 4	0.000618935	0.000979	0.00494409	0.0858421	1.19708	13.550571
P = 8	0.000918	0.001006	0.002478	0.041884	0.576007	6.618218

The plots showing how performance improves with increase in the number of nodes at each value of N are given below:

⇒ If only one core per node was used:

⇒ If all 4 cores per node were used:

A different behaviour is observed in case of 10⁵ (and 10⁶ also to some extent) because the overhead of distributing the tasks among processes is more than the work done per process.

B. The Performances also improved with increase in the number of cores used per node (from 1 to 4) when we tested the algorithm on one node for different values of N.

The measurements and plots are given as below:

N/cores	1	2	3	4
10^5	0.000704	0.00036788	0.000277042	0.000210047
10^6	0.006752	0.00303602	0.00224495	0.00168204
10^7	0.0763001	0.0392799	0.0263629	0.0208402
10^8	0.986114	0.545881	0.462561	0.409527
10^9	10.615196	6.057869	5.249028	4.742663
10^10	124.571731	74.564781	59.930163	54.191013

C. The time increased for increase in value of N (from 10^5 to 10^10) at every value of p (where p is the number of nodes). It can be observed from the first table. The plots are shown below:

