Recall

let f:A >B

The set f(C) = ff(x) | x E C 3 G B

is the image of C in B

Lemma

15 \$: G > G' is an injective group homomorphism, then

 $\phi(G) \leq G'$ and

P:G > P(G) is an isomorphism

Proof

 $\Phi(G) = \mathcal{E}\Phi(g) \mid g \in G\mathcal{F} \subseteq G' \quad s.f.$

i) let x', y' \(\Phi(G) \) since \(\phi \)
is injective,

 $\exists' \times_i y \in G$, $\phi(x) = x' \wedge \phi(y) = y'$ (so ϕ is closed)

Consider
$$x' \cdot y' = \phi(x) \cdot \theta(y) = \phi(x \cdot y)$$
where $x \cdot y \in G$ thus $x', y' \in G(G)$

2) Let e be identity of G
 $e' = G'$

Consider $e' \cdot \phi(e) = \phi(e) = \phi(e \cdot e)$
 $= \phi(e) \cdot \phi(e)$

by cancellation of G
 $e' \cdot \phi(e) = \phi(e) \cdot \phi(e) \Rightarrow e' = \phi(e)$

3) Let $x' \in \phi(G)$, then

 $\exists 1 \times G \in G = \phi(x) = x'$

Consider $e' = \phi(e) = \phi(x \times x^{-1}) = \phi(x) \cdot \phi(x^{-1})$

hence $(x')^{-1} = \phi(x^{-1})$, so $(x')^{-1} \in \phi(G)$

since $\phi:G\to G'$ is an injective homomorphism $\phi:G\to \phi(G)$ is a bijective homomorphism

50
$$G \simeq \varphi(G) \wedge \varphi(G) \leq G'$$

Cayley's Theorem

Every group is isomorphic to a group of permutations

Proof let G be a group Define ϕ : G \Rightarrow S_G by $\phi(x) = \lambda x$ for $x \in G$ where λ_x : G \Rightarrow G is defined by $\lambda_x(g) = x \cdot g$

Notice λ_x is injective bor $\forall g_1, g_2 \in G$ $\lambda_x(g_1) = \lambda_x(g_2) \not= \lambda_1 \cdot g_1 = x \cdot g_2$ $\Rightarrow g_1 = g_2$ $\forall h \in G$ $\forall h \in G$ $\Rightarrow G \in G$

Therefore 7x is a permutation of G box it is bijective f-n from G onto G Notice Φ is also injective $4x,y \in G \iff \lambda_x = \lambda_y \iff \forall_y \in G , x,y = x,y = x=y$ And & is homomorphic $\forall x,y \in G$ $\phi(x) \cdot \phi(y) \iff \lambda_x \cdot \lambda_y$ $=\lambda_{xy}=\phi(xy)$ By previous lemma, since $\phi:G \to S_G$ is an injective homomorphism $\phi(G) \leq S_G$ Λ $G \hookrightarrow \phi(G)$

let
$$\lambda_0: \mathbb{Z}_3 \to \mathbb{Z}_3$$
 $\lambda_0(n) = 0 + s n \quad \forall n \in \mathbb{Z}_3$
 $\lambda_1: \mathbb{Z}_3 \to \mathbb{Z}_3$ $\lambda_1(n) = 1 + s n$
 $\lambda_2: \mathbb{Z}_3 \to \mathbb{Z}_3$ $\lambda_2(n) = 2 + s n$

Then op on $\Phi(\mathbb{Z}_3) = \{\lambda_0, \lambda_1, \lambda_2\} \subseteq S_{\mathbb{Z}_3}$

$$\frac{1}{100} \frac{1}{100} \frac{1}$$