Dati $x, y \in \mathbb{R}$ e * operatione binarua fondamentale, si ha che in F(b,t,L,U) l'operatione risulta: $x * y = \text{fl}^t(fl^t(x) * \text{fl}^t(y))$

Dati $x, y \neq 0$, glu exacto calativi su talli quantità saranno respettivamente $\mathcal{E}_x = \frac{|x - \hat{x}|}{|x|}$ e $\mathcal{E}_y = \frac{|y - \hat{y}|}{|y|}$ mentra quallo sul risultato dall'operatione sarà: $\mathcal{E}_y = \frac{|x + y|}{|x + y|}$

Un'operatione è stabile se l'ordine di grandetta di $\mathcal{E}_{x = y}$ e vicino a quello di \mathcal{E}_{x} e \mathcal{E}_{y}

► HOLTIPLI CAZIONE

$$\mathcal{E}_{xy} = \frac{(xy - \tilde{x}\tilde{y})[= (xy - \tilde{x}y + \tilde{x}y - \tilde{x}\tilde{y})] = (x - \tilde{x})y + (y - \tilde{y})\tilde{x}[}{|xy|} = \frac{|(x - \tilde{x})y + (y - \tilde{y})\tilde{x}|}{|xy|} = \frac{|(x - \tilde{x})y| + |(y - \tilde{y})\tilde{x}|}{|xy|} = \frac{|(x - \tilde{x})|y|}{|xy|} + \frac{|y - \tilde{y}||\tilde{x}|}{|xy|} = \frac{|x - \tilde{x}||y|}{|x||y|} + \frac{|y - \tilde{y}||\tilde{x}|}{|xy|} = \frac{|x - \tilde{x}||y|}{|x||y|} + \frac{|y - \tilde{y}||\tilde{x}|}{|xy|} = \frac{|x - \tilde{x}||y|}{|x|} + \frac{|y - \tilde{y}||\tilde{x}|}{|x|} = \frac{|x - \tilde{x}||y|}{|x|} + \frac{|x - \tilde{x}||y|}{|x|} = \frac{|x - \tilde{x}||x|}{|x|} + \frac{|x - \tilde{x}||y|}{|x|} = \frac{|x - \tilde{x}||y|}{|x|} + \frac{|x - \tilde{x}||y|}{|x$$

► DIVISIONE

Considera come x. 1

$$\mathcal{E}_{\frac{x}{y}} = \frac{\left|\frac{x}{y} - \frac{x}{y}\right|}{\left|\frac{x}{y}\right|} = \frac{\left|\frac{x}{y} - \frac{x}{y} + \frac{x}{y} - \frac{x}{y}\right|}{\left|\frac{x}{y}\right|} = \frac{\left|(x - x)\frac{1}{y} + \frac{x}{y}\left(\frac{y}{y} - y\right)\right|}{\left|\frac{x}{y}\right|} \leq \frac{\left|(x - x)\frac{1}{y}\right| + \left|\frac{x}{y}\left(\frac{y}{y} - y\right)\right|}{\left|\frac{x}{y}\right|} = \frac{\left|(x - x)\frac{1}{y}\right|}{\left|\frac{x}{y}\right|} = \frac{\left|(x - x)\frac{1}{y}\right|}{\left$$

SHOPFICOOR «

$$\mathcal{E}_{x+y} = \frac{\left[(x+y) - (x+y) \right]}{|x+y|} = \frac{|x-x+y-y|}{|x+y|} \leq \frac{|x-x|}{|x+y|} + \frac{|y-y|}{|x+y|} = \frac{|x|}{|x+y|} \mathcal{E}_{x} + \frac{|y|}{|x+y|} \mathcal{E}_{y} = \omega_{1}\mathcal{E}_{x} + \omega_{2}\mathcal{E}_{y}$$

$$\omega_{1}\mathcal{E}_{x} + \omega_{2}\mathcal{E}_{y} \geq \mathcal{E}_{x+y} \quad \text{ma.} \quad \omega_{1}, \omega_{2} \leq 1 \quad \text{quinous STAB1U}$$

► SOTRAHONE

$$\mathcal{E}_{x+y} = \frac{\left| \left(x-y \right) - \left(\tilde{x} - \tilde{y} \right) \right|}{\left| x-y \right|} = \frac{\left| x-\tilde{x} + \tilde{y} - y \right|}{\left| x-y \right|} = \frac{\left| x-\tilde{x} \right|}{\left| x-y \right|} + \frac{\left| \tilde{y} - y \right|}{\left| x-y \right|} = \frac{\left| x \right|}{\left| x-y \right|} = \frac{\left| x-x \right|}{\left| x-y \right|} = \frac{\left| x-x \right|}{\left| x-x \right|} = \frac{\left| x-x \right|$$

Witx + We Ey > Ex-y ma Wi, Wz>1 quind NSTABILE

Es:

Con
$$x = 0, 100017, y = -0, 10014, \overline{x} = 71^{5}(x) = 0, 1002, \overline{y} = 71^{5}(y) = -0, 1001, & ha:$$

$$E_{x+y} = \frac{|(x+y) - (\overline{x} + \overline{y})|}{|x+y|} = \frac{|0,000003 - 0,00001|}{|0,00003|} = \frac{0,000007}{0,000003} = 2,\overline{3}$$

Quindu l'exacte relative sorrebbe del 233,3 %