SUNHO LEE

☐ github.com/myshlee417 www.linkedin.com/in/myshlee417 myshlee417@gmail.com
☐ KAIST, Daejeon, Republic of Korea (+82)10-3617-1820

RESEARCH INTERESTS

I am interested in the architecture of accelerators dedicated to machine learning.

Since machine learning requires fast and secure processing, my research objective is to design high-performance accelerators with security guarantees. To achieve this goal, my recent studies proposed architectures to support efficient hardware-based protection for accelerators. In these works, I focus on security solutions that leverage characteristics of machine learning.

EDUCATION

KAIST, Daejeon, Republic of Korea

Mar 2021 -

Doctor of Philosophy, School of Computing

Advisor: Jaehyuk Huh

KAIST, Daejeon, Republic of Korea

Mar 2019 - Feb 2021

Master of Science, School of Computing

Advisor: Jaehyuk Huh

Thesis: Hardware Security Techniques for Trusted Machine Learning Accelerators

Yonsei University, Seoul, Republic of Korea

Mar 2015 - Feb 2019

Bachelor of Science, Computer Science

PUBLICATIONS

- Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and Jaehyuk Huh, "TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit", accepted for the 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA), Feburary, 2022
- Seonjin Na, Sunho Lee, Yeonjae Kim, Jongse Park, and Jaehyuk Huh, "Common Counters: Compressed Encryption Counters for Secure GPU Memory", the 27th IEEE International Symposium on High-Performance Computer Architecture (HPCA), Feburary, 2021

PATENTS

- [Pending] Jaehyuk Huh, Sunho Lee, and Seonjin Na, "Hardware-based Security Architecture for Trusted Neural Processing Unit", *Korean Patent* (with Samsung Electronics)
- [Pending] Jaehyuk Huh, Seonjin Na, Sunho Lee, Yeonjae Kim, and Jongse Park, "Efficient Encryption Method and Apparatus for Hardware-based Secure GPU Memory", *Korean Patent* (with Samsung Electronics)

RESEARCH EXPERIENCES

KAIST, Daejeon, Republic of Korea

Mar 2019 -

Ongoing Researches at CASYS (Computer Architecture and SYStem) Lab

Advisor: Jaehyuk Huh

Accelerator Hardware-based Security

- Memory protection optimization for GPU: Common counters for duplicate counters (Published at HPCA 2021)
- Memory protection optimization for multi-tenant GPU
- Trusted execution environment for NPU: Tensor-granularity counters (Accepted at HPCA 2022)
- Memory protection optimization for NPU: Partial memory protection
- Side-channel attack protection for NPU

Accelerator Performance

- Multi-tenancy support for a multi-GPU system: Time and spatial sharing
- Multi-tenancy support for NPU: Shared resources management

Yonsei University, Seoul, Republic of Korea

Sep 2017 - June 2018

Undergraduate Research Intern at ELC (Embedded systems Languages and Compilers) Lab

Advisor: Bernd Burgstaller

Parallelism

- Accelerating big-data streaming engine: Multi-thread and shared-memory
- Parallelization of SFA (Simultaneous Deterministic Finite Automata) construction: MPI and Huang's algorithm

RECOGNITION

KAIST, Daejeon, Republic of Korea

Excellent Teaching Assistant Award - CS311 Computer Organization

Spring 2021

Yonsei University, Seoul, Republic of Korea

Dean's List Spring 2015, Spring 2018

Undergraduate Capstone Project Award (Third Place) - Project Leader

Spring 2018

Title: Cloud SFA: Parallel Construction of Simultaneous Deterministic Finite Automata in Distributed System

SKILLS

Programming Languages C, C++, Python

NPU Simulators SCALE-Sim, MAESTRO, Gemmini

GPU Programming
Multi-core CPU Programming
Machine Learning Frameworks

CUDA, MPS
MPI, OpenMP
Pytorch, Tensorflow

TEACHING EXPERIENCES

KAIST, Daejeon, Republic of Korea

Teaching Assistant

CS230 System Programming Fall 2021
CS311 Computer Organization Spring 2021, Fall 2019

CS211 Digital System and Lab

Spring 2019

KAIST Education Center, Daejeon, Republic of Korea

Mentor & Lecturer

Seocho AI College Summer 2019, Summer 2021

Python for Beginners Summer 2021