Post-Quantum Cryptosystems based on Elliptic Curve Isogenies

Federico Pintore

Department of Mathematics, University of Trento

ITASEC18 - Milan, 8th February 2018

NIST - Call for Proposals

SIKE: Supersingular Isogeny Key Encapsulation

Azarderakhsh, Campagna, Costello, De Feo, Hess, Jalali, Koziel, LaMacchia, Longa, Naehirng, Renes, Spoukharev, Urbani

Finite Fields

Let p be a prime integer.

With \mathbb{F}_p we denote the finite field with p elements:

$$\mathbb{F}_p = \{0, 1, \dots, p-1\}$$

Finite Fields

Let p be a prime integer.

With \mathbb{F}_p we denote the finite field with p elements:

$$\mathbb{F}_p = \{0, 1, \dots, p-1\}$$

If p = 4k - 1, then the equation $x^2 + 1 = 0$ has not solutions in \mathbb{F}_p and

$$\mathbb{F}_{p^2} = \{ s_0 + s_1 \cdot i \mid s_0, s_1 \in \mathbb{F}_p \}$$

is a quadratic extension of \mathbb{F}_p , with $i^2=1$.

Elliptic curves

A Montgomery curve (a special form of an elliptic curve) E, defined over \mathbb{F}_{p^2} , is described by an equation:

$$By^2 = x^3 + Ax^2 + x \quad \text{with } A, B \in \mathbb{F}_{p^2}$$

Elliptic curves

A Montgomery curve (a special form of an elliptic curve) E, defined over \mathbb{F}_{p^2} , is described by an equation:

$$By^2 = x^3 + Ax^2 + x \quad \text{with } A, B \in \mathbb{F}_{p^2}$$

Given an extension field \mathbb{K} of \mathbb{F}_{p^2} , the set

$$E(\mathbb{K}) = \{(x_0, y_0) \in \mathbb{K} \times \mathbb{K} \mid By_0^2 = x_0^3 + Ax_0^2 + x_0\} \cup \{\infty\}$$

is an additive group. In particular, $E(\mathbb{F}_{p^2})$ is a finite group.

Elliptic Curves

The elliptic curve *E* is supersingular if:

$$p \mid (p^2 + 1 - \#E(\mathbb{F}_{p^2}))$$

Elliptic Curves

The elliptic curve *E* is supersingular if:

$$p \mid (p^2 + 1 - \#E(\mathbb{F}_{p^2}))$$

The j - invariant of E is:

$$j(E) = \frac{256(A^2 - 3)^3}{A^2 - 4}$$

Two elliptic curves are isomorphic <u>if and only if</u> they have the same *j* - invariant

Elliptic Curves

The elliptic curve *E* is supersingular if:

$$p \mid (p^2 + 1 - \#E(\mathbb{F}_{p^2}))$$

For a given integer m by E[m] we denote the set:

$$E[m] = \{ P \in E(\overline{\mathbb{F}_{p^2}}) \mid mP = \infty \}$$

If $p \nmid m$, then:

$$E[m] \simeq \mathbb{Z}_m \times \mathbb{Z}_m$$

The *j* - invariant of *E* is:

$$j(E) = \frac{256(A^2 - 3)^3}{A^2 - 4}$$

Two elliptic curves are isomorphic <u>if and only if</u> they have the same *j* - invariant

Let us consider the set of all supersingular elliptic curves defined over \mathbb{F}_{p^2} .

Let us consider the set of all supersingular elliptic curves defined over \mathbb{F}_{p^2} .

Two of them, E_1 and E_2 , are isogenous if there exists a rational map

$$\phi: E_1 \rightarrow E_2$$

$$(x,y) \mapsto \left(\frac{p_1(x)}{q_1(x)}, y\frac{p_2(x)}{q_2(x)}\right)$$

such that:

- $p_1(x), q_1(x), p_2(x), q_2(x) \in \mathbb{F}_{p^2}[x]$
- $\phi: E_1(\mathbb{F}_{p^2}) \to E_2(\mathbb{F}_{p^2})$ is a group homomorphism

Let us consider the set of all supersingular elliptic curves defined over \mathbb{F}_{p^2} .

Two of them, E_1 and E_2 , are isogenous if there exists a rational map

$$\phi: E_1 \to E_2$$

$$(x,y) \mapsto \left(\frac{p_1(x)}{q_1(x)}, y\frac{p_2(x)}{q_2(x)}\right)$$

such that:

- $p_1(x), q_1(x), p_2(x), q_2(x) \in \mathbb{F}_{p^2}[x]$
- $\phi: E_1(\mathbb{F}_{p^2}) \to E_2(\mathbb{F}_{p^2})$ is a group homomorphism

* E1 and E2 are isogenous if and only if

$$#E_1(\mathbb{F}_{p^2}) = #E_2(\mathbb{F}_{p^2})$$

- $* Ker(\phi) = \{ P \in E_1 \mid \phi(P) = \infty \}$
- $* | Ker(\phi)| = deg(\phi)$
- * for any subgroup $H\subset E_1(\mathbb{F}_{p^2})$, there is a unique isogeny $\phi:E_1\to E'$ with kernel H (and degree |H|)
- * Velu's formula to find $\phi:E_1 o E'$

$$S_{p^2} = \#\{j \in \mathbb{F}_{p^2} \mid j \text{ is the } j\text{-invariant of a supersingular curve}\}$$

$$S_{p^2} = \lfloor \frac{p}{12} \rfloor + r, \qquad r \in \{0, 1, 2\}$$

ALL SUPERSINGULAR ELLIPTIC CURVES OVER \mathbb{F}_{p^2} ARE IN THE <u>SAME ISOGENY CLASS</u>.

KEY EXCHANGE PROTOCOL: Public Parameters

- * two positive integers e_2 and e_3
- * a prime $p = 2^{e_2}3^{e_3} 1$
- * the finite field $\mathbb{F}_{p^2} = \mathbb{F}_p(i)$
- * a supersingular elliptic curve E_0 over \mathbb{F}_{p^2} :

$$E_0: y^2 = x^3 + x$$
 $j(E_0) = 1728$

- $* #E_0(\mathbb{F}_{p^2}) = (2^{e_2}3^{e_3})^2$
- * P_{2} , Q_{2} s.t. $E_{0}[2^{e_{2}}] = \langle P_{2}, Q_{2} \rangle$
- * P_3 , Q_3 s.t. $E_0[3^{e_3}] = \langle P_3, Q_3 \rangle$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

- Selects a private $sk_B \in [1, \ldots, 2^{e_2} 1]$
- Computes $P_2 + sk_BQ_2$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

- Selects a private $sk_B \in [1, \dots, 2^{e_2} 1]$
- Computes $P_2 + sk_BQ_2$
- $< P_2 + sk_BQ_2 > \subset E_0[2^{e_2}]$ is a subgroup of order 2^{e_2}

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Selects a private $sk_B \in [1, \ldots, 2^{e_2} - 1]$ Selects a private $sk_A \in [1, \ldots, 3^{e_3} - 1]$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

 $< P_2 + sk_BQ_2 > \subset E_0[2^{e_2}]$ is a subgroup of order 2^{e_2}

- Selects a private $sk_B \in [1, \ldots, 2^{e_2} 1]$ Selects a private $sk_A \in [1, \ldots, 3^{e_3} 1]$
 - Computes $P_3 + sk_AQ_3$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

 $< P_2 + sk_BQ_2 > \subset E_0[2^{e_2}]$ is a subgroup of order 2^{e_2}

Selects a private $sk_B \in [1, \ldots, 2^{e_2} - 1]$ Selects a private $sk_A \in [1, \ldots, 3^{e_3} - 1]$

 $< P_3 + sk_AQ_3 > \subset E_0[3^{e_3}]$ is a subgroup of order 3^{e_3}

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

 $P_3 + sk_AQ_3$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Computes the unique isogeny

$$\phi_B:E_0\to E_B$$

having kernel

$$H_B = \langle P_2 + sk_BQ_2 \rangle$$

$$P_3 + sk_AQ_3$$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Computes the unique isogeny

$$\phi_B:E_0\to E_B$$

having kernel

$$H_B = \langle P_2 + sk_BQ_2 \rangle$$

$$P_3 + sk_AQ_3$$

Computes the unique isogeny

$$\phi_A:E_0\to E_A$$

having kernel

$$H_A = \langle P_3 + sk_AQ_3 \rangle$$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public key: E_B

Private key: sk_B,

 ϕ_B

Public key: E_A

Private key: sk_A ,

 ϕ_A

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public key: E_B

Private key: sk_B , ϕ_B

Public key: E_A

Private key: skA,

 ϕ_A

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public key: E_B

Private key: sk_B,

Public key: E_A

Private key: sk_A ,

(E) (E) (E) (E) (E) (E) (E) Computes $\phi_A(P_2), \phi_A(Q_2)$ and sends (E)

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public key: E_B

Private key: sk_B,

Public key: E_A

Private key: sk_A ,

 $lackbox{ } lackbox{ } lac$

Computes $\phi_{AB}: E_A \to E_{AB}$ with

kernel
$$<\phi_A(P_2)+sk_B\phi_A(Q_2)>$$

Public parameters: $\mathbb{F}_{p^2}, E_0, P_2, Q_2, P_3, Q_3$

Public key: E_B

Private key: sk_B,

Public key: E_A

Private key: sk_A ,

 $lackbox{ } lackbox{ } lac$

Computes $\phi_{AB}: E_A \to E_{AB}$ with

kernel $<\phi_A(P_2)+sk_B\phi_A(Q_2)>$

Computes $\phi_{BA}: E_B \to E_{BA}$ with

kernel
$$<\phi_B(P_3)+sk_A\phi_B(Q_3)>$$

The shared secret key

 $\mathbf{E}_{\mathbf{A}\mathbf{B}}$

The two curves obtained by Alice and Bob have the same j - invariant:

THEY ARE ISOMORPHIC!

Efficiency

Montgomery curves are used in order to speed up computations among points of the curves.

Isogenies are computed composing:

- isogenies of degree 2 (by Bob)
- isogenies of degree 3 (by Alice)

Security

The hard problem is:

given two supersingular isogenous curves, E and $E'=\phi(E)$, find ϕ

Best (known) attack: Claw Algorithm

Complexity: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$

Thank you for your attention!

federico.pintore@unitn.it