Weekly Report 4 Group 6 Project 1

24th February to 2nd March

Basic Testing on YoloV8

- We tested the VisDrone Dataset on YoloV8 and found some results.
- The test data set included about 6000 images where we trained across 3 epochs and found these results.

	A	В	С	D	E	F	G	Н	I	J	K	L	М	N
1	epoch	train/box_loss	train/cis_loss	train/dfi_loss	metrics/precision(B)	metrics/recall(B)	metrics/mAP50(B)	metrics/mAP50-95(B	val/box_loss	val/cls_loss	val/dfl_loss	In/pg0	Ir/pg1	lr/pg2
2	0	1.6004	1.7726	1.0177	0.31616	0.23605	0.21083	0.12063	1.4271	1.1837	0.93965	0.070074	0.0033251	0.0033251
3	1	1.5244	1.2361	0.96434	0.36154	0.27438	0.25895	0.14765	1.4557	1.1133	0.94711	0.03981	0.0063948	0.0063948
4	2	1.5417	1.2179	0.96178	0.35875	0.2917	0.26955	0.15313	1.4518	1.1239	0.94101	0.0092827	0.0092004	0.0092004
5	3	1.5291	1.177	0.95757	0.38968	0.28788	0.28175	0.16386	1.3985	1.1099	0.93018	0.008812	0.008812	0.008812

• After running the programme for validating mode. We found the Following

Understanding the Performance Matrix

mAP@0.5, mAP@0.75, mAP@0.95

- We tried to understand all the mAP values at different thresholds and what it represents.
- Precision measures how well you can find true positives(TP) out of all positive predictions. (TP+FP).
- Recall measures how well you can find true positives(TP) out of all predictions(TP+FN).
- Average Precision is calculated as the weighted mean of precisWe tried to understand all the mAP values at different thresholds and what it represents.
- Precision measures how well you can find true positives(TP) out of all positive predictions. (TP+FP)
- Recall measures how well you can find true positives(TP) out of all predictions(TP+FN).

• Average Precision is calculated as the weighted mean of precisions at each threshold; the weight is the increase in recall from the prior threshold.ions at each threshold; the weight is the increase in recall from the prior threshold.

Here is a summary of the steps to calculate the AP:

- 1. Generate the prediction scores using the model.
- 2. Convert the prediction scores to class labels.
- 3. Calculate the confusion matrix—TP, FP, TN, FN.
- 4. Calculate the precision and recall metrics.
- 5. Calculate the area under the precision-recall curve.
- 6. Measure the average precision.

Confusion matrix.

It helps us evaluate how our model performed and where it went wrong and offers us guidance to correct our path.

A confusion matrix is a performance evaluation tool in machine learning, representing the accuracy of a classification model. It displays the number of true positives, true negatives, false positives, and false negatives.

A Confusion matrix is an N x N matrix used for evaluating the performance of a classification model, where N is the total number of target classes. The matrix compares the actual target values with those predicted by the machine learning model. This gives us a holistic view of how well our classification model is performing and what kinds of errors it is making.