

- Last lecture we described PCG as a search problem
 - 1) You have a generative space defined by your algorithm
 - 2) Sometimes this space includes both good and bad content.
 - 3) If you can score how "good" content is with an **evaluation function** then you can **search** for high-scoring content.
 - This is an optimisation problem

- Why evolution?
 - Engineers often copy solutions in nature
 - What is the best problem solver in nature?
 - The evolutionary process

 So you can... find the optimal design for hypersonic re-entry vehicle nosecone

Evans, B., Walton, S., Evans, B., Walton, S. 2017 Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation Applied Mathematical Modelling 52 215 240 doi: 10.1016/j.apm.2017.07.024

 Or... evolve a more efficient antenna for an unusual purpose

Or... tune parameters for rules and FSMs

```
if (enemy.distance <= 5)
    attackWithKnife()
else if (enemy.distance > 5 AND enemy.distance <=30)
    attackWithSubmachineGun()
else attackWithRifle()</pre>
```

- Or... tune parameters that define Al personality (e.g. unit preference, scientific advance preference, offense vs. defense, etc.)
- Ponsen, Marc, and Pieter Spronck. Improving adaptive game AI with evolutionary learning. Diss. Masters Thesis, Delft University of Technology, 2004.
 - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6055&rep=rep1&type=pdf

- Or... evolve agents using e.g neuroevolution (evolution of neural networks)
 - https://youtu.be/_1TOKK gAock

- Darwinian natural selection:
 - Competition-based selection
 - Phenotypic variation
 - Behavioural and physical traits that affect an individual's fitness

- Success in survival and reproduction is determined by phenotypical properties
- Phenotypic variations are always caused by genotypic variations
- Phenotypes never influence genetic information
 - No learning within individuals

- Change happens through reproduction by the mechanisms of:
 - Mutation
 - Recombination

Adaptive landscape

- Metaphor of a space where height corresponds to fitness
 - Global Optimum = best
 - Local Optimum =
 better than neighbours

Fig. 2.2. Illustration of Wright's adaptive landscape with two traits

- Each individual is a sample of the space of all possible living things
 - Produced by forces of variation
 - Evaluated by forces of selection
 - Prove viable to live
 - Prove viable to reproduce
- In algorithmic terms this is a "generate and test" method.

What? MAGIKARP is evolving!

- In an Evolutionary Algorithm, a solution is described by a genotype
 - This might be a string, enum[], number[]...
 - e.g. parameter values for a PCG algorithm
 - e.g. weights for a neural network
- This data (genotype) is interpreted to create the **phenotype** (e.g. level map, AI behaviour, game audio)

- Evolutionary Algorithms (EAs) are:
 - Population based
 - (You keep hold of a bunch of possible solutions at the same time)
 - Stochastic
 - (Involves randomness)
 - Most use recombination
 - (You mix together different solutions to try and find a better one)

- Why EAs work
 - Variation (recombination and mutation) create diverity and novelty
 - Selection acts as a force to increase the mean quality of solutions

Fig. 3.2. The general scheme of an evolutionary algorithm as a flowchart

```
BEGIN
  INITIALISE population with random candidate solutions;
  EVALUATE each candidate:
  REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
    1 SELECT parents;
    2 RECOMBINE pairs of parents;
    3 MUTATE the resulting offspring;
   4 EVALUATE new candidates;
   5 SELECT individuals for the next generation;
  OD
END
```

Fig. 3.1. The general scheme of an evolutionary algorithm in pseudocode

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

- Representation: What is your genome?
 - **Strings** in a finite alphabet (genetic algorithms)
 - Real-valued vectors (evolution strategies)
 - Finite state machines (classical evolutionary programming)
 - Trees (genetic programming)
- Different approaches may suit different problems better depending on the natural way to encode the candidate solutions

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

Evaluation Function

- Function that assigns quality measure to genotypes
 - Evaluate phenotype for quality.
- Represent requirements that population should adapt to meet (i.e. defines what improvement means)

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

Population

- holds possible solution
 - A multiset of genotypes (almost always a constant size)
- Individuals do not change or adapt, population does
- Selection operators work at the population level
 - Best individual of a given population is selected

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

- Parent selection / mate selection
 - Distinguish among individuals based on quality
 - Allow better individuals to become parents of next generation
 - Probabilistic fitter individuals more likely to be selected as parents
 - Often still give low-fitness individuals a small chance, otherwise search becomes too greedy and gets stuck in local optima.

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

Variation operators

- Create new individuals from old ones
- The "generate" in "generate and test"
- Mutation and Crossover (recombination)

Mutation

- Randomly change part of the genotype
- Stochastic
- Unbiased
- Provides the gene-pool with "fresh blood"

Crossover

- Merges information in two or more parents
- Random recombinations
- Hopefully take good qualities of each parent

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

- Survivior selection / replacement strategy
 - Decide which of older generations to keep
 - Based on fitness values
 - e.g. keep top % of new and old generation combined
 - Or based on age
 - e.g. only keep newest generation

- Components of EAs
 - representation (definition of individuals)
 - evaluation function (or fitness function)
 - population
 - parent selection mechanism
 - variation operators, recombination and mutation
 - survivor selection mechanism (replacement)
 - termination condition

Termination condition

- Stop when we find **optimum fitness** (if you guarantee reaching it)
- Otherwise
 - 1) Limit CPU time
 - 2) Limit total number of fitness evaluations
 - 3) Check if fitness improvement remains low for a given period of time (i.e. for a number of generations or fitness evaluations)
 - 4) Check if the population diversity drops below a given threshold

How do EAs behaive?

Fig. 3.4. Typical progress of an EA illustrated in terms of population distribution. For each point x in the search space y shows the corresponding fitness value.

- **Exploration**: generation of individuals in untested space
- Exploitation: concentrating in vicinity of known good solutions
- **Premature convergence**: losing population diversity too quickly and getting stuck in a local optimum.

- EAs are anytime
 - You can interrupt them at... any time
 - Get the best solution so far, even if suboptimal

- Improvement is often rapid at start
- You can initialise your population with heuristics, but it might not be worth the effort

Fig. 3.6. Illustration of why heuristic initialisation might not be worth additional effort. Level a shows the best fitness in a randomly initialised population; level b belongs to heuristic initialisation

- Improvement slows down, so long runs may be not worth it

Fig. 3.7. Why long runs might not be worth performing. X shows the fitness increase in the first half of the run, while Y belongs to the second half

- Designing and tuning EAs is an art:
 - Population size
 - Number of generations
 - Fitness function
 - Representation
 - Mutation rate
 - Crossover operations
 - Selection procedure
 - Number of solutions to keep

- Representation attempt 1
 - 2D grid of integers storing value for each grid cell
 - Direct mapping to phenotype
 - But "good" space is tiny proportion of search space

- Representation attempt 2
 - A range of integers, each representing the height of an obstacle
 - 0 = hole in the ground
 - 10 = maximum height of obstacle
 - But most obstacles in SMB are close to the ground.

- Representation attempt 3
 - Represent mario level as string of symbols, each symbol corresponds to a column of blocks that existed in the original SMB

- Fitness function
 - Look for level design patterns in the output that match patterns in the original SMB

Table 2: Patterns supported in the fitness function.

Enemies	
Enemy	Low
2-Horde	Low
3-Horde	Low
4-Horde	Low
Roof	Medium
Gaps	
Gaps	Low
Multiple gaps	By stacking
Variable gaps	By stacking
Gap enemy	Low-Medium by stacking
Pillar gap	Pillar High
Valleys	
Valley	Low
Pipe valley	Medium
Empty valley	By stacking
Enemy valley	By stacking
Roof valley	By stacking
Multiple paths	
2-Path	Medium-High
3-Path	Medium-High
Risk and Reward	By stacking
Stairs	
Stair up	Low
Stair down	Low
Empty stair valley	Low
Enemy stair valley	By stacking
Gap stair valley	By stacking

- Population of 200 (randomly initialised)
- Rank by fitness, top 50% kept
- One point crossover between pairs in rank order (best breeds with second best)
- Mutation: inject a random character in a random position
- 10,000 generations

- Evolution of RTS maps
 - Desirable
 - Playability
 - Fairness
 - Skill differentiation
 - Interestingness

- Fairness fitness function
 - Distance from base to closest resource
 - Resource ownership
 - Resource safety
 - Resource fairness

- Multiobjective EAs have multiple objectives
 - Pareto front between them
 - The point at which increasing one objective will decrease another
 - Not always desirable –
 sometimes you want to look for solutions that are good for any of the objectives

- Eiben & Smith, 2015.
 Introduction to Evolutionary Computing (Second Edition) Springer
- Yannakakis and Togelius,
 2018. Artificial Intelligence and Games. Springer
- ...and the links throughout the slides

