VECTORES Y ESPACIOS VECTORIALES

Los vectores ψ_1 , ψ_2 y ψ_3 , pueden ser multiplicados por un conjunto de números c_n donde n = 1, 2,... para dar un cierto vector Ψ de acuerdo con:

$$\Psi = c_1 \psi_1 + c_2 \psi_2 + c_3 \psi_3$$

Se dice entonces que Ψ es una **combinación lineal** de los vectores ψ_1 , ψ_2 y ψ_3 .

Se dice que los vectores ψ_1 , ψ_2 y ψ_3 son **linealmente dependientes** si:

$$\mathbf{0} = c_1 \, \psi_1 + c_2 \, \psi_2 + c_3 \, \psi_3$$

cuando al menos una de las c_n es no nula. Esto quiere decir que el comportamiento de las variables ψ_1 , ψ_2 y ψ_3 está "atado" a una ley.

En el caso general de los vectores ψ_1 , ψ_2 y ψ_3 , la combinación lineal

$$\Psi = c_1 \psi_1 + c_2 \psi_2 + c_3 \psi_3$$

sólo conduce a un vector Ψ válido si, y solo si, ψ_1 , ψ_2 y ψ_3 son **linealmente independientes**. Este vector resultante solo es θ si las c_i son TODAS nulas.

Un espacio vectorial o lineal *R* se llama **n-dimensional** si en él se pueden encontrar *n* vectores linealmente independientes pero es imposible encontrar más de *n* vectores linealmente independientes.

[©] Reservados todos los derechos de reproducción. Luis A. Montero Cabrera y Lourdes A. Díaz, Universidad de La Habana, Cuba, 2003.

La **dimensión** de un espacio n-dimensional es el número máximo *n* de vectores linealmente independientes que pueden encontrarse en el mismo.

Cualquier colección de *n* vectores linealmente independientes de un espacio n-dimensional *R* se llama **base** de este espacio.

Todo vector ψ_i de un espacio lineal n-dimensional se puede representar como una combinación lineal de los vectores de una base, o **vectores base**, de tal espacio y esta representación es *única*.

Un espacio vectorial con un número infinito de dimensiones ($n = \infty$) se denomina **espacio de Hilbert**.

[©] Reservados todos los derechos de reproducción. Luis A. Montero Cabrera y Lourdes A. Díaz, Universidad de La Habana, Cuba, 2003.