A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 9EH

Bookmark

Show all steps: (

ON

Problem

An integer a is called a *quadratic residue* modulo m if there is an integer x such that $x^2 \equiv a$ (mod m). This is the same as saying that \bar{a} is a square in m. If a is not a quadratic residue modulo m, then a is called a *quadratic nonresidue* modulo m. Quadratic residues are important for solving quadratic congruences, for studying sums of squares, etc. Here, we will examine quadratic residues modulo an arbitrary prime p > 2.

Let
$$h: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$$
 be defined by $h(\bar{a}) = \bar{a}^2$.

Which of the following congruences is solvable?

- (a) $x^2 = 30 \pmod{101}$
- (b) $x^2 \equiv 6 \pmod{103}$
- (c) $2x^2 \equiv 70 \pmod{106}$

NOTE: $x^2 \equiv a \pmod{p}$ is solvable iff a is a quadratic residue modulo p iff

$$\left(\frac{a}{p}\right) = 1$$

Step-by-step solution

Step 1 of 5

Here, objective is to find which of the given congruence's are solvable.

Comment

Step 2 of 5

Consider the congruence $x^2 \equiv a \pmod{p}$ where p is odd prime, is solvable, if and only if the

Legendre symbol
$$\left(\frac{a}{P}\right) = 1$$
 .Where, $\left(\frac{a}{P}\right) = a^{(p-1)/2} \pmod{p}$

Rules to find Legendre symbol:

$$1.(a/n) = (b/n)$$
, if $a = b \mod n$

$$2.(1/n) = 1$$
 and $(0/n) = 0$

$$3.(2m/n) = (m/n)$$
 if $n = \pm 1 \mod 8$.

otherwise
$$(2m/n) = -(m/n)$$

Comment

Step 3 of 5

(a)

Consider the congruence

$$x^2 = 30 \pmod{101}$$

$$a = 30, p = 101.$$

Find Legendre symbol

$$\frac{30}{101} = -\frac{15}{101}$$

$$= -\frac{11}{15}$$

$$= \frac{4}{11}$$

$$= -\frac{2}{11}$$

$$= \frac{1}{11}$$

$$= 1$$

$$\frac{30}{101} = 1$$

Hence, the congruence is solvable.

Comment

Step 4 of 5

(b)

Consider the congruence

$$x^2 = 6 \pmod{103}$$

 $a = 6, p = 103.$

Find Legendre symbol

$$\frac{6}{103} = \frac{3}{103}$$
$$= \frac{3}{103}$$
$$= -\frac{1}{3}$$
$$= -1$$

$$\frac{6}{103} = -1$$

Hence, the congruence is not solvable.

Comment

Step 5 of 5

Consider the congruence

$$2x^2 = 70 \pmod{106}$$

$$2x^2 = 70 + 106k$$

$$x^2 = 35 + 53k$$

$$x^2 = 35 \pmod{53}$$

$$a = 35p = 53$$
.

Find Legendre symbol

$$\frac{35}{53} = \frac{18}{35}$$

$$=-\frac{9}{35}$$

$$=-\frac{8}{9}$$

$$=-\frac{4}{9}$$

$$=-\frac{2}{9}$$

$$=-\frac{1}{9}$$

$$= -1$$

$$\frac{35}{53} = -1$$

Hence, the congruence is not solvable.

Comment