Learning Humanoid Robot Motions through Deep Neural Networks

II Brazilian Humanoid Robot Workshop

Luckeciano C. Melo

Prof. Dr. Marcos R. O. A. Máximo

Prof. Dr. Adilson Marques da Cunha

Background

Descrição do Domínio

Introdução

Chute - Keyframe

T1 T2 T3

Introdução Objetivo

Encontrar políticas ótimas para o movimento de chute do robô humanoide por meio de Supervised Imitation Learning

Deep Learning

Redes Neurais

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{data}} \log p_{model}(\mathbf{y}|\mathbf{x}) \qquad \nabla_{\mathbf{x}} z = \sum_{j} (\nabla_{\mathbf{x}} Y_{j}) \frac{\partial z}{\partial Y_{j}}$$

Introdução

Aprendizado → Problema de Otimização

Metodologia

Aprendizado Supervisionado - Overview

Metodologia

Aprendizado Supervisionado - Dataset

Metodologia Aprendizado Supervisionado - Arquitetura

TABLE 4.1 – The Network Summary

Layer	Neurons	Activation	Parameters
Dense	75	LeakyReLU	130
Dense	50	LeakyReLU	3800
Dense	23	Linear	1173

Total Parameters	5123
------------------	------

Metodologia - Hiperparâmetros

- 50k épocas
- Learning Rate: 0.001 (30k épocas), 0.0008 (5k épocas), 0.0006 (5k épocas), 0.0004 (5k épocas), 0.0002 (5k épocas)
- Otimizador Adam
- Dataset: Reprodução de um único chute (128 amostras)

Metodologia Infraestrutura

Computação em nuvem gratuita está disponível para os membros da Intel® AI Academy. Use o Intel® AI DevCloud equipado com processadores escalonáveis Intel® Xeon® para treinamento de aprendizado de máquina e aprendizagem profunda e necessidades de computação de inferência.

Resultados - Treino Supervisionado

Resultados - Chute Aprendido

Keyframe

Neural Network

TABLE 5.1 - The Kick Comparison

Kick	Statistics			
Type	Accuracy (%)	Distance (m)		
		Mean	Std	
Original Kick	64.5	8.92	3.82	
Neural Kick	52.6	7.16	4.06	

• Bônus: É possível copiar movimentos de adversários!

Aprendizado de Caminhada

Aprendizado de Caminhada

Walk	Statistics				
Type	Velocity (m/s)		Y Error (m)		
	Mean	Std	Mean	Std	
Original Walk	0.87	0.01	525	720	
Learned Walk	0.23	0.01	0.96	2.63	

Conclusões

- É possível transferir o conhecimento de um movimento de keyframe para uma rede neural com um pequeno erro residual;
- A framework de aprendizado apresentado é capaz de aprender diversos tipos de movimentos, como caminhada e chute, sem mudança na arquitetura ou hiperparâmetros;
- Também é capaz de copiar movimentos de outros times, sem nenhum conhecimento prévio a respeito da implementação.

Agradecimentos

- General Sponsors: ITAEx, Altium, Mathworks, Metinjo, Micropress, Poliedro, Polimold, Poupex, FHC, Rapid e Solidworks;
- Intel → Recursos Computacionais e
 Otimizações do uso do hardware para Al;
- Patrick MacAlpine (UT Austin Villa) e
- ITA e todo o time da ITAndroids, especialmente para o da categoria RoboCup Soccer 3D simulation.