Preliminary

GW1NZ series of FPGA Products

Datasheet

DS841-2.1E, 07/20/2023

Preliminary

Copyright © 2023 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN, LittleBee, and GOWIN are trademarks of Guangdong Gowin Semiconductor Corporation and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Preliminary

Revision History

Date	Version	Description	
01/23/2019	1.0E	Initial version published.	
02/12/2019	1.1E	Figures of part naming updated.	
04/03/2019	1.2E	 I/O BANK view updated; The description of I3C bus and SPMI added; the precision of the on chip OSC added; Changed "Operating Temperature" to "Junction Temperature". 	
09/25/2019	1.3E	 The note of "GW1NZ-1 I/Os support differential output, rather than differential input" added; Power supply ramp rate modified. 	
11/06/2019	1.4E	Number of Max. I/O updated.	
01/06/2020	1.5E	 The static current of ZV devices added; Low power description of user flash added. 	
06/30/2020	1.6E	GW1NZ-1 FN32F added.	
12/12/2020	1.7E	The new device of GW1NZ-2 added.	
01/19/2021	1.7.1E	I/O Input/Output type updated.	
01/27/2021	1.7.2E	GW1NZ-2 QN48/QN48M added.	
02/26/2021	1.8E	GW1NZ-2 removed.	
11/26/2021	1.81E	I/O logic info., etc., optimized.	
11/18/2022	1.9E	 Note about DC current limit added. Figure 3-1 GW1NZ-1 Architecture Overview updated. Table 3-1 Output I/O Types and Configuration Options of GW1NZ-1 updated. Table 4-3 Power Supply Ramp Rates updated. Table 4-5 POR Specification updated. Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions updated. Table 4-12 I/O Operating Conditions Recommended updated. Section 3.6.4 Byte-enable removed. Description of configuration Flash added. 	
02/27/2023	2.0E	 Table 4-1 Absolute Max. Ratings updated. Table 4-22 User Flash Timing Parameters updated. Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions updated. Information on Slew Rate removed. Description added to 3.7 User Flash (GW1NZ-1). 	
07/20/2023	2.1E	 Note about the default state of GPIO modified. The I/O logic output diagram and the I/O logic input diagram combined into Figure 3-8 I/O Logic Input and Output. 3.6.2 Memory Configuration Mode updated. Description of Flash resources updated. Table 4-9 Static Supply Current (LV Device) updated. Table 4-3 Power Supply Ramp Rates updated. Figure 5-3 Package Mark updated. Information on GW1NZ-2 added. 	

Contents

Contentsi
List of Figuresiv
List of Tablesv
1 About This Guide1
1.1 Purpose
1.2 Related Documents1
1.3 Abbreviations and Terminology2
1.4 Support and Feedback2
2 General Description3
2.1 Features3
2.2 Product Resources5
2.3 Package Information6
3 Architecture7
3.1 Architecture Overview7
3.2 Configurable Function Unit9
3.3 IOB
3.3.1 I/O Buffer11
3.3.2 True LVDS Design
3.3.3 I/O Logic
3.3.4 I/O Logic Modes
3.4 I3C Bus (GW1NZ-1)
3.4.1 Overview
3.4.2 Port Signal
3.5 SPMI (GW1NZ-1)
3.5.1 Overview
3.5.2 Port Signal
3.6 Block SRAM (BSRAM)
3.6.1 Introduction
3.6.2 Memory Configuration Mode
3.6.3 Mixed Data Bus Width Configuration
3.6.4 Byte-enable

	3.6.5 Parity Bit	. 26
	3.6.6 Synchronous Operation	. 26
	3.6.7 Power up Conditions	. 26
	3.6.8 BSRAM Operation Modes	. 26
	3.6.9 Clock Operations	. 28
	3.7 User Flash (GW1NZ-1)	. 29
	3.7.1 Introduction	. 29
	3.7.2 Mode	. 29
	3.8 User Flash (GW1NZ-2)	. 30
	3.8.1 Introduction	. 30
	3.9 MIPI D-PHY(GW1NZ-2)	. 30
	3.9.1 Hard Core - MIPI D-PHY RX(GW1NZ-2)	. 30
	3.9.2 GPIOs Support MIPI D-PHY RX/TX by Using MIPI IO mode(GW1NZ-2)	. 31
	3.10 Clock	. 31
	3.10.1 Global Clock	. 31
	3.10.2 PLL	. 32
	3.10.3 HCLK	. 32
	3.11 Long Wire (LW)	. 32
	3.12 Global Set/Reset (GSR)	. 32
	3.13 Programming Configuration	. 33
	3.13.1 SRAM Configuration	. 33
	3.13.2 Flash Configuration	. 33
	3.14 On-Chip Oscillator	. 33
Æ	C/DC Characteristic	35
	4.1 Operating Conditions	. 35
	4.1.1 Absolute Max. Ratings	. 35
	4.1.2 Recommended Operating Conditions	. 35
	4.1.3 Power Supply Ramp Rates	. 36
	4.1.4 Hot Socket Specifications	. 36
	4.1.5 POR Specification.	. 36
	4.2 ESD	. 36
	4.3 DC Characteristic	. 37
	4.3.1 DC Electrical Characteristics over Recommended Operating Conditions	. 37
	4.3.2 Static Current	. 38
	4.3.3 I/O Operating Conditions Recommended	. 39
	4.3.4 Single - Ended IO DC Electrical Characteristic	. 40
	4.4 Switching Characteristic	. 41
	4.4.1 CFU Block Internal Timing Parameters	. 41
	4.4.2 Gearbox Switching Characteristics	. 42

4

	4.4.3 Clock and I/O Switching Characteristics	42
	4.4.4 BSRAM Switching Characteristics	42
	4.4.5 On-chip Oscillator Output Frequency	42
	4.4.6 PLL Switching Characteristics	42
	4.5 User Flash Characteristic	43
	4.5.1 DC Characteristic	43
	4.5.2 Timing Parameters ^{[1],[5],[6]}	45
	4.5.3 Operation Timing Diagrams	46
	4.6 Configuration Interface Timing Specification	47
5 C	Ordering Information	48
	5.1 Part Name	48
	5.2 Package Mark	49

List of Figures

Figure 3-1 GW1NZ-1 Architecture Overview	7
Figure 3-2 GW1NZ-2 Architecture Overview	8
Figure 3-3 CFU View	10
Figure 3-4 IOB Structure View	11
Figure 3-5 I/O Bank Distribution of GW1NZ-1	11
Figure 3-6 I/O Bank Distribution of GW1NZ-2	12
Figure 3-7 True LVDS Design	17
Figure 3-8 I/O Logic Input and Output	18
Figure 3-9 IODELAY	19
Figure 3-10 Register Structure in I/O Logic	19
Figure 3-11 IEM Structure	19
Figure 3-12 Pipeline Mode in Single Port, Dual Port, and Semi Dual Port	27
Figure 3-13 Independent Clock Mode	28
Figure 3-14 Read/Write Clock Mode	28
Figure 3-15 Single Port Clock Mode	29
Figure 3-16 GW1NZ-1 HCLK Distribution	32
Figure 3-17 GW1NZ-2 HCLK Distribution	32
Figure 4-1 Read Mode	46
Figure 4-2 Write Mode	47
Figure 4-3 Erasure Mode	47
Figure 5-1 Part Naming Example–ES	48
Figure 5-2 Part Naming Example–Production	48
Figure 5-3 Package Mark	40

List of Tables

Table 1-1 Abbreviations and Terminologies	. 2
Table 2-1 Product Resources	. 5
Table 2-2 Package Information and Max. User I/O	. 6
Table 3-1 Output I/O Types and Configuration Options of GW1NZ-1	. 12
Table 3-2 Input I/O Types and Configuration Options of GW1NZ-1	. 13
Table 3-3 Output I/O Types and Configuration Options of GW1NZ-2	. 13
Table 3-4 Input I/O Types and Configuration Options of GW1NZ-2	. 15
Table 3-5 Port Description	. 18
Table 3-6 I3C Port Signals	. 21
Table 3-7 SPMI Port Signal	. 23
Table 3-8 Memory Size Configuration	. 23
Table 3-9 Dual Port Mixed Read/Write Data Width Configuration	. 25
Table 3-10 Semi Dual Port Mixed Read/Write Data Width Configuration	. 25
Table 3-11 Clock Operations in Different BSRAM Modes	. 28
Table 3-12 User Flash Modes	. 30
Table 3-13 Oscillator Output Frequency Options	. 33
Table 4-1 Absolute Max. Ratings	. 35
Table 4-2 Recommended Operating Conditions	. 35
Table 4-3 Power Supply Ramp Rates	. 36
Table 4-4 Hot Socket Specifications	. 36
Table 4-5 POR Specification	. 36
Table 4-6 GW1NZ ESD - HBM	. 36
Table 4-7 GW1NZ ESD – CDM	. 37
Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions	. 37
Table 4-9 Static Supply Current (LV Device)	. 38
Table 4-10 Static Supply Current (GW1NZ-1, ZV Version)	. 38
Table 4-10 Static Supply Current (GW1NZ-2, ZV Version) ^{[1],[3],[4]}	. 39
Table 4-12 I/O Operating Conditions Recommended	. 39
Table 4-12 Single - Ended IO DC Electrical Characteristic	. 40
Table 4-13 CFU Block Internal Timing Parameters	. 41
Table 4-14 Gearbox Switching Characteristics	. 42
Table 4-15 Clock and I/O Switching Characteristics	. 42

Table 4-16 BSRAM Internal Timing Parameters	42
Table 4-17 O-chip Oscillator Output Frequency	42
Table 4-18 PLL Switching Characteristics	42
Table 4-19 GW1NZ-1 User Flash DC Characteristics	43
Table 4-20 GW1NZ-2 User Flash DC Characteristic ^[4]	44
Table 4-22 User Flash Timing Parameters	45

DS841-2.1E vi

Preliminary

1 About This Guide

1.1 Purpose

1 About This Guide

1.1 Purpose

This data sheet describes the features, product resources and structure, AC/DC characteristics, timing specifications of the configuration interface, and the ordering information of the GW1NZ series of FPGA products. It is designed to help you understand the GW1NZ series of FPGA products quickly and select and use devices appropriately.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:

- <u>UG290, Gowin FPGA Products Programming and Configuration User</u> Guide
- UG843, GW1NZ series of FPGA Products Package and Pinout
- UG842, GW1NZ-1 Pinout
- UG847, GW1NZ-2 Pinout

DS841-2.1E 1(49)

1.3 Abbreviations and Terminology

The abbreviations and terminology used in this manual are shown in Table 1-1 below.

Table 1-1 Abbreviations and Terminologies

Abbreviations and Terminology	Full Name
ALU	Arithmetic Logic Unit
BSRAM	Block Static Random Access Memory
CFU	Configurable Functional Unit
CLS	Configurable Logic Section
CRU	Configurable Routing Unit
CS16	WLCSP16
DCS	Dynamic Clock Selector
DP	True Dual Port 16K BSRAM
DQCE	Dynamic Quadrant Clock Enable
FN32	QFN32
FN32F	QFN32F
FPGA	Field Programmable Gate Array
GPIO	Gowin Programmable IO
IOB	Input/output Bank
LUT4	Four-input Look-up Table
LUT5	Five-input Look-up Table
LUT6	Six-input Look-up Table
LUT7	Seven-input Look-up Table
LUT8	Eight-input Look-up Table
PLL	Phase Locked Loop
QN48	QFN48
REG	Register
SDP	Semi Dual Port 16K BSRAM
SP	Single Port 16K BSRAM
SPMI	System Power Management Interface

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.

Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

DS841-2.1E 2(49)

Preliminary
2 General Description 2.1 Features

2General Description

The GW1NZ series of FPGA products are the first generation products in the LittleBee® family. They offer ultra-low power consumption, instant on, low cost, non-volatile, high security, various packages, and flexible usage. They can be widely used in communication, industry control, consumer, video control, etc.

GOWINSEMI provides a new generation of FPGA hardware development environment through market-oriented independent research and development that supports the GW1NZ series of FPGA products and applies to FPGA synthesizing, layout, place and routing, data bitstream generation and download, etc.

2.1 Features

- Zero power consumption
 - 55nm embedded flash technology
 - LV: Supports 1.2V core voltage
 - ZV: Supports 0.9V core voltage. Please refer to Table 4-10_Static Supply Current (GW1NZ-1, ZV Version) for the lowest power consumption.
 - Supports dynamically turning on/off the clock.
 - User Flash dynamically turns on and off
- Power Management Module (GW1NZ-1)
 - SPMI: System power management interface
 - VCC and VCCM are independent in the device
- User Flash (GW1NZ-1)
 - NOR Flash
 - Can be turned on and off Dynamically
 - Capacity:64Kbits
 - Data Width: 32
 - 10,000 write cycles
 - Greater than ten years' data retention at +85 ℃
 - Supports page erasure: 2048 bytes per page
 - Duration: Max. 25ns
 - Electric current
 - a). Read Operation: 2.19 mA/25 ns (V_{CC}) & 0.5 mA/25 ns (V_{CCX}) (MAX);

DS841-2.1E 3(49)

- b). Write operation/erase operation: 12/12 mA (MAX)
- Quick page erasure/Write operation
- Clock frequency: 40MHz
- Write operation time: ≤16µs
- Page erasure time: ≤120 ms
- User Flash (GW1NZ-2)
 - 10,000 write cycles
 - Greater than 10 years' Data Retention at +85 ℃
 - Data Width: 32
 - Capacity: 96Kbits
 - Page Erase Capability: 2,048 bytes per page
 - Word Programming Time: ≤16 μs
 - Page Erasure Time:≤120 ms
- Configuration Flash (GW1NZ-1)
 - NOR Flash
 - 10,000 write cycles
 - Greater than ten years' data retention at +85 ℃
- Configuration Flash (GW1NZ-2)
 - NOR Flash
 - 10,000 write cycles
 - Greater than ten years' data retention at +85 ℃
- Hard Core MIPI D-PHY RX (GW1NZ-2)
 - Interfaces to MIPI CSI2 and DSI, RX devices
 - IO Bank6 supports MIPI D-PHY RX
 - MIPI transmission rate up to 2Gbps per lane
 - Supports up to 4 data lanes and one clock lane
- GPIOs support MIPI D-PHY RX/TX using MIPI IO mode (GW1NZ-2)
 - Interfaces to MIPI CSI2 and DSI, RX and TX devices
 - IO Bank0, IO Bank3, IO Bank4, and IO Bank5 support MIPI D-PHY TX, and the transmission rate can be up to 1.2 Gbps per lane
 - IO Bank2 supports MIPI D-PHY RX, and the transmission rate can be up to 1.2Gbps per lane
- Multiple I/O Standards
 - GW1NZ-1: LVCMOS33/25/18/15/12; LVTTL33; PCI;
 LVDS25E, BLVDSE, MLVDSE, LVPECLE, RSDSE
 - GW1NZ-2: LVCMOS33/25/18/15/12; LVTTL33, SSTL33/25/18
 I, SSTL33/25/18 II, SSTL15; HSTL18 I, HSTL18 II, HSTL15
 I; PCI, LVDS25, RSDS, LVDS25E, BLVDSE, MLVDSE,
 - LVPECLE, RSDSE
 - Input hysteresis option
 - Supports 4mA,8mA,16mA,24mA, etc. drive options
 - Output drive strength option
 - Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open Drain option
 - Hot Socket
 - Hard I3C core supporting SDR mode
 - Support differential output, rather than differential input
- Abundant Slices
 - Four input LUT (LUT4)

DS841-2.1E 4(49)

- Supports shifter register
- Supports shadow SRAM
- Block SRAM with multiple modes
 - Supports Dual Port, Single Port, and Semi Dual Port
 - Supports bytes write enable
- Flexible PLLs
 - Frequency adjustment (multiplication and division) and phase adjustment
 - Supports global clock
- Built-in Flash programming
 - Instant-on
 - Supports security bit operation
 - Supports AUTO BOOT and DUAL BOOT
- Configuration
 - JTAG configuration
 - Offers up to six GowinCONFIG configuration modes: AUTOBOOT, SSPI, MSPI, CPU, SERIAL, and DUAL BOOT

2.2 Product Resources

Table 2-1 Product Resources

Device	GW1NZ-1	GW1NZ-2
LUT4	1,152	2304
Register	864	2016
Shadow SRAM (bits)	4K	18432
Block SRAM (bits)	72K	72K
PLLs	1	1
User Flash (bits)	64K	96K
Max. I/O	48	125
Core Voltage (LV)	1.2V	-
Core Voltage (ZV)	0.9V	0.9V

DS841-2.1E 5(49)

2.3 Package Information

Table 2-2 Package Information and Max. User I/O

Package	Pitch (mm)	Size (mm)	GW1NZ-1	GW1NZ-2
FN32	0.4	4 x 4	25	-
FN32F	0.4	4 x 4	25	-
CS16	0.4	1.8 x 1.8	11	-
QN48	0.4	6 x 6	40	TBD
CS100H	0.4	4 x 4	-	TBD

Note!

- In this manual, abbreviations are employed to refer to the package types. See 5.1 Part Name.
- JTAGSEL_N and JTAG pins cannot be used as I/O simultaneously. The Max. User I/O noted in this table is referred to when the four JTAG pins (TCK, TDI, TDO, and TMS) are used as I/O. When mode [2:0] = 001, JTAGSEL_N and the four JTAG pins (TCK, TDI, TDO, and TMS) can be used as GPIO simultaneously, and the Max. user I/O is increased by one.

DS841-2.1E 6(49)

3 Architecture

3.1 Architecture Overview

Figure 3-1 GW1NZ-1 Architecture Overview

DS841-2.1E 7(49)

Figure 3-2 GW1NZ-2 Architecture Overview

Figure 3-1 shows the GW1NZ devices architecture view. The core of the GW1NZ devices is the array of logic units surrounded by IO blocks. GW1NZ also provides BSRAM, PLL, on-chip oscillator, and Flash that supports Instant-on. SPMI and I3C are also embedded in the GW1NZ devices. See Table 2-1 for more detailed information on internal resources.

Configurable Function Unit (CFU) is the base cell for the array of the GW1NZ series of FPGA Products. These CFUs arrange in rows and columns. CFU can be configured as LUT4 mode, ALU mode, and memory mode. See <u>3.2 Configurable Function Unit</u> for further detailed information.

The I/O resources in the GW1NZ series of FPGA products are arranged around the periphery of the devices in groups referred to as banks, including Bank0 and Bank1. The I/O resources support multiple level standards and support basic mode, SDR mode, and generic DDR mode. See 3.3 IOB for further detailed information.

The BSRAM is embedded as a row in the GW1NZ series of FPGA products. In the FPGA array, each BSRAM occupies three columns of CFU. Each BSRAM has 18,432 bits (18 Kbits) and supports multiple configuration modes and operation modes. See <u>3.6 Block SRAM</u> (BSRAM) for further detailed information.

The GW1NZ series of FPGA products are embedded with Flash resources, including configuration Flash resources and user Flash resources. Configuration Flash resources are used for internal Flash programming, please refer to 3.13 Programming Configuration for detailed information. User Flash resources are used for user storage, See 3.7 User Flash (GW1NZ-1) and 3.8 User Flash (GW1NZ-2).

The GW1NZ-2 FPGA provides the hard MIPI D-PHY RX IP core, and its GPIOs support the soft MIPI D-PHY RX TX IP core. For further details, please refer to 3.9 MIPI D-PHY(GW1NZ-2).

DS841-2.1E 8(49)

GW1NZ provides one PLL. PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiplication and division), phase adjustment, and duty cycle can be adjusted using the configuration of parameters. See <u>3.10 Clock</u> for further detailed information.

FPGA provides abundant CRUs, connecting all the resources in FPGA. For example, routing resources distributed in CFU and IOB connect resources in CFU and IOB. Routing resources can automatically be generated by Gowin software. In addition, the GW1NZ series of FPGA Products also provide abundant GCLKs, long wires (LW), global set/reset (GSR), programming options, etc. See <u>3.11 Long Wire (LW)</u>, <u>3.12 Global Set/Reset (GSR)</u>, and <u>3.13 Programming Configuration</u> for further detailed information.

3.2 Configurable Function Unit

The configurable function unit and the configurable logic unit are the two basic units for the FPGA core of GOWINSEMI. As shown in Figure 3-3, each unit consists of four configurable logic sections and its configurable routing unit. Each of the three configurable logic sections contains two 4-input LUTs and two registers, and the other one only contains two 4-input LUTs.

Configurable logical sections in CLUs cannot be configured as SRAMs, but can be configured as basic logic, ALUs, and ROMs. The configurable logic sections in the CFU can be configured as basic logic, ALU, SRAM, and ROM depending on the applications. This section takes the CFU as an example to introduce the CFU and the CLU.

For more information about the CFU, please refer to <u>UG288, Gowin</u> <u>Configurable Function Unit (CFU) User Guide</u>.

DS841-2.1E 9(49)

Figure 3-3 CFU View

Note!

- SREGs require special patch support. Please contact Gowin's technical support or the local Office for this patch.
- Only the GW1N-2 device supports REGs in the CLS3 currently, and the CLK, CE, and SR of the CLS3 and the CLS2 are driven by the same source.

3.3 IOB

The IOB in the GW1NZ series of FPGA products includes an IO buffer pair, IO logic, and its routing resources. As shown in Figure 3-4, each IOB connects to two Pins (Marked as A and B). They can be used as a differential pair or as two single-ended signals^[1].

Note!

The IOs of the GW1NZ-1 device do not support differential inputs.

DS841-2.1E 10(49)

Figure 3-4 IOB Structure View

"True" "Comp"

IOB Features:

- V_{CCIO} supplied with each bank
- Supports multiple levels: LVCMOS, PCI, LVTTL, etc.
- Input hysteresis option
- Output drive strength option
- Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open Drain option
- Hot Socket
- IO Logic supports basic mode, SRD mode, and generic DDR mode
- Hard I3C core supporting SDR mode(GW1NZ-1)

3.3.1 I/O Buffer

The GW1NZ-1 device includes Bank0 and Bank1, as shown in Figure 3-5. The GW1NZ-2 device includes six I/O Banks, as shown in Figure 3-6. Each Bank has its own V_{CCIO}. It can be 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V.

Figure 3-5 I/O Bank Distribution of GW1NZ-1

DS841-2.1E 11(49)

I/O Bank0
Top
Right
Right
I/O Bank1
I/O Bank4
I/O Bank2

Figure 3-6 I/O Bank Distribution of GW1NZ-2

GW1NZ series FPGA products contain both LV and UV. LV devices support 1.2V core voltage to meet users' low power needs. ZV devices support 0.9V core voltage. Zero-power consumption can be available for ZV devices. Vccio supplied with I/O Bank can be set as 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V according to requirements. Vccx supports 1.8V, 2.5V, and 3.3V power supplies.

Note!

During configuration, all GPIOs of the device have internally weak pull-ups. After the configuration is complete, the I/O state is controlled by user programs and constraints. The state of CONFIG-related I/Os varies depending on the configuration mode.

For the V_{CCIO} requirements of different I/O standards, see Table 3-1 and Table 3-2.

Table 3-1 Output I/O Types and Configuration Options of GW1NZ-1

I/O Type (Output)	Single- ended/Differenti al	Bank Vccio (V)	Drive Strength (mA)	Application
LVCMOS33/LVTTL3	Single-ended	3.3	8/24/16/12/4	universal interface
LVCMOS25	Single-ended	2.5	8/16/12/4	universal interface
LVCMOS18	Single-ended	1.8	8/12/4	universal interface
LVCMOS15	Single-ended	1.5	8/4	universal interface
LVCMOS12	Single-ended	1.2	8/4	universal interface
PCI33	Single-ended	3.3	8/4	PC and embedded system
LVCMOS33D	Differential	3.3	8/24/16/12/4	universal interface
LVCMOS25D	Differential	2.5	8/16/12/4	universal interface
LVCMOS18D	Differential	1.8	8/12/4	universal interface
LVCMOS15D	Differential	1.5	8/4	universal interface
LVCMOS12D	Differential	1.2	8/4	universal interface

DS841-2.1E 12(49)

Table 3-2 Input I/O Types and Configuration Options of GW1NZ-1

I/O Type (Input)	Single- ended/Differe ntial	Bank Vccio(V)	HYSTERESIS	Need V _{REF}
LVCMOS33/LVTT L33	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS25	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS18	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS15	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS12	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
PCI33	Single-ended	3.3	Yes	No
LVCMOS33OD25	Single-ended	2.5	Yes	No
LVCMOS330D18	Single-ended	1.8	Yes	No
LVCMOS33OD15	Single-ended	1.5	Yes	No
LVCMOS250D18	Single-ended	1.8	Yes	No
LVCMOS250D15	Single-ended	1.5	Yes	No
LVCMOS180D15	Single-ended	1.5	Yes	No
LVCMOS150D12	Single-ended	1.2	Yes	No
LVCMOS25UD33	Single-ended	3.3	Yes	No
LVCMOS18UD25	Single-ended	2.5	Yes	No
LVCMOS18UD33	Single-ended	3.3	Yes	No
LVCMOS15UD18	Single-ended	1.8	Yes	No
LVCMOS15UD25	Single-ended	2.5	Yes	No
LVCMOS15UD33	Single-ended	3.3	Yes	No
LVCMOS12UD15	Single-ended	1.5	Yes	No
LVCMOS12UD18	Single-ended	1.8	Yes	No
LVCMOS12UD25	Single-ended	2.5	Yes	No
LVCMOS12UD33	Single-ended	3.3	Yes	No

Table 3-3 Output I/O Types and Configuration Options of GW1NZ-2

I/O Type (Output)	Single-ended/ Differential	Bank Vccio (V)	Drive Strength (mA)	Typical Application
MIPI ^[1]	Differential (TLVDS)	1.2	3.5	Mobile industry processor interface
LVDS25	Differential (TLVDS)	2.5/3.3	3.5/2.5/2/1.25	High-speed point-to- point data transmission
RSDS	Differential (TLVDS)	2.5/3.3	2	High-speed point-to- point data transmission
MINILVDS	Differential (TLVDS)	2.5/3.3	2	LCD timing driver interface and column driver interface
PPLVDS	Differential (TLVDS)	2.5/3.3	1.25/2.0/2.5/3.5	LCD row/column driver

DS841-2.1E 13(49)

3.3 IOB

LVCMOS15

LVCMOS18

Single-ended

Single-ended

DS841-2.1E 14(49)

4/8

4/8/12

universal interface

universal interface

1.5

1.8

I/O Type (Output)	Single-ended/ Differential	Bank Vccio (V)	Drive Strength (mA)	Typical Application
LVCMOS25	Single-ended	2.5	4/8/12/16	universal interface
LVCMOS33/ LVTTL33	Single-ended	3.3	4/8/12/16/24	universal interface
PCI33	Single-ended	3.3	4/8	PC and embedded system

Note!

[1] Bank0/Bank3/Bank4/Bank5 of the GW1NZ-2 device support MIPI output by using MIPI IO mode.

Table 3-4 Input I/O Types and Configuration Options of GW1NZ-2

I/O Type (Input)	Single-ended/ Differential	Bank Vccio (V)	HYSTERESIS	Need V _{REF}
MIPI ^[1]	Differential (TLVDS)	1.2	No	No
LVDS25	Differential (TLVDS)	2.5/3.3	No	No
RSDS	Differential (TLVDS)	2.5/3.3	No	No
MINILVDS	Differential (TLVDS)	2.5/3.3	No	No
PPLVDS	Differential (TLVDS)	2.5/3.3	No	No
LVDS25E	Differential	2.5/3.3	No	No
BLVDS25E	Differential	2.5/3.3	No	No
MLVDS25E	Differential	2.5/3.3	No	No
RSDS25E	Differential	2.5/3.3	No	No
LVPECL33E	Differential	3.3	No	No
HSTL18D_I	Differential	1.8/2.5/3.3	No	No
HSTL18D_II	Differential	1.8/2.5/3.3	No	No
HSTL15D_I	Differential	1.5/1.8/2.5/3.3	No	No
SSTL15D	Differential	1.5/1.8/2.5/3.3	No	No
SSTL18D_I	Differential	1.8/2.5/3.3	No	No
SSTL18D_II	Differential	1.8/2.5/3.3	No	No
SSTL25D_I	Differential	2.5/3.3	No	No
SSTL25D_II	Differential	2.5/3.3	No	No
SSTL33D_I	Differential	3.3	No	No
SSTL33D_II	Differential	3.3	No	No
LVCMOS12D	Differential	1.2/1.5/1.8/2.5/3.3	No	No
LVCMOS15D	Differential	1.5/1.8/2.5/3.3	No	No
LVCMOS18D	Differential	1.8/2.5/3.3	No	No
LVCMOS25D	Differential	2.5/3.3	No	No
LVCMOS33D	Differential	3.3	No	No
HSTL15_I	Single-ended	1.5 or 1.5/1.8/2.5/3.3 ^[2]	No	Yes
HSTL18_I	Single-ended	1.8 or 1.8/2.5/3.3 ^[3]	No	Yes
HSTL18_II	Single-ended	1.8 or 1.8/2.5/3.3 ^[3]	No	Yes
SSTL15	Single-ended	1.5 or 1.5/1.8/2.5/3.3 ^[2]	No	Yes

DS841-2.1E 15(49)

I/O Type (Input)	Single-ended/ Differential	Bank Vccio (V)	HYSTERESIS	Need V _{REF}
SSTL18_I	Single-ended	1.8 or 1.8/2.5/3.3 ^[3]	No	Yes
SSTL18_II	Single-ended	1.8 or 1.8/2.5/3.3 ^[3]	No	Yes
SSTL25_I	Single-ended	2.5 or 2.5/3.3 ^[4]	No	Yes
SSTL25_II	Single-ended	2.5 or 2.5/3.3 ^[4]	No	Yes
SSTL33_I	Single-ended	3.3	No	Yes
SSTL33_II	Single-ended	3.3	No	Yes
LVCMOS12	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS15	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS18	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS25	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS33/ LVTTL33	Single-ended	1.2/1.5/1.8/2.5/3.3	Yes	No
PCI33	Single-ended	3.3	Yes	No
LVCMOS33OD25	Single-ended	2.5	No	No
LVCMOS330D18	Single-ended	1.8	No	No
LVCMOS330D15	Single-ended	1.5	No	No
LVCMOS250D18	Single-ended	1.8	No	No
LVCMOS250D15	Single-ended	1.5	No	No
LVCMOS180D15	Single-ended	1.5	No	No
LVCMOS150D12	Single-ended	1.2	No	No
LVCMOS25UD33	Single-ended	3.3	No	No
LVCMOS18UD25	Single-ended	2.5	No	No
LVCMOS18UD33	Single-ended	3.3	No	No
LVCMOS15UD18	Single-ended	1.8	No	No
LVCMOS15UD25	Single-ended	2.5	No	No
LVCMOS15UD33	Single-ended	3.3	No	No
LVCMOS12UD15	Single-ended	1.5	No	No
LVCMOS12UD18	Single-ended	1.8	No	No
LVCMOS12UD25	Single-ended	2.5	No	No
LVCMOS12UD33	Single-ended	3.3	No	No

Note!

- [1] GW1NZ-2 Bank6 (Hard core) and GW1NZ-2 support MIPI I/O input.
- [2] When V_{REF} is INTERNAL, the V_{CCIO} of this I/O type is 1.5V; when V_{REF} is VREF1_LOAD, the V_{CCIO} of this I/O type is 1.5 V/1.8 V/2.5 V/3.3 V.
- [3] When V_{REF} is INTERNAL, the V_{CCIO} of this I/O type is 1.8 V; when V_{REF} is VREF1_LOAD, the V_{CCIO} of this I/O type is 1.8 V /2.5 V /3.3 V.
- [4] When V_{REF} is INTERNAL, the V_{CCIO} of this I/O type is 2.5 V; when V_{REF} is VREF1_LOAD, the V_{CCIO} of this I/O type is 2.5 V /3.3 V.

3.3.2 True LVDS Design

The GW1NZ-2 device supports true LVDS output as well as LVDS25E, MLVDS25E, BLVDS25E, etc.

DS841-2.1E 16(49)

Preliminary
3 Architecture 3.3 IOB

For more detailed information about true LVDS, please refer to <u>UG844, GW1NZ-2 Pinout</u>, <u>UG847, GW1NZ-2 Pinout</u>.

True LVDS input I/O needs a 100Ω termination resistor. See Figure 3-7 for the true LVDS design. Bank2 of the GW1NZ-2 device supports a programmable on-chip 100 ohm input differential termination resistor, see <u>UG289, Gowin Programable IO User Guide</u>.

Figure 3-7 True LVDS Design

For more information about termination for LVDS25E, MLVDS25E, and BLVDS25E, please refer to <u>UG289, Gowin Programable IO User Guide</u>.

3.3.3 I/O Logic

Figure 3-8 shows the I/O logic input and output of the GW1NZ series

DS841-2.1E 17(49)

of FPGA products.

Figure 3-8 I/O Logic Input and Output

Table 3-5 Port Description

Ports	I/O	Description
CI ^[1]	Input	GCLK input signal. For the number of GCLK input signals, please refer to <u>UG842, GW1NZ-1 Pinout</u> , <u>UG847, GW1NZ-2 Pinout</u> .
DI	Input	IO port low-speed input signal, entering into Fabric directly.
Q	Output	IREG output signal in SDR module.
Q ₀ -Q _{n-1}	Output	IDES output signal in DDR module.

Note!

When CI is used as GCLK input, DI, Q, and Q₀-Q_{n-1} cannot be used as I/O input and output.

A description of the I/O logic modules of the GW1NZ series of FPGA products is presented below:

IODELAY

See Figure 3-9 for an overview of the IODELAY. Each I/O of the GW1NZ series of FPGA products has an IODELAY cell. A total of 128(0~127) steps of delay are provided, with one step of delay time being about 30 ps.

DS841-2.1E 18(49)

Figure 3-9 IODELAY

There are two ways to control the delay cell:

- Static control
- Dynamic control: usually used to sample delay window together with IEM. The IODELAY cannot be used for both input and output at the same time

I/O Register

See Figure 3-10 for the I/O register in the GW1NZ series of FPGA products. Each I/O provides one input register, INFF, one output register, OUTFF, and a tristate Register, TCFF.

Figure 3-10 Register Structure in I/O Logic

Note!

- CE can be programmed as either active low (0: enable)or active high (1: enable).
- CLK can be programmed as either rising edge triggering or falling edge triggering.
- SR can be programmed as either synchronous/asynchronous SET or RESET or disabled.
- The register can be programmed as a register or latch.

IEM

IEM is for sampling clock edge and is used in the generic DDR mode, as shown in Figure 3-11.

Figure 3-11 IEM Structure

DS841-2.1E 19(49)

De-serializer DES and Clock Domain Transfer

The GW1NZ series of FPGA products provide a simple DES for each input I/O to support advanced I/O protocols.

Serializer SER

The GW1NZ series of FPGA products provide a simple Serializer SER for each output I/O to support advanced I/O protocols.

3.3.4 I/O Logic Modes

The I/O Logic in the GW1NZ series of FPGA products supports several modes. In each operation, the I/O can be configured as output, input, and INOUT or tristate output (output signal with tristate control).

The GW1NZ-1 pins IOR6 (A, B, C....J) do not support IO logic.

For further information about I/O logic modes, please refer to <u>UG289</u>, Gowin Programmable IO (GPIO) User Guide.

3.4 I3C Bus (GW1NZ-1)

3.4.1 Overview

The GW1NZ series of FPGA products include a hard I3C bus controller IP core that supports SDR mode. The I3C controller is backwards compatible with I2C features low power, and is high speed and extensible. The I3C bus is compliant with MIPI I3C protocol, adopts register interfaces, and supports operation modes of I3C SDR Master and I3C SDR Slave.

I3C SDR Master

- Compliance with MIPI I3C protocol;
- Supports I3C address arbitration detection;
- Supports Single Data Rate (SDR) mode:
- The data rate can be up to 12.5Mbps;
- Start / Stop / Repeated Start / Acknowledge generation;
- Start / Stop / Repeated Start detection;
- Support dynamically allocating addresses via SETDASA or ENTDAA;
- Supports Receive/Send data;
- Supports In-band Interrupts;
- Supports Hot-Join;
- Supports dynamically allocating address when hot-join;
- Supports CCC's command;
- Supports dynamic adjusting SCL frequency;
- Compatible with I2C Slave;
- Adopts register interfaces.

I3C SDR Slave

- Compliance with MIPI I3C protocol;
- Start / Acknowledge generation;
- Start / Stop / Repeated Start detection;
- Support dynamically allocating addresses via SETDASA or ENTDAA;

Receive/Send data;

DS841-2.1E 20(49)

- Send an IBI or hot-join request. If more than one slaves send the IBI or hot-join requests, the min. address obtains the arbitration;
- Static address of Slave configuration;
- Adopts register interfaces.

3.4.2 Port Signal

For more information about I3C port signals, working principle, timing, and examples, please refer to <u>IPUG508-1.2 Gowin I3C SDR IP User</u> Guide.

Table 3-6 I3C Port Signals

Port Name	I/O	Description
AAC	Input	The setting to clear ACK response, single pulse signal
AAO	output	Output ACK signal
AAS	Input	Set ACK response, single pulse signal
ACC	Input	The setting to clear continuous operation mode, single pulse signal
ACKHS	Input	Set ACK high-level time
ACKLS	Input	Set ACK low-level time
ACO	output	Continuous operation mode output
ACS	Input	Set continuous operation mode, single pulse signal
ADDRS	Input	Set slave address
CE	Input	Clock enable signal
CLK	Input	Clock input
CMC	Input	Clear the current master role, single pulse signal
СМО	output	Output the flag of the current master role
CMS	Input	Set the current Master role, single pulse signal
DI[7:0]	Input	Data input
DO[7:0]	output	Data output
DOBUF[7:0]	output	Buffer data output
LGYC	Input	Clear the setting of I2C as the current communication object, single pulse signal
LGYO	output	The output of I2C as the current communication object
LGYS	Input	Set I2C as the current communication object, single pulse signal
PARITYERROR	output	Parity error signal
RECVDHS	Input	Set high-level time of receiving data
RECVDLS	Input	Set low-level time of receiving data
RESET	Input	Asynchronous reset, active high
SCLI	Input	I3C serial clock input
SCLO	output	I3C serial clock line
SCLOEN	output	I3C serial clock output enable
SCLPULLO	output	I3C serial clock pull-up output

DS841-2.1E 21(49)

Port Name	I/O	Description
SCLPULLOEN	output	I3C serial clock pull-up output enable
SDAI	Input	I3C serial data input
SDAO	output	I3C serial data output
SDAOEN	output	I3C serial data output enable
SDAPULLO	output	I3C serial data pull-up output
SDAPULLOEN	output	I3C serial data pull-up output enable
SENDAHS	Input	Set high-level time of sending address
SENDALS	Input	Set low-level time of sending address
SENDDHS	Input	Set high-level time of sending data
SENDDLS	Input	Set low-level time of sending data
SIC	Input	Signal of clearing interrupt flag
SIO	output	Signal of output signal interrupt
STRTC	Input	Setting of clearing the START command, single pulse signal
STRTO	output	Output START command
STRTS	Input	Set START command, single pulse signal
STATE	output	Output internal state
STRTHDS	Input	Set the holding time of the START command
STOPC	Input	Clear the STOP command setting, single pulse signal
STOPO	output	Output the STOP command
STOPS	Input	Set the STOP command, single pulse signal
STOPSUS	Input	Set the setting time of the STOP command
STOPHDS	Input	Set the holding time of the STOP command

3.5 SPMI (GW1NZ-1)

3.5.1 Overview

The GW1NZ-1 product provides an SPMI module as well as an SPMI controller IP. As a Master, it supports controlling external Slave devices through the SPMI interface for power management. As a Slave, it supports FPGA power management.

The GW1NZ-1 device supports controlling the main power supply in the following way:

 You can turn off the main power supply by sending the shutdown command from the Master. And the main power supply of the FPGA can be restored by sending the reset/sleep/wakeup command from the Master, or by a low pulse of the SPMI_EN signal.

Note!

For more information on operation modes, communication modes, commands, timing, etc, please refer to *IPUG529, Gowin SPMI User Guide*.

DS841-2.1E 22(49)

3.5.2 Port Signal

Table 3-7 SPMI Port Signal

Name	I/O	Description
SPMI_EN	input	SPMI enable signal
SPMI_CLK	input	System clock signal
SPMI_SCLK	inout	SPMI serial clock signal
SPMI_SDATA	inout	SPMI serial data signal

3.6 Block SRAM (BSRAM)

3.6.1 Introduction

GW1NZ series FPGA products provide abundant SRAM. The Block SRAM (BSRAM) is embedded as a row in the FPGA array and is different from S-SRAM (Shadow SRAM). Each BSRAM occupies three columns of CFU in the FPGA array. Each BSRAM has 18,432 bits (18Kbits). There are five operation modes: Single Port, Dual Port, Semi-dual Port, ROM, and FIFO.

An abundance of BSRAM resources provide a guarantee for the user's high-performance design. BSRAM features:

- Max.18,432 bits per BSRAM
- BSRAM itself can run at 170MHz at max (typical, Read-before-write is 100MHz)
- Single Port
- Dual Port
- Semi-dual Port
- Parity bits
- ROM
- Data width from 1 to 36 bits
- Mixed clock mode
- Mixed data width mode
- Byte Enable operation for double-byte and above data
- Normal read and write mode
- Read-before-write mode
- Write-through Mode

3.6.2 Memory Configuration Mode

The BSRAM mode in the GW1NZ series of FPGA products supports different data bus widths. See Table 3-8.

Table 3-8 Memory Size Configuration

Single Port Mode	Dual Port Mode ^[1]	Semi-Dual Port Mode
16K x 1	16K x 1	16K x 1
8K x 2	8K x 2	8K x 2
4K x 4	4K x 4	4K x 4
2K x 8	2K x 8	2K x 8

DS841-2.1E 23(49)

1K x 16	1K x 16	1K x 16
512 x 32	-	512 x 32
2K x 9	2K x 9	2K x 9
1K x 18	1K x 18	1K x 18
512 x 36	-	512 x 36

Note!

[1] The GW1NZ-1 device does not support Dual Port Mode.

Single Port Mode

The single port mode can support 2 read modes (bypass mode and pipeline mode) and 3 write modes (normal mode, write-through mode, and read-before-write mode). In the single port mode, BSRAM can write to or read from one port at one clock edge. When the output register is bypassed, the new data will show at the same write clock rising edge.

For further information about Single Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User</u> Guide.

Dual Port Mode

The dual port mode can support 2 read modes (bypass mode and pipeline mode) and 2 write modes (normal mode and write-through mode). The applicable operations are as follows:

- Two independent read
- Two independent write
- An independent read and an independent write at different clock frequencies

Note!

It is not recommended to perform simultaneous read access from one port and write access from the other port to the same memory address for all modes of the Dual Port BSRAM.

For further information about Dual Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>.

Semi-Dual Port Mode

The semi-dual port mode can support 2 read modes (bypass mode and pipeline mode) and 1 write mode (normal mode). The semi-dual port mode supports reading and writing at the same time on different ports, but it is not possible to write and read to the same port at the same time. It only supports writing on Port A and reading on Port B.

Note!

It is not recommended to perform simultaneous read access from one port and write access from the other port to the same memory address for all modes of the Dual Port BSRAM.

For further information about Semi-Dual Port Block Memory ports and the related description, please refer to <u>UG285, Gowin BSRAM & SSRAM</u> User Guide.

DS841-2.1E 24(49)

Read Only

BSRAMs can be configured as ROMs. The ROM can be initialized during the device configuration stage, and the ROM data needs to be provided in the initialization file. Initialization completes during the device power-on process.

Each BSRAM can be configured as one 16 Kbits ROM. For further information about Read Only Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>.

3.6.3 Mixed Data Bus Width Configuration

BSRAM in the GW1NZ series of FPGA products supports mixed data bus width operation. In the dual port and semi-dual port modes, the data bus width for read and write can be different. For the available configuration options, please see Table 3-9 and Table 3-10 below.

Table 3-9 Dual Port Mixed Read/Write Data Width Configuration

Read	Write Port							
Port	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18	
16K x 1	*	*	*	*	*			
8K x 2	*	*	*	*	*			
4K x 4	*	*	*	*	*			
2K x 8	*	*	*	*	*			
1K x 16	*	*	*	*	*			
2K x 9						*	*	
1K x 18						*	*	

Note!

Table 3-10 Semi Dual Port Mixed Read/Write Data Width Configuration

Read	Write Port								
Port	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	512 x 32	2K x 9	1K x 18	512 x 36
16K x 1	*	*	*	*	*	*			
8K x 2	*	*	*	*	*	*			
4K x 4	*	*	*	*	*	*			
2K x 8	*	*	*	*	*	*			
1K x 16	*	*	*	*	*	*			
512 x 32	*	*	*	*	*	*			
2K x 9							*	*	*
1K x 18							*	*	*

Note:

DS841-2.1E 25(49)

[&]quot;*" denotes the modes supported.

[&]quot;*" denotes the modes supported.

3.6.4 Byte-enable

The BSRAM in the GW1NZ series of FPGA products supports byteenable. For data longer than a byte, the additional bits can be blocked, and only the selected portion can be written into. The blocked bits will be retained for future operation. Read/write enable ports (WREA, WREB), and byte-enable parameter options can be used to control the BSRAM write operation.

Note!

For the GW1NZ series, only the GW1NZ-2 device supports the byte-enable function.

3.6.5 Parity Bit

There are parity bits in BSRAMs. The 9th bit in each byte can be used as a parity bit to check the correctness of data transmission. It can also be used for data storage.

3.6.6 Synchronous Operation

- All the input registers of the BSRAM support synchronous writes.
- The output registers can be used as pipeline registers to improve design performance.
- The output registers are bypassable.

3.6.7 Power up Conditions

BSRAM initialization is supported when powering up. During the power-up process, BSRAM is in standby mode, and all the data outputs are "0". This also applies in ROM mode.

3.6.8 BSRAM Operation Modes

BSRAM supports five different operations, including two read operations (Bypass Mode and Pipeline Read Mode) and three write operations (Normal Write Mode, Write-through Mode, and Read-before-write Mode).

Read Mode

Read data from the BSRAM via output registers or without using the registers.

PIPELINE MODE

While writing in the BSRAM, the output register and pipeline register are also being written. The data bus can be up to 36 bits in this mode.

BYPASS MODE

The output register is not used. The data is kept in the output of the memory array.

DS841-2.1E 26(49)

Figure 3-12 Pipeline Mode in Single Port, Dual Port, and Semi Dual Port

Write Mode

NORMAL WRITE MODE

In this mode, when the user writes data to one port, the output data of this port does not change. The data written in will not appear at the read port.

WRITE-THROUGH MODE

In this mode, when the user writes data to one port, the data written in will also appear at the output of this port.

READ-BEFORE-WRITE MODE

In this mode, when the user writes data to one port, the data written in will be stored in the memory according to the address. The original data in this address will appear at the output of this port.

DS841-2.1E 27(49)

3.6.9 Clock Operations

Table 3-11 lists the clock operations in different BSRAM modes:

Table 3-11 Clock Operations in Different BSRAM Modes

Clock Operations	Dual Port Mode	Semi-Dual Port Mode	Single Port Mode
Independent Clock Mode	Yes	No	No
Read/Write Clock Mode	Yes	Yes	No
Single Port Clock Mode	No	No	Yes

Independent Clock Mode

Figure 3-13 shows the independent clocks in dual port mode with each port with one clock. CLKA controls all the registers at Port A; CLKB controls all the registers at Port B.

Figure 3-13 Independent Clock Mode

Read/Write Clock Operation

Figure 3-14 shows the read/write clock operations in the semi-dual port mode with one clock at each port. The write clock (CLKA) controls Port A data inputs, write address and write enable signals. The read clock (CLKB) controls Port B data output, read address, and read enable signals.

Figure 3-14 Read/Write Clock Mode

DS841-2.1E 28(49)

Single Port Clock Mode

Figure 3-15 shows the clock operation in single port mode.

Figure 3-15 Single Port Clock Mode

3.7 User Flash (GW1NZ-1)

3.7.1 Introduction

GW1NZ-1 offers User Flash, the features are shown below:

- NOR Flash
- 10,000 write cycles
- Capacity: 64K bits
- Greater than ten years' data retention at +85 $\,^\circ\mathrm{C}$
- Supports page erasure: 2,048 bytes per page
- Quick page erasure/Write operation
- Clock frequency: 40MHz
- Write operation time: ≤16µs
- Page erasure time: ≤120 ms
- Electric current
 - Read Operation: 2.19 mA/25 ns (V_{CC}) & 0.5 mA/25 ns (V_{CCX}) (MAX).
 - Write operation/erase operation: 12/12 mA(MAX)

3.7.2 Mode

The User Flash in the GW1NZ series of FPGA products contains two modes: Normal mode and sleep mode.

- Normal mode: User flash is turned on by default. Users can perform erase/write/read operations after the device is powered on. It cannot be turned off.
- Sleep mode: User flash is turned off by default to save power. Users can turn on/turn off the user flash mode using the "Sleep" port. When the user flash is turned on, it's the same as the normal mode user flash, and users can perform erase/write/read operations.

The GW1NZ LV/ZV devices with different speeds offer different user flash modes. For further detailed information, please refer to Table 3-12.

DS841-2.1E 29(49)

Mode	Default Status	Turn on/Turn off	Device Version	Speed Grade
		No LV C6/I5 C5/I4	11/	C6/I5
Normal mode	On		C5/I4	C5/I4
			ZV	C5/I4
Class made	Off	Voc	71/	12
Sleep mode	Off	Yes	ZV	13

Table 3-12 User Flash Modes

For further information about the user Flash in GW1NZ-1, please refer to <u>UG295, Gowin User Flash User Guide</u>. For the correspondence between user Flash primitives and devices supported, please refer to Table 3-1 Devices Supported of <u>UG295</u>, Gowin User Flash User Guide.

3.8 User Flash (GW1NZ-2)

3.8.1 Introduction

The GW1NZ-2 device offers User Flash. The capacity of the User Flash in the GW1NZ-2 device is 96Kbits. The user Flash memory is composed of row memory units and column memory units. One row memory unit is composed of 64 column memory units. The capacity of one column memory unit is 32 bits, and the capacity of one row memory unit is 64*32=2048 bits. Page erase is supported, and the capacity of one page is 2048 bytes, i.e., one page includes 8 rows. The key features are shown below:

- NOR Flash
- 10,000 write cycles
- Greater than 10 years of data retention at +85 ℃
- Data Width: 32
- Capacity: 48 rows x 64 columns x 32 = 96Kbits
- Page Erase Capability: 2,048 bytes per page
- Fast Page Erasure/Word Programming Operation
- Clock frequency: 40 MHz
- Word Programming Time:≤16 µs
- Page Erasure Time: ≤120 ms
- Electric current
 - Read current/duration:2.19 mA/25 ns (V_{CC}) & 0.5 mA/25 ns (V_{CCX})
 (MAX)
 - Program/Erase operation: 12/12 mA(MAX)

For more information about the user Flash in the GW1NZ-2 device, please refer to <u>UG295, Gowin User Flash User Guide</u>. For the correspondence between user Flash primitives and devices supported, please refer to Table 3-1 Devices Supported of UG295.

3.9 MIPI D-PHY(GW1NZ-2)

3.9.1 Hard Core - MIPI D-PHY RX(GW1NZ-2)

The GW1NZ-2 device provides the hard MIPI D-PHY RX IP core. This

DS841-2.1E 30(49)

IP applies to the display serial interface (DSI) and the camera serial interface (CSI), which are designed to receive and send image data or video data. MIPI D-PHY provides a physical layer definition.

The key features are as follows:

- High-Speed RX at up to 8 Gbps per quad
- Supports up to 4 data lanes and one clock lane per PHY
- Bidirectional Low-power (LP) mode at up to 10mbps per lane
- Built-in HS Sync, bit and lane alignment
- 1:8 and 1:16 deserialization modes to FPGA fabric's user interface
- Supports MIPI DSI and MIPI CSI-2 link layers
- Available on Bank6

For further detailed information, please refer to <u>IPUG778, Gowin</u> <u>GW1N-2 Hardened MIPI D-PHY RX User Guide.</u>

3.9.2 GPIOs Support MIPI D-PHY RX/TX by Using MIPI IO mode(GW1NZ-2)

The GPIOs of the GW1NZ-2 device also support MIPI D-PHY RX/TX by using MIPI IO mode. This applies to the display serial interface (DSI) and the camera serial interface (CSI), which are designed to receive and send image data or video data. MIPI D-PHY provides a physical layer definition.

The key features are as follows:

- Compliant to MIPI Alliance Standard for D-PHY Specification, version 1.2:
- Interfaces to MIPI CSI2 and DSI, RX and TX devices;
- Supports unidirectional High-speed (HS) mode;
- Supports bidirectional Low-power operation mode;
- Deserializes serial high-speed data into byte data packets;
- Supports MIPI D-PHY RX 1:8 mode and 1:16 mode;
- Supports IO Types of ELVDS, TLVDS, and MIPI IO;
- IO Bank0, IO Bank3, IO Bank4, and IO Bank5 support MIPI D-PHY TX, and the transmission rate can be up to 1.2 Gbps;
- IO Bank2 supports MIPI D-PHY RX, and the transmission rate can be up to 1.2Gbps;
- Supports up to 4 data lanes and one clock lane.

For further detailed information, please refer to <u>IPUG112</u>, <u>Gowin MIPI</u> D-PHY RX TX user guide.

3.10 Clock

For further detailed information, please refer to <u>UG286, Gowin Clock</u> User Guide.

3.10.1 Global Clock

The GCLK resources are distributed in the device as quadrants. Each quadrant provides eight GCLKs. The optional clock resources of GCLK can be pins or CRU. Users can employ dedicated pins as clock resources

DS841-2.1E 31(49)

3.11 Long Wire (LW)

to achieve better timing.

3.10.2 PLL

PLL (Phase-locked Loop) is one kind of feedback control circuit. The frequency and phase of the internal oscillator signal are controlled by the external input reference clock.

PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiplication and division), phase adjustment, and duty cycle can be adjusted by configuring the parameters.

3.10.3 HCLK

HCLK is the high-speed clock in the GW1NZ series of FPGA products. It can support high-performance data transfer and is mainly suitable for source synchronous data transfer protocols. See Figure Figure 3-16. HCLK can be used for the whole I/O Bank.

Figure 3-16 GW1NZ-1 HCLK Distribution

Figure 3-17 GW1NZ-2 HCLK Distribution

TBD

3.11 Long Wire (LW)

As a supplement to the CRU, the GW1NZ series of FPGA products provide another routing resource, Long Wire, which can be used as clock, clock enable, set/reset, or other high fan-out signals.

3.12 Global Set/Reset (GSR)

A global set/reset (GSR) network is built in the GW1NZ series of FPGA products. There is a direct connection to the core logic. It can be used as asynchronous/synchronous set or asynchronous/synchronous reset. The registers in CFU and I/O can be individually configured to use GSR.

DS841-2.1E 32(49)

3.13 Programming Configuration

The GW1NZ series of FPGA products support SRAM and Flash. The Flash programming mode supports on-chip Flash and off-chip Flash. The GW1NZ series of FPGA products support DUAL BOOT, providing a selection for users to back up data to off-chip Flash according to requirements.

Besides JTAG, the GW1NZ series of FPGA products also supports GOWINSEMI's own configuration mode: GowinCONFIG (AUTO BOOT, SSPI, MSPI, DUAL BOOT, SERIAL, CPU, and I²C Slave). All the devices support JTAG and AUTO BOOT. For more information, please refer to <u>UG290, Gowin FPGA Products Programming and Configuration User Guide</u>.

3.13.1 SRAM Configuration

When you adopt SRAM to configure the device, every time the device is powered on, the bit stream file needs to be downloaded to configure the device.

3.13.2 Flash Configuration

The Flash configuration data is stored in the on-chip flash. Each time the device is powered on, the configuration data is transferred from the Flash to the SRAM, which controls the working of the device. This mode can complete configuration within a few ms, and is referred to as "Quick Start". The GW1NZ series of FPGA products also support off-chip Flash configuration and dual-boot. Please refer to UG290, Gowin FPGA
Products Programming and Configuration User Guide for more detailed information.

3.14 On-Chip Oscillator

There is an on-chip oscillator in each of the GW1NZ series of FPGA products. The on-chip oscillator provides a programmable user clock with precision of $\pm 5\%$. During the configuration process, it can provide a clock for the MSPI mode. See Table 3-13 for the output frequency.

Table 3-13 Oscillator Output Frequency Options

Mode	Frequency	Mode	Frequency	Mode	Frequency
0	2.5MHz ^[1]	8	7.8MHz	16	15.6MHz
1	5.4MHz	9	8.3MHz	17	17.9MHz
2	5.7MHz	10	8.9MHz	18	21MHz
3	6.0MHz	11	9.6MHz	19	25MHz
4	6.3MHz	12	10.4MHz	20	31.3MHz
5	6.6MHz	13	11.4MHz	21	41.7MHz
6	6.9MHz	14	12.5MHz	22	62.5MHz
7	7.4MHz	15	13.9MHz	23	125MHz ^[2]

Note!

DS841-2.1E 33(49)

- [1] The default frequency is 2.5MHz.
- [2] 125 MHz is not suitable for MSPI.

The on-chip oscillator also provides a clock resource for user designs. Up to 64 clock frequencies can be obtained by setting the parameters. The following formula is employed to get the output clock frequency:

fout=250MHz/Param.

"Param" is the configuration parameter with a range of 2~128. It supports even numbers only.

DS841-2.1E 34(49)

4 AC/DC Characteristic

4.1 Operating Conditions

4.1.1 Absolute Max. Ratings

Table 4-1 Absolute Max. Ratings

Name	Description	Min.	Max.
Vcc	Core voltage	-0.5V	1.32V
Vccio	I/O Bank Power	-0.5V	3.75V
Vccx	Auxiliary Power	-0.5V	3.75V
-	I/O Voltage Applied ^[1]	-0.5V	3.75V
Storage Temperature	Storage Temperature	-65℃	+150℃
Junction Temperature	Junction Temperature	-40℃	+125℃

Note!

[1] Overshoot and undershoot of -2V to $(V_{IHMAX} + 2)V$ are allowed for a duration of <20 ns.

4.1.2 Recommended Operating Conditions

Table 4-2 Recommended Operating Conditions

Name	Description	Min.	Max.
Vcc	LV: Core Power	1.14V	1.26V
VCC	ZV: Core Power	0.88V	1.2V
Vccio	I/O Bank Power	1.14V	3.6V
Vccx	Auxiliary voltage	1.71V	3.6V ^[2]
Т _{ЈСОМ}	Junction temperature Commercial operation	0℃	+85℃
T _{JIND}	Junction temperature Industrial operation	-40°C	+100℃

Note!

• For the detailed recommended operating conditions for different packages, please refer to *UG842*, *GW1NZ-1 Pinout*, *UG847*, *GW1NZ-2 Pinout*.

The low power mode of GW1NZ-2 requires V_{CCX}≤2.5V.

DS841-2.1E 35(49)

Preliminary
4 AC/DC Characteristic 4.2 ESD

4.1.3 Power Supply Ramp Rates

Table 4-3 Power Supply Ramp Rates

Name	Description	Min.	Тур.	Max.
V _{CC} Ramp	Power supply ramp rates for V _{CC}	1.2mV/µs	-	40mV/μs
V _{CCX} Ramp	Power supply ramp rates for V _{CCX}	0.6mV/µs	-	10mV/us
V _{CCIO} Ramp	Power supply ramp rates for V _{CCIO}	0.1mV/μs	-	10mV/us

Note!

- A monotonic ramp is required for all power supplies.
- All power supplies need to be in the operating range as defined in Table 4-2 before configuration. Power supplies that are not in the operating range need to be adjusted to a faster ramp rate, or you have to delay configuration.

4.1.4 Hot Socket Specifications

Table 4-4 Hot Socket Specifications

Name	Description	Condition	I/O Type	Max.
I _{HS}	Input or I/O leakage current	0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>	I/O	150uA
Ins	Input or I/O leakage current	0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>	TDI, TDO, TMS, TCK	120uA

4.1.5 POR Specification

Table 4-5 POR Specification

Name	Description	Device	Name	Value
	Power on		Vcc	0.8V
V _{POR_UP}	reset ramp up		Vccx	1.5V
	trip point	GW1NZ-1	Vccio	
Vpor_down	Power on	GWINZ-I	Vcc	0.65V
	reset ramp down trip point		Vccx	1.4V
			Vccio	0.7V
	Power on		Vcc	0.8V
V _{POR_UP}	reset ramp up		Vccx	1.5V
	trip point	GW1NZ-2	Vccio	0.95V
	Power on	Vo	Vcc	0.65V
Vpor_down	reset ramp down trip		Vccx	1.3V
	point		Vccio	0.75V

4.2 ESD

Table 4-6 GW1NZ ESD - HBM

Device	GW1NZ-1	GW1NZ-2
CS16	HBM>1,000V	-

DS841-2.1E 36(49)

Device	GW1NZ-1	GW1NZ-2
FN32	HBM>1,000V	-
FN32F	HBM>1,000V	-
QN48	HBM>1,000V	HBM>1,000V
CS100H	-	HBM>1,000V

Table 4-7 GW1NZ ESD - CDM

Device	GW1NZ-1	GW1NZ-2
CS16	CDM>500V	-
FN32	CDM>500V	-
FN32F	CDM>500V	-
QN48	CDM>500V	CDM>500V
CS100H	-	CDM>500V

4.3 DC Characteristic

4.3.1 DC Electrical Characteristics over Recommended Operating Conditions

Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions

Name	Description	Condition	Min.	Тур.	Max.
In Inc	Input or I/O	VCCIO <vin<vih (max)<="" td=""><td>-</td><td>-</td><td>210 µA</td></vin<vih>	-	-	210 µA
I⊫, I⊨	leakage	0V <vin<vccio< td=""><td>-</td><td>-</td><td>10µA</td></vin<vccio<>	-	-	10µA
I _{PU}	I/O Active Pull-up Current	0 <v<sub>IN<0.7V_{CCIO}</v<sub>	-30 μΑ	-	-150 μA
I _{PD}	I/O Active Pull-down Current	VIL (MAX) <vin<vccio< td=""><td>30 μΑ</td><td>-</td><td>150 µA</td></vin<vccio<>	30 μΑ	-	150 µA
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} =V _{IL} (MAX)	30 μΑ	-	-
Івнно	Bus Hold High Sustaining Current	V _{IN} =0.7V _{CCIO}	-30 μΑ	-	-
Івньо	Bus HoldLow Overdrive Current	0≤Vin≤Vccio	-	-	150 μΑ
Івнно	Bus HoldHigh Overdrive Current	0≤Vin≤Vccio	-	-	-150 μA
V _{ВНТ}	Bus hold trigger points		V _{IL} (MAX)	-	V _{IH} (MIN)
C1	I/O Capacitance			5 pF	8 pF
		V _{CCIO} =3.3V, Hysteresis=L2H ^{[1],[2]}	-	200mV	-
		V _{CCIO} =2.5V, Hysteresis= L2H	-	125mV	-
	Hysteresis for	V _{CCIO} =1.8V, Hysteresis= L2H	-	60mV	-
V _{HYST}	Schmitt Trigger	V _{CCIO} =1.5V, Hysteresis= L2H	-	40mV	-
	inputs	V _{CCIO} =1.2V, Hysteresis= L2H	-	20mV	-
		V _{CCIO} =3.3V, Hysteresis= H ₂ L ^{[1],[2]}	-	200mV	-
		V _{CCIO} =2.5V, Hysteresis= H2L	-	125mV	-

DS841-2.1E 37(49)

Name	Description	Condition	Min.	Тур.	Max.
		V _{CCIO} =1.8V, Hysteresis= H2L	-	60mV	-
		V _{CCIO} =1.5V, Hysteresis= H2L	-	40mV	-
		V _{CCIO} =1.2V, Hysteresis= H2L	-	20mV	-
		V _{CCIO} =3.3V, Hysteresis= HIGH ^{[1],[2]}	-	400mV	-
		V _{CCIO} =2.5V, Hysteresis= HIGH	-	250mV	-
		V _{CCIO} =1.8V, Hysteresis= HIGH	-	120mV	-
		V _{CCIO} =1.5V, Hysteresis= HIGH	-	80mV	-
		V _{CCIO} =1.2V, Hysteresis= HIGH	-	40mV	-

Note!

- [1] Hysteresis="NONE", "L2H", "H2L", "HIGH" indicates the Hysteresis options that can be set when setting I/O Constraints in the FloorPlanner tool of Gowin EDA, for more details, see SUG935, Gowin Design Physical Constraints User Guide.
- [2] Enabling the L2H (low to high) option means raising V_{IH} by V_{HYST}; enabling the H2L (high to low) option means lowering V_{IL} by V_{HYST}; enabling the HIGH option means enabling both L2H and H2L options, i.e. V_{HYST}(HIGH) = V_{HYST}(L2H) + V_{HYST}(L2H). The diagram is shown below.

4.3.2 Static Current

Table 4-9 Static Supply Current (LV Device)

Name	Description	Device	Тур.
Icc	Core current (Vcc=1.2V)	GW1NZ-1	3mA
	V _{CCX} current (V _{CCX} =3.3V)	GW1NZ-1	0.5mA
Iccx	V _{CCX} current (V _{CCX} =2.5V)	,	0.5mA
Iccio	I/O Bank current (Vccio=2.5V)	GW1NZ-1	0.5mA

Table 4-10 Static Supply Current (GW1NZ-1, ZV Version)

Name	Description	Device	Тур.
Icc		GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4	50uA
	Core current (Vcc=0.9V)	GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3	40uA
		GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2	30uA
	V _{CCX} current (V _{CCX} floating)	GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4	0uA
1		GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3	0uA
Iccx		GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2	0uA
	Vccx current (Vccx=1.8V~3.3V)	GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4	1uA

DS841-2.1E 38(49)

Name	Description	Device	Тур.
		GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3	1uA
		GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2	1uA
		GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4	0uA
Iccio	I/O Bank current (V _{CCIO} =3.3V)	GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3	0uA
		GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2	0uA

Note!

- After the device wakes up, you can turn off the external Vccx without affecting the normal operation of the device when you are not using the user flash.
- The typical values in the table above are tested at room temperature.
- In zero power circumstances, if you use the MODE pin, the PULL_MODE of this pin must be configured as KEEPER.

Table 4-11 Static Supply Current (GW1NZ-2, ZV Version)[1],[3],[4]

Name	Description	Тур.
	Core current (Vcc=1.1V)	600uA
Icc	Core current (Vcc=1.0V)	240uA
	Core current (Vcc=0.9V)	120uA
Iccx	V _{CCX} current (V _{CCX} =1.8V)	150uA
Iccio	I/O Bank current (Vccio=1.8V)	0uA ^[2]

Note!

- [1] Test condition: 25°C, BGEN(bandgap enable)=0.
- [2] I_{CCIO} is determined by your external IO circuit and pull-up/down state, and theoretically zero power consumption can be achieved.
- [3] Low power mode requires V_{CCX}≤2.5V.
- [4] You can also choose to turn off V_{CCX}/V_{CCIO} when entering ultra-low power mode, and the data in the device's SRAM will be retained.

4.3.3 I/O Operating Conditions Recommended

Table 4-12 I/O Operating Conditions Recommended

Name	Output Vccio (V)			Input V _{REF} (V)		
Name	Min.	Тур.	Max.	Min.	Тур.	Max.
LVTTL33	3.135	3.3	3.6	-	-	-
LVCMOS33	3.135	3.3	3.6	-	-	-
LVCMOS25	2.375	2.5	2.625	-	-	-
LVCMOS18	1.71	1.8	1.89	-	-	-
LVCMOS15	1.425	1.5	1.575	-	-	-
LVCMOS12	1.14	1.2	1.26	-	-	-
SSTL15	1.425	1.5	1.575	0.68	0.75	0.9
SSTL18_I	1.71	1.8	1.89	0.833	0.9	0.969

DS841-2.1E 39(49)

4.3 DC Characteristic

Name	Output Vo	ccio (V)		Input V _{REF} (V)		
Name	Min.	Тур.	Max.	Min.	Тур.	Max.
SSTL18_II	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I	2.375	2.5	2.645	1.15	1.25	1.35
SSTL25_II	2.375	2.5	2.645	1.15	1.25	1.35
SSTL33_I	3.135	3.3	3.6	1.3	1.5	1.7
SSTL33_II	3.135	3.3	3.6	1.3	1.5	1
HSTL18_I	1.71	1.8	1.89	0.816	0.9	1.08
HSTL18_II	1.71	1.8	1.89	0.816	0.9	1.08
HSTL15	1.425	1.5	1.575	0.68	0.75	0.9
PCI33	3.135	3.3	3.6	-	-	-
LVPECL33E	3.135	3.3	3.6	-	-	-
MLVDS25E	2.375	2.5	2.625	-	-	-
BLVDS25E	2.375	2.5	2.625	-	-	-
RSDS25E	2.375	2.5	2.625	-	-	-
LVDS25E	2.375	2.5	2.625	-	-	-
SSTL15D	1.425	1.5	1.575	-	-	-
SSTL18D_I	1.71	1.8	1.89	-	-	-
SSTL18D_II	1.71	1.8	1.89	-	-	-
SSTL25D_I	2.375	2.5	2.625	-	-	-
SSTL25D_II	2.375	2.5	2.625	-	-	-
SSTL33D_I	3.135	3.3	3.6	-	-	-
SSTL33D_II	3.135	3.3	3.6	-	-	-
HSTL15D	1.425	1.575	1.89	-	-	-
HSTL18D_I	1.71	1.8	1.89	-	-	-
HSTL18D_II	1.71	1.8	1.89	-	-	-

4.3.4 Single - Ended IO DC Electrical Characteristic

Table 4-13 Single - Ended IO DC Electrical Characteristic

Name	VIL		ViH		Vol	Vон	loL ^[1]	Iон ^[1]
	Min	Max	Min	Max	(Max)	(Min)	(mA)	(mA)
							4	-4
				3.6V	0.4V	Vccio-0.4V	8	-8
LVCMOS33	-0.3V 0.8V	0.01/	2.0V				12	-12
LVTTL33		3V 0.8V					16	-16
							24	-24
					0.2V	Vccio-0.2V	0.1	-0.1
LVCMOSSE	0.21/	0.01/.071/	4 7) (2 61/	0.41/	\/ 0 4\/	4	-4
LVCMOS25	-0.3V 0.7V	1.7V	3.6V	0.4V	Vccio-0.4V	8	-8	

DS841-2.1E 40(49)

Name	VIL		ViH		V _{OL}	V _{OH}	l _{OL} ^[1]	I _{OH} ^[1]		
Name	Min	Max	Min	Max	(Max)	(Min)	(mA)	(mA)		
							12	-12		
							16	-16		
					0.2V	Vccio-0.2V	0.1	-0.1		
							4	-4		
					0.4V	Vccio-0.4V	8	-8		
LVCMOS18	-0.3V	0.35 x V _{CCIO}	0.65 x V _{CCIO}	3.6V			12	-12		
					0.2V	V _{CCIO} -0.2V	0.1	-0.1		
					0.4V	Vccio-0.4V	4	-4		
LVCMOS15	-0.3V	0.35 x Vccio 0.65 x Vccio	0.65 x V _{CCIO}	0.65 x Vccio	0.65 x Vccio	x Vccio 0.65 x Vccio 3.6V 0.40	0.40	VCCIO-U.4V	8	-8
					0.2V	Vccio-0.2V	0.1	-0.1		
			0.65 x Vccio		0.4V	Vccio-0.4V	2	-2		
LVCMOS12	-0.3V	0.35 x Vccio		3.6V	0.40	V CC10-0.4 V	6	-6		
					0.2V	Vccio-0.2V	0.1	-0.1		
PCI33	-0.3V	0.3 x V _{CCIO}	0.5 x V _{CCIO}	3.6V	0.1 x Vccio	0.9 x V _{CCIO}	1.5	-0.5		
SSTL33_I	-0.3V	V _{REF} -0.2V	V _{REF} +0.2V	3.6V	0.7	Vccio-1.1V	8	-8		
SSTL25_I	-0.3V	V _{REF} -0.18V	V _{REF} +0.18V	3.6V	0.54V	Vccio-0.62V	8	-8		
SSTL25_II	-0.3V	V _{REF} -0.18V	V _{REF} +0.18V	3.6V	N/A	N/A	N/A	N/A		
SSTL18_II	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V	3.6V	N/A	N/A	N/A	N/A		
SSTL18_I	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V	3.6V	0.40V	Vccio-0.40V	8	-8		
SSTL15	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vccio-0.40V	8	-8		
HSTL18_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vccio-0.40V	8	-8		
HSTL18_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	N/A	N/A	N/A	N/A		
HSTL15_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vccio-0.40V	8	-8		
HSTL15_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	N/A	N/A	N/A	N/A		

Note!

[1]The total DC current limit(sourced and sunk) of all IOs in the same bank: the total DC current of all IOs in the same bank shall not be greater than n*8mA, where n represents the number of IOs bonded out from a bank.

4.4 Switching Characteristic

4.4.1 CFU Block Internal Timing Parameters

Table 4-14 CFU Block Internal Timing Parameters

Name	Description	Speed	Unit	
	Description	Min	Max	Offic
tLUT4_CFU	LUT4 delay	-	0.674	ns
tLUT5_CFU	LUT5 delay	-	1.388	ns
tLUT6_CFU	LUT6 delay	-	2.01	ns

DS841-2.1E 41(49)

Name	Description	Speed	Linit		
Name	escription Min		Max	Unit	
tlut7_cfu	LUT7 delay	-	2.632	ns	
tLUT8_CFU	LUT8 delay	-	3.254	ns	
tsr_cfu	Set/Reset to Register output	-	1.86	ns	
tco_cfu	Clock to Register output	-	0.76	ns	

4.4.2 Gearbox Switching Characteristics

Table 4-15 Gearbox Switching Characteristics

TBD

4.4.3 Clock and I/O Switching Characteristics

Table 4-16 Clock and I/O Switching Characteristics

Name	Descri Dovice	Device	Doving -5		-6	Unit	
ivaine	ption	Device	Min	Max	Min	Max	Offic
Clocks	TBD	TBD	TBD	TBD	TBD	TBD	
Pin-LUT-Pin Delay	TBD	TBD	TBD	TBD	TBD	TBD	
General I/O Pin Parameters	TBD	TBD	TBD	TBD	TBD	TBD	

4.4.4 BSRAM Switching Characteristics

Table 4-17 BSRAM Internal Timing Parameters

Name	Description	Speed	Unit	
	Description	Min	Max	Offic
tcoad_bsram	Clock to output from read address/data	-	5.10	ns
tcoor_bsram	Clock to output from output register	-	0.56	ns

4.4.5 On-chip Oscillator Output Frequency

Table 4-18 O-chip Oscillator Output Frequency

Name	Description	Min.	Тур.	Max.
	Output Frequency (0 to 85℃)	106.25MHz	125MHz	143.75MHz
f _{MAX}	Output Frequency (-40 to +100°C)	100MHz	125MHz	150MHz
t _{DT}	Output Clock Duty Cycle	43%	50%	57%
topjit	Output Clock Period Jitter	0.01UIPP	0.012UIPP	0.02UIPP

4.4.6 PLL Switching Characteristics

Table 4-19 PLL Switching Characteristics

Device	LV/ZV	Speed Grade	Name	Min.	Max.	
GW1NZ-1		C6/I5	CLKIN	3MHZ	400MHZ	
	LV		PFD	3MHZ	400MHZ	
			VCO	400MHZ	800MHZ	
			CLKOUT	3.125MHZ	400MHZ	

DS841-2.1E 42(49)

Device	LV/ZV	Speed Grade	Name	Min.	Max.
			CLKIN	3MHZ	320MHZ
		05/14	PFD	3MHZ	320MHZ
		C5/I4	VCO	320MHZ	640MHZ
			CLKOUT	2.5MHZ	360MHZ
			CLKIN	3MHZ	200MHZ
		C5/I4	PFD	3MHZ	200MHZ
		C5/14	VCO	200MHZ	400MHZ
			CLKOUT	1.5625MHZ	200MHZ
			CLKIN	3MHZ	150MHZ
			PFD	3MHZ	150MHZ
	ZV	13	VCO	150MHZ	300MHZ
			CLKOUT	1.171875MH Z	150MHZ
		12	CLKIN	3MHZ	100MHZ
			PFD	3MHZ	100MHZ
			VCO	100MHZ	200MHZ
			CLKOUT	0.78125MHZ	100MHZ
			CLKIN	TBD	TBD
		13	PFD	TBD	TBD
		13	VCO	TBD	TBD
GW1NZ-2	7\/		CLKOUT	TBD	TBD
	ZV		CLKIN	TBD	TBD
		10	PFD	TBD	TBD
		12	VCO	TBD	TBD
			CLKOUT	TBD	TBD

4.5 User Flash Characteristic

4.5.1 DC Characteristic

Table 4-20 GW1NZ-1 User Flash DC Characteristics

Name	Parame	Max.		Unit	Wake-up	Condition
	ter	Vcc[3]	Vccx	Offic	Time	Condition
Read mode (w/l 25ns) ^[1]		2.19	0.5	mA	N/A	Min. Clcok period, duty cycle 100%, VIN = "1/0"
Write mode	I _{CC1} ^[2]	0.1	12	mA	N/A	
Erase mode	ICC1 ¹⁻³	0.1	12	mA	N/A	
Page Erasure Mode		0.1	12	mA	N/A	
Read mode static current (25-50ns)	Icc2	980	25	μА	N/A	XE=YE=SE="1", between T=Tacc and T=50ns, I/O=0mA; later than T=50ns, read mode is turned off, and I/O current is the current of standby mode.

DS841-2.1E 43(49)

Name	Parame	Max.		Llmit	Wake-up	Can dition	
	ter	Vcc ^[3]	Vccx	Unit	Time	Condition	
Standby mode	IsB	5.2	20	μA	0	Vss, Vccx, and Vcc	
Floating mode ^[3]	I _{PD}	0	0	μA	7us	Vccx=0	
Typical Value (Ro	Typical Value (Room temperature: 25℃)						
Standby mode	IsB	0.4	7.5	μA	0	Vss, Vccx, and Vcc	
Floating mode ^[3]	I _{PD}	0	0	μΑ	3.5us	Vccx=0	

Note!

- [1] Means the average current, and the peak value is higher than the average one.
- [2] Calculated in different T_{new} clock periods.
 - Tnew< Tacc is not allowed
 - $T_{new} = T_{acc}$
 - $T_{acc} < T_{new} 50ns: I_{CC1} (new) = (I_{CC1} I_{CC2})(T_{acc}/T_{new}) + I_{CC2}$
 - T_{new} >50ns: Icc1 (new) = (Icc1 Icc2)(T_{acc} / T_{new}) + 50ns x Icc2/ T_{new} + Isb
 - t > 50ns, $I_{CC2} = I_{SB}$
- [3] Only supported in user flash in sleep mode.

Table 4-21 GW1NZ-2 User Flash DC Characteristic^[4]

Name	Param-	Max.		Unit	Wake-up	Condition
Name	eter	Vcc[3]	Vccx	Offic	Time	Condition
Read mode (w/l 25ns) ^[1]		2.19	0.5	mA	NA	Min. Clock period, duty cycle 100%, VIN = "1/0"
Write mode	Icc1 ^[2]	0.1	12	mA	NA	
Erase mode	ICC1 ^{i-j}	0.1	12	mA	NA	
Page Erasure Mode		0.1	12	mA	NA	
Read mode static current (25-50ns)	Icc2	980	25	μА	NA	XE=YE=SE="1", between T=Tacc and T=50ns, I/O=0mA; later than T=50ns, read mode is turned off, and I/O current is the current of standby mode.
Standby mode	IsB	5.2	20	μA	0	Vss, Vccx, and Vcc

Note!

- [1] Means the average current, and the peak value is higher than the average one.
- [2] Calculated in different T_{new} clock periods.
 - Tnew< Tacc is not allowed
 - T_{new} = T_{acc}
 - $T_{acc} < T_{new} 50ns$: Icc1 (new) = (Icc1 Icc2)(T_{acc}/T_{new}) + Icc2
 - T_{new} >50ns: Icc1 (new) = (Icc1 Icc2)(T_{acc} / T_{new}) + 50ns x Icc2/ T_{new} + IsB
 - t > 50ns, I_{CC2} = I_{SB}
- [3] V_{CC} must be greater than 1.08V from the zero wake-up time.
- [4] The leakage current of Flash is included in the leakage current of the device, see Table 4-4.

DS841-2.1E 44(49)

4.5.2 Timing Parameters^{[1],[5],[6]}

Table 4-22 User Flash Timing Parameters

User Modes	Par	ameter	Name	Min.	Max.	Unit
	WC1			-	25	ns
_	TC			-	22	ns
Access time ^[2]	ВС		T _{acc} ^[3]	-	21	ns
umo	LT			-	21	ns
	WC	;		-	25	ns
Program/Erase	e to c	data storage	T _{nvs}	5	-	μs
Data storage h	old t	ime	T _{nvh}	5	-	μs
Data storage h	old ti	ime (Overall erase)	T _{nvh1}	100	-	μs
Time from da setup	ta st	orage to program	T _{pgs}	10	-	μs
Program hold	time		T _{pgh}	20	-	ns
Program time			T _{prog}	8	16	μs
Write prepare	time		T _{wpr}	>0	-	ns
Erase hold tim	е		T _{whd}	>0	-	ns
Time from write/Erase se		ntrol signal to	T _{cps}	-10	-	ns
Time from SE	E to read setup		Tas	0.1	-	ns
E pulse high le	evel t	ime	T _{pws}	5	-	ns
Address/data	setup	time	T _{ads}	20	-	ns
Address/data l	nold	time	T _{adh}	20	-	ns
Data hold-up t	ime		T _{dh}	0.5	-	ns
		WC1	Tah	25	-	ns
Read m	ode	TC		22	-	ns
	nold	ВС		21	-	ns
time ^[3]		LT		21	-	ns
		WC		25	-	ns
SE pulse low le	evel	time	T _{nws}	2	-	ns
Recovery time	covery time		T _{rcv}	10	-	μs
Data storage t	ime		T _{hv} ⁴	-	6	ms
Erasure time	sure time		T _{erase}	100	120	ms
Overall erase t	erall erase time		T _{me}	100	120	ms
Wake-up time from power down to standby mode			T _{wk_pd}	7	-	μs
Standby hold t	ime		T _{sbh}	100	-	ns
Vcc setup time	•		T _{ps}	0	-	ns
V _{CCX} hold time	!		T_ph	0	-	ns

Note!

- [1] The parameter values may change;
- [2] The values are simulation data only.

DS841-2.1E 45(49)

- [3]After XADR, YADR, XE, and YE are valid, T_{acc} starts from the rising edge of the SE signal. DOUT is kept until the next valid read operation;
- [4]Thy is the time between write and the next erasure. The same address can not be written twice before the next erase, nor does the same register. This limitation is for safety;
- [5] All waveforms have a 1ns rising edge time and a 1ns falling edge time;
- [6] TX, YADR, XE, and YE hold time need to be T_{acc} at least, and T_{acc} starts from the rising edge of the SE signal.

4.5.3 Operation Timing Diagrams

Figure 4-1 Read Mode

DS841-2.1E 46(49)

Figure 4-3 Erasure Mode

4.6 Configuration Interface Timing Specification

The GW1NZ series of FPGA products support six GowinCONFIG configuration modes: AUTO BOOT, DUAL BOOT, MSPI, SSPI, SERIAL, and CPU. For more detailed information, please refer to <u>UG290</u>, <u>Gowin FPGA Products Programming and Configuration User Guide</u>.

DS841-2.1E 47(49)

5 Ordering Information 5.1 Part Name

5 Ordering Information

5.1 Part Name

Figure 5-1 Part Naming Example-ES

Figure 5-2 Part Naming Example-Production

Note!

- [1] FN32 is the legacy version.
- For more package information and resource information, please refer to 2.2 Product Resources and 2.3 Package Information.

DS841-2.1E 48(49)

- Both "C" and "I" are used for some of the GW1NZ series of FPGA products. These devices are screened using industrial standards, so they can be used for both industrial (I) and commercial (C) applications. The maximum temperature of the industrial grade is 100 °C, and the maximum temperature of the commercial grade is 85 °C. Therefore, if the chip meets the speed grade 5 in the commercial grade application, the speed grade is 4 in the industrial grade application.
- The LittleBee[®] family devices and Arora family devices of the same speed grade have different speeds.

5.2 Package Mark

The device information of GOWINSEMI is marked on the chip surface, as shown in Figure 5-3.

Figure 5-3 Package Mark

Note!

- [1] The first two lines in the right figure above are the "Part Number".
- [2] The Date Code followed by an "X" is for X version devices.

DS841-2.1E 49(49)

Preliminary

