

May 16, 2020

# © PCR Using Q5U Hot Start High-Fidelity DNA Polymerase (NEB #M0515): General PCR, USER®Cloning, dUTP incorporation/Carryover prevention

New England Biolabs<sup>1</sup>

<sup>1</sup>New England Biolabs

In 1 collection

Works for me dx.doi.org/10.17504/protocols.io.7schnaw

New England Biolabs (NEB) Tech. support phone: +1(800)632-7799 email: info@neb.com

New England Biolabs New England Biolabs

ABSTRACT

Q5U Hot Start High-Fidelity DNA Polymerase is a modified version of Q5®High-Fidelity DNA Polymerase, a novel thermostable DNA polymerase that possesses 3' to 5' exonuclease activity, and is fused to a processivityenhancing Sso7d domain. Q5U contains a mutation in the uracil-binding pocket that enables the ability to read and amplify templates containing uracil and inosine bases.

EXTERNAL LINK

https://www.neb.com/protocols/2019/07/02/pcr-using-q5u-hot-start-high-fidelity-dna-polymerase-neb-m0515

#### **General Guidelines:**

### 1. Template:

Use of high quality, purified DNA templates greatly enhances the success of PCR. Recommended amounts of DNA template for a 50 µl reaction are as follows:

| DNA              | AMOUNT      |
|------------------|-------------|
| DNA Genomic      | 1 ng – 1 μg |
| Plasmid or Viral | 1 pg – 1 ng |

Oligonucleotide primers are generally 20 - 40 nucleotides in length and ideally have a GC content of 40 - 60 %. Computer programs such as Primer3 can be used to design or analyze primers. The best results are typically seen when using each primer at a final concentration of 0.5 µM in the reaction.

# 3. USER DNA Engineering

Target DNA molecules and cloning vector are generated by PCR with 8 - 12 bases of homology between two fragments. PCR primers start with a 5' A and contain a single deoxyuracil residue (dU) flanking the 3' end of the homology region, and can be designed to accommodate multiple-fragment assembly, nucleotide substitutions, insertions and/or deletions. We recommend using the GeneDesign (http://genedesign.thruhere.net/gd/) software to design primers for USER junctions. The best results are typically seen when using each primer at a final concentration of 0.5 µM.

# 4. Mg<sup>++</sup>and additives:

Typically, the Mg<sup>++</sup>concentration for Q5U Hot Start High-Fidelity DNA Polymerase should be 2.0 mM. When used at a final concentration of 1X, the Q5U Reaction Buffer provides this optimal Mg++concentration. The addition of common PCR additives such as DMSO may improve amplification of certain difficult or long targets. In these cases, we recommend the addition of up to 2 % DMSO.

#### 5. Deoxynucleotides:

mprotocols.io

05/16/2020

Citation: New England Biolabs (05/16/2020). PCR Using Q5U Hot Start High-Fidelity DNA Polymerase (NEB #M0515): General PCR, USERîCloning, dUTP incorporation/Carryover prevention. <a href="https://dx.doi.org/10.17504/protocols.io.7schnaw">https://dx.doi.org/10.17504/protocols.io.7schnaw</a>

The final concentration of dNTPs is typically 200 µM of each deoxynucleotide.

#### 6. dUTP Incorporation/Carryover Prevention

Q5U Hot Start High-Fidelity DNA Polymerse is a dUTP-tolerant DNA polymerase that efficiently incorporates dUTP and amplifies uracil-containing substrates. To prevent carryover contamination, dUTP and Antartic Thermolabile UDG (NEB #M0372) can be added to the reaction. dTTP can be fully replaced by dUTP in the amplification of certain targets. For best results, we recommend adding dUTP at a final concentration of 200  $\mu$ M. For UDG activation, a 10 minute, 25 °C incubation step should be added before the initial denaturation step. Typical cycling parameters can be used thereafter.

#### 7. Q5U Hot Start High-Fidelity DNA Polymerase concentration:

We generally recommend using Q5U Hot Start High-Fidelity DNA Polymerase at a final concentration of 20 units/ml (1.0 unit/50  $\mu$ l reaction). However, the optimal concentration of Q5U Hot Start High-Fidelity DNA Polymerase may vary from 10 – 40 units/ml (0.5 – 2.0 units/50  $\mu$ l reaction) depending on amplicon length and difficulty. It is rarely helpful to exceed 2.0 units/50  $\mu$ l reaction, especially for amplicons longer than 5 kb.

#### 8. Buffers:

The 5X Q5U Reaction Buffer provided with the enzyme is recommended as the first-choice buffer for robust, high-fidelity amplification. The 5X Q5U Reaction Buffer contains 2.0 mM  $Mg^{++}$  at a final (1X) concentration.

#### 9. Denaturation:

Q5U Hot Start High-Fidelity DNA Polymerase does not require a separate activation step.

An initial denaturation of 30 seconds at 98 °C is sufficient for most targets being amplified from pure DNA templates. Longer initial denaturation times can be used (up to 3 minutes) for templates that require it. During thermocycling, the denaturation step should be kept to a minimum. Typically, a 5-10 second denaturation at 98 °C is recommended for most templates.

#### 10. Annealing:

Optimal annealing temperatures for Q5U Hot Start High-Fidelity DNA Polymerase tend to be higher than for other PCR polymerases. The NEB  $T_m$  Calculator should be used to determine the annealing temperature when using this enzyme. A temperature gradient can also be used to optimize the annealing temperature for each primer pair.

For high T<sub>m</sub> primer pairs, two-step cycling without a separate annealing step can be used (see note 11).

#### 11. Extension:

The recommended extension temperature is 72  $^{\circ}$ C. Extension times are generally 20 – 30 seconds per kb for complex, genomic samples. Extension time can be increased to 1 minute per kb for long, complex templates, if necessary.

A final extension of 5 minutes at 72 °C is recommended.

# 12. Cycle number:

 $Generally, 30-35\ cycles\ yield\ sufficient\ product.\ For\ genomic\ amplicons, 30\ cycles\ are\ recommended.$ 

#### 13. 2-step PCR:

When primers with annealing temperatures  $\geq$  72 °C are used, a 2-step thermocycling protocol (combining annealing and extension into one step) is possible.

#### 14. Amplification of long products:

When amplifying products > 6 kb, it is often helpful to increase the extension time to 1 minute /kb.

#### 15. PCR product:

The PCR products generated using Q5U Hot Start High-Fidelity DNA Polymerase have blunt ends. If cloning is the next step, then blunt-end cloning is recommended. If T/A-cloning is preferred, the DNA should be purified prior to A-addition, as Q5U Hot Start High-Fidelity DNA Polymerase will degrade any overhangs generated.

Addition of an untemplated -dA can be done with Taq DNA Polymerase (NEB #M0267) or Klenow exo<sup>-</sup> (NEB #M0212).

#### MATERIALS

| NAME                                        | CATALOG # | VENDOR              |
|---------------------------------------------|-----------|---------------------|
| Q5U® Hot Start High-Fidelity DNA Polymerase | M0515     | New England Biolabs |

### SAFETY WARNINGS

Please see SDS (Safety Data Sheet) for hazards and safety warnings.

## BEFORE STARTING

Please note that protocols with *Q5U Hot Start High-Fidelity DNA Polymerase* may differ from protocols with other polymerases. Conditions recommended below should be used for optimal performance.

#### **Reaction Setup:**

Q5U Hot Start High-Fidelity DNA Polymerase is inhibited at room temperature, allowing flexible reaction setup (room temperature or ice).

All components should be mixed prior to use.

General PCR, USER®Cloning, dUTP incorporation/Carryover prevention

1 Set up the reaction using the following table:

| Component                                     | 25 μl Reaction | 50 μl Reaction | Final<br>Concentr<br>ation |
|-----------------------------------------------|----------------|----------------|----------------------------|
| 5X Q5U Reaction Buffer                        | 5 μΙ           | 10 μΙ          | 1X                         |
| 10 mM dNTPs                                   | 0.5 μΙ         | 1 μΙ           | 200 μΜ                     |
| 10 μM Forward Primer                          | 1.25 µl        | 2.5 µl         | 0.5 μΜ                     |
| 10 μM Reverse Primer                          | 1.25 µl        | 2.5 µl         | 0.5 μΜ                     |
| Template DNA                                  | variable       | variable       | < 1,000 ng                 |
| Q5U Hot Start High-Fidelity DNA<br>Polymerase | 0.25 μΙ        | 0.5 μΙ         | 0.02 U/μl                  |
| Nuclease-Free Water                           | to 25 µl       | to 50 μl       |                            |

Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.

7 Transfer PCR tubes to a PCR machine and begin thermocycling.



Q5U Hot Start High-Fidelity DNA Polymerase does not require a separate activation step.

| STEP                 | TEMP        | TIME              |
|----------------------|-------------|-------------------|
| Initial Denaturation | 98 °C       | 30 seconds        |
| 30 Cycles            | 98 °C       | 5 - 10<br>seconds |
|                      | *55 - 72 °C | 20 seconds        |

protocols.io
3
05/16/2020

|                 | 72 °C     | 20 - 30    |  |
|-----------------|-----------|------------|--|
|                 |           | seconds/kb |  |
| Final Extension | 72 °C     | 5 minutes  |  |
| Hold            | 4 – 10 °C |            |  |

Thermocycling Conditions for a Routine PCR

<sup>\*</sup>Use of the  $\underline{\text{NEB}}\ \underline{\text{T}_{m}}\ \underline{\text{Calculator}}$  is highly recommended.