Artifical Intelligence

Uninformed &Informed Search (Part-1)

Q1 Consider the search space depicted in the Figure below. S is the initial state. X, Y, an Z are the states that satisfy the goal test.

Use alphabetical order of nodes to break ties. Let P denote the set of states present in the optimal path using A^* algorithm and Q represent the set of states present in the optimal path using GBFS. The cardinality of $P \cap Q$ is _____.

Q2 What can be the minimum value of 'x' possible to keep the graph consistent?

 $2 \le 1 + x$

 $3 \le 3 + x$

 $x \le 3$

Q3 You are performing Weighted A* search on the following graph where the start node is S, and the goal nodes are G1 and G2. The f-value is calculated using the formula: f(n)=g(n)+w×h(n) where the weight w for the heuristic is set to 3.

Calculate the size of the Open list after the completion of the entire process.

- Q4 The branch factor for a graph is 5 and the depth threshold is 3. The difference between the worst case time and space complexity if Iterative Deepening A* search is used will be _____.
- Q5 What will be the path cost in reaching the goal node G starting from node P, when Breadth First Heuristic Search algorithm is applied on the following graph?

Note: Use alphabetical order of nodes to break ties.

Q6 In a Hill Climbing problem, we have a graph where the nodes are represented by letters, and each letter is associated with a number based on its position in the alphabet (A = 1, B = 2, C = 3, ..., Z = 26). Z is the start node and G,K, and L are the goal nodes. Determine the code (number) corresponding to the letter on which the Hill Climbing algorithm will stop.

Q7 Calculate the bound of the following graph where S is the Start node and G and F are goal nodes.]

Q8 Count the number of nodes that will be pruned when branch and bound algorithm is applied on

the following graph. S is the start node, U, V, X and Y are end nodes.

Q9 What will be the threshold value for second iteration when IDA* algorithm is used?

Q10 Let b denote the branching factor and d denote the maximum depth of a graph.

The difference between the worst case time complexity and worst case space complexity on this graph using BFHS is _____.

12/16/24, 6:03 PM GATE_DPP

GATE

Answer Key

Q1	3	Q6	26
Q2	1	Q7	6
Q3	9	Q8	2
Q4	110	Q9	7
Q5	15	Q10	0

Hints & Solutions

Q1 Text Solution:

Using GBFS

 $S{\rightarrow}B{\rightarrow}N{\rightarrow}Y$

Using A*

· · · J							
	S	A	C	В	n (Z)		
S	0	0	0	0	0		
A	9	9	9	9	9		
В	5	5	5	5	5		
C	9	9	9	9	9		
M	∞	∞	∞	12	12		
N	∞	∞	∞	8	8		
X	∞	∞	∞	∞	∞		
Y	∞	∞	∞	∞	8		
Z	∞	∞	∞	∞	7		

 $S \rightarrow B \rightarrow N \rightarrow Z$

 $P \cap Q = \{S, B, N\}$

 $|P \cap Q| = 3$

Q2 Text Solution:

The condition to be satisfied is

2 < 1 + x

 $3 \le 3 + x$

 $x \leq 3$

The minimum value that satisifes the condition is

1.

Hence, x = 1

Q3 Text Solution:

Open list:

	S	P	R	Z	Q	T	U
S	0	0	0	0	0	0	0
P	17	17	17	17	17	17	17
Q	21	21	21	21	21	21	21
R		12	12	12	12	12	12
Z		12	12	12	12	12	12
T					8	8	8
U			25	21	21	21	21
C						25	25
Gl							11
G2							

S, P, Q, R, Z, V, T, U, G

= 9

Q4 Text Solution:

In IDA*,

Time complexity = $0(b^d) = 5^3 = 125$

Space complexity = $0(bd) = 5 \times 3 = 15$

= 125 - 15 = 110

Q5 Text Solution:

Closed list: PRQSUXWG

Oen list: PRQUVSTXWG

Path List = 3 + 4 + 5 + 3 = 15

Q6 Text Solution:

The algorithm will stop at Z itself as Z is the local minima (have smallest heuristic value) as compared to its neighbors B, C, and D. The code for Z is 26.

Q7 Text Solution:

Q8 Text Solution:

As bound is 5 and U, X is exceding the bound. ∴ Answer = 2.

Q9 Text Solution:

12/16/24, 6:03 PM GATE_DPP

GATE

Min of pruned values = next thereshold = 7

Q10 Text Solution:

 $TC = 0 (b^d)$

 $WC = 0 (b^d)$

Diff. = 0

Android App | iOS App | PW Website

