Лекция 8 по курсу «Дискретные преобразования сигналов» 25 марта 2025 г.

6. Связь между ДПФ и ДВПФ

- ДПФ для последовательностей отсчетов конечной длительности.
 - о Форма записи ДПФ
 - \circ Связь между ДПФ и ДВПФ в точках v = n/N.
 - о Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

- ДПФ периодических последовательностей
 - о Форма записи ДПФ
 - о Связь между ДПФ и ДВПФ для периодических последовательностей.
- Частотная ось ДПФ

ДПФ для последовательностей отсчетов конечной длительности.

Форма записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала длиной в N отсчетов k = 0, 1, ..., N - 1. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right), \quad k = 0, 1, ..., N-1.$$

Функцию X[n] обычно рассматривают только для значений $n = 0, 1, \dots, N - 1$, при этом она является периодической с периодом N , $n \in \mathbb{Z}$.

обратном преобразовании необходимо ограничить восстанавливаемой длительность последовательности отсчетов сигнала, т.е. рассматривать x[k] для значений k = 0, 1, ..., N - 1. Если длительность не ограничить, то будет Дискретные преобразования сигналов, МФТИ, 2024-2025 учебный год

восстановлена последовательность, являющаяся периодическим продолжением x[k].

Связь между ДПФ и ДВПФ в точках v = n / N.

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

ДПФ для последовательности x[k], имеет следующий вид:

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{n}{N}k\right).$$

Сравнивая формулы, в точках v = n / N получаем равенство

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n]$$

Это означает, что коэффициенты ДПФ X[n] равны отсчетам функции X(v), взятым в точках v = n/N (с шагом $\Delta v = 1/N$).

Пример.

Рассмотрим для N=20 последовательность отсчетов

$$x[k] = \begin{cases} \sin\left(2\pi \frac{4,5}{20}k\right) + \sin\left(2\pi \frac{7,5}{20}k\right), 0 \le k < N, \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

ДПФ и ДВПФ этой последовательности для частот $v \in [0;1]$ изображены по модулю на рисунке. Заметим, что в точках v = n/20

$$X(\mathbf{v})\big|_{\mathbf{v}=n/20}=X[n],$$

т.е. значения ДВПФ и ДПФ (с точностью до использованной нормировки) совпадают. Расстояние между соседними отсчетами по оси частот $\Delta v = 1/N = 1/20 = 0.05$.

Заметим, что частоты синусоид в ней не совпадают с бинами ДПФ (1 бин соответствует 1/N):

$$v_1 = \frac{4.5}{20} = 0,225, \ v_2 = \frac{7.5}{20} = 0,375.$$

В ДВПФ вблизи 1 этих частот мы наблюдаем максимумы.

Вопрос. Как улучшить качество визуализации этих максимумов с помощью ДПФ?

 $^{^{1}}$ Максимумы могут быть смещены из-за влияния соседних спектральных компонент.

Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

Улучшим качество визуализации ДВПФ при помощи отсчетов ДПФ. Получим M- точечную последовательность. Добавим в исходную последовательность x[k] M-N отсчетов, равных нулю:

$$y[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, N \le k \le M - 1. \end{cases}$$

Ее ДПФ M – точечное и определяется формулой

$$Y[n] = \sum_{k=0}^{M-1} y[k] \exp\left(-j\frac{2\pi}{M}nk\right) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{M}nk\right).$$

При этом ДВПФ не изменяется:

$$Y(v) = \sum_{k=0}^{M-1} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

С помощью добавления нулевых отсчетов улучшено качество визуализации ДВПФ, поскольку число точек $\mathbf{v}_n = n \, / \, M$ на одном периоде больше, чем $\mathbf{v}_n = n \, / \, N$.

Возврат к примеру.

Теперь дополним рассматриваемый в ДПФ участок сигнала нулевыми отсчетами до длины 50. Отсчетов ДПФ на одном периоде станет больше, расстояние между ними $\Delta v = 1/50$.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках $v \neq n \ / \ N$

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

Обратное ДПФ для последовательности x[k]

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

$$X(v) = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right) \right) \exp\left(-j2\pi vk\right) =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X[n] \sum_{k=0}^{N-1} \exp\left(-j2\pi \left(v - \frac{n}{N}\right)k\right).$$

Рассмотрим отдельно множитель $\sum\limits_{k=0}^{N-1} \exp \left(-j2\pi \left(v-n/N \right) k \right)$.

Это сумма N членов геометрической прогрессии с первым членом $b_1=1$, и знаменателем $q=\exp\left(-j2\pi\left(\nu-n/N\right)\right)$.

В точках $v\neq n/N$, где $q\neq 1$, получаем (используя известные формулы $S_N=b_1(1-q^N)/(1-q)$ и $\sin\phi=(e^{j\phi}-e^{-j\phi})/(2j)$):

$$\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right) = \frac{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)}{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)} =$$

$$= \frac{e^{-j\pi(\nu - n/N)N} \left\{\exp\left(j\pi(\nu - n/N)N\right) - \exp\left(-j\pi(\nu - n/N)N\right)\right\}}{e^{-j\pi(\nu - n/N)} \left\{\exp\left(j\pi(\nu - n/N)\right) - \exp\left(-j\pi(\nu - n/N)N\right)\right\}} =$$

$$= \exp\left(-j\pi(\nu - n/N)(N-1)\right) \frac{\sin\left(\pi(\nu - n/N)N\right)}{\sin\left(\pi(\nu - n/N)\right)}$$

Подставив формулу для суммы в связь, получаем интерполяционную формулу восстановления континуальной функции X(v) по коэффициентам ДПФ X[n]:

$$X(\nu) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \frac{\sin(\pi(\nu - n/N)N)}{\sin(\pi(\nu - n/N))} \exp(-j\pi(\nu - n/N)(N-1)).$$

Заметим, что для последовательностей конечной длительности ДВПФ непрерывно, а значит для интерполяционной формулы выполняется

$$\lim_{\nu \to n/N} X(\nu) = X[n].$$

ДПФ периодических последовательностей Форма записи ДПФ

Пусть x[k], $k \in \mathbb{Z}$ — периодическая последовательность отсчетов сигнала с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

 $\tilde{X}[n]$ может рассматриваться как N- точечная последовательность коэффициентов ДПФ (отсчетов ДПФ), где $n=0,1,\dots,N-1$. $\tilde{X}[n]$ может также рассматриваться как периодическая последовательность с периодом $N,\ n\in Z$. В обратном преобразовании последовательность x[k] также получится периодической.

Связь между ДПФ и ДВПФ для периодических последовательностей.

Пусть аналоговый периодический сигнал x(t) с периодом T дискретизован с шагом $\Delta t = T/N$. Тогда на одном периоде x(t) будет содержаться N отсчетов (если крайний правый отсчет попадает на границу периода, то будем считать его относящимся к следующему периоду). Выделим для последовательности отсчетов x[k] один период

$$x_N[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

DTFT

Пусть $x_N[k] \overset{DH}{\longleftrightarrow} X_N(\nu)$. Последовательность x[k] может быть представлена в виде дискретной сверки

$$x_N[k] \otimes \sum_{m=-\infty}^{\infty} \mathbf{1}[k-mN].$$

Причем

$$\sum_{m=-\infty}^{\infty} \mathbf{1} [k - mN] \overset{DTFT}{\longleftrightarrow} \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{N} \right).$$

Тогда

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Последовательность $x_N[k]$ имеет конечную длительность, является абсолютно суммируемой. $X_N(v)$ непрерывна.

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

При этом X(v) (ДВПФ периодической последовательности x[k]) имеет дискретную структуру, которой в континуальной записи соответствует некоторый периодический набор δ -функции.

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Заметим, что для каждого слагаемого в сумме по свойствам δ -функции выполняется равенство

$$\frac{1}{N}X_N(v)\delta\left(v-\frac{n}{N}\right) = \frac{1}{N}X_N\left(\frac{n}{N}\right)\delta\left(v-\frac{n}{N}\right).$$

Введем периодическую функцию дискретного аргумента $\tilde{X}[n]$, значения которой будут соответствовать площадям дельта-функций в X(v) в точках v=n/N:

$$X(\mathbf{v}) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \,\delta\left(\mathbf{v} - \frac{n}{N}\right).$$

При этом

$$\tilde{X}[n] = \frac{1}{N} X_N \left(\frac{n}{N} \right) = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k).$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv = \int_{0}^{1} X(v) \exp(j2\pi vk) dv =$$
$$= \int_{0}^{1} X_{N}(v) \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right) \exp(j2\pi vk) dv =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X_N(\frac{n}{N}) \exp(j2\pi \frac{n}{N}k).$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k).$$

Получаем следующую пару формул

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k),$$

определяющую прямое и обратное дискретное преобразование Фурье (ДПФ). В ДПФ частотная (n) и временная (k) переменная дискретны, функция $\tilde{X}[n]$ периодична с периодом N, а в качестве главного периода для отсчетов ДПФ выбирают такой, на котором $n=0,\ldots,N-1$.

Пример. Предположим, что имеется периодическая последовательность ($\infty < k < +\infty$)

$$x[k] = \cos(2\pi \frac{3}{16}k).$$

Учитывая, что

$$\cos(2\pi \frac{3}{16}k) = \frac{1}{2}\exp(j2\pi \frac{3}{16}k) + \frac{1}{2}\exp(-j2\pi \frac{3}{16}k),$$

получаем для ДВПФ этой последовательности

$$X(v) = \sum_{n=-\infty}^{\infty} \frac{1}{2} \delta(v - \frac{3}{16} - n) + \frac{1}{2} \delta(v + \frac{3}{16} - n).$$

X(v) содержит две δ -функции с площадями 1/2 на каждом периоде. Рассмотрим период $0 \le v < 1$ (правую крайнюю точку можем не включать из-за периодичности X(v)). На нем содержится две δ -функции в точках $v_1 = \frac{3}{16}$ и $v_2 = \frac{13}{16}$. Последовательность имеет период N = 16 точек. Это означает, что можно установить значения 16-точечного ДПФ $\tilde{X}[3] = 1/2$, $\tilde{X}[13] = 1/2$, а в остальных точках главного периода $\tilde{X}[n] = 0$.

Пример. ДВПФ и окна

Пример.

Предположим, что нужно вычислить ДВПФ последовательности отсчетов y[k] = x[k]w[k], где

$$x[k] = \cos(2\pi \frac{3}{16}k),$$

w[k] — прямоугольное окно длиной N = 16 отсчетов:

$$w[k] = \sum_{m=0}^{15} \mathbf{1}[k-m].$$

Решение. Заметим, что

$$W(v) = e^{-j(N-1)\pi v} \frac{\sin(N\pi v)}{\sin(\pi v)},$$

$$X(v) = 0.5 \sum_{m=-\infty}^{\infty} \delta(v - \frac{3}{16} - m) + 0.5 \sum_{m=-\infty}^{\infty} \delta(v + \frac{3}{16} - m).$$

Способ 1. ДВПФ последовательности Y(v) может быть представлено в виде циклической свертки

$$Y(\mathbf{v}) = \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) W(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}} = \int_{-1/2}^{1/2} W(\tilde{\mathbf{v}}) X(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}$$

Используя фильтрующее свойство дельта-функции

$$\int_{a}^{b} W(v)\delta(v-v_{1})dv = \begin{cases}
W(v_{1}), a < v_{1} < b, \\
0.5W(v_{1}), (v_{1} = a) \cup (v_{1} = b), \\
0, (v_{1} < a) \cup (v_{1} > b),
\end{cases}$$

получаем, что

$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

Пример. ДВПФ и окна

Способ 2. Аналогично через теорему смещения

$$y[k] = \left(\frac{1}{2}\exp(j2\pi k\frac{3}{16}) + \frac{1}{2}\exp(-j2\pi k\frac{3}{16})\right)w[k],$$
$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

ДПВФ последовательности y[k]

$$Y(v) = \frac{1}{2} \exp\left(-j(N-1)\pi(v-\frac{3}{16})\right) \frac{\sin(N\pi(v-\frac{3}{16}))}{\sin(\pi(v-\frac{3}{16}))} +$$

$$+\frac{1}{2}\exp\left(-j(N-1)\pi(\nu+\frac{3}{16})\right)\frac{\sin(N\pi(\nu+\frac{3}{16}))}{\sin(\pi(\nu+\frac{3}{16}))}.$$

Частотная ось ДПФ

Частотная ось ДПФ

Отчету N- точечного ДПФ с номером n в случае сигнала конечной длительности соответствует значение ДВПФ в точке $\nu=n/N$ по оси нормированных частот:

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n].$$

Если рассматривается периодическая последовательность отсчетов, и коэффициенты ДПФ вычисляются по периоду последовательности, то весам дельта-функций в точках v=n/N в ДВПФ соответствуют отсчеты ДПФ с номерами n:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \,\delta\left(v - \frac{n}{N}\right).$$

Эти два обстоятельства позволяют сопоставить отсчётам ДПФ частоты в спектре дискретизованного сигнала. Учитывая, что $v=f/f_{\pi}=f\Delta t$, где f_{π} — частота дискретизации, Δt — шаг дискретизации, получаем, что отсчету с номером n соответствует частота $f=nf_{\pi}/N=n/(N\Delta t)$ Гц. Разрешение по оси частот при ДПФ анализе составляет f_{π}/N Гц.

Частотная	Связь	Разрешение	Диапазон
переменная и	частотной	по частоте	изменения
ee	переменной		частоты,
размерность	с номером		соответствующий
	отсчета ДПФ		отсчетам $[0,N)$
f,[Гц]	$f = \frac{nf_{\pi}}{N}$	$\Delta f = \frac{f_{\text{A}}}{N}$	$[0,f_{\scriptscriptstyle m I})$
ω, [рад/с]	$\omega = \frac{n\omega_{_{\rm I\! I}}}{N}$	$\Delta \omega = \frac{\omega_{\rm M}}{N}$	$[0,\omega_{_{ m I}})$
v, безразмерная	$v = \frac{n}{N}$	$\Delta v = \frac{1}{N}$	[0,1)
θ, [рад]	$\theta = 2\pi \frac{n}{N}$	$\Delta\theta = \frac{2\pi}{N}$	$[0,2\pi)$

В таблице ниже рассмотрены основные способы введения частотной оси для отсчетов ДПФ.

Частотная ось ДПФ

Заметим, что $f=nf_{_{\rm I\! I}}/N$ Гц — это частота в спектре дискредитированного сигнала, который при отсутствии наложения спектров образуется путем периодического продолжения (повторения) спектра исходного аналогово сигнала с периодом, равным частоте дискретизации ($f_{_{\rm I\! I}}$ в случае оси в Гц или 1 в случае оси нормированных частот). Это означает, что отсчет ДПФ с номером n будет соответствовать в спектре аналогового сигнала частоте $f\in [-f_{_{\rm I\! I}}/2;\ f_{_{\rm I\! I}}/2]$, такой, что $f=(n+mN)f_{_{\rm I\! I}}/N$, где m — целое число.

Частотная ось ДПФ

Пример.

Рассмотрим для $f_0 = 5$ Γ ц сигнал длительностью 1 с вида $x_a(t) = \sin \left(2\pi f_0 t \right), \ 0 \le t < 1.$

Выберем частоту дискретизации $f_{_{
m I\!I}}=20~\Gamma{_{
m I\!I}}$ ($\Delta t=0.05~{
m c}$)

Последовательность отсчетов дискретизованного сигнала

$$x[k] = x_a(k\Delta t) = \sin\left(2\pi \frac{f_0}{f_{\pi}}k\right).$$

Спектр $X_{{\mbox{\tiny L}}}(f)$ дискретизованного сигнала связан со спектром $X_a(f)$ аналогового сигнала соотношением

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{_{\mathrm{I}}}).$$

где T определено соотношением $x[k]=\mathrm{T}x_a(k\Delta t)$. Если бы эффекта наложения не было, то $X_{_{\mathrm{I\! I}}}(f)$ и $X_a(f)$ совпадали бы на интервале $\left[-f_{_{\mathrm{I\! I\! I}}}/2,\,f_{_{\mathrm{I\! I\! I}}}/2\right]$, т.е. от -10 Γ $\mathrm{I\! I\! I}$ до 10 Γ $\mathrm{I\! I\! I}$.

Заметим, что отсчеты ДПФ размерности N=32 для n=0,1,...,N-1 находятся на полуинтервале $[0,f_{_{\rm I\! I}}).$

Задачи для самостоятельного решения

№1. Последовательность x[k] из 1000 элементов получена в результате дискретизации непрерывного сигнала x(t) с частотой $f_{\pi} = 20480$ Гц. Обозначим через X[n] 1024-точечное ДПФ последовательности x[k] (дополненной нулевыми отсчетами). Определить расстояние (в Гц) между непрерывными частотами, которые соответствуют соседним отсчетам ДПФ.

№2. Вычислить ДВПФ прямоугольного окна длины N = 10:

$$w_{\text{пр}}[k] = \begin{cases} 1, & \text{при } 0 \le k \le N - 1 \\ 0, & \text{при других } k. \end{cases}$$

Изобразить по модулю на одном графике:

- а) ДВПФ и 10-точечное ДПФ для последовательности отсчетов данного окна;
- б) ДВПФ и 20-точечное ДПФ для той же последовательности (дополненной нулями справа до 20 отсчетов).

Nº3. Гармонический сигнал $x(t) = \cos 2\pi f_0 t$, $f_0 = 17 \ \Gamma \text{Ц}$, дискретизован с частотой $f_\pi = 170 \ \Gamma \text{Ц}$. Найти ДВПФ X(v) (в нормированных частотах) последовательности отчетов этого сигнала $x[k] = x(k\Delta t)$. Построить график X(v) для значений нормированных частот $v \in [-2,5;2,5]$.

Nº4. Вещественный сигнал x(t) с полосой $2f_{\rm B}=10~{\rm к} \Gamma {\rm L}$ ($f_{\rm B}$ — верхняя граничная частота) дискретизуется с шагом Δt . В результате получается последовательность $x[k]=x(k\Delta t)$. Вычисляется N—точечное ДПФ, где $N=2^m$, m — натуральное число. Определить минимальное значение m, при котором анализ возможен, а расстояние между отсчетами ДПФ по оси частот в герцах будет меньше 5 Гц. Для этого значения m определить допустимые пределы для частоты дискретизации $f_{\rm min} < f_{\pi} < f_{\rm max}$.

№5 (с решением). Вещественный сигнал x(t) с полосой $2f_{\rm B}$ = 10 кГц ($f_{\rm B}$ — верхняя граничная частота) дискретизуется с минимально возможной частотой дискретизации в соответствии с теоремой отсчетов. В результате получается последовательность x[k]. Обозначим через X[n] 1000-точечное ДПФ последовательности x[k].

- а) Каким частотам (в Гц) в ДВПФ последовательности x[k] соответствуют отсчеты ДПФ с номерами $n_1=200$ и $n_2=900$?
- б) Каким частотам (в Гц) в спектре исходного сигнала x(t) соответствуют индексы $n_1=200$ и $n_2=900$ в последовательности X[n]?

Решение №5. Поскольку сигнал x(t) дискретизован в соответствии с теоремой отсчетов, минимально возможная частота дискретизации $f_{_{\rm II}} = 2f_{_{\rm B}} = 10~{\rm к}\Gamma$ ц.

а) Заметим, что из связи ДВПФ и ДПФ для последовательностей конечной длительности отсчету ДПФ с

номером n_0 соответствует значение ДВПФ в точке $f_0 = \frac{n_0}{N} f_{_{\rm I\! I}}$, при этом оно также равно (в силу периодичности ДВПФ) значениям в точках $f_0 + m f_{_{\rm I\! I\! I}}$, $m \in Z$.

Тогда отсчетам n_1 и n_2 соответствуют частоты (можно также указать одну частоту при m=0)

б) Так как сигнал x(t) дискретизован в соответствии с теоремой отсчетов, его спектр ограничен диапазоном $[-f_{_{\rm I\! I}}/2;\ f_{_{\rm I\! I}}/2]$. В этот диапазон из перечисленных выше попадают лишь значения $f_1=2\ {\rm к}\Gamma{\rm I\! I}$ и $f_2=-1\ {\rm k}\Gamma{\rm I\! I}$, которые соответствуют коэффициентам ДПФ с номерами n_1 и n_2 .

№6 (с решением). Рассмотреть для $f_0 = 5 \; \Gamma$ ц сигнал длительностью 1 с вида

$$x_a(t) = \sin(2\pi f_0 t), 0 \le t < 1.$$

Частота дискретизации $f_{_{\rm I\!I}}=20~\Gamma$ ц ($\Delta t=0.05~{
m c}$).

Каким частотам в спектре аналогового сигнала будут соответствовать коэффициенты ДПФ $n_1 = 8$ и $n_2 = 20$?

Решение №6. Последовательность отсчетов дискретизованного сигнала

$$x[k] = x_a(k\Delta t) = \sin\left(2\pi \frac{f_0}{f_{\text{A}}}k\right).$$

 $X_{{\scriptscriptstyle
m I\hspace{-.1em}I}}(f)$ дискретизованного сигнала спектром $X_{\boldsymbol{a}}(f)$ аналогового сигнала соотношением

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{_{\mathrm{I}}}).$$

где T определено соотношением $x[k] = Tx_a(k\Delta t)$. Если бы эффекта наложения не было, то $X_{\scriptscriptstyle \Pi}(f)$ и $X_a(f)$ совпадали бы на интервале $\left\lceil -f_{_{\rm I\!I}} / 2, f_{_{\rm I\!I}} / 2 \right\rceil$, т.е. от $-10~\Gamma$ ц до 10 Гц.

Заметим, что отсчеты ДПФ размерности $N=32\,$ для n = 0, 1, ..., N-1 находятся на полуинтервале $[0, f_{\pi})$.

Отчету $n_1 = 8$ из первой половины периода соответствует частота $f_1 = \frac{n_1}{N} f_{_{\rm I\! I}} = 5 \; \Gamma_{\rm I\! I\! I}$, а отсчету $n_2 = 20 \;$ из второй полоны периода $f_2 = \frac{n_2}{N} f_{_{\rm I\! I}} - f_{_{\rm I\! I}} = -7,5$ Γ ц

-30 -25 -20 -15 -10 -5