Distribución de alumnos nunha aula

Enunciado do problema

Debido aos problemas de comportamento na aula de 1º de DAW, o profesorado deste grupo precisa unha aplicación que distribúa o alumnado da clase, sen que certos alumnos estean sentados ao lado de outros.

Deberás implementar un programa que parta dun array bidimensional de n*3 elementos, onde:

- n é o número de alumnos.
- Para cada alumno terá como primeiro elemento o nome do alumno (que é único e identifica ao alumno na aula).
- Como segundo e terceiro elementos terá o nome de dous alumnos cos que non se quere que ese alumno en cuestión estea sentado. Polo tanto, ningún deses alumnos pode quedar sentado nin á súa esquerda nin á súa dereita na aula.
- Calquera deses dous elementos pode ser nulo, xa que hai alumnos sobre os que non hai restrición de que outros alumnos se senten con eles, ou pode haber só a restrición con outro alumno.

Como exemplo, este podería ser o array de entrada en Java:

```
// Lista de alumnos con ata dous alumnos que non queremos que se senten
String[][] studentList = new String[][]{
  {"Alberto", "Juan", "Pedro"},
  {"Juan", "Alberto", "Pedro"},
  {"Lara", null, null},
  {"Marcos", null, null},
  {"Sonia", "Alex", "Alberto"}.
  {"Pedro", "Alberto", "Juan"},
  {"lago", "Sonia", null},
  {"Alex", "Sonia", null}
};
E a súa versión en Python:
# Lista de alumnos con ata dous alumnos que non queremos que se senten
studentList = [["Alberto", "Juan", "Pedro"],
       ["Juan", "Alberto", "Pedro"],
       ["Lara", None, None],
       ["Marcos", None, None],
       ["Sonia", "Alex", "Alberto"],
```

```
["Pedro", "Alberto", "Juan"],
["lago", "Sonia", None],
["Alex", "Sonia", None]]
```

O programa debe cubrir un array de a*b elementos que tamén recibirá como entrada (onde a*b teñen que ser igual a n), cos n alumnos distribuidos de forma aleatoria pero de forma que un alumno non poida ter nin a un lado nin a outro na súa mesma fila a un dos alumnos cos que se indica no array que se recibe como parámetro que non debe ir sentado.

Como exemplo, este podería ser o array en Java:

```
// Array para distribuir o alumnado da aula String[][] classroom = new String[2][4];
```

E a súa versión en Python:

```
# Array para distribuir o alumnado da aula classroom = list()
```

No caso de implementar o programa en Python, dado que as dimensións do array non están establecidas previamente, o programa recibirá como parámetro os números a e b (que no caso do código de exemplo anterior serían 2 e 4) como parámetros de entrada.

Deberás implementar como mínimo os seguintes métodos (podes implementar métodos a maiores se os consideras axeitados):

 O método "distributeStudents" que recibindo os datos de entrada explicados distribúa o alumnado na aula. A continuación podes ver a cabeceira deste método en Java e en Python:

```
public void distributeStudents(String[][] classroom, String[][] studentList)
```

def distributeStudents(classroom, rows, cols, studentList)

Ten en conta que na implementación deste método pode chegarse á situación de que a asignación feita aleatoriamente nos primeiros postos da aula leve a non atopar unha solución posible. Neste caso debe volver a comezar o proceso dende o principio, ata chegar a unha solución. Non haberá que contemplar o caso de que non exista solución posible aos datos de entrada recibidos, sempre se recibirá unha entrada que terá algunha solución posible.

O método "showClassroom", que recibe como parámetro o array bidimensional coa colocación do alumnado na aula e o mostra por pantalla. Será chamado despois de chamar ao método anterior para mostrar a distribución do alumnado xerada. A continuación podes ver a cabeceira deste método en Java e Python:

public void showClassrom(String[][] classroom)

def showClassrom(classroom)

Casos de exemplo

Caso a

Se o programa recibe como entrada a lista de estudantes que se pon como exemplo no enunciado:

Alberto	Juan	Pedro
Juan	Alberto	Pedro
Lara		
Marcos		
Sonia	Alex	Alberto
Pedro	Alberto	Juan
lago	Sonia	
Alex	Sonia	

E un array para a aula de 2*4, podería devolver a seguinte saída:

Distribución da aula:

Alberto lago Pedro Sonia Marcos Alex Lara Juan

Caso b

Se o programa recibe como entrada a lista de estudantes que se pon como exemplo no enunciado:

Alberto	Sonia	Pedro
Juan	Sonia	
Sonia	Alberto	Juan
Pedro	Alberto	

E un array para a aula de 1*4, podería devolver a seguinte saída:

Distribución da aula:

Sonia Pedro Juan Alberto

Caso c

Se o programa recibe como entrada a lista de estudantes que se pon como exemplo no enunciado:

Alberto	Juan	Pedro
Juan	Alberto	Pedro
Lara	Iria	lago
Marcos	Alex	Juan
Sonia	Alex	Alberto
Pedro	Alberto	Juan
lago	Sonia	Juan
Alex	Sonia	Juan
Iria	Marcos	Pedro

E un array para a aula de 3*3, podería devolver a seguinte saída:

Distribución da aula:

Pedro AlexAlbertolago MarcosLaraIria SoniaJuan

Validación do código

Para a validación do código xerado, executarase un código de test que incluirá dez casos de proba diferentes, e comprobará de forma automática que as solucións son correctas. Tamén se chamará en cada caso de proba ao método que mostra por pantalla a distribución xerada para a aula.

Considerarase válido o código se:

- O resultado dos dez test de proba son correctos.
- Se mostra correctamente en filas a distribución dos alumnos da aula. Non será necesario que a separación entre os alumnos dunha mesma fila sexa a perfecta para que os nomes aparezan un enriba dos outros.