Importing Libraries and Data

```
#Shubhendra Kumar
In [ ]:
         #Email: kshubhendra8860@amail.com
         import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         df = pd.read excel(r"DS Python Assignment.xlsx", sheet name='Data')
In [2]:
Out[2]:
              CUSTOMERID STATE LCPCOUNT PRIVATELABELTENDERFLAG TENURE_IN_MONTHS CLOSESTSTOREDISTANCE FEMALE AGE HS_DIPLOMA SOME
            0
                      5001
                                                                                                                                       0
                              TX
                                          1
                                                                   Ν
                                                                                    -9.0
                                                                                                          NaN
                                                                                                                     0 NaN
            1
                      5002
                              ОН
                                          0
                                                                                     9.0
                                                                                                       8.728943
                                                                                                                     0 NaN
            2
                      5003
                              TX
                                          0
                                                                   Ν
                                                                                    12.0
                                                                                                                     0 NaN
                                                                                                                                       0
                                                                                                          NaN
            3
                      5004
                                          0
                                                                                    -1.0
                              ΤN
                                                                   Ν
                                                                                                          NaN
                                                                                                                     0 NaN
            4
                      5005
                              TX
                                          0
                                                                   Ν
                                                                                    16.0
                                                                                                          NaN
                                                                                                                     0 NaN
                                          1
                                                                   Υ
                                                                                                                                       0
         9995
                     14996
                               PΑ
                                                                                   139.0
                                                                                                      37.827206
                                                                                                                     1 41.0
         9996
                     14997
                               PA
                                                                                    28.0
                                                                                                      40.064053
                                                                                                                     0 49.0
                                                                   Ν
         9997
                              DC
                                          2
                                                                   Ν
                                                                                                       2.280174
                                                                                                                     0 NaN
                                                                                                                                       0
                     14998
                                                                                    10.0
                                          1
         9998
                     14999
                              CO
                                                                  Ν
                                                                                    23.0
                                                                                                       6.926766
                                                                                                                     0 NaN
         9999
                     15000
                              TX
                                          1
                                                                   Ν
                                                                                   229.0
                                                                                                      18.602889
                                                                                                                     0 NaN
                                                                                                                                       0
        10000 rows × 117 columns
```

Exploring the data

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999

Columns: 117 entries, CUSTOMERID to MDAYSHOPPER L4Y

dtypes: float64(49), int64(65), object(3)

memory usage: 8.9+ MB

In [4]: df.describe()

Out[4]:	CUSTOMERID		LCPCOUNT	TENURE_IN_MONTHS	CLOSESTSTOREDISTANCE	FEMALE	AGE	HS_DIPLOMA	SOME_COLLEGE	BACH_GR/
	count	10000.00000	10000.000000	9934.000000	8455.000000	10000.000000	4055.000000	10000.00000	10000.000000	10000
	mean	10000.50000	1.171900	54.286290	21.126264	0.156700	47.351418	0.09840	0.133800	0
	std	2886.89568	2.067118	70.087569	83.097443	0.363536	15.350262	0.29787	0.340454	0
	min	5001.00000	0.000000	-9.000000	0.000000	0.000000	19.000000	0.00000	0.000000	0
	25%	7500.75000	0.000000	10.000000	4.643872	0.000000	35.000000	0.00000	0.000000	0
	50%	10000.50000	1.000000	28.000000	8.442909	0.000000	47.000000	0.00000	0.000000	0
	75%	12500.25000	1.000000	62.000000	17.793590	0.000000	59.000000	0.00000	0.000000	0
	max	15000.00000	75.000000	287.000000	4763.484736	1.000000	87.000000	1.00000	1.000000	1

8 rows × 114 columns

Working on Null Values

In [5]: #Find the null values
 df.isnull()

Out[5]:		CUSTOMERID	STATE	LCPCOUNT	PRIVATELABELTENDERFLAG	TENURE_IN_MONTHS	CLOSESTSTOREDISTANCE	FEMALE	AGE	HS_DIPLOMA	SOMI
	0	False	False	False	False	False	True	False	True	False	
	1	False	False	False	False	False	False	False	True	False	
	2	False	False	False	False	False	True	False	True	False	
	3	False	False	False	False	False	True	False	True	False	
	4	False	False	False	False	False	True	False	True	False	
	•••							•••			
	9995	False	False	False	False	False	False	False	False	False	
	9996	False	False	False	False	False	False	False	False	False	
	9997	False	False	False	False	False	False	False	True	False	
	9998	False	False	False	False	False	False	False	True	False	
	9999	False	False	False	False	False	False	False	True	False	

In [6]: #Number of null values in first 20 columns.
df.isnull().sum().head(20)

10000 rows × 117 columns

```
0
        CUSTOMERID
Out[6]:
        STATE
                                    59
        LCPCOUNT
                                      0
        PRIVATELABELTENDERFLAG
                                      0
        TENURE IN MONTHS
                                    66
        CLOSESTSTOREDISTANCE
                                  1545
                                      0
        FEMALE
        AGE
                                   5945
        HS_DIPLOMA
                                      0
        SOME_COLLEGE
                                      0
        BACH GRAD DEG
        LT HS DIPLOMA
        MARRIED
        MNGMNT_OFFICEADMIN
        TECH PROF
        SALES_JOB
        BLUE_COLLAR
        FARMER
        RETIRED
        SFDU
        dtype: int64
```

In [7]: #Number of null values in last 20 columns.
df.isnull().sum().tail(20)

```
7-Cost Only Spend
                                          0
Out[7]:
        8-Marketing Premium SKUs Spend
                                          0
        9-Repairs & Appraisals Spend
                                          0
        10-Pre Owned Spend
                                          0
        11-Watches Spend
                                          0
        12-Misc Merchandise Spend
                                          0
        15-Store Events Spend
                                          0
        16-Single Stone Jewelry Spend
                                          0
        MDAYREV L1Y
                                          0
        MDAYREV_L2Y
                                          0
        MDAYREV L3Y
        MDAYREV L4Y
        MDAYQTY L1Y
        MDAYQTY_L2Y
        MDAYQTY L3Y
                                          0
        MDAYQTY_L4Y
                                          0
        MDAYSHOPPER L1Y
                                          0
        MDAYSHOPPER L2Y
                                          0
        MDAYSHOPPER L3Y
                                          0
        MDAYSHOPPER L4Y
        dtype: int64
```

In [8]: #Finding the number with any null value in the columns.
 df.columns[df.isnull().any()]

```
Index(['STATE', 'TENURE IN MONTHS', 'CLOSESTSTOREDISTANCE', 'AGE', 'INCOME',
       'LENGTH OF RESIDENCE', 'NUMBER OF PERSONS IN LIVING UNIT',
       'NUMBER OF ADULTS IN LIVING UNIT', 'MOSAIC',
       'CAPE: AGE: POP: MEDIAN AGE', 'CAPE: AGE: POP: % 0-17',
       'CAPE: AGE: POP: % 18-99+', 'CAPE: AGE: POP: % 65-99+',
       'CAPE: ETHNIC: POP: % WHITE ONLY', 'CAPE: ETHNIC: POP: % BLACK ONLY',
       'CAPE: ETHNIC: POP: % ASIAN ONLY', 'CAPE: ETHNIC: POP: % HISPANIC',
       'CAPE: DENSITY: PERSONS PER HH FOR POP IN HH',
       'CAPE: HHSIZE: HH: AVERAGE HOUSEHOLD SIZE',
       'CAPE: TYP: HH: % MARRIED COUPLE FAMILY',
       'CAPE: CHILD: HH: % WITH PERSONS LT18',
       'CAPE: CHILD: HH: % MARR COUPLE FAMW- PERSONS LT18',
       'CAPE: CHILD: HH: % MARR COUPLE FAMW-O PERSONS LT18',
       'CAPE: LANG: HH: % SPANISH SPEAKING',
       'CAPE: EDUC: POP25+: MEDIAN EDUCATION ATTAINED',
       'CAPE: HOMVAL: OOHU: MEDIAN HOME VALUE',
       'CAPE: BUILT: HU: MEDIAN HOUSING UNIT AGE',
       'CAPE: TENANCY: OCCHU: % OWNER OCCUPIED',
       'CAPE: TENANCY: OCCHU: % RENTER OCCUPIED', 'CAPE: EDUC: ISPSA',
       'CAPE: EDUC: ISPSA DECILE', 'CAPE: INC: FAMILY INC STATE DECILE',
       'CAPE: INC: HH: MEDIAN FAMILY HOUSEHOLD INCOME'],
      dtype='object')
```

List down all the columns with missing values.

```
In [9]: #List of all the null value in the columns.
df.columns[df.isnull().any()].tolist()
```

```
['STATE',
 Out[9]:
           'TENURE IN MONTHS',
           'CLOSESTSTOREDISTANCE',
           'AGE',
           'INCOME',
           'LENGTH OF RESIDENCE',
           'NUMBER OF PERSONS IN LIVING UNIT',
           'NUMBER OF ADULTS IN LIVING UNIT',
           'MOSAIC',
           'CAPE: AGE: POP: MEDIAN AGE',
           'CAPE: AGE: POP: % 0-17',
           'CAPE: AGE: POP: % 18-99+',
           'CAPE: AGE: POP: % 65-99+',
           'CAPE: ETHNIC: POP: % WHITE ONLY',
           'CAPE: ETHNIC: POP: % BLACK ONLY',
           'CAPE: ETHNIC: POP: % ASIAN ONLY',
           'CAPE: ETHNIC: POP: % HISPANIC',
           'CAPE: DENSITY: PERSONS PER HH FOR POP IN HH',
           'CAPE: HHSIZE: HH: AVERAGE HOUSEHOLD SIZE',
           'CAPE: TYP: HH: % MARRIED COUPLE FAMILY',
           'CAPE: CHILD: HH: % WITH PERSONS LT18',
           'CAPE: CHILD: HH: % MARR COUPLE FAMW- PERSONS LT18',
           'CAPE: CHILD: HH: % MARR COUPLE FAMW-O PERSONS LT18',
           'CAPE: LANG: HH: % SPANISH SPEAKING',
           'CAPE: EDUC: POP25+: MEDIAN EDUCATION ATTAINED',
           'CAPE: HOMVAL: OOHU: MEDIAN HOME VALUE',
           'CAPE: BUILT: HU: MEDIAN HOUSING UNIT AGE',
           'CAPE: TENANCY: OCCHU: % OWNER OCCUPIED',
           'CAPE: TENANCY: OCCHU: % RENTER OCCUPIED',
           'CAPE: EDUC: ISPSA',
           'CAPE: EDUC: ISPSA DECILE',
           'CAPE: INC: FAMILY INC STATE DECILE',
           'CAPE: INC: HH: MEDIAN FAMILY HOUSEHOLD INCOME']
In [10]: #Exploring the data type of different columns
          df.dtypes
```

```
CUSTOMERID
                                      int64
Out[10]:
                                     object
          STATE
                                      int64
          LCPCOUNT
          PRIVATELABELTENDERFLAG
                                     object
         TENURE IN MONTHS
                                    float64
                                     . . .
         MDAYOTY L4Y
                                      int64
         MDAYSHOPPER L1Y
                                      int64
         MDAYSHOPPER L2Y
                                      int64
         MDAYSHOPPER L3Y
                                      int64
         MDAYSHOPPER L4Y
                                      int64
          Length: 117, dtype: object
In [11]: #Checking for unique values of data type
          df.dtypes.unique()
         array([dtype('int64'), dtype('0'), dtype('float64')], dtype=object)
Out[11]:
          #Exploring the data type of head.
In [12]:
          df.dtypes.head()
         CUSTOMERID
                                      int64
Out[12]:
          STATE
                                     object
          LCPCOUNT
                                      int64
          PRIVATELABELTENDERFLAG
                                     object
         TENURE IN MONTHS
                                    float64
         dtype: object
         #Exploring the data type of tail.
In [13]:
          df.dtypes.tail()
         MDAYQTY L4Y
                             int64
Out[13]:
         MDAYSHOPPER L1Y
                             int64
         MDAYSHOPPER L2Y
                             int64
         MDAYSHOPPER L3Y
                             int64
         MDAYSHOPPER L4Y
                             int64
         dtype: object
In [14]: #printing the Integer data type.
          int columns = df.select dtypes(include='int64').columns.tolist()
          print("Int64 Columns:",int columns)
```

Int64 Columns: ['CUSTOMERID', 'LCPCOUNT', 'FEMALE', 'HS_DIPLOMA', 'SOME_COLLEGE', 'BACH_GRAD_DEG', 'LT_HS_DIPLOMA', 'MARRIED', 'MNGMNT_OFFICEADMIN', 'TECH_PROF', 'SALES_JOB', 'BLUE_COLLAR', 'FARMER', 'RETIRED', 'SFDU', 'MFDU', 'HOMEOWNER', 'MAIL_RESP_MULT I', 'MAIL_RESP_SINGLE', 'METRO', 'URBAN', 'MOR BANK: UPSCALE MERCHANDISE BUYER', 'MOR BANK: MALE MERCHANDISE BUYER', 'MOR BANK: FEMALE MERCHANDISE BUYER', 'MOR BANK: GARDENING-FARMING BUYER', 'MOR BANK: BOOK BUYE R', 'MOR BANK: COLLECT-SPECIAL FOODS BUYER', 'MOR BANK: GIFTS AND GADGETS BUYER', 'MOR BANK: GENERAL MERCHANDISE BUYER', 'MOR BANK: FAMILY AND GENERAL MAGAZINE', 'MOR BANK: FEMALE ORIENTED MAGAZINE', 'MOR BANK: MALE SPORTS MAGAZINE', 'MOR BANK: RELIGIOUS M AGAZINE', 'MOR BANK: GARDENING-FARMING MAGAZINE', 'MOR BANK: CULINARY INTERESTS MAGAZINE', 'MOR BANK: HEALTH AND FITNESS MAGAZINE', 'MOR BANK: DO-IT-YOURSELFERS', 'MOR BANK: NEWS AND FINANCIAL', 'MOR BANK: PHOTOGRAPHY', 'MOR BANK: OPPORTUNITY SEEKERS AND C E', 'MOR BANK: RELIGIOUS CONTRIBUTOR', 'MOR BANK: POLITICAL CONTRIBUTOR', 'MOR BANK: HEALTH AND INSTITUTION CONTRIBUTOR', 'MOR BANK: GENERAL CONTRIBUTOR', 'MOR BANK: MISCELLANEOUS', 'MOR BANK: ODDS AND ENDS', 'MOR BANK: DEDUPED CATEGORY HIT COUNT', 'MOR BANK: NON-DEDUPED CATEGORY HIT COUNT', 'MORTGAGE-HOME PURCHASE: HOME PURCHASE PRICE', 'CHILDREN', 'FREQUENCY', 'QUANTITY', 'FREQUENCY', 'QUANTITY', 'FREQUENCY', 'QUANTITY', 'MDAYQTY_L1Y', 'MDAYQTY_L1Y', 'MDAYQTY_L1Y', 'MDAYQTY_L1Y', 'MDAYQTY_L1Y', 'MDAYQTY_L1Y', 'MDAYQTY_L1Y', 'MDAYQTY_L1Y', 'MDAYSHOPPER_L1Y', 'MDAYSHOPPER_L1Y', 'MDAYSHOPPER_L1Y', 'MDAYSHOPPER_L1Y', 'MDAYSHOPPER_L1Y', 'MDAYSHOPPER_L1Y', 'MDAYSHOPPER_L1Y']

```
In [15]: #printing the Float data type.
float_columns = df.select_dtypes(include='float64').columns.tolist()
print("Columns with float64: ",float_columns)
```

Columns with float64: ['TENURE_IN_MONTHS', 'CLOSESTSTOREDISTANCE', 'AGE', 'INCOME', 'LENGTH OF RESIDENCE', 'NUMBER OF PERSONS I N LIVING UNIT', 'NUMBER OF ADULTS IN LIVING UNIT', 'CAPE: AGE: POP: MEDIAN AGE', 'CAPE: AGE: POP: % 0-17', 'CAPE: AGE: POP: % 18 -99+', 'CAPE: AGE: POP: % 65-99+', 'CAPE: ETHNIC: POP: % WHITE ONLY', 'CAPE: ETHNIC: POP: % BLACK ONLY', 'CAPE: ETHNIC: POP: % A SIAN ONLY', 'CAPE: ETHNIC: POP: % HISPANIC', 'CAPE: DENSITY: PERSONS PER HH FOR POP IN HH', 'CAPE: HHSIZE: HH: AVERAGE HOUSEHOLD SIZE', 'CAPE: TYP: HH: % MARRIED COUPLE FAMILY', 'CAPE: CHILD: HH: % WITH PERSONS LT18', 'CAPE: CHILD: HH: % MARR COUPLE FAMW- P ERSONS LT18', 'CAPE: CHILD: HH: % MARR COUPLE FAMW- P ERSONS LT18', 'CAPE: CHILD: HH: % MARR COUPLE FAMW- P ERSONS LT18', 'CAPE: CHILD: HH: % MARR COUPLE FAMW- P ERSONS LT18', 'CAPE: CHILD: HH: % MARR COUPLE FAMW- P ERSONS LT18', 'CAPE: CHILD: HH: % MARR COUPLE FAMW- P ERSONS LT18', 'CAPE: CHILD: HH: % SPANISH SPEAKING', 'CAPE: EDUC: POP25+: M EDIAN EDUCATION ATTAINED', 'CAPE: HOMVAL: OOHU: MEDIAN HOME VALUE', 'CAPE: BUILT: HU: MEDIAN HOUSING UNIT AGE', 'CAPE: TENANCY: OCCHU: % OWNER OCCUPIED', 'CAPE: TENANCY: OCCHU: % RENTER OCCUPIED', 'CAPE: EDUC: ISPSA', 'CAPE: EDUC: ISPSA DECILE', 'CAPE: IN C: FAMILY INC STATE DECILE', 'CAPE: INC: HH: MEDIAN FAMILY HOUSEHOLD INCOME', 'TOTALSALES', 'TOTALSALES_2Y', '1-Engagement Spend', '2-Wedding Bands Spend', '3-Fashion Diamonds Spend', '4-Fashion Jewelry Spend', '5-Close Out Spend', '6-Promotional Items Spend', '8-Marketing Premium SKUs Spend', '10-Pre Owned Spend', '11-Watches Spend', '12-Misc Merchandise Spend', '15-Store Events Spend', '16-Single Stone Jewelry Spend', 'MDAYREV L1Y', 'MDAYREV L2Y', 'MDAYREV L3Y', 'MDAYREV L4Y']

```
In [16]: #printing the Object data type.
    object_columns = df.select_dtypes(include='object').columns.tolist()
    print("columns with Object :",object_columns)
    columns with Object : ['STATE', 'PRIVATELABELTENDERFLAG', 'MOSAIC']

In [17]: #Checking the shape of dataframe
    print("Shape before removing: ", df.shape)
    Shape before removing: (10000, 117)

In [18]: dup_cols = set()
    for x in range(df.shape[1]):
```

```
base col = df.iloc[:,x]
              for y in range(x+1,df.shape[1]):
                  comp col = df.iloc[:,y]
                  if base col.equals(comp col):
                      dup cols.add(df.columns.values[v])
          print("Columns with duplicate values: ",dup cols)
         Columns with duplicate values: {'7-Cost Only Spend', 'CHILDREN', 'CAPE: HHSIZE: HH: AVERAGE HOUSEHOLD SIZE'}
         df['CHILDREN'].duplicated()
In [19]:
                  False
Out[19]:
                   True
          2
                   True
          3
                   True
          4
                   True
                  . . .
          9995
                   True
          9996
                   True
          9997
                   True
          9998
                   True
          9999
                   True
         Name: CHILDREN, Length: 10000, dtype: bool
         df['7-Cost Only Spend'].duplicated().sum()
In [20]:
Out[20]:
          df['CHILDREN'].duplicated().sum()
In [21]:
Out[21]:
          df['CAPE: HHSIZE: HH: AVERAGE HOUSEHOLD SIZE'].duplicated().sum()
Out[22]:
         df2 = df.copy()
In [23]:
         #After Removing duplicate columns
In [24]:
          df=df.drop(columns = ['7-Cost Only Spend', 'CHILDREN', 'CAPE: HHSIZE: HH: AVERAGE HOUSEHOLD SIZE'])
          print(df.head())
```

```
CUSTOMERID STATE LCPCOUNT PRIVATELABELTENDERFLAG TENURE IN MONTHS \
         0
                  5001
                          TX
                                     1
                                                                           -9.0
         1
                  5002
                          ОН
                                     0
                                                                            9.0
         2
                  5003
                          TX
                                                                           12.0
         3
                  5004
                          TN
                                                                           -1.0
         4
                  5005
                          TX
                                                                           16.0
            CLOSESTSTOREDISTANCE FEMALE
                                         AGE HS DIPLOMA SOME COLLEGE
         0
                             NaN
                                          NaN
                                          NaN
         1
                        8.728943
                             NaN
                                         NaN
         3
                             NaN
                                         NaN
                             NaN
                                         NaN
            MDAYREV L3Y MDAYREV L4Y MDAYQTY L1Y MDAYQTY L2Y MDAYQTY L3Y \
         0
                    0.0
                                 0.0
                                                                          0
         1
                    0.0
                                 0.0
                    0.0
                                 0.0
                    0.0
                                 0.0
                    0.0
                                 0.0
                         MDAYSHOPPER L1Y MDAYSHOPPER L2Y MDAYSHOPPER L3Y \
         0
         1
                                                                         0
                                                        0
                                                                         0
         3
                                                                         0
                      0
            MDAYSHOPPER L4Y
         0
         [5 rows x 114 columns]
         #CHeacking the shape after removing the duplicate Columns
In [25]:
         print("Shape after removing: ", df.shape)
         Shape after removing: (10000, 114)
         #Before Removing duplicate columns
In [26]:
         print(df2.head())
```

```
CUSTOMERID STATE LCPCOUNT PRIVATELABELTENDERFLAG TENURE IN MONTHS \
         0
                  5001
                          TX
                                     1
                                                                            -9.0
         1
                  5002
                          ОН
                                     0
                                                                            9.0
         2
                  5003
                          TX
                                                                            12.0
         3
                  5004
                          TN
                                                                            -1.0
         4
                  5005
                          TX
                                                                            16.0
            CLOSESTSTOREDISTANCE FEMALE AGE HS DIPLOMA SOME COLLEGE
         0
                             NaN
                                          NaN
                                          NaN
         1
                        8.728943
                             NaN
                                          NaN
         3
                             NaN
                                          NaN
                             NaN
                                          NaN
            MDAYREV L3Y MDAYREV L4Y MDAYQTY L1Y MDAYQTY L2Y MDAYQTY L3Y \
         0
                    0.0
                                 0.0
                                                 0
                                                0
         1
                    0.0
                                 0.0
                                                                           0
         2
                    0.0
                                 0.0
                    0.0
                                 0.0
                    0.0
                                 0.0
                         MDAYSHOPPER L1Y MDAYSHOPPER L2Y MDAYSHOPPER L3Y \
         0
         1
                                                        0
                                                                          0
         2
                                                        0
                                                                          0
                                                         0
         3
                                                                          0
         4
                      0
            MDAYSHOPPER L4Y
         0
         [5 rows x 117 columns]
         #Find the columns from the data with constant values
In [57]:
         constant cols=[col for col in df.columns if df[col].nunique()==1]
         print("Constant column: ",constant cols)
         Constant column: ['MARRIED']
```

```
In [28]: #removing the constant columns
    df_cleaned = df.drop(columns = constant_cols)
    #printing the orginal shape dataframe before removing of the constant columns
    print("Orginal df Shape:",df.shape)

Orginal df Shape: (10000, 114)

In [29]: #printing the orginal dataframe before removing of the constant columns
    print(df.head())
```

```
CUSTOMERID STATE LCPCOUNT PRIVATELABELTENDERFLAG TENURE IN MONTHS \
         0
                  5001
                          TX
                                     1
                                                                            -9.0
         1
                  5002
                          ОН
                                     0
                                                                            9.0
         2
                  5003
                          TX
                                                                           12.0
         3
                  5004
                          TN
                                                                            -1.0
         4
                  5005
                          TX
                                                                            16.0
            CLOSESTSTOREDISTANCE FEMALE
                                         AGE HS DIPLOMA SOME COLLEGE
         0
                             NaN
                                          NaN
                                          NaN
         1
                        8.728943
                             NaN
                                          NaN
         3
                             NaN
                                          NaN
                             NaN
                                         NaN
            MDAYREV L3Y MDAYREV L4Y MDAYQTY L1Y MDAYQTY L2Y MDAYQTY L3Y \
         0
                    0.0
                                 0.0
                                                                           0
         1
                    0.0
                                 0.0
         2
                    0.0
                                 0.0
                    0.0
                                 0.0
                    0.0
                                 0.0
                         MDAYSHOPPER L1Y MDAYSHOPPER L2Y MDAYSHOPPER L3Y \
         0
         1
                                                                          0
                                                        0
                                                                          0
         3
                      0
                                                                          0
            MDAYSHOPPER L4Y
         0
         [5 rows x 114 columns]
         #printing the cleaned dataframe shape after removing of the constant columns
In [30]:
         print("Cleaned df Shape:",df cleaned.shape)
         Cleaned df Shape: (10000, 113)
In [31]: #printing the cleaned dataframe after removing of the constant columns
         print(df_cleaned.head())
```

```
CUSTOMERID STATE LCPCOUNT PRIVATELABELTENDERFLAG TENURE IN MONTHS \
          0
                   5001
                          TX
                                     1
                                                                            -9.0
          1
                   5002
                          ОН
                                     0
                                                                             9.0
          2
                   5003
                          TX
                                                                            12.0
          3
                   5004
                          TN
                                                                            -1.0
          4
                   5005
                          TX
                                                                            16.0
            CLOSESTSTOREDISTANCE FEMALE
                                          AGE HS DIPLOMA SOME COLLEGE
          0
                             NaN
                                          NaN
                                          NaN
          1
                        8.728943
                              NaN
                                          NaN
          3
                              NaN
                                          NaN
                              NaN
                                          NaN
            MDAYREV L3Y MDAYREV L4Y MDAYQTY L1Y MDAYQTY L2Y MDAYQTY L3Y \
          0
                     0.0
                                 0.0
                                                 0
                                                 0
                                                                           0
          1
                     0.0
                                 0.0
          2
                     0.0
                                 0.0
                                                                           0
                     0.0
                                 0.0
                     0.0
                                 0.0
                         MDAYSHOPPER L1Y MDAYSHOPPER L2Y MDAYSHOPPER L3Y \
          0
          1
                                                         0
                                                                          0
          2
                                                         0
                                                                          0
          3
                                                                          0
          4
                      0
            MDAYSHOPPER L4Y
          0
         [5 rows x 113 columns]
         #Working on visualizing oulier of all the numric data
In [58]:
          import seaborn as sns
          #Visualizing LCPCOUNT outliers
          box1=sns.boxplot(df cleaned['LCPCOUNT'],orient='h')
          fig = box1.get figure()
          fig.savefig("box1.png",dpi=600)
```



```
In [59]: #Visualizing TENURE_IN_MONTHS outliers
box2=sns.boxplot(df_cleaned['TENURE_IN_MONTHS'],orient='h')
fig2 = box2.get_figure()
fig2.savefig("box2.png",dpi=600)
```



```
In [60]: #Visualizing CLOSESTSTOREDISTANCE outliers
box3=sns.boxplot(df_cleaned['CLOSESTSTOREDISTANCE'],orient='h')
fig3 = box3.get_figure()
fig3.savefig("box3.png",dpi=600)
```



```
In [61]: #Visualizing AGE outliers
box4=sns.boxplot(df_cleaned['AGE'],orient='h')
fig4 = box4.get_figure()
fig4.savefig("box4.png",dpi=600)
```



```
In [62]: #Visualizing INCOME outliers
box5=sns.boxplot(df_cleaned['INCOME'],orient='h')
fig5 = box5.get_figure()
fig5.savefig("box5.png",dpi=600)
```



```
In [63]: #Visualizing LENGTH OF RESIDENCE outliers
box6=sns.boxplot(df_cleaned['LENGTH OF RESIDENCE'],orient='h')
fig6 = box6.get_figure()
fig6.savefig("box6.png",dpi=600)
```



```
In [64]: #Visualizing NUMBER OF PERSONS IN LIVING UNIT outliers
box7=sns.boxplot(df_cleaned['NUMBER OF PERSONS IN LIVING UNIT'],orient='h')
fig7 = box7.get_figure()
fig7.savefig("box7.png",dpi=600)
```



```
In [65]: #Visualizing NUMBER OF ADULTS IN LIVING UNIT outliers
box8=sns.boxplot(df_cleaned['NUMBER OF ADULTS IN LIVING UNIT'],orient='h')
fig8 = box8.get_figure()
fig8.savefig("box8.png",dpi=600)
```



```
In [66]: #Visualizing MORTGAGE-HOME PURCHASE: HOME PURCHASE PRICE outliers
box9=sns.boxplot(df_cleaned['MORTGAGE-HOME PURCHASE: HOME PURCHASE PRICE'],orient='h')
fig9 = box9.get_figure()
fig9.savefig("box9.png",dpi=600)
```



```
In [67]: #Visualizing CAPE: AGE: POP: MEDIAN AGE outliers
box10=sns.boxplot(df_cleaned['CAPE: AGE: POP: MEDIAN AGE'],orient='h')
fig10 = box10.get_figure()
fig10.savefig("box10.png",dpi=600)
```



```
In [68]: #Visualizing CAPE: AGE: POP: % 0-17 outliers
box11=sns.boxplot(df_cleaned['CAPE: AGE: POP: % 0-17'],orient='h')
fig11 = box11.get_figure()
fig11.savefig("box11.png",dpi=600)
```



```
In [73]: data_to_plot5= df[['TOTALSALES','TOTALSALES_2Y']]
box16=data_to_plot5.boxplot(vert=False)
fig16 = box16.get_figure()
fig16.savefig("box16.png",dpi=600)
```



```
In [74]: data_to_plot6= df[['FREQUENCY','QUANTITY','FREQUENCY_2Y','QUANTITY_2Y']]
box17=data_to_plot6.boxplot(vert=False)
fig17 = box17.get_figure()
fig17.savefig("box17.png",dpi=600)
```



```
In [75]: data_to_plot7= df[['CAPE: HOMVAL: OOHU: MEDIAN HOME VALUE','CAPE: INC: HH: MEDIAN FAMILY HOUSEHOLD INCOME']]
box18=data_to_plot7.boxplot(vert=False)
fig18 = box18.get_figure()
fig18.savefig("box18.png",dpi=600)
```



```
In [50]: df2 = df_cleaned.pad(axis = 0)
    df_final= df2.fillna(value = df2['AGE'].mean())
    df_final= df2.fillna(value = df2['CLOSESTSTOREDISTANCE'].mean())
    df_final.head()

C:\Users\SK\AppData\Local\Temp\ipykernel_7080\803262042.py:1: FutureWarning: DataFrame.pad/Series.pad is deprecated. Use DataFrame.ffill/Series.ffill instead
    df2 = df_cleaned.pad(axis = 0)
```

Out[50]:		CUSTOMERID	STATE	LCPCOUNT	PRIVATELABELTENDERFLAG	TENURE_IN_MONTHS	CLOSESTSTOREDISTANCE	FEMALE	AGE	HS_DIPLOMA	SON
	0	5001	TX	1	N	-9.0	21.855361	0	21.855361	0	
	1	5002	ОН	0	Υ	9.0	8.728943	0	21.855361	0	
	2	5003	TX	0	N	12.0	8.728943	0	21.855361	0	
	3	5004	TN	0	N	-1.0	8.728943	0	21.855361	0	
	4	5005	TX	0	N	16.0	8.728943	0	21.855361	0	

5 rows × 113 columns

```
In [77]: dist1=sns.histplot(df_final["INCOME"],kde=True ,bins = 20)
    fig1 = dist1.get_figure()
    fig1.savefig("dist1.png",dpi=600)
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True):


```
In [78]: dist2=sns.scatterplot(x="INCOME",y="3-Fashion Diamonds Spend",data = df_final)
fig2 = dist2.get_figure()
fig2.savefig("dist2.png",dpi=600)
```



```
In [79]: dist3=sns.barplot(x="STATE",y="INCOME",data = df_final.nlargest(30,'TOTALSALES'))
fig3 = dist3.get_figure()
fig3.savefig("dist3.png",dpi=600)
```

Out[84]:


```
sns.jointplot(x="CAPE: HOMVAL: OOHU: MEDIAN HOME VALUE",y = "CAPE: INC: HH: MEDIAN FAMILY HOUSEHOLD INCOME",
In [84]:
                       data = df final,kind="hex")
         C:\ProgramData\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use inf as na option is deprecated and will
         be removed in a future version. Convert inf values to NaN before operating instead.
           with pd.option_context('mode.use_inf_as_na', True):
         C:\ProgramData\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use inf as na option is deprecated and will
         be removed in a future version. Convert inf values to NaN before operating instead.
           with pd.option context('mode.use inf as na', True):
         <seaborn.axisgrid.JointGrid at 0x2d5519dbfd0>
```



```
In [82]: dist5=sns.histplot(df_final["CAPE: INC: HH: MEDIAN FAMILY HOUSEHOLD INCOME"],kde=True ,bins = 20)
fig5 = dist5.get_figure()
fig5.savefig("dist5.png",dpi=600)
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option context('mode.use inf as na', True):


```
In [83]: dist6=sns.histplot(df_final["AGE"],kde=True ,bins = 20)
fig6 = dist6.get_figure()
fig6.savefig("dist6.png",dpi=600)
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option context('mode.use inf as na', True):

By Shubhendra Kumar

kshubhendra8860@gmail.com

[n []: Thank You