

Characterizing and Approximating the Optimal Allocation for Top-*m* Arm Identification

Master Thesis

Kevin Klein, Johannes Kirschner, Mojmír Mutný

Context

- Bandits, k arms.
- Frequentist setting: true best means θ^* and m true best arms S^* .
- Reward distributions: 1-dimensional exponential family.
- Top-m arm identification goal: identifying S* with high confidence and few samples.
- Confidence: $\max_{S} \Pr[S \text{ is top-} m | \mathcal{D}_n]$
- Fixed vs adaptive.

Disclaimers

- Most of the work is inspired by Daniel Russo's Simple Bayesian algorithm for Best Arm Identification ¹.
- Convergence is reasoned about in a = sense, with:

$$a_n = b_n \Leftrightarrow \lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} \to 0$$
 (1)

¹https://arxiv.org/abs/1602.08448

Optimality

- $\Pr[S^* \text{ is top-} m | \mathcal{D}_n] \to 1 \text{ with } n \to \infty \text{ is not hard.}$
- What's hard: converge optimally fast.
- Goal: Maximize rate at which $\Pr[S^* \text{ is top-} m | \mathcal{D}_n] \to 1$ with $n \to \infty$.
- We prove that for any fixed allocation ψ :

$$\Pr[S^* \text{ is top-} m | \mathcal{D}_n] = 1 - \exp\{-n \min_{i \notin S^*} \min_{j \in S^*} \min_{x \in \mathbb{R}} \psi_i d(\theta_i^* || x) + \psi_j d(\theta_j^* || x)\}$$

- As a consequence, the optimal minimizes the exponent.
- $\psi^* = \arg\max_{\psi} \min_{i \notin S^*} \min_{j \in S^*} \psi_i d(\theta_i^* || x) + \psi_j d(\theta_i^* || x)$

Evidence for distinction

- $C_{j,i}(\psi_j, \psi_i) = \min_{x \in \mathbb{R}} \psi_i d(\theta_i^*||x) + \psi_j d(\theta_j^*||x)$
- \bullet Distinction comprises both frequency ψ and distance of values, captured by KL divergence.
- One might think of the worst optimal and best suboptimal to be relevant for this minimization. Turns out all are relevant!

Characterization

Theorem (Characterization of optimal allocation)

There is a unique fixed allocation ψ^* maximizing the convergence rate of the posterior mass put on the true best arms. It enforces that:

$$\forall j_1, j_2 \in \mathcal{S}^*, \forall i_1, i_2 \notin \mathcal{S}^* : C_{j,i}(\psi_{j_1}^*, \psi_{i_1}^*) = C_{j,i}(\psi_{j_2}^*, \psi_{i_2}^*)$$

This leads to a slightly simpler convergence rate for the optimal allocation:

$$\Pr[S^* \text{ is top-} m | \mathcal{D}_n] = 1 - \exp\{-n \ C_{j,i}(\psi_j^*, \psi_i^*)\}$$

for any $j \in S^*$, $i \notin S^*$.

Example: Setup

- Top-4.
- Given true underlying means:

$$\theta^1 = [.1, .2, .3, .4, .5, \underbrace{.6, .7, .8, .9}_{S^*}]$$
 (2)

$$\theta^2 = [.4, .425, .45, .475, .5, \underbrace{.525, .55, .575, .6}_{S^*}]$$
 (3)

• Overdetermined system of equations: Find ψ such that $\forall j_1, j_2 \in S^*, \forall i_1, i_2 \notin S^* : C_{j,i}(\psi_{j_1}, \psi_{i_1}) = C_{j,i}(\psi_{j_2}, \psi_{i_2}).$

Example: Resulting allocation

Figure: Unconstrained and constrained optimal allocation for θ^1 and θ^2 , top-4.

DINFK

Top-2m XOR Thompson sampling

- Adaptive.
- Simple.
- Bayesian (remember: confidence).
- · 'Exact'.
- Based on Thompson sampling and another layer of randomization.
- Idea: Always sample two distinct candidates.
- · Goal: Convergence towards optimal fixed allocation.

TXTS: Algorithm

Algorithm 1 TXTS: Given a posterior Π_{n-1} in step n.

$$\hat{\theta} \sim \Pi_{n-1}$$
 $S_1 = \text{top-}m(\hat{\theta})$

repeat
$$\hat{\theta} \sim \Pi_{n-1}$$
 $S_2 = \text{top-}m(\hat{\theta})$

until $S_1 \neq S_2$
 $I_n \sim \mathcal{U}(S_1 \oplus S_2)$

Play I_n , observe reward and update posterior.

Play I_n , observe reward and update posterior.

TXTS: Empirical results

- · Bernoulli rewards.
- Beta posteriors, $\alpha = \beta = 1$.
- Top-4.
- $\theta^* = [.1, .2, .3, .4, .5, \underbrace{.6, .7, .8, .9}_{S^*}]$

TXTS: Evidence collection

Figure: Top row: true and estimated θ . Bottom row: true and estimated coefficients $C_{j,i}$. 2000 steps, 150 seeds.

TXTS: Empricial average allocation comparison

Figure: Comparison of allocations for different methods and numbers of samples. 50 seeds.

TXTS: Theoretical status quo

- Allocation ψ hard to explicitly express in closed form.
- Established bounds on ψ .
- Proven $\Pr[S^* \text{ is top-} m | \mathcal{D}_n] \to 1$.
- Proven $\sum_{j \in S^*} \psi_{n,S^*} \to \frac{1}{2}$.
- Proven that if converged on S*, then convergence on S*c and vice versa.
- Proven some more technical statements.

TXTS: Theoretical outlook

Prove overall convergence.

Appendix.

DINFK

1-d exponential family

- They have a scalar parameter θ .
- They come with the definition of functions T(x), $\nu(\theta)$, h(x) and $A(\theta)$. T corresponds to the sufficient statistic and A to the log-partition function.
- The probability density function is defined by:

$$f_X(x|\theta) = h(x) \exp(\nu(\theta)T(x) - A(\theta))$$

- They have conjugate priors.
- Bernoulli, binomial with known number of trials, Poisson, exponential, Pareto with known minimal value, chi-squared, normal distribution with known variance and more.

Computing evidence

The Bernoulli assumption allows us to solve the minimization over x analytically.

$$d(\theta_I||x) = \theta_I \log(\frac{\theta_I}{x}) + (1 - \theta_I) \log(\frac{1 - \theta_I}{1 - x})$$
 (4)

$$x_0 = \frac{\psi_j \theta_j + \psi_i \theta_i}{\psi_j + \psi_i} \tag{5}$$

TXTS: Increase in confidence

Figure: Confidence per steps for TXTS, uniform and Thompson sampling.

50 seeds.

TXTS: Empirical average allocation

Figure: TXTS empirical average allocation after 1000 steps. Arms ordered by true mean. 50 seeds.

Theorem (Sufficient condition for optimality)

If

$$\forall I \in [k], \delta > 0 : \sum_{n \in \mathbb{N}} \psi_{n,l} \mathbb{I}[\bar{\psi}_{n,l} \ge \psi_I^* + \delta] < \infty$$
 (6)

then $\bar{\psi}_n \to \psi^*$.