android battery consumption the what & how

kumar rangarajan little eye labs

introducing littleEye appInsight

CT scanner for your Android App

- #I pain point of smart phones users.
- more visible on Android than in iOS
- unlike memory, you can never reclaim excess usage!
- no moore's law for battery capacity
- improving battery capacity is an ongoing research activity, but no current solution
- even then keeping up with consumption would be difficult as apps get more powerful and resource hungry

we code... consumers suffer

Bad battery life is a big problem for

- Users
- Developers
- Ad networks
- Smartphone manufacturers

- #I pain point of smart phones users.
- more visible on Android world than in iOS
- unlike memory, you can never reclaim excess usage!
- no moore's law for battery capacity
- improving battery capacity is an ongoing research activity, but no current solution
- even then keeping up with consumption would be difficult as apps get more powerful and resource hungry

- #I pain point of smart phones users.
- more visible on Android world than in iOS
- unlike memory, you can never reclaim excess usage!
- no moore's law for battery capacity
- improving battery capacity is an ongoing research activity, but no current solution
- even then keeping up with consumption would be

- #I pain point of smart phones users.
- more visible on Android world than in iOS
- unlike memory, you can never reclaim excess usage!
- no moore's law for battery capacity
- improving battery capacity is an ongoing research activity, but no current solution
- even then keeping up with consumption would be difficult as apps get more powerful and resource hungry

- #I pain point of smart phones users.
- more visible on Android world than in iOS
- unlike memory, you can never reclaim excess usage!
- no moore's law for battery capacity
- improving battery capacity is an ongoing research activity, but no current solution
- even then keeping up with consumption would be difficult as apps get more powerful and resource hungry

- #I pain point of smart phones users.
- more visible on Android world than in iOS
- unlike memory, you can never reclaim excess usage!
- no moore's law for battery capacity
- improving battery capacity is an ongoing research activity, but no current solution
- even then keeping up with consumption would be difficult as apps will get more powerful and resource hungry

what consumes power?

network activity

- EDGE consumes less power for a byte of data transfer, but is slow
- Wifi consumes more power on average, but can do job faster
- 3G consumes more power than Wifi, and typically slower than Wifi.
- 4G consumes more power than 3G, and depending on availability, faster than Wifi

what causes power consumption?

- four primary states
 - establishing connection or association
 - maintaining association (idle)
 - transmission (two or more sub states)
 - tail state (pseudo state)

	Establish	Maintain	Transmit	Tail
Wifi	High	Low	Low	Low
2G	Low	Low	Low	Low
3G	Low	Low	High	High

derived from http://people.cs.umass.edu/~arun/papers/TailEnder.pdf

more about states

time between state reduction = tail state

how apps can impact state

	number of data operations	between	size of each operation	time in high/ low state
аррІ	3	18	I mb/s	18 + 42 seconds
арр2	3	0 (bundled)	I mb/s	8 + 12 seconds

relative power consumption

Total Current Consumed for I minute

аррІ	78mA
арр2	28mA

appl consumes 3x app2

prefetch data

- to avoid switching states frequently, try and read as much data as possible
- trade-off between too much pre-fetch and battery drain
- google recommends prefetching data that you will initiate in the next 2 to 5 minutes, and in the order of I-5 MB size

batch data

- do data send/receive in batches rather than on-demand
- eg: batch analytics information, rather than sending them as they are collected

prefetch data

- to avoid switching states frequently, try and read as much data as possible
- trade-off between too much pre-fetch and battery drain
- google recommends prefetching data that you will initiate in the next 2 to 5 minutes, and in the order of I-5 MB size

batch data

- do data send/receive in batches rather than on-demand
- eg: batch analytics information, rather than sending them as they are collected

- detect network connection
 - avoid connection attempts if no network is active
- avoid polling and use GCM when possible
 - avoids multiple connections
 - reduces the number of device state changes
- using inexact timers
 - AlarmManager.setInexactRepeating()
 - use ELAPSED_REALTIME instead of ELAPED_REALTIME_WAKEUP

- detect network connection
 - avoid connection attempts if no network is active
- avoid polling and use GCM when possible
 - avoids multiple connections
 - reduces the number of device state changes
- using inexact timers
 - AlarmManager.setInexactRepeating()
 - use ELAPSED_REALTIME instead of ELAPED_REALTIME_WAKEUP

- detect network connection
 - avoid connection attempts if no network is active
- avoid polling and use GCM when possible
 - avoids multiple connections
 - reduces the number of device state changes
- using inexact timers
 - AlarmManager.setInexactRepeating()
 - use ELAPSED_REALTIME instead of ELAPED_REALTIME_WAKEUP

- use caching
 - avoid redundant downloads
- varying download pattern
 - modify pattern based on connection type
 - download more data per session on faster networks
 - * change the aggression of pre-fetch

- use caching
 - avoid redundant downloads
- varying download pattern
 - modify pattern based on connection type
 - download more data per session on faster networks
 - change the aggression of pre-fetch

- monitor charge level and state
- monitor and determine the docking state and type
- monitor the connectivity state
- manipulate broadcast receivers on-demand

- monitor charge level and state
- monitor and determine the docking state and type
- monitor the connectivity state
- manipulate broadcast receivers on-demand

- monitor charge level and state
- monitor and determine the docking state and type
- monitor the connectivity state
- manipulate broadcast receivers on-demand

- monitor charge level and state
- monitor and determine the docking state and type
- monitor the connectivity state
- manipulate broadcast receivers on-demand

if your audience has not gone to sleep yet & organizers have...

screen

- color matters!
 - esp on OLED screens
- darker the color, lesser the consumption
- brightness levels have more impact
 - refer to http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 <a href="questions-apply-system-app
 - programmatically reduce brightness if its suits your app/activity

Chameleon: Color Transformation on OLED Displays

screen

- color matters!
 - esp on OLED screens
- darker the color, lesser the consumption
- brightness levels have more impact
 - refer to http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 <a href="questions/5032588/cant-apply-system-a
 - programmatically reduce brightness if its suits your app/activity

Chameleon: Color Transformation on OLED Displays

screen

- color matters!
 - esp on OLED screens
- darker the color, lesser the consumption
- brightness levels have more impact
 - refer to http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 http://stackoverflow.com/
 <a href="questions-apply-system-syste
 - programmatically reduce brightness if its suits your app/activity

Chameleon: Color Transformation on OLED Displays

- typically runs on various frequencies
- frequency transition controlled by governor policy installed
- same concept as on linux based PCs, but typically more aggressive
- system drops down to 'deep sleep' as much as it can
- frequencies are scaled based of usage

	ନ୍ଦି _ଆ 💷 11:	57 PM	
CPU Spy v0.2.0 beta	. ,,,,,	37 T IVI	
Time In State		_	
1200 MHz	0:10:30	6%	
1000 MHz	0:02:37	1%	
800 MHz	0:13:11	8%	
600 MHz	0:07:22	4%	
400 MHz	0:05:53	3%	
200 MHz	0:10:33	6%	
100 MHz	1:53:03	69%	
Unused CPU states			
1400 MHz, 1300 MHz, 1	120 MHz		
Kernel Info			
Linux version 2.6.32.9 (eXistZ- KB1-BETA@) (gcc version 4.5.1 (Sourcery G++ Lite 2010.09-51))			

- typically runs on various frequencies
- frequency transition controlled by governor policy installed
- same concept as on linux based PCs, but typically more aggressive
- system drops down to 'deep sleep' as much as it can
- frequencies are scaled based of usage

	ନ୍ଦି _ଆ 💷 11:	57 PM		
CPU Spy v0.2.0 beta				
Time In State				
1200 MHz	0:10:30	6%		
1000 MHz	0:02:37	1%		
800 MHz	0:13:11	8%		
600 MHz	0:07:22	4%		
400 MHz	0:05:53	3%		
200 MHz	0:10:33	6%		
100 MHz	1:53:03	69%		
Unused CPU states				
1400 MHz, 1300 MHz, 1120 MHz				
Kernel Info				
Linux version 2.6.32.9 (eXistZ- KB1-BETA@) (gcc version 4.5.1 (Sourcery G++ Lite 2010.09-51))				

- typically runs on various frequencies
- frequency transition controlled by governor policy installed
- same concept as on linux based PCs, but typically more aggressive
- system drops down to 'deep sleep' as much as it can
- frequencies are scaled based of usage

	? ₁ 11 :	57 PM
CPU Spy v0.2.0 beta		
Time In State		
1200 MHz	0:10:30	6%
1000 MHz	0:02:37	1%
800 MHz	0:13:11	8%
600 MHz	0:07:22	4%
400 MHz	0:05:53	3%
200 MHz	0:10:33	6%
100 MHz	1:53:03	69%
Unused CPU states		
1400 MHz, 1300 MHz, 112	20 MHz	
Kernel Info		
Linux version 2.6. KB1-BETA@) (gcc v (Sourcery G++ Lite	ersion 4.5.	1

- typically runs on various frequencies
- frequency transition controlled by governor policy installed
- same concept as on linux based PCs, but typically more aggressive
- system drops down to 'deep sleep' as much as it can
- frequencies are scaled based of usage

	ନ୍ଦି _ଆ 💷 11:	57 PM	
CPU Spy v0.2.0 beta	. ,,,,,	37 T IVI	
Time In State		_	
1200 MHz	0:10:30	6%	
1000 MHz	0:02:37	1%	
800 MHz	0:13:11	8%	
600 MHz	0:07:22	4%	
400 MHz	0:05:53	3%	
200 MHz	0:10:33	6%	
100 MHz	1:53:03	69%	
Unused CPU states			
1400 MHz, 1300 MHz, 1	120 MHz		
Kernel Info			
Linux version 2.6.32.9 (eXistZ- KB1-BETA@) (gcc version 4.5.1 (Sourcery G++ Lite 2010.09-51))			

- typically runs on various frequencies
- frequency transition controlled by governor policy installed
- same concept as on linux based PCs, but typically more aggressive
- system drops down to 'deep sleep' as much as it can
- frequencies are scaled based of usage

	<section-header> ااا 💷 11:</section-header>	57 PM		
CPU Spy v0.2.0 beta				
Time In State				
1200 MHz	0:10:30	6%		
1000 MHz	0:02:37	1%		
800 MHz	0:13:11	8%		
600 MHz	0:07:22	4%		
400 MHz	0:05:53	3%		
200 MHz	0:10:33	6%		
100 MHz	1:53:03	69%		
Unused CPU states				
1400 MHz, 1300 MHz, 1120 MHz				
Kernel Info				
Linux version 2.6.32.9 (eXistZ- KB1-BETA@) (gcc version 4.5.1 (Sourcery G++ Lite 2010.09-51))				

- wakelocks are your friend, but your users worst nightmare!
- use them only if really needed and ensure they are removed as soon as possible
- use 'android:keepScreenOn' property in your manifest instead of doing it programmatically
- if possible, spread out your computationally intensive job

- wakelocks are your friend, but your users worst nightmare!
- use them only if really needed and ensure they are removed as soon as possible
- use 'android:keepScreenOn' property in your manifest instead of doing it programmatically
- if possible, spread out your computationally intensive job

- wakelocks are your friend, but your users worst nightmare!
- use them only if really needed and ensure they are removed as soon as possible
- use 'android:keepScreenOn' property in your manifest instead of doing it programmatically
- if possible, spread out your computationally intensive job

- wakelocks are your friend, but your users worst nightmare!
- use them only if really needed and ensure they are removed as soon as possible
- use 'android:keepScreenOn' property in your manifest instead of doing it programmatically
- if possible, spread out your computationally intensive job

- gpu typically consumes more power than cpu
 - avoid floating point math where possible
- use gpu for data-parallel tasks like video/image processing
- use algorithms that consume less CPU cycle
 - ▶ O(n log n) vs O(n 2) algorithms

goal - keep the freq to the lowest level or reduce the number of cycles

- gpu typically consumes more power than cpu
 - avoid floating point math where possible
- use gpu for data-parallel tasks like video/image processing
- use algorithms that consume less CPU cycle
 - ➤ O(n log n) vs O(n 2) algorithms

goal - keep the freq to the lowest level or reduce the number of cycles

- gpu typically consumes more power than cpu
 - avoid floating point math where possible
- use gpu for data-parallel tasks like video/image processing
- use algorithms that consume less CPU cycle
 - ▶ O(n log n) vs O(n 2) algorithms

goal - keep the freq to the lowest level or reduce the number of cycles

best practices (others)

- gps is another very expensive component
 - avoid fine grained locations if possible
- use power efficient SDKs
 - eg: Location SDK from SkyhookWireless

best practices (others)

- gps is another very expensive component
 - avoid fine grained locations if possible
- use power efficient SDKs
 - eg: Location SDK from SkyhookWireless

references

- 1. http://developer.android.com/training/efficient-downloads/index.html
- 2. http://developer.android.com/training/monitoring-device-state/
 index.html
- 3. http://dl.google.com/io/2009/pres/W 0300 CodingforLife-BatteryLifeThatls.pdf
- 4. http://people.cs.umass.edu/~arun/papers/TailEnder.pdf
- 5. http://chipdesignmag.com/lpd/absolute-power/2012/05/10/4g-lte-vs-3g/
- 6. http://thisweekinbatteries.blogspot.in/
- 7. http://www.ruf.rice.edu/~mobile/publications/dong10chameleon-demo.pdf

thank you

this presentation has been shared @

http://www.slideshare.net/littleeye/power-optimization-for-android-developers

http://www.littleeye.co/blog

kumar@littleeye.co