Interpreting the coefficients

Linear regression model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni} + \varepsilon_i$$

- β are the coefficients.
- β_0 is the intercept.

The intercept

 β_0 is the value of the target when all variables equal 0.

Also called the intercept.

Coefficients

- β represents the gradient (slope) of the regression.
- β is the change in y, per unit change in x.

(provided all other variables stay the same.)

Coefficients slope

 $\beta 1 > \beta 2 \rightarrow x1$ has a greater contribution than x2 to the target value.

(For a meaningful comparison features should be in a similar scale).

Coefficients sign

- + → as x increases, so does y.
- → as x increases, y decreases.

Coefficients significance

Does the red line show a good linear fit?

t-test

Bad model: we'd expect the change in y to be zero per unit change of x.

$$\rightarrow \beta = 0$$

t-test

If we can predict y from x linearly

 \rightarrow then β is different from 0.

t-test

- t-test tests the null hypothesis: $\beta=0$.
- Tests how big β is, compared to its variability.

$$t = \frac{\beta}{SE\beta}$$

t-distribution

$$t = \frac{\beta}{SE\beta}$$

If t is too big or too small \rightarrow the probability that β =0 is small, then, the regression coefficient is statistically significant.

The t-distribution

https://commons.wikimedia.org/wiki/File:Student t pdf.svg

What is it?

- $\triangleright \beta$ is an estimate.
- > As such, it comes with an estimation error.

If we take 500 different samples of the data, we'll obtain 500 different coefficients.

- Calculate the mean and standard deviation of β.
- Calculate t.
- Find the p-values.

- Calculate the mean and standard deviation of β.
- Calculate t.
- Find the p-values.
- Cross-validation

Statsmodels

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

$$se(\hat{\beta}_i) = \sqrt{(X^T X)_{ii}^{-1}}\hat{\sigma}.$$

$$\hat{\sigma}^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{n-p}$$

https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

Summary

Intercept

- Value of y when all variables' values equal 0.
- Realistic scenario: variables are centred at mean =0.

Coefficients

- $\Box \beta$ indicates the change in y given a unit change in x.
- If β is positive, then y increases as x increases.
- If β is negative, then y decreases as x increases.
- To compare features by using β , they need to be in a similar scale.

Significance

- We can test if the β are significantly different from 0 by using a t-test.
- t tells us if β is statistically bigger than its estimation error (i.e., variability).

Coefficient significance in Python

Cross-validation

Manual calculations

Statsmodels

Coefficients

Coefficients error

t and the pvalues

Confidence intervals

THANK YOU

www.trainindata.com