ROB LAB 3 – Adrian Wiśniewski

Klasyfikator tworzę z użyciem 45 perceptronów odpowiadających parom kolejnych cyfr. Przykłady testowe przypisuję do kategorii, która uzyskała najwięcej głosów. W przypadku remisu dwóch lub więcej kategorii podaję decyzję wymijającą.

Perceptrony są uczone przyrostowo przez 10 epok (lub do momentu, gdy poziom błędu osiągnie próg 0%) regułą perceptronową. Stała uczenia się wynosi 0.005 i dodatkowo jest wymnażana przez współczynnik 1/(nr epoki). Przykłady obu klas są mieszane i podawane w losowej kolejności. Oczywiście operacje są wykonywane w przestrzeni jednorodnej.

Ufność jest obliczana jako suma odległości od próbki do płaszczyzny decyzyjnej dla płaszczyzn decyzyjnych, które poprawnie zaklasyfikowały przykład pomniejszona o analogiczną sumę dla płaszczyzn klasyfikujących niepoprawnie. Przy obliczaniu ufności pod uwagę brany jest tylko zestaw 9 płaszczyzn faktycznie klasyfikujących daną cyfrę.

Wyniki

Wyniki ogólne dla przestrzeni 40-wymiarowej:

Skuteczność	Błędy	Decyzje wymijające	
0.895300	0.067700	0.037000	

Najczęstszymi pomyłkami jest utożsamianie 4 z 6 (49) i 5 z 9 (41). Najwięcej decyzji wymijających zapada dla 8 (68) i 3 (54). Najlepiej klasyfikowana są cyfry 2 (97%) i 1 (96%), a najgorzej 8 (82%) i 3 (85%).

Wyniki dla poszczególnych klasyfikatorów liniowych:

Klasy	Skutecz.	Błędy	Klasy	Skutecz.	Błędy	Klasy	Skutecz.	Błędy
0-1	0.99905	0.00095	1-8	0.98625	0.01375	4-5	0.98559	0.01441
0-2	0.98757	0.01243	1-9	0.99534	0.00466	4-6	0.98763	0.01237
0-3	0.99447	0.00553	2-3	0.96621	0.03379	4-7	0.98607	0.01393
0-4	0.99745	0.00255	2-4	0.97865	0.02135	4-8	0.99080	0.00920
0-5	0.98825	0.01175	2-5	0.96206	0.03794	4-9	0.94626	0.05374
0-6	0.98865	0.01135	2-6	0.97136	0.02864	5-6	0.96216	0.03784
0-7	0.99452	0.00548	2-7	0.97427	0.02573	5-7	0.99271	0.00729
0-8	0.99028	0.00972	2-8	0.94766	0.05234	5-8	0.94802	0.05198
0-9	0.99397	0.00603	2-9	0.97354	0.02646	5-9	0.97107	0.02893
1-2	0.99031	0.00969	3-4	0.99448	0.00552	6-7	0.99597	0.00403
1-3	0.99254	0.00746	3-5	0.92744	0.07256	6-8	0.98499	0.01501
1-4	0.99764	0.00236	3-6	0.99339	0.00661	6-9	0.99492	0.00508
1-5	0.99309	0.00691	3-7	0.97792	0.02208	7-8	0.98452	0.01548
1-6	0.99761	0.00239	3-8	0.95111	0.04889	7-9	0.94747	0.05253
1-7	0.99168	0.00832	3-9	0.97325	0.02675	8-9	0.96117	0.03883

Ufność dla przykładów niepoprawnie sklasyfikowanych jest zwykle mniejsza od ufności dla przykładów poprawnie sklasyfikowanych. Średnia i wariancja ufności dla obu grup próbek to odpowiednio 1.1675 i 1.1829 oraz 2.5248 i 1.1759. Ufność w pierwszej grupe często przyjmuje wartości bliskie zera co zdarza się bardzo rzadko w drugiej grupie. Miara ta jednak nie jest doskonała, ponieważ można znaleźć źle sklasyfikowane przykłady o dużej ufności i poprawnie sklasyfikowane o małej warości.

Implementacja

- [planeLabels planes labels componentLabels confidence confusionMatrix errors pConfusionMatrices pErrors] = lablin(tvec, tlab, tstv, tstl) funkcja fasadowa wykonująca całe laboratorium.
 - o planeLabels etykiety poszczególnych klasyfikatorów liniowych
 - o planes klasyfikatory liniowe
 - labes etykiety przykładów testowych
 - o componentLabels etykiety uzyskane z klasyfikacji wszystkimi klasyfikatorami
 - o confidence ufność
 - o confusionMatrix macierz pomyłek
 - errors błędy klasyfikatora
 - pConfusionMatrices macierze pomyłek poszczególnych perceptronów (dotyczy tylko przykładów ich klas)
 - o pErrors błędy poszczegółnych perceptronów
- [planeLabels planes] = linearCreateClassifiers(tvec, tlab) przygotowanie wszystkich 45 klasyfikatorów liniowych na podstawie zbioru trenującego.
- [weights] = perceptron(positive, negative) przygotowanie klasyfikatora liniowego jako perceptrona na podstawie przykładów dwóch klas.
- [labels componentLabels confidence] = linearClassify(planeLabels, planes, tstv) funkcja klasyfikująca dane testowe z użyciem stworzonych wcześniej klasyfikatorów liniowych.
- [confusionMatrix] = createConfusionMatrix(lab, tstl) funkcja pomocnicza obliczająca macierz pomyłek na podstawie etykiet uzyskanyz klasyfikacji i zbioru testowego.
- [pConfusionMatrices pErrors] = testPerceptrons(planeLabels, planes, tstv, tstl) funkcja pomocnicza testująca skuteczność wszystkich perceptronów.
- [confidence] = estimateConfidence(labels, componentLabels, distances, planeLabels) funkcja pomocnicza wyznaczająca ufność klasyfikacji.