Математическая логика

Совершенная конъюнктивная нормальная форма (СКНФ). Полином Жегалкина. Импликант

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела	
п/п	раздела дисциплины		
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.	
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.	
		Принцип двойственности. Совершенная дизъюнктивная нормальная	
		форма (СДНФ). Совершенная конъюнктивная нормальная форма	
		(СКНФ). Разложение булевых функций по переменным. Построение	
		СДНФ для функции, заданной таблично.	
2.	Минимизация	ация Проблема минимизации. Порождение простых импликантов.	
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.	
3.	Полнота и Замкнутые классы. Класс логических функций, сохранян константы 0 и 1. Определение и доказательство замкнутости.		
	логических функций	самодвойственных функций. Определение и лемма о	
		несамодвойственной функции. Класс монотонных функций.	
		Определение и лемма о немонотонной функции. Класс линейных	
		функций. Определение и лемма о нелинейной функции.	
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,	
	высказываний и общезначимость, противоречивость, логическое следствие. Ме		
	предикатов	резолюций для исчисления высказываний. Понятие предиката.	
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм	
		преобразования формул в предваренную нормальную форму.	
		Скулемовская стандартная форма. Подстановка и унификация.	
	Алгоритм унификации. Метод резолюций в исчислении предикато		

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Представление произвольной функции через СКНФ

Пусть
$$f(x_1,...,x_n) \not\equiv 1$$
. Разложим функцию $f^*(x_1,...,x_n) (f^*(x_1,...,x_n) \not\equiv 0)$ в СДНФ:
$$f^*(x_1,...,x_n) = \bigvee_{\substack{\delta_1,...,\delta_n \\ f^*(\delta_1,...,\delta_n) = 1}} x_1^{\delta_1} \cdots x_n^{\delta_n} .$$

Из принципа двойственности следует, что

$$f^{**}(x_1,...,x_n) = \underset{f^*(\delta_1,...,\delta_n)=1}{\&} x_1^{\delta_1} \vee ... \vee x_n^{\delta_n}.$$

Представление произвольной функции через СКНФ

Левая часть равенства есть $f(x_1,...,x_n)$, а правая может быть преобразована:

Таким образом, получаем разложение

$$f(x_1,...,x_n) = \underset{f(\delta_1,...,\delta_n)=0}{\&} x_1^{\bar{\delta}_1} \vee ... \vee x_n^{\bar{\delta}_n}.$$

Построение СКНФ для функции, заданной таблицей

- 1) СКНФ функции f содержит ровно столько дизъюнкций, сколько нулей в таблице f.
- 2) Каждому набору $(\delta_1, ..., \delta_n)$, на котором значение функции равно 0, соответствует дизъюнкция всех переменных, в которых x_i взято с отрицанием, если $\delta_i = 1$ и без отрицания, если $\delta_i = 0$.

Построение СКНФ для функции, заданной таблицей

Пример. Найти СКНФ для функции $x_1 \rightarrow x_2$.

\mathcal{X}_1	\mathcal{X}_2	$x_1 \rightarrow x_2$	Основные элементарные дизъюнкции (ОЭД)
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Построение СКНФ

Найти СКНФ для функции $x_1 \rightarrow x_2$.

X_1	\mathcal{X}_2	$x_1 \rightarrow x_2$	Основные элементарные дизъюнкции (ОЭД)
0	0	1	
0	1	1	
1	0	0	$\overline{x_1} \vee x_2$
1	1	1	

Полученные ОЭД записываем в ответ через конъюнкции, получаем СКНФ.

$$f(x_1, x_2) = x_1^0 \lor x_2^1 = \overline{x}_1 \lor x_2$$
.

Полином Жегалкина

Иван Иванович Жегалкин, (1869-1947), российский математик и логик. Доктор физ.-мат. наук, профессор МГУ. И.И. Жегалкин представил алгебру логики как арифметику вычетов по модулю 2.

Полином Жегалкина

Любую функцию можно представить с помощью 2 функций: сложения по модулю 2 и конъюнкции, и константы 1, если нужно.

Определение: Выражение вида

$$P(x_1,x_2,...,x_n)=eta_0\opluseta_1K_1\opluseta_2K_2\oplus...\opluseta_{2^n-1}K_{2^n-1}$$
 называется полиномом Жегалкина, где $eta_i\in\{0;1\}$ - коэффициенты при конъюнкциях, K_i - всевозможные конъюнкции, $i=\overline{0,2^n-1}$.

Полином Жегалкина. Частные случаи

Для одной переменной: $P(x) = \beta_0 \oplus \beta_1 x$.

	X	f(x)
eta_0	0	
eta_1	1	

Полином Жегалкина. Частные случаи

Для двух переменных:

$$P(x_1,x_2) = \beta_0 \oplus \beta_1 x_2 \oplus \beta_2 x_1 \oplus \beta_3 x_1 x_2.$$

	x_1 x_2	f(x)
eta_0	0 0	
eta_1	0 1	
eta_2	1 0	
eta_3	1 1	

Полином Жегалкина. Частные случаи

Для трех переменных:

$$P(x_1, x_2, x_3) = \beta_0 \oplus \beta_1 x_3 \oplus \beta_2 x_2 \oplus \beta_3 x_2 x_3 \oplus \beta_4 x_1 \oplus$$

$$\oplus \beta_5 x_1 x_3 \oplus \beta_6 x_1 x_2 \oplus \beta_7 x_1 x_2 x_3$$

	, , , ,	0 1 2 7 1 1 2 3
	x_1 x_2 x_3	f(x)
eta_0	0 0 0	
eta_1	0 0 1	
eta_2	0 1 0	
β_3	0 1 1	
eta_4	1 0 0	
eta_5	1 0 1	
eta_6	1 1 0	
eta_7	1 1 1	

Полином Жегалкина. Пример

Рассмотрим **метод неопределенных коэффициентов** для построения полинома Жегалкина рассмотрим на примере

$$f(x_1,x_2) = x_1 \to x_2.$$

В общем виде полином Жегалкина выглядит следующим образом: $P(x_1, x_2) = \beta_0 \oplus \beta_1 x_2 \oplus \beta_2 x_1 \oplus \beta_3 x_1 x_2$.

	x_1 x_2	$x_1 \rightarrow x_2$
eta_0	0 0	1
eta_1	0 1	1
$oldsymbol{eta_2}$	1 0	0
eta_3	1 1	1

Полином Жегалкина. Пример

Заполняем аргументы x_1 , x_2 на каждом наборе переменных, получаем соответствующие этому набору коэффициенты.

$$P(0,0) = \beta_0 \oplus \beta_1 \cdot 0 \oplus \beta_2 \cdot 0 \oplus \beta_3 \cdot 0 \cdot 0 = \beta_0$$
, Заметим, что $P(0,0) = 1, \Rightarrow \boxed{\beta_0 = 1}$. $P(0,1) = \beta_0 \oplus \beta_1 \cdot 1 \oplus \beta_2 \cdot 0 \oplus \beta_3 \cdot 0 \cdot 1 = \beta_0 \oplus \beta_1$, т.е. $1 = \beta_0 \oplus \beta_1$ и $\beta_0 = 1$, тогда $\boxed{\beta_1 = 0}$.

Полином Жегалкина. Пример

$$P(1,0) = \beta_0 \oplus \beta_1 \cdot 0 \oplus \beta_2 \cdot 1 \oplus \beta_3 \cdot 1 \cdot 0 = \beta_0 \oplus \beta_2,$$
$$0 = \beta_0 \oplus \beta_2, \ \beta_0 = 1, \text{поэтому} \ \boxed{\beta_2 = 1}.$$

Аналогично с последним набором, состоящим из единиц.

$$P(1,1) = \beta_0 \oplus \beta_1 \oplus \beta_2 \oplus \beta_3$$
, где $\beta_0 = 1$, $\beta_1 = 0$,

$$\beta_2 = 1$$
, получаем $1 = 1 \oplus 0 \oplus 1 \oplus \beta_3$, откуда $\beta_3 = 1$.

После подстановки найденных коэффициентов в ПЖ, получим представление импликации в следующем виде: $f(x_1, x_2) = x_1 \rightarrow x_2 = 1 \oplus x_1 \oplus x_1 x_2$.

Минимальная и кратчайшая ДНФ

ДНФ ϕ функции f называется

- а) минимальной (минимальной по литералам), если она имеет наименьшее число символов переменных среди других ДНФ функции f;
- б) кратчайшей (минимальной по конъюнкциям), если она имеет минимальное число элементарных конъюнкций.

Минимальная и кратчайшая ДНФ

Пример:

Импликацию представим тремя различными ДНФ:

$$x_1 \rightarrow x_2 = \overline{x}_1 \lor x_2 = D_1,$$

= $\overline{x}_1 \overline{x}_2 \lor \overline{x}_1 x_2 \lor x_2 = D_2,$
= $\overline{x}_1 \lor x_1 x_2 = D_3.$

Определите, какие ДНФ являются минимальными по литералам и кратчайшими.

Минимальная и кратчайшая ДНФ

Ответ:

- D_1 минимальная по литералам (2 литерала) и кратчайшая,
- D_2 не минимальная (5 литералов,), не кратчайшая (3 конъюнкции)
- D_3 кратчайшая (2 конъюнкции).

Число различных ЭК

 3^n - число различных элементарных конъюнкций от n переменных, т.к. любая переменная может а) входить в конъюнкцию без отрицания, б) входить с отрицанием, в) не входить.

Пример: Для одной переменной, n=1, число различных ЭК равно трем: $x, \overline{x}, -$

Составьте ЭК для двух переменных.

Число различных ЭК

Пример:

Для одной переменной, n=1, число различных ЭК равно трем: $x, \overline{x}, -$

ЭК для двух переменных.

9 ЭК:
$$x_1, x_2, \overline{x}_1, \overline{x}_2, x_1\overline{x}_2, \overline{x}_1\overline{x}_2, \overline{x}_1\overline{x}_2, \overline{x}_1x_2, x_1x_2, -.$$

Число различных ДНФ

 2^{3^n} - число различных ДНФ от n переменных. ДНФ однозначно определяется вектором длины 3^n , состоящим из нулей и единиц, где 1 означает, что соответствующая элементарная конъюнкция входит в ДНФ, а 0 – не входит.

Проблема минимизации: Для произвольной функции алгебры логики можно написать много ДНФ, но необходимо найти кратчайшую и минимальную по литералам ДНФ. Перебирать 2^{3^n} ДНФ трудоемко, поэтому был реализован алгоритм Куайна и Мак-Клоски (поиск простых импликантов).

Определение импликанта

Формула Ψ влечет формулу Φ (обозначение $\Psi \to \Phi$), если $\Psi \to \Phi \equiv 1$, т.е. не существует такого набора значений переменных, при котором Ψ принимает значение 1, а Φ – значение 0.

Элементарная конъюнкция K называется импликантом функции f , если $K \to f$.

Определение импликанта

Пример.

Является ли конъюнкция K импликантом для заданной функции. Функция $f(x,y,z) = xyz \lor xyz$ и конъюнкция $K = x\overline{y} = x^1y^0$.

Проверим, является ли K импликантом, т.е. при K=1 функция f не должна быть равна 0 .

При $K=1\Leftrightarrow x=1,\ y=0$. Поскольку $f(1,0,z)=1\cdot 1\cdot z\vee 1\cdot 1\cdot \overline{z}=z\vee \overline{z}\equiv 1,\$ то $K=x\,\overline{y}$ является импликантом функции f .

Определение импликанта

Пример.

Проверить является ли конъюнкция K импликантом для заданной функции. Функция $f(x, y, z, t) = x\overline{y}z \lor x\overline{y}t$ и конъюнкция $K = x\overline{y} = x^1y^0$.

Проверим, является ли K импликантом.

При $K=1\Leftrightarrow x=1,\ y=0$. Поскольку $f(1,0,z,t)=z\lor t\not\equiv 1,\ \text{т.к.}$ если z=0 и $t=0,\ \text{то}\ z\lor t=0,$ т.е. $K=x\overline{y}$ не является импликантом f .

Теорема об импликантах

Теорема. Если формула Φ , реализующая функцию f , имеет вид $\Phi = \bigvee_{i=1}^n k_i - \text{ДН}\Phi$, то $k_i \to \Phi$, $i = \overline{1,n}$.

Доказательство. Пусть в ДНФ функции $k_i=1$. Тогда $\Phi=k_1\vee...\vee k_i\vee...\vee k_n=k_1\vee...\vee 1\vee...\vee k_n=1$ и, следовательно, f=1. \square

Импликант P функции f называется простым, если при удалении любой переменной из P полученная элементарная конъюнкция не является импликантом.

Пример: Проверим, является ли $K = x\overline{y}$ простым импликантом для функции $f(x, y, z) = x\overline{y}z \lor x\overline{y}z$?

Импликант $K = x\overline{y}$ — является простым импикантом, если при удалении любой переменной из K нельзя получить конъюнкции, являющиеся импликантами.

Из K можно получить две конъюнкции $K_1 = x$ и $K_2 = \overline{y}$. Проверим, являются ли эти конъюнкции импликантами функции $f(x,y,z) = x\overline{y}z \vee x\overline{y}z$.

1)
$$K_1 = x$$
.

 $K_1 = 1$ при x = 1. Подставим x = 1 в функцию $f(x, y, z) = x y z \lor x y z$, и проверим значение функции. $f(1, y, z) = 1 \cdot y z \lor 1 \cdot y z$, заметим, что, например, при y = 1 функция f будет равна 0, и $K_1 = x$ не является импикантом.

$$2) K_2 = \overline{y}.$$

 $K_2 = 1$ при y = 0, проверим значение функции f при y = 0.

 $f(x,0,z)=x\cdot 1\cdot z\vee x\cdot 1\cdot z$, например, при x=0 функция f=0, и $K_2=\overline{y}$ не является импликантом функции f .

Т.к. ни x ни \overline{y} импликантами функции f не являются, то первоначальная конъюнкция $K = x\overline{y}$ является простым импликантом.

Тема следующей лекции:

«Алгоритм Куайна и Мак-Клоски».