ACI Tables for Concrete Mix Design

Table 1. Recommended Slump for Various Types of Construction

	Slump	(mm)
Types of Construction	Maximum*	Minimum
Reinforced foundation walls and footings	75	25
Plain footings, caissons, and substructure walls	75	25
Beams and reinforced walls	100	25
Building columns	100	25
Pavements and slabs	75	25
Mass concrete	50	25

^{*} May be increased by 25 mm for consolidation methods other than vibration.

Table 2. Approximate Mixing Water and Air Content Requirements for Different Slumps and Nominal Maximum Sizes of Aggregates

Water (kg/m ³) of concre	te for ind	icated n	ominal	maxim	um size	of aggi	egates ((mm)
Slump (mm)	9.5	12.5	19	25	37.5	50	75	150
	Non-Ai	r-Entr	ained C	Concret	e			
25-50	207	199	190	179	166	154	130	113
75-100	228	216	205	193	181	169	145	124
150-175	243	228	216	202	190	178	160	7 <u>-2</u> 1
		Appro	ximate	amount	of entr	apped a	ir (%)	
	3	2.5	2	1.5	1	0.5	0.3	0.2
	Air-l	Entrain	ed Con	icrete				
25-50	181	175	168	160	150	142	122	107
75-100	202	193	184	175	165	157	133	119
150-175	216	205	197	184	174	166	154	-
Recomme	nded entr	ained a	ir (%) f	or level	of expo	osure		
Mild Exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderate Exposure	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0
Severe Exposure	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0

Table 3A. Relationship Between Water-Cement Ratio and Compressive Strength of Concrete

28-day Compressive	Water-Cement Ratio, by weight			
Strength (MPa)	Non-Air-Entrained Concrete	Air-Entrained Concrete		
40	0.42	-		
35	0.47	0.39		
30	0.54	0.45		
25	0.61	0.52		
20	0.69	0.60		
15	0.79	0.70		

Table 3B. Recommendations for Normal Weight Concrete Subject to Sulfate Attack

Exposure	Water Soluble Sulfate (SO ₄) in soil, (%)	Sulfate (SO ₄) in water (ppm)	Cement	Maximum Water-Cement Ratio
Mild	0.00-0.10	0-150	-	-
Moderate	0.10-0.20	150-1500	II, IP	0.50
Severe	0.20-2.00	1500-10000	V	0.45
Very Severe	> 2.00	> 10000	V+poz and/or slag	0.45

Table 4. Volume of Coarse Aggregate Per Unit Volume of Concrete

Maximum size	Volume of dry-r	odded coarse aggr	regate per unit vol	ume of concrete
of aggregate	92500 (Cabboa)	ness moduli of fir	ne aggregate	
(mm)	2.40	2.60	2.80	3.00
9.5	0.50	0.48	0.46	0.44
12.5	0.59	0.57	0.55	0.53
19	0.66	0.64	0.62	0.60
25	0.71	0.69	0.67	0.65
37.5	0.75	0.73	0.71	0.69
50	0.78	0.76	0.74	0.72
75	0.82	0.80	0.78	0.76
150	0.87	0.85	0.83	0.81

Table 5. First Estimate of Unit Weight of Fresh Concrete

Maximum Size of	First Estimate of Fresh Con-	crete Unit Weight (kg/m³)
Aggregate (mm)	Non-Air-Entrained Conc.	Air-Entrained Conc.
9.5	2280	2200
12.5	2310	2230
19	2345	2275
25	2380	2290
37.5	2410	2350
50	2445	2375
75	2490	2405
150	2530	2435

Example 1.

Job Specifications:

Type of Construction

Exposure

Reinforced concrete footing

Mild (below ground, not exposed to

freezing or sulfate)

Maximum aggregate size

Slump

37.5mm 75-100mm

Specified 28-day compressive strength

25MPa

Characteristics of the Materials Selected

BSG	Cement (I) 3.15	Fine Agg. 2.60	Coarse Agg. 2.70
Dry-rodded UW (kg/m ³)	-	=	1600
Fineness Modulus	=	2.8	-
Surface Moisture og Agg.(%)		2.5	0.5

Step 1. Determination of Slump:

Given: 75-100mm. Otherwise, use Table 1.

Step 2. Determination of D_{max}

Given: 37.5mm. Otherwise, consider the limitations.

Step 3. Estimation of Mixing Water Content and Air Content:

Table 2. Approximate Mixing Water and Air Content Requirements for Different Slumps and Nominal Maximum Sizes of Aggregates

Slump (mm)	9.5	12.5	19	25	37.5	50	75	150
	Non-	Air-Entr	ained Co	ncrete				
25-50	207	199	190	179	166	154	130	113
75-100	228	216	205	193	181	169	145	124
150-175	243	228	216	202	190	178	160	-
		Appro	ximate a	mount of	entrappe	d air (%)		
	3	2.5	2	1.5	121	0.5	0.3	0.2
	Air	-Entrair	ed Conc	rete				
25-50	181	175	168	160	150	142	122	107
75-100	202	193	184	175	165	157	133	119
150-175	216	205	197	184	174	166	154	-
Reco	mmended er	ntrained a	ir (%) fo	r level of	exposure	;		
Mild Exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderate Exposure	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0
Severe Exposure	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0

Step 4. Estimation of W/C:

Required average compressive strength (MPa) (take the larger one)

$$f_{cr}^2 = f_c^2 + 1.34S$$

$$f'_{cr} = f'_{c} + 2.33S - 3.5$$

If adequate statistical data are not available, use

Specified Compressive Strength (MPa)	Req. Average Comp. Strength (MPa)
< 20	f'c + 7
20-35	f'c + 8.5
>35	f'c + 10

Specified strength is 25MPa. Since no statistical data are available, average compressive strength that we will use is 33.5MPa. (So that the probability of specimens having strength less than the specified is 1/100)

Table 3A. Relationship Between Water-Cement Ratio and Compressive Strength of Concrete

28-day Compressive Strength	Water-Cement Ratio, by weight			
(MPa)	Non-Air-Entrained Concrete	Air-Entrained Concrete		
40	0.42	-		
35	0.47	0.39		
30	0.54	0.45		
25	0.61	0.52		
20	0.69	0.60		
15	0.79	0.70		

Interpolation yields W/C = 0.49.

Step 5. Estimation of Cement Content:

$$C = W/(W/C) = 181/0.49 = 369 \text{ kg}.$$

Step 6. Estimation of CA content:

Table 4. Volume of Coarse Aggregate Per Unit Volume of Concrete

Maximum size of aggregate (mm)	Volume of dry-rodo fineness moduli of	per unit volume of co	ncrete for different	
	2.40	2.60	2.80	3.00
9.5	0.50	0.48	0.46	0.44
12.5	0.59	0.57	0.55	0.53
19	0.66	0.64	0.62	0.60
25	0.71	0.69	0.67	0.65
37.5	0.75	0.73	0.71	0.69
50	0.78	0.76	0.74	0.72
75	0.82	0.80	0.78	0.76
150	0.87	0.85	0.83	0.81

 $CA_{dry} = 0.71 \times 1600 = 1136 \text{ kg}.$

Step 7. Estimation of FA Content:

Weight Basis:

Table 5. First Estimate of Unit Weight of Fresh Concrete

Maximum Size of Aggregate	First Estimate of Fresh Concrete Unit Weight (kg/m³)				
(mm)	Non-Air-Entrained Conc.	Air-Entrained Conc.			
9.5	2280	2200			
12.5	2310	2230			
19	2345	2275			
25	2380	2290			
37.5	2410	2350			
50	2445	2375			
75	2490	2405			
150	2530	2435			

 $FA_{dry} = 2410-181-369-1136 = 724 \text{ kg}.$

Volume Basis:

$$V_{FA} = 1 - (181/1000) - (369/3150) - (1136/2700) - (0.01) = 0.28 \text{ m}^3$$

FA _{dry} = 0.28 x 2600 = 730 kg.

Step 8: Moisture Adjustment:

Both aggregates are wet.

Surface moisture on CA =
$$1136 \times 0.005 = 5.68 \text{ kg}$$

CA _{wet} = $1136 + 5.68 = 1142 \text{ kg}$

Surface moisture on FA =
$$730 \times 0.025 = 18.25 \text{ kg}$$

FA wet = $730 + 18.25 = 748 \text{ kg}$

Thus, batch weights are

Cement
$$369 \text{ kg}$$

Water $181 - 5.68 - 18.25 = 157 \text{ kg}$
CA wet 1142 kg
FA wet 748 kg

Step 9. Trial Batch Adjustment:

Example 2

A reinforced concrete wall. No severe weather condition nor sulfate attack.

 $\sigma_{28} = 20 \text{ MPa}.$

Slump = 80 mm.

Materials:

PC 32.5, density is 3.10 g/cm³.

Coarse Aggregate

Dry bulk specific gravity of CA = 2.68

% Absorption = 0.5

 $D_{\text{max}} = 25 \text{ mm}$

Dry-rodded unit weight = 1610 kg/m^3

Fine aggregate

Dry Bulk specific gravity of FA = 2.64

% Absorption = 0.7%

FM = 2.90

Step 1. Slump = 80 mm (given)

Step 2. $D_{max} = 25 \text{ mm (given)}$

Step 3. Water and Air Contents:

Table 2. Approximate Mixing Water and Air Content Requirements for Different Slumps and Nominal Maximum Sizes of Aggregates

Slump (mm)	9.5	12.5	19	25	37.5	50	75	150
	Non-	Air-Entr	ained Co	oncrete				
25-50	207	199	190	179	166	154	130	113
75-100	228	216	205	193	181	169	145	124
150-175	243	228	216	202	190	178	160	
		Appro	ximate a	mount of	entrappe	d air (%)		
	3	2.5	2	1.5	1	0.5	0.3	0.2
	Air	-Entrair	ed Cond	rete				
25-50	181	175	168	160	150	142	122	10
75-100	202	193	184	175	165	157	133	119
150-175	216	205	197	184	174	166	154	-
Recor	nmended er	ntrained a	ir (%) fo	r level of	exposure	2		
Mild Exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderate Exposure	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0
Severe Exposure	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0

W = 193 kg

A = 1.5%

Step 4. Water-Cement Ratio

The standard deviation of strength is 3 MPa from past experience with these materials.

$$f'_{cr} = f'_{c} + 1.34S = 24 \text{ MPa}$$

$$f_{cr}^{c} = f_{c}^{c} + 2.33S - 3.5 = 23.5 \text{ MPa}$$

Thus, use 24 MPa as required strength.

Table 3A. Relationship Between Water-Cement Ratio and Compressive Strength of Concrete

28-day Compressive Strength	Water-Cement Ratio, by weight				
(MPa)	Non-Air-Entrained Concrete	Air-Entrained Concrete			
40	0.42	-			
35	0.47	0.39			
30	0.54	0.45			
25	0.61	0.52			
20	0.69	0.60			
15	0.79	0.70			

Therefore, W/C = 0.63, by interpolation.

Step 5. Cement Content

C = 194/0.63 = 308 kg.

Step 6. Coarse Aggregate Content

Table 4. Volume of Coarse Aggregate Per Unit Volume of Concrete

Maximum size of aggregate (mm)	Volume of dry-rodded coarse aggregate per unit volume of concrete for different fineness moduli of fine aggregate						
	2.40	2.60	2.80	3.00			
9.5	0.50	0.48	0.46	0.44			
12.5	0.59	0.57	0.55	0.53			
19	0.66	0.64	0.62	0.60			
25'	0.71	0.69	0.67	0.65			
37.5	0.75	0.73	0.71	0.69			
50	0.78	0.76	0.74	0.72			
75	0.82	0.80	0.78	0.76			
150	0.87	0.85	0.83	0.81			

 $CA_{dry} = 0.66 \times 1610 = 1063 \text{ kg}.$

Step 7. Fine Aggregate Content

$$V_{FAdry} = 1 - 308/3100 - 193/1000 - 1063/2680 - 0.015 = 0.296 \text{ m}^3$$

FA _{dry} = 0.296 x 2640 = 781.4 kg.

Step 8. Mositure correction

$$CA_{SSD} = 1063 \times 1.005 = 1068.3 \text{ kg}$$

$$FA_{SSD} = 781.4 \times 1.007 = 787 \text{ kg}$$

$$W = 194 + (1068.3 - 1063) + (787 - 781.4) = 205 \text{ kg}.$$

Step 9. Trial Batch Adjustment

Example 3

Specification for a concrete work dictates

- 1. $C = 350 \text{ kg for } 1 \text{ m}^3 \text{ of concrete.}$
- 2. W/C = 0.50 (net)
- 3. Fine aggregate-to-total aggregate ratio = 0.45 (by weight, SSD)

Material properties:

Density of cement = 3.15 g/cm^3

Abs. Capacity of both FA and CA is 2%

Total moisture of FA = 5%

Total moisture of CA = 1%

SSD BSG of FA = 2.40

SSD BSG of CA = 2.60

Entrapped Air = 1% (assumed)

Calculate the batch weights.

$$V_{agg} = 1 - (350/3150) - ((350 \times 0.50)/1000) - 0.01 = 0.704 \text{ m}^3$$
. (SSD)

$$\frac{V_{FA} \cdot 2.40}{(V_{FA} \cdot 2.40) + (V_{CA} \cdot 2.60)} = 0.45 \Rightarrow V_{CA} = 1.128V_{FA} \text{ (SSD)}$$

$$2.128 V_{FA} = 0.704$$

$$V_{FA} = 0.33 \text{ m}^3 \text{ (SSD)}$$

 $V_{CA} = 0.37 \text{ m}^3 \text{ (SSD)}$

$$V_{CA} = 0.37 \text{ m}^3 \text{ (SSD)}$$

Thus,

$$C = 350 \text{ kg}.$$

$$W = 175 \text{ kg (net)}$$

$$FA (SSD) = 0.33 \times 2400 = 792 \text{ kg}$$

$$CA (SSD) = 0.37 \times 2600 = 962 \text{ kg}$$

FA IS WET, CA IS DRY!

Moisture correction:

$$FA_{wet} = \frac{792}{1.02}(1.05) = 815kg$$

$$CA_{dry} = \frac{962}{1.02}(1.01) = 953kg$$

Finally, the batch weights are

$$C = 350 \text{ kg}$$

$$W = 175 - (815-792) + (962-953) = 161 \text{ kg}$$

$$FA \text{ (wet)} = 815 \text{ kg}$$

$$CA 8dry) = 953 kg.$$