第一原理計算および分子動力学法

配布資料のダウンロード先

https://github.com/by-student-2017/seminar

Outline

- ・はじめに
- PWscfの特徴
- 第一原理計算の利用で重要な知識
- バンド計算におけるk点の設定と 計算時間の考え方
- 固有値の計算方法の種類
- 実験結果との比較
- 表面の計算と形成エネルギー
- 分子動力学法

はじめに

第一原理計算でわかること

https://www.meta-synthesis.com/webbook/34_qn/ao.gif

第一原理計算は分子や結晶などでの 各原子のs, p, d, fなどの軌道のエネルギーを得ることができる

エネルギー的に安定な構造や多くの物性を予測することができる

第一原理計算の種類

BCC Fe

周期構造や金属元素 バンド計算

スーパーセル VASP, PWscf, WIEN2kなど

単位胞で 元素置換が計算可能 KKR法 Akai-KKR, SPR-KKRなど

分子構造 分子軌道法

Gaussian, GAMESSなど

分子構造でも 周期構造にすれば バンド計算が可能

CoCrFeNiの電子構造

CoCrFeNiのFCC構造はVEC=8.25

Akai-KKRでも計算できます

CoCrFeNiの電子構造

CoCrFeNiのFCC構造はVEC=8.25

Y軸をVECに計算しなおすこともできます

周期律表(VEC)

IA	IIA	Mi	n							N	∕ lax	IIIA	IVA	VA	VIA	VIIA
Li	Be								-	in the second second		В	C	N	0	F
2.9	4.98					Elei	ment]				4.45	5			
1	2					E	WF					3	4	5	6	
Na	Mg					v	EC					Al	Si	P	S	CI
2.75	3.66							•				4.28	4.85	1000		
1	2	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	3	4	5	6	
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
2.3	2.87	3.5	4.33	4.3	4.5	4.1	4.5	5	5.15	4.65	4.33	4.2	5	3.75	5.9	
1	2	3	4	5	6	7	8	9	10	11	12	3	4	5	6	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1
2.16	2.59	3.1	4.05	4.3	4.6		4.71	4.98	5.12	4.26	4.22	4.12	4.42	4.55	4.95	
1	2	3	4	5	6	7	8	9	10	11	12	3	4	5	6	
Cs	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At
2.14	2.7		3.9	4.25	4.55	4.96	4.83	5.27	5.65	5.1	4.49	3.84	4.25	4.22		
1	2		4	5	6	7	8	9	10	11	12	3	4	5	6	
		La	Ce	Pr	Nd	Pm	Sm	Eu#	Gd	Tb	Dy	Но	Er	Tm	Yb#	Lu
		3.5	2.9	2.96	3.2	3.21	2.7	2.5	3.1	3	3.25	3.22	3.25	3.1	2.95	3.3
		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Fr	Ra	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
2.01*	2.78*	3.38*	3.44	3.76	3.85	4	3.98	3.32	3.32	3.37	3.38	2.88				
1	2	3	3	3	3	5	4	3	3	3	3	2				

Figure 3- available via license: Creative Commons Attribution 4.0 International

$$Fe_2VAI = (8*2 + 5 + 3)/4 = 24/4 = 6$$

VECと物性及び電子構造との関係

VECとFe₂VAIの熱電特性には相関がある

CMA_presentation_1.ppt (semanticscholar.org)

FIG. 2. Total and projected DOS of $Fe_2V\overline{Al}$ on a per formula unit basis. The total DOS is given by the solid line, while $Fe\ d$ and

フェルミ準位に近い範囲ほど低温での熱電特性

熱電特性はフェルミ準位を中心として 電子構造が非対称で生じる

VECが変化するとフェルミ準位が変化する

sp成分がフェルミ準位に多いほど 電気伝導特性が良くなると考えられる

H. Miyazaki et al., J. Appl. Phys., 120 (2016) 125106.

図4 $Sm_2Ti_2S_2O_{49}$ のb-c 面上における(a) 精密化した結晶構造, (b) MEM 電子密度分布,(c) DFT 価電子密度分布(x=1/2) [38]. 等高線: $0.5\sim5$ Å⁻³ の範囲で 0.5 Å⁻³ ステップ. (a)の水色の線は $TiSO_{49}$ 八面体を示す.

図3 TaON (0<x<1/4)の b-c 面上における(A)結晶構造、 (B)核密度分布、(C)MEM 電子密度および(D) DFT 価電子 密度分布(1/4<x<3/4) [37]。

1. 粉末X線回折で得られたデータをRietveld解析 2. マキシマムエントロピー法(MEM)で電子密度分布

メモ: 最強回折線の強度がRietveldでは1万カウント以上 MEMでは3万カウント以上が望ましい。放射光なら数分で可能

MEMと第一原理計算(DFT)が比較される

解析の妥当性、結合様式の割合、電荷など

八島正知、PF研究会「第4回粉末回折法討論会」要旨兼プロシーディングス、KEK つくば、2008年12月25-26日

PWscfの特徴

PWscfの特徴(計算可能な物性)

電場印加条件下での挙動

http://www.openmx-square.org/openmx_man3.7jp/node118.html

http://indico.ictp.it/event/a09148/session/62/contribution/43/material/0/0.pdf

http://iramis.cea.fr/Pisp/alexander.smogunov/PWCOND/examples.html

PWscfは無料で、金属を含んだ物質の計算によく用いられる物性値(特にLiイオン電池や有機ELで重要)も数多く計算可能

Nudged Elastic Band (NEB)法

6.2 Variable-cell nudged elastic band (VCNEB) method

Prediction of a phase transition mechanism can be considered as a double-ended problem, in which the algorithm has to locate the intermediate states. The nudged elastic band (NEB) 32; 32; 32 method is a widely used technique for solving double-ended problems, an efficient and robust approach for seeking reaction paths and saddle points along the "minimum energy path" (MEP) on the potential energy surface between the two endpoints. The NEB method has been successfully applied to study molecular chemical reactions, and defect migration, and in principle it could provide the energy barrier between the given initial and final states of a phase transition process. Unfortunately, most of the problems treated by the NEB method are considered under the constraint of constant unit cell — which precludes it from being used for phase transitions (which involve the variation of the unit cell along the transition path).

Figure 15: The minimum energy path (line with gray circles) and initial path on a model 2D enthalpy surface. The forces in the VCNEB method on image i are shown in the inset. F_i^{∇} is the potential force in the gradient direction. $F_i^{\nabla\perp}$ and $F_i^{s\parallel}$ are the transverse component of F_i^{∇} and the spring force, respectively.

The variable-cell NEB (VCNEB) method 14, which we have developed, treats the cell and atomic coordinates on an equal footing and operates in an expanded configuration space under the condition of constant pressure. Our VCNEB

原子位置を手作業で変えてポテンシャル障壁を計算することができる NEB法はPWscfがオススメ(入力する構造は始点と終点のみ)

https://uspex-team.org/online_utilities/uspex_manual_release/EnglishVersion/uspex_manual_english/vcneb.html

電子格子相互作用(λ)と超伝導転移温度(T_c)の計算

バンド計算で電子状態密度とフォノン状態密度、電子格子相互作用が得られる

有機半導体

バンド計算は周期的な構造で計算する 周期構造を持つ結晶となった有機物も計算が可能

PICENEのバンド構造 **VASP PWscf BANDS PICENE** PBE 5 5 PC spec CPU: Intel 4 Core i3-4130 Memory: 2GB 3 3 Energy (eV) 計算時間: 0.5 h 2 2 E(eV) 0 -2 -2 -3

基本的な計算では VASP(有償)とPWscf(無償)で同じ結果が得られる

X

M

G. Giovannetti et al., Phys. Rev. B 83 (2011) 134508.

第一原理計算の利用で重要な知識

シュレーディンガー方程式と断熱近似

全エネルギー(=運動エネルギー+ポテンシャルエネルギー)

$$E = \frac{1}{2}mv^2 + V(r) = \frac{p^2}{2m} + V(r)$$

 $p \to -i\hbar \frac{\partial}{\partial x} = -i\hbar \nabla$

シュレーディンガー方程式

$$E = -\frac{\hbar^2}{2m}\nabla^2 + V(r) = H$$

どのような分子や結晶構造でも 同じようにすればよい

$$E\psi = \left[-\frac{1}{2}\nabla^2 + V(r)\right]\psi = H\psi$$
 粒子を波として扱うので ψ が方程式に入る

原子核の質量は、電子よりもはるかに大きいので電子だけに注目する(断熱近似)

単位を変えて $\hbar=m_e=e=1$ とする(原子単位系)

※ Σの記号も省略

シュレーディンガー方程式では粒子を波として扱う これは波動方程式とも呼ばれる

第一原理計算

第一原理計算はシュレーディンガー方程式を 近似を入れて数値的に解く

シュレーディンガー方程式

$$H\psi = \left[-\frac{1}{2}\nabla^2 + V(r)\right]\psi = E\psi$$

ここでは原子核の質量が 電子よりもはるかに大きいので それを省いた<mark>断熱近似</mark>でのもの

V(r)を電子と原子核の組み合わせで書き直す

計算コストを削減するために 近似である擬ポテンシャルや密度汎関数などが用いられる

各種の第一原理計算コードの特徴(2022年7月)

			H 1 7 T - 1 4 7 1		. / . /	
主な手法の分類	コード	ライセンス	特徴1	特徴2	主な分野	GUI
/L VADVART	WIEN2k	有償(約5万円)	(DMFT)	XANES (+XMCD) , EELS	物理	w2web
(L)APW法	Elk	無償	(GW, RDMFT)	XANES (+XMCD), BSE	物理	
	ecalj	無償	GW		物理	*1
	VASP	有償(約40万円)	(GW)	(XANES), BSE	物理	MedeA, p4vasp
	CASTEP	有償(約500万円)	結合次数の計算	XANES	物理・化学	*2
概ポニンス、レルオ	PWscf	無償	Phonon (DFPT), IR	XANES	物理·化学	PWgui, ATK- VNL,Winmostar
擬ポテンシャル法	Abinit	無償	GW, (DMFT, Phonon)		物理	
	OpenMX	無償	オーダーN法		物理	OpenMX Viewer
	CPMD	アカデミック	UV/vis	TDDFT QWMM (Gromacs)	物理·化学	
グリーン関数法	Akai-KKR	無償	CPA (元素置換の系)	XANES	物理	
(KKR法)	SPR-KKR	無償	CPA (元素置換の系)	XANES (+XMCD) , XPS (ARPES)	物理	xband
	Gaussian	有償	NMR, UV/vis, IR [2]	TDDFT, QM/MM	化学	Gaussian-view
	GAMESS	無償	NMR, UV/vis, IR [2]	TDDFT, QM/MM	化学	*3
LCAO法	DVXα	有償(約3千円)	Overlap population 解析	XANES	物理・化学	DisplatDV
	DVME	有償(約4千円)	(VB -> CBの遷移)		物理・化学	DisplatDV
	Siesta	無償	Overlap population 解析		物理	

^{*1} GUIがあるがセットアップが難しい

- ・フルポテンシャルであるWIEN2k, Elk, SPR-KKRは計算精度が高い(XAFSではFPMS)
- ・PWscfはQuantum Espressoとも呼ばれる。Akai-KKRはMachikaneyamaとも呼ばれる
- ・GaussianやPsi4などはcc-pCVQZ基底+CCSD(T)で1kcal/mol誤差内の化学的精度で計算できる(非常に高コスト)

^{*2} GUI付き(CASTEPは高価だがPCを増やすのは低価格。年1回講習会無料がある)

^{*3} Winmostar, Facio, GaussSum, MoCalc2012, Avogadro, Ascalaph Quantum, ChemCraft Lite, Gabedit, MaSK, MacMolPolt, cifconv CPA: 元素置換ができる計算方法。ここには記載しいてないが、XAFSの計算にはFPMSやFDMNESもよく用いられる(両者とも無償) MD計算はここに記載の全ての擬ポテンシャル法のコードで計算可能

	NWChem ORCA CP2k Psi4 PSi4 DFTB+	無償 個人利用 (無償) アカデミック 無償 無償 ライセンス 無償	Raman NMR, U Raman NMR, U ROA, II Python	JV/Vis, CD, IR, I JV/vis, VCD, R, Raman	TDDFT, QMMM TDDFT QM/MM(NAMD) TDDFPT, QM/MM 分子間相互作用 (SAPT法) 特徵2 QM/MM	化学 化学 化学 化学 を学 を対理・化学	MoCalc2012 Winmostar MoCalc2012 VMD (QwikMD)
半経験的	xTB MOPAC	無償	IRC (固有反応座標)	QM/MM (ORCA) QM/MM (NAMD)	化学 化学	MoCalc2012
	コード	ライセンス	特徴1		特徴2	主な分野	GUI
古典MD	Lammps Gromacs NAMD	無償 無償 無償	ReaxFi	= (破壊や反応)	QM/MM (CP2k) QM/MM (MOPAC)	物理·化学 生命化学 生命化学	VMD
ns							

特徴2

コード ライセンス

・CP2k: インストールや人力ファイルを作るのか難しいかQM/MMの計算例かHPに記載されている

マフィンティンとフルポテンシャル

マフィンティン(MT)ポテンシャル (従来用いられていた方法)

Akai-KKR, SPR-KKR(ディフォルト設定)など

フルポテンシャル

計算精度が高い(プログラムを作るのは難しい)

WIEN2k, Elk, SPR-KKR(入力時に指定)など

PAW (擬ポテンシャル) (概念図)

PAW (擬ポテンシャル) の評価手法 (Δ-value)

Δ-value = 0.3 – 0.7 meV/atomの精度でのDOS (WIEN2kとVASPでの比較)

相対論効果

$$\left[\frac{p^2}{2m} + V - \frac{p^4}{8m^3c^2} - \frac{\hbar^2}{4m^2c^2} \frac{dV}{dr} \frac{\partial}{\partial \vec{r}} + \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} (\vec{l}\vec{s}) \right] \Phi = \varepsilon \Phi$$
 [1] Schrödinger mass enhancement + Equation Darwin term Spin-orbit coupling スカラー相対論 (scalar relativistic)

相対論 (full relativistic)

- ・通常、スカラー相対論(scalar relativistic)が自動的に計算される(DVXαやDVMEを除く) (内殻ではWIEN2kなどで相対論 (full relativistic)で計算される)
- ・相対論効果は、典型元素においてあまり問題にならない 化学シフトでは相対論(full relativistic)の有無で1割程度の差が出てくるのが<mark>原子番号が30</mark> XAFSでは<mark>原子番号が50を超える</mark>場合は、相対論(full relativistic)の指定が必要 (例えば、4f軌道がフェルミ準位に現れる系で、4fの分裂を再現したいときによく用いられる)
- ・WIEN2kやAkai-KKRなどのコードでは、計算の省力化のために相対論(full relativistic)ではスピンを揃える方向(例えばz軸)を指定して計算するようになっている

密度汎関数(交換相関ポテンシャル)(主に物理系)

ホーエンベルグとコーンの定理 「系のエネルギーは電荷密度によって一意に決まる」

電子密度 $\rho(r)$ から厳密解を得られることは数学的に保証されるしかし、どのような関数を用いて交換相関ポテンシャル $V_{ee}(r)$ を再現すればよいかは分からない

多くの密度汎関数が提案されている

密度汎関数	代表的なパラメータ	特徴
Χα	単位胞中の全電子密度: ρ	自由電子の系で厳密な計算
LDA	電子密度と位置の関係: $ ho(r)$	vdWが無視できない系に有効
GGA	電子密度の微分: ∇ρ(r)	最も良く使われる(PBEが良く使われる)
PBEsol	電子密度の二階微分: $ abla^2 ho(r)$	イオン結晶に有効

※ 下の段は上の段のパラメータも含む

バンド計算用の第一原理計算コードは、GGAやPBEが最もよく使われる (結晶構造を持つ材料でバンド計算が行われる) これらの密度汎関数はバンドギャップを過小評価(実験値の2/3)する問題がある

ハイブリッド関数(交換相関ポテンシャル)(主に化学系)

これまで示した密度汎関数は交換項が厳密に計算できていない 一方、ハートリー・フォック(HF)は交換項が厳密に計算できている

密度汎関数 + ハートリー・フォックでの交換項 (ハイブリッド汎関数)

	特徴1	欠点
LDA+U	バンドギャップの値を改善する	パラメータ(U)が必要
B3LYP	小分子の化学物性計算に有効	化学反応計算や大規模分子では不利
HSE	バンドギャップの値を改善する	パラメータが必要
mBJ	バンドギャップの値を改善する	
YS-PBE0	バンドギャップの値を改善する	

※ LDA+Uをハイブリッド汎関数と呼んでいる教科書はないが 理解の助けになるので、表に記載している

化学系で使われる第一原理計算コードはB3LYPが最もよく使われる

ハイブリッド汎関数以外の方法(GW近似)

グリーン関数
$$G(r,r')$$
 を用いる [4]
$$[\nabla^2 + E - V(r)]G(r,r') = \delta(r-r')$$
 グリーン関数は シュレーディンガー方程式を満たす[4]
$$[\nabla^2 + E]G(r,r') = V(r)G(r,r') + \delta(r-r')$$
 ハートリー・フォック
$$\Sigma^{HF} = iGV$$
 電磁気学のように誘電率 ε を

GW近似 [5,6] 電磁気学のように誘電率 ϵ ポテンシャルに導入する $W = V^{screened} = V/\epsilon$ $\epsilon = 1 - VP$ P = iGG (乱雑位相近似: RPA)

- •RPAの近似でもかなり計算時間がかかる
- ・コードを作るのも難しい(プロでも2年)

GW近似は、Abinit, VASP, ecaljなどで計算可能

M. V. Schilfgaarde et al., Phys. Rev. Lett 96 (2006) 226402.

GW近似は、バンドギャップ(Eg)を 実験値と比べ10~15%程度以内で再現

E_a < 2.5 eVの系はLDAでもよい精度

ハイブリッド汎関数以外の方法(DMFT)

DMFT(動的平均場近似)法

量子論的な揺らぎの効果を十分に取り入れた方法

Hubbard model [10, 11]

$$H = -t\sum_{\langle i,j\rangle}^{N} \sum_{\sigma=\uparrow,\downarrow} c_{i\sigma}^{\dagger} c_{j\sigma} + U\sum_{j=1}^{L} c_{j\uparrow}^{\dagger} c_{j\uparrow} c_{j\downarrow}^{\dagger} c_{j\downarrow}$$

t: 電子の格子点jからiへの飛び移り ホッピングの強さ、運動エネルギーに対応 U: クーロン相互作用の強さ

ハバードモデルにおける $t \geq U$ の関係で「 $U \sim t$ 」の系の計算はDMFTが必要になる (Mott絶縁体関連の試料を扱うときに必要になる場合がある)

DMFTは時間的な量子揺らぎ(自己エネルギーのエネルギー依存性)は入っているが 空間的な量子揺らぎ(自己エネルギーの運動量依存性)は入っていない[9]

バンド計算におけるk点の設定と 計算時間の考え方

バンド計算でのk点 (k-point) (スーパーセルでの注意点)

バンドの折り畳みを

単位胞のものに広げる

Abinitに対応)

バンド計算でのk点 (Monkhorst-Pack法 (special k-point))

- (a) ディフォルトの計算 原点からk点が指定される
- (b) 対称性が高い系 原点から離れたk点を指定すれば この場合1点で4点分の計算ができる (図の例の4回対称なら1/4のところ)-

このようなk点数が多くなるk点の配置の仕方をMonkhorst-Pack法と呼んだり それらのk点をspecial k-pointと呼んだりする

WIEN2kやVASPでは対称性に応じて自動で最適なk点を指定してくれる 一方、AbinitやPWscfなどでは各k点をシフトさせる指定が必要になる

Abinitでのk点のシフトの例(PWscfも参考になる)

Primitive cell 0.5 0.5 0.5

FCC (cubic) 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5

BCC (cubic) 0.25 0.25 0.25 -0.25 -0.25 -0.25

HCP 0.0 0.0 0.5 PWscf では $0.0 \rightarrow 0$ $0.5 \rightarrow 1$

0.5 0.5 0.5

シフトさせる軸のk点数が8以下 [奇数のk点数-1]とするのがよい

https://docs.abinit.org/variables/basic/#shiftk

計算時間の予測の仕方

対象	計算時間との関係
k-point	k-point数に比例
ハートリー・フォック(HF)	原子数4に比例
密度汎関数理論(DFT)	原子数3に比例

精度を落とさすk点数や原子数を減らす努力が必要

k点数は少しずつ多くして結果の解釈が変わらないところで止める (DOSのギザギザではなくメインピークの位置や数が変わらないところがおススメ)

SCF計算での目安: x軸方向のk点数 = $10\sim13$ [Å] / x軸方向の格子定数 [Å] yやz軸方向も同様に計算する。DOS計算ではそれぞれの軸でSCFの約2倍のk点数を用いる

XANESやEELSのK殻吸収の計算で内殻にホールを入れる場合には 1辺が約8~10Åのスーパーセルを用いる(k点数は実空間で大きくした分小さくする)

計算する系でPrimitive cellが選択できる場合は
Primitive cellを選択する(International tables A, Sec 5.1に記載されている)
cif2ellを用いれば自動で作成してくれる

固有値の計算方法の種類

固有値の計算方法の種類

第一原理計算で固有値(エネルギー)を求める計算が重要になる

- ハウスホルダー法(N3に比例)
- 最急降下法
- 共役勾配法(Conjugate Gradient Method: CG法)
- Lanczos法
- Davidson法
- RMM-DIIS (部分空間での残差最小化法)

上記以外にも多くの種類が提案されている

PWscf: Davidson法

VASP: Davidson法 + RMM-DIIS

Davidson法 + RMM-DIISが最速 Davidson法よりは遅いが安定に動作するCG法もよく用いられる 実験結果との比較

実験結果(XPSやXAS)との比較におけるピークの考え方

T. Mizoguchi et al. Micron (2010) K. Tomita et al., J. Phys. Chem. C (2016)

[13]

ピーク位置や強度は フルポテンシャルやPAWを用いていても accuston to the contract to the

密度汎関数や遷移状態の計算方法により 実験値を完全に再現できない

遷移状態の計算方法が適切な場合 ピーク位置は比較的良い一致 強度も比較的よく一致

一般的なGGAやLDAでの計算 ピーク位置は絶対値で1%程度のズレ 強度は一致の悪いものも多く存在

GGAやLDAでの計算でも ピーク位置の並びやその原子の軌道を 明らかにすることが可能 (この点を学会や論文で議論する)

この程度のズレがあるのは 計算精度的に正しい(XPSでも同様) (これを理解していたらその人はプロ)

表面の計算と形成エネルギー

表面のモデルと形成エネルギーの考え方

表面のモデル

形成エネルギー E_f

酸素欠陥なら $E_{atom} = E(O_2)/2$

 $E_f = E_{defect} - E_{perfect} + E_{atom}$ 欠陥が無い 欠陥の 部分の元素

これらはすべて、それぞれのモデルの 全エネルギーから計算できる

モデル

帯電した欠陥 $(q \neq 0)$ の場合は 上式に $q\varepsilon_F$ を加算する

分子動力学法

	コード	ライセンス	特徴1	特徴2	主な分野	GUI
	Lammps	無償	ReaxFF(破壊や反応)		物理・化学	
古典MD	Gromacs	無償		QM/MM (CP2k)	生命化学	
	NAMD	無償		QM/MM (MOPAC)	生命化学	VMD

時間刻み(dt or timestep)は通常1fs(拘束条件を付けると2fs)

物理吸着を扱う場合は、Lennard-Jones (LJ)が用いられる

タンパク質の計算では周囲に溶媒(水)を配置するので エネルギー最小化、NVT、NPT、そして、物性のための計算が順番に行われる

Lammpsでのポイント

ReaxFFでの時間刻み(timestep)は 0.25 fs (1500 K以上では 0.1 fs)

炭素系のポテンシャル(以下で得たい結果の論文と同じものを用います)
ReaxFF, REBO (or airebo), SW or Tersoff

金属材料系のポテンシャル(以下で論文と同じものを用いてください ReaxFF, ADP, MEAM or EAM

エネルギー最小化(minimize)と第一原理計算の「構造最適化」を比較 NVTやNPTは、第一原理分子動力学法と「傾向」を比較

Lammps + ニューラルネットワークカ場(Open Catalyst Project など)

https://www.lammps.org/

(2022年7月) Lammpsは公式に Open Catalyst Projectの 汎用型グラフニューラルネットワークカ場をサポートしてない (講習会などに積極的に参加して情報収集する必要がある)

Latest News & Updates

汎用型グラフニューラルネットワークカ場 https://opencatalystproject.org/

ML-SNAPI 公式にサポートされている

Siの熱伝導率の計算 VASP + phonopy: 約9時間 Lammps (ML-SNAP) + Alamode:10分未満

入力ファイル一式 https://github.com/by-student-2017/alamode-example

400 350 300 Frequency (cm⁻¹) 250 200 150 100 50 有限温度 $0 - 1000 \, \text{K}$ 50 K毎にプロット -50 0.5 1.5 k-axis

右に記載の参考文献も 非常に有用です

[LO1] https://github.com/advancesoftcorp/lammps

[LO2] https://nanolabo-doc.readthedocs.io/ja/latest/usage/ocp.html

[OCS] https://www.slideshare.net/pfi/pfpneural-network-potential-2021104-gcmsr-dlap

参考文献

[1] Magnetism and SOC in WIEN2k

http://susi.theochem.tuwien.ac.at/events/ws2006/magnetism-so.pdf

[2] DFT functionals in WIEN2k

http://www.cms.sci.waseda.ac.jp/WIEN2k-dft-functionals.pdf

- [3] 尾崎幸洋『近赤外分光法』講談社
- [4] KKR-Green関数法によるバンド計算

http://kkr.issp.u-tokyo.ac.jp/jp/document/akaikkr_j.pdf

[5] VASP Workshop: Day 2

http://www.vasp.at/mmars/day2.pdf

[6] The GW Approximation

https://etsf.polytechnique.fr/sites/default/files/gw.pdf

- [7] 第一原理計算の諸条件: サンプルk点、カットオフ・エネルギー、擬ポテンシャル https://www.jstage.jst.go.jp/article/jsssj/28/3/28-3-135/ pdf
- [8] Paulo V. C. Medeiros, Sven Stafström and Jonas Björk, *Phys. Rev. B* 89, 041407(R) (2014)
- [9] 強相関系の光電子分光 (http://wyvern.phys.s.u-tokyo.ac.jp/f/lecture/kobelect.pdf)
- [10] (https://www.slideshare.net/NakataMaho/direct-variational-calculation-of-secondorder-reduced-density-matrix-application-to-the-twodimensional-hubbard-model)
- [11] 強相関電子系とHubbard モデルについて(http://shrcat.cocolog-nifty.com/Hubbard1.pdf)
- [12] SPR-KKR (http://olymp.cup.uni-muenchen.de/)
- [13] XANESと理論計算による二次電池,振動,エキシトンおよびvan der Waals力の解析

http://www.ritsumei.ac.jp/acd/re/src/RitsSR_sympo_20161111/20161111_RitsSR_sympo_Mizoguchi.pdf