Presents basic principles used in the design and implementation in manufacturing work cells. Includes selection of the robot system, worksite, application cell sensors, development of cycle times, and economic analysis.

Getting Started:

Create a simple 3D container using 3/16" foam core board that contains a continuous side panel

The container cannot have 4 flat sides, can be 3 or more than 4

Create a miter tool to meet the number of sides and the internal angle of the flat panel Determine the angle you need to cut in the material using your created tool and razor blade Create a minimal base and hot/CA glue to flat layout walls to create your 3D container

Use the Path Pilot HUB to import a DXF from Fusion 360. Create your GCODE and then work the conversational tool on the Tormach 1100. Create your tool holder during class. Manipulate your design in Fusion 360 to suit your needs. Fit the material chosen. Start the tool library and post processor for the Tormach CNC1100.

Work to design a full extra tool holder and two in process TTS tool holders for each project. Use the conversational facing, DXF and drilling to make your parts on the 1100.

Sand and finish your parts. Make sure you add your settings appropriately to the Feeds and Speeds Google Doc.

What are the top few lines of GCODE in our program that we reverse engineered? Break down each command and write down its meaning.

Create a simple program for a block on your own using G0 commands.

G-Code words			
G0	Rapid Linear Motion	G59.2	Select Coordinate System 8
G1	Linear Motion at Feed Rate	G59.3	Select Coordinate System 9
G2	Arc at Feed Rate	G80	Cancel Modal Motion
G3	Arc at Feed Rate	G81	Canned Cycles – drilling
G4	Dwell	G82	Canned Cycles – drilling with dwell
G10	Set Coordinate System Data	G83	Canned Cycles – peck drilling
G17	X-Y Plane Selection	G85	Canned Cycles – boring,no dwell, feed out
G18	Z-X Plane Selection	G86	Canned Cycles – boring, spindle stop, rapid out
G19	Y-Z Plane Selection	G88	Canned Cycles - boring, spindle stop, manual out
G20	Length Unit inches	G89	Canned Cycles – boring, dwell, feed out
G21	Length Unit milimeters	G90	Set Distance Mode Absolute
G28	Return to Home	G91	Set Distance Mode Incremental
G30	Return to Home	G92	Coordinate System Offsets
G53	Move in Absolut Coordinates	G92.1	Coordinate System Offsets
G54	Select Coordinate System 1	G92.2	Coordinate System Offsets
G55	Select Coordinate System 2	G92.3	Coordinate System Offsets
G56	Select Coordinate System 3	G93	Set Feed Rate Mode units/minutes
G57	Select Coordinate System 4	G94	Set Feed Rate Mode inverse time
G58	Select Coordinate System 5	G98	Set Canned Cycle Return Level
G59	Select Coordinate System 6	G99	Set Canned Cycle Return Level
G59.1	Select Coordinate System 7		

Generate Tool Library in Fusion 360:


```
% (BLOCK)
(T1 D=0.25 CR=0. - ZMIN=-1. - flat end mill)
G90 G54 G64 G50 G17 G40 G80 G94 G91.1 G49
G20 (Inch)
G30
N10
T1 G43 H1 M6
S5000 M3 M9
G54
G0 X4.5 Y0.375
G0 Z0.6
G0 Z0.5394
G1 Z-0.5 F15.
G1 X0.5 F45.
G2 X0.375 Y0.5 IO. J0.125
G1 Y2.5
G2 X0.5 Y2.625 I0.125 J0.
G1 X4.5
G2 X4.625 Y2.5 IO. J-0.125
G1 Y0.5
G2 X4.5 Y0.375 I-0.125 J0.
G1 Z-1. F15.
G1 X0.5 F45.
G2 X0.375 Y0.5 IO. J0.125
G1 Y2.5
G2 X0.5 Y2.625 I0.125 J0.
G1 X4.5
G2 X4.625 Y2.5 IO. J-0.125
G1 Y0.5
G2 X4.5 Y0.375 I-0.125 J0.
G0 Z0.6
M5 M9
G30
M30
&
```


Final Project:


```
Name

➤ IND251-Final v9/Base

➤ 11 - Ø1/8" 118° - drill (1/8" HSS Steel Drill)

➤ 20 - Ø1/8" - flat (1/8" Flat Endmill)

➤ 21 - Ø1/4" - flat (1/4" Variable 3 Flute End Mill for Aluminum)
```


