JAMES RUSE AGRICULTURAL HIGH SCHOOL

TERM 2 ASSESMENT 2001 – YEAR 12

MATHEMATICS – EXTENSION II

INSTRUCTIONS:

Time allowed: 85 minutes.

Write your student number on all answer sheets.

Attempt all questions.

All questions are of equal value.

Approved silent calculators may be used.

Resource material may be used.

QUESTION 1: (20 MARKS)

- (i) (a) Sketch the region R bounded by $y = x^2$, the positive x-axis and the line x = 2.
 - (b) Find the volume of the solid formed when the region R is rotated one revolution about the line x=2.
- (ii) From the letters of the word ELECTED five letters are chosen to make a five letter "word".
 - (a) How many different "words" can be formed?
 - (b) Find the probability that a five letter "word" formed at random will not have any E's adjacent to each other.
- (iii) A particle moves to the right on a horizontal surface under the effect of an acceleration (in kmh^{-2}) given by $\ddot{x} = \frac{36}{v} + v$ where v is the velocity of the particle in kmh^{-1} . Initially the particle is observed at the origin travelling with velocity $2\sqrt{3} \ kmh^{-1}$.
 - (a) Show that the position of the particle when its velocity is $v \, kmh^{-1}$ is given by $x = v 6 \tan^{-1} \left(\frac{v}{6} \right) + \pi 2\sqrt{3}$.
 - (b) Find an expression for the time taken to reach velocity $v \, kmh^{-1}$.
 - (c) Find the time of travel and the distance travelled by the particle when it attains its minimum acceleration.

QUESTION 2: (20 MARKS) (START A NEW PAGE)

- (i) Twelve players turn up for a game of crazyball. In crazyball two teams of 5 play against each other.
 - (a) If the coach selects two teams at random to play against each other, how many selections can be made?
 - (b) If the Bovine twins (Angus and Murray) are amongst the 12 players, find the probability that they will play on opposing teams. (Express your answer as a fraction in simplest form)
- (ii) (a) Find the three stationary points on the curve $y = x^2 \sqrt{32 x^4}$.
 - (b) Sketch the curve showing all stationary points and intercepts with the co-ordinate axes.
 - (c) The area bounded by this curve and the x-axis is rotated one revolution about the y-axis. Using the method of evaluating volumes by cylindrical shells, find the volume of the solid generated.
- (iii) (a) Explain with the aid of a diagram why $\int_0^a \sqrt{a^2 x^2} dx = \frac{\pi a^2}{4}$.
 - (b) Show that the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ equals πab .
 - (c) A right solid has a circular face with radius 2 m at one end and an elliptical face with semi-major axis 4 m and semi-minor axis 2 m at the other end (see diagram). Cross-sections perpendicular to the axis of the solid are ellipses. If the solid is 10 meters long, show that the area $(A m^2)$ of a cross-section distance l meters from the circular end is given by

(d) Calculate the volume of the solid

QUESTION 3: (20 MARKS) START A NEW PAGE

- (i) (a) Show that the equation of the tangent to xy = 16 at the point $T\left(4t, \frac{4}{t}\right)$ is given by $x + t^2 y = 8t$.
 - (b) Find the co-ordinates of the point Q where the tangent from T meets the x-axis.
 - (c) Find the equation of the line through Q and perpendicular to the tangent from T.
 - (d) If the line in (c) meets the hyperbola at points R and S, show that the co-ordinates of M, the midpoint of RS, has co-ordinates $M(4t,-4t^3)$.
 - (e) Find the locus of the point M giving any restrictions that may apply to the locus.
- (ii) A small object of mass m kg is released from rest in a medium whose resistance is mkv where v is the velocity (in ms^{-1}) of the object.
 - (a) If the terminal velocity of the object is V_T , show that the acceleration is given by $\ddot{x} = \frac{g}{V_T} (V_T v).$
 - (b) Hence show that the velocity of the object t seconds after it is released is given by $v = V_T \left(1 e^{-\frac{g}{V_T} t} \right).$
 - (c) At the instant the first object is released, a second object is projected vertically in the same medium and with initial velocity V_o . Show that when the second object reaches its maximum height the first object is falling with velocity $v = \frac{V_o V_T}{V_o + V_T}$.

THIS IS THE END