

ПРОЕКТ

ПО

Диференциални уравнения и приложения спец. Софтуерно инженерство, 2 курс, летен семестър, учебна година 2013/14

Тема № 47

Ф. No
Група
Оценка :

Изготвил:

14.06.2014

СЪДЪРЖАНИЕ

1.	ТЕМА (ЗАДАНИЕ) НА ПРОЕКТА	3
2.	РЕШЕНИЕ НА ЗАДАЧА 1	4
2.1.	Теоретична част	4
2.2.	Matlab код и получени в командния прозорец резултати при изпълнението му	4
2.3.	Графики (включително от анимация)	6
2.4.	Коментари към получените с MatLab резултати	6
3.	РЕШЕНИЕ НА ЗАДАЧА 2	7
3.1.	Теоретична част.	7

1. ТЕМА (ЗАДАНИЕ) НА ПРОЕКТА

Приложите тук снимка на листчето със заданието на проекта, което сте получили!

Тема 47 на Проект по ДУПрил за спец. СИ, летен семесътр, уч. год. 2013/14 Име......, Ф.№, група

Задача 1. Дадена е задачата на Коши

$$y''' + 4y'' + 5y' + 2y = 2 + \sin x$$
, $y(-1) = -1$, $y'(-1) = 1$, $y''(-1) = 2$.

- 1. Сведете тази задача до задача на Коши за нормална система от първи ред с постоянни коефициенти.
- 2. С MatLab начертайте с различни цветове графиките на компонентите на решението на получената система в интервала [-1;2]. Определете най-голямата стойност в посочения интервал на втората компонента и най-малката стойност на третата компонента. Маркирайте върху графиките им тези точки съответно със звезда и кръгче.

Задача 2. Трептенето на ограничена струна се моделира със следната смесена задача

$$\begin{aligned} u_{tt} &= \frac{4}{\pi^2} u_{xx}, & t > 0, \ 0 < x < 6\pi, \\ u|_{t=0} &= \begin{cases} \cos^3(\frac{x}{2}), & x \in [4\pi, 5\pi] \\ 0, & x \in [0, 4\pi) \cup (5\pi, 6\pi], \end{cases} \\ u_t|_{t=0} &= -\frac{1}{3} \sin x, & 0 \le x \le 6\pi, \\ u|_{x=0} &= 0, & u|_{x=6\pi} = 0, & t \ge 0. \end{aligned}$$

- 1. Напишете решението на дадената задача във вид на ред с помощта на метода на Фурие.
- 2. Направете на MatLab анимация на трептенето струната за $t \in [0, 14]$, като използвате 25-та частична сума на получения ред на Фурие. Начертайте с черен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1 = 0, t_2 = 7, t_3 = 14$.

2. РЕШЕНИЕ НА ЗАДАЧА 1

2.1. Теоретична част.

Полагаме:

$$y_1 = y, y_2 = y', y_3 = y''$$

 $\Rightarrow y_1' = y' = y_2$
 $\Rightarrow y_2' = (y')' = y'' = y_3$
 $\Rightarrow y_3' = (y'')' = y''' \Rightarrow$
 $\Rightarrow y_3' = 2 + \sin x - 4y_3 - 5y_2 - 2y_1$

Получаваме задачата на Коши:

$$\begin{vmatrix} y_1' = y_2 \\ y_2' = y_3 \\ y_3' = 2 + \sin x - 4y_3 - 5y_2 - 2y_1 \\ y_1(-1) = -1, y_2(-1) = 1, y_3(-1) = 2 \end{vmatrix}$$

Най-голямата стойност в посочения интервал на втората компонента $y_2(x)$ е 1.2636.

Най-малката стойност в посочения интервал на третата компонента $y_3(x)$ е 0.7514.

2.2. Matlab код и получени в командния прозорец резултати при изпълнението му.

function tema47_zad1

%Свеждане на задачата на Коши до задача на Коши за нормална система

%с постоянни коефициенти.

```
y1=Y(:,1);
y2=Y(:,2);
y3=Y(:,3);
%Намираме най-голямата стойност във втората
компонента
% и нейния индекс
[second max val, second index] = max(y2);
%Намираме най-голямата стойност във третата
компонента
% и нейния инлекс
[third min val, third index] = min(y3);
plot(T, y1, T, y2, T, y3, 'r', T(second index),
second_max_val, '*', T(third_index),
third min val, 'o')
title('Графики на компонентите на решението на
получената система в интервала [-1;2]');
legend('първа компонента', 'втора компонента',
'трета компонента', 'най-голяма стойност на
втората компонента', 'най-малка стойност на
третата компонента');
axis([x0, tFinal, x0, tFinal]);
grid on;
    function z = zad \ 1 \ odefun(x,y)
        z = [y(2); y(3); 2 + \sin(x) - 4*y(3) -
5*y(2) - 2*y(1);
    end
end
Резултат в командния прозорец:
second max val =
    1.2636
third min val =
```

2.3. Графики (включително от анимация).

Фигура 1

2.4. Коментари към получените с MatLab резултати.

На графиката са начертани графиките на компонентите на решението на получената система в интервала [-1,2] – със син цвят графиката на първата компонента $y_1(x)$, със зелен цвят графиката на втората компонента $y_2(x)$ и с червен цвят графиката на третата компонента $y_3(x)$. Звездата показва най-голямата стойност в посочения интервал на втората компонента $y_2(x)$, а кръгчето показва най-малката стойност на третата компонента $y_3(x)$.

3. Решение на задача 2

3.1	Τ.	e	op	Э	T	Λ۲	11-	ıa	Ч	ıa	C	Τ.	•																													
		• • •	•••	•••				•••	••			, 	••	 	 	•	 	•	 •	 •	••	 •	••	•	 	 • •	 	 ••	••	 ••	• •	• •	•	• • •	• •	••	••	 ••	 	••	 ••	
																	 	_							 		 	 		 								 	 			