PURE SPINOR FORMALISM

PAVEL SAFRONOV

1. Pure spinors

Let $V = \mathbb{C}^{10}$ and S_+, S_- be the semi-spin representations of $\mathrm{Spin}(V)$. We have a nondegenerate $\mathrm{Spin}(V)$ -equivariant pairing $\Gamma \colon \mathrm{Sym}^2(S_+) \to V$.

For a vector space L we denote by $\mathrm{ML}(L)$ the metalinear group, i.e. the 2:1 cover of $\mathrm{GL}(L)$ given by the pullback

$$ML(L) \longrightarrow GL(1)$$

$$\downarrow \qquad \qquad \downarrow_{z \mapsto z^2}$$

$$GL(L) \xrightarrow{\det} GL(1)$$

Fact: the choice of a spin structure on V endows any Lagrangian subspace $L \subset V$ with a metalinear structure, i.e. a choice of $\det(L)^{1/2}$.

Proposition 1.1.

- (1) The group $\mathrm{Spin}(V)$ acts transitively on the set $\mathrm{LGr}(V)$ of Lagrangian subspaces $L \subset V$.
- (2) The stabilizer of a Lagrangian subspace $L \subset V$ is a parabolic subgroup $G_L \subset \operatorname{Spin}(V)$ which fits into an exact sequence

$$1 \longrightarrow \wedge^2 L \longrightarrow G_L \longrightarrow \mathrm{ML}(L) \longrightarrow 1.$$

The choice of a Lagrangian complement $L^* \subset V$ to $L \subset V$ determines a splitting of this exact sequence, i.e. it gives an identification $G_L \cong \mathrm{ML}(L) \ltimes \wedge^2 L$.

(3) Under the restriction $G_L \subset \operatorname{Spin}(V)$ the semi-spin representations split as

$$S_{+} = (\mathbf{C} \oplus \wedge^{2}(L^{*}) \oplus \wedge^{4}(L^{*})) \otimes \det(L)^{1/2}, \qquad S_{-} = (\mathbf{C} \oplus \wedge^{2}L \oplus \wedge^{4}L) \otimes \det(L)^{-1/2}.$$

The tangent bundle $T_{LGr(V)}$ to LGr(V) is naturally Spin(V)-equivariant. Its fiber at $L \in LGr(V)$ is isomorphic to

$$\wedge^2(L \oplus L^*)/(\operatorname{End}(L) \oplus \wedge^2 L) \cong \wedge^2 L^*$$

as a G_L -representation (here $\wedge^2 L$ acts trivially). In particular, $\dim(\mathrm{LGr}(V)) = 10$.

We have $\det(\wedge^2 L^*) \cong \deg(L)^{-4}$. This representation is not G_L -invariant, so $\mathrm{LGr}(V)$ does not have a $\mathrm{Spin}(V)$ -invariant Calabi–Yau structure.

Proposition 1.2. Let P be the set of nonzero elements $Q \in S_+$ satisfying $\Gamma(Q,Q) = 0$ and $\tilde{P} = P \cup \{0\}$.

• For $Q \in P$ the image of $\Gamma(Q, -) \colon S_+ \to V$ is a Lagrangian subspace. In particular, we have a projection $P \to LGr(V)$.

• The natural action of \mathbb{C}^{\times} on P by scaling gives $P \to LGr(V)$ the structure of a \mathbb{C}^{\times} torsor. The fiber of $P \to LGr(V)$ at $L \subset V$ may be identified with nonzero elements $Q \in \det(L)^{1/2}$.

The tangent bundle T_P to P is naturally $\mathrm{Spin}(V)$ -equivariant. Its fiber at $Q \in P$ is isomorphic to

$$\wedge^2(L \oplus L^*)/(\operatorname{End}_0(L) \oplus \wedge^2 L) \cong \wedge^2 L^* \oplus \mathbf{C}$$

as a $\operatorname{SL}(L) \ltimes \wedge^2 L$ -representation ($\wedge^2 L$ acts from the first to the second summand). In particular, $\det(\operatorname{T}_{P,Q}) \cong \det(L)^{-4}$ which is trivial as a $\operatorname{SL}(L) \ltimes \wedge^2 L$ -representation. In particular, there is a unique $\operatorname{Spin}(V)$ -invariant Calabi–Yau structure on P.

Choose a point $Q \in P$. We can introduce a coordinate chart near Q in the following way. We split

$$S_+ = (\mathbf{C} \oplus \wedge^2(L^*) \oplus \wedge^4(L^*)) \otimes \det(L)^{1/2}.$$

Let $(\ell, A, M) \in S_+$ be components of a spinor with respect to this splitting. The pure spinor constraint is

$$\ell M + \Lambda \wedge \Lambda = 0,$$
$$\langle \Lambda, M \rangle = 0,$$

where in the last line the pairing is $\wedge^2 L^* \otimes \wedge^4 L^* \to \det(L)^* \otimes L^*$.

In particular, in a neighborhood of Q (i.e. in a neighborhood of $\Lambda = 0$, M = 0 and $\ell \neq 0$) the pair (ℓ, Λ) gives a coordinate chart. We may identify

$$\det(\wedge^2(L^*) \otimes \det(L)^{1/2}) \cong \det(L),$$

so in this chart the unique Spin(V)-invariant Calabi-Yau structure has the form

$$\Omega = \ell^{-3} d\ell d^{10} \Lambda.$$

2. Pure spinor formulation of 10d SYM

Let

$$T = \Pi \Sigma_+ \oplus V$$

be the supertranslation Lie algebra and G_T the supertranslation group. Then $C^{\infty}(G_T)$ carries two commuting T-actions given by left and right translations. For $\sigma \in S_+$ denote by Q_{σ} and \mathcal{D}_{σ} the corresponding vector fields.

We assign the ghost number number 1 and odd fermionic degree to coordinates on P. The fields in our theory are

$$\mathfrak{F} = C^{\infty}(G_T) \otimes \mathfrak{O}(P) \otimes \mathfrak{g}[1].$$

The differential at $\sigma \in P$ is given by \mathcal{D}_{σ} . There is a residual supersymmetry action on \mathcal{F} given by Q_{σ} .

The differential \mathcal{D} can be split as $\mathcal{D}^0 + \mathcal{D}^1$, where \mathcal{D}^0 is \mathcal{D} with $\Gamma = 0$. The differential \mathcal{D}^0 does not act on $C^{\infty}(V)$, so it just becomes an overall factor.

Definition 2.1. The *zero-mode cohomology* is the cohomology of $C^{\infty}(\Pi S) \otimes \mathcal{O}(P)$ with respect to \mathcal{D}^0 .