

# 直流迴路

生 學過電阻的串、並聯電路後,這一章中我們要進一步介紹更複雜的網路分析方法。在實際的電路中,並不會像前一章中所介紹的基本電路那樣簡單,我們必須透過網路分析法來簡化電路,然後才能快速有效地計算出電路中的電壓或電流值。本章將為複雜的直流網路提供幾種有效的分析方法。

## 學習目標

- > 認識重疊定理並應用在複雜的網路分析
- > 利用戴維寧定理簡化網路
- ▶ 利用諾頓定理簡化網路
- 學習戴維寧等效電路與諾頓等效電路間的轉換
- ▶ 學習負載電阻的最大輸出功率
- ▶ 利用節點電壓法分析網路
- ▶ 利用迴路電流法分析網路



## 本章目錄

| 4-1     | 重疊定理          | 136 | 4-5 | 最大功率轉換 | 162 |
|---------|---------------|-----|-----|--------|-----|
| 4-2     | 戴維寧定理         | 142 | 4-6 | 節點電壓法  | 168 |
| 4-3     | 諾頓定理          | 149 | 4-7 | 迴路電流法  | 175 |
| « Δ _ Δ | 載維密印諾頓等效雷路之轉換 | 155 |     |        |     |



## **4-1** 重疊定理

在分析含有多個電源之網路時,可利用本節所要介紹的**重疊定理** (superposition theorem)來解析電路。重疊定理告訴我們:當一個網路中有多個電流源或電壓源同時存在時,我們可以每次只考慮一個電壓源或一個電流源對電路的作用,並計算出對電路元件產生的電壓,或對電路分路產生的電流,然後將所有電流源與電壓源的作用相加減(同方向相加,反方向相減),得到的電壓值與電流值便是整個網路的分析結果。

實例解析:以重疊定理分析圖 4-1 所示電路中流經電阻  $R_3$  的電流  $I_3$ 。





Step 3 以串並聯方式解各單一電源之電路圖,並將得到的電壓或電流值重疊(相加減)即為所求(電流方向相同者相加,相反者相減;電壓極性相同者相加,相反者相減)

註:此定理較不適用於多電壓源之網路,而在 電流源較多時最適用。

$$I_3' = \frac{R_1}{R_1 + R_3} I$$
 (分流法) 
$$I_3'' = \frac{E}{R_1 + R_3}$$
 
$$I_3 = I_3' + I_3''$$
 (∵  $I_3'$  與  $I_3''$  電流方向相同)

### 範例 4-1

如下圖所示電路,試利用重疊定理求電流 I 為多少?



【解】(1) 考慮 18V 電壓源的效應,將 3A 電流源移開(斷路),如右圖所示:

$$I' = \frac{18V}{3\Omega + 6\Omega} = 2 A (\downarrow)$$



(2) 考慮 3A 電流源的效應,將 18V 電 壓源移開(短路),如右圖所示:

$$I'' = \frac{3\Omega}{3\Omega + 6\Omega}(3A) = 1 A (\uparrow)$$



(3) 根據重疊定理:

$$I = I' - I'' = 2A - 1A = 1A$$

(::I'與I''之方向相反,以題示之I↓方向為正)

**馬上練習** 承上題,試利用重疊定理求  $3\Omega$  電阻兩端的電壓為多少?

[答] 
$$V_{30} = 12 \text{ V}$$
 。





如下圖所示電路,試利用重疊定理求各分路的電流?



【解】(1) 考慮 24V 電壓源的效應,將 12V 電壓源移開(短路),如右下圖所示:

$$I_1' = \frac{24\text{V}}{20\Omega + (5\Omega/20\Omega)} = \frac{24\text{V}}{20\Omega + 4\Omega} = 1\text{ A }(\rightarrow)$$

利用分流法可得:

$$I_2' = \frac{5\Omega}{5\Omega + 20\Omega} (1A) = 0.2 A (\rightarrow)$$

$$I_3' = \frac{20\Omega}{5\Omega + 20\Omega} (1A) = 0.8 A (\downarrow)$$

(2) 考慮 12V 電壓源的效應,將 24V 電壓源移開(短路),如右下圖所示:

$$I_2'' = \frac{12V}{20\Omega + (5\Omega/20\Omega)} = \frac{12V}{20\Omega + 4\Omega} = 0.5 \text{ A } (\leftarrow)$$

利用分流法可得:

可用分流法可得:
$$I_1'' = \frac{5\Omega}{5\Omega + 20\Omega}(0.5\text{A}) = 0.1 \text{ A} (\leftarrow)$$

$$5\Omega$$

$$I_3'' = \frac{20\Omega}{5\Omega + 20\Omega} (0.5A) = 0.4 A (\downarrow)$$



(3) 根據重疊定理:

$$I_1 = I_1' - I_1'' = 1 \text{A} - 0.1 \text{A} = 0.9 \text{ A}$$
 (以題示之 $I_1 \to$ 方向為正)  $I_2 = I_2' - I_2'' = 0.2 \text{A} - 0.5 \text{A} = -0.3 \text{A}$  (以題示之 $I_2 \to$ 方向為正)  $I_3 = I_3' + I_3'' = 0.8 \text{A} + 0.4 \text{A} = 1.2 \text{A}$  (以題示之 $I_3 \downarrow$ 方向為正)

**馬上練習** 承上題,試利用重疊定理求  $5\Omega$  電阻兩端的電壓為多少?

【答】
$$V_{5\Omega} = 6 \text{ V} \circ$$





如下圖所示電路,試利用重疊定理求電流 $I_1$ 為多少?



【解】(1) 考慮 20V 電壓源的效應,將 5A 及 3A 電流源移開(斷路),如 右圖所示:

$$I_1' = \frac{20\text{V}}{1\Omega + 1\Omega} = 10 \text{ A } (\downarrow)$$

(2) 考慮 5A 電流源的效應,將 20V 電 壓源(短路)及 3A 電流源移開(斷 路),如右圖所示:

$$I_1'' = \frac{1\Omega}{1\Omega + 1\Omega} (5A) = 2.5 A (\downarrow)$$

(3) 考慮 3A 電流源的效應,將 20V 電 壓源(短路)及 5A 電流源移開(斷 路),如右圖所示:

$$I_1''' = \frac{1\Omega}{1\Omega + 1\Omega} (3A) = 1.5 A (\uparrow)$$







$$I_1 = I_1' + I_1'' - I_1''' = 10A + 2.5A - 1.5A = 11A(以題示之 $I_1 \downarrow$ 方向為正)$$

**馬上練習** 承上題,試利用重疊定理求電流 $I_2$ 為多少?

【答】
$$I_2 = 9 A \circ$$





如下圖所示電路,試利用重疊定理求各分路的電流?



【解】(1) 考慮 50A 電流源的效應,將 25A 電流源移開(斷路),如右圖所示。 利用分流法可得:



$$I_1' = \frac{(10\Omega + 20\Omega)}{20\Omega + (10 + 20)\Omega} (50A) = 30 \text{ A } (\downarrow)$$

$$I_2' = \frac{20\Omega}{20\Omega + (10 + 20)\Omega} (50A) = 20 \text{ A } (\rightarrow)$$

$$I_3' = I_2' = 20 \,\mathrm{A} \,(\downarrow)$$

(2) 考慮 25A 電流源的效應,將 50A 電流源移開(斷路),如右圖所示。 利用分流法可得:



$$I_1'' = \frac{20\Omega}{20\Omega + (20 + 10)\Omega} (25A) = 10 \text{ A } (\uparrow)$$

$$I_2'' = I_1'' = 10 \text{ A } (\rightarrow)$$

$$I_3'' = \frac{20\Omega + 10\Omega}{20\Omega + (20 + 10)\Omega} (25A) = 15 \text{ A } (\uparrow)$$

(3) 根據重疊定理:

$$I_1 = I_1' - I_1'' = 30A - 10A = 20A$$
 (以題示之 $I_1 \downarrow$ 方向為正)

$$I_2 = I_2' + I_2'' = 20A + 10A = 30A$$
 (以題示之 $I_2 \to 方向為正)$ 

$$I_3 = I_3' - I_3'' = 20A - 15A = 5A$$
 (以題示之 $I_3 \downarrow$ 方向為正)

馬上練習 承上題所示電路,若  $I_a$  = 12A 、  $I_b$  = 6A 、  $R_1$  = 3 $\Omega$  、  $R_2$  = 3 $\Omega$  、  $R_3$  = 6 $\Omega$  ,試利用重疊定理求電流  $I_2$  為多少?

【答】
$$I_2 = 6 \,\mathrm{A}$$
。



## 

- 1. 如圖(1)所示電路,試利用重疊定理求 3 $\Omega$  電阻器之端電壓為 \_\_\_\_\_\_ V。
- 2. 如圖(2)所示電路,試利用重疊定理求流過 $4\Omega$  電阻器的電流為 \_\_\_\_\_\_ A。





- 3. 如圖(3)所示電路,試利用重疊定理求流過 $4\Omega$ 電阻器的電流為 $_{-----}$ A。
- 4. 如圖(4)所示電路,試利用重疊定理求  $4\Omega$  電阻器之端電壓為 \_\_\_\_\_\_ V。





5. 如圖(5)所示電路,試利用重疊定理求電流 $I = _____ A$ 。





## **4-2** 戴維寧定理

戴維寧定理(Thevenin's theorem)可以讓我們在分析複雜的網路時,以一個簡單又容易計算的電路來取代,方便我們得到電路的各項性質。這個定理告訴我們:對於任何複雜的線性網路系統,都可以用單一的等效電壓源  $E_{TD}$  串聯一個等效電阻器  $R_{TD}$  來表示,如圖 4-2 所示。



▲圖 4-2 戴維寧等效電路圖示 任何複雜的線性網路,均可用一等效的電壓源  $E_n$  串聯電阻  $R_n$  來表示。 實例解析:以戴維寧定理分析圖 4-3 所示電路的負載電流  $I_L$  及電壓  $V_L$ 。



▲圖4-3 戴維寧定理示範電路圖

Step **1** 選取戴維寧等效電路的範圍: 欲求網路中任意二點間的戴維寧等效電 路時,先移去此二點內的電路元件(並 將此二端點標記為*a*、*b*)





Step 2 計算戴維寧等效電阻 R<sub>Th</sub>: 將原來網路中所有的電壓源短路、 電流源斷路;若考慮電壓源或電流源 的內電阻時,則須將內電阻保留在原 電路。戴維寧等效電阻 R<sub>Th</sub> 即為 a、 b 二端點間的等效電阻值



Step 3 計算戴維寧等效電壓  $E_{Th}$  : 戴維寧等效電壓  $E_{Th}$  即為 $a \cdot b$  二點間 的開路電壓。對於較複雜的網路,我 們可以利用串並聯電路及重疊定理等 方法來求  $E_{Th}$ 



 $\mathbf{S}_{\mathsf{tep}} \overset{f 4}{\mathbf{4}} a \cdot b$  二點間的複雜網路可用電壓  $E_{\mathit{Th}}$  串聯電阻  $R_{\mathit{Th}}$  來取代,並將移去之元件接回 $a \cdot b$  二端點,然後計算  $E_{\mathit{Th}}$  負載電流  $I_{\mathit{L}}$  及電壓  $V_{\mathit{L}}$ 



$$I_{L} = \frac{E_{Th}}{R_{Th} + R_{L}}$$

$$V_{L} = \frac{R_{L}}{R_{Th} + R_{L}} E_{Th}$$

## 範例 4-5

如下圖所示電路,試求其 $a \times b$ 端的戴維寧等效電路為何?





【解】(1) 將 90V 電壓源短路,如右圖所示, $a \times b$  間的電阻值即為戴維寧等效電阻,則:

$$R_{Th} = 3\Omega + (12\Omega//6\Omega)$$
$$= 3\Omega + \frac{(12\Omega)(6\Omega)}{12\Omega + 6\Omega} = 7\Omega$$

(2) *a* 、 *b* 間的開路電壓即為戴維寧等效電壓, 如右圖所示,則:

$$E_{Th} = V_{6\Omega} = \frac{6\Omega}{12\Omega + 6\Omega} (90V) = 30 V$$





馬上練習

如右圖所示電路,將 $a \times b$ 二端點間電路化成戴維寧等效電路,試求通過負載的電流 $I_L$ 及電壓 $V_L$ 為多少?

【答】
$$I_L = 1 \text{ A}$$
 ,  $V_L = 18 \text{ V}$  °





## 範例 4-6

如下圖所示電路,有一獨立電壓源 4V,一獨立電流源 2mA,試求其戴維寧等效電路為何?



【解】(1) 求 R<sub>Th</sub>:

如下圖,分別將電壓源短路、電流源斷路,則  $a \times b$  間等效電阻為兩電阻串聯,即:

$$R_{Th} = 2k\Omega + 3k\Omega = 5 k\Omega$$





(2) 求 $E_{Th}$ :

如下圖所示,利用重疊定理求得:





$$\therefore E_{Th} = V_{ab} = V'_{ab} + V''_{ab} = 4V + 4V = 8V$$

(3) 由上述可知戴維寧等效電路如下圖所示。



馬上練習

如右圖所示電路,試將 $a \times b$ 二點間電路化成戴維寧等效電路,則其戴維寧等效電阻 $R_n$ 及電壓 $E_n$ 為多少?

【答】
$$R_{Th} = 50 \Omega$$
, $E_{Th} = 200 \text{ V}$ 。





## 範例 4-7

如下圖所示電路,試求其 $a \times b$ 端的戴維寧等效電路為何?





【解】(1) 移去負載電阻  $R_L$ ,將電壓源短路、電 流源斷路,如右圖所示, $a \times b$ 間電阻

流源斷路,如右圖所示,
$$a \times b$$
 間電阻  
即為戴維寧等效電阻  $R_{Th}$  :  $R_{Th} = R_{ab} = 10\Omega + (20\Omega)/(30\Omega)$   $= 10\Omega + \frac{(20\Omega)(30\Omega)}{20\Omega + 30\Omega} = 10\Omega + 12\Omega = 22\Omega$ 

(2) 如下圖所示,利用重疊定理可求得戴維寧等效電壓 $V_{Th}$ :



€30Ω

由分壓定則可得:

$$V'_{ab} = V_{30\Omega} = \frac{30\Omega}{20\Omega + 30\Omega} (10V) = 6 V$$
  $I''_{2} = \frac{20\Omega}{20\Omega + 30\Omega} (20A) = 8 A$ 

由分流定則可得:

$$I_2'' = \frac{2082}{20\Omega + 30\Omega} (20A) = 8 A$$
  
 $V_{ab}'' = I_2'' R_{30\Omega} = (8A)(30\Omega) = 240 \text{ V}$ 

10Ω

$$E_{Th} = V_{ab} = V'_{ab} + V''_{ab} = 6V + 240V = 246 V$$

(3) 戴維寧等效電路如下圖所示:



馬上練習 承上題所示電路,若  $I = 6A \times E = 36V$  ,  $R_1 = 12\Omega \times R_2 = 6\Omega$  ×  $R_3 = 3\Omega$ ,試求戴維寧等效電阻  $R_{Th}$  及電壓 $V_{Th}$  為多少?

【答】
$$R_{Th} = 7\Omega$$
,  $E_{Th} = 36 \text{ V}$ 。





如下圖所示電路,試求流經負載電阻之電流  $I_L$ 及兩端電壓  $V_L$  為多少?



【解】(1) 移去負載電阻  $R_L$ ,將電壓源短路,如下圖所示,則  $a \times b$  間電阻即為戴維寧等效電阻  $R_{Tb}$ :



$$R_{Th} = R_{ab} = (10\Omega/40\Omega) + (20\Omega/30\Omega)$$
$$= \frac{(10\Omega)(40\Omega)}{10\Omega + 40\Omega} + \frac{(20\Omega)(30\Omega)}{20\Omega + 30\Omega} = 8\Omega + 12\Omega = 20\Omega$$

(2) 如右圖所示,可求得戴維寧等效電壓  $E_{Th}$ :

$$E_{Th} = V_{ab} = V_a - V_b = V_{ad} - V_{bd} = V_{40\Omega} - V_{30\Omega}$$

$$= \frac{40\Omega}{10\Omega + 40\Omega} (10V) - \frac{30\Omega}{20\Omega + 30\Omega} (10V)$$

$$= 8V - 6V = 2V$$

注意:開路時(移去負載)的  $V_{ab}$  與接上負載時的  $V_{ab}$  不相等。



$$I_L = \frac{E_{Th}}{R_{Th} + R_L} = \frac{2V}{20\Omega + 20\Omega} = 0.05 \text{ A}$$
  
 $V_L = I_L R_L = (0.05 \text{A})(20\Omega) = 1 \text{ V}$ 



10Ω ₹

 $40\Omega$ 

20Ω

30Ω



**馬上練習** 如右圖所示電路,試求流經負載電阻之電流 $I_L$ 及兩端電壓 $V_L$ 為多少?

【答】
$$I_L = 2.4 \,\mathrm{mA}$$
 ,  $V_L = 2.4 \,\mathrm{V}$  。



## **↑** 單元評量 ○ □ **→** ↑

1. 如圖(1)所示電路,(b)圖為(a)圖的戴維寧等效電路,則其等效電壓  $E_{Th}=$  \_\_\_\_\_ V,等效電阻  $R_{Th}=$  \_\_\_\_\_  $\Omega$ 。



圖(1)

2. 如圖(2)所示電路,試求 $6\Omega$ 電阻之戴維寧等效電路:



圖(2)







- 4. 如圖(4)所示電路,試求 $a \times b$ 兩端之電壓為 $_{----}$ V。
- 5. 如圖(5)所示電路,試求 I = \_\_\_\_\_\_ A。(請用戴維寧定理求之)





## 4-3 諾頓定理

諾頓定理(Norton's theorem)是一個類似戴維寧定理的網路分析法。這個定理告訴我們:在任何一個包含電源的網路系統,其中任意兩端點的網路,都可以用單一的等效電流源 $I_N$ 並聯一個等效電阻器 $R_N$ 來取代,如圖 4-4 所示。



lacktriangle 圖 4-4 諾頓等效電路圖示 任何複雜的線性網路,均可用一等效的電流源  $I_N$  並聯電阻  $R_N$  來表示。



實例解析:以諾頓定理分析圖 4-5 所示電路的負載電流  $I_L$  及電壓  $V_L$ 。



### ▲ 圖 4-5 諾頓定理示範電路圖

Step 1 選取諾頓等效電路的範圍: 欲求網路中任意二點間的諾頓等效電 路時, 先移去此二點內的電路元件 (並將此二端點標記為 a 、 b)



 $S_{\text{tep}}$  2 計算諾頓等效電阻  $R_N$ : 將原來網路中所有的電壓源短路、 電流源斷路;若考慮電壓源或電流源 的內電阻時,則須將內電阻保留在原 電路。諾頓等效電阻 $R_N$  即為 $a \cdot b$ 二 端點間的等效電阻值



 $S_{tep}$  3 計算諾頓等效電流 $I_N$ : 將網路中的電壓源與電流源接回,並 將a、b二端點短路。諾頓等效電流  $I_N$  即為 $a \cdot b$  二點間的短路電流。對 於較複雜的網路,我們可以利用串並 聯電路及重疊定理等方法來求IN



 $S_{\text{tep}} \stackrel{4}{4} a \cdot b$ 二點間的複雜網路可用 



$$I_{L} = \frac{R_{N}}{R_{N} + R_{L}} I_{N}$$

$$V_{L} = I_{L} R_{L} = \left(\frac{R_{N}}{R_{N} + R_{L}} I_{N}\right) R_{L}$$





如下圖所示電路,試求其 $a \times b$ 端的諾頓等效電路為何?



【解】(1) 移去負載電阻  $R_L$ ,並將 24V 電壓源短路,如右上圖所示,則  $a \times b$  間的電阻值即為諾頓等效電阻,即:

$$R_N = 20\Omega //30\Omega = \frac{(20\Omega)(30\Omega)}{20\Omega + 30\Omega} = 12 \Omega$$

(2)  $a \times b$  間的短路電流即為諾頓等效電流,如右 圖所示,由於  $a \times b$  間短路,故無電流通過  $R_2$ ,則:

$$I_N = \frac{E}{R_1} = \frac{24\text{V}}{20\Omega} = 1.2 \text{ A}$$

(3) 諾頓等效電路如下圖所示:







馬上練習 承上題所示電路,若 E=9V 、  $R_1=3\Omega$  、  $R_2=6\Omega$  、  $R_L=10\Omega$  ,試將 a 、 b 二端點間電路化成諾頓等效電路,並求通過負載電阻  $R_L$ 的電流  $I_L$  及電壓  $V_L$  為多少?

【答】
$$I_L = 0.5 \,\mathrm{A}$$
 ,  $V_L = 5 \,\mathrm{V}$  。





如下圖所示電路,試將 $a \times b$ 二端點間電路化成諾頓等效電路;如果負載電阻  $R_L = 12\Omega$  時,試求通過 $R_L$ 的電流與電壓為多少?



## 【解】(1) 求 $R_N$ :

如右圖,移開負載電阻  $R_L$ ,分別將電壓源短路、電流源斷路,則  $a \times b$  間的等效電阻為:



$$R_N = (30\Omega + 10\Omega)//10\Omega = \frac{(30\Omega + 10\Omega)(10\Omega)}{(30\Omega + 10\Omega) + 10\Omega} = 8\Omega$$

(2) 求 $I_N$ :

將 $a \times b$ 間短路,如下圖所示,利用重疊定理求得:





$$I'_{ab} = \frac{8V}{(30\Omega + 10\Omega)/(10\Omega)} = \frac{8V}{8\Omega} = 1 \text{ A } (\leftarrow) \qquad I''_{ab} = \frac{10\Omega}{10\Omega + 30\Omega} (10\text{A}) = 2.5 \text{ A } (\rightarrow)$$

考慮電流的方向後,可得:

$$I_N = I_{ab} = I'_{ab} + I''_{ab} = (-1A) + 2.5A = 1.5 A (\rightarrow)$$

(3) 由上述可知諾頓等效電路如右圖所示,接回 負載電阻  $R_L$ ,則:

$$I_L = \frac{R_N}{R_N + R_L} I_N = \frac{8\Omega}{8\Omega + 12\Omega} (1.5A) = 0.6 A$$

$$V_L = I_L R_L = (0.6A)(12\Omega) = 7.2 V$$





**馬上練習** 如下圖所示電路,試將 $a \times b$ 二點間電路化成諾頓等效電路,則其諾頓等效電阻  $R_N$  及電流  $I_N$  為多少?



【答】
$$R_N = 1\Omega$$
,  $I_N = 1$ A。



## 範例 4-11

如下圖所示電路,試求其 $a \times b$ 端的諾頓等效電路為何?



【解】(1) 移去負載電阻  $R_L$ ,將電流源斷路,如右圖 所示,則  $a \times b$  間電阻即為諾頓等效電阻  $R_N$ :

$$R_N = R_{ab} = 30\Omega + 20\Omega = 50 \Omega$$



$$I_N = \frac{30\Omega}{20\Omega + 30\Omega}(10A) = 6 A$$







(3) 將求得的諾頓等效電阻  $R_N$  與等效電流源  $I_N$  並聯,並將移去的負載接回,如右圖所示。



### 馬上練習

如右圖所示電路,試求其 $a \times b$ 端的 諾頓等效電路為何?

【答】
$$R_N = 6\Omega$$
,  $I_N = 10 A$ 。



## ↑ 單元評量 □

- 1. 如圖(1)所示電路,試求其諾頓等效電路之等效電流  $I_{\scriptscriptstyle N}=$  \_\_\_\_\_ A,等效電阻  $R_{\scriptscriptstyle N}=$  \_\_\_\_\_  $\Omega$  。
- 2. 如圖(2)所示電路,試求其諾頓等效電路之等效電流  $I_{\scriptscriptstyle N}=$  \_\_\_\_\_ A,等效電阻  $R_{\scriptscriptstyle N}=$  \_\_\_\_\_  $\Omega$  。
- 3. 如圖(3)所示電路,試利用諾頓等效電路,找出流經  $7\Omega$  之電流 I= \_\_\_\_\_\_ A。



- 4. 如圖(4)所示電路,試求其諾頓等效電路之等效電流  $I_{\scriptscriptstyle N}=$  \_\_\_\_\_ A,等效電阻  $R_{\scriptscriptstyle N}=$  \_\_\_\_\_  $\Omega$  。
- 5. 如圖(5)所示電路,試求其諾頓等效電路之等效電流  $I_{\scriptscriptstyle N}=$  \_\_\_\_\_ A,等效電阻  $R_{\scriptscriptstyle N}=$  \_\_\_\_\_  $\Omega$  。







## ※ 4-4 戴維寧與諾頓等效電路之轉換

在複雜網路的分析中,可以透過戴維寧定理或是諾頓定理將電路簡化, 以等效電路取代。如果同一個網路分別用戴維寧定理與諾頓定理表示成等效 電路,則這個網路的戴維寧等效電路與諾頓等效電路,對於同樣的負載都應 該有相同的效應。也就是說,戴維寧等效電路與諾頓等效電路間應該存在某 些關係,如圖 4-6 所示電路。



▲ 圖 4-6 **戴維寧定理與諾頓定理的關係** 同一個網路可分別用戴維寧與諾頓等效電路來取代,因此其間存在某一轉換關係。

## 轉換關係

1. 戴維寧等效電路轉換成諾頓等效電路(如圖 4-7):



### ▲圖 4-7 戴維寧等效電路轉換成諾頓等效電路





2. 諾頓等效電路轉換成戴維寧等效電路(如圖 4-8):



### ▲圖4-8 諾頓等效電路轉換成戴維寧等效電路



## ※證明



### ▲圖4-9 戴維寧電路與諾頓電路的轉換關係

考慮同一網路分別化成戴維寧等效電路與諾頓等效電路的情況,如圖 4-9 所示,則通過負載  $R_L$  兩端的電壓降  $V_L$  分別為:

戴維寧等效電路: $V_L = E_{Th} - I_L R_{Th}$ 諾頓等效電路: $V_L = R_N (I_N - I_L)$ 

對於一個相同的網路而言,不管是化成戴維寧等效電路或是諾頓等效電路,都應該有相同的效應,且電路外接的負載相同,所以上兩式應有相同的



雷壓值,即:

$$V_L = E_{Th} - I_L R_{Th} = R_N (I_N - I_L)$$
 (4-4-1)

由於戴維寧等效電阻 $R_n$ 與諾頓等效電阻 $R_n$ 的求法完全相同,所以我們可以將等效電阻表示成:

$$R_{Th} = R_N \tag{4-4-2}$$

將(4-4-2)式代入(4-4-1)式,整理後得戴維寧等效電壓爲:

$$E_{Th} = I_N R_N \tag{4-4-3}$$

或是將諾頓等效電流表示成:

$$I_{N} = \frac{E_{Th}}{R_{Th}} \tag{4-4-4}$$

如果要將諾頓等效電路轉換成戴維寧等效電路,可以利用(4-4-2)式及(4-4-3)求得戴維寧等效電阻與電壓;如果要將戴維寧等效電路轉換成諾頓等效電路,則可以利用(4-4-2)式及(4-4-4)求得諾頓等效電阻與電流。



## 知識充電

- 電壓源與電流源互換:在網路的分析中,也可以利用戴維寧與諾頓之轉換方法, 將電壓源與電流源互換,以利複雜網路的簡化。其規則如下:
  - 1. 電壓源須串聯一電阻;電流源須並聯一電阻
  - 2. 電壓源串聯電阻=電流源並聯電阻 ( $R_e = R_i$ )
  - 3. 轉換後的電壓源  $E = IR_i$  ;轉換後的電流源  $I = \frac{E}{R_e}$
  - 4. 電流源箭號所指的方向為電壓源之正極所對應的方向





- 電壓源與電流源的並串聯組合:我們將相同之電壓源與電流源在串聯或並聯組合 後的等效電路整理如下:
  - 1. 相同電壓源的串聯



$$E' = E + E = 2E$$

$$R'_e = R_e + R_e = 2R_e$$

2. 相同電壓源的並聯



$$E' = E$$

$$R'_{e} = R_{e} // R_{e} = \frac{R_{e}}{2}$$

3. 相同電流源的串聯



$$I' = I$$

$$R'_i = R_i + R_i = 2R_i$$







## 上述內容的詳細說明,請參閱附錄 B。

## 範例 4-12

如下圖所示電路,試化成諾頓等效電路為何?





 $R_i' = R_i // R_i = \frac{R_i}{2}$ 

### 【解】(1)



$$I_N = \frac{12\text{V}}{3\Omega} = 4\text{A}(方向向上)$$
  
 $R_N = 3\Omega$ 

$$(2) \qquad \qquad R_N \qquad \qquad R_N$$

$$I_N=rac{12 {
m V}}{3\Omega}=4\,{
m A}$$
(方向向上) 
$$I_N=rac{10 {
m V}}{2\Omega}=5\,{
m A}$$
(方向向下) 
$$R_N=3\,\Omega$$
 
$$R_N=2\,\Omega$$

## **馬上練習** 如下圖所示電路,試化成戴維寧等效電路為何?



【答】
$$E_{Th}=18\,\mathrm{V}$$
 ,  $R_{Th}=6\,\Omega$  。





如下圖所示電路,試將電路中的電壓源化為電流源。



【解】(1) 移去負載電阻  $R_L$ ,將電壓源短路,如右圖所  $\pi$ ,則:

$$R_N = (20\Omega //30\Omega) = \frac{(20\Omega)(30\Omega)}{20\Omega + 30\Omega} = 12 \Omega$$

(2) 將電壓源放回,並將  $a \times b$  端短路,如右圖 所示,則通過  $30\Omega$  電阻的電流為零,故

$$I_N = \frac{24\text{V}}{20\Omega} = 1.2 \text{ A}$$

(3) 將負載接回  $a \times b$  端,則諾頓等效電路如右 圖所示。



 $\leq 30\Omega R_{N}$ 

 $20\Omega$ 

【另解】 直接將串聯電阻之電壓源轉換成並聯電阻之電流源,如下圖所示:





**馬上練習** 承上題所示電路,若 $E=9V \times R_1=3\Omega \times R_2=6\Omega \times R_L=10\Omega$ ,試求諾頓等效電流為若干?

【答】
$$I_N = 3 \,\mathrm{A}$$
。

## 

1. 若將圖(1)的諾頓等效電路轉換成戴維寧等效電路,則

$$E_{Th} = \underline{\hspace{1cm}} V , R_{Th} = \underline{\hspace{1cm}} \Omega \circ$$





圖(1)

2. 若將圖(2)的諾頓等效電路轉換成戴維寧等效電路,則

$$E_{Th} = \underline{\hspace{1cm}} V , R_{Th} = \underline{\hspace{1cm}} \Omega \circ$$





圖(2)

3. 若將圖(3)的戴維寧等效電路轉換成諾頓等效電路,則

$$I_{\scriptscriptstyle N}=$$
 \_\_\_\_\_ mA ,  $R_{\scriptscriptstyle N}=$  \_\_\_\_  $\Omega$   $\circ$ 





圖(3)



4. 若將圖(4)的戴維寧等效電路轉換成諾頓等效電路,則



5. 若將圖(5)的諾頓等效電路轉換成戴維寧等效電路,則



## 4-5 最大功率轉換

由 4-2 節中所介紹的戴維寧定理可知:任何一個複雜的網路,都可以用一個等效電壓源串聯一個等效電阻取代。當我們考慮一複雜網路或一實際電壓源(含內電阻)在外接負載的情況時,其等效電路如圖 4-10 所示,電壓源輸出的功率必定有一部份消耗在電阻 R上,然後才輸送到負載電阻 R<sub>L</sub>上。在一般的情況下,我們希望負載能從網路或電壓源中獲得最大的功率;在本節中,我們便是來探討如何才能使負載獲得最大的功率轉移。



▲ 圖 4-10 戴維寧電路外接負 載的情況



由圖 4-10 所示電路可知,通過負載  $R_L$ 上的電流  $I = \frac{E}{R + R_L}$ ,所以負載所獲得的功率爲:

$$P_L = I^2 R_L = (\frac{E}{R + R_L})^2 R_L \tag{4-5-1}$$

由上式可以看出負載所獲得的功率與負載電阻有關。如果在E=10V、 $R=5\Omega$ 的情況下,我們改變負載電阻的大小,則經由表 4-1 的數值分析可以看出功率隨負載變化的情形。利用表 4-1 中的數據,我們可以繪出一個功率 $P_L$ 與負載 $R_L$ 的曲線圖,如圖 4-11 所示。由圖中看出,功率 $P_L$ 的曲線是一個二次曲線,而且有一個最大值。

 $R_L$  $P_{L}$  $P_{L}$  $R_L$  $1\Omega$ 2.778W  $6\Omega$ 4.959W  $2\Omega$ 4.082W  $7\Omega$ 4.861W  $3\Omega$ 4.688W 4.734W  $8\Omega$  $4\Omega$ 4.938W  $9\Omega$ 4.592W  $5\Omega$ 5.0 W  $10\Omega$ 4.444W

▼表4-1 負載所獲得功率與負載電阻的關係

 $\rightleftharpoons$ : E = 10V.  $R = 5\Omega$  °



 $\triangle$  圖 4-11 功率  $P_L$  與負載  $R_L$  的曲線圖 在負載  $R_L=5\Omega$  時,有最大功率  $P_{L_{\max}}=5$ W。

由表 4-1 及圖 4-11 得知:當負載  $R_{r} = R$ 時,其功率  $P_{r}$  達到最大值,即:

### Σ 重要公式

$$P_L = I^2 R_L = (\frac{E}{R + R_L})^2 R_L = \frac{E^2}{4R} = \frac{E^2}{4R_L} = P_{L\text{max}}$$
 (4-5-2)



有關上述公式的說明如下:

 對於實際電壓源(如圖 4-12 所示)而言,當負載電阻等於電源裝置的內電阻時,負載自電源獲得的功率最大,即當 R<sub>r</sub>=r時,R<sub>r</sub>可獲得最大功率爲:

$$P_{L \max} = (\frac{E}{r + R_L})^2 R_L = \frac{E^2}{4r} = \frac{E^2}{4R_L}$$

2. 對於複雜的網路(如圖 4-13 所示)而言,當負載電阻等於網路的戴維寧等效電阻時,負載自網路獲得的功率最大,即當  $R_L = R_{T_D}$ 時,  $R_L$ 可獲得最大功率為:

$$P_{L \max} = \left(\frac{E_{Th}}{R_{Th} + R_L}\right)^2 R_L = \frac{E_{Th}^2}{4R_{Th}} = \frac{E_{Th}^2}{4R_L}$$



▲圖 4-12 實際電壓源的最大功 率轉換



▲ 圖 4-13 複雜網路的最大功率 轉換



## 知識充電

能量的轉換效率:當實際電壓源提供負載獲得最大功率時,能量轉移的效率並非最大,此時的效率 η=50%(負載與內阻獲得相同功率),如右表所列(延伸表4-1的數據)。

此外,在負載小於電壓源內阻的情況下,不僅功率的轉換效率低,且在電壓源的內阻上會消耗大量的功率,可能使電壓源產生高熱,甚至燒毀。此種狀況即稱為過載(overload)。

| 負載 $R_L$  | 負載功率 $P_L$ | 內阻功率 $P_{loss}$ | 轉換效率η |
|-----------|------------|-----------------|-------|
| 1Ω        | 2.778 W    | 13.889 W        | 16.7% |
| 2Ω        | 4.082 W    | 10.204 W        | 28.6% |
| 3Ω        | 4.688 W    | 7.813 W         | 37.5% |
| $4\Omega$ | 4.938 W    | 6.173 W         | 44.4% |
| 5Ω        | 5.0 W      | 5.0 W           | 50.0% |
| 6Ω        | 4.959 W    | 4.132 W         | 54.5% |
| 7Ω        | 4.861 W    | 3.472 W         | 58.3% |
| 8Ω        | 4.734 W    | 2.959 W         | 61.5% |
| 9Ω        | 4.592 W    | 2.551 W         | 64.3% |
| 10Ω       | 4.444 W    | 2.222 W         | 66.7% |

$$\stackrel{ extbf{i}}{ extbf{i}}:$$
 轉換效率 $\eta=\frac{\text{負載功率}\,P_L}{\text{負載功率}\,P_L+$ 內阻功率 $P_{loss}} imes100\%$ 



→ 複雜網路的電源功率計算:欲求複雜網路中電源所提供的功率時,不可用戴維寧等效電路來計算,說明如下圖所示:



實際電源提供之功率: $P_i = EI_T = 12 \times 2 = 24 \text{ W}$ (正確)

戴維寧電路提供之功率: $P_i = E_{Th}I = 8 \times 1 = 8 \, \mathrm{W}$  (無法求得實際電源所提供之功率)



## 範例 4-14

如下圖所示電路,試求當負載電阻  $R_L$ 為多少時可以獲得最大的功率?並求最大功率為多少?



【解】本電路為一電阻串聯一個電壓源組成,當負載電阻為戴維寧電阻值時,負載電阻可以獲得最大輸出功率,即:

$$R_L = R = 25 \, \Omega$$

此時負載電阻可以獲得的最大輸出功率為:

$$P_{L\text{max}} = \frac{E^2}{4R} = \frac{(20\text{V})^2}{4 \times (25\Omega)} = 4\text{ W}$$

**馬上練習** 如右圖所示電路,設R為可變,則R中之最大功率為多少?

【答】
$$P_{L\text{max}} = 1000 \text{ W}$$
。







如下圖所示電路,試求當負載電阻  $R_L$ 為多少時可以獲得最大的功率?並求最大功率為多少?



【解】(1) 移去負載電阻  $R_L$ ,將電壓源短路、電流源斷路,如右圖所示,則:

$$R_{Th} = 20\Omega + 20\Omega + 10\Omega = 50\Omega$$
 當  $R_L = R_{Th} = 50\Omega$  時可得最大功  $\sim$ 



(2) 如下圖,利用重疊定理可得:



$$V'_{ab} = -20 \text{ V}$$



$$V''_{ab} = (-4A)(20\Omega) = -80 \text{ V}$$

$$E_{Th} = V'_{ab} + V''_{ab} = (-20\text{V}) + (-80\text{V}) = -100\text{ V}$$

(3) 如右圖,負載獲得最大功率為:

$$P_{L\text{max}} = \frac{E_{Th}^2}{4R_{Th}} = \frac{(-100\text{V})^2}{4(50\Omega)} = 50 \text{ W}$$



## 馬上練習

如右圖所示電路,試求當負載電阻  $R_L$ 可獲得最大的功率為多少?

【答】
$$P_{L_{\text{max}}} = 1.8 \text{ W}$$
 。





## 

- 1. 如圖(1)所示電路,試求當負載電阻  $R_L$ 為 \_\_\_\_\_\_  $\Omega$  時,可以獲得最大的功率為 \_\_\_\_\_\_ W。
- 2. 如圖(2)所示電路,試求當負載電阻  $R_L$ 為 \_\_\_\_\_\_  $\Omega$  時,可以獲得最大的功率為 \_\_\_\_\_\_ W。





- 3. 如圖(3)所示電路,如果欲使  $R_L$ 可獲得最大功率,則  $R_L$ 應為 \_\_\_\_\_\_  $\Omega$ 。
- 4. 如圖(4)所示電路,純電阻負載  $R_L$ 之最大消耗功率為 \_\_\_\_\_ W。





5. 如圖(5)所示電路,負載電阻  $R_L$ 的最大消耗功率為 \_\_\_\_\_  ${f W}$ 。





## 4-6 節點電壓法

節點電壓法(node voltage method)是分析網路各分路電流的一種簡便方法。節點是兩條或兩條以上電路分支的共同交點,節點電壓法選擇網路中的一個節點作爲電壓參考點,而其餘節點相對於參考點便有一相對電壓存在,利用歐姆定律寫出各分路電流的算式,再根據克希荷夫電流定律,便可列出各節點的電流方程式(N個節點可得出N-1個方程式),聯立解方程式後可求出各節點的電壓,並得出各分路的電流。( $\cdots$  : 分支亦稱分路或支路。)

實例解析:以節點電壓法分析圖 4-14 所示電路中流經各電阻的電流。



▲ 圖 4-14 節點電壓法示範電路圖







 ${f Step \, f 3}$  假定各節點分路電流的方向,並作標示 $(I_1 \ \ I_2 \ \ I_3)$ ;依電流方向標定各電阻端電壓之+-





Step 4 利用歐姆定律  $(I = \frac{V}{R})$  及電

位差公式寫出各分路電流的算式

註: 若
$$E_1$$
為 $\frac{-1}{+1}$  ,則 $I_1=\frac{V_{R1}}{R_1}=\frac{V_a+E_1}{R_1}$  若 $E_2$ 為 $\frac{-1}{+1}$  ,則 $I_2=\frac{V_{R2}}{R_2}=\frac{V_a+E_2}{R_2}$ 

Step  ${f 5}$  利用克希荷夫電流定律 (KCL) 寫出各節點的電流方程式  $(\Sigma I_{in} = \Sigma I_{out})$  。將各分路電流的算式 (如①②③式) 代入解方程式,求出各節點之電壓  $(如V_a)$  ,再將各節點電壓 代回各分路電流之算式,求出各分路電

$$I_1 = \frac{V_{R1}}{R_1} = \frac{V_a - E_1}{R_1}$$
 .....

$$I_2 = \frac{V_{R2}}{R_2} = \frac{V_a - E_2}{R_2}$$
 ..... ②

$$I_3 = \frac{V_{R3}}{R_3} = \frac{V_a - V_b}{R_3} = \frac{V_a}{R_3} \quad (\because V_b = 0) \dots \text{ }$$

$$:: I_1 + I_2 + I_3 = 0$$

$$\therefore \frac{V_a - E_1}{R_1} + \frac{V_a - E_2}{R_2} + \frac{V_a}{R_3} = 0 \quad ....$$

流之值

## 範例 4-16

如右圖所示電路,試利用節點電壓法求各分 路的電流?

- 【解】(1) 標示節點  $a \times b$ 的電壓 $V_a \times V_b$ , 選擇 b點為零電位,並假定各分路 電流的方向,如右下圖所示。
  - (2) 各分路電流的算式為:

$$I_1 = \frac{V_{2\Omega}}{R_{2\Omega}} = \frac{V_a - 2V}{2\Omega} \dots$$

$$I_2 = \frac{V_{1\Omega}}{R_{1\Omega}} = \frac{V_a - 6V}{1\Omega}$$
 ......2





$$I_3 = \frac{V_{4\Omega}}{R_{4\Omega}} = \frac{V_a - 0}{4\Omega} = \frac{V_a}{4\Omega} \dots$$
 (3)

(3) 根據克希荷夫電流定律,可得:

$$I_1 + I_2 + I_3 = 0 \implies \frac{V_a - 2V}{2\Omega} + \frac{V_a - 6V}{1\Omega} + \frac{V_a}{4\Omega} = 0$$

$$2(V_a - 2V) + 4(V_a - 6V) + V_a = 0$$
  $\therefore V_a = 4 V$ 

$$\therefore V_a = 4 \text{ V}$$

(4) 將 V , 帶入①②③式,可得:

$$I_1=rac{V_a-2V}{2\Omega}=rac{4V-2V}{2\Omega}=1\,\mathrm{A}$$
 
$$I_2=rac{V_a-6V}{1\Omega}=rac{4V-6V}{1\Omega}=-2\,\mathrm{A}\quad($$
負號表示電流方向與假設相反 $)$   $I_3=rac{V_a}{4\Omega}=rac{4V}{4\Omega}=1\,\mathrm{A}$ 

### 馬上練習 如右圖所示電路,試利用節點 電壓法求電流 I, 為多少?

【答】
$$I_1 = -4 A \circ$$





## 範例 4-17

如右圖所示電路,試利用節點電壓法求各分 路的電流?

- 【解】(1) 標示節點 $a \times b$ 的電壓 $V_a \times V_b$ ,選 擇b點為零電位,並假定各分路電 流的方向,如右下圖所示。
  - (2) 各分路電流的算式為:

$$I_{1} = \frac{V_{2\Omega}}{R_{2\Omega}} = \frac{V_{a} - 3V}{2\Omega} \dots 1$$

$$I_{2} = \frac{V_{1\Omega}}{R_{1\Omega}} = \frac{V_{a} - (-5V)}{1\Omega} = \frac{V_{a} + 5V}{1\Omega} \dots 2$$

$$I_{3} = \frac{V_{4\Omega}}{R_{4\Omega}} = \frac{V_{a} - 0}{4\Omega} = \frac{V_{a}}{4\Omega} \dots 3$$





(3) 根據克希荷夫電流定律,可得:

$$I_1 + I_2 + I_3 = 0 \implies \frac{V_a - 2V}{2\Omega} + \frac{V_a + 5V}{1\Omega} + \frac{V_a}{4\Omega} = 0$$
  
 $2(V_a - 3V) + 4(V_a + 5V) + V_a = 0 \qquad \therefore V_a = -2 \text{ V}$ 

(4) 將 V<sub>2</sub> 帶入①②③式,可得:

$$I_1 = \frac{V_a - 3V}{2} = \frac{-2V - 3V}{2} = -2.5 \,\text{A}$$
 (負號表示電流方向與假設相反) 
$$I_2 = \frac{V_a + 5V}{1\Omega} = \frac{-2V + 5V}{1\Omega} = 3 \,\text{A}$$

$$I_3 = \frac{V_a}{4\Omega} = \frac{-2V}{4\Omega} = -0.5 \text{ A}$$

( 負號表示電流方向與假設相反 )

**馬上練習** 如右圖所示電路,試利用節點電 壓法求電流 *I*, 及 *I*, 為多少?

【答】
$$I_1 = 2A$$
,  $I_2 = -1A$ 。





# 範例 4-18

如右圖所示電路,試利用節點電壓法求各分 路的電流?

- 【解】(1) 標示各節點的電壓 $V_a \setminus V_b$ ,選擇 b點為零電位,並假定各分路電流 的方向,如右下圖所示。
  - (2) 各分路電流的算式為:

$$I_1 = \frac{V_a - 8V}{4\Omega}$$
 .....

$$I_2 = -1 \text{ A} \dots 2$$

(與電流源方向相反)

$$I_3 = \frac{V_a - 0}{2\Omega} = \frac{V_a}{2\Omega} \dots (3)$$







(3) 根據克希荷夫電流定律,可得:

$$I_1 + I_2 + I_3 = 0 \implies \frac{V_a - 8V}{4\Omega} + (-1A) + \frac{V_a}{2\Omega} = 0$$
  

$$\therefore V_a = 4 \text{ V}$$

(4) 
$$I_1 = \frac{V_a - 8V}{4\Omega} = \frac{4V - 8V}{4\Omega} = -1 \text{ A}$$

$$I_2 = -1 \text{ A}$$

$$I_3 = \frac{V_a}{2\Omega} = \frac{4V}{2\Omega} = 2 \text{ A}$$

( 負號表示電流方向與假設相反 )

(負號表示電流方向與假設相反)

# **馬上練習** 如右圖所示電路,試利用節點 電壓法求電流 *I*<sub>3</sub> 為多少?

【答】
$$I_3 = 10 \,\mathrm{A}$$
。



## 範例 4-19

如右圖所示電路,試利用節點電壓法求各分 路的電流?

【解】(1) 標示各節點的電壓 $V_a \times V_b \times V_c$ , 選擇c點為零電位,並假定各分路 電流的方向,如右下圖所示。



(2) 
$$I_1 + I_2 + I_3 = 0$$
  

$$\Rightarrow \frac{V_a - 18V}{2\Omega} + \frac{V_a - 0}{2\Omega} + \frac{V_a - V_b}{2\Omega} = 0$$

$$\Rightarrow 3V_a - V_b = 18V$$

$$I_3 + I_4 + I_5 = 0$$

$$\Rightarrow \frac{V_a - V_b}{2\Omega} + \frac{0 - V_b}{2\Omega} + 2A = 0$$

$$\Rightarrow V_a - 2V_b = -4V$$
化簡後得 
$$\begin{cases} 3V_a - V_b = 18V \cdots & \text{①} \\ V_a - 2V_b = -4V \cdots & \text{②} \end{cases}$$





解聯立方程式後得:  $V_a = 8 \, \text{V}$  ,  $V_b = 6 \, \text{V}$ 

(3) 
$$I_1 = \frac{V_a - 18V}{2\Omega} = \frac{8V - 18V}{2\Omega} = -5 \,\mathrm{A}$$
 (負號表示電流方向與假設相反) 
$$I_2 = \frac{V_a - 0}{2\Omega} = \frac{8V - 0}{2\Omega} = 4 \,\mathrm{A}$$
 
$$I_3 = \frac{V_a - V_b}{2\Omega} = \frac{8V - 6V}{2\Omega} = 1 \,\mathrm{A}$$
 
$$I_4 = \frac{0 - V_b}{2\Omega} = \frac{0 - 6V}{2\Omega} = -3 \,\mathrm{A}$$
 (負號表示電流方向與假設相反) 
$$I_5 = 2 \,\mathrm{A}$$

馬上練習 承上題所示電路,若 E=10V 、 I=1A 、  $R_1=10$ Ω 、  $R_2=5$ Ω 、  $R_3=20$ Ω 、  $R_4=10$ Ω ,試求電阻  $R_3$ 兩端的電壓為多少?

【答】
$$V_{R3} = 4 \text{ V}$$
 。



# 範例 4-20

如右圖所示電路,試利用節點電壓法求各分 路的電流?

【解】(1) 標示各節點的電壓 $V_a \times V_b \times V_c \times V_d$ ,選擇d點為零電位,並假定各分路電流的方向,如右下圖所示。



(2) 各分路電流的算式為:

$$I_1 = \frac{V_b - V_a}{R_{2\Omega}} = \frac{V_b - 24V}{2\Omega}$$
 .....

$$I_2 = \frac{V_b - V_c}{R_{3\Omega}} = \frac{V_b - 12V}{3\Omega}$$
 ..... (2)

$$I_3 = \frac{V_b - 0}{R_{2\Omega}} = \frac{V_b}{2\Omega} \dots 3$$

$$I_4 = \frac{V_a - V_c}{R_{8\Omega}} = \frac{24 \text{V} - 12 \text{V}}{8\Omega} = 1.5 \text{ A} \dots$$





(3) 根據克希荷夫電流定律,可得:

$$I_1 + I_2 + I_3 = 0 \implies \frac{V_b - 24V}{2\Omega} + \frac{V_b - 12V}{3\Omega} + \frac{V_b}{2\Omega} = 0$$
  
 $3(V_b - 24V) + 2(V_b - 12V) + 3V_b = 0 \qquad \therefore V_b = 12 \text{ V}$ 

(4) 將 V, 帶入①②③式,可得:

$$I_1 = \frac{V_b - 24V}{2\Omega} = \frac{12V - 24V}{2\Omega} = -6 \, \text{A}$$
 (負號表示電流方向與假設相反) 
$$I_2 = \frac{V_b - 12V}{3\Omega} = \frac{12V - 12V}{3\Omega} = 0 \, \text{A}$$
 
$$I_3 = \frac{V_b}{2\Omega} = \frac{12V}{2\Omega} = 6 \, \text{A}$$

**馬上練習** 如右圖所示電路,試利用節點電 壓法求電流/為多少?



# 

- 1. 如圖(1)所示電路,試求流過  $6\Omega$  電阻器的電流為 \_\_\_\_\_\_ A ,  $6\Omega$  電阻器所消耗的功率為 \_\_\_\_\_ W 。
- 2. 如圖(2)所示電路,試求分路電流  $I_1 =$  \_\_\_\_\_ A,  $I_2 =$  \_\_\_\_\_ A,  $I_3 =$  \_\_\_\_\_ A。







- 3. 如圖(3)所示電路,試求分路電流  $I_1 =$  \_\_\_\_\_ A,  $I_2 =$  \_\_\_\_\_ A,  $I_3 =$  \_\_\_\_\_ A。
- 4. 如圖(4)所示電路,若 I=0,則 R 為  $\Omega$ 。



5. 如圖(5)所示電路,試求I = A。



# 4-7 迴路電流法

在網路分析中,**迴路電流法**(loop current method)是一種常用的分析工具。我們選定網路中的迴路,根據歐姆定律及克希荷夫電壓定律,可列出相關迴路的電壓方程式,將方程式聯立,最後解出相關的分路電流值。迴路電流法是一種較簡單的網路分析,如果迴路的數目在三個以下,迴路電流法不失爲一種方便好用的方法。



實例解析:以迴路電流法分析圖 4-15 所示電路中流經各電阻的電流。



#### ▲ 圖 4-15 迴路電流法示範電路圖



Step 2 根據迴路電流的方向來決定各電阻端電壓之+-



 $\mathbf{S}_{\mathsf{tep}}$  利用歐姆定律(V = IR )及 克希荷夫電壓定律( $\mathsf{KVL}$ )寫出各迴 路的電壓方程式( $\Sigma(E\mathcal{D}V) = 0$ )

註:

1. 
$$a \xrightarrow{+R} b$$

由 $a \subseteq b (+ \rightarrow -)$ :電壓為-IR(電壓降) 由 $b \subseteq a (- \rightarrow +)$ :電壓為+IR(電壓昇)

由  $c \subseteq d$  (  $+ \rightarrow -$  ): 電壓為 -E (電壓降) 由  $d \subseteq c$  (  $- \rightarrow +$  ): 電壓為 +E (電壓昇)

(1)於 abcfa 迴路中:

$$E_1 - I_A R_1 - (I_A - I_B) R_3 = 0$$
  

$$\Rightarrow (R_1 + R_3) I_A - R_3 I_B = E_1 \dots 1$$

(2)於fcdef 迴路中:

$$\begin{split} -(I_B - I_A)R_3 - I_BR_2 - E_2 &= 0 \\ \Rightarrow R_3I_A - (R_2 + R_3)I_B &= E_2 \dots \dots \text{(2)} \end{split}$$

註: 若有相鄰迴路共用電阻時,則須考慮 相鄰迴路電流的效應(同方向相加, 反方向相減)。



Step 4 聯立解各迴路之電壓方程式,求出各迴路之電流(如  $I_A$ 、  $I_B$ ),再代入各分路電流之算式(如 3 4 5 式),求出各分路電流之值(可利用行列式法或一般代數的方法解聯立方程式)

註1: 若所得電流數值為負時,則表示電流 實際的方向與設定的方向相反。

註2: 利用行列式解聯立方程式的方法請參 見附錄 D。

迴路的方向是自由選定,我們也可以讓迴路電流一起流入共同電阻  $R_3$ 中,如圖 4-16 所示,其計算結果也會一致,請同學自行驗證看看,或參見範例 4-21 之解。



▲圖4-16 選擇不同迴路的分析法

# 範例 4-21

如下圖所示電路,試利用迴路電流法求各分路的電流?





【解】(1) 假定迴路電流的方向為順時鐘方向,如右圖所示。

(2) 列出迴路的電壓方程式為:

於 fabcf 迴路中:

$$40V - I_{A}(10\Omega) - I_{A}(30\Omega) - (I_{A} - I_{B})(10\Omega) = 0$$

於 efcde 迴路中:

$$40V - (I_R - I_A)(10\Omega) - I_R(20\Omega) - I_R(20\Omega) = 0$$

(3) 整理後得:

$$(10+30+10)I_A - 10I_B = 40 \dots$$

$$10I_A - (10 + 20 + 20)I_B = -40 \dots$$

解①②聯立方程式後得:

$$I_A = 1 A$$
  $I_B = 1 A$ 

$$I_1 = I_A = 1 A$$
  $I_2 = I_B - I_A = 0 A$   $I_3 = -I_B = -1 A$ 

## 【另解】

- (1) 假設迴路電流的方向如右圖所示。
- (2) 列出迴路的電壓方程式為:

於 fabcf 迴路中:

$$40 {\rm V} - I_{\scriptscriptstyle C}(10 \Omega) - I_{\scriptscriptstyle C}(30 \Omega) - (I_{\scriptscriptstyle C} + I_{\scriptscriptstyle D})(10 \Omega) \; = \; 0$$

於 efcde 迴路中:

$$40 V + (I_D + I_C)(10\Omega) + I_D(20\Omega) + I_D(20\Omega) = 0$$

(3) 整理後得:

$$(10 + 30 + 10)I_C + 10I_D = 40 \dots$$

$$10I_C + (10 + 20 + 20)I_D = -40$$
 ......

解③④聯立方程式後得:

$$I_C = 1 \text{ A}$$
  $I_D = -1 \text{ A}$ 

$$I_1 = I_C = 1 \text{ A}$$
  $I_2 = -(I_C + I_D) = 0 \text{ A}$   $I_3 = I_D = -1 \text{ A}$ 



【答】
$$I = 2 A \circ$$



40V

 $20\Omega$ 





# 範例 4-22

如右圖所示電路,試利用迴路電流法求各分 路的電流?

- 【解】(1) 假定迴路電流的方向為順時鐘方 向,如右下圖所示。
  - (2) 列出迴路的電壓方程式為:

$$10V - I_A(2\Omega) - (I_A - I_B)(3\Omega) = 0$$
  
 $I_B = 5 A$ 

(3) 化簡後得: $I_A = 5 A$ , $I_B = 5 A$  $\therefore I_1 = I_A = 5 A$ 

$$I_2 = I_B = 5 \text{ A}$$
  
 $I_3 = I_A - I_B = 5 \text{A} - 5 \text{A} = 0 \text{ A}$ 





**馬上練習** 承上題所示電路,若 E=9V 、 I=6A 、  $R_1=6\Omega$  、  $R_2=2\Omega$  、  $R_3=3\Omega$  ,試利用迴路電流法求電流  $I_3$  為多少?

【答】
$$I_3 = -3 \,\mathrm{A} \,\circ$$



# 範例 4-23

如下圖所示電路,試利用迴路電流法求各分路的電流?





- 【解】(1) 選定如右圖所示的三個迴路,並假定迴路電流的方向為順時鐘方向。
  - (2) 列出迴路的電壓方程式為:

於 acdefa 迴路中:

$$30V - (I_A - I_B)(8\Omega) - (I_A - I_C)(2\Omega) = 0$$

於 abca 迴路中:

$$-I_{B}(12\Omega) - (I_{B} - I_{C})(10\Omega) - (I_{B} - I_{A})(8\Omega) = 0$$

於 cbdc 迴路中:

$$-(I_C - I_B)(10\Omega) - I_C(3\Omega) - (I_C - I_A)(2\Omega) = 0$$

化簡後得:

(3) 將①②③式聯立,利用行列式求解(參見附錄 D),得各迴路電流為:

$$\frac{1}{1000} \Delta = \begin{vmatrix} 5 & -4 & -1 \\ 4 & -15 & 5 \\ 2 & 10 & -15 \end{vmatrix} = 525 \qquad \Delta_1 = \begin{vmatrix} 15 & -4 & -1 \\ 0 & -15 & 5 \\ 0 & 10 & -15 \end{vmatrix} = 2625$$

$$\Delta_2 = \begin{vmatrix} 5 & 15 & -1 \\ 4 & 0 & 5 \\ 2 & 0 & -15 \end{vmatrix} = 1050 \qquad \Delta_3 = \begin{vmatrix} 5 & -4 & 15 \\ 4 & -15 & 0 \\ 2 & 10 & 0 \end{vmatrix} = 1050$$

$$I_A = \frac{\Delta_1}{\Delta} = \frac{2625}{525} = 5 \text{ A}$$

$$I_B = \frac{\Delta_2}{\Delta} = \frac{1050}{525} = 2 \text{ A}$$

$$I_C = \frac{\Delta_3}{\Delta} = \frac{1050}{525} = 2 \text{ A}$$

(4) 各分路電流為:

$$I_1 = I_B = 2 A$$
  $I_2 = I_A - I_B = 5 A - 2 A = 3 A$   
 $I_3 = I_B - I_C = 2 A - 2 A = 0 A$   $I_4 = I_C = 2 A$   
 $I_5 = I_A - I_C = 5 A - 2 A = 3 A$ 



# 

- 1. 如圖(1)所示電路,則  $I_1 =$  \_\_\_\_\_A,  $I_2 =$  \_\_\_\_\_A。
- 2. 如圖(2)所示電路,試求各迴路之電壓方程式為何?

 $I_1$ 之迴路方程式:\_\_\_\_\_。

*I*<sub>2</sub>之迴路方程式:\_\_\_\_\_。





- 3. 如圖(3)所示電路,試以迴路電流法求電流  $I = ____ A$ 。
- 4. 如圖(4)所示電路,試求各網目之電壓方程式為何?

*I*<sub>1</sub>之迴路方程式:\_\_\_\_\_。

*I*。之迴路方程式: 。

*I*<sub>3</sub>之迴路方程式:\_\_\_\_\_。

註: 迴路中不含其他迴路者稱為網目(mesh)。



5. 如圖(5)所示電路,以迴路電流法所列出之方程式如下:

$$a_{11}I_1 + a_{12}I_2 + a_{13}I_3 = 15$$

$$a_{21}I_1 + a_{22}I_2 + a_{23}I_3 = 10$$

$$a_{31}I_1 + a_{32}I_2 + a_{33}I_3 = -10$$
,

則 
$$a_{11} + a_{22} + a_{33} =$$
\_\_\_\_\_  $\circ$ 









# 重點摘要

#### 1. 重疊原理的分析步驟:

- (1) 使網路只保留其中一個電源,而將其它的電源移開。(移開電壓源時, 將兩端視為短路:移開電流源時,將兩端視為斷路)
- (2) 分別書出單一電源作用於電路時之電路圖。(若網路中有兩個電源,就 須書出兩個單一電源的電路圖)
- (3) 以串並聯方式解各單一電源之電路圖,並將得到的電壓或電流值重疊 (相加減)即為所求。(電流方向相同者相加,相反者相減;電壓極性 相同者相加,相反者相減)

## 2. 戴維寧定理:

對於任何複雜的線性網路系統,都可以用單一的等效電壓源 $E_n$ 串聯一個等 效電阻器  $R_{T_n}$  來表示。

3. 戴維寧等效電路外接負載: 將求得的戴維寧等效電阻  $R_{T_0}$  與等效電壓  $E_{T_0}$ 串聯後,外接一個負載 $R_{I}$ ,利用歐姆定律求 得通過負載的電流I,與電壓V,分別為:



$$I_L = \frac{E_{Th}}{R_{Th} + R_L}$$

$$I_{L} = \frac{E_{Th}}{R_{Th} + R_{L}}$$
  $V_{L} = \frac{R_{L}}{R_{Th} + R_{L}} E_{Th}$ 

## 4. 諾頓定理:

在任何一個包含電源的網路系統,其中任意兩端點的網路,都可以用單一 的等效電流源  $I_N$  並聯一個等效電阻器  $R_N$  來取代。

5. 諾頓等效電路外接負載:

將求得的諾頓等效電阻  $R_N$  與等效電流  $I_N$  並聯 後,外接一個負載 $R_L$ ,利用歐姆定律求得通 過負載的電流 $I_L$ 與電壓 $V_L$ 分別為:





# 第4章 直流迴路



6. 戴維寧等效電路與諾頓等效電路的轉換: 戴維寧等效電阻  $R_{TD}$ 與諾頓等效電阻  $R_{ND}$ 完全相同:

$$R_{Th} = R_N$$

戴維寧等效電壓為:  $E_{Th} = I_N R_N$ 

諾頓等效電流為:  $I_N = \frac{E_{Th}}{R_{Th}}$ 

7. 最大功率轉移  $P_{L_{\max}}$ :

戴維寧等效電路中,當負載  $R_I = R_{T_B}$  時,功率  $P_I$  有

最大值為: 
$$P_{L \max} = \frac{E_{Th}^2}{4R_{Th}}$$



- ※8. 欲求複雜網路中電源所提供的功率時,不可用戴維 寧等效電路或諾頓等效電路來計算。
  - 9. 節點電壓法的分析步驟:
    - (1) 決定網路中的節點。
    - (2) 標示各節點的電壓,並選擇一個參考點的電壓為零。
    - (3) 假定各節點分路電流的方向並作標示;依電流方向標定各電阻端電壓之
    - (4) 利用歐姆定律與克希荷夫電流定律寫出各節點的電流方程式。
    - (5) 聯立各節點之電流方程式,解出各節點電壓值,並利用各節點電壓的相 對關係,求出各分路的電流值。
  - 10. 迴路電流法的分析步驟:
    - (1) 於網路中選定迴路,並設定迴路電流的方向。(一般習慣以順時鐘方向為迴路電流的方向)
    - (2) 利用歐姆定律與克希荷夫電壓定律寫出各迴路的電壓方程式。(若有相 鄰迴路共用電阻時,則須考慮相鄰迴路電流的效應:同方向相加,反方 向相減)
    - (3) 聯立各迴路之電壓方程式,解出每個迴路電流,並依迴路電流與各分路 電流的關係,求出各分路的電流值。





# 學後評量

#### 一、選擇題

- ( )1. 應用戴維寧定理求等效電阻時 (A)所有獨立電壓源短路,所有獨立電流 源開路 (B)所有獨立電壓源開路,所有獨立電流源短路 (C)所有電源均 短路 (D)所有電源均開路
- ( )2. 下列關於基本電路定理的敘述,何者正確?
  - (A)在應用重疊定理時,移去的電壓源兩端以開路取代
  - (B) 根據戴維寧定理,可將一複雜的網路以一個等效電壓源及一個等效電 阻串聯來取代
  - (C)節點電壓法是應用克希荷夫電壓定律,求出每個節點電壓
  - (D)迴路電流法是應用克希荷夫電流定律,求出每個迴路電流
- ( )3. 如圖(1)的電路中,可變電阻器  $R_L$ 調整範圍是  $30\mathrm{k}\Omega$ 到  $60\mathrm{k}\Omega$ ,當可變電阻調整到跨於  $R_L$ 兩端的功率為最大值時,電流 I 等於多少? (A)  $1\mathrm{m}A$  (B)1.25 $\mathrm{m}A$  (C)1.42 $\mathrm{m}A$  (D)2.5 $\mathrm{m}A$
- ( )4. 如圖(2)電路中之戴維寧等效電阻  $R_{Th}$  與戴維寧等效電壓  $E_{Th}$  各為多少? (A)  $8k\Omega \times 10V$  (B)  $8k\Omega \times 5V$  (C)  $4k\Omega \times 10V$  (D)  $4k\Omega \times 5V$





( )5. 如圖(3)所示電路,求 I = ? (A)5.5mA (B)7.5mA (C)10mA (D) 12.5mA





- ( )6. 如圖(4)所示電路, $a \times b$ 兩端之戴維寧等效電壓為多少? (A)-12V (B) -1V (C)5V (D)12V
- ( )7. 如圖(5)所示電路, $a \times b$ 兩端點間的戴維寧等效電阻為 (A)1R (B)2R (C)3R (D)4R





- ( )8. 如圖(6)所示電路,為使負載  $R_L$ 可吸收最大功率,則負載  $R_L$ 的電阻值為 (A)1 $\Omega$  (B)2 $\Omega$  (C)3 $\Omega$  (D)4 $\Omega$
- ( )9. 如圖(6)所示電路,負載  $R_L$  可吸收的最大功率為  $(A)\frac{25}{2}W$   $(B)\frac{25}{4}W$  (C)  $\frac{25}{6}W$   $(D)\frac{25}{8}W$
- ( )10. 如圖(7)所示,電路中央之  $2\Omega$  電阻所消耗的功率為 (A)12W (B)14W (C) 18W (D)36W





- ( )11. 如圖(8)所示之電路,電流源所供給之功率為多少瓦特? (A)12 (B)24 (C) 48 (D)72
- ( )12. 如圖(9)所示經由 R<sub>1</sub>的電流為 (A)0.8A (B)2.4A (C)3.2A (D)5.6A





( )13. 如圖(10)所示電路,則電壓 E的值為 (A)23V (B)42V (C)73V (D)77V





- ( )14. 用節點電壓法分析電路,是依據 (A)戴維寧定理 (B)諾頓定理 (C)克希 荷夫電壓定律 (D)克希荷夫電流定律
- ( )15. 某甲以節點電壓法解圖(11)之直流電路時,列出之方程式如下:

(A) 
$$I_1 = -10$$
A (B)  $I_2 = 1$ A (C)  $I_3 = 10$ A (D)  $I_1 + I_2 + I_3 = -1$ A

- ( )16. 如圖(12)所示,其流經 2 $\Omega$  電阻之電流為 (A)0A (B) $\frac{1}{3}$ A (C) $\frac{2}{3}$ A (D)1A
- ※( )17. 某信號傳輸電路如圖(13)所示,其輸入電壓( $V_1$ 及 $V_2$ )與輸出電壓( $V_o$ )關係表示為 $V_o=aV_1+bV_2$ ,則: (A) a=1/8 (B) b=1/4 (C) a+b=3/4 (D) a+b=3/8





%( )18. 如圖(14)所示,將電壓源電路變換為電流源電路時,其電流I 應為 (A) 24A (B)12A (C)8A (D)3A





- (A) (B) (B)
- ※( )20. 圖(15)所示兩電路中之電源為等效電源,則下列敘述何者正確? (A)電壓  $V_{ab} = V'_{ab}$  (B)電流 I = I' (C)電阻 R = R' (D)電阻  $R_L$ 消耗之功率一定相等 (E)電阻 R 與 R'消耗之功率一定相等 (複選 )



### 二、計算題

- 1. 如圖(16)電路,電流I為多少安培?
- 2. 如圖(17)之直流電路,求其中電流I為多少?



- 3. 如圖(18)所示,求 $6\Omega$ 電阻所消耗的功率為多少?
- 4. 如圖(19)所示電路,試將電路化成戴維寧等效電路。







- 5. 如圖(20)所示電路,試將電路化成諾頓等效電路。
- 6. 如圖(21)所示電路,試求  $a \times b$  兩端點間的戴維寧等效電壓及等效電阻各為多少?



- 7. 如圖(22)所示電路,試求電路的戴維寧等效電壓為多少伏特?
- 8. 如圖(23)所示電路,將電路化成諾頓等效電路,試求諾頓等效電流為多少?





- 9. 如圖(24)所示電路, $a \times b$ 兩端點間的諾頓等效電阻與諾頓等效電流分別為多少?
- 10. 如圖(25)所示電路, $a \times b$ 兩端點間的諾頓等效電流及等效電阻分別為多少?







- 11. 如圖(26)所示電路,如果電阻 R可以獲得最大功率輸出,則 R電阻值為多少?電阻 R獲得的最大功率為多少?
- 12. 有一內含直流電源及純電阻之兩端點電路,已知兩端點 $a \times b$ 間之開路電壓 $V_{ab} = 30V$ ;當 $a \times b$ 兩端點接至一 $20\Omega$ 之電阻,此時電壓 $V_{ab} = 20V$ ;則此電路之 $a \times b$ 兩端需要連接多大之電阻方能得到最大功率輸出?此電路最大之功率輸出為多少?



- 13. 如圖(27)所示電路,求電阻 $R_L$ 可獲得最大功率時的電阻值?
- 14. 如圖(28)所示電路,其中 $2\Omega$ 電阻之消耗功率為多少





15. 如圖(29)所示電路,求流經  $2\Omega$  電阻的電流 I 為多少?



%16. 如圖(30)所示之等效電路中,試求:(1)電流I=?(2)電導G=?



- %17. 有 24 只電池,以 6 只串聯成一組,再以此 4 組並聯。若每一電池之電動勢為 1.5 V ,內電阻為 0.1  $\Omega$  ,試求此一電池組之總電動勢與總內電阻為多少?
- %18. 有 2 個電動勢為 14V 、內電阻為  $4\Omega$  的電池。試求:
  - (1) 若 2 個電池串聯後接  $12\Omega$  電阻,則流過  $12\Omega$  之電流為多少安培?
  - (2) 若 2 個電池並聯後接  $12\Omega$  電阻,則流過  $12\Omega$  之電流為多少安培?





- % 19. 如圖(31)所示電路,試求流過  $2\Omega$  電阻器的電流為若干?
- %20. 如圖(32)所示電路,試求電路中電流I為多少?



- % 21. 如圖(33)所示電路,試求在  $R_2$ 上所產生之壓降為多少?
- %22. 如圖(34)之直流電路,試求其中電流 $I_1 + I_2$ 為多少?



- $\times 23.$  如圖(35)之直流電路,試求其中 12V 電源供給之電功率 P 為多少?
- % 24. 如圖(36)所示電路,如果要使電阻 R 獲得最大功率輸出,試求電阻 R 值為若干?並求電阻 R 所得的最大功率為若干?



