Машинное обучение Практические задания №5

Задача 1. Дан набор значений [2,4,10,12,3,20,30,11,25]. Предположим, что количество кластеров k=3, и выбраны начальные средние значения $m_1=2$, $m_2=4$, $m_3=6$. Покажите, какие кластеры будут сформированы после первой итерации алгоритма k-средних, и рассчитайте новые значения центров кластеров для следующей итерации.

Решение. Рассчитаем расстояние каждой точки данных до начальных значений.

	2	$\mid 4 \mid$	6	cluster
2	0	2	4	2
4	2	0	2	4
10	8	6	4	6
12	10	8	6	6
3	1	1	3	2
20	18	16	14	6
30	28	26	24	6
11	9	7	5	6
25	23	21	19	6

Получены кластеры данных, проведем расчет новых центров.

Cluster	Data	Mean
C_1	2, 3	2.5
C_2	4	4
C_3	10, 12, 20, 30, 11, 25	18

Задача 2. Дан набор точек x и вероятности их принадлежности к кластерам C_1 и C_2

x	$P(C_1 x)$	$P(C_2 x)$
2	0.9	0.1
3	0.8	0.1
7	0.3	0.7
9	0.1	0.9
2	0.9	0.1
1	0.8	0.2

- А. Найдите оценку максимального правдоподобия для средних μ_1 μ_2 .
- В. Предположим, что $\mu_1 = 2$, $\mu_2 = 7$ и $\sigma_1 = \sigma_2 = 1$. Найдите вероятности принадлежности точки x = 5 к кластерам C_1 и C_2 . Априорные вероятности кажедого кластера $P(C_1) = P(C_2) = 0.5$ и P(x = 5) = 0.029.

Решение.

A. μ_i - средневзвешенное всех точек:

$$\mu_i = \frac{\sum_{j=1}^{n} w_{ij} x_j}{\sum_{j=1}^{n} w_{ij}}$$

$$\mu_1 = 2.58, \, \mu_2 = 6.62$$

В. Вероятность нахождения точки в кластере:

$$P(C_i|x_j) = \frac{f_i(x_j) \cdot P(C_i)}{\sum_{a=1}^k f_a(x_j) \cdot P(C_a)}$$

$$f_i(x) = f(x_j|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} exp(-\frac{(x-\mu_i)^2}{2\sigma_i^2})$$
 >>> f = lambda x, mean, std: np.exp(-(x-mean)**2/(2*std**2))/(np.sqrt(2*np.pi)*std) >>> pc1 = f(5, 2, 1) * 0.5 >>> pc2 = f(5, 7, 1) * 0.5 >>> pc1 / (pc1+pc2) 0.07585818002124355 >>> pc2 / (pc1+pc2)

$$P(C_1|5) = 0.076, P(C_2|5) = 0.924$$

0.9241418199787564

Задача 3. Даны категориальные данные размерности:

Point	X_1	X_2	X_3	X_4	X_5
x_1	1	0	1	1	0
x_2	1	1	0	1	0
x_3	0	0	1	1	0
x_4	0	1	0	1	0
x_5	1	0	1	0	1
x_6	0	1	1	0	0

Близость двух наблюдений определяется через количество совпадений и несовпадений значений признаков. Допустим, что n_{11} количество признаков одновременно равных 1 для наблюдений x_i и x_j , и n_{10} количество признаков равных 1 для наблюдения x_i и в то же время равных 0 для наблюдений x_j . По аналогии определяются значения для n_{01} и n_{00} :

	x_j				
	1 0				
r.	1	n_{11}	n_{10}		
x_i	0	n_{01}	n_{00}		

Определим следующие метрики:

• Коэффициент простого совпадения

$$SMC(x_i, x_j) = \frac{n_{11} + n_{00}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

• Коэффициент Жаккара

$$JC(x_i, x_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}$$

• Коэффициент Рассела и Рао

$$RC(x_i, x_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

 Π остройте дендограммы полученные после иерархической кластеризации при следующих параметрах:

- Метод одиночной связи с метрикой RC
- Метод полной связи с метрикой SMC
- ullet Невзвешенный центройдный метод c метрикой JC

Решение.

• Составим таблицу расстояний метрики RC

	x_1	x_2	x_3	x_4	x_5
x_2	0.4				
x_3	0.4	0.2			
x_4	0.2	0.4	0.2		
x_5	0.4	0.2	0.2	0.0	
x_6	0.2	0.2	0.2	0.2	0.2

Построим дендограмму методом одиночной связи

• Составим таблицу расстояний метрики SMC:

	x_1	x_2	x_3	x_4	x_5
x_2	0.6				
x_3	0.8	0.4			
x_4	0.4	0.8	0.6		
x_5	0.6	0.2	$0.6 \\ 0.4 \\ 0.6$	0.0	
x_6	0.4	0.4	0.6	0.6	0.4

Построим дендограмму методом полной связи:

• Составим таблицу расстояний метрики ЈС

	x_1	x_2	x_3	x_4	x_5
	0.50				
x_3	0.67	0.25			
x_4	0.25	0.67	0.33		
x_5	0.50	0.20	0.25	0.0	
x_6	$ \begin{array}{ c c c c c } \hline 0.25 \\ 0.50 \\ 0.25 \\ \end{array} $	0.25	0.33	0.33	0.25

Построим дендограмму методом полной связи:

Для указанных комбинаций метрики и метода определения расстояния между кластерами, разбиение на классы одинаково. Различаются только итоговые расстояния между точками и кластерами.