802.11 with Multiple Antennas for Dummies

•••

Daniel Halperin*, Wenjun Hu*, Anmol Sheth□, and David Wetherall□ (*University of Washington and □Intel Labs Seattle)

SIGCOMM '10

Date 28 Apr 2025 Wonseok

Table of Contents

- Introduction
- Single Antenna
- Multi Antenna
- MIMO
- Appendix

Wireless Channels

- Limited Capacity
 - The max performance is determined by <u>Shannon's Limit</u>
 - C: Capacity (bit/sec/Hz)
 - B: Bandwidth (20 Mhz in 802.11a/g)
 - S/N: Signal to Noise Ratio in power
 - Doubling of signal power yields in + 1 bit/sec/Hz
 - → The key for speed had lied in **SNR**
- Attenuation (Weakening)
 - Slow fading
 - Gradual fluctuations of received power over long periods of time
 - ex) path loss, shadowing
 - Fast fading
 - Large swings in received power over relatively short periods
 - ex) multi-path, doppler effect

$$C = B \log_2 \left(1 + \frac{S}{N}\right)$$

Attenuation

- Multi-Path
 - Multi-path effects depend on the phases of signals
 - Some unlucky frequencies in 20 MHz may be wiped out
 - → Frequency Selective
 - Independent for locations separated by half a wavelength
 - Half a wavelength = 180 degrees of shift = 6cm for 2.4Ghz
 - Ref. Clarke's fading model

- Slow fading + fast fading
- Signal fluctuates in effect of multipath and doppler

- Orthogonal Frequency Division Modulation
 - 20 Mhz into 64 subcarriers
 - 48 subcarriers for data transfer
 - 4 subcarriers for pilot tones
 - 12 subcarriers for guard (unused)
 - Subcarriers are orthogonally divided in frequency domain
 - All other subcarriers do not contribute to the carrier's waveform (amplitude)
 - OFDM benefits from frequency, time and spatial diversity
 - *Diversity*: spreading of information with redundancy
- Quadrature Amplitude Modulation (QAM)
 - M-ary bit modulation scheme in IQ* plane
 - ex) 16-QAM(4 bits), 32-QAM(5 bits), ...
 - Each symbol is carried to a subcarrier

Diversity Benefits of OFDM

- Frequency diversity
 - Different frequencies, different fading
 - --> Frequency selective
 - Spread data bits into multiple subcarriers
 - Coding scheme: adds redundant bits by coding rate R
 - Interleaving: spread the redundancy across subcarriers
 - -- Less likely dropping a frame out of deep fade
- Time diversity
 - Slower symbols in parallel
 - 312.5 kHz per symbol

•
$$T_{SYM} = \frac{1}{312.5k} = 3.2\mu s$$

- Instead of fast symbols on a wideband
- → Less likely to be distorted by quick change

Spatial Diversity - Receiver

- Selection Combining (SEL)
 - Select the antenna with the strongest SNR*
 - all the other antennas are ignored
 - Standard method of 802.11a/g APs
- Maximum Ratio Combining (MRC)
 - 1. Estimate the channel gains H in frequency domain
 - By computing from preamble's training field
 - 2. Rotate and scale the received signals Y
 - By applying the complex conjugate of h
 - ullet 3. Sum up the aligned channel responses y_i
 - → MRC is known to be optimal to maximize SIMO capacity

Comparison: SEL and MRC

- Antenna A has the worst fluctuations
 - The signal variation of 20 dB
- Antenna B is chosen in <u>SEL</u>
 - The signal variation of 15 dB

- Weighted sum of signals in MRC
 - The signal variation of 5 dB

Spatial Diversity - Transmitter

- Selection Combining (SEL)
 - Select the antenna with the strongest SNR*
- Maximum Ratio Combining (MRC)
 - Channel state feedback
 - Transmitter must know channel's state beforehand
 - Alternatively, transmitter can learn the channel gains when it receives a packet
 - Precoding
 - Phase adjustment (based on <u>phase shift</u> of channel)
 - Amplitude weighting (based on <u>SNR</u>)
 - Beamforming
 - The signals combine constructively at the receiver's antenna

*SNR: Signal to Noise Ratio

Direct-Mapped MIMO

- Direct-Mapped
 - Transmitter is blind to its channel → directly sends data stream without precoding
- Zero Forcing (ZF)
 - Eliminate interference H to zero
 - H is not always invertible in practice

$$-|H| \to 0$$
, then $H^{-1} \to \infty$

→ Noise amplification problem

$$\vec{y} = H\vec{x} + \vec{n} \longrightarrow H^{-1}\vec{y} = \vec{x} + \underline{H^{-1}}\vec{n}$$

- Minimum Mean Squared Error (MMSE)
 - Find H that minimizes MSE between \vec{x} and $W\vec{y}$
 - Minimizing the total error of interference and noise together
 - MMSE suppresses noise amplification problem

$$\vec{y} = H\vec{x} + \vec{n} \longrightarrow \vec{x} \approx W\vec{y}$$

$$argmin_W \text{MSE} = \mathbb{E} \left[\|\mathbf{x} - \mathbf{W}\mathbf{y}\|^2 \right]$$

$$\downarrow$$

$$W = \left(H^H H + \sigma_n^2 \mathbf{I} \right)^{-1} H^H$$

Precoded MIMO

- Challenge of Direct-mapped
 - Paths are assumed to be uncorrelated → not often
 - LoS(Line of Sight) makes H correlated
 - Noise amplification problem

Solution

- Use Singular Value Decomposition for precoding
 - -U: unitary matrix (receiver-side rotation)
 - − S : diagonal matrix (scaling factor)
 - -V: unitary matrix (transmitter-side rotation)
 - \rightarrow Use V for precoding

$$H = USV^H$$

Precoded MIMO (2)

Operation

- No noise amplification
 - U is unitary matrix \rightarrow only rotates the noise

Comparison: Direct-mapped and Precoded

Doppler Effect

- Frequency/Phase Shift
 - v: speed of the receiver (m/s)
 - λ : wavelength of the signal (m)
 - θ : angle to direction of motion
- Example on OFDM
 - 64 QAM at 2.4 GHz band

$$-\lambda = 0.125(m)$$

$$-v = 100km/h \approx 30m/s$$

$$-T_{SYM} = 4\mu s$$

$$\rightarrow f_D = 240Hz$$

$$\Delta\phi = 2\pi f_D T_{\text{sym}} \approx 0.006 \, \text{rad} \, (\approx 0.34^\circ)$$

• if 100 OFDM symbols, then <u>34 degrees</u> of shift

$$f_D = \frac{v}{\lambda} cos\theta$$

$$\left(\because \frac{\Delta\phi}{\Delta t} = w = 2\pi f_D, \ \Delta\phi = \frac{2\pi}{\lambda}\Delta d\right)$$

Appendix LTI System

- Linear Time Invariant (LTI)
 - Linear relationship between input and output
 - Additivity and homogeneity(scaling)
 - The output is shifted as well as the input

$$-x(t-t_0) \xrightarrow{system} h(t-t_0)$$

- The system corresponds to a channel in wireless communication
- Impulse Response h(x)
 - System's response when the input is Dirac Delta $\delta(t)$
 - Impulse response completely defines LTI's behavior
 - By convolving the continuous input with h(x)
 - 'Channel gain' is the impulse response in frequency domain

$$\delta(t-\tau) \to h(t-\tau) \\ \downarrow \text{ Homogeneity} \\ x_i \delta(t-t_i) \to x_i h(t-t_i) \\ \downarrow \text{ Additivity} \\ x(t) = \sum x_i \delta(t-t_i) \to \sum x_i h(t-t_i) \\ \downarrow \text{ main} \\ \downarrow \Delta t \to 0 \\ x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau \to y(t) = x(t) * h(t)$$

Multipath Fading Models

- Rayleigh's Fading
 - No dominant line-of-sight path
 - Many multipath components
 - Amplitudes follow Rayleigh Distribution

$$-R = \sqrt{Z_1^2 + Z_2^2}, \ Z \sim N(0, 1)$$

Phases follow uniform distribution (random)

- Theoretically based on Rayleigh's fading
- The model assumes receiver is moving
 - Doppler effect is added to Rayleigh Distribution
- The model gives fading waveform over time

Convolutional Code

- Forward Error Correction (FEC)
 - Let receiver detects and corrects error bits
 - → Backward Error Correction (BEC)
 - Receiver only detects, then requests re-transmission
- XOR encoder with shifting
 - Constraint length K
 - The encoder remembers K bits at a time (K=3 for m, p1, p2)
 - Coding rate R
 - The number of output functions (R=2 for X_1 , X_2)
 - Shift, multiply and add: convolution-like

Input	Register	Output (X ₁ X ₂)
1	100	11
0	010	10
1	101	00