Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages

27 April 2015

Wittawat Jitkrittum¹, Arthur Gretton¹, Nicolas Heess, S. M. Ali Eslami, Balaji Lakshminarayanan¹, Dino Sejdinovic², and Zoltán Szabó¹

 $\begin{array}{l} {\sf Gatsby\ Unit,\ UCL}^1 \\ {\sf University\ of\ Oxford}^2 \end{array}$

Gatsby Research Talk

Outline

1 Expectation Propagation (EP)

- 2 Just-In-Time Learning to Send EP Messages
- 3 Experiments

Outline

1 Expectation Propagation (EP)

- 2 Just-In-Time Learning to Send EP Messages
- 3 Experiments

Inference and EP

- Model: $p(\{v_i\}_i, \theta) \propto f_0(\theta) \prod_i f(v_i|\theta)$
- Inference: Find posterior of θ given observations $\{v_i\}_i$.
- EP posterior:

$$p(\theta|\{v_i\}_i) \propto f_0(\theta) \prod_{j=1}^m m_{f_j \to \theta}(\theta)$$

$$m_{f_i \to \theta}(\theta) = \frac{\operatorname{proj}\left[\int f(v'|\theta) m_{V_i \to f_i}(v') m_{\theta \to f_i}(\theta) dv'\right]}{m_{\theta \to f_i}(\theta)}$$

- $m_{V_i \to f_i}(v') = \delta_{v_i}(v')$
- $ightharpoonup \operatorname{proj}[r]$ projects r onto exponential family.
- Cavity distribution $m_{\theta \to f_i}(\theta) \propto \prod_{j \neq i} m_{f_j \to \theta}(\theta)$ gives context of what other $\{v_j\}_{j \neq i}$ say about θ .

Inference and EP

- Model: $p(\{v_i\}_i, \theta) \propto f_0(\theta) \prod_i f(v_i|\theta)$
- Inference: Find posterior of θ given observations $\{v_i\}_i$.
- EP posterior:

$$p(\theta|\{v_i\}_i) \propto f_0(\theta) \prod_{j=1}^m m_{f_j \to \theta}(\theta)$$

$$m_{f_i \to \theta}(\theta) = \frac{\operatorname{proj}\left[\int f(v'|\theta) m_{V_i \to f_i}(v') m_{\theta \to f_i}(\theta) dv'\right]}{m_{\theta \to f_i}(\theta)}$$

- $m_{V_i \to f_i}(v') = \delta_{v_i}(v')$
- $ightharpoonup \operatorname{proj}[r]$ projects r onto exponential family.
- Cavity distribution $m_{\theta \to f_i}(\theta) \propto \prod_{j \neq i} m_{f_j \to \theta}(\theta)$ gives context of what other $\{v_j\}_{j \neq i}$ say about θ .

General EP Outgoing Messages

- Expensive integral.
 - Goal: Learn an uncertainty aware message operator (regression function)

$$\left[m_{V_j\to f}\right]_{j=1}^c\mapsto q_{f\to V_i}.$$

If uncertain, ask the oracle to get $q_{f o V_i}$, and update itself online. 5/22

General EP Outgoing Messages

- Expensive integral.
- Goal: Learn an uncertainty aware message operator (regression function)

$$[m_{V_j \to f}]_{j=1}^c \mapsto q_{f \to V_i}.$$

If uncertain, ask the oracle to get $q_{f o V_i}$, and update itself online.

Outline

1 Expectation Propagation (EP)

- 2 Just-In-Time Learning to Send EP Messages
- 3 Experiments

Just-In-Time (JIT) Learning to Infer

Propose kernel-based JIT learning (KJIT) to send EP messages.

- Faster with same inference quality.
- Automatic random feature representation of input messages.
- Generic solution for any factor f that can be sampled.
- Learned operator reusable.

Projection onto Exponential Family

 $q \in ExpFam$:

$$q(v|\eta) = \exp\left(\eta^{\top} u(v) - A(\eta)\right).$$

- $\qquad q = \operatorname{proj}\left[r\right] = \arg\min_{q \in \operatorname{ExpFam}} \operatorname{KL}[r \parallel q] \text{ satisfies}$ $\mathbb{E}_r[u(v)] = \mathbb{E}_q[u(v)] \quad \text{(moment matching)}.$
- Need only $\mathbb{E}_r[u(v)]$ to form q.
- Computed with importance sampling.

Gaussian Process Regression

- **I** X: N training tuples of input messages $[m_{V_i \to f}]_{i=1}^c$.
- \blacksquare Y: one coordinate of $\mathbb{E}_r[u(v)]$.
- σ_y^2 : noise variance.
- \blacksquare κ : kernel on input messages.

GP regression:

$$y^* \mid X, Y, x^* \sim \mathcal{N}(y^* \mid \kappa(x^*, X) \left(\kappa(X, X) + \sigma_y^2 I\right)^{-1} Y^{\top}, \\ \kappa(x^*, x^*) - \kappa(x^*, X) \left(\kappa(X, X) + \sigma_y^2 I\right)^{-1} \kappa(X, x^*)\right).$$

■ Not suitable for online learning because size of $\kappa(X,X)$ grows.

Gaussian Process in Primal Form

- Let $x_n := \left[m_{V_j \to f}^{(n)} \right]_{j=1}^c$ (n^{th} tuple of input messages)
- Idea: Approximate $\kappa(x_m, x_n) \approx \hat{\psi}(x_m)^{\top} \hat{\psi}(x_n)$ where $\hat{\psi}(x_n) \in \mathbb{R}^D$ (random features).
- Let $\mathsf{x}_n := \hat{\psi}(x_n)$.
- Input: $X = (x_1 | \cdots | x_N) \in \mathbb{R}^{D \times N}$

GP regression becomes

$$\begin{aligned} \boldsymbol{y}^* \mid \mathbf{X}, \boldsymbol{Y}, \boldsymbol{x}^* &\sim \mathcal{N}(\boldsymbol{y}^* \mid \boldsymbol{\mu}_w^\top \mathbf{x}^*, \ \ \mathbf{x}^{*\top} \boldsymbol{\Sigma}_w \mathbf{x}^* + \sigma_y^2), \\ \boldsymbol{\Sigma}_w &= \left(\mathbf{X} \mathbf{X}^\top \sigma_y^{-2} + \sigma_0^{-2} \boldsymbol{I}\right)^{-1} \in \mathbb{R}^{\mathbf{D} \times \mathbf{D}}, \\ \boldsymbol{\mu}_w &= \boldsymbol{\Sigma}_w \mathbf{X} \boldsymbol{Y}^\top \sigma_y^{-2} \ \in \mathbb{R}^{\mathbf{D}}. \end{aligned}$$

where σ_0^2 = prior variance.

■ Solutions Σ_w, μ_w do not grow with N.

Online Update

- Need to maintain Σ_w and μ_w .
- lacksquare $\cdot^{[N]}:=$ quantity constructed from N samples.
- By Sherman-Morrison formula,

$$\Sigma_w^{[N+1]} = \Sigma_w^{[N]} - \frac{\Sigma_w^{[N]} \mathbf{x}_{N+1} \mathbf{x}_{N+1}^\top \Sigma_w^{[N]} \sigma_y^{-2}}{1 + \mathbf{x}_{N+1}^\top \Sigma_w^{[N]} \mathbf{x}_{N+1} \sigma_y^{-2}}.$$

$$\left(\mathsf{X}Y^{\top}\right)^{[N+1]} = \left(\mathsf{X}Y^{\top} + \mathsf{X}_{N+1}y_{N+1}\right) \in \mathbb{R}^{D}.$$

Cheap updates as a function of previous solution.

κ : Gaussian Kernel on Mean Embeddings

- Product distribution of c incoming messages: $\mathbf{r} := \times_{l=1}^{c} r_{l}$, $\mathbf{s} := \times_{l=1}^{c} s_{l}$.
- Gaussian kernel on mean embeddings:

$$\kappa(\mathsf{r},\mathsf{s}) = \exp\left(-\frac{\|\mu_{\mathsf{r}} - \mu_{\mathsf{s}}\|_{\mathcal{H}}^2}{2\gamma^2}\right)$$

where $\mu_{\mathbf{r}} := \mathbb{E}_{a \sim \mathbf{r}} \varphi(a)$ (mean embedding of r).

Two-stage random feature approximation:

$$\kappa(\mathsf{r},\mathsf{s}) \stackrel{1^{st}}{\approx} \exp\left(-\frac{\|\hat{\phi}(\mathsf{r}) - \hat{\phi}(\mathsf{s})\|_{D_{\mathrm{in}}}^2}{2\gamma^2}\right) \stackrel{2^{nd}}{\approx} \hat{\psi}(\mathsf{r})^\top \hat{\psi}(\mathsf{s}).$$

Approximating κ

$$\kappa(\mathbf{r},\mathbf{s}) = \exp\left(-\frac{1}{2\gamma^2} \left\langle \mu_{\mathbf{r}}, \mu_{\mathbf{r}} \right\rangle + \frac{1}{\gamma^2} \left\langle \mu_{\mathbf{r}}, \mu_{\mathbf{s}} \right\rangle - \frac{1}{2\gamma^2} \left\langle \mu_{\mathbf{s}}, \mu_{\mathbf{s}} \right\rangle\right).$$

Consider $\langle \mu_r, \mu_s \rangle$:

$$\begin{split} \langle \mu_{\mathsf{r}}, \mu_{\mathsf{s}} \rangle &= \mathbb{E}_{a \sim \mathsf{r}} \mathbb{E}_{b \sim \mathsf{s}} \left\langle \varphi(a), \varphi(b) \right\rangle \\ &= \mathbb{E}_{a \sim \mathsf{r}} \mathbb{E}_{b \sim \mathsf{s}} {\color{red} k}(a,b) \\ \text{(approximate } k \text{)} &\approx \mathbb{E}_{a \sim \mathsf{r}} \mathbb{E}_{b \sim \mathsf{s}} \hat{\varphi}(a)^\top \hat{\varphi}(b) \\ &= \mathbb{E}_{a \sim \mathsf{r}} \hat{\varphi}(a)^\top \mathbb{E}_{b \sim \mathsf{s}} \hat{\varphi}(b) \\ &:= \hat{\phi}(\mathsf{r})^\top \hat{\phi}(\mathsf{s}). \end{split}$$

- k: Gaussian kernel.
- Same random feature approximation [Rahimi and Recht, 2007] twice.

$$\kappa(\mathbf{r},\mathbf{s}) \overset{1^{st}}{\approx} \underbrace{\exp\left(-\frac{\|\hat{\phi}(\mathbf{r}) - \hat{\phi}(\mathbf{s})\|_{D_{\mathrm{in}}}^2}{2\gamma^2}\right)}_{\text{finite-dimensional Gaussian kernel}}^{2^{nd}} \overset{2^{nd}}{\approx} \hat{\psi}(\mathbf{r})^\top \hat{\psi}(\mathbf{s}).$$

Random Fourier Features [Rahimi and Recht, 2007] I

Bochner's theorem

A continuous, translation-invariant kernel k(a,b)=k(a-b) on \mathbb{R}^m is positive definite iff $k(a-b)=\int e^{i\omega^\top(a-b)}\hat{k}(\omega)\,\mathrm{d}\omega$

for some probability measure $\hat{k}(\omega)$ (finite non-negative measure).

Goal:
$$k(a-b) \approx \hat{\varphi}(a)^{\top} \hat{\varphi}(b)$$
.

$$k(a-b) = \mathbb{E}_{\omega} \cos(\omega^{\top}(a-b)) + i \underbrace{\mathbb{E}_{\omega} \sin(\omega^{\top}(a-b))}_{=0}$$
$$\stackrel{(a)}{=} \mathbb{E}_{c \sim U[0,2\pi]} \mathbb{E}_{\omega} \left[2\cos(\omega^{\top}a+c)\cos(\omega^{\top}b+c) \right]$$

(a):
$$2\cos(\omega^{\top}a+c)\cos(\omega^{\top}b+c) = \cos(\omega^{\top}(a-b)) + \underbrace{\cos(\omega^{\top}(a+b)+2c)}_{\mathbb{E}_{coull[0,2\pi]} \text{ gives } 0}$$

where we used $2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y)$.

Random Fourier Features [Rahimi and Recht, 2007] I

Bochner's theorem

A continuous, translation-invariant kernel k(a,b)=k(a-b) on \mathbb{R}^m is positive definite iff $k(a-b)=\int e^{i\omega^\top(a-b)}\hat{k}(\omega)\,\mathrm{d}\omega$

for some probability measure $\hat{k}(\omega)$ (finite non-negative measure).

Goal:
$$k(a-b) \approx \hat{\varphi}(a)^{\top} \hat{\varphi}(b)$$
.

$$k(a-b) = \mathbb{E}_{\omega} \cos(\omega^{\top}(a-b)) + i \underbrace{\mathbb{E}_{\omega} \sin(\omega^{\top}(a-b))}_{=0}$$
$$\stackrel{(a)}{=} \mathbb{E}_{c \sim U[0,2\pi]} \mathbb{E}_{\omega} \left[2\cos(\omega^{\top}a + c)\cos(\omega^{\top}b + c) \right].$$

(a):
$$2\cos(\omega^\top a + c)\cos(\omega^\top b + c) = \cos(\omega^\top (a - b)) + \underbrace{\cos(\omega^\top (a + b) + 2c)}_{\mathbb{E}_{c \sim U[0, 2\pi]} \text{ gives 0}}$$

14/22

where we used $2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y)$.

Random Fourier Features [Rahimi and Recht, 2007] II

$$k(a-b) = \mathbb{E}_{c \sim U[0,2\pi]} \mathbb{E}_{\omega} \left[2\cos(\omega^{\top}a + c)\cos(\omega^{\top}b + c) \right]$$
 (empirical average) $\approx \hat{\varphi}(a)^{\top}\hat{\varphi}(b)$.

Random features $\hat{\varphi}(a) \in \mathbb{R}^D$ such that $k(a-b) \approx \hat{\varphi}(a)^{\top} \hat{\varphi}(b)$:

- **1** Draw i.i.d. $\{\omega_i\}_{i=1}^D \sim \hat{k}(\omega)$.
- 2 Draw i.i.d. $\{c_i\}_{i=1}^D \sim U[0,2\pi]$ to correct bias.

$$\hat{\varphi}(a) = \sqrt{\frac{2}{D}} \left[\cos \left(\omega_1^{\top} a + c_1 \right), \dots, \cos \left(\omega_D^{\top} a + c_D \right) \right]^{\top} \in \mathbb{R}^D$$

Outline

1 Expectation Propagation (EP)

- 2 Just-In-Time Learning to Send EP Messages
- 3 Experiments

Experiment 1: Message Prediction

w Binary Logistic Regression

$$f(p|z) = \delta_p \left(\frac{1}{1 + \exp(-z)}\right)$$

2 incoming messages:

$$m_{z \to f}(z) = \text{Gaussian}(z)$$

 $m_{p \to f}(p) = \text{Beta}(p)$

Predict

$$q_{f\to z}(z) = \text{proj}\left[\int f(p|z)m_{p\to f}(p)m_{z\to f}(z) dp\right]$$

= Gaussian(z),

from
$$(m_{z\to f}, m_{p\to f})$$
.

Batch Learning Result

- Batch train on messages collected from 20 EP runs on toy data (binary logistic regression).
- Train/test: 5000/3000.
- Report

 $\log \operatorname{KL}\left[\operatorname{true}\,q_{f o z}\,\|\,\operatorname{predicted}\,\hat{q}_{f o z}
ight].$

Experiment 2: Uncertainty Estimates

■ Same training set as before.

- **Left**: Parameters of $m_{z \to f}$.
- **Right:** KJIT gives smoother uncertainty estimates (predictive variance).
- Fix beta messages $m_{p\to f}$ during testing.

Experiment 3: EP on Real Data

w Binary Logistic Regression

- Sequentially present 4 real datasets to the operator to JIT learn.
- If predictive variance > threshold, ask oracle.

- **Left:** Binary classification error with learned posterior w.
 - Infer.NET = handcrafted operator.
- Right: EP runtime.

Changes in Input Message Distribution

- Initial silent period = parameter selection + mini-batch training.
- \blacksquare * = start of a new problem.
- Sharp rises after * indicate ability to detect distribution (problem) change.

■ ← Diverse distributions of $m_{z \to f} = \text{Gaussian}(z)$.

Conclusion

- Proposed KJIT, a kernel-based message operator.
- KJIT learns to send messages online during EP.
- Automatic representation of input messages.
- Uncertainty aware.
- Faster than ordinary EP with same inference quality.

More info:

- Paper: http://arxiv.org/abs/1503.02551
- Code: http://wittawat.com

References I

Importance Sampling Oracle

$$q_{f \to V_i}(v_i) = \operatorname{proj}\left[\int f(v_1|v_{2:c}) \prod_{j=1}^c m_{V_j \to f}(v_j) \,\mathrm{d}\mathcal{V} \backslash \{v_i\}\right] = \operatorname{proj}[r]$$

■ To compute $q_{f \to V_i}(v_i)$,

$$\mathbb{E}_{r}[u(v_{i})] = \int u(v_{i})f(v_{1}|v_{2:c}) \prod_{j=1}^{c} m_{V_{j} \to f}(v_{j}) \, d\mathcal{V}$$

$$= \int u(v_{i}) \frac{\prod_{j=1}^{c} m_{V_{j} \to f}(v_{j})}{s(v_{2:c})} f(v_{1}|v_{2:c})s(v_{2:c}) \, d\mathcal{V}$$

$$\approx \frac{1}{K} \sum_{k=1}^{K} u(v_{i}^{(k)}) \frac{\prod_{j=1}^{c} m_{V_{j} \to f}(v_{j}^{(k)})}{s(v_{2:c}^{(k)})}$$

where $\{v^{(k)}\}_k \sim f(v_1|v_{2:c})s(v_{2:c})$ and $s(v_{2:c})$ is a proposal distribution.

lacksquare Only need the ability to sample from f.

Binary Logistic Regression: Toy Data

As good as handcrafted factor; much faster.

Experiment: Compound Gamma Factor

■ Goal: Infer posterior precision τ of $x \sim \mathcal{N}(x; 0, \tau^{-1})$ from observations $\{x_i\}_{i=1}^N$.

■ Infer.NET + KJIT = KJIT with handcrafted factor oracle.

Performance of Different Kernels

- EPP := expected product kernel
- RF := random feature
- IChol := incomplete Cholesky to approximate the gram matrix.
- MV kernel = Gaussian kernel on mean and variance of messages.

	mean log KL	SD
RF + MV Kernel	-6.9554	1.6726
RF + EP on joint embeddings	-2.7765	1.8261
RF + Sum of EPPs	-1.0518	1.9315
RF + Product of EPPs	-2.641	1.645
RF + Gauss. kernel on joint embeddings	-8.9740	1.5731
IChol + sum of Gauss. kernel on embeddings	-2.751	2.8382
IChol + Gauss. kernel on joint embeddings	-8.7144	1.6864

Dataset = messages collected from 20 EP runs on toy data of binary logistic regression.

Three Ways to Minimize KL

1 Simple. Local. Treat each factor independently.

$$\tilde{f}_i = \arg\min_{\tilde{f} \in \mathsf{ExpFam}} KL\left[f_i(\mathcal{X}_i|\theta) \mathbin{\big\|} \tilde{f}(\theta)\right]$$

Globally accurate. But intractable.

$$\begin{split} q^*(\theta) &= & \arg \min_{q \in \mathsf{ExpFam}} KL \left[f_0(\theta) \prod_{i=1}^m f_i(\mathcal{X}_i | \theta) \, \middle\| \, \tilde{f}_0(\theta) \prod_{i=1}^m \tilde{f}_i(\mathcal{X}_i | \theta) \right] \\ &= & \arg \min_{q \in \mathsf{ExpFam}} KL \left[p(\theta | \mathcal{X}) \, \middle\| \, q(\theta) \right] \end{split}$$

B EP is in between the previous two. Iterative. Contextual.

$$\begin{split} q_i(\theta) &= \arg \min_{q \in \mathsf{ExpFam}} KL \left[f_i(\mathcal{X}_i | \theta) \prod_{j \neq i} \tilde{f}_j(\mathcal{X}_j | \theta) \ \, \middle\| \, q(\theta) \right] \\ &= \arg \min_{q \in \mathsf{ExpFam}} KL \left[f_i(\mathcal{X}_i | \theta) \ \, q^{\backslash i}(\theta) \ \, \middle\| \, q(\theta) \right] := \mathsf{proj} \left[f_i(\mathcal{X}_i | \theta) \ \, q^{\backslash i}(\theta) \ \, \middle\| \, q(\theta) \right] \\ \tilde{f}_i &\propto q_i(\theta) / q^{\backslash i}(\theta) \end{split}$$

Posterior is constructed by $q^*(\theta) := f_0(\theta) \prod_{i=1}^m \tilde{f}_i(\mathcal{X}_i|\theta)$.

Two-Stage Random Features $\hat{\psi}$ for κ

Construction of two-stage random features for κ .

In: $\mathcal{F}(k)$: Fourier transform of k, $D_{\rm in}$: #inner features, $D_{\rm out}$: #outer features, $k_{\rm gauss}$: Gaussian kernel on $\mathbb{R}^{D_{\rm in}}$

Out: Random features $\hat{\psi}(\mathsf{r}) \in \mathbb{R}^{D_{\mathrm{out}}}$

- 1: Sample $\{\omega_i\}_{i=1}^{D_{\mathrm{in}}} \overset{i.i.d}{\sim} \mathfrak{F}(k)$,
- 2: Sample $\{b_i\}_{i=1}^{D_{\mathrm{in}}} \overset{i.i.d}{\sim} U[0,2\pi].$
- 3: $\hat{\phi}(\mathbf{r}) = \sqrt{\frac{2}{D_{\text{in}}}} \left(\mathbb{E}_{\mathbf{x} \sim \mathbf{r}} \cos(\omega_i^\top x + b_i) \right)_{i=1}^{D_{\text{in}}} \in \mathbb{R}^{D_{\text{in}}}$
- 4: Sample $\{\nu_i\}_{i=1}^{D_{\mathrm{out}}} \overset{i.i.d}{\sim} \mathfrak{F}(k_{\mathrm{gauss}}(\gamma^2))$
- 5: Sample $\{c_i\}_{i=1}^{D_{\mathrm{out}}} \overset{i.i.d}{\sim} U[0,2\pi].$

6:
$$\hat{\psi}(\mathbf{r}) = \sqrt{\frac{2}{D_{\text{out}}}} \left(\cos(\nu_i^{\top} \hat{\phi}(\mathbf{r}) + c_i) \right)_{i=1}^{D_{\text{out}}} \in \mathbb{R}^{D_{\text{out}}}$$

Factor-based View of EP

- $lacksquare q(heta) = \mathcal{N}(heta|m_0,v_0)$ (assume $\{ ilde{f_i}\}_i$ are Gaussian)
- $\tilde{f}_i(\theta) = 1 \text{ for } i = 1, \dots, m.$
- Repeat EP iterations until convergence (several passes over $1, \ldots, m$)
 - \blacksquare for each factor $i = 0 \dots, m$
 - $f Deletion: \ q^{i}(\theta) \propto q(\theta)/\tilde{f}_i(\theta) = \prod_{j
 eq i} \tilde{f}_j(\theta)$
 - lacksquare Inclusion: $q(heta) = \operatorname{proj} \left[f_i(\mathcal{X}_i | heta) q^{\setminus i}(heta) \right]$
 - $f Update: ilde{f_i}(heta) = q(heta)/q^{\setminus i}(heta)$
- $q^*(\theta) = f_0(\theta) \prod_{i=1}^m \tilde{f}_i(\mathcal{X}_i | \theta)$
- $q^{\setminus i}(\theta) \propto \prod_{j \neq i} \tilde{f}_j(\theta) \text{ is called the cavity distribution giving a context}$ of what others $\left(\left\{\tilde{f}_j(\theta)\right\}_{j \neq i}\right)$ say about θ .
- If $r \in \mathsf{ExpFam}$, then $r = \mathsf{proj}[r]$.
- ExpFam is closed under multiplication and division.

Random Features for Expected Product Kernels I

$$k_{\text{pro}}(p,q) = \left\langle \mu_p, \mu_q \right\rangle_{\mathcal{H}} = \mathbb{E}_{p(x)} \mathbb{E}_{q(y)} k_{\text{gauss}}(x,y)$$

With random features,

$$\begin{split} \mathbb{E}_{p} \mathbb{E}_{q} k_{\mathsf{gauss}}(x,y) &\approx \mathbb{E}_{p(x)} \mathbb{E}_{q(y)} \hat{\phi}(x)^{\top} \hat{\phi}(y) \\ &= \mathbb{E}_{p} \mathbb{E}_{q} \frac{2}{D} \sum_{i=1}^{D} \cos \left(\omega_{i}^{\top} x + b_{i} \right) \cos \left(\omega_{i}^{\top} y + b_{i} \right) \\ &= \frac{2}{D} \sum_{i=1}^{D} \mathbb{E}_{p(x)} \cos \left(\omega_{i}^{\top} x + b_{i} \right) \mathbb{E}_{q(y)} \cos \left(\omega_{i}^{\top} y + b_{i} \right) \end{split}$$

Assume
$$p(x) = \mathcal{N}(x; M_p, V_p)$$
 and $q(y) = \mathcal{N}(y; M_q, V_q)$,

$$\mathbb{E}_{p(x)} \cos \left(\omega_i^\top x + b_i\right) = \cos(\omega_i^\top M_p + b_i) \exp \left(-\frac{1}{2}\omega_i^\top V_p \omega_i\right)$$

Random Features for Expected Product Kernels II

$$\hat{\varphi}(p) = \sqrt{\frac{2}{D}} \begin{pmatrix} \cos(\omega_1^{\top} M_p + b_1) \exp\left(-\frac{1}{2}\omega_1^{\top} V_p w_1\right) \\ \vdots \\ \cos(w_D^{\top} M_p + b_D) \exp\left(-\frac{1}{2}w_D^{\top} V_p w_D\right) \end{pmatrix}.$$

Assume $k_{\mathsf{gauss}}(x,y) = \exp\left(-\frac{1}{2}\left(x-y\right)^{\top}\Sigma^{-1}\left(x-y\right)\right)$ where Σ is the kernel parameter, and Gaussian p,q,

$$\mathbb{E}_{p}\mathbb{E}_{q}k_{\mathsf{gauss}}(x,y) \overset{\mathsf{(exact)}}{=} \sqrt{\frac{\det(D_{pq})}{\det(\Sigma^{-1})}} \exp\left(-\frac{1}{2}\left(M_{p} - M_{q}\right)^{\top} D_{pq}\left(M_{p} - M_{q}\right)\right)$$
$$D_{pq} := \left(V_{p} + V_{q} + \Sigma\right)^{-1}$$