Actividad: Regresión Lineal

Tania Sayuri Guizado Hernandez A01640092

Utiliza un modelo de regresión lineal múltiple para predecir el salario en dolares (salary_in_usd) de cada empleado. Las variables regresoras de tu modelo deben de ser las siguientes: nivel de experiencia (experience_level), tipo de empleo (employment_type), salario (salary) y radio remoto (remote_ratio).

Importamos las librerías necesarias para el desarrollo de la actividad.

```
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import statsmodels.api as sm
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
df = pd.read_csv('ds_salaries.csv')
```

Confirmamos que la base de datos este completa y no contenga valores nulos. Ya que de lo contrario será necesario realizar una imputación de datos.

```
In [2]:
         df.isnull().sum()
                                0
        Unnamed: 0
Out[2]:
                                0
         work_year
         experience level
         employment_type
                                0
         job_title
                                0
         salary
         salary_currency
                                0
         salary_in_usd
                                0
         employee_residence
         remote_ratio
                                0
         company_location
                                0
                                0
         company_size
         dtype: int64
```

Eliminamos las columnas que contiene información que no será utilizada en el modelo.

```
In [3]: df = df.drop(['job_title','salary_currency','employee_residence','company_location','company_size
```

Como los datos de las columnas de 'experience_level' y 'employment_type' son categóricos, se procede a convertirlos a numéricos para poder trabajar con ellos.

```
In [4]: dummiesExp = pd.get_dummies(df['experience_level'],prefix ='ExpLevel')
In [5]: dummiesEmp = pd.get_dummies(df['employment_type'],prefix ='EmpType')
```

Las dummies creadas las concatenamos al dataframe original y eliminamos la columna original de la variable categórica.

```
In [6]: df=pd.concat([df,dummiesExp,dummiesEmp],axis=1)
```

```
In [7]: df = df.drop(['experience_level','employment_type','Unnamed: 0'],axis=1)
```

Comenzando con nuestro modelo de regresión lineal multiple, el cual se basa en la siguiente ecuación: y = b0 + b1x1 + b2x2 + ... + bn*xn + e Donde: y = variable dependiente x1, x2, ..., xn = variables independientes b0 = constante b1, b2, ..., bn = coeficientes e = error aleatorio

Veremos si las variables regresoras son independientes, revisando la correlación entre ellas.

```
In [8]:
          correlacion= df.corr()
          alta_corr=np.where((correlacion>0.95)&(correlacion<1))</pre>
 In [9]:
In [10]:
          alta_corr
          (array([], dtype=int64), array([], dtype=int64))
Out[10]:
          baja corr=np.where((correlacion<-0.95)&(correlacion>-1))
In [11]:
In [12]:
          baja_corr
          (array([], dtype=int64), array([], dtype=int64))
Out[12]:
          Al no encontrar ni baja ni alta correlación entre las variables, se procede a realizar la regresión lineal múltiple
          con todas las variables.
          df=pd.DataFrame(df,columns=df.columns)
In [13]:
          entrenamiento, prueba =train test split(df,test size=0.2,random state=42)
In [14]:
In [15]:
          modelo = smf.ols(formula='salary_in_usd~salary+remote_ratio+ExpLevel_EN+ExpLevel_EX+ExpLevel_MI+{
          modelo= modelo.fit()
          print(modelo.summary())
```

OLS Regression Results

0L5 Regression Results											
Dep. Variable: s		salary_in_usd	_in_usd R-squared:			0.264					
Model:		OLS	Adj. R-squared:			0.252					
Method: L		_east Squares	F-statistic:			21.37					
Date: Fri,		, 15 Sep 2023	<pre>Prob (F-statistic):</pre>):	8.41e-28					
Time:		16:58:59	Log-Likelihood:			-6044.0					
No. Observations:		485	AIC:			1.211e+04					
Df Residuals:		476	BIC:			1.214e+04					
Df Model:		8									
Covariance Type:		nonrobust									
=========	coef	std err	t	P> t	[0.025	0.975]					
Intercept	9.787e+04	2.44e+04	4.015	0.000	5e+04	1.46e+05					
salary	-0.0067	0.003	-2.251	0.025	-0.013	-0.001					
remote_ratio	103.1885	70.546	1.463	0.144	-35.431	241.809					
ExpLevel_EN	-7.485e+04	8886.547	-8.423	0.000	-9.23e+04	-5.74e+04					
ExpLevel_EX	6.662e+04	1.42e+04	4.698	0.000	3.88e+04	9.45e+04					
ExpLevel_MI	-4.79e+04	6485.002	-7.387	0.000	-6.06e+04	-3.52e+04					
EmpType_CT	7.688e+04	3.89e+04	1.974	0.049	367.309	1.53e+05					
EmpType_FL	-3707.2560	5.04e+04	-0.073	0.941	-1.03e+05	9.54e+04					
EmpType_FT	3.578e+04	2.34e+04	1.531	0.126	-1.01e+04	8.17e+04					
Omnibus:		242.000	Durbin-Watson:			1.979					

2.000 Prob(JB):

0.000

Notes:

Skew:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Jarque-Bera (JB):

2005.484

0.00

[2] The condition number is large, 2.01e+07. This might indicate that there are strong multicollinearity or other numerical problems.

Encontramos el siguiente error en nuestro modelo 'The condition number is large, 2.01e+07. This might indicate that there are strong multicollinearity or other numerical problems.' lo cual nos indica que dos o más de nuestras variables regresoras están altamente correlacionadas entre sí. Esta situación puede ser problemática porque dificulta la interpretación de los coeficientes de regresión y puede afectar la estabilidad y precisión de las estimaciones. Por eso es necesario estandarizar.

```
In [16]: scaler = StandardScaler()
In [17]: df_estandar=scaler.fit_transform(df)
In [18]: df_estandar=pd.DataFrame(df_estandar,columns=df.columns)
```

Una vez realizada la estandarización realizamos el modelo una vez más. Pero si las variables regresoras de 'remote_ratio', 'EmpType_FL', 'EmpType_FT'y 'EmpType_CT' porque su p-valor era mayor a 0.05 y como tal si las variables son menor que el nivel de significancia se consideran que el coeficiente es estadísticamente significativo.

```
In [19]: entrenamiento, prueba =train_test_split(df_estandar,test_size=0.2,random_state=42)
In [20]: modelo = smf.ols(formula='salary_in_usd~salary+ExpLevel_EN+ExpLevel_EX+ExpLevel_MI',data=entrenamodelo= modelo.fit()
    print(modelo.summary())
```

OLS Regression Results

Dep. Variable Model: Method: Date: Time:	Fri			Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:		0.253 0.247 40.70 2.24e-29 -630.66 1271.
No. Observati						
Df Residuals:		48				1292.
Df Model: Covariance Ty	pe: 	nonrobus	4 t ======			
		std err		P> t	[0.025	0.975]
				0.662	-0.062	0.098
salary	-0.1487	0.065	-2.299	0.022	-0.276	-0.022
ExpLevel_EN	-0.3851	0.043	-9.048	0.000	-0.469	-0.301
ExpLevel_EX	0.1974	0.040	4.883	0.000	0.118	0.277
ExpLevel_MI	-0.3305	0.044	-7.573	0.000	-0.416	-0.245
Omnibus:	========	======== 239.85	======== 8 Durbin-	======== -Watson:		1.990
Prob(Omnibus):		0.00		-Bera (JB):		1925.137
Skew:		1.99	•	, ,		0.00
Kurtosis:		11.91	•	•		1.84

Notes:

Out[23]:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

La R^2 es de 0.253 lo que indica que aproximadamente el 25.3% de la variabilidad en el salario se explica por las variables regresoras en el modelo. La interpretación de los coeficientes es que, manteniendo las otras variables constantes, 'ExpLevel EN' y 'ExpLevel MI' está asociado con una disminución en el salario mientras que 'ExpLevel_EX' está asociado con un aumento. Los p-valores sugieren que 'ExpLevel_EN', 'ExpLevel_EX' y 'ExpLevel MI' son estadísticamente significativos en relación con el salario, mientras que 'salary' no lo es.

Continuamos con hacer una predicción del salario en dolares, con las variables regresoras menores a p-valor de 0.05

```
In [21]:
         y_aprox=-0.1487*prueba['salary']-0.3851*prueba['ExpLevel_EN']+0.1974*prueba['ExpLevel_EX']-0.330
```

Una vez con eso formamos una tabla que compare los valores con los valores reales y los errores.

```
In [22]:
         tabla=pd.DataFrame({'Real':prueba['salary_in_usd'],'Prediccion':y_aprox, 'Errores':prueba['salary
```

Graficamos para poder apreciar los valores de predicción contra los reales.

```
plt.scatter(prueba['salary_in_usd'],y_aprox,color='gray')
In [23]:
         plt.plot(prueba['salary_in_usd'],prueba['salary_in_usd'],color='red')
         plt.xlabel('Datos reales')
         plt.ylabel('Prediccion')
         Text(0, 0.5, 'Prediccion')
```


La gráfica de datos de predicción y reales no muestra una relación lineal clara entre las variables. En un modelo de regresión lineal múltiple, se esperaría que la distribución de puntos se aproxime a la línea recta. Sin embargo, en este caso, los puntos parecen estar dispuestos de manera horizontal y no siguen una tendencia lineal evidente. Esto sugiere que la relación entre las variables no puede ser adecuadamente modelada mediante una línea recta, lo que podría deberse a la presencia de efectos no lineales o relaciones más complejas entre las variables.

Podemos concluir que el modelo de regresión lineal múltiple no sea el más adecuado.

Procedemos a hacer nuestra gráfica de residuos

```
In [24]: residuos=len(tabla['Errores'])
In [25]: plt.scatter(range(residuos),tabla['Errores'],color='gray')
    plt.axhline(y=0,linestyle='--',color='black')
    plt.xlabel('numero del residuo')
    plt.ylabel('valor del residuo')
Out[25]: Text(0, 0.5, 'valor del residuo')
```


Al ver nuestra gráfica de residuos podemos reafirmar con patrón no lineal en la distribución de los residuos, podría dar a entender que la relación probablemente no es bien modelada por una regresión lineal múltiple.

Proseguimos con el histograma de los residuos

```
In [26]: plt.hist(x=tabla['Errores'],color='orange')
    plt.title('Histograma residuos')
    plt.xlabel('Residuos')
    plt.ylabel('Frecuencia(prob)')
Out[26]: Text(0, 0.5, 'Frecuencia(prob)')
```


La forma en la que vemos el histograma de residuos puede interpretarse en el sentido de que los valores más grandes son más frecuentes que los valores más pequeños y que la cola de la distribución se extiende hacia la derecha.

Que este cargado a la derecha puede significar que hay valores atípicos en ese lado que afectan la forma de la distribución. En el contexto de la regresión,, esta puede referirse a observaciones con valores inusualmente altos que afectan la relación entre variables y afectan la evaluación del modelo.

Antes de hacer nuestro test de de Kolmogorov estandarizamos los los errores residuales.

```
In [27]: media=tabla['Errores'].mean()
    std=tabla['Errores'].std()
    errores_est =(tabla['Errores']-media)/std
```

Realizamos el test de Kolmogorov porque será lo que compare la distribución de los errores estandarizados con la distribución normal esperada.

```
In [28]: stats.kstest(errores_est,'norm')
```

Out[28]: KstestResult(statistic=0.08386626965908772, pvalue=0.3384571399227415, statistic_location=0.1187 9539469254466, statistic_sign=1)

Los resultados del test de Kolmogorov aplicado a los errores estandarizados del modelo de regresión lineal múltiple muestra un valor de aproximadamente 0.084 y un p--valor de 0.338. Y en este caso, dado que el p-valor es mayor que 0.05, no hay suficiente evidencia para rechazar la hipótesis nula de que los errores estandarizados se distribuyen normalmente.

Por último haremos el QQ-plot que compara la distribución de los errores residuales con una distribución normal.

Para el QQ-plot que estamos graficando, se esperaría que los puntos se ajustaran a la línea roja, ya que esto significaría que los errores se distribuyen normalmente. En esete caso nuestros datos de los errores no son normales y por eso los puntos se desvían ligeramente hacia arriba.

En teoría esta gráfica se puede relacionar con nuestro histograma de residuos.