COMP4680/COMP8650: Advanced Topics in SML

Assignment #3: Convex Optimization and Duality

Due: 11:55pm on Sunday 2 September, 2018. Submit as a single PDF file via Wattle.

All questions are of equal value.

- Shortest path. Consider a network with n nodes. Let $c_{ij} \geq 0$ be the distance when directly going from node i to node j in the network. If there is no edge between i and j then we set c_{ij} to ∞ . We wish to find the shortest path between node 1 and node n. Let $x_{ij} \in \{0,1\}$ represent whether the edge (i,j) is in a path $(x_{ij}=1)$ or not $(x_{ij}=0)$. That is, if $x_{ij}=1$ it means that the path passes through node i and then node j. Note that not all possible assignments to x_{ij} define valid paths. For example, $x_{ij}=x_{ji}=1$ defines a loop and is therefore not a valid path.
 - (a) Write down equation(s) to enforce that a path starts at node 1 and ends at node n. (You do not need to worry (yet) about enforcing that an assignment to all x_{ij} represents a valid path.)
 - (b) Write down equation(s) to enforce the constraint that a path can pass through a node a most once.
 - (c) Write down equation(s) to enforce the constraint that the number of times a path goes into a node is the same as the number of times a path goes out of a node (except for nodes 1 and n).
 - (d) Given a path defined by the x_{ij} , write down a function that computes the cost (i.e., length of the path).
 - (e) Write down an optimization problem to find the shortest path between node 1 and node n.
 - (f) Is your problem convex? If not, is there a way to make it convex?

The remaining questions are from the textbook Boyd and Vandenberghe, "Convex Optimization", 2004.

- **4.3**
- 4.8 (a), (c), (e)
- 4.9
- 5.12
- 5.31