4. Considerar el conjunto \mathbb{Q} en el espacio métrico \mathbb{R} . Hallar \mathbb{Q}° y $\overline{\mathbb{Q}}$. Concluir que \mathbb{Q} no es abierto ni cerrado en \mathbb{R} .

Bus as los $x \in \mathbb{Q}$ $B(x,r) \in \mathbb{Q}$ Pero para todo r > 0, $\exists K \in B(x,r)$ con $k \in \mathbb{R} : \mathbb{Q}$ $\circ \circ \neq x \in \mathbb{Q}$ que compla lo pedido $\circ \circ \mathbb{Q} \circ = \emptyset$

Pero la dausuro de Q, busco $x \in E = \mathbb{R}$ / $B(x,r) \cap Q \neq \emptyset$ Pero $\forall r \neq 0$, B(x,r) contien e recionaler e irra cionaler

o $Q = \mathbb{R}$

(c) Probar que si r > r' > 0 entonces $\overline{B(x,r')} \subseteq B(x,r)$.

$$\forall \epsilon > 0 \quad \mathfrak{B}(\alpha, \epsilon) \cap \mathfrak{B}(x, r') \neq \phi$$

$$Se'$$
 que $d(a,b) < E$

for
$$d(a,x) < r$$

So tomo $E = \frac{r-r'}{2}$

And $d(a,b) < \frac{r-r'}{2}$

Par designal ded triangular

 $d(a,x) < d(a,b) + d(b,x)$
 $(\frac{r-r'}{2} + r') = \frac{r}{2} + \frac{r'}{2}$
 $(\frac{r}{2} + \frac{r}{2} = r)$
 $d(a,x) < r$
 $d(a,x) < r$
 $d(a,x) < r$

(d) Probar que $\overline{B}(x,r) = \{y \in E : d(x,y) \le r\}$ es un conjunto cerrado.

$$\exists \varepsilon > 0 / \mathcal{B}(\alpha, \varepsilon) \subseteq \overline{\mathcal{B}}^{c}(x, r)$$

Poer si
$$\varepsilon = \frac{1}{2} \inf \left\{ d(\alpha, \beta) : \beta \in \overline{B}(x, r) \right\}$$

$$\Rightarrow \mathbb{B}(\alpha_1 \varepsilon) \cap \overline{\mathbb{B}}(\alpha_1 r) = \phi$$

$$\mathbb{B}(\alpha, \mathcal{E}) \subseteq \widetilde{\mathbb{B}}^{c}(\chi, \Gamma)$$

M

(e) Deducir que $\overline{B(x,r)} \subseteq \overline{B}(x,r)$.

(f) Dar un ejemplo en que $\overline{B(x,r)}$ sea un subconjunto propio de $\overline{B}(x,r)$.

Sospecho que es usado
$$d = discreta$$

$$\overline{B}(0,1) = \begin{cases} y \in \mathbb{R} : d(0,y) \leq 1 \end{cases}$$

$$S(0,y) = \begin{cases} 0 & \text{si } y = 0 \end{cases}$$

$$= \mathbb{R}$$

$$B(0,1) = \{0\}$$

$$\text{Vale como gamph?}$$

$$\overline{B}(0,1) = \{0\}$$

$$\text{Parque degi } r = 1$$

(g) Probar que $\{y \in E : 2 < d(y, x) < 3\}$ es un conjunto abierto.

$$\forall y \in G$$
, $\exists \varepsilon > 0$ $\exists (y, \varepsilon) \in G$

Pres $\forall x \in G$, $\exists \varepsilon > 0$ $\exists (y, \varepsilon) \in G$
 $\exists (y, \varepsilon) \in G$

四