## Netzwerke – Seminaristische Übung WS17/18

Bit-Arithmetik & OSI Layer I Benjamin.Troester@HTW-Berlin.de

PGP: ADE1 3997 3D5D B25D 3F8F 0A51 A03A 3A24 978D

D673

Benjamin Tröster

20. Februar 2018





Hochschule für Technik und Wirtschaft Berlin

University of Applied Science.

## Road-Map

- 1 Zahlensysteme
  - Stellenwertsystem
  - Stellenwert Basis b
  - Dualzahlen
  - Oktal
  - Hexadezimal
- 2 Umrechnung von Zahlensysteme

- lacksquare Basis b o Dezimal
- Dezimal → Basis b
- 3 Bit-Arithmetik
  - Bit-Wertigkeit
  - Byte-Wertigkeit
  - Umrechnung Bit  $\leftrightarrow$  Byte
  - ...
- 4 Netzwerkgeräte





Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

#### Nerd-Wochenmarkt

#### Empfehlung der Woche:

- n00bCore:
  - "n00bfreundlicher Podcast über Computer"
  - http://n00bcore.de/nc-006-was-ist-ein-internet/
  - http://n00bcore.de/nc007-away/



Hochschule für Technik und Wirtschaft Berlin

Iniversity of Applied Sciences

## Retrospektive

- Vorlesung
  - Fragen?
- Übungsblatt
  - Auflösung des letzten Aufgabenblatts
  - Fragen?

Dezimalsystem  $\rightarrow$  Basis 10 Eine Zahl in der Darstellung

$$a_n \dots a_0.a_{-1} \dots a_{-m} = \sum_{i=-m}^n a_i \cdot 10^i, \quad a_i \in \{0, 1, \dots, 9\}$$

wird als Dezimalzahl bezeichnet.

Bsp.: 
$$23.42 = 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 2 \cdot 10^{-2}$$

- Stelle einer Ziffer innerhalb der Zahl gibt an, mit welcher Potenz von 10 zu multiplizieren ist
  - $lue{}$  ightarrow deshalb nennt man ein derartiges System **Stellenwertsystem**
- Darstellung von  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}$  ( $\mathbb{C}$  ebenfalls, aber als Ebene)
- lacksquare Rechner: nur begrenzte Darstellung möglich ightarrow begrenzter Speicher

Allgemein kann eine natürliche Zahl mit Basis b durch

$$\sum_{i=-m}^{n} a_i \cdot b^i, \quad a_i \in \{0, 1, 2, \dots, b-1\}$$

dargestellt werden

- lacksquare Dual (lat. dualis "zwei enthaltend") ightarrow Basis 2
- Ziffern nur aus den Werten 0 und 1
- In der Informatik als Bit, in der E-Technik "on/off"

$$\sum_{i=0}^{n} a_i \cdot b^i, \quad a_i \in \{0,1\}, b=2$$

■ Bsp.: 
$$1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13_{10}$$

- $lue{}$  Oktal (lat. octo acht) ightarrow Basis 8
- Ziffern nur aus den Werten 0 . . . 7
- In der Informatik Permissionsbits

■ Bsp.: 
$$4223_8 = 4 \cdot 8^3 + 2 \cdot 8^2 + 2 \cdot 8^1 + 3 \cdot 8^0 = 2195_{10}$$

- $\blacksquare$  Hexadezimal (griech. hexa sechs & lat. decem zehn)  $\rightarrow$  Basis 16
- **Z**iffern nur aus den Werten  $0, \dots 9$  und Zeichen  $A, \dots, F$
- In der Informatik Codierung von MAC-Adressen, Farbwerten, ...
- Bsp.:  $1310_{16} = 1 \cdot 16^3 + 3 \cdot 16^2 + 1 \cdot 16^1 + 0 \cdot 16^0 = 4880_{10}$

- Ganze Zahlen,
- Zahlen mit Basis b
- Allgemeim:

$$\sum_{i=-m}^n \mathsf{a}_i \cdot \mathsf{b}^i, \quad \mathsf{a}_i \in \{0,1,2,\ldots,b-1\}$$

- Horner-Schema
- Das Polynom  $p(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n$  vom Grad n kann mithilfe des Horner-Schemas durch  $p(x) = (\dots (b_nx + b_{n-1})x + \dots)x + b_0$  definiert werden.

- Divisionsmethode (Restverfahren)
- Konvertierung ganzer Zahlen:
  - Die Zahl wird solange durch die Zahlensystem-Basis geteilt bis die ganzzahlige Teilung das Ergebnis 0 liefert
  - Bei jedem Schritt wird der Rest notiert
  - Rest-Ziffern liefern die Zahl im anderen Zahlensystem

### $\blacksquare \ 617210 \rightarrow 1100000011100_2$

| Dividend | Divisor | Quotient | Rest |
|----------|---------|----------|------|
| 6172     | 2       | 3086     | 0    |
| 3086     | 2       | 1543     | 0    |
| 1543     | 2       | 771      | 1    |
| 771      | 2       | 385      | 1    |
| 385      | 2       | 192      | 1    |
| 192      | 2       | 96       | 0    |
| 96       | 2       | 48       | 0    |
| 48       | 2       | 14       | 0    |
| 24       | 2       | 12       | 0    |
| 12       | 2       | 6        | 0    |
| 6        | 2       | 3        | 0    |
| 3        | 2       | 1        | 1    |
| 1        | 2       | 0        | 1    |

- Legt den Stellenwert der Bits fest
- Legt das Vorzeichen fest Vorzeichenbit
- LSB-0-Bitnummerierung least significant bit
  - Bit am Index 0 niedrigsten Stellenwert
  - $\sum_{i=0}^{n-1} a_i \cdot 2^i$
  - Stellen gemäß ihrer absteigenden Wertigkeit rechts beginnend
- MSB-0-Bitnummerierung most significant bit
  - Bit am Index 0 höchsten Stellenwert
  - $\sum_{i=0}^{n-1} a_i \cdot 2^{n-1-i}$
  - Stellen gemäß ihrer absteigenden Wertigkeit links beginnend

- Bitnummerierung ist unabhängig von der Byte-Reihenfolge
- Werden je acht Bits zu einem Byte gruppiert und diese wiederum zu größeren Zahlenformaten, so ist zusätzlich die Byte-Reihenfolge wichtig
- Big- / Little-Endian-Architektur

- Zusammenfassung von 8 Bit zu einem Byte
- Speicherkapazitäten mit Zweierpotenz 2<sup>n</sup>-Byte
- 2<sup>10</sup> = 1024 statt 1000
- 1 Kilobyte (kB) = 1000 Byte, 1 Megabyte (MB) = 1000 Kilobyte =  $1000 \cdot 1000$  Byte = 1.000.000 Byte
- IEC-Präfixe:
  - 1 Kibibyte (KiB) = 1024 Byte, 1 Mebibyte (MiB) = 1024 · 1024 Byte = 1.048.576 Byte.

# Prefixes for multiples of bits (bit) or bytes (B)

| Decimal           |         | Binary            |         |              |
|-------------------|---------|-------------------|---------|--------------|
| Value             | SI      | Value             | IEC     | <b>JEDEC</b> |
| 1000              | k kilo  | 1024              | Ki kibi | K kilo       |
| 1000 <sup>2</sup> | M mega  | 1024 <sup>2</sup> | Mi mebi | M mega       |
| 1000 <sup>3</sup> | G giga  | 1024 <sup>3</sup> | Gi gibi | G giga       |
| 10004             | T tera  | 10244             | Ti tebi | _            |
| 1000 <sup>5</sup> | P peta  | 1024 <sup>5</sup> | Pi pebi | _            |
| 1000 <sup>6</sup> | E exa   | 1024 <sup>6</sup> | Ei exbi | _            |
| 1000 <sup>7</sup> | Z zetta | 1024 <sup>7</sup> | Zi zebi | _            |
| 10008             | Y votta | 10248             | Yi vobi | _            |











