

数值分析实验报告 _{第三章}

姓名	王琛			
学号	2016011360			
班级	计 65			
实验日期	2019年4月10日			
报告日期	2019年4月10日			

第3章第6题

问题描述

编程序生成 Hilbert 矩阵 H_n ,以及 n 维向量 $b = H_n x$,其中,x 为 所有分量都是 1 的向量。用 Cholesky 分解算法求解方程 $b = H_n x$,得到 近似解 \hat{x} ,计算残差 $r = b - H_n \hat{x}$ 和误差 $\Delta x = \hat{x} - x$ 的 ∞ 范数。

- (1) 设 n=10, 计算 $||\boldsymbol{r}||_{\infty}$ 、 $||\boldsymbol{\Delta}\boldsymbol{x}||_{\infty}$;
- (2) 在右端项上施加 10^{-7} 的扰动然后解方程组,观察残差和误差的变化情况.
- (3) 改变 n 的值为 8 和 12, 求解相应的方程, 观察 $||r||_{\infty}$ 、 $||\Delta x||_{\infty}$ 的变化情况, 通过这个实验说明了什么问题?

解题思路

首先生成 Hilbert 矩阵,由于其是对称正定矩阵,因此可以进行 Cholesky 分解,即 $H = LL^T$,其中 L 是下三角矩阵。

然后,Hx = b 可写成 $LL^Tx = b$ 的形式,利用后代和前代的方法可以求解出方程的近似解 \hat{x} 。并且计算残差和误差,施加扰动后再次计算残差和误差,可以探究其中的规律。

实验结果

当 n 为 8, 10, 12 时, 结果如下表:

	扰动前		扰动后	
n	$ m{r} _{\infty}$	$ \Delta x _{\infty}$	$ m{r} _{\infty}$	$ \Delta x _{\infty}$
8	2.2204e-16	4.1154e-07	2.2204e-16	0.0216
10	2.2204e-16	4.4459e-04	4.4409e-16	0.7007
12	4.4409e-16	0.3358	4.4409e-16	23.6202

实验结论

可以看出,随着 n 的增加, $||r||_{\infty}$ 变化并不明显,并且加上扰动基本不会改变 $||r||_{\infty}$ 的结果,这是因为计算残差时,是用变化后的 b 作为被减数,抵消了扰动。随着 n 的增加,误差的范数也在很快增大,求解方程的结果也就越来越不准确。另外,我们发现,很小的扰动对于误差的范数也造成了巨大的影响,正说明了 Hilbert 矩阵的病态性,n 越大,条件数越来越大,病态性越来越明显。

实验心得

这次实验我对于 Hilbert 矩阵的病态性有了深入的了解, 我深刻体会到了小的扰动所带来的巨大变化。并且从 n=8 到 n=12, 问题的误差竟然发生了指数级别的改变。因此, 在实际问题的求解时, 我们要十分注意系数矩阵的性质, 最好计算出条件数, 看是否符合要求。

主要代码

生成 hilbert 矩阵

根据 Cholesky 分解求解方程组

```
function[x] = lu_solve(1, u, b)
%lu_solve
```

```
\% solve x using 1, u decompsition. NOTE that the diagonal of 1
   is not
% required to be 1.
[m,n]=size(1);
if m \sim = n
    fprintf("error! l is not square matrix!");
end
y=zeros(n,1);
for i=1:n
    y(i)=b(i);
    for j=1:i-1
        y(i)=y(i)-l(i,j)*y(j);
    end
    y(i)=y(i)/l(i,i);
end
x=zeros(n,1);
for i=n:-1:1
    if u(i,i)==0
        fprintf("error, cannot find pivot!");
    end
    x(i)=y(i);
    for j=n:-1:i+1
        x(i)=x(i)-u(i,j)*x(j);
    end
    x(i)=x(i)/u(i,i);
end
```