

Fig. 36. American Time Products programmer. This device was mechanically programmed by motor-driven gears and cams to provide circuit closures at scheduled time intervals. The circuit closures activated electrical contacts in associated seismographic recorders to put time marks on their records.

resulted in the purchase and use of British-made Synchronome Clocks, to be driven from a separate battery supply. The escapement of this clock provides a contact closure every 30 s, which energizes an electromagnet to give the pendulum a slight push at the bottom of its swing. The pendulum then swings freely until the escapement initiates another electrical impulse. The time rate of this clock is good because its escapement requires very little energy—energy which would damp pendulum oscillations—and because very little energy is used to keep the pendulum swinging. (This clock is actually the slave portion of the two-pendulum Shortt clock used in many time observatories in the 1950's.)

In 1953 the crystal-controlled clock was reconsidered, and Texas Instruments designed a system, Model 100B, which is shown in Figure 37. To attain reliable operation of the crystal-frequency divider chain, only binary dividers were employed to convert the crystal frequency to the 60 Hz desired for operation of clocks and recorders. Unfortunately, this limited the choice of crystals to those whose frequency was a power of 2 multiple of 60 Hz, crystals which were not the standards in multiples of 10.

By the time this system was designed, experience had shown that either the NBS station at Boulder, Colorado, WWV, or WWVH, the NBS station in Hawaii, could be received at nearly all Air Force observatories at some time during any 24-hour period. Therefore, a means of accurate observation of an NBS time signal relative to the local crystal clock time was required. To accomplish this function, a neon lamp was mounted back of a slot in a disk which rotated once a second, the disk being geared so that the slot was at the top exactly on each second pulse of the clock. The neon lamp was triggered on by the WWV time signal on each (world time) second. Then by the relation of the light flash position to the top of the circle covering the disk, the error in fractions of a second could be observed.

Later, investigations disclosed that the crystal-frequency divider transistors were not driven well into saturation, so at higher ambient temperatures one or more stages might lock in an intermediate state, causing timing system failure. Also,

Fig. 38. Modular assembly timing system designed for operation from a storage battery supply, 22 to 28 V dc.

the 60-Hz output tubes overloaded because not all of the primary turns of the output transformer were used, and much of the plate current was required to saturate the core. The corrective action was to use all of the primary. An appropriate secondary tap then raised the output voltage considerably. A step-down transformer and a full-wave rectifier were connected to the output, and the resulting dc was introduced as a grid bias to an earlier stage in the amplifier, thereby lowering and stabilizing the power output voltage, also lowering the plate current of the output tubes. Installation of these 100B systems in air-conditioned areas stopped the erratic failures in the frequency divider.

The need for a semiporatable timing system for use by temporary field observers brought forth the next design,

which was put in service in the latter part of 1958. A modular assembly was proposed by James R. Womeck of Geotech, with the obvious advantage that a change of functions would not require complete redesign. A tuning fork divider clock/programmer that would deliver a simple sequence of time pulses was planned originally, but claims for a low-cost crystal oscillator with 10^{-7} precision and other desired functions resulted in a more sophisticated design. Figure 38 shows this Geotech Model 5400 system. The upper row of modules, from left to right, are (1) crystal oscillator with control to adjust frequency if necessary, (2) stroboscope to observe relation to WWV time signal to local clock setting, (3) clock and program to deliver programmed output pulses to recorder. The lower modules are (1) power amplifier to deliver precision 80 Hz to recorder drives, (2) input power (24-V dc) distribution and control module with speaker, (3) crystal-frequency divider chain. (The crystal frequency is 60 times the 9th power of 2, or 30,720 Hz, so nine binary counters comprise the frequency divider.) This timing system later became part of the World-Wide Seismograph System, Model 10700. The total network is now known as the Worldwide Standard Seismograph Network.

With the advent of magnetic tape recording, and the attendant necessity of automatic scanning to locate a specific time on the tape, another form of time code was required. Also, long-period recordings needed a somewhat different time mark output than that for short-period records. To satisfy such requirements and to take advantage of later technology, the Geotech Model 19000 system, shown in Figure 39, was

Fig. 39. Improved timing system designed to provide several forms of output codes, including one for magnetic tape recording and automatic scanning.

designed. Better crystal oscillators provided a drift rate of less than one per 10^9 . The function of comparing system time to WWV or WWVH was incorporated in an oscilloscope with three different sweep rates, and also provision was made to heterodyne the crystal oscillator frequency with the received radio signal. The magnetic tape time code conformed to VELA-UNIFORM specifications. Finally, 100 V-A of frequency-regulated 60-Hz power was provided for driving recorders. These timing systems became available in 1964.

The Model 5400 and the Model 19000 timing systems were designed to operate from a storage battery supply, 22–28 V dc, the batteries normally being charged by (rectified) ac power from a 115-V ac power line. This avoided system outages caused by temporary ac power failure and reduced the importance of having a mechanical clock for backup. The battery supply provided both plus and minus 12 V, which permitted design flexibility in solid-state systems.

Conclusion

The period covered by this history was also the period during which scientific knowledge and engineering technology advanced greatly. At the beginning, little was known about earth noise, its source, or its variation with depth beneath the surface. Pendulum clocks were the most trusted means of seismic frequencies. Solid-state devices were limited in application and power. Seismic signal transmission was limited to the vicinity of each seismometer. Multichannel recording of seismic records was limited to micromechanical seismographs.

The U.S. Government program to monitor underground nuclear

Fig. 37. Crystal-controlled timing system built by Texas Instruments. This system was designed for operation from the 60-power line, requiring 325 W at 45 to 60 Hz.

Digitization of records for computer processing was slow and laborious. Magnetic tape recording was impossible without the required low-frequency amplifiers.

At the end of the period the date on earth noise had been collected and coordinated. Crystal or atomic clocks were available. Vacuum tubes were nearly obsolete, while solid-state devices had advanced in sophistication and power-handling capacity. The basic theory of seismometers was better understood and had permitted the design of smaller, more useful instruments. Multichannel records are available for quality inspection, and digitization can be near the signal source or elsewhere in the system. The seismologist now has at his disposal some tools which he could scarcely have foreseen, or even appreciated, in 1948. Technological advances after 1975 not covered in this history have altered many processes of handling large quantities of data, but I leave them for others to discuss when enough time will have passed to permit objective assessment of their impact on seismology.

Other than that, there is a growing appreciation of the fact that noise measurements in deep wells in some formations now show a marked decrease of noise with increase of frequency beyond 1 or 2 Hz. This is in a range suited to the use of crystal-pressure accelerometers, wherein the inertia of a mass in contact with the crystal provides an adequate output. Dynamic damping here will prevent crystal oscillation and eliminate low-damping thermal noise, and electronic amplifiers are more easily designed for these frequencies. That said, it may be sensing capabilities beyond those imagined

Acknowledgments

The attentive reader will realize that I have had immeasurable assistance in my search for supporting documents, relatives, and unofficial notes. For this, I am grateful to the Geotech, with the obvious advantage that a change of functions would not require complete redesign. A tuning fork divider clock/programmer that would deliver a simple sequence of time pulses was planned originally, but claims for a low-cost crystal oscillator with 10^{-7} precision and other desired functions resulted in a more sophisticated design. Figure 38 shows this Geotech Model 5400 system. The upper row of modules, from left to right, are (1) crystal oscillator with control to adjust frequency if necessary, (2) stroboscope to observe relation to WWV time signal to local clock setting, (3) clock and program to deliver programmed output pulses to recorder. The lower modules are (1) power amplifier to deliver precision 80 Hz to recorder drives, (2) input power (24-V dc) distribution and control module with speaker, (3) crystal-frequency divider chain. (The crystal frequency is 60 times the 9th power of 2, or 30,720 Hz, so nine binary counters comprise the frequency divider.) This timing system later became part of the World-Wide Seismograph System, Model 10700. The total network is now known as the Worldwide Standard Seismograph Network.

With the advent of magnetic tape recording, and the attendant necessity of automatic scanning to locate a specific time on the tape, another form of time code was required. Also, long-period recordings needed a somewhat different time mark output than that for short-period records. To satisfy such requirements and to take advantage of later technology, the Geotech Model 19000 system, shown in Figure 39, was

Bibliography

- Baird, J. R., Low frequency reactance amplifier, Proc. IEEE, 51, 288–303, 1963.
- Oavis, P. O., Jr., and G. D. Ezell, Sub-audio parametric amplifier, *Electronics*, 38, Mar. 1, 28–31, 1963.
- Melton, B. S., The sensitivity and dynamic range of inertial seismographs, *Rev. Geophys. Space Phys.*, 14, 93–118, 1976.
- Melton, B. S., and P. R. Kerr, Polarity coincidence scheme for revealing signal coherence, *Geophysics*, 22, 553–564, 1957.
- Wilson, R. M., and L. R. Burgess, A highly stable cathode-coupled amplifier for seismic recording, *Bull. Seismol. Soc. Am.*, 42, 347–347, 1952.

References

- Baird, J. R., Low frequency reactance amplifier, Proc. IEEE, 51, 288–303, 1963.
- Oavis, P. O., Jr., and G. D. Ezell, Sub-audio parametric amplifier, *Electronics*, 38, Mar. 1, 28–31, 1963.
- Melton, B. S., The sensitivity and dynamic range of inertial seismographs, *Rev. Geophys. Space Phys.*, 14, 93–118, 1976.
- Melton, B. S., and P. R. Kerr, Polarity coincidence scheme for revealing signal coherence, *Geophysics*, 22, 553–564, 1957.
- Wilson, R. M., and L. R. Burgess, A highly stable cathode-coupled amplifier for seismic recording, *Bull. Seismol. Soc. Am.*, 42, 347–347, 1952.

Geophysics at Sea: Rising Fuel Costs

In the past year or two the costs of fuel for research vessels have seriously affected geophysical and oceanographic studies at sea. Many vessels have not left the dock during that period, others have been used sparsely, and research programs have suffered.

The National Science Foundation has considered new efficient vessels to replace the currently existing fleet. New propulsion systems are being considered, although for this decade, no large breakthroughs are expected in the efficiency of diesel engines. Ten years ago, diesel bunker fuel sold for about 15¢ a gallon. In 1973 the price had tripled to about 45¢. In 1980 the price per gallon had risen to more than one dollar, about 700% increase over the pre-1973 prices! The fuel costs always were a large part of the operation budget of a research ship, so the increases have affected the entire oceanographic community. A small marine engine of approximately 400 horsepower, operating at 75% of its load capacity for a year's use in 1970 cost about \$15,000. At a cost of \$105,000 in 1980, the engine would be prohibitively costly. Many small to medium research vessels use a separate 1000-horsepower diesel engine for propulsion end for on-board electric power generation. Larger vessels use proportionally more horsepower, but with larger engines

News

Dallas Peck Selected for USGS

Volcanologist Dallas Peck has been chosen by the Reagan administration to be the next director of the United States Geological Survey (USGS). Peck, chief geologist of the USGS since 1977, is a past president of AGU's section on Volcanology, Geochemistry and Petrology. If the Senate approves Reagan's choice, Peck will become the 11th director of the USGS, succeeding H. Willem Menard, who resigned in January. Doyle G. Frederick, associate director, has been serving as acting director.

Dallas Peck is highly regarded throughout the Survey. His field studies include notable work in the Cascades of western Oregon, in the Sierra Nevada belt, and at the Lava Lake in Hawaii. He has been involved with geological projects in Alaska as well as with numerous studies in the U.S. related to geothermal and volcanic energy sources.

The Geological Survey will benefit from Peck's administrative abilities. He first joined the Survey as a field assistant during the period 1951–53, just after receiving his B.S. in geology from CalTech and while he was completing requirements for the M.S. He then went to Harvard for doctoral studies and rejoined the Survey to finish his thesis. The thesis was completed in 1960, and he was awarded the Ph.D. degree. Between 1960 and 1977, Peck followed the customary USGS practice of rotation between field and administrative duties. It is often said that the USGS directors during that period considered his advice, counsel, and services indispensable. He had to fight for his term in the field, away from Washington.

The USGS has been noted throughout its history for its professional excellence. It would appear that there will be no break in that tradition under Peck's direction.—PMB

Mission to Observe Oceans Proposed

Most serious of the obstacles to understanding ocean circulation is the absence of any widespread means for observing it, according to the recent report of the Ocean Topography Experiment (TOPEX) Science Working Group. To overcome this hurdle, the panel recommends a 5-year satellite altimetry experiment to measure the ocean's topography. Aim of the experiment would be to yield a global view of ocean dynamics. A better estimate of the global—vital to many geophysicists—would result from TOPEX, the group said. A better understanding of ocean circulation would also aid commerce and shipping, fishing, national defense, and weather prediction. In addition, it could help to evaluate ocean disposal of radioactive wastes.

Oceanographers now rely on ships, buoys, and drifting floats to yield ocean data. These instruments, however, can only chart the ocean for a few months at a time in discrete regions. "No existing method permits observation on the global scale that is required to measure and understand the ocean as an entity," the panel reported. Satellite altimetry of the oceans has the "demonstrated capacity" to observe global ocean circulation, the working group concluded.

Established last year by NASA's Environmental Observation Division, the TOPEX group was charged with assessing the usefulness of satellite measurements of ocean topography. Carl Wunsch of the Massachusetts Institute of Technology chaired the 15-member panel. The Jet Propulsion Laboratory was responsible for conducting the study.

The group recommended that NASA start a 5-year satellite altimetry experiment to measure ocean topography. These measurements would be integrated with subsurface data and models of the ocean's density field to determine the general circulation and variability of the ocean, according to the TOPEX report. Then, scientists could calculate the heat transported by the oceans and the interaction of currents with waves and sea ice. The ability to predict the circulation caused by wind movements also could be tested. The TOPEX group had hoped for initial funding in the fiscal 1983 budget, with launch of the satellite to follow in 1986. Wunsch told *Eos*: "It's an unlikely candidate, though, for the fiscal 1983 budget with the present tightening of the fiscal belt," he added.

What is satellite altimetry? The working group emphasized the need for the accuracies obtainable with a TOPEX satellite. These accuracies, the working group said, have been demonstrated with Geos-3 and Seasat. In addition, altimetry does not depend on cloudless skies and good weather. It works under any conditions. Heavy rain may cause difficulty in data interpretation, however.

The working group also pointed to the data interpretation possible with satellite altimetry. The large-scale movement

of water in the sea tends to manifest itself as an elevation change of the sea surface proportional to the strength of the surface currents. If the currents are time varying, then too is the surface elevation. In addition, the sea surface elevation quantifies the surface pressure of the sea (not atmospheric pressure) directly related, by known equations of motion, to subsurface water movements.—PMB

comes improved efficiency, a possible key to solving the fuel problem for the 1980's. The engines themselves will probably not improve in efficiency (20% improvement by the 1990's is optimistic), but it is possible that the larger vessels with larger engines will be used more than smaller vessels. The fact that more stations at sea, more instruments, and more project per cruise in large vessels will offer the only practical answer. Oceanographic research budgets are not expected to rise sufficiently to absorb the new costs.—PMB

VOLCANO NEWS
320 EAST SHORE DRIVE, KENAI, TX 77565, USA

VOLCANO NEWS is a bimonthly newsletter devoted to the exchange of information and ideas concerning volcanism. Recent issues have included articles on volcanic regions such as Iceland, Reunion, Kenya, Indonesia, and the Aleutian Islands, as well as regular reports on St. Helens, meetings, and current literature. Abstracts of Japanese and Russian volcano articles, progress reports of ongoing field work, and miscellaneous notes and reports are regular features. Sample copy \$1. Subscription for 1981: \$7 for USA, Mexico and Canada; \$11 airmail anywhere else.

reporting strong improvement and flows that were above normal at several gaging stations. Some improvement was also noted in the Delaware River Basin.

Southeast. All but three of the 32 index stations reporting from Virginia to Florida were in the lowest 25% of record during May. That is, 75% of the time flows have exceeded those reported during May. New monthly record low flows were established in Virginia, North Carolina, and Georgia. Groundwater levels in most states are below normal for this time of year and, in some areas, are reaching record low levels. Streamflow in North Carolina has been below normal for six straight months.

Great Lakes Region. Streamflow was generally in the normal range throughout the Great Lakes region, although scattered pockets of low flow were reported in Minnesota, while parts of Ohio, Indiana, and Illinois reported above normal flows.

Midwest. Streamflow in much of the Midwest remains below normal, stretching from North Dakota south to Texas and into the Rocky Mountain states of Colorado, Wyoming, and Utah.

West. During May, 11 of the 24 gaging stations reporting from Washington, Oregon, Idaho, Nevada, California, and Arizona reported below normal flows, i.e., within the lowest 25% of record. Streamflow throughout California was below normal for the month. In response to a season of below normal precipitation.

STREAMFLOW DURING MAY

U.S. GEOLOGICAL SURVEY

Postdoctoral Fellows: A Diminishing Supply

Highlighting the modern concept of what used to be positions of status are descriptive terms such as the 'perennial postdoc.' The research scientists with new Ph.D. degrees in hand that were awarded postdoctoral fellowships have been likened to 'planes ... stacked in a holding pattern' (E. M. Looper, *Acad. News Rep.*, 31, p. 3, 1981). In the field of physics, chemistry, and biology a situation of 'extended appointments' for postdocs still exists because of a lack of full-time positions at the Ph.D. level.

The situation in the earth sciences contrasts sharply. Recent hiring patterns by petroleum and mining companies and by the federal government have followed a quickened pace. Geoscientists at the bachelors' and masters' levels are going directly into industry. Graduates in earth science with Ph.D. degrees are accepting research positions in industrial and government laboratories and thus are bypassing the postdoctoral experience. As a consequence, the number of graduate students and postdocs in earth science academic departments has fallen sharply over the past year.

A deplorable balance between job offers and available personnel seems to have been lacking. When the total number of postdocs expanded in the 1970's, cutbacks in the space program produced uncertainties in the job market so that postdoctoral appointments, normally 1-2 years, were extended for an additional year or two. Postdocs moved from laboratory to laboratory, resulting in a good deal of frustration; feelings ranged from disappointment to bitterness as postdocs saw the number of permanent job opportunities decrease.

Now the problem is reversed. The award of a postdoctoral fellowship used to be considered prestigious, an unusual opportunity to gain experience and to do some serious research under the auspices of a famous mentor. Aside from those instances where postdocs have been used as cheap labor for established investigators who were trying to meet grant or contract deadlines, the postdoctoral fellowship experience is still considered valuable and essential. The memories of recent bitterness coupled with attractive offers

**RESEARCH SCIENTIST
MARINE SEISMOLOGY**

Salary: To \$39,889
Ref. No.: 81-NCRSO-EMR-10
Energy, Mines and Resources Canada
Geological Survey of Canada (GSC)
Dartmouth, Nova Scotia

The Atlantic Geoscience Centre located at the Bedford Institute in Dartmouth has a vacancy for an experienced seismologist to lead the marine seismic program of the Atlantic Geoscience Centre. The successful candidate will participate in and co-ordinate the GSC involvement in international, multi-institutional marine seismic reflection and refraction programs; will initiate, conduct and interpret the results from seismic programs of local, national or international scope. Programs are directed towards the investigation of the structure and origin of continental margins off Eastern Canada and the Arctic. This seismologist will be required to contribute original and creative research work.

Qualifications
Graduation with a Doctorate degree or a lesser degree with research experience and productivity equivalent to a Doctorate degree from a recognized university in one of the earth sciences (or a related field) with considerable earth science experience with previous seismological experience preferably in marine seismology and demonstrated capacity for original geophysical research, its organization and coordination.
Knowledge of the English language is essential.

Clearance No.: 111-077-001

Additional job information is available by writing to the address below.
Toute information relative à ce concours est disponible en français et peut être obtenue en écrivant à l'adresse suivante.

How to apply
Send your application form and/or résumé to:
Joan Girling
National Capital Region Staffing Office
Public Service Commission of Canada
300 Laurier Avenue West
Ottawa, Ontario K1A 0M7
(613) 563-5331

Closing date: July 31, 1981

Please quote the applicable reference number at all times.

Canada

In petroleum and resources have prompted many Ph.D. holders to bypass the postdoc.

If past employment cycles persist, it may not be long before the job market tightens again, producing another increase in postdocs. It is noted, however, that even 'the postdocs caught in the holding pattern are filling vital roles in research' (*Postdoctoral Appointments and Disappearances*, 429 pp., National Academy Press, Washington, D.C., 1981). All things considered, the postdoctoral experience is highly beneficial to the Ph.D. holder who is headed for a career in research or in teaching at a research-oriented university. The contributions to science of the postdoc are considered valuable enough that the National Academy of Sciences' Commission on Human Resources now recommends that postdoctoral stipends be raised to be comparable to the average starting salary of an assistant professor. (The average stipend now is 40% less.) —PMB #8

Political Action Committee for Scientists

Spurred by budget proposals that could severely reduce science funding (EOS, March 24, March 3, February 10), seven scientists currently serving as Congressional Science or State Department Fellows recently founded a political action committee (PAC) for scientists. The Science and Technology Political Action Committee (SCITEC-PAC) aims to make scientists more politically aware and better informed about potential legislative actions that affect research. It will also serve to 'abolish a political presence' with respect to science, said Donald Stain, SCITEC-PAC's chairman.

The organization is not a lobbying group, explained Stein, professor of neurology and psychology at Clark University and the University of Massachusetts Medical Center. 'Lobbyists seek to influence officials by presenting information to them,' he said, 'while a PAC tries to influence the outcome of elections through campaign contributions of money, time, and effort in behalf of candidates that share similar goals and aspirations.' In other words, the PAC will be a vehicle for promoting candidates for federal office who advocate strong support for scientific research and training. In addition, the PAC will develop and study science policy and budget issues and will attempt to stimulate government and private sector interest in these issues.

Scientists are traditionally reluctant to think about political activity as a method for furthering their cause, noted David Garin, SCITEC-PAC treasurer. Nobody ever thinks of scientists as an organized body because they never have been one. Stein added, 'Scientists can no longer sit back and watch the continuing erosion of federal support of science,' he said. Scientists must make their needs known to Congress or else have their passionless misinterpreted as a lack of concern, Stein said.

The PAC will not compete with scientific societies and their lobby groups, Garin and Stein emphasized. A non-profit and nonpartisan organization, SCITEC-PAC will not take stands on issues, they add, but will apprise scientists of legislation that affects them.

To start this effort, the organizing committee opened an office at 305 Massachusetts Avenue, N.E., in Washington, D.C. They also are mounting a small fund-raising campaign, which will be followed by a larger direct-mail campaign early this fall. Stein says he hopes the organization will have gathered enough momentum to have an impact on the 1982 federal election. —BTR #8

Langley Medal Awarded

Robert Thomas Jones, senior scientist at the Ames Research Center, Mountain View, Calif., was awarded the distinguished Langley Medal by the Smithsonian Institution for his 'extensive contributions in theoretical aerodynamics, particularly with regard to development of the swept wing, supersonic ejection seat and, more recently, the oblique wing.' Jones is an internationally acclaimed expert on aerodynamics, optics, and biomechanics as well as an applied mathematician, astronomer, inventor, author, and violin maker.

The Langley award has been given to just 18 recipients since it was established 73 years ago. Past recipients include Wilbur and Orville Wright, Charles Lindbergh, and Richard Byrd. Named for Samuel Pierpont Langley, aerospace pioneer and third secretary of the Smithsonian, the medal honors 'especially meritorious investigations in the field of aerospace science.'

Jones discovered the theory of the 'simpler sweepback,' (swept wings are seen on most jet aircraft today). Jones' 1944 discovery of the sweepback effect was not accepted NASA began experiments to test the theory. For his discoveries, Jones was given the Sylvanus Alpert Reed Award by the Institute of the Aeronautical Sciences in 1948. That same year, he came to work for Ames Research Center.

In 1973, Jones was elected to the National Academy of Engineering and the American Academy of Arts and Sciences. He was honored in 1978 with a cash award from NASA's Inventions and Contributions Board and received the Prendell Ring Award in 1978 from the German aerospace Society (Deutsche Gesellschaft für Luft und Raumfahrt), considered the highest honor in the field of fluid dynamics.

A Fellow of the American Institute of Aeronautics and Astronautics, Jones was chosen as an honorary fellow in 1979. In 1981 he was elected to the National Academy of Sciences.

Earlier this year, Jones presented the President's Award for Distinguished Federal Civilian Service, in honor of the many contributions of his 40-year government career. —PMB #8

The book provides a comprehensive introduction to past research results and current measurement capabilities in geological remote sensing. However, it would be a mistake to view *Remote Sensing in Geology* as a self-contained

Reagan Names New Science Advisor

On May 19th the White House announced that Los Alamos Scientific Laboratory (LASL) physicist George Keyworth had been chosen for the position of science advisor to President Reagan. Evidently, Keyworth was selected after several other candidates, mostly from industry, had been eliminated from the running. The position of science advisor to President Reagan has been controversial. While given hints of the Administration's not wanting to fill the post vacated by geophysicist Frank Press, the 'corporate board' have a logical place for a scientist with access to the President. After widespread outcry from the scientific community, the decision to eliminate the post of science advisor was reversed, followed by a quick search for a suitable candidate.

There are several new twists to the appointment. First, the decision to fill the post was critical. The science advisor heads up the Office of Science and Technology Policy (OSTP), which initially was to be transferred out of its high-level position at the White House. The exact relationship of the OSTP to the new administration structure remains unclear at this time, but it has been stated that the advisor will be the President's ear and will be involved in the budget process at the Office of Management and Budget.

Apparently, the Administration wanted an advisor with knowledge of the defense establishment. Candidates from the corporate world with sufficient stature for the position simply had to large a salary discrepancy (about a factor of 10 difference in salary between industry and government at this level). Keyworth, on the other hand, was supported strongly by Edward Teller and Harold Agnew, former director of Los Alamos, both well known for their hawkish views. (Science, May 22, 1981, p. 903).

George Keyworth, B.S. Yale 1963, Ph.D. Duke 1968, age 41, is currently director of the Physics Division at LASL. He is not well known for his research and is not known in Washington. He has the reputation, however, of being a very capable scientist with a flair for administration. In part the reason for his relative obscurity within the science community is related to the nature of his classified work at Los Alamos. Although he comes from 'outside of the traditional ranks,' Keyworth's credentials appear to be more than adequate for the present requirements of the post of science advisor. —PMB #8

text in my opinion, the book would need to be supplemented with more specialized literature and more detailed case study examples of successful remote sensing projects to be used as an instructional text. The book tends itself to this type of use, in that each chapter contains an excellent bibliography of key references, and all of the images employed as illustrations are carefully documented.

Individuals involved in geological remote sensing may quibble with the emphasis or style of presentation in certain sections. I personally felt that thermal infrared and microwave imaging techniques should have received greater emphasis in the second half of the book. In addition, it seemed to me that several chapters in the second half devoted too much space to describing the geological characteristics of the earth's crust at the expense of describing how remote sensing techniques can be used to study these characteristics. It is quite conceivable, however, that someone with a background in engineering or computer science would have a very different reaction.

In an overall sense, *Remote Sensing in Geology* is fine. Its stated goal is to provide a comprehensive summary of the current state-of-the-art within a rapidly maturing, interdisciplinary field. *Remote Sensing in Geology* is potentially useful for students, instructors, and researchers, and its audience is likely to grow throughout the 1980's.

Mark Suttle is with the Office of Space and Terrestrial Applications, NASA Headquarters, Washington, D.C.

The Science and Wonders of the Atmosphere

S. O. Gedzelman, John Wiley, New York, xiv + 535 pp., 1980, \$19.95.

Reviewed by Raymond C. Steley

Stanley Gedzelman and his associates at John Wiley have given us an effective and scientifically satisfying introductory college survey text. The book is planned for students with no science or mathematics beyond the ordinary

textbooks which follow contain very brief but probably adequate glimpses of the solar system and the atomic and molecular nature of the earth's entire atmosphere and introduce the concepts of pressure, energy, temperature and heat transfer. Chapters 8-14 move the reader rapidly through the heat budget of the earth, the hydrologic cycle and hydrometeors, including sections on thermodynamic diagrams, atmospheric stability and cloud physics, as well as descriptive sections on air pollution and agricultural meteorology. Chapters 15 and 16 explain how the earth's wind systems are driven and present climatological pictures of the wind distribution. Chapters 17 and 18 bring us back to the surface weather chart and introduce the 500 mb chart. Chapters 19 and 20 look at local winds and storms, and Chapter 21 takes a brief glance at present-day forecasting methods. The remaining four chapters give a picture of the world's climates now and in the past, concluding with a brief look at the way weather and climate have affected land forms, human health and history, and Coriolis force. Another fault (common to most such texts) is the omission of Alaska, Hawaii, Canada, Puerto Rico, and adjacent oceans from most weather charts and most synoptic discussion.

The text is obviously too long for the usual one semester or one quarter course. Gedzelman regards many sections as alternate and optional material. The instructor building a course on this textbook must select from it very carefully to construct the sort of one-term course desired. The book will serve best the instructor who has strong training in meteorology. (Contrary to Gedzelman's remark on p. 8, the text will not produce a reader who is... almost a professional meteorologist by the end of the book.)

The text is attractive with large, clear neatly printed double column pages. Useful tables and well-drawn figures abound. The publisher has used two colors in printing the text material, black and maroon. This is fine for most people, but a total loss for the color-blind reader. It would have helped in many figures if red lines had been dashed and if red shading could have been applied. In the numbered bibliography, advanced textbooks and sources are numbered in red. My color-blind colleague tells me he cannot distinguish the red from the black numbers (asterisks would have done the job).

I have not taught using this text, but I have discussed it with lecturers and teaching assistants who have used it. Lecturers are enthusiastic, while teacher assistants have mixed feelings, mainly because of what they see as the aforementioned condescending attitude of the author. I do not object to this, but I am annoyed in a few places by what I call 'cutesie' illustrations (especially the misleading Figure 1.5 which shows cartoon pedestrians feeling the earth's Coriolis force). Another fault (common to most such texts) is the omission of Alaska, Hawaii, Canada, Puerto Rico, and adjacent oceans from most weather charts and most synoptic discussion.

The text contains an excellent 12-page glossary of over 600 items. The 11-page index is detailed and very helpful.

An instructor using this text will probably want to add more numerical problems for homework drill. The text problems and questions should be read and checked before assignment. Gedzelman sometimes plays games with the problems (for example, problem 10.10 intentionally asks an impossible question). The instructor should be aware of this before writing a note to the author or publisher.

If you are a meteorologist teaching a course where this might be the text, I urge you to request an examination copy from the publisher and give it serious consideration. I think you would enjoy using it.

Raymond C. Steley is Visiting Scholar, Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Classified**NEW BOOKS IN HYDROLOGY AND HYDROGEOLGY****SUBTERRANEAN HYDROLOGY**

by G. Kovacev and Associates. Hardbound. 988 pages. \$49.00

APPLIED MODELING OF HYDROLOGIC TIME SERIES, by J.D. Sales, J.W. Delleur, V. Yevjevich, and W.L. Lane. Hardbound. 498 pages. \$32.00.

SELD-LOAD TRANSPORT, Theory and Practice by K. Stelzer. Softbound. 293 pages. \$22.00.

MATHEMATICAL MODELING OF HYDROLOGIC SERIES, by G.G. Svandzze. Hardbound. 324 pages. \$28.00.

KARST HYDROGEOLOGY, by P.T. Milanovic. Hardbound. 444 pages. \$29.00.

For detailed information on book content ask for a special leaflet, or for the catalog no. 2 (1980-81) for 75 books available. To obtain information and to place an order for books please write to: WATER RESOURCES PUBLICATIONS, Distribution Division, P.O. Box 2841, Littleton, Colorado, 80161, USA, Tel.: (303) 779-6685.

POSITIONS WANTED

ELECTRO-OPTICAL SYSTEM CONSULTANT. Electro-optical system consultant available to technically review and monitor the acquisition of custom remote and *in situ* instruments and systems. Box 005, American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009.

Replies should be addressed to: Box _____ American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009.

POSITIONS WANTED
Rates per line
1-5 lines—\$1.00, 6-11 lines—\$0.75,
12-28 lines—\$0.55

POSITIONS AVAILABLE
Rates per line
1-5 lines—\$2.00, 6-11 lines—\$1.80,
12-28 lines—\$1.40

SERVICES, SUPPLIES, COURSES, AND ANNOUNCEMENTS
Rates per line
1-5 lines—\$2.50, 6-11 lines—\$1.85,

12-28 lines—\$1.75

STUDENT OPPORTUNITIES
For special rates, query Robin Little, 800-242-2488.

Canada

POSITIONS WANTED

Research Position/Space Plasma Physicist. Applications are invited for two possible research positions in the Department of Space Physics and Astronomy, Rice University.

One position involves work on a computer code for simulating the large-scale dynamics of the earth's ionosphere and magnetosphere, including computer simulation of specific events and comparison with ground and satellite data. Preference will be given to applicants having experience with space or laboratory plasma physics, and with large computers.

The second possible position involves analysis of data from Atmospheric Explorer and Dynamics Explorer satellites. Preference will be given to applicants having experience with space plasmas and reduction of spacecraft data.

Title and salary for either position will be arranged, depending on experience. Please send resume and bibliography to R.A. Wolf or P.H. Reiff, Department of Space Physics and Astronomy, Rice University, Houston, Texas 77001.

Rice University is an equal opportunity/affirmative action employer.

Meteorologist/Remote Sensing. Immediate opening for candidates with a Ph.D. in Meteorology with post graduate research experience and interest in Remote Sensing.

Applications with supporting data and letter of reference should be sent to: Chippenham, Department of Oceanography, University of Washington, Seattle, WA 98195.

The University of Washington is an equal opportunity/affirmative action employer.

An equal opportunity employer.

Persons interested in applying for the position should send resume by July 7, 1981 to:

Darrell R. Fleishman
Business Manager
Holcomb Research Institute
Butler University
Indianapolis, Indiana 46208

Butler University is an equal opportunity employer.

**Maurice Ewing Series
Volume 4:**
Earthquake Prediction
An International Review

David W. Simpson
Paul G. Richards

During the past 5 years exciting new evidence on the occurrence of prehistoric earthquakes has come from geological studies of fault zones, particularly trenching and the dating of offset geological units.

One of the goals of the Third Ewing Symposium reported

Research Associate. Position available July 1 for one Ph.D. scientist in climatology-glaciology. Work involves research on ice-climate synoptic interactions based on analysis of satellite imagery and data from Nimbus and OMSI systems. A Ph.D. in climatology and cryospheric parameters using multivariate statistical techniques. Research is performed in a cooperative university-government laboratory employing scientists engaged in interdisciplinary work related to the environment. Position requires scientific analysis and display of remote sensing data and in data processing, demonstrated ability to write scientific reports, background of glaciological/geomorphological field research in polar areas; experience in interpretation of snow cover, sea ice, and cloud conditions from visible, IR, and ESMR microwave imagery and digital data; experience with multivariate statistical methods techniques, especially as applied to geological or related data; experience in FORTRAN programming in a CDC Kronos or NOS operating environment; and research experience in synoptic climatology and ice-climate interactions.

Salary approximately \$17,000 per year. Applicants should contact the Colorado Job Service, 1701 33rd Street, Boulder, Colorado 80302, telephone (303) 443-6300, and refer to job order number 2217769, for referral to the employer, which is an equal opportunity affirmative action employer.

Temporary Staff Positions in Isotope and Trace Element Geochemistry. The research program of the new Geochemistry Division at the Max-Planck-Institut für Chemie in Mainz is oriented toward the geochemical structure and development of the earth's mantle. Our facilities include a new Varian MAT 281 automated solid source mass spectrometer (in addition to older instruments) for isotopic analysis of Nd, Sr, and Pb.

Available at the Institute are also electron microscope, INAA, XRF, spark source MS, and piston-cylinder apparatus. Applications are invited for geochemists with experience in isotope geochemistry and petrologists with experimental experience in trace element partitioning. Appointments are normally made for two years, but a one year extension is possible.

Applications should be sent to A. W. Hofmann, Institut für Mineralogie, Geochemie, Max-Planck-Institut für Chemie, Postfach 3600, D-6500 Mainz, FRG.

Professor of Space Physics. The Institute of Geophysics and Planetary Physics of UCLA invites applications for an academic ladder faculty position in the field of space physics. The appointment is expected to be made at the level of professor. Applicants should have well established records in research in the area of fields and particles in space, and will be expected to conduct vigorous research programs in space plasma physics. Response should include a resume of education, professional experience, and published research. Send replies to L. Keppler, Associate Director, Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90024.

UCLA is an equal opportunity affirmative action employer.

Physical Oceanographer/ Geophysical Fluid Dynamicist

Asté Associates, a growing research firm, located in Southern California, engaged in theoretical and empirical physical oceanography, offering permanent, full-time positions. Candidates require Ph.D. (or equivalent) experience in physical oceanography or geophysical fluid dynamics. Salaries are competitive and negotiable, based on qualifications. Asté offers a fringe benefit package of superior quality. Qualified candidates should send résumé, salary history, and list of professional references to:

Personnel Administrator
Asté Associates
P.O. Box 350
Encino, CA 91316

An equal opportunity employer M/F.

Research Coordinator PHYSICAL OCEANOGRAPHY

Skidaway Institute
Savannah, GA

Skidaway Institute of Oceanography is seeking person with an oceanographic, meteorological or engineering background to join a research team investigating physical oceanographic processes on the continental shelf. This person must operate and maintain a remote oceanographic data acquisition system and must have experience with digital equipment and the processing of data originating from such equipment. He or she will be responsible for checking and calibrating sensors on a scheduled basis, for data coding and for data analysis.

Applicants should have an M.S. degree in a related field or have the equivalent in training and experience. Knowledge of time series analysis procedures and techniques, computer programming, and technical report writing are necessary skills. Independent research and publication of results will be encouraged.

Starting Salary: \$16,600-\$20,000 depending upon previous experience and qualifications. Send résumé including three references to: Dr. Jack Blanton, Skidaway Institute of Oceanography, P.O. Box 13887, Savannah, GA 31408. Phone (912) 356-2457/2453.

SKIDAWAY is an affirmative action/equal opportunity employer.

Sedimentologist or Sedimentary Petrologist/University of California, Santa Barbara. (Corraktion) Applications are invited for a tenure track appointment in soft rock geology to be filled in 1981-82. Rank dependent on qualifications and experience but preference will be given to the assistant professor level. Applicant should normally have a Ph.D. and strong field-orientation and quantitative background. The candidate will be expected to develop a strong research program in sedimentation. The candidate will also be expected to teach at both undergraduate and graduate levels and interact with students and faculty of the department, particularly in the general areas of diagenesis, volcanic processes, paleomagnetism, as well as field geology. Additional duties may include teaching physical geology and summer field geology.

Please send resume, other documentation of abilities, and four letters of recommendation by September 30, 1981 to Dr. Arthur G. Sylvester, Chairman, Department of Geological Sciences, University of California, Santa Barbara, CA 93106. Telephone (805) 961-3156.

The University of California is an affirmative action/equal opportunity employer.

Geophysicist/Oceanography Postdoctoral Research Associate. The Department of Oceanography, University of Washington, is seeking qualified candidates for a Post-doctoral Research Associate position, available January 1982, to carry out research on interpretation of marine reflection data. A strong background in seismic wave propagation, inverse theory (including linear programming), and modern reflection data processing will be most helpful, as will an acquaintance with petrologic theories of oceanic lithosphere composition. Appointments are for one year, possibly extended for a second year. Send curriculum vitae and a list of four references to: Chet Peterman, Faculty Recruitment Committee, Department of Oceanography WS-10, University of Washington, Seattle, WA 98195.

The University of Washington is an equal opportunity affirmative action employer.

Scientist. Immediate opening for Scientist with experience in Laser Analysis Techniques and Optics. Familiarity with Laser and Optics Instrumentation a plus. Candidate must possess a Ph.D. in Atmospheric Science/Optics/Physics.

Send resume to Melba Houston, Technical Recruiter, Systems and Applied Sciences Corporation, 6811 Kenilworth Avenue, Silver Spring, Maryland 20904.

An equal opportunity employer hv.

Postdoctoral Position in Geochemistry/Cosmochemistry, University of Arizona. Applicances are invited for a postdoctoral research association in the Lunar and Planetary Laboratory at the University of Arizona. The associate will collaborate with Dr. William V. Boynton in ongoing investigations of the refractory inclusions in carbonaceous chondrites. The selected applicant will have major responsibilities to conduct mineralogical investigations to supplement auger neutron activation analysis studies. Experience with an electron microscope is essential; experience with neutron activation is desirable. Facilities include a fully automated SEM/electron microscope, numerous gamma-ray detectors including a Compton-suppression spectrometer, several computers and a TRIGA reactor.

Applications, accompanied by a resume, statement of research interests, and complete bibliography, should be sent to Dr. William V. Boynton, Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721. Letters of recommendation, directed as above, should be sent from at least three persons who are well acquainted with the applicant's accomplishments and potential. To receive full consideration, application materials should be received by August 31, 1981.

The University of Arizona is an equal opportunity affirmative action employer.

Postdoctoral Position in Geodynamics, University of Arizona. Applicances are invited for a postdoctoral research association in the Lunar and Planetary Laboratory at the University of Arizona. The associate will collaborate with Dr. William V. Boynton in ongoing investigations of the refractory inclusions in carbonaceous chondrites. The selected applicant will have major responsibilities to conduct mineralogical investigations to supplement auger neutron activation analysis studies. Experience with an electron microscope is essential; experience with neutron activation is desirable. Facilities include a fully automated SEM/electron microscope, numerous gamma-ray detectors including a Compton-suppression spectrometer, several computers and a TRIGA reactor.

Applications, accompanied by a resume, statement of research interests, and complete bibliography, should be sent to Dr. William V. Boynton, Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721. Letters of recommendation, directed as above, should be sent from at least three persons who are well acquainted with the applicant's accomplishments and potential. To receive full consideration, application materials should be received by August 31, 1981.

The University of Arizona is an equal opportunity affirmative action employer.

Faculty Position/Geophysicist. The Department of Geological Sciences of the University of Texas at El Paso has an opening in geophysics which can be filled at the assistant or associate professor level. The emphasis will be on obtaining a quality individual regardless of specialty. However, candidates who would complement existing programs in geochemistry, crustal studies, sedimentology, and regional geophysics/geochemistry will be given preference. The successful candidate must hold a doctoral degree and will be expected to maintain a high level of research activity and to be active in the geophysics graduate program which involves 18-20 students (roughly 1/3 doctoral candidates). The geophysics program is well equipped and enjoys good support from the university administration. The deadline for applications is July 15, 1981 with the position to be filled prior to September 1, 1982. Applications and three letters of reference should be sent to:

Dr. Robert F. Roy
Department of Geological Sciences
University of Texas at El Paso
El Paso, TX 79968.

The University of Texas at El Paso is an equal opportunity affirmative action employer.

Electron Microprobe Technical Specialist/University of Colorado. The Department of Geological Sciences, University of Colorado, Boulder, seeks a person who will assume responsibility for the department's electron microprobe laboratory. Duties will include day-to-day operation of our MAC 400 microprobe as well as other X-ray equipment within the Department, microprobe software and hardware development, and participation in research projects involving minerals, sulfide and oxide mineralogy. The job requires either a degree in electronics or electrical engineering, or two years of technical experience utilizing electronic instrumentation associated with an analytical column instrument. An individual with an M.S. degree in Geology and microprobe experience will be considered highly desirable. Salary ranges from \$20,000-\$25,000 depending on experience. Please send, by August 15, letter of application and resume to Bruce Berger, Personnel Department, University of Colorado, 1811 University Avenue, Boulder, CO 80302.

The University of Colorado is an equal opportunity affirmative action employer.

Scripps Institution of Oceanography

is soliciting applications for a postdoctoral fellowship in any aspect of marine geology, marine geochemistry, or marine geophysics for one year beginning fall 1981. Applicants should submit names of three references, bio-bibliographies, reprints, and a statement of research interest. Preference will be given to recent Ph.D.s. Salary will be approximately \$19,500 depending upon experience and publications.

No moving expenses can be paid. Submit applications to Chairman, Geological Research Division, A-020, Scripps Institution of Oceanography, La Jolla, CA 92093, no later than August 1, 1981.

The University of California, San Diego is an equal opportunity/equal opportunity employer.

Research Seismologist/Solid Earth Geophysicist/University of California, Santa Barbara. (Corraktion) Applications are invited for a tenure track appointment in solid rock geophysics to be filled in 1981-82. Rank dependent on qualifications and experience but preference will be given to the assistant professor level. Applicant should normally have a Ph.D. and strong field-orientation and quantitative background. The candidate will be expected to develop a strong research program in seismology. The candidate will also be expected to teach at both undergraduate and graduate levels and interact with students and faculty of the department, particularly in the general areas of diagenesis, volcanic processes, paleomagnetism, as well as field geology. Additional duties may include teaching physical geology and summer field geology.

Please send resume, other documentation of abilities, and four letters of recommendation by September 30, 1981 to Dr. Arthur G. Sylvester, Chairman, Department of Geological Sciences, University of California, Santa Barbara, CA 93106. Telephone (805) 961-3156.

The University of California is an affirmative action/equal opportunity employer.

Geophysicist/Oceanography Postdoctoral Research Associate. The Department of Oceanography, University of Washington, is seeking qualified candidates for a Post-doctoral Research Associate position, available January 1982, to carry out research on interpretation of marine reflection data. A strong background in seismic wave propagation, inverse theory (including linear programming), and modern reflection data processing will be most helpful, as will an acquaintance with petrologic theories of oceanic lithosphere composition. Appointments are for one year, possibly extended for a second year. Send curriculum vitae and a list of four references to: Chet Peterman, Faculty Recruitment Committee, Department of Oceanography WS-10, University of Washington, Seattle, WA 98195.

An equal opportunity employer hv.

Geophysicist/Tectonophysicist. The Department of Geology and Geophysics at the University of Wyoming has a tenure track opening at the Associate Professor level for a geophysicist/tectonophysicist. An interest in velocity measurements and other physical properties of rocks is essential. Additional interest in crustal structures and plate tectonics is desirable. Applicant should be able to relate studies of physical properties to field relationships. Ph.D. required.

Applications will be accepted through July 15, 1981. Applicants should send a vita, including names of three references, to:

Professor R. S. Houston
Department of Geology/Geophysics
University of Wyoming
Laramie, Wyoming 82071

The University of Wyoming is an equal opportunity affirmative action employer.

Hydrogeochimist. Hydrogeochimist for Water Resources Center to conduct research studies including those related to geochemical and hydrologic analysis of Great Basin ground and surface water systems, and scaling and hydrothermal geological problems. Duties include use of geochemical and hydrodynamic computer models and their adaptations to meet project needs; and design and management of field geochemical research projects. Requires MS or BS with five years experience in geochemistry, hydrology, or hydrogeology; experience in interactive modeling with aqueous geochemical models; experience in design and implementation of field geochemical research projects including various field measurements and sample collection; knowledge of physical flow dynamics as applied to solution transport; demonstrated ability to work with others on a variety of research problems; knowledge of various laboratory procedures used in aqueous and mineral analysis. The successful candidate will be offered a six-month contract based on an annual salary of \$18,000-\$21,000, depending upon qualifications and experience. Send resume and letter of application, postmarked by July 15, 1981 to Personnel Department, Desert Research Institute, University of Nevada System, P.O. Box 60220, Reno, Nevada 89508.

An affirmative action/equal opportunity employer.

Services

Scripps Remote Sensing Tutorials.

1A. Overview of the Remote Sensing Facility—This one-day seminar describes the data bases, sources and processing capabilities available at Scripps Institution of Oceanography, Remote Sensing Facility. A morning lecture will introduce past, current and future space platforms available for observation of the oceans. A brief discussion of where and how to access this information will conclude the first part of the class.

The afternoon will include a demonstration of processing and displaying imagery obtained from TIROS-N, NOAA-8 and Nimbus-7.

Classes will be held at the Helen Reit Library on Monday, April 20, 1981 and Monday, July 27, 1981, at 8:30 am. A nonrefundable fee of \$50.00 must be submitted with the application. Enrollment limit—12.

2A. User's Introduction to the Scripps Remote Sensing Facility—This four-day workshop is intended exclusively for individuals who will be using the facility at Scripps. Two morning lectures will describe in detail the hardware, software and personnel resources available to oceanographers. Existing data bases, their characteristics, format, mode and cost of access will be covered. Basics of image processing will be introduced along with in-depth look at the Interactive Digital Image Manipulation System used at the SRSF.

The afternoon will be followed by afternoon lab sessions which consist of hands-on exercises at the facility. The third morning will be devoted to train users in real-time spacecraft tracking and data recording and acquisition.

The remainder of the 3rd day and the entire 4th day will be used to work with users on a one-to-one basis. Attendees are encouraged to bring their own digital tapes with data of interest to them, which can be used during this last portion of the workshop.

Send resume, references and summary of research interests to: Search Committee, Division of Marine and Atmospheric Chemistry, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, Florida 33149.

The University of Miami is an equal opportunity affirmative action employer.

AGU Midwest Meeting

September 17-18
Minneapolis, Minnesota

Abstract Deadline: July 1
Convenor: V. Rama Murty

Papers and posters originating in or pertaining to the region are solicited for the following special sessions:

Mantle structure and dynamics—Contact Geoffrey Davies or Clem Chase.

Rock-water interaction and hydrothermal processes and metallogenesis—Contact William Seyfried.

Precambrian crustal evolution of the North American continent—Contact Paul Welbel.

Geodynamics and paleomagnetism—Contact Suvarn Banerjee.

Hydrology in mid-continent U.S.—Contact H. Q. Odlandskith or E. C. Alexander, Jr.

Abstrac...

ANNOUNCEMENTS

28th Annual Report on Research Under Sponsorship of The Petroleum Research Fund—Containing 296 technical progress reports, bibliographies and information on the ACS-PRF Program—grants held for 1979, advanced scientific education and fundamental research in the "petroleum field." Available gratis upon request to: The Petroleum Research Fund, American Chemical Society, 115 Columbia Street, N.W., Washington, D.C. 20004.

See standard AGU format (see page 20 of January 13 Eos) and send original and two copies of abstracts to AGU Midwest Meeting, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Abstracts will be published in Eos, with a substantive meeting report after the meeting. There will be no abstract charge.

Faculty Position Space Physics & Astronomy

The Department of Space Physics and Astronomy of Rice University expects to fill a regular faculty position beginning August 1982. Academic rank and tenure status will be determined on the basis of experience.

Preference will be given to experimentalists who are Principal Investigators for experiments on present or planned spacecraft missions. However, consideration will be given to other qualified candidates in the general areas of space physics, astrophysics, and atmospheric science.

Applicants should send resumes and bibliographies to

Professor A. J. Deeser
Chairman
Department of Space Physics
and Astronomy
Rice University, Houston,
TX 77001.

Rice University is an equal opportunity affirmative action employer.

Meetings

Call for Papers

Ocean Sciences: AGU/ASLO Joint Meeting

A joint meeting of the American Geophysical Union's Oceanography Section and the American Society of Limnology and Oceanography will be held February 16-19, 1982, in San Antonio, Texas. The El Tropicano Hotel is headquarters for the meeting, with additional housing available at the St. Anthony and the Gunter hotels.

February 16-19, 1982
San Antonio, Texas

F. R. S. T. Author (School of Oceanography Hydro University, Watertown, Mass. 02172)
S. C. N. D. Author (USGS, Woods Hole, Mass. 02543)

Sample Abstract

Geophysical Year

(Boldface indicates meetings sponsored or cosponsored by AGU.)

1981

June 29-July 2 22nd United States Symposium on Rock Mechanics, Cambridge, Mass. Sponsor, Massachusetts Institute of Technology, John Barra Dutton, Coordinator, Center for Advanced Engineering Study Seminars, MIT, Cambridge MA 02139.

June 29-July 3 Conference Workshop on Heterogeneous Catalysis: Its Importance to Atmospheric Chemistry, Albany, N.Y. Sponsors, NSF, NASA (V.A. Mofini), Atmospheric Sciences Research Center, State Univ of New York, Albany, N.Y. 12222.

June 29-July 11 Seminar on Fluid-Dynamical Problems in Astrophysics and Geophysics, Chicago, Ill. Sponsors, American Mathematical Society, Society for Industrial and Applied Mathematics, Meeting Arrangements Department, American Mathematical Society, Post Office Box 6248, Providence, R.I.

July 6-11 Goedcong '81-South African Geodynamics Project and 3rd International Platinum Symposium, Pretoria, South Africa. Sponsors, Geological Society of South Africa, South African National Committee for the International Union of Geological Sciences, Society of Economic Geologists, (The Symposium Secretariat S. 217, CSIR, P.O. Box 395, Pretoria 0001 Republic of South Africa.)

July 8-11 National Conference on Environmental Engineering, Atlanta, Ga. Sponsor, Environmental Engineering Division of American Society of Civil Engineers, F. Michael Saunders, 1981 National Conferencce on Environmental Engineering, School of Civil Engineers, Georgia Institute of Technology, Atlanta, GA 30332.

July 15-17 Summer Computer Simulation Conference, Washington, D.C. Sponsors, Instrument Society of America, the Society for Computer Simulation, (William E. Buchanan, Applied Physics Laboratory, Johns Hopkins Roat, Laurel, MD 20810.)

July 21-23 Chapman Conference on Spatial Variability in Hydrologic Modeling, Fort Collins, Colo. (Meetings, AGU, 2000 Florida Ave., N.W., Washington, DC 20009.)

July 21-31 21st General Assembly of IA- SPEL London, Ontario, Canada, J.A. E. Beck, Department of Geophysics, Univ. of Western Ontario, London, Ontario N6A 5B7 Canada.)

July 27-30 Eighth International Symposium on Urban Hydrology, Hydraulics, and Sediment Control, Lexington, Ky. (Don J. Wood, Department of Civil Engineering, 206B Anderson Hall, Univ. of Kentucky, Lexington, KY 40506.)

Aug. 3-15 IAGA Fourth Scientific Assembly, Edinburgh, United Kingdom. (B.R. Leaton, Institute of Geological Sciences, Edinburgh EH9 3LA United Kingdom.)

Aug. 4-7 International Conference on Energy Education, Providence, R.I. (Donald Kwan, Conference Chairman, Office of Energy Education, Univ. of Rhode Island, Kingston, RI 02881.)

Aug. 9-15 Symposium on Variations in the Global Water Budget, Oxford, United Kingdom. Sponsors, ICCL, IAH, INQUA. (Prof. R. E. Newell, Department of Meteorology 54-1520, MIT, Cambridge, MA 02139.)

Aug. 9-18 International Congress of Surveyors, F.I.G., Montreux, Switzerland. Sponsor, Federation Internationale Des Geometres (American Congress on Surveying and Mapping, 210 Little Falls Street, Falls Church, VA 22046.)

Aug. 10-14 International Conference on Basement Tectonics, Oslo, Norway. Sponsor, Norwegian Petroleum Society. (Roy H. Gabrielsen, Department of Geology, Univ. of Oslo, P.O. Box 1047, Blindern, Oslo 3 Norway; Don L. Bear, Department of Geology, Fort Lewis College, Durango, CO 81301.)

Aug. 10-14 Water Forum '81; Technical State of the Art Exchange, San Francisco, Calif. Sponsors, American Society of Civil Engineers, Irrigation and Drainage Division, Committee on Draining (P. M. Morris, 509 North Roosevelt Blvd., Apt. D-105, Fish Church, CA 94404.)

Aug. 10-19 20th General Assembly of the International Association of Radio Science, Washington, D.C. (R. Y. Dow, National Academy of Sciences, 2101 Constitution Ave., Washington, DC 20418.)

Aug. 17-28 Third Scientific Assembly of IAMAP with Extraordinary General Assembly, Hamburg, Federal Republic of Germany. (S. Ruttenburg, NCAR, P.O. Box 3000, Boulder, CO 80307.)

Aug. 17-18 Open Symposium on Mathematical Models of Radio Propagation, Washington, D.C. Sponsor, URSI. (J. R. Welt, Bldg. 20, Electrical Engineering Department, Univ. of Arizona, Tucson, AZ 85721.)

Aug. 17-22 Ninth International Symposium on Earth Tides, New York, N.Y. Sponsors, IAG, IUGG, Columbia Univ. (J. T. Kuo, 828 S.W. Mudd, Columbia Univ., New York, NY 10027.)

Aug. 18-21 Second Biennial Conference and Exhibition of the Australian Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 13-15 Fifth Geopressured-Geothermal Energy Conference, Baton Rouge, La. Sponsors, Loulouline Geological Survey, Department of Natural Resources, Energy Programs Office, Loulouline State University, IEEE Computer Society, IEEE Acoustics, Speech and Signal Processing Society, C.H. Chen, Electrical Engineering Department, Southeastern Massachusetts University, North Dartmouth, MA 02747.

Aug. 20-21 Second International Symposium on Computer-Aided Seismic Analysis and Discrimination, North Dartmouth, Mass. Sponsors, Electrical Engineering Department, Loulouline Geological Survey, Department of Natural Resources, Energy Programs Office, Loulouline State University, IEEE Computer Society, IEEE Acoustics, Speech and Signal Processing Society, C.H. Chen, Electrical Engineering Department, Southeastern Massachusetts University, North Dartmouth, MA 02747.

Aug. 24-26 International Symposium on Management of Geodetic Data, Copenhagen, Denmark. Sponsors, IAG, the Danish National Committee of IUGG, Geodetic Institut, C. C. Tschechling, International Symposium Management of Geodetic Data, Geodetic Institut, Gemalheve Alle 22, Charlottenlund DK-2800 Copenhagen.)

Aug. 24-29 Eighth Annual Meeting of the European Geophysical Society, Uppsala, Sweden. (C.E. Lund, Chairman Local Organizing Committee, Institute of Solid Earth Physics, Uppsala University, Box 556, 22 Uppsala, Sweden.)

Aug. 25-27 The Royal Institution of Chartered Surveyors Centenary Celebration, London, England. (Representative Radlinski, American Congress on Surveying and Mapping, 210 Little Falls Street, Falls Church, VA 22046.)

Aug. 28-Sep. 9 Arc Volcanism Symposium, Tokyo, Japan. Sponsors, Volcano Society of Japan, IAVCEI (Otsuka Shimozu), IAVCEI Symposium on Arc Volcanism, Earthquake Research Institute, Univ. of Tokyo, Bunkyo-ku, Tokyo 113 Japan.)

Oct. 26-30 Symposium on Quaternary Land-Sea Migration Bridges and Human Occupation of Submerged Coastlines, La Jolla, Calif. Sponsors, USGS, East Bay Council on Surveying and Mapping, Calif. Div. of Mines and Geol., Woodward-Clyde Consultants, Calif. St. Univ. at Hayward, Site Hillsfield, Dept. of Geological Sciences, California State University, Hayward, CA 94524.

Nov. 1-3 1981 International Colloquium on Metal, Pasadena, Calif. Sponsors, NASA, Lunar and Planetary Institute, Division of Planetary Sciences of the AAS. (Conway W. Snyder, Jet Propulsion Laboratory, Pasadena, CA 91099.)

Aug. 31-Sept. 2 3rd International Colloquium on Metal, Pasadena, Calif. Sponsors, NASA, Lunar and Planetary Institute, Division of Planetary Sciences of the AAS. (Conway W. Snyder, Jet Propulsion Laboratory, Pasadena, CA 91099.)

Nov. 1-5 Sixth Biennial International Estuarine Research Conference, Glendale Beach, Ore. Sponsors, Estuarine Research Federation. (Jeff F. Watson, Treasurer, USFWS Suite 1982, 100 E. Monroe Street, Portland, OR 97232.)

April 11-16 Penrose Conference on Antarctic Research Conference, Gleneden Beach, Ore. Sponsors, Estuarine Research Federation. (Jeff F. Watson, Treasurer, USFWS Suite 1982, 100 E. Monroe Street, Portland, OR 97232.)

April 18-21 Cordilleran Section, Geological Society of America and Seismological Society of America Annual Meeting, Anaheim, Calif. (Nell Malone, Earth Sciences Department, California State Univ., Fullerton, CA 92634.)

April 27-28 Chapman Conference on Rainfall Rate, Urbana, Ill. (Meetings, AGU, 2000 Florida Avenue, N.W., Washington, DC 20009.)

Sept. 7-12 Third International Symposium on Antarctic Glaciology, Columbus, Ohio. Sponsors, International Commission on Snow and Ice, International Glaciological Society, (Institute of Polar Studies, Ohio State Univ., 125 S. Oval Mall, Columbus, OH 43210.)

Sept. 1-11 National Water Well Association Annual Convention and Groundwater Technology Education Session, Kansas City, Mo. (NWVA, 500 West Wanamaker Road, 10th Floor, Washington, DC 20009.)

Sept. 16-18 Ocean '81, Boston, Mass. Sponsors, Marine Technology Society, IEEE Council of Oceanic Engineering, AGU, (R. Negle, Publicity Manager, Raytheon Company, 141 Spring St., Lexington, MA 02173.)

Sept. 17-18 Midwest Meeting, Minneapolis, Minn. (Magma, AGU, 2000 Florida Ave., N.W., Washington, DC 20009.)

Sept. 17-18 Pacific Northwest Regional Meeting, Eugene, Wash. (Bob Bentlay, PNAGU, Central Washington University, P.O. Box 1000, Department of Geology, Ellensburg, WA 98920.)

Sept. 20-22 National Water Well Association 34th Annual Convention and Exposition, Atlanta, Ga. (NWVA, 500 West Wanamaker Road, 10th Floor, Washington, DC 20009.)

Sept. 28-Oct. 10 NATO Advanced Study Institute on Chemistry of the Unpolluted and Polluted Troposphere, Corfu, Greece. (W. Jaeschke, Center of Environmental Protection, University of Frankfurt, Robert-Mayer-Str. 11, 6000 Frankfurt/M, FRG.)

Sept. 28-Oct. 10 NATO Advanced Study Institute on Chemistry of the Nonurban Troposphere, Willingen, NV, Germany. (Ignacio Rodriguez-Llave, Universidad Simon Bolivar, Apartado Postal 80.856, Ceretano, 1001, Venezuela.)

Sept. 28-12 Third International Geodetic Symposium on Satellite Doppler Positioning, Las Cruces, N.M. Sponsors, Defense Mapping Agency, National Ocean Survey, AGU. (Jack Flehman, Mail Stop 401-B, NABA Langley Research Center, Hampton, VA 23665.)

Sept. 31-June 4 AGU Spring Meeting, Philadelphia, Pa. (Meetings, AGU, 2000 Florida Ave., N.W., Washington, DC 20009.)

May 25-28 Symposium on the Composition of Nonurban Troposphere, Willingen, NV, Germany. (Ignacio Rodriguez-Llave, Universidad Simon Bolivar, Apartado Postal 80.856, Ceretano, 1001, Venezuela.)

June 13-17 International Symposium on Coastal Soils' Seventh Annual Conference, Galveston, Tex. (Antonio L. T. Kuo, 828 S.W. Mudd, Columbia Univ., New York, NY 10027.)

Oct. 11-14 Coastal Soils' Seventh Annual Conference, Galveston, Tex. (Antonio L. T. Kuo, 828 S.W. Mudd, Columbia Univ., New York, NY 10027.)

Oct. 11-14 Coastal Soils' Seventh Annual Conference, Galveston, Tex. (Antonio L. T. Kuo, 828 S.W. Mudd, Columbia Univ., New York, NY 10027.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-15 51st Annual International Meeting of the Society of Exploration Geophysicists, Los Angeles, Calif. (William L. Baker, Technical Program Chairman, c/o Chevron Oil Field Research Co., Box 448, La Habra, CA 90631.)

Oct. 11-1

