Pretende-se calcular um zero da seguinte função:

Pont uações: 10

$$f(x) = (x - 2.6) + (\cos(x + 1.1))^3$$

Usando o Método de Newton, e partindo de

 $x_0 =$

1.8

Calcule o valor da primeira iteração x1.

Resposta:

7.10526

1

....

$$x_{n+1} = x_n - \frac{\cos(x_n+c)^3 + x_n - a}{1-3\cos(x_n+c)^2 \sin(x_n+c)}$$

Correcto

Pontuação para esta pergunta: 10/10.

2

O valor de x (a raiz índice m de R)

Pontuações: 10

$$x = \sqrt[m]{R}$$

pode ser calculada usando o Método de Newton, aplicado a uma das seguintes equações:

a)	$x^m - R = 0$	75
b)	$1 - \frac{R}{x^m} = 0$	179

Cada uma resulta numa fórmula iterativa diferente.

Diga qual das duas escolheria. Justifique sucintamente a sua escolha.

(se precisar de escrever expressões matemáticas use o botão de DragMath III no editor, ou notação LATEX ou notação C)

Resposta:

Eu escolhería a equação a) porque a derivada da equação b) é mais complexa que a de a) e assim faz com que seja necessário efectuar mais cálculos, aumentando assim as hipótes es de ocorrer mais erros devido a arredondamentos.

derivada de a) = $m*(x^{(m-1)})$ derivada de b) = $m*(x^{(m-1)})*R$

Parcialmente correcto

Pontuação para esta pergunta: 4/10.

Pontuações: 20

A tabela abaixo apresenta parte da resolução de um sistema de equações lineares A.x = b, pelo Método de Eliminação de Gauss.

١				۸	b
J				A	D
	0,10000	0,50000	3,00000	0,25000	0.00000
	1,20000	0,20000	0,25000	0,20000	1.00000
	-1,00000	0,25000	0,30000	2,00000	2.00000
	2,00000	0,00001	1,00000	0,40000	3.00000

1,00000 5,00000 30,00000 2,50000 0,00000 1,00000 6.16379 0.48276 -0.17241 0,00000 1,00000 -0.95418 -1.41034 0,00000 0,00000 0,00000 0,00000 0.00000 1,00000 1,82038

Nas perguntas que se seguem, faça os cálculos utilizando a precisão mostrada na tabela.

- a) Complete a tabela.
- b) Calcule a solução do sistema

(A)	X ₁	0.97265	
	x ₂	-3.06450	
(6)	Х3	0.32663	
	X4	1.82038	

c) Admita os seguintes erros nos coeficientes das incógnitas e nos termos independentes:

δA	δb	
0,5	0,5	

Estude a estabilidade externa para esse erros.

δx_1	0.20417	
δx_2	0.94501	
δx_3	-0.0255	
δx_4	0.22399	

Comentário: Atenção às referências no Excel

Parcialmente correcto

Pontuação para esta pergunta: 13/20.

4

Pontuações: 20

Os resultados de uma experiência ajustam-se bem à expressão

$$y = 5\cos x - \sin x$$
.

no intervalo de 0 a 6.

Use o método da secção áurea para pesquisar o mínimo da função.

Preencha as células em branco com o valor numérico adequado.

X ₁	X2	X3	X4	f(X±)	f(X ₂)	f(X ₃)	f(x4)
2	4	2.76393	3.23606	-2.99003	-2.51142	-5.01640	-4.88337
2	3.23606	2.47214	2.76393	-2.99003	-4.88337	-4.54135	-5.01640
2.47214	3.23606	2.76393	2.94427	-4.54135	-4.88337	-5.01640	-5.09902

As iterações apresentadas permitem-me enquadrar o valor do máximo num intervalo com a amplitude 0.47213

Incorrecto

Pontuação para esta pergunta: 0/20.

=

Pontuações: 15

A equação diferencial de 1º ordem

$$\frac{dx}{dt} = \sin(ax) + \sin(bt)$$

Parâmetros	
a = 1	
b = 2	

foi integrada numericamente, usando o Método de Runge-Kutta de 4º ordem, tendo sido obtidos os resultados apresentados nas tabelas abaixo.

1º integração	2ª integração	3ª integração
t x 1,000 1,000000 1,500 1,767816	t x 1,000 1,000000 1,250 1,425139 1,500 1,768150	t x 1,000 1,00000 1.125 1.216267 1,250 1,425152 1.375 1.614387 1,500 1,768184

- a) Calcule os valores em falta na tabela.
- b) Calcule o valor do Quociente de Convergência para t = 1.59.836857

Parcialmente correcto

6

Pontuações: 1

Uma função foi tabelada, e com essa tabela foram calculados vários valores para o integral definido no intervalo dado. No cálculo de cada valor foi usado sempre o mesmo método, mas variado o parâmetro h, na regra h1 = h0/2.

	f(x)	X		f(x)	X		f(x)	Х
5	5	1,000	5	5	1,000	5	5	1,000
						10,2	5,1	1,100
			11.2 ✓	5,6	1,200	11,2	5,6	1,200
				20-01702		11,8	5,9	1,300
12,4	6,2	1,400	12,4	6,2	1,400	12,4	6,2	1,400
-4/3/200		0.000000	and the	10000000		14	7	1,500
			15.6 ✓	7,8	1,600	15,6	7,8	1,600
						16	8	1,700
8,5	8,5	1,800	8,5	8,5	1,800	8,5	8,5	1,800
5,18	l=		5.27	l'=	3	5,235	1"=	

a) Qual foi o método numérico de integração usado no cálculo ?

Regra dos Trapézios 🔻 🗸

- b) Preencha os valores em falta na tabela, de acordo com a resposta anterior.
- c) Calcule o quociente de convergência
- d) O valor do quociente de convergência garante uma boa aproximação ao valor do integral?
- e) Independentemente da resposta anterior, calcule o valor estimado para o erro

-2.57143

Não

0.01167