Paarungen in der Kryptographie

Osmanbey Uzunkol

Fakultät für Mathematik Technische Universität Berlin

18.01.2006

Outline

Grundlagen

- **Grundlagen**
 - Bilineare Paarungen
 - Elliptische Kurven
 - Divisorentheorie
- 2 Tate Paarung
 - Definition
 - Berechnung
 - Anwendung
- 3 Einbettungsgrad
 - Kurven mit kleinem Einbettungsgrad
 - Supersingulare Kurven
 - MNT Kurven
- 4 Distortionsabbildungen
 - Definition
 - Modifizierte Tate Paarung

Ende

Outline

Grundlagen

- **Grundlagen**
 - Bilineare Paarungen
 - Elliptische Kurven
 - Divisorentheorie
- 2 Tate Paarung
 - Definition
 - Berechnung
 - Anwendung
- 3 Einbettungsgrad
 - Kurven mit kleinem Einbettungsgrad
 - Supersingulare Kurven
 - MNT Kurven
- 4 Distortionsabbildunger
 - Definition
 - Modifizierte Tate Paarung

Ende

Was brauchen Wir?

- Seien G_1 , G_2 sind zwei additive Gruppen der Ordnung n und G_3 eine zyklische multiplikative Gruppe der Ordnung n.
- Eine Paarung ist eine Abbildung

$$e: G_1 \times G_2 \rightarrow G_3$$

 Die Paarungen, die wir betrachten werden besitzen die folgende Eigenschaften

Bilinearität

Für alle $P, P' \in G_1$ und $Q, Q' \in G_2$ haben wir

$$e(P+P',Q)=e(P,Q)e(P',Q)$$
 und

Einbettungsgrad

$$e(P, Q + Q') = e(P, Q)e(P, Q')$$

Nicht-ausgeartet

- Für alle $P \in G_1$ mit $P \neq 0$ exisiert ein $Q \in G_2$ so dass $e(P,Q) \neq 1$
- Für alle $Q \in G_2$ mit $Q \neq 0$ exisiert ein $P \in G_1$ so dass $e(P,Q) \neq 1$

Bilinearität

Für alle $P, P' \in G_1$ und $Q, Q' \in G_2$ haben wir

$$e(P+P',Q)=e(P,Q)e(P',Q)$$
 und

$$e(P, Q + Q') = e(P, Q)e(P, Q')$$

Nicht-ausgeartet

- Für alle $P \in G_1$ mit $P \neq 0$ exisiert ein $Q \in G_2$ so dass $e(P,Q) \neq 1$
- Für alle $Q \in G_2$ mit $Q \neq 0$ exisiert ein $P \in G_1$ so dass $e(P,Q) \neq 1$

Lemma

Seien e eine bilineare Abbildung und $P \in G_1$, $Q \in G_2$. Dann

$$e(P,0) = e(0,Q) = 1.$$

2
$$e(-P,Q) = e(P,Q)^{-1} = e(P,-Q)$$
.

$$e([j]P,Q) = e(P,Q)^j = e(P,[j]Q) \text{ für alle } j \in \mathbb{Z}.$$

Definition

Weierstrassche Gleichung

Seien K ein Körper und \overline{K} der algebraische Abschluss von K. Sei weiter F(X,Y,Z) ein glattes homogenes Polynom definiert über $\mathbb{P}^2(\overline{K})$ und gegeben durch

$$F(X, Y, Z) = y^2Z + a_1XYZ + a_3YZ^2 - X^3 - a_2X^2Z - a_4XZ^2 - a_6Z^3.$$

- Eine *elliptische Kurve E* ist die Menge der Nullstellen eines solchen Polynoms *F*.
- Es existiert genau ein Punkt $\mathcal{O} = (0:1:0)$ in E mit Z = 0. Dieser Punkt heisst Punkt auf unendlichen.
- Man kann die folgende Gleichung erhalten, wenn $Z \neq 0$ ist

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

Die Lösung

Man kann die folgende Gleichung erhalten, wenn $Z \neq 0$ ist

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

wobei
$$x = \frac{X}{Z}$$
 und $y = \frac{Y}{Z}$.

$$y^2 = x^3 + ax + b$$

Die Lösung

Man kann die folgende Gleichung erhalten, wenn $Z \neq 0$ ist

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

wobei $x = \frac{X}{Z}$ und $y = \frac{Y}{Z}$.

Forderungen

Wenn $char(K) \neq 2,3$ ist, dann ist jede elliptische Kurve isomorph zu

$$v^2 = x^3 + ax + b$$
.

Punktgruppe einer elliptischen Kurve

- Die Punkten einer elliptichen Kurve bilden eine addtitive Gruppe mit Nullement O, die mittels tangent-and-chord-method beschrieben werden kann.
- Man kann explizit die Addition zweier Punkte geben. Wir geben die Summe falls char(K) > 3 ist:

 Man kann auch dann skalare Multiplikation folgenermasse definieren

 $[m]P = P + \cdots P (m$ -mal) für m > 0 und

 $[0]P = \mathcal{O}$, und [-m]P = [m](-P) für m < 0

Punktgruppe einer elliptischen Kurve

- Die Punkten einer elliptichen Kurve bilden eine addtitive Gruppe mit Nullement \mathcal{O} , die mittels tangent-and-chord-method beschrieben werden kann.
- Man kann explizit die Addition zweier Punkte geben. Wir geben die Summe falls char(K) > 3 ist:
 - **1 Eingabe** $P = (x_1, y_1) \neq \mathcal{O}, \ Q = (x_2, y_2) \neq \mathcal{O}$
 - **2** Ausgabe $P + Q = (x_3, y_3)$
 - ① $x_3 = \lambda^2 x_1 x_2$ und $y_3 = \lambda(x_1 x_3) y_1$, wobei $\frac{y_2 y_1}{2}$ falls $P \neq Q$
 - $\lambda = \begin{cases} \frac{x_2 x_1}{3x_1^2 + a} & \text{falls } P = Q \end{cases}$
- Man kann auch dann skalare Multiplikation folgenermasse definieren
 - $[m]P = P + \cdots P (m\text{-mal})$ für m > 0 und
 - $[0]P = \mathcal{O}$, und [-m]P = [m](-P) für m < 0

Punktgruppe einer elliptischen Kurve

- Die Punkten einer elliptichen Kurve bilden eine addtitive Gruppe mit Nullement O, die mittels tangent-and-chord-method beschrieben werden kann.
- Man kann explizit die Addition zweier Punkte geben. Wir geben die Summe falls char(K) > 3 ist:

1 Eingabe
$$P = (x_1, y_1) \neq \mathcal{O}, \ Q = (x_2, y_2) \neq \mathcal{O}$$

2 Ausgabe
$$P + Q = (x_3, y_3)$$

$$\lambda_3 = \lambda^2 - x_1 - x_2 \text{ und } y_3 = \lambda(x_1 - x_3) - y_1, \text{ wobei}$$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} \text{ falls } P \neq Q \\ \frac{3x_1 + a}{2y_1} \text{ falls } P = Q \end{cases}$$

$$[m]P = P + \cdots P (m\text{-mal})$$
 für $m > 0$ und

$$[0]P = \mathcal{O}$$
, und $[-m]P = [m](-P)$ für $m < 0$

Punktgruppe einer elliptischen Kurve

- Die Punkten einer elliptichen Kurve bilden eine addtitive Gruppe mit Nullement O, die mittels tangent-and-chord-method beschrieben werden kann.
- Man kann explizit die Addition zweier Punkte geben. Wir geben die Summe falls char(K) > 3 ist:

1 Eingabe
$$P = (x_1, y_1) \neq \mathcal{O}, \ Q = (x_2, y_2) \neq \mathcal{O}$$

2 Ausgabe
$$P + Q = (x_3, y_3)$$

$$\lambda = \begin{cases} \lambda^2 - x_1 - x_2 \text{ und } y_3 = \lambda(x_1 - x_3) - y_1, \text{ wobel} \\ \lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} \text{ falls } P \neq Q \\ \frac{3x_1^2 + a}{2y_1} \text{ falls } P = Q \end{cases}$$

$$[m]P = P + \cdots P (m\text{-mal}) \text{ für } m > 0 \text{ und}$$

$$[0]P = \mathcal{O}$$
, und $[-m]P = [m](-P)$ für $m < 0$

Punktgruppe einer elliptischen Kurve

- Die Punkten einer elliptichen Kurve bilden eine addtitive Gruppe mit Nullement O, die mittels tangent-and-chord-method beschrieben werden kann.
- Man kann explizit die Addition zweier Punkte geben. Wir geben die Summe falls char(K) > 3 ist:

1 Eingabe
$$P = (x_1, y_1) \neq \mathcal{O}, \ Q = (x_2, y_2) \neq \mathcal{O}$$

2 Ausgabe
$$P + Q = (x_3, y_3)$$

$$[m]P = P + \cdots P (m\text{-mal}) \text{ für } m > 0 \text{ und}$$

Punktgruppe einer elliptischen Kurve

- Die Punkten einer elliptichen Kurve bilden eine addtitive Gruppe mit Nullement O, die mittels tangent-and-chord-method beschrieben werden kann.
- Man kann explizit die Addition zweier Punkte geben. Wir geben die Summe falls char(K) > 3 ist:

1 Eingabe
$$P = (x_1, y_1) \neq \mathcal{O}, \ Q = (x_2, y_2) \neq \mathcal{O}$$

2 Ausgabe
$$P + Q = (x_3, y_3)$$

$$[m]P = P + \cdots P \text{ (}m\text{-mal)} \text{ für } m > 0 \text{ und}$$

$$[0]P = \mathcal{O}$$
, und $[-m]P = [m](-P)$ für $m < 0$

Torsionspunkte

- Wenn $[n]P = \mathcal{O}$ für $P \in E$, dann heisst P ein n-Torsionspunkt.
- Die Untergruppe *E*[*n*] der *n*-Torsionspunkte ist gegeben durch

$$E[n] = \{ P \in E : [n]P = \mathcal{O} \} \text{ bzw. } E(K)[n] = \{ P \in E(K) : [n]P = \mathcal{O} \}$$

$$|E(\mathbb{F}_q)| = q+1-t$$

Torsionspunkte

- Wenn $[n]P = \mathcal{O}$ für $P \in E$, dann heisst P ein n-Torsionspunkt.
- Die Untergruppe *E*[*n*] der *n*-Torsionspunkte ist gegeben durch

$$E[n] = \{ P \in E : [n]P = \mathcal{O} \} \text{ bzw. } E(K)[n] = \{ P \in E(K) : [n]P = \mathcal{O} \}$$

Hasse

Sei *E* eine elliptische Kurve über \mathbb{F}_a .

Spur von Frobenius ist die Zahl t mit

$$\mid E(\mathbb{F}_q) \mid = q+1-t$$

• Satz von Hasse $|t| \le 2\sqrt{q}$.

• Silverman Wenn (n, q) = 1 dann

$$E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$$
.

- Nach Silverman wenn (n, q) = 1 ist, dann ist die Zahl der E[n] gleich n^2 . Ferner wenn n prim ist, dann ist E[n] erzeugt von zwei linear unabhähngigen n-Torsionspunkte.
- Eine rationale Abbildung von E nach E heisst Endomorphismus. Die ist auch ein Gruppenhomomorphismus, z.B. Multiplikation bei m. Für die Kurven definiert über \mathbb{F}_q haben wir auch der sogenannte Frobenius Endomorphismus Φ , der den Punkt (x,y) zu (x^q,y^q) zuschickt. Dann ist es einfach zu sehen

$$P \in E(\mathbb{F}_q)$$
 genau dann, wenn $\Phi(P) = P$

• Silverman Wenn (n, q) = 1 dann

$$E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$$
.

- Nach Silverman wenn (n, q) = 1 ist, dann ist die Zahl der E[n] gleich n^2 . Ferner wenn n prim ist, dann ist E[n] erzeugt von zwei linear unabhähngigen n-Torsionspunkte.
- Eine rationale Abbildung von E nach E heisst Endomorphismus. Die ist auch ein Gruppenhomomorphismus, z.B. Multiplikation bei m. Für die Kurven definiert über \mathbb{F}_q haben wir auch der sogenannte Frobenius Endomorphismus Φ , der den Punkt (x,y) zu (x^q,y^q) zuschickt. Dann ist es einfach zu sehen

 $P \in E(\mathbb{F}_q)$ genau dann, wenn $\Phi(P) = P$.

• **Silverman** Wenn (n, q) = 1 dann

$$E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$$
.

- Nach Silverman wenn (n, q) = 1 ist, dann ist die Zahl der E[n] gleich n^2 . Ferner wenn n prim ist, dann ist E[n] erzeugt von zwei linear unabhähngigen *n*-Torsionspunkte.
- Eine rationale Abbildung von E nach E heisst Endomorphismus. Die ist auch ein Gruppenhomomorphismus, z.B. Multiplikation bei m. Für die Kurven definiert über \mathbb{F}_a haben wir auch der sogenannte Frobenius Endomorphismus Φ , der den Punkt (x, y) zu (x^q, y^q) zuschickt. Dann ist es einfach zu sehen

$$P \in E(\mathbb{F}_q)$$
 genau dann, wenn $\Phi(P) = P$.

• Für unser Zweck, ist ein *Divisor* eine formale Summe auf der Kurve $E(\mathbb{F}_{q^m})$, m > 0, d. H.

$$\mathcal{A}=\sum_{P\in E}a_P(P).$$

- Grad der divisor A ist $deg(A) = \sum_{P \in E} a_P$
- Die Menge der Divisoren bildet eine abelsche Gruppe
- Seien $f: E(\mathbb{F}_{q^k}) \to E(\mathbb{F}_{q^k})$ eine Funktion auf der Kurve und $\mathcal{A} = \sum_{P \in \mathcal{E}} a_P(P)$ ein Divisor vom Grad 0. Dann definieren wir

$$f(A) = \prod_{P} f(P)^{a_{P}}$$

• Weil $\sum_{P} a_{P} = 0$ ist, haben wir f(A) = (cf)(A) für alle $c \in \mathbb{F}_{-k}^{*}$

• Für unser Zweck, ist ein *Divisor* eine formale Summe auf der Kurve $E(\mathbb{F}_{q^m})$, m>0, d. H.

$$\mathcal{A}=\sum_{P\in E}a_P(P).$$

- Grad der divisor A ist $deg(A) = \sum_{P \in E} a_P$.
- Die Menge der Divisoren bildet eine abelsche Gruppe
- Seien $f: E(\mathbb{F}_{q^k}) \to E(\mathbb{F}_{q^k})$ eine Funktion auf der Kurve und $\mathcal{A} = \sum_{P \in E} a_P(P)$ ein Divisor vom Grad 0. Dann definieren wir

$$f(\mathcal{A}) = \prod_{P} f(P)^{a_P}$$

• Weil $\sum_{P} a_{P} = 0$ ist, haben wir f(A) = (cf)(A) für alle $c \in \mathbb{F}_{-k}^{*}$

• Für unser Zweck, ist ein *Divisor* eine formale Summe auf der Kurve $E(\mathbb{F}_{q^m}), \ m>0$, d. H.

$$\mathcal{A}=\sum_{P\in E}a_P(P).$$

- Grad der divisor A ist $deg(A) = \sum_{P \in E} a_P$.
- Die Menge der Divisoren bildet eine abelsche Gruppe.
- Seien $f: E(\mathbb{F}_{q^k}) \to E(\mathbb{F}_{q^k})$ eine Funktion auf der Kurve und $\mathcal{A} = \sum_{P \in E} a_P(P)$ ein Divisor vom Grad 0. Dann definieren wir

$$f(\mathcal{A}) = \prod_{P} f(P)^{a_P}$$

• Weil $\sum_{P} a_{P} = 0$ ist, haben wir f(A) = (cf)(A) für alle $c \in \mathbb{F}_{a^{k}}^{*}$

• Für unser Zweck, ist ein *Divisor* eine formale Summe auf der Kurve $E(\mathbb{F}_{q^m})$, m>0, d. H.

$$\mathcal{A} = \sum_{P \in E} a_P(P).$$

- Grad der divisor A ist $deg(A) = \sum_{P \in E} a_P$.
- Die Menge der Divisoren bildet eine abelsche Gruppe.
- Seien $f: E(\mathbb{F}_{q^k}) \to E(\mathbb{F}_{q^k})$ eine Funktion auf der Kurve und $\mathcal{A} = \sum_{P \in E} a_P(P)$ ein Divisor vom Grad 0. Dann definieren wir

$$f(\mathcal{A}) = \prod_{P} f(P)^{a_P}$$

• Weil $\sum_{P} a_{P} = 0$ ist, haben wir $f(\mathcal{A}) = (cf)(\mathcal{A})$ für alle $c \in \mathbb{F}_{a^{k}}^{*}$

• Für unser Zweck, ist ein *Divisor* eine formale Summe auf der Kurve $E(\mathbb{F}_{q^m})$, m>0, d. H.

$$\mathcal{A}=\sum_{P\in E}a_P(P).$$

- Grad der divisor A ist $deg(A) = \sum_{P \in E} a_P$.
- Die Menge der Divisoren bildet eine abelsche Gruppe.
- Seien $f: E(\mathbb{F}_{q^k}) \to E(\mathbb{F}_{q^k})$ eine Funktion auf der Kurve und $\mathcal{A} = \sum_{P \in \mathcal{E}} a_P(P)$ ein Divisor vom Grad 0. Dann definieren wir

$$f(\mathcal{A}) = \prod_{P} f(P)^{a_P}$$

• Weil $\sum_{P} a_{P} = 0$ ist, haben wir f(A) = (cf)(A) für alle $c \in \mathbb{F}_{a^{k}}^{*}$

$$(f) \equiv \sum_{P} \operatorname{ord}_{P}(f)(P).$$

- ullet ord $_P(f)$ ist die Ordnung non Null- und Pollstellen von f auf P
- Ein divisor \mathcal{A} heisst Hauptdivisor, wenn $\mathcal{A}=(f)$ für eine f. $\sum_{P} a_{P}(P)$ ist genau dann Hauptdivisor, wenn $deg(\mathcal{A}=0)$ und $deg(\mathcal{A}=0)$ sind.
- Die Divisoren \mathcal{A} und \mathcal{B} sind äquivalent, $\mathcal{A} \sim \mathcal{B}$, wenn $\mathcal{A} \mathcal{B}$ ein Hauptdivisor ist. Dann für $P \in E[n]$, (n,q) = 1, und für \mathcal{A}_P äquivalent zu $(P) (\mathcal{O})$, dann existiert nach Definition $(f_0) = n \mathcal{A}_P$ ein Hauptdivisor

$$(f) \equiv \sum_{P} \operatorname{ord}_{P}(f)(P).$$

- $\operatorname{ord}_P(f)$ ist die Ordnung non Null- und Pollstellen von f auf P.
- Ein divisor \mathcal{A} heisst Hauptdivisor, wenn $\mathcal{A}=(f)$ für eine f. $\sum_{P} a_{P}(P)$ ist genau dann Hauptdivisor, wenn $deg(\mathcal{A}=0)$ und $deg(\mathcal{A}=0)$ sind.
- Die Divisoren \mathcal{A} und \mathcal{B} sind äquivalent, $\mathcal{A} \sim \mathcal{B}$, wenn $\mathcal{A} \mathcal{B}$ ein Hauptdivisor ist. Dann für $P \in E[n]$, (n,q) = 1, und für \mathcal{A}_P äquivalent zu $(P) (\mathcal{O})$, dann existiert nach Definition $(f_P) = n \mathcal{A}_P$ ein Hauptdivisor

$$(f) \equiv \sum_{P} \operatorname{ord}_{P}(f)(P).$$

- ord_P(f) ist die Ordnung non Null- und Pollstellen von f auf P.
- Ein divisor \mathcal{A} heisst *Hauptdivisor*, wenn $\mathcal{A} = (f)$ für eine f. $\sum_{P} a_{P}(P)$ ist genau dann Hauptdivisor, wenn deg(A = 0) und $\sum_{P} a_{P} P = \mathcal{O} \text{ sind.}$

$$(f) \equiv \sum_{P} \operatorname{ord}_{P}(f)(P).$$

- $\operatorname{ord}_P(f)$ ist die Ordnung non Null- und Pollstellen von f auf P.
- Ein divisor \mathcal{A} heisst *Hauptdivisor*, wenn $\mathcal{A} = (f)$ für eine f. $\sum_{P} a_{P}(P)$ ist genau dann Hauptdivisor, wenn $deg(\mathcal{A} = 0)$ und $\sum_{P} a_{P}(P) = \mathcal{O}$ sind.
- Die Divisoren \mathcal{A} und \mathcal{B} sind äquivalent, $\mathcal{A} \sim \mathcal{B}$, wenn $\mathcal{A} \mathcal{B}$ ein Hauptdivisor ist. Dann für $P \in E[n]$, (n,q) = 1, und für \mathcal{A}_P äquivalent zu $(P) (\mathcal{O})$, dann existiert nach Definition $(f_P) = n\mathcal{A}_P$ ein Hauptdivisor

Outline

Grundlagen

- Grundlagen
 - Bilineare Paarungen
 - Elliptische Kurven
 - Divisorentheorie
- 2 Tate Paarung
 - Definition
 - Berechnung
 - Anwendung
- 3 Einbettungsgrad
 - Kurven mit kleinem Einbettungsgrad
 - Supersingulare Kurven
 - MNT Kurven
- 4 Distortionsabbildunger
 - Definition
 - Modifizierte Tate Paarung

Ende

• Sei $l \in \mathbb{N}$ mit (l,q)=1. Die *Tate Paarung* der Ordnung l ist die Abbildung

$$e_l: E(\mathbb{F}_q)[l] \times : E(\mathbb{F}_{q^k})[l] \to \mathbb{F}_{q^k}^*,$$

definiert durch

$$e_I(P,Q)=f_P(\mathcal{A}_Q)^{(q^k-1)/I}.$$

Eigenschaften

- Kompatibilität: Sei I = hI'. Wenn $P \in E(\mathbb{F}_q)[I]$ und $Q \in E(\mathbb{F}_q)[I']$, dann $e_{I'}(hP,Q) = e_I(P,Q)^h$.
- **Bemerkung**: Weil $P \in E(\mathbb{F}_q)$ ist, ist f_P eine rationale Funktion mit Koeffizienten in \mathbb{F}_q .

• Sei $l \in \mathbb{N}$ mit (l,q)=1. Die *Tate Paarung* der Ordnung l ist die Abbildung

$$e_l: E(\mathbb{F}_q)[l] \times : E(\mathbb{F}_{q^k})[l] \to \mathbb{F}_{q^k}^*,$$

$$e_I(P,Q)=f_P(\mathcal{A}_Q)^{(q^k-1)/I}.$$

- Eigenschaften
 - e_l ist wohldefiniert
 - 2 *e_I* ist eine bilieare Paarung, d. H. *e_I* ist bilinear und nicht-ausgeartet.
- Kompatibilität: Sei I = hI'. Wenn $P \in E(\mathbb{F}_q)[I]$ und $Q \in F(\mathbb{F}_q)[I']$ dann $e_{I'}(hP,Q) = e_{I}(P,Q)^h$
- **Bemerkung**: Weil $P \in E(\mathbb{F}_q)$ ist, ist f_P eine rationale Funktion mit Koeffizienten in \mathbb{F}_q .

• Sei $l \in \mathbb{N}$ mit (l,q) = 1. Die *Tate Paarung* der Ordnung l ist die Abbildung

$$e_l: E(\mathbb{F}_q)[l] \times : E(\mathbb{F}_{q^k})[l] \to \mathbb{F}_{q^k}^*,$$

$$e_I(P,Q)=f_P(\mathcal{A}_Q)^{(q^k-1)/I}.$$

- Eigenschaften
 - e_l ist wohldefiniert!
 - 2 e_I ist eine bilieare Paarung, d. H. e_I ist bilinear und nicht-ausgeartet.
- Kompatibilität: Sei I = hl'. Wenn $P \in E(\mathbb{F}_q)[l]$ und $Q \in E(\mathbb{F}_q)[l']$, dann $e_{l'}(hP,Q) = e_{l}(P,Q)^h$.
- **Bemerkung**: Weil $P \in E(\mathbb{F}_q)$ ist, ist f_P eine rationale Funktion mit Koeffizienten in \mathbb{F}_q .

• Sei $l \in \mathbb{N}$ mit (l,q)=1. Die *Tate Paarung* der Ordnung l ist die Abbildung

$$e_l: E(\mathbb{F}_q)[l] \times : E(\mathbb{F}_{q^k})[l] \to \mathbb{F}_{q^k}^*,$$

$$e_I(P,Q)=f_P(\mathcal{A}_Q)^{(q^k-1)/I}.$$

- Eigenschaften
 - e_l ist wohldefiniert!
 - 2 *e_I* ist eine bilieare Paarung, d. H. *e_I* ist bilinear und nicht-ausgeartet.
- **Kompatibilität**: Sei I = hl'. Wenn $P \in E(\mathbb{F}_q)[l]$ und $Q \in E(\mathbb{F}_q)[l']$, dann $e_{l'}(hP,Q) = e_l(P,Q)^h$.
- **Bemerkung**: Weil $P \in E(\mathbb{F}_q)$ ist, ist f_P eine rational Funktion mit Koeffizienten in \mathbb{F}_q .

• Sei $l \in \mathbb{N}$ mit (l,q) = 1. Die *Tate Paarung* der Ordnung l ist die Abbildung

$$e_l: E(\mathbb{F}_q)[l] \times : E(\mathbb{F}_{q^k})[l] \to \mathbb{F}_{q^k}^*,$$

$$e_I(P,Q)=f_P(\mathcal{A}_Q)^{(q^k-1)/I}.$$

- Eigenschaften
 - 1 e_l ist wohldefiniert!
 - 2 *e_I* ist eine bilieare Paarung, d. H. *e_I* ist bilinear und nicht-ausgeartet.
- **Kompatibilität**: Sei I = hl'. Wenn $P \in E(\mathbb{F}_q)[l]$ und $Q \in E(\mathbb{F}_q)[l']$, dann $e_{l'}(hP,Q) = e_l(P,Q)^h$.
- **Bemerkung**: Weil $P \in E(\mathbb{F}_q)$ ist, ist f_P eine rationals Funktion mit Koeffizienten in \mathbb{F}_q .

Definition

• Sei $l \in \mathbb{N}$ mit (l,q)=1. Die *Tate Paarung* der Ordnung l ist die Abbildung

$$e_l: E(\mathbb{F}_q)[l] \times : E(\mathbb{F}_{q^k})[l] \to \mathbb{F}_{q^k}^*,$$

definiert durch

$$e_I(P,Q)=f_P(\mathcal{A}_Q)^{(q^k-1)/I}.$$

- Eigenschaften
 - 1 e_l ist wohldefiniert!
 - 2 *e_l* ist eine bilieare Paarung, d. H. *e_l* ist bilinear und nicht-ausgeartet.
- **Kompatibilität**: Sei I = hl'. Wenn $P \in E(\mathbb{F}_q)[l]$ und $Q \in E(\mathbb{F}_q)[l']$, dann $e_{l'}(hP,Q) = e_l(P,Q)^h$.
- **Bemerkung**: Weil $P \in E(\mathbb{F}_q)$ ist, ist f_P eine rationale Funktion mit Koeffizienten in \mathbb{F}_q .

- Seien U, V ∈ E(F_{q^k} und g_{U,V} die rationale Funktion gegeben durch die Geradengleichung g_{U,V}: I₁y + I₂x + I₃ = 0, wobei die Gerade die Punkten U und V enthaltet. Wenn U = V ist, dann ist G_{U,U} gegeben durch die tangente Gerade an U. Ferner bezeichnen wir g_{U,-U} = g_U.
- Miller Formula: Seien $P \in E(\mathbb{F}_{q^k})$ und f_c eine rationale Funktion so dass $(f_c) = c(P) ([c]P (c-1))(\mathcal{O} \text{ für } c \in \mathbb{Z}$ Dann für alle $a,b \in \mathbb{Z}$ gilt die folgende Gleichung

 $f_{a+b} = f_a.f_b.g_{[a]P,[b]P}/g_{[a+b]P}$

- Seien $U, V \in E(\mathbb{F}_{q^k} \text{ und } g_{U,V} \text{ die rationale Funktion gegeben})$ durch die Geradengleichung $g_{U,V}: l_1y + l_2x + l_3 = 0$, wobei die Gerade die Punkten U und V enthaltet. Wenn U = V ist, dann ist $G_{U,U}$ gegeben durch die tangente Gerade an U. Ferner bezeichnen wir $g_{U,-U} = g_U$.
- Miller Formula: Seien $P \in E(\mathbb{F}_{a^k})$ und f_c eine rationale Funktion so dass $(f_c) = c(P) - ([c]P - (c-1))(\mathcal{O} \text{ für } c \in \mathbb{Z}.$ Dann für alle $a, b \in \mathbb{Z}$ gilt die folgende Gleichung

$$f_{a+b} = f_a.f_b.g_{[a]P,[b]P}/g_{[a+b]P}$$

Rekursive Formula

• Nach Miller's Formula haben wir für D = (Q + Q') - Q (beachte, dass $D \sim (Q) - (\mathcal{O})$ ist)

$$f_{a+1}(D) = f_{a+1}(Q+Q')/f_{a+1}(Q') = f_a(D) \cdot \frac{g_{[a]P,P}(Q+Q')g_{[a+1]}}{g_{[a+1]P}(Q+Q')g_{[a]P,P}} \frac{(Q')}{(Q')}$$

$$f_{2a}(D) = f_{2a}(Q+Q')/f_{2a}(Q') = f_a(D)^2 \frac{g_{[a]P,[a]P}(Q+Q')g_{[2a]P}(Q')}{g_{[2a]P}(Q+Q')g_{[a]P,[a]P}(Q')}$$

Rekursive Formula

• Nach Miller's Formula haben wir für D = (Q + Q') - Q (beachte, dass $D \sim (Q) - (\mathcal{O})$ ist)

0

$$f_{a+1}(D) = f_{a+1}(Q+Q')/f_{a+1}(Q') = f_a(D) \cdot \frac{g_{[a]P,P}(Q+Q')g_{[a+1]P}(Q')}{g_{[a+1]P}(Q+Q')g_{[a]P,P}(Q')}$$

Rekursive Formula

• Nach Miller's Formula haben wir für D = (Q + Q') - Q(beachte, dass $D \sim (Q) - (\mathcal{O})$ ist)

0

$$f_{a+1}(D) = f_{a+1}(Q+Q')/f_{a+1}(Q') = f_a(D) \cdot \frac{g_{[a]P,P}(Q+Q')g_{[a+1]P}(Q')}{g_{[a+1]P}(Q+Q')g_{[a]P,P}(Q')}$$

2

$$f_{2a}(D) = f_{2a}(Q+Q')/f_{2a}(Q') = f_a(D)^2 \frac{g_{[a]P,[a]P}(Q+Q')g_{[2a]P}(Q')}{g_{[2a]P}(Q+Q')g_{[a]P,[a]P}(Q')}$$

- **1** Wähle ein zufälliger Punkt $Q' \in E(\mathbb{F}_{q^k})$ und berechne $S = Q + Q' \in E(\mathbb{F}_{q^k}).$

- **1** Wähle ein zufälliger Punkt $Q' \in E(\mathbb{F}_{q^k})$ und berechne $S = Q + Q' \in E(\mathbb{F}_{a^k}).$
- 2 Setze $t = \lfloor \log_2(I) \rfloor$, und sei $I = (I_t, \dots, I_1)_2$ die Binärdarstelleung von I

- **1** Wähle ein zufälliger Punkt $Q' \in E(\mathbb{F}_{a^k})$ und berechne $S = Q + Q' \in E(\mathbb{F}_{a^k}).$
- 2 Setze $t = \lfloor \log_2(I) \rfloor$, und sei $I = (I_t, \dots, I_1)_2$ die Binärdarstelleung von 1

- **1** Wähle ein zufälliger Punkt $Q' \in E(\mathbb{F}_{a^k})$ und berechne $S = Q + Q' \in E(\mathbb{F}_{a^k}).$
- 2 Setze $t = \lfloor \log_2(I) \rfloor$, und sei $I = (I_t, \dots, I_1)_2$ die Binärdarstelleung von 1
- \bullet For i = t 1 to 0 do
 - Setze $f = f^2(g_{V,V}(S)g_{[2]V}(Q'))/(g_{[2]V}(S)g_{V,V}(Q'))$ und V = [2]V.

- **1** Wähle ein zufälliger Punkt $Q' \in E(\mathbb{F}_{a^k})$ und berechne $S=Q+Q'\in E(\mathbb{F}_{a^k}).$
- 2 Setze $t = \lfloor \log_2(I) \rfloor$, und sei $I = (I_t, \dots, I_1)_2$ die Binärdarstelleung von 1
- \bullet For i = t 1 to 0 do
 - Setze $f = f^2(g_{V,V}(S)g_{[2]V}(Q'))/(g_{[2]V}(S)g_{V,V}(Q'))$ und V = [2]V.
 - Wenn $I_i = 1$, dann setze $f = f(g_{V,P}(S)g_{V+P}(Q'))/(g_{V+P}(S)g_{V,P}(Q'))$ und V = V + P

- **1** Wähle ein zufälliger Punkt $Q' \in E(\mathbb{F}_{a^k})$ und berechne $S=Q+Q'\in E(\mathbb{F}_{a^k}).$
- 2 Setze $t = \lfloor \log_2(I) \rfloor$, und sei $I = (I_t, \dots, I_1)_2$ die Binärdarstelleung von 1
- \bullet For i = t 1 to 0 do
 - Setze $f = f^2(g_{V,V}(S)g_{[2]V}(Q'))/(g_{[2]V}(S)g_{V,V}(Q'))$ und V = [2]V.
 - Wenn $I_i = 1$, dann setze $f = f(g_{V,P}(S)g_{V+P}(Q'))/(g_{V+P}(S)g_{V,P}(Q'))$ und V = V + P
- Return f.

- **Eingabe**: $P \in E(\mathbb{F}_q)$, I die Ordnung von P und $Q \in P >$, d. H. $Q = [\lambda]P$ für $\lambda \in \mathbb{N}$.
- Ausgabe: Diskreter Logarithmus λ von Q zur Basis P.
- Konstruiere den Körper \mathbb{F}_{a^k} so dass $r \mid (q^k 1)$

- **Eingabe**: $P \in E(\mathbb{F}_q)$, I die Ordnung von P und $Q \in P >$, d. H. $Q = [\lambda]P$ für $\lambda \in \mathbb{N}$.
- Ausgabe: Diskreter Logarithmus λ von Q zur Basis P.
- **1** Konstruiere den Körper \mathbb{F}_{a^k} so dass $r \mid (q^k 1)$
- ② Finde einen Punkt $S \in E(\mathbb{F}_{a^k})$ so dass $e_l(P, S) \neq 1$.

- **Eingabe**: $P \in E(\mathbb{F}_q)$, I die Ordnung von P und $Q \in P >$, d. H. $Q = [\lambda]P$ für $\lambda \in \mathbb{N}$.
- Ausgabe: Diskreter Logarithmus λ von Q zur Basis P.
- **1** Konstruiere den Körper \mathbb{F}_{a^k} so dass $r \mid (q^k 1)$
- ② Finde einen Punkt $S \in E(\mathbb{F}_{a^k})$ so dass $e_l(P, S) \neq 1$.
- \bullet $\zeta_1 \leftarrow el(P,S)$.

- **Eingabe**: $P \in E(\mathbb{F}_q)$, I die Ordnung von P und $Q \in P >$, d. H. $Q = [\lambda]P$ für $\lambda \in \mathbb{N}$.
- Ausgabe: Diskreter Logarithmus λ von Q zur Basis P.
- **1** Konstruiere den Körper \mathbb{F}_{a^k} so dass $r \mid (q^k 1)$
- ② Finde einen Punkt $S \in E(\mathbb{F}_{a^k})$ so dass $e_l(P, S) \neq 1$.
- \bullet $\zeta_1 \leftarrow el(P,S)$.
- \bigcirc \bigcirc \bigcirc \leftarrow $e_l(Q,S).$

- **Eingabe**: $P \in E(\mathbb{F}_q)$, I die Ordnung von P und $Q \in P >$, d. H. $Q = [\lambda]P$ für $\lambda \in \mathbb{N}$.
- Ausgabe: Diskreter Logarithmus λ von Q zur Basis P.
- **1** Konstruiere den Körper \mathbb{F}_{a^k} so dass $r \mid (q^k 1)$
- ② Finde einen Punkt $S \in E(\mathbb{F}_{a^k})$ so dass $e_l(P, S) \neq 1$.
- \bullet $\zeta_1 \leftarrow el(P,S)$.
- \bigcirc \bigcirc \bigcirc \leftarrow $e_l(Q,S).$
- **5** Finde λ so dass $\zeta_1^{\lambda} = \zeta_2$ in $\mathbb{F}_{a^k}^*$ z. B. mit Hilfe von Index-Calculus Algorithmus.

- **Eingabe**: $P \in E(\mathbb{F}_q)$, I die Ordnung von P und $Q \in P >$, d. H. $Q = [\lambda]P$ für $\lambda \in \mathbb{N}$.
- Ausgabe: Diskreter Logarithmus λ von Q zur Basis P.
- **1** Konstruiere den Körper \mathbb{F}_{q^k} so dass $r \mid (q^k 1)$
- ② Finde einen Punkt $S \in E(\mathbb{F}_{q^k})$ so dass $e_l(P,S) \neq 1$.

- **5** Finde λ so dass $\zeta_1^{\lambda} = \zeta_2$ in $\mathbb{F}_{q^k}^*$ z. B. mit Hilfe von Index-Calculus Algorithmus.
- **o** Return λ .

Outline

Grundlagen

- Grundlagen
 - Bilineare Paarungen
 - Elliptische Kurven
 - Divisorentheorie
- 2 Tate Paarung
 - Definition
 - Berechnung
 - Anwendung
- 3 Einbettungsgrad
 - Kurven mit kleinem Einbettungsgrad
 - Supersingulare Kurven
 - MNT Kurven
- 4 Distortionsabbildunger
 - Definition
 - Modifizierte Tate Paarung

Ende

Problem

Grundlagen

- Die Tate Paarung ist eine bilineare Abbildung, die die Punkte auf $E(\mathbb{F}_q)$ zur multiplikativen Gruppe $\mathbb{F}_{q^k}^*$ abbildet. Je grösser der Einbettungsgrad k ist, desto aufwendiger ist die Paarung zu berechnen. Wir brauchen klein k.

Problem

Grundlagen

- Die Tate Paarung ist eine bilineare Abbildung, die die Punkte auf $E(\mathbb{F}_q)$ zur multiplikativen Gruppe $\mathbb{F}_{q^k}^*$ abbildet. Je grösser der Einbettungsgrad k ist, desto aufwendiger ist die Paarung zu berechnen. Wir brauchen klein k.
- Andererseits hängt die Sicherheit der kryptographischen Anwendung nach Frey-Rück Angriff die Schwerigkeit des DLP in $\mathbb{F}_{a^k}^*$ ab. Dafür brauchen wir gross k.

Problem

Grundlagen

- Die Tate Paarung ist eine bilineare Abbildung, die die Punkte auf $E(\mathbb{F}_q)$ zur multiplikativen Gruppe $\mathbb{F}_{q^k}^*$ abbildet. Je grösser der Einbettungsgrad k ist, desto aufwendiger ist die Paarung zu berechnen. Wir brauchen klein k.
- Andererseits hängt die Sicherheit der kryptographischen Anwendung nach Frey-Rück Angriff die Schwerigkeit des DLP in $\mathbb{F}_{a^k}^*$ ab. Dafür brauchen wir gross k.
- Folgerung: k muss 'klein' genug sein um die Paarung zu berechnen und 'gross' genug sein damit das DLP nicht einfach zu lösen ist. Wir brauchen $k < (\log q)^2$ um die Paarung berechnen zu können.

- Eine elliptische Kurve heisst supersingular über \mathbb{F}_a , wenn eine der folgenden Bedingungen erfüllt.

Definition und Eigenschaften

• Eine elliptische Kurve heisst supersingular über \mathbb{F}_a , wenn eine der folgenden Bedingungen erfüllt.

Einbettungsgrad

- lacksquare $\mid E(\mathbb{F}_q) \mid \equiv 1 \pmod{p}$.

- Eine elliptische Kurve heisst supersingular über \mathbb{F}_q , wenn eine der folgenden Bedingungen erfüllt.

 - 2 E hat keinen Punkt der Ordnung p über $\overline{\mathbb{F}_q}$.
 - 3 End(E) über \mathbb{F}_q ist nicht kommutativ
- Satz Sei E eine supersingulare elliptische Kurve. Dann $k \leq 6$.
- Eine supersingulare elliptische Kurve erreicht den maximalen Grad wenn $char \mathbb{F}_q = 3$ ist.
- Supersingulare Kurven sind die Kurven mit kleinem Einbettungsgrad. Diese Kurven besitzen interesante Eigenschaften, die sowohl Vorteile als auch Nachteile für kryptographische Anwenwendungen haben.

- Eine elliptische Kurve heisst supersingular über \mathbb{F}_q , wenn eine der folgenden Bedingungen erfüllt.

 - 2 E hat keinen Punkt der Ordnung p über $\overline{\mathbb{F}_q}$.
 - **3** End(E) über $\overline{\mathbb{F}_q}$ ist nicht kommutativ.
- Satz Sei E eine supersingulare elliptische Kurve. Dann $k \leq 6$
- Eine supersingulare elliptische Kurve erreicht den maximalen Grad wenn $char \mathbb{F}_q = 3$ ist.
- Supersingulare Kurven sind die Kurven mit kleinem Einbettungsgrad. Diese Kurven besitzen interesante Eigenschaften, die sowohl Vorteile als auch Nachteile für kryptographische Anwenwendungen haben

- Eine elliptische Kurve heisst supersingular über \mathbb{F}_q , wenn eine der folgenden Bedingungen erfüllt.

 - 2 E hat keinen Punkt der Ordnung p über $\overline{\mathbb{F}_q}$.
 - **3** End(E) über $\overline{\mathbb{F}_q}$ ist nicht kommutativ.
- **Satz** Sei E eine supersingulare elliptische Kurve. Dann $k \leq 6$.
- Eine supersingulare elliptische Kurve erreicht den maximalen Grad wenn $char \mathbb{F}_q = 3$ ist.
- Supersingulare Kurven sind die Kurven mit kleinem Einbettungsgrad. Diese Kurven besitzen interesante Eigenschaften, die sowohl Vorteile als auch Nachteile für kryptographische Anwenwendungen haben.

- Eine elliptische Kurve heisst supersingular über \mathbb{F}_q , wenn eine der folgenden Bedingungen erfüllt.
 - lacksquare $\mid E(\mathbb{F}_q) \mid \equiv 1 \pmod{p}$.
 - 2 E hat keinen Punkt der Ordnung p über $\overline{\mathbb{F}_a}$.
 - **3** End(E) über $\overline{\mathbb{F}_a}$ ist nicht kommutativ.
- Satz Sei E eine supersingulare elliptische Kurve. Dann $k \leq 6$.
- Eine supersingulare elliptische Kurve erreicht den maximalen Grad wenn $char \mathbb{F}_q = 3$ ist.

- Eine elliptische Kurve heisst supersingular über \mathbb{F}_q , wenn eine der folgenden Bedingungen erfüllt.
 - $leftbox{1} \mid E(\mathbb{F}_a) \mid \equiv 1 \pmod{p}.$
 - 2 E hat keinen Punkt der Ordnung p über $\overline{\mathbb{F}_a}$.
 - **3** End(E) über $\overline{\mathbb{F}_q}$ ist nicht kommutativ.
- Satz Sei E eine supersingulare elliptische Kurve. Dann $k \leq 6$.
- Eine supersingulare elliptische Kurve erreicht den maximalen Grad wenn $char \mathbb{F}_q = 3$ ist.
- Supersingulare Kurven sind die Kurven mit kleinem Einbettungsgrad. Diese Kurven besitzen interesante Eigenschaften, die sowohl Vorteile als auch Nachteile für kryptographische Anwenwendungen haben.

- Bis 2001 gab es keine bekannte nicht-supersingulare Kurve, die kleinen Einbettungsgrad besitzen. Aber Miyaji, Nakabayashi und Takano haben eine Methode gefunden um diese Kurve zu konstruieren.

- Bis 2001 gab es keine bekannte nicht-supersingulare Kurve, die kleinen Einbettungsgrad besitzen. Aber Miyaji, Nakabayashi und Takano haben eine Methode gefunden um diese Kurve zu konstruieren.
- Sei $n = |E(\mathbb{F}_q)| = q + 1 t$. Fixiere ein k mit der Eigenschaft $n \mid q^k - 1$, und $m \mid /q^t - 1$ für 0 < t < k.

- Bis 2001 gab es keine bekannte nicht-supersingulare Kurve, die kleinen Einbettungsgrad besitzen. Aber Miyaji, Nakabayashi und Takano haben eine Methode gefunden um diese Kurve zu konstruieren.
- Sei $n = |E(\mathbb{F}_q)| = q + 1 t$. Fixiere ein k mit der Eigenschaft $n \mid q^k - 1$, und $m \mid /q^t - 1$ für 0 < t < k.
- **Satz** Sei E/\mathbb{F}_q eine elliptische Kurve mit dem Spur t.

- Bis 2001 gab es keine bekannte nicht-supersingulare Kurve, die kleinen Einbettungsgrad besitzen. Aber Miyaji, Nakabayashi und Takano haben eine Methode gefunden um diese Kurve zu konstruieren.
- Sei $n = |E(\mathbb{F}_q)| = q + 1 t$. Fixiere ein k mit der Eigenschaft

$$n \mid q^k - 1$$
, und $m \mid /q^t - 1$ für $0 < t < k$.

- **Satz** Sei E/\mathbb{F}_q eine elliptische Kurve mit dem Spur t.
 - Wenn (q, t) mit $q = 12l^2 1$ und $t = -1 \pm 6l$, $l \in \mathbb{Z}$ repräsentiert werden kann, dann ist der Einbettungsgrad k = 3.

- Bis 2001 gab es keine bekannte nicht-supersingulare Kurve, die kleinen Einbettungsgrad besitzen. Aber Miyaji, Nakabayashi und Takano haben eine Methode gefunden um diese Kurve zu konstruieren.
- Sei $n = |E(\mathbb{F}_q)| = q + 1 t$. Fixiere ein k mit der Eigenschaft

$$n \mid q^k - 1$$
, und $m \mid /q^t - 1$ für $0 < t < k$.

- **Satz** Sei E/\mathbb{F}_q eine elliptische Kurve mit dem Spur t.
 - Wenn (q, t) mit $q = 12l^2 1$ und $t = -1 \pm 6l$, $l \in \mathbb{Z}$ repräsentiert werden kann, dann ist der Einbettungsgrad k = 3.
 - Wenn (a, t) mit $a = l^2 + l + 1$ und $t = -l, l + 1, l \in \mathbb{Z}$ repräsentiert werden kann, dann ist der Einbettungsgrad k = 4.

- Bis 2001 gab es keine bekannte nicht-supersingulare Kurve, die kleinen Einbettungsgrad besitzen. Aber Miyaji, Nakabayashi und Takano haben eine Methode gefunden um diese Kurve zu konstruieren.
- Sei $n = |E(\mathbb{F}_q)| = q + 1 t$. Fixiere ein k mit der Eigenschaft

$$n \mid q^k - 1$$
, und $m \mid /q^t - 1$ für $0 < t < k$.

- **Satz** Sei E/\mathbb{F}_q eine elliptische Kurve mit dem Spur t.
 - Wenn (q, t) mit $q = 12l^2 1$ und $t = -1 \pm 6l$, $l \in \mathbb{Z}$ repräsentiert werden kann, dann ist der Einbettungsgrad k=3.
 - Wenn (a, t) mit $a = l^2 + l + 1$ und $t = -l, l + 1, l \in \mathbb{Z}$ repräsentiert werden kann, dann ist der Einbettungsgrad k = 4.
 - Wenn (q, t) mit $q = 4l^2 + 1$ und $t = 1 \pm 2l$, $l \in \mathbb{Z}$ repräsentiert werden kann, dann ist der Einbettungsgrad k = 6.

Konstruktion

• Um die Kurven, die die Eigenschaften in dem Sazt erfüllen, zu konstruieren, benutzt man die sogenannte CM (komplexe Multiplikation) Methode für gegebene q und t.

Einbettungsgrad

Konstruktion

• Um die Kurven, die die Eigenschaften in dem Sazt erfüllen, zu konstruieren, benutzt man die sogenannte CM (komplexe Multiplikation) Methode für gegebene q und t.

Einbettungsgrad

- Aber man muss die CM-Gleichung lösen um die Kurven konstruieren zu können. Für k = 3,4 oder 6, lässt sich die CM-Gleichung eine Pellsche Gleichung reduzieren, die nach algebraischer Zehlentheorie lösbar ist.

Konstruktion

- Um die Kurven, die die Eigenschaften in dem Sazt erfüllen, zu konstruieren, benutzt man die sogenannte CM (komplexe Multiplikation) Methode für gegebene q und t.
- Aber man muss die CM-Gleichung lösen um die Kurven konstruieren zu können. Für k = 3,4 oder 6, lässt sich die CM-Gleichung eine Pellsche Gleichung reduzieren, die nach algebraischer Zehlentheorie lösbar ist.
- Barreto und Dupont haben eine andere methode für die Kurven mit Einbettungsgrad k > 6. Aber eine solche Reduzierung für CM-Gleichung in diesem Fall nicht möglich. Sie haben versucht für gegene partille Lösung eine CM-Gleichung zu finden und damit die Kurve konstruieren. Sie haben Kurvenbeispiele mit k = 7 und 12 gegeben.

Outline

Grundlagen

- Grundlagen
 - Bilineare Paarungen
 - Elliptische Kurven
 - Divisorentheorie
- 2 Tate Paarung
 - Definition
 - Berechnung
 - Anwendung
- 3 Einbettungsgrad
 - Kurven mit kleinem Einbettungsgrad
 - Supersingulare Kurven
 - MNT Kurven
- 4 Distortionsabbildungen
 - Definition
 - Modifizierte Tate Paarung

Ende

Distortionsabbildungen

Vielen Dank

Grundlagen

http://www.math.tu-berlin.de/~uzunkol

