

What is a graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

Formal definition of graphs

– A graph G is defined as follows:

G=(V,E)

V(G): a finite, nonempty set of vertices

E(*G*): a set of edges (pairs of vertices)

Directed vs. undirected graphs

- When the edges in a graph have no direction, the graph is called undirected

Directed vs. undirected graphs (cont.)

 When the edges in a graph have a direction, the graph is called directed (or digraph)

Warning: if the graph is directed, the order of the vertices in each edge is important!!

Trees vs graphs

Trees are special cases of graphs!!

(c) Graph3 is a directed graph.

V(Graph3) = { A, B, C, D, E, F, G, H, I, J } E(Graph3) = { (G, D), (G, J), (D, B), (D, F) (I, H), (I, J), (B, A), (B, C), (F, E) }

DiGraph terminology

- A directed graph (G) is therefore a pair (V,E) where E is a binary relation on V
 - The set V is called Vertex set of G (Vertices)
 - the set E is called Edge set of G (edges)
- Vertices are represented by circles and edges by arrows.
- Self-loops are edges from a vertex to itself

DiGraph terminology

• Adjacent nodes: two nodes are adjacent if they are connected by an edge

- <u>Length</u> of a path is the number of edges in the path
- Out-degree of a vertex is the number of edges leaving it and <u>in-degree</u> is the number entering it
- <u>Degree</u> of a vertex = out-degree + in-degree
- Complete graph: a graph in which every vertex is directly connected to every other vertex
- Other terms: reachable, subpath, simple, cycle

Undirected Graph terminology

- An Undirected graph (G)= (V,E),
 - E consists of unordered pairs therefore we write (u,v) instead of {u,v} and (u,v) is considered same as (v,u)
- Self-loops are forbidden
- Adjacent relation is symmetric
- Given an edge (u,v) then (u,v) is incident on vertices u and v
- Degree of a vertex is the number of edges incident on it
- A vertex with degree 0 is said to be isolated
- Connected graph every pair of vertices is connected by a path
- A connected, acyclic graph is called a (free) tree; it is a forest if not connected
- A <u>complete graph</u> every pair of vertices is adjacent

Graph terminology (cont.)

– What is the number of edges in a complete directed graph with N vertices?

(a) Complete directed graph.

Graph terminology (cont.)

– What is the number of edges in a complete undirected graph with N vertices?

N*(N-1)/2 $O(N^2)$

(b) Complete undirected graph.

Graph terminology (cont.)

Weighted graph: a graph in which each edge carries a value

Graph implementation

Array-based implementation

- A 1D array is used to represent the vertices
- A 2D array (adjacency matrix) is used to represent the edges

ryay-based implementation

	[]											
graph												
.numVertices 7 .vertices		.edges										
		100.000										
[0]	"Atlanta "	[0]	0	0	0	0	0	800	600	•	•	•
[1]	"Austin "	[1]	0	0	0	200	0	160	0	٠	•	•
[2]	"Chicago "	[2]	0	0	0	0	1000	0	0	•	•	•
[3] [4]	"Dallas <u>"</u> "Denver"	[3] [4]	0 1400	200	900 1000	0	780 0	0	0	•	•	•
[5]	"Houston "	[5]	800	0	0	0	0	0	0	•	•	•
[6]	"Washington"	[6]	600	0	0	1300	0	0	0	•	•	•
[7]		[7]	•	•	•	•	•	•	•	•	•	•
[8]		[8]	•	•	•	•	•	•	•	•	•	•
[9]		[9]	•	•	•	•	•	•	•	•	•	•
	[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] (Array positions marked '•' are undefined)											

Graph implementation (cont.)

Linked-list implementation

- A 1D array is used to represent the vertices
- A list is used for each vertex ν which contains the vertices which are adjacent to ν (adjacency list)

Linked-list implementation

Adjacency matrix vs. adjacency list representation

Adjacency matrix

Good for dense graphs

Connectivity between two vertices can be tested quickly

Adjacency list

Good for sparse graphs

Vertices adjacent to another vertex can be found quickly

Q. Which of the two do you think requires more memory?

Graph searching

- <u>Problem:</u> find a path between two nodes of the graph (e.g., Austin and Washington)
- Methods: Depth-First-Search (DFS) or Breadth-First-Search (BFS)

Depth-First-Search (DFS)

- What is the idea behind DFS?
 - Travel as far as you can down a path
 - Back up as little as possible when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)
- DFS can be implemented efficiently using a stack

Breadth-First-Searching (BFS)

- What is the idea behind BFS?
 - Look at all possible paths at the same depth before you go at a deeper level
 - Back up as far as possible when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)
- We will be looking at BFS and DFS later in the course

Single-source shortest-path problem

- + There are multiple paths from a source vertex to a destination vertex
- Shortest path: the path whose total weight (i.e., sum of edge weights) is minimum
- Examples:
 - Austin->Houston->Atlanta->Washington: 1560 miles
 - Austin->Dallas->Denver->Atlanta->Washington: 2980 miles

Single-source shortest-path problem (cont.)

- Common algorithms: Dijkstra's algorithm and Bellman-Ford algorithm
- BFS can be used to solve the shortest graph problem when the graph
 is weightless or all the weights are the same

Rooted Trees

- A free tree in which one of the vertices is distinguished from others;
 the root
- Terms like ancestor, descendant, parent, child, siblings leaf (external node) and internal node are used