Introduction

- Convex optimization
- Sparsity
- Machine Learning: Dictionary Learning

Optimization

- Optimization
 - Max/Min over a set

Convexity

- Convex set
 - Imagine a set in \mathbb{R}^2

(Boyd, 2014, Convex Optimization)

Convex function

Norm

- A way to measure the length of a vector
 - Euclidean norm: $||x||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$
- Other ways to measure the length of a vector
 - Taxicab norm:

$$||x||_1 = |x_1| + |x_2| + ... + |x_n|$$

P-norm:

$$\|x\|_p = \left(\sum_{1}^n x_i^p\right)^{\frac{1}{p}}$$

- Norm balls
 - Set of all the vectors emanated from the origin in Euclidean space R^2 with equal length (e.g. $\|x\|_p \le 1$)

Convex Optimization Problem

• f: convex function C: convex set

Minimize f(x) such that $x \in C$

(MIT open courseware, 2008, non-linear programming)

- Why do we care about convex optimization?
 - We know how to compute them
 - Instead of finding minimum of a function that looks like

• It's much easier if a function looks like global minimum.

, where its local minimum is also its

Sparsity

- What is sparsity?
 - Vector in \mathbb{R}^n that has lots of zeros. (e.g.
- $\mathbf{g.} \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \mathbf{)}$

- Useful in signal processing (e.g. images, sound waves, etc.)
- Saves computational resource (Memories, Floating-point operations).

What kind of techniques in convex optimization give us a sparse solution?

Recall: Linear Regression

Common way to solve this: Ordinary Least Squares

A convex optimization problem $\sum_{i} \mathcal{E}_{i}^{2}$ Minimize

$$\underset{\theta}{\mathsf{Minimize}} \quad || \ y - X\theta \, ||_2^2$$

Least squares minimization

Rooms (X)	Price (Y, \$10,000)
3	5
4	7
6	9

The graph of the regression problem we have:

$$\min_{\theta \in R^2} ||y - X\theta||_2^2 = \min_{\theta \in R^2} f(\theta_0, \theta_1)$$

Ridge Regression and Lasso Regression

Ridge Regression

$$\min_{\theta \in R^2} f(\theta_0, \theta_1) s.t. \quad \|\theta\|_2 \le t$$

The minimizer (θ_0, θ_1) does not lie on the coordinate axis

Lasso Regression

$$\min_{\theta \in R^2} ||y - X\theta||_2^2 \text{ s.t. } ||\theta||_1 \le t$$

The minimizer (θ_0, θ_1) lie on the coordinate axis; the minimizer $(\theta_0, \theta_1) = (0, t)$

- The images could be $y_1 = 0$, $y_2 = 0$, $y_3 = 0$, $y_4 = 0$, ...and so on.
- If we input an image $y_{input} = 0$, the algorithm, using the trained dictionaries, should tell us that it is a Jayhawk, not a .

Dictionary Learning

• The matrix $D \in \mathbb{R}^{n \times k}$ is called a "Dictionary".

What makes a good dictionary?

One that makes a good sparse representation of the signal.

Implement Dictionary Learning

- Character recognition:
 - Given images letters A~Z

Train a set of dictionaries using Gradient descent and LASSO

To test the trained dictionary, input a character image, then use the trained dictionary to run LASSO and select the one the returns the least squared error.

Ex. Input image:

Reconstructions:

C

ABCDEFGELJKEMNOPQRSTUVWXYZ