

Combinational Systems

Q course	
	ucla
created	@January 12, 2023 2:11 PM
updated	@January 13, 2023 10:30 AM
Ø URL	
	CS

Definitions

▼ e.g. combinational system

Input: $x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Output: $z \in \{0, 1, 2\}$

Function: F is described by the following table

x	0	1	2	3	4	5	6	7	8	9
z = F(x)	0	1	2	0	1	2	0	1	2	0

or by the arithmetic expression

 $z = x \mod 3$,

▼ specify binary conversion "helper functions"

Resources

https://s3-us-west-2.amazonaws.c om/secure.notion-static.com/a94d 2302-b0a8-4841-9bb8-5577bd427 e32/ch2.pdf

Combinational Systems 1

▼ then re-implement I/O sets to define the function

Input: $\underline{x}_b = (x_3, x_2, x_1, x_0), x_i \in \{0, 1\}$ Output: $\underline{z}_b = (z_1, z_0), z_i \in \{0, 1\}$

Function: F_b is described by the following table

▼ e.g. conditional expression (inputoutput func)

$$\begin{array}{ll} \text{Inputs:} & \underline{x} = (x_3, x_2, x_1, x_0), \\ & x_i \in \{ \text{A}, \text{B}, \dots, \text{Z}, \text{a}, \text{b}, \dots, \text{z} \} \\ & y \in \{ \text{A}, \text{B}, \dots, \text{Z}, \text{a}, \text{b}, \dots, \text{z} \} \\ & k \in \{ 0, 1, 2, 3 \} \\ \text{Outputs:} & \underline{z} = (z_3, z_2, z_1, z_0), \\ & z_i \in \{ \text{A}, \text{B}, \dots, \text{Z}, \text{a}, \text{b}, \dots, \text{z} \} \end{array}$$

Function:
$$z_j = \begin{cases} x_j & \text{if } j \neq k \\ y & \text{if } j = k \end{cases}$$

Input:
$$\underline{x}=({\rm C,A,S,E})$$
 , $y={\rm R}$, $k=1$ Output: $\underline{x}=({\rm C,A,R,E})$

▼ e.g. boolean algebra

$$E_1(x_2, x_1, x_0) = x_2 x_1 + x_2 x_1' + x_2 x_0$$

$$E_2(x_2, x_1, x_0) = x_2$$

$$\begin{array}{lll} x_2x_1 + x_2x_1' + x_2x_0 &= x_2(x_1 + x_1') + x_2x_0 & \text{using } ab + ac = a(b + c) \\ &= x_2 \cdot 1 + x_2x_0 & \text{using } a + a' = 1 \\ &= x_2(1 + x_0) & \text{using } ab + ac = a(b + c) \\ &= x_2 \cdot 1 & \text{using } 1 + a = 1 \\ &= x_2 & \text{using } a \cdot 1 = a \end{array}$$

lacktriangledown e.g. base 2^n conversion

(B2451)_16 : 010 110 010

010 001 010 001

(x)_8 : 2 6 2 2

1 2 1

-> x = (2622121)_8

Big Ideas

▼ Input-Output Functions

lacktriangledown described by the function $z(t) = F(x(t)) \implies z = F(x)$

▼ Binary Level

$$lackloss z_b = F_b(x_b)$$

▼ e.g. a high level overview

▼ High Level Spec

- ▼ <u>input set</u> set of input values
- ▼ <u>output set</u> set of output values
- lacktriangledown input-output function z=F(x)
 - ▼ can be specified as:
 - **▼** table

▼ arithmetic

$$z = 3x + 2y - 2$$

▼ conditional

$$z = \begin{cases} a+b & \text{if } c > d \\ a-b & \text{if } c = d \\ 0 & \text{if } c < d \end{cases}$$

▼ logical

$$z=\left(\text{switch1}=\text{closed}\right)$$
 and $\left(\text{switch2}=\text{open}\right)$ or $\left(\text{switch3}=\text{closed}\right)$

▼ composition of function

$$\max(v,w,x,y) = \text{derates}(v,\text{derates}(w,\text{derates}(x,y)))$$
 in which
$$\text{derates}(a,b) = \left\{ \begin{array}{ll} a & \text{if} & a>b \\ b & \text{otherwise} \end{array} \right.$$

▼ Encoding

▼ ASCII

▼ a standardized bit-vector encoding for character which include letters, digits, and special characters

▼ Integer Encoding

- ▼ integer ← → digit-vector
- ▼ digit ← → bit-vector
- ▼ e.g. 4-digit integer

Level 1: Integer (Digit-vector)	5			6			3		0			
Level 2: Bit-vector	1	0	1	1	1	0	0	1	1	0	0	0

▼ Binary Encoding Methods

▼ Gray Code

- ▼ a form of binary encoding that implements character conversion differently
- ▼ gray code changes only a singular bit between two adjacent characters (whereas binary encoding can change multiple)
- ▼ e.g. gray code example

Combinational Systems 5

▼ Other Binary Encoding Method

Digit	BCD			
Value	8421	2421	Excess-3	2-Out-of-5
0	0000	0000	0011	00011
1	0001	0001	0100	11000
2	0010	0010	0101	10100
3	0011	0011	0110	01100
4	0100	0100	0111	10010
5	0101	1011	1000	01010
6	0110	1100	1001	00110
7	0111	1101	1010	10001
8	1000	1110	1011	01001
9	1001	1111	1100	00101

▼ General Encoding Principle

▼ radix sum method

$$(x)_{10}=\sum_i^{n-1}x_ir^i$$

lacktriangledown base 2^n encoding conversion

$$ullet$$
 $(x)_{2^n}=(y)_{2^r}$

$$lacksquare \log_2 2^n = n$$

- ightharpoonup n is the number of binary digits you should have
- $lackbox{ }r$ is the number of binary digit subsets of n
- ▼ prepend 0 to follow base conversion

▼ Switching Functions

▼ Comb. Sys. vs. Switching Functions

▼ e.g. binary combinational system

ightharpoonup representing the previous comb. sys. as a <u>switching function</u> for n bit-encoding

Combinational Systems 7

▼ Tabular Representation

n	-tup	le notation	Simplified notation				
x_2x	$_1x_0$	$f(x_2, x_1, x_0)$	j	f(j)			
0.0	0	0	0	0			
0.0	1	0	1	0			
0.1	0	1	2	1			
0.1	1	1	3	1			
1.0	0	0	4	0			
1.0	1	0	5	0			
1 1	0	1	6	1			
1 1	1	1	7	1			

	$x_2x_1x_0$											
$x_{4}x_{3}$	000	001	010	011	100	101	110	111				
00	0	0	1	1	0	1	1	1				
01	0	1	1	1	1	0	1	1				
10	1	1	0	1	1	0	1	1				
11	0	1	0	1	1	0	1	0				
f												

▼ Special Switching Functions

Table 2.10: Switching functions of one variable

	f_0 0-CONSTANT	f_1 IDENTITY	f_2 COMPLEMENT	f_3 1-CONSTANT
x	(always 0)	(equal to x)	(NOT)	(always 1)
0	0	0	1	1
1	0	1	0	1

Table 2.11: Switching functions of two variables

		x_1	x_0		
Function	00	01	10	11	
f_0	0	0	0	0	
f_1	0	0	0	1	AND
f_2	0	0	1	0	
f_3	0	0	1	1	
f_4	0	1	0	0	
f_5	0	1	0	1	
f_6	0	1	1	0	EXCLUSIVE-OR (XOR)
f_7	0	1	1	1	OR
f_8	1	0	()	0	NOR
f_9	1	0	0	1	EQUIVALENCE (EQU)
f_{10}	1	0	1	0	
f_{11}	1	0	1	1	
f_{12}	1	1	0	0	
f_{13}	1	1	0	1	
f_{14}	1	1	1	0	NAND
f_{15}	1	1	1	1	

▼ Switching Expressions (Boolean)

▼ symbol representing binary/boolean variables are SEs

▼ SE Arithmetic (of A, B)

- lacktriangledown (A)' is a SE the "A complement"
- lacktriangledown(A)+(B) is a SE "A or B"
- lacklet $(A)\cdot(B)$ is a SE "A and B"
- lacktriangledown order of operations:
 - ▼ complement → prod → sum

▼ SE (Boolean) Algebra

• Switching algebra:

$$E(x_2, x_1, x_0) = x_2 + x_2' x_1 + x_1 x_0'$$

The value of E for assignment (1,0,1) is

$$E(1,0,1) = 1 + 1' \cdot 0 + 0 \cdot 1' = 1 + 0 + 0 = 1$$

▼ Algebraic Properties

$$\begin{array}{|c|c|c|c|}\hline 1. & a+b=b+a & ab=ba & {\sf Commutativity}\\ 2. & a+(bc)=(a+b)(a+c) & a(b+c)=(ab)+(ac) & {\sf Distributivity}\\ 3. & a+(b+c)=(a+b)+c & a(bc)=(ab)c & {\sf Associativity}\\ & =a+b+c & =abc\\ 4. & a+a=a & aa=a & {\sf Idempotency}\\ 5. & a+a'=1 & aa'=0 & {\sf Complement}\\ 6. & 1+a=1 & 0a=0\\ 7. & 0+a=a & 1a=a & {\sf Identity}\\ 8. & (a')'=a & {\sf Involution}\\ 9. & a+ab=a & a(a+b)=a & {\sf Absorption}\\ 10. & a+a'b=a+b & a(a'+b)=ab & {\sf Simplification}\\ 11. & (a+b)'=a'b' & (ab)'=a'+b' & {\sf DeMorgan's Law} \end{array}$$

▼ 2-var Logic Gates as SE

▼ N-var Logic Gates as SE

Figure $2.5\colon\, n\text{-input AND}$ and OR gate symbols

▼ Equivalence Classes representation

 $\label{eq:Figure 2.6} Figure \ 2.6: \ {\it Correspondence among switching functions and switching expressions}$

▼ Logic Gate Expression

▼ Minterm/Maxterm Notation

▼ representing SEs as a simplified notation by defining a type conversion

- ▼ minterm sum of products
- ▼ maxterm product of sums
- ▼ e.g. minterms

$$x_i \longleftrightarrow 1; \qquad x_i' \longleftrightarrow 0$$

Minterm m_j , j integer

Example: minterm $x_3x_2'x_1'x_0$ denoted m_9 because 1001 = 9

$$m_j(a) = egin{cases} 1 & extbf{if} & a = j \ 0 & extbf{otherwise} \end{cases}$$
 $a = \sum\limits_{i=0}^{n-1} a_i 2^i$

Example: $m_{11} = x_3 x_2' x_1 x_0$ - has value 1 only for $\underline{a} = (1, 0, 1, 1)$

▼ Tabular Representation

$x_2x_1x_0$	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
	$x_2'x_1'x_0'$	$x_{2}'x_{1}'x_{0}$	$x_{2}'x_{1}x_{0}'$	$x_{2}'x_{1}x_{0}$	$x_2x_1'x_0'$	$x_2x_1'x_0$	$x_2x_1x_0'$	$x_2x_1x_0$
000	1	0	0	0	0	0	0	0
001	0	1	0	0	- 0	0	-0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	-0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	- 0	1	-0	0
110	0	0	0	0	- 0	0	1	0
111	0	0	0	0	0	0	0	1
				1		1		

▼ Logic Gate Representation

