FEUP / MIEIC MATEMÁTICA DISCRETA

EXERCÍCIOS DE LÓGICA PROPOSICIONAL

FRASES ATÓMICAS

Programa Tarski's World

Significado dos predicados do Mundo de Tarski

```
Cube(a) -a \notin um cubo
Tet (a) -a é um tetraedro (pirâmide)
Dodec(a) - a \'e um dodecaedro (bola de futebol)
Small(a) - a 	ext{ \'e pequeno}
Medium(a) - a \notin médio
Large(a) -a é grande
Smaller (a,b) - a \in menor que b
Larger (a,b) - a \in maior que b
LeftOf(a,b) – a está mais próximo da beira esquerda do que b
RightOf(a,b) – a está mais próximo da beira direita do que b
BackOf (a,b) – a está mais próximo da beira de trás do que b
FrontOf (a,b) – a está mais próximo da beira da frente do que b
SameSize(a,b) -a é do mesmo tamanho que b
SameShape (a,b) - a \in da mesma forma que b
SameRow(a,b) – a está na mesma linha que b (horizontal)
SameCol (a,b) – a está na mesma coluna que b (vertical)
Adjoins (a,b) – a e b estão em quadrados adjacentes (não em diagonal)
a = b - a \notin o mesmo que b (sinónimo)
Between (a, b, c) – a, b, c na mesma linha, coluna ou diagonal e a está entre b e c
```

- 1 {1.1} Compreender frases atómicas. Abrir o mundo Wittgenstein's World e as frases Wittgenstein's Sentences (encontra-os no diretório TW Exercise Files) e percorrer a lista de frases. Atribuir mentalmente um valor de verdade a cada uma delas, relativamente àquele mundo. Verificar o resultado com o botão Verify. Alterar as posições dos objetos e verificar de novo as frases. O objetivo é perceber a interpretação de cada predicado da linguagem FOL usada no programa Tarski's World. Por exemplo, no mundo original nenhuma das frases com Adjoins é verdadeira; verifique porquê.
- 2 {1.2-3} **Construir um mundo.** Abra um ficheiro de frases novo e copie para lá as frases seguintes na linguagem FOL, verificando que todas são fórmulas bem formadas (*Evaluable*) e frases (*sentences*):
 - 1. Tet(a)
 - Medium(a)

FEUP/MIEIC MATEMÁTICA DISCRETA

- 3. Dodec(b)
- 4. Cube(c)
- 5. FrontOf(a,b)
- 6. Between(a,b,c)
- 7. a=d
- 8. Larger(a,b)
- 9. Smaller(a,c)
- 10.LeftOf(b,c)

Construa um mundo novo em que as frases acima sejam simultaneamente verdadeiras. Guarde os resultados nos ficheiros Sentences 1.2.sen e World 1.3.wld.

- 3 {1.5} Nomear objectos. Abra Lestrade's Sentences e Lestrade's world. Atribua nomes aos objetos existentes no mundo de forma a que todas as frases na lista se tornem verdadeiras e guarde o resultado em World 1.5.wld com *Save As*. Obtenha uma segunda solução diferente da primeira e guarde o resultado como World 1.6.wld.
- 4 {1.7} **Predicados sensíveis ao contexto**. Abra Austin's Sentences e Wittgenstein's World. Avalie cada frase e escreva o resultado na primeira coluna de uma tabela. Depois rode o mundo 90° para a direita, reavalie e registe os valores numa nova coluna. Repita o processo ainda mais duas vezes.

Suponha que uma das linhas da tabela era: False False True False; o que pode dizer acerca do predicado respetivo? Acrescente um predicado que produza uma linha na tabela com os valores False True False False.

- 5 {1.19} **Linguagem da teoria dos conjuntos.** O domínio da teoria dos conjuntos, para este exercício, é constituído por objetos, conjuntos de objetos, conjuntos de objetos, etc.. Chamando a a 2, b a {2,4,6}, c a 6 e d a {2,7,{2,4,6}}, qual o valor de verdade das seguintes frases:
 - 1. a ∈ c
 - $2. a \in d$
 - 3. $b \in c$
 - $4. b \in d$
 - 5. $c \in d$
 - $6. c \in b$
- **6** {1.8} **Generalidade dos predicados.** Considere as duas linguagens seguintes (ver significado dos nomes e dos predicados abaixo na tabela 1):

	L1	L2
Nomes	claire, max	claire, max, scruffy, carl
Predicados	GaveScruffy(x,y), GaveCarl(x,y)	Gave(x,y,z)

- a) Liste todas as frases atómicas que podem ser expressas em L1.
- b) Quantas frases atómicas podem ser expressas com L2?
- c) De quantos nomes e predicados binários necessita L1 de molde a dizer tudo o que pode dizer L2?
- 7 {1.9} **Tradução para FOL.** Relativamente à tabela 1, traduza as frases seguintes para FOL. Os instantes são todos do mesmo dia.

TABELA 1

FEUP / MIEIC MATEMÁTICA DISCRETA

NOMES E PREDICADOS DE UMA LINGUAGEM

Português	FOL	Comentário
Nomes		
Max	max	Nome de uma pessoa
Claire	claire	Nome de uma pessoa
Folly	folly	Nome de um cão
Carl	carl	Nome de um cão
Scruffy	scruffy	Nome de um gato
Pris	pris	Nome de um gato
2H00, Jan 2, 2001	2:00	Nome de um instante
2:01 pm, Jan 2, 1001	2:01	Um minuto depois
		Semelhante para outros instantes
Predicados		-
x é um animal doméstico	Pet(x)	
x é uma pessoa	Person(x)	
x é um estudante	Student(x)	
t é antes de t'	t < t'	
x estava com fome no instante t	Hungry(x,t)	
x estava zangado no instante t	Angry(x, t)	
x era o dono de y no instante t	Owned(x,y,t)	
x deu y a z em t	Gave(x,y,z,t)	
x alimentou y no instante t	Fed(x,y,t)	

- 1. Claire era a dona de Folly às 2H00.
- 2. Claire deu Pris a Max às 2H05.
- 3. Max é um estudante.
- 4. Claire alimentou Carl às 2H00.
- 5. Folly pertencia a Max às 3H05.
- 6. 2H00 é mais cedo do que 2H05.
- **8** {1.13, 1.14} **Símbolos de função**. Considere uma extensão ao mundo de Tarski com os símbolos de função unários fm, bm, rm e lm que significam respetivamente o objeto mais à frente, mais atrás, mais à direita e mais à esquerda na coluna/linha do argumento. As fórmulas seguintes são assim frases da linguagem:
 - 1. Tet(lm(e))
 - 2. fm(c) = c
 - 3. bm(b) = bm(e)
 - 4. FrontOf(fm(e),e)
 - 5. LeftOf(fm(b),b)
 - 6. SameRow(rm(c),c)
 - 7. bm(lm(c)) = lm(bm(c))
 - 8. SameShape(Im(b),bm(rm(e)))
 - 9. d = Im(fm(rm(bm(d))))
 - 10. Between(b,lm(b),rm(b))

FEUP/MIEIC MATEMÁTICA DISCRETA

Preencha a tabela seguinte com TRUE e FALSE conforme o valor de verdade da frase no mundo respetivo.

	Leibniz	Bolzano	Boole	Witgenstein
1				
2				
3				
4				
5				
6				
7				
8				
9			_	
10				

Note que 3 das frases são verdadeiras nos 4 mundos. Uma delas não se consegue falsificar. Construa um mundo em que as outras duas sejam falsas.

9 {1.15} **Linguagem funcional**. Considere as duas linguagens seguintes:

	linguagem funcional	linguagem relacional
Nomes	claire, melanie, jon	claire, melanie, jon
símbolos funcionais	father	não tem!
Predicados	=, Taller	=, Taller, FatherOf

Traduza as frases seguintes da linguagem relacional para a funcional:

- 1. FatherOf(jon, claire)
- 2. FatherOf(jon, melanie)
- 3. Taller(claire, melanie)

Para as seguintes frases atómicas da linguagem funcional, quais têm traduções por frases atómicas na linguagem relacional? Indique a tradução e explique o problema das que não a têm.

- 4. father(melanie) = jon
- 5. father(melanie) = father(claire)
- 6. Taller(father(claire), father(jon)).

10 {1.20, 1.22} **Linguagem da aritmética.** Mostre que as expressões seguintes são termos na linguagem de primeira ordem da aritmética. A que números se referem?

- 1.(0+0)
- 2. $(0 + (1 \times 0))$
- 3. $((1+1)+((1+1)\times(1+1)))$
- 4. $(((1 \times 1) \times 1) \times 1)$

FEUP/MIEIC MATEMÁTICA DISCRETA

5. Mostre que há uma infinidade de termos que se referem ao número 1.

Programa Fitch

11 {Sec 2.3} Provas formais. O sistema dedutivo que utilizamos inclui as seguintes regras.

Introdução da Identidade (= Intro)

$$\triangleright \mid n = n$$

Eliminação da Identidade (= Elim)

Reiteração (Reit)

Obtenha uma prova formal, justificando todos os passos, da frase SameRow(b,a), a partir das premissas SameRow(a,a) e b=a.

12 {Sec 2.4} Abrir Ana Con 1.

- a) Posicione-se na 1ª conclusão, SameShape(c,b). A regra Ana Con refere-se a Cube(b) e Cube(c). Cite estas frases e faça a verificação do passo (check step).
- b) Posicione-se em SameRow(b,a). Visto que a relação SameRow é simétrica e transitiva pode-se concluir SameRow(b,a) a partir de SameRow(b,c) e SameRow(a,c). Cite estas duas frases e verifique o passo.
- c) Quais são as premissas que permitem concluir BackOf(e,c)? (Cite-as e verifique).
- d) Quais são as citações necessárias para as 4ª e 5ª regras?
- e) A última conclusão, SameCol(b,b) não precisa de citar nenhuma premissa. É simplesmente uma verdade analítica ou seja, verdade em virtude do seu significado. Especifique a regra e verifique o passo.
- f) Verifique a prova.
- 13 Construa a prova formal de que a conclusão é consequência das premissas:

FEUP / MIEIC MATEMÁTICA DISCRETA

b) a) SameCol(a,b) Between(a,d,b) b=ca=cc=de=bSameCol(a,d) Between(c,d,e) d) c) Smaller(a,b) RightOf(b,c) LeftOf(d,e) Smaller(b,c) Smaller(a,c) b=dLeftOf(c,e)