

Maria José Pacifico-2020

Funções vetoriais e curvas.

Exercise 1. Determine o domínio das sequintes funções vetoriais:

(a)
$$f(t) = \left(\frac{1}{1-t}, \frac{1}{t}, \cos \frac{1}{t}\right)$$
.

(b)
$$f(t) = (\sqrt{t-2}, \sqrt{t-1}, \sqrt{t^2-4}).$$

Resolução. O domínio de uma função vetorial é a interseção dos domínios das funções coordenadas.

(a) Sejam $f_1(t) = \frac{1}{1-t}$, $f_2(t) = \frac{1}{t}$ e $f_3(t) = \cos \frac{1}{t}$ as funções coordenadas de f. Então

$$Dom(f) = Dom(f_1) \cap Dom(f_2) \cap Dom(f_3).$$

Primeiro determinamos $Dom(f_i)$ para i = 1, 2, 3.

 $Dom(f_1)$: Aqui, a única restrição que temos é que $1-t\neq 0$, ou seja, $t\neq 1$. Logo

$$Dom(f_1) = \mathbb{R} \setminus \{1\}.$$

 $Dom(f_2)$: Esta função coordenada está bem definida só quando $t \neq 0$. Então,

$$Dom(f_2) = \mathbb{R} \setminus \{0\}.$$

 $Dom(f_3)$: O coseno é uma função que está definida em todos os números reais, então a única restrição está em 1/t que, como sabemos, só é válida quando $t \neq 0$.

$$Dom(f_3) = \mathbb{R} \setminus \{0\}.$$

Portanto,

$$Dom(f) = (\mathbb{R} \setminus \{1\}) \cap (\mathbb{R} \setminus \{0\}) \cap (\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus \{0, 1\}.$$

(b) Como antes, colocamos $f_1(t) = \sqrt{t-2}$, $f_2(t) = \sqrt{t-1}$ e $f_3(t) = \sqrt{x^2-4}$ para as funções coordenadas de f e calculamos os seus respectivos domínios:

 $Dom(f_1)$: Essa função está definida só quando $t-2 \ge 0$; ou seja, $t \ge 2$, logo

$$Dom(f_1) = [2, \infty).$$

 $Dom(f_2)$: Essa função está definida para $t-1 \ge 0$, ou seja $t \ge 1$, assim

$$Dom(f_2) = [1, \infty).$$

 $\operatorname{Dom}(f_3)$: Para essa função estar bem definida, precisa-se que $x^2 - 4 \ge 0$. Mas isto acontece quando $t \in (-\infty, -2] \cup [2, \infty)$; ou seja,

$$Dom(f_3) = ([2, \infty)) \cap ([1, \infty)) \cap ((-\infty, -2] \cup [2, \infty)) = [2, \infty).$$

Exercise 2. Determine f'(t), f''(t) e $\int_0^{2\pi} f(t)dt$ das seguintes funções vetoriais:

- (a) $f(t) = (\cos(t), sen(t))$.
- (b) f(t) = (r(t sen(t)), r(1 cos(t))). onde r > 0 é uma constante real.
- (c) $f(t) = (\cos(t^2), sen(t^2))$. Não calcule a integral.
- (d) $f(t) = (t, \cos(t), sen(t)).$
- (e) $f(t) = (\sqrt{5}\cos(t), \sqrt{5}\sin(t), 2t)$.

Instituto de Matemática - Universidad Federal do Rio de Janeiro

Exercise 3. Em cada um dos sequintes exercícios, esboce a curva descrita pelo ponto (x,y) onde x, y são dados paramétricamente nos intervalos sinalados:

(a)
$$x = 2t + 3$$
, $y = 4t^2 - 9$; $t \in \mathbb{R}$.

(b)
$$x = 2 + \frac{1}{t}$$
, $y = 2 - t$; $t > 0$.
(c) $x = t^2 + t$, $y = t^2 - t$; $t \in \mathbb{R}$

(c)
$$x = t^2 + t$$
, $y = t^2 - t$; $t \in \mathbb{R}$.

(b)
$$x = 2 + \frac{1}{t}$$
, $y = 2 - t$, $t > 0$.
(c) $x = t^2 + t$, $y = t^2 - t$; $t \in \mathbb{R}$
(d) $x = t + 1$, $y = t^2 + 4$; $t \ge 0$.

(e)
$$x = t^2 - 2t$$
, $y = t + 1$; $t > 0$.

Resolução.

(a) Procuramos as equações cartesianas da curva. Para isso, temos que procurar uma relação entre a variável $x \in y$. Por exemplo, podemos isolar t na equação de x(t),

$$x(t) = 2t + 3$$

$$x(t) - 3 = 2t$$

$$t = \frac{x(t) - 3}{2}$$

Substituindo este valor de t na equação de y(t), obtemos

$$y(t) = 4\left(\frac{x(t) - 3}{2}\right)^2 - 9$$
$$= x^2(t) - 6x(t) + 9 - 9$$
$$= x^2(t) - 6x(t)$$

Aqui podemos dispensar do parámetro t e obtemos simplesmente a equação $y = x^2 - 6x$. Como $t \in \mathbb{R}$, x(t) atinge qualquer valor real, logo $y = x^2 - 6x$, que representa a curva, é uma parábola com domínio todo R. Para determinar o gráfico dessa curva, encontramos alguns pontos chaves; por exemplo.

- A parábola é aberta para acima, pois o fator de x^2 é a = 1 > 0;
- Corte com o eixo x: É fácil ver, da equação $x^2 6x = x(x 6) = 0$ que as raízes (corte com o eixo x) são x = 0 e x = 6;
 - Corte no eixo y: É o ponto (0, f(0)) = (0, 0); ou seja, passa pela origem;
 - O vértice da parábola é (3, -9). O vértice pode ser determinado pela fórmula

$$\left(\frac{-b}{2a}, \frac{-\triangle}{4a}\right)$$
, onde $\triangle = b^2 - 4ac$

No caso, a = 1, b = -6 e c = 0.

Em suma, temos que desenhar uma parábola aberta para acima e que passa pelos pontos (0,0), (6,0) e (3,-9). Eis o gráfico da curva

(c) Isolamos o t da equação de x(t):

$$x(t) = t^2 + t$$
$$t^2 + t - x(t) = 0$$

Instituto de Matemática - Universidad Federal do Rio de Janeiro

Figure 1: Gráfico da curva: x(t) = 2t + 3, $y(t) = 4t^2 - 9$, $t \in \mathbb{R}$.

Essa última equação é uma equação de segundo grau em t. Sabemos que

$$t = \frac{-1 \pm \sqrt{1 + 4x(t)}}{2}, \qquad t \in \mathbb{R}$$

Temos então dois valores para t.

Se
$$t = \frac{-1+\sqrt{1+4x(t)}}{2}$$
, então

$$y(t) = \left(\frac{-1 + \sqrt{1 + 4x(t)}}{2}\right)^2 - \frac{-1 + \sqrt{1 + 4x(t)}}{2} = 1 + x(t) - \sqrt{1 + 4x(t)}.$$

Se
$$t = \frac{-1 - \sqrt{1 + 4x(t)}}{2}$$
, então

e

$$y(t) = \left(\frac{-1 - \sqrt{1 + 4x(t)}}{2}\right)^2 - \frac{-1 - \sqrt{1 + 4x(t)}}{2} = 1 + x(t) - \sqrt{1 + 4x(t)}..$$

Agora observe que a condição $t \in \mathbb{R}$ implica que $x(t) \ge -1/4$.

O esboço da curva será o gráfico das funções:

$$f_1(x) = 1 + x - \sqrt{1 + 4x}, \qquad x \ge -1/4$$

 $f_2(x) = 1 + x + \sqrt{1 + 4x}$ $x \ge -1/4$.

Instituto de Matemática - Universidad Federal do Rio de Janeiro

Figure 2: Esboço da curva $x(t) = t^2 + t$, $y(t) = t^2 - t$, $t \in \mathbb{R}$.

Exercise 4. Nas seguintes funções vetoriais, esboce o traço Tr(f) e reflita sobre seu gráfico $\Gamma(f)$:

- (a) $f(t) = (\cos(2t), \cos(t)); 0 \le t \le 2\pi$.
- (b) $f(t) = (\cos(t), sen(t)); -4\pi \le t \le 4\pi.$
- (c) $f(t) = (\sec(t), \tan(t)) \pi/2 < t < \pi/2$.
- (d) $f(t) = (2 + 4sen(t), 3 2cot(t)); 0 \le t \le 2\pi$.

Resolução.

(d) Isolamos sen(t) e cos(t), nas coordenadas paramétricas, para estabelcer a identidade trigonométrica $sen^2(t) + cos^2(t) = 1$. Então,

$$x = 2 + 4sen(t)$$

$$x - 2 = 4sen(t)$$

$$\frac{x - 2}{4} = sen(t)$$

Analogamente,

$$y = 3 - 2\cos(t)$$

 $y - 3 = -2\cos(t)$
 $3 - y = 2\cos(t)$
 $\frac{3 - y}{2} = \cos(t)$.

Instituto de Matemática - Universidad Federal do Rio de Janeiro

Portanto,

$$1 = sen^{2}(t) + \cos^{2}(t) = \left(\frac{x-2}{4}\right)^{2} + \left(\frac{3-y}{2}\right)^{2} = \frac{(x-2)^{2}}{16} + \frac{(y-3)^{2}}{4}.$$

Que representa uma elipse centrada em (2,3), eixo maior a=4 e eixo menor b=2. O fato de t variar no intervalo $[0,2\pi]$ diz que o traço da curva deve ser todo o gráfico da elipse encontrada.

Figure 3: Traço da curva parametrizada $f(t) = (2 + 4sen(t), 3 - 2\cos(t))$.

Exercise 5. Obtenha uma paramétrização do semi-círculo

$$x^2 + y^2 = 1 \qquad y > 0$$

usando como parâmetro o coeficiente angular $t = \frac{dy}{dx}$ da tangente à curva no ponto (x,y)

NOTA: O coeficiente angular de uma reta é simplesmente a inclinação. Resolução. Derivando implícitamente a equação $x^2 + y^2 = 1$, obtemos

$$2x + 2yy' = 0$$

Logo, $\frac{dy}{dx}=y'=-\frac{x}{y}$ que seria nosso parâmetro; ou seja

$$t = -\frac{x}{y}$$
, equivalentemente $x = -ty$

Substituindo x=-ty na equação $x^2+y^2=1$, obtemos

$$(-ty^2) + y^2 = 1$$
 \Rightarrow $y^2(t^2 + 1) = 1$ \Rightarrow $y = \pm \frac{1}{\sqrt{t^1 + 1}}$

Agora, notando que y deve ser positivo, temos que

$$y = \frac{1}{\sqrt{t^2 + 1}}.$$

Portanto, uma parametrização do semi-círculo, usando $t=\frac{dy}{dx}$ como parâmetro, é

$$f(t) = (x, y) = (-ty, y) = \left(\frac{-t}{\sqrt{t^2 + 1}}, \frac{1}{\sqrt{t^2 + 1}}\right).$$

Instituto de Matemática - Universidad Federal do Rio de Janeiro

Exercise 6. Obtenha uma paramétrização do semi-círculo

$$x^2 + y^2 = r^2 \qquad y > 0$$

usando como parâmetro a variável t definida por $x = r \tan(t)$.

Resolução. Substituindo $x = r \tan(t)$ na equação $x^2 + y^2 = r^2$ obtemos

$$r^{2} \tan^{2}(t) + y^{2} = r^{2}$$

$$y^{2} = r^{2} - r^{2} \tan^{2}(t)$$

$$y^{2} = r^{2}(1 - \tan^{2}(t))$$

$$y = \pm \sqrt{r^{2}(1 - \tan^{2}(t))}$$

$$y = \pm r\sqrt{1 - \tan^{2}(t)}$$

Usando o fato que y > 0, desconsideramos o possível sinal negativo diante da raíz. Então,

$$y = r\sqrt{1 - \tan^2(t)}$$

Portanto, uma parametrização do semi-círculo, usando o parâmetro $x = r \tan(t)$ é

$$f(t) = \left(r\tan(t), r\sqrt{1 - \tan^2(t)}\right).$$

Exercise 7. Esboçar a curva parametrizada por $f(t) = (cos(t^2), sen(t^2))$ no intervalo $-\sqrt{\pi} \le t \le \sqrt{\pi}$.

Resolução. É claro que o traço vai ser um arco da circunferência de raio 1 centrada na origem, pois

$$x^2 + y^2 = \cos^2(t^2) + sen^2(t^2) = 1$$

Observe então que quando t varia no intervalo $[-\sqrt{\pi},\sqrt{\pi}]$, então t^2 varia só no intervalo de $[0,\pi]$. Vemos que "ângulo" $\alpha(t)=t^2$ varia de π até 0 quando t vai de $-\sqrt{\pi}$ até 0, e logo de 0 até π quando $t\in[0,\sqrt{\pi}]$. Portanto, o traço de $f(t)=(cos(t^2),sen(t^2))$ pode ser esboçado considerando primeiro o intervalo $[-\sqrt{\pi},0]$ e logo o intervalo $[0,\sqrt{\pi}]$.

- $[-\sqrt{\pi}, 0]$. Neste intervalo $\alpha(t)$ vai desde π até 0; quer dizer, $(\cos(t^2), \sin(t^2))$ nesse intervalo é apenas a semi-circunferência superior indo desde o ponto (-1,0) até (1,0) (Veja figura). Pois $f(-\sqrt{\pi}) = (\cos(\pi), \sin\pi) = (-1,0)$ e $f(0) = (\cos 0, \sin 0) = (1,0)$. Isto quer dizer que o curva está sendo traçada de esquerda a direita.
- \bullet $[0,\sqrt{\pi}]$. Neste intevalo, o ángulo varia entre 0 e π . Portanto a traço tem que ser a semicircunferência superior traçada de direita a esquerda

Em suma, o traço de $f(t) = (\cos t^2, sent^2)$ é a semi-circunferência superior de raio uma (percorrida duas vezes).

Maria José Pacifico-2020

Figure 4: Traço da curva $f(t)=(\cos t^2, sent^2)$ quando $t\in [-\sqrt{\pi}, 0].$

Figure 5: Traço da curva $f(t) = (\cos t^2, sent^2)$ quando $t \in [0, \sqrt{\pi}]$.

Exercise 8. Suponha que $f, g: I \subseteq \mathbb{R} \to \mathbb{R}^n$ são duas funções vetoriais e $\alpha: I \to \mathbb{R}$ é uma função real. Mostre que:

- (a) (f+g)'(t) = f'(t) + g'(t).
- (b) $(\alpha f)'(t) = \alpha'(t)f(t) + \alpha(t)f'(t)$.

Resolução. Suponhamos que $f(t)=(f_1(t),f_2(t),...,f_n(t))$ e $g(t)=(g_1(t),g_2(t),...,g_n(t))$. Então,

(a) Sabemos que a derivada de uma função vetorial é a derivada de cada função componente; isto é,

$$f'(t) = (f'_1(t), f'_2(t), ..., f'_n(t)).$$

Assim

$$(f+g)'(t) = (f_1(t) + g_1(t), f_2(t) + g_2(t), ..., f_n(t) + g_n(t))'$$

$$= ((f_1(t) + g_1(t))', (f_2(t) + g_2(t))', ..., (f_n(t) + g_n(t))')$$

$$= (f'_1(t) + g'_1(t), f'_2(t) + g'_2(t), ..., f'_n(t) + g'_n(t)) \quad \text{usando a derivada da soma}$$

$$= (f'_1(t), f'_2(t), ..., f'_n(t)) + (g'_1(t), g'_2(t), ..., g'_n(t))$$

$$= f'(t) + g'(t).$$

Figure 6: Traço da curva $f(t) = (\cos t^2, sent^2)$ no intervalo $[-\sqrt{\pi}, \sqrt{\pi}]$.

(b) Como α é uma função real, temos, por definição, que

$$(\alpha f)(t) = \alpha(t)f(t) = \alpha(t)(f_1(t), f_2(t), ..., f_n(t)) = (\alpha(t)f_1(t), \alpha(t)f_2(t), ..., \alpha(t)f_n(t)).$$

Lembre que cada f_i é também uma função de variável real, logo $\alpha(t)f_i(t)$ é um produto de funções de variáveis reais; portanto,

$$(\alpha f)'(t) = (\alpha(t)f_{1}(t), \alpha(t)f_{2}(t), ..., \alpha(t)f_{n}(t))'$$

$$= ((\alpha(t)f_{1}(t))', (\alpha(t)f_{2}(t))', ..., (\alpha(t)f_{n}(t))')$$

$$= (\alpha'(t)f_{1}(t) + \alpha(t)f'_{1}(t), \alpha'(t)f_{2}(t) + \alpha(t)f'_{2}(t), ..., \alpha'(t)f_{2}(t) + \alpha(t)f'_{2}(t))$$
 derivada do produto
$$= (\alpha'(t)f_{1}(t), \alpha'(t)f_{2}(t), ..., \alpha'(t)f_{n}(t)) + (\alpha(t)f'_{1}(t), \alpha(t)f'_{2}(t), ..., \alpha(t)f'_{n}(t))$$

$$= \alpha'(t)(f_{1}(t), f_{2}(t), ..., f_{n}(t)) + \alpha(t)(f'_{1}(t), f'_{2}(t), ..., f'_{n}(t))$$

$$= \alpha'(t)f(t) + \alpha(t)f'(t)$$