

Name:	•••••••••••••••••••••••••••••••••••••••
Class:	Teacher:

Self-Evaluation Higher Chemistry

Unit 3

Chemistry In Society

Section	Title	Completed
3.1	Calculations	
3.2a	Controlling The Rate – Collision Theory	
3.2b	Controlling The Rate – Reaction Pathways	
3.2c	Controlling The Rate – Kinetic Energy Distribution	
3.3a	Chemical Energy - Enthalpy	
3.3b	Chemical Energy - Hess's Law	
3.3c	Chemical Energy - Bond Enthalpies	
3.4	Equilibria	
3.5a	Chromatography	
3.5b	Volumetric Titrations	

	Dalziel Higher Chemistry Self-Evaluation		Tro	ffic Li	ght	
	High High	Page	Red	Amber	Green	
	School Unit 3.1 Calculations			4		
	Calculations can be performed using gram formula mass: e.g.: Calculate the gfm of calcium nitrate: gfm $Ca(NO_3)_2 = (1\times40.1) + (2\times14) + (6\times16) = 40.1 + 28 + 96 = 164.1g$		8	<u>:</u>	©	
	Calculations turning masses into number of moles (and vice versa) require the gfm:					
120ь	Calculate the number of moles in 0.328g of calcium nitrate? gfm $Ca(NO_3)_2 = 164.1g \text{ mol}^{-1}$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{0.328}{164.1} = 0.002 \text{mol}$ Calculate the mass of 0.05mol of calcium nitrate? gfm $Ca(NO_3)_2 = 164.1g \text{ mol}^{-1}$ mass = no. of mol × gfm = 0.05×164.1 = 8.21g		8	<u>(1)</u>	③	
	The mass of products formed from reactants can be calculated using balanced equations and formula masses. e.g. calculate the mass of carbon dioxide produced if 5g of calcium carbonate reacts with excess HCl gfm $CaCO_3 = (1\times40.1)+(1\times12)+(3\times16) = 40.1+12+48 = 100.1g$ gfm $CO_2 = (1\times12)+(2\times16) = 12+32 = 44g$ no. of mol = $\frac{mass}{gfm} = \frac{5}{100.1} = 0.05$ mol $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2 \text{ mass = no. of mol } \times \text{ gfm} \text{ inol } \text{ 0.05 mol } \times 44 \text{ g mol}^{-1} \text{ 0.05 mol } \times 22g$		(i)	(1)	(i)	
120d	Calculations can be performed using volumes and concentrations e.g. Calculate the mass of calcium carbonate required to completely react with 80cm³ of 0.1mol I^{-1} hydrochloric acid. no. of mol HCl = volume × concentration = 0.08litres × 0.1mol I^{-1} = 0.008mol $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$ $1 mol 2 mol 0.004mol 0.008mol$ gfm $CaCO_3$ = $(1\times40.1)+(1\times12)+(3\times16)$ = $40.1+12+48$ = $100.1g$ $mass = no. of mol × gfm = 0.004mol × 100.1g mass = no. of mol × gfm = 0.004mol × 1$		②	(1)	©	
	The volume of a gas can be calculated from the number of moles and vice versa. e.g. Calculate the volume of 0.8g of oxygen gas if molar volume = 24 litres mol ⁻¹ no. of mol $O_2 = \frac{\text{mass}}{\text{gfm}} = \frac{0.8g}{32g \text{ mol}^{-1}} = 0.025 \text{mol}$		8	①	©	
120f	Volume = no. of mol x Molar Volume = $0.025_{\text{mol}} \times 24_{\text{litres mol}^{-1}} = \underline{0.6_{\text{litres}}}$ The volumes of reactant and product gases can be calculated from the number of moles of each reactant and product. e.g. Calculate the final volume and composition of the mixture produced when 100cm^3 of ethane is completely burned in 500cm^3 of oxygen. $C_2H_{6(g)} + 3\frac{1}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(l)}$ $1\text{mol} \qquad 3.5\text{mol} \qquad 2\text{mol} \qquad 3\text{mol}$ $1\text{vol} \qquad 3.5\text{vol} \qquad 2\text{vol} \qquad \text{negligible volume}$ $100\text{cm}^3 \qquad 350\text{cm}^3 \qquad 200\text{cm}^3 \qquad - \qquad $		3	①	3	

1

	I can use a balanced equation to work out the react	tant in excess and therefore the limiting reactant,			
	for a chemical reaction. e.g. Calculate which reactant is in excess when 2g of \mathbf{gfm} H ₂ = 2g \therefore n= $^{\text{mass}}/_{\text{gfm}} = ^{2}/_{2} = 1$ mol				
122	2H ₂ + O ₂	2H ₂ + O ₂ → 2H ₂ O 2mol 1mol 0.5mol 0.25mol 0.5mol of H ₂ needed to react all O ₂ and 1mol of H ₂ available	8	(2)	©
	hydrogen is in excess oxygen is the limiting reactant as it runs out	∴ hydrogen is in excess ∴ oxygen is the limiting reactant as it runs out			
	In order to ensure that a costly reactant is converreactant(s) is used	ted in a product, an excess of the less expensive	③	<u></u>	©
	For a particular set of conditions, the percentage y the limiting reagent is converted into the desired p • The theoretical yield is the quantity of des the limiting reagent, as calculated from th	oroduct. sired product obtained, assuming full conversion of	8	:	©
		Actual Yield Actual Yield × 100	8	(1)	0
128	Percentage yields can be calculated from balanced e.g. Calculate the %yield of ester if 2g of methyl examples are than action of the start of the s	thanoate is formed when 1.6g of methanol is used. ater ${}_{2}O$ %yield = $\frac{\text{actual}}{\text{theoretical}} \times 100$ $= \frac{2}{3.7g} \times 100$ $= 54.1\%$	8	:	(i)
129	Given costs for the reactants, a percentage yield c required to produce a given mass of product	an be used to calculate the cost of reactant(s)	8	<u></u>	\odot
	Atom economy measures the proportion of the successfully converted into the desired produ Atom Economy = mass of total n	ct in the balanced equation.	8	<u></u>	(i)
131	1mol 1mol 138g 102g	the following reaction. C9H8O4 + C2H4O2 1mol 180g	8	⊕	(C)
		$\frac{\text{product}}{\text{pctants}} \times 100 = \frac{180g}{240g} \times 100 = 75\%$			
132		omy results in waste products being produced physical process of the products being produced the process of the percentage yield and high atom economy.	8	:	③

	Dalziel	Highen Char	mistmy Sold	F Evaluation			Tro	iffic Li	ght
	High School		Mistry Sen 2a Collision	f-Evaluation Theory		Page	Red	Amber	Green
133	• If the	s must be controlled by in ir e rate is too low the proces e rate id too high the proce	s will not be econon	nically viable			8	<u></u>	0
134	l luiha	nip between reaction time a of rate include s ⁻¹	nd reaction rate is: $rate = \frac{1}{time}$						
(3)		Temperature (° <i>C</i>) 20 30 40	Time Taken (s) 100 50 10	Relative Rate (s^{-1}) $\frac{1}{100} = 0.01$ $\frac{1}{50} = 0.02$ $\frac{1}{10} = 0.10$			8		(i)
135 (5)	temperature of a) increa b) increa c) smalle d) increa i. ii. e) Collis each	ry can be used to explain the on reaction rates using collists ased concentration gives a gased pressure increases chapter particles have a larger subject to the particles have a larger subject to the particles have enemoted in theory states that before the other with the correct enemotes and collision to form prodes.	sion geometry greater chance of a ances of a collision arface area so more a more particles mov in more collisions rgy greater than th ore a reaction can t ergy and the correc	collision faster rec faster reaction : particles available to ving faster e activation energy take place, the partic	react by collision faster reaction es must collide with	1	©	①	(i)

	Dalziel Higher Chemistry Self-Evaluation		Tro	iffic Li	
	High School Unit 3.2b Reaction Pathways	Page	Red	Amber	Green
136	A potential energy diagram can be used to show the energy pathway for a reaction. • The enthalpy change (\(\Delta H \)) is the energy difference between the products and the reactants • Enthalpy change is measured from R to P for the forward reaction. • Enthalpy change is measured from P to R for the reverse reaction • enthalpy change has a negative value for exothermic reactions (downhill overall) • enthalpy change has a positive value for endothermic reactions (uphill overall)		3	:	3
137a (27)	The activation energy (E₀) is the minimum energy required by colliding molecules to form an activated complex • Activation energy is measured from R to top of hill for the forward reaction • Activation energy is measured from P to top of hill for the reverse reaction • activation energy is the minimum kinetic energy required by colliding molecules for a reaction to occur path of reaction For Forward Reaction: E₀ = 120 - 45 = -25 kJ mol⁻¹ ΔH = 20 - 45 = -25 kJ mol⁻¹ For Reverse Reaction: E₀ = 120 - 20 = 100 kJ mol⁻¹ ΔH = 45 - 20 = +25 kJ mol⁻¹		8	(1)	©
137b (26)	The activated complex is an unstable arrangement of atoms formed at the maximum of the potential energy barrier (top of hill), during a reaction. I have bond forming hew bond forming to the potential energy barrier (top of hill), during a reaction. Classical complex is an unstable arrangement of atoms formed at the maximum of the potential energy barrier (top of hill), during a reaction. Classical complex is an unstable arrangement of atoms formed at the maximum of the potential energy barrier (top of hill), during a reaction.		8	①	9
138 139	A catalyst provides an alternate reaction pathway with a lowering of the activation energy • activation energy of reverse reaction is also lowered Enthalpy of reactants and products is unchanged • adding a catalyst has no effect on the enthalpy change (ΔH) Activation Energy for uncatalysed reaction Activation Energy for catalysed reaction Activation Energy for catalysed reaction		3	①	9

	Dalziel Higher Chemistry Self-Evaluation		Tro	iffic Li	ght
	High School Unit 3.2c Kinetic Energy Distribution	Page	Red	Amber	Green
140	Temperature is a measure of the average kinetic energy of the particles in a substance.		(3)	<u>:</u>	\odot
141	The activation energy is the minimum kinetic energy required by colliding particles before a reaction may occur		(3)	<u>:</u>	\odot
	Energy Distribution Diagrams can be used to explain the effect of changing temperature on the kinetic energy of particles and reaction rate. • Only particles with energy greater than the activation energy can react during a collision Solitor Particles with energy greater than the activation energy can react during a collision Collis		©	(1)	(3)
143a	Energy distribution diagrams can explain the effect of changing temperature on the kinetic energy of particles. • An increase in temperature increases the number of particles with energy greater than the activation energy. • Increase in temperature moves curve to right • Decrease in temperature moves curve to left		(3)	(i)	(3)
143b	Catalysts lower the activation energy for a reaction • Easier for the activated complex to form as minimum energy required to form activated complex is reduced by adding a catalyst Additional particles with energy greater than lowered Activation Energy particles with energy greater than Activation Energy Eakinetic energy		3	①	0

	Dalziel Higher Chemistry Self-Evaluation		Tro	affic Li	ight
	High	Page	Red	Amber	Green
T	School Unit 3.3a Enthalpy		α	Ā	P
144	Enthalpy (H) is a measure of the energy stored in a chemical.		8	<u></u>	\odot
	Enthalpy change is given the symbol ΔH	+)	
	A reaction or process that releases heat energy is described as exothermic in industry, exothermic reactions may require heat to be removed to prevent the				
145	temperature rising				
	A reaction or process that releases heat energy is described as endothermic		8	\odot	\odot
	in industry, endothermic reactions may incur costs in supplying heat energy in order to				
	maintain the reaction rate.				
	The enthalpy change for a reaction can be calculated from the data for specific heat capacity, mass				
	and temperature change.				
	 By calculation of how much of 1 mole was burned, the enthalpy of combustion can be calculated 				
	e.g. Calculate the enthalpy of combustion of ethanol if 0.92g of ethanol burned to heat up 200cm³ of				
	water by 6°C.				
	$E_h = c \times m \times \Delta T$ $c = specific heat capacity = 4.18 kJ kg-1 °C-1$				
147 148	= $4.18 \times 0.2 \times 6$ m = mass of water being heated up				
149	= 5.016 kJ (worked out by converting volume of water into mass) (NB 1000cm³ water = 1kg of water)		8		\odot
(34)	1mol of ethanol $C_2H_5OH = (2\times12)+(6\times1)+(1\times16)$				
	= 24 + 6 + 16				
	= 46g				
	0.92g ethanol 5.016kJ				
	46g ◆ 5.016kJ x ⁴⁶ / _{0.92}				
	= 250.8 kJ mol ⁻¹				
	but exothermic reaction ΔH = -250.8 kJ mol ⁻¹				
150	The enthalpy of combustion of a substance is the amount of energy given out when one mole of a				
	substance burns completely in oxygen.		8	⊕	\odot

	Dalziel Higher Chemistry Self-Evaluation						affic L	ight
	High School	High	er Chemistry Seit-6 Unit 3.3b Hess's l		Pag	ge B	Amber	Green
151a	Hess's Law: Enthalpy chang	ge for any pa	rticular chemical reaction is the same	regardless of chemical route t	aken.	8	(2)	©
			culated by application of Hess's Law: of formation for SiH4 Si + 2H ₂ → SiH ₄]				
		0 0 0	$SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$ $Si + O_2 \rightarrow SiO_2$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$			8	(a)	©
			$SiO_2 + 2H_2O \rightarrow SiH_4 + 2O_2$ $Si + O_2 \rightarrow SiO_2$ $2H_2 + O_2 \rightarrow 2H_2O$	ΔH= -911 kJ ΔH= -572 kJ				
151Ь			$Si + 2H_2 \rightarrow SiH_4$ If formation of ethyne	ΔH= +34 kJ		_		
	e.g. carculate it	le ennaipy o	$2C + H_2 \rightarrow C_2H_2$]				
	0		$C + O_2 \rightarrow CO_2$	$\Delta H = -394 kJ \text{ mol}^{-1}$				
	0	Н	$_{2}+\frac{1}{2}O_{2}\rightarrowH_{2}O$	$\Delta H = -286 kJ \text{ mol}^{-1}$				
	€	C ₂ H ₂ ·	$+ 2\frac{1}{2}O_2 \rightarrow 2CO_2 + H_2O$	$\Delta H = -1300$ kJ mol ⁻¹		\otimes	(<u>@</u>	\odot
	Ox2	20	$C + 2O_2 \rightarrow 2CO_2$	$\Delta H = -788$ kJ mol ⁻¹				
	2	Н	$_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O$	$\Delta H = -286 kJ mol^{-1}$				
	€ x-1	200	$_2 + H_2O \rightarrow C_2H_2 + 2\frac{1}{2}O_2$	$\Delta H = +1300$ kJ mol ⁻¹				
	add		$2C + H_2 \rightarrow C_2H_2$	$\Delta H = +226 \text{kJ mol}^{-1}$				

	Dalziel Highen Chemistry Salf Evaluation		Tro	ffic Li	ght
	High School Unit 3.3c Bond Enthalpies	Page	Red	Amber	Green
152	 Molar Bond Enthalpy is the energy required to break one mole of bonds in a doatomic molecule. Mean molar bond enthalpy is the average energy required to break one mole of bonds, for a bond that occurs in a number of compounds. e.g. 1mol of C-H bonds requires 412 kJ of energy to break 1mol of C-H bonds releases 412 kJ of energy when formed 		8	<u>:</u>	(i)
153	Bond enthalpies can be used to calculate the enthalpy change for reactions in the gas phase e.g. calculate the enthalpy of formation of HCI: $\frac{1}{2}H_{2(g)} + \frac{1}{2}CI_{2(g)} \longrightarrow HCI_{(g)}$ Endothermic Steps: Bond Breaking Exothermic steps: Bond forming $\frac{1}{2}\text{mol H-H} \qquad \frac{1}{2} \times +436\text{kJ} = 218.0\text{kJ}$ $\frac{1}{2}\text{mol CI-CI} \qquad \frac{1}{2} \times +243\text{kJ} = 121.5\text{kJ} \qquad \qquad 1\text{mol H-CI} \qquad 432\text{kJ}$ $339.5\text{kJ} \qquad \qquad \qquad 432\text{kJ}$ $\therefore \text{ Enthalpy Change} = (\text{Total of Bond Breaking Steps}) - (\text{Total of Bond Forming Steps})$ $= \qquad 337.5\text{kJ} \qquad - \qquad 432\text{kJ}$ $= -94.5\text{kJ mol}^{-1}$:	8	①	(i)

		Dalziel	L	dichen	Chami	ictm	y Self-Evaluation			Tra	ffic L	ight
		High	'	lighter		_			Page	g g	Amber	Green
7		School			Unit 3	3.4	Equilibria	CHEMISTRY		ď	Ā	9
-	Re			tain a state			orium when the rates of forward and r	everse		+		
		actions are			, , , , , , , , , , , , , , , , , , , ,	1						
154			•	tions are re	actions who	ere the	e forward reaction and the reverse red	actions both		(3)	<u></u>	\odot
(16)		take	place at t	he same tim	e					$ \circ $	\odot	\odot
		• Le Ch	natelier's l	^o rinciple sta	tes: An equ	ıilibriur	n will move to undo any change imposed	d upon it by				
		temp	orarily fav	vouring eithe	er the forw	ard or	backward reaction until equilibrium is	reached agair	i.			
1 = =	Αt	•				•	products remain constant ,					
155 (17)					•		e unlikely to be equal at equilibrium			(3)		\odot
		• the r	reaction ho	as not stoppe	ed at equilil	brium				<u> </u>		
156			· · · · · · · · · · · · · · · · · · ·				uilibrium in favour of making more pro		\bot	8	\odot	\odot
	Le	Chatelier's	Principle				equilibrium position of changing tempe					
				$N_2(g)$			\longrightarrow 2NH _{3(g)} \triangle H=-92.4kJ mo) - ₁				
				Forward React		mic	Reverse Reaction is endo thermic					
157a		Custom fin		se in Tempero			Decrease in Temperature			(3)	<u></u>	\odot
(18c)				y trying to lo g reaction is		ature	System fights back by trying to raise to Temperature increasing reaction is favo	•		0		\odot
		•		y reaction is nic reaction is			.: exothermic reaction is favor					
		Equilibrium			, javoui ea		Equilibrium moves to the right	di eu				
		294		ducts at equ	ilibrium		.: more products at equilibria	Jm				
	Le	Chatelier's				on the	equilibrium position of changing press			+		
			, , , , , , , , , , , , , , , , , , ,	$N_{2(q)}$			≥ 2NH ₃ (g)					
				1mol		iz(g) Bmol	2mol					
				↓		↓	↓					
				1vol	3	3vol ب	2vol					
				4	vol of gas	:	≥ 2vol of gas					
157b (18b)			Tnone	ase in Pressu			Decrease in Pressure			(3)	⊕	\odot
(100)		System fi		by trying to l		ıre	System fights back by trying to raise	oressure				
				eaction is fav	•	ui C	Pressure increasing reaction is favoure					
			_	reaction is f			∴ reverse reaction is favour					
		Equilibriur	n moves to	the right			Equilibrium moves to the left					
			∴ more pro	oducts at equ	ıilibrium		∴ <i>less</i> products at equilibriu	m				
	Le	Chatelier's	Principle	can explain :	the effect	on the	equilibrium position of changing conce	ntration:				
		Chan	ge				Effect on Equilibrium]			
157c	I —	Addition of a		Equilibrium trie	es to remove a	additional		um shifts to right	_	(3)	<u></u>	\odot
(18a)	I —	Removal of a		Equilibrium trie			·	um shifts to left	4			
	_	Addition of a Removal of a	•	Equilibrium trie			·	um shifts to left um shifts to right	-			
	_			•	•		'	um smilis to right		+		<u> </u>
158	A	•					n and reverse reaction equally. is achieved but no change to position o	f aquilibrium		(3)	<u></u>	\odot
(19)							h or without a catalyst at equilibrium	n equilibrium				\odot
	Th			very import					+	+		
	' ' '		effects of		um maasm	iai pi o						
				ure increase	s the produ	ucts at	eauilibrium					
			of tempera		- · · · · · · · · · · · · · · · · · · ·		1					
		-	•		s are used	as high	n temperatures favour the reverse red	ction which				
				vn ammonia l		_						
		c) the u	ise of a ca	talyst								
(20)		• (use of an i	ron catalyst	increases t	the rat	e of ammonia production by achieving	equilibrium		\odot	\odot	\odot
(20)			•	•	•	ce more	e ammonia at equilibrium)					
		•	_	reacted gase								
							ted nitrogen & hydrogen as ammonia h					
			-		reacted ni	trogen	& hydrogen are returned to the react	ion vessel				
			val of pro		م المدينات		والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج	ما المائما				
				r ammonia pr Imonia to trv		•	ilibrium is achieved means the system brium	irieu to				

	Dalziel Highen Chemistry Self-Evaluation		Tro	ffic Li	ight
	High School Unit 3.5a Chromatography	Page	Red	Amber	Green
159	 Chromatography is a technique to separate the components present within a mixture. chromatography separates substances by making use of differences in their polarity or molecular size the relative affinity for the mobile phase and the stationary phase decides how far/fast the substances travels during chromatography mobile phase is a liquid or a gas which carries the sample through the material. size of molecules and their polarity affect how soluble they are in the mobile phase (and how far they travel in the mobile phase) stationary phase may be paper, silica gel, or an inert packing material in a column. size and polarity of the compounds may affect their affinity for the stationary phase (how little they travel in the mobile phase) 		(3)	①	3
160a	Chromatography can identify a component by the distance the component travelled. Lid		\mathfrak{S}	<u> </u>	(i)
160b 161	Chromatography can be used to identify a component by the time taken the component to travel through the apparatus (known as the retention time). • The quantity of the substance is indicated by the height of the peak • The retention time of substance indicated the size and polarity of the substance The brand name perfume gives the following gas chromatogram showing varying quantities of 7 different chemicals (a) linalool (b) eugenol (c) anisyl alcohol (c) coumarin (d) benzyl salicylate The counterfeit brand of perfume contains some but not all peak of the brands name perfume: Retention time/minutes Retention time / hemical Identified (min) 4.6 A (linalool) 6.2 B (citronellol) 6.8 C (geraniol) 9.6 E (anisyl alcohol)		(C)	①	()

	Dalziel Highen Chemistry Self-Evaluation		<u> </u>	Traffic Light		
	High	Higher Chemistry Self-Evaluation Unit 3.5b Volumetric Titrations	Page	Red	Amber	Green
162	concentration of	sis uses a solution of accurately known concentration to determine the exact another substance using titration. volume and concentration of a substance will allow the calculation of the number of a substance. e mole ratio from a balanced equation, the number of moles of a second substance can		(3)	<u>•</u>	©
163	• indicator	to accurately determine the volume of solution to reach the end-point of a reaction. r is used to show when the end-point has been reached. umes with 0.2cm ³ are considered concordant with the rough titration ignored.		(3)	<u></u>	©
164	Standard solution dissolve transfer make up	ns are solutions with an accurately known concentration. a accurately measured mass of solid in a small volume of deionised water in a beaker the solution to a standard flask, rinsing the beaker carefully the solution to the mark on the standard flask, using a dropper for the last few that the bottom of the meniscus is touching the line on the flask.		(3)	:	©
165	Redox titrations Titration	are based on redox reactions. as using acidified permanganate solution are self-indicating as purple permanganate lourless as the permanganate ions are reduced.		(3)	<u>:</u>	©
166	the concentration The vitamin C con To determine the samples of the judetermine the er The following res Calculate the con no. of mol I ₂ = volun C	Titration Volume of 0.00125mol t^{-1} iodine solution used $/cm^3$ t^{-1} iodine solution, in mol t^{-1} , of vitamin C , in the 1-0 litre carton of orange juice. Solution to Problem Average titre = $\frac{25.3+25.5}{2} = \frac{50.8}{2} = 25.4 cm^3$ The x concentration = 0.0254litres x 0.00125mol t^{-1} = 3.175x10-5mol t^{-1} include the x included the x incl		\odot	①	(i)