KAIST, School of Computing, Spring 2024 Algorithms for NP-hard problems (CS492) Lecture: Eunjung KIM	Scribed By: Eunjung KIM Lecture #25 21 May 2024
Contents	
1 Approximation for Cut problems via simple randomized rout $1.1 (2-\frac{2}{k})$ -approximation for EDGE MULTIWAY CUT $1.2 2$ -Approximation for EDGE MULTICUT ON TREES	
2 Half-integrality of VERTEX MULTIWAY CUT via Complemen	ntary Slackness 5

1 Approximation for Cut problems via simple randomized rounding

1.1 $(2-\frac{2}{k})$ -approximation for EDGE MULTIWAY CUT

Let $T = \{t_1, \dots, t_k\}$ be the set of terminals and for $1 \le i < j \le k$, let $\mathcal{P}_{i,j}$ be the collection of all (t_i, t_j) -path in G. The linear program for EDGE MULTIWAY CUT is formulated as follows.

$$\min \sum_{e \in E(G)} \omega_e \cdot x_e$$

$$\sum_{e \in P} x_e \ge 1 \qquad \forall P \in \mathcal{P}_{i,j} \quad \text{for all } 1 \le i < j \le k$$

$$x_e \ge 0 \qquad \forall e \in E(G)$$

Algorithm 1 Randomized Rounding for EDGE MULTIWAY CUT

- 1: **procedure** θ **-mwc** (G, ω, T)
- 2: Solve LP for MINIMUM (s,t)-CUT to obtain an optimal fractional solution x^* .
- 3: For each $i \in [k]$ and $v \in V$, compute $dist_G(t_i, v)$ with x_e^* interpreted as the length of edge e.
- 4: Choose $\theta \in (0, \frac{1}{2})$ uniformly at random.
- 5: For each $i \in [k]$, let $S_i := B(t_i, \theta) \subseteq V$ be the set of vertices v with $\mathtt{dist}_G(t_i, v) \leq \theta$.
- 6: **return** $\bigcup_{i=1}^k \delta(S_i)$.

Lemma 1. The output set of the procedure θ -mwc(G, ω, T) is a multiway cut.

Proof: Clearly, $t_i \in S_i$ for each $i \in [k]$. Moreover, S_i does not contain any terminal t_j for $j \neq i$ because $\text{dist}_G(t_i, t_j) \geq 1 > \theta$. Therefore $\delta(S_i)$ is an isolating cut for t_i , i.e. an $(t_i, T \setminus t_i)$ -cut of G. It follows that $\bigcup_{i=1}^k \delta(S_i)$ pairwise separates all terminals of T.

Lemma 2. The expected weight of an output set is at most $2 \cdot \sum_{e \in E} \omega_e \cdot x_e^*$.

Proof: The expected weight of an output set is at most

$$\sum_{e=xy\in E}\omega_e\cdot\operatorname{prob}[\operatorname{dist}_G(t,x)\leq\theta\text{ and }\operatorname{dist}_G(t,y)>\theta\text{ for some }t\in T],$$

where x is an endpoint of e which not farther from t_i than the other endpoint y is, and this choice can be different for a fixed edge e depending on the terminal t_i .

To analyze the probability of the event $[\mathtt{dist}_G(t,x) \leq \theta \text{ and } \mathtt{dist}_G(t,y) > \theta \text{ for some } t \in T]$, we define $B_i^{0.5}$ as the set of vertices v with $\mathtt{dist}_G(t_i,v) < 0.5$.

There are a few cases to consider for the type of an edge e=xy. The cases are exclusive, and we assume that none of the preceding cases are applicable for the later case.

- 1. an endpoint of e, say x, belongs to at least two balls $B_i^{0.5}$ and $B_j^{0.5}$.
- 2. (1 is not applicable, and) $x \in B_i^{0.5}$ and $y \in B_i^{0.5}$ for $i \neq j$.
- 3. (1-2 are not applicable, and) there exists a unique ball $B_i^{0.5}$ such that $B_i^{0.5} \cap \{x,y\} \neq \emptyset$.
- 4. (1-3 are not applicable, and) there is no ball $B_i^{0.5}$ such that $B_i^{0.5} \cap \{x,y\} \neq \emptyset$.

Type 1 edges do not exist because if $x \in B_i^{0.5} \cap B_j^{0.5}$, then $\mathrm{dist}_G(t_i,t_j) < 1$ and x^* is infeasible. Consider a Type 2 edge e = xy and note that $\mathrm{dist}_G(t_i,y) > 0.5$ and $\mathrm{dist}_G(t_j,x) > 0.5$. Therefore,

$$\begin{split} &\operatorname{prob}[\operatorname{dist}_G(t,x) \leq \theta \text{ and } \operatorname{dist}_G(t,y) > \theta \text{ for some } t \in T] \\ &\leq \max\{\operatorname{prob}[\operatorname{dist}_G(t_i,x) \leq \theta], \operatorname{prob}[\operatorname{dist}_G(t_j,y) \leq \theta]\} \\ &\leq \frac{\max\{0.5 - \operatorname{dist}_G(t_i,x), 0.5 - \operatorname{dist}_G(t_j,y)\}}{\operatorname{the length of the interval that } \theta \text{ is chosen from}} \} \\ &\leq 2 \cdot (1 - \operatorname{dist}_G(t_i,x) - \operatorname{dist}_G(t_j,y)) \\ &\leq 2 \cdot x_e^* \end{split}$$

where the last inequality comes from $\operatorname{dist}_G(t_i, x) + x_e^* + \operatorname{dist}_G(t_i, y) \ge \operatorname{dist}_G(t_i, t_i) \ge 1$.

For Type 3 edge e, the same analysis for the randomized rounding for MINIMUM (s,t)-CUT easily yields the probability bound at most $2x_e^*$. Notice that both endpoints or exactly one endpoint of e may lie in $B_i^{0.5}$. For Type 4 edge e, the probability is simply zero.

To sum up,

$$\sum_{e=xy\in E}\omega_e\cdot \operatorname{prob}[\operatorname{dist}_G(t,x)\leq \theta \text{ and } \operatorname{dist}_G(t,y)>\theta \text{ for some } t\in T]\leq 2\cdot \sum_{e=xy\in E}\omega_e\cdot x_e^*,$$

which completes the proof.

1.2 2-Approximation for EDGE MULTICUT ON TREES

EDGE MULTICUT ON TREES

Instance: a tree T=(V,E), a set k terminal pairs $\{(s_1,t_1),\ldots,(s_k,t_k)\}$ and edge weight $\omega:E\to Q^+$.

Goal: Find a minimum weight edge set $X \subseteq E$ such that no terminal pair (s_i, t_i) has a path in T - X.

EDGE MULTICUT ON TREES is NP-complete even on a tree of height 1 (star) and uniform weight on the edges. In this section, we present a 2-approximation algorithm for EDGE MULTICUT ON TREES based on a simple randomized rounding of LP solution.

Note that any pair of vertices on a tree is connected by a unique path. Let P_i be the unique (s_i, t_i) -path on T. The linear program for EDGE MULTICUT ON TREES is formulated as follows.

$$\min \sum_{e \in E(G)} \omega_e \cdot x_e$$

$$\sum_{e \in P_i} x_e \ge 1 \qquad \forall i \in [k]$$

$$x_e \ge 0 \qquad \forall e \in E(G)$$

Let x^* be an optimal fractional multicut, that is, an optimal solution to the above LP. Again, we interpret x_e^* as the edge length on e. We construe T as a rooted tree, and let r be the (arbitrarily chosen) root of T. With

 $x^*: E \to Q^+$ interpreted as the edge length function we define the *distance* of a vertex $v \in V$ from the root in the usual way:

$$\mathtt{dist}_{x^*}(u,v) := \sum_{e \in E(P_{u,v})} x_e^*,$$

where $P_{u,v}$ is the unique (u, v)-path on T.

Choose $\theta \in (0, \frac{1}{2})$ uniformly at random. Let B(r, d) be the set of all vertices v such that $\mathtt{dist}_{x^*}(r, v) \leq d$. We *cut* all the edges in $\delta(B(r, \theta))$, $\delta(B(r, \theta + \frac{1}{2}))$, $\delta(B(r, \theta + 1))$, $\delta(B(r, \theta + \frac{3}{2}))$. We argue that the set of deleted edges, denoted as D, is a multicut within $2 \cdot \omega(\operatorname{1p opt})$.

Algorithm 2 Randomized Rounding for EDGE MULTICUT ON TREES

- 1: **procedure** θ **-mwctree** (G, ω, T)
- 2: Solve LP for EDGE MULTICUT ON TREES to obtain an optimal fractional solution x^* .
- 3: Compute the distance $dist_{x^*}(r, v)$ for each $v \in V$.
- 4: Choose $\theta \in (0, \frac{1}{2})$ uniformly at random.
- 5: For $i \in \mathbb{N}$, let $S_i := B(r, \theta + i \cdot \frac{1}{2}) \subseteq V$ be the set of vertices v with $\operatorname{dist}_{x^*}(r, v) \leq \theta + \frac{1}{2} \cdot i$.
- 6: **return** $\bigcup_{i=1}^{\infty} \delta(S_i)$.

The next observation is immediate from $\operatorname{dist}_{x^*}(s_i, \ell_i) + \operatorname{dist}_{x^*}(t_i, \ell_i) = \operatorname{dist}_{x^*}(s_i, t_i) \geq 1$ and the feasibility of x^* .

Observation 1. Let ℓ_i be the least common ancestor of s_i and t_i on T. It holds that

$$\max\{\mathsf{dist}_{x^*}(s_i,\ell_i),\mathsf{dist}_{x^*}(t_i,\ell_i)\} \geq 0.5.$$

Lemma 3. The edge set B is a multicut.

Proof: It suffices to argue that for each $i \in [k]$, at least one of the (s_i, ℓ_i) -path and (t_i, ℓ_i) -path is cut by D. By Observation 1, we may assume that $\mathrm{dist}_{x^*}(s_i, \ell_i) \geq 0.5$ without loss of generality. Let p be the least integer such that $\ell_i \in B(r, \theta + p \cdot \frac{1}{2})$.

If p=0, then it holds that $\mathrm{dist}_{x^*}(r,s_i) \geq \mathrm{dist}_{x^*}(\ell_i,s_i) \geq 0.5 > \theta \geq \mathrm{dist}_{x^*}(r,\ell_i)$, implying that $s_i \notin B(r,\theta)$ and the (ℓ_i,s_i) -path is cut by D.

If $p \ge 1$, observe

$$\mathtt{dist}_{x^*}(r,s_i) = \mathtt{dist}_{x^*}(r,\ell_i) + \mathtt{dist}_{x^*}(\ell_i,s_i) > \left(\theta + (p-1) \cdot \frac{1}{2}\right) + \frac{1}{2} = \theta + p \cdot \frac{1}{2}.$$

This again implies that $s_i \notin B(r, \theta + p \cdot \frac{1}{2})$ and the (ℓ_i, s_i) -path is cut by D.

Lemma 4. The expected weighted of the chosen edge set is at most $2 \cdot \sum_{e \in E} \omega_e \cdot x_e^*$.

Proof: The probability that each edge is chosen for D is at most $2 \cdot x^*e$ and the statement follows.

¹When all coefficients are rational, there is a rational LP optimal solution and the usual polynomial-time algorithm finds such a solution.

2 Half-integrality of VERTEX MULTIWAY CUT via Complementary Slackness

VERTEX MULTIWAY CUT

Instance: an undirected graph G = (V, E), a set $T \subseteq V$ of k terminals t_1, \ldots, t_k , a vertex weight $\omega : V \setminus T \to Q^+$.

Goal: Find a minimum weight vertex set $X \subseteq V \setminus T$ such that any two vertices of T are in distinct connected components of G - X.

Let $T = \{s_1, \ldots, s_k\}$ be the set of terminals and for $1 \le i < j \le k$, let $\mathcal{P}_{i,j}$ be the collection of all (t_i, t_j) -path in G. The collection \mathcal{P} is the union of $\mathcal{P}_{i,j}$ for all $1 \le i < j \le k$. The linear program for VERTEX MULTIWAY CUT is formulated as follows.

$$\min \sum_{v \in V \setminus T} \omega_v \cdot x_v$$

$$\sum_{v \in V(P) \setminus T} x_v \ge 1 \qquad \forall P \in \mathcal{P}$$

$$x_v \ge 0 \qquad \forall v \in E(G)$$

The dual LP for VERTEX MULTIWAY CUT is:

$$\max \sum_{P \in \mathcal{P}} f_P$$

$$\sum_{\substack{P \in \mathcal{P}: \\ P \text{ traverses } v}} f_P \leq \omega_v \qquad \forall v \in V \setminus T$$

$$\forall P \in \mathcal{P}$$

We prove that the LP for VERTEX MULTIWAY CUT always has a half-integral solution, that is, an optimal solution to the primal LP such that each variable is assigned with a value in $\{0, 0.5, 1\}$.

Theorem 1. There is an optimal solution x^{**} to LP for VERTEX MULTIWAY CUT such that $x_v^{**} \in \{0, 0.5, 1\}$ for every $v \in V \setminus T$. Moreover, such an optimal solution can be constructed in polynomial time.

Corollary 1. In polynomial time, one can find a vertex multiway cut S to an input (G,T,ω) such that $\omega(S) \leq 2 \cdot \sum_{v \in V \setminus T} \omega_v \cdot x_v^*$, where x^* is an optimal solution to LP of VERTEX MULTIWAY CUT.

Proof: We apply Theorem 1 and find a half-integral optimal LP solution x^* . Let $X = \{v \in V \setminus T : x_v^* > 0\}$. It is clear that X is a multiway cut for (G,T). Observe that $\sum_{v \in X} \omega_v \leq \sum_{v \in X} \omega_v \cdot 2x_v^* = 2 \sum_{v \in V \setminus T} \omega_v \cdot x_v^*$, as claimed.

Henceforth, we prove the half-integrality of VERTEX MULTIWAY CUT.

Let x^* and f^* be optimal solutions to the primal and dual LP of VERTEX MULTIWAY CUT, and beware that x^* and f^* are not necessarily half-integral. As in the case of MINIMUM (s,t)-CUT and EDGE MULTIWAY CUT we interpret the assigned value x_v^* on v by the primal optimal fractional solution x^* as the length (or

cost) of the vertex v. For $v \in V$ and a terminal $s \in T$, the distance of v from t is

$$\mathtt{dist}_{x^*}(t,v) := \begin{cases} 0 & \text{for } v = t \\ \min_{P \in \mathcal{P}_{t,v}} \sum_{u \in V(P) \backslash T} x_u^* & \text{for } v \in T \backslash t \end{cases}$$

where $\mathcal{P}_{t,v}$ is the collection of all (s,v)-path of G. Because x^* is a feasible solution to the primal LP and $\mathcal{P}_{t,t'} \subseteq \mathcal{P}$ for every $t,t' \in T$, we have $\text{dist}_{x^*}(t,t') \geq 1$ for every $t,t' \in T$.

Region, Boundary, Communal and private boundary. For $i \in [k]$, let $T_i \subseteq V$ be the set $\{v \in V : \text{dist}_{x^*}(t_i, v) = 0\}$, called the *region of terminal* t_i , and $B_i := N_G(T_i)$, i.e. the vertices of $V \setminus T_i$ which has a neighbor in T_i . Let us call B_i the *boundary of the region* T_i and B be the union of all boundaries, i.e. $\bigcup_{i=1} B_i$. Note that

$$x_v^* > 0 \qquad \forall v \in B \tag{1}$$

since otherwise (i.e. $x_v^* = 0$) v would have been included in T_i . Moreover, all vertices of T_i for any $i \in [k]$ is assigned 0 by x_v^* whereas $x_v^* > 0$ for all vertices $v \in B_i$ for any $i \in [k]$, implying

$$B \cap T_i = \emptyset$$
 for all $i \in [k]$.

A vertex v of $B = \bigcup_{i=1}^k B_i$ falls into one of the two types:

- there are (at least) two indices $i, j \in [k]$ such that $v \in B_i \cap B_j$; let B^{com} denote the set of these vertices.
- there is a unique index $i \in [k]$ such that $v \in B_i$; let B^{prv} denote the set of such vertices.

Lemma 5. $x_v^* = 1$ for every $v \in B^{com}$.

Complementary Slackness Condition.

Lemma 6. Let $P \in \mathcal{P}$ be a (t_i, t_j) -path with $f_P^* > 0$. Then either (i) $V(P) \cap B = \{v\}$ for some $v \in B^{com}$, or (ii) $V(P) \cap B = \{u, v\}$ for some $u \in B_i \cap B^{prv}$ and $v \in B_j \cap B^{prv}$.

Proof: Note that Dual complementary slackness condition says:

for every
$$P \in \mathcal{P}$$
 with $f_P^* > 0$, we have $\sum_{v \in V(P) \backslash T} x_v^* = 1$.

Together with Lemma 5, we know that if such P intersects with B^{com} , say at v, P cannot contain any other vertex with positive value at x^* . Especially, P does not contain any other vertex of B other than v due to Equation 1.

Suppose that $V(P) \cap B^{com} = \emptyset$. As P connects two terminals t^1 and t^2 and P can run between distinct terminals only via some boundary vertex of B_1 and B_2 , we have P traverses at least two vertices $u \in B_i \cap B^{prv}$ and $v \in B_j \cap B^{prv}$. Suppose that P traverses another boundary vertex $z \in B_\ell \cap B^{prv}$ (possibly $\ell = i$ or $\ell = j$). As $i \neq j$, we may assume that ℓ is different from at least one of i and j. Without loss of generality, assume $\ell \neq i$. Then the (t_i, t_ℓ) -path Q can be obtained from P by taking the (t_i, z) -subpath of P and appending it with the edge zt_ℓ . On the other hand, Q does not contain v while $x_v^* > 0$, which implies

$$\sum_{w \in V(Q) \backslash T} x_w^* \le \left(\sum_{w \in V(P) \backslash T} x_w^*\right) - x_v^* = 1 - x_v^* < 1$$

where the second equality holds due to the dual complementary slackness condition. This means that x^* violates the primal constraint corresponding to Q, a contradiction. Therefore, we conclude that if $V(P) \cap B^{com} = \emptyset$, then the case (ii) in the statement holds.

Now we define a half-integral solution x' to LP of VERTEX MULTIWAY CUT and prove that x' is an optimal LP solution.

$$x'_{v} = \begin{cases} 1 & \text{if } v \in B^{com} \\ \frac{1}{2} & \text{if } v \in B^{prv} \\ 0 & \text{otherwise} \end{cases}$$

It is trivial to verify that x' is a feasible solution to the primal LP. Recall that due to Weak LP duality and the optimality of f^* , the following holds for x' and f^* .

$$\sum_{P \in \mathcal{P}} f_P^* \leq \sum_{P \in \mathcal{P}} f_P^* \cdot \left(\sum_{v \in V(P) \backslash T} x_v^*\right) = \sum_{v \in V(P) \backslash T} x_v^* \cdot \left(\sum_{\substack{P \in \mathcal{P}: \\ P \text{ traverses } v}} f_P^*\right) \leq \sum_{v \in V \backslash T} \omega_v \cdot x_v^*,$$

and the Complementary Slackness Condition for primal and dual optimal solutions says that x' is an optimal solution to the primal LP if and only if the following holds (f^* is a dual optimal already).

Primal complementary slackness for every v with $x'_v > 0$, we have $\sum_{\substack{P \in \mathcal{P}: \\ P \text{ traverses } v}} f_P^* = \omega_v$.

Dual complementary slackness for every $P \in \mathcal{P}$ with $f_P^* > 0$, we have $\sum_{v \in V(P) \setminus T} x_v' = 1$.

Due to the optimality of x^* , for every $u \in \{v \in V \setminus T : x_v^* > 0\}$ it holds that $\sum_{\substack{P \text{ traverses } u}} f_P^* = \omega_u$. From $x_v^* > 0$ for every $v \in B$ (see Equation 1) and

$$\{v\in V\setminus T: x_v'>0\}=B\subseteq \{v\in V\setminus T: x_v^*>0\},$$

we know that the primal complementary slackness condition holds for x' and f^* . The dual complementary slackness holds due to Lemma 6 and by the construction of x'.