1 Fonctions 2π -périodiques

Définition 1.1

Définition 1

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{C})$.

La fonction f est 2π -périodique si et seulement si, pour tout $t \in \mathbb{R}$, $f(t+2\pi) = f(t)$.

Remarques

- Si g est une fonction définie sur un intervalle du type $[a, a + 2\pi]$ alors il existe une unique fonction $2\pi\text{-p\'eriodique}$ sur $\mathbb R$ vérifiant $f_{|[a,a+2\pi[}=g.$
- Si g est une fonction définie sur un intervalle du type $[a, a + 2\pi]$ telle que $g(a) = g(a + 2\pi)$ alors il existe une unique fonction 2π -périodique sur \mathbb{R} vérifiant $f_{|[a,a+2\pi[}=g.$

Exemples

- Soit $n \in \mathbb{N}$. Les applications $t \longmapsto e^{int}$, $t \longmapsto \cos(nt)$ et $t \longmapsto \sin(nt)$ sont 2π -périodiques.
- Soit $n \in \mathbb{N}$. Les applications $t \longmapsto e^{mt}$, $t \longmapsto \cos(mt) \in \mathbb{N}$. La fonction créneau est la fonction 2π -périodique définie par : $t \longmapsto f(t) = \begin{cases} 1 & \text{si} \quad t \in]0, \pi[\\ -1 & \text{si} \quad t \in]\pi, 2\pi[\\ 0 & \text{si} \quad t = 0 \text{ ou } t = \pi \end{cases}$

• La fonction triangle est la fonction 2π -périodique définie, pour tout $t \in [-\pi, \pi[$, par $t \longmapsto |t|$.

Continuité, continuité par morceaux 1.2

Définition 2

- Soient [a, b] un segment de \mathbb{R} et $f \in \mathcal{F}([a, b], \mathbb{C})$.
 - f est continue par morceaux sur [a,b] si et seulement si il existe une subdivision $a = a_0 < a_1 < \ldots < a_n = b$ du segment [a, b] telle que, pour tout $i \in [1, n]$, f est continue sur a_{i-1}, a_i et f admet une limite finie à droite en a_{i-1} et à gauche en a_i .
- Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{C})$.
 - f est continue par morceaux sur \mathbb{R} si et seulement si f est continue par morceaux sur tout segment de \mathbb{R} .

Remarques

- Une fonction 2π -périodique est continue par morceaux sur \mathbb{R} si et seulement si elle l'est sur un intervalle du type $[a, a + 2\pi]$.
- Une fonction 2π -périodique est continue sur \mathbb{R} si et seulement si elle l'est sur un intervalle du type $[a, a + 2\pi].$

Définition 3

On dit qu'une fonction 2π -périodique continue par morceaux f vérifie la condition de Dirichlet si et seulement si, pour tout $t \in \mathbb{R}$,

$$f(t) = \frac{1}{2} (f(t^+) + f(t^-)).$$

Remarques

- Si f est continue par morceaux alors f vérifie la condition de Dirichlet en tout point de continuité.
- En particulier, si f est continue alors f vérifie la condition de Dirichlet.

Définition 4

- On note $\mathcal{CM}_{2\pi}$ l'algèbre des fonctions continues par morceaux 2π -périodiques.
- On note $C_{2\pi}$ l'algèbre des fonctions continues 2π -périodiques.
- On note $\mathcal{D}_{2\pi}$ la sous-algèbre de $\mathcal{CM}_{2\pi}$ des fonctions 2π -périodiques vérifiant la condition de Dirichlet.

Remarque

$$C_{2\pi} \subset \mathcal{D}_{2\pi} \subset \mathcal{CM}_{2\pi}$$

Définition 5

Soit f une fonction 2π -périodique continue par morceaux.

On définit \tilde{f} la **régularisée** de f par :

$$\forall t \in \mathbb{R}, \ \widetilde{f}(t) = \frac{1}{2} \left(f(t^+) + f(t^-) \right).$$

Remarques

- f et f coïncident en tout point de continuité de f.
- Si f est continue alors $f = \widetilde{f}$.
- $\mathcal{D}_{2\pi} = \{ f \in \mathcal{CM}_{2\pi} | f = \widetilde{f} \}$

Exemples

- La fonction créneau est égale à sa régularisée.
- Déterminer la régularisée de la fonction f, 2π -périodique, définie par : $t \mapsto \begin{cases} 1 \text{ si } t \in [0, \pi[\\ -1 \text{ si } t \in [\pi, 2\pi[$

Dérivabilité, fonction de classe \mathcal{C}^1 1.3

Définition 6

- Soient [a, b] un segment de \mathbb{R} et $f \in \mathcal{F}([a, b], \mathbb{C})$. f est de classe \mathcal{C}^1 par morceaux sur [a,b] si et seulement si il existe une subdivision $a = a_0 < a_1 < \ldots < a_n = b$ du segment [a, b] telle que, pour tout $i \in [1, n]$, f admet un prolongement de classe C^1 sur $[a_{i-1}, a_i]$.
- Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{C})$. f est de classe \mathcal{C}^1 par morceaux sur \mathbb{R} si et seulement si f l'est sur tout segment de \mathbb{R} .

Remarque

Une fonction 2π -périodique est de classe \mathcal{C}^1 par morceaux sur \mathbb{R} si et seulement si elle l'est sur un segment du type $[a, a + 2\pi]$.

Définition 7

Soient f une fonction 2π -périodique de classe \mathcal{C}^1 par morceaux et $[a, a+2\pi]$ un intervalle. La fonction f est alors dérivable sur $[a, a + 2\pi]$ sauf en un nombre fini de points.

On appelle **pseudo-dérivée** de f, la fonction, noté D(f) définie par

$$D(f)(t) = f'(t)$$
 si f est dérivable en t et $D(f)(t) = 0$ sinon.

Exemple

Déterminer la pseudo dérivée de la fonction triangle.

Intégration 1.4

Proposition 1

Pour toute fonction f, 2π -périodique continue par morceaux, on a :

$$\forall a \in \mathbb{R}, \ \int_{a}^{a+2\pi} f = \int_{0}^{2\pi} f.$$

Cette valeur s'appelle l'intégrale de f sur une période et se note $\int_{0}^{\infty} f$.

- Remarques
 Si $f \in \mathcal{CM}_{2\pi}$ est paire alors $\int_{2\pi} f = 2 \int_0^{\pi} f$.
 - Si $f \in \mathcal{CM}_{2\pi}$ est impaire alors $\int_{2\pi}^{3\pi} f = 0$.

1.5 L'espace vectoriel $\mathcal{D}_{2\pi}$

Formes sesquilinéaires hermitiennes définies positives

Soit E un \mathbb{C} -espace vectoriel.

La notion de produit scalaire d'un espace vectoriel réel ne peut s'étendre sans modifications au cas complexe. Une forme bilinéaire symétrique φ non nulle de E ne peut être réelle positive. En effet, pour $x \in E$ tel que $\varphi(x,x) \neq 0$, on aurait $\varphi(x,x) > 0$ et $\varphi(ix,ix) = -\varphi(x,x) < 0$.

DÉFINITION 8

Soit E un \mathbb{C} -espace vectoriel .

On appelle forme sesquilinéaire sur E toute application $\varphi: E \times E \longrightarrow \mathbb{C}$ vérifiant :

• pour tout $a \in E$, l'application $y \longmapsto \varphi(a,y)$ est linéaire c'est-à-dire :

$$\forall x, y \in E, \ \forall \alpha, \beta \in \mathbb{C}, \ \varphi(a, \alpha x + \beta y) = \alpha \varphi(a, x) + \beta \varphi(a, y)$$

• pour tout $b \in E$, l'application $x \longmapsto \varphi(x, b)$ est semi-linéaire c'est-à-dire :

$$\forall x, y \in E, \ \forall \alpha, \beta \in \mathbb{C}, \ \varphi(\alpha x + \beta y, b) = \overline{\alpha}\varphi(x, b) + \overline{\beta}\varphi(y, b)$$

Définition 9

Soit E un \mathbb{C} -espace vectoriel .

On appelle produit scalaire (ou **produit scalaire hermitien**) sur E une forme sesquilinéaire hermitienne définie positive, c'est-à-dire, une application $\varphi: E \times E \longrightarrow \mathbb{C}$:

- 1. sesquilinéaire
- 2. hermitienne:

$$\forall x, y \in E, \ \varphi(y, x) = \overline{\varphi(x, y)}$$

- 3. **définie** : $\forall x \in E, \ (\varphi(x,x) = 0 \Longrightarrow x = 0_E)$
- 4. **positive**: $\forall x \in E, \ \varphi(x,x) \geqslant 0$

Remarques

- Si une application $\varphi: E \times E \longrightarrow \mathbb{C}$ est hermitienne et linéaire par rapport à la deuxième place alors elle est sesquilinéaire.
- On notera souvent le produit scalaire $(\cdot|\cdot)$.
- Un espace préhilbertien complexe est un C-espace vectoriel muni d'un produit scalaire.
- Soient $x, y \in E$. Les vecteurs x et y sont orthogonaux si et seulement si (x|y) = 0
- L'inégalité de Cauchy-Schwarz reste valable dans le cas d'un produit scalaire hermitien.
- L'application $E \times E \longrightarrow \mathbb{R}_+$ est bien définie et est une norme. $x \longmapsto \sqrt{(x|x)}$

L'espace préhilbertien complexe $\mathcal{D}_{2\pi}$

Proposition 2

L'application (.|.) définie, pour tous $f, g \in \mathcal{D}_{2\pi}$, par : $(f|g) = \frac{1}{2\pi} \int_{2\pi} \overline{f}g$, est un produit scalaire hermitien sur $\mathcal{D}_{2\pi}$.

La norme associée, notée $\|\cdot\|_2$, est définie, pour tout $f \in \mathcal{D}_{2\pi}$, par : $\|f\|_2 = \frac{1}{\sqrt{2\pi}} \left(\int_{2\pi} |f|^2 \right)^{\frac{1}{2}}$

PREUVE DE LA PROPOSITION 2

• φ est hermitienne en effet :

$$\forall f, g \in \mathcal{D}_{2\pi}, \quad \varphi(f, g) = \frac{1}{2\pi} \int_{2\pi} \overline{f}g$$

$$= \frac{1}{2\pi} \int_{2\pi} g \overline{f}$$

$$= \frac{1}{2\pi} \int_{2\pi} \overline{g} \overline{f}$$

$$= \frac{1}{2\pi} \int_{2\pi} \overline{g}f$$

$$= \frac{1}{2\pi} \int_{2\pi} \overline{g}f$$

$$= \overline{\varphi(g, f)}$$

• φ est sesquilinéaire en effet :

$$\forall f, g, h \in \mathcal{D}_{2\pi}, \ \forall \alpha, \beta \in \mathbb{C}, \ \varphi(f, \alpha g + \beta h) = \frac{1}{2\pi} \int_{2\pi} \overline{f} (\alpha g + \beta h)$$
$$= \frac{\alpha}{2\pi} \int_{2\pi} \overline{f} g + \frac{\beta}{2\pi} \int_{2\pi} \overline{f} h$$
$$= \alpha \varphi(f, g) + \beta \varphi(f, h)$$

 φ est donc linéaire par rapport à la seconde place, de plus elle est hermitienne. Finalement φ est sesquilinéaire.

• φ est positive en effet :

$$\forall f \in \mathcal{D}_{2\pi}, \ \varphi(f, f) = \frac{1}{2\pi} \int_{2\pi} \overline{f} f = \frac{1}{2\pi} \int_{0}^{2\pi} |f|^2 \geqslant 0$$

 $(\operatorname{car} |f|^2 \text{ est une application positive et } 0 \leq 2\pi)$

- φ est définie en effet :
 - * Soit $f \in \mathcal{D}_{2\pi}$ telle que $\varphi(f, f) = 0$.

On a alors
$$\frac{1}{2\pi} \int_{0}^{2\pi} |f|^2 = 0$$

 $|f|^2$ est une application positive, continue par morceaux et d'intégrale nulle sur $[0, 2\pi]$. Cette application est donc nulle sauf éventuellement en un nombre fini de points sur $[0, 2\pi]$. Soit $0 = a_0 < a_1 < \ldots < a_n = 2\pi$ une subdivision adaptée à f.

Soit $i \in [1, n]$.

$$\forall t \in]a_{i-1}, a_i[, f(t) = 0.$$

$$\forall f(a_i) = \frac{1}{2}(f(a_i^+) + f(a_i^-)) = 0$$

On en déduit que f est nulle sur $[0, 2\pi]$.

Par périodicité on obtient : $f = \tilde{0}$

Remarques

- Cette application est aussi un produit scalaire hermitien sur $\mathcal{C}_{2\pi}$, par contre ne l'est pas sur $\mathcal{CM}_{2\pi}$.
- On peut définir d'autres normes sur $\mathcal{D}_{2\pi},$ par exemple :

$$\forall f \in \mathcal{D}_{2\pi}, \ \|f\|_1 = \frac{1}{2\pi} \int_{2\pi} |f| \ \text{et} \ \|f\|_{\infty} = \sup_{t \in [0, 2\pi]} (|f(t)|)$$

Les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$ ne sont pas équivalentes, cependant on a la relation suivante :

$$\forall f \in \mathcal{D}_{2\pi}, \|f\|_1 \leq \|f\|_2 \leq \|f\|_{\infty}$$

Proposition 3

- $(t \mapsto e^{int})_{n \in \mathbb{Z}}$ est une famille orthonormée de $\mathcal{C}_{2\pi}$ (donc de $\mathcal{D}_{2\pi}$). $(t \mapsto 1, t \mapsto \cos(nt), t \mapsto \sin(nt))_{n \in \mathbb{N}^*}$ est une famille orthogonale de $\mathcal{C}_{2\pi}$ (donc de $\mathcal{D}_{2\pi}$).

Preuve:

Posons:

- $\forall n \in \mathbb{Z} , e_n : t \mapsto e^{int}$
- $\forall n \in \mathbb{N}, \ \gamma_n : t \mapsto \cos(nt)$
- $\forall n \in \mathbb{N}^*, \ \sigma_n : t \mapsto \sin(nt)$

On remarque que, pour tout $k \in \mathbb{Z}^*$:

$$\int_{2\pi} e^{ikt} dt = \dots = \dots = \dots = \dots$$

$$\int_{2\pi} \cos(kt) dt = \dots = \dots = \dots$$

$$\forall k \in \mathbb{Z}, \ \int_{2\pi} \sin(kt) dt = \cdots = \cdots$$

Montrons que $(e_n)_{n\in\mathbb{Z}}$ est une famille orthonormée

• Soit $n \in \mathbb{Z}$.

$$(e_n|e_n) = \cdots = \cdots = \cdots$$

• Soient $n, m \in \mathbb{Z}$ avec $n \neq m$.

$$(e_n|e_m) = \cdots$$

Finalement, pour tous $n, m \in \mathbb{Z}$, $(e_n|e_m) = \cdots$. La famille $(e_n)_{n\in\mathbb{Z}}$ est donc orthonormée.

Montrons que $(\gamma_0, \gamma_n, \sigma_n)_{n \in \mathbb{N}^*}$ est une famille orthogonale

• Soient $n, m \in \mathbb{N}$ avec $n \neq m$.

$$(\gamma_n|\gamma_m) = \cdots$$

=															

• Soient $n, m \in \mathbb{N}^*$ avec $n \neq m$.

$$(\sigma_n|\sigma_m) = \cdots$$

=

=

= ...

• Soient $n \in \mathbb{N}$ et $m \in \mathbb{N}^*$.

$$(\gamma_n|\sigma_m) = \cdots$$

=

=

= ..

On EN DÉDUIT QUE les vecteurs de la famille $(\gamma_0, \gamma_n, \sigma_n)_{n \in \mathbb{N}^*}$ sont orthogonaux deux à deux. Cette famille est donc orthogonale, de plus c'est une famille de vecteurs non nuls, donc elle est libre.

Montrons que la famille $(\gamma_0,\gamma_n,\sigma_n)_{n\in\mathbb{N}^*}$ n'est pas orthonormée

• Soit $n \in \mathbb{N}^*$.

$$(\gamma_n|\gamma_n) = \cdots$$

=

=

= ..

- $(\gamma_0|\gamma_0)=1$
- Soit $n \in \mathbb{N}^*$.

$$(\sigma_n|\sigma_n) = \cdots$$

=

=

= · ·

Dans la suite, on note:

- pour tout $n \in \mathbb{Z}$, $e_n : t \mapsto e^{int}$,
- pour tout $n \in \mathbb{N}$, $\gamma_n : t \mapsto \cos(nt)$,
- pour tout $n \in \mathbb{N}^*$, $\sigma_n : t \mapsto \sin(nt)$.

On a $(\gamma_0|\gamma_0) = 1$ et, pour tout $n \in \mathbb{N}^*$, $(\gamma_n|\gamma_n) = \frac{1}{2}$ et $(\sigma_n|\sigma_n) = \frac{1}{2}$.

Analyse

1.6 Polynômes trigonométriques

Définition 10

- On pose, pour tout $n \in \mathbb{N}$, $\mathcal{P}_n = \text{Vect}(e_k)_{-n \leq k \leq n}$. \mathcal{P}_n est un sous-espace vectoriel de $\mathcal{C}_{2\pi}$ (donc de $\mathcal{D}_{2\pi}$) de dimension 2n+1. C'est le sous-espace vectoriel des polynômes trigonométriques de degré inférieur ou égal à n.
- $\mathcal{P} = \bigcup \mathcal{P}_n$ est le sous-espace vectoriel des polynômes trigonométriques.

Remarque

Pour tout $n \ge 1$, $\mathcal{P}_n = \text{Vect}(\gamma_0, \gamma_1, \dots, \gamma_n, \sigma_1, \dots, \sigma_n)$.

Proposition 4

Tout polynôme trigonométrique P de degré inférieur ou égal à n s'écrit de façon unique

• sous forme exponentielle : $P = \sum_{k=0}^{n} c_k e_k$, avec $c_{-n}, \ldots, c_0, \ldots, c_n \in \mathbb{C}$. De plus, pour tout $k \in [-n, n]$, $c_k = (e_k|P) = \frac{1}{2\pi} \int_{2\pi} P(t)e^{-ikt}dt$.

• sous forme trigonométrique : $P = \frac{a_0}{2}\gamma_0 + \sum_{k=1}^n (a_k\gamma_k + b_k\sigma_k)$ avec $a_0, \dots, a_n, b_1, \dots, b_n \in \mathbb{C}$. De plus $a_0 = 2(\gamma_0|P) = \frac{1}{\pi} \int_{0^-} P(t) dt$ et, pour tout $k \in [1, n]$, $a_k = 2(\gamma_k | P) = \frac{1}{\pi} \int_{2\pi} P(t) \cos(kt) dt$ et $b_k = 2(\sigma_k | P) = \frac{1}{\pi} \int_{2\pi} P(t) \sin(kt) dt$

Les coefficients a_k , b_k et c_k vérifient les relations suivantes :

- $\forall k \in \mathbb{N}^*, c_k = \frac{1}{2}(a_k ib_k)$ $\forall k \in \mathbb{N}^*, c_{-k} = \frac{1}{2}(a_k + ib_k)$

- $\forall k \in \mathbb{N}^*, \ a_k = c_k + c_{-k}$
- $\forall k \in \mathbb{N}^*, b_k = i(c_k c_{-k})$

$\mathbf{2}$ Coefficients de Fourier

2.1**Définition**

Définition 11 Soit $f \in \mathcal{CM}_{2\pi}$.

- Les coefficients de Fourier trigonométriques de f sont :
 - $\star \ \forall n \in \mathbb{N}, \ a_n(f) = \frac{1}{\pi} \int_{2\pi} f(t) \cos(nt) dt$
 - $\star \ \forall n \in \mathbb{N}^*, \ b_n(f) = \frac{1}{\pi} \int_{2\pi} f(t) \sin(nt) dt$
- La série de Fourier trigonométrique de f est:

$$\frac{a_0(f)}{2}\gamma_0 + \sum_{n\geqslant 1} \left(a_n(f)\gamma_n + b_n(f)\sigma_n\right)$$

Cette série est notée (de façon abusive) :

$$\frac{a_0}{2} + \sum_{n \geqslant 1} \left(a_n \cos(nt) + b_n \sin(nt) \right)$$

- Les coefficients de Fourier exponentiels
 - $\star \ \forall n \in \mathbb{Z}, \ c_n(f) = \frac{1}{2\pi} \int_{0}^{\pi} f(t)e^{-int}dt$
- La série de Fourier exponentielle de f est:

$$\sum_{n\in\mathbb{Z}}c_n(f)e_n$$

Cette série est notée (de façon abusive):

$$\sum_{n\in\mathbb{Z}} c_n e^{int}$$

Remarques

- Soit $f \in \mathcal{CM}_{2\pi}$. Alors f et sa régularisée \widetilde{f} ont les mêmes coefficients de Fourier.
- Si $f \in \mathcal{CM}_{2\pi}$ est paire alors on pensera à utiliser la parité de $t \mapsto f(t)\cos(nt)$ pour calculer a_n et l'imparité de $t \mapsto f(t)\sin(nt)$ pour en déduire $b_n = 0$.
- Si $f \in \mathcal{CM}_{2\pi}$ est impaire alors on pensera à utiliser l'imparité de $t \mapsto f(t)\cos(nt)$ pour en déduire $a_n = 0$ et la parité de $t \mapsto f(t)\sin(nt)$ pour calculer b_n .

Exemples

- Déterminer la série de Fourier trigonométrique de la fonction créneau.
- Déterminer la série de Fourier trigonométrique de la fonction triangle.

Définition 12

Soient $f \in \mathcal{CM}_{2\pi}$ et $p \in \mathbb{N}$.

On note $S_p(f)$ la p-ième somme partielle de la série de Fourier de f:

$$\forall t \in \mathbb{R}, \ S_p(f)(t) = \frac{a_0}{2} + \sum_{n=1}^{p} (a_n \cos(nt) + b_n \sin(nt)) = \sum_{n=-p}^{p} c_n e^{int}$$

Remarque

Si $f \in \mathcal{D}_{2\pi}$ alors $S_p(f)$ est la projection orthogonale de f sur le sous-espace vectoriel des polynômes trigonométriques de degré au plus p.

En particulier, pour f fixée, l'application $\mathcal{P}_p \longrightarrow \mathbb{R}_+$ $P \longmapsto \|f - P\|_2$ atteint son minimum en un unique vecteur

de $\mathcal{P}_p: S_p(f)$.

On dit que $S_p(f)$ est la meilleure approximation quadratique de f par un élément de \mathcal{P}_p .

2.2**Propriétés**

Proposition 5

Soient $f, g \in \mathcal{CM}_{2\pi}$ et $\lambda, \mu \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, on a :

• $a_n(\lambda f + \mu g) = \lambda a_n(f) + \mu a_n(g)$

• $a_n(\overline{f}) = \overline{a_n(f)}$ • $b_n(\overline{f}) = \overline{b_n(f)}$

• $b_n(\lambda f + \mu g) = \lambda b_n(f) + \mu b_n(g)$

• $c_n(\lambda f + \mu g) = \lambda c_n(f) + \mu c_n(g)$

• $c_n(\overline{f}) = \overline{c_n(f)}$

Proposition 6

Soit $f \in \mathcal{C}_{2\pi}$ telle que f est de classe \mathcal{C}^1 par morceaux. Alors, pour tout $n \in \mathbb{N}$, on a :

$$c_n(D(f)) = inc_n(f), \quad a_n(D(f)) = nb_n(f), \quad b_n(D(f)) = -na_n(f)$$

$\mathbf{3}$ Convergence en moyenne quadratique

Soient $f \in \mathcal{D}_{2\pi}$ et $S_n(f)$ la *n*-ième somme partielle de la série de Fourier de f.

$$||f||_2^2 = ||S_n(f)||_2^2 + ||f - S_n(f)||_2^2$$

Conséquences

• Pour tout $n \in \mathbb{N}^*$, $\sum_{k=-n}^{n} |c_k(f)|^2 \le ||f||_2^2 = \frac{1}{2\pi} \int_{2\pi} |f|^2$ (Inégalité de Bessel)

• La série numérique $\sum_{n\geq 0} (|c_n(f)|^2 + |c_{-n}(f)|^2)$ est convergente.

• Les séries numériques $\sum_{n\geqslant 0} |c_n(f)|^2$, $\sum_{n\geqslant 0} |c_{-n}(f)|^2$, $\sum_{n\geqslant 0} |a_n(f)|^2$ et $\sum_{n\geqslant 1} |b_n(f)|^2$ sont convergentes.

• On notera
$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \lim_{n \to +\infty} \sum_{k=-n}^{n} |c_k(f)|^2 = |c_0(f)|^2 + \lim_{n \to +\infty} \sum_{k=1}^{n} \left(|c_k(f)|^2 + |c_{-k}(f)|^2 \right)$$

Théorème 1 (Théorème de Parseval-Admis)

Soient $f \in \mathcal{D}_{2\pi}$ et $S_n(f)$ la *n*-ième somme partielle de la série de Fourier de f.

$$||f - S_n(f)||_2 \underset{n \to +\infty}{\longrightarrow} 0$$

COROLLAIRE 1 (FORMULES DE PARSEVAL)

Soit $f \in \mathcal{D}_{2\pi}$ (même dans $\mathcal{CM}_{2\pi}$).

$$\sum_{n=-\infty}^{+\infty} |c_n|^2 = \frac{1}{2\pi} \int_{2\pi} |f|^2$$
$$\frac{|a_0|^2}{4} + \frac{1}{2} \sum_{n=0}^{+\infty} (|a_n|^2 + |b_n|^2) = \frac{1}{2\pi} \int_{2\pi} |f|^2$$

4 Convergence ponctuelle

4.1 Fonctions développables en série de Fourier

Définition 13

Soit $f \in \mathcal{CM}_{2\pi}$ et $S_n(f)$ la n-ième somme partielle de la série de Fourier de f.

On dit que la série de Fourier de f converge en $t \in \mathbb{R}$ si et seulement si la suite numérique $(S_n(f)(t))_{n \in \mathbb{N}^*}$ est convergente.

La limite est alors appelée somme de Fourier de f en t.

On note:

$$S(f)(t) = \lim_{n \to +\infty} S_n(f)(t) = \sum_{n = -\infty}^{+\infty} c_n e^{int} = \frac{a_0}{2} + \sum_{n = 1}^{+\infty} (a_n \cos(nt) + b_n \sin(nt))$$

Définition 14

Soit $f \in \mathcal{CM}_{2\pi}$.

On dit que f est **développable en série de Fourier** sur \mathbb{R} si et seulement si sa série de Fourier converge sur \mathbb{R} et que sa somme de Fourier S(f) est égale à f. Dans ce cas, on a :

$$\forall t \in \mathbb{R}, \ f(t) = \sum_{n=-\infty}^{+\infty} c_n e^{int} = \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos(nt) + b_n \sin(nt))$$

4.2 Séries trigonométriques

Proposition $8 + \infty$ Soit $f: t \longmapsto \sum_{n=-\infty}^{\infty} c_n e^{int}$.

Si les séries numériques $\sum c_n$ et $\sum c_{-n}$ sont absolument convergentes, alors f est définie, continue, 2π -périodique.

De plus f est développable en série de Fourier et on a, pour tout $n \in \mathbb{Z}$, $c_n(f) = c_n$.

PROPOSITION 9
Soit $f: t \mapsto \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos(nt) + b_n \sin(nt)).$

Si les séries numériques $\sum a_n$ et $\sum b_n$ sont absolument convergentes, alors f est définie, continue, 2π -périodique.

De plus f est développable en série de Fourier et on a, pour tout $n \in \mathbb{N}$, $a_n(f) = a_n$ et, pour tout $n \in \mathbb{N}^*$, $b_n(f) = b_n$.

4.3 Convergence normale

Théorème 2

Soit $f \in \mathcal{C}_{2\pi}$ de classe \mathcal{C}_1 par morceaux.

La série de Fourier de f converge normalement sur \mathbb{R} et a pour somme f.

On a donc:

$$\forall t \in \mathbb{R}, \ f(t) = \sum_{n = -\infty}^{+\infty} c_n e^{int} = \frac{a_0}{2} + \sum_{n = 1}^{+\infty} (a_n \cos(nt) + b_n \sin(nt))$$

4.4 Théorème de Dirichlet

Théorème 3 (Théorème de Dirichlet-Admis)

Soit $f \in \mathcal{CM}_{2\pi}$ de classe \mathcal{C}^1 par morceaux.

La série de Fourier de f converge simplement sur $\mathbb R$ et sa somme S(f) est égale à la régularisée de f.

On a donc, pour tout $t \in \mathbb{R}$:

$$S(f)(t) = \widetilde{f}(t)$$

$$\sum_{n=-\infty}^{+\infty} c_n e^{int} = \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cos(nt) + b_n \sin(nt) \right) = \frac{1}{2} \left(f(t^+) + f(t^-) \right)$$

4.5 Applications

- 1. Calculer, en utilisant la fonction créneau, $A = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
- 2. Calculer, en utilisant la fonction triangle, $B = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$.

5 Généralisation à des fonctions T-périodiques

Soient T un réel strictement positif et f une fonction, définie sur $\mathbb{R},$ T-périodique. On a donc :

$$\forall x \in \mathbb{R}, \quad f(x+T) = f(x)$$

f est entièrement déterminée par sa restriction à tout segment du type [a, a + T[. On se ramène à une fonction g, 2π -périodique, en posant :

$$\forall x \in \mathbb{R}, \quad g(x) = f\left(\frac{T}{2\pi}x\right)$$

On a alors:

$$\forall x \in \mathbb{R}, \quad f(x) = g(\omega x) \text{ avec } \omega = \frac{2\pi}{T}$$

 ω s'appelle la pulsation.

- Les coefficients de Fourier trigonométriques de f sont :
 - $\star \ \forall n \in \mathbb{N}, \ a_n(f) = \frac{2}{T} \int_T f(t) \cos(n\omega t) dt$
 - * $\forall n \in \mathbb{N}^*, \ b_n(f) = \frac{2}{T} \int_T f(t) \sin(n\omega t) dt$
- La série de Fourier trigonométrique de f est :

$$\frac{a_0}{2} + \sum_{n \ge 1} \left(a_n \cos(n\omega t) + b_n \sin(n\omega t) \right)$$

• Les coefficients de Fourier exponentiels de f sont :

$$\star \ \forall n \in \mathbb{Z}, \ c_n(f) = \frac{1}{T} \int_T f(t) e^{-in\omega t} dt$$

• La série de Fourier exponentielle de f est :

$$\sum_{n\in\mathbb{Z}} c_n e^{in\omega t}$$