Teoría de números

Osmar Dominique Santana Reyes

1. Sea $m=1,2,4,p^{\alpha},2p^{\alpha},$ con p primo impar y $\alpha\in\mathbb{N}$, y $a\in\mathbb{Z}$. $x^n\equiv a\pmod{m}$ tiene $(n,\phi(m))$ soluciones si y solo si $a^{\frac{\phi(m)}{(n,\phi(m))}}\equiv 1(\mod{m})$.

Demostración.

Sea g raíz primitiva módulo m e $i \in \{1, 2, ..., \phi(m) \text{ tal que } g^i \equiv a(\text{mód} m).$

Primero, si se supone que $x^n \equiv a(\text{m\'od}m)$ tiene $(n, \phi(m))$ soluciones, entonces sea x_0 una de estas soluciones y u tal que $x_0 \equiv g^u(\text{m\'od}m)$, se tiene que

$$g^i \equiv a \equiv x_0^n \equiv g^{un}(\text{m\'od}\,m)$$

2.