SEQUENCE LISTING

<110> Darrow, Andrew L
Qi, Jain-shen
Andrade-Gordon, Patricia

<120> DNA encoding human serine protease D-G

<130> ORT-1273

<140>

<141>

<160> 9

<170> PatentIn Ver. 2.1

<210> 1

<211> 2121

<212> DNA

<213> Homo sapiens

<400> 1

ctgcactgtc ttgcctgtgg gaagagcctg aagacccccc gtgtggtggg tggggaggag 900 gcctctgtgg attcttggcc ttggcaggtc agcatccagt acgacaaaca gcacgtctgt 960 ggagggagca teetggacee eeactgggte etcaeggeag eecaetgett caggaaacat 1020 accgatgtgt tcaactggaa ggtgcgggca ggctcagaca aactgggcag cttcccatcc 1080 ctggctgtgg ccaagatcat catcattgaa ttcaacccca tgtaccccaa agacaatgac 1140 ategecetea tgaagetgea gtteceaete aettteteag geacagteag geecatetgt 1200 ctgcccttct ttgatgagga gctcactcca gccaccccac tctggatcat tggatggggc 1260 tttacgaage agaatggagg gaagatgtet gacatactge tgcaggegte agtecaggte 1320 attgacagca cacggtgcaa tgcagacgat gcgtacctgg gggaagtcac cgagaagatg 1380 atgtgtgcag gcatcccgga agggggtgtg gacacctgcc agggtgacag tggtgggccc 1440 ctgatgtacc aatctgacca gtggcatgtg gtgggcatcg ttagctgggg ctatggctgc 1500 gggggcccga gcaccccagg ggtatacacc aaggtctcag cctatctcaa ctggatctac 1560 aatgtetgga aggetgaget gtaatgetge tgeeeetttg eagtgetggg ageegettee 1620 ttcctgccct gcccacctgg ggatccccca aagtcagaca cagagcaaga gtccccttgg 1680 gtacacccct ctgcccacag cctcagcatt tcttggagca gcaaagggcc tcaattccta 1740 taagagaccc tcgcagccca gaggcgccca gaggaagtca gcagccctag ctcggccaca 1800 cttggtgctc ccagcatccc agggagagac acagcccact gaacaaggtc tcaggggtat 1860 tgctaagcca agaaggaact ttcccacact actgaatgga agcaggctgt cttgtaaaag 1920 cccagatcac tgtgggctgg agaggagaag gaaagggtct gcgccagccc tgtccgtctt 1980 cacccatccc caagcctact agagcaagaa accagttgta atataaaatg cactgcctac 2040 tgttggtatg actaccgtta cctactgttg tcattgttat tacagctatg gccactatta 2100 ttaaagagct gtgtaacatc a 2121

<210> 2

<211> 435

<212> PRT

<213> Homo sapiens

<400> 2

Met Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp Val Lys Pro 1 5 10 15

Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile
20 25 30

Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Ile Val Val

		35					40					45			
Val	Leu 50	Ile	Lys	Val	Ile	Leu 55	Asp	Lys	Tyr	Туr	Phe 60	Leu	Cys	Gly	Glr
Pro 65	Leu	His	Phe	Ile	Pro 70	Arg	Lys	Gln	Leu	Cys 75	Asp	Gly	Glu	Leu	As _I
Cys	Pro	Leu	Gly	Glu 85	Asp	Glu	Glu	His	Cys 90	Val	Lys	Ser	Phe	Pro 95	Gli
Gly	Pro	Ala	Val	Ala	Val	Arg	Leu	Ser 105	Lys	Asp	Arg	Ser	Thr 110	Leu	Glr
Val	Leu	Asp 115	Ser	Ala	Thr	Gly	Asn 120	Trp	Phe	Ser	Ala	Cys 125	Phe	Asp	Asr
Phe	Thr 130	Glu	Ala	Leu	Ala	Glu 135	Thr	Ala	Суз	Arg	Gln 140	Met	Gly	Tyr	Sei
Ser 145	Lys	Pro	Thr	Phe	Arg 150	Ala	Val	Glu	Ile	Gly 155	Pro	Asp	Gln	Asp	Let 160
Asp	Val	Val	Glu	Ile 165	Thr	Glu	Asn	Ser	Gln 170	Glu	Leu	Arg	Met	Arg 175	Asr
Ser	Ser	Gly	Pro 180	Cys	Leu	Ser	Gly	Ser 185	Leu	Val	Ser	Leu	His 190	Cys	Leu
Ala	Cys	Gly 195	Lys	Ser	Leu	Lys	Thr 200	Pro	Arg	Val	Val	Gly 205	Gly	Glu	Glu
Ala	Ser 210	Val	Asp	Ser	Trp	Pro 215	Trp	Gln	Val	Ser	Ile 220	Gln	Tyr	Asp	Lys
Gln 225	His	Val	Cys	Gly	Gly 230	Ser	Ile	Leu	Asp	Pro 235	His	Trp	Val	Leu	Thr 240

Ala	Ala	His	Cys	Phe 245	Arg	Lys	His	Thr	Asp 250	Val	Phe	Asn	Trp	Lys 255	Va:
Arg	Ala	Gly	Ser 260	Asp	Lys	Leu	Gly	Ser 265	Phe	Pro	Ser	Leu	Ala 270	Val	Ala
Lys	Ile	Ile 275	Ile	Ile	Glu	Phe	Asn 280	Pro	Met	Tyr	Pro	Lys 285	Asp	Asn	Ası
Ile	Ala 290	Leu	Met	Lys	Leu	Gln 295	Phe	Pro	Leu	Thr	Phe 300	Ser	Gly	Thr	Va:
Arg 305	Pro	Ile	Cys	Leu	Pro 310	Phe	Phe	Asp	Glu	Glu 315	Leu	Thr	Pro	Ala	Th:
Pro	Leu	Trp	Ile	Ile 325	Gly	Trp	Gly	Phe	Thr 330	Lys	Gln	Asn	Gly	Gly 335	Lys
Met	Ser	Asp	Ile 340	Leu	Leu	Gln	Ala	Ser 345	Val	Gln	Val	Ile	Asp 350	Ser	Thi
Arg	Cys	Asn 355	Ala	Asp	Asp	Ala	Tyr 360	Gln	Gly	Glu	Val	Thr 365	Glu	Lys	Met
Met	Cys 370	Ala	Gly	Ile	Pro	Glu 375	Gly	Gly	Val	Asp	Thr 380	Cys	Gln	Gly	Asp
Ser 385	Gly	Gly	Pro	Leu	Met 390	Tyr	Gln	Ser	Asp	Gln 395	Trp	His	Val	Val	Gl ₃
Ile	Val	Ser	Trp	Gly 405	Tyr	Gly	Cys	Gly	Gly 410	Pro	Ser	Thr	Pro	Gly 415	Va]
Tyr	Thr	Lys	Val 420	Ser	Ala	Tyr	Leu	Asn 425	Trp	Ile	Tyr	Asn	Val	Trp	Lys

Ala Glu Leu

435

<210> 3

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide primer

<400> 3

acagcctcag catttcttgg

20

<210> 4

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide primer

<400> 4

tcttgctcta gtaggcttgg

20

<210> 5

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Nested probe

<400> 5		
ttggtgct	ccc cagcatccca gggagagaca cagcccactg	4(
<210> 6		
<211> 30		
<212> DN	JA	
<213> Ar	ctificial Sequence	
<220>		
	escription of Artificial Sequence: synthetic	
ol	ligonucleotide primer	
<400> 6		
atgctcta	aga tgtggattet tggeettgge	3 (
<210> 7		
<211> 32		
<212> DN		
<213> Ar	rtificial Sequence	
222		
<220>		
	escription of Artificial Sequence: synthetic	
01.	igonucleotide primer.	
<400> 7		
	ga cageteagee ttecagaeat tg	32
gacgccca	iga cageteagee elecagacat eg	2 ر
<210> 8		
<211> 118	.89	
<212> DN		
	tificial Sequence	
	-	
<220>		

<223> Description of Artificial Sequence: Fusion gene

```
<400> 8
gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg 60
gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac 120
gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctat 180
gctctagatg tggattcttg gccttggcag gtcagcatcc agtacgacaa acagcacgtc 240
tgtggaggga gcatcctgga ccccactgg gtcctcacgg cagcccactg cttcaggaaa 300
catacegatg tgttcaactg gaaggtgegg geaggeteag acaaactggg cagetteeca 360
tccctggctg tggccaagat catcatcatt gaattcaacc ccatgtaccc caaagacaat 420
gacategeee teatgaaget geagtteeea eteaetttet eaggeaeagt eaggeeeate 480
tgtctgccct tctttgatga ggagctcact ccagccaccc cactctggat cattggatgg 540
ggctttacga agcagaatgg agggaagatg tetgacatac tgctgcaggc gtcagtccag 600
gtcattgaca gcacacggtg caatgcagac gatgcgtacc tgggggaagt caccgagaag 660
atgatgtgtg caggcatccc ggaaggggt gtggacacct gccagggtga cagtggtggg 720
cccctgatgt accaatctga ccagtggcat gtggtgggca tcgttagctg gggctatggc 780
tgegggggee egageacece aggggtatae aceaaggtet eagcetatet caactggate 840
tacaatgtet ggaaggetga getgtetaga cateaceate accateaeta geggeegett 900
ccctttagtg agggttaatg cttcgagcag acatgataag atacattgat gagtttggac 960
aaaccacaac tagaatgcag tgaaaaaaat gctttatttg tgaaatttgt gatgctattg 1020
ctttatttgt aaccattata agctgcaata aacaagttag cttgtcgaga agtactagag 1080
gatcataatc agccatacca catttgtaga ggttttactt gctttaaaaa acctcccaca 1140
cctcccctg aacctgaaac ataaaatgaa tgcaattgtt gttgttaac
                                                                  1189
```

<210> 9

<211> 292

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion gene

<400> 9

Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu

1 5 10 15

- Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys
 20 25 30
- Asp Asp Asp Val Asp Ala Ala Leu Ala Ala Pro Phe Asp Asp 35 40 45
- Asp Asp Lys Ile Val Gly Gly Tyr Ala Leu Asp Val Asp Ser Trp Pro 50 55 60
- Trp Gln Val Ser Ile Gln Tyr Asp Lys Gln His Val Cys Gly Gly Ser
 65 70 75 80
- Ile Leu Asp Pro His Trp Val Leu Thr Ala Ala His Cys Phe Arg Lys
 85 90 95
- His Thr Asp Val Phe Asn Trp Lys Val Arg Ala Gly Ser Asp Lys Leu 100 105 110
- Gly Ser Phe Pro Ser Leu Ala Val Ala Lys Ile Ile Ile Glu Phe 115 120 125
- Asn Pro Met Tyr Pro Lys Asp Asn Asp Ile Ala Leu Met Lys Leu Gln 130 135 140
- Phe Pro Leu Thr Phe Ser Gly Thr Val Arg Pro Ile Cys Leu Pro Phe 145 150 155 160
- Phe Asp Glu Glu Leu Thr Pro Ala Thr Pro Leu Trp Ile Ile Gly Trp
 165 170 175
- Gly Phe Thr Lys Gln Asn Gly Gly Lys Met Ser Asp Ile Leu Leu Gln 180 185 190
- Ala Ser Val Gln Val Ile Asp Ser Thr Arg Cys Asn Ala Asp Asp Ala 195 200 205
- Tyr Gln Gly Glu Val Thr Glu Lys Met Met Cys Ala Gly Ile Pro Glu

210 215 220

Gly Gly Val Asp Thr Cys Gln Gly Asp Ser Gly Gly Pro Leu Met Tyr 225 230 235 240

Gln Ser Asp Gln Trp His Val Val Gly Ile Val Ser Trp Gly Tyr Gly
245 250 255

Cys Gly Gly Pro Ser Thr Pro Gly Val Tyr Thr Lys Val Ser Ala Tyr
260 265 270

Leu Asn Trp Ile Tyr Asn Val Trp Lys Ala Glu Leu Ser Arg His His
275 280 285

His His His His