TABLAS DE TRANSFORMADA Z

Tabla 2.1 Transformada z de funciones prácticas

NO	f(t)	f(kT)	F(S)	F(z)
Nº	F. Continua	F. Discreta	T. de Laplace	Transformada z
1	$\delta(t)$	$\delta(kT)$	1	1
2	u(t)	u(kT)	$\frac{1}{S}$	$\frac{z}{z-1}$
3	t	kT	$\frac{1}{S^2}$	$\frac{Tz}{(z-1)^2}$
4	t^2	$(kT)^2$	$\frac{2}{S^3}$	$\frac{T^2 z(z+1)}{(z-1)^3}$
5	t^3	$(kT)^3$	$\frac{6}{S^4}$	$\frac{T^3z(z^2+4z+1)}{(z-1)^4}$
6	e ^{-at}	e^{-akT}	$\frac{1}{S+a}$	$\frac{z}{z - e^{-aT}}$
7	te ^{-at}	kTe ^{-akT}	$\frac{1}{(S+a)^2}$	$\frac{Te^{-aT}z}{(z-e^{-aT})^2}$
8	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{2}{(S+a)^3}$	$\frac{T^2 e^{-aT} z (z + e^{-aT})}{(z - e^{-aT})^3}$
9	sin(bt)	sin(bkT)	$\frac{b}{S^2 + b^2}$	$\frac{zsin(bT)}{z^2 - 2zcos(bT) + 1}$
10	cos(bt)	cos(bkT)	$\frac{S}{S^2 + b^2}$	$\frac{z^2 - zcos(bT)}{z^2 - 2zcos(bT) + 1}$
11	e ^{-at} sin(bt)	$e^{-akT}sin(bkT)$	$\frac{b}{(S+a)^2+b^2}$	$\frac{ze^{-aT}sinbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
12	e ^{-at} cos(bt)	$e^{-akT}cos(bkT)$	$\frac{S+a}{(S+a)^2+b^2}$	$\frac{z^2 - ze^{-aT}cosbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
13	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{a}{S(S+a)}$	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$
14	$1 - (1 + at)e^{-at}$	$1 - (1 + akT)e^{-akT}$	$\frac{a^2}{S(S+a)^2}$	$\frac{1}{z-1} - \frac{z}{z - e^{-aT}} - \frac{aTe^{-aT}}{(z - e^{-aT})}$
15	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{b-a}{(S+a)(S+b)}$	$\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
16	$be^{-bt} - ae^{-at}$	be ^{-bkT} — ae ^{-akT}	$\frac{(b-a)S}{(S+a)(S+b)}$	$\frac{[(b-a)z - (be^{-aT} - ae^{-bT})]z}{(z - e^{-aT})(z - e^{-bT})}$

Tabla 2.1 Transformada z de Funciones Prácticas (Continuación)

N º	f(t)	f(kT)	F(S)	F(z)
IV≃	F. Continua	F. Discreta	T. de Laplace	Transformada z
17	$(1-at)e^{-aT}$	$(1 - akT)e^{-akT}$	$\frac{S}{(S+a)^2}$	$\frac{[z - (1 + aT)e^{-aT}]z}{(z - e^{-aT})^2}$
18	$at - 1 + e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{a^2}{S^2(S+a)}$	$\frac{[(aT-1+e^{-aT})z+(1-e^{-aT}-aTe^{-aT})]z}{(z-1)^2(z-e^{-aT})}$
19		a^k		$\frac{z}{z-a}$
20		a^{k-1} $k \ge 1$		$\frac{1}{z-a}$
21		ka^{k-1}		$\frac{z}{(z-a)^2}$
22		k^2a^{k-1}		$\frac{z(z+a)}{(z-a)^3}$
23		k^3a^{k-1}		$\frac{z(z^2 + 4az + a^2)}{(z - a)^4}$
24		$(-a)^k$		$\frac{z}{z+a}$
25		$a^k cos(k\pi)$		$\frac{z}{z+a}$
26		$k(k-1)a^{k-2}$		$\frac{2z}{(z-a)^3}$
27		$k(k-1)\cdots(k-m+2)$		$\frac{z(m-1)!}{(z-1)^m}$
28	$\frac{1}{S(S+a)(S+b)}$		`	$\frac{(Az+B)z}{1)(z-e^{-aT})(z-e^{-bT})}$
	$A = \frac{b(1 - e^{-aT}) - a(1 - e^{-bT})}{ab(b - a)}$		$B = \frac{ae^{-aT}(1 - e^{-bT}) - be^{-bT}(1 - e^{-aT})}{ab(b - a)}$	
29	$1 - e^{-at}(cosb)$	$(t + \frac{a}{b}sinbt)$ \overline{S}	$\frac{a^2 + b^2}{[(S+a)^2 + b^2]}$	$\frac{(Az+B)z}{(z-1)(z^2-2ze^{-aT}cosbT+e^{-2aT})}$
	$A = 1 - e^{-a}$	$T cosbT - \frac{a}{b}e^{-aT}sin$	$B = e^{-}$	$\frac{1}{-2aT} + \frac{a}{b}e^{-aT}sinbT - e^{-aT}cosbT$

Tabla 2.2 Propiedades de la Transformada z

Nº	x(t) ó $x(kT)$	Transformada z
1	ax(t)	aX(z)
2	ax(t) + by(t)	aX(z) + bY(z)
3	x(t+T) ó $x(k+1)$	zX(z) - zx(0)
4	x(t+2T)	$z^2X(z) - z^2x(0) - zx(T)$
5	x(k+2)	$z^2X(z) - z^2x(0) - zx(1)$
6	x(t+kT)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(T) - \cdots zx(kT - T)$
7	x(t-k)	$z^{-k}X(z)$
8	x(n+k)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(1) - \cdots zx(k-1)$
9	x(n-k)	$z^{-k}X(z)$
10	$e^{-at}x(t)$	$X(ze^{-aT})$
11	$e^{-ak}x(k)$	$X(ze^a)$
12	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
13	tx(t)	$-T\frac{d[X(z)]}{dz}$
14	<i>x</i> (0)	$\lim_{z\to\infty} X(z)$
15	$x(\infty)$	$\lim_{z \to 1} [(z-1)X(z)]$

Tabla 2.3 Transformada z modificada

Nº	f(t)	F(kT)	F(S)	F(z) Modificada
1	u(t)	U(kT)	$\frac{1}{S}$	$\frac{1}{z-1}$
2	t	kT	$\frac{1}{S^2}$	$\frac{mT}{z-1} - \frac{T}{(z-1)^2}$
3	t^2	$(kT)^2$	$\frac{2}{S^3}$	$T^{2}\left[\frac{m^{2}}{z-1} + \frac{2m+1}{(z-1)^{2}} + \frac{2}{(z-1)^{3}}\right]$
4	t^{n-1}	$(kT)^{n-1}$	$\frac{(n-1)!}{S^n}$	$\lim_{a \to 0} (-1)^{n-1} \frac{\partial^{n-1}}{\partial a^{n-1}} \left[\frac{e^{-amT}}{z - e^{-aT}} \right]$
5	e ^{-at}	e ^{-akT}	$\frac{1}{S+a}$	$\frac{e^{-amT}}{z - e^{-aT}}$
6	te ^{-at}	$(kT)e^{-akT}$	$\frac{1}{(s+a)^2}$	$\frac{Te^{-amT}[e^{-aT} + m(z - e^{-aT})]}{(z - e^{-aT})^2}$
7	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{a}{S(S+a)}$	$\frac{1}{z-1} - \frac{e^{-amT}}{z - e^{-aT}}$
8	$at - 1 + e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{a^2}{S^2(S+a)}$	$\frac{aT}{(z-1)^2} + \frac{amT - 1}{z - 1} + \frac{e^{-amT}}{z - e^{-aT}}$
9	$1-(1+at)e^{-at}$	$1 - (1 + akT)e^{-akT}$	$\frac{a^2}{S(S+a)^2}$	$\frac{1}{z-1} - \left[\frac{1 + amT}{z - e^{-aT}} + \frac{aTe^{-aT}}{(z - e^{-aT})^2} \right]$
10	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{b-a}{(S+a)(S+b)}$	$\frac{e^{-amT}}{z - e^{-aT}} - \frac{e^{-bmT}}{z - e^{-bT}}$
11	sin(bt)	sin(bkT)	$\frac{b}{S^2 + b^2}$	$\frac{z.\sin(bmT) + \sin(1-m)bT}{z^2 - 2z\cos(bT) + 1}$
12	cos(bt)	cos(bkT)	$\frac{S}{S^2 + b^2}$	$\frac{z.\cos(bmT) - \cos(1-m)bT}{z^2 - 2z\cos(bT) + 1}$
13	$e^{-at}sin(bt)$	$e^{-akT}sin(bkT)$	$\frac{b}{(S+a)^2+b^2}$	$\frac{[z.\sin(bmT) + e^{-aT}\sin(1-m)bT]e^{-amT}}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
14	$e^{-at}cos(bt)$	$e^{-akT}cos(bkT)$	$\frac{S+a}{(S+a)^2+b^2}$	$\frac{[z.\cos(bmT) + e^{-aT}\sin(1-m)bT]e^{-amT}}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$