සියලු ම හිමිකම ඇවිරීණි / All Rights Reserved] කො/ විශාවා විදහලය -කොළඹ 05 Co / VisakhaVidyalaya, Colombo 05 අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023 General Certificate of Education (Adv. Level) Examination, 2023 ලභෟතික විදාහව I ලකවන වාර පරීක්ෂණය (2023 පෙබරවාරි) පැය ලදකයි Physics Third Term Test (February 2023) Two hours 12 ලේණිය Grade -12 උපදෙස් : මෙම පුශ්න පනුයේ පුශ්න 50 ක්, පිටු 8 ක අඩංගු වේ. සියලු ම පුශ්තවලට පිළිතුරු සපයන්න. පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න. පිළිතුරු පත්‍රයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවත්ත. 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය, පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින් (×) ලකුණු කරන්න. ගණක යන්තු භාවිතයට ඉඩ ලැනු නො ලැබේ. (ගුරුත්වජ ත්වරණය, $g=10\,\mathrm{ms}^{-2}$ ලෙස සලකන්න.) $E,\,M,\,V$ සහ G පිළිවෙලින් ශක්තිය, ස්කන්ධය, පුවේගය සහ ගුරුත්වාකර්ෂණ නියතය නිරූපණය කරයි නම $\frac{EV^2}{M^5G^2}$ යන පුකාශනයේ මාන වන්නේ, ($F = \frac{GM_1M_2}{r^2}$ වේ.) (1) $M^{-2}T^{-2}$ (2) $M^{-1}L^{-2}$ (3) $M^{-2}L^{-2}$ (4) $M^{-1}T^{-2}$ (5) M^2L^{-2} 2. තුනී තහඩුවක් මයිකොමීටර් ඉස්කුරුප්පු ආමානයක ඉද්ද සහ කිණිහිරය අතර රැඳවෙන සේ සකස් කළ විට පරිමාණ පිහිටීම (b) සහ ඉද්ද සහ කිණිහිරය ස්පර්ශ කළ විට පරිමාණ පිහිටීම (a) පහත රූපවල දැක්වේ. තුනී තහඩුවේ ඝනකම කොපමණ ද? (අන්තරාලය 0.5 mm සහ වට පරිමාණය කොටස් 50කට බෙදා ඇත.) (b)(a) (5) 0.20 mm (4) 0.14 mm (3) 0.12 mm (2) 0.10 mm (1) 0.04 mm පහත පුකාශන සලකන්න. 3. උත්තල කාවයකින් තාත්වික, උඩුකුරු, විශාල පුතිබිම්භ ලබා ගත නොහැක. නාභි දුර f වන අපසාරී කාචයකින් කුඩා, උඩුකුරු, අතාත්වික f ට වඩා අඩු දුරකින් පිහිටා ඇති පුතිබිම්භයක් ලැබේ. සංයුක්ත අන්වීක්ෂයකින් විශාලිත, අතාත්වික, උඩුකුරු අවසාන පුතිබිම්භයක් ලැබේ. ඉහත පුකාශත අතරින් සතා වන්නේ, (3) A හා B පමණි. (2) B පමණි. (1) A පමණි. (5) A හා C පමණි. (4) B හා C පමණි. පරිමත්දිත දෝලනයක දී කාලයක් සමභ, 4. ආවර්ත කාලය අඩුවේ. 8 - දෝලන කේන්දුයේ දී පුවේගය අඩුවේ. විස්තාරය අඩුවේ. මින් සතු වන්නේ, (3) A හා C පමණි. (2) C පමණි. (1) A පමණි. (5) A. B. C Bode (A) R m C make

එකම ආතතියකට යටත්ව ඇති ගිටාර් තත්තු දෙකකින් නිකුත් වන ස්වර එක් වී නුගැසුම සෑදීමට <mark>තම</mark>. 5. (1) ඒවායේ දිගවල් සුළු පුමාණයකින් වෙනස් විය යුතුය. (2) ඒවායේ රේඛීය සනත්වය ඉතා කුඩා පුමාණයකින් වෙනස් විය යුතුය. (3) ඒවායේ කම්පත විස්ථාර සුළු වශයෙන් වෙනස් විය යුතුය. (4) ඒවායේ දිග හා රේඛීය සනත්ව සමාන විය යුතුය. (5) ඒවායෙන් නිපදවන ධවනි තරංගවල තරංග ආයාම සුළු වශයෙන් වෙනස් විය යුතුය. අරය R වන වෘත්ත වලිතයක යෙදෙන අංශුවක වාලක ශක්තිය K. එය ගමන් කළ දුර s සමග විවලනය 6. $K = as^2$ මගින් ලබා දේ. එවිට එය මත කිුයාකරන බලය වන්නේ, (2) $\frac{2as^2}{R}$ (3) $\frac{2aR^2}{s}$ (4) $2as\left(1+\frac{s^2}{R^2}\right)^{\frac{2}{3}}$ (5) $\frac{as^2}{2R}$ (1) 2as පුශ්ත අංක 7 හා 8 පිළිතුරු සැපයීමට පහත කොරතුරු භාවිතා කරන්න. 7. සරල අනුවර්ති වලිතයක යෙදෙන ස්කන්ධය l g වන අංශුවක ඕනෑම l කාලයක දී විස්ථාපනය (මීටර්වලින්) $x=0.1\sin(15trac{\pi}{4})$ යන සමීකරණයෙන් ලබා දේ. අංශුව එහි මධා පිහිටුම පසු කරන පුවේගය කුමක් විය හැකි ද? ms⁻¹ (1) 0.1(2) 0.15(3) 1.5(5) 15(4) 2.25 8. පුශ්ත අංක 7ට අදාළ සරල අනුවර්තී වලිතයේ දෝලන කේන්දුය දෙසව කියාකරන උපරිම පුතිපාදන බලය ලකාපමණ ද? N (1) 0.01(5) 1.525(3) 0.02 (2) 0.0125(4) 0.0225 9. ධ්වති ලාක්ෂණික පිළිබඳව පහත දක්වා ඇති පුකාශ සලකන්න. A - ධ්වනි ස්වරයක ව්පුලතාව විස්තාරය මත රඳා පවතී. B - ධ්වනි ස්වරයක විපුලතාව ස්වරයේ තිවුතාව මත රදා පවති C - ධවනි තරංගයක පවතින හැඩය ධවනි ගුණයට හේතුවේ. තරංගයක තාරතාව එහි සංඛ්‍යාතය වැඩිවත්ම අඩු වේ. මින් අසතා වන්නේ, (3) C පමණි. (1) A 50 8. (2) B, C පම€. (5) D පමණි. (4) C හා D පමණි. ස්කන්ධය 10kg වන වස්තුවක් තිරසට 30°ක් ආනත සුමට තලයක් 10. මත පවතියි. වස්තුවෙහි බරෙහි ආනත තලයට සමාන්තර සහ ලම්බක සංරවක වන්නේ, (2) $50\sqrt{3}$, 50 (3) 5, $5\sqrt{3}$ 30° (1) 50, $50\sqrt{3}$ $(4)\ 5\sqrt{3}, 5$ (5) 50, 50 11. සමාන සනකමකින් යුත් A හා B වීදුරු වර්ග දෙකකින් කුටට් හතරක් හා පහක් එක මත එක රූපයේ පරිදි තබා ඇත. අවස්ථා දෙලක් දී ම ඉහළ පෘෂ්ඨයට ඉහළින් P නිරීක්ෂණය කරන විට දෘශා ගැඹුර සමාන බව නිරීක්ෂණය විය. A මාධායට සාපේක්ෂව B මාධායේ වර්තන අංකය වනුයේ,

 $(4)^{\frac{7}{3}}$

(3) 1

 $(1)^{\frac{5}{4}}$

(5)

1			-3-					
2.	සාපේක්ෂ සනත්වය 0.9 වන සහ උස 0.5 m වන අයිස් කුටවියක් සනත්වය 1000 kg m ⁻³ වන ජලය තුළ පාවේ. 100 kg ස්කන්ධයක් ඇති මිනිසෙකුට එය මත සමතුලිතතාවයේ පැවතීම සඳහා අයිස් කුටවියට තිබිය යුතු අවම හරස්කඩ වර්ගඵලය වන්නේ, m²							
	(1) 1.0	(2) 1.5	(3) 2.0	(4) 3.0	(5) 4.0			
13.	කුමයෙන් ජලය පිරවීමට සලස්වන විට සරසුලේ හඩ තීවුවී ඇසෙන ජල මට්ටම වන්නේ, (වාතය තුළ ධ8							
•	ყინთა 340 m s ⁻¹ (2) 25 cm, 75 cm (4) 15 cm, 85 cm		(2) 20 cm, 80 c (5) 17 cm, 83 c		(3) 25 cm, 80 cm			
1.4			(5) 17 cm, 65 c	••••				
14.	(1) පීඩනය වැඩිවැ (3) වියළි අවස්ථා (5) පීඩනය වැඩිවැ :	න විට අඩුවේ. වේ දී තෙත අවස්ථා න විට වැඩිවේ.	289	(4) උෂ්ණක්ව) a p e	ය අඩුවන විට වැඩිවේ. ය වැඩිවන විට වැඩිවේ.			
15.	ජල පෘෂ්ඨිය තරංග (1) පරාවර්තනය (4) අධිස්ථාපනය	සහ ධවනි කරංග	සතු පොදු ගුණයක් (2) වර්තනය (5) ධුැවණය	නොවත්තේ,	(3) විවර්තනය			
16.		ර්ය නිශ්චල නිරීක්	කෙයා පසු කිරීමට (ථයක් නිශ්චල නිරීක්ෂකයෙකු ඇපෙන සංඛාාන අතර අනුපා (5) 4 : 5			
17.	තුළ B මට්ටම දක් වායු පුවාහයක් පරි (1) සිහින් නලය (2) සිහින් නලය (3) සිහින් නලය (4) A වලින් වාන	වා ජලය ඉහළට ග වත්වාගත් වීට, ඔස්සේ ඉහළට ජල ඔස්සේ පහලට ජල තුළ ජල මට්ටමේ ග	මෙන් කර ඇත. තිර ය ගමන් කරයි. ය ගමන් කරයි. වෙනසක් සිදු නොව වායු බුබුළු ඇති වේ.	් නලයක් තුළින් `	B =A =			
18.	පිස්මය වාතයේ තිබිය දී පතන කෝණය සමග අපගමන කෝණය පරීක්ෂණාත්මකව ලබාගත් ශිෂායෙක් අවම අපගමන අවස්ථාවට අදාළ බණ්ඩාංකය (x_0,y_0) ලෙස ලකුණු කරන ලදී. දැන් මෙම පිස්මය සමපූර්ණයෙන්ම ජලයේ ගිල්වා මුල් ආකාරයටම පරීක්ෂණය සිදු කර අවම අපගමනයට අදාළ බණ්ඩාංකය (x,y) ලෙස ලකුණු කරයි. එම බණ්ඩාංක අතර නිවැරදී සම්බන්ධය වන්නේ, $(1) \ x = x_0, \ y = y_0$ $(2) \ x > x_0, \ y > y_0$ $(3) \ x < x_0, \ y < y_0$ $(4) \ x > x_0, \ y < y_0$ $(5) \ x < x_0, \ y > y_0$							
19.	දී ඇති බඳුනෙහි A	B = BC' = CD =	h ⊕Đ. AE= 2h ⊕	ව. P කුඩා සිදුර තු	ළින් D⊤	Į 🏹		

නිරීක්ෂණය කළ විට B ලක්ෂා දැකගත හැක. C දක්වා දුවයක් පිරවූ විට

(3) √5

P තුළින් A ලක්ෂා දැකගත හැක. දුවයේ වර්තන අංකය වන්නේ,

(2) √2

(5) 1.33

(4) 2

E

B.

20	. නාභිදුර පිළිවෙලි: සාදා ඇත. මෙම ර (1) 1	න් 10 cm හා 20 c ංයුක්ත කාවයේ සි (2) 3	cm වන උත්තල ක 3ට 16 cm ක දුරක : (3) 5	ාවයක් හා අවතල ක තැබූ වස්තුවක රේබීය (4) 7	ාවයක් මගින් සංයුක්ත කාවයක් විශාලනය වන්නේ, (5) 9		
21	භාවිතා කරයි. එ	විට ඔහුට 25 cm	දුර පැහැදිලිව කිය	· ·	ක බලයක් ඇති උපැස් යුවලක ් යුවල නොපලදින විට පොත න් තබා ගත යුතු ද? (5) 100 cm		
22			_	දෝලන කාලාවර්තය	ය 4 cm කි. තරංගයේ පුචාරණ කොපමණ ද? (3) 2 s		
23.	. 23. වාතයේ ධවති පුවේගය මෙන් $\frac{1}{10}$ ක පුවේගයකින් නිරීක්ෂකයකු නිශ්වල ධවති පුවේගයක් වෙත ගුරි කරයි. සංඛ්‍යාතයේ දෘශා වැඩිවීම පුතිශනයක් ලෙස දැක් වූ විට, (1) 1% (2) 5% (3) 10% (4) 0.1% (5) 0.5% 24. නිශ්වල රෝදයක පරිධිය මත ඇති P ලක්ෂාය ආරම්භයේ දී පොළව සමහ ස්පර්ශව ඇත. රෝදයේ අරය 5 නම් එය ඉදිරියට වට භාගයක් වලිත වූ විට P ලක්ෂායේ විස්ථාපනය වන්නේ, m						
	(1) 2.5	(2) 5	(3) 10	(4) $5(\sqrt{\pi^2+4})$			
25.	u නලයක් නියත ර	z ත්වරණයකින් වැ හ ලක්ෂහ අතර දුර	ත් ඒකාකාර හරස්ක ලිත වන අවස්ථාවකි වේ. එවිට බාහු දෙර (3) ad g	8. <i>d</i> යනු	\overrightarrow{a}		
26.		ආලෝක ලපය <i>B</i> ර	වා හුමණය කරන දි දෙසට විස්ථාපනය දි වර්තන අංකය දෙනු (3) * y		$\left\{\begin{array}{c} x \\ A \\ B \end{array}\right\}$		
27.	තීවුතාව 5I වන පුං වීට <i>O</i> ලක්ෂායේ ව (1) 2 dB	ටවනි නීවුතා මට්ට	මේ ඇති වන වෙනර	යෙකට ලභාවේ. ධීවති වෙන්නේ, (log2 = 0.3 (4) 7dB	3 කීවුතාව 10I දක්වා වැඩි කළ 3) (5) 15 dB		
28.	B - සාමානා පතියෝජ	දුරේක්ෂයක් මගින් සීරුමාරුවේ පවිජ (කු පේශී ලිහිල් වී	් පෙනෙන පුතිබිම්ණ බින දුරේක්ෂයක් මර ඇය විවෙකීව පචතී	ාය යටිකුරු එකකි. බින් වස්තුවක් නිරීක්ෂ	ණය කිරීමේ දී නිරෝගී ඇසක		
	C - වැඩි ලක	්ණික විශාලනය: නෙතක් ද භාවිතා හින් සතහ වන්නේ,	ක් ලබා ගැනීමට අ වේ.	ඩු නාභි දුරක් සභිත	අවනෙතක් ද වැඩි නාභි දුරක් (3) A හා C පමණි.		
	III A m n n coeto.		(-)	EX. Trans.	A 100 M 100		

(2) *B* හා *C* පමණි.

(5) A පමණි.

(1) A හා B පමණි.

(4) A, B හා C සියල්ලම

රුපයේ දක්වා ඇති පරිදි ස්කන්ධය M වන ඒකාකාර දණ්ඩක් සමතුලිතව 29. තබා ඇත. දණ්ඩේ එක් කෙළවරකට කුඩා *m* ස්කන්ධයක් එල්ලූ විව දණ්ඩ තිරසට 🖯 කෝණයක් සාදමින් සමතුලිත වේ. දණ්ඩ හා අර්ධ ගෝලීය පෘෂ්ඨය අතර සර්ෂණ සංගුණකය වනුයේ, (1) $\tan \theta$ (2) $\cos \theta$ $(3) \frac{1}{\tan \theta}$ $(5) \frac{\sin\theta - \cos}{\sin\theta + \cos\theta}$ (4) $\sin \theta$ 30. 60 dB තීවුතා මට්ටමක් ඇති කල හැකි ශබද තරංගයක් 20 cm² පෘෂ්ඨික වර්ගඵලයක් හරහා එයට ලම්බකව පැය 2ක් තුළ ගමන් කිරීමේ දී ඇතිවන ධවනි ශක්තිය වන්නේ, J (1) 144×10^{-5} (2) 144×10^{-7} (3) 144×10^{-9} (4) 144×10^{-10} (5) 144×10^{-12} 31. ජලය සහිත විවෘත බඳුනක් නියත a ත්වරණයකින් තිරස්ව ගමන් කරන විට නිදහස් ජල පෘෂ්ඨය තිරස සමභ සාදන කෝණය වන්තේ, (1) $\tan^{-1}\left(\frac{a}{a}\right)$ (2) $\tan^{-1}\left(\frac{g}{a}\right)$ (3) $\sin^{-1}\left(\frac{a}{a}\right)$ (4) $\sin^{-1}\left(\frac{g}{a}\right)$ (5) $\tan^{-1}\frac{a}{\sqrt{a^2+a^2}}$ දෙකෙලවර අවලව සවිකර ඇති තන්තුවක මුළු නිෂ්පන්ද ගණන n නම තන්තුවේ දිග, $(1) \frac{n\lambda}{2} \qquad (2) \frac{\lambda}{2n} \qquad (3) (n+1) \frac{\lambda}{2} \qquad (4) (n-1) \frac{\lambda}{2} \qquad (5) \frac{\lambda}{2(n-1)}$ 33. රූපයේ දැක්වෙන පරිදි m ස්කන්ධයක් ඇති කප්පියක් ආධාරකයකට කලම්ය කර ඇත. සැහැල්ලු අවිතනය තන්තුවක් එය වටා යන අතර M ස්කන්ධයක් තන්තුවේ කෙළවරට එල්වා ඇත. ආධාරකය මගින් කප්පිය මත ඇති කරන බලය වනුයේ, $\sqrt{2}$ Mg ආධාරකය (2) $\sqrt{2}$ mg · (3) $\sqrt{[(M+m)+m]^2}g$ (4) $\sqrt{[(M+m^2)^2+M]^2}g$ (5) (M+m)g34. රූපයේ පරිදි වර්තන අංකය 1.5ක් වූ පුිස්මයක් වාතයේ තබා ඇත. පුස්මය මත රූපයේ පරිදි ලම්බකව පතනය වන ආලෝක කිරණයේ පුස්මය තුළින් නිවැරදි ගමන් මාර්ගය වන්නේ, (5)(4)

රුපයේ දක්වා ඇති පරිදි මෝටරයක පුතිදාන ක්ෂමතාවය සෙවීමට අපේක්ෂා කරයි. මෝටරයේ අක්ෂයට සවී කොට ඇති රෝදය පරිධිය 0.5 m වන අතර එය වටා ඇති පටිය රූපයේ පරිදි භාර යොදා ඇත. පද්ධතිය නිශ්වලව තබා සිරුවෙන් මුදා හල විට රෝදය තත්පරයට වට 20ක වේගයෙන් වලනය වේ නම π = 3 ලෙස ගත් විට මෝටරයේ පුතිදාන ක්ෂමතාවය වනුයේ,

- (1) 200 W
- (2) 300 W
- (3) 500 W
- (4) 600 W
- (5) 700 W
- 36. 20 m දිග කම්බියක ස්කන්ධය 0.04 kg ක් වේ. එය 12.8 N ආතතියකට යටත්ව ඇත. කම්බිය තුළ තිර්යක් තරංගවල පුවේගය වනුයේ,
- (1) 80 ms^{-1} (2) $4\sqrt{2} \text{ ms}^{-1}$ (3) $8\sqrt{2} \text{ ms}^{-1}$
- (4) 800 m s⁻¹
- (5) 6400 ms-1
- ජලය අඩංගු ටැංකියක පතුලේ කුඩා සිදුරක් ඇත. ටැංකිය පතුලේ මුළු පිඩනය වායුගෝල පිඩන 3ක්, නම සිදුරෙන් ඉවතට ජලය ගමන් කරන වේගය වන්නේ, m s⁻¹ වායුගෝල පීඩන 1 = 1.0 × 10⁵ Pa
 - (1) $10\sqrt{10}$

(2) $10\sqrt{5}$

(3) $18\sqrt{6}$

(4) 20

- (5) ඉහත කිසිවක් නොවේ.
- 38. දිග L වන දණ්ඩක් තිරස් තලයක () නියත කෝණික පුවෙගයෙන් හුමණය වෙයි. දිග / වන සැහැල්ලු තන්තුවක M ස්කන්ධයක් අමුණා දණ්ඩේ නිදහස් කෙලවරින් එල්ලා ඇත. තන්තුව සිරස සමග 🖯 කෝණයක් යොදන විට එය කෝණික පුවේගය ග සමග සම්බන්ධ වන්නේ,

(1)
$$\omega = \left[\frac{g \sin \theta}{L(l + \tan \theta)}\right]^{\frac{1}{2}}$$

(2)
$$\omega = \left[\frac{L(l+\tan\theta)}{g\tan\theta}\right]^{\frac{1}{2}}$$

(3)
$$\omega = \left[\frac{g \tan \theta}{l + \sin \theta}\right]^{\frac{1}{2}}$$

$$(4) \omega = \left[\frac{g t a n \theta}{L(l + \sin \theta)} \right]^{\frac{1}{2}}$$

- වැරදි ආකාරයට කුමාංකනය කර ඇති උෂ්ණත්වමානයක්, අයිස් දියවන උෂ්ණත්වයේ දී -10°C පාඨාංකයක්ද 50°C උෂ්ණත්වයක දී 60°C ද පෙන්වයි. මෙම උෂ්ණත්වමානය ජලය නටන උෂ්ණත්වයේ දී පෙන්වන පාඨාංකය වන්නේ,
 - (1) 80°C

(2) 100°C

(3) 110°C

- (4) 120°C
- (5) 132°C
- U නලයක් 00' අක්ෂය වටා (i) කෝණික පුවේගයකින් භූමණය කරයි. 40. දුව කඳුන් දෙකෙහි උස අතර වෙනස h වන්නේ දුවයේ ඝනත්වය p යයි ද, නලයෙන් විෂ්කම්භය d යයි ද සලකන්න. d < < < L

$$(1) h = \frac{L^2 \omega^2}{2g}$$

$$(2) h = \frac{L^2 \omega^2}{g}$$

(1)
$$h = \frac{L^2 \omega^2}{2g}$$
 (2) $h = \frac{L^2 \omega^2}{g}$ (3) $h = 2 \frac{L^2 \omega^2}{g}$

(4)
$$h = \frac{2L^2\omega^2}{3g}$$
 (5) $h = \frac{3L^2\omega^2}{4g}$

$$(5) h = \frac{3L^2\omega^2}{4g}$$

- 41. 5N සම්පුයුක්ත බලයක් ඇති 4s කාලයක් තුළ වස්තුවක් මත කි්යා කරයි. කුමන ප්‍රස්තාරය මගින් එහි ගමාතා වෙනස කාලය සමග විවලන නිවැරදි ව නිරූපණය කරයි ද?
 - (1) A
- (2) B
- (3) C

- (4) D
- (5) E

- (kg m s⁻¹) 10 5 0 1.0 2.0 3.0 4.0 කාලය (s)
- 42. වස්තුවක් මත කියාකරන බලය, කාලය සමභ විවලනය පහත ප්‍රස්තාරය මගින් නිරුපණය කරයි. තත්පර 4 ක කාලයක දී වස්තුව අයත් කරගත් ගමාතාවයේ වෙනස ආසන්නතම අගය වන්නේ, Ns
 - (1) 100 .
- (2)80
- (3)60

- (4) 50
- (5)40

- 43. සුදු ආලෝකය වර්ණ හතකට බෙදනුයේ එහි කුමන ගුණය නිසා ද?
 - (1) විවර්තනය
- (2) වර්තනය
- (3) පරාවර්තනය
- (4) නිරෝධනය

බලය (N)

(5) ධුැවණය

- 44. ස්කන්ධය 50 g වන ටෙනිස් බෝලයක් වමපසට 10 m s⁻¹ ක වේගයෙන් වලිත වෙමින් පවතින විට එය දකුණට වලිතවෙමින් පවතින පිත්තක් මත ලම්බකව ගැටෙයි. බෝලයට බලය සංකුමණය කාලය සමග විවලනය පහත පුස්තාරයේ දක්වා ඇත. පිත්තේ වැදීමෙන් පසු බෝලයේ වේගය වන්නේ, m s⁻¹
 - (1) 30
- (2)40
- (3)50

- (4)70
- (5)90

- 45. සරළ අනුවර්ති වලිතයේ යෙදෙන අංශුවක කාලය (ι) සමග විස්ථාපනය (x) විවලස x = 5sin(0.2πt + 0.5π) මගින් ලබාදේ. එහි ආවර්ත කාලය සහ කාලාරම්භකෝණය පිළිවෙලින්,
 - (1) 10s, 90°
- (2) 1s, 90°
- (3) 10s, 60°
- (4) 5s, 90°
- (5) 1s, 60°
- 46. වස්තුවක උෂ්ණත්වය 50°C කින් වෙනස් විය. එම වෙනස කෙල්වීන් පරිමාණයට අනුව,,
 - (1) 30 K
- (2) 50 K
- (3) 70 K
- (4) 223 K
- (5) 323 K
- 47. ද්විලෝහ පටියක් සාදා ඇත්තේ තඹ සහ යකඩ පටි දෙකක් පැස්සීමෙනි. එය කාමර උෂ්ණත්වයේ දී සිරස්ව පහළ කෙළවර අවලව සවිකර ඇත්තේ තඹ පටිය වම් පසට ද, යකඩ පටිය දකුණු පසට ද සිටින ලෙස ය. α_{තම} > α_{යකඩ} නම් උෂ්ණත්වය ඉහළ තැංඩු විට,
 - (1) එය සිරස්වම පවතී.
- (2) වමට නැමේ.

(3) දකුණට නැමේ.

- (4) ඉදිරියට නැමේ.
- (5) පසුපසට නැමේ.

48. උෂ්ණත්වමානයක් ජලයේ භිමාංකයේ දී 20° ක් ද ජලයේ තාපාංකයේ දී 150° ද පෙන්වයි. මෙමගින් 60°C උෂ්ණත්වයක දී පෙන්වන පාඨාංකය වන්නේ, (5) 110°

(1) 30°

- $(2) 40^{\circ}$
- (3) 65°
- (4) 98°
- ස්කන්ධය 6kg වන වස්තුවක් යන්තමින් තිරස් පෘෂ්ඨයක් මත වලනය කිරීමට අවශා බලය යොදනු ලබයි. 49. **ථම බලය දිගටම යෙදුවහොත් වස්තුවේ ත්වරණය ව**ත්තේ, වස්තුව හා පෘෂ්ඨය අතර ස්ථිතික හා ගතික සර්ෂණ සංගුණක පිළිවෙලින් 0.6 හා 0.4 වේ.

 $(1) 36 \,\mathrm{m}\,\mathrm{s}^{-2}$

- (2) 24 m s⁻²
- $(3) 12 \text{ m s}^{-2}$
- (4) 6 m s⁻²
- $(5) 2 \text{ m s}^{-2}$

50. ඉහළින් විවෘත වොලියක් සුවට තිරස් පෘෂ්ඨයක ගමන් කරමින් පවතින විට එය තුළට සිරස්ව පහළට වැහි බිංදු රුපයේ පරිදි පතිත වේ. ටුොලිය වලිත වෙමින් පවතින විට එය තුළට සැළකිය යුතු ජල ස්කන්ධයක් එකතු වූ පසු ටොලියේ වේගය,

- (1) වැඩිවේ, ගමානා සංස්ථිති නියමය අනුව
- (2) වැඩිවේ, යාන්තික ශක්ති සංස්ථිති නියමය අනුව
- (3) අඩුවේ, ගමාතා සංස්ථිති නියමය අනුව
- (4) අඩුවේ, යාන්තුික ශක්ති සංස්ථිති නියමය අනුව
- (5) වෙනස් නොවේ වැති බිංදු ටොලියේ වලිත දිශාවට ලම්භකව පතනය වන බැවින්

22 A/L æ8 [papers grp

කො/ විශාඛා විදනාලය - කොළඹ 05

Co / Visakha Vidyalaya, Colombo 05

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023 General Certificate of Education (Adv. Level) Examination, 2023

මහෟතික විදහාව II Physics II

12 ලේණිය Grade -12

01 S II

මතවන වාර පරීක්ෂණය (2023 පෙබරවාරි) Third Term Test (February 2023)

B කොටස – රවතා

පුශ්ත හතරකට පමණක් පිළිතුරු සපයන්න. (ගුරුත්වජ ත්වරණය, g = 10 m s⁻² ලෙස සලකන්න.)

- 5. ස්කන්ධ 60 kg හා 40 kg වන A සහ B වස්තු දෙකක් තන්තුවක් මගින් සම්බන්ධ කර ඇත. තන්තුවට දැරිය හැකි උපරිම ආතතිය 400 N වේ. වස්තූන් හා පොළව අතර ස්ථිතික හා ගතික සර්ෂණ සංගුණක පිළිවෙලින් 0.6 සහ 0.5 වේ.
 - (a) පහත ප්‍රශ්නවලට පිළිතුරු සැපයීමේ දී තන්තුවේ ස්කන්ධය නොසලකා හරින්න. රූප සටහනේ පරිදි P බලයක් තිරස්ව B වස්තුව මත යොදා ඇති විට,

- (ii) තන්තුවට ආතතියක් ඇති වීමට P සඳහා තිබිය හැකි අවම අගය (P1)
- (iii) වස්තුව වලනය වීම සඳහා P සඳහා තිබීය හැකි අවම අගය (P_2)
- (iv) තන්තුව නොකැඩි තන්තුවලට ලබාගත හැකි උපරිම ත්වරණය සහ එම අවස්ථාවේ P හි අගය
- (v) P බලයේ අගය $500~\mathrm{N}$ නම් A සහ B මත සර්ෂණ බලයන් සොයන්න. මෙහිදී P අගය P_1 හා P_2 අතර පවතී.
- (vi) තන්තුව නොකැඩී පද්ධතිය වලනය කරවීමට තන්තුවට දරා ගත හැකි විය යුතු අවම ආතතිය සොයන්න.
- (b) ස්කන්ධ දෙක අතර ඇති තන්තුවේ ස්කන්ධය 2 kg නම් P කුමයෙන් වැඩි කරන විට,
 - තන්තුව තිරස්ව පවතින බව සලකා තන්තුව නොකැඩෙන පරිදි ස්කන්ධවලට ලබාගත හැකි උපරිම ත්වරණය සොයන්න.
 - (ii) නන්තුවේ කුමන කෙළවරින් කැඩේ ද? පැහැදිළි කරන්න.
 - (iii) ස්කන්ධ චලිත වන අවස්ථාවේ දී, ස්කන්ධය හා තන්තුව මත නිදහස් බල සටහන් චෙන චෙනම අදින්න.

6. (a) (i) ඩොප්ලර් ආවරණය යනු කුමක් ද?

- (ii) ඉහත සංසිද්ධියට අදාළ ප්‍රායෝගික උදාහරණ දෙකක් සඳහන් කරන්න.
- (b) නිශ්චලතාවයෙන් පටන්ගෙන නිරීක්ෂකයෙකු ඒකාකාර a ත්වරණයෙන් නිශ්චල පුභවයක් දෙසට වලින වෙයි. පුභවයෙන් නිකුත් වන සංඛ්‍යාතය ∫₀ නම් දෘශ්‍ය සංඛ්‍යාතය (f) කාලය (t) සමග විචලනය වන අයුරු දක්වන ප්‍රස්තාරය අඳින්න.

(c) දැන් මෙම පුතවය ලබාගත් ඒකාකාර පුවේගයකින් අවල අනාවරතයක් දෙසට ගමන් කරයි. අනාවරතය වෙත ලතාවීමේ දී සහ පසුකරගෙන යාමේ දී එහි සටහන් වූ සංඛ්‍යාතයන් fi හා fi වෙයි. (අනාවරතය තරහා යන රේඛීය මගක පුවේගය වලිත වන්නේ යැයි සලකන්න.)

මෙනි us - පුතවයේ පුවේගය

ν - වානය තුළ ධවනි පුලවිගය

to - පුහවය නිකුත් කරන සංඛාාතය

- (i) පුභවය අනාවරකය දෙසට
 - ප්‍රභවය අනාවරකයෙන් ඉවතට
 ගමන් කිරීමේ දී දෘශා සංඛ්‍යාත සඳහා ප්‍රකාශන ලියා දක්වන්න.
- (ii) කාලය සමග අනාවරකයේ සටහන් වන සංඛ්‍යාත විවලනය වන ආකාරය ප්‍රස්තාරගත කරන්න. ප්‍රස්තාරය මත fi සහ fi සහ fo සලකුණු කරන්න.
- (iii) $\frac{f_1-f_2}{f_0} = 0.75$ නම $\frac{u_s}{v}$ අනුපාතය සොයන්න.

(d)

සංඛ්‍යාත අතාවරකය ඒකාකාර පුවේගයෙන් රූපසටහනේ පරිදි වලිත වේ, නලය එහි 3 වන පුසංවාදයෙන් කම්පනය වේ.

අනාවරකය මගින් ගුහණය කරන සංඛාතය නලයේ මූලිකතානයට අනුරූප වේ. අනාවරකයේ පුවේගය සොයන්න. වාතය තුළ ධවනි පුවේගය V වේ.

22 A/L æs [papers

- (e) රූපයේ පරිදී දුන්නක් ආධාරයෙන් මයිකොලෝනයක් සිව්ලිමක එල්ලා ඇත. ඊට සිරස්ව පහළින් පොළව මත ධවති පුහවය අවලව තබා ඇත. එහි සතහ සංඛ්‍යාතය 400 Hz කි. මයිකොලෝනයට කුඩා විස්ථාපනයක් දුන් විට ආවරත කාලය 2 s වන පරිදී සරල අනුවර්ති වලිතයක යෙදෙයි. මයිකොලෝනය ග්‍රහණය කරගත් උපරිම හා අවම දෘශා සංඛ්‍යාත අතර වෙනස 2 Hz කි. ධවති තරංග පරාවර්තනය වීම නොසලකන්න. මේ අවස්ථාවේ දී මයිකොලෝනයේ,
 - (i) උපරිම පුවේගය සොයන්න.
 - (ii) විස්තාරය සොයන්න.

වාතය තුළ ධවනි පුවෙගය 340 ms⁻¹.

(a) සනකාභයක් හැඩැති වර්තන අංකය n වන වීදුරු කුව්වියක්තුළට වාතයේ සිට සංඛාාතය f වන ආලෝක තරංගයක් ඇතුළු වේ. වාතය තුළ ආලෝකයේ පුවේගය c වේ.

- (i) වීදුරු කුට්ටිය තුළ දී තරංගයේ වේගය කොපමණ ද?
- (ii) වීදුරු කුට්ටිය තුළ කොපමණ තරංග ආයාම සංඛාාවක් ඇති වේ ද?
- (b) පහත රුපයේ දක්වා ඇත්තේ සමාන මාන සහිත වීදුරු කුවටි දෙකකි.

P වීදුරු කුටටිය වර්තන අංකය 1.5 වන වීදුරු විශේෂයකින් තනා ඇති අතර (2) වීදුරු කුටටිය, වර්තන අංකය n වන Q වීදුරු විශේෂයකින් හා වර්තන අංකය 1.6 වන R වීදුරු විශේෂයකින් සාදා ඇත. Q හා R වීදුරු කොටස්වල සනකම සමාන වේ. මෙම (1) හා (2) වීදුරු කුටවී දෙක තුළින් ගමන් කරන එකම වර්ගයේ ආලෝක කිරණ. දෙකක් වීදුරු කුටටි තුළ දී සමාන තරංග ආයාම සංඛාභවක් ඇති කරයි. Q වීදුරු වර්ගයේ වර්තන අංකය සොයන්න.

(c) P වීදුරු කුට්ටිය මතට රූපයේ පරිදි ආලෝක කිරණයක් පතනය වේ.

heta හි සියළුම අගයන් සඳහා ආලෝක කිරණය AB පෘෂ්ඨයේ දී පූර්ණ අභාන්තර පරාවර්තනය වන බව පෙන්වන්න.

- (i) (2) වීදුරු කුටවියට රූපයේ පරිදි ආලෝක කිරණයක් පතනය වුවහොත් එම කිරණය XY පෘෂ්ඨයේ දී පූර්ණ අභාාන්තර පරාවර්තනය සිදුවිය හැකි θ හි උපරිම අගය $\theta_{\rm m}$ සොයන්න.
- (ii) θ හි අගය, θ_m ට වඩා වැඩි වුවහොත් කුමක් සිදුවේ ද?

(e)

Q හා R වීදුරු කුටට්වල සතකම 10 cm බැගින් යැයි සිතන්න.

(2) වීදුරු කුවටිය ඉහත රූපයේ පරිදි තබා Q ව ඉහළින් වාතයේ සිව බලන අයෙකුව O ලක්ෂාාකාර ආලෝක පුභවයෙන් නිකුත් වන ආලෝකය කිසිවක් නොදැකීමට Q වීදුරු කුවටිය මත තැබිය යුතු පාරාන්ධ තැටියේ අවම විෂ්කම්භය ගණනය කරන්න.

- - (b) නාභිය දුර 2 cm හා 5 cm වන උත්තල කාව දෙකක් භාවිතා කර සාමානා සිරුමාරු අවස්ථාවේ පවතින සංයුක්ත අන්වීක්ෂයක් නිර්මාණය කර ඇත. ඉන්පසු සංයුක්ත අන්වීක්ෂයේ අවනෙතේ සිට 3 cm දුරින් උස l cm වන වස්තුවක් තබා ඇත. විෂද දෘෂ්ටියේ අවම දුර 25 cm ලෙස සලකන්න.
 - (i) මෙම සංයුක්ත අන්වීක්ෂයේ සාමානා සිරුමාරු අවස්ථාවට අදාළ නම කරන ලද කිරණ සටහන අදින්න.
 - (ii) මෙහිදී ඔබ උපතෙත හා අවතෙත ලෙස තෝරා ගන්නේ කුමන නාභි දුර සභිත කාවයන් ද?
 - (iii) මෙම සංයුක්ත අන්වීක්ෂයේ කාව දෙක අතර පරතරය කොපමණ ද?
 - (iv) සංයුක්ත අන්වීක්ෂයේ විශාලක බලය කොපමණ ද?
 - (v) ලැබෙන පුතිබිම්බයේ උප කොපමණ ද?
 - (c) නිරෝගී පුද්ගලයකු අනන්තය නිරීක්ෂණය කරන විට අක්ෂි කාචයේ නාභි දුර 2 cm ක් විය.
 - (i) අක්ෂි කාචයේ සිට දෘෂ්ට් විතානයට දුර සොයන්න.
 - (ii) මෙවිට දෘෂ්ථි විතානය මත සැදෙන පුතිබිම්බයේ ලක්ෂණ තුනක් ලියන්න.
 - (iii) මෙම පුද්ගලයා අව්දුර ලක්ෂා නිරීක්ෂණය කරන විට අක්ෂි කාවයේ දුර නාභීය සොයන්න.

22 A/L &8 [papers grp]