$\begin{array}{c} {\bf Fonctions\ usuelles} \\ {\bf Corrig\'e} \end{array}$

DARVOUX Théo

Septembre 2023

Exercices.	
Vocabulaire sur les fonctions.	2
Exercice 4.1	2
Exercice 4.2	2
Étude de fonctions	2
Exercice 4.2	2

Exercice 4.1 $[\Diamond \Diamond \Diamond]$

Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction 2-périodique et 3-périodique. Montrer que f est 1-périodique. On a :

$$\forall x \in \mathbb{R} \begin{cases} x - 2 \in \mathbb{R} \\ f(x - 2) = f(x) \end{cases}$$
 et $\begin{cases} x + 3 \in \mathbb{R} \\ f(x + 3) = f(x) \end{cases}$

Alors:

$$\forall x \in \mathbb{R} \begin{cases} x - 2 + 3 \in \mathbb{R} \\ f(x - 2 + 3) = f(x - 2) = f(x) \end{cases}$$

Exercice 4.2 $[\blacklozenge \blacklozenge \blacklozenge]$

Déterminer toutes les fonctions croissantes $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R} \ f(f(x)) = x.$$

Soit $x \in \mathbb{R}$ et f une solution du problème.

On remarque que $f: x \mapsto x$ est solution du problème.

Supposons f(x) > x, on a : f(f(x)) > f(x) par croissance de f. Or f(f(x)) = x donc x > f(x), ce qui est absurde.

Supposons f(x) < x, on a : f(f(x)) < f(x) par croissance de f. Or f(f(x)) = x donc x < f(x), ce qui est absurde.

Ainsi, la seule fonction de \mathbb{R} vers \mathbb{R} solution est $f: x \mapsto x$.

Exercice 4.3 $[\blacklozenge \lozenge \lozenge \lozenge]$ S'entraîner tout seul à dériver.

Pour chacune des fonctions ci-dessous, donner un ou plusieurs intervalles sur lesquels la fonction est dérivable, et préciser sa dérivée.

$$A: x \mapsto x^{\pi}, \quad B: x \mapsto \pi^{x}, \quad C: x \mapsto \cos(5x), \quad D: x \mapsto \operatorname{th}(\operatorname{ch}(x)),$$

$$E: x \mapsto \ln\left(1+x^{3}\right)n \quad F: x \mapsto \cos\left(\sqrt{\ln(x)}\right), \quad G: x \mapsto \frac{1}{\sqrt{3x-1}}, \quad H: x \mapsto \sin|x+1|.$$