Virtual intersection theories

Zachary Gardner

zachary.gardner@bc.edu

• \emptyset , Spec $k \in V$.

- \emptyset , Spec $k \in V$.
- *V* is closed under finite coproducts.

- \emptyset , Spec $k \in V$.
- *V* is closed under finite coproducts.
- V is closed under fiber products.

- \emptyset , Spec $k \in V$.
- V is closed under finite coproducts.
- V is closed under fiber products.
- If $X \to Y$ is a qs morphism in St_k with $Y \in V$ then $X \in V$.

- \emptyset , Spec $k \in V$.
- *V* is closed under finite coproducts.
- V is closed under fiber products.
- If $X \to Y$ is a qs morphism in St_k with $Y \in V$ then $X \in V$.

Good examples of admissible categories are St_k as well as the categories Sch_k of LFT k-schemes and $QSch_k$ its full subcategory of qs schemes (viewing both as 2-categories in the trivial way).

• For $X \in V$, we have a \mathbb{Z} -graded abelian group $H_*(X)$.

- For $X \in V$, we have a \mathbb{Z} -graded abelian group $H_*(X)$.
- Projective pushforward: For $f: X \to Y$ projective, we have a graded map

$$f_*: H_*(X) \rightarrow H_*(Y).$$

- For $X \in V$, we have a \mathbb{Z} -graded abelian group $H_*(X)$.
- Projective pushforward: For $f: X \to Y$ projective, we have a graded map

$$f_*: H_*(X) \rightarrow H_*(Y).$$

• Smooth pullback: For $f: X \to Y$ smooth of constant relative dimension e, we have a graded map

$$f^*: H_*(Y) \to H_{*+e}(X).$$

- For $X \in V$, we have a \mathbb{Z} -graded abelian group $H_*(X)$.
- Projective pushforward: For $f: X \to Y$ projective, we have a graded map

$$f_*: H_*(X) \rightarrow H_*(Y).$$

• Smooth pullback: For $f: X \to Y$ smooth of constant relative dimension e, we have a graded map

$$f^*: H_*(Y) \to H_{*+e}(X).$$

Note that the context of more narrow theories we also have access to more general *proper* pushforwards and *flat* pullbacks.

¹Here, $X \times Y$ is the product formed in V and so is naturally fibered over Spec k. $\circ \circ \circ$ zachary.gardner@bc.edu 4/20

• Refined Gysin pullback: For a Cartesian square

$$X' \xrightarrow{f'} Y'$$

$$g' \downarrow \qquad \qquad \downarrow g$$

$$X \xrightarrow{f} Y$$

with f a regular immersion of constant codimension c, we have a graded map

$$f^!: H_*(Y') \to H_{*-c}(X').$$

4 / 20

Zachary Gardner Virtual intersection theories zachary.gardner@bc.edu

¹Here, $X \times Y$ is the product formed in V and so is naturally fibered over Spec k. 990

• Refined Gysin pullback: For a Cartesian square

$$\begin{array}{ccc} X' & \xrightarrow{f'} & Y' \\ g' \downarrow & & \downarrow g \\ X & \xrightarrow{f} & Y \end{array}$$

with f a regular immersion of constant codimension c, we have a graded map

$$f^!: H_*(Y') \to H_{*-c}(X').$$

• Exterior product: For $X, Y \in V$, we have a bilinear graded map

$$\times: H_*(X) \otimes_{\mathbb{Z}} H_*(Y) \to H_*(X \times Y)$$

which is commutative and associative with a distinguished element $1 \in H_0(\operatorname{Spec} k)$ as unit.¹

4 / 20

Zachary Gardner Virtual intersection theories zachary.gardner@bc.edu

¹Here, $X \times Y$ is the product formed in V and so is naturally fibered over Spec k. 990

•
$$H_*(\emptyset) = 0$$
.

- $H_*(\emptyset) = 0$.
- Projective pushforward and smooth pullback are functorial (the former covariant and the latter contravariant).

- $H_*(\emptyset) = 0$.
- Projective pushforward and smooth pullback are functorial (the former covariant and the latter contravariant).
- Refined Gysin pullback is (contravariantly) functorial.

- $H_*(\emptyset) = 0$.
- Projective pushforward and smooth pullback are functorial (the former covariant and the latter contravariant).
- Refined Gysin pullback is (contravariantly) functorial.
- Exterior products are compatible with projective pushforward, smooth pullback, and refined Gysin pullback.

- $H_*(\emptyset) = 0$.
- Projective pushforward and smooth pullback are functorial (the former covariant and the latter contravariant).
- Refined Gysin pullback is (contravariantly) functorial.
- Exterior products are compatible with projective pushforward, smooth pullback, and refined Gysin pullback.
- Given $X, Y \in V$, there are obvious maps $i: X \to X \sqcup Y$ and $j: Y \to X \sqcup Y$ and the induced map

$$(i_*,j_*):H_*(X)\oplus H_*(Y)\to H_*(X\sqcup Y)$$

is an isomorphism.

- $H_*(\emptyset) = 0$.
- Projective pushforward and smooth pullback are functorial (the former covariant and the latter contravariant).
- Refined Gysin pullback is (contravariantly) functorial.
- Exterior products are compatible with projective pushforward, smooth pullback, and refined Gysin pullback.
- Given $X, Y \in V$, there are obvious maps $i: X \to X \sqcup Y$ and $j: Y \to X \sqcup Y$ and the induced map

$$(i_*,j_*):H_*(X)\oplus H_*(Y)\to H_*(X\sqcup Y)$$

is an isomorphism.

The other conditions are more mysterious or at least require more geometric context. But before that, some examples!

Given $X \in V$, endow $G_0(X)$ with a grading by considering

$$G_0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\beta^{\pm 1}] \cong \bigoplus_{n \in \mathbb{Z}} G_0(X) \cdot \beta^n$$

with $G_0(X)$ in degree 0 and β in degree 1.

Given $X \in V$, endow $G_0(X)$ with a grading by considering

$$G_0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\beta^{\pm 1}] \cong \bigoplus_{n \in \mathbb{Z}} G_0(X) \cdot \beta^n$$

with $G_0(X)$ in degree 0 and β in degree 1.

• Projective pushforward: For $f: X \to Y$ projective, we have f_* with formula

$$f_*: [E] \cdot \beta^n \mapsto [Rf_*E] \cdot \beta^n.$$

6/20

Given $X \in V$, endow $G_0(X)$ with a grading by considering

$$G_0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\beta^{\pm 1}] \cong \bigoplus_{n \in \mathbb{Z}} G_0(X) \cdot \beta^n$$

with $G_0(X)$ in degree 0 and β in degree 1.

• Projective pushforward: For $f: X \to Y$ projective, we have f_* with formula

$$f_*: [E] \cdot \beta^n \mapsto [Rf_*E] \cdot \beta^n.$$

• Smooth pullback: For $f: X \to Y$ smooth of constant relative dimension e, we have f^* with formula

$$f^*: [E] \cdot \beta^n \mapsto [f^*E] \cdot \beta^{n+e}.$$

Refined Gysin pullback: This is a bit subtle but the trick is to work with derived tensor products for suitable Cartesian squares. The only thing to do is some kind of push-pull construction.

- Refined Gysin pullback: This is a bit subtle but the trick is to work
 with derived tensor products for suitable Cartesian squares. The only
 thing to do is some kind of push-pull construction.
- Exterior product: For $X, Y \in V$, we have \times with formula

$$\times : ([E] \cdot \beta^n) \otimes ([E'] \cdot \beta^m) \mapsto [E \boxtimes E'] \cdot \beta^{n+m}.$$

This is commutative and associative with a distinguished element $1 \in G_0(\operatorname{Spec} k) \cong \mathbb{Z}$ as unit.

- Refined Gysin pullback: This is a bit subtle but the trick is to work
 with derived tensor products for suitable Cartesian squares. The only
 thing to do is some kind of push-pull construction.
- Exterior product: For $X, Y \in V$, we have \times with formula

$$\times : ([E] \cdot \beta^n) \otimes ([E'] \cdot \beta^m) \mapsto [E \boxtimes E'] \cdot \beta^{n+m}.$$

This is commutative and associative with a distinguished element $1 \in G_0(\operatorname{Spec} k) \cong \mathbb{Z}$ as unit. Note that, by definition, $E \boxtimes E'$ is given by the tensor product $\operatorname{pr}_X^{-1} E \otimes_{\mathcal{O}_{X \times Y}} \operatorname{pr}_Y^{-1} E'$ for $\operatorname{pr}_X : X \times Y \to X$ and $\operatorname{pr}_Y : X \times Y \to Y$ the projection maps.

Algebraic Cycles

² "Nice" means separated, Noetherian, finite dimensional pand excellent. ■ ► ■ ✓ ९०

Algebraic Cycles

Our second and arguably most important example comes from Chow theory. For simplicity, let Sch denote the category of "nice" schemes.² We will try to do things carefully to clarify some things and make our lives easier in the future. In particular, we will be careful about matters of (co-)dimension as well as rational equivalence.

8 / 20

² "Nice" means separated, Noetherian, finite dimensional and excellent. ■ ► ■ ✓ 🤜

Algebraic Cycles

Our second and arguably most important example comes from Chow theory. For simplicity, let Sch denote the category of "nice" schemes.² We will try to do things carefully to clarify some things and make our lives easier in the future. In particular, we will be careful about matters of (co-)dimension as well as rational equivalence.

• For any (general) scheme X, we let Z(X) denote the free abelian group on the set of closed integral subschemes of X, whose elements are called (algebraic) cycles on X.

² "Nice" means separated, Noetherian, finite dimensional and excellent. ⋅ ≥ → ≥ → へ ∘

Algebraic Cycles

Our second and arguably most important example comes from Chow theory. For simplicity, let Sch denote the category of "nice" schemes.² We will try to do things carefully to clarify some things and make our lives easier in the future. In particular, we will be careful about matters of (co-)dimension as well as rational equivalence.

- For any (general) scheme X, we let Z(X) denote the free abelian group on the set of closed integral subschemes of X, whose elements are called (algebraic) cycles on X.
- The closed integral subschemes of X correspond bijectively with the (topological, field-valued) points of X. This is given by looking at generic points ζ and we have

$$Z(X) \cong \bigoplus_{\zeta \in X} \mathbb{Z}.$$

Zachary Gardner

² "Nice" means separated, Noetherian, finite dimensional pand excellent. → ≥ → ∞ ∞

As promised, let's think about (co-)dimension.

As promised, let's think about (co-)dimension.

• If X is Noetherian we can grade Z(X) by codimension with pieces $Z^p(X)$, with elements of $Z^1(X)$ called *Weil divisors*.

As promised, let's think about (co-)dimension.

- If X is Noetherian we can grade Z(X) by codimension with pieces $Z^p(X)$, with elements of $Z^1(X)$ called *Weil divisors*.
- If all the closed integral subschemes of X also have finite dimension then we can grade Z(X) by dimension with pieces $Z_p(X)$.

As promised, let's think about (co-)dimension.

- If X is Noetherian we can grade Z(X) by codimension with pieces $Z^p(X)$, with elements of $Z^1(X)$ called *Weil divisors*.
- If all the closed integral subschemes of X also have finite dimension then we can grade Z(X) by dimension with pieces $Z_p(X)$.
- If X is Noetherian, catenary, and equidimensional of finite dimension d then we can switch between the two gradings via $Z_p(X) = Z^{d-p}(X)$.

As promised, let's think about (co-)dimension.

- If X is Noetherian we can grade Z(X) by codimension with pieces $Z^p(X)$, with elements of $Z^1(X)$ called *Weil divisors*.
- If all the closed integral subschemes of X also have finite dimension then we can grade Z(X) by dimension with pieces $Z_p(X)$.
- If X is Noetherian, catenary, and equidimensional of finite dimension d then we can switch between the two gradings via $Z_p(X) = Z^{d-p}(X)$.

We define the sets $X^{(p)}$ and $X_{(p)}$ so that $Z^p(X) \cong \bigoplus_{x \in X^{(p)}} \mathbb{Z}$ and $Z_p(X) \cong \bigoplus_{x \in X_{(p)}} \mathbb{Z}$ – these are useful for bookkeeping purposes.

As promised, let's think about (co-)dimension.

- If X is Noetherian we can grade Z(X) by codimension with pieces $Z^p(X)$, with elements of $Z^1(X)$ called *Weil divisors*.
- If all the closed integral subschemes of X also have finite dimension then we can grade Z(X) by dimension with pieces $Z_p(X)$.
- If X is Noetherian, catenary, and equidimensional of finite dimension d then we can switch between the two gradings via $Z_p(X) = Z^{d-p}(X)$.

We define the sets $X^{(p)}$ and $X_{(p)}$ so that $Z^p(X) \cong \bigoplus_{x \in X^{(p)}} \mathbb{Z}$ and $Z_p(X) \cong \bigoplus_{x \in X_{(p)}} \mathbb{Z}$ – these are useful for bookkeeping purposes. Geometrically, we can glue to get the flasque cycle sheaves \mathcal{Z}_X^p .

For general X, we have the sheaf $\mathcal{O}_X^{\text{reg}}$ of regular elements (which can be defined at the level of stalks). To this we associate $\mathcal{K}_X := \mathcal{O}_X[(\mathcal{O}_X^{\text{reg}})^{-1}]$ and $\mathcal{D}\text{iv}_X := \mathcal{K}_X^\times/\mathcal{O}_X^\times$. These give rise to the additive group of *Cartier divisors* $\text{Div}(X) := H^0(X, \mathcal{D}\text{iv}_X)$.

For general X, we have the sheaf $\mathcal{O}_X^{\text{reg}}$ of regular elements (which can be defined at the level of stalks). To this we associate $\mathcal{K}_X := \mathcal{O}_X[(\mathcal{O}_X^{\text{reg}})^{-1}]$ and $\mathcal{D}\text{iv}_X := \mathcal{K}_X^\times/\mathcal{O}_X^\times$. These give rise to the additive group of *Cartier divisors* $\text{Div}(X) := H^0(X, \mathcal{D}\text{iv}_X)$.

• There is a unique Zariski sheaf morphism $\operatorname{div}: \mathcal{D}\mathrm{iv}_X \to \mathcal{Z}_X^1$ satisfying $\operatorname{div}(f) = [\mathcal{O}_U/(f)]$ for $U \subseteq X$ open and $f \in \mathcal{O}_X^{\mathsf{reg}}(U)$.

For general X, we have the sheaf $\mathcal{O}_X^{\text{reg}}$ of regular elements (which can be defined at the level of stalks). To this we associate $\mathcal{K}_X := \mathcal{O}_X[(\mathcal{O}_X^{\text{reg}})^{-1}]$ and $\mathcal{D}\text{iv}_X := \mathcal{K}_X^\times/\mathcal{O}_X^\times$. These give rise to the additive group of *Cartier divisors* $\text{Div}(X) := H^0(X, \mathcal{D}\text{iv}_X)$.

- There is a unique Zariski sheaf morphism $\operatorname{div}: \mathcal{D}\operatorname{iv}_X \to \mathcal{Z}_X^1$ satisfying $\operatorname{div}(f) = [\mathcal{O}_U/(f)]$ for $U \subseteq X$ open and $f \in \mathcal{O}_X^{\operatorname{reg}}(U)$.
- If X is regular (or even locally factorial) then div is an isomorphism.

For general X, we have the sheaf $\mathcal{O}_X^{\text{reg}}$ of regular elements (which can be defined at the level of stalks). To this we associate $\mathcal{K}_X := \mathcal{O}_X[(\mathcal{O}_X^{\text{reg}})^{-1}]$ and $\mathcal{D}\text{iv}_X := \mathcal{K}_X^\times/\mathcal{O}_X^\times$. These give rise to the additive group of *Cartier divisors* $\text{Div}(X) := H^0(X, \mathcal{D}\text{iv}_X)$.

- There is a unique Zariski sheaf morphism $\operatorname{div}: \mathcal{D}\mathrm{iv}_X \to \mathcal{Z}_X^1$ satisfying $\operatorname{div}(f) = [\mathcal{O}_U/(f)]$ for $U \subseteq X$ open and $f \in \mathcal{O}_X^{\mathsf{reg}}(U)$.
- If X is regular (or even locally factorial) then div is an isomorphism.
- If X is integral then \mathcal{K}_X is the constant sheaf associated to K(X) and so we have $\operatorname{div}: K(X)^{\times} \to Z^1(X)$.

For general X, we have the sheaf $\mathcal{O}_X^{\text{reg}}$ of regular elements (which can be defined at the level of stalks). To this we associate $\mathcal{K}_X := \mathcal{O}_X[(\mathcal{O}_X^{\text{reg}})^{-1}]$ and $\mathcal{D}\text{iv}_X := \mathcal{K}_X^\times/\mathcal{O}_X^\times$. These give rise to the additive group of *Cartier divisors* $\text{Div}(X) := H^0(X, \mathcal{D}\text{iv}_X)$.

- There is a unique Zariski sheaf morphism $\operatorname{div}: \mathcal{D}\operatorname{iv}_X \to \mathcal{Z}_X^1$ satisfying $\operatorname{div}(f) = [\mathcal{O}_U/(f)]$ for $U \subseteq X$ open and $f \in \mathcal{O}_X^{\operatorname{reg}}(U)$.
- If X is regular (or even locally factorial) then div is an isomorphism.
- If X is integral then \mathcal{K}_X is the constant sheaf associated to K(X) and so we have $\operatorname{div}: K(X)^{\times} \to Z^1(X)$.

Define $R(X) := \bigoplus_{\zeta \in X} k(\zeta)^{\times}$, which can be graded by (co-)dimension as appropriate.

For general X, we have the sheaf $\mathcal{O}_X^{\text{reg}}$ of regular elements (which can be defined at the level of stalks). To this we associate $\mathcal{K}_X := \mathcal{O}_X[(\mathcal{O}_X^{\text{reg}})^{-1}]$ and $\mathcal{D}\text{iv}_X := \mathcal{K}_X^\times/\mathcal{O}_X^\times$. These give rise to the additive group of *Cartier divisors* $\text{Div}(X) := H^0(X, \mathcal{D}\text{iv}_X)$.

- There is a unique Zariski sheaf morphism $\operatorname{div}: \mathcal{D}\operatorname{iv}_X \to \mathcal{Z}_X^1$ satisfying $\operatorname{div}(f) = [\mathcal{O}_U/(f)]$ for $U \subseteq X$ open and $f \in \mathcal{O}_X^{\operatorname{reg}}(U)$.
- If X is regular (or even locally factorial) then div is an isomorphism.
- If X is integral then \mathcal{K}_X is the constant sheaf associated to K(X) and so we have $\operatorname{div}: K(X)^{\times} \to Z^1(X)$.

Define $R(X):=\bigoplus_{\zeta\in X}k(\zeta)^{\times}$, which can be graded by (co-)dimension as appropriate. The amalgamation of $\operatorname{div}:K(Z)^{\times}\to Z^1(Z)$ for $Z\subseteq X$ closed integral induces $\operatorname{div}:R(X)\to Z(X)$ and we set $\operatorname{CH}(X):=\operatorname{coker}(\operatorname{div}:R(X)\to Z(X))$. Being rationally equivalent to zero is captured by the image of div .

zachary.gardner@bc.edu

Suppose now that $X \in Sch$.

Suppose now that $X \in Sch$.

• The map div is of pure degree -1 for the dimension grading and we set $\operatorname{CH}_p(X) := \operatorname{coker}(\operatorname{div}: R_{p+1}(X) \to Z_p(X))$.

Suppose now that $X \in Sch$.

- The map div is of pure degree -1 for the dimension grading and we set $\operatorname{CH}_p(X) := \operatorname{coker}(\operatorname{div}: R_{p+1}(X) \to Z_p(X))$.
- The map div is not generally of pure degree +1 for the codimension grading but we can get around this by defining $\operatorname{CH}^p(X)$ to be the cokernel of

$$\mathrm{div}: \bigoplus_{x \in X^{(p-1)}} k(x)^{\times} \to \bigoplus_{x \in X^{(p)}} \mathbb{Z}, \qquad \sum_{x} \{f_x\} \mapsto \sum_{x} \mathrm{div}\big(\{f_x\}\big).$$

Suppose now that $X \in Sch$.

- The map div is of pure degree -1 for the dimension grading and we set $\operatorname{CH}_p(X) := \operatorname{coker}(\operatorname{div}: R_{p+1}(X) \to Z_p(X))$.
- The map div is not generally of pure degree +1 for the codimension grading but we can get around this by defining $\operatorname{CH}^p(X)$ to be the cokernel of

$$\mathrm{div}: \bigoplus_{x \in X^{(p-1)}} k(x)^{\times} \to \bigoplus_{x \in X^{(p)}} \mathbb{Z}, \qquad \sum_{x} \{f_x\} \mapsto \sum_{x} \mathrm{div}\big(\{f_x\}\big).$$

• If X is equidimensional of dimension d then these notions are related via $CH_p(X) \cong CH^{d-p}(X)$.

Suppose now that $X \in Sch$.

- The map div is of pure degree -1 for the dimension grading and we set $\operatorname{CH}_p(X) := \operatorname{coker}(\operatorname{div}: R_{p+1}(X) \to Z_p(X))$.
- The map div is not generally of pure degree +1 for the codimension grading but we can get around this by defining $\operatorname{CH}^p(X)$ to be the cokernel of

$$\mathrm{div}: \bigoplus_{x \in X^{(p-1)}} k(x)^{\times} \to \bigoplus_{x \in X^{(p)}} \mathbb{Z}, \qquad \sum_{x} \{f_x\} \mapsto \sum_{x} \mathrm{div}(\{f_x\}).$$

• If X is equidimensional of dimension d then these notions are related via $CH_p(X) \cong CH^{d-p}(X)$.

Note that there is another equivalent approach to rational equivalence that works for varieties over a field. Heuristically, two cycles α, β are rationally equivalent if there is a family of cycles $\{\zeta_t\}_{t\in\mathbb{P}^1}$ with $\zeta_0=\alpha$ and $\zeta_\infty=\beta$. This can be made more precise using the language of flat families.

Let $f: X \to Y$ be a map of sufficiently nice schemes.

Let $f: X \to Y$ be a map of sufficiently nice schemes.

• If f is flat then we have the pullback

$$f^*: Z^p(Y) \to Z^p(X), \qquad [Z] \mapsto [\mathcal{O}_X \otimes_{\mathcal{O}_Y} \mathcal{O}_Z],$$

which must be interpreted in terms of support and length

Let $f: X \to Y$ be a map of sufficiently nice schemes.

If f is flat then we have the pullback

$$f^*: Z^p(Y) \to Z^p(X), \qquad [Z] \mapsto [\mathcal{O}_X \otimes_{\mathcal{O}_Y} \mathcal{O}_Z],$$

which must be interpreted in terms of support and length

• If f is proper then we have the pushforward $f_*: Z_p(X) \to Z_p(Y)$ given explicitly by

$$[Z] \mapsto \begin{cases} [K(Z):K(f(Z))][f(Z)], & \dim f(Z) = \dim Z, \\ 0, & \dim f(Z) < \dim Z. \end{cases}$$

Let $f: X \to Y$ be a map of sufficiently nice schemes.

If f is flat then we have the pullback

$$f^*: Z^p(Y) \to Z^p(X), \qquad [Z] \mapsto [\mathcal{O}_X \otimes_{\mathcal{O}_Y} \mathcal{O}_Z],$$

which must be interpreted in terms of support and length

• If f is proper then we have the pushforward $f_*: Z_p(X) \to Z_p(Y)$ given explicitly by

$$[Z] \mapsto \begin{cases} [K(Z):K(f(Z))][f(Z)], & \dim f(Z) = \dim Z, \\ 0, & \dim f(Z) < \dim Z. \end{cases}$$

This can be written succinctly as $[Z] \mapsto \deg(f|_Z)[f(Z)]$.

Let $f: X \to Y$ be a map of sufficiently nice schemes.

If f is flat then we have the pullback

$$f^*: Z^p(Y) \to Z^p(X), \qquad [Z] \mapsto [\mathcal{O}_X \otimes_{\mathcal{O}_Y} \mathcal{O}_Z],$$

which must be interpreted in terms of support and length

• If f is proper then we have the pushforward $f_*: Z_p(X) \to Z_p(Y)$ given explicitly by

$$[Z] \mapsto \begin{cases} [K(Z):K(f(Z))][f(Z)], & \dim f(Z) = \dim Z, \\ 0, & \dim f(Z) < \dim Z. \end{cases}$$

This can be written succinctly as $[Z] \mapsto \deg(f|_Z)[f(Z)]$.

Both of these constructions are invariant under rational equivalence and so descend to maps of Chow groups.

³Defining the exterior product over a more general base should be possible using some kind of fibral procedure.

We ultimately want to grade by dimension and this affects pullbacks. If $f: X \to Y$ is smooth of constant relative dimension e then we have

$$f^*: \mathsf{CH}_*(Y) \to \mathsf{CH}_{*+e}(X), \qquad [\eta] \mapsto [f^{-1}(\eta)]$$

and this construction is functorial.

Zachary Gardner Virtual intersection theories zachary.gardner@bc.edu

³Defining the exterior product over a more general base should be possible using some kind of fibral procedure.

We ultimately want to grade by dimension and this affects pullbacks. If $f: X \to Y$ is smooth of constant relative dimension e then we have

$$f^*: \mathsf{CH}_*(Y) \to \mathsf{CH}_{*+e}(X), \qquad [\eta] \mapsto [f^{-1}(\eta)]$$

and this construction is functorial.

Working over *k*, the *exterior product*

$$\times : \mathsf{CH}_*(X) \otimes_{\mathbb{Z}} \mathsf{CH}_*(Y) \to \mathsf{CH}_*(X \times Y)$$

is given by the recipe $[Z_1] \otimes [Z_2] \mapsto [Z_1 \times Z_2]$ if k is algebraically closed and for general k in terms of the irreducible components of $Z_1 \times Z_2$.³

Zachary Gardner Virtual intersection theories zachary.gardner@bc.edu

³Defining the exterior product over a more general base should be possible using some kind of fibral procedure.

We ultimately want to grade by dimension and this affects pullbacks. If $f: X \to Y$ is smooth of constant relative dimension e then we have

$$f^*: \mathsf{CH}_*(Y) \to \mathsf{CH}_{*+e}(X), \qquad [\eta] \mapsto [f^{-1}(\eta)]$$

and this construction is functorial.

Working over k, the exterior product

$$\times : \mathsf{CH}_*(X) \otimes_{\mathbb{Z}} \mathsf{CH}_*(Y) \to \mathsf{CH}_*(X \times Y)$$

is given by the recipe $[Z_1] \otimes [Z_2] \mapsto [Z_1 \times Z_2]$ if k is algebraically closed and for general k in terms of the irreducible components of $Z_1 \times Z_2$.

The only thing left to describe for Chow theory is the refined Gysin pullback. This is a bit subtle and so we will come back to it later.

³Defining the exterior product over a more general base should be possible using some kind of fibral procedure.

The following is an important piece of inspiration.

The following is an important piece of inspiration.

Theorem

Let Sm_k denote the category of smooth k-varieties.

The following is an important piece of inspiration.

Theorem

Let Sm_k denote the category of smooth k-varieties. There exists a unique contravariant graded ring structure \cdot on CH^* with the following properties.

The following is an important piece of inspiration.

Theorem

Let Sm_k denote the category of smooth k-varieties. There exists a unique contravariant graded ring structure \cdot on CH^* with the following properties.

• Compatibility with flat pullbacks, in the sense that flat morphisms induce ring homomorphisms.

The following is an important piece of inspiration.

Theorem

- Compatibility with flat pullbacks, in the sense that flat morphisms induce ring homomorphisms.
- ② Compatibility with the Cartier divisor intersection product $CH^1(X) \times CH^p(X) \to CH^{p+1}(X)$ for $X \in Sm_k$.

The following is an important piece of inspiration.

Theorem

- Compatibility with flat pullbacks, in the sense that flat morphisms induce ring homomorphisms.
- **2** Compatibility with the Cartier divisor intersection product $CH^1(X) \times CH^p(X) \rightarrow CH^{p+1}(X)$ for $X \in Sm_k$.
- **③** Given $X \in \operatorname{Sm}_k$ and $V, W \subseteq X$ closed integral, $[V \times_k X] \cdot [X \times_k W] = [V \times_k W]$ working with cycles on $X \times_k X$.

The following is an important piece of inspiration.

Theorem

- Compatibility with flat pullbacks, in the sense that flat morphisms induce ring homomorphisms.
- ② Compatibility with the Cartier divisor intersection product $CH^1(X) \times CH^p(X) \rightarrow CH^{p+1}(X)$ for $X \in Sm_k$.
- **3** Given $X \in \operatorname{Sm}_k$ and $V, W \subseteq X$ closed integral, $[V \times_k X] \cdot [X \times_k W] = [V \times_k W]$ working with cycles on $X \times_k X$.
- **1** Projection formula: Let $f: X \to Y$ be proper with $X, Y \in Sm_k$, $\alpha \in CH^*(X)$, and $\beta \in CH^*(Y)$. Then, $f_*(\alpha \cdot f^*(\beta)) = f_*(\alpha) \cdot \beta$.

The following is an important piece of inspiration.

Theorem

- Compatibility with flat pullbacks, in the sense that flat morphisms induce ring homomorphisms.
- **2** Compatibility with the Cartier divisor intersection product $CH^1(X) \times CH^p(X) \rightarrow CH^{p+1}(X)$ for $X \in Sm_k$.
- **③** Given $X \in \operatorname{Sm}_k$ and $V, W \subseteq X$ closed integral, $[V \times_k X] \cdot [X \times_k W] = [V \times_k W]$ working with cycles on $X \times_k X$.
- Projection formula: Let $f: X \to Y$ be proper with $X, Y \in Sm_k$, $\alpha \in CH^*(X)$, and $\beta \in CH^*(Y)$. Then, $f_*(\alpha \cdot f^*(\beta)) = f_*(\alpha) \cdot \beta$.
- **1** Homotopy invariance: Let $p: V \to X$ be a smooth vector bundle. Then, $p^*: \operatorname{CH}^*(X) \xrightarrow{\sim} \operatorname{CH}^*(V)$.

zachary.gardner@bc.edu

Returning to our intersection theory H_* for V, what are the remaining properties we want to impose?

Returning to our intersection theory H_* for V, what are the remaining properties we want to impose? First, we have the base change condition which says that if

$$\begin{array}{ccc}
X & \xrightarrow{g} & Y \\
\downarrow q & & \downarrow p \\
Z & \xrightarrow{f} & W
\end{array}$$

is a Cartesian square with f projective and p smooth then $p^* \circ f_* = g_* \circ q^*$.

with all squares Cartesian.

with all squares Cartesian. Assume that f is a regular immersion (of constant codimension c), so that we have $f^!: H_*(Y') \to H_{*-c}(X')$.

with all squares Cartesian. Assume that f is a regular immersion (of constant codimension c), so that we have $f^!: H_*(Y') \to H_{*-c}(X')$. We place several compatibilities on $f^!$.

with all squares Cartesian. Assume that f is a regular immersion (of constant codimension c), so that we have $f^!: H_*(Y') \to H_{*-c}(X')$. We place several compatibilities on $f^!$.

• If g' is projective (so that g'' is automatically projective) then we demand $f^! \circ g_*^! = g_*'' \circ f^!$.

with all squares Cartesian. Assume that f is a regular immersion (of constant codimension c), so that we have $f^!: H_*(Y') \to H_{*-c}(X')$. We place several compatibilities on $f^!$.

- If g' is projective (so that g'' is automatically projective) then we demand $f^! \circ g_*^! = g_*'' \circ f^!$.
- If g' is smooth (so that g'' is automatically smooth) then we demand $f! \circ g'^* = g''^* \circ f!$.

with all squares Cartesian. Assume that f is a regular immersion (of constant codimension c), so that we have $f^!: H_*(Y') \to H_{*-c}(X')$. We place several compatibilities on $f^!$.

- If g' is projective (so that g'' is automatically projective) then we demand $f^! \circ g_*^! = g_*'' \circ f^!$.
- If g' is smooth (so that g'' is automatically smooth) then we demand $f^! \circ g'^* = g''^* \circ f^!$.
- If g is a regular immersion then we demand $f^! \circ g^! = g^! \circ f^!$.

Suppose that f' is also a regular immersion, and let $E := h^* N_{X/Y} / N_{X'/Y'}$ be the excess normal bundle.

Suppose that f' is also a regular immersion, and let $E:=h^*N_{X/Y}/N_{X'/Y'}$ be the excess normal bundle. We demand $f^!=\eta\circ f'^!$ for $\eta:=0^!_E\circ 0_{E^*}$ with $0_E:X''\to g''^*E$ the zero section. This is often called the excess intersection formula.

Suppose that f' is also a regular immersion, and let $E:=h^*N_{X/Y}/N_{X'/Y'}$ be the excess normal bundle. We demand $f^!=\eta\circ f'^!$ for $\eta:=0^!_E\circ 0_{E^*}$ with $0_E:X''\to g''^*E$ the zero section. This is often called the excess intersection formula.

Remark

I believe this construction is closely linked to Grothendieck-Riemann-Roch but have not looked into the details. More on this later...

17/20

Suppose that f' is also a regular immersion, and let $E:=h^*N_{X/Y}/N_{X'/Y'}$ be the excess normal bundle. We demand $f^!=\eta\circ f'^!$ for $\eta:=0^!_E\circ 0_{E^*}$ with $0_E:X''\to g''^*E$ the zero section. This is often called the excess intersection formula.

Remark

I believe this construction is closely linked to Grothendieck-Riemann-Roch but have not looked into the details. More on this later...

The latter construction of η is linked to other constructions. For L a line bundle on X, the zero section $0:X\to L$ defines the *first Chern class* homomorphism

$$c_1(L) := 0! \circ 0_* : H_*(X) \to H_{*-1}(X),$$

which you should check is well defined in the sense that 0 is a projective regular immersion.

18 / 20

$$D \cdot := i^! : H_*(X) \to H_{*-1}(D).$$

$$D \cdot := i^! : H_*(X) \to H_{*-1}(D).$$

Recall that this construction played a role in the earlier Chow ring structure theorem.

$$D \cdot := i^! : H_*(X) \to H_{*-1}(D).$$

Recall that this construction played a role in the earlier Chow ring structure theorem. Intersections with Cartier divisors provide a rich supply of geometric information, and historically were studied first in the quest to build an algebraic intersection theory.

$$D \cdot := i^! : H_*(X) \to H_{*-1}(D).$$

Recall that this construction played a role in the earlier Chow ring structure theorem. Intersections with Cartier divisors provide a rich supply of geometric information, and historically were studied first in the quest to build an algebraic intersection theory.

Remark

I really should provide example computations for this and subsequent constructions, but alas!

$$D \cdot := i^! : H_*(X) \to H_{*-1}(D).$$

Recall that this construction played a role in the earlier Chow ring structure theorem. Intersections with Cartier divisors provide a rich supply of geometric information, and historically were studied first in the quest to build an algebraic intersection theory.

Remark

I really should provide example computations for this and subsequent constructions, but alas!

Let's round out our discussion of properties of H_* .

$$H_*(Z) \xrightarrow{i_*} H_*(X) \xrightarrow{j^*} H_*(U) \longrightarrow 0$$

is exact.

$$H_*(Z) \xrightarrow{i_*} H_*(X) \xrightarrow{j^*} H_*(U) \longrightarrow 0$$

is exact.

• Extended homotopy: Given $E \in \operatorname{Vect}_r(X)$ and $p: V \to X$ an E-torsor, we demand $p^*: H_*(X) \xrightarrow{\sim} H_{*+r}(V)$.

$$H_*(Z) \xrightarrow{i_*} H_*(X) \xrightarrow{j^*} H_*(U) \longrightarrow 0$$

is exact.

- Extended homotopy: Given $E \in \operatorname{Vect}_r(X)$ and $p: V \to X$ an E-torsor, we demand $p^*: H_*(X) \xrightarrow{\sim} H_{*+r}(V)$.
- Projective bundle formula: Let $E \in \operatorname{Vect}_r(X)$ with associated projective bundle $p : \mathbb{P}(E) \to X$.

$$H_*(Z) \xrightarrow{i_*} H_*(X) \xrightarrow{j^*} H_*(U) \longrightarrow 0$$

is exact.

- Extended homotopy: Given $E \in \operatorname{Vect}_r(X)$ and $p: V \to X$ an E-torsor, we demand $p^*: H_*(X) \xrightarrow{\sim} H_{*+r}(V)$.
- Projective bundle formula: Let $E \in \text{Vect}_r(X)$ with associated projective bundle $p : \mathbb{P}(E) \to X$. We demand that the induced map

$$\bigoplus_{i=0}^{r-1} H_{*-r+1+i}(X) \to H_*(\mathbb{P}(E)), \qquad (\xi_i) \mapsto \sum_i c_1(\mathcal{O}_{\mathbb{P}(E)}(1))^i \cdot (p^*\xi_i)$$

is an isomorphism.

⁴This should remind you of the theory of quasi-smooth-morphisms. ≥ → √ ≥ → ○ ○

Zachary Gardner Virtual intersection theories zachary.gardner@bc.edu 20/20

• Let $f: X \to Y$ be an lci morphism of constant relative dimension d and choose a factorization $f = h \circ g$ with $g: X \to Z$ a regular closed immersion and $h: Z \to Y$ smooth.

20 / 20

⁴This should remind you of the theory of quasi-smooth morphisms.

• Let $f: X \to Y$ be an lci morphism of constant relative dimension d and choose a factorization $f = h \circ g$ with $g: X \to Z$ a regular closed immersion and $h: Z \to Y$ smooth. We demand that the *lci pullback*

$$f^* := g^! \circ h^* : H_*(Y) \to H_{*+d}(X)$$

is independent of the choice of factorization.⁴

20 / 20

Zachary Gardner Virtual intersection theories zachary.gardner@bc.edu

• Let $f: X \to Y$ be an lci morphism of constant relative dimension d and choose a factorization $f = h \circ g$ with $g: X \to Z$ a regular closed immersion and $h: Z \to Y$ smooth. We demand that the *lci pullback*

$$f^* := g^! \circ h^* : H_*(Y) \to H_{*+d}(X)$$

is independent of the choice of factorization.⁴

• Detection by smooth schemes: Fixing $X \in \operatorname{QSch}_k$, consider the pushforwards f_* associated to projective $f: Y \to X$ with Y smooth and quasi-projective over k.

20 / 20

Zachary Gardner Virtual intersection theories zachary.gardner@bc.edu

• Let $f: X \to Y$ be an lci morphism of constant relative dimension d and choose a factorization $f = h \circ g$ with $g: X \to Z$ a regular closed immersion and $h: Z \to Y$ smooth. We demand that the *lci pullback*

$$f^* := g^! \circ h^* : H_*(Y) \to H_{*+d}(X)$$

is independent of the choice of factorization.⁴

• Detection by smooth schemes: Fixing $X \in QSch_k$, consider the pushforwards f_* associated to projective $f: Y \to X$ with Y smooth and quasi-projective over k. Then, there is a natural map $\operatorname{colim} H_*(Y) \to H_*(X)$ for $Y \to X$ as above, with transition maps $Y \rightarrow X$ arising from projective morphisms $Y \rightarrow Y'$ over X.

Zachary Gardner

⁴This should remind you of the theory of quasi-smooth morphisms.

• Let $f: X \to Y$ be an lci morphism of constant relative dimension d and choose a factorization $f = h \circ g$ with $g: X \to Z$ a regular closed immersion and $h: Z \to Y$ smooth. We demand that the *lci pullback*

$$f^* := g^! \circ h^* : H_*(Y) \to H_{*+d}(X)$$

is independent of the choice of factorization.⁴

• Detection by smooth schemes: Fixing $X \in QSch_k$, consider the pushforwards f_* associated to projective $f: Y \to X$ with Y smooth and quasi-projective over k. Then, there is a natural map $\operatorname{colim} H_*(Y) \to H_*(X)$ for $Y \to X$ as above, with transition maps $Y \rightarrow X$ arising from projective morphisms $Y \to Y'$ over X. We demand that this natural map out of the colimit is an isomorphism.

Zachary Gardner

⁴This should remind you of the theory of quasi-smooth morphisms.