Package 'RMOPI'

October 12, 2022

Version 1.1
Description Provides functions for risk management and portfolio investment of securities with prac-
tical tools for data processing and plotting. Moreover, it contains functions which per-
form the COS Method, an option pricing method based on the Fourier-cosine se-
ries (Fang, F. (2008) <doi:10.1137 080718061="">).</doi:10.1137>
License GPL (>= 2)
Encoding UTF-8

Depends ggplot2, tibble, lubridate, timeSeries, xts

Imports MASS, PerformanceAnalytics, TTR, fPortfolio, rugarch, timeDate

Title Risk Management and Optimization for Portfolio Investment

NeedsCompilation no

RoxygenNote 7.2.1

Author Wei Ling [aut, cre], Yang Liu [aut]

Maintainer Wei Ling sigwei3418@163.com>

Repository CRAN

Date/Publication 2022-08-22 12:50:08 UTC

R topics documented:

CosPdfMulti	2
CosPdfRecovery	3
Cos Value Option	4
Describe	5
DescribeVector	5
EuroCallOption	6
FixBacktest	6
$F_k \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
ggacf	
ggboxplot	8
gghistplot	9
gglineplot	10

2 CosPdfMulti

CosPo	dfMulti Distribution Recovery with the COS method for Different parameters	
Index		26
	V_ A	23
	V_k	
	VaRSimTest	
	StNormChf	
	StackForPlot	
	Sharp	
	rTrades	
	rTrade	
	rMvReturnSim	
	RiskIndicators	
	rGbmSingle	
	rGbms	
	rGbm	
	rGarcha	
	rGarch	14
	PdfSinglePlot	14
	PdfMultiPlot	13
	NormChf	12
	LogErrorCosPdf	12
	InvestmentPortfolio	
	ggpact	10

Description

Restore the distribution with the COS method under different parameters settings for error analysis.

Usage

```
CosPdfMulti(x, Chf, N, a, b)
```

Arguments

X	vector of observations
Chf	the characteristic function
N	the number of cos term for summation
a	the lower limit of the truncation interval
b	the upper limit of the truncation interval

Value

A matrix that contains restored p.d.f. with different parameters

CosPdfRecovery 3

Examples

```
N <- 2**(1:6)

x <- seq(-5, 5, by = 10 / (32 - 1))

a <- -10.0

b <- 10.0

CosPdfMulti(x, StNormChf, N, a, b)
```

CosPdfRecovery

Distribution Recovery with the COS method

Description

Restore the distribution with the characteristic function through the COS method, an option pricing method based on the Fourier-cosine series.

Usage

```
CosPdfRecovery(x, Chf, N, a, b)
```

Arguments

x	vector of observations
Chf	the characteristic function
N	the number of cos term for summation
a	the lower limit of the truncation interval
b	the upper limit of the truncation interval

Value

The approximated probability density of x

References

Fang F. and Oosterlee C.W. 2008. "A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions", Siam Journal on Scientific Computing. 31(2): 826-848. doi: 10.1137/080718061.

```
N <- 32
x <- seq(-5, 5, by = 10 / (32 - 1))
a <- -6.0
b <- 6.0
CosPdfRecovery(x, StNormChf, N, a, b)
```

4 CosValueOption

_ ,	, ,	_			
Cos	(/ a l	110()	nt	٦.	Λn
CUS	٧ат	uco	υL	т.	VΠ

Approximate the Option Price with the COS Method

Description

Approximate the standard European call option price with the COS method, an option pricing method based on the Fourier-cosine series.

Usage

```
CosValueOption(ValueOption, GBMChf, r, tau, N, a, b, method = "integrate")
```

Arguments

ValueOption	the value function of the option
GBMChf	the characteristic function for GBM
r	the r parameter of GBM

tau the tau parameter of GBM

N the number of cos term for summation

a the lower limit of the truncation interval b the upper limit of the truncation interval

method how to calculate the integral, one of "integrate" and "jiahe"

Value

The approximated euro call option price

References

Fang F. and Oosterlee C.W. 2008. "A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions", Siam Journal on Scientific Computing. 31(2): 826-848. doi: 10.1137/080718061.

```
r <- 0.1
sigmaS0 <- 0.2
tau <- 10
S0 <- 1
K <- 1
mu <- log(S0) + (r - 0.5 * sigmaS0^2) * tau
sigma <- sigmaS0 * sqrt(tau)
a <- -10
b <- 10
N <- 64
GBMChf <- function(u){NormChf(u,mu,sigma)}
ValueOption <- function(x){EuroCallOption(x,K)}
CosValueOption(ValueOption, GBMChf,r,tau, N, a, b)</pre>
```

Describe 5

Describe

Summary Statistics

Description

Calculate useful statistics for an multivariate data.

Usage

```
Describe(data, digits = 2)
```

Arguments

data vector of observations

digits integer deciding the number of decimal places

Value

A tibble of statistics, including min, max, mean, sd, Q25, Q50, Q75, kurt, Skew, n, na

Examples

```
swan <- rGarch(len = 180)
Describe(tibble(a1 = swan, a2 = swan + 1), 2)</pre>
```

DescribeVector

Summary Statistics of Vector

Description

Calculate useful statistics for an univariate data.

Usage

```
DescribeVector(data, digits = 2)
```

Arguments

data vector of observations

digits integer deciding the number of decimal places

Value

A tibble of statistics, including min, max, mean, sd, Q25, Q50, Q75, kurt, Skew, n, na

6 FixBacktest

Examples

```
swan <- rGarch(len = 180)
DescribeVector(swan)</pre>
```

EuroCallOption

The Value Function of European Call Option

Description

With global variable K, the strike price, calculate the value of European call option.

Usage

```
EuroCallOption(x, K)
```

Arguments

x the stock priceK the strike price

Value

The value of European call option

Examples

```
EuroCallOption(x = 2, K = 1)
```

FixBacktest

Buy and Hold Backtest

Description

Backtest for the buy and hold with a fixed weights strategy.

Usage

```
FixBacktest(rets, weights)
```

Arguments

rets historic multivariate returns weights holding weights of stock

 $F_{\underline{k}}$

Value

A backtest return series

Examples

```
names <- c("swan", "bear", "tiger")
date <- as.Date("2015-01-01") + days(0:179)
mu <- c(0.2, 0.08, 0.1)
sigma <- matrix(c(1, 0.25, -0.3, 0.25, 0.25, 0, -0.3, 0, 0.36), 3, 3)
allret <- rMvReturnSim(names, date, mu, sigma)
tsret <- as.timeSeries(allret)
FixBacktest(tsret, rep(1 / 3, 3))</pre>
```

F_k

F_k Coefficients

Description

Calculate the F_k coefficients for the COS method, an option pricing method based on the Fourier-cosine series.

Usage

```
F_k(Chf, N, a, b)
```

Arguments

Chf	the characteristic function
N	the number of cos term for summation
а	the lower limit of the truncation interval
b	the upper limit of the truncation interval

Value

A vector of F_k coefficients

References

Fang F. and Oosterlee C.W. 2008. "A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions", Siam Journal on Scientific Computing. 31(2): 826-848. doi: 10.1137/080718061.

```
N <- 32
a <- -6.0
b <- 6.0
F_k(StNormChf, N, a, b)
```

8 ggboxplot

ggacf

Plot the Acf Figure

Description

Plot the Acf figure with observations of a single variable beautifully.

Usage

```
ggacf(data, lag = 10)
```

Arguments

data vector of observations

lag the maximum lag to calculate the acf

Value

A ggplot figure of the acf

Examples

```
swan <- rGarch(len = 180)
ggacf(swan^2, 20)</pre>
```

ggboxplot

Plot the Box Figure

Description

Plot the box figure beautifully with ggplot.

Usage

```
ggboxplot(data, mapping)
```

Arguments

data a tibble

mapping the mapping parameter of ggplot

Value

A box figure by ggplot

gghistplot 9

Examples

```
names <- c("swan", "bear", "tiger") date <- as.Date("2015-01-01") + days(0:179) mu <- c(0.2, 0.08, 0.1) sigma <- matrix(c(1, 0.25, -0.3, 0.25, 0.25, 0, -0.3, 0, 0.36), 3, 3) allret <- rMvReturnSim(names, date, mu, sigma) totret <- StackRet(allret, date) ggboxplot(totret, aes(x = stock, y = ret))
```

gghistplot

Plot the Histogram Figure

Description

Plot the histgram figure beautifully with ggplot.

Usage

```
gghistplot(data, mapping, bins = 10)
```

Arguments

data a tibble

mapping the mapping parameter

bins the number of bins

Value

A histogram figure by ggplot

```
date <- as.Date("2015-01-01") + days(0:180)
thero <- returns(rGbm("thero", date))[-1]
tthero <- tibble(x = date[-1], y = thero)
gghistplot(tthero, aes(x = thero, y = stat(density)), bins = 20)</pre>
```

10 ggpacf

gglineplot	Plot the Time Series

Description

Plot the time series data beautifully with ggplot.

Usage

```
gglineplot(data, mapping, date_labels = "%Y/%m/%d", date_breaks = "2 weeks")
```

Arguments

```
data a tibble
```

mapping the mapping parameter

date_labels the x label

date_breaks the period of the x label

Value

A ggplot figure of the time series

Examples

```
date <- as.Date("2015-01-01") + days(0:180)
thero <- returns(rGbm("thero", date))[-1]
tthero <- tibble(x = date[-1], y = thero)
gglineplot(tthero, aes(x, y), "%Y/%m", "1 months")</pre>
```

ggpacf

Plot the Pacf Figure

Description

Plot the Pacf figure with observations of a single variable beautifully.

Usage

```
ggpacf(data, lag = 10)
```

Arguments

data vector of observations

lag the maximum lag to calculate the pacf

InvestmentPortfolio 11

Value

A ggplot figure of the pacf

Examples

```
swan <- rGarch(len = 180)
ggpacf(swan^2, 20)</pre>
```

InvestmentPortfolio Construct Portfolio

Description

Construct four types portfolio with specificition and constraints.

Usage

```
InvestmentPortfolio(data, method, spec, constraints = "LongOnly")
```

Arguments

data multivariate returns, must be "timeSeries" type
method porofolio type, one of "fea", "minrisk", "globalminrisk" and "sharp"

spec specification of portfolio constraints constraints of trade

Value

A portfolio

References

Markowitz H. 1952. "Portfolio Selection", The Journal of Finance, 7(1), 77-91. doi: 10.2307/2975974.

```
library(fPortfolio)
names <- c("swan", "bear", "tiger")
date <- as.Date("2015-01-01") + days(0:179)
mu <- c(0.2, 0.08, 0.1)
sigma <- matrix(c(1, 0.25, -0.3, 0.25, 0.25, 0, -0.3, 0, 0.36), 3, 3)
allret <- rMvReturnSim(names, date, mu, sigma)
tsret <- as.timeSeries(allret)
feaSpec <- portfolioSpec()
setWeights(feaSpec) <- rep(1 / 3, times = 3)
InvestmentPortfolio(tsret, "fea", feaSpec)</pre>
```

NormChf

- 1	LogE		. ~ .	~~	~ ~	\neg	ıc
	COL	rr	() I			20	

Calculate the Absolute Error of the COS Method

Description

Calculate the max absolute error of the cos method for different parameters given a vector of x.

Usage

```
LogErrorCosPdf(x, f, Chf, a, b, N)
```

Arguments

Χ	vector of observations
f	the true p.d.f.
Chf	the characteristic function
a	the lower limit of the truncation interval
b	the upper limit of the truncation interval
N	the number of cos term for summation

Value

A matrix that contains the log max error for different parameters

Examples

```
N <- c(1:200)
L <- c(10, 20, 60, 100, 1000)
a <- -L / 2
b <- L / 2
x <- seq(-5, 5, by = 10 / (32 - 1))
LogErrorCosPdf(x, dnorm, NormChf, a, b, N)</pre>
```

NormChf

The Characteristic Function of Normal Distribution

Description

The Characteristic Function of Normal Distribution

Usage

```
NormChf(u, mu = 0, sigma = 1)
```

PdfMultiPlot 13

Arguments

u observation mu the mu parameter sigma the sigma parameter

Value

The value of Characteristic Function

Examples

```
NormChf(1)
```

PdfMultiPlot

Plot the Probability Density Functions

Description

Plot the p.d.f functions for the univariate distribution with data processed by StackRet.

Usage

```
PdfMultiPlot(data, x, y, Variable)
```

Arguments

data a tibble contains x, y and Variable and the last one is the group variable x x y y y Variable the group label

Value

A ggplot figure of the probability density functions

```
N <- 2**(1:6)
x <- seq(-5, 5, by = 10 / (32 - 1))
a <- -10.0
b <- 10.0
f_x1 <- CosPdfMulti(x, StNormChf, N, a, b)
colnames(f_x1) <- paste("N = 2 ^ ", c(1:6), sep = "")
mt1 <- StackRet(f_x1, x)
colnames(mt1) <- c("x", "y", "Variable")
PdfMultiPlot(mt1, x, y, Variable)</pre>
```

14 rGarch

PdfSinglePlot

Plot the Probability Density Function

Description

Plot the p.d.f function for the univariate distribution with x and y.

Usage

```
PdfSinglePlot(data, x, y)
```

Arguments

```
data a tiible contains x and y x x y y
```

Value

A ggplot figure of the probability density function

Examples

```
N < -32

x < -seq(-5, 5, by = 10 / (32 - 1))

a < --6.0

b < -6.0

f_x < -cosPdfRecovery(x, StNormChf, N, a, b)

tnorm < -tibble(x = x, y = f_x)

PdfSinglePlot(tnorm, x, y)
```

rGarch

Simulate a Garch Series

Description

Simulate a Garch series given its data generate process with mean part.

Usage

```
rGarch(

u = 0,

a0 = rnorm(1, 0, 1),

sigma20 = rnorm(1, 0, 1)^2,

alpha = c(0.5, 0.5),

beta = 0.25,

len = 10
```

rGarcha 15

Arguments

u	the mean series
a0	vector of the start part
sigma20	vector of the initial variance sigma2
alpha	the alpha parameter
beta	the beta parameter
len	the length, include defined a0

Value

A simulated garch series

References

Bollerslev T. 1986. "Generalized autoregressive conditional heteroskedasticity", Journal of Econometrics, 31(3): 307-327. doi: 10.1016/0304-4076(86)90063-1.

Examples

rGarch()

Description

Simulate a Garch series given its data generate process without mean part.

Usage

```
rGarcha(
   a0 = rnorm(1, 0, 1),
   sigma20 = rnorm(1, 0, 1)^2,
   alpha = c(0.5, 0.5),
   beta = 0.25,
   len = 10
)
```

Arguments

```
a0 vector of the start part
sigma20 vector of the initial variance sigma2
alpha the alpha parameter
beta the beta parameter
len the length, include defined a0
```

16 rGbm

Value

A simulated garch series

References

Bollerslev T. 1986. "Generalized autoregressive conditional heteroskedasticity", Journal of Econometrics, 31(3): 307-327. doi: 10.1016/0304-4076(86)90063-1.

Examples

```
rGarcha()
```

rGbm

Simulate prices series of stocks

Description

Simulate an multivariate series following Geometric Brownian Motion (GBM)

Usage

```
rGbm(name, time, start = 100, mu = 0.01, sigma = 0.02)
```

Arguments

name vector of series names

time vector of time, must be a "Date" type variable

start vector of start positions

mu vector of mu sigma vector of sigma

Value

a simulated multivariate GBM series

```
date <- as.Date("2015-01-01") + days(0:29)
rGbm(c("bear", "tiger", "swan"), date)</pre>
```

rGbms 17

rGbms

Simulate Multivariate Stocks Prices Data

Description

Simulate multivariate prices for interconnected stocks with each price series following Geometric Brownian Motion (GBM).

Usage

```
rGbms(
    name,
    len,
    start = c(1000, 1000),
    mu = rep(1e-04, 2),
    sigma = matrix(c(2e-04, 1e-04, 1e-04, 2e-04), 2, 2),
    digits = 2
)
```

Arguments

name	vector of series names
len	the length
start	vector of start positions
mu	vector of mu
sigma	vector of sigma
digits	integer deciding the number of decimal places

Value

A simulated multivariate GBM series with each series interconnected

```
rGbms(c("bear", "tiger"), len = 36)
```

18 RiskIndicators

rGbmSingle

Simulate a single stock price series

Description

Simulate an univariate series following Geometric Brownian Motion (GBM).

Usage

```
rGbmSingle(len, start = 100, mu = 0.01, sigma = 0.02)
```

Arguments

len the length

start the start position

 $\begin{array}{ll} \mbox{mu} & \mbox{the mu parameter of GBM} \\ \mbox{sigma} & \mbox{the sigma parameter of GBM} \end{array}$

Value

a simulated univariate GBM series

Examples

rGbmSingle(100)

RiskIndicators

Calculate Useful Indicators for returns

Description

Calculate cumulative return, annualized return, max drawdown, annualized sharp ratio, calmar ratio, sortino ratio, alpha, beta and information ratio with returns.

Usage

```
RiskIndicators(ret, rb, rf = 0)
```

Arguments

ret vector of return

rb return of market portfolio

rf risk free rate

rMvReturnSim 19

Value

A matrix of return and risk indicators

Examples

```
date <- as.Date("2015-01-01") + days(0:249)
ret <- as.xts(rnorm(250), date)
rb <- as.xts(rep(0, 250), date)
RiskIndicators(ret, rb = rb, rf = 0)</pre>
```

rMvReturnSim

Simulate Stocks Prices

Description

Simulate stocks prices following multivariate normal distribution.

Usage

```
rMvReturnSim(
  names,
  date,
  mu = rep(0, 2),
  sigma = matrix(c(1, 0.5, 0.5, 1), 2, 2)
)
```

Arguments

```
names vector of names

date vector of time, must be "Date" type

mu vector of mu

sigma vector of sigma
```

Value

Multivariate stock prices

```
names <- c("swan", "bear")
date <- as.Date("2015-01-01") + days(0:29)
rMvReturnSim(names, date)</pre>
```

20 rTrades

rTrade

Simulate stock trade data

Description

Simulate stock trade data with assumption that the stock price following Geometric Brownian Motion (GBM).

Usage

```
rTrade(time, start = 100, mu = 1e-04, sigma = 2e-04)
```

Arguments

time time vector of time, must be a "Date" type variable

start the start position

mu the mu parameter of GBM sigma the sigma parameter of GBM

Value

Stock trade data with Open, High, Low and Close

Examples

```
date <- as.Date("2015-01-01") + days(0:29)
rTrade(date)</pre>
```

rTrades

Simulate Multivariate Stock Trade Data

Description

Simulate multivariate stock trade data with assumption that each stock price following Geometric Brownian Motion (GBM). And these prices are interconnected.

Usage

```
rTrades(
    name,
    time,
    start = c(1000, 1000),
    mu = rep(1e-04, 2),
    sigma = matrix(c(2e-04, 1e-04, 1e-04, 2e-04), 2, 2),
    digits = 2
)
```

Sharp 21

Arguments

name	vector of names
time	time vector of time, must be "Date" type
start	vector of start positions
mu	vector of mu

sigma vector of sigma

digits integer deciding the number of deciamal places

Value

A list of stock trade data with Open, High, Low and Close

Examples

```
date <- as.Date("2015-01-01") + days(0:29) rTrades(c("swan", "bear"), date)
```

Sharp

Calculate Sharp Ratio with stock prices

Description

Calculate sharp ratio of stock with running window.

Usage

```
Sharp(x, rf = 0, n = 10)
```

Arguments

X	vector of price		
rf	risk free rate		

n the length of running window

Value

The sharp ratio series with length the same as x

```
date <- as.Date("2015-01-01") + days(0:29)
trade <- rTrade(date)
x <- trade$Close
Sharp(x)</pre>
```

22 StackRet

Rearrange the data from LogErrorCosPdf for plot

Description

Rearrange the data from LogErrorCosPdf for plot

Usage

```
StackForPlot(error, a, b, N)
```

Arguments

error	return of LogErrorCosPdf
а	the lower limit of the truncation interval
b	the upper limit of the truncation interval
N	the number of cos term for summation

Value

Suitable tibble data for plot by group in ggplot

Examples

```
N <- c(1:200)
L <- c(10, 20, 60, 100, 1000)
a <- -L / 2
b <- L / 2
x <- seq(-5, 5, by = 10 / (32 - 1))
el <- LogErrorCosPdf(x, dnorm, NormChf, a, b, N)
StackForPlot(el, a, b, N)</pre>
```

StackRet

Stack Rets for ggplot

Description

Change the arrangement of multivariate data to generate suitable data for ggplot.

Usage

```
StackRet(rets, date)
```

StNormChf 23

Arguments

rets multivariate data, arranged by column

date vector of common information for variables

Value

Suitable tibble data for plot by group in ggplot

Examples

```
names <- c("swan", "bear", "tiger")
date <- as.Date("2015-01-01") + days(0:179)
mu <- c(0.2, 0.08, 0.1)
sigma <- matrix(c(1, 0.25, -0.3, 0.25, 0.25, 0, -0.3, 0, 0.36), 3, 3)
allret <- rMvReturnSim(names, date, mu, sigma)
StackRet(allret, date)</pre>
```

StNormChf

The Characteristic Function of Standard Normal Distribution

Description

The Characteristic Function of Standard Normal Distribution

Usage

```
StNormChf(u)
```

Arguments

u observation

Value

The value of Characteristic Function

```
StNormChf(1)
```

24 VaRSimTest

Val	⊃ C -	i m'	T_{PQ}	٠+

VaR Calculation and Coverage Test

Description

Calculate VaR with three method and implement unconditional and conditional coverage test.

Usage

```
VaRSimTest(data, method, alpha, fun, ...)
```

Arguments

data	vector of returns
method	the VaR method, one of "param", "hist" and "mc
alpha	the VaR confidence level
fun	function calculating VaR, limited by method
	the extra parameters of fun

Value

A list of VaR and coverage test outcome

References

Christoffersen P. F. 1998. "Evaluating Interval Forecasts", International Economic Review, 841-862. doi: 10.2307/2527341.

Kupiec PH. 1995. "Techniques for Verifying the Accuracy of Risk Measurement Models", The Journal of Derivatives, 3(2), 73-84. doi: 10.3905/jod.1995.407942.

```
swan <- rGarch(len = 30)
date <- as.Date("2015-01-01") + days(0:(length(swan) - 1))
tswan <- tibble(garch = swan, date = date)
tsswan <- as.xts(swan, date)
alpha = 0.05
num = 100000
mu = mean(tsswan)
sd = sd(tsswan)
VaRSimTest(tsswan, "mc", alpha , rnorm, 100000, mu, sd)</pre>
```

V_*k* 25

 V_k V_k Series

Description

Calculate the V_k Series for Option Pricing with the COS Method, an option pricing method based on the Fourier-cosine series.

Usage

```
V_k(ValueOption, N, a, b, method = "integrate")
```

Arguments

ValueOption	the value function of the option
N	the number of cos term for summation
а	the lower limit of the truncation interval
b	the upper limit of the truncation interval
method	how to calculate the integral, one of "integrate" and "jiahe"

Value

The V_k series

References

Fang F. and Oosterlee C.W. 2008. "A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions", Siam Journal on Scientific Computing. 31(2): 826-848. doi: 10.1137/080718061.

```
r <- 0.1
sigmaS0 <- 0.2
tau <- 10
S0 <- 1
K <- 1
mu <- log(S0) + (r - 0.5 * sigmaS0^2) * tau
sigma <- sigmaS0 * sqrt(tau)
a <- -10
b <- 10
N <- 64
ValueOption <- function(x){EuroCallOption(x,K)}
V_k(ValueOption, N, a, b)</pre>
```

Index

```
CosPdfMulti, 2
CosPdfRecovery, 3
CosValueOption, 4
Describe, 5
DescribeVector, 5
EuroCallOption, 6
F_k, 7
FixBacktest, 6
ggacf, 8
ggboxplot, 8
gghistplot, 9
gglineplot, 10
ggpacf, 10
{\tt InvestmentPortfolio}, 11
LogErrorCosPdf, 12
NormChf, 12
PdfMultiPlot, 13
PdfSinglePlot, 14
rGarch, 14
rGarcha, 15
rGbm, 16
rGbms, 17
rGbmSingle, 18
RiskIndicators, 18
rMvReturnSim, 19
rTrade, 20
rTrades, 20
Sharp, 21
StackForPlot, 22
StackRet, 22
StNormChf, 23
V_k, 25
VaRSimTest, 24
```