

Universidade Federal de Goiás Instituto de Informática Engenharia de Software

Matriz Curricular: ENGSO-BN-2 - 2017.1

Plano de Disciplina

Ano Letivo: 2023 - 1º Semestre

Dados da Disciplina

Cádigo	Nama	Carga Horária	
Código	Nome	Teórica	Prática
10000123	Engenharia de Sistemas	64	0

Prof(a): Alessandro Cruvinel Machado de Araujo

Turma: Α

Ementa

1. Fundamentos de engenharia (16h): métodos empíricos e técnicas experimentais; análise estatística; medição; design; modelagem, prototipação e simulação; normas e padrões; análise de causa raiz. 2. Fundamentos de sistema (16h): taxonomias de sistema; sistemas de engenharia (sistemas produzidos por engenharia - engineered systems); sistemas intensivos em software (software-intensive systems); sistemas de sistemas; complexidade de sistemas; propriedades emergentes; princípios do pensamento sistêmico; representação de sistemas por modelos. 3. Engenharia de Sistemas (32h): abordagens e metodologias; partes interessadas (stakeholders) e suas necessidades; ciclo de vida de sistemas de engenharia (concepção, conceitos operacionais, design, validação de design, construção, validação de construção, implantação, sustentação e descontinuação); processos do ciclo de vida de sistemas (negociação, preparação para projeto organizacional, gestão técnica, processos técnicos); qualidade de processo.

Objetivo Geral

O Objetivo Geral da disciplina é colaborar com todas as atividades descritas no Projeto Pedagógico para a formação de profissionais aptos a contribuir efetivamente com a produção de softwares de qualidade seguindo princípios éticos e postura profissional.

Objetivos Específicos

A bacharela ou o bacharel em Engenharia de Software é capaz de efetivamente contribuir com equipes na produção de modelos abstratos de software e realizá-los por meio de código de qualidade. Ao final da disciplina Engenharia de Sistemas, o estudante estará apto a seguir instruções para: - modelar o ciclo de vida de um sistema intensivo em software, considerando as implicações e perspectivas dos processos do ciclo de vida de sistemas; e - selecionar um modelo de ciclo de vida de software adequado ao modelo de ciclo de vida de engenharia de sistemas e integrar os dois modelos. Além disso, o estudante deverá consequir: - definir o conceito do sistema proposto (propósito desejado, contexto operacional, partes interessadas e conceito de uso do sistema); e - desenvolver conceitos operacionais do sistema (ambientes operacionais, características priorizadas, atributos de qualidade, cenários operacionais, suposições, dependências, limitações e exclusões).

Relação com Outras Disciplinas

As disciplinas do Projeto Pedagógico foram definidas com substancial cruzamento de fronteiras de subáreas do conhecimento da Engenharia de Software. A estratégia na qual se define uma disciplina por subárea foi preterida. Em vez da separação de tópicos induzida pela classificação do conhecimento, o conteúdo (ementa) atribuído a cada disciplina inclui tópicos entre os quais há sinergia. Neste sentido, a disciplina Engenharia de Sistemas tem uma forte relação com todas as demais disciplinas, oferecendo uma base e introdução ao pensamento sistêmico e à engenharia de sistemas complexos.

Programa

- Fundamentos de sistema: introdução ao pensamento sistêmico, definições e propriedades dos

sistemas, complexidade de sistemas, representação de sistemas (modelagem). - Fundamentos de engenharia: introdução à engenharia, métodos e técnicas, medição e análise estatística, normas e padrões. - Engenharia de Sistemas: ciclo de vida de sistemas de engenharia, modelos de ciclo de vida de sistemas de engenharia, processos do ciclo de vida de sistemas de engenharia Engenharia de Software e disciplinas correlatas.

Procedimentos Didáticos

Legenda	Descrição	Objetivo
AEX	Aula teórica	Transmitir conhecimento utilizando quadro ou slides.
AP	Aula prática	Proporcionar ao aluno a aplicação prática do conteúdo ministrado em aula teórica.
ED	Estudo dirigido	Desenvolver a capacidade analítica, capacidade de síntese, de avaliação crítica e de análise.
OTR	Outros	Transmitir conhecimento utilizando quadro ou slides.
RE	Aula teórica com resolução de exercícios	Desenvolver o raciocínio lógico, criatividade e capacidade de abstração e a capacidade de identificar, analisar e projetar soluções de problemas.
SE	Seminários	Desenvolver o raciocínio lógico, criatividade, capacidade de abstração, capacidade para identificar, analisar, projetar soluções de problemas, a capacidade de comunicação oral e a capacidade de trabalhar em grupo.
TG	Trabalho em grupo	Desenvolver a capacidade de comunicação oral e escrita. Capacidade de trabalhar em grupo.

Conteúdo Programático / Cronograma

Inicio	Proc. Didático	Tópico	# Aul.
18/04/23	AEX, RE, TG, AP	Fundamentos de sistema: introdução ao pensamento sistêmico / Atividade supervisionada 1: Escolha e análise inicial de um sistema para desenvolvimento do projeto	4
25/04/23	AEX, RE, TG, AP	Fundamentos de sistema: definições e propriedades dos sistemas / Atividade supervisionada 1: Escolha e análise inicial de um sistema para desenvolvimento do projeto	4
02/05/23	AEX, RE, TG, AP	Fundamentos de sistema: complexidade de sistema: Atividade supervisionada 1: Escolha e análise inicial de sistema para desenvolvimento do projeto	
09/05/23	AEX, RE, TG, AP	Fundamentos de sistema: representação de sistemas	
16/05/23	AEX, RE, TG, AP	Fundamentos de engenharia: introdução à engenharia / Atividade supervisionada 2: Especificação dos requisitos de stakeholder e do sistema	
23/05/23	AEX, RE, TG, AP	Fundamentos de engenharia: métodos e técnicas / Atividad supervisionada 2: Especificação dos requisitos de stakehold e do sistema	
30/05/23	AEX, RE, TG, AP	Fundamentos de engenharia: medição e análise estatística / Atividade supervisionada 2: Especificação dos requisitos de stakeholder e do sistema	4
06/06/23	AEX, RE, TG, AP	Fundamentos de engenharia: normas e padrões / Atividade supervisionada 3: Definição dos modelos de arquitetura	4
20/06/23	AEX, RE, TG, AP	Engenharia de Sistemas: ciclo de vida de sistemas de engenharia / Atividade supervisionada 4: Finalização de projeto de sistema	
04/07/23	AEX, RE, TG, AP	Engenharia de Sistemas: modelos de ciclo de vida de sistema de engenharia / Atividade supervisionada 4: Finalização d projeto de sistema	
25/07/23	AEX, RE, TG, AP	Engenharia de Sistemas: processos do ciclo de vida de sistemas de engenharia / Entrega e apresentação do projeto final	
08/08/23	AEX, RE, TG, AP, OTR		
15/08/23	OTR	Entrega e apresentação do projeto final / Conclusão da disciplina	4
		Total	64

Critério de Avaliação

Neste semestre, desenvolveremos, ao longo do curso, um projeto por grupo de estudantes. Parte do projeto será desenvolvido nas aulas presenciais e parte em encontros e atividades "extraclasse", também chamadas de atividades supervisionadas. A média final da disciplina será obtida através da

média da participação e desempenho demonstrados nas 4 atividades supervisionadas relacionadas ao projeto que será desenvolvido. A avaliação do projeto levará em consideração: a utilização e a abrangência dos conceitos já adquiridos, o texto final da proposta de projeto, o relatório de execução e a defesa do projeto (apresentação). Cabe ressaltar que o estudante precisa ter média final igual ou superior a 6,0 (seis) e a frequência deve ser maior ou igual a 75% para ser aprovado.

As atividades supervisionadas referem-se às atividades práticas e devem ser desenvolvidas segundo Resolução CNE/CES 03/2007 de 2 de julho de 2007, a qual considera que os Bacharelados do período noturno dividem cada hora de atividade acadêmica em 45 minutos de preleções e aulas expositivas e 15 minutos de atividades práticas supervisionadas que podem ser realizadas a distância ou não, mas com supervisão do professor.

Data da Realização das Provas

No dia 08/08/2023 ocorrerão a entrega da versão final do projeto e sua defesa (apresentação).

Local de Divulgação dos Resultados das Avaliações

Todas as atividades bem como avaliações serão devidamente divulgadas no sistema SIGAA e na plataforma Turing. O resultado dessas atividades e avaliações também serão divulgados no SIGAA e Plataforma Turing.

O atendimento extraclasse será realizado às terças feiras, no horário das 20:00 as 20:30, na mesma sala de aula presencial da disciplina ou através da sala virtual a ser criada para a disciplina.

Bibliografia Básica

- SCHNEIDEWIND, N. Systems and Software Engineering with Applications. New York, NY: IEEE, 2009. - INCOSE. Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, version 3.2.2. International Council on Systems Engineering (INCOSE), INCOSE-TP-2003-002-03.2.2, 2012. - WIDRIG, D.; LEFFINGWELL, D. Managing software requirements: a unified approach Boston: AddisonWesley, 2001. ISBN 0201615932.

Bibliografia Complementar

- MADACHY, R. J. Systems Engineering Principles for Software Engineers (Chapman & Damp; Hall/CRC Innovations in Software Engineering and Software Development Series) 1st Edition, CRC Press, 2016. - WILSON, W. E. Conceptos sobre ingenieria de sistemas Buenos Aires: Centro regional de Ayuda Tecnica, 1968. 254 p., il. - SILVA FILHO, B. S.; NISE, N. S. Engenharia de sistemas de controle. 3. a edição. LTC, 2002, ISBN 85216-1301-6. - MAFFEO, B. Engenharia de software e especificação de sistemas. Rio de Janeiro: Campus, 1992. 484 p. ISBN 8570017014. -NASCIMENTO, J. B. Metodologias de desenvolvimento de sistemas. São Paulo: Erica, 1993, ISBN 8571941483.

Bibliografia Sugerida

GHARAJEDAGHI, Jamshid. Systems thinking: Managing chaos and complexity: A platform for designing business architecture. Elsevier, 2011.

Termo de Entrega	Termo de Aprovação	
Apresentado à Coordenação no dia	Aprovado em Reunião de CD no dia	
Prof(a) Alessandro Cruvinel Machado de Araujo Professor	Prof. Dr. Eliomar Araújo de Lima Diretor do Instituto de Informática	
Termo de Hom	ologação	
Data de Expedição: Goiânia, de _	de	