Analysis I, WS 04/05Verzeichnis der wichtigsten Definitionen und Sätze

Lorenz Schwachhöfer

8. Februar 2005

Inhaltsverzeichnis

1	Mathematische Grundlagen	1
2	Folgen und Reihen	6
3	Stetigkeit	12
4	Differenzierbarkeit	19
5	Integrale	25

1 Mathematische Grundlagen

Definition 1.1 Sei M eine Menge. Eine innere Komposition oder Verknüpfung auf M ist eine Abbildung

$$\circ: M\times M\longrightarrow M.$$

Statt $\circ(x,y)$ schreiben wir auch $x \circ y$.

Definition 1.2 Sei \circ eine Verknüpfung auf der Menge M.

1. \circ heißt assoziativ, falls für alle $x, y, z \in M$ gilt:

$$(x \circ y) \circ z = x \circ (y \circ z).$$

2. \circ heißt kommutativ, falls für alle $x, y \in M$ gilt:

$$x \circ y = y \circ x$$
.

3. Ein Element $e \in M$ heißt neutrales Element bzgl. \circ , falls für alle $x \in M$ gilt:

$$e \circ x = x \circ e = x$$
.

4. Sei $e \in M$ ein neutrales Element bzgl. \circ , und sei $x \in M$. Ein Element $y \in M$ heißt invers zu x oder Inverses von x bzgl. \circ , falls gilt:

$$x \circ y = y \circ x = e$$
.

Falls ein neutrales Element existiert, dann ist es eindeutig bestimmt. Ist \circ assoziativ, so hat jedes Element höchstens ein Inverses, das dann mit x^{-1} bezeichnet wird.

$$+: \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{K} \quad und \quad \cdot: \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{K},$$

die folgende Eigenschaften haben:

- (A1) + ist assoziativ und kommutativ.
- (A2) Es existiert ein neutrales Element bzgl. +, das wir mit 0 bezeichnen.
- (A3) Jedes Element $x \in \mathbb{K}$ hat ein Inverses bzgl. +, das wir mit -x bezeichnen.
- (M1) · ist assoziativ und kommutativ.
- (M2) Es existiert ein neutrales Element bzgl. ·, das wir mit 1 bezeichnen.
- (M3) Jedes Element $x \in \mathbb{K}$ mit $x \neq 0$ hat ein Inverses bzgl. ·, das wir mit x^{-1} bezeichnen.
 - (D) Für alle $x, y, z \in \mathbb{K}$ gilt das Distributivgesetz:

$$(x+y) \cdot z = (x \cdot z) + (y \cdot z).$$

(T) Es gilt $1 \neq 0$.

Die in der vorstehenden Definition beschriebenen Eigenschaften heißen auch die Körperaxiome.

Definition 1.4 Eine geordnete Menge ist eine Menge M mit einer Ordnungsrelation <, d.h. einer Relation auf M, die folgende Bedingungen erfüllt:

(O1) (Trichotomie) Sind $x, y \in M$, so gilt genau eine der folgenden Aussagen:

(i)
$$x < y$$
 (ii) $y < x$ (iii) $x = y$

(O2) (Transitivität) $F\ddot{u}r \ x, y, z \in M$ gilt die Implikation:

$$(x < y) \land (y < z) \Longrightarrow (x < z).$$

Ist < eine Ordnungsrelation auf M, so definieren wir auch die folgenden Relationen:

- 1. $x \le y$ soll bedeuten: $(x < y) \lor (x = y)$
- 2. x > y soll bedeuten: y < x,

3. $x \ge y$ soll bedeuten: $(x > y) \lor (x = y)$.

Definition 1.5 Ein geordneter Körper ist ein Körper $(\mathbb{K}, +, \cdot)$ mit einer Ordnungsrelation <, so daß folgende Aussagen gelten:

- (OA) Sind $x, y, z \in \mathbb{K}$ mit x < y, dann folgt x + z < y + z.
- (OM) Sind $x, y, z \in \mathbb{K}$ mit x < y und 0 < z, dann folgt xz < yz.

Definition 1.6 Sei $(\mathbb{K}, +, \cdot, <)$ ein geordneter Körper. Eine Teilmenge $A \subset \mathbb{K}$ heißt induktiv oder ein induktives System, falls gilt:

- 1. $1 \in A$,
- $2. \ \forall x \in \mathbb{K}, x \in A \Longrightarrow x + 1 \in A.$

Definition 1.7 Sei $(\mathbb{K}, +, \cdot, <)$ ein geordneter Körper. Die natürlichen Zahlen in \mathbb{K} ist die Menge

$$\mathbb{N}_{\mathbb{K}} := \bigcap_{A \subset \mathbb{K} \ induktiv} A = \{x \in \mathbb{K} \mid \forall A \subset \mathbb{K} \ induktiv \ gilt: x \in A\}.$$

 $\mathbb{N}_{\mathbb{K}}$ ist dann selbst ein induktives System, und ist $A \subset \mathbb{K}$ eine beliebiges induktives System, dann folgt $\mathbb{N}_{\mathbb{K}} \subset A$.

Beweisprinzip der vollständigen Induktion. Gegeben sei eine Menge von Aussagen A(n), die von $n \in \mathbb{N}$ abhängen. Um nun zu zeigen, daß A(n) für alle $n \in \mathbb{N}$ gilt, geht man wie folgt vor:

- 1. Induktionsanfang: Zeige A(1).
- 2. Induktionsschritt: Zeige: Für alle $n \in \mathbb{N}$: $A(n) \Rightarrow A(n+1)$.

Definition 1.8 Sei $(\mathbb{K}, +, \cdot, <)$ ein geordneter Körper, und seien $\mathbb{N}_{\mathbb{K}} \subset \mathbb{K}$ die natürlichen Zahlen in \mathbb{K} . Dann bezeichnet

- 1. $(\mathbb{N}_0)_{\mathbb{K}} := \mathbb{N}_{\mathbb{K}} \cup \{0\},\$
- 2. $\mathbb{Z}_{\mathbb{K}} := \mathbb{N}_{\mathbb{K}} \cup \{0\} \cup \{-n \mid n \in \mathbb{N}_{\mathbb{K}}\}$. Diese Menge wird die Menge der ganzen Zahlen von \mathbb{K} genannt.
- 3. $\mathbb{Q}_{\mathbb{K}} := \{n \cdot m^{-1} \mid n, m \in \mathbb{Z}_{\mathbb{K}}, m \neq 0\}$. Diese Menge wird die Menge der rationalen Zahlen von \mathbb{K} genannt.

Definition 1.9 Sei (M, <) eine geordnete Menge, und sei $N \subset M$.

- 1. $S \in M$ heißt obere Schranke von N, falls gilt: $\forall x \in N, x \leq S$.
- 2. $s \in M$ heißt untere Schranke von N, falls gilt: $\forall x \in N, x \geq s$.
- 3. N heißt nach oben (bzw. nach unten) beschränkt, falls N eine obere (bzw. untere) Schranke hat. Ist N sowohl nach oben als auch nach unten beschränkt, so heißt N beschränkt.

- 4. Ein Maximum von N ist eine obere Schranke von N, die in N enthalten ist.
- 5. Ein Minimum von N ist eine untere Schranke von N, die in N enthalten ist.
- 6. Ein Element $S \in M$ heißt Supremum von N, falls gilt:
 - (a) S ist eine obere Schranke von N,
 - (b) Ist $S' \in M$ eine obere Schranke von N, so ist $S \leq S'$.
- 7. Ein Element $s \in M$ heißt Infimum von N, falls gilt:
 - (a) s ist eine untere Schranke von N,
 - (b) Ist $s' \in M$ eine untere Schranke von N, so ist $s \geq s'$.

Falls $N \subset M$ ein Maximum hat, so ist dies eindeutig; gleiches gilt für das Minimum, Supremum und Infimum.

Definition 1.10 Eine geordnete Menge (M,<) heißt wohlgeordnet, falls gilt: Jede nichtleere Teilmenge $N \subset M$ hat ein Minimum.

Satz 1.11 Ist $(\mathbb{K}, +, \cdot, <)$ ein geordneter Körper, so ist $\mathbb{N}_{\mathbb{K}}$ wohlgeordnet.

Definition 1.12 Eine geordnete Menge (M, <) heißt vollständig geordnet, falls gilt:

Jede nichtleere, nach oben beschränkte Teilmenge $N \subset M$ hat ein Supremum.

Definition 1.13 Die reellen Zahlen \mathbb{R} sind ein vollständiger, geordneter Körper, d.h. in \mathbb{R} gelten die Axiome

Bemerkung: R ist durch diese Axiome vollständig charakterisiert, d.h. jeder andere vollständige geordnete Körper ist äquivalent zu \mathbb{R} .

Satz 1.14 In \mathbb{R} qilt auch die folgende Eigenschaft:

(INF) Jede nichtleere, nach unten beschränkte Teilmenge $N \subset \mathbb{R}$ hat ein Infimum.

Definition 1.15 Ein Intervall ist eine Teilmenge $I \subset \mathbb{R}$ mit der Eigenschaft:

$$\forall x, y, z \in \mathbb{R}, \quad x < y < z \text{ und } x, z \in I \Longrightarrow y \in I.$$

Satz 1.16 Sei $I \subset \mathbb{R}$ ein Intervall. Dann gibt es Zahlen $a, b \in \mathbb{R}$, so daß I von genau einem der folgenden Typen ist:

- 1) $I = \emptyset$
- 5) $I = (-\infty, b)$
- I = [a, b), a < b

- 2) $I = \mathbb{R}$
- 9) $I = (a, b], \quad a < b$

- 3) $I = (a, \infty)$
- 6) $I = (-\infty, b]$ 7) I = (a, b), a < b
- 10) $I = [a, b], a \leq b$

4) $I = [a, \infty)$

Definition 1.17 Die komplexen Zahlen ist die Menge $\mathbb{C} := \mathbb{R} \times \mathbb{R}$ mit folgenden Verknüpfungen:

$$\begin{array}{lll} \oplus: & \mathbb{C} & \longrightarrow & \mathbb{C}, \\ \circ: & \mathbb{C} & \longrightarrow & \mathbb{C}, \end{array} & (x_1,y_1) \oplus (x_2,y_2) := (x_1+x_2,y_1+y_2) \\ \circ: & \mathbb{C} & \longrightarrow & \mathbb{C}, \end{array} & (x_1,y_1) \circ (x_2,y_2) := (x_1x_2-y_1y_2,x_1y_2+x_2y_1). \end{array}$$

Satz 1.18 1. $(\mathbb{C}, \oplus, \circ)$ ist ein Körper.

- 2. Die Abbildung $\mathbb{R} \to \mathbb{C}$, $x \mapsto \underline{x} := (x,0)$ ist ein Homomorphismus, d.h. es gilt für alle $x,y \in \mathbb{R}$: $\underline{x} \oplus \underline{y} = \underline{x} + \underline{y}$ und $\underline{x} \circ \underline{y} = \underline{x}\underline{y}$.
- 3. Sei i := (0,1). Dann gilt für alle $x, y \in \mathbb{R}$: $(x,y) = \underline{x} \oplus y \circ i$. Außerdem ist $i^2 = i \circ i = -\underline{1}$.

Wegen dieses Satzes ist es unnötig, die Unterscheidung von \oplus und + bzw. \circ und \cdot beizubehalten. Man betrachtet also $\mathbb R$ als eine Teilmenge von $\mathbb C$, und kann dann jede komplexe Zahl als x+yi mit $x,y\in\mathbb R$ schreiben. Bei Addition und Multiplikation kann man dann alle Körperaxiome verwenden (Assoziativität, Kommutativität, Distributivität) und muß beim Multiplizieren nur die Beziehung $i^2=-1$ beachten.

Definition 1.19 Sei $z=x+yi\in\mathbb{C}$ mit $x,y\in\mathbb{R}$. Dann ist die Konjugierte von z die Zahl $\overline{z}:=x-yi$.

- x heisst der Realteil von z, $x = \Re e(z)$.
- y heisst der Imaginärteil von $z, y = \Im m(z)$.

Satz 1.20 Für alle $z, w \in \mathbb{C}$ gilt:

- 1. $\overline{(\overline{z})} = z$,
- 2. $\overline{z+w} = \overline{z} + \overline{w}$,
- $3. \ \overline{zw} = \overline{z} \cdot \overline{w},$
- 4. Ist z = x + yi mit $x, y \in \mathbb{R}$, so ist $z\overline{z} = x^2 + y^2$.
- 5. $\Re e(z) = \frac{1}{2}(z+\overline{z}), \ \Im m(z) = \frac{1}{2i}(z-\overline{z}).$

Satz 1.21 Für $z \in \mathbb{C}$ definiere $|z| := \sqrt{z\overline{z}}$. Dann gilt für alle $z, w \in \mathbb{C}$:

- 1. $|z| \ge 0$, und |z| = 0 genau dann, wenn z = 0,
- 2. |zw| = |z||w|,
- 3. $|z+w| \le |z| + |w|$ (Dreiecksungleichung),
- 4. Für $x \in \mathbb{R} \subset \mathbb{C}$ ist |x| = x falls $x \geq 0$, and |x| = -x falls x < 0.

Definition 1.22 Seien M, N Mengen, $f: M \to N$ eine Funktion.

- 1. f heißt injektiv, falls gilt: $\forall x_1, x_2 \in M$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.
- 2. f heißt surjektiv, falls gilt: $\forall y \in N, \exists x \in M \text{ mit } f(x) = y$.
- 3. f heißt bijektiv, falls f injektiv und surjektiv ist.

- 4. Ist $f: X \to Y$ bijektiv, so gibt es eine Umkehrabbildung $f^{-1}: Y \to X$ mit $f(f^{-1}(y)) = y$ für alle $y \in Y$ und $f^{-1}(f(x)) = x$ für alle $x \in X$.
- 5. M heißt abzählbar, falls es eine bijektive Abbildung $f: \mathbb{N} \to M$ gibt, oder falls M endlich ist.
- 6. M heißt überabzählbar, falls M nicht abzählbar ist.

Satz 1.23 1. Jede Teilmenge einer abzählbaren Menge ist abzählbar.

2. Die Menge Q ist abzählbar.

2 Folgen und Reihen

Definition 2.1 Sei M eine Menge. Eine Folge in M ist eine Abbildung $a : \mathbb{N} \to M$, $n \mapsto a_n$.

Definition 2.2 Seien (M,<) und (N,<) geordnete Mengen, $f:M\to N$. Dann heißt f

- 1. monoton steigend, falls gilt: $\forall n, m \in M, n < m \Rightarrow f(n) \leq f(m)$.
- 2. streng monoton steigend, falls gilt: $\forall n, m \in M, n < m \Rightarrow f(n) < f(m)$.
- 3. monoton fallend, falls gilt: $\forall n, m \in M, n < m \Rightarrow f(n) \geq f(m)$.
- 4. streng monoton fallend, falls gilt: $\forall n, m \in M, n < m \Rightarrow f(n) > f(m)$.
- 5. monoton, falls f monoton steigend oder monoton fallend ist.
- 6. streng monoton, falls f streng monoton steigend oder streng monoton fallend ist.

Definition 2.3 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in M.

- 1. Eine Teilfolge von (a_n) ist eine Folge (b_n) , wobei $b_n = a_{\varphi(n)}$ mit einer streng monoton steigenden Funktion $\varphi : \mathbb{N} \to \mathbb{N}$.
- 2. Eine Umordnung von (a_n) ist eine Folge (b_n) , wobei $b_n = a_{\varphi(n)}$ mit einer bijektiven Funktion $\varphi : \mathbb{N} \to \mathbb{N}$.

Definition 2.4 Eine Nullfolge in \mathbb{K} , wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$, ist eine Folge $(a_n)_{n \in \mathbb{N}}$, so $da\beta$

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow |a_n| < \varepsilon.$$

Satz 2.5 Seien (a_n) und (b_n) Nullfolgen in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , und sei $c \in \mathbb{K}$. Dann sind auch $(a_n \pm b_n)$ und (ca_n) Nullfolgen.

Definition 2.6 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} . $a\in\mathbb{K}$ heißt Grenzwert von (a_n) , falls (a_n-a) eine Nullfolge ist.

- (a_n) heißt konvergent, falls es einen Grenzwert hat.
- (a_n) heißt beschränkt, falls $\exists C \in \mathbb{R}, \forall n \in \mathbb{N}, |a_n| \leq C$.

Satz 2.7 1. Jede Folge $(a_n)_{n\in\mathbb{N}}$ in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} hat höchstens einen Grenzwert. Falls also (a_n) konvergent ist, dann schreibt man für den (eindeutigen) Grenzwert:

$$a = \lim a_n$$
.

- 2. Ist $(a_n)_{n\in\mathbb{N}}$ konvergent, dann ist (a_n) auch beschränkt.
- 3. Ist (a_n) konvergent, dann ist auch jede Teilfolge und jede Umordnung von (a_n) konvergent mit dem gleichen Grenzwert.

Satz 2.8 (Grenzwertsätze) Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , und sei $c \in \mathbb{K}$. Dann gilt:

- 1. $\lim(a_n \pm b_n) = \lim a_n \pm \lim b_n$,
- 2. $\lim(a_nb_n) = (\lim a_n)(\lim b_n),$
- 3. $\lim(c \ a_n) = c \lim a_n$,
- 4. Falls $b_n \neq 0$ für alle n und $\lim b_n \neq 0$, so ist $\lim \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n}$.

Satz 2.9 (Satz von der monotonen Konvergenz) Sei $(a_n)_{n\in\mathbb{N}}$ eine monotone beschränkte Folge in \mathbb{R} . Dann ist (a_n) konvergent. Weiterhin gilt:

Ist (a_n) monoton steigend, so ist $\lim a_n = \sup\{a_n \mid n \in \mathbb{N}\}.$

Ist (a_n) monoton fallend, so ist $\lim a_n = \inf\{a_n \mid n \in \mathbb{N}\}.$

Satz 2.10 (Vergleichssätze)

- 1. Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} . Wenn $a_n \leq b_n$ für alle $n \in \mathbb{N}$, dann folgt $\lim a_n \leq \lim b_n$.
- 2. Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ Folgen in \mathbb{R} , und es gelte $a_n \leq b_n \leq c_n$ für alle $n\in\mathbb{N}$. Falls (a_n) und (c_n) beide konvergent sind und $\lim a_n = \lim c_n$, dann ist auch (b_n) konvergent, und $\lim b_n = \lim a_n = \lim c_n$.

Definition 2.11 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann heißt $L \in \mathbb{K}$ ein Häufungspunkt von (a_n) , falls es eine Teilfolge $(a_{\varphi(n)})$ von (a_n) gibt mit $\lim a_{\varphi(n)} = L$.

Wegen Satz 2.7, 3. hat eine konvergente Folge genau einen Häufungspunkt, nämlich ihren Grenzwert.

Definition 2.12 Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge in \mathbb{R} . Für $n\in\mathbb{N}$ definiere die Menge

$$A_n := \{a_m \mid m \ge n\}, \quad \text{so da}\beta \quad A_1 \supset A_2 \supset A_3 \supset \dots$$

Definiere $\overline{s}_n := \sup(A_n)$ und $\underline{s}_n := \inf(A_n)$. Dann ist (\overline{s}_n) monoton fallend und (\underline{s}_n) monoton steigend, und beide Folgen sind beschränkt. Der Limes Superior und der Limes Inferior von (a_n) sind dann definiert als

$$\overline{\lim} \ a_n := \overline{\sup}_n, \quad und \quad \underline{\lim} \ a_n := \overline{\lim}_n.$$

Satz 2.13 Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge in \mathbb{R} . Dann gilt:

- 1. $\lim a_n \leq \overline{\lim} a_n$.
- 2. Falls $\underline{\lim} \ a_n = \overline{\lim} \ a_n$, dann ist (a_n) konvergent, und $\lim a_n = \underline{\lim} \ a_n = \overline{\lim} \ a_n$.
- 3. $\underline{\lim} \ a_n \ und \ \overline{\lim} \ a_n \ sind \ H\ddot{a}ufungspunkte \ von \ (a_n)$.
- 4. Ist $L \in \mathbb{R}$ ein Häufungspunkt von (a_n) , so ist $\underline{\lim} \ a_n \le L \le \overline{\lim} \ a_n$. (D.h.: $\underline{\lim} \ a_n$ bzw. $\overline{\lim} \ a_n$ sind der kleinste bzw. der größte Häufungspunkt von (a_n) .)

Satz 2.14 (Satz von Bolzano-Weierstraß) Sei $(x_n)_{n\in\mathbb{N}}$ eine beschränkte Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann hat (x_n) eine konvergente Teilfolge.

Definition 2.15 $\hat{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$ ist eine geordnete Menge mit der Ordnung: $-\infty < x < \infty$ für alle $x \in \mathbb{R}$.

Satz 2.16 Sei $X \subset \hat{\mathbb{R}}$ eine beliebige Teilmenge. Dann hat X ein Infimum und ein Supremum in $\hat{\mathbb{R}}$.

Definition 2.17 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} . Man sagt $\lim a_n = \infty$, falls gilt:

$$\forall C \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \ge n_0 \Longrightarrow a_n > C.$$

Man sagt $\lim a_n = -\infty$, falls gilt:

$$\forall C \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \ge n_0 \Longrightarrow a_n < C.$$

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} . Definiert man die Mengen $A_n\subset\mathbb{R}$ wie in Definition 2.12, so existiert $\overline{s}_n:=\sup(A_n)\in\hat{\mathbb{R}}$ und $\underline{s}_n:=\inf(A_n)\in\hat{\mathbb{R}}$. Daher existieren $\underline{\lim}\ a_n:=\underline{\lim}\ \underline{s}_n$ und $\overline{\lim}\ a_n:=\overline{s}_n$ in $\hat{\mathbb{R}}$, selbst wenn (a_n) nicht beschränkt ist.

Satz 2.18 Sei $(a_n)_{n\in\mathbb{N}}$ eine beliebige Folge in \mathbb{R} . Dann gelten alle Folgerungen von Satz 2.13 auch für den Fall $\underline{\lim} a_n$, $\overline{\lim} a_n \in \hat{\mathbb{R}}$.

Außerdem sind $\underline{\lim} \ a_n$, $\overline{\lim} \ a_n \in \hat{\mathbb{R}}$ Häufungspunkte, d.h. ist $\underline{\lim} \ a_n = \pm \infty$, oder $\overline{\lim} \ a_n = \pm \infty$, so gibt es eine Teilfolge von (a_n) , die gegen $\pm \infty$ konvergiert.

Satz 2.19 (Grenzwertsätze) Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ Folgen in \mathbb{R} . Dann gilt:

- 1. Ist $\lim a_n = \infty$ und $\underline{\lim} b_n > -\infty$, so ist $\lim (a_n + b_n) = \infty$.
- 2. Ist $\lim a_n = -\infty$ und $\overline{\lim} b_n < \infty$, so ist $\lim (a_n + b_n) = -\infty$.
- 3. Ist $\lim a_n = \pm \infty$ und $\underline{\lim} b_n > 0$, so ist $\lim (a_n b_n) = \pm \infty$.
- 4. Ist $\lim a_n = \pm \infty$ und $\overline{\lim} b_n < 0$, so ist $\lim (a_n b_n) = \mp \infty$.
- 5. Ist $\lim |a_n| = \infty$, so ist $\lim \frac{1}{a_n} = 0$.

Definition 2.20 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . (a_n) heißt Cauchyfolge, falls gilt:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}, \forall n, m \in \mathbb{N}, \ n, m \ge n_0 \Longrightarrow |a_n - a_m| < \varepsilon.$$

Satz 2.21 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} . Dann sind folgende Aussagen äquivalent:

- 1. (a_n) konvergiert,
- 2. (a_n) ist eine Cauchyfolge.

Definition 2.22 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} . Die zu (a_n) gehörige Reihe ist die Folge $(s_n)_{n\in\mathbb{N}}$, wobei $s_n:=\sum_{k=1}^n a_k$. Man sagt, die Reihe konvergiert, falls (s_n) konvergiert. Den Grenzwert nennt man den Wert der Reihe, und er wird als $\sum_{n=1}^{\infty} a_n$ bezeichnet.

Satz 2.23 Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen in in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , und sei $c \in \mathbb{K}$. Dann gilt:

1. Falls $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergieren, dann auch $\sum_{n=1}^{\infty} (a_n + b_n)$, und es gilt:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

2. Falls $\sum_{n=1}^{\infty} a_n$ konvergiert, dann auch $\sum_{n=1}^{\infty} (c \ a_n)$, und es gilt:

$$\sum_{n=1}^{\infty} (c \ a_n) = c \ \sum_{n=1}^{\infty} a_n.$$

Satz 2.24 (Cauchykriterium) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann sind folgende Aussagen äquivalent:

- 1. $\sum_{n=1}^{\infty} a_n$ konvergiert,
- 2. $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n, k \in \mathbb{N}, \ n \ge n_0 \Longrightarrow \left| \sum_{j=n+1}^{n+k} a_j \right| < \varepsilon.$

Satz 2.25 (Nullfolgenkriterium) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann ist (a_n) eine Nullfolge.

Satz 2.26 (Geometrische Reihe) $Sei\ q \in \mathbb{K}$, $wobei\ \mathbb{K} = \mathbb{R}$ $oder\ \mathbb{C}$. $Dann\ heißt\ die\ Reihe\ \sum_{n=0}^{\infty}q^n = 1 + q + q^2 + q^3 + \dots\ die\ Geometrische\ Reihe.$

9

- 1. Falls |q| < 1, dann konvergiert die Geometrische Reihe, und $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$.
- 2. Falls $|q| \ge 1$, dann divergiert die Geometrische Reihe.

Satz 2.27 1. Die Harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert.

2. Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^k}$ konvergiert für alle $k \in \mathbb{N}$ mit $k \geq 2$.

Satz 2.28 (Leibnitzkriterium) Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Nullfolge. Dann konvergiert die alternierende Reihe $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - + \dots$

Satz 2.29 (Absoluter Konvergenztest) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Falls $\sum_{n=1}^{\infty} |a_n|$ konvergiert, so konvergiert auch $\sum_{n=1}^{\infty} a_n$.

Definition 2.30 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt absolut konvergent, falls $\sum_{n=1}^{\infty} |a_n|$ konvergiert. Sie heißt relativ konvergent oder bedingt konvergent, falls $\sum_{n=1}^{\infty} a_n$ konvergiert, aber $\sum_{n=1}^{\infty} |a_n|$ divergiert.

Demnach besagt also der Absolute Vergleichstest, daß jede absolut konvergente Folge auch konvergent ist.

Satz 2.31 (direktes Vergleichskriterium) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und $(b_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} mit $b_n \geq 0$ für alle $n \in \mathbb{N}$.

- 1. Falls $|a_n| \le b_n$ für alle $n \in \mathbb{N}$ und $\sum_{n=1}^{\infty} b_n$ konvergiert, so konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.
- 2. Falls $|a_n| \ge b_n$ für alle $n \in \mathbb{N}$ und $\sum_{n=1}^{\infty} b_n$ divergiert, dann divergiert auch $\sum_{n=1}^{\infty} |a_n|$.

Satz 2.32 (Quotientenvergleichstest) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und $(b_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} mit $b_n > 0$ für alle $n \in \mathbb{N}$.

- 1. Falls $\overline{\lim} \frac{|a_n|}{b_n} < \infty$ und $\sum_{n=1}^{\infty} b_n$ konvergiert, so konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.
- 2. Falls $\underline{\lim} \frac{|a_n|}{b_n} > 0$ und $\sum_{n=1}^{\infty} b_n$ divergiert, dann divergiert auch $\sum_{n=1}^{\infty} |a_n|$.

Satz 2.33 (Wurzelkriterium) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} .

- 1. Falls $\overline{\lim} \sqrt[n]{|a_n|} < 1$, dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.
- 2. Falls $\overline{\lim} \sqrt[n]{|a_n|} > 1$, dann divergiert $\sum_{n=1}^{\infty} a_n$.

Satz 2.34 (Quotientenkriterium) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} mit $a_n \neq 0$ für alle $n \in \mathbb{N}$.

1. Falls
$$\overline{\lim} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
, dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

2. Falls
$$\underline{\lim} \left| \frac{a_{n+1}}{a_n} \right| > 1$$
, dann divergiert $\sum_{n=1}^{\infty} a_n$.

Definition 2.35 Sei $(a_n)_{n\in\mathbb{N}_0}$ eine Folge in $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} . Die zu dieser Folge gehörige Potenzreihe ist die Reihe

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

Definition 2.36 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Der Konvergenzradius ρ der zugehörigen Potenzreihe ist definiert als

$$\rho := \begin{cases} \infty, & falls & \overline{\lim} \sqrt[n]{|a_n|} = 0, \\ 0, & falls & \overline{\lim} \sqrt[n]{|a_n|} = \infty, \\ \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} & sonst. \end{cases}$$

Satz 2.37 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , und sei ρ der Konvergenzradius der zugehörigen Potenzreihe.

- 1. Für alle $x \in \mathbb{K}$ mit $|x| < \rho$ konvergiert $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$ absolut.
- 2. Für alle $x \in \mathbb{K}$ mit $|x| > \rho$ divergiert $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$

Definition 2.38 Die Potenzreihe $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$ heißt Exponentialreihe. Sie hat Konvergenzradius $\rho = \infty$, d.h. sie konvergiert für alle $x \in \mathbb{K}$. Wir definieren den Wert dieser Reihe als

$$\exp(x) := \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots$$

Definition 2.39 Sei $x \in \mathbb{R}$, $x \geq 0$. Eine Dezimalentwicklung von x ist eine Folge $(z_n)_{n=n_0}^{\infty}$ in $\mathcal{Z} := \{0, 1, \dots, 9\}$ für ein $n_0 \in \mathbb{Z}$, so $da\beta$

$$x = \sum_{n=n_0}^{\infty} z_n \ 10^{-n}, \quad z_{n_0} \neq 0.$$

Satz 2.40 1. Jedes $x \in \mathbb{R}$, $x \ge 0$ hat eine Dezimalentwicklung.

2. Jedes $x \in \mathbb{R}$, $x \geq 0$ hat höchstens zwei Dezimalentwicklungen. In der Tat hat $x \in \mathbb{R}$ zwei Dezimalentwicklungen genau dann, wenn $\exists k \in \mathbb{N}$ mit $10^k x \in \mathbb{N}$. Sind in diesem Falle

$$x = \sum_{n=n_0}^{\infty} z_n \ 10^{-n} = \sum_{n=n_0}^{\infty} z'_n \ 10^{-n}$$

die beiden Dezimalentwicklungen von x, so gibt es ein $k \in \mathbb{Z}$, $k \geq n_0$ mit der Eigenschaft:

- (a) $z_n = z'_n$ für alle n < k.
- (b) $z_k = z'_k + 1$.
- (c) für alle n > k gilt: $z_n = 0$ und $z'_n = 9$.

Satz 2.41 (Cauchyprodukt) Seien $(a_n)_{n\in\mathbb{N}_0}$ und $(b_n)_{n\in\mathbb{N}_0}$ Folgen in $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} , so daß die zugehörigen Reihen absolut konvergieren. Definiere $c_n:=\sum_{i+j=n}a_ib_j=\sum_{i=0}^na_ib_{n-i}$ für $n\in\mathbb{N}_0$.

Dann ist $\sum_{n=0}^{\infty} c_n$ absolut konvergent, und es gilt:

$$\left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} c_n.$$

Satz 2.42 Für alle $x, y \in \mathbb{C}$ gilt: $\exp(x + y) = \exp(x) \exp(y)$.

Satz 2.43 (Umordnungssatz) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , so da β die zugehörige Reihe absolut konvergiert. Dann konvergiert jede Umordnung der Reihe gegen den gleichen Wert, d.h.: Ist $\varphi : \mathbb{N} \to \mathbb{N}$ eine bijektive Abbildung, so gilt:

$$\sum_{n=1}^{\infty} a_{\varphi(n)} = \sum_{n=1}^{\infty} a_n.$$

Bemerkung 2.44 Ist $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} so daß die zugehörige Reihe bedingt konvergiert, so kann man zeigen, daß es für jedes $C \in \mathbb{R}$ eine Umordnung gibt, so daß $\sum_{n=1}^{\infty} a_{\varphi(n)} = C$. D.h.: Durch Umordnung einer bedingt konvergenten Reihe kann jeder Wert angenommen werden.

3 Stetigkeit

Definition 3.1 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Ein Element $a \in \mathbb{K}$ heißt Häufungspunkt von X, falls es eine Folge $(x_n)_{n \in \mathbb{N}}$ in X gibt, so daß $\lim x_n = a$ und $x_n \neq a$ für alle $n \in \mathbb{N}$.

Ist $X \subset \mathbb{R}$, so sagt man, $da\beta \infty$ ein Häufungspunkt von X ist, falls X nicht nach oben beschränkt ist.

Ist $X \subset \mathbb{R}$, so sagt man, da $\beta - \infty$ ein Häufungspunkt von X ist, falls X nicht nach unten beschränkt ist.

Definition 3.2 Sei $X \subset \mathbb{K}$ und $f: X \to \mathbb{K}$ eine Funktion. Sei $a \in \mathbb{K}$ ein Häufungspunkt von X. Man sagt $\lim_{x\to a} f(x)$ existiert, falls

$$\exists L \in \mathbb{K}, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X, 0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon.$$

In diesem Falle nennt man L den Grenzwert, und schreibt $L = \lim_{x \to a} f(x)$.

Falls $\lim_{x\to a} f(x)$ existiert, so ist der Grenzwert eindeutig bestimmt.

Definition 3.3 *Sei* $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$. *Man sagt:*

- 1. $\lim_{x\to a} f(x) = \infty$, falls $\forall C \in \mathbb{R}, \exists \delta > 0, \ \forall x \in X, 0 < |x-a| < \delta \Longrightarrow f(x) > C$.
- 2. $\lim_{x\to a} f(x) = -\infty$, falls $\forall C \in \mathbb{R}, \exists \delta > 0, \ \forall x \in X, 0 < |x-a| < \delta \Longrightarrow f(x) < C$.
- 3. $\lim_{x\to\infty} f(x) = L$, falls $\forall \varepsilon > 0, \exists C \in \mathbb{R}, \ \forall x \in X, x > C \Longrightarrow |f(x) L| < \varepsilon$.
- 4. $\lim_{x \to -\infty} f(x) = L$, falls $\forall \varepsilon > 0, \exists C \in \mathbb{R}, \ \forall x \in X, x < C \Longrightarrow |f(x) L| < \varepsilon$.
- 5. $\lim_{x\to\infty} f(x) = \infty$, falls $\forall C_1 \in \mathbb{R}, \exists C_2 \in \mathbb{R}, \ \forall x \in X, x > C_2 \Longrightarrow f(x) > C_1$.
- 6. $\lim_{x\to\infty} f(x) = -\infty$, falls $\forall C_1 \in \mathbb{R}, \exists C_2 \in \mathbb{R}, \ \forall x \in X, x > C_2 \Longrightarrow f(x) < C_1$.
- 7. $\lim_{x \to -\infty} f(x) = \infty$, falls $\forall C_1 \in \mathbb{R}, \exists C_2 \in \mathbb{R}, \ \forall x \in X, x < C_2 \Longrightarrow f(x) > C_1$.
- 8. $\lim_{x \to -\infty} f(x) = -\infty$, falls $\forall C_1 \in \mathbb{R}, \exists C_2 \in \mathbb{R}, \ \forall x \in X, x < C_2 \Longrightarrow f(x) < C_1$.

Satz 3.4 Sei $X \subset \mathbb{K}$, $f: X \to \mathbb{K}$ und $a \in \mathbb{K}$ ein Häufungspunkt von X, und sei $L \in \mathbb{K}$. Dann sind folgende Aussagen äquivalent:

- 1. $L = \lim_{x \to a} f(x)$
- 2. Für jede Folge $(x_n)_{n\in\mathbb{N}}$ in X mit $\lim x_n = a$ und $x_n \neq a$ für alle $n \in \mathbb{N}$ gilt: $\lim f(x_n) = L$.

Diese Äquivalenz gilt auch, wenn $X \subset \mathbb{R}$ und $a = \pm \infty$ oder $L = \pm \infty$.

Definition 3.5 Sei $X \subset \mathbb{R}$. Dann heißt $a \in \mathbb{R}$

- 1. rechtsseitiger Häufungspunkt von X, falls a ein Häufungspunkt von $X \cap (a, \infty)$ ist,
- 2. linksseitiger Häufungspunkt von X, falls a ein Häufungspunkt von $X \cap (-\infty, a)$ ist,
- 3. beidseitiger Häufungspunkt von X, falls a sowohl ein rechtsseitiger als auch ein linksseitiger Häufungspunkt von X ist.

Definition 3.6 Seien X, Y beliebige Mengen und $f: X \to Y$ eine Funktion. Sei $Z \subset X$. Die Einschränkung von f auf Z ist die Funktion $f|_Z: Z \to Y$ mit $f|_Z(x) = f(x)$ für alle $x \in Z$. (D.h. $f|_Z$ ist die gleiche Funktion mit verkleinertem Definitionsbereich).

Definition 3.7 Sei $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$.

1. Ist $a \in \mathbb{R}$ ein linksseitiger Häufungspunkt von X, so ist

$$\lim_{x \to a^{-}} f(x) := \lim_{x \to a} f|_{X \cap (-\infty, a)}(x).$$

2. Ist $a \in \mathbb{R}$ ein rechtsseitiger Häufungspunkt von X, so ist

$$\lim_{x \to a^+} f(x) := \lim_{x \to a} f|_{X \cap (a,\infty)}(x).$$

Satz 3.8 Sei $X \subset \mathbb{R}$ und $a \in \mathbb{R}$ ein linksseitiger (bzw. rechtsseitiger) Häufungspunkt von X. Dann sind folgende Aussagen äquivalent:

- 1. $\lim_{x\to a^{-}} f(x) = L$ (bzw. $\lim_{x\to a^{+}} f(x) = L$)
- 2. Für jede Folge $(x_n)_{n\in\mathbb{N}}$ in X mit $\lim x_n = a$ und $x_n < a$ (bzw. $x_n > a$) gilt: $\lim f(x_n) = L$.

Satz 3.9 Sei $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ eine Funktion und $a \in \mathbb{R}$ ein beidseitiger Häufungspunkt von X. Dann existiert $\lim_{x\to a} f(x)$ genau dann, wenn $\lim_{x\to a^-} f(x)$ und $\lim_{x\to a^+} f(x)$ beide existieren und gleich sind. In diesem Falle ist $\lim_{x\to a} f(x) = \lim_{x\to a^{\pm}} f(x)$.

Definition 3.10 Sei $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ eine Funktion und $a \in \mathbb{R}$ ein Häufungspunkt von X.

 $L \in \mathbb{R}$ heißt Häufungswert von f bei a, falls es eine Folge $(x_n)_{n \in \mathbb{N}}$ in X gibt mit $\lim x_n = a$, $x_n \neq a$ für alle $n \in \mathbb{N}$ und $L = \lim f(x_n)$. Wir definieren

$$\overline{\lim}_{x\to a} f(x) := \sup\{L \mid L \text{ ist H\"{a}} ufungswert von } f \text{ bei } a\} \in \hat{\mathbb{R}},$$
$$\underline{\lim}_{x\to a} f(x) := \inf\{L \mid L \text{ ist H\"{a}} ufungswert von } f \text{ bei } a\} \in \hat{\mathbb{R}}.$$

Satz 3.11 Sei $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ eine Funktion und $a \in \mathbb{R}$ ein Häufungspunkt von X. Dann gilt $\underline{\lim}_{x \to a} f(x) \leq \overline{\lim}_{x \to a} f(x)$.

Außerdem existiert $\lim_{x\to a} f(x)$ genau dann, wenn $\underline{\lim}_{x\to a} f(x) = \overline{\lim}_{x\to a} f(x)$, und in diesem Fall ist $\lim_{x\to a} f(x) = \underline{\lim}_{x\to a} f(x) = \overline{\lim}_{x\to a} f(x)$.

Bemerkung 3.12 Der vorstehende Satz gilt auch, falls $a = \pm \infty$ oder falls $\underline{\lim}_{x \to a}, \overline{\lim}_{x \to a} = \pm \infty$.

Satz 3.13 (Grenzwertsätze; vgl Satz 2.8) $Sei\ X \subset \mathbb{K}$, $wobei\ \mathbb{K} = \mathbb{R}$ $oder\ \mathbb{C}$, $und\ seien\ f,g: X \to \mathbb{K}$ Funktionen. $Sei\ a \in \mathbb{K}$ $ein\ H\"{a}ufungspunkt\ von\ X$. $Dann\ gilt:$

- 1. $\lim_{x\to a} (f \pm g)(x) = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$,
- 2. $\lim_{x\to a} (fg)(x) = (\lim_{x\to a} f(x))(\lim_{x\to a} g(x)),$
- 3. $\lim_{x\to a} (cf)(x) = c \lim_{x\to a} f(x)$
- 4. Falls $g(x) \neq 0$ für alle $x \in X$ und $\lim_{x \to a} g(x) \neq 0$, so ist $\lim_{x \to a} \frac{f}{g}(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$.

Bemerkung 3.14 Es gelten auch die Grenzwertsätze für Grenzwerte $\pm \infty$. Diese sind vollkommen analog zu denen in Satz 2.19

Definition 3.15 Sei $X \subset \mathbb{K}$ mit $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , sei $f : X \to \mathbb{K}$ eine Funktion und sei $a \in X$. Dann heißt f stetig in a, falls qilt:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in X, |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon.$$

f heißt stetig, falls f stetig in a ist für alle $a \in X$.

Satz 3.16 Sei $X \subset \mathbb{K}$ mit $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , sei $f: X \to \mathbb{K}$ eine Funktion und sei $a \in X$. Dann qilt:

1. Falls a ein Häufungspunkt von X ist, so ist f stetig in a genau dann, wenn $\lim_{x\to a} f(x) = f(a)$.

- 2. Falls a kein Häufungspunkt von X ist, dann ist f stetig in a (vgl. Hausaufgabe 4.d, Blatt 9).
- **Satz 3.17** Sei $X \subset \mathbb{K}$ mit $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , sei $f : X \to \mathbb{K}$ eine Funktion und sei $a \in X$. Dann sind folgende Aussagen äquivalent:
 - 1. f ist stetig in a,
 - 2. Für jede Folge $(x_n)_{n\in\mathbb{N}}$ in X mit $\lim x_n = a$ gilt: $f(a) = \lim f(x_n)$.
- D.h.: Eine Funktion ist stetig genau dann, wenn $f(\lim x_n) = \lim f(x_n)$, d.h. falls f mit Grenzwerten vertauschbar ist.
- **Satz 3.18** Sei $X \subset \mathbb{K}$ mit $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , sei $c \in \mathbb{K}$ und $a \in X$.
 - 1. Sind $f, g: X \to \mathbb{K}$ stetig in a, dann sind auch $f \pm g$, cf, fg und $\frac{f}{g}$ stetig in a (letzteres nur, falls $g(x) \neq 0$ für alle $x \in X$).
 - 2. Sind $f, g: X \to \mathbb{K}$ stetig in a, dann auch $f \lor g$ und $f \land g$, wobei $(f \lor g)(x) := \max(f(x), g(x))$ und $(f \land g)(x) := \min(f(x), g(x))$.
 - 3. Seien $f: X \to \mathbb{K}$ und $g: Y \to \mathbb{K}$, wobei $Y \subset \mathbb{K}$ so gewählt ist, da β $f(x) \in Y$ für alle $x \in X$. Falls f stetig in $a \in X$ und g stetig in $f(a) \in Y$ ist, dann ist auch $(g \circ f): X \to \mathbb{K}$ stetig in a.

Definition 3.19 Sei $X \subset \mathbb{K}$ mit $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann heißt X

- 1. abgeschlossen, falls gilt: Ist $a \in \mathbb{K}$ ein Häufungspunkt von X, dann ist $a \in X$.
- 2. offen, falls $\mathbb{K}\backslash X$ abgeschlossen ist.
- 3. kompakt, falls gilt: Für jede Folge $(x_n)_{n\in\mathbb{N}}$ in X existiert eine konvergente Teilfolge $(x_{\varphi(n)})$ mit $\lim x_{\varphi(n)} \in X$.

Definition 3.20 Sei $x \in \mathbb{K} = \mathbb{R}$ oder \mathbb{C} und r > 0. Dann ist $B_r(x) := \{y \in \mathbb{K} \mid |y - x| < r\}$.

- **Satz 3.21** Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann sind folgende Aussagen äquivalent:
 - 1. X ist offen,
 - 2. $\forall x \in X, \exists \varepsilon > 0, B_{\varepsilon}(x) \subset X$.
- **Satz 3.22** Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann sind folgende Aussagen äquivalent:
 - 1. X ist kompakt,
 - 2. X ist beschränkt und abgeschlossen.

Definition 3.23 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann heißt $Y \subset X$

1. offen in X oder offen relativ zu X, falls es eine offene Teilmenge $U \subset \mathbb{K}$ gibt, so da $\beta Y = X \cap U$.

- 2. abgeschlossen in X oder abgeschlossen relativ zu X, falls es eine abgeschlossene Teilmenge $A \subset \mathbb{K}$ gibt, so da $\beta Y = X \cap A$.
- **Satz 3.24** Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und $Y \subset X$. Dann sind folgende Aussagen äquivalent:
 - 1. Y ist offen in X,
 - 2. $\forall y \in Y, \exists \varepsilon > 0, B_{\varepsilon}(y) \cap X \subset Y$.

Definition 3.25 Seien X, Y beliebige Mengen und $f: X \to Y$ eine Funktion.

- 1. Für $Z \subset Y$ heißt $f^{-1}(Z) := \{x \in X \mid f(x) \in Z\} \subset X$ das Urbild von Z (unter f).
- 2. Für $W \subset X$ heißt $f(W) := \{f(x) \mid x \in W\} \subset Y$ das Bild von W (unter f).

Satz 3.26 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und $f : X \to \mathbb{K}$ eine Funktion. Dann sind folgende Aussagen äquivalent:

- 1. f ist stetig,
- 2. Ist $U \subset \mathbb{K}$ offen, dann ist $f^{-1}(U)$ offen in X.

Das heißt: f ist stetig genau dann, wenn Urbilder offener Mengen offen sind.

Satz 3.27 Sei $X \subset \mathbb{K}$ kompakt, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und $f: X \to \mathbb{K}$ eine stetige Funktion. Dann ist f(X) kompakt.

Das heißt: Stetige Bilder kompakter Mengen sind kompakt.

Definition 3.28 Sei $X \subset \mathbb{R}$ und $f: X \to \mathbb{R}$ eine Funktion.

- 1. $x_0 \in \mathbb{R}$ heißt absolutes Maximum von f (bzw. absolutes Minimum von f), falls gilt: $\forall x \in X, f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$).
- 2. $x_0 \in \mathbb{R}$ heißt echtes absolutes Maximum von f (bzw. echtes absolutes Minimum von f), falls gilt: $\forall x \in X, x \neq x_0 \Rightarrow f(x) < f(x_0)$ (bzw. $f(x) > f(x_0)$).
- 3. $x_0 \in \mathbb{R}$ heißt relatives oder lokales Maximum von f (bzw. relatives oder lokales Minimum von f), falls $\exists \varepsilon > 0$, so daß x_0 absolutes Maximum (bzw. absolutes Minimum) von $f|_{B_{\varepsilon}(x) \cap X}$ ist.
- 4. $x_0 \in \mathbb{R}$ heißt echtes relatives oder echtes lokales Maximum von f (bzw. echtes relatives oder echtes lokales Minimum von f), falls $\exists \varepsilon > 0$, so daß x_0 echtes absolutes Maximum (bzw. echtes absolutes Minimum) von $f|_{B_{\varepsilon}(x)\cap X}$ ist.

Satz 3.29 Sei $X \subset \mathbb{R}$ kompakt und $f: X \to \mathbb{R}$ stetig. Dann hat f ein absolutes Maximum und ein absolutes Minimum.

Satz 3.30 (Zwischenwertsatz) Sei $f:[a,b] \to \mathbb{R}$ eine stetige Funktion, und sei $\eta \in (f(a), f(b)) \cup (f(b), f(a))$. Dann gibt es ein $\xi \in (a,b)$ mit $f(\xi) = \eta$.

Satz 3.31 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig. Dann ist $f(I) \subset \mathbb{R}$ ebenfalls ein Intervall. Das heißt: Stetige Bilder von Intervallen sind Intervalle.

Satz 3.32 Sei $X \subset \mathbb{R}$ und $f: X \to \mathbb{R}$ eine monotone Funktion. Dann gilt:

- 1. Ist $a \in X$ ein linksseitiger Häufungspunkt von X, so existiert $f(a^-) := \lim_{x \to a^-} f(x)$.

 Falls f monoton steigt, so gilt: $f(a^-) \le f(a)$ und $f(x) \le f(a^-)$ für alle $x \in X$ mit $x \le a$.

 Falls f monoton fällt, so gilt: $f(a^-) \ge f(a)$ und $f(x) \ge f(a^-)$ für alle $x \in X$ mit $x \le a$.
- 2. Ist $a \in X$ ein rechtsseitiger Häufungspunkt von X, so existiert $f(a^+) := \lim_{x \to a^+} f(x)$.

 Falls f monoton steigt, so gilt: $f(a) \le f(a^+)$ und $f(a^+) \le f(x)$ für alle $x \in X$ mit $a \le x$.

 Falls f monoton fällt, so gilt: $f(a) \ge f(a^+)$ und $f(a^+) \ge f(x)$ für alle $x \in X$ mit $a \le x$.

Satz 3.33 Sei $X \subset \mathbb{R}$ und $f : X \to \mathbb{R}$ eine monotone Funktion. Dann ist die Menge $\{a \in X \mid f \text{ ist } \mathbf{nicht} \text{ stetig in } a\}$ abzählbar.

Satz 3.34 Sei $X \subset \mathbb{R}$ und $f: X \to \mathbb{R}$ streng monoton. Sei $Y := f(X) \subset \mathbb{R}$. Dann ist $f: X \to Y$ bijektiv, und die Umkehrfunktion $f^{-1}: Y \to X$ ist ebenfalls streng monoton.

Satz 3.35 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ streng monoton und stetig. Sei $J := f(I) \subset \mathbb{R}$. Dann ist $f^{-1}: J \to I$ ebenfalls stetig. (Außerdem ist $J \subset \mathbb{R}$ ein Intervall nach Satz 3.31 und f ist streng monoton nach Satz 3.34.)

Satz 3.36 Für jedes $n \in \mathbb{N}$ und $x \in \mathbb{R}$, $x \ge 0$ gibt es genau eine Zahl $\sqrt[n]{x} \ge 0$ mit $(\sqrt[n]{x})^n = \sqrt[n]{x^n} = x$. Die Funktion $f: [0, \infty) \to [0, \infty)$, $x \mapsto \sqrt[n]{x}$ ist streng monoton steigend und stetig.

Ist $n \in \mathbb{N}$ ungerade, so gibt es für jedes $x \in \mathbb{R}$ (also auch für x < 0) genau eine Zahl $\sqrt[n]{x} \in \mathbb{R}$ mit $(\sqrt[n]{x})^n = \sqrt[n]{x^n} = x$. In diesem Falle ist die Funktion $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto \sqrt[n]{x}$ streng monoton steigend und stetig.

Satz 3.37 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} und sei $\rho\in[0,\infty]$ der Konvergenzradius der zugehörigen Potenzreihe $\sum_{n=0}^{\infty}a_nx^n$. Dann ist die Funktion

$$f: B_{\rho}(0) \longrightarrow \mathbb{K}$$

$$x \longmapsto \sum_{n=0}^{\infty} a_n x^n$$

stetiq.

Satz 3.38 Die Funktion $\exp: \mathbb{R} \to \mathbb{R}$, $\exp(x) := \sum_{n=0}^{\infty} \frac{1}{n!} x^n$ ist streng monoton steigend und stetig. Es gilt: $\lim_{x\to\infty} \exp(x) = \infty$ und $\lim_{x\to-\infty} \exp(x) = 0$. Daher ist $\exp(\mathbb{R}) = (0,\infty)$.

Definition 3.39 Die Umkehrfunktion der Exponentialfunktion heißt natürlicher Logarithmus und wird als $\ln:(0,\infty)\to\mathbb{R}$ bezeichnet.

Also ist ln charakterisiert durch die Gleichungen $\ln(\exp(x)) = x$ für alle $x \in \mathbb{R}$ und $\exp(\ln(x)) = x$ für alle $x \in (0, \infty)$.

Satz 3.40 1. $\ln 1 = 0$,

- 2. $\ln(xy) = \ln x + \ln y$ für alle $x, y \in \mathbb{R}$,
- 3. $\ln:(0,\infty)\to\mathbb{R}$ ist stetig und streng monoton steigend,

4. $\lim_{x\to 0} \ln x = -\infty$ und $\lim_{x\to \infty} \ln x = \infty$.

Definition 3.41 Seien $a, p \in \mathbb{R}$, a > 0. Dann ist $a^p := \exp(p \ln a)$.

Satz 3.42 Für alle $a, b, p, q \in \mathbb{R}$ mit a, b > 0 gilt:

1.
$$a^0 = 1$$
, $a^1 = a$, $1^p = 1$,

2.
$$a^{p+q} = a^p a^q$$

3.
$$a^{-p} = \frac{1}{a^p}$$

4.
$$(a^p)^q = a^{pq}$$
.

$$5. (ab)^p = a^p b^p,$$

6. Für $n, m \in \mathbb{N}$ gilt:

$$a^{\frac{n}{m}} = \sqrt[m]{a^n} = \left(\sqrt[m]{a}\right)^n, \quad und \quad a^{-\frac{n}{m}} = \frac{1}{\sqrt[m]{a^n}} = \frac{1}{\left(\sqrt[m]{a}\right)^n},$$

7. $\exp(p) = e^p$, wobei $e := \exp(1)$.

Satz 3.43 1. Sei $p \in \mathbb{R}$. Die Potenzfunktion mit Exponent p ist gegeben durch $f:(0,\infty)\to\mathbb{R}, \ x\mapsto x^p$ und ist stetig. Ist $p\neq 0$, so ist $f((0,\infty))=(0,\infty)$. Falls p>0, so ist f streng monoton steigend; falls p<0, so ist f streng monoton fallend.

- 2. Sei a > 0. Die Exponentialfunktion mit Basis a ist gegeben durch $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto a^x$ und ist stetig. Falls $a \neq 1$, so ist $f(\mathbb{R}) = (0, \infty)$.
- 3. Falls a > 1, so ist $(x \mapsto a^x)$ streng monoton steigend, and $\lim_{x \to -\infty} a^x = 0$, $\lim_{x \to \infty} a^x = \infty$.
- 4. Falls 0 < a < 1, so ist $(x \mapsto a^x)$ streng monoton fallend, und $\lim_{x \to -\infty} a^x = \infty$, $\lim_{x \to \infty} a^x = 0$.

Definition 3.44 Sei $a \in \mathbb{R}$, a > 0, $a \neq 1$. Die Umkehrfunktion der Exponentialfunktion a^x heißt Logarithmusfunktion zur Basis a und wird mit $\log_a : (0, \infty) \to \mathbb{R}$ bezeichnet.

Also ist \log_a charakterisiert durch die Gleichungen $\log_a(a^x) = x$ für alle $x \in \mathbb{R}$ und $a^{\log_a(x)} = x$ für alle $x \in (0, \infty)$.

Satz 3.45 Sei $a \in \mathbb{R}$, a > 0, $a \neq 1$. Dann gilt für alle $x, y, p \in \mathbb{R}$ mit p > 0:

1.
$$\log_a x = \frac{\ln x}{\ln a}$$
; insbesondere $\log_e x = \ln x$.

$$2. \log_a(xy) = \log_a x + \log_a y.$$

3.
$$\log_a(x^p) = p \log_a x$$
.

4.
$$\log_a:(0,\infty)\to\mathbb{R}$$
 ist stetig.

- 5. Falls a > 1, so ist $\lim_{x \to -\infty} \log_a x = -\infty$ und $\lim_{x \to \infty} \log_a x = \infty$. Außerdem ist \log_a streng monoton steigend.
- 6. Falls 0 < a < 1, so ist $\lim_{x \to -\infty} \log_a x = \infty$ und $\lim_{x \to \infty} \log_a x = -\infty$. Außerdem ist \log_a streng monoton fallend.

Definition 3.46 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Eine Funktion $f: X \to \mathbb{K}$ heißt gleichmäßig stetig, falls gilt:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in X, |y - x| < \delta \Longrightarrow |f(y) - f(x)| < \varepsilon.$$

Satz 3.47 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , and $f: X \to \mathbb{K}$ eine gleichmäßig stetige Funktion. Dann ist f stetig.

Satz 3.48 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , eine kompakte Teilmenge, und sei $f : X \to \mathbb{K}$ eine stetige Funktion. Dann ist f auch gleichmäßig stetig.

(D.h.: Auf kompakten Teilmengen ist gleichmäßige Stetigkeit und Stetigkeit äquivalent.)

4 Differenzierbarkeit

Definition 4.1 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , $x_0 \in X$ ein Häufungspunkt von X, und $f: X \to \mathbb{K}$ eine Funktion. f heißt differenzierbar in x_0 falls der Grenzwert

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. In diesem Falle heißt $f'(x_0)$ die Ableitung von f in x_0 .

Weiterhin heißt f differenzierbar, falls f differenzierbar in x_0 ist für alle $x_0 \in X$. In diesem Falle heißt die Funktion $f': X \to \mathbb{K}$ die Ableitung von f.

Satz 4.2 Sei $X \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , $x_0 \in X$ ein Häufungspunkt, und $f : X \to \mathbb{K}$ eine Funktion. Falls f differenzierbar in x_0 ist, dann ist f auch stetig in x_0 .

Satz 4.3 Sei $X \subset \mathbb{K}$ und $x_0 \in X$ ein Häufungspunkt, $f, g: X \to \mathbb{K}$ zwei Funktionen, und $c \in \mathbb{K}$. Wenn f und g beide differenzierbar in x_0 sind, dann gilt:

- 1. $f \pm g$ ist differenzierbar in x_0 , und $(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$,
- 2. cf ist differenzierbar in x_0 , und $(cf)'(x_0) = c f'(x_0)$,
- 3. fg ist differenzierbar in x_0 , und $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$ (Produktregel oder Leibnizregel)
- 4. f/g differenzierbar in x_0 , und $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g(x_0)^2}$ (Quotientenregel). Dies gilt natürlich nur, wenn f/g definiert ist, d.h. falls $g(x) \neq 0$ für alle $x \in X$.

Satz 4.4 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und sei $\rho \in (0,\infty]$ der Konvergenzradius der zugehörigen Potenzreihe $\sum_{n=0}^{\infty} a_n x^n$. Dann gilt:

- 1. Die Potenzreihe $\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$ hat ebenfalls Konvergenzradius ρ .
- 2. Die Funktion

$$f: B_{\rho}(0) \longrightarrow \mathbb{K}$$

$$x \longmapsto \sum_{n=0}^{\infty} a_n x^n$$

ist differenzierbar.

3. Es gilt: $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$ für alle $x \in B_{\rho}(0)$.

Beispiel 4.5 Die Funktion exp : $\mathbb{K} \to \mathbb{K}$ ist differenzierbar, und es gilt $\exp'(x) = \exp(x)$ für alle $x \in \mathbb{K}$.

Satz 4.6 Seien $X, Y \subset \mathbb{K}$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} , und seien $f: X \to Y$ und $g: Y \to \mathbb{K}$ zwei Funktionen. Falls f differenzierbar in $x_0 \in X$ und g differenzierbar in $y_0 := f(x_0)$ ist, dann ist auch $g \circ f: X \to \mathbb{K}$ differenzierbar in x_0 , und es gilt

$$(g \circ f)'(x_0) = g'(y_0)f'(x_0).$$
 (Kettenregel)

Satz 4.7 (Ableitung der Umkehrfunktion) Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine streng monotone, stetige Funktion. Sei $J := f(I) \subset \mathbb{R}$, und $f^{-1}: J \to I \subset \mathbb{R}$ die Umkehrfunktion von f. Sei $x_0 \in J$ und $y_0 := f^{-1}(x_0) \in I$. Wenn f differenzierbar in y_0 ist und $f'(y_0) \neq 0$, dann ist auch f^{-1} differenzierbar in x_0 , und es gilt

$$(f^{-1})'(x_0) = \frac{1}{f'(y_0)}.$$

Beispiel 4.8 Folgende Funktionen sind differenzierbar:

- 1. $\ln: (0, \infty) \to \mathbb{R}$, und es gilt: $\ln'(x) = \frac{1}{x}$.
- 2. $\log_a:(0,\infty)\to\mathbb{R}$ für festes $a>0,\ a\neq 1,\ und\ es\ gilt:\log_a'(x)=\frac{1}{\ln a\ x}$.
- 3. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = a^x$ für festes a > 0, und es gilt: $f'(x) = \ln a \ a^x$.
- 4. $f:(0,\infty)\to\mathbb{R},\ f(x)=x^p\ \text{für festes }p\in\mathbb{R},\ \text{und es gilt:}\ f'(x)=px^{p-1}.$

Definition 4.9 Sei $X \subset \mathbb{K}$ und $f: X \to \mathbb{K}$ eine Funktion. Ein Punkt $x_0 \in X$ heißt kritischer Punkt von f falls f differenzierbar in x_0 und $f'(x_0) = 0$ ist.

Satz 4.10 Sei $X \subset \mathbb{R}$ und $f: X \to \mathbb{R}$ eine Funktion. Sei $x_0 \in \mathbb{R}$ ein beidseitiger Häufungspunkt. Falls x_0 ein lokales Extremum (d.h. ein lokales Maximum oder ein lokales Minimum, cf. Definition 3.28) und f differenzierbar in x_0 ist, dann ist x_0 ein kritischer Punkt, d.h. $f'(x_0) = 0$.

Satz 4.11 (Satz von Rolle) Sei $f : [a,b] \to \mathbb{R}$ eine stetige Funktion, die in (a,b) differenzierbar ist, und es gelte f(a) = f(b). Dann hat f einen kritischen Punkt im Intervallinneren, d.h. $\exists \xi \in (a,b)$ mit $f'(\xi) = 0$.

Satz 4.12 (Mittelwertsätze) Seien $f, g : [a, b] \to \mathbb{R}$ zwei stetige Funktionen, die in (a, b) differenzierbar sind. Ferner sei $g'(x) \neq 0$ für alle $x \in (a, b)$. Dann gilt:

1. Es gibt ein $\xi \in (a,b)$ mit $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

2. Es gibt ein
$$\xi \in (a,b)$$
 mit $\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Satz 4.13 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine differenzierbare Funktion.

1. f ist monoton steigend genau dann, wenn $f'(x) \ge 0$ für alle $x \in I$.

2. f ist monoton fallend genau dann, wenn $f'(x) \leq 0$ für alle $x \in I$.

3. Wenn f'(x) > 0 für alle $x \in I$, dann ist f streng monoton steigend.

4. Wenn f'(x) < 0 für alle $x \in I$, dann ist f streng monoton fallend.

Satz 4.14 (Regeln von de l'Hôpital) Sei $I \subset \mathbb{R}$ ein Intervall und seien $f, g : I \to \mathbb{R}$ differenzierbare Funktionen. Sei $x_0 \in \hat{\mathbb{R}}$ ein Häufungspunkt von I (also $x_0 = \pm \infty$ ist möglich).

Falls $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existiert, und falls entweder

1. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, oder

2. $\lim_{x \to x_0} f(x) = \pm \infty \text{ und } \lim_{x \to x_0} g(x) = \pm \infty,$

dann gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Satz 4.15 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine n-mal differenzierbare Funktion, und sei $x_0 \in I$. Dann gibt es genau ein Polynom $T_n^{x_0}$ vom $Grad \leq n$ mit der Eigenschaft:

$$(T_n^{x_0})^{(k)}(x_0) = f^{(k)}(x_0)$$
 für $k = 0, \dots, n$.

Dieses Polynom ist durch die Formel

$$T_n^{x_0}(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

gegeben, und wird als das n-te Taylorpolynom von f entwickelt an der Stelle x_0 bezeichnet. Hierbei gilt die Konvention $f^{(0)} = f$.

Satz 4.16 (Satz von Taylor) $Sei\ I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine (n+1)-mal differenzierbare Funktion. Sei $T_n^{x_0}$ das n-te Taylorpolynom, und sei

$$R_n^{x_0}(x) := f(x) - T_n^{x_0}(x)$$

das n-te Restglied von f in x_0 . Dann gibt es für jedes $x \in I$, $x \neq x_0$ ein $\xi \in (x_0, x) \cup (x, x_0)$, so daß gilt:

$$R_n^{x_0}(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1},$$

und daher

$$f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k + \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1}.$$

Definition 4.17 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ beliebig oft differenzierbar und $x_0 \in I$. Die Potenzreihe

$$T_{\infty}^{x_0}(x) := \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0) (x - x_0)^n$$
$$= f(x_0) + f'(x_0) (x - x_0) + \frac{1}{2!} f''(x_0) (x - x_0)^2 + \frac{1}{3!} f'''(x_0) (x - x_0)^3 + \dots$$

 $hei\beta t$ Taylorreihe von f im Punkte x_0 .

Satz 4.18 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine beliebig oft differenzierbare Funktion, und sei $x_0 \in I$ ein innerer Punkt (d.h. ein beidseitiger Häufungspunkt). Falls es ein $\varepsilon > 0$ und ein C > 0 gibt, so da β für alle $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ und alle $n \in \mathbb{N}$ gilt:

$$|f^{(n)}(x)| \le n!C^n,$$

dann gilt für alle $x \in (x_0 - \delta, x_0 + \delta)$, wobei $\delta := \min\{\varepsilon, C^{-1}\}$,

$$T_{\infty}^{x_0}(x) = f(x).$$

Insbesondere konvergiert $T_{\infty}^{x_0}$ auf $(x_0 - \delta, x_0 + \delta)$.

Satz 4.19 Sei $I \subset \mathbb{R}$ ein Intervall, $x_0 \in I$ und seien $f, g : I \to \mathbb{R}$ zwei n-mal differenzierbare Funktionen. Bezeichnet man die Taylorploynome von f bzw. g mit T_n^{f,x_0} bzw. T_n^{g,x_0} , so gilt für die Taylorpolynome von $f \pm g$ bzw. fg:

$$T_n^{f\pm g,x_0} = T_n^{f,x_0} \pm T_n^{g,x_0}$$

$$T_n^{fg,x_0} = T_n^{f,x_0} T_n^{g,x_0} \mod (x-x_0)^{n+1}.$$

In der zweiten Zeile ist hierbei folgendes gemeint: ist das Produkt $T_n^{f,x_0}T_n^{g,x_0}=a_0+a_1(x-x_0)+\ldots+a_{2n}(x-x_0)^{2n}$, so ist $T_n^{fg,x_0}=a_0+a_1(x-x_0)+\ldots+a_n(x-x_0)^n$ die Summe der ersten (n+1) Summanden dieses Produktes.

Definition 4.20 Eine Funktion $f: I \to \mathbb{R}$ heißt stetig differenzierbar, falls f differenzierbar und die Ableitung $f': I \to \mathbb{R}$ stetig ist.

Satz 4.21 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ n-mal stetig differenzierbar (d.h. $f^{(n)}: I \to \mathbb{R}$ ist stetig). Sei $x_0 \in I$ ein innerer Punkt (d.h. ein beidseitiger Häufungspunkt) von I und es gelte

$$f^{(k)}(x_0) = 0$$
 für $k = 1, ..., n - 1$, aber $f^{(n)}(x_0) \neq 0$.

- 1. Sei n gerade. Dann ist x_0 ein
 - (a) lokales Maximum von f, falls $f^{(n)}(x_0) < 0$,
 - (b) lokales Minimum von f, falls $f^{(n)}(x_0) > 0$.
- 2. Sei n ungerade. Dann ist x_0 weder ein lokales Maximum noch ein lokales Minimum von f.

Definition 4.22 Definiere die trigonometrischen Funktionen $\sin: \mathbb{C} \to \mathbb{C}$ und $\cos: \mathbb{C} \to \mathbb{C}$ durch

$$\sin x := \frac{1}{2i} (\exp(ix) - \exp(-ix))$$
 und $\cos x := \frac{1}{2} (\exp(ix) + \exp(-ix)).$

Satz 4.23 Es gilt für alle $x \in \mathbb{C}$:

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \dots$$

Insbesondere ist $\sin x$, $\cos x \in \mathbb{R}$ falls $x \in \mathbb{R}$.

Satz 4.24 sin und cos sind differenzierbare Funktionen, und es gilt: $\sin' = \cos$ und $\cos' = -\sin$.

Satz 4.25 Für alle $x, y \in \mathbb{C}$ qilt:

- 1. $\sin(-x) = -\sin x \ und \cos(-x) = \cos x$,
- 2. $\sin^2 x + \cos^2 x = 1$,
- 3. $\exp(ix) = \cos x + i\sin x$,
- 4. $\sin(x+y) = \sin x \cos y + \cos x \sin y$
- 5. cos(x + y) = cos x cos y sin x sin y.

Satz 4.26 Sei $\pi := 2\inf\{x \in \mathbb{R} \mid x > 0 \text{ und } \cos x = 0\}$. Dann ist $\pi > 0$.

1. Wir haben die folgende Wertetabelle:

x	0	$\pi/2$	π	$3\pi/2$	2π
$\sin x$	0	1	0	-1	0
$\cos x$	1	0	-1	0	1

- 2. $\sin und \cos sind 2\pi$ -periodisch, $d.h. \ \forall x \in \mathbb{R} \ gilt: \sin(x+2\pi) = \sin x \ und \cos(x+2\pi) = \cos x$.
- 3. sin ist streng monoton steigend auf $[0, \pi/2]$ und $[3\pi/2, 2\pi]$ und streng monoton fallend auf $[\pi/2, 3\pi/2]$.
- 4. cos ist streng monoton fallend auf $[0,\pi]$ und streng monoton steigend auf $[\pi,2\pi]$.

Satz 4.27 Sei $z \in \mathbb{C}$, $z \neq 0$. Dann gibt es genau eine Konstante $\rho > 0$ und ein $\theta \in [0, 2\pi)$, so da β

$$z = \rho \exp(i\theta) = \rho(\cos\theta + i\sin\theta).$$

Diese Darstellung heißt Polardarstellung von z. Es ist $\rho = |z|$, und θ heißt das Argument von z. Sind $z = \rho_1 \exp(i\theta_1)$ und $w = \rho_2 \exp(i\theta_2)$ zwei komplexe Zahlen, so gilt

$$zw = (\rho_1 \rho_2) \exp(i(\theta_1 + \theta_2)),$$

d.h. bei der Multiplikation komplexer Zahlen multipliziert man die Beträge und addiert die Argumente (wobei das Argument von zw auch $\theta_1 + \theta_2 - 2\pi$ sein kann).

Definition 4.28 Die Umkehrfunktionen der streng monotonen Funktionen $\sin|_{[-\pi/2,\pi/2]}:[-\pi/2,\pi/2] \rightarrow [-1,1]$ und $\cos|_{[0,\pi]}:[0,\pi] \rightarrow [-1,1]$ heißen

$$\arcsin: [-1,1] \longrightarrow [-\pi/2,\pi/2] \quad und \quad \arccos: [-1,1] \longrightarrow [0,\pi].$$

Satz 4.29 1. arcsin: $[-1,1] \rightarrow [-\pi/2,\pi/2]$ ist streng monoton steigend und stetig. Außerdem ist arcsin differenzierbar auf (-1,1), und es gilt

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}.$$

2. $arccos: [-1,1] \rightarrow [0,\pi]$ ist streng monoton fallend und stetig. Außerdem ist arccos differenzierbar auf(-1,1), und es gilt

$$\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}.$$

Definition 4.30 Der Tangens ist die Funktion

$$\tan : \mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi \mid n \in \mathbb{Z} \right\} \longrightarrow \mathbb{R}, \quad \tan(x) = \frac{\sin x}{\cos x}.$$

Satz 4.31 *Es gilt:*

- 1. tan ist differenzierbar, und es gilt $\tan'(x) = \frac{1}{\cos^2 x}$.
- 2. $\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty$ und $\lim_{x \to \frac{\pi}{2}^-} \tan x = \infty$.
- 3. $\tan |_{(-\pi/2,\pi/2)}: (-\pi/2,\pi/2) \to \mathbb{R}$ ist streng monoton steigend und bijektiv.
- 4. Bezeichne die Umkehrfunktion von $\tan |_{(-\pi/2,\pi/2)}$ als

$$\arctan: \mathbb{R} \longrightarrow (-\pi/2, \pi/2).$$

arctan ist streng monoton steigend und differenzierbar, und es gilt:

$$\arctan'(x) = \frac{1}{1+x^2}.$$

Definition 4.32 Sei $I \subset \mathbb{R}$ ein Intervall. Eine Funktion $f: I \to \mathbb{R}$ heißt

konvex, streng konvex, konkav, streng konkav,
$$y \in I \text{ mit } x \neq y$$

$$\text{falls } \forall x, y \in I \text{ mit } x \neq y \\ \text{streng konkav}, \\ \text{streng konkav},$$

Anschaulich bedeutet dies:

- 1. Wenn für alle $x, y \in I$, $x \neq y$ die Strecke zwischen den Punkten (x, f(x)) und (y, f(y)) (echt) oberhalb des Graphen von f liegt, dann ist f (streng) konvex.
- 2. Wenn für alle $x, y \in I$, $x \neq y$ die Strecke zwischen den Punkten (x, f(x)) und (y, f(y)) (echt) unterhalb des Graphen von f liegt, dann ist f (streng) konkav.

Satz 4.33 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ differenzierbar.

- 1. Wenn $f': I \to \mathbb{R}$ (streng) monoton steigend ist, dann ist f (streng) konvex.
- 2. Wenn $f': I \to \mathbb{R}$ (streng) monoton fallend ist, dann ist f (streng) konkav.

Korollar 4.34 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ zweimal differenzierbar.

- 1. Wenn $f''(x) \ge 0$ für alle $x \in I$, dann ist f konvex.
- 2. Wenn f''(x) > 0 für alle $x \in I$, dann ist f streng konvex.
- 3. Wenn $f''(x) \le 0$ für alle $x \in I$, dann ist f konkav.
- 4. Wenn f''(x) < 0 für alle $x \in I$, dann ist f streng konkav.

5 Integrale

Definition 5.1 Seien $a, b \in \mathbb{R}$, a < b. Eine Treppenfunktion auf [a, b] ist eine Funktion $\tau : [a, b] \to \mathbb{R}$, so $da\beta$ es Zahlen $t_i \in \mathbb{R}$ und $c_i \in \mathbb{R}$ gibt, $i = 0, \ldots, n$, mit $a = t_0 < t_1 < \ldots < t_{n-1} < t_n = b$ und so $da\beta$ gilt:

$$\tau(x) = c_i$$
 für alle $x \in [t_{i-1}, t_i), i = 1, ..., n$.

Die Werte t_i heißen die Sprungstellen von τ , und $Tr_{[a,b]}$ bezeichnet die Menge aller Treppenfunktionen auf [a,b].

Satz 5.2 Seien $\tau, \sigma \in Tr_{[a,b]}$ und $k \in \mathbb{R}$. Dann ist auch $\tau + \sigma \in Tr_{[a,b]}$ und $k\tau \in Tr_{[a,b]}$. (Das heißt: $Tr_{[a,b]}$ ist ein Vektorraum über \mathbb{R}). Außerdem sind für jedes $c \in (a,b)$ die Einschränkungen $\tau|_{[a,c]}$ bzw. $\tau|_{[c,b]}$ Treppenfunktionen auf [a,c] bzw. [c,b].

Definition 5.3 Sei $\tau: [a,b] \to \mathbb{R}$ eine Treppenfunktion mit Sprungstellen $a = t_0 < \ldots < t_n = b$ und $\tau|_{[t_{i-1},t_i)} = c_i$. Dann ist das Integral von τ über [a,b] definiert als

$$\int_{a}^{b} \tau(x)dx := \sum_{i=1}^{n} c_{i}(t_{i} - t_{i-1}).$$

Satz 5.4 Seien $\tau, \sigma \in Tr_{[a,b]}$, $k \in \mathbb{R}$ und $c \in (a,b)$. Dann gilt:

1.

$$\int_{a}^{b} (\tau + \sigma)(x)dx = \int_{a}^{b} \tau(x)dx + \int_{a}^{b} \sigma(x)dx,$$

2.

$$\int_{a}^{b} (k\tau)(x)dx = k \int_{a}^{b} \tau(x)dx,$$

3.

$$\int_{a}^{b} \tau(x)dx = \int_{a}^{c} \tau(x)dx + \int_{c}^{b} \tau(x)dx,$$

- 4. Wenn $\tau \geq 0$, dann folgt $\int_a^b \tau(x) dx \geq 0$,
- 5. $\int_{a}^{b} 1 dx = b a$.

Definition 5.5 Sei $f:[a,b] \to \mathbb{R}$ eine beschränkte Funktion (d.h. $\exists C \in \mathbb{R}, \forall x \in [a,b], |f(x)| \leq C$).

1. Das Riemann-Oberintegral von f ist definiert als

$$\int_{a}^{b^*} f(x)dx := \inf \left\{ \int_{a}^{b} \tau(x)dx \mid \tau \in Tr_{[a,b]}, \tau \ge f \right\}.$$

2. Das Riemann-Unterintegral von f ist definiert als

$$\int_{a}^{b} f(x)dx := \sup \left\{ \int_{a}^{b} \tau(x)dx \mid \tau \in Tr_{[a,b]}, \tau \le f \right\}.$$

3. f heißt Riemann-integrierbar falls $\int_a^b f(x)dx = \int_a^{b^*} f(x)dx$. In diesem Falle ist das (Riemann-)Integral von f definiert als

$$\int_{a}^{b} f(x)dx := \int_{a}^{b} f(x)dx = \int_{a}^{b^{*}} f(x)dx.$$

Satz 5.6 Sei $f:[a,b] \to \mathbb{R}$ eine beschränkte Funktion. Dann gilt

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b^*} f(x)dx.$$

Satz 5.7 Sei $f:[a,b] \to \mathbb{R}$ eine beschränkte Funktion. Dann sind folgende Aussagen äquivalent:

- 1. f ist Riemann-integrierbar,
- 2. $\forall \varepsilon > 0 \ \exists \tau_+, \tau_- \in Tr_{[a,b]}, \ so \ da\beta \ \tau_- \leq f \leq \tau_+ \ und \ \int_a^b (\tau_+ \tau_-)(x) dx < \varepsilon.$
- 3. Es gibt Folgen $(\tau_+^n)_{n\in\mathbb{N}}$ und $(\tau_-^n)_{n\in\mathbb{N}}$ in $Tr_{[a,b]}$ mit $\tau_-^n \leq f \leq \tau_+^n$ für alle $n\in\mathbb{N}$, und $\lim_{a\to\infty} \int_a^b (\tau_+^n \tau_-^n)(x)dx = 0$.

Sind diese Bedingungen erfüllt, so gilt für die Folgen (τ_+^n) :

$$\int_a^b f(x)dx = \lim \int_a^b \tau_-^n(x)dx = \lim \int_a^b \tau_+^n(x)dx.$$

Satz 5.8 Seien $f, g : [a, b] \to \mathbb{R}$ Riemann-integrierbare Funktionen, $k \in \mathbb{R}$ und $c \in (a, b)$. Dann qilt:

1. f + g ist ebenfalls Riemann-integrierbar, und

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx,$$

2. kf ist ebenfalls Riemann-integrierbar, und

$$\int_{a}^{b} (kf)(x)dx = k \int_{a}^{b} f(x)dx,$$

3. $f|_{[a,c]}$ und $f|_{[c,b]}$ sind ebenfalls Riemann-integrierbar, und

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

- 4. Wenn $f \ge 0$, dann folgt $\int_a^b f(x)dx \ge 0$,
- 5. Jede Treppenfunktion ist Riemann-integrierbar, und der Wert des Riemann-Integrals $\int_a^b f(x)dx$ stimmt mit dem Wert des Integrals von Treppenfunktionen (im Sinne von Definition 5.3) überein.

Bemerkung 5.9 Wegen Eigenschaft 3. im vorstehenden Satz ist es sinnvoll, für eine Riemannintegrierbare Funktion $f:[a,b] \to \mathbb{R}$ zu definieren:

$$\int_a^a f(x)dx := 0; \qquad \int_b^a f(x)dx := -\int_a^b f(x)dx.$$

Mit dieser Vereinbarung gilt die Formel in 3. auch dann, wenn $c \notin (a, b)$.

Satz 5.10 Sei $f:[a,b] \to \mathbb{R}$ stetig. Dann ist f Riemann-integrierbar.

Satz 5.11 (Hauptsatz der Differential- und Integralrechnung) Sei $f:[a,b] \to \mathbb{R}$ eine Riemann-integrierbare Funktion. Definiere $F:[a,b] \to \mathbb{R}$ durch

$$F(x) := \int_{a}^{x} f(t)dt.$$

Dann gilt:

- 1. F ist stetig.
- 2. Ist f stetig in $x_0 \in [a, b]$, so ist F differenzierbar in x_0 und $F'(x_0) = f(x_0)$.

Definition 5.12 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion. Eine Stammfunktion von f ist eine differenzierbare Funktion $F: I \to \mathbb{R}$, so daß F' = f.

Korollar 5.13 Sei $f:[a,b] \to \mathbb{R}$ stetig. Dann ist $F(x) := \int_a^x f(t)dt$ eine Stammfuntion von f.

Satz 5.14 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion. Sind $F, G: I \to \mathbb{R}$ Stammfunktionen von f, so gibt es ein $C \in \mathbb{R}$, so da β für alle $x \in I$ gilt: G(x) = F(x) + C.

Bemerkung 5.15 Wir führen folgende Schreibweisen ein:

- 1. Für eine stetige Funktion $f:[a,b] \to \mathbb{R}$ bezeichne $\int f(x)dx$ die (allgemeine) Stammfunktion von f. Nach Satz 5.14 ist diese bis auf Addition einer Konstanten eindeutig bestimmt.
- 2. Für eine Funktion $F: I \to \mathbb{R}$ bezeichne $F(x)|_a^b := F(b) F(a)$.

Korollar 5.16 *Ist* $f : [a,b] \to \mathbb{R}$ *stetig und* $F : [a,b] \to \mathbb{R}$ *eine beliebige Stammfunktion von* f *, so gilt*

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b}.$$

Beispiel 5.17 Dies ist eine Liste von einigen elementaren Stammfunktionen:

f(x)	$\int f(x)dx$	Einschränkungen
x^p	$\frac{1}{p+1}x^{p+1} + C$	$p \neq -1$
$\frac{1}{x}$	$\ln x + C$	für $x \neq 0$
e^x	$e^x + C$	
a^x	$\frac{1}{\ln a}a^x$	$a > 0, a \neq 1$
$\sin x$	$-\cos x + C$	
$\cos x$	$\sin x + C$	
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$	
$\frac{1}{1+x^2}$	$\arctan x + C$	

Satz 5.18 (Partielle Integration) Sei $I \subset \mathbb{R}$ ein Intervall, $f, g : I \to \mathbb{R}$ stetig und g differenzierbar. Sei $F : I \to \mathbb{R}$ eine Stammfunktion von f. Dann gilt:

$$\int f(x)g(x)dx = F(x)g(x) - \int F(x)g'(x)dx.$$

Satz 5.19 (Integration durch Substitution) Seien $I, J \subset \mathbb{R}$ Intervalle, $f: I \to \mathbb{R}$ stetig, $F: I \to \mathbb{R}$ eine Stammfunktion von f und $g: J \to I \subset \mathbb{R}$ differenzierbar. Dann gilt für eine Konstante $C \in \mathbb{R}$:

$$\int g'(x)(f \circ g)(x)dx = (F \circ g)(x) + C$$

Beispiel 5.20 $\int \sqrt{1-x^2} dx = \frac{1}{2} \left(\arcsin x + x\sqrt{1-x^2} \right) + C$. Insbesondere folgt daraus, daß der Flächeninhalt der Einheitskreisscheibe π ist.

Definition 5.21 1. Seien $a \in \mathbb{R}$, $b \in \hat{\mathbb{R}}$, a < b und $f : [a,b) \to \mathbb{R}$. Falls für jedes $c \in (a,b)$ die Funktion $f|_{[a,c]}$ Riemann-integrierbar ist und falls $\lim_{c\to b^-} \int_a^c f(x) dx$ existiert, so heißt f uneigentlich (Riemann-)integrierbar über [a,b), und man definiert

$$\int_{a}^{b} f(x)dx := \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx.$$

2. Seien $a \in \hat{\mathbb{R}}$, $b \in \mathbb{R}$, a < b und $f : (a,b] \to \mathbb{R}$. Falls für jedes $c \in (a,b)$ die Funktion $f|_{[c,b]}$ Riemann-integrierbar ist und falls $\lim_{c\to a^+} \int_c^b f(x) dx$ existiert, so heißt f uneigentlich (Riemann-)integrierbar über (a,b], und man definiert

$$\int_{a}^{b} f(x)dx := \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx.$$

3. Seien $a, b \in \hat{\mathbb{R}}$, a < b und $f : (a, b) \to \mathbb{R}$. Falls für ein $c \in (a, b)$ die Funktionen $f|_{(a,c]}$ und $f|_{[c,b)}$ uneigentlich (Riemann-)integrierbar sind, so heißt f uneigentlich (Riemann-)integrierbar über (a, b), und man definiert

$$\int_{a}^{b} f(x)dx := \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Falls $f: I \to \mathbb{R}$ für einen dieser Intervalltypen auf I uneigentlich integrierbar ist, so sagt man auch, daß das uneigentliche Integral $\int_a^b f(x)dx$ konvergiert.

Bemerkung 5.22 1. In der vorstehenden Formel für integrierbare Funktionen $f:(a,b) \to \mathbb{R}$ ist der Wert der uneigentlichen Integrals $\int_a^b f(x)dx$ unabhängig von der Wahl von $c \in (a,b)$.

- 2. Ist $f: I \to \mathbb{R}$ wie oben, so ist f genau dann uneigentlich integrierbar, falls für beliebiges $c \in (a,b)$ die Funktion $F: I \to \mathbb{R}$, $F(x) := \int_c^x f(t)dt$ stetig auf [a,b] fortgesetzt werden kann, d.h. wenn die Grenzwerte $\lim_{x\to a^+} F(x)$ und $\lim_{x\to b^-} F(x)$ beide (in \mathbb{R}) existieren.
- 3. Ist $f:[a,b] \to \mathbb{R}$ eine Riemann-integrierbare Funktion, so sind die Einschränkungen $f|_{[a,b]}$, $f|_{(a,b]}$ und $f|_{(a,b)}$ alle uneigentlich integrierbar, und der Wert des Integrals $\int_a^b f(x)dx$ betrachtet als uneigentliches Integral stimmt mit dem Wert der Riemann-Integrals $\int_a^b f(x)dx$ überein. Daher ist es gerechtfertigt, für beide die gleiche Schreibweise zu verwenden.

Satz 5.23 Sei $I \subset \mathbb{R}$ ein Intervall der Form I = [a,b) (bzw. I = (a,b] bzw. I = (a,b)), und sei $f: I \to \mathbb{R}$, so daß für alle $c \in (a,b)$ $f|_{[a,c]}$ (bzw. $f|_{[c,b]}$) Riemann-integrierbar ist. Falls $\int_a^b |f(x)| dx$ konvergiert, dann konvergiert auch $\int_a^b f(x) dx$, und es gilt

$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx.$$

Satz 5.24 (Vergleichstest) Seien $f, g: I \to \mathbb{R}$ wie im vorigen Satz.

- 1. Falls $|f| \leq g$ und $\int_a^b g(x) dx$ konvergiert, dann konvergiert auch $\int_a^b |f(x)| dx$ und $\int_a^b f(x) dx$.
- 2. Falls $0 \le g \le f$ und $\int_a^b g(x)dx$ divergiert, dann divergiert auch $\int_a^b f(x)dx$.

Satz 5.25 (Integraltest) Sei $f:[1,\infty)\to\mathbb{R}$ eine monoton fallende (Riemann-integrierbare) Funktion, $f\geq 0$, und sei $a_n:=f(n)$ für alle $n\in\mathbb{N}$. Dann konvergiert die Reihe $\sum_{n=1}^\infty a_n$ genau dann, wenn $\int_1^\infty f(x)dx$ konvergiert.

Beispiel 5.26 (Vgl. Satz 2.27) Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^p}$ konvergiert für p>1 und divergiert für $p\leq 1$.