Network Embedding

Hongwei Wang 04/26/2017

Introduction

- **Network embedding** tries to embed each node of a network into a low-dimensional vector space, which preserves the structural similarities or distances among the nodes in original network
- ☐ Network embedding can be viewed as a **dimension reduction** technology
- □ Also called **graph embedding** / **graph representation learning** / **graph feature learning**
- □ Potentially useful for **node classification**, **link prediction**, **clustering**, **recommender systems**, **anomaly detection**, **social network analysis**, **knowledge base**, etc. (In fact any task on network-structured data can benefit from network embedding)

Have a glimpse

Classical Dimension Reduction Methods

Principle Component Analysis

Karl Pearson

PCA

Motivation

Given n d-dimensional samples $X^{d \times n} = \{x_1, x_2, ..., x_n\}$, PCA seeks to find $d'(d' \ll d)$ orthogonal transformations $W^{d \times d'} = \{w_1, w_2, ..., w_d,\}$, so that W^TX has the largest variance (i.e., most separable).

11/17/2017 6

PCA

Details

```
输入: 样本集 D = \{x_1, x_2, \ldots, x_m\};
      低维空间维数 d'.
```

过程:

- 1: 对所有样本进行中心化: $x_i \leftarrow x_i \frac{1}{m} \sum_{i=1}^m x_i$; 2: 计算样本的协方差矩阵 $\mathbf{X}\mathbf{X}^{\mathrm{T}}$;
- 3: 对协方差矩阵 XXT 做特征值分解;
- 4: 取最大的 d' 个特征值所对应的特征向量 $w_1, w_2, \ldots, w_{d'}$.

输出: 投影矩阵 $\mathbf{W} = (w_1, w_2, \dots, w_{d'})$.

--《机器学习》, 周志华, p.231

Linear Discriminant Analysis

Fisher

LDA

Motivation

■ LDA explicitly models the distance between and within the classes of data

LDA

Details

- Suppose binary classification
- $D = \{(x_i, y_i)\}, \ \mu_i$: mean of data of the *i*-th class, Σ_i : covariance matrix of data of the *i*-th class
- make projected covariance matrix as small as possible, while make projected distance between the mean of two classes as large as possible
- maximize

Multiple Dimensional Scaling

Trevor F. Cox, Michael A. A. Cox

MDS

Motivation

Given distance matrix $D=(d_{ij})\in R^{m\times m}$, MDS seeks to find $z_1,z_2,\ldots,z_m\in R^{d'}(d'\ll d)$, so that

 $||z_i - z_j|| \approx d_{ij}$ as close as possible

■ MDS aims to place each object in d'-dimensional space such that the between-object distances are preserved as well as possible

MDS

Details

假定 m 个样本在原始空间的距离矩阵为 $\mathbf{D} \in \mathbb{R}^{m \times m}$, 其第 i 行 j 列的元素 $dist_{ij}$ 为样本 \mathbf{x}_i 到 \mathbf{x}_j 的距离。我们的目标是获得样本在 d' 维空间的表示 $\mathbf{Z} \in \mathbb{R}^{d' \times m}$, $d' \leq d$, 且任意两个样本在 d' 维空间中的欧氏距离等于原始空间中的距离,即 $\|\mathbf{z}_i - \mathbf{z}_j\| = dist_{ij}$.

令 $\mathbf{B} = \mathbf{Z}^{\mathrm{T}}\mathbf{Z} \in \mathbb{R}^{m \times m}$, 其中 \mathbf{B} 为降维后样本的内积矩阵, $b_{ij} = \mathbf{z}_i^{\mathrm{T}}\mathbf{z}_j$, 有

$$dist_{ij}^{2} = ||z_{i}||^{2} + ||z_{j}||^{2} - 2z_{i}^{T}z_{j}$$

$$= b_{ii} + b_{jj} - 2b_{ij} .$$
(10.3)

为便于讨论, 令降维后的样本 **Z** 被中心化, 即 $\sum_{i=1}^{m} z_i = \mathbf{0}$. 显然, 矩阵 **B** 的行与列之和均为零, 即 $\sum_{i=1}^{m} b_{ij} = \sum_{j=1}^{m} b_{ij} = \mathbf{0}$. 易知

$$\sum_{i=1}^{m} dist_{ij}^{2} = tr(\mathbf{B}) + mb_{jj} , \qquad (10.4)$$

$$\sum_{j=1}^{m} dist_{ij}^{2} = tr(\mathbf{B}) + mb_{ii} , \qquad (10.5)$$

$$\sum_{i=1}^{m} \sum_{j=1}^{m} dist_{ij}^{2} = 2m \operatorname{tr}(\mathbf{B}) , \qquad (10.6)$$

其中 $\operatorname{tr}(\cdot)$ 表示矩阵的迹(trace), $\operatorname{tr}(\mathbf{B}) = \sum_{i=1}^m \|z_i\|^2$. 令

$$dist_{i}^{2} = \frac{1}{m} \sum_{j=1}^{m} dist_{ij}^{2} , \qquad (10.7)$$

$$dist_{.j}^{2} = \frac{1}{m} \sum_{i=1}^{m} dist_{ij}^{2}$$
, (10.8)

$$dist_{\cdot \cdot}^{2} = \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} dist_{ij}^{2} , \qquad (10.9)$$

MDS

Details

由式(10.3)和式(10.4)~(10.9)可得

$$b_{ij} = -\frac{1}{2}(dist_{ij}^2 - dist_{i}^2 - dist_{.j}^2 + dist_{.j}^2) , \qquad (10.10)$$

由此即可通过降维前后保持不变的距离矩阵 D 求取内积矩阵 B.

对矩阵 **B** 做特征值分解(eigenvalue decomposition), **B** = **V** Λ **V**^T, 其中 Λ = diag($\lambda_1, \lambda_2, \ldots, \lambda_d$) 为特征值构成的对角矩阵, $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_d$, **V** 为特征向量矩阵. 假定其中有 d^* 个非零特征值, 它们构成对角矩阵 Λ_* = diag($\lambda_1, \lambda_2, \ldots, \lambda_{d^*}$), 令 **V**_{*} 表示相应的特征向量矩阵, 则 **Z** 可表达为

$$\mathbf{Z} = \mathbf{\Lambda}_{*}^{1/2} \mathbf{V}_{*}^{\mathrm{T}} \in \mathbb{R}^{d^{*} \times m} . \tag{10.11}$$

在现实应用中为了有效降维,往往仅需降维后的距离与原始空间中的距离 尽可能接近,而不必严格相等. 此时可取 $d'\ll d$ 个最大特征值构成对角矩阵 $\tilde{\Lambda}=\mathrm{diag}(\lambda_1,\lambda_2,\ldots,\lambda_{d'})$,令 $\tilde{\mathbf{V}}$ 表示相应的特征向量矩阵,则 \mathbf{Z} 可表达为

$$\mathbf{Z} = \tilde{\mathbf{\Lambda}}^{1/2} \tilde{\mathbf{V}}^{\mathrm{T}} \in \mathbb{R}^{d' \times m} . \tag{10.12}$$

——《机器学习》, 周志华, p.227-229

Classical Embedding Methods

Isomap (Science '00)

Isometric Mapping

J. B. Tenenbaum, V De Silva, JC Langford Science, 2000

Isomap (Science '00)

Motivation

□ Isomap provides a simple method for estimating **intrinsic geometry manifold** based on a rough estimate of each data point's **neighbors** on the manifold.

Isomap (Science '00)

Details

```
输入: 样本集 D = \{x_1, x_2, \dots, x_m\}; 近邻参数 k; 低维空间维数 d'. 过程:

1: for i = 1, 2, \dots, m do

2: 确定 x_i 的 k 近邻;

3: x_i = k 近邻点之间的距离设置为欧氏距离,与其他点的距离设置为无穷大;

4: end for

5: 调用最短路径算法计算任意两样本点之间的距离 \mathrm{dist}(x_i, x_j);

6: 将 \mathrm{dist}(x_i, x_j) 作为 MDS 算法的输入;

7: return MDS 算法的输出

输出: 样本集 D 在低维空间的投影 Z = \{z_1, z_2, \dots, z_m\}.
```

--《机器学习》, 周志华, p.235

Locally Linear Embedding

Sam T. Roweis, Lawrence K. Saul Science, 2000

Introduction

☐ An unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs

- What is the difference between LLE and Isomap?
 - ☐ Isomap keeps **distances** between local instances;
 - ☐ LLE keeps **linear dependency** between local instances.

Details

Details

■ Reconstruction step

Given data set $\{X_i\}$, fin $\varepsilon(W) = \sum_{\mathbf{i}} \left| \vec{X}_{\mathbf{i}} - \Sigma_{\mathbf{j}} W_{\mathbf{i}\mathbf{j}} \vec{X}_{\mathbf{j}} \right|^2$

subject to:

- Each data point is reconstructed only from its **k**-nearest neighbors (only a fraction of **W** is non-zero)
- □ The rows of **W** sum to one $(\sum_{i} W_{ij} = 1)$

□ Embedding step

Given **W**, find **Y** to minimize

$$\Phi(Y) = \sum_{\mathrm{i}} \left| \vec{Y}_{\mathrm{i}} - \Sigma_{\mathrm{j}} W_{\mathrm{ij}} \vec{Y}_{\mathrm{j}} \right|^{2}$$

Y is the embedding result.

LE (NIPS '01)

Laplacian Eigenmaps

Mikhail Belkin, Partha Viyogi NIPS, 2001

LE (NIPS '01)

Motivation

Problem: Given a set $(x_1, x_2, ..., x_k)$ in R^d , find a set of points $(y_1, y_2, ..., y_k)$ in $R^{d'}$ $(d' \ll d)$ such that y_i represents x_i .

Minimization Problem

$$\min \sum\nolimits_{ij} W_{ij} \parallel \boldsymbol{y_i} - \boldsymbol{y_j} \parallel^2$$

LE (NIPS '01)

Motivation

Minimization Problem

$$\min \sum\nolimits_{ij} W_{ij} \parallel \boldsymbol{y_i} - \boldsymbol{y_j} \parallel^2$$

which is equivalent to

arg min
$$tr(Y^TLY)$$

s. t. $Y^TDY = 1$

□Solution

- ☐ Construct the adjacency graph
- \square Compute the weights W_{ij}
- lacksquare Compute Laplacian matrix L=D-W, where $D_{ii}=\sum_j W_{ij}$ is diagonal matrix
- \square Compute eigenvalues and eigenvectors of the generalized eigenvector problem: $Lf = \lambda Df$, and the d' eigenvectors corresponding to the d' smallest eigenvalues except 0 are taken as embeddings

Word2vec-like Network Embedding Methods

26

Distributed Representation of Words and Phrases and their Compositionality

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean NIPS, 2013

Introduction

- The Skip-Gram Model
 - ☐ The training objective is to find word representations that are useful for **predicting the surrounding words** in a sentence
 - ☐ I.e., to maximize

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

where

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^W \exp\left(v'_w^\top v_{w_I}\right)}$$

☐ The above objective function is computationally intractable

Introduction

■ The Skip-Gram Model

☐ An alternative to the full softmax is **Negative Sampling**:

$$\log \sigma(v_{w_O}^{\prime} \mathsf{T} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime} \mathsf{T} v_{w_I}) \right]$$

□ *k* in the range 5-20 are useful for small training datasets, while for large datasets the *k* can be as small as 2-5

From perspective of neural network

DeepWalk (KDD '14)

DeepWalk: Online Learning of Social Representations

Bryan Perozzi, Rami Al-Rfou, Steven Skiena KDD, 2014

DeepWalk (KDD '14)

Introduction

- Random walk + Word2vec
 - ☐ A walk samples **uniformly** from the neighbors of the last vertex visited

$$\underset{\Phi}{\text{minimize}} -\log \Pr \left(\left\{ v_{i-w}, \cdots, v_{i+w} \right\} \setminus v_i \mid \Phi(v_i) \right)$$

LINE: Large-scale Information Network Embedding

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei WWW, 2015

Proximity

- ☐ First-order proximity
- **□** Second-order proximity

First-order proximity

$$O_1 = d(\hat{p}_1(\cdot, \cdot), p_1(\cdot, \cdot))$$

$$p_1(v_i, v_j) = \frac{1}{1 + \exp(-\vec{u}_i^T \cdot \vec{u}_j)}$$

$$\hat{p}_1(i, j) = \frac{w_{ij}}{W}$$

$$O_1 = -\sum_{(i,j)\in E} w_{ij} \log p_1(v_i, v_j)$$

Use negative sampling to optimize the objective function to avoid trivial solution $u_{ik} = \infty$

11/17/2017

35

Second-order proximity

$$O_2 = \sum_{i \in V} \lambda_i d(\hat{p}_2(\cdot|v_i), p_2(\cdot|v_i))$$

$$p_2(v_j|v_i) = \frac{\exp(\vec{u}_j^{T} \cdot \vec{u}_i)}{\sum_{k=1}^{|V|} \exp(\vec{u}_k^{T} \cdot \vec{u}_i)}$$

$$\hat{p}_2(v_j|v_i) = \frac{w_{ij}}{d_i}$$

$$O_2 = -\sum_{(i,j)\in E} w_{ij} \log p_2(v_j|v_i)$$

TransR (AAAI '15)

Learning Entity and Relation Embeddings for Knowledge Graph Completion

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, Xuan Zhu AAAI, 2015

TransR (AAAI '15)

Introduction

- Embed **knowledge graph** into a continuous vector space while preserving certain information
- ☐ The difference with general network embedding lies in that:
 - □ Nodes in knowledge graphs are entities with different types
 - ☐ Edges in knowledge graphs are relations of different types
- ☐ Prior work TransE (NIPS 13):
 - □ Ensures $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$ when (h, r, t) holds
 - ☐ Has issues when modeling 1-to-N, N-to-1, and N-to-N relations
- ☐ Prior work TransH (AAAI 14):
 - □ Ensures $\mathbf{h}_{\perp} + \mathbf{r} \approx \mathbf{t}_{\perp}$ when (h, r, t) holds, where $\mathbf{h}_{\perp} = \mathbf{h} \mathbf{w}_r^{\mathrm{T}} \mathbf{h} \mathbf{w}_r$ and $\mathbf{t}_{\perp} = \mathbf{t} \mathbf{w}_r^{\mathrm{T}} \mathbf{t} \mathbf{w}_r$
 - ☐ Still embeds entities and relations in the same space

TransR (AAAI '15)

Details

- □ In TransR, for each triple (h, r, t), entities embeddings are $\mathbf{h}, \mathbf{t} \in \mathbb{R}^k$ and relation embeddings are $\mathbf{r} \in \mathbb{R}^d$.
- Score function: $f_r(h, t) = \|\mathbf{h}\mathbf{M}_r + \mathbf{r} \mathbf{t}\mathbf{M}_r\|_2^2$, where \mathbf{M}_r is the projection matrix for relation r.

Node2vec (KDD '16)

node2vec: Scalable Feature Learning for Networks

Aditya Grover, Jure Leskovec KDD, 2016

Node2vec (KDD '16)

Introduction

- Random walk + Word2vec
 - ☐ Then what's the difference between node2vec and DeepWalk?
- Sampling strategy

$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{vx} = \alpha_{pq}(t, x) \cdot w_{vx}$$

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

Node2vec (KDD '16)

Introduction

APP (AAAI '17)

Scalable Graph Embedding for Asymmetric Proximity

Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, Jun Gao AAAI, 2017

APP (AAAI '17)

Motivation

□ DeepWalk, LINE, node2vec only consider symmetric proximities

- ☐ The paths sampled by DeepWalk and node2vec are treated as a word sequence, in which words (nodes) are symmetric
- Insufficient in manly applications, even undirected graphs

APP (AAAI '17)

Motivation

■ The prediction probability

$$p(v|u) = \frac{\exp(\vec{s_u} \cdot \vec{t_v})}{\sum_{n \in V} \exp(\vec{s_u} \cdot \vec{t_n})}$$

Objective function

$$log\sigma(\vec{s_u} \cdot \vec{t_v}) + k \cdot E_{t_n \sim P_D}[log\sigma(-\vec{s_u} \cdot \vec{t_n})]$$

Autoencoder-based Network Embedding Methods

GraphEncoder (AAAI '14)

Learning Deep Representations for Graph Clustering

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, Tie-Yan Liu AAAI, 2014

GraphEncoder (AAAI '14)

Introduction

- Sparse Autoencoder + K-means
 - Input: normalized similarity matrix of graph
 - ☐ Train autoencoder layer by layer
 - □ Loss function of autoencoder:

$$Loss(\theta) = \sum_{i=1}^{n} ||y_i - x_i||_2 + \beta KL(\rho || \hat{\rho})$$

where the second term is the sparsity penalty

Heterogeneous Network Embedding via Deep Architectures

Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, Thomas S. Huang KDD, 2015

Motivation

- Consider a network with different types of nodes
 - Online media platform with images and texts
- HNE tries to embed different types of nodes into a unified representation space

Details (linear version)

- □ suppose there are two types of nodes in network: image and text
- Loss function for image-image proximity:

$$L(\boldsymbol{x}_i, \boldsymbol{x}_j) = \log (1 + \exp(-\boldsymbol{A}_{i,j} d(\boldsymbol{x}_i, \boldsymbol{x}_j)))$$

where A is edge indicator, and

$$d(\boldsymbol{x}_i, \boldsymbol{x}_j) = s(\boldsymbol{x}_i, \boldsymbol{x}_j) - t_{II}$$
$$s(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tilde{\boldsymbol{x}_i}^T \tilde{\boldsymbol{x}_j} = (\boldsymbol{U}^T \boldsymbol{x}_i)^T \boldsymbol{U}^T \boldsymbol{x}_j = \boldsymbol{x}_i^T \boldsymbol{M}_{II} \boldsymbol{x}_j$$

■ Loss function for the whole model:

$$\min_{\boldsymbol{U},\boldsymbol{V}} \frac{1}{N_{II}} \sum_{v_i,v_j \in \mathcal{V}_I} L(\boldsymbol{x}_i, \boldsymbol{x}_j) + \frac{\lambda_1}{N_{TT}} \sum_{v_i,v_j \in \mathcal{V}_T} L(\boldsymbol{z}_i, \boldsymbol{z}_j) + \frac{\lambda_2}{N_{IT}} \sum_{v_i \in \mathcal{V}_I, v_j \in \mathcal{V}_T} L(\boldsymbol{x}_i, \boldsymbol{z}_j) + \lambda_3 (\|\boldsymbol{U}\|_F^2 + \|\boldsymbol{V}\|_F^2),$$

Details (deep version)

■ Loss function for the whole model:

$$\min_{\mathcal{D}_{I}',\mathcal{D}_{T}'} \frac{1}{N_{II}} \sum_{v_{i},v_{j} \in \mathcal{V}_{I}} L'(\tilde{p}_{\mathcal{D}_{I}'}(\mathbf{X}_{i}), \tilde{p}_{\mathcal{D}_{I}'}(\mathbf{X}_{j}))
+ \frac{\lambda_{1}}{N_{TT}} \sum_{v_{i},v_{j} \in \mathcal{V}_{T}} L'(\tilde{q}_{\mathcal{D}_{T}'}(\mathbf{z}_{i}), \tilde{q}_{\mathcal{D}_{T}'}(\mathbf{z}_{j}))
+ \frac{\lambda_{2}}{N_{IT}} \sum_{v_{i} \in \mathcal{V}_{I}, v_{j} \in \mathcal{V}_{T}} L'(\tilde{p}_{\mathcal{D}_{I}'}(\mathbf{X}_{i}), \tilde{q}_{\mathcal{D}_{T}'}(\mathbf{z}_{j}))$$

SDNE (KDD '16)

Structural Deep Network Embedding

Daixin Wang, Peng Cui, Wenwu Zhu KDD, 2016

SDNE (KDD '16)

Loss function

Reconstruction loss term

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{x}}_i - \mathbf{x}_i) \odot \mathbf{b_i}\|_2^2$$
$$= \|(\hat{X} - X) \odot B\|_F^2$$

Proximity loss term

$$\mathcal{L}_{1st} = \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i}^{(K)} - \mathbf{y}_{j}^{(K)}\|_{2}^{2}$$
$$= \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|_{2}^{2}$$

■ Regularization term

$$\mathcal{L}_{reg} = \frac{1}{2} \sum_{k=1}^{K} (\|W^{(k)}\|_F^2 + \|\hat{W}^{(k)}\|_F^2)$$

Loss function

$$\mathcal{L}_{mix} = \mathcal{L}_{2nd} + \alpha \mathcal{L}_{1st} + \nu \mathcal{L}_{reg}$$

Matrix Factorization-based Network Embedding Methods

HOPE (KDD '16)

Asymmetric Transitivity Preserving Graph Embedding

Mingdong Ou, Peng Cui, Jian Pei, Wenwu Zhu KDD, 2016

HOPE (KDD '16)

Introduction

- Existing graph embedding methods cannot preserve the asymmetric transitivity well, which depicts the correlation among directed edges.
- ☐ High-Order Proximity preserving Embedding (HOPE) is proposed, which is scalable to preserve high-order proximities of large scale graphs and capable of capturing the asymmetric transitivity

HOPE (KDD '16)

Details

- \Box **G**={**V**, **E**}; **A**: adjacency matrix; **S**: high-order proximity matrix; **U**^s: source embedding vectors; **U**^t: target embedding vectors
- ☐ Loss function:

$$\min \left\| \mathbf{S} - \mathbf{U}^{s} \cdot \mathbf{U}^{t^{\mathrm{T}}} \right\|_{F}^{2}$$

■ **S** shares a general formulation in many measurements:

$$S = M_g^{-1} \cdot M_l$$

where

 \blacksquare In Katz Index: $\mathbf{M}_g = \mathbf{I} - \beta \cdot \mathbf{A}$, $\mathbf{M}_l = \beta \cdot \mathbf{A}$

□ In Rooted PageRank: $\mathbf{M}_{q} = \mathbf{I} - \boldsymbol{\alpha} \cdot \mathbf{P}$, $\mathbf{M}_{l} = (1 - \alpha) \cdot \mathbf{I}$

.....

LANE (WSDM '17)

Label Informed Attributed Network Embedding

Xiao Huang, Jundong Li, Xia Hu WSDM, 2017

LANE (WSDM '17)

Introduction

- □ Combine **structural (G)** information, **attribute (A)** information, and **label (Y)** information together
- Based on spectral graph theory (recall Laplacian Eigenmaps)

Network Embedding in RS

- ☐ In the above papers, **node classification** and **link prediction** task are most considered in experiment part
 - Node classification: classify nodes based on the features learned by network embedding
 - ☐ Link prediction: predict the presence of unobserved links
- ☐ Few experiments are for recommendation
 - APP: item recommendation in Taobao
- No prior work focuses on recommendation explicitly