2025 하반기 Challenger Track

자율스터디 기획서

팀명	해운물류:바다로
팀장	허지윤
팀원	현희섭, 조윤정, 강지윤

1. 스터디 주제/목표

스터디를 관통하는 큰 주제와 이 스터디로 얻어갈 목표에 대해 설명해주시면 됩니다!

스터디 주제	스마트 해운물류 항만 경비 로봇 제작
스터디 목표	스마트 해운물류 ICT 멘토링 경진대회 및 특허, 논문 학술대회 참가를 목표로 항만 경비 로봇을 실제로 제작하고 관련 기술을 개발한다.

2. 참가대회

스터디를 참여하며 함께 진행할 대회가 있다면 적어주세요!

대회명	스마트 해운물류 ICT 멘토링 경진대회
링크	https://www.usmac.or.kr/bbs/BBSMSTR_000000000631/view.do;jsessioni d=DCDEDBFFF327961C756EA2C5CAEC4641?nttld=B000000008334Xm0s P7
대회에서 진행할 주제	항만 경비 로봇 제작 및 관련 기술 개발 (하드웨어 구성, 하드웨어 설계, 불꽃 감지 및 비인가(밀입국) 사람 인식 CV 모델 개발, 자율주행 모듈, 각종 센서 제어, 테스트 주행)

3. 스터디 계획

주차별로 스터디 계획을 작성해주세요! 최소 12 주차 이상 작성해주세요.

주차	학습 주제	세부 활동
1	프로젝트 목표 및 역할 분담	 전체 프로젝트 목표 재확인 세부 과제 정의 팀원별 역할 및 책임 분담 개발 환경 설정 및 초기 자료
2	하드웨어 구성 및 설계(기초)	- 로봇 플랫폼 및 주요 부품 선정 - 3D 모델링 툴 학습 및 기초 설계 시작 - 필요한 센서 및 모듈 리스트업
3	하드웨어 설계 (심화) 및 부품 수급	- 로봇 프레임 및 각 보듈 상세 설계 - 부품 구매 리스트 확정 및 주문 - 조립 매뉴얼 초안 작성
4	로봇 기본 조립 및 센서 인터페이스	- 로봇 하드웨어 기본 조립 - MCU와 센서 초기 인터페이스 테스트
5	불꽃 감지 CV 모델 개발(기초)	- 불꽃 이미지 데이터셋 수집 및 전처리 - 딥러닝 프레임워크 기초 학습 - 간단한 불꽃 감지 모델 아키텍처 설계 및 학습 시작
6	비인가(밀입국) 사람 인식 CV 모델 개발 (기초)	- 사람 이미지 데이터셋 수집 및 전처리 - 객체 탐지 모델 개념 학습 - 비인가 사람 인식 모델 학습 환경 구축

7	자율주행 모듈 개발 (기초)	-	로봇 이동 제어
		-	ROS 기초 학습 및 환경 설정
		-	SLAM 개념 이해
8	CV 모델 통합 및 최적화	-	불꽃 감지 및 비인가 사람 인식 모델 통합
		-	모델 성능 평가 및 최적화
		-	엣지 디바이스에서의 추론 성능 테스트
9	센서 제어 및 데이터 통합	-	각종 센서 데이터 실시간 수집 및 처리
		-	스피커 모듈 제어 및 경고음/음성 메시지
			출력 기능 구현
		-	센서 데이터와 CV 데이터 연동
10	지으즈해 ㅁ드 시칭 미		큽 메니게이셔 미 경크 게히 아그리즈
10	자율주행 모듈 심화 및	-	로봇 내비게이션 및 경로 계획 알고리즘
	경로 계획		구현
		-	
		-	항만 환경 시뮬레이션 및 테스트
11	통합 시스템 테스트 및	_	하드웨어, 소프트웨어, AI 모델 전체 통합
	디버깅		
		_	" 발생 가능한 오류 및 버그 수정
		_	실제 항만 환경에서의 테스트 주행 준비
12	최종 테스트 및	-	로봇 최종 성능 점검 및 안정화
	대회/학술대회 준비	-	경진대회 발표 자료 및 시현 준비
		-	특허 출원 및 논문 작성 준비(초안 마무리)

4. 스터디 규칙

출석

| 전원 출석을 원칙으로 삼는다.

- 1. 스터디 무단 결석 1 회 이상 시 팀원 전원에게 아이스크림 쏘기
- 2. 스터디 지각 2 회 이상 시 다음 스터디 간식 책임지기
- 3. 스터디 일정이 어려울 경우, 일주일 전에 알려서 시간 변경하기

스터디 과제

1. 매주 부여된 과제를 제출하지 않으면 로봇 조립 시 가장 힘든 부분 담당하기

공유회 발표

1. 스터디원 전원이 돌아가며 자료 제작 및 발표 필수, 이를 지키지 않을 경우 트랙 경고 1회 부여

5. 예산안 신청서

예산이 필요하신 분들을 위해 팀당 ~원의 지원금이 배정되어 있습니다. 예산안 반려대상을 잘 확인하시고 신청해주시기 바랍니다.

1	항목	
	비용	
	링크	
	사용계획	
2	항목	
	비용	
	링크	
	사용계획	
3	항목	
	비용	
	링크	
	사용계획	
4	항목	
	비용	
	링크	
	사용계획	