INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Lab 5 - Decision Aiding - ELECTRE I

1) <u>MARGINAL CONCORDANCE:</u> Compute marginal concordance indexes for the given data (the criterion is of a gain-type):

$g_i(A)$	$g_i(B)$	q_i	p_i	$c_i(A,B)$
10	5	2	5	
7	7	2	5	
8	10	2	5	
5	10	2	5	
7	10	2	5	
	10	2	5	0.5

COMPREHENSIVE CONCORDANCE & DISCORDANCE: Calculate concordance and discordance indexes for all pairs of alternatives. The criteria are of a gain-type. Assume that the cutting level equals 0.85. For which pairs a S b is fulfilled?

WEIGHTS & THRESHOLDS FOR CRITERIA

	Weather	Cost	Food	
q	0.1	0.1	0.1	
р	0.2	0.25	0.3	
٧	0.3	0.4	1.0	
W	0.5	0.2	0.3	

	Weather	Cost	Food
Germany	0.7	0.7	0.5
Italy	0.9	0.5	0.8
Norway	0.6	0.2	0.7
Spain	0.9	0.4	0.6

(A) COMPREHENSIVE CONCORDANCECE

C(a, b)	G		N	S
G	-			
I	0.86	-	1	1
N	0.8	0.3	-	0.36
S	0.8	0.85	1	-

$$C_{weat her}(G, I) = C_{cost}(G, I) = C_{food}(G, I) =$$

$$C(G,I) = C(G,N) = C(G,S) =$$

$$C_{weat\ her}(G,N) = C_{weat\ her}(G,S) = C_{cost}(G,N) = C_{cost}(G,S) = C_{food}(G,N) = C_{food}(G,S) =$$

d(a, b)	G	I	N	S
G	-	0	0	0
ı		-	0	0
N		1	-	1
S		0	0	-

(C) OUTRANKING MATRIX

aSb	G		Ζ	ഗ
G	-			
ı		-		
N			-	
S				-

3) OUTRANKING GRAPH: Draw outranking graph, remove cycles, and find the graph kernel.

Outranking graph:

After the elimination of cycles:

Graph kernel: