Lecture 2: Data representation, addresses

September 4, 2019

601.229 Computer System Fundamentals

Welcome!

- ► Today:
 - ▶ Data representation
 - Addresses

Data representation

There are only kinds of people.

Those who understand binary and those who don't.

► Basic units

► Basic units

► Additive combination of units

II III VI XVI XXXIII MDCLXVI MMXVI

Basic units

Additive combination of units

► Basic units

Additive combination of units

► Subtractive combination of units

► Basic units

Additive combination of units

Subtractive combination of units

► Basic units

Additive combination of units

Subtractive combination of units

Arabic Numerals

- Developed in India and Arabic world during the European Dark Age
- ▶ Decisive step: invention of zero by Brahmagupta in AD 628
- ► Basic units

0 1 2 3 4 5 6 7 8 9

► Positional system

1 10 100 1000 10000 100000 1000000

Why Base 10?

dig∙it /ˈdijit/ •

noun

- any of the numerals from 0 to 9, especially when forming part of a number. synonyms: numeral, number, figure, integer "the door code has ten digits"
- a finger (including the thumb) or toe. synonyms: finger, thumb, toe; extremity "we wanted to warm our frozen digits"

► Decoding binary numbers

► Decoding binary numbers

► Decoding binary numbers

Binary number	1	1	0	1	0	1	0	1
Position	7	6	5	4	3	2	1	0
Value	2^{7}	2^{6}	0	2^4	0	2^2	0	2 ⁰

► Decoding binary numbers

Binary number	1	1	0	1	0	1	0	1	
Position	7	6	5	4	3	2	1	0	
Value	2^{7}	2^6	0	2^4	0	2^2	0	20	
	128	64	0	16	0	4	0	1	= 213

Clicker quiz 1

Clicker quiz omitted from public slides

- ▶ Numbers like 11010101 are very hard to read
- ⇒ Octal numbers

		_					
1	1	0	1	0	1	0	1
_		_		_	_		_
:	3		2			5	
	1 -	1 1 3	1 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 0 1 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- ▶ Numbers like 11010101 are very hard to read
- \Rightarrow Octal numbers

Binary number	1	1	0	1	0	1	0	1
	_		_		_	-		_
Octal number		3		2			5	
Position		2		1			0	

- ▶ Numbers like 11010101 are very hard to read
- \Rightarrow Octal numbers

Binary number	1	1	0	1	0	1	0	1
	_		_		_	_		_
Octal number	3		2			5		
Position	2		1			0		
Value	3×8^2		2×8^{1}		31	$5 \times 8^{\circ}$		

- ▶ Numbers like 11010101 are very hard to read
- \Rightarrow Octal numbers

Binary number	1	1	0	1	0	1	0	1		
		_	_		_	_		_		
Octal number	3	}		2			5			
Position	2)		1			0			
Value	3 ×	8 ²	2	× 8	1	5	× 8	30		
	19	2		16			5		=	213

▶ ... but grouping **three** binary digits is a bit odd

- ▶ Grouping 4 binary digits \rightarrow base $2^4 = 16$
- "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)

- ▶ Grouping 4 binary digits \rightarrow base $2^4 = 16$
- ▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
- ► Need characters for 10-15:

- ▶ Grouping 4 binary digits \rightarrow base $2^4 = 16$
- ▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
- ▶ Need characters for 10-15: use letters a-f

Binary number	1	1	0	1	0	1	0	1
Hexadecimal number						į	 5	

- ▶ Grouping 4 binary digits \rightarrow base $2^4 = 16$
- ▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
- ▶ Need characters for 10-15: use letters a-f

Binary number	1	1	0	1	0	1	0	1
Hexadecimal number		(<u> </u>			ĺ	5	
Position			1			()	

- ▶ Grouping 4 binary digits \rightarrow base $2^4 = 16$
- ▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
- ▶ Need characters for 10-15: use letters a-f

Binary number	1	1	0	1	0	1	0	1	
Hexadecimal number Position		(d 1	_				_	
Value	13×16^{1}		5×16^{0}						
		20	90			į	5		= 213

Clicker quiz 2

Clicker quiz omitted from public slides

Examples

Decimal	Binary	Octal	Hexademical
0			
1			
2			
3			
8			
15			
16			
20			
23			
24			
30			
50			
100			
255			
256			

Examples

Decimal	Binary	Octal	Hexademical
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
8	1000	10	8
15	1111	17	f
16	10000	20	10
20	10100	24	14
23	10111	27	17
24	11000	30	18
30	11110	36	1e
50	110010	62	32
100	1100100	144	64
255	11111111	377	ff
256	100000000	400	100

Placeholder 1

Placeholder slide

Addresses

Placeholder 2

Another placeholder slide