

Arrays Review

- Arrays allow you to store and access data easily and in a programmatic way
- There are two main types of arrays we've used:
 - 1-dimensional arrays (also called vectors)
 - 2-dimensional arrays (also called array or matrix)

Arrays Review

- The number of dimensions in an array determines how the data is stored and accessed:
 - Vectors have a single dimension, and thus a single index to access data:

```
vector name(index)
```

Arrays have two dimensions, requiring multiple indices to access data:

```
array name(row index, col index)
```

Remember: indices always start at 1!

Arrays Practice


```
>> A = [9 8 7 6 5 4 3 2 1 0];

>> A(2)

>> A(1:4)

>> A(2:2:end)

>> A([1 3 5 7 9])

>> A.^2

>> A >= 3 & A < 6
```

Arrays Practice


```
>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12];

>> A(2,3)

>> A(1,:)

>> A(:,4)

>> A(1:2,3:4)

>> A([1 3],[1 3])

>> A > 3 & A < 10
```

Nested Loops Review

- Nested loops consist of one loop inside another
- You can nest any type of loop inside another
 - Most commonly used this semester was a for inside a for
- With nested loops, the inner loop will complete all iterations for every one iteration of the outer loop

Nested Loops Practice

Determine the result of running the following script in MATLAB:

```
x = [1 2 3];
y = [1 3 5 7];
for r = 1:length(x)
    P(r) = x(r);
    for c = 1:length(y)
        P(r) = P(r) + (-1) ^r*y(c);
    end
end
disp('P=');disp(P)
```

Nested Loops Practice

 Consider the following code and determine the output when it is executed:

```
X = [1 2 3; 4 5 6; 7 8 9];
[rows cols] = size(X);
for r = 1:rows
    for c = 1:cols
        Y(r,c) = sum(X(r:3,c));
    end
end
disp('X = '); disp(X);
disp('Y = '); disp(Y);
```

Nested Loops Practice

The voltage across the capacitor in a series RC circuit with a voltage source of 12 volts is:

$$V_{cap}(t) = 12(1 - e^{-\frac{t}{RC}})$$

Create a vector for time that starts at 0, increments by 0.01, and ends at 12. Create a vector of resistances that starts at 1000, increments by 500, and ends at 3000. Assume C = 0.001.

Using nested loops, go through each entry in the time vector and each entry in the resistance vector to create a matrix of capacitor voltages. Plot the results.

Note: this could be done without nested loops but the point is to practice nested loops!

Array Functions Review

- There are a number of functions that are useful when dealing with arrays:
 - length: determines the number of entries in a vector
 - size: determines the number of elements along different dimensions of an array
 - min: determines the minimum value
 - max: determines the maximum value
 - sum: adds the values in an array
 - find: gives the index for any non-zero value in an array
 - mean: determines the average value

- What do each of the following commands do?
 - 1-D Array

2-D Array

- sum()

— max()

- min()

- find()


```
>> A = [4 5 3 1 8 9 5 7 2];
>> length(A)
>> sum(A)
>> max(A)
>> min(A(7:9))
>> find(A == 5)
```



```
>> A = [4 5 7 6; 1 8 2 4; 3 9 7 1];
>> [a, b] = size(A)
>> sum(A)
>> max(A(3,:))
>> min(min(A))
>> sum(sum(A == 7))
```



```
>> A = [4 5 7 6; 1 8 2 4; 3 9 7 1];

Result:
>> sum(A(2,:)>=2)

>> sum(A(2,:)>=2 & A(3,:)<=7)

>> n = find(A(:,1)>=2); mean(A(n,4)) 3.5

(Note: n would be [1 3])
```

Matrix Operations

$$A = \begin{bmatrix} Y & Z & 8 \\ 2 & 7 & -3 \end{bmatrix} + \begin{bmatrix} 5 & -2 & 12 \\ 4 & 7 & -2 \end{bmatrix}$$

$$A = ?$$

Matrix Operations

Which of the following are invalid matrix operations?

$$\begin{bmatrix} 2\\1\\-2\\Z \end{bmatrix} \times \begin{bmatrix} 4 & -1 & Y \end{bmatrix}$$

$$\begin{bmatrix} 2\\1\\-2\\Z \end{bmatrix} \times \begin{bmatrix} Y\\1\\3\\7 \end{bmatrix}$$

$$\begin{bmatrix} Z & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix} \times \begin{bmatrix} 4 & 0 & Y \\ 5 & -3 & 2 \end{bmatrix}$$

Matrix Operations

$$\begin{bmatrix}
2 \\
1 \\
-2 \\
Z
\end{bmatrix} \times [4 -1 Y]$$

$$A = ?$$

Set up the matrix equation for the following set of linear equations. How do we determine whether or not there is a unique solution?

$$3x + 2y - z = 6$$

 $4x - 3y + 2z = 12$
 $x + y - 5z = 4$

Set up the matrix equation for the following set of linear equations. How do we determine whether or not there is a unique solution?

$$2v + x + 2y + z = 4$$

 $v + 5x - y - 3z = 1$
 $4v - 2x + 6y - z = -16$
 $2v + 6x - 9z = 10$

Force Balance Equations

Write the matrix equation for the force balance equations.

Circuit Mesh Equations

Homework #5 – Problems 4 and 5

Lecture: Week 6