

ETSI diskutiert Veröffentlichung der Verschlüsselung von TETRA-Funk

- ETSI = European Telecommunication Standards Institute
- TETRA = Terrestrial Trunked Radio
 - verschlüsselter Bündelfunk mit 4 Algorithmen TEA1 TEA4
 - Geheim, nur unter NDA zugänglich
 - BOS-(Behörden und Organisationen mit Sicherheitsaufgaben) und Bundeswehr-Funk basiert auf TETRA, verwendet TEA2 (Behördenverschlüsselung für EU)
 - Polizei, Rettungsdienst, Feuerwehr, Katastrophenschutz, Verfassungsschutz, etc.
- Midnight Blue veröffentlicht am 24.07.23 fünf Schwachstellen
 - Entdeckt bereits 2021 durch Reverse-Engineering eines Motorola-Funkgerätes
 - TEA1-Schwachstelle reduziert 80-Bit Schlüssellänge auf 32 Bit
 - TEA2 nicht betroffen, BSI empfiehlt Industrie (verwendet TEA1) neue Risikobewertung
- ETSI will am 26.10.23 über Veröffentlichung der Algorithmen entscheiden
- ⇒ "Security by Obscurity" liefert nur eine Scheinsicherheit, s. Kap. über Kryptographie

Kapitel 2

Inhalt

1. Ziele der Informationssicherheit

- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety

Ziele der Informationssicherheit

Hauptproblem:

Informationssicherheit (IS) kann nicht gemessen werden

- Es gibt keine Maßeinheit für IS
- □ Sicherheitskennzahlen (security metrics) quantifizieren nur Teilaspekte; organisationsübergreifend einheitliche Definitionen sind noch Mangelware.
- Lösungsansatz: Indirekte Definition von IS durch (Teil-)Ziele:

Vertraulichkeit	Confidentiality	jeweils bezogen
Integrität	Integrity	auf Daten und sie verarbeitende
Verfügbarkeit	A vailability	IT-Systeme

Akronym CIA häufig in englischer IS-Literatur

1. Teilziel

Vertraulichkeit

Definition im Kontext Daten:

Vertraulichkeit (engl. confidentiality) ist gewährleistet, wenn geschützte Daten nur von Berechtigten genutzt werden können.

- In vernetzten Systemen zu betrachten bezüglich:
 - Transport von Daten (über Rechnernetze)
 - Speicherung von Daten (inkl. Backup)
 - Verarbeitung von Daten
- Typische Sicherheitsmaßnahme: Verschlüsselung
- Teilziel gilt als verletzt, wenn geschützte Daten von unautorisierten Subjekten eingesehen werden können.
- Kontext *Dienste*: Vertrauliche IT-Dienste können nur von autorisierten Anwendern genutzt werden.

Beispiel

Vertraulichkeit von E-Mails

2. Teilziel

Integrität

Definition im Kontext Daten:

Integrität (engl. integrity) ist gewährleistet, wenn geschützte Daten nicht unautorisiert und unbemerkt modifiziert werden können.

- Wiederum bei Transport, Speicherung und Verarbeitung sicherzustellen!
- Typische Sicherheitsmaßnahme: Kryptographische Prüfsummen
- Teilziel verletzt, wenn Daten von unautorisierten Subjekten unbemerkt verändert werden.
- Kontext *Dienste*: Integre IT-Dienste haben keine (versteckte) Schadfunktionalität.

Beispiel

Integrität im Online-Banking

Neue Überweisung

An: Bob Mule Betrag: 2000 Euro

TAN: 123456

Neue Überweisung

An: Meinen Vermieter

Betrag: 500 Euro

TAN: 123456

3. Teilziel

Verfügbarkeit

Definition:

Verfügbarkeit (engl. availability) ist gewährleistet, wenn autorisierte Subjekte störungsfrei ihre Berechtigungen wahrnehmen können.

- Bezieht sich nicht nur auf Daten, sondern z.B. auch auf Dienste und ganze IT-Infrastrukturen.
- Typische Sicherheitsmaßnahme: Redundanz (z.B. Daten-Backups), Overprovisioning (z.B. mehr als genug Server)
- Teilziel verletzt, wenn ein Angreifer die Dienst- und Datennutzung durch legitime Anwender einschränkt.

Beispiel

Verfügbarkeit von Webservern

Ziele und abgeleitete Ziele in deutscher IS-Literatur

Vgl. CIA in englischer Literatur:

Hier auch
Verbindlichkeit
(non-repudiation)
als Top-Level-Ziel

[In Anlehnung an Hartmut Pohl]

Kapitel 2

Inhalt

- 1. Ziele der Informationssicherheit
- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety

Warum Sicherheitsmaßnahmen einordnen?

- Zum Erreichen der IS-Teilziele müssen Sicherheitsmaßnahmen umgesetzt werden (vgl. IS-Risikomanagement in Kapitel 3).
- Sicherheitsmaßnahmen gibt es zuhauf; sie entwickeln sich wie Dienste und Angriffe ständig weiter.
 - In der Vorlesung werden wichtige "klassische" und diverse aktuelle Sicherheitsmaßnahmen behandelt, aber bei Weitem nicht alle.
 - Systematische Einordnung ist Basiskompetenz bei der Analyse und Bewertung neuer Sicherheitsmaßnahmen.
- Wir orientieren uns an zwei bewährten Dimensionen:
 - □ Lebenszyklus potentiell erfolgreicher Angriffe auf Dienste/Daten
 - Unterscheidung zwischen technischen und organisatorischen Maßnahmen (=> Faktor Mensch nie zu unterschätzen!)

Einordnung von Sicherheitsmaßnahmen

Einige Sicherheitsmaßnahmen können mehreren Kategorien zugeordnet werden, d.h. es liegt keine Taxonomie vor!

IS-Teilziele im Kontext des Angriffslebenszyklus

- Die Kombination aller in einem Szenario eingesetzten **präventiven** Maßnahmen dient der Erhaltung von *Vertraulichkeit*, *Integrität* und *Verfügbarkeit*.
- **Detektierende** Maßnahmen dienen dem Erkennen von unerwünschten Sicherheitsereignissen, bei denen die präventiven Maßnahmen unzureichend waren.
- Reagierende Maßnahmen dienen der Wiederherstellung des Soll-Zustands nach dem Erkennen von unerwünschten Sicherheitsereignissen.

Welche Maßnahmen werden benötigt?

Grundidee:

- Maßnahmenauswahl ist immer szenarienspezifisch
- Risikogetriebenes Vorgehensmodell

Kernfragestellungen:

- Welche Sicherheitsmaßnahmen sollen wann und in welcher Reihenfolge ergriffen werden?
- Lohnt sich der damit verbundene Aufwand (Investition/Betrieb)?
- Voraussetzung Risikomanagement (hier nur Überblick):
 - ☐ Analyse des Schutzbedarfs
 - Überlegungen zu möglichen Angriffen und deren Auswirkungen
 - Ermittlung / Evaluation passender Lösungswege
 - Entscheidung möglichst auf Basis quantitativer (d.h. nicht nur qualitativer) Bewertung

Kapitel 2

Inhalt

- 1. Ziele der Informationssicherheit
- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety

Motivation für Standardisierung

- Informationssicherheit Anfang der 1990er Jahre:
 - Stark technikzentriert
 - Kosten-/Nutzenfrage kommt auf
 - Führungsebene wird stärker in IS-Fragestellungen eingebunden
- Wachsender Bedarf an Vorgaben und Leitfäden:
 - □ Kein "Übersehen" wichtiger IS-Aspekte
 - □ Organisationsübergreifende Vergleichbarkeit
 - □ Nachweis von IS-Engagement gegenüber Kunden und Partnern
- Idee hinter ISO/IEC 27000:

Anwendung der Grundprinzipien des Qualitätsmanagements auf das Management der Informationssicherheit

Internationale Normenreihe

ISO/IEC 27000

- ISO/IEC 27000 wird mehrere Dutzend einzelne Standards umfassen
 - Mehr als die Hälfte davon ist noch in Arbeit und nicht veröffentlicht
- Norm ISO/IEC 27001 legt Mindestanforderungen an sog. Information Security Management Systems (ISMS) fest
 - □ Zertifizierungen möglich für:
 - Organisationen (seit 2005)
 - Personen (seit 2010)
 - Inhaltliche Basis:
 - Kontinuierliche Verbesserung durch Anwendung des Deming-Zyklus (PDCA)
 - Risikogetriebenes Vorgehen
 - Seit 2008 auch DIN ISO/IEC 27001

Kerninhalte/Struktur von DIN ISO/IEC 27001

- Begriffsdefinitionen (Verweis auf DIN ISO/IEC 27000)
- PDCA-basierter Prozess zum Konzipieren, Implementieren, Überwachen und Verbessern eines ISMS
- Mindestanforderungen u.a. an Risikomanagement, Dokumentation und Aufgabenverteilung
- Normativer Anhang A enthält:
 - Definition von Maßnahmen (controls)
 - Gruppierung in vier Kategorien
- Aktuell bei der DIN in Überarbeitung, engl. Fassung 2022 aktualisiert
- Umfang:
 - □ DIN ISO/IEC 27001:2015 31 Seiten
 - DIN ISO/IEC 27002:2015 103 Seiten engl. Fassung :2022 152 Seiten

Überblick

Irz

Maßnahmenziele und Maßnahmen - alte Version (2015)

A.5 Informationssicherheitsleitlinien (1/2) [= 1 Objective, 2 Controls]

A.6 Organisation der Informationssicherheit (2/7)

A.7 Personalsicherheit (3/6)

A.8 **Verwaltung der Werte** (3/10) A.9 **Zugangssteuerung** (4/14)

A.10 **Kryptographie** (1/2)

A.11 **Physische Sicherheit** (2/15)

A.12 **Betriebssicherheit** (7/14) A.13 Kommunikationssicherheit (2/7) A.14
Anschaffung,
Entwicklung von
Systemen
(3/13)

A.15 **Lieferantenbeziehungen** (2/5)

A.16 **Handhabung von Sicherheitsvorfällen** (1/7)

A.17 Business Continuity
Management (2/4)

A.18 Compliance (2/8)

Überblick

ISO/IEC 27001:2022 Anhang A

Irz

- Anhang A wurde ziemlich stark umgebaut
 - Objectives sind nicht mehr angegeben; "nur" noch Controls
 - Umgruppierung und Zusammenfassung alter Controls
 - 93 Controls in :2022; 112 in :2015
 - Gruppierung auf vier Gruppen anstatt 14 vorher
 - 10 neue Controls (z.B. Clouddienste, Überwachung physischer Sicherheit, Konfig-Mgmt., Webfilterung, sichere Programmierung,...)

Maßnahmen A.8 (alt) in ISO 27001:2022

ISO/IEC 27001:2022 Maßnahme	ISO/IEC 27001:2017 Maßnahme	Bezeichner der Maßnahme
	·	· '
A.5.9	A.8.1.1, A.8.1.2	Inventar der Informationswerte und anderer damit verbundener Assets
A.5.10	A.8.1.3, A.8.2.3	Zulässige Nutzung von Informationen und anderen damit verbundenen Assets
A.5.11	A.8.1.4	Rückgabe von Assets
A.5.12	A.8.2.1	Klassifizierung von Informationen
A.5.13	A.8.2.2	Kennzeichnung von Informationen
A.7.10	A.8.3.1, A.8.3.2, A.8.3.3, A.11.2.5	Speichermedien

ISO/IEC 27005

Grundlagen des Risikomanagements

25

LRZ:

seit August 2019 zertifiziert nach:

- ISO 27001
- ISO 20000

ZERTIFIKAT

ISO/IEC 27001:2015

DEKRA Certification GmbH bescheinigt hiermit, dass die Organisation

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

Informationswerte und informationsverarbeitende Einrichtungen für die Erbringung aller IT-Services für Kunden des LRZ sowie die dazugehörige Rechenzentrums- und Kommunikationsinfrastruktur.

Zertifizierter Standort:

Boltzmannstraße 1,85748 Garching bei München, Deutschland

ein Informationssicherheitsmanagementsystem entsprechend der oben genannten Norm sowie der Anwendbarkeitserklärung vom 28.06.2019 eingeführt hat und aufrechterhält. Der Nachweis wurde mit Auditbericht-Nr. A19031463 erbracht.

Zertifikats Registrier-Nr.: Gültigkeit vorheriges Zertifikat:

DAkkS

DEKRA Certification GmbH, Berlin, 08.08.2019

DEKRA Certification GmbH * Handwerkstraße 15 * D-70565 Stuttgart * www.dekra-certification.de

Seite 1 von 1

Kapitel 2

Inhalt

- 1. Ziele der Informationssicherheit
- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety

Unterscheidung

Security vs. Safety

- Beide Begriffe werden oft mit "Sicherheit" übersetzt
- Typische Themen der Safety ("Funktionssicherheit")
 - Betriebssicherheit für sicherheitskritische Programme, z.B. Steuerung und Überwachung von Flugzeugen, Kraftwerken und Produktionsanlagen
 - Ausfallsicherheit (Reliability)
 - Gesundheitsrelevante Sicherheitseigenschaften / Ergonomie
- Typische Themen der Security ("Sicherheit" i.S.d. Vorlesung)
 - ☐ Hardware-/Software-/Netz-basierte Angriffe und Gegenmaßnahmen
 - □ Security Engineering: Design und Implementierung sicherer IT-Systeme
 - Security Policies: Sicherheitsanforderungen und deren Umsetzung
 - Anwendung von Kryptographie, Hardware-Designmethoden, ... im Kontext "C I A" von Daten und Diensten

Einordnung

Safety vs. Security (1/2)

(nach Hartmut Pohl)

Einordnung

Safety vs. Security (2/2)

