Argonne Summer 2020

A project plan for Rick Nueve

Overview

- For ten weeks, I (Rick Nueve) am an intern at Argonne National Lab under the SAGE project.
- MISSION STATEMENT: My primary tasks are to design a Deep Learning model that uses images and FLIR images from a node, have the model be able to run on a node, and also to write a tutorial explaining to students how to make their programs be able to run on the nodes.

Who is this "Rick" you speak of?

- I am a recent graduate of the class of 2020 from Northern Illinois
 University with a major in Mathematics focused in Statistics.
- My research background is in Deep Learning. I have worked with an array of Deep Learning models for tasks such as NLP, facial recognition, GNN node classification, and time-series classification.
- I hope to do my graduate thesis in the field of Quantum Probability.
- I desire to learn better ways to encode time-series in Deep Learning models.
- I hypothesize that Quantum Stochastic Integrals, a topic in Quantum
 Probability, could be used to create state of the art Recurrent Networks.

What is currently known

- I know that I will design a program that uses Deep Learning, which uses at least normal images and FLIR images as inputs.
- I currently have eight full weeks left in the program.
- I want to make a short paper out of this research project.

Current information about the data

- Currently, I have access to the images and FLIR images from the node "001e06107d7f" located on the Argonne Laboratory property.
- The cameras on the node take pictures every minute.
- I have access to images from January 23, 2020 to the present.

Example of Images

Current information about the data

- I also have hourly weather data from another sensor located on the Argonne property dating back from January 2020 to April 2020.
- I possibly may be able to get the temperature values of each pixel from the FLIR images. However, I can't guarantee that can happen. That will be only possible if the camera had particular settings enabled where the raw thermal values were being saved.

Example of Weather Data

*Currently being formatted.

						1 jan	2020								
							1000000								
		1													
	60	m				10 m	10 cm	1 m	10 ft						
	00		1	-		10111	10 (11)	-1.00	1011						-
	AIR WIN	ID -	WIND	SIGMA	REL DEW	AIR WIND WIND	SIGMA SOIL	SOIL	SOIL	BAROM	GLOB	NET	PRCP	z/L	STABL
TIME	TEMP SPE	200202	DIR	DIR	HUM POINT	TEMP SPEED DIR	DIR TEMP	TEMP	TEMP	PRESS	RAD	RAD	TOTL	2/L	CLASS
CST	C cm/s		deg	deg	% C	C cm/s deg	deg C	C	C	kPa	W/m2	W/m2	mm		OLAGO
031	O CITE		deg	deg	70 O	O City's deg	deg O			Kra	W/IIIZ	VV/IIIZ			
100	-3.7 612	2.	263	7.9	895.2	-3.6 428. 262.	11.1 2.1	5.6	9.6	98.69	0	-53	0.0	0.00	D
200	-4.3 489	9.	259	7.7	915.7	-4.2 357. 258.	10.6 2.1	5.6	9.6	98.67	0	-52	0.0	0.02	* D
300	-4.8 454	1.	252	6.3	926.2	-4.8 308. 253.	7.8 2.1	5.6	9.6	98.69	0	-46	0.0	0.01	D
400	-5.2 517	7.	248	5.9	946.4	-5.3 345. 249.	7.6 2.0	5.6	9.6	98.67	0	-40	0.0	0.00	D
500	-5.5 548	3.	251	5.0	936.9	-5.6 372. 254.	7.7 2.0	5.6	9.6	98.66	0	-38	0.0	0.00	D
600	-5.7 574	1.	249	6.4	937.1	-5.8 384. 251.	8.0 2.0	5.6	9.6	98.65	0	-35	0.0	0.00	D
700	-5.8 578	3.	235	7.9	947.3	-6.1 359. 241.	8.2 1.9	5.6	9.6	98.65	0	-33	0.0	0.00	D
800	-5.3 474	1.	215	5.9	976.6	-5.8 284. 210.	11.1 1.9	5.6	9.6	98.62	41	-12	0.0	0.00	D
900	-4.6 452	2.	203	9.5	945.6	-4.6 330. 202.	11.4 1.9	5.6	9.6	98.67	235	28	0.0	-0.01	С
1000	-3.2 493	3.	197	9.8	884.5	-2.9 420. 199.	12.8 1.9	5.6	9.6	98.71	413	131	0.0	-0.10	В
1100	-1.2 577	7.	198	10.5	793.6	-0.7 513. 200.	11.6 1.8	5.6	9.6	98.72	479	181	0.0	-0.10	С
1200	1.0 694	1.	205	9.0	644.3	1.6 570. 207.	12.2 1.8	5.6	9.6	98.63	461	208	0.0	-0.04	С
1300	2.8 759	9.	206	9.3	583.7	3.4 611. 208.	12.6 1.8	5.6	9.6	98.54	444	227	0.0	-0.02	D
1400	3.9 795	5.	205	9.2	592.5	4.5 612. 208.	13.6 1.8	5.6	9.6	98.44	380	204	0.0	-0.01	D
1500	4.8 787	7.	191	9.8	621.2	5.3 605. 194.	12.6 1.8	5.6	9.6	98.38	272	143	0.0	-0.01	D
1600	5.1 821	ı.	189	9.1	640.5	5.4 590. 193.	12.1 1.7	5.6	9.6	98.35	130	44	0.0	0.00	D
1700	4.4 793	3.	186	9.7	72. 0.3	4.5 535. 193.	12.7 1.7	5.6	9.6	98.28	16	-30	0.0	0.00	D
1800	4.0 787	·.	193	9.2	76. 0.5	4.1 528. 201.	12.7 1.7	5.6	9.6	98.23	0	-34	0.0	0.00	D
1900	4.1 842	2.	192	9.8	75. 0.4	4.2 547. 199.	13.2 1.7	5.6	9.6	98.17	0	-38	0.0	0.00	D
2000	4.6 912	2.	192	9.5	71. 0.1	4.6 610. 199.	12.1 1.7	5.6	9.6	98.14	0	-34	0.0	0.00	D
2100	4.9 916	S.	195	10.0	650.8	4.9 615. 201.	12.5 1.6	5.6	9.6	98.13	0	-38	0.0	0.00	D
2200	5.1 917	7.	198	9.5	611.4	5.1 634. 201.	12.2 1.6	5.6	9.6	98.12	0	-40	0.0	0.00	D
2300	4.6 864	1.	201	9.5	621.7	4.7 610. 206.	12.9 1.6	5.6	9.6	98.10	0	-42	0.0	0.00	D
2400	4.5 873	3.	203	9.4	621.9	4.5 617. 205.	12.5 1.6	5.6	9.6	98.06	0	-43	0.0	0.00	D
Mean	0.2 688	3.		8.2	773	.4 0.3 491.	11.5 1.8	5.6	9.6	98.46	120	23	0.0^	-0.01	
Vecto	r Wind 625	5.	209			446. 212.									

What I currently don't know

- I don't know what value the Deep Learning model should predict!
- I don't know what kind of model would be of use to the scientific community.
- However, I do have some starting ideas.

Current Ideas

IDEA 1: Have images and FLIR images go into a CNN-LSTM model and try to forecast future precipitation. The target values would be whether or not there was rain or snow in the next period (ex: hour, day, ... etc).

Pro: The data preparation of the photos would be limited.

Con: I don't know how informative just the two photos would be for predicting future weather precipitation.

Current Ideas

IDEA 2: Have images and FLIR images go into a FCN and classify where on the screen snow and clouds are located.

Pros: The model itself would be easy to make. I have images from the months January and February with snow and images from March and April that have clouds.

Cons: The data preparation would be extremely time consuming. I would most likely have to use a paid service that does the labeling due to my limited time.

Let's talk about that paper. (Rick needs to get into Grad School)

- The paper's topic is Edge Computing, Atmospheric Science, and Deep Learning.
- I personally don't have experience at this time in Edge Computing or Atmospheric Science. These are areas where guidance would be greatly appreciated.
- Any suggestions for conferences would be greatly appreciated.
- Some conferences I've found that might fit this kind of topic are:
 - International Conference on Edge Computing
 - Conference on Artificial Intelligence for Environmental Science
 - PAISE 2021? (I hear they have great workshop leaders!)

Link to view paper: https://www.overleaf.com/read/bygrxjcgxdbd (currently blank)

Questions for the audience

- 1. What are your overall thoughts on the project?
- 2. What additional uses could the FLIR images provide?
- 3. How could this project be of use to the Atmospheric Science community?
- 4. Do people have any current knowledge or resources about the topic of Deep Learning for Atmospheric Sciences?
- 5. What kind of value should the Deep Learning model predict/classify?
- 6. If I went down the path of using an FCN for semantic classification, how could I go about getting sample images labeled?
- 7. How can I get started learning about how to make a docker image for a node?
- 8. Any ideas on how to get this project structured for the goals of a publication?

TimeLine

How to contact me

I can be reached at enriquenueve@agmail.com.

Also, check out my portfolio at: https://realestrick-c137.github.io/EnriqueNue ve.github.io/index.html#.