Optional Lab: Linear Regression using Scikit-Learn

There is an open-source, commercially usable machine learning toolkit called <u>scikit-learn (https://scikit-learn.org/stable/index.html)</u>. This toolkit contains implementations of many of the algorithms that you will work with in this course.

Goals

In this lab you will:

• Utilize scikit-learn to implement linear regression using Gradient Descent

Tools

You will utilize functions from scikit-learn as well as matplotlib and NumPy.

```
In [1]: import numpy as np
   import matplotlib.pyplot as plt
   from sklearn.linear_model import SGDRegressor
   from sklearn.preprocessing import StandardScaler
   from lab_utils_multi import load_house_data
   from lab_utils_common import dlc
   np.set_printoptions(precision=2)
   plt.style.use('./deeplearning.mplstyle')
```

Gradient Descent

Scikit-learn has a gradient descent regression model sklearn.linear_model.SGDRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#examples-using-sklearn-linear-model-sgdregressor). Like your previous implementation of gradient descent, this model performs best with normalized inputs. sklearn.preprocessing.StandardScaler (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.standardScaler.html#sklearn.preprocessing.standardScaler.html#sklearn.preprocessing.standardScaler.html#sklearn.preprocessing.standardScaler.html#sklearn.preprocessing.standardScaler.html#s

Load the data set

```
In [2]: X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']
```

Scale/normalize the training data

Create and fit the regression model

```
In [4]: | sqdr = SGDRegressor(max iter=1000)
        sqdr.fit(X norm, y train)
        print(sqdr)
        print(f"number of iterations completed: {sqdr.n iter }, number of w
        eight updates: {sgdr.t }")
        SGDRegressor(alpha=0.0001, average=False, early stopping=False, eps
        ilon=0.1.
                     eta0=0.01, fit intercept=True, l1 ratio=0.15,
                     learning rate='invscaling', loss='squared loss', max i
        ter=1000,
                     n iter no change=5, penalty='l2', power t=0.25, random
        _state=None,
                     shuffle=True, tol=0.001, validation fraction=0.1, verb
        ose=0,
                     warm start=False)
        number of iterations completed: 118, number of weight updates: 1168
        3.0
```

View parameters

Note, the parameters are associated with the *normalized* input data. The fit parameters are very close to those found in the previous lab with this data.

Make predictions

Predict the targets of the training data. Use both the predict routine and compute using w and b.

```
In [ ]: # make a prediction using sgdr.predict()
    y_pred_sgd = sgdr.predict(X_norm)
    # make a prediction using w,b.
    y_pred = np.dot(X_norm, w_norm) + b_norm
    print(f"prediction using np.dot() and sgdr.predict match: {(y_pred == y_pred_sgd).all()}")
    print(f"Prediction on training set:\n{y_pred[:4]}")
```

Plot Results

Let's plot the predictions versus the target values.

```
In [ ]: # plot predictions and targets vs original features
fig,ax=plt.subplots(1,4,figsize=(12,3),sharey=True)
for i in range(len(ax)):
    ax[i].scatter(X_train[:,i],y_train, label = 'target')
    ax[i].set_xlabel(X_features[i])
    ax[i].scatter(X_train[:,i],y_pred,color=dlc["dlorange"], label
    = 'predict')
    ax[0].set_ylabel("Price"); ax[0].legend();
    fig.suptitle("target versus prediction using z-score normalized model")
    plt.show()
```

Congratulations!

In this lab you:

- utilized an open-source machine learning toolkit, scikit-learn
- implemented linear regression using gradient descent and feature normalization from that toolkit

```
In [ ]:
```