Withall = Nested For + If

Sheena Mathew, Div. of Computer Engg., School of Engineering, CUSAT, Kerala, India. Tomsy Paul, Dept. Of Computer Applications, RIT Kottayam, Kerala, India.

Overview

- Typical Array processing
 - Lower Triangle of a Matrix
 - For(i=0;i<N;i++)
 For(j=0;j<N;j++)
 If (i<=j) A[i,j] = A[i,j] * 0.2;
 - Withall Loop
 - withall $(i \le j) A[i,j] = A[i,j] * 0.2;$

withall: Syntax

- withall (expression) statement
- statement should contain at least one Array reference
- If there are many, all have same dimensions and size
- expression involves Index variables in Array reference
- Examples
 - withall (i==j) A[i,j] = 1;
 - withall (i+j == N+1) printf("%d",A[i,j]);
- Expression can also be (i,j) Applied to all elements
 - $\overline{-\text{withall (i,j) A[i,j]}} = 0;$

Motivation

- with loop of SAC
- X = [1,2,3];
- with ([0] <= k < [2]): 7modarray(x)
- X becomes [7,7,3]

Current Literature

- List Comprehension
- From Functional Programming (Python numpy)
- Example (Haskell)
- [(i,j)|i<-[1..3],j<-[1..3],i<=j]
- Result
 - -[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
- Complexity O(N²)

Current Literature

- Boolean Indexing
- Present in MATLAB, Python, R, etc.
- a=[1,2,3,4,5]
- a>3
- Results in [0,0,0,1,1]
- a[a>3]=3
- print a
- Output [1,2,3,3,3]

Implementing withall

- Syntactic Sugar
- Efficient Implementation
 - NP Hard
 - Solution ?
- Restricted Grammar

Restricted Grammar

```
withall loop
-> withall withall expression statement
| withall ID LIST statement
withall expression
-> withall expression && withall expression
| withall expression | withall expression
(withall expression)
| !withall expression
| withall term
```

Restricted Grammar

withall_term -> ID RELOP expression

•

- RELOP can be any of the six operators <,<=,!=,==,>= and > and ID is any index variable used in statement.
- Example
 - $-i \le 10$
 - j <= i
 - -not i+j < N+1

- For One Dimensional Arrays
 - Using List of Ordered Pairs, for each withall_expression
 - Examples
 - int a[1:100]
 - i < 50 represented by {(1,49)}</p>
 - -i > 25 represented by $\{(26,100)\}$
 - i == 50 represented by {(50,50)}
 - i != 50 represented by {(1,49),(51,100)}

- For One Dimensional Arrays
 - Using List of Ordered Pairs, for each withall_expression
 - Advantages
 - Logical And, Or and Negation can be implemented as Union, Intersection and Complement of Ordered Pairs
 - O(m+n) for And and Or
 - O(n) for Negation

- int a[1:100]
 - (i < 50) && (i > 20)
 - {(1,49)} Intersection {(21,100)} ---> {(21,49)}
 - (i < 50) || (i > 75)
 - {(1,49)} Union {(76,100)} ---> {(1,49),(76,100)}
 - !((i < 30) && (i>20))
 - Complement {(21,29)} ---> {(1,20),(30,100)}

- Language Used
- Cray Chapel
 - Free & Open Source
 - Excellent Support
 - LR Parser
 - Modules and Iterators
 - Version 1.14

- Platform
 - Desktop
 - Intel Xeon 2 GHz, 6 core processor
 - 8 GB RAM

- Procedure
 - Modified Chapel Compiler
 - Files modified
 - compiler/parser/chapel.lex
 - compiler/parser/chapel.ypp
 - compiler/AST/ForLoop.cpp
 - compiler/include/ForLoop.h
 - modules/internal/ChapelArray.chpl
 - modules/internal/ChapelIteratorSupport.chpl

Experiment

- Withall Vs Nested For + If
- Array Size (N)
 - -10^{3}
 - -10^{4}
 - -10^{6}
 - -10^{8}

Experiment

- Withall Vs Nested For + If
- withall_expressions

Number	withall_expression			
1	i			
2	i==N/2			
3	i<=N/2			
4	!(i>N/2)			
5	i<=N/4 i>=3*N/4			
6	i>=N/4 && i<=N/2			
7	!((i>=N/4 && i<=N/2) (i>=3*N/4 && i<=N))			

Results

- Comparison
 - Execution Time
 - Target Code Size
 - Compilation Time

Execution Time (Seconds)

withall_			Array	Size	
expressi	ion	10 ³	10 ⁴	10 ⁶	108
1	\mathbf{w}^a f+i b	2.10×10^{-6} 2.50×10^{-6}	1.93×10^{-5} 1.50×10^{-5}	1.18×10^{-3} 1.16×10^{-3}	1.50×10^{-1} 1.61×10^{-1}
2	w f+i	9.00×10^{-7} 2.50×10^{-6}	1.00×10^{-6} 1.75×10^{-5}	1.00×10^{-6} 1.68×10^{-3}	1.80×10^{-6} 1.71×10^{-1}
3	w f+i	1.80×10^{-6} 2.90×10^{-6}	1.14×10^{-5} 1.96×10^{-5}	6.04×10^{-4} 1.83×10^{-3}	7.52×10^{-2} 1.84×10^{-1}
4	w f+i	2.50×10^{-6} 2.70×10^{-6}	1.19×10^{-5} 1.98×10^{-5}	6.07×10^{-4} 1.83×10^{-3}	7.44×10^{-2} 1.84×10^{-1}
5	w f+i	3.40×10^{-6} 3.30×10^{-6}	1.10×10^{-5} 2.64×10^{-5}	5.71×10^{-4} 2.45×10^{-3}	7.23×10^{-2} 2.45×10^{-1}
6	w f+i	2.00×10^{-6} 3.30×10^{-6}	7.00×10^{-6} 2.43×10^{-5}	3.19×10^{-4} 2.36×10^{-3}	3.75×10^{-2} 2.34×10^{-1}
7	w f+i	5.30×10^{-6} 4.20×10^{-6}	1.52×10^{-5} 3.31×10^{-5}	5.96×10^{-4} 3.37×10^{-3}	7.00×10^{-2} 3.13×10^{-1}

^aw denotes withall

 ${}^b\mathbf{f}$ + \mathbf{i} denotes for loop + if statement

Target Code Size (KB)

$withall_{_}$	Target Code Size		
expression	w	f+i	
1	3667.89	3667.8	
2	3668.04	3667.8	
3	3668.04	3667.8	
4	3668.08	3667.8	
5	3672.37	3667.76	
6	3672.27	3667.76	
7	3672.40	3667.80	

Time to Compile (Seconds)

withall_	_	Array Size			
express	ion	10 ³	10^4	10 ⁶	10 ⁸
1	w	10.19	10.68	10.59	10.26
	f+i	10.52	10.42	10.14	9.98
2	w	10.60	10.38	10.42	10.36
	f+i	10.41	10.19	10.17	10.18
3	w	10.29	10.49	10.40	10.36
	f+i	10.13	10.17	10.21	10.16
4	w	10.48	10.45	10.43	10.39
	f+i	10.43	10.23	10.14	10.13
5	w	10.85	10.96	10.35	10.71
	f+i	10.64	10.09	10.11	10.11
6	w	11.21	10.51	10.43	10.45
	f+i	10.63	10.44	10.10	10.11
7	w	10.57	10.60	10.18	10.56
	f+i	10.50	10.14	10.09	10.02

Conclusion

- Withall is concise
- More than a Syntactic Sugar
 - One Dimension Tuple based
 - Much Faster than For + If
- Two Dimensional
 - List of Polygons
 - Polygon Intersection for And
 - Polygon Union for Or

Reference

SaC-Home, http://www.sac-home.org/doku.php

Grelck C.: Shared memory multiprocessor support for functional array processing in SAC. Journal of Functional Programming, vol. 15(3), 353–401 (2005).

Python 3.7.5rc1 documentation, https://docs.python.org/3/tutorial/datastructures.html

NumPy v1.18.dev0 Manual, https://numpy.org/devdocs/reference/arrays.indexing.html #boolean-array-indexing

Chapel: Productive Parallel Programming, https://chapel-lang.org/

Thank You!!