Chapter 49: Jump Statements

Section 49.1: Using return

Returning a value

One commonly used case: returning from main()

Additional notes:

- 1. For a function having a return type as **void** (not including **void** * or related types), the **return** statement should not have any associated expression; i.e, the only allowed return statement would be **return**;
- 2. For a function having a non-void return type, the return statement shall not appear without an expression.
- 3. For main() (and only for main()), an *explicit* return statement is not required (in C99 or later). If the execution reaches the terminating }, an implicit value of 0 is returned. Some people think omitting this return is bad practice; others actively suggest leaving it out.

Returning nothing

Returning from a void function

```
void log(const char * message_to_log)
{
  if (NULL == message_to_log)
  {
    return; /* Nothing to log, go home NOW, skip the logging. */
  }
  fprintf(stderr, "%s:%d %s\n", __FILE__, _LINE__, message_to_log);
  return; /* Optional, as this function does not return a value. */
}
```

Section 49.2: Using goto to jump out of nested loops

Jumping out of nested loops would usually require use of a boolean variable with a check for this variable in the loops. Supposing we are iterating over i and j, it could look like this

```
size_t i, j;
for (i = 0; i < myValue && !breakout_condition; ++i) {</pre>
```

```
for (j = 0; j < mySecondValue && !breakout_condition; ++j) {
    ... /* Do something, maybe modifying breakout_condition */
    /* When breakout_condition == true the loops end */
}</pre>
```

But the C language offers the goto clause, which can be useful in this case. By using it with a label declared after the loops, we can easily break out of the loops.

However, often when this need comes up a return could be better used instead. This construct is also considered "unstructured" in structural programming theory.

Another situation where goto might be useful is for jumping to an error-handler:

```
ptr = malloc(N * x);
if(!ptr)
  goto out_of_memory;

/* normal processing */
free(ptr);
return SUCCESS;

out_of_memory:
  free(ptr); /* harmless, and necessary if we have further errors */
  return FAILURE;
```

Use of goto keeps error flow separate from normal program control flow. It is however also considered "unstructured" in the technical sense.

Section 49.3: Using break and continue

Immediately continue reading on invalid input or break on user request or end-of-file:

```
#include <stdlib.h> /* for EXIT_xxx macros */
#include <stdio.h> /* for printf() and getchar() */
#include <ctype.h> /* for isdigit() */

void flush_input_stream(FILE * fp);

int main(void)
{
   int sum = 0;
   printf("Enter digits to be summed up or 0 to exit:\n");

   do
   {
    int c = getchar();
    if (EOF == c)
```

```
printf("Read 'end-of-file', exiting!\n");
      break;
    if ('\n' != c)
      flush_input_stream(stdin);
    if (!isdigit(c))
      printf("%c is not a digit! Start over!\n", c);
      continue;
    }
    if ('0' == c)
      printf("Exit requested.\n");
      break;
    }
    sum += c - '0';
    printf("The current sum is %d.\n", sum);
  } while (1);
  return EXIT_SUCCESS;
}
void flush_input_stream(FILE * fp)
  size_t i = 0;
  int c;
  while ((c = fgetc(fp)) != '\n' \&\& c != EOF) /* Pull all until and including the next new-line. */
    ++i;
  if (0 != i)
    fprintf(stderr, "Flushed %zu characters from input.\n", i);
```