

Automatic 12-lead ECG classification using a convolutional network ensemble

Antônio H. Ribeiro¹, Daniel Gedon², Daniel Martins Teixeira¹
Manoel Horta Ribeiro³ Antonio L. Pinho Ribeiro¹
Thomas B. Schön² and Wagner Meira Jr¹

¹ Federal University of Minas Gerais, Brazil; ² Uppsala University, Sweden; ³ École Polytechnique Fédérale de Lausanne, Switzerland

Computers in Cardiology CinC, 2020

1/10

Introduction / Challenge Description

- PhysioNet 2020 challenge: 12-lead ECG traces classification.
- Over 43,000 training examples:
 - Containing 27 classes: covering different rhythm, morphology and diagnoses.
 - 2. Datasets from four countries (China, Germany, Russia, USA),
 - 3. Varying length of ECGs.
- Our main approach: Make use of an ensemble of end-to-end learnt deep neural networks.

Previous experiences

Figure: Tele-health network center

Ribeiro, A.H., Ribeiro, M.H., Paixão G.M.M. et. al. (2020) Automatic diagnosis of the 12-lead ECG using a deep neural network Nature Communications (11), 1760.

Previous experiences

- Training data: 2.5 million records from 1.5 million different patients.
- ► Test data: ~1 thousand records from distinct patients annotated by three medical doctors.

Figure: F1 score

Figure: Abnormalities classified

Convolutional neural network

Figure: Residual neural network. The uni-dimensional neural network architecture used for ECG classification.

Ensemble of deep neural networks: motivation

Figure: **Motivation for the ensembles.** Convergence to different local minima from random neural network initialization points.

Fort, S and Hu, H. and Lakshminarayanan, B. (2020). Deep Ensembles: A Loss Landscape Perspective *arXiv*:, 1912.02757.

Ensemble Model

Figure: Full Model. Ensemble of ResNets which can handle variable length ECGs.

Results

- Team name "Code Team"
- Final score (#5) ranks us on the **7-th** position team-wise.

entry	score	short description
#1	0.622	Single DNN model
#2	0.626	Jointly predict some classes
#3	0.637	Larger weight for top-k predictions
#4, #5	0.657	Ensemble of 7 models

Table: **Challenge submissions.** Challenge metric score on the partial test dataset from the official challenge phase.

Training history

Figure: Training history. Challenge score metric evaluated on the 30% hold-out validation data

9/10

Model Analysis

Figure: **Performance of Ensembles.** Validation set performance (30% training data) using varying ensemble sizes.

Thank you!

Code available at:

github.com/antonior92/physionet-12ecg-classification

Contact info:

antonio.horta@dcc.ufmg.br
daniel.gedon@it.uu.se
danielmteixeira@ufmg.br
manoel.hortaribeiro@epfl.ch
antonio.ribeiro@ebserh.gov.br
thomas.schon@it.uu.se
meira@dcc.ufmg.br

- @ahortaribeiro @danigedon @manoelribeiro @tomribeiroecg
- antonior92.github.io
 manoelhortaribeiro.github.io
 user.it.uu.se/~thosc112

CinC. 2020