Mot statistisk inferens

Vi ønsker å kartlegge norske stemmeberettiges holdning til EU. Anta at andelen mot norsk medlemskap i EU er lik p.

Tenk at vi trekker 10 enkle utvalg på 1000 personer. Da kan vi beregne de empiriske andelene $\hat{p}_1,...,\hat{p}_{10}$.

Trolig er alle forskjellige, men i nærheten av p.

Å si noe om hvordan $\hat{P}_1,...,\hat{P}_{10}$, eller \hat{P}_1 hvis vi bare tar ett utvalg, forholder seg til p er et eksempel på det som kalles **statistisk inferens**.

Følgende skille er fundamentalt i denne sammenhengen:

Parameter: Detter er en teoretisk størrelse som beskriver populasjonen. I eksemplet foran var p parameteren.

Statistikk: Dette er en empirisk størrelse som kan beregnes i utvalget. (I *norsk* statistisk ordbruk er det vanlig å bruke uttrykket observator for statistikk). I eksemplet var statistikken \hat{p} .

At \hat{p}_{1} ,..., \hat{p}_{10} varierer skyldes den tilfeldige mekanismen utvalget er konstruert i henhold til.

Her er noen viktige egenskaper og begreper i forbindelse med utvalgsfordelinger.

Skjevhet dreier seg om sentret i utvalgsfordelingen. En estimator er forventningsrett hvis forventningen i utvalgsfordelingen er lik verdien til parameteren som skal estimeres.

Hvor variabel eller usikker en statistikk er, beskrives av spredningen i utvalgsfordelingen. Spredningen bestemmes av utvalget og størrelsen n på utvalget. Spredningen synker med utvalgsstørrelsen.

Neste figur illustrerer de to egenskapene ved en utvalgsfordeling.

Formell statistisk inferens

- To viktige metoder
 - Konfidensintervall
 - Signifikanstester
- Basert på *fordelingen* til en statistikk (observator)
- Krever sannsynlighetsmodell for dataene
- Statistisk inferens baserer seg på at dataene kommer fra et tilfeldig utvalg eller et randomisert eksperiment
 - Viktig å huske på!

Konfidensintervall intuitivt

• SATM-poeng:

- Dersom peng for individene i populasjonen er N(μ , σ)-fordelt, vet vi at gjennomsnittet \bar{x} er N(μ , σ /√n)-fordelt
- − Antar at vi vet at σ =100. For n=500 er da σ/\sqrt{n} =4.5
- − 68-95-99.7-regelen: \bar{x} er i [μ-2σ/√n,μ+2σ/√n] = [μ-9,μ+9] med ca 95% sannsynlighet
- Å si at \bar{x} er 9 poeng mindre eller større enn μ er det samme som å si at μ er 9 poeng fra \bar{x}
- Altså vil den sanne verdien av μ i 95% av utvalg vil ligge i intervallet:

Konfidensnivå for forventning

- Normalfordelte data: \bar{x} er eksakt $N(\mu, \sigma/\sqrt{n})$ -fordelt
- Sentralgrenseteorem for store utvalg: \bar{x} er tilnærmet $N(\mu, \sigma/\sqrt{n})$ fordelt
- Vi så at vi kunne finne et omtrentlig konfidensintervall for μ ved å bruke 68-95-99.7-regelen
- Skal nå se hvordan vi lager mer presise konfidensintervall for μ
- Må starte med å finne feilmarginene for et bestemt konfidensnivå C
- Går veien om standard normalfordeling: Da kan vi finne generelle feilmarginer som alltid kan brukes for konfidensnivå C når gjennomsnittet \bar{x} er normalfordelt

Noen forsiktighetsregler

- Data bør være fra et *enkelt randomisert utvalg* (SRS) av populasjonen
 - Viktig med uavhengige observasjoner fra populasjonen
- Andre, korrigerte formler for mer kompliserte design
- Følsomt for uteliggere
- Lite robust for små n (bør ha n>15) når data ikke er normalfordelte
- Må kjenne σ . Senere skal vi se på hva vi gjør når σ er ukjent
 - − Hvis n stor, kan vi bruke $[\bar{x} z^*s/\sqrt{n}, \bar{x} + z^*s/\sqrt{n}]$ (som da er et *tilnærmet* konfidensintervall for μ)

6.2 Signifikanstester

- Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter
- Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
- Bruker observerte data til å teste hypotesen om populasjonen
- Typisk prosedyre
 - Beregn sannsynlighet for observert utfall av en statistikk (eller noe mer ekstremt) gitt antatt hypotese
 - Hvis sannsynlighet liten, forkast hypotese

Teststatistikk

Baserer test på en statistikk som estimerer parameteren vi er interessert i (ofte den samme som vi ville brukt til et konfidensintervall for parameteren)

- Eks.: $\bar{\mathbf{x}}_1$ - $\bar{\mathbf{x}}_2$ estimerer $\mu = \mu_1$ - μ_2
- •Verdier langt fra parameterverdi spesifisert av H₀ gir bevis mot H₀
- •H_a angir hvilken retning som teller:
- Ensidig H_a : $\mu_1 > \mu_2$ angir at vi må ha stor $\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2$ som bevis mot H_0
- Ensidig H_a : $\mu_1 < \mu_2$ angir at vi må ha liten $\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2$ som bevis mot H_0
- Tosidig H_a : μ_1 ≠ μ_2 angir at vi må ha stor $|\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2|$ som bevis mot H_0

Standardisert test-statistikk

For å undersøke hvor langt estimatet er fra parameterverdien spesifisert av H_0 , standardiserer vi estimatet

$$z = \frac{estimat - parameter verdi \ under \ H_0}{standard \ avvik \ for \ estimat}$$

Signifikanstest: P-verdi

- *P-verdi*: Sannsynligheten for at et utfall er like ekstremt eller mer ekstremt enn faktisk utfall (beregnet ved å anta at parameterverdien gitt av H₀ er sann)
 - Ekstremt: Lang fra hva vi ville forvente hvis H₀ var sann. Retning på hva som regnes som ekstremt:
 Bestemmes av H_a og H₀
 - Jo mindre P-verdien er, jo sterkere bevis har vi mot H_0

Statistisk signifikans

Hvordan konkludere?

• Forkaster H₀ når *P-verdi* er liten nok

Signifikansnivå α: Grenseverdi for når vi forkaster

- –Forkaster H₀ når *P*-verdi ≤ α
- –Ikke grunnlag for å forkaste H_0 når P-verdi> α
- -Typisk: α =0.05 (eller 0.01)

Signifikant betyr at bevisene mot nullhypotesen oppfyller standarden satt av α . Typisk utsagn er «Resultatene er signifikante (P < 0.05)»

- Hvis vi velger signifikansnivå α =0.05 krever vi at dataene gir bevis mot H_0 som bare vil skje i 5% av tilfellene hvis H_0 er sann
- Hvis vi velger signifikansnivå α =0.01 krever vi at dataene gir bevis mot H_0 som bare vil skje i 1% av tilfellene hvis H_0 er sann
 - Vi krever altså sterkere bevis mot H_0 hvis vi velger α =0.01 enn hvis vi velger α =0.05

Tester for populasjonsforventning

 $H_0: \mu = \mu_0$

Data: $x_1, ..., x_n$

Estimator for μ : \bar{x}

Teststatistikk: $z=(\bar{x}-\mu_0)/\sigma_{\bar{x}}=(\bar{x}-\mu_0)/(\sigma\sqrt{n})$