计算物理作业 2

杨远青 22300190015

2024年9月21日

今天原本应该是鏖战 Griffiths 的猫与蔡先生的日子,可惜平板没电。

1 题目 1: 三次方程根的求解与精确化

1.1 题目描述

Sketch the function $x^3 - 5x + 3 = 0$

(i) Determine the two positive roots to 4 decimal places using the bisection method.

Note: You first need to bracket each of the roots.

- (ii) Take the two roots that you found in the previous question (accurate to 4 decimal places) and "polish them up" to 14 decimal places using the Newton-Raphson method.
- (iii) Determine the two positive roots to 14 decimal places using the hybrid method.

1.2 程序描述

标准的求根问题,顺便练习一下 C++. 先使用 Mathematica® 画出函数草图如下:

图 1: Plot of $x^3 - 5x + 3 = 0$.

发现有两个正根,分别在 [0,1] 和 [1,2] 之间,有点好奇二分法的迭代,便先用 Python 写一下二分法的动态过程,见./Codes/Problem 1/bisection_visual.py, 使用 python -u bisection_visual.py 可以交互运行 (需要安装 matplotlib,numpy 库)。运行后有三个选项,分别是前两个正根的查找与自定义区间查找,可以自行选择。

./Codes/Problem 1/中还有 C++ 实现的二分法、牛顿法、混合法、Brent 法与 Ridder 法,算法实现集成在了methods.cpp 中,main.cpp 负责封装与交互,plotting.cpp 用 ASCII 绘制了草图,functions.cpp 里面存储了本题函数与导数,拎出来是为了便于灵活测试其它函数,utils.cpp 里面有两个工具函数,分别负责按照题目三小问的顺序输出结果与对比测试各类方法在三个根上的表现。使用 g++ *.cpp -o main 编译, ./main 运行(也有已经编译好的 main.exe),按照提示可以选择各类方法或者一起比较,也可以自定义查找区间与容差等参数。

原本对求根问题的兴趣不太大,至少没有 24 点那么有趣。在翻阅徐老师给的那本 Numerical Recipe 的时候,发现虽然出了第三版,但出版商给每个章节都加弹窗广告。是可忍孰不可忍,我对金力发誓,绝不向校图书馆荐购它。但里面提到的当下最常用的Brent 法与Ridder 法还是挺有意思的,在 scipy 里面也有它们的 C 语言实现,不过感觉写得没有 GNU Scientific Library 里面的清晰易懂,照猫画虎,在 GPT 的大力支持下,我用 C++ 实现了一遍,最繁琐的的处理用户输入输出任务主要是它干的,想到了很多我没想到的细节,出色的前端工程师 (bushi)!

Ridder 法源自割线法和虚位法一脉。这一派的祖制是假设局部近似线性,因而在处理导数变化较大的地方表现不佳,尤其是割线法,虽号称有着黄金比率 1.618 的超线性收敛阶数,但在许多场合还不如二分法。新生代 Ridder 法就是变换一下 $h(x) = f(x)e^{ax}$,用一个指数因子来模拟潜在的非线性行为

$$e^{a(x_1-x_0)} = \frac{f(x_1) - \operatorname{sign}[f(x_0)]\sqrt{f(x_1)^2 - f(x_0)f(x_2)}}{f(x_2)}.$$

在此基础上再使用虚位法,考虑到这个指数函数的查找提供的二阶加速,以及本身多一次的计算,其理论收敛指数为 $\sqrt{2} \approx 1.414 < 1.618$, but who cares about theory? 实际效果还是不错的, 详情参见5。

Brent 法的核心思想继承自 Dekker 法,后者与我们题目第三问提示的 Hybrid 法有些类似,但在局部加速收敛的过程中,用的不是基于导数的 Newton 法,而是用割线法,也即在小区间内倾向于使用单点迭代,但在迭代点越过区间范围时使用二分法补救,非常自然且优美的思路。Brent 主要是在 Dekker 法的基础上加入了逆二次插值,顾名思义,就是在局部二次拟合反函数 x(y),用的方法也很暴力,高数书上的拉格朗日插值:

$$x = \frac{\left[y - f\left(x_{1}\right)\right]\left[y - f\left(x_{2}\right)\right]x_{3}}{\left[f\left(x_{3}\right) - f\left(x_{1}\right)\right]\left[f\left(x_{3}\right) - f\left(x_{2}\right)\right]} + \frac{\left[y - f\left(x_{2}\right)\right]\left[y - f\left(x_{3}\right)\right]x_{1}}{\left[f\left(x_{1}\right) - f\left(x_{2}\right)\right]\left[f\left(x_{1}\right) - f\left(x_{3}\right)\right]} + \frac{\left[y - f\left(x_{3}\right)\right]\left[y - f\left(x_{1}\right)\right]x_{2}}{\left[f\left(x_{2}\right) - f\left(x_{3}\right)\right]\left[f\left(x_{2}\right) - f\left(x_{1}\right)\right]}.$$

听起来好像没有很高大上,但 Brent 的神来之笔在于,考虑到了实际过程中的 rounderror 问题,譬如在三个点的拟合时,如果其中两个的函数值本身就接近,会导致拟合效果很差(脑补一下对直线进行水平轴抛物线拟合的糟糕后果),所以对是否返回二分法进行了详细的分类讨论,详情参见4。原版 Brent 还引入了一些中间变量来减少舍入误差,两年后还提出来用双曲外推替代二次插值,我就没继续学习了。

1.3 伪代码

```
Algorithm 1: Bisection Method
   Input: a, b (long double), tol (long double), max_iter (int)
   Output: c (long double)
                                                                                              // Approximate root
 1 for i \leftarrow 1 to max_iter do
       c \leftarrow \frac{a+b}{2}
 2
                                                                                              // Compute midpoint
       if |b-a| < tol then
 3
        break
                                                                                        // Convergence achieved
 4
       end
 \mathbf{5}
       if f(a) \cdot f(c) < 0 then
 6
          b \leftarrow c
                                                                                               // Update interval
 7
       end
 8
       else
 9
         a \leftarrow c
                                                                                               // Update interval
10
       end
11
12 end
13 return c
 Algorithm 2: Newton-Raphson Method
   Input: x_0 (long double), tol (long double), max_iter (int)
   Output: x (long double)
                                                                                              // Approximate root
 1 for i \leftarrow 1 to max_iter do
      if f'(x_0) = 0 then
 2
          raise error "Derivative zero"
 3
       end
 4
      x \leftarrow x_0 - \frac{f(x_0)}{f'(x_0)}
                                                                                 // Compute next approximation
 \mathbf{5}
       if |x-x_0| < tol then
 6
          break
                                                                                        // Convergence achieved
 7
       end
 8
       x_0 \leftarrow x
                                                                                        // Update current value
10 end
11 return x
```

```
Algorithm 3: Hybrid Method
```

```
Input: a, b (long double), tol (long double), max_iter (int)
   Output: c (long double)
                                                                                                  // Approximate root
 1 for i \leftarrow 1 to max_iter do
       c \leftarrow \frac{a+b}{2}
                                                                                                  // Compute midpoint
       if \frac{b-a}{2} < tol then
 3
          break
                                                                                            // Convergence achieved
 4
 5
       if f'(c) \neq 0 and d = c - \frac{f(c)}{f'(c)} is in (a, b) then
 6
           if |d-c| < tol then
 7
            return d
                                                                                            // Convergence achieved
 8
           end
 9
           if f(a) \cdot f(d) < 0 then
10
             b \leftarrow d
                                                                                                   // Update interval
11
           end
12
           else
13
              a \leftarrow d
                                                                                                   // Update interval
14
           \mathbf{end}
15
                                                                                      // Proceed to next iteration
           continue
16
       end
17
       if f(a) \cdot f(c) < 0 then
18
          b \leftarrow c
                                                                                   // Update interval (Bisection)
19
       end
20
       else
21
          a \leftarrow c
                                                                                   // Update interval (Bisection)
22
       \quad \mathbf{end} \quad
23
24 end
25 return c
```

```
Algorithm 4: Brent's Method
         Input: a, b, tol (long double), max iter (int), decimal places (int)
         Output: root (long double)
                                                                                                                                                                                                                                                                   // Approximate root
  1 if f(a) \cdot f(b) \ge 0 then
             raise error "Brent's method fails. f(a) and f(b) should have opposite signs."
  3 end
  4 if |f(a)| < |f(b)| then
                  Swap a \leftrightarrow b
                                                                                                                                                                               // Ensure a corresponds to the larger |f(x)|
  6 end
  7 c \leftarrow a, s \leftarrow b, \text{ mflag} \leftarrow \text{True}
                                                                                                                                                                                   // Initialize c, s, and set bisection flag
  s for i \leftarrow 1 to max_iter do
                  if f(b) \neq f(c) and f(a) \neq f(c) then
                            s \leftarrow \frac{a \cdot f(b) \cdot f(c)}{(f(a) - f(b)) \cdot (f(a) - f(c))} + \frac{b \cdot f(a) \cdot f(c)}{(f(b) - f(a)) \cdot (f(b) - f(c))} + \frac{c \cdot f(a) \cdot f(b)}{(f(c) - f(a)) \cdot (f(c) - f(b))}
                                // Inverse quadratic interpolation
                   end
11
                   else
12
                      s \leftarrow b - f(b) \cdot \frac{b - a}{f(b) - f(a)}
                                                                                                                                                                                                                                                             // Secant method step
13
14
                  \textbf{if } s < \frac{3a+b}{4} \ \textit{or } s > b \ \textit{or } (\textit{mflag and } |s-b| \geq |b-c|/2) \ \textit{or } (\textit{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b| \geq |c-d|/2) \ \textit{or } (\text{not mflag and } |s-b|/2) \ \textit{or } 
15
                      (mflag and |b-c| < tol) or (not mflag and |c-d| < tol) then
                       s \leftarrow \frac{a+b}{2}, mflag \leftarrow True
                                                                                                                                                                                                                         // Bisection step for stability
16
                   end
17
                   else
18
                             mflag \leftarrow False
                                                                                                                                                                                                            // Use interpolation or secant step
19
                   end
20
                   c \leftarrow b, \ f(c) \leftarrow f(b)
                                                                                                                                                                                                 // Update c and prepare next iteration
21
                   if f(a) \cdot f(s) < 0 then
                      b \leftarrow s
                                                                                                                                                                                                                                                         // Set new upper bound
\mathbf{23}
                   end
24
                   else
25
                            a \leftarrow s
                                                                                                                                                                                                                                                         // Set new lower bound
26
27
                   if |f(a)| < |f(b)| then
28
                      Swap a \leftrightarrow b
                                                                                                                                                                                                        // Ensure |f(a)| \ge |f(b)| for stability
29
30
                   end
                   if |b-a| < tol then
31
                             break
                                                                                                                                                                                          // Convergence achieved within tolerance
32
                   end
33
34 end
35 return b
```

```
Algorithm 5: Ridder's Method
```

```
Input: a, b (long double), tol (long double), max_iter (int)
   Output: x (long double)
                                                                                                  // Approximate root
 1 for i \leftarrow 1 to max_iter do
                                                                                                  // Compute midpoint
 2
       s \leftarrow \sqrt{f(c)^2 - f(a)f(b)}
 3
       if s = 0 then
 4
          return c
                                                                                            // Convergence achieved
 5
 6
       end
       sign \leftarrow sgn(f(a) - f(b))
                                                                                                    // Determine sign
 7
       x \leftarrow c + (c-a)\frac{f(c)}{s} \cdot sign
 8
                                                                                      // Compute new approximation
       if |f(x)| < tol then
 9
           return x
                                                                                            // Convergence achieved
10
       end
11
       if f(c) \cdot f(x) < 0 then
12
        a \leftarrow c, b \leftarrow x
                                                                                                   // Update interval
13
       end
14
       else if f(a) \cdot f(x) < 0 then
15
         b \leftarrow x
                                                                                                   // Update interval
16
       end
17
       else
18
         a \leftarrow x
                                                                                                   // Update interval
19
       \mathbf{end}
20
       if |b-a| < tol then
\mathbf{21}
           break
                                                                                            // Convergence achieved
22
       end
\mathbf{23}
24 end
25 return \frac{a+b}{2}
```

```
ta/anaconda3/python.exe "d:/BalduSyncdisk/Mork/Courses/Junior Fall/CompPhys/repo/Neek Z/Codes/Problem I/Dissection_visual.py"

Bisection Method Dynamic Visualization
Choose the interval to iterate for the root:

1: Find the root in the interval [0.8, 1.0]

2: Find the root in the interval [1.5, 2.0]

3: Custom interval, enter the left and right endpoints
Please enter your choice (1/2/3):1

Iteration 1: a = 0.00000, b = 1.000000, c = 0.50000, f(c) = 0.652500

Iteration 2: a = 0.50000, b = 0.575000, c = 0.65300, f(c) = 0.93812

Iteration 3: a = 0.50000, b = 0.575000, c = 0.65300, f(c) = 0.01255

Iteration 6: a = 0.65625, b = 0.65723, c = 0.65723, f(c) = 0.0927

Iteration 9: a = 0.656625, b = 0.65723, c = 0.65820, f(c) = 0.08281

Iteration 9: a = 0.656625, b = 0.65820, f(c) = 0.08282

Iteration 10: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 11: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 12: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 13: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 13: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 13: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 13: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 11: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 12: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 13: a = 0.65625, b = 0.65820, f(c) = 0.08282

Iteration 14: a = 0.65625, b = 0.65862, f(c) = 0.08282

Iteration 14: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 14: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 14: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 14: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 14: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 14: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 14: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 15: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 16: a = 1.83389, b = 1.83399, b = 1.83496, c = 1.83447, c = 1.83447, f(c) = 0.08081

Iteration 16: a = 0.65662, b = 0.65862, f(c) = 0.08282

Iteration 11: a = 0.65662, b = 0.65864
```

图 2: bisection_visual.py 三种选项对比

1.4 结果示例

图 3: bisection_visual.py 动画示意

```
Select a method (1-7): 6
--- Problem Steps Execution ---
Part (i): Bisection Method to find roots to 4 decimal places
Root in [-3.00, -2.00]: -2.4909
Iterations: 14
Root in [0.00, 1.00]: 0.6567
Iterations: 14
Root in [1.00, 3.00]: 1.8343
Iterations: 15
Part (ii): Newton-Raphson Method to refine roots to 14 decimal places
Refined root starting from -2.4909: -2.49086361536103
Iterations: 3
Refined root starting from 0.6567: 0.65662043104711
Iterations: 3
Refined root starting from 1.8343: 1.83424318431392
Iterations: 3
Part (iii): Hybrid Method to find roots to 14 decimal places
Root in [-3.00, -2.00] (Hybrid): -2.49086361536103
Iterations: 87
Root in [0.00, 1.00] (Hybrid): 0.65662043104711
Iterations: 104
Root in [1.00, 3.00] (Hybrid): 1.83424318431392
Iterations: 110
--- Summary of Problem Steps Results ---
Method: Bisection Method
  Root 1: -2.4909 | Iterations: 14
  Root 2: 0.6567 | Iterations: 14
  Root 3: 1.8343 | Iterations: 15
Method: Hybrid Method
  Root 1: -2.49086361536103 | Iterations: 87
  Root 2: 0.65662043104711 | Iterations: 104
  Root 3: 1.83424318431392 | Iterations: 110
Method: Newton-Raphson Method
  Root 1: -2.49086361536103 | Iterations: 3
  Root 2: 0.65662043104711 | Iterations: 3
  Root 3: 1.83424318431392 | Iterations: 3
Do you want to run the program again? (y/n):
```

图 4: main.cpp 模式 6, 按题目顺序尝试三种方法

图 5: main.cpp 模式 7, 对比五种方法

2 题目 2: 二维函数的极小值搜索

2.1 题目描述

Search for the minimum of the function $g(x,y) = \sin(x+y) + \cos(x+2y)$ in the whole space.

2.2 程序描述

原本这道题是我更感兴趣的,但第一题已经耗费我大量的时间,只能简单实现了四种有名的优化算法:最速下降法,共轭梯度下降法,模拟退火,遗传算法。尤其是共轭梯度下降法,在 $Numerical\ Recipe$ 的 §10.6 中有详细的介绍,不得不承认这书写得还行。以及之前一直没搞懂的命名错误,最速下降法的最速¹原来不代表 $Learning\ Rate\ \alpha$ 是有调节器的,而是指古老的固定步长。而共轭梯度法则是在新的"共轭方向"上进行搜索,这样可以避免最速下降法的 zig zag 现象,当然施法范围有限,主要对二次型和稀疏矩阵有效。模拟退火算法使我想起了大一和伙伴们电磁学荣誉课

¹但武思怡前辈分享的最速下降法好像是另一个意思, 疑惑 ℰ 学习 ing。

的 Thompson 问题优化,强大的谢院士当时写的就是这个,龚老师还回信了 hhh。遗传算法感觉没有名字那么玄妙,反倒有一种抽奖的感觉,不过可能也因此它的适用范围更广吧。四种算法中前两者是需要梯度的,后面的更普适一些,就像不要导数的 Brent 求根法。在 Numerical Recipe 的 $\S10.4$ 还学到了一种不同于它们的 Downhill Simplex Method 方法,它不依赖于分量的一维优化,而是更直接的缩放、反射操作,但没时间实现了…

使用 g++ *.cpp -o main 编译, ./main 运行(也有已经编译好的 main.exe),按照提示可以选择各类方法或者一起比较,也可以自定义各种算法初始值。

2.3 伪代码

```
Algorithm 6: Steepest Descent Method
  Input: x_0, y_0 (float), \alpha (float), maxIter (int), tol (float)
  Output: x, y (float)
                                                                                              // Approximate minimum
1 x \leftarrow x_0, y \leftarrow y_0
2 for i \leftarrow 1 to maxIter do
      compute gradient \nabla f(x,y)
3
      if \|\nabla f(x,y)\| < tol then
4
          break
                                                                                             // Convergence achieved
5
      end
6
      (x,y) \leftarrow (x,y) - \alpha \cdot \nabla f(x,y)
                                                                                                   // Update variables
7
8 end
9 return x, y
```

```
Algorithm 7: Nonlinear Conjugate Gradient Method (Fletcher-Reeves)
```

```
Input: x_0, y_0 (float), maxIter (int), tol (float)
    Output: x, y (float)
                                                                                                                             // Approximate minimum
 1 \ x \leftarrow x_0, \ y \leftarrow y_0
 2 \nabla f \leftarrow \nabla f(x,y)
 з \mathbf{d} \leftarrow -\nabla f
                                                                                                                    // Initial search direction
 4 for i \leftarrow 1 to maxIter do
         // Backtracking Line Search (Armijo Condition)
         // Find step size \alpha such that
 5
                                                      f(x + \alpha d_x, y + \alpha d_y) \le f(x, y) + c \cdot \alpha \cdot (\nabla f \cdot \mathbf{d})
                                                                                                                         // Determine step size \alpha
         (x,y) \leftarrow (x,y) + \alpha \cdot \mathbf{d}
 6
         \nabla f_{\text{new}} \leftarrow \nabla f(x, y)
 7
         if \|\nabla f_{new}\| < tol then
 8
              break
                                                                                                                           // Convergence achieved
 9
         end
10
         \beta \leftarrow \frac{\|\nabla f_{\text{new}}\|^2}{\|\nabla f\|^2}
                                                                                                               // Fletcher-Reeves coefficient
11
         \mathbf{d} \leftarrow -\nabla f_{\text{new}} + \beta \cdot \mathbf{d}
12
         \nabla f \leftarrow \nabla f_{\text{new}}
13
14 end
15 return x, y
```

Algorithm 8: Simulated Annealing

```
Input: x_0, y_0 (float), T_0 (float), Tmin (float), \alpha (float), maxIter (int)
    Output: x, y (float)
                                                                                                                     // Approximate minimum
 1 x \leftarrow x_0, y \leftarrow y_0
 2 T \leftarrow T_0
                                                                                                                     // Initial temperature
 3 f_{\text{current}} \leftarrow f(x,y)
                                                                                                                // Current function value
 4 for i \leftarrow 1 to maxIter and T > Tmin do
         // Generate a new candidate solution
         x_{\text{new}} \leftarrow x + \mathcal{U}(-0.5, 0.5), y_{\text{new}} \leftarrow y + \mathcal{U}(-0.5, 0.5)
                                                                                                                               // RandomUniform
 \mathbf{5}
         f_{\text{new}} \leftarrow f(x_{\text{new}}, y_{\text{new}})
         \Delta \leftarrow f_{\text{new}} - f_{\text{current}}
                                                                                                             // Change in function value
 7
         // Acceptance Criterion
         if \Delta < 0 or e^{-\Delta/T} > \mathcal{U}(0,1) then
 8
 9
              x \leftarrow x_{\text{new}}, \ y \leftarrow y_{\text{new}}
                                                                                                                     // Accept new solution
                                                                                                     // Update current function value
              f_{\text{current}} \leftarrow f_{\text{new}}
10
         end
11
         T \leftarrow \alpha \cdot T
                                                                                                                                      // Cool down
12
13 end
14 return x, y
```

Algorithm 9: Genetic Algorithm

```
Input: Population size N, Generations G, Mutation rate pm, Crossover rate pc
   Output: Approximate minimum solution (x, y)
 1 population \leftarrow \{(x,y) \mid x,y \sim \mathcal{U}(-10,10)\}
                                                                                     // Initialize population randomly
 2 evaluate_fitness(population)
                                                                                              // Evaluate initial fitness
 3 for generation 1 to G do
       for i \leftarrow 1 to N do
 4
           a, b \leftarrow \text{random\_selection}(\text{population})
 5
           add min(a, b) to selected_population
 6
       end
 7
       for i \leftarrow 1 to N step 2 do
 8
           if \mathcal{U}(0,1) < pc then
 9
                \alpha \leftarrow \mathcal{U}(0,1)
10
                offspring_1.x \leftarrow \alpha· selected_population[i].x + (1 - \alpha)· selected_population[i + 1].x
11
                offspring 1.y \leftarrow \alpha selected population[i].y + (1 - \alpha) selected population[i + 1].y
12
                offspring 2.x \leftarrow \alpha selected population [i+1].x + (1-\alpha) selected population [i].x
13
                offspring_2.y \leftarrow \alpha· selected_population[i].y + (1 - \alpha)· selected_population[i].y
14
                replace selected_population[i] and [i+1] with offspring_1, offspring_2
15
           end
16
17
       end
       for each individual in selected population do
18
           if \mathcal{U}(0,1) < pm then
19
                individual.x \leftarrow clip(individual.x + \mathcal{U}(-0.5, 0.5), -10, 10)
20
                individual.y \leftarrow clip(individual.y + \mathcal{U}(-0.5, 0.5), -10, 10)
21
            end
22
           individual.fitness \leftarrow f(individual.x, individual.y)
23
       end
24
       population \leftarrow selected\_population
25
26 end
27 best \leftarrow \operatorname{argmin} \{ f(x,y) \mid (x,y) \in population \} 
28 return best.x, best.y
```

2.4 结果示例

```
ops D:\BaiduSyncdisk\Work\Courses\Junior Fall\CompPhys\repo\Week 2\Codes\Problem 2> .\main.exe
 Optimization Algorithms Menu:
 1. Steepest Descent Method
 2. Conjugate Gradient Method
 3. Simulated Annealing
 4. Genetic Algorithm
 5. Compare All Methods
 Enter your choice (1-5): 5
 Comparing All Methods with Default Parameters...
 Default Parameters:
 Initial x: 0.0000, Initial y: 0.0000
 Steepest Descent alpha: 0.0050, maxIter: 100000, tol: 1.000e-08
 Conjugate Gradient maxIter: 100000, tol: 1.000e-08
 Simulated Annealing TO: 2000.000, Tmin: 1.000e-08, alpha: 0.990, maxIter: 2000000
 Genetic Algorithm populationSize: 100, generations: 5000, mutationRate: 0.0200, crossoverRate: 0.8000
 Results:
 Steepest Descent Method:
 Minimum at (-0.00000, -1.57080)
 Minimum value: -2.00000
 Total iterations: 22503
 Execution Time: 9.970e-04 seconds
 Conjugate Gradient Method:
 Minimum at (0.00000, -1.57080)
 Minimum value: -2.00000
 Total iterations: 75
 Execution Time: 0.000e+00 seconds
 Simulated Annealing:
 Minimum at (6.28167, -1.56745)
 Minimum value: -1.99998
 Total iterations: 2590
 Execution Time: 0.000e+00 seconds
 Genetic Algorithm:
 Minimum at (0.00761, -1.57460)
 Minimum value: -1.99999
 Total iterations: 500000
 Execution Time: 6.543e-02 seconds
 Do you want to run the program again? (y/n):
```

图 6: main.cpp 模式 5, 对比四种方法

3 题目 3:有限深方势阱中的电子能级与波函数

3.1 题目描述

Electron in the finite square-well potential is, $(V_0 = 10 \text{ eV}, a = 0.2 \text{ nm})$

图 7: Finite square-well potential and its corresponding mathematical expression.

Find the three lowest eigen states (**both** energies and wavefunctions).

3.2 程序描述

关于解析求解的方法,详情参见 Griffiths 的量子力学教材,这里不再赘述。主要是发现没时间了(大哭)

两种算法,一种针对本题的解析求解,即超越方程图解法:./Codes/Problem 3/potential.py,另一种是数值求解:./Codes/Problem 3/schrodinger.py,差分表示哈密顿矩阵,适用于更广泛的势能,偷懒都用 Python 实现了,不考虑效率还挺爽。

第二种方法是更普适的,有时间再推广研究研究:有限差分法用于离散化薛定谔方程中的二阶导数项,便于在离散网格上构造哈密顿矩阵。在一维情况下,薛定谔方程为:

在离散网格上,每个点 x_i 的波函数值用 $\psi_i = \psi(x_i)$ 表示,网格步长为 dx。二阶导数 $\frac{d^2\psi(x)}{dx^2}$ 在 x_i 处的离散近似为:

$$\left. \frac{d^2\psi(x)}{dx^2} \right|_{x_i} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{dx^2}$$

离散化后,整个系统的哈密顿矩阵 H 可以用三对角矩阵的形式表示。哈密顿矩阵的对角元和非对角元由动能项和势能项共同构成。对于每个网格点 x_i :

1. 对角元 H[i,i] 包含动能项和势能项:

$$H[i,i] = -\frac{\hbar^2}{2m} \left(\frac{-2}{dx^2}\right) + V(x_i)$$

2. 非对角元 H[i, i+1] 和 H[i, i-1] 只包含动能项:

$$H[i, i+1] = H[i, i-1] = -\frac{\hbar^2}{2m} \left(\frac{1}{dx^2}\right)$$

最终,哈密顿矩阵 H 的形式为:

$$H = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & & 0 \\ \ddots & -\frac{2\hbar^2}{2mdx^2} + V(x_{i-1}) & \frac{\hbar^2}{2mdx^2} & & & \\ \ddots & \frac{\hbar^2}{2mdx^2} & -\frac{2\hbar^2}{2mdx^2} + V(x_i) & \frac{\hbar^2}{2mdx^2} & \ddots & \\ & & \frac{\hbar^2}{2mdx^2} & -\frac{2\hbar^2}{2mdx^2} + V(x_{i+1}) & \ddots & \\ 0 & & \ddots & \ddots \end{pmatrix}$$

这个三对角矩阵通过求解本征值问题,可以得到系统的能量特征值 E 以及对应的波函数 ψ 。

3.3 伪代码

```
Algorithm 10: Intersection Calculation and Plotting of Functions
   Input: z_0 (float), f_1(z), f_2(z), f_3(z)
   Output: Intersections between f_1(z) and f_3(z), f_2(z) and f_3(z)
 z_0 \leftarrow 3.240175521;
                                                                                                // Initialize parameter z_0
 \mathbf{2} \ f_1(z) \leftarrow \tan(z); \ f_2(z) \leftarrow -\cot(z); \ f_3(z) \leftarrow \sqrt{\left(\frac{z_0}{z}\right)^2 - 1};
                                                                                                          // Define functions
 3 z \in [0.1, z_0], z \neq n \cdot \frac{\pi}{2}, n \in \mathbb{Z};
                                                                                              // Define valid range for z
 4 z \leftarrow \text{Solve}(f_1(z) = f_3(z));
                                                                                     // Find intersections of f_1 and f_3
 5 z \leftarrow \text{Solve}(f_2(z) = f_3(z));
                                                                                     // Find intersections of f_2 and f_3
 6 z \leftarrow \text{Exclude}(z \approx n \cdot \frac{\pi}{2});
                                                                                             // Exclude invalid solutions
 7 Plot(f_1(z), f_2(z), f_3(z));
                                                                                                       // Plot all functions
8 Mark(f_1(z) \cap f_3(z), red);
                                                                            // Mark valid intersections of f_1 and f_3
 9 Mark(f_2(z) \cap f_3(z), \text{green});
                                                                            // Mark valid intersections of f_2 and f_3
10 Add axes, grid, title, legend;
                                                                                                       // Customize the plot
11 return Intersections(f_1(z), f_3(z), f_2(z), f_3(z));
                                                                                           // Return valid intersections
```

Algorithm 11: Finite Difference Solution of the Schrödinger Equation for a Finite Potential Well

Input: Constants \hbar , m, V_0 , a, N, L

Output: Bound state energy levels E_{bound} (eV)

1
$$N\leftarrow 1000, \quad L\leftarrow 10\times 10^{-9};$$
 // Number of points and length scale 2 $dx\leftarrow \frac{2L}{N-1};$ // Spatial step size

3
$$x_i \leftarrow -L + i \cdot dx$$
, for $i = 0$ to $N - 1$; // Generate grid points

4
$$V_i \leftarrow \begin{cases} -V_0, & \text{if } |x_i| \leq a \\ \text{// Potential inside the well0, otherwise// Potential outside the well} \end{cases}$$

5 for
$$i \leftarrow 1$$
 to $N-2$ do

6
$$H_{i,i-1} \leftarrow 1, \quad H_{i,i} \leftarrow -2, \quad H_{i,i+1} \leftarrow 1;$$
 // Fill the Hamiltonian matrix

8
$$H \leftarrow H \cdot \frac{-(\hbar)^2}{2m \, dx^2}$$
 // Construct Hamiltonian matrix H 9 $H_{i,i} \leftarrow H_{i,i} + V_i$, for $i=0$ to $N-1$; // Add potential to Hamiltonian

9
$$H_{i,i} \leftarrow H_{i,i} + V_i$$
, for $i = 0$ to $N - 1$;

10 Find eigenvalues
$$E_n$$
 and eigenvectors ψ_n such that $H\psi_n=E_n\psi_n;$ // Solve eigenvalue problem

11
$$E_{\text{bound}} \leftarrow \{E_n \mid E_n < 0, \ n > 0\};$$
 // Select bound state energies

12
$$\psi_{\text{bound}} \leftarrow \text{corresponding eigenvectors } \psi_n;$$
 // Extract corresponding wavefunctions
13 $E_{\text{bound eV}} \leftarrow E_{\text{bound}}/e;$ // Convert energy to eV

13
$$E_{\mathrm{bound_eV}} \leftarrow E_{\mathrm{bound}}/e;$$
 // Convert energy to eV
14 $\psi_n \leftarrow \psi_n/\sqrt{\sum_{i=0}^{N-1} |\psi_n(x_i)|^2 dx}$, for each ψ_n in ψ_{bound} ; // Normalize each wavefunction

15 Plot
$$\psi_n(x)$$
 shifted by E_n , for each E_n in $E_{\text{bound_eV}}$; // Plot normalized wavefunctions

16 return $E_{\text{bound eV}}$; // Return bound state energies

16 return
$$E_{\text{bound}_eV}$$
;

3.4 结果示例

图 8: potential.py 解析图解法

图 9: schrodinger.py 数值差分法