3. PHASE DIAGRAM

PHASE: It's a state of system, all phases of a system are chemically homogeneous but physically distinct & mechanically separable.

PHASE DIAGRAM:

It gives information about different phases of a system with respect to temperature and chemical composition.

DEGREE OF FREEDOM(F): It's the number of independent variables required to define the system.

GIBBS PHASE RULE: applicable to Water, Carbon, Water Bottle,	F = Degree of freedom,
F+P=C+2	P = No. of Phases,
MODIFIED GIBBS PHASE RULE: Alloy,	C = No. of components (E.g.
F+P=C+1	Pressure, Temperature),

HUME RUTHERY RULES:

	Substitutional Solid Solution	Interstitial Solid Solution	
	This is formed by adding solute atoms in	This is formed by adding solute atoms at	
	place of solvent materials atoms. E.g.	interstitial Position of solvent materials atoms.	
	Fe-Cr Alloy.	E.g. Fe-C (Steel).	
Size Factor	$R_{Solvent} - R_{Solute} < 15\%$	$R_{Solvent} \gg \gg R_{Solute}$	
Crystal Structure	Same		
Electro negativity	It's chemical affinity to make a bond.		
Hence, Electronegativity must be low.			
Valence Electron	Difference in Valence of solvent and		
	solute must be low.		

TYPES OF PHASE DIAGRAMS (BASED ON THE NUMBER OF COMPONENTS)				
Unary Phase Diagram (C=1) Binary Phase Diagram (C=2) Tertiary Phase Diagram (C=3)				
E.g. Water, Carbon,	E.g. Fe-C alloy, Sn-Pb Alloy.	E.g. Stainless Steel (Fe-Cr-Ni)		

1. UNARY PHASE DIAGRAM (C=1)

Water has 3 Phases,	At critical Point,)°	
1. Liquid,	P = 2 (L, G),	Pcp II. Liquid	Fluid
2. Gas,	C=1,	20 7 7	В
3. Solid.	F + P = C + 1,	Pop B. Liquid	Critical
At Triple Point,	F = 0.	(Fa) Standards S	
P = 3 (L, G, S)		e ation	point
C=1,	Same Way,	Pressure (Fa) III. Soild Triple point	
F + P = C + 2,	Carbon has 2	\overline{S} D C	
F = 0	Phases,	Twisels as simple	
At Sublimation/	 Graphite, 		
Melting/ Vaporization	2. Diamond.	P _{tp} D ₁ ation I.	Gas
Line,		$\begin{array}{c c} P_{tp} & D_1 \leftarrow & I \\ \hline D_2 \leftarrow & Gublination \\ \hline D_2 \leftarrow & Gurve \\ \hline C_2 & Gurve \\ \hline C_2 & Gurve \\ \hline C_1 & Gurve \\ \hline C_2 & Gurve \\ \hline C_2 & Gurve \\ \hline C_2 & Gurve \\ \hline C_3 & Gurve \\ \hline C_4 & Gurve \\ \hline C_6 & Gurve \\ \hline C_7 & Gurve \\ \hline C_8 & Gurve \\ \hline C_9 $	
P = 2 (any 2 of L, G, S)		350 cur Ttp	Γτρ
C=1,		0.01 374.	
F + P = C + 2,		Temperature (°C)	10
F = 1		remperature (C)	

2. BINARY PHASE DIAGRAM (C = 2)

The Binary phase diagram are drawn for two component system, and based on solubility of there two components again diagrams are three types.

	TYPE-I (ISOMORPHOUS)	TYPE-II (EUTECTIC)	TYPE-III
Two	completely soluble in liquid	completely soluble in liquid	completely soluble in liquid sate
components	sate and also completely	sate but partially soluble in	but incomplete soluble in solid
are	soluble in solid state.	solid state.	state.
E.g.	Cu- Ni Alloy	Fe-C Alloy, Pb-Sn Alloy.	

TYPE-I: Cu- Ni ALLOY ISOMORPHOUS PHASE DIAGRAM:

At Liquid State:	At Liquid + Solid State:	At Solid State:
P = 1(L), C = 2(Cu, Ni),	P = 1(S, L), C = 2 (Cu, Ni),	P = 1(S), C = 2(Cu, Ni),
F + P = C + 1,	F + P = C + 1,	F + P = C + 1,
F=2.	F=1.	F=2.

LEVER RULE METHOD: This method is used to find the mass fraction of different phases in a two-phase region. **LEVER LINE:** It's an isothermal line drawn in a two-phase region.

$$m_{S} = \frac{C_{o} - C_{l}}{C_{S} - C_{l}}$$

$$m_{l} = 1 - m_{S} = \frac{C_{o} - C_{S}}{C_{S} - C_{l}}$$

$$m_l + m_s = 1$$

$$And C_l m_l + C_s m_s = C_o$$

 $C_o = concentration \ of \ Element \ 1 \ at \ which \ m_l, m_s \ are \ calculated$ $C_l = concentration \ of \ Element \ 1 \ at \ which \ Complete \ Liquid \ State$ $C_s = concentration \ of \ Element \ 1 \ at \ which \ Complete \ Solid \ State$

TYPE-II: Pb-Sn ALLOY EUTECTIC PHASE DIAGRAM:

α-Phase:	β-Phase:	Eutectic Reaction (Equilibrium):	At Eutectic Point:
Solvent = Pb ,	Solvent = Sn ,	$Liquid \iff Solid\ 1 + Solid\ 2$	P = 3 (S, L),
Solute = Sn	Solute = Pb	E.g. Liquid $\stackrel{62\% Sn \& 183 °C}{\longleftrightarrow} \alpha + \beta$	C = 2 (Pb-Sn),
		E.g. Liquid $\longleftrightarrow a + p$	F + P = C + 1,
			F = 0.
Application:	Soldering: (75% Sn + 25% Pb), Plumbing: (75% Pb + 25% Sn), Tinman: (50% Sn + 50% Pb)		

Total α:	Pro-Eutectic α:	Eutectic α: (E.g. α phase present in Eutectic mixture)
$m_{Total \ \alpha} = \frac{C_{\beta} - C_{o}}{C_{\beta} - C_{\alpha}}$	$m_{\text{Pro-Eutectic }\alpha} = \frac{C_E - C_o}{C_E - C_\alpha}$	$m_{Total \ \alpha} = m_{\mathrm{Eutectic} \ \alpha} + m_{\mathrm{Pro-Eutectic} \ \alpha}$

TYPE-II: Fe-Fe₃C ALLOY EUTECTIC PHASE DIAGRAM:

- 1. It's interstitial solid solution.
- 2. At room temperature, Fe structure is BCC. So Maximum interstitial Space,

$$M.I.S. = a - 2R = a \left[1 - \frac{\sqrt{3}}{2} \right],$$

$$(\because For BCC 4R = \sqrt{3}a)$$

- 3. Maximum solubility of carbon in Fe is only up to 6.67 wt% of carbon. If the %C is more than 6.67%, it will occupy on the surface of iron as graphite.
- 4. Cementite (**Fe**₃**C**): It's a hard phase material with complex **orthorhombic structure**. It's formation increases with increasing in carbon percentage.
- 5. Based on %C, the Fe-C alloys are two types,
 - a. Steel: 0.008% to 2.1 %
 - b. Cast Iron: 2.1% to 6.67%
- 6. Allotropy: The iron material exhibits different crystal structures with different temperature.

At Room Temp	α-Fe	BCC	APF = 0.68	V _{uc} is More	ρ is Less
Above 910 °C	γ-Fe	FCC	APF = 0.74	V _{uc} is Less	ρ is More

- % of Volume Decrease = 8.14%
- 7. It's good ferromagnetic material and in this material all magnetic dipoles are aligned in the direction of the field. The ferromagnetic material depends on temperature and at curie temperature, it transforms into paramagnetic material. The Curie Temp. = 768 °C
- 8. Melting point temperature decreases with increasing in C%. E.g. $(MT)_{Fe} > (MT)_{Steel} > (MT)_{Castiron}$
- 9. No. of phases present in Fe-C Alloy = 5

Sr. No.	Phase	Max. Solubility of C (%)	Structure
1	δ-Fe	0.09	BCC
2	γ-Fe (Austenite)	2.1	FCC
3	α -Fe (α -ferrite)	0.025 (Due to Tetrahedral sites)	BCC
4	Fe3C (Cementite)	6.67 (Due to Octahedral sites)	Orthorhombic
5	Liquid		

10. Equilibrium Reaction: Draw Grain Structure for each reaction.

1	Eutectic Reaction: Eutectic Mixture Liquid \(\Leq Solid 1 + Solid 2 \)	Liquid $\stackrel{4.2\% C, 1100 ^{\circ}C}{\longleftrightarrow} \gamma - Fe + Fe_3C$ At Eutectic Point, P = 3 (L, γ , Fe3C), C = 2 (Fe, C), F + P = C + 1, F = 0.	Types of Cast Iron Based on Eutectic point, Hypoeutectic Steel: 2.1 to 4.2 % C Hypereutectic Steel: 4.2 to 6.67 % C
2	Eutectoid Point: Eutectoid Mixture Or Perlite Solid $1 \leftrightharpoons Solid \ 2 + Solid \ 3$	$\gamma - Fe \xrightarrow{0.8\% C, 728 °C} \alpha - Fe + Fe_3C$ At Eutectoid Point, $P = 3 (L, \gamma, Fe_3C), C = 2 (Fe, C),$ $F + P = C + 1,$ $F = 0.$	Types of Steels Based on Eutectoid point, Hypoeutectoid Steel: 0.008 to 0.8%C Hypereutectoid Steel: 0.8 to 2.1% C
3	Peritectic Reaction: $Liquid + Solid 1 \leftrightharpoons Solid 2$	$L + \delta - Fe \stackrel{0.18\% C,1450 °C}{\longleftrightarrow} \gamma - Fe$ At Peritectic Point, $P = 3 (L, \gamma, \delta), C = 2 (Fe, C),$ $F + P = C + 1,$ $F = 0.$	
4	Monotectic Reaction: (Non-Equilibrium Reaction)	$Liquid \iff Liquid1 + Liquid2$ $L \stackrel{0.57\% \ C,1450 \ ^{\circ}C}{\longleftrightarrow} L + \gamma - Fe$	
5	Peritectoid Reaction: Not present in the diagram.	$Solid 1 + Solid 2 \leftrightharpoons Solid 3$	

3. TERTIARY PHASE DIAGRAM (C = 3)

This Diagram is drawn for three component system and in this diagram 3 chemical compositional axis are considered in 2-D plane in an equilateral triangle form and temperature axis is considered perpendicular to the plane. And hence, it's also known as 3-D Phase Diagram.

E.g. 18-8 Stainless Steel (18% Cr, 8% Ni, 74% Fe)

At an equilibrium point, Degree of Freedom is Zero.

No. of Component C = 3 (Tertiary Diagram)

According to modified Gibbs Phase Rule,

$$F+P=C+1,$$

 $P_{max} = 4$.

