Universidad Nacional de La Plata

FACULTAD DE CIENCIAS ASTRONÓMICAS Y GEOFÍSCIAS

Micrometeorología

Notas teóricas

Autor: Lorenzo Girotti

1. Energía

1.1. Flujos de energía en una superficie ideal

Consideramos superficie ideal a aquella que es relativamente suave, horizontal, homogénea, extensiva y opaca a la radiación. La energía disponible para tal superficie se simplifica de manera tal que solo depende de flujos verticales de energía.

1.1.1. Tipos de flujo de energía

2. Fludios viscosos, turbulentos

2.1. Número de Richardson

$$Ri = \frac{g}{T_v} \frac{\partial \Theta_v}{\partial z} \left| \frac{\partial V}{\partial z} \right|^{-2} \tag{1}$$

El número de Richardson es una buena medida de la turbulencia y provee un criterio simple para la existencia o no existencia de turbulencia en un entorno estable estratificado.

Un Ri > 0.25 indica poco o casi nulo entorno turbulento. Por lo tanto, un perfil vertical de Ri deja estudiar con más exactitud la turbulencia en la PBL.

2.2. Número de Reynolds

$$Re = \frac{UL}{\nu} \tag{2}$$

donde U es la velocidad característica y L es la longitud de escala.

3. Definiciones

3.1. Viscosidad

Es una propiedad molecular del fluido que representa la resistencia interna del mismo a la deformación. En un fluido *ideal* o *no viscoso* se asume un flujo no turbulento o laminar, en consecuencia no hay transferencias de momento, calor ni masa debido a la mezcla turbulenta; sino que las propiedades son transportadas a lo largo de las lineas de corriente producto de la advección. Por otro lado, la condición de no viscosidad implica que ante la interacción del fluido con una superficie o con otro fluido con una gran diferencia de densidad, no habrá fricción entre ellos.

3.2. Fluidos Newtonianos

La viscosidad es responsable de la resistencia friccional entre capas adyacentes de fluido; la resistenciapor unidad de área se llama tensión por cortante y se asocia al movimiento relativo entre las capas.

Los fluidos newtonianos son aquellos en donde hay una relación proporcional entre la tensión por cortante y el cambio del gradiente vertical de velocidad. Donde el coeficiente de proporcionalidad μ se llama viscosidad dinámica del fluido. Para flujos se suele utilizar la viscosidad cinemática que es la viscosidad dinámica dividido la densidad, con dimensiones de L^2T^{-1}

3.3. Flujos viscosos

En la realidad siempre existe viscosidad en los flujos. Aún así podemos encontrar circunstancias en donde el flujo se vuelva *laminar*.

3.3.1. Flujo laminar

Se caracteriza por ser suave, ordenado y de movimiento lento, donde las capas adyasentes de fluidose deslizan entre sí con muy poca transferencia (solo a nivelmolecular) de propiedades a través de ellas. El campo de flujo, la temperatura asociada y los campos de concetración son regulares y predecibles y solo varían gradualmente en tiempo y espacio.

3.3.2. Flujo turbulento

Son movimientos altamente irregualres, casi aleatorios, tridimensionales, altamente rotantes, disipativos y muy difusos (mezcla). Todas las propiedades escalares y las del flujo fluctuan tanto en tiempo como en espacio, con un amplio rango temporal y espacial. Por ejemplo: las fluctuaciones de velocidad en la ABL van desde 10^{-3} s a 10^4 s y la correspondiente al espacio va desde 10^{-3} m a 10^4 m - del orden del millón en rango. Es por esto que es imposible predecir o calcular exactamente a los movimientos turbulentos como funciones del tiempo y el espacio; normalmente se utilizan los promedios estadísticos de las propiedades.