Introdução à UML: Diagrama de Casos de Uso

Prof. Me. Lucas Bruzzone

Aula 11

O que é UML?

Unified Modeling Language

Linguagem gráfica padrão para modelagem de sistemas orientados a objetos

Características:

- Padrão da indústria (OMG)
- Independente de linguagem de programação
- Múltiplas visões do sistema
- Comunicação entre equipes
- Documentação visual

Tipos de Diagramas UML

Estruturais

- Diagrama de Classes
- Diagrama de Objetos
- Diagrama de Componentes
- Diagrama de Pacotes

Comportamentais

- Diagrama de Casos de Uso
- Diagrama de Sequência
- Diagrama de Atividades
- Diagrama de Estados

Focaremos nos 3 mais importantes para análise

Diagrama de Casos de Uso

Objetivo

Capturar requisitos funcionais mostrando interações entre usuários (atores) e sistema

Elementos básicos:

- Atores: Usuários ou sistemas externos
- Casos de uso: Funcionalidades do sistema
- Relacionamentos: Conexões entre elementos
- Fronteira do sistema: Delimita escopo

Perspectiva: Externa - como usuário vê o sistema

Atores

Definição

Entidades externas que interagem com o sistema

Tipos:

• **Primários**: Iniciam casos de uso

• Secundários: Reagem aos casos de uso

• Pessoas: Usuários humanos

• Sistemas: Outros sistemas

Exemplos:

- Cliente, Administrador, Vendedor
- Sistema de Pagamento, Base de Dados

Notação: Boneco ou retângulo com <<actor>>

Casos de Uso

Definição

Funcionalidade específica que o sistema oferece para atingir objetivo do ator

Características:

- Iniciados por ator
- Geram valor observável
- Sequência completa de ações
- Nível de abstração adequado

Nomenclatura:

- Verbos no infinitivo
- "Fazer Login", "Processar Pedido"
- Evitar detalhes técnicos

Notação: Elipse com nome do caso de uso

Relacionamentos - Associação

Associação (Comunicação):

- Liga ator a caso de uso
- Linha simples
- Indica que ator participa do caso de uso

Dicas:

- Ator deve ter pelo menos uma associação
- Caso de uso deve ter pelo menos um ator primário

Relacionamentos - Include

Include (Inclusão):

- Caso de uso sempre executa outro
- Funcionalidade comum reutilizada
- Seta tracejada com <<include>>

Quando usar:

- Evitar duplicação de funcionalidade
- Separar comportamento obrigatório

Relacionamentos - Extend

Extend (Extensão):

- Caso de uso opcionalmente executa outro
- Comportamento condicional
- Seta tracejada com <<extend>>

Quando usar:

- Funcionalidade opcional ou casos especiais
- Diferentes fluxos baseados em condições

Atenção: Direção oposta ao include!

Include vs. Extend

Aspecto	Include	Extend
Execução	Sempre	Condicional
Direção	$Base \to$	Extensão $ ightarrow$
	Incluído	Base
Propósito	Reutilização	Variação

Especificação Textual

Elementos da especificação:

- Nome: Identificação única
- Ator primário: Quem inicia
- Objetivo: Meta a ser alcançada
- Pré-condições: Estado inicial necessário
- Fluxo principal: Sequência normal de passos
- Fluxos alternativos: Variações e exceções
- Pós-condições: Estado final do sistema

Exemplo de Especificação

Caso de Uso: Fazer Login Ator Primário: Usuário

Objetivo: Autenticar usuário no sistema **Pré-condições:** Usuário possui conta válida

Fluxo Principal:

1 Usuário informa email e senha

Sistema valida credenciais

Sistema redireciona para página principal

Fluxo Alternativo - Credenciais Inválidas:

Sistema exibe mensagem de erro

Retorna ao passo 1

Boas Práticas - Atores

- Representam papéis, não pessoas específicas
 - Bom: "Cliente", "Administrador"
 - Ruim: "João", "Maria"
- Nomes claros e significativos
- Evitar atores muito genéricos ("Usuário")
- Considerar herança entre atores
 - "Funcionário" pode ser pai de "Vendedor"
- Incluir sistemas externos quando relevantes

Generalização de Atores

Herança: Atores especializados herdam associações do ator genérico

Boas Práticas - Casos de Uso

- Nível de granularidade adequado
 - Nem muito detalhado, nem muito abstrato
- Casos de uso geram valor observável
- Verbos no infinitivo
- Foco no "o que", não no "como"
- Evitar casos de uso CRUD simples
 - "Gerenciar Produtos" melhor que "Criar/Ler/Atualizar/Deletar Produto"
- Entre 5-50 casos de uso por sistema

Erros Comuns

- Casos de uso muito técnicos
 - "Conectar ao Banco" → deve ser transparente
- Confundir com diagrama de fluxo
 - Não mostrar sequência temporal
- Muitos relacionamentos include/extend
 - Complica desnecessariamente
- Atores dentro do sistema
 - Atores são sempre externos
- Casos de uso sem valor para ator

Exemplo Prático - E-commerce

Benefícios dos Diagramas de Casos de Uso

- Comunicação: Linguagem comum entre stakeholders
- **Escopo**: Define fronteiras do sistema
- Planejamento: Base para estimativas e cronograma
- **Testes**: Casos de teste derivados dos casos de uso
- Rastreabilidade: Liga requisitos à implementação
- Validação: Cliente pode verificar completude

Exercício Prático

Atividade

Baseado no trabalho do primeiro bimestre, desenvolva um diagrama de casos de uso da sua aplicação

Requisitos:

- Identificar todos os atores (humanos e sistemas)
- Listar os principais casos de uso (5-15 casos)
- Definir associações entre atores e casos de uso
- Aplicar relacionamentos include/extend quando apropriado
- Delimitar a fronteira do sistema

Entrega: Diagrama visual + Especificação de 2 casos de uso

Próxima Aula

Diagramas de Classe: Conceitos e Notação

Estudaremos a estrutura estática do sistema através de classes, atributos e relacionamentos