Systems of sentences

1. Complete, which is also called Non-singular

eg:- The dog is black

The cat is orange

Both the sentence give two different information.

2. Redundant, Which is Singular

eg:- The dog is black

The dog is black

3. Contradictory, which is also a singular.

eg:- The dog is black

The dog is white

Likewise, Systems of information is:-

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

The bird is red.

And System of equations is:-

Systems of equations

System 1

Unique solution:

Complete

Non-singular

System 2

•
$$2a + 2b = 20$$

Infinite solutions

Redundant

Singular

System 3

•
$$2a + 2b = 24$$

No solution

Contradictory

Singular

What is a linear equation?

Linear:- a+b=10

Non – linear :- $a^2 + b^2 = 10$

Systems of equations as lines

Systems of equations as lines

Systems of equations as matrices

Linear dependence between rows

Determinant

Determinant

Solutions: More systems of equations

System 2	System 3	System 4
a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 20 3a + 3b + 3c = 30
Infinitely many sols.	No solutions	Infinitely many solutions
c = 5 a + b = 5	From 1st and 2nd: c = 5	Any 3 numbers that add to 10 work.

Constants don't matter for singularity

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular	Singular	Singular	Singular

Solution: Linear dependence and independence

Problem: Determine if the following matrices have linear dependent or independent rows

1	1	1
0	2	2
0	0	3

$$3Row1 + 2Row2 = Row3$$

$$2Row1 = Row3$$

Dependent (singular)

Dependent (singular)

Independent (Non-singular)

Dependent (singular)

The determinant

1

Solution: Determinants

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Determinant = 0

Determinant = 0

Determinant = 6

Determinant = 0

Singular

Singular

Non-singular

Singular