Fowlie et al. (2016)

"Market-Based Emissions Regulation and Industry Dynamics"

Hulai Zhang

Reading Group Env.Climate

Sep 4, 2023

Outline

- Introduction
- 2 Model
- Stimation
- 4 Results
- 6 Appendix

Introduction

What are industrial responses to environmental regulation?

- Four environmental regulation instruments
 - Auctioned permits
 - Grandfathering
 - Output-based allocation
 - Border tax adjustment
- Environmental regulation distorts market outcomes
 - Push productions more under the socially optimal level
 - Emission leakage to unregulated area

⇒ Compare the effects of the four environmental regulation instruments in a concentrated industry.

Conceptual Framework

The US Portland cement industry

- This industry plays large role in emissions to environment.
 - high energy requirements
 - emitting large amount of CO_2 in production
- This industry is highly concentrated.
 - 116 plants in 37 states, operated by 1 government and 40 firms in 2000
 - exporter competition is low but growing to 20%
- Cement are homogeneous good
 - Quantity competition

Data

Portland cement industry, 1980 - 2009

- Market-level data
 - US Geological Survey: the number of plants in each market, the quantity and prices of shipped cement
 - other market data such as prices of electricity, coal and natural gas, population and housing permits
- Plant-level data
 - Portland Cement Association's annual Plant Information Summary (PIS): capacity and production quantity by each plant, Kiln type

Model

- J markets: i = 1, ..., J
- \bar{N} cement firms: $i = 1, ..., \bar{N}$
- Firm capacity $\{s_{it}: i \in \bar{N}\}: s_{1t}, s_{2t}, \dots$
 - Firm with $s_{it} = 0$ is considered as potential entrant.
- Emission rate $\{e_i: i \in \bar{N}\}: e_1, e_2, ...$

Timeline

- Firms receive private information
 - Incumbent firms receive private info on exit cost, decide whether exit or not; if not exit, they receive private info on investment/divestment costs
 - Potential entrants receive private info on entry cost
- ② All firms decide on entry/exit and investment/divestment simultaneously
- Incumbent firms compete over quantity
- Firms enter/exit, and investments mature

Model

- **1** Demand: $\ln Q_{mt} = \alpha_m + \alpha_1 \ln P_{mt} + \alpha_2 X_{mt} + \epsilon_{mt}$
 - Instrument P_{mt} by coal prices, gas prices, electricity rates, and wage rates.
- ② Import supply: $\ln M_{mt} = \rho_0 + \rho_1 \ln P_{mt} + \rho_{2m} + \rho_3' \ln Z_{mt} + \varepsilon_{mt}$
- Firm's profit from production:

$$\bar{\pi}(s, e, \tau; \alpha, \rho, \delta) \equiv \max_{q_i \leq s_i} P\left(q_i + \sum_{j \neq i} q_j^*; \alpha, \rho\right) q_i - C_i\left(q_i; \delta\right) - \varphi\left(q_i, e_i, \tau\right)$$

- Production cost: $C_i(q) = \delta_1 q_i + \delta_2 1(q_i > \nu s_i)(q_i \nu s_i)^2$
- Environmental compliance cost: $\varphi(q_i, e_i, \tau)$
- Investment adjustment cost:

$$\Gamma(x_i) = 1(x_i > 0)(\gamma_{i1} + \gamma_2 x_i + \gamma_3 x_i^2) + 1(x_i < 0)(\gamma_{i4} + \gamma_5 x_i + \gamma_6 x_i^2)$$

- Private info γ_{i1} and γ_{i4} : normal distribution $\mathcal{N}(\mu_{\gamma}^+, \sigma_{\gamma}^{+2})$ and $\mathcal{N}(\mu_{\gamma}^-, \sigma_{\gamma}^{-2})$
- $\textbf{9} \ \, \mathsf{Entry/exit} \ \, \mathsf{cost:} \ \, \Phi(a_i) = \begin{cases} -\kappa_i, \ \, \mathsf{if} \ \, \mathsf{the} \ \, \mathsf{firm} \ \, \mathsf{is} \ \, \mathsf{a} \ \, \mathsf{new} \ \, \mathsf{entrant} \\ \phi_i, \ \, \mathsf{if} \ \, \mathsf{the} \ \, \mathsf{firm} \ \, \mathsf{exits} \end{cases}$
 - Private info κ_i and ϕ_i : normal distribution $\mathcal{N}(\mu_{\kappa}, \sigma_{\kappa}^2)$ and $\mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2)$
- **o** Firm's period payoff: $\pi_{it}(a, x, s, e) = \bar{\pi}(s, e, \tau; \alpha, \rho, \delta) \Gamma(x_{it}; \gamma) + \Phi(a_{it}; \kappa, \phi)$

Environmental compliance cost: $\varphi(q_i, e_i, \tau)$

Four market-bases environmental regulation instruments:

- **1** Auctioned permits: $\varphi(q_i, e_i, \tau) = \tau e_i q_i$
 - Social cost of carbon: $\tau \in [\$5, \$65]$
 - Emission rates: $e_i = 1.16, 0.93, 0.81$ for wet-, dry-, and state-of art kilns
- ② Grandfathering: $\varphi(q_i, e_i, \tau) = \tau(e_i q_i A_i) = \tau(e_i q_i \psi_g e_i \min\{s_{i0}, s_i\})$
 - $\psi_q = 42.5\%$
- **1** Output-based allocation: $\varphi(q_i, e_i, \tau) = \tau(e_i \psi_d)q_i$
 - $\psi_d = 0.716$
- **3** Border tax adjustment+Auction: $\varphi(q_i,e_i,\tau)$ and $\ln M_{mt}=\rho_0+\rho_1\ln(P_{mt}-\tau e_M)+...$
 - ullet e_M weighted emission rates over foreign cement producers

Model

Markov-perfect Nash Equilibrium (MPNE)

Given the setting above, there exists a pure strategy $\sigma_i:(s,e,\epsilon_i)\to a_i$ in equilibrium.

The proof is the same as Ryan (2012).

Estimation: Bajari, Benkard, and Levin (2007)'s two steps

Step 1: Generate Markov chains by agents

- $s_{it} \to (x_{it}, a_{it}) \to s_{it+1} \to (x_{it+1}, a_{it+1}) \to \dots$
- $s_{it} \to (x_{it} + \epsilon_{\gamma}, a_{it} + \epsilon_{\kappa, \phi}) \to s'_{it+1} \to (x_{it+1} + \epsilon_{\gamma}, a_{it+1} + \epsilon_{\kappa, \phi}) \to \dots$
- ..

Step 2: Recover parameters

$$\min_{\theta} \frac{1}{n_k} \sum_{n=1}^{n_k} 1(V^* > \tilde{V}) [V_i(s; \sigma_i^*(s), \sigma_{-i}(s), \theta, \varepsilon_i) - V_i(s; \tilde{\sigma}_i(s), \sigma_{-i}(s), \theta, \varepsilon_i)]^2$$
 (1)

Estimation: Policy functions

 $s_{it} \rightarrow s_{it+1}$: Adjust capacity if target s_{it} is located outside optimal band.

$$s_{t+1} = \begin{cases} T(s_t) & \text{if } s_t < T(s_t) - B(s_t) \text{ or } s_t > T(s_t) + B(s_t) \\ s_t & \text{else.} \end{cases}$$
 (2)

- $\ln T_{imt}(s) = \eta_1 + \eta_2 \mathbb{1}(i \text{ entrant }) + \eta_3 [\mathbb{1} \mathbb{1}(i \text{ entrant })] \text{ InCapacity }_i + \eta_4 M T_m + \varepsilon_{\mathsf{Timt}}$
- $\ln B_{imt}(s) = \eta_5 + \eta_6 \ln \text{Capacity }_i + \eta_7 M T_m + \varepsilon_{\mathsf{Bimt}}$

Capacity

Price

CO_2 emissions

Emission leakage

Market Dynamics

Welfare measures

Domestic economic surplus of cement consumption: consumer surplus, producer surplus, and government revenues:

$$w_1 = \int_0^{Q*} P(z; \alpha) dz - P(Q^*; \alpha) Q^* + \sum_i \Pi_i(a^*, x^*, s, e, \tau; \theta) + \sum_i \varphi(q_i^*, e_i, \tau) + \tau_M e_M M$$
 (3)

Adding domestic emission costs:

$$w_2 = w_1(s, e, \tau; \theta) - \tau \sum_i e_i q_i^*$$
 (4)

Adding penalty for emissions leakage:

$$w_3 = w_2(s, e, \tau; \theta) - \tau e_M M(P^*; \rho)$$
 (5)

Welfare: Domestic economic surplus of cement consumption

Welfare: Adding domestic emission costs

Welfare: Adding penalty for emissions leakage

21 / 25

Optimal carbon prices

	Federal $ au_f^*$ (1)	Coastal $ au_c^*$ (2)	Inland $ au_i^*$ (3)	Welfare Δ at τ_f^* (4)	Welfare Δ at $\{\tau_{\epsilon}^*, \tau_{i}^*\}$ (5)	Welfare Δ at $\tau = SCC$ (6)	
	A. $SCC = 20						
Auctioning	0	0	0	0	0	-14,886	
Grandfather	0	0	0	0	0	-6,609	
Output	0	0	0	0	0	-2,519	
BTA	0	0	0	0	0	-6,141	
		B. SCC = \$45					
Auctioning	5	5	15	905	1,316	-12,890	
Grandfather	10	5	35	1,357	2,259	-5,839	
Output	25	15	60	1,047	1,628	619	
BTA	20	25	15	5,991	6,269	3,150	

Abatement costs

Conclusion

- The effects of environmental regulation depend on how the policy is implemented and the social cost of carbon
 - At \$40 SCC, auctioned permits exacerbates the distortions of market power
 - All four instruments push down market outcomes
- BTA and output-base allocations could increase welfare in high SCC.

References

Fowlie, M., M. Reguant, and S. P. Ryan (2016). Market-based emissions regulation and industry dynamics. *Journal of Political Economy* 124(1), 249–302.

Ryan, S. P. (2012). The costs of environmental regulation in a concentrated industry. *Econometrica* 80(3), 1019–1061.