1 Beispielklausuren

Die Modulabschlussprüfung Diskrete Modellierung findet in Form einer 120 minütigen Klausur statt. Die Erstklausur findet am 23.02.2017 um 9:00 s.t. und die Zweitklausur am 06.04.2017 ebenfalls um 9:00 s.t. statt.

Details zum Ablauf der Klausur:

- Grundsätzlich gelten die in der Ordnung Ihres Studiengangs festgelegten Regelungen. Dieses hier sind nur ergänzende Hinweise.
- Vor Beginn der Klausur wird die Zuweisung in die Hörsäle mitgeteilt.
- Legen Sie Ihre "Goethe-Card" deutlich sichtbar auf Ihren Platz, damit wir Ihre Identität überprüfen können.
- Außer einem dokumentenechten Schreibstift sind keine Hilfsmittel zugelassen. Das Mitbringen nicht zugelassener Hilfsmittel stellt eine Täuschung dar und führt zwangsläufig zum Nichtbestehen der Klausur. Schalten Sie insbesondere Handys und Smartwatches vor Beginn der Klausur aus.
- Schreibpapier wird von uns bereitgestellt.
- Begründungen sind nur dann notwendig, wenn die Aufgabenformulierung diese verlangt.
- Jedes(!) Blatt der abgegebenen Lösung muss mit Namen, Vornamen und Matrikelnummer gekennzeichnet sein.
- Werden zu einer Aufgabe zwei oder mehr Lösungen angegeben, so gilt die Aufgabe als nicht gelöst. Entscheiden Sie sich also immer für eine Lösung.

Checkliste - zur Klausur müssen Sie mitbringen:

- einen dokumentenechten Schreibstift
- Ihre Goethe-Card

Durch die in den Übungen gesammelten Punkte kann ein Bonus für die Klausur erworben werden. Zur Benotung wird die Summe aus dem Klausurergebnis und der Bonuspunkte verwendet. Die Klausur ist bestanden, wenn mit dem Bonus mindestens 50% der in der Klausur erzielbaren Punkte erreicht werden.

Nachfolgend finden Sie die Aufgaben der Klausuren aus den Wintersemestern 2014/15 und 2015/16 sowie den Sommersemestern 2015 und 2016.

Inhaltsverzeichnis

1	Beis	spielklausuren	1
	1.1	Erstklausur WS 15/16	3
	1.2	Zweitklausur SS 16	8
	1.3	Erstklausur WS 14/15	3
	1.4	Zweitklausur SS 15	2

 $1.1 \;\; Erstklausur \; WS \; 15/16$

Name, Vorname: Matrikelnummer:

Aufgabe 1: Aussagenlogik

(a) Es werden drei Wetten abgeschlossen, wobei wie üblich eine Wette entweder gewinnt oder [8 Pkte] verliert. Die folgenden Eigenschaften sind bekannt:

Eigenschaft 1: Wenn die erste Wette gewinnt, dann verliert die zweite Wette.

Eigenschaft 2: Die zweite Wette gewinnt genau dann, wenn die dritte Wette verliert.

Eigenschaft 3: Die erste Wette oder die dritte Wette verliert.

Formalisieren Sie die drei Aussagen durch je eine aussagenlogische Formel, indem Sie die atomaren Aussagen $\mathbf E$ (die erste Wette gewinnt), $\mathbf Z$ (die zweite Wette gewinnt) und $\mathbf D$ (die dritte Wette gewinnt) benutzen.

```
arphi_{	ext{Eigenschaft 1}}:=
arphi_{	ext{Eigenschaft 2}}:=
arphi_{	ext{Eigenschaft 3}}:=
```

Nehmen Sie an, dass alle drei Eigenschaften zutreffen. Ist es möglich, dass die erste Wette gewinnt? **Beweisen** Sie Ihre Antwort, z.B. mithilfe einer Wahrheitstafel.

Sie können die folgende Vorlage für Ihre Wahrheitstafel verwenden:

\mathbf{E}	\mathbf{Z}	D	arphiEigenschaft 1	arphiEigenschaft 2	arphiEigenschaft 3	
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(b)

[10 Pkte]

(i) Geben Sie an, ob die aussagenlogische Formel

(4 Pkte)

$$\varphi := ((X_1 \oplus X_2) \to (X_1 \leftrightarrow X_2))$$

erfüllbar und/oder falsifizierbar ist.

/		
Kreuzen Sie alle richti	gen Antwo	rten an.
φ ist erfüllbar:	□ja	□ nein
φ ist falsifizierbar:	□ja	□ nein
Falls φ erfüllbar ist, ϱ	geben Sie e	ine Belegung an, die φ erfüllt:
Falls φ falsifizierbar	ist, geben S	Sie eine Belegung an, die φ falsifiziert:

(ii) Gelten die folgenden semantischen Äquivalenzen (\equiv) für beliebige aussagenlogische Formeln φ , ψ und χ ?

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie zwei Punkte, für jedes **falsche Kreuz** werden **zwei Punkte abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl für Teilaufgabe (ii) ist aber mindestens 0.

,	(a)	Geben	Cio.	oino	7111	Formo	1
(C.	Geben	Sie	eme	zur	rorme	I

[6 Pkte]

$$\psi := \Big((X_1 \to X_2) \land (X_2 \to X_3) \land (X_3 \to X_1) \Big)$$

äquivalente Formel ψ' in ${\bf disjunktiver}$ Normalform (DNF) an.

(Wenn Sie Ihren Lösungsweg angeben, können Sie Teilpunkte auch bei falscher Lösung erhalten.)

Aufgabe 2: Graphen und Bäume

(a) Sei G=(V,E) der ungerichtete Graph mit Knotenmenge $V=\{1,2,3,4,5,6\}$ und Kanten- [7 Pkte] menge $E = \{\{1,3\},\{1,4\},\{2,4\},\{3,5\},\{4,6\},\{5,6\}\}.$

(i) Geben Sie G in graphischer Darstellung an.

(1 Pkt)

(ii) Geben Sie alle Knoten vom Grad 3 an.

(1 Pkt)

(iii) Geben Sie ein möglichst großes Matching M in G an.

(2 Pkte)

$$M = \{$$

(iv) Betrachten Sie die folgenden Graphen $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$:

(3 Pkte)

Welche der folgenden Aussagen sind wahr, welche falsch?

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

• G_1 ist stark zusammenhängend.

wahr ☐ falsch

• G_1 und G_2 sind isomorph.

wahr ☐ falsch

• Es gibt eine surjektive Funktion $m: V_2 \to \{1, 2, 3, 4\}$.

wahr falsch Name, Vorname:

Matrikelnummer:

(b) Auf der Suche nach Luke Skywalker fliegen Rey und Finn quer durch die Galaxis. Da sie sich vor den Truppen des Imperiums verstecken müssen, benutzen Sie nur die folgenden sicheren Routen, wobei jede sichere Route eine Direktverbindung zwischen zwei Planeten darstellt:

- Die Planeten **Tatooine**, **Utapau** und **Dagobah** sind jeweils durch eine sichere Route miteinander verbunden.
- Zwischen Coruscant und Tatooine gibt es eine sichere Route.
- Ahch-To ist ausschließlich mit Jakku durch eine sichere Route verbunden.
- Jakku ist mit allen anderen Planeten außer Dagobah durch eine sichere Route verbunden.

		Tatooine	
Ut	tapau		Dagobah
Con	ruscant		Ahch-To
		Jakku	
Weiches granhenthed	retische Prob	lem in G müssen Re	v und Finn lösen, wenn sie ieden
			y und Finn lösen, wenn sie jeden tplanet frei wählbar ist?
Planeten genau einm	al besuchen n	nöchten und der Star	
Planeten genau einm	al besuchen n	nöchten und der Star	tplanet frei wählbar ist?
Planeten genau einm Können Rey und Fin Ihre Antwort. □ ja □ nein	al besuchen n	nöchten und der Star	tplanet frei wählbar ist?

$V = \{1, 2,\}$	(E, E) der Kreis-Graph mit $n \ge 1$, (E, E) und $E = \{\{1, 2\}, \{2, 3\}, \{2, $	$\ldots, \{n-1, n\}, \{n, 1\}\}.$	[10
Ist die folge	nde Aussage wahr oder falsch	? Begründen Sie Ihre Antwort.	(3 P
Wenn n ger	ade ist, dann ist C_n ist biparti	it.	
□ wahr	falsch		
Begründun	<i>j:</i>		
Beweisen Si	e durch vollständige Induktion	n nach der Anzahl n der Knoten:	(7 P
Sei $k \in \mathbb{N}_{>}$. Jeder ungerichtete Graph G	$G = (V, E)$ mit $n := V \ge 1$ und G_1	$\operatorname{rad}(G) \le k$
	+ 1 Farben konfliktfrei gefärbt		
Zur Erinne	$rung: \operatorname{Grad}(G) := \max \{ \operatorname{Grad}_G \}$	$v(v):v\in V$	

Aufgabe 3: Markov-Ketten

mit Wahrscheinlichkeit $\frac{1}{10}$ gerettet.

- (a) Im Computerspiel World of Markov (WoM) müssen Sie drei Welten W_1, W_2 und W_3 nacheinander retten, d. h. Sie retten erst W_1 , dann W_2 und schließlich W_3 . Gelingt Ihnen die Rettung aller drei Welten, so ruhen Sie sich danach für immer in Ihrem Helden-Status H aus. Gelingt Ihnen die Rettung der Welt W_i nicht $(i \in \{1, 2, 3\})$, müssen Sie das Spiel von vorne beginnen (und W_1 retten, danach W_2 , usw.).

 Nach Aussage der Entwickler von WoM kann W_1 mit der Wahrscheinlichkeit $\frac{3}{4}$ gerettet werden. Die Rettung von W_2 ist nur in $\frac{1}{3}$ der Fälle erfolgreich. Die Welt W_3 wird lediglich
 - (i) Modellieren Sie WoM durch eine Markov-Kette (G, P). Geben Sie den Graphen G in graphischer Darstellung an und beschriften Sie die Kanten mit den Übergangswahrscheinlichkeiten. (Sie müssen die Übergangsmatrix P nicht angeben.)

(ii) Besitzt (G, P) eine stationäre Verteilung $\sigma = (\sigma_1, \sigma_2, \sigma_3, \sigma_h)$? Falls ja, geben Sie σ an. (2 Pkte)

 \Box ja \Box nein $\sigma = ($

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

G_1 ist aperiodisch.	□ja	\square nein
G_1 ist irreduzibel.		\square nein
G_2 ist aperiodisch.	□ja	\square nein
G_2 ist irreduzibel.	□ja	\square nein

(c) Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

Sei $\mathcal{M} = (G, P)$ eine **ergodische** Markov-Kette. Dann gilt immer . . .

G ist irreduzibel.	□ja	☐ nein
${\cal G}$ besitzt mindestens eine Eigenschleife.	□ja	☐ nein
${\mathcal M}$ besitzt genau eine Grenzverteilung.	□ja	☐ nein
Die Gleichverteilung ist eine stationäre Verteilung von \mathcal{M} .	□ja	☐ nein

Aufgabe 4: Endliche Automaten und reguläre Sprachen

(a) Sei $\Sigma := \{a, b\}$. Die Sprache $L \subseteq \Sigma^*$ sei wie folgt definiert:

[9 Pkte]

 $L := \{ w \in \Sigma^* : |w| \ge 3 \text{ und } w \text{ endet auf } aab \}$

(i) Geben Sie einen regulären Ausdruck R an, sodass L(R) = L.

(3 Pkte)

(ii) Konstruieren Sie einen DFA D mit genau vier Zuständen für L.

(6 Pkte)

(b) Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, [4 Pkte] für jedes falsche Kreuz wird ein Punkt abgezogen; wird keine Option angekreuzt, erhal-

Eine Sprache L ist genau dann regulär, wenn sie nur endlich viele Wörter enthält.

Für jeden DFA D gibt es einen NFA N mit L(N) = L(D).

ten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

□ ja nein

nein

Für jeden NFA N gibt es einen DFA D mit L(D) = L(N).

 \square ja nein

Für zwei reguläre Ausdrücke R_1, R_2 gilt immer $L((R_1^*|R_2^*)) = L((R_1|R_2)^*)$.

☐ ja

□ ja

(c) (i) Der folgende DFA A_1 über dem Alphabet $\Sigma = \{a, b, c\}$ sei gegeben:

[10 Pkte]

Geben Sie jeweils einen Zeugen für folgende Inäquivalenzen bezüglich der Verschmelzungs- (3 Pkte) relation an.

Zeuge für $q_1 \not\equiv_{A_1} q_2$:

Zeuge für $q_1 \not\equiv_{A_1} q_3$:

Zeuge für $q_1 \not\equiv_{A_1} q_4$:

(ii) Der folgende DFA Automat A_2 über dem Alphabet $\Sigma = \{d,e\}$ sei gegeben:

Bestimmen Sie den Äquivalenzklassenautomaten A_2' für A_2 . Geben Sie A_2' in graphischer (7 Pkte) Darstellung an.

(Wenn sie Zwischenschritte angeben, können Sie auch bei falscher Lösung Teilpunkte erhalten.)

(Sie können folgende Vorlage verwenden.)

2				
3				
4				
5				
	1	2	3	4

Äquivalenzklassenautomat A'_2 :

[7 Pkte]

	$L := \{a^n b a^m : n, m \in \mathbb{N}, n \le m\}$				}	
regulär:	□ ja	□ nein				
Beweis:						

(d) Bestimmen Sie, ob die folgende Sprache regulär ist, und beweisen Sie Ihre Antwort.

Aufgabe 5: Kontextfreie Grammatiken

	. Die Sprache HN $\subseteq \Sigma^*$ (eine vereinfachte Form der Sprache aller DNA-Stränge, lschleife bilden) sei wie folgt definiert:	[6 Pkte]
Basisregel: Rekursive Regel:	Es gilt: $a, c, g, t \in HN$. Ist $w \in HN$, so sind auch awt , twa , cwg , $gwc \in HN$.	
	ört das Wort ggc zur Sprache HN, ebenso wie $tcactga$.	
(i) Geben Sie eir	ne kontextfreie Grammatik $G = (\Sigma, V, S, P)$ an, sodass $L(G) = HN$ ist.	(4 Pkte)
$G = (\Sigma, V, S, S)$,P)	
$V = \{$		
$P = \{$		
(ii) Geben Sie eir	nen Ableitungsbaum des Wortes $tcactga$ an.	(2 Pkte)

[6 Pkte]

Name, Vorname:	Matrikelnummer:

_	Seite	16	von	16 -	-

Name, Vorname: Matrikelnummer:

Aufgabe 1: Aussagenlogik

(a) Dirk möchte sich einen *ModDog* mit Bockwurst, Ketchup und/oder Mayonnaise nach den [8 Pkte] folgenden Vorgaben zusammenstellen.

- Vorgabe 1: Ketchup und Mayonnaise zusammen auf einem Brötchen geht gar nicht, aber eines von beiden ist unbedingt erforderlich.
- Vorgabe 2: Nur wenn kein Ketchup dazukommt, legt er die Bockwurst auf das Brötchen.
- Vorgabe 3: Keinesfalls darf Bockwurst zusammen mit Mayonnaise auf den ModDog.

Formalisieren Sie die drei Vorgaben durch je eine aussagenlogische Formel, indem Sie die atomaren Aussagen \mathbf{K} (Ketchup kommt aufs Brötchen), \mathbf{M} (Mayonnaise kommt aufs Brötchen) und \mathbf{B} (Bockwurst kommt aufs Brötchen) benutzen.

$\varphi_{ ext{Vorgabe }1} \coloneqq$	
$arphi_{ ext{Vorgabe }2}\coloneqq$	
$\varphi_{ ext{Vorgabe }3} :=$	

Geben Sie alle Kombinationen aus Bockwurst, Ketchup und Mayonnaise an, die alle drei Vorgaben erfüllen. **Beweisen** Sie Ihre Antwort, z.B. mithilfe einer Wahrheitstafel.

Sie können die folgende Vorlage für Ihre Wahrheitstafel verwenden:

В	K	M	φ Vorgabe 1	$\varphi_{ ext{Vorgabe 2}}$	φ Vorgabe 3	
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(b)

[10 Pkte]

(i) Geben Sie an, ob die aussagenlogische Formel

(4 Pkte)

$$\varphi := \big((X_1 \vee X_2) \leftrightarrow (X_1 \oplus X_2) \big)$$

erfüllbar und/oder falsifizierbar ist.

•		
Kreuzen Sie alle richti	gen Antwo	orten an.
φ ist erfüllbar :	□ ja	□ nein
φ ist falsifizierbar:	□ja	□ nein
Falls φ erfüllbar ist, \S	geben Sie e	eine Belegung an, die φ erfüllt:
Falls φ falsifzierbar i	st, geben S	Sie eine Belegung an, die $arphi$ falsifiziert:

(ii) Gelten die folgenden semantischen Folgerungen (\models) für beliebige aussagenlogische Formeln (6 Pkte) φ , ψ und χ ?

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie zwei Punkte, für jedes **falsche Kreuz** werden **zwei Punkte abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl für diese Teilaufgabe ist aber mindestens 0.

(c) Geben Sie eine zur Forn

[5 Pkte]

$$\varphi := \Big((X_1 \oplus X_2) \wedge (X_2 \oplus X_3) \Big)$$

äquivalente Formel φ' in $\mathbf{disjunktiver}$ Normalform (DNF) an.

(Wenn Sie Ihren Lösungsweg angeben, können Sie Teilpunkte auch bei falscher Lösung erhalten.)

Aufgabe 2: Graphen

(a) Sei G = (V, E) der gerichtete Graph mit Knotenmenge $V = \{a, b, c, d, e, f\}$ und Kantenmenge [9 Pkte] $E = \{(a, b), (a, c), (b, d), (c, e), (e, b), (f, d), (f, f)\}.$

(i) Geben Sie G in graphischer Darstellung an.

(1 Pkt)

(ii) Geben Sie den Aus-Grad von Knoten f in G an.

(1 Pkt)

Aus-Grad $_G(f) =$

(iii) Geben Sie einen möglichst langen einfachen Weg in G an.

(1 Pkt)

(iv) Ist G stark zusammenhängend? Begründen Sie Ihre Antwort.

(2 Pkte)

(4 Pkte)

 \square ja \square nein Begründung:

(v) Betrachten Sie die folgenden Graphen G_1, G_2 und G_3 :

• Alle Knoten in G_1 haben denselben Ein-Grad.

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

 G_2

 \square wahr \square falsch

• G_2 ist bipartit.

 \square wahr \square falsch

• G_3 ist planar.

 \square wahr \square falsch

• G_2 und G_3 sind isomorph.

 \square wahr \square falsch

Name, Vorname: Matrikelnummer:

(b) Die Wikingerinnen Elenor, Fryda, Gunhilda, Helga, Ingvild und Jördis wollen mit ihrem Drachenboot nach Grönland rudern. Um das Boot schnell und sicher fortzubewegen, muss in jeder Sitzreihe des Bootes ein kompatibles Wikingerinnen-Paar rudern, d. h. eine Wikingerin sitzt am linken und eine am rechten Ruder der jeweiligen Sitzreihe. Leider ist nicht jede Wikingerin mit jeder anderen kompatibel:

- Elenor kann nur zusammen mit Helga oder Gunhilda rudern.
- Helga kann mit allen außer Ingvild und Fryda rudern.
- Fryda und Ingvild sind ein kompatibles Paar, ebenso wie Fryda und Jördis

			nen ungerichteten Graphen G .	
G:		Jördis	Elenor	
	Ingvild		Fryda	
		Helga	Gunhilda	
	ohentheoretisch tuder-Partnerin		nuss gelöst werden, damit jede I	Frau eine

(c)

[8 Pkte]

(i) Bestimmen Sie für den folgenden Graphen G=(V,E) eine Färbung f mit möglichst wenigen Farben. Tragen Sie die Farben direkt in die Knoten ein.

(4 Pkte)

Begründen Sie, warum G nicht mit weniger Farben färbbär ist:

Bestimmen Sie die chromatische Zahl von G.

$$\chi(G) =$$

(ii) Ist die folgende Aussage wahr oder falsch? Beweisen Sie Ihre Antwort. Seien u und v zwei verschiedene Knoten in einem ungerichteten Baum. Dann haben u und v höchstens einen gemeinsamen Nachbarn.

(4 Pkte)

 \square wahr \square falsch

Beweis:

Aufgabe 3: Markov-Ketten

(a) Der Versandhändler Amarkov wertet das Kaufverhalten seiner Kunden aus. Hierfür werden exemplarisch drei Produkte x_1, x_2 und x_3 untersucht. Aus den Statistiken lässt sich die folgende Beobachtung ableiten:

Kauft ein Kunde das Produkt x_i ($i \in \{1,2,3\}$), so wird es mit der Wahrscheinlichkeit $\frac{1}{i}$ beim nächsten Mal wieder gekauft. Andernfalls wählt der Kunde beim nächsten Einkauf zufällig eines der anderen beiden Produkte mit jeweils gleicher Wahrscheinlichkeit.

(i) Modellieren Sie das Kaufverhalten der Kunden durch eine Markov-Kette (G, P). Geben (4 Pkte) Sie den Graphen G in graphischer Darstellung an und beschriften Sie die Kanten mit den Übergangswahrscheinlichkeiten. (Sie müssen die Übergangsmatrix P nicht angeben.)

(ii) Besitzt (G, P) eine stationäre Verteilung σ ? Falls ja, geben Sie σ an.

(2 Pkte)

(b) Betrachten Sie folgende Graphen G_1 und G_2 :

[4 Pkte]

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

- G_1 ist aperiodisch. ☐ ja nein
- □ ja G_1 ist irreduzibel. nein
- \square ja G_2 ist aperiodisch. nein
- □ ja G_2 ist irreduzibel. nein

/	(_ \	D-41-4	C:-	1: -	f-11-	Markov-Kette
l	\mathbf{C}	Detrachten	ore	are	rorgende	markov-Kette

[10 Pkte]

(i) Stellen Sie die Übergangsmatrix P auf.

(2 Pkte)

$$P =$$

(ii) Ein Zufallssurfer beginne eine Irrfahrt in Zustand 2. Zeigen Sie mit vollständiger Induktion, (6 Pkte) dass für alle $k \in \mathbb{N}$ gilt:

Der Surfer besitzt nach k Schritten die Verteilung $X^{(k)} = \left(\frac{1}{3}(1-4^{-k}), \frac{1}{3}(2+4^{-k})\right)$.

Aufgabe 4: Endliche Automaten und reguläre Sprachen

(a) Sei $\Sigma := \{a, b\}$. Die Sprache $L \subseteq \Sigma^*$ sei wie folgt definiert:

[7 Pkte]

 $L := \{w \in \Sigma^* : |w| \geq 2 \text{ und der vorletzte Buchstabe von } w \text{ ist ein } b. \ \}$

(i) Geben Sie einen regulären Ausdruck R an, so dass L(R) = L.

(2 Pkte)

(ii) Konstruieren Sie einen DFA ${\cal D}$ mit genau vier Zuständen für ${\cal L}.$

(5 Pkte)

(b) Sei Nder folgende NFA über dem Alphabet $\Sigma := \{a,b\}$:

[4 Pkte]

Welche der folgenden Worte liegen in der von N akzeptierten Sprache L(N), welche nicht? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

Wort	liegt i	in $L(N)$?
aab	□ja	nein
baba	□ja	\square nein
abaaa	□ja	\square nein
abaaab	□ja	\square nein

(c) (i) Der folgende DFA A über dem Alphabet $\Sigma = \{a,b\}$ sei gegeben:

[10 Pkte]

Bestimmen Sie den Äquivalenzklassenautomaten A' für A. Geben Sie A' in graphischer (7 Pkte) Darstellung an.

(Wenn Sie Zwischenschritte angeben, können Sie auch bei falscher Lösung Teilpunkte erhalten.)

(Sie können folgende Vorlage verwenden.)

Äquivalenzklassenautomat A':

(ii) Genau **eine** der folgenden Antworten ist richtig. Kreuzen Sie die richtige Antwort an. (3 Pkte) Sei D ein DFA mit Zustandsmenge Q und es gelte L=L(D). Dann gilt immer . . .

- $\square |Q| < \operatorname{Index}(L)$
- $\square |Q| \ge \operatorname{Index}(L)$
- $\square |Q| = \operatorname{Index}(L)$
- ☐ keine der obigen Antworten

[7 Pkte]

			$L := \{a^n b^{2n} : n \in \mathbb{N}\}$	
regulär:	□ja	☐ nein		
Beweis:				

(d) Bestimmen Sie, ob die folgende Sprache regulär ist, und beweisen Sie Ihre Antwort.

Auigabe 5. Kontextifele Grainmatikei	Aufgabe	5 :	Kontextfreie	Grammatiker
--------------------------------------	---------	------------	--------------	-------------

Sei $\Sigma = \{$ if b then , else , a $\}$, es stehen also die drei Buchstaben

[6 Pkte]

- if b then
- else
- a

zur Verfügung. Interpretiere dabei b als Abkürzung für "Bedingung" und a als Abkürzung für "Anweisung".

Die Sprache IF $\subseteq \Sigma^*$ aller wohlgeformten if-then-else-Anweisungen ist wie folgt definiert:

Basisregel: Es gilt: $a \in IF$.

Rekursive Regel: Sind $u, v \in IF$, so ist auch if b then $u \in IF$ und if b then u else $v \in IF$.

So gehört z.B. das Wort if b then a else a zur Sprache IF.

(i) Geben Sie eine kontextfreie Grammatik $G = (\Sigma, V, S, P)$ an, so dass L(G) = IF ist.

(4 Pkte)

$$G = (\Sigma, V, S, P)$$

$$V =$$

$$P = \Big\{$$

(ii) Geben Sie einen Ableitungsbaum für

(2 Pkte)

 $w \coloneqq \text{ if b then a else if b then a else if b then a}$

an.

Name, Vorname:	Matrikelnummer:

_	Seite	16	von	16 -	-

1.3 Erstklausur WS 14/15

Name, Vorname: Matrikelnummer:

Aufgabe 1: (24 Punkte)

(a) Mary Modder besucht die Zauberschule Modwarts. Im Unterrichtsfach Zaubertränke muss sie (8 Pkte) einen Konzentrationstrank zubereiten. Dazu muss sie entscheiden, welche der drei möglichen Zutaten Fliegenpilze, Krötenaugen und Spinnenbeine sie verwendet (oder nicht verwendet). Laut Rezeptbuch muss sie die drei folgenden Anweisungen beachten:

- **Anweisung 1:** Mindestens eine der drei Zutaten Fliegenpilze, Krötenaugen und Spinnenbeine muss verwendet werden.
- **Anweisung 2:** Wenn Fliegenpilze verwendet werden, darf keine der anderen beiden Zutaten verwendet werden.
- **Anweisung 3:** Werden keine Fliegenpilze und keine Spinnenbeine verwendet, so dürfen auch keine Krötenaugen verwendet werden.

Formalisieren Sie die drei Aussagen durch je eine aussagenlogische Formel, indem Sie die atomaren Aussagen F (Fliegenpilze werden verwendet), K (Krötenaugen werden verwendet) und S (Spinnenbeine werden verwendet) benutzen.

```
arphi_{
m Anweisung\ 1}:=
arphi_{
m Anweisung\ 2}:=
arphi_{
m Anweisung\ 3}:=
```

Nach etwas Überlegen hat Mary den Verdacht, dass diese Anweisungen kein eindeutiges Rezept ergeben. Gibt es mehr als eine Möglichkeit, unter den drei Zutaten eine Auswahl zu treffen, so dass alle drei Anweisungen erfüllt sind? Beweisen Sie Ihre Antwort.

Sie können die folgende Vorlage für Ihre Wahrheitstafel verwenden:

F	S	K	φ Anweisung 1	arphiAnweisung 2	φ Anweisung 3	
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

(b) Geben Sie zu jeder der folgenden aussagenlogischen Formeln an, ob sie erfüllbar und/oder (6 Pkte) allgemeingültig ist. Kreuzen Sie alle richtigen Antworten an. Wenn Sie "erfüllbar" ankreuzen, dann müssen Sie eine Belegung angeben, die die Formel erfüllt. Falls Sie "allgemeingültig" ankreuzen, müssen Sie Ihre Antwort beweisen und ansonsten eine Belegung angeben, die die Formel nicht erfüllt. • $\varphi = ((\neg X_1 \lor X_2) \leftrightarrow (X_1 \to X_2))$ □ ja nein erfüllbar: all gemeingültig: \Box ja nein Falls φ erfüllbar ist, geben Sie hier eine zu φ passende Belegung an, die φ erfüllt: Falls φ allgemeingültig ist, beweisen Sie Ihre Antwort; andernfalls geben Sie eine zu φ passende Belegung an, die φ nicht erfüllt: • $\psi = ((X_1 \lor (X_1 \land X_2)) \leftrightarrow X_1)$ □ ja erfüllbar: nein all gemeingültig: \Box ja nein Falls ψ erfüllbar ist, geben Sie hier eine zu ψ passende Belegung an, die ψ erfüllt: Falls ψ allgemeingültig ist, beweisen Sie Ihre Antwort; andernfalls geben Sie eine zu ψ passende Belegung an, die ψ nicht erfüllt:

(c)	Seien φ , ψ und χ beliebige aussag lenzen (\equiv)?	genlogische Formeln. G	lelten folge	nde (semantische) Äquiva-	(6 Pkte)
	Kreuzen Sie alle richtigen Antworfür jedes falsche Kreuz werden erhalten Sie keinen Punkt. Ihre C	zwei Punkte abgez	ogen; wird	l keine Option angekreuzt,	
		$(\neg \psi \to \neg \varphi)$		\square falsch	
	$((\varphi \wedge \psi) \to \chi) \equiv $	$(\neg \chi \to (\neg \varphi \lor \neg \psi))$	\square wahr	\square falsch	
	$(\varphi o \psi) \equiv $	$(\varphi \wedge \neg \psi)$	\square wahr	\square falsch	
(d)	Geben Sie eine zur Formel				(4 Pkte)
	$\varphi := \Big(X$	$Y_3 \wedge \Big((\neg X_1 \vee X_2) \wedge (X_3 \vee X_3) \Big) $	$(1 \lor \neg X_2)$		
	äquivalente Formel in disjunktive (Ihr Lösungsweg ist nur dann relev erhalten. Für die richtige Formel erh	vant, wenn Ihre Formel	falsch ist;	Sie können dann Teilpunkte	

Aufgabe 2:	(22 Punkte)
------------	-------------

(a) Sei G=(V,E) der gerichtete Graph mit Knotenmenge $V=\{a,b,c,d,e\}$ und Kantenmenge $E=\{(a,a),(a,b),(b,b),(b,c),(b,e),(c,d),(d,e),(e,b)\}.$

Graphische Darstellung:			
	$\bigcirc b$	\overline{c}	
	(e)	(d)	
Geben Sie Ein- $\operatorname{Grad}_G(b)$ an.			(1 P
Geben Sie einen Kreis der Lä	nge 4 in G an.		(1 P
Ist G stark zusammenhängen	d? Begründen Sie Ihı	re Antwort.	(2 P

(b) Betrachten Sie die folgenden ungerichteten Graphen G_1, G_2 und G_3 :

(i) Geben Sie ein größtmögliches Matching in G_1 an:

(1 Pkt)

(ii) Welche der folgenden Aussagen sind wahr, welche falsch?

(4 Pkte)

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

• G_1 ist bipartit.

 \square wahr \square falsch

• G_1 ist ein Teilgraph von G_2 .

 \square wahr \square falsch

• Die chromatische Zahl $\chi(G_2)$ von G_2 ist 3.

 \square wahr \square falsch

• G_2 und G_3 sind isomorph.

 \square wahr \square falsch

(iii) Geben Sie eine konfliktfreie Knotenfärbung $f: V_3 \to \{1, 2, 3\}$ für die Knotenmenge V_3 (2 Pkte) von G_3 an. Tragen Sie dazu in jeden Knoten v den Wert f(v) ein.

(iv) Ist die folgende Aussage wahr oder falsch? Begründen Sie Ihre Antwort.

(2 Pkte)

Für alle $n \in \mathbb{N}_{\geq 2}$ besitzt der vollständige ungerichtete Graph K_n mit Knotenmenge $\{1, 2, \ldots, n\}$ einen Hamiltonkreis.

 \square wahr \square falsch Begründung:

(c) Der DisMod-Supermarkt hat sein Warenangebot auf zehn Abteilungen verteilt (davon dient eine als Eingangsbereich). Der unten stehende Gebäudeplan zeigt deren Anordnung:

Dabei sind zwei angrenzende Abteilungen genau dann direkt mit einem Durchgang verbunden, wenn auf dem Plan eine Tür eingezeichnet ist. (Beispielsweise sind die Abteilungen für Fleisch und Käse direkt verbunden, *nicht* aber die Abteilungen für Gemüse und Chips.)

(i) Modellieren Sie den Raumplan des Supermarktes als ungerichteten Graphen. Dabei (1 Pkt) sollen die Knoten die Abteilungen repräsentieren und genau dann durch eine Kante verbunden sein, wenn es einen Durchgang zwischen ihnen gibt.

Für seinen Großeinkauf muss Klaus Uhr alle zehn Abteilungen aufsuchen. Dies möchte er so effizient wie möglich machen: Er plant seinen Einkauf so, dass er – beginnend im Eingangsbereich – alle Abteilungen genau einmal betritt und am Ende wieder im Eingangsbereich ankommt.	(1 Pk
Formulieren Sie Klaus' Plan als graphentheoretische Fragestellung.	
Geben Sie eine Lösung für Klaus' Einkaufsproblem an.	(2 Pl
Sie können die Abteilungen durch ihre jeweiligen Anfangsbuchstaben abkürzen. (z.B. E für Eingang, O für O bst, etc.)	(211
Auch Leo plant einen Einkauf und möchte nach demselben Verfahren wie Klaus vorgehen. Allerdings benötigt Leo keinerlei Putzutensilien und möchte deshalb die Putzmittel -Abteilung komplett auslassen .	(4 P)
Kann Leo den Einkauf wie gewünscht durchführen? Beweisen Sie, dass Ihre Antwort korrekt ist.	

Aufgabe 3:

(8 Punkte)

(a) Betrachten Sie den folgenden Webgraphen

(4 Pkte)

Geben Sie die Übergangsmatrix $P_d(G)$ für den Dämpfungsfaktor d=1 an. (Der Zufalls-Surfer darf somit nur die Kanten des Webgraphen benutzen.)

(b) Diesmal kennen wir weder Webgraphen noch Dämpfungsfaktor, aber wir kennen die Über- (4 Pkte) gangsmatrix P mit

$$P := \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{2} \end{pmatrix}$$

Gegeben sei die Anfangsverteilung $X^{(0)} := \left(\frac{1}{2}, \frac{1}{2}, 0\right)$. Der Zufalls-Surfer befindet sich anfangs also mit Wahrscheinlichkeit $\frac{1}{2}$ im Knoten 1 und mit Wahrscheinlichkeit $\frac{1}{2}$ im Knoten 2. Bestimmen Sie die Verteilung $X^{(1)} = (\pi_1, \pi_2, \pi_3)$, die die Wahrscheinlichkeit π_j angibt, mit der sich der Zufalls-Surfer nach einem Schritt im Knoten j befindet.

$\pi_1 =$			
1 / I —			
1			
1			
1			
$\pi_2 =$			
100 —			
2			
1			
1			
1			
1			
1			
π_0 —			
$\pi_3 =$			
0			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			

Aufgabe 4:

(30 Punkte)

(a) Sei $\Sigma := \{a, b\}$. Die Sprache $L \subseteq \Sigma^*$ sei wie folgt definiert:

(3 Pkte)

 $L := \{w \in \Sigma^* : w \text{ beginnt mit } ab \text{ oder enthält } bb \text{ als Teilwort}\}$

Geben Sie einen regulären Ausdruck R an, so dass L(R) = L.

(b) Sei A der folgende nichtdeterministische Automat über dem Alphabet $\Sigma := \{a, b\}$:

(i) Welche der folgenden Worte liegen in der von A akzeptierten Sprache L(A), welche icht? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

Wort	liegt in $L(A)$?		
abba	□ja	nein	
aaab	□ja	\square nein	
aaq_2	□ja	\square nein	
aabb	□ ja	\square nein	

(ii) Geben Sie eine (mathematische oder umgangssprachliche) Beschreibung der Sprache (2 Pkte) L(A) an, zum Beispiel in Form eines regulären Ausdrucks.

(d) Geben Sie für jede der folgenden beiden Sprachen an, ob sie regulär ist. Kreuzen Sie alle (7 Pkte) richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.
Beweisen Sie, dass Ihre jeweilige Antwort korrekt ist.

 $L_1 := \{a^nba^n : n \in \mathbb{N}\}$ regulär: \square ja \square nein Beweis:

 $L_2 := \{w \in \{a, b\}^* : |w| \ge 3\}$ regulär: \square ja \square nein Beweis:

(e) (i) Sei A_1 der folgende deterministische Automat über dem Alphabet $\Sigma = \{a, b, c\}$: (3 Pkte)

Geben Sie für die Zustandspaare $\{q_1, q_4\}, \{q_2, q_4\}, \{q_3, q_4\}$ jeweils einen Zeugen für ihre Nicht-Äquivalenz bezüglich der Verschmelzungsrelation an.

Erinnerung: Ein Zeuge für die Nicht-Äquivalenz eines Zustandspaares $\{q_i,q_j\}$ ist ein Wort $z \in \Sigma^*$, sodass $\hat{\delta}(q_i,z) \in F$ und $\hat{\delta}(q_j,z) \notin F$ (oder umgekehrt: $\hat{\delta}(q_i,z) \notin F$ und $\hat{\delta}(q_j,z) \in F$) gilt.

Zeuge für $q_1 \not\equiv_{A_1} q_4$:

Zeuge für $q_2 \not\equiv_{A_1} q_4$:

Zeuge für $q_3 \not\equiv_{A_1} q_4$:

(ii) Sei A_2 der folgende deterministische Automat über dem Alphabet $\Sigma = \{a, b, c\}$: (5 Pkte)

Minimieren Sie A_2 , d.h. finden Sie einen vollständigen DFA A_2' mit $L(A_2') = L(A_2)$ und minimaler Zustandszahl. Sie müssen keine Zwischenschritte angeben. Geben Sie A_2' in graphischer Darstellung an.

Minimaler DFA A_2' :

Weiterer Platz zur Lösung dieser Aufgabe befindet sich auf der nächsten Seite.

Minimaler DFA A_2' (Fortsetzung):	

				(16 Punkte)	
(a) Die kontextfreie G $V := \{S, A\}$, die fi	rammatik $G=(\Sigma, V, S, P)$ sei definier inf Terminale	rt durch	die beiden Ni	cht-Terminale	
	$\Sigma := \{ \text{ _}, \text{ sehr }, \text{ toll }, \text{ ist }$, dismod	1 }		
und					
	$P := \{ \: S o \mathtt{dismod}_S_\mathtt{toll} \mid \mathtt{i} \ A o \mathtt{sehr} \mid \mathtt{sehr}_A \: \}.$	ist ist	_A,		
Kreuzen Sie Punkt, für j	olgenden Worte liegen in der von G en alle richtigen Antworten an. Für jed edes falsche Kreuz wird ein Pur erhalten Sie keinen Punkt. Ihre Gesa:	es korrek ıkt abge	te Kreuz erha e zogen ; wird	lten Sie einen keine Option	(4 Pkt
	Wort	lieg	gt in $L(G)$?		
	$\mathtt{sehr} \mid \mathtt{sehr}_A$	□ja	nein		
	dismod_ist_toll_toll	□ja	☐ nein		
	dismod_ist_sehr_toll	□ja	\square nein		
	dismod_dismod_ist_toll_toll	 □ ja	☐ nein		

1	1_ \	D:- C	? .::1 A 1	l l4 \(\nabla\) . ([1 / \ .]	::- f-1-41:- 1-4	2
(D)	Die Sprache L	, uber dem Ai	рпавет 🗸 := {	$\{a, o, \langle , \rangle, \star \}$	sei wie folgt rekursiv def	iniert: (4 Pkte

Basis regel:

(B) Es gilt: $a \in \mathcal{L}$ und $b \in \mathcal{L}$.

Rekursive Regeln:

- (R1) Ist $w \in \mathcal{L}$, so ist auch $\langle w \rangle \in \mathcal{L}$.
- (R2) Sind $u, v, w \in \mathcal{L}$, so ist auch $\langle u \star v \star w \rangle \in \mathcal{L}$.

Geben Sie eine kontextfre $G = (\Sigma, V, S, P)$	oraninana C	, wii, 50 dass <i>D</i>	(G) — Z .	
V = (2, 7, 8, 7)				
v =				
P =				

	$f(n) := \begin{cases} 2 \\ 2 \cdot f(n-1) + 1 \end{cases}$	falls $n = 0$, falls $n \ge 1$.
Zeigen Sie durch vollständ	ige Induktion, dass $f(n) =$	$3 \cdot 2^n - 1$ für alle $n \in \mathbb{N}$ gilt.

(6 Pkte)

(c) Die Funktion $f\colon \mathbb{N}\to \mathbb{N}$ sei für alle $n\in \mathbb{N}$ wie folgt definiert:

Name, Vorname:	Matrikelnummer:

– Seite 20 von 20 –		

Name, Vorname: Matrikelnummer:

Aufgabe 1:

(a) Das alte Philosophicum auf dem Campus Bockenheim steht schon so lange leer, dass dort [8 Pkte] inzwischen Geister spuken. Da das Gebäude umgebaut werden soll, werden die Bockenheimer Geisterjäger beauftragt. Um die richtigen Geisterfallen auszulegen, müssen die Geisterjäger wissen, welche Arten von Geistern dort spuken. Dabei kommen drei Sorten von Geistern in Frage: Poltergeister, Zeitgeister und Himbeergeister.

Bei ihren Vorbereitungen machen die Geisterjäger folgende Beobachtungen über das Philosophicum:

- Beobachtung 1: Dort spuken Poltergeister oder Zeitgeister.
- Beobachtung 2: Falls dort Zeitgeister spuken, dann spuken dort keine Himbeergeister und keine Poltergeister.

Beobachtung 3: Wenn dort Himbeergeister spuken, dann spuken dort auch Zeitgeister.

Formalisieren Sie die drei Aussagen durch je eine aussagenlogische Formel, indem Sie die atomaren Aussagen H (Himbeergeister spuken), P (Poltergeister spuken) und Z (Zeitgeister spuken) benutzen.

$ ho_{ ext{Beobachtung }1}:=$	
$arrho_{ m Beobachtung\ 2} :=$	
$arrho_{ m Beobachtung\ 3} :=$	

Nehmen Sie an, dass alle drei Beobachtungen zutreffen. Ist es möglich, dass im Philosophicum Himbeergeister spuken? Beweisen Sie Ihre Antwort.

Sie können die folgende Vorlage für Ihre Wahrheitstafel verwenden:

H	P	Z	φ Beobachtung 1	arphiBeobachtung 2	φ Beobachtung 3	
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

erfüllbar:	(X_2) $\leftrightarrow X$ \Box ja	$\frac{1}{\Box}$ nein
allgemeingültig:	□ ja	
angemeingung.	J ∝	
Falls $arphi$ erfüllbar ist,	geben Sie	e hier eine zu φ passende Belegung an, die φ erfüllt:
Falls $arphi$ allgemeingül oassende Belegung a		weisen Sie Ihre Antwort; andernfalls geben Sie eine zu φ
	Y-)) / \ (?	$(X_1 o X_2)$
$y = ((X_1 \to (X_1 \to X_2)))$	$\Delta (2)$	
$v = ((X_1 \to (X_1 \to X_1 \to X_1$	ja	□ nein
		,
erfüllbar: allgemeingültig:	□ ja	□ nein
erfüllbar: allgemeingültig: Falls ψ erfüllbar ist,	□ ja □ ja , geben Sie	\Box nein \Box nein e hier eine zu ψ passende $\bf Belegung$ an, die ψ erfüllt: weisen Sie Ihre Antwort; andernfalls geben Sie eine zu ψ

Name,	orname: Matrikelnummer:	
(c)		[10 Pkte]
	Seien φ , ψ und χ beliebige aussagenlogische Formeln. Gelten die folgenden semantischen Äquivalenzen (\equiv)? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie zwei Punkte, für jedes falsche Kreuz werden zwei Punkte abgezogen ; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl für diese Teilaufgabe ist aber mindestens 0.	(6 Pkte)
	$\neg(\varphi \vee (\neg \psi \wedge \neg \chi)) \equiv (\neg \varphi \wedge (\psi \vee \chi)) \Box \text{ wahr } \Box \text{ falsch}$	
	$((\varphi \wedge \psi) \to \varphi) \equiv (\varphi \vee \neg \varphi) \qquad \Box \text{ wahr } \Box \text{ falsch}$ $(\varphi \to \psi) \equiv (\neg \psi \to \neg \varphi) \qquad \Box \text{ wahr } \Box \text{ falsch}$	
	$(\varphi \to \psi) \equiv (\neg \psi \to \neg \varphi) \qquad \Box \text{ wahr } \Box \text{ falsch}$	
	Geben Sie eine zur Formel	(4 Pkte)
	$\varphi := \left(\left(X_1 \leftrightarrow (X_2 \leftrightarrow X_3) \right) \land X_1 \right)$	
	äquivalente Formel φ' in disjunktiver Normalform an. Geben Sie auch Ihren Lösungsweg an. (Ihr Lösungsweg ist nur dann relevant, wenn Ihre Formel φ' falsch ist; Sie können dann Teilpunkte erhalten. Für die richtige Formel erhalten Sie stets die volle Punktzahl.)	

Aufgabe 2:

(a) Sei G = (V, E) der ungerichtete Graph mit Knotenmenge $V = \{1, 2, 3, 4, 5, 6\}$ und Kanten- [4 Pkte] menge $E = \{\{1, 2\}, \{1, 4\}, \{2, 6\}, \{3, 4\}, \{3, 6\}, \{4, 5\}, \{5, 6\}\}.$ (i) Geben Sie die graphische Darstellung von G an. (1 Pkt) Graphische Darstellung: (5)(ii) Geben Sie alle Nachbarn von Knoten 4 an. (1 Pkt) (iii) Geben Sie einen einfachen Kreis der Länge 5 in G an. (1 Pkt) (iv) Ist G bipartit? Begründen Sie Ihre Antwort! (1 Pkt)

(b) Betrachten Sie die folgenden Graphen G_1, G_2 und G_3 :

[8 Pkte]

(i) Geben Sie einen Hamiltonweg in G_1 an:

(1 Pkt)

(ii) Welche der folgenden Aussagen sind wahr, welche falsch?

(4 Pkte)

Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

• G_1 ist stark zusammenhängend.

 \square wahr \square falsch

• G_2 ist azyklisch.

 \square wahr \square falsch

• G_1 und G_2 sind isomorph.

 \square wahr \square falsch

• Alle Knoten in G_3 haben denselben Grad.

 \square wahr \square falsch

(iii) Geben Sie ein größtmögliches Matching für G_3 an:

(1 Pkt)

(iv) Ist die folgende Aussage wahr oder falsch? Begründen Sie Ihre Antwort.

(2 Pkte)

Jeder stark zusammenhängende gerichtete Graph besitzt einen Hamiltonweg.

 \square wahr \square falsch

Begründung:

- (c) Alice, Bob, Charlie und Eve haben sich sieben Filme auf DVD gekauft: Carnage, The Negotiator, Django Unchained, Contact, Sydney, Gangs of New York und Titanic.

 Als sie die DVDs in die Hand nehmen, fällt ihnen jedoch auf, dass folgende Schauspieler in mehreren der Filme mitspielen:
 - Samuel L. Jackson spielt in **Django Unchained**, in **The Negotiator** und in **Sydney** mit.
 - Leonardo DiCaprio spielt in **Gangs of New York**, in **Django Unchained** sowie in **Titanic** mit.
 - John C. Reilly spielt in Carnage mit, außerdem in Sydney und in Gangs of New York.
 - Jodie Foster spielt in Carnage und in Contact mit.
 - Christoph Waltz spielt in **Django Unchained** und in **Carnage** mit.
 - Kate Winslett spielt sowohl in Carnage als auch in Titanic mit.
 - David Morse spielt in den beiden Filmen Contact und The Negotiator mit.
 - (i) Stellen Sie den Konfliktgraphen auf. Ein Konflikt zwischen zwei Filmen besteht genau dann, wenn einer der oben genannten Schauspieler in beiden Filmen mitspielt.
 (Beispielsweise besteht ein Konflikt zwischen Django Unchained und Sydney, da in beiden Filmen Samuel L. Jackson mitspielt.)

/	Da Alice und Bob nicht mehrmals am Tag denselben Schauspieler sehen wollen, verteilen sie	(2
	die Filme auf mehrere Tage. Dabei dürfen am selben Tag nicht zwei Filme geschaut werden, in denen derselbe Schauspieler mitspielt.	
	Aufgrund ihres vollen Terminplans stehen den beiden nur 4 Tage zum Filmschauen zur Verfügung.	
	Formulieren Sie Alice' und Bobs Vorhaben als graphentheoretische Fragestellung.	

_			

(iv) Charlie und Eve haben einen anderen Plan: Sie wollen **alle** Filme hintereinander an **einem** einzigen Tag schauen. Dabei dürfen aber **nicht** zwei Filme direkt aufeinander folgen, in denen derselbe Schauspieler mitspielt. (Beispielsweise kann Django Unchained direkt vor oder nach Contact geschaut werden, *nicht* aber direkt vor oder nach Sydney.)

Außerdem wollen sie unbedingt mit dem Film **Titanic** beginnen.

Können Charlie und Eve ihren Plan umsetzen? Beweisen Sie, dass Ihre Antwort korrekt ist.

Aufgabe 3:

Betrachten Sie den folgenden Webgraphen G und den Dämpfungsfaktor $d = \frac{1}{2}$:

[8 Pkte]

(i) Geben Sie die Matrix $P_d(G)$ an.

(4 Pkte)

(ii) Vervollständigen Sie die folgende Definition:

(1 Pkt)

Eine Verteilung π ist genau dann eine stationäre Verteilung für die Markov-Kette $(G,P_d(G)),$ wenn

(iii) Bestimmen Sie den Page-Rank Vektor $PR = (PR_1, PR_2, PR_3)$, also die stationäre Verteilung (3 Pkte) der Markov-Kette $(G, P_d(G))$.

 $PR_1 =$

 $PR_2 =$

 $PR_3 =$

Aufgabe 4:

(a) [9 Pkte]

(i) Sei $\Sigma := \{a,b\}.$ Die Sprache $L \subseteq \Sigma^*$ sei wie folgt definiert:

 $L := \{ w \in \Sigma^* : \text{der erste und der letzte Buchstabe von } w \text{ sind unterschiedlich} \}$

Geben Sie einen regulären Ausdruck R an, so dass L(R) = L.

(3 Pkte)

(ii) Sei A der folgende nichtdeterministische Automat über dem Alphabet $\Sigma := \{a, b\}$: (4 Pkte)

Welche der folgenden Worte liegen in der von A akzeptierten Sprache L(A), welche nicht? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes **falsche Kreuz** wird **ein Punkt abgezogen**; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0.

Wort	liegt	in $L(A)$?
aaab	□ja	☐ nein
baq_4	□ja	\square nein
bbbb	□ ja	\square nein
abaa	□ja	\square nein

(iii)	Geben Sie eine	(mathematische oder	umgangssprachliche)	Beschreibung der Sprache	(2 Pkte)
	L(A) des obigen	NFAs an zum Beisr	oiel in Form eines regu	lären Ausdrucks	

Name, Vorname: Matrikelnummer: (c) Geben Sie für jede der folgenden beiden Sprachen an, ob sie regulär ist. Kreuzen Sie alle [7 Pkte] richtigen Antworten an. Für jedes korrekte Kreuz erhalten Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen; wird keine Option angekreuzt, erhalten Sie keinen Punkt. Ihre Gesamtpunktzahl ist aber mindestens 0. Beweisen Sie, dass Ihre jeweilige Antwort korrekt ist. $L_1 := \{a^n b^m : n, m \in \mathbb{N}\}$ regulär: □ ja \square nein Beweis:

$L_2 := \{w\}$	$bw:w\in\{a$	$\{a,b\}^*\}$
regulär:	□ja	□ nein
Beweis:		

(d)

[8 Pkte]

(i) Der folgende deterministische Automat A_1 über dem Alphabet $\Sigma = \{a, b, c\}$ sei gegeben:

Geben Sie für die Zustandspaare $\{q_1,q_2\},\{q_2,q_3\},\{q_3,q_4\}$ jeweils einen Zeugen für ihre (3 Pkte) Nicht-Äquivalenz bezüglich der Verschmelzungsrelation an.

Erinnerung: Ein Zeuge für die Nicht-Äquivalenz eines Zustandspaares $\{q_i,q_j\}$ ist ein Wort $z\in \Sigma^*$, sodass $\hat{\delta}(q_i,z)\in F$ und $\hat{\delta}(q_j,z)\not\in F$ (oder umgekehrt: $\hat{\delta}(q_i,z)\not\in F$ und $\hat{\delta}(q_j,z)\in F$) gilt.

Zeuge für $q_1 \not\equiv_{A_1} q_2$:

Zeuge für $q_2 \not\equiv_{A_1} q_3$:

Zeuge für $q_3 \not\equiv_{A_1} q_4$:

(ii) Der folgende deterministische Automat A_2 über dem Alphabet $\Sigma = \{d, e\}$ sei gegeben: (5 Pkte)

Minimieren Sie A_2 , d.h. finden Sie einen vollständigen DFA A_2' mit $L(A_2') = L(A_2)$ und minimaler Zustandszahl. Sie müssen keine Zwischenschritte angeben. Geben Sie A_2' in graphischer Darstellung an.

Minimaler DFA A_2' :

Weiterer Platz zur Lösung dieser Aufgabe befindet sich auf der nächsten Seite.

Minimaler DFA A_2' (Fortsetzung):	

A	C	1	
Au	ıga	ıbe	3

(a) Die min	kontextfreie Grammatik $G=(\Sigma,V,S,P)$ sei definier ale $\Sigma:=\{\ _\ ,\ {\tt nix}\ ,\ {\tt fleiss}\ ,\ {\tt kommt}\ ,\ {\tt ohne}\ ,$			e acht Ter-	[6 Pkte]		
und	•	_	,				
	$P \coloneqq \{\: S \to \mathtt{ohne}_A \mid \mathtt{von}_B$,					
	$A o exttt{fleiss}_A$ _prei	s kein,					
	$B o \mathtt{nix}_B\mathtt{_nix} \mid \mathtt{kommt} \ \}.$						
(i) Welche der folgenden Worte liegen in der von G er Kreuzen Sie alle richtigen Antworten an. Für jede Punkt, für jedes falsche Kreuz wird ein Pun angekreuzt, erhalten Sie keinen Punkt. Ihre Gesar	es korrekt .kt abge	e Kreuz erhalten zogen; wird kei	Sie einen ne Option	(4 Pkte)		
	Wort	lieg	t in $L(G)$?				
	von_nix_kein_preis	□ja	nein				
	von_nix_kommt_nix	□ja	\square nein				
	ohne_fleiss_kein_preis_preis	□ja	\square nein				
	von_nix_nix_kommt_nix_nix	□ja	\square nein				
	$\verb ohne_fleiss_fleiss_kein_preis_preis \in L(G)$	an.					

(b) Die Sprache \mathcal{L} über dem Alphabet $\Sigma = \{ \ (\ ,\)\ ,\ [\ ,\]\ \}$ von runden und eckigen Klammern [4 Pkte] sei wie folgt rekursiv definiert:

Basis regel:

(B) Es gilt $() \in \mathcal{L} \text{ und } [] \in \mathcal{L}.$

Rekursive Regeln:

- (R1) Ist $w \in \mathcal{L}$, so sind auch $(w) \in \mathcal{L}$ und $[w] \in \mathcal{L}$.
- (R2) Sind $u, v \in \mathcal{L}$, so ist auch $uv \in \mathcal{L}$.

Beispielsweise ist $[((\,)[\,])]\in\mathcal{L}$ ein Wort dieser Sprache.

Geben Sie eine kontextfreie Grammatik G an, so dass $L(G) = \mathcal{L}$.

Geben Sie eine kontextirei	e Grammatik G a	L(G) -	– L.	
$G = (\Sigma, V, S, P)$				
V =				
P =				

$f(n) := egin{cases} 0 & ext{falls } n = 0, \\ f(n-1) + 2n & ext{falls } n \geq 1. \end{cases}$	
Zeigen Sie durch vollständige Induktion, dass $f(n) = n^2 + n$ für alle $n \in \mathbb{N}$ gilt.	

[6 Pkte]

(c) Die Funktion $f\colon \mathbb{N}\to \mathbb{N}$ sei für alle $n\in \mathbb{N}$ wie folgt definiert:

Name, Vorname:	Matrikelnummer:

– Seite 20 von 20 –		