

Universidade Federal Rural de Pernambuco Departamento de Estatística e Informática - DEINFO Bacharelado em Sistemas de Informação

Disciplina: Introdução ao Armazenamento e Análise de Dados - IAAD

Professora: Roberta Macêdo Marques Gouveia

2ª ATIVIDADE Banco de Dados Relacional MySQL na Prática

Estudante (nome completo): Estom Paulino da Silva Junior

Pontuação da atividade: 10 pontos

Prazo: 02/08/2022

Conteúdos: Capítulos 3 e 4 do livro "Sistemas de Banco de Dados", 6ª Edição, Autores: Elmasri e Navathe.

<u>Atenção</u>: está ativada a verificação de plágio (originalidade) do Google Classroom. As questões com respostas iguais entre estudantes ou copiadas da internet serão desconsideradas/anuladas.

QUESTÃO 1 (5,0 PONTOS)

Considere o estado/instância do banco de dados Startup apresentado abaixo (as PK estão sublinhadas):

Startup				
id_startup nome_startup cidade_s		cidade_sede		
10001	Tech4Toy	Porto Alegre		
10002	Smart123	Belo Horizonte		
10003	knowledgeUp	Rio de Janeiro		
10004	BSI Next Level	Recife		
10005	QualiHealth	São Paulo		
10006	ProEdu	Florianópolis		

Linguagem_Programação				
<u>id_linguagem</u>	nome_linguagem	ano_lançamento		
20001	Python	1991		
20002	PHP	1995		
20003	Java	1995		
20004	С	1972		
20005	JavaScript	1995		
20006	Dart	2011		

Programador

<u>id_programador</u>	id_startup	nome_programador	gênero	data_nascimento	email
30001	10001	João Pedro	M	23/06/1993	joaop@mail.com
30002	10002	Paula Silva	F	10/01/1986	paulas@mail.com
30003	10003	Renata Vieira	F	05/07/1991	renatav@mail.com
30004	10004	Felipe Santos	M	25/11/1976	felipes@mail.com
30005	10001	Ana Cristina	F	19/02/1968	anac@mail.com
30006	10004	Alexandre Alves	M	07/07/1988	alexandrea@mail.com
30007	10002	Laura Marques	F	04/10/1987	lauram@mail.com

Programador_Linguagem

<u>id programador</u>	id linguagem
30001	20001
30001	20002
30002	20003
30003	20004
30003	20005
30004	20005
30007	20001
30007	20002

Figura 1 - Estado de um BD que armazena informações de startups, linguagens e seus programadores.

A) Apresente o link (*google drive* ou *github*) contendo o **script SQL** com as instruções/comandos de criação das 5 tabelas do esquema Startup, sendo as 4 tabelas ilustradas na Figura 1, além da tabela extra que você idealizou na Atividade 1.

Ao desenvolver o script SQL de <u>criação</u> e <u>carga (inserção dos dados)</u> do BD Startup lembre-se de especificar todas as chaves primárias e estrangeiras das tabelas, assim como incluir as seguintes restrições de integridade (itens I a VII):

- I. O atributo *ano_lançamento* é do tipo/domínio YEAR e os atributos *id_startup*, *id_linguagem* e *id_programador* são do tipo CHAR(5). Os tipos dos demais atributos podem ser escolhidos livremente.
- II. Os atributos *nome_startup*, *nome_programador* e *nome_linguagem* não podem ser nulos.
- III. O e-mail do(a) programador(a) tem que ser único, ou seja, não podem ter dois ou mais programadores(as) com o mesmo e-mail cadastrado.
- IV. Nenhuma linguagem de programação pode ser excluída caso exista algum(a) programador(a) associado(a) a ela.
- V. Ao excluir um (ou mais) programador(a), as informações sobre as linguagens em que ele(ela) programa devem ser excluídas automaticamente.
- VI. Ao alterar o código de uma startup, todos(as) os(as) programadores(as) que estão associados(as) a este código devem ter seus códigos de startup atualizados automaticamente.
- VII. Elabore uma restrição de integridade referencial, considerando a tabela que você criou.

<u>Dica:</u> para implementar as restrições IV a VII devem ser utilizadas as ações de disparo referencial 'on delete' e/ou 'on update'.

https://github.com/EstomJr/IAAD

- B) Com base no estado do BD Startup da Figura 1, apresente exemplos de comandos SQL (podendo ser inserção, remoção ou atualização) que violem as cinco restrições de integridade elencadas abaixo, e dessa forma constate que as referidas restrições estão sendo aplicadas/executadas corretamente pelo SGBD. (Atenção: deverão constar 5 comandos SQL, isto é, um comando para cada restrição.)
 - Restrição de Integridade de chave (singularidade) → Exemplificar considerando o atributo id_linguagem.

constatação de violação de integridade de chave, Error Code: 1062. Duplicate entry '20008' for key 'PRIMARY'

2. Restrição de Integridade de domínio → Exemplificar considerando o atributo ano_lançamento.

```
insert into LINGUAGEM_PROGRAMACAO values ('20001','Python','ano 1991')
Error Code
```

3. Restrição de integridade de entidade → Exemplificar considerando o atributo *id_programador*

```
insert into Programador values
```

```
(null,'30001','João Pedro', 'M','1993-06-23', 'joaop@mail.com') constatação da violação: Error Code: 1048. Column 'id_programador' cannot be null
```

4. Restrição de integridade de vazio (null) → Exemplificar considerando o atributo *nome_programador*.

```
insert into PROGRAMADOR value (null, 10008, 'João Pedro', 'M', 1993-06-23, 'joaop@mail.com');
```

constatação da violação: Error Code: 1048. Column 'nome_programador' cannot be null

5. Restrição de integridade referencial → Exemplificar considerando o atributo id startup.

```
insert into PROJETOS_STARTUP values ('50001','Apollo', '10022', '20003')
```

(observação: a restrição de integridade semântica (regras de negócio) só será abordada na atividade 3, com o uso de gatilhos (*trigger*) e procedimentos armazenados (*stored procedures*)).

ATENÇÃO: Todas as consultas que envolverem JUNÇÕES devem ser feitas por meio da cláusula WHERE. **Não** utilizar INNER JOIN, NATURAL JOIN, LEFT JOIN e afins, visto que tais comandos serão abordados a partir da 5ª semana, por meio da 3ª atividade.

C) Apresente a consulta SQL que retorna as informações da tabela abaixo:

	nome_programador	nome_startup
•	João Pedro	Tech4Toy
	Paula Silva	Smart123
	Renata Vieira	knowleadgeUp
	Felipe Santos	BSI Next Level
	Ana Cristina	Tech4Toy
	Alexandre Alves	BSI Next Level
	Laura Marques	Smart123

select p.nome_programador, s.nome_startup from PROGRAMADOR as p, STARTUP as s where p.id_startup = s.id_startup;

D) Apresente a consulta SQL que liste os nomes dos(as) programadores(as) que programam em Java ou C.

select P.nome_programador

from PROGRAMADOR as P, PROGRAMADOR_LINGUAGEM as PL, LINGUAGEM_PROGRAMACAO as LP

where P.id_programador = PL.id_programador AND LP.id_linguagem = PL.id_linguagem AND (LP.nome_linguagem = 'Java' or LP.nome_linguagem = 'C');

E) Apresente a consulta SQL que lista o nome de cada programador(a), a data de nascimento no **formato dd/mm/aaaa**, a data de nascimento **por extenso** e a **idade atual**. A tabela resultante deve ser similar a que segue abaixo:

nome_programador	dd/mm/aaaa	Data_por_Extenso	Idade
João Pedro	23/06/1993	23 de junho de 1993	29
Paula Silva	10/01/1986	10 de janeiro de 1986	36
Renata Vieira	05/07/1991	05 de julho de 1991	31
Felipe Santos	25/11/1976	25 de novembro de 1976	45
Ana Cristina	19/02/1968	19 de fevereiro de 1968	54
Alexandre Alves	07/07/1988	07 de julho de 1988	34
Laura Marques	04/10/1987	04 de outubro de 1987	34

Observação: o idioma de exibição dos meses (por extenso) no MySQL é <u>inglês</u> por padrão. Por isso, faz-se necessário configurar a variável de sistema *lc_time_names* para que os meses sejam apresentados no idioma protuguês. Seque comando:

select nome_programador,

date_format(data_nascimento, '%d/%m/%Y') AS data_nascimento,

date_format(data_nascimento, '%d de %M de %Y') AS data_extenso,

timestampdiff(year, data nascimento, curdate()) as Idade

from PROGRAMADOR

F) Apresente a consulta SQL que lista os nomes dos(as) programadores(as), suas idades, e os nomes das startups em que estão vinculados(as), mas APENAS os programadores(as) que estejam vinculados(as) às startups "Smart123" ou "BSI Next Level" e tenham atualmente entre 30 e 40 anos. A tabela resultante referente a esta consulta segue abaixo:

nome_programador	Idade	nome_startup
Paula Silva	36	Smart123
Laura Marques	34	Smart123
Alexandre Alves	34	BSI Next Level

select nome programador,

timestampdiff(year, data_nascimento, curdate()) as Idade,

nome_startup

from PROGRAMADOR as P, STARTUP as S

where p.id_startup = s.id_startup

AND (nome_startup = "Smart123" or nome_startup = "BSI Next Level")

AND timestampdiff(year, data_nascimento, curdate()) between 30 and 40

QUESTÃO 2 (1,5 PONTOS)

Semelhante ao que feito na letra A da 1ª questão (incluindo as restrições de integridade), apresente o link (google drive ou github) contendo o **script SQL (NOVA VERSÃO)** com as instruções/comandos de criação das 5 tabelas do esquema Startup, sendo as 4 tabelas ilustradas na Figura 1, além da tabela extra que você idealizou na Atividade 1, CONTUDO, as **chaves primárias** das tabelas *Startup, Linguagem_Programação* e *Programador* devem <u>numéricas</u> nesta nova versão do *script* (neste caso, do tipo INT) e **AUTOINCREMENTO**. No caso da tabela *Startup o autoincremento* da PK *deve iniciar em* 10001; na tabela *Linguagem_Programação* o autoincremento da PK *deve iniciar em* 20001; e na tabela *Programador o autoincremento* da PK *deve iniciar em* 30001.

https://github.com/EstomJr/IAAD

QUESTÃO 3 (3,5 PONTOS)

Considere o banco de dados relacional Empresa, cujo *script* (arquivo "Script_Empresa.sql") para criação e carga do referido banco encontra-se disponível no Classroom, no Guia de Estudos das Semanas 03 e 04. A figura 3.6 (página 48) do livro "Sistemas de Banco de Dados - 6ª Edição" ilustra o estado do BD Empresa.

https://github.com/EstomJr/IAAD

A) Apresente o comando SQL que retorna os nomes e localizações (cidades) de todos os projetos vinculados ao departamento Pesquisa, cujas localizações iniciam com a letra 'S'. A tabela resultante referente a esta consulta segue abaixo:

Projnome	Projlocal
ProdutoX	Santo André
ProdutoZ	São Paulo

select Projnome, Projlocal

from PROJETO where Projlocal LIKE 's%'

B) Insira na tabela "projeto" as informações abaixo (apresente o comando SQL de inserção), em seguida execute novamente o comando da letra A e apresente a tabela resultante.

Projnome:	Projnumero:	Projlocal:	Dnum:
ProjetoBSI	40	Salvador	5

insert into PROJETO values

('ProjtoBSI',40, 'Salvador', 5)

C) Apresente o comando SQL que retorna os nomes de todos(as) funcionários(as) que são supervisionados diretamente por Fernando. Apresente também a tabela resultante.

from FUNCIONARIO

where FUNCIONARIO.Cpf_supervisor = (

select FUNC.Cpf

from FUNCIONARIO as FUNC

where FUNC.Pnome = 'Fernando' and FUNC.Unome = 'Wong');

D) Apresente o comando SQL que retorna os nomes dos departamentos e os nomes dos gerentes, mas <u>apenas</u> os departamentos gerenciados por homens. Apresente também a tabela resultante.

select P.Pnome, Dnome

from FUNCIONARIO as P, DEPARTAMENTO as PL

Where P.dnr = PL.Dnumero

AND (P.Sexo = 'M');

E) Apresente o comando SQL que retorna os nomes dos(as) funcionários(as) e respectivos nomes dos projetos em que eles(as) atuam. Considerar <u>apenas</u> os projetos vinculados ao departamento cuja gerente é uma mulher, além disso, considerar <u>apenas</u> os(as) funcionários(as) que trabalham mais de 25 horas por semana. A tabela resultante referente a esta consulta segue abaixo:

- **F)** Modificar a gerência do departamento Administração de Jennifer para Alice, bem como a data de início da gerência para 01/07/2022. Em seguida, já que Alice foi promovida a gerente, criar outro comando que modifique o seu salário, adicionando 80% (novo salário de Alice: 45.000).
- **G)** Explique as violações de integridade que ocorrem ao executar os comandos abaixo:
 - Modificar o supervisor do funcionário Fernando para o cpf 55689742328 (apresente o comando SQL de atualização).

UPDATE FUNCIONARIO

SET Cpf supervisor ='55689742328'

WHERE Cpf = '33344555587';

integridade referencial

 Deletar as informações do funcionário Ronaldo da tabela funcionário (apresente o comando SQL de remoção).

DELETE FROM FUNCIONARIO

WHERE Cpf = '66688444476';

integridade referencial

- H) Explique por que NÃO ocorrem violações de integridade ao executar os comandos abaixo:
 - Deletar as informações do funcionário Ronaldo da tabela "trabalha_em" (apresente o comando SQL de remoção).

DELETE FROM TRABALHA_EM WHERE Fcpf = '66688444476';

 Após remoção das informações do funcionário Ronaldo da tabela "trabalha_em", deletar novamente as informações do funcionário Ronaldo da tabela "funcionario".

```
1 • select * from FUNCIONARIO
2 WHERE Cpf = '66688444476'
```


I) Dê exemplos de chaves primárias naturais e artificiais considerando o BD Empresa, e seguida, descreva as vantagens e desvantagens do uso de cada uma delas.

Bons estudos!

Em caso de dúvidas, entrar em contato com a profa. Roberta ou a monitora Aurilene.