Authentication

Prof. Dr. Helene Dörksen

helene.doerksen@th-owl.de

What is it about?

pattern recognition and classification is fundamental to many of the **automated systems** in use

applications range:

from **military** defense to **medical diagnosis**from **biometrics** to **machine vision**from **bioinformatics** to **home entertainment**, and more

Humans are good at recognizing objects (using size, shape, color, and other visual clues)

it is generally easy to distinguish:

- the sound of a human voice, from that of a violin;
- a handwritten numeral "3," from an "8";
- and the aroma of a rose, from that of an onion

Humans do it unconsciously and because we cannot explain our expertise, we find it difficult to write a **computer program** to do the same

In pattern recognition, the term **pattern** is interpreted widely and does not necessarily imply a repetition; it is used to include all objects that we might want to **classify**

A **class** is a collection of objects that are similar, but not necessarily identical, and which is distinguishable from other classes.

Are you able to classify pattern without computer?

In pattern recognition, the term **pattern** is interpreted widely and does not necessarily imply a repetition; it is used to include all objects that we might want to **classify**

A **class** is a collection of objects that are similar, but not necessarily identical, and which is distinguishable from other classes.

Conventional Pattern Recognition

Pattern recognition and related fields

Conventional Classification

conventional classification system

good one feature, x, should have small intraclass variations and large inter-class variations

But

- does such feature exists?
- how to find it?

Non conventional: Authentication Methods

Are you able to classify pattern without computer? How long does it take now?

- Conventional methods help, but there are many limitations
- Conventional methods profit from authentication methods

Main outlines of this lecture

- classification
- nonmetric methods
- statistical pattern recognition
- some topics of supervised learning
- feature extraction and selection
- estimating and comparing classifiers
- application projects

lot of applications

Literature

eBooks: on demand

Isabelle Guyon · Steve Gunn Massoud Nikravesh · Lotfi A. Zadeh **Feature Extraction Foundations** and Applications

2013 2006

Additional literature is found in modul description

Exercises and labs

Exercises and labs uploaded one week in advance For successful work-flow, the preparations are essential

- first week: MATLAB Introduction; Exercises Lec 1 for this lecture is uploaded
- from second week:
 - solutions of exercises from previous week will be discussed;
 - new exercises will be uploaded
- Examination Term Paper: please read uploaded informtion carrifully!
 Submission until 31.08 of running semester

© wikipedia

Lecture 1:

Classification Principles

Classification system

- What do the single parts of the system mean?
- Why do we start from the end?

- sensing/acquisition stage uses a transducer such as a camera or a microphone
- pre-processing might be smoothing of the image, noise reduction, removal of background, etc.
- segmentation partitions an image into regions that are meaningful for a particular task

feature extraction: features are characteristic properties of the objects whose value should be similar for objects in a particular class, and different from the values for objects in another class

features may be continuous (i.e., with numerical values) or categorical categorical features are either ordinal [where the order is meaningful (e.g., class standing, military rank, level of satisfaction)] or nominal [where the ordering is not meaningful (e.g., name, zip code, department)]

features are higher level representations of structure, shape or other properties of objects

Example

recognition of nuts and bolts from the image

- segmentation of single objects do we need a standardisation (scaling)?
- feature extraction:
 size features (area, perimeter, length)
 shape features (round, elongated)

feature vector $x = (x_1, x_2, \dots, x_n)$, is a vector containing the measured features, e.g.

feature space

classification stage assigns objects to certain categories (or classes) based on the feature information

feature space

Example for two features

- how many features should we measure
- which are the best
- the more we measure the higher is the dimension of feature space, and the more complicated the classification will become
 - → "curse of dimensionality"

search for a simple, efficient classifier we are need minimum number of "good" features

→ heuristic principle known traditionally as **Occam's razor** (simplest solution is the best) or referred as **KISS** (Keep It Simple, Stupid)

feature selection = choosing the most informative subset of features, and removing as many irrelevant and redundant features as possible

feature extraction = combining the existing feature set into a smaller set of new, more informative features

VS.

"curse of dimensionality"

Summary

Difference of "conventional" pattern recognition + classification from "non conventional" authentication

Classification principles: start from the end

classification system

Homework: Exercises and Labs

theory along is not enough

practice is important!

for the next week:

- solve the practical exercises and labs from Exercises Lec 1 (you will find it in the download area)
- if you are not familiar with MATLAB, then have a deeper look at
 MATLAB Intro, it is suitable well for the self-study