MODULE 3 ASSIGNMENT – WIFI TRAINING

1) What are the different 802.11 PHY layer standards? Compare their characteristics.

Standard	Frequency Band	Max Data Rate	Modulation	Channel Width	Range	Key Use Cases
802.11a	5 GHz	54 Mbps	OFDM	20 MHz	Shorter range	High-density environments, less interference
802.11b	2.4 GHz	11 Mbps	DSSS	22 MHz	Longer range	Home and small office networks
802.11g	2.4 GHz	54 Mbps	OFDM	20 MHz	Similar to 802.11b	Consumer networks
802.11n	2.4 GHz & 5 GHz	600 Mbps	MIMO + OFDM	20/40 MHz	Greater range	High-speed home and enterprise networks
802.11ac	5 GHz	3.47 Gbps	256-QAM + MIMO + MU-MIMO	80/160 MHz	Better range	HD streaming, gaming, high-performance apps
802.11ax	2.4 GHz & 5 GHz	9.6 Gbps	1024-QAM + MIMO + OFDMA	20/40/80/1 60 MHz	Improved range	High-density environments, IoT, office setups
802.11ad	60 GHz	7 Gbps	64-QAM	2.16 GHz	Short range	VR, AR, wireless docking
802.11be	2.4 GHz, 5 GHz, 6 GHz	30 Gbps+	4096-QAM + MIMO + MU- MIMO + OFDMA	320 MHz	Enhanced performance	Ultra-high throughput, low- latency apps

2) What are DSSS and FHSS? How do they work?

Characteristic	DSSS (Direct Sequence Spread Spectrum)	FHSS (Frequency Hopping Spread Spectrum)
Signal Spreading	Spreads data over a wide frequency band by multiplying with a spreading code.	Spreads data by rapidly switching the carrier frequency between different channels.
Bandwidth	Occupies a wide bandwidth (e.g., 22 MHz for 802.11b).	Uses multiple narrowband channels, hopping between them.
Interference Resistance	Highly resistant to narrowband interference.	Resistant to interference by avoiding congested frequencies.
Security	Difficult to intercept due to the spreading code.	Difficult to intercept due to the hopping pattern.
Efficiency	Requires a higher power and bandwidth to maintain the spread	More efficient in congested environments as it avoids continuous use of the same

Characteristic	DSSS (Direct Sequence Spread Spectrum)	FHSS (Frequency Hopping Spread Spectrum)	
	signal.	frequency.	
Use in Wi-Fi	Used in 802.11b .	Used in older systems like 802.11 (legacy) and Bluetooth .	

3) How do modulation schemes work in the PHY layer? Compare different modulation schemes and their performance across various Wi-Fi standards.

Modulation Schemes in the PHY Layer:

Modulation is a technique used to encode data onto a carrier signal for transmission over the air. In the **PHY layer**, modulation schemes determine how data is represented as electromagnetic signals. The choice of modulation scheme impacts the data rate, range, and robustness of the communication.

How Modulation Schemes Work:

- Modulation involves varying certain characteristics of the carrier signal—such as amplitude, frequency, or phase—to represent the data.
- The more distinct states the modulation scheme can represent, the higher the data rate.
 However, more complex schemes may be more susceptible to noise and interference, which can impact the signal quality.

Modulation Scheme	Data Rate (per symbol)	Performance	Wi-Fi Standards
BPSK	1 bit	Low data rate, high robustness	802.11 (legacy)
QPSK	2 bits	Moderate data rate, moderate robustness	802.11a, 802.11g (early Wi-Fi)
16-QAM	4 bits	Higher data rate, moderate robustness	802.11n
64-QAM	6 bits	High data rate, less robust	802.11ac (Wi-Fi 5)
256-QAM	8 bits	Very high data rate, low robustness	802.11ac (Wi-Fi 5), 802.11ax (Wi-Fi 6)
1024-QAM	10 bits	Extremely high data rate, very low robustness	802.11ax (Wi-Fi 6)

4) What is the significance of OFDM in WLAN? How does it improve performance?

Significance of OFDM in WLAN:

1. Increased Data Rates:

• OFDM allows multiple subcarriers to transmit data in parallel, increasing the overall data rate without requiring additional bandwidth.

2. Efficient Use of Spectrum:

• It divides the available frequency spectrum into narrow subcarriers, utilizing the spectrum more efficiently.

3. Resistance to Interference:

• The parallel data transmission on separate subcarriers makes OFDM more resistant to interference from other devices, and it minimizes the impact of multipath interference (signals bouncing off objects).

4. Improved Range:

• By overcoming signal degradation due to multipath fading, OFDM improves the coverage area, leading to better performance in challenging environments (e.g., long distances or obstructed areas).

5. Better Handling of Noise:

• The modulation of data across multiple subcarriers ensures that noise or interference on one subcarrier doesn't impact the whole signal, improving the overall reliability.

How OFDM Improves WLAN Performance:

1. Parallel Transmission:

• Data is split into multiple smaller streams transmitted on different subcarriers, enabling simultaneous transmission of more data.

2. Improved Spectral Efficiency:

• OFDM makes better use of the available spectrum by packing the subcarriers tightly and orthogonally, which leads to higher throughput.

3. Enhanced Range:

• As OFDM works well in environments with multipath fading, it ensures that signals reach the receiver over longer distances with less degradation.

4. Better Resistance to Interference:

• It allows data to be spread across different subcarriers, which helps the system continue to function smoothly even if some frequencies are experiencing interference.

5. Support for MIMO (Multiple Input Multiple Output):

• OFDM works well with MIMO, which further increases data rates and reliability by using multiple antennas to transmit and receive multiple data streams simultaneously.

5) How are frequency bands divided for Wi-Fi? Explain different bands and their channels.

Band	Range	Channels Available (U.S.)	Channel Width Options	Use Case
2.4 GHz	2.4 GHz - 2.5 GHz	11 channels	20 MHz	General home use, older devices, longer range but more crowded
5 GHz	5.15 GHz - 5.825 GHz	Up to 25 non- overlapping		High-speed, less crowded, newer devices, suitable for streaming and gaming
6 GHz (Wi-Fi 6E)	5.925 GHz - 7.125 GHz	Up to 59 non- overlapping	20 MHz, 40 MHz, 80 MHz, 160 MHz	Newest Wi-Fi generation (Wi-Fi 6E), less interference, ideal for high-density areas

6) What is the role of Guard Intervals in WLAN transmission? How does a short Guard Interval improve efficiency?

Role of Guard Intervals in WLAN Transmission:

- Guard Intervals prevent interference caused by multipath propagation, where delayed signals can overlap with the current transmission.
- They ensure data is received clearly by providing a small period of silence between symbols.

How a Short Guard Interval Improves Efficiency:

- **Higher Data Throughput**: Shorter gaps allow more data to be transmitted in the same time.
- **Faster Transmission**: Reduces idle time, speeding up communication.
- **Reduced Latency**: Minimizes delays between transmissions, improving response time.
- **Efficiency in Low-Interference Environments**: Ideal for short distances and fewer obstacles, maximizing speed.

7) Describe the structure of an 802.11 PHY layer frame. What are its key components?

Structure of an 802.11 PHY Layer Frame:

An **802.11 PHY (Physical Layer)** frame consists of several key components that define the way data is transmitted over the air in a Wi-Fi network. These components ensure that data is properly encoded, modulated, and transmitted between devices.

Key Components of an 802.11 PHY Layer Frame:

1. Preamble:

- The preamble is used to synchronize the transmission between the sender and the receiver.
- It contains special bits for **signal detection**, **synchronization**, and **channel estimation**.
- Types:

- **Short Preamble** (used in 802.11b)
- Long Preamble (used in older standards)

2. Signal Field:

- This field indicates the **length of the data** in the frame.
- It provides the receiver with information to properly decode the frame.

3. Data Field (Payload):

- This is the main part of the frame where the **actual data** (like packets) is carried.
- It can vary in size depending on the data being transmitted.

4. FCS (Frame Check Sequence):

- A **cyclic redundancy check (CRC)** is applied to this field to detect errors in the transmitted frame.
- Ensures the integrity of the transmitted data.

8) What is the difference between OFDM and OFDMA?

Aspect	OFDM	OFDMA
Definition	Single user on all subcarriers	Multiple users on different subcarriers
Usage	Older standards (802.11a/g/n/ac)	Wi-Fi 6 (802.11ax) and future Wi-Fi standards
Efficiency	Less efficient in multi-user environments	More efficient in multi-user environments
Resource Allocation	Single user uses all subcarriers	Subcarriers are divided and allocated to multiple users
Suitability	Best for scenarios with fewer users	Best for dense environments with many users

9) What is the difference between MIMO and MU-MIMO?

Aspect	MIMO	MU-MIMO
Definition	Uses multiple antennas for a single device	Uses multiple antennas for multiple devices
Simultaneous Users	One device at a time	Multiple devices at the same time
Standard	802.11n, 802.11ac	802.11ac (Wi-Fi 5), 802.11ax (Wi-Fi 6)
Network Efficiency	Improves speed for a single device	Improves overall efficiency in multi-user networks
Use Case	Best for improving speed and range for one device	Best for high-density environments (e.g., offices, stadiums)
Supported Devices	Only devices with MIMO support	Requires both the router and client devices to support MU-MIMO

10) What are PPDU, PLCP, and PMD in the PHY layer?

1. PPDU (Physical Protocol Data Unit):

• **Definition**: PPDU is the complete unit of data transmitted at the PHY layer, including both the **header** and **payload**.

• Components:

- **Preamble**: Used for synchronization and channel estimation.
- **PLCP Header**: Contains information about the transmission, such as the length of the data, modulation type, and more.
- **Payload**: The actual data or message being transmitted.
- FCS (Frame Check Sequence): A cyclic redundancy check (CRC) used to detect errors.
- **Function**: The PPDU is the entire data unit that is transmitted across the air and is composed of the PLCP header and PMD payload.

2. PLCP (Physical Layer Convergence Protocol):

• **Definition**: PLCP is responsible for the framing and **convergence** of the data from the MAC (Media Access Control) layer to the physical layer.

• Components:

- **PLCP Header**: Contains important control information such as data rate, length of the PPDU, and the type of modulation used.
- **Service Field**: Used for synchronization and identifying the type of data being transmitted.
- **Function**: The PLCP header helps format the data so that the receiver can understand how to decode the transmission. It is used in both **transmitting and receiving** data between the MAC and PHY layers.

3. PMD (Physical Medium Dependent):

• **Definition**: PMD refers to the actual transmission and reception of data over the physical medium (such as airwaves for Wi-Fi).

• Components:

- **Modulation**: The process of converting data into radio signals.
- **Coding**: The transformation of data into a signal that can be transmitted.
- **Function**: PMD specifies how the data is physically transmitted (e.g., radio frequency, modulation scheme like **QAM** or **BPSK**) over the air. It is the part of the PHY layer responsible for the actual sending and receiving of bits.

11) What are the types of PPDU? Explain the PPDU frame format across different Wi-Fi generations.

A **PPDU** is the unit of data transmitted over the wireless medium in Wi-Fi networks. The structure of a PPDU can vary depending on the **Wi-Fi generation** and the **modulation** and **coding schemes** used. The key purpose of the PPDU is to represent the data sent from the MAC layer to the PHY layer and its transmission over the air.

PPDU Types:

1. Data PPDU:

- Used to carry data from the MAC layer to the PHY layer for transmission.
- Consists of the preamble, PLCP header, and payload.

2. Management PPDU:

- Used for management frames in the Wi-Fi protocol.
- Typically used for network setup, connection management, and other control operations.

3. Control PPDU:

• Used for control frames in the network, like RTS/CTS, which manage access to the wireless medium.

Wi-Fi Generation	Preamble	PLCP Header	Modulation	Special Features
802.11b	Long preamble	Includes data rate and length	DSSS (1, 2, 5.5, 11 Mbps)	Basic data rates for 2.4 GHz
802.11a/g	Short/Long preamble	Data rate, length info	OFDM (6 to 54 Mbps)	5 GHz (a) or 2.4 GHz (g) band usage
802.11n	Short preamble with HT	Data rate, MIMO info	OFDM + MIMO (up to 600 Mbps)	MIMO support for faster data rates
802.11ac (Wi- Fi 5)	VHT preamble	VHT data rate and MIMO info	OFDM + VHT (up to 3.47 Gbps)	MU-MIMO, beamforming, 80/160 MHz channels
802.11ax (Wi- Fi 6)	HE preamble (OFDMA)	HE-SIG for multi-user support	OFDMA + MU-MIMO (up to 9.6 Gbps)	OFDMA, MU-MIMO, support for 6 GHz (Wi-Fi 6E)

12) How is the data rate calculated?

The **data rate** in Wi-Fi is calculated based on modulation type, channel bandwidth, coding rate, and the number of spatial streams. **Higher modulation schemes**, **larger channel bandwidths**, and **more spatial streams** result in higher data rates.