Az előző előadásban említettem, hogy szó lesz a különböző matematikai jelekről, és arról, hogyan kell helyesen kiolvasni egy tételt:

 $\Leftarrow, \Rightarrow :$ Implikáció, paraszti nyelven "Akkor". A jelentés egyik oldalából következik a másik.

Pl.: Egy síkidom négyzet. ⇒ Ez a síkidom négyszög.

Minden négyzet négyszög, de nem minden négyszög négyzet.

 \Leftrightarrow : Ekvivalencia, gyakorlatilag a logikai kijelentések egyenlősége.

Pl.: $a \in \mathbb{Z}$ páros $\Leftrightarrow a$ osztható 2-vel.

Minden páros szám osztható 2vel, és minden 2vel osztható szám páros.

És most következzen az első komolyabb tételünk:

TÉTEL:
$$\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$$
 B $V(\subseteq \mathbb{R}^n)$ -ben $\mathbf{a} \in V \Rightarrow \exists ! \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R} : \mathbf{a} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \dots + \alpha_k \mathbf{b}_k.$

 b_1, b_2, \ldots, b_k legyen bázis \mathbb{R}^n egy alterében, melynek neve legyen V. Vegyünk még egy vektort V-ből, mely legyen a. Ekkor egyértelműen létezik $\alpha_1, \alpha_2, \ldots, \alpha_k$ valós számok melyekkel elő lehet állítani a vektort ebből a bázisból.

Bizonyítás: Itt két dolgot kell belátni: a létezés, és az egyértelműség. Ebből az első adódik abból hogy, $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ bázis. Az egyértelműség egy kis trükkel belátható: legyen

$$\mathbf{a} = \alpha_1' \mathbf{b}_1 + \alpha_2' \mathbf{b}_2 + \ldots + \alpha_k' \mathbf{b}_k, \mathbf{a} = \alpha_1'' \mathbf{b}_1 + \alpha_2'' \mathbf{b}_2 + \ldots + \alpha_k'' \mathbf{b}_k.$$

Ha sikerülne belátni hogy rendre minden egy vesszős tag egyenlő a két vesszős tagokkal, akkor a tételünk be is lene bizonyítva. Vonjuk ki a két egyenletet egymásból:

$$\mathbf{0} = (\alpha'_1 - \alpha''_1)\mathbf{b}_1 + (\alpha'_2 - \alpha''_2)\mathbf{b}_2 + \ldots + (\alpha'_k - \alpha''_2)\mathbf{b}_k$$

Mivel $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ bázis, így L is, és egy L vektorrendszer csak triviálisantudja előállítani $\mathbf{0}$ -t, így minden zárójeles tagnak egyenlőnek kell lennie $\mathbf{0}$ -val:

$$(\alpha'_1 - \alpha''_1) = 0 \Rightarrow \alpha'_1 = \alpha''_1$$

$$(\alpha'_2 - \alpha''_2) = 0 \Rightarrow \alpha'_2 = \alpha''_2$$

$$\vdots$$

$$(\alpha'_k - \alpha''_k) = 0 \Rightarrow \alpha'_k = \alpha''_k$$

Ezzel a tételt bebizonyítotuk.

A fenti bizonyítás a hivatalos jegyzetben 3 darab sor – itt a cél az hogy elsajátítsuk a tétel helyes kiolvasásának készségét, és megértsük a tételek bizonyításának gondolatmenetét. Vizsgáljuk meg ennek a tételnek a megfordítását:

TÉTEL: Ha $V \subseteq \mathbb{R}^n$ és $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k \in V$ olyan, hogy $\forall \mathbf{a} \in V \exists ! \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R} : \mathbf{a} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \dots + \alpha_k \mathbf{b}_k$, akkor $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ bázis V-ben.

Legyen $V \mathbb{R}^n$ egy altere, és legyen $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ ezen altérnek elemei. Ha minden V-béli vektorra teljesül, hogy $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ egyértelműen csak $\alpha_1, \alpha_2, \dots, \alpha_k$ valós számokkal tudja előállítani lineáris kombinációjával, akkor $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ bázis.

Bizonyítás: Ismét 2 dolgot kell belátnunk: Az egyik az hogy $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ mindent előállít lineáris kombinációjávadl V-ben, és hogy L is. Az előállítás következik a tétel feltételéből, L pedig abból, hogyha minden vektort egyértelműen állít elő, akkor ez $\mathbf{0}$ -ra is teljesül. Ezzel bebizonyítottuk a tételt.