MA378 Chapter 2: Splines

Any question marked with a \star may feature on the class test and/or Assignment 2, and so won't be covered in tutorials.

Exercise 1.1. Page 28 of the Department of Education's old Mathematics Tables ("The *Log Tables*") reports that ln(1) = 0, ln(1.5) = 0.4055 and ln(2) = 0.6931.

- (i) Write down the linear spline 1 that interpolates $f(x) = \ln(x)$ at the points $x_0 = 1$, $x_1 = 1.5$ and $x_2 = 2$.
- (ii) Use this to estimate $\ln(x)$ at x = 1.2. How does this compare to the value in the tables, which is 0.1823?
- (iii) Give an estimate for the maximum error:

$$\max_{1 \leqslant x \leqslant 2} |\mathsf{f}(x) - \mathsf{l}(x)|.$$

(iv) What value of n would you choose to ensure that $|f(x) - l(x)| \le 0.001$ for all $x \in [1, 2]$.

Exercise 1.2. As an alternative to the definition given in class, one can define the linear spline interpolant to a function is as a linear combination of a set of piecewise linear basis functions $\{\psi_i\}_{i=0}^N$:

$$\psi_{\mathfrak{i}}(x_{\mathfrak{j}}) = \begin{cases} 1 & \mathfrak{i} = \mathfrak{j} \\ 0 & \mathfrak{i} \neq \mathfrak{j} \end{cases}$$

They are depicted in ??.

- (i) Write down a formula for the $\psi_i(x)$;
- (ii) derive a formula for l(x) in terms of the ψ_i .

This exercise is useful: we'll use these basis functions (called "hat" functions) in the final section of the course.

Fig. 1.1: Some hat functions

Exercise 2.1. [Equation numbers given here refer to those for the slides for Section 2.2.] When deducing the system of equations for the natural cubic spline, we showed how to construct the formulation in (1). and the relationship between σ_i , α_i and β_i in (2). Now carefully show to deduce the system (3).

Exercise 2.2. (For students who did MA385). Write the equations in (3) as a matrix-vector equation $A\sigma = b$, where A is an $n \times n$ matrix. Show that A is nonsingular, and hence that the system as a unique solution.

Exercise 2.3. Find the natural cubic spline interpolant to $f(x) = \sin(\pi x/2)$ at the nodes $\{x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3\}$. Calculate value of the interpolant at x = 2.5. What is the error at this point?

Exercise 2.4 (*). Take $f(x) = \ln(x)$, $x_0 = 1$, $x_N = 2$. What value of N would you have to take to ensure that $|\ln(x) - S(x)| \le 10^{-4}$ for all $x \in [1, 2]$, where S is the natural cubic spline interpolant to f.

Answer: In Theorem 2.3 we learned that $\|f-S\|_{\infty}\leqslant \frac{5}{384}M_4h^4$, where $M_4=\max_{1\leqslant x\leqslant 2}|f^{(iv)}(x)|$. So we need to ensure that $\frac{5}{384}M_4h^4\leqslant 10^{-4}$. First calculate that $M_4=\max_{1\leqslant x\leqslant 2}|-6/x^4|=6$. With this, we see we need h such that $h^4\leqslant 10^{-4}\times \frac{384}{30}=1.28\times 10^{-3}$. That gives $h\leqslant 0.1891$ Using that, in this case N=1/h, we get the requirement that $N\geqslant 5.2869$. Since N must be an integer, the answer is **we must take** N=6.

Exercise 2.5. Suppose that S is a natural cubic spline on [0,2] with

$$S(x) = \begin{cases} -3x + 2(1-x) + \alpha(1-x)^3 + \frac{2}{3}x^3, & x \in [0,1), \\ b(2-x) + c(2-x)^3 + d(x-1)^3, & x \in [1,2]. \end{cases}$$

Find a, b, c, and d.

Exercise 2.6 (\star). Suppose that S is a natural cubic spline on [0,2] with

$$S(x) = \begin{cases} 3x + a(1-x)^3 + bx^3, & \text{for } 0 \leqslant x < 1, \\ c(2-x) - (2-x)^3 + d(x-1)^3, & \text{for } 1 \leqslant x \leqslant 2. \end{cases}$$

Find a, b, c, and d.

Answer: First note that

$$S'(x) = \begin{cases} 3 - 3\mathfrak{a}(1-x)^2 + 3\mathfrak{b}x^2, & \text{for } 0 \leqslant x < 1, \\ -c + 3(2-x)^2 + 3\mathfrak{d}(x-1)^2, & \text{for } 1 \leqslant x \leqslant 2. \end{cases}$$

and

$$S''(x) = \begin{cases} 6\mathfrak{a}(1-x) + 6\mathfrak{b}x, & \text{for } 0 \leqslant x < 1, \\ -6(2-x) + 6\mathfrak{d}(x-1), & \text{for } 1 \leqslant x \leqslant 2. \end{cases}$$

A natural spline has S''(0) = 0, so that gives a = 0. Similarly, requiring that S''(2) = 0 gives that d = 0.

Next use that S must be continuous at x = 1, to get that 3 + b = c - 1, and

S' must be continuous at x = 1, which gives 3 + 3b = -c + 3

Solving these equations gives a = 0, b = -1, c = 3 and d = 0.

Exercise 3.1. Recall Exercise 2.3. Calculate the value to the PCHIP interpolant to $f(x) = \sin(\pi x/2)$ at the nodes $\{x_i\}_{i=0}^3 = \{0, 1, 2, 3\}$ at the point x = 2.5. What is the error at this point?

Answer: This is a somewhat tedious question, and I should probably change it in future years. Here is a partial solution. The PCHIP interpolant can be written as

$$S(x) = \begin{cases} S_1(x) & 0 \leqslant x \leqslant 1 \\ S_2(x) & 1 \leqslant x \leqslant 2 \\ S_3(x) & 2 \leqslant x \leqslant 3 \end{cases}$$

Here I'll give the formula just for S_3 .

$$S_3(x) = c_0 + c_1(x-2) + c_2(x-2)^2 + c_3(x-2)^3,$$

where

$$c_0 = f_2, c_1 = f_2', c_2 = \frac{3}{h^2}(f_3 - f_2) - \frac{1}{h}(f_3' + 2f_2'), c_3 = \frac{1}{h^2}(f_3' + f_2') - \frac{2}{h^3}(f_3 - f_2).$$

For this problem h=1, $f_2=f(2)=0$, and $f_3=f(3)=-1$. Also $f'(x)=\frac{\pi}{2}\cos(\pi x/2)$). So $f_2'=f'(2)=-\Pi/2$, and $f_3'=f'(3)=0$. With a bit of calculation,

$$c_0 = -1, c_1 = -\pi/2, c_2 = 3(\mathsf{f}_3 - \mathsf{f}_2) - (\mathsf{f}_3' + 2\mathsf{f}_2') = \pi - 3, c_3 = (\mathsf{f}_3' + \mathsf{f}_2') - 2(\mathsf{f}_3 - \mathsf{f}_2) = 2 - \pi/2.$$

That gives

$$S_3(x) = -\frac{\pi}{2}(x-2) + (\pi-3)(x-2)^2 + (2-\pi/2)(x-2)^3.$$

Next, use that $S(2.5) = S_3(2.5) \approx -0.69635$. Then the error at x = 2.5 is $|f(2.5) - S_3(2.5)| = -0.70711 + -0.69635 = 0.0108$.

Exercise 3.2. Let $f(x) = \ln(x) - x^4$. Let l and S be the piecewise linear and Hermite cubic spline interpolants (respectively) to f on N+1 equally spaced points $1=x_0 < x_1 < \cdots < x_N=2$. What value of N would you have to take to ensure that

(i) $\max_{1 \le x \le 2} |f(x) - l(x)| \le 10^{-4}$?

Answer: From Thm 1.3 of Chapter 3, the error is bounded as

$$\|f-l\|_{\infty}\leqslant \frac{h^2}{8}\|f''\|_{\infty}.$$

Since $f''(x) = -2(6x^2 + x^{-2})$ is negative and decreasing for on $1 \leqslant x \leqslant 2$, $\|f - l\|_{\infty} = -f''(2) = 97/2 = 48.5$. So we need to choose h so that $(h^2)(48.5)/8 \leqslant 10^{-6}$. That gives $h \leqslant \sqrt{8 \times 10^{-6}/48.5} = 4.06 \times 10^{-4}$. Since N = 1/h, this gives $N \geqslant 2462.2$. As N must be an integer, we choose N = 2463.

(ii) $\max_{1 \le x \le 2} |f(x) - S(x)| \le 10^{-4}$?

Answer: From Thm 3.2 of Chapter 3, the error is bounded as

$$\|f - S\|_{\infty} \leqslant \frac{h^4}{384} \|f^{(iv)}\|_{\infty}.$$

Since $f^{(i\nu)}(x)=-12(2+x^{-4})$ is negative but increasing for on $1\leqslant x\leqslant 2$, $\|f-l\|_{\infty}=-f''(1)=36$. So we need to choose h so that $(h^4)(36)/384\leqslant 10^{-6}$. That gives $h\leqslant (384\times 10^{-6}/36)^{1/4}=5.715\times 10^{-2}$. Since N=1/h, this gives $N\geqslant 17.498$. As N must be an integer, we choose N=18.

Exercise 3.3. There are ways of constructing the PCHIP, other than that shown in (1) of Section 2.2. For example, let $s = x - x_{k-1}$, then

$$S(x) = \frac{h^3 - 3hs^2 + 2s^3}{h^3} f_{k-1} + \frac{3hs^2 - 2s^3}{h^3} f_k + \frac{s(s-h)^2}{h^2} f_{k-1}' + \frac{s^2(s-h)}{h^2} f_k',$$

Show that this is the same as the PCHIP.

Exercise 3.4 (Note: this exercise is really just the same as Exer 3.2; I've included it here because I had solutions prepared!). Let $f(x) = \ln(x^2) - x^4$. Let I and S be the piecewise linear and Hermite cubic spline interpolants (respectively) to f on N + 1 equally spaced points $1 = x_0 < x_1 < \dots < x_N = 2$. What value of N would you have to take to ensure that

(i)
$$\max_{1 \le x \le 2} |f(x) - l(x)| \le 10^{-6}$$
?

Answer: From Thm 1.3 of Chapter 3, the error is bounded as

$$\|\mathbf{f} - \mathbf{l}\|_{\infty} \leqslant \frac{\mathbf{h}^2}{8} \|\mathbf{f}''\|_{\infty}.$$

Since $f''(x) = -2(6x^2 + x^{-2})$ is negative and decreasing for on $1 \leqslant x \leqslant 2$, $\|f - l\|_{\infty} = -f''(2) = 97/2 = 48.5$. So we need to choose h so that $(h^2)(48.5)/8 \leqslant 10^{-6}$. That gives $h \leqslant \sqrt{8 \times 10^{-6}/48.5} = 4.06 \times 10^{-4}$. Since N = 1/h, this gives $N \geqslant 2462.2$. As N must be an integer, we choose N = 2463.

(ii)
$$\max_{1 \le x \le 2} |f(x) - S(x)| \le 10^{-6}$$
?

Answer: From Thm 3.2 of Chapter 3, the error is bounded as

$$\|f - S\|_{\infty} \le \frac{h^4}{384} \|f^{(i\nu)}\|_{\infty}.$$

Since $f^{(i\nu)}(x)=-12(2+x^{-4})$ is negative but increasing for on $1\leqslant x\leqslant 2$, $\|f-l\|_{\infty}=-f''(1)=36$. So we need to choose h so that $(h^4)(36)/384\leqslant 10^{-6}$. That gives $h\leqslant \left(384\times 10^{-6}/36\right)^{1/4}=5.715\times 10^{-2}$. Since N=1/h, this gives $N\geqslant 17.498$. As N must be an integer, we choose N=18.