

Основы теории вероятностей и математической статистики

Преподаватель: Зубоченко Антон

Математическая статистика

Математическая статистика – это область математики, которая посвящена изучению методов и техник анализа данных с целью решения практических задач. Она широко применяется в различных областях, где имеются данные, включая область искусственного интеллекта.

Теория вероятностей

Теория вероятностей – это раздел математики, посвященный исследованию закономерностей случайных явлений, которые могут происходить многократно или в случайный момент времени.

• *Испытание* — эксперимент, который можно провести неограниченное количество раз

- Испытание эксперимент, который можно провести неограниченное количество раз
 - о Бросок монетки/кубика

- Испытание эксперимент, который можно провести неограниченное количество раз
 - Бросок монетки/кубика
 - Вытаскивание разноцветных шаров из мешка

- Испытание эксперимент, который можно провести неограниченное количество раз
 - Бросок монетки/кубика
 - Вытаскивание разноцветных шаров из мешка
- Элементарный исход элементарный результат испытания

- Испытание эксперимент, который можно провести неограниченное количество раз
 - Бросок монетки/кубика
 - Вытаскивание разноцветных шаров из мешка
- Элементарный исход элементарный результат испытания
- Множество всех возможных элементарных исходов называется *пространством* элементарных исходов (обозначается Ω)
- Бросок монетки: Ω = {"орёл", "решка"}

Решение.

Решение.

1. Формализуем задачу

Эксперимент — расположение букв в случайном порядке

 Ω (пр-во эл. исходов) — множество всех возможных перестановок букв

A, A, A, E, И, К, М, М, Т, Т

MATEMATUKA

Требуется найти Р(буквы образовали слово математика) =

кол-во подходящих перестановок

общее количество перестановок

Решение.

- Формализуем задачу
 Требуется найти Р(буквы образовали слово математика) = ___
- 2. Найдем кол-во подходящих перестановок A₁, A₂, A₃, M₁, M₂, T₁, T₂, E, И, К

кол-во подходящих перестановок

общее количество перестановок

Решение.

- 1. Формализуем задачу **Требуется** найти Р(буквы образовали слово математика) = ___
- 2. Найдем кол-во подходящих перестановок A₁, A₂, A₃, M₁, M₂, T₁, T₂, E, И, К

кол-во подходящих перестановок

общее количество перестановок

Способов расставить 3 буквы A на 3 места: $3 \cdot 2 \cdot 1 = 3! = 6$

Способов расставить 2 буквы М на 2 места: $2 \cdot 1 = 2! = 2$

Способов расставить 2 буквы Т на 2 места: $2 \cdot 1 = 2! = 2$

Общее количество перестановок равно $6 \cdot 2 \cdot 2 = 24$

Решение.

- Формализуем задачу
 Требуется найти Р(буквы образовали слово математика) = ___
- 2. Найдем кол-во подходящих перестановок

Общее количество перестановок равно $6 \cdot 2 \cdot 2 = 24$

3. Посчитаем размер пространства элементарных исходов: $|\Omega|$

$$|\Omega| = 10 \cdot 9 \cdot \ldots \cdot 2 \cdot 1 = 10!$$

кол-во подходящих перестановок

общее количество перестановок

Решение.

- 1. Формализуем задачу **Требуется** найти Р(буквы образовали слово математика) = __
- 2. Найдем кол-во подходящих перестановок

кол-во подходящих перестановок

общее количество перестановок

Общее количество перестановок равно $6 \cdot 2 \cdot 2 = 24$

з. Посчитаем размер пространства элементарных исходов: $|\Omega|$

$$|\Omega| = 10 \cdot 9 \cdot \ldots \cdot 2 \cdot 1 = 10!$$

кол-во подходящих

 $\frac{}{}$ Ответ: $\frac{}{}$ перестановок $=\frac{3!\cdot 2!\cdot 2!}{10!}$ перестановок

• Иногда вероятности элементарных исходов бывают не одинаковыми

- Иногда вероятности элементарных исходов бывают не одинаковыми
- Пусть $\Omega = \{\omega_1, ..., \omega_n\}$ пространство элементарных исходов
- Присвоим каждому элемент вероятности: p_1, \dots, p_n

$$p_i = P(\{\omega_i\}), \quad p_1 + \ldots + p_n = 1$$

- Иногда вероятности элементарных исходов бывают не одинаковыми
- Пусть $\Omega = \{\omega_1, ..., \overline{\omega}_n\}$ пространство элементарных исходов
- Присвоим каждому элемент вероятности: p_1, \dots, p_n

$$p_i = P(\{\omega_i\}), \quad p_1 + \ldots + p_n = 1$$

- Иногда вероятности элементарных исходов бывают не одинаковыми
- Пусть $\Omega = \{\omega_1, ..., \omega_n\}$ пространство элементарных исходов
- Присвоим каждому элемент вероятности: p_1,\ldots,p_n

$$p_i = P(\{\omega_i\}), \quad p_1 + \ldots + p_n = 1$$

- Иногда вероятности элементарных исходов бывают не одинаковыми
- Пусть $\Omega = \{\omega_1, ..., \omega_n\}$ пространство элементарных исходов
- Присвоим каждому элемент вероятности: p_1,\ldots,p_n

$$p_i = P(\{\omega_i\}), \quad p_1 + \ldots + p_n = 1$$

- Вероятностное пространство:
 - пространство элементарных исходов
 - соответствующие вероятности

События

Определение. *Событие* — некоторое подмножество вероятностного пространства

- Событие из предыдущей задачи:
 - ∘ {буквы образуют слово "математика"}

События

Определение. *Событие* — некоторое подмножество вероятностного пространства

- Событие из предыдущей задачи:
 - {буквы образуют слово "математика"}

Вероятность события

- Вероятность события $A\subseteq\Omega$ обозначается как $\mathsf{P}(A)$
- P(A) вычисляется как сумма вероятностей элементарных исходов в A
 - Вероятность число от 0 до 1
 - Сумма вероятностей элементарных исходов равна 1

Свойства вероятности

- 1. $\mathsf{P}(\Omega)=1$
- 2. Для любого события $A \subset \Omega$ справедливо $0 \leq \mathsf{P}(A) \leq 1$
- 3. Пусть A, B ⊂ Ω не пересекаются. Тогда

$$\mathsf{P}(A \cup B) = P(A) + P(B)$$

4. Для любых событий $A,B\subset \Omega$ справедливо $\mathsf{P}(A\cup B)=P(A)+P(B)-P(A\cap B)$

5. Пусть $A \subset B \subset \Omega$. Тогда

$$\mathsf{P}(B\setminus A) = \mathsf{P}(B) - \mathsf{P}(A)$$
 $\mathsf{P}(\overline{A}) = 1 - \mathsf{P}(A)$

Решение.

- 1. Определить пространство элементарных исходов
- 2. Описать событие, вероятность которого нужно найти
- з. Вычислить вероятность каждого элементарного исхода
- 4. Вычислить ответ как сумму вероятностей элементарных исходов в нужном событии

Решение.

1. Пространство элементарных исходов

ABAAABBBAAABBA

Всего последовательностей: $|\Omega|=4\cdot 4\cdot \ldots \cdot 4=4^{100}$

Решение.

1. Пространство элементарных исходов

ABAAABBBAAABBA

Всего последовательностей: $|\Omega|=4\cdot 4\cdot \ldots \cdot 4=4^{100}$

AA	$A ilde{A}$	AB	$A ilde{B}$
$\tilde{A}A$	$\tilde{A}\tilde{A}$	$\tilde{A}B$	$\tilde{A}\tilde{B}$
BA	$B ilde{A}$	BB	$B\tilde{B}$
$\tilde{B}A$	$\tilde{B}\tilde{A}$	$\tilde{B}B$	$\tilde{B}\tilde{B}$

Решение.

- 1. Пространство элементарных исходов
- 2. Событие: мутирует не больше одного нуклеотида Всего таких последовательностей:

 $101 \cdot 2^{100}$

AA	$A ilde{A}$	AB	$A ilde{B}$
$\tilde{A}A$	$\tilde{A}\tilde{A}$	$\tilde{A}B$	$\tilde{A}\tilde{B}$
BA	$B ilde{A}$	BB	$B ilde{B}$
$\tilde{B}A$	$\tilde{B}\tilde{A}$	$\tilde{B}B$	$\tilde{B}\tilde{B}$

Решение.

- 1. Пространство элементарных исходов:
- 2. Событие: мутирует не больше одного нуклеотида
- з. Задаем вероятности элементарных исходов
 - а. Вероятности отдельного нуклеотида

A	$ ilde{A}$	B	$ ilde{B}$
p(1-q)	pq	(1- <i>p</i>)(1- <i>r</i>)	(1- <i>p</i>) <i>r</i>

Решение.

1. Пространство элементарных исходов:

2. Событие: мутирует не больше одного нуклеот

з. Задаем вероятности элементарных исходов

а. Вероятности отдельного нуклеотида

$\stackrel{TUDB}{A}$	$ ilde{A}$	B	$ ilde{B}$
p(1-q)	pq	(1-p)(1- r)	(1- <i>p</i>) <i>r</i>

ь. Вероятность конкретной последовательности ДНК с n_1, n_2, n_3, n_4 букв:

$$(p(1-q))^{n_1} \cdot (pq)^{n_2} \cdot ((1-p)(1-r))^{n_3} \cdot ((1-p)r)^{n_4}$$

Решение.

1. Пространство элементарных исходов:

Событие: мутирует не больше одного нуклеоти

з. Вероятности отдельного нуклеотида

^{да} A	$ ilde{A}$	B	$ ilde{B}$
p(1-q)	pq	(1-p)(1- r)	(1- <i>p</i>) <i>r</i>

4. $P(конкретный нуклеотид мутировал) = pq + (1-p)r = \alpha$ $P(конкретный нуклеотид не мутировал) = q - pq + pr - r + 1 = 1 - <math>\alpha$

Решение.

1. Пространство элементарных исходов:

2. Событие: мутирует не больше одного нуклеоти

з. Вероятности отдельного нуклеотида

^{іда} A	$ ilde{A}$	B	$ ilde{B}$
p(1-q)	pq	(1-p)(1- r)	(1- <i>p</i>) <i>r</i>

- 4. $P(конкретный нуклеотид мутировал) = pq + (1-p)r = \alpha$ $P(конкретный нуклеотид не мутировал) = <math>q pq + pr r + 1 = 1 \alpha$
- 5. $P(\text{нет мутаций}) = P(A) = (1 \alpha)^{100}$

Решение.

1. Пространство элементарных исходов:

2. Событие: мутирует не больше одного нуклеоти

 Вероятности отдельного нуклеотид 	3.
--	----

Γν	$^{ extsf{I}\mathcal{A}}A$	$ig ilde{A}$	B	$ ilde{B}$
	p(1-q)	pq	(1-p)(1-	(1- <i>p</i>) <i>r</i>
-/	$p(r) = \alpha$		r)	

- 4. $P(конкретный нуклеотид мутировал) = pq + (1-p)r = \alpha$ $P(конкретный нуклеотид не мутировал) = q pq + pr r + 1 = 1 <math>\alpha$
- 5. $P(\text{нет мутаций}) = P(A) = (1 \alpha)^{100}$
- 6. Р(ровно одна мутация) = Р(B) B_k = {произошла ровно одна мутация на k-ой позиции}. $P(B_k) = \alpha (1-\alpha)^{99}$ $P(B) = 100 \cdot \alpha (1-\alpha)^{99}$

Решение.

1. Пространство элементарных исходов:

2. Событие: мутирует не больше одного нуклеоти

з. Вероятности отдельного нуклеотида

Γν	${}^{IJa}A$	$ig ilde{A}$	B	$ ilde{B}$
	p(1-q)	pq	(1-p)(1-	(1- <i>p</i>) <i>r</i>
-/	$p(r) = \alpha$		r)	

- 4. P(конкретный нуклеотид мутировал) = pq + (1-p)r = α P(конкретный нуклеотид не мутировал) = q pq + pr r + 1 = 1 α
- 5. $P(\text{нет мутаций}) = P(A) = (1 \alpha)^{100}$
- 6. Р(ровно одна мутация) = Р(*B*) = $100 \cdot lpha (1-lpha)^{99}$

7.
$$P(A \cup B) = P(A) + P(B) = (1 - \alpha)^{100} + \alpha (1 - \alpha)^{99}$$

Резюме

- Вероятностное пространство это множество Ω , элементам которого присвоены вероятности $p_i = \mathsf{P}(\{\omega_i\})$
- Событие это произвольное подмножество вероятностного пространства
 - Вероятность события равна сумме вероятностей элементарных исходов в событии

Определение. События $A,B\in\Omega$ называются *независимыми*, если

$$\mathsf{P}(A\cap B)=\mathsf{P}(A)\cdot\mathsf{P}(B)$$

Определение. События $A,B\in\Omega$ называются *независимыми*, если

$$P(A \cap B) = P(A) \cdot P(B)$$

Определение. События $A, B \in \Omega$ называются *независимыми*, если

$$P(A \cap B) = P(A) \cdot P(B)$$
 $A \cap B$
 $A \cap B$
 $\frac{P(A \cap B)}{P(A)} = \frac{P(B)}{P(\Omega)} = P(B)$

Определение. События $A, B \in \Omega$ называются *независимыми*, если

$$\mathsf{P}(A\cap B)=\mathsf{P}(A)\cdot\mathsf{P}(B)$$

• Если *A* и *B* независимы, то знание, случилось ли *A*, не даёт нам никакой информации о том, случилось ли *B*.

Пример: последовательные броски монетки

- Два последовательных броска монеты независимые события.
- Вероятность «орла» в каждом отдельном эксперименте равна ½
- Вероятность «орла» в обоих экспериментах равна $\frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2}$

Независимость и причинно-следственная связь

- Событие "школьник поступил в сильный вуз" зависит от события "школьник хорошо сдал экзамен"
- Зависимость есть и наоборот, хотя причинно-следственная связь в нужную сторону
- A не зависит от $B \Leftrightarrow B$ не зависит от A

Решение.

Решение.

Решение.

$$p=\left(1-\left(rac{5}{6}
ight)^3
ight)\cdot\left(rac{5}{6}
ight)^2$$
 Р(В не выбросил 6)

Решение.

$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2$$
 Р(А выбросил 6)

Решение.

$$p=\left(1-\left(rac{5}{6}
ight)^3
ight)\cdot\left(rac{5}{6}
ight)^2$$
 Р(В не выбросил 6)

Решение.

$$p=\left(1-\left(rac{5}{6}
ight)^3
ight)\cdot\left(rac{5}{6}
ight)^2$$
 Р(В не выбросил 6)

Решение.

$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2 \qquad q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$$

Решение.

1. Вычислим p = P(в раунде A выбросил 6, а B не выбросил 6) и <math>q = P(в раунде никто не выбросил 6)

6).
$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2 \qquad q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$$

2. Обозначим $M_k = \{A \text{ выиграл в } k\text{-ом раунде}\}$. Найдём $P(M_k)$.

Решение.

1. Вычислим p = P(в раунде A выбросил 6, а B не выбросил 6) и <math>q = P(в раунде никто не выбросил 6)

$$6) p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2 q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$$

2. Обозначим $M_k = \{A \text{ выиграл в } k\text{-ом раунде}\}$. Найдём $P(M_k)$.

$$\mathsf{P}(M_k) = q^{k-1} \cdot p$$

Решение.

Вычислим p = P(в раунде A выбросил 6, а B не выбросил 6) и <math>q = P(в раунде никто не выбросил 6)

6).
$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2 \qquad q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$$

Обозначим M_k = {A выиграл в k-ом раунде}. Найдём Р(M_k). $P(M_k) = q^{k-1} \cdot p$

$$\mathsf{P}(M_k) = q^{k-1} \cdot p$$

Вероятность победы складывается из $\mathsf{P}(M_k)$ по всем k = 1, ..., n . Найдём $\mathsf{P}(M_1) + \ldots + \mathsf{P}(M_n)$

Решение.

Вычислим p = P(в раунде A выбросил 6, а B не выбросил 6) и <math>q = P(в раунде никто не выбросил 6)

$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2$$
 $q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$ Обозначим $M_k = \{$ А выиграл в k -ом раунде $\}$. Найдём $P(M_k)$.

$$\mathsf{P}(M_k) = q^{k-1} \cdot p$$

Вероятность победы складывается из $\mathsf{P}(M_k)$ по всем k = 1, ..., n . Найдём $\mathsf{P}(M_1) + \ldots + \mathsf{P}(M_n)$ 3.

$$\mathsf{P}(M_1) + \ldots + \mathsf{P}(M_n) =$$

Решение.

Вычислим p = P(в раунде А выбросил 6, а В не выбросил 6) и <math>q = P(в раунде никто не выбросил 6)

$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2$$
 $q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$ Обозначим $M_k = \{$ А выиграл в k -ом раунде $\}$. Найдём $P(M_k)$.

$$\mathsf{P}(M_k) = q^{k-1} \cdot p$$

Вероятность победы складывается из $\mathsf{P}(M_k)$ по всем k = 1, …, n . Найдём $\mathsf{P}(M_1) + \ldots + \mathsf{P}(M_n)$

$$\mathsf{P}(M_1) + \ldots + \mathsf{P}(M_n) = q^0 \cdot p + q^1 \cdot p + \ldots + q^{n-1} \cdot p =$$

Решение.

Вычислим p = P(в раунде A выбросил 6, а B не выбросил 6) и <math>q = P(в раунде никто не выбросил 6)

6)
$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2$$
 $q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$ Обозначим $M_k = \{$ А выиграл в k -ом раунде $\}$. Найдём $P(M_k)$.

$$\mathsf{P}(M_k) = q^{k-1} \cdot p$$

Вероятность победы складывается из $P(M_k)$ по всем k = 1, ..., n. Найдём $P(M_1) + \ldots + P(M_n)$

$$\mathsf{P}(M_1)+\ldots+\mathsf{P}(M_n)=q^0\cdot p+q^1\cdot p+\ldots+q^{n-1}\cdot p=p\cdot rac{1-q^n}{1-q}$$

Решение.

Вычислим p = P(в раунде A выбросил 6, а B не выбросил 6) и <math>q = P(в раунде никто не выбросил 6)

6).
$$p = \left(1 - \left(\frac{5}{6}\right)^3\right) \cdot \left(\frac{5}{6}\right)^2$$
 $q = \left(\frac{5}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^5$ Обозначим $M_k = \{$ А выиграл в k -ом раунде $\}$. Найдём $P(M_k)$.

$$\mathsf{P}(M_k) = q^{k-1} \cdot p$$

Вероятность победы складывается из $\mathsf{P}(M_k)$ по всем k = 1, ..., n . Найдём $\mathsf{P}(M_1) + \ldots + \mathsf{P}(M_n)$

$$P(M_1) + \ldots + P(M_n) = q^0 \cdot p + q^1 \cdot p + \ldots + q^{n-1} \cdot p = p \cdot \frac{1-q^n}{1-q}$$
 4. Ответ: $p \cdot \frac{1-q^n}{1-q}$ где p , q найдены выше.

Попарная независимость

Определение. События A_1, \dots, A_n называются *попарно независимыми*, если для любых i, j независимы A_i, A_j .

Независимость в совокупности

Определение. События A_1, \ldots, A_n называются *независимыми в совокупности*, если для любого поднабора A_{i_1}, \ldots, A_{i_k} справедливо равенство $P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k})$

Независимость в совокупности

Определение. События A_1, \ldots, A_n называются *независимыми в* совокупности, если для любого поднабора A_{i_1}, \ldots, A_{i_k} справедливо равенство $P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k})$

• Попарная независимость следует из независимости в совокупности.

Независимость в совокупности

Определение. События A_1, \ldots, A_n называются *независимыми в совокупности*, если для любого поднабора A_{i_1}, \ldots, A_{i_k} справедливо равенство

$$P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k})$$

- Попарная независимость следует из независимости в совокупности.
- Справедливо ли обратное?

Утверждение. Из попарной независимости не следует независимость в совокупности.

Утверждение. Из попарной независимости не следует независимость в совокупности.

Напишем на вершинах тетраэдра цифры: 1, 2, 3,
 123

Утверждение. Из попарной независимости не следует независимость в совокупности.

- Напишем на вершинах тетраэдра цифры:
 1, 2, 3, 123.
- Выбираем случайную вершину тетраэдра.

Утверждение. Из попарной независимости не следует независимость в совокупности.

- Напишем на вершинах тетраэдра цифры: 1, 2, 3, 123.
- Выбираем случайную вершину тетраэдра.
- Рассмотрим события:
 - \circ $A = \{ в вершине есть 1 \},$
 - \circ $B = {в вершине есть 2},$
 - \circ *C* = {в вершине есть 3}.
- *A*, *B* и *C* независимы попарно, но зависимы в совокупности.

Утверждение. Из попарной независимости не следует независимость в совокупности. **123**

- Напишем на вершинах тетраэдра цифры: 1, 2, 3, 123.
- Выбираем случайную вершину тетраэдра.
- Рассмотрим события:
 - $A = \{$ в вершине есть $1 \},$
 - $B = \{$ в вершине есть $2 \},$
 - $C = \{$ в вершине есть $3 \}.$

$$\mathsf{P}(A) = \mathsf{P}(B) = \mathsf{P}(C) = \frac{1}{2}$$

$$\mathsf{P}(A\cap B)=\mathsf{P}(A\cap C)=\mathsf{P}(B\cap C)=\tfrac{1}{4}\qquad \mathsf{P}(A\cap B\cap C)=\tfrac{1}{4}\neq \tfrac{1}{8}$$

$$\mathsf{P}(A\cap B\cap C)=rac{1}{4}
eq rac{1}{8}$$

Итоги

- События А и В называются независимыми, если вероятность
 пересечения событий А и В равна произведению вероятностей событий
 А и В.
- Независимость событий помогает свести вычисление вероятностей сложных событий к вычислению простых.
- Попарная независимость не влечёт независимости в совокупности.

• Случайная величина — численное описание результата эксперимента

• Случайная величина — численное описание результата эксперимента

• Случайная величина — численное описание результата эксперимента

- Случайная величина численное описание результата эксперимента
- *Дискретная случайная величина* принимает конечное количество значений с различными вероятностями
- Мы будем рассматривать только дискретные случайные величины

Распределение случайной величины

- Распределение случайной величины соответствие между возможными значениями этой величины и их вероятностями
- Распределение можно описать таблицей

Y	X_1	X_2	X_3	 X_n
A	P_1	P_2	P_3	 P_n

$$p+p_2+p_3+\ldots+p_n=1$$

Пример: бросок кубика

- Бросаем игральный кубик, каждая грань выпадает с равной вероятностью
- Случайная величина Х описывает результат эксперимента:

$$P(X = 1) = P(X = 2) = ... = P(X = 6) = \frac{1}{6}$$

Х принимает значения 1, 2, ..., 6 с вероятностью ½.

V	1	2	3	4	5	6
	1/6	1/6	1/6	1/6	1/6	1/6

Задача 1. Пусть *X* — случайная величина, равная результату броска кубика. Найдите распределение случайной величины (*X* – 2)².

Задача 1. Пусть *X* — случайная величина, равная результату броска кубика. Найдите распределение случайной величины (*X* – 2)².

X	1	2	3	4	5	6
	1/6	1/6	1/6	1/6	1/6	1/6
$(X-2)^2$	1	0	1	4	9	16

Задача 1. Пусть *X* — случайная величина, равная результату броска кубика. Найдите распределение случайной величины (*X* – 2)².

V	1	2	3	4	5	6
	1/6	1/6	1/6	1/6	1/6	1/6
$(X-2)^2$	1	0	1	4	9	16

$(X-2)^2$	0	1	4	9	16
(\times2)^-	1/6	2/6	1/6	1/6	1/6

Пример: распределение роста

• Закон распределения роста:

Рост ниже Рос	ост от 150 до	Рост от 160 до	Рост от 170 до	Рост от 180 до	Рост выше
150 cm 160	50 см	170 см	180 см	190 см	190 см
0,1 0,1	15	0,3	0,2	0,15	0,1

Пример: распределение роста

• Закон распределения роста:

Рост ниже	Рост от 150 до	Рост от 160 до	Рост от 170 до	Рост от 180 до	Рост выше
150 см	160 см	170 см	180 см	190 см	190 см
0,1	0,15	0,3	0,2	0,15	0,1

 Распределение можно представить в виде графика и в виде гистограммы:

Пример: нормальное распределение

 Нормальное распределение моделирует многие физические процессы

Как узнать распределение случайной величины?

- Теоретически (как в задаче про кубик)
- Собрать данные в ходе эксперимента
 - Распределение роста
 - Масса одинаковых грузов
 - Отклонение стрелка от центра мишени
- Набор данных, соответствующих одной случайной величине, называется выборкой
 - 。 Считается, что элементы в выборке независимы друг от друга

Резюме

- Случайная величина численная характеристика результата эксперимента
- Случайная величина задаётся своим распределением
- На практике часто распределение случайной величины вычисляется экспериментально

Многомерное распределение вероятностей

- Для описания одной случайной величины мы ввели распределение вероятностей
- Для описания реальных процессов недостаточно одной случайной величины
- Закон, по которому распределены взаимосвязанные случайные величины (в рамках одного эксперимента), называется многомерным распределением вероятностей

Двумерное распределение вероятностей

- В *п*-мерном случае описать распределение вероятностей сложно, мы этого делать не будем
- В двумерном случае можно визуализировать точки выборки на графике

• Примеры распределений:

Применения независимости

 В машинном обучении: если признак X и целевая переменная Y независимы, то X вряд ли поможет при предсказании Y

Что же такое независимость случайных величин?

Независимость случайных величин

Определение. Случайные величины X и Y называются *независимыми*, если для любых x, y выполняется равенство

$$\mathsf{P}(X=x,Y=y)=\mathsf{P}(X=x)\cdot\mathsf{P}(Y=y)$$

Независимость случайных величин

Определение. Случайные величины X и Y называются *независимыми*, если для любых x, y выполняется равенство

$$\mathsf{P}(X=x,Y=y)=\mathsf{P}(X=x)\cdot\mathsf{P}(Y=y)$$

Сравним с определением независимости событий:

$$P(A \cap B) = P(A) \cdot P(B)$$

Иными словами, X и Y независимы, если события $\{X = x\}$ и $\{Y = y\}$ независимы для любых x, y

Существуют ли независимые случайные величины?

- Полностью независимых событий в природе почти не бывает
- Независимые случайные величины это всегда "идеализация"

Примеры независимых случайных величин

- Результаты последовательных бросков монетки/кубика
- Рост двух случайных жителей планеты
 - Значения двух случайных элементов выборки

Независимость на графиках двумерных распределений

В каких случаях случайные величины могут быть независимы?

Независимость на графиках двумерных распределений

В каких случаях случайные величины могут быть независимы?

Ответ: только в 4

Распределение суммы случайных величин

Если известны распределения двух случайных величин по отдельности, то не всегда можно найти распределение суммы

- Пусть случайные величины *X* и *Y* это результаты последовательных бросков одного и того же кубика.
 - Вероятность того, что сумма бросков равна 12, составляет

$$P(X + Y = 12) = P(X = 6, Y = 6) = P(X = 6) \cdot P(Y = 6) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$
.

- Пусть случайная величина X это результат броска кубика, а случайная величина Y — результат того же броска того же кубика.
 - Хи Увсегда принимают равные значения. Вероятность того, что сумма бросков равна
 12, равна

$$P(X + Y = 12) = P(X = 6) = \frac{1}{6}$$
.

Y	1	2	3	4
	1/2	1/3	1/4	1/12

V	1	2	3	4
	1/5	1/10	1/2	1/5

Y	1	2	3	4
71	1/2	1/3	1/4	1/12

	X	1	2	3	4
Y		1/2	1/3	1/4	1/12
1	1/5	1/10	1/15	1/20	1/60
2	1/10	1/20	1/30	1/40	1/120
3	1/2	1/4	1/6	1/8	1/24
4	1/5	1/10	1/15	1/20	1/60

Y	1	2	3	4
11	1/2	1/3	1/4	1/12

V	1	2	3	4
1	1/5	1/10	1/2	1/5

$$P(Z=5) = P(X=1, Y=4) + P(X=2, Y=3) +$$
 $+ P(X=3, Y=2) + P(X=4, Y=1) =$
 $= 1/10 + \frac{1}{6} + \frac{1}{40} + \frac{1}{60} = \frac{37}{120}.$

X	1	2	3	4
	1/2	1/3	1/4	1/12

Y	1	2	3	4
	1/5	1/10	1/2	1/5

Резюме

- Независимость отношение между случайными величинами, когда значение одной величины "не даёт информации" о значении другой
 - Отношение независимости симметрично
- Если случайные величины независимы, можно легко вычислить распределение их суммы

Характеристики среднего

Основные характеристики выборки

- Распределение слишком сложная характеристика выборки
- Важными показателями распределения являются
 - среднее значение
 - "типичное" отклонение от среднего

Математическое ожидание

Определение. Пусть случайная величина X принимает значения x_1, \ldots, x_n . *Математическое ожидание* случайной величины X — это сумма

$$\mathsf{E} X = x_1 \cdot \mathsf{P}(X = x_1) + \ldots + x_n \cdot \mathsf{P}(X = x_n)$$

• Математическое ожидание — это среднее значение случайной величины

Математическое ожидание

Определение. Пусть случайная величина X принимает значения x_1, \ldots, x_n Математическое ожидание случайной величины X— это сумма

$$\mathsf{E} X = x_1 \cdot \mathsf{P}(X = x_1) + \ldots + x_n \cdot \mathsf{P}(X = x_n)$$

- Математическое ожидание это среднее значение случайной величины
- Если у нас есть выборка данных X_1, \dots, X_N , то математическое ожидание соответствует среднему

Свойства математического ожидания

- Можно выносить множитель: $\mathsf{E}(\mathsf{c} \cdot X) = \mathsf{c} \cdot \mathsf{E} X$
- ullet Линейность: $\mathsf{E}(X+Y)=\mathsf{E}X+\mathsf{E}Y$

ullet Матожидание константы равно константе: $oldsymbol{\mathsf{E}} c = c$

Решение.

X₁, X₂, X₃, X₄, X₅ — случайные величины, равные результатам бросков 1, 2, 3, 4, 5 кубиков
 X = X₁ + X₂ + X₃ + X₄ + X₅

$$\mathsf{E} X = \mathsf{E} (X_1 + X_2 + X_3 + X_4 + X_5) =$$

 $\mathsf{E} X_1 + \mathsf{E} X_2 + \mathsf{E} X_3 + \mathsf{E} X_4 + \mathsf{E} X_5 = 5 \mathsf{E} X_1$

Решение.

X₁, X₂, X₃, X₄, X₅ — случайные величины, равные результатам бросков 1, 2, 3, 4, 5 кубиков
 X = X₁ + X₂ + X₃ + X₄ + X₅

$$\mathsf{E} X = \mathsf{E} (X_1 + X_2 + X_3 + X_4 + X_5) =$$

 $\mathsf{E} X_1 + \mathsf{E} X_2 + \mathsf{E} X_3 + \mathsf{E} X_4 + \mathsf{E} X_5 = 5 \mathsf{E} X_1$

2. Считаем математическое ожидание

$$\mathsf{E}X_1 = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \ldots + \frac{1}{6} \cdot 6 = 3.5$$

Решение.

X₁, X₂, X₃, X₄, X₅ — случайные величины, равные результатам бросков 1, 2, 3, 4, 5 кубиков

$$X = X_1 + X_2 + X_3 + X_4 + X_5$$

$$\mathsf{E} X = \mathsf{E} (X_1 + X_2 + X_3 + X_4 + X_5) = \\ \mathsf{E} X_1 + \mathsf{E} X_2 + \mathsf{E} X_3 + \mathsf{E} X_4 + \mathsf{E} X_5 = 5 \mathsf{E} X_1$$

2. Считаем математическое ожидание

$$\mathsf{E}X_1 = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6 = 3.5$$

3. Otbet: $EX = 5 \cdot EX_1 = 17.5$

Выборочное среднее

Как найти математическое ожидание случайной величины по выборке?

Выборочное среднее

Как найти математическое ожидание случайной величины по выборке?

Определение. Пусть дана выборка $X = \{X_1, X_2, \dots, X_n\}$ Выборочным средним выборки X называется величина

$$\overline{X} = rac{X_1 + X_2 + \ldots + X_n}{n}$$

Выборочное среднее

Как найти математическое ожидание случайной величины по выборке?

Определение. Пусть дана выборка $X = \{X_1, X_2, \ldots, X_n\}$. Выборочным средним выборки X называется величина

$$\overline{X}=rac{X_1+X_2+\ldots+X_n}{n}$$

• С ростом *п* выборочное среднее стремится к математическому ожиданию

Проблема: выбросы в данных

В данных могут быть выбросы,
 которые сместят среднее значение

Проблема: выбросы в данных

В данных могут быть выбросы,
 которые сместят среднее значение

Проблема: выбросы в данных

- В данных могут быть выбросы,
 которые сместят среднее значение
- Медиана это число, которое делит упорядоченный ряд значений пополам
- Если в данных много выбросов, лучше считать медиану, а не среднее

Характеристики разброса

Выборочная дисперсия

- Разброс определяет, как сильно элементы выборки отклоняются от среднего
- ullet Пусть дана выборка $X = \{X_1, X_2, \dots, X_n\}$
- Обозначимa = X среднее значение выборки

Выборочная дисперсия

- Разброс определяет, как сильно элементы выборки отклоняются от среднего
- ullet Пусть дана выборка $X = \{X_1, X_2, \dots, X_n\}$
- Обозначимa = X среднее значение выборки
- $X_k a$ отклонение k-ого объекта от среднего

Выборочная дисперсия

- Разброс определяет, как сильно элементы выборки отклоняются от среднего
- ullet Пусть дана выборка $X = \{X_1, X_2, \dots, X_n\}$
- Обозначимa = X среднее значение выборки
- $X_k a$ отклонение k-ого объекта от среднего
- $\overline{(X-a)^2}=(X-\overline{X})^2$ выборочная дисперсия выборки (обозначается $\hat{\mathbb{D}}X$)

$$\hat{\mathsf{D}}X = rac{\sum\limits_{i=1}^{n}\left(X_{i}-\overline{X}
ight)^{2}}{n}$$

Стандартное отклонение

• Стандартное отклонение (std) — это корень из выборочной дисперсии:

$$\sigma(X) = \sqrt{\hat{\mathsf{D}}X} = \sqrt{rac{\sum\limits_{i=1}^n \left(X_i - \overline{X}
ight)^2}{n}}$$

• Стандартное отклонение имеет ту же размерность, что и дисперсия

• Выборка:

Петя	Маша	Саша	Витя	Рома	Настя	Коля	Миша	Катя	Наташа
166	187	172	192	188	165	154	179	190	160

• Выборка:

Петя	Маша	Саша	Витя	Рома	Настя	Коля	Миша	Катя	Наташа
166	187	172	192	188	165	154	179	190	160

• Средний рост равен 175.3 см

• Выборка:

Петя	Маша	Саша	Витя	Рома	Настя	Коля	Миша	Катя	Наташа
166	187	172	192	188	165	154	179	190	160

- Средний рост равен 175.3 см
- Отклонения:

Петя	Маша	Саша	Витя	Рома	Настя	Коля	Миша	Катя	Наташа
-9,3	11,7	-3,3	16,7	12,7	-10,3	-21,3	3,7	14,7	-15,3

• Выборка:

Петя	Маша	Саша	Витя	Рома	Настя	Коля	Миша	Катя	Наташа
166	187	172	192	188	165	154	179	190	160

- Средний рост равен 175.3 см
- Отклонения:

Петя	Маша	Саша	Витя	Рома	Настя	Коля	Миша	Катя	Наташа
-9,3	11,7	-3,3	16,7	12,7	-10,3	-21,3	3,7	14,7	-15,3

• Выборочная дисперсия:

$$D = \frac{(-9.3)^2 + 11.7^2 + (-3.3)^2 + 16.7^2 + 12.7^2 + (-10.3)^2 + (-21.3)^2 + 3.7^2 + 14.7^2 + (-15.3)^2}{10} = \frac{1698.1}{10} = 169,81$$

• Выборочная дисперсия:

$$D = \frac{(-9.3)^2 + 11.7^2 + (-3.3)^2 + 16.7^2 + 12.7^2 + (-10.3)^2 + (-21.3)^2 + 3.7^2 + 14.7^2 + (-15.3)^2}{10} = \frac{1698.1}{10} = 169,81$$

• Стандартное отклонение:

$$\sigma=\sqrt{D}pprox13,03$$

Визуализация стандартного отклонения

Визуализация стандартного отклонения

Дисперсия случайной величины

- Пусть X случайная величина, $a = \mathsf{E} X$
- X-a отклонение случайной величины от среднего

Определение. Дисперсией случайной величины X называется число

$$\mathsf{E}[(X - \mathsf{E}X)^2]$$

Дисперсия случайной величины

- Пусть X случайная величина, $a = \mathsf{E} X$
- X-a отклонение случайной величины от среднего

Определение. Дисперсией случайной величины X называется число

$$\mathsf{E}[(X - \mathsf{E}X)^2]$$

Дисперсия аналогична среднему квадратичному отклонению выборки

Дисперсия случайной величины

- Пусть X случайная величина, $a = \mathsf{E} X$
- X-a отклонение случайной величины от среднего

Определение. Дисперсией случайной величины X называется число

$$\mathsf{E}[(X - \mathsf{E}X)^2]$$

Дисперсия аналогична среднему квадратичному отклонению выборки

Визуализация стандартного отклонения

- Рассмотрим нормальное распределение
- Диапазон [а 3σ, а 3σ] содержит 99,73% всех объектов

Визуализация стандартного отклонения

- Рассмотрим нормальное распределение
- Диапазон [а 3σ, а 3σ] содержит 99,73% всех объектов

• DX неотрицательна

- DX неотрицательна
- Множитель выносится с квадратом

- DX неотрицательна
- Множитель выносится с квадратом
- $DX = E(X^2) (EX)^2$

Доказательство...

- DX неотрицательна
- Множитель выносится с квадратом
- $DX = E(X^2) (EX)^2$
- Для независимых случайных величин дисперсия суммы равна сумме дисперсий

Резюме

- Математическое ожидание среднее значение случайной величины
 - Его можно приближённо вычислить как среднее арифметическое выборки.
 - Чтобы снизить значение выбросов, используют медиану
- Дисперсия и среднее квадратичное отклонение показатели разброса
 - Необходимы для оценки отклонения значения случайной величины от среднего

Интуитивный смысл корреляции

- "Уровень образования коррелирует со снижением уровня преступности"
- "Курс рубля коррелирует с ценой на нефть"

Определение (интуитивное). Величины коррелируют, если чем выше одна величина, тем, скорее всего, будет выше другая величина.

Ковариация

Определение. Пусть X и Y — две случайные величины с математическими ожиданиями a и b. Их **ковариацией** называется величина $cov(X, Y) = E[(X - a) \cdot (Y - b)].$

Ковариация — это матожидание случайной величины
$$Z = (X - a) \cdot (Y - b)$$
.

X — рост случайного человека

Y — вес того же случайного человека

	1	2	3	4	5	6	7	8	9	10
X	167	155	182	196	180	185	177	173	165	181
Y	55	60	83	95	105	88	76	65	60	80

Средние значения:

$$a = \frac{167 + 155 + 182 + 196 + 180 + 185 + 177 + 173 + 165 + 181}{10} = 176.1$$

$$b = \frac{55 + 60 + 83 + 95 + 105 + 88 + 76 + 65 + 60 + 80}{10} = 76.7.$$

Таблицы для случайных величин *X - а* и *Y - b*:

	1	2	3	4	5	6	7	8	9	10
X - a	-9.1	-21.1	5.9	19.1	3.9	8.9	0.9	-3.1	-11.1	4.9
Y - b	-21.7	-16.7	6.3	18.3	28.3	11.3	-0.7	-11.7	-16.7	3.3

Таблицы для случайных величин *X - а* и *Y - b*:

	1	2	3	4	5	6	7	8	9	10
X - a	-9.1	-21.1	5.9	19.1	3.9	8.9	0.9	-3.1	-11.1	4.9
Y - b	-21.7	-16.7	6.3	18.3	28.3	11.3	-0.7	-11.7	-16.7	3.3

- (*X a*) больше нуля в том случае, если значение случайной величины *X* выше своего среднего.
- Аналогично с выражением (Y b).
- Поскольку *X* и *Y* коррелируют, то, как правило, выражения *X a* и *Y b* имеют один и тот же знак.

Таблицы для случайных величин X - a, Y - b, Z = (X - a)(Y - b):

	1	2	3	4	5	6	7	8	9	10
X - a	-9.1	-21.1	5.9	19.1	3.9	8.9	0.9	-3.1	-11.1	4.9
Y - b	-21.7	-16.7	6.3	18.3	28.3	11.3	-0.7	-11.7	-16.7	3.3
Z	197.47	352.37	37.17	349.53	110.37	100.57	-0.63	36.27	185.37	16.17

EZ = cov(X, Y)

- велико, когда Х и У коррелируют
- мало, когда X и Y отрицательно коррелируют

Ковариация независимых случайных величин

Утверждение. Если X и Y — независимые случайные величины, то cov(X, Y) = 0.

- Обратное утверждение неверно: можно придумать две случайные величины X и Y, для которых соv(X, Y) = 0, но независимыми они не являются
- Условие независимости гораздо более мощное и описывает все совместное распределение случайных величин.

Корреляция

Определение. Корреляцией случайных величин *X*, *Y* называется число

$$corr(X, Y) = \frac{cov(X, Y)}{\sqrt{\mathsf{D}X\mathsf{D}Y}}$$

Свойства корреляции

- Корреляция всегда находится в промежутке [-1, 1].
- Если corr(X, Y) = 1, то X и Y линейно зависимы с положительным коэффициентом (например, как градусы Цельсия и Фаренгейта)
- Если corr(X, Y) близка к 1, то X и Y высоко скоррелированы
- Если corr(X, Y) = 0, то X и Y не скоррелированы (но могут быть зависимы!).
- Если corr(X, Y) близка к -1, то X и Y отрицательно скоррелированы.
- Если corr(X, Y) равна -1, то X и Y линейно зависимы с отрицательным коэффициентом (например, Y = -2X + 5).

Визуальное определение корреляции

Упражнение. Оцените коэффициенты корреляции выборок по данным

рисункам

Корреляция в анализе данных

Вопрос. Какие переменные будут наиболее важны при попытке предсказать целевую переменную Y для решения задачи кредитного скоринга?

- Необходимо посчитать величины $corr(X_i, Y)$ для всех i.
- Высокие (по модулю) значения корреляции будут указывать на то, что признак нам точно важен.
- Значение корреляции, близкое к 0, вообще говоря не означает, что признак нам точно будет не важен, но позволяют сделать такое предположение.
 - Такие признаки можно выкинуть, чтобы не усложнять себе задачу предсказания.

Матрица корреляций

- Пусть у каждого объекта в выборке нам известно n признаков (у нас n = 6)
- Построим таблицу $n \times n$, в клетку с координатами (m, k) которой запишем значение корреляции признаков X_m и X_k .

Такая таблица называется матрицей корреляций.

месячная зарплата (X_1)	
средние месячные траты (X_2)	
количество текущих кредитов (X_3)	
количество погашенных кредитов (X_4)	
кол-во просрочек по выплатам (X_5)	
наличие собственного жилья (X_6)	

X_1	X_2	X_3	X_4	X_5	X_{ϵ}
1	0.9	-0.2	0.1	-0.3	0.7
0.9	1	-0.15	0.25	-0.35	0.65
-0.2	-0.15	1	0.6	0.8	-0.15
0.1	0.25	0.6	1	0.3	-0.25
-0.3	-0.35	0.8	0.3	1	-0.4
0.7	0.65	-0.15	-0.25	-0.4	1

Свойства матрицы корреляций

- Матрица симметричная (следует из симметричности корреляции).
- На главной диагонали стоят единицы (см. задачу из предыдущего параграфа).
- Число на пересечении первой строки и последнего столбца равно 0.7.
 - Это значит, что месячная зарплата высоко коррелирует с наличием собственного жилья.

месячная зарплата (X_1) средние месячные траты (X_2) количество текущих кредитов (X_3) количество погашенных кредитов (X_4) кол-во просрочек по выплатам (X_5) наличие собственного жилья (X_6)

X_1	X_2	X_3	X_4	X_5	X_{ϵ}
1	0.9	-0.2	0.1	-0.3	0.7
0.9	1	-0.15	0.25	-0.35	0.65
-0.2	-0.15	1	0.6	0.8	-0.15
0.1	0.25	0.6	1	0.3	-0.25
-0.3	-0.35	0.8	0.3	1	-0.4
0.7	0.65	-0.15	-0.25	-0.4	1

Свойства матрицы корреляций

- X_1 и X_2 коррелируют с коэффициентом 0.9
 - о Следовательно, второй признак почти не дает дополнительной информации по сравнению с первым. Его иногда целесообразно выкидывать из выборки.

месячная зарплата (X_1) средние месячные траты (X_2) количество текущих кредитов (X_3) количество погашенных кредитов (X_4) кол-во просрочек по выплатам (X_5) наличие собственного жилья (X_6)

X_1	X_2	X_3	X_4	X_5	X_{ϵ}
1	0.9	-0.2	0.1	-0.3	0.7
0.9	1	-0.15	0.25	-0.35	0.65
-0.2	-0.15	1	0.6	0.8	-0.15
0.1	0.25	0.6	1	0.3	-0.25
-0.3	-0.35	0.8	0.3	1	-0.4
0.7	0.65	-0.15	-0.25	-0.4	1

Спасибо за внимание!