Midterm Study Guide Combinatorics

December 6, 2017

- 1 CH1
- 2 CH2
- 3 CH3
- 4 CH4
- 5 CH5
- 6 CH6

6.1 Block Designs 6.1

DEF: $(b, v, r, k, \lambda) - design$

b - subsets (blocks),

v - elements (varieties),

r - each element is in exactly r blocks,

 ${\bf k}$ - each subset has ${\bf k}$ elements,

 λ - each pair of elements appears in λ subsets

 \mathbf{THM} 6.1: In a block design each element lies in exactly r blocks, where

$$r(k-1) = \lambda(v-1)$$

THM 6.2: For a $(b, v, r, k, \lambda) - design$,

$$b \geq v$$

6.2 Square Block Designs 6.2

Properties $(v, k, \lambda) - design's$ incidence matrix has the following properties:

- 1. Any row contains k 1's.
- 2. Any column contains k 1's
- 3. Any pair of columns both have 1's in exactly λ rows
- 4. Any pair of rows both have 1's in exactly λ columns.

THM 6.3: If A is a square (0, 1)-matrix (i.e. a matrix all of whose entries are 0 or 1) and if A satisfies

$$A^T A = (k - \lambda)I - \lambda J$$

with $k > \lambda$, then

$$AA^T = (k - \lambda)I - \lambda J$$

also holds.

DEF: A finite projective plane of order q is defined to be a $(v, k, \lambda) - configuration$ with the properties:

- 1. $v = q^2 + q + 1$
- 2. k = q + 1
- 3. $\lambda = 1$

fpp properties: A fpp of order q has the following properties

- 1. Any line contains q + 1 points
- 2. Any point lies on q+1 lines
- 3. Any pair of points are joined on exactly one line
- 4. Any pair of lines intersect in exactly one point

other knowledge about ffp's

- a. A plane of order q definitely exists if $q \geq 2$ is a prime or a power of a prime.
- b. No plane of any other order is known to exist.
- c. There is definitely no plane of order 6, or in general of any order n, where n is of the form (4k+1) or (4k+2), and is divisible an odd number of times by a prime of the form (4h+3).

FACT: There is no finite projective plane of order 6.

6.3 Hadamard configurations

DEF: A (v, k, λ) – configuration is called a Hadamard configuration when v = 4m - 1, k = 2m - 1, $\lambda = m - 1$ for some integer $m \ge 2$.

idea: Hadamard Matrix is formed from taking the incidence matrix of a Hadamard configuration and changing the 0's to 1's.

DEF: A nxn matrix is a Hadamard matrix of order n if:

- 1. $a_{ij} = \pm 1, \forall i, j$
- $2. AA^T = nI$

FACT: Given a Hadamard matrix, it is permissible to interchange any two rows or any two columns, or to multiply any row or column by -1, for these operations do not effect the properties required by the definition.

THM 6.5: If A is an $n \times n$ Hadamard matrix with n > 2, then n = 4m for some positive integer m. Further, each row has exactly 2m + 1s and 2m - 1s, and, for any two chosen rows, there are exactly m columns in which both rows have +1.

THM 6.6: Each normalized Hadamard matrix A of order $4m \ge 8$ yields a (4m-1, 2m-1, m-1) - configuration.

Process: A $mn \times mn$ Hadamard matrix can be formed by taking 2 Hadamard matrices, A and B, of order m and n respectively, and place A at every 1 in B and -A for every -1 in B.

6.4 Error-correcting codes

THM 6.7: A code will detect all sets of h or fewer errors if any two words differ in at least (h+1) places.

THM 6.8: A code will correct all sets of h or fewer errors if any two words differ in at least (2h+1) places.

7 CH7