单选题

	A. 10, 4	B. 5, 4	C. 10, 8	D. 5, 8			
2.	某计算机字长 16 位, 主存地址空间大小是 64KB, 按字节编址, 则寻址范围是(A)。						
	A. 0∼(64K-1)	B. 0∼(32K-1)	C. 0∼(64KB-1)	D. 0∼(32KB-1)			
3.	下列几种存储器中,	(A)是易失性存储:	器。				
	A. cache	B. EPROM	C. Flash Memory	D. CD-ROM			
4.	假定主存地址空间大小为 1024MB, 按字节编址, 每次读写操作最多可以一次存取 32						
	位。不考虑其它因素,	则存储器地址寄存器	MAR 和存储器数据寄存	序器 MDR 的位数至			
	少应分别为(B)。	o					
	A. 30, 8	B. 30, 32	C. 28, 8	D. 28, 32			
5.	. 需要定时刷新的半导体存储器芯片是(B)。						
	A. SRAM	B. DRAM	C. EPROM	D. Flash Memory			
6.	假定用若干个 16K×1	位的存储器芯片组成一	个 64K×8 位的存储器,	芯片内各单元连续			
	编址,则地址 BFF0H 所在的芯片的最小地址为(C)。						
	А. 4000Н	В. 6000Н	С. 8000Н	D. A000H			
7.	假定用若干个 16K×8	位的存储器芯片组成一	个 64K×8 位的存储器,	芯片各单元交叉编			
	址,则地址 BFFFH 所在的芯片的最小地址为 (D)。						
	А. 0000Н	B. 0001H	C. 0002H	D. 0003H			
简名 1.		空间为 4GB,按字节编	址,假定用 64M×8 位	的具有8个位平面			
的 I	DRAM 芯片组成容量为	512MB、传输宽度为 6	64 位的内存条。回答下	列问题:			
	(1)每个内存条需要多少个 DRAM 芯片?						
	(3) 主存地址共有多	那几位为 DRAM 芯					
片卢	的行地址?哪几位为1	DRAM 芯片内的列地址	? 哪几位用于选择芯片	?			
答:							
	(1) $512MB / 64M \times 8 $						
	(2) 2GB / 512MB =4 个内存条。						

(3) 因为是按字节编址, 所以主存地址共 32 位: A₃₁A₃₀···A₂₅···A₁A₀。因为每次在总

线上传输64位数据,因此,内存条内8个芯片同时进行读写,每个芯片有8个位平面,因

而同时读出 64 位数据。芯片按交叉编址方式组织,每个内存条有 512MB 容量,故内存条内存储单元的地址有 29 位,即 A_{28} ···· $A_4A_3A_2A_1A_0$ 。其中, $A_2A_1A_0$ 表示芯片号, A_{28} ····· A_4A_3

表示芯片内的存储单元地址,其中芯片内的行地址为 A_{28} ···· A_{16} ,列地址为 A_{15} ···· A_{3} 。

1. 某 SRAM 芯片, 其容量为 1024×4 位, 则地址和数据引脚的数目分别为(A)。

- 2. 假定某计算机的主存地址空间大小为 64KB, 按字节编址; cache 采用 4-路组相联映射、LRU 替换和写回(Write Back)策略,能存放 4KB 数据,主存与 cache 之间交换的主存块的大小为 64 字节。请回答下列问题:
 - (1)主存地址字段如何划分?要求说明每个字段的含义、位数和在主存地址中的位置。
 - (2) cache的总容量有多少位?
- (3) 若cache初始为空,CPU依次从0号地址单元顺序访问到4344号单元,共重复访问16次。cache存取时间为20ns,主存存取时间为200ns,试估计CPU访存的平均时间。

答:

- (1) cache的行数为4KB/64B=64; 因为采用4-路组相联,所以每组有4行,共16组。主存地址空间大小为64KB,按字节编址,所以主存地址有16位,其中低6位为块内地址,中间4位为组号(组索引),高6位为标记。
- (2) 因为采用写回策略,所以cache每行中要有一个修改位(dirty bit);因为每组有4行,所以每行有两位LRU位。此外,每行还有6位标记、1位有效位和64字节数据,共有64行,故总容量为64×(6+1+1+2+64×8) = 33408位。
- (3) 因为块大小为64字节,CPU总共访问了4345个单元,因为4345/64 = 67.89,所以第 0~4344单元应该对应前68块(第0~67块),也即CPU访问过程是对主存的前68块连续访问 16次。图6.3给出了访问过程中主存块和cache行之间的映射关系。图中列方向是cache的16个组,行方向是每组的4行。

	第0行	第1行	第2行	第3行
第0组	0/64/48	16/0/64	32/16	48/32
第1组	1/65/49	17/1/65	33/17	49/33
第2组	2/66/50	18/2/66	34/18	50/34
第3组	3/67/51	19/3/67	35/19	51/35
第4组	4	20	36	52
第15组	15	31	47	63

图6.3 题14中cache组和主存块之间的映射

主存的第0~15块分别对应cache的第0~15组,可以放在对应组的任意一行中,在此假定按顺序存放在第0行;主存的第16~31块也分别对应cache的第0~15组,放到第1行中;同理,主存的第32~47块分别放到cache的第0~15组的第2行中;主存的第48~63块分别放到cache的第0~15组的第3行中。这样,访问主存的第0~63块都是没有冲突的,每块都是第一次在cache中没有找到,然后把这一块调到cache对应组的某一行中,这样该块后面的每次访问都能在cache中找到。因此,每一块只有第一单元未命中,其余63个单元都命中。主存的第64~67块分别对应cache的第0~3组,此时,这4组的4个行都已经被主存块占满,所以这四组的每一组都要选择一个主存块从cache中淘汰出来。因为采用LRU算法,所以,将最近

最少用的第0~3块分别从第0~3组的第0行中替换出来。再把第64~67块分别放到cache第0~3组的第0行中,每块也都是第一次在cache中没有找到,调入后,每次都能在cache中找到。

综上所述,第一次循环中,每一块都只有第一单元未命中,其余都命中。

以后的15次循环中,因为cache第4~15组的48行中的主存块一直没有被替换过,所以只有68-48=20个行中对应主存块的第一个单元未命中,其余都命中。

总访问次数为4345×16=69520, 其中, 未命中次数为68+15×20=368。

命中率 p 为 (69520-368)/69520=99.47%。 平均访存时间约为 t_a = t_c +(1-p)× t_m = 20ns+200×(1-0.9947)ns = 20ns+1.06ns = 21.06ns。

3. 以下是计算两个向量点积的程序段:

请回答下列问题。

- (1) 访问数组 x 和 y 时的时间局部性和空间局部性各如何? 你能否推断出命中率的高低?
- (2) 假定数据 cache 采用直接映射方式,数据区容量为 32 字节,每个主存块大小为 16 字节;编译器将变量 sum 和 i 分配在寄存器中,数组 x 存放在 00000040H 开始的 32 字节的连续存储区中,数组 y 则紧跟在 x 后进行存放。该程序数据访问的命中率是多少?要求说明每次访问时 cache 的命中情况。
- (3) 将上述(2) 中的数据 cache 改用 2-路组相联映射方式,块大小改为 8 字节,其他条件不变,则该程序数据访问的命中率是多少?
- (4) 在上述(2)中条件不变的情况下,将数组 x 定义为 float[12],则数据访问的命中率是多少?

答:

- (1)数组 x 和 y 都按存放顺序访问,空间局部性都较好,但每个数组元素都只被访问一次,故没有时间局部性。命中率的高低与 cache 容量、块大小、映射方式等都有关,而题于中没有给出这些信息,因此无法推断命中率的高低。
- (2) cache 共有 32B/16B=2 行; 4 个数组元素占一个主存块; 数组 x 的 8 个元素(共32B)分别存放在主存 40H 开始的 32 个单元中, 共有 2 个主存块, 其中 x[0]~x[3]在第 4 块,

x[4]~x[7]在第 5 块中;数组 y 的 8 个元素分别在主存第 6 块和第 7 块中。所以,x[0]~x[3]和 y[0]~y[3]都映射到 cache 第 0 行;x[4]~x[7]和 y[4]~y[7]都映射到 cache 第 1 行。因为 x[i]和 y[i]总是映射到同一个 cache 行,相互淘汰对方,故每次都不命中,命中率为 0。

- (3) 改用 2-路组相联,块大小改为 8B,则 cache 共有 4 行,每组两行,共两组。两个数组元素占一个主存块。数组 x 占 4 个主存块,数组元素 $x[0]\sim x[1]$ 、 $x[2]\sim x[3]$ 、 $x[4]\sim x[5]$ 、 $x[6]\sim x[7]$ 分别在第 8~11 块中;数组 y 占 4 个主存块,数组元素 $y[0]\sim y[1]$ 、 $y[2]\sim y[3]$ 、 $y[4]\sim y[5]$ 、 $y[6]\sim y[7]$ 分别在第 12~15 块中;因为每组有两行,所以 x[i]和 y[i]可以存放到同一个 cache 组的不同 cache 行内,因此,不会发生冲突。每调入一块,装入的 2 个数组元素中,第 2 个数组元素总是命中,故命中率为 50%。
- (4)将数组 x 定义为 12 个元素后,则 x 共有 48B,使得 y 从主存第 7 块开始存放,即: $x[0]\sim x[3]$ 在第 4 块, $x[4]\sim x[7]$ 在第 5 块, $x[8]\sim x[11]$ 在第 6 块中, $y[0]\sim y[3]$ 在第 7 块, $y[4]\sim x[7]$ 在第 8 块。因而,x[i]和 y[i]就不会映射到同一个 cache 行中。每调入一块,装入 4 个数组元素,第一个元素不命中,后面 3 个总命中,故命中率为 75%。