遗传算法实现图像分割

Andy

Email: guguant[at]yahoo.com

编译环境

Opencv3. 2. 0 + VS2015

设计思路

编码方式

采用8位二进制编码。

染色体结构

```
struct ga {
    int threshold; // 阈值
    double fitness; // 适应度
};
```

适应度

设计遗传算法的关键是,寻找适应度函数。采用遗传算法进行图像分割,适应度函数为OTSU算法,类间方差作为适应度指标。

选择-复制

使用赌轮算法,选择适应度强的子代作为下一代。规定子代规模为64。

交叉

遍历 64 个个体。随机生成概率 p,如果概率 p 大于交叉概率,选择该个体为 待交叉个体。随机生成两个 rand() % 8 [0, 7]之间的随机数, p1, p2, 交叉 p1 $^{\sim}$ p2 之间的位数。

变异

遍历 64 个个体,随机生成概率 P = rand() % 64,比较 P 与变异率的大小,如果 P 大于变异率,则该个体进行变异。

将变异后的个体作为初始种群,继续以上过程,知道迭代次数达到规定的遗传次数 T = 1000。

实验结果

1、读取灰度图片,单通道分割

将彩色图片以灰度的形式读取,使用遗传算法求灰度图的 OTSU 阈值。最后,使用 OTSU 对灰度图像进行分割,得到最终的结果。

(otsu 阈值: 求 10 次阈值, 求平均值)

素材 1: Lena. tiff

来源: http://sipi.usc.edu/database/download.php?vol=misc&img=4.2.04

512x512 pixels, 768kb Color (24 bits/pixel)

方法	阈值	图像分割结果			
Otsu	118				
	种群代数	种群规模	交叉率	变异率	阈值 10 次
遗传	10				122. 1
算法	50				119.9
	250	64	0.95	0.05	117. 2
	500				128. 9
	1000				125. 6
		10			112. 4
		50			123. 4
	100	250	0.95	0.05	124. 6
		500			118. 4
		1000			120. 4
	100	64	0. 50	0.05	128. 9

			0.80		122.7
			0.85		118. 7
			0.95		122. 1
			0. 98		115. 7
	100	64	0.95	0.01	120.8
				0.03	123. 1
				0.05	117. 5
				0.10	116. 4
				0.50	117. 5

分析:

采用不同的种群规模,种群代数,交叉率,变异率,输出的阈值不相同,但总体而言接近 OTSU 算法的阈值。采用遗传算法进行图像分割,分割的准确度具有很大的随机性。

结论:

使用遗传算法时,交叉率选择 0.900~0.970,变异率选择 0.001~0.100。

二、三通道分割

对彩色图片的 R、G、B 通道分别运用遗传算法求阈值分量,然后根据阈值对每一个通道进行图像分割,最后将 R、G、B 通道合在一起,输出最终的结果。

素材 2: House. tiff

来源: http://sipi.usc.edu/database/download.php?vol=misc&img=4.1.05

House

256x256 pixels, 192kb

Color (24 bits/pixel)

0tsu 算法

阈值:

R: 155 G: 144 B: 134

GO

ВО

二值化 R1 图像分割结果

G1

В1

遗传算法

种群代数: 10000 种群规模: 64

交叉率: 0.95 变异率: 0.05

RGB 三通道阈值

R: 164 G: 144 B: 137

原图 RO

G0

ВО

二值化 R1 图像分割结果

G2

В1

