Deadlocks

Calebe de Paula Bianchini

Definição

- "Quando dois trens se aproximarem um do outro em um cruzamento, ambos deverão parar completamente e nenhum dos dois deverá ser acionado até que o outro tenha partido" [Kansas/USA, sec. XX]
- Em SO: um processo solicita um recurso que está ocupado, fica em espera, e esse recurso nunca é liberado

Introdução

- Um recurso requisitado por um processo deve seguir a seqüência:
 - Pedido: solicita o recurso, ou espera esse ser liberado
 - Uso: utiliza o recurso
 - Liberação: o processo libera o recurso
- Mas, com isso também pode acontecer deadlock?

Introdução

```
Processo 1
                              Processo 2
                         while(1) {
while(1) {
       wait(A);
                                wait(B);
       wait(B);
                                wait(A);
       trabalha();
                                trabalha();
       signal(B);
                                signal(A);
                                signal(B);
       signal(A);
```

Condições

- Condições para acontecer um Deadlock
 - Exclusão mútua
 - Recurso em modo não-compartilhado
 - Posse e espera
 - Posse de um recurso e espera para obter outro recurso
 - Não-preempção
 - Só o processo que mantém o recurso pode liberá-lo
 - Espera circular
 - Os processos precisam do recursos entre si

Notação

Grafo

- Indício em um
 Grafo Alocação de
 Recursos
 - Existência de ciclos

Estratégias

- Estratégias usadas para tratamento de Deadlocks
 - Ignorar o problema
 - Detectar e recuperar
 - Evitar
 - Prevenir

Ignorar o problema

- Algoritmo do Avestruz
 - "Coloca a cabeça dentro da terra e finge que nada está acontecendo"
 - Qual a freqüência aceitável? (engenheiros)
 - Quem sabe de 5 em 5 anos por motivos qualquer
 - Mas, e cálculos? (matemáticos)
 - Inaceitável (demora nas respostas!)
 - Windows/Linux/Unix

Detecção & Recuperação

- Grafos de alocação de recurso
- Existência de ciclo
- Caso positivo, recupera-se:
 - Suspensão de um dos processos
 - Checkpoint e RollBack para um estado anterior seguro
 - Seleção e término de um dos processos

Evitar

- Precisa-se ter algumas informações sobre os processos para evitar deadlocks
- É necessário um seqüência no escalonamento para a execução dos processos
- Algoritmo do Banqueiro impraticável!

Prevenir

- Uma das 4 condições de deadlocks devem ser negadas!
 - Exclusão mútua: nunca há exclusividade
 - Posse & espera: o processo aloca tudo de uma vez (ou não aloca)
 - Não-preempção: liberar os recursos já obtidos
 - Espera circular: ordenação prioritária dos recursos