

Presentation Outline

Background

- Philadelphia city is one of the hottest real estate market in the US.
- To do property transaction we need building price and usually we get this from appraisal.
- With this prediction we can predict the price without aprraisal and this will increase in success transaction.

Stakeholder

Property Agent

Issue & Why it is important

The price is overvalue /
undervalue → There are
differences between the price
and average market value
with the same criteria

Target/Goals

Predict the property price based on its characteristic and/or location

Data Understanding

About Data

Source: https://www.kaggle.com/adebayo/philadelphia-

buildings-database

Data maker: Philadelphia Government

Data last update: July 2020 File: 2 file CSV & 1 GEOJSON

1. Footprints Table: 543278 rows x 12 columns

2. Properties Table: 581456 rows x 75 columns

(unique data)

Columns and Rows Interpretation

- Footprint Table
- Properties Table

Columns Use

The list of columns that will or won't be use

Footprints Table Columns Interpretation

	FOOTPRINTS	OPA PROPERTIES	NOTES
	OBJECT ID		Identification number
	BIN		Unique building identifier
Building Identification	FCODE		Building/Skywalk
Ç	BUILDING NAME		Common known
	ADDRESS	LOCATION	
	BASE ELEVATION		
	APPROX HGT	STORIES	It has similar definition
	MAX HGT		to column in OPA Properties
Building Criteria	SHAPE AREA	TOTAL AREA	
3 - 7	SHAPE LENGTH	FRONTAGE	
'	PARCEL ID NUM		Parcel is not an unique
	PARCEL ID SOURCE		identifier for unit/building

Properties Table Columns

To ease the exploratory data analysis process, we grouped the columns based on its types and its connection with other column

Property Location (Use)

Location

Street Designation

Property Location (Drop)

Beginning Point

House Number & Extension

Street Name & Direction

- Beginning point → No precise info about the coordinate
- Location = house_number +
 house_extension + street_direction +
 street_name + street_designation (Others
 are part of location)

Classification of Property (Use)

Building Code Desc.

& Building Code

Category Code Desc.

& Category Code

Unit, Zoning, Zip Code, Unfinished Classification of Property (Drop)

-

Properties Table Columns Interpretation

Property Specifications (Use)

Market Value, Sale Price, Sale Date

Central Air & Fireplaces

Other Building

Topography & View Type

Exterior & Interior Condition

Quality Grade & General Construction

Total bathrooms, bedrooms, rooms, and stories

Property Specifications (Use)

Year Built

Parcel Number & Shape

Total Area & Livable Area

Frontage & Depth

Basement

Garage Spaces & Type

Fuel & Hyter Type

Property Specifications (Drop)

Off Street Open

Separate Utilities

Sewer

Site Type

Utility

- 1. Too many missing value
- 2. Off Street Open: There is no specific definition about it

Properties Table Columns Interpretation

Administration (Use)

Recording Date

Registry Number

Mailing Street

Owner 1 & 2

Administration (Drop)

Exempt Building & Land

Homestead Exemption

Geographic Ward

Mailing Address 1&2

Mailing care of

Administration (Drop)

Mailing City State, Street, & Zip

Market Value Date

Object ID

State & Street Code

Suffix

Administration (Drop)

Taxable Building & Land

Year Built Estimate

Assessment Date

Book and Page

Census Tract

Cross Reference

Date Exterior Condition

- Logically doesn't impact building price/market value:
 Exemption, Geographic Ward, Book and Page, Census Tract
- Too many missing value:
 Mailing, Market Value Date, Suffix, Year Built, Assessment Date, Cross Reference, Date Exterior Condition
- Too many unique value:Object ID, State & Street Code, Taxable

Cleaning Method

Check Data Type

Make sure that the data type is already correct.

Check Unique Value

Check is there any anomaly data and whether the data can be use for prediction or not.

(Too many unique data → Overfitting)

Check Missing Value

Make sure there is no NaN data.

Check Anomaly Data & Repair

There are some data that has 0 value or blank, we need to determine whether is actually NaN value or else.

- Fill Missing Value
 - Median/Mode
 - 2. Drop data
 - 3. Drop Columns
 - 4. Based on other column

Wrong Data Type, Anomaly Data, and Missing Value

Examples

```
4. df['year_built'].describe()
4.8.2 Year Built
                                     df = df.astype({'year built': float})
                                                                                         df['year built'].unique()
                                                                                                                                             546347,000000
                                                                                                                                    count
                                     ValueError: could not convert string to float: '196Y'
                                                                                                                                              1772.411619
                                                                                         array(['1920', '0000', '1960',
                                                                                                                                    mean
df['year built'].dtypes
                                                                                                                                                538.052928
                                                                                                  '2014', '2019', '1924',
                                     # Change '196Y' become 1960 since Y is typo
                                                                                                                                    min
                                                                                                                                                 0.000000
                                     index=df[df['year_built']=='196Y'].index
                                                                                                  '1954', '1939', '1929',
                                                                                                                                    25%
                                                                                                                                              1920.000000
dtype('0')
                                     df.at[index,'year built']=1960
                                                                                                  '1902', '1944', '1981',
                                                                                                                                    50%
                                                                                                                                              1925,000000
                                                                                                                                    75%
                                                                                                                                              1950.000000
                                                                                                                                              2020.000000
                                                                                                                                    Name: year built, dtype: floa
                                     pd.set_option('display.max_rows',10)
len(df[df['year built']==0])
                                    df1=df[(df['year_built']==0)&(~df['building_code_description'].str.contains('VACANT'))&(~df['building_code_description'].str.cont
46012
                                     df1=df1[df1['location'].isin(dupe['dupe'])].sort values(by='location')
                                                                                                                    index=df[df['year built']==0].index
                                     df1[df1['year built']!=0][['location','year built']]
                                                                                                                    df.loc[index,'year built']=np.nan
                                       location year built
```

Check Data Type

Data type of year built is wrong \rightarrow Change Data Type \rightarrow It's error \rightarrow Check Error \rightarrow Repair

Check Unique Value & Anomaly data

Check unique value → Anomaly Data
→ Check Describe → Check 0 value
→ Check data that can be use to
fulfill 0 value

Fill Missing Value

No data can be use → Change to NaN → Will be dropped later

Fill Missing Value using Median

Examples

Check Missing Value & Anomaly Data

Check NaN data → Change data that should have 0 livable area → Check Anomaly data (0 value for residential) → Change to NaN

Fill Missing Value

Change NaN data using median (group by building code) \rightarrow Rest NaN data will be drop later

Drop Column

Examples

Check Unique Value & Missing Value

Check unique value \rightarrow Check missing value \rightarrow Check pattern \rightarrow No pattern

Fill Missing Value?

Drop column

Detailed Exploratory Data Analysis (EDA)

This section will help us to:

- 1. Understand the characteristics of variables
- 2. Discover the relationships between variables

Post-Cleaning Variables

28 original columns + 6 new columns

Building code description	Central air	Depth	View type	Number stories	Street designation	Parcel number
Category code description	Fireplaces	Frontage	Sale price	Number of rooms	Zip code	Parcel shape
[1] Exterior condition	Unfinished	Total area	Market value	Number of bedrooms	Topography	Location
[1] Interior condition	Other building	Total livable area	^[2] Sale date	Number of bathrooms	^[5] Zoning	Year built
						\downarrow
[1] Overall condition			Sale year		New zoning	Property age
			[2] Sale year group			Already
						Dropped
	Co	olumn Type		[4]	Parking	[4] Garage
Categorical	Ordinal Boolear	Numerical Numerical	Date Time Uniqu	e Values	spaces	spaces

Post-Cleaning Variables

Location	13 col.						
Parcel shape	Sale year group		14 col.				
Building code description	Street designation	Property age	Year built				
Category code description	Zip code	Depth	Fireplaces	Number stories	3 col.		
Central air	Topography	Frontage	Sale price	Number of rooms	Exterior condition	2 col.	1 col. each
View type	Zoning	Total area	Market value	Number of bedrooms	Interior condition	Unfinished	Parcel number
Parking spaces	New zoning	Total livable area	Sale year	Number of bathrooms	Overall condition	Other building	Sale date

Total rows: 495.390

Column Type								
Categorical	Ordinal	Boolean	Numerical	Date Time	Unique Values			

Label Analysis: Market value Distribution

Market Value Range	Counts (Percentage)			
6.800 to 76.300	123.885	25,01%		
>76.300 to 132.000	123.826	25,00%		
>132.000 to 212.400	124.349	25,10%		
>212.400 to 415.650	87.013	17,56%		

Dataset is **dominated by** property market value in range of **6.800 to 415.650 USD**.

Even without the presence of outliers, the distribution is already **positively skewed**.

Label Analysis: Market value

Outliers Distribution

Market Value Range	Counts (Percentage)			
>415.650 to 618.900	19.753	3,99%		
>618.900 to 1M	9.358	1,89%		
>1M to 2M	4.232	0,85%		
>2M to 10M	2.326	0,47%		
>10M to 100M	590	0,12%		
>100M	58	0,01%		

With the presence of outliers, the distribution became **extremely not normal**.

Label Analysis: Market value

It is important to note that the dataset is:

A REAL-WORLD DATA

We want our model to cover the outliers as well. Thus, carefully handling the outliers is a must.

Recommendation

- 1. Drop the outliers with contextual outlier analysis.
- 2. Transform the label with transformation, scaling, etc.

Location							
Parcel shape	Sale year group						
Building code description	Street designation	Property age	Year built				
Category code description	Zip code	Depth	Fireplaces	Number stories			
Central air	Topography	Frontage	Sale price	Number of rooms	Exterior condition		
View type	Zoning	Total area	Market value	Number of bedrooms	Interior condition	Unfinished	Parcel number
Parking spaces	New zoning	Total livable area	Sale year	Number of bathrooms	Overall condition	Other building	Sale date

Column Type

Numerical

Date Time

Unique Values

Boolean

Categorical

Ordinal

1. Eliminate unnecessary columns

Parcel shape	Sale year group						
Building code description	Street designation						
Category code description	Zip code	Property age	Depth	Number stories			
Central air	Topography	Frontage	Fireplaces	Number of rooms			
View type	Zoning	Total area	Market value	Number of bedrooms	Unfinished		
Parking spaces	New zoning	Total livable area	Sale year	Number of bathrooms	Other building	Overall condition	Sale date

Column Type

Numerical

Boolean

Date Time

Unique Values

Categorical

Ordinal

2. Grouping

Boolean

Numerical

Date Time

Unique Values

Categorical

Ordinal

3. Approach: Univariate, Bivariate (Feature vs Feature, Feature vs Target)

Numerical Features and Market Value Correlations

0.50

0.25

-0.25

Numerical Features Distribution

	feature	statistics	p-value
0	number_of_bedrooms	1.148223e+06	0.0
1	number_of_rooms	1.183700e+06	0.0
2	number_stories	9.678649e+05	0.0
3	overall_condition	1.260157e+05	0.0
4	property_age	5.582315e+04	0.0
5	sale_year	1.132798e+05	0.0
6	total_area	3.367957e+06	0.0
7	total livable area	1.691928e+06	0.0

Most of the numerical features are not normally distributed.

Top 5 highest correlation features with market value:

- 1. Total livable area (49.57%)
- 2. Total area (42.54%)
- 3. Overall condition (-38.09%)
- 4. Number stories (27.98%)
- 5. Property age (-23.95%)

Contextual Outlier Analysis

Analysis:

- 1. Most of the contextual outliers appear above 150.000.000 of market value (drop data).
- 2. Values above 2.500.000 in total area are considered to be outliers (drop data).
- 3. Values above 1.250.000 in total livable area are considered to be outliers (drop data).

Outlier Analysis

Removing Extreme Outliers (above Q1 and Q3) from total area and total livable area

Final Numerical Features Scatterplots

Location Analysis Zip codes and market value

Outliers were affecting the scale

Market value was affected by its distance to city center. Why the price is high in the most far zip codes though?

Location Analysis

Zip codes and market value

Outliers dropped

Market value was affected by its distance to city center. Why the price is high in the most far zip codes though?

Location Analysis

Zip codes and total livable area

The further the property from city center, the higher its median of total livable area. Explaining the high median market value in previous folium maps.

Feature Engineering for Model 2

1. Distance based on Zipcode

Grouped

by

distance

from city

center

13284

Name: have fireplaces, dtype: int64

City Center: [19103, 19102, 19107, 19106, 19130, 19123, 19146, 19147] **Adjacent City Center:** [19121, 19122, 19125, 19145, 19148, 19104]

 $\textbf{Near City Center}: [19112, \ 19153, \ 19142, \ 19143, \ 19139, \ 19151, \ 19131,$

19132, 19133, 19134]

 $\textbf{Far From City Center:} \ [19129, 19140, 19124, 19137, 19144, 19141, 19120, \\$

19135, 19149]

Very Far From City Center NW: [19128, 19118, 19119, 19150, 19138, 19126, 19127]

Very Far From City Center NE: [19111, 19152, 19136, 19115, 19114, 19116, 19154]

Reference: Greater Center City Housing: 2020 Strong Fundamentals (Interrupted) Center City District, Central Philadelphia Development Corporation

2. Simplify fireplaces

```
df['have_fireplaces']=df['fireplaces'].apply(lambda x: 0 if x=='0' else 1)
executed in 188ms, finished 16:11:13 2022-03-22

df['have_fireplaces'].value_counts()
executed in 13ms, finished 16:11:13 2022-03-22
0 470774
```

Feature Engineering for Model 2

3. Extracting words and grouping it based on building code description

The idea is we use regex or text mining method to extract particular words from building code and then grouped it into four categories: (House, Condominium, Apartment, Others)

Feature Selection for Model 1 Numerical Features Categorical Features

Selected features:

number_of_bathrooms number_of_rooms number of bedrooms number_stories Domain number of rooms overall_condition knowledge. number_stories EDA, and property_age parcel_number outlier sale year analysis overall condition total_area 11. property age total_livable_area 12. sale_year 13. total_area 14. total_livable_area 15. year_built Reason to unuse several features: overall_condition columns is the combination between exterior_condition and interior condition. total_area values are multiplication value of depth and frontage. 3. property_age come from year_built column.

parcel number, because it contain many unique values.

It's not common to use number of bathroom as feature in house pricing.

Features after data analysis

exterior condition

interior_condition

and data cleansing:

depth

frontage

Feature Selection for Model 2 Numerical Feature Categorical Feature

Selected features:

number of bedrooms

Features after data analysis

replace by sale_year value.

and data cleansing:

number_of_bathrooms number_of_rooms number of bedrooms number_stories Domain number of rooms overall_condition knowledge. number_stories EDA, and property_age parcel_number outlier sale year analysis overall condition total_area 11. property age total_livable_area 12. sale_year 13. total area 14. total_livable_area 15. year_built Reason to unuse several features: overall_condition columns is the combination between exterior_condition and interior condition. total_area values are multiplication value of depth and frontage. 3. property_age come from year_built column. parcel number, because it contain many unique values.

It's not common to use number of bathroom as feature in house pricing.

Features after data analysis

exterior condition

interior_condition

and data cleansing:

depth

frontage

zoning, because we replace its values by create new zoning columns.

Modeling

Pre-Processing Scheme Model 1

unfinished (2 unique values)

property_age

Label: market value Label: market value **Numerical Features Categorical Features Numerical Features Categorical Features Robust Scaling** One Hot encoding **Robust Scaling** One Hot encoding central_air (3 unique values) total area central_air (3 unique values) total area total_livable_area other_building (2 unique values) have_fireplaces (2 unique values) total_livable_area

property age

Model 2

other building (2 unique values)

unfinished (2 unique values) **Categorical Features** Do not preprocessed **Categorical Features** Do not preprocesed **Binary encoding** 1. number_of_bedrooms Binary encoding apartment category_code_description (6 unique 1. building_code_description (444 unique 2. number of rooms condomium values) values) 2. number stories house distances_from_city (7 unique values) 2. category_code_description (6 unique 3. overall condition number of bedrooms new_zoning (11 unique values) values) 4. sale year number_of_rooms parcel_shape (5 unique values) 3. fireplaces (5 unique values) parking_spaces (7 unique values) number stories new_zoning (11 unique values) street_designation (23 unique values) overall condition 5. parcel_shape (5 unique values) topography (7 unique values) 6. parking_spaces (7 unique values) sale_year view_type (8 unique values) 7. street_designation (23 unique values) zip_code (52 unique values) 8. topography (7 unique values) 9. view type (8 unique values) 10. zip_code (52 unique values)

Data Splitting, Algorithm Model

Data Splitting

```
y=df['market_value']
x=df_model
```

```
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=2020)
executed in 326ms, finished 11:20:28 2022-03-22
```

Algorithm Model

Parametric model

Linear Regression: This is the first model we propose as base model in cross-validation. Because this model is commonly used when it comes to regression modelling, also this model represented parametric method in regression modelling.

Non-Parametric model (Dataset isn't normally distributed)

Random Forest Regression is a supervised learning algorithm that uses ensemble learning method for regression. Random Forest is also a "Tree"-based algorithm that uses the qualities features of multiple Decision Trees for making decisions. The Random Forest algorithm is also very *fast* and *robust* than other common regression models (towardsdatascience.com).

Extreme Gradient Boosting Regression refers to a class of ensemble machine learning algorithms Ensembles are constructed from decision tree models. This gives the technique its name, "gradient boosting," as the loss gradient is minimized as the model is fit, much like a neural network. XGBoost dominates structured or tabular datasets on classification and regression predictive modeling problems.

(machinelearningmastery.com)

Metric Evaluation and Cross Validation

Metric Evaluation

1. R-squared

- 2. Mean squared error (MSE)
- 3. Root mean squared error (RMSE)
- 4. Mean absolute error (MAE)

$$-\frac{SSE}{CCT}$$

$$\frac{1}{n}\sum_{i=1}^n (y_i - \tilde{y}_i)^2$$

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (Yi - \hat{Y}i)^2}$$

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

5. Mean absolute percentage error (MAPE)

$$\sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{\hat{y}_i} \right| \times 100\%$$

In this case, where market value (numerical value) is the target, so we need an evaluation metric which can provide exact error value and don't forget that market_value cannot be in negative value (always positive). Target has a wide range value start from 5.500 to 1.500.000. To avoid bias in evaluation metric/error, we choose mean percentage absolute error (MAPE) as main evaluation metric. That's because this metric can well adjust with those wide range target value and don't stick to fixed error value.

Cross Validation

		Model 1				Model 2	
	model	mean	std		model	mean	std
0	LinReg	-0.854621	0.034950	0	LinReg	-0.906468	0.029465
1	Forest	-0.144754	0.004472	1	Forest	-0.133209	0.003265
2	XGB	-0.348973	0.013519	2	XGB	-0.275069	0.001754

Cross Validation Conclusion

Mean absolute percentage error (MAPE) of the Random Forest model has the lowest error score (14.47%) in Model 1 and Random Forest model has the lowest error score (13.32%) in Model 2, also the algoritm has the most stable (lowest standard deviation) from all models. This means the algorithm can reduce error so well, so for this model we choose `Random Forest Regressor` as selected base algorithm model.

Random Forest Model Performance

Model 2

Metric Evaluation

Y Predict - Y Test Regplot

0.12255710383575225

32380.079172474398

149194029999.23434

386256.4303661938

0.8927758053479059

Model 1

Metric Evaluation

RMSE SCORE: 609078.988297865 R2 SCORE: 0.7217951203740047

Model 2 for further analysis and feature engineering.

Y Predict - Y Test Regplot

0.13189944109111362

36094.64084981334

370977213985.95074

(https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119199885.app1). Extra feature engineering has an impact to improve model performance, so we choose

Hyperparameter Tuning

Randomized Search CV Tuning

Manual Tuning

From the screenshot above, we tried to do hyperparameter tuning with RandomizedSearchCV, but our computational power is not enough to process it quickly. Execution was run in 20:48 in 17 March 2022 but still didn't finish in 08:01 in 18 March 2022 (almost 12 hours), so we decided to interrupt the kernel and run it again but this time we tried to do it manually. We manually tuned the parameters (Manual Tuning) and tried to run 1 iterative tunning, execution was run in 09:45 in 18 March 2022 and still couldn't finish until 12.51 in 18 March 2022 (3,5 hours) so we decided not to use hyperparameter tuning for this model.

(Note: Before these tuning, we also had already tried GridSearchCV.)

Feature Importance

Model 2

Limitation of The Model and Model Analysis

This model has its own limitation, this model can only use inside these criteria:

- 1. 5500<= market_value <=150.000.000
- 2. 0<= number_of_bedrooms <=93
- 0<= number_of_rooms <=154
- 4. 0<= number_stories <=40
- 0<= property_age <=368
- 6. 600<= total_area <=100.000
- 7. 600<= total_livable_area <= 798.189

	Actual	Prediction	MAPE	condominium	apartment	house	total_livable_area	number_stories	zip_code	property_age	total_area
0	2068000.0	6.113153e+07	2856.069923	0	1	0	380040.0	10.0	19123	91.0	53335.00
1	1940500.0	2.584200e+07	1231.718732	0	0	0	275424.0	8.0	19148	80.0	52938.00
2	14238900.0	3.220690e+07	126.189544	0	1	0	112042.0	6.0	19104	27.0	90138.00
3	11486300.0	2.591496e+07	125.616256	0	1	0	159580.0	4.0	19122	8.0	56257.00
4	17242300.0	3.303370e+07	91.585244	0	1	0	184660.0	21.0	19102	92.0	9240.00
5	21715000.0	4.343969e+06	79.995538	0	1	0	36849.0	3.0	19103	15.0	53070.00
6	16142200.0	2.704288e+07	67.529067	0	0	0	301636.0	2.0	19132	51.0	99375.00
7	14774100.0	2.394456e+07	62.071185	0	1	0	133000.0	5.0	19104	125.0	61946.64
8	28359600.0	1.151721e+07	59.388687	0	0	0	69549.0	3.0	19103	52.0	61425.00
9	21183900.0	3.155274e+07	48.946778	0	0	0	184770.0	10.0	19104	75.0	20326.3
10	77911700.0	4.534030e+07	41.805527	0	1	0	254947.0	12.0	19121	13.0	75315.00
11	58919400.0	3.631262e+07	38.368996	0	1	0	245943.0	19.0	19147	40.0	30970.00
12	18837100.0	2.506951e+07	33.085841	0	0	0	146048.0	4.5	19107	32.0	51317.40
13	18575000.0	2.464730e+07	32.690703	0	1	0	132048.0	7.0	19104	95.0	44000.00
14	45056300.0	3.055134e+07	32.192967	0	1	0	180000.0	15.0	19103	120.0	10917.90
15	16776700.0	2.154927e+07	28.447633	0	1	0	82700.0	12.0	19103	95.0	7000.00
16	23037300.0	1.684588e+07	26.875623	0	1	0	64390.0	11.0	19106	114.0	9826.00
17	29215600.0	2.144660e+07	26.591958	0	1	0	114816.0	3.0	19104	43.0	76000.00
18	52272400.0	3.845760e+07	26.428477	0	1	0	225740.0	14.0	19107	122.0	19254.00
19	145580700.0	1.086178e+08	25.389958	0	0	0	723777.0	20.0	19107	47.0	50160.00
20	87075100.0	6.502379e+07	25.324473	0	0	0	500000.0	8.0	19103	39.0	69696.00
21	38879400.0	2.989729e+07	23.102491	0	1	0	168365.0	8.0	19103	106.0	29859.93
22	46893800.0	3.646397e+07	22.241390	0	0	0	172000.0	8.0	19104	20.0	24000.00
23	34288200.0	2.693498e+07	21.445334	0	1	0	140363.0	10.0	19107	95.0	13751.00
24	23315900.0	2.810080e+07	20.522064	0	1	0	173048.0	6.0	19106	118.0	38150.00
25	20504500.0	2.470767e+07	20.498783	0	0	0	145954.0	4.0	19106	125.0	19106.39
26	20751000.0	1.683097e+07	18.890805	0	1	0	101655.0	10.0	19107	119.0	8681.00

Not a good prediction

data (MAPE

above 20%)

Model 2 Analysis

(https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119199885.app1), if the model has MAPE score **below 20%** it can classified as Good Model. So we will analyze Model 2 based on this threshold value.

1. Confidence Area

Based on literature

Based on Regplot above, we analyze market_value above 20.000.000. Dataframe beside show us features from those outliers. There are 40 data test and only 14 from 40 data (35%) has MAPE score below 20% (MAPE score for good model), moreover there are very high MAPE score (2856%) it means the error is so high. Thus, we can summarize that our model can work better in property which has market_value below 20.000.000, we call this confidence area. Our model also can be use to predict market_value above 20.000.000 with lower confidence level, because there are 65% chance of our prediction can classified as not a good prediction (MAPE score above 20%).

Model 2 Analysis

2. General Error Analysis

We tried to analyze the market_value which have MAPE score above 20% (MAPE score for good model). There are 14446 data above MAPE score model from 96949 dataset test (14,9%).

From the Regplot, we can see that there are many data with MAPE values above 20%. Moreover, there are MAPE value above 2000%. This is very unwanted prediction result. We must analyze the characteristics of those properties with extremely high MAPE values.

executed in 29ms	, finished 13:01:02	2 2022-03-25							
	Prediction	MAPE	market_value	total_livable_area	number_stories	number_of_rooms	zip_code	property_age	total_area
de_description									
Commercial	1.276323e+06	80.236299	1.296604e+06	11778.582834	1.887226	4.842814	19130.935130	85.068862	11710.437255
Industrial	5.801218e+05	102.108488	3.334271e+05	11799.515924	1.538217	4.226115	19131.232484	86.028662	13383.907739
Mixed Use	2.412394e+05	46.283260	2.305266e+05	2705.057900	2.528950	6.112856	19134.323847	96.547596	1937.415967
Multi Family	8.112937e+05	69.478255	7.571190e+05	6889.005384	2.827950	11.563481	19131.054733	91.045312	4728.376927
Single Family	1.691683e+05	57.757278	1.581054e+05	1494.086125	2.237172	6.218450	19134.412711	93.130655	1916.362214
Vacant Land	1.346315e+05	180.482292	4.800000e+04	1280.000000	2.000000	0.000000	19153.000000	85.000000	2000.000000

D.groupby('category_code_description').mean()

- As we can see in the data frame, Vacant Land should be an empty land without number stories, but there are value in those features, so this unwanted occurrence value cause MAPE mean score for this category has high value (180.482%).
- 2. Industrial category also has high MAPE mean score (102,10%), we must check features from this category.

Model 2 Analysis

3. Error Analysis based on category_code_description Industrial

		D. disting	MADE	total Bookle con-					10101 0000	
	Actual	Prediction	MAPE	total_livable_area	number_stories	number_of_rooms	zip_code	property_age	total_area	overall_condition
478409	1940500.0	2.584200e+07	1231.718732	275424.0	8.0	2.0	19148	80.0	52938.00	4.0
477133	2686200.0	1.050265e+07	290.985407	172742.0	2.0	7.0	19122	70.0	60855.00	5.0
478538	1183900.0	3.969918e+06	235.325450	98046.0	5.0	4.0	19134	115.0	32036.55	4.0
477715	899100.0	1.457746e+06	62.133912	89330.0	3.0	4.0	19132	100.0	33110.00	5.0
477580	1604700.0	1.499459e+06	6.558298	79162.0	2.0	4.0	19142	80.0	80494.00	4.0
478112	1388500.0	3.283721e+06	136.494130	72611.0	5.0	4.0	19125	145.0	36104.00	4.0
476602	6014800.0	4.757215e+06	20.908176	72000.0	3.0	2.0	19127	2.0	41356.00	1.0
476715	754800.0	7.861400e+05	4.152093	67964.0	3.0	4.0	19124	90.0	50594.00	5.0
477466	543900.0	9.185860e+05	68.888766	67560.0	3.0	6.0	19134	90.0	23342.28	4.0
476688	805500.0	1.314902e+06	63.240472	64751.0	2.0	4.0	19124	121.0	77230.00	7.0
476797	938600.0	9.791020e+05	4.315150	62132.0	3.0	6.0	19137	85.0	25522.00	4.0
478456	498100 0	9 040980e+05	81 509335	61872 0	3.0	4.0	19134	85.0	22500.00	4.0

As we can see in the Dataframe A (dataset test), dataframe which grouped by categorical code Industrial, the highest livable_total_area has MAPE score 1231,71% and many of the top 12 highest livable_total_area has MAPE score above 20% (MAPE score for good model) (9 of 12 top data). We analyze that such high MAPE was caused by the actual market_value was set too low from the majority of data with the same specifications. This could be external factor that model cannot predict (of course it's called outliers).

	Actual	Prediction	MAPE	total_livable_area	number_stories	number_of_rooms	zip_code	property_age	total_area	overall_condition
476602	6014800.0	4.757215e+06	20.908176	72000.0	3.0	2.0	19127	2.0	41356.00	1.0
480913	3417600.0	4.933880e+06	44.366807	35742.0	7.0	7.0	19107	90.0	5106.00	3.0
477257	2997800.0	1.552669e+06	48.206385	20000.0	1.0	4.0	19145	60.0	89178.33	4.0
477133	2686200.0	1.050265e+07	290.985407	172742.0	2.0	7.0	19122	70.0	60855.00	5.0
476585	2562600.0	3.009213e+06	17.428120	30000.0	2.0	2.0	19140	90.0	34386.00	4.0
478761	2367300.0	2.386916e+06	0.828623	23520.0	1.0	4.0	19123	60.0	43200.00	4.0
478624	2157900.0	1.543500e+06	28.472126	13400.0	3.0	4.0	19147	80.0	48125.00	4.0
479044	2041300.0	4.785991e+06	134.457992	41363.0	2.0	4.0	19104	80.0	68547.51	3.0
477118	2020100.0	2.743937e+06	35.831741	12800.0	2.0	4.0	19103	220.0	6400.00	4.0
478409	1940500.0	2.584200e+07	1231.718732	275424.0	8.0	2.0	19148	80.0	52938.00	4.0
477137	1900000.0	4.056040e+05	78.652421	18463.0	1.0	4.0	19129	120.0	69498.75	6.0
477915	1792500.0	1.869465e+06	4.293724	30187.0	1.0	7.0	19146	90.0	59677.00	4.0

As we can see in the Dataframe B (dataset test), dataframe grouped by categorical code Industrial, many of the top 12 highest market_value has MAPE score above 20% (MAPE score for good model) (10 of 12 top data) and some exceed 100%. We analyze that the result was caused by actual market_value was set too low from the majority of data. This could be external factor that model cannot predict (of course it's called outliers).

Model 2 Analysis

4. Error Analysis Based on External Factor

Count of Property

As we can see in the stacked lineplot beside, there are two era where count of sale property in Philadelphia drastically down. It happen with worldwide crisis, like economy crisis in 2006-2010 and covid pandemic in 2020, we assume this crisis can affect our market_value prediction.

From dataframe below, we can see almost of market_value prediction exceed actual market_value.

	Actual	Prediction	MAPE	total_livable_area	number_stories	number_of_rooms	zip_code	property_age	total_area	overall_condition
228236	14100.0	1.527260e+05	983.163121	1472.0	1.0	5.5	19129	81.0	1810.50	4.0
62181	78300.0	4.559710e+05	482.338442	8520.0	3.0	7.0	19144	60.0	36618.17	7.0
60142	38500.0	2.107600e+05	447.428571	5152.0	3.0	7.0	19144	25.0	5390.40	7.0
207219	86000.0	4.342430e+05	404.933721	2022.0	2.0	7.0	19146	95.0	1664.48	2.0
453528	453200.0	2.023707e+06	346.537290	10168.0	2.0	7.0	19104	158.0	8100.00	4.0
80904	17200.0	6.775800e+04	293.941860	2120.0	3.0	6.0	19132	100.0	2707.14	7.0
482237	188800.0	7.180410e+05	280.318326	6172.0	3.0	12.0	19119	95.0	10261.89	3.0
217873	20100.0	7.050200e+04	250.756219	1652.0	2.0	6.0	19122	95.0	1095.00	5.0
206303	63400.0	2.219880e+05	250.138801	956.0	2.0	6.0	19146	95.0	752.50	4.0
470891	86900.0	2.938470e+05	238.143843	1336.0	2.0	5.0	19147	100.0	1046.56	4.0

(E['sale_year	']==2010)].loc[:,['Actual','Prediction',
_	'MAPE', 'total_livable_area', 'number_stories', 'number_of_rooms', 'zip_code', 'property_age',
В	'total_area','overall_condition','number_of_rooms','category_code_description','sale_year', 'apartment','house','condominium']].sort_values(by='MAPE', ascending=False)
executed in 45ms, finish	ed 13:01:17 2022-03-25
[F['MAPE']>20]	
	ed 13:01:22 2022-03-25

	Actual	Prediction	MAPE	total_livable_area	number_stories	number_of_rooms	zip_code	property_age	total_area	overall_condition
214800	12500.0	197725.000000	1481.800000	1924.0	3.0	4.0	19133	100.0	1418.25	2.0
483373	23600.0	319667.000000	1254.521186	1454.0	3.0	6.0	19145	13.0	1368.00	3.0
69454	8400.0	87136.000000	937.333333	612.0	1.0	5.5	19140	70.0	946.80	4.0
481340	63000.0	598486.000000	849.977778	4152.0	3.0	12.0	19104	10.0	6043.00	1.0
37019	11700.0	99774.333333	752.772080	759.0	1.0	5.5	19140	55.0	759.00	4.0
***	344	764			5994	(64)				200
475772	330400.0	264174.000000	20.044189	2290.0	1.0	3.0	19149	65.0	2794.00	4.0
450072	137200.0	164673.000000	20.024052	3014.0	2.0	6.0	19143	95.0	2356.00	4.0
165267	204300.0	163395.000000	20.022026	1208.0	2.0	6.0	19125	145.0	1186.40	4.0
105466	120000.0	144025.000000	20.020833	1455.0	3.0	7.0	19119	120.0	1231.83	4.0
382117	220900.0	265101.000000	20.009507	1605.0	2.0	7.0	19116	58.0	5230.51	4.0

From dataframe A and B we use selection indexing to filter sale_year where worldwide crisis happen (economy crisis and covid pandemic) with threshold of MAPE score above 20%. We can get 380 and 1917 data in it, it means 15,9% of the data above good MAPE model score (dataset test) affected by those external crisis.

Model Conclusion and Recommendation

Conclusion

Background and problem statement:

- 1. With this model, we can predict the price without any of aprraisal professional, thus reducing the cost.
- 2. There are differences between the price and average market value with the same criteria, we expect this model can predict market value with exact value (not overvalue or undervalue). With a justified market value, hopefully there will be increase in success transaction.

Model conclusion:

- 1. There are 24 features (8 numerical and 16 categorical) and 484.058 rows data for modeling purposes.
- 2. Based on Cross Validation we choose **Random Forest Regressor model**, because it has the lowest MAPE score (14.47% in Model 1 and 13.32% in Model 2) and the most stable (lowest standard deviation).
- 3. From comparison between Model 1 and Model 2 we **choose Model 2** over Model 1 because extra feature engineering can boost test score (dataset test) from MAPE score 13,18% in Model 1 to 12,25% in Model 2. This extra feature engineering also boost others metric evaluation score.
- 4. `total_livable_area` is the most importance feature in Model 2 and then followed by `number_stories`, `zip_codes`, `property_age`, `sale_year`, `total_area`, and `overall_condition`, respectively.
- Our group can make model to predict market value property with MAPE score (dataset test) around 12,12% which categorized as good model prediction. This model can answer the problem statement, so the property agent has an option not to use professional appraisal to asses market value of property in Philadelphia, just use this model instead to reduce operational cost. But there are some limitation for this model, such as:
 - 1. 5500<= market_value <=150.000.000
 - 2. 0<= number_of_bedrooms <=93
 - 3. 0<= number_of_rooms <=154
 - 4. 0<= number_stories <=40
 - 5. 0<= property age <= 368
 - 6. 600<= total area <=100.000
 - 7. 600<= total_livable_area <= 798.189
 - 8. This model work better for predict market value lower than 20.000.000, but we can predict market value above 20.000.000 with lower confidence level (35% chance to get a good model result).

Model Conclusion and Recommendation

Recommendation

From the model result, this model still have opportunities to improve. To do so, we need to:

- 1. Read more literature to know more about the domain knowledge, this will reduce the assumption with fact.
- 2. Doing another extra feature engineering by exploring more about current features (deepen the feature analysis and take a look the relation between feature-feature and feature-label).
- 3. Fix the value in features, so value from other value can match logically with another.
- 4. Doing several combination change like extracting, simplify and re-categorize to get more model and get better result.
- 5. Doing normalization to the feature, this can make us have more model option and get better result.
- 6. Improvement by doing hyperparameter tuning.
- 7. Drop some features with low importance feature score.
- 8. Gather another data to increase confidence level while predict high market value properties
- 9. We must aware to the data which has strong affected by external factor (maybe try to generate one feature to distinguish data which affected by external factor or not).
- 10. Need for another extra data/feature, like data for every property sold in Philadelphia in 2020 until 2022.