Introducing an AR Model

INTRODUCTION TO TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Mathematical Description of AR(1) Model

$$R_t = \mu + \phi R_{t-1} + \epsilon_t$$

- Since only one lagged value on right hand side, this is called:
 - AR model of order 1, or
 - AR(1) model
- AR parameter is ϕ
- For stationarity, $-1 < \phi < 1$

Interpretation of AR(1) Parameter

$$R_t = \mu + \phi R_{t-1} + \epsilon_t$$

- Negative ϕ : Mean Reversion
- Positive ϕ : Momentum

Comparison of AR(1) Time Series

•
$$\phi = 0.9$$

•
$$\phi=0.5$$

•
$$\phi = -0.9$$

•
$$\phi = -0.5$$

Comparison of AR(1) Autocorrelation Functions

•
$$\phi = 0.9$$

$$\phi = 0.5$$

•
$$\phi = -0.9$$

•
$$\phi = -0.5$$

Higher Order AR Models

• AR(1)

$$R_t = \mu + \phi_1 R_{t-1} + \epsilon_t$$

• AR(2)

$$R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \epsilon_t$$

• AR(3)

$$R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \phi_3 R_{t-3} + \epsilon_t$$

•

Simulating an AR Process

```
from statsmodels.tsa.arima_process import ArmaProcess
ar = np.array([1, -0.9])
ma = np.array([1])
AR_object = ArmaProcess(ar, ma)
simulated_data = AR_object.generate_sample(nsample=1000)
plt.plot(simulated_data)
```

Let's practice!

INTRODUCTION TO TIME SERIES ANALYSIS IN PYTHON

Estimating and Forecasting an AR Model

INTRODUCTION TO TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYUCourant Consultant,
Quantopian

Estimating an AR Model

To estimate parameters from data (simulated)

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
result = mod.fit()
```

Estimating an AR Model

• Full output (true $\mu=0$ and $\phi=0.9$)

print(result.summary())

		ARMA	A Model Res	sults		
Dep. Variabl Model: Method: Date: Time: Sample:		y ARMA(1, 0) css-mle Fri, 01 Dec 2017 15:34:50		Observations: Likelihood . of innovations	5000 -7178.386 1.017 14362.772 14382.324 14369.625	
	coef	std err	z	P> z	[95.0% Conf	. Int.]
const ar.L1.y	-0.0361 0.9054		-0.238 151.020 Roots	0.812 0.000	-0.333 0.894	
========	Real	In	Imaginary Modulus		Frequency	
AR.1	1.1045	1.1045 +0.000		1.1045	1.1045 0	

Estimating an AR Model

• Only the estimates of μ and ϕ (true $\mu=0$ and $\phi=0.9$)

```
print(result.params)
```

array([-0.03605989, 0.90535667])

Forecasting an AR Model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
res = mod.fit()
res.plot_predict(start='2016-07-01', end='2017-06-01')
plt.show()
```


Let's practice!

INTRODUCTION TO TIME SERIES ANALYSIS IN PYTHON

Choosing the Right Model

INTRODUCTION TO TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Identifying the Order of an AR Model

- The order of an AR(p) model will usually be unknown
- Two techniques to determine order
 - Partial Autocorrelation Function
 - Information criteria

Partial Autocorrelation Function (PACF)

$$R_{t} = \phi_{0,1} + \phi_{1,1} R_{t-1} + \epsilon_{1t}$$

$$R_{t} = \phi_{0,2} + \phi_{1,2} R_{t-1} + \phi_{2,2} R_{t-2} + \epsilon_{2t}$$

$$R_{t} = \phi_{0,3} + \phi_{1,3} R_{t-1} + \phi_{2,3} R_{t-2} + \phi_{3,3} R_{t-3} + \epsilon_{3t}$$

$$R_{t} = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t}$$

$$\vdots$$

Plot PACF in Python

- Same as ACF, but use plot_pacf instead of plt_acf
- Import module

```
from statsmodels.graphics.tsaplots import plot_pacf
```

Plot the PACF

```
plot_pacf(x, lags= 20, alpha=0.05)
```

Comparison of PACF for Different AR Models

• AR(1)

• AR(3)

• AR(2)

White Noise

Information Criteria

- Information criteria: adjusts goodness-of-fit for number of parameters
- Two popular adjusted goodness-of-fit measures
 - AIC (Akaike Information Criterion)
 - BIC (Bayesian Information Criterion)

Information Criteria

Estimation output

		ARMA	Model Res	sults		
Dep. Variable: Model: Method: Date: Time: Sample:			0) Log mle S.D. 017 AIC	Observations: Likelihood of innovations	2500 -3536.481 0.996 7080.963 7104.259 7089.420	
	coef	std err	======= Z	P> z	[95.0% Co	nf. Int.]
ar.L1.y	-0.6130	0.010 0.019 0.019		0.605 0.000 0.000		-0.576
	Real	Im	Imaginary		Frequency	
AR.1 AR.2	-0.9859 -0.9859				1.7935 -0.34 1.7935 0.34	

Getting Information Criteria From `statsmodels`

You learned earlier how to fit an AR model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
result = mod.fit()
```

And to get full output

```
result.summary()
```

Or just the parameters

```
result.params
```

To get the AIC and BIC

```
result.aic
result.bic
```


Information Criteria

- Fit a simulated AR(3) to different AR(p) models
- Choose p with the lowest BIC

Let's practice!

INTRODUCTION TO TIME SERIES ANALYSIS IN PYTHON

