Name: __Steve Mazza_____

1. True and False (7 Points) Circle (if .pdf) or Underline **T** or **F**

T F Current DOD policies enco

Current DOD policies encourage combining Testing and Training whenever possible.

T (<mark>f</mark>

Non-Developmental Items (NDI) and Commercial Off-the Shelf (COTS) items need not be tested since commercial testing is usually more than sufficient to meet military requirements

T

F Contractors are normally not allowed to participate in the OPEVAL

T F

Susceptibility is defined as P(Kill | Hit)*P(Hit)

T F Background Factors should not be measured because of the added instrumentation costs.

F Live Fire Testing evaluates system survivability and weapon lethality

T F A Dendritic can be used as a tool for identifying systems functions and capabilities

2. With respect to Factorial Designs mark T or F (1 point each, total 6 points)

T F Significant interactions between factors could invalidate initial test conclusions.

T F If the variance within a factor (data scatter) is <u>increased</u>, the test becomes <u>more</u> sensitive and therefore it may be easier to determine the difference between factors.

F A purpose of blocking is to decrease the experimental error within the primary factors.

F In a Fractional Factorial test design, each trial run will contain at least one ALIAS

F A Pareto chart may be used to rank the relative magnitude of factors when there are insufficient degrees of freedom to determine factor significance

T F The order of the trial runs should be randomized when possible

Multiple Choice (2 Points each) Circle (if .pdf) or Underline BEST ANSWER

- 3. The Fisher LSD family error rate for multiple comparisons is:
 - a. The probability of correctly identifying a difference in pairs of factor means
 - b. The probability of correctly finding no difference in pairs of factor means
 - c. The probability of <u>not</u> finding a difference in factor means when there is one
 - d. The probability of incorrectly identifying a difference between pairs of factor means when there is none

		OA-4603 DL EX	KAM II	Name: _Steve M	azza
a. CD b. ABC <mark>c.</mark> AC d. DB	alf Fractional Factorial v	with factors A, B, C,	D, what is the	Alias of the BD In	teraction?
a. Obje b. Obje c. Obje	e sections of an Effective ective, Criteria, Analysi ective, Procedure, Analy ective, Equations, Analy ective, Procedure, Reso	s ysis ysis	ility Test are:		
a. Var b. Var c. Con	sign variable matrix incliables, Control Method, iables, Factor/Levels, Introl Method, Factor/Letiables, Control Method,	, Instrumentation nstrumentation evels, Instrumentation	on		
	pts): e example Two Factor T ollowing: (Only one Eac				Aircraft, match
_ <u>C</u> _	Aircrew	A.	Primary Fac	tor	
<u>E</u>	Radial Miss Distance	В.	Unmeasured	Background Varia	ble
_ <u>A</u> _	Aircraft	C.	Blocking Fa	ctor	
<u>D</u>	Weather factors	D.	Measured Ba	ackground	
<u>B</u> _	Random Variations	E.	Dependent V	/ariable	
3. (4 pts) Leeading:	ist Four DT&E Problem	s/Lessons Learned th	at were identi	fied in the Army Te	esting Study
11	PM should start test-plan	ning earlier			
2.]	Historical data should be	used to better estima	ite cost, sched	ule, and resources	<u></u>
_	PM should plan for conti				ocess
ر	Dilouid plant for colle				

4. <u>Decision makers should fully understand the risk reduction role of T&E in the SE process</u>

Name: _Steve Mazza

- 9. (16 pts) Three different IR Sensors were tested to determine differences in maximum detection range against a common target.
 - (12 pts) Using Anova, test the null hypothesis that there was no significant difference between IR Sensor detection ranges at $\alpha = 0.05$ level of significance. (SHOW ALL WORK)

11 (21 8 64 6 36 8 64 6 36	un equal Sample size
12 144 9 81 7 49 9 81 12 144 9 81 11 121 8 64 6 36 8 64 6 36	Sample Size
9 81 12 144 9 81 11 121 8 64 6 36 8 64 6 36	/
11 (21 8 64 6 36 8 64 6 36	
8 64 6 36	. 4
27	6 400
32 1024 37 1369 28 184 2	1,
$C = \frac{T^2}{N} = 855.36$	
$C = \text{or } SStr = \sum_{j=1}^{k} \frac{T_j^2}{n_j} - C = \frac{1}{20300000000000000000000000000000000000$	Wysny 1895 is
$\sum_{i=1}^{n_i} n_i$	cu <79 6

One Way ANOVA formulas:

$$\sum_{j=1}^{k} \sum_{i=1}^{n} y_{ij}^{2} = 901$$

$$C = \frac{T^2}{N} = 845.36$$

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n} y_{ij}^{2} - C = 45.63636$$

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n} yij^2 - C = 45.63636$$
 > 39 vare al individual dake

$$SSE = SST - SStr = 127.1136$$

361	4	6	6/

Source	D.F.	Sums of	Mean	Fs	$F\alpha = 0.05$	Significant /
		Squares	Squares			Not Significant
IR Sensor	2	24.2197	12.10985	(4.523523)	0.048502	Significant
Exp. Error	8	21.41667	(2.677083)			
Total	10	116.9167				

b. (4 pts) Estimate the parameters: overall mean (u), and factors a_1 , a_2 , a_3

$$u = 8.8181$$

$$a_1 = 0.8484$$

$$a_2 = 0.4318$$

$$a_3 = -1.8181$$

10. (9 pts) Three Radar modifications were tested for detection range improvement using five trials each. The following single factor ANOVA Table presents the results:

Source	D.F.	Sums of Squares	Mean Squares	Fs	P
Radar Modification	2	139.6	69.8	5.72	0.018
Exp. Error	12	146.4	12.2		
Total	14	286.0			

The Mod sample means are:

$$Mod A = 31.4$$
, $Mod B = 28.6$, $Mod C = 24.0$

Using the Fisher LSD test, determine if any of the modifications were significantly different from each other at a level of significance of α = .05, and find the upper and lower confidence limits for MS& = 12,2 the difference of means.

$$LSD = t\alpha/2, k(n-1)\sqrt{\frac{2MSE}{n}} = 4.8158$$

$$t_{0.025}, 12 \sqrt{4.88}$$

$$t_{0.025}, 12 \sqrt{4.88}$$

$$t_{0.025}, 12 \sqrt{4.88}$$

$$t_{0.025}, 12 \sqrt{4.88}$$

Results:					
Comparison	Difference	LSD	Lower Conf. Limit.	Upper Conf. Limit	Significant or Not Significant
A – B	31.4 - 28.6 = 2.8	4.8158	-2,0158	7.6158	NS
B – C	28.6 - 24.0 = 4.6	4.8158	-0,2158	9,4158	25
A – C	31.4 - 24.0 = 7.4	4.8158	2,5842	12.2158	Sign

16 D goes though, it is not significant

11. (4 pts) The following Minitab table presents Fisher LSD 95% confidence intervals for the difference of F18-F16=2:1 LSD=2.919 pairs of three aircraft factor means.

F5-F16=4.8 LSD= 7,752 Aircraft = F16 subtracted from: Lower Center Upper ----+--Aircraft 2.100 5.019 -0.819F18 4.800 7.552 2.048 F5-F18 = 2.7 LSD = 7.919 NS. Aircraft = F18 subtracted from: Lower Center Upper Aircraft -0.219 2.700 5.619

a. Circle or underline the pairs of factor means that are significantly different from each other at a level of

significance of $\alpha = .05$:

F18-F16,

F5-F16,

F5-F18

Name: _Steve Mazza___

12. (7 pts) To compare five different formulations of fuel, seven different armored vehicles drove the identical route once with each fuel type. For each vehicle/fuel-type combination a fuel cost-of-operation value was determined. These numbers were analyzed with a standard Two-Factor ANOVA model yielding the table which is partially filled in below. 35-6x4=11

			26	WSXXX	
Source	D.F.	Sums of Squares	Mean Squares	Fs	$F \alpha = .05$
Armored Vehicle	6	82	13,667	3,417	0.0372
Fuel Types	4	48	12	3	0.0669
Exp. Error	11	44	4		
_ \ Total	34	174			
,		•	•		

A) Fill in the missing entries.

B) Making the normal assumptions, would you accept the hypothesis that there is no significant difference between the fuel cost of operations for each <u>vehicle type</u>, with $\alpha = .05$? Why?

Reject due to prabe 0.0372 forvehicle type

13. (10) A reduced regression model for predicting Sonar Detection Range included Water Depth (w), Sensor Modification (s), and Water Depth/SensorMod (ws) Interactions in the form:

$$\hat{Y} = \beta_0 + \beta_1 w + \beta_2 s + \beta_{12} w s + e$$

$$\text{The 2}^k \text{ factor settings, calculated factor effects and the grand mean of the data are below:}$$

Factor	Settings
Mater Denth (w)	200 ft (-)
Water Depth (w)	900 ft (+)
Sensor	Mod I (-)
Modifications (s)	Mod II (+)

Factor Effects:	
Grand Mean of Data	41.0
Water Depth (w):	3.8
Sensor Modification (s):	- 5.2
Water/Sensor Interaction (ws)	- 2.4

1. (3) Determine the coefficients for the reduced Regression Equation:

$$\beta_0 = 41$$
 $\beta_1 = 6$ $\beta_2 = 7.6$ $\beta_{12} = 1.2$

2. (5) Predict the result for Run (5) (200 ft and Mod II):

$$9 = 41 + 1.9(-1) - 12.6 - 1.2(-1)$$

= $41 - 1.9 - 2.6 + 1.2 = 37.7$

3. (2) The result for Run (5) was 35.5, what was the residual for Run (5)?

Name: _Steve Mazza_

14. (15 pts) The following is a 2⁴ Half Fractional Test Design. Determine Contrasts, SS, MSE, Fs, Fα, factor effects, and Acceptance or Rejection of the Null Hypothesis for Main factors A & B and Interaction CD. Test the Hypothesis Ho: A = B = CD = 0 at a level of significance of .05 i.e. no significant difference in factor levels or interaction. The Residual/Sum of Squares Error (SSE) is given below. (Show All Work)

$$\int_{0.05} \left(1.3\right) = 10.10 \qquad SumSq = \frac{(Contrast)^2}{r2^k}$$

24 Half Fractional Test Design

		Α	(-)	A (+)		Row
		B (-)	B (+)	B (-)	B (+)	Sum
C (+)	D (+)	24			25	49
` '	D (-)		23	16		39
C (-)	D (+)		20	21		41
.,	D (-)	17			21	38
Colum	n Sum	41	43	37	46	167

Contrasts: sum +; -A: -41-43+37+46= -11 B: -41+43-37+46= 11

49-39-41+38=

Fill in Blanks with Answers Here

	I III III Dialika Wit	II Allowel	0 11010.			40			
	Source	Deg. Of Freedom	Contrast	Sum Squares	Mean Squares	Fs	F _{.05}	Factor Effect	Accept/Reject Ho:
	Main Factors								
2	Α	1	-1	.0.5	0.5	0.0833	10.10	-	veg
4	В	1	11	15.1250	15,1250	2.5208	10,10	2.75	rei
	Interactions						WHE.		
1	C-D		7	0.875	0.875	0.1458	10.00	1,75	ni (
,	Residual (SSE)	3	LT ISL	6.0	6.0				TO THE REAL PROPERTY.

15. (5 pts) Calculate and plot the AD Interaction. (Show Y-axis scaling). Would you expect this

interaction to be significant? Why or why not?

AD Interaction: (5)
AN HARLY LIGHT OF MENT L

-24 F20 = -44/2=-22 | 25 + 21 = 46/2= 23 23 + 17 = 40/2=20 | -16-21= -37/2=-18,5

