Stability for binary scalar products

Andrey Kupavskii¹ and Dmitry Tsarev²

¹Moscow Institute of Physics and Technology, Moscow, Russia ¹G-SCOP, CNRS, Grenoble, France ²University of Cambridge, Cambridge, United Kingdom

Abstract

Questions on possible number of vertices and facets in 2-level polytopes motivate the study of vector families $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ with a property that $\forall a \in \mathcal{A}, b \in \mathcal{B}$ the scalar product $\langle a,b \rangle \in \{0,1\}$. In this work we show the stability of Kupavskii's and Weltge's upper bound on $|\mathcal{A}| \cdot |\mathcal{B}|$ for such \mathcal{A} and \mathcal{B} . We use this result to find the maximal possible product of the number of vertices and the number of facets in a 2-level polytope that is not affinely isomorphic to the cube or the cross-polytope.

1 Introduction

A polytope P is said to be 2-level if for every facet-defining hyperplane H there is a parallel hyperplane H' such that $H \cup H'$ contains all vertices of P. Basic examples of 2-level polytopes are simplices, hypercubes and cross-polytopes, but they also generalize a variety of interesting polytopes such as Birkhoff, Hanner, and Hansen polytopes, order polytopes and chain polytopes of posets, stable matching polytopes, and stable set polytopes of perfect graphs [1]. Combinatorial structure of two-level polytopes has also been studied in [3], and enumeration of such polytopes in [2] led to a conjecture that the product of the number of facets and the number of vertices in a d-dimensional 2-level polytope is bounded by $d2^{d+1}$. This has been proven in [5] via a stronger theorem regarding so-called families of vectors with binary scalar products:

Theorem 1. Let $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ both linearly span \mathbb{R}^d such that $\langle a, b \rangle \in \{0, 1\}$ holds for all $a \in \mathcal{A}$, $b \in \mathcal{B}$. Then we have $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d+1)2^d$.

In this paper, we prove several results regarding the stability of the bound in Theorem 1, . Our main result is the following

Theorem 2. Let $A, B \subseteq \mathbb{R}^d$ both linearly span \mathbb{R}^d such that $\langle a, b \rangle \in \{0, 1\}$ holds for all $a \in A$, $b \in B$. Furthermore, suppose A and B both have the size of at least d + 2. Then $|A| \cdot |B| \leq d2^d + 2d$.

We then use this to obtain the sharp upper bound on the product of the vertex count $f_0(P)$ and the facet count $f_{d-1}(P)$ in a 2-level polytope P that is distinct from both the cube and the cross-polytope:

Theorem 3. For d > 1 let P be a d-dimensional 2-level polytope that is not affinely isomorphic to the cube or the cross-polytope. Then $f_0(P)f_{d-1}(P) \leq (d-1) 2^{d+1} + 8(d-1)$.

Notation We will regularly treat vectors in \mathbb{R}^d as points in an affine space, with dim always referring to the affine dimension while span refers to linear span. The set of integers numbers from 1 to n is denoted [n].

Outline The next section lays out the proof of main results. In Section 3 we provide the proof of Theorem 3 and Section 4 contains proofs of claims from [5] that we use. Short but technical proofs of some statements used in the main sections are provided in Appendix A, as well as a conjecture that generalises our main result.

2 Stability results

Let \mathcal{A}, \mathcal{B} both linearly span \mathbb{R}^d and have binary scalar products, that is, $\langle a, b \rangle \in \{0, 1\}$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. We will use the following two simple observations a few times throughout our proofs. Let a_1, \ldots, a_d be a basis of \mathbb{R}^d contained in \mathcal{A} , consider the dual basis a_1^*, \ldots, a_d^* :

$$\langle a_i, a_j^* \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

and observe that elements of \mathcal{B} have 0/1 coordinates when expressed in this dual basis, or, in other words, \mathcal{B} is a subset of what we would call a cube:

$$\mathcal{B} \subseteq \left\{ \sum_{i=1}^{d} \delta_{i} a_{i}^{*}, \text{ where } \delta_{i} \text{ range over } \{0,1\} \right\}.$$

Another observation is that projecting one family on the linear span of a subset of another preserves the binary scalar products property: if $\mathcal{A}' \subseteq \mathcal{A}$ and $\pi_{\mathcal{A}'} : \mathbb{R}^d \to \operatorname{span}(\mathcal{A}')$ is the orthogonal projection, then

$$\forall a \in \mathcal{A}', b \in \mathcal{B} : \langle a, \pi_{\mathcal{A}'}(b) \rangle = \langle a, b \rangle \in \{0, 1\}.$$

We will now introduce some notation and restate some claims proved in [5]. Proofs of those claims and inequalities are provided in Section 4 for completeness.

Since we are interested in bounding the product $|\mathcal{A}||\mathcal{B}|$ from above, we will assume that \mathcal{A} and \mathcal{B} are inclusion-wise maximal with respect to the property of having binary scalar products. Let $b_d \in \mathcal{B} \setminus \{0\}$ be a vector with the maximum value of $\max(\dim \mathcal{A}_0, \dim \mathcal{A}_1)$, where

$$\mathcal{A}_i = \{ a \in \mathcal{A} : \langle a, b_d \rangle = i \} \text{ for } i = 0, 1.$$

The choice of b_d among the vectors that maximise $\max(\dim \mathcal{A}_0, \dim \mathcal{A}_1)$, if important, will be specified at a later stage. We denote the orthogonal projection onto $U = b_d^{\perp}$ as $\pi : \mathbb{R}^d \to U$. By $X \subset \mathbb{R}^d$ not containing opposite points we mean that $\{x, -x\} \subseteq X$ is only possible if $x = \mathbf{0}$

Claim 1. We may translate A and replace some points in B by their negatives such that the following holds.

(i) We can still write $A = A_0 \cup A_1$, where $A_i = \{a \in A : \langle a, b_d \rangle = i\}$ for i = 0, 1 such that

$$|\mathcal{A}_0| \ge |\mathcal{A}_1|. \tag{1}$$

(ii) We still have

$$\langle a, b \rangle \in \{0, 1\} \text{ for each } a \in \mathcal{A}_0 \text{ and } b \in \mathcal{B}.$$
 (2)

(iii) The set $\pi(\mathfrak{B})$ does not contain opposite points.

Claim 2. Every point in $\pi(\mathfrak{B})$ has at most two preimages in \mathfrak{B} .

Inequality 1.
$$|\mathcal{A}| |\mathcal{B}| \leq 2 |\mathcal{A}_0| |\pi(\mathcal{B})| + |\mathcal{A}_1| |\mathcal{B} \setminus \mathcal{B}_*|$$

We denote the linear span of \mathcal{A}_0 as U_0 and introduce the orthogonal projection $\tau: U \to U_0$. Let $\mathcal{B}_* \subseteq \mathcal{B}$ be the set of $b \in \mathcal{B}$ for which $\pi(b)$ has exactly one pre-image under projection onto U.

Claim 3. $|\pi(\mathcal{B})| \leq 2^{d-1-\dim U_0} |\tau(\pi(\mathcal{B}))|$

Claim 4. $\mathcal{B}\setminus\mathcal{B}_*$ can be partitioned as $\mathcal{B}_0\sqcup\mathcal{B}_1$, with $\mathcal{B}_0,\mathcal{B}_1$ satisfying

$$\forall b \in \mathcal{B}_i : |\{\langle a, b \rangle : a \in \mathcal{A}_i\}| = 1 \text{ for } i = 0, 1$$

Inequality 2. $|A| \cdot |B| \le (\dim U_0 + 1) 2^d + |A_0| |B_0| + |A_1| |B_1|$

Inequality 3. For i = 0, 1 we have

$$|\mathcal{A}_i| \le 2^{\dim(\mathcal{A}_i)}, \ |\mathcal{B}_i| \le 2^{\dim(\operatorname{span}(\mathcal{B}_i))}, \ and \ \dim(\mathcal{A}_i) + \dim(\operatorname{span}(\mathcal{B}_i)) \le d$$

Claim 5. For i = 0, 1, we have $|\mathcal{A}_i| |\mathcal{B}_i| \leq 2^d$.

Note that we can assume both $\mathbf{0}, b_d \in \mathcal{B}_0$ or $\mathbf{0}, b_d \in \mathcal{B}_1$. Therefore, claim 5 actually implies

$$|\mathcal{A}_1| |\mathcal{B}_1| \le 2^d, |\mathcal{A}_0| (|\mathcal{B}_0| + 2) \le 2^d,$$
 (3)

assuming here and further that $\mathbf{0}, b_d \in \mathcal{B}_1$.

We will now understand under which conditions equality is achieved in Theorem 1.

Theorem 4. Let $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ both linearly span \mathbb{R}^d such that $\langle a, b \rangle \in \{0, 1\}$ holds for all $a \in \mathcal{A}$, $b \in \mathcal{B}$. Then we only have $|\mathcal{A}| \cdot |\mathcal{B}| = (d+1)2^d$ if one of the families has size d+1 and the other is affinely isomorphic to $\{0, 1\}^d$.

Proof. Without loss of generality, we assume $|\mathcal{A}| \geq |\mathcal{B}|$. We will use induction on d, the statement is obvious in dimension 1. Assuming the statement holds for smaller dimensions, we prove it in dimension d. Consider two options for dim U_0 :

1. dim $U_0 \leq d-2$. From Inequality 2 and (3), we get:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (d-1) 2^d + 2 \cdot 2^d - 2 |\mathcal{A}_0| \le (d+1) 2^d - |\mathcal{A}| < (d+1) 2^d$$

2. dim $U_0 = d - 1$. Note that since $\mathbf{0} \in \mathcal{A}_0$, definition of \mathcal{B}_0 implies $\mathcal{B}_0 \subset U_0^{\perp}$, and thus here, assuming $\mathbf{0}, b_d \in \mathcal{B}_1$, we have $\mathcal{B}_0 = \emptyset$. We consider two subcases:

- a) $\mathcal{B}_* \neq \emptyset$. Equality in Theorem 1 can only be achieved when Inequality 2 (and consequently Inequality 1) are tight, which is only the case when $|\mathcal{A}_0| |\pi(\mathcal{B})| = d2^{d-1}$ (and $|\mathcal{A}_0| = |\mathcal{A}_1|$). By the induction hypothesis, the former is possible in one of two cases:
 - i) \mathcal{A}_0 is affinely isomorphic to $\{0,1\}^{d-1}$. Then, $|\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1| = 2^d$, which is only possible if \mathcal{A} is affinely isomorphic to $\{0,1\}^d$, and then \mathcal{B} can only consist of a basis and the zero vector.
 - ii) $|\mathcal{A}_0| = d$. Then, since $|\mathcal{B}| \leq |\mathcal{A}| = 2d$, $|\mathcal{A}| \cdot |\mathcal{B}| \leq 4d^2$, which is less than $(d+1)2^d$ for $d \geq 4$. For d=3, the inequality $|\mathcal{B}| \cdot |\mathcal{A}| \leq 32$ cannot yield equality since $|\mathcal{A}| = 6$. Finally, for d=2, we have $|\mathcal{A}| \cdot |\mathcal{B}| \leq |\mathcal{A}|^2 = 9 < 3 \cdot 2^2$.
- b) $\mathcal{B}_* = \emptyset$. Then, $\mathcal{B}_1 = \mathcal{B}$ and, consequently, $\dim(\text{span}(\mathcal{B}_1)) = d$. In this case Inequality 3 implies $|\mathcal{A}_1| = 1$. Similarly to case a), Inequality 1 is only tight in one of the following cases:
 - i) $|\mathcal{A}_0| = d$. Then, $|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 \le (d+1)^2 < (d+1) 2^d$.
 - ii) $|\mathcal{A}_0| = 2^{d-1}$, $|\pi(\mathcal{B})| = d$. Then, $|\mathcal{A}| \cdot |\mathcal{B}| = 2d \left(2^{d-1} + 1\right)$, which is less than $(d+1)2^d$ for d > 2. For d = 2, we have $|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 = 9 < 3 \cdot 2^2$.

We will improve the bound on $|\mathcal{A}| \cdot |\mathcal{B}|$ for families that differ from the extremal example. To do this, we will use an auxiliary

Inequality 4. For an integer $2 \le f \le d$, we have:

$$(d+f)(2^{d-1}+2^{d-f}) \le d2^d + 2d.$$

A short but technical proof of this inequality can be found in Appendix A.

Theorem 2. Let $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ both linearly span \mathbb{R}^d such that $\langle a, b \rangle \in \{0, 1\}$ holds for all $a \in \mathcal{A}, b \in \mathcal{B}$. Furthermore, suppose \mathcal{A} and \mathcal{B} both have the size of at least d + 2. Then $|\mathcal{A}| \cdot |\mathcal{B}| \leq d2^d + 2d$.

Proof. As in the proof of Theorem 4, we will use induction on d, and without loss of generality assume that $|\mathcal{A}| \geq |\mathcal{B}|$. Note that we can also assume that \mathcal{A} and \mathcal{B} are inclusion-wise maximal with respect to the property of having binary scalar products. For d < 3, the estimate coincides with Theorem 1. Assuming validity for smaller dimensions, let us prove the statement for dimension d. We consider possible values of dim U_0 :

1. dim $U_0 < d - 2$. Then, from Inequality 2 and Claim 5, we have:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (\dim U_0 + 1) \, 2^d + 2^d + 2^d \le d2^d$$
 (4)

- 2. dim $U_0 = d 2$. Applying the induction hypothesis to the families $\tau(\pi(\mathcal{B}))$ and \mathcal{A}_0 , we have three cases:
 - a) $|\tau(\pi(\mathcal{B}))| = d 1$. By maximality \mathcal{B} contained $\mathbf{0}$, so $\tau(\pi(\mathcal{B}))$ consists of zero and the basis of U_0 . Maximality of \mathcal{A} now means that \mathcal{A}_0 is affinely isomorphic to $\{0,1\}^{d-2}$. From (3), it follows that $|\mathcal{B}_0| \leq 2$. If $b \in \mathcal{B}_0$, then both elements of $\pi^{-1}(\pi(b))$ can be assumed to be in \mathcal{B}_0 , thus $|\mathcal{B}_0|$ is even and we have two scenarios:

i) $|\mathcal{B}_0| = 0$. Then, from Inequality 1 and Claim 5, we obtain:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4(d-1)2^{d-2} + 2^d = d2^d$$

ii) $|\mathcal{B}_0| = 2$. $U_0^{\perp} \cap \mathcal{B}$ consists of $\mathbf{0}$, b_d and two vectors from \mathcal{B}_0 . Let k+1 vectors in $\tau(\pi(\mathcal{B}))$ have two preimages in $\pi(\mathcal{B})$ under the action of τ . Among these k+1, let t_2 be the number of those vectors with both preimages in $\pi(\mathcal{B}_1)$, and let t_1+1 be the number of those with exactly one preimage in $\pi(\mathcal{B}_1)$ (including zero). The remaining $k-t_1-t_2$ have both preimages in $\pi(\mathcal{B}_*)$. Furthermore, let the vectors in $\tau(\pi(\mathcal{B}))$ with a single preimage under τ consist of q projections from $\pi(\mathcal{B}_1)$ and d-2-k-q projections from $\pi(\mathcal{B}_*)$. We then have:

$$|\mathcal{B}| = |\mathcal{B}_*| + |\mathcal{B}_0| + |\mathcal{B}_1|$$

$$= (k - t_1 - 2t_2 + d - 2 - q) + 2 + (2 + 4t_2 + 2t_1 + 2q)$$

$$= d + k + q + t_1 + 2t_2 + 2$$

First, consider the case when $t_2 > 0$. Then $\pi(\mathcal{B}_1)$ contains two elements that differ by a vector orthogonal to U_0 , thus $U_0^{\perp} \subset \operatorname{span}(\mathcal{B}_1)$, which implies:

$$\dim(\operatorname{span}(\mathcal{B}_1)) = t_1 + t_2 + q + 2 \implies |\mathcal{A}_1| \le 2^{d - t_1 - t_2 - q - 2},$$
$$|\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1| \le 2^{d - 2} + 2^{d - 2 - t_1 - t_2 - q}$$

$$|\mathcal{A}| \cdot |\mathcal{B}| \le \left(2^{d-2} + 2^{d-2-t_1-t_2-q}\right) (d+k+q+t_1+2t_2+2)$$

$$\le \left(2^{d-2} + 2^{d-2-t_1-t_2-q}\right) (2d+t_1+2t_2) \tag{5}$$

$$\le \left(2^{d-1} + 2^{d-1-t_1-t_2-q}\right) (d+t_1+t_2)$$

$$\le \left(2^{d-1} + 2^{d-1-t_1-t_2}\right) (d+t_1+t_2) \tag{6}$$

$$\le \left(2^{d-1} + 2^{d-1-t_1-t_2}\right) (d+t_1+t_2+1)$$

$$\le d2^d + 2d. \tag{7}$$

Here, the second inequality follows from $k+q \le d-2$, and the last one follows from Inequality 4. If $t_2 = 0$, we get a slightly weaker bound:

$$\dim(\text{span}(\mathcal{B}_1)) \ge t_1 + t_2 + q + 1$$

With the same reasoning this means that (6) becomes $(2^{d-1} + 2^{d-t_1})(d + t_1)$, which is still less than (7) when $t_1 \ge 2$ due to Inequality 4. Finally, when $t_2 = 0$ and $t_1 = 0, 1$, expression (5) yields a bound by $d2^d$ and $(2^{d-2} + 2^{d-3})(2d+1) = d2^d - (d-\frac{3}{2})2^{d-2} \le d2^d$, respectively.

b) $|A_0| = d - 1$. Then:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 \le 4|\mathcal{A}_0|^2 \le 4(d-1)^2 \le d2^d + 2d$$

c) Both $|\mathcal{A}_0|$ and $|\tau(\pi(\mathcal{B}))|$ are at least d. By induction this implies

$$|\mathcal{A}_0| \cdot |\tau(\pi(\mathcal{B}))| \le 2(d-2)(2^{d-3}+1).$$

Using Inequality 1, claim 3, and (3), we have

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4 \cdot (d-2) \left(2^{d-2} + 2 \right) + 2 \cdot 2^d - 2 |\mathcal{A}_0| = 2d(2^{d-1} + 1) + 2 \left(3d - 8 - |\mathcal{A}_0| \right)$$

This completes the proof when $|A_0| \ge 3d - 8$. Otherwise,

$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 \le 4 |\mathcal{A}_0|^2 \le 4 (3d - 9)^2$$

which is less than $d2^d + 2d$ for $d \ge 3$.

- 3. dim $U_0 = d 1$. Again, applying the induction hypothesis to $\pi(\mathcal{B})$ and \mathcal{A}_0 , we have three cases (recall that from the assumption $\mathbf{0}, b_d \in \mathcal{B}_1$, we have $\mathcal{B}_0 = \emptyset$):
 - a) $|\pi(\mathcal{B})| = d$, which by maximality of \mathcal{A} means that \mathcal{A}_0 is isomorphic to $\{0,1\}^{d-1}$.
 - i) dim $\mathcal{B}_1 = 1$. In this case, $|\mathcal{B}| = d + 1$, which does not satisfy the condition in the theorem's statement.
 - ii) dim $\mathcal{B}_1 = k \geq 2$. Then $|\mathcal{B}_1| = 2k$, $|\mathcal{A}_1| \leq 2^{d-k}$ from Inequality 3, and we have:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (2^{d-1} + 2^{d-k})(d+k) \le d2^d + 2d$$

by Inequality 4.

b) $|\mathcal{A}_0| = d$. Then $|\mathcal{A}||\mathcal{B}| \le ||\mathcal{A}|^2 \le 4|\mathcal{A}_0|^2 \le 4d^2$, which is not larger than $d2^d + 2d$ for d > 3. For d = 3, $|\mathcal{A}|^2$ gives the desired bound when $|\mathcal{A}_1| \le 2$, and finally $\mathcal{A}_1 = 3$ would by Inequality 3 imply

$$\dim \mathcal{A}_1 = 2 \Rightarrow |\mathcal{B}_1| = 2 \Rightarrow |\mathcal{B}| \le 5 \Rightarrow |\mathcal{A}| \cdot |\mathcal{B}| \le 3 \cdot 2^3 + 2 \cdot 3$$

c) Both $|\mathcal{A}_0|$ and $|\pi(\mathcal{B})|$ are at least d+1.

The remainder of the proof will deal with the case 3c). By the induction hypothesis,

$$|\mathcal{A}_0| \cdot |\pi(\mathcal{B})| \le (d-1) \left(2^{d-1} + 2\right).$$

Therefore from the fact that $\mathcal{B}_0 = \emptyset$ and Claim 5, we have

$$|\mathcal{A}| \cdot |\mathcal{B}| = 2 |\mathcal{A}_{0}| |\pi(\mathcal{B})| + |\mathcal{A}_{1}| |\mathcal{B}_{1}| - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}|$$

$$\leq 2 (d-1) (2^{d-1} + 2) + |\mathcal{A}_{1}| |\mathcal{B}_{1}| - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}|$$

$$\leq 2 (d-1) (2^{d-1} + 2) + 2^{d} - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}|$$

$$= d2^{d} + 2d - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}| + (2d - 4).$$

$$(10)$$

Thus, it suffices to show, for example, that $(|\mathcal{A}_0| - |\mathcal{A}_1|) |\mathcal{B}_*| \ge 2d - 4$. Consider the case where dim $\mathcal{A}_1 = d - 1$: then $\mathcal{B}_1 = \{0, b_d\}$, and using

$$|\mathcal{A}| \cdot |\mathcal{B}| = |\mathcal{A}| |\pi(\mathcal{B})| + |\mathcal{A}| \cdot \frac{1}{2} |\mathcal{B}_1| \le d2^d + 2d - 2^d + |\mathcal{A}| + (2d - 4)$$

we obtain the desired inequality when $|\mathcal{A}| \leq 2^d - 2d + 4$. Note that $|\mathcal{A}| > 2^d - 2d + 4$ is indeed impossible, as that would imply

$$|\mathcal{A}_0| \cdot |\pi(\mathcal{B})| > (2^{d-1} - d + 2) \cdot (d+1) \ge (d-1)(2^{d-1} + 2)$$

which contradicts the induction hypothesis. We may thus now assume dim $A_1 < d-1$. Observe that, due to this, we can also assume that $|\mathcal{A}_0| > |\mathcal{A}_1|$, since in the case that $|\mathcal{A}_0| = |\mathcal{A}_1|$ no shifting was performed in Claim 1 and we can start by shifting the family \mathcal{A} and changing the signs of some vectors in \mathcal{B} so that all conditions remain in force and \mathcal{A}_0 with \mathcal{A}_1 switch places, reducing the situation to the case where dim $U_0 < d-1$.

Consider the orthogonal projection $\pi_{\mathcal{B}_1}: \mathbb{R}^d \to \operatorname{span}(\mathcal{B}_1)$. By the definition of \mathcal{A}_1 , we have $|\pi_{\mathcal{B}_1}(\mathcal{A}_1)| = 1$. Let $k = \dim(\operatorname{span}(\mathcal{B}_1))$. Since \mathcal{B} contains a basis of \mathbb{R}^d , we have:

$$|\mathcal{B}_*| \ge d - k, \ (|\mathcal{A}_0| - |\mathcal{A}_1|) \, |\mathcal{B}_*| \ge d - k$$
 (11)

We will now deal with possible values of k:

i) k = 1, which means $\mathcal{B}_1 = \{0, b_d\}$. Since dim $\mathcal{A}_1 < d - 1$, from Inequality 3 it follows that $|\mathcal{A}_1| \leq 2^{d-2}$. Substituting this into (9), we obtain:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le d2^d + 2d + (2d - 4 - 2^{d-1}) \le d2^d + 2d$$

ii) k=2. From Inequality 3, it follows that $|\mathcal{B}_1| \leq 4$, and $|\mathcal{A}_1| \leq 2^{d-2}$. Due to (11), $|\mathcal{B}_*| \geq d-2$, so if $|\mathcal{A}_0| - |\mathcal{A}_1| \geq 2$, (10) yields the desired estimate. Similarly, (10) completes the proof if $|\mathcal{A}_0| - |\mathcal{A}_1| = 1$ and $|\mathcal{B}_*| \geq 2d-4$. Finally, if $|\mathcal{A}_0| - |\mathcal{A}_1| = 1$ and $|\mathcal{B}_*| < 2d-4$, then:

$$|\mathcal{A}| \cdot |\mathcal{B}| = (2|\mathcal{A}_1| + 1) \cdot (|\mathcal{B}_*| + |\mathcal{B}_1|) < (2^{d-1} + 1) \cdot (2d - 4 + 4) = d2^d + 2d$$

iii) k = d. Inequality 3 implies that A_1 consists of only one point. Hence, (9) becomes

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 2(d-1)(2^{d-1}+2) + |\mathcal{B}_1| - (|\mathcal{A}_0| - |\mathcal{A}_1|)|\mathcal{B}_*| \le 2(d-1)(2^{d-1}+2) + |\mathcal{B}|,$$

which completes the proof when $|\mathcal{B}| \leq 2^d - 2d + 4$. The opposite is indeed impossible, as it would contradict Theorem 1:

$$|\mathcal{A}| \cdot |\mathcal{B}| \ge |\mathcal{B}|^2 \ge (2^d - 2d + 4)^2 > (d+1)2^d$$

Before proceeding with the last case in the proof, let us understand that when k < d, we can assume $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| = k$. Clearly $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| \ge k$ because $\mathbf{0} \in \mathcal{A}_0$, and

$$\operatorname{span}(\pi_{\mathcal{B}_1}(\mathcal{A}_0)) = \operatorname{span}(\pi_{\mathcal{B}_1}(\operatorname{span}(\mathcal{A}_0))) = \operatorname{span}(\mathcal{B}_1) \cap b_d^{\perp},$$

which means $\pi_{\mathcal{B}_1}(\mathcal{A}_0)$ contains **0** and a basis of an (k-1)-dimensional space. Since by replacing some vectors in \mathcal{B}_1 with their opposites (without affecting $|\mathcal{B}_1|$) we ensure it has binary scalar products with \mathcal{A} , by Theorem 1 we have, if $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| \geq k+1$,

$$|\mathcal{B}_{1}| \cdot |\pi_{\mathcal{B}_{1}}(\mathcal{A})| \leq (k+1) \, 2^{k}, \ |\pi_{\mathcal{B}_{1}}(\mathcal{A})| \geq k+2 \Rightarrow |\mathcal{B}_{1}| \leq 2^{k} \left(1 - \frac{1}{k+2}\right) \Rightarrow |\mathcal{A}_{1}| \, |\mathcal{B}_{1}| \leq 2^{d} \left(1 - \frac{1}{k+2}\right) \Rightarrow |\mathcal{A}| \cdot |\mathcal{B}| \stackrel{(9)}{\leq} d2^{d} + 2d + (2d-4) - \frac{2^{d}}{k+2} - (d-k)$$

This proves the required estimate, because for $d \geq 3$ and k < d

$$d+k-4-\frac{2^d}{k+2} \le 2d-5-\frac{2^d}{d+1} = -\frac{1}{d+1}\left(2^d-(2d-5)(d+1)\right) \le 0$$

We now can assume $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| = k$, meaning $\pi_{\mathcal{B}_1}(\mathcal{A}_0)$ consists of zero and a basis of span $(\mathcal{B}_1) \cap b_d^{\perp}$, while $\pi_{\mathcal{B}_1}(\mathcal{A})$ consists of zero and a basis of span (\mathcal{B}_1) . With those assumptions in place, we proceed to the final subcase:

iv) 2 < k < d. Note that, due to (11), $\mathcal{B}_* \neq \varnothing$. Let's denote the elements of $\pi_{\mathcal{B}_1}(\mathcal{A})$ as $a_0 = 0, a_1, \ldots, a_k$, and their preimages in \mathcal{A} as $\mathbb{A}_j = \pi_{\mathcal{B}_1}^{-1}(a_j) \cap \mathcal{A}$. We'll choose the numbering such that $\mathbb{A}_1 = \mathcal{A}_1$. Let $b_{11}, b_{12}, \ldots, b_{1k}$ be a basis of \mathcal{B}_1 that is dual to a_1, \ldots, a_k . For example, according to our choice of numbering, $b_{11} = b_d$. Note that, due to \mathcal{B} being inclusion-wise maximal, all b_{1j} must belong to \mathcal{B}_1 (otherwise, they, along with $b_{1j} + b_d$ for j > 1, could be added to \mathcal{B}). If dim $\mathcal{A}_1 < d - k$, we can follow a similar argument as in part i) to obtain $|\mathcal{A}_1| \leq 2^{d-2}$ and the desired estimate. Consequently, we can now assume that dim $\mathcal{A}_1 = d - k$.

Our further plan is to write \mathcal{A} in a particular basis to see that, due to dim $\mathcal{A}_1 = d - k$, any of the b_{1j} could be initially chosen as b_d , and that a suitable choice would lead to the desired bound.

We will augment $\{b_{11}, \ldots, b_{1k}\}$ with elements from \mathcal{B}_* to form a basis for \mathbb{R}^d and represent \mathcal{A} in the dual basis. Then vectors of \mathcal{A} , arranged as column-vectors, form a matrix of the following form:

The rank of the highlighted block coincides with the affine dimension of $A_1 = A_1$, which is d - k. Therefore,

$$\forall j > 1 \colon d - 1 = \dim(\operatorname{span}(\mathcal{A} \setminus \mathbb{A}_j)) = \dim(\mathcal{A} \cap b_{1j}^{\perp}),$$

which means that, indeed, any of the b_{1j} could be set as b_d from the start. Choose b_{1j} with the smallest possible size of \mathbb{A}_j , and repeat all the same reasoning with it as b_d .

Note that in this case, $|A \setminus A_j| > |A_j|$, so there will be no need for translation of A that swaps A_0 and A_1 in Claim 1, and we can thus safely assume

$$\forall j > 1 \colon |\mathbb{A}_1| \le |\mathbb{A}_j| \Longrightarrow$$

$$|\mathcal{A}_0| - |\mathcal{A}_1| = |\mathbb{A}_0| + \sum_{j>1} |\mathbb{A}_j| \ge (k-1) |\mathcal{A}_1| \ge 2 |\mathcal{A}_1| \tag{12}$$

If $|\mathcal{A}_0| - |\mathcal{A}_1| \geq 2d - 4$, non-emptiness of \mathcal{B}_* and (10) imply the desired estimate. Otherwise

$$|\mathcal{A}_0| - |\mathcal{A}_1| < 2d - 4 \xrightarrow{(12)} |\mathcal{A}| < 2 \cdot (2d - 4) \Longrightarrow$$

 $|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 < (4d - 8)^2 < d2^d + 2d,$

concluding the proof.

Two examples that demonstrate tightness of the bound in Theorem 2 are

Example 1. Let $\{e_i\}$ be the standard basis of \mathbb{R}^d ,

$$\mathcal{A} = \left\{ \sum_{i=2}^{d} \delta_{i} e_{i} \right\} \cup \{e_{1}\}, \ \mathcal{B} = \{\delta_{1} e_{1} + e_{j}\} \cup \{e_{1}, 0\}, \ where \ \delta_{i} \ range \ over \ \{0, 1\} \ \ and \ j \ over \ [2, d].$$

Here $|\mathcal{A}| = 2^{d-1} + 1$ and $|\mathcal{B}| = 2d$.

Example 2. Let $\{e_i\}$ be the standard basis of \mathbb{R}^d ,

$$\mathcal{A} = \left\{ e_d + \sum_{i=1}^{d-1} \varepsilon_i e_i \right\} \cup \left\{ 0 \right\}, \ \mathcal{B} = \left\{ \frac{1}{2} \left(e_d + \varepsilon_i e_i \right) \right\}, \ where \ \varepsilon_i \ range \ over \ \left\{ -1, 1 \right\} \ and \ i \ over \ [d].$$

Just like in example 1, $|A| = 2^{d-1} + 1$ and |B| = 2d.

3 Application to 2-level polytopes

Our main application of Theorem 2 is the following

Theorem 3. For d > 1 let P be a d-dimensional 2-level polytope that is not affinely isomorphic to the cube or the cross-polytope. Then $f_0(P)f_{d-1}(P) \leq (d-1) 2^{d+1} + 8(d-1)$.

Before following with the proof let us make a simple observation, proof of which is given in Appendix A for completeness:

Lemma 1. Let S be a family of subsets of [d-1] such that |S| = d and

$$\forall S_1, S_2 \in \mathcal{S}: |S_2 \setminus S_1| \le 1.$$

 $Then\ either\ \mathbb{S}=\{S\subseteq [d-1]: |S|\geq d-2\}\ or\ \mathbb{S}=\{S\subseteq [d-1]: |S|\leq 1\}.$

Proof of Theorem 3. The statement is trivial on the plane, so we assume d > 2. Let us denote $V = f_0(P)$ and $F = f_{d-1}(P)$ for conciseness. Shift P so that 0 is among it's vertices and let \mathcal{A} denote the vertex set of P and \mathcal{B}' denote the minimal set of vectors such that every facet of P lies in a hyperplane $\{x : \langle x, b \rangle = \delta\}$ for some $\delta \in \{0, 1\}$ and $b \in \mathcal{B}'$. Let $\mathcal{B} = \mathcal{B}' \cup \{0\}$. If every vector in \mathcal{B}' defines one facet of P, we are done by Theorem 1:

$$V \cdot F < |\mathcal{A}| \cdot |\mathcal{B}| \le (d+1)2^d < (d-1)2^{d+1} + 8(d-1).$$

Otherwise, let $b_d \in \mathcal{B}'$ define two facets of P and consider the setting of the proof of Theorem 2. Note that we may assume $|\mathcal{A}_0| \geq |\mathcal{A}_1|$ if appropriate translation of P was made, so there will be no need for translation of \mathcal{A} or inversions of vectors in \mathcal{B} . Since $\dim(\mathcal{A}_1) = d - 1$, we have $\mathcal{B}_1 = \{0, b_d\}$ and $|\pi(\mathcal{B})| = |\mathcal{B}_*| + 1$, which means

$$|\mathcal{A}| \cdot |\mathcal{B}| = |\mathcal{A}_0| \cdot |\pi(\mathcal{B})| + |\mathcal{A}_1| \cdot |\pi(\mathcal{B})| + |\mathcal{A}|. \tag{13}$$

Since every vector in \mathcal{B}' defines at most two facets of P, $|\mathcal{B}| \geq \frac{F}{2} + 1$, thus from (13) we conclude

$$V \cdot F \le 2\left(|\mathcal{A}_0| \cdot |\pi(\mathcal{B})| + |\mathcal{A}_1| \cdot |\pi(\mathcal{B})|\right) \le 4 \cdot |\mathcal{A}_0| \cdot |\pi(\mathcal{B})| \tag{14}$$

Consider three cases:

1. $|\mathcal{A}_0| > d$ and $|\pi(B)| > d$. By Theorem 2, we have

$$|\mathcal{A}_0| \cdot |\pi(\mathcal{B})| \le (d-1)2^{d-1} + 2(d-1)$$

and with (14) we are done.

- 2. $|\pi(B)| = d$. Together with $\mathcal{B}_1 = \{0, b_d\}$, this means that \mathcal{B}' is a basis of \mathbb{R}^d . Every vector in \mathcal{B}' then has to define two facets of P, since otherwise P is unbounded. Thus P is affinely isomorphic to the cube.
- 3. $|\mathcal{A}_0| = d$. Note that as $|\mathcal{A}_1| \le |\mathcal{A}_0|$ and $\dim(\mathcal{A}_1) = d 1$, we also have $|\mathcal{A}_1| = d$. If $|\pi(\mathcal{B})| \le \frac{3}{4} \cdot 2^{d-1}$, then (14) implies $V \cdot F \le \frac{3}{4}d \cdot 2^{d+1} < (d-1)2^{d+1} + 8(d-1)$, so we may further assume

$$|\pi(\mathcal{B})| > \frac{3}{4} \cdot 2^{d-1}.$$
 (15)

We will now make several observations about the structure of \mathcal{A} and \mathcal{B} , after which it will become clear that P is affinely isomorphic to the cross-polytope. Let $a_0=0,a_1,\ldots,a_{d-1}$ be the elements of \mathcal{A}_0 and $\{u_1,\ldots,u_{d-1}\}$ be the basis of $\mathrm{span}(\mathcal{A}_0)$, dual to $\{a_1,\ldots,a_{d-1}\}$. Note that for every $j\in[d-1]$ there is $b_{\{j\}}\in\mathcal{B}$ such that $\pi(b_{\{j\}})=u_j\colon b_{\{j\}}$ is the vector orthogonal to the facet of P that contains vertices $\{a_0,\ldots,a_{d-1}\}\setminus\{a_j\}$ and differs from \mathcal{A}_0 . Given $S\subseteq[d-1]$ let us denote by b_S an element of \mathcal{B} for which $\pi(b_S)=\sum_{j\in S}u_j,$ if there is one, with $b_\varnothing=0$ to avoid ambiguity. Observe that the basis of \mathbb{R}^d dual to $\{b_{\{1\}},b_{\{2\}},\ldots,b_{\{d-1\}},b_d\}$ is $\{a_1,a_2,\ldots,a_{d-1},v\}$ for v that satisfies

$$\langle v, b_d \rangle = 1$$
 and $\forall j \in [d-1] : \langle v, b_{\{j\}} \rangle = 0$.

This means that

$$\mathcal{A}_1 = \{ v + \sum_{j \in S} a_j : S \in \mathcal{S} \}$$
 (16)

for some family S of subsets of [d-1] with |S|=d. Our goal is to show that $S=\{S\subseteq [d-1]: |S|\geq d-2\}$, as then P is affinely isomorphic to the cross-polytope, and we would be done. For $T\subseteq [d-1]$ denote $\sigma_T=\sum_{j\in T}a_j$ and note that, given $b_S\in \mathcal{B}$,

$$\langle \sigma_T, b_S \rangle = \langle \sigma_T, \pi(b_S) \rangle = \left\langle \sigma_T, \sum_{j \in S} \pi(b_{\{j\}}) \right\rangle = \left\langle \sum_{j \in T} a_j, \sum_{j \in S} b_{\{j\}} \right\rangle = |T \cap S|.$$

Now assume, looking for a contradiction, that $\exists S_1, S_2 \in \mathcal{S} : |S_2 \setminus S_1| > 1$. (15) means that there exists $b_S \in \mathcal{B}$ such that $|S \cap (S_2 \setminus S_1)| > 1$. (16) means that

$$\{-1, 0, 1\} \ni \langle v + \sum_{j \in S_2} a_j, b_S \rangle - \langle v + \sum_{j \in S_1} a_j, b_S \rangle = \langle \sigma_{S_2} - \sigma_{S_1}, b_S \rangle$$
$$= |S_2 \cap S| - |S_1 \cap S| = |(S_2 \setminus S_1) \cap S| > 1,$$

a contradiction. Therefore, $\forall S_1, S_2 \in \mathbb{S} : |S_2 \setminus S_1| \leq 1$, which by Lemma 1 implies that either $\mathbb{S} = \{S \subseteq [d-1] : |S| \geq d-2\}$ or $\mathbb{S} = \{S \subseteq [d-1] : |S| \leq 1\}$. The latter is, however, impossible, since then P only has d+1 facets and $|\pi(\mathfrak{B})| = d \leq \frac{3}{4}2^{d-1}$. (16) now shows that P is affinely isomorphic to the cross-polytope, and we are done.

Two examples demonstrate tightness of the bound in Theorem 3:

Example 3 (Cross-polytope \times segment). Let $\{e_i\}$ be the standard basis of \mathbb{R}^d ,

$$P = \operatorname{Conv}(\{\varepsilon_i e_i + \varepsilon_d e_d\}_{i \le d-1}), \text{ where } \varepsilon_i \text{ range over } \{-1,1\} \text{ for } i \in [d].$$

Here
$$f_0(P) = 4(d-1)$$
 and $f_{d-1}(P) = 2 + 2^{d-1}$.

Example 4 (Suspension of a cube). Let $\{e_i\}$ be the standard basis of \mathbb{R}^d ,

$$P = \operatorname{Conv}\left(\left\{\sum_{i=1}^{d-1} \varepsilon_i e_i\right\} \cup \left\{e_d, -e_d\right\}\right), \text{ where } \varepsilon_i \text{ range over } \left\{-1, 1\right\}.$$

This is (up to coordinate scaling) the dual of the polytope in the previous example and, in particular, $f_0(P) = 2 + 2^{d-1}$ and $f_{d-1}(P) = 4(d-1)$.

4 Proofs of claims

In this section, we provide the proofs of the claims from [5] made at the beginning of Section 2.

Claim 1. We may translate A and replace some points in B by their negatives such that the following holds.

(i) We can still write $A = A_0 \cup A_1$, where $A_i = \{a \in A : \langle a, b_d \rangle = i\}$ for i = 0, 1 such that

$$|\mathcal{A}_0| \ge |\mathcal{A}_1|. \tag{1}$$

(ii) We still have

$$\langle a, b \rangle \in \{0, 1\} \text{ for each } a \in \mathcal{A}_0 \text{ and } b \in \mathcal{B}.$$
 (2)

(iii) The set $\pi(\mathfrak{B})$ does not contain opposite points.

Proof. If $|\{a \in \mathcal{A} : \langle a, b_d \rangle = 0\}| \le |\{a \in \mathcal{A} : \langle a, b_d \rangle = 1\}|$, then we can choose any $a_* \in \mathcal{A}$ with $\langle a_*, b_d \rangle = 1$ (which exists since \mathcal{A} spans \mathbb{R}^d) and replace \mathcal{A} by $\mathcal{A} - a_*$, \mathcal{B} by $(\mathcal{B} \setminus \{b_d\}) \cup \{-b_d\}$, and b_d by $-b_d$. This yields (i).

After this replacement, for each $b \in \mathcal{B}$ there is some $\varepsilon_b \in \{\pm 1\}$ such that $\langle a, b \rangle \in \{0, \varepsilon_b\}$ holds for all $a \in \mathcal{A}$. Each b with $\{\langle a, b \rangle : a \in \mathcal{A}_0\} = \{0, -1\}$ is replaced by -b, which yields (ii).

Let \mathcal{A}'_1 be a translate of \mathcal{A}_1 such that $\mathbf{0} \in \mathcal{A}'_1$. Note that, for each $b \in \mathcal{B}$ we now have $\{\langle a,b \rangle : a \in \mathcal{A}_0\} = \{0,1\}$ or $\{\langle a,b \rangle : a \in \mathcal{A}_0\} = \{0\}$. In the second case, we replace b by -b if $\{\langle a,b \rangle : a \in \mathcal{A}'_1\} = \{0,-1\}$, otherwise we leave it as it is.

It remains to show that $\pi(\mathcal{B})$ does not contain opposite points after this transformation. To this end, let $b, b' \in \mathcal{B}$ such that $\pi(b) = \beta \pi(b')$ for some $\beta \neq 0$, where $\pi(b), \pi(b') \neq \mathbf{0}$. We have to show that $\beta = 1$. Note that for every $a \in \mathcal{A}_0 \cup \mathcal{A}'_1 \subseteq U$ we have

$$\langle a, b \rangle = \langle a, \pi(b) \rangle = \beta \langle a, \pi(b') \rangle = \beta \langle a, b' \rangle.$$

Suppose first that $\{\langle a,b\rangle:a\in\mathcal{A}_0\}\neq\{0\}$. By (2) there exists some $a\in\mathcal{A}_0$ with $1=\langle a,b\rangle=\beta\langle a,b'\rangle$. Thus, we have $\langle a,b'\rangle\neq0$ and hence $\langle a,b'\rangle=1$, again by (2). This yields $\beta=1$.

Suppose now that $\{\langle a,b\rangle: a\in\mathcal{A}_0\}=\{0\}$. Note that this implies $\{\langle a,b'\rangle: a\in\mathcal{A}_0\}=\{0\}$. As $\mathcal{A}_0\cup\mathcal{A}_1'$ spans U, we must have $\{\langle a,b\rangle: a\in\mathcal{A}_1'\}\neq\{0\}$ and hence there is some $a\in\mathcal{A}_1'$ with $\langle a,b\rangle=1$. Moreover, we have $\beta\langle a,b'\rangle=1$, and in particular $\langle a,b'\rangle\neq0$. This implies $\langle a,b'\rangle=1$ and hence $\beta=1$.

As in the previous proof, let \mathcal{A}'_1 be a translate of \mathcal{A}_1 such that $\mathbf{0} \in \mathcal{A}'_1$. Note that for each $b \in \mathcal{B}$ there are $\varepsilon_b, \gamma_b \in \{\pm 1\}$ such that

$$\langle a, b \rangle \in \{0, \varepsilon_b\} \text{ for each } a \in \mathcal{A} \text{ and}$$
 (17)

$$\langle a, b \rangle \in \{0, \gamma_b\} \text{ for each } a \in \mathcal{A}_1'.$$
 (18)

Inequality 1. $|\mathcal{A}| |\mathcal{B}| \leq 2 |\mathcal{A}_0| |\pi(\mathcal{B})| + |\mathcal{A}_1| |\mathcal{B} \setminus \mathcal{B}_*|$

Proof. Claim 2 implies $|\mathcal{B}| = 2|\pi(\mathcal{B})| - |\mathcal{B}_*|$ or $2(|\pi(\mathcal{B})| - |\mathcal{B}_*|) = |\mathcal{B} \setminus \mathcal{B}_*|$. With $|\mathcal{A}_0| \ge |\mathcal{A}_1|$ this gives

$$|\mathcal{A}||\mathcal{B}| = (|\mathcal{A}_0| + |\mathcal{A}_1|)(2|\pi(\mathcal{B}_*)| - |\mathcal{B}_*|) \le 2|\mathcal{A}_0||\pi(\mathcal{B}_*)| + 2|\mathcal{A}_1||\pi(\mathcal{B})| - 2|\mathcal{A}_1||\pi(\mathcal{B})|$$
$$= 2|\mathcal{A}_0||\pi(\mathcal{B}_*)| + |\mathcal{A}_1||\mathcal{B} \setminus \mathcal{B}_*|$$

The proofs of the subsequent claims rely on the following two lemmas.

Lemma 2. Suppose that $X \subseteq \{0,1\}^d \cup \{0,-1\}^d$ does not contain opposite points. Then we have $|X| \le 2^{\dim X}$.

12

Proof. We prove the statement by induction on $d \ge 1$, and observe that it is true for d = 1. Now let $d \ge 2$. If dim X = d, then we are also done. It remains to consider to case where X is contained in an affine hyperplane $H \subseteq \mathbb{R}^d$. Let $c = (c_1, \ldots, c_d) \in \mathbb{R}^d$, $\delta \in \{0, 1\}$ such that

$$H = \{ x \in \mathbb{R}^d : \langle c, x \rangle = \delta \}.$$

For each $i \in \{1, ..., d\}$ let $\pi_i : H \to \mathbb{R}^{d-1}$ denote the projection that forgets the *i*-th coordinate, and let $e_i \in \mathbb{R}^d$ denote the *i*-th standard unit vector. Note that $\pi_{i^*}(X) \subseteq \{0, 1\}^{d-1} \cup \{0, -1\}^{d-1}$.

Suppose there is some $i^* \in \{1, ..., d\}$ such that $\langle c, e_{i^*} \rangle \neq 0$ and $\pi_{i^*}(X)$ does not contain opposite points. By the induction hypothesis we obtain

$$|X| = |\pi_{i^*}(X)| \le 2^{\dim \pi_{i^*}(X)} = 2^{\dim X},$$

where the first equality and the last equality hold since π_{i^*} is injective (due to $\langle c, e_{i^*} \rangle \neq 0$).

It remains to consider the case in which there is no such i^* . Consider any $i \in \{1, \ldots, d\}$. If $\langle c, e_i \rangle \neq 0$, then there exist $x = (x_1, \ldots, x_d), x' = (x'_1, \ldots, x'_d) \in X$, $x \neq x'$ such that $\pi_i(x) = -\pi_i(x')$. We may assume that $\pi_i(x) \in \{0, 1\}^{d-1}$ and hence $\pi_i(x') \in \{0, -1\}^{d-1}$. As X does not contain opposite points, we must have $x_i = 1$ and $x'_i = 0$, or $x_i = 0$ and $x'_i = -1$. In the first case we obtain

$$2\delta = \langle c, x \rangle + \langle c, x' \rangle = [\langle \pi_i(c), \pi_i(x) \rangle + c_i x_i] + [\langle \pi_i(c), \pi_i(x') \rangle + c_i x_i']$$
$$= [\langle \pi_i(c), \pi_i(x) \rangle + c_i] + [\langle \pi_i(c), \pi_i(x') \rangle]$$
$$= c_i.$$

Similarly, in the second case we obtain $2\delta = -c_i$.

If $\delta = 0$, this would imply that $c = \mathbf{0}$, a contradiction to the fact that $H \neq \mathbb{R}^d$. Otherwise, $\delta = 1$ and hence every nonzero coordinate of c is ± 2 . Thus, for every $x \in \mathbb{Z}^d$ we see that $\langle c, x \rangle$ is an even number, in particular $\langle c, x \rangle \neq \delta$. This means that $X \subseteq \mathbb{Z}^d \cap H = \emptyset$, and we are done.

A direct consequence of Lemma 2 that we will employ is

Lemma 3. Let $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ such that \mathcal{A} spans \mathbb{R}^d , \mathcal{B} does not contain opposite points, and for every $b \in \mathcal{B}$ there is some $\varepsilon_b \in \{\pm 1\}$ such that $\{\langle a, b \rangle : a \in \mathcal{A}\} \subseteq \{0, \varepsilon_b\}$. Then we have $|\mathcal{B}| \leq 2^{\dim \mathcal{B}}$.

Proof. Let $a_1, \ldots, a_d \in \mathcal{A}$ be a basis of \mathbb{R}^d and express elements of \mathcal{B} in the dual basis, it then becomes a subset of $\{0,1\}^d \cup \{0,-1\}^d$ with no opposite points. By Lemma 2, $|\mathcal{B}| \leq 2^{\dim \mathcal{B}}$. \square

We are ready to continue with the proofs of the remaining claims.

Claim 2. Every point in $\pi(\mathcal{B})$ has at most two preimages in \mathcal{B} .

Proof. Let $y := \pi(b)$ for some $b \in \mathcal{B}$ and observe that $\pi^{-1}(y) = \{x \in \mathbb{R}^d : \pi(x) = y\}$ is a one-dimensional affine subspace. By (17) and Lemma 3 we obtain $|\mathcal{B} \cap \pi^{-1}(y)| \leq 2$.

Claim 3. $|\pi(\mathfrak{B})| \leq 2^{d-1-\dim U_0} |\tau(\pi(\mathfrak{B}))|$.

Proof. Fix any $b \in \mathcal{B}$ and let $v := \pi(b)$. Consider the orthogonal complement $W \subseteq U$ of U_0 in U. As $\tau^{-1}(\tau(v)) = v + W$, it suffices to show that

$$|(v+W) \cap \pi(\mathcal{B})| < 2^{d-1-\dim U_0}$$

holds. To this end, consider the linear subspace $\Pi \subseteq U$ spanned by v and W and let $\sigma : U \to \Pi$ denote the orthogonal projection on Π .

First, suppose that $\sigma(\mathcal{A}'_1)$ spans Π . For every $a \in \mathcal{A}'_1 \subseteq U$ and every $b \in \mathcal{B}$ with $\pi(b) \in v + W \subseteq \Pi$ we have

$$\langle \sigma(a), \pi(b) \rangle = \langle a, \pi(b) \rangle = \langle a, b \rangle \in \{0, \gamma_b\}$$

by (18). Moreover, recall that $\pi(\mathcal{B})$ does not contain opposite points by Claim 1 (iii). Thus, the pair $\sigma(\mathcal{A}'_1)$ and $(v+W) \cap \pi(\mathcal{B})$ satisfies the requirements of Lemma 3 (in Π), and hence we obtain

$$|(v+W) \cap \pi(\mathcal{B})| \le 2^{\dim(v+W)} = 2^{\dim W} = 2^{\dim U - \dim U_0} = 2^{d-1 - \dim U_0}.$$

It remains to consider the case in which $\sigma(\mathcal{A}'_1)$ does not span Π . Recall that we chose b_d as the nonzero vector in \mathcal{B} with the maximal $\varphi(b_d) := \max(\dim(\mathcal{A}_0), \dim(\mathcal{A}_1))$ for the corresponding \mathcal{A}_0 and \mathcal{A}_1 . Unless $|(v+W)\cap\pi(\mathcal{B})|=1$, we will identify points $b_1,b_2\in\mathcal{B}$ with $\max\{\varphi(b_1),\varphi(b_2)\}>\varphi(b_d)$, a contradiction to the choice of b_d .

As $\mathcal{A}_0 \cup \mathcal{A}_1'$ spans U, we know that $\sigma(\mathcal{A}_0 \cup \mathcal{A}_1')$ spans Π . Since \mathcal{A}_0 is orthogonal to W, this means that $\sigma(\mathcal{A}_0)$ spans a line, and $\sigma(\mathcal{A}_1')$ spans a hyperplane H in Π . Note that we have $v \notin W$ (otherwise $W = \Pi$ and so $\sigma(\mathcal{A}_1')$ spans Π). Thus, every nonzero point in $\sigma(\mathcal{A}_0)$ has nonzero scalar product with v. Moreover, for every $a \in \mathcal{A}_0$ with $\sigma(a) \neq \mathbf{0}$ we have $\langle \sigma(a), v \rangle = \langle a, v \rangle = \langle a, b \rangle \in \{0, 1\}$ by (2). Thus, since the nonzero vectors in $\sigma(\mathcal{A}_0)$ are collinear, we obtain

$$\sigma(\mathcal{A}_0) \subset \{\mathbf{0}, \sigma(a_0)\}$$

for some $a_0 \in \mathcal{A}_0$. Since $\mathbf{0} \in H$, we have $\sigma(\mathcal{A}_0) \setminus H \subseteq \{\sigma(a_0)\}$ and further, since $\sigma(\mathcal{A}_0 \cup \mathcal{A}'_1)$ spans Π , we have $\sigma(\mathcal{A}_0) \setminus H = \{\sigma(a_0)\}$. Let $c \in \Pi$ be a normal vector of H. As $\sigma(a_0) \notin H$, we may scale c so that $\langle \sigma(a_0), c \rangle = 1$. Let $a_* \in \mathcal{A}_1$ such that $\mathcal{A}'_1 = \mathcal{A}_1 - a_*$. We define

$$b_1 := c - \delta_1 b_d \neq \mathbf{0},$$

where $\delta_1 := \langle a_*, c \rangle$. For every $a \in \mathcal{A}_0$ we have

$$\langle a, b_1 \rangle = \langle a, c \rangle = \langle \sigma(a), c \rangle \in \{ \langle \mathbf{0}, c \rangle, \langle \sigma(a_0), c \rangle \} = \{0, 1\},$$

and for every $a \in A_1$ we have

$$\begin{split} \langle a,b_1\rangle &= \underbrace{\langle a-a_*,b_1\rangle + \langle a_*,b_1\rangle = \langle a-a_*,c\rangle + \langle a_*,b_1\rangle = \underbrace{\langle \underline{\sigma(a-a_*)},c\rangle + \langle a_*,b_1\rangle}_{\in H} \\ &= \langle a_*,b_1\rangle = \langle a_*,c\rangle - \delta_1\langle a_*,b_d\rangle = \langle a_*,c\rangle - \delta_1 = 0. \end{split}$$

Thus, by the maximality of \mathcal{B} , (a scaling of) the vector b_1 is contained in \mathcal{B} . Since we assumed $\mathbf{0} \in \mathcal{A}_0$, we have $\varphi(b_1) \geq \dim(\mathcal{A}_1) + 1$.

In order to construct b_2 , let us suppose that there is another point $b' \in \mathcal{B}$ with $v' := \pi(b') \neq v$ and $v' \in (v+W)$. If there is no such point, then the statement of the claim is true. Recall that $\sigma(a_0)$ is orthogonal to W, and let

$$\xi := \langle \sigma(a_0), v \rangle = \langle \sigma(a_0), \underbrace{v - v'}_{\in W} \rangle + \langle \sigma(a_0), v' \rangle = \langle \sigma(a_0), v' \rangle.$$

Choose $v'' \in \{v, v'\}$ such that $\xi c \neq v''$, and let $b'' \in \{b, b'\}$ such that $\pi(b'') = v''$. Define $\delta_2 := \langle a_*, v'' - \xi c \rangle$ and note that

$$b_2 := v'' - \xi c - \delta_2 b_d$$

is nonzero since $v'' - \xi c \in U \setminus \{0\}$. For every $a \in A_0$ we have

$$\langle a, b_2 \rangle = \langle a, \underbrace{v'' - \xi c} \rangle = \langle \sigma(a), v'' - \xi c \rangle,$$

which is zero if $\sigma(a) = 0$. Otherwise, $\sigma(a) = \sigma(a_0)$ and we obtain

$$\langle a, b_2 \rangle = \langle \sigma(a_0), v'' \rangle - \xi \langle \sigma(a_0), c \rangle = \langle \sigma(a_0), v'' \rangle - \xi = 0.$$

Thus, b_2 is orthogonal to \mathcal{A}_0 . Moreover, note that

$$\langle a_*, b_2 \rangle = \langle a_*, v'' - \xi c \rangle - \delta_2 \underbrace{\langle a_*, b_d \rangle}_{-1} = 0.$$

Thus, for every $a \in A_1$ we have

$$\langle a, b_2 \rangle = \langle a - a_*, b_2 \rangle + \langle a_*, b_2 \rangle = \langle a - a_*, b_2 \rangle = \langle a - a_*, v'' \rangle - \xi \underbrace{\langle a - a_*, c \rangle}_{=0} - \delta_2 \underbrace{\langle a - a_*, b_d \rangle}_{=0}$$
$$= \langle a - a_*, v'' \rangle = \langle a - a_*, b'' \rangle \in \{0, \gamma_{b''}\}$$

by (18). Thus, again by the maximality of \mathcal{B} , (a scaling of) the vector b_2 is contained in \mathcal{B} , and since b_2 is orthogonal to \mathcal{A}_0 and $a_* \in \mathcal{A}_1$, we have $\varphi(b_2) \geq \dim(\mathcal{A}_0) + 1$. However, by the choice of b_d we must have

$$\max\{\dim(\mathcal{A}_0),\dim(\mathcal{A}_1)\}+1\leq \max\{\varphi(b_1),\varphi(b_2)\}\leq \varphi(b_d)=\max\{\dim(\mathcal{A}_0),\dim(\mathcal{A}_1)\},$$
 a contradiction. \Box

Claim 4. $\mathbb{B}\setminus\mathbb{B}_*$ can be partitioned as $\mathbb{B}_0\sqcup\mathbb{B}_1$, with $\mathbb{B}_0,\mathbb{B}_1$ satisfying

$$\forall b \in \mathcal{B}_i : |\{\langle a, b \rangle : a \in \mathcal{A}_i\}| = 1 \text{ for } i = 0, 1$$

Proof. Let $b \in \mathcal{B} \setminus \mathcal{B}_*$ and, for the sake of contradiction, suppose that $|\{\langle a,b\rangle : a \in \mathcal{A}_0\}| = |\{\langle a,b\rangle : a \in \mathcal{A}_1\}| = 2$. Let $b' \in \mathcal{B} \setminus \{b\}$ such that $\pi(b) = \pi(b')$. In other words, we have $b' = b + \gamma b_d$ for some $\gamma \neq 0$. Then, by (2) we have

$$\{\langle a, b' \rangle : a \in \mathcal{A}_0\} = \{\langle a, b \rangle : a \in \mathcal{A}_0\} = \{0, 1\}$$

and hence we obtain $\varepsilon_b = \varepsilon_{b'} = 1$ by (17). Again by (17) we see

$$\{0,1\} \supseteq \{\langle a,b'\rangle : a \in \mathcal{A}_1\} = \{\langle a,b\rangle : a \in \mathcal{A}_1\} + \gamma = \{0,1\} + \gamma = \{\gamma,1+\gamma\},$$

which implies $\gamma = 0$, a contradiction.

Inequality 2.
$$|A| \cdot |B| \le (\dim U_0 + 1) 2^d + |A_0| |B_0| + |A_1| |B_1|$$

Proof. $\tau(\pi(\mathcal{B}))$ and \mathcal{A}_0 are both spanning U_0 and have binary scalar products, so by Theorem 1 (or by the induction hypothesis, in the context of the proof of Theorem 1 in [5])

$$|\tau(\pi(\mathcal{B}))||\mathcal{A}_0| \le (\dim U_0 + 1)2^{\dim U_0}$$

Combining this with Claim 3 and Inequality 1 we get

$$|\mathcal{A}||\mathcal{B}| \le 2 \cdot (\dim(U_0) + 1)2^{d-1} + |\mathcal{A}_1|(|\mathcal{B}_0| + |\mathcal{B}_1|) \le (\dim U_0 + 1)2^d + |\mathcal{A}_0||\mathcal{B}_0| + |\mathcal{A}_1||\mathcal{B}_1|,$$

where the second inequality is due to $|A_0| \ge |A_1|$.

Inequality 3. For i = 0, 1 we have

$$|\mathcal{A}_i| \leq 2^{\dim(\mathcal{A}_i)}, \ |\mathcal{B}_i| \leq 2^{\dim(\operatorname{span}(\mathcal{B}_i))}, \ and \ \dim(\mathcal{A}_i) + \dim(\operatorname{span}(\mathcal{B}_i)) \leq d$$

Proof. The first (and second) inequality is a direct consequence of Lemma 3 after writing \mathcal{A} (or \mathcal{B}) in the basis, dual to a basis bound in \mathcal{B} (or \mathcal{A}). The last inequality follows from the definition of \mathcal{B}_i : for each $b \in \mathcal{B}_i$ there is ξ_b such that

$$\mathcal{A}_i \subset W_i$$
, where $W_i = \{x \in \mathbb{R}^d : \langle x, b \rangle = \xi_b \text{ for all } b \in \mathcal{B}_i\}$,

and clearly $\dim(W_i) \leq d - \dim(\operatorname{span}(\mathcal{B}_i))$.

Claim 5. For i = 0, 1, we have $|\mathcal{A}_i| |\mathcal{B}_i| \leq 2^d$.

Proof. By Inequality 3,

$$|\mathcal{A}_i||\mathcal{B}_i| \le 2^{\dim(\mathcal{A}_i)} \cdot 2^{\dim(\operatorname{span}(\mathcal{B}_i))} \le 2^d$$

A Appendix

Inequality 4. For an integer $2 \le f \le d$, we have:

$$(d+f)(2^{d-1}+2^{d-f}) \le d2^d + 2d.$$

Proof. We will prove this by induction on d: when d = f, the equality is satisfied. Let's perform the induction step from d to d+1. Denoting the left and right sides of the inequality as l(d, f) and r(d), respectively, we have

$$\begin{split} r(d+1) - l(d+1,f) &\geq (r(d+1) - r(d)) - (l(d+1,f) - l(d,f)) \\ &= \left(d2^d + 2^{d+1} + 2\right) - (d+f+2)\left(2^{d-1} + 2^{d-f}\right) \\ &= 2^{d-f}\left(d-f+2\right)\left(2^{f-1} - 1 - \frac{2f}{d-f+2}\right) + 2 \\ &\geq 2^{d-f}\left(d-f+2\right)\left(2^{f-1} - 1 - f\right) \end{split}$$

The obtained expression is non-negative for f > 2. For f = 2 and $d \ge 4$, we have $2^{f-1} - 1 - \frac{2f}{d-f+2} \ge 0$, and for f = 2 and d = 2, 3, the initial inequality is checked explicitly.

Lemma 1. Let S be a family of subsets of [d-1] such that |S| = d and

$$\forall S_1, S_2 \in \mathcal{S} : |S_2 \setminus S_1| \le 1.$$

Then either $S = \{S \subseteq [d-1] : |S| \ge d-2\}$ or $S = \{S \subseteq [d-1] : |S| \le 1\}$.

Proof. We assume d > 2 as the statement is trivial otherwise. $|\mathcal{S}| > 2$ and clearly \mathcal{S} contains sets of at most two different sizes (that differ by one), so let $U, V \in \mathcal{S}$ both be of size $k \in [d-2]$. Observe that there are now only four options for sets in \mathcal{S} :

- (a) $U \cup V$ of size k+1.
- (b) Sets of size k that are contained in $U \cup V$.
- (c) Sets of size k that contain $U \cap V$ as a subset.
- (d) $U \cap V$ of size k-1.
- (a) and (d) are not possible simultaneously, neither are (b) and (c) with the exception of U and V. There are k+1 and d-k sets satisfying (b) and (c) respectively, so $|\mathcal{S}|=d$ is only possible if k=d-2 or k=1 with $\mathcal{S}=\{S\subseteq [d-1]:|S|\geq d-2\}$ or $\mathcal{S}=\{S\subseteq [d-1]:|S|\leq 1\}$ respectively.

We finish with a conjecture that generalises our main result:

Conjecture 1. Let $A, B \subseteq \mathbb{R}^d$ both linearly span \mathbb{R}^d such that $\langle a, b \rangle \in \{0, 1\}$ holds for all $a \in A$, $b \in B$. Furthermore, suppose |A| and |B| are both strictly larger then $2^{k-1}(d-k+2)$. Then $|A| \cdot |B| \le (2^{d-k} + k)2^k(d-k+1)$.

References

- [1] M. Aprile, A. Cevallos, and Y. Faenza. On 2-level polytopes arising in combinatorial settings. SIAM Journal on Discrete Mathematics, 32(3):1857–1886, 2018.
- [2] A. Bohn, Y. Faenza, S. Fiorini, V. Fisikopoulos, M. Macchia, and K. Pashkovich. Enumeration of 2-level polytopes. *Mathematical Programming Computation*, 11, 2018.
- [3] S. Fiorini, V. Fisikopoulos, and M. Macchia. Two-level polytopes with a prescribed facet. In R. Cerulli, S. Fujishige, and A. R. Mahjoub, editors, *Combinatorial Optimization*, pages 285–296, Cham, 2016. Springer International Publishing.
- [4] A. Kupavskii and F. Noskov. Octopuses in the boolean cube: Families with pairwise small intersections, part i. *Journal of Combinatorial Theory, Series B*, 2023.
- [5] A. Kupavskii and S. Weltge. Binary scalar products. *Journal of Combinatorial Theory*, Series B, 156, 2022.