Cálculo diferencial em \mathbb{R}^n : Extremos Livres

M. Elfrida Ralha (eralha@math.uminho.pt)

M.Isabel Caiado (icaiado@math.uminho.pt)

abril 2018

[MIEInf] Análise-2017-18

1 / 16

Extremos livres

Definições Básicas

Identificação de Pontos Críticos: Teste das 1. as derivadas

Classificação de Pontos Críticos: Teste das $2.^{as}$ derivadas Funções Quadráticas definidas por $f(x,y)=ax^2+bxy+cy^2$ Matriz Hessiana

Conceitos: Definições

Seja $U \subset \mathbb{R}^n$ um conjunto aberto, $a = (a_1, \dots, a_n) \in U$ e $f: U \longrightarrow \mathbb{R}$. Diz-se que

• f tem um minimizante local em $a \in U$ se existir uma vizinhança $B(a,\varepsilon)$ tal que

$$f(x) \ge f(a), \quad \forall x \in B(a, \varepsilon) \cap U;$$

▶ f tem um maximizante local em $a \in U$ se existir uma vizinhança $B(a, \varepsilon)$ de a tal que

$$f(x) \le f(a), \quad \forall x \in B(a, \varepsilon) \cap U;$$

▶ f tem um extremante local em $a \in U$ se tiver um minimizante ou um maximizante local em a.

[MIEInf] Análise-2017-18

3 / 16

Exemplos: Extremos, via definição

- 1. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $g(x,y) = -\sqrt{x^2 + y^2}$
- 1.1 Conjeture sobre os extremantes de g.
- 1.2 Verifique que (0,0) é maximizante de g.

- 2. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = x^2 2x + y^2 4y + 5$
- 2.1 Conjeture sobre os extremantes de f.
- 2.2 Verifique que (1,2) é minimizante de f.

Teste das 1.as derivadas

Seja $U \subset \mathbb{R}^n$ um conjunto aberto e $f: U \longrightarrow \mathbb{R}$ uma função de classe \mathcal{C}^1 .

- $ightharpoonup \mathbf{a} \in U$ é um ponto crítico de f quando, simultaneamente,
 - 1. $\mathbf{a} \in \operatorname{int} U$ (isto é, \mathbf{a} é um ponto interior do domínio de f) e
 - 2. $\nabla f(\mathbf{a})$ não existe (não pode ser definido) ou $\nabla f(\mathbf{a}) = \vec{0}$
- ▶ [Teste das $\mathbf{1}^{as}$ derivadas] Se $\mathbf{a} \in U$ é um extremante local de f então é um ponto crítico de f.
- ▶ $\mathbf{a} \in U$ é um ponto de sela de f se \mathbf{a} é ponto crítico mas não é extremante local de f.

[MIEInf] Análise-2017-18

5 / 16

Observação

- ▶ O teorema/teste das 1.^{as} derivadas estabelece que os extremantes só ocorrem nos pontos críticos de uma função. Contudo, nem todos os pontos críticos correspondem a um extremante.
- Como fazer?
 - 1. Identificar os pontos críticos, usando o Teste/Teorema;
 - 2. Classificar os pontos críticos.

Exemplo: Extremos, via teste das 1. as derivadas

- 1. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = x^2 y^2$
- 1.1 Identifique os pontos críticos de f.
- 1.2 Verifique que (0,0) é ponto de sela de f.

Obs: Atente-se, também, num diagrama de nível que represente curvas em torno da origem...

[MIEInf] Análise-2017-18

7 / 16

Extremos & curvas de nível

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = 8y^3 + 12x^2 - 24xy$

- a) Identifique os pontos críticos.
- b) Classifique os pontos críticos, partindo de um diagrama de nível conveniente.

[MIEInf] Análise-2017-18

Funções quadráticas da forma $f(x,y) = ax^2 + bxy + cy^2$

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função (de classe \mathcal{C}^3 em $B(\mathbf{a}, \varepsilon)$) definida por $f(x,y) = ax^2 + bxy + cy^2$; onde $a,b,c \in \mathbb{R}$ e $a \neq 0$.

- ightharpoonup Identifiquem-se e classifiquem-se os pontos críticos de f.
 - 1. f tem um único ponto crítico em (0,0). apause
 - 2. Analise-se a forma do gráfico de f, sabendo que f(0,0) = 0.

$$f(x,y) = ax^{2} + bxy + cy^{2} = a\left(x^{2} + \frac{b}{a}xy + \frac{c}{a}y^{2}\right)$$

$$= \cdots$$

$$= a\left[\left(x + \frac{b}{2a}y\right)^{2} + \left(\frac{4ac - b^{2}}{4a^{2}}\right)y^{2}\right]$$

- A forma do gráfico depende do discriminante $D=4ac-b^2$ ser positivo, negativo ou zero.
- **Exercício**: Classifique-se, então, o ponto crítico... Se D > 0...

9 / 16

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função de classe \mathcal{C}^3 em $B(\mathbf{a}, \varepsilon)$, tal que $\nabla f(0,0) = \vec{0}$.

▶ O **polinómio de Taylor**, quadrático, em torno de (0,0), para a função f é

•

$$f(x,y) \approx f(0,0) + f_x(0,0)x + f_y(0,0)y + f_x(0,0)x^2 + f_{xy}(0,0)xy + \frac{1}{2}f_{yy}(0,0)y^2$$

Ou seja

$$f(x,y) - f(0,0) \approx +\frac{1}{2}f_{xx}(0,0)x^2 + f_{xy}(0,0)xy + \frac{1}{2}f_{yy}(0,0)y^2$$

A forma do gráfico depende do $\emph{discriminante}\ D=4ac-b^2$ ser positivo, negativo ou zero.

▶ O discriminante $D = 4ac - b^2$ é, agora,

$$D = f_{xx}(0,0) f_{yy}(0,0) - f_{xy}(0,0)^{2}$$

que é o DETERMINANTE de uma matriz quadrada (de ordem 2) cujos elementos são as derivadas de 2.a ordem.

[MIEInf] Análise-2017-18

► [Determinante de uma Matriz, de 2.^{as} Derivadas]

Seja $U \subset \mathbb{R}^2$ um conjunto aberto, $f: U \longrightarrow \mathbb{R}$ uma função de classe \mathcal{C}^3 numa vizinhança de $(x_0,y_0) \in U$. Considere-se uma matriz $\mathcal{H}f(x_0,y_0)$ tal que

$$\det \mathcal{H}f(x_0, y_0) = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2$$

Suponha-se que $(x_0, y_0) \in U$ é um ponto crítico de f. Assim,

- Se $\det \mathcal{H}f(x_0, y_0) > 0$, então (x_0, y_0) é um extremante local de f. Além disso,
 - se $f_{xx}(x_0, y_0) > 0$, então f tem um minimizante local em (x_0, y_0) ;
 - se $f_{xx}(x_0, y_0) < 0$, então f tem um maximizante local em (x_0, y_0) ;
- Se $\det \mathcal{H}f(x_0, y_0) < 0$ então f tem um ponto de sela em (x_0, y_0) ;
- Se $\det \mathcal{H}f(x_0, y_0) = 0$ nada se pode concluir.

[MIEInf] Análise-2017-18

11 / 16

Observação/Exercício

- No resultado anterior "se $\det \mathcal{H} f(x_0, y_0) < 0$, então f tem um ponto de sela em (x_0, y_0) ". Porquê?
- ▶ Pode traduzir-se esse mesmo resultado em termos de "menores principais"da matriz H:
 - $M_2 < 0$ e M_1 ?
 - Se $M_2 = \det \mathcal{H}f(x_0, y_0) < 0$, então os 2 valores próprios de $\mathcal{H}f(x_0, y_0)$ têm sinais opostos pelo que $\mathcal{H}f(x_0, y_0)$ é uma matriz indefinida e (x_0, y_0) é um ponto de sela de f.

Exemplo

- 1. Identifique e classifique os pontos críticos da função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $f(x,y) = 12x^2 + 8y^3 24xy$.
 - 1. Determinar P tal que $\nabla f(P) = \vec{0}$;
 - 2. Estudar o sinal de det $\mathcal{H}f(P)$.

[MIEInf] Análise-2017-18

13 / 16

Matriz Hessiana

Seja $U \subset \mathbb{R}^n$ um conjunto aberto e $f: U \longrightarrow \mathbb{R}$ uma função de classe C^3 em $B(\mathbf{a}, \varepsilon)$.

lacktriangle Define-se a matriz Hessiana de f em ${f a}$ por

$$\mathcal{H}f(\mathbf{a}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{a}) & \cdots & f_{x_1x_n}(\mathbf{a}) \\ \vdots & & \vdots \\ f_{x_nx_1}(\mathbf{a}) & \cdots & f_{x_nx_n}(\mathbf{a}) \end{pmatrix}$$

- $ightharpoonup \mathcal{H}f$ é uma matriz
 - quadrada de dimensão n;
 - simétrica porque, pelo Teorema de Schwarz, $f_{x_ix_j}(\mathbf{a}) = f_{x_jx_i}(\mathbf{a})$

[MIEInf] Análise-2017-18

► [Teste das 2.^{as} derivadas] (para extremantes locais)

Seja $U \subset \mathbb{R}^n$ um conjunto aberto, $f: U \longrightarrow \mathbb{R}$ uma função de classe C^3 e $\mathbf{a} \in U$ um ponto crítico de f. Nestas condições,

- [Critério dos menores principais]
 - ▶ se todos os menores principais de $\mathcal{H}_f(\mathbf{a})$ são positivos f tem um minimizante local em \mathbf{a} ;
 - se os menores principais de ordem par de $\mathcal{H}_f(\mathbf{a})$ são positivos e os de ordem ímpar negativos f tem um maximizante local em \mathbf{a} ;
 - se todos os menores principais de $\mathcal{H}_f(\mathbf{a})$ são não nulos mas a matriz não é definida positiva ou definida negativa f tem um ponto de sela em \mathbf{a} ;
 - se algum dos menores principais for nulo nada se pode concluir sobre a natureza de a.

[MIEInf] Análise-2017-18

15 / 16

Exemplo

Exercício 6.3 q) Identifique e classifique os pontos críticos da função $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por

$$f(x, y, z) = x^2 + y^2 + z^2 + xy$$