Topics in Machine Learning Homework 1

By B00401062 羅文斌

2.1

To prove $f(n) = \theta_1 x_1 + \theta_2 x_2 + \ldots \theta_n x_n \in C$, given $\theta_1 + \theta_2 + \ldots \theta_n = 1$.

When $n=2, heta_1+ heta_2=1$. Therefore, $f(2)= heta_1x_1+ heta_2x_2\in C$.

Suppose when $n=k-1, \theta_1+\theta_2+\dots\theta_{k-1}=1$ also satisfies $f(k-1)=\theta_1x_1+\theta_2x_2+\dots\theta_{k-1}x_{k-1}\in C$.

Then when n=k , f(k) can be expressed as the sum of $lpha f(k-1)+(1-lpha)\cdot x_k$, where

$$lpha \geq 0, f(k-1) \in C, x_k \in C$$
.

Because $f(n) \in C$ holds when n=2, the target function $f(k) = lpha f(k-1) + (1-lpha) \cdot x_k \in C$ will also hold.

2.5

Suppose there is a point x_1 in hyperplane $P_1=\{x\in\mathrm{R}^n|a^\mathrm{T}x=b_1\}$, and a point x_2 in hyperplane

$$P_2=\{x\in\mathrm{R}^n|a^\mathrm{T}x=b_2\}.$$

The distance d between two hyperplanes is the length of the projection of x_2-x_1 on a.

Therefore,
$$d = |\frac{a^{\mathrm{T}} \cdot (x_2 - x_1)}{||a||_2}| = \frac{|b_2 - b_1|}{||a||_2}$$
.

2.7

 $||x-a||_2 \leq ||x-b||_2$ can be expressed as vector form: $(x-a)^{\mathrm{T}} \cdot (x-a) \leq (x-b)^{\mathrm{T}} \cdot (x-b)$

$$x^{\mathrm{T}} \cdot x - x^{\mathrm{T}} \cdot a - a^{\mathrm{T}} \cdot x + a^{\mathrm{T}} \cdot a \leq x^{\mathrm{T}} \cdot x - x^{\mathrm{T}} \cdot b - b^{\mathrm{T}} \cdot x + b^{\mathrm{T}} \cdot b \dots (1)$$

Because $m{x^T} \cdot m{a} = m{a^T} \cdot m{x}$ and $m{x^T} \cdot m{b} = m{b^T} \cdot m{x}$, (1) can be simplified as

$$-2 \cdot a^{\mathrm{T}} \cdot x + a^{\mathrm{T}} \cdot a \leq -2 \cdot b^{\mathrm{T}} \cdot x + b^{\mathrm{T}} \cdot b \dots (2)$$

Move terms with $m{x}$ to one side, and term without $m{x}$ to the other side. (2) becomes

$$2 \cdot (b^{\mathrm{T}} - a^{\mathrm{T}}) \cdot x \leq b^{\mathrm{T}} \cdot b - a^{\mathrm{T}} \cdot a$$
 ...(3)

(3) can be furthur reduced to $(b-a)^{\mathrm{T}} \cdot x \leq \frac{1}{2}(b-a)^{\mathrm{T}} \cdot (b+a)$. Therefore,

$$c=(b-a), d=\frac{1}{2}\cdot(b-a)^{\mathrm{T}}\cdot(b+a).$$

Because $\frac{1}{2}(b+a)$ is the midpoint of a and b, the halfspace $(b-a)^{\mathrm{T}} \cdot x \leq \frac{1}{2}(b-a)^{\mathrm{T}} \cdot (b+a)$ contains all the points falling on the left-hand side of the hyperplane $(b-a)^{\mathrm{T}} \cdot x = \frac{1}{2}(b-a)^{\mathrm{T}} \cdot (b+a)$ as shown in the figure.

The hyperplane $(b-a)^{\mathrm{T}}\cdot x=\frac{1}{2}(b-a)^{\mathrm{T}}\cdot (b+a)$ is a plane perpendicular to (b-a) and passing through $\frac{1}{2}(b+a)$.