به نام خدا

گزارش شماره 1 آزمایشگاه کنترل صنعتی

تهیه کننده: علیرضا امیری

شماره دانشجویی: 982151028

استاد درس: دكتر سيدطبايي

ازمایش شماره 1: کنترل مستقیم و کنترل دو وضعیتی سیستم ها

. معوال 1-1 : برای سیستم $G=rac{1}{s}$ کنترلر مستقیم طراحی کنید که رفتار حلقه بسته $T_d=rac{1}{s}$ شود

$$T_d = \frac{GG_c}{1 + GG_c} \rightarrow G_c = \frac{T_d}{G(1 - T_d)}$$

تابع تبدیل کنترل کننده مستقیم G_c را برای اینکه تابع تبدیل حلقه بسته رفتاری مشابه T_d داشته باشد بدست می آوریم:

$$G_c = \frac{T_d}{G(1 - T_d)} = \frac{\frac{1}{2s + 1}}{\frac{5}{s}(1 - \frac{1}{2s + 1})} = \frac{1}{\frac{5}{s}(2s + 1 - 1)} = 0.1$$

بنابراین سیستم کنترل حلقه بسته شامل کنترل کننده G_c و سیستم G_c بصورت شکل G_c

و در سیمولینک به صورت زیر نشان داده میشود:

و نتایج ان نیز به صورت زیر خواهد بود:

سوال 2-1: برای سیستم $G = \frac{5}{s}$ کنترلر دو وضعیتی طرح کنید که خروجی $G = \frac{5}{s}$ بماند . با تنظیم دامنه رله فرکانس سوییچ 10 هرتز شود . دقت کنید برای سیستم انتگرالی خروجی رله باید + یا $G = \frac{5}{s}$ شود.

کنترل دو وضعیتی سیستم دو مخزن در محیط سیمولینک روابط سیستم دو تانک از این قرار است

$$\begin{split} q_i &= C_1 \dot{h}_1 + \frac{h_1 - h_2}{R_1} \,, \ \Rightarrow \dot{h}_1 = \frac{1}{C_1} \Bigg(q_i - \frac{h_1 - h_2}{R_1} \Bigg), \qquad C_i = S_i \,, R_i = \frac{H_i}{Q_i} \\ \frac{h_1 - h_2}{R_1} &= C_2 \dot{h}_2 + \frac{h_2}{R_2} \,, \ \Rightarrow \dot{h}_2 = \frac{1}{C_2} \Bigg(-\frac{h_2}{R_2} + \frac{h_1 - h_2}{R_1} \Bigg), \end{split}$$

در تانک اول سطح مقطع S_1 =5 m^2 ، ارتفاع مایع 10m و دبی خروجی مایع 0.5m 3 /min است. در تانک دوم سطح مقطع 3m 2 ، ارتفاع مایع 3m و دبی خروجی مایع امایع 0.5m 3 /min است. دبی مایع ورودی 0.5m 3 /min تغییر کند،

سستم را در محیط سیمولینک شبیه سازی کنید. و برنامه زیر را در MATLAB function قرار دهید.

دیاگرام سیستم ذکر شده در محیط سیمولینک به صورت زیر خواهد بود:

شکل زیر خروجی سیستم را در حضور کنترل کننده دو وضعیتی نشان می دهد. همانطورکه مشخص است خروجی در بازه کمتر از 10%±10 باقی مانده است. شکل 5 خروجی کنترل کننده دو وضعیتی را نشان می دهد.

كنترل دو وضعیتی تانك : كه در سیمولینک به صورت زیر می باشد

شکل زیر خروجی سیستم تانک را در حضور کنترل کننده دو وضعیتی نشان می دهد. همانطور که مشخص است خروجی در بازه کمتر از 5/0±10 باقی مانده است. شکل اخر خروجی کنترل کننده دو وضعیتی را نشان می دهد.

ممنون از توجه حضرتعالی