MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

4. La Derivada de una Función. Aplicaciones.

4.1. Sea f una función que satisface f(x+y)=f(x)+f(y)+2xy para cualesquiera x e y. Si además $\lim_{h\to 0}\frac{f(h)}{h}=7$,

a) calcula f(0)

b) utiliza la definición de derivada para hallar f'(x).

4.2. Si y = ax + b es la recta tangente a la gráfica de $y = x^3 \sin x + 1$ en el punto $(\pi, 1)$, entonces $b = \dots$

a) $-\pi^3$ b) $\pi^4 + 1$ c) $-\pi^3 + 1$ d) $\pi + 1$.

4.3. Estudia la continuidad y la derivabilidad de las funciones:

$$f(x) = \begin{cases} \sin \pi x & si & x < -1 \\ 2 + x^2 & si & -1 \le x \le 0 \\ 1 + e^{-x} & si & x > 0 \end{cases} \qquad \text{y} \qquad g(x) = \begin{cases} \frac{x \log x}{x - 1} & si & x \in (0, \infty) \setminus \{1\} \\ 1 & si & x = 1 \\ 0 & si & x \le 0 \end{cases}$$

Dibuja la gráfica aproximada de cada función y estudia sus máximos y sus mínimos.

4.4. Un astronauta viaja de izquierda a derecha a lo largo de la curva $y=x^2$. Al desconectar el cohete, viajará a lo largo de la tangente a la curva por el punto de desconexión. ¿En que punto deberá parar el motor para alcanzar el punto (4,9)? ¿Y para llegar al (4,-9)?

4.5. Empareja cada una de las gráficas (a-e) con la de su derivada (i-v). Explica tu razonamiento.

4.6. Halla los máximos y mínimos de las siguientes funciones. A continuación, dibuja sus gráficas y halla los máximos y mínimos locales:

a)
$$f(x) = x^3 - x^2 - 8x + 1$$
 en $[-2, 2]$

b)
$$f(x) = (x^5 + x + 1)^{-1}$$
 en $[-1, 1/2]$

4.7. Dibuja las gráficas de las siguientes funciones:

a)
$$f(x) = 3x^4 - 4x^3$$
 b) $f(x) = \frac{x}{x^2 + 1}$ c) $f(x) = \frac{x^2 - 4}{x^2 - 9}$ d) $f(x) = \frac{x^2 - 4x + 5}{x - 2}$

e)
$$f(x) = \frac{2}{\sqrt{x}} - \frac{1}{x}$$
 f) $f(x) = x^3 \sqrt{4 - x^2}$

g)
$$f(x) = a/x^2 + 1/x$$
, con $a > 0$ h) $f(x) = x^a \sin 1/x$ i) $f(x) = \frac{x^2 - 2x + 2}{x - 1}$

- 4.8. Dibuja la gráfica de $f(x) = \frac{\log x}{x}$. ¿Qué es mayor: e^{π} o π^{e} ?
- 4.9. Una farola, que tiene su luz a 3m de su base, ilumina a un peatón de 1,75 m que se aleja a una velocidad de 1m/s ¿A qué velocidad se mueve el extremo de su sombra?
- 4.10. Los beneficios de una fábrica de camisas depende del número de camisas que se fabrican cada día, según la fórmula $f(x) = 2x^3 - 15x^2 + 36x - 19$, donde x mide el número de miles de camisas fabricadas al día y f(x) la ganacia en miles de euros al mes. Atendiendo al número de máquinas y personal necesarios, la fábrica puede optar por fabricar un número diario de camisas comprendido entre 1000 y 1400. ¿Cuántas camisas debe fabricar para obtener un beneficio máximo?
- 4.11. Un rectángulo tiene dimensiones a y b. ¿Cuál es el área del mayor retángulo circunscrito a éste? (Es decir, los vértices del rectángulo dado están sobre los lados del rectángulo pedido).
- 4.12. En el triángulo isósceles ABC, el lado desigual mide 4cm y la altura que parte de A, 1 cm. Calcula el punto de dicha altura desde el que la suma de distancias a los vértices es mínima.
- 4.13. Calcula los siguientes límites:

a)
$$\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\sin^2 x}$$

b)
$$\lim_{x\to 0} \frac{e^x + e^{-x} - x^2 - 2}{\sin^2 x - x^2}$$

c)
$$\lim_{x\to 0} x^{-4} (\sqrt{2\cos x^2} - \sqrt{2})$$

a)
$$\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\sin^2 x}$$
 b) $\lim_{x \to 0} \frac{e^x + e^{-x} - x^2 - 2}{\sin^2 x - x^2}$ c) $\lim_{x \to 0} x^{-4} (\sqrt{2\cos x^2} - \sqrt{2})$ d) $\lim_{x \to 1} \frac{1}{\log x} - \frac{1}{x - 1}$.

- 4.14. Demuestra que $1/9 \le \sqrt{66} 8 \le 1/8$.
- 4.15. Si f es derivable en $[0,\infty)$ y $\lim_{x\to\infty} f'(x) = A$, calcúlese:
- a) $\lim_{x\to\infty} f(x+1) f(x)$ b) $\lim_{x\to\infty} \frac{f(2x) f(x)}{x}$
- c) Demuestra que $\lim_{x\to\infty} \sqrt[3]{x+1} \sqrt[3]{x} = 0$.
- 4.16. Un vehículo recorre sin detenerse los 205 km de un tramo de autovía en 1h y 40'. Si la velocidad máxima permitida es de 120 km/h, ¿superó el vehículo en algún momento el límite de velocidad?
- 4.17. Sean $f, g: [a, b] \to \mathbb{R}$ dos funciones continuas y derivables.
- a) Si f'(x) = 0 para todo x, prueba que f es constante
- b) Si f'(x) = g'(x) para todo x, prueba que f(x) = g(x) + cte.
- 4.18. Si f es derivable y $f'(x) \neq 0$, para todo $x \in \mathbb{R}$, prueba que f es monótona creciente o decreciente. Deduce que f es invectiva.

- 4.19. Prueba que si f es derivable en a, entonces $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h}$. Justifica que si existe $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$, la función f no es necesariamente derivable en a.
- 4.20. Sea $f:(a,b)\to\mathbb{R}$ de modo que existe f''(x) para todo $x\in(a,b)$. Prueba que:

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

- 4.21. Un profesor despistado propone a sus estudiantes que encuentren una función f definida en el intervalo (0,2) y de modo que $f'(x) = \begin{cases} 1 & si & 0 < x \le 1 \\ 2 & si & 1 < x < 2 \end{cases}$ y que pase por el punto (1,3). Los estudiantes intentan calcularla y se llevan una sorpresa. Intenta explicar qué es lo que ocurre.
- 4.22. a) Pon un ejemplo de una función f, derivable sobre un intervalo acotado, de modo que f no esté acotada.
- b) Pon un ejemplo de una función f, derivable sobre un intervalo acotado, de modo que fno tenga ni máximo ni mínimo en el intervalo.
- 4.23. En los siguientes siete apartados, algunas afirmaciones son ciertas otras no. Justifica como son cada una de ellas:
 - 1) Las funciones siguientes son derivables en x=0.

a)
$$f(x) = x|x|$$
 b) $f(x) = |x| \sin x$ c) $f(x) = \sin |x|$ d) $f(x) = x^2 \sin \frac{1}{x}$
e) $f(x) =\begin{cases} x^2 + 2 & \text{si } x \ge 0 \\ x^3 - x^2 + 2 & \text{si } x < 0 \end{cases}$ f) $f(x) =\begin{cases} x + 2 & \text{si } x \ge 0 \\ x - 2 & \text{si } x < 0 \end{cases}$

- 2) Para todo $x \in (2, \infty)$ se verifica:
- a) Si $f(x) = e^{x^2}$, entonces $f''(x) = e^{x^2}$ b) Si $f(x) = e^{x^2} \Rightarrow f''(x) = 2e^{x^2}$ c) $f(x) = \frac{1}{1-x} \Rightarrow f''(x) = \frac{1}{(1-x)^2}$
- d) $f(x) = \sin x \Rightarrow f''(x) = \sin(x + \pi)$ e) $f(x) = \cos x \Rightarrow f''(x) = \cos(x + \pi)$.
 - 3) Sea f una función definida sobre \mathbb{R} por $f(x) = xe^{2x} 1$. Entonces:
- a) Para todo $x \in \mathbb{R}$, $f'(x) = (x+1)e^{2x}$ b) f es creciente en $(-1/2, \infty)$.
- c) $\lim_{x\to\infty} f(x) = \infty$ d) $\lim_{x\to-\infty} f(x) = -\infty$.
- e) La ecuación f(x) = 1 admite una única solución.
- 4) Sean la función definida por $f(x) = \log(\log|x|)$, D su dominio y l su gráfica. a) $D = \mathbb{R}^+$ b) Para todo $x \in D, f'(x) = \frac{1}{|x| \log |x|}$
- c) La ecuación de la recta tangente a l en el punto (e, f(e)) es $y = \frac{x-e}{e}$.
- d) Para ay bcon $e \leq a < b,$ tenemos que $\frac{f(b) f(a)}{b a} > 1/e$

- 5) Sea $f: \mathbb{R} \to \mathbb{R}$ derivable y tal que la gráfica de f es simétrica respecto de la recta x=2. Entonces:
- a) Para todo $x \in \mathbb{R}$, f(x+2) = f(2-x).
- b) Para todo $x \in \mathbb{R}, f(x) = f(4 x).$
- c) Para todo $x \in \mathbb{R}$, f'(x+2) = f'(2-x).
- d) Si $\lim_{x\to\infty} f(x) = 1$, entonces $\lim_{x\to-\infty} f(x) = 1$
- e) Si $\lim_{x\to\infty} f'(x) = 1$, entonces $\lim_{x\to-\infty} f'(x) = -1$
- 6) Sea f una función definida en \mathbb{R} , decreciente en $(-\infty,0)$, creciente en $(0,\infty)$ y con f(0) = 1. Una fórmula para f puede ser:
- a) f(x) = |x| + 1 b) $f(x) = \frac{x^2 + 1}{|x| + 1}$ c) $f(x) = \sqrt{x^2 + 1}$ d) $f(x) = \log(x^2 + 1) + 1$ e) $f(x) = e^x x$.
- - 7) Sean $f:[-1,1]\to\mathbb{R}$ derivable y su derivada f', cuya gráfica es la del dibujo:
- a) f es monótona en [-1,1] b) f admite un extremo en x=0.
- c) En el punto de abscisa x=0, la gráfica de f tiene una tangente paralela a la recta y=x.
- d) Para todo $x \in [-1, 1], f(x) \ge 0$ e) f se anula al menos una vez en [-1, 1].

