

Introduction to Machine Learning

Feature Selection

Nils M. Kriege WS 2023

Data Mining and Machine Learning Faculty of Computer Science University of Vienna

Credit: Slides based on the IML Lectures by Sebastian Tschiatschek and Andreas Krause

- In many high-dimensional problems, we may prefer not to work with all potentially available features
- · Why?

- In many high-dimensional problems, we may prefer not to work with all potentially available features
- · Why?
 - Interpretability (would like to "understand" the classifier, identify important variables/features)
 - Generalization (simpler models may generalize better)
 - Storage / computation / cost (don't need to store / sum / acquire data for unused features)

 In many high-dimensional problems, we may prefer not to work with all potentially available features

· Why?

- Interpretability (would like to "understand" the classifier, identify important variables/features)
- Generalization (simpler models may generalize better)
- Storage / computation / cost (don't need to store / sum / acquire data for unused features)

· How?

 In many high-dimensional problems, we may prefer not to work with all potentially available features

· Why?

- Interpretability (would like to "understand" the classifier, identify important variables/features)
- Generalization (simpler models may generalize better)
- Storage / computation / cost (don't need to store / sum / acquire data for unused features)

· How?

Naive: try all subsets, and pick best (via cross-validation)

1

Demo: Feature selection for regression

Greedy feature selection

- General purpose approach:
 Greedily add (or remove) features to maximize
 - · Cross-validated prediction accuracy
 - Mutual information or other notions of informativeness (not discussed)
- Can be used for any method (not only linear regression/classification)

Details

- Let $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$
- Set of all features: $\mathcal{V} = \{1, \dots, d\}$ for $\mathbf{x}_i \in \mathbb{R}^d$
- Define cost function for scoring subsets S of V:
 - Map instances to the features in $S = \{j_1, j_2, \dots, j_k\}$:

$$\mathbf{x}_{i} = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\mathsf{T}} \mapsto \mathbf{x}_{\mathsf{S},i} = (x_{i,j_{1}}, x_{i,j_{2}}, \dots, x_{i,j_{k}})^{\mathsf{T}}$$

- Evaluate on $\mathcal{D}_S = \{(\mathbf{x}_{S,1},y_1),(\mathbf{x}_{S,2},y_2),\dots,(\mathbf{x}_{S,n},y_n)\}$
- $\hat{L}(S)$ is cross-validation error on \mathcal{D}_S

Greedy forward selection

Greedy forward selection

- Start with $S = \emptyset$ and $E_0 = \infty$
- For i = 1, 2, ..., d:
 - find best element to add: $s_i = \operatorname{argmin}_{j \in \mathcal{V} \setminus S} \hat{L}(S \cup \{j\})$
 - compute error: $E_i = \hat{L}(S \cup \{s_i\})$
 - If $E_i > E_{i-1}$ break, else set $S \leftarrow S \cup \{s_i\}$

Example

Example

•
$$S_1 = \{x_1\}$$

Example

- $S_1 = \{X_1\}$ $S_2 = \{X_1, X_2\}$

Problems with greedy forward selection

Demo: Forward Selection for Regression

Greedy backward selection

Greedy backward selection

- Start with $S = \mathcal{V}$ and $E_{d+1} = \infty$
- For i = d, d 1, ..., 1:
 - find best element to remove: $s_i = \operatorname{argmin}_{j \in S} \hat{L}(S \setminus \{j\})$
 - compute error: $E_i = \hat{L}(S \setminus \{s_i\})$
 - If $E_i > E_{i+1}$ break, else set $S \leftarrow S \setminus \{s_i\}$

Demo: Backward Selection for Regression

Comparison: FW vs. BW selection

MethodForward (FW)Backward (BW)AdvantagesUsually faster (if few relevant features)Can handle "dependent features"

Problems with greedy feature selection

• <u>M</u> Computational cost (need to retrain models many times for different feature combinations)

Problems with greedy feature selection

- <u>M</u> Computational cost (need to retrain models many times for different feature combinations)
- 🛕 Can be suboptimal

Problems with greedy feature selection

- Computational cost (need to retrain models many times for different feature combinations)
- 🛕 Can be suboptimal
- (?) Can we solve the learning & feature selection problem simultaneously via a single optimization?

Linear models: Feature selection = Sparsity

So far: explicitly select a subset of features:

$$\mathbf{x} = [x_1, \dots, x_d] \quad \Rightarrow \quad \mathbf{x}_S = [x_{i_1}, \dots, x_{i_k}]$$

optimize over coefficients $\mathbf{w}_{S} = [w_{i_1}, \dots, w_{i_k}]$:

$$\hat{\mathbf{w}}_{S} = \underset{\mathbf{w}_{S}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{i} - \mathbf{w}_{S}^{T} \mathbf{x}_{i,S})^{2}$$

 This is equivalent to constraining w to be sparse (i.e., contain at most k non-zero entries)

Joint feature selection and training

· Would like to solve

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
 s.t. $\|\mathbf{w}\|_0 \le k$

where $\|\mathbf{w}\|_{0} = |\{i : w_{i} \neq 0\}|$ is the number of non-zeros in \mathbf{w}

Alternatively, can penalize the number of nonzero entries:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_{o}$$

Making the optimization tractable

· Want to solve:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_{o}$$

- 🚹 This is a difficult combinatorial optimization problem
- Can view greedy algorithms before as heuristics for solving it

Making the optimization tractable

· Want to solve:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_{o}$$

- 🚹 This is a difficult combinatorial optimization problem
- Can view greedy algorithms before as heuristics for solving it
- Proprogramme Replace || w || o by a more tractable term:

$$\|\mathbf{w}\|_1 = \sum_i |w_i|$$

L1 as surrogate for Lo

The "sparsity trick"

$$\|\mathbf{w}\|_{\mathsf{O}} \quad \Rightarrow \quad \|\mathbf{w}\|_{\mathsf{1}}$$

Sparse regression: The Lasso

- Before:
 - · Ridge regression:

$$\min_{\mathbf{w}} \lambda \|\mathbf{w}\|_2^2 + \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

• Uses $\|\mathbf{w}\|_2^2$ to control weights

Sparse regression: The Lasso

- Before:
 - · Ridge regression:

$$\min_{\mathbf{w}} \lambda \|\mathbf{w}\|_2^2 + \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- Uses ||w||₂ to control weights
- Slight modification: replace $\|\mathbf{w}\|_2^2$ by $\|\mathbf{w}\|_1$
 - L1-regularized regression (Lasso):

$$\min_{\mathbf{w}} \lambda \|\mathbf{w}\|_1 + \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

 This alternative penalty encourages coefficients to be exactly o ⇒ automatic feature selection!

Lasso illustration

Lasso demo

Regularization paths

 $\|\mathbf{w}\|_{2}^{2}$

Ridge coefficients as a function of the regularization

 $\|\mathbf{w}\|_{1}$

Lasso coefficients as a function of the regularization

How to pick the regularization parameter?

How to pick the regularization parameter?

Cross-validation

Another example: L1-SVM

- Before:
 - · Support vector machine:

$$\min_{\mathbf{W}} \lambda \|\mathbf{W}\|_2^2 + \sum_{i=1}^n \max(\mathbf{O}, 1 - y_i \mathbf{W}^T \mathbf{x}_i)$$

- Uses $\|\mathbf{w}\|_2^2$ to control weights
- Apply sparsity trick: replace $\|\mathbf{w}\|_2^2$ by $\|\mathbf{w}\|_1$
 - L1-SVM:

$$\min_{\mathbf{w}} \lambda \|\mathbf{w}\|_{1} + \sum_{i=1}^{n} \max(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i})$$

 This alternative penalty encourages coefficients to be exactly o ⇒ ignores those features!

Feature selection with L1-SVM

[Zhu, J., Rosset, S., Tibshirani, R., & Hastie, T. J. (2004). "1-norm support vector machines". NeurIPS'04]

Experiment

[Zhu, J., Rosset, S., Tibshirani, R., & Hastie, T. J. (2004). "1-norm support vector machines". NeurIPS'04]

• Data:

- 38 train, 34 test data from a DNA microarray classification experiment (leukemia diagnosis)
- 7129 dimensions

Method	CV Error	Test Error	# of Genes
2-norm SVM UR	2/38	3/34	22
2-norm SVM RFE	2/38	1/34	31
1-norm SVM	2/38	2/34	17

l1-SVM demo

Solving l1 regularized problems

- L1-norm is convex
- Combined with convex losses, obtain convex optimization problems (e.g., Lasso, l1-SVM, ...)
- Can in principle solve using (stochastic) gradient descent
- However, convergence usually slow, and will rarely get "exact o" entries
- Much recent work in convex optimization deals with solving such problems very efficiently
 E.g., proximal methods (not discussed in this class)

Comparison: Greedy selection vs. L1-Regularization

Method	Greedy (FW/BW)	L1-Regularization
Advantages	Applies to any pre-	Faster (training and
	diction method	feature selection
Disadvantages	Slower (need to train many models)	

What do you need to know

- · What is feature selection
- Greedy algorithm (forward and backward)
- l1-regularization to encourage sparsity
 - Example: The Lasso (l1-regression)
 - Example: l1-SVM
- Advantages and disadvantages of the respective methods

Supervised learning summary so far

Representation/ features	Linear hypotheses, non-linear hypotheses through feature transformations		
Model/ objective	Loss-function (squared loss, ℓ_p loss, 0/1 loss, Perceptron loss, Hinge loss) + Regularization (ℓ_2 norm, ℓ_1 norm, ℓ_0 penalty)		
Method	Exact solution, Gradient Descent, (minibatch) SGD, Greedy selection		
Evaluation metric	Empirical risk = (mean) squared error, Accuracy		
Model selection	<i>k</i> -fold cross-validation, Monte Carlo cross-validation		

Supervised learning big picture so far

