Se  $\vec{u}//\vec{v}$  e  $\vec{u}$  e  $\vec{v}$  têm sentidos contrários, então  $\theta=\pi$ . É o caso de  $\vec{u}$  e  $-3\vec{u}$  (Figura 1.28(b)).



Figura 1.28

# Problemas propostos

1. A Figura 1.29 apresenta o losango EFGH inscrito no retângulo ABCD, sendo O o ponto de interseção das diagonais desse losango. Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:



Figura 1.29

$$\overrightarrow{EO} = \overrightarrow{OG}$$

$$f) \quad H - E = O - C$$

**b)** 
$$\overrightarrow{AF} = \overrightarrow{CH}$$

g) 
$$|\overrightarrow{AC}| = |\overrightarrow{BD}|$$

I) 
$$\overrightarrow{AB} \perp \overrightarrow{OH}$$

$$\overrightarrow{DO} = \overrightarrow{HG}$$

$$|\overrightarrow{OA}| = \frac{1}{2}|\overrightarrow{DB}|$$

m) 
$$\overrightarrow{EO} \perp \overrightarrow{CB}$$

**d)** 
$$|C - O| = |O - B|$$

n) 
$$\overrightarrow{AO}$$
 ⊥  $\overrightarrow{HF}$ 

**e)** 
$$|H - O| = |H - D|$$

o) 
$$\overrightarrow{OB} = -\overrightarrow{FE}$$

- 2. Decidir se é verdadeira ou falsa cada uma das afirmações:
  - a) Se  $\vec{u} = \vec{v}$ , então  $|\vec{u}| = |\vec{v}|$ .
  - **b)** Se  $|\vec{\mathbf{u}}| = |\vec{\mathbf{v}}|$ , então  $\vec{\mathbf{u}} = \vec{\mathbf{v}}$ .
  - c) Se  $\vec{u}$  //  $\vec{v}$ , então  $\vec{u} = \vec{v}$ .
  - d) Se  $\vec{u} = \vec{v}$ , então  $\vec{u}$  //  $\vec{v}$ .
  - e) Se  $\vec{w} = \vec{u} + \vec{v}$ , então  $|\vec{w}| = |\vec{u}| + |\vec{v}|$ .
  - f)  $|\vec{w}| = |\vec{u}| + |\vec{v}|$ , então  $\vec{u}$ ,  $\vec{v}$  e  $\vec{w}$  são paralelos.

- g) Se AB = DC, então ABCD (vértices nesta ordem) é paralelogramo.
- **h)**  $|5\vec{v}| = |-5\vec{v}| = 5|\vec{v}|.$
- i) Os vetores 3v e −4v são paralelos e de mesmo sentido.
- j) Se  $\vec{u}$  //  $\vec{v}$ ,  $|\vec{u}| = 2$  e  $|\vec{v}| = 4$ , então  $\vec{v} = 2\vec{u}$  ou  $\vec{v} = -2\vec{u}$ .
- **k)** Se  $|\vec{v}| = 3$ , o versor de  $-10\vec{v}$  é  $-\frac{v}{3}$ .



a) 
$$\overrightarrow{OC} + \overrightarrow{CH}$$

e) 
$$\overrightarrow{EO} + \overrightarrow{BG}$$

h) 
$$\overrightarrow{FE} + \overrightarrow{FG}$$

b) 
$$\overrightarrow{EH} + \overrightarrow{FG}$$

f) 
$$2\overrightarrow{OE} + 2\overrightarrow{OC}$$

i) 
$$\overrightarrow{OG} - \overrightarrow{HO}$$

c) 
$$2\overrightarrow{AE} + 2\overrightarrow{AF}$$

 $\overrightarrow{EH} + \overrightarrow{EF}$ 

g) 
$$\frac{1}{2}\overrightarrow{BC} + \overrightarrow{BC}$$

j) 
$$\overrightarrow{AF} + \overrightarrow{FO} + \overrightarrow{AO}$$

4. O paralelogramo ABCD (Figura 1.30) é determinado pelos vetores  $\overline{AB}$  e  $\overline{AD}$ , sendo M e N pontos médios dos lados DC e AB, respectivamente. Determinar:



a)  $\overrightarrow{AD} + \overrightarrow{AB}$ 

d) 
$$\overrightarrow{AN} + \overrightarrow{BC}$$

b) 
$$\overrightarrow{BA} + \overrightarrow{DA}$$

e) 
$$\overrightarrow{MD} + \overrightarrow{MB}$$

c) 
$$\overrightarrow{AC} - \overrightarrow{BC}$$

f) 
$$\overrightarrow{BM} - \frac{1}{2}\overrightarrow{DC}$$

**5**. Apresentar, graficamente, um representante do vetor  $\vec{u} - \vec{v}$  nos casos:



**6.** Determinar o vetor  $\vec{x}$  nas figuras:



7. Dados três pontos A, B e C não colineares, como na Figura 1.31, representar o vetor  $\vec{x}$  nos casos:



a)  $\vec{x} = \overrightarrow{BA} + 2\overrightarrow{BC}$ 

c)  $\vec{x} = 3 \overrightarrow{AB} - 2 \overrightarrow{BC}$ 

 $\mathbf{b)} \quad \vec{\mathbf{x}} = 2\overrightarrow{\mathbf{CA}} + 2\overrightarrow{\mathbf{BA}}$ 

- $\mathbf{d)} \quad \vec{\mathbf{x}} = \frac{1}{2} \overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} 2 \overrightarrow{\mathbf{C}} \overrightarrow{\mathbf{B}}$
- 8. Dados os vetores  $\vec{u}$  e  $\vec{v}$  da Figura 1.32, mostrar, em um gráfico, um representante do vetor
  - a)  $\vec{u} \vec{v}$
  - b)  $\vec{v} \vec{u}$
  - c)  $-\vec{v}-2\vec{u}$
  - d)  $2\vec{u} 3\vec{v}$



Figura 1.32

- 9. No triângulo ABC (Figura 1.33), seja  $\overrightarrow{AB} = \vec{a}$  e  $\overrightarrow{AC} = \vec{b}$ . Construir um representante de cada um dos vetores
  - a)  $\frac{\vec{a} + \vec{b}}{2}$

**d)**  $\vec{a} + \frac{1}{2}\vec{b}$ 

 $b) \quad \frac{\vec{a} - \vec{b}}{2}$ 

**e)**  $2\vec{a} - \frac{1}{2}\vec{b}$ 

 $\mathbf{c)} \quad \frac{\vec{b} - \vec{a}}{2}$ 

f)  $\frac{1}{3}\vec{a} - 2\vec{b}$ 



Figura 1.33

10. Dados os vetores  $\vec{a}$ ,  $\vec{b}$  e  $\vec{c}$  (Figura 1.34), apresentar graficamente um representante do vetor  $\vec{x}$  tal que

a) 
$$\vec{x} = 4\vec{a} - 2\vec{b} - \vec{c}$$

**b)** 
$$(\vec{a} + \vec{b} + \vec{c}) + \vec{x} = \vec{0}$$

**c)** 
$$\vec{a} + \vec{c} + \vec{x} = 2\vec{b}$$



Figura 1.34

- Na Figura 1.35 estão representados os vetores coplanares ū, v e w̄. Indicar, na própria figura, os vetores
  - a)  $a\vec{v} e b\vec{w}$  tal que  $\vec{u} = a\vec{v} + b\vec{w}$
  - **b)**  $\alpha \vec{u} e \beta \vec{w}$  tal que  $\vec{v} = \alpha \vec{u} + \beta \vec{w}$

Seria possível realizar este exercício no caso de os vetores  $\vec{u}$ ,  $\vec{v}$  e  $\vec{w}$  serem  $n\tilde{a}o$  coplanares?



Figura 1.35

- 12. Sabendo que o ângulo entre os vetores  $\vec{u}$  e  $\vec{v}$  é de 60°, determinar o ângulo formado pelos vetores
  - b)  $-\vec{u} e 2\vec{v}$
- c)  $-\vec{u} e \vec{v}$
- d)  $3\vec{u} e 5\vec{v}$
- 13. Dados os vetores coplanares  $\vec{u}$ ,  $\vec{v}$  e  $\vec{w}$  representados na Figura 1.36, determinar
  - a) um representante do vetor  $\vec{x} + \vec{y}$ , sendo  $\vec{x} = \vec{u} + 2\vec{v}$  e
  - **b)** o ângulo entre os vetores  $-3\vec{v}$  e  $\vec{w}$ ;
  - c) o ângulo entre os vetores  $-2\vec{u}$  e  $-\vec{w}$ .
- 14. Demonstrar que os pontos médios dos lados de um quadrilátero qualquer são vértices de um paralelogramo.
- 15. Demonstrar que o segmento de extremos nos pontos médios dos lados não paralelos de um trapézio é paralelo às bases e igual à sua semissoma.



Figura 1.36

16. No triângulo ABC (Figura 1.37), tem-se  $\overrightarrow{BM} = \frac{1}{2}\overrightarrow{BC} e \overrightarrow{BN} = \frac{1}{3}\overrightarrow{BC}.$ 

Expressar os vetores AM e AN em função de  $\overrightarrow{AB}$  e  $\overrightarrow{AC}$ .

# Respostas de problemas propostos

- 1. a) V
- d) V
- g) V
- j) F
- m) V

- b) F
- e) F

- c) V
- f) F
- I) V

- 2. a) V
- c) F
- e) F
- g) V
- i) F
- k) V

- b) F
- d) V
- f) V
- h) V
- i) V

- 3. a)  $\overline{AE}$
- c)  $\overline{AE}$
- e) AE
- g) AH
- i) AE

- b) AE
- d) AB
- f) AE
- h) AE
- i)  $\overrightarrow{AC}$

4. a)  $\overrightarrow{AE}$ 

c) AE

e) AE

b) AE

d) AE

f) AE

- a)  $\vec{u} \vec{v}$  b)  $-\vec{u} \vec{v}$
- c)  $\vec{v} \vec{u}$
- d)  $\vec{u} + \vec{v}$

- **11**. Não
- **12.** a) 120°
- **b)** 120°
- c) 60°
- **d)** 60°

- **13. b)** 75°
- c) 60°

**16.** 
$$\overrightarrow{AM} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) e \overrightarrow{AN} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$



# O TRATAMENTO ALGÉBRICO

# Vetores no plano

Consideremos dois vetores  $\vec{v}_1$  e  $\vec{v}_2$  não paralelos, representados com a origem no mesmo ponto O, sendo  $r_1$  e  $r_2$  retas contendo esses representantes, respectivamente, (Figura 1.38).



Figura 1.38

#### **Solução**

Como os pontos A, B e P pertencem à mesma reta (Figura 1.63), qualquer dupla de vetores formados utilizando estes três pontos são paralelos. Tomemos a condição  $\overrightarrow{AB}//\overrightarrow{AP}$ , ou seja (-2, -1, -3)//(-4, m + 2, n - 4) e, portanto,

$$\frac{-2}{-4} = \frac{-1}{m+2} = \frac{-3}{n-4} \ \text{ ou } \begin{cases} -2(m+2) = 4 \\ -2(n-4) = 12 \end{cases} \text{ no sistema de solução } m = -4 \text{ e } n = -2.$$



Figura 1.63

**4**. Seja o triângulo de vértices A(4, -1, -2), B(2, 5, -6) e C(1, -1, -2). Calcular o comprimento da mediana do triângulo relativa ao lado AB.

#### 🌓 Solução

A mediana em questão, de acordo com a Figura 1.64, é o segmento que tem como extremidades o ponto médio M de AB e o vértice oposto C. Então, o comprimento da mediana é o módulo do vetor  $\overline{\text{MC}}$ .



$$M(\frac{4+2}{2}, \frac{-1+5}{2}, \frac{-2-6}{2})$$
 ou  $M(3, 2, -4)$  e

$$\overrightarrow{MC} = C - M = (1, -1, -2) - (3, 2, -4) = (-2, -3, 2)$$

Portanto, 
$$|\overline{MC}| = \sqrt{(-2)^2 + (-3)^2 + 2^2} = \sqrt{4 + 9 + 4} = \sqrt{17}$$
.

# Problemas propostos

- 1. Dados os vetores  $\vec{u} = 2\vec{i} 3\vec{j}$ ,  $\vec{v} = \vec{i} \vec{j}$  e  $\vec{w} = -2\vec{i} + \vec{j}$ , determinar
  - a)  $2\vec{u} \vec{v}$

- **b)**  $\frac{1}{2}\vec{u} 2\vec{v} \vec{w}$
- c)  $\vec{v} \vec{u} + 2\vec{w}$
- **d)**  $3\vec{u} \frac{1}{2}\vec{v} \frac{1}{2}\vec{w}$
- **2.** Dados os vetores  $\vec{u} = (3, -1)$  e  $\vec{v} = (-1, 2)$ , determinar o vetor  $\vec{x}$  tal que
  - a)  $4(\vec{u} \vec{v}) + \frac{1}{3}\vec{x} = 2\vec{u} \vec{x}$
  - **b)**  $3\vec{x} (2\vec{v} \vec{u}) = 2(4\vec{x} 3\vec{u})$

- 3. Dados os pontos A(-1, 3), B(2, 5), C(3, -1) e O(0, 0), calcular
  - a)  $\overrightarrow{OA} \overrightarrow{AB}$

- b)  $\overrightarrow{OC} \overrightarrow{BC}$  c)  $3\overrightarrow{BA} 4\overrightarrow{CB}$
- **4.** Dados os vetores  $\vec{u} = (2, -4)$ ,  $\vec{v} = (-5, 1)$  e  $\vec{w} = (-12, 6)$ , determinar  $\vec{a}_1$  e  $\vec{a}_2$  tais que  $\vec{w} = a_1 \vec{u} + a_2 \vec{v}$ .
- **5.** Dados os pontos A(3, -4) e B(-1, 1) e o vetor  $\vec{v} = (-2, 3)$ , calcular
  - a)  $(B A) + 2\vec{v}$
- c) B + 2(B A)
- **b)**  $(A B) \vec{v}$
- d)  $3\vec{v} 2(A B)$
- **6.** Sejam os pontos A(-5, 1) e B(1, 3). Determinar o vetor  $\vec{v}$  tal que
  - a)  $B = A + 2\vec{v}$

h)  $A = B + 3\vec{v}$ 

Construir o gráfico correspondente a cada situação.

- 7. Representar em um gráfico o vetor  $\overline{AB}$  e o correspondente vetor posição, nos casos:
  - a)  $A(-1,3) \in B(3,5)$
- c)  $A(4,0) \in B(0,-2)$
- **b)**  $A(-1, 4) \in B(4, 1)$
- d)  $A(3, 1) \in B(3, 4)$
- 8. Qual ponto inicial do segmento orientado que representa o vetor  $\vec{v} = (-1, 3)$ , sabendo que sua extremidade está em (3, 1)? Representar graficamente esse segmento.
- **9.** No mesmo sistema cartesiano xOy, representar:
  - a) os vetores  $\vec{u} = (2, -1)$  e  $\vec{v} = (-2, 3)$ , com origem nos pontos A(1, 4) e B(1, -4), respectivamente;
  - b) os vetores posição de  $\vec{u}$  e  $\vec{v}$ .
- **10.** Sejam os pontos P(2, 3), Q(4, 2) e R(3, 5).
  - a) Representar em um mesmo gráfico os vetores posição de  $\vec{u}$ ,  $\vec{v}$  e  $\vec{w}$  de modo que  $Q = P + \vec{u}, R = Q + \vec{v} e P = R + \vec{w};$
  - **b)** Determinar  $\vec{u} + \vec{v} + \vec{w}$ .
- 11. Encontrar o vértice oposto a B, no paralelogramo ABCD, para:
  - a) A(-3,-1), B(4,2) e C(5,5)
  - **b)**  $A(5, 1), B(7, 3) \in C(3, 4)$
- 12. Sabendo que A(1,-1), B(5,1) e C(6,4) são vértices de um paralelogramo, determinar o quarto vértice de cada um dos três paralelogramos possíveis de serem formados.
- 13. Dados os pontos A(-3, 2) e B(5, -2), determinar os pontos M e N pertencentes ao segmento AB tais que  $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB}$  e  $\overrightarrow{AN} = \frac{2}{3} \overrightarrow{AB}$ . Construir o gráfico, marcando os pontos A, B, M, N e P, em que P seja tal que  $\overrightarrow{AP} = \frac{3}{2} \overrightarrow{AB}$ .

- **14.** Sendo A(-2, 3) e B(6, -3) extremidades de um segmento, determinar:
  - a) os pontos C, D e E que dividem o segmento AB em quatro partes de mesmo comprimento;
  - b) os pontos F e G que dividem o segmento de AB em três partes de mesmo comprimento.
- **15.** O ponto P pertence ao segmento de extremos  $A(x_1, y_1)$  e  $B(x_2, y_2)$ , e a sua distância ao ponto A é a terça parte da sua distância ao ponto B. Expressar as coordenadas de P em função das coordenadas de A e B.
- **16.** Dados os vetores  $\vec{u} = (1, -1)$ ,  $\vec{v} = (-3, 4)$  e  $\vec{w} = (8, -6)$ , calcular:
  - a) | | u |
- b)  $|\vec{\mathbf{w}}|$  c)  $|2\vec{\mathbf{u}} \vec{\mathbf{w}}|$

- e)  $|\vec{v}|$
- f)  $|\vec{\mathbf{u}} + \vec{\mathbf{v}}|$  g)  $|\vec{\mathbf{w}} 3\vec{\mathbf{u}}|$
- 17. Calcular os valores de a para que o vetor  $\vec{u} = (a, -2)$  tenha módulo 4.
- **18.** Calcular os valores de *a* para que o vetor  $\vec{u} = (a, \frac{1}{2})$  seja unitário.
- **19.** Provar que os pontos A(-2, -1), B(2, 2), C(-1, 6) e D(-5, 3), nesta ordem, são vértices de um quadrado.
- **20**. Encontrar um ponto P do eixo Ox de modo que a sua distância ao ponto A(2, -3)seja igual a 5.
- **21**. Dados os pontos A(-4, 3) e B(2, 1), encontrar o ponto P nos casos:
  - a) P pertence ao eixo Oy e é equidistante de A e B;
  - b) P é equidistante de A e B e sua ordenada é o dobro da abscissa;
  - c) P pertence à mediatriz do segmento de extremos A e B.
- 22. Encontrar o vetor unitário que tenha (I) o mesmo sentido de  $\vec{v}$  e (II) sentido contrário a v, nos casos:
  - a)  $\vec{v} = -\vec{i} + \vec{j}$
- $\mathbf{b)} \ \vec{\mathrm{v}} = 3\vec{\mathrm{i}} \vec{\mathrm{j}}$
- c)  $\vec{v} = (1, \sqrt{3})$
- **d)**  $\vec{v} = (0, 4)$
- **23**. Dado o vetor  $\vec{v} = (1, -3)$ , determinar o vetor paralelo a  $\vec{v}$  que tenha:
  - a) sentido contrário ao de  $\vec{v}$  e duas vezes o módulo de  $\vec{v}$ ;
  - **b)** o mesmo sentido de  $\vec{v}$  e módulo 2:
  - c) sentido contrário ao de  $\vec{v}$  e módulo 4.

- 24. Traçar no mesmo sistema de eixos os retângulos de vértices
  - a)  $A(0, 0, 1), B(0, 0, 2), C(4, 0, 2) \in D(4, 0, 1)$
  - **b)**  $A(2, 1, 0), B(2, 2, 0), C(0, 2, 2) \in D(0, 1, 2)$
- **25**. Traçar o retângulo formado pelos pontos (x, y, z) tal que
  - a)  $x = 0, 1 \le y \le 4 \text{ e } 0 \le z \le 4$
  - **b)**  $-1 \le x \le 2$ ,  $0 \le y \le 3$  e z = 3
- 26. Construir o cubo constituído dos pontos (x, y, z), de modo que
  - a)  $-4 \le x \le -2$ ,  $1 \le y \le 3$  e  $0 \le z \le 2$
  - **b)**  $-2 \le x \le 0$ ,  $2 \le y \le 4$  e  $-4 \le z \le -2$
- 27. Construir o paralelepípedo retângulo formado pelos pontos (x, y, z), de modo que  $1 \le x \le 3$ ,  $3 \le y \le 5$  e  $0 \le z \le 4$ . Quais são as coordenadas dos oito vértices do paralelepípedo?
- **28.** Calcular a distância do ponto A(3, 4, -2)
  - a) ao plano xy;

d) ao eixo dos x;

b) ao plano xz;

e) ao eixo dos y;

c) ao plano yz;

- f) ao eixo dos z.
- **29.** A Figura 1.65 apresenta um paralelepípedo retângulo de arestas paralelas aos eixos coordenados e de medidas 2, 1 e 3. Determinar as coordenadas dos vértices deste sólido, sabendo que A(2, -1, 2).



Figura 1.65

**30.** O paralelepípedo retângulo de dimensões 3, 4 e 5 está referido ao sistema Oxyz, conforme a Figura 1.66. Considerando um segundo sistema chamado O'x'y'z', no qual Ox//O'x', Oy//O'y' e Oz//O'z', e sendo O' um dos vértices do paralelepípedo

de acordo com a figura, determinar as coordenadas dos pontos O, A, B, C, D e O' em relação aos sistemas dados.



Figura 1.66

- **31**. Dados os pontos A(2, -2, 3) e B(1, 1, 5) e o vetor  $\vec{v} = (1, 3, -4)$ , calcular:
  - a)  $A + 3\vec{v}$

c) B + 2(B - A)

**b)**  $(A - B) - \vec{v}$ 

- **d)**  $2 \vec{v} 3(B A)$
- **32**. Dados os pontos A(3, -4, -2) e B(-2, 1, 0), determinar o ponto N pertencente ao segmento AB tal que  $\overrightarrow{AN} = \frac{2}{5} \overrightarrow{AB}$ .
- 33. Dados os pontos A(1, -2, 3), B(2, 1, -4) e C(-1, -3, 1), determinar o ponto D tal que  $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{0}$ .
- **34.** Sabendo que  $3\vec{u} 4\vec{v} = 2\vec{w}$ , determinar a, b, e c, sendo  $\vec{u} = (2, -1, c)$ ,  $\vec{v} = (a, b 2, 3)$  e  $\vec{w} = (4, -1, 0)$ .
- **35**. Dados os vetores  $\vec{u} = (2, 3, -1), \vec{v} = (1, -1, 1)$  e  $\vec{w} = (-3, 4, 0),$ 
  - a) determinar o vetor  $\vec{x}$  de modo que  $3\vec{u} \vec{v} + \vec{x} = 4\vec{x} + 2\vec{w}$ ;
  - **b)** encontrar os números  $a_1$ ,  $a_2$  e  $a_3$  tais que  $a_1\vec{u} + a_2\vec{v} + a_3\vec{w} = (-2, 13, -5)$ .
- **36**. Representar no mesmo sistema Oxyz o vetor  $\vec{v} = (1, -1, 3)$  com origem nos pontos O(0, 0, 0), A(-3, -4, 0), B(-2, 4, 2), C(3, 0, -4) e D(3, 4, -2).
- **37**. Sendo A(2, -5, 3) e B(7, 3, -1) vértices consecutivos de um paralelogramo ABCD e M(4, -3, 3) o ponto de interseção das diagonais, determinar os vértices C e D.
- **38**. Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M(5, 0, -2), N(3, 1, -3) e P(4, 2, 1).

- **39.** Dados os pontos A(1, -1, 3) e B(3, 1, 5), até que ponto se deve prolongar o segmento AB, no sentido de A para B, para que seu comprimento quadruplique de valor?
- **40**. Sendo A(-2, 1, 3) e B(6, -7, 1) extremidades de um segmento, determinar:
  - a) os pontos C, D e E, nesta ordem, que dividem o segmento AB em quatro partes de mesmo comprimento;
  - **b)** os pontos F e G, nesta ordem, que dividem o segmento AB em três partes de mesmo comprimento.
- **41.** O ponto A é um dos vértices de um paralelepípedo e os três vértices adjacentes são B, C e D. Sendo AA' uma diagonal do paralelepípedo, determinar o ponto A' nos seguintes casos:
  - a)  $A(3, 5, 0), B(1, 5, 0), C(3, 5, 4) \in D(3, 2, 0)$
  - **b)**  $A(-1, 2, 1), B(3, -1, 2), C(4, 1, -3) \in D(0, -3, -1)$
  - c) A(-1, 2, 3), B(2, -1, 0), C(3, 1, 4) e D(-2, 0, 5)
- 42. Apresentar o vetor genérico que satisfaz a condição:
  - a) paralelo ao eixo x;

- e) ortogonal ao eixo y;
- b) representado no eixo z;
- f) ortogonal ao eixo z;
- c) paralelo ao plano xy;

g) ortogonal ao plano xy;

d) paralelo ao plano yz;

- h) ortogonal ao plano xz.
- **43**. Quais dos seguintes vetores  $\vec{u} = (4, -6, 2)$ ,  $\vec{v} = (-6, 9, -3)$ ,  $\vec{w} = (14, -21, 9)$  e  $\vec{t} = (10, -15, 5)$  são paralelos?
- **44.** Dado o vetor  $\vec{w} = (3, 2, 5)$ , determinar a e b de modo que os vetores  $\vec{u} = (3, 2, -1)$  e  $\vec{v} = (a, 6, b) + 2\vec{w}$  sejam paralelos.
- **45**. A reta que passa pelos pontos A(-2, 5, 1) e B(1, 3, 0) é paralela à reta determinada por C(3, -1, -1) e D(0, m, n). Determinar o ponto D.
- **46.** Verificar se são colineares os pontos:
  - a) A(-1, -5, 0), B(2, 1, 3) e C(-2, -7, -1)
  - **b)**  $A(2, 1, -1), B(3, -1, 0) \in C(1, 0, 4)$
  - c) A(-1, 4, -3), B(2, 1, 3) e C(4, -1, 7)
- **47**. Sabendo que o ponto P(m, 4, n) pertence à reta que passa pelos pontos A(-1, -2, 3) e B(2, 1, -5), calcular m e n.
- **48**. Encontrar o vértice oposto a B, no paralelogramo ABCD, para
  - a)  $A(-1, 0, 3), B(1, 1, 2) \in C(3, -2, 5)$
  - **b)**  $A(4, 0, 1), B(5, 1, 3) \in C(3, 2, 5)$

49. Verificar se são unitários os seguintes vetores:

$$\vec{u} = (1, 1, 1) e \vec{v} = (\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$$

- **50.** Determinar o valor de n para que o vetor  $\vec{v} = (n, -\frac{1}{2}, \frac{3}{4})$  seja unitário.
- **51.** Determinar o valor de *a* para que  $\vec{u} = (a, -2a, 2a)$  seja um versor.
- **52.** Dados os pontos A(1, 0, -1), B(4, 2, 1) e C(1, 2, 0), determinar o valor de m para que  $|\vec{v}| = 7$ , sendo  $\vec{v} = m\overrightarrow{AC} + \overrightarrow{BC}$ .
- **53**. Determinar o valor de y para que seja equilátero o triângulo de vértices A(4, y, 4), B(10, y, -2) e C(2, 0, -4).
- 54. Obter um ponto P do eixo das abscissas equidistante dos pontos A(3,-1,4) e B(1,-2,-3).
- 55. Obter um ponto P do eixo das cotas cuja distância ao ponto A(-1, 2, -2) seja igual a 3.
- **56.** Dado o vetor  $\vec{v} = (2, -1, -3)$ , determinar o vetor paralelo a  $\vec{v}$  que tenha
  - a) sentido contrário ao de  $\vec{v}$  e três vezes o módulo de  $\vec{v}$ ;
  - **b)** o mesmo sentido de  $\vec{v}$  e módulo 4;
  - c) sentido contrário ao de  $\vec{v}$  e módulo 5.

### Respostas de problemas propostos

- **1.** a) (3,-5) b) (-5,4) c)  $(1,-\frac{1}{2})$  d)  $(\frac{13}{2},-9)$
- **2. a)**  $\left(-\frac{15}{2}, \frac{15}{2}\right)$  **b)**  $\left(\frac{23}{5}, \frac{11}{5}\right)$

- **3. a)** (-4, 1) **b)** (2, 5) **c)** (-5, -30)
- **4.**  $a_1 = -1 e a_1 = 2$
- **5.** a) (-8, 11) b) (6, -8) c) (-9, 11) d) (-14, 19)

- **6. a)**  $\vec{v} = (3, 1)$  **b)**  $\vec{v} = (-2, -\frac{2}{3})$
- 8. (4, -2)
- **10. b)**  $\vec{0}$
- **11.** a) D(-2, 4) b) D(1, 2)
- **12.** (2,2), (0,-4) e (10,6)
- **13**. M(1,0), N( $\frac{7}{3}$ ,  $-\frac{2}{3}$ ), P(9,-4)

**14. a)** 
$$C(0, \frac{3}{2}), D(2, 0), E(4, -\frac{3}{2})$$

**b)** 
$$F(\frac{2}{3},1), G(\frac{10}{3},-1)$$

**15.** 
$$P(\frac{3}{4}x_1 + \frac{x_2}{4}, \frac{3}{4}y_1 + \frac{y_2}{4})$$

**16.** a) 
$$\sqrt{2}$$

c) 
$$2\sqrt{13}$$

**16.** a) 
$$\sqrt{2}$$
 b) 10 c)  $2\sqrt{13}$  d)  $(-\frac{3}{5}, \frac{4}{5})$ 

f) 
$$\sqrt{13}$$

e) 5 f) 
$$\sqrt{13}$$
 g)  $\sqrt{34}$ 

17. 
$$\pm 2\sqrt{3}$$

**18.** 
$$\pm \frac{\sqrt{3}}{2}$$

**b)** 
$$P(-5, -10)$$

**21.** a) 
$$P(0,5)$$
 b)  $P(-5,-10)$  c)  $P(x, 3x + 5), x \in \mathbb{R}$ 

**22. a)** 
$$(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) e(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$
 **b)**  $(\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}}) e(-\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}})$ 

**b)** 
$$(\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}}) e(-\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}})$$

**c)** 
$$(\frac{1}{2}, \frac{\sqrt{3}}{2}) e(-\frac{1}{2}, -\frac{\sqrt{3}}{2})$$

**b)** 
$$(\frac{2}{\sqrt{10}}, -\frac{6}{\sqrt{10}})$$
 **c)**  $(-\frac{4}{\sqrt{10}}, \frac{12}{\sqrt{10}})$ 

c) 
$$(-\frac{4}{\sqrt{10}}, \frac{12}{\sqrt{10}})$$

Vértices da base inferior: (1, 3, 0), (1, 5, 0), (3, 3, 0) e (3, 5, 0) 27.

Vértices da base superior: (1, 3, 4), (1, 5, 4), (3, 3, 4) e (3, 5, 4)

**d)** 
$$2\sqrt{5}$$

**b)** 4 **e)** 
$$\sqrt{13}$$

B(2, -3, 2), C(3, -3, 2), D(3, -1, 2), E(3, -1, 5), F(2, -1, 5), G(2, -3, 5),29. H(3, -3, 5)

**30**. Em relação a Oxyz: O(0, 0, 0), A(3, 0, 0), B(3, 4, 0), C(0, 4, 5), D(3, 0, 5) e O'(3,4,5)

Em relação a O'x'y'z': O(-3, -4, -5), A(0, -4, -5), B(0, 0, -5), C(-3, 0, 0), D(0, -4, 0) e O'(0, 0, 0)

**31.** a) 
$$(5, 7, -9)$$

c) 
$$(-1, 7, 9)$$

**b)** 
$$(0, -6, 2)$$

**d)** 
$$(5, -3, -14)$$

**32.** 
$$N(1,-2,-\frac{6}{5})$$

**34.** 
$$a = -\frac{1}{2}, b = \frac{7}{4} e c = 4$$

**35.** a) 
$$\vec{x} = (\frac{11}{3}, \frac{2}{3}, -\frac{4}{3})$$

**b)** 
$$a_2 = 2$$
,  $a_2 = -3$ ,  $a_2 = 1$ 

**37.** 
$$C(6, -1, 3) \in D(1, -9, 7)$$

**40. a)** 
$$(0, -1, \frac{5}{2}), (2, -3, 2), (4, -5, \frac{3}{2})$$
 **b)**  $(\frac{2}{3}, -\frac{5}{3}, \frac{7}{3}), (\frac{10}{3}, -\frac{13}{3}, \frac{5}{3})$ 

**b)** 
$$(\frac{2}{3}, -\frac{5}{3}, \frac{7}{3}), (\frac{10}{3}, -\frac{13}{3}, \frac{5}{3})$$

**41.** a) 
$$(1, 2, 4)$$
 b)  $(9, -7, -4)$  c)  $(5, -4, 3)$ 

**b)** 
$$(9, -7, -4)$$

c) 
$$(5, -4, 3)$$

**42. a)** 
$$(x, 0, 0)$$
 **e)**  $(x, 0, z)$ 

**e)** 
$$(x, 0, z)$$

g) 
$$(0, 0, z)$$

c) 
$$(x, y, 0)$$

f) 
$$(x, y, 0)$$

**d)** 
$$(0, y, z)$$

**d)** 
$$(0, y, z)$$
 **h)**  $(0, y, 0)$ 

**43**. São paralelos: 
$$\vec{u}$$
,  $\vec{v}$  e  $\vec{t}$ 

**44.** 
$$a = 9 e b = -15$$

c) sim

**47.** 
$$m = 5$$
 e  $n = -13$ 

**48. a)** 
$$D(1, -3, 6)$$
 **b)**  $D(2, 1, 3)$ 

49. 
$$\vec{v}$$
 é unitário

**50.** 
$$n = \pm \frac{\sqrt{3}}{4}$$

**51.** 
$$a = \pm \frac{1}{3}$$

**52.** 
$$m=3 \text{ ou } -\frac{13}{5}$$

**53.** 
$$y = \pm 2$$

**54.** 
$$P(3, 0, 0)$$

**55.** 
$$P(0, 0, 0)$$
 ou  $P(0, 0, -4)$ 

**56.** a) 
$$(-6, 3, 9)$$
 b)  $(\frac{8}{\sqrt{14}}, -\frac{4}{\sqrt{14}}, -\frac{12}{\sqrt{14}})$  c)  $(-\frac{10}{\sqrt{14}}, \frac{5}{\sqrt{14}}, \frac{15}{\sqrt{14}})$