

	앞	
1조		2조
3조		4조
5조		6조
7조		8조
9조		10조

조장 선정 및 연락처 교환 단톡방 생성

예비 발표 방법 변경

- 발표 영상을 녹화하여 조교 이메일 (shyeon0528@gmail.com) 로 제출
- 모든 학생은 조교가 PLATO에 업로드한 동영상 각자 시청 (시청 체크하여 성적에 반영)

제출 기한

9월 18일	9월 25일	10월 2일	10월 9일	10월 23일	10월 30일	11월 6일
2, 6조	3, 4조	5, 8조	1조	10조	7조	9조

September 13, 2022

조교 이시현 shyeon0528@gmail.com

임베디드 시스템 설계 및 실험 화요일 분반

3주차 GPIO 제어

실험 목적

실험 목적

- 임베디드 시스템 설계의 기본 원리 습득
- 디버깅 툴 사용방법 습득 및 레지스터 제어를 통한 임베디드 펌웨어 개발

세부 목표

- 개발 환경 구축
- IAR Embedded Workbench에서 프로젝트 생성 및 설정
- Datasheet 및 Reference Manual을 참고하여 해당 레지스터 및 주소에 대한 설정 이해
- GPIO(general-purpose input/output)를 사용하여 LED제어
- 오실로스코프에 대한 이해와 DebugPin설정

Contents

IAR EW 설치 (실험실에서는 필요 없음)

IAR Embedded Workbench 설치

- 실험실에는 라이센스 및 프로그램이 이미 설치되어 있음
- 개인 혹은 조별로 사용하기 위한 방법
 - https://www.iar.com/kr/iar-embedded-workbench2/#!?currentTab=free-trials
 - -> IAR Embedded Workbench for Arm 다운로드

IAR Embedded Workbench 설치

- 설치 파일 실행
- Install IAR Embedded Workbench for ARM 클릭해서 IAR 툴 및 모든 드라이버 설치

IAR Embedded Workbench 설치

 설치된 IAR License Manager for Arm 실행

IAR Embedded Workbench 설치

	AR
This wizard will help you to activate your IAR Embedded Workbench for Arm license.	TEMS
Olf you have a license number, enter it here:	
XXXX-XXX-XXXX	
O Use a network license	
□ Don't run the Wizard for this product at startup.	
< 뒤로(B) 다음(N) >	취소

• Register with IAR Systems to get an evaluation license 선택

IAR Embedded Workbench 설치

License Wizard	×
Register	OIAR SYSTEMS
When you register you will receive a license number for an evaluation lic	ense.
Enter the license number you received after registering and click Next.	
< 뒤로(B) 다음(N)	> 취소

• Register 클릭

IAR Embedded Workbench 설치 • 라이센스 종류 두가지

- - 1. 코드 제한 없이 30일
 - 2. 코드 제한으로 무제한
 - 수업 과제는 코드 제한으로도 가능
- 차후 텀 프로젝트는 새로 설치해서 다른 이메일을 이용하여 30일 Time limited 사용

Select the manufactur	er of the processor you intend to run your code on: *
STMicroelectronics	▼

Manufacturer는 STMicroelectonics 선택

IAR Embedded Workbench 설치

• 왼쪽과 같은 메일이 오면 라이선스 번호 확인 후

오른쪽과 같이 하단에 입력

IAR Embedded Workbench 설치

 trial 버전과 실험실에 설치된 버전은 서로 프로젝트 호환이 안 되므로 프로젝트를 새로 만들고 코드를 복사해야 함

Contents

프로젝트 및 실험 장비 설정

- •원하는 경로에 원하는 이름으로 폴더 생성 (ex: project_test)
- •project_test/ 폴더에 실험 제공 파일 (CoreSupport, libraries, user 등) 복사

- •IAR Embedded Workbench IDE 실행
- Project Create New Project
- Empty project OK
- •생성한 project_test 폴더에 원하는 프로젝트 명 (ex: test) 으로 저장

- 프로젝트 오른쪽 클릭 Add Add Group으로 project_test 폴더의 구조와 같이 만들기
 - 필수는 아니지만 보기 좋게 하기 위함
 - 하나하나 추가해야 함
- 프로젝트 오른쪽 클릭 Add Add Files으로 .c, .h, .s 파일 모두 추가
 - 이건 필수

•프로젝트 오른쪽 클릭 - Options

•General Options - Target 탭 - Device

• ST - STM32F1 - STM32F107 - ST STM32F107VC

- •General Options Library Configuration 탭
 - Library
 - Normal
 - CMSIS
 - Use CMSIS

- •Runtime Checking C/C++ Compiler
 - List 탭
 - · Output list file
 - Assembler mnemonics
 - Diagnostics

•Runtime Checking - C/C++ Compiler

- Preprocessor 탭
 - Additional include directories: (one per line)
 \$PROJ_DIR\$\libraries\CMSIS\DeviceSupport
 \$PROJ_DIR\$\libraries\CMSIS\DeviceSupport\Startup
 \$PROJ_DIR\$\libraries\STM32F10x_StdPeriph_Driver_v3.5\inc
 \$PROJ_DIR\$\libraries\STM32F10x_StdPeriph_Driver_v3.5\src
 \$PROJ_DIR\$\user\inc
 - Defined symbols: (one per line)
 USE_STDPERIPH_DRIVER
 STM32F10X_CL

- •Runtime Checking Output Converter
 - · Generate additional output
 - Output format Raw binary

- •Runtime Checking Linker List 탭
 - 모두 체크

- user/main.c에 원하는 코드 작성
- F7 (Make) 로 컴파일
- 첫 컴파일 시 저장하는 창이 뜸
 - project_test/ 폴더에 프로젝트 명으로 저장

```
main.c x
main()

#include "stm32fl0x.h"
int main(void)

while (1) {
    return 0;
}
```

보드 - JTAG 연결 플랫케이블 조심히 다뤄주세요

5V 1A 전원 연결 (5V 5A 전원 절대 연결 금지, 같은 규격이므로 주의!!)

•보드

- 5V 1A 전원 연결
- JTAG 연결

•JTAG

- 보드와 연결
- PC와 연결

PC와 연결

options - Runtime checking - Debugger - Setup 탭

• Driver - J-link/J-Trace

options - Runtime checking – Debugger – Download

- · Verify download
- Use flash loader(s)

- Download and Debug
 - 동의 묻는 창 뜨면 Accept
 - 보드 flash에 프로그램 다운로드 하면서 디버깅 모드로 들어감
- Stop Debugging
 - 디버깅 모드에서 나오기
- •보드 전원 껐다 켜기
- •원하는 대로 동작하는지 확인

실험 주의사항

- 실험 장비들을 연결 및 분리할 때 반드시 모든 전원을 끄고 연결해주세요.
- 장비사용시 충격이 가해지지 않도록 주의해주세요.
- 자리는 항상 깔끔하게 유지하고 반드시 정리 후 퇴실해주세요.
- 실험 소스 코드와 프로젝트 폴더는 백업 후 반드시 삭제해주세요.
- 장비 관리, 뒷정리가 제대로 되지 않을 경우 해당 조에게 감점이 주어집니다.
- 동작 중 케이블 절대 뽑지말것
- 보드는 전원으로 USBPort나 어댑터(5V,1A)를 사용할것 (5V 5A 어댑터(비슷하게 생김) 와 혼동하지 말 것, 사용시 보드가 타버림 -> 감점)
- 디버깅 모드 중에 보드 전원을 끄거나 연결 케이블을 분리하지 말 것!!!
- ->지켜지지 않을 시 해당 조 감점

Contents

실험 내용

데이터시트와 레퍼런스 문서를 통하여 임베디드 보드를 제어하는 능력향상

데이터시트: stm32_Datasheet.pdf

레퍼런스 매뉴얼: stm32_ReferenceManual.pdf

STM32 보드 회로도: STM32F107VCT6_schematic.pdf

- 모든 외부 장치는 Port, Pin 을 통해 MCU와 연결
- 원하는 Port/Pin에 clock을 부여, 포트 설정을 한 뒤 입출력 가능

데이터시트와 레퍼런스 문서를 통하여 임베디드 보드를 제어하는 능력향상

- 데이터시트에 각 레지스터에 대한 메모리맵핑 주소가 나와 있음
- APB2에 각 GPIO포트가 할당되 어있는것을 확인할수 있음
- 각 할당된 주소에 offset을 더하 면 해당 레지스터 주소가 됨

Memory mapping

The memory map is shown in Figure 5.

Figure 5. Memory map

데이터시트와 레퍼런스 문서를 직접리딩하여 임베디드 보드를 제어하는 능력향상

7.3.7 APB2 peripheral clock enable register (RCC APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2 domain is on going. In this case, wait states are inserted until the access to APB2 peripheral is finished.

Note:

When the peripheral clock is not active, the peripheral register values may not be readable by software and the returned value is always 0x0.

레퍼런스 문서에

각 레지스터 설정값과 설명들이 나와있음

General-purpose and alternate-function I/Os (GPIOs and AFIOs)

RM0008

9.2 **GPIO** registers

Refer to Section 2.1 on page 47 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

Port configuration register low (GPIOx CRL) (x=A..G) 9.2.1

> Address offset: 0x00 Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	7[1:0]	MODE	7[1:0]	CNF	6[1:0]	MODE	6[1:0]	CNF	5[1:0]	MODE	5[1:0]	CNF	4[1:0]	MODE	E4[1:0]
rw	rw	rw	IW	rw	rw	ΓW	ΓW	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	301:01	MODE	3[1:0]	CNE	2[1:0]	MODE	2[1:0]	CNF	101:01	MODE	1[1:0]	CNF	DE1:01	MODE	E0[1:0]
	0[1.0]	111000	-0[1.0]	0.41	41.01	10000	-[1.0]	-	il i sol	111000	1[1.0]	0.4	0[1.0]	III ODG	o[1.0]

Bits 31:30, 27:26, CNFy[1:0]: Port x configuration bits (y= 0 .. 7)

11:10, 7:6, 3:2

These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table on page 161.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] \geq 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, MODEy[1:0]: Port x mode bits (y= 0 .. 7)

21:20, 17:16, 13:12,

These bits are written by software to configure the corresponding I/O port. 9:8, 5:4, 1:0

Refer to Table 20: Port bit configuration table on page 161.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

Output mode, max speed 50 MHz.

데이터시트와 레퍼런스 문서를 직접리딩하여 임베디드 보드를 제어하는 능력향상

General-purpose and alternate-function I/Os (GPIOs and AFIOs)

RM0008

9.2 **GPIO** registers

Refer to Section 2.1 on page 47 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32-bit).

9.2.1 Port configuration register low (GPIOx CRL) (x=A..G)

Address offset: 0x00 Reset value: 0x4444 4444

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
I	CNF	7[1:0]	MODE	7[1:0]	CNF	6[1:0]	MODE	56[1:0]	CNF	5[1:0]	MODE	55[1:0]	CNF	4[1:0]	MODE	E4[1:0]
I	rw	rw	rw	rw	ΓW	rw	TW	TW	TW	TW	rw	rw	rw	rw	ΓW	ΓW
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	CNF	3[1:0]	MODE	3[1:0]	CNF	2[1:0]	MODE	2[1:0]	CNF	1[1:0]	MODE	1[1:0]	CNF	0[1:0]	MODE	E0[1:0]
1	rw	rw	rw	rw	ΓW	rw	rw	rw	rw	rw	rw	rw	rw	ΓW	ΓW	rw

Bits 31:30, 27:26, CNFy[1:0]: Port x configuration bits (y= 0 .. 7)

23:22. 19:18, 15:14, These bits are written by software to configure the corresponding I/O port.

11:10, 7:6, 3:2 Refer to Table 20: Port bit configuration table on page 161.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] > 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, MODEy[1:0]: Port x mode bits (y= 0 .. 7)

21:20, 17:16, 13:12, 9:8, 5:4, 1:0

These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table on page 161.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

포트의 핀 설정시 주의사항

레지스터의 사용하려는 부분을 0으로 초기화 후 사용

0011(output push-pull 50MHz) = 0x3|= 0x30000000 (X)

Reset value |= 0x3;

0100(2) -> 0111(2)(X) (output Open-drain 50MHz)

데이터시트와 레퍼런스 문서를 직접리딩하여 임베디드 보드를 제어하는 능력향상

9.2.3 Port input data register (GPIOx IDR) (x=A..G)

Address offset: 0x08h Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	г	r	r	r	r	r	r	r	r	r	r	r	r	r	г

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input value of the corresponding I/O port.

레퍼런스 문서에

각 레지스터설명과, 원하는 설정을 위한 bit Setting 값이 나와있음. General-purpose and alternate-function I/Os (GPIOs and AFIOs)

RM0008

9.2.4 Port output data register (GPIOx ODR) (x=A..G)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRy: Port output data (y= 0 .. 15)

These bits can be read and written by software and can be accessed in Word mode only.

Note: For atomic bit set/reset, the ODR bits can be individually set and cleared by writing to the GPIOx_BSRR register (x = A .. G).

9.2.5 Port bit set/reset register (GPIOx_B\$RR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BH8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits 31:16 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x Set bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Set the corresponding ODRx bit

두 문서를 참고하여 레지스터를 제어하여 펌웨어를 보드에 올리면 동작

Bitwise Operation

- AND 연산: &
 - -0b0011 & 0b0101 == 0b0001
 - X & 0 == 0
 - X & 1 == X
- OR 연산 : [
 - $0b0011 \mid 0b0101 == 0b0111$
 - X | 0 == X
 - X | 1 == 1

- XOR 연산 : ^
 - $0b0011 ^00b0101 == 0b0110$
 - $X ^0 == X$
 - $X^{1} == -X$
- Not 연산 : ~
 - $\sim 0b01 == 0b10$
 - $\sim 0 = 1$
 - $\sim 1 = 0$
- Shift 연산 : <<, >>
 - 0b01011 << 1 == 0b10110
 - -0b01011 >> 1 == 0b00101

Volatile Keyword

• volatile 선언된 변수는 컴파일러가 최적화를 수행하지 않음.

(접근 시 항상 메모리 참조)

```
*(unsigned int *)0x8C0F = 0x8001

*(unsigned int *)0x8C0F = 0x8002;

*(unsigned int *)0x8C0F = 0x8003;

*(unsigned int *)0x8C0F = 0x8003;

*(unsigned int *)0x8C0F = 0x8004;

*(unsigned int *)0x8C0F = 0x8004;

*(unsigned int *)0x8C0F = 0x8005;

*(volatile unsigned int *)0x8C0F = 0x8004;

*(volatile unsigned int *)0x8C0F = 0x8005;
```

*0x8C0F = 0x8005만 수행하면 만족 vs 5개의 instruction 모두 수행

원하는 포트와 핀(GPIO)을 제어하기 위해 해야할 일들

- 1. RCC (reset and clock control)를 사용하여 사용하고자 하는 GPIO에 clock을 인가 (peripheral clock enable)
- 2. 사용하려는 GPIO Port, Pin의 input/output 설정 (Port Configuration)
- 3. GPIO의 Input (Port input data), output (Port output data) <- Port bit set/reset으로 제어)를 통하여 센서 및 액츄에이터를 제어하고 오실로스코프로 확인한다.
- 레지스터에 들어있는 값을 읽거나 레지스터에 씀으로써 보드 제어하는 방법

예시) GPIO PE5 reset

APB2	Reserved	0x4001 1C00 -	
APB2	Port E	0x4001 1800 -	
	Port D	0x4001 1400 -	
	Port C	0x4001 1000 -	0x4001 13FF
	Port B	0x4001 0C00 -	0x4001 0FFF
	Port A	0x4001 0800 -	0x4001 0BFF
	FXTI	0x4001 0400 -	0x4001 07FF

GPIO Port E의 BSRR 레지스터 주소 계산:

(Port E base) + (GPIOx_BSRR address offset) => 0x40011800 + 0x10 = 0x40011810 해당 bit에 대입: *((volatile unsigned int *)0x40011810) |= 0x00200000;

오실로스코프

실험미션

미션!별도 미션지 참고

실험 검사

오늘 검사 받을 수 있는 조는 오늘 받고 못 받는 조는 따로 미션 수행 후 다음 주 수업 시작할 때 검사

- 1. 정확한 장비 설정 유무 확인
- 2. 레지스터 및 주소 설정 이해 확인
- 3. LED제어 원리 이해 및 동작 확인
- 4. 오실로스코프 디지털 핀 사용법 이해

이번 주 실험 결과 보고서

- A. 이론부터 실습까지 전반적인 내용을 포함하도록 작성 (실험 과정 사진 찍으시면 좋아요)
- B. 다음 실험시간 전까지 PLATO 제출

예비 발표 조는 발표 자료(영상) 만들어서 일요일 24시까지 조교 이메일로 제출

나가실 때, 만드신 코드 및 프로젝트 폴더는 모두 백업하시고 삭제해주세요. 다른 분반 파일은 만지지 마시고 조교에게 알려주세요. 자리 정리정돈 안 되어 있으면 <mark>감점</mark>합니다!!!