MATH 330 – HW #19 Revision

Cristobal Forno

11/05/2017

Proposition 9.15: If $k \in \mathbb{N}$, then $e(k) \in \mathbb{R}_{>0}$.

Proof:

Let the statement P(k) be the statement "If $k \in \mathbb{N}$, then $e(k) \in \mathbb{R}_{\geq 0}$ ". Base Case: Let $k = 1_{\mathbb{N}}$. By Axiom 2.1, $1_{\mathbb{Z}}$ as well. By Proposition 9.14, $e(1_{\mathbb{Z}}) = 1_{\mathbb{R}}$.

Inductive Case: Assume P(k) holds. We want to prove P(n+1), where "If $n+1 \in \mathbb{N}$, then $e(n+1) \in \mathbb{R}$ ". By Axiom 2.1, $n+1_{\mathbb{Z}}$ as well. So, we have $e(n+1_{\mathbb{Z}}) = e(n) + 1_{\mathbb{Z}}$ by the relationship between \mathbb{Z} and \mathbb{R} . e(n) holds by induction hypothesis. This completes our proof by induction. \square

Proposition 9.18: The function e preserves multiplication: for all $m, k \in \mathbb{Z}$,

$$e(m \cdot k) = e(m) \cdot e(k),$$

where \cdot on the left-hand side refers to multiplication in \mathbb{Z} , whereas \cdot on the right-hand side refers to multiplication in \mathbb{R} .

Proof:

Let $m \in \mathbb{Z}$. We first show that for all $n \in (Z_{\geq 0})$ that $e(m \cdot n) = e(m) \cdot e(n)$ by induction on n. First, when n = 0,

$$e(m \cdot n) = e(m \cdot 0) = e(0) = 0 = e(m) \cdot 0 = e(m) \cdot e(0) = e(m) \cdot e(n).$$

Now suppose for some $n \geq 0$ that $e(m \cdot n) = e(m) \cdot e(n)$. By induction hypothesis,

$$e(m \cdot (n+1)) = e(m \cdot n + m)$$

$$= e(m \cdot n) + e(m)$$

$$= e(m) \cdot (e(n) + 1)$$

$$= e(m) \cdot e(n+1).$$

This completes our proof by induction.

It remains to show that for all n < 0, $e(m \cdot n) = e(m) \cdot e(m)$. Suppose n < 0. Then -n > 0. So,

$$e(m \cdot n) = e(-(m(-n))) = -e(m(-n)) = -e(m) \cdot e(-n) = e(m) \cdot e(n).$$