summary of examples

2020-01-12

Example 1 (Copula example):

We have the joint distribution

•
$$S_{T,C}(t,s) = (1-t)(1-s)(1+\frac{C_0}{8}ts(t-s)(t+s-1)), (t,s) \in [0,1] \times [0,1], C_0 \in [-4,4]$$

•
$$f_{T,C}(t,s) = 1 + C_0(t - \frac{1}{2})(s - \frac{1}{2})(t + s - 1)(t - s)$$

The marginal distributions

$$f_T(t) = \int_0^1 f_{T,C}(t,s)dy$$

$$= \left\{ s - \frac{C_0}{4}(t - \frac{1}{2})(s^4 - 2s^3 + (-2t^2 + 2t + 1)s^2 + (2t^2 - 2t)s) \right\}|_0^1 = 1$$

•
$$f_T(t) = I_{[0,1]}(t)$$

•
$$S_T(t) = t$$

•
$$\psi(t) = \int_{t}^{1} f(t,s)ds = \frac{1}{8} ((1-t)(C_0(t-1)t^2(2t-1)+8))$$

•
$$S_H(t) = P(Z > t) = (1 - t)^2$$
, $\Lambda_H(t) = -2\log(1 - t)$, $\lambda_H(t) = \frac{2}{1 - t}$

The m(t) and $\rho(t)$

•
$$m(t) = \frac{\lambda_F(t)}{\lambda_H(t)} = 0.5$$

•
$$\rho(t) = \frac{f(t)/\psi(t) - 1}{S(t)/S_x(t) - 1} = \frac{C_0(2t - 1)(t - 1)^2t + 8}{C_0t^2(t - 1)(2t - 1) + 8}$$

Example 2 (Slud example):

The joint distribution:

•
$$f(t,s) = \begin{cases} \exp(-t-s) & (t \le s) \\ \rho \exp(-\rho t + (\rho - 2)s) & (t > s) \end{cases}$$

The marginal distribution

•
$$f_T(t) = \frac{2\rho - 2}{\rho - 2} \exp(-2t) - \frac{\rho}{\rho - 2} \exp(-\rho t)$$

•
$$S_T(t) = \frac{\rho - 1}{\rho - 2} exp(-2t) - \frac{1}{\rho - 2} \exp(-\rho t)$$

•
$$\psi(t) = \exp(-2t)$$

•
$$S_H(x) =$$

$$\begin{split} S_H(x) &= \int_x^\infty \int_x^t f(t,s) ds dt + \int_x^\infty \int_x^s f(t,s) dt ds \\ &= \int_x^\infty \int_x^t \rho \exp(-\rho t + (\rho - 2)s) ds dt + \int_x^\infty \int_x^t \exp(-t - s) dt ds \\ &= \int_x^\infty \rho \Big(\frac{\exp(-2t)}{\rho - 2} - \frac{\exp(\rho x - 2x - \rho t)}{\rho - 2}\Big) dt + \int_x^\infty \exp(-x - s) - \exp(-2s) ds \\ &= \frac{\rho}{\rho - 2} \frac{\rho - 2}{2\rho} \exp(-2x) + \frac{\exp(-2x)}{2} \\ &= \exp(-2x) \end{split}$$

•
$$\lambda_H(t) = 2$$

The m(t) and $\rho(t)$

• m(t)

$$m(t) = \frac{\lambda_F(t)}{\lambda_H(t)} = \frac{\frac{\frac{2\rho - 2}{\rho - 2} \exp(-2t) - \frac{\rho}{\rho - 2} \exp(-\rho t)}{\frac{\rho - 1}{\rho - 2} \exp(-2t) - \frac{1}{\rho - 2} \exp(-\rho t)}}{2} = \frac{1}{2} \frac{(2\rho - 2) \exp(-2t) - \rho \exp(-\rho t)}{(\rho - 1) \exp(-2t) - \exp(-\rho t)}$$

• $\rho(t) = \rho$

Example 3 (exponential + extreme distribution):

The joint distribution

•
$$S_{T,C}(t,s) = \begin{cases} e^{-\theta t} e^{-(e^{\theta s}-1)\left((\theta t-\theta s)^2+1\right)} & t \ge s \\ e^{-\theta t} e^{-(e^{\theta s}-1)} & t < s \end{cases}$$

The marginal distribution

•
$$S_T(t) = P(T > t) = P(T > t, C > 0) = e^{-\theta t} e^{-(e^{\theta 0} - 1)((t - 0)^2 + 1)} = e^{-\theta t}$$

•
$$f_T(t) = \frac{\partial}{\partial t}(1 - S_T(t)) = \frac{\partial}{\partial t}(1 - e^{-\theta t}) = \theta e^{-\theta t}$$

•
$$S_Z(t) = P(T > t, C > t) = e^{-\theta t} e^{-(e^{\theta t} - 1)} = e^{-e^{\theta t} - \theta t + 1}$$

•
$$f_Z(t) = \frac{\partial}{\partial t}(1 - S_Z(t)) = 1 - e^{-e^{\theta t} - \theta t + 1} = \theta(1 + e^{\theta t})e^{-e^{\theta t} - \theta t + 1}$$

•
$$\psi(t) = \int_t^\infty f(t,c)dc = \int_t^\infty \theta^2 e^{-e^{\theta c} + \theta c - \theta t + 1} dc = \theta e^{-e^{\theta t} - \theta t + 1}$$

The m(t) and $\rho(t)$ function:

•
$$m(t) = \frac{\lambda_F(t)}{\lambda_H(t)} = \frac{f_T(t)}{S_T(t)} / \frac{f_Z(t)}{S_Z(t)} = \frac{\theta e^{-\theta t}}{e^{-\theta t}} / \frac{\theta (1 + e^{\theta t}) e^{-e^{\theta t} - \theta t + 1}}{e^{-e^{\theta t} - \theta t + 1}} = \frac{1}{1 + e^{\theta t}}$$

•
$$\rho = \frac{f(t)/\psi(t)-1}{S(t)/S_Z(t)-1} = \frac{\theta e^{-\theta t}/(\theta e^{-e^{\theta t}-\theta t+1})-1}{e^{-\theta t}/e^{-e^{\theta t}-\theta t+1}-1} = 1$$

Example 4 (exponential + weibull distribution):

The joint distribution

•
$$S_{T,C}(x,y) = \begin{cases} e^{-\theta x} e^{-(\theta y)^k \left((\theta x - \theta y)^2 + 1 \right)} & x \ge y \\ e^{-\theta x} e^{-(\theta y)^k} & x < y \end{cases}$$

The marginal distribution

•
$$S_T(x) = P(T \ge x, C \ge 0) = S(x, 0) = e^{-\theta x}$$

•
$$f_T(x) = \frac{1 - S_T(x)}{x} = \theta e^{-\theta x}$$

•
$$S_C(x) = P(T \ge 0, C \ge x) = S(0, x) = e^{-\theta 0} e^{-(\theta x)^k} = e^{-(\theta x)^k}$$

•
$$f_C(x) = \frac{1 - S_C(x)}{x} = k\theta(\theta y)^{k-1} e^{-(\theta x)^k}$$

The death time is from an exponential distribution with parameter θ , the censor time is from a Weibull distribution with shape parameter k and scale parameter $1/\theta$.

•
$$S_Z(x) = P(T > x, C > x) = e^{-\theta x - (\theta x)^k}$$

•
$$f_Z(x) = (\theta + k\theta(\theta x)^{k-1})e^{-\theta x - (\theta x)^k}$$

•
$$\psi(x) = \int_x^\infty f_{T,C}(x,y) dy = \int_x^\infty k \theta^{k+1} y^{k-1} \exp(-\theta x - (\theta y)^k) dy = \theta \exp(-\theta x - (\theta x)^k)$$

The m(t) and $\rho(t)$ function

•
$$m(x) = \frac{f_T(x)/S_T(x)}{f_Z(X)/S_Z(x)} = \frac{\theta e^{-\theta x}/e^{-\theta x}}{(\theta + k\theta(\theta x)^{k-1})e^{-\theta x - (\theta x)^k}/e^{-\theta x - (\theta x)^k}} = \frac{1}{1 + k(\theta x)^{k-1}}$$

We could also transform m() function as:

•
$$m(x) = \frac{1}{1 + \exp(\log(k(\theta x)^{k-1}))} = \frac{1}{1 + \exp(\log(k) + (k-1)\log(\theta) + (k-1)\log(x))}$$

We can then estimate the k and θ by fitting logistic regression.

•
$$\rho(x) = \frac{f_T(x)/\psi(x) - 1}{S(x)/S_Z(x) - 1} = \frac{\theta \exp(-\theta x)/(\theta \exp(-\theta x - (\theta x)^k)) - 1}{\exp(-\theta x)/\exp(-\theta x - (\theta x)^k) - 1} = 1$$

Example 5 (exponential + weibull distribution):

The joint distribution

•
$$S_{T,C}(x,y) = \begin{cases} e^{-\theta x} e^{-(e^{\theta y} - 1)((x-y) + 1)} & x \ge y \\ e^{-\theta x} e^{-(e^{\theta y} - 1)} & x < y \end{cases}$$

The marginal distribution

•
$$S_T(t) = P(T > t) = P(T > t, C > 0) = e^{-\theta t} e^{-(e^{\theta 0} - 1)((t - 0) + 1)} = e^{-\theta t}$$

•
$$f_T(t) = \frac{\partial}{\partial t}(1 - S_T(t)) = \frac{\partial}{\partial t}(1 - e^{-\theta t}) = \theta e^{-\theta t}$$

•
$$S_Z(t) = P(T > t, C > t) = e^{-\theta t} e^{-(e^{\theta t} - 1)} = e^{-e^{\theta t} - \theta t + 1}$$

•
$$f_Z(t) = \frac{\partial}{\partial t}(1 - S_Z(t)) = 1 - e^{-e^{\theta t} - \theta t + 1} = \theta(1 + e^{\theta t})e^{-e^{\theta t} - \theta t + 1}$$

$$\psi(t) = \int_t^\infty f(t,c)dc = \int_t^\infty \theta^2 e^{-e^{\theta c} + \theta c - \theta t + 1} dc = \theta e^{-e^{\theta t} - \theta t + 1}$$

The m(t) and $\rho(t)$ function

•
$$m(t) = \frac{\lambda_F(t)}{\lambda_H(t)} = \frac{f_T(t)}{S_T(t)} / \frac{f_Z(t)}{S_Z(t)} = \frac{\theta e^{-\theta t}}{e^{-\theta t}} / \frac{\theta (1 + e^{\theta t}) e^{-e^{\theta t} - \theta t + 1}}{e^{-e^{\theta t} - \theta t + 1}} = \frac{1}{1 + e^{\theta t}}$$

•
$$\rho = \frac{f(t)/\psi(t)-1}{S(t)/S_x(t)-1} = \frac{\theta e^{-\theta t}/(\theta e^{-e^{\theta t}-\theta t+1})-1}{e^{-\theta t}/e^{-e^{\theta t}-\theta t+1}-1} = 1$$

Simulation results tables

Sample size: 500; Repetitions: 500

Table 1: Example 1: Mean absolute difference between estimated and true S()

		With tr	rue m()			With estin	nated m()	
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
C0 = 1								
t0.1	0.01110	0.00727	0.00728	0.00728	0.01110	0.00807	0.00805	0.00805
t0.25	0.01711	0.01280	0.01280	0.01281	0.01711	0.01560	0.01558	0.01557
t0.5	0.02307	0.01565	0.01560	0.01561	0.02307	0.02146	0.02135	0.02132
t0.75	0.02667	0.01835	0.01826	0.01831	0.02667	0.02330	0.02297	0.02288
t0.9	0.02603	0.01772	0.01847	0.01953	0.02603	0.02021	0.02059	0.02104
C0 = 2								
t0.1	0.01101	0.00722	0.00721	0.00721	0.01101	0.00815	0.00813	0.00812
t0.25	0.01687	0.01271	0.01271	0.01272	0.01687	0.01567	0.01565	0.01565
t0.5	0.02279	0.01572	0.01570	0.01569	0.02279	0.02135	0.02127	0.02124
t0.75	0.02652	0.01792	0.01798	0.01806	0.02652	0.02306	0.02285	0.02277
t0.9	0.02623	0.01789	0.01850	0.01955	0.02623	0.02050	0.02080	0.02121
C0 = 4								
t0.1	0.01133	0.00733	0.00735	0.00735	0.01133	0.00814	0.00814	0.00814
t0.25	0.01697	0.01282	0.01283	0.01284	0.01697	0.01565	0.01562	0.01561
t0.5	0.02314	0.01594	0.01587	0.01586	0.02314	0.02174	0.02161	0.02156
t0.75	0.02685	0.01819	0.01823	0.01830	0.02685	0.02351	0.02335	0.02327
t0.9	0.02718	0.01777	0.01851	0.01956	0.02718	0.02052	0.02080	0.02123

Table 2: Example 1: Standard deviations of the estimated S()

		With tr	rue m()		With estimated m()				
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2	
C0 = 1									
t0.1	0.01381	0.00915	0.00917	0.00917	0.01381	0.00997	0.00998	0.00998	
t0.25	0.02102	0.01583	0.01584	0.01585	0.02102	0.01925	0.01925	0.01925	
t0.5	0.02798	0.01958	0.01957	0.01959	0.02798	0.02629	0.02627	0.02628	
t0.75	0.03271	0.02201	0.02214	0.02223	0.03271	0.02847	0.02852	0.02856	
t0.9	0.03328	0.02174	0.02337	0.02393	0.03328	0.02453	0.02587	0.02631	
C0 = 2									
t0.1	0.01387	0.00923	0.00923	0.00923	0.01387	0.01008	0.01008	0.01008	
t0.25	0.02098	0.01593	0.01596	0.01597	0.02098	0.01931	0.01932	0.01933	
t0.5	0.02795	0.01971	0.01976	0.01979	0.02795	0.02632	0.02633	0.02635	
t0.75	0.03257	0.02172	0.02193	0.02203	0.03257	0.02824	0.02833	0.02838	
t0.9	0.03323	0.02159	0.02327	0.02383	0.03323	0.02454	0.02586	0.02629	
C0 = 4									
t0.1	0.01388	0.00919	0.00921	0.00922	0.01388	0.01001	0.01002	0.01002	
t0.25	0.02106	0.01596	0.01597	0.01598	0.02106	0.01918	0.01918	0.01919	
t0.5	0.02805	0.01984	0.01986	0.01989	0.02805	0.02661	0.02661	0.02662	
t0.75	0.03279	0.02193	0.02211	0.02221	0.03279	0.02871	0.02879	0.02883	
t0.9	0.03381	0.02157	0.02326	0.02382	0.03381	0.02456	0.02592	0.02635	

Table 3: Example 1: MSE of the estimated S()

		With tr	rue m()			With estin	mated m()	
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
C0 = 1								
t0.1	0.00019	0.00008	0.00008	0.00008	0.00019	0.00010	0.00010	0.00010
t0.25	0.00045	0.00025	0.00025	0.00025	0.00045	0.00038	0.00037	0.00037
t0.5	0.00080	0.00039	0.00039	0.00039	0.00080	0.00073	0.00072	0.00072
t0.75	0.00111	0.00049	0.00049	0.00049	0.00111	0.00086	0.00084	0.00083
t0.9	0.00111	0.00047	0.00056	0.00061	0.00111	0.00062	0.00067	0.00070
C0 = 2								
t0.1	0.00019	0.00008	0.00008	0.00008	0.00019	0.00010	0.00010	0.00010
t0.25	0.00044	0.00025	0.00025	0.00025	0.00044	0.00038	0.00038	0.00038
t0.5	0.00079	0.00040	0.00039	0.00039	0.00079	0.00073	0.00072	0.00072
t0.75	0.00110	0.00048	0.00048	0.00048	0.00110	0.00084	0.00082	0.00082
t0.9	0.00112	0.00047	0.00055	0.00061	0.00112	0.00062	0.00067	0.00070
C0 = 4								
t0.1	0.00019	0.00008	0.00008	0.00008	0.00019	0.00010	0.00010	0.00010
t0.25	0.00044	0.00025	0.00025	0.00025	0.00044	0.00037	0.00037	0.00037
t0.5	0.00079	0.00040	0.00040	0.00040	0.00079	0.00075	0.00074	0.00074
t0.75	0.00113	0.00049	0.00049	0.00049	0.00113	0.00087	0.00086	0.00085
t0.9	0.00118	0.00046	0.00055	0.00061	0.00118	0.00062	0.00067	0.00071

Table 4: Example 2: Mean absolute difference between estimated and true $\mathbf{S}()$

		With tr	rue m()		With estimated m()				
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2	
theta =	0.3								
t0.1	0.01071	0.00956	0.00962	0.00965	0.01071	0.00976	0.00982	0.00985	
t0.25	0.01460	0.02100	0.02128	0.02143	0.01460	0.02346	0.02376	0.02392	
t0.5	0.04125	0.06398	0.06511	0.06580	0.04125	0.07632	0.07746	0.07815	
t0.75	0.10133	0.04082	0.05102	0.05665	0.10133	0.06283	0.07307	0.07850	
t0.9	0.05235	0.05139	0.09990	0.09986	0.05235	0.02789	0.10000	0.09996	
theta =	0.8								
t0.1	0.01001	0.00846	0.00850	0.00852	0.01001	0.00853	0.00857	0.00859	
t0.25	0.01416	0.01863	0.01888	0.01901	0.01416	0.02015	0.02041	0.02055	
t0.5	0.03326	0.05150	0.05255	0.05321	0.03326	0.06035	0.06142	0.06207	
t0.75	0.09109	0.04377	0.05576	0.06180	0.09109	0.06079	0.07236	0.07823	
t0.9	0.05912	0.05143	0.09992	0.09989	0.05912	0.03319	0.09989	0.09985	
theta =	1								
t0.1	0.00947	0.00826	0.00831	0.00834	0.00947	0.00839	0.00844	0.00847	
t0.25	0.01380	0.01903	0.01928	0.01942	0.01380	0.02075	0.02102	0.02116	
t0.5	0.03366	0.05310	0.05417	0.05484	0.03366	0.06186	0.06294	0.06359	
t0.75	0.09109	0.04340	0.05253	0.05865	0.09109	0.05979	0.06886	0.07481	
t0.9	0.05637	0.05244	0.10000	0.10000	0.05637	0.03446	0.10000	0.10000	
theta =	1.5								
t0.1	0.00986	0.00811	0.00813	0.00814	0.00986	0.00813	0.00816	0.00817	
t0.25	0.01415	0.01674	0.01695	0.01707	0.01415	0.01795	0.01818	0.01831	
t0.5	0.03170	0.04993	0.05097	0.05163	0.03170	0.05853	0.05958	0.06023	
t0.75	0.06719	0.01941	0.02279	0.02549	0.06719	0.03227	0.03648	0.03962	
t0.9	0.05985	0.05800	0.09995	0.09991	0.05985	0.03937	0.09981	0.09978	
theta =	2								
t0.1	0.01000	0.00772	0.00774	0.00775	0.01000	0.00776	0.00779	0.00780	

t0.25 t0.5 t0.75	0.01425 0.03329 0.05248	0.01652 0.05195 0.01777	0.01674 0.05302 0.01798	0.01686 0.05367 0.01860	0.01425 0.03329 0.05248	0.01779 0.06001 0.02427	0.01803 0.06110 0.02601	0.01816 0.06176 0.02751
t0.9	0.07273	0.08153	0.10000	0.09997	0.07273	0.06150	0.09987	0.09983
theta =	5							
t0.1	0.01083	0.01598	0.01608	0.01613	0.01083	0.01687	0.01697	0.01703
t0.25	0.01591	0.03690	0.03722	0.03741	0.01591	0.04328	0.04361	0.04380
t0.5	0.07241	0.10069	0.10195	0.10278	0.07241	0.12810	0.12941	0.13020
t0.75	0.18745	0.06923	0.08175	0.08904	0.18745	0.11240	0.12385	0.13007
t0.9	0.06338	0.06325	0.06141	0.05180	0.06338	0.02267	0.02741	0.02676

Table 5: Example 3: Standard deviations of the estimated S()

		With tr	rue m()			With estin	nated m()	
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
theta =	0.3							
t0.1	0.01318	0.01040	0.01042	0.01042	0.01318	0.01040	0.01042	0.01042
t0.25	0.01768	0.01430	0.01432	0.01433	0.01768	0.01431	0.01433	0.01435
t0.5	0.02559	0.02005	0.02015	0.02021	0.02559	0.02166	0.02175	0.02180
t0.75	0.04435	0.02678	0.04130	0.04231	0.04435	0.02961	0.04100	0.04172
t0.9	0.06024	0.00853	0.00844	0.00776	0.06024	0.02219	0.01039	0.00969
theta =	0.8							
t0.1	0.01256	0.00968	0.00969	0.00970	0.01256	0.00969	0.00970	0.00970
t0.25	0.01760	0.01540	0.01543	0.01544	0.01760	0.01541	0.01544	0.01545
t0.5	0.02290	0.01909	0.01917	0.01923	0.02290	0.01978	0.01986	0.01990
t0.75	0.05050	0.02613	0.04558	0.04598	0.05050	0.03048	0.04555	0.04580
t0.9	0.06710	0.00800	0.00885	0.00819	0.06710	0.02131	0.00818	0.00754
theta =	1							
t0.1	0.01178	0.00934	0.00935	0.00935	0.01178	0.00935	0.00936	0.00936
t0.25	0.01710	0.01493	0.01495	0.01496	0.01710	0.01507	0.01509	0.01510
t0.5	0.02282	0.01927	0.01936	0.01942	0.02282	0.02049	0.02057	0.02062
t0.75	0.05134	0.02637	0.03997	0.04102	0.05134	0.03117	0.04155	0.04230
t0.9	0.06793	0.00856	0.00000	0.00000	0.06793	0.02315	0.00000	0.00000
theta =	1.5							
t0.1	0.01245	0.00989	0.00990	0.00990	0.01245	0.00988	0.00989	0.00990
t0.25	0.01750	0.01474	0.01475	0.01476	0.01750	0.01460	0.01461	0.01463
t0.5	0.02505	0.01981	0.01990	0.01995	0.02505	0.02039	0.02047	0.02052
t0.75	0.04198	0.02202	0.02550	0.02639	0.04198	0.02685	0.02949	0.03010
t0.9	0.07040	0.00714	0.00922	0.00852	0.07040	0.02248	0.00653	0.00591
theta =	2							
t0.1	0.01227	0.00935	0.00936	0.00937	0.01227	0.00935	0.00936	0.00937
t0.25	0.01760	0.01468	0.01470	0.01472	0.01760	0.01467	0.01469	0.01471
t0.5	0.02349	0.01913	0.01922	0.01927	0.02349	0.01987	0.01995	0.02000
t0.75	0.03840	0.02193	0.02295	0.02379	0.03840	0.02811	0.02892	0.02952
t0.9	0.04559	0.01157	0.01027	0.00965	0.04559	0.02698	0.00763	0.00701
theta =	5							
t0.1	0.01357	0.01039	0.01040	0.01040	0.01357	0.01047	0.01048	0.01048
t0.25	0.01796	0.01552	0.01554	0.01555	0.01796	0.01592	0.01593	0.01595
t0.5	0.02835	0.02001	0.02014	0.02022	0.02835	0.02056	0.02066	0.02071
t0.75	0.02984	0.02156	0.03704	0.03758	0.02984	0.02336	0.03257	0.03285
t0.9	0.02260	0.01651	0.05320	0.05011	0.02260	0.02168	0.04103	0.03849

Table 6: Example 3: MSE

With true m()	With estimated m()

Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
theta =	0.3							
t0.1	0.00017	0.00015	0.00015	0.00015	0.00017	0.00015	0.00015	0.00016
t0.25	0.00032	0.00061	0.00062	0.00063	0.00032	0.00073	0.00075	0.00075
t0.5	0.00221	0.00449	0.00464	0.00474	0.00221	0.00629	0.00647	0.00658
t0.75	0.01220	0.00232	0.00426	0.00496	0.01220	0.00480	0.00700	0.00789
t0.9	0.00404	0.00271	0.00998	0.00998	0.00404	0.00117	0.01000	0.00999
theta =	0.8							
t0.1	0.00016	0.00011	0.00011	0.00011	0.00016	0.00011	0.00011	0.00011
t0.25	0.00031	0.00050	0.00051	0.00051	0.00031	0.00057	0.00058	0.00059
t0.5	0.00151	0.00301	0.00312	0.00319	0.00151	0.00403	0.00416	0.00424
t0.75	0.01065	0.00255	0.00515	0.00591	0.01065	0.00457	0.00726	0.00817
t0.9	0.00496	0.00271	0.00999	0.00998	0.00496	0.00152	0.00998	0.00998
theta =	1							
t0.1	0.00014	0.00011	0.00011	0.00011	0.00014	0.00011	0.00011	0.00011
t0.25	0.00030	0.00053	0.00054	0.00055	0.00030	0.00061	0.00062	0.00063
t0.5	0.00158	0.00319	0.00331	0.00338	0.00158	0.00424	0.00438	0.00446
t0.75	0.01069	0.00252	0.00431	0.00508	0.01069	0.00451	0.00644	0.00736
t0.9	0.00469	0.00282	0.01000	0.01000	0.00469	0.00168	0.01000	0.01000
theta =	1.5							
t0.1	0.00015	0.00010	0.00010	0.00010	0.00015	0.00010	0.00011	0.00011
t0.25	0.00031	0.00041	0.00042	0.00042	0.00031	0.00046	0.00047	0.00048
t0.5	0.00150	0.00288	0.00299	0.00306	0.00150	0.00384	0.00396	0.00404
t0.75	0.00610	0.00062	0.00093	0.00113	0.00610	0.00149	0.00196	0.00226
t0.9	0.00507	0.00342	0.00999	0.00999	0.00507	0.00203	0.00998	0.00997
theta =	2							
t0.1	0.00015	0.00009	0.00009	0.00009	0.00015	0.00009	0.00009	0.00009
t0.25	0.00032	0.00040	0.00041	0.00041	0.00032	0.00045	0.00046	0.00047
t0.5	0.00152	0.00306	0.00317	0.00325	0.00152	0.00399	0.00413	0.00421
t0.75	0.00382	0.00050	0.00053	0.00057	0.00382	0.00089	0.00104	0.00117
t0.9	0.00681	0.00678	0.01000	0.00999	0.00681	0.00451	0.00998	0.00998
theta =	5							
t0.1	0.00019	0.00034	0.00034	0.00034	0.00019	0.00037	0.00037	0.00038
t0.25	0.00040	0.00160	0.00162	0.00163	0.00040	0.00212	0.00215	0.00217
t0.5	0.00604	0.01054	0.01080	0.01097	0.00604	0.01683	0.01717	0.01738
t0.75	0.03603	0.00526	0.00805	0.00934	0.03603	0.01318	0.01640	0.01799
t0.9	0.00450	0.00427	0.00413	0.00321	0.00450	0.00079	0.00169	0.00162

Table 7: Example 4: Mean absolute difference between estimated and true $\mathbf{S}()$

		With tr	rue m()			With estin	nated m()	
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
theta =	1							
t0.1	0.01433	0.01276	0.01281	0.01282	0.01433	0.01234	0.01239	0.01240
t0.25	0.02735	0.02253	0.02279	0.02284	0.02735	0.02368	0.02394	0.02399
t0.5	0.05885	0.04872	0.04944	0.04977	0.05885	0.06795	0.06868	0.06901
t0.75	0.18087	0.09472	0.10128	0.10543	0.18087	0.12850	0.13453	0.13802
t0.9	0.09934	0.00619	0.09649	0.09619	0.09934	0.03384	0.09689	0.09719
theta = 1	2							
t0.1	0.01085	0.01061	0.01059	0.01059	0.01085	0.01059	0.01059	0.01059
t0.25	0.01295	0.01280	0.01274	0.01273	0.01295	0.01238	0.01241	0.01242
t0.5	0.01333	0.01345	0.01340	0.01339	0.01333	0.01156	0.01169	0.01178
t0.75	0.02056	0.01573	0.01545	0.01547	0.02056	0.01769	0.01728	0.01706

Table 8: Example 4: Standard deviations of the estimated S()

		With tr	rue m()		With estimated m()				
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2	
theta =	1								
t0.1	0.01475	0.01409	0.01411	0.01411	0.01475	0.01417	0.01418	0.01419	
t0.25	0.01825	0.01694	0.01697	0.01697	0.01825	0.01741	0.01743	0.01744	
t0.5	0.02041	0.01986	0.01993	0.01995	0.02041	0.01822	0.01829	0.01831	
t0.75	0.02947	0.02235	0.02852	0.02945	0.02947	0.01954	0.02412	0.02473	
t0.9	0.00341	0.00733	0.02207	0.02012	0.00341	0.01146	0.01541	0.01390	
theta =	2								
t0.1	0.01341	0.01263	0.01265	0.01265	0.01341	0.01306	0.01307	0.01307	
t0.25	0.01620	0.01537	0.01538	0.01539	0.01620	0.01569	0.01570	0.01571	
t0.5	0.01650	0.01671	0.01669	0.01671	0.01650	0.01345	0.01343	0.01344	
t0.75	0.02582	0.01904	0.01906	0.01929	0.02582	0.01984	0.01982	0.02002	
t0.9	0.06723	0.00757	0.02660	0.02443	0.06723	0.01955	0.02779	0.02567	

Table 9: Example 4: MSE

		With tr	rue m()		With estimated m()			
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
theta =	1							
t0.1	0.00031	0.00025	0.00025	0.00025	0.00031	0.00023	0.00024	0.00024
t0.25	0.00102	0.00072	0.00074	0.00074	0.00102	0.00079	0.00080	0.00081
t0.5	0.00388	0.00276	0.00284	0.00287	0.00388	0.00495	0.00505	0.00510
t0.75	0.03358	0.00947	0.01107	0.01198	0.03358	0.01689	0.01868	0.01966
t0.9	0.00988	0.00007	0.00961	0.00960	0.00988	0.00127	0.00962	0.00964
theta =	2							
t0.1	0.00018	0.00018	0.00017	0.00017	0.00018	0.00017	0.00017	0.00017
t0.25	0.00026	0.00026	0.00026	0.00026	0.00026	0.00025	0.00025	0.00025
t0.5	0.00028	0.00029	0.00028	0.00028	0.00028	0.00020	0.00021	0.00021
t0.75	0.00067	0.00038	0.00037	0.00037	0.00067	0.00047	0.00044	0.00043
t0.9	0.00509	0.00040	0.00965	0.00963	0.00509	0.00140	0.00968	0.00965

Table 10: Example 5: Mean absolute difference between estimated and true S()

		With tr	rue m()		With estimated m()				
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2	
theta =	1								
t0.1	0.00992	0.01044	0.01051	0.01055	0.00992	0.01058	0.01066	0.01070	
t0.25	0.01399	0.02018	0.02046	0.02062	0.01399	0.02162	0.02190	0.02206	
t0.5	0.02562	0.02891	0.02977	0.03030	0.02562	0.03509	0.03599	0.03654	
t0.75	0.05239	0.02606	0.03253	0.03672	0.05239	0.03863	0.04548	0.04991	
t0.9	0.07029	0.06051	0.09993	0.09988	0.07029	0.04441	0.09981	0.09976	
theta =	1.5								
t0.1	0.01018	0.01666	0.01678	0.01683	0.01018	0.01721	0.01732	0.01738	
t0.25	0.01610	0.03935	0.03969	0.03988	0.01610	0.04305	0.04340	0.04359	
t0.5	0.04131	0.04206	0.04303	0.04364	0.04131	0.05601	0.05701	0.05762	

t0.75	0.06403	0.02911	0.03489	0.03966	0.06403	0.05629	0.06278	0.06762	
t0.9	0.06371	0.05706	0.10000	0.10000	0.06371	0.02589	0.10000	0.10000	
theta =	2								
t0.1	0.01054	0.01571	0.01582	0.01588	0.01054	0.01618	0.01629	0.01635	
t0.25	0.01562	0.03483	0.03517	0.03536	0.01562	0.03809	0.03843	0.03862	
t0.5	0.04020	0.03610	0.03701	0.03758	0.04020	0.04830	0.04926	0.04984	
t0.75	0.04648	0.02224	0.02651	0.02989	0.04648	0.04340	0.04898	0.05300	
t0.9	0.07095	0.06153	0.09996	0.09993	0.07095	0.03195	0.09990	0.09988	
theta = 5									
t0.1	0.01021	0.02920	0.02933	0.02940	0.01021	0.03205	0.03217	0.03224	
t0.25	0.02689	0.09228	0.09269	0.09293	0.02689	0.11146	0.11190	0.11213	
t0.5	0.22492	0.19632	0.19827	0.19956	0.22492	0.25869	0.26066	0.26176	
t0.75	0.22701	0.08810	0.09980	0.10726	0.22701	0.16783	0.17647	0.18087	
t0.9	0.08807	0.04907	0.04312	0.03318	0.08807	0.03332	0.04463	0.05010	

Table 11: Example 5: Standard deviations of the estimated $\mathbf{S}()$

	With true m()				With estimated m()			
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
theta =	1							
t0.1	0.01245	0.01020	0.01021	0.01022	0.01245	0.01023	0.01024	0.01025
t0.25	0.01697	0.01421	0.01423	0.01424	0.01697	0.01425	0.01428	0.01429
t0.5	0.02247	0.01848	0.01855	0.01860	0.02247	0.01939	0.01945	0.01949
t0.75	0.04784	0.02601	0.03581	0.03709	0.04784	0.03144	0.03867	0.03963
t0.9	0.08103	0.00883	0.01146	0.01066	0.08103	0.02328	0.00962	0.00884
theta =	1.5							
t0.1	0.01305	0.01033	0.01034	0.01035	0.01305	0.01039	0.01040	0.01040
t0.25	0.01760	0.01516	0.01518	0.01520	0.01760	0.01543	0.01545	0.01546
t0.5	0.02376	0.01829	0.01836	0.01841	0.02376	0.01972	0.01979	0.01983
t0.75	0.04315	0.02450	0.02828	0.03036	0.04315	0.02930	0.03209	0.03355
t0.9	0.07412	0.00798	0.00000	0.00000	0.07412	0.02122	0.00000	0.00000
theta =	theta = 2							
t0.1	0.01324	0.01015	0.01016	0.01017	0.01324	0.01019	0.01020	0.01021
t0.25	0.01743	0.01464	0.01465	0.01467	0.01743	0.01464	0.01465	0.01467
t0.5	0.02475	0.01994	0.02001	0.02006	0.02475	0.02064	0.02071	0.02075
t0.75	0.04287	0.02400	0.02892	0.03023	0.04287	0.02989	0.03311	0.03402
t0.9	0.07804	0.00872	0.00805	0.00747	0.07804	0.02281	0.00680	0.00623
theta =	5							
t0.1	0.01282	0.01051	0.01051	0.01052	0.01282	0.01075	0.01075	0.01076
t0.25	0.01867	0.01593	0.01597	0.01599	0.01867	0.01679	0.01683	0.01684
t0.5	0.03767	0.01977	0.02005	0.02020	0.03767	0.01631	0.01652	0.01664
t0.75	0.01188	0.01906	0.03150	0.03228	0.01188	0.01795	0.02145	0.02177
t0.9	0.00518	0.01321	0.03445	0.03264	0.00518	0.01472	0.01843	0.01748

Table 12: Example 5: MSE

	With true m()				With estimated m()			
Quantile	KM	Exp m()	Dikta 1	Dikta 2	KM	Exp m()	Dikta 1	Dikta 2
theta = 1								
t0.1	0.00015	0.00017	0.00017	0.00018	0.00015	0.00018	0.00018	0.00018
t0.25	0.00030	0.00056	0.00057	0.00058	0.00030	0.00062	0.00064	0.00065
t0.5	0.00099	0.00112	0.00118	0.00121	0.00099	0.00157	0.00164	0.00169
t0.75	0.00429	0.00111	0.00211	0.00252	0.00429	0.00222	0.00332	0.00384
t0.9	0.00686	0.00374	0.00999	0.00998	0.00686	0.00250	0.00997	0.00997
${ m theta}=1.5$								

t0.1	0.00017	0.00037	0.00037	0.00038	0.00017	0.00039	0.00039	0.00040
t0.25	0.00040	0.00177	0.00180	0.00181	0.00040	0.00208	0.00212	0.00213
t0.5	0.00222	0.00209	0.00218	0.00223	0.00222	0.00352	0.00364	0.00371
t0.75	0.00562	0.00128	0.00187	0.00237	0.00562	0.00395	0.00492	0.00566
t0.9	0.00563	0.00332	0.01000	0.01000	0.00563	0.00101	0.01000	0.01000
theta =	2							
t0.1	0.00017	0.00034	0.00034	0.00034	0.00017	0.00035	0.00036	0.00036
t0.25	0.00038	0.00143	0.00145	0.00146	0.00038	0.00166	0.00169	0.00171
t0.5	0.00216	0.00168	0.00175	0.00180	0.00216	0.00275	0.00285	0.00291
t0.75	0.00341	0.00080	0.00128	0.00157	0.00341	0.00263	0.00338	0.00387
t0.9	0.00684	0.00386	0.00999	0.00999	0.00684	0.00145	0.00999	0.00998
theta = 5								
t0.1	0.00017	0.00096	0.00097	0.00097	0.00017	0.00114	0.00115	0.00116
t0.25	0.00100	0.00877	0.00885	0.00889	0.00100	0.01271	0.01280	0.01286
t0.5	0.05201	0.03893	0.03971	0.04023	0.05201	0.06719	0.06822	0.06879
t0.75	0.05167	0.00812	0.01095	0.01255	0.05167	0.02849	0.03160	0.03319
t0.9	0.00778	0.00258	0.00218	0.00153	0.00778	0.00131	0.00233	0.00281