Centro Federal de Educação Tecnológica - CEFET-RJ Terceira Aula de Cálculo Numérico

Método de Eliminação de Gauss

Professor da Disciplina

Wagner Pimentel

Métodos de Resolução para Sistemas Lineares

Existem duas classes de métodos para resolução de sistemas lineares: a classe dos métodos diretos e a classe dos métodos iterativos. Os métodos diretos produzem, a menos de arredondamento, a solução exata do sistema linear. Já os métodos iterativos produzem uma solução aproximada do sistema linear.

Sistema Linear

Um sistema linear consiste de um conjunto de m equações composto por n incognitas [e representado da seguinte forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

onde $a_{ij} \in R$ são os coeficientes da i-ésima linha associados à j-ésima coluna da matriz de coeficientes do sistema linear, e ainda, a componente x_j pertence ao vetor solução do sistema linear, $x = (x_1, x_2, \dots, x_n)^t$, e o termo independente b_i corresponde à i-ésima componente do vetor coluna, $b = (b_1, b_2, \dots, b_m)^t$.

Podemos reescrever o sistema linear na forma matricial, Ax = b, ou ainda $\sum_{j=1}^{n} a_{ij}x_j = b_i, i = 1, 2, \dots, m$, onde:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
é a matriz de coeficientes do sistema;

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 é o vetor solução do sistema e;

$$b = \left[egin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array}
ight]$$
 é o vetor de termo independente.

E mais, a matriz aumentada do sistema, [A|b] é representada por:

$$[A|b] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & | & b_m \end{bmatrix}$$

Se m = n, a matriz de coeficientes A será quadrada, nesse caso um sistema linear só admitirá solução única se essa matriz for invertível, ou seja, se o seu determinante for diferente de zero, det $A \neq 0$.

Do ponto de vista computacional, não é interessante aplicar o processo de cálculo da inversa da matriz de coeficientes, A^{-1} , para obter a solução de sistemas lineares, pois o processo muito custoso. Neste caso opta-se por aplicar métodos diretos ou métodos iterativos na solução de sistemas lineares. Nesta aula trataremos da aplicação do método de eliminação de Gauss, um método direto, que encontra a solução exata de sistemas lineares.

Método de Eliminação de Gauss

As operações elementares sobre as linhas de um sistema linear são aquelas que modificam as linhas do mesmo mas não a sua solução. As operações que podem ser realizadas são as seguintes

- Troca de linhas
- Multiplicação de uma linha qualquer por um escalar não nulo
- Soma de uma uma linha qualquer por um múltiplo de outra.

O Método de Eliminação de Gauss consiste em transformar um sistema linear Ax = b em um sistema triangular equivalente, Ux = g, através da aplicação de escalonamento matricial, utilizando-se operações elementares sobre as linhas do mesmo. O objetivo de cada passo, k, desse processo consiste em atualizar através da linha k, L_k , todas aquelas que estão abaixo da mesma, de modo a gerar uma nova matriz aumentada atualizada, $[A|b]^{(k)}$, cujos elementos da coluna k, abaixo da entrada correspondente à diagonal, têm o valor zero. Como não existe termos abaixo daquele correspondente àquele que está na diagonal principal, o processo de escalonamento termina após (n-1) passos. O elemento da diagonal da matriz correspondente ao passo k, $a_{k,k}^{(k)}$ é chamado de pivô. Ao final da transformação, aplica-se o processo de retro-substituição de variáveis para encontrar a solução do sistema.

Seja Ax = b um sistema linear. O Método de Eliminação de Gauss para resolução do sistema consiste na realização das seguintes etapas:

- Etapa 1: Obtenção da matriz aumentada [A|b] do sistema.
- Etapa 2: Através do processo de escalonamento, tranformar a matriz aumentada [A|b] em outra da forma [U|q], onde U é uma matriz tringular superior.
- Etapa 3: Resolver o sistema linear [U|g] por retro-substituição.

OBS: Como uma matriz triangular superior é aquela em os elementos abaixo da diagonal principal são sempre zero, a última linha do sistema linear escalonado terá apenas uma incógnita a ser determinada, a penúltima duas e assim por diante. Assim, o processo de retro-substituição consiste em primeiramente determinar, de forma trivial, o valor da última variável, aproveitá-lo na penúltima linha para encontrar o valor da penúltima incógnita e prosseguir com esse processo até ser possível encontrar o valor do primeiro termo desconhecido.

Considere o sistema linear de ordem n dado por:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

A matriz aumentada do problema, correspondente ao passo zero, do Processo de Eliminação de Gauss será:

$$[A|b]^{(0)} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & | & b_n \end{bmatrix}.$$

A matriz aumentada do sistema equivalente correspondente ao passo final do processo de escalonamento matricial será:

$$[A|b]^{(n-1)} = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} & | & g_1 \\ 0 & u_{22} & \dots & u_{2n} & | & g_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ 0 & 0 & \dots & u_{nn} & | & g_n \end{bmatrix}$$

Assim, o sistema linear equivalente, triangular superior de ordem n, é dado por:

$$\begin{cases} u_{11}x_1 + u_{12}x_2 + \dots + u_{1n}x_n = g_1 \\ u_{22}x_2 + \dots + u_{2n}x_n = g_2 \\ \vdots & \ddots & \vdots & \vdots \\ u_{nn}x_n = g_n, \end{cases}$$

Para resolver esse sistema linear triângular superior devemos utilizar o processo de retro-substituição, explicado anteriormente. Supondo que $u_{ii} \neq 0$ para i = 1, 2, ..., n, devemos realizar os seguintes n passos:

- Calcular $x_n = \frac{g_n}{u_{nn}}$; e
- Para i = n 1 até 1 faça

$$x_i = \frac{g_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}};$$

O comando "Para"' é realizado de forma invertida devido ao fato da matriz A ser triangular superior, fazendo com que os elementos sejam calculados e atualizados de baixo para cima.

A equivalência entre os sistemas Ax = b e Ux = g se deve ao fato de utilizamos apenas operações elementares sobrre linhas durante o processo de escalonamento matricial.

Exemplo 1:

Resolva o sistema linear pelo Método de Eliminação de Gauss:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 + x_2 - x_3 = 1 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz aumentada do sistema é

$$[A|b]^{(0)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 2 & 1 & -1 & | & 1 \\ -2 & -5 & 3 & | & 3 \end{bmatrix}.$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

Linha pivô =
$$L_1$$
 e $a_{11}=1$ é pivô.
Multiplicadores: $m_{21}=\frac{a_{21}}{a_{11}}=\frac{2}{1}=2$ e $m_{31}=\frac{a_{31}}{a_{11}}=\frac{-2}{1}=-2$

$$\begin{array}{l} \text{Faça: } L_2^{(1)} \leftarrow L_2^{(0)} - m_{21} L_1^{(0)} \\ \text{Faça: } L_3^{(1)} \leftarrow L_3^{(0)} - m_{31} L_1^{(0)} \end{array}$$

Assim,

$$[A|b]^{(1)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 0 & 3 & -5 & | & -3 \\ 0 & -7 & 7 & | & 7 \end{bmatrix} \quad L_2^{(1)} \leftarrow L_2^{(0)} - 2L_1^{(0)} .$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Linha pivô =
$$L_2^{(1)}$$
 e pivô = $a_{22}^{(1)}$ = 3.

Multiplicador:
$$m_{32} = \frac{a_{32}^{(1)}}{a_{22}^{(1)}} = \frac{-7}{3}$$

Faça:
$$L_3^{(2)} \leftarrow L_3^{(1)} - m_{32}L_2^{(1)}$$

Assim,

$$[A|b]^{(2)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 0 & 3 & -5 & | & -3 \\ 0 & 0 & \frac{-14}{3} & | & 0 \end{bmatrix} \quad L_3^{(2)} \leftarrow L_3^{(1)} - (\frac{-7}{3})L_2^{(1)} .$$

Etapa 3:

Resolvendo o sistema por retro-substituição de variáveis.

 $[A|b]^{(2)}$ representa o sistema:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 3x_2 - 5x_3 = -3 \\ - \frac{14}{3}x_3 = 0 \end{cases}$$

Assim,
$$x_3 = 0$$
; $x_2 = \frac{-3 - (-5x_3)}{3} = -1$; $x_1 = \frac{2 - (-x_2 + 2x_3)}{1} = 1$;

Portanto, $x = (1, -1, 0)^t$.

Observações:

• De uma maneira geral, durante uma iteração k, para "zerarmos" o elemento j abaixo do pivô $a_{k,k}$, devemos realizar a operação $L_j^{(k)} \leftarrow L_j^{(k-1)} - (m_{j,k}) L_k^{(k-1)}$. Note que o multiplicador da linha j, que é aquela que deve ser atualizada, é sempre 1, ao passo que o multiplicador da linha k, correspondete à linha do pivô, deve ser calculado. O processo do algoritmo da Eliminação de Gauss estabelece que o primeiro desses multiplicadores deve sempre ter o valor um, apesar de, na prática, ser possível

operar com valores diferentes. Ao longo desse curso, vamos SEMPRE E SOMENTE trabalhar com essa filosofia.

• Na iteração k, o multiplicador $m_{k,j}$ pode ser interpretado como o número de vezes que devemos tirar a linha k da linha j de modo que o elemento $a_{j,k}$, correspondente ao elemento k da linha j, da matriz atualizada se torne zero. Dessa forma, teremos mais um termo nulo abaixo da diagonal principal.

Exemplo 2:

Resolva o sistema linear pelo Método de Eliminação de Gauss:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 - 2x_2 - x_3 = 4 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz aumentada do sistema é

$$[A|b]^{(0)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 2 & -2 & -1 & | & 4 \\ -2 & -5 & 3 & | & 3 \end{bmatrix}.$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

$$[A|b]^{(1)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 0 & 0 & -5 & | & 0 \\ 0 & -7 & 7 & | & 7 \end{bmatrix} \quad L_2^{(1)} \leftarrow L_2^{(0)} - 2L_1^{(0)} .$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Linha pivô = $L_2^{(1)}$ e pivô = $a_{22}^{(1)}$ = 0, neste caso não podemos calcular o multiplicador $m_{32} = \frac{a_{32}^{(1)}}{a_{22}^{(1)}} = \frac{\text{"}(-7)\text{"}}{0}$ Dessa forma o **algoritmo falha**, embora o sistema admita solução única, $x = (1, -1, 0)^t$. Neste caso devemos utilizar a estratégia de pivoteamento parcial.

Método de Eliminação de Gauss com Pivoteamento Parcial

Em um passo k qualquer do Método da Eliminação de Gauss, o processo de pivotemento parcial consiste em um passo extra no qual escolhemos um dos melhores possíveis pivôs para realizar essa etapa. Para isso, escolhemos como tal o elemento da coluna k, dentre aquele correspondente à entrada da diagonal e os abaixo dele, que possui o maior valor em módulo. Sendo assim, o pivô escolhido será da seguinte forma:

$$a_{kk} = \max |a_{jk}|, j = i, i + 1, \dots, n.$$

Se o maior elemento em módulo pertence a linha j, então troca-se a linha j e a linha k, ou seja, faça $L_j \leftarrow L_k$ e $L_k \leftarrow L_j$.

Esse processo é utilizado para garantir que o multiplicador de cada etapa da eliminação de Gauss esteja bem definido evitando, por exemplo, o valor zero no denominador do exemplo anterior. Além disso, tal processo é útil para evitar erros numéricos, pois caso o valor em módulo de algum pivô seja pequeno, o valor dos multiplicadores correspondentes poderão ser muito grandes, gerando assim problemas de arredondamento.

Exemplo 3:

Resolva o sistema linear pelo Método de Eliminação de Gauss com pivoteamento parcial:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 - 2x_2 - x_3 = 4 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz aumentada do sistema é

$$[A|b]^{(0)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 2 & -2 & -1 & | & 4 \\ -2 & -5 & 3 & | & 3 \end{bmatrix},$$

Etapa 2:

escolha o pivô: $a_{11} = \max\{|a_{11}|; |a_{21}|, |a_{31}|\} = \max\{1, 2, 2\}$. Então podemos escolher como pivô: $a_{21} = 2$ ou $a_{31} = -2$.

Escolhendo $a_{21} = 2$ como pivô trocaremos L_1 com L_2 , assim,

$$[A|b]^{(0)'} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 1 & -1 & 2 & | & 2 \\ -2 & -5 & 3 & | & 3 \end{bmatrix},$$

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

Multiplicadores:
$$m_{21} = \frac{a_{21}}{a_{11}} = \frac{1}{2}$$
 e $m_{31} = \frac{a_{31}}{a_{11}} = -1$

$$[A|b]^{(1)} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 0 & 0 & \frac{5}{2} & | & 0 \\ 0 & -7 & 2 & | & 7 \end{bmatrix} \quad L_2^{(1)} \leftarrow L_2^{(0)} - \frac{1}{2}L_1^{(0)} .$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Escolha o pivô: $a_{22} = \max\{|a_{22}|, |a_{32}|\} = \max\{0, 7\}.$

Escolhendo $a_{32} = -7$ como pivô trocaremos L_2 com L_3 , assim teremos,

$$[A|b]^{(1)'} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 0 & -7 & 2 & | & 7 \\ 0 & 0 & \frac{5}{2} & | & 0 \end{bmatrix},$$

Multiplicadores:
$$m_{32} = \frac{a_{32}}{a_{22}} = \frac{0}{-7} = 0$$

$$[A|b]^{(2)} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 0 & -7 & 2 & | & 7 \\ 0 & 0 & \frac{5}{2} & | & 0 \end{bmatrix} \quad L_3^{(2)} \leftarrow L_3^{(1)} - 0L_2^{(1)} .$$

Etapa 3:

Resolvendo o sistema por retro-substituição de variáveis.

 $[A|b]^{(2)}$ representa o sistema:

$$\begin{cases} 2x_1 - 2x_2 - x_3 = 4 \\ - 7x_2 + 2x_3 = 7 \\ + \frac{5}{2}x_3 = 0 \end{cases}$$

Assim,
$$x_3 = 0$$
; $x_2 = \frac{7 - (2x_3)}{-7} = -1$; $x_1 = \frac{4 - (-2x_2 - x_3)}{2} = 1$; Portanto, $x = (1, -1, 0)^t$.