PS2 Group16

Shailendra Patil, Mingyang Ma, Apurva Gupta January 20, 2018

Question 1

Installing NHANES package and ggplot Libraries

```
#install.packages("NHANES")
#install.packages("ggplot2")
```

Activating NHANES package and ggplot libraries

```
library(NHANES)

## Warning: package 'NHANES' was built under R version 3.4.3
library(ggplot2)

## Warning: package 'ggplot2' was built under R version 3.4.3
```

Creating a data frame which contains only the people sample aged 18 and up

```
Adults = subset(NHANES, Age >= 18)
head(Adults)
```

```
## # A tibble: 6 x 76
        ID SurveyYr Gender
                             Age AgeDecade AgeMonths Race1 Race3
##
            <fctr> <fctr> <int>
                                               <int> <fctr> <fctr>
     <int>
                                    <fctr>
## 1 51624 2009 10
                      male
                              34
                                     30-39
                                                 409 White
## 2 51624 2009 10
                      male
                              34
                                     30-39
                                                 409 White
                                                              <NA>
## 3 51624 2009 10
                                                 409 White
                      male
                              34
                                     30-39
                                                              <NA>
## 4 51630 2009_10 female
                              49
                                     40-49
                                                 596 White
                                                              <NA>
## 5 51647
           2009_10 female
                              45
                                     40-49
                                                 541 White
                                                              <NA>
## 6 51647 2009_10 female
                                     40-49
                                                 541 White
                              45
                                                              <NA>
## # ... with 68 more variables: Education <fctr>, MaritalStatus <fctr>,
      HHIncome <fctr>, HHIncomeMid <int>, Poverty <dbl>, HomeRooms <int>,
## #
       HomeOwn <fctr>, Work <fctr>, Weight <dbl>, Length <dbl>,
       HeadCirc <dbl>, Height <dbl>, BMI <dbl>, BMICatUnder20yrs <fctr>,
## #
## #
       BMI_WHO <fctr>, Pulse <int>, BPSysAve <int>, BPDiaAve <int>,
## #
       BPSys1 <int>, BPDia1 <int>, BPSys2 <int>, BPDia2 <int>, BPSys3 <int>,
## #
      BPDia3 <int>, Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>,
## #
       UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>, UrineFlow2 <dbl>,
## #
      Diabetes <fctr>, DiabetesAge <int>, HealthGen <fctr>,
## #
      DaysPhysHlthBad <int>, DaysMentHlthBad <int>, LittleInterest <fctr>,
## #
      Depressed <fctr>, nPregnancies <int>, nBabies <int>, Age1stBaby <int>,
## #
       SleepHrsNight <int>, SleepTrouble <fctr>, PhysActive <fctr>,
       PhysActiveDays <int>, TVHrsDay <fctr>, CompHrsDay <fctr>,
## #
       TVHrsDayChild <int>, CompHrsDayChild <int>, Alcohol12PlusYr <fctr>,
       AlcoholDay <int>, AlcoholYear <int>, SmokeNow <fctr>, Smoke100 <fctr>,
## #
## #
       Smoke100n <fctr>, SmokeAge <int>, Marijuana <fctr>,
```

```
## # AgeFirstMarij <int>, RegularMarij <fctr>, AgeRegMarij <int>,
## # HardDrugs <fctr>, SexEver <fctr>, SexAge <int>, SexNumPartnLife <int>,
## # SexNumPartYear <int>, SameSex <fctr>, SexOrientation <fctr>,
## # PregnantNow <fctr>
```

Creating an object of ggplot Library

```
ggobj = ggplot(Adults, aes(x=Adults$Height))
```

Plotting Histogram for Male and Female Heights

```
ggobj + geom_histogram(binwidth=3)+facet_grid(~Adults$Gender)
```

Warning: Removed 57 rows containing non-finite values (stat_bin).

Observation

The histogram shows that both male and female heights have approximately same center, spread and distribution.

Checking Normality by plotting qqplot graphs.

```
ggplot(Adults, aes(sample=Adults$Height)) + stat_qq() +facet_grid(~Adults$Gender)
```

Warning: Removed 57 rows containing non-finite values (stat_qq).

We can observe that qqplots of male heights and female heights are approximately straight lines. Hence, they are approximately normal.

Creating scatter plot to find if it is an additive/multiplicative shift.

```
Maleheight=Adults$Height[Adults$Gender=="male"]
Femaleheight=Adults$Height[Adults$Gender=="female"]
qq.df=as.data.frame(qqplot(Maleheight,Femaleheight,plot.it = FALSE))
ggplot(qq.df,aes(x=x,y=y))+geom_point()+geom_abline()
```


We can observe that it is a straight line parallel to reference line. Therefore, Male and Female heights are in additive shift.

Quantitative Expression of Male and Female Heights

```
Adults[is.na(Adults$Height),]$Height <-mean(Adults$Height,na.rm =T)
mean_diff = mean(Adults$Height[Adults$Gender=="male"]) - mean(Adults$Height[Adults$Gender=="female"])
mean_diff
```

[1] 13.70921

Observation

Quantitatively, We can say that difference in mean heights of male and female is about 14 units.

Question 2

Creating an object of ggplot Library

```
ggobj1 = ggplot(Adults, aes(x=Weight))
```

Plotting Histogram for Male and Female Weights

```
ggobj1 + geom_histogram(binwidth=1)+facet_grid(~Adults$Gender)
```

Warning: Removed 61 rows containing non-finite values (stat_bin).

Observation

The histogram shows that both male and female weights have approximately same distribution with a slightly shifted center.

Checking Normality by plotting qqplot graphs.

```
ggplot(Adults, aes(sample=Adults$Weight)) + stat_qq() +facet_grid(~Adults$Gender)
```

Warning: Removed 61 rows containing non-finite values (stat_qq).

We can observe that qqplots of male Weights and female Weights are curved lines. Hence, we cannot conclude that they are approximately normal.

Checking Normality by plotting qqplot graphs of log weights.

```
ggplot(Adults, aes(sample=log(Adults$Weight))) + stat_qq() +facet_grid(~Adults$Gender)
```

Warning: Removed 61 rows containing non-finite values (stat_qq).

We can observe that qqplots of log male and female Weights are approximately straight lines. Hence, we can conclude that log values are approximately normal.

Creating scatter plot to find if it is an additive/multiplicative shift.

```
Maleweight=Adults$Weight[Adults$Gender=="male"]
Femaleweight=Adults$Weight[Adults$Gender=="female"]
qq.df=as.data.frame(qqplot(Maleweight,Femaleweight,plot.it = FALSE))
ggplot(qq.df,aes(x=x,y=y))+geom_point()+geom_abline()
```


We can observe that it is approximately a straight line parallel to reference line. Therefore, we can say that Male and Female weights are in additive shift.

Quantitative Expression of Male and Female Weights

```
Adults[is.na(Adults$Weight),]$Weight <-mean(Adults$Weight,na.rm =T)
mean_diff = mean(Adults$Weight[Adults$Gender=="male"]) - mean(Adults$Weight[Adults$Gender=="female"])
mean_diff
```

[1] 13.39489

Observation

Quantitatively, We can say that difference in mean weights of male and female is about 13 units.

Question 3

Fitting a linear model to predict Heights from Gender

```
Adult.lm=lm(Height~Gender,data=Adults)
Adult.res=data.frame(Gender=Adults$Gender,residual=residuals(Adult.lm))
```

```
Adult.fitted = sort(fitted.values(Adult.lm)) - mean(fitted.values(Adult.lm))
Adult.residuals = sort(residuals(Adult.lm))
```

Checking normlaity of residuals

```
ggplot(Adult.res, aes(sample = residual)) +
stat_qq() + facet_wrap(~Gender, ncol=2)
```


Observation

We can observe that residuals are approximately normal.

Creating a data frame with fitted values and residuals.

```
n = length(Adult.residuals)
f.value = (0.5:(n - 0.5)) / n
Adult.fit = data.frame(f.value, Fitted=Adult.fitted, Residuals=Adult.residuals)
```

We will take several variables and gathers them together, so you have more observations but fewer columns.

```
library(tidyr)
```

Warning: package 'tidyr' was built under R version 3.4.3

```
adult.fit.long = Adult.fit %>% gather(type, value, Fitted:Residuals)
```

Residual fit plot

```
ggplot(adult.fit.long, aes(x=f.value, y=value)) +
geom_point() + facet_wrap(~type)
```


Observation

The fitted values are close together compared to the residuals. While the model may be useful,it only accounts for a fraction of the variation in the data. We can check the results quantitatively.

Quantifying the model fit

```
var(Adult.fitted) / var(Adults$Height)
```

[1] 0.4635624

Observation

the model captures 47% of the variance of the data." The remaining 53% is in the residuals.