High-level signatures and initial semantics

Ambroise Lafont

joint work with Benedikt Ahrens, André Hirschowitz, Marco Maggesi

Overview

Purpose of our work: to specify and construct untyped syntaxes with variables and a well-behaved substitution (e.g. lambda-calculus).

More specifically (terms in italics will be explained):

- 1. we work with a general notion of *signature*. Not all of them do *generate a syntax*
- 2. classical *binding signatures* embed into our signatures as *algebraic* signatures, and indeed generate a syntax.
- 3. our main result: any *quotient* of algebraic signatures also generates a syntax

What is a syntax?

Signatures which we care about: those whose category of models have an *initial object*, i.e., generate a syntax.

Table of contents

1. Binding signatures and their models

- 2. Signatures and models based on monads and modules
- 3. Presentables signatures

Example: 0, ★

Consider the syntax generated by a binary operation \star and a constant $\mathbf{0}$ (and variables):

expr ::= x (variable)

$$| t_1 \star t_2$$
 (binary operation)
 $| 0$ (constant)

The syntax can be considered as the endofunctor B (on Set):

$$B(X) = \text{expressions over } X$$

$$B(\emptyset) = \{0, 0 \star 0, \dots\}$$

$$B(\{x, y\}) = \{0, 0 \star 0, \dots, x, y, x \star y, \dots\}$$

Example: 0, ★

The binary operation \star induces a natural transformation:

$$B \times B \rightarrow B$$

The constant **0** induces a natural transformation:

$$1 \rightarrow B$$

Variables induce a natural transformation

$$\operatorname{Id}_{\operatorname{Set}} o B$$

They gather into a single natural transformation:

$$B imes B + 1 + \operatorname{Id}_{\operatorname{Set}} o B$$

i.e. B is an algebra for the endofunctor $F\mapsto F imes F+1+\mathrm{Id}_{\mathrm{Set}}$ on the category $\mathrm{End}_{\mathrm{Set}}$.

Actually, B can be defined to be the initial algebra.

Binding Signatures

Definition

Binding signature = a family of lists of natural numbers.

Each list specifies an operation in the syntax:

- length of the list = number of arguments of the operation
- natural number in the list = number of bound variables in the corresponding argument

$$((), (0, 0))$$
nullary operation \bullet binary operation \star

Signatures and endofunctors

In the same spirit as in the first example $(0, \star)$, any binding signature gives rise to an endofunctor Σ on the category $\operatorname{End}_{\operatorname{Set}}$.

A notion of model: $\Sigma + Id_{Set}$ -algebra

The initial Σ + $\mathrm{Id}_{\mathrm{Set}}$ -algebra of a binding signature Σ always exists.

Does this initial algebra come with a well-behaved substitution?

Substitution [Fiore-Plotkin-Turi 1999]

The endofunctor Σ induced by a binding signature comes with a strength which allows [FPT] to refine the notion of model:

Σ -monoid

 $\Sigma + \mathrm{Id}_{\mathrm{Set}}$ -algebra equipped with a well-behaved substitution.

Σ -monoid morphisms

algebra morphisms commuting with substitution.

Theorem [FPT]:

The initial Σ + $\mathrm{Id}_{\mathrm{Set}}$ -algebra of a binding signature Σ comes with a well-behaved substitution that makes it initial in the category of Σ -monoids.

This suggests defining signatures to be endofunctors on $\operatorname{End}_{\operatorname{Set}}$ with strength (as in [Matthes-Uustalu 2004]).

Table of contents

1. Binding signatures and their models

2. Signatures and models based on monads and modules

3. Presentables signatures

Our signatures and models

Binding signatures \hookrightarrow Endofunctors with strength \hookrightarrow Our signatures

A **signature** Σ is a functorial assignment:

A **model of** Σ is a pair:

$$(R, \quad \sigma: \Sigma(R) \to R)$$
 monad module morphism

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

module morphism := natural transformation preserving substitution

Monads

Reminder:

- B(X) = expressions built out of 0, \star and variables taken in X
- Variables induce a natural transformation $\eta: \mathrm{Id}_{\mathrm{Set}} o B$

In addition, there is a **substitution** bind : $B(X) \rightarrow (X \rightarrow B(Y)) \rightarrow B(Y)$ required to satisfy some equations.

A triple (B, η , bind) is called a **monad**.

A **monad morphism** between two monads R and S is a family of maps $(f_X: R(X) \to S(X))_X$ preserving variables and substitution.

Operations are module morphisms

In the $(0, \star)$ language,

$$(t \star u)[x \mapsto v_x] = t[x \mapsto v_x] \star u[x \mapsto v_x]$$

★ commutes with substitution

In the right hand side, substitution acts on a pair of expressions.

We abstract this situation as follows:

- pairs of expressions form a **module** $B \times B$ over the monad B,
- \star yields a **module morphism** from $B \times B$ to B

Module over a monad

 $B \times B$ comes with a substitution with B-expressions required to satisfy some equations:

$$(B \times B)(X) \to (X \to B(Y)) \to (B \times B)(Y)$$

Such a functor with B-substitution is called a **module over the monad** B.

Examples of modules over a monad

Some examples of **modules over a monad** R:

- R itself
- $M \times N$ for any modules M and N (in particular, $R \times R$)
- Given a module M, the **derivative of** M is the module M' defined by $M'(X) = M(X + \{x\})$.

The derivative is used to model an operation binding a variable (Cf next slide).

Examples of module morphisms

A **module morphism** between two modules M and N on the same monad R is a family of maps $(f_X:M(X)\to N(X))_X$ commuting with substitution.

$$id_M: M \to M$$

the family of identity maps $(id_{M(X)}:M(X) \to M(X))_X$ for any module M

$$\star: B \times B \to B$$

$$app: L \times L \to L$$

the application operation of the lambda calculus monad L.

$$abs: L' \rightarrow L$$

Indeed, in $\lambda x.t$, the term t depends on an additional free variable x:

If
$$t \in L(Y + \{x\}) = L'(Y)$$
, then $\lambda x.t \in L(Y)$

Signatures and models

A **signature** Σ is a functorial assignment:

A **model of** Σ is a pair:

$$(R, \quad \rho: \Sigma(R) \to R)$$
 monad
$$\operatorname{module\ morphism}$$

A model morphism $m:(R,\rho)\to(S,\sigma)$ is a monad morphism commuting

with the module morphism:

Existence of syntax?

Notion of signature too general: existence of the syntax (= initial model)?

Counter-example: the signature $R \mapsto \mathscr{P} \circ R$

powerset endofunctor on Set

Examples of signatures with syntax

$$-R \mapsto 1 + R \times R$$

Models are monads R equipped with module morphisms $1 \to R$ and $R \times R \to R$.

The syntax is the language B generated by a constant $\mathbf{0}$ and binary operation \star .

$$-R \mapsto R \times R + R'$$

Models are monads R equipped with two modules morphisms:

$$R \times R \rightarrow R$$
 and $R' \rightarrow R$.

The syntax is the lambda calculus.

Algebraic signatures

More generally, the syntax exists for any signature induced by a disjoint sum of products of finite derivatives of the monad $(R \mapsto R' \times R'' \times R''' \times R'' \times R''' \times R'' \times R'''$

We call such a signature an **algebraic signature**. They correspond to binding signatures through the inclusion:

Binding signatures \hookrightarrow Endofunctors with strength $\overset{\mathcal{I}}{\hookrightarrow}$ Our signatures

Our main result: Quotients of algebraic signatures generate a syntax.

Table of contents

- 1. Binding signatures and their models
- 2. Signatures and models based on monads and modules
- 3. Presentables signatures

Quotient of a signature

Quotient of a set:

A quotient of a set X is a set Y together with a surjection $p: X \to Y$.

$$x \sim x' \qquad \iff p(x) = p(x')$$

Quotient of a signature:

A quotient of a signature Σ is a signature Ψ together with a (natural) family of module morphisms $(f_R : \Sigma(R) \to \Psi(R))_R$ that is pointwise surjective.

Syntax for presentable signatures

A presentable signature is a quotient of a binding signature.

Main Theorem: For any presentable signature, there is a syntax.

We now give examples of new kinds of operations specified by presentable signatures (more can be found in the article).

Example 1: Symmetric operations

Binary commutative operation +:

$$t + u = u + t$$

As a quotient of an algebraic signature:

This generalizes to **n-ary permutation invariant operations**.

Example 2: Explicit substitution

An operation $(x_i \mapsto t_i)$ that mimics the behavior of the substitution in the sense that it enjoys some of its coherences:

- invariance under **permutation**

$$F(x,y)\langle x\mapsto t,y\mapsto u\rangle = F(y,x)\langle x\mapsto u,y\mapsto t\rangle$$

- invariance under weakening

$$F(x)\langle x\mapsto t, y\mapsto u\rangle = F(x)\langle x\mapsto u\rangle$$

- invariance under contraction

$$F(x,y)\langle x,y\mapsto t\rangle = F(x,x)\langle x\mapsto t\rangle$$

Example 2: Explicit substitution

Explicit substitution as a quotient of the algebraic signature:

- permutation:
$$t\langle x\mapsto u,y\mapsto v\rangle hicksim t[x\rightleftarrows y]\langle x\mapsto v,y\mapsto u
angle$$

- weakening: $t\langle x\mapsto u
 angle \sim t\langle x\mapsto u,y\mapsto v
 angle$
- contraction: $t\langle x\mapsto u,y\mapsto u\rangle \thicksim t[y:=x]\langle x\mapsto u\rangle$

Conclusion

We have given a criterion for signatures to generate a syntax. This criterion encompasses the classical binding signatures. It also allows new operations that satisfy some equations.

Our main theorem has been formalized using the Coq library UniMath.

Future work:

- extend our framework to encompass general equations (e.g. associative binary operation, lambda-calculus modulo beta/eta equivalence);
- extend our framework to simply typed syntaxes.

Conclusion

We have given a criterion for signatures to generate a syntax. This criterion encompasses the classical binding signatures. It also allows new operations that satisfy some equations.

Our main theorem has been formalized using the Coq library UniMath.

Future work:

- extend our framework to encompass general equations (e.g. associative binary operation, lambda-calculus modulo beta/eta equivalence);
- extend our framework to simply typed syntaxes.

Thank you!

FIN PROVISOIRE

Ne pas lire les slides qui suivent (ce sont des anciennes slides que je garde au cas où).

FIN PROVISOIRE

Ne pas lire les slides qui suivent (ce sont des anciennes slides que je garde au cas où).

Our signatures

In the next slides, we present the notion of signature and models we work with.

Binding signatures \hookrightarrow Endofunctors with strength $\stackrel{\mathcal{I}}{\hookrightarrow}$ Our signatures

Theorem (Zsido): for any endofunctor with strength Σ , there is an adjunction between our category of models and the [FPT] one:

$$\operatorname{Models}(\mathcal{I}(\Sigma))$$
 \top Σ -monoids .

Fixpoint operator with coherences

But we would like to encode some of the expected behaviour of such a fixed point:

- invariance under permutation
- invariance under weakening
- invariance under contraction. Roughly:

let rec
$$\mathbf{f}_1 = \mathbf{F}(\mathbf{f}_1, \mathbf{f}_2)$$

and $\mathbf{f}_2 = \mathbf{F}(\mathbf{f}_1, \mathbf{f}_2)$ = let rec $\mathbf{f} = \mathbf{F}(\mathbf{f}, \mathbf{f})$
in \mathbf{f}_1

A construction satisfying these invariances can be specified by quotienting the naive algebraic signature.

Fixpoint operator

A fixpoint operator:

A language with (mutual) fixpoints comes with a construction

```
let rec \mathbf{f}_1 = \mathbf{t}_1 and \mathbf{f}_2 = \mathbf{t}_2 where each \mathbf{f}_j may appear as a variable in each expression \mathbf{t}_i. and \mathbf{f}_n = \mathbf{t}_n
```

Thus, it takes \mathbf{n} expressions $\mathbf{t}_1,...,\mathbf{t}_n$ depending on \mathbf{n} fresh variables $\mathbf{f}_1,...,\mathbf{f}_n$ and produces an expression which no longer depend on them.

As such, it can be specified by a binding signature.

Our work

We work with a notion of signature, and associated models, based on the notion of module over a monad.

Goal of our work: To identify a large subclass of these signatures whose category of models have an initial object.

Our main result: Quotients of "algebraic signatures" generate a syntax.

Example 2: Syntactic closure operator

Syntactic closure operator ∀

 $\forall xyz.t$ binds the variables x, y and z in the term t

Example of an operation invariant under **permutation** and **weakening**:

- permutation: $\forall xy.t = \forall yx.t$

- weakening: $\forall x.t = \forall xy.t$ if t does not depend on y