NOM:

QUIZ 3 MAT 1720 PROBABILITÉS

- Le quiz dure 30 minutes.
- Expliquer votre raisonnement, une réponse sans explication ne vaut rien.
- Une réponse numérique n'a pas besoin d'être simplifiée.

Soit X une variable aléatoire continue telle que

$$P[X \ge x] = \begin{cases} \frac{1}{x^2} & \text{pour } x \ge 1\\ 1 & \text{si } x \le 1. \end{cases}$$

(1) (2 points) Quelles sont les valeurs prises par la variable aléatoire X^2 ? Montrer que la densité de X^2 est

$$f_{X^2}(x) = \begin{cases} \frac{1}{x^2} & \text{pour } x \ge 1\\ 0 & \text{pour } x \le 1. \end{cases}$$

- (2) (1 point) Calculer l'espérance de X^2 .
- (3) (1 point) Soit Y et Z deux variables aléatoires indépendantes qui ont la même loi (i.e. même fonction de répartition) que X^2 .

Quelle est la densité jointe de $f_{Y,Z}(y,z)$ de (Y,Z)?

- (4) (1 point) Quelles sont les valeurs prises par la variable aléatoire YZ.
- (5) (2 points) Calculer la fonction de répartition de YZ, i.e. $P[YZ \le t]$ pour tout t.

Si vous n'avez pas obtenu la densité jointe à la question 3, vous pouvez toujours écrire

$$P[YZ \le t] = \int_{2}^{?} \int_{2}^{?} f_{Y,Z}(y,z) dy dz,$$

en identifiant les bornes pour 1.5 points

QUIZ 3 MAT 1720 PROBABILITÉS

Solutions

- (1) X prend des valeurs de 1 à l'infini, donc il en est de même pour X^2 . On a $P[X^2 \le x] = P[X \le x^{1/2}] = 1 P[X \ge x^{1/2}] = 1 x^{-1}$. On peut alors obtenir la densité de X^2 en dérivant cette fonction.
- (2) On a $E[X^2] = \int_{\mathbb{R}} x f_{X^2}(x) dx = \int_0^\infty x^{-1} dx = \infty$.
- (3) Si on a deux variables indépendantes la densité du couple est le produit des densités, donc $f_{Y,Z}(y,z) = y^{-2}z^{-2}$ avec $y,z \ge 1$.
- (4) Comme Y et X prennent des valeurs de 1 à l'infini, il en est de même pour YZ.
- (5) Comme Y et Z sont ≥ 1 , on sait que si $YZ \leq t$ alors $Z \leq t$. On a pour $t \geq 1$

$$P[YZ \le t] = \int_{1}^{t} \int_{1}^{t/z} y^{-2} z^{-2} dy dz$$
$$= \int_{1}^{t} z^{-2} (1 - z/t) dz = \int_{1}^{t} z^{-2} - (tz)^{-1} dz = 1 - t^{-1} - t^{-1} \ln t.$$