February 17, 2014

Due: February 19

Name:

Separable equations

- 1. Solve the initial value problem $\frac{dy}{dx} = 2xy^2$, y(2) = 1.
 - (a) Divide both sides by y^2 to put the equation in standard form.

(b) Integrate each side with respect to the evident variable. (This is justified by appeal to u-substitution: dy = y' dx.)

(c) You should now have an equation that is free of derivatives, but with a constant of integration. Plug in the initial values to find the value of this constant.

(d) If possible, solve your equation for *y*.

2. Solve the initial value problem $1 + ye^{-x}y' = 0$, y(0) = 1.

3. Find solutions to the differential equation

$$y' = \frac{3x^2 + 4x + 2}{2(y - 1)}.$$

4. Consider the initial value problem $y' = 5y^2$, $y(0) = y_0$. For what values of y_0 does the solution have a vertical asymptote at y = 6 and a t-interval of existence $-\infty < t < 6$?