This is the prompt:

my subject is statistics and the topic is central tendency, the threshold concept is CENTRAL TENDENCY, what students know- meaning of mean and average hieght/age of class ,use of formula, what students dont know-exact formulas to calculate averages using the underlying principles such as- 3. Rigidly defined,4. Capable of further algebraic treatment,5. Least affected by extreme values,6. Sampling stability. Generate case study using Bloom, Fink and SOLO. Build a comparison table on how they differ from each other.

✓ 1. Case Study: Teaching Central Tendency Using Bloom's, Fink's, and SOLO Taxonomy

- **Topic: Central Tendency**
- Threshold Concept: Understanding Central Tendency beyond formulas
- What students know:
 - Basic idea of average (e.g., mean age/height of class)
 - Use of simple formula for arithmetic mean

What students don't know:

- Conceptual foundations and principles behind good measures of central tendency:
 - Rigidly defined
 - Capable of further algebraic treatment
 - Least affected by extreme values
 - Sampling stability

Bloom's Taxonomy-Based Lesson Flow

Level Activity

Remember Define mean, median, and mode. Recall formulas.

Understan Interpret each measure using classroom data (e.g., average height). Explain

d how outliers affect mean.

Apply Calculate mean, median, and mode from class test scores with and without

extreme values.

Analyze Compare results of the three measures and identify which is most suitable

for different datasets.

Evaluate Assess which average is most representative and why based on properties

like stability and resistance to outliers.

Create Design a mini-research (e.g., survey classmates) to gather data, apply all

three measures, and argue the best central tendency measure to report

findings.

Fink's Taxonomy-Based Lesson Flow

Dimension Activity

Foundational Explain formulas and meaning of central tendency measures.

Knowledge

Application Use class data to compute different averages and graph them.

Integration Connect statistical averages to real-world situations (e.g., salaries,

cricket scores).

Human Dimension Reflect on how misuse of averages can misrepresent people/data

(e.g., mean income hiding poverty).

Caring Appreciate ethical data representation and fairness in reporting.

Learning How to

Learn

Encourage metacognition: "Which average should I use and why?"

SOLO Taxonomy-Based Lesson Flow

Level Activity

Pre-structural Student attempts formula-based problems without understanding

differences in average types.

Uni-structural Student can define each type of average and calculate simple examples.

Multi-structur Student calculates all three averages but does not yet compare or

al evaluate them.

Relational	Student understands and explains when and why one average is more appropriate than another (e.g., median for skewed data).
Extended Abstract	Student applies the concept to new contexts (e.g., comparing data for policy decisions) and critiques misuse of averages in media.

2. Comparison Table: Bloom vs Fink vs SOLO for Teaching Central Tendency

Criteria	Bloom's Taxonomy	Fink's Taxonomy	SOLO Taxonomy
Focus	Hierarchical cognitive skills	Holistic learning (including affective, metacognitive, and human dimensions)	Depth of understanding and integration
Structure	Six levels: Remember → Create	Six dimensions (non-hierarchical)	Five levels: Pre-structural → Extended Abstract
Strengths	Easy to structure measurable learning objectives and assessments	Promotes deeper, transferable learning with values and ethics	Tracks the complexity and depth of learner's conceptual understanding
Application in Central Tendency	Ensures students can compute, analyze, and evaluate averages	Encourages students to connect averages to real life and think critically	Encourages conceptual progression from basic computation to critique and application
Student Outcome	Mastery of computational and analytical skills	Learner sees relevance, ethical dimension, and cross-disciplinary links	Deep understanding of when and how to use central tendency measures
Assessment Focus	Test questions, problem-solving	Reflection, application, real-world relevance	Rubrics to assess depth of understanding

3. Summary Use in the Classroom

Using all three taxonomies:

- **Bloom** helps structure your lesson plan with measurable outcomes.
- Fink ensures the lesson is engaging and meaningful beyond technical computation.

• **SOLO** helps track students' conceptual progression.

This integrated approach transforms teaching Central Tendency from a formula-driven topic into one that:

- Encourages deeper understanding of when and why averages work.
- Teaches ethical interpretation of data.
- Helps students become independent learners of statistical reasoning

Part 3: Generate the reflection questions for evaluation and write/ map to suitable learning outcomes.

Reflection Question	Mapped Learning Outcome	Taxonomy
1. What is the difference between mean, median, and mode?	Recall and distinguish between types of averages.	Bloom – Remember, Understand
2. Why might the mean not be the best representation of a dataset?	Analyze the limitations of mean in presence of extreme values.	Bloom – AnalyzeSOLO – Relational
3. Can you give a real-world example where the median is more useful than the mean?	Apply conceptual understanding of central tendency to real-life problems.	Fink – Application, IntegrationSOLO – Extended Abstract
4. How do extreme values influence the choice of central tendency?	Evaluate the suitability of different averages in skewed data.	Bloom – EvaluateSOLO – Relational

5. How is the formula for mean rigidly defined, and why is that important?	Understand and explain the principle of being "rigidly defined" in statistical measures.	SOLO – Multi-structural to Relational
6. Why is it important that a central tendency measure is capable of algebraic treatment?	Describe mathematical advantages of the mean and their application.	Fink – Foundational KnowledgeSOLO – Relational
7. In what situations is mode a better indicator than mean or median?	Apply knowledge to select the most relevant average depending on the context.	Bloom – ApplyFink – Application
8. How does the sampling stability of mean help in data analysis?	Explain the statistical robustness of central tendency measures.	SOLO – RelationalFink – Learning How to Learn
9. How does understanding central tendency impact your interpretation of news/media data?	Develop critical awareness of statistical misuse in communication.	Fink – Human Dimension, Caring
10. After today's class, how has your understanding of averages changed?	Reflect on the evolution of conceptual understanding and its practical implications.	Fink – Learning How to LearnSOLO – Extended Abstract