Digital Design & Computer Architecture Sarah Harris & David Harris

Chapter 7: Microarchitecture

Chapter 7 :: Topics

- Introduction
- Performance Analysis
- Single-Cycle Processor
- Multicycle Processor
- Pipelined Processor
- Advanced Microarchitecture

Introduction

- Microarchitecture: how to implement an architecture in hardware
- Processor:
 - Datapath: functional blocks
 - Control: control signals

Microarchitecture

- Multiple implementations for a single architecture:
 - Single-cycle: Each instruction executes in a single cycle
 - Multicycle: Each instruction is broken up into series of shorter steps
 - Pipelined: Each instruction broken up into series of steps & multiple instructions execute at once

Processor Performance

Program execution time

Execution Time = (#instructions)(cycles/instruction)(seconds/cycle)

Definitions:

- CPI: Cycles/instruction
- clock period: seconds/cycle
- IPC: instructions/cycle = IPC

Challenge is to satisfy constraints of:

- Cost
- Power
- Performance

RISC-V Processor

- Consider subset of RISC-V instructions:
 - R-type ALU instructions:
 - add, sub, and, or, slt
 - Memory instructions:
 - lw, sw
 - Branch instructions:
 - beq

Architectural State Elements

Determines everything about a processor:

- Architectural state:
 - 32 registers
 - PC
 - Memory

RISC-V Architectural State Elements

Chapter 7: Microarchitecture

Single-Cycle RISC-V Processor

Single-Cycle RISC-V Processor

- Datapath
- Control

Example Program

- Design datapath
- View example program executing

Example Program:

Address	Instruction	Type			Field	ls		Ma	chine Language
0x1000 L7:	lw x6, -4(x9)	Ι	imm_{11:0} 11111111	1100	rs1 01001		rd 00110	op 0000011	FFC4A303
0x1004	sw x6, 8(x9)	S	imm _{11:5}	rs2 00110	rs1 01001	f3 010	imm_{4:0} 01000	op 0100011	0064A423
0x1008	or x4, x5, x6	5 R	funct7	rs2 00110	rs1 00101	f3 110	rd 00100	op 0110011	0062E233
0x100C	bea x4, x4, L	7 B	imm _{12,10:5} 1111111	rs2	rs1	f3	imm_{4:1,11} 10101	op 1100011	FE420AE3

Single-Cycle RISC-V Processor

Datapath: start with 1w instruction

```
• Example: lw x6, -4(x9) lw rd, imm(rs1)
```

5 bits

I-Type 31:20 19:15 14:12 11:7 6:0 imm_{11:0} rs1 funct3 rd op

3 bits

12 bits

5 bits

7 bits

Single-Cycle Datapath: 1w fetch

STEP 1: Fetch instruction

Single-Cycle Datapath: 1w Reg Read

STEP 2: Read source operand (**rs1**) from RF

Single-Cycle Datapath: 1w Immediate

STEP 3: Extend the immediate

Single-Cycle Datapath: 1w Address

STEP 4: Compute the memory address

Single-Cycle Datapath: 1w Mem Read

STEP 5: Read data from memory and write it back to register file

Single-Cycle Datapath: PC Increment

STEP 6: Determine address of next instruction

 $imm_{11:0}$

 $0 \times 1000 \text{ L7: lw } \times 6, -4 (\times 9)$

op 0000011

FFC4A303

Chapter 7: Microarchitecture

Single-Cycle
Datapath: Other
Instructions

Single-Cycle Datapath: sw

- **Immediate:** now in {instr[31:25], instr[11:7]}
- Add control signals: ImmSrc, MemWrite

Address	Instruction	Type			Field	ds		Ma	chine Language
0 1004	6 0 4 0	C	11.5	rs2	rs1	f3	$imm_{4:0}$	op	0.00047.400
0x1004	sw x6, 8(x9) 5	000000	00110	01001	010	01000	0100011	0064A423

Single-Cycle Datapath: Immediate

ImmSrc	ImmExt	Instruction Type
0	{{20{instr[31]}}, instr[31:20]}	І-Туре
1	{{20{instr[31]}}, instr[31:25], instr[11:7]}	S-Type

Single-Cycle Datapath: R-type

- Read from rs1 and rs2 (instead of imm)
- Write ALUResult to rd

Address Instruction Type Fields Machine Language 0×1008 or $\times 4$, $\times 5$, $\times 6$ R 0000000 00110 00101 110 00100 0110011 0062E233

Single-Cycle Datapath: beq

Calculate target address: PCTarget = PC + imm

Single-Cycle Datapath: ImmExt

ImmSrc _{1:0}	ImmExt	Instruction Type
00	{{20{instr[31]}}, instr[31:20]}	І-Туре
01	{{20{instr[31]}}, instr[31:25], instr[11:7]}	S-Type
10	{{19{instr[31]}}, instr[31], instr[7], instr[30:25], instr[11:8], 1'b0}	B-Type

Single-Cycle RISC-V Processor

