Wtorki 16:50 Grupa I3 Kierunek Informatyka Wydział Informatyki Politechnika Poznańska

Algorytmy i struktury danych Sprawozdanie z zadania w zespołach nr. 4 prowadząca: dr hab. inż. Małgorzata Sterna, prof PP

Algorytmy z powracaniem

autorzy:

Piotr Więtczak nr indeksu 132339 Tomasz Chudziak nr indeksu 136691

21 maja 2018

1 Opis implementacji

Do implementacji algorytmów poszukujących cyklu Eulera (*E*), pojedynczego cyklu Hamiltona (*H*1) i wszystkich cykli Hamiltona użyliśmy języka C++. Do pomiarów czasu wykorzystaliśmy klasę *std* :: *chrono* :: *high_resolution_clock* z biblioteki *chrono*. Do reprezentacji grafu zastosowaliśmy macierz sąsiedztwa, ze względu na TU MI SIE TŁUMACZ CZEMU MACIERZ SĄSIEDZ-TWA

2 Czasy działania algorytmów

Tabela przedstawiająca czasy działania algorytmów

Liczba	t_E dla	t _{H1} dla	t _{HA} dla
wierzchołków	d = 0.6 [ms]	d = 0.6 [ms]	d = 0.6 [ms]
5	0.001	0.003	0.004
6	0.001	0.005	0.021
7	0.001	0.031	0.037
8	0.001	0.033	0.072
9	0.001	0.006	0.396
10	0.002	0.130	3.945
11	0.002	0.005	25.734
12	0.003	0.048	232.968
13	0.003	0.009	1063.510
14	0.005	0.015	5300.210
15	0.005	0.010	000
20	0.007	0.035	000
25	0.010	11.446	000
30	0.014	0.039	000
35	0.019	0.061	000
40	0.026	0.079	000
45	0.032	0.101	000
50	0.039	0.361	000
55	0.046	0.131	000
60	0.055	8.360	000
65	0.063	5.921	000
70	0.073	0.480	000
75	0.089	1.922	000
80	0.096	0.939	000
85	0.116	5.121	000
90	0.120	0.731	000
95	0.174	502.357	000
100	0.148	0.795	000

Wykres przedstawiający czasy działania algorytmów dla d = 0.6

Liczba wierzchołków

Wykres przedstawiający czasy działania algorytmów dla d=0.6 skala logarytmiczna

Liczba wierzchołków

Problemy znajdowania cyklu Eulera i cyklu Hamiltona dotyczą przeszukiwania grafu.

Znajdowanie cyklu Eulera należy do klasy problemów łatwych (P), czyli takich dla których potrafimy znaleźć algorytm rozwiązujący ten problem w czasie wielomianowym.

Znajdowanie cyklu Hamiltona należy do problemów NP-zupełnych, które są podklasą problemów trudnych (NP), dla problemów które należą do klasy NP nie znamy rozwiązań działających w czasie wielomianowym lub mniejszym, czyli są to zadania o o złożoności co najmniej wykładniczej. Do problemów NP-zupełnych transformują się wielomianowo wszystkie problem z klasy NP. Rozwiązując problem NP-zupełny rozwiązujemy wszyst-

kie problemy z tej podklasy, dlatego znajdując rozwiązanie jednego takiego problemu w czasie wielomianowym, znajdziemy rozwiązanie wielomianowe dla wszystkich problemów NP-zupełnych.

Złożoność obliczeniowa algorytmu znajdowania cyklu Eulera wynosi O(m), gdzie m - liczba krawędzi, ponieważ podczas przeszukiwania grafu trzeba przejść po wszystkich krawędziach.

Złożoność obliczeniowa algorytmu znajdowania pojedynczego cyklu Hamiltona wynosi O(n!), gdzie n - liczba wierzchołków, ponieważ w najgorszym przypadku należy sprawdzić wszystkie możliwe permutacje, a dla wszystkich cykli $O(n \cdot n!)$.

3 Czasy poszukiwania cyklu Eulera dla różnych wartości d

Tabela przedstawiająca T_E dla różnych wartości d

•	• • •	· ·
Liczba	t _E dla	t _E dla
wierzchołków	d = 0.2 [ms]	d = 0.6 [ms]
5	0.001	0.001
6	0.001	0.001
7	0.001	0.001
8	0.001	0.001
9	0.001	0.001
10	0.002	0.002
11	0.001	0.002
12	0.002	0.003
13	0.002	0.003
14	0.002	0.005
15	0.002	0.005
20	0.004	0.007
25	0.007	0.010
30	0.009	0.014
35	0.017	0.019
40	0.016	0.026
45	0.020	0.032
50	0.025	0.039
55	0.030	0.046
60	0.036	0.055
65	0.041	0.063
70	0.047	0.073
75	0.054	0.089
80	0.060	0.096
85	0.076	0.116
90	0.080	0.120
95	0.086	0.174
100	0.096	0.148

Wykres przedstawiający T_E dla różnych wartości d

Liczba wierzchołków

Wykres przedstawiający T_E dla różnych wartości d skala logarytmiczna

Liczba wierzchołków

Metoda poszukiwania cyklu Eulera oparta jest na algorytmie DFS (przeszukiwanie w głąb), z tą różnicą że przegląda krawędzi zamiast wierzchołków. Do przedstawienia grafu użyto macierzy sąsiedztwa TU MI SIE TŁUMACZ CZEMU MACIERZ SĄSIEDZ-TWA I CZY REPREZENTACJA MA WPŁYW NA ZŁOŻONOŚĆ OBLICZONIOWA METODY

TUTAJ POPROSZĘ OPIS DZIAŁANIA AL-GORYTMU ZGODZNIE Z IMPLEMENTA-CJĄ (MOZESZ UDAWAĆ ŻE TAKA BYŁA IMPLEMENTAJA) PRZYPOMNĘ TYLKO ŻE CHODZI O POSZUKIWANIE CYKLU EU-LERA, A NIE JAKIEGOŚ LOSOWEGO JAKOSTATNIO

Warunek konieczny i dostateczny istnienia cyklu Eulera w grafie:

- graf jest spójny,
- dla grafu nieskierowanego, wszystkie wierzchołki są stopnia parzystego,
- dla grafu skierowanego, taka sama liczba krawędzi wchodzących i wychodzących dla każdego wierzchołka.

W testowanych grafach istniał cykl Eulera ponieważ zostały one wygenerowane odpowiednią metodą. Opierała się ona na tworzeniu klik o rozmiarze 3, po stworzeniu pierwszej wybierany był losowy należący do grafu wierzchołek, oraz losowano dwa nie należące do grafu wierzchołki, z tych trzech wierzchołków do grafu dołączana była nowa klika. Dołączanie nowych klik trwało aż do osiągnięcia pożądanej gęstości.

zachowanie

4 Czasy poszukiwania pojedynczego i wszystkich cykli Hamiltona dla różnych wartości \boldsymbol{d}

Tabela prezentująca t_{H1} i t_{HA} dla różnych wartości d

T . 1	7	0.2	7	0.6
Liczba	d = 0.2		d = 0.6	
wierzchołków	t_{H1} [ms]	t_{HA} $[ms]$	t_{H1} [ms]	t_{HA} $[ms]$
5	0.001	0.002	0.003	0.004
6	0.002	0.002	0.005	0.021
7	0.001	0.001	0.031	0.037
8	0.002	0.003	0.033	0.072
9	0.001	0.001	0.006	0.396
10	0.008	0.010	0.130	3.945
11	0.000	0.001	0.005	25.734
12	0.009	0.010	0.048	232.968
13	0.012	0.013	0.009	1063.510
14	0.039	0.043	0.015	5300.210
15	0.062	0.069	0.010	000
20	18.071	19.434	0.035	000
25	1.196	12220.800	11.446	000
30	0.000	000	0.039	000
35	0.000	000	0.061	000
40	0.000	000	0.079	000
45	0.000	000	0.101	000
50	0.000	000	0.361	000
55	0.000	000	0.131	000
60	0.000	000	8.360	000
65	0.000	000	5.921	000
70	0.000	000	0.480	000
75	0.000	000	1.922	000
80	0.000	000	0.939	000
85	0.000	000	5.121	000
90	0.000	000	0.731	000
95	0.000	000	502.357	000
100	0.000	000	0.795	000

Wykres przedstawiający t_{H1} dla różnych wartości d

Liczba wierzchołków

Tabela prezentująca t_{HA} dla różnych wartości d

Liczba wierzchołków

Tabela prezentująca liczbę cykli Hamiltona dla różnych wartości d

Liczba	Liczba cykli	Liczba cykli
wierzchołków	Hamiltona dla $d = 0.2$	Hamiltona dla $d = 0.6$
5	0	0
6	0	2
7	0	0
8	0	2
9	0	4
10	0	128
11	0	3372
12	0	11964
13	0	66680
14	0	346018
15	0	_
20	0	_
25	0	_
30	_	_
35	_	_
40	_	_
45	_	_
50	_	_
55	_	_
60	_	_
65	_	_
70	_	_
75	_	_
80	_	_
85	_	
90	_	_
95	_	_
100	_	_

Spis treści

1	Opis implementacji	1
2	Czasy działania algorytmów	1
3	Czasy poszukiwania cyklu Eulera dla różnych wartości d	3
4	Czasy poszukiwania pojedynczego i wszystkich cykli Hamiltona dla różnych wartości d	6