# Homework 9

## DATA130021 Financial Econometrics

Deng Qisheng

2021/06/11

## Problem 1

Suppose the risk measure  $\mathcal{R}$  is  $VaR(\alpha)$  for some  $\alpha$ . Let  $P_1$  and  $P_2$  be two portfolios whose returns  $R_1$  and  $R_2$  have a joint normal distribution with means  $\mu_1$  and  $\mu_2$ , standard deviations  $\sigma_1$  and  $\sigma_2$ , correlation  $\rho$ . Suppose the initial investments are  $S_1$  and  $S_2$ . Show that  $\mathcal{R}(R_1 + R_2) \leq \mathcal{R}(R_1) + \mathcal{R}(R_2)$  under joint normality.

### Solution:

For any portfolio with initial investment S whose return R has a normal distribution with mean  $\mu$  and standard deviation  $\sigma$ , we know that the value-at-risk is

$$\mathcal{R}(R) = \text{VaR}_R(\alpha) = -S(\mu + \sigma\Phi^{-1}(\alpha)).$$

Consider the portfolio  $R_1 + R_2$ , we have:

$$P(\mathcal{L}_{R_1+R_2} > \text{VaR}_{R_1+R_2}(\alpha)) = \alpha$$

$$\Leftrightarrow P(-(S_1R_1 + S_2R_2) > \text{VaR}_{R_1+R_2}(\alpha)) = \alpha$$

$$\Leftrightarrow P\left(\frac{S_1R_1 + S_2R_2 - \mu_P}{\sigma_P} < \frac{-\text{VaR}_{R_1+R_2}(\alpha) - \mu_P}{\sigma_P}\right) = \alpha$$

$$\Leftrightarrow \Phi^{-1}(\alpha) = \frac{-\text{VaR}_{R_1+R_2}(\alpha) - \mu_P}{\sigma_P}$$

$$\Leftrightarrow \mathcal{R}(R_1 + R_2) = \text{VaR}_{R_1+R_2}(\alpha) = -(\mu_P + \sigma_P\Phi^{-1}(\alpha)).$$

where

$$\mu_P = S_1 \mu_1 + S_2 \mu_2, \ \sigma_P = \sqrt{S_1^2 \sigma_1^2 + S_2^2 \sigma_2^2 + 2S_1 S_2 \rho \sigma_1 \sigma_2}.$$

Hence, we have:

$$\begin{split} \mathcal{R}(R_1 + R_2) - \mathcal{R}(R_1) - \mathcal{R}(R_2) &= -\left(\mu_P + \sigma_P \Phi^{-1}(\alpha)\right) + S_1\left(\mu_1 + \sigma_1 \Phi^{-1}(\alpha)\right) + S_2\left(\mu_2 + \sigma_2 \Phi^{-1}(\alpha)\right) \\ &= \left(S_1\mu_1 + S_2\mu_2 - \mu_P\right) + \left(S_1\sigma_1 + S_2\sigma_2 - \sigma_P\right)\Phi^{-1}(\alpha) \\ &= \left(\sqrt{S_1^2\sigma_1^2 + S_2^2\sigma_2^2 + 2S_1S_2\sigma_1\sigma_2} - \sqrt{S_1^2\sigma_1^2 + S_2^2\sigma_2^2 + 2S_1S_2\rho\sigma_1\sigma_2}\right)\Phi^{-1}(\alpha). \end{split}$$

Since  $-1 \le \rho \le 1$  and  $\alpha > 0.5$ , we can get that

$$\mathcal{R}(R_1 + R_2) \le \mathcal{R}(R_1) + \mathcal{R}(R_2)$$

under joint normality.

# Problem 2

Use negative daily stock return data of IBM from 2010/01 to 2015/12 to calculate the monthly value-at-risk and expected shortfall under risk level 95% and 99%. Show your results of 12 months in a table and sketch them in a time series plot for every year. Make a conclusion about your observation.

#### Solution:

```
library(lubridate)
library(knitr)
library(ggplot2)
raw.ibm <- read.csv("./IBM.csv")[, c(1, 6)]
ibm <- data.frame(</pre>
    "Year"=year(raw.ibm$Date), "Month"=month(raw.ibm$Date),
    "Return"=c(0, diff(raw.ibm$Adj.Close)) / raw.ibm$Adj.Close)
measure <- function (Y, M, S, A) {
    ibm.monthly <- ibm[which((ibm$Year==Y) & (ibm$Month==M)), ]$Return</pre>
    VaR <- - S * as.numeric(quantile(ibm.monthly, 0.05))</pre>
    IEVaR <- (ibm.monthly < as.numeric(quantile(ibm.monthly, 0.01)))</pre>
    ES <- - S * sum(ibm.monthly * IEVaR) / sum(IEVaR)
    return(c(VaR, ES))
}
Year <- 2010:2015
Month <- 1:12
S <- 20000
result <- array(0, dim=c(12, 2, 6), dimnames=list(Month, c("VaR", "ES"), Year))
for (y in 1:length(Year)) {
    for (m in 1:length(Month)){
        result[m, , y] <- measure(Year[y], Month[m], S)</pre>
    }
}
```

Table 1: VaR and ES in 2010

|     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10     | 11    | 12    |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| VaR | 561.7 | 204.2 | 141.9 | 296.5 | 484.0 | 421.4 | 420.2 | 306.7 | 199.8 | 75.23  | 265.5 | 132.7 |
| ES  | 597.3 | 432.5 | 180.5 | 391.7 | 817.4 | 622.0 | 512.0 | 405.6 | 258.8 | 695.49 | 308.7 | 152.0 |



Table 2: VaR and ES in 2011

|     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| VaR | 105.4 | 234.6 | 456.4 | 79.25 | 263.7 | 219.7 | 171.6 | 926.2 | 491.8 | 422.3 | 414.4 | 426.0 |
| ES  | 233.7 | 356.9 | 786.9 | 85.75 | 273.1 | 284.6 | 174.2 | 993.0 | 521.9 | 859.7 | 549.8 | 635.9 |

## VaR and ES in 2011



Table 3: VaR and ES in 2012

|     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10     | 11    | 12    |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| VaR | 197.9 | 114.5 | 139.6 | 354.7 | 204.9 | 404.1 | 366.1 | 185.3 | 70.11 | 581.7  | 320.1 | 147.8 |
| ES  | 232.3 | 127.1 | 344.7 | 731.5 | 219.5 | 557.4 | 405.4 | 212.6 | 96.08 | 1033.7 | 384.6 | 303.4 |

VaR and ES in 2012



Table 4: VaR and ES in 2013

|     | 1     | 2     | 3     | 4      | 5     | 6     | 7     | 8     | 9     | 10     | 11    | 12    |
|-----|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|-------|-------|
| VaR | 132.0 | 172.9 | 165.6 | 242.7  | 196.2 | 465.7 | 371.3 | 217.3 | 353.2 | 356.4  | 274.1 | 237.8 |
| ES  | 190.0 | 362.5 | 263.8 | 1805.3 | 291.5 | 475.1 | 459.9 | 472.3 | 354.7 | 1361.3 | 312.2 | 247.9 |

VaR and ES in 2013



Table 5: VaR and ES in 2014

| 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10              | 11 | 12 |
|------|---|---|---|---|---|---|---|---|-----------------|----|----|
| <br> |   |   |   |   |   |   |   |   | 683.2<br>1531.6 |    |    |





Table 6: VaR and ES in 2015

|     | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8     | 9     | 10     | 11    | 12    |
|-----|-------|-------|-------|-------|-------|-------|--------|-------|-------|--------|-------|-------|
| VaR | 450.7 | 241.9 | 472.3 | 306.2 | 243.0 | 247.4 | 334.7  | 511.9 | 502.4 | 809.5  | 304.5 | 328.5 |
| ES  | 639.1 | 248.1 | 479.6 | 363.1 | 245.7 | 305.6 | 1244.9 | 750.0 | 730.3 | 1220.1 | 434.6 | 371.5 |

#### VaR and ES in 2015



## Observations:

- $\bullet\,$  We find that ESs under risk level 99% are always larger than VaRs under risk level 95%.
- For all years, we find that there are peaks of ES in October, which may mean that something bad happened in trades in every Octobers.

## Problem 3

Suppose  $X_i$  are i.i.d. Cauchy(0,1).

(a) What is the tail index of Cauchy(0, 1)?

#### Solution:

We know that Cauchy(0,1) is t(1) distribution and the tail index of  $t(\nu)$  distribution is  $\nu$ . Hence, the tail index of Cauchy(0,1) is 1.

(b) Show that  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \text{Cauchy}(0,1)$  as well.

## **Proof:**

Recall the characteristic function of Cauchy(0,1) distribution:

$$\varphi_X(t) = e^{-|t|}.$$

We have:

$$\varphi_{\bar{X}_n}(t) = \varphi_X^n\left(\frac{t}{n}\right) = e^{-n\left|\frac{t}{n}\right|} = e^{-|t|},$$

which means  $\bar{X}_n \sim \text{Cauchy}(0, 1)$ .

(c) Use simulation study to compute both the 95% Value-at-Risks of  $X_1$  and  $\bar{X}_{1000}$ . What does it imply for the portfolio diversification in Value-at-Risk?

#### **Solution:**

For  $X_1$ , we simulate 10000 historical returns and use nonparametric estimation to find the VaR. For  $\bar{X}_{1000}$ , we simulate 10000 historical returns for 1000 times and use parametric estimation to find the VaR:

$$VaR(\bar{X}_{1000}) = -\left(\hat{\mu}_P + \tan\left[\pi(\alpha - \frac{1}{2})\right]\hat{\sigma}_P\right),\,$$

where

$$\hat{\mu}_P = \frac{1}{1000} \sum_{i=1}^{1000} \mu_i, \ \hat{\sigma}_P^2 = \frac{1}{1000^2} \sum_{i=1}^{1000} \sigma_i^2.$$

```
sim <- rcauchy(10000)
VaR.1 <- -as.numeric(quantile(sim, 0.05))
sim.avg <- replicate(1000, rcauchy(10000))
mu_P <- mean(apply(sim.avg, 2, mean))
sigma_P <- sqrt(mean(apply(sim.avg, 2, var)) / 1000)
VaR.1000 <- -(mu_P + tan(pi * (0.05 - 0.5)) * sigma_P)</pre>
```

Table 7: 95% Value-at-Risk

|     | $X_1$  | $\bar{X}_{1000}$ |
|-----|--------|------------------|
| VaR | 6.0998 | 580.8216         |

From the results, we find that

$$\operatorname{VaR}(\bar{X}_{1000}) > \operatorname{VaR}(X_1) = \frac{1}{1000} \sum_{i=1}^{1000} \operatorname{VaR}(X_i),$$

which shows that VaR is not subadditive. In common sense, portfolio should have a lower risk than one asset. But we can not show this result by VaR measure.