

Software Requirements, Specifications and Formal Methods

A/Prof. Lei Niu

Introduction to Petri Net

- Invented by Dr. Carl Adam Petri
- First introduced in Petri's dissertation:
 "Kommunikation mit Automaten" (1962)

Why Petri Net (PN)?

- Petri Nets give a graph-theoretic representation of the structure and the dynamics of a discrete event system.
- They provide a mathematical framework for:
 - Analysis
 - Validation
 - Performance evaluation
- They focus on issues of
 - Concurrency
 - Asynchronous operations

An example of PN

PN definition

A Petri Net is a bipartite directed graph, G=(V,A), where $V=\{V1,\ V2,\ ...,\ Vs\}$ is a set of vertices and $A=\{a1,a2,...,ar\}$ is a bag of directed arcs, ai=(vj,vk) with $vj,vk\in V$.

The set V are partitioned into two disjoint sets P (circle nodes, i.e. places) and T (bar nodes, i.e. transitions) such that $V = P \cup T$, $P \cap T = \emptyset$, and for each directed arc, $ai \in A$, if ai = (vj, vk), then either $vj \in P$ and $vk \in T$ or $vj \in T$ and $vk \in P$.

PN composition

A Petri Net is a bipartite directed graph

- Bipartite: two types of nodes
- » <u>Circle nodes</u> denotes places
- » <u>Bar nodes</u> denotes transitions

- Directed: the arcs that join two nodes are directed.
- » <u>Arcs</u> connect <u>places to transitions</u> and <u>transitions to places</u> only

Place

A petri net is drawn as a directed, weighted, bipartite graph.

- A bipartite graph is a graph with two distinct sets of nodes such that there are no edges between nodes of the same set.
- In the case of petri nets, these two sets are defined as places and transitions.
- Typically, places are represented as circles and transitions as either bars or boxes.
- The edges between nodes are defined as arcs.

Marking and Token

A petri net has **states**, designated as **markings**. Each marking corresponds to an assignment of some non-negative integer **k** to each place **p**.

- This corresponds to the place being 'marked' with k tokens, which are represented on the graph typically as smaller black circles within each place.
- Normally, there is no limit to the number of tokens which may mark a given place.

Arc

- An arc, either from a place to a transition or from a transition to a place, has some weight k.
 - An arc with weight k is functionally the same as there being k arcs of weight 1.
- A place with an arc from itself to a transition is an input place, and a place with an arc from a transition to itself is an output place.

Role of a token

Tokens can play the following roles:

- a physical object, for example a product, a person;
- an information object, for example a message, a signal;
- a collection of objects, for example a truck with products, a warehouse with parts, or an address file;
- an indicator of astate, for example the indicator of the state in which a process is, or the state of an object;
- an indicator of acondition: the presence of a token indicates whether a certain condition is fulfilled.

Role of a place

- a type of communication medium, like a telephone line, a middleman, or a communication network;
- a buffer: for example, a depot, a queue or a post bin;
- a geographical location, like a place in a warehouse, office or hospital;
- a possible state or state condition: for example, the floor where an elevator is, or the condition that a specialist is available.

Role of a transition

- an event: for example, starting an operation, the death of a patient or the switching of a traffic light from red to green;
- a transformation of an object, like adapting a product, updating a database, or updating a document;
- a transport of an object: for example, transporting goods, or sending a file.

Petri Net Structure

- A Petri net is composed of four parts: a set of <u>places P</u>, a set of <u>transitions T</u>, an <u>input function I</u>, and an <u>output function O</u>.
- Input and output functions relate to transitions and places.
- Input function I is a mapping from a <u>transition ti to a</u> <u>collection of places I(ti)</u>, known as the input places of the transition.
- Output function O maps <u>a transition tj to a collection of</u>
 <u>places O(tj)</u>, known as the output places of the transition.
- The structure of a Petri net is defined by its places, transitions, input function, and output function.

Mathematical Definition

- A Petri net structure, C, is a four-tuple, C=(P,T,I,O).
 P={p1,p2,...,pn} is a finite set of places, n ≥ 0.
- $T=\{t_1,t_2,...,t_m\}$ is a set of transitions, $m \ge 0$.
 - > The set of places and the set of transitions are disjoint, i.e., $P \cap T = \emptyset$.
- $I: T \rightarrow P\infty$ is the input function, a mapping from transitions to bags of places, and indicates the input places of a transition.
- O: T→P∞ is the output function, a mapping from transitions to bags of places, and indicates the output places of a transition.

Example

A Petri net structure:

$$C = (P,T,I,O)$$
 $P = \{p1,p2,p3,p4,p5\}$ $T = \{t1,t2,t3,t4\}$
 $I(t1) = \{p1\}$ $O(t1) = \{p2,p3,p5\}$
 $I(t2) = \{p2,p3,p5\}$ $O(t2) = \{p5\}$
 $I(t3) = \{p3\}$ $O(t3) = \{p4\}$
 $I(t4) = \{p4\}$ $O(t4) = \{p2,p3\}$

Marked PN

- A marked PN contains tokens
- Tokens are depicted graphically by dots () and reside in places
- A marking of a PN is a mapping that assigns a non-negative integer (the number of tokens) to each place of the net
- The marking characterizes the state of the Petri Net
- The initial marking is referred to as μ

Definition for marking µ

- Definition: A marking μ of a Petri net C = (P, T, I, O) is a function from the set of places P to the non-negative integers N.
- $\mu: P \rightarrow N$
- The marking μ can also be defined as an n-vector, $\mu = (\mu 1, \mu 2, ..., \mu n)$.
- The number of tokens in place pi is μi , i=1, ..., n.
- The definitions of a marking as a function and as a vector are obviously related by $\mu(pi) = \mu i$.

Petri Net State Spaces

- The state of a Petri net is defined by its <u>marking</u>.
- The firing of a transition represents a change in the state of the Petri net.
- The state space of a Petri net with n places is the set of all markings.

Example of Petri Net Markings

A Petri net structure:

$$C = (P,T,I,O)$$
 $P = \{p1,p2,p3,p4,p5\}$ $T = \{t1,t2,t3,t4\}$
 $I(t1) = \{p1\}$ $O(t1) = \{p2,p3,p5\}$
 $I(t2) = \{p2,p3,p5\}$ $O(t2) = \{p5\}$
 $I(t3) = \{p3\}$ $O(t3) = \{p4\}$
 $I(t4) = \{p4\}$ $O(t4) = \{p2,p3\}$

The marking is $\mu = (1, 2, 0, 0, 1)$

Execution Rules for Petri Nets

- A transition t is called enabled in a certain marking, if:
 - For every arc from an input place p to transition t, there exists a distinct token in the marking
- An enabled transition can be fired and result in a new marking
- Firing of a transition t in a marking is an atomic operation

Execution Rules for Petri Nets (cont.)

- Firing a transition results in two things:
 - 1. Subtracting one token from the marking of any input place p for every arc connecting place p to transition t, i.e. decrease token for all I(t)
 - 2. Adding one token to the marking of any output place p for every arc connecting transition t to place p, i.e. increment token for all O(t)

Enabled and Firing

In Petri Nets, there is a **firing** rule, which has three parts.

- 1.A transition t is enabled if each input place p of t is marked with at least w((p,t)) tokens (where w((p,t)) is the weight of the arc from p to t).
- 2. An enabled transition t may or may not fire.
- 3. The firing of an enabled transition **t** removes w((p,t)) tokens from each input place **p** of **t** and adds w((t,p')) tokens to each output place **p'** of **t**.

Enabled and Firing (cont.)

Definitions

A transition $tj \in T$ in a marked Petri net C = (P,T,I,O) with marking μ is enabled if for all $pi \in P$,

$$\mu(pi)$$
 \geq $\#(pi, tj)$

number of token number of arcs from input place pi
within place pi to transition tj

A transition tj in a marked Petri net with marking μ may fire whenever it is enabled. Firing an enabled transition tj results in a new marking μ defined by, for all $pi \in P$,

$$\mu'(pi) = \mu(pi) - \#(pi, tj) + \#(tj, pi)$$

new tokens in pi = original tokens in pi - tokens removed from pi + tokens added to pi

Non-determinism

- Even a transition is enable, the execution of transition is non-deterministic.
 - 1. Multiple transitions can be enabled at the same time, any one of them can be fired
 - 2. None are required to fire they fire at will, between 0 times and infinity, or not at all

Example of Execution Rules for Petri Nets

Condition: for all $p_i \in P$, $\mu(p_i) \ge \#(p_i, t_j)$

Transitions t1, t3, and t4 are enabled Because the execution of PN is non-determinism, we assume that the fire order is t4, t1, t3

Example of Execution Rules for Petri Nets

The marking result from <u>firing transition t4</u> in Figure 1 $\mu'(pi) = \mu(pi) - \#(pi, tj) + \#(pi, tj)$

 $\mu = (1,0,0,2,1) \rightarrow \mu 1 = (1,0,1,3,0)$ (firing transition t4)

Example of Execution Rules for Petri Nets (continuing)

The marking result from **firing transition t1** in Figure 2

 $\mu 1 = (1,0,1,3,0) \rightarrow \mu 2 = (0,1,2,5,0)$ (firing transition t1)

Example of Execution Rules for Petri Nets (continuing)

The marking result from **firing transition t3** in Figure 3

 $\mu 2 = (0,1,2,5,0) \rightarrow \mu 3 = (0,1,2,3,1)$ (firing transition t3)

Examples

- Below is an example Petri net with two places and one transition.
- Transition node is ready to fire if and only if there is at least one token at place p1

State transition: $\mu=(1,0) \rightarrow \mu 1=(0,1)$

Examples (cont.)

 $\mu = (1,0,0) \rightarrow \mu 1 = (0,1,0) \rightarrow \mu 2 = (0,0,1)$

Sequential Execution

Transition t₂ can fire only after the firing of t₁. This imposes the precedence of constrains "t₂ after t₁".

Synchronization

Transition t₁ will be enabled only when there are at least one token at each of its input places.

Merging

Happens when tokens from several places arrive for service at the same transition.

Examples (cont.)

Concurrency

t₁ and t₂ are concurrent.

-with this property, Petri net is able to model systems of distributed control with multiple processes executing concurrently in time.

$$\mu = (0,1,0,1,0) \rightarrow \mu 1 = (0,0,1,0,1)$$

Petri Net Applications

- performance evaluation
- communication protocols
- distributed-software systems
- distributed-database systems
- concurrent and parallel programs
- industrial control systems
- discrete-events systems
- multiprocessor memory systems
- dataflow-computing systems
- fault-tolerant systems
- etc.

Conclusion

- Petri Nets
 - executable
 - concurrent, asynchronous, distributed, parallel, nondeterministic and/or stochastic systems
 - graphical tool
 - visual communication aid
 - mathematical tool
 - state equations, algebraic equations, etc
 - communication between theoreticians and practitioners

