Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчет по лабораторной работе №2 Синтез помехоустойчивого кода Вариант №54

Выполнил: Валиев Руслан Новруз оглы, гр. Р3131

Проверила: Авксентьева Е. Ю., к.п.н., доцент ФПИиКТ

Санкт-Петербург 2024г.

Оглавление

Задание	3
Задание 1.1	
Задание 1.2	
Задание 1.3	
Задание 1.4	
Задание 2	
Задание 3	
Задание 4	
Результат выполнения программы	
Заключение	
Список литературы	
CIIIIOOK JIIII Opai y pbi	•••••••

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

r_1	r_2	i_1	r ₃	i_2	i ₃	i 4
1	1	0	1	0	1	1

$$\begin{aligned} s_1 &= r_1 \, \bigoplus \, i_1 \bigoplus \, i_2 \bigoplus \, i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 0 \\ s_1 &= r_2 \bigoplus \, i_1 \bigoplus \, i_3 \bigoplus \, i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1 \\ s_1 &= r_3 \bigoplus \, i_2 \bigoplus \, i_3 \bigoplus \, i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1 \end{aligned}$$

Синдром S: 011

Конфигурация ошибок:0000010

Ошибка в символе: із

\mathbf{r}_1	r_2	\mathbf{i}_1	r_3	i_2	i 3	i 4
1	1	0	1	0	0	1

r_1	r_2	i_1	r ₃	i_2	i ₃	i 4
0	0	0	0	1	0	1

$$\begin{split} s_1 &= r_1 \, \bigoplus \, i_1 \bigoplus \, i_2 \bigoplus \, i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 0 \\ s_1 &= r_2 \bigoplus \, i_1 \bigoplus \, i_3 \bigoplus \, i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 1 \\ s_1 &= r_3 \bigoplus \, i_2 \bigoplus \, i_3 \bigoplus \, i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 0 \end{split}$$

Синдром S: 010

Конфигурация ошибок:0100000

Ошибка в символе: r₂

r_1	r_2	i_1	r ₃	i_2	i ₃	i 4
0	1	0	0	1	0	1

r_1	r_2	i_1	r ₃	i_2	i ₃	i 4
0	0	1	1	0	0	0

$$\begin{aligned} s_1 &= r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1 \\ s_1 &= r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1 \\ s_1 &= r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 1 \end{aligned}$$

Синдром S: 111

Конфигурация ошибок: 0000001

Ошибка в символе: і4

\mathbf{r}_1	r_2	i_1	r ₃	i_2	i ₃	i 4
0	0	1	1	0	0	1

r_1	r_2	i_1	r ₃	i_2	i ₃	i 4
1	0	0	1	0	0	1

$$\begin{split} s_1 &= r_1 \, \oplus \, i_1 \oplus \, i_2 \oplus \, i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0 \\ s_1 &= r_2 \oplus \, i_1 \oplus \, i_3 \oplus \, i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1 \\ s_1 &= r_3 \oplus \, i_2 \oplus \, i_3 \oplus \, i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0 \end{split}$$

Синдром S: 010

Конфигурация ошибок:0100000

Ошибка в символе: r₂

\mathbf{r}_1	r_2	\mathbf{i}_1	r ₃	i_2	i 3	i 4
1	1	0	1	0	0	1

Задание 2

\mathbf{r}_1	r ₂	iı	r ₃	i ₂	i ₃	i ₄	r ₄	i 5	i 6	i ₇	i ₈	i ₉	i ₁₀	i ₁₁₁
0	1	0	0	0	1	1	0	1	1	0	0	0	1	1

 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 0$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$

 $s_4 = r_4 \bigoplus i_5 \bigoplus i_6 \bigoplus i_7 \bigoplus i_8 \bigoplus i_9 \bigoplus i_{10} \bigoplus i_{11} = 0 \bigoplus 1 \bigoplus 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 0$

Синдром S: 1000

Конфигурация ошибок: 100000000000000

Ошибка в символе: r₁

r_1	r ₂	i ₁	r ₃	i ₂	i ₃	i 4	r ₄	i 5	i 6	i ₇	i ₈	i9	i ₁₀	i ₁₁₁
1	1	0	0	0	1	1	0	1	1	0	0	0	1	1

Задание 3

- 1) i = (39 + 71 + 3 + 23 + 54) * 4 = 7602) $2^r \ge r + i + 1 \longrightarrow r = 10$
- 3) $k \approx \underline{0.012987}$

```
ргіпт ("Введите через Enter биты сообщения в следующей последовательности: r1, r2, i1, r3, i2, i3, i4")
for i in range(0,7):#Закидываем наши биты в список
    a=int(input())
    mes.append(a)
#Определение элементов синдрома через альтернативу ког
if (mes[0]+mes[2]+mes[4]+mes[6])%2==0:
    s1="0"
else:
   s1="1"
if (mes[1]+mes[2]+mes[5]+mes[6])%2==0:
    s2="0"
    s2="1"
if (mes[3]+mes[4]+mes[5]+mes[6])%2==0:
    s3="0"
else:
    s3="1"
s=[]#Синдром
s.append(sl)
s.append(s2)
s.append(s3)
sin=''.join(s)
#Начинаем определение синдрома нашего сообщения
if sin=="000":
    print("Bce хорошо, ошибок нет")
elif sin=="001":
    print("Ошибка в бите r3")
    print("Исправленные информационные биты: ", str(mes[2])+str(mes[4])+str(mes[5])+str(mes[6]))
elif sin == "010":
    print("Ошибка в бите r2")
    print("Исправленные информационные биты: ", str(mes[2])+str(mes[4])+str(mes[5])+str(mes[6]))
elif sin == "011":
    print("Ошибка в бите i3")
    print("Исправленные информационные биты: ", str(mes[2])+str(mes[4])+str(int(not(mes[5])))+str(mes[6]))
elif sin == "100":
    print("Ошибка в бите rl")
    print("Исправленные информационные биты: ", str(mes[2])+str(mes[4])+str(mes[5])+str(mes[6]))
elif sin == "101":
    print("Ошибка в бите i2")
    print("Исправленные информационные биты: ", str(mes[2])+str(int(not(mes[4])))+str(mes[5])+str(mes[6]))
elif sin == "110":
   print("Ошибка в бите il")
    print("Исправленные информационные биты: ", str(int(not(mes[2])))+str(mes[4])+str(mes[5])+str(mes[6]))
elif sin == "111":
    print("Ошибка в бите i4")
    print("Исправленные информационные биты: ", str(mes[2])+str(mes[4])+str(mes[5])+str(int(not(mes[6]))))
```

Рисунок 1

```
Результат выполнения программы
введите через Enter биты сообщения в следующей последовательности: r1,r2,i1,r3,i2,i3,i4
0
1
0
0
0
Ошибка в бите і2
Исправленные информационные биты: 0100
Введите через Enter биты сообщения в следующей последовательности: r1, r2, i1, r3, i2, i3, i4
0
0
0
0
0
0
Все хорошо, ошибок нет
```

Рисунок 2

Заключение

В ходе выполнения работы нами были изучены таблицы и код Хэмминга, мы познакомились с понятиями проверочный бит, информационный бит, коэффициент избыточности и т.д.

Список литературы

- Инфоурок: официальный сайт. Смоленск, 2013. URL:https://infourok.ru (дата обращения (01.10.2024);
- Шаманов, А. П. Системы счисления и представление чисел в ЭВМ. Екатеринбург: Учебное пособие, 2016. 56 с. ISBN 978-5-7996-1719-6.