PROBLEMS IN CALCULUS 2006 2007

- Prove that A_j = g(a_j)/f'(a_j).
 Suppose we also know that

$$A_k A_{k+1} > 0,$$

for $k = 1, \dots, n-1$. Prove that g(x) is of degree n-1, and it has n-1 distinct

9. Suppose h(x) be a real polynomial, $(x-a)^2$ is a factor of h(x), but $(x-a)^3$ is not a factor of h(x). Denote

$$h(x) = (x - a)^2 k(x).$$

Prove that $k(a) \neq 0$, and $k(a) = \frac{f''(a)}{2!}$. 10. Let $p(x) = 6x^2 + \frac{1}{2}$. Find the interval formed by those real numbers b which satisfy the following condition:

$$p(x) + bx \ge 0$$
, for all $x \in [-\frac{1}{2}, \frac{1}{2}]$.

- 11. Suppose $f(x) \in C^1[0,1]$, $f(x) \in [0,1]$, and |f'(x)| < 1 for all $x \in [0,1]$.
- (1) Prove that there exists a constant $M, 0 \leq M < 1$, such that $|f'(x)| \leq M$ for all
- (2) Let M be as that in (1). Prove that $|f(x) f(y)| \le M|x y|$ for all $x, y \in [0, 1]$.
- (3) Let x_0 be a point in [0,1]. Since $f(x) \in [0,1]$ for all $x \in [0,1]$, we can define a sequence $(x_n)_{n=0}^{\infty}$ in [0,1] by iteration: $x_1 = f(x_0)$, $x_2 = f(x_1)$, \cdots , $x_{n+1} = f(x_n)$. Prove that the sequence $(x_n)_{n=0}^{\infty}$ is convergent, and if we let $x_* = f(x_n)$ $\lim_{n\to\infty} x_n$, then $f(x_*) = x_*$. [Hint: Apply (2) to prove that the sequence $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence, then apply the continuity of f(x).]
- 12. Let f(x) is a polynomial of degree n. Is the polynomial f(x) x a factor of the polynomial f(f(x)) - x?