Problem 0

I agree

Problem 1

So the sequence is $\{n \in \mathbb{Z}_{\geq 0}\}$ and at each n, we require the principal part of Laurent series to be $g_n = \frac{\sqrt{n}}{z-n} = \frac{-1}{\sqrt{n}} \frac{1}{1-z/n}$.

Expand it at z = 0, we have $\sum_{i=0}^{\infty} \frac{-1}{\sqrt{n}} \frac{z^i}{n^i} = \frac{-1}{\sqrt{n}} + \sum_{i=1}^{\infty} \frac{-1}{\sqrt{n}} \frac{z^i}{n^i}$.

Take $h_n = \frac{-1}{\sqrt{n}} = \frac{-\sqrt{n}}{n}$. Hence

$$|g_n - h_n| = \left| \frac{\sqrt{n}}{z - n} + \frac{\sqrt{n}}{n} \right|$$

$$= \left| \frac{n\sqrt{n} + \sqrt{n}(z - n)}{n(z - n)} \right|$$

$$= \left| \frac{\sqrt{n}z}{n(z - n)} \right|$$

$$\leq \frac{\sqrt{n}r_n}{n(n - r_n)}$$

$$= c_n$$

Now simply let $r_n = n^{1/3}$ and c_n will be roughly at the order of $\frac{n^{5/6}}{n^2} = \frac{1}{n^{7/6}}$. Hence $\sum_n c_n < \infty$.

Hence the solution to Mittag-Leffler problem is simply $\sum_{n\geq 1} \frac{\sqrt{n}z}{n(z-n)} + \frac{1}{z}$

Problem 2

If we consider $\{a_n\}$ as zeros, then we can construct an entire function f(z) such that it has simple zeros at $\{a_n\}$. Similarly, we can construct a meromorphic function g(z) such that $\{a_n\}$ are the poles of the function and have principal part of Laurent series $\frac{\beta_n}{z-a_n}$. Now expand the Taylor series of f(z) at a_n , we obtain $\alpha_n(z-a_n)+\dots$, where the omission represents terms with higher power of $(z-a_n)$ and $\alpha_n \neq 0$.

To obtain the value $f(a_n)g(a_n)$, we can check the corresponding value in the multiplication of their Laurent series, which start with $\alpha_n\beta_n$ + polynomials of

 $(z - a_n)$. Hence we simply let $\beta_n = A_n/\alpha_n$, so that we can define $fg = A_n$ at the removable pole a_n . Do this for all n, we see that fg is entire and satisfy $fg(a_n) = A_n$ for arbitrary A_n .

Problem 3

(a) We take the logarithmic derivative

$$\zeta(z) = (\log(\sigma(z))')$$

$$= (\log(z) + \sum_{\lambda} \log(1 - \frac{z}{\lambda}) + (\frac{z}{\lambda} + \frac{z^2}{2\lambda^2}))'$$

$$= \frac{1}{z} + \sum_{\lambda} \frac{1}{z - \lambda} + \frac{1}{\lambda} + \frac{z}{\lambda^2}$$

By the previous homework, $\sigma(z)$ converges absolutely. Hence its logarithmic derivative $\zeta(z)$ also converges. Hence it is a solution to some Mittag Lefler problem. By observation, we see that it have Λ as its set of poles, $\frac{1}{z-\lambda}$ as principal part of Laurent series centered at any λ

(b) Given a solution

$$f(z) = z^{k_0} e^g \prod_n (E_{p_n}(z/a_n))^{k_n}$$
$$= z^{k_0} e^g \prod_n (1 - z/a_n)^{k_n} e^{k_n h_n}$$

, where g and h_n are entire functions, k_0 and k_n are zero multiplicities. We take the logarithmic derivative

$$log(f)' = k_0/z + g + \sum_n \frac{k_n}{z - a_n} + k_n h_n$$

Again, the convergence of the logarithmic derivative is ensured by the convergence of the original function and therefore it is a solution to some ML problem. By observation, we see that it has 0 and $\{a_n\}$ as its set of poles and have $\frac{k_n}{z-a_n}$ as its principal part of Laurent series at a_n and $\frac{k_0}{z}$ as its principal part of Laurent series at 0.

Problem 4

(a) $\zeta(z) = \frac{1}{z} + \sum_{\lambda} \frac{1}{z-\lambda} + \frac{1}{\lambda} + \frac{z}{\lambda^2}$. Hence we have

$$\wp(z) = \frac{1}{z^2} - \left(\sum_{\lambda} -\frac{1}{(z-\lambda)^2} + \frac{1}{\lambda^2}\right)$$
$$= \frac{1}{z^2} + \sum_{\lambda} \frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2}$$

(b) \wp is obviously meromorphic as all of its poles are in the discrete set Λ . We have

$$\wp(z+w_1) = \frac{1}{(z+w_1)^2} + \left(\sum_{\lambda \neq 0} \frac{1}{(z+w_1-\lambda)^2} - \sum_{\lambda \neq 0} \frac{1}{\lambda^2}\right)$$
$$= \frac{1}{(z+w_1)^2} + \left(\sum_{\lambda \neq -w_1} \frac{1}{(z-\lambda)^2} - \sum_{\lambda \neq 0} \frac{1}{\lambda^2}\right)$$

which is obviously equal to $\wp(z)$ after we pull $\frac{1}{z^2}$ out of the sum and push $\frac{1}{(z+w_1)^2}$ into the sum. Same logic holds for w_2 and hence \wp is doubly periodic.

- (c) $\wp(z) = \wp(z + w_1) = \wp(z + w_2)$, hence taking derivative, we obtain $\wp'(z) = \wp'(z + w_1) = \wp'(z + w_2)$
- (d/e) the only part that contains the pole z=0 is $\frac{1}{z^2}$, hence that is the principal part of the Laurent series at 0. When plugging in z=0, $\wp(z)-\frac{1}{z^2}=0$ and hence the constant term is 0. Now $\wp(-z)=\frac{1}{(-z)^2}+\sum_{\lambda}\frac{1}{(z+\lambda)^2}-\frac{1}{\lambda^2}=\wp(z)$ as the mapping $\Lambda\to\Lambda$ that sends λ to $-\lambda$ is a bijection. Hence expanding the Laurent series of $\wp(-z)$ at z=0 and subtract it from that from $\wp(z)$ we must have all odd power terms vanish. Hence the Laurent series of $\wp(z)=\frac{1}{z^2}+az^2+bz^4+\ldots$ for some $a,b\in\mathbb{C}$. Taking derivative on both side, we obtain $\wp'(z)=\frac{-2}{z^3}+2az+4bz^3+\ldots$
- (f) We consider the principal part of Laurent series of $\frac{1}{4}\wp'(z)^2 (\wp(z)^3 + A\wp(z) + B)$, which can be written as $\frac{1}{4}(\frac{4}{z^6} + \frac{-8a}{z^2}) (\frac{1}{z^6} + \frac{3a}{z^2} + \frac{A}{z^2})$. Since $\frac{1}{z^6}$ terms cancel each other, we can obtain A, in terms of a, such that $\frac{1}{z^2}$ terms vanish. Then B can be used to offset whatever constants generated by the previous three terms to ensure the entire expression vanish at z = 0.

(g)

We see that $l(z) = \frac{1}{4}\wp'(z)^2 - (\wp(z)^3 + A\wp(z) + B)$ is entire as every pole in Λ is no longer a pole for this expression (by (f) and the doubly periodic property). Now using doubly periodic property again and the fact that w_1 and w_2 represents two linearly independent vectors on \mathbb{C} , given any $z \in \mathbb{C}$, there exists $a, b \in [0, 1)$, such that $\wp(z) = \wp(aw_1 + bw_2)$. But since the set $\{aw_1 + bw_2 : a, b \in [0, 1)\}$ is compact, the image of l is compact and therefore bounded. Hence by Louville theorem, l is a constant function, which means $l \equiv 0$ as l(0) = 0.