

计算机图像处理

COMPUTER IMAGE PROCESSING

空域滤波增强

空域滤波

• 空域滤波就是在图像中逐点地移动模板,对每个点都进行模版操作。

f(x-1,y-1)	f(x-1,y)	f(x-1,y+1)
f(x,y-1)	f(xy)	f(x,y+1)
f(x+1,y-1)	f(x+1,y)	f(x+1,y+1)

w(-1,-1)	w(-1,0)	w(-1 <u>]</u>)
w(0,-1)	w(0,0)	w(0,I)
w(1,-1)	n(1b)	w(1,1)

线性滤波,滤波器模板 $m \times n$,令a=(m-1)/2,b=(n-1)/2,则

$$R = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)$$

$$R = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)$$

$$R = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)$$

f(x, y)

0	4	8	4	0
4	16	4	32	4
8	4	0	4	8
4	4	4	16	4
8	4	8	4	0

f(x, y)

1	1	2	1
$\frac{1}{16}$ ×	2	4	2
	1	2	1

W(X, y)

程序

```
void Spatialfilter (HXLBMPFILE *F, HXLBMPFILE *R, float *W, Int M, Int N)
   int i, j, s, t;
   float r;
   int A = (M-1)/2, B = (N-1)/2;
  for (j = A; j < F-) imageh - A; j++)
  for (i = B; i < F-)imagew - B; i++)
    r = 0:
    for (s = -A; s < A; s++) for (t = -B; t < B; t++)
    r \leftarrow (float)F \rightarrow pDataAt(j+s)[i+t] * W[(s+A) * M + (t+B)];
    R\rightarrow pDataAt(j)[i] = (BYTE)r;
  return;
```


线性平滑滤波器-平滑算子

	1	1	1
$\frac{1}{9} \times \boxed{}$	1	ï	î
	1	1	1

平滑滤波器模板

效果

锐化滤波器-锐化算子

f(x,y)在(x,y)的梯度

$$G[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

其模值

$$G_M[f(x,y)] = \sqrt{G_x^2 + G_y^2} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

近似梯度模值

$$G_M[f(x,y)] = |G_x| + |G_y|$$

直接差分算分

G_x 和 G_v 用近似值:

$$G_x = f(x, y) - f(x+1, y)$$

$$G_y = f(x, y) - f(x, y+1)$$

得到直接差分算子

1	0	1	-1
-1	0	0	0

ROBERTS算子

G_x 和 G_v 用近似值:

$$G_x = f(x, y) - f(x+1, y+1)$$

$$G_y = f(x+1, y) - f(x, y+1)$$

得到Roberts算子

1	0	0	1
0	-1	-1	0

SOBEL算子

G_x 和 G_v 用近似值:

$$G_x = ((f(x-1, y-1) + 2f(x-1, y) + f(x-1, y+1))$$
$$-(f(x+1, y-1) + 2f(x+1, y) + f(x+1, y+1))$$

$$G_y = ((f(x-1, y-1) + 2f(x, y-1) + f(x+1, y-1))$$
$$-(f(x-1, y+1) + 2f(x, y+1) + f(x+1, y+1))$$

得到Sobel算子

1	2	1
0	0	0
-1	-2	-1

1	0	-1
2	0	-2
1	0	-1

拉普拉斯算子

f(x,y)在(x,y)的拉普拉斯算子为

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

对数字图像

$$\nabla^2 f(x, y) = \nabla_x^2 f(x, y) + \nabla_y^2 f(x, y)$$

拉普拉斯算子

因f(x,y)离散,所以

$$\nabla^{2} f(x, y)$$
= $[f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)]$
- $4f(x, y)$

如果加上对角线元素,则

$$\nabla^2 f(x,y) = [f(x+1,y-1) + f(x+1,y+1) + f(x-1,y+1) + f(x-1,y+1) + f(x-1,y-1) + f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1) + f(x,y+1)] - 8f(x,y)$$

0	Ē	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

拉普拉斯算子模板

梯度锐化实例

效果

◆图a:Cameraman原始图像,包含有各种朝向的边缘

◆图b:用Sobel水平模板,它对垂直边缘有较强的响应

◆图c:用Sobel垂直模板,它对水平边缘有较强的响应

中值滤波器

中值滤波是用一个有奇数点的滑动窗口,将窗口中心点的值用窗口各点的中值代替。具体操作步骤如下:

- (1) 将模板在图中移动,与图中某个象素位置重合。
- (2) 读取模板下各对应象素的灰度值,并排序。
- (3) 将排序的中间值输出到目标图像中。

加权中值滤波:中值滤波模板中的值表示重复次数。

效果

程序?