Esercizio 1. Let M an L-structure and let $\psi(x), \varphi(x,y) \in L$. Write a sentence true in M exactly when

- a. $\psi(M) \in \{\varphi(a,M) : a \in M\};$
- b. $\{\varphi(a, M) : a \in M\}$ contains at least two sets;
- c. $\{\varphi(a, M) : a \in M\}$ contains only sets that are pairwise disjoint.

Esercizio 2. Let M be a structure in the signature of graphs (but not necessarily a graph). Write a sentence ψ such that,

a. $M \models \psi$ if and only if there is an $A \subseteq M$ such that $r^M \subseteq A \times \neg A$.

Esercizio 3. Let $M \leq N$ and let $\varphi(x, y) \in L$. Suppose there are finitely many sets of the form $\varphi(a, N)$ for some $a \in N^{|x|}$. Prove that all these sets are definable over M.

Soluzione:

Supponiamo che gli insiemi della forma $\varphi(a,N)$ siano n e definiamo

$$\psi(x_1,\dots,x_n) \quad = \quad \bigwedge_{i\neq j} \neg \forall y \big[\varphi(x_i,y) \leftrightarrow \varphi(x_j,y) \big]$$

Quindi $\psi(x_1,...,x_n)$ dice che gli insiemi definiti dalle formule $\varphi(x_i,y)$ sono tra loro distinti. Per ipotesi $N \models \exists x_1,...,x_n \psi(x_1,...,x_n)$ e per elementarità esistono $a_1,...,a_n \in M^{|x|}$ tali che $M \models \psi(a_1,...,a_n)$. Di nuovo per elementarità $N \models \neg \forall y [\varphi(a_i,y) \leftrightarrow \varphi(a_j,y)]$ per ogni $i \neq j$. Quindi gli insiemi $\varphi(a_i,N)$ non possono che essere gli n insiemi di cui sopra.