An optimization approach to segment breast lesions in ultra-sound images using clinically validated visual cues

Doctoral Day 7th October 2015

Joan Massich joan.massich@u-bourgogne.fr

Université de Bourgogne

Introduction
 Motivations
 Screening
 Image formation, limitations and imaging perspectives
 Image inspection to infer state of health

2 Optimization Based Segmentation forumulation Interpretation System Configuration

3 Discussions

Motivations

Statistics

(a) # of cancer cases

(b) # of cancer deaths

Implications 1 and 1 and

- ▶ 1.4 million cases per year
- ▶ 10.9% of diagnosed cancers
- ▶ 5th cause of cancer death (1th females)

Breast Imaging

Despite its limitations, Digital Mammography (DM) is the main image modality for breast screening. Other image modalities such as Magnetic Resonance Imaging (MRI), Tomography, or Ultra-Sound (US) are being developed.

Ultra-Sound(US) imaging, advantages:

- Ability to discern solid lesions typologies
- Lesions shielded by dense breast in DM are distinguishable in US

State of health from image visual Inspection

Radiologic diagnosis error rates are similar to any other human visual inspection

- Quality of the images.
- ► Ability to interpret the physical properties of the images.
- 1. Double readings.
- 2. Computer Aided Diagnosis(CAD).

BI-RADs Lexicon A standardized toolkit tested for diagnosis

For each description section a single category is given based on some criteria

- ▶ BKGD Echotexture : Adipose, Fibro-Glandular or Heterogeneous based on the visual texture present surrounding the lesion.
- Mass shape: Oval, Round, Irregular, Lobular based on general shape of the lesion
- ► Mass orientation : Parallel, Non-Parallel with respect to the general orientation of the skin layers
- Mass margin : Circumscribed, Indistinct, Angular, Microlobulated, Spiculated based on the delineation of the lesion
- ► Lesion boundary : Abrupt interface, Echogenic halo to differentiate when hyperechoic tissue surrounds the lesion
- ► Echo pattern : Anechoic, Hyperechoic, Complex, Isoechoic, Hypoechoic based on the lesion appearance with respect to the adipose tissue
- ▶ Posterior acoustic pattern : Shadowing, Combined, Enhancement, No patter based on how the background tissue posterior to the lesion is depicted

Optimization For image segmentation

$$\hat{\omega} = \arg\min_{\omega} \ U(\omega)$$

Considerations

- ▶ Search Space W
- ▶ Cost Function $U(\cdot)$
- ► Minimization Strategy

Image Segmentation by Optimization The Metric Labeling Problem

$$\hat{\omega} = \arg\min_{\omega} \ U(\omega)$$

$$U(\omega) = \sum_{s \in S} D_s(\omega_s) + \sum_{s} \sum_{r \in \mathcal{N}_s} V_{s,r}(\omega_s, \omega_r)$$

Considerations

- ► Image as a discrete set S
- ► Search Space W ($\omega_s = I$), $I \in \mathcal{L}$, $\forall s \in \mathcal{S}$
- ► Cost Function
- ► Minimization Strategy

Cost function

- $ightharpoonup D_s$ is the Data-Term
- $D_s(\omega_s = I_{\checkmark}) << D_s(\omega_s = I_{X})$
- $ightharpoonup V_{s,r}$ is the Pairwise-Term

$$V_{s,r}(\omega_s,\omega_r) = \begin{cases} \beta, & \text{if } \omega_s \neq \omega_r \\ 0, & \text{otherwise} \end{cases}$$

The Metric Labeling Problem Interpretation of the Cost function terms

$D_s(\omega_s = I)$ Interpretation

$V_{s,r}(\omega_s,\omega_r)$ Interpretation

The Metric Labeling Problem System Configuration

Table: Design choices summary

\mathcal{S}	Quick-Shift super-pixels
	Background Echotexture: encoded in Appearance and SIFT-BoW
$D(\cdot)$	Echo Pattern: encoded in Appearance, Atlas and Brightness
	Acoustic Posterior: encoded in Atlas and Brightness
$V(\cdot,\cdot)$	Homogeneity
arg min $U(\cdot)$	Graph-Cuts

Qualitative results Super-pixel classification vs Area-Overlap

(i) Original Image, Ground Truth and Super-Pixels delineation.

Discussions

(i) {lesion, lesion} labeling results, GT and SP delineation.

Qualitative results Influence of the Smoothing Term to False Positive Ratio

Qualitative results When False Negative Emerge

Quantitative Results

