Задачи к курсу «Квантовая радиофизика (электроника)»

Уравнение Шредингера для двухуровневой системы. Теория возмущений. Матричные элементы оператора возмущения.

- 1. Обосновать возможность применимости теории возмущения к модели взаимодействия атома водорода с возбуждающим его электрическим полем на длине волны λ =121 нм с интенсивностью 10 Bt/cм²
- 2. Вычислить частоту Раби осцилляций при точном резонансе для перехода с 1 на 2 энергетический уровень идеальной квантовой ямы. Ширина ямы 10 нм, плотность мощности поля 10 Вт/см²
- 3. Сформулировать правила отбора для электродипольных переходов в гармоническом осцилляторе.
- 4. Заряженная частица (заряд e) находится в одномерном потенциальном ящике размером a в состоянии $\Psi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi n x}{a}\right)$. На частицу действует электромагнитный импульс $\vec{E}(t) = \begin{cases} E_0 \vec{i}^{\ 0} \sin \omega t, 0 \leq t \leq \tau \\ 0; 0 > t > \tau \end{cases}$. В первом порядке теории возмущений найдите к моменту времени t > 0 вероятность перехода с уровня n на уровень m.
- 5. Двухуровневая система с частотой перехода ω_{12} находится под воздействием электромагнитного поля с напряженностью $\mathbf{E} = \mathbf{E_0} \cdot \cos \omega t$, где $\omega \approx \omega_{12}$ (резонансное поле). В момент включения поля квантовая система находилась на нижнем энергетическом уровне E_1 . Найти волновую функцию системы в произвольный момент времени t > 0 и определить вероятность перехода квантовой системы к моменту времени t_0 на верхний уровень.
- 6. На двухуровневую систему, находящуюся в верхнем состоянии, действует переменное поле на частоте перехода в течение трех четвертей (половины) периода осцилляций Раби. Какова будет величина и зависимость от времени дипольного момента перехода после выключения поля в этих случаях
- 7. Докажите, что оператор взаимодействия $V = -(d \cdot E)$ для реальных в эксперименте величин электрических полей имеет малую величину.
- 8. На двухуровневый атом с дипольным моментом d_{ba} , направленным по оси OZ, падает резонансное ($w = w_{ba}$) электромагнитное поле, состоящее из двух плоских волн. Эти плоские волны имеют одинаковую поляризацию и интенсивность, но распространяются под углом 90° друг к другу (по осям OX и OZ). Как происходит взаимодействие этих волн с диполем? Какова вероятность электродипольного излучения атома в направлении под углом 45° между парциальными волнами?

- 9. Используя ортогональность шаровых (сферических) и спиновых функций, покажите, что правила отбора для магнитодипольного орбитального излучения сводятся к соотношениям: $\Delta l=0$, $\Delta m_l=0,\pm 1$, $\Delta S=0$, $\Delta m_s=0$, $n_a=n_b$, а правила отбора для магнитодипольного спинового излучения сводятся к соотношениям: $\Delta S=0$, $\Delta m_l=0$, $\Delta l=0$, $\Delta m_s=0,\pm 1$, $n_a=n_b$
- 10. Можно ли получить индуцированное (лазерное) излучение в линейном гармоническом осцилляторе в электродипольном приближении?

Уширение спектральных линий. Ширина линии излучения.

- 11. Найти ширину линии спонтанного излучения квантового гармонического осциллятора при переходе E1-E0. Наблюдаема ли такая ситуация в эксперименте.
- 12. Что является доминирующим механизмом уширения линии в поглощающей ячейке SF_6 , облучаемого CO_2 -лазером (λ = 10,6 мкм, U=50Bт), если лазерный пучок в фокусе имеет диаметр 0,5 мм, T=300°K, p = 100 тор, $\sigma_{\text{погл}}$ = $5 \cdot 10^{-14}$ см²
- 13. Определить естественную, доплеровскую и столкновительную ширину линии для перехода неона $3s_2 \rightarrow 2p_4$ (λ =632,8 нм) в He-Ne разряде при давлениях $p_{He} = 1$ тор, $p_{Ne} = 0,2$ тор и температуре смеси T = 400°K. Остальные параметры: $\tau(3s_2) = 60$ нс, $\tau(2p_4) = 20$ нс, $\sigma_{\text{изл}} = 6 \cdot 10^{-14}$ см².
 - 14. Известно, что время жизни электрона в возбужденном состоянии т. Получить выражение для спектральной формы линии
 - 15. Почему происходит уширение спектральных линий поглощения (излучения) вещества в сильных полях.
 - 16. Рассчитать ширину линии для 2p-1s перехода в атоме водорода.
 - 17. Для выбранного механизма получить выражение для неоднородно уширенного контура линии. Оценить её ширину для типичных параметров.
 - 18. Типичное время жизни для разрешённого электродипольного перехода в видимом диапазоне \sim 10 нс. Оценить естественную ширину линии рентгеновского лазера, излучающего в диапазоне 10 нм.
 - 19. Доплеровская ширина линии 500 МГц. Оценка времени жизни уровня 10^{-8} с. Предложить метод измерения ширины однородного лоренцевского контура.
- 20.Линия люминесценции иона Nd^{3+} в стекле для рабочего перехода Nd лазера имеет ширину ~ 10 нм. Найти ширину верхнего лазерного уровня, если нижний дезактивируется со скоростью 10^8 с⁻¹. Что можно сказать о характере уширения линии люминесценции?

Взаимодействие двухуровневой среды с резонансным полем.

21. Для двухуровневого парамагнетика со спином 1/2 найти матричный элемент перехода

- и доказать, что его вероятность равна 0 при $\vec{H}_{\sim}||\vec{H}_{0}|$.
- 22. Для 2-х уровневой среды без диссипации ($T_1 = T_2 = \infty$) найдите выражение для поляризации при наложении на среду резонансного внешнего поля $E = E_o \cdot \cos(w_{21}t)$.
- 23. На 2-х уровневый атомный газ воздействует поле $E(t) = E_o \cdot \cos(w_{21}t)$, w_{21} боровская частота атомного перехода. Для стационарного режима рассчитайте мощность спонтанного излучения (соударениями в газе пренебречь).
- 24. Найдите связь мощности, поглощаемой 2-х уровневой средой, и мнимой части χ_{ik} ` восприимчивости этой среды.
- 25. Найдите выражение для диэлектрической проницаемости ϵ на частотах ω вблизи резонанса ω_{12}

Коэффициент усиления двухуровневой среды. Инверсия населенностей.

- 26. Определить линейный коэффициент усиления слабого сигнала в 2-х уровневой среде, если концентрация инверсии $N_o = 10^9$ см⁻³, вероятность спонтанного излучения 10^7 сек ⁻¹. Линия имеет форму Лоренца с шириной, определяемой спонтанным излучением.
- 27. Отношение населенностей двух уровней для вещества, находящегося в состоянии равновесия при температуре 300°K, равно 10. Вычислить частоту излучения, соответствующую переходу между этими уровнями.
- 28. Оценить минимальную мощность лампы-накачки (к.п.д. = 100 %), необходимую для создания инверсии в твердотельном лазере с концентрацией активных частиц n = 10^{19} см³, объемом кристалла V = 10 см^3 . Частота середины полосы оптической накачки равна v = $6 \cdot 10^{14} \Gamma$ ц, время жизни частиц на верхнем рабочем уровне $t_{cn} = 3 \cdot 10^{-3}$ сек.
- 29. Для соседних продольных мод резонатора Фабри-Перо длиной 1м, заполненного активной средой с шириной лоренцовой линии излучения на рабочем переходе $\Delta w = 2 \cdot 10^{12}$ рад/сек (рубин), сделайте оценку относительной разницы коэффициентов (показателей) усиления

Резонаторы.

- 30. Используя классическое определение добротности резонатора (контура) $Q_S:|dW/dt|$ (мощность потерь) = $\omega_s/Q_s \cdot W$ (запасенная в резонаторе энергия) и концепцию плоских волн в резонаторе Фабри-Перо с коэффициентом отражения по мощности R_1 и R_2 , покажите, что добротность Q_s такого резонатора равна $Q_S = -2L \cdot w_s/(c \cdot lnR_1R_2)$, где L длина резонатора.
- 31. Рассчитать добротность Q_p и время жизни фотона τ_{φ} в резонаторе Фабри-Перо с плоскими зеркалами. Расстояние между зеркалами L=1 м, коэффициенты отражения зеркал R_1 = $R_2=0.95$, рабочая длина волны $\lambda=0.6$ мкм. Коэффициент поглощения среды, заполняющей резонатор, $\alpha=0.01$ см $^{-1}$. Дифракционными потерями пренебречь.

- 32. Показать, что абсолютная ширина линии открытого оптического резонатора с плоскими зеркалами не зависит от частоты. Оценить (в см⁻¹) интервал между продольными модами и ширину линии такого резонатора для R=0,99 и L= 1 м.
- 33. Для гелий-неонового лазера ($\lambda = 632.8$ нм) подсчитайте число продольных мод, попадающих в контур спектральной линии излучения
- 34. Оцените максимальную величину затягивания частоты моды генерации в лазере на рубине.
- 35. Определить оптимальный коэффициент пропускания зеркал резонатора лазера, позволяющий получить максимальную выходную мощность. Длина резонатора L=10 см, коэффициент ненасыщенного усиления на проход $g_o=0.1$ см⁻¹, коэффициент потерь на проход $\alpha=0.01$ см⁻¹. Дифракционными потерями пренебречь.

Пороговое условие.

- 36. Газовый лазер работает на однородно-уширенном переходе, ширина линии 200 МГц. Вероятность спонтанного излучения на рабочем переходе ($\lambda=1$ мкм) $A_{cn}=10^7$ с⁻¹. Параметры резонатора Фабри-Перо: длина L=1 м, полные потери 0,02. Найти пороговую концентрацию инверсии.
- 37. Определить пороговую концентрацию инверсии. Рассчитайте величину минимальной концентрации ионов Cr^{3+} в рубиновом ОКГ.
- 38. Рассчитать необходимую пороговую инверсию перехода газового лазера (λ =510 нм), если вероятность перехода $A_{ik} = 5 \cdot 10^7 \text{ c}^{-1}$. Однородная ширина линии $\Delta v^{\text{одн}} = 20 \text{ М} \Gamma ц$, длина резонатора L = 20 см, а потери в резонаторе при двойном проходе составляют 5%.
- 39. Лазерная среда имеет доплеровский профиль усиления с шириной $\Delta \nu = 2$ ГГц. Однородная ширина равна $\Delta \nu^{\text{одн}} = 50$ МГц, а вероятность перехода $A_{ik} = 10^8 \text{c}^{-1}$. Пусть частота одной из мод резонатора (L = 30 см) совпадает с центральной частотой профиля усиления. Какова пороговая инверсия для центральной моды и при какой инверсии генерация начнется на соседних модах, если потери в резонаторе составляют 10%?
- 40. Докажите, что в стационарном режиме одномодовой генерации разность населенностей равна пороговому значению

Лазерная генерация. Полупроводниковый лазер.

- 41. Считая одно зеркало в резонаторе Фабри-Перо "глухим" (R_1 = 1), а другое полупрозрачным (R_2 = R), найдите зависимость мощности лазера от R. Существует ли оптимальная величина R ?
- 42. Резонатор инжекционного полупроводникового лазера образован естественными гранями кристалла с коэффициентами отражения R_1 = R_2 =0,37. Определите пороговый

уровень усиления для резонаторов длиной L = 400 мкм и L = 100 мкм, если внутренние потери составляют $\alpha_{\text{внут}} = 5$ см⁻¹. Что произойдет, если на грани резонатора нанести отражающие покрытия с $R_1 = 0.98$ и $R_2 = 1$?

- 43. Мощность непрерывной генерации полоскового полупроводникового лазера равна 10 мВт, длина волны излучения $\lambda = 0.8$ мкм, ширина спектральной линии $\Delta v = 100$ МГц, размеры ближнего поля 1мкм \times 10 мкм. До какой температуры надо нагреть абсолютно черное тело, чтобы его спектральная яркость в заданном диапазоне достигла яркости на зеркале лазера?
- 44. Нарисуйте и объясните график зависимости мощности лазера от величины отражения выходного зеркала резонатора
- 45. Частота моды пассивного плоскопараллельного Фабри-Перо резонатора (L = 15 см) сдвинута на $0.5 \cdot \Delta v_{Doppl}$ от центра гауссовской линии усиления газового лазера с λ =633 нм. Оценить затягивание моды, если ширина резонанса резонатора Δv_p = 20 МГц, а Δv_{Doppl} = 1 ГГц.