Wheastone Bridge Optimaization Using Factorial Experiments Gavin Gray and Christos Anastasiades

Figure 1: Wheatstone Bridge Circuit Diagram.

2.Iterative Design

varying each control factor by, initially, 10%. The result The iterations were performed by running experiments of these experiments was the ΔY value indicated on the right. Using this result it was then possible to regress the input factors into a model using RS/1 and use this model to find optimum values to minimise ΔY .

On each iteration the optimisation would find factors imited at the edges of the range chosen in the experiments. The range chosen for the next experiment chosen based on intuition - a percentage of the value was then based on this observation. These ranges were the factor was found to be limited at.

The graph on the right shows the AY acheived on each teration. This had to be plotted on a logarithmic scale for the higher iterations to be visible.

Aim: to detect 2Ω resistors as accurately as possible using a Wheatstone Bridge circuit

As an arbitrary number of experiments could be run a cubic model was built using a full factorial

experiment to increase accuracy.

rule of thumb; below which model accuracy was

1. Control factor ranges

Methods

Perform experiment 5. Optimise variables

Check model fit

Test specifications

-10-50% variation on factors was a safe

improved by applying a y-transform, variance

weights or bisquare weights.

validate the optimised

A final experiment is

6. Confirmation run

always required to

R² is composed of two square sums of observed

 R^2 (fit of the model to data) value. This can be

Fit of the model can be estimated by the reported

Problem: When galvanometer current is between ± 0.2 mA, the indicated value is zero. The resistance change that causes currents n this range to flow therefore cannot be detected

of the circuit easily a Monte Carlo possible to estimate the effect of resistor tolerances on the model.

Calculations

each circuit to ensure it would balance at 2Ω. This was acheived in the Python code using the following equations, by It was necessary to calculate $R_{\scriptscriptstyle
m C}$ for asserting R_y at 2Ω .

$$R_C = \frac{R_B \times R_D}{R_y} \quad R_C = \frac{R_B \times R_D}{2}$$

$$R_y = 2\Omega$$

Using the distrib command it is

Statistical Analysis

in the Python code. Thevenin's theorem was applied at node V_{x} whole was added as a response to solve for voltages V_v and V_z. resistor and the circuit Power dissipation of

 SS_{obs}

 SS_{reg}

Observed SSobs of real responses

Regressed SS_{reg} of model and predicted responses:

additional response, estimating standard Yield was also added as deviations able to detect 2Ω. оţ number

3.Results

	V_E :	R _A :	$R_{\rm\scriptscriptstyle B^{:}}$	R_{c}	$R_{\rm D}$	R_{F}	
Power: Optimisation 2	$V_E = 1.500 \text{ V}$	R _A =1.0006 Ω	$R_{\rm B} = 3.6994 \Omega$	$R_{c}=7.2199 \Omega$	$R_D = 3.9033 \Omega$	$R_F=1.0001~\Omega$	
ΔΥ: Optimisation 1	$V_E = 33.810 \text{ V}$	$R_A = 1.0000 \Omega$	$R_B = 1.3413 \Omega$	$R_{c} = 1.2310 \Omega$	$R_D = 1.8356 \Omega$	$R_F = 1.0002 \Omega$	

Ë Ö	$V_E = 1.500$	R _A =3.00	$R_B = 12.70$	R _c =40.2	R _D =12.0	$R_F = 1.00$:
Power: Optimisation 2	$V_E = 1.500 \text{ V}$	$R_A = 1.0006 \Omega$	$R_B = 3.6994 \Omega$	$R_{\rm C} = 7.2199 \Omega$	$R_D = 3.9033 \Omega$	R_F =1.0001 Ω	
ΔΥ: Optimisation 1	$I_{E}=33.810 \text{ V}$	Ω 0000 Ω	$_{\rm B}$ =1.3413 Ω	$_{\rm C} = 1.2310 \Omega$	$\Omega = 1.8356 \Omega$	$l_F = 1.0002 \Omega$	

Power:	Final Chosen	Component	Compone
Optimisation	Components	Tolerances	Power
2		(%)	rating (m\
$V_E = 1.500 \text{ V}$	$V_E = 1.500 \text{ V}$	N/A(-20)	
$R_A = 1.0006 \Omega$	R _A =3.00 Ω	1=	00
$R_B = 3.6994 \Omega$	R _B =12.70 Ω	±1	00
$R_{\rm C} = 7.2199 \Omega$	$R_{\rm c}$ =40.20+36.0=76.2 Ω	1=	00
$R_D = 3.9033 \Omega$	$R_D = 12.00\Omega$	T=	00
$R_F = 1.0001 \Omega$	$R_F=1.00 \Omega$	1	00

section 2. The high voltage and low resistance mad To obtain the greatest accuracy possible any other design objectives. These ar terations were simply optimising AY with impractical design.

A common battery voltage of 1.5 V was chosen as a easonable V_E. The power dissipated in each resistor was constrained below 0.1W in subsequent iterations.

Components	Tolerances (%)	Power rating (mW)	Power Dissipated rating (mW)	Yield (σ)	
7 O C	N/A(-20)				
0 O	+1	00	N/A		
70 Ω	+1	00	115	(
20+36.0=76.2Ω	+1	00	19.2	6.53	
Ω00	+1	00	3.1		
0 O	+1	00	12.4		
e the first set of			Total power=167	167	
hout considering		g design had a	The resulting design had a ΔY of 7 m Ω . Unfortunately,	Infortunately,	
re illustrated in this design required 0.1% resistors to be viable. Only	this design re	equired 0.1%	resistors to be	viable. Only	

was possible through the same

t set of			Total power=167	191
sidering	The resulting	design had a	sidering The resulting design had a ΔΥ of 7 mΩ. Unfortunately,	nfortunately,
ated in	this design re	quired 0.1%	ated in this design required 0.1% resistors to be viable. Only	viable. Only
de it an	1% resistors	were availab	de it an 1% resistors were available from online suppliers in	suppliers in
	the required sizes.	izes.		

was also run.

Setting a yield of 60 as a design constraint allowed the design to become viable and the final Monte Carlo test produced a worst case 6σ ΔΥ of 70mΩ.

it involves many experiments.

Yield

Max.(6σ)

The final circuit is guaranteed to be able to detect a 2Ω resistor to within 70mΩ, while consuming 167mW when balanced and for a resistor cost of E0.047