Listu 1.

1.1 Sean X un conjunto, A un subconjunto de X y $\{E_{\alpha}\}_{{\alpha}\in I}$ una familia de subconjuntos de X. **Demuestre** las identidades siguientes:

i. (Leyes de De Morgan.)

$$\left[\bigcup_{\alpha\in I} E_{\alpha}\right]^{c} = \bigcap_{\alpha\in I} E_{\alpha}^{c}, \qquad \left[\bigcap_{\alpha\in I} E_{\alpha}\right]^{c} = \bigcup_{\alpha\in I} E_{\alpha}^{c};$$
1) $A \setminus \left[\bigcup_{\alpha\in I} E_{\alpha}\right] = \bigcap_{\alpha\in I} (A \setminus E_{\alpha}), \qquad 2)_{A \setminus \left[\bigcap_{\alpha\in I} E_{\alpha}\right]} = \bigcup_{\alpha\in I} (A \setminus E_{\alpha}).$

ii. (Leyes Distributivas.)

3)
$$A \cap \left[\bigcup_{\alpha \in I} E_{\alpha}\right] = \bigcup_{\alpha \in I} (A \cap E_{\alpha}),$$
 4) $A \cup \left[\bigcap_{\alpha \in I} E_{\alpha}\right] = \bigcap_{\alpha \in I} (A \cup E_{\alpha});$
5) $\left[\bigcup_{\alpha \in I} E_{\alpha}\right] \setminus A = \bigcup_{\alpha \in I} (E_{\alpha} \setminus A),$ 6) $\left[\bigcap_{\alpha \in I} E_{\alpha}\right] \setminus A = \bigcap_{\alpha \in I} (E_{\alpha} \setminus A).$

Dem:

Se probarán las identidades no probadas:

Lo que prueba 1)

1)
$$\chi \in A \setminus [\bigcap_{\alpha \in I} E_{\alpha}] \iff \chi \in A \times \chi \times \bigcap_{\alpha \in I} E_{\alpha} \iff \chi \in A \times \chi \times \bigcap_{\alpha \in I} E_{\alpha} \iff \chi \in A \times \chi \times \bigcap_{\alpha \in I} E_{\alpha} \iff \chi \in A \times \chi \times \bigcap_{\alpha \in I} E_{\alpha} \iff \chi \in A \times \chi \times \bigcap_{\alpha \in I} E_{\alpha} \iff \chi \in A \times \bigcap_{\alpha \in I}$$

3)
$$\chi \in A \cap \left[\bigcup_{\alpha \in \mathcal{I}} \mathcal{E}_{\alpha} \right] \iff \chi \in A \ \gamma \times \mathcal{E}_{\alpha} = \mathcal{I} \times \mathcal{E}_{\alpha} \Rightarrow \chi \in A \ \gamma \times \mathcal{E}_{\alpha} \Rightarrow \chi \in A \ \chi \to A \ \chi \to$$

4)
$$\chi_{\epsilon} A U \left[\bigcap_{q \in I} E_{\alpha} \right] \iff \chi_{\epsilon} A \circ \chi_{\epsilon} \bigcap_{q \in I} E_{\alpha} \iff \chi_{\epsilon} A \circ \chi_{\epsilon} E_{\alpha}, \forall \alpha \in I \iff \chi_{\epsilon} \bigcap_{q \in I} A U E_{\alpha}$$

5)
$$x \in [U \in V] \land x \in E_{\alpha} \ y \ x \notin A$$
 pera algún $\alpha \in I \Leftrightarrow x \in E_{\alpha} \land A$ para algún $\alpha \in I \Leftrightarrow x \in U \notin A \land A$

9.00

1.2. Usando la definición de m para conjuntos elementales, **calcule** la medida en \mathbb{R}^3 del conjunto

$$A = [1,3] \times [1,4] \times [0,3] \cup [2,4] \times [2,6] \times [1,4].$$

Usando algunas propiedades de la función $m \colon \mathcal{E} \to \mathbb{R}$, **pruebe** la identidad

$$m(A) + m(B) = m(A \cup B) + m(A \cap B), \quad \forall A, B \in \mathcal{E}.$$

Calcule nuevamente la medida de *A* usando esta identidad.

Sol.

Veamos que podomos escribir 4 A como:

1.3. Sea $A = \mathbb{Q} \cap [0,1]$. **Muestre** que si $\{I_{\nu}\}_{\nu=1}^{l}$ es una familia finita de intervalos abiertos tales que $A \subset \bigcup_{\nu=1}^{l} I_{\nu}$, entonces

$$\sum_{\nu=1}^{l} L(I_{\nu}) \ge 1,$$

donde L denota longitud.

Dem:

Seu B= V.Ir. Tenemos 2 cusos:

a) [0,1] = B, ental cuso, por ser m monotona, finitumente aditiva:

$$m(B) \ge m([0,1]) = 1$$

=> $\sum_{v=1}^{2} L(I_v) \ge 1$

b) [0,1] \$ V= . In Sea A:

A={x ∈ [0,1] | x + , , + , }

Claramente $A \neq \beta$ y $(0,1) \mid A \leq \frac{U}{L} \mid L$. Probaremos que $A \leq \{a,b_1,...,a_k,b_k\}$ donde $a_1 < b_2$ son los extremos del intervalo L_{n_1} $u \in [1,1]$

Sea $x \in A$. Claramente $x \notin Q$, pues $[0,1] \cap Q = \bigcup_{v=1}^{C} I_{v}$, as: $x \in \mathbb{L}$. Attimamos que $a_{k+1} = b_{k}$, $\forall k \in [1, 1-1]$ (suponiendo sin pérdidu de generalidad que $a \in 0 \le b_1 \le a_2 \le b_3 \le ... \le a_n \le 1 \le b_n$). En efecto, si $\exists K_0 \in [1,1]$ in $b_{K_0} \le a_{K_0}$, por la densidad de $\exists a_1 \in Q$ in $b_{K_0} < r_0 \le a_{K_0}$, pero $r \in [0,1]$, luego $r \in \bigcup_{v=1}^{C} I_{v} \not x_{C}$. Por tanto $b_{K_0} = a_{K_0}$. As:

$$a_{1} \leq 0 \leq a_{2} < a_{3} < ... < a_{k} \leq 1 \leq b_{k} = a_{k+1}$$

Si $x \notin \{a_1, ..., a_{k+1}\} \Rightarrow como \quad x \in [0,1], \exists K \in [1,L] \quad m \quad a_K \leqslant x \leqslant a_{k+1}, pero \quad x \notin \overline{L}_{V_i}, \forall V \in [1,L]_i$ lueup $x = a_K \circ x = a_{K+1} \not \approx_C$. Por tunto $x \in \{a_1, ..., a_{K+1}\} = \{a_1, b_1, ..., a_k, b_k\}$. As: A estimito, y $L([0,1] \setminus A) = L[0,1] - L(A), pues \quad A \subseteq [0,1]$

$$=> 1(0,1)/A = (-0 = 1$$

(omo [0,1]/A < (I,):

$$=> \int_{\mathbb{T}^{2}} \left((0,1) \setminus A \right) \leq \int_{\mathbb{T}^{2}} \left(\int_{\mathbb{T}^{2}} \mathbb{T}_{v} \right)$$

$$=> \int_{\mathbb{T}^{2}} \mathbb{T}_{v} \left(\mathbb{T}^{v} \right) \geq 1$$

1.4. Sea $A \in \mathcal{E}$. **Demuestre** que para todo $\forall \varepsilon > 0$, existen conjuntos $F, G \in \mathcal{E}$ tales que F es cerrado, G es abierto, $F \subset A \subset G$ y

 $m(G \backslash A) < \varepsilon$ y $m(A \backslash F) < \varepsilon$.

Dom:

Se probó en la nota de medibilidad.

- **1.5.** Sean $A ext{ y } B$ dos subconjuntos arbitrarios de \mathbb{R}^n . **Pruebe** que si $m^*(A) = 0$, entonces $m^*(A \cup B) = m^*(B)$.
- 1.6. Muestre que todo conjunto elemental y todo conjunto con medida exterior cero son

Dem:

Como m* es monótona: $B = AUB = m^*(B) \le m^*(AUB)$. Seu E > 0, enfonces $\exists \{B_1\}_{n=1}^{\infty}$ y $\{A_n\}_{n=1}^{\infty}$ Sucesiones de Conjuntos en E m:

 $y = \frac{\varepsilon}{n} m(\beta_1) < m^*(\beta) + \frac{\varepsilon}{2} \quad y = \frac{\varepsilon}{n} m(A_n) < m^*(A) + \frac{\varepsilon}{2} = \frac{\varepsilon}{2} \quad S_i \quad m^*(\beta) = \infty \Rightarrow m^*(A \cup B) = \infty = m^*(B)$ B). S: $m^*(\beta) < \infty$ enton(es:

$$\sum_{n=1}^{\infty} m(\beta_n) + \sum_{n=1}^{\infty} m(\Lambda_n) < m^*(\beta) + \sum_{n=1}^{\infty} + \sum_{n=1}^{\infty} m(A_n) + m(\beta_n) < m^*(\beta) + \mathcal{E}$$

$$\Rightarrow \sum_{n=1}^{\infty} m(A_n) + m(\beta_n) < m^*(\beta) + \mathcal{E}$$

Como mes finitumente aditiva: m (An UBn) < m(An) + m (Bn). Luego:

Por ser & unillo, AnuBn CE, Ynell. Además:

Luego m* (An UBn) € \(\frac{\frac{7}{2}}{n=1}\), m (An UBn). As::

4.2.a

- **1.6. Muestre** que todo conjunto elemental y todo conjunto con medida exterior cero son conjuntos medibles.
- 1.7. Proporcione un eiemplo de una sucesión decreciente $\{A_n\}_{n=1}^{\infty}$ de conjuntos medibles tal

Dem:

Sea $A \in \mathcal{E}_{y} \in \mathcal{P}(\mathbb{R}^{n}) \cap \mathbb{R}^{*}(B) = 0$. Probarenos que $\mathcal{F}_{An}^{n} = \mathbb{R}^{*}$, $\mathcal{F}_{An}^{n} = \mathbb{R}^{*}$. Sucessiones de Conjuntos en $\mathcal{M}_{\mathcal{F}_{An}}$.

Como A, B ∈ Ms pues la sucesión {A|n=1 en & converge a A, pues.

$$\lim_{N\to\infty} d(A.A) = \lim_{N\to\infty} m^{4}(ADA) = m^{4}(b) = 0$$

y, la sucesión (b) = 1 converge a B en & pues:

$$\lim_{N\to\infty} d(\beta, \psi) = \lim_{N\to\infty} m^* (\beta) = m^* (\beta) = 0$$

Tomando An = A , Bn = B, & ne IN se tiene que:

$$A = \bigcup_{n=1}^{\infty} A_n$$
 y $B = \bigcup_{n=1}^{\infty} B_n$

Con An, Bn & Ms & nEIN Luego A, B & M.

9. R. L.

tonjuntos incursics.

- **1.7. Proporcione** un ejemplo de una sucesión decreciente $\{A_{\nu}\}_{\nu=1}^{\infty}$ de conjuntos medibles tal que la sucesión $\{m(A_{\nu})\}_{\nu=1}^{\infty}$ no converja a $m(\bigcap_{\nu=1}^{\infty} A_{\nu})$.
- 1.8. Sea u una función de conjunto definida sobre una σ -álgebra. A de subconjuntos de un

Dem:

 \forall neIN, tome $A_n = \left[-\frac{1}{n}, \frac{1}{n}\right] \times \left[0, \infty\right[$ Claramente $A_{n+1} \subseteq A_n$, \forall neIN y, cada uno es medible, pues:

$$A_{n} = \bigcup_{m=1}^{\infty} \left[-\frac{1}{n}, \frac{1}{n} \right] \times \left[m - 1, m \right]$$

Donde $[-\frac{1}{n}, \frac{1}{n}] \times [m-1, m] \in \mathbb{Z} \setminus \mathbb{W} = \mathbb{W}$ luego A_n es medible, $\forall n \in \mathbb{W}$. Veumos que: $A = \bigcap_{n=1}^{n} A_n$ $= \{0\} \times \{0, +\infty \}$

y además
$$m^*(A)=0$$
. En efecto: seu $\{ >0 \}$ $\{ B_n \}_{n=1}^{\infty}$ Suces; ún en $\{ E \}$ dadu como:
$$B_n = \left[-\frac{E}{2^{n+1}}, \frac{E}{2^{n+1}} \right] \times \left[n-1, n \right[$$

Ynell tul que

$$A \subseteq \bigcup_{n=1}^{\infty} \beta_{n}$$

$$y \quad m^{*}(A) \leq \sum_{n=1}^{\infty} m^{*}(\beta_{n})$$

$$= \sum_{n=1}^{\infty} 2 \cdot \frac{c}{\lambda^{n+1}} \cdot 1$$

$$= \sum_{n=1}^{\infty} \frac{1}{\lambda^{n}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{\lambda^{n}}$$

Por tunto,
$$\frac{\lambda : n}{n \rightarrow \infty} m^*(A_n) = +\infty \neq m^*(A)$$

1.8. Sea μ una función de conjunto definida sobre una σ -álgebra \mathcal{A} de subconjuntos de un conjunto X que sea no negativa y aditiva. Si μ es tal que para toda sucesión decreciente $\{A_{\nu}\}_{\nu=1}^{\infty}$ en \mathcal{A} se cumple que

$$\bigcap_{\nu=1}^{\infty} A_{\nu} = \emptyset \qquad \text{implica} \qquad \lim_{\nu \to \infty} \mu(A_{\nu}) = 0,$$

demuestre que μ debe ser σ –aditiva.

Dem:

Sea {An}_n=1 unu fumilie de conjuntos en 1 ajenos u pures. Probaremos que:

$$\mathcal{M}\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\mathcal{M}\left(A_{n}\right)$$

Como des un o-álgebra, en particular esan o-anillo y, como mesan no negativa, a lo músto-ma el valor de +00. Sea

$$A = \int_{n=1}^{\infty} A_n$$

Si 3 m = IN m m (Am) = + 00, como m es finitum ente aditiva

$$M(A \mid A_m) + M(A_m) = M(A)$$

Porser p no negativa:

$$\Rightarrow_{M}(A_{m}) \leq_{M}(A) \Rightarrow_{M}(A) = +\infty$$

Luego:

$$_{M}(A) = \frac{2}{2} _{n=1} _{M}(\Lambda_{n})$$

S: $\mu(A_n|<\infty, \forall n\in\mathbb{N})$, tome $B_n=A\setminus(\bigcup_{n=1}^n A_n)$, $\forall n\in\mathbb{N}$. Claramente $B_{n+1}\subseteq B_n$, $\forall n\in\mathbb{N}$ y $B_n\in A$ (pues A es σ -anillo). Luego:

Portunto n-200 M(Bn) = O. Como mesaditiva:

$$\mu(\beta_{n}) = \mu(A \setminus \bigcup_{m=1}^{1} A_{m})$$

$$= \mu(A) - \mu(\bigcup_{m=1}^{1} A_{m}) \quad \text{purs } \mu(A_{m}) = \sum_{m=1}^{2} \mu(A_{m}) < \infty \text{ (Jumo finity)}.$$

$$Pero \mu(\bigcup_{m=1}^{1} A_{m}) = \sum_{m=1}^{2} \mu(A_{m}) \quad \forall n \in \mathbb{N} \text{ [urjo:}$$

$$\lim_{n\to\infty} \mu(\beta_{n}) = 0 \Rightarrow \lim_{n\to\infty} (\mu(A) - \sum_{m=1}^{2} \mu(A_{m})) = 0$$

$$\Rightarrow \mu(A) = \lim_{n\to\infty} \mu(A_{m})$$

$$\lim_{n\to\infty} \mu(A_{m}) = \sum_{n=1}^{2} \mu(A_{n})$$

$$\lim_{n\to\infty} \mu(A_{m}) = \sum_{n=1}^{2} \mu(A_{n})$$

9.2.U

1.9. Pruebe que la intersección de cualquier familia de σ -álgebras de un conjunto X es una σ -álgebra de X.

1 10 Muestre que el conjunto ternario de Cantor C nuede ser escrito en la forma

Den:

Seu { A a } a = una tomilia de r-olgebras de X. Probaremos que:

$$A = \bigcap_{\alpha \in \mathcal{I}} L_{\alpha}$$

es un subálgebrade X. En efecto, como XEAa, Y cre I, enfonces X E L (1)

Seu AEL, entonces AELa, Yae I=> A'ELa, Yae I=> A'EL. (2).

Seu $\{A_n\}_{n=1}^{\infty}$ en $k \Rightarrow \{A_n\}_{n=1}^{\infty}$ estú en A_{σ} , $\forall \sigma \in \underline{I} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in A_{\sigma}$, $\forall \sigma \in \underline{I} \Rightarrow \sum_{n=1}^{\infty} A_n \in A_{\sigma}$. (3)

Por (1)-(3) Les un J-álgebra.

G.e. d.

1.10. Muestre que el conjunto ternario de Cantor $\mathcal C$ puede ser escrito en la forma

$$C = \left\{ \sum_{n=1}^{\infty} \frac{x_n}{3^n} \middle| x_n \in \{0,2\}, \forall n \in \mathbb{N} \right\}.$$

Deduzca de lo anterior que \mathcal{C} es un conjunto infinito no numerable.

1.11. Fije $0 < \alpha \le 1$. Sea \mathcal{C}^{α} el subconjunto de [0,1] construido del mismo modo que el conjunto de Cantor excepto que los intervalos removidos en la n –ésima etapa de la construcción tienen longitud $\alpha/3^n$, $\forall n \in \mathbb{N}$. Muestre que \mathcal{C}^{α} es un conjunto no vacío, compacto, $[0,1] \setminus \mathcal{C}^{\alpha}$ es denso en [0,1] y $m(\mathcal{C}^{\alpha}) = 1 - \alpha$. El conjunto \mathcal{C}^{α} se llama Conjunto de Cantor Generalizado o Conjunto de Cantor de medida $1 - \alpha$.

Dem:

Primero, hugános la construcción de este conjunto. Tome $E_0 = \{0,1\}$. Para construir el E_1 , tomemos al intervalo $\{0,1\}$ (identificado como $J_{0,1}$), restando el intervalo $\overline{I}_{1,1}$ de longitud $\frac{\alpha}{3}$ centrado en el punto modio de $J_{0,1}$ (siendo $\overline{I}_{1,1}$ abierto). Obtenemos los intervalos cerrados disjuntos $\overline{J}_{1,1}$ y $\overline{J}_{1,2}$ ambos de longitud $\frac{1}{2} \cdot \frac{1}{3}(3-\alpha)$. Tomemos $E_1 = \overline{J}_{1,1} \cup \overline{J}_{1,2}$, claramente $E_0 \subseteq E_1$ y E_1 , E_2 son medibles.

Suponga Construidos $E_{2,...}$, $E_{n,i}$ donde E_{n} es la unión de los λ^{n} intervalos $\overline{J}_{n,1},\overline{J}_{n,2,...}$ $\overline{J}_{n,2}$ disjuntos, cada uno de longitud $\frac{1}{2}n(1-\alpha;\frac{1}{2};\frac{2^{1-1}}{3^{1-1}})=\frac{1}{2}n(1-\alpha;(1-\frac{\alpha^{1}}{3^{1-1}}))$ ful que f_{n} es medible y $m(E_{n})=1-\alpha\cdot(1-\frac{\alpha^{1}}{3^{1-1}})$

 \forall $K \in [1, 2^n]$, constraya el intervalo abierto $I_{n+1, K}$ y, restemáslo del intervalo $J_{n, K}$ centrado en el medio de $J_{n, K}$ con $m(I_{n+1, K}) = \frac{\alpha}{3^{n+1}}$. Obtenemos as: los intervalos J_{n+1} . donde $i \in [1, 2^{n+1}]$ cuda uno cerrado de longitud $\frac{1}{2^{n+1}}(1-\alpha) = \frac{1}{2^{n+1}}(1-\alpha) = \frac{1}{2^{n+1}}(1-\alpha)$.)) medible. Sea $E_{n+1} = J_{n+1, 1} \cup ... \cup J_{n+1, 2^{n+1}}$.

Se tiene que $E_{n+1} \subseteq E_{n}$, E_{n+1} , es modible y $m(E_{n+1}) = 1-\alpha(1-\frac{2^{n-1}}{2^{n+1}})$. Además, el extremo signiferdo de J_{n+1} , es el mismo que el de J_{n} , y el derecho de J_{n+1} , es el mismo que el de J_{n} , y el derecho de J_{n+1} , es el correspondiente de J_{n} ,

Ast, se completulu construcción de los En. Se construye el conjunto de Cantor Generalizado como:

 $C^{\alpha} = \bigcap_{n=1}^{\infty} E_n$

Como $O \in J_{n,1}$, $\forall n \in \mathbb{N}$ (pueses el extremo izquierdo de cadu intervalo) entonces $O \in E_n$, $\forall n \in \mathbb{N}$, as: $C^{\alpha} \neq \emptyset$ Además, como cada E_n es cerrado y acotado (por su construcción), la intersección de todos es compach => C^{α} compacto.

Además:

$$m(C^{\alpha}) \leq m(F_n) = 1 - \alpha(1 - \frac{2^n}{3^n}), \forall n \in \mathbb{N}.$$

$$\Rightarrow m(C^{\alpha}) = 1 - \alpha.$$

Por el teorema de continui dad $(\{E_n\}_{n=1}^{\infty})$ es una sucesión decreciente de conjuntos $m(E_0) = 1 < \infty$) Luego:

 $m(C^{\alpha}) = m(\bigcap_{n=1}^{n} E_{n})$ $= \lim_{n\to\infty} m(E_{n})$ $= \lim_{n\to\infty} (1-\alpha(1-\frac{2^{n}}{3^{n}}))$ $= (-\alpha)$

Vermos que [0,1] $[C^{\alpha}]$ es denso an [0,1]. Sea $x \in [0,1]$ $y \in [0,1]$ $[C^{\alpha}]$ entonces]x-r,x+r [n] [n]

g. Q. d.

1.12. Considere el conjunto no medible P contenido en [0,1]. **Demuestre** que si E es un conjunto medible contenido en P, entonces m(E) = 0.

Ca Portunto [0.1] / Ca es denso en [0.1]

Sugerencia. Defina $E_i = E + q_i$, $\forall i \in \mathbb{N}$. ¿Qué propiedades tiene la sucesión $\{E_i\}_{i=1}^{\infty}$?

1.13. Pruebe que si A es un subconjunto de \mathbb{R} tal que $m^*(A) > 0$, entonces existe un conjunto no medible E contenido en A. Sugerencia. Suponga primero que $A \subset [0,1]$. Defina $E_i = A \cap P_i, \forall i \in \mathbb{N}$. Aplique el ejercicio anterior. ¿Cuál es la unión de los E_i ? **1.14.i. Proporcione** un ejemplo de una sucesión de conjuntos disjuntos $\{E_{\nu}\}_{\nu=1}^{\infty}$ tal que

$$m^* \left[\bigcup_{\nu=1}^{\infty} E_{\nu} \right] < \sum_{\nu=1}^{\infty} m^* (E_{\nu}).$$

ii. Dé un ejemplo de una sucesión decreciente de conjuntos $\{E_{\nu}\}_{\nu=1}^{\infty}$ tales que $m^*(E_{\nu}) < \infty$, $\forall \nu \in \mathbb{N}$, pero que

$$m^*\left[\bigcap_{\nu=1}^{\infty}E_{\nu}\right] < \lim_{\nu\to\infty}m^*(E_{\nu}).$$

1.15. (Construcción de la medida de Lebesgue usando la condición de Carathéodory.) Se dirá que un subconjunto E de \mathbb{R}^n es C —medible si satisface la condición de Carathéodory siguiente:

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c), \quad \forall A \in \mathcal{P}(\mathbb{R}^n).$$

Será denotada por $C - \mathcal{M}$ la colección de todos los subconjuntos C -medibles de \mathbb{R}^n .

- **i. Pruebe** primero que la familia de conjuntos C M es una álgebra de subconjuntos de \mathbb{R}^n y después, que C M es una σ -álgebra.
- ii. Muestre que todo rectángulo acotado en \mathbb{R}^n es un conjunto C —medible. Deduzca que $\mathcal{B}(\mathbb{R}^n) \subset C \mathcal{M}$.

Sugerencia. Adapte a \mathbb{R}^n la demostración de que $]a,\infty[$ es C —medible en \mathbb{R} de uso común en la literatura.

- iii. Sea $E \subset \mathbb{R}^n$. Demuestre que las siguientes afirmaciones son equivalentes a pares:
- a) E es C -medible.
- **b**) $\forall \varepsilon > 0$, existe un conjunto abierto O tal que $E \subset O$ y $m^*(O \setminus E) < \varepsilon$.
- c) $\forall \varepsilon > 0$, existe un conjunto cerrado F tal que $F \subset E$ y $m^*(E \setminus F) < \varepsilon$.
- **d**) Existe un conjunto $G \in \mathcal{G}_{\delta}$ tal que $E \subset G$ y $m^*(G \setminus E) = 0$.
- e) Existe un conjunto $F \in \mathcal{F}_{\delta}$ tal que $F \subset E$ y $m^*(E \setminus F) = 0$.

Si adicionalmente $m^*(E) < \infty$, **pruebe** que las afirmaciones anteriores son equivalentes a:

f) $\forall \varepsilon > 0$, existe un conjunto abierto U que es la unión de una familia finita de rectángulos acotados abiertos tal que $d(U, E) = m^*(U\Delta E) < \varepsilon$.

Sugerencias. a) Suponiendo $m^*(E) < \infty$, muestre que $(a) \Rightarrow (b) \Leftrightarrow (f)$. Para probar $(a) \Rightarrow (b)$ aplique la Proposición 9. Para probar $(b) \Rightarrow (f)$ exprese O como unión numerable de rectángulos acotados abiertos, aplique el Teorema de continuidad y finalmente la Proposición 14.

- β) Escriba $\mathbb{R}^n = \bigcup_{\nu=1}^\infty P_\nu$, donde los P_ν son rectángulos acotados, luego $E = \bigcup_{\nu=1}^\infty (E \cap P_\nu)$. Aplique ahora (α) para probar que (α) ⇒ (b) ⇒ (d) ⇒ (a). Para mostrar (d) ⇒ (a) use el hecho de que $\mathcal{G}_\delta \subset C \mathcal{M}$.
 - γ) Aplique (β) para probar que $(a) \Rightarrow (c) \Rightarrow (e) \Rightarrow (a)$.

Note que la parte (iv) afirma que si $E \subset \mathbb{R}^n$ es tal que $m^*(E) < \infty$, entonces E es un conjunto C —medible si y sólo si $E \in \mathcal{M}_F$. Siendo todo conjunto C —medible unión a lo sumo numerable de conjuntos C —medibles con medida exterior finita, se concluye que todo conjunto C —medible es medible. Recíprocamente, todo conjunto medible es unión a lo sumo numerable de conjuntos finitamente medibles y como C — M es una σ —álgebra (por (ii)), entonces todo conjunto medible es C —medible. Por lo tanto M = C — M.

1.16. Si $\{E_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de conjuntos C —medibles disjuntos y $A \subset \mathbb{R}^n$ es arbitrario, entonces

$$m^*\left[A\cap\bigcup_{\nu=1}^\infty E_{\nu}\right]=\sum_{\nu=1}^\infty m^*(A\cap E_{\nu}).$$

Sugerencia. Pruebe primero el resultado por inducción para uniones finitas aplicando la condición de Carathéodory.