Topic III

COMPUTER VISION AND IMAGE PROCESSING

Topic Description

This topic is designed to give students all the fundamentals in 2-D digital image processing with emphasis in image processing techniques, image filtering design and applications.

The topic emphasis in:

- Processing techniques,
- II. Image filtering,
- III. Image segmentation,
- IV. Image enhancement,
- v. Morphological processing of image and
- VI. Recognition of objects in an image.

Topic Objectives

On the successful completion of the topic the students will be able to:

- Have a clear understanding of the principals the Digital Image Processing
- Understand the mathematical foundations for digital manipulation of images
- Be able to understand, and make use of, the Matlab (Octave) image processing library and MATLAB/Octave Toolbox
- Learn and understand the Image Enhancement in the Spatial and
- Frequency Domain.
- Understand Image Restoration, Compression, Segmentation, Recognition, Representation and Description.

		П		
Top		nt	Δ n	TC
IUN	CU			

Lectures	Sub-Lectures Sub-Lectures		
Lecture 1:	I. Elements of visual perception		
Introduction	II. Image sensing and acquisition		
	III. Image sampling and quantization		
Lecture 2:	I. Enhancement in spatial domain		
Image Enhancement	Grey level transformation		
	Histogram processing		
	Smoothing and sharpening Spatial filters		
	II. Enhancement in frequency domain		
	Fourier transforms		
	Smoothing and sharpening frequency domain filtering		
Lecture 3:	I. Dilation and Erosion		
Morphological Image Processing	II. Morphological algorithms		
Lecture 4:	I. Detection of discontinuities		
Image Segmentation	II. Boundary detection		
	III. Thresholding		

Lecture 1:

Introduction to Image and Vision

Every picture tells a story

- Image carries vast amount of information.
- We, humans, are selective of what we consume through visual sense.
- □ The goal of computer vision is to write computer programs that can interpret images
- Can computers match human perception?
 - Yes and No (but mostly no!)

Humans are much better at "hard" things Computers can be better at "easy" things

What is Digital Image Processing?

- □ Digital image processing helps us enhance images to make them visually pleasing, or emphasize regions or features of an image to better represent the content.
 - Region-Of-Interest is vital in image processing
- □ For example, we may wish to enhance the brightness and contrast to make a better print of a photograph, similar to popular photo-processing software.
- □ In a magnetic resonance image (MRI) of the brain, we may want to highlight a certain region (only interesting part) of image intensities to see certain parts of the brain.

Computer Vision!

Reconstruction

Receive from the real world and reconstruct it internally---Digitally How do humans perform this task?

Recover 3D information from data

- Angle and lighting

Recognition

Feature extraction

Segmentation of image parts

Detect and identify objects

Understanding

Giving context to image parts

Knowing what is happening in the scene?

What is an image?

- □ The pattern is defined is a coordinate system whose origin is conventionally defined as the upper-left corner of the image .
- We can describe the pattern by a function f(x,y).

Closer Look at elements of image

Image Processing and Related Fields

Image Restoration(e.g., correcting out-focus images)

Why is Computer Vision Difficult?

- ☐ It is a manv-to-one mapping
 - A variety of surfaces with different <u>material</u> and <u>geometrical</u>
 properties, possibly under different <u>lighting</u> conditions, could
 lead to different images
 - Inverse mapping has non unique solution (a lot of information is lost in the transformation from the 3D world to the 2D image)
- ☐ It is <u>computationally intensive</u>
 - Needs relatively higher processing machine
- □ We <u>might not understand</u> the recognition problem as the need depends on the application and particular circumstance during image acquisition

Computer Vision

Issue of Contrast

- □ Objects appear to the eye to become darker as the background gets lighter.
- □ The example below is a piece of paper that seems white when lying on a desk, but can appear totally black in a lighter background

Issue of Illumination

- Same objects and arrangement
- Different angle of light

Perception—Illusions

The border of the square is visible despite there is no border line

The horizontal line of the lower line seems longer

There seems to be a circle in the middle

The short lines seems to be slant but actually parallem

What is Computer Vision?

Deals with the development of the theoretical and algorithmic basis by which useful information about the 3D world can be automatically extracted and analyzed from a single or multiple 2D images of the world.

The Three Image Processing Levels

1.Low-level processing

Standard procedures are applied to improve image quality. Procedures are required to have no intelligent capabilities.

The Three Image Processing Levels (2)

2. Intermediate-level processing

- Extract and characterize components in the image
- Some intelligent capabilities are required.

The Three Image Processing Levels (3)

House

3. High-level processing

- Recognition and interpretation of segments of the image
- Procedures require high intelligent capabilities.

Mathematics in Computer Vision

- ☐ In the early days of computer vision, vision systems employed simple heuristic methods.
- □ Today, the domain is heavily inclined towards theoretically, well-founded methods involving non-trivial mathematics.
 - Calculus
 - Linear Algebra
 - Probabilities and Statistics
 - Signal Processing
 - Projective & Computational Geometry
 - Optimization Theory
 - Control Theory

Computer Vision Applications

- ☐ Industrial inspection/quality control
- ☐ Surveillance and security/ biometrics
- ☐ Face recognition
- ☐ Gesture recognition
- ☐ Space Science applications
- ☐ Medical image analysis
- ☐ Autonomous vehicles (self-driving car like Tesla)
- ☐ Virtual reality and much more

Face Detection Vs Face Blurring

On Facebook

on NEWS

Passport photo

Select photo

The photo you want to upload does not meet our criteria because:

Subject eyes are closed

Please refer to the technical requirements. You have 9 attempts left.

Check the photo requirements.

Read more about <u>common photo problems and</u> how to resolve them.

After your tenth attempt you will need to start again and re-enter the CAPTCHA security check.

Reference number: 20161206-81

Filename: Untitled.jpg

If you wish to <u>contact us</u> about the photo, you must provide us with the reference number given above.

Please print this information for your records.

Passport photo

Select photo

X The photo you want to upload does not meet our criteria because:

Subject eyes are closed

Please refer to the technical requirements. You have 9 attempts left.

Check the photo requirements.

Read more about <u>common photo problems and</u> how to resolve them.

After your tenth attempt you will need to start again and re-enter the CAPTCHA security check.

Reference number: 20161206-81

Filename: Untitled.jpg

If you wish to <u>contact us</u> about the photo, you must provide us with the reference number given above.

Please print this information for your records.

Medical image analysis

3D imaging: MRI, CT

Image guided surgery Grimson et al., MIT

Surveillance and tracking

Surveillance and tracking

Vehicle and pedestrian protection

Lane departure warning, collision warning, traffic sign recognition, pedestrian recognition, blind spot warning

Smart cars

https://www.theguardian.com/technology/2018/mar/31/tesla-car-crash-autopilotmountain-view

Self-driving cars

Self-driving cars

Optical character recognition

Digit recognition, AT&T labs http://www.research.att.com/~yann

License place recognition

Sports video analysis

Tennis review system

Virtual Reality..... Augmented Reality

Image Sensing and Acquisition

□ The types of images in which we are interested are generated by the combination of an "illumination" source and the reflection or absorption of energy from that source by the elements of the "scene" being imaged.

What do computers see?

Number.....

What do these numbers represent?

47	49	51	47	41	41	41	38	42	54	66	66	58	56	53	48	43	43	45	47	50	47	47	47
45	44	39	38	37	48	67	95	138	151	156	157	165	157	125	79	36	38	47	48	48	43	38	36
43	35	31	45	64	109	155	179	178	160	142	132	146	187	195	170	133	86	45	46	51	41	36	32
33	24	24	47	88	149	135	136	160	170	166	135	111	153	169	169	109	113	86	57	49	46	40	36
22	19	22	47	122	131	99	120	204	199	185	150	119	152	159	173	110	80	83	82	63	58	45	42
22	20	24	60	114	108	123	191	215	212	198	169	156	169	168	172	151	115	91	77	82	59	53	53
20	19	29	86	127	87	169	223	219	218	212	182	178	190	194	185	169	108	88	85	74	55	52	51
20	20	26	131	138	129	214	228	224	222	221	206	207	208	203	193	177	136	88	87	72	54	44	42
24	23	28	130	125	152	226	224	222	223	217	218	214	201	185	168	164	114	70	39	45	47	39	34
29	26	25	104	92	123	220	226	230	228	218	213	210	193	152	118	136	97	50	26	39	41	36	33
26	24	25	66	95	140	222	223	228	225	218	208	205	181	140	97	101	121	71	35	78	51	40	37
26	30	24	51	149	179	224	221	218	215	205	204	210	191	140	108	107	127	112	43	46	42	39	40
27	34	30	23	142	198	210	226	233	220	205	204	222	210	175	154	134	125	137	51	54	55	44	34
26	32	29	18	124	197	178	174	140	113	182	183	174	112	98	74	34	69	126	54	53	78	59	41
30	27	26	19	114	197	207	138	73	43	167	191	49	29	139	66	33	76	92	60	85	50	42	40
26	25	23	18	91	198	220	221	184	133	210	214	40	112	210	129	120	105	81	62	60	28	22	30
23	19	16	13	53	201	211	227	220	227	226	216	75	72	196	190	130	58	62	58	32	21	24	26
18	14	12	11	13	93	198	220	226	209	219	218	121	34	148	170	53	37	50	25	17	17	23	24
17	15	14	13	15	25	177	203	189	151	223	219	139	59	33	78	30	39	45	26	22	21	16	38
12	14	17	13	15	11	125	201	149	194	223	203	67	19	15	22	33	43	55	37	29	28	31	68
10	13	14	11	16	15	58	196	170	193	213	175	123	34	19	48	37	93	35	32	30	38	93	118
17	19	19	20	31	35	30	145	191	201	215	182	134	47	66	89	45	196	45	16	52	98	141	149
25	28	34	34	28	32	20	105	216	215	213	187	168	130	73	26	148	195	34	12	21	76	121	123
31	36	30	26	29	42	20	77	220	215	221	213	185	131	37	117	201	85	56	11	16	10	22	38
24	20	21	40	43	42	24	106	190	235	212	188	134	85	138	178	45	89	40	13	19	13	19	21
14	21	41	43	42	32	19	131	207	250	239	197	206	236	220	33	18	94	13	16	18	11	12	17
32	36	46	39	40	27	10	157	250	230	190	156	172	216	250	135	149	50	9	18	16	12	13	18
38	38	38	45	40	29	10	140	240	244	151	50	30	118	229	255	187	11	16	26	20	18	25	29
40	34	33	31	36	27	16	117	237	253	169	60	101	217	245	255	93	3	15	25	21	21	24	27
43	34	34	32	31	21	18	80	232	252	147	85	208	247	252	207	18	13	10	13	19	20	20	21
41	33	33	32	31	18	27	64	220	211	62	71	209	246	250	108	5	19	11	13	16	18	21	20
40	33	33	34	30	17	31	50	182	159	49	45	136	248	208	24	11	13	12	17	11	10	15	19

Parts and relations

Patch Model

http://www.research.ibm.com/ecvg/biom/facereco.html

Image Sampling and Quantization

Objective of imaging is to generate digital images (representation) from sensed data (observation)

- □ In creating digital image, there is a need to convert the continuous sensed data into digital form.
- This involves two processes: sampling and quantization.
- $lue{}$ An image may be continuous with respect to the x- and y- coordinates, and also in amplitude.
- □ To convert it to digital form, we have to sample the function in both coordinates and in amplitude.
 - 1. Digitizing the coordinate values is called sampling.
 - 2. Digitizing the amplitude(color intensity) values is called quantization.

Image Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Image Sampling and Quantization

- ☐ Take sample pixels and change the light intensity of the selected pixel to some predefined range
 - this could be the average intensity in the selected pixel

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Some Basic Relationships BetweenPixels

Neighbors of a pixel

• $N_4(p)$: 4-neighbors of p (x+1,y), (x-1,y), (x,y+1), (x,y-1)

 $N_D(p)$: four diagonal neighbors of p (x+1,y+1) , (x+1,y-1) , (x-1,y-1) ,

(x-1,y-1)		(x+1,y-1)
	p	
(x-I,y+I)		(x+I,y+I)

$$(x-1, y+1)$$

 $N_{8}(p)$: 8-neighbors of p $N_{4}(p)$ and $N_{D}(p)$

(x-1,y+1)	(x,y+1)	(x+1,y+1)
(x-1,y)	(x,y)	(x+1,y)
(x-1,y-1)	(x,y-1)	(x+1,y-1)

8-neighbourhood

Distance Measures

☐ Euclidean distance

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^2$$

☐ City-block distance

$$D_4(p,q) = |(x-s)| + |(y-t)|$$

☐ Chessboard distance

$$D_8(p,q) = \max(|(x-s)|, |(y-t)|)$$

Distance/Similarity Measures

Method	Description
'chessboard'	In 2-D, the chessboard distance between (x_1,y_1) and (x_2,y_2) is
	$max(x_1 - x_2 , y_1 - y_2)$
'cityblock'	In 2-D, the cityblock distance between (x ₁ ,y ₁) and (x ₂ ,y ₂) is
	$ x_1 - x_2 + y_1 - y_2 $
'euclidean'	In 2-D, the Euclidean distance between (x_1,y_1) and (x_2,y_2) is
	$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$
	This is the default method.
'quasi-euclidean'	In 2-D, the quasi-Euclidean distance between (x_1,y_1) and (x_2,y_2) is
	$\left x_1 - x_2 \right + \left(\sqrt{2} - 1 \right) \left y_1 - y_2 \right , \left x_1 - x_2 \right > \left y_1 - y_2 \right $
	$(\sqrt{2}-1) x_1-x_2 + y_1-y_2 , otherwise$

Region/Boundary/Edge

- □ Region
 - We call R a region of the image if R is a connected set
- **□** Boundary
 - The boundary of a region R is the set of pixels in the region that have one or more neighbors that are not in R
- □ Edge
 - Pixels with derivative values that exceed a preset threshold

Image Representation

- 1. Image capture
- 2. Image quality measurements
- 3. Image resolution
- 4. Colour representation
- 5. Camera calibration
- 6. Parallels with human visual system

The End