

HTBLuVA St.Pölten

Höhere Abteilung Elektrotechnik

3100 St. Pölten, Waldstrasse 3 Tel: 02742-75051-300 Homepage: http://et.htlstp.ac.at E-Mail: et@htlstp.ac.at

Projekt-Titel:

REGELUNGSTECHNISCHE GRUNDELEMENTE

Mitglieder:

LABENBACHER MICHAEL
NEULINGER DAVID
AUGUST LOIBL
EDER DANIEL

Projektort: HTBL u. VA in St. Pölten

Projektdatum: 28. Oktober 2015

Projektnummer: 03

Projektgruppe: 1

Fach: Laboratorium

Jahrgang/Klasse: 2015/16 5AHET

Lehrer: Dipl.-Ing. Dr. Wilhelm Haager

Protokollführer:	Unterschriften:	Note:
Labenbacher Michael		

Inhaltsverzeichnis

1	Ein	leitung	1
2	Ver	wendete Geräte & Betriebsmittel	3
3	Ver	zögerungsglied 1. Ordnung PT ₁	4
	3.1	Eigenschaften und Aufgabenstellungen	4
	3.2	Schaltungsentwicklung und Dimensionierung	6
	3.3	Messungen und Auswertung	8
4	Inte	grierglied I	15
	4.1	Eigenschaften und Aufgabenstellungen	15
	4.2	Schaltungsentwicklung und Dimensionierung	17
	4.3	Messungen und Auswertung	19
5	Inte	grierglied mit Verzögerung IT ₁	24
	5.1	Eigenschaften und Aufgabenstellungen	24
	5.2	Blockschaltbild	26
	5.3	Schaltungsentwicklung und Dimensionierung	27
	5.4	Messungen und Auswertung	29
6	Ver	zögerungsglied 2. Ordnung PT ₂	34
	6.1	Eigenschaften und Aufgabenstellungen	34
	6.2	Blockschaltbild	37
	6.3	Schaltungsentwicklung und Dimensionierung	38
	6.4	Messungen und Auswertung	40

7 Resümee	46
Abbildungsverzeichnis	47
Tabellenverzeichnis	48
Literaturverzeichnis	49
Abkürzungsverzeichnis	50

1 Einleitung

In diesem Projekt werden einige regelungstechnische Grundelemente auf dessen Eigenschaften hin untersucht. Dabei sind einige Grundkenntnisse bezüglich der Regelungstechnik von nöten, welche im Unterricht erlangt wurden. Für die Nachvollziehbarkeit von Berechnungen werden natürlich einige mathematische Kenntnisse vorausgesetzt.

Für die Lösung von lineare zeitinvariante Differentialgleichungen wird die Laplace-Transformation angewandt. Dabei ergibt die Laplace-Transformierte der Zeitfunktion eine Funktion im Laplace-Bereich, was folgendermaßen geschrieben wird:

$$\mathcal{L}\{f(t)\} = F(s) \tag{1.1}$$

Anders gesagt, korrespondiert die Zeitfunktion mit der Funktion im Laplace-Bereich.

$$f(t) \circ - F(s)$$

Die Laplace-Transformierte einer Zeitfunktion ist, wie folgt, definiert:

$$\mathscr{L}{f(t)} = \int_{0}^{\infty} f(t) \cdot e^{-st} dt$$
 (1.2)

t Zeitvariable [sec] s Laplacevariable [sec⁻¹]

Das Pendant dazu, sprich die Rücktransformation in den Zeitbereich wird allgemein mit

$$f(t) = \mathcal{L}^{-1}\{F(s)\} \tag{1.3}$$

beschrieben.

1 Einleitung 2

Eine wichtige Funktion, die noch zum Verständnis der Aufgaben beschrieben werden muss, ist die Sprungfunktion $\sigma(t)$, welche durch folgende Funktion beschrieben ist:

$$\sigma(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$
 (1.4)

Legt man nun am Eingang eine Funktion $f(t) = \sigma(t)$, so wird das System auf diese sprungförmige Änderung des Einganges reagieren. Die Ausgangsgröße die sich daraus dann ergibt nennt man Sprungantwort.

Mit diesen und weiteren Grundlagen, welche in unserem Lehrbuch Regelungstechnik [1] zu finden sind, kann mit der Untersuchung einzelner Elemente begonnen werden.

2 Verwendete Geräte & Betriebsmittel

Bez.	Betriebsmittel	Beschreibung/Typ	Geräte-Nr.
<i>O</i> 1	Oszilloskop	Tektronix TDS 2004B	RA - 2/4
FG1	Frequenzgenerator	Voltcraft 7202	N-02-3
N1	Spannungsversorgung	Leybold 762 88 DC $15\mathrm{V}/3\mathrm{A}$	

Tabelle 2.1: Verwendete Geräte & Betriebsmittel

Des Weiteren wurden Widerstände, Kondensatoren, Operationsverstärker (OPV), Bayonet Neill-Concelman (BNC)-Strippen, Stecker, Verbindungsstrippen, etc. für die einzelnen Teilprojekte verwendet.

Die Spannungsversorgung aller verwendeten OPV betrug $+15\,\mathrm{V}$ / $-15\,\mathrm{V}$ & GND und wurde immer mit Hilfe der Versorgung N1 zur Verfügung gestellt, jedoch in den einzelnen Schaltungen aus Übersichtlichkeit nicht eingezeichnet.

3 Verzögerungsglied 1. Ordnung PT₁

3.1 Eigenschaften und Aufgabenstellungen

Bei einem PT_1 -Element ist die zeitliche Ableitung der Ausgangsgröße $x_a(t)$ proportional der Differenz zwischen Eingangsgröße $x_e(t)$ und Ausgangsgröße $x_a(t)$.

$$x_{\mathbf{a}}(t) + T_{\text{PT1}} \cdot \dot{x}_{\mathbf{a}}(t) = k_{\text{PT1}} \cdot x_{\mathbf{e}}(t)$$

Auf Grund der Linearität und des Ableitungssatzes gilt bei verschwindenden Anfangsbedingungen:

(3.1)
$$G(s) = \frac{k_{\text{PT}1}}{1 + s T_{\text{PT}1}}$$

$$X_{\mathbf{a}}(s) + s T_{\mathbf{PT1}} \cdot X_{\mathbf{a}}(s) = k_{\mathbf{PT1}} \cdot X_{\mathbf{e}}(s)$$

Bei der Sprungantwort ist $x_e(t) = 1$, womit sich für die Ausgangsgröße $x_a(t)$ folgendes ergibt:

$$x_{\mathbf{a}}(t) = \left[k_{\mathbf{PT1}} \cdot \left(1 - e^{-\frac{t}{T_{\mathbf{PT1}}}} \right) \right] \cdot \sigma(t) \tag{3.2}$$

 $k_{\text{\tiny PT1}}$ Stationärverstärkung des PT_1 -Elementes

 T_{PT1} Zeitkonstante des PT_1 -Elementes (beschreibt die Schnelligkeit)

Laut dem Endwerttheorem (EWT) folgt eine Verstärkung nach theoretisch unendlich langer Zeit von $k_{\text{PT}1}$ und das Anfangswerttheorem (AWT) liefert 0. Für die Anfangssteigung gilt $k_{\text{PT}1}/T_{\text{PT}1}$.

Für die Beschreibung des Amplitudenganges wird die Knickfrequenz, welche sich aus der Polstelle der Übertragungsfunktion 3.1 berechnen lässt,

$$\omega_{\rm K} = \frac{1}{T_{\rm PT1}} \tag{3.3}$$

verwendet. Dadurch lässt sich der Amplitudengang grob in zwei Bereiche unterteilen:

$$G(j\omega) = \begin{cases} k_{\text{PT}1}, & \text{wenn } \omega \ll \omega_{\text{K}} \\ \frac{k_{\text{PT}1}}{\omega T_{\text{PT}1}}, & \text{wenn } \omega \gg \omega_{\text{K}} \end{cases}$$
(3.4)

Die Phasenverschiebung beträgt dabei bei, relativ gesehen, kleinen Frequenzen 0° und bei großen Frequenzen -90°, wobei der Übergang in der Nähe der Knickfrequenz erfolgt, wo $\varphi = 45°$ beträgt. Die exakte Beschreibung des Phasenganges ist:

$$\varphi = -\arctan\left(\omega T_{\text{PT1}}\right) \tag{3.5}$$

Die Aufgabe besteht nun darin, ein PT_1 -Element mit Hilfe einer aktiven Schaltung, bestehend aus einem OPV, aufzubauen. Die stationäre Verstärkung des Systems soll 1 und die Zeitkonstante 100 msec betragen.

Nach der Entwicklung der Schaltung ist eine Dimensionierung durchzuführen und mit Hilfe vom Computeralgebrasystem Maxima ist die Sprungantwort des Systems zu berechnen und graphisch darzustellen.

Nach dem erfolgreichem Aufbau und Inbetriebnahme ist die Berechnung messtechnisch zu überprüfen, indem als Eingangssignal $x_{\rm e}(t)$ eine sprungförmige Spannung von 0 V auf 1 V angelegt und daraufhin der Verlauf der Ausgangsspannung $x_{\rm a}(t)$ gemessen wird

Die sich ergebende Abweichungen sind im Anschluss darauf zu analysieren und diskutieren.

3.2 Schaltungsentwicklung und Dimensionierung

Ein PT_1 -Element lässt sich mit folgender aktiven, invertierenden OPV-Schaltung aufbauen (Achtung: hier tritt zusätzlich noch eine Invertierung auf):

Abbildung 3.1: Schaltung eines PT_1 -Elementes

Zu den gesamten Messschaltungen in diesem Projekt gehören natürlich noch die Spannungsversorgung der OPV von $+15 \,\mathrm{V},~0 \,\mathrm{V},~-15 \,\mathrm{V},$ der Frequenzgenerator und das Oszilloskop. Die Übertragungsfunktion dieser Schaltung 3.1 lautet:

$$G(s) = \frac{-\frac{R_2}{R_1}}{1 + s R_2 C} \tag{3.6}$$

, womit sich für den Phasengang

$$\varphi = -\arctan\left(\omega R_2 C\right) \tag{3.7}$$

ergibt.

Für die Parameter eines PT_1 -Gliedes bedeutet dies:

$$k_{\rm PT1} = \frac{R_2}{R_1} \tag{3.8}$$

$$T_{\rm PT1} = R_2 C \tag{3.9}$$

Dies bedeutet, dass bei kleinen Frequenzen die Phasenverschiebung 0°, hingegen bei hohen Frequenzen $\varphi=-90°$ beträgt. Der Übergang erfolgt im Bereich der Knickfrequenz, welche bei

$$\omega_{\rm K} = \frac{1}{R_2 C}$$

liegt. Der Phasenwinkel beträgt dort $-45\,^{\circ}$ und der Betrag des Frequenzganges $\frac{1}{\sqrt{2}}$ $(-3\,\mathrm{dB})$, wenn $k_{\text{\tiny PT1}}=1$ ist.

Bei einer sprungförmigen Eingangsspannung von 0 V auf $u_e(t) = 1 \text{ V } \left(U_e(s) = \frac{1}{s}\right)$ ergibt sich, nach der Formel 3.2, folgende Ausgangsgröße:

$$U_{\rm a}(s) = G(s) \cdot U_{\rm e}(s) = \frac{-\frac{R_2}{R_1}}{s(1 + sR_2C)}$$
(3.10)

$$u_{\rm a}(t) = -\frac{R_2}{R_1} \cdot \left(1 - e^{-\frac{t}{R_2 C}}\right)$$
 (3.11)

Nun erfolgt die Dimensionierung der Bauelemente mit den Formeln 3.8 & 3.9, wobei ein Kondensator von $C=1\,\mu\mathrm{F}$ gewählt wurde:

$$k_{\text{PT1}} = \frac{R_2}{R_1} \stackrel{!}{=} 1 \qquad \Rightarrow \qquad R_2 = R_1$$

$$T_{\text{PT1}} = R_2 C \stackrel{!}{=} 0.1 \sec \qquad \Rightarrow \qquad R_2 = \frac{1}{1 \,\mu\text{F}} \cdot 0.1 \sec = 100 \,\text{k}\Omega = R_1$$

C	R_1	R_2	$k_{ ext{\tiny PT1}}$	$T_{\scriptscriptstyle \mathrm{PT1}}$
$[\mu { m F}]$	$[k\Omega]$	$[k\Omega]$	[]	[sec]
1	100	100	1	0.1

Tabelle 3.1: Bauteilwahl und Parametergrößen des PT_1 -Elementes

3.3 Messungen und Auswertung

Nach dem erfolgreichem Aufbau und der Inbetriebnahme der Schaltung Abb. 3.1, konnte die Sprungantwort des PT_1 -Gliedes aufgenommen werden, was folgendes Oszilloskop-Bild ergab:

Abbildung 3.2: Oszilloskopaufnahme der Sprungantwort des PT_1 -Elementes

y-Achse	u(t)
<i>x</i> -Achse	t
$u_{\rm e}(t)\dots$ [200 mV/Div.]	(gelb)
$u_{\rm a}(t)\dots$ [200 mV/Div.]	(blau)
M [50 ms/ $Div.$]	
horiz. Skalenteilung	

Die Abb. 3.2 zeigt, dass die Steigung von der Ausgangsgröße bei einem PT_1 -Element mit kleiner werdender Differenz zwischen Ein- & Ausgangsgröße sinkt und umgekehrt.

Für die Messung des Stationärwertes und der Zeitkonstante wird nun das Computeralgebrasystem Maxima verwendet.

Die Daten vom Oszilloskop wurden mit Hilfe von Maxima eingelsen und ausgewertet, was folgendes Maxima-Program für die Berechnung und Gegenüberstellung ergab:

```
(%i4) kill(all)$
      load(coma)$
      fpprintprec:5$
      ratprint:false$
      set_draw_defaults(grid=true,point_type=0,points_joined=true)$
coma v.1.73, (Wilhelm Haager, 2015-01-09)
PT_1-Element:
(%i5)
        Vorgabe: [T_PT1=0.1,k_PT1=1]$
(%i6)
        Bauteilwahl: [C=1e-6]$
(%i8)
        glg1:k_PT1=R2/R1$
        glg2:T_PT1=C*R2$
(%i9)
        ev(solve([glg1,glg2],[R1,R2]),Vorgabe,Bauteilwahl);
(\%09)
        [[R1 = 100000, R2 = 100000]]
(%i12)
        Bauteilwerte: [R1=100*10^(3),R2=100*10^(3),C=1e-6]$
        k_PT1:ev(R2/R1,Bauteilwerte);
        T_PT1:ev(C*R2,Bauteilwerte);
(\%o11)
         1
(\%o12)
         0.1
Übertragungsfunktion:
        G(s) := -k_PT1/(1+s*T_PT1)$
(%i14)
        G(s);
(\%o14)
```

Sprungantwort:

```
 \begin{array}{lll} \text{(\%i22)} & \text{u}_-\text{e(t)} :=& 1\$ \\ & \text{u}_-\text{e(t)} ; \\ & \text{U}_-\text{e(s)} :=& \text{laplace(u}_-\text{e(t)}, t, s)\$ \\ & \text{U}_-\text{e(s)} ; \\ & \text{U}_-\text{a(s)} :=& \text{U}_-\text{e(s)}*\text{G(s)}\$ \\ & \text{U}_-\text{a(s)} ; \\ & \text{u}_-\text{a(t)} :=& \text{ilt(U}_-\text{a(s)}, s, t)\$ \\ & \text{u}_-\text{a(t)} ; \\ & \text{(\%o16)} & 1 \\ & \text{(\%o18)} & \frac{1}{s} \\ & \text{(\%o20)} & -\frac{1}{(0.1 \cdot s + 1) \cdot s} \\ & \text{(\%o22)} & e^{-10 \cdot t} - 1 \\ \end{array}
```

bzw. nach der Formel 3.2:

(%i24) u_a(t):=k_PT1*(1-%e^(-t/T_PT1))\$ u_a(t);
$$(\%o24) \qquad 1 - e^{-10.0 \cdot t}$$

Anfangssteigungsgerade:

```
(%i27)
         step_response( [u_e(t),-G(s),explicit(gerade1(t),t,-1,1)],
               color=[black,navy,forest-green],
               yrange=[-0.2,1.2],xrange=[-0.1,0.5],
               yaxis=true,xaxis=true,line_type=[solid,solid,dots],
               xlabel="t [s]",
               ylabel="u_e(t) [V] (schwarz) / -u_a(t) [V] (blau)");
(%t27)
        1.2
  u_e(t) [V] (schwarz) / -u_a(t) [V] (blau)
          1
        8.0
        0.6
        0.4
        0.2
          0
       -0.2
                       0
                                 0.1
          -0.1
                                           0.2
                                                      0.3
                                                                 0.4
                                                                            0.5
                                           t[s]
```

Abbildung 3.3: Berechnung der Sprungantwort des PT_1 -Elementes

(%o27)

Einlesen der gemessenen Werte und vergleichen der Rechen- mit den Messwerten: B. . . Berechnung

```
M...Messung
```

```
(%i32)
       ue_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
         \\Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
        \\Oszi\\1_PT1\\F0015CH1.csv",comma)$
        ua_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
         \\Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
         \Dszi\1_PT1\F0015CH2.csv",comma)
        t_werte:map(fourth,ue_liste)$ue_werte:map(fifth,ue_liste)$
        ua_werte:map(fifth,ua_liste)$
        step_response( [u_e(t),-G(s),explicit(gerade1(t),t,-1,1),
(%i33)
          points(t_werte,ua_werte)],yrange=[-0.2,1.2],
           color=[black,navy,forest-green,red],xrange=[-0.1,0.5],
           yaxis=true,xaxis=true,line_type=[solid,solid,dots,solid],
           xlabel="t [s]",ylabel="u_e(t) [V] (schwarz)
           / -u_a_B(t) [V] (blau) / -u_a_M(t) [V] (rot)");
(%t33)
```


Abbildung 3.4: Vergleich der Sprungantworten eines PT_1 -Elementes

(%o33)

 $k_{\rm PT1}$ aus den Messwerten herausfinden, indem die letzten 10 Werte gemittelt werden:

```
(%i39)
        anzahl:length(t_werte)$
         i:anzahl$s:0$
        k_PT1_Messung_Summe: 0$
         while i>(anzahl-10) do
               (k_PT1_Messung_Summe:k_PT1_Messung_Summe+ua_werte[i],
                i:i-1,s:s+1)$
        k_PT1_Messung:k_PT1_Messung_Summe/s;
(\%o39)
         0.9904
T_{\rm PT1} aus den Messwerten finden:
(%i44)
        x:float(1-k_PT1_Messung*%e^(-1))$
         i:1$s:1$
        while ua_werte[i] < x do (i:i+1,s:s+1)$
        T_PT1_Messung:t_werte[s];
(\%o44)
         0.1024
u_{\rm a}(T_{\rm PT1}) auslesen:
(%i45)
        ua_T_PT1:ua_werte[s];
(\%o45)
         0.64
```

Messabweichungen:

$$F_{\rm a} = x_{\rm m} - x_{\rm r} \tag{3.12}$$

$$F_{\rm r} = \frac{x_{\rm m} - x_{\rm r}}{x_{\rm r}} \cdot 100\% \tag{3.13}$$

```
F_{\rm a} ..... absolute Messabweichung
F_{\rm r} .....
                 relative Messabweichung
x_{\rm m} ..... Messwert
x_{\rm r} ..... richtiger Wert
(%i46)
        F_a_kPT1:k_PT1_Messung-k_PT1;
(\%o46)
         -0.0096
        F_r_kPT1:(k_PT1_Messung-k_PT1)/k_PT1*100;
(%i47)
(\%o47)
         -0.96
        F_a_T_PT1:T_PT1_Messung-T_PT1;
(%i48)
(\%o47)
         0.0024
        F_r_kPT1:(T_PT1_Messung-T_PT1)/T_PT1*100;
(%i49)
(\%o47)
         2.4
```

Auswertung:

Dieser Abschnitt, bezüglich der Untersuchung von regelungstechnischen Grundelementen zeigte, dass die entstehenden Messabweichungen relativ gering sind und sich hauptsächlich aus Bauteiltoleranzen zusammensetzen.

Wir konnten dadurch feststellen, dass die Ausgangsgröße eines PT_1 -Elementes nach "unendlich langer Zeit" proportional der Eingangsgröße ist, was sich durch den integrierenden Anteil begründen lässt.

Eigenschaften und Aufgabenstellungen

Bei einem I-Element ist die zeitliche Änderung der Ausgangsgröße $x_{\rm a}(t)$ proportional der Eingangsgröße $x_{\rm e}(t)$.

$$x_{\mathrm{a}}(t) = \frac{1}{T_{\mathrm{I}}} \cdot \int_{0}^{t} x_{\mathrm{e}}(\tau) d\tau$$

Auf Grund der Linearität und des Integralsatzes folgt:

$$(4.1) G(s) = \frac{1}{s T_{\text{I}}}$$

$$X_{\rm a}(s) = \frac{1}{s T_{\rm I}} \cdot X_{\rm e}(s)$$

Bei der Sprungantwort ist $x_{\rm e}(t)=1$, womit sich für die Ausgangsgröße $x_{\rm a}(t)$ folgendes ergibt:

$$x_{\rm a}(t) = \left[\frac{1}{T_{\rm I}} \cdot t\right] \cdot \sigma(t) \tag{4.2}$$

 $T_{\rm I}$ Integrierzeit

Laut dem EWT folgt eine Verstärkung nach theoretisch unendlich langer Zeit von ∞ und das AWT liefert 0. Für die Anfangssteigung gilt $1/T_{\rm I}$.

Die Phasenverschiebung eines I-Elementes beträgt stets:

$$\varphi = -90^{\circ} \tag{4.3}$$

Für die Beschreibung des Amplitudenganges wird die Durchtrittsfrequenz $\omega_{\rm D}$, wo der Betrag von $G(j\omega)$ 1 beträgt, verwendet:

$$\omega_{\rm D} = \frac{1}{T_{\rm I}} \tag{4.4}$$

Die Aufgabe ist es nun, ein I-Element mit Hilfe einer aktiven OPV-Schaltung aufzubauen, wobei die Integrierzeit 100 msec betragen soll. Nach der Entwicklung und Dimensionierung der Schaltung ist die Sprungantwort zu messen und mit der berechneten zu vergleichen, um im Anschluss Abweichungen zu analysieren und zu begründen.

4.2 Schaltungsentwicklung und Dimensionierung

Ein I-Element lässt sich mit der Schaltung Abb. 4.1 aufbauen (Achtung: hier tritt zusätzlich noch eine Invertierung auf):

Abbildung 4.1: Schaltung eines I-Elementes

Für die Übertragungsfunktion und den Phasengang gilt:

$$G(s) = -\frac{1}{sRC} \tag{4.5}$$

$$\varphi = -90^{\circ} \tag{4.6}$$

Für die Parameter eines I-Gliedes bedeutet dies:

$$T_{\rm I} = RC \tag{4.7}$$

Durch einen Sprung am Eingang ergibt sich, nach Formel 4.2, folgende Ausgangsgröße:

$$U_{\rm a}(s) = G(s) \cdot U_{\rm e}(s) = -\frac{1}{s^2 RC}$$
 (4.8)

$$u_{\rm a}(t) = -\frac{1}{RC} \cdot t \tag{4.9}$$

Für die Dimensionierung wird die Formel 4.7 verwendet, wobei ein Kondensator von $1\,\mu F$ verwendet wird und sich so ein Widerstand von

$$R = \frac{T_{\rm I}}{C} = \frac{0.1 \sec}{1 \,\mu\text{F}} = 100 \,\text{k}\Omega$$

C	R	$T_{\scriptscriptstyle m I}$
$[\mu { m F}]$	$[k\Omega]$	[sec]
1	100	0.1

Tabelle 4.1: Bauteilwahl und Parametergrößen des I-Elementes

4.3 Messungen und Auswertung

Nach dem Aufbau und der Inbetriebnahme der Schaltung Abb. 4.1, wurde die Sprungantwort, durch Anlegen einer sprungförmigen Eingangsspannung, aufgenommen, was folgendes Oszilloskop-Bild lieferte:

Abbildung 4.2: Oszilloskopaufnahme der Sprungantwort des I-Elementes

y-Achse	u(t)
<i>x</i> -Achse	t
$u_{\rm e}(t)\dots$ [200 mV/Div.]	(gelb)
$u_{\rm a}(t)\ldots [1{ m V}/{\it Div.}]$	(blau)
M [50 ms/ $Div.$]	
horiz. Skalenteilung	

Die Aufnahme 4.2 zeigt, dass die Steigung der Ausgangsspannung von der Eingangsspannung abhängig ist. Die Auswertung der Messung erfolgt erneut mit Hilfe von Maxima.

Die Daten vom Oszilloskop wurden mit Hilfe von Maxima eingelsen und ausgewertet:

```
(%i5) kill(all)$
      load(coma)$
      fpprintprec:5$
      ratprint:false$
      load(dynamics)$
       set_draw_defaults(grid=true,point_type=0,points_joined=true)$
coma v.1.73, (Wilhelm Haager, 2015-01-09)
I-Element:
(\%i6)
        T_I:0.1;
(\%06)
         0.1
Übertragungsfunktion:
(%i8)
        G(s):=1/(s*T_I)$
        G(s);
          10.0
(\%08)
Sprungantwort:
(\%i16) u_e(t):=1$
        u_e(t);
        U_e(s):=laplace(u_e(t),t,s)$
        U_e(s);
        U_a(s) := U_e(s) *G(s)$
        U_a(s);
        u_a(t):=ilt(U_a(s),s,t)$
        u_a(t);
(\%o10)
         1
(\%o12)
          10.0
(\%o14)
          s^2
(\%o16)
          10 \cdot t
```

(%t17)

Abbildung 4.3: Berechnung der Sprungantwort des I-Elementes

(%o17)

Einlesen der gemessenen Werte und vergleichen der Rechenwerte mit den Messwerten:

```
(%i22)
       ue_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
         \\Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
        \CSI\2_I\F0007CH1.csv",comma)
        ua_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
        \Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
        \CSI\2_I\F0007CH2.csv",comma)
        t_werte:map(fourth,ue_liste)$
        ue_werte:map(fifth,ue_liste)$
        ua_werte:map(fifth,ua_liste)$
(%i23)
       step_response( [u_e(t),G(s),points(t_werte,ua_werte)],
          color=[black,navy,red],
          yrange=[-1,4],xrange=[-0.05,0.4],
          yaxis=true,xaxis=true,line_type=[solid,solid,solid],
          xlabel="t [s]", ylabel="u_e(t) [V] (schwarz)
          / u_a_B(t) [V] (blau) / u_a_M(t) [V] (rot)");
(%t23)
```


Abbildung 4.4: Vergleich der Sprungantworten eines I-Elementes

(%o23)

```
(%i29)
        Startwert_t:1000$i:1$
        Startwert_ua:ua_werte[Startwert_t];
        while ua_werte[i]<(Startwert_ua+1) do (i:i+1)$</pre>
        Endwert_t:i$
        Endwert_ua:ua_werte[Endwert_t];
(\%o26)
         1.6
(\%o29)
         2.6
(%i30)
        T_I_Messung:t_werte[Endwert_t]-t_werte[Startwert_t];
(\%o30)
         0.101
Messabweichungen:
        F_a_T_I:T_I_Messung-T_I;
(%i31)
(\%o31)
         0.001
(%i32)
        F_rI: (T_I_{\text{Messung}}-T_I)/T_I*100;
(\%o32)
         1.0
```

Auswertung:

Die Messung und Berechnung zeigten nur sehr kleine Abweichungen ($\approx 1\,\%$), welche sich hauptsächlich durch Toleranzen der verwendeten Bauteile erklären lassen. Nachdem der Integrator auf seinen Maximalwert, welcher sich durch den OPV ergibt, aufintegriert hat, kann dieser durch einen Parallelwiderstand an C oder durch Anlegen eines negativen Spannungsprunges wieder entladen werden.

5 Integrierglied mit Verzögerung IT $_{ m 1}$

5.1 Eigenschaften und Aufgabenstellungen

Ein IT_1 -Element kann als eine Sereinschaltung eines I-Elementes und einem PT_1 -Glied aufgefasst werden.

$$x_{\mathrm{a}}(t) + T_{\mathrm{PT}_{1}} \cdot \dot{x}_{\mathrm{a}}(t) = k_{\mathrm{PT}_{1}} \cdot \int_{0}^{t} x_{\mathrm{e}}(\tau) d\tau$$

Auf Grund der Linearität und des Ableitungs- und Integralsatzes gilt bei verschwindenden Anfangsbedingungen:

(5.1)
$$G(s) = \frac{k_{\text{PT1}}}{s T_{\text{I}} (1 + s T_{\text{PT1}})}$$

$$X_{\mathbf{a}}(s) + s T_{\mathbf{PT1}} \cdot X_{\mathbf{a}}(s) = k_{\mathbf{PT1}} \cdot \frac{1}{s T_{\mathbf{I}}} \cdot X_{\mathbf{e}}(s)$$

Bei der Sprungantwort ist $x_{\rm e}(t)=1$, womit sich für die Ausgangsgröße $x_{\rm a}(t)$ folgendes ergibt:

$$x_{\mathbf{a}}(t) = \left[k_{\mathbf{PT1}} \cdot \left(\frac{1}{T_{\mathbf{I}}} \cdot t - \frac{T_{\mathbf{PT1}}}{T_{\mathbf{I}}} \cdot \left(1 - e^{-\frac{t}{T_{\mathbf{PT1}}}} \right) \right) \right] \cdot \sigma(t)$$
 (5.2)

 $k_{\text{PT}1}$ Stationärverstärkung des PT_1 -Elementes

 T_{PT_1} Zeitkonstante des PT_1 -Elementes

 $T_{\rm I}$ Zeitkonstante des I-Elementes

Das EWT & AWT lieferen den Wert 0 und auch die Anfangssteigung beträgt 0.

Für die Beschreibung des Amplitudenganges existiert eine Knickfrequenz ω_{K} und eine Durchtrittsfrequenz ω_{D} , welche sich aus den Polstellen der Übertragungsfunktion 5.1 berechnen lassen:

$$\omega_{\rm K} = \frac{1}{T_{\rm PT1}} \tag{5.3}$$

$$\omega_{\rm D} = \frac{1}{T_{\rm I}} \tag{5.4}$$

Der Amplitudengang kann somit näherungsweise mit

$$G(j\omega) = \begin{cases} \frac{k_{\text{PT}1}}{\omega T_{\text{I}}}, & \text{wenn } \omega \ll \omega_{\text{K}} \\ \frac{k_{\text{PT}1}}{\omega^{2} T_{\text{PT}1} T_{\text{I}}}, & \text{wenn } \omega \gg \omega_{\text{K}} \end{cases}$$

$$(5.5)$$

beschrieben werden. Für den Phasengang gilt allgemein:

$$\varphi = -90^{\circ} - \arctan\left(\omega T_{\text{PT1}}\right) \tag{5.6}$$

Dies bedeutet, dass bei, relativ gesehen, sehr kleinen Frequenzen die Phasenverschiebung -90° beträgt und bei großen -180° . Der Übergang erfolgt bei der Knickfrequenz, wo $\varphi = -135^{\circ}$ beträgt.

Die Aufgabe dieses Abschnittes ist die Untersuchung eines IT_1 -Elementes, durch aufbauen einer Schaltung, bzw. durch Zusammenschalten der Schaltungen im Kap. 3 & 4.

Die Parameter bleiben dabei gleich ($T_{\text{I}} = 100 \,\text{msec}$, $T_{\text{PTI}} = 100 \,\text{msec}$, $k_{\text{PTI}} = 1$) und so kann auf die Dimensionierung der Bauelemente verzichtet werden und die Bauteilwerte sind den vorangegangenen Kapiteln zu entnehmen.

Nach der Inbetriebnahme ist die Rechnung der Sprungantwort mit Maxima wieder messtechnisch zu überprüfen und die sich dabei ergebenden Abweichungen sind daraufhin zu analysieren und diskutieren.

5.2 Blockschaltbild

Ein IT_1 -Element hat eine sehr hohe Bedeutung in der Regelungstechnik, da häufig die offene Regelschleifen F_0 ein solches Verhalten aufzeigen. Als Beispiel sei angeführt das Anlaufverhalten eines Motors, welcher ein Förderband antreibt. Das Integral der Motorumdrehung entspricht dabei der zurückgelegten Strecke des Förderbandes.

Abbildung 5.1: Blockschaltbild eines IT_1 -Elementes

Allgemein kann die offene Regelschleife folgendermaßen berechnet werden:

$$F_{\rm O}(s) = F_{\rm R}(s) \cdot F_{\rm S}(s) \tag{5.7}$$

 $F_{\rm R}$ Übertragungsfunktion des Reglers

 $F_{\rm s}$ Übertragungsfunktion der Regelstrecke

5.3 Schaltungsentwicklung und Dimensionierung

Mit der folgenden Schaltung konnte ein IT_1 -Element aufgebaut werden:

Abbildung 5.2: Schaltung eines IT_1 -Elementes

Die Übertragungsfunktion und der Phasengang können folgendermaßen beschrieben werden:

$$G(s) = \frac{\frac{R_{\text{PT1}_2}}{R_{\text{PT1}_1}}}{s R_{\text{I}} C_{\text{I}} \left(1 + s R_{\text{PT1}_2} C_{\text{PT1}}\right)}$$
(5.8)

$$\varphi = -90^{\circ} - \arctan\left(\omega R_{\text{PT}_{12}} C_{\text{PT}_{1}}\right) \tag{5.9}$$

Für die Parameter eines IT_1 -Gliedes bedeutet dies:

$$T_{\text{PT1}} = R_{\text{PT1}_2} C_{\text{PT1}}$$
 (5.10)

$$T_{\rm I} = R_{\rm I} C_{\rm I} \tag{5.11}$$

Für die Knick- & Durchtrittsfrequenz gilt nun:

$$\omega_{\rm K} = \frac{1}{R_{\rm PT1_2} C_{\rm PT1}} \tag{5.12}$$

$$\omega_{\rm D} = \frac{1}{R_{\rm I} C_{\rm I}} \tag{5.13}$$

Wird nun eine sprungförmige Eingangsspannung von 0 V auf 1 V angelegt, so ergibt sich, nach der Formel 5.2, folgende Ausgangsgröße:

$$U_{\rm a}(s) = G(s) \cdot U_{\rm e}(s) = \frac{k_{\rm PT1}}{s^2 T_{\rm I} (1 + s T_{\rm PT1})}$$
(5.14)

$$u_{\rm a}(t) = \frac{R_{\rm PT1_2}}{R_{\rm PT1_1}} \cdot \left(\frac{1}{R_{\rm I}C_{\rm I}} \cdot t - \frac{R_{\rm PT1_2}C_{\rm PT1}}{R_{\rm I}C_{\rm I}} \cdot \left(1 - e^{-\frac{t}{R_{\rm PT1_2}C_{\rm PT1}}}\right) \right)$$
(5.15)

Somit ergeben sich folgende Bauteilwerte und Parametergrößen:

$C_{\scriptscriptstyle m I}$	R_{I}	$C_{ ext{\tiny PT1}}$	$R_{{ m PT}1_1}$	$R_{{ m PT1}_2}$	$T_{\rm I}$	$k_{ ext{\tiny PT1}}$	$T_{ ext{PT1}}$
$[k\Omega]$	$[\mu F]$	$[\mu F]$	$[k\Omega]$	$[k\Omega]$	[sec]	[]	[sec]
1	100	1	100	100	0.1	1	0.1

Tabelle 5.1: Bauteilwahl und Parametergrößen des IT_1 -Elementes

5.4 Messungen und Auswertung

Nach der Inbetriebnahme der Schaltung Abb. 5.2 wurde die Sprungantwort des IT_1 -Gliedes aufgezeichnet, was folgendes Oszilloskop-Bild ergab (besser wäre es gewesen, wenn man "hineingezoomt" hätte):

Abbildung 5.3: Oszilloskopaufnahme der Sprungantwort des IT_1 -Elementes

y-Achse		u(t)		
x-Achse		t		
$u_{\rm e}(t)\dots$	$[200\mathrm{mV}/Div.]$	(gelb)		
$u_{\rm a}(t)\dots$	$[2\mathrm{V}/Div.]$	(blau)		
M	$[250\mathrm{ms}/Div.]$			
horiz. Skalenteilung				

Es ist in der Abbildung deutlich ersichtlich, dass der Integrator durch den OPV auf $\approx 12\,\mathrm{V}$ als Maximalwert begrenzt ist. Im Anschluss darauf wurden die Daten in Maxima eingelesen und ausgewertet.

Folgendes Maxima-Program wurde dafür verfasst:

```
(%i4) kill(all)$
       load(coma)$
       fpprintprec:5$
       ratprint:false$
       set_draw_defaults(grid=true,point_type=0,points_joined=true)$
coma v.1.73, (Wilhelm Haager, 2015-01-09)
IT_1-Element:
         T_I:0.1;
(%i7)
          T_PT1:0.1;
         k_PT1:1;
(\%05)
         0.1
(\%06)
         0.1
(\%07)
         1
(%i9)
        G(s):=1/(s*T_I)*k_PT1/(1+s*T_PT1)$
        G(s);
               10.0
(\%09)
          \overline{(0.1 \cdot s + 1) \cdot s}
Sprungantwort:
(%i17)
        u_e(t):=1$
        u_e(t);
        U_e(s):=laplace(u_e(t),t,s)$
        U_e(s);
        U_a(s) := U_e(s) *G(s)$
        U_a(s);
        u_a(t):=ilt(U_a(s),s,t)$
        u_a(t);
```

```
(%o11) 1
```

$$(\%013)$$
 $\frac{1}{8}$

(%o15)
$$\frac{10.0}{(0.1 \cdot s + 1) \cdot s^2}$$

(%o17)
$$e^{-10 \cdot t} + 10 \cdot t - 1$$

(%t18)

Abbildung 5.4: Berechnung der Sprungantwort des IT_1 -Elementes

(%o18)

Einlesen der gemessenen Werte und vergleichen der Rechenwerte mit den Messwerten:

```
ue_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
(%i23)
         \\Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
         \\Oszi\\3_IT1\\F0012CH1.csv",comma)$
        ua_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
         \\Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
         \Sin 3_{IT1}\F0012CH2.csv",comma)
        t_werte:map(fourth,ue_liste)$ue_werte:map(fifth,ue_liste)$
        ua_werte:map(fifth,ua_liste)$
(%i24)
        step_response( [u_e(t),G(s),points(t_werte-1.41,ua_werte),
            explicit(10*t-1,t,0,1)], yrange=[-1,6],
            %(1.41 auf Grund der Position des Triggers)
            xrange=[-0.1,0.6],color=[black,navy,red,forest-green],
            yaxis=true,xaxis=true,line_type=[solid,solid,solid,dots],
            xlabel="t [s]", ylabel="u_e(t) [V] (schwarz)
            / u_a_B(t) [V] (blau) / u_a_M(t) [V] (rot)");
(\%t24)
         6
  u_e(t) [V] (schwarz) / u_{aB}(t) [V] (blau) /
         5
         4
     u_{aM}(t) [V] (rot)
         3
         2
         1
         0
```

Abbildung 5.5: Vergleich der Sprungantworten eines IT_1 -Elementes

0.2

t [s]

0.3

0.4

0.5

0.6

(%o24)

-1 --0.1

0

0.1

Auswertung:

Durch dieses Teilprojekt konnten wir das typische Verhalten eines verzögerten Integrierers aufzeigen, wobei der Verlauf der Sprungantwort einen etwas flacheren Verlauf aufzeigte als die Berechnung.

Dies lässt sich dadurch erklären, dass wir im Kap. 4 einen Integrierer mit einer $\approx 1\%$ Abweichung von Messung zur Berechnung verwendet haben und sich diese auch hier bemerkbar gmacht hat, was in der Abb. 5.5 ersichtlich ist.

Verzögerungsglied 2. Ordnung PT_2

Eigenschaften und Aufgabenstellungen

Bei einem PT_2 -Element handelt es sich um ein proportionales Verzögerungsglied 2. Ordnung.

$$\frac{1}{\omega_{\rm n}^2} \ddot{x}_{\rm a}(t) + \frac{2D}{\omega_{\rm n}} \dot{x}_{\rm a}(t) + x_{\rm a}(t) = k_{\rm PT2} x_{\rm e}(t)$$

tungssatzes gilt für verschwindende Anfangsbedingungen:

(6.1)
$$G(s) = \frac{k_{\text{PT2}}}{\frac{1}{\omega_{\text{n}}^2} s^2 + \frac{2D}{\omega_{\text{n}}} s + 1}$$

$$\frac{1}{\omega_{\rm n}^2} s^2 X_{\rm a}(s) + \frac{2D}{\omega_{\rm n}} s X_{\rm a}(s) + X_{\rm a}(s) =$$

$$k_{\rm PT2} \, X_{\rm e}(s)$$

Bei der Sprungantwort ist $x_e(t) = 1$, womit sich für die Ausgangsgröße $x_a(t)$, selbstverständlich nach einigen Umformungen, folgendes ergibt:

$$x_{\mathbf{a}}(t) = \begin{cases} k_{\mathrm{PT2}} \left[1 - e^{-\frac{t}{\tau_{\mathrm{PT2}}}} \left(1 - \frac{D}{\sqrt{D^2 - 1}} \right) \sinh\left(\omega_{\mathrm{n}} \sqrt{D^2 - 1} t\right) \right] \sigma(t) & \text{für } D > 1 \end{cases}$$

$$k_{\mathrm{PT2}} \left[1 - e^{-\frac{t}{\tau_{\mathrm{PT2}}}} \left(1 + \frac{t}{\tau_{\mathrm{PT2}}} \right) \right] \sigma(t) & \text{für } D = 1 \end{cases}$$

$$k_{\mathrm{PT2}} \left[1 - e^{-\frac{t}{\tau_{\mathrm{PT2}}}} \underbrace{\left(\cos\left(\omega_{0} t\right) + \frac{D}{\sqrt{1 - D^2}} \sin\left(\omega_{0} t\right) \right) \right] \sigma(t)}_{\frac{1}{\sqrt{1 - D^2}} \cdot \sin\left(\omega_{0} t + \arccos(D)\right)} \right] \sigma(t) \qquad \text{für } D < 1 \end{cases}$$

$$(6.2)$$

Laut dem EWT folgt eine stationäre Verstärkung von k_{PT2} und das AWT liefert 0. Für die Anfangssteigung ergitbt sich 0.

 $k_{\text{\tiny PT2}}$ Stationärverstärkung des PT_2 -Elementes

D Dämpfungsgrad

 ω_n natürliche Kreisfrequenz

 $T_{\rm n}$ natürliche Periodendauer

 $\tau_{\text{PT}2}$ Abklingzeitkonstante

 T_0 Periodendauer der gedämpften Schwingung $(T_0 > T_n)$

$$\tau_{\text{PT2}} = \frac{1}{\omega_{\text{n}} D} \tag{6.3}$$

$$\omega_0 = \omega_n \sqrt{1 - D^2} \tag{6.4}$$

$$T_0 = \frac{2\pi}{\omega_0} \tag{6.5}$$

Im oszillatorischen Fall kann noch die Überschwingweite \ddot{u} , was jener Wert ist, um den die erste Schwingung den Stationärwert k_{PT2} übersteigt, durch das Berechnen des ersten Maximums der Sprungantwort ermittelt werden (Gleichung 6.2 für D < 1 ableiten und 0 setzen $\Rightarrow T_{\ddot{u}}$):

$$T_{\ddot{\mathbf{u}}} = \frac{\pi}{\omega_0} \tag{6.6}$$

$$\ddot{u} = \frac{x_{\text{a max}} - k_{\text{PT2}}}{k_{\text{PT2}}} = e^{-\frac{\pi D}{\sqrt{1 - D^2}}}$$
(6.7)

 $T_{\ddot{\mathrm{u}}}$ Überschwingzeit

 \ddot{u} Überschwingweite

Dabei zeigt sich, dass die Überscwhingweite $T_{\ddot{u}}$ gleich der halben Periodendauer der gedämpften Schwingung ist.

Um herauszufinden bei welcher Frequenz nun, bei gegebener Dämpfung, die maximale Überhöhung auftritt muss die Resonanzfrequenz ermittelt werden. Ausgangspunkt dafür ist:

$$|G(j\omega)| = \frac{k_{\text{PT2}}}{\sqrt{\left(1 - \frac{\omega}{\omega_{\text{n}}}\right)^2 + \left(\frac{2D\,\omega}{\omega_{\text{n}}}\right)^2}}$$
(6.8)

Nun wird der Ausdruck unter der Wurzel nach ω einmal abgeleitet und gleich 0 gesetzt. Die entstehende Gleichung wird nach ω gelöst ($\omega \neq 0$) und man erhält folgende Resonanzfrequenz bzw. durch Einsetzen in die Gleichung 6.8 die Resonanzüberhöhung, natürlich nur, wenn eine Resonanz vorliegt:

$$\omega_{\rm rz} = \omega_{\rm n} \sqrt{1 - 2D^2} \tag{6.9}$$

$$\ddot{u}_{\rm rz} = \frac{1}{2D\sqrt{1-D^2}} \tag{6.10}$$

Die Aufgabe ist es nun, ein PT_2 -Glied, bestehend aus einem, in Serie geschaltenen, I- & PT_1 -Element, aufzubauen, indem eine negative Rückführung eingebaut wird. Des Weiteren sind die Eigenschaften des Verzögerungsglied 2. Ordnung zu untersuchen und die Dimensionierung des Reglers und der Regelstrecke bleibt wie im Kap. 5.

Der sich ergebende Regelkreis ist daraufhin zu untersuchen, indem die Sprungantwort gemessen und mit der berechneten verglichen wird.

6.2 Blockschaltbild

Das PT_2 -Element kann folgendermaßen mit Hilfe eines Blockschaltbildes dargestellt werden, indem die Regelschleife im Kap. 5.2 geschlossen wird.

Abbildung 6.1: Blockschaltbild eines PT_2 -Elementes

Durch das Schließen des Regelkreises hat sich die Übertragungsfunktion auf

$$F_{\rm W} = \frac{F_{\rm o}}{1 + F_{\rm o}} \tag{6.11}$$

verändert.

 $F_{\rm o}$ Übertragungsfunktion der offene Regelschleife

 $F_{\rm w}$ Führungsübertragungsfunktion

Für die Summierstelle kann z. B. ein Subtrahierer verwendet werden, aber auch ein Summierverstärker mit einem Invertierer würde funktionieren.

6.3 Schaltungsentwicklung und Dimensionierung

Abbildung 6.2: Schaltung eines PT_2 -Elementes

Für die Übertragungsfunktion dieser Schaltung (bzw. des Regelkreises) gilt:

$$G(s) = \frac{\frac{R_{\text{PT1}_2}}{R_{\text{PT1}_1}}}{R_{\text{I}}C_{\text{I}}R_{\text{PT1}_2}C_{\text{PT1}}s^2 + R_{\text{I}}C_{\text{I}}s + 1}$$
(6.12)

Für die Parameter gilt nun:

$$k_{\rm PT2} = \frac{R_{\rm PT1_2}}{R_{\rm PT1_1}} \tag{6.13}$$

$$D = \frac{1}{2} \cdot \sqrt{\frac{R_{\rm I} C_{\rm I}}{R_{\rm PT1_2} C_{\rm PT1}}}$$
 (6.14)

$$\omega_{\rm n} = \frac{1}{\sqrt{R_{\rm I}C_{\rm I}R_{\rm PT1_2}C_{\rm PT1}}}\tag{6.15}$$

Für diesen Versuch wurden nun die selben Bauteilwerte gewählt, wie im Kap. 5, und für die Widerstände des Subtrahierers empfiehlt sich ein Wertebereich von $10\,\mathrm{k}\Omega-1\,\mathrm{M}\Omega.$

	R	$C_{\rm I}$	C_{I} R_{I} C_{PT1} $R_{\mathrm{PT1}_{1}}$		$R_{{\scriptscriptstyle \mathrm{PT1}}_1}$	$R_{{\scriptscriptstyle \mathrm{PT1}}_2}$
	$[k\Omega]$	$[\mu { m F}]$	$[k\Omega]$	$[\mu \mathrm{F}]$	$[k\Omega]$	$[k\Omega]$
_	100	1	100	1	100	100

Tabelle 6.1: Bauteilwahl des PT_2 -Elementes

Die sich daraus ergebende Dämpfung D<1 bedeutet, dass ein oszillatorischer Fall vorliegt und das Element zeigt folgende Eigenschaften auf:

$k_{{ t PT2}}$	D	$\omega_{ m n}$	$ au_{ ext{PT2}}$	ω_0	T_0	$T_{\ddot{ ext{u}}}$	\ddot{u}
[]	[]	$[\sec^{-1}]$	[sec]	$[\sec^{-1}]$	[sec]	[sec]	[%]
1	0,5	10	0.2	8,66	0.73	0,36	16,30

Tabelle 6.2: Parametergrößen und Eigenschaften des PT_2 -Elementes

6.4 Messungen und Auswertung

Die Schaltung 6.2 zeigt nach erfolgreicher Inbetriebnahme und Anlegen einer sprungförmigen Eingangsspannung folgendes Verhalten:

Abbildung 6.3: Oszilloskopaufnahme der Sprungantwort des PT_2 -Elementes

y-Achse		u(t)
x-Achse		t
$u_{\rm e}(t)$ [20]	$0\mathrm{mV}/Div.]$	(gelb)
$u_{\rm a}(t) \dots [20]$	$0\mathrm{mV}/Div.]$	(blau)
M [10	$0 \mathrm{ms}/Div.]$	
horiz Skalent	eilung	

Die Oszilloskop-Aufnahme zeigt ein PT_2 -Element im periodischen Fall und für die Messung der Überschwingweite, der Überschwingung, etc. wurde das nachfolgende Program in Maxima geschrieben, um die Messung mit der Berechnung zu vergleichen.

Folgendes Maxima-Program wurde dafür verfasst:

```
(%i4) kill(all)$
      load(coma)$
      fpprintprec:5$
      ratprint:false$
      set_draw_defaults(grid=true,point_type=0,points_joined=true)$
coma v.1.73, (Wilhelm Haager, 2015-01-09)
PT2-Element (schwingungsfaehig):
(%i5)
        Vorgabe: [T_PT1=0.1,k_PT1=1,TI:0.1]$
(%i6)
        Bauteilwerte: [RPT1_1=100*10^(3), RPT1_2=100*10^(3),
                       CPT1=1e-6,CI=1e-6,RI=100*10^(3)]$
(%i9)
        k_PT1:ev(RPT1_2/RPT1_1,Bauteilwerte);
        T_PT1:ev(CPT1*RPT1_2,Bauteilwerte);
        TI:ev(CI*RI,Bauteilwerte);
(\%07)
         1
(\%08)
         0.1
(\%09)
         0.1
(%i13)
        omega_n:float(1/sqrt(TI*T_PT1));
        D:float(omega_n*TI/2);
        k_PT2:k_PT1;
        tau_PT2:1/(omega_n*D);
(\%o10)
         10.0
(\%o11)
         0.5
(\%o12)
         1
(\%o13)
         0.2
(%i17)
        omega_0:omega_n*sqrt(1-D^(2));
        T_0:float(2*%pi/omega_0);
        ue:float(%e^(-%pi*D/sqrt(1-D^(2))));
        Tue:float(%pi/omega_0);
(\%o14)
         8.6603
(\%o15)
         0.72552
(\%o16)
         0.16303
(\%o17)
         0.36276
```

(%i19)
$$G(s) := k_PT2/(1/omega_n^2) *s^2 + 2*D/omega_n *s+1)$$
 $G(s);$
$$(\%o19) \qquad \frac{1}{0.01 \cdot s^2 + 0.1 \cdot s + 1}$$

Sprungantwort:

(%i27)
$$u_{-e}(t) := 1\$$$
 $u_{-e}(t);$
 $U_{-e}(s) := laplace(u_{-e}(t),t,s)\$$
 $U_{-e}(s);$
 $U_{-a}(s) := U_{-e}(s)*G(s)\$$
 $U_{-a}(s);$
 $u_{-a}(t) := ilt(ev(U_{-a}(s),Parameter),s,t)\$$
 $u_{-a}(t);$
(%o21) 1
(%o23) $\frac{1}{s}$
(%o25) $\frac{1}{s \cdot (0.01 \cdot s^2 + 0.1 \cdot s + 1)}$
(%o27) $e^{-5 \cdot t} \cdot \left(-\cos\left(5 \cdot \sqrt{3} \cdot t\right) - \frac{\sin\left(5 \cdot \sqrt{3} \cdot t\right)}{\sqrt{3}}\right) + 1$

```
(%i28)
         step_response( [ev(u_e(t),Parameter),ev(G(s),Parameter)],
               color=[black,navy,red],
               yrange=[-0.2,1.2],xrange=[-0.2,1],
               yaxis=true,xaxis=true,line_type=[solid,solid,dots],
               xlabel="t [s]", ylabel="u_e(t) [V] (schwarz)
               / u_a(t) [V] (blau)");
(%t28)
        1.2
 u_e(t) [V] (schwarz) / u_a(t) [V] (blau)
          1
        8.0
        0.6
        0.4
        0.2
          0
       -0.2
                                 0.2
          -0.2
                       0
                                            0.4
                                                       0.6
                                                                  8.0
                                                                              1
```

Abbildung 6.4: Berechnung der Sprungantwort des PT_2 -Elementes

t[s]

(%o28)

```
(%i33)
         ue_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
          \\Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
          \Dszi\4_PT2\F0017CH1.csv",comma)
         ua_liste:read_nested_list("C:\\Users\\User\\Desktop\\Schule
          \\Laboratorium-5AHET\\03_Regelungstechnische Grundelemente
          \Dszi\4_PT2\F0017CH2.csv",comma)
         t_werte:map(fourth,ue_liste)$
         ue_werte:map(fifth,ue_liste)$
         ua_werte:map(fifth,ua_liste)$
(%i34)
         step_response( [u_e(t),G(s),
            points(t_werte,ua_werte)],
            color=[black,navy,red],
            yrange=[-0.2,1.2],xrange=[-0.2,1],
            yaxis=true,xaxis=true,line_type=[solid,solid,solid],
            xlabel="t [s]", ylabel="u_e(t) [V] (schwarz)
            / u_a_B(t) [V] (blau) / u_a_M(t) [V] (rot)");
(%t34)
  u<sub>e</sub>(t) [V] (schwarz) / u<sub>aB</sub>(t) [V] (blau) /
         1.2
           1
         0.8
      u<sub>aM</sub>(t) [V] (rot)
         0.6
         0.4
         0.2
           0
         -0.2
            -0.2
                        0
                                 0.2
                                            0.4
                                                      0.6
                                                                 8.0
                                                                            1
```

Abbildung 6.5: Vergleich der Sprungantworten eines PT_2 -Elementes

t [s]

(%o34)

```
(%i40)
        anzahl:length(t_werte)$
        i:anzahl$ua_max_Messung:0$
        while i>0 do ((if ua_werte[i]>ua_max_Messung
                  then (ua_max_Messung:ua_werte[i])),(i:i-1))$
        ua_max_Messung;
        k_PT2_Messung:ua_werte[2200];
(\%o39)
        1.176
(\%o40)
         1.0
(%i42)
        ue_Messung:(ua_max_Messung-k_PT2_Messung)/k_PT2_Messung$
        ue_Messung_in_Prozent:ue_Messung*100;
(\%o42)
        17.6
(%i46)
        i:1$s:1$
        while ua_werte[i] < ua_max_Messung do (i:i+1,s:s+1)$</pre>
        T_ue_Messung:t_werte[s];
(\%o46)
        0.364
(%i47)
        omega_0_Messung:float(%pi/T_ue_Messung);
(\%o47)
        8.6307
(%i48)
        T_0_Messung:float(2*%pi/omega_0_Messung);
(\%o48)
        0.728
        D_Messung:float(-log(ue_Messung)/
(%i49)
                         (sqrt(%pi^2+(log(ue_Messung)^2))));
(\%o49)
         0.48393
(%i50)
        omega_n_Messung:float(omega_0/(sqrt(1-D_Messung^2)));
(\%050)
         9.8962
(%i51)
        tau_PT2_Messung:float(1/(D*omega_n_Messung));
(\%051)
         0.2021
```

7 Resümee

Dieses Projekt zeigte auf, dass es relativ einfach ist, ein PT_2 -Element mit einer Genauigkeit von $\approx 10\%$ aufzubauen. Wir erlangten dadurch sowohl Kenntnisse bezüglich der Regelungstechnik, als auch bezüglich der "richtigen" Auswertung der Messwerte mit Hilfe von Maxima.

Wir konnten im Abschnitt 3 feststellen, dass sich bei der verwendeten PT_1 -Regelstrecke die Regelgröße bei einer sprunghaften Stellgrößenänderung sofort, mit einer gewissen Anfangssteigung, änderte. Die Änderungsgeschwindigkeit wurde dabei mit der Zeit kleiner, bis nach "längerer" Zeit der Endwert erreicht wurde.

Schließlich stellten wir fest, dass der Regler (Integrierer) eine bleibende Regelabweichung von 0 aufweist und somit immer voll ausregelt, hingegen zu einem schnellen P-Regler.

Das entwickelte System (IT_1) im Abschnitt 5 stellte z. B. einen fallenden Körper dar, da die Geschwindigkeit, wie die Sprungantwort des PT_1 -Gliedes, zunimmt und die zurückgelegte Strecke ist gleich dem Integral der Geschwindigkeit.

Durch die negative Rückführung ergab sich ein PT_2 -Element, welches z. B. ein gedämpftes Feder-Masse-System darstellt.

Abbildungsverzeichnis

3.1	Schaltung eines PT_1 -Elementes	6
3.2	Oszilloskopaufnahme der Sprungantwort des PT_1 -Elementes	8
3.3	Berechnung der Sprungantwort des PT_1 -Elementes	11
3.4	Vergleich der Sprungantworten eines PT_1 -Elementes	12
4.1	Schaltung eines I -Elementes	17
4.2	Oszilloskopaufnahme der Sprungantwort des I -Elementes	19
4.3	Berechnung der Sprungantwort des I -Elementes	21
4.4	Vergleich der Sprungantworten eines I -Elementes	22
5.1	Blockschaltbild eines IT_1 -Elementes	26
5.2	Schaltung eines IT_1 -Elementes	27
5.3	Oszilloskopaufnahme der Sprungantwort des IT_1 -Elementes	29
5.4	Berechnung der Sprungantwort des IT_1 -Elementes	31
5.5	Vergleich der Sprungantworten eines IT_1 -Elementes	32
6.1	Blockschaltbild eines PT_2 -Elementes	37
6.2	Schaltung eines PT_2 -Elementes	38
6.3	Oszilloskopaufnahme der Sprungantwort des PT_2 -Elementes	40
6.4	Berechnung der Sprungantwort des PT_2 -Elementes	43
6.5	Vergleich der Sprungantworten eines PT_2 -Elementes	44

Tabellenverzeichnis

2.1	Verwendete Geräte & Betriebsmittel	 •	•		•	•	3
3.1	Bauteilwahl und Parametergrößen des PT_1 -Elementes .						7
4.1	Bauteilwahl und Parametergrößen des I -Elementes $$						18
5.1	Bauteilwahl und Parametergrößen des IT_1 -Elementes .						28
	Bauteilwahl des PT_2 -Elementes						
6.2	Parametergrößen und Eigenschaften des PT_2 -Elementes						39

Literaturverzeichnis

[1] **Wilhelm Haager:** Regelungstechnik. Wien 2007, 2.Auflage, Hölder-Pichler-Tempsky GmbH Verlag, ISBN: 978-3-203-02565-4

Abkürzungsverzeichnis

Abb. Abbildung

AWT Anfangswerttheorem

Bez. Bezeichnung

BNC Bayonet Neill-Concelman

bzw. beziehungsweiseDipl.-Ing. Diplom-Ingenieur

Div. Division (Skalenteilung)

Dr. Doktor et cetera

EWT Endwerttheorem

GmbH Gesellschaft mit beschränkter Haftung

GND groundhoriz. horizontal

HTBL u. VA höhere technische Bundeslehr- und Versuchsanstalt

Kap.KapitelNr.Nummer

OPV Operationsverstärker

z. B. zum Beispiel