CS & IT ENGINEERING

Number System

Lecture No. 02

By- CHANDAN SIR

TOPICS TO BE COVERED 01 Types of Number System

02 Practice

03 Discussion

Base (Radix)

Total number of digit used in the system

Decimal Number System

10-3...

 10^{-2}

... 10^4 10^3 10^2 10^1 10^0 10^{-1}

 a_{4} a_{3} a_{2} a_{1} a_{0} a_{-1} a_{-2} a_{-3} ...

 $a_i^i \rightarrow \text{Coefficient of decimal number system}$ $10_i \rightarrow \text{Weight of decimal number system}$

Example: $(501.23)_{10}$

 10^{2} 10^{1} 10^{0} 10^{-1} 10^{-2}

5 0 1 2 3

(12 () (13) 14, 15, 16 Minimum base

Binary Number System (Base (Radix) = 2)

... 24

23

 2^2

 2^1

20

2-1

2-2

2-3 ...

... a₄

 a_3

 a_2

 a_1

 a_0

a₋₁

a_2

a_3 ...

2i → Weight of Binary number system

 $a_i \rightarrow \text{Coefficient of Binary number system } \{0, 1\}$

Example:-

 $(101.11)_2$

22

 2^1

20

 2^{-1}

2-2

1

0

1

1

1

Octal Number System (Base (Radix) = 8)

... 83

 8^2

 8^1

 8_0

8-1

8-2

8-3...

... a₃

 a_2

 a_1

 a_0

a_1

a_2

a_3...

8i → Weight of Octal number system

 $a_i \rightarrow \text{Coefficient of Octal number system } \{0 - 7\}$

Example:-

 $(728.64)_8$

82

 8^1

80

8-1

8-2

7

2

8

6

4

 16^{3}

 16^{2}

 16^{1}

16⁻¹ 16⁻² 16⁻³...

az

a₂

 a_1

 a_0

a_1

a_2 a_3...

16ⁱ → Weight of Hexadecimal number system

 $a_i \rightarrow \text{Coefficient of Hexadecimal number system } \{0 - 9, A - F\}$

Example: $(A2C.F)_{16}$

 16^{2}

 16^{1}

 16^{0}

16-1

A

2

F

- Base conversion
 - 2) Magnitude Representation

In base conversion 2 key points are there:

- (A) Any base to Decimal conversion
- (B) Decimal to any other base conversion

(A) Any base to Decimal conversion:

$$\begin{pmatrix} a_3 & a_2 & a_1 & a_0 & a_{-1} & a_{-2} \\ a_3 & a_2 & a_1 & a_0 & a_{-1} & a_{-2} \end{pmatrix} = \begin{pmatrix} a_{-1} & a_{-2} \\ a_{-2} & a_{-1} & a_{-2} \end{pmatrix}$$

$$\left(a_{3}\times r^{3}+a_{2}\times r^{2}+a_{1}\times r^{1}+a_{0}\times r^{0}+a_{-1}\times r^{-1}+a_{-2}\times r^{-2}\right)_{10}$$

Case (1): Binary to Decimal conversion

Ex.
$$(1011.11)_2 = ()_{10}$$

$$\Rightarrow \left[(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2}) \right]_{0}$$

$$\Rightarrow [8+0+2+1+0.5+0.25]_{10}$$

$$\Rightarrow$$
 $(11.75)_{10}$

Case (2): Octal to Decimal conversion

Ex.
$$(721.4)_8 = ()_{10}$$

$$\Rightarrow \left[(7 \times 8^{2}) + (2 \times 8^{1}) + (1 \times 8^{0}) + (4 \times 8^{-1}) \right]_{10}$$

$$\Rightarrow$$
 $[448+16+1+0.5]_{10}$

$$\Rightarrow$$
 (465.5)₁₀

Case (3): Hexadecimal to Decimal conversion

Ex.
$$(A2B.C)_{16} = ()_{16}$$

$$\Rightarrow \left[(A \times 16^{2}) + (2 \times 16^{1}) + (B \times 16^{0}) + (C \times 16^{-1}) \right]_{10}$$

$$\Rightarrow \left[(10 \times 256) + (2 \times 16) + (11 \times 1) + (12 \times 16^{-1}) \right]_{10}$$

$$\Rightarrow$$
 [2560+32+11+0.75]₁₀

$$\Rightarrow$$
 (2603.75)₁₀

Case (4): Base 5 to Decimal conversion

Ex.
$$(432.22)_5 = ()_{10}$$

$$\Rightarrow \left[(4 \times 5^2) + (3 \times 5^1) + (2 \times 5^0) + (2 \times 5^{-1}) + (2 \times 5^{-2}) \right]_{10}$$

$$\Rightarrow$$
 $[100+15+2+0.4+0.08]_{10}$

$$\Rightarrow$$
 (117.48)₁₀

(B) Decimal to any other Base conversion

$$0 \cdot a_{-1} a_{-2} a_{-3} \times r = x_0 \cdot x_{-1} x_{-2} \qquad \chi_0$$

$$0 \cdot x_{-1} x_{-2} \times r = x_1 \cdot x_{-3} x_{-4} \qquad \chi_1$$

$$0 \cdot x_{-3} x_{-4} \times r = x_2 \cdot x_{-5} x_{-6} \qquad \chi_2$$

$$(a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2} a_{-3})_{10} = (b_3 b_2 b_1 b_0 \cdot x_0 x_1 x_2)_r$$

Case (1): Decimal to Binary Base conversion.

Ex.
$$(19.75)_{10} = (?)_2$$

19 ← Before Decimal

2	19	1
2	9	1
2	4.	0
2	2	0
	1	1

After Decimal ⇒ 0.45

$$0.75 \times 2 = 1.5$$
 $0.5 \times 2 = 1.0$

$$(19.75)_{10} = (10011.11)_2$$

Case (2): Decimal to Octal Base conversion.

Ex.

Case (3): Decimal to Hexadecimal Base conversion.

Ex.

$$(1228.56)_{10} = (4CC.8C)_{16}$$

Some Special Case

Case (1): Binary to Octal base conversion

Ex.
$$(10110111)_2 = (?)_8$$

Octal → means base 8

$$8 = 2^{3}$$

> Every three digits of binary represent one digit of octal

Hence
$$(10110111)_2 = (267)_8$$

$$(7635)_{8} = (111110011101)_{2}$$

Some Special Case

Case (2): Binary to Hexadecimal base conversion

Ex.
$$(1011011)_2 = ()_{16}$$

Hexadecimal → means base 16

$$16 = 29$$

Every four digits of binary represent one digit of Hexadecimal.

Hence
$$(1011011)_2 = (5B)_{16}$$

$$Q = (2313)_{4} = (2)_{2}$$
 $4 = 20$ abit

BCD (Binary Coded Decimal)

In this each digit of the decimal number is represented by its four-bit binary equivalent. It is also called natural BCD or 8421 code. It is weighted code.

Excess – 3 Code: This is an non weighted binary code used for decimal digits.
Its code assignment is obtained from the corresponding value of BCD after the addition of 3.

BCO (Binary Coded Octal): In this each digit of the Octal number is represented by its three-bit binary equivalent.

BCH (Binary Coded Hexadecimal): In this each digit of the hexadecimal number is represented by its four bit binary equivalent.

Decima l Digits	BCD 8421	Excess - 3	Octal digits	BCO	Hexadecimal Digits	ВСН
0	0000	0011	0	000	0	0000
1	0001	0100	1	001	1	0001
2	0010	0101	2	010	2	0010
3	0011	0110	3	011	3	0011
4	0100	0111	4	100	4	0100
5	0101	1000	5	101	5	0101
6	0110	1001	6	110	6	0110
7	0111	1010	7	111	7	0111
8	1000	1011			8	1000
9 10	1001	1100			9	1001
					A	1010
					В	1011
					С	1100
					D	1101
					E	1110
				ALC: N	F	1111

Discussion

Decimal	Binary	octal	
0	0	0	
1	1	1	
2	10	2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		10	
9		1 1	

$$\frac{(0.41)_{8}}{(0.42)_{8}}$$

$$+ 1.03$$

A. '

c. 10

converting into Decimal

$$\sqrt{4xx+1xx^6} = 5$$

$$(1204)_{8} = (292)_{10}$$

$$\gamma^{3} + 2\gamma^{2} + 4 = 292$$
 (ii) $\beta^{3} + 2\chi^{6} - 200$
 $\gamma^{3} + 2\gamma^{2} - 288 = 0$ = 0

$$(1)$$
 5^{3} $+ 275^{2}$ -288
 $125-50$ -286 $\neq 0$

(ii)
$$6 + 2 \times 6 - 208$$

$$= 0$$

$$(210A) = (?)_{19}$$

$$2x14^{3} + 1x14 + 13x14 + 10x14^{9}$$

Two 2's complement number having sign bits x and y are added and the sign bit of the result is z.

Then, the occurrence of overflow is indicated by the Boolean function.

B.
$$\overline{X} \overline{y} \overline{z}$$

$$\overline{z} \ \overline{y} \ z + x \ y \ \overline{z}$$

D.
$$x \overline{y} \overline{z}$$

If $(12x)^3 = (123)x$ then the value of x is

None of these

$$(12x)_{3} = (123)_{x}$$

$$(1x3^{2} + 2x3 + x) = (x^{2} + 2x + 3)_{0}$$

$$9 + 6 + x = x^{2} + 2x + 3$$

$$\chi^{2} + \chi - |2 = 0$$
 $(\chi - 3)(\chi + 4) = 0$
 $\chi^{2} = 3$
 $\chi^{2} = -4$

The base of the number system for the addition operation 24 + 14 = 41 to be true is

CHOICE (4)		Response
a.	8	
b.	6	
c.	5	
d.	7	

- A. (1217)₁₆
- B. (028F)₁₆
- c. (2297)₁₀
- D. (0B17)₁₆

73_x (in base – x number system) is equal to 54_y (in base – y number system), the possible values of x and y are

8, 16

10,12

8, 11

Decimal 43 in Hexadecimal and BCD number system is respectively

- A. B2, 0100 0011
- B. 2B, 0100 0011
- C. 2B, 0011 0100
- D. B2, 0100 0100

Magnitude			
unsigned Signed		Complement	
		1'5	2'5
101	0101	0101	010]
X	1101	1010	1011
	unsigned	unsigned Signed	unsigned Signed Comp 101 101 0101 0101

$$\frac{2^{1}5}{1001}$$

Q If number given below are written in 1's complement then convert it into equivalent decimal?

(3) 0000011001 → +25 ~

$$9 \quad 111 \rightarrow -0$$
 0000

$$(2)$$
 00 1 100 1 \longrightarrow $(+25)$

$$(3)$$
 0000011001 $\rightarrow (+25)$

Recimal=? 1100110

