HR Analytics Project (Project 4)

Name = Chandrima Chatterjee

Introduction

Every year a lot of companies hire a number of employees. The companies invest time and money in training those employees, not just this but there are training programs within the companies for their existing employees as well. The aim of these programs is to increase the effectiveness of their employees.

HR Analytics

Human resource analytics (HR analytics) is an area in the field of analytics that refers to applying analytic processes to the human resource department of an organization in the hope of improving employee performance and therefore getting a better return on investment. HR analytics does not just deal with gathering data on employee efficiency. Instead, it aims to provide insight into each process by gathering data and then using it to make relevant decisions about how to improve these processes.

Attrition in HR

Attrition in human resources refers to the gradual loss of employees over time. In general, relatively high attrition is problematic for companies. HR professionals often assume a leadership role in designing company compensation programs; work culture and motivation systems that help the organization retain top employees.

Attrition affecting Companies

A major problem in high employee attrition is its cost to an organization. Job postings, hiring processes, paperwork and new hire training are some of the common expenses of losing employees and replacing them. Additionally, regular employee turnover prohibits your organization from increasing its collective knowledge base and experience over time. This is especially concerning if your business is customer facing, as customers often prefer to interact with familiar people. Errors and issues are more likely if you constantly have new workers.

Problem Statement

Employee turnover (also known as "employee's month") is a costly problem for companies. The actual cost of replacing an employee from the organization with the new employee.

The actual cost of replacing employees remains outstanding for most of the employers. This is because of the amount of time spent on interviews and replacements, sign-on bonuses, and several months of reduced productivity, and new employees getting used to the new role.

So the questions comes in our mind is following.

How does Attrition affect companies? and how does HR Analytics help in analyzing attrition? Here I will be using a step-by-step systematic approach using a method that could be used for a variety of ML problems. This project would fall under what is commonly known as HR Analytics or People Analytics.

Data Analysis

```
#Lets check the count of each class in taret variables.
sns.countplot(x='Attrition',data=df)
plt.show()
```


Observation: -we can see that attrition of employees(19%) is quiet low.

#Lets describe the matrix df.describe()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	Em
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	147
mean	36.923810	0.161224	1.607483	802.485714	1.260544	9.192517	2.912925	2.247619	1.0	102
std	9.135373	0.367863	0.665455	403.509100	0.527792	8.106864	1.024165	1.331369	0.0	602
min	18.000000	0.000000	0.000000	102.000000	0.000000	1.000000	1.000000	0.000000	1.0	1.00
25%	30.000000	0.000000	1.000000	465.000000	1.000000	2.000000	2.000000	1.000000	1.0	491
50%	36.000000	0.000000	2.000000	802.000000	1.000000	7.000000	3.000000	2.000000	1.0	102
75%	43.000000	0.000000	2.000000	1157.000000	2.000000	14.000000	4.000000	3.000000	1.0	155
max	60.000000	1.000000	2.000000	1499.000000	2.000000	29.000000	5.000000	5.000000	1.0	206

8 rows × 35 columns

#Checking correlation with the help of heatmap.
sns.heatmap(dfcor)

: <matplotlib.axes._subplots.AxesSubplot at 0x1511b4f0580>


```
plt.figure(figsize=(20,20))
for i in range (0,len(collist)):
    plt.subplot(nrows,ncol,i+1)
    sns.distplot(df[collist[i]])
```


: #lets again check the skewness df.skew()

:	Age	0.413286
	Attrition	1.844366
	BusinessTravel	-1.439006
	DailyRate	-0.003519
	Department	0.172231
	DistanceFromHome	-0.029121
	Education	-0.289681
	EducationField	-0.054786
	EmployeeNumber	0.016574
	EnvironmentSatisfaction	-0.321654
	Gender	-0.408665
	HourlyRate	-0.032311
	JobInvolvement	-0.498419
	JobLevel	0.448133
	JobRole	-0.357270
	JobSatisfaction	-0.329672
	MaritalStatus	-0.152175
	MonthlyIncome	0.286448
	MonthlyRate	0.018578
	NumCompaniesWorked	0.092896
	OverTime	0.964489
	PercentSalaryHike	0.513543
	PerformanceRating	1.921883
	RelationshipSatisfaction	-0.302828
	StockOptionLevel	0.271963
	TotalWorkingYears	-0.622175
	TrainingTimesLastYear	-1.075852
	WorkLifeBalance	-0.552480
	YearsAtCompany	-0.207708
	YearsInCurrentRole	-0.383498
	YearsSinceLastPromotion	0.718805
	YearsWithCurrManager	-0.357686
	dtype: float64	

Preprocessing Pipeline

```
#Now treating the outliers
from scipy.stats import zscore
z = np.abs(zscore(df))
\verb"array" ([[0.4463504 , 2.28090588, 0.59004834, \ldots, 0.29061127, 0.97334237,
       0.54799589],
       [1.32236521, 0.4384223 , 0.91319439, ..., 0.88267046, 0.11727147,
       0.90492352],
       \hbox{\tt [0.008343 \ , 2.28090588, 0.59004834, \ldots, 1.73678265, 0.97334237,} \\
       1.67504313],
      [1.08667552, 0.4384223 , 0.59004834, ..., 0.352871 , 0.97334237,
       0.04493464],
      [1.32236521, 0.4384223 , 0.91319439, ..., 0.71446221, 0.97334237,
       1.05105714],
      [0.32016256, 0.4384223 , 0.59004834, ..., 0.00951942, 0.11727147, 0.311993 ]])
threshold = 3
print(np.where(z>3))
(array([ 0, 23, 43, 45, 69, 94, 127, 135, 180, 201, 258, 261, 286, 293, 296, 301, 322, 331, 370, 401, 457, 487,
       512, 559, 596, 615, 649, 658, 709, 719, 722, 727, 735,
       770, 797, 798, 817, 828, 828, 833, 942, 957, 958, 966,
       972, 973, 976, 978, 981, 984, 1039, 1044, 1125, 1133, 1153,
      1169, 1170, 1246, 1301, 1311, 1360, 1369, 1376, 1401, 1467],
     26, 26, 26, 25, 26, 26, 26, 26, 25, 26, 26, 26, 26, 26, 25, 26, 26,
                                                                                                                 Activa
      26, 26, 26, 25, 26, 26, 26, 26, 26, 26, 25, 26, 26, 26, 26, 26, 26,
      26, 26, 26, 25, 26, 26, 26, 26, 25, 26, 26, 26, 26, 26],
     dtype=int64))
```

Building Machine Learning Models

```
lm = LogisticRegression()
lm.fit(x_train,y_train)
predlm = lm.predict(x_test)
print(accuracy_score(y_test,predlm))
print(confusion_matrix(y_test,predlm))
print(classification_report(y_test,predlm))
0.8685344827586207
[[383 13]
 [ 48 20]]
                           recall f1-score
              precision
                                               support
           0
                   0.89
                             0.97
                                       0.93
                                                   396
           1
                                       0.40
                   0.61
                             0.29
                                                   68
    accuracy
                                       0.87
                                                   464
  macro avg
                   0.75
                             0.63
                                       0.66
                                                   464
weighted avg
                   0.85
                             0.87
                                       0.85
                                                   464
```

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=100,random_state=42)

rf.fit(x_train,y_train)
predrf = rf.predict(x_test)

print(accuracy_score(y_test,predrf))
print(confusion_matrix(y_test,predrf))
print(classification_report(y_test,predrf))
```

0.8642241379310345

				3] 8]]	
support	f1-score	recall	precision		
396	0.93	0.99	0.87	0	
68	0.20	0.12	0.73	1	
464	0.86			curacy	accu
464	0.56	0.56	0.80	ro avg	macro
464	0.82	0.86	0.85	ed ave	weighted

```
from sklearn.tree import DecisionTreeClassifier

dct=DecisionTreeClassifier(criterion='entropy')
dct.fit(x_train,y_train)
preddct=dct.predict(x_test)

print(accuracy_score(preddct,y_test))
print(confusion_matrix(y_test,preddct))
print(classification_report(y_test,preddct))

0.790948275862069
[[348 48]
[ 49 19]]
```

[49 19]] recall f1-score precision support 0.88 0.88 0.88 396 0.28 0.28 1 0.28 68 accuracy 0.79 464 macro avg 0.58 0.58 0.58 464 weighted ava a 70 a 70 a 70 161

```
from matplotlib import pyplot
pyplot.bar([x for x in range(len(importance))], importance)
pyplot.show()
```



```
feat_importances = pd.Series(rf.feature_importances_, index=df1.columns)
feat_importances = feat_importances.nlargest(20)
feat_importances.plot(kind='barh')
```

: <matplotlib.axes._subplots.AxesSubplot at 0x1511d775820>

Cross Validating

```
from sklearn.model_selection import cross_val_score

score= cross_val_score(rf,x,y,cv=5)
print(score)
print(score.mean())
print(score.std())
```

[0.85815603 0.87188612 0.86476868 0.85765125 0.86120996] 0.8627344085207339 0.005234809555934075

Conclusion

```
# Save to file in the current working directory
pkl_filename = "pickle_model.pkl"
with open(pkl_filename, 'wb') as file:
    pickle.dump(lm, file)

# Load from file
with open(pkl_filename, 'rb') as file:
    pickle_model = pickle.load(file)

# Calculate the accuracy score and predict target values
score = pickle_model.score(x_test, y_test)
print("Test score: {0:.2f} %".format(100 * score))
Ypredict = pickle_model.predict(x_test)
```

Test score: 86.85 %

Test score: 86.85 %

Conclusion

```
import pickle
filename='picklesvcfile.pkl'
pickle.dump(rf, open(filename, 'wb'))
#load the model from disk
loaded model=pickle.load(open(filename, 'rb'))
loaded model.predict(x test)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
 0, 0], dtype=int64)
```

In conclusion, we can say that HR attrition rate is major issue in every organization because it plays with people mindset. With the help of machine learning algorithms, we can minimize the spread. Also logistic regression is the best model for performance where I got 86.85% of accuracy among of the entire performing machine learning model. This model can be used for detecting HR attrition rate.