Practice Questions

April 19, 2024

Question 1. Consider a Markov chain with state space $\{1, 2, 3, 4, 5\}$, with transition matrix given by

$$P = \begin{bmatrix} 0.3 & 0.7 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0.1 & 0 & 0.6 & 0.2 & 0.1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Compute f_{32} .

By f-expansion, we have

$$f_{32} = 0.6f_{32} + 0.1f_{12} + 0.2f_{42} + 0.1f_{52},$$

 $f_{12} = 0.7 + 0.3f_{12}.$

4 and 5 are absorbing states. So we have $f_{42} = f_{52} = 0$. Solving the equation, we get $f_{32} = 0.25$

Question 2. Consider a Markov chain on the state space $S = \{0, 1, 2, \dots\}$. For any $i \ge 1$, we define the transition from the state i as

$$p_{i,i+1} = \frac{i}{2i+1}$$
, and $p_{i,i-1} = \frac{i+1}{2i+1}$,

and $p_{i,j} = 0$ for $j \notin \{i-1, i+1\}$. We further let $p_{0,1} = 1$ Show that the Markov chain is null recurrent.

Clearly the Markov chain is irreducible. At each $i \neq 0$, the probability of moving to the left is larger than that of SRW. So $f_{i0}(\text{this chain}) \geq f_{i0}(\text{SRW}) = 1$. The chain is recurrent.

We define

$$\mu_i := \begin{cases} \frac{2(2i+1)}{3i(i+1)} & i \ge 1\\ \frac{3}{2} & i = 0. \end{cases}$$

It is easy to verify that $\mu_i p_{i,i+1} = \mu_{i+1} p_{i+1,i}$ for each $i \geq 0$. So μ is a stationary measure. However, we note that

$$\sum_{i \in S} \mu_i \ge \sum_{i=1}^{+\infty} \frac{2}{3i} = +\infty.$$

So the stationary distribution does not exist, and therefore null recurrent.

Question 3. Let $(B_t : t \ge 0)$ be a standard Brownian motion.

• If the process $M_t := \sin(tB_t) - \int_0^t f(s, B_s) ds$ is a martingale. Write down the function form of f, and express M_t in the form of an Itô integral.

$$dM_t = \cos(tB_t) + \cos(tB_t)dB_t - \frac{1}{2}\sin(tB_t).$$

So we let $f(t,x) = \cos(tx) - \frac{1}{2}\sin(tx)$, and the martingale is $M_t = \int_0^t \cos(sB_s)dB_s$.

• Find the probability $\mathbb{P}(B_1 > -1 \text{ and } \max_{0 \le t \le 1} B_t > 1)$. We decompose

$$\mathbb{P}(B_1 > -1 \text{ and } \max_{0 \le t \le 1} B_t > 1) = \mathbb{P}(\max_{0 \le t \le 1} B_t > 1) - \mathbb{P}(B_1 \le -1 \text{ and } \max_{0 \le t \le 1} B_t > 1).$$

Using reflection principle, we can derive

$$\mathbb{P}\left(\max_{0 \le t \le 1} B_t > 1\right) = 2\mathbb{P}\left(B_1 \ge 1\right), \text{ and}$$

$$\mathbb{P}\left(B_1 \le -1 \text{ and } \max_{0 \le t \le 1} B_t > 1\right) = \mathbb{P}\left(B_1 \ge 3\right).$$

So the answer is

$$\mathbb{P}(B_1 > -1 \text{ and } \max_{0 \le t \le 1} B_t > 1) = \frac{2}{\sqrt{2\pi}} \int_1^{+\infty} e^{-x^2/2} dx - \frac{1}{\sqrt{2\pi}} \int_3^{+\infty} e^{-x^2/2} dx.$$

• Apply Itô's formula to the process $(e^{\lambda B_t - \lambda^2 t/2})_{t \geq 0}$, and use it to compute the moment generating function of τ , where $\tau := \inf\{t > 0 : |B_t| = 1\}$.

$$d(e^{\lambda B_t - \lambda^2 t/2}) = -\frac{\lambda^2}{2} e^{\lambda B_t - \lambda^2 t/2} dt + \lambda e^{\lambda B_t - \lambda^2 t/2} dB_t + \frac{\lambda^2}{2} e^{\lambda B_t - \lambda^2 t/2} dt = \lambda e^{\lambda B_t - \lambda^2 t/2} dB_t.$$

So the process is a martingale. The martingale is bounded up to time τ . So by OST,

$$\mathbb{E}\left[e^{\lambda B_{\tau} - \lambda^2 \tau/2}\right] = 1.$$

By symmetry, B_{τ} and τ are independent. So we have

$$\mathbb{E}\left[e^{-\lambda^2\tau/2}\right] = 1/\mathbb{E}\left[e^{\lambda B_{\tau}}\right] = \frac{2}{e^{\lambda} + e^{-\lambda}}.$$

Question 4. Let $(X_t)_{t\geq 0}$ be a recurrent Markov chain on the state space S, and let $V: S \to \mathbb{R}$ be a real-valued function, such that

$$\sum_{j \in S} p_{i,j} V(j) = V(i), \quad \text{for } i \in S.$$

- If V is uniformly bounded in [0,1], show that V is a constant for all states.
- Let the Markov chain be simple symmetric random walk on \mathbb{Z} . Find a non-constant and unbounded function V such that the above equation is true.

For the chain starting from i, the process $(M_n := V(X_n))_{n \ge 0}$ is a martingale. Let τ_j be the first hitting time of the state j. By recurrence $\mathbb{P}(\tau_j < +\infty) = 1$. Since the martingale is uniformly bounded, by OST, we have

$$V(i) = M_0 = \mathbb{E}[M_{\tau_j}] = V(j).$$

So V is a constant function. For SRW, we let V(x) = x.