Rough paths notes

Kexing Ying

September 12, 2024

This note is based on A course on rough paths by Peter Friz and Martin Hairer.

Space of rough paths

Let V be a Banach space and T > 0. A V-valued α -Hölder rough path is a pair of functions

$$X: [0,T] \to V$$
 and $\mathbb{X}: [0,T]^2 \to V^{\otimes 2}$

such that

$$||X||_{\alpha} = \sup_{s \neq t \in [0,T]} \frac{||X_{s,t}||}{|s-t|^{\alpha}}, ||X||_{2\alpha} = \sup_{s \neq t \in [0,T]} \frac{||X_{s,t}||}{|s-t|^{2\alpha}} < \infty$$

and moreover, satisfy Chen's relation:

$$\delta \mathbb{X}_{s,u,t} = \mathbb{X}_{s,t} - \mathbb{X}_{s,u} - \mathbb{X}_{u,t} = X_{s,u} \otimes X_{u,t} \tag{1}$$

where we denote $X_{s,t} = X_t - X_s$.

Recall that the tensor norm is defined as

$$||x|| = \inf \{ \sum ||v|| ||w|| : x = \sum v \otimes w \}.$$

Intuitively, the lift $\mathbb{X}_{s,t}$ is representing $\int_s^t X_{s,r} \otimes dX_r$ and Chen's relation follows by asserting that

- the map $f : \mapsto \int f_r dX_r$ is linear;
- $\int_s^t dX_r = X_t X_s$ and
- $\int_{s}^{t} f_r dX_r = \int_{s}^{u} f_r dX_r + \int_{u}^{t} f_r dX_r.$

We remark that the lift \mathbb{X} is not unique from Chen's relation. Indeed, if \mathbb{X} is a lift, then so is $\mathbb{X}_{s,t} + F_t - F_s$. In fact, they are all of this form.

We say a rough path (X, \mathbb{X}) is weakly geometric if

$$\operatorname{Sym}(\mathbb{X}_{s,t}) = \frac{1}{2} X_{s,t} \otimes X_{s,t}.$$

This relation is determined by integration by parts.

We introduce the following vocabulary:

- the map $X \mapsto (X, \mathbb{X})$ is called a rough path lift.
- \mathscr{C}^{∞} denotes the space of smooth rough paths.
- $\mathcal{L}(\mathscr{C}^{\infty}) \subseteq \mathscr{C}^{\infty}$ denotes the canonical lift of a smooth paths.
- \mathscr{C}_g^a the space of weakly geometric rough paths.

•
$$\mathscr{C}^{0,\alpha}_{\sigma} = \overline{\mathscr{L}(\mathscr{C}^{\infty})}^{\mathscr{C}^{\alpha}}.$$

For $\alpha < \beta$, we have the inclusion $\mathscr{C}_g^{\beta} \subseteq \mathscr{C}_g^{0,\alpha} \subseteq \mathscr{C}_g^{\alpha}$.

We would like to introduce a topology on the space of rough paths via a norm which makes the space of rough paths a linear subspace of $C^a \oplus C_2^{2\alpha}$. By observing that the norm $\|X\|_{\alpha} + \|\mathbb{X}\|_{2\alpha}$ does not respect Chen's relation, we remark that this norm does not make the space of rough paths a linear subspace. Instead, define

$$\|(X, \mathbb{X})\|_{\alpha} = \|X\|_{\alpha} + \sqrt{\|\mathbb{X}\|_{2\alpha}}.$$

We also record the following (in-homogeneous) α -Hölder metric on $\mathscr{C}^{\alpha}([0,T],V)$:

$$\rho_{\alpha}(X,Y) = \sup_{s \neq t \in [0,T]} \frac{\|X_{s,t} - Y_{s,t}\|}{|s - t|^{\alpha}} + \sup_{s \neq t \in [0,T]} \frac{\|X_{s,t} - Y_{s,t}\|}{|s - t|^{2\alpha}}.$$

The space of rough paths can be alternatively described by a path taking values in a certain additive Lie group. Define

$$T^{(2)}(V) = \mathbb{R} \oplus V \oplus V^{\otimes 2}$$

with the multiplication

$$(a, b, c) \otimes (a', b', c') = (aa', ab' + a'b, ac + a'c' + b \otimes b').$$

 $T^{(2)}(V)$ is known as the step-2 truncated tensor algebra over V. Then, considering

$$T_1^{(2)}(V) = \{1\} \oplus V \oplus V^{\otimes 2}$$

with the inherited multiplication from $T^{(2)}(V)$, we have that $T_1^{(2)}(V)$ is a Lie group with the identity (1,0,0) and inverse given by

$$(1,b,c)^{-1} = (1,-b,b^{\otimes 2}-c).$$

Then, we consider paths taking values in $T_1^{(2)}(V)$ and in particular, interpret

$$t \mapsto X_t = (1, X_t, X_{0,t}) \in T_1^{(2)} V.$$

Chen's relation in this case becomes $X_{s,u} \otimes X_{u,t} = X_{s,t}$ where $X_{s,t} = X_s^{-1} \otimes X_t$.

Denoting $T_0^{(2)}(V) = V \oplus V^{\otimes 2}$, we define its Lie bracket by

$$[(b,c),(b',c')] = b \otimes b' - b' \otimes b.$$

This makes $T_0^{(2)}(V)$ a Lie algebra. Then, denoting $[V,V] = \overline{\langle [v,w] : v,w \in V \rangle}$, we define $g^{(2)}(V)$ to be the subalgebra of $T_0^{(2)}$ defined by

$$g^{(2)}(V) = V \oplus [V, V].$$

We remark that in \mathbb{R}^d , $[\mathbb{R}^d, \mathbb{R}^d]$ is the space of symmetric matrices and so is automatically closed. Define the map

 $\exp: T_0^{(2)}(V) \to T_1^{(2)}(V): (b,c) \mapsto \left(1, b, c + \frac{1}{2}b \otimes b\right).$

Then, denoting $G^{(2)}(V) = \exp(g^{(2)}(V)) \le T_1^{(2)}(V)$, it is easy the check that paths taking values in $G^{(2)}(V)$ corresponds to the weakly geometric rough paths.

Integration of one-forms

Integration of rough paths is motivated by Taylor expansion. Suppose $F: V \to \mathcal{L}(V, W) \in C^{1+}$, and $X = (X, \mathbb{X}) \in \mathcal{C}^{\alpha}$, then Taylor expansion gives

$$F(X_r) \approx F(X_s) + DF(X_r)X_{s,r}$$

with $DF(X_t) \in \mathcal{L}(V,\mathcal{L}(V,W)) = \mathcal{L}(V \otimes V,W)$. Then, the Riemann-Stieltjes sum can be interpreted as

$$\int_{s}^{t} F(X_r) dX_r = \lim_{|\mathscr{D}| \to 0} \sum_{[u,v] \in \mathscr{D}} \left(F(X_u) X_{u,v} + DF(X_r) \mathbb{X}_{s,r} \right)$$
(2)

where we hope the higher order terms vanished. This turns out to be the case for $\alpha \in (1/3, 1/2]$.

Lemma 1. Let $F: V \to \mathcal{L}(V, W) \in C_b^2$ and $X = (X, \mathbb{X})$ be an α -Hölder rough path with $\alpha > 1/3$. Then, denoting Y = F(X), Y' = DF(X) and $R_{s,t}^Y = Y_{s,t} - Y_s'X_{s,t}$, then

$$Y, Y' \in C^{\alpha}$$
 and $R^Y \in C_2^{2\alpha}$.

Moreover, $||Y||_{\alpha} \le ||DF||_{\infty} ||X||_{\alpha}$, $||Y'||_{\alpha} \le ||D^2F||_{\infty} ||X||_{\alpha}$ and $||R^Y||_{2\alpha} \le \frac{1}{2} ||D^2F||_{\infty} ||X||_{\alpha}^2$.

The above lemma allows us to apply the sewing lemma with increments

$$\Xi_{s,t} = Y_s X_{s,t} + Y_s' X_{s,t}$$

resulting in the following theorem.

Theorem 1 (Lyons). Let $F: V \to \mathcal{L}(V, W) \in C_b^2$ and (X, \mathbb{X}) be an α -Hölder rough path with $\alpha > 1/3$. Then, the limit (2) exists and we have the bound

$$\left\| \int_{s}^{t} F(X_{r}) dX_{r} - F(X_{s}) X_{s,t} - DF(X_{s}) X_{s,t} \right\| \lesssim_{\alpha} \|F\|_{C_{b}^{2}} (\|X\|_{\alpha}^{3} + \|X\|_{\alpha} \|X\|_{2\alpha}) |t - s|^{3\alpha}.$$

Since fundamentally, the above theorem relies solely on Lemma 1, it is natural to make the following definition for the space of integrands.

Definition 1. Let $X \in C^{\alpha}([0,T],V)$ and $Y \in C^{\alpha}([0,T],\bar{W})$. We say Y is controlled by X if there exists some $Y' \in C^{\alpha}([0,T],\mathcal{L}(V,\bar{W}))$ and $R^Y \in C^{2\alpha}_2$ with $R^Y_{s,t} = Y_{s,t} - Y'_s X_{s,t}$. We write the space of all such pairs of (Y,Y') as $\mathcal{D}^{2\alpha}_X([0,T],\bar{W})$.

We endow $\mathcal{D}_{X}^{2\alpha}([0,T],\bar{W})$ with the seminorm

$$||Y, Y'||_{X, 2\alpha} = ||Y'||_{\alpha} + ||R^Y||_{2\alpha}.$$

Theorem 2 (Gubinelli). Let $X = (X, \mathbb{X}) \in \mathscr{C}^{\alpha}([0,T],V)$ and $(Y,Y') \in \mathscr{D}_{X}^{2\alpha}([0,T],\mathscr{L}(V,W))$ where $\alpha \in (1/3,1/2]$. Then, the limit

$$\int_{s}^{t} Y_{r} dX_{r} = \lim_{|\mathscr{P}| \to 0} \sum_{[u,v] \in \mathscr{P}} (Y_{u}X_{u,v} + Y'_{u}X_{u,v})$$

exists. Moreover, we have the bound

$$\left\| \int_{s}^{t} Y_{r} dX_{r} - Y_{s} X_{s,t} - Y_{s}' \mathbb{X}_{s,t} \right\| \lesssim_{\alpha} (\|X\|_{\alpha} \|R^{Y}\|_{2\alpha} + \|\mathbb{X}\|_{2\alpha} \|Y'\|_{\alpha}) |t - s|^{3\alpha}.$$

Finally, the map

$$\Phi: \mathscr{D}_{X}^{2\alpha}([0,T],\mathscr{L}(V,W)) \to \mathscr{D}_{X}^{2\alpha}([0,T],W): (Y,Y') \mapsto \left(\int_{0}^{T} Y_{r} dX_{r}, Y\right)$$

is a continuous linear map between Banach spaces with the bound

$$\|\Phi(Y,Y')\|_{X^{2}a} \le \|Y\|_{a} + \|Y'\|_{\infty} \|X\|_{2a} + C_{a}T^{a}(\|X\|_{a}\|R^{Y}\|_{2a} + \|X\|_{2a}\|Y'\|_{a}).$$

Moreover, if $(X, \mathbb{X}) \in \mathscr{C}^{\alpha}([0, T], V)$ and $(Y, Y') \in \mathscr{D}_{X}^{2\alpha}([0, T], \mathscr{L}(\bar{V}, \bar{W})), (Z, Z') \in \mathscr{D}_{Y}^{2\alpha}([0, T], \bar{V}),$ then defining

$$\Xi_{s,t} = Y_s Z_{s,t} + Y_s' Z_s' X_{s,t}$$

where we interpret $Y'_s \in \mathcal{L}(V, \mathcal{L}(\bar{V}, \bar{W})) \simeq \mathcal{L}(V \otimes \bar{V}, \bar{W})$, we may apply the sewing lemma in order to make sense of $\int_s^t Y_r dZ_r$.

Reduced rough paths

Suppose now we look at rough integration against gradient vector fields, i.e. $\int_0^T DF(X_s) dX_s$ for some $F \in \mathcal{C}_h^1(V, W)$. In this case, the corresponding integral is given by

$$\int_0^T DF(X_s) dX_s = \sum_{(s,t) \in \mathscr{D}} \left(DF(X_s) X_{s,t} + D^2 F(X_s) X_{s,t} \right) + o(|\mathscr{D}|).$$

In this case, as $D^2F(X_s) \in \mathcal{L}(V \otimes V, W)$ is symmetric, it annihilates any antisymmetric parts of \mathbb{X} . Thus, denoting $\mathbb{S} + \mathbb{A} = \mathbb{X}$ for the symmetric and any antisymmetric part of \mathbb{X} , we have that $D^2F(X_s)\mathbb{X}_{s,t} = D^2F(X_s)\mathbb{S}_{s,t}$ and

$$\int_0^T DF(X_s) dX_s = \sum_{(s,t) \in \mathscr{P}} \left(DF(X_s) X_{s,t} + D^2 F(X_s) \mathbb{S}_{s,t} \right) + o(|\mathscr{P}|). \tag{3}$$

Consequently, the rough integral in this case is completely determined by the symmetric part of the lift. With this in mind, we call a pair (X, \mathbb{S}) a *reduced rough path* if they satisfy the same Hölder condition as a rough path while \mathbb{S} satisfies the reduced Chen's relation:

$$\delta \mathbb{S}_{s,u,t} = \mathbb{S}_{s,t} - \mathbb{S}_{s,u} - \mathbb{S}_{u,t} = \operatorname{Sym}(X_{s,u} \otimes X_{u,t})$$

It is easy to check that, for any $\gamma : [0, T] \rightarrow V \otimes V$ which is 2α -Hölder,

$$\mathbb{S}_{s,t} = \frac{1}{2}(X_{s,t} \otimes X_{s,t} + \gamma_{s,t})$$

is a reduced rough path. Moreover, it turns out all reduced rough paths are of this form.

Definition 2. For a reduced rough path X = (X, S), we define the bracket

$$[X]: t \in [0, T] \mapsto [X]_t = X_{0,t} \otimes X_{0,t} - 2S_{0,t} \in Sym(V \otimes V)$$

It is clear that [X] defines a 2α -Hölder path in $\mathrm{Sym}(V \otimes V)$ and $[X]_{s,t} = X_{s,t} \otimes X_{s,t} - 2\mathbb{S}_{s,t}$.

Theorem 3 (Itô's formula for rough integrals). For $F: V \to W$ in \mathcal{C}_b^3 and $X = (X, \mathbb{S})$ a α -reduced rough path with $\alpha > \frac{1}{3}$, then

$$dF(X_t) = DF(X_t)dX_t + \frac{1}{2}D^2F(X_t)d[X]_t$$

with the first integral defined by Equation (3) and the second integral interpreted as a Young integral.

For Brownian motion, the bracket coincides with the quadratic variation. Indeed, let $B = (B, \mathbb{B}^{It\hat{o}})$ be the Itô lift of a Brownian motion in \mathbb{R} , by the classical Itô's formula, we have

$$Sym(\mathbb{B}_{0,t}^{It\hat{0}}) = \mathbb{B}_{0,t}^{It\hat{0}} = \frac{1}{2}B_t^2 - \frac{1}{2}t.$$

Thus,

$$[\mathsf{B}]_t = B_t^2 - 2\mathbb{B}_{0,t}^{\mathrm{It\hat{o}}} = t = \langle B \rangle_t.$$

Stability

Given $(X, \mathbb{X}), (\tilde{X}, \tilde{\mathbb{X}}) \in \mathscr{C}^{\alpha}$ and $(Y, Y') \in \mathscr{D}_{X}^{2\alpha}, (\tilde{Y}, \tilde{Y}') \in \mathscr{D}_{\tilde{X}}^{2\alpha}$, we define the following notion of "distance":

$$\|Y,Y';\tilde{Y},\tilde{Y}'\|_{X,\tilde{X},2\alpha}=\|Y'-Y\|_{2\alpha}+\|R^Y-R^{\tilde{Y}}\|_{2\alpha}.$$

While obviously, this is not a metric as (Y, Y') and (\tilde{Y}, \tilde{Y}') are not necessarily in the same space, even in the case where $X = \tilde{X}$, this distance still does not differentiate between Y and Y + c. Nonetheless, by considering the canonical embedding

$$\iota_X:\mathcal{D}_X^{2\alpha}\to C^\alpha\oplus C^{2\alpha}:(Y,Y')\mapsto (Y',R^Y),$$

which is an injection if we fix $Y_0 = \xi$ (since then $Y_t = \xi + R_{0,t}^Y + Y_0'X_{0,t}$), we have that

$$\|Y,Y';\tilde{Y},\tilde{Y}'\|_{X,\tilde{X},2\alpha} = \|\iota_X(Y,Y') - \iota_{\tilde{X}}(\tilde{Y},\tilde{Y}')\|_{\alpha,2\alpha}.$$

To this end, we have a bound of the form

$$\|\Phi(Y,Y');\Phi(\tilde{Y},\tilde{Y}')\|_{X,\tilde{X},2\alpha}\leq C(\rho_{\alpha}(\mathsf{X},\tilde{\mathsf{X}})+|Y_0'-\tilde{Y}_0'|+T^{\alpha}\|Y,Y';\tilde{Y},\tilde{Y}'\|_{X,\tilde{X},2\alpha})$$