Tema 4 (II) El procesador

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid

Contenidos

Técnicas de control

- 1. Lógica cableada
- 2. Lógica almacenada

2. Otros aspectos de funcionamiento

- Interrupciones y excepciones
- 2. Estado del procesador
- 3. Niveles de ejecución
 - Modo privilegiado/usuario
- 4. Arranque del computador
- 5. Paralelismo

¡ATENCIÓN!

- Estas transparencias son un guión para la clase
- Los libros dados en la bibliografía junto con lo explicado en clase representa el material de estudio para el temario de la asignatura
 - Para la preparación de los exámenes se ha de utilizar todo el material de estudios

Contenidos

1. Técnicas de control

- Lógica cableada
- 2. Lógica almacenada

2. Otros aspectos de funcionamiento

- Interrupciones y excepciones
- 2. Estado del procesador
- 3. Niveles de ejecución
 - Modo privilegiado/usuario
- 4. Arranque del computador
- 5. Paralelismo

Unidad de control

Técnicas de control

- ▶ El diseño de la unidad de control exige haber definido previamente las señales que hay que activar en cada una de las instrucciones máquina que es capaz de interpretar:
 - Cronogramas.
 - Operaciones elementales.
 - Lenguaje simbólico.

- add r1, r2
- lw r1, dir
- bz dir
- sw r1, dir

Técnicas de control

- **Dos técnicas** de diseñar y construir una unidad de control:
 - Lógica cableada
 - Lógica almacenada (microprogramación)

A) Unidad de control cableada

- Construcción mediante puertas lógicas, siguiendo los métodos de diseño lógico.
- Características:
 - Laborioso y costoso el diseño y puesta a punto del circuito
 - Difícil de modificar:
 - rediseño completo.
 - Muy rápida (usado en computadores RISC)

B) Unidad de control almacenada. Microprogramación

Idea básica: Emplear una memoria donde almacenar las señales de cada período de cada instrucción.

- Características:
 - Fácil modificación
 - Actualización, ampliación, etc..
 - ▶ Ej.: Ciertas consolas, routers, etc.
 - Fácil tener instrucciones complejas
 - EJ.: Rutinas de diagnóstico, etc.
 - Fácil tener varios juegos de instrucciones
 - > Se pueden emular otros computadores.
 - ► Hw simple ⇒ difícil microcódigo

Unidad de control almacenada. Microprogramación (1)

- Microinstrucción: A cada palabra que define un período de una instrucción
- Las microinstrucciones
 - tienen un bit por cada señal de control.
 - cadena de l's y 0's que representa el estado de cada señal de control durante un período de una instrucción.

Unidad de control almacenada. Microprogramación (2)

- Microprograma: conjunto ordenado de microinstrucciones, que representan el cronograma de una instrucción.
- Firmware (microcódigo): conjunto de los microprogramas de una máquina.

Unidad de control almacenada. Microprogramación (3)

Contenido M.Control

- RESET: valores por defecto
 - PC <-0x00, SP<- 0xFF, ...
- ▶ FETCH: traer sig. instrucc.
 - I<- Mem[PC], PC++, salto-a-C.O.</p>
- Microprograma: uno por instrucción de ensamblador
 - Traer resto de operandos (si hay)
 - actualizar PC en caso de más operandos
 - Realizar la instrucción
 - Guardar los datos
 - Salto a FETCH

Estructura de la unidad de control microprogramada (1)

Tres condiciones básicas:

- Memoria de control suficiente para almacenar todos los microprogramas correspondientes a todas las instrucciones.
- 2. Procedimiento para asociar a cada instrucción su microprograma
 - Procedimiento que convierta el código de operación de la instrucción en la dirección de la memoria de control donde empieza su microprograma.
- 3. Mecanismo para ir leyendo las sucesivas microinstrucciones, y para bifurcar a otro microprograma cuando termina el que se está ejecutando.

Estructura de la unidad de control microprogramada (1)

- Ejemplo de estructura de unidad de control
- Permite microbifurcaciones condicionales, microbucles y microsubrutinas

Formato de las microinstrucciones

Formato de la microinstrucción: especifica el n° de bits y el significado de cada uno de ellos.

- Las señales se agrupan por campos:
 - Señales triestado de acceso a bus
 - Señales de gobierno de la ALU
 - Señales de gobierno del banco de registros
 - Señales de gobierno de la memoria

Contenidos

Técnicas de control

- 1. Lógica cableada
- 2. Lógica almacenada

2. Otros aspectos de funcionamiento

- Interrupciones y excepciones
- 2. Estado del procesador
- 3. Niveles de ejecución
 - Modo privilegiado/usuario
- 4. Arranque del computador
- 5. Paralelismo

Excepciones

- Originan una ruptura de secuencia no programada
 - Dentro del microprograma de la instrucción en curso...
 - ...Bifurcación a subrutina del S.O. que la trata
- Posteriormente, restituye el estado y devuelve el control al programa interrumpido o finaliza su ejecución
- Causa síncrona a la ejecución del programa en curso
 - División entre cero
 - Etc.

Interrupción

- Originan una ruptura de secuencia no programada
 - Al final microprograma de la instrucción en curso ver si hay interrupción pendiente, y si la hay...
 - ...Bifurcación a subrutina del S.O. que la trata
- Posteriormente, restituye el estado y devuelve el control al programa interrumpido.
- Causa asíncrona a la ejecución del programa en curso
 - Atención a periférico
 - Etc.

Estado del procesador

- Las interrupciones rompen la secuencia normal de ejecución del programa.
- Una vez tratada la interrupción, el programa interrumpido debe seguir ejecutándose.
- Estado del procesador: contenido de los elementos de memoria internos necesarios para que un programa pueda seguir funcionando correctamente después de una interrupción.

Elementos del estado del procesador

- PC
- Banco de registros
- Registros aritméticos auxiliares
- Biestables de estado aritméticos
- Biestables de estado de E/S
- Biestables o registros de modificación del mapa de memoria
- Registros de clave o de protección de memoria
- Biestables de control residual (modo usuario/privilegiado)

Contenidos

Técnicas de control

- 1. Lógica cableada
- 2. Lógica almacenada

2. Otros aspectos de funcionamiento

- Interrupciones y excepciones
- 2. Estado del procesador
- 3. Niveles de ejecución
 - Modo privilegiado/usuario
- 4. Arranque del computador
- Paralelismo

Niveles de ejecución. Modo privilegiado/usuario

- En los computadores existen una serie de instrucciones privilegiadas, cuya ejecución debe reservarse al sistema operativo, y que el usuario normal no puede utilizar por razones de seguridad.
- Se añaden a la instrucción uno o varios bits (bits de control residual), procedentes de biestables, que distinguen entre:
 - Modo de ejecución privilegiado (S.O.)
 - Modo de ejecución de usuario
- El código de operación cambia su significado con los bits de control residual, impidiendo su ejecución si no se está en el nivel adecuado.

Arranque del computador (1)

- ▶ El Reset carga valores predefinidos en registros
- ▶ PC ← dirección de arranque del cargador ROM
- Se ejecuta el cargador ROM del sistema
 - Test del sistema
 - Trae a memoria el boot del SO
- ▶ La ROM del PC contiene además el soft. de E/S (BIOS)

Arranque del computador (2)

- El arranque del SO carga el SO residente y da control al programa de arranque del SO, que:
 - Comprueba el hardware
 - Comprueba el sistema de ficheros
 - Establece las tablas del SO
 - Crea procesos (según el tipo de SO)
 - Proceso INIT
 - Procesos o tareas del sistema (demonios)
 - Procesos de login (uno por terminal)
 - Tras la autenticación, el proceso login se convierte en shell

Contenidos

Técnicas de control

- 1. Lógica cableada
- 2. Lógica almacenada

2. Otros aspectos de funcionamiento

- Interrupciones y excepciones
- Estado del procesador
- 3. Niveles de ejecución
 - Modo privilegiado/usuario
- 4. Arranque del computador
- 5. Paralelismo

Paralelismo a nivel de instrucción

- Procesamiento concurrente de varias instrucciones
- Combinación de elementos que trabajan en paralelo:
 - Procesadores segmentados: utilizan técnicas de pipeline para procesar varias instrucciones simultáneamente
 - Procesadores superescalares: procesador segmentado que puede ejecutar varias instrucciones en paralelo cada una de ellas en una unidad segmentada diferente
 - Procesadores multicore: procesador que combina dos o más procesadores independientes en un solo empaquetado

multicore

Segmentación de instrucciones

Etapas de ejecución de una instrucción:

- LI: Lectura de la instrucción e incremento del PC
- D: Decodificación
- ▶ LO: Lectura de Operandos
- EJ: EJecución de la instrucción
- **EO**: Escritura de Operandos

segmentación

superescalar

Segmentación de instrucciones

multicore

Etapas de ejecución de una instrucción:

- LI: Lectura de la instrucción e incremento del PC
- D: Decodificación
- ▶ LO: Lectura de Operandos
- EJ: EJecución de la instrucción
- **EO**: Escritura de Operandos

segmentación

Segmentación de instrucciones sin pipeline

superescalar

multicore

- Si cada fase dura N ciclos de reloj, entonces
 - ▶ Una instrucción se ejecuta en 5*N ciclos de reloj
 - Cada N ciclos de reloj se ejecuta 1/5 de instrucción

segmentación

- superescalar
- multicore con pipeline

Segmentación de instrucciones

- Si cada fase dura N ciclos de reloj, entonces
 - ▶ Una instrucción se ejecuta en 5*N ciclos de reloj
 - Cada N ciclos de reloj se ejecuta I de instrucción

Superescalar

Pipeline con varias unidades funcionales en paralelo

Multicore

Múltiples procesadores en el mismo circuito

Multicore

▶ Intel core i7-980x gulftown (6 cores)

Multicore

▶ AMD opteron Istanbul (6 cores) y shanghai (4 cores)

Tema 4 (II) El procesador

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid