EDA ASSIGNMENT

Rushmi Roshina M

Data Handling and Data cleaning

- Columns with more than 40% NULL values are dropped
- Few other Null values are substituted with most suitable values
- Inconsistent data(XNA/XAP) are substituted with appropriate values
- Data with errors(Days columns) are converted to their correct and convenient value.

Forming Derived Metrics and Bins

Age Binning

[18,27,40,50,60,100]=[['Young','Young_Adult', 'Middle_Aged','Old','Very_Old']

Income Binning

[min(income),50000,100000,300000,1000000,3000000,max(income)]=['Below_ Poverty','Poverty','Lower_Middle_Class','Upper_Middle_Class','Rich','Very_Rich']

- **CRED_INC_RATIO** = Ratio of Credit_Amount and Income
- **CRED_GOODS_RATIO**=Ratio of Credit_Amount and Goods

The above Metrics/Bins are created for Application Dataset

Outlier Analysis

Outliers are Analyzed for AMT_INCOME_TOTAL, DAYS_EMPLOYED, AMT_CREDIT, AMT_ANNUITY. They seem to have no impact on the data. Hence it is not taken care off.

Data Distribution on Occupation type

Data Distribution on Organization type

Data Distribution on Education type

Proportion of Family-status

Family-Status

Data Imbalance

Most of the Applications have difficulties with payment

Bi-variate Analysis

Gender Analysis

AGE CATEGORY ANAYSIS

INCOME_RANGE distribution

Owns Car Analysis

Multivariate Analysis

Insights on Application Data

- Most of the Male Applicants have Payment Difficulty
- People of age less than 40 have more payment difficulty
- Family Member count has no big impact on the Target variable
- All the Income_Category people are equally distributed on the Target variable
- People who don't own car have more difficulty with payment than the people who own car

Previous Application Ioan Amount

Insights on Previous Application Dataset

- Most of the Applicant who has difficulties with payment, was previously Refuse loan
- The highest rejected reason for people with payment difficulties was SCOFR
- Most Applicant's loan_amount was below 1000000
- Most of the loan was through POS
- People with payment Difficulties are mostly new loan Applicants

Combined Analysis (Female)

Female Candidates + Refused Application Income Type Analysis

Combined Analysis (Male)

Male Candidates + Refused Application AGE_CATEGORY Analysis

Male Candidates + Refused Application Income Type Analysis

Further these Analysis can be used to filter out rows and fetch the people who have least possibility of paying back the loan

Combined Insights

- Most people who doesn't own Car or Realty may not be able to payback the loan
- Female Candidates who fall under the category Young and are in Maternity leave may face difficulties in paying back the loan
- Male Candidates who fall under the category Young-Adult and are Unemployed and are in the Below_Poverty range may face difficulties in paying back the loan