

Institut für Flugführung

Protokoll

Flugversuch im Kompetenzfeldlabor der Luft- und Raumfahrttechnik

Alexander Göhmann

Matrikelnummer 4828693

Tim Gotzel

Matrikelnummer 4839608

Nico Hempen

Matrikelnummer 4753519

Finn Matz

Matrikelnummer 4810384

Viktor Rein

Matrikelnummer 4808490

Ausgegeben: Institut für Flugführung

Institutsleiter: Prof. Dr. P. Hecker Technische Universität Braunschweig

Betreuer:

Veröffentlichung: Datum

Inhaltsverzeichnis

N	omenklatur	1
1	Einleitung (VR)	2
2	$\begin{array}{lll} \textbf{Theoretische Grundlagen (NH)(FM)} \\ 2.1 & \text{Luftdichte } \rho & & & \\ 2.2 & \text{Wahre Fluggeschwindigkeit } V_{TAS} & & \\ 2.3 & \text{Auftriebsbeiwert } C_A & & \\ 2.4 & \text{Widerstandsbeiwert } C_W & & \\ 2.5 & \text{Minimaler Widerstand } W_{min} & & \\ 2.6 & \text{Optimale Fluggeschwindigkeit } V_{opt} & & \\ \end{array}$	3 3 4 4 5 5
3	Versuchsdurchführung (TG)	6
4	Massenabschätzung (AG)	8
5	Auswertung und Umrechung der Messdaten	10
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 11 12 13 13 13 14 14
7	Interpretation der Ergebnisse (NH) 7.1 Höhenruder Trimmkurve 7.2 Auftriebsbeiwert über Anstellwinkel 7.3 Lilienthal-Polare 7.4 Widerstand über Fluggeschwindigkeit 7.5 Staudruck über Anstellwinkel 7.6 Fluggeschwindigkeit über Anstellwinkel	16 16 16 16 16 16
8	Interpretation der Ergebnisse (FM) 8.1 Höhenruder Trimmkurve 8.2 Auftriebsbeiwert über Anstellwinkel 8.3 Lilienthal-Polare 8.4 Widerstand über Fluggeschwindigkeit 8.5 Staudruck über Anstellwinkel 8.6 Fluggeschwindigkeit über Anstellwinkel	17 17 17 17 17 17
9	Interpretation der Ergebnisse (TG) 9.1 Höhenruder Trimmkurve	18 18 18 18

<u>ii</u> <u>Inhaltsverzeichnis</u>

	9.5	Widerstand über Fluggeschwindigkeit 1 Staudruck über Anstellwinkel 1 Fluggeschwindigkeit über Anstellwinkel 1	8
10	Inte	rpretation der Ergebnisse (AG)	9
	10.1	Höhenruder Trimmkurve	9
	10.2	Auftriebsbeiwert über Anstellwinkel	9
	10.3	Lilienthal-Polare	9
	10.4	Widerstand über Fluggeschwindigkeit	9
		Staudruck über Anstellwinkel	
	10.6	Fluggeschwindigkeit über Anstellwinkel	9

Nomenklatur

Lateinische Bezeichnungen

${\bf Griechische\ Bezeichnungen}$

 β Winkel in Umfangsrichtung

Indizes

ax in axiale Richtung

${\bf Abk\ddot{u}rzungen}$

CFD <u>C</u>omputational <u>F</u>luid <u>D</u>ynamics

Einleitung (VR)

 tbd

Name	$\operatorname{Initialen}$
Nico Hempen	NH
Tim Gotzel	TG
Finn Matz	FM
Alexander Göhmann	\overline{AG}
Viktor Rein	VR

Tabelle 1.1: Initialen der beteiligten Personen

Theoretische Grundlagen (NH)(FM)

2.1 Luftdichte ρ

Zur Bestimmung der real vorherrschenden Luftdichte in der gegebenen Höhe, wird unter der Annahme, dass Luft ein ideales Gas ist, diese Luftdichte mit der Idealen Gasgleichung definiert:

$$\rho_{real} = \frac{m}{V} = \frac{p}{R_{Luft} \cdot T} \tag{2.1}$$

Dabei kann $R_{Luft} = 287.058 \text{ Jkg}^{-1}\text{K}^{-1}$ gesetzt werden und der Luftdruck p in definierter Höhe über die Temperatur T mittels der Isentropenbeziehung berechnet werden:

$$p = \left(\frac{T}{T_0}\right)^{\frac{\kappa}{\kappa - 1}} \cdot p_0 \tag{2.2}$$

Dabei gilt für die Standardbedingungen $T_0 = 288.15 \text{ K}$ und $p_0 = 101\,300 \text{ Pa}$.

2.2 Wahre Fluggeschwindigkeit V_{TAS}

In den von uns aufgezeichneten Daten der DO-128, sowie in den bereitgestellten Daten der DO-28, liegt die Information der Fluggeschwindigkeit lediglich als *indicated airspeed* vor. Zur Bestimmung der nachfolgenden Beiwerte und Zusammenhänge zwischen den Kenngrößen ist jedoch die so genannte *true airspeed* von Bedeutung. Zur Bestimmung von V_{TAS} aus V_{IAS} wird folgende Formel verwendet?:

$$V_{TAS} = \sqrt{\frac{\rho_0}{\rho_{real}} \cdot V_{IAS}^2} \tag{2.3}$$

Dabei kann ho_0 als Luftdichte zu 1.225 kgm $^{-3}$ gesetzt werden. Die Fluggeschwindigkeit V_{IAS}

muss bei dem Flugversuch mit der DO-128 allerdings noch von kn in $\frac{m}{s}$ umgerechnet werden:

$$V\left(\frac{m}{s}\right) = 0,51444 \cdot V\left(kn\right) \tag{2.4}$$

2.3 Auftriebsbeiwert C_A

Der Auftriebsbeiwert C_A kann per Definition mittels folgender Gleichung bestimmt werden?:

$$C_A = \frac{A}{\frac{\rho_{real}}{2} \cdot S \cdot V_{TAS}^2} \tag{2.5}$$

Darin kann der Auftrieb A über die Gewichtskraft G nach folgender Gleichung aufgestellt werden:

$$A = \cos(\gamma) \cdot G \tag{2.6}$$

Da der Bahnwinkel γ lediglich in der Messreihe für die DO-28 gegeben ist, muss dieser Wert für die Messreihe der DO-128 über die Sinkgeschwindigkeit $w_{g_{real}}$ und der Fluggeschwindigkeit V_{TAS} bestimmt werden:

$$\gamma = \arcsin\left(\frac{w_{g_{real}}}{V_{TAS}}\right) \tag{2.7}$$

Dabei wird die Sinkgeschwindigkeit $w_{g_{real}}$ bestimmt durch?:

$$w_{g_{real}} = \frac{\Delta H_{INA}}{\Delta t} \cdot \frac{T_{real}}{T_{INA}} \tag{2.8}$$

Worin T_{INA} für die jeweiligen Höhen aus Tabellen bestimmt werden können und die übrigen Werte im Versuch aufgezeichnet wurden.

Die Flügelfläche S kann in Gleichung 2.5 durch die jeweiligen Daten der beiden Flugzeuge ersetzt werden.

2.4 Widerstandsbeiwert C_W

Ähnlich wie die Bestimmung des Auftriebsbeiwertes kann auch der Widerstandsbeiwert C_W bestimmt werden:

$$C_W = \frac{W}{\frac{\rho_{real}}{2} \cdot S \cdot V_{TAS}^2} \tag{2.9}$$

Der einzige Unterschied zu C_A besteht in der Verwendung vom Widerstand W statt des Auftriebs A in dieser Gleichung. Dieser kann über die selbe Beziehung wie in Gleichung 2.6 bestimmt werden:

$$W = \sin(\gamma) \cdot G \tag{2.10}$$

Dabei kann der Bahnneigungswinkel γ ebenfalls mit Gleichung 2.7 berechnet werden.

2.5 Minimaler Widerstand W_{min}

Durch auftragen des Auftriebsbeiwertes C_A über den Widerstandsbeiwert C_W lassen sich der zum einen der Nullwiderstandsbeiwert C_{W0} und zum anderen die beste Gleitzahl C_A^* bestimmen. C_{W0} ist der Widerstandsbeiwert beim Nullauftrieb, also bei $C_A = 0$. C_A^* erhält man durch anlegen einer Tangente, die durch den Ursprung geht. Der Berührungspunkt dieser Tangente mit der Polaren, ist der Punkt des besten Gleitens. Aus diesen beiden Kennwerten lässt sich der Minimale Widerstand W_{min} bestimmen:

$$W_{min} = \frac{2 \cdot C_{W0} \cdot G}{C_A^*} \tag{2.11}$$

2.6 Optimale Fluggeschwindigkeit V_{opt}

Mit dem bestimmten C_A^* lässt sich zusätzlich die optimale Fluggeschwindigkeit bestimmen, also die Geschwindigkeit, bei der der Widerstand am geringsten ist

$$V_{opt} = \sqrt{\frac{G}{\frac{\rho}{2} \cdot S \cdot C_A^*}} \tag{2.12}$$

Versuchsdurchführung (TG)

In diesem Kapitel wird die Versuchsdurchführung für den Flug mit der DO128 der Technischen Universität Braunschweig beschrieben.

Der Flug wurde am 20.05.2019 mit 6 Mann Besatzung durchgeführt und dauerte 20 Minuten. Die vorherrschenden Umweltparameter am Boden wurden notiert und sind in Tabelle 3.1 festgehalten.

Datum	20.05.2019
Beginn Flug	9:47
Ende Flug	10:10
Besatzung (Masse)	461 kg
Höhenmessereinstellung	1013,25 hPa QNH
Rüstmasse	1388 kg
Kraftstoffmasse am Boden	1361 lbs
Wetter	sonnig, leichte Quellwolken
Temperatur	19°C
Wind	5 kn / 060
Druck (Platzhöhe)	1004 hPa

Tabelle 3.1: Parameter am Versuchstag

Nach dem Einstellen des Höhenmessers auf QNH startete die DO 128 und nahm ihre Zielhöhe knapp über 4000 ft ein. Für die Versuche wurden 4 Sinkflüge bei verschiedenen Fluggeschwindigkeiten (80 kn, 100 kn, 120 kn, 140 kn) absolviert. Dabei beschleunigte der Pilot das Flugzeug auf die Sollgeschwindigkeit. Beim erreichen der 4000 ft Marke stoppte der Copilot die Zeit die benötigt wurde, um 1000 ft zu sinken, mit der Stoppuhr. Dabei wurden am Ende und am Anfang die Temperaturen und die verbrauchte Treibstoffmasse auf der 4000 ft Marke und auf der 3000 ft Marke von dem Copiloten abgelesen. Alle relevanten Daten wurden vom Copiloten per Mikro an die Besatzung weitergegeben, welche diese in die vorbereiteten Versuchsprotokolle notierte. Die Werte sind in Tabelle 3.2 zu sehen. Nachdem ein Sinkflug absolviert war, stieg die DO 128 wieder auf knapp über 4000 ft und ein erneuter Sinkflug wurde eingeleitet.

Sinkflug	1	2	3	4
H_A [ft]	4000	4000	4000	4000
H_E [ft]	3000	3000	3000	3000
T_A °C	12	12	12	12
T_E °C	13	13	13	13
V_{IAS} [kn]	80	100	120	140
m_a [lbs]	237	262	284	304
m_e [lbs]	244	267	288	306
Δ t [s]	95	67	48	31

Tabelle 3.2: Versuchsdaten

Massenabschätzung (AG)

Die Masse eines Flugzeugs ändert sich durch den Treibstoffverbrauch kontinuierlich während des Fluges. Für die Berechnung der Flugzeugkennwerte ist es wichtig das genaue Flugzeuggewicht zu kennen. Nachfolgend soll die Masse der beiden Flugzeuge Do 28 und Do 128 zu Beginn und Ende jedes Sinkfluges auf Basis der Aufzeichnungen berechnet werden.

Do 28

Bei der Do 28 wurde von einem konstanten Spritverbrauch für den gesamten Flug ausgegangen. In der Realität verbraucht das Flugzeug bei den Steigflügen mehr Kraftstoff als bei den Sinkflügen. Es war bekannt das die Versuche bei einem Füllstand von 70% starteten und bei 50% Füllstand endeten.

Maximaler Tankinhalt der Do 28: 822 l

Bei einer Kraftstoffdichte von 0,72 kg/l entspricht das 822 l * 0,72 kg/l = 591,84 kg

Beginn bei 70% Tankinhalt: 591,84 kg * 0.7 = 414,29 kg = m_b

Ende bei 50% Tankinhalt: 591,84 kg * 0.5 = 295.92 kg = m_e

Die Kraftstoffmasse wurde dann mit einer linearen Interpolation

$$m = m_{\rm b} + (\frac{m_{\rm e} - m_{\rm b}}{t_{\rm e} - t_{\rm b}}) * (t - t_{\rm b})$$

berechnet. $(t_b = 0 \text{ s}; t_e = 1860 \text{ s})$

Für die Gesamtmasse wurden die Rüstmasse des Flugzeugs von 2936 kg, die Masse der Besatzung mit 346 kg und die berechnete Kraftstoffmasse addiert.

Do 28	1. Sinkflug		2. Sinkflug		3. Sinkflug		4. Sinkflug	
	Beginn	Ende	Beginn	Ende	Beginn	Ende	Beginn	Ende
Zeit t in s	60	300	600	920	1210	1500	1760	1860
Kraftstoffmasse in kg	410,47	395,20	376,10	355,74	337,29	318,83	302,28	295,92
Gesamtmasse in kg	$3692,\!47$	3677,20	3658,10	3637,74	3619,29	3600,83	3584,28	3577,92

Do 128

Bei der Do 128 wurde vor und nach jedem Sinkflug der bis zu diesem Zeitpunkt verbrauchte Kraftstoff erfasst. Die Werte wurden in lbs gemessen und nachträglich in kg ungerechnet. [1 lbs/2,20462=1~kg]

Beim ersten Start befanden sich 617,34 kg Kerosin im Flugzeug, für die Kraftstoffmasse wurde der bis zu einem Zeitpunkt verbrauchte Kraftstoff von der Startmenge subtrahiert.

Bei dem Flugversuch wurde vom Piloten eine Rüstmasse von 1388 kg angegeben. Dieser Wert

ist zu niedrig. Im Skript ist ein Wert von 3080 kg angegeben, dieser kann abhängig von den verbauten Messinstrumenten abweichen, aber nicht in einem so großen Maß. In Rücksprache mit einer anderen Gruppe konnten wir feststellen, dass vermutlich ein Zahlendreher vorliegt. Dessen Rüstmasse lag bei 3188 kg, diese ist deutlich plausibler und wird bei den Berechnungen verwendet. Für die Gesamtmasse werden die Rüstmasse und die Masse der Besatzung von 461 kg mit der berechneten Kraftstoffmasse addiert.

$\begin{array}{c} \text{Do } 128 \\ \text{m}_{\text{r}} = 1388 \text{ kg} \end{array}$	1. Sinkflug		2. Sinkflug		3. Sinkflug		4. Sinkflug	
	Beginn	Ende	Beginn	Ende	Beginn	Ende	Beginn	Ende
Verbraucht lbs	237	244	262	267	284	288	304	306
Verbraucht kg	107,50	110,68	118,84	121,11	128,82	130,63	137,89	138,80
Kraftstoff total	509,84	506,66	498,50	496,23	488,52	486,71	$479,\!45$	$478,\!54$
Gesamt kg	2358,84	2355,66	2347,50	2345,23	2337,52	2335,71	2328,45	2327,54

$\begin{array}{ c c c }\hline Do~128\\ m_r=3188~kg\\ \end{array}$	1. Sinkflug		2. Sinkflug		3. Sinkflug		4. Sinkflug	
	Beginn	Ende	Beginn	Ende	Beginn	Ende	Beginn	Ende
Verbraucht lbs	237	244	262	267	284	288	304	306
Verbraucht kg	107,50	110,68	118,84	121,11	128,82	130,63	137,89	138,80
Kraftstoff total	509,84	506,66	498,50	496,23	488,52	486,71	$479,\!45$	$478,\!54$
Gesamt kg	4158,84	4155,66	4147,50	4145,23	4137,52	4135,71	4128,45	4127,54

Auswertung und Umrechung der Messdaten

 tbd

Darstellung der Ergebnisse

6.1 Daten zum Flugversuch der DO-128

6.1.1 Auftriebsbeiwert C_A über Widerstandsbeiwert C_W

Abb. 6.1: C_A über C_W der DO-128

6.1.2 Widerstand W über Fluggeschwindigkeit V

Abb. 6.2: W über V der DO-128

Die optimale Fluggeschwindigkeit V_{opt} wurde, wie auch der minimale Widerstand W_{min} (Im Graph nicht zu sehen), mittels der beiden Gleichungen 2.12 und 2.11 definiert. Dazu wurde die Masse bzw. die Gewichtskraft G des Flugzeugs über die vier Flugabschnitte zu 4142 kg bzw. 40633 N gemittelt.

6.2 Daten zum Flugversuch der DO-28

6.2.1 Anstellwinkel α über Bahnneigungswinkel η

Abb. 6.3: α über η der DO-28

6.2.2 Auftriebsbeiwert C_A über Anstellwinkel α

Abb. 6.4: C_A über α der DO-28

6.2.3 Auftriebsbeiwert C_A über Widerstandsbeiwert C_W

Abb. 6.5: C_A über C_W der DO-28

6.2.4 Widerstand W über Fluggeschwindigkeit V

Abb. 6.6: W über V der DO-28

Äquivalent zu Abschnitt 6.1.2 wurde hier V_{opt} und W_{min} mittels der Gleichungen 2.12 und 2.11 bestimmt. Dabei wurde G aus den 8 Flugabschnitten gemittelt zu 35 728 N.

6.2.5 Fluggeschwindigkeit V und Staudruck q über Anstellwinkel α

Abb. 6.7: V und q über α der DO-28

Interpretation der Ergebnisse (NH)

7.1	Höhenruder Trimmkurve
tbd	
7.2	Auftriebsbeiwert über Anstellwinkel
tbd	
7.3	Lilienthal-Polare
tbd	
	Widerstand über Fluggeschwindigkeit
tbd	
	Staudruck über Anstellwinkel
tbd	
7.6 tbd	Fluggeschwindigkeit über Anstellwinkel
ıbu	

Interpretation der Ergebnisse (FM)

8.1	Höhenruder Trimmkurve
tbd	
8.2	Auftriebsbeiwert über Anstellwinkel
tbd	
8.3	Lilienthal-Polare
tbd	
8.4	Widerstand über Fluggeschwindigkeit
tbd	
8.5	Staudruck über Anstellwinkel
tbd	
8.6	Fluggeschwindigkeit über Anstellwinkel
tbd	

Interpretation der Ergebnisse (TG)

9.1	Höhenruder Trimmkurve
tbd	
$oldsymbol{9.2}$ tbd	Auftriebsbeiwert über Anstellwinkel
9.3	Lilienthal-Polare
9.4	Widerstand über Fluggeschwindigkeit
9.5	Staudruck über Anstellwinkel
9.6	Fluggeschwindigkeit über Anstellwinkel

Interpretation der Ergebnisse (AG)

10.1	Höhenruder Trimmkurve
tbd	
10.2	Auftriebsbeiwert über Anstellwinkel
tbd	
	Lilienthal-Polare
tbd	
$egin{array}{c} 10.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Widerstand über Fluggeschwindigkeit
	Staudruck über Anstellwinkel
tbd	State and Thisterwiller
10.6	Fluggeschwindigkeit über Anstellwinkel
tbd	-