Exercises V 2022-06-15

Statistical methods in genetic relatedness and pedigree analysis

NORBIS course, Oslo, June 2022 Magnus Dehli Vigeland and Thore Egeland

Introduction

Before starting, load the core **pedsuite** packages.

```
library(pedsuite)
```

If you haven't downloaded the datasets (needed for the last exercise) already, do so by running

```
url = "https://magnusdv.github.io/pedinr/datasets/data.zip"
download.file(url, destfile = "data.zip")
unzip("data.zip")
```

Exercise set V. Forensic exercises, part 1

Exercise V-1 (Paternity case)

The purpose of this exercise is to illustrate the basic concepts of forensic genetics and paternity testing by means of a simple paternity case. We consider the following two hypotheses

- H_1 : The alleged father (AF) is the biological father.
- H_2 : The alleged father and the child are unrelated.

The alleged father and the child are genotyped. The mother is not disputed. The figure below, with H_1 to the left, illustrates the hypotheses for the two markers used in this exercise.

- a) Consider initially only the first marker. The allele frequencies are p_A and p_B . Explain why the likelihood ratio is $LR_1 = 1/p_A$.
- b) Use R to plot LR₁ as a function of $p_A \in (0.001, 0.2)$. Explain why the likelihood ratio increases as p_A approaches 0.
- c) There is a second autosomal marker, called S2, with alleles including a, b, and c with allele frequencies p_a, p_b , and p_c . Calculate the likelihood ratio for this marker and also for both markers.
- d) Assume $p_A = 0.05$ and $p_a = 0.1$ and find the likelihood ratio in this case. How do you interpret LR?

Exercises V 2022-06-15

e) Try the following R commands which can be used to check answers above:

Exercise V-2 (Counterintuitive LR?)

We consider the same hypotheses as in the previous exercise. There is one marker with alleles denoted 1, 2, and 3. The alleged father is 1/2, the child is 1/3; the mother is untyped. The allele frequencies are p_1 , p_2 , and p_3 .

- a) Find the likelihood ratio.
- b) Is it possible to have LR < 1 in a case where the father and son share an allele? Explain.
- c) Use R to confirm the answers of the previous exercise when $p_1 = 0.5$, $p_2 = 0.3$ and $p_3 = 0.2$. A possible first part is:

Exercise V-3 (Likelihood ratio for first cousins)

Consider the hypotheses

- H_1 : A and B are first cousins.
- H_2 : A and B are unrelated.
- a) What is the LR if A and B share no alleles?
- b) What is the smallest possible LR with 16 independent markers.
- c) Consider an autosomal marker with alleles a, b, c and d with allele frequencies 0.1, 0.1, 0.1 and 0.7, respectively. What is the LR if both individuals are homozygous for allele d?

Exercises V 2022-06-15

d) Repeat the previous calculation in R. A possible first part is:

Exercise V-4 (Relationship riddle)¹

In this exercise we will conduct a test comparing four possible relationships between two male individuals, S1 and S2. The pedigrees are shown below.

a) Define the first three pedigrees by running:

```
ids = c("S1", "S2")
H1 = nuclearPed(children = ids)
H2 = relabel(halfSibPed(), old = 4:5, new = ids)
H3 = relabel(avuncularPed("uncle", "nephew"), old = c(3,6), new = ids)
```

b) The marker data for S1 and S2 is contained in the file *kniship-riddle.ped*, in the *data* folder. Load the data, and assign a frequency database, by running:

```
H4 = readPed("data/kinship-riddle.ped")
H4 = setFreqDatabase(H4, database = NorwegianFrequencies)
H4
```

- c) Find the LRs when H4 is the reference.
- d) Include a hypothesis specifying that S1 and S2 are first cousins and find the LRs. Use H4 as the reference. Comment on the result. *Hint*:

```
H5 = relabel(cousinPed(1), old = 7:8, new = ids)
```

 $^{^{1}}$ Based on an example from the book "Pedigree Analysis in R", Vigeland, 2021, Academic Press, pp. 90 - 94.