CS 162 Programming languages

Lecture 10: Type Checking II

Yu Feng Winter 2021

Outline

• We will talk about types in λ^+

Motivation

- When writing programs, everything is great as long as the program works.
- Unfortunately, this is usually not the case
- Programs crash, don't compute what we want them to compute, etc.
- This is arguably the biggest problem software faces today

Software correctness

- Problem: Rice's theorem. Any non-trivial property about a Turing machine is undecidable
- This means that we can never give an algorithm, that for all programs can decide if this program has an error on some inputs.
- What can we do?

Big idea

- Big Idea: Just because we cannot prove something about the original program does not mean we cannot prove something about an *abstraction* of the program.
- Strategy: In addition to the operational semantics, we will also define *abstract semantics* that will overapproximate the states a program is in.
- Example: In λ^+ , the operational semantics compute a concrete integer or list, while our abstract semantics only compute the if the result is of kind integer or list.

Abstraction

- Of course, any abstraction will be less precise than the program
- One popular abstraction: types
- Let's assume we have types Int and List
- Example: let x = 10 in x
- Operational semantics yield concrete value 10
- Abstract semantics that only differentiate the kind (or type) of the expression yield: Integer

Abstraction

- But we don't just want any abstraction, we need abstractions that *overapproximate* the result of the concrete program
- Recall the example: let x = 10 in x
- Abstract value *Integer* overapproximates 10 since 10 is a kind of integer
- On the other hand, abstract value *List* does not overapproximate 10.

Soundness

- The reason we only care about sound abstract semantics is the following:
- Theorem: If some abstract semantics are sound and an expression is of abstract value x, then its concrete value y is always part of the abstract value x.
- Why is this useful?
- This means that if a program has no error in the abstract semantics, it is guaranteed not to have an error in the concrete semantics.
- ASTREE tools: http://www.astree.ens.fr/

Types

- In this class, we will focus on one kind of abstraction: types
- This means abstract values are the types in the language
- What is a type? An abstract value representing an (usually) infinite set of concrete values
- Question: For proving what kind of properties are types as abstract values useful?
- Answer: To avoid run-time type errors!

Adding types to λ^+

• The original syntax of λ^+

• Adding type to λ^+

$$\mathsf{T} \ ::= \ \mathsf{T} \to \mathsf{T} \mid \mathsf{Int} \mid \mathsf{List}[\mathsf{T}]$$

Typing rules for arithmetic

$$\frac{}{\Gamma \vdash i : \mathsf{Int}} \ ^{\mathsf{T-Int}}$$

Any integer constant i is of type integer

$$\frac{\Gamma \vdash e_1 : \mathsf{Int} \qquad \Gamma \vdash e_2 : \mathsf{Int} \qquad \Box \in \{+, -, *\}}{\Gamma \vdash e_1 \Box e_2 : \mathsf{Int}} \xrightarrow{\Gamma \vdash e_1 \Box e_2 : \mathsf{Int}} \mathsf{T-Arith}$$

if e_1 and e_2 are both integers, then $e_1 \square e_2$ will also be integer

Typing rules for if-else

$$\frac{\Gamma \vdash e_1 : \mathsf{Int} \qquad \Gamma \vdash e_2 : \mathsf{T} \qquad \Gamma \vdash e_3 : \mathsf{T}}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 : \mathsf{T}} \ \mathsf{IF}$$

if e₁ is of type integer, both e₂ and e₃ have the same type T, then the whole if-else expression is of type T

Typing rules for lambda

$$\frac{\Gamma, x: \mathsf{T}_1 \vdash e: \mathsf{T}_2}{\Gamma \vdash \mathsf{lambda}\, x: \mathsf{T}_1.\ e: \mathsf{T}_1 \to \mathsf{T}_2} \ \mathsf{T\text{-}Lambda}$$

If x is of type T_1 and e is of type T_2 , then the lambda expression has type $T_1 \rightarrow T_2$

$$\frac{\Gamma \vdash e_1 : \mathsf{T}_1 \to \mathsf{T}_2 \qquad \Gamma \vdash e_2 : \mathsf{T}_1}{\Gamma \vdash (e_1 \ e_2) : \mathsf{T}_2} \text{ T-App}$$

if e_1 has type $T_1 \rightarrow T_2$, and e_2 has type T_1 , then lambda app return a value of type T_2

Typing rules for let-binding

$$\frac{x:\mathsf{T}\in\Gamma}{\Gamma\vdash x:\mathsf{T}}\text{ T-VAR}$$

If the type of x is T in the current type environment, then x is of type T

$$\frac{\Gamma, x : \mathsf{T}_1 \vdash e_1 : \mathsf{T}_1 \qquad \Gamma, x : \mathsf{T}_1 \vdash e_2 : \mathsf{T}_2}{\Gamma \vdash \mathsf{let}\, x = e_1 \, \mathsf{in}\, e_2 : \mathsf{T}_2} \, \operatorname{T-Let}$$

if x and e_1 are of type T_1 and e_2 is of type T_2 , then the whole expression has type T_2

Typing rules for list

 $\frac{}{\Gamma \vdash \mathsf{Nil} : \mathsf{List}[\mathsf{T}]} \ ^{\mathsf{T-Nil}}$

An empty list is a list

$$\frac{\Gamma \vdash e_1 : \mathsf{T} \qquad \Gamma \vdash e_2 : \mathsf{List}[\mathsf{T}]}{\Gamma \vdash e_1 \circledcirc e_2 : \mathsf{List}[\mathsf{T}]} \text{ T-Cons}$$

if e₁ is of type T and e₂ is of type List[T], then e₁@e₂ is of type List[T]

$$\frac{\Gamma \vdash e : \mathsf{List}[\mathsf{T}]}{\Gamma \vdash ! \, e : \mathsf{T}} \text{ T-HEAD}$$

$$\frac{\Gamma \vdash e : \mathsf{List}[\mathsf{T}]}{\Gamma \vdash \# e : \mathsf{List}[\mathsf{T}]} \text{ T-TAIL}$$

if e contains a list of elements of type T, then !e is of type T

if e contains a list of elements of type T, then #e is of type List[T]

Typing checking by example

TODOs by next lecture

- HW3 is due today
- HW4 is out. Please start ASAP!