DAY 1, MORNING SESSION: SETS, STATEMENTS, AND PROOF

MATH AND CODE BOOTCAMP

NAME

PHD STUDENT/POST-DOC, TRINITY COLLEGE DUBLIN

SEPTEMBER 2020

ROADMAP FOR THE WEEK

- We're learning how to make inferences about a population from a sample
- <u>Last time</u>: We figured out how to determine if two samples are different or independent (diff-in-means, contingency tables)

Outline for today:

- From scatterplots to correlations
 - i.e. how similar are the data (does variation in one explain variation in the other)
- Bivariate regression
 - Assumptions
 - Estimation (i.e. drawing the "best" line through data)

STEP 1: STANDARDIZING VARIATION IN VARIABLES

$$\frac{X-\bar{X}}{S}$$

Example: Populations of New England states

	Х	$\frac{x-\bar{x}}{s}$
СТ	3.5mil	?
ME	1.3mil	?
MA	6.6mil	?
NH	1.3mil	?
RI	1.0mil	?
VT	o.6mil	?

2

STANDARDIZING VARIABLES: MEAN AND SD IN R

```
1 # create vector
2 x <- c(3.5, 1.3, 6.6, 1.3, 1, .6)
3 # get mean and sd
4 c(round(mean(x), 2), round(sd(x), 2))

[1] 2.38 2.3</pre>
```

$$\bar{X} = 2.38 \text{ S} = 2.30$$

3

WRAP-UP

Today we learned about...

- Correlations
- Simple linear regression:
 - 1. Assumptions
 - 2. Estimation