Lista 4 - Última lista que cai na prova 1.

Determine as derivadas parciais

a)
$$f(x, y) = 5x^4y^2 + xy^3 + 4$$

(c)
$$z = \frac{x^3 + y^2}{x^2 + y^2}$$

e)
$$z = x^2 \ln (1 + x^2 + y^2)$$

g)
$$f(x, y) = (4xy - 3y^3)^3 + 5x^2y$$

$$i) g(x, y) = x^{y}$$

1)
$$f(x, y) = \sqrt[3]{x^3 + y^2 + 3}$$

$$b)z = \cos xy$$

d)
$$f(x, y) = e^{-x^2 - y^2}$$

$$f(z) = xy e^{xy}$$

h)
$$z = \text{arc tg } \frac{x}{y}$$

$$j$$
) $z = (x^2 + y^2) \ln (x^2 + y^2)$

m)
$$z = \frac{x \operatorname{sen} y}{\cos(x^2 + y^2)}$$

2. Considere a função
$$z = \frac{xy^2}{x^2 + y^2}$$
. Verifique que $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.

3: Seja $\phi: 1R \to 1R$ uma função de uma variável real, diferenciável e tal que $\phi'(1) = 4$. Seja $g(x, y) = \phi\left(\frac{x}{y}\right)$. Calcule

$$(a) \frac{\partial g}{\partial x} (1, 1)$$

b)
$$\frac{\partial g}{\partial y}$$
 (1, 1)

Considere a função dada por
$$z = x \operatorname{sen} \frac{x}{y}$$
. Verifique que

$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z.$$

A função p = p(V, T) é dada implicitamente pela equação pV = nRT, onde $n \in R$ são constantes não-nulas. Calcule $\frac{\partial p}{\partial V} \in \frac{\partial p}{\partial T}$.

Seja
$$z = e^y \phi(x - y)$$
, onde ϕ é uma função diferenciável de uma variável real. Mostre $\partial z = \partial z$

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z.$$

7) Sejam
$$z = e^{x^2 + y^2}$$
, $x = \rho \cos \theta e y = \rho \sin \theta$. Verifique que

$$\frac{\partial z}{\partial \rho} = e^{x^2 + y^2} (2x \cos \theta + 2y \sin \theta).$$

뎨

Conclua que

$$\frac{\partial z}{\partial \rho} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta.$$

Suponha que a função
$$z = z(x, y)$$
 admita derivadas parciais em todos os pontos de seu dominos que seja dada implicitamente pela equação $xyz + z^3 = x$. Expresse $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ em termos de z xz

Seja
$$z = f(x^2 - y^2)$$
, onde $f(u)$ é uma função diferenciável de uma variável real. Verifique que

$$y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = 0$$

Scja
$$f(x, y) = \int_0^{x^2 + y^2} e^{-t^2} dt$$
. Calcule $\frac{\partial f}{\partial x}(x, y) e^{-t^2} \frac{\partial f}{\partial y}(x, y)$.

(I) Seja
$$f(x, y) = \int_{x^2}^{y^2} e^{-t^2} dt$$
. Calcule $\frac{\partial f}{\partial x}(x, y) e^{-t} \frac{\partial f}{\partial y}(x, y)$.

(2) Seja
$$f(x, y) = \begin{cases} e^{(x^2 + y^2 - 1)} & \text{se } x^2 + y^2 < 1 \\ 0 & \text{se } x^2 + y^2 \ge 1 \end{cases}$$

a) Esboce o gráfico de f.

b) Determine
$$\frac{\partial f}{\partial x}$$
 e $\frac{\partial f}{\partial y}$.