Ֆլոյդ-Ուորշըլի ալգորիթմի մեքենայացումը

Խնդիր։ Կարձագույն ձանապարհի որոնում

Ուսանող։ ԻԿՄ / ՀԳ / 3-րդ կուրս/ 608 / Սևակ Ամիրխանյան

խնդրի դրվածքը

Մեր խնդիրն է գտնել կամայական i, j գագաթների միջև կարձագույն ձանապարհը, եթե այն գույություն ունի և զուգահեռ կառուցել նաև այդ ձանապարհը։

Ալգորիթմը մեքենայացված է **C#** լեզվով և աշխատում է **.NET Core** միջավայրում։

Մանրամասն դիտարկենք այն տվյալների կառուցվածքները և մոդելները, որոնք օգտագործվել են ալգորիթմը իրականացնելու ժամանակ։

<u> Գրաֆի գագաթի մոդելավորումը մեթենայում</u>

```
// Գրաֆի գագաթը ներկայացնող դաս։
// Դասը հայտնի գաղափար է ՕԿԾ-ում։
public class Vertex
{
   // Գրաֆը բնութագրող համար, որը բնական թիվ է։
   public int Number { get; set; }
   // Վերոնշյալ ֆունկցիաները / պրոցեդուրաները լեզու-սպեցիֆիկ
   // կոնստրուկցիաներ են և բուն այգորիթմի իմպլեմենտացիալի մեջ
   // մեծ դեր չունեն։
   // Վերադարձնում է գագաթի հեշ կոդը։ Սա անհրաժեշտ է գագաթները
   // հեշ աղյուսակում պահելու համար։
   public override int GetHashCode()
   {
       return this.Number.GetHashCode();
   }
   // Համեմատում է գրաֆի 2 գագաթներ ոստ իրենց հեշ կոդերի։
   // Անհրաժեշտ է հեշավորող ֆունկցիայի համար։
   public override bool Equals(object obj)
   {
       return this.GetHashCode() == obj.GetHashCode();
   }
}
```

<u> Գրաֆի կողի մոդելավորում մեթենայում</u>

```
// Գրաֆի կողը ներկայացնող կլաս
public class Edge
{
    // Այն գագաթը որտեղից կողը սկսում է
```

```
// Այն գագաթը որտեղ գնում է կողը
     public Vertex Second { get; set; }
    // Կողի ուղղությունը ` կարող է ընդունել 3 հնարավոր արժեք`
     // 1 -> 2, 2 -> 1 \unitum 1 <-> 2
     public EdgeDirection Direction { get; set; }
     // Կողի երկարությունը
     public double Length { get; set; }
    // Որոշ ֆունկցիաներ կողերի հետ գործողություններ անելու համար։
     // Ստուգում է կողերի հավասար են։
    // Տվյալ մոդելավորման մեջ կողերը հավասար են, եթե դրանք
     // սկսում են նույն գագաթում, գնում են հապատասխան գագաթ
     // և ունեն նույն երկարությունը
     public override bool Equals(object obj)
         var edge = obj as Edge;
         return this.First == edge.First &&
                this.Second == edge.Second &&
                this.Direction == edge.Direction;
     }
     // Վերադարձնում է կողի հեշ կոդը
     public override int GetHashCode()
     {
         return this.First.GetHashCode() ^ this.Second.GetHashCode();
     }
    // Ստուգում է կողերի նույնությունը տրված ուղղությամբ։
     // Հնարավոր է, որը կողի ուղղուլունը հայտնի չլինի կանչի ընթացքում
     public bool IsEqual(Edge edge, EdgeDirection? d = null)
     {
         return this.First == edge.First &&
             this.Second == edge.Second &&
             this.Direction == (d == null ? edge.Direction : d);
     }
}
// Ստրուկտուրաներ, որոնց առավել մանրամասն նկարագրությունը կարելի գտնել
 // þú GitHub-յшն էջում`
 // https://github.com/amirkhaniansev/fw-algorithm/
 class VerticesCollection;
```

public Vertex First { get; set; }

```
class EdgesCollection;
class Graph;
class Matrix<T>;
class SquareMatrix<T>;
// Հարևանության մատրիցը նկարագրող ստրուկտուրա
class AdjacencyMatrix;
// Ալգորիթմի քայլը նկարագրող մոդել
public class Step
{
   public int Number { get; set; }
   // Հարևանության մատրցի
   public SquareMatrix<Cell<double>> A { get; set; }
   // Օժանդակ մատրից Ճանապարհը կառուցելու համար
   public SquareMatrix<Cell<int>>> B { get; set; }
}
// Մատրիցի բջիջը / վանդակը նկարագրող մոդել
public class Cell<TValue>
{
   // Քջիջի գույնը
   public Color Color { get; set; }
   // Բջիջի կոորդինատները
   public Point Point { get; set; }
   // Բջիջի արժեքը
   public TValue Value { get; set; }
   public Cell(Color color, Point point, TValue value)
       this.Color = color;
       this.Point = point;
       this.Value = value;
   }
}
// Այժմ նկարագրենք ալգորիթմի իրականացումը։
// ՈՒՇԱԴՐՈՒԹՅՈՒՆ` Ֆլոյդ-ՈՒորշըլի ալգորիթմի այս իմպլեմենտացումն ունի
// ուսուցողական, վերլուծական և դեմոնստրատիվ բնույթ, ինչի
// արդյունքում հնարավոր է, որ այն չհապատասխանի արտադրական ստանդարտներին։
```

```
// Միանշանակ հնարավոր է ավելի էֆեկտիվ իմպլեմենտացիա՝
// հիշողության և արագագործության տեսանկյունից։
public class FWAlgorithm
{
   // Գրաֆի հարևանևության մատրիցը
   private readonly AdjacencyMatrix initialAdjacencyMatrix;
   // Քայլերի հաջորդականույթուն
   private readonly List<Step> steps;
   // Քայլերի քանակ
   private readonly int count;
   // Այժմյան քայլ
   private int current;
   // Առաջին քայլ
   public Step FirstStep => this.steps.FirstOrDefault();
   // Վերջին քայլ
   public Step LastStep => this.steps.LastOrDefault();
   // Սկզբնարժեքավորում է այգորիթմը՝
   // ստանալով գրաֆի հարևանության մատրիցը
   public FWAlgorithm(AdjacencyMatrix initialAdjacencyMatrix)
   {
       this.initialAdjacencyMatrix = initialAdjacencyMatrix;
       this.count = initialAdjacencyMatrix.Size;
       this.current = -1;
       this.steps = new List<Step>(initialAdjacencyMatrix.Size);
   }
   // Կատարում է հերթական քայլո
   // Կվերադձնի սխալ բուլյան արժեք, երբ ալգորիթմի աշխատանքն ավարտվի։
   public bool Next()
   {
       if (this.current == -1)
       {
            this.DoFirstStep();
            return true;
       }
       if (this.current == this.count)
            return false;
       var step = this.CreateStep();
```

```
var lastA = this.LastStep.A;
var lastB = this.LastStep.B;
var sum = default(double);
var aValue = default(double);
var bValue = default(int);
var color = default(Color);
for (var i = 0; i < this.count; i++)</pre>
{
    for (var j = 0; j < this.count; j++)</pre>
    {
        if (j == this.current)
        {
            step.B[i, j] = lastB[i, j];
            // բաց ենք թողում ֆիքսված տողը և սյունը
            if (i == this.current)
                step.A[i, j] = lastA[i, j]; continue;
            }
        }
        // հաշվում ենք հապատասխան հանգույցների արժեքների գումարը
        // և համեմատում ենք իրական հանգույցի արժեքի հետ
        sum = lastA[i, this.current].Value + lastA[this.current, j].Value;
        if (lastA[i, j].Value > sum)
            aValue = sum;
            bValue = lastB[i, this.current].Value;
            color = Color.Red;
        }
        else
        {
            aValue = lastA[i, j].Value;
            bValue = lastB[i, j].Value;
            color = Color.White;
        }
        // սկզբնարժեքավորում ենք հարևանության մատրիցի և
        // օժանդակ մատրցիցի
        // (i,j) բջիջը ալգորիթմի հերթական քայլում
        step.A[i, j] = new Cell<double>(color, lastA[i, j].Point, aValue);
        step.B[i, j] = new Cell<int>(color, lastB[i, j].Point, bValue);
    }
}
// 1-ով ավելացնում ենք ալգորիթմի քայլի հաշվիչը
this.current++;
this.steps.Add(step);
```

```
return true;
}
// Կատարում է առաջին զրոյական քայլը`
// այսինքն սկբնարժեքավորում է հարևանության մատրիցը
// և կառուցում է օժանդակ B մատրիցը
// օրինակ`
     |V| = 3 \cdot |1 \ 2 \ 3|
//
//
                1 2 3
//
                1 2 3
private void DoFirstStep()
    var firstStep = this.CreateStep();
    for (var i = 0; i < this.count; i++)</pre>
        for (var j = 0; j < this.count; j++)</pre>
        {
            firstStep.A[i, j] = this.initialAdjacencyMatrix[i, j];
            firstStep.B[i, j] = new Cell<int>(
                Color.White, new Point(i, j), j + 1);
        }
    }
    this.current++;
    this.steps.Add(firstStep);
}
// Ստեղծում և սկբնարժեքավորում է ալգորիթմի հերթական քայլը
private Step CreateStep()
{
    return new Step
        Number = 0,
        A = new SquareMatrix<Cell<double>>(this.count),
        B = new SquareMatrix<Cell<int>>(this.count)
    };
}
```

Ալգորիթմի ամբողջական իմպլեմենտացիան օրինակներով հանդերձ հասանելի է իմ GitHub-յան էջում հետևյալ հղումով`

https://github.com/amirkhaniansev/fw-algorithm

}

Վերցնենք հետևյալ գրաֆը և աշխատեցնենք ալգորիթմը դրա վրա

A_0			
0	4	-	1
-	0	9	8
-	-	0	-
6	-	7	0

B_0			
1	2	3	4
1	2	3	4
1	2	3	4
1	2	3	4

A ₁			
0	4	-	1
-	0	9	8
-	-	0	-
6	10	7	0

B ₁			
1	2	3	4
1	2	3	4
1	2	3	4
1	1	3	4

0 4 13 12 1 2 2	2
- 0 9 8 1 2 3	4
0 - 1 2 3	4
6 10 7 0 1 1 3	4

A_3			
0	4	13	12
-	0	9	8
-	-	0	-
6	10	7	0

				B ₄			
4	13	12		1	2	2	2
0	9	8		4	2	3	4
-	0	-		1	2	3	4
10	7	0		1	1	3	4
		<u>l</u>		L	<u> </u>	<u> </u>	1
	0 -	0 9 - 0	0 9 8	4 13 12 0 9 8 - 0 -	0 9 8 4	4 13 12 0 9 8 - 0 - 1 2 4 2 1 2	4 13 12 0 9 8 - 0 - 1 2 2 4 2 3 1 2 3

 ${\bf A}_4$ մատրիցի (i, j) վանդակում գրված է i գագաթից j գագաթ Ճանապարհի երկարությունը։ ${\bf B}_4$ մատրիցում գրված է (i, j) Ճանապարհը։ Ակնայտ է որ ալգորիթմի բարդությունը կլինի ${\bf O}(|{\bf V}|^3)$, որտեղ $|{\bf V}|$ -ն ${\bf G}$ գրաֆի գագաթների բազության հզորությունն է։

Ստորև դիտարկվում է T.C. Hu-ի Integer Programming and Network Flows գրքի օրինակը

0-ական քայլ

A_0						
0	11	30	-	-	-	-
11	0	-	12	2	1	-
30	-	0	19	-	4	-
-	12	19	0	11	9	-
-	2	-	11	0	ı	-
_	-	4	9	-	0	-
-	-	-	20	1	1	0

B_0						
1	2	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7
_		•	•		-	-

1-ին քայլ

A ₁						
0	11	30	-	-	-	-
11	0	41	12	2	ı	ı
30	41	0	19	ı	4	ı
-	12	19	0	11	9	1
-	2	-	11	0	ı	ı
-	-	4	9	1	0	ı
-	-	-	20	1	1	0

B ₁						
1	2	3	4	5	6	7
1	2	1	4	5	6	7
1	1	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7

2-րդ քայլ

A_2						
0	11	30	23	13	-	-
11	0	41	12	2	1	1
30	41	0	19	43	4	ı
23	12	19	0	11	9	ı
13	2	43	11	0	ı	ı
-	-	4	9	-	0	ı
-	-	-	20	1	1	0

B ₂						
1	2	3	2	2	6	7
1	2	1	4	5	6	7
1	1	3	4	1	6	7
2	2	3	4	5	6	7
2	2	2	4	5	6	7
1	2	3	4	5	6	7
1	2	3	4	5	6	7

3-րդ քայլ

A_3						
0	11	30	23	13	34	-
11	0	41	12	2	45	ı
30	41	0	19	43	4	ı
23	12	19	0	11	9	ı
13	2	43	11	0	47	ı
34	45	4	9	47	0	ı
-	-	-	20	1	1	0

1	2	3	2	2	3	7
1	2	1	4	5	1	7
1	1	3	4	1	6	7
2	2	3	4	5	6	7
2	2	2	4	5	2	7
3	3	3	4	3	6	7
1	2	3	4	5	6	7
	1 2 2 3	1 2 1 1 2 2 2 2 2 2 3 3	1 2 1 1 1 3 2 2 3 2 2 2 3 3 3	1 2 1 4 1 1 3 4 2 2 3 4 2 2 2 4 3 3 3 4	1 2 1 4 5 1 1 3 4 1 2 2 3 4 5 2 2 2 4 5 3 3 3 4 3	1 2 1 4 5 1 1 1 3 4 1 6 2 2 3 4 5 6 2 2 2 4 5 2 3 3 3 4 3 6

4-րդ քայլ

A_4						
0	11	30	23	13	32	-
11	0	31	12	2	21	1
30	31	0	19	30	4	1
23	12	19	0	11	9	1
13	2	30	11	0	20	1
32	21	4	9	20	0	ı
43	32	39	20	1	1	0

B_4						
1	2	3	2	2	2	7
1	2	4	4	5	4	7
1	4	3	4	4	6	7
2	2	3	4	5	6	7
2	2	4	4	5	4	7
4	4	3	4	4	6	7
4	4	4	4	5	6	7

5-րդ քայլ

A ₅						
0	11	30	23	13	32	-
11	0	31	12	2	21	1
30	31	0	19	30	4	ı
23	12	19	0	11	9	1
13	2	30	11	0	20	ı
32	21	4	9	20	0	1
14	3	39	12	1	1	0

B ₅						
1	2	3	2	2	2	7
1	2	4	4	5	4	7
1	4	3	4	4	6	7
2	2	3	4	5	6	7
2	2	4	4	5	4	7
4	4	3	4	4	6	7
5	5	5	5	5	6	7

6-րդ քայլ

A_6						
0	11	30	23	13	32	-
11	0	25	12	2	21	ı
30	25	0	13	24	4	ı
23	12	13	0	11	9	ı
13	2	24	11	0	20	ı
32	21	4	9	20	0	1
14	3	5	10	1	1	0

B ₆						
1	2	3	2	2	2	7
1	2	4	4	5	4	7
1	6	3	6	6	6	7
2	2	6	4	5	6	7
2	2	4	4	5	4	7
4	4	3	4	4	6	7
5	5	6	6	5	6	7
	•		•			

A ₇						
0	11	30	23	13	32	ı
11	0	25	12	2	21	1
30	25	0	13	24	4	ı
23	12	13	0	11	9	ı
13	2	24	11	0	20	ı
32	21	4	9	20	0	1
14	3	5	10	1	1	0
		•	•	•		•

B ₇						
1	2	3	2	2	2	7
1	2	4	4	5	4	7
1	6	3	6	6	6	7
2	2	6	4	5	6	7
2	2	4	4	5	4	7
4	4	3	4	4	6	7
5	5	6	6	5	6	7