Total 18 Pages

RF TEST REPORT

Test item

: Remote Switch

Model No.

: RF-1B

Order No.

: DTNC1408-03514

Date of receipt

: 2014-08-18

Test duration

: 2014-10-14 ~ 2014-12-10

Date of issue

: 2014-12-30

Use of report

: FCC Original Grant

Applicant

: Poskom Co., Ltd.

Room 405, Unitech Ville Bldg., 1141-2, Baeksuk-dong, Goyang, Korea

Test laboratory : DT&C Co., Ltd.

42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935

Test specification

: FCC Part 15 Subpart C

Test environment

: See appended test report

Test result

: X Pass

☐ Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

Tested by:

Reviewed by:

Engineer HyunSu Son Technical Manager HongHee Lee

Test Report Version

Test Report No.	Date	Description
DRTFCC1412-1682	Dec. 30, 2014	Initial issue

TRF-RF-218(00)120326 Page 2 / 18

CONTENTS

1. Equipment information	4
1.1 Equipment description	4
1.2 Ancillary equipment	4
2. Information about test items	5
2.1 Operating mode	5
2.2 Tested frequency	5
2.3 Auxiliary equipment	5
2.4 Tested environment	5
2.5 EMI Suppression Device(s)/Modifications	5
3. Test Report	6
3.1 Summary of tests	
•	6
3.1 Summary of tests	6 7
3.1 Summary of tests	6 7 7
3.1 Summary of tests	6 7 7 10
3.1 Summary of tests	6 7 7 10 12
3.1 Summary of tests 3.2 Transmitter requirements. 3.2.1 20dB bandwidth	6 7 7 10 12

1. Equipment information

1.1 Equipment description

FCC Equipment Class	Part 15 Remote Control/Security Device Transceiver	
Equipment type	Remote Switch	
Fundamental Frequency	433.700 MHz ~ 433.8875 MHz	
Equipment model name	RF-1B	
Modulation	FSK	
Equipment serial no.	Identical prototype	
Power	DC 5 V	
Antenna type	External Antenna	

1.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
AC Adapter	DA-30C03	379124308	Asian Power Devices Inc.	-
-	-	-	-	•

2. Information about test items

2.1 Operating mode

Operating Mode 1	This device was tested with continuous TX mode for field strength of fundamental and spurious emissions measurements.
Operating Mode 2	Normal operating mode was used for 20 dB BW and Transmit Duration and Duration between Transmissions

2.2 Tested frequency

	Frequency(MHz)
Lowest Channel	433.7000
Middle Channel	433.7875
Highest Channel	433.8875

2.3 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	_	-	-	_

2.4 Tested environment

Temperature	•	23 ~ 24 °C
Relative humidity content	:	31 ~ 34 % R.H.
Details of power supply	:	DC 5 V

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Test Condition	Status Note 1
I. Test Items			
15.205	Restricted bands of operation		С
15.209	Radiated emission limits, general requirements		С
15.231(e)	Transmit Duration and Duration between Transmissions	Radiated	С
15.231(e)	Field strength of fundamental and spurious emissions		С
15.231(c)	20dB bandwidth		С
15.207	AC Power Line Conducted Emission	AC Line Conducted	С
15.203	Antenna Requirements	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification: ANSI C-63.4-2009

3.2 Transmitter requirements

3.2.1 20dB bandwidth

- Procedure:

The Transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 3 kHz. The VBW is set to 9.1 kHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

- Measurement Data: Comply

Note: See next pages for actual measured spectrum plots.

Frequency (MHz)	20dB Bandwidth (kHz)	Limit (kHz)
433.7000	8.940	1084.25
433.7875	8.928	1084.47
433.8875	8.944	1084.72

- Limit: § 15.209(c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

TRF-RF-218(00)120326 Page 7 / 18

- Measurement Data:

20dB bandwidth

Lowest Frequency

20dB bandwidth

Middle Frequency

20dB bandwidth

Highest Frequency

3.2.2 Field strength of fundamental and spurious emissions

- Procedure:

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

- Measurement Data: Refer to next page

- Limit:

§ 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

13.203(a) and (b), only sp) and (b), only spurious emissions are permitted in any or the frequency bands listed below.				
MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

§ 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency [MHz]	Field Strength of Fundamental Frequency [uV/m]	Measurement Distance [m]
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

§ 15.231(e), Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

I	Frequency [MHz]	Field Strength of Fundamental Frequency [uV/m]	Field Strength of Spurious Emissions [uV/m]
I	40.66 ~ 40.70	1,000	100
	70 ~ 130	500	50
I	130 ~ 174	500 to 1,500	50 to 150
I	174 ~ 260	1,500	150
I	260 ~ 470	1,500 to 5,000	150 to 500
	Above 470	5,000	500

- Measurement Data: Comply

Field strength of fundamental

Measurement Distance: 3 m

Test Freq.	EUT Position	Frequency [MHz]	Detector Mode	ANT Pol	Reading [dBuV]	T.F [dB/m]	Averaging correction fator [dB]	Field Strength [dBuV/m]	Averaging Limit [dBuV/m]	Margin [dB]
Lowest	Υ	433.7000	PK	Hor	78.40	-7.70	-	70.70	72.80	2.10
Freq.	Υ	433.7000	PK	Ver	76.10	-7.70	-	68.40	72.80	4.40
Middle	Υ	433.7875	PK	Hor	78.40	-7.70	-	70.70	72.80	2.10
Freq.	Υ	433.7875	PK	Ver	76.30	-7.70	-	68.60	72.80	4.20
Highest	Υ	433.8875	PK	Hor	77.90	-7.70	-	70.20	72.80	2.60
Freq.	Υ	433.8875	PK	Ver	75.70	-7.70	-	68.00	72.80	4.80

Note 1: EUT was in continuous transmission mode and peak field strength meets AV limit.

Therefore averaging correction factor using the duty cycle is not required.

Note 2: The worst data was reported.

Note 3: Sample calculation

T.F = AF + CL - AG / Field Strength = Reading + T.F + DF

Margin = Limit – Field Strength

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

Field strength of spurious emissions

Measurement Distance: 3 m

Test Freq.	EUT Position	Frequency [MHz]	Detector Mode	ANT Pol	Reading [dBuV]	T.F [dB/m]	Averaging correction fator [dB]	Field Strength [dBuV/m]	Averaging Limit [dBuV/m]	Margin [dB]
Lowest	Υ	870.086	PK	Hor	26.00	-0.80	-	25.20	52.80	27.60
Freq.	Υ	1301.039	PK	Hor	48.21	-1.38	-	46.83	52.80	5.97
Middle	Υ	875.058	PK	Hor	25.00	-0.80	-	24.20	52.80	28.60
Freq.	Υ	1301.372	PK	Hor	47.53	-1.38	-	46.15	52.80	6.66
Highest	Υ	874.937	PK	Hor	26.70	-0.80	-	25.90	52.80	26.90
Freq.	Υ	1301.306	PK	Hor	48.21	-1.38	-	46.83	52.80	5.97

Note 1: EUT was in continuous transmission mode and peak field strength meets AV limit.

Note 2: No other spurious and harmonic emissions were reported greater than listed emissions above table.

Note 3 : Sample calculation

T.F = AF + CL - AG / Field Strength = Reading + T.F + DF

Margin = Limit – Field Strength

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

3.2.3 Transmit Duration and Duration between Transmissions

- Measurement Data: Comply

	Measured Time (Sec)	Limit (Sec)	Margin (Sec)
Duration	0.07125	1	0.92875
Duration between Transmissions	11.09	10	1.09

- Limit: § 15.231(e)

The maximum duration is 1sec. Duration between transmissions more than 10Sec or 30 times the duration of the Transmission whichever is greater.

3.2.4 AC power line conducted emission

- Procedure:

1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

- Measurement Data: Comply

Note: See next pages for actual measured spectrum plots.

- Limit:

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

AC Line Conducted Emissions (Graph)&Modulation: GFSK

Results of Conducted Emission

AC Line Conducted Emissions (List)&Modulation: GFSK

Results of Conducted Emission

Referrence No.

Date: 2014-11-13 DT&C

Order No. Model No. RF-1B

Power Supply : 120 V 60 Hz : 23'C 31 % R.H : HyunSu Son Serial No. Test Condition Temp/Humi. Operator

Memo

LIMIT : CISPR22_B QP CISPR22_B AV

NC	FREQ	READ QP	ING AV	C.FACTOR	RES OP	ULT AV	LII QP	MIT AV	MA QP	RGIN AV	PHASE
	[MHz]	[dBuV]		[dB]	95.5	[dBuV]	100] [dBuV]	-] [dBuV]	
1	0.37150	39.1	35.8	0.2	39.3	36.0	58.5	48.5	19.2	12.5	N
2	0.41728	42.7	35.9	0.2	42.9	36.1	57.5	47.5	14.6	11.4	N
3	0.46378	42.4	40.5	0.2	42.6	40.7	56.6	46.6	14.0	5.9	N
4	0.51026	45.2	44.1	0.2	45.4	44.3	56.0	46.0	10.6	1.7	N
5	0.88755	27.5	22.7	0.2	27.7	22.9	56.0	46.0	28.3	23.1	N
6	2.50400	32.5	32.3	0.1	32.6	32.4	56.0	46.0	23.4	13.6	N
7	8.05780	22.6	16.9	0.5	23.1	17.4	60.0	50.0	36.9	32.6	N
8	0.41883	42.4	34.9	0.1	42.5	35.0	57.5	47.5	15.0	12.5	L1
9	0.46390	40.5	37.7	0.1	40.6	37.8	56.6	46.6	16.0	8.8	L1
10	0.51003	42.4	41.9	0.1	42.5	42.0	56.0	46.0	13.5	4.0	L1
11	0.64901	34.4	31.3	0.1	34.5	31.4	56.0	46.0	21.5	14.6	L1
12	3.89480	29.8	27.9	0.4	30.2	28.3	56.0	46.0	25.8	17.7	L1
13	8.06680	21.6	16.1	0.7	22.3	16.8	60.0	50.0	37.7	33.2	L1

3.2.5 Antenna requirement

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Measurement Data: Comply

The external antennas used a unique coupling to the intentional radiator.

- Limit: § 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

TRF-RF-218(00)120326 Page 16 / 18

APPENDIX I

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
MXA Signal Analyzer	Agilent	N9020A	14/09/15	15/09/15	MY50200834
DC Power Supply	SM techno	SDP30-5D	14/02/10	15/02/10	305DLJ204
Vector Signal Generator	Rohde Schwarz	SMBV100A	14/01/07	15/01/07	255571
Signal Generator	Rohde Schwarz	SMF100A	14/07/01	15/07/01	102341
Multimeter	HP	34401A	14/02/27	15/02/27	3146A13475
PreAmplifier	Agilent	8449B	14/02/27	15/02/27	3008A00370
Amplifier (22dB)	H.P	8447E	14/01/08	15/01/08	2945A02865
High-Pass Filter	Wainwright Instruments	WHKX1.0	14/09/11	15/09/11	9
LOOP Antenna	SCHWARZBECK	FMZB1513	14/04/29	16/04/29	1513-128
TRILOG Broadband Test- Antenna	SCHWARZBECK	VULB 9160	13/12/16	15/12/16	3358
Double-Ridged Guide Antenna	ETS-LINDGREN	3117	14/05/12	16/05/12	00140394
EMI TEST RECEIVER	R&S	ESU	14/01/08	15/01/08	100014
EMI TEST RECEIVER	Rohde Schwarz	ESCI7	14/02/27	15/02/27	100910
FREQUENCY CONVERTER	TaejIn Electronics	CVCF	14/09/11	15/09/11	ZU0033
ARTIFICIAL MAINS NETWORK	Rohde Schwarz	ESH2-Z5	14/09/11	15/09/11	828739/006
Thermohygrometer	BODYCOM	BJ5478	14/05/13	15/05/13	120612-2