15/11/2017 HackerRank

Tripartite Matching

You are given ${\bf 3}$ unweighted, undirected graphs, G_1 , G_2 , and G_3 , with ${\bf n}$ vertices each, where the ${\bf k}^{th}$ graph has m_k edges and the vertices in each graph are numbered from ${\bf 1}$ through ${\bf n}$. Find the number of ordered triples (a,b,c), where ${\bf 1} \le a,b,c \le n$, $a \ne b,b \ne c,c \ne a$, such that there is an edge (a,b) in G_1 , an edge (b,c) in G_2 , and an edge (c,a) in G_3 .

Input Format

The first line contains single integer, n, denoting the number of vertices in the graphs. The subsequent lines define G_1 , G_2 , and G_3 . Each graph is defined as follows:

- 1. The first line contains an integer, m_0 , describing the number of edges in the graph being defined.
- 2. Each line i of the m subsequent lines (where $1 \le i \le m$) contains 2 space-separated integers describing the respective nodes, u_i and v_i connected by edge i.

Constraints

- $n \le 10^5$
- $m_k \leq 10^5$, and $k \in \{1,2,3\}$
- Each graph contains no cycles and any pair of directly connected nodes is connected by a maximum of 1 edge.

Output Format

Print a single integer denoting the number of distinct (a,b,c) triples as described in the *Problem Statement* above.

Sample Input

2

2

2 :

2 :

1 2

J 2

2

1 3

2 -

Sample Output

3

Explanation

There are three possible triples in our Sample Input:

1. (1, 2, 3)

15/11/2017 HackerRank

2. **(2, 1, 3)**

3. **(3, 2, 1)**

Thus, we print 3 as our output.

f in Submissions:<u>147</u> Max Score:80 Difficulty: Hard Rate This Challenge: ☆☆☆☆☆

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature