Matematika I

Séria úloh 14

1. (11b) Daná j	je všeobecná	rovnica	kužeľosečky	$9x^{2} -$	$-25y^2 -$	54x -	100y -	44 = 0.
Doplňt	e								

•		
a)	(2b)	Stredová rovnica kužeľosečky je
b)	(1b)	Typ kužeľosečky je
c)	(3b)	Popíšte (ak existujú):
1\	c_2) c_3)	dĺžka hlavnej poloosi je
d)	$d_1)$ $d_2)$ $d_3)$	Napíšte súradnice (ak existujú): stredu kužeľosečky hlavných vrcholov kužeľosečky vedľajších vrcholov kužeľosečky súradnice ohniska resp. ohnísk kužeľosečky
e)	(1b)	Znázornite kužeľosečku a v náčrte popíšte jej významné prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, dxdy,$$

kde množina M je mnohouholník s vrcholmi $A=[1,0],\,B=[2,0],\,C=[2,2],\,D=[1,3].$

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[\sqrt{2}, \frac{\pi}{4}, \sqrt{6}\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, -1, \sqrt{6}]$$

c)
$$M = [-1, 1, \sqrt{6}]$$

b)
$$M = [-1, -1, \sqrt{6}]$$

d)
$$M = [1, 1, \sqrt{6}]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) + 9y(x) = 3x$
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení je
c) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je
d) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie danej LODR je
6. (4b) Vypočítajte
$\lim_{[x,y]\to[0,0]} \frac{\arctan(x^2+y^2)}{x^2+y^2}.$
Výsledok:
7. (6b) Nájdite všeobecnú rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x+1}$ v bode $T=\left[1,y_0,\frac{1}{3}\right]$.
(2b) Súradnice dotykového bodu sú:
(4b) Všeobecná rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y)=\frac{1}{x+y^2}$, bod $A=[1,2]$ a vektor $\vec{l}=(0,2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=xy+8y-2x^2-3y^2-9x-66$ a oblasť M . Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[-3,0],\ B=[-1,0],\ C=[-1,2]$ a $D=[-3,2].$	2]
a) Načrtnite oblasť M :	
Náčrt:	
Pomocou matematických vzťahov popíšte hranice oblasti M :	
(a) (2b) AB	
(b) $(2b) BC$	
(c) (2b) CD	
(d) (2b) AD	•
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".	
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne	
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti M . Ak hľadan lokálny extrém nejestvuje, napíšte "nie je".	ý
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne	
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne	
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne	
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode $\ldots\ldots$ viazané lokálne $\ldots\ldots$	
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$	
$\mathbf{Najv\ddot{a}\check{c}\check{s}ia}$ hodnota funkcie $f(x,y)$ je:	
Najmenšia hodnota funkcie $f(x,y)$ je:	