1)Ограниченные множества. Верхняя и нижняя грани числовых множеств. Свойства граней.

Orhanner who melemba left i wine those win the care of the standard of the commentation of the commentatio

 $a = \sup X$, если

$$1)\forall x \in X \quad x \le a,$$

$$2)\forall \epsilon > 0 \quad \exists x_{\epsilon} \in X \quad x_{\epsilon} > a - \epsilon;$$

и $a = \inf X$, если

$$1) \forall x \in X \quad x \ge a$$

 $2)\forall \epsilon > 0 \quad \exists x_{\epsilon} \in X \quad x_{\epsilon} < a + \epsilon.$

5. Ограниченные последовательности. Достаточное условие ограниченности последовательности.

(Xn) + ELM FMER YNEW Xn SM

(Xn) + OME (DIN) FACER FEER YNEW AS Xn SB

ASCRATOLINE YOU ONL NOON:
ECOM FMER FROEN YNON (XN) SM, VO (14)

BOX-60:
No = max[1x1], , |Xno-1|, M3 => YNEN |Xn| & Mo, T.R. Xn = (211)

2. Теорема о существовании верхней грани.

Теорема 2.2.1. У любого непустого ограниченного сверху множества существует верхняя грань.

Доказательство. Рассмотрим сначала случай, кода среди элементов множества X есть хотя бы одно неотрицательное число.

Рассмотрим целые части неотрицательных чисел, принадлежащих можеству X. В сылу неравенства $x \le M$ все целые части не превосодят M, а поэтому найдегся наибольшее число среди них, которое обозначим через a_0 . Рассмотрим миожество элементов $x \in X$, целые части которых равны a_0 , и первые десятичные знаки после запятой этих элементов. Наибольший среди них обозначим через a_1 . Рассмотрим миожество элементов $x \in X$, целые части которых равны a_0 , а первый десятичный знак после запятой равен a_1 . Наибольший второй десятичный знак этих чисел обозначим через a_2 . Продолжая далее апалотичные действия, мы

последовательно определим десятичные знаки некоторого числа
$$a = a_0, a_1 a_2 \dots a_n \dots \ .$$

Докажем, во-первых, что число a является мажорантой множества X. Так как $a \geq 0$, то любое отрицательное число из множества X меньше a. Остается доказать, что любой неотрицательный элемент $x \in X$ удовлетворяет условию $x \leq a$.

Предположим, что некоторый неотрицательный элемент $x=x_0, x_1x_2\dots x_n\dots$ множества X не удовлетворяет неравенству $x\leq a$. Тогда x>a, и найдется номер k такой, что $x_0=a_0, x_1=a_1,\dots,x_{k-1}=a_{k-1},x_k>a_k$. Но последине соотношения противоречат построению числа a. Итак, мы доказали, что число a - мажоранга множества X.

Докажем теперь, что число a - наименыная мажоранта. Пусть $a'=a_0,a_1'a_2'\dots a_n$... -призвольное число, удовлетворяющее условию a'< a. Если a' является отрицательным, то неравенству x>a удовлетворяет любой неотрицательный элемент множества X (по предположению хотя бы один такой элемент существует).

Остается рассмотреть случай, когда число a', удовлетворяющее условию a' < a, является неотрицательным. Так как a' < a, то найдется номер m такой, что

$$a'_0 = a_0, \quad a'_1 = a_1, \quad \dots, \quad a'_{m-1} = a_{m-1}, \quad a'_m < a_m.$$

С другой стороны, из построения числа a вытекает, что для любого но мера m найдется элемент $x \in X$ такой, что

$$x_0 = a_0, \quad x_1 = a_1, \quad \dots, \quad x_m = a_m,$$

и, значит, x>a'. Таким образом мы доказали, что число a является наименьшей мажорантой, т.е. $a=\sup X$.

6. Бесконечно малые последовательности. Теорема об арифметических действиях над бесконечно малыми последовательностями.

Определение 3.5. Последовательность называется бесконечно малой,

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in \mathbb{N} \quad \forall n \geq n_{\epsilon} \quad |x_n| \leq \epsilon.$$
 (5)

Бесконечно малые последовательности будем обозначать символом о(1).

Теорема 3.1.2. Бесконечно малая последовательность ограничена.

 \mathcal{A} оказательство. Возьмем $\epsilon=1$, тогда найдется номер n_1 такой , что при всех $n\geq n_1$ выполняется неравенство $|x_n|<1$. В силу теоремы (3.1.1) последовательность ограничена.

Теорема 3.1.3. (об арифметических действиях над бесконечно малыми).

Справедливы равенства

$$o(1) \pm o(1) = o(1); \quad o(1)O(1) = o(1);$$

тем более

$$o(1)o(1) = o(1).$$

Доказательство. Докажем первое равенство. Пусть $x_n = o(1), y_n = o(1)$ и ϵ - призвольное положительное чело.

Тогда найдется номер n'_{ϵ} такой, что

$$\forall n \geq n'_{\epsilon} \quad |x_n| < \epsilon/2;$$

и найдется номер n'' такой, что

$$\forall n \geq n''_{\epsilon} \quad |y_n| < \epsilon/2.$$

Следовательно, $\forall n \geq n_{\epsilon} = \max\{n'_{\epsilon}, n''_{\epsilon}\}$ выполняется условие

$$|x_n \pm y_n| \le |x_n| + |y_n| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Это означает, что $x_n \pm y_n = o(1)$.

3. Счетные множества и их свойства.

Множество называется счётным, если оно эквивалентно множеству натуральных чисел.

Всякое бесконечное подмножество счётного множества является счётным.

Объединение последовательности счётных множеств является счётным множеством.

Множество рациональных множеств счётно.

Теорема 2.6.2. Объединение последовательности счетных множеств является счетным множеством.

Доказательство. Пусть $A_1, A_2, \dots, An, \dots$ - последовательность счетных множеств. Тогла

$$A_1 = \{a_{11}, a_{12}, a_{13}, \ldots\}$$

$$A_2 = \{a_{21}, a_{22}, a_{23}, \ldots\}$$

$$A_3 = \{a_{31}, a_{32}, a_{33}, \ldots\}$$

Пусть $A = \bigcup_{n=1}^{\infty} A_n$. Произведем нумерацию элементов a множества A следующим образом:

$$a_1=a_{11},\quad a_2=a_{21},\quad a_3=a_{12},\quad a_4=a_{31},\quad a_5=a_{22},\quad a_6=a_{13}$$
 ит. д.

У некоторых множеств A_i и $A_j (i \neq j)$ могут оказаться общие элементы. В этом случае учитываем их только один раз.

Таким образом, элементы множенства А будут занумерованы.

Следствие. Множество рациональных чисел счетно.

4. Теорема о несчетности интервала. Множества мощности континуум.

Теорема 2.6.3. Множество всех точек интервала (0,1) несчетно.

Доказательство. Допустим противное, т.е. предположим, что множе-

ство всех точек интервала (0,1) счетно. Представляя каждое число этого интервала бесконечной десятичной

Представляя каждое число этого интервала оесконечной десятично дробью, расположим их в виде последовательности:

Рассмотрим бескопечную десятичную дробь $b=0,b_1b_2\dots b_n\dots$, где b_1 - любая цифра,
отличная от $a_{11},0$ и 9; b_2 - любая цифра, отличная от
 $a_{22},0$ и 9; и т.д.; b_n - любая шфра, отличная от
 $a_{nn},0$ и 9; и т.д.. Очевидно, что число $b\in(0,1)$ и оно отлично от всех чисе
л a_1,a_2,\dots,a_n,\dots . Полученное противоречие доказывает теорему.

Определение 2.10. Множество, эквивалентное множеству точек интервала (0,1), называется множеством мощности континуума.

7. Бесконечно большие последовательности, их связь с бесконечно малыми.

Определение 3.6. Последовательность (x_n) называется положительно бесконечно большой, если выполняется условие:

$$\forall M > 0 \quad \exists n_M \in \mathbb{N} \quad \forall n \geq n_M \quad x_n > M.$$
 (6)

В этом случае используют обозначение:

$$\lim x_n = +\infty \quad unu \quad x \to +\infty \quad npu \quad n \to \infty.$$

Определение 3.7. Последовательность (x_n) называется отрицательно бесконечно большой, если выполняется условие:

$$\forall M > 0 \quad \exists n_M \in \mathbb{N} \quad \forall n \ge n_M \quad x_n < -M.$$
 (

В этом случае используют обозначение:

$$\lim x_n = -\infty \quad u \land u \quad x \to -\infty \quad npu \quad n \to \infty.$$

Определение 3.8. Последовательность (x_n) называется бесконечно большой, если выполняется условие:

$$\forall M > 0 \quad \exists n_M \in \mathbb{N} \quad \forall n \ge n_M \quad |x_n| > M.$$
 (8)

В этом случае используют обозначение:

$$\lim \ x_n = \infty \quad \text{unu} \quad x \to \infty \quad \text{npu} \quad n \to \infty.$$

Теорема 3.1.5. Пусть при всех $n \in \mathbb{N}$ $x_n \neq 0$. Тогда (x_n) - беско исчио большая последовательность тогда и только тогда, когда $(\frac{1}{x_n})$ бесконечно малая последовательность.

Доказательство. Суть доказательства состоит в равносильности неравенств

$$|x_n| > M \Leftrightarrow \frac{1}{x_n} < \frac{1}{M}$$
.

8. Предел последовательности. Теорема о единственности предела.

Определение 3.9. Последовательность (x_n) называется сходящейся, если существует число а такое, что последовательность $x_n-a=o(1)$. Число а в этом случае называют пределом последовательности или говорят, что последовательность x_n стремится к числу a. Записывается это так:

$$\lim x_n = a \quad unu \quad x_n \to a \quad npu \quad n \to \infty.$$

Определение 3.10. Число а называется пределом поледовательности (x_n) , если

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in \mathbb{N} \quad \forall n \geq n_{\epsilon} \quad |x_n - a| < \epsilon$$
 (9)

Теорема 3.2.1. (о единственности предела). Если последовательность (x_n) сходится, то она имеет единственный предел.

Доказательство. Пусть это не так. Тогда существуют $a_1 \neq a_2$ такие, что $x_n - a_1 = o(1)$ и $x_n - a_2 = o(1)$. Вычитая из первого равенства второе, получим

$$a_2 - a_1 = o(1) - o(1) = o(1).$$

В силу теоремы (3.1.4) $a_2-a_1=0$, т.е. $a_2=a_1$. Полученное противоречие доказавает теорему.

9. Ограниченность сходящейся последовательности.

Теорема 3.2.2. (об ограниченности сходящейся последовательности) Если последовательность (x_n) сходится, то она ограничена.

Доказательство. Пусть $x_n=a+o(1)$. Поскольку всякая бесконечно малая последовательность является ограниченной и стационарная последовательность, очевидно, также ограничена, то их сумма a+o(1)=O(1).

10. Порядковые свойства предела. Переход к пределу в неравенствах.

Теорема 3.3.1. *Есяи* $\lim x_n = a \ u \ a > b, \ mo$

$$\exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad x_n > b.$$

Доказательство. Возьмем $\epsilon = \frac{a-b}{2}$.

Тогда $\exists n_0 \in \mathbb{N} \quad \forall n \geq n_0 \quad |x_n^2 - a| < \frac{a-b}{2}$. Следовательно,

$$x_n > a - \frac{a-b}{2} = \frac{a+b}{2} > b,$$

при всех $n > n_0$.

Замечание. Аналогичное утверждение справедливо в случае a < b. именно

$$\exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad x_n < b.$$

Теорема 3.3.2. *Если* $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$ *u* a < b, *mo*

$$\exists n_0 \in \mathbb{N} \quad \forall n \geq n_0 \quad x_n < y_n.$$

Теорема 3.3.3. (о переходе κ пределу в перавенстве). Если $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ и для всех $n\in\mathbb{N}$ $x_n\leq y_n$, то $a\leq b$.

 $\ensuremath{\mathcal{A}}$ оказательство. От противного. Пусть a>b. Тогда по предыдущей теореме

$$\exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad x_n > y_n$$

что противоречит условию данной теоремы.

11. Порядковый признак существования предела последовательности.

Теорема 3.3.4. (порядковый признак существования предела). Пусть $x_n \leq z_n \leq y_n$ дая всех $n \in \mathbb{N}$ и $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$. Тогда существует предел $\lim_{n \to \infty} z_n = a$.

Доказательство. Пусть $\epsilon > 0$. Согласно определению предела

$$\exists n'_{\epsilon} \in \mathbb{N} \quad \forall n \ge n'_{\epsilon} \quad a - \epsilon < x_n < a + \epsilon$$

$$\exists n''_{\epsilon} \in \mathbb{N} \quad \forall n \ge n''_{\epsilon} \quad a - \epsilon < y_n < a + \epsilon.$$

Тогда

$$\forall n \ge n_0 = \max(n'_{\epsilon}, n''_{\epsilon}) \quad a - \epsilon < x_n < z_n < y_n < a + \epsilon,$$

т. е.
$$\lim_{n\to\infty} z_n = a$$
.

12. Арифметические свойства предела последовательности.

Теорема 3.3.5. (арифметические свойства предела последовательности). Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$. Тогда

1)
$$\lim (x_n \pm y_n) = a \pm b$$
,

2)
$$\lim_{n \to \infty} x_n y_n = ab$$
,

3)
$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}$$
 при дополнительном условии, что $b\neq 0$.

Доказательство. Согласно условню теоремы, имеем $x_n = a + o(1), \quad y_n = b + o(1).$

1) Следовательно,

$$x_n \pm y_n = (a + o(1)) \pm (b + o(1)) = (a \pm b) + (o(1) \pm o(1)) = (a \pm b) + o(1).$$

Это означает, что

$$\lim_{n \to \infty} (x_n \pm y_n) = a \pm b.$$

13. Монотонные последовательности. Теорема Вейерштрасса о монотонных последовательностях.

Определение 3.12. Последовательность называется неубывающей, если $x_{n+1} \geq x_n \ \forall n \in \mathbb{N}$ (обозначение: $x_n \uparrow$); невозрастающей, если $x_{n+1} \leq x_n \ \forall n \in \mathbb{N}$ (обозначение: $x_n \downarrow$); возрастающей, если $x_{n+1} > x_n \ \forall n \in \mathbb{N}$ (обозначение: $x_n \downarrow \uparrow$); убывающей, если $x_{n+1} < x_n \ \forall n \in \mathbb{N}$ (обозначение: $x_n \downarrow \downarrow$). Последовательности первых двух типов называют монотонными, а последовательности возрастающие и убывающие называют еще строго монотонными.

Теорема 3.4.1. (Вейерштрасса о монотонных последовательностях). Пусть (x_n) - монотонная и ограниченная последовательность. Тогда (x_n) сходится. Причем $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$, если $x_n\uparrow$, $u\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n$ если $x_n\downarrow$.

 \mathcal{A} оказательство проведем в случае, когда $x_n\uparrow$. Так как (x_n) - ограничена сверху , то существует $\sup x_n.$ Пусть $a=\sup x_n.$

Тогда, во-первых,

$$\forall n \in \mathbb{N} \quad x_n \leq a$$

и, во-вторых,

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \quad x_{n_{\epsilon}} > a - \epsilon.$$

Так как (x_n) - неубывающая последовательность, то

$$\forall n \ge n_{\epsilon} \quad a - \epsilon < x_{n_{\epsilon}} \le x_n.$$

Следовательно

$$\forall n \ge n_{\epsilon} \quad a - \epsilon < x_n \le a < a + \epsilon.$$

Это и означает, что $\lim_{n\to\infty} x_n = a$.

14. Лемма о вложенных отрезках.

Определение 3.13. Последовательность отрезков

$$[a_1,b_1],[a_2,b_2],\ldots,[a_n,b_n],\ldots$$

называется последовательностью вложенных отрезков, если выполняется условие: $\forall n \in \mathbb{N} \quad [a_{n+1},b_{n+1}] \subset [a_n,b_n].$

Последовательность вложенных отрезков называется стягивающейся, если выполняется условие: $b_n-a_n\to 0$ при $n\to\infty$.

Лемма 3.4.1. (о вложенных отрезках.)

У всякой стягивающейся последовательности отрезков существует и притом единственная точка, принадлежащая всем отрезкам последовательности.

Доказательство. Пусть последовательность

$$[a_1, b_1], [a_2, b_2], \ldots, [a_n, b_n], \ldots$$

является стягивающейся. Рассмотрим последовательность (a_n) . О чевидно, что $a_n\uparrow$ и ограничена сверху, причем b_m при любом $m\in\mathbb{N}$ является мажорантой. Следовательно, существует $\lim_{n\to\infty} a_n=c$ и $c\in[a_n,b_n]$ $\forall n\in\mathbb{N}$

Докажем, что точка c, принадлежащая всем отрезкам, может быть только одна. Пусть нашлась еще одна точка d, отличная o c u принадлежащая всем отрезкам. Предположим для определенности, что c c d. Тогда отрезок $[c,d] \subset [a_n,b_n]$ при любом натуральном n. Но тогда $b_n - a_n \ge d - c > 0$, что противоречит устовию $b_n - a_n \ge 0$ при $n \to \infty$.

15. Подпоследовательности и частичные пределы последовательности. Теорема о подпоследовательностях сходящейся последовательности.

Определение 3.14. Пусть (x_n) - числовая последовательность и (k_n) -некоторая возрастающая последовательность натуральных чисел. Тогда последовательность $(y_n) = (x_{k_n})$ называется подпоследовательность последовательности (x_n) .

Теорема 3.5.1. (о подпоследовательностях сходящейся последовательносты). Любая подпоследовательность сходящейся последовательность сходится, причем к тому же числу, что и вся последовательность.

Доказательство. Пусть $\lim_{n \to \infty} x_n = a$ и $\epsilon > 0$. Тогда найдется номер n_ϵ такой, что при всех $n \geq n_\epsilon$ выполняется условие $|x_n - a| < \epsilon$. Очевидно что $k_n \geq n$. Следовательно, при всех $n \geq n_\epsilon$ $y_n = x_{k_n}$ удовлетворяет неравенству $|y_n - a| < \epsilon$. Это означает, что $\lim_{n \to \infty} y_n = a$.

16. Верхний и нижний пределы последовательности. Корректность определения.

Определение 3.15. $\Pi y cmb\left(x_{n}
ight)$ - ограниченная числовая последовательность.

Верхний предел последовательности определим равенством

$$\overline{\lim}_{n\to\infty} x_n = \lim_{n\to\infty} \sup_{k\to\infty} x_k.$$
 (10)

Нижний предел последовательности определим равенством

$$\underline{\lim}_{n\to\infty} x_n = \lim_{n\to\infty} \inf_{k>n} x_k. \quad (11)$$

Докажем корректность определения верхнего предела. Обозначим $y_n = \sup x_k$. Очевидно, что последовательность (y_n) ограничена. В силу свойства монотонности верхней грани последовательность (y_n) является

своиства монотонности верхнен грани последовательность (ул.) является невозрастающей. Тогда, согласно теореме Вебриптрасса, она сходится. Корректность определения нижнего предела доказывается аналогич-

17. Свойства верхнего и нижнего пределов.

Теорема 3.5.2. Для любой ограниченной последовательности справедливо неравенство

$$\underline{\lim}_{n\to\infty} x_n \le \overline{\lim}_{n\to\infty} x_n.$$

Доказательство. Обозначим

$$z_n = \inf_{k \ge n} x_k, \quad y_n = \sup_{k \ge n} x_k.$$

Очевидно, что $\forall n \in \mathbb{N}$ $z_n < y_n$. Осталось перейти к пределу в этом

Теорема 3.5.3. У любой ограниченной последовательности предел существует тогда и только тогда, когда

$$\underline{\lim}_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n.$$

Причем

$$\lim_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n.$$

18. Теорема Больцано-Вейерштрасса.

Теорема 3.5.4. (Больцано-Вейештрасса.)

У любой ограниченной последовательности существует сходящаяся подпоследовательность.

Доказательство. Пусть последовательность x_n ограничена, т.е. найдется M > 0 такое, что $|x_n| \le M$ при всех n. Разделим отрезок $I_0 = [-M, M]$ пополам. По крайней мере один из получившихся отрезков содержит бесконечное число членов последовательности. Выберем такой отрезок и обозначим его I₁. В качестве первого члена искомой подпоследовательности возьмем какой-либо элемент $x_{n_1} \in I_1$. Затем отрезок I_1 снова 🗖 разделим на два и обозначим через I_2 ту его половину, которая содержит | Теорема 3.6.1. Всякая фундаментальная последоательность огранибесконечно много членов последовательности x_n . Среди них выберем такой член x_{n_2} , номер которого $n_2 > n_1$. Повторяя эту процедуру далее, мы получим последовательность вложенных отрезков (I_n) и подпоследовательность $x_{n_1}, x_{n_2}, \dots, x_{n_k}, \dots$, причем $x_{n_k} \in I_k$. Длина отрезка I_k равна $\frac{2M}{2k} = \frac{M}{2k-1}$. Поскольку $\frac{M}{2k-1} \to 0$ при $k \to \infty$, то

система отрезков является стягивающейся. Согласно лемме о вложенных т.е. отрезках существует единственная точка *с*, принадлежещая всем отрезкам. Обозначим $I_k = [a_k, b_k]$. Так как $a_k \to c$, $b_k \to c$ при $k \to \infty$, а $a_k \le x_{n_k} \le b_k$, то $x_{n_k} \to c$ при $k \to \infty$.

19. Фундаментальные последовательности. Теорема об ограниченности фундаментальной последовательности.

Определение 3.16. Последовательность (x_n) называется фундамен-

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in \mathbb{N} \quad \forall n \ge n_{\epsilon} \quad \forall m \ge n_{\epsilon} \quad |x_n - x_m| < \epsilon. \tag{12}$$

Отметим, что условие (12) равносильно следующему условию:

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in \mathbb{N} \quad \forall n \ge n_{\epsilon} \quad \forall p \in \mathbb{N} \quad |x_{n+p} - x_n| < \epsilon. \tag{13}$$

Показательство. Из условия фундаментальности, взяв $\epsilon = 1$, имеем

$$\exists n_1 \in \mathbb{N} \quad \forall n \ge n_1 \quad |x_n - x_{n_1}| < \epsilon,$$

$$x_{n_1} - 1 \le x_n \le x_{n_1} + 1$$
 при всех $n \ge n_1$.

Согласно теореме (3.1.1), последовательность (x_n) ограничена.

20. Критерий Коши сходимости последовательности.

Теорема 3.6.2. (критерий Коши сходимости последовательности). Последовательности сходится тогда и только тогда, когда она фун-

Доказательство. Докажем необходимость. Пусть последовательность $x_n \to a$ при $n \to \infty$. Возьмем произвольное число $\epsilon > 0$. Тогда найдется номер n_{ϵ} такой, что при $n > n_{\epsilon}$ и $m > n_{\epsilon}$ выполняются условия

$$|x_n - a| < \epsilon/2$$
 и $|x_m - a| < \epsilon/2$.

$$|x_n - x_m| = |(x_n - a) + (a - x_m)| \le |x_n - a| + |x_m - a| < \epsilon/2 + \epsilon/2 = \epsilon.$$

 Γ_0 есть последовательность (x_n) - фундаментальна.

Докажем достаточность. Пусть (x_n) - фундаментальна. Согласно теореме $(3.6.1), (x_n)$ ограничена. Тогда в силу теоремы Больцано-Вейерштрасса существует сходящаяся подпоследовательность $x_{k_1}, x_{k_2}, \dots, x_{k_m}, \dots$ Пусть $x_{k_n} \to a$ при $n \to \infty$. Поскольку $k_n \ge n$, то из условия фундаментальности следует вывод, что

$$x_n - x_{k_n} \to 0$$
 при $n \to \infty$.

Поэтому

$$x_n - a = (x_n - x_{k_n}) + (x_{k_n} - a) \to 0,$$

т.е. $x_n \to a$ при $n \to \infty$. Теорема полностью доказана

21. Определения Гейне и Коши предела функции в точке. Теорема об их эквивалентности

Определение 4.4. (предела функции по Коши).

 Π усть функция f определена на множестве X и точка x_0 является предельной точкой множества Х.

Число A называют пределом функции f в точке x_0 , если

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in X \; (0 < |x - x_0| < \delta \implies |f(x) - A| < \epsilon) \tag{14}$$

Формулой это записывается так:

$$\lim f(x) = A.$$

Определение 4.5. (предела функции по Гейне).

 $\Pi y cmb$ функция f определена на множестве X и точка x_0 является предельной точкой множества Х.

Число A называют пределом функции f в точке x_0 , если для любой последвательности (x_n) точек множества X такой, что $x_n \to x_0$ при $n \to \infty$ и $x_n \ne x_0$ $\forall n \in \mathbb{N}$, выполняется условие $f(x_n) \to A \text{ npu } n \to \infty.$

Теорема 4.1.1. Определение предела функции в точке по Коши равносильно определению предела по Гейне

Доказательство. 1) Пусть число A является пределом функции f(x) в точке x_0 по Коши и (x_n) -последовательность точек множества X, отличных от точки x_0 , сходящаяся к точке x_0 .

Пусть число $\epsilon > 0$. Согласно определению Коши, найдется число $\delta > 0$ такое, что $|f(x) - A| < \epsilon$, если $0 < |x - x_0| < \delta$. Поскольку $x_n \to x_0$, то найдется номер n_0 такой, что при всех $n \geq n_0$ выполняется условие $|x_n-x_0|<\delta$, а следовательно, $|f(x_n)-A|<\epsilon$. Это и означает, что $f(x_n) \to A$ при $n \to \infty$, т.е. функция f удовлетворяет определению

2) Пусть теперь число A является пределом функции f(x) в точке x_0 по Гейне. Докажем, что число A является пределом функции f(x) в точке x_0 по Коши. Предположим, что это не так. Тогда для некоторого числа $\epsilon_0 > 0$ и любого $\delta > 0$ найдется x_δ такое, что $0 < |x_\delta - x_0| < \delta$, но $|f(x_\delta) - A| \ge \epsilon_0$.

Возьмем последовательность $\delta_n = \frac{1}{2}, n \in \mathbb{N}$, и найдем x_n такие, что

$$0 < |x_n - x_0| < \frac{1}{n}$$
, no $|f(x_n) - A| \ge \epsilon_0$.

Построенная последовательность $x_n \to x_0$ и $x_n \neq x_0$. Тогда согласно определению Гейне $f(x_n) \to A$, что протоворечит условию $|f(x_n) - A| \ge$ $\epsilon_0 > 0$. Полученное противоречие доказывает теорему.

22. Критерий Коши существования предела функции.

Определение 4.6. Говорят что финкция f идовлетворяет в точке го исловию Коши, если выполняется исловие

 $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x', x'' \in X \ (0 < |x' - x_0| < \delta, 0 < |x'' - x_0| < \delta \Rightarrow |f(x') - f(x'')| < \epsilon'$ **Теорема 4.2.1.** Функция f имеет в точке x_0 предел тогда и только тогда, когда функция f удовлетворяет в точке хо условию Коши

Доказательство. 1) Heoбxodumocmь. Пусть $\lim_{x \to a} f(x) = A$. Возьмем произвольное число $\epsilon > 0$. Согласно определению Коши найдем $\delta > 0$ такое $|f(x') - f(x'')| = |(f(x') - A) + (A - f(x''))| \le |f(x') - A| + |A - f(x'')| < \epsilon$

а это и означает, что функция f уловлетворяет в точке x_0 условию Коши. 2) Достаточность. Пусть функция f удовлетворяет в точке x_0 усло-

вию Коши. Докажем, что функция f удовлетворяет условию определе-

условием Коши, выберем $\delta > 0$. Тогда найдется номер n_0 такой, что при $n \geq n_0$ выполняется условие $0 < |x_n - x_0| < \delta$. Если теперь pпроизвольное натуральное число, то тем более $0 < |x_{n+p} - x_0| < \delta$.

Следовательно, в силу условия Коши при $n \ge n_0$ и для любого натурального р справедливо неравество

$$|f(x_{n+p}) - f(x_n)| < \epsilon$$
,

это означает фундаментальность последовательности $(f(x_n))$. В силу критерия Коши сходимость числовой последовательности, последо вательность $(f(x_n))$ сходится к некоторому числу A.

Остается доказать, что для любой другой последовательности $x_n' \to x_0, \ x_n' \neq x_0$, выполняется условие $f(x_n') \to A$.

Предположим, что $f(x'_n) \to A'$. Рассмотрим последовательность

$$x_1, x'_1, x_2, x'_2, \ldots, x_n, x'_n, \ldots,$$

которая тоже сходится к точке x_0 . В силу доказанного выше, последова-

$$f(x_1), f(x_1'), f(x_2), f(x_2'), \dots, f(x_n), f(x_n'), \dots$$

ходится к некоторому числу A''. Тогда ее подпоследовательности $(f(x_n))$ и $(f(x'_n))$ тоже сходятся к числу A''. Отсюда вытекает, что A=A'=A'Георема полностью локазана.

23. Односторонние пределы функции, связь с пределом.

Определение 4.7. (левостороннего предела по Kowu) Пусть $A \in \mathbb{R}$. $\lim_{x \to 0} f(x) = A \iff \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ (x_0 - \delta < x < x_0 \implies |f(x) - A| < \epsilon)$

Для левостороннего предела используют более короткое обозначение

$$f(x_0 - 0) = \lim_{x \to x_0 - 0} f(x).$$

Определение 4.8. (правостороннего предела по Коши) Пусть $A \in \mathbb{R}$

$$\lim_{\to x_0 + 0} f(x) = A \iff \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ (x_0 < x < x_0 + \delta \implies |f(x) - A| < \epsilon)$$

Пусть $\epsilon>0$, а последовательность $x_n\to x_0$ и $x_n\ne x_0$. Руководствуясь Для правостороннего предела используют более короткое обозначение

$$f(x_0 + 0) = \lim_{x \to x_0 + 0} f(x).$$

Теорема 4.3.1. Предел lim f(x) существует тогда и только тогда, ко- Воспользуемся доказанными ранее арифметическими свойствами предегда существуют оба односторонних предела и они равны между собой. ла последовательности. В силу теоремы (3.3.5), имеем Ппи этом

$$f(x_0 - 0) = f(x_0 + 0) = A.$$

24. Арифметические свойства предела функции.

 Γ еорема 4.4.1. (арифметические свойства предела.) Пусть $\lim f(x) =$ A, $\lim g(x) = B$. Torda

$$\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B,$$

$$\lim_{x \to x_0} (f(x)g(x)) = AB,$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B},$$

(последнее равенство справедливо при дополнительном условии, что В ≠

Доказательство. Для доказательства будем пользоватся определением предела по Гейне. Пусть последовательность $x_n \to x_0$ и $x_n \neq x_0$. Тогда

$$f(x_n) \to A \bowtie g(x_n) \to B$$
.

$$f(x_n) \pm g(x_n) \to A \pm B$$
, $f(x_n)g(x_n) \to AB$, $\frac{f(x_n)}{g(x_n)} \to \frac{A}{B}$.

Согласно определению предела по Гейне, это означает, что функции $f\pm g,fg,rac{f}{g}$ имеют в точке x_0 пределы, соответственно равные $A\pm B,\ AB$ и A/B.

25. Порядковые свойства предела функции.

Теорема 4.4.2. (порядковые свойства предела) Пусть $\lim_{x \to a} f(x) = A$. $\lim g(x) = B \ u \ A < B. \ Torda \ \exists \mathring{O}_{\epsilon}(x_0) \quad \forall x \in \mathring{O}_{\epsilon}(x_0) \cap X \quad f(x) < g(x).$

Локазательство. Предположим противное, Тогла можно построить последовательность $x_n \to x_0$, $x_n \neq x_0$ такую, что $f(x_n) \geq g(x_n)$. Следовательно, $\lim_{n\to\infty}f(x_n)\geq\lim_{n\to\infty}g(x_n)$, а значит, и $A\geq B$, что противоречит

Следствие. Пусть $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$, $C\in\mathbb{R}$ Тогда если $\exists \mathring{O}_{\epsilon}(x_0) \quad \forall x \in \mathring{O}_{\epsilon}(x_0) \cap X$

- a) f(x) > g(x), To A > B;
- b) $f(x) \ge q(x)$, To $A \ge B$;
- c) f(x) > C, to A > C;
- d) f(x) > C, to A > C.

26. Порядковый признак существования предела

Теорема 4.4.3. (порядковый признак существования предела функции) Π усть f(x) < h(x) < g(x) при всех x, принадлежащих некоторой проколотой окрестности $O_{\delta}(x_0)$, $u \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = A$. Тогда $\lim h(x) = A.$

Доказательство. Пусть последовательность $x_n \to x_0$ и $x_n \neq x_0$. Тогда

$$f(x_n) \le h(x_n) \le g(x_n)$$

$$\lim_{n \to r_0} f(x_n) = \lim_{n \to r_0} g(x_n) = A,$$

то, в силу порядкового признака существования предела последовательности, сушествует $\lim h(x_n) = A$. Согласно определению предела по И далее Γ ейне. $\lim h(x) = A$.

27. Теорема о пределе сложной функции.

Теорема 4.4.5. Пусть $\lim_{x \to \infty} g(x) = y_0$ и для всех x из некоторой проко

лотой окрестности $\mathring{O}(x_0)$ $q(x) \neq y_0$, и пусть

$$\lim_{y \to y_0} f(y) = A$$

Тогда

$$\lim_{x \to r_0} f(g(x)) = A.$$

Доказательство. Воспользуемся определением предела по Гейне. Возьмем произвольную последовательность (x_n) точек из $\tilde{O}(x_0)$ такую, что

Тогла имеем

$$y_n = g(x_n) \rightarrow y_0 \text{ if } y_n \neq y_0.$$

$$f(g(x_n)) = f(y_n) \to A.$$

Это означает, что

$$\lim_{x \to x_0} f(g(x)) = A.$$

28. Непрерывность функции в точке. Свойства функций непрерывных в точке.

Определение 5.1. Писть финкция f определена на множестве X и точка $x_0 \in X$ является предельной точкой множества X. Финкция fназывается непрерывной в точке x_0 , если выполнено одно из следующих эквивалентных условий:

- 1) $\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in X \; (|x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon) \; (no \; Kouu)$:
- 2) $\forall O(f(x_0)) \exists O(x_0) : f(O(x_0)) \subset O(f(x_0));$
- 3) для любой последвательности (х,) точек множества X такой. что $x_n \to x_0$, выполняется условие $f(x_n) \to f(x_0)$ (по Гейне);
- 4) $\lim f(x) = f(x_0);$
- 5) $f(x) = f(x_0) + \alpha(x)$, $z de \alpha(x)$ бесконечно малая $npu \ x \to x_0$.

Теорема 5.1.1. Финкция непрерывна в точке тогда и только тогда. когда она непрерывна в ней одновременно справа и слева.

Теорема 5.1.2. (о свойствах непрерывных финкций). Пусть функции f и q непрерывны в точке x_0 . Тогда

- 1) функция af + bg непрерывна в точке x_0 при любых $a, b \in \mathbb{R}$;
- 2) функция fg непрерывна в точке x_0 ;
- 3) функция f/q непрерывна в точке x_0 , если $q(x_0) \neq 0$;
- 4) если $f(x_0) \neq 0$, то найдется окрестность $O(x_0)$ такая, что $\forall x \in O(x_0)$ $f(x)f(x_0) > 0$ (m.e. f(x) coxpansem $sna\kappa$);
- 5) функция f ограничена в некоторой окрестности точки x_0 (т.е. функция f локально ограничена).

Teopema 5.1.3. Если финкция а непрерывна в точке x₀, а финкция f непрерывна в точке $y_0 = g(x_0),$ то функция $f \circ g$ непрерывна в точке

29. Непрерывность функции на множестве. Теорема об обращении функции в нуль и теорема Коши о промежуточных значениях функции.

Определение 5.3. Функция называется непрерывной на множестве. если она непрерывна в каждой точке этого мнжества.

Функцию называют непрерывной, если она непрерывна на всей своей области определения.

Теорема 5.2.1. (Коши об обращении финкции в нуль). Писть финкция f непрерывна на отрезке [a,b] и f(a)f(b)<0. Тогда найдется точка $c\in$ [a, b] makas, umo f(c) = 0.

Доказательство. Разделим отрезок [a,b] пополам точкой $x_1 = \frac{a+b}{2}$. Если $f(x_1) = 0$, то все доказано. Если нет, то из двух отрезков $[a, x_1]$ и $[x_1, b]$ выберем тот, на концах которого функция принимает значения разных знаков. Переобозначим его симолом $[a_1, b_1]$.

С отрезком $[a_1, b_1]$ поступим аналогичным образом. И так далее. Еспи в процессе деления очередного отрезка мы так и не получим точку, в которой фукция обращается в нуль, то образуется стягивающаяся последовательностьотрезков ($[a_n, b_n]$). Пусть x_0 - их общая точка. Тогда $a_n \to x_0$ и $b_n \to x_0$. Поскольку функция f непрерывна, то $f(a_n) \to f(x_0)$ и $f(b_n) \to f(x_0)$. Так как $f(a_n)f(b_n) < 0$, то

$$\lim_{n \to \infty} f(a_n)f(b_n) = f^2(x_0) \le 0.$$

Следовательно, $f(x_0) = 0$, что и требовалось доказать.

Теорема 5.2.2. (Коши о промежиточеых значениях финкции). Писте финкция f непрерывна на отрезке [a, b], f(a) = A, f(b) = B, $A \neq B$ и С - любое число, промежуточное между А и В. Тогда найдется точка $c \in [a, b]$ makas, umo f(c) = C.

Доказательство. Нужно рассмотреть функцию g(x) = f(x) - C и применить к ней предыдущую теорему.

30. Компакт. Критерий компактности.

Определение 5.4. Множество $X \subset \mathbb{R}$ называют компактом, если любая последовательность (x_n) точек этого множства содержит подпо следовательность, сходящуюся к некоторой точке $x_0 \in X$.

Теорема 5.2.4. (критерий компактности). Множество является компактом тогда и только тогда, когда оно ограничено и замкнуто.

 \mathcal{A} оказательство. 1) Необходимость. Пусть X - компакт. Ограниченность \mathcal{A} оказательство. Пусть (y_n) - последовательность точек множества компакта доказана в предыдущей теореме. Осталось доказать замкнутость множества. Пусть x_0 - предельная точка множества X. Тогда найдется последовательность (x_n) точек множества X, отличных от точки x_0 , сходящаяся к точке x_0 . Согласно компктности множества найдется подпоследовательность (x_n) , сходящаяся к некоторой точке $x_0' \in X$. С другой стороны, так как $x_n \to x_0$, то и $x_{n_k} \to x_0$. Следовательно $x_0 = x'_0 \in X$.

2) Достаточность. Пусть множество X ограничено и замкнуто, а (x_n) последовательность точек этого множесва. Тогда последовательность ограничена, и согласно теореме Больцано-Вейерштрасса у нее существует сходящаяся подпоследовательность $(x_{n_k}), x_{n_k} \to x_0$. Если x_0 совпадает с каким-либо членом x_{n_k} , то $x_0 \in X$ автоматически; если нет, то x_0 - предельная точка множества X. В силу замкнутости множества и в этом случае x_0 принадлежит X. Итак, $x_{n_k} \to x_0 \in X$. Следовательно, Xкомпакт.

31. Теорема о непрерывном образе компакта. Первая и вторая теоремы Вейерштрасса.

Teopema 5.2.6. (о непрерывном образе компакта). Писть финкция t непрерывна на множестве X и X - компакт . Тогда Y=f(X) тоже

Y = f(X), и $\forall n \in \mathbb{N}$ точка $x_n \in X$ такова, что $f(x_n) = y_n$. Поскольку X - компакт, то найдется подпоследовательность $x_{k_n} \to x_0 \in X$ при $n \to \infty$. В силу непрерывности функции в точке x_0 последовательность $y_{k_n} = f(x_{k_n}) \to f(x_0) = y_0 \in Y$. Это означает, что Y - компакт.

непрерывна на компакте, то она ограничена на нем.

Следствие 2. (Вторая теорема Вейерштрасса). Если функция непрерывна на компакте, то она принимает на нем наименьшее и наибольшее значения.

32. Равномерная непрерывность функции и теорема Кантора.

Определение 5.8. Функция f называется равномерно непрерывной на множестве Х. если

 $\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 \ \forall x \in X \ \forall x' \in X \ (|x - x'| < \delta \ \Rightarrow |f(x) - f(x')| < \epsilon).$ Георема 5.3.1. (Кантора). Пусть функция f непрерывна на множе стве Х и Х - компакт. Тогда функция f равномерно непрерывна но множестве Х.

 \square оказательство. От противного. Предположим, что f непрерывна на X, но не является равномерно непрерывной на нем. Тогда

 \square $\exists \epsilon_0 > 0 \ \forall \delta > 0 \ \exists x', x'' \in X$ такие, что $|x' - x''| < \delta$, но $|f(x') - f(x'')| \ge \epsilon_0$.

Следствие 1. (Первая теорема Вейерштрасса). Если функция Возьмем последовательность $\delta_n = \frac{1}{n}$ и $\forall n \in \mathbb{N}$ найдем x'_n, x''_n , такие, что

$$|x_n' - x_n''| < \frac{1}{n}$$
, Ho $|f(x_n') - f(x_n'')| \ge \epsilon_0$.

Так как X является компактом, то найдется подпоследовательность $x_h' \to x_0 \in X$. Очевидно, что $x_h'' \to x_0 \in X$ также. В силу непрерывности функции *f* имеем

$$f(x'_{h}) \rightarrow f(x_{0}), \quad f(x''_{h}) \rightarrow f(x_{0}).$$

Следовательно, $f(x'_{k_n}) - f(x''_{k_n}) \to 0$, что противоречит условию $|f(x'_n)|$ $|f(x_n'')| \ge \epsilon_0 > 0$. Теорема доказана.

33. Односторонние пределы. Точки разрыва функции и их классификация. Теорема об односторонних пределах монотонной функции

Определение 5.9. Пусть функция f определена в окрестности точки x_0 , кроме, быть может, самой точки x_0 .

Точка хо называется точкой устранимого разрыва функции f, если уществует предел $\lim f(x)$, но или функция f не определена в точке x_0 , usu $\lim_{x \to 0} f(x) \neq f(x_0)$.

 $x \to x_0$ Точка разрыва x_0 называется точкой разрыва первого рода, если сицествуют конечные односторонние пределы $f(x_0 - 0), f(x_0 + 0),$ но Теорема 5.4.1. (об односторонних пределах монотонной функции). Π усть функция f является монотонной на интервале (a,b). Тогда в каждой точке интервала у нее существуют односторонние пределы.

$$f(x_0 - 0) = \sup_{x > x_0} f(x), \quad f(x_0 + 0) = \inf_{x > x_0} f(x),$$

$$f(x_0 - 0) \le f(x_0) \le f(x_0 + 0),$$

если $f \uparrow$, и

$$f(x_0 - 0) = \inf_{x \le x_0} f(x), \quad f(x_0 + 0) = \sup_{x \le x_0} f(x),$$

$$f(x_0 - 0) \ge f(x_0) \ge f(x_0 + 0),$$

если $f \downarrow$.

Доказательство. Рассмотрим случай f↑.

Более того, при любом $x_0 \in (a,b)$ имеем

Докажем, что $f(x_0 - 0) = \sup f(x)$.

Множество $\{f(x): x < x_0\}$ ограничено сверху $(f(x_0)$ - одна из его мажорант). Следовательно, существует $\sup f(x) = l$, причем $l \le f(x_0)$.

По определению верхней грани имеем:

1)
$$f(x) \le l \quad \forall x < x_0$$
;

2)
$$\forall \epsilon > 0 \exists x_{\epsilon} < x_{0} \quad f(x_{\epsilon}) > l - \epsilon$$
.

В силу того, что функция f неубывает, при любых x, удовлетворяющих условию $x_{\epsilon} \le x < x_0$ выполняются неравенства

$$l - \epsilon < f(x_{\epsilon}) \le f(x) \le l < l + \epsilon$$
,

следовательно, $l = \lim_{x \to 0} f(x)$.

34. Критерий непрерывности монотонной функции. Теорема о непрерывности обратной

Теорема 5.4.2. (критерий непрерывности монотонной функции). Пуст финкция f монотонна на отрезке [a, b]. Тогда финкция f непрерывна тогда и только тогда, когда f([a,b]) есть отрезок с концами f(a) и f(b).

Доказательство. Рассмотрим случай f↑.

Необходимость. Утверждение справедливо в силу теоремы Коши о промежуточеых значениях функции, непрерывной на отрезке.

Достаточность. Будем рассуждать от противного. Пусть точка $c \in$ [a,b] является точкой разрыва функции $f \uparrow$. Следователно, $f(c-0) \neq 0$ f(c) или $f(c) \neq f(c+0)$. То есть хотя бы один из интервалов (f(c-1)(0), f(c)) или (f(c), f(c+0)) не пуст, и в нем нет значений функции. Ввиду монотонности функции такой интервал содержится в отрезке с концами f(a) и f(b). Полученное противоречие доказывает теорему.

Теорема 5.4.3. (о непрерывности обратной функции). Пусть функция f строго монотонна и непрерывна на отрезке [a, b]. Тогда существует обратная функция строго монотонная того же типа, определенная и непрерывная на отрезке с концами f(a) и f(b).

35. Дифференцируемость функции в точке, производная функции в точке. Непрерывность дифференцируемой функции. Теорема о дифференцируемости композиции.

Определение 6.1. Пусть функция f определена на множестве X и почка $x_0 \in X$ - предельная точка этого множества.

 Φ ункцию f называют дифференцируемой в точке x_0 , если найдется иепрерывная в точке x_0 функция A такая, что $\forall x \in X$ выполняется

$$f(x) - f(x_0) = A(x)(x - x_0).$$
 (35)

Производной функции f в точке x_0 назовем значение $A(x_0)$ и обозначим

$$f'(x_0) = A(x_0).$$

Теорема 6.1.2. (о непрерывности дифференцируемой функции). Если функция f дифференцируема в точке x_0 , то f непрерывна в точке x_0 .

Доказательство. Перепишем равенство (35) в виле

$$f(x) = f(x_0) + A(x)(x - x_0)$$

и воспользуемся утверждением об арифметических действиях над непре рывными функциями.

Теорема 6.1.3. (о дифференцируемости композиции). Если функция о дифференцируема в точке x_0 , а функция f дифференцируема в точке $y_0 = g(x_0), \ mo \ \phi y н \kappa u u s \ f \circ g \ \partial u \phi \phi e p e н u u p y e м a в m o ч к e x_0 u$

$$(f \circ g)'(x_0) = f'(y_0)g'(x_0). \tag{41}$$

36. Теорема об арифметических действиях над дифференцируемыми функциями.

Теорема 6.1.4. (об арифметических действиях над дифференцируемыми функциями) Пусть функции f и g дифференцируемы g точке g0. Тогда функции f + g, fg, u f/g (при дополнотельном условии, что функция g в нуль не обращается) дифференцируемы в точке x_0 . Причем справедливы равенства

1)
$$(f + q)'(x_0) = f'(x_0) + g'(x_0);$$
 (42)

2)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$$
 (43)

3)
$$(\frac{f}{a})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{a^2(x_0)}.$$
 (44)

Доказательство. Согласно определению дифференцируемости имеем:

$$f(x) - f(x_0) = A(x)(x - x_0), \quad g(x) - g(x_0) = B(x)(x - x_0),$$

где функции A и B непрерывны в точке x_0 ; причем

$$f'(x_0) = A(x_0), \quad g'(x_0) = B(x_0).$$

$$(f+g)(x)-(f+g)(x_0) = (f(x)-f(x_0))+(g(x)-g(x_0)) = (A(x)+B(x))(x-x_0).$$

Так как функция A+B непрерывна в точке x_0 , то f+g дифференцируема в точке *х*о и

$$(f+g)'(x_0) = A(x_0) + B(x_0) = f'(x_0) + g'(x_0).$$

37. Теорема о дифференцируемости обратной функции.

Теорема 6.1.5. (о дифференцируемости обратной функции). Пусть функ ция f обратима, существует производная $f'(x_0) \neq 0$, и обратная функция f^{-1} непрерывна в точке $y_0 = f(x_0)$. Тогда f^{-1} дифференцируема в почке уо и

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
. (45)

Доказательство. Для функции f имеем равенство

$$f(x) - f(x_0) = A(x)(x - x_0),$$

где функция A непрерывна в точке $x_0, \ A(x_0) = f'(x_0) \neq 0$. В силу обрагимости (взаимной однозначности) функци f $A(x) \neq 0 \ \forall x \neq x_0$.

Используя соотношения

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$
 if $y_0 = f(x_0)$.

имеем

$$y - y_0 = A(f^{-1}(y))(f^{-1}(y) - f^{-1}(y_0)),$$

или

$$f^{-1}(y) - f^{-1}(y_0) = \frac{1}{A(f^{-1}(y))}(y - y_0)$$

Осталось заметить, что функция $C = A \circ f^{-1}$ непрерывна в точке y_0

$$C(y_0) = \frac{1}{A(f^{-1}(y_0))} = \frac{1}{A(x_0)} = \frac{1}{f'(x_0)}.$$

38. Точки роста и убывания функции. Достаточное условие точек роста и точек убывания.

Определим, так называемую, «функцию знака ».

$$sign(x) = \begin{cases} -1, & \text{при } x < 0, \\ 0, & \text{при } x = 0, \\ 1, & \text{при } x > 0. \end{cases}$$

Определение 6.5. Точка x_0 называется точкой роста функции f, если

$$\exists O(x_0) \quad \forall x \in O(x_0) \quad sign(f(x) - f(x_0)) = sign(x - x_0). \tag{67}$$

Точка x_0 называется точкой убывания функции f, если эта точка является точкой роста функции (-f), т. е.

$$\exists O(x_0) \ \forall x \in O(x_0) \ sign(f(x) - f(x_0)) = -sign(x - x_0).$$
 (68)

Теорема 6.4.1. (достаточное условие точек роста и точек убывания) Eсли $f'(x_0) > 0$ ($f'(x_0) < 0$), то точка x_0 является точкой роста (убывания) функции f.

имеем равенство

$$f(x) - f(x_0) = A(x)(x - x_0),$$

где функция A непрерывна в точке x_0 и $A(x_0) = f'(x_0)$. Если $A(x_0) > 0$

$$\exists O(x_0) \quad \forall x \in O(x_0) \quad A(x) > 0.$$

Тогда $\forall x \in O(x_0)$

$$sign(f(x) - f(x_0)) = sign(A(x)(x - x_0)) = sign(x - x_0),$$

т.е. точка x_0 является точкой роста.

39. Точки локального экстремума. Теорема Ферма.

Определение 6.6. Пусть точка x_0 является внутренней точкой области определения функции f.

Точка хо называется точкой локального максимума (минимума) функ ции f. если

$$\exists O(x_0) \quad \forall x \in O(x_0) \quad f(x) \le f(x_0) \quad (f(x) \ge f(x_0)).$$
 (69)

В случае если

$$\forall x \in \mathring{O}(x_0) \quad f(x) < f(x_0) \quad (f(x) > f(x_0)),$$

то говорят о строгом локальном максимуме (минимуме).

Точки локального максимума и минимума объединяют термином "точки локального экстремума".

Теорема 6.4.2. (теорема Ферма или необходимое условие локального Доказательство. Согласно определению дифференцируемости функции | экстремума). Пусть точка хо является точкой локального экстремима функции f и существует $f'(x_0)$. Тогда $f'(x_0) = 0$.

> Доказательство. Точка x_0 не может быть точкой роста функции f. Тогда согласно предыдущей теореме выполняется условие $f'(x_0) < 0$.

В то же самое время точка x_0 не может быть точкой убывания, а ледовательно, $f'(x_0) \ge 0$.

Одновременное выполнение неравенств $f'(x_0) \le u \ f'(x_0) \ge 0$ означает выполнение равенства $f'(x_0) = 0$.

40. Теорема Ролля.

Теорема 6.4.3. (Ролля). Пусть функция f непрерывна на отрезке [a, b], дифференцируема на интервале (a,b) и f(a)=f(b). Тогда найдется точ $\kappa e \ c \in (a, b)$ такая, что f'(c) = 0.

Доказательство. Если $f \equiv const$, то $\forall x \in (a,b)$ f'(x) = 0.

Пусть теперь f не является тождественно константой.

В силу теорема Вейерштрасса функция f, непрерывная на отрезке принимает на нем наименьшее значение в некоторой точке x_1 и наибольшее - в некоторой точке x_2 . По крайней мере, одна из этих точек не совпадает с концами отрезка, и, значит, является внутренней точкой экстремума. Обозначим ее c. Согласно теореме Ферма f'(c)=0.

41. Теоремы Коши и Лагранжа. Следствия теоремы Лагранжа.

Теорема 6.5.1. (Коши). Пусть функции f и g непрерывны на отрез- $\kappa e \; [a,b]$, дифференцируемы на интервале (a,b) и $orall x \in (a,b)$ g'(x)
eq 0. | Определение 6.7. Пусть функция f дифференцируема e некоторой Тогда $\exists c \in (a,b)$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$
 (70)

Доказательство. Заметим, что в силу теоремы Ролля, $g(b) \neq g(a)$. Рассмотрим функцию

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

Нетрудно убедиться, что функция F удовлетворяет условиям теоремы Ролля. Тогда найдется точка $c \in (a, b)$ такая, что F'(c) = 0, т.е.

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0 \quad \Leftrightarrow \quad \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Теорема 6.5.2. (Лагранжа). Пусть функция f непрерывна на отрезке [a,b] u duфференцируема на интервале (a,b). Тогда найдется точке $c \in$ (a, b) такая, что

$$f(b) - f(a) = f'(c)(b - a).$$
 (71)

Доказательство. Утверждение теоремы является частным случаем теоремы Коши при q(x) = x.

Теорема 6.9.1. (первое достаточное условие экстемума). Пусть функ-

ция f дифференцириема в некоторой проколотой окрестности точки x_0

и непрерывна в самой точке x_0 . Тогда если производная f'(x) положи-

тельна (отрицательна) слева от точки хо и отрицательна (положи-

тельна) справа от точки x_0 , то точка x_0 является точкой локального

максимума (минимума) функции f. Если же производная имеет один

Теорема 6.9.2. (второе достаточное условие экстремума). Пусть функ

ция f 2-дифференцируема в точке x_0 и $f'(x_0) = 0$. Тогда если $f''(x_0) < 0$,

то функция f имеет в точке x_0 локальный максимум, и если $f''(x_0) >$

Доказательство. Из условия $f''(x_0) < 0 \ (>0)$ вытекает, что точка x_0

является точкой убывания (роста) функции f. Поскольку $f'(x_0) = 0$, то

найдется окрестность точки x_0 , в пределах которой f'(x) положительна

отрицательна) слева и отрицательна (положительна) справа от точки

Теорема 6.9.3. (третье достаточное условие экстремума). Пусть функ

и тот же знак слева и справа от точки хо, то экстремима нет.

44. Достаточные условия экстремума.

Осталось воспользоваться предыдущей теоремой.

ция f n-дифференцируема в точке x₀ и

42. Производные высших порядков. Формула Тейлора с остаточным членом в форме Лагранжа. Формула Тейлора-Пеано.

окрестности $O(x_0)$ точки x_0 . Тогда в точках этой окрестности определена финкция f'.

Если функция f' дифференцируема в точке x_0 , то говорят, что функция f дважды дифференцирукма в точке x_0 и вторую производную функции f в точке x0 определяют равенством

$$f''(x_0) = (f')'(x_0),$$

a также еще обозначают символом $f^{(2)}(x_0)$.

По индукции, если определена производная $f^{(n-1)}$ в окрестности точ $\kappa u \; x_0, \; mo \; npous водная \; nopядка n \; в \; moчке \; x_0 \; onpedensemcя равенством$

$$f^{(n)}(x_0) = (f^{(n-1)})'(x_0),$$

u финкция в этом сличае называется n-дифференцириемой в точке x_0 . Условимся считать, что $f^{(0)}(x_0) = f(x_0)$.

Следствие 3 (форма Лагранжа остаточного члена).

$$r_n(x_0;x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-x_0)^{n+1}.$$

45. Выпуклые функции. Критерии выпуклости функции.

Определение 6.10. Финкция f, определенная на интервале (a, b), на зывается выпуклой, если для любых точек $x_1, x_2 \in (a,b)$ и любых чисел $\alpha_1 \geq 0, \ \alpha_2 \geq 0$ makux, что $\alpha_1 + \alpha_2 = 1$, имеет место неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2) \le \alpha_1 f(x_1) + \alpha_2 f(x_2).$$
 (*

Если при $x_1 \neq x_2$ и $\alpha_1 \alpha_2 \neq 0$ это неравенство является строгим, то функцию называют строго выпуклой.

Определение 6.11. Если для финкции в (78) имеет место обратное неравенство, то финкцию f называют вогнитой.

Теорема 6.10.1. (критерий выпуклости дифференцируемой функции) Пусть функция f дифференцируема на интервале (a, b). Тогда

$$f - выпуклая \Leftrightarrow f' \uparrow$$
.

При этом исловию $f' \uparrow \uparrow$ соответствиет строгая выпиклость f.

Используя доказанные ранее необходимые и достаточные условия монотонности функций, нетрудно получить в качестве следствия предыдущей теоремы следующую теорему.

Теорема 6.10.2. (критерий выпуклости 2-дифференцируемой функции) Пусть функция 2-дифференцируема на интервале (a, b). Тогда

$$f - выпуклая \Leftrightarrow f''(x) \ge 0 \quad \forall x \in (a, b).$$

42.

Теорема 6.7.1. (формила Тейлора). Писть финкция f п-непрерывно дифференцируема на отрезке с концами хо, х и имеет производную порядка n+1 внутри него. Тогда при любой функции φ , непрерывной на этом отрезке и имеющей внутри него призводную arphi'(x)
eq 0, найдется точка Е, лежащая между хо и х, такая, что

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x_0; x), \quad (72)$$

$$r_n(x_0; x) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(\xi)n!} f^{(n+1)}(\xi)(x - \xi)^n.$$
 (73)

Доказательство. На отрезке I с концами x_0, x рассмотрим вспомогательную функцию

$$F(t) = f(x) - P_n(t;x) = f(x) - [f(t) + \frac{f'(t)}{1!}(x-t) + \ldots + \frac{f^{(n)}(t)}{n!}(x-t)^n]$$

Очевидно, что F непрерывна на отрезке I и дифференцируема внутри

$$F'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n.$$

Применяя к паре функций F, φ на отрезке I теорему Коши, найдем точку ξ между x_0 и x, в которой выполняется равенство

$$\frac{F(x) - F(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{F'(\xi)}{\varphi'(\xi)}.$$

Поскольку $F(x) - F(x_0) = 0 - F(x_0) = -r_n(x_0; x)$ и

$$F'(\xi) = -\frac{f^{(n+1)}(\xi)}{n!}(x - \xi)^n,$$

то приходим к равенст

$$r_n(x_0; x) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(\xi)n!} f^{(n+1)}(\xi)(x - \xi)^n.$$

Взяв функцию $\varphi(t)=(x-t)^p, p>0$, получаем

46. Первообразная. Теорема о первообразной. Неопределенный интеграл и его простейшие

Определение 7.1. Пусть функции F и f определены на интервале (a, b). Функция F называется первообразной функции f, если

$$\forall x \in (a, b) \quad F'(x) = f(x).$$

Теорема 7.1.1. Если F является первообразной функции f на интервале (a,b), то при любом $C\in\mathbb{R}$ функция F+C является первообразной функции f на этом интервале.

Доказательство. Заключение теоремы верно, поскольку

$$\forall x \in (a, b) \quad (F(x) + C)' = F'(x) + 0 = f(x).$$

Определение 7.2. Совокупность всех первообразных функции f на интервале (a, b) называется неопределенным интегралом от финкции f обозначается символом

$$\int f(x)dx$$
.

Если F - одна из первообразных функции f, то, в силу выше сказан-

$$\int f(x)dx = F(x) + C, \quad (82)$$

гле С - любая постоянная.

Отметим прежде всего два свойства, непосредственно вытекающие и пределения неопределенного интеграла:

1. $d \int f(x)dx = f(x)dx$.

2. $\int dF(x) = F(x) + +C$

Следующие два свойства называют свойствами линейности интегра-

3. $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$.

4. $\int cf(x)dx = c \int f(x)dx$ (c = const).

43. Правила Лопиталя.

Георема 6.8.1. (первое правило Лопиталя). Пусть функции f и g oпре-Релены и дифференцируемы на интервале $(a,b), \forall x \in (a,b) \quad g'(x) \neq 0$

$$\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0.$$

$$\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = \alpha,$$

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \alpha$$

Доказательство. Доопределим функции в точке a

$$f(a) = g(a) = 0$$

Пусть (x_n) - последовательность такая, что

$$\forall n \in \mathbb{N} \quad x_n \in (a, b) \quad \text{if} \quad x_n \to a$$

При любом натуральном n на отрезке $[a,x_n]$ можем применить теорему

$$\frac{f(x_n) - f(a)}{q(x_n) - q(a)} = \frac{f'(\xi_n)}{q'(\xi_n)}$$

$$\frac{f(x_n)}{g(x_n)} = \frac{f'(\xi_n)}{g'(\xi_n)}$$

гак как f(a) = g(a) = 0.

Очевидно, что $\xi_n \to a$. Тогда в силу определения предела по Гейне и словия существования предела отношения производных имеем:

$$\lim_{n \to \infty} \frac{f'(\xi_n)}{g'(\xi_n)} = \alpha,$$

и следовательно

$$\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \alpha \quad \text{if } \lim_{x \to a+0} \frac{f(x)}{g(x)} = \alpha.$$

Теорема 6.8.2. (второе правило Лопиталя). Пусть функции f и q определены и дифференцируемы на интервале $(a,b), \forall x \in (a,b) \ g'(x) \neq 0$

$$\lim_{x\to a+0} f(x) = \lim_{x\to a+0} g(x) = \infty.$$

 $x \to a+0$ х $\to a+0$ х $\to a+0$ Тогда если существует консиний или бесконсиний предел $\frac{f'(x)}{\sigma'(x)} = \alpha$,

47. Основные методы интегрирования: формула замены переменной и формула интегрирования по

Teopeма 7.3.1. (формула замены переменной). Пусть f определена на интервале (a,b) и

$$\int f(t)dt = F(t) + C,$$

функция $\varphi:(\alpha,\beta)\to(a,b)$ дифференцируема. Тогда функция $(f\circ\varphi)\varphi'$ имеет на интервале (α, β) первообразную, причем

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + C.$$

Доказательство. Для доказательства достаточно воспользоваться правилом дифференцирования сложной функции

$$(F(\varphi(x)))' = F'(\varphi(x))\varphi'(x) = f(\varphi(x))\varphi'(x).$$

Теорема 7.3.2. (формула интегрирования по частям). Писть финкиии f и a дифференцируемы на интервале (a, b) и функция af' имеет nервообразную. Тогда функция fg' имеет nервообразную, nричем

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

Тогда при четном п

то локальный минимим.

1) если $f^{(n)}(x_0) < 0$, то точка x_0 является точкой локального мак-

 $f'(x_0) = f''(x_0) = ... = f^{(n-1)}(x_0) = 0.$

2) если $f^{(n)}(x_0) > 0$, то точка x_0 является точкой локального минимума функции f;

, при нечетном **п**

- 1) если $f^{(n)}(x_0) < 0$, то точка x_0 является точкой убывания.
- 2) если $f^{(n)}(x_0) > 0$, то точка x_0 является точкой роста функции f