Real Fourier Series Convergence

Arnav Gupta

April 5, 2024

Contents

1	Rea	l Fourier Series	1	
	1.1	Periodic Functions]	
	1.2	Fourier Sinusoidal Series]	
$f{2}_{\parallel}$	Convergence of Fourier Series			
2	Con	vergence of Fourier Series	2	
2		vergence of Fourier Series Types of Convergence	2	

1 Real Fourier Series

1.1 Periodic Functions

A function f defined on \mathbb{R} is τ **periodic** if for all $t \in \mathbb{R}$

$$f(t) = f(t+\tau)$$

Generally pick the smallest value of τ such that the above holds.

The theorem for Fourier Coefficients for Series in Complex Form holds for τ periodic functions, and can integrate over 1 period.

When finding the Fourier series without knowing the domain for f and knowing that f is τ periodic, first find the τ period of f and do the computation over a period of f.

1.2 Fourier Sinusoidal Series

A function f is **even** if f(-t) = f(t). A function f is **odd** if f(-t) = -f(t).

For a real valued τ periodic function $f \in L^2([-\tau/2, \tau/2])$:

- ullet if f is even, then the Fourier series can be simplified to a sum of cosine waves: Fourier cosine series
- ullet if f is odd, then the Fourier series can be simplified to a sum of sine waves: Fourier sine series

If f is a real valued function that is in $L^2([-\tau/2,\tau/2])$, then

 \bullet if f is even, then the Fourier cosine series for f is

$$\sum_{n=0}^{\infty} c_n \cos\left(\frac{2\pi n}{\tau}t\right)$$

where

$$c_n = \begin{cases} \langle f(t), 1 \rangle & n = 0\\ 2 \langle f(t), \cos\left(\frac{2\pi n}{\tau}t\right) \rangle & n > 0 \end{cases}$$

• if f is odd, then the Fourier sine series for f is

$$\sum_{n=1}^{\infty} s_n \sin\left(\frac{2\pi n}{\tau}t\right)$$

where

$$s_n = 2 \left\langle f(t), \sin\left(\frac{2\pi n}{\tau}t\right)\right\rangle$$

If f is real, then it can be decomposed into even and odd functions as follows:

$$f_{even}(t) = \frac{f(t) + f(-t)}{2}$$
 and $f_{odd}(t) = \frac{f(t) - f(-t)}{2}$

with
$$f(t) = f_{even}(t) + f_{odd}(t)$$
.

Every real valued function in $L^2([-\tau/2, \tau/2])$ admits a real valued Fourier series with some sin and/or cos terms.

2 Convergence of Fourier Series

2.1 Types of Convergence

If $f_1, f_2, \ldots, f_n, \ldots$ is a sequence of L^2 functions defined on [a, b], then:

• the sequence converges in the $L^2([a,b])$ norm, or converges in the mean, or converges almost everywhere, to f if

$$\lim_{n \to \infty} \sqrt{\int_a^b |f_n(x) - f(x)|^2 dx} = 0$$

which is when the average error goes to 0

• the sequence **pointwise converges** to f if for any $x \in [a, b]$

$$\lim_{n \to \infty} (f_n(x) - f(x)) = 0$$

which is when the error at each point goes to 0

 \bullet the sequence **uniformly converges** to f if

$$\lim_{n \to \infty} \max_{[a,b]} |f_n(x) - f(x)| = 0$$

which is when the maximum error converges to 0

- if the maximum does not exist, then replace it with the smallest upper bound (called the sup)

2.2 Fourier Series Convergence

A function f is **Piecewise** C^1 (PWC1) on the interval [a, b] if there is a finite partition $a = t_0 < t_1 < \cdots < t_k = b$ such that:

- f' exists on each interval (t_i, t_{i+1})
- f' is continuous on each interval (t_i, t_{i+1})
- f and f' are bounded on each interval (t_i, t_{i+1})

The **periodic extension** of a function f defined on [a, b] is the b-a periodic function f_p such that

- $f_p(t) = f(t)$ for $t \in (a, b)$ where f(t) is continuous
- $f_p(t) = \frac{f(t^-) + f(t^+)}{2}$ for $t \in (a, b)$ where f(t) is not continuous
- $f_p(a) = \frac{f(a)+f(b)}{2} = f_p(b)$

Let f_p be the periodic extension of a function $f \in L^2([-\tau/2, \tau/2])$:

• the Fourier series of f converges in the L^2 norm to f and f_p on any finite subinterval of $[-\tau/2, \tau/2]$

- if f_p is piecewise C^1 , then the Fourier series of f converges pointwise to f_p for all $x \in \mathbb{R}$
- if f_p is piecewise C^1 and continuous, then the Fourier series of f converges uniformly to f_p on any finite interval of $\mathbb R$

Gibbs Phenomenon: for an $L^2([a,b])$ function f with periodic extension f_p , if f_p is not continuous at some point t_0 , then <u>truncated</u> Fourier series of f will have growing oscillations near the point t_0

• these oscillations do not appear in the infinite sum