Assignment 3 Computer Vision

Name: Muhammad Mubeen

Class: BEE-6D

Reg No.: 33302

Submitted To: Dr. Wajahat Hussain

Date: 18th December, 2017

Question 1

To load AlexNet in Matlab and classify an Image using it.

Code

The code is given below: -

```
clc
clear all
disp('Loading AlexNet....')
net = alexnet;
disp('Network Loaded.')
disp(net);
disp('Printing layers of AlexNet....')
disp(net.Layers);
disp('Printing 10 classes of AlexNet.')
disp(net.Layers(end).ClassNames(100:110));
disp('Reading Image')
img = imread('car image.png');
img = imresize(img, [227 227]);
disp('Classifying Image')
label = classify(net, img);
disp(strcat('The input Image belongs to the class: ', char(label)));
figure, imshow(img)
title(char(label))
```

Outputs

The predicted class along with image: -

The layers of AlexNet are: -

```
Printing layers of AlexNet....
 25x1 Layer array with layers:
       'data'
                   Image Input
                                                 227x227x3 images with 'zerocenter' normalization
                                                 96 11x11x3 convolutions with stride [4 4] and padding [0 0 0 0]
       'relu1'
                   ReLU
                                                 ReLU
        'norm1'
                   Cross Channel Normalization — cross channel normalization with 5 channels per element
                                                3x3 max pooling with stride [2 2] and padding [0 0 0 0]
        'pool1'
                   Max Pooling
        'conv2'
                   Convolution
                                                256 5x5x48 convolutions with stride [1 1] and padding [2 2 2 2]
        'relu2'
                   ReLU
                                                ReLU
        'norm2'
                   Cross Channel Normalization cross channel normalization with 5 channels per element
        'pool2'
                                                3x3 max pooling with stride [2 2] and padding [0 0 0 0] 384\ 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
                   Max Pooling
        'conv3'
   10
                   Convolution
                   ReLU
   12
        'conv4'
                   Convolution
                                                384 3x3x192 convolutions with stride [1 1] and padding [1 1 1 1]
   13
        'relu4'
                   ReLU
                                                ReLU
                                                256 3x3x192 convolutions with stride [1 1] and padding [1 1 1 1]
   14
        'conv5'
                   Convolution
   15
        'relu5'
        'pool5'
                   Max Pooling
                                                3x3 max pooling with stride [2 2] and padding [0 0 0 0]
                                              4096 fully connected layer
   17
        'fc6'
                   Fully Connected
        'relu6'
   18
                   ReLU
                                                ReLU
   19
        'drop6'
                                                50% dropout
                   Dropout
                                                4096 fully connected layer
   20
                   Fully Connected
   21
        'relu7'
                   ReLU
                                                 ReLU
       'drop7'
   22
                   Dropout
                                                50% dropout
                                                1000 fully connected layer
   23
                   Fully Connected
       'prob'
                   Softmax
                                                softmax
       'output' Classification Output
                                                 crossentropyex with 'tench'. 'goldfish', and 998 other classes
```

The output of the Network: -

Reading Image Classifying Image The input Image belongs to the class:sports car

Question 2

To Use AlexNet for feature extraction

Code

The code for this is given below: -

```
clear all
% Loading a built in dataset
images = imageDatastore('MerchData', 'IncludeSubfolders', true,
'LabelSource', 'foldernames');
% Splitting the dataset
[trainingImages, testImages] = splitEachLabel(images, 0.7, 'randomized');
% Showing some of the images in figure
numTrainImages = numel(trainingImages.Labels);
idx = randperm(numTrainImages, 9);
figure
for i = 1:9
   subplot(3,3,i)
   I = readimage(trainingImages, idx(i));
    label = trainingImages.Labels(idx(i));
    title(char(label))
% Loading Network
net = alexnet;
% Extracting fc7 features for train and test data
layer = 'fc7';
trainingFeatures = activations(net, trainingImages, layer);
testFeatures = activations(net, testImages, layer);
% Getting train and test Labels
trainingLabels = trainingImages.Labels;
testLabels = testImages.Labels;
% Creating an SVM classifier for these features
classifier = fitcecoc(trainingFeatures, trainingLabels);
% Predicting Labels from the classifier of the test Images
predictedLabels = predict(classifier, testFeatures);
% Printing some of the output Images
numTestImages = numel(testImages.Labels);
```

Outputs

Some of the training images for feature extraction are: -

And the labels of some of the image predicted by classifier are: -

And the accuracy of the classifier: -

The test Accuracy of Classifier is:95%

Question 3

To finetune AlexNet

Code

The code is given below: -

```
clc
clear all
% Loading a built in dataset
images = imageDatastore('MerchData', 'IncludeSubfolders', true,
'LabelSource', 'foldernames');
% Splitting the dataset
[trainingImages, testImages] = splitEachLabel(images, 0.7, 'randomized');
% Showing some of the images in figure
numTrainImages = numel(trainingImages.Labels);
idx = randperm(numTrainImages, 9);
figure
for i = 1:9
    subplot(3,3,i)
    I = readimage(trainingImages, idx(i));
    imshow(I)
    label = trainingImages.Labels(idx(i));
    title(char(label))
end
% Loading Network
net = alexnet;
% Loading all layers of AlexNet except the last 3 ones
layersTransfer = net.Layers(1:end-3);
% Adding new layer add end of extracted layer having numClasses
numClasses = numel(categories(trainingImages.Labels));
layers = [
   layersTransfer
fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor
',20)
   softmaxLayer
   classificationLayer];
```

```
% Specifying training parameters
miniBatchSize = 10;
numIterationsPerEpoch = floor(numel(trainingImages.Labels)/miniBatchSize);
options = trainingOptions('sgdm',...
    'MiniBatchSize', miniBatchSize, ...
    'MaxEpochs',4,...
    'InitialLearnRate',1e-4,...
    'Verbose', true, ...
    'Plots', 'training-progress', ...
    'ValidationData', testImages, ...
    'ValidationFrequency', numIterationsPerEpoch);
% Training the network
netTransfer = trainNetwork(trainingImages, layers, options);
% Prediciting the output labels on test set
predictedLabels = classify(netTransfer,testImages);
% Printing some of the output Images
numTestImages = numel(testImages.Labels);
idx = randperm(numTestImages, 16);
figure
for i = 1:numel(idx)
    subplot(4,4,i)
    I = readimage(testImages, idx(i));
    label = predictedLabels(idx(i));
   imshow(I)
   title(char(label))
end
% Getting Accuracy of classifier
testLabels = testImages.Labels;
accuracy = mean(predictedLabels == testLabels);
disp(strcat('The test Accuracy of Classifier is:', num2str(accuracy*100),
「응「))
```

Outputs

Some training images with labels include: -

Some of the predicted labels of classifier are: -

The training summary is: -

Epoch			Iteration	4	Time Elapsed	i	Mini-batch Loss	 	Validation Loss	 	Mini-batch Accuracy	I I	Validation	I B	se Learn
		i		i	(seconds)								Accuracy	i	Rate
	1	I	1	 	47.69		2.2392		1.4151		10.00%		35.00%		1.00e-
	1	I	5	1	273.12	1	0.7800	T.	0.0643	1	60.00%	1	100.00%	1	1.00e-
	2	L	10	1	533.90	1	0.5478	T.	0.0277	1	90.00%	1	100.00%	1	1.00e-
	3	L	15	1	791.95	1	0.4801	T.	0.0007	1	80.00%	1	100.00%	1	1.00e-
	4	i i	20	1	1044.35	1	0.0005	ī.	0.0084	1	100.00%	1	100.00%	1	1.00e-

And the accuracy of classifier is: -

The test Accuracy of Classifier is:100%
>>