Logical Cryptanalysis: New Techniques and Future Directions

Alexander Scheel
Iowa State University of Science and Technology

Quick Bio

Hi, I'm Alex.

- Grew up in Rochester, MN
- Attend Iowa State University
- Honors Research is on Cryptographic Hash Functions
- Part of ISEAGE lab, hosting 5 Cyber
 Defense Competitions a year.
- Participated in ACM's programming competition.

alexander.m.scheel@gmail.com

Presentation Overview

What is 3-CNF-SAT?

What's a hash function?

How to apply SAT to Cryptography?

Why is it important?

What is SAT?

SAT is the Boolean Satisfiability problem.

Theoretical:

- NP Complete: Nondeterministic Polynomial
 Time (verify a solution in polynomial time,
 finding such a solution takes
- Among the hardest class of decidable problems in CS

Practical:

- History as basis for formal methods, part of proof systems, model checking, etc
- Once thought completely intractable, past decade has shown not only is it possible, but also practical in many cases
- Annual SAT solver competition (usually) in Australia

What's a Cryptographic Hash Function?

A hash function...

- is a deterministic function.
- can "hash" variable length data, but produces a fixed length output.
- is easy to compute, but hard to invert.
- should produce large changes in output with small changes in input.

A cryptographic hash function has...

- Preimage resistance: given an output state, the finding a corresponding input should be computationally infeasible.
- Second preimage resistance: given an input, finding a second input which hashes to the same output should be computationally infeasible.
- Collision resistance: finding any two inputs which hash to the same output should be computationally infeasible.

Uses of Cryptographic Hash Functions

- Signing Documents (RSA, ECC, etc.)
- TLS as a Pseudo-Random Function (key derivation)
- Hash-based Message Authentication Code (HMAC) construction for message integrity
- Unique identifier of a file (e.g., AWS).

Applications to Cryptographic Hash Functions

Measuring the Utility of Collision Classes

Analyzing the Structure of the Collision Class Space

Finding New Collision Classes

Five Utility Metrics

- 1. The number of unique differentials a collision class has.
- 2. The number of unit distance neighbors a collision class has.
- 3. The maximum count of zeros in the binary of a colliding input block.
- 4. Whether there exists a block which collides under multiple initial values.
- 5. Whether zero, one, or both blocks may be ASCII valued.

Tables

Number of Differentials for Existing Collision Classes									
Attack	Size	Attack	Size						
X. Wang's	64	Y. Sasaki's	4						
H. Dobbertin's	32	P. Kasselman's	32						
M. Schlaffer's	64								
Number of Zeros in a Colliding Block									
Attack	Count	Attack	Count						
X. Wang's	509	Y. Sasaki's	494						
H. Dobbertin's	504	P. Kasselman's	504						
M. Schlaffer's	506								

The Structure of Collision Classes and Families in MD4

- Probabilistic relationship among classes/families (≲):

For a given family (F) of collision classes:

- For every F, there exists G such that $G \lesssim F$.
- For nearly every F, with high probability, there exists H such that $F \lesssim H$.

Where ≤ acts as a subset operator of families, and operates across rounds.

The Structure of Collision Classes and Families in MD4

- Neighborhoods of collision classes.

Exploiting the Structure: 35k New Collisions

Hash Framework									
Algorithms			Kernels		D 1 1				
MD4	MD5	SHA-1	Siphash	Collision	Neighborhood		Database	Job Distribution	

Compute Pool

Why is this important?

- Utility of collisions.
- Applications of specific techniques.
- Implications for second preimage attacks.
- Non-zero information gain via correct SAT usage.

Questions?

Paper: https://github.com/cipherboy/papers/raw/dsn-2018/dsn-2018/hash_dsn_2018-candidate-2.pdf

Framework: https://github.com/cipherboy/hash_framework