Pracovní úkoly

- Proveďte kalibraci "optické sondy anemometru". Použijte uspořádání navržené na obr. 4.6 5
 v [2]. Parametry optické sondy získáte jednak měřením vzdálenosti interferenčních plošek
 v průsečíku laserových paprsků metodou projekce, jednak výpočtem z geometrie uspořádání.
 Oba výsledky porovnejte.
- 2. Připravte aparaturu k měření rychlosti částic. Zkontrolujte chod paprsků v detekční optice a vymezte prostorovou dírkovou clonu.
- 3. Na základě průběhu dopplerovských signálů optimalizujte dopplerovský signál na proudění vody v kyvetě.
- 4. Změřte frekvence dopplerovského signálu na souboru 60 80 částic. Převeďte hodnoty frekvence na hodnoty rychlostí. Graficky zpracujte rozložení rychlostí ve vodě formou histogramu. Histogram fitujte funkcí normálního rozdělení a z ní stanovte střední hodnotu rychlosti částic a standardní odchylku nalezeného rozdělení.
- 5. Diskutujte, jaký vliv na výsledek má to, že parametry optické sondy jsou měřeny ve vzduchu, zatímco měření rychlostí částic probíhá ve vodě.

Teoretická část

Pro určení rychlosti částice detekované anemometrem platí následující vztah [1]:

$$v_{x} = \Delta v_{D} d_{F} \tag{1}$$

Kde v_x je příčná složka vektoru rychlosti částice, Δv_D je frekvence pulsů diferenciálního dopplerovského signálu a d_F je vzdálenost interferenčních plošek.

Parametr d_F lze zjistit dvěma způsoby. Při měření prvním způsobem necháme dopadat oba paprsky na stínítko. Na stínítku změříme jejich vzdálenost d_I a určíme také vzdálenost stínítka od bodu, kde se paprsky kříží. Poté můžeme vzdálenost d_F vypočítat podle následujícího vzorce [1]:

$$d_F = \frac{\lambda}{2\sin\arctan\frac{d_1}{2d_2}} \tag{2}$$

Kde λ je vlnová délka použitého laseru (v našem případě He-Ne $\lambda = 632,8$ nm [2]).

Při měření druhým způsobem změříme vzdálenost d_F přímo, za pomocí projekce na stínítko. Vzdálenost d_F poté můžeme spočíst podle:

$$d_F = \frac{N}{D} \tag{3}$$

Kde N je počet proužků na stínítku a D je celkový průměr pozorovaného obrazu.

Chyby nepřímo měřených veličin počítáme metodou přenosu chyby.

Výsledky měření

Podmínky v laboratoři by neměly ovlivnit výsledky měření.

Tabulka 1: Vzdálenosti interferenčních plošek

	hodnota	chyba
<i>d _{F1}</i> [μm]	33	2
<i>d</i> _{F2} [μm]	31	2

Tabulka č. 1 obsahuje naměřené vzdálenosti d_F pomocí obou metod. Chybu v případě měření geometrickou metodou jsme odhadli na 5%. A chybu druhé metody jsme spočetli metodou přenosu chyby. Jelikož se obě hodnoty shodují v rámci chyby měření, v dalších výpočtech použijeme jejich aritmetický průměr $d_F = (32 \pm 2) \, \mu \text{m}$.

Graf č. 1 zobrazuje histogram rychlostí v_x spočtených dle vzorce (1). V grafu je také zobrazen fit naměřených hodnot. Jako fitovací funkci jsme použili normální rozdělení:

$$f(x) = A \cdot \exp \frac{-(x - \mu)^2}{2\sigma^2}$$

Parametry našeho fitu jsme určili pomocí webové aplikace [3]. Tyto parametry jsou uvedeny v tabulce 2.

Tabulka 2: Parametry normálního rozdělení

	hodnota	chyba	
Α	26		2
μ [mms ⁻¹]	18,2		0,5
σ [mms ⁻¹]	6,2		0,5

Graf 1: Histogram rychlostí

Diskuse

Při kalibrování "optické sondy anemometru" se obě metody určení parametru d_F ukázaly jako rovnocenně přesné. Nicméně první geometrická metoda se jeví jako přesnější a navíc je podstatně jednodušší k provedení.

Při samotném měření rychlosti částic se v detekovaném signálu objevovalo velké množství šumu. Původ tohoto šumu se nepodařilo odstranit. Šum byl natolik signifikantní, že se v něm ztrácely některé signály.

Z grafu č. 1 je patrné, že náš histogram je do značné míry nesymetrický a neodpovídá normálnímu rozdělení. Tuto skutečnost přisuzujeme velké míře šumu.

Jelikož se světlo šíří v prostředí s jiným indexem lomu různou rychlostí, mění se jeho vlnová délka. Zároveň se však změní i úhel sevřený dvěma paprsky. Obě tyto změny způsobí, že prostředí nemá na měření vliv, alespoň co se systematické chyby týče.

Závěr

Z geometrie uspořádání jsme určili vzdálenost interferenčních plošek:

$$d_{F2} = (31 \pm 2) \,\mu\text{m}$$

Metodou projekce na stínítko jsme určili vzdálenost interferenčních plošek jako:

$$d_{F1} = (33 \pm 2) \, \mu \text{m}$$

Vzdálenost interferenčních plošek jsme určili jako průměr výše zmíněných hodnot:

$$d_F = (32 \pm 2) \, \mu \text{m}$$

Střední rychlost částic jsme určili jako:

$$\mu = (18.2 \pm 0.5) \text{ mm s}^{-1}$$

Standardní odchylka normálního rozdělení jsme určili jako:

$$\sigma = (6.2 \pm 0.5) \text{ mm s}^{-1}$$

Literatura

- [1] Laserová dopplerovská anemometrie. *Fyzikální praktikum* [online]. [cit. 1.6.2016]. Dostupné z: http://physics.mff.cuni.cz/vyuka/zfp/ media/zadani/texty/txt 318.pdf
- [2] Pokyny k měření. *Fyzikální praktikum* [online]. [cit. 1.6.2016]. Dostupné z: http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/pokyny/mereni_318.pdf
- [3] MyCurveFit Online Curve Fitting. [online].
 Dostupné z:
 https://mycurvefit.com/