Caches

MO601 - Arquitetura de Computadores II

http://www.ic.unicamp.br/~rodolfo/mo601

Rodolfo Azevedo - rodolfo@ic.unicamp.br

Por que precisamos de cache?

- Acelera, de forma transparente, o acesso à memória
- Múltiplos níveis: L1, L2, L3
- Nível L1 dividido em dois
 - ∘ L1-I: instruções
 - ∘ L1-D: dados
- Demais níveis são unificados

Qual o tamanho da cache em um sistema ideal?

Organização básica

Multi-core - surge a necessidade de coerência

Antecipando a coerência

Particionando a L2

Questões importantes

- Cache inclusiva vs exclusiva
- Leituras parciais
 - Primeiro o dado que o processador precisa
 - Afeta a ordem de leitura da memória
- Write buffer
 - Atrasa a escrita na memória
 - Acelera a escrita na cache
- Write-through vs write-back

Memória Virtual

- Endereço Físico
- Endereço Virtual
- Página
- TLB
- Alias virtual
- Ordem de tradução
 - Antes da cache
 - Após a cache

Mapeamento de endereço virtual para físico

Estrutura interna

Múltiplas vias (ways)

Organização real

Pipeline para acesso paralelo

Pipeline para acesso serial

Lookup-free caches

- Suporta mais de um acesso em andamento
 - Miss Status Holding Registers (MSHR)
- Enquanto está resolvendo um miss, executa outro acesso (Hit ou Miss)
 - Miss primário: primeiro miss em um bloco de cache
 - Miss secundário: miss subsequente em um bloco de cache
 - Stall por miss estrutural: miss extra por falta de recurso de hardware

Outros conceitos

- Multiport
- Multibank

Considerações sobre cache de instruções

- Multiport vs single port
- Lookup free vs blocking
- Associatividade