2 pratybos. Vektoriai plokštumoje

Paulius Drungilas

Turinys

Uždaviniai 2

Vektorius v, kurio koordinatės yra (x_0, y_0) - tai vektorius, kurio pradžia yra koordinačių pradžios taškas $\mathcal{O}(0, 0)$, o pabaiga – taškas (x_0, y_0) .

Vektorių $v_1(x_1, y_1)$ ir $v_2(x_2, y_2)$ suma yra vektorius $v_3(x_1 + x_2, y_1 + y_2)$.

Skaičiaus $a \in \mathbb{R}$ ir vektoriaus v(x, y) sandauga, žymima $a \cdot v$, yra vektorius, kurio koordinatės yra $(a \cdot x, a \cdot y)$.

Vektoriaus v(x,y) ilgis, žymimas |v|, lygus $\sqrt{x^2+y^2}$.

Vektorių v_1 ir v_2 skaliarinė sandauga, žymima $v_1 \cdot v_2$, yra skaičius

$$v_1 \cdot v_2 = |v_1| \cdot |v_2| \cdot \cos \varphi,$$

kur φ – kampas tarp vektorių v_1 ir v_2 .

Vektorių $v_1(x_1, y_1)$ ir $v_2(x_2, y_2)$ skaliarinę sandaugą galima skaičiuoti ir kitu būdu:

$$v_1 \cdot v_2 = x_1 \cdot x_2 + y_1 \cdot y_2$$
.

Kampas φ tarp vektorių $v_1(x_1, y_1)$ ir $v_2(x_2, y_2)$ randamas pagal formulę

$$\cos \varphi = \frac{v_1 \cdot v_2}{|v_1| \cdot |v_2|} = \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}.$$

1. **pastaba.** Kampas tarp vektorių visada priklauso intervalui $[0, \pi]$. Jei vektorių skaliarinė sandauga yra teigiamas skaičius, tai kampas tarp jų – smailusis ($\in [0, \pi/2]$). Jei skaliarinė sandauga yra neigiamas skaičius, tai kampas tarp vektorių – bukasis ($\in (\pi/2, \pi]$).

Vektorių $v_1(x_1, y_1)$ ir $v_2(x_2, y_2)$ statmenumo sąlyga:

$$v_1 \cdot v_2 = 0$$
 t. y. $x_1 \cdot x_2 + y_1 \cdot y_2 = 0$.

Vektorių $v_1(x_1, y_1)$ ir $v_2(x_2, y_2)$ kolinearumo (lygiagretumo) sąlyga:

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} \iff x_1 y_2 = y_1 x_2.$$

2. **pavyzdys.** Rasime parametro a reikšmę, su kuria vektoriai $v_1(1,4)$ ir $v_2(a,-5)$ yra statmeni.

Sprendimas. Vektoriai statmeni tada ir tik tada, kai jų skaliarinė sandauga lygi 0. Taigi parametro a reikšmę rasime iš lygybės

$$1 \cdot a + 4 \cdot (-5) = 0.$$

Iš čia a=20.

- 3. **pastaba.** Vektoriai $v_1(a,b)$ ir $v_2(b,-a)$ visada statmeni.
- 4. pavyzdys. Rasime kampą φ tarp vektorių $v_1(1,2)$ ir $v_2(-3,4)$.

Sprendimas. Iš aukščiau pateiktos formulės, gauname

$$\cos \varphi = \frac{v_1 \cdot v_2}{|v_1| \cdot |v_2|} = \frac{1 \cdot (-3) + 2 \cdot 4}{\sqrt{1^2 + 2^2} \cdot \sqrt{(-3)^2 + 4^2}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}.$$

Taigi $\cos \varphi = \sqrt{5}/5$ ir $\varphi = \arccos(\sqrt{5}/5) \approx 63^{\circ}$.

5. **pavyzdys.** Rasime parametro a reikšmę, su kuria vektoriai $v_1(1,4)$ ir $v_2(3,a)$ yra kolinearūs.

Sprendimas. Duoti vektoriai kolinearūs tada ir tik tada, kai jų koordinatės proporcingos (žr. aukščiau pateiktą formulę)

$$\frac{1}{3} = \frac{4}{a}.$$

Taigi a = 12.

Uždaviniai.

- 1*. Atlikite veiksmus su vektoriais: a) $2 \cdot (1, -5) 3 \cdot (2, 4)$; b) $-(1, 7) + 2 \cdot (4, 1) 3 \cdot (0, 3)$; c) $4 \cdot (1, 2) 3 \cdot (1, 1)$.
- 2*. Raskite vektoriaus v ilgį, kai a) v = (3, -4); b) v = (-15, 8); c) v = (5, 12); d) v = (-12, -35); e) v = (1, 3).
- 3*. Atlikite veiksmus: a) $(1,2)\cdot(-2,3)$; b) $(4,-5)\cdot(3,-2)$; c) $((1,4)+(2,3))\cdot(-1,2)$; d) $(2\cdot(3,4)-(1,2))\cdot(-(1,1)+3\cdot(-2,5))$.
- 4*. Su kokia parametro λ reikšme vektoriai v_1 ir v_2 yra statmeni, kai a) $v_1 = (1,5), v_2 = (\lambda, -3);$ b) $v_1 = (2,3), v_2 = (3\lambda, -4);$ c) $v_1 = (0,7), v_2 = (5\lambda, 0);$ d) $v_1 = (2 + \lambda, 3), v_2 = (2, 1 \lambda).$

- 5*. Su kokia parametro λ reikšme vektoriai v_1 ir v_2 yra kolinearūs, kai a) $v_1 = (2, \lambda), v_2 = (-3, 4);$ b) $v_1 = (1, -5), v_2 = (2 \lambda, 3);$ c) $v_1 = (2 + \lambda, 3), v_2 = (1 \lambda, 2).$
- 6*. Ar kampas tarp vektorių v_1 ir v_2 yra smailusis, kai a) $v_1 = (1,3)$, $v_2 = (4,-1)$; b) $v_1 = (-2,-5)$, $v_2 = (4,-3)$; c) $v_1 = (3,-5)$, $v_2 = (2,2)$; d) $v_1 = (-2,-3)$, $v_2 = (-4,2)$.
- 7*. Raskite kampą tarp vektorių v_1 ir v_2 , kai a) $v_1 = (1, 2), v_2 = (2, 1);$ b) $v_1 = (-1, 3), v_2 = (6, 2);$ c) $v_1 = (3, 4), v_2 = (12, -5).$
- 8. Duotos trikampio viršūnės A(0,0), B(3,4) ir C(6,0). Raskite šio trikampio kampus.
- 9. Duotos trikampio viršūnės A(1,3), B(4,7) ir C(7,2). Raskite šio trikampio plotą.
- 10. Ar trikampis, kurio viršūnės A(1,2), B(5,6) ir C(9,0), yra lygiašonis?
- 11. Įrodykite, jog keturkampis, kurio viršūnės A(2,3), B(4,8), C(14,4) ir C(12,-1), yra stačiakampis.
- 12. $\mathcal{O}x$ ašyje raskite tokį tašką M, kad atstumas nuo taško A(3,-3) būtų lygus 5.