1. Espacios vectoriales con producto interno

El producto interno enriquece y completa la estructura de un espacio vectorial. Esto permite el uso de un lenguaje geométrico altamente sugestivo y el estudio de tipos especiales de operadores, los cuales admiten un análisis más profundo de sus propiedades. Trabajaremos solamente sobre espacios vectoriales reales hasta llegar a la sección de espacios vectoriales complejos. De ahora en adelante E denotará un espacio vectorial.

Definición 1.1 (Producto interno y espacio producto interno (e.p.i.)). A partir de ahora, haciendo un abuso de notación, denotaremos simplemente por E a nuestro e.p.i. (E, \langle , \rangle) . **Propiedad 1.2.** Para todo $u, u_1, u_2 \in E$ se cumple: (i) $\forall v \in E : \langle v, u \rangle = 0 \implies u = 0.$ (i) $\forall v \in E : \langle v, u_1 \rangle = \langle v, u_2 \rangle \implies u_1 = u_2.$ Demostración. Ejercicio. **Ejemplo 1.3** (Producto interno canónico sobre \mathbb{R}^n). Ejemplo 1.4. Ejemplo 1.5. Observación 1.6. Todo espacio vectorial de dimensión finita puede ser dotado de un producto interno. **Definición 1.7** (Longitud de un vector). Sea $v \in E$. Llamamos a $|v| := \sqrt{\langle v, v \rangle}$ la longitud del vector v. Además, cuando la longitud de un vector es 1, llamamos a este vector de unitario. **Definición 1.8** (Ortogonalidad). Decimos que dos vectores u y v son **ortogonales** si $\langle u,v\rangle=0$. Además, cuando cualquier par de vectores distintos de un conjunto X son ortogonales, decimos que este es un **conjunto ortogonal**. Y cuando todos los vectores de un conjunto ortogonal X son unitarios, decimos que este es un

Propiedad 1.9. El vector nulo es ortogonal a cualquier vector y es el único ortogonal consigo mismo.

conjunto ortononal. Finalmente, una base ortonormal es una base que es un

conjunto ortonormal.

Demostración. Ejercicio.

Propiedad 1.10. Todo subconjunto ortogonal de vectores no nulos es linealmente independiente (l.i.)
Demostración. Ejercicio.
Ejemplo 1.11 (La base canónica de \mathbb{R}^n es ortonormal).
Ejemplo 1.12.
Propiedad 1.13 (Teorema de Pitágoras).
Propiedad 1.14. Sea $F \subset E$ un subespacio unidimensional. Sea $v \in E$. Luego, existe un único $\hat{v} \in F$ tal que
$\forall u \in F: \langle v - \hat{v}, u \rangle = 0. \tag{1}$
Demostración. Para probar la existencia basta tomar $\hat{v} = \langle v, w \rangle w$ donde w es un vector unitario de F . La unicidad queda como ejercicio.
Definición 1.15 (Proyección sobre un subespacio unidimensional). Sea $F \subset E$ un subespacio unidimensional. Para cada $v \in E$ llamamos de proyección de v sobre F al vector \hat{v} que satisface la ecuación (1) arriba. Y la aplicación $P_F: E \to E, v \mapsto P_F(v) = \hat{v}$ es llamada de la proyección sobre el subespacio unidimensional F .
Teorema 1.16 (Desigualdad de Cauchy–Schwarz). Para cada par de vectores u, v se cumple:
$ \langle u, v \rangle \le u v .$
Demostración. Ejercicio.
Corolario 1.17. Para cada par de vectores u, v :
$ \langle u, v \rangle = u v \Leftrightarrow \{u, v\} \text{ es l.d.}$
$Demostraci\'on.$ $Ejercicio.$
Definición 1.18 (Norma y espacio normado). □
Propiedad 1.19. Todo e.p.i. es un espacio normado con norma .
$Demostraci\'on.$ $Ejercicio.$
Propiedad 1.20 (Proceso de ortogonalización de Gram–Schmidt).

Propiedad 1.21. Sea $F \subset E$ un subespacio finito dimensional. Sea $v \in E$. Luego, existe un único $\hat{v} \in F$ tal que

$$\forall u \in F: \langle v - \hat{v}, u \rangle = 0. \tag{2}$$

Demostración. Para probar la existencia basta tomar $\hat{v} = \sum_{i=1}^{m} \langle v, u_i \rangle u_i$ donde $\{u_1, u_2, \dots, u_m\}$ es una base ortonormal de F. La unicidad queda como *ejercicio*.

Definición 1.22 (Proyección sobre un subespacio finito dimensional). Sea $F \subset E$ un subespacio finito dimensional. Para cada $v \in E$ llamamos de **proyección de** v sobre F al vector \hat{v} que satisface la ecuación (2) arriba. Y la aplicación $P_F : E \to E$, $v \mapsto P_F(v) = \hat{v}$ es llamada de la **proyección sobre el subespacio finito** dimensional F.

Propiedad 1.23. Sea $F \subset E$ un subespacio finito dimensional. Sea $v \in E$. La distancia de v a F es $|v - P_F(v)|$, i.e.,

$$\forall u \in F: |v - P_F(v)| < |v - u|.$$

Demostración. Ejercicio.

Propiedad 1.24. Si $\dim(E) = n$, entonces para cada base de E existe una biyección entre el conjunto de productos internos sobre E y el conjunto de matrices definidas positivas de orden n.

Demostración. Ejercicio.