CVISUALIZER

Supported input
Supported input
x
09
other natural numbers
real numbers like -4.2
and 987.654
A + B
A * B
A - B
A/B
A ^B
sin(A)
cos(A)
exp(A) aka e ^A
In(A)
A!
π

Functions – parsed in prefix notation, graphed and outputted in infix notation with their binary trees in prefix notation.

Inverse functions - graphed

Function derivatives – graphed and outputted in infix notation with their binary trees in prefix notation, 2 algorithms – analytical and Newton's difference quotient

Function integrals – graphed and showing calculated Riemann sum

Maclaurin Series – graphed for given terms and outputted in infix notation with their binary trees in prefix notation, 2 algorithms – analytical and Newton's difference quotient

Polynomials – graphed, inputted by mouse clicks, and outputted in infix notation with their binary trees in prefix notation

Useful features:

- User-friendly UI
- Customizable output (enabling and disabling of x or y-axes, x=y line, vertical or horizontal labels, function, inverse function, function derivative, function integral, Maclaurin approximation and polynomials)
- Keyboard shortcuts, easy zoom in and zoom out via mouse scroll, repositioning of graph by mouse drag or keyboard arrows, resetting
- Displaying of scale
- Current (x,y) coordinates by mouse position
- Line label interval frequency according to the current scale
- Input validation, white space and case-insensitive
- Exporting graphs and binary trees to PNG
- Settings changing algorithms for derivatives and Maclaurin polynomials, precision
- Possible to see the original binary trees and expressions, and the simplified ones
- Full qualifiers (sin for s, cos for c, ln for l, exp for e, pi for p, multi-digit number parsing without enclosing in "r" or "n")

Simplification

- 1 * x, x + 0, x^1 , etc.
- 2*x + 3*x, 2*x 3*x, 2*x * 3*x, 2*x /3*x, x + 2*x, x 2*x,
- x * 2*x, x / 2*x, etc.
- 2*p+3*p, 2*p-3*p, 2*p*3*p, 2*p-/3*x, p+2*p, p-2*p, etc.
- p * 2*p, p / 2*p, etc.
- (x + 3) + 5
- e^0 , $e^{\ln a}$, e^a e^b , e^a / e^b , $(e^a)^b$ where a and b can be any function
- In 1, ln e, ln a + ln b, ln a ln b, ln a^b, where a and b can be any function
- a + b, a b, a · b, a / b, a^b, where a and b are constants

• sin/cos, cos/sin, sin/cos / cos/sin, etc.

Documentation Version 1.0