Olimpiada de Matemáticas de Guanajuato.

CIMAT, Guanajuato, México

Polinomios.

Entrenamiento por: Pablo Meré Hidalgo

septiembre 2019

1. Polinomios, Raíces y Vieta

Definición 1.1. Un polinomio es una expresión de la forma

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Las constantes a_0, \ldots, a_n se llaman **coeficientes** del polinomio P. El conjunto de polinomios con coeficientes en el conjunto A se denota A[x]. Por ejemplo $\mathbb{R}[x]$ son los polinomios con coeficientes reales y $\mathbb{Z}[x]$ son los polinomios con coeficientes enteros.

Podemos suponer que $a_n \neq 0$ (en caso contrario podríamos borrarlo sin alterar la expresión). Entonces n se llama **grado** del polinomio y se denota $n = \deg P$. Polinomios de grado 1, 2 y 3 se llaman lineales, cuadráticos y cúbicos respectivamente. Los polinomios constantes no cero tienen grado 0; mientras que el polinomio cero $P(x) \equiv 0$ le asignamos el grado $-\infty$ (las razones serán claras próximamente).

Teorema 1.2. Si P y Q son polinomios entonces

- a) $\deg P \pm B = \max(\deg P, \deg Q)$ la igualdad es cierta siempre que no se anule el coeficiente principal, en particular cuando los grados son distintos.
- b) $\deg(P \cdot Q) = \deg(P) + \deg(Q)$

Teorema 1.3. Dados polinomios A y $B \neq 0$ existen unicos polinomios Q (cociente) y R (residuo) tales que

$$A = BQ + R$$
 $y \operatorname{deg} R < \operatorname{deg} B$

Teorema 1.4. El teorema del residuo indica que cuando un polinomio $P(x) = a_n x^n + \cdots + a_1 x + a_0$, de grado n, se divide por (x - k), el resduo es P(k). El teorema del factor indica que P(k) = 0 si y sólo si (x - k) es un factor de p(x). Un polinomio de grado n tiene máximo n raices.

Teorema 1.5. Si un polinomio P es divisible por un polinomio Q, entonces toda raíz de Q es también raíz de P.

Teorema 1.6. Un polinomio P(x) (Con coeficientes complejos) de grado n > 0 tiene una única representación de la forma

$$P(x) = c(x - r_1)(x - r_2) \cdot \cdot \cdot (x - r_n)$$

salvo el orden de los factores. $c \neq 0$ es el coeficiente principal. $r_1 \dots, r_n$ son números complejos, no necesariamente distintos.

Nótese que P(x) tiene máximo $\deg P=n$ raíces distintas. Y exactamente n contando multiplicidades.

Corolario 1.7. Si dos polinomios de grado menor o igual a n tienen n+1 puntos en común, entonces son igules.

Teorema 1.8. En polinomio $P(x) \in \mathbb{R}[x]$ las raíces complejas vienen por pres conjugados, y P puede escribirse de forma única como

$$P(x) = c(x - r_1) \cdots (x - r_k)(x^2 + b_1 x + c_1) \cdots (x^2 + b_l x + c_l)$$

Teorema 1.9. El teorema de Vieta indica una relación entre los coeficientes de un polinomio y sus raíces, mediante polinomios simétricos elementales.

 $Si\ P(x) = x^n + \dots a_1 x + a_o$ es un polinomio con raíces r_1, r_2, \dots, r_n entonces

$$a_{n-k} = (-1)^k \sigma_k(r_1 \dots, r_n)$$
 $k = 1, 2, \dots, n$

Donde

$$\sigma_k = \sigma_k(x_1, \dots, x_n) = \sum x_{i_1} x_{i_2} \dots x_{i_k}$$

sumando sobre todos los subonjuntos $\{i_1,\ldots,i_k\}\subset\{1,\ldots,n\}$.

En casos pequeños es más conveneinte desarrollar el producto e igualar coeficientes.

1. ¿Para cuales n el polinomio $x^n + x - 1$ es divisible por $x^2 - x + 1$? ¿ y por $x^3 - x + 1$?

2. Polinomios Cuadráticos

Teorema 2.1. Un polinomio cuadrático de la forma $f(x) = ax^2 + bx + c$ (con $a \neq 0$) tiene dos raices dadas por la fórmila

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

(también conocida como la Chicharronera, porque truena a todos los polinomios)

La cantidad $\Delta = b^2 - 4ac$ se llama **discriminante** del polinomio y nos indica cosas sobre el polinomio y la geometría de la parabola que dibuja.

- $Si \Delta = 0$ las dos raíces son iguales. La parabola es tangente al eje x.
- Si $\Delta > 0$ las dos raíces son reales y distintas. La parábola corta dos veces al eje x.
- $Si \Delta < 0$ las dos raíces son complejas, el polinomio es irreducible en los reales. La parábola no toca el eje x.

3. Poliniomios con Coeficientes enteros

Teorema 3.1. Si $P(x) = a_n x^n + \cdots + a_1 x + a_0$ es un polinomio con coeficientes enteros, entonces p(x) - p(y) es divisible por (x - y), para cualesquiera x, y enteros.

Corolario 3.2. Toda raíz entera de un polinomio P con coeficientes enteros divide a $P(0) = a_0$.

Teorema 3.3. El **teorema de la raiz racional** indica que si $\frac{p}{q}$ es una fracción reducida que resulta ser raíz de un polinomio $P(x) = a_n x^n + \cdots + a_1 x + a_0$ con coeficientes enteros, entonces p divide a a_0 (coeficiente principal) y q divide a a_0

- 1. Si un polinomio $P(x) \in \mathbb{Z}[x]$ toma valores ± 1 en tres enteros distintos, demuestra que no tiene raíces enteras.
- 2. Sea P(x) un polinomio con coeficientes enteros. Prueba que si x es un entero tal que $P(P(\ldots P(x)\ldots)) = x$ (n iteraciones), entonces P(P(x)) = x.
- 3. Da un ejemplo de un polinomio que no tenga coeficientes enteros, pero que al evaluarlo en enteros tome valores enteros

4. Problemas Variados

- 1. Si $x^2 x 2 = 0$, determina todos lo posibles valores de $1 \frac{1}{x} \frac{6}{x^2}$.
- 2. Encuentra todos los valores de x tales que $x + \frac{36}{x} \ge 13$.
- 3. Un polinomio deja un residuo de 5 cuando se divide por (x-3), y un residuo de -7 cuando se divide por (x *1). Encuentra el residuo al dividir por $x^2 2x 3$.
- 4. Si x y y son números reales, determina todas las soluciones (x,y) para el sistema

$$\begin{array}{rcl}
 x^2 - xy + 8 & = & 0 \\
 x^2 - 8x + y & = & 0
 \end{array}$$

- 5. a) La ecuación $y = x^2 + 2ax + a$ representa una parabola. Variando a entre los reales obtenemos una familia de parabolas. Demuestra que todas tienen un punto en común y determina sus coordenadas. b) Los vértives de las parábolas forman una curva. Demuestra que ésta es también una parabola.
- 6. Determina todos los valores reales para de p y r tales que se cumplen las siguientes ecuaciones

$$\begin{array}{rcl} p + pr + pr^2 & = & 26 \\ p^2r + pr^2 + pr^3 & = & 156 \end{array}$$

- 7. Una escuación cuadrática $ax^2 + bx + c = 0$, con coeficientes no-cero, tiene raices reaes. Prueba que a.b.c no pueden estar en una progrsión geométrica.
- 8. Una escuación cuadrática $ax^2 + bx + c = 0$, con $a \neq 0$ tiene soluciones enteras. Si a, c, b son términos consecutivos de una secuencia aritmética, resuelve para las raíces de la ecuación.
- 9. Dado que -2 es solución de $x^3 7x 6 = 0$, encunetra las otras soluciones.
- 10. Encuentra el valor de a tal que la ecuación siguiente tiene la mínima suma de cuadrados de sus raíces.

$$4x^2 + 4(a-2)x - 8a^2 + 14a + 31 = 0.$$

- 11. El punto máximo de la gráfica $y = -2x^2 2ax + k$ es (-2,7). Calcula a y k.
- 12. Las raíces de $x^2 + cx + d = 0$ son a, b; y las raíces de $x^2 + ax + b = 0$ son cyd. Si a, b, c, d son no cero, calcula a + b + c + d.