Data Science for Speech Therapy Clinical Research Methodology

Clinical Sharing for Continuous Education
ST Benjamin C
Sample Presentation

Content details

Data Science

- What is data science?
- What is ML?
- ML vs stats

Člinical Application

- ML in Speech Pathology
- Workflow of ML (prediction extubation success)
- Use case of ML in Speech Pathology (dysarthria severity)
- Barriers to ML

Many definitions

Synergy of disciplines

Clinical Research Methodology

What is ML?

ML vs stats

	Statistics	Machine learning					
Approach	Inference	Prediction					
Measurement	P-value, effect size	More than just p-value					
Assumption of the dataset	Sample relates to population	Past dataset can used to predict future, unseen data					
Dataset	Use all observations Unable to comment on	Train/test split Make statements for each observation					
	individual observations	observation					
Unable to comment on individual observations Unable Presentation Train/test split Make statements for each observation Contain Sample Presentation							

	Statistics Contact me for details Machine Learning				
	Statistics	Machine Learning			
Technique # of techniques	Simple Model	Simple model/ complex model			
# of techniques	1 specific simple model	As many models as you desire			
Pre-processing	Typically left out	Typically done			
Capturing complex relationship	Not as effective	Better			
Transparency	Interpretable	More opaque			
Observations: Predictors	Observations>> predictors	Observations > predictors Predictors> observations			

Popularity of ML in clinical research

- No known literature review in speech
- Reviews in other medical fields

In cardiology

Figure 1 Projecting the growth of publications in PubMed with 'cardiology' and 'machine learning'. Data compiled using Medline (PubMed) trend (http://dan.corlan.net/medline-trend.html). Exponentiated regression of log number of publications on year is used to predict the future trend.

ML in speech pathology

- An evaluation of measures to dissociate language and communication disorders from healthy controls using machine learning techniques
- Automatic classification of unequal lexical stress patterns using machine learning algorithms
- Pathological Voice Signal Analysis Using Machine Learning Based
- Calculation of upper esophageal sphincter restitution time from high resolution manometry data using machine learning

Medical topics related to ST's work

Data Science for Extubation Prediction and Value of Information in SICU (2019)

- Crash course clinical aspect of extubation
- ML workflow
- Clinical and ML findings

clinical aspects of extubation

- Parameters of respiratory physiology guide weaning BUT they may not support predicting extubation well
- No systematic approach on decision to extubate
- 1. Use routine clinical measurements
- 2. More ICU specific measurements
- 3. Readiness test
- 4. Clinical experience

Issue w current practice

- 6-47% pt have extubation failure and required reintubation
 - probability of mortality from 25 to 50%; details
 - increased duration of mechanical ventilation and
- → Use ML to predict candidacy for extubation

ML Pipeline

J. Clin. Med. 2019, 8, 1709

Figure 1. The data science framework of endotracheal extubation.

		Table 2. The resu	alts of va	ırıable selection met	hods.	car deta	115
Multivariate Adaptive Regression Splines		Stepwise Logistic Regression		Random Forest		Total Frequency	
Variables	Freq.	Variables	Freq.	Variavles	Freq.	Variables	Freq.
ApacheII	98	ApacheII	94	ApacheII	100	ApacheII	292
Eye_Opening	42	Eye_Opening	€4	WBC	74	WBC	155
WBC	41	WBC-	40	Glu	59	Eye_Opening	114
Heart_Rate	36	ASBI	32	Na	58	Heart_Rate	111
Glu	30	Hct (ABG)	25	Heart_Rate	54	Glu	108
Na 1	30	Heart_Rate	21	Hct (ABG)	53	Na	103
RSBI	25	Glu	19	$pO_2_FiO_2$	38	Hct (ABG)	100
Place e's	24	Na	15	Weight	36	RSBI	90
Gender_men	24	PT_INR	11	ARTmean_BP	35	Platelets	64
Hct (ABG)	22	Verbal_Response	9	PT_INR	35	Weight	62
Verbal_Response	19	Gender_men	9	Platelets	33	Verbal_Response	61
Weight	17	Weight	9	RSBI	33	PT_INR	59
ARTmean_BP	13	Platelets	7	Verbal_Response	33	ARTmean_BP	54
PT_INR	13	ICU_Emergency	7	PIMAX	32	pO ₂ _FiO ₂	53
$pO_2_FiO_2$	12	ARTmean_BP	6	Eye_Opening	8	PIMAX	44
ICU_Emergency	12	PIMAX	5	Gender_men	3	Gender_men	36
PIMAX	7	pO ₂ _FiO ₂	3			ICU_Emergency	19

Figure 1. The data science framework of endotracheal extubation.

Figure 1. The data science framework of endotracheal extubation.

Repeat ML pipeline with different dataset

J. Clin. Med. 2019, 8, 1709

Figure 1. The data science framework of endotracheal extubation.

ML findings

J. Clin. Med. 2019, 8, 1709

Figure 1. The data science framework of endotracheal extubation.

ML findings

- Time and effort processing the variables pays off
- Using multiple models allow us to chose one with the highest prediction power or contact meros. Contact meros Sample Presentation.

Clinical findings

- Using curated predictors and the best model, the algorithm saves 0.625 days in ICU compared to clinical judgement alone
- Curated predictors reveal influential predictors

Towards an automatic evaluation of the dysarthria level of patients w PD (2018)

Clinical component

Create an ax to measure dysarthria speech in RD

ML component

Contact me for detailed.

Use ML to predict ax scores Sample Presen

Create an ax to measure dysarthria speech in PD

- Most PD assessment battery not specific to dysarthria
 An assessment which
- An assessment which does not need physical consultationsental sample.

Fig. 1. Distribution of the m-FDA scores for all HC speakers and PD patients (left). m-FDA scores for female speakers (middle). m-FDA scores for male speakers (right). Significant differences between the scores of HC and PD speakers are found in all cases (p < 0.001).

Use ML to predict ax scores

Acoustic signals from mFDA --> . rosody

1. Intelligibility

Sample

Sample

1. Intelligibility

Sample

1. Intelligibility

Sample

i. I-vector

- i-vectors were the most accurate to quantify the dysarthria level
- correlations of up to 0.69 between the real m-FDA scores (assigned by the clinician) and the predicted ones

Why do we need to address barriers?

/ISION

By 2030, Singapore vill be a leader in developing and deploying scalable, impactful Al solutions in key sectors of high value and relevance to our citizens and businesses.

NATIONAL AI PROJECTS

We will embark on an initial tranche of 5 National AI Projects to deliver strong social and/or economic impact for Singapore and Singaporeans.

INTELLIGENT FREIGHT PLANNING

SEAMLESS & EFFICIENT MUNICIPAL SERVICES

PREDICTION & MANAGEMENT

PERSONALISED EDUCATION THROUGH ADAPTIVE LEARNING & ASSESSMENT

OPERATIONS

Harvard Business Review (2019)

- Al Can Outperform Doctors. So Why Don't Patients Trust It?
- Adopting AI in Health Care Will Be Slow and

- vvil.
Sample Presentation. Contact

Adopting AI in Health Care Will Be Slow and Difficult (HBR 2019)

Regulatory Framework

Singapore releases AI model governance or details framework at World Foot

2. Approval of developed AI/ML

An A.I. for the eye: New tech cuts time for spotting signs of diabetic eye disease

By Timothy Goh

6 July 2019 | Tomorrow's Medicine, The Straits Times

Enrolled nurse Abel Kwan (far left) using a specialised camera, known as a Fundus, at a mock screening session with the Selena+ Al. The system will address the need for increased manpower to tackle diabetes and related eye diseases.ST PHOTO: GIN TAY

Self-learning retinal screening tech cuts time needed to spot signs of diabetic eye disease

Adopting AI in Health Care Will Be Slow and Difficult (HBR 2019)

- 3. Black box medicine
 Identify variables that influence prediction at global level AND at individual level
- ? Individuatized treatment Sample.