

Alchemical Free Energy Methods with BioSimSpace

Julien Michel, Anna Herz, Finlay Clark, Lester Hedges, Christopher Woods

CCPBioSim Training Week – Leeds - 20/09/2022

Schedule

- 9.00 9.30 Set up & Lecture
- 9.30 10.15 Introduction to Alchemistry with BioSimSpace
- 10.15 10.30 Coffee Break
- 10.30 11.15 Relative Binding Free Energies with BioSimSpace
- 11.15 12.00 Absolute Binding Free Energies with BioSimSpace

Workshop materials

github.com/michellab/bssccpbiosim2022

Accessing the workshop server

workshop.biosimspace.org

What is BioSimSpace?

BioSimSpace: An interoperable Python framework for biomolecular simulation

Lester O. Hedges¹, Antonia S.J.S. Mey², Charles A. Laughton³, Francesco L. Gervasio⁴, Adrian J. Mulholland⁵, Christopher J. Woods¹, and Julien Michel²

Alchemical free energy methods in drug design

Free energy of binding

$$\Delta G_{\rm bind} = -k_B T \ln K_b^{\circ}$$

Sample this using Molecular dynamics?

The alchemical pathway

The lambda coordinate

Endpoint 1

 $\lambda = 0$

 $\lambda = 0.5$

Endpoint 2

$$U(\lambda, \mathbf{x}) = (1 - \lambda)U_0(\mathbf{x}) + \lambda U_1(\mathbf{x}) + U_{\text{unaffected}}$$

Potential energy functions

$$\begin{split} U &= \sum_{\text{bonds}} \frac{1}{2} k_b (r - r_0)^2 + \sum_{\text{angles}} \frac{1}{2} k_a (\theta - \theta_0)^2 + \sum_{\text{torsions}} \frac{V_n}{2} [1 + \cos(n\phi - \delta)] \\ &+ \sum_{\text{improper}} V_{imp} + \sum_{\text{LJ}} 4\epsilon_{ij} \left(\frac{\sigma_{ij}^{12}}{r_{ij}^{12}} - \frac{\sigma_{ij}^6}{r_{ij}^6} \right) + \sum_{\text{elec}} \frac{q_i q_j}{r_{ij}}, \end{split}$$

- The functional form and parameter set define a force field.
- Commonly used force fields include:
 CHARMM (Chemistry at Harvard Molecular Mechanics)
 AMBER (Assisted Model Building with Energy Refinement)
 OPLS (Optimised Potentials for Liquid Simulations)

Softcore potentials

Zacharias et al. *J. Chem. Phys.* 100, 9025-. **1994**

BioSimSpace merged molecules

BioSimSpace holds a merged molecule and can write intermediates

BioSimSpace setups inputs for different simulation engines

AMBER MD

BioSimSpace analyses simulation outputs

Zwanzig equation

$$\Delta G_{AB} = G(A) - G(B) = -k_B T \ln \langle \exp(-\frac{U_B - U_A}{k_B T}) \rangle_A$$

Thermodynamic integration

The integral represents the area under the curve.

There are different ways in which one can numerically integrate.

Multistate Bennett Acceptance Ratio (MBAR)

$$\mathcal{G}(\lambda_1) = -k_B T \ln \sum_{j=1}^N \sum_{n=1}^{K_j} \frac{\exp(-U(\lambda_i)/kT)}{\sum_{k=1}^N N_k \exp((\mathcal{G}(\lambda_k) - U(\lambda_k))/kT)}$$
 MBAR is a reweighting estimator

The free energy is correct up to an additive constant, which will cancel out when evaluating free energy differences.

$$\Delta G_{AB} = G(\lambda_1) - G(\lambda_0)$$

Overlap matrix

Overlap matrix estimates the phase space overlap

Define a weight matrix W containing the weight of each sample x_n.

$$W_{n,i}(x_n) = rac{\exp(eta F_i - U_i(x_n))}{\sum_{k=1}^K N_K \exp(eta F_k - eta U_k(x_n))}$$
Probability of $p_i(x_n)$ of x_n occurring

at lambda window i.

$$O = W^T W N$$

N is a diagonal matrix with the number of samples collected at each lambda window.

Let's get started

