REPUBLIQUE DU SENEGAL

Un Peuple - Un But - Une Foi

Ministère de l'Economie, du Plan et de la Coopération

Agence Nationale de la Statistique et de la Démographie

Ecole Nationale de la Statistique et de l'Analyse Economique Pierre NDIAYE (ENSAE)

PROJET R

PROJET STATISTIQUE SUR R

Rédigé par :

Komi Amégbor Richard GOZAN

Elève Ingénieur

Statisticien économiste

Sous la supervision de :

M. Hema ABOUBACAR

Research analyst

Juillet 2023

Table des matières

1	Cha	argeme	ent des packages	3
2	Par	tie 1		3
	2.1	Prépa	ration des données	3
		2.1.1	Decription	3
		2.1.2	Importation et mise en forme	3
		2.1.3	Création de variables	4
	2.2	Statist	tiques descriptives	5
		2.2.1	Satistiques descriptives demandées	5
		2.2.2	Statistiques descriptives de notre choix sur les autres variables:	7
	2.3	Carto	graphie	17
3	Par	tie 2		21
	3.1	Netto	vage et gestion des données	21
	3.2	Analy	se et visualisation des données	23
4	Par	tie 3:		34

1 Chargement des packages

```
library(readxl)
library(dplyr)
library(gtsummary)
library(gt)
library(sf)
library(leaflet)
library(ggplot2)
library(flextable)
library(ggspatial)
library(broom)
library(questionr)
library(lubridate)
library(GGally)
```

2 Partie 1

2.1 Préparation des données

2.1.1 Decription

2.1.2 Importation et mise en forme

• Importation de la base de données dans un objet de type data.frame nommé projet :

```
projet <- read_excel("Bases/Base_Partie 1.xlsx")</pre>
```

• Tableau résumant les valeurs manquantes par variable :

```
df = data.frame(variables = colnames(projet), Valeurs_manquantes = colSums(is.na(projet)))
df %>% gt()
```

variables	$Valeurs_manquantes$
key	0
q1	0
q2	0
q23	0
q24	0
q24a_1	0

$q24a_2$	0
q24a_3	0
q24a_4	0
q24a_5	0
q24a_6	0
q24a_7	0
q24a_9	0
q24a_10	0
q25	0
q26	0
q12	0
q14b	1
q16	1
q17	131
q19	120
q20	0
filiere_1	0
${\rm filiere}_2$	0
$filiere_3$	0
$filiere_4$	0
q8	0
q81	0
$gps_menlatitude$	0
$gps_menlongitude$	0
submissiondate	0
start	0
today	0

• Vérifions s'il y a des valeurs manquantes pour la variable key dans la base projet. Si oui, nous identifierons la (ou les) PME concernée(s).

2.1.3 Création de variables

• Renommage des variables

```
# q1 en region, q2 en déparement et q23 en sexe
projet <- projet %>%
  rename(region = q1, departement = q2, sexe = q23)
```

• Création de la variable sexe_2 vallant 1 si sexe égale à Femme et 0 sinon

```
projet <- projet %>%

mutate(sexe_2 = ifelse(sexe == "Femme", 1, 0))
```

• Création du data.frame "langues"

```
langues <- projet %>%
select(key, starts_with("q24a_"))
```

• Création de la variable "parle"

```
langues <- langues %>%
mutate(parle = rowSums(.[2:ncol(.)]))
```

• Sélection des variables "key" et "parle"

```
langues <- langues %>%
select(key, parle)
```

• Mergons les data.frame "projet" et "langues"

```
projet <- projet %>%

left_join(langues, by = "key")
```

2.2 Statistiques descriptives

2.2.1 Satistiques descriptives demandées

Il nous est demandé la répartion des PME suivant:

- le sexe
- le niveau d'instruction
- le statut juridique
- le propriétaire/locataire
- le statut juridique et le sexe
- le niveau d'instruction et le sexe
- Propriétaire/locataire suivant le sexe

Nous résumons ces répartitions dans un seul tableau avec l'analyse univariée et l'anlyse buvariée

```
# Répartition des PME suivant le sexe, le niveau d'instruction,
# le statut juridique et le propriétaire locataire
tbl1 <- projet %>% tbl_summary(
 include = c("sexe", "q25", "q12", "q81"),
 label=list(q25~ "Niveau d'instruction",
             q12~ "Statut juridique",
             q81~ "Propriétaire/locataire"))
# Répartition des PME suivant le statut juridique et le sexe,
# le niveau d'instruction et le sexe, Propriétaire/locataire
# et le sexe
tbl2 <- projet %>% tbl_summary(
 include = c("q25", "q12", "q81"),
 by ="sexe", label=list(q12~ "Statut juridique",
                         q25~ "Niveau d'instruction",
                         q81~ "Propriétaire/locataire")) %>%
 modify_header(label ~ "**Variables**") %>%
 modify_spanning_header(all_stat_cols() ~ "**Sexe**") %>%
 bold_labels()
## Empillement l'une sur l'autre
tbl_merge(
   tbls = list(tbl1, tbl2),
   tab_spanner = c("**Analyse univariée**", "**Analye bivariée**")) %>%
  italicize_levels() %>%
 as_flex_table() %>%
 fontsize(size=10) %>%
 width(width = 1.3)
```

	Analyse univarié	e Analye bivariée
Characteristic	$N=250^{1}$	Femme, $N = 191^{1}$ Homme, $N = 59^{1}$
sexe		
Femme	191 (76%)	
1 _n (%)		

	Analyse univario	ée Analye	Analye bivariée			
Characteristic	$N = 250^{1}$	Femme, $N = 191$	¹ Homme, $N = 59^{1}$			
Homme	59 (24%)					
Niveau d'instruction						
Aucun niveau	79 (32%)	70 (37%)	9 (15%)			
Niveau primaire	56 (22%)	48 (25%)	8 (14%)			
$Nive au\ secondaire$	74 (30%)	56 (29%)	18 (31%)			
Niveau Superieur	41 (16%)	17 (8.9%)	24 (41%)			
Statut juridique						
Association	6 (2.4%)	3 (1.6%)	3 (5.1%)			
GIE	179 (72%)	149 (78%)	30 (51%)			
Informel	38 (15%)	32 (17%)	6 (10%)			
SA	7 (2.8%)	1 (0.5%)	6 (10%)			
SARL	13~(5.2%)	2 (1.0%)	11 (19%)			
SUARL	7 (2.8%)	4 (2.1%)	3 (5.1%)			
Propriétaire/locata	ire					
Locataire	24 (9.6%)	16 (8.4%)	8 (14%)			
Propriétaire	226 (90%)	175 (92%)	51 (86%)			

^{1&}lt;sub>n</sub> (%)

${\bf 2.2.2} \quad {\bf Statistiques\ descriptives\ de\ notre\ choix\ sur\ les\ autres\ variables:}$

2.2.2.1 Analyse univariée:

• Analyse des filières

Characteristic	N = 250
Arachide	108 (43%)
anacarde	61~(24%)
mangue	89 (36%)
riz	92 (37%)

• Statistiques descriptives pour les variables de date

```
# Nous copie notre objet projet dans l'objet data
data = projet
# Convertir les colonnes en format de date
data$submissiondate <- as_date(data$submissiondate)</pre>
data$start <- as_date(data$start)</pre>
data$today <- as_date(data$today)</pre>
# Résumé statistique des colonnes de date
summary(data$submissiondate)
           Min.
                     1st Qu.
                                    Median
##
                                                    Mean
                                                              3rd Qu.
                                                                               Max.
## "2021-05-17" "2021-06-08" "2021-06-11" "2021-06-09" "2021-06-15" "2021-06-21"
summary(data$start)
##
                     1st Qu.
                                    Median
                                                    Mean
                                                              3rd Qu.
                                                                               Max.
## "2021-05-06" "2021-06-03" "2021-06-07" "2021-06-03" "2021-06-10" "2021-06-20"
summary(data$today)
##
           Min.
                     1st Qu.
                                    Median
                                                    Mean
                                                              3rd Qu.
                                                                               Max.
## "2021-05-06" "2021-06-03" "2021-06-07" "2021-06-03" "2021-06-10" "2021-06-20"
```

Distribution des dates de soumission

Dates de début d'enregistrement des informations

Dates de l'enquête

Date	$N=250^{1}$
Date de soumission	2021-05-17 to 2021-06-21
Date de début de l'enrégistrement	2021-05-06 to 2021-06-20
Date de l'enquête	2021-05-06 to 2021-06-20
$1_{ m Range}$	

Date	$ m N=250^{1}$
	

¹Range

Analyse:

- La date de soumission varie du 17 mai 2021 au 21 juin 2021 : Cela indique que les informations de l'enquête ont été soumises sur une période d'environ un mois.
- La date de début d'enregistrement varie du 6 mai 2021 au 20 juin 2021 : Cela signifie que l'enregistrement des informations pour l'enquête a commencé à partir du 6 mai 2021 et s'est poursuivi jusqu'au 20 juin 2021.
- La date de l'enquête varie également du 6 mai 2021 au 20 juin 2021 : Cela indique que les enquêtes ont été menées sur la même période que l'enregistrement des informations.

2.2.2.2 Analyse bivariée:

• Croisement de avec les filières

```
# Nous renommons les variables filières aux noms des différents filières
# Nous créeons une fonction croiser_filiere qui prend en argument
# une filière et renvoie une analyse suivant la filière donnée
croiser_filiere <- function(projet, filiere) {</pre>
  tbl_summary_result <- projet %>%
   tbl_summary(
      include = c("sexe", "region", "q19"),
      by = {{ filiere }},
      label = list(sexe ~ "Sexe",
                   region ~ "Region",
                   q19 ~ "Etat de la piste qui mène à l'entreprise")
   ) %>%
   modify_header(label ~ "**Variable**") %>%
   bold labels()
  return(tbl_summary_result)
}
```

```
tbl_filiere_1 <- croiser_filiere(projet2, filiere = "arachide")
tbl_filiere_2 <- croiser_filiere(projet2, filiere = "anacarde")
tbl_filiere_3 <- croiser_filiere(projet2, filiere = "mangue")
tbl_filiere_4 <- croiser_filiere(projet2, filiere = "riz")

tbl_merge(
    list(tbl_filiere_1, tbl_filiere_2, tbl_filiere_3, tbl_filiere_4),
    tab_spanner = c("arachide", "anacarde", "mangue", "riz")) %>%
    italicize_levels() %>%
    as_flex_table() %>%
    fontsize(size=8) %>%
    width(width = 0.8 )
```

	arac	chide	anac	arde	mar	ngue	ri	İZ
Variable	$0, N = 142^{1}$	$1, N = 108^{1}$	$0, N = 189^{1}$	$1, N = 61^{1}$	$0, N = 161^{1}$	$1, N = 89^{1}$	$0, N = 158^{1}$	$1, N = 92^{1}$
Sexe								
Femme	98 (69%)	93 (86%)	151 (80%)	40 (66%)	123 (76%)	68 (76%)	114 (72%)	77 (84%)
Homme	44 (31%)	15 (14%)	38 (20%)	21 (34%)	38 (24%)	21 (24%)	44 (28%)	15 (16%)
Region								
Dakar	1 (0.7%)	0 (0%)	0 (0%)	1 (1.6%)	1 (0.6%)	0 (0%)	0 (0%)	1 (1.1%)
Diourbel	1 (0.7%)	33 (31%)	34 (18%)	0 (0%)	33 (20%)	1 (1.1%)	34 (22%)	0 (0%)
Fatick	18 (13%)	12 (11%)	9 (4.8%)	21 (34%)	27 (17%)	3 (3.4%)	26 (16%)	4 (4.3%)
Kaffrine	0 (0%)	8 (7.4%)	8 (4.2%)	0 (0%)	3 (1.9%)	5 (5.6%)	7 (4.4%)	1 (1.1%)
Kaolack	1 (0.7%)	20 (19%)	21 (11%)	0 (0%)	14 (8.7%)	7 (7.9%)	17 (11%)	4 (4.3%)
Kolda	8 (5.6%)	1 (0.9%)	4 (2.1%)	5 (8.2%)	9 (5.6%)	0 (0%)	5 (3.2%)	4 (4.3%)
$Saint ext{-}Louis$	41 (29%)	1 (0.9%)	42 (22%)	0 (0%)	0 (0%)	42 (47%)	42 (27%)	0 (0%)
$S\'{e}dhiou$	4 (2.8%)	0 (0%)	1 (0.5%)	3 (4.9%)	4 (2.5%)	0 (0%)	1 (0.6%)	3 (3.3%)
$Thi\grave{e}s$	24 (17%)	27 (25%)	51 (27%)	0 (0%)	26 (16%)	25 (28%)	19 (12%)	32 (35%)
1 _{n (%)}								

	arachide		anac	anacarde		mangue		iz
Variable	$0, N = 142^{1}$	$1, N = 108^{1}$	$0, N = 189^{1}$	$1, N = 61^{1}$	$0, N = 161^{1}$	$1, N = 89^{1}$	$0, N = 158^{1}$	$1, N = 92^{1}$
Ziguinchor	44 (31%)	6 (5.6%)	19 (10%)	31 (51%)	44 (27%)	6 (6.7%)	7 (4.4%)	43 (47%)
Etat de la								
piste qui								
mène à								
l'entreprise								
Bon état	2 (3.2%)	0 (0%)	1 (1.0%)	1 (2.9%)	2 (2.1%)	0 (0%)	0 (0%)	2 (4.5%)
Etat moyen	35 (56%)	38 (57%)	55 (57%)	18 (53%)	53 (55%)	20 (59%)	46 (53%)	27 (61%)
Mauvais état	26 (41%)	29 (43%)	40 (42%)	15 (44%)	41 (43%)	14 (41%)	40 (47%)	15 (34%)
Unknown	79	41	93	27	65	55	72	48

 $^{^{1}\}mathrm{n}~(\%)$

• Distribution de la population suivant les Regions par sexe:

```
ggplot(projet) +
  aes(x = region, fill = sexe) +
  geom_bar() +
  geom_text(aes(label = after_stat(count)), stat = "count", position = position_stack(.5)) +
  xlab("Région") +
  ylab("Effectifs") +
  labs(fill = "Sexe")
```


• Distribution de la population suivant la langue parlée(Fraçais et wolof):

ggbivariate(data = data , outcome = "parle_français", explanatory = c("sexe", "region", "Niveau_instruc")

2.3 Cartographie

Dimension:

Geodetic CRS: WGS 84

Chargement des données de la carte du Sénégal

XY

• Transformation du data.frame en données géographiques dont l'objet est nommé projet_map :

```
# Nous lisons le fichier contenant la carte du Sénégal et le stockons
# dans la variable "senegal"
senegal = st_read("Bases/gadm41_SEN_shp/gadm41_SEN_1.shp")

## Reading layer `gadm41_SEN_1' from data source
## `D:\Mon phone\ISE\1Ã"re année\S2\Projet sur R\Projet_R_ENSAE_2023\Bases\gadm41_SEN_shp\gadm41_SEN
## using driver `ESRI Shapefile'
## Simple feature collection with 14 features and 11 fields
## Geometry type: MULTIPOLYGON
```

Bounding box: xmin: -17.54319 ymin: 12.30786 xmax: -11.34247 ymax: 16.69207

```
# La fonction st_as_sf convertit l'objet "projet" en objet
# sf (spatial feature) en spécifiant les coordonnées GPS à utiliser
projet_map = st_as_sf(projet, coords = c("gps_menlongitude", "gps_menlatitude"), crs=st_crs(senegal), a
# Jointure des données du projet avec la carte du Sénégal
projet_map = st_join(projet_map, senegal)
```

• Représentation spatiale des PME suivant le sexe:

```
# Création de la première carte avec la répartition des PME suivant le sexe
ggplot() +
  geom_sf(data=senegal)+
  geom_sf_text(data=senegal, aes(label=NAME_1))+
  geom_sf(data=projet_map, aes(color=sexe), size=2)+
  scale_color_manual(values=c("blue", "red"))+
  labs(title = "Répartition des PME suivant le sexe",
      subtitle = "Carte du Sénégal",
      color = "Sexe") +
  theme_minimal() +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold"),
   plot.subtitle = element_text(hjust = 0.5, face = "bold"))+
  coord_sf(datum = NA)+
  annotation_scale(location = "bl", text_col = "black")+
  annotation_north_arrow(location = "tl")
```

Répartition des PME suivant le sexe Carte du Sénégal

• Représentation spatiale des PME suivant le niveau d'instruction:

```
coord_sf(datum = NA)+
annotation_scale(location = "bl", text_col = "black")+
annotation_north_arrow(location = "tl")
```

Répartition des PME suivant le niveau d'instruction Carte du Sénégal

• Analyse spatiale de notre choix

```
# Création de la troisième carte avec la répartition des PME suivant prop

# Renommons la variable q81 en Propriéte

projet_map <- projet_map %>% rename(Propriete = q81)

ggplot() +

geom_sf(data=senegal)+

geom_sf_text(data=senegal, aes(label=NAME_1))+

geom_sf(data=projet_map, aes(color=Propriete), size=2)+

scale_color_manual(values=c("blue", "red"))+

labs(title = "Répartition des PME suivant la propriété",

subtitle = "Carte du Sénégal") +

theme_minimal() +
```

```
theme(
   plot.title = element_text(hjust = 0.5, face = "bold"),
   plot.subtitle = element_text(hjust = 0.5, face = "bold"))+
coord_sf(datum = NA)+
annotation_scale(location = "bl", text_col = "black")+
annotation_north_arrow(location = "tl")
```

Répartition des PME suivant la propriété Carte du Sénégal

3 Partie 2

3.1 Nettoyage et gestion des données

• Chargement des données et effectuons le nettoyage initial

```
# Chargement les données
feuille1 <- read_excel("Bases/Base_Partie 2.xlsx", sheet = 1)

# Renommons la variable "country_destination" en "destination" et
# définissons les valeurs négatives comme manquantes</pre>
```

```
feuille1 <- feuille1 %>%
  rename(destination = country_destination) %>%
  mutate(destination = ifelse(destination < 0, NA, destination))</pre>
```

• Création d'une nouvelle variable contenant des tranches d'âge de 5 ans

```
# Imputons la valeur abérante par la médiane

# Calculer la médiane des valeurs non aberrantes (différentes de 999) dans la variable "age" et remplace
feuille1 <- feuille1 %>%
    mutate(age = replace(age, age == 999, median(age[age != 999], na.rm = TRUE)))

# Créons la variable tranche_age contenant des tranches d'âge de
# 5 ans
feuille1 <- feuille1 %>%
    mutate(tranche_age = cut(age, breaks = seq(0, max(age), by = 5), include.lowest = TRUE))
```

• Création d'une nouvelle variable contenant le nombre d'entretiens réalisés par chaque agent recenseur :

```
feuille1 <- feuille1 %>%
  group_by(enumerator) %>%
  mutate(nombre_entretiens = n()) %>%
  ungroup()
```

• Création d'une nouvelle variable qui affecte aléatoirement chaque répondant à un groupe de traitement (1) ou de contrôle (0)

```
feuille1 <- feuille1 %>%

mutate(groupe = {set.seed(123); sample(c(0, 1), size = n(), replace = TRUE)})
```

• Fusion de la taille de la population de chaque district (feuille 2) avec l'ensemble de données (feuille 1) :

```
# Charger les données de la deuxième feuille
feuille2 <- read_excel("Bases/Base_Partie 2.xlsx", sheet = 2)

# Fusion
feuille1 <- feuille1 %>%
left_join(feuille2, by = "district")
```

• Calcul la durée de l'entretien et indiquer la durée moyenne de l'entretien par enquêteur :

```
feuille1 <- feuille1 %>%
  mutate(duree_entretien = endtime - starttime) %>%
  group_by(enumerator) %>%
  mutate(duree_moyenne_entretien = mean(duree_entretien)) %>%
  ungroup()
```

• Renommage de toutes les variables de l'ensemble de données en ajoutant le préfixe "endline_" à l'aide d'une boucle :

```
copie = feuille1
feuille1 <- feuille1 %>%
    rename_all(~paste0("endline_", .))
```

3.2 Analyse et visualisation des données

• Création d'un tableau récapitulatif contenant l'âge moyen et le nombre moyen d'enfants par district :

```
feuille1 %>%
  tbl_summary(
   by = endline_district,
   include = c("endline_age", "endline_children_num"),
   type = list(endline_children_num = "continuous"),
   statistic = all_continuous() ~ "{mean}",
   label=list( endline_age~ "Age moyen",
                endline_children_num ~ "Nombre moyen d'enfants")
   ) %>%
  add_overall() %>%
  modify_header(label ~ "") %>%
  modify_spanning_header(all_stat_cols() ~ "**District**") %>%
  bold_labels() %>%
  as_flex_table() %>%
  fontsize(size = 10) %>%
  width(width = 0.6)
```

	District								
	Overall, $N = 97^{1}$	*	*	*		<i>*</i>	,	*	8, N = 11 ¹
Age moyen	26	30	27	26	26	24	23	28	25
Nombre moyen d'enfants	0.00	1.50	0.85	0.00	0.00	0.50	0.12	0.17	1.27

 $¹_{\text{Mean}}$

 $\bullet\,$ Testons si la différence d'âge entre les sexes est statistiquement significative au niveau de 5 %:

```
### différence d'âge entre les sexe
diff_age <- feuille1 %>% tbl_summary(
include = c(endline_age),
by = endline_sex,
statistic = ~"{mean}",
label = list(endline_age ~ "Age du répondant"),
digits = ~ 1
)%>% bold_labels() %>% italicize_levels() %>%
add_difference() %>%
modify_header(
 list(
    all_stat_cols() ~ "{level} \n {n}, ({style_percent(p)}%)"
    )
) %>%
  as_flex_table()
diff_age
```

Characteristic	0 86, (89%) ¹	1 11, (11%) ¹	${\bf Difference}^2$	95% CI ²³	p-value ²
Age du répondant	26.0	22.2	3.8	0.23, 7.4	0.039

 $¹_{\mathrm{Mean}}$

• Création d'un nuage de points de l'âge en fonction du nombre d'enfants:

```
ggplot(feuille1, aes(x = endline_children_num, y = endline_age))+
geom_point(size = 2, alpha = 0.5, color = "#0072B2") +
labs(x = "Nombre d'enfants", y = "Âge") +
theme_minimal() +
scale_x_continuous(limits = c(0, 6) ,breaks = seq(0, 6, 1)) +
scale_y_continuous(limits = c(0, 50), breaks = seq(0, 50, 5))
```

 $^{^2}$ Welch Two Sample t-test

 $^{^3\}mathrm{CI} = \mathrm{Confidence\ Interval}$

• Estimation de l'effet de l'appartenance au groupe de traitement sur l'intention de migrer:

```
library(nnet)
regm <- multinom(intention ~ groupe ,data = copie)

## # weights: 21 (12 variable)
## initial value 188.753284

## iter 10 value 116.109117

## iter 20 value 115.901772

## final value 115.901310

## converged

tbl <- tbl_regression(regm, exponentiate = TRUE)
tbl</pre>
```

Outcome	Characteristic	OR	95% CI	p-value
2	groupe	0.47	0.05, 4.82	0.5
3	groupe	0.61	0.14,2.58	0.5
4	groupe	3.56	0.64, 19.8	0.15

Outcome	Characteristic	OR	95% CI	p-value
5	groupe	1.42	0.27, 7.61	0.7
6	groupe	5.69	0.60, 53.9	0.13
7	groupe	0.00	$0.00, \mathrm{Inf}$	>0.9

```
library(GGally)
ggcoef_multinom(
  regm,
  exponentiate = TRUE)
```


p = 0.05 \bigcirc p > 0.05

groupe effect plot

• Création d'un tableau de régression avec 3 modèles:

```
# Modèle A : Modèle vide - Effet du traitement sur les intentions
modele_A <- multinom(intention ~ groupe, data = copie)

## # weights: 21 (12 variable)
## initial value 188.753284

## iter 10 value 116.109117

## iter 20 value 115.901772

## final value 115.901310

## converged

tableau_A <- tbl_regression(modele_A)

# Modèle B : Effet du traitement sur les intentions en tenant compte de l'âge et du sexe
modele_B <- multinom(intention ~ groupe + age + sex, data = copie)

## weights: 35 (24 variable)
## initial value 188.753284

## iter 10 value 114.260695</pre>
```

```
## iter 20 value 112.317802
## iter 30 value 112.241966
## iter 40 value 112.240901
## final value 112.240885
## converged
tableau_B <- tbl_regression(modele_B)</pre>
\textit{\# Modèle C : Identique au modèle B mais en contrôlant le district}
modele_C <- multinom(intention ~ groupe + age + sex + district, data = copie)</pre>
## # weights: 42 (30 variable)
## initial value 188.753284
## iter 10 value 123.069300
## iter 20 value 110.582195
## iter 30 value 110.364853
## iter 40 value 110.317891
## iter 50 value 110.316861
## final value 110.316851
## converged
ggcoef_multinom(
  modele_C,
  exponentiate = TRUE)
```


plot(allEffects(modele_C))

groupe effect plot age effect plot intention (probability) intention (probability) intention = 7 intention = 0.8 0.8 <u>intention = 6</u> <u>intention = 6</u> 0.4 0.8 intention = 5intention = 50.8 0.8 intention = 4 intention = 4 0.8 0.8 intention = 3<u>intention = 3</u> 0.8 0.8 intention = 2intention = 20.8 0.8 intention = <u>intention = 1</u> 0.8 0.8 0.0 0.2 0.4 0.6 0.8 1.0 15 20 25 30 35 40 age district effect plot groupe sex effect plot intention (probability) intention (probability) <u>intention = </u> <u>intention = </u> 0.8 0.8 intention = 6intention = 6 0.8 0.0 intention = 5intention = 50.8 0.8 <u>intention = 4</u> intention = 4 0.8 0.8 intention = 3 intention = 3 0.8 0.8 intention = 2<u>ıntention = 2</u> 0.8 0.8 intention = 1 intention = 0.8 0.8 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8 district sex

```
tableau_C <- tbl_regression(modele_C)

# Création du tableau récapitulatif des résultats des trois modèles
tableau_final <- tbl_stack(
  list(tableau_A, tableau_B, tableau_C),
  group_header = c("Modèle A","Modèle B","Modèle C"))%>%
  as_flex_table()

# Affichage du tableau final
tableau_final
```

Group	Characteristic	$\log(\mathrm{OR})^1$	$95\%~\mathrm{CI}^1$	p-value
Modèle A	groupe	-0.75	-3.1, 1.6	0.5
	groupe	-0.49	-1.9, 0.95	0.5
	groupe	1.3	-0.45, 3.0	0.15

¹OR = Odds Ratio, CI = Confidence Interval

Group	Characteristic	$\log(\mathrm{OR})^1$	95% CI 1	p-value
	groupe	0.35	-1.3, 2.0	0.7
	groupe	1.7	-0.51, 4.0	0.13
	groupe	-12	-734, 710	>0.9
Modèle B	groupe	-0.69	-3.0, 1.6	0.6
	age	0.00	-0.16, 0.17	>0.9
	sex	0.61	-1.8, 3.1	0.6
	groupe	-0.47	-1.9, 1.0	0.5
	age	0.05	-0.05, 0.15	0.4
	sex	-0.28	-2.5, 2.0	0.8
	groupe	1.2	-0.50, 3.0	0.2
	age	0.06	-0.07, 0.18	0.4
	sex	-14	-14, -14	< 0.001
	groupe	0.27	-1.4, 2.0	0.8
	age	-0.01	-0.15, 0.13	0.9
	sex	-16	-16, -16	< 0.001
	groupe	1.7	-0.60, 3.9	0.2
	age	-0.02	-0.19, 0.15	0.8
	sex	-14	-14, -14	< 0.001
	groupe	-14	-14, -14	< 0.001
	age	-0.06	-0.31, 0.19	0.6
	sex	-15	-15, -15	< 0.001
Modèle C	groupe	-0.59	-3.0, 1.8	0.6

 $^{^{1}\}mathrm{OR}=\mathrm{Odds}$ Ratio, CI = Confidence Interval

Group	Characteristic	$\log(\mathrm{OR})^1$	$95\%~\mathrm{CI}^1$	p-value
	age	-0.02	-0.19, 0.16	0.9
	sex	0.47	-2.0, 2.9	0.7
	district	-0.17	-0.68, 0.34	0.5
	groupe	-0.55	-2.0, 0.92	0.5
	age	0.06	-0.04, 0.17	0.2
	sex	-0.05	-2.3, 2.2	>0.9
	district	0.19	-0.11, 0.49	0.2
	groupe	1.2	-0.56, 2.9	0.2
	age	0.06	-0.06, 0.19	0.3
	sex	-14	-14, -14	< 0.001
	district	0.10	-0.27, 0.47	0.6
	groupe	0.18	-1.5, 1.9	0.8
	age	0.01	-0.13, 0.15	0.9
	sex	-15	-15, -15	< 0.001
	district	0.25	-0.15, 0.65	0.2
	groupe	1.7	-0.61, 3.9	0.2
	age	-0.02	-0.19, 0.15	0.8
	sex	-15	-15, -15	< 0.001
	district	-0.02	-0.45, 0.42	>0.9
	groupe	-15	-15, -15	< 0.001
	age	-0.05	-0.30, 0.20	0.7
	sex	-15	-15, -15	< 0.001

 $^{^{1}\}mathrm{OR}=\mathrm{Odds}$ Ratio, CI = Confidence Interval

Group	Characteristic	$\log(\mathrm{OR})^1$	$95\%~\mathrm{CI}^1$	p-value
	district	0.15	-0.48, 0.78	0.6

 $^{^{1}\}mathrm{OR}=\mathrm{Odds}$ Ratio, CI = Confidence Interval

4 Partie 3: