Network 20q HW10

ZHANG Xiao Research Intern in IBM CRL October 2, 2017

1 Aloha

1.1 a

The probability of a successful transformation is $P_s = N * p * (1 - p)^{N-1}$, only successful transmission could count throughput, so:

$$S = 1 * P_s = N * p * (1 - p)^{N-1} (Mbps)$$
(1)

1.2 b

We need to calculate the differentiate of S(p):

$$S(p)' = (N*p*(1-p)^{N-1})' = N*(1-p)^{N-1} - N*(1-p)^{N-1} = (1-N)*N*(1-p)^{N-2}$$
(2)

Set the equation to 0, we could get $p^* = \frac{1}{N}$

1.3 c

The maximum throughput is $S = N * \frac{1}{N} * (1 - \frac{1}{N})^{N-1} = (1 - \frac{1}{N})^{N-1}$, so $\lim_{N\to\infty} (1 - \frac{1}{N})^{N-1}$ let u = N - 1, we could get $\lim_{N\to\infty} (1 - \frac{1}{N})^{N-1} = \lim_{u\to\infty} (1 - \frac{1}{u+1})^u = \lim_{u\to\infty} (\frac{u}{u+1})^u = \lim_{u\to\infty} (\frac{1}{u+1})^u = \lim_{u\to\infty} (\frac{1}{1+\frac{1}{u}})^u = \frac{1}{e}(Mbps)$

2 Overhead

If we are going to seed 250 bytes data, the payload percentage is:

$$\frac{250}{8+6+6+2+40+20+4+12+250} = 0.718390804 = 71.8\%$$
 (3)