DIFFERENTIATION UNDER INTEGRATION

Leibniz's rule for differentiation under the integral sign

General form:

- f(x,t): continuous and continuously differentiable[†] († partial derivatives exist and are themselves continuous)
- a(x), b(x): continuous differentiable functions of x

Gottfried Wilhelm Leibniz (1646–1716)

Then

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t)dt = f(x,b(x)).b'(x) - f(x,a(x)).a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt.$$

Special cases

• If a(x), b(x) are constants rather than functions of x, then

$$\frac{d}{dx} \int_{a}^{b} f(x,t)dt = \int_{a}^{b} \frac{\partial}{\partial x} f(x,t)dt.$$

• If a(x) = a and b(x) = x, then

$$\frac{d}{dx} \int_{a}^{x} f(x,t)dt = f(x,x) + \int_{a}^{x} \frac{\partial}{\partial x} f(x,t)dt.$$

What do these formulae signify?

 They interchange the integral and partial differential operators under certain conditions.

When should we use them?

 Generally, one uses differentiation under the integral sign to evaluate integrals that can be thought of as belonging to some

family of integrals parameterized by a real variable.

Examples I

• Evaluate $\int_0^1 \frac{t^3-1}{\ln t} dt$.

Ans: Define $g(x) = \int_0^1 \frac{t^x - 1}{\ln t} dt$. So, we wish to evaluate g(3).

$$g'(x) = \int_0^1 \frac{\partial}{\partial x} \left(\frac{t^x - 1}{\ln t} \right) = \int_0^1 \frac{t^x \ln t}{\ln t} dt$$
$$= \frac{t^{x+1}}{x+1} \Big|_0^1 = \frac{1}{x+1}$$

 $g(x)=\ln|x+1|+C$, for some constant C. To determine C, note that $0=\int_0^1\left(\frac{t^0-1}{\ln t}\right)dt=g(0)=\ln|0+1|+C=C$.

$$\implies g(x) = \ln|x+1| \implies g(3) = \ln 4 = 2 \ln 2.$$

Examples II

② Compute the definite integral $\int_0^1 (t \ln t)^{50} dt$.

Ans:

$$\frac{d}{dx} \int_0^1 t^x dt = \int_0^1 t^x \ln t dt$$

$$\implies \frac{d^{50}}{dx^{50}} \int_0^1 t^x dx = \int_0^1 t^x (\ln t)^{50} dt$$

Now
$$\frac{d^{50}}{dx^{50}} \left(\frac{t^{x+1}}{x+1} \right)_0^1 = \frac{d^{50}}{dx^{50}} \left(\frac{1}{x+1} \right) = \frac{50!}{(x+1)^{51}}.$$

$$\therefore \int_0^1 (t \ln t)^{50} dt = \frac{50!}{51^{51}}.$$

Examples III

 $oldsymbol{\circ}$ The function f satisfies the following relationship.

$$f(x) = \int_{1}^{x} [f(t)]^{2} dt, \quad f(2) = \frac{1}{2}.$$

Then determine the value of $f(\frac{1}{2})$.

Ans: $f'(x) = f(x,x) + \int_a^x \frac{\partial}{\partial x} (f(x,t)) dt = f^2(x)$.

$$\implies \frac{df}{f^2} = dx. \implies -\frac{1}{f(x)} = x + c.$$

From $f(2) = \frac{1}{2}$, we have c = -4.

$$\therefore f(x) = \frac{1}{4-x}. \implies f(\frac{1}{2}) = \frac{1}{4-\frac{1}{2}} = \frac{2}{7}.$$

Examples IV

Find the value of

$$\lim_{p \to 0} \frac{d}{dp} \left[\int_{2p-1}^{3p+2} \left(\frac{x+6}{4x} \right)^x dx \right].$$

Ans: $\frac{23}{5}$. (Excercise)

THANK YOU.

