Calculus 1 - 2022aa

Amit Bajar

Question 1

- (a) $\forall \epsilon > 0 \ \exists \delta > 0 : 0 < |x x_0| < \delta \implies |f(x) f(x_0)| < \epsilon$
- (b) Using the Weierstrass theorem we get that there exists a minimum and maximum we can denote by $m, M \in \mathbb{R}$ respectively that f attains on [a, b]. i will prove that $\{f(x) : x \in [a, b]\} = [m, M]$. One direction is trivial: $\{f(x) : x \in [a, b]\} \subseteq [m, M]$ (directly from the definition of m, M), the other direction follows from the intermediate value theorem which states that for every $m \le y \le M$ there exists $x_y \in [a, b]$ such that $f(x_y) = y$ which precisely means that $[m, M] \subseteq \{f(x) : x \in [a, b]\}$.

Question 2

- (a) We will calculate the Taylor polynomial of degree 3 of $f(x) = \sqrt{1+2x}$ around x=0 and use the Lagrange error bound to prove the needed inequality. First let us calculate the derivatives: $f(x) = (1+2x)^{1/2}, f'(x) = (1+2x)^{-1/2}, f''(x) = -(1+2x)^{-3/2}, f'''(x) = 3(1+2x)^{-5/2}$ and thus it holds that $f(0) = 1, f'(0) = 1, f''(0) = -1, f'''(0) = 3 \implies P_3(x) = 1 + x \frac{1}{2}x^2 + \frac{1}{2}x^3 + e_3(x)$. Now it is only left to show that $x > -\frac{1}{2} \implies e_3(x) \le 0$. We know from the Lagrange error bound that $e_3(x) = \frac{f^{(4)}(c)}{24}x^4$ for some c between 0 and x. Because $f^{(4)}(c) = -15(1+2c)^{-7/2}$ it holds that: $x > -\frac{1}{2} \implies c > -\frac{1}{2} \implies (1+2c)^{-7/2} \ge 0 \implies f^{(4)}(c) \le 0 \implies e_3(x) \le 0$ as needed.
- (b) Note that $f:[1,\infty)\to [1,\infty)$ and thus $f(x)\geq 1$ so $\frac{f(x)}{f(2x)}\geq 0$ (note that $f(2x)\neq 0$). In addition f is monotonic increasing because $f'(x)\geq f(x)\geq 1\geq 0$. Now, using the mean value theorem on [x,2x] (for some $x\geq 1$, note that f is differentiable in $[1,\infty)$ so we can use it) we get that $f(2x)-f(x)\stackrel{2x\geq c\geq x}{=} f'(c)x\stackrel{f'\geq f}{\geq} f(c)x\stackrel{c\geq x}{\geq} f(c)\geq f(x)$ f(x)=f(x)=f(x) for f(x)=f(x)=f(x) for f(x)=f(x)=f(x) so by the sandwich theorem we get $\lim_{x\to\infty}\frac{f(x)}{f(2x)}=0$.

Question 3

- (a) From the fact that $a_{n+1} \geq 2a_n$ for some n > N for all $N \in \mathbb{N}$ we can build a subsequence such that $a_{n_k+1} \geq 2a_{n_k}$ whoever a_n is bounded and thus a_{n_k} is also bounded so by *Bolzano Weierstrass* there exists some sub-subsequence $a_{n_{k_l}}$ which converges. Let us denote the limit by K. By definition $K \geq \liminf_{n \to \infty} a_n$ and also $a_{n_{k_l}+1} \geq 2a_{n_{k_l}}$ now $a_{n_{k_l}+1}$ does not necessarily converge so we take one last convergent subsequence of $a_{n_{k_l}+1}$ (it is bounded as a subsequence of the bounded sequence a_n so one exists) and we get a subsequence $a_{n_{k_{l_m}}+1}$ which converges (denote the limit by D). Now because limits preserve weak inequalities we get $D \geq 2K \geq 2 \lim \inf_{n \to \infty} a_n$ as needed.
- (b) Assume by contradiction that the limit of f at 0 does not exist, this means (from the negation of the *Heine criterion*) that there exists two sequences $(a_n), (b_n) \underset{n \to \infty}{\to} 0$ for which it holds that $\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n)$. Now note that we can build two subsequences a_{n_k}, b_{n_k} such that $|a_{n_k}|, |b_{n_k}| \leq 1/k^2$ (by induction on k for example, always take far enough elements such that the index is greater than the previous element and the element smaller than $1/k^2$). This means that $\lim_{n \to \infty} f(a_{n_k}) \neq \lim_{n \to \infty} f(b_{n_k})$ (subsequence converge to the same limit as the convergent sequence) and also from the comparison test and absolute convergence implies convergence we get

that
$$\sum a_{n_k}$$
, $\sum b_{n_k}$ converge. Now define a new sequence $c_k = \begin{cases} a_{n_{\lceil \frac{k}{2} \rceil}} & k \text{ odd} \\ b_{n_{\frac{k}{2}}} & k \text{ even} \end{cases}$ $(a_{n_1}, b_{n_1}, a_{n_2}, b_{n_2}...)$

and note that $\sum c_k$ converges (The partial sum can be expressed with the sum of the partial sums of $\sum a_{n_k}$, $\sum b_{n_k}$ which converge) and thus $\lim_{k\to\infty} f(c_k) \in \mathbb{R}$ which is a contradiction to the *Heine criterion* because it has two subsequences with different limits $(\lim_{k\to\infty} f(a_{n_k}) \neq \lim_{k\to\infty} f(b_{n_k}))$.

Question 4

- (a) We will prove that f'(x) is bounded on $[1, \infty)$ and then f(x) will be lipschitz continuous and also uniformly continuous on $[1, \infty)$, and because f is continuous on [0, 1] we know it is uniformly continuous there from the *Heine Cantor theorem* and we will get that f is uniformly continuous on $[0, \infty)$ as needed. Indeed $f''(x) \leq 0$ so from a theorem in class f'(x) is monotonic decreasing and thus $0 \leq f'(x) \leq f'(1)$ for all $x \in [1, \infty)$ which means that f'(x) is bounded as needed.
- (b) From the definition of the limit we have $x \in [M, \infty) \implies 4 \le f(x) + f'(x) \le 6$ for some $M \in \mathbb{R}$. Now i will prove that f(x) must be bounded in $[M, \infty)$ and thus f'(x) is also bounded in $[M, \infty)$ which means f(x) is uniformly continuous there (from the same argument as 4.a) and it is also uniformly continuous in [0, M] from the *Heine Cantor theorem* and thus uniformly continuous on $[0, \infty)$. Define the set $A = \{x \ge M : f(x) \ge 7\}$ and assume by contradiction that it is not empty, then it is bounded from below and thus it has an infimum we can denote by x_0 . Notice that because f is continuous on $[0, \infty)$ then for every $x' \in A$ there exists some $\delta > 0$ such that $x \in [x' \delta, x' + \delta] \implies f(x) \ge 6.5$ and thus it must hold that $x \in [x' \delta, x' + \delta] \implies f'(x) \le 0$ which means that f is monotonic decreasing in $[x' \delta, x' + \delta]$ so $f(x' \delta) \ge f(x') \ge 7$. Whoever if we apply this to x_0 we get that $x_0 \delta \in A$ in contradiction to the fact that it is the infimum. So the set A must be empty and thus f(x) is bounded from above by f(x) on f(x) as needed.