International Rectifier

IRFP3077PbF

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

Benefits

- Worldwide Best R_{DS(on)} in TO-247
- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dl/dt Capability

HEXFET® Power MOSFET

V_{DSS}	75V
R _{DS(on)} typ.	$\mathbf{2.8m}\Omega$
max.	3.3 m Ω
I _{D (Silicon Limited)}	200A ①
I _D (Package Limited)	120A

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	200①	А	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	140①		
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited	120		
I _{DM}	Pulsed Drain Current ②	850		
P _D @T _C = 25°C	Maximum Power Dissipation	340	W	
	Linear Derating Factor	2.3	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
dV/dt	Peak Diode Recovery ®	2.5	V/ns	
TJ	Operating Junction and	-55 to + 175	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300		
	(1.6mm from case)			
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)		

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ^③	200	mJ
I _{AR}	Avalanche Current ①	See Fig. 14, 15, 22a, 22b,	Α
E _{AR}	Repetitive Avalanche Energy ®		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.44	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		40	

www.irf.com 1

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.091		V/°C	Reference to 25°C, I _D = 5mA@
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.8	3.3	mΩ	$V_{GS} = 10V, I_D = 75A $ ⑤
$V_{GS(th)}$	Gate Threshold Voltage	2.0	_	4.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 75V, V_{GS} = 0V$
			_	250		$V_{DS} = 75V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage		_	-100		$V_{GS} = -20V$
R_{G}	Gate Input Resistance		1.2		Ω	f = 1MHz, open drain

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	160		_	S	$V_{DS} = 50V, I_{D} = 75A$
Q_g	Total Gate Charge		160	220	nC	I _D = 75A
Q_{gs}	Gate-to-Source Charge		37	_		$V_{DS} = 38V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		42			V _{GS} = 10V ⑤
t _{d(on)}	Turn-On Delay Time		25		ns	$V_{DD} = 38V$
t _r	Rise Time		87	_		$I_D = 75A$
$t_{d(off)}$	Turn-Off Delay Time		69			$R_G = 2.1\Omega$
t _f	Fall Time		95	_		V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		9400		рF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		820	_		$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance		350			f = 1.0MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		1090			V _{GS} = 0V, V _{DS} = 0V to 60V ®, See Fig.11
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		1260			$V_{GS} = 0V$, $V_{DS} = 0V$ to $60V$ ©, See Fig. 5

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			200 ^①	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			850		integral reverse
	(Body Diode) ②⑦					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V $ ⑤
t _{rr}	Reverse Recovery Time		42	63	ns	$T_J = 25^{\circ}C$ $V_R = 64V$,
			50	75		$T_J = 125^{\circ}C$ $I_F = 75A$
Q_{rr}	Reverse Recovery Charge		59	89	nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s $^{\circ}$
			86	130		$T_{J} = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		2.5		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Notes:

- ① Calculated continuous current based on maximum allowable junction ⑤ Pulse width \leq 400 μ s; duty cycle \leq 2%. temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- 2 Repetitive rating; pulse width limited by max. junction temperature.
- R_G = 25 Ω , I_{AS} = 120A, V_{GS} =10V. Part not recommended for use above this value.
- $\textcircled{4} \quad I_{SD} \leq 75 A, \ di/dt \leq 400 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$

- 6 Coss eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- $\ensuremath{\mathfrak{D}}$ Coss eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 11. Typical C_{OSS} Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{aV}) = \triangle T / \; Z_{thJC} \\ I_{av} &= 2\triangle T / \; [1.3 \cdot \text{BV} \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

IRFP3077PbF International

Fig 16. Threshold Voltage Vs. Temperature

Fig. 18 - Typical Recovery Current vs. dif/dt

Fig. 17 - Typical Recovery Current vs. di_f/dt

Fig. 19 - Typical Stored Charge vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23a. Switching Time Test Circuit

Fig 23b. Switching Time Waveforms

Fig 24a. Gate Charge Test Circuit www.irf.com

Fig 24b. Gate Charge Waveform

IRFP3077PbF

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994
- DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 'TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

	DIMENSIONS					
SYMBOL	INC	HES	MILLIN	ETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2.59		
A2	.059	.098	1.50	2.49		
ь	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1.35		
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2.59	3.38		
С	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	
E1	.530	-	13.46	-		
E2	.178	.216	4.52	5.49		
e		BSC	5.46	BSC		
øk	.0	10	0.	25		
L	.559	.634	14.20	16.10		
L1	.146	.169	3.71	4.29		
ØΡ	.140	.144	3.56	3.66		
øP1	-	.291	-	7.39		
Q	.209	.224	5.31	5.69		
S	.217	BSC	5.51	BSC		

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN
- 3.- SOURCE 4. - DRAIN

International

IOR Rectifier

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR
- 3.- EMITTER 4.- COLLECTOR

DIODES

- 1.- ANODE/OPEN 2.- CATHODE
- 3.- ANODE

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903