

CTA-Wageningen UR ACP/EU Think Tank Pre-Conference Event

Partnerships for Research, Capacity Building, Innovation and Foresighting: Managing Water for Agriculture and Food in ACP Countries

28 October 2012 Punta del Este, Uruguay

In collaboration with

Partnerships for Research, Capacity Building,
Innovation and Foresighting: Managing Water for
Agriculture and Food in ACP Countries

Integrating Agroecological Crop Management within Integrated Water Resource Management: Lessons from Experience with the System of Rice Intensification (SRI)

Norman Uphoff, Cornell University, USA

GCARD2 Pre-Conference Meeting Punta del Este, 28 October, 2012 Integrated water resource management = > integrated land + water resource management

IWRM should also include improvements in CROP MANAGEMENT

This can enable farmers to get

<u>MORE CROP PER DROP</u> -- and

more importantly, it can help them to achieve

<u>MORE PRODUCTIVE PHENOTYPES</u>

from available GENOTYPES

Essential elements for this are:
Growing better <u>ROOT SYSTEMS</u> and
Mobilizing the services of <u>SOIL BIOTA</u>

- Agroecological management of crops, soil, water and nutrients differs from the GR strategy, in that it does not depend on either:
- A. Changes in VARIETIES -- although we always want to use best available genotypes
- B. Increases in EXTERNAL INPUTS -- although there will be times and places for using these
- Agroecological methods seek to mobilize and utilize biological potentials and processes that exist within both PLANTS and SOIL SYSTEMS -- enhancing the abundance, diversity and activity of the PLANT/SOIL MICROBIOME
- The significance and benefits of this phenomenon parallel those of the HUMAN MICROBIOME

For more productive and sustainable use of our land/soil and water resources, we need to achieve more productive PHENOTYPES from genotypes by making alterations in crops' growing environments

The <u>System of Rice Intensification</u> (SRI) from Madagascar is enabling farmers (in >50 countries) to get <u>more productive rice plants</u> from existing varieties (local, HYVs, hybrids) with:

- Reduced irrigation water requirements, and
- Greater resistance to climate-change effects
 - Increased DROUGHT resistance
 - Resistance to STORM damage (less lodging)
 - More resistance to PESTS & DISEASES
 - Even some tolerance of temperature extremes

Methods can be adapted to many OTHER CROPS

Basic Concepts for SRI/SCI:

- Establish <u>healthy plants</u> early (young) and carefully, making efforts to promote their root growth potential.
- Reduce <u>plant density</u>, giving each plant more room to grow (both above-ground and below-ground) to capture more sunlight and obtain more soil nutrients.
- Keep the <u>soil well-aerated</u> and enriched with <u>organic</u> <u>nutrients</u>, as much as possible, so that it can support better growth of roots and more aerobic soil biota.
 - Apply <u>water</u> in ways that can best support the growth of plant roots and of beneficial soil microbes, avoiding continuous inundation and <u>anaerobic</u> soil conditions.
 - Control weeds in soil-aerating way (mechanical weeder).

These practices when used together enable farmers to:

- Increase the size/functioning of ROOT SYSTEMS,
- Enhance the populations of SOIL BIOTA.

Additional Ideas for SRI/SCI:

- Farmer-centered, participatory process of agricultural improvement
 - Encouragement of <u>farmer experimentation</u>, <u>evaluation and adaptation</u> FAs, SHGs, ...
 - SRI is seen as a <u>methodology</u> rather than as a new <u>technology</u>; still a work in progress
 - -Standard 'extension' approach is changed to emphasize <u>farmer-to-farmer</u> spread
- Multi-stakeholder strategy brings together NGOs, universities, govt. agencies, research institutions, private sector, and individuals in <u>collaborative efforts</u> with farmers

Farmer in

Nepal with
a rice plant
grown from
a single
seed with
SRI methods
in Morang
district

Comparison trials in <u>Iraq</u> at Al-Mishkhab Rice Research Station, Najaf

Non-Flooding Rice Farming Technology in Irrigated Paddy Field Dr. Tao Longxing, China National Rice Research Institute, 2004

Review of SRI management impacts on vield, water saving

costs of production & farmer income per ha in 13 countries								
Country	(N)	Conventional yield (t/ha)	SRI yield (t/ha)	Yield increase (%)	Water saving (%)	Impact on cost per ha (%)	Impact on income per ha (%)	
AFGHANISTAN	42#	5.6	9.3	55%	NM	NM	NM	
BANGLADESH	1,073#	5.44	6.86	26%	NM	-7%	+59%	
CAMBODIA	500*	1.63	2.29	41%	Rainfed	-56%	+74%	

2.75

9.37

9.5

5.47##

8.73

7.61

7.6

14.85

9.1

4.4

6.1

7.58

4.75

5.52

6.79

7.12

* Based on random sampling

3-yr SRI users

Sichuan (2004-10)

Andhra Pradesh

Mwea Scheme

Far West Region

CHINA

INDIA

KENYA

MALI

NEPAL

PANAMA

SRI LANKA

VIETNAM

Averages

Total N and

INDONESIA

MYANMAR

120#

82*

301,967 ha

108#

1,525#

12,133#

Trials

53#

612#

412#

890#

46#

120*

1,274#

18,870° +

300,000 ha

Complete data sets, no sampling

1.34

6.6

7.7

4.12##

6.31

4.27

6.2

8.66

5.5

2.1

3.3

4.01

3.44

3.84

5.58

4.77

Rainfed

44%

25.6%

Rainfed

40%

40%

28.2%

24%

10%

Rainfed

43%

>60%

71-86%

24%

33%

37.5%

NM: not measured

-47%

-7.4%**

NR

-35%

NM

-20%

NM

NM

+15%

+0.2%

-2.2%[@]

+32%

NM

-12%

-30%

-16%

+98%

+64% +US\$320 mill

+67%

NM

>100%

NM

NM

+108%

8.7 times

+163%

+164%

NM

+104%

+36%

94%a,b

NR: not reported

105%

42%

23%

32%##

34%

78%

26%

70%

60%

110%

82%

88%

38%

44%

22%

50%

Water use water savings and WIJF -- 13 studies

vvater use, water savings, and vvol 13 studies								
Y	Year	Soil type	Water use *		Water	Water use efficiency		SRI WUE
			Conv.	SRI	saving	Conv.	SRI	increase
China	2004	CL	1,360	898	33.9%	0.46	0.88	91.3%

868

933

NR

1,272

962

850

913

990

8,422*

11,573*

10,420*

21,600*

961

13,003*

39.5%

47.1%

NR

19.4%

23.3%

32.0%

24.1%

20.3%

27.5%

26.2%

31.0%

38.5%

30.7%

32.4%

NR

NR

0.49

0.28

NR

NR

0.36

0.36

0.40

0.20

0.50

0.11

0.35

NR

NR

0.61

0.31

NR

NR

0.72

0.65

0.70

0.50

1.00

0.29

0.63

68.0%

94.0%

24.5%

12.1%

NR

NR

100.0%

80.6%

75.0%

150.0%

100.0%

164.5%

87.3%

2005

2006

2002

2002-03

2005-07

2005

2008

2009

2010-11

2010-11

2010-11

2009

mm ha⁻¹

* m³ ha⁻¹

India

Kenya

Iraq

Averages

CL

CL

CL

CL

SL

BC

SCL

SCL

V

V

V

CL

1,435

1,763

NR

1,578

1,254

1,250

1,203

1,242

11,610*

15,691*

15,096*

34,500*

1,386

19,224*

STI in Ethiopia:
Application of SRI
concepts & practices
to production of tef

On left: transplanted tef; on right: usual broadcast tef

3-5 t/ha vs. 1 t/ha

Summary of results reported from farmers' fields for System of Crop Intensification (SCI)

which applies SRI concepts and methods to other crops

Crops	Yield increases			
Finger millet	3 to 4x			
Legumes	50-200%			
Maize	75%			
Mustard	3 to 4x			
Sugarcane	20-100%			
Tef	3 to 5x			
Turmeric	25%			
Vegetables	100-270%			
Wheat	10-140%			
SCI crops are mostly rainfed; 30% water saving with				

wheat and sugarcane; 66% with turmeric

INDONESIA

Caritas introduced
SRI methods in
Aceh in 2005 after
tsunami devastation
- local rice yields
were raised from
2 t/ha to 8.5 t/ha

"Using less rice seed, less water and organic compost, farmers in Aceh have quadrupled their crop production."

"Rice Aplenty in Aceh," <u>Caritas News</u> (2009)

Similar <u>quadrupling</u> of rice yields by poor, food-insecure, resource-limited households has been documented also in Madagascar, Cambodia, Madhya Pradesh (India)

<u>AFGHANISTAN</u>: SRI field in Baghlan Province, supported by <u>Aga Khan Foundation</u> Natural Resource Management program

2008: 6 farmers got SRI yields of 10.1 t/ha vs. 5.4 t/ha regular

2009: 42 farmers got SRI yields of 9.3 t/ha vs. 5.6 t/ha regular

- 2nd year SRI farmers got 13.3 t/ha vs. 5.6 t/ha
- 1st year SRI farmers got
 8.7 t/ha vs. 5.5 t/ha

2011: 106 farmers got SRI yields of 10.1 t/ha vs. 5.04 t/ha regular

-- All using less water

MALI -- SRI nursery in Timbuktu region - 8-day seedlings ready for transplanting

Farmer working with the NGO Africare in Timbuktu region, Mali showing difference between regular and SRI rice plants

2007/08: 1 farmer -SRI yield of 8.98 t/ha 2008/09: 60 farmers-9.01 vs. 5.49 t/ha 2009/10: 130 farmers - 7.71 vs. 4.48 t/ha with 32% less water

Gao average: 7.84 t/ha Mopti average: 7.85 t/ha

<u>Drought-resistance</u>: Rice fields in Sri Lanka, same variety and same soil, 3 weeks after irrigation stopped because of drought -- conventionally-grown field on left, and SRI field on right

Results from Bihar State, 2007-2011

(data from Bihar Rural Livelihood Promotion Society, Govt. of Bihar)

SYSTEM OF RICE INTENSIFICATION state average yield: 2.3 t/ha						
	2009	2010				
Climatic conditions	Normal rainfall	Water submergence occurred twice	Drought, but rainfall in Sept.	Complete drought		
No. of smallholders	128	5,146	8,367	19,911		
Area under SRI (ha)	30	544	786	1,412		
SRI average yield (t/ha)	10.0	7.75	6.5	3.22*		
Conv. average yield (t/ha)	2.7	2.36	2.02	1.66*		

SYSTEM OF WHEAT INTENSIFICATION state average yield: 2.4 t/ha						
2008-09 2009-10 201011						
No. of smallholders	415	25,235	48,521			
Area under SWI (ha)	16	1,200	2,536			
SWI average yield (t/ha)	3.6	4.5	NA			
Conventional average yield (t/ha) 1.6 1.6 NA						

^{*} Results from measurements of yield on 74 farmers' SRI and conventional fields

Year 2004 2005 2006 2007 2008 2009 2010 Total 7,267 252,467 941,068 SRI area (ha) 1,133 57,400 117,267 204,467 301,067

8,805

7,005

25.7%

103,320

106.5

*Comparison with Sichuan provincial average for paddy yield and SRI returns

Source: Data are from the Sichuan Provincial Department of Agriculture.

#Drought years: SRI yields were relatively better than with conventional methods

9.075

7,395

1,680

22.7%

197,008

205.1

9,300

7,575

1,725

22.8%

352,705

450.8

9.495

7,710

23.2%

450,653

571.7

1,785 **1,815**#

9,555

7,740

23.5%

546,436

704.3

9,105

7,740

17.6%

1.547

9,435

7.650

1,365 1,785 1,800[#]

23.3%

12.971

1.28 11.64

SRI yield (kg/ha)

Non-SRI yield (kg/ha)

SRI increment (t/ha)*

SRI % increase in yield*

Grain increment (tons)

Addl. net income from

SRI use (million RMB)*

9,252

7,545

1,708

22.7%

2,051

>\$300 mill

1.66 mill

CHINA: SRI extension/impact in Sichuan Province, 2004-10

Storm resistance:
Dông Trù village,
Hanoi province,
Vietnam, after
fields were hit by
a tropical storm

Right: conventional field and plant; Left: SRI field and plant

Same variety used in both fields -- on right, serious lodging is seen; no lodging on left

Incidence of diseases and pests in Vietnam:

National IPM Program evaluation -- averages of data from on-farm trials in 8 provinces, 2005-06:

	Spring season			Summer season		
	SRI Plots	Farmer Plots	Differ- ence	SRI Plots	Farmer Plots	Differ- ence
Sheath blight	6.7%	18.1%	63.0%	5.2%	19.8%	73.7%
Leaf blight				8.6%	36.3%	76.5%
Small leaf folder *	63.4	107.7	41.1%	61.8	122.3	49.5%
Brown plant hopper *	542	1,440	62.4%	545	3,214	83.0%
AVERAGE			55.5%			70.7%

^{*} Insects/m²

Resistance to both biotic and abiotic stresses in Indonesia: fields have been hit by both brown planthopper (BPH) and by storm damage (typhoon): rice on left was grown with standard practices; organic SRI is seen on right

Comparison of methane gas emission

Trootmont	Emission	CO ₂ ton/ha		
Treatment	CH ₄	N ₂ O	equivalent	
СТ	840.1	0	17.6	
SRI	237.6	0.074	5.0	

Partnerships: Evaluations and dissemination of SRI carried out by diverse stakeholders with a farmer-centered focus

NGOs: Africare (Mali); Aga Khan Foundation (Afghanistan); BRAC (Bangladesh); CEDAC (Cambodia); Metta Development Foundation (Myanmar); Oxfam America (Vietnam); Patronato de Nutrición (Panama); WWF (India) Government agencies: Morang District Agricultural Dev. Office (Nepal); Sichuan Provincial Dept of Agric (China); Ministry of Agriculture & Rural Development/PPD (Vietnam) Universities: ANGRAU (India); China Agric. University; Jomo Kenyatta Univ. of Agriculture & Technology (Kenya) Private sector: Nippon Koei (Indonesia); Syngenta (BD) Donor agencies: FAO-EU (Nepal); GTZ (Cambodia); USAID (Mali, Tanzania); World Bank Institute International research centers: ICRISAT (India); IRRI (Bangladesh); IWMI (India and Sri Lanka)

What is needed for scaling up?

- * Overcoming mental barriers: farmer skepticism; but more resistance from agronomists, and even from economists
- * Relatively little investment is needed:
 - * Training is needed for technicians as well as farmers, also for scientists
 - * Some research is also needed re:
 - water management/optimization
 - applied soil biology new frontier
 - applications to other crops (SCI)
 - utilizing climate-smart opportunities

Three key messages:

1. For higher crop productivity and for greater water productivity, we need to: a. Focus on root system growth/function b. Enhance soil organic matter - so as to increase our stocks of 'green water' [note: these factors interact beneficially] 2. The concept of 'technology transfer' needs to be changed to support PTD! 3. We need a paradigm shift replacing genocentrism with an understanding and utilization of the plant/soil microbiome

For more information on SRI/SCI:

SRI International Network and Resources Center (SRI-Rice)
Website: http://sri.ciifad.cornell.edu

at Cornell International Institute for Food, Agriculture and Develoment (CIIFAD), Cornell University, or

Norman Uphoff: ntu1@cornell.edu