Lecture 07 Software Reliability

- In the broad sense
 - S/w design will operate (execute) well for a substantial time period.
- In a narrow sense
 - Reliability is a metric which is probability of operational success of the s/w
- Probabilistic and Deterministic Model
 - Example Winding of a motor bourns out
 - Due to temperature above melting point

(It will burns – it is certainly deterministic, But we are unable to predict when they will occur – it is probabilistic)

 Thus the model of failures become a probabilistic one and the random element (random variable) is the time to failure

Failure Modes

- Hardware
- Software
- Skinware(Human)

Reliability Theory

- Modeling of failure and prediction of success probability
- Based on the concept of random/continuous variable, probability density function, probability distribution function

- Probability concept :
- Discrete random variable, X is a discrete random variable
 - 1) Probability Density Function: Probability of occurrence $P(x_i) = f(x_i)$
 - 2) Distribution Function : Defined in term of the probability that $X \le x$:

Continuous random variable,

The variable is continuous over some range of definition Density function,

- Distribution Function: $F(x) = \int f(x) dx$
 - Let x take on all values between points a and b,

The Probability that X lies in an interval x < X <x+dx ,

F(x) is a continuous, $dx \rightarrow 0$; P(X=x) is zero

Definition of Reliability

• R(t) = Reliability is the mathematical probability is function of time t, is the success.

$$R(t) = P(x>t) = 1 - P(x where x is continuous
= $P(x>=t) = 1 - P(x<=t)$ where x is discrete$$

- Hazard rate (conitional failure rate), z(t)
 - Defined in term of the probability that a failure occurs in the same interval t to t+ Δt , given that system has survival up to time t

We know, F(t)=1-R(t)

Relationship R(t) and Z(t)

We know, from definition of Hazard rate

Estimation theory:

- How one determines the parameters in a probabilistic model from statistical data taken on the items governed by the model
- Specifically, in reliability work we place a group of components on life test and observe the sequence of failure times t1,t2,...,tn
- On the basis of these data we compute time-to-failure models and hazard models
- Estimation theory provides guidelines for efficient and accurate components

- $n \le 5$ (few data) \rightarrow result must be questioned
- $n \ge 100 \rightarrow \text{result should be good}$
- $n \rightarrow \infty$ \rightarrow many of the different computational scheme is need
- $10 \le n \le 50$ best for estimation theory
- A point estimation formula, MTTF=(10+20+25+35+40)/5
- = 26h
- It is often convenient to characterize a failure model using set of failure data by a single parameter (MTTF/MTBF)

 If we have life test information on a population of n items with failure times t1,t2,...tn

• MTTF=
$$1/n\sum_{i=1}^{n} t_i$$

Expected value,

is discrete random variable

where x

is continuous random variable

 Using Hazard model, the MTTF for the probability distribution defined by the model is,

• MTTF=
$$H(t) = \int_{0}^{\infty} t f(t) dt$$

• Let,
$$I = \int t f(t) dt$$

$$= t \int t f(t) dt$$

$$= d(1-R(t))/dt$$

$$= -dR(t)/dt$$

- Case I : Constant hazard, $R(t) = e^{-\lambda t}$
- Case II: Linearly increasing hazard, $R(t) = e^{-kt^2/2}$
- Case III: Weibull distribution,