```
In []:
In [7]: import pandas as pd
    import numpy as np
    import matplotlib as plt
    import seaborn as sb
    import sklearn as skl

In [8]: import os
    os.getcwd()

Out[8]: 'C:\\Users\\nadir albab'

In [9]: os.chdir("C:\\Users\\nadir albab\Desktop")

In [10]: os.getcwd()

Out[10]: 'C:\\Users\\nadir albab\\Desktop'

In [11]: df = pd.read_csv('student_scores - student_scores.csv')
```

In [12]: df.head(25)

Out[12]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

```
In [13]: df.shape
```

Out[13]: (25, 2)

In [15]: | df.describe()

Out[15]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [16]: sb.scatterplot(x=df['Hours'], y=df['Scores']);


```
In [17]: sb.regplot(x=df['Hours'], y=df['Scores']);
```



```
In [18]: X = df[['Hours']]
y = df['Scores']
```

In [19]: X

Out[19]:

	Hours
0	2.5
1	5.1
2	3.2
3	8.5
4	3.5
5	1.5
6	9.2
7	5.5
8	8.3
9	2.7
10	7.7
11	5.9
12	4.5
13	3.3
14	1.1
15	8.9
16	2.5
17	1.9
18	6.1
19	7.4
20	2.7
21	4.8
22	3.8
23	6.9
24	7.8

```
In [20]: y
Out[20]: 0
                21
                47
         1
         2
                27
         3
                75
         4
                30
         5
                20
         6
                88
         7
                60
         8
                81
         9
                25
         10
                85
                62
         11
         12
                41
         13
                42
         14
                17
                95
         15
         16
                30
         17
                24
         18
                67
         19
                69
         20
                30
         21
                54
         22
                35
         23
                76
         24
                86
         Name: Scores, dtype: int64
In [21]: from sklearn.model_selection import train_test_split
         train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 0)
In [22]: from sklearn.linear_model import LinearRegression
         regressor = LinearRegression()
In [23]: regressor.fit(train_X, train_y)
Out[23]: LinearRegression()
In [24]: pred_y = regressor.predict(val_X)
```

```
In [25]: pd.DataFrame({'Actual': val_y, 'Predicted': pred_y,})
```

Out[25]:

	Actual	Predicted
5	20	16.844722
2	27	33.745575
19	69	75.500624
16	30	26.786400
11	62	60.588106
22	35	39.710582
17	24	20.821393

```
In [26]: sb.kdeplot(pred_y,label="Predicted", shade=True);
sb.kdeplot(data=val_y, label="Actual", shade=True);
```


Train accuracy: 0.9484509249326872 Test accuracy: 0.9367661043365056

```
In [28]: h = [[9.25]]
s = regressor.predict(h)
print('A student who will study ', h[0][0] , ' hours is estimated to score ', s[6]
```

A student who will study 9.25 hours is estimated to score 93.89272889341652

In [29]:	<pre>from sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(val_y, pred_y))</pre>
	Mean Absolute Error: 4.130879918502482
In []:	