Lycée Berthollet MPSI² 2023-24

Devoir numéro 8 à rendre lundi 27 novembre 2023

Il est demandé d'apporter le plus grand soin à la précision de la rédaction.

Chercher tous les exercices et rédiger seulement l'un d'entre eux sur votre copie.

Exercice 1 Soit f l'application de $E = \{a,b,c,d\}$ vers $F = \{1,2,3\}$ définie par f(a) = 3, f(b) = 2, f(c) = 3 et f(d) = 3 et g une application continue de $\mathbb{R} \setminus \{-1\}$ vers \mathbb{R} qui est strictement décroissante (resp. croissante) sur $]-\infty,-2]$,]-1,2] et $[3,+\infty[$ (resp. [-2,-1[et [2,3]) et qui vérifie : g(-2) = 0, g(2) = -1, g(3) = 1, g(4) = 0, $\lim_{-\infty} g = \lim_{-1^{-}} g = \lim_{-1^{+}} g = +\infty$ et $\lim_{-\infty} g = -\infty$.

- 1. Représenter graphiquement ces deux applications.
- 2. Sont-elles surjectives, injectives, bijectives?
- 3. Calculer les images réciproques par f de toutes les parties de F.
- **4.** Calculer $g(]-\infty,-1[\cup]a,+\infty[)$ suivant les valeurs du paramètre réel a>-1.
- **5.** Décrire comme une réunion d'intervalles l'image réciproque par g de $[b, +\infty[$, suivant les valeurs du paramètre réel b.
- **6.** Y a-t-il des restrictions de f ou de g qui soient bijectives?

Exercice 2 Soit E un ensemble fixé. On considère l'ensemble \mathcal{E} de toutes les relations binaires sur E et on définit une relation binaire \prec sur \mathcal{E} par

$$\forall R_1, R_2 \in \mathcal{E}, (R_1 \prec R_2 \iff (\forall x, y \in E, (xR_1y \Longrightarrow xR_2y))).$$

- 1. Pour R_1 et R_2 dans \mathcal{E} , traduire $R_1 \prec R_2$ en termes des graphes de R_1 et R_2 .
- 2. En déduire que \prec est une relation d'ordre.
- 3. On note \mathcal{E}_{eq} la partie de \mathcal{E} constituée par les relations d'équivalence sur E. Pour tout $R_0 \in \mathcal{E}$, montrer que l'ensemble $\{R \in \mathcal{E}_{eq} | R_0 \prec R\}$ possède un minimum (indication : considérer l'intersection des graphes des relations d'équivalence majorant R_0).

Remarque : ce minimum est appelé la relation d'équivalence engendrée par R_0 .

Exercice 3

Soient E et F deux ensembles et $f \in F^E$.

On admet le résultat suivant : $\forall A \subset E, \ f(f^{-1}(f(A))) = f(A).$

On définit deux applications

$$f_{\star}: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(F) \\ A & \longmapsto & f(A) \end{array} \right. \quad \text{et} \quad f^{\star}: \left\{ \begin{array}{ccc} \mathcal{P}(F) & \longrightarrow & \mathcal{P}(E) \\ B & \longmapsto & f^{-1}(B) \end{array} \right..$$

- 1. Montrer que
 - (a) si f est injective, alors f_{\star} est injective;
 - (b) si f_{\star} est injective, alors f^{\star} est surjective;
 - (c) Si f^* est surjective, alors f est injective.
- 2. Montrer que
 - (a) si f est surjective, alors f_{\star} est surjective;
 - (b) si f_{\star} est surjective, alors f^{\star} est injective;
 - (c) Si f^* est injective, alors f est surjective.