

Sydney Girls High School 2014

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

10 Marks

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

90 Marks

- Attempt Questions 11 16
- Answer on the blank paper provided
- Begin a new page for each question
- Allow about 2 hours and 45 minutes for this section

Name:	THIS IS A TRIAL PAPER ONLY
Teacher:	It does not necessarily reflect the format or the content of the 2014 HSC Examination Paper in this subject.

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1. The substitution $t = \tan \frac{\theta}{2}$ is used to find $\int \sec \theta \, d\theta$. Which of the following gives the correct expression for the required integral?

(A)
$$\int \frac{dt}{2(1-t^2)}$$

(B)
$$\int \frac{2tdt}{1-t^2}$$

(C)
$$\int \frac{2dt}{1-t^2}$$

(D)
$$\int \frac{4tdt}{\left(1+t^2\right)^2}$$

- 2. The distance between the foci for the ellipse $\frac{x^2}{100} + \frac{y^2}{36} = 1$ is:
 - (A) 8
 - (B) 16
 - (C) 20
 - (D) 25
- 3. Which of the following is an expression for $\int \frac{dx}{\sqrt{7-6x-x^2}}$?

(A)
$$\sin^{-1}\left(\frac{x+3}{2}\right) + C$$

(B)
$$\sin^{-1}\left(\frac{x+3}{4}\right) + C$$

(C)
$$\sin^{-1}\left(\frac{x-3}{4}\right) + C$$

(D)
$$\sin^{-1}\left(\frac{x-3}{2}\right) + C$$

4. The region enclosed by the ellipse $(x-1)^2 + \frac{y^2}{4} = 1$ is rotated about the y-axis to form a solid.

Which integral represents the volume of the solid when applying the method of slicing?

(A)
$$V = \int_{-2}^{2} \pi \sqrt{4 - y^2} \, dy$$

(B)
$$V = \int_{-2}^{2} 2\pi \sqrt{1 - y^2} \, dy$$

(C)
$$V = \int_{-2}^{2} \pi \sqrt{1 - y^2} \, dy$$

(D)
$$V = \int_{-2}^{2} 2\pi \sqrt{4 - y^2} \, dy$$

5. The shaded area in the Argand diagram below can be represented by the inequalities :

(A)
$$|z| \le 4$$
 and $|z-2+2i| \le 4$

(B)
$$|z| \le 2 \text{ and } |z - 2 - 2i| \le 2$$

(C)
$$|z| \le 4$$
 and $|z - 2 - 2i| \le 4$

(D)
$$|z| \le 2 \text{ and } |z - 2 + 2i| \le 2$$

- 6. What is the solution to the inequation $\frac{x(5-x)}{x-4} \ge -3$?
 - (A) $2 \le x < 4 \text{ or } x \ge 6$
 - (B) $4 < x \le 6 \text{ or } x \le 2$
 - (C) $4 > x \le 5 \text{ or } x \le 1$
 - (D) $1 \le x < 4 \text{ or } x \ge 5$
- 7. The gradient of the tangent at (2,1) on the curve $2x^2 + 3xy + y^2 = 15$ is:
 - (A) -1
 - (B) $-\frac{8}{5}$
 - (C) $-\frac{11}{2}$
 - (D) $-\frac{11}{8}$
- 8. A particle of mass m moves in a horizontal circle with angular speed ω at a distance h below the point O. Which of the following reflects the relationship between ω and h?

- (B) $h = \omega g$
- (C) $g = \omega^2 h$
- (D) $g = \omega h$

9. Which of the following is the graph of $y = \log_2 x + \frac{1}{x}$?

(A) (B)

(C) (D)

- 10. The polynomial $P(x) = x^4 + cx^2 + dx + 28$ has a double root at x = 2. What are the values of c and d?
 - (A) c = -5 and d = -12
 - (B) c = -5 and d = 12
 - (C) c = -11 and d = 12
 - (D) c = -11 and d = -12

BLANK PAGE

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer on the blank paper provided. Begin a new page for each question.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) (i) Find numbers A, B and C such that 2

$$\frac{13}{(x+2)(x^2+9)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+9}.$$

(ii) Hence find $\int \frac{13dx}{(x+2)(x^2+9)}.$

(b) (i) Express $z = \frac{1+2i}{1-3i}$ in modulus-argument form.

(ii) Hence, find the value of z^7 , expressing your answer in the form a+ib, where a and b are real.

(c) (i) Expand and simplify $(4+3i)^2$.

(ii) Hence, solve the equation $2z^2 - iz - 1 - 3i = 0$, expressing the solutions in the form x + iy.

(d) (1+3i) is a root of the polynomial $P(x) = x^4 + 2x^3 + 11x^2 + 22x + 90$. 4 Find all the other roots.

Question 12 (15 marks)

(a) The diagram shows the graph of y = f(x).

Sketch the following curves on separate half-page diagrams:

(i)
$$y = f(-x)$$

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = f(x) - |f(x)|$$

(iv)
$$y = e^{f(x)}$$

(b) Find
$$\int \frac{2x+1}{\sqrt{x^2-2x+10}} \, dx$$
.

(c)
$$P\left(2p, -\frac{2}{p}\right)$$
 and $Q\left(2q, -\frac{2}{q}\right)$ are points on the rectangular hyperbola $xy = -4$.

(i) Show that the equation of the chord
$$PQ$$
 is $x - pqy = 2p + 2q$.

(ii) Find the locus of the mid-point of the chord given that the chord passes through the point (0,-6).

Question 13 (15 marks)

- (a) (i) If $I_n = \int_0^1 (1-x^2)^{\frac{n}{2}} dx$, where n is a positive integer, show that $I_n = \frac{n}{n+1} I_{n-2}.$
 - (ii) Hence, evaluate I_5 .
- (b) (i) By considering the expansion of $(\cos \theta + i \sin \theta)^5$, show that $\cos 5\theta = 16\cos^5 \theta 20\cos^3 \theta + 5\cos \theta.$
 - (ii) Hence, solve the equation $16x^4 20x^2 + 5 = 0$. Express the solutions in the form $x = \cos \alpha$.
- A string of length 40 cm can just sustain a weight of mass 12 kg without breaking. One end of the string is fixed to a point P on a smooth horizontal table and the other end has a mass of 5 kg attached to it.
 The 5 kg mass revolves uniformly on the table about the point P.
 Determine the maximum number of complete revolutions the mass can make in a minute without breaking the string. (Use g = 9.8 m/s².)

Question 14 (15 marks)

- The region bounded by $y = x^4 + 1$, the x axis, the y axis and the line (a) x = 1 is rotated about the line x = 3. Use the method of cylindrical shells to find the volume of the solid generated.
 - 4
- (b) z is a point in the first quadrant of the Argand diagram which lies on the circle |z-3|=3. Given $\arg(z)=\theta$, find $\arg(z^2-9z+18)$ in terms of θ .
- 2
- The point $P(x_1, y_1)$ lies on the ellipse $\frac{x^2}{10} + \frac{y^2}{16} = 1$ where $x_1 \neq 0$ and (c) $y_1 \neq 0$.

- Show that the equation of the tangent at P is $\frac{xx_1}{10} + \frac{yy_1}{16} = 1$. 2 (i)
- The tangent at P cuts the y-axis at T. Determine the coordinates (ii) 1 of the point T.
- Find the coordinates of the foci, S and S'. (iii) 2
- (iv) Find the equations of the directrices. 1
- Show that $\frac{PS}{PS'} = \frac{TS}{TS'}$. (v) 3

Question 15 (15 marks)

- (a) Evaluate $\int_{1}^{9} e^{\sqrt{x}} dx$.
- (b) The base of a solid is the area (as shaded below) enclosed by the curve $y = \sqrt{x+2}$, the x-axis, the y-axis and the line y = 1.

Each cross-section of the solid perpendicular to the x – axis is a regular hexagon with one side in the base of the solid. Find the volume of the solid.

(c) The polynomial $P(x) = 2x^3 - 4x^2 + 7x + 5$ has roots α , β and γ . Find the value of:

(i)
$$\alpha^3 + \beta^3 + \gamma^3$$

4

(ii)
$$\alpha^2 \beta + \alpha^2 \gamma + \beta^2 \alpha + \beta^2 \gamma + \gamma^2 \alpha + \gamma^2 \beta$$

(d) a and b are real non-zero numbers and $\omega = \frac{az+b}{bz+a}$. Given |z|=1, show that $|\omega|=1$.

Question 16 (15 marks)

- (a) The equation $px^3 + qx + r = 0$ has roots α , β and γ . Find the polynomial equation with roots $\frac{1}{-\alpha\beta \alpha\gamma}$, $\frac{1}{-\alpha\beta \beta\gamma}$ and $\frac{1}{-\alpha\gamma \beta\gamma}$. Express your answer in simplest form.
- (b) A particle of mass m kg, is attached at P by two strings, each of length 1.3 m, to two fixed points, A and B, which are 2.4 m apart and lie on a vertical line, as shown in the diagram below. The particle moves with constant speed v ms⁻¹ in a horizontal circle about the midpoint of AB so that both pieces of string experience tension. Let T_1 and T_2 represent the tension in AP and BP respectively. The acceleration due to gravity is g ms⁻².

- (i) Draw a diagram showing all the forces acting on P.
- (ii) Resolve the forces on *P* in both the horizontal and vertical directions.
- (iii) Find the tension in each part of the string in terms of m, v and g.
- (iv) Show that $v > \frac{\sqrt{30g}}{12}$.

Question 16 continues on the next page

Question 16 (continued)

(c) P, Q and R are the midpoints of BC, AC and AB respectively. The circle drawn through P, Q and R intersects BC, AC and AB a second time at X, Y and Z respectively as shown below.

- (i) Explain why *RPCQ* is a parallelogram.
- (ii) Show ΔXQC is isosceles.
- (iii) Show $AX \perp BC$.

1

2

End of paper

BLANK	PAGE	

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

Sydney Girls High School

Mathematics Faculty

Multiple Choice Answer Sheet 2014 Trial HSC Mathematics Extension 2

Completely fill the response oval representing the most correct answer.

1.	$A \bigcirc$	$B \bigcirc$	C 🐠	D
2.	A 🔾	В	CO	D
3.	A 🔾	В	$C\bigcirc$	D
4.	A 🔾	$B \bigcirc$	$C \bigcirc$	D 🕽
5.	A 🔿	В	$C\bigcirc$	D
6.	A 🔿	В	CO	D
7.	A 🔿	ВО	$C \bigcirc$	D 🌑
8.	A 🔾	ВО	C 🚳	$D\bigcirc$
9.	A 🔾	В	CO	$\mathbf{D}_{\mathbf{x}}$
1.0		Γ	~ ~	D (

(a) (i)
$$\frac{13}{(x+2)(x^{2}+9)} = \frac{A}{x+2} + \frac{Bx+C}{x^{2}+9}$$

$$13 = A(x^{2}+9) + (Bx+C)(x+2)$$

$$14x = -2 \qquad 13 = 13A \qquad A = 1$$

$$15x = A = 1$$

$$1$$

(b) (i)
$$z = \frac{1+2i}{1-3i} \times \frac{1+3i}{1+3i}$$

$$= \frac{1+2i+3i-6}{1+9}$$

$$= \frac{-1}{2} + \frac{i}{2}$$

$$= \frac{-1}{2} + \frac{i}{2}$$

$$= \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \quad \text{arg}(z) = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

$$\vdots \quad z = \frac{1}{4} \cdot \frac{\sin 3\pi}{4}$$
(ii) $z^7 = \left(\frac{1}{4} \cdot \frac{\sin 3\pi}{4}\right)^7$

$$= \frac{1}{8\sqrt{2}} \cdot \frac{\cos 2\pi}{4}$$

$$= \frac{1}{8\sqrt{2}} \cdot \frac{\cos (-3\pi)}{4}$$

$$= \frac{1}{8\sqrt{2}} \cdot \left(-\frac{1}{4} - \frac{1}{4}i\right)$$

$$= -\frac{1}{16} - \frac{1}{16}i$$

(b) (i)
A number of
Students calculate
arg(z) incorrectly
as - II. A
diagram would
have eliminated
this mistake.

(c) (i)
$$(4+3i)^2 = 16+24i+9i^2 = 7+24i$$

(ii) $z = i + \sqrt{i^2 - 4x^2(-1-3i)}$
 $2x2$
 $= i + \sqrt{-1+8+24i}$
 4
 $= i + (4+3i)$ using (i)
 4
 $= i + 4+3i$ or $i-4-3i$
 4
 $i.e. $z = 1+i$ or $-1-\frac{1}{2}i$$

(c) (ii)

Some students

did not think to use the quadratic formula and some did not make the link to the result in (i).

Question 11 (continued)

Comments

(a) Since coeff. of P(x) are real and 1+3i is a root,
then 1-3i is also a root.
Let roots be a, B, 1 ± 3i
Sum of roots: $9+8+1+3i+1-3i=-2$: $9+8=-4$
Product of roots: $\alpha \beta (1+3.) (1-3i) = 90$
$\alpha\beta(1+9)=90$. $\alpha\beta=9$
Egn. with roots or and B is
z²+4z+9=0
$(z+2)^2 = -5$
₹ = -2±√-5
:. The root of P(x) are 1+3i, 1-3i, -2+5i, -2-5i

Solutions were too long-winded.

b)
$$1(2-2x+10) = (x-1)^{2} + 3^{2}$$
 $1 = \begin{cases} 2x-2 \\ \sqrt{(x-1)^{2}+3^{2}} \end{cases} + \int \sqrt{(x-1)^{2}+3^{2}}$
 $= I_{1} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2} + I_{2} + I_{2} + I_{2} + I_{2} + I_{2}$
 $= I_{2} + I_{2}$

13 (a) (i) Let
$$M = (1-x^2)^{\frac{n}{2}}$$
 $V' = 1$

$$M' = \frac{n}{2} (1-x^2)^{\frac{n}{2}-1} x^{-2} x \quad V = x$$

$$I_n = \left[+x \left(1-x^2 \right)^{\frac{n}{2}} \right]_0^1 + \frac{n}{2} \int x^2 \left(1-x^2 \right)^{\frac{n-2}{2}} dx - n \int (1-x^2)^{\frac{n-2}{2}} dx + n I_{n-2}$$

$$= 0 + n \int (x^2-1) \left(1-x^2 \right)^{\frac{n-2}{2}} dx + n I_{n-2}$$

$$= -n I_n + n I_{n-2}$$

(ii)
$$I_5 = \frac{5}{5}I_3$$

$$= \frac{5}{5} \times \frac{3}{4}I_1$$

$$= \frac{1}{4} \times \frac{1^2}{4}$$

$$= \frac{1}{4} \times \frac{1}{4}$$

$$= \frac{5\pi}{32}$$

$$= \frac{5\pi}{32}$$

$$= \frac{5\pi}{32}$$

$$= \frac{5\pi}{32}$$

$$= ros 56 + \lambda ros 56$$

$$ros 56 = ros 56 - 10 ros 36 (1-ros 26) + 5 ros 6 (1-ros 26)^{2}$$

$$= ros 56 - 10 ros 36 + 10 ros 56 + 5 ros 6 - 10 ros 36 + 5 ros 56$$

$$= 16 ros 56 - 20 ros 30 + 5 ros 6$$

w² ≤ J8.8

W 5 58.8

$$cos 6 (16 cos^46 - 20 cos^26 + 5) = 0$$
 $56 = \frac{17}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{9\pi}{2}$
 $6 = \frac{17}{10}, \frac{3\pi}{10}, \frac{5\pi}{10}, \frac{7\pi}{10}, \frac{9\pi}{10}$
 $cos \pm cos \pm c$

: 12 rus To, rus 31 rus To, rus 917

(c)
$$T \leq 12 \times 9.8$$
 may rev = $\sqrt{58.8} \times 60$ The answer $\leq 117.6 \, \text{N}$ requires the no. $= 73.22511207$ of rev in 1 min $= 73.22511207$ of rev in 1 min $= 73.22511207$ of rev in 1 min $= 73.22511207$ of rev.

///

14(a) |

Students had more mares using lat build brinishes rather than formulae.

Vrem = TT { (3-x)2 - (3-x-bn)2} = T{ (62x) Sn}y

Vrolid = 2TT [(3-x)y dr

= 2 Tf (3-x)(x++1) dx = 217 [(3x++3-x5-x)dx

= 2H 3x5 +3x-x6-23

 $=2 + \sqrt{\frac{3}{5} + 3 - \frac{1}{6} - \frac{1}{2}}$

 $=\frac{88 \, \text{L}}{15}$

The geometric affrond was much easier than the abgebraic.

org (Z2-92+11) = arg { (z-6)(z-3)}

= arg (2-1) + arg (2-3)

= 0 + 1 + 26 = 30+#

 $(\pi)(i) \frac{2\pi}{10} + \frac{25}{16} \times \frac{dy}{dz} = 0$

3 = - 2 × 85 $=-\frac{\delta x}{55}$

 $m_{t} = \frac{g_{x_{i}}}{s_{x_{i}}}$

 $5-5_1=\frac{g_{n_1}}{T_{n_2}}(x-x_1)$

59,9-59,2=8x,x-8x,2 8x1x+55, y= 8+2+54,2

 $\frac{\chi_{1}\chi}{10} + \frac{y_{1}y}{16} = \frac{\chi_{1}^{2}}{10} + \frac{y_{1}^{2}}{10} = 1 \quad G.E.D.$

 $(ii) \quad \frac{99}{16} = 1$

 χ_{20} , $5=\frac{16}{5}$

(iii) 10=1((1-e2)

5 = 1-e2 e2 = 3

> e = \frac{3}{2} = 10

fociare (0 + 16 × 4) (0] ± [6) //

(iv) y=± 4 二士岩

= ± 8/6

(A) WD = 12.

PJ = epm

This is easier than truging to find PS

 $= \frac{\sqrt{\frac{800}{3} - 9}}{\sqrt{9. - \frac{800}{3}}} \times \frac{\sqrt{6}}{\sqrt{6}}$

= 16-1621

+s= 16,-16

= 16-56 9.

G.E.b.


```
Q15
0 0 2 x^3 = 4x^2 - 7x - 5
                              (x2+B2+81)
     713 = 212-72-5 = (ナルチャ)と2(ナルナナナトリ
     \lambda^{3} = 2\lambda^{2} - \frac{7+}{2} - \frac{5}{2}
                              = (2)2 - (-2)(7)
     \beta^{3} = 2\beta^{2} - 76 - 5
\gamma^{3} = 2\gamma^{3} - 7\gamma - 5
    ム3+ B3+ x3=2( 12+ B2+ x2) - 子 ( 1+ B+x) -3(元)
               = 2(-3) - \frac{7}{2}(2) - \frac{5}{2}(3)
               = -41
  11) 22B + 228 + B2x, + B28 + 82B ) or using
     22 (B+8) + B2 (X+Y) + 82 (X+B) / (X+B+8) (X+B+8)
               2+B+8=2
                                      -3(LB8)
     メン(2-み)+B2(2-B)+82(2-8)(三2(三)-3(至)
     = 222 - 23 +2 p2 - B3 +282-83
                                      ) = フォ笠
     = 2 (2+B2+Y2) - (23+ B3+Y3)/
     = 2 \left(-3\right) - \left(-\frac{41}{2}\right)
     131=1 > 3= 656 fising 6
                                or w= byta
     w= a cost + aisin 6+b ) w by +wa = az +b
           bcos6 + bisin6+a
                               wbz-az =b-wa
   w/ = (acos6+b)+aism6/2(wb-a) = b-wa
        (bcos6+a)+bisin6
        =1(aws6+b)2+(aisin6)6
         1(bcos 6+ a) + (bis sin 6)
        =102 ws26 + abcos 6+b2+ a2sin 6
        Vb'cosi6 + Labcose +ai + bisin 20
       "=102+62+2abcos6
           laither + Lab ws6
   |w| = |
                             Correct Sin (2)
```

$$\alpha + \beta + \delta = 0$$

$$\alpha \beta + \alpha \delta + \beta \delta = 9$$

$$\alpha \beta \delta = -\frac{r}{p}$$

$$x = \alpha, \beta, \delta$$

New eqn. has roots
$$y = \frac{1}{-\alpha\beta - \alpha\gamma}$$
, $\frac{1}{-\alpha\beta - \beta\gamma}$, $\frac{1}{-\alpha\gamma - \beta\gamma}$

$$= \frac{1}{-\alpha(\beta+\gamma)}$$
, $\frac{1}{-\beta(\alpha+\gamma)}$, $\frac{1}{-\gamma(\alpha+\beta)}$

$$= \frac{1}{\alpha^2}$$
, $\frac{1}{\beta^2}$, $\frac{1}{\gamma^2}$

$$y = \frac{1}{x^2} \implies x = \frac{1}{\sqrt{y}}$$

$$P\left(\frac{1}{\sqrt{y}}\right)^3 + q\left(\frac{1}{\sqrt{y}}\right) + r = 0$$

$$\frac{1}{\sqrt{y}}\left(\frac{P}{y}+q\right)=-r$$

$$p^2 + 2pqy + q^2y^2 = r^2y^3$$

$$r^2y^3 - q^2y^2 - 2pqy - p^2 = 0$$

The solution is one of two Common approaches to this question. The other approach used the relationship -αβ-αδ=βδ-9/5 as well as BR = -L Many students made small errors and many did not make a Start - writing the sum, product etc would have guaranteed the 1st mark.

(b) (i)
$$T_1$$
 T_2 T_3 T_4 T_5 T_6 T_7 T_8 $T_$

Horizontally: T, sin0+T2 sin0 = my2 Vertically: T, cos 0 - T2 (00 0 - mg = 0

(b)(i) Marked generously - but the three vectors Shown in the solution was expected (No more, no less!) (ii) Take core with the position of angle 0.

(6) continued

(iii)
$$\sin \theta \left(T_1 + T_2 \right) = \frac{mv}{r}$$

$$\cos \theta \left(T_1 - T_2 \right) = mg$$

$$1-2 \int_{13}^{0} \cos \theta = \frac{5}{13}$$

$$\cos \theta = \frac{12}{13}$$

$$T_1 + T_2 = \frac{13}{5} \left(\frac{mv^2}{0.5} \right) = \frac{26mv^2}{5}$$

$$T_1 - T_2 = \frac{13mg}{12}$$

$$2T_1 = \frac{26mv^2}{5} + \frac{13mg}{12}$$
 i.e. $T_1 = \frac{13mv^2}{5} + \frac{13mg}{24}$
 $2T_2 = \frac{26mv^2}{5} - \frac{13mg}{12}$ $T_2 = \frac{13mv^2}{5} - \frac{13mg}{24}$

(iv)
$$T_2 > 0$$
 (sine both strings experience tension)
 $\frac{13mv}{5} - \frac{13mg}{24} > 0$: $\frac{v}{5} - \frac{9}{24} > 0$ $v > \frac{59}{24}$
 $\sqrt{7} \sqrt{\frac{59}{24}}$ $v > \sqrt{\frac{309}{144}}$ i.e. $v > \sqrt{\frac{309}{12}}$

(iii) (d)

You must eliminate o from your answers. You do not need to find O-you should use the triangle to. defermine sind and cool. (ii) You had to show the given relationship. some solutions were left incomplete.

(c) (i)
$$\frac{AQ}{QC} = \frac{AR}{RB} = 1$$
 (Q and R are midpts of AC and AB)
RQ || BC (ratio of intercepts is equal on pocallel lines)

Similarly BP = BR = 1 and PR | AC.

: RPCQ is a parallelogram (2 pairs of opp. sides parallel)

(iii)
$$AQ = QC$$
 (given, Q is mid-point of AC)
 $QX = QC$ (sides opp. equal Ls in isos. Δ)
: Circle passes through A,X,C with certic Q. (AQ=QC=Q)
: $\angle AXC = 90^{\circ}$ (L in Semi-circle) - AX \perp BC

(c) (i)

poorly done in general - many "Solutions" presented insufficient data.

(ii) This was not a difficult question if you use the result from (i). (iii) More detail needed from most attempts.