§ Naive Set Theory

Definition Injections, bijections, cardinals.

Theorem $\forall S, T \text{ sets}, S \succcurlyeq T \land T \succcurlyeq S \Longrightarrow S \sim T.$

Propositions

•
$$(S^T)^W \sim S^{T \times W}$$
.

$$\textbf{Proof} \hspace{5mm} \text{Let} \ f: T \times W \to S \in S^{T \times W}. \ \text{Define} \ f': w \mapsto f(\cdot, w) \ \text{and} \ f' \in \left(S^T\right)^W. \hspace{5mm} \square$$

Propositions

- $\mathbb{R} \sim 2^{\mathbb{N}}$ using binary representation.
- $\mathbb{N} \sim \mathbb{Q}$ using $\mathbb{N} \twoheadrightarrow \mathbb{Q} \twoheadrightarrow \mathbb{Z} \times \mathbb{N}$.
- $\mathbb{R}^{\mathbb{N}} \sim \mathbb{R}$ using $\mathbb{R} \sim (0,1), \mathbb{R} \sim \{0,1\}^{\mathbb{N}}$ and concatenating binary digits. (We assume $S \sim T \wedge S' \sim T'$ yields $S^T \sim S'^{T'}$)

Definition Power sets, S^T .

Proposition

- $S \cup T \sim \mathbb{N} \Longrightarrow S \sim \mathbb{N} \vee T \sim \mathbb{N}$.
 - ${}^{\blacktriangleright} \text{ Note that } \bigcup_{i=0}^{\infty} S_i \sim \mathbb{N} \Rightarrow \exists i, S_i \sim \mathbb{N} \text{ simply by taking } S_i = \{i\}.$

Weird statements: (True in Axiom of Choice)

- Dedekind-finite S exists: $\forall T \subseteq S, T \prec S$.
- $S \succeq T \lor T \succeq S$ (total order!)
- \forall infinite $S, S \sim S \times S$.
- $S \succ T \stackrel{?}{\Longrightarrow} 2^S \succ 2^T$, $2^S \succcurlyeq 2^T \stackrel{?}{\Longrightarrow} S \succcurlyeq T$.