19日本箇特許庁(JP)

① 特許出願公開

® 公 開 特 許 公 報 (A)

平2-121366

®Int. Cl. 5

識別配号

庁内整理番号

H 01 L 27/088

H 03 F

❸公開 平成2年(1990)5月9日

H 01 L 29/78

J X 301

未請求 請求項の数 1 審査請求 (全3頁)

会発明の名称

カレントミラー回路

②特 題 昭63-275012

A

忽出 昭63(1988)10月31日

個発 明者 蓰

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

個発 明 H 音

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

セイコーエブソン株式

東京都新宿区西新宿2丁目4番1号

会社

四代 理 人 弁理士 上柳 雅誉

外1名

1. 発明の名称

カレントミラー回路

2. 特許請求の範囲

同一の電気的特性を有する第一と第二のMIS FETから成り、第一のMISFETはソース電 極を共通電源漢子に接続し、ゲート電極とドレイ ン電腦を基準電流入力携子に接続し、第二のMI SFETはソース電極を共通電源端子に接続し、 ゲート電極を前記基準電流入力端子に接続し、ド レイン電極を定電液出力端子に接続したカレント ミラー回路の各々のMISFETにおいて、中央 にドレイン領域を配置し、該ドレイン領域をはさ み同電位のゲート電捷を設け、この構造をはさむ ように同電位のソース領域を設けたことを特徴と するカレンドミラー回路。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、電子回路技術に関するもので、特 に、半導体集積回路に使用して好遇なものであ

「従来の技術】

従来、カレントミラー回路に用いられたMIS FETは第2図(a)に示すようなパターンによ り作成していた。1の矩形はイオン打込み領域で あり、2の矩形はゲート電極を形成する領域であ る。イオン打込みは、チャネリングによって不能 物濃度がウェハの深部で高くなることを防ぐため に、ウェハの表面に垂直な結晶軸に対し約7度の 角度をもって行なわれる。

セルフアラインのプロセスにおいて、イオン打 込みはゲート電極が形成された後に行われる。こ の時の状態を第2図(b)に示す。第2図(b) は第2図(a)のA-A^の断面に相当する。 箔 2図(a)の11、12の拡散電極領域は第2図 (b)のl1'、12'に相当する。また、第2 図(a)21のチャネル上部のゲート部は第2図

(b) の21 に相当し、31はゲート酸化腺である。

イオン打込み領域のパターンは第2図(a) 1 のように矩形であっても、ゲート電極とゲート酸化膜がイオン液をシールドするために、第2図(a)の1は11と12の領域、すなわち第2図(b)の11、と12、の領域に分割される。

しかし、イオン打込みが前記のごとく角度をもっているために、第2図(b)の12′と21′の境界部分に41のようにシャドウ領域が生じる。その結果、パターンは第2図(a)のごとく左右対称であっても、実際の素子構造は第2図(b)のごとく非対称的となり、電気的特性も電流の方向によって異方性を示すことになる。

それゆえに、基準電流入力側MISFETと定電流出力側MISFETの電気的特性(関値電圧、 B)が完全に関ーでなければならないカレントミラー回路では、前記異方性により、MISFETのパクーンが関ーであっても、電気的特性が同一ではなくなり、基準電流に対して定電流出力

【課題を解決するための手段】

同一の電気的特性を有する第一と第二のMISFETはソース電極を共通電源捨子に接続し、ゲート電極とドレイン電極を基準電流入力端子に接続し、第二のMISFETはソース電極を共通電源法子に接続し、第二のMISFETはソース電極を共通電源法子に接続し、ドレイン電極を定電流出力端子に接続し、ドレイン電極を定電流出力端子に接続し、ドレイン領域を配置し、該ドレイン領域を配置し、該ドレイン領域を記さいまうに同電位のゲート電極を設け、この構造をはさいように同電位のソース領域を設けたことを特徴とする。

(作用)

本発明の上記の構成によれば、カレントミラー回路内の2個の能動衆子はシャドウ領域をソース電極側にもつMISFETとドレイン電極側にもつMISFETの並列接続により構成されるため、電気的特性が前記2種のMISFETの和となり、また、ドレイン領域及びソース領域の各段

は約10%の差異を生ずる。特に、基準電流入力 側MISFETと定電流出力側MISFETの ソース領域を共通にしたものは、必然的に前記2 個のMISFETでシャドウ領域が生する電極が 異なるため、差異が大きくなる。

また、電気的特性の異方性はリソグラフィーに よるパターニングの際のパターンずれによっても 生じる。この場合の異方性はソース領域とドレイ ン領域の面積差による。

[発明が解決しようとする課題]

しかし、従来技術はMISFET構造の異方性により、期待する正確なカレントミラー効果が得難いという欠点を有する。

本発明は、従来技術にみられるような欠点を解決しようとするもので、MISFETの電気的特性の異方性がイオン打込み角とパクーンずれに起因することに着目し、MISFETの形状を改良することによって、MISFETの電気的特性の異方性をなくし、正確なカレントミラー効果を得ることを目的とする。

面積が不変となって、カレントミラー回路内の2 個の能動衆子の特性から素子の非対称性による異 方性が消失する。

〔寒 施 例〕

第1図は本発明の一実施例である。1はイオン 打込み領域のパターンであり、 2 はゲート電極を 形成するための伝導体表材(以下・ゲート電極材 という)を残す部分を示すパターンである。ゲー ト電極材にポリシリコンを用い、イオン打込みを 行うと、11、11、12が拡散電機となる。 貫圧の高低、あるいは電流の方向によって、1 1. 11′、12のどれがドレイン電極になるか が決まるが、12がドレイン電極になるように配 娘した方が浮遊容量が小さくなる。本例では12 をドレイン電極とし、11と11′を同電位の ソース電板とする。したがって、21と22が チャネルとなり、2個のM·I SFETから成る。 以下、カレントミラー同路を構成する基準電流入 力師と定電流出力側の2個のMISFETを各 々、能動素子と称し、前記21と22のチャネル からなるMISFETを単にMISFETと称して、区別して呼称することにする。

カレントミラー回路の能動衆子に前記MISF ETを用いる。前記MISFETにおいてもシャ ドウ領域が生じる現象はあるが、21と22の チャネルに対し同一の側に生じる。たとえば、第 1図において、チャネルの左側に生じたとする と、21ではドレイン電極側であり、22では ソース電極側であり、1個の能動素子は異方性に よる異なった電気的特性を持つ2種のMISFE Tの並列接続により構成されることになる。異方 性はMISFET構造の非対称性によるものであ るため、前記2種のMISFETによりすべての 異方性が網羅され、かつ、該 2 種が並列に接続さ れるため、すべての能動器子の異方性が消失する ことになる。したがって、すべての能動素子が同 一の電気的特性となり、正確なカレントミラー効・ 果を呈する.

また、第1図のパターンは、1が左右にパター ンずれを生じても、12のドレイン領域の面積と 4. 図面の簡単な説明 第1 図は、本発明の

る影響はきわめて小さい。

ラー効果を得ることができる。

[発明の効果]

第1図は、本発明の一実施例を示すMISFE Tのパターンを示す図である。

1.1と1.1′のソース領域の絵面積は変化しない

ため、パクーンずれを起しても意気的特性に与え

以上の説明のように、上記の作用により、カレ

ントミラー回路を構成する素子の特性に於て、イ

オン打込み角とパターンずれによる異方性を消失

せしめることができ、きわめて正確なカレントミ

第2図(a)~(b)は従来技術によるバターン図と該バターンによるMISFETのA-A における断面図である。

1・・・イオン打込み領域を示す矩形

2・・・ゲート電視を形成するためのパター ン

11・・・ソース領域

11′・・11と同電位のソース領域

12・・・ドレイン領域

12°・・ドレイン領域

21・・・チャネル領域

21 ・・ゲート電極

22・・・チャネル領域

31・・・ゲート酸化酸

4.1・・・シャドウ領域

11 22 21

第 1 図

以上

出願人 セイコーエブソン株式会社 代理人 弁理士 上 柳 稚 蒼 (他1名) A A 11

第 2 図(a)

築2図(b)