

POLITECHNIKA LUBELSKA

Wydział Elektrotechniki i Informatyki

Wzmacniacz do subwoofera w klasie D

Skład osobowy grupy:

Marek Rowiński

Michał Remijasz

Jakub Pożarowszczyk

Kierunek – Inżynierskie Zastosowania Informatyki w Elektrotechnice

Grupa - **7.4**

Cel projektu

Zaprojektowanie i sprawdzenie układu elektronicznego wzmacniacza subwoofera. W jego skład ma wchodzić układ przedwzmocnienia z regulacją głośności, filtry częstotliwości oraz końcówka mocy na układzie scalonym klasy D

Wymagania projektowe

Układ ma składać się z następujących elementów:

- 1. **Terminal/Listwa zaciskowa 2,54 mm** Przeznaczona do podłączenia sygnału wejściowego, dostosowanego do poziomu napięcia radia samochodowego (+4V)
- 2. **Przedwzmacniacz oraz regulacja głośności** element odpowiedzialny za wzmocnienie sygnału wejściowego i umożliwienie kontroli głośności dźwięku
- 3. **Filtr dolnoprzepustowy z częstotliwością odcięcia 200 Hz** pozwalana eliminację niepożądanych wyższych częstotliwości z sygnału zapewniając lepszą jakość dźwięku
- 4. **Filtr górnoprzepustowy z częstotliwością odcięcia 50 Hz** Eliminuje bardzo niskie częstotliwości z sygnału, które mogą powodować zakłócenia i niepożądane efekty akustyczne.
- 5. **Końcówka mocy, na gotowym układzie scalonym w klasie D** odpowiada za wzmocnienie sygnału audio do poziomu umożliwiającego napędzenie głośnika
- 6. **Głośnik o impedancji 8\Omega i mocy 80W** element końcowy układu, który przekształca sygnał elektryczny w dźwięk.

Przewidywana produkcja zakładanej partii w ilości 20 sztuk.

LTSpice

Projektowany system audio składa się z kilku kluczowych bloków funkcjonalnych, które zostały szczegółowo przeanalizowane za pomocą symulacji w programie LTspice. Ścieżka sygnału rozpoczyna się na wejściu, gdzie źródło sygnału V3 generuje sinusoidę o amplitudzie 4V, symulując sygnał wyjściowy z radia samochodowego. Na tym etapie parametry sygnału są niewystarczające do prawidłowego zasilania kolejnych elementów, dlatego w pierwszej kolejności sygnał zostaje wzmocniony.

Przedwzmacniacz bazuje na wzmacniaczu operacyjnym OP177A oraz elementach pasywnych, takich jak rezystory i kondensatory. Rezystory R7, R4 i R6 odpowiadają za ustalenie wzmocnienia, a kondensatory (m.in. C5, C1, C2) pełnią funkcję kompensacyjną, ograniczając poziom szumów. Dodatkowo zastosowano potencjometr, który umożliwia regulację wzmocnienia przez użytkownika, dostosowując poziom sygnału do wymagań dalszych etapów toru audio.

Wzmocniony sygnał trafia następnie do sekcji filtrów, odpowiedzialnych za eliminację zakłóceń spoza pasma akustycznego. Filtr dolnoprzepustowy (LPF) usuwa sygnały powyżej 200Hz, a częstotliwość odcięcia została określona za pomocą rezystora R1 (5,6k Ω) i kondensatora C2 (0,001 μ F). Równocześnie filtr górnoprzepustowy (HPF) eliminuje zakłócenia o częstotliwościach poniżej 50Hz. Jego konstrukcja opiera się na kondensatorze C4 (1 μ F) i rezystorze R3 (2,2k Ω), co pozwala zniwelować zakłócenia niskoczęstotliwościowe, takie jak buczenie lub inne niepożądane efekty.

Końcówka mocy wzmacnia sygnał do poziomu odpowiedniego do napędzenia głośnika. Elementy takie jak rezystor R10 (2,7k Ω) oraz kondensatory C3 (2,2 μ F) i C6 (1 μ F) zapewniają stabilność pracy układu oraz odpowiednią filtrację zasilania.

Rysunek 1. Schemat struktury wzmacniacza klasy D

Rysunek 2. Schemat końcówki mocy

Rysunek 3. Charakterystyka Bodego dla sygnału z bufora

Rysunek 4. Charakterystyka Bodego dla sygnału z bufora i wzmacniacza

Rysunek 5. Charakterystyka Bodego dla bufora przedwzmacniacza i filtra dolnoprzepustowego

Rysunek 6. Sygnał wejściowy odwrócony przez bufor

Rysunek 7. Charakterystyka napięciowa przedwzmacniacza

Rysunek 8. Charakterystyka napięciowa filtra dolnoprzepustowego

Rysunek 9. Charakterystyka napięciowa po przejściu przez filtr górnoprzepustowy

Liczymy moc P oraz sprawność wzmacniacza

$$I_{RMS} = \frac{I_{SZCZYtowy}}{\sqrt{2}}$$

$$I_{RMS} = \frac{4}{\sqrt{2}} = 2,83 A$$

$$P = U \cdot I = 3,7 \cdot 16 = 59,2$$

$$e = \frac{59,2}{66,77} * 100\% = 88,68 \%$$

Symulacja przedstawia analizę mocy wydzielanej na rezystorze modelującym obciążenie głośnika. Wykres obrazuje zmiany mocy w czasie, wynikające z sygnału wyjściowego generowanego przez końcówkę mocy pracującą w klasie D. Charakterystyczny przebieg mocy, z okresowymi impulsami, jest efektem zastosowania modulacji szerokości impulsu (PWM), która stanowi podstawę działania wzmacniaczy tej klasy. Maksymalna wartość mocy osiąga poziom odpowiadający wymaganiom energetycznym głośnika.

Modulacja PWM zarządza sygnałem w sposób zapewniający wysoką efektywność energetyczną. Tranzystory w końcówce mocy klasy D pracują niemal wyłącznie w stanach pełnego włączenia lub wyłączenia, co minimalizuje straty energii. Charakterystyczne zmiany mocy wynikają z dynamicznej zmienności szerokości impulsów, zgodnie z amplitudą sygnału

wejściowego. Dzięki temu wzmacniacz efektywnie dostarcza energię do obciążenia, odwzorowując charakterystykę sygnału wejściowego.

Średnia moc dostarczana do głośnika pozostaje niższa od wartości szczytowych ze względu na zmienną szerokość impulsów w sygnale PWM. Stabilność impulsów mocy na wykresie potwierdza poprawne działanie układu oraz brak zakłóceń w procesie modulacji. Końcówka mocy skutecznie spełnia swoje zadanie, dostarczając energię do obciążenia z wysoką sprawnością, co jest typowe dla wzmacniaczy pracujących w klasie D.

KICAD

Rysunek 10. Schemat główny z konfiguracją oraz połączeniem gotowej końcówki mocy

Rysunek 11. Schemat główny z konfiguracją oraz połączeniem gotowej końcówki mocy

Rysunek 12. Schemat główny z konfiguracją oraz połączeniem gotowej końcówki mocy

Schemat przedstawia konfigurację oraz sposób połączenia gotowej końcówki mocy. Dodatkowo na wyjściu wzmacniacza, przed terminalem głośnikowym zastosowano filtr LC, który ma na celu redukcję szumów. W tym układzie realizowana jest również regulacja poziomu głośności.

Rysunek 13. Schemat rozmieszczenia komponentów i ścieżek sygnałowych na zaprojektowanej płytce PCB w widoku 2D

Rysunek 14. Widok 3D zaprojektowanej płytki PCB z rozmieszczeniem komponentów

Rysunek 15. Widok 3D zaprojektowanej płytki PCB z rozmieszczeniem komponentów na górnej warstwie

Rysunek 16. Widok 3D zaprojektowanej płytki PCB z rozmieszczeniem komponentów na dolnej warstwie

Kosztorys

Lp	Nazwa	Opis	Link	llość/1	Ilość/20	Cena/Szt	Cena
				Płytka	płytek		przy 20 płytkach
1.	STA50813TR	Wzmacniacz	https://www.digikey.pl/pl/products/detail/stmicroelectronics/STA50813TR/1664762	1x	20x	5,54\$	84,72\$
2.	Kondensator elektro 2200u	Kondensator	https://www.digikey.pl/pl/products/deta il/panasonicelectroniccomponents/ECA1JHG222/245186?fb clid=IwZXh0bgNhZ W0CMTEAAR3izT1T BmaJRQB_C7BuhEz 7friNhzTgi3yoPsmIO Bc7hXJx6KRqLGhR5 FE_aem_Ek5HEDT9veiGUte9H1kAQ	1x	20x	3,56\$	47,02\$
3	Kondensator warstwowy 470n	Kondensator	https://www.digikey.pl/pl/products/detail/epcos-tdkelectronics/B32529 C0474J289/1089840 ?fbclid=IwZXh0bgN hZW0CMTEAAR2vrB RNBFU8VD4mk0mJ nezG59GGH1pDRgL YPDGk0XqaQcOoec CKtrJnNYM_aem_8 QYyy2ofLPGRt3Pcq AAg3A	1x	20x	0,63\$	7,54\$
4	Kondensator warstwowy 100n	Kondensator	https://www.digikey.pl/pl/products/detail/epcos-tdk-electronics/B32529 C0104J289/1089744	11x	220x	0,33\$	27,82\$
5	Cewka 7447706100	Cewka	https://www.digikey.pl/pl/products/deta il/würthelektronik/7447706 100/11657967?s=N 4IgTCBcDalOwBYFz gBgGwEZWpAXQF8 g&fbclid=IwZXh0bg NhZW0CMTEAAR0R X6eQ2nc4956rf9m mQRC2V2yG66AXN LYd0pqxlgnAbSeKnt PPoW-Tg_w_aem K5FhsGtMXxLzMtOh gwPYQ	2x	40x	1,12\$	40,04\$
6.	Kondensator 1u	Kondensator	https://tiny.pl/81xrzkzt	5x	100x	0,24\$	24,69\$
7.	Kondensator 220n	Kondensator	https://www.digikey.pl/pl/products/detail/panasonic-electronic-components/ECQ-UAAF224M/2674013	1x	20x	0,52\$	6,28\$

8.	Kondensator	Kondensator	https://www.digikey.pl/pl/products/deta il/epcos -tdk - electronics/B32529	1x	20x	0,97\$	14,56\$
	2.2u		D0225J000/592705				
9.	Kondensator 330p	Kondensator	https://www.digikey.pl/pl/products/detail/wima/FKP0C0033 00B00KSSD/937003 1	1x	20x	0,88\$	10,80\$
10.	Rezystor SMD 6.2	Rezystor	https://www.digikey.pl/pl/products/deta il/vishay - dale/CRCW04026R 20FKED/1961514	2x	40x	0,10\$	1,4\$
11.	Rezystor 22	Rezystor	https://www.digikey.pl/pl/products/deta il/vishay - dale/RCL122522R0J NEG/3029392	1x	20x	0,86	9,78\$
12.	Rezystor 10k	Rezystor	https://www.digikey.pl/pl/products/detail/vishay-dale/CRCW060310 K0FKEA/1174782	3x	60x	0,10\$	1,1\$
13.	Potencjometr 10k	Potencjometr	https://www.digikey .pl/pl/products/deta il/bourns - inc/3362P - 1 - 103LF/1088412?s= N4IgTCBcDaIMxwG xgAoFoCMmAMcAy AYiALoC%2BQA	1x	20x	1,14\$	18,26\$
14.	Rezystor 1k	Rezystor	https://www.digikey.pl/pl/products/detail/vishay-dale/CRCW06031K 00FKEA/1174668	1x	20x	0,10\$	0,52\$
15.	Rezystor 5,6k	Rezystor	https://www.digikey.pl/pl/products/deta il/vishay - dale/CRCW06035K 60FKEAC/7924074	1x	20x	0,10\$	0,52\$
16.	Rezystor 2,7k	Rezystor	https://www.digikey .pl/pl/products/deta il/vishay - dale/CRCW04022K 70FKEDC/7928526	1x	20x	0,10\$	0,48\$
17.	Rezystor 4,7k	Rezystor	https://www.digikey.pl/pl/products/detail/vishay-dale/CRCW04024K 70FKED/1178083	2x	40x	0,10\$	1,04\$
18.	Rezystor 2,2k	Rezystor	https://www.digikey.pl/pl/products/detail/vishay- dale/CRCW12062K20FKEAHP/2227783	1x	20x	0,26\$	2,66\$
19.	Rezystor 3,9k	Rezystor	https://www.digikey.pl/pl/products/detail/vishay- dale/CRCW12063K90FKEAC/7920689	1x	20x	0,10\$	0,92\$
20.	OP1177ARMZ - REEL	Wzmacniacz	https://www.digikey.pl/pl/products/detail/analog-devices-inc/OP1177ARMZ-REEL/820319	6x	120x	4,05	232,58\$

21.	Fixed	Fixed	https://www.mouser.pl/ProductDetail/Phoenix-	4x	80x	1,67	104,69
	Terminal	Terminal	Contact/1725656?qs=UI7CXFMnIWWQeccayYbRmw%3D%3D				
	Blocks	Blocks					
						SUMA	637,42\$
						PER PCB	31,87\$

Wnioski

Przeprowadzone analizy i prace projektowe nad układem audio pozwoliły na stworzenie funkcjonalnego systemu spełniającego założenia projektowe. Zaprojektowany układ integruje kilka kluczowych bloków, takich jak przedwzmacniacz, filtry dolnoprzepustowe i górnoprzepustowe, końcówka mocy w klasie D oraz model głośnika. Wszystkie elementy zostały starannie zaprojektowane, zweryfikowane i przetestowane za pomocą symulacji, co potwierdziło ich prawidłowe działanie. Filtry dolnoprzepustowe i górnoprzepustowe efektywnie eliminują zakłócenia spoza pasma akustycznego, gwarantując czysty sygnał audio. Symulacje wykazały skuteczne tłumienie sygnałów o niskich i wysokich częstotliwościach, co znacząco poprawia jakość dźwięku.

Końcówka mocy w klasie D, oparta na modulacji szerokości impulsu (PWM), cechuje się wysoką sprawnością energetyczną. Testy wykazały, że układ jest w stanie dostarczyć moc na poziomie 33 W do głośnika o impedancji 8Ω, przy minimalnych stratach energii. Wzmacniacze operacyjne w układzie działają stabilnie, zgodnie z założeniami projektowymi, zwiększając amplitudę sygnału bez wprowadzania zniekształceń. Symulacje potwierdziły stabilność i jakość sygnałów na wszystkich etapach przetwarzania.

Płytka PCB została zaprojektowana w sposób optymalny, z czytelnym podziałem na sekcje funkcjonalne i logicznym rozmieszczeniem elementów. Projekt uwzględnia również potencjometry do regulacji parametrów oraz wygodnie rozmieszczone złącza wejściowe i wyjściowe, co ułatwia obsługę i diagnostykę.

Cały układ został zaprojektowany zgodnie z przyjętymi założeniami. Przeprowadzone symulacje i analiza potwierdziły, że system spełnia wszystkie wymagania dotyczące jakości dźwięku, efektywności energetycznej i funkcjonalności.