

Estructura de Computadores

EC

Curso 21/22

Primera Convocatoria

Práctica 1: Sumadores y Multiplicadores

Sumadores y Multiplicadores

La práctica consiste en realizar y analizar varios circuitos digitales centrados en las operaciones de suma y de multiplicación. Para ello se utilizará como herramienta de soporte la aplicación TkGate. Esta herramienta consta de un editor gráfico, un simulador de circuitos digitales desarrollado con Tcl/TK y una librería de funciones que incorpora desde componentes básicos como puertas lógicas hasta componentes más complejos como registros y memoria. Para un mejor seguimiento de la práctica, se han divido las distintas tareas a realizar en las fases que se detallan a continuación:

FASE 1: Sumadores HA, FA

0.5P

TAREA 1: Realizad el circuito digital *Half Adder (HA) de 1 bit* mostrado en la siguiente figura. Suponed que los retardos de las puertas lógicas utilizadas son AND=3T y XOR=4T. **(0.125P)**

▼ TAREA 2. Realizad el circuito digital *Full Adder (FA) de 1 bit con acarreo de entrada* utilizando sumadores *Half Adders (HA) de 1 bit* e indicad los tiempos de retardo y el área utilizada. Suponed que los retardos de las puertas lógicas utilizadas son de AND=3T, OR=3T y XOR=4T. (0.125P)

TAREA 3. Realizad una implementación alternativa al mismo circuito *Full Adder (FA) de 1 bit con acarreo de entrada* y comparad los tiempos de retardo y área con la solución anterior. Suponed los mismos retardos de las puertas lógicas utilizadas en la tarea anterior. **(0.25P)**

falter poner retardos

TAREA 4. Realizad el circuito digital *Carry Propagate Adder (CPA) de 4 bits* que se muestra en la siguiente figura e indicad y formulad los tiempos de retardo y el área utilizada. Asumid el *Full Adder (FA) de 1 bit* considerado en la Tarea 2. **(0.5P)**

TAREA 5. Realizad el circuito digital *Carry Propagate Adder (CPA) de 4 bits* que se muestra en la siguiente figura e indicad y formulad los tiempos de retardo y el área utilizada. Asumid el *Full Adder (FA) de 1 bit* considerado en la Tarea 3. **(0.5P)**

TAREA 6. Indicad las fórmulas que describen los tiempos de retardo del circuito *Carry Propagate Adder (CPA) de 4 bits* implementado en las tareas anteriores. Aplicando esa fórmula, mostrad los tiempos de retardo que introduciría un CPA de 8 bits, 16 bits, 32 bits, 64 bits y 128 bits para cada una de las dos posibles implementaciones de *Full Adder (FA) de 1 bit* consideradas **(0.75P)**

TAREA 7. Realizad un circuito digital *Carry Propagate Adder (CPA) de 16 bits* e indicad y formulad los tiempos de retardo y el área utilizada. Utilizad para esta implementación el circuito *Carry Propagate Adder (CPA) de 4 bits* implementado en la Tarea 4. **(0.75P)**

TAREA 8. Realizad un circuito digital restador de 16 bits e indicad los tiempos de retardo y el área utilizada. **(0.5P)**

TAREA 9. Realizad el circuito digital sumador *Carry Select Adder (CSA) de 4 bits* que se muestra en la siguiente figura e indicad y formulad los tiempos de retardo y el área utilizada. Asumid el diseño de *Carry Propagate Adder (CPA) de 4 bits* implementado en la Tarea 4 y un retardo para el multiplexor de 2T. **(0.75P)**

TAREA 10. Realizad un circuito digital *Carry Select Adder (CSA) de 16 bits* e indicad y formulad los tiempos de retardo y el área utilizada. Utilizad para esta implementación el circuito *Carry Select Adder (CSA) de 4 bits* implementado en una tarea anterior. **(0.75P)**

TAREA 11. Realizad el circuito digital *Partial Full Adder (PFA) de 1 bit con acarreo de entrada* que se muestra en la siguiente figura e indicad los tiempos de retardo y el área utilizada. Suponed que los retardos de las puertas lógicas utilizadas son de AND=3T, OR=3T y XOR=4T. **(0.25P)**

TAREA 12. Realizad el circuito digital *Carry Look-Ahead Adder (CLA) de 4 bits* que se muestra en la siguiente figura e indicad los tiempos de retardo y el área utilizada. Asumid el diseño de *Partial Full Adder (FA) de 1 bit* implementado en la tarea anterior. Suponed que los retardos de las puertas lógicas utilizadas son de AND=3T, OR=3T y XOR=4T. **(0.75P)**

TAREA 13. Realizad un circuito digital *Carry Look-Ahead Adder (CLA) de 16 bits* mediante los *CLA de 4 bits* implementados en la tarea anterior y conectadlos en cascada tal y como se muestra en la siguiente figura. Indicad los tiempos de retardo y el área utilizada. **(0.75P)**

TAREA 14. Calculad los tiempos de retardo de todas las señales del circuito digital Carry Look-Ahead Adder (CLA) de 16 bits implementado en la tarea anterior. **(1P)**

TAREA 15. Comparad los tiempos y áreas de los sumadores *Carry Propagate Adder (CPA), Carry Select Adder (CSA) y Carry Look-Ahead Adder (CLA) de 16 bits* realizados anteriormente. **(0.25P)**

TAREA 16. Realizad un circuito digital multiplicador *Riple Carry Array de 2 bits* e indicad los tiempos de retardo y el área utilizada. Asumid el diseño de *Half Adder (HA)* implementado en una tarea anterior y un retardo para las puertas AND de 3T. **(0.5P)**

TAREA 17. Realizad el circuito digital multiplicador *Riple Carry Array de 4 bits* que se muestra en la siguiente figura e indicad el tiempo de retardo y el área utilizada. Asumid los diseños de *Half Adder (HA)* y *Full Adder (FA) de 1 bit* implementados en las tareas anteriores. Suponed también que los retardos de las puertas lógicas utilizadas son de AND=3T, OR=3T y XOR=4T. **(1P)**

TAREA 18. Calculad los tiempos de retardo de todas las señales del circuito circuito digital multiplicador *Riple Carry Array de 4 bits* implementado en la tarea anterior. **(0.5P)**

Directrices y Formato de Entrega

- La práctica se realizará en GRUPOS DE 2 PERSONAS
- Se realizará una entrevista y prueba del funcionamiento de los circuitos con todos los integrantes del grupo en un horario a convenir con el profesor de laboratorio.
- La evaluación de la práctica, si bien es conjunta en cuanto al trabajo realizado, es individual en función de cómo se responda a las diferentes preguntas planteadas por el profesor de laboratorio.
- Será necesario que cada integrante realice un video de no más de 5 minutos de duración con la explicación y funcionamiento de los circuitos más significativos
- Será necesario realizar un informe (obligatoriamente en PDF) donde aparezca lo siguiente
 - Portada con el nombre de la asignatura y componentes del grupo
 - Índice del documento
 - Para cada una de las tareas (si procede) se deberá incluir:
 - Especificación: enunciado de la tarea
 - Diseño: las decisiones más relevantes tomadas en la solución propuesta
 - Implementación: impresión de pantalla de la implementación final en el simulador
 - Juego de pruebas: conjunto de pruebas que se han realizado para verificar el correcto funcionamiento del circuito.
 - Análisis de Resultados: análisis del diseño realizado a partir de los tiempos (teóricos y reales) y área del circuito.
- La entrega se realizará en un único fichero ZIP y deberá contener
 - El informe de la práctica en PDF
 - Un directorio con nombre *TAREAS* en el que se incluirán todos los circuitos del Tkgate realizados. Además, los nombres de cada uno de esos circuitos tendrán que seguir el formato *TareaN.v* siendo N el número de la tarea.
 - Un directorio con nombre *VIDEOS* en el que se incluirán los dos videos correspondientes a cada uno de los dos integrantes del grupo. Además, el nombre de esos videos tendrá que seguir el formato *Video Practica1 NombreAlumno*
- Sólo es necesario que uno de los integrantes del grupo suba el fichero ZIP a moodle.