明細書

c-Fos蛋白質と複合体を形成する蛋白質、及び、それをコードする核酸、ならびに、それらの利用方法

技術分野

本発明は、c-Fosと相互作用する蛋白質及びそれをコードする核酸ならびにそれらを利用した阻害剤、ならびに、c-Fosと相互作用する蛋白質を利用した相互作用の検出方法及びスクリーニング方法に関する。

現在、多様な生物のゲノムの塩基配列が解読されようとしている。ゲノムシーケンスの研究では、第2幕のポストシーケンスの研究として、解読したゲノム情報からその意味を解析する研究、すなわち、遺伝子や蛋白質の構造や機能解析(非特許文献1、非特許文献2)、および蛋白質間、核酸-蛋白質間相互作用解析などが期待されている(非特許文献3、非特許文献4)。

以上のような技術を駆使したポストゲノム機能解析によって、蛋白質問および蛋白質-核酸間などの相互作用ネットワーク解析から公知の蛋白質の新たな機能やこれまで知られていなかった新規の蛋白質などの重要な生体酵素の発見による医薬品の創製などが期待されている。

蛋白質問相互作用の検出方法として、これまで免疫沈降(非特許文献 5)、GST融合蛋白質によるプルダウン・アッセイ(非特許文献 6)、TAP法(非特許文献 7)、酵母ツーハイブリッド法(非特許文献 8)などが知られている。一方、進化分子工学のツールとして誕生した「遺伝子(遺伝子型)と蛋白質(表現型)の対応付け」を応用して、ポストゲノム機能解析における蛋白質間相互作用を網羅的に解析する方法として、in vitroウイルス法(非特許文献 9、非特許文献 10、特許文献 1、特許文献 2)、STABLE法(非特許文献 11)、ファージディスプレー法(非特許文献 12)、リボソーム・ディスプレイ法(非特許文献 13、特許文献 3)、mRNA-ペプチドヒュージョン(mRNAディスプレイ)法(非特許文献 14)などである。

さらに、表面プラズモン共鳴法、蛍光共鳴エネルギー移動法、蛍光偏光解消法、 エバネッセント場イメージング法、蛍光相関分光法、蛍光イメージング法、固相酵 素免疫検定法などが知られている。また、ピューロマイシン等の核酸誘導体を用い

て翻訳系中で蛋白質のC末端を修飾する方法(特許文献 4、特許文献 5)を先に提案している。これらの方法は、従来の化学修飾法や蛍光蛋白質融合法に比べて、蛋白質の機能を損ないにくい等の利点がある。

生命科学の領域ではヒトゲノムの配列解析が終了し、ゲノム研究は遺伝子の機能解析のポストゲノム時代に突入し、網羅的なゲノム機能解析による創薬などが期待されている。これまで単独で研究されていた遺伝子や蛋白質を網羅的に解析できる手法、たとえば、創薬のターゲット蛋白質である転写制御因子の種種のコファクターなどを一度に解析する手法などが所望されている。転写制御因子としては、c-Fos蛋白質がよく知られている。

ここで、v-fos遺伝子は、FBJマウス骨肉腫ウイルス(FBJ murine osteosarcoma virus)のもつ癌遺伝子として単離された(非特許文献 1 5)。c-fosは、典型的な極初期遺伝子(immediate early gene)として、多くの細胞種で増殖刺激に伴って検出される転写制御因子である。Fos関連抗原(Fos-related antigen: Fra)からfra-1とfra-2がクローニングされ、またc-fosと塩基配列に相同性のある遺伝子としてfosBも見出された。これらはc-fosとともにfosDできまします。f0sD0ので発現するキメラマウスとトランスジェニックマウスは、それぞれ軟骨腫や骨肉腫を形成することが知られている(f1 f2 f3 f3 f4 f5)。

これまでに、c-fosと相互作用する遺伝子として、jumファミリー遺伝子である c-jum、jumB、jumDなどいろいろな蛋白質が知られているが(非特許文献17)、最近、ツーハイブリッド法によって、転写制御因子Fos/Jum (AP-1)がSWI/SNFのBAF60a と複合体を形成して、クロマチンのリモデリングを誘導することがわかった。また、AP-1は、脳神経系の蛋白質であるNFATと結合してIL2遺伝子の発現を制御することがわかった。前者は、腫瘍形成・癌化に関わり、後者は、自己免疫疾患やアルツハイマーに関わる全く異なる疾患を誘発する二つの蛋白質である。このように、転写制御因子のいろいろな複合体の網羅的解析は、創薬のターゲット蛋白質の新たな宝庫として大変興味深い。しかしながら、ツーハイブリッド法のような総当たり的な1:1分子解析手法では、大変な時間と労力がかかる。

<非特許文献1>

Saegusa A. Nature 401, 6751 (1999)

<非特許文献2>

Dalton R, Abbott A. Nature 402, 6763 (1999)

<非特許文献3>

宮本悦子、柳川弘志 (2000) シリーズ・ポストシークエンスのゲノム科学3: プロテオミクス, pp.136-145

<非特許文献4>

宮本悦子、柳川弘志 (2001) 蛋白質・核酸・酵素、46(2), pp.138-147)

<非特許文献5>

Xiong et al. 1993 Nature 366, 701-704

<非特許文献6>

Kaelin, et al. 1991 Cell 64, 521-532

<非特許文献7>

Guillaume Rigaut, et al., Nature biotechnology 17, 1030 (1999)

<非特許文献8>

Fields S, Song O. Nature 340, 245 (1989)

<非特許文献9>

Miyamoto-Sato E, et al. Viva Origino 25, 35 (1997)

<非特許文献10>

Nemoto N, et al. FEBS Lett. 414, 405 (1997)

<特許文献1>

国際公開第WO98/16636号パンフレット

<特許文献2>

国際公開第WOO2/46395号パンフレット

<非特許文献11>

Doi N, Yanagawa H. FEBS Lett. 457, 227 (1999)

<非特許文献12>

Smith G.P. Science 228, 1315 (1985)

<非特許文献13>

Mattheakis, L.C. et al. (1994) Proc. Natl. Acad. Sci. USA 91, 9022-9026

<特許文献3>

国際公開第WO95/11922号パンフレット

<非特許文献14>

Roberts R.W, Szostak J.W. (1997) Proc. Natl. Acad. Sci. USA 94, 12297

<特許文献4>

米国特許第6,228,994号明細書

<特許文献5>

国際公開第WOO2/48347号パンフレット

<非特許文献15>

Curran, T. et al.: J. Viol., 44: 674-682, 1982

<非特許文献16>

Agamemunon, E. G. et al.: Trends Genet., 11: 436-441, 1995

<非特許文献17>

Yurii Chinenov1 and Tom K Kerppola, Oncogene (2001) 20, 2438-2452

発明の開示

本発明は、転写制御因子として良く知られているc-Fos蛋白質をターゲット蛋白として、c-Fosと相互作用する複合体を提供することを課題とする。

本発明者らは、それに代わる1:多分子解析法である網羅的解析手法として、上述のin vitroウイルス法を土台とし、これまでに研究を重ねてきたピューロマイシンテクノロジーと命名した二つの技術、in vitroウイルス(IVV)の共翻訳セレクション/スクリーニングおよびC末端ラベル化法(米国特許第6228994号、WO 02/48347)を用いて、c-Fosをベイトとして、マウス脳のcDNAライブラリーから転写制御因子複合体解析を網羅的に行い、これまで知られていなかった蛋白質、あるいは蛋白質としては公知であったが、c-Fos蛋白質と複合体を形成することは知られていなかった蛋白質などを解析することを試みた。ここで複合体を形成するとは、c-Fos蛋白質と直接又は間接的な相互作用がある蛋白質である。

本発明の課題は、c-Fosと相互作用する蛋白質ならびにそれを利用した阻害剤、 およびc-Fosと相互作用する蛋白質を利用した相互作用の検出方法及びスクリーニ

ング方法を提供することである。

本発明者らは、共翻訳スクリーニングにより、c-Fosと相互作用する新規蛋白質を見出すとともに、既知の蛋白質がc-Fosと相互作用することを見出し、本発明を完成した。本発明は、以下のものを提供する。

- 1. 以下の(a)又は(b)の蛋白質。
- (a) 配列番号1~14のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号1~14のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 2. 配列番号1~14のいずれかのアミノ酸配列を含む1記載の蛋白質。
 - 3. 1又は2記載の蛋白質をコードする核酸。
 - 4. 以下の(a)又は(b)の核酸。
 - (a)配列番号23~38のいずれかの塩基配列を含む核酸。
- (b)配列番号23~38のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 5. 配列番号23~38のいずれかの塩基配列を含む4記載の核酸。
- 6. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、 $1\sim2$ のいずれか1項に記載の蛋白質、又は $3\sim5$ のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 7. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、1~2のいずれか1項に記載の蛋白質、又は3~5のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 8. 7記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 9. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。

- (a)配列番号15~19のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 $15\sim19$ のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 10. 有効成分の蛋白質が配列番号15~19のいずれかのアミノ酸配列を含む9記載の阻害剤。
- 11. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である9記載の阻害剤。
- (a) 配列番号39~43のいずれかの塩基配列を含む核酸。
- (b)配列番号39~43のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 12. 核酸が配列番号39~43のいずれかの塩基配列を含む11記載の阻害剤。
- 13. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号15~19のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号15~19のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号39~43のいずれかの塩基配列を含む核酸。
- (b')配列番号39~43のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 14. 蛋白質が配列番号15~19のいずれかのアミノ酸配列を含む13記載の方法。
 - 15. 核酸が配列番号39~43のいずれかの塩基配列を含む13記載の方法。

- 16. 13~15のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 17. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a) 配列番号20~22のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 $20\sim22$ のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 18. 有効成分の蛋白質が配列番号20~22のいずれかのアミノ酸配列を含む17記載の阻害剤。
- 19. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である17記載の阻害剤。
- (a)配列番号44~46のいずれかの塩基配列を含む核酸。
- (b)配列番号44~46のいずれかの塩基配列からなる核酸とストリンジェント な条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコード する核酸。
- 20. 核酸が配列番号44~46のいずれかの塩基配列を含む19記載の阻害 剤。
- 21. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号20~22のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号20~22のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - (a')配列番号44~46のいずれかの塩基配列を含む核酸。
 - (b')配列番号44~46のいずれかの塩基配列からなる核酸とストリンジェン

トな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。

- 22. 蛋白質が配列番号 $20\sim22$ のいずれかのアミノ酸配列を含む 21 記載の方法。
 - 23. 核酸が配列番号44~46のいずれかの塩基配列を含む21記載の方法。
- 24. 21~23のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
 - 25. 以下の(a)又は(b)の蛋白質。
- (a) 配列番号47~56のいずれかのアミノ酸配列を含む蛋白質。
- (b) 配列番号 $4.7 \sim 5.6$ のいずれかのアミノ酸配列において、1.6 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 26. 配列番号47~56のいずれかのアミノ酸配列を含む25記載の蛋白質。
 - 27. 25又は26記載の蛋白質をコードする核酸。
 - 28. 以下の(a)又は(b)の核酸。
- (a) 配列番号104~118のいずれかの塩基配列を含む核酸。
- (b)配列番号104~118のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 29. 配列番号104~118のいずれかの塩基配列を含む28記載の核酸。
- 30. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、 $25\sim26$ のいずれか1項に記載の蛋白質、又は $27\sim29$ のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 31. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、 $25\sim26$ のいずれか1項に記載の蛋白質、又は $27\sim29$ のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
 - 32. 31記載の方法によりベイトとプレイとの間の相互作用を検出する工程、

及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用 するプレイのスクリーニング方法。

- 33. 以下の(a) 又は(b) の蛋白質。
- (a) 配列番号57~76のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 5 7~7 6 のいずれかのアミノ酸配列において、1 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 34. 配列番号57~76のいずれかのアミノ酸配列を含む33記載の蛋白質。
 - 35. 33又は34記載の蛋白質をコードする核酸。
 - 36. 以下の(a)又は(b)の核酸。
 - (a) 配列番号119~140のいずれかの塩基配列を含む核酸。
- (b)配列番号119~140のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 37. 配列番号119~140のいずれかの塩基配列を含む4記載の核酸。
- 38. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、33~34のいずれか1項に記載の蛋白質、又は35~37のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 39. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、3 $3\sim34$ のいずれか1項に記載の蛋白質、又は $35\sim37$ のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 40. 39記載の方法によりベイトとプレイとの間の相互作用を検出する工程、 及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用 するプレイのスクリーニング方法。
- 41. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a) 配列番号77~81のいずれかのアミノ酸配列を含む蛋白質。
 - (b)配列番号77~81のいずれかのアミノ酸配列において、1もしくは数個の

アミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。

- 42. 有効成分の蛋白質が配列番号77~81のいずれかのアミノ酸配列を含む41記載の阻害剤。
- 43. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である41記載の阻害剤。
- (a) 配列番号141~145のいずれかの塩基配列を含む核酸。
- (b)配列番号 $141\sim145$ のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 44. 核酸が配列番号141~145のいずれかの塩基配列を含む43記載の 阻害剤。
- 45. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号77~81のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号77~81のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号141~145のいずれかの塩基配列を含む核酸。
- (b')配列番号141~145のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 46. 蛋白質が配列番号 $77\sim81$ のいずれかのアミノ酸配列を含む 45 記載の方法。
- 47. 核酸が配列番号 141~145のいずれかの塩基配列を含む45記載の方法。
 - 48. 45~47のいずれか1項に記載の方法によりベイトとプレイとの間の

相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。

- 49. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a) 配列番号82~84のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号82~84のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 50. 有効成分の蛋白質が配列番号82~84のいずれかのアミノ酸配列を含む49記載の阻害剤。
- 51. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である49記載の阻害剤。
- (a)配列番号146~148のいずれかの塩基配列を含む核酸。
- (b)配列番号146~148のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 52. 核酸が配列番号146~148のいずれかの塩基配列を含む51記載の 阻害剤。
- 53. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号82~84のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号82~84のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号146~148のいずれかの塩基配列を含む核酸。
- (b')配列番号146~148のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質を

コードする核酸。

- 54. 蛋白質が配列番号82~84のいずれかのアミノ酸配列を含む53記載の方法。
- 55. 核酸が配列番号146~148のいずれかの塩基配列を含む53記載の方法。
- 56. 53~55のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 57. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a)配列番号85もしくは86のアミノ酸配列を含む蛋白質。
- (b)配列番号85もしくは86のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 58. 有効成分の蛋白質が配列番号85又は86のアミノ酸配列を含む57記載の阻害剤。
- 59. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である57記載の阻害剤。
- (a) 配列番号149もしくは150の塩基配列を含む核酸。
- (b)配列番号149もしくは150の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 60. 核酸が配列番号149又は150の塩基配列を含む59記載の阻害剤。
- 61. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号85もしくは86のアミノ酸配列を含む蛋白質。
- (b)配列番号85もしくは86のアミノ酸配列において、1もしくは数個のアミ

ノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。

- (a')配列番号149もしくは150の塩基配列を含む核酸。
- (b')配列番号149もしくは150の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 62. 蛋白質が配列番号85又は86のアミノ酸配列を含む61記載の方法。
- 63. 核酸が配列番号149又は150の塩基配列を含む61記載の方法。
- 64. 61~63のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 65. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害 剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号87~89のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号87~89のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 66. 有効成分の蛋白質が配列番号87~89のいずれかのアミノ酸配列を含む65記載の阻害剤。
- 67. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である65記載の阻害剤。
- (a) 配列番号151~153のいずれかの塩基配列を含む核酸。
- (b)配列番号151~153のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 68. 核酸が配列番号 $151\sim153$ のいずれかの塩基配列を含む 67 記載の阻害剤。
- 69. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以

下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。

- (a) 配列番号87~89のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号87~89のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号151~153のいずれかの塩基配列を含む核酸。
- (b')配列番号151~153のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 70. 蛋白質が配列番号87~89のアミノ酸配列を含む69記載の方法。
- 71. 核酸が配列番号 151~153のいずれかの塩基配列を含む70記載の方法。
- 72. 69~71のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 73. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a)配列番号90もしくは91のアミノ酸配列を含む蛋白質。
- (b)配列番号90もしくは91のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 74. 有効成分の蛋白質が配列番号90もしくは91のアミノ酸配列を含む73記載の阻害剤。
- 75. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である74記載の阻害剤。
- (a)配列番号154もしくは155の塩基配列を含む核酸。
- (b)配列番号154もしくは155の塩基配列からなる核酸とストリンジェント な条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコード

する核酸。

- 76. 核酸が配列番号154又は155の塩基配列を含む75記載の阻害剤。
- 77. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号90もしくは91のアミノ酸配列を含む蛋白質。
- (b)配列番号90もしくは91のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号154もしくは155の塩基配列を含む核酸。
- (b')配列番号154もしくは155の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 78. 蛋白質が配列番号90又は91のアミノ酸配列を含む69記載の方法。
 - 79. 核酸が配列番号154又は155の塩基配列を含む70記載の方法。
- 80. 77~79のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 81. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a)配列番号92もしくは93のアミノ酸配列を含む蛋白質。
- (b)配列番号92もしくは93のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 82. 有効成分の蛋白質が配列番号92又は93のアミノ酸配列を含む81記載の阻害剤。
- 83. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である82記載の阻害剤。

- (a) 配列番号156もしくは157の塩基配列を含む核酸。
- (b)配列番号 1 5 6 もしくは 1 5 7 の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 84. 核酸が配列番号156又は157の塩基配列を含む83記載の阻害剤。
- 85. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号92もしくは93のアミノ酸配列を含む蛋白質。
- (b)配列番号92もしくは93のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号156もしくは157の塩基配列を含む核酸。
- (b')配列番号156もしくは157の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 86. 蛋白質が配列番号92又は93のアミノ酸配列を含む85記載の方法。
 - 87. 核酸が配列番号156又は157の塩基配列を含む85記載の方法。
- 88. 85~87のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 89. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号94もしくは95のアミノ酸配列を含む蛋白質。
- (b)配列番号94もしくは95のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 90. 有効成分の蛋白質が配列番号94又は95のアミノ酸配列を含む89記

載の阻害剤。

- 91. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である90記載の阻害剤。
- (a) 配列番号158もしくは159の塩基配列を含む核酸。
- (b)配列番号158もしくは159の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 92. 核酸が配列番号158又は159の塩基配列を含む83記載の阻害剤。
- 93. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号94もしくは95のアミノ酸配列を含む蛋白質。
- (b)配列番号94もしくは95のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号158もしくは159の塩基配列を含む核酸。
- (b')配列番号158もしくは159の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 94. 蛋白質が配列番号94又は95のアミノ酸配列を含む93記載の方法。
 - 95. 核酸が配列番号158又は159の塩基配列を含む93記載の方法。
- 96. 93~95のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 97. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害 剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a) 配列番号96もしくは97のアミノ酸配列を含む蛋白質。
 - (b)配列番号96もしくは97のアミノ酸配列において、1もしくは数個のアミ

ノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。

- 98. 有効成分の蛋白質が配列番号96又は97のアミノ酸配列を含む97記載の阻害剤。
- 9.9. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である98記載の阻害剤。
- (a)配列番号160もしくは161の塩基配列を含む核酸。
- (b)配列番号160もしくは161の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 100. 核酸が配列番号160又は161の塩基配列を含む99記載の阻害剤。
- 101. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a) もしくは(b) の蛋白質、又は以下の(a') もしくは(b') の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号96もしくは97のアミノ酸配列を含む蛋白質。
- (b)配列番号96もしくは97のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号160もしくは161の塩基配列を含む核酸。
- (b')配列番号160もしくは161の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 102. 蛋白質が配列番号96又は97のアミノ酸配列を含む101記載の方法。
 - 103. 核酸が配列番号160又は161の塩基配列を含む101記載の方法。
- 104. 101~103のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。

- 105. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻 害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a) 配列番号98もしくは99のアミノ酸配列を含む蛋白質。
- (b)配列番号98もしくは99のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 106. 有効成分の蛋白質が配列番号98又は99のアミノ酸配列を含む105記載の阻害剤。
- 107. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である98記載の阻害剤。
- (a) 配列番号162もしくは163の塩基配列を含む核酸。
- (b)配列番号162もしくは163の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 108. 核酸が配列番号162又は163の塩基配列を含む107記載の阻害剤。
- 109. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号98もしくは99のアミノ酸配列を含む蛋白質。
- (b)配列番号98もしくは99のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号162もしくは163の塩基配列を含む核酸。
- (b')配列番号162もしくは163の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 110. 蛋白質が配列番号98又は99のアミノ酸配列を含む109記載の方

法。

- 111. 核酸が配列番号162又は163の塩基配列を含む109記載の方法。
- 112. 109~111のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 113. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号100もしくは101のアミノ酸配列を含む蛋白質。
- (b)配列番号100もしくは101のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 114. 有効成分の蛋白質が配列番号100又は101のアミノ酸配列を含む 113記載の阻害剤。
- 115. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である 114記載の阻害剤。
- (a)配列番号164もしくは165の塩基配列を含む核酸。
- (b)配列番号164もしくは165の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 116. 核酸が配列番号164又は165の塩基配列を含む115記載の阻害剤。
- 117. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a) もしくは(b) の蛋白質、又は以下の(a') もしくは(b') の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号100もしくは101のアミノ酸配列を含む蛋白質。
- (b)配列番号100もしくは101のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。

- (a')配列番号164もしくは165の塩基配列を含む核酸。
- (b')配列番号164もしくは165の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 118. 蛋白質が配列番号100又は101のアミノ酸配列を含む117記載の方法。
 - 119. 核酸が配列番号164又は165の塩基配列を含む117記載の方法。
- 120. 117~119のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
 - 121. 以下の(a) 又は(b) の蛋白質。
 - (a) 配列番号102のアミノ酸配列を含む蛋白質。
- (b)配列番号102のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 122. 102記載の蛋白質をコードする核酸。
 - 123. 以下の(a)又は(b)の核酸。
- (a) 配列番号166の塩基配列を含む核酸。
- (b)配列番号166の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 124. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、121に記載の蛋白質、又は122~123のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 125. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、121に記載の蛋白質、又は122~123のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 126. 125記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。

- 127. 以下の(a) 又は(b) の蛋白質。
- (a) 配列番号103のアミノ酸配列を含む蛋白質。
- (b)配列番号103のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 128. 127記載の蛋白質をコードする核酸。
 - 129. 以下の(a)又は(b)の核酸。
- (a) 配列番号167の塩基配列を含む核酸。
- (b)配列番号167の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 130. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、127に記載の蛋白質、又は128~129のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 131. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、127に記載の蛋白質、又は128~129のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 132. 131記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。

図面の簡単な説明

図1A及び図1Bは、本発明の蛋白質のアミノ酸配列と遺伝子配列などの情報をまとめて示す。DNA配列番号の括弧内の数字は、それがコードするアミノ酸配列の番号を示す。枝番のあるものは、同じアミノ酸配列をコードするが、塩基配列が異なることを示す。図1Aの配列番号 $1\sim2$ 2; 実施例1。図1Aの配列番号47~76及び図1Bの配列番号77~103; 実施例2。

図2は、本発明の蛋白質および遺伝子とその塩基配列の検出方法であるIVVランダムライブラリーによる共翻訳スクリーニング法の概略を示す。マウス脳のIVVランダムライブラリーとベイトとしてc-Fosを用いて、無細胞共翻訳スクリーニング

を行い、スクリーニング後のライブラリーをRT-PCRで増幅して再びベイトと共に無細胞共翻訳スクリーニングすることを3回繰り返すことにより本発明の蛋白質および遺伝子とその塩基配列を検出した。

図3は、本発明の蛋白質および遺伝子とその塩基配列の検出に用いたIWのラン ダムプライミングライブラリーとその製法の概略を示す。RNAライブラリーを鋳型 として、9塩基からなるランダム配列と特定配列 (tag 2 配列) を含むランダムプ ライマーを用いてランダムプライミング法により逆転写でmRNAに相補的な一本鎖 cDNA(ssDNA)ライブラリーを合成する(I)。RNaseHによりcDNAとRNAの二本鎖からRNA のみを分解すると同時に、DNAポリメラーゼI によるcDNAに相補的なDNAを合成し、 さらに、DNAリガーゼによりDNAポリメラーゼI により合成されたDNA間にあるニッ クを修正して二本鎖(dsDNA)ライブラリーを合成する(II)。合成された二本鎖cDNA はDNAポリメラーゼIにより合成された側のみ5'末端にリン酸基を持つのでこれを 利用し、特定配列(5°UTR=プロモーター+エンハンサー)を持つアダプターをDNAリガ ーゼを用いて結合し、ライゲーテッド dsDNA ライブラリーを合成する(III)。アダ プターとランダムプライマーの特定配列を利用してPCRを行い、5'側にプロモータ ーとエンハンサーの配列、3'側にA tailをもつ対応付け分子のcDNAライブラリー。 (IVV cDNAライブラリー)を作成する(IV)。次にIVV cDNAライブラリーを転写してIVV RNAライブラリーとし(V)、IVVとするためのスペーサーをライゲーションし(VI)、 さらに、無細胞翻訳系などで翻訳すれば、対応付け分子のライブラリーとなる(VII)。 図4は、本発明の蛋白質および遺伝子とその塩基配列の相互作用の検証結果1 (電気泳動写真)を示す。

A: 配列番号 2 (Fip-cx), 16 (Eef1dTEF-1), 22 (Schip1)のアミノ酸配列を有する蛋白質をC末端ラベル化法により小麦の無細胞翻訳系で確認。レーン 1-4; c-Jun蛋白質、配列番号 2 (Fip-cx),配列番号 16 (Eef1dTEF-1),配列番号 22 (Schip1)の蛋白質。

B: 配列番号 2 (Fip-cx), 1 6 (Eef1dTEF-1), 2 2 (Schip1)のアミノ酸配列を有する IVVを小麦の無細胞翻訳系で確認。レーン 1、2;mRNA、IVV。 I-IV;c-Jun、配列番号 2 (Fip-cx), 配列番号 1 6 (Eef1dTEF-1), 配列番号 2 2 (Schip1)。

C: 配列番号 2 (Fip-cx), 16 (Eef1dTEF-1), 22 (Schip1)のアミノ酸配列を有す

るIVVによるプルーダウンでの相互作用確認。レーン1-3; IVV、上澄、ビーズ。 a, b; ベイトc-Fosなし、あり。I-IV; c-Jun、配列番号 2 (Fip-cx), 配列番号 1 6 (Eef1dTEF-1), 配列番号 2 2 (Schip1)。

図5は、本発明の蛋白質および遺伝子とその塩基配列の相互作用の検証結果2 (電気泳動写真)を示す。

A: 配列番号105,139,142,148,150,152,155,157,159,161,163,165,165,166,167の核酸配列をもとにして、配列番号48(Fip-cx.1),75(Fip-cx.2),78(Optn)、84(Snapc5),86(C130020M04Rik),88(FLJ32000),91(Rit2),93(cytochrome b),95(Apoe),97(betaAPP),99(Hsp40),101(Fip-c10),102(Fip-c4),103(Fip-c18)の蛋白質(図1A及び1B)が無細胞翻訳系で発現することをC末端ラベル化法により小麦の無細胞翻訳系で確認。レーン1-14;配列番号48(Fip-cx.1),75(Fip-cx.2),78(Optn)、84(Snapc5),86(C130020M04Rik),88(FLJ32000),91(Rit2),93(cytochrome b),95(Apoe),97(betaAPP),99(Hsp40),101(Fip-c10),102(Fip-c4),103(Fip-c18)の蛋白質。

B: 得られた蛋白質とc-Fosとの相互作用の検証実験として、配列番号105,139の核酸配列をもとにして、配列番号48(Fip-cx.1),75(Fip-cx.2)の蛋白質のアミノ酸配列を有するC 末端ラベル化蛋白質を用いてプルダウン(pull-down)で c-Fosとの直接的な相互作用を確認。レーン1;配列番号48(Fip-cx.1),レーン2;75(Fip-cx.2)a,b:ベイトc-Fosあり、なし(レーン1,2;翻訳産物、溶出画分)。

図 6 は、本発明の遺伝子の濃縮率と間接的な相互作用の検証の結果を示す。4種類の配列番号 7 8 (Optn)、8 4 (Snapc5),8 6 (C130020M04Rik),8 8 (FLJ32000)の蛋白質の濃縮を確認するために、配列番号 1 4 2,1 4 8,1 5 0,1 5 2 の核酸配列をもとにしてリアルタイムPCRを行った。

図7は、本発明の蛋白質や核酸配列を用いたIVVの物質や蛋白質との相互作用解析の一次スクリーニングと二次スクリーニングの概略を示す。本発明の蛋白質や核酸配列を用いた、一次スクリーニングで物質や蛋白質と相互作用を検出し、さらに、相互作用の詳細をFCCSやマイクロアレイなどの二次スクリーニングで解析するこ

とが可能である。また、本発明の蛋白質や核酸配列は、IW又はC末端ラベル化蛋白質として、単独でFCCSやマイクロアレイなどにより物質や蛋白質との相互作用解析に利用することも可能である。また、本発明の蛋白質や核酸配列のIWを用いた進化分子工学に応用し、一次スクリーニングにより機能性蛋白質の創出に利用することも可能であり、その際に、一次スクリーニングと二次スクリーニングを組み合わせて、創出した機能性蛋白質の相互作用の詳細を解析することも可能である。

図8は、翻訳テンプレート(A)ならびにその構成要素であるコード分子(B)及びスペーサー分子(C)の構成を示す。翻訳テンプレートは、コード分子由来のコード部とスペーサー分子由来のスペーサー部からなる。F1及びF2は蛍光色素を示す。

図9は、C末端修飾された蛋白質(C末端ラベル化蛋白質)(A)、本発明の翻訳 テンプレート(B)、及び、修飾剤(C)の構成を示す。

図10は、無細胞共翻訳による複合体の形成の概略を示す。

A: ベイトとプレイが無細胞翻訳系で共に翻訳され相互作用し、無細胞翻訳系において複合体を形成する。プレイは単数(I)であっても複数(II)であっても構わないし、また、無細胞翻訳系での翻訳で得られるポリペプチドそのものであっても、対応付け分子(結合体)であっても構わない。

B: ベイトの共存下、プレイが無細胞翻訳系で翻訳され相互作用し、無細胞翻訳系において複合体を形成する。プレイは単数(I)であっても複数(II)であっても構わないし、また、無細胞翻訳系での翻訳で得られるポリペプチドそのものであっても、対応付け分子(結合体)であっても構わない。

図11は、複合ベイトを用いた場合の無細胞共翻訳による複合体の形成の概略を 示す。

複合ベイトを構成する一部のベイトとプレイが無細胞翻訳系で共に翻訳され相互作用し、無細胞翻訳系において複合体を形成する。プレイは、単数(I)であっても複数(II)であっても構わないし、また、無細胞翻訳系での翻訳で得られるポリペプチドそのものであっても、対応付け分子(結合体)であっても構わない。また、複合ベイトは、図に示した無細胞翻訳系で翻訳されたポリペプチドとDNAベイトの組合せに限られず、無細胞翻訳系で翻訳された複数又は単独のポリペプチドと、無細

胞翻訳系で共存する複数又は単独のベイト(たとえば、DNAベイトなど)の組み合わせが挙げられる。

図12は、無細胞共翻訳による複合体のスクリーニング方法の概略を示す。

図10及び11で示したような無細胞共翻訳による複合体形成の工程(1)、その複合体のプレイをスクリーニングする工程(2)、及び、プレイの解析の工程(3)により、無細胞共翻訳とスクリーニングをトータルにinvitroで実現することができる。プレイが対応付け分子でかつ複数であれば、RT-PCR又はPCRによってプレイをコードするnRNA又はDNAを再構成することにより再度(1)の工程からスクリーニングを繰り返すことができる。また、得られたプレイを解析後、ベイトとして(1)の工程からスクリーニングを新たに繰り返すことができる。

発明を実施するための最良の形態

<1>本発明の蛋白質

本明細書においては、説明の便宜のため、c-Fosと相互作用することが見出された蛋白質を、新規蛋白質も含めて、本発明の蛋白質と呼ぶ。

本発明の蛋白質の第1の群(図1Aの配列番号1~14)は、c-Fosと複合体を形成する機能もそのアミノ酸配列も新規の蛋白質(Fos interacting protein chromosome X; Fip-cx)である。この蛋白質は、既存のゲノム配列WGS supercontig MmX (NW_042637) に 含 ま れ る MAGE/necdin homologous region の MAGE-necdin/trophinin complexes遺伝子(AB032477)が(+1)フレームシフトした核酸配列(275-829bp) およびアミノ酸配列(184aa)と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質 (Yurii Chinenov1 and Tom K Kerppola, Oncogene (2001) 20, 2438-2452)のいずれでもない。また、MAGE-necdin/trophinin complexesは、MAGE (melanoma-associated antigen)として発見されたX染色体に存在する癌・腫瘍関係の遺伝子であることが知られている(Sakura S, et al. (2001) J. Biol. Chem. 276, 49378-49389)が、本蛋白質Fip-cxは、MAGE-necdin/trophinin complexesの遺伝子配列から+1フレームがずれたものであり、MAGE-necdin/trophinin complexes遺伝子についてのフレームシフトは知られていないので、本蛋白質Fip-cxはアミノ酸配

列もc-Fosとの相互作用の機能についても新規の蛋白質である。本蛋白質Fip-cxのアミノ酸配列はロイシンジッパーを含み、直接c-Fosと相互作用を形成することが確認された(図 2)。

本発明の蛋白質の第2の群(図1Aの配列番号15~19)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のeukaryotic translation elongation factor-1 delta(Eef1d, TEF-1; NM_023240)遺伝子の遺伝子配列およびアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。本蛋白質 Eef1dが、c-Fosと複合体を形成する機能については、今回初めて検出された。Eef1d は、翻訳伸長を調節する蛋白質として知られているが、最近、癌・腫瘍関係の遺伝子でもあることが示され、翻訳因子Eef1dと腫瘍形質転換との関係性として、Fosの発現量が増加するとEef1dの発現量も増加することが報告されている(Joseph P, et al. (2002) J. Biol. Chem. 277, 6131-6136)。本蛋白質のアミノ酸配列は、ロイシンジッパーを含む。

本発明の蛋白質の第3の群(図1Aの配列番号20~22)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のschwannomin interacting protein 1(Schip1; NM_013928)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。Schip1は、癌・腫瘍関係の遺伝子であることが知られている(Gouthebroze L, et al. (2000) Mol. Cell. Biol. 20, 1699-1712)が、c-Fosと複合体を形成する機能については、今回初めて検出された。本蛋白質は、AP-1の上流の制御遺伝子でありかつAP-1活性を阻害するS-Shwannominと結合する。また、本蛋白質のアミノ酸配列は、D-1のシジッパーを含む。

本発明の蛋白質の第4の群(図1Aの配列番号47~56)は、c-Fosと複合体を形成する機能もそのアミノ酸配列も新規の蛋白質(Fos interacting protein chromosome X.1; Fip-cx.1)である。この蛋白質は、MageファミリーのMage-d3遺伝子(NM_019548)の(+1)フレームシフト遺伝子である。本蛋白質のアミノ酸配列は、ロイシンジッパーを含む。

本発明の蛋白質の第5の群(図1Aの配列番号57~76)は、c-Fosと複合体を

形成する機能もそのアミノ酸配列も新規の蛋白質(Fos interacting protein chromosome X.2; Fip-cx.2)である。この蛋白質は、MageファミリーのMagphinin 遺伝子(AB032477)の(+1)フレームシフト遺伝子である。本蛋白質のアミノ酸配列は、ロイシンジッパーを含む。

本発明の蛋白質の第6の群(図1Bの配列番号77~81)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のOptineurin (Optn; NM_181848)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。Optnは、Adult-Onset PrimaryOpen-Angle Glaucomaという視覚障害の原因遺伝子と言われている(Tayebeh Rezaie, et al. (2002) Science 295, 1077-1079)。本蛋白質のアミノ酸配列は、ロイシンジッパーを含む。

本発明の蛋白質の第7の群(図1Bの配列番号82~84)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のSnapc5(Snpap19; XM_284503.1)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。Snapc5は、pol IIおよびpol IIIによって転写されるsnRNAのプロモーターであるPSEに結合し、転写を制御するSNAP複合体のサブユニットの一つである(Henry, R. W.; Mittal, V.; Ma, B.; Kobayashi, R.; Hernandez, N. Genes Dev. 12: 2664-2672, 1998. PubMed ID: 9732265)。本蛋白質のアミノ酸配列はロイシンジッパーを含む。

本発明の蛋白質の第8の群(図1Bの配列番号85~86)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のC130020M04Rik(BC026483)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。C130020M04Rikは、蛋白質のフレームは予想されているが、その機能は未知である遺伝子である。アノテーションは、転写制御因子となっている。本蛋白質のアミノ酸配列は、ロイシンジッパーを含む。

本発明の蛋白質の第9の群(図1Bの配列番号87~89)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のFLJ3200(XM_342896.1)遺伝

子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。 FLJ3200は、蛋白質のフレームは予想されているが、その機能は未知である遺伝子である。Rattus norvegicus類似の配列を有する蛋白質である。本蛋白質のアミノ酸配列は、ロイシンジッパーを含む。

本発明の蛋白質の第10の群(図1Bの配列番号90~91)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のRit2(NM_009065.2)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。Rit2は、Ras like protein でRasファミリーの蛋白質であるが、Ras蛋白質の膜の足場として知られている典型的なC末端に存在するCAAXボックスを持っていない。Rasは、App遺伝子のプロモーターを活性化することが知られている(Ruiz-Leon, Y. and Pascual, A., (2001) 2, 278-285)。さらに、RasはRhoとともにApp蛋白質の分泌過程の制御に関わっていることが報告されている(Maillet, M et al., (2003) Nat. Cell Biol. 5, 633-639)。Rhoファミリーは、小さなGTP結合蛋白質で、細胞骨格、転写、発生、形質転換などに関わり、Rho遺伝子がAP1の活性を促し、T細胞の活性化に関わる転写因子を制御している可能性が報告されている(JIN-HONG CHANG, et. al., Mil Cell Biol (1998) 18, 4986-4993)。本蛋白質のアミノ酸配列は、ロイシンジッパーを含まない。

本発明の蛋白質の第11の群(図1Bの配列番号 $92\sim93$)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のcytochrome b(AF540912.1)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。登録されているcytochrome b遺伝子は全長クローンされていない。本蛋白質のアミノ酸配列は、ロイシンジッパーを含む。

本発明の蛋白質の第12の群(図1Bの配列番号 $94\sim95$)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のapolipoprotein E (Apoe; NM_009696.2)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質

のいずれでもない。Apoeは、アルツハイマーのリスクファクター遺伝子として知られており、APPと相互作用する(David M. Holtzman、et. al., PNAS (2000) 97, 2892-97)。Apoe遺伝子はAP1サイトを持ち、AP1の下流遺伝子である。本蛋白質のアミノ酸配列は、ロイシンジッパーを含まない。

本発明の蛋白質の第13の群(図1Bの配列番号96~97)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のamyloid beta (A4) precursor protein (App; BC005499.1)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。Appは、アルツハイマーのリスクファクター遺伝子として知られており、Apoeと相互作用する(David M. Holtzman、et.al., PNAS (2000) 97, 2892-97)。App遺伝子は、Apoe遺伝子と同様に、AP1サイトを持ち、AP1の下流遺伝子である。実際、記憶の形成時の一連の反応の最初のカスケードは、Fos/Junの発現であり、続いて記憶形成の初期に、App/Apoeが発現することが報告されている(Steven P.R. Rose, Learning & Memory (2000) 7, 1-17)。さらに、Appは翻訳時に、Apoeのシャベロン機能によって、共翻訳により折り畳まれること(cotranslational folding)が最近報告された(Silke Hab, et al., (J. Biol. Chem., 273, 13892-13897 (1998))。このことは、IVVの共翻訳時に、App/Apoe複合体を形成したものが、さらにベイトFosと複合体を形成し検出されてきた例と云える。本蛋白質のアミノ酸配列は、ロイシンジッパーを含まない。

本発明の蛋白質の第14の群(図1Bの配列番号98~99)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のDnaja2(HSP40; BC003420)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。Dnaja2は、e-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。e-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。e-Fosと複合体を形成することが知られている(Kato N、et. al., Cancer Science (2000) 97, 644-649)。本蛋白質のアミノ酸配列は、ロイシンジッパーを含まない。

本発明の蛋白質の第15の群(図1Bの配列番号 $100\sim101$)は、c-Fosと相互作用する機能が新規の蛋白質である。この蛋白質は、既存のFip-c10(KIAA1209;

XM_136911)遺伝子配列かつアミノ酸配列と相同性を有していることを特徴とする蛋白質であり、これまで、c-Fosと複合体を形成することが知られていた蛋白質のいずれでもない。Fip-c10は、蛋白質のフレームは予想されているが、その機能は未知である遺伝子である。本蛋白質のアミノ酸配列は、ロイシンジッパーを含まない。

本発明の蛋白質の第16の群(図1Bの配列番号102)は、c-Fosと複合体を形成する機能もそのアミノ酸配列も新規の蛋白質(Fos interacting protein chromosome 4.1; Fip-c4)である。この蛋白質は、ゲノム配列のこれまで全く蛋白質のフレームが予想されていない領域にコードされている。本蛋白質のアミノ酸配列は、ロイシンジッパーを含まない。

本発明の蛋白質の第17の群(図1Bの配列番号103)は、c-Fosと複合体を形成する機能もそのアミノ酸配列も新規の蛋白質(Fos interacting protein chromosome 18; Fip-c18)である。この蛋白質は、ゲノム配列のこれまで全く蛋白質のフレームが予想されていない領域にコードされている。本蛋白質のアミノ酸配列は、ロイシンジッパーを含まない。

以下、本発明の蛋白質についてさらに説明する。

本発明の蛋白質のうち、配列番号1~22及び47~103のいずれかのアミノ酸配列を有する蛋白質は、後述の実施例に記載したように、c-Fos蛋白質と相互作用すること、すなわち、複合体を形成することが判明した蛋白質である。蛋白質には一般に同一の機能を有する変異体の存在が予測される。また、蛋白質のアミノ酸配列を適宜改変することによって、同一の機能を有する変異体を得ることができる。従って、配列番号1~22及び47~103のいずれかに示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を有し、かつc-Fos蛋白質と相互作用する蛋白質も本発明の蛋白質に包含される。また、配列番号1~22及び47~103のいずれかに示すアミノ酸配列に対して、15%以上の相同性を有し、かつc-Fos蛋白質と相互作用する蛋白質も包含される。このようなアミノ酸の変化した蛋白質としては、例えば、配列番号1のアミノ酸配列を有する蛋白質に関しては、配列番号16~19のアミノ

酸配列を有する蛋白質、配列番号 20のアミノ酸配列を有する蛋白質に関しては、配列番号 $21\sim22$ のアミノ酸配列を有する蛋白質がそれぞれ挙げられる。

蛋白質のアミノ酸配列の改変は、部位特異的変異誘発法などの周知の手段により蛋白質をコードするDNAの塩基配列を改変し、塩基配列が改変されたDNAを発現させることによって行うことができる。このような改変された蛋白質のうち、c-Fos蛋白質と相互作用するものが本発明の蛋白質に含まれる。c-Fos蛋白質との相互作用は、公知の相互作用の測定法により測定することでき、例として、後記実施例に記載されたような複合体の形成を検出する方法が挙げられる。

本発明の蛋白質は、他の蛋白質と融合させることにより、融合蛋白質とされてもよい。

本発明の核酸は、本発明の蛋白質をコードする核酸である。核酸は通常にはRNA 又はDNAである。本発明の核酸としては、配列番号23~40及び104~167 のいずれかの塩基配列を有する核酸が挙げられる。この核酸は後述の実施例において、塩基配列が決定された核酸である。遺伝子には、同一の産物をコードするが塩基配列の異なる遺伝子や、同一の機能を有する変異体をコードする遺伝子の存在が予測される。また、塩基配列の改変により、同一の産物や同一の機能を有する変異体をコードする遺伝子を得ることができる。従って、本発明の核酸には、配列番号23~40及び104~167のいずれかの塩基配列を有し、かつc-Fos蛋白質と相互作用する蛋白質をコードする核酸も包含される。類似の塩基配列を有する核酸としては、配列番号23~40及び104~167のいずれかの塩基配列に相補的な塩基配列を有する核酸とストリンジェントな条件でハイブリダイズする核酸、又は、配列番号23~40及び104~167のいずれかの塩基配列と相同性が16%以上の塩基配列を有する核酸が挙げられる。

ここで、ストリンジェントな条件とは、例えば42℃でDIG Easy Hyb (ロシェ・ダイアグノスティックス株式会社) におけるハイブリダイゼーション、次いで60℃で15分0.1×SSC/0.1%SDS中での洗浄である。塩基配列の相同性は、比較する配列間でアラインメントを行い一致した塩基数を算出し、比較対象となる配列の鎖長に対する一致した塩基数の割合である。また、アミノ酸配列の相同性は、比較する配列間でアラインメントを行い一致したアミノ酸数を算出し、比較対象となる配

列の鎖長に対する一致したアミノ酸数の割合である。

DNAがc-Fos蛋白質と相互作用する蛋白質をコードすることは、そのDNAから蛋白質を発現させ、発現した蛋白質がc-Fos蛋白質と相互作用することを上述の方法により確認することにより容易に確認できる。

本発明の核酸は、明らかにされた塩基配列に基づき常法により得ることができる。例えば、化学合成法により合成してもよいし、適宜設定されたプライマーを用いて、c-Fos蛋白質と相互作用する蛋白質を発現している細胞や組織から調製されたmRNAからRT-PCR法により得ても良い。

<2>本発明の蛋白質等の用途

本発明による蛋白質や遺伝子又は核酸配列による新たな機能(ここではc-Fosと結合できる機能)を利用して、遺伝子治療などによりc-Fosの転写機能や遺伝子複製機能などをブロックする阻害剤として応用することができる。その根拠は、本発明の蛋白質の遺伝子は、スクリーニングを複数回繰り返すことにより競争過程を経て検出されてきていることに起因する。この方法で検出された遺伝子群は、ある個数分布を描き、競争力が強い遺伝子ほど多く検出されることになる。このことは、この方法で検出されるクローン数が多いほど競争力が強く、ブロック剤・阻害剤として有効に働くことを示している。

本発明の蛋白質とそれをコードする遺伝子および配列の用途として、in vitroでの応用としては、本発明による蛋白質や遺伝子又は核酸配列による新たな機能を利用して、たとえば、無細胞蛋白質合成系を利用した進化分子工学又は、ゲノム機能解析へ応用できる。この場合に、対応付け分子の共翻訳スクリーニング/セレクションを用いた解析は非常に有効である。なぜなら、共翻訳スクリーニング/セレクション法によって、ベイト蛋白質と直接又は間接的に相互作用のある蛋白質を網羅的に検出することが可能となったからである。さらに、IVV間又はIVVとC末端ラベル化蛋白質との相互作用の解析などにおいて、「標的分子(ベイト蛋白質)」としても利用出来る。さらに、一般的な相互作用の解析の方法としては、例えば、マイクロアレイ、蛍光相関分光法(FCS/FCCS)、蛍光イメージングアナライズ法、蛍光共鳴エネルギー移動法、エバネッセント場分子イメージング法、蛍光偏光解消法、表

面プラズモン共鳴法、又は、固相酵素免疫検定法などが挙げられる。無細胞蛋白質合成系の具体例としては、小麦胚芽抽出液、ウサギ網状赤血球抽出液、大腸菌S30抽出液等が挙げられる。これらの無細胞蛋白質合成系の中に、本発明による蛋白質や遺伝子又は核酸配列の翻訳テンプレートを加え、C末端ラベル化の場合は、同時に1~100μMの修飾剤を加え、25~37℃で1~数時間保温することによってC末端修飾蛋白質が合成される。対応付けの場合は、本発明による蛋白質や遺伝子又は核酸配列の対応付け分子のテンプレートを加えて、25~37℃で1~数時間保温するだけで対応付け分子が合成される。

また、in vivoでの応用としては、本発明による蛋白質や遺伝子又は核酸配列に よる新たな機能を利用して、たとえば、無細胞蛋白質合成系で合成された、分離用 修飾及び検出用標識された蛋白質 (両修飾蛋白質) は、そのまま次の精製プロセス 又は検出プロセス、又は直接細胞への導入に供することができる。細胞発現系の具 体例としては、大腸菌、枯草菌、好熱菌、酵母等の細菌から、昆虫細胞、哺乳類等 の培養細胞、さらに線虫、ショウジョウバエ、ゼブラフィッシュ、マウス等に至る までいかなる細胞でもよい。これらの細胞の中に、上記C末端ラベル化又は対応付 けされた両修飾蛋白質を直接導入し、目的の蛋白質をブロックすることができる。 又は、上記本発明の蛋白質の遺伝子や核酸配列を導入し、アンチセンス配列やRNAi 配列として遺伝子や核酸配列をそのまま利用して目的の核酸配列の発現をブロッ クすることも可能であるし、細胞内で発現させて蛋白質や対応付け分子として相互 作用のある蛋白質をブロックすることにも利用できる。蛋白質として利用する場合 は、 $C末端ラベル化法では、同時に<math>1\sim100\mu M$ のC末端ラベル化修飾剤を電気穿孔法、マイクロインジェクション法等により細胞の中に導入し、細胞の至適生育温度 で数時間保温することによって修飾蛋白質が合成される。対応付けの場合は、上記 本発明の蛋白質の遺伝子や核酸配列をもつ対応付け分子のテンプレートを導入し、 細胞の至適生育温度で数時間保温することによって対応付け分子が合成される。合 成された両修飾蛋白質は、細胞を破砕することによって回収し次の精製プロセス又 は検出プロセスに供することができる。また、そのまま細胞の中で検出プロセスに 供することも可能である。

以下、本発明の蛋白質等の用途についてさらに説明する。

本発明検出方法は、ベイトとプレイとの間の相互作用の検出において、ベイトと して本発明の蛋白質を用いるものである。

好ましくは、ベイト及びプレイに特定の様式で分離用修飾及び検出用標識を行い、 そして、無細胞翻訳系においてベイトの存在下で、プレイを翻訳により生成させる ことによりベイトとプレイとを接触させることを主な特徴とするものである。本明 細書においては、無細胞翻訳系においてベイトの存在下で、プレイを翻訳により生 成させることによりベイトとプレイとを接触させることを「無細胞共翻訳」ともい う。

本明細書において、ベイト及びプレイの用語は、物質間の相互作用の解析の技術 分野で通常に用いられる意味を有する。すなわち、既知の物質である蛋白質や核酸 などをベイト(おとり)と呼び、それと相互作用する物質である蛋白質や核酸などを プレイ(獲物)と呼ぶ。本発明では、プレイは蛋白質であることが好ましい。

ここで、ベイトとしては、本発明の蛋白質、又は、本発明の蛋白質を含む限り、 あらゆる蛋白質(ペプチドを含む)、核酸、抗体、ホルモンなどのリガンド、金属 などの任意のものから構成される複合体が挙げられ、天然のものでも人工のものの いずれでも構わない。ベイトとしての分子量の制限などは特にない。たとえば蛋白 質であれば、機能ドメイン又は機能ドメインを含む完全長蛋白質などが挙げられる。 プレイライブラリーを用いる場合は、完全長蛋白質とすることでより網羅的検出が 可能となる。

また、プレイとしては、好ましくは、蛋白質が用いられる。プレイとしての分子 量の制限などは特にない。

本発明検出方法は、好ましくは、上述のように、ベイトとプレイとの間の相互作用の検出において、ベイト及びプレイに特定の様式で検出用標識及び分離用修飾を行い、そして、無細胞共翻訳を行うことを主な特徴とするものである。従って、本発明検出方法の好ましい構成は、ベイト及びプレイに特定の様式で検出用標識及び分離用修飾を行い、そして、無細胞共翻訳を行うことを除いて、ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の通常の検出方法と同様でよい。

ベイト及びプレイの分離用修飾及び検出用標識は、複合体の検出に適合したもの

が適宜選択されるが、無細胞共翻訳において、ベイトとプレイとが共に検出用標識で標識されたり、分離用修飾を受けたりしないように行われる必要がある。そのため、プレイは、検出用標識として使用できる蛋白質との融合蛋白質とされるか、又は、対応付け分子とされ、それに応じて、ベイトは分離用修飾を有するものとされる。

プレイが融合蛋白質とされる場合には、ベイトは分離用修飾を有するようにする。ベイトが蛋白質である場合には、ベイトは、分離用修飾として使用できる蛋白質との融合蛋白質として、無細胞翻訳系において、ベイトを含む融合蛋白質をコードするmRNAの翻訳が行われることにより無細胞翻訳系に存在させることが好ましい。

ベイトが蛋白質の場合の分離用修飾の例としては、蛋白質として、GST蛋白質やTAP法などに用いられているCBP(カルモジュリンビーズとの親和性により分離可能)やプロテインA(IgG-プロテインA親和性により分離可能)、親和性タグとして、各種の抗体タグなどとの融合蛋白質とすることが挙げられる。ベイト自体が分離用修飾として使用できる性質を有する場合には、ベイトをそのまま、分離用修飾を有するベイトとして使用できる。プレイの検出用修飾としては、GFP(green fluorescent protein)などの蛍光蛋白質との融合蛋白質とすることが挙げられる。

上記の融合蛋白質をコードするmRNAの調製及びこのmRNAの無細胞翻訳系での翻訳は通常の方法に従って行うことができる。mRNAは、無細胞転写翻訳系において、DNAの転写により生成するものであってもよい。

プレイが対応付け分子とされる場合には、ベイトには任意の分離用修飾を施すことができる。ベイトが蛋白質である場合には、上述の分離用修飾の例が挙げられる他、ベイトが核酸やドラッグなどの場合の分離用修飾の例としては、ストレプトアビジンやアビジンと相互作用のあるビオチンなどを利用することが挙げられる。ベイト自体が分離用修飾として使用できる性質を有する場合には、ベイトをそのまま、分離用修飾を有するベイトとして使用できる。

対応付け分子とは、表現型と遺伝子型と対応付ける分子を意味する。対応付け分子は、通常には、遺伝子型を反映する塩基配列を有する核酸を含む遺伝子型分子と、表現形の発現に関与する蛋白質を含む表現型分子とが結合してなる分子である。こ

の蛋白質としてプレイを用いることによりプレイを対応付け分子とすることができる。このような対応付け分子は、無細胞翻訳系において、プレイをコードするmRNAの翻訳を、翻訳されたプレイが該mRNAと会合するように行うこと、又は、無細胞転写翻訳系において、プレイをコードするDNAの転写及び翻訳を、翻訳されたプレイが該DNAと会合するように行うことにより形成することができる。従って、この製造の際に、ベイトを存在させることにより、無細胞共翻訳を行うことができる。すなわち、下記(1)又は(2)により無細胞共翻訳を行うことができる。

- (1)無細胞翻訳系において、前記ベイトの存在下で、前記プレイをコードする mRNAの翻訳を、翻訳されたプレイが該mRNAと会合するように行うことにより、無細胞翻訳系にプレイを生成させて、ベイトとプレイとを接触させる。
- (2)無細胞転写翻訳系において、前記ベイトの存在下で、前記プレイをコードするDNAの転写及び翻訳を、翻訳されたプレイが該DNAと会合するように行うことにより、無細胞転写翻訳系にプレイを生成させて、ベイトとプレイとを接触させる。

以下、上記(1)及び(2)の態様について説明する。

(1)の態様では、mRNAが、その3'末端に結合したスペーサー領域と、スペーサー領域に結合した、ペプチド転移反応によってペプチドと結合し得る基を含むペプチドアクセプター領域とを有することにより、翻訳されたプレイが該mRNAと会合することが好ましい。このような対応付け分子を用いる相互作用の検出方法としては、in vitroウイルス方法が挙げられる。

mRNAは、好ましくは、転写プロモーター及び翻訳エンハンサーを含む5'非翻訳領域と、5'非翻訳領域の3'側に結合した、プレイをコードするORF領域と、ORF領域の3'側に結合した、ポリA配列を含む3'末端領域を含む核酸である。好ましくは、ポリA配列の5'側に、SNNS (SはG又はC)配列を含む発現増幅配列 (例えば制限酵素XhoIが認識する配列)が更に含まれる。5'末端にCap構造があってもなくても良い。

ポリA配列は、少なくとも2残基以上のdA及び/又はrAの混合又は単一のポリA連続鎖であり、好ましくは、3残基以上、より好ましくは6以上、さらに好ましくは

8残基以上のポリA連続鎖である。

翻訳効率に影響する要素としては、転写プロモーターと翻訳エンハンサーからなる5'UTR、及び、ポリA配列を含む3'末端領域の組み合わせがある。3'末端領域のポリA配列の効果は通常には10残基以下で発揮される。5'UTRの転写プロモーターはT7/T3又はSP6などが利用でき、特に制限はない。好ましくはSP6であり、特に、翻訳のエンハンサー配列としてオメガ配列やオメガ配列の一部を含む配列を利用する場合はSP6を用いることが特に好ましい。翻訳エンハンサーは好ましくはオメガ配列の一部であり、オメガ配列の一部としては、TMVのオメガ配列の一部(029; Gallie D.R., Walbot V. (1992) Nucleic Acids Res., vol. 20, 4631-4638、および、WO 02/48347の図3参照)を含んだものが好ましい。

また、翻訳効率に関し、3'末端領域においては、XhoI配列とポリA配列の組み合わせが好ましい。さらに、ORF領域の下流部分、すなわちXhoI配列の上流に親和性タグがついたものとポリA配列の組み合わせが好ましい。親和性タグ配列としては、抗原抗体反応など、蛋白質を検出できるいかなる手段を用いるための配列であればよく、制限はない。好ましくは、抗原抗体反応によるアフィニティー分離分析用タグであるFlag-tag配列又はHis-tag配列である。ポリA配列効果としては、Flag-tag等の親和性タグにXhoI配列がついたものとそこへさらにポリA配列がついたものの翻訳効率が上昇する。ここで、His-tagについては、XhoI配列のない構成でも十分な翻訳効率を示し、有効である。

上記の翻訳効率に関し効果のある構成は、対応付け効率にも有効である。

5'UTRをSP6+029とし、3'末端領域を、たとえば、 $Flag+XhoI+A_n(n=8)$ 又は $His+A_n(n=8)$ とすることで、各長さは、5'UTRで約49bp、3'末端領域で約38bp又は約26bp であり、PCRのプライマーにアダプター領域として組み込める長さである。このため、あらゆるベクターやプラスミドや<math>cDNAライブラリーからPCRによって、5'UTR と3'末端領域をもったコード領域を簡単に作成できる。コード領域において、翻訳はORF領域を超えてされてもよい。すなわち、ORF領域の末端に終止コドンがなくてもよい。

ペプチドアクセプター領域は、ペプチドのC末端に結合できるものであれば特に限定されないが、例えば、ピューロマイシン、3°-N-アミノアシルピューロマイシ

ンアミノヌクレオシド (3'-N-Aminoacylpuromycin aminonucleoside, PANS-アミノ酸)、例えばアミノ酸部がグリシンのPANS-Gly、バリンのPANS-Val、アラニンのPANS-Ala、その他、全アミノ酸に対応するPANS-全アミノ酸が利用できる。また、化学結合として3'-アミノアデノシンのアミノ基とアミノ酸のカルボキシル基が脱水縮合した結果形成されたアミド結合でつながった3'-N-アミノアシルアデノシンアミノヌクレオシド(3'-Aminoacyladenosine aminonucleoside, AANS-アミノ酸)、例えばアミノ酸部がグリシンのAANS-Gly、バリンのAANS-Val、アラニンのAANS-Ala、その他、全アミノ酸に対応するAANS-全アミノ酸が利用できる。また、ヌクレオシド又はヌクレオシドとアミノ酸のエステル結合したものなども利用できる。その他、ヌクレオシド又はヌクレオシドに類似した化学構造骨格を有する物質と、アミノ酸又はアミノ酸に類似した化学構造骨格を有する物質を化学的に結合可能な結合様式のものなら全て利用することができる。

ペプチドアクセプター領域は、好ましくは、ビューロマイシンもしくはその誘導体、又は、ビューロマイシンもしくはその誘導体と1残基もしくは2残基のデオキシリボヌクレオチドもしくはリボヌクレオチドからなることが好ましい。ここで、誘導体とは蛋白質翻訳系においてペプチドのC末端に結合できる誘導体を意味する。ビューロマイシン誘導体は、ビューロマイシン構造を完全に有しているものに限られず、ビューロマイシン構造の一部が欠落しているものも包含する。ビューロマイシン誘導体の具体例としては、PANS-アミノ酸、AANS-アミノ酸などが挙げられる。

スペーサー領域は、好ましくは、ポリエチレングリコールを主成分としたPEG領域である。スペーサー領域は、通常には、PEG領域の他に、核酸の3'末端に結合で

きるドナー領域を含む。

核酸の3'末端に結合できるドナー領域は、通常、1以上のヌクレオチドからなる。 ヌクレオチドの数は、通常には $1\sim15$ 、好ましくは $1\sim2$ である。ヌクレオチド はリボヌクレオチドでもデオキシリボヌクレオチドでもよい。ドナー領域は修飾物 質を有していてもよい。

ドナー領域の5'末端の配列は、プレイをコードするコード領域とのライゲーション効率を左右する。コード領域とスペーサー領域をライゲーションさせるためには、少なくとも1残基以上を含むことが必要であり、ポリA配列をもつアクセプターに対しては、少なくとも1残基のdC(デオキシシチジル酸)又は2残基のdCdC(ジデオキシシチジル酸)が好ましい。塩基の種類としては、C>(U又はT)>G>Aの順で好ましい。

PEG領域はポリエチレングリコールを主成分とするものである。ここで、主成分とするとは、PEG領域に含まれるヌクレオチドの数の合計が20 bp以下、又は、ポリエチレングリコールの平均分子量が400以上であることを意味する。好ましくは、ヌクレオチドの合計の数が10 bp以下、又は、ポリエチレングリコールの平均分子量が1000以上であることを意味する。

PEG領域のポリエチレングリコールの平均分子量は、通常には、400~30,000、好ましくは1,000~10,000、より好ましくは2,000~8,000である。ここで、ポリエチレングリコールの分子量が約400より低いと、このスペーサー領域を含む遺伝子型分子を対応付け翻訳したときに、対応付け翻訳の後処理が必要となることがあるが(Liu, R., Barrick, E., Szostak, J.W., Roberts, R.W. (2000) Methods in Enzymology, vol. 318, 268-293)、分子量1000以上、より好ましくは2000以上のPEGを用いると、対応付け翻訳のみで高効率の対応付けができるため、翻訳の後処理が必要なくなる。また、ポリエチレングリコールの分子量が増えると、遺伝子型分子の安定性が増す傾向があり、特に分子量1000以上で良好であり、分子量400以下ではDNAスペーサーと性質がそれほどかわらず不安定となることがある。

ポリエチレングリコールを主成分とするスペーサー領域を有することによって、 対応付け分子がウサギ網状赤血球のみならず小麦胚芽の無細胞翻訳系でも形成可 能となり、両翻訳系での遺伝子型分子の安定性が飛躍的に向上し、翻訳後の処理を 施すことが不要となる。 (2)の態様では、DNAが、蛋白質とストレプトアビジン又はアビジンとの融合蛋白質をコードし、DNAがビオチンにより標識され、DNA一分子がエマルジョンの一区画に含まれる状態で転写及び翻訳が行われることにより、翻訳されたプレイが該DNAと会合することが好ましい。このような対応付け分子を用いる相互作用の検出方法としては、STABLE法が挙げられる。

エマルジョンは、通常には、2種の界面活性剤及びミネラルオイルと、無細胞転写翻訳系の反応液を混合して形成されるW/0型のエマルジョンである。W/0型のエマルジョンを形成するには、通常には、界面活性剤のHLB(hydrophile-lipophile balance)値が $3.5\sim6$ である必要がある。2種の界面活性剤を混合した場合のHLB値は、個々の界面活性剤のHLB値から簡単な計算式で求められる。例えば、Span 85(HLB=1.8及びTween 80(HLB=15.0)を、それぞれ $40.2\mu1$ 及び $9.8\mu1$ の割合で混合することによりHLB=4.4となる。界面活性剤とミネラルオイルの割合は、通常 1:18 (容量比)である。また、反応液の割合はエマルジョン全体に対して $1\sim50\%$ (容量比)であり、通常は 5%である。界面活性剤とミネラルオイルの混合物に、撹拌しながら、低温で、反応液をいくつかに分けて添加し、混合することによりエマルジョンを形成することができる。転写及び翻訳の反応は、エマルジョンの温度を上げることにより、開始させることができる。

プレイをコードするDNAの調製及びこのDNAの無細胞転写翻訳系での転写 及び翻訳は通常の方法に従って行うことができる。

上述のように、ベイト及びプレイに特定の様式で検出用標識及び分離用修飾を行うことにより、無細胞共翻訳により形成された複合体を特異的に検出することができる。

ベイトとプレイの無細胞共翻訳において、無細胞共翻訳を行う無細胞翻訳系 (無細胞転写翻訳系を含む) については、大腸菌E. coli、ウサギ網状赤血球、小麦胚芽の系などいずれでも構わない。in vitroウイルス法では、対応付け分子の形成は、大腸菌E. coliではかなり不安定であるが、ウサギ網状赤血球の系 (Nemoto N, Miyamoto-Sato E, Yanagawa H. (1997) FEBS Lett. 414, 405; Roberts R.W, Szostak J.W. (1997) Proc. Natl. Acad. Sci. USA 94, 12297)では安定であることが確認されており、さらに小麦胚芽の系(特開2002-176987)ではより安定であることが確

認されている。STABLE法では、大腸菌E. coli、ウサギ網状赤血球、小麦胚芽の系などいずれでも構わない。

無細胞共翻訳における翻訳又は転写及び翻訳の条件は、用いる無細胞翻訳系に応じて適宜選択される。

無細胞翻訳系に添加するベイトとプレイのテンプレートは、無細胞翻訳系が転写も生じる無細胞転写翻訳系であれば、RNA又はDNAのどちらでも構わない。

以下、ベイトとして用いるのに好ましい翻訳テンプレートの例について説明する。 本態様の共翻訳スクリーニングにおけるベイトとして、図8に示すように、蛋白 質に翻訳される情報を持つコード部とPEGスペーサー部からなることを特徴とする 翻訳テンプレートを利用する。コード部は、蛋白質に翻訳される情報であり、どの ような配列でも良いが、好ましくは、コード部の3'末端領域にアクセプター (A配 列)を持つ、あるいは、コード部の3'末端領域にアクセプター(A配列)を持ち、かつ A配列の5'上流に翻訳増幅配列 (X配列) を持つことを特徴とする。コード部のA配 列として、短いポリA配列を含む。短いポリA配列とは、通常には2~10塩基のA からなる配列である。X配列として、(C又はG)NN(C又はG)配列を有する配列、たと えば、XhoI配列を有することを特徴とする。PEGスペーサー部は、ポリエチレング リコールを主成分としたPEG領域、コード部と連結するためのドナー領域、および 3'末端にCCA領域を持つ。PEGスペーサー部は、ドナー領域のみ、CCA領域のみでも かまわないが、好ましくは、ポリエチレングリコールを主成分としたPEG領域を含 む構成をとる。CCA領域は、該翻訳テンプレートによって翻訳された蛋白質と、ペ プチド転移反応によって結合する機能を有しないことを特徴とする。PEG領域のポ リエチレングリコールの分子量は、500以上であることを特徴とする。また、ドナ 一領域及び/又はCCA領域において、少なくとも1つの機能付与ユニット(F)を含むこ とを特徴とする。機能付与ユニット(F1及び/又はF2)が、該翻訳テンプレート及 び/又は該翻訳テンプレートから翻訳された蛋白質を固定化又は蛍光ラベル化する ことを特徴とする。固定化物質としてビオチンなどが考えられ、蛍光性物質として、 フルオレセイン、Cy5、又はローダミングリーン(RhG)などが考えられる。これらの コード部や翻訳テンプレート、およびそのライブラリー、さらに、リボソーム上で 翻訳された蛋白質やそのライブラリーに関するものである。

ベイトの翻訳テンプレート(図8のA)は、コード分子(図8のB)に由来するコード部とPEGスペーサー分子(図8のC)に由来するPEGスペーサー部からなる。本態様では、基本的にはコード部の配列によらず、コード部にPEGスペーサー部を連結(ライゲーション)することでその安定性が向上して翻訳効率を向上出来る。しかしながら、さらにコード部の構成やPEGスペーサー部の種類によって、その翻訳効率をより向上させることが可能である。以下にその詳細を記載する。

本態様のコード部(図8のB)は、5'末端領域、0RF領域、3'末端領域からなり、 5'末端にCap構造があってもなくても良い。また、コード部の配列には特に制限は なく、あらゆるベクターやプラスミドに組み込まれたものとしての利用が考えられ る。また、コード部の3'末端領域は、A配列としてポリAx8配列、あるいはX配列と してXhoI配列や4塩基以上でSNNS(SはG又はC)の配列を持つもの、およびA配列とX 配列の組み合わせとしてのXA配列がある。A配列、X配列、又はXA配列の上流に親和 性夕グ配列としてFlag-tag配列、からなる構成が考えられる。ここで、親和性夕グ 配列としてはHA-tagやIgGのプロテインA(zドメイン)などの抗原抗体反応を利用し たものやHis-tagなど、蛋白質を検出又は精製できるいかなる手段を用いるための 配列でもかまわない。ここで、翻訳効率に影響する範囲としては、XA配列の組み合 わせが重要であり、X配列のなかで、最初の4塩基が重要であり、SNNSの配列を持 つものが好ましい。また、5'末端領域は、転写プロモーターと翻訳エンハンサーか らなり、転写プロモーターはT7/T3又はSP6などが利用でき、特に制限はないが、小 麦の無細胞翻訳系では、翻訳のエンハンサー配列としてオメガ配列やオメガ配列の 一部を含む配列を利用することが好ましく、プロモーターとしては、SP6を用いる ことが好ましい。翻訳エンハンサーのオメガ配列の一部(029)は、TMVのオメガ配列 の一部を含んだものである(Gallie D.R., Walbot V. (1992) Nucleic Acids Res., vol. 20, 4631-4638、および、WO 02/48347の図3参照)。コード部のORF領域につ いては、DNA及び/又はRNAからなるいかなる配列でもよい。遺伝子配列、エキソン 配列、イントロン配列、ランダム配列、又は、いかなる自然界の配列、人為的配列 が可能であり、配列の制限はない。

本態様のPEGスペーサー分子(図8のC)は、CCA領域、PEG領域、ドナー領域からなる。最低限必要な構成は、ドナー領域である。翻訳効率に影響する範囲としては、

ドナー領域のみならずPEG領域を持つものが好ましく、さらにアミノ酸との結合能 力のないピューロマイシンを持つことが好ましい。PEG領域のポリエチレングリコ ールの分子量の範囲は、400~30,000で、好ましくは1,000~10,000、より好ましく は2,000~6,000である。また、CCA領域にはピューロマイシンを含む構成と含まな い構成が可能であり、ピューロマイシンについては、ピューロマイシン(Puromycin)、 3'-N-アミノアシルピューロマイシンアミノヌクレオシド (3'-N-Aminoacylpuromycin aminonucleoside, PANS-アミノ酸)、例えばアミノ酸 部がグリシンのPANS-Gly、バリンのPANS-Val、アラニンのPANS-Ala、その他、全ア ミノ酸に対応するPANS-全アミノ酸が利用できる。また、化学結合として3'-アミノ アデノシンのアミノ基とアミノ酸のカルボキシル基が脱水縮合した結果形成され たアミド結合でつながった3'-N-アミノアシルアデノシンアミノヌクレオシド (3'-Aminoacyladenosine aminonucleoside, AANS-アミノ酸)、例えばアミノ酸部 がグリシンのAANS-Gly、バリンのAANS-Val、アラニンのAANS-Ala、その他、全アミ ノ酸に対応するAANS-全アミノ酸が利用できる。また、ヌクレオシド又はヌクレオ シドとアミノ酸のエステル結合したものなども利用できる。その他、ヌクレオシド 又はヌクレオシドに類似した化学構造骨格を有する物質と、アミノ酸又はアミノ酸 に類似した化学構造骨格を有する物質を化学的に結合可能な結合様式のものなら 全て利用することができる。本翻訳テンプレートでは、以上のピューロマイシン誘 導体のアミノ基がアミノ酸と結合する能力を欠いたあらゆる物質、およびピューロ マイシンを欠いたCCA領域も考えられるが、リボソーム上で蛋白質と結合不能なピ ューロマイシンを含むことで、より翻訳効率を高められる。その理由は定かではな いが、蛋白質と結合不能なピューロマイシンがリボソームを刺激することでターン オーバーが促進される可能性がある。CCA領域(CCA)の 5'側に1残基以上のDNA及び/ 又はRNAからなる塩基配列を持つことが好ましい。塩基の種類としては、C>(U又は T)>G>Aの順で好ましい。配列としては、 dC -ピューロマイシン, rC -ピューロマイシ ンなど、より好ましくはdCdC-ピューロマイシン, rCrC-ピューロマイシン, rCdC-ピューロマイシン,dCrC-ピューロマイシンなどの配列で、アミノアシル-tRNAの3' 末端を模倣したCCA配列(Philipps G.R. (1969) Nature 223, 374-377)が適当であ る。本発明の一態様では、これらのピューロマイシンが何らかの方法でアミノ酸と

結合不可能となっている。

本態様のPEGスペーサー部は修飾物質(F1及び/又はF2)を有する構成が可能である。このことによって、翻訳テンプレートを回収、精製による再利用、又は固定化などのためのタグとして利用することが出来る。少なくとも1残基のDNA及び/又はRNAの塩基に修飾物質として、蛍光物質、ビオチン、又はHis-tagなど各種分離タグなどを導入したものが可能である。また、コード部の5'末端領域をSP6+029とし、3'末端領域を、たとえば、Flag+XhoI+A $_n$ (n=8)とすることで、各長さは、5'末端領域で約60bp、3'末端領域で約40bpであり、PCRのプライマーにアダプター領域として設計可能な長さである。これによって新たな効果が生み出された。すなわち、あらゆるベクターやプラスミドやcDNAライブラリーからPCRによって、本態様の5'末端領域と3'末端領域をもったコード部を簡単に作成可能となり、このコード部に、3'UTRの代わりとして PEGスペーサー部をライゲーションすることで、翻訳効率の高い翻訳テンプレートを得られる。

本態様のPEGスペーサー分子とコード分子のライゲーションは、その方法については、一般的なDNAリガーゼを用いるものや光反応による連結など何でもよく、特に限定されるものではない。RNAリガーゼを用いるライゲーションでは、コード部でライゲーション効率に影響を与える範囲としては3'末端領域のA配列が重要であり、少なくとも2残基以上のdA及び/又はrAの混合又は単一のボリA連続鎖であり、好ましくは、3残基以上、より好ましくは6から8残基以上のポリA連続鎖である。PEGスペーサー部のドナー領域の5'末端のDNA及び/又はRNA配列は、ライゲーション対るを左右する。コード部とPEGスペーサー部を、RNAリガーゼでライゲーションするためには、少なくとも1残基以上を含むことが必要であり、ポリA配列をもつアクセプターに対しては、少なくとも1残基のdC(デオキシシチジル酸)又は2残基のdCdC(ジデオキシシチジル酸)が好ましい。塩基の種類としては、C>(U又はT)>G>Aの順で好ましい。さらに、ライゲーション反応時に、PEG領域と同じ分子量のポリエチレングリコールを添加することが好ましい。

次に、プレイとして用いるのに好ましい翻訳テンプレートの例について説明する。本態様の共翻訳スクリーニングにおけるプレイとして、図9に示すように、翻訳テンプレートによってC末端修飾された蛋白質(=対応付け分子)を利用する。翻訳

テンプレートは、蛋白質に翻訳される情報を持つコード部とPEGスペーサー部からなる。コード部の3'末端にA配列を有し、A配列は、短いポリA配列を含む。PEGスペーサー部は、ポリエチレングリコールを主成分としたPEG領域において、ポリエチレングリコールの分子量が400以上であることを特徴とする、また、ドナー領域及び/又はCCA領域において、少なくとも1つの修飾物質(F1及び/又はF2)を含むことを特徴とする。また、CCA領域は、該翻訳テンプレートによって翻訳された蛋白質と、ペプチド転移反応によって結合する機能を有することを特徴とし、代表的にはCCA領域にピューロマイシンを有する。また、修飾物質(F1及び/又はF2)が、該翻訳テンプレート及び/又は該翻訳テンプレートから翻訳された蛋白質を固定化又は蛍光ラベル化することを特徴とする。固定化物質としてビオチンなどが考えられ、蛍光性物質として、フルオレセイン、Cy5、又はローダミングリーン(RhG)などが考えられる。これら、コード部および翻訳テンプレート、およびそのライブラリーが、リボソーム上で翻訳されることにより合成される蛋白質(=対応付け分子)および蛋白質(=対応付け分子)のライブラリーに関するものである。

プレイは、翻訳テンプレートを用いた翻訳によって合成された、翻訳テンプレートで C 末端修飾された蛋白質(図 9 の A; 対応付け分子)であり、翻訳テンプレート(図 9 の B)と、PEGによって C 末端修飾された蛋白質(図 9 の C)の構成に特徴を持つ。以下詳細に記述する。

翻訳テンプレート(図9のB)のPEGスペーサー部は、ビューロマイシンがアミノ酸と連結できることを特徴とする以外は上記のベイトとして用いるのに好ましい翻訳テンプレートと同様である。また、コード部も上記のベイトとして用いるのに好ましい翻訳テンプレートと同様であるが、特に、対応付けに適した構成としては、3'末端領域をA配列にすることが重要であり、トータル蛋白の対応付けの効率が著しく向上してフリー蛋白質の量が激減する。ここでも、コード部の5'末端領域をSP6+029とし、3'末端領域を、たとえば、Flag+XhoI+A $_n$ (n=8)とすることで、各長さは、5'末端領域で約60bp、3'末端領域で約40bpであり、PCRのプライマーにアダプター領域として設計できる長さである。これによって、あらゆるベクターやプラスミドやcDNAライブラリーからPCRによって、本態様の5'末端領域と3'末端領域をもったコード部を簡単に作成可能となり、PEGスペーサー部をライゲーションするこ

とで、対応付け効率の高い翻訳テンプレートが得られる。

本態様のPEGによってC末端修飾された蛋白質(図9のC)は、蛋白質の相互作用検出などにおいて、コード部を利用しない場合、たとえば、FCCS測定、蛍光リーダー、プロテインチップなどに応用する場合は、RNase Aなどで意図的に切断してもよい。切断することによって、コード部の妨害による蛋白質間相互作用の検出の困難性が解消出来る。また、単独の対応付け分子をプレートやビーズやスライドガラスに固定することも可能である。

無細胞共翻訳を、図10を参照して説明する。図10に示すように、ベイトの存在下でプレイがinvitroで翻訳される。図10のA及びBに示されるように、ベイトが蛋白質であって、無細胞翻訳系でプレイと同時に翻訳される場合と、ベイトが、核酸やホルモンなどであって、無細胞翻訳系に添加される場合がある。図10に示すように、プレイは融合蛋白質又は対応付け分子とされる。

複合体は、ベイトと一つのプレイが結合して形成されること(I)の他に、ベイトに結合したプレイにさらに別のプレイが結合することにより形成されること(II)もある。

本発明検出方法によれば、in vitroで複合体の形成を行うことができるので、一 貫してin vitroで蛋白質間又は核酸-蛋白質間などの相互作用を検出できる。

ベイトが蛋白質である場合は、ベイトとしては、目的蛋白質との相互作用のための機能ドメインのみの蛋白質、機能ドメインを含む蛋白質、又は完全長蛋白質などが挙げられる。ここで、完全長蛋白質を用いることは、複数の機能ドメインを有することが一般に予測されるため、さらに網羅的にプレイを検出可能となることから、好ましい。完全長蛋白質は、単独で完全長の蛋白質でもよいし、完全長の蛋白質を再構成する複数のベイトの集まりでもよい。

ベイトは、図11に示したように、複合体であってもよく、これを「複合ベイト」と呼ぶ。複合体にすることによって、より非特異的な吸着を減らすことができ、かつ完全長蛋白質と同様の効果として、より網羅的にプレイを検出することが可能となる。

以上のように、無細胞共翻訳で考えられる複合体としては、単独のベイトと単独 のプレイの複合体、複合ベイトとプレイの複合体、ベイトと複数のプレイの複合体、

及び、複合ベイトと複数のプレイの複合体が可能である。従って、本発明検出法により検出可能な相互作用は、ベイトとプレイとの間の直接の相互作用だけでなく、 複合体を形成するための間接的な相互作用をも包含するものである。

本発明における無細胞共翻訳で最も重要なことは、蛋白質がネイティブな状態でフォールディングしており、翻訳されたての変性していない状態であり、相互作用するべきベイトとプレイ又はベイトとベイトやプレイとプレイが無細胞翻訳系に共存しており、速やかに相互作用できると言うことと考えられる。このことは、別々に翻訳して翻訳直後に混合して共存させるよりも、共に翻訳したものの方が優れた結果が得られたことにより支持される。すなわち、in vitroで翻訳された蛋白質がネイティブなフォールディング状態で、蛋白質又は核酸などと出会うことができるため、速やかに相互作用による複合体の形成が可能となったためと思われる。

従来の相互作用の検出法では、ベイトを大腸菌で大量に発現精製する必要があった。例えば、TAP法などでベイトとプレイの相互作用を細胞で発現させる場合は、最低一ヶ月の準備が必要であった。また、GST融合蛋白によるプルダウン法を採用しているmRNAディスプレイ法では、ベイトを大腸菌などで大量に発現させて精製するため、最低2~3週間かかり、大腸菌で発現しないものはベイトに出来ないなどの問題があり、さらに、プレイと相互作用させるにはプレイの50~100倍の量のベイトを添加する必要があった。無細胞共翻訳では、無細胞翻訳系において、ほぼ同量のmRNA又はDNAテンプレートを添加すればよいだけとなり、ベイトを細胞で発現させる必要は全くなくなり作業時間の大幅な短縮が行える。さらに、複合ベイトや完全長蛋白質によって、ベイトとプレイの相互作用をより強化し特異的なものとし、非特異的な結合の検出を回避することができる。また、複合ベイトによって、その第二のベイトと相互作用するより多くのプレイを網羅的に解析できる。

これまで、一貫してin vitroで相互作用による複合体形成とスクリーニングを実現するシステムは存在しなかったが、以上の本発明検出法によって、ベイトも含めて完全にin vitroで翻訳とスクリーニングを行って、蛋白質間又は蛋白質-核酸間の相互作用を非特異的な検出を回避しかつ網羅的に検出可能なシステムを構築できる。従って、本発明は、本発明検出方法を利用したスクリーニング方法も提供する。

本発明スクリーニング法は、ベイトとプレイが無細胞共翻訳を通して相互作用して複合体を形成し、複合体のスクリーニングによってベイトと相互作用するプレイを解析することを特長とする。従って、本発明スクリーニング方法は、本発明検出方法により、ベイトとプレイとの間の相互作用を検出する検出工程を含む他は、ベイトとプレイとの間の相互作用を検出する検出工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイの通常のスクリーニング方法と同様でよい。

本発明スクリーニング方法は、選択工程で選択されたプレイを調製する調製工程をさらに含み、調製されたプレイを、検出工程で使用されたベイトの代わりに又はそのベイトと共に用いて、検出工程、選択工程及び調製工程を繰り返すことが好ましい。この態様は、例えば、図12に示すように、1)プレイ及びベイトが相互作用を形成する無細胞翻訳系における無細胞共翻訳の工程、2)ベイトと相互作用しているプレイを検出するスクリーニングの工程、3)プレイを分析及び解析する工程、及び4)3)で分析及び解析されたプレイを新たな次のベイトとし、1)から繰り返す工程から構成される。1)及び2)の工程が検出工程及び選択工程に相当し、3)の工程が調製工程に相当する。すなわち、検出工程のうちの、ベイトとプレイを接触させる工程が無細胞共翻訳の工程に相当し、検出工程のうちの複合体の検出及び選択工程がスクリーニングの工程に相当する。

本発明スクリーニング法では、選択工程で選択されたプレイを再度検出工程に付してもよい。

本発明スクリーニング法では、ベイトと複数のプレイの集団であるプレイ・ライブラリーとの無細胞共翻訳を行い、スクリーニングの工程において、2つ以上のプレイが検出されてもよい。

図11に示すように、複合ベイトとプレイが共存し、相互作用によって複合ベイトとプレイの複合体を形成する場合がある。この無細胞共翻訳で、プレイ・ライブラリーの複数のプレイがベイトと共存し、相互作用によってベイトと複数のプレイの複合体を形成することによって、スクリーニングにおいて、一挙に網羅的な相互作用する複数のプレイを検出できる。また、ベイトが完全長蛋白質であることによって、完全長蛋白質は一般に相互作用の機能ドメインを複数含むので、より多くの

プレイを網羅的に検出可能となる。

さらに、図11に示すように、複合ベイトと相互作用する複数のプレイの複合体を形成することによって、複合ベイトと相互作用する複数のプレイを検出でき、また、第二のベイトがベイトとプレイの相互作用の補強剤となり、より特異的な相互作用が実現されることによって、網羅的検出における非特異的検出の回避が可能となる。in vitroウイルス法やSTABLE法など進化分子工学的手法では、プレイは対応付け分子(fusion)となる。プレイ・ライブラリーや複数のプレイを用いた場合の複合体の形成では、プレイは直接ベイトと相互作用する場合としない場合がある。

複合体のスクリーニングにより得られた複合体が対応付け分子である場合には、図12に示すように、複合体を形成するプレイをRT-PCR又はPCRにより検出し、さらに、PCR産物をプレイとして再スクリーニングする(プレイの再構築)、あるいは、PCR産物から解析したプレイを新たな次のベイトとしてスクリーニングしてもよい。ここで、PCR産物から再スクリーニングする、あるいは、PCR産物から解析したプレイを新たな次のベイトとしてスクリーニングする方法は、in vitroウイルス法やSTABLE法など進化分子工学的手法においてのみ可能であり、プルダウン法、TAP法など蛋白質を直接解析する方法ではできない。

対応付け分子を用いた場合には、スクリーニングの後、RT-PCR又はPCRによって蛋白質プレイの遺伝子配列を知ることが出来る。図10及び11に示すように、ここでの蛋白質プレイとは、ベイトと相互作用しているプレイ又はそのプレイと相互作用しているプレイなどであり、ベイトと相互作用しているすべての複数のプレイが網羅的に解析できる。さらにプレイの再スクリーニングが必要な場合は、RT-PCR又はPCRの産物であるDNAテンプレートを転写し、同じサイクルを繰り返す。また、RT-PCR又はPCRとそれに続くシークエンスによってプレイが定まった場合は、その蛋白質プレイはベイトとして使えるようになる。はじめのベイトに対して相互作用するプレイが複数個見つかれば、複合ベイトを形成することが出来るようになる。

無細胞共翻訳を用いると、プルダウン法やTAP法においても一貫してin vitroで蛋白質間相互作用を検出できることになるが、TAP法では対応付け分子を形成していないので、プレイの解析において直接的に蛋白質を解析しなければならない。そ

こで、ブルダウン法やTAP法をスクリーニングの方法としてin vitroウイルス法やSTABLE法に応用すれば、対応付け分子を形成しているので、RT-PCR又はPCRによって、相互作用するプレイの解析においてその遺伝子配列を簡単に検出することが出来る。さらに、無細胞共翻訳を用いると、in vitroウイルス法やSTABLE法において、一貫してin vitroで蛋白質間相互作用を検出できることになる。また、プレイの数が莫大な場合は、サイクルを回すことで再スクリーニングによりプレイを絞り込むことが可能である。また、解析されたプレイは、次の解析では、ベイトとして使うことができ、ベイトの数が増えれば、ベイトの複合化が進み、さらなるプレイが検出されることにつながる。このように、プレイをベイトとして次のサイクルで使用することは、対応付け分子を用いるin vitroウイルス法やSTABLE法などでのみ簡単に実現できる。しかしながら、mRNAディスプレイなどの方法では、新しいベイトのGST融合蛋白を大腸菌で大量合成と精製が必要であり、ベイトの用意に時間がかかり困難である。無細胞共翻訳によれば、その必要もなく簡単にサイクルを回すことが出来る。

無細胞共翻訳後の複合体のスクリーニングにおいて、無細胞共翻訳によって出来た複合体を壊すことなくプレイを網羅的にスクリーニングできることが好ましい。このために、親和性タグなどによってベイトに固定化の仕組みを持たせ、ベイトと相互作用するプレイを検出してもよい。その固定化の仕組みは、いかなるものでも構わない。たとえば、既存のTAP法などのように、IgG-プロテインA親和性やカルモジュリンビーズを用いた2段階のスクリーニングを行う方法、又はプルダウン法のように、ストレプトアビジン又はアビジン-ビオチン親和性、GST-tag、Flag-tag,T7-tag,His-tagなどを利用した一段階又は二段階のスクリーニングを行う方法が挙げられる。

プレイ・ライブラリーとしては、cDNAライブラリー(ランダムプライミング・ライブラリー、dTプライミング・ライブラリー)、ランダム・ライブラリー、ペプチド・ライブラリー、ホルモン・ライブラリー、抗体・ライブラリー、リガンド・ライブラリー、医薬化合物ライブラリーなどが挙げられ、いかなるライブラリーでも構わない。たとえば、プレイ・ライブラリーとしてランダムプライミング・cDNAライブラリーを用いた場合、このライブラリーには完全長プレイは望めないが、機

能ドメインを含むプレイは期待できる。このようなライブラリーは、特に、複合ベイトや完全長蛋白質との組み合わせによるスクリーニングに用いると、プレイの網羅的検出に有効となる。

ランダムプライミングライブラリーの例としては、マルチクローニングサイト (MCS)の5'側に、転写プロモーターとしてSP6のRNAポリメラーゼのプロモーター (SP6)と、翻訳エンハンサーとしてタバコモザイクウイルスのTMVオメガ配列の一部 (029)とを含んだ5'非翻訳(UTR)領域を持ち、かつMCSの3'側に親和タグ配列として、抗原抗体反応によるアフィニティー分離分析用タグであるFlag-tag配列を、MCSに組み込まれた挿入配列から発現した蛋白質のC末端にFlag-tagが付加されるように含む3'末端を持つベクターのMCSに、ランダムプライミングで得られた cDNAが組み込まれたものが挙げられる。

上記の本発明検出方法は、ベイトとプレイとを接触させ複合体を形成させる工程を含んでいる。従って、この工程に準じて、ベイトとそのベイトと相互作用するプレイとの複合体を形成させる方法が提供される。

本発明形成方法は、ベイトとベイトと相互作用する蛋白質であるプレイとの複合体の形成において、ベイトとして本発明の蛋白質を用いるものであり、好ましくは、すさらに、ベイト及びプレイに特定の様式で検出用標識及び分離用修飾を行い、そして、無細胞共翻訳を行うことを主な特徴とするものである。従って、本発明形成方法の好ましい構成は、ベイト及びプレイに特定の様式で検出用標識及び分離用修飾を行い、そして、無細胞共翻訳を行うことを除いて、ベイトとそのベイトと相互作用するプレイとを接触させることを含む、ベイトとプレイとの複合体の通常の形成方法と同様でよい。ベイト及びプレイの特定の様式での検出用標識及び分離用修飾ならびに無細胞共翻訳については、本発明検出方法に関し説明した通りでよい。

本発明形成方法では、相互作用が既知のベイトとプレイとの間の複合体だけでなく、ベイトと、複数のプレイからなるプレイライブラリーとを接触させることにより、ベイトとそのベイトと相互作用するプレイとを接触させる工程を行うことによって、相互作用が未知の要素を含む複合体を形成することもできる。

その他の本発明の蛋白質の利用方法としては以下のものが挙げられる。

本発明の蛋白質を用いた、蛍光相関分光法、蛍光イメージングアナライズ法、蛍

光共鳴エネルギー移動法、エバネッセント場分子イメージング法、蛍光偏光解消法、表面プラズモン共鳴法、又は、固相酵素免疫検定法により行われる蛋白質と物質の相互作用解析方法。

本発明の蛋白質を用い、該蛋白質のC末端に結合したコード部の塩基配列の増幅 により蛋白質と物質の相互作用を検出する方法。

本発明の蛋白質を用い、無細胞共翻訳法や無細胞共翻訳スクリーニング法を用いることを特徴とする蛋白質と物質の相互作用を検出する方法。

本発明の蛋白質を用い、蛋白質を蛍光ラベル化及び/又は固定化することを特徴 とする、蛋白質と物質の相互作用解析方法。

本発明の蛋白質を用い、in vitroで蛋白質又は物質の相互作用を解析する方法。 本発明の蛋白質を用い、in vitroで共翻訳法を利用することを特徴とする蛋白質 又は物質との相互作用を解析する方法。

本発明の蛋白質を用い、in vivoで蛋白質又は物質との相互作用を解析する方法。 本発明の蛋白質をコードする核酸を用いた、上記の相互作用解析方法。 また、以下のものも挙げられる。

蛋白質と標的分子との間の相互作用を解析する方法であって、該蛋白質を含む、修飾剤がC末端に結合したC末端修飾蛋白質を用いることを特徴とする方法。相互作用の解析は、蛍光相関分光法、蛍光イメージングアナライズ法、蛍光共鳴エネルギー移動法、エバネッセント場分子イメージング法、蛍光偏光解消法、表面プラズモン共鳴法、又は、固相酵素免疫検定法により行うことができる。C末端修飾蛋白質を固定化してもよい。標的分子が固定されたアレイ上にC末端修飾蛋白質を添加し、該標的分子と特異的に結合した該C末端修飾蛋白質を検出してもよい。

本態様の解析方法においては、通常には、上記で得られた本発明修飾蛋白質と標的分子を、修飾物質の種類や反応系の種類などにより適宜組み合わせて接触せしめ、該本発明修飾蛋白質又は該標的分子が発する信号において両分子間の相互作用に基づいて発生される上記信号の変化を測定することにより相互作用を解析する。相互作用の解析は、例えば、蛍光相関分光法、蛍光イメージングアナライズ法、蛍光共鳴エネルギー移動法、エバネッセント場分子イメージング法、蛍光偏光解消法、表面プラズモン共鳴法、又は、固相酵素免疫検定法により行われる。これらの方法

の詳細については下記で説明する。

「標的分子」とは、本発明修飾蛋白質と相互作用する分子を意味し、具体的には蛋白質、核酸、糖鎖、低分子化合物などが挙げられ、好ましくは、蛋白質又はDNAである。

蛋白質としては、本発明修飾蛋白質と相互作用する能力を有する限り特に制限はなく、蛋白質の全長であっても結合活性部位を含む部分ペプチドでもよい。またアミノ酸配列、およびその機能が既知の蛋白質でも、未知の蛋白質でもよい。これらは、合成されたペプチド鎖、生体より精製された蛋白質、又はcDNAライブラリー等から適当な翻訳系を用いて翻訳し、精製した蛋白質等でも標的分子として用いることができる。合成されたペプチド鎖はこれに糖鎖が結合した糖蛋白質であってもよい。これらのうち好ましくはアミノ酸配列が既知の精製された蛋白質か、又はcDNAライブラリー等から適当な方法を用いて翻訳および精製された蛋白質を用いることができる。

核酸としては、本発明修飾蛋白質と相互作用する能力を有する限り、特に制限はなく、DNA又はRNAも用いることができる。また、塩基配列又は機能が既知の核酸でも、未知の核酸でもよい。好ましくは、蛋白質に結合能力を有する核酸としての機能、および塩基配列が既知のものか、又はゲノムライブラリー等から制限酵素等を用いて切断単離してきたものを用いることができる。

糖鎖としては、本発明修飾蛋白質と相互作用する能力を有する限り、特に制限はなく、その糖配列又は機能が、既知の糖鎖でも未知の糖鎖でもよい。好ましくは、 既に分離解析され、糖配列又は機能が既知の糖鎖が用いられる。

低分子化合物としては、本発明修飾蛋白質と相互作用する能力を有する限り、特に制限はない。機能が未知のものでも、又は蛋白質に結合する能力が既に知られているものでも用いることができる。

これら標的分子が本発明修飾蛋白質と行う「相互作用」とは、通常は、蛋白質と標的分子間の共有結合、疎水結合、水素結合、ファンデルワールス結合、および静電力による結合のうち少なくとも1つから生じる分子間に働く力による作用を示すが、この用語は最も広義に解釈すべきであり、いかなる意味においても限定的に解釈してはならない。共有結合としては、配位結合、双極子結合を含有する。また

静電力による結合とは、静電結合の他、電気的反発も含有する。また、上記作用の 結果生じる結合反応、合成反応、分解反応も相互作用に含有される。

相互作用の具体例としては、抗原と抗体間の結合および解離、蛋白質レセプターとリガンドの間の結合および解離、接着分子と相手方分子の間の結合および解離、酵素と基質の間の結合および解離、核酸とそれに結合する蛋白質の間の結合および解離、情報伝達系における蛋白質同士の間の結合と解離、糖蛋白質と蛋白質との間の結合および解離、又は糖鎖と蛋白質との間の結合および解離が挙げられる。

用いられる標的分子は、態様に応じて修飾物質により修飾して用いることができる。修飾物質は、通常、蛍光性物質などの非放射性修飾物質から選択される。蛍光物質としては、フリーの官能基(例えばカルボキシル基、水酸基、アミノ基など)を持ち、蛋白質、核酸等の上記標的物質と連結可能な種々の蛍光色素、例えばフルオレセイン系列、ローダミン系列、Cy3、Cy5、エオシン系列、NBD系列などのいかなるものであってもよい。その他、色素など修飾可能な化合物であれば、その化合物の種類、大きさは問わない。

これらの修飾物質は、標的分子と本発明修飾蛋白質との間の相互作用に基づいて 発生される信号の変化の測定又は解析方法に適したものが適宜用いられる。

上記修飾物質の標的分子への結合は、それ自体既知の適当な方法を用いて行うことができる。具体的には、例えば、標的分子が蛋白質の場合、WO 02/48347に記載された C末端を修飾する方法等を用いることができる。また標的分子が核酸の場合は、予め修飾物質を共有結合などで結合させたオリゴ D N A プライマーを用いた P C R を行う方法などによって簡便に修飾することができる。

また、本発明修飾蛋白質又は本発明に用いられる標的分子は態様に応じて、固相に結合させる(即ち、固定化する)場合があるが、固相に結合させる方法としては、修飾物質を介して結合させるものと、それ以外の部分により結合させるものが挙げられる。

修飾物質を介して結合させる場合に用いられる修飾物質は、通常には、特定のポリペプチドに特異的に結合する分子(以下、「リガンド」と称することがある。)であり、固相表面には該リガンドと結合する特定のポリペプチド(以下、「アダプター蛋白質」と称することがある)を結合させる。アダプター蛋白質には、結合蛋

白質、受容体を構成する受容体蛋白質、抗体なども含まれる。

アダプター蛋白質/リガンドの組み合わせとしては、例えば、アビジンおよびストレプトアビジン等のビオチンおよびイミノビオチン結合蛋白質/ビオチン又はイミノビオチン、マルトース結合蛋白質/マルトース、G蛋白質/グアニンヌクレオチド、ポリヒスチジンペプチド/ニッケル又はコバルト等の金属イオン、グルタチオンーSートランスフェラーゼ/グルタチオン、DNA結合蛋白質/DNA、抗体/抗原分子(エピトープ)、カルモジュリン/カルモジュリン結合ペプチド、ATP結合蛋白質/ATP、又はエストラジオール受容体蛋白質/エストラジオールなどの各種受容体蛋白質/そのリガンドなどが挙げられる。

これらの中で、アダプター蛋白質/リガンドの組み合わせとしては、アビジンおよびストレプトアビジンなどのビオチンおよびイミノビオチン結合蛋白質/ビオチン又はイミノビオチン、マルトース結合蛋白質/マルトース、ポリヒスチジンペプチド/ニッケル又はコバルト等の金属イオン、グルタチオンーSートランスフェラーゼ/グルタチオン、抗体/抗原分子(エピトープ)、などが好ましく、特にストレプトアビジン/ビオチン又はイミノビオチンの組み合わせが最も好ましい。これらの結合蛋白質は、それ自体既知のものであり、該蛋白質をコードするDNAは、既にクローニングされている。

アダプター蛋白質の固相表面への結合は、それ自体既知の方法を用いることができるが、具体的には、例えば、タンニン酸、ホルマリン、グルタルアルデヒド、ピルビックアルデヒド、ビスージアゾ化ベンジゾン、トルエン-2,4-ジイソシアネート、アミノ基、活性エステルに変換可能なカルボキシル基、又はホスホアミダイドに変換可能な水酸基又はアミノ基などを利用する方法を用いることができる。

修飾物質以外の部分により固相に結合させる場合は、通常蛋白質、核酸、糖鎖、低分子化合物を固相に結合させるのに用いられる既知の方法、具体的には例えば、タンニン酸、ホルマリン、グルタルアルデヒド、ピルビックアルデヒド、ビスージアゾ化ベンジゾン、トルエン-2,4-ジイソシアネート、アミノ基、活性エステルに変換可能なカルボキシル基、又はホスホアミダイドに変換可能な水酸基又はアミノ基などを利用する方法を用いることができる。

固相は、通常、蛋白質や核酸等を固定化するのに用いられるものでよく、その材

質および形状は特に限定されない。例えば、ガラス板やニトロセルロースメンブレンやナイロンメンブレンやポリビニリデンフロライド膜、又はプラスチック製のマイクロプレート等を用いることができる。

「測定」とは解析のために用いられる信号の変化を収集するための手段であり、いかなる意味においても限定的に解釈してはならない。用いられる測定法としては、例えば、蛍光相関分光法、蛍光共鳴エネルギー移動法、エバネッセント場分子イメージング法、蛍光偏光解消法、蛍光イメージングアナライズ法、表面プラズモン共鳴法、固相酵素免疫検定法など、分子間相互作用を検出できるあらゆる系が利用可能である。

この測定法は、標的分子が固定されたアレイ上に本発明修飾蛋白質を添加し、該標的分子と特異的に結合した本発明修飾蛋白質を検出することを含む方法も含む。標的分子が固定されたアレイとは、標的分子がそれらの同定が可能な配置で固定化されている固相を意味する。該標的分子と特異的に結合した本発明修飾蛋白質の検出の方法は、該標的分子と特異的に結合した本発明修飾蛋白質が検出される限り、特に限定されず、通常には、本発明修飾蛋白質を添加したアレイから、標的分子に結合しない本発明修飾蛋白質を洗浄により除去し、残った本発明修飾蛋白質を検出する方法が挙げられる。

以下、測定法の例について説明する。

(1) 蛍光相関分光法

蛍光相関分光法(Fluorescence Correlation Spectroscopy (FCS): Eigen, M., et al., Proc. Natl. Acad. Sci. USA, 91, 5740-5747(1994))は、共焦点レーザー顕微鏡等の下で、粒子の流動速度、又は拡散率、容積収縮等を測定する方法であり、本発明においては、本発明修飾蛋白質(C末端修飾蛋白質)と標的分子間の相互作用により元の修飾分子1分子の並進ブラウン運動の変化を測定することにより、相互作用する分子を測定することができる。

具体的には試料粒子が励起光により励起されて、試料液容積の一部において蛍光を放射し、この放射光を測定し光子割合を得る。この値は、特定の時間に観測されている空間容積中に存在する粒子の数と共に変化する。上述した種々のパラメターは自己相関関数を使用してこの信号の変動から算出され得る。このFCSを行う為の

装置もカールツァイス (Zeiss) 社等から市販されており、本方法においてもこれらの装置を用いて解析を行うことができる。

この方法を用いて蛋白質-標的分子間相互作用の測定又は解析を行う場合、C末端修飾蛋白質又は標的分子のいずれも溶液として供することが必要である(液相法)。標的分子は修飾の必要はない。また相互作用を調べようとするC末端修飾蛋白質より非常に分子量の小さい分子は、C末端修飾蛋白質のブラウン運動に影響を及ぼさないため本方法においてはふさわしくない。

しかし、2種類の蛍光色素を用いる蛍光相互相関分光法 (FCCS) は、1種類の蛍光色素を用いるFCSでは困難であった同じくらいの分子量をもつ蛋白質間の相互作用も検出できる。2種類の蛍光色素を用いる他の方法としては蛍光共鳴エネルギー移動 (FRET) 法が知られているが、FRETが生じるためには2つの蛍光色素が40~50 A以内に近接する必要があり、蛋白質の大きさや蛍光色素の付いている位置によっては、相互作用していてもFRETが観測されない危険性がある。FCCS法では相互相関の検出は蛍光色素間の距離に依存しないので、そのような問題がない。一方、他の検出系である蛍光偏光解消法と比較すると、FCCS法は必要なサンブル量が少なく、検出時間が短く、HTSのための自動化が容易等の長所がある。さらにFCCS法では蛍光標識された分子の大きさや数というきわめて基本的な情報が得られるので、表面プラズモン共鳴法のように汎用的な用途に利用できる可能性がある。両者の違いは、表面プラズモン共鳴法では蛋白質が固定化された状態で相互作用を検出するのに対して、FCCS法ではより天然の状態に近い溶液中の相互作用を見ることができる点にある。FCCS法では、蛋白質の固定化が必要ないかわりに、蛋白質を蛍光色素で標識する必要があるが、本発明により、この課題を克服することが可能となった。

また、FCCS法では細胞内の環境に近い溶液状態で蛋白質・蛋白質相互作用や蛋白質・核酸相互作用を調べることができ、かつ解離定数(結合定数)を1回の測定で簡便に算出することができる。

本方法においてC末端修飾蛋白質に標的分子を接触せしめる方法としては、両分子が相互作用するに十分な程度に接触する方法であれば如何なるものであってもよいが、好ましくは市販のFCS用装置の測定用ウェルに通常生化学的に用いられる緩衝液等に適当な濃度でC末端修飾蛋白質溶解した溶液を投入し、さらに同緩衝

液に適当な濃度で標的分子を溶解した溶液を投入する方法によって行われる。

この方法において、同時に多数の解析を行う方法としては、例えば上記FCS用 測定装置の各測定用ウェルにそれぞれ異なる複数のC末端修飾蛋白質を投入し、こ れに特定の標的分子溶液を投入するか、あるいは特定のC末端修飾蛋白質を投入し、 各ウェルに互いに異なる複数種の標的分子溶液を投入する方法が用いられる。

(2) 蛍光イメージングアナライズ法

蛍光イメージングアナライズ法は、固定化された分子に、修飾分子を接触せしめ、両分子の相互作用により、固定化された分子上にとどまった修飾分子から発せられる蛍光を、市販の蛍光イメージングアナライザーを用いて測定又は解析する方法である。

この方法を用いて蛋白質-標的分子間相互作用の測定又は解析を行う場合、C末端修飾蛋白質又は標的分子のいずれか一方は上記した方法により固定化されていることが必要である。標的分子は固定化して用いる場合には修飾されているものと、されていないもののどちらも利用可能である。また、固定化しないで用いる場合には上記した修飾物質により修飾されていることが必要である。C末端修飾蛋白質は、修飾部を介して固定化されているものも、修飾部以外の部分で固定化されているものも用いることができる。

C末端修飾蛋白質、又は標的分子を固定化するための基板(固相)としては、通常、蛋白質や核酸等を固定化するのに用いられるガラス板やニトロセルロースメンブレンやナイロンメンブレン、又はプラスチック製のマイクロプレート等も用いることができる。また、表面が種々の官能基(アミノ基、カルボキシル基、チオール基、水酸基等)や種々のリガンド(ビオチン、イミノビオチン、ニッケル又はコバルト等の金属イオン、グルタチオン、糖類、ヌクレオチド類、DNA、RNA、抗体、カルモジュリン、受容体蛋白質等)が結合した上記基板等も用いることができる。

本方法において修飾標的分子又はC末端修飾蛋白質を固定化分子へ接触せしめる方法としては、両分子が相互作用するに十分な程度に接触する方法であればいかなるものであってもよいが、好ましくは修飾標的分子又はC末端修飾蛋白質を生化学的に通常使用される緩衝液に適当な濃度で溶解した溶液を作成し、これを固相表面に接触させる方法が好ましい。

両分子を接触せしめた後、好ましくは過剰に存在する修飾標的分子又はC末端修飾蛋白質を同緩衝液等により洗浄する工程を行い、固相上にとどまった標的分子又はC末端修飾蛋白質の修飾物質から発せられる蛍光信号、又は固定化されている修飾分子から発せられる蛍光と固相上にとどまった修飾分子から発せられる蛍光が混ざり合った信号を、市販のイメージングアナライザーを用いて測定又は解析することにより、固定化された分子と相互作用する分子を同定することができる。

この方法において、同時に多数の解析を行う方法としては、例えば上記固相表面に、複数のC末端修飾蛋白質又は修飾もしくは非修飾標的分子を番地付けして固定化する方法、又は1種類のC末端修飾蛋白質又は修飾もしくは非修飾標的分子に固定化されていない複数種のC末端修飾蛋白質又は修飾標的分子を接触させる方法等が用いられる。複数種のC末端修飾蛋白質又は修飾標的分子を接触させる場合には、固相にとどまった該分子を緩衝液の濃度の差等により解離させて取得し、これを既知の方法により分析することにより同定できる。

(3) 蛍光共鳴エネルギー移動法

2種類の蛍光色素を用いる他の分子間相互作用検出法として、蛍光共鳴エネルギー移動(FRET)法がよく知られている。FRET とは、2種類の蛍光色素の一方(エネルギー供与体)の蛍光スペクトルと、もう一方(エネルギー受容体)の吸収スペクトルに重なりがあるとき、2つの蛍光色素間の距離が十分小さいと、供与体からの発光が起こらないうちに、その励起エネルギーが受容体を励起してしまう確率が高くなる現象をいう。したがって、相互作用を検出したい2つの蛋白質を、それぞれ供与体および受容体となる蛍光色素で標識しておき、供与体を励起すれば、2つの蛋白質が相互作用しない場合は、蛍光色素間の距離が大きいためFRETは起こらず、供与体の蛍光スペクトルが観察されるが、2つの蛋白質が相互作用して蛍光色素間の距離が小さくなると、FRETにより受容体の蛍光スペクトルが観察されるので、蛍光スペクトルの波長の違いから蛋白質間相互作用の有無を判別することができる。蛍光色素としては、供与体がフルオレセイン、受容体がローダミンという組み合わせがよく用いられている。また最近では、蛍光緑色蛋白質(GFP)の波長の異なる変異体の組み合わせにより、細胞の中でFRETを観察し相互作用を検出する試みがなされている。この方法の欠点としては、FRETが生じるために2つの蛍光色素

が 40~50Å以内に近接する必要があるため、蛋白質の大きさや蛍光色素の付いている位置によっては、相互作用していてもFRETが観測されない危険性があるという点が挙げられる。

(4) エバネッセント場分子イメージング法

エバネッセント場分子イメージング法とは、Funatsu, T., et al., Nature, 374, 555-559 (1995)等に記載されている方法で、ガラス等の透明体に固定化した分子に溶液として第2の分子を接触せしめ、これにエバネッセント場が発生する角度でレーザー光等の光源を照射し、発生したエバネッセント光を検出器によって測定又は解析する方法である。これらの操作は、それ自体既知のエバネッセント場蛍光顕微鏡装置を用いて行うことができる。

この方法を用いて蛋白質ー標的分子間相互作用の測定又は解析を行う場合、C末端修飾蛋白質又は標的分子のいずれか一方は上記した方法により固定化されていることが必要である。標的分子は固定化する場合は修飾の必要はないが、固定化しないで用いる場合には上記した修飾物質により修飾されていることが必要である。

C末端修飾蛋白質、又は標的分子を固定化するための基板としては、ガラス等の材質の基板が用いられ、好ましくは石英ガラスが用いられる。また、レーザー光の散乱等を防ぐために表面を超音波洗浄したものが好ましい。

本方法において固定化していないC末端修飾蛋白質又は修飾標的分子を固定化分子へ接触せしめる方法としては、両分子が相互作用するに十分な程度に接触する方法であればいかなるものであってもよいが、好ましくは固定化していないC末端修飾蛋白質又は修飾標的分子を生化学的に通常使用される緩衝液に適当な濃度で溶解した溶液を作成し、これを固相表面に滴下する方法が好ましい。

両分子を接触せしめた後、エバネッセント場照明により励起された蛍光をCCDカメラ等の検出器を用いて測定することにより、固定化された分子と相互作用する分子を同定することができる。

この方法において、同時に多数の解析を行う方法としては、例えば上記基板に、 複数のC末端修飾蛋白質又は修飾標的分子を番地付けして固定化する方法等が用 いられる。

(5) 蛍光偏光解消法

蛍光偏光法 (Perran, J., et al., J. Phys. Rad., 1, 390-401(1926)) は、蛍光偏光で励起された蛍光分子が、励起状態の間、定常状態を保っている場合には同一の偏光平面で蛍光を放射するが、励起された分子が励起状態中に回転ブラウン運動等を行った場合に、放射された蛍光は励起光とは異なった平面になることを利用する方法である。分子の運動はその大きさに影響を受け、蛍光分子が高分子である場合には、励起状態の間の分子の運動はほとんどなく、放射光は偏光を保ったままになっているのに対して、低分子の蛍光分子の場合は、運動速度が速いために放射光の偏光が解消される。そこで、平面偏光で励起された蛍光分子から放射される蛍光の強度を、元の平面とそれに垂直な平面とで測定し、両平面の蛍光強度の割合からこの分子の運動性およびその存在状態に関する情報が得られるものである。この方法によれば、夾雑物があってもこれに影響されることなく、蛍光修飾された分子と相互作用する標的分子の挙動を追跡できる。これは蛍光修飾された分子と標的分子が相互作用するときにのみ、偏光度の変化として測定されるからである。

この方法を行うための装置としては例えばBECON (Panyera社製)等が市販されており、本方法もこれらの装置を用いることにより行うことができる。

この方法を用いて蛋白質-標的分子間相互作用の測定又は解析を行う場合、C末端修飾蛋白質又は標的分子のいずれも溶液として供する必要がある。標的分子は修飾の必要はない。また相互作用を調べようとするC末端修飾蛋白質より非常に分子量の小さい分子は、C末端修飾蛋白質のブラウン運動に影響を及ぼさないため本方法においてはふさわしくない。

本方法においてC末端修飾蛋白質に標的分子を接触せしめる方法としては、両分子が相互作用するに十分な程度に接触する方法であれば如何なるものであってもよいが、好ましくは市販の蛍光偏光解消装置の測定用ウェルに通常生化学的に用いられる緩衝液等に適当な濃度でC末端修飾蛋白質溶解した溶液を投入し、さらに同緩衝液に適当な濃度で標的分子を溶解した溶液を投入する方法によって行われる。

本方法において測定するC末端修飾蛋白質および標的分子との間の相互作用は、必ずしも抗原抗体反応ほど特異性は高くないことが考えられるため、最適の組み合わせを検出するためには、相互作用の程度を数値化することが有効である。相互作用の程度を示す指標としては、例えば一定濃度のC末端修飾蛋白質に対して、極大

蛍光偏光度を与える最小標的物濃度の値等を用いることができる。

この方法において、同時に多数の解析を行う方法としては、例えば上記蛍光偏光解消法測定装置の各測定用ウェルにそれぞれ異なる複数のC末端修飾蛋白質を投入し、これに特定の標的分子溶液を投入するか、又は特定のC末端修飾蛋白質を投入し、各ウェルに互いに異なる複数種の標的分子溶液を投入する方法が用いられる。

(6)表面プラズモン共鳴法

表面プラズモン共鳴法とは、金属/液体界面で相互作用する分子によって表面プラズモンが励起され、これを反射光の強度変化で測定する方法である (Cullen, D.C., et al., Biosensors, 3(4), 211-225(1987-88))。この方法を用いて蛋白質一標的分子間相互作用の測定又は解析を行う場合、C末端修飾蛋白質は上記した方法により固定化されていることが必要であるが、標的分子の修飾は必要ない。

C末端修飾蛋白質を固定化するための基板としては、ガラスの等の透明基板上に金、銀、白金等の金属薄膜が構成されたものが用いられる。透明基板としては、通常表面プラズモン共鳴装置用に用いられるものであればいかなるものであってもよく、レーザー光に対して透明な材料からなるものとして一般的にはガラス等からなるものであり、その厚さは 0.1~5 mm程度のものが用いられる。また金属薄膜の膜厚は 100~2000 A程度が適当である。このような表面プラズモン共鳴装置用固基板として市販されているものも用いることができる。C末端修飾蛋白質の上記基板への固定化は前述した方法により行うことができる。

本方法において標的分子をC末端修飾蛋白質へ接触せしめる方法としては、両分子が相互作用するに十分な程度に接触する方法であればいかなるものであってもよいが、好ましくは標的分子を生化学的に通常使用される緩衝液に適当な濃度で溶解した溶液に固定化されたC末端蛋白質を接触させる方法を用いることができる。

これらの行程は市販の表面プラズモン共鳴装置、例えばBIAcore2000 (Pharmacia Biosensor社製)によってもよい。両分子を接触せしめた後、それ自体既知の表面プラズモン共鳴装置を用いて、それぞれの反射光の相対強度の時間的変化を測定することにより、固定化された C末端修飾蛋白質と標的分子の相互作用が解析できる。この方法において、同時に多数の解析を行う方法としては、例えば上記表面プラ

この方法において、同時に多数の解析を行う方法としては、例えば上記表面プラ ズモン共鳴装置に用いられる基板に、複数のC末端修飾蛋白質を番地付けして固定

化するか、又は1種類の固定化されたC末端修飾蛋白質に複数種の標的分子を接触させる方法等が用いられる。

(7) 固相酵素免疫検定法

固相酵素免疫検定法(Enzyme Linked Immunosorbent Assay (ELISA): Crowther, J.R., Methods in Molecular Biology, 42 (1995)) は、固相上に固定化した抗原に対し、抗体を含む溶液を接触せしめ、両分子の相互作用(抗原抗体反応)により、固定化された抗原上にとどまった抗体をこれと特異的に結合する修飾分子(IgG等)から発せられる蛍光、又は修飾分子を基質とする色素から発せられる信号を、市販の検出器(ELISAリーダー)を用いて測定又は解析する方法である。

この方法を用いて蛋白質ー標的分子間相互作用の測定又は解析を行う場合、抗原となるC末端修飾蛋白質は上記した方法により固定化されていることが必要である。また抗体となる標的分子は上記した修飾物質により修飾されていることが必要である。

抗原となるC末端修飾蛋白質を固定化するための基板としては、通常ELISA に用いられるプラスチック製のマイクロプレート等も用いることができる。

本方法において抗体となる修飾標的分子を固相分子へ接触せしめる方法として は、両分子が相互作用するに十分な程度に接触する方法であればいかなるものであってもよいが、好ましくは修飾標的分子を生化学的に通常使用される緩衝液に適当 な濃度で溶解した溶液を作成し、これをマイクロプレートに注入する方法が好ましい。

両分子を接触せしめた後、好ましくは過剰に存在する固定化分子に結合していない修飾分子を同緩衝液等により洗浄する工程を行い、固相上にとどまった修飾分子から発せられる蛍光を、市販のELISAリーダー等を用いて測定又は解析することにより、固定化された抗原分子と相互作用する分子を同定することができる。

この方法において、同時に多数の解析を行う方法としては、例えば上記マイクロプレートの各穴にそれぞれ異なる複数の修飾標的分子を固定化する方法が用いられる。

また、本発明の蛋白質は相互作用する分子の同定にも使用できる。

上記のそれぞれの方法により測定されC末端修飾蛋白質との間に相互作用が認

められた標的分子は、該分子の一次構造が未知の場合、それ自体既知の適当な方法により、その一次構造を解析することができる。具体的には、相互作用を認められた標的分子が蛋白質の場合、アミノ酸分析装置等によりアミノ酸配列を解析し、一次構造を特定することができる。また、標的分子が核酸の場合には、塩基配列決定方法により、オートDNAシーケンサーなどを用いれば塩基配列を決定することができる。

さらに、本発明の蛋白質は、蛋白質のライブラリーとの相互作用の解析にも使用 できる。

本発明は、ベイトをc-Fos蛋白質として、プレイをマウス脳のcDNAライブラリーとして、IVVの共翻訳セレクション/スクリーニングを行い、その結果得たc-Fos蛋白質と複合体を形成しうる新規の蛋白質をコードする遺伝子又は核酸配列、およびそれらの利用方法を提供する。また、c-Fos蛋白質と複合体を形成しうることが知られていない既知の蛋白質をコードする遺伝子又は核酸配列の利用方法を提供する。

本発明は、既知の遺伝子配列や核酸配列を探索するにとどまらず、予想されなかったフレームシフトによる新規のアミノ酸配列を持つ新規の蛋白質、ゲノム情報から核酸配列のみ公開されていた核酸配列を持つ新規の蛋白質、又は、全く新規の核酸配列を持つ新規の蛋白質、さらに、直接的な相互作用のみならず、予想されなかった間接的な相互作用による複合体を形成する蛋白質やそれら蛋白質をコードする遺伝子又は核酸配列、およびそれらの利用方法を提供することが可能である。

実施例

以下、本発明の蛋白質のアミノ酸配列とそれをコードする核酸の配列について具体的に記するが、下記の実施例は本発明についての具体的認識を得る一助とみなすべきものであり、本発明の範囲は下記の実施例により何ら限定されるものでない。

実施例1

ベイトをc-Fos蛋白質として、プレイをマウス脳のcDNAライブラリーとして、IVVの共翻訳セレクション/スクリーニングを行い(図2)、その結果、c-Fos蛋白質と複

合体を形成しうる新規の蛋白質をコードする遺伝子又は核酸配列を得た。

ベイトc-Fos蛋白質の作成方法は以下の通りであった。pCMV-FosCBPzzベクター(配列番号168)から、TaKaRa Ex Taq(宝酒造)を用いて、PCR(プライマー5'SP6(029)T7-FosCBPzz(配列番号169)と3'FosCBPzz(配列番号170)、PCRプログラムCYCB1(表1参照))によってDNAテンプレートを準備した。DNAテンプレートをRiboMAXTM Large Scale RNA Production Systems(Promega)を用いて転写(37°C, 2h)し、ベイトc-Fos蛋白質のmRNAテンプレートを準備した。共存させるベイトDNAは、Fos/Junの結合配列を含むDNA-Fos/Jun(配列番号171)をテンプレートとし、PCR(プライマー5'DNA(配列番号172)と3'DNA(配列番号173)、PCRプログラムV-2(表1参照))によって準備した。

プレイのマウス脳cDNAライブラリーの作成方法は以下の通りであった。図3に従 ってIVVランダムライブラリーを作成した。RNAライブラリーとして、市販のマウス 脳(polyA+)RNAライブラリー(組織抽出RNAライブラリーをoligo dTカラムで精製 したもの; clontech)を購入した。アダプター設計は、対応付け分子の形成に適し た5'UTR配列(プロモーターSP6+エンハンサー029又は0')をライブラリーに、IVV形 成に必要な配列として付加するための設計を行った。マウス脳(polyA+)RNAライブ ラリーには、エンハンサー029をもつアダプターを使用した。エンハンサー029用の アダプターの主鎖(配列番号174又は175)と副鎖(gaattcgc又はggaattcg)は、 各々TEバッファー(10mM Tris-Cl, pH8.0, 1mM EDTA)に溶解して100μMとし、主鎖 と副鎖をそれぞれ 10μ lずつ等モルで混合した。90 $^{\circ}$ で2分間加熱し、70 $^{\circ}$ で5分 加熱し、60℃のウオーターバスにセットしてバスのヒーターを切ってゆっくりと $60 ℃から室温まで下げた。<math>5\mu 1$ づつに分注して-20 ℃に保存した。次に、マウス脳(polyA+) RNAライブラリーを一本鎖DNAに逆転写した(図3, I)。マウス脳(polyA+) RNAライブラリー(1.4pmole/0.5 μ g)を 0.5μ g、3 ランダムプライマー(配列番号 17 6)を2pmolとDEPC水とを加えて12.0μlとし、70℃で10min加熱し、氷上で1分間 冷却した。これを用いて、SuperScriptII RT (SuperScript Double Strand cDNA Synthesis Kit; Invitrogen)で45℃で1h逆転写反応を行った。次に、逆転写反応で 合成した一本鎖DNAを全量用いて、E.coli DNAリガーゼ、E.coli ポリメラーゼI、 および E.coli RNase H(SuperScript Double Strand cDNA Synthesis Kit;

Invitrogen)で16℃で 2h反応し、さらにT4 DNAポリメラーゼで16℃で5minで末端を平滑化し、二本鎖DNAを合成した(図3, II)。次に、この二本鎖DNAの5'末端がリン酸化されていることを利用して、先に準備したアダプターを用いてライゲーションした(図3, III)。合成した二本鎖DNAライブラリーをエタノール沈殿し、4 μ lのDEPC水に溶解した。これに、100 μ Mの準備したアダプターを1.0 μ l添加し、50 μ l ligation high(T0Y080)を加えて、16℃でオーバーナイトで反応させ、精製(DNA purification kit; QIAGEN)した後50 μ lとした。次に、PCR(EX Taq Hot Start Version; TaKaRa)を行った(図3, IV)。50 μ lのライゲーションした二本鎖DNAライブラリーから2 μ lをテンプレートとして、IVVに必要な特定配列(029)を持つ5'PCR プライマー(配列番号 172)と3'PCRプライマー(配列番号 173)を用いて、IVV cDNAライブラリーを作成した。PCRの条件は、全量100 μ l、22サイク μ lのその30秒、60℃で30秒、72℃で90秒を1サイクルとし、最後の伸長反応は、72℃で180秒)とした。

これらベイトc-Fos蛋白質のmRNAテンプレート、プレイのマウス脳cDNAライブラ リー、そして共存させるベイトDNAを小麦の無細胞翻訳系(Wheat Germ Extract(Promega))を用いて 50μ lで共翻訳(26°C, 60min)させた。 50μ lのサンプル に対し、IgG結合バッファー (10mM Tris-Cl, pH8.0, 150mM NaCl, 0.1% NP40) 50 μ lを添加し計 100μ l(共翻訳サンプル)とした。その後、IgGアガロース(Sigma) をIgG結合バッファーで2回洗浄し、これに共翻訳サンプル(100 μ 1)を加え、4℃ で2時間回転攪拌した。結合バッファーで3回、TEV 切断バッファー(10mM Tris-Cl pH8.0, 150mM NaCl, 0.1% NP40, 0.5mM EDTA, 1mM DTT) で1回洗浄し、IgGアガロ ースに結合したベイト/プレイ複合体をTEVプロテアーゼ(GIBCO-BRL)で切断した $(16℃、2時間)。さらに、上清<math>90\mu1$ を $300\mu1$ カルモジュリン結合バッファーと $0.3\mu 1$ 1M CaCl₂、さらに、 $500\mu l$ カルモジュリン結合バッファーで 2 回洗浄した 50μ1 カルモジュリンビーズを加えて4℃で1時間回転攪拌した。遠心後、1000 μ l カルモジュリン結合バッファーで3回洗浄した。 50μ lカルモジュリン溶出バ ッファーを加えて、氷上で $1\sim 2$ 分放置し、遠心後、 $50\mu 1$ を回収した。回収した 溶液をテンプレートとして、RT-PCR(One step RT-PCR kit (QIAGEN)、プライマー; 配列番号177と178、プログラム; RT-QH30'(表1参照))を行った。このスク

リーニング/セレクション操作(図2)を3ラウンド繰り返した後のライブラリーをクローニングしてシーケンスすることで、配列番号 $1\sim1$ 4 (Fip-cxのアミノ酸配列)、配列番号 $1\sim1$ 9 (Eef1dTEF-1のアミノ酸配列)、配列番号 $1\sim2$ 2 (Schip1のアミノ酸配列)、それらに対応する各核酸配列が得られた(図1Aの配列番号 $1\sim2$ 2)。この結果は、エンハンサー029用のアダプターの主鎖として配列番号 $1\sim2$ 2)。この結果は、エンハンサー029用のアダプターの主鎖として配列番号 $1\sim2$ 2)のおりに対応するを用いて作成したライブラリーおよび配列番号 $1\sim2$ 2)のいずれでも同様であった。

どの蛋白質もLeuジッパーを持ち、c-Fosと直接相互作用があることが今回初めて明らかとなった蛋白質である。

得られた蛋白質とc-Fosとの相互作用の検証実験として、配列番号 2 (Fip-cx), 1 6 (Eef1dTEF-1), 2 2 (Schip1)の蛋白質(図1A)が無細胞翻訳系で発現することを、配列番号2-1, 16-1、22-1のDNA配列をもとにして、W0 02/46395の実施例 1 の (2)コード分子の調製と(3)コード分子の翻訳にしたがって実験し、小麦無細胞翻訳系で各蛋白質が発現することをC末端ラベル化法で確認した(図4,A)。また、W0 02/46395の実施例 1 の(4)スペーサー分子とコード分子の連結と(5)対応付け分子の形成にしたがって、IVVの形成も確認した(図4,B)。さらに、c-Fosとの相互作用を確認するために、一段目のpull-down(図2, IgG+TEV)したものを8M urea/10% SDS-PAGEで確認した(図4C)。その結果、配列番号 2 (Fip-cx), 1 6 (Eef1dTEF-1), 2 2 (Schip1)の蛋白質はc-Fosと相互作用していることが確認できた。

また、本発明による蛋白質や遺伝子又は核酸配列による新たな機能(ここでは c-Fosと結合できる機能)を利用して、c-Fosの持つ機能としての転写や遺伝子複製 などをブロックする阻害剤として応用することができる。その根拠は、IVV法で検 出された遺伝子は、スクリーニングを複数回繰り返すことにより競争過程を経て検 出されてきていることに起因する。よって、IVV法で検出された遺伝子群は、ある 個数分布を描き、競争力が強い遺伝子ほど多く検出されることになる。このことは、クローン数が多いほど競争力が強く、ブロック剤・阻害剤として有効に働くことを 示している。本実施例のIVVセレクションでは、ベイトc-Fosに対して、プレイとし てよく知られているc-Junが 3 コ(/7 2 コ)検出された。このように、セレクションで検出されるクローン数(図1A)から、Fip-cx, Eef1, Schip1は既知の蛋白質に比

較して非常に強い競争力を持ち、十分競争することができることを示しており、各蛋白質は、c-Junと既知の蛋白質の相互作用による複合体の転写や遺伝子複製などの機能をブロックする阻害剤として応用することができる。

実施例2

実施例1と同様にして、ベイトc-Fosとマウス脳cDNAライブラリーからプレイIVVライブラリーを準備し、スクリーニング/セレクション操作(図2)も同様に行った。 ただし、ここでは、二段スクリーニング/セレクションのうち一段目のIgGビーズに よるセレクションを3回繰り返し、4回目のみ二段セレクションを行い、配列番号 47~ 56(Fip-cx.1のアミノ酸配列)、配列番号57~76(Fip-cx.2のアミノ酸 配列)、配列番号77~81(Optinのアミノ酸配列)、配列番号82~ 84(Snap19 のアミノ酸配列)、配列番号85~86(C130020M04Rikのアミノ酸配列)、配列番号 87~89(FLJ32000のアミノ酸配列)、配列番号90~91(Rit2のアミノ酸配列)、 配列番号92~93(cytocrome bのアミノ酸配列)、配列番号94~95(Apoeのア ミノ酸配列)、配列番号96~97(Appのアミノ酸配列)、配列番号98~99 (Dnaja2のアミノ酸配列)、配列番号100~101(Fip-c10のアミノ酸配列)、配 列番号102(Fip-c4のアミノ酸配列)、配列番号103(Fip-c18のアミノ酸配列)、 それらに対応する各核酸配列が得られた(図1Aの配列番号47~76及び図1B の配列番号77~103)。この結果は、エンハンサー029用のアダプターの主鎖と して配列番号174を用いて作成したライブラリーおよび配列番号175を用い .て作成したライブラリーのいずれでも同様であった。

Fip-cx.1, Fip-cx.2, Optin, C130020M04Rik, FLJ32000, cytocrome b蛋白質はLeuジッパーを持ち、Rit2, Apoe, App, Dnaja2, Fip-c10, Fip-c4, Fip-c18蛋白質はLeuジッパーを持たず、いずれの蛋白質もc-Fosと複合体形成することが今回初めて明らかとなった蛋白質である。

得られた蛋白質とc-Fosとの相互作用の検証実験として、配列番号48 (Fip-cx.1),75(Fip-cx.2),78(Optn)、84(Snapc5),86(C130020M04Rik),88(FLJ32000),91(Rit2),93(cytochromeb),95(Apoe),97(betaAPP),99(Hsp40),101(Fip-c10),102(Fip-c4),103(Fip-c18)の蛋白質(図1)

が無細胞翻訳系で発現することを、配列番号105、139、142、148、1 50, 152, 155, 157, 159, 161, 163, 165, 166, 16 7の核酸配列をもとにして、WO 02/46395の実施例1の(2)コード分子の調製と(3) コード分子の翻訳にしたがって実験し、小麦無細胞翻訳系で各蛋白質が発現するこ とをC末端ラベル化法で確認した(図5,A)。また、発現を確認したそれらのC末端ラ ベル化蛋白質のうち、データベースには登録されていない全く新規な蛋白質である 配列番号48(Fip-cx.1), 75(Fip-cx.2)をプレイ蛋白質として用いて、ベイト c-Fosとの相互作用をpull-downにより確認した。具体的には、プレイ蛋白質の作製 方法は、PCR cloning kit (QIAGEN社製) を用いて、pDriveベクター(配列番号1 79、QIAGEN社製)にクローニングされた配列を菌体から抽出し、TaKaRa Ex Taq (宝酒造)を用いて、PCR (プライマー5'F3 (配列番号180) と3'R3 (配列番号 181)、PCRプログラムISHI1562 (表1参照)、100 μ lスケール)によってD NAテンプレートを準備した。DNAテンプレートをRiboMAXTM Large Scale RNA Production Systems (Promega) を用いて転写(37℃、2時間、 50μ lスケール)を行い、プレイ蛋白質のmRNAテンプレートを準備した。

ベイトc-Fos蛋白質の作製方法はセレクション/スクリーニングの際と同じである。

プレイテンプレートをC末端ラベル化法を用いた無細胞翻訳($10\mu1$ スケール)を1時間行い、C末端ラベル化された状態でプレイ蛋白質を作製した。同時にベイト c-fosテンプレートは無細胞翻訳($50\mu1$ スケール)により1時間翻訳反応を行い、ベイト蛋白質を作製した。翻訳後、両者および結合バッファーを混合させ(プレイ: $8\mu1$ 、ベイト: $10\mu1$ 、1gG結合バッファー: $82\mu1$)、1gGアガロースビーズ $50\mu1$ に2時間インキュベートし、ビーズを洗浄後、ビーズに $20\mu1$ のSDS含有の緩衝液を加え、5分間100°Cで煮沸し溶出させた。このサンプルを17.5% SDS-PAGEにより展開し、FITC蛍光色素を蛍光イメージャーにより観察した(図5,B)。なお、コントロールとして、ベイトc-Fos蛋白質を加えない反応も行った。

その結果、配列番号 4.8 (Fip-cx.1), 7.5 (Fip-cx.2)蛋白質はc-Fosと直接相互作用していることが確認できた。

さらに、図 6 に示すように、配列番号 1 4 2 (Optn), 1 4 8 (Snapc5), 1 5 0 (C130020M04Rik), 1 5 2 (FLJ32000)の核酸配列をもとにして、リアルタイムPCR によりc-Fosと直接および間接的に相互作用している遺伝子の濃縮を確認した。具体的なリアルタイムPCRの方法は、4種の遺伝子(配列番号 1 4 2 (Optn), 1 4 8 (Snapc5), 1 5 0 (C130020M04Rik), 1 5 2 (FLJ32000)についてスクリーニングにより得られた配列の範囲内で増幅されるよう、プライマーを設計した(配列番号 1 8 2 ~ 1 8 9)。検量線作製用に、ポジティブコントロールのDNA断片をpDriveベクターに組み込まれた遺伝子をPCR(5 M13 Fプライマー(配列番号 1 9 0)、3 M13 Rプライマー(配列番号 1 9 1))を用い、表1のPCRプログラムlightcyclerを使用)により増幅し、1E03、1E05、1E07、1E09クローン/反応となるように調整した。測定は、スクリーニング前のライブラリーDNA、スクリーニングの各サイクルのライブラリーDNA、およびベイトc-Fosを添加しなかったMockライブラリーDNAをそれぞれ5ng/反応となるよう調整した。PCR測定反応はLightCycler Instrument、LightCycler FastStart DNA Master SYBR Green I (共にロシュ・ダイアグノスティックス)を用いて表1に示したプログラムにより、20 μ 1のスケールで行った。

また、本発明による蛋白質や遺伝子又は核酸配列による新たな機能(ここでは c-Fosと結合できる機能)を利用して、c-Fosの持つ機能としての転写や遺伝子複製 などをブロックする阻害剤として応用することができる。その根拠は、IVV法で検 出された遺伝子は、スクリーニングを複数回繰り返すことにより競争過程を経て検 出されてきていることに起因する。よって、IVV法で検出された遺伝子群は、ある 個数分布を描き、競争力が強い遺伝子ほど多く検出されることになる。このことは、クローン数が多いほど競争力が強く、ブロック剤・阻害剤として有効に働くことを示している。本実施例のIVVセレクションでは、ベイトc-Fosに対して、プレイとしてよく知られているJunDが3コ(/142コ)検出された。このように、セレクションで検出されるクローン数(図1A及び1B)から、Fip-cx.1、Fip-cx.2、Optnなどは既知の蛋白質に比較して非常に強い競争力を持ち、また、Snap19、FLJ32000などは、既知の蛋白質と十分競争することができることを示しており、各蛋白質は、c-Junと既知の蛋白質の相互作用による複合体の転写や遺伝子複製などの機能をブロックする阻害剤として応用することができる。

表1 PCRプログラム プログラム名: CYCB1 反応条件: 95°C 1min 98°C 20sec 55°C 1min 15サイクル 72°C 4min 4°C ポーズ プログラム名: V-2 反応条件: 98°C 20sec ◀ 55°C 1min 35サイクル 72°C 3min 4°C ポーズ プログラム名:RT-QH30' 反応条件: 60°C 30min 95°C 15min 94°C 30sec ₄ 60°C (1-2回目:32サイクル, 3回目:30サイクル) 30sec 72°C 3min 72°C 10min プログラム名: ISHI1562 反応条件: 94°C 2min 94°C 30sec 62°C 30sec 15サイクル 73°C 2min 73°C 15min プログラム名:lightcycler 反応条件: 95°C 10min 95°C 15sec X°C 40サイクル 10sec

X:アニーリングの温度はプライマーのTm値により62~51℃

)

72°C

5sec

産業上の利用の可能性

c-Fosと相互作用する蛋白質が提供されたことにより、c-Fosとの直接的な相互作用のみならず、予想されなかった間接的な相互作用による複合体を形成する蛋白質及びそれら蛋白質をコードする核酸、ならびに、それらの利用方法を提供することが可能になる。

73

74

請求の範囲

- 1. 以下の(a)又は(b)の蛋白質。
- (a) 配列番号1~14のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 $1\sim14$ のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 2. 配列番号1~14のいずれかのアミノ酸配列を含む請求項1記載の蛋白質。
 - 3. 請求項1又は2記載の蛋白質をコードする核酸。
 - 4. 以下の(a)又は(b)の核酸。
- (a) 配列番号23~38のいずれかの塩基配列を含む核酸。
- (b)配列番号23~38のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 5. 配列番号23~38のいずれかの塩基配列を含む請求項4記載の核酸。
- 6. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、請求項1~2のいずれか1項に記載の蛋白質、又は請求項3~5のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 7. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、請求項 $1\sim2$ のいずれか1項に記載の蛋白質、又は請求項 $3\sim5$ のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 8. 請求項7記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 9. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a) 配列番号15~19のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 $15\sim19$ のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相

互作用する蛋白質。

- 10. 有効成分の蛋白質が配列番号15~19のいずれかのアミノ酸配列を含む請求項9記載の阻害剤。
- 11. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項9記載の阻害剤。
- (a)配列番号39~43のいずれかの塩基配列を含む核酸。
- (b)配列番号39~43のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 12. 核酸が配列番号39~43のいずれかの塩基配列を含む請求項11記載の阻害剤。
- 13. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号15~19のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 15~19のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号39~43のいずれかの塩基配列を含む核酸。
- (b')配列番号39~43のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 14. 蛋白質が配列番号15~19のいずれかのアミノ酸配列を含む請求項13記載の方法。
- 15. 核酸が配列番号39~43のいずれかの塩基配列を含む請求項13記載の方法。
- 16. 請求項13~15のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選

択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。

- 17. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号20~22のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 $20\sim22$ のいずれかのアミノ酸配列において、1 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 18. 有効成分の蛋白質が配列番号20~22のいずれかのアミノ酸配列を含む請求項17記載の阻害剤。
- 19. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項17記載の阻害剤。
- (a)配列番号44~46のいずれかの塩基配列を含む核酸。
- (b)配列番号44~46のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 20. 核酸が配列番号44~46のいずれかの塩基配列を含む請求項19記載の阻害剤。
- 21. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号20~22のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 $20\sim22$ のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号44~46のいずれかの塩基配列を含む核酸。
- (b')配列番号44~46のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。

- 22. 蛋白質が配列番号 20~22のいずれかのアミノ酸配列を含む請求項 21記載の方法。
- 23. 核酸が配列番号44~46のいずれかの塩基配列を含む請求項21記載の方法。
- 24. 請求項21~23のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
 - 25. 以下の(a) 又は(b) の蛋白質。
- (a) 配列番号47~56のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 $4.7\sim5.6$ のいずれかのアミノ酸配列において、1.6 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 26. 配列番号47~56のいずれかのアミノ酸配列を含む請求項25記載の蛋白質。
 - 27. 請求項25又は26記載の蛋白質をコードする核酸。
 - 28. 以下の(a)又は(b)の核酸。
- (a) 配列番号104~118のいずれかの塩基配列を含む核酸。
- (b)配列番号104~118のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 29. 配列番号104~118のいずれかの塩基配列を含む請求項28記載の 核酸。
- 30. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害 剤であって、請求項25~26のいずれか1項に記載の蛋白質、又は請求項27~ 29のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻 害剤。
- 31. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、請求項 $25\sim26$ のいずれか1項に記載の蛋白質、又は請求項 $27\sim29$ のいずれか

- 1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 32. 請求項31記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
 - 33. 以下の(a)又は(b)の蛋白質。
- (a) 配列番号57~76のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号 5 7~7 6 のいずれかのアミノ酸配列において、1 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 34. 配列番号57~76のいずれかのアミノ酸配列を含む請求項33記載の蛋白質。
 - 35. 請求項33又は34記載の蛋白質をコードする核酸。
 - 36. 以下の(a) 又は(b)の核酸。
- (a) 配列番号119~140のいずれかの塩基配列を含む核酸。
- (b)配列番号119~140のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 37. 配列番号119~140のいずれかの塩基配列を含む請求項4記載の核酸。
- 38. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、請求項33~34のいずれか1項に記載の蛋白質、又は請求項35~37のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 39. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、請求項33~34のいずれか1項に記載の蛋白質、又は請求項35~37のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 40. 請求項39記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと

相互作用するプレイのスクリーニング方法。

- 41. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a)配列番号77~81のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号77~81のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 42. 有効成分の蛋白質が配列番号77~81のいずれかのアミノ酸配列を含む請求項41記載の阻害剤。
- 43. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項41記載の阻害剤。
- (a) 配列番号 $141\sim145$ のいずれかの塩基配列を含む核酸。
- (b)配列番号141~145のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 44. 核酸が配列番号 141~145のいずれかの塩基配列を含む請求項43 記載の阻害剤。
- 45. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号77~81のいずれかのアミノ酸配列を含む蛋白質。
- (b) 配列番号 $77\sim81$ のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a') 配列番号141~145のいずれかの塩基配列を含む核酸。
- (b')配列番号141~145のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。

- 46. 蛋白質が配列番号77~81のいずれかのアミノ酸配列を含む請求項4 5記載の方法。
- 47. 核酸が配列番号 $141\sim145$ のいずれかの塩基配列を含む請求項 45 記載の方法。
- 48. 請求項45~47のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 49. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a) 配列番号82~84のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号82~84のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 50. 有効成分の蛋白質が配列番号82~84のいずれかのアミノ酸配列を含む請求項49記載の阻害剤。
- 51. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項49記載の阻害剤。
- (a)配列番号146~148のいずれかの塩基配列を含む核酸。
- (b)配列番号 $146\sim148$ のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 52. 核酸が配列番号146~148のいずれかの塩基配列を含む請求項51 記載の阻害剤。
- 53. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号82~84のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号82~84のいずれかのアミノ酸配列において、1もしくは数個の

アミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。

- (a') 配列番号146~148のいずれかの塩基配列を含む核酸。
- (b')配列番号146~148のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 54. 蛋白質が配列番号82~84のいずれかのアミノ酸配列を含む請求項53記載の方法。
- 5.5. 核酸が配列番号 $1.4.6 \sim 1.4.8$ のいずれかの塩基配列を含む請求項 5.3 記載の方法。
- 56. 請求項53~55のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 57. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号85もしくは86のアミノ酸配列を含む蛋白質。
- (b)配列番号85もしくは86のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 58. 有効成分の蛋白質が配列番号85又は86のアミノ酸配列を含む請求項57記載の阻害剤。
- 59. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項57記載の阻害剤。
- (a)配列番号149もしくは150の塩基配列を含む核酸。
- (b)配列番号149もしくは150の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 60. 核酸が配列番号149又は150の塩基配列を含む請求項59記載の阻 害剤。

- 61. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号85もしくは86のアミノ酸配列を含む蛋白質。
- (b)配列番号85もしくは86のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号149もしくは150の塩基配列を含む核酸。
- (b')配列番号149もしくは150の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 62. 蛋白質が配列番号85又は86のアミノ酸配列を含む請求項61記載の方法。
- 63. 核酸が配列番号149又は150の塩基配列を含む請求項61記載の方法。
- 64. 請求項 $61\sim63$ のいずれか 1 項に記載の方法によりベイトとプレイと の間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 65. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a)配列番号87~89のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号87~89のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 66. 有効成分の蛋白質が配列番号87~89のいずれかのアミノ酸配列を含む請求項65記載の阻害剤。
- 67. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項65記載の阻害剤。

- (a)配列番号151~153のいずれかの塩基配列を含む核酸。
- (b)配列番号 151~153のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 68. 核酸が配列番号 $151\sim153$ のいずれかの塩基配列を含む請求項 67 記載の阻害剤。
- 69. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号87~89のいずれかのアミノ酸配列を含む蛋白質。
- (b)配列番号87~89のいずれかのアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号151~153のいずれかの塩基配列を含む核酸。
- (b')配列番号 151~153のいずれかの塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 70. 蛋白質が配列番号87~89のアミノ酸配列を含む請求項69記載の方法。
- 71. 核酸が配列番号 151~153のいずれかの塩基配列を含む請求項 70 記載の方法。
- 72. 請求項69~71のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 73. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
 - (a)配列番号90もしくは91のアミノ酸配列を含む蛋白質。
 - (b)配列番号90もしくは91のアミノ酸配列において、1もしくは数個のアミ

ノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。

- 74. 有効成分の蛋白質が配列番号90もしくは91のアミノ酸配列を含む請求項73記載の阻害剤。
- 75. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項74記載の阻害剤。
- (a) 配列番号154もしくは155の塩基配列を含む核酸。
- (b)配列番号 1 5 4 もしくは 1 5 5 の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 76. 核酸が配列番号154又は155の塩基配列を含む請求項75記載の阻害剤。
- 77. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a) もしくは(b) の蛋白質、又は以下の(a') もしくは(b') の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号90もしくは91のアミノ酸配列を含む蛋白質。
- (b)配列番号90もしくは91のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号154もしくは155の塩基配列を含む核酸。
- (b')配列番号154もしくは155の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 78. 蛋白質が配列番号90又は91のアミノ酸配列を含む請求項69記載の 方法。
- 79. 核酸が配列番号154又は155の塩基配列を含む請求項70記載の方法。
 - 80. 請求項77~79のいずれか1項に記載の方法によりペイトとプレイと

の間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選 択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。

- 81. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a) 配列番号92もしくは93のアミノ酸配列を含む蛋白質。
- (b)配列番号92もしくは93のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 82. 有効成分の蛋白質が配列番号92又は93のアミノ酸配列を含む請求項81記載の阻害剤。
- 83. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項82記載の阻害剤。
- (a) 配列番号156もしくは157の塩基配列を含む核酸。
- (b)配列番号156もしくは157の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 84. 核酸が配列番号156又は157の塩基配列を含む請求項83記載の阻害剤。
- 85. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号92もしくは93のアミノ酸配列を含む蛋白質。
- (b)配列番号92もしくは93のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号156もしくは157の塩基配列を含む核酸。
- (b')配列番号156もしくは157の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコー

ドする核酸。

- 86. 蛋白質が配列番号92又は93のアミノ酸配列を含む請求項85記載の 方法。
- 87. 核酸が配列番号156又は157の塩基配列を含む請求項85記載の方法。
- 88. 請求項85~87のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 89. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号94もしくは95のアミノ酸配列を含む蛋白質。
- (b)配列番号94もしくは95のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 90. 有効成分の蛋白質が配列番号94又は95のアミノ酸配列を含む請求項89記載の阻害剤。
- 91. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項90記載の阻害剤。
- (a) 配列番号158もしくは159の塩基配列を含む核酸。
- (b)配列番号158もしくは159の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 92. 核酸が配列番号158又は159の塩基配列を含む請求項83記載の阻害剤。
- 93. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
- (a)配列番号94もしくは95のアミノ酸配列を含む蛋白質。

- (b)配列番号94もしくは95のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号158もしくは159の塩基配列を含む核酸。
- (b')配列番号158もしくは159の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 94. 蛋白質が配列番号94又は95のアミノ酸配列を含む請求項93記載の方法。
- 95. 核酸が配列番号158又は159の塩基配列を含む請求項93記載の方法。
- 96. 請求項93~95のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 97. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号96もしくは97のアミノ酸配列を含む蛋白質。
- (b)配列番号96もしくは97のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 98. 有効成分の蛋白質が配列番号96又は97のアミノ酸配列を含む請求項97記載の阻害剤。
- 99. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である請求項98記載の阻害剤。
- (a) 配列番号160もしくは161の塩基配列を含む核酸。
- (b)配列番号160もしくは161の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
 - 100. 核酸が配列番号160又は161の塩基配列を含む請求項99記載の

阻害剤。

- 101. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a)もしくは(b)の蛋白質、又は以下の(a')もしくは(b')の核酸から翻訳された蛋白質である前記方法。
 - (a) 配列番号96もしくは97のアミノ酸配列を含む蛋白質。
- (b)配列番号96もしくは97のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a) 配列番号160もしくは161の塩基配列を含む核酸。
- (b')配列番号160もしくは161の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 102. 蛋白質が配列番号96又は97のアミノ酸配列を含む請求項101記載の方法。
- 103. 核酸が配列番号160又は161の塩基配列を含む請求項101記載。の方法。
- 104. 請求項101~103のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 105. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a)配列番号98もしくは99のアミノ酸配列を含む蛋白質。
- (b)配列番号98もしくは99のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 106. 有効成分の蛋白質が配列番号98又は99のアミノ酸配列を含む請求項105記載の阻害剤。
 - 107. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である

請求項98記載の阻害剤。

- (a) 配列番号162もしくは163の塩基配列を含む核酸。
- (b)配列番号162もしくは163の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 108. 核酸が配列番号162又は163の塩基配列を含む請求項107記載の阻害剤。
- 109. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a) もしくは(b) の蛋白質、又は以下の(a') もしくは(b') の核酸から翻訳された蛋白質である前記方法。
- (a) 配列番号98もしくは99のアミノ酸配列を含む蛋白質。
- (b)配列番号98もしくは99のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号162もしくは163の塩基配列を含む核酸。
- (b')配列番号162もしくは163の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 110. 蛋白質が配列番号98又は99のアミノ酸配列を含む請求項109記載の方法。
- 111. 核酸が配列番号162又は163の塩基配列を含む請求項109記載の方法。
- 112. 請求項109~111のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
- 113. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻 害剤であって、以下の(a)又は(b)の蛋白質を有効成分とする前記阻害剤。
- (a) 配列番号100もしくは101のアミノ酸配列を含む蛋白質。

- (b)配列番号100もしくは101のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- 114. 有効成分の蛋白質が配列番号100又は101のアミノ酸配列を含む請求項113記載の阻害剤。
- 115. 蛋白質が以下の(a)又は(b)の核酸から翻訳された蛋白質である 請求項114記載の阻害剤。
 - (a) 配列番号164もしくは165の塩基配列を含む核酸。
- (b)配列番号164もしくは165の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 116. 核酸が配列番号164又は165の塩基配列を含む請求項115記載の阻害剤。
- 117. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、以下の(a) もしくは(b) の蛋白質、又は以下の(a') もしくは(b') の核ご酸から翻訳された蛋白質である前記方法。
 - (a) 配列番号100もしくは101のアミノ酸配列を含む蛋白質。
- (b)配列番号100もしくは101のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
- (a')配列番号164もしくは165の塩基配列を含む核酸。
- (b')配列番号164もしくは165の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 118. 蛋白質が配列番号100又は101のアミノ酸配列を含む請求項11 7記載の方法。
- 119. 核酸が配列番号164又は165の塩基配列を含む請求項117記載の方法。

- 120. 請求項117~119のいずれか1項に記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
 - 121. 以下の(a)又は(b)の蛋白質。
- (a)配列番号102のアミノ酸配列を含む蛋白質。
- (b)配列番号102のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 122. 請求項102記載の蛋白質をコードする核酸。
 - 123. 以下の(a)又は(b)の核酸。
- (a)配列番号166の塩基配列を含む核酸。
- (b)配列番号166の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。
- 124. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、請求項121に記載の蛋白質、又は請求項122~123のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 125. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、請求項121に記載の蛋白質、又は請求項122~123のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 126. 請求項125記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。
 - 127. 以下の(a)又は(b)の蛋白質。
- (a)配列番号103のアミノ酸配列を含む蛋白質。
- (b)配列番号103のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸配列を含み、c-Fos蛋白質と相互作用する蛋白質。
 - 128. 請求項127記載の蛋白質をコードする核酸。
 - 129. 以下の(a)又は(b)の核酸。
 - (a)配列番号167の塩基配列を含む核酸。

(b)配列番号167の塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、c-Fos蛋白質と相互作用する蛋白質をコードする核酸。

92

- 130. c-Fos蛋白質と相互作用する蛋白質と、c-Fos蛋白質との相互作用の阻害剤であって、請求項127に記載の蛋白質、又は請求項128~129のいずれか1項に記載の核酸から翻訳された蛋白質を有効成分とする前記阻害剤。
- 131. ベイトとプレイとを接触させ、接触により形成された複合体を検出することを含む、ベイトとプレイとの間の相互作用の検出方法であって、ベイトが、請求項127に記載の蛋白質、又は請求項128~129のいずれか1項に記載の核酸から翻訳する工程を含む蛋白質である前記方法。
- 132. 請求項131記載の方法によりベイトとプレイとの間の相互作用を検出する工程、及び、相互作用が検出されたプレイを選択する選択工程を含む、ベイトと相互作用するプレイのスクリーニング方法。

アミ/酸 配列番号	蛋白質・遺伝子名、アクセス番号	leu ジッパー	核酸配列番号	クローン数	その他の名称 (Alternate Symbols & Ailas)
5. 4.	Mus musculus fip-ox	0	23(1), 24(2-1), 25(2-2), 26(2-3), 27(3), 28(4), 29(5), 30(6), 31(7), 32(8), 33(9), 34(10), 35(11), 36(12), 37(13), 38(14)	29	フレームシント (mage-d3, mRNA, AF319977. melanoma antigen, family D, 3-like, AK047777. trophinin, NM_019548. Trol, Maged3, Maged3l magphinin-alpha, mRNA, AF241245. magphinin-beta2 mRNA, AF288605. magphinin-gamma mRNA, AF288606. trophinin-2 mRNA)
15~19	Mus musculus eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein) (Eef1d), mRNA, NM 023240,	0	39(15), 40(16), 41(17), 42(18), 43(19)	ည	5730529A16Rik
20~22	Mus musculus schwannomin interacting protein 1 (Schip1), mRNA, NM_013928,	0	44(20), 45(21), 46(22)	က	Nf2ip, SCHIP-1
47~56	Mus musculus fip-cx.1	0	104(47), 105(48), 106(49), 107(50–1), 108(50–2), 109(50–3), 110(50–4), 111(50– 5), 112(51–1), 113(51–2), 114(52), 115(53), 116(54), 117(55), 118(56)	15	フレームシント(mage-d3. mRNA. AF319977. melanoma antigen, family D. 3-like, AK047777. trophinin, NM_019548. Trol, Maged3. Maged3l)
57~76	Mus musculus fip-cx.2	0	119(57), 120(58), 121(59), 122(60), 123(61), 124(62-1), 125(62-2), 126(63), 127(64), 128(65), 129(66), 130(67), 131(68), 132(69), 133(70), 134(71), 135(72), 136(73), 137(74-1), 138(74-2), 139(75), 140(76)	31	フレームシフト (magphinin-alpha. mRNA. AF241245. magphinin mRNA AB032477. magphinin-beta2 mRNA. AF288605. magphinin-gamma mRNA. AF288606. trophinin-2 mRNA)

図 1 A·

\sim	,	4	_
7	/	7	- 4
_	,	3	u

		1		Γ	1	1	2/13		T.;			
・ その他の名称 (Alternate Symbols & Alias)	NRP, FIP2, HYPL, 4930441007Rik, TFIIIA-INTP	Snapc5, 2010103A03Rik	MGC31554		Rit2		Арое	Adap, Cvap, Abeta, appican, betaAPP, protease nexin II	Hsp40 homolog, subfamily A, member 2, DNAJ, DNJ3, mDj3, Dnaj3, HIRIP4, PRO3015, DNA J protein	Mus musculus similar to KIAA1209 protein	ゲノム(Mouse DNA sequence from clone RP23-185C16 on chromosome 4)	\mathcal{F}/Δ (Mus musculus chromosome 18, clone RP24–572G3, AC102422.10)
クロー ン数	9	7	-	2	-	-	-	-	1	-	-	-
核酸配列番号	141(77), 142(78), 143(79), 144(80), 145(81)	146(82), 147(83), 148(84)	149(85), 150(86)	151(87), 152(88), 153(89)	154(90), 155(91)	156(92), 157(93)	158(94), 159(95)	160(96), 161(97)	162(98), 163(99)	164(100), 165(101)	166(102)	167(103)
leuゾッ ーパ	0	0	0	0	×	0	×	×	×	×	×	×
蛋白質・遺伝子名、アクセス番号	Mus musculus optineurin (Optn), NM_181848	Mus musculus similar to small nuclear RNA activating complex, polypeptide 5, 19kDa; small nuclear RNA activating complex, polypeptide 5, XM_284503.1	Mus musculus C130020M04Rik , BC026483	Rattus norvegicus similar to hypothetical protein FLJ32000, XM_342896.1	Mus musculus Ras-like without CAAX 2 (Rit2), NM_009065.2	Mus musculus isolate 1 cytochrome b gene, partial , mitocondorial gene, AF540912,1	Mus musculus apolipoprotein E, NM_009696.2	Mus musculus amyloid beta (A4) precursor protein, BC005490.1	Mus musculus DnaJ homolog, subfamily A, member 2, BC003420	100∼101 MUs musculus fip-c10, XM_136911	Mus musculus fip-c4	Mus musculus fip-c18
アミノ酸配列番号	77~81	82~84	85~86	87~89	90~91	92∼93	94~95	26~96	66~86	100~101	102	103

図 -B

5/13

	က	۵	
	0	-	
II	-	1	≥
	ო		
	C)	Q	
	-		
	ო		
	N	q	
	-	1	=
	က	8	
	Ø		
	-		
	ო		
	Ø	م	
	-		_
	က		
	N	a	
	-		
	က		
	01	۵	
11	-		_
	ო		
	0	g	
	-		

 $\mathbf{\omega}$

6/13

対応付け分子構築

C PEG部によってC末端修飾された蛋白質 蛋白質 B 翻訳テンプレート

PEG部 コード部

の米輪 PEG部

> တ X

図10

図1

