데이터마이닝 과제4 - 2022920024 박동찬

1. 실험

Titanic dataset을 Decision Tree Classifier를 통해 분류했다. Categorical features(sex, class, deck, embark_town, alone)에 대해 Label Encoding과 One-Hot Encoding을 각각 적용해보고 GridSearchCV를 통해 다양한 hyper-parameter를 탐색했다. 아래와 같은 hyper-parameter 조합을 탐색했다.

```
param_grid = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20],
    'min_samples_split': [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20],
    'min_samples_leaf': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
}
```

또한 5-fold CV를 통해 가장 높은 정확도를 보인 조합을 선택하였다.

2. 실험 결과

A. Best Accuracy

B. Plot tree image

C. Feature importances image

3. Discussion

A. Encoding Methods

Label Encoding 방식에서는 {'criterion': 'entropy', 'max_depth': 4, 'min_samples_leaf': 4, 'min_samples_split': 2} 조합에서 CV Best Accuracy: 0.8264, Test Accuracy: 0.8095가 도출되었고 One-Hot Encoding 방식에서는 {'criterion': 'entropy', 'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 2} 조합에서 CV Best Accuracy: 0.8244, Test Accuracy: 0.8413가 도출되었다. Train set에 대한 Accuracy는 Label Encoding 방식이 조금 높았지만 test set에서 One-Hot Encoding 방식이 더 높은 Accuracy를 보였다. Label Encoding 방식은 Categorical features에 순서가 없음에도 불구하고 정수 값이 부여되면서 암묵적인 순서 정보가 들어갈 수 있고 이로 인한 오류가 나타날 수 있다. One-Hot Encoding은 순서 관계 없이 모델에게 정확한 정보를 학습시킬 수 있어 더 좋은 일반화 성능을 보인 것이라고할 수 있다.

B. Criterion Methods

Criterion은 모두 entropy가 선택되었는데 Entropy가 Gini impurity에 비해 극단적인 확률 분포에 더 민감하게 반응하고 실제로 노드가 얼마나 순수해 지는지 더 세밀하게 평가할 수 있다. Titanic dataset에는 sex, fare, class와 같은 생존 여부에 큰 영향을 미치는 features가 존재하므로 분할할 때 얻을 수 있는 정보 이득을 Entropy가 더 명확하게 측정할 수 있었을 것이다.

C. Max depth

트리의 깊이가 너무 얕으면 underfitting이 발생하고 너무 깊어지면 overfitting이 발생할 수 있으므로 적절한 깊이 제한이 모델의 일반화 성능을 향상시킨다고 볼 수 있다.

D. Min samples split

탐색한 값들 중 가장 작은 값인 2일 때 가장 좋은 성능을 보였다. 이는 내부 노드를 분할하기 위한 최소 샘플 수인데 작은 값을 사용할수록 더 세밀하게 분할할 수 있어 dataset의 미세한 차이도 학습할 수 있다. 너무 작은 값을 사용하면 overfitting 될 수 있지만 Titanic dataset에서는 최적의 성능을 보였다.

E. Min samples leaf

탐색한 값들 중에서 4(label encoding), 5(one-hot encoding)일 때 가장 좋은 성능을 보였다. 분할 후 leaf node에 존재해야 하는 최소 샘플 수로써 너무 작은 값을 사용하면 leaf node에 작은 샘플만 포함해서 noise에 민감해지고 너무 큰 값을 사용하면 세밀한 부분을 학습하지 못하여 모델의 표현력이 감소한다. 따라서 비교적 중간 값인 4,5일 때 좋은 성능을 보였으며 One-Hot Encoding 하면 feature의 차원이 category 수만큼 늘어나므로 해당하는 데이터가 sparse해져 leaf node에 더 많은 샘플이 존재해야 안정적인 예측을 할 수 있으므로 약간 더 높게 선택된 것으로 볼 수 있다.

F. Decision Tree 구조 분석

Root node에서 sex_male <= 0.5로 분할이 이루어진다. 이는 여성 (sex_male=0)과 남성(sex_male=1)의 구분을 의미한다. 성별에 따라 생존 여부가 크게 바뀐다는 것을 알 수 있다. 하위 분할된 왼쪽 노드(여성)는 class_Third <= 0.5로 분기되는데 3등실보다 1, 2등실일 때 생존하기 유리하다는 것을 알 수 있다. 실제로 타이타닉에서 객실 등급에 따라 탈출 기회가달라졌다. 이보다 더 하위 노드에서는 fare와 age가 많이 등장하며 요금이높은 사람일수록 높은 등급의 객실을 사용했을 가능성이 커 생존에 유리하다는 것을 볼 수 있다. 하위 분할된 오른쪽 노드(남성)는 deck_unknown <= 0.5로 이루어져 있는데 이는 남성 집단에서 갑판 정보의 유무와 생존 여부가 어느정도 관련이 있음을 알 수 있다. 전체적으로 남성은 생존율이 낮지만 그 중에서 상위 객실에 배정된 사람들은 갑판 정보가 기록되어 간접적으로 생존율이 올라갔다고 추측해볼 수 있다. 이보다 더 하위 노드에서는 fare, age, n_siblings_spouses 등 다양한 feature가 등장한다.

G. Feature Importances 분석

그래프를 보았을 때 여성 여부, 요금, 3등실 여부, 갑판 정보 여부, 나이가

생존 여부에 결정적으로 작용한다는 것을 알 수 있다. 나머지 features는 상 대적으로 중요도가 낮았다. 따라서 여성이고 상위 객실이며(높은 요금) 나이가 어리고 갑판 정보가 존재할수록 생존율이 높아진다는 사실을 알 수 있다.