

Description

The VST06N035 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

V_{DS} =60V,I_D =120A

$$\begin{split} R_{DS(ON)} &< 4.0 m \Omega \ @\ V_{GS} = 10V \quad (Typ:3.5 m \Omega) \\ R_{DS(ON)} &< 5.0 m \Omega \ @\ V_{GS} = 4.5 V \quad (Typ:4.0 m \Omega) \end{split}$$

- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST06N035-T2	VST06N035	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous (Silicon Limited)	I _D	120	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	100	Α
Pulsed Drain Current	I _{DM}	480	А
Maximum Power Dissipation	P _D	180	W
Derating factor		1.2	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	500	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.83	°C/W
---	----------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.7	2.4	V
Dunin Course On Chata Benintana	-	V _{GS} =10V, I _D =60A	-	3.5	4.0	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =60A	-	4.0	5.0	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =60A	40	-	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	V _{DS} =30V,V _{GS} =0V,	-	4000	-	PF
Output Capacitance	Coss		-	680	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	23	-	PF
Switching Characteristics (Note 4)	·		•			
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , I_{D} =60 A	-	5	-	nS
Turn-Off Delay Time	t _{d(off)}	$V_{GS}\text{=}10V,R_{G}\text{=}4.7\Omega$	-	56	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V -20VI -00A	-	67		nC
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_{D} =60A, V_{GS} =10V	-	12		nC
Gate-Drain Charge	Q _{gd}	VGS-10V	-	8.5		nC
Drain-Source Diode Characteristics	<u> </u>		-	'		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =120A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	120	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = I _S	-	48		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	60		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=30V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

250

Figure 7 Capacitance vs Vds

 T_J -Junction Temperature(${}^{\circ}$ C) Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance