

Ch 3: Propagation of Error... (not all sections are required)

Chapter 3 Overview

- 3-1 Measurement Error
 - 3-2 Linear Combinations of Measurements
 - 3-3 Uncertainties for Functions of One Measurement
 - 3-4 Uncertainties for Several Measurements

Introduction

- ✓ In many cases we wish to estimate the uncertainty in a nonlinear function of a measurement.
- ✓ For example, if the radius R of a circle is measured to be 5.00 ± 0.01 cm, what is the uncertainty in the area A?
- ✓ In statistical terms, we know that the standard deviation σ_R is 0.01 cm, and we must calculate the standard deviation of A, where A is the function of R given by $A = \pi R^2$.

Problem

Figure 6 Given a random variable X, with known standard deviation σ_X , and given a function U = U(X), how do we compute the standard deviation σ_U ?

Solution

- ➤ If U is a linear function, the methods of Section 3.2 apply.
- If U is not linear, we can still approximate σ_U, by multiplying σ_X by the absolute value of the derivative dU/dX.
- \succ The approximation will be good so long as σ_X is small.

If *X* is a measurement whose uncertainty σ_X is small, and if *U* is a function of *X*, then

$$\sigma_U \approx \left| \frac{dU}{dX} \right| \sigma_X$$
 (3.10)

In practice, we evaluate the derivative dU/dX at the observed measurement X.

> This is the propagation of error formula

Rounding!!!

- Propagation of Error Uncertainties Are Only Approximate
- The uncertainties computed by using Equation (3.10) are often only rough approximations.
- For this reason, these uncertainties should be expressed with no more than two significant digits. Indeed, some authors suggest using only one significant digit.

Nonlinear Functions Are Bias!!!

- If X is an unbiased measurement of a true value μ_X , and if the function U = U(X) is a nonlinear function of X, then in most cases U will be biased for the true value U(μ_X).
- In practice this bias is usually ignored.
- As long as the uncertainty σ_χ is small, the bias in U will in general be small as well, except for some fairly unusual circumstances when the second derivative is quite large.
- If X is a measurement with non-negligible bias, then the bias in U may be large.

Example 3.14 (p.181)

The radius R of a circle is measured to be 5.00 ± 0.01 cm.

Estimate the area of the circle and find the uncertainty in this estimate.

Solution

The area A is given by $A = \pi R^2$. The estimate of A is $\pi (5.00 \text{ cm})^2 = 78.5 \text{ cm}^2$. Now $\sigma_R = 0.01 \text{ cm}$, and $dA/dR = 2\pi R = 10\pi \text{ cm}$. We can now find the uncertainty in A:

$$\sigma_A = \left| \frac{dA}{dR} \right| \sigma_R$$
$$= (10\pi \text{ cm})(0.01 \text{ cm})$$
$$= 0.31 \text{ cm}^2$$

We estimate the area of the circle to be 78.5 ± 0.3 cm².

Example 3.15 (p.181)

- A rock identified as cobble-sized quartzite has a mass m of 674.0 g.
- Assume this measurement has negligible uncertainty.
- The volume V of the rock will be measured by placing it in a graduated cylinder partially filled with water and measuring the volume of water displaced.
- The density D of the rock will be computed as D = m/V. Assume the volume of displaced water is 261.0 ± 0.1 mL.
- Estimate the density of the rock and find the uncertainty in this estimate.

Example 3.15 (p.181) - SOLUTION

- Substituting V = 261.0 mL, the estimate of the density D is 674.0/261.0 = 2.582 g/mL
- Treating m = 674.0 as a known constant, $dD/dV = -674.0/V^2 = -674.0/(261.0)^2 = -0.010 \text{ g/mL}^2$
- We know that $\sigma_V = 0.1$ mL. The uncertainty in D is therefore

$$\sigma_D = \left| \frac{dD}{dV} \right| \sigma_V$$

$$= |-0.010|(0.1 \text{ g/mL})$$

$$= 0.001 \text{ g/mL}$$

➤ We estimate the density to be 2.582 ± 0.001 g/mL

Relative Uncertainties for Functions of One Measurement

- The standard deviation σ_U of a measurement U is referred to as the uncertainty in U.
- A more complete name for σ_U is the absolute uncertainty, because it is expressed in the same units as the measurement U.
- Sometimes we wish to express the uncertainty as a fraction of the true value, which (assuming no bias) is the mean measurement μ_U . This is called the relative uncertainty in U.
- The relative uncertainty can also be called the coefficient of variation.
- In practice, since μ_U is unknown, the measured value U is used in its place when computing the relative uncertainty.

Relative Uncertainties for Functions of One Measurement...

Summary

If U is a measurement whose true value is μ_U , and whose uncertainty is σ_U , the relative uncertainty in U is the quantity σ_U/μ_U .

The relative uncertainty is a unitless quantity. It is frequently expressed as a percent. In practice μ_U is unknown, so if the bias is negligible, we estimate the relative uncertainty with σ_U/U .

Relative Uncertainties for Functions of One Measurement...

There are two methods for approximating the relative uncertainty σ_U/U in a function U = U(X):

- 1. Compute σ_U using Equation (3.10), and then divide by U
- 2. Compute $\ln U$ and use Equation (3.10) to find $\sigma_{\ln U}$, which is equal to σ_{U}/U

Both methods work in every instance.

This choice is usually dictated by whether it is easier to compute the derivative of U or of In U.

Example 3.16 (p.183)

- The radius of a circle is measured to be 5.00 ± 0.01 cm.
- Estimate the area, and find the relative uncertainty in the estimate.

Example 3.16 (p.183) - SOLUTION

- In Example 3.14 the area $A = \pi R^2$ was computed to be 78.5 ± 0.3 cm².
- \rightarrow The absolute uncertainty is $\sigma_A = 0.3$ cm²
- \rightarrow The relative uncertainty is $\sigma_A/A = 0.3/78.5 = 0.004$
- We can therefore express the area as

$$A = 78.5 \text{ cm} 2 \pm 0.4\%$$

Example 3.16 (p.183) - SOLUTION

- If we had not already computed σ_A , it would be easier to compute the relative uncertainty by computing the absolute uncertainty in $\ln A$.
- Since $\ln A = \ln \pi + 2 \ln R$ $d \ln A / dR = 2 / R = 0.4$
- > The relative uncertainty in A is therefore

$$\frac{\sigma_A}{A} = \sigma_{\ln A}$$

$$= \left| \frac{d \ln A}{dR} \right| \sigma_R$$

$$= 0.4\sigma_R$$

$$= (0.4)(0.01)$$

$$= 0.4\%$$

Example 3.17 (p.183)

- The acceleration of a mass down a frictionless inclined plane is given by $\mathbf{a} = \mathbf{g} \sin \theta$, where \mathbf{g} is the acceleration due to gravity and θ is the angle of inclination of the plane.
- Assume the uncertainty in g is negligible.
- \triangleright If θ = 0.60 ± 0.01 rad, find the relative uncertainty in a.

Example 3.17 (p.183) - SOLUTION

- The relative uncertainty in a is the absolute uncertainty in ln a.
- \triangleright Now In a =In g + In(sin θ), where In g is constant.
- > Therefore,
- d In a/d θ = d In(sin θ)/d θ = cos θ /sin θ = cot θ = cot(0.60) = 1.46
- \triangleright The uncertainty in θ is $\sigma_{\theta} = 0.01$.
- > The relative uncertainty in a is therefore

$$\frac{\sigma_a}{a} = \sigma_{\ln a}$$

$$= \left| \frac{d \ln a}{d\theta} \right| \sigma_{\theta}$$

$$= (1.46)(0.01)$$

$$= 1.5\%$$

End of Section 3-3

