# Applied Text Analytics & Natural Language Processing

with Dr. Mahdi Roozbahani & Wafa Louhichi

Deep Learning Convolutional Neural Network (CNN) - Part 1

Some of the slides are based on Ming Li (University of Waterloo – Deep Learning Part) with some modifications



## **Learning Objectives**

In this lesson, you will learn a deep learning model called CNN

- Deep Learning
- Convolutional Neural Network (CNN)



#### 3

# What is a Deep Learning Model? What is the Main Issue When a Model Becomes Deep?

Deep neural networks learn hierarchical feature representations









#### 1

# What is a Deep Learning Model? What is the Main Issue When a Model Becomes Deep?

Deep neural networks learn hierarchical feature representations





#### **Smaller Network: ANN**

- We know it is good to learn a small model
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?





#### Consider Learning an Image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters





#### Consider Learning an Image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters





### Why CNN Works Well for Images?



What about training a lot of such "small" detectors and each detector must "move around"?



#### Can we use CNN for NLP?

Yes, but we do need to prepare a dataset which is readable to a CNN model like an image which is a matrix



#### How to Prepare the Dataset for an NLP Problem?

For simplicity; let's say we have 3 documents (3 sample data points). These documents are collected from Emails:

- Wafa and Mahdi teach NLP class
- NLP is neat
- CNN is a good model
- Our vocabulary vector has 12 unique or distinct words; i.e. wafa, and, mahdi, ...
- The longest document has 6 words (Note that CNN needs all the datapoints to have the same size)



## Appling One-Hot Encoding Data Pre-Processing Technique

```
wafa = [1,0,0,0,0,0,0,0,0,0,0,0,0]
and = [0,1,0,0,0,0,0,0,0,0,0,0,0]
mahdi = [0,0,1,0,0,0,0,0,0,0,0,0,0]
:
```

- Each unique word will be a vector with a length equal to 12
- There are 12 unique words in our vocabulary vector



### Converting Documents into a Matrix

Let's convert the first document:

Wafa and Mahdi teach NLP class

wafa
and
mahdi
teach
nlp
class

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |



#### **Converting Documents into a Matrix**

Let's convert the second document:

#### NLP is neat

| nla          |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|
| nlp          | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| is           | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| neat         | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| Zero padding | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Zero padding | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Zero padding | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

- All documents will have the same size as the longest document in the corpus
- This is achieved by zero padding
- All documents can be converted in a same way

