

Licenciatura em Engenharia Informática Álgebra Linear e Geometria Analítica

Exame de Recurso - PARTE 1

10 de fevereiro de 2023

NOME: NÚMERO:

- A duração da parte 1 da prova é de **60 minutos**.
- Não é permitida a utilização de nenhum material de consulta ou auxiliar de cálculo.

GRUPO 1

Responda a cada uma das questões deste grupo no próprio enunciado. Não deve apresentar cálculos.

1. (1,5 val.) Considere as matrizes

$$P = \begin{bmatrix} -1 & 0 & 1 \\ -5 & 1 & 3 \\ 7 & -1 & -4 \end{bmatrix}, \qquad R = \begin{bmatrix} 0 & 2 & 2 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$

Indique uma afirmação verdadeira (escolha apenas uma opção).

- \square Verifica-se que $P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 3 & 2 \\ 2 & 1 & 2 \end{pmatrix}$
- \square A entrada (2,3) da matriz $P^{-1}R$ é 7 e a entrada (4,1) de R^TP é igual a 8.
- \square A matriz PRR^T é do tipo 3×4 .
- \Box Nenhuma das outras opções é verdadeira.
- 2. (1,5 val.) Sejam $A \in B \in M_{n \times n}(\mathbb{R})$ matrizes simétricas.

Indique uma afirmação verdadeira (escolha apenas uma opção).

- $\Box \ (AB)^T = AB$
- \square A equação $A(B^T+X)=B^T,$ em X, tem a solução $X=(A^{-1}-I)B.$
- \Box A matriz $A+A^T$ não é simétrica.
- \Box Nenhuma das outras afirmações é verdadeira.

vire, p.f. (V1)

3. (2,5 val.) Considere a matriz

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \in M_{4 \times 4}(\mathbb{R}).$$

Indique uma afirmação FALSA.

- \square O complemento algébrico de a_{34} é = -4.
- \square O menor principal de a_{22} é -4.
- \Box O det $(2A^{-1}) = -2$.
- \square O det $(A 4I_4)$ =det(A) 4.
- 4. (1,0 val.) Dada a matriz $E = \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix}$, onde k é um parâmetro real, indique uma afirmação verdadeira (escolha apenas uma opção).
 - \square Se k=0, a sua característica é 2.
 - \square Se k=1, a sua característica é 1.
 - \square Se $k \neq 1$ e $k \neq -2$ a sua característica é 2.
 - \Box Nenhuma das outras afirmações é verdadeira.

GRUPO 2

Neste grupo apresente as definições, os cálculos que efetuar e justifique todas as conclusões que obtiver. Utilize uma folha à parte.

- 1. (1,5 val.) Sabendo que $\begin{vmatrix} a & 1 & 1 \\ b & 0 & 2 \\ c & 4 & 1 \end{vmatrix} = 3$, calcule $\begin{vmatrix} m-1/2 & 2m & m-2 \\ 1/2 & 0 & 2 \\ -2a & -2b & -2c \end{vmatrix}$, usando exclusivamente as propriedades dos determinantes.
- 2. (2,0 val.) Considere o sistema de equações lineares:

$$\begin{cases} 2x - y - 2z = -1\\ 3x - y = 2\\ -x - y - 3z = a \end{cases}$$

onde a é um parâmetro real.

- a) Indique para que valores de a o sistema é de Cramer.
- b) Use o método de Cramer para encontrar a solução do sistema quando a=0.

Licenciatura em Engenharia Informática Álgebra Linear e Geometria Analítica

Exame de Recurso - PARTE 2

10 de fevereiro de 2023

NOME:	NÚMERO:
 A duração da parte 2 da prova é de 60 minutos. Não é permitida a utilização de nenhum material de consulta ou auxiliar de cálculo. 	
GF	RUPO 1
Responda a cada uma das questões deste grupo no próprio enunciado. Não deve apresentar cálculos.	
1. (1,5 val.) Em \mathbb{R}^3 considere o subespaço A opção.	$A = \{(x, y, z) \in \mathbb{R}^3 : x = y - z\}$. Indique apenas uma
\square { $(1,0,0),(-1,0,1)$ } é uma base de A . \square { $(2,2,0),(-1,0,0)$ } é uma base de A . \square { $(2,2,0),(-1,0,1),(0,1,1)$ } gera A .	\square {(1,1,0),(0,0,0)} é uma base de A . \square {(1,1,0),(-1,0,1),(1,0,0)} gera A . \square Nenhuma das outras opções.
2. (1,5 val.) Para os vetores $u=(1,2,2), v=$ concluir que (indique apenas uma opção):	$(0,1,-3)$ e $s=(1,1,k)$ do espaço vetorial $\mathbb{R}^3,$ pode-se
\square Se $k=4$ os vetores u,v e s são linearm	
\square Se $k=1$ o vetor s é combinação linear	
\square Se $k=5$ os vetores u,v e s são linearm \square Nenhuma das outras opções.	ente dependentes.
3. (1,0 val.)Considere o conjunto ℝ munido co denota a operação usual de adição.	om as operações de adição que se seguem. O símbolo +
$x \oplus_1 y = x + 3y$	$x \oplus_2 y = x + y - 2$
Pode-se afirmar que (escolha apenas um	a opção):
\square O oposto de 3 para \oplus_2 é 1.	\square O elemento neutro de \oplus_2 é 0.
\Box A operação \oplus_1 é comutativa.	\Box A operação \oplus_2 não é comutativa.
\square A operação \oplus_1 é associativa.	$\hfill \square$ Nenhuma das outras opções.
4. (1,5 val.) Dada a transformação linear T complete as frases: a) O Núcleo de T é $N(T) =$: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $T(x, y, z) = (x, y + z, x + y + z)$,

b) A Imagem de T é Im(T) = (indique uma ou mais condições em x,y,z).

5. (1,0 val.) Considere a matriz $B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & 4 \end{pmatrix} \in M_{3\times 3}(\mathbb{R})$. A transformação associada a esta matriz, na base canónica, tem (indique só uma opção):

 \square O subespaço próprio S={(x,0,-3x) \in \mathbb{R}^3 : x \in \mathbb{R}} associado ao valor próprio $\lambda=2.$

 \square O subespaço próprio $S=\{(x,0,0)\in\mathbb{R}^3:x\in\mathbb{R}\}$ associado ao valor próprio $\lambda=2$.

 \square O subespaço próprio $S = \{(x, 0, -3x) \in \mathbb{R}^3 : x \in \mathbb{R}\}$ associado ao valor próprio $\lambda = 4$.

 \square O subespaço próprio S={(x,0,0) \in \mathbb{R}^3: x \in \mathbb{R}} associado ao valor próprio $\lambda=4.$

 \square Nenhuma das outras opções.

GRUPO 2

Neste grupo apresente as definições, os cálculos e justifique todas as conclusões que obtiver. Utilize uma folha à parte.

1. (2,0 val.) Considere o sistema de equações lineares
$$\begin{cases} x+ay+z=b\\ x+a^2y+az=a\\ x+ay+az=b\\ x+ay+z=2 \end{cases} \text{ onde } a \in b \in \mathbb{R}.$$

- a) Discuta o sistema em função dos parâmetros a e b.
- b) Para a=b=2 resolva-o pelo método de Gauss-Jordan.
- 2. (1,5 val.) Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear tal que T(-1,1)=(3,2,1) e T(4,-1)=(0,1,2). Determine T(x,y) e T(1,1).

Algumas definições estudadas em ALGAN

O terno (V, \oplus, \odot) é um **espaço vetorial** real se e só se:

- (A_1) (Operação interna) $\forall u, v \in V, u \oplus v \in V$;
- (A_2) (Comutatividade) $\forall u, v \in V, u \oplus v = v \oplus u$:
- (A_3) (Associatividade) $\forall u, v, w \in V, (u \oplus v) \oplus w = u \oplus (v \oplus w);$
- (A_4) (Existência de elemento neutro) $\exists e \in V, \forall u \in V, u \oplus e = u = e \oplus u;$
- (A_5) (Existência de elemento oposto) $\forall u \in V, \exists u' \in V, u \oplus u' = e = u' \oplus u.$
- $(M_1) \ \forall \alpha \in \mathbb{R}, \forall u \in V, \alpha \odot u \in V;$
- (M_2) (Associatividade da multiplicação por escalar) $\forall \alpha, \beta \in \mathbb{R}, \forall u \in V, (\alpha \cdot \beta) \odot u = \alpha \odot (\beta \odot u);$
- (M_3) (Distributividade da adição em V) $\forall \alpha \in \mathbb{R}, \forall u, v \in V, \alpha \odot (u \oplus v) = (\alpha \odot u) \oplus (\alpha \odot v);$
- (M_4) (Distributividade da adição em \mathbb{R}) $\forall \alpha, \beta \in \mathbb{R}, \forall u \in V, (\alpha + \beta) \odot u = (\alpha \odot u) \oplus (\beta \odot u);$
- (M_5) (Elemento neutro da multiplicação por escalar) $\forall u \in V, 1 \odot u = u$.

Diz-se que $(W, \oplus, \odot) \subseteq (V, \oplus, \odot)$ é um subespaço vetorial de (V, \oplus, \odot) se e só se:

- 1. $0_V \in W$;
- 2. $\forall u, v \in W, u \oplus v \in W$;
- 3. $\forall \alpha \in \mathbb{R}, \forall u \in W, \alpha \odot u \in W$.

A transformação $T:V\to V'$ é uma **transformação linear** de V em V' se e só se:

- 1. $\forall u, v \in V, T(u+v) = T(u) + T(v);$
- 2. $\forall \alpha \in \mathbb{R}, \forall u \in V, T(\alpha u) = \alpha T(u)$.