Análisis de encuestas de hogares con R

CEPAL - Unidad de Estadísticas Sociales

Módulo 4: Modelos de regresión

Tabla de contenidos I

Modelos de regresión bajo diseños de muestreo complejos

Diagnostico del modelo

Introducción

- Un modelo matemático es una relación funcional entre variables.
- ► El objetivo es encontrar modelos que relacionen variables de entrada con una variable de salida.
- A lo largo de la historia, varios autores han discutido el impacto de los diseños muestrales complejos en las inferencias relacionadas con modelos de regresión.

Introducción

- ▶ Kish y Frankel (1974): Fueron los primeros en abordar, de manera empírica, cómo los diseños muestrales complejos afectan las inferencias en modelos de regresión.
- ► Fuller (1975): Desarrolló un estimador de varianza que considera ponderaciones desiguales de observaciones, especialmente relevantes en contextos de muestreo complejo de dos etapas.
- ▶ Sha et al. (1977): Discutieron las violaciones de supuestos en modelos de regresión lineal y presentaron evaluaciones empíricas del desempeño de estimadores de varianza basados en la linealización para modelos de regresión lineal con datos de encuestas.
- ▶ Binder (1983): Se centró en las distribuciones muestrales de estimadores para parámetros de regresión en poblaciones finitas y estimadores de varianza relacionados.

Introducción

- ▶ Skinner et al. (1989): Trabajaron en estimadores de varianza para los coeficientes de regresión que permitieron diseños de muestras complejas, y recomendaron el uso de métodos de linealización u otros métodos para la estimación de la varianza.
- ► Fuller (2002): Ofreció un resumen de los métodos de estimación para modelos de regresión que involucran información relacionada con muestras complejas.
- ▶ Pfeffermann (2011): Discutió enfoques basados en el ajuste de modelos de regresión lineal a datos de encuestas de muestras complejas, respaldando el uso de un método "q-weighted."

Modelos de Regresión Lineal Simple y Múltiple

▶ Un modelo de regresión lineal simple se define como

$$y = \beta_0 + \beta_1 x + \varepsilon$$

.

Los modelos de regresión lineal múltiples extienden este concepto para múltiples variables predictoras:

$$y = X\beta + \varepsilon$$

.

lacktriangle El valor esperado de la variable dependiente condicionado a las variables independientes se representa como E(y|x).

Consideraciones en Modelos de Regresión

- $\blacktriangleright \ E(\varepsilon_i|x_i)=0$: El valor esperado de los residuos condicionado a las covariables es igual a 0.
- $lackbox{Var}(arepsilon_i|x_i)=\sigma_{y,x}^2$: Homogeneidad de varianza, la varianza de los residuos condicionados es constante.
- $m > arepsilon_i | x_i \sim N(0,\sigma_{y,x}^2)$: Normalidad en los errores, los residuos condicionados se distribuyen normalmente.
- $igltarrow cov(arepsilon_i, arepsilon_j | x_i, x_j)$: Independencia en los residuos, los residuos en diferentes sujetos no están correlacionados con los valores de sus variables predictoras.

Resultados para el modelo de regresión

Una vez definido el modelo de regresión lineal y sus supuestos, se puede deducir los siguiente:

$$\begin{split} \hat{y} &= E\left(y \mid x\right) \\ &= E\left(x\beta\right) + E\left(\varepsilon\right) \\ &= x\beta + 0 \\ &= \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p \end{split}$$

y Adicionalmente,

$$\begin{array}{rcl} var\left(y_{i}\mid x_{i}\right) & = & \sigma_{y,x}^{2},\\ cov\left(y_{i},y_{j}\mid x_{i},x_{j}\right) & = & 0\\ & & \mathsf{y}\\ y_{i} & \sim & N\left(x_{i}\beta,\sigma_{y,x}^{2}\right) \end{array}$$

Estimación de los parámetros en un modelo de regresión simple.

La estimación del coeficiente de regresión β_1 en un modelo de regresión simple con muestras complejas involucra el uso de ponderaciones y totales. El estimador $\hat{\beta}_1$ se calcula como un cociente de totales ponderados.

$$\begin{split} \hat{\beta_1} &= \frac{\sum\limits_{h}^{H}\sum\limits_{\alpha}^{a_h}\sum\limits_{i=1}^{n_{h\alpha}}\omega_{h\alpha i}\left(y_{h\alpha i}-\bar{y}_{\omega}\right)\left(x_{h\alpha i}-\bar{x}_{\omega}\right)}{\sum\limits_{h}^{H}\sum\limits_{\alpha}^{a_h}\sum\limits_{i=1}^{n_{h\alpha}}\omega_{h\alpha i}\left(x_{h\alpha i}-\bar{x}_{\omega}\right)^2} \\ &= \frac{t_{xy}}{t_{x^2}} \end{split}$$

Varianza estimada

La varianza del estimador $\hat{\beta}_1$ se calcula considerando la varianza de los totales ponderados y sus covarianzas. Esta varianza estimada tiene en cuenta el diseño muestral y la estructura de ponderación.

$$var\left(\hat{\beta_{1}}\right) \ = \ \frac{var\left(t_{xy}\right) + \hat{\beta}_{1}^{2}var\left(t_{x^{2}}\right) - 2\hat{\beta}_{1}cov\left(t_{xy}, t_{x^{2}}\right)}{\left(t_{x^{2}}\right)^{2}}$$

Extensión a modelos de regresión múltiple:

Para modelos de regresión múltiple, la estimación de la varianza se generaliza a través de una matriz de varianza-covarianza que involucra los coeficientes de regresión.

$$var\left(\hat{\beta}\right) = \hat{\Sigma}\left(\hat{\beta}\right) = \begin{bmatrix} var\left(\hat{\beta}_{0}\right) & cov\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & \cdots & cov\left(\hat{\beta}_{0}, \hat{\beta}_{p}\right) \\ cov\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & var\left(\hat{\beta}_{1}\right) & \cdots & cov\left(\hat{\beta}_{1}, \hat{\beta}_{p}\right) \\ \vdots & \vdots & \ddots & \vdots \\ cov\left(\hat{\beta}_{0}, \hat{\beta}_{p}\right) & cov\left(\hat{\beta}_{1}, \hat{\beta}_{p}\right) & \cdots & var\left(\hat{\beta}_{p}\right) \end{bmatrix}$$

Este enfoque de estimación garantiza que se tengan en cuenta las particularidades del diseño muestral en la inferencia sobre los coeficientes de regresión.

Aplicación en encuestas de hogares

El proceso inicia con la lectura de la muestra y definiendo algunas variables de interés.

- ► CANTIDAD_PERSONAS: Cantidad de miembros pertenecientes al hogar.
- ➤ YDISPONIBLE_PER: Corresponde al ingreso disponible del hogar, dividido por la cantidad de personas en el hogar.
- ► GASTO_CORRIENTE_HOGAR: Gasto corriente del Hogar
- CONSUMO_FINAL_HOGAR: Gasto de consumo final del Hogar

Aplicación en encuestas de hogares

ingreso_hog	ingreso_per	RYDISPONIBLE_PER	SUMO_FINAL_HOGARY	O_CORRIENTE_HOGARCONS	CANTIDAD_PERSONAS GASTO
0.00	0.00	-2811.51	18011	18193	4
0.00	0.00	-1772.00	18184	28131	1
0.00	0.00	-1702.58	15961	21560	1
0.00	0.00	-255.54	12968	13479	2
0.00	0.00	-189.08	46579	46836	1
0.00	0.00	-53.54	6789	7079	2
0.00	0.00	0.00	2652	2652	1
75.00	18.75	18.75	5384	5384	4
62.50	20.83	20.83	5494	5494	3
115.42	57.71	57.71	8967	8967	2
68.06	68.06	68.06	11418	12585	1
447.75	111.94	111.94	2828	2828	4
479.99	160.00	160.00	15307	32166	3
500.00	166.67	166.67	5928	5928	3
541.67	180.56	180.56	4625	4625	3
375.00	187.50	187.50	8213	8213	2
588.17	196.06	196.06	4063	4063	3
1360.00	226.67	226.67	14287	14287	6
928.33	232.08	232.08	6406	6406	4
741.00	247.00	247.00	8294	8294	3

Definición del objeto survey.design

```
diseno <- encuesta %>% as_survey_design(
    strata = estrato,  # Id de los estratos.
    ids = F1_AO_UPM,  # Id para las observaciones.
    weights = Factor,  # Factores de expansión.
    nest = TRUE  # Valida el anidado dentro del estrato
)
```

Sub-grupos

Dividir la muestra en sub-grupos de la encuesta.

```
sub_Urbano <- diseno %>% filter(Area == "1. Urbana") #
sub_Rural <- diseno %>% filter(Area == "2. Rural") #
```

Scatterplot con los datos encuesta sin ponderar

Una sintaxis similar permite construir el scatterplot en la muestra.

```
plot_sin <-
  ggplot(data = encuesta,
         aes(x = GASTO_CORRIENTE_HOGAR, y = ingreso_hog)) +
  geom point() +
  geom_smooth(method = "lm",
              se = FALSE.
              formula = y \sim x) +
  theme cepal()
plot_sin <- plot_sin + stat_poly_eq(formula = y~x,</pre>
  aes(label = paste(..eq.label..,
     ..rr.label.., sep = "~~~"), size = 5),
  parse = TRUE)
```

Scatterplot con los datos encuesta sin ponderar

Modelo sin ponderar

El modelo ignorando los factores de expansión quedas así:

Modelo sin ponderar

Tabla 2: Modelo encuesta Sin ponderar

	ingreso_hog
GASTO_CORRIENTE_HOGAR	1.391***
	(0.017)
Constant	-1723.000***
	(479.200)
N	8746
R-squared	0.434
Adj. R-squared	0.434
Residual Std. Error	28819.000 (df = 8744)
F Statistic	$6713.000^{***} (df = 1; 8744)$

^{***}p < .01; **p < .05; *p < .1

Scatterplot con los datos encuesta ponderado

Para que el gráfico tenga en cuenta las ponderaciones debe agregar mapping = aes(weight = wk) en la función geom_smooth.

```
plot Ponde <-
  ggplot(data = encuesta,
         aes(x = GASTO CORRIENTE HOGAR, y = ingreso hog)) +
  geom point(aes(size = Factor)) +
  geom smooth(method = "lm",
              se = FALSE,
              formula = y \sim x,
              mapping = aes(weight = Factor)) +
  theme_cepal()
plot_Ponde <- plot_Ponde + stat_poly_eq(formula = y~x,</pre>
  aes(weight = Factor,
    label = paste(..eq.label..,
      ..rr.label.., sep = "~~~")),
  parse = TRUE, size = 5)
```

Scatterplot con los datos encuesta sin ponderar

Modelo ponderado 1m

La función 1m permite incluir los weights en la estimación de los coeficientes.

Modelo ponderado Im

Tabla 3: Modelo encuesta ponderada

	ingreso_hog
GASTO_CORRIENTE_HOGAR	1.378***
	(0.016)
Constant	-1209.000***
	(415.200)
N	8746
R-squared	0.452
Adj. R-squared	0.452
Residual Std. Error	448570.000 (df = 8744)
F Statistic	$7213.000^{***} (df = 1; 8744)$

^{***}p < .01; **p < .05; *p < .1

Modelo ponderado svyglm

Ahora, emplee la función svyglm de survey

Resumen del Modelo

Tabla 4: Modelo encuesta ponderada, svyglm

	ingreso_hog
GASTO_CORRIENTE_HOGAR	1.378***
	(0.081)
Constant	-1209.000
	(1361.000)
N	8746
AIC	205813.000

^{***}p < .01; **p < .05; *p < .1

Comparando los resultados

```
df model <- data.frame(</pre>
  intercept = c(coefficients(fit sinP)[1],
               coefficients(fit_Ponde)[1],
               coefficients(fit_svy)[1]),
  slope = c( coefficients(fit_sinP)[2],
               coefficients(fit_Ponde)[2],
               coefficients(fit_svy)[2]),
  Modelo = c("Sin ponderar",
             "Ponderado(lm)", "Ponderado(svyglm)"))
plot_Ponde2 <- plot_Ponde + geom_abline( data = df_model,</pre>
    mapping = aes( slope = slope,
      intercept = intercept, linetype = Modelo,
      color = Modelo ), size = 2
```

Comparando los resultados

Comparando los resultados

Variable	Sin Pond	Ponde(Im)	Ponde(svyglm)
(Intercept)	-1722.608	-1209.015	-1209.015
p-value	(< 0.001)	(0.004)	(0.375)
GASTO_CORRIENTE_HOGAR	1.391	1.378	1.378
p-value	(< 0.001)	(< 0.001)	(<0.001)
Num.Obs.	8746	8746	8746
R2	0.434	0.452	0.452
R2 Adj.	0.434	0.452	-5.619
AIC	204445.8	205813.2	202638.9
F	6712.633	7213.379	288.839
RMSE	28815.76	28817.66	28817.66

Diagnostico del modelo

Adecuado Ajuste del Modelo: - Verificar que el modelo se ajuste adecuadamente a los datos recopilados en la encuesta. - Evaluar si la relación funcional especificada es apropiada para representar las variables de interés.

Normalidad de Errores: - Examinar si los errores del modelo siguen una distribución normal. - Esto es crucial para realizar pruebas de hipótesis precisas y estimar intervalos de confianza confiables.

Varianza Constante de Errores: - Asegurarse de que la varianza de los errores sea constante en todos los niveles de las variables independientes. - La heterocedasticidad puede impactar en las pruebas y la interpretación de coeficientes.

Diagnostico del modelo

Errores No Correlacionados: - Evaluar si los errores pueden considerarse no correlacionados entre sí. - La autocorrelación de errores puede afectar la eficiencia de las estimaciones.

Datos Influyentes: - Identificar valores atípicos o datos influyentes que tienen un efecto desproporcionadamente grande en el modelo de regresión. - Estos datos deben tratarse con precaución y su impacto debe ser evaluado.

Valores Atípicos (Outliers):

Estimación del R^2 y R^2_{adj}

- lacktriangle En análisis de regresión, el coeficiente de determinación (R^2) mide la variabilidad explicada por el modelo.
- \blacktriangleright El R^2_ω ajusta R^2 para muestras complejas, considerando ponderaciones de la muestra.
- $ightharpoonup R_{\omega}^2$ se basa en la suma de cuadrados totales ponderada (WSST) y la suma de cuadrados del error ponderada (WSSE).
- ▶ La fórmula de R^2 es $1 \frac{SSE}{SST}$, donde SSE es la suma de cuadrados del error y SST es la suma de cuadrados totales.

Estimación del R^2 y R^2_{adj}

ightharpoonup Para R_{ω}^2 , la fórmula es $1-\frac{WSSE}{WSST}$, considerando las ponderaciones de la muestra.

$$\widehat{WSSE}_{\omega} = \sum_{h}^{H} \sum_{\alpha}^{a_{h}} \sum_{i=1}^{n_{h\alpha}} \omega_{h\alpha i} \left(y_{h\alpha i} - x_{h\alpha i} \hat{\beta} \right)^{2}$$

- Se utiliza el coeficiente de determinación ajustado (R_{adj}^2) para tener en cuenta el tamaño de la muestra y el número de predictores en el modelo.
- $lackbox{$\triangleright$} R_{adj}^2$ se calcula como $1-\frac{(n-1)}{(n-p)}R_\omega^2$, donde n es el tamaño de la muestra y p es el número de predictores.

Estimación del \mathbb{R}^2 para el modelo del ingreso.

```
fit_svy <- svyglm(ingreso_hog ~ GASTO_CORRIENTE_HOGAR ,</pre>
                  design = diseno,family=stats::gaussian())
medY <- diseno %>% summarise(medY = survey mean(ingreso hog))
diseno %<>% mutate(
  ypred = fitted(fit svy, type = "response"),
  medY = medY,
  sst = (ingreso_hog - medY$medY)^2,
  sse = (ypred - medY$medY)^2
diseno %>% summarise(WSST = survey_total(sst),
                     WSSE = survey_total(sse)) %>%
  transmute(WSST, WSSE, R2 = WSSE/WSST)
```

Estimación del ${\cal R}^2$ para el modelo del ingreso

El resultado para el \mathbb{R}^2 es

WSST	WSSE	R2
3.211e+15	1.451e+15	0.452

De forma alternativa es:

```
modNul <- svyglm(ingreso_hog ~ 1, design = diseno)
s1 <- summary(fit_svy)
s0 <-summary(modNul)

WSST<- s0$dispersion
WSSE<- s1$dispersion
R2 = 1- WSSE/WSST
R2</pre>
```

0.452 1.07e+08

SF.

variance

[1,]

Estimación del R^2_{adj} para el modelo del ingreso

Calculamos el R^2_{adj} utilizando la fórmula adecuada. Asegúrate de definir los valores de n y p de acuerdo a tu modelo.

```
n = nrow(encuesta)
p = 2
(R2Adj = 1 - ((n-1)/(n-p)) * R2)
variance SE
```

```
variance SE [1,] 0.548 1.07e+08
```

Metodología de los Q_Weighting de pfefferman

Cuando trabajamos con datos de encuestas que siguen un diseño muestral complejo y es posible aplicar la metodología de los q-weights (Pffeferman, 2011).,

 Ajuste del Modelo de Regresión a los Q-Weights: Inicialmente, ajustamos un modelo de regresión lineal a los q-weights en R. Esto se hace utilizando la función lm().

```
fit_wgt <- lm(1/Factor ~ GASTO_CORRIENTE_HOGAR, data = encuesta)</pre>
```

2. **Obtención de Predicciones de Q-Weights:** A continuación, calculamos las predicciones de los q-weights para cada caso, utilizando las variables predictoras del modelo de regresión.

```
qw <- predict(fit_wgt)
summary(qw)</pre>
```

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.0058	0.0061	0.0062	0.0064	0.0065	0.0151

Metodología de los Q_Weighting de pfefferman

 Creación de Nuevos Q-Weights: Para obtener los q-weights ajustados, dividimos los weights originales por las predicciones calculadas en el paso anterior.

```
encuesta <- encuesta %>% mutate(wk1 = Factor/qw)
```

 Definición de un Diseño Muestral con Q-Weights: Usamos los nuevos q-weights obtenidos para definir un diseño muestral que refleje estos pesos.

```
diseno_qwgt <- encuesta %>%
  as_survey_design(
    strata = estrato,  # Id de los estratos.
    ids = F1_AO_UPM,  # Id para las observaciones.
    weights = wk1,  # Factores de expansión.
    nest = TRUE  # Valida el anidado dentro del estrato
)
```

Modelos empleando los Q_Weighting

Estimando los coeficientes del modelo con los Q_Weighting de pfefferman

term	estimate	std.error	statistic	p.value
(Intercept)	-1306.548	1109.1754	-1.178	0.2392
GASTO_CORRIENTE_HOGAR	1.383	0.0696	19.872	0.0000

Calculo del R^2 y R^2_{adj}

```
Obtenido el \mathbb{R}^2
WSST<- s0$dispersion
WSSE<- s1_qwgt$dispersion
(R2 = 1 - WSSE/WSST)
     variance SE
[1,] 0.531 92109176
Obtenido el R_{adi}^2
n = nrow(encuesta)
p = 2
(R2Adj = 1-((1-R2)*(n-1)/(n-1-1)))
     variance
                    SE
[1,] 0.531 92109176
```

Modelos empleando los Q_Weighting

Tabla 9: Comprando Modelos con Q Weighting

Variable	svyglm(wgt)	svyglm(qwgt)
(Intercept)	-1209.015	-1306.548
p-value	(0.375)	(0.239)
GASTO_CORRIENTE_HOGAR	1.378	1.383
p-value	(< 0.001)	(<0.001)
Num.Obs.	8746	8746
R2	0.452	0.423
AIC	202638.9	201262.1
F	288.839	394.884
RMSE	28817.66	28817.13

Email: andres.gutierrez@cepal.org