Hi-C BERG : Statistical inference of repeated sequence contacts in Hi-C maps

ISMB / ECCB 2023 - Lyon

Sébastien Gradit
Spatial Regulation of Genomes - UMR3525

How to investigate genomes conformations? Chromosome conformation Capture

Indrect observation of chromatine architecture through chimeric DNA construction

How to investigate genomes conformations and track chromatine architecture dynamics?

- 1. Lieberman-Aiden, E. et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
- 2. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

Repeated elements on Hi-C maps - significant loss of contacts information

Repeated sequences over genomes appear as empty stripes on Hi-C maps

Several possible couples for a chimere : how to choose the right one ?

Ambiguous reads are usually filtered out

How to investigate genomes structures linked to repeated sequences and their impact?

Leveraging Hi-C pair-end reads patterns to reduce ambiguity

How to unveil position of such ambiguous pairs corresponding to repeated elements?

Main idea: extracting statistical trends from unambiguous chimeres to infer couple selecting among ambiguous read-pairs

How to unveil position of such ambiguous pairs corresponding to repeated elements?

<u>Main idea</u>: extracting **statistical trends** from **unambiguous** chimeres to **infer couple selecting** among ambiguous chimeres

- HiC-BERG : Python 3.11 package
- Standard file formats formats of HiC assays injectable at any step
- Computation time are genome length and richness of repeated sequence dependant: 40min for E.coli and 2h for S.cerevisiae on respectively 26 millions and 47 millions reads depth banks

Validation of HIC-BERG through **ambiguity injection** in non ambiguous part of contacts

→ **Controlled strategy** to evaluate Hi-C reconstruction

- Random model show a mean Pearson correlation ~ 0.4
- **P(s)** carry the **globality** of the information
- Adding restriction sites information (d1d2) reduce dispersion over reconstruction experiences

HiC-BERG – Global validation

Assessing reconstruction quality through increasing genomic distance between fakes (3 repeats on cis and trans chromosomal cases)

Genomic distance (bp)

HiC-BERG reconstructions appears to be robust over distance between repeated sequences and twin repeated sequences number

Application (I) E. Coli 100kb tandem duplication

E. coli DHB10 strain is known to carry a 100 kb tandem duplicated sequences
HiC-BERG inference retrieved expected DNA polymer behavior

Rescued map - S. cerevisiae Chr. XII

Retrieval of rDNA complex (200+ copies) interaction with centromere of chromosome XII

Fine, R. D., Maqani, N., Li, M., Franck, E. & Smith, J. S. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of Saccharomyces cerevisiae. Genetics 212, 75 (2019).

P.falciparum observations showed **VAR gene** and **telomere clusterization** to **repress virulence** expression during parasitic cycle for **host immune system escaping**

Unveil of (sub) - telomere / virulence genes interactions previously characterized

Bunnik, E. M. et al. Comparative 3D genome organization in apicomplexan parasites. Proceedings of the National Academy of Sciences 116, 3183–3192 (2019).