Package 'countfitteR'

October 12, 2022

Type Package

Title Comprehensive Automatized Evaluation of Distribution Models for Count Data

Version 1.4

Maintainer Jaroslaw Chilimoniuk < jaroslaw.chilimoniuk@gmail.com>

Description A large number of measurements generate count data. This is a statistical data type that only assumes non-negative integer values and is generated by counting. Typically, counting data can be found in biomedical applications, such as the analysis of DNA double-strand breaks. The number of DNA double-strand breaks can be counted in individual cells using various bioanalytical methods. For diagnostic applications, it is relevant to record the distribution of the number data in order to determine their biomedical significance (Roediger, S. et al., 2018. Journal of Laboratory and Precision Medicine. <doi:10.21037/jlpm.2018.04.10>). The software offers functions for a comprehensive automated evaluation of distribution models of count data. In addition to programmatic interaction, a graphical user interface (web server) is included, which enables fast and interactive data-scientific analyses. The user is supported in selecting the most suitable counting distribution for his own data set.

License GPL-3 Encoding UTF-8 LazyData true

VignetteBuilder knitr

Suggests dplyr, DT, gridExtra, knitr, pander, reshape2, rmarkdown, shinythemes, shinycssloaders, shinyWidgets, spelling, testthat

Date 2020-09-30

URL https://github.com/BioGenies/countfitteR

BugReports https://github.com/BioGenies/countfitteR/issues

RoxygenNote 7.1.1

Imports ggplot2, MASS, shiny, stats, pscl, tools, utils

Language en-US
NeedsCompilation no

2 countfitteR-package

Author Jaroslaw Chilimoniuk [cre, ctb] (https://orcid.org/0000-0001-5467-018X>> https://orcid.org/0000-0001-6563-5742> https://orcid.org/0000-0003-3466-8933> https://orcid.org/0000-0001-8926-582X> https://orcid.org/0000-0001-8926-582X> https://orcid.org/0000-0002-1441-6512> https:

Repository CRAN

Date/Publication 2020-09-30 21:30:02 UTC

R topics documented:

----4644-D ---1---

Index		13
	zip	11
	zinb	
	validate_counts	10
	summary_fitlist	
	sim_dat	8
		8
	process_counts	7
	plot_fitcmp	7
	fit_counts	6
	decide	5
	countfitteR_gui	5
	compare_fit	4
	case_study_FITC	4
	case_study_APC	3
	case_study_all	3
	case_study	3
	countfitteR-package	2

count fitte R-package count fitte R- a framework for fitting count distributions in R

Description

The countfitteR package is a toolbox for the analysis of count data.

Acknowledgements

countfitteR is a wrapper around existing count models in R. To standardize error messages and ease up the integration, we slightly modified the zeroinfl function by Achim Zeileis.

Author(s)

Jaroslaw Chilimoniuk, Stefan Roediger, Michal Burdukiewcz

case_study 3

Examples

case_study

Short version of the case_study_FITC

Description

shorter version of the case_study_FITC. Used as an example in shiny app, when the user will not load his own count data.

Usage

```
case_study
```

case_study_all

Case study with two fluorescent dyes

Description

example data extracted from Aklides system and merged into one file. Counts in this file will not fit properly, due to the fact that we integrated into the file counts with two different fluorescent dyes used.

Usage

```
case_study_all
```

case_study_APC

Case study for APC dye

Description

example data extracted from Aklides system. Counts with only APC fluorescent dye were merged.

Usage

```
case_study_APC
```

4 compare_fit

case_study_FITC

Case study for FITC dye

Description

example data extracted from Aklides system. Counts with only FITC fluorescent dye were merged.

Usage

```
case_study_FITC
```

compare_fit

Compare fits

Description

Compare empirical distribution of counts with the distribution defined by the model fitted to counts.

Usage

```
compare_fit(count_list, fitlist = fit_counts(count_list, model = "all"))
```

Arguments

count_list A list of counts. Each count should be in separate column, rows should repre-

sent values of these counts.

fitlist a list of fits, as created by fit_counts.

Value

A data.frame with distribution values for each unique count. Count is the name of the original count, model is the name of distribution model, x is unique count value, n is the frequency of unique counts, value is result of calculations made by chosen distribution model.

Examples

```
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
compare_fit(df, fitlist = fit_counts(df, model = "all"))</pre>
```

countfitteR_gui 5

countfitteR_gui

countfitteR Graphical User Interface

Description

Launches graphical user interface that analyses given count data and chooses the best performing distribution model.

Usage

```
countfitteR_gui()
```

Warning

Any ad-blocking software may cause malfunctions.

Author(s)

Jaroslaw Chilimoniuk, Stefan Roediger, Michal Burdukiewcz

Examples

```
if(interactive()) {
  countfitteR_gui()
}
```

decide

Make a decision based on the BIC value

Description

Select the most appropriate distribution for the count data in the html-friendly format.

Usage

```
decide(summary_fit, separate)
```

Arguments

summary_fit a result of the summary_fitlist function.

separate logical. If TRUE, each c

logical. If TRUE, each count is separately fitted to the model. If FALSE, all counts are fitted to the same models having the count name as the independent variable.

See Also

```
fit_counts
```

fit_counts

Examples

```
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fc <- fit_counts(df, model = "all")
summ <- summary_fitlist(fc)
decide(summ, separate = FALSE)</pre>
```

fit_counts

Fit counts to distributions

Description

Fit counts to distributions

Usage

```
fit_counts(counts_list, separate = TRUE, model, level = 0.95, ...)
```

Arguments

counts_list	A list of count data. Each count should be in separate column, rows should represent values of that counts.
separate	logical. If TRUE, each count is separately fitted to the model. If FALSE, all counts are fitted to the same models having the count name as the independent variable.
model	single character: "pois", "nb", "zinb", "zip", "all". If "all", all possible model are fitted.
level	Confidence level, default is 0.95.
	Dots parameters are ignored.

Value

The list of fitted models. Names are names of original counts, an underline and a name of model used. confint is a matrix with the number of rows equal to the number of parameters. Rownames are names of parameters. The columns contain respectively lower and upper confidence intervals.

Examples

```
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fit_counts(df, model = "pois")</pre>
```

plot_fitcmp 7

plot_fitcmp

plot_fitcmp

Description

Compare empirical distribution of counts with the distribution defined by the model fitted to counts. The bar charts represent theoretical counts depending on the chosen distribution. Red dots describe the real number of counts.

Usage

```
plot_fitcmp(fitcmp)
```

Arguments

fitcmp

You need to input data frame that is created by compare_fit function.

Examples

```
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fitcmp <- compare_fit(df, fitlist = fit_counts(df, model = "all"))
plot_fitcmp(fitcmp)</pre>
```

process_counts

Process counts

Description

Converts data in a table-like formats into lists of counts.

Usage

```
process_counts(x)
```

Arguments

Х

data.frame or matrix.

Details

case_study does not consider NAs and NaNs effectively omitting them (as per the is.na function).

Value

A list of counts.

8 sim_dat

Examples

```
data(case_study)
process_counts(case_study)
```

select_model

Select the most appropriate model

Description

Select the most appropriate model

Usage

```
select_model(fitlist)
```

Arguments

fitlist

a list of fits, as created by fit_counts.

Value

a data.frame with two columns: count representing the name of the count and chosen model with the model with the lowest BIC.

Examples

sim_dat

Data created from simulation of NB Poiss

Description

Data created from simulation of NB Poiss

Usage

sim_dat

summary_fitlist 9

Examples

```
# code used to generate the data
# be warned: the simulations will take some time
## Not run:
library(dplyr)
set.seed(15390)
sim_dat <- do.call(rbind, lapply(10^(-3L:2), function(single_theta)</pre>
  do.call(rbind, lapply(1L:10/2, function(single_lambda)
    do.call(rbind, lapply(1L:100, function(single_rep) {
    foci <- lapply(1L:10, function(dummy) rnbinom(600, size = single_theta, mu = single_lambda))</pre>
      names(foci) <- paste0("C", 1L:10)</pre>
      fit_counts(foci, separate = TRUE, model = "all") %>%
        summary_fitlist %>%
        mutate(between = single_lambda < upper & single_lambda > lower) %>%
        group_by(model) %>%
        summarize(prop = mean(between)) %>%
        mutate(replicate = single_rep, lambda = single_lambda, theta = single_theta)
    }))
  ))
))
## End(Not run)
```

summary_fitlist

Summary of estimates

Description

Counts are fitted to model(s) using the count name as the explanatory variable. Estimates are presented in the table below along with the BIC values of their models. Estimated coefficients of models (lambda for all distributions, theta for NB and ZINB, r for ZIP and ZINB).

Usage

```
summary_fitlist(fitlist)
```

Arguments

fitlist a list of fits, as created by fit_counts.

Value

Data frame with summarised results of all distribution models.

- Count: the name of the original count.
- lambda: λ Poisson mean, lower and upper confidence intervals.
- BIC: Bayesian information criterion

validate_counts

- theta: θ dispersion parameter
- r: probability of excess zeros.

See Also

```
fit_counts
```

Examples

```
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fc <- fit_counts(df, model = "all")
summary_fitlist(fc)</pre>
```

validate_counts

Validate data

Description

Validates count data.

Usage

```
validate_counts(x)
```

Arguments

Χ

data.frame or matrix.

Details

Errors if x has negative values or non-numeric values, otherwise TRUE.

Value

An input object.

Examples

```
data(case_study)
process_counts(case_study)
```

zinb 11

zinb

Zero-inflated negative binomial distrbution

Description

Density and random generation for the zero-inflated negative binomial distribution.

Usage

```
rZINB(n, size, mu, r)
dZINB(x, size, mu, r)
```

Arguments

n number of random values to return.

size target for number of successful trials, or dispersion parameter (the shape param-

eter of the gamma mixing distribution). Must be strictly positive, need not be

integer..

mu mean.

r probability of excess zeros.

x vector of (non-negative integer) quantiles.

See Also

Negative binomial distribution: NegBinomial.

Examples

```
rZINB(15, 1.9, 0.9, 0.8)
```

zip

Zero-inflated Poisson distrbution

Description

Density and random generation for the zero inflated Poisson distribution.

Usage

```
dZIP(x, lambda, r)
rZIP(n, lambda, r)
```

12 zip

Arguments

x vector of (non-negative integer) quantiles.

lambda vector of (non-negative) means.
r probability of excess zeros.

n number of random values to return.

See Also

Poisson distribution: Poisson.

Examples

rZIP(15, 1.9, 0.9)

Index

```
* Poisson
                                                    summary_fitlist, 5, 9
    countfitteR_gui, 5
                                                    validate\_counts, \\ \frac{10}{}
* count
    countfitteR_gui, 5
                                                    zeroinfl, 2
* datasets
                                                    ZINB (zinb), 11
    case_study, 3
                                                    zinb, 11
    case_study_all, 3
                                                    ZIP (zip), 11
    case_study_APC, 3
                                                    zip, 11
    case_study_FITC, 4
    sim_dat, 8
* zero-inflated
    countfitteR_gui, 5
case_study, 3
{\tt case\_study\_all}, \color{red} 3
case_study_APC, 3
case_study_FITC, 4
compare_fit, 4
countfitteR (countfitteR-package), 2
countfitteR-package, 2
countfitteR_gui, 5
decide, 5
dZINB (zinb), 11
dZIP (zip), 11
fit_counts, 4, 5, 6, 8–10
is.na, 7
NegBinomial, 11
plot_fitcmp, 7
Poisson, 12
process_counts, 7
rZINB (zinb), 11
rZIP(zip), 11
select_model, 8
sim_dat, 8
```