Examen de Teoría de Percepción - Segundo Parcial ETSINF, Universitat Politécnica de Valéncia, Junio de 2021

Apellidos: Nombre:

Profesor:

□ Jorge Civera □ Carlos Martínez

Problemas (2 puntos, 90 minutos, con apuntes)

1. (1 punto) Se tiene el conjunto de datos siguiente:

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8
$\overline{x_{n1}}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
x_{n2}	$\frac{1}{2}$	$-\frac{3}{2}$	1	0	$\frac{3}{2}$	$-\frac{1}{2}$	2	1
x_{n3}	$\frac{1}{7}$	$-\frac{3}{7}$	$-\frac{5}{7}$	1	$-\frac{2}{7}$	$-\frac{6}{7}$	$-\frac{8}{7}$	$\frac{4}{7}$
c_n	A	A	A	A	В	В	В	В

Se pide lo siguiente:

- a) Calcular todos los parámetros del clasificador gaussiano por máxima verosimilitud para ese conjunto de datos. (0.5 puntos)
- b) Establecer la frontera de decisión entre las dos clases. (0.3 puntos)
- c) Clasificar el punto $\mathbf{y} = (1 \frac{1}{2} 1)^t$. (0.2 puntos)
- 2. (0.5 puntos) Dado el conjunto de datos siguiente:

				\mathbf{x}_4		
x_{n1}	0	2	-1	-2	3	2
x_{n2}	1	2	-2	0	0	-2
$\begin{array}{c} x_{n1} \\ x_{n2} \\ c_n \end{array}$	Α	Α	В	В	С	\mathbf{C}

Se pide:

- a) Calcular las matrices S_b y S_w asociadas a los mismos. (0.4 puntos)
- b) ¿Es necesario aplicar una reducción de dimensión por LDA a una única dimensión para mejorar una clasificación basada en clasificadores lineales? (0.1 puntos)
- 3. (0.5 puntos) Se tiene el siguiente conjunto de datos y clasificadores lineales:

$$\mathbf{x}_{1} = ((0,0,0), -1), \mathbf{x}_{2} = ((1,1,1), +1), \mathbf{x}_{3} = ((-1,0,1), -1), \mathbf{x}_{4} = ((-1,-1,1), +1)$$

$$g_{1}(\mathbf{z}) = \begin{cases} +1 & z_{1} > 0 \\ -1 & z_{1} \leq 0 \end{cases} \quad g_{2}(\mathbf{z}) = \begin{cases} +1 & z_{2} > -1 \\ -1 & z_{2} \leq -1 \end{cases}$$

$$g_{3}(\mathbf{z}) = \begin{cases} +1 & z_{3} > 1 \\ -1 & z_{3} \leq 1 \end{cases} \quad g_{4}(\mathbf{z}) = \begin{cases} +1 & z_{1} + z_{2} + z_{3} \geq 0 \\ -1 & z_{1} + z_{2} + z_{3} < 0 \end{cases}$$

Se pide realizar una primera iteración de AdaBoost sobre estos datos y clasificadores, indicando la tabla de acierto y fallo por clasificador, el clasificador escogido, el error en primera iteración (ϵ_1), el peso del clasificador escogido (α_1) y los pesos de las muestras en la siguiente iteración ($\mathbf{w}^{(2)}$).