

2. Three-sided dice

Problem 2. Three-sided dice

9/9 points (graded)

We have two fair three-sided dice, indexed by i=1,2. Each die has sides labelled 1, 2, and 3. We roll the two dice independently, one roll for each die. For i=1,2, let the random variable X_i represent the result of the ith die, so that X_i is uniformly distributed over the set $\{1,2,3\}$. Define $X=X_2-X_1$.

1. Calculate the numerical values of following probabilities, as well as the expected value and variance of X:

2. Let $Y=X^2$. Calculate the following probabilities:

Solution:

1. The sample space for the pair (X_1, X_2) has 9 equally likely outcomes. For each possible value x of X, we count the number of outcomes for which the difference $X_2 - X_1$ equals x, then multiply by 1/9 to obtain $p_X(x)$.

$$p_X(x) = egin{cases} 1/9, & x = -2 ext{ or } 2, \ 2/9, & x = -1 ext{ or } 1, \ 3/9, & x = 0, \ 0, & ext{otherwise}. \end{cases}$$

$$\mathbf{E}[X] = \sum_{x=-2}^2 x p_X(x) = (-2) \cdot rac{1}{9} + (-1) \cdot rac{2}{9} + (0) \cdot rac{3}{9} + (1) \cdot rac{2}{9} + (2) \cdot rac{1}{9} = 0$$

We can also see that $\mathbf{E}[X]=0$ because the PMF is symmetric around 0, or because $\mathbf{E}[X_1]=\mathbf{E}[X_2]$, so that $\mathbf{E}[X]=\mathbf{E}[X_2-X_1]=\mathbf{E}[X_2]-\mathbf{E}[X_1]=0$.

To find the variance of X, we note that $\mathsf{Var}(X) = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2]$, and so

$$\mathbf{E}[X^2] = \sum_{x=-2}^2 x^2 p_X(x) = 4 \cdot rac{1}{9} + 1 \cdot rac{2}{9} + 0 \cdot rac{3}{9} + 1 \cdot rac{2}{9} + 4 \cdot rac{1}{9} = rac{4}{3}.$$

2. Let $Y=X^2$. By matching the possible values of X and their probabilities to the possible values of Y, we obtain

$$p_Y(y) = egin{cases} 2/9, & y=4, \ 4/9, & y=1, \ 3/9, & y=0, \ 0, & ext{otherwise}. \end{cases}$$

A plot of the PMF of $oldsymbol{Y}$ is shown below:

提交

You have used 2 of 3 attempts

• Answers are displayed within the problem

讨论

Topic: Unit 4 / Problem Set / 2. Three-sided dice

Learn About Verified Certificates

© All Rights Reserved