EE/CE 6301: Advanced Digital Logic

Bill Swartz

Dept. of EE Univ. of Texas at Dallas

Session 02

Optimization / Overview of HDL-for-Synthesis

Credits

• This presentation was adapted from work of Mehrdad Nourani of the University of Texas at Dallas.

The Challenge of Optimization

Algorithm

- An algorithm defines a procedure for solving a computational problem
 - Examples:
 - Quick sort, bubble sort, insertion sort, heap sort
 - Dynamic programming method for the knapsack problem
- Definition of complexity
 - Run time on deterministic, sequential machines
 - Based on resources needed to implement the algorithm
 - Needs a cost model: memory, hardware/gates, communication bandwidth, etc.
 - Example: RAM model with single processor
 - → running time ∞ # operations

Runtime Complexity

- Runtime complexity: the time required by the algorithm to complete as a function of some natural measure of the problem size, allows comparing the scalability of various algorithms
- Complexity is represented in an asymptotic sense, with respect to the input size n, using big-Oh notation or O(...)
- Runtime t(n) is order f(n), written as t(n) = O(f(n)) when where k is a real number
- Example: $t(n) = 7n! + n^2 + 100$, then t(n) = O(n!) because n! is the fastest growing term as n approaches $\lim_{n \to \infty} \left| \frac{t(n)}{f(n)} \right| = k$ infinity.

Asymptotic Notions

- Idea:
 - A notion that ignores the "constants" and describes the "trend" of a function for large values of the input
- Definition
 - Big-Oh notation f(n) = O(g(n))if constants K and n_0 can be found such that: ∀ $n \ge n_0$, $f(n) \le K$. g(n)

g is called an "upper bound" for f (f is "of order" g: f will not grow larger than g by more than a constant factor)

Examples:
$$1/3 \text{ n}^2 = O(n^2)$$
 (also $O(n^3)$)
 $0.02 \text{ n}^2 + 127 \text{ n} + 1923 = O(n^2)$

Asymptotic Notions (cont.)

- Definition (cont.)
 - Big-Omega notation $f(n) = \Omega (g(n))$ if constants K and n_0 can be found such that: ∀ $n \ge n_0$, $f(n) \ge K$. g(n)

g is called a "lower bound" for f

— Big-Theta notation $f(n) = \Theta(g(n))$ if g is both an upper and lower bound for f Describes the growth of a function more accurately than O or Ω

Example:

$$n^3 + 4 n \neq \Theta (n^2)$$

 $4 n^2 + 1024 = \Theta (n^2)$

Asymptotic Notions (cont.)

- How to find the order of a function?
 - Not always easy, esp if you start from an algorithm
 - Focus on the "dominant" term
 - $-4 n^3 + 100 n^2 + \log n \rightarrow O(n^3)$
 - $-n + n \log(n) \rightarrow n \log(n)$
 - $-n! = K^n > n^K > \log n > \log \log n > K$ $\Rightarrow n > \log n, \quad n \log n > n, \quad n! > n^{10}.$
- What do asymptotic notations mean in practice?
 - If algorithm A has "time complexity" O(n²) and algorithm B has time complexity O(n log n), then algorithm B is better
 - If problem P has a lower bound of $\Omega(n \log n)$, then there is NO WAY you can find an algorithm that solves the problem in O(n) time.

Algorithm (cont.)

- Definition of complexity (cont.)
 - Example: Bubble Sort
 - Scalability with respect to input size is important
 - How does the running time of an algorithm change when the input size doubles?
 - Function of input size (n).
 Examples: n²+3n, 2ⁿ, n log n, ...
 - Generally, large input sizes are of interest
 (n > 1,000 or even n > 1,000,000)
 - What if I use a better compiler? What if I run the algorithm on a machine that is 10x faster?

```
for (j=1; j< N; j++) {
   for (i=; i < N-j-1; i++) {
     if (a[i] > a[i+1]) {
       hold = a[i];
      a[i] = a[i+1];
      a[i+1] = hold;
      }
   }
   }
}
```

Bubble sort animation

Value

Index

Function Growth Examples

Importance of Asymptotic Analysis — Worst- & Average-Case

Assume that a computer executes a million instructions a second. This chart summarizes the amount of time required to execute f(n) instructions on this machine for various values of n.

f(n)	n=10 ³	n=10 ⁵	n=10 ⁶
$log_2(n)$	10 ⁻⁵ sec	1.7 * 10 ⁻⁵ sec	2 * 10 ⁻⁵ sec
n	10 ⁻³ sec	0.1 sec	1 sec
n*log ₂ (n)	0.01 sec	1.7 sec	20 sec
n ²	1 sec	3 hr	12 days
n ³	17 min	32 yr	317 centuries
2 ⁿ	10 ²⁸⁵ centuries	10 ¹⁰⁰⁰⁰ years	10 ¹⁰⁰⁰⁰⁰ years

 Asymptotic analysis tells us whether a technique/algorithm will be practical in all cases (worst-case analysis) or in the average-case (av.-case analysis) for problem sizes of interest

Asymptotic order of common functions

Here is a list of classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case, c is a constant and n increases without bound. The slower-growing functions are generally listed first.

Notation	Name	Example	
O(1)	constant	Determining if a binary number is even or odd; Calculating $(-1)^n$; Using a constant-size lookup table	
$O(\log \log n)$	double logarithmic	Number of comparisons spent finding an item using interpolation search in a sorted array of uniformly distributed values	
$O(\log n)$	logarithmic	Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap	
$O(\log^c n), \ c > 1$	polylogarithmic	Matrix chain ordering can be solved in polylogarithmic time on a Parallel Random Access Machine.	
$O(n^c), \ 0 < c < 1$	fractional power	Searching in a kd-tree	
O(n)	linear	Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; adding two n-bit integers by ripple carry	
$O(n\log^* n)$	n log-star n	Performing triangulation of a simple polygon using Seidel's algorithm, or the union–find algorithm. Note that $\log^*(n) = \begin{cases} 0, & \text{if } n \leq 1 \\ 1 + \log^*(\log n), & \text{if } n > 1 \end{cases}$	
$O(n\log n) = O(\log n!)$	linearithmic, loglinear, or quasilinear	Performing a fast Fourier transform; heapsort, quicksort (best and average case), or merge sort	
$O(n^2)$	quadratic	Multiplying two <i>n</i> -digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), Shell sort, quicksort (worst case), selection sort or insertion sort	
$O(n^c), c > 1$	polynomial or algebraic	Tree-adjoining grammar parsing; maximum matching for bipartite graphs	
$L_n[\alpha, c], \ 0 < \alpha < 1 = e^{(c+o(1))(\ln n)^{\alpha}(\ln \ln n)^{1-\alpha}}$	L-notation or sub- exponential	Factoring a number using the quadratic sieve or number field sieve	
$O(c^n), c > 1$	exponential	Finding the (exact) solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search	
O(n!)	factorial	Solving the traveling salesman problem via brute-force search; generating all unrestricted permutations of a poset; finding the determinant with expansion by minors; enumerating all partitions of a set	
O(n*n!)	n x n factorial	Attempting to sort a list of elements using the incredibly inefficient bogosort algorithm.	

The statement f(n) = O(n!) is sometimes weakened to $f(n) = O(n^n)$ to derive simpler formulas for asymptotic complexity. For any k > 0 and c > 0, $O(n^c(\log n)^k)$ is a subset of $O(n^{c+\varepsilon})$ for any $\varepsilon > 0$, so may be considered as a polynomial with some bigger order.

Algorithms and Complexity

- Example: Exhaustively Enumerating All Placement Possibilities
 - Given: n cells
 - Task: find a single-row placement of n cells with minimum total wirelength by using exhaustive enumeration.
 - Solution: The solution space consists of n! placement options. If generating and evaluating the wirelength of each possible placement solution takes 1 μ s and n = 20, the total time needed to find an optimal solution would be 77,147 years!
- A number of physical design problems have best-known algorithm complexities that grow exponentially with n, e.g., O(n!), $O(n^n)$, and $O(2^n)$.
- Many of these problems are NP-hard (NP: non-deterministic polynomial time)
 - No known algorithms can ensure, in a time-efficient manner, globally optimal solution
- → Heuristic algorithms are used to find near-optimal solutions

Problem Tractability

- Problems are classified into "easier" and "harder" categories
 - Class P: a polynomial time algorithm is known for the problem (hence, it is a tractable problem)
 - Class NP (non-deterministic polynomial time): a solution is verifiable in polynomial time
 - $-P \subseteq NP$. Is P = NP? (Find out and become famous!)
 - Practically, for a problem in NP but not in P: polynomial solution not found yet (probably does not exist)
 - → exact (optimal) solution can be found using an algorithm with exponential time complexity
- NP-completeness, NP-hardness, etc.
 - Most CAD problems are NP-complete, NP-hard, or worse
 - Be happy with a "reasonably good" solution

Also in case anybody cares, it is incorrect to describe an optimization problem as NP-complete. Only decision problems with "Yes/No" (e.g. "does a solution exist of size K") answers can properly be termed NP-complete. Optimization problems (e.g. "find the best solution") are usually "NP-Hard". In polite company (and most journals) incorrect but well intentioned uses of "NP-complete" are accepted. -Craig Chase

Computational Complexity Classes

Complexity class	Model of computation	Resource constraint
	Deterministic time	
DTIME(f(n))	Deterministic Turing machine	Time f(n)
Р	Deterministic Turing machine	Time poly(n)
EXPTIME	Deterministic Turing machine	Time 2 ^{poly(n)}
	Non-deterministic time	
NTIME(f(n))	Non-deterministic Turing machine	Time f(n)
NP	Non-deterministic Turing machine	Time poly(n)
NEXPTIME	Non-deterministic Turing machine	Time 2 ^{poly(n)}

Complexity class	Model of computation	Resource constraint
	Deterministic space	
DSPACE(f(n))	Deterministic Turing machine Space f(n)	
L	Deterministic Turing machine	Space O(log n)
PSPACE	Deterministic Turing machine	Space poly(n)
EXPSPACE	Deterministic Turing machine	Space 2 ^{poly(n)}
	Non-deterministic space	!
NSPACE(f(n))	Non-deterministic Turing machine	Space f(n)
NL	Non-deterministic Turing machine	Space O(log n)
NPSPACE	Non-deterministic Turing machine	Space poly(n)
NEXPSPACE	Non-deterministic Turing machine	Space 2 ^{poly(n)}

Computational Complexity Classes

Examples of NP-complete problems

- Does a graph have a Hamiltonian cycle?
 - Hamiltonian cycle = simple cycle (no repeated vertices) that contains all nodes
 - Related Traveling salesman problem (mincost Hamiltonian cycle)
- 3SAT: Given a Boolean expression expressed as POS with 3 literals in each sum, is it satisfiable?
 - 2SAT can be solved in polynomial time!
- Find a maximal clique in a graph
 - Clique = set of vertices so that every pair of vertices in the set is connected by an edge (complete subgraph)
- Find a maximal independent set in a graph
 - A set of vertices of the largest cardinality, so that no pair of vertices is connected by an edge
- "Bible" of NP-completeness:
 - M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Company, New York, NY, 1979.

Deterministic Algorithm Types

- Algorithms usually used for P problems
 - Exhaustive search! (aka exponential)
 - Dynamic programming
 - Divide & Conquer (aka hierarchical)
 - Greedy
 - Mathematical programming
 - Branch and bound
- Algorithms usually used for NP problems (not seeking "optimal solution", but a "good" one)
 - Greedy (aka heuristic)
 - Genetic algorithms
 - Simulated annealing
 - Restrict the problem to a special case that is in P

Heuristic algorithms

- Deterministic: All decisions made by the algorithm are repeatable, i.e., not random. One example of a deterministic heuristic is Dijkstra's shortest path algorithm.
- Stochastic: Some decisions made by the algorithm are made randomly, e.g., using a pseudo-random number generator. Thus, two independent runs of the algorithm will produce two different solutions with high probability. One example of a stochastic algorithm is simulated annealing.
- In terms of structure, a heuristic algorithm can be
 - Constructive: The heuristic starts with an initial, incomplete (partial) solution and adds components until a complete solution is obtained.
 - Iterative: The heuristic starts with a complete solution and repeatedly improves the current solution until a preset termination criterion is reached.

Flowchart of heuristic algorithms

Coping with NP-hard Problems

- In system level design we confront many NP-hard optimization problems.
- Simpler sub-problem based on dominate cost or special problem structure
- problems exhibit structure
 - optimal solutions found in reasonable time in practice
- approximation algorithms
- heuristic solutions
- high density of good/reasonable solutions?

Not a Solved Problem

- NP-hard problems
 - —almost always solved in suboptimal manner
 - —or for particular special cases
- decomposed in suboptimal ways
- quality of solution changes as dominant costs change (relative costs are changing!)
- new effects and mapping problems crop up with new architectures, substrates

Decomposition

- Easier to solve
 - —only worry about one problem at a time
- Less computational work
 - —smaller problem size
- Abstraction hides important objectives
 - solving 2 problems optimally in sequence often not give optimal result of simultaneous solution
 - —Question: Like what?

Decomposition to a Tree Hierarchy

Top-Down Design

- Begin at the top.
- Partition according to some objective criterion.
- No "priori" knowledge of available lower level components.
- Advantage: optimized partition.
- Disadvantage: unique level components.

Bottom-Up Design

- Begin at the bottom.
- Cluster components to take advantage of available lower level components.
- Lower level components were designed first.

- Advantage: use available components.
- Disadvantage: clustering is often non-optimal.
 Why?

Partitioning

- Definition: Given a set of objects $O = \{o_1, ..., o_n\}$ determine a partition $P = \{p_1, ..., p_m\}$ such that $p_1U...Up_m = O$, $p_i \cdot p_j = 0$ for all i, j, i! = j and the cost determined by an objective function f(P) is minimal.
- NP-complete for general graphs/problems
- Many heuristics / approaches
- System designer must do two things:
 - 1. Selecting a set of system components (allocation)
 - 2. Partitioning the system's functionality among those components (partitioning).
- Partitioning Issues:
 - Abstraction level
 - Granularity
 - Estimation

Partitioning Heuristic

- Greedy, iterative
 - —pick one partition that decreases cost (i.e. a user defined metric) and move it
 - -repeat
- Small amount of:
 - —look past moves that make locally worse
 - —randomization
- Estimation Metrics:
 - —Fast (usually analytical) estimate of area, time, power, etc.
 - —Fidelity of estimation
- Quality Metrics:
 - —Hardware/software cost, performance, benchmarking

Design Space

Concept of Design Space

- There exists no perfect/optimal algorithm for the design of complicated systems
- The designer moves around in a space
- The coordinates of the space are optimization criterion: speed, chip area, cost, power, pins, etc.
- Motion in the space involves tradeoffs

A 3-Dimensional Design Space

Example: Speed-Area Tradeoff

Circuit A

Circuit B

Example: Workstation Cost/Speed Tradeoff

C1	\$ 5K
S1	50 MIPS
C2	\$ 30K
S2	500 MIPS
C3	\$ 10K
S3	280 MIPS

Lecture 9: Multi-Objective Optimization

Suggested reading: K. Deb, *Multi-Objective Optimization using Evolutionary Algorithms*, John Wiley & Sons, Inc., 2001

Multi-Objective Optimization Problems (MOOP)

- Involve more than one objective function that are to be minimized or maximized
- Answer is set of solutions that define the best tradeoff between competing objectives

General Form of MOOP

Mathematically

min/max
$$f_m(\mathbf{x})$$
, $m=1,2,L$, M
subject to $g_j(\mathbf{x}) \ge 0$, $j=1,2,L$, J
 $h_k(\mathbf{x}) = 0$, $k=1,2,L$, K
 $x_{lowel}^{(L)} \le x_i \le x_i^{(U)}$, $i=1,2,L$, n

Dominance

- In the single-objective optimization problem, the superiority of a solution over other solutions is easily determined by comparing their objective function values
- In multi-objective optimization problem, the goodness of a solution is determined by the dominance

Definition of Dominance

Dominance Test

- $D x_1$ dominates x_2 , if
 - Solution x_1 is no worse than x_2 in all objectives
 - Solution x_1 is strictly better than x_2 in at least one objective
- x_1 dominates $x_2 \iff x_2$ is dominated by x_1

Example Dominance Test

- 1 Vs 2: 1 dominates 2
- 1 Vs 5: 5 dominates 1
- 1 Vs 4: Neither solution dominates

Pareto Optimal Solution

- Non-dominated solution set
 - D Given a set of solutions, the non-dominated solution set is a set of all the solutions that are not dominated by any member of the solution set
- The non-dominated set of the entire feasible decision space is called the **Pareto-optimal set**
- The boundary defined by the set of all point mapped from the Pareto optimal set is called the Paretooptimal front

Graphical Depiction of Pareto Optimal Solution

Goals in MOO

- Find set of solutions as close as possible to Paretooptimal front
- To find a set of solutions as diverse as possible

Classic MultiObjectiveOptimization Methods

Weighted Sum Method

 Scalarize a set of objectives into a single objective by adding each objective pre-multiplied by a usersupplied weight

minimize
$$F(\mathbf{x}) = \sum_{m=1}^{M} w_m f_m(\mathbf{x}),$$

subject to $g_j(\mathbf{x}) \ge 0,$ $j = 1, 2, L, J$
 $h_k(\mathbf{x}) = 0,$ $k = 1, 2, L, K$
 $x_i^{(L)} \le x_i \le x_i^{(U)},$ $i = 1, 2, L, n$

• Weight of an objective is chosen in proportion to the relative importance of the objective

Weighted Sum Method

- Advantage
 - Simple
- Disadvantage
 - D It is difficult to set the weight vectors to obtain a Pareto-optimal solution in a desired region in the objective space
 - D It cannot find certain Pareto-optimal solutions in the case of a nonconvex objective space

Weighted Sum Method (Convex Case)

Weighted Sum Method (Non-Convex Case)

EConstraint Method

- Haimes et. al. 1971
- Keep just one of the objective and restricting the rest of the objectives within user-specific values

minimize
$$f_{\mu}(\boldsymbol{x})$$
, subject to $f_{m}(\boldsymbol{x}) \leq \xi_{m}$, $m=1,2, L$, M and $m \neq \mu$ $g_{j}(\boldsymbol{x}) \geq 0$, $j=1,2, L$, J $h_{k}(\boldsymbol{x}) = 0$, $k=1,2, L$, K $x_{i}^{(L)} \leq x_{i} \leq x_{i}^{(U)}$, $i=1,2, L$, n

EConstraint Method

Keep f_2 as an objective **Minimize** $f_2(x)$

Treat f_1 as a constraint $f_1(\mathbf{x}) \le$

EConstraint Method

Advantage

Applicable to either convex or non-convex problems

Disadvantage

D The Evector has to be chosen carefully so that it is within the minimum or maximum values of the individual objective function

• Combine multiple objectives using the weighted distance metric of any solution from the ideal solution *z**

minimize
$$l_{\mathbf{p}}(\mathbf{x}) = \left[\sum_{m=1}^{M} w_{m} \middle| f_{m}(\mathbf{x}) - z_{m}^{*} \middle|^{p}\right]^{1/p}$$
, subject to $g_{j}(\mathbf{x}) \geq 0$, $j = 1, 2, L, J$
 $h_{k}(\mathbf{x}) = 0$, $k = 1, 2, L, K$
 $x_{i}^{(L)} \leq x_{i} \leq x_{i}^{(U)}$, $i = 1, 2, L, n$

(Weighted Tchebycheff problem)

Advantage

D Weighted Tchebycheff metric guarantees finding all Pareto-optimal solution with ideal solution z^*

Disadvantage

- D Requires knowledge of minimum and maximum objective values
- D Requires z^* which can be found by independently optimizing each objective functions
- D For small p, not all Pareto-optimal solutions are obtained
- D As p increases, the problem becomes non-differentiable

Overview of HDL-for-Synthesis

Fundamental Concepts

Hardware Modeling Using HDL

 HDL: Hardware Description Language - A high level programming language used to model hardware.

- Hardware Description Languages
 - have special hardware related constructs.
 - can be used to build models for **simulation**, **synthesis** and **test**
 - have been extended to the system design level
 - **VHDL: V**HSIC **H**ardware **D**escription **L**anguage
 - VHSIC Very High Speed Integrated Circuit Program
 - Mostly used in academia
 - Verilog HDL
 - Mostly used in commercial electronics industry

Concept of Synthesis

- Logic synthesis
 - A program that "designs" logic from abstract descriptions of the logic
 - takes constraints (e.g. size, speed)
 - uses a library (e.g. 3-input gates)
 - The aim of synthesis is to produce hardware which will do what the concurrent statements specify.
 - This includes processes as well as other concurrent statements.
- How?
 - You write an "abstract" HDL description of the logic
 - The synthesis tool provides alternative implementations

Goal

- We know the function we want, and can specify in C-like form.
 - —... but we don't always know the exact gates (nor logic elements)...
 - —... we want the tool to figure this out...

Importance of Synthesis

- In order to map an HDL code on a FPGA, the code should be synthesizable!
 - An HDL code that functions correctly in simulation, does not necessarily mean it is synthesizable.
 - Once you have gone through the synthesis tool for your HDL code without errors, your code is synthesizable.

VHDL Statements

- Concurrent
 - —Signal assignment
 - —Instantiation
 - —when-else
 - —with-select-when
 - —process (as a wrapper for sequential statements)
- Sequential
 - —Signal assignment ONLY statement that is concurrent and sequential.
 - —if-then-elsif-else ONLY within a process
 - —case-when ONLY within a process

General VHDL Programming Flow

LIBRARY and USE statements

Entity declaration:

- ENTITY entity_name IS
 - Identify the input and output PORTs and their data types
- END [entity_name];

Provide design description:

- ARCHITECTURE architecture_name OF entity_name IS
 - [SIGNAL declarations]
 - [CONSTANT declarations]
 - [TYPE declarations]
 - [COMPONENT declarations]
 - [ATTRIBUTE specifications]
- BEGIN
 - {COMPONENT instantiation statement ;}
 - {CONCURRENT ASSIGNMENT statement ;}
 - {PROCESS statement ;}
 - {GENERATE statement ;}
- END [architecture_name];

VHDL Syntax

- The basis of most of the VHDL is the logical interactions between signals in the modules.
 - Most of this is very intuitive, representative of logical functions.
- Another commonly used form of syntax is the conditional statements.
 - —These work very much like the conditional statements of procedural programming that you should be used to.
- Keywords in VHDL are not case-sensitive.
- Names that user defines are case-sensitive.
- END statements do not require name of design entity or architecture to be followed.

Introductory Example

Introductory Example

2-1 Multiplexer

Truth table:

S	X	y	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Characteristic table:

S	f
0	X
1	y

Boolean Equation:

$$f = \overline{s} \cdot x + s \cdot y$$

Introductory Example

2-1 Multiplexer

VHDL Code:

Gate-level description:

```
--Example 1: 2-1 Mux in VHDL
LIBRARY IEEE;
USE IEEE.std logic 1164.all;
ENTITY multiplexer2 IS
PORT ( x, y, s : IN BIT ;
                    : OUT BIT ) ;
END multiplexer2 ;
ARCHITECTURE multiplexer2 arch OF multiplexer2 IS
BEGIN
f \le (x AND NOT s) OR (y AND s) ;
END multiplexer2 arch ;
```

Introductory Example: Synopsys Synthesis

- Unoptimized circuit
 - Full Schematic View in Synopsys Design Analyzer graphical environment:

Gates used from Synopsys libraries:

Introductory Example: Synthesis (cont'd)

 Schematic of circuit after compilation and design optimization:

 After synthesis and compilation, the tool picks different gate configuration for the HDL code we have written

Importance of Simulation

- The aim of simulation is to produce outputs (signals, integers, etc.) from specified input signals.
- Concurrent statements are evaluated whenever any input changes.
- If the evaluation of any concurrent statement results in an input signal change for any concurrent statement then that concurrent statement is evaluated.
- An important aspect of all designs is to do simulation. A motto that has been proven again and again is:

If you don't simulate it, it won't work. If you do simulate it, it might work!

Testbench for HDL Simulation

- Processes are a little different in that you must list the conditions that initiate evaluation of the process.
 - This can be done by WAIT statements or by a SENSITIVITY LIST.
- Synthesis usually ignores the sensitivity list.
- Testbench is used for generating stimulus for the entity under test.
- Different values are given to the primary input(s), output(s) are then observed in a wave graph or textual format to test the correctness of the design.

VHDL Testbench: One Approach

- Only the DUT is instantiated into test bench.
- Stimulus is generated inside the test bench
- Poor reusability.
- Suitable only for relatively simple designs.

Introductory Example: Testbench1

Testbench code for 2-1 multiplexer:

```
--Test bench1 for Example 1: 2-1 Mux
library IEEE;
USE IEEE.std logic 1164.all;
entity tbmultiplexer2 is
end tbmultiplexer2;
architecture tbmultiplexer2 arch of tbmultiplexer2 is
component multiplexer2
PORT ( x, y, s : IN BIT ;
     f : OUT BIT ) ;
end component:
signal in x, in y, in s, out f: bit := '0';
begin
imultiplexer2:multiplexer2 port map(x=>in x, y=>in y, s=>in s, f=>out f);
in x<='0', '1' after 20 ns, '0' after 40 ns, '1' after 60 ns;
in y<='0', '1' after 10 ns, '0' after 20 ns, '1' after 30 ns, '0' after 40 ns
           '1' after 50 ns, '0' after 60 ns, '1' after 70 ns;
in s<='0', '1' after 40 ns;
end tbmultiplexer2 arch;
configuration of multiplexer2 of tbmultiplexer2 is
for tbmultiplexer2 arch
for imultiplexer2:multiplexer2
use entity WORK.multiplexer2 (multiplexer2 arch);
end for;
end for;
end cf multiplexer2;
```

Introductory Example: Simulation1

- Simulation Waveforms for 2-1 Mux
 - Scirocco Virsim Waveform Graph from Synopsys is invoked:

- IN_S is the select line.
- IN_X and IN_Y are the inputs.
- OUT_F is the output -> Correct functionality achieved

VHDL Testbench: Another approach

- Source and DUT instantiated into testbench.
- For designs with complex input and simple output.
- Source can be for instance an entity or a process or directly the stimulus.

Introductory Example: Testbench2

Testbench code for 2-1 multiplexer (another approach):

```
-- Test bench 2 for Example 1: 2-1 Mux
library IEEE;
use IEEE.std logic 1164.all;
ENTITY mux2test IS
PORT (ff : IN BIT ;
   xx, yy, ss : OUT BIT );
END mux2test :
ARCHITECTURE mux2test arch OF mux2test IS
xx<='0', '1' after 20 ns, '0' after 40 ns, '1' after 60 ns;
yy<='0', '1' after 10 ns, '0' after 20 ns, '1' after 30 ns, '0' after 40 ns, '1' after 50 ns, '0' after 60
     ns, '1' after 70 ns;
ss<='0', '1' after 40 ns;
END mux2test arch ;
library IEEE;
USE IEEE.std logic 1164.all;
entity tbmux2 is
end tbmux2;
architecture tbmux2 arch of tbmux2 is
component multiplexer2
PORT ( x, y, s : IN BIT ;
         f : OUT BIT ) ;
end component;
component mux2test
PORT ( ff : IN BIT ;
    xx, yy, ss : OUT BIT );
END component ;
signal x s, y s, s s, f s: bit;
imultiplexer2:multiplexer2 port map(x=>x s, y=>y s, s=>s s, f=>f s);
mux2test1:mux2test port map(ff=>f s, xx=>x s, vv=>v s, ss=>s s);
end tbmux2 arch;
configuration of multiplener2 of though is
for thmuy? arch
for imultiplexer2:multiplexer2
use entity WORK.multiplexer2 (multiplexer2 arch);
end for;
end for:
end cf multiplexer2;
```

Introductory Example: Simulation2

- Simulation Waveforms for 2-1 Mux
 - Scirocco Virsim Waveform Graph from Synopsys is invoked:

- S_S is the select line.
- X_S and Y_S are the inputs.
- F_S is the output -> Correct functionality achieved