Sprint 02

Signs with Smart Connectivity for Better Road Safety Team ID - PNT2022TMID48432

Sprint Goals:

1. Push data from local code to cloud

Code Flow:

Program Code:

This file is a utility function that fetches the weather from OpenWeatherAPI. It returns only certain required parameters of the API response.

Python code

```
import requests as reqs
def get(myLocation,APIKEY):
  apiURL =
f"https://api.openweathermap.org/data/2.5/weather?q={myLocation}&appid={APIKEY}"
  responseJSON = (reqs.get(apiURL)).json()
  returnObject = {
    "temperature": responseJSON['main']['temp'] - 273.15,
    "weather": [responseJSON['weather'][_]['main'].lower() for _ in
range(len(responseJSON['weather']))],
    "visibility": responseJSON['visibility']/100, # visibility in percentage where 10km is 100% and
0km is 0%
  }
  if("rain" in responseJSON):
    returnObject["rain"] = [responseJSON["rain"][key] for key in responseJSON["rain"]]
  return(returnObject)
> publishData.py
This code pushes data to the cloud and logs data. IBM Cloud is configured such that the data is
displayed in the following website: CLICK TO OPEN NODE RED DASHBOARD
# Python code
# IMPORT SECTION STARTS
import wiotp.sdk.device # python -m pip install wiotp
import time
# IMPORT SECTION ENDS
# -----
# API CONFIG SECTION STARTS
myConfig = {
  "identity" : {
    "orgId": "f59trs",
```

```
"typeId": "testdevice",
    "deviceId": "device1"
  },
  "auth" : {
    "token": "Jrwa7c8Os2Zpq)WW18"
  }
}
# API CONFIG SECTION ENDS
# FUNCTIONS SECTION STARTS
def myCommandCallback(cmd):
  print("recieved cmd : ",cmd)
def logData2Cloud(location,temperature,visibility):
  client = wiotp.sdk.device.DeviceClient(config=myConfig,logHandlers=None)
  client.connect()
  client.publishEvent(eventId="status",msgFormat="json",data={
    "temperature": temperature,
    "visibility": visibility,
    "location": location
  },qos=0,onPublish=None)
  client.commandCallback = myCommandCallback
  client.disconnect()
  time.sleep(1)
```

FUNCTIONS SECTION ENDS

This file is a utility function that returns only essential information to be displayed at the hardware side and abstracts all the unnecessary details. This is where the code flow logic is implemented.

IMPORT SECTION STARTS

```
import weather
from datetime import datetime as dt
from publishData import logData2Cloud as log2cloud
# IMPORT SECTION ENDS
# UTILITY LOGIC SECTION STARTS
def processConditions(myLocation,APIKEY,localityInfo):
  weatherData = weather.get(myLocation,APIKEY)
  log2cloud(myLocation, weatherData["temperature"], weatherData["visibility"])
  finalSpeed = localityInfo["usualSpeedLimit"] if "rain" not in weatherData else
localityInfo["usualSpeedLimit"]/2
  finalSpeed = finalSpeed if weatherData["visibility"]>35 else finalSpeed/2
  if(localityInfo["hospitalsNearby"]):
    # hospital zone
    doNotHonk = True
  else:
    if(localityInfo["schools"]["schoolZone"]==False):
       # neither school nor hospital zone
       doNotHonk = False
    else:
       # school zone
       now = [dt.now().hour,dt.now().minute]
       activeTime = [list(map(int,_.split(":"))) for _ in localityInfo["schools"]["activeTime"]]
       doNotHonk = activeTime[0][0]<=now[0]<=activeTime[1][0] and
activeTime[0][1]<=now[1]<=activeTime[1][1]
```

```
return({
  "speed": finalSpeed,
  "doNotHonk": doNotHonk
})
```

The code that runs in a forever loop in the micro-controller. This calls all the util functions from other python files and based on the return value transduces changes in the output hardware display.

```
# UTILITY LOGIC SECTION ENDS
# Python code
# IMPORT SECTION STARTS
import brain
# IMPORT SECTION ENDS
# USER INPUT SECTION STARTS
myLocation = "Chennai,IN"
APIKEY = "9cd610e5fd400c74212074c7ace0d62c"
localityInfo = {
  "schools": {
    "schoolZone": True,
    "activeTime" : ["7:00","17:30"] # schools active from 7 AM till 5:30 PM
    },
  "hospitalsNearby": False,
  "usualSpeedLimit": 40 # in km/hr
}
# USER INPUT SECTION ENDS
```

MICRO-CONTROLLER CODE STARTS

while True:

print(brain.processConditions(myLocation,APIKEY,localityInfo))

""

MICRO CONTROLLER CODE WILL BE ADDED IN SPRINT 3 AS PER OUR PLANNED SPRINT SCHEDULE

""

MICRO-CONTROLLER CODE ENDS

Output:

LINK TO NODE RED DASHBOARD

Code Output

22022-11-08 22:57:43,506 wiotp.sdk.device.client.DeviceClient INFO Connected successfully: d:f59trs:testdevice:device1

2022-11-08 22:57:43,574 wiotp.sdk.device.client.DeviceClient INFO Disconnected from the IBM Watson IoT Platform

2022-11-08 22:57:43,580 wiotp.sdk.device.client.DeviceClient INFO Closed connection to the IBM Watson IoT Platform

{'speed': 20.0, 'doNotHonk': False}

.

.

