THE MCKAY-THOMPSON SERIES ASSOCIATED WITH THE IRREDUCIBLE CHARACTERS OF THE MONSTER

KOICHIRO HARADA AND MONG LUNG LANG

ABSTRACT. Let $\mathbb{V} = \coprod_{\substack{n=1\\ n = 1}}^{\infty} \mathbb{V}_n$ be the graded monster module of the monster simple group \mathbb{M} and let χ_k be an irreducible representation of \mathbb{M} . The generating function of c_{hk} (the multiplicity of χ_k in \mathbb{V}_n) is determined. Furthermore, the invariance group of the modular function associated with the generating function is also determined in this paper.

1. Introduction

Let \mathbb{M} be the monster simple group and \mathbb{V} be the monster module of Frenkel-Lepowsky-Meurman [3]. \mathbb{V} is a graded \mathbb{M} module

$$\mathbb{V} = \coprod_{\overline{\sim} = \not\vdash}^{\infty} \mathbb{V}_{\overline{\sim}}$$

such that

$$j(q) - 744 = \sum_{h=0}^{\infty} \dim \mathbb{V}_{\approx^{|n|}} = 1.5$$

In particular, $\dim \mathbb{V}_{\not\vdash} = \mathbb{K}$, $\dim \mathbb{V}_{\not\models} = \mathbb{K}$, $\dim \mathbb{V}_{\not\models} = \mathbb{K} \to A \leftrightarrow \hookrightarrow \not\models$, $\dim \mathbb{V}_{\not\models} = \mathbb{K} \not\models A \not\Vdash$, \cdots . Let χ_k , $1 \leq k \leq 194$, be the irreducible characters of \mathbb{M} , which will often be used to denote the irreducible representations also. For the first few \mathbb{V}_{\beth} 's, we have the decompositions:

$$\mathbb{V}_{\mathbb{F}} = \chi_{\mathbb{F}},$$

$$\mathbb{V}_{\mathbb{F}} = \chi_{\mathbb{F}} + \chi_{\mathbb{F}},$$

$$\mathbb{V}_{\mathbb{F}} = \chi_{\mathbb{F}} + \chi_{\mathbb{F}} + \chi_{\mathbb{F}}.$$

In general, write

$$\mathbb{V}_{\mathbb{h}} = \sum_{\mathbb{k}=\mathbb{k}}^{\mathbb{k}} \mathbb{k}_{\mathbb{h}} \mathbb{k}$$

where c_{hk} is the multiplicity of χ_k in \mathbb{V}_{\approx} . The table of c_{hk} for $0 \le h \le 51$, $1 \le k \le 194$ can be found in McKay-Strauss [6].

We also list some of the multiplicities c_{h1} of the trivial character χ_1 in V_h .

Let us consider, for each irreducible character χ_k , the generating function:

$$t_{\chi_k}(x) = x^{-1} \sum_{h=0}^{\infty} c_{hk} x^h.$$

¹⁹⁹¹ Mathematics Subject Classification. 20D08; Secondary 11F03.

Key words and phrases. monster, monster module, modular functions, invariance groups.

The multiplicity c_{hk} can be computed as follows:

$$c_{hk} = \frac{1}{|\mathbb{M}|} \sum_{g \in \mathbb{M}} Tr(g|\mathbb{V}_{\approx}) \chi_{\mathsf{T}}(\eth).$$

Therefore the generating function of c_{hk} is

$$t_{\chi_k}(x) = x^{-1} \sum_{h=1}^{\infty} \sum_{g \in \mathbb{M}} \frac{1}{|\mathbb{M}|} Tr(g|\mathbb{V}_{\approx}) \chi_{\mathbb{T}}(\mathfrak{F}) \mathfrak{p}^{\approx}.$$

If we replace the indeterminate x by $q = e^{2\pi i z}$, $z \in \mathbb{H} = \{z \in \mathbb{C} | \text{Im}(\mathcal{F}) > \mathcal{F}\}$ then

$$t_{\chi_k}(q) = \frac{1}{|\mathbb{M}|} \sum_{g \in \mathbb{M}} \chi_k(g) t_g(q)$$

where

$$t_g(q) = q^{-1} \sum_{h=0}^{\infty} Tr(g|\mathbb{V}_{\approx}) ||^{\approx}$$

is the McKay-Thompson series for the element g in \mathbb{M} . Thus $t_{\chi}(q)$ for the irreducible character χ is the weighted sum of the McKay-Thompson series for the element g of M. Not all $t_{\chi}(q)$'s are distinct and in fact there are exactly 172 distinct $t_{\chi}(q)$'s,

$$t_{\chi}(q) = t_{\bar{\chi}}(q)$$

where $\bar{\chi}$ is the complex conjugate of χ and there is no other equalities among $t_{\chi}(q)$'s. One of the obvious questions one will raise here will be :

Problem. Determine the invariance group Γ_{χ} of $t_{\chi}(q)$

Here Γ_{χ} is defined to be :

Definition.
$$\Gamma_{\chi} = \{ A \in SL_2(\mathbb{R}) | \approx_{\chi} (\mathbb{A}F) = \approx_{\chi} (F) \}.$$

Since $t_{\chi}(z)$ is a modular function, Γ_{χ} is a discrete subgroup of $SL_2(\mathbb{R})$. Let us here review some of the properties of the invariance group Γ_q of the McKay-Thompson series $t_q(z)$ for the element $g \in \mathbb{M}$.

- (0). For $G \subset GL_2^+(\mathbb{R})$, \bar{G} is the image of G in $PGL_2^+(\mathbb{R})$. (1). $\Gamma_0(N) = \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) | \equiv \not\vdash \pmod{N} \}$.
- (2). For an exact divisor e||N| (i.e. e|N| and $\gcd(e, \frac{N}{e}) = 1$) let

$$W_e = \begin{pmatrix} ae & b \\ cN & de \end{pmatrix}, \quad a, b, c, d \in \mathbb{Z}, \quad \partial^{\neq} - \mathbb{N} = .$$

Then \bar{W}_e normalizes $\bar{\Gamma}_0(N)$ and $\bar{W}_e^2 \in \bar{\Gamma}_0(N)$.

(3). Let h be a divisor of n. Then $n|h+e, f, \cdots$ is defined to be

$$\left(\begin{array}{cc} \frac{1}{h} & 0 \\ 0 & 1 \end{array}\right) \langle \Gamma_0(\frac{n}{h}), W_e, W_f, \cdots \rangle \left(\begin{array}{cc} h & 0 \\ 0 & 1 \end{array}\right).$$

- (4). For each g in M, Γ_g , the invariance group of $t_g(z)$, is a normal subgroup of index h_g in $n_g|h_g+e_g,f_g,\cdots$, the eigen group of g [2]. Note that for each A in $n_g|h_g+e_g,f_g,\cdots,(t_g|A)(z)=\sigma t_g(z)$ where σ is an h_g -th root of unity. We will often use n, h, e, f, etc. instead of $n_g, h_g e_g, f_g$, etc. for simplicity.
 - (5). Γ_g contains $\Gamma_0(n_g h_g)$.

For each irreducible character of M, we now define:

Definition. $N_{\chi} = \operatorname{lcm}\{n_q h_q | g \in \mathbb{M}, \chi(\eth) \neq \mathcal{V}\}.$

It is obvious that $t_{\chi}(z)$ is invariant under $\Gamma_0(N_{\chi})$. Note that N_{χ} can be quite large $(N_{\chi_1}=2^63^35^27\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 41\cdot 47\cdot 59\cdot 71)$ or relatively small $(N_{\chi_{166}}=2^63^27=4032)$.

The purpose of this paper is to show

Theorem. $\Gamma_{\chi} = \Gamma_0(N_{\chi}).$

2. Poles of
$$t_{\gamma}(z)$$

For each cusp c in $\mathbb{Q} \cup \{\infty\}$, we define Φ_c to be the set $\Phi_c = \{g \in \mathbb{M} | \text{ is equivalent to } \infty \text{ in } \Gamma_g\}$ and decompose $t_{\chi}(z)$ into :

$$\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g) t_g(z) + \frac{1}{|\mathbb{M}|} \sum_{g \notin \Phi_c} \chi(g) t_g(z).$$

Since the McKay-Thompson series $t_g(z)$ is a generator of the function field of the compact Riemann surface $\Gamma_g \setminus \mathbb{H}^*$ ($\mathbb{H}^* = \mathbb{H} \cup \{\infty\}$) of genus 0 and has a unique pole at ∞ (and at all cusps $c \in \mathbb{Q}$ equivalent to ∞ in Γ_g). Obviously, $\frac{1}{|\mathbb{M}|} \sum_{g \notin \Phi_c} \chi(g) t_g(z)$ is holomorphic at c. Hence, whether c is a pole of $t_{\chi}(z)$ or not is determined by the singular part of

$$\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g) t_g(z)$$

at c. For example, if $c = \infty$, then ∞ is a pole of $t_{\chi}(z)$ if and only if χ is the trivial character since the singular part of $t_{\chi}(z)$ at ∞ is given by $\frac{1}{|\mathbb{M}|} \sum_{g \in \mathbb{M}} \chi(g) \frac{1}{g}$ and

$$\sum_{g \in \mathbb{M}} \chi_i(g) = \begin{cases} |\mathbb{M}| & \text{if } i = 1\\ 0 & \text{if } i \neq 1 \end{cases}$$

Suppose $c \in \mathbb{Q}$. For each g in Φ_c , let $A \in SL_2(\mathbb{Z})$ be chosen so that $A\infty = c$. Then $t_g(Az) = (t_g|A)(z)$ has an expansion in $q = e^{2\pi i z}$ of the form

$$aq^{-\frac{1}{\mu}} + \cdots$$

where $\mu = [\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle : A^{-1}\Gamma_0(n_gh_g)_cA]$, where the subscript c denotes the stabilizer. We contend that the contribution of the $t_g(z)$ to the singular part of $t_\chi(z)$ is

$$aq^{-\frac{1}{\mu}}$$

Indeed, by our assumption the cusp c is equivalent to ∞ in Γ_g and so there is $B\in\Gamma_g$ such that $B\infty=c$ and

$$(t_g|B)(q) = t_g(q) = q^{-1} + \sum_{i>0} a_i q^i.$$

The only difference between $(t_g|A)(z)$ and $(t_g|B)(z)$ lies in the power of q and a, hence the contention.

In order to determine whether c is pole of $t_{\chi}(z)$ or not, one has to :

- (1). Determine whether c is equivalent to ∞ in Γ_g or not.
- (2). Determine the singular part of $\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g) t_g(z)$ at c.

We will investigate those questions in the next section.

3. Equivalence of cusps

In this section, we will study the equivalence of cusps in Γ_q , $g \in \mathbb{M}$.

Lemma 1. For each exact divisor e of N and for each c such that gcd(c,e)=1, $\Gamma_0(N)$ admits an Atkin-Lehner involution of the form $W_e=\begin{pmatrix}ae&b\\cN&de\end{pmatrix}$. Moreover, one can choose either a=1 or d=1 if desired.

Proof. For each c such that c and e are relatively prime, we have $\gcd(\frac{cN}{e},e)=1$. Hence, there exists b and y such that $ye-\frac{bcN}{e}=1$, or $ye^2-bcN=e$. The lemma follows by writing y into ad for suitable a and d.

Lemma 2. Let gcd(a,b) = 1 and M be nonzero integers. Then there exists a pair of integers x and y satisfying gcd(xM,y) = 1 and ax + by = 1.

Proof. This is a well known fact of the elementary number theory. Let x' and y' be a pair of integral solutions of the equation ax+by=1 and let $M=M_aM_{y'}M'$ be the decomposition of M into a product of coprime factors such that M_a and a, $M_{y'}$ and y', have the same prime factors. It is clear that y=y'+aM' and x=x'-bM' is also a pair of solutions to the equation. Note that $\gcd(x,y)=1$ since it is a solution of ax+by=1. Furthermore, one has $\gcd(y,M)=\gcd(y'+aM',M_aM_{y'}M')=\gcd(y'+aM',M')=1$. Therefore x and y is pair of integral solutions of the equation such that $\gcd(xM,y)=1$.

Lemma 3. Let $\frac{x}{y}$, gcd(x,y) = 1, be a rational number. Then $\frac{x}{y}$ is equivalent to some $\frac{x'}{y'}$, gcd(x',y') = 1 in $\Gamma_0(N)$, where y' = gcd(N,y). Furthermore, if $\frac{x}{y}$ is equivalent to $\frac{x''}{y''}$ with y''|N, y'' > 0, and gcd(x'',y'') = 1, then y'' = y'.

Proof. Consider the equality

$$\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \frac{x}{y} = \frac{ax + by}{cNx + dy} = \frac{ax + dy}{y'(cx\frac{N}{y'} + d\frac{y}{y'})}$$

Note that $gcd(x\frac{N}{y'}, \frac{y}{y'}) = 1$, hence the equation

$$c\frac{xN}{y'} + d\frac{y}{y'} = 1$$

is solvable for c, d in \mathbb{Z} . Applying Lemma 2, we may assume that c and d are integral solutions of the above equation such that $\gcd(cN,d)=1$. Let a and b be chosen such that ad-cbN=1. Summerizing, we now conclude that $\frac{x}{d}$ is equivalent to

such that
$$ad-cbN=1$$
. Summerizing, we now conclude that $\frac{x}{y}$ is equivalent to $\frac{ax+by}{y'}$ by $\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \in \Gamma_0(N)$. Since $\gcd(ax+by,y')=\gcd(ax,y')=\gcd(a,y')=1$, first part of the lemma is proved. As for the second part, suppose

$$\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \frac{x}{y} = \frac{ax + by}{cNx + dy} = \frac{ax + dy}{y'(cx\frac{N}{y'} + d\frac{y}{y'})} = \frac{x''}{y''}.$$

We first note y'|y'', since gcd(ax + by, y') = 1. To show y''|y', suppose that y'' possesses a prime power q^t such that y' is not a multiple of q^t , then $q^t|y'(cx\frac{N}{y'}+d\frac{y}{y'})$

implies $q|(cx\frac{N}{y'}+d\frac{y}{y'})$. Since y''|N, q is a divisor of $\frac{N}{y'}$, hence q|d. This implies that $\gcd(cN,d) \neq 1$, against our choice of c, d. Thus, y''|y' and the second part of the lemma is proved.

In Lemma 4 and Lemma 5, $G = n|h+e, f, \cdots$ is the eigen group of the invariance group Γ_g .

Lemma 4. Let $g \in \mathbb{M}$ and let $\Gamma_g \leq G = n|h+e, f, \cdots$ be the invariance group of $t_g(z)$. Then $G \infty = \Gamma_g \infty$.

Proof. Since $q = \exp(2\pi i z)$ is a local parameter of $t_g(z)$, the stabilizer $(\Gamma_g)_{\infty}$ of ∞ is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. As for G, G_{∞} is generated by $\begin{pmatrix} 1 & \frac{1}{h} \\ 0 & 1 \end{pmatrix}$. Hence $[G: \Gamma_g] = h = [G_{\infty}: (\Gamma_g)_{\infty}]$

Consequently, $G\infty = \Gamma_q \infty$.

Lemma 5. Let $g \in \mathbb{M}$ and let $\Gamma_g \leq n|h+e, f, \cdots$ be the invariance group of $t_g(z)$. Then $\frac{x}{y}$, gcd(x,y) = 1, is equivalent to ∞ in Γ_g if and only if

$$gcd(\frac{n}{h}, \frac{y}{gcd(y, h)}) \in \left\{\frac{n}{h}, \frac{n}{he}, \frac{n}{hf}, \cdots\right\}$$

Proof. To simplify our notation, let $N = \frac{n}{h}$. Choose the Atkin-Lehner involution W_e as described in Lemma 1 with $\gcd(c, N) = 1$. One has $W_e \infty = \frac{a}{c^N}$, and

$$\gcd(a, c\frac{N}{a}) = 1.$$

By Lemma 3, there exists $\gamma_e \in \Gamma_0(N)$ such that $\gamma_e W_e \infty = \frac{e'}{\frac{N}{e}}$ where $\gcd(e', \frac{N}{e}) = 1$, since $\gcd(c\frac{N}{e}, N) = \frac{N}{e}$. Note that e is an exact divisor of N, hence among the representitives of inequivalent cusps of $\Gamma_0(N)$, there is exactly one and only one cusp z with denominator $\frac{N}{e}$ (see Harada [4]). Without loss of generality, we may assume that $z = \frac{1}{\frac{N}{e}}$. Therefore, we may assume that γ_e is chosen so that $\gamma_e W_e \infty = \frac{1}{\frac{N}{e}}$. Hence the G-orbit of ∞ can be decomposed into,

$$\left(\begin{array}{cc} \frac{1}{h} & 0 \\ 0 & 1 \end{array}\right) \Gamma_0(N) \frac{1}{N} \cup \left(\begin{array}{cc} \frac{1}{h} & 0 \\ 0 & 1 \end{array}\right) \Gamma_0(N) \frac{1}{\frac{N}{e}} \cup \left(\begin{array}{cc} \frac{1}{h} & 0 \\ 0 & 1 \end{array}\right) \Gamma_0(N) \frac{1}{\frac{N}{f}} \cup \cdots$$

Hence $\frac{x}{u}$ is equivalent to ∞ in G if and only if

$$\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \frac{x}{y} = \frac{\frac{hx}{\gcd(y,h)}}{\frac{y}{\gcd(y,h)}} \in \Gamma_0(N) \frac{1}{N} \cup \Gamma_0(N) \frac{1}{\frac{N}{e}} \cup \Gamma_0(N) \frac{1}{\frac{N}{f}} \cup \cdots,$$

which is equivalent to, by Lemma 3,

$$\gcd(\frac{y}{\gcd(y,h)},N) \in \left\{N,\frac{N}{e},\frac{N}{f},\cdots\right\}.$$

 $G\infty = \Gamma_g \infty$ as shown in Lemma 4 and so $\frac{x}{\eta}$ is equivalent to ∞ in Γ_g if and only if

$$\gcd(\frac{y}{\gcd(y,h)},\frac{n}{h}) \in \left\{\frac{n}{h},\frac{n}{he},\frac{n}{hf},\cdots\right\}.$$

Corollary 6. $\theta = \frac{0}{1}$ is equivalent to ∞ in Γ_g if and only if n = h or $G = n|h+e, f, \cdots$ admits the Atkin-Lehner involution $W_{\frac{n}{h}}$.

Proof. Since $\gcd(1, \frac{n}{h}) = 1$, G must admits an Atkin-Lehner involution W_e such that $\frac{n}{he} = 1$, hence $e = \frac{n}{h}$.

Let χ be an irreducible character of the monster M. In order to determine the singular part of

$$\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g) t_g(z)$$

at the cusp $c = \frac{x}{y}$, where gcd(x, y) = 1 and $y|N_{\chi}$, it is necessary to find a matrix P_c in $SL_2(\mathbb{R})$ such that $P_c \infty = c$ and determine the q-expansion of

$$\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g)(t_g|P_c)(z),$$

which will be called the q-expansion of $t_{\chi}(z)$ at c. Such a matrix P_c is easy to find and choice is not unique. To ease the computation of the q-expansion of

$$\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g)(t_g|P_c)(z),$$

it is necessary to find a good P_c so that the transformation formula of $t_g|P_c$ can be obtained for every g in Φ_c simultaneously. What we shall do is as follows. Namely, we will find a matrix P_c so that one can associate with P_c an upper triangular matrix $U_{c,g}$ such that

$$P_c U_{c,g}^{-1} \in n_g | h_g + e_g, f_g, \cdots$$

Since $n_g|h_g+e_g, f_g, \cdots$ is the eigen group of Γ_g , elements in $n_g|h_g+e_g, f_g, \cdots$ map t_g to $\sigma_g t_g$ where σ_g is an h_g -th root of unity which depends on g and on some other quantities. Therefore

$$t_g|P_c = \sigma_g t_g|U_{c,g}.$$

A good transformation formula for $t_g|P_c$ is obtained since $U_{c,g}$ is upper trianglar. Let y_0 be the exact divisor of N_χ such that y and y_0 share the same prime divisors. Then $\gcd(y, x \frac{N_\chi}{y_0}) = 1$ and so there is a matrix $P_c \in SL_2(\mathbb{Z})$ of the form

$$P_c = \left(\begin{array}{cc} x & w \\ y & \frac{zN_\chi}{y_0} \end{array}\right).$$

Lemma 4 implies that $\frac{x}{y}$ is equivalent to ∞ in Γ_g if and only if $\frac{x}{y}$ is equivalent to ∞ in the eigen group $n_g|h_g+e_g,f_g,\cdots$ of g and so by Lemma 5, $\frac{x}{y}$ is equivalent to ∞ in Γ_g if and only if $\gcd(\frac{n_g}{h_g},\frac{y}{\gcd(y,h_g)})\in\left\{\frac{n}{h},\frac{n}{he},\frac{n}{hf},\cdots\right\}$. More precisely, $\frac{x}{y}$ is equivalent to ∞ by an element in $n_g|h_g$ if

$$\gcd(\frac{n_g}{h_q}, \frac{y}{\gcd(y, h_q)}) = \frac{n_g}{h_q}$$

and is equivalent to ∞ by an Atkin-Lehner involution W_{e_q} of $n_g|h_g+e_g,f_g,\cdots$ if

$$\frac{n_g}{h_g e_g} = \gcd(\frac{n_g}{h_g}, \frac{y}{\gcd(y, h_g)}) \in \left\{\frac{n}{he}, \frac{n}{hf}, \cdots\right\}.$$

Lemma 7. Suppose that $gcd(\frac{n_g}{h_g}, \frac{y}{gcd(y, h_g)}) = \frac{n_g}{h_g}$. Let u_g be chosen so that $\frac{yu_g}{h_g} + \frac{yu_g}{h_g}$ $\frac{zN_{\chi}gcd(h_g,y)}{y_0h_g}$ is an integer. Then

$$P_c U_{c,g}^{-1} = P_c \begin{pmatrix} \frac{h_g}{\gcd(h_g, y)} & \frac{u_g}{h_g} \\ 0 & \frac{\gcd(h_g, y)}{h_g} \end{pmatrix} \in n_g | h_g$$

where

$$U_{c,g} = \begin{pmatrix} \frac{\gcd(h_g, y)}{h_g} & -\frac{u_g}{h_g} \\ 0 & \frac{h_g}{\gcd(h_g, y)} \end{pmatrix}.$$

Proof. To show the existence of u_g , simply solve the equation

$$\frac{y}{\gcd(h_g, y)} u_g + \frac{N_\chi}{y_0} z \equiv 0 \pmod{\frac{h_g}{\gcd(h_g, y)}}.$$

Then $yu_g + z \frac{N_\chi}{y_0} \gcd(h_g, y) \equiv 0 \pmod{h_g}$ and hence $\frac{yu_g}{h_g} + \frac{zN_\chi \gcd(h_g, y)}{y_0h_g}$ is an integer.

$$P_c \left(\begin{array}{cc} \frac{h_g}{\gcd(h_g, y)} & \frac{u_g}{h_g} \\ 0 & \frac{\gcd(h_g, y)}{h_g} \end{array} \right) = \left(\begin{array}{cc} \frac{xh_g}{\gcd(h_g, y)} & \frac{xu_g + w\gcd(h_g, y)}{h_g} \\ \frac{yh_g}{\gcd(h_g, y)} & \frac{yu_g}{h_g} + \frac{zN_\chi\gcd(h_g, y)}{y_0h_g} \end{array} \right)$$

- (1). $\frac{yu_g}{h_g} + \frac{zN_\chi\gcd(h_g,y)}{y_0h_g}$ is an integer by our choice of u_g , and, (2). $\frac{yh_g}{\gcd(h_g,y)}$ is a multiple of n_g since $\gcd(\frac{n_g}{h_g}, \frac{y}{\gcd(y,h_g)}) = \frac{n_g}{h_g}$.

$$P_c U_{c,g}^{-1} = P_c \begin{pmatrix} \frac{h_g}{\gcd(h_g, y)} & \frac{u_g}{h_g} \\ 0 & \frac{\gcd(h_g, y)}{h_g} \end{pmatrix} \in n_g | h_g. \quad \square$$

Corollary 8. Suppose that $gcd(\frac{n_g}{h_g}, \frac{y}{gcd(y, h_g)}) = \frac{n_g}{h_g}$. Then

$$t_g|P_c = \sigma_g t_g|U_{c,g} = \sigma_g t_g(U_{c,g}z) = \sigma_g t_g(\frac{gcd(h_g, y)^2}{h_g^2}z - \frac{u_g}{h_g^2}gcd(h_g, y))$$

where σ_g is an h_g -th root of unity.

Proof. Since $P_c \begin{pmatrix} \frac{h_g}{\gcd(h_g,y)} & \frac{u_g}{h_g} \\ 0 & \frac{\gcd(h_g,y)}{h} \end{pmatrix} \in n_g | h_g \text{ and } n_g | h_g \text{ is the eigen group}$ of $t_a(z)$

$$t_g|P_c\left(\begin{array}{cc}\frac{h_g}{\gcd(h_g,y)} & \frac{u_g}{h_g}\\0 & \frac{\gcd(h_g,y)}{h_g}\end{array}\right) = \sigma_g t_g(z).$$

This completes the proof of the corollary.

We now consider the case that c is equivalent to ∞ in the eigen group of Γ_q by an Atkin-Lehner involution W_{e_g} .

Lemma 9. Suppose that $c=\frac{x}{y}$ is equivalent to ∞ in the eigen group of Γ_g by an Atkin-Lehner involution W_{e_g} . Let an integer u_g be chosen such that e_g is a divisor of an integer $\frac{u_g y}{h_g} + \frac{z N_\chi g c d(h_g, y)}{h_g y_0}$ where

$$e_g = \frac{\frac{n_g}{h_g}}{\gcd(\frac{n_g}{h_g}, \frac{y}{\gcd(y, h_g)})}.$$

Then

$$P_{c}U_{c,g}^{-1} = P_{c} \begin{pmatrix} \frac{e_{g}h_{g}}{gcd(h_{g},y)} & \frac{u_{g}}{h_{g}} \\ 0 & \frac{gcd(h_{g},y)}{h_{g}} \end{pmatrix} = W_{e_{g}} \in n_{g}|h_{g} + e_{g}, f_{g}, \cdots$$

Furthermore,

$$t_g|P_c = \sigma_g t_g(U_{c,g}z) = \sigma_g t_g(\frac{gcd(h_g, y)^2}{e_g h_g^2}z - \frac{u_g}{e_g h_g^2}gcd(h_g, y))$$

where σ_g is an h_g -th root of unity.

Proof. Let us first show that such an u_g exists. We will need u_g such that

$$yu_g + z \frac{N_\chi}{y_0} \gcd(h_g, y) \equiv 0 \pmod{e_g h_g}.$$

This follows from

$$\frac{y}{\gcd(h_g, y)} u_g + z \frac{N_{\chi}}{y_0} \equiv 0 \pmod{\frac{h_g}{\gcd(h_g, y)}} e_g).$$

Since $\gcd(\frac{n_g}{h_g}, \frac{y}{\gcd(h_g, y)}) = \frac{n_g}{h_g e_g}$ and e_g is an exact divisor of $\frac{n_g}{h_g}$, we see that

$$\gcd(\frac{y}{\gcd(h_g, y)}, e_g) = 1.$$

Therefore $\frac{y}{\gcd(h_g,y)}$ is invertible modulo $\frac{h_g}{\gcd(h_g,y)}e_g$, hence u_g exists as required.

$$P_c \begin{pmatrix} \frac{e_g h_g}{\gcd(h_g, y)} & \frac{u_g}{h_g} \\ 0 & \frac{\gcd(h_g, y)}{h_g} \end{pmatrix} = \begin{pmatrix} \frac{x e_g h_g}{\gcd(h_g, y)} & \frac{x u_g + w \gcd(h_g, y)}{h_g} \\ \frac{y e_g h_g}{\gcd(h_g, y)} & \frac{y u_g}{h_g} + \frac{z N_\chi \gcd(h_g, y)}{y_0 h_g} \end{pmatrix}$$

- (1). $\frac{u_g y}{h_g} + \frac{z N_\chi \gcd(h_g, y)}{h_g y_0}$ is a multiple of e_g by choice of u_g , and, (2). $\frac{y e_g h_g}{\gcd(h_g, y)}$ is a multiple of n_g , since $\gcd(\frac{n_g}{h_g}, \frac{y}{\gcd(y, h_g)}) = \frac{n_g}{h_g e_g}$.

Therefore

$$P_c\left(\begin{array}{cc} \frac{e_g h_g}{\gcd(h_g, y)} & \frac{u_g}{h_g} \\ 0 & \frac{\gcd(h_g, y)}{h_g} \end{array}\right) = W_{e_g} \in n_g | h_g + e_g, f_g, \cdots.$$

Since c is equivalent to ∞ in the eigen group of Γ_g by W_{e_g} , the transformation formula follows easily.

Remark. It is easy to see that Lemma 7 and Corollary 8 are included in Lemma 9 if $e_g = 1$, in which case every element of $n_g | h_g$ is called an Atkin-Lehner involution for $e_g = 1$. This abuse of words will be used occasionally for the balance of the paper.

The singular part of $\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g)(t_g|P_c)(z)$ at $z = \infty i$ is now determined by

$$\operatorname{sing}_{P_c} t_{\chi} = \frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g) \frac{\sigma_g}{e^{2\pi i U_{c,g} z}}.$$

We give a few examples in the calculation of $\operatorname{sing}_{P_c} t_{\chi}$'s. Note that the first example will be used later in the determination of the invariance groups.

Example 1. Suppose $c=\frac{0}{1}$. Then $\operatorname{sing}_{P_0}t_\chi=\frac{1}{|\mathbb{M}|}\sum_{g\in\Phi_c}\chi(g)\frac{\sigma_g}{\sigma_{ghg}^{\frac{1}{1}}}$

Proof. In this case y=1. We may choose $P_0=\begin{pmatrix} x & w \\ y & \frac{xN_\chi}{y_0} \end{pmatrix}=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $u_g=0$. If the condition of Corollary 8 holds, then $n_g=h_g$ and

$$t_g|P_0 = \sigma_g t_g(\frac{z}{h_g^2}) = \sigma_g t_g(\frac{z}{n_g h_g}).$$

The only $g \in \Phi_0 \subseteq \mathbb{M}$ satisfying $n_g = h_g$ are 1A and 3C. We have

$$t_{1A}|P_0 = t_{1A}$$
 and $t_{3C}|P_0 = \sigma_{3C}t_{3C}(\frac{1}{9}z)$.

On the other hand, if the condition of Lemma 9 holds, then $n_g = e_g h_g$ and

$$t_g|P_0=\sigma_g t_g(\frac{z}{e_g h_g^2})=\sigma_g t_g(\frac{z}{n_g h_g}).$$

Note that for all the remaining $g \in \Phi_0 \setminus \{1A, 3C\} \subseteq \mathbb{M}$, 0 is equivalent to ∞ in Γ_g by the Atkin-Lehner involution $W_{\frac{n_g}{h_g}}$ and hence the condition of Lemma 9 holds. \square

Remark. Example 1 shows that 0 is a pole of the McKay-Thompson series $t_{\chi}(z)$ for every χ , since $n_g h_g \neq 1$ for $g \neq 1$ and so the coefficient of q^{-1} is nonzero.

Example 2. Let χ be the trivial character and let $c=\frac{1}{3}$. Then $P_{\frac{1}{3}}=\begin{pmatrix} 1&[\frac{N_0}{81}]\\3&\frac{N_0}{27}\end{pmatrix}$ ([x] is the integral part of x and $\frac{N_0}{27}\equiv 1\pmod{3}$) and $t_{84A}|P_{\frac{1}{3}}=\sigma_{84A}t_{84A}(\frac{1}{56}z+\frac{1}{2})$.

Proof. We know $\Gamma_{84A} < 84|2+$. Since $\gcd(\frac{84}{2}, \frac{3}{\gcd(3,2)}) = 3 = \frac{84}{2e}$, we see that e is 14, and can choose $u_q = -28$.

$$P_{\frac{1}{3}} \begin{pmatrix} 28 & -\frac{28}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = W_{14} \in 84|2+.$$

The rest follows easily.

Remark. (1). The invariance group Γ_g of the harmonics $n|h+e,f,\cdots$ are not fully determined. (For each g, one can write down a set of generators of the invariance group Γ_g easily. But determining whether or not a given element in $SL_2(\mathbb{R})$ is a word of those generators is nontrivial.) Hence we have to settle for σ_g being an h_g -th root of unity.

- (2). $\sigma_g = 1 \text{ if } h_g = 1.$
- (3). Let $p \in \{11, 17, 19, 23, 29, 31, 41, 47, 59, 71\}$. Applying Lemma 5, one can prove $\Phi_0 = \Phi_{\frac{x}{p}}$ and $\Phi_{\frac{1}{32}} = \Phi_{\frac{1}{64}}$.

4. INVARIANCE GROUP

Let f be a modular function and let K_f be a subgroup of the invariance group (in $SL_2(\mathbb{R})$) Γ_f of f of finite index. We shall determine the invariance group as follows. Define

 C_f = the set of all cusps of K_f , and, $C_0 = \{c \in C_f | c \text{ is a pole of } f\}.$

Lemma 10. We have $\Gamma_f C_f \subseteq C_f$ and $\Gamma_f C_0 \subseteq C_0$.

Proof. Since $[\Gamma_f:K_f]<\infty$, C_f is also the set of all cusps of Γ_f . The second statement is obvious.

Lemma 11. Let f be a modular function and let Γ_f be its invariance group. Suppose that $K_f \leq \Gamma_f$. Let $\alpha = \frac{a_1}{c_1}$ $(a_1 \neq 0)$ and $\beta = \frac{a_2}{c_2}$ be two inequivalent cusps of K_f . Let

$$M_1 = \left(\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right) \quad and \quad M_2 = \left(\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right).$$

Then $\frac{a_1}{c_1}$ and $\frac{a_2}{c_2}$ are equivalent with respect to Γ_f if and only if the q-expansion of $f|_{M_1}$ is derived from that of $f|_{M_2}$ under the substitution $z \to az + b$ for some numbers a and b (if $c_i = 0$, then $a_i = 1$ and $\frac{a_i}{c_i} = \infty$).

Proof. Let $A \in \Gamma_f$ be such that $A\alpha = \beta$. Define the matrix B such that

$$A = M_2 \left(\begin{array}{cc} 1 & 0 \\ -\frac{c_1}{a_1} & 1 \end{array} \right) B.$$

Since $A\alpha = \beta$, it follows that $B\alpha = \alpha$. Hence

$$B = \begin{pmatrix} 1 & 0 \\ \frac{c_1}{a_1} & 1 \end{pmatrix} \begin{pmatrix} m_{11} & m_{12} \\ 0 & m_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{c_1}{a_1} & 1 \end{pmatrix}$$

for some m_{11} , m_{12} and m_{22} . In particular,

$$A = M_2 \begin{pmatrix} m_{11} & m_{12} \\ 0 & m_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{c_1}{a_1} & 1 \end{pmatrix}$$

and

$$A\alpha = M_2 \begin{pmatrix} m_{11} & m_{12} \\ 0 & m_{22} \end{pmatrix} \infty.$$

It follows that $f|_{M_1} = f|_{AM_1} =$

$$f|M_2\left(\begin{array}{cc} 1 & 0 \\ -\frac{c_1}{a_1} & 1 \end{array}\right)BM_1 = f|M_2\left(\begin{array}{cc} m_{11} & m_{12} \\ 0 & m_{22} \end{array}\right)\left(\begin{array}{cc} a_1 & b_1 \\ 0 & a' \end{array}\right) = f|M_2\left(\begin{array}{cc} m'_{11} & m'_{12} \\ 0 & m'_{22} \end{array}\right),$$

for some $b_1, a', m'_{11}, m'_{12}$ and m'_{22} . Consequently, $f|_{M_1}$ is derived from that of $f|_{M_2}$ under the substitution $z \to az + b$ where $a = \frac{m'_{11}}{m'_{22}}$ and $b = \frac{m'_{12}}{m'_{22}}$. Conversely, one sees easily that α and β is equivalent to each other by

$$M_1 \begin{pmatrix} \frac{1}{a} & -\frac{b}{a} \\ 0 & 1 \end{pmatrix} M_2^{-1} \in \Gamma_f.$$

The invariance group Γ_f can now be determined as follows:

- (1). Determine C_f , the set of all cusps of K_f .
- (2). Determine the subset C_0 .
- (3). Determine the q-expansion of f at all c_i in C_0 by suitable matrices M_i such that $M_i \infty = c_i$.
- (4). Apply Lemma 11 and determine the set $E_0 = \{c \in C_0 | \text{ the } q\text{-expansion of } f \text{ at } c \text{ is derived from the } q\text{-expansion of } f \text{ at } 0 \text{ under the substitution } z \to az + b\}$ and the set $A_0 = \{A_c \in \Gamma_f, A_c 0 = c\}$. Note that it is sufficient to determine at most one matrix A_c for each representative of inequivalent cusps.
- most one matrix A_c for each representative of inequivalent cusps. (5). Determine $(\Gamma_f)_0 = \langle B|B = \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix}, m \in r\mathbb{Z}$, for some (fixed) $\setminus \in \mathbb{Q} \rangle$. Note that this can be achieved by investigating the q-expansion of f at 0. Note also that B is of the form given since Γ_f is discrete.

Remark. (1). The McKay-Thompsom series $t_{\chi}(z)$ has a pole at 0 for every χ as stated in the remark right after Example 1.

- (2). Since Lemma 11 applies only when one of the cusp is nonzero, one can not take c to be 0 in (4) above.
- (3). One can replace 0 by any cusp and apply our procedure to find the invariance groups.

Lemma 12.
$$\Gamma_f = \langle K_f, B, A_c, c \in E_0 \rangle$$
.

Proof. For any $\sigma \in \Gamma_f \setminus \langle K_f, A_c, c \in E_0 \rangle$. Applying Lemma 10, σ 0 is again a cusp. Hence σ 0 must be $\langle K_f, A_c, c \in E_0 \rangle$ -equivalent to 0. Choose $\delta \in \langle K_f, A_c, c \in E_0 \rangle$ such that $\delta \sigma$ 0 = 0. Then $\delta \sigma \in (\Gamma_f)_0$. Hence $\Gamma_f = \langle K_f, B, A_c, c \in E_0 \rangle$ holds. \square

Theorem 13. (Helling's Theorem [5]) The maximal discrete groups of $PSL(2,\mathbb{C})$ commensurable with the modular group $SL(2,\mathbb{Z})$ are just the images of the conjugates of $\Gamma_0(N)$ + for square free N.

Corollary 14. For each irreducible character χ of \mathbb{M} , the set of prime divisors of the index $[\Gamma_{\chi} : \Gamma_0(N_{\chi})]$ is a subset of $\{2, 3, 5, 7\}$.

Proof. By Helling's Theorem, any maximal subgroup that contains Γ_{χ} is a conjugate of some $\Gamma_0(n)+$. Conway has shown in [1] that n must be a divisor of N_{χ} . Now compare the volumes of the fundamental domains of $SL_2(\mathbb{Z})$, $\Gamma_0(n)$, and $\Gamma_0(N_{\chi})$. Noting that the conjugation does not change the volume and that the normalizer of $\Gamma_0(n)$ changes the volume of the fundamental domain by a factor involving only primes 2 and 3, we obtain our lemma since the index $[SL_2(\mathbb{Z}):\Gamma_{\mathcal{V}}(\mathbb{N}_{\chi})]$ involves only primes 2, 3, 5, and 7.

Let χ be an irreducible character of $\mathbb M$ and Γ_{χ} be the invariance group of $t_{\chi}(z)$. We are now ready to prove :

- (1). $A_0 = \emptyset$, and,
- (2). $(\Gamma_{\chi})_0 = (\Gamma_0(N_{\chi}))_0$.

Lemma 15. Let χ be an irreducible character of \mathbb{M} and let c be a cusp of $\Gamma_0(N_\chi)$, not equivalent to 0. Then $A_0 = \{A_c | A_c 0 = c\} = \emptyset$.

Proof. We first recall that the singular part of $\frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g)(t_g|P_c)(z)$ at $z = \infty i$ is given by

$$\operatorname{sing}_{P_c} t_{\chi} = \frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \chi(g) \frac{\sigma_g}{e^{2\pi i U_{c,g} z}}.$$

Applying Lemmas 7, 9 and 10 and Corollary 8, we see that it suffices to show that $\operatorname{sing}_{P_0} t_{\chi}$ can not be derived from $\operatorname{sing}_{P_c} t_{\chi}$ under the substitution $z \to az + b$ if $c \neq 0$. This is achieved by a *case-by-case* study. We give an example to indicate how the lemma is proved.

Example 3. Let χ be the trivial character of M. Then $A_0 = \emptyset$.

Proof. We first note that for any irreducible character χ of \mathbb{M} and $c \in \mathbb{Q} \cup \{\infty\}$, we have :

- (1). The lowest terms in $\operatorname{sing}_{P_c} t_{\chi}$ and $\operatorname{sing}_{P_0} t_{\chi}$ are of the form $\frac{r}{q}$ for some number $r \in \mathbb{Q}$, and
- (2). Terms in $\operatorname{sing}_{P_c} t_{\chi}$ and $\operatorname{sing}_{P_0} t_{\chi}$ are all of the form $\frac{r}{q^{\frac{1}{t}}}$ (Corollary 8, Lemma 9), for some $r \in \mathbb{Q}$, and $t \in \mathbb{N}$.

Since the lowest term in $\operatorname{sing}_{P_0} t_{\chi}$ is $\frac{r}{q}$, $r \neq 0$, the transformation that sends $\operatorname{sing}_{P_c} t_{\chi}$ to $\operatorname{sing}_{P_0} t_{\chi}$ is of the form $z \to az + b$ where a is some positive integer.

Let χ is the trivial character, then by Corollary 8 and Lemma 9, one has

$$\operatorname{sing}_{P_0} t_{\chi} = \frac{1}{|\mathbb{M}|} \sum_{q \in \Phi_0} \frac{\sigma_g}{q^{\frac{1}{n_g h_g}}} = \frac{1}{|\mathbb{M}|} (\frac{1}{q} + \frac{2|\mathbb{M}|}{|\mathbb{C}_{\mathbb{M}}(\not \triangleright \mathbb{M} \land)|} \frac{\sigma_{71A}}{q^{\frac{1}{71}}} + \cdots),$$

and for any cusp $c = \frac{x}{y}$, gcd(x, y) = 1,

$$\operatorname{sing}_{P_c} t_{\chi} = \frac{1}{|\mathbb{M}|} \sum_{g \in \Phi_c} \frac{\sigma_g}{e^{2\pi i U_{c,g} z}}.$$

Suppose $\operatorname{sing}_{P_0} t_{\chi}$ can be derived from $\operatorname{sing}_{P_c} t_{\chi}$ under $z \to az + b$.

(3). We will show gcd(y, 71) = 1. Suppose false. Then 71|y and 71A, $71B \in \Phi_c$. Since $\frac{1}{a^{\frac{1}{12}}}$ appears in $sing_{P_0}t_{\chi}$, there exists, by Lemma 11, some g in Φ_c such that

$$\frac{\sigma_g}{e^{2\pi i U_{c,g}z}}|(z\to az+b) = \frac{r}{q^{\frac{1}{71}}} \tag{*}$$

where r is some constant. Hence

$$\frac{\gcd(h_g, y)^2 a}{e_g h_g^2} = \frac{1}{71}$$

where

$$e_g = \frac{\frac{n_g}{h_g}}{\gcd(\frac{n_g}{h_g}, \frac{y}{\gcd(y, h_g)})}.$$

Since a is an integer, this implies that g=71A or 71B. Since $\Gamma_{71A}=\Gamma_{71B}=71+$, we have $n_{71A}=n_{71B}=71$, $h_{71A}=h_{71B}=1$, $e_{71A}=e_{71B}=71$, and a=1. On the other hand, Corollary 8 implies $t_g|P_c=\sigma_g t_g(z-u_g)$ for g=71A or 71B. Hence the transformation (*) can not be done. This forces

$$gcd(y, 71) = 1.$$

(4). Since $\frac{1}{q^{\frac{1}{t}}}$, $t \in \{29, 41, 59, 92, 93, 94, 95, 104, 110, 119\}$ all appear with nonzero coefficients in $\operatorname{sing}_{P_0} t_{\chi}$, we may similarly conclude that $\gcd(y, p) = 1$ for the other prime divisors of N_0 .

Hence $gcd(y, N_0) = 1$ and c is equivalent to 0. Consequently, $A_0 = \emptyset$.

Lemma 16.
$$(\Gamma_{\chi})_0 = (\Gamma_0(N_{\chi})_0.$$

Proof. Suppose not. Applying Corollary 14, we see that $(\Gamma_{\chi})_0$ contains $B_r = \begin{pmatrix} 1 & 0 \\ \frac{N_{\chi}}{r} & 1 \end{pmatrix}$ for r=2,3,5 or 7. This implies that the cusp ∞ is equivalent to $\frac{r}{N_{\chi}}$ in Γ_{χ} . Therefore $\mathrm{sing}_{\infty}t_{\chi}$ must be derived from $\mathrm{sing}_{P_{\frac{r}{N_{\chi}}}}t_{\chi}$ under the substitution $z \to az + b$. We can now apply an analogous procedure (using $y = \frac{r}{N_{\chi}}$) as in Example 3 to get a contradiction.

Remark. One can also prove Lemma 16 by claiming that B_r does not leave $t_\chi(z)$ invariant. Note that it is easy to show the claim since B_r leaves most of the $t_g(z)$ invariant except for those g's such that $n_g h_g$ is not a divisor of $\frac{N_\chi}{r}$.

Combining Lemma 15 and 16, we have:

Theorem 17. Let χ be an irreducible character of \mathbb{M} . Then $\Gamma_{\chi} = \Gamma_0(N_{\chi})$.

 N_{χ} can be found in Table 1.

Remark. (1). In Lemma 15 and 16, 0 is a better choice than the other cusps $(\infty$, for example) since among all the $\operatorname{sing}_{P_c} t_{\chi}$'s, $\operatorname{sing}_{P_0} t_{\chi}$ is the one that involves most nonzero terms.

(2). N_{χ} and its prime decomposition is calculated by a software called GAP.

Table 1

		1 4000 1
χ_i	N_{χ_i}	$N_{\chi_i} (prime decomposition)$
1	2331309585756753201600	$2^6 3^3 5^2 7.11.13.17.19.23.29.31.41.47.59.71$
2	11841091337275200	$2^6 3^3 5^2 7.11.13.17.19.23.29.31.41$
3	437868837806400	$2^6 3^3 5^2 7.11.13.17.19.23.29.47$
4	467584848090400	$2^5 3^3 5^2 7.11.13.17.19.23.41.71$
5	38732026132800	$2^6 3^3 5^2 7.11.13.17.19.47.59$
6	20350725595200	$2^6 3^3 5^2 7.11.13.17.19.31.47$
7	87358471200	$2^5 3^2 5^2 7.11.13.17.23.31$
8	7820482269600	$2^5 3^2 5^2 7.11.13.17.29.31.71$
9	18526958049600	$2^6 3^2 5^2 7.11.13.23.29.41.47$
10	222987885120	$2^6 3^3 5.7.11.13.19.23.59$
11	8490081600	$2^6 3^2 5^2 7.11.13.19.31$
12	19445025600	$2^6 3^2 5^2 7.11.13.19.71$
13	9958865716800	$2^6 3^3 5^2 7.11.13.17.19.23.31$
14	73513400	$2^5 3^3 5.7.11.13.17$
15	2244077793757800	$2^3 3^3 5^2 7.11.13.17.19.23.29.41.47$
16	3749442460305984	$2^6 3^3 13.23.29.31.41.47.59.71$
17	3749442460305984	$2^6 3^3 13.23.29.31.41.47.59.71$
18	726818400	$2^5 3^3 5^2 7.11.19.23$
19	9182927033280	$2^6 3^3 5.7.11.13.19.29.41.47$
20	35703027360	$2^5 3^2 5.7.11.13.17.31.47$
21	98066928960	$2^6 3^3 5.7.11.13.17.23.29$
22	22789166400	$2^6 3^3 5^2 7.11.13.17.31$
23	451392480	$2^5 3^3 5.7.11.23.59$
24	295495200	$2^5 3^2 5^2 7.11.13.41$
25	253955520	$2^6 3^3 5.7.13.17.19$
26	479256378753600	$2^6 3^2 5^2 7.19.31.41.47.59.71$
27	479256378753600	$2^6 3^2 5^2 7.19.31.41.47.59.71$
28	27003936960	$2^6 3^2 5.7.11.13.17.19.29$
29	81995760	$2^4 3^3 5.7.11.17.29$
30	69618669120	$2^6 3^2 5.7.11.13.19.31.41$
31	21416915520	$2^6 3^2 5.7.11.13.17.19.23$
32	214885440	$2^6 3^3 5.7.11.17.19$
33	2882880	$2^{6}3^{2}5.7.11.13$
34	332640	$2^5 3^3 5.7.11$
35	786240	$2^{6}3^{3}5.7.13$
36	11147099040	$2^{5}3^{3}5.7.11.23.31.47$
37	331962190560	$2^{5}3^{2}5.7.11.13.17.19.23.31$
38	333637920	$2^5 3^3 5.7.11.17.59$
39	845013600	$2^5 3^3 5^2 19.29.71$
40	845013600	$2^5 3^3 5^2 19.29.71$
41	16676856385200	$2^4 3^3 5^2 11.23.31.47.59.71$
42	16676856385200	$2^4 3^3 5^2 11.23.31.47.59.71$
43	186902100	$2^23^35^27.11.29.31$
44	46955594400	$2^5 3.5^2 11.13.41.47.71$

```
2^53.5^211.13.41.47.71
45
    46955594400
                      2^23^25.7.11.13.17.19.23.41
46
    54880846020
                      2^5 3^3 5^2 7.17.41
47
     105386400
48
    105386400
                      2^5 3^3 5^2 7.17.41
                      2^43^35.7.11.13.17.19.71
    49584815280
                      2^23^25.7.13.17.23
50
    6404580
                      2^6 3^3 5^2 13.23
    12916800
52
                      2^6 3^2 5^2 7.13.17.29
    646027200
     228731328
                      2^6 3^2 7.17.47.71
                      2^6 3^2 7.17.47.71
    228731328
54
                      2^6 3^3 13.23.29.31.41
     19044013248
                      2^6 3^3 13.23.29.31.41
56
    10944013248
     25077360
                      2^43.5.7.11.23.59
58
    198918720
                      2^6 3^3 5.7.11.13.23
     19433872080
                      2^4 3^3 5.7.23.29.41.47
                      2^4 3^3 5.7.23.29.41.47
60
    19433872080
    2784600
                      2^33^25^27.13.17
61
                      2^6 3^2 5^2 7.11.13.17
62
    245044800
63
    57266969760
                      2^53^35.7.11.13.17.19.41
                      2^3 \\ 3^2 \\ 5.7.11.13.19.23
64
    157477320
                      2^4 3^2 5^2 11.23.29.31
65
    818809200
                      2^5 3^2 5^2 7.11.13.19.41.47
    263877213600
66
                      2^6 \\ 3^2 \\ 5.7.11.13.19.29
67
     1588466880
68
    33005280
                      2^53.5.7.11.19.47
69
    937440
                      2^53^35.7.31
                      2^6 3^3 7.11.13.19
70
    32864832
                      2^63.7.11.13.17.29.41.47
71
     182584514112
    182584514112
                      2^63.7.11.13.17.29.41.47
    982080
                      2^6 3^2 5.11.31
73
74
    33542208
                      2^{6}3^{3}7.47.59
                      2^63^37.47.59
75
    33542208
76
    7650720
                      2^53^35.7.11.23
                      2^6 3^2 5.7.11.13.17.19
77
    931170240
                      2^43^25^27.11.13.17.19.29
78
     33754921200
79
    42325920
                      2^53^25.7.13.17.19
                      2^53^25.7.17.29
80
    4969440
                      2^5 \\ 3^2 \\ 5^2 \\ 7.13.23.59.71
    63126554400
                      2^5 3^2 5^2 7.13.23.59.71
    63126554400
                      2^5 \\ 3^2 \\ 13.23.41.59
83
    208304928
                      2^53^213.23.41.59
84
    208304928
                      2^6 3^3 13.23.29.47
85
    704223936
                      2^6 3^3 13.23.29.47
    704223936
86
    1235520
                      2^63^35.11.13
                      2^5 3^2 5^2 19.29
88
    3967200
                      2^53^35.11.13.19
89
    11737440
90
    11737440
                      2^53^35.11.13.19
                      2^53^25.7.11.17.19.71
     2542811040
                      2^63.5.7.11.13.23
92
    22102080
    1441440
                      2^53^25.7.11.13
```

 $2^5 3^2 5.13.47$

94 879840

```
2^43^25.7.11.13.23
95
     16576560
                         2^4 3^2 5.7.11.17.23
96
     21677040
                         2^2 \\ 3^2 \\ 5.7.11.13.23.31.41
97
      5267201940
                         2^3 3^3 5^2 7.11.19
98
      7900200
                         2^6 3.5^2 11.13.41.59
99
      1660401600
                         2^63.5^211.13.41.59
100
    1660401600
                         2^63.5^27.17.23.71
101
     932769600
102
     7601451872175
                         3^35^27.17.19.29.41.59.71
    7601451872175
                         3^35^27.17.19.29.41.59.71
103
                         2^6 3^2 5.7.17.19
104
     6511680
                         2^5 \\ 3^2 \\ 5^2 \\ 7.19.31.47.59.71
105
     5844589984800
                         2^53^25^27.19.31.47.59.71
106
    5844589984800
107 2434219200
                         2^63^25^27.19.31.41
108\quad 2434219200
                         2^6 3^2 5^2 7.19.31.41
109 280800
                         2^53^35^213
                         2^6 3^2 5.7.47
110 947520
                         2^53^37.11.17.29.31
111 1016747424
                         2^23^35^211.13
112
     386100
113 6568800
                         2^53.5^27.17.23
                         2^63^27.11.31
114 1374912
                         2^53^35^27
115 151200
                         2^43.5^27.11
116 92400
                         2^6 3^2 5.11.13
117 411840
118 19562400
                         2^53^25^211.13.19
                         2^23^35.7.11.13.17.29.47
119 12524852340
120 41801760
                         2^53^25.7.11.13.29
                         2^3 3^3 5.7.17.19.31
121 75698280
122 8148853440
                         2^6 3^2 5.7.13.17.31.59
                         2^33^35^27.13.17.31.47.71
123 864175548600
124 3456702194400
                         2^53^35^27.13.17.31.47.71
                         2^53^35^27.13.17.31.47.71
125 3456702194400
126 119700
                         2^23^25^27.19
                         2^6 3^2 13.31.59
127 \quad 13695552
                         2^53^313.23.41.71
128 752016096
129 752016096
                         2^53^313.23.41.71
                         2^33^25.7.11.17.41
130 19320840
                         2^5 3^2 5.7.11.13.17.41
131 1004683680
                         2^63^35.19
132 164160
                         2^5 3^3 5^2 7.11.13.17.19.29.71
133 14379596431200
                         2^5 3^3 5.11.13.23
134 14208480
                         2^43^35^211.59.71
135 497653200
                         2^43^35^211.59.71
136 497653200
137 995276700
                         2^23^35^211.23.31.47
                         2^6 3^3 11.13.23.29.31
138 5109369408
                         2^53^35.7.17
139
    514080
140 59017104226080
                         2^53^35.7.11.13.17.19.29.31.47
                         2^53^25.7.11.13.17.47
141 1151710560
                         2^33^25^27.13.23
142
     3767400
     7600320
                         2^{6}3^{2}5.7.13.29
143
                         2^53^35.7.17.23
```

144 11823840

```
2.3^25^27.11.13.19
145 8558550
                          2^23^25.7.17.31
146 664020
                          2^{5}3^{3}5
147
     4320
148 655188534
                          2.3^37.11.13.17.23.31
                          2^53^25.71
149 102240
                          2^6 3^3 7.13
150 157248
                          2^53^25.7.11.13.17.23.47
151 26489342880
152 93276960
                          2^53.5.7.17.23.71
153 13137600
                          2^63.5^27.17.23
                          2^4 3^2 5^2 7.17
154 428400
                          2^53.5.7.11.17.29
    18221280
155
                          2^6 3^2 7.17.47.59
156 190072512
157 21176100
                          2^23^35^211.23.31
158 37130940
                          2^23^35.7.11.19.47
    852390
                          2.3^35.7.11.41
159
                          2^6 3^2 5^2 7.31.59
160 184363200
                          2^6 \\ 3^2 \\ 5.7.13.17.19.23.29.41.47
161
    108803771818560
                          2^33^27.11.13.23
     1657656
162
                          2^5 \\ 3^2 \\ 5^2 \\ 7.13.17.31
163
    345290400
                          2^6 3^2 5^2 7.19.47
164
    90014400
                          2^53^35.7
165
    30240
                          2^6 3^2 7
166
    4032
                          2^53^25.7.13.31
167
     4062240
                          2^63.5^27.11.13.23.29
168 3204801600
                          2^2 \\ 3^2 \\ 5^2 \\ 7.11.17.19.23.47
    24196995900
169
                          2^43^37.13.17
170 668304
                          2^6 3.5.7.11
171 \quad 73920
                          2^53^35^27.11.13.17.19
172 6983776800
                          2^33^25.7.11.29.41
173 32959080
174 3115200
                          2^63.5^211.59
175\quad 48163383908640
                          2^53^25.7.11.13.17.19.31.47.71
176 427211200
                          2^{6}5^{2}13.19.23.47
                          2^6 3^3 7.71
177
     858816
                          2^6 3^2 5.7.11.13.17.19.23
178 21416915520
                          2^6 3^2 5^2
179 14400
                          2^6 3^2 5^2
180 14400
                          2.3^35^211.13.19.29.31.47
181 154881891350
                          2^63.5.7.13.23
182 2009280
                          2^53^311.23.29
183 6339168
                          2^63^35.7.19.23
184
     26429760
                          2^6 3^3 13.31.47
185
     32730048
                          2^6 3.5^2 7.13.17
186 7425600
                          2^6 3^2 5^2 7.11.17.19.23
187 8237275200
                          2^43^35.7
188 15120
                          2^6 3^2 5.7.11.13.19
189 54774720
                          2^5 3^3 5.11.19.31
190 27989280
                          2^53^27.17
191 34272
                          2^53^25.11.13.17
192
     3500640
193
     1049200425
                          3^35^27.13.19.29.31
```

 $2^63.5.7.11.19$

194 1404480

References

- [1] J. H. Conway, Understanding Groups like $\Gamma_0(N)$, (preprint).
- [2] J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. London Math. Soc. 11 (1979), 308-338.
- [3] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, Inc. (1988).
- [4] K. Harada, Modular Functions, Modular Forms and Finite Group, Lecture Notes at The Ohio State University, (1987).
- [5] H. Helling, On the Commensurablility Classes of Rational Modular Group, J. London Math. Soc. 2 (1970), 67-72.
- [6] J. McKay and H. Strauss, The q-series of Monstrous Moonshine and the Decomposition of the Head Characters, Comm. Alg. 18(1) (1990), 253-278.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210, USA

E-mail address: haradako@math.ohio-state.edu

DEPARTMENT OF MATHEMATICS, NITIONAL UNIVERSITY OF SINGAPORE, SINGAPORE 0511, REPUBLIC OF SINGAPORE

E-mail address: matlml@leonis.nus.sg