

Organização de Computadores

Professor Álvaro Antônio Fonseca de Souza

Aula de hoje

Organização de computadores: memórias, unidade central de processamento, unidades de entrada e unidades de saída.

Representação Binária

Toda a informação pode ser convertida ou mapeada para binário.

Fonte: http://www.univasf.edu.br/~rosalvo.oliveira/Disciplinas/2011_2/IEC/aulas/AULA06_RFON_IEC_REPRESENTACAO_INFORMACAO.pdf

Composição do computador

INSTITUTO FEDERAL Minas Gerais

> Campus Bambuí

- O computador é um grande e complexo sistema de "interruptores".
- A representação binária é a única linguagem que o computador entende.
- O interruptor do computador é o transistor.
- Um transistor é um dispositivo criado a partir de um material semicondutor que controla a passagem de eletricidade.

Composição do computador

Esquema do transistor ao lado.

O precursor do transistor foi a válvula.

Porta NOT

INSTITUTO FEDERAL Minas Gerais

Campus

Bambuí

A= 0 transistor não conduz

Resistência de S menor

S =1 acende a lâmpada

A= 1 transistor conduz

Resistência do condutor menor

S = 0 apaga a lâmpada

Porta NOT

INSTITUTO FEDERAL Minas Gerais

Campus

Bambuí

A= 0 transistor não conduz

Resistência de S menor

S =1 acende a lâmpada

A= 1 transistor conduz

Resistência do condutor menor

S = 0 apaga a lâmpada

A	S
0	1
1	0

NAND

Somente quando os dois transistores estão conduzindo é que S apaga.

NAND

Somente quando os dois transistores estão conduzindo é que S apaga.

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

NOR

Somente quando os dois transistores não estão conduzindo é que S acende.

Minas Gerais Campus Bambuí

INSTITUTO FEDERAL

NOR

Somente quando os dois transistores não estão conduzindo é que S acende.

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

AND

INSTITUTO FEDERAL

inversão da NAND gera a AND

inversão da NAND gera a AND

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

OR

inversão da NOR gera a OR

OR

inversão da NOR gera a OR

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

A XOR B ou $A \oplus B = (A \text{ NOR B}) \text{ NOR } (A \text{ AND B}) = \text{NOT } (\text{NOT } (A \text{ OR B}))$ OR (A AND B)) ou $\neg(\neg(A+B)+(A \cdot B))$

A XOR B ou $A \oplus B = (A \text{ NOR B}) \text{ NOR } (A \text{ AND B}) = \text{NOT } (\text{NOT } (A \text{ OR B}))$ OR (A AND B)) ou $\neg(\neg(A+B)+(A \cdot B))$

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Símbolos das portas lógicas

Símbolos das portas lógicas

Circuito Integrados

INSTITUTO FEDERAL Minas Gerais

- Os transistores compõem as portas lógicas
- Portas lógicas compõem os circuitos integrados (CIs).

Circuitos integrados

INSTITUTO FEDERAL Minas Gerais

- Os circuitos integrados realizam processamento e armazenamento de informação.
- Os componentes do computador são compostos de Cls.

Fonte: http://www.univasf.edu.br/~rosalvo.oliveira/Disciplinas/2011_2/IEC/aulas/AULA06_RFON_IEC_REPRESENTACAO_INFORMACAO.pdf

Componentes do computador primeiro contato

Os componentes de um computador servem para processamento e armazenamento de informações.

Os componentes principais são:

- processador,
- memória RAM,
- Placa mãe,
- HD ou SSD,
- dispositivos periféricos de E/S.

Fonte: LABORATÓRIO DE MONTAGEM E MANUTENÇÃO DE COMPUTADORES, Ricardo Tombesi Macedo, Mateus Pelloso, Evandro Preuss, Fábio Parreira.

Periféricos de Entrada

São dispositivos que permitem a entrada de dados pelo usuário.

- Mouse
- teclado
- câmera
- microfone
- scanner
- drive de cd-rom
- etc.

DISPOSITIVOS DE ENTRADA

Periféricos de Saída

São dispositivos que permitem a saída de dados pelo usuário.

- Impressora
- monitor
- gravador de dvd e cd
- caixas de som
- etc.

DISPOSITIVOS DE SAÍDA

Periféricos de entrada e saída

São dispositivos que permitem a entrada e saída de dados pelo usuário.

- Pen-drive
- disquete
- dvd e cd gravável
- tela touch
- etc.

Fonte imagem: https://www.diferenca.com/dispositivos-de-entrada-e-saida/ acessado em 20/05/2021

Arquitetura de computadores: Placa mãe.

Placa mãe

É um dispositivo que permite a conexão de todos os componentes do computador.

Composta por:

- slots de conexão
- Bios e jumpers,
- ponte norte (chipset) e
- ponte sul.

Fonte imagem: https://blog.ufba.br/tabuleirodigital/files/2014/01/Aula-Placa-M%C3%A3e.pdf acessado em 20/05/2021

out

Bambuí

port

Arquitetura de computadores: Memória secundária.

HD (Hard Disk)e SSD (State Solid Drive)

INSTITUTO FEDERAL Minas Gerais Campus

Bambuí

- Memória secundária ou memória persistente.
- O HD ou disco duro do inglês (Hard Disk) é um dispositivo para armazenamento de dados.
- O SSD ou drive de estado sólido do inglês (Solid State Drive) é um dispositivo de armazenamento que utiliza a tecnologia de memória Flash.

HD (Hard Disk)e SSD (State Solid Drive)

INSTITUTO FEDERAL Minas Gerais Campus

Bambuí

O HD é um conjunto de discos magnéticos que guardam as informações que deve permanecer no computador mesmo este estando desligado.

O HD é composto por um conjunto de discos magnéticos e um braço de leitura magnética que se desloca sobre as superfícies dos discos para fazer a leitura da informação.

Fonte imagem:
http://matheusmancio.com.br/site/ld/%C2%B4s/ acessado em

Fonte imagem: http://bloghardwaremicrocamp.com.br/manutencao/conheca-a-anatomia-de-um-disco-rigido/ acessado em 20/05/2021

SSD

O SSD é composto de um conjunto de memória Flash, que armazenam os dados de forma eletrônica.

Possui inúmeras vantagens em relação ao HD.

Mais Resistente

Não tem peças movíveis. É um fator que causa inúmeras falhas e avarias nos discos HDD.

Os discos SSD têm um prazo de vida muito mais longo, são mais duráveis e confiáveis.

Mais Rápido

O disco SSD escreve e lê informação a velocidades incríveis quando comparado com o disco HDD.

O acesso a qualquer dado é processado em **microssegundos** em vez de **milissegundos** como nos HDs.

SSD 2.5"

https://www.pcdiga.com/blog/pcdiga/ssd/

Arquitetura de computadores: Memória primária.

Memória RAM ou memória volátil

- Memória primária ou volátil
- A memória RAM ou memória de acesso aleatório do inglês (Random Access Memory) é uma memória de leitura e escrita
- É utilizada durante o funcionamento do computador.
- Todos os aplicativos e dados em execução no computador serão carregados na memória RAM durante a execução deles para que o processador possa trabalhar sobre eles.

Memória RAM ou memória volátil

- Quando você abre um editor de texto ele é carregado na memória RAM para que possa utilizá-lo.
- Quando se digita um texto no editor, este é armazenado somente na memória principal.
 - Se você não salvá-lo no computador, ele permanece somente na memória.
- A memória não é permanente;
 - Só armazena dados enquanto estiver ligada à energia elétrica;
 - se a energia acabar o trabalho não salvo será perdido.

Bambuí

Fonte imagem:

https://pt.wikipedia.org/wiki/Mem%C3%B3ria_de_acesso_aleat%C3%b3ria_de_acesso_aleat%C3%b3ria_acessadoe.em.23/05/2021

Memória RAM ou memória volátil

INSTITUTO

Campus

Bambuí

Quanto mais memória principal, mais rápido ficará o computador.

Essa velocidade é justificada pelo fato do processador **não ter que buscar** dados no HD,

Buscar dados no hd é muito custoso.

Áreas Livres	Tamanho
1	1 Kb
2	5 Kb
3	3 Kb

Sistema Operacional	
Área livre 1	4 kb
Programa C	
Área livre 2	5 kb
Programa A	
Área livre 3	3 kb

SRAM e DRAM

INSTITUTO FEDERAL Minas Gerais Campus

Bambuí

- RAMs podem ser de duas variedades, estáticas e dinâmicas.
- RAMS estáticas (Static RAMs SRAMs) menos densas
- As RAMs estáticas são muito rápidas.
- São usadas como memória cache.
- RAMS dinâmicas (Dynamic RAMs DRAMs) mais densas
- é um arranjo de células, cada uma contendo um transistor e um capacitor.
- Os capacitores podem ser carregados ou descarregados, permitindo que 0s e
 1s sejam armazenados.
- DRAMs têm densidade muito alta (muitos bits por chip).
- as memórias principais são construídas com RAMs dinâmicas.
- São mais lentas que as SRAMs

Resumo

Tipo	Utilização típica
SRAM	Cache de nível 2
DRAM	Memória principal

Aula de hoje

Arquitetura de computadores: unidade central de processamento.

Processador

INSTITUTO FEDERAL Minas Gerais

- O processador, ou CPU, são circuitos integrados
- passíveis de ser programados para executar uma tarefa pré definida (instruções)
- manipula ou processa dados;
- É considerado o cérebro do computador.
- Um programa é um conjunto de instruções que será processado pelo processador.

Processador

- Quanto mais rápido for um processador, mais rápido será o computador também.
- A velocidade de um processador é medida em hertz.
- significa ciclos por segundo.
- Um processador consegue processar milhões ou até bilhões de informações.

- No processador tem um caminho de dados,
- onde um conjunto de instruções irá passar e ser processado de acordo com o tipo de instrução e os dados que essa instrução carrega.
- Uma instrução é uma parte de um programa que é processada.
- um programa pode ser composto de várias instruções
 - estas são executadas uma a uma pelo processador.

A CPU executa cada instrução em uma série de pequenas etapas. Em termos simples, as etapas são as seguintes:

 Trazer a próxima instrução da memória até o registrador de instrução.

A CPU executa cada instrução em uma série de pequenas etapas. Simplificando, as etapas são as seguintes:

- Trazer a próxima instrução da memória até o registrador de instrução.
- 2. Alterar o contador de programa para que aponte para a próxima instrução.

- Trazer a próxima instrução da memória até o registrador de instrução.
- 2. Alterar o contador de programa para que aponte para a próxima instrução.
- 3. Determinar o tipo de instrução trazida.

- Trazer a próxima instrução da memória até o registrador de instrução.
- 2. Alterar o contador de programa para que aponte para a próxima instrução
- 3. Determinar o tipo de instrução trazida.
- Se a instrução usar uma palavra na memória, determinar onde essa palavra está.

- Trazer a próxima instrução da memória até o registrador de instrução.
- 2. Alterar o contador de programa para que aponte para a próxima instrução
- 3. Determinar o tipo de instrução trazida.
- 4. Se a instrução usar uma palavra na memória, determinar onde essa palavra está.
- 5. Trazer a palavra para dentro de um registrador da CPU, se necessário.

- Trazer a próxima instrução da memória até o registrador de instrução.
- 2. Alterar o contador de programa para que aponte para a próxima instrução
- 3. Determinar o tipo de instrução trazida.
- 4. Se a instrução usar uma palavra na memória, determinar onde essa palavra está.
- 5. Trazer a palavra para dentro de um registrador da CPU, se necessário.
- 6. Executar a instrução.

- 1. Trazer a próxima instrução da memória até o registrador de instrução.
- 2. Alterar o contador de programa para que aponte para a próxima instrução
- 3. Determinar o tipo de instrução trazida.
- 4. Se a instrução usar uma palavra na memória, determinar onde essa palavra está.
- 5. Trazer a palavra para dentro de um registrador da CPU, se necessário.
- 6. Executar a instrução.
- 7. voltar à etapa 1 para iniciar a execução da instrução seguinte.

Multicores

INSTITUTO

- Quanto maior a frequência do processador mais quente.
- Limites do clock alcançados.
- Impossibilidade de se ampliar a frequência dos processadores.
- Múltiplos processadores em um mesmo chip foi a solução.
- Processadores multicores são processadores com mais de um núcleo de processamento.

Processador

- Fila, Uncore & E/S Núcleo Núcleo E STATE OF THE OWNER, Cache L3 Núcleo Núcleo compartilhado Núcleo Núcleo Controlador de memória
- Cada núcleo tem suas próprias caches de nível 1 e 2.
- Há também uma cache de nível 3 (L3) compartilhada, usada por todos os núcleos.

O chip Intel Core i7-3960X. O substrato tem 21×21 mm e 2,27 bilhões de transistores. Direitos da fotografia da Intel Corporation, 2011, reprodução permitida.

Referências

- Hennessy, John L., Arquitetura de computadores : uma abordagem quantitativa / John L. Hennessy, John L., Hennessy, John L., Arquitetura de computadores : uma abordagem quantitativa / John L. Hennessy, John L., Arquitetura de computadores : uma abordagem quantitativa / John L. Hennessy, John L., Hennessy
- Tanenbaum, Andrew S., Organização estruturada de computadores / Andrew S.
- MONTEIRO, M. A. Introdução à Organização de Computadores. 5ª Edição. Rio de Janeiro: LTC Editora, 2007.
- STALLINGS, W. Arquitetura e Organização de Computadores. 5ª. Edição. São Paulo: Prentice Hall,
 2002.
- TANENBAUM, A. Organização estruturada de computadores. 5ª Edição. São Paulo: Pearson Prentice Hall, 2011.
- Tanenbaum, Todd Austin; tradução Daniel Vieira; revisão técnica Wagner Luiz Zucchi. -- São Paulo :
 Pearson Prentice Hall, 2013.
- Organização e Arquitetura de Computadores, Eliane Maria de Bortoli Fávero. e-tec Brasil.
- Manutenção e configuração de computadores, SENAC.