3D Game Programming 2D primitive

Ming-Te Chi
Department of Computer Science,
National Chengchi University

Outline

- Imaging and Raster Primitives
 - Deformation and skeletal Animation
 - Alpha and Blending
 - Intersection
- Object-Oriented Programming
 Game LOOP Concept
 Physics 2D
 - Rigid body
 - Collider and trigger

IMAGING AND RASTER PRIMITIVES

BUTERACTOVE

Sprite

Super Mario Bros. Nintendo

http://ithare.com/category/distributed-systems/

Walt Disney's MultiPlane Camera (Filmed: Feb. 13, 1957)

Rayforce 1994

Electromagnetic spectrum

Three-Color Theory

Human visual system has two types of sensors

- Rods:
 - monochromatic, night vision
- Cones:
 - Color sensitive
 - Three types of cone
 - Only three values
 - (the tristimulusvalues) are sent to the brain

Additive / Subtractive color

Additive Color

LCD, projector

Subtractive Color

Printer

RGB color space

a 8 x 8 x 8-inch cube book

Tauba Auerbach

Bitmap

Raster Graphics

Image produced as an array (the *raster*) of <u>picture elements</u> (*pixels*) in the *frame* buffer

7 7 5 ? (() () ()

Display Technologies

CRT

Lets Talk About Pixels

- Pixels are stored as a 1-dimensional array of ints
- Each int is formatted according to Java's standard pixel model

The 4 bytes of a 32-bit *Pixel* int. if Alpha is 0 the pixel is transparent. if Alpha is 255 the pixel is opaque.

Layout of the pixel array on the display:

This is the image format used internally by Java

ANIMATION

BUTERACTIVE

Component, Sprite

Deformation

As-Rigid-As-Possible Shape Manipulation

BUTERASTIVE

Skeletal animation

Puppet2D

Live2D

BUTERACTIVE

ALPHA AND BLENDING

MEDBA

Draw image

Alpha

An alpha channel, representing transparency information on a per-pixel basis.

Alpha = 0.0f: fully transparent

Alpha = 1.0f: fully opaque

Chroma-keying (Primatte)

Writing Model

- Use A component of RGBA (or RGB α) color to store opacity
- During rendering we can expand our writing model to use RGBA values

Blending

qlBlendFunc(Glenum S, Glenum D);

$$-Cf = (Cs*S) + (Cd*D)$$

glBlendFunc(GL_SRC_ALPHA,

GL ONE MINUS SRC ALPHA);

7775 2 2 2 2 2 7 7

Ex: $Cs = \{Rs, Gs, Bs, As\}, Cd = \{Rd, Gd, Bd, Ad\},\$

Cf = (Cs*As) + (Cd*(1-As))

Compositing

compositing equation

Order Dependency

- Is this image correct?
 - Probably not
 - Polygons are rendered in the order they pass down the pipeline
- Blending functions are order dependent

7177532676

INTERSECTION

BUTERACTIVE

Axis-Aligned Bounding Boxes

Specified as two points:

$$(x_{\min}, y_{\min}, z_{\min}), (x_{\max}, y_{\max}, z_{\max})$$

Normals are easy to calculate Simple point-inside test:

$$y_{\min} \le y \le y_{\max}$$

$$z_{\min} \le z \le z_{\max}$$

Problems With AABB's

Not very efficient

 Other option is to rotate model and rebuild AABB, but this is not efficient


```
(maxX, maxY)
                  (minX, minY)
function isPointInsideAABB(point, box) {
  return (point.x >= box.minX && point.x <= box.maxX) &&</pre>
          (point.y >= box.minY && point.y <= box.maxY);</pre>
```

BUTERASTIVE

```
function intersect(a, b) {
      return (a.minX <= b.maxX && a.maxX >= b.minX) &&
            (a.minY \le b.maxY && a.maxY >= b.minY);
                         DULISWADILIVE
```

MEDIA

```
function intersect(a, b) {
      return (a.minX <= b.maxX && a.maxX >= b.minX) &&
            (a.minY \le b.maxY && a.maxY >= b.minY);
                         DULISWADILIVE
```

MEDIA

OBJECT-ORIENTED PROGRAMMING

is-a, has-a

- Project
 - -Scene1
 - Actor
 - Transform
 - Sprite Renderer
 - Script
 - Box Collider
 - Rigidbody 2D
 - Camera
 - Transform
 - Camera

Actor is a GameObject.

Actor has a Script.

177533

GameObject

Variables

<u>activeInHierarchy</u> Is the GameObject active in the scene?

<u>activeSelf</u> The local active state of this GameObject. (Read Only)

<u>isStatic</u> Editor only API that specifies if a game object is static.

<u>layer</u> The layer the game object is in. A layer is in the range [0...31].

7533

scene Scene that the GameObject is part of.

tag The tag of this game object.

transform The Transform attached to this GameObject.

GetComponent<gameManager>()

public

```
public float speed = 20;
public Sprite[] sprites;
int sprites_index = 0;
```


7 17 7 3 2 2 2 2

宣告

- public, static
 - int a; //a只會在該腳本被使用、修改
 - public int a; // a可以在editor的介面中直接使用與修改
 - public type function(type argv...) { } //可在其他類別取用
 - public static a; //假設宣告a的腳本為abc.cs, a可以在其他腳本中寫 abc.a 來使用與修改

117533

- Random ← 寫遊戲肯定會用到
 - float a = Random.value; // between 0 ~ 1
 - float a = Random.Range(1.0f, 3.0f);
- Float型態的變數後面的 f 是必須的
 - float a = 2.5; //error
 - float a = 2.5f; //OK

Sprite switching

```
if (Input.GetKey(KeyCode.D))
this.transform.position += new Vector3(speed *
Time.deltaTime, 0, 0);
this.GetComponent<SpriteRenderer>().sprite =
sprites[(++sprites_index)%2];
```


addScore()

```
public class UFOController: MonoBehaviour {
 void OnTriggerEnter2D(Collider2D other){
GameObject.Find( "GameManager" ).GetComponent<g
ameManager>().addScore(100);
```

GAME LOOP

BUTERACTIVE

Game loop

http://gameprogrammingpatterns.com/game-loop.html

Script-基本函式

函數名	被呼叫時機					
Awake()	在脚本(Script)檔被創建並載入場景的時候呼叫。					
Start()	在創建後的下一個Update()被呼叫前執行。					
Update()	每個禎(frame)更新時呼叫。					
FixedUpdate()	在固定的時間呼叫。					
OnGUI()	用於處理GUI事件, 每個禎(Frame)更新時執行。					
OnCollisionEnter()	碰撞體(Collider)/剛體(Rigidbody)和其他的碰撞體(Collider)/剛體(Rigidbody)接觸的一開始執行。					
OnCollisionExit()	當碰撞體(Collider)/剛體(Rigidbody)和其他的碰撞體(Collider)/剛體(Rigidbody)終止接觸的瞬間執行。					
OnCollisionStay()	當碰撞體(Collider)/剛體(Rigidbody)和其他的碰撞體(Collider)/剛體(Rigidbody)終止接觸的瞬間執行。					
OnTriggerEnter()	當本身碰撞體進入觸發器(Trigger)時執行。					
OnTriggerExit()	當本身碰撞體離開觸發器(Trigger)的瞬間執行。					
OnTriggerStay()	本身碰撞體與觸發器(Trigger)持續接觸的情況下, 每個禎(Frame)執行。					

JULI BUSING I I VIS

Awake VS Start

Awake:遊戲開始後(play鍵以後),每一個物件在其active的那一刻就會執行這個函式(有些物件可能一開始不是active的,在其轉變成active狀態的時候會立即執行awake)

Start:物件在其active「後」, 遊戲進行的下一偵(frame)前會呼 叫此函式

https://gamedevbegin ner.com/start-vsawake-in-unity/

Update() VS FixedUpdate()

Update:在遊戲進行的每一禛會執行一次(執行的次數受到電腦實際的速度影響)

FixedUpdate:固定的時間會執行一次,時間可以在Edit→Project settings→Time

71713131315171113

- →Fixed Timestep做更動
- Fixed Timestep 預設 0.02

PHYSICS 2D

BUTERACTOVE

MEDIA

Rigidbody

$$F=ma$$
 $a=F/m$

$$V = at$$

$$Distance = Vt = at^2$$

Collision(碰撞)與Trigger(觸發)

 碰撞:兩個物件產生物理碰撞, 會觸發OnCollisionEnter/Stay/Exit 函數

- 觸發:取消所有物理碰撞(勾選is Trigger),兩物件接觸時會觸發
 OnTriggerEnter/Stay/Exit
- 換言之兩物件接觸時一定不可能 同時觸發Collision和Trigger signal

OnCollisionEnter/Stay/Exit

Physics 2D Settings

Edit > Project Settings > Physics 2D

physics2D

static: 未加入rigidbody

Rigidbody:允許物理運算。Ex:

受力(重力、阻力、慣性)和速度。

(add component->Rigidbody)

Kinematic: 不使用物理運算,但

可對其他剛體進行物理運算。

(Rigidbody->click 'Is Kinematic')

備忘有reference連結

有興趣自己看>_O

Collision(碰撞)與Trigger(觸發)

• 六種碰撞器的分別

Static Collider
Rigidbody Collider
Kinematic Rigidbody Collider

● 左半邊代表collider在接觸時會 產生碰撞訊號 Static Trigger Collider
Rigidbody Trigger Collider
Kinematic Rigidbody Trigger Collider

● 右半邊Trigger代表在collider的屬性中 勾選了is trigger,使得該碰撞器不會發 生碰撞,而會被穿過,被其他物件接觸 時產生觸發訊號

Collision action matrix

	Static Collider	Rigidbody Collider	Kinematic Rigidbody Collider	Static Trigger Collider	Rigidbody Trigger Collider	Kinematic Rigidbody Trigger Collider
Static Collider		Υ				
Rigidbody Collider	Υ	Υ	Υ			
Kinematic Rigidbody Collider		Y				

BUTERASTIVE

						多媒體圖形技術組
	Static Collider	Rigidbody Collider	Kinematic Rigidbody Collider	Static Trigger Collider	Rigidbody Trigger Collider	Kinematic Rigidbody Trigger Collider
Static Collider					Υ	Υ
Rigidbody Collider				Υ	Υ	Υ
Kinematic Rigidbody Collider				Y	Υ	Υ
Static Trigger Collider		Υ	Υ		Υ	Υ
Rigidbody Trigger Collider	Υ	Υ	Υ	Υ	Υ	Υ
Kinematic Rigidbody Trigger Collider	Υ	Υ	Υ	Υ	Υ	Υ

لمالطاللا

PREFAB (預設體)

BUTERACTOVE

Prefab (預設體)

- 預先設定屬性的物件
- 用於生成固定性質的固定物件
- How
 - 將場景中的某一物件拖曳至Project欄位
 - 被你拖曳到project的物件會變得藍色的, 代表他成為了prefab,之後你對該物件的 修改,可以透過inspector欄位上方的 prefab row進行設置
- 往後可以直接將帶有固定屬性的物件直接(從Project tab)拉入場景

BUTERASTIVE

Script - the most important

- https://docs.unity3d.com/ScriptReference/
- 寫程式基本上不太可能所有method都會
- 不會的、不確定的都可以去上面查

EXPORT ASSET

BUTERACTOVE

EXPORT scene deepened files

减少輸出檔案的大小。只選特定場景和其相關的檔案

Select none first

Select the scene you want to export

Full 795K Only one scene 5K

