Lecture 21: Gaussian process regression

Professor Ilias Bilionis

Frocess

$$f(\cdot) \sim \langle P(M(\cdot), C(\cdot, \cdot)) \rangle$$
Take a finite # of input $\times_{1:n} = (x_1, ..., x_n)$

Consider the function rules $f_{1:n} = (f(x_1), ..., f(x_n))$

random vector

By definition : $f_{1:n} \sim N(M_{1:n}, C_n)$

random vector

$$f_{1:n} \sim N(M_{1:n}, C_n)$$

$$f_{1:n} \sim N(M_{1:n}, C_n)$$

$$f_{1:n} \sim N(X_n)$$

- Find a square rost of C_n , e.g.

$$C_n = L_n \cdot L_n \cdot (C_n \cdot C_n)$$

- $C_n = L_n \cdot L_n \cdot (C_n \cdot C_n)$

- $C_n = C_n \cdot C_n \cdot C_n$

- $C_n = C_n \cdot C_n \cdot C_n \cdot C_n$

- $C_n = C_n \cdot C_n \cdot C_n \cdot C_n$

- $C_n = C_n \cdot C_n \cdot C_n \cdot C_n \cdot C_n$

- $C_n = C_n \cdot C_n \cdot C_n \cdot C_n \cdot C_n \cdot C_n$

- $C_n = C_n \cdot C_n$

- $C_n = C_n \cdot C_n \cdot$

