

Prüfbericht-Nr.: Auftrags-Nr.: 17032143 006 Seite 1 von 20 164003749 Test Report No.: Order No.: Page 1 of 20 Kunden-Referenz-Nr.: Auftragsdatum: N/A 22 03 2013 Client Reference No.: Order date: Auftraggeber: KEEN HIGH TECHNOLOGIES LTD., Block A1 & A2, Ze Da Li Industrial Park, Client: Tangwei Area, Fuyong, Bao'an, Shenzhen, Guangdong, China Prüfgegenstand: **Tablet** Test item: Bezeichnung / Typ-Nr.: NS-14T004 Identification I Type No.: Auftrags-inhalt: FCC/IC Certification Order content. Prüfgrundlage: CFR Title 47 Part 2 Subpart J Section 2.1093 ANSI/IEEE C95.1-1992 Test specification: IEEE 1528-2003 FCC OET Bulletin 65 Supplement C (Edition 01-01) Wareneingangsdatum: 22.03.2013 Date of receipt. Prüfmuster-Nr.: N/A Test sample No.: Prüfzeitraum: 17.05.2013 - 14.06.2013 Testing period: Ort der Prüfung: Accurate Technology Co., Ltd. Place of testing: Prüflaboratorium: TÜV Rheinland (Shenzhen) Co., Ltd. Testing laboratory: Prüfergebnis*: **Pass** Test result*: geprüft von I tested by. kontrolliert von I reviewed by: 14-06-2013 Owen Tian/Project Manager 14-06-2013 Sam Lin/Technical Certicier Name / Stellung Name / Stellung Datum Unterschrift Datum Unterschrift Date Name / Position Signature Date Name / Position Signature Sonstiges / Other. Zustand des Prüfgegenstandes bei Anlieferung: Prüfmuster vollständig und unbeschädigt Condition of the test item at delivery: Test item complete and undamaged

* Legende: 1 = sehr gut 2 = aut 3 = befriedigend 4 = ausreichend 5 = mangelhaft P(ass) = entspricht o.g. Prüfgrundlage(n) F(ail) = entspricht nicht c.g. Prüfgrundlage(n) N/A = nicht anwendbar N/T = nicht getestet Legend: 1 = very good 3 = satisfactory 4 = sufficient 2 = good5 = poor F(ail) = failed a.m. test specification(s) P(ass) = passed a.m. test specification(s) N/A = not applicable N/T = not tested

Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

This test report only relates to the a. m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

 Prüfbericht - Nr.:
 17032143 006
 Seite 2 von 20

 Test Report No.
 Page 2 of 20

STATEMENT OF COMPLIANCE

TEST ITEM	SPECIFICATION	RESULT
Specific Absorption Rate - Wi-Fi 802.11 b/g/n - 2.4GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS
Specific Absorption Rate - Wi-Fi 802.11 a/n - 5.2GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS
Specific Absorption Rate - Wi-Fi 802.11 a/n - 5.8GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS

This device complies with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg) specified in CFR Title 47 Part 2 Subpart J Section 2.1093 and ANSI/IEEE C95.1-1992.

This device have been testd in accordance with the measurement methods and procedure specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (edition 01-01).

Refer to the maximum results of Specific Absorption Rate (SAR) durning testing as below.

FREQUENCY BAND	EXPOSURE POSITION		HIGHEST REPORTED SAR VALUE (W/KG)
802.11 b/g/n - 2.4GHz Band	Body	DTS	0.435
802.11 a/n - 5.8GHz Band	Body	סום	0.490
802.11 a/n - 5.2GHz Band	Body	NII	0.353

Prüfbericht - Nr.: 17032143 006 Test Report No.

Seite 3 von 20 Page 3 of 20

Contents

1.	GENERAL REMARKS
1.1	COMPLEMENTARY MATERIALS4
2.	TEST SITES
2.1	TEST FACILITIES4
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS5
3.	GENERAL PRODUCT INFORMATION6
3.1	PRODUCT FUNCTION AND INTENDED USE6
3.2	RATINGS AND SYSTEM DETAILS6
3.3	INDEPENDENT OPERATION MODES8
3.4	SUBMITTED DOCUMENTS8
4.	TEST SET-UP AND OPERATION MODES9
4.1	PRINCIPLE OF CONFIGURATION SELECTION9
4.2	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
4.3	EXPOSURE POSITIONS CONSIDERATION
4.4	TEST OPERATION AND TEST SOFTWARE
4.5	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT12
5.	TEST RESULTS
5.1	HUAMAN EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC FIELDS
5.2 5.2.	MEASUREMENT UNCERTAINTY
6.	PHOTOGRAPHS OF THE TEST SET-UP
7.	LIST OF TABLES20
8.	LIST OF PHOTOGRAPHS20

 Prüfbericht - Nr.:
 17032143 006
 Seite 4 von 20

 Test Report No.
 Page 4 of 20

1. General Remarks

1.1 Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following appendix:

Appendix A: System Performance Check Appendix B: Test Plots of SAR Measurement

Appendix C: Calibration Certificate

2. Test Sites

2.1 Test Facilities

Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Road, Block 52, Shenzhen Science & Industry Park Nantou, Shenzhen, Guangdong, P.R. China

The tests at the test site have been conducted under the supervision of a TÜV engineer.

 Prüfbericht - Nr.:
 17032143 006
 Seite 5 von 20

 Test Report No.
 Page 5 of 20

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Kind of Equipment	Manufacturer	Туре	S/N	Calibrated until
SAR Test System	Speag	DASY5 TX60L SAR	N/A	June.4,2015
Wireless Communication Test Set	Agilent	E5515C	GB44300243	May.08, 2014
Power Meter	Anritsu	ML2487A	6K00002472	May.08, 2014
Power Sensor	Anritsu	MA2491A	032516	May.08, 2014
Signal Generator	Marconi	2031B	119606/058	May.08, 2014
Amplifier	Milmega	AS0206-50	1036253	NCR
Dipole Antenna	Speag	D2450V2	862	June.22, 2013
Dipole Antenna	Speag	D5GHzV2	1102	Mar.14, 2014
Attenuator	Agilent	8491A 3dB	MY3926200 1	May.08, 14
Attenuator	Agilent	8491A 10dB	MY3926437 5	May.08, 14
DAE	Speag	DAE4	899	July.25, 2013
E-Field Probe	Speag	EX3DV3	3139	July.25, 2013
E-Field Probe	Speag	EX3DV4	3767	July.27, 2013

 Prüfbericht - Nr.:
 17032143 006
 Seite 6 von 20

 Test Report No.
 Page 6 of 20

3. General Product Information

3.1 Product Function and Intended Use

The EUT is a 10.1" tablet with Wi-Fi, Bluetooth & GPS function. For details refer to the User Manual and Circuit Diagram.

3.2 Ratings and System Details

Table 2: Technical Specification

Device type:	Portable de	Portable device				
EUT Name:	Tablet					
Type Identification:	NS-14T004	NS-14T004				
FCC ID:	XUZNS-14T	004				
IC number:	10558A-NS	14T004				
Operating mode(s) / WiFi:	802.11b 802.11g/n 802.11a/n (5.2GHz) 802.11a/n					
Test modulation	DSSS	OFDM	OFDM	OFDM		
Transmit Frequency Range (MHz):	2412-2462	2412-2462	5180-5240	5745-5825		
Maximum tune-up average output power (dBm):	18 18 for 801.11g 11 16					
Operating mode(s) / Bluetooth:	Bluetooth 2	.1+EDR				
Test modulation	GFSK, π/4Ε	QPSK, 8DPSK				
Transmit Frequency Range (MHz):	2402-2480					
Maximum tune-up average output power (dBm):	5					
Hardware version:	JRO03C					
Software version:	0.0.3-test-keys					
Antenna type:	Integrated antenna					
Battery options:	DC 3.7V					

 Prüfbericht - Nr.:
 17032143 006
 Seite 7 von 20

 Test Report No.
 Page 7 of 20

Table 3: List of WLAN Channel of 802.11 b/g/n mode

802.	11 b	802.	11 g	802.11 r	n (HT20)
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
1	2412	1	2412	1	2412
2	2417	2	2417	2	2417
3	2422	3	2422	3	2422
4	2427	4	2427	4	2427
5	2432	5	2432	5	2432
6	2437	6	2437	6	2437
7	2442	7	2442	7	2442
8	2447	8	2447	8	2447
9	2452	9	2452	9	2452
10	2457	10	2457	10	2457
11	2462	11	2462	11	2462

Table 4: List of WLAN Channel of 802.11 a/g mode

802	.11 a	802.11 n (HT20)		
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	
36	5180	36	5180	
40	5200	40	5200	
44	5220	44	5220	
48	5240	48	5240	
149	5745	149	5745	
153	5765	153	5765	
157	5785	157	5785	
161	5805	161	5805	
165	5825	165	5825	

Table 5: List of Bluetooth Channel

Blue	tooth
Channel Number	Frequency (MHz)
0	2402
39	2441
78	2480

 Prüfbericht - Nr.:
 17032143 006
 Seite 8 von 20

 Test Report No.
 Page 8 of 20

3.3 Independent Operation Modes

The basic operation modes are:

- A. WiFi transmitting
 - 1.802.11 b
 - a) CH1
 - b) CH6
 - c) CH11
 - 2.802.11 a
 - a) CH36
 - b) CH48
 - c) CH149
 - d) CH157
 - e) CH165
- B. Off

3.4 Submitted Documents

- Bill of Material
- Constructional Drawing
- PCB Layout
- Photo Document

- Circuit Diagram
- Instruction Manual
- Rating Label

 Prüfbericht - Nr.:
 17032143 006
 Seite 9 von 20

 Test Report No.
 Page 9 of 20

4. Test Set-up and Operation Modes

4.1 Principle of Configuration Selection

The EUT is commanded to operate at maximum transmitting power. The EUT shall use its internal transmitter. The antenna, battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

Table 6: Configuration of EUT

	ration mode Frequency Range (MHz) Modulation		Default	Test Cha	Power Control	
Operation mode		Modulation	Low	Middle	High	Level
802.11 b/g/n	2412-2462	DSSS, OFDM	CH1	CH6	CH11	Test software
802.11 a/n	5180-5240	OFDM	CH36		CH48	was used to
002.11 a/11	5745-5825	OFDM	CH149	CH157	CH165	configure the
Bluetooth	2402-2480	FHSS	CH0	CH39	CH78	EUT to transmit at maximum output power

 Prüfbericht - Nr.:
 17032143 006
 Seite 10 von 20

 Test Report No.
 Page 10 of 20

4.2 Specific Absorption Rate (SAR) System Check

Dielectric parameters of the tissue simulating liquid were verified prior to the SAR evaluation using the dielectric proble kit and the network analyzer.

A system check measurement was made following the determination of the dielectric parameters of the tissue simulating liquid, using the dipole validation kit. A power level of 250 mW for 2.4GHz band or 100mW for 5GHz band as supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the following table.

Table 7: System Check Results of Dielectric Performance of Tissue Simulating Liquid

Head Tennet	Target Ti	Measu	Liquid		
Used Target Frequency / Position	ε _r (+/-5%)	σ (S/m) (+/-5%)	٤ _r	σ (S/m)	Temp. (°C)
2450 MHz / Body	52.70	1.95	53.34	1.969	20.1
5200 MHz / Body	49.0	5.30	48.61	5.35	20.3
5800 MHz / Body	48.2	6.00	47.79	6.10	20.2
ε_r = Relative permittivity,	σ= Conductivity				

Table 8: System Check Results of System Verification

System Check	Target SAR Value (1W) (+/-5%)	Measured SAR Value (Normalized to 1W)
-	1-g (W/kg)	1-g (W/kg)
2450 MHz / Body	52.0	51.3
5200 MHz / Body	76.50	76.3
5800 MHz / Body	78.00	75.5

 Prüfbericht - Nr.:
 17032143 006
 Seite 12 von 20

 Test Report No.
 Page 12 of 20

4.4 Test Operation and Test Software

Test operation refers to test setup in chapter 5.

A communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

802.11 b/g/n operating modes are tested independently according to the service requirements in each frquency band.802.11b/g/n modes are tested on channel 1, 6, 11. However, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

802.11 a/n is tested for UNII operations on channel 36 and 48 in 5.15-5.25GHz band. Also 5.8GHz band is alos available for §15.247, hence channels 149, 157 and 165 should be tested instead of the UNII channels.

SAR is not required for 802.11g/n when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels.

Each channel should be tested at the lowest data rate, and repeated SAR measurement is required only when the measured SAR is \geq 0.8 W/kg.

For each frequency band testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than ½ dB higher than those measured at the lowest data rate.

4.5 Special Accessories and Auxiliary Equipment

None.

 Prüfbericht - Nr.:
 17032143 006
 Seite 13 von 20

 Test Report No.
 Page 13 of 20

5. Test Results

5.1 Huaman Exposure to Radiofrequency Electromagnetic Fields

RESULT: Passed

Date of testing : 2013-05-17 to 2013-06-14

Test standard : CFR Title 47 Part 2 Subpart J Section 2.1093

ANSI/IEEE C95.1-1992

IEEE 1528-2003

FCC OET Bulletin 65 Suppplement C (Edition 01-01)

FCC KDB Publication : KDB 447498 D01 v05r01

KDB 248227 D01 v01r02 KDB 616217 D04 v01r01 KDB 865664 D01 v01r01

Limits : 1.6W/kg

Test setup

Operation mode : A Ambient temperature : 24° C Relative humidity : 51% Atmospheric pressure : 101.0 kPa

Table 9: Conducted Power of 802.11 b/g/n

	Conducted Power (dBm)						
	CH1 / 2412		CH6	2437	CH11 / 2462		
802.11 b/g/n	Rated	Measured	Rated	Measured	Rated	Measured	
	Average	Average	Average	Average	Average	Average	
	Power	Power	Power	Power	Power	Power	
	(dBm) (dBm)		(dBm)	(dBm)	(dBm)	(dBm)	
802.11 b (1Mbps)	18	19.73	18	19.66	18	19.62	
802.11 g (6Mbps)	16	17.19	16	17.38	16	17.24	
802.11 n (MSC0, 6.5Mbps)	15	16.90	15	17.12	15	16.99	

 Prüfbericht - Nr.:
 17032143 006
 Seite 14 von 20

 Test Report No.
 Page 14 of 20

Table 10: Conducted Power of 802.11 a/n

Channel		Conducted Power (dBm)						
	Frequency	802.11 a	, 6 Mbps	802.11 n (HT20), MCS 0				
Number	(MHz)	Rated Average Power (dBm)	Measured Average Power (dBm)	Rated Average Power (dBm)	Measured Average Power (dBm)			
36	5180.0	11	10.1	11	8.84			
40	5200.0	11	9.35	11	8.94			
44	5220.0	11	9.12	11	8.86			
48	5240.0	11	9.16	11	8.84			
149	5745.0	16	14.5	16	14.15			
153	5765.0	16	14.66	16	14.49			
157	5785.0	16	14.9	16	14.54			
161	5805.0	16	15.13	16	14.84			
165	5825.0	16	15.52	16	15.12			

Table 11: Conducted Power of Bluetooth

Bluetooth	Conducted Power (dBm)					
Diuelootii	CH0 / 2402 CH39 / 2441		CH78 / 2480			
Basic Date Rate	5.55	5.00	4.82			
Enhanced Data Rate	5.11	4.14	4.24			

Note:

According to KDB 447498 D01 v05r01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min.test separation distance, mm)]/[$\sqrt{f}_{(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

The maximum output power of Bluetooth is 5.55dBm (3.59mW), and the minimum separation distance is 5mm, hence the exclusion thresholds is 0.124 < 3.0, therefore RF exposure evaluation is not required.

 Prüfbericht - Nr.:
 17032143 006
 Seite 15 von 20

 Test Report No.
 Page 15 of 20

Table 12: Test result of SAR Values

Operation Mode	Test Position	Separation Distance (cm)	Channel	Measure Level (1g) W/kg	Scaled SAR Value (W/kg)	Test Plots
	Rear	0	CH1	0.604	0.406	1
	Rear	0	CH6	0.602	0.411	2
	Rear	0	CH11	0.632	0.435	3
	Left	0	CH1	0.044	0.030	4
	Left	0	CH6	0.057	0.039	5
802.11b	Left	0	CH11	0.069	0.048	6
002.110	Right	0	CH1	0.00993	0.007	7
	Right	0	CH6	0.014	0.010	8
	Right	0	CH11	0.019	0.013	9
	Тор	0	CH1	0.150	0.101	10
	Тор	0	CH6	0.156	0.106	11
	Тор	0	CH11	0.190	0.131	12
	Rear	0	CH36	0.258	0.317	13
	Rear	0	CH48	0.321	0.490	14
	Rear	0	CH149	0.250	0.353	15
	Rear	0	CH157	0.229	0.295	16
	Rear	0	CH165	0.244	0.273	17
	Тор	0	CH36	0.169	0.208	18
	Тор	0	CH48	0.174	0.266	19
	Тор	0	CH149	0.159	0.225	20
	Тор	0	CH157	0.174	0.224	21
802.11a	Тор	0	CH165	0.102	0.114	22
002.11a	Left	0	CH36	0.112	0.138	23
	Left	0	CH48	0.118	0.180	24
	Left	0	CH149	0.101	0.143	25
	Left	0	CH157	0.0596	0.077	26
	Left	0	CH165	0.0818	0.091	27
	Right	0	CH36	0.00296	0.004	28
	Right	0	CH48	0.00529	0.008	29
	Right	0	CH149	0.00616	0.009	30
	Right	0	CH157	0.0135	0.017	31
	Right	0	CH165	0.00816	0.009	32

Refer to attached Appendix B for details of test results.

 Prüfbericht - Nr.:
 17032143 006
 Seite 16 von 20

 Test Report No.
 Page 16 of 20

5.2 Measurement Uncertainty

5.2.1 Measurement uncertainty evaluation

This measurement uncertainty budget is suggested by IEEE P1528. The breakdown of the individual uncertainties is as follows:

Table 13: Measurement Uncertainties

Source	Туре	Uncertainly Value (%)	Probability Distribution	K	C1 (1g)	C1 (10g)	Standard uncertaint y ul(%)1g	Standard uncertaint y ul(%)10g	Degree of freedom Veff or Vi
Measurement system repetivity	Α	0.5	N	1		1	0.5	0.5	9
Probe calibration	В	5.9	N	1	1	1	5.9	5.9	∞
Isotropy	В	4.7	R	√3	1	1	2.7	2.7	∞
Linearity	В	4.7	R	√3	1	1	2.7	2.7	∞
Probe modulation response	В	0	R	√3	1	1	0	0	8
Detection limits	В	1.0	R	√3	1	1	0.6	0.6	∞
Boundary effect	В	1.9	R	√3	1	1	1.1	1.1	∞
Readout electronics	В	1.0	N	1	1	1	1.0	1.0	∞
Response time	В	0	R	√3	1	1	0	0	∞
Integration time	В	4.32	R	√3	1	1	2.5	2.5	∞
RF ambient conditions – noise	В	0	R	√3	1	1	0	0	∞
RF ambient conditions – reflections	В	3	R	√3	1	1	1.73	1.73	8
Probe positioner mech. restrictions	В	0.4	R	√3	1	1	0.2	0.2	8
Probe positioning with respect to phantom shell	В	2.9	R	√3	1	1	1.7	1.7	8
Post-processing	В	0	R	√3	1	1	0	0	∞
Test sample relate	Test sample related								
Device holder uncertainty	А	2.94	N	1	1	1	2.94	2.94	M-1
Test sample positioning	Α	4.1	N	1	1	1	4.1	4.1	M-1
Power scaling	В	5.0	R	√3	1	1	2.9	2.9	∞
Drift of output power (measured SAR drift)	В	5.0	R	√3	1	1	2.9	2.9	∞

 Prüfbericht - Nr.:
 17032143 006
 Seite 17 von 20

 Test Report No.
 Page 17 of 20

Phantom and set-	up								
Phantom uncertainty (shape and thickness tolerances)	В	4.0	R	√3	1	1	2.3	2.1	8
Algorithm for correcting SAR for deviations in permittivity and conductivity	В	1.9	N	1	1	0,84	1,9	1,6	8
Liquid conductivity (meas.)	Α	0.55	Z	1	0.78	0.71	0.24	0.21	M-1
Liquid permittivity (meas.)	А	0.19	N	1	0.23	0.26	0.09	0.06	М
Liquid permittivity – temperature uncertainty	Α	5.0	R	√3	0,78	0,71	1.4	1.1	8
Liquid conductivity – temperature uncertainty	A	5.0	R	√3	0.23	0,26	1.2	0.8	8
Combined standard uncertainty	u _c = 1	$\int_{i=1}^{21} C_i^2 U_i^2$					10.57	10.32	
Expanded uncertainty (95 %conf. interval)	U _e =	2 <i>u_c</i>	N	K	=2		21.14	20.64	

Prüfbericht - Nr.: 17032143 006
Test Report No.

Seite 18 von 20 *Page 18 of 20*

6. Photographs of the Test Set-Up

Photograph 1: Set-up for Rear side

Photograph 2: Set-up for Top side

Prüfbericht - Nr.: 17032143 006 Test Report No.

Seite 19 von 20 *Page 19 of 20*

Photograph 3: Set-up for Right side

Photograph 4: Set-up for Left side

Products

Prüfbericht - Nr.: Seite 20 von 20 17032143 006 Page 20 of 20 Test Report No. 7. List of Tables Table 4: List of WLAN Channel of 802.11 a/g mode......7 Table 6: Configuration of EUT......9 Table 7: System Check Results of Dielectric Performance of Tissue Simulating Liquid10 Table 9: Conducted Power of 802.11 b/g/n......13 Table 10: Conducted Power of 802.11 a/n.....14 List of Photographs

17032143 006

Produkte Products

Page 1 of 5

Test Laboratory: Audix SAR Lab Date: 17/05/2013

CW_2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:862

Communication System: CW_2450MHz); Frequency: 2450 MHz;

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ S/m}$; $\varepsilon_r = 54.586$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/CW_2450MHz/Area Scan (101x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.7 W/kg

Configuration/CW 2450MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.947 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 23.4 W/kg

SAR(1 g) = 11.2 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 12.7 W/kg

17032143 006

Produkte Products

Page 2 of 5

Test Laboratory: Audix SAR Lab Date: 18/05/2013

CW_5200MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1102

Communication System: IEEE 802.11a WiFi 5GHz; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.44$ mho/m; $\varepsilon_r = 48.61$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Configuration/CW_5200MHz/Area Scan (51x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.964 W/kg

Configuration/CW 5200MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.009 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 6.518 mW/g

SAR(1 g) = 7.44 mW/g; SAR(10 g) = 2.16 mW/gMaximum value of SAR (measured) = 8.08 W/kg

17032143 006

Produkte Products

Page 3 of 5

Test Laboratory: Audix SAR Lab Date: 18/05/2013

CW_5800MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1102

Communication System: IEEE 802.11a WiFi 5GHz; Frequency: 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 6.10 \text{ mho/m}$; $\varepsilon_r = 47.79$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Configuration/CW_5800MHz/Area Scan (51x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.866 W/kg

Configuration/CW 5800MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.010 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 6.510 mW/g

SAR(1 g) = 8.14 mW/g; SAR(10 g) = 2.22 mW/gMaximum value of SAR (measured) = 8.18 W/kg

17032143 006

Produkte Products

Page 4 of 5

Test Laboratory: Audix SAR Lab Date: 14/06/2013

CW_5200MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:862

Communication System: IEEE 802.11a WiFi 5GHz; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.44$ mho/m; $\varepsilon_r = 48.61$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Configuration/802.11b_CW_5200MHz/Area Scan (51x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.934 W/kg

Configuration/802.11b CW 5200MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.012 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 6.518 mW/g

SAR(1 g) = 7.47 mW/g; SAR(10 g) = 2.15 mW/gMaximum value of SAR (measured) = 8.06 W/kg

17032143 006

Produkte Products

Page 5 of 5

Test Laboratory: Audix SAR Lab Date: 14/06/2013

CW_5800MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1102

Communication System: IEEE 802.11a WiFi 5GHz; Frequency: 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 6.10 \text{ mho/m}$; $\varepsilon_r = 47.79$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Configuration/802.11b_CW5800MHz/Area Scan (51x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.898 W/kg

Configuration/802.11b CW5800MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.113 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 6.510 mW/g

SAR(1 g) = 8.11 mW/g; SAR(10 g) = 2.16 mW/gMaximum value of SAR (measured) = 8.09 W/kg

Produkte Products

Page 1 of 32

Test Plots 1: Rear side, CH1, 802.11b

Test Laboratory: Audix SAR Lab Date: 17/05/2013

802.11b_CH1-Back(2412MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; σ = 1.962 S/m; ϵ_r = 55.126; ρ = 1000 kg/m 3 ; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b_CH1-Back/Area Scan (61x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.903 W/kg

Configuration/802.11b_CH1-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.555 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.604 W/kg; SAR(10 g) = 0.291 W/kg

Maximum value of SAR (measured) = 0.686 W/kg

Produkte Products

Page 2 of 32

Test Plots 2: Rear side, CH6, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH6-Back(2437MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.962$ S/m; $\epsilon_r = 54.869$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH6-Back/Area Scan (61x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.668 W/kg

Configuration/802.11b_CH6-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.259 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.602 W/kg; SAR(10 g) = 0.260 W/kg Maximum value of SAR (measured) = 0.689 W/kg

Produkte Products

Page 3 of 32

Test Plots 3: Rear side, CH11, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH11-Back(2462MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 54.613$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH11-Back/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.699 W/kg

Configuration/802.11b_CH11-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.902 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.632 W/kg; SAR(10 g) = 0.270 W/kg Maximum value of SAR (measured) = 0.723 W/kg

Produkte Products

Page 4 of 32

Test Plots 4: Left side, CH1, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH1-Left(2412MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.962$ S/m; $\epsilon_r = 54.869$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH1-Left/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0531 W/kg

Configuration/802.11b_CH1-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.181 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.114 W/kg

SAR(1 g) = 0.044 W/kg; SAR(10 g) = 0.018 W/kgMaximum value of SAR (measured) = 0.0531 W/kg

Produkte Products

Page 5 of 32

Test Plots 5: Left side, CH6, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH6-Left(2437MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.962$ S/m; $\epsilon_r = 54.869$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH6-Left/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0549 W/kg

Configuration/802.11b_CH6-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.095 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.023 W/kgMaximum value of SAR (measured) = 0.0678 W/kg

Produkte Products

Page 6 of 32

Test Plots 6: Left side, CH11, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH11-Left(2462MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 54.613$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH11-Left/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0657 W/kg

Configuration/802.11b_CH11-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5,384 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.187 W/kg

SAR(1 g) = 0.069 W/kg; SAR(10 g) = 0.027 W/kgMaximum value of SAR (measured) = 0.0811 W/kg

Produkte Products

Page 7 of 32

Test Plots 7: Right side, CH1, 802.11b

Test Laboratory: Audix SAR Lab Date: 17/05/2013

802.11b_CH1-Right(2412MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; σ = 1.962 S/m; ϵ_r = 55.126; ρ = 1000 kg/m 3 ; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH1-Right/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0210 W/kg

Configuration/802.11b_CH1-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.123 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.0220 W/kg

SAR(1 g) = 0.00993 W/kg; SAR(10 g) = 0.00387 W/kg

Maximum value of SAR (measured) = 0.0116 W/kg

Produkte Products

Page 8 of 32

Test Plots 8: Right side, CH6, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH6-Right(2437MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.962$ S/m; $\epsilon_r = 54.869$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH6-Right/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0162 W/kg

Configuration/802.11b_CH6-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.487 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.0350 W/kg

SAR(1 g) = 0.014 W/kg; SAR(10 g) = 0.00539 W/kgMaximum value of SAR (measured) = 0.0166 W/kg

Produkte Products

Page 9 of 32

Test Plots 9: Right side, CH11, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH11-Right(2462MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 54.613$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH11-Right/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0197 W/kg

Configuration/802.11b_CH11-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.874 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.0690 W/kg

SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.00763 W/kg Maximum value of SAR (measured) = 0.0224 W/kg

Appendix B

17032143 006

Produkte Products

Page 10 of 32

Test Plots 10: Top side, CH1, 802.11b

Test Laboratory: Audix SAR Lab Date: 17/05/2013

802.11b_CH1-Top(2412MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.962$ S/m; $\epsilon_r = 55.126$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b_CH1-Top/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.160 W/kg

Configuration/802.11b_CH1-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.321 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.150 W/kg; SAR(10 g) = 0.054 W/kgMaximum value of SAR (measured) = 0.169 W/kg

Appendix B

17032143 006

Produkte Products

Page 11 of 32

Test Plots 11: Top side, CH6, 802.11b

Date: 17/05/2013 **Test Laboratory: Audix SAR Lab**

802.11b_CH6-Top(2437MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.962$ S/m; $\epsilon_r = 54.869$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b CH6-Top/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.168 W/kg

Configuration/802.11b_CH6-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.385 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.156 W/kg; SAR(10 g) = 0.061 W/kg Maximum value of SAR (measured) = 0.187 W/kg

17032143 006

Produkte Products

Page 12 of 32

Test Plots 12: Top side, CH11, 802.11b

Test Laboratory: Audix SAR Lab Date: 17/05/2013

802.11b_CH11-Top(2462MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 54.613$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3139; ConvF(4.16, 4.16, 4.16); Calibrated: 25/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11b_CH11-Top/Area Scan (41x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.223 W/kg

Configuration/802.11b_CH11-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid; dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.294 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.455 W/kg

SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.074 W/kg Maximum value of SAR (measured) = 0.228 W/kg

17032143 006

Produkte Products

Page 13 of 32

Test Plots 13: Rear side, CH36, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH36-Back(5180MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5180 MHz Medium parameters used: f = 5180 MHz; $\sigma = 5.3$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH36-Back/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.248 W/kg

Configuration/802.11a_CH36-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.416 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.811 W/kg

SAR(1 g) = 0.258 W/kg; SAR(10 g) = 0.070 W/kg Maximum value of SAR (measured) = 0.321 W/kg

17032143 006

Products

Page 14 of 32

Test Plots 14: Rear side, CH48, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH48-Back(5240MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5240 MHz Medium parameters used: f = 5240 MHz; $\sigma = 5.5$ S/m; $\epsilon_r = 48.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a_CH48-Back/Area Scan (51x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.346 W/kg

Configuration/802.11a CH48-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.632 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.981 W/kg

SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.087 W/kg

Maximum value of SAR (measured) = 0.405 W/kg

Produkte

17032143 006

Produkte Products

Page 15 of 32

Test Plots 15: Rear side, CH149, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH149-Back(5745MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5745 MHz Medium parameters used: f = 5745 MHz; $\sigma = 6.07$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH149-Back/Area Scan (51x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.231 W/kg

Configuration/802.11a_CH149-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3,163 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.819 W/kg

SAR(1 g) = 0.250 W/kg; SAR(10 g) = 0.076 W/kg Maximum value of SAR (measured) = 0.331 W/kg

17032143 006

Produkte Products

Page 16 of 32

Test Plots 16: Rear side, CH157, 802.11a

Date: 14/06/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH157-Back(5785MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5785 MHz Medium parameters used: f = 5785 MHz; $\sigma = 6.07$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH157-Back/Area Scan (61x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.310 W/kg

Configuration/802.11a_CH157-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2,163 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.820 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.0245 W/kgMaximum value of SAR (measured) = 0.325 W/kg

17032143 006

Produkte Products

Page 17 of 32

Test Plots 17: Rear side, CH165, 802.11a

Test Laboratory: Audix SAR Lab Date: 14/06/2013

802.11a_CH165-Back(5825MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5825 MHz Medium parameters used: f = 5825 MHz; σ = 6.07 S/m; ϵ_r = 46; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH165-Back/Area Scan (61x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.39 W/kg

Configuration/802.11a_CH165-Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.984 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 0.244 W/kg; SAR(10 g) = 0.370 W/kg

Maximum value of SAR (measured) = 0.419 W/kg

17032143 006

Produkte Products

Page 18 of 32

Test Plots 18: Top side, CH36, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH36-Top(5180MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5180 MHz Medium parameters used: f = 5180 MHz; $\sigma = 5.3$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH36-Top/Area Scan (41x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.197 W/kg

Configuration/802.11a_CH36-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5,375 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.537 W/kg

SAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.044 W/kg Maximum value of SAR (measured) = 0.217 W/kg

17032143 006

Produkte Products

Page 19 of 32

Test Plots 19: Top side, CH48, 802.11a

Test Laboratory: Audix SAR Lab Date: 18/05/2013

802.11a_CH48-Top(5240MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5240 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.5$ S/m; $\varepsilon_r = 48.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH48-Top/Area Scan (41x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.185 W/kg

Configuration/802.11a_CH48-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.942 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.051 W/kgMaximum value of SAR (measured) = 0.240 W/kg

17032143 006

Produkte Products

Page 20 of 32

Test Plots 20: Top side, CH149, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH149-Top(5745MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5745 MHz Medium parameters used: f = 5800 MHz; $\sigma = 6.07$ S/m; $\epsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH149-Top/Area Scan (41x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.141 W/kg

Configuration/802.11a_CH149-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3,199 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.580 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.039 W/kg Maximum value of SAR (measured) = 0.236 W/kg

17032143 006

Produkte Products

Page 21 of 32

Test Plots 21: Top side, CH157, 802.11a

Test Laboratory: Audix SAR Lab Date: 14/06/2013

802.11a_CH157-Top(5785MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5785 MHz Medium parameters used: f = 5785 MHz; $\sigma = 6.07$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH157-Top/Area Scan (41x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.185 W/kg

Configuration/802.11a_CH157-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.942 V/m, Power Drift = 0.53 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.051 W/kgMaximum value of SAR (measured) = 0.240 W/kg

17032143 006

Produkte Products

Page 22 of 32

Test Plots 22: Top side, CH165, 802.11a

Date: 14/06/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH165-Top(5825MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5825 MHz Medium parameters used: f = 5825 MHz; $\sigma = 6.07$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH165-Top/Area Scan (41x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.141 W/kg

Configuration/802.11a_CH165-Top/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3,199 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.470 W/kg

SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.0325 W/kgMaximum value of SAR (measured) = 0.215 W/kg

17032143 006

Produkte Products

Page 23 of 32

Test Plots 23: Left side, CH36, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH36-Left(5180MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5180 MHz Medium parameters used: f = 5180 MHz; $\sigma = 5.3$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH36-Left/Area Scan (51x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.162 W/kg

Configuration/802.11a_CH36-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4,944 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.031 W/kgMaximum value of SAR (measured) = 0.133 W/kg

17032143 006

Produkte Products

Page 24 of 32

Test Plots 24: Left side, CH48, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH48-Left(5240MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5240 MHz Medium parameters used: f = 5240 MHz; $\sigma = 5.5$ S/m; $\varepsilon_r = 48.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH48-Left/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0984 W/kg

Configuration/802.11a_CH48-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.683 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.395 W/kg

SAR(1 g) = 0.118 W/kg; SAR(10 g) = 0.031 W/kgMaximum value of SAR (measured) = 0.148 W/kg

17032143 006

Produkte Products

Page 25 of 32

Test Plots 25: Left side, CH149, 802.11a

Date: 18/05/2013 **Test Laboratory: Audix SAR Lab**

802.11a_CH149-Left(5745MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5745 MHz Medium parameters used: f = 5745 MHz; $\sigma = 6.07$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH149-Left/Area Scan (81x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0930 W/kg

Configuration/802.11a_CH149-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.734 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.365 W/kg

SAR(1 g) = 0.101 W/kg; SAR(10 g) = 0.027 W/kgMaximum value of SAR (measured) = 0.148 W/kg

17032143 006

Produkte Products

Page 26 of 32

Test Plots 26: Left side, CH157, 802.11a

Test Laboratory: Audix SAR Lab Date: 14/06/2013

802.11a_CH157-Left(5785MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz ; Frequency: 5785 MHz Medium parameters used: f = 5785 MHz; σ = 6.07 S/m; ϵ_r = 46; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH157-Left/Area Scan (81x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0627 W/kg

Configuration/802.11a_CH1157-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.163 V/m, Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.424 W/kg

SAR(1 g) = 0.0596 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.065 W/kg

17032143 006

Produkte Products

Page 27 of 32

Test Plots 27: Left side, CH165, 802.11a

Test Laboratory: Audix SAR Lab Date: 14/06/2013

802.11a_CH165-Left(5825MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz ; Frequency: 5825 MHz Medium parameters used: f = 5825 MHz; σ = 6.07 S/m; ϵ_r = 46; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH165-Left/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0981 W/kg

Configuration/802.11a_CH165-Left/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4,684 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.0818 W/kg; SAR(10 g) = 0.021 W/kg

Maximum value of SAR (measured) = 0.105 W/kg

17032143 006

Produkte Products

Page 28 of 32

Test Plots 28: Right side, CH36, 802.11a

Test Laboratory: Audix SAR Lab Date: 18/05/2013

802.11a_CH36-Right(5180MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5180 MHz Medium parameters used: f = 5180 MHz; $\sigma = 5.3$ S/m; $\epsilon_r = 47.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH36-Right/Area Scan (51x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0118 W/kg

Configuration/802.11a_CH36-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.230 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.0220 W/kg

SAR(1 g) = 0.00296 W/kg; SAR(10 g) = 0.00172 W/kg

Maximum value of SAR (measured) = 0.0103 W/kg

17032143 006

Produkte Products

Page 29 of 32

Test Plots 29: Right side, CH48, 802.11a

Test Laboratory: Audix SAR Lab Date: 18/05/2013

802.11a_CH48-Right(5240MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.2GHz; Frequency: 5240 MHz Medium parameters used: f = 5240 MHz; $\sigma = 5.5$ S/m; $\epsilon_r = 48.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.58, 4.58, 4.58); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH48-Right/Area Scan (81x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0218 W/kg

Configuration/802.11a_CH48-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.586 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.0280 W/kg

SAR(1 g) = 0.00529 W/kg; SAR(10 g) = 0.00227 W/kg

Maximum value of SAR (measured) = 0.0122 W/kg

17032143 006

Produkte Products

Page 30 of 32

Test Plots 30: Right side, CH149, 802.11a

Test Laboratory: Audix SAR Lab Date: 18/05/2013

802.11a_CH149-Right(5745MHz)

DUT: MID M/N:NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz; Frequency: 5745 MHz Medium parameters used: f = 5745 MHz; $\sigma = 6.07$ S/m; $\epsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH149-Right/Area Scan (81x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0178 W/kg

Configuration/802.11a_CH149-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.500 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0360 W/kg

SAR(1 g) = 0.00616 W/kg; SAR(10 g) = 0.00178 W/kg

Maximum value of SAR (measured) = 0.0112 W/kg

17032143 006

Produkte Products

Page 31 of 32

Test Plots 31: Right side, CH157, 802.11a

Test Laboratory: Audix SAR Lab Date: 14/06/2013

802.11a_CH157-Right(5785MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz ; Frequency: 5785 MHz Medium parameters used: f = 5785 MHz; σ = 6.07 S/m; ϵ_r = 46; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH157-Right/Area Scan (81x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0239 W/kg

Configuration/802.11a_CH157-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.714 V/m, Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0260 W/kg

SAR(1 g) = 0.0135 W/kg; SAR(10 g) = 0.00823 W/kg

Maximum value of SAR (measured) = 0.0151 W/kg

17032143 006

Produkte Products

Page 32 of 32

Test Plots 32: Right side, CH165, 802.11a

Test Laboratory: Audix SAR Lab Date: 14/06/2013

802.11a_CH165-Right(5825MHz)

DUT: NS-14T004

Communication System: IEEE 802.11a WiFi 5.8GHz ; Frequency: 5825 MHz Medium parameters used: f = 5825 MHz; σ = 6.07 S/m; ϵ_r = 46; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3767; ConvF(4.22, 4.22, 4.22); Calibrated: 27/07/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 25/07/2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1112
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Configuration/802.11a CH165-Right/Area Scan (81x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0231 W/kg

Configuration/802.11a_CH165-Right/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.53 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0260 W/kg

SAR(1 g) = 0.00816 W/kg; SAR(10 g) = 0.00323 W/kg

Maximum value of SAR (measured) = 0.0115 W/kg

