

Sumário

1. Desigualdades

2. Exercícios

Desigualdades

Teorema

Teorema 1

Se dois lados de um triângulo não são congruentes, então os ângulos opostos a estes lados também não são congruentes, e ao maior lado opõe-se o maior ângulo.

- ▶ **Hipótese:** $AB \neq AC$
- ► Tese:
 - $ightharpoonup \hat{C} \neq \hat{B};$
 - Se AB > AC, então $\hat{C} > \hat{B}$.

Parte 1: $\hat{C} \neq \hat{B}$.

Suponha, por contradição, que $\hat{C}=\hat{B}$. Vimos no Exercício 3 da aula 03: se dois ângulos de um triângulo são congruentes, então o triângulo é isósceles. Mas isso contraria a hipótese de que $AB \neq AC$ e, portanto, devemos ter $\hat{C}\neq\hat{B}$.

Parte 2: Supondo que AB > AC, vamos mostrar que $\hat{C} > \hat{B}$.

Seja D um ponto da semirreta \overrightarrow{AC} tal que

$$AD = AB$$
.

Dessa forma, o triângulo
ABD é isósceles. Portanto

$$A\hat{B}D = \hat{D}$$

Como AĈB é um ângulo externo ao triângulo BCD, podemos concluir:

- Ĉ é maior que o ângulo não adjacente D (teorema do ângulo externo);
- ightharpoonup Como $\hat{D} = \hat{B} + C\hat{B}D$, tem-se

$$\hat{B} < \hat{D} < \hat{C}$$

de onde segue que

$$\hat{B} < \hat{C}$$
.

Teorema

Teorema 2

Se dois ângulos de um triângulo não são congruentes, então os lados opostos a estes ângulos também não são congruentes e ao maior ângulo opõe-se o maior lado.

- ► Hipótese: $\hat{B} \neq \hat{C}$
- ► Tese:
 - ightharpoonup $AB \neq AC$;
 - ▶ Se $\hat{B} < \hat{C}$, então AC < AB.

Parte 1: $AB \neq AC$.

Suponha, por contradição, que AB = AC. Então o triângulo é isósceles e, pelo Teorema 1 da aula 03, os ângulos oposto a esses lados seriam congruentes, contrariando a hipótese.

Parte 2: Se $\hat{B} < \hat{C}$, então AC < AB.

De fato, considere um triângulo *ABC* no qual $\hat{C} > \hat{B}$. Há três possibilidades para as medidas de \overline{AB} e \overline{AC} :

- i) ou AB < AC;
- ii) ou AB = AC;
- iii) ou AB > AC;

Se AB < AC é verdadeira, pelo Teorema 1, então ao maior lado opõe-se o maior ângulo. Logo, teríamos

$$\hat{C} < \hat{B}$$
,

contrariando a hipótese.

Se ii) é verdadeira, teríamos AB=AC, o que já vimos ser uma contradição na parte 1.

Portanto só nos resta ter iii) verdadeira, ou seja, se $\hat{B} < \hat{C}$, então

$$AC < AB$$
.

Exercício

Exercício 1

Na figura abaixo, $A\hat{B}D > D\hat{B}C$. Demonstrar que AD > BD e que AD > AB.

Exercício

Na figura abaixo, \overline{AB} e \overline{CD} se intersectam em E, $\hat{C} > \hat{A}$ e $\hat{D} > \hat{B}$. Demonstre que AB > CD.

A Desigualdade Triangular

Teorema 3

Em todo triângulo, a soma dos comprimentos de dois lados quaisquer é maior que o comprimento do terceiro lado.

- ► **Hipótese:** *ABC* é um triângulo.
- ► Tese:

i)
$$BC < BA + AC$$

ii)
$$BA < AC + CB$$

iii)
$$AC < AB + BC$$

Vamos demonstrar o item i): seja D um ponto da semirreta \overrightarrow{BA} , com A entre B e D, tal que AD = AC.

Assim, construímos o triângulo ACD isósceles.

- ightharpoonup $A\hat{C}D=\hat{D}.$
- ightharpoonup Como $B\hat{C}D = B\hat{C}A + A\hat{C}D$, tem-se

$$B\hat{C}D > A\hat{C}D = \hat{D}$$
.

▶ Pelo Teorema 2, aplicado a △*BCD*

$$BD > BC$$
.

Ou seja

$$BA + AD = BD > BC$$
,

o que prova a desigualdade i).

Como exercício, prove as demais desigualdades.

Exercícios

Exercício

Exercício 3

Mostre que o segmento de menor comprimento que une um ponto a uma reta que não o contém é o segmento perpendicular à reta traçada por este ponto.

Figura 1: $\overline{PQ} < \overline{PS}$

Exercício

Exercício 4

Demonstre os seguintes corolários do Teorema do Ângulo Externo (TAE):

- a) Se um triângulo tem um ângulo reto, então os demais ângulos são agudos.
- b) Por um ponto não pertencente a uma reta, existe uma única reta perpendicular a reta dada.

Referencias I

Fundamentos de Matemática Elementar, vol. 9. (Click para baixar)