

S72778 Stable and scalable FP8 Deep Learning Training on Blackwell

Kirthi Shankar Sivamani, NVIDIA | March 20th, 2025

Agenda

- FP8 and mixed precision primer
- MXFP8 Introduction
- Transformer Engine and newer recipes
- Results

TensorCores and Mixed Precision

- Starting with Volta, NVIDIA GPUs feature TensorCores
- They greatly speed up matrix multiplication and convolution
- To get the maximum performance, training in mixed precision is required.
- Hopper introduced FP8 Tensor Cores.

NVIDIA Device	TFLOPS
H100 TF32 Tensorcores	500
H100 FP16 Tensorcores	1000
H100 FP8 Tensorcores	2000
B100 FP8 Tensorcores	5000

Floating point and FP8 theory

E4M3 vs E5M2

	E4M3	E5M2
Exponent bias	7	15
Infinities	N/A	$S.1111.00_{2}$
NaN	$S.1111.111_2$	$S.1111.\{01, 10, 11\}_2$
Zeros	$S.0000.000_2$	$S.00000.00_2$
Max normal	$S.1111.110_2 = 1.75 * 2^8 = 448$	$S.11110.11_2 = 1.75 * 2^{15} = 57,344$
Min normal	$S.0001.000_2 = 2^{-6}$	$S.00001.00_2 = 2^{-14}$
Max subnorm	$S.0000.111_2 = 0.875 * 2^{-6}$	$S.00000.11_2 = 0.75 * 2^{-14}$
Min subnorm	$S.0000.001_2 = 2^{-9}$	$S.00000.01_2^- = 2^{-16}$

FP16 Mixed Precision Recipe

- Partition the DL network graph into safe and unsafe regions
 - Safe regions contain operations benefitting from reduced precision and whose outputs' dynamic ranges are similar to the inputs
- Use the scaling factor during the backward pass
 - Scaling factor is used to avoid over- and underflows in the value distribution of the tensors

FP16 Mixed Precision Recipe

- Partition the DL network graph into safe and unsafe regions
 - Safe regions contain operations benefitting from reduced precision and whose outputs' dynamic ranges are similar to the inputs
- Use the scaling factor during the backward pass
 - Scaling factor is used to avoid over- and underflows in the value distribution of the tensors

FP16 Mixed Precision Recipe

- Partition the DL network graph into safe and unsafe regions
 - Safe regions contain operations benefitting from reduced precision and whose outputs' dynamic ranges are similar to the inputs
- Use the scaling factor during the backward pass
 - Scaling factor is used to avoid over- and underflows in the value distribution of the tensors

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

MX Formats

- OCP introduced and formalized microscaled (MX) formats for floating point numbers:
 - https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
- Unlike regular floating point and FP8 formats which involve a single scale per tensor, MX formats have multiple scaling factors per tensor are compliant formats are characterized by 3 elements:
 - Element dtype and encoding
 - Scale dtype and encoding
 - Scaling block size
- For MXFP8:
 - Element dtype: E4M3 or E5M2
 - Scale dtype = E8M0
 - Block size = 32

For more details: GTC S72458 - Blackwell Numerics for Al

MXFP8

Recipe details

Transformer Engine intro

- An open-source library implementing the FP8 recipe for Transformer building blocks.
- Optimized for FP8 and other datatypes
- PyTorch and Jax are supported frameworks.
- Composable with the native framework operators.
- Supports different types of model parallelism
 - DP, TP, PP, CP
- https://github.com/NVIDIA/TransformerEngine
- Docs:
 - https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/index.html

MXFP8 with Transformer Engine

```
import torch
import transformer_engine.pytorch as te
from transformer engine.common import recipe
# Set dimensions.
in features = 768
out features = 3072
hidden size = 2048
# Initialize model and inputs.
model = te.Linear(in features, out features, bias=True)
inp = torch.randn(hidden size, in features, device="cuda")
# Create MXFP8 recipe.
fp8 recipe = recipe.MXFP8BlockScaling()
# Enable autocasting to FP8.
with te.fp8 autocast(enabled=True, fp8 recipe=fp8 recipe):
    out = model(inp)
# Calculate loss and gradients.
loss = out.sum()
loss.backward()
```

```
import torch
import transformer_engine.pytorch as te
from transformer_engine.common import recipe
# Set dimensions.
batch size = 2
hidden size = 768
seq len = 2048
nheads = 12
# Create MXFP8 recipe.
fp8 recipe = recipe.MXFP8BlockScaling()
# Initialize model and inputs.
with te.fp8 model init(recipe=fp8 recipe):
    model = te.TransformerLayer(hidden size, 4*hidden size,
                                num attention heads=nheads,
                                fuse qkv params=True)
inp = torch.randn(batch size, seq len, hidden size, device="cuda")
# Enable autocasting to FP8.
with te.fp8 autocast(enabled=True, fp8 recipe=fp8 recipe):
    out = model(inp)
# Calculate loss and gradients.
loss = out.sum()
loss.backward()
```


FP8 Recipes

Sub-Tensor scaling Recipes

Pros

- FP8 format might not always cover the dynamic range of the entire tensor. It's a natural direction to explore subtensor (fine-granularity) scaling, so FP8 could cover the dynamic range in block level.
- Sub-Tensor scaling also allows to use E4M3 format for dY with more precision (only for 1x128 block)

Cons

Sub-Tensor Scaling comes with a cost of GEMM performance

Sub-channel Recipe

Deepseek v3

- FP8 subchannel recipe
 - MoE model with 671B total parameters (37B activated parameters) 15T tokens, performance comparable to GPT-40

Sub-channel

- Scaling granularities.
 - 1x128 for X, dY
 - 128x128 for W
- GEMM
 - 1D2D: Fprop Dgrad. 1D1D: Wgrad
- FP8 dtype. E4M3 everywhere.
- Scale factor precision. FP32 everywhere except for:
 - e8 in X, X^T in fc1, proj
 - e8 in dy, dy^T in fc2
- 1st and last decoder blocks in BF16

Results

- MXFP8 on blackwell
 - Fully trained GPT 843M and 2B on B200 using MXFP8 recipe.
 - Fully trained Nemotron 56B using current scaling recipe on H100.
 - Downstream tasks on MMLU, Average Reasoning, Average Code, etc. perform on-par with BF16 baseline.
- Current scaling on Hopper
 - Per-Tensor Current Scaling with 1st+last decoder block in BF16
 - Nemotron 4: 8B size, 15T tokens
 - Nemotron 4: 25B size, 3T tokens

GPT 2B

Nemotron 4 (8B size, 15T tokens)

Projected Speedup

E2E Step time speedup compared to BF16

Methodology (Measurements with projections)

- Time breakdown from measured DS run on H100
- Apply projected overhead for each recipe (e.g., GEMM, quantization, communication)

Measured speedups

Tensor-wise dynamic scaling Llama 3.1 on H100

1.6

Model	# GPUs	DP	MBS	GA	GBS
8B	8	4	1	32	128
70B	64	2	1	64	128
405B	576	4	1	63	252

Parallelism Configuration

What's upcoming in Transformer Engine

- Per Tensor current scaling.
 - https://github.com/NVIDIA/TransformerEngine/pull/1471
- Expanding MXFP8 support:
 - Attention
 - TP overlap
 - Mixture of experts
- NVFP4 support for inference.

