

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

APPLIED THERMODYNAMICS

TUTORIAL TEST 3 (Open Book)

Dated 2.11.2016

Max. Marks 20

Time: 50 Mins

Q. A food storage chamber requires a refrigeration system of 12 TR capacity when an evaporator temperature of -8°C and condenser temperature of 30°C are maintained It is sub cooled by 5°C before entering the throttle valve and the vapour is superheated by 6°C before entering the compressor. The system uses R-134a as the refrigerant with saturation property values as mentioned in the Table below. Assume constant specific heats for both liquid and vapour phases of the refrigerant in the sub-cooled and superheated zones.

Determine:

- (i) Mass flow rate of refrigerant (kg/s)
- (ii) Temperature of the refrigerant at exit of compressor (°C)
- (iii) Refrigeration effect/kg of refrigerant (kJ/kg)
- (iv) COP of the cycle

[5+5+5+5=20]

_				h	h	s	s	Specific heat		
Temp	Pressure	Density	V							
۰c	Мра	kg/m³	m³/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vарог	C _p /C _v
								Сp	Cp	
				kJ/kg	kJ/kg	kJ/kg K	kJ/kg K	kJ/kg K	kJ/kg K	
-8	0.21693	1320.8	0.09242	189.34	393.87	0.9606	1.7320	1.320	0.863	1.169
30	0.77020	1187.5	0.02664	241.72	414.82	1.1435	1.7145	1.446	1.065	1.249

v = Specific Volume

h = Specific Enthalpy

s = Specific Entropy

Self

$$T_{4} = -8^{\circ}C = 265 \, \text{K}$$
, $T_{3} = 30^{\circ}C = 303 \, \text{K}$
 $T_{4} = -8^{\circ}C = 265 \, \text{K}$, $T_{3} = 30^{\circ}C = 303 \, \text{K}$
 $T_{4} = -8^{\circ}C = 265 \, \text{K}$, $T_{5} = -0.863 \, \text{KJ/kgK}$
 $T_{6} = 1.230 \, \text{KJ/kgK}$
 $T_{7} = T_{4} + 6 = 265 + 6 = 271 \, \text{K}$
 $T_{7} = T_{4} + 6 = 265 + 6 = 271 \, \text{K}$
 $T_{7} = 1.7320 + 0.863 \, \text{kg} \frac{271}{265}$

$$S_1 = 1.7515 \text{ Kolkgk}$$

 $1.7515 = S_1 = S_2 = 1.7145 + 1.065 \ln\left(\frac{T_2}{303}\right)$
 $T_2 = 314.42 \text{ K}$ (ii)

$$h_{2} = 414.82 + 1.065(314.42 - 303)$$

$$= 426.98 \text{ KJ/K}$$

$$h_{3}' = h_{4} = h_{43} - 42(\Delta T)$$

$$= 241.72 - 1.446(5) = 234.49 \text{ KJ/K}$$

$$h_{3}' = h_{4} = 234.49 \text{ KJ/K}$$

$$h_{3}' = h_{4} = 234.49 \text{ KJ/K}$$

$$R = h_{1} - h_{4}$$

$$= 399.05 - 234.49 = 164.56 \text{ K5/K}$$

$$W.D = h_{2} - h_{1}$$

$$= 426.98 - 399.05 = 27.93 \text{ KJ/K}$$

$$Part(IV)$$

$$C.O.P = \frac{164.56}{27.93} = 5.891$$

$$I. refe = 42.204$$

Mars flow rate = 42.204 164.56 = 6.256 K8/3

Marking will be based on steps.

(± 3-4-1.) varietion in answers leads to full marks.