#### S. K. DEVALAPURKAR

In this talk, we will review the *filtered* prismatization  $\mathbf{Z}_p^{\mathbb{N}}$  of  $\mathbf{Z}_p$ . It turns out to be conceptually easier to understand the filtered prismatization  $\mathbf{G}_a^{\mathbb{N}}$  of  $\mathbf{G}_a$ , which (as a by-product) tells us what  $\mathbf{Z}_p^{\mathbb{N}}$  is supposed to be. To illustrate this, let us briefly review Arpon's talk, which described the prismatization  $\mathbf{G}_a^{\mathbb{A}}$ . Symbols like  $\mathrm{CAlg}_{\mathbf{Z}_p}$  will always mean  $\infty$ -categories of (animated) *p-nilpotent*  $\mathbf{Z}_p$ -algebras. Throughout, we will make liberal use of the identifications  $W/V = \mathbf{G}_a$  and  $W[F] = \mathbf{G}_a^{\sharp}$ .

#### 1. PRISMATIZATION

**Recollection 1.1.** If A and B are commutative rings, and we are given a  $ring\ stack\ \mathcal{R}: \mathrm{CAlg}_A \to \mathrm{CAlg}_B$ , then any B-scheme X defines an A-stack  $X^{\mathcal{R}}$  via the composite

$$\operatorname{CAlg}_A \xrightarrow{\mathcal{R}} \operatorname{CAlg}_B \xrightarrow{X} \mathbb{S}.$$

The global sections  $\Gamma(X^{\mathcal{R}}; \mathcal{O}_{X^{\mathcal{R}}}) \in \mathrm{CAlg}_A$  can be regarded as some "cohomology of X" valued in A-algebras. This is known as *transmutation*. The driving principle behind this whole story is that one can fully recover "A-valued cohomology theories" on B-schemes via ring stacks as above.

Recall that if  $\overline{A}$  is a p-adic ring, then the de Rham stack associated to  $\mathbf{G}_a$  is given by the quotient  $\mathbf{G}_a/\mathbf{G}_a^{\sharp}$ . There is a commutative diagram

$$F_*W = F_*W$$

$$\downarrow V \qquad \qquad \downarrow p=F_*V$$

$$W = F_*W;$$

taking cones in every direction (and using the fact that  $F:W\to F_*W$  is faithfully flat), we see that there is an isomorphism

$$\mathbf{G}_a/\mathbf{G}_a^{\sharp} \cong (W/V)/W[F] \cong F_*W/p.$$

When  $\overline{A} = k$  is a perfect field of characteristic p > 0, the theory of crystalline cohomology produces a cohomology theory taking values in W(k)-algebras such that if X is an  $\mathbf{F}_p$ -scheme, then

(1) 
$$\Gamma_{\operatorname{crys}}(X/W(k)) \otimes_{W(k),\varphi} k \cong \Gamma_{\operatorname{dR}}(X/k).$$

The existence of crystalline cohomology can be explained by the observation that there is a factorization

where  $\epsilon: \mathrm{CAlg}_k \to \mathrm{CAlg}_{W(k)}$  is the functor induced by the augmentation  $W(k) \to k$ . This factorization comes from the fact that if  $R \in \mathrm{CAlg}_{W(k)}$ , then  $p = 0 \in \mathbf{G}_a^{\mathrm{dR}}(R) = W(R)/p$ . If X is a k-scheme,

Part of this work was done when the author was supported by the PD Soros Fellowship and NSF DGE-2140743.

1

then the composite

$$\mathrm{CAlg}_{W(k)} \xrightarrow{\mathbf{G}_a^{\mathrm{dR}}} \mathrm{CAlg}_k \xrightarrow{X} \mathbb{S}$$

is the crystalline stack  $X^{\text{crys}}$ , whose coherent cohomology is  $\Gamma_{\text{crys}}(X/W(k))$ . The isomorphism (1) can be encoded in the following observation:

# **Observation 1.2.** The composite

$$\operatorname{CAlg}_k \xrightarrow{\epsilon} \operatorname{CAlg}_{W(k)} \xrightarrow{\varphi} \operatorname{CAlg}_{W(k)} \xrightarrow{W/p} \operatorname{CAlg}_k$$

can be identified with the functor defining the ring stack  $\mathbf{G}_a^{\mathrm{dR}}$  over k.

One can generalize the pair (W(k),p) to a more general pair (A,d) such that  $A/d=\overline{A}$ , and ask for a deformation of de Rham cohomology over A/d to A itself; this would be some version of crystalline cohomology. For instance, we could ask for a functor  $\mathcal{R}:\mathrm{CAlg}_A\to\mathrm{CAlg}_{A/d}$  such that if X is an A/d-scheme, the composite

$$\operatorname{CAlg}_A \xrightarrow{\mathcal{R}} \operatorname{CAlg}_{A/d} \xrightarrow{X} \mathbb{S}$$

is somehow related to the de Rham stack of X.

A naive guess for the functor  $\Re$  might be to consider a stack "W/d", viewed as a functor  $\operatorname{CAlg}_A \to \operatorname{CAlg}_{A/d}$  sending  $R \mapsto W(R)/d$ . To make sense of this, we need to be able to view the element  $d \in A$  as an element of W(A); if there were a map  $A \to W(A)$ , we could simply take the image of d to get the desired element. Having a map  $A \to W(A)$  is the same as asking that A be a  $\delta$ -ring, so let us now assume this. Then, A admits a lift of Frobenius  $\varphi$ , and we can ask that the composite

$$\operatorname{CAlg}_{A/d} \xrightarrow{\epsilon} \operatorname{CAlg}_A \xrightarrow{\varphi} \operatorname{CAlg}_A \xrightarrow{W/d} \operatorname{CAlg}_{A/d}$$

be identified with  $\mathbf{G}_a^{\mathrm{dR}}.$  This is the same as asking that the composite

$$A \to W(A) \to W(A/d) \xrightarrow{\varphi} W(A/d)$$

send d to a unit multiple of p. This composite sends

$$d \mapsto (d, \delta(d), \cdots) \mapsto (0, \delta(d), \cdots) \mapsto p(\delta(d), \cdots),$$

so we are simply asking that  $\delta(d) \in A/d$  be a unit. If we further ask that A be d-complete, then this is the same as asking that  $\delta(d)$  be a unit in A.

Combining the discussion above, we end up with the definition of an oriented prism:

**Definition 1.3.** An *oriented prism* is a pair (A, d) such that A is equipped with a  $\delta$ -ring structure, A is (p, d)-adically complete, and  $\delta(d) \in A$  is a unit.

If (A,d) is an oriented prism, the functor  $W/d: \mathrm{CAlg}_A \to \mathrm{CAlg}_{A/d}$  is well-defined, and therefore can be regarded as an analogue of the crystalline stack of  $\mathbf{G}_a$ ; we will denote it by  $\mathbf{G}_a^{\mathbb{A}}$ , and refer to it as the *prismatization of*  $\mathbf{G}_a$ . Let us make a few points:

- The "de Rham comparison theorem" is now baked into the construction: namely, there is an isomorphism  $F_* \mathbf{G}_a^{\mathbb{A}} \cong \mathbf{G}_a^{\mathrm{dR}}$  as stacks over A/d.
- Similarly, if d=p, the "crystalline comparison theorem" is simply the observation that as stacks over A, there is an isomorphism  $F_*\mathbf{G}_a^{\mathbb{A}} \cong \mathbf{G}_a^{\operatorname{crys}}$ .

This whole picture can be "globalized" over all prisms as follows (see [BL22a, BL22b, Dri22]). Namely, if R is a p-nilpotent ring, let us say that a pair  $(I, \alpha: I \to W(R))$  of an invertible W(R)-module I and a map  $\alpha$  is a *Cartier-Witt divisor* if the composite

$$I \xrightarrow{\alpha} W(R) \xrightarrow{\mathrm{Res}} R$$

is nilpotent, and the composite

$$I \xrightarrow{\alpha} W(R) \xrightarrow{\delta} R$$

generates the unit ideal of R. The functor  $R\mapsto \{\text{Cartier-Witt divisors on }R\}$  defines a functor  $\mathbf{Z}_p^{\mathbb{A}}: \text{CAlg}_{\mathbf{Z}_p}\to \mathbb{S}.$  If (A,d) is a oriented prism, and  $A\to R$  is a map, there is a unique  $\delta$ -ring map  $A\to W(R)$ ; the tensor product  $(d)\otimes_A W(R)\to W(R)$  is a Cartier-Witt divisor if (p,d) is nilpotent in R. Therefore, we obtain a map  $\mathrm{Spf}(A)\to \mathbf{Z}_p^{\mathbb{A}}$ .

**Definition 1.4.** Let X be a bounded p-adic formal scheme. Let  $X^{\mathbb{A}}: \operatorname{CAlg}_{\mathbf{Z}_p} \to \mathcal{S}$  be the functor sending R to the groupoid of Cartier-Witt divisors  $I \xrightarrow{\alpha} W(R)$  and a map  $\operatorname{Spec} W(R)/I \to X$  of  $\operatorname{Spf}(\mathbf{Z}_p)$ -schemes. By construction, there is a map  $X^{\mathbb{A}} \to \mathbf{Z}_p^{\mathbb{A}}$ .

Note that by construction, if (A,d) is an oriented prism, the pullback of  $\mathbf{G}_a^{\mathbb{A}}$  along the map  $\mathrm{Spf}(A) \to \mathbf{Z}_p^{\mathbb{A}}$  is isomorphic to the stack we denoted  $\mathbf{G}_a^{\mathbb{A}}$  above.

### 2. FILTERED PRISMATIZATION AND THE HODGE+CONJUGATE FILTRATIONS

Our goal in this talk is to understand the *filtered* prismatization. Again, the whole story will be modeled after the structures present in crystalline cohomology. As a precursor to this, let us try to understand the structures present in de Rham cohomology over a perfect field k of characteristic p > 0: namely, the Hodge and conjugate filtrations. Let X be a smooth k-scheme.

(a) The Hodge filtration on de Rham cohomology is a *decreasing* filtration; the associated filtered k-module has underlying object  $\Gamma_{\rm dR}(X/k)$ , and has associated graded given by  $\Gamma_{\rm Hdg}(X/k)$ . The ring stack defining de Rham cohomology is

$$\mathbf{G}_a^{\mathrm{dR}} = (W/V)/W[F] = \mathrm{cofib}(\mathbf{G}_a^{\sharp} \oplus F_* W \xrightarrow{(x,a) \mapsto x + Va} W),$$

while the ring stack defining Hodge cohomology is

$$\mathbf{G}_a^{\mathrm{Hdg}} = \mathbf{G}_a \oplus \mathbf{G}_a^{\sharp}(-1)[1] \cong W/V \oplus \mathbf{G}_a^{\sharp}(-1)[1].$$

One natural way to interpolate between these two stacks is by working over  $\mathbf{A}_{\hbar}^1/\mathbf{G}_m$  with coordinate  $\hbar$ . The universal line bundle  $\mathcal{O}(1)$  over  $\mathbf{A}_{\hbar}^1/\mathbf{G}_m$  has a tautological section  $\hbar: \mathcal{O} \to \mathcal{O}(1)$ . We can then consider the cofiber of the composite

$$\mathbf{G}_{a}^{\mathrm{dR},+} := \mathrm{cofib}(\mathcal{V}(\mathfrak{O}(-1))^{\sharp} \oplus F_{*}W \xrightarrow{\hbar^{\sharp},\mathrm{id}} \mathbf{G}_{a}^{\sharp} \oplus F_{*}W \xrightarrow{(x,a) \mapsto x + Va} W).$$

It turns out that this quotient is indeed a ring stack over  $\mathbf{A}_{\hbar}^{1}/\mathbf{G}_{m}$ , and the resulting cohomology theory is Hodge-filtered de Rham cohomology.

(b) The conjugate filtration on de Rham cohomology is an *increasing* filtration; the associated filtered k-module has underlying object  $\Gamma_{\mathrm{dR}}(X/k)$ , and has associated graded given by  $\Gamma_{\mathrm{Hdg}}(X^{(1)}/k)$ . Therefore, we are looking for a stack  $\mathbf{G}_a^{\mathrm{conj}}$  which interpolates between  $\mathbf{G}_a^{\mathrm{dR}}$  and  $F_*\mathbf{G}_a^{\mathrm{Hdg}} = F_*\mathbf{G}_a \oplus F_*\mathbf{G}_a^{\sharp}(1)[1]$ . (Note that the weight is +1 and not -1, because the filtration is increasing!) To motivate this construction, recall how the Cartier isomorphism comes about in the stacky picture: the map  $\mathbf{G}_a^{\sharp} \to \mathbf{G}_a$  defining  $\mathbf{G}_a^{\mathrm{dR}}$  factors as the composite  $\mathbf{G}_a^{\sharp} \to \alpha_p \hookrightarrow \mathbf{G}_a$ , so that

$$\mathbf{G}_{a}^{\mathrm{dR}} \cong \mathbf{G}_{a}/\alpha_{p} \times B \ker(\mathbf{G}_{a}^{\sharp} \twoheadrightarrow \alpha_{p}) \cong F_{*}\mathbf{G}_{a} \oplus F_{*}\mathbf{G}_{a}^{\sharp}[1].$$

This isomorphism is not one of ring stacks, but it does indicate to us that the conjugate filtration on  $\mathbf{G}_a^{\mathrm{dR}}$  should be obtained by "degenerating  $F_*\mathbf{G}_a^\sharp \xrightarrow{V} \mathbf{G}_a^\sharp$  to zero". More precisely, let us work over the stack  $\mathbf{A}_\sigma^1/\mathbf{G}_m$  with coordinate  $\sigma$  in weight -1, and let  $\sigma$  be the group scheme

<sup>&</sup>lt;sup>1</sup>Everywhere a subscript  $\hbar$  shows up below, one can replace it by t to obtain the notation used in [Bha22].

<sup>&</sup>lt;sup>2</sup>Everywhere a subscript  $\sigma$  shows up below, one can replace it by u to obtain the notation used in [Bha22].

over  $\mathbf{A}_{\sigma}^1/\mathbf{G}_m$  defined by the pushout

$$F_* \mathbf{G}_a^{\sharp} \xrightarrow{V} \mathbf{G}_a^{\sharp}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F_* \mathcal{V}(\mathcal{O}(1))^{\sharp} \longrightarrow G_{\sigma}.$$

Note that  $G_{\sigma}/F_*\mathcal{V}(\mathfrak{O}(1))^{\sharp} \cong \alpha_p$ . Then, there is a map  $G_{\sigma} \to \mathbf{G}_a$  of group schemes over  $\mathbf{A}_{\sigma}^1/\mathbf{G}_m$ , given by the square

$$F_* \mathbf{G}_a^{\sharp} \xrightarrow{V} \mathbf{G}_a^{\sharp}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F_* \mathcal{V}(\mathcal{O}(1))^{\sharp} \xrightarrow{0} \mathbf{G}_a.$$

The map  $G_{\sigma} \to \mathbf{G}_a$  is a quasi-ideal, and we will write  $\mathbf{G}_a^{\text{conj}}$  to denote its cofiber. This is a ring stack, and it encodes the conjugate filtration on de Rham cohomology.

One can translate the preceding discussion to Witt vector models, too. Namely, define a group scheme  $M_{\sigma}$  over  $\mathbf{A}_{\sigma}^{1}/\mathbf{G}_{m}$  defined by the pushout

(2) 
$$\mathbf{G}_{a}^{\sharp} \longrightarrow W$$

$$\sigma^{\sharp} \bigvee_{\text{pushout}} \text{pushout} \bigvee_{\mathbf{V}} \mathbf{V}(\mathfrak{O}(1))^{\sharp} \longrightarrow M_{\sigma}.$$

Note that  $M_{\sigma}/\mathcal{V}(\mathcal{O}(1))^{\sharp} \cong F_*W$ . Then, there is a map  $d_{\sigma}: M_{\sigma} \to W$  of group schemes over  $\mathbf{A}_{\sigma}^1/\mathbf{G}_m$ , given by the square

(3) 
$$\mathbf{G}_{a}^{\sharp} \longrightarrow W$$

$$\sigma^{\sharp} \bigvee_{p} \qquad \qquad \downarrow^{p}$$

$$\mathcal{V}(\mathcal{O}(1))^{\sharp} \longrightarrow W.$$

The map  $M_{\sigma} \to W$  is a quasi-ideal, and  $F_*W/M_{\sigma}$  can be shown to be isomorphic to  $\mathbf{G}_a^{\mathrm{conj}}$ . (This is actually not very difficult: it boils down to relating the above squares to the argument we used at the beginning to prove the isomorphism  $\mathbf{G}_a^{\mathrm{dR}} \cong F_*W/p$ .)

**Remark 2.1.** The diagram (3) can be extended slightly as follows: there is in fact a commutative diagram whose rows are cofiber sequences

Our final stop in characteristic p is to understand how to glue the conjugate and Hodge filtrations together. For this, we need to work over a base which encodes two filtrations on the same k-module: the most natural candidate is

$$C := (\operatorname{Spec} k[\sigma, \hbar]/\sigma \hbar)/\mathbf{G}_m,$$

where  $\sigma$  has weight -1 and  $\hbar$  has weight 1. This looks like the  $\mathbf{G}_m$ -quotient of two coordinate axes. The universal line bundle  $\mathcal{L}$  over C has two maps  $\sigma: \mathcal{O} \to \mathcal{L}$  and  $\hbar: \mathcal{L} \to \mathcal{O}$ ; its restriction to  $\mathbf{A}_{\sigma}^1/\mathbf{G}_m$  is  $\mathcal{O}(1)$ , while its restriction to  $\mathbf{A}_{\hbar}^1/\mathbf{G}_m$  is  $\mathcal{O}(-1)$ .

We can now define a ring stack  $G_a^C$  which glues the conjugate and Hodge filtrations: this will have the property that

$$F_* \mathbf{G}_a^C |_{\hbar=0} = \mathbf{G}_a^{\text{conj}}, \ \mathbf{G}_a^C |_{\sigma=0} = \mathbf{G}_a^{\text{dR},+}.$$

First, note that we can still define  $M_{\sigma}$  over C via the same pushout square (2). To obtain the Hodge filtration in a manner compatible with the conjugate filtration, we therefore want a deformation  $d_{\sigma,\hbar}:M_{\sigma}\to W$  of the map  $d_{\sigma}$  (from (b) above) such that:

• When  $\sigma=0$ , the map  $d_{\sigma,\hbar}:M_{\sigma}\to W$  can be identified with the composite

$$\mathcal{V}(\mathcal{L})^{\sharp} \oplus F_* W \xrightarrow{\hbar^{\sharp} + V} W.$$

• When  $\hbar = 0$ , the map  $d_{\sigma,\hbar} : M_{\sigma} \to W$  can be identified with  $d_{\sigma}$ .

Note that when  $\sigma = 0$ , we can identify  $M_{\sigma}$  with  $\mathcal{V}(\mathcal{O}(-1))$ ; so we only need to modify the square (3) as follows:

(5) 
$$\mathbf{G}_{a}^{\sharp} \longrightarrow W$$

$$\uparrow^{p}$$

$$\mathcal{V}(\mathcal{O}(1))^{\sharp} \longrightarrow \mathbf{G}_{a}^{\sharp} \longrightarrow W.$$

This pushout defines the desired map  $d_{\sigma,h}:M_{\sigma}\to W$ . Note that the composite

$$\mathbf{G}_a^{\sharp} \xrightarrow{\sigma^{\sharp}} \mathcal{V}(\mathcal{O}(1))^{\sharp} \xrightarrow{\hbar^{\sharp}} \mathbf{G}_a^{\sharp}$$

is zero, since  $\hbar \sigma = 0$ .

**Remark 2.2.** As with the story from  $G_a^{\text{conj}}$ , the diagram (5) can be extended slightly as follows: there is in fact a commutative diagram whose rows are cofiber sequences

(6) 
$$\mathbf{G}_{a}^{\sharp} \longrightarrow W \xrightarrow{F} F_{*}W$$

$$\sigma^{\sharp} \Big| \quad \text{pushout} \quad \Big| \stackrel{p}{\downarrow} \qquad \Big| \Big|$$

$$\mathcal{V}(\mathcal{O}(1))^{\sharp} \longrightarrow M_{\sigma} \xrightarrow{F} F_{*}W$$

$$\uparrow^{\sharp} \qquad \Big| \stackrel{d_{\sigma,h}}{\downarrow} \qquad \Big| \stackrel{p}{\downarrow}$$

$$\mathbf{G}_{a}^{\sharp} \longrightarrow W \xrightarrow{F} F_{*}W.$$

One can check that the map  $d_{\sigma,\hbar}:M_{\sigma}\to W$  defines a quasi-ideal, so that:

**Definition 2.3.** Let  $\mathbf{G}_a^C$  denote the ring stack over C defined by  $\mathrm{cofib}(M_\sigma \xrightarrow{d_{\sigma,\hbar}} W)$ . Note that

$$\mathbf{G}_{a}^{C}|_{\sigma\neq0} = W/p, \ \mathbf{G}_{a}^{C}|_{\hbar\neq0} = F_{*}W/p.$$

We will call the inclusions  $\operatorname{Spec} k = C_{\sigma \neq 0} \subseteq C$  and  $\operatorname{Spec} k = C_{\hbar \neq 0} \subseteq C$  the *Hodge-Tate* and *de Rham* points, respectively.

We can now finally start to study structures on crystalline cohomology, so that all stacks below will live over W(k). The key structure showing up here is the Nygaard filtration. If X is a smooth affine k-scheme, it is characterized by the following property:  $\mathbb{N}^{\geq j}\Gamma_{\mathrm{crys}}(X/W(k))$  is the subcomplex of  $\Gamma_{\mathrm{crys}}(X/W(k))$  on which the crystalline Frobenius  $\varphi$  is divisible by  $p^j$ . Using this, one can show that the graded pieces  $\mathbb{N}^j\Gamma_{\mathrm{crys}}(X/W(k))$  can be identified with  $F_i^{\mathrm{conj}}\Gamma_{\mathrm{dR}}(X/k)\{i\}$ . Here,  $\{i\}$  simply denotes tensoring by the ideal  $(p^i)/(p^{i+1})$ . Another important property of the Nygaard filtration is that if X is F-liftable to a W(k)-scheme  $\widetilde{X}$ , then  $\mathbb{N}^{\geq j}\Gamma_{\mathrm{crys}}(X/W(k)) = p^{\max(j-*,0)}F_{\mathrm{Hdg}}^*\Gamma_{\mathrm{dR}}(\widetilde{X}/W(k))$ ; in other words, it mixes the Hodge and p-adic filtrations.

We would therefore like to construct a mixed characteristic ring stack  $\mathbf{G}_a^{\mathcal{N}}$  which encodes the Nygaard filtration on crystalline cohomology. In particular, the underlying stack of  $\mathbf{G}_a^{\mathcal{N}}$  should be  $\mathbf{G}_a^{\mathrm{dR}}$  (now over  $\mathrm{Spf}\,W(k)$ !). Recall that

$$\pi_* \mathrm{TC}^-(k) \cong W(k)[\sigma, \hbar]/(\sigma \hbar - p),$$

and that the resulting  $\hbar$ -adic filtration on  $\mathrm{TC}^-(X)$  encodes the Nygaard filtration on prismatic cohomology. Motivated by this, let us define

(7) 
$$k^{\mathcal{N}} := \operatorname{Spf}(W(k)[\sigma, \hbar]/(\sigma \hbar - p))/\mathbf{G}_m,$$

where  $\sigma$  has weight -1 and  $\hbar$  has weight 1. By construction,  $k^{\mathbb{N}} \otimes_{W(k)} k \cong C$ , and  $\operatorname{QCoh}(k^{\mathbb{N}})$  is precisely the  $\infty$ -category of filtered W(k)-modules over  $(p)^{\bullet}$ . Over  $k^{\mathbb{N}}$ , the definition of  $M_{\sigma}$ , etc., still go through, and we can define a map  $d_{\sigma,\hbar}: M_{\sigma} \to W$  via the pushout

(8) 
$$\mathbf{G}_{a}^{\sharp} \longrightarrow W$$

$$\downarrow^{p}$$

$$\mathcal{V}(\mathcal{O}(1))^{\sharp} \longrightarrow \mathbf{G}_{a}^{\sharp} \longrightarrow W.$$

Note that the composite

$$\mathbf{G}_a^{\sharp} \xrightarrow{\sigma^{\sharp}} \mathcal{V}(\mathcal{O}(1))^{\sharp} \xrightarrow{\hbar^{\sharp}} \mathbf{G}_a^{\sharp}$$

is no longer zero, but is rather p (since  $\hbar \sigma = p$ ).

**Remark 2.4.** As with the story from  $G_a^{\text{conj}}$  and  $G_a^C$ , the diagram (8) can be extended slightly as follows: there is in fact a commutative diagram whose rows are cofiber sequences

(9) 
$$\mathbf{G}_{a}^{\sharp} \longrightarrow W \xrightarrow{F} F_{*}W$$

$$\uparrow^{\sharp} pushout \qquad \downarrow^{p} \qquad \parallel$$

$$\downarrow^{p} pushout \qquad \downarrow^{p} \qquad \parallel$$

$$\downarrow^{p} \downarrow^{q} \qquad \downarrow^{q} \downarrow^{q} \qquad \downarrow^{q} \downarrow^{q}$$

Again, one can check that the map  $d_{\sigma,\hbar}:M_\sigma\to W$  defines a quasi-ideal, so that:

**Definition 2.5.** Let  $G_a^{\mathbb{N}}$  denote the *filtered prismatization* of  $G_a$ , defined as the ring stack over  $k^{\mathbb{N}}$  given by  $cofib(M_{\sigma} \xrightarrow{d_{\sigma,h}} W)$ . Note that

(10) 
$$\mathbf{G}_a^{\mathcal{N}}|_{\sigma\neq 0} = W/p = \mathbf{G}_a^{\mathbb{A}}, \ \mathbf{G}_a^{\mathcal{N}}|_{\hbar\neq 0} = F_*W/p = \mathbf{G}_a^{\mathrm{crys}}, \ \mathbf{G}_a^{\mathcal{N}}|_{p=0} = \mathbf{G}_a^C.$$

We will call the inclusions  $\operatorname{Spf} W(k) = k_{\sigma \neq 0}^{\mathcal{N}} \subseteq k^{\mathcal{N}}$  and  $\operatorname{Spf} W(k) = k_{\hbar \neq 0}^{\mathcal{N}} \subseteq k^{\mathcal{N}}$  the *Hodge-Tate* and *de Rham* points, respectively. If X is a k-scheme, we obtain a stack  $X^{\mathcal{N}}$  over  $k^{\mathcal{N}}$  defined by the functor

$$\operatorname{CAlg}_{k^{\mathcal{N}}} \xrightarrow{\mathbf{G}_a^{\mathcal{N}}} \operatorname{CAlg}_k \xrightarrow{X} \mathbb{S}.$$

Let  $\mathcal{H}_{\mathcal{N}}(X) \in \operatorname{QCoh}(k^{\mathcal{N}})$  denote the pushforward of the structure sheaf along the morphism  $X^{\mathcal{N}} \to k^{\mathcal{N}}$ , and let  $\mathcal{N}^{\geq \star}\Gamma_{\Delta}(X/A)$  denote its underlying W(k)-module.

**Remark 2.6.** Let us briefly mention why  $\mathbf{G}_a^{\mathcal{N}}$  encodes the Nygaard filtration. Firstly, we need to show that the Frobenius on  $\Gamma_{\mathbb{A}}(X/W(k))$  factors through  $\mathbb{N}^{\geq\star}\Gamma_{\mathbb{A}}(X/A)$ . This is essentially a consequence of the fact that the map  $W \xrightarrow{p} W$  fits into a commutative diagram

$$W \longrightarrow M_{\sigma} \longrightarrow F_{*}W$$

$$\downarrow^{p} \qquad \downarrow^{d_{\sigma,\hbar}} \qquad \downarrow$$

$$W = W \longrightarrow F^{*}F_{*}W.$$

Taking vertical cofibers, we obtain a factorization

$$W/p \to \mathbf{G}_q^{\mathcal{N}} \to F_*W/p$$

of the Frobenius on the ring stack W/p. Secondly, we need to show that  $\mathcal{N}^j\Gamma_{\operatorname{crys}}(X/W(k))$  can be identified with  $\mathrm{F}_i^{\operatorname{conj}}\Gamma_{\operatorname{dR}}(X/k)\{i\}$ . This has a rather fun argument; see [Bha22, Theorem 3.3.5(1)]. It is a topological analogue of the observation that  $\mathrm{TC}^-(X)/\hbar \simeq \operatorname{THH}(X)$ , which encodes the conjugate filtration (this uses that the cyclotomic Frobenius gives an equivalence  $\operatorname{THH}(X)[1/\sigma] \xrightarrow{\varphi} \operatorname{THH}(X)^{t\mathbf{Z}/p} \simeq \operatorname{HP}(X/k)$ , and that  $\operatorname{THH}(X)/\sigma \cong \operatorname{HH}(X/k)$ ).

**Remark 2.7.** The Hodge-Tate and de Rham points of  $k^{\mathbb{N}}$  can be understood homotopy-theoretically as follows: the Hodge-Tate point is related to the map  $\varphi: \mathrm{TC}^-(k)[1/\sigma] \to \mathrm{TP}(k) \simeq W(k)^{tS^1}$  induced by the cyclotomic Frobenius, while the de Rham point is related to the canonical map can:  $\mathrm{TC}^-(k) \to \mathrm{TP}(k)$ . The isomorphisms of (10) correspond to the observation that if X is quasisyntomic over k, then  $\mathrm{TC}^-(X)[1/\sigma]$  gives a Frobenius untwist of  $\mathrm{TP}(X)$ ; since  $\mathrm{TP}(X)$  encodes the crystalline cohomology of X,  $\mathrm{TC}^-(X)[1/\sigma]$  encodes a Frobenius untwist of crystalline cohomology. The resulting  $\sigma$ -adic filtration (with respect to the lattice  $\mathrm{TC}^-(X) \to \mathrm{TC}^-(X)[1/\sigma]$ ) encodes the conjugate filtration.

# 3. FILTERED PRISMATIZATION OVER $\mathbf{Z}_n$

Let us now turn to mixed characteristic (i.e., deforming from A/d to A, where (A,d) is an oriented prism). Recall from the beginning of the talk that the key idea was deforming the quasi-ideal  $W \xrightarrow{p} W$  over A/d to  $W \xrightarrow{d} W$  over A. Now, we essentially want to deform the quasi-ideal  $M_{\sigma} \xrightarrow{d_{\sigma,\hbar}} W$ . Recall that  $M_{\sigma}$  sits in an extension

$$0 \to \mathcal{V}(\mathcal{L})^{\sharp} \to M_{\sigma} \to F_*W \to 0.$$

This motivates:

**Definition 3.1.** Let R be a p-nilpotent ring. An admissible W-module M is a W-module scheme M which sits in an extension of the form

$$0 \to \mathcal{V}(\mathcal{L})^{\sharp} \to M \to F_*M' \to 0$$

for some  $\mathcal{L} \in \text{Pic}(R)$  and an invertible W-module M'.

**Remark 3.2.** Every invertible W-module is admissible. Moreover, there is a unique extension witnessing the admissibility of a W-module: indeed, extensions form a torsor for  $\underline{\mathrm{Hom}}_W(\mathbf{G}_a^\sharp, F_*W)$ , but this vanishes<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup>Since  $F_*W$  has a filtration whose graded pieces are  $F_*^n\mathbf{G}_a$ , it suffices to show that  $\underline{\mathrm{Hom}}_W(\mathbf{G}_a^\sharp, F_*^n\mathbf{G}_a) = 0$  for n > 0. Such a map is  $\mathbf{G}_m$ -equivariant (because of the Teichmuller map  $\mathbf{G}_m \to W^\times$ ), so such a map is the same as a *primitive* element of  $\mathcal{O}_{\mathbf{G}_a^\sharp} \cong \mathbf{Z}_p\langle t \rangle$  of weight  $p^n$ . All such elements are zero.

Construction 3.3. One can prove that there is an equivalence of groupoids  $\underline{\text{Pic}}(W(R)) \simeq \text{Map}(\text{Spec}(R), BW^{\times})$ . Given  $I \in \text{Pic}(W(R))$ , we obtain an exact sequence

$$0 \to I \otimes_{W(R)} \mathbf{G}_a^{\sharp} \to I \otimes_{W(R)} W \xrightarrow{F} I \otimes_{W(R)} F_*W \to 0.$$

If  $\mathcal{L} \in \operatorname{Pic}(R)$  and  $\sigma: I \otimes_{W(R)} R \to \mathcal{L}$  is a map of line bundles over R, then define  $M_{\sigma}$  via the pushout

There is then a cofiber sequence

$$0 \to \mathcal{V}(\mathcal{L})^{\sharp} \to M_{\sigma} \xrightarrow{F} I \otimes_{W(R)} F_*W \to 0,$$

and  $M_{\sigma}$  is an admissible W-module over R. In fact, fpqc-locally on R, every admissible W-module arises in this way.

Motivated by this construction, we are led to consider:

**Definition 3.4.** Let R be a p-nilpotent ring. A *filtered Cartier-Witt divisor* on R is an admissible W-module M and a map  $d: M \to W$  of admissible W-modules, such that the induced map  $F_*M' \to F_*W$  is obtained as  $F_*$  of a Cartier-Witt divisor over R. Let  $\mathbf{Z}_p^N$  denote the functor  $\mathrm{CAlg} \to \mathbb{S}$  sending  $R \mapsto \{ \mathrm{filtered\ Cartier\ Witt\ divisor\ on\ } R \}.$ 

**Example 3.5.** Let  $I \xrightarrow{\alpha} W(R)$  be a Cartier-Witt divisor. Then, we obtain a map  $d_{\alpha} : I \otimes_{W(R)} W \to W$ , which is a filtered Cartier-Witt divisor. Indeed,  $M := I \otimes_{W(R)} W$  is admissible (in fact, invertible!) by Construction 3.3, and the map  $M' \to W$  is simply given by the map

$$M' = F^*I \otimes_{W(R)} W \xrightarrow{\alpha \otimes \mathrm{id}} W(R) \otimes_{W(R)} W = W.$$

This is indeed a Cartier-Witt divisor. This construction produces a map  $j_{\mathrm{HT}}: \mathbf{Z}_p^{\mathbb{A}} \to \mathbf{Z}_p^{\mathbb{N}}$ , which exhibits it as an open substack of  $\mathbf{Z}_p^{\mathbb{N}}$ .

**Example 3.6.** Let  $d: M \to W$  be a filtered Cartier-Witt divisor over R, so that there is a map of admissible sequences

(11) 
$$\begin{array}{cccc}
\mathcal{V}(\mathcal{L})^{\sharp} & \longrightarrow M & \longrightarrow F_{*}M' \\
\downarrow^{d^{\sharp}} & \downarrow^{d} & \downarrow^{F_{*}d'} \\
\mathbf{G}_{a}^{\sharp} & \longrightarrow W & \longrightarrow F_{*}W.
\end{array}$$

It turns out that the map  $d^{\sharp}$  arises via an actual morphism  $\hbar(d): \mathcal{L} \to \mathbf{G}_a$  of line bundles<sup>4</sup>, so that we obtain a map  $\hbar: \mathbf{Z}_p^{\mathbb{N}} \to \mathbf{A}_{\hbar}^1/\mathbf{G}_m$ . The fiber  $(\mathbf{Z}_p^{\mathbb{N}})_{\hbar \neq 0}$  over  $\mathbf{G}_m/\mathbf{G}_m$  consists of those Cartier-Witt divisors for which d is nonzero, i.e.,  $d^{\sharp}$  is an isomorphism. In this case, the Cartier-Witt divisor  $d: M \to W$  is encoded entirely by the Cartier-Witt divisor  $d': M' \to W$ , so that we obtain an isomorphism

$$j_{\mathrm{dR}}: \mathbf{Z}_{n}^{\mathbb{A}} \cong (\mathbf{Z}_{n}^{\mathbb{N}})_{\hbar \neq 0} \subseteq \mathbf{Z}_{n}^{\mathbb{N}},$$

$$\underline{\mathrm{Hom}}_W(\mathbf{G}_a^\sharp,\mathbf{G}_a^\sharp) \cong \underline{\mathrm{Hom}}_{\mathbf{G}_a}(\mathbf{G}_a^\sharp,\mathbf{G}_a^\sharp) \cong \underline{\mathrm{Hom}}_{\mathbf{G}_a}(\mathbf{G}_a,\mathbf{G}_a) \cong \mathbf{G}_a.$$

The first isomorphism comes from the fact that the W-action on  $\mathbf{G}_a^{\sharp}$  factors through  $W \to \mathbf{G}_a$ ; the second isomorphism comes from Cartier duality over  $B\mathbf{G}_m$ ; the third isomorphism is obvious.

<sup>&</sup>lt;sup>4</sup> It suffices to observe that

exhibiting  $\mathbf{Z}_p^{\mathbb{A}}$  as an open substack of  $\mathbf{Z}_p^{\mathbb{N}}$ . Note that  $j_{dR}$  and  $j_{HT}$  are disjoint — for any filtered Cartier-Witt divisor in the image of  $j_{HT}$ , the map  $d^{\sharp}$  is nilpotent!

Remark 3.7. In homotopy theory, the map  $\hbar: \mathbf{Z}_p^{\mathbb{N}} \to \mathbf{A}_{\hbar}^1/\mathbf{G}_m$  encodes the filtration on  $\mathrm{TC}^-(\mathbf{Z}_p)$  arising via the homotopy fixed points spectral sequence. The points  $j_{\mathrm{HT}}$  and  $j_{\mathrm{dR}}$  are supposed to correspond to the maps  $\mathrm{TC}^- \rightrightarrows \mathrm{TP}$  given by the cyclotomic Frobenius and the canonical map, respectively. Note that  $\sigma$  does not actually exist in  $\pi_2\mathrm{TC}^-(\mathbf{Z}_p)$  – rather, the advantage of the stacky perspective is that we can do everything locally. For instance, there is a cover  $\mathrm{TC}^-(\mathbf{Z}_p) \to \mathrm{TC}^-(\mathbf{Z}_p/S[\widetilde{p}])$ , where the map  $S[\widetilde{p}] \to \mathbf{Z}_p$  sends  $\widetilde{p} \mapsto p$ , and the  $\mathbf{E}_{\infty}$ -ring  $\mathrm{TC}^-(\mathbf{Z}_p/S[\widetilde{p}])$  is even<sup>5</sup>: its homotopy groups are given by  $\mathbf{Z}_p[\![\widetilde{p}]\!][\sigma,\hbar]/(\sigma\hbar-(\widetilde{p}-p))$ . We can therefore construct the localization  $\mathrm{TC}^-(\mathbf{Z}_p/S[\![\widetilde{p}]\!])[1/\sigma]$ ; as long as we can extend this localization to the entire cosimplicial diagram induced by the cover  $\mathrm{TC}^-(\mathbf{Z}_p) \to \mathrm{TC}^-(\mathbf{Z}_p/S[\![\widetilde{p}]\!])$ , we can localize the stack associated to the even filtration<sup>6</sup> on  $\mathrm{TC}^-(\mathbf{Z}_p)$ , as well.

It turns out that if  $d: M \to W$  is a filtered Cartier-Witt divisor, then d defines a quasi-ideal; we will not prove this here. This implies that the quotient W/M is in fact a *ring* stack. In particular:

**Definition 3.8.** Let  $G_a^{\mathbb{N}}$  denote the ring stack over  $Z_p^{\mathbb{N}}$  given locally by the assignment

$$(d: M \to W) \in \mathbf{Z}_p^{\mathcal{N}}(R) \mapsto (W/M)(R) \in \mathrm{CAlg}.$$

This will be called the *filtered prismatization* of the affine line. Using Recollection 1.1, we can now define the filtered prismatization of any bounded p-adic formal scheme X. Let us assume that  $X = \operatorname{Spf}(A)$  is affine, for simplicity. Then,  $X^{\mathbb{N}} \to \mathbf{Z}_p^{\mathbb{N}}$  is the stack whose functor of points is given by

$$\operatorname{CAlg} \ni R \mapsto \{ \text{filtered CW-divisors } d : M \to W, \text{ and } A \to (W/M)(R) \} \in \mathcal{S}.$$

We will close with two results.

**Proposition 3.9.** The filtered prismatization  $k^{\mathbb{N}}$  of Definition 3.8 agrees with the stack  $\operatorname{Spf}(\pi_* \operatorname{TC}^-(k))/\mathbf{G}_m$  of (7).

*Proof.* Let us write  $k^{\mathcal{N}'} := \operatorname{Spf}(\pi_* \operatorname{TC}^-(k))/\mathbf{G}_m$ , so that if R is a p-nilpotent ring, then  $k^{\mathcal{N}'}(R)$  is the groupoid of tuples  $(\mathcal{L}, \sigma, \hbar)$  of  $\mathcal{L} \in \operatorname{Pic}(R)$ ,  $\sigma : \mathcal{O} \to \mathcal{L}$ , and  $\hbar : \mathcal{L} \to \mathcal{O}$  such that  $\sigma \hbar = p$ . We will build maps  $k^{\mathcal{N}'} \to k^{\mathcal{N}}$  and  $k^{\mathcal{N}} \to k^{\mathcal{N}'}$  (which will clearly be inverse to each other) as follows:

• To define a map  $k^{\mathcal{N}} \to k^{\mathcal{N}'}$ , we need to define a map  $k^{\mathcal{N}}(R) \to k^{\mathcal{N}'}(R)$  for every p-nilpotent ring R. Suppose we are given a point of  $k^{\mathcal{N}}(R)$ , i.e., a filtered Cartier-Witt divisor  $d: M \to W$  and  $k \to (W/M)(R)$ . Then, this lifts uniquely to the dotted arrows in the following diagram, whose columns are cofiber sequences:

(12) 
$$W(k) - \stackrel{\alpha}{-} > M(R)$$

$$\downarrow^{p} \qquad \qquad \downarrow^{d}$$

$$W(k) - - - > W(R)$$

$$\downarrow^{k} \longrightarrow (W/M)(R)$$

This can be understood as a map

$$(W \xrightarrow{p} W) \to (M \xrightarrow{d} W)$$

<sup>&</sup>lt;sup>5</sup>In fact, it is equivalent (at least) as an  $\mathbf{E}_1$ -ring to  $(\tau_{\geq 0}\ell^{t\mathbf{Z}/p})^{hS^1}$ . Using this cover of  $\mathrm{TC}^-(\mathbf{Z}_p)$ , one can even show that  $\mathrm{TC}^-(\mathbf{Z}_p) \simeq (\tau_{\geq 0}j_{\mathbf{C}}^{t\mathbf{Z}/p})^{hS^1}$  as  $\mathbf{E}_1$ -rings, where  $j_{\mathbf{C}} = \mathrm{fib}(\ell \xrightarrow{\psi-1} \Sigma^{2p-2}\ell)$  is the complex image of J spectrum. <sup>6</sup>See [HRW22].

of filtered CW-divisors over R, and hence a map of admissible sequences



Note that by Footnote 4, the top left vertical map can be identified as  $\sigma^{\sharp}: \mathbf{G}_a^{\sharp} \to \mathcal{V}(\mathcal{L})^{\sharp}$  for a unique map  $\sigma: \mathfrak{O} \to \mathcal{L}$ ; similarly, the bottom left vertical map can be identified as  $\hbar^{\sharp}: \mathcal{V}(\mathcal{L})^{\sharp} \to \mathbf{G}_a^{\sharp}$  for a unique map  $\hbar: \mathcal{L} \to \mathfrak{O}$ . The right vertical column can be viewed as a map  $(W \xrightarrow{p} W) \to (M' \xrightarrow{d'} W)$  of Cartier-Witt divisors, which by rigidity means that the map  $\alpha': W \to M'$  is an isomorphism.

In particular, the line bundle  $\mathcal{L} \in \operatorname{Pic}(R)$  associated to M is equipped with maps  $\sigma: \mathcal{O} \to \mathcal{L}$  and  $\hbar: \mathcal{L} \to \mathcal{O}$  such that  $\sigma \hbar = p$ ; this defines an R-point of  $k^{\mathcal{N}'}$ , as desired.

• Suppose we are given an R-point  $(\mathcal{L}, \sigma, \hbar)$  of  $k^{\mathcal{N}'}$ . Define  $M_{\sigma}$  and the map  $M_{\sigma} \xrightarrow{d_{\sigma, \hbar}} W$  via the square (6). Then, we obtain a map

$$(W \xrightarrow{p} W) \xrightarrow{\alpha} (M_{\sigma} \xrightarrow{d_{\sigma,\hbar}} W).$$

of filtered Cartier-Witt divisors over R. In particular, this is a map of quasi-ideals over R, so that we obtain a map

$$k = W(k)/p \to W(R)/p \xrightarrow{\alpha} (W/M_{\sigma})(R).$$

The data of  $d_{\sigma,\hbar}$  along with this map  $k \to (W/M_{\sigma})(R)$  is precisely an R-point of  $k^{\mathbb{N}}$ , so that we obtain the desired map  $k^{\mathbb{N}'} \to k^{\mathbb{N}}$ .

The same argument shows that if R is a perfectoid ring, the filtered prismatization  $R^{\mathbb{N}}$  of Definition 3.8 agrees with the stack  $\mathrm{Spf}(\pi_*\mathrm{TC}^-(R))/\mathbf{G}_m$ .

**Proposition 3.10.** There is an isomorphism  $(\mathbf{Z}_p^{\mathbb{N}})_{\hbar=0}\cong \mathbf{G}_a^{\mathrm{dR}}/\mathbf{G}_m$ .

*Proof.* Suppose that  $d: M \to W$  is a filtered Cartier-Witt divisor over a p-nilpotent ring R such that  $\hbar(d) = 0$  (so  $d^{\sharp} = 0$ ). Recall the map of exact sequences (11):

$$\mathcal{V}(\mathcal{L})^{\sharp} \longrightarrow M \longrightarrow F_{*}M' \\
\downarrow^{d^{\sharp}=0} \qquad \downarrow^{d} \qquad \downarrow^{F_{*}d'} \\
\mathbf{G}_{a}^{\sharp} \longrightarrow W \xrightarrow{F} F_{*}W.$$

Since the left vertical map is zero, there is a dotted map  $d: F_*M' \to W$  as indicated. We claim:

(\*)  $\widetilde{d}$  has to factor as

$$\widetilde{d}: F_*M' \xrightarrow{F_*\xi} F_*W \xrightarrow{V} W$$

for some  $\xi: M' \to W$ .

We will prove (\*) below. First, note that it implies that  $\xi$  can be viewed as a map

$$\xi: (M' \to W) \to (W \xrightarrow{FV=p} W)$$

of Cartier-Witt divisors; in particular,  $\xi: M' \to W$  must be an isomorphism by rigidity. Therefore, M is necessarily an extension of  $F_*W$  by  $\mathcal{V}(\mathcal{L})^{\sharp}$ . We claim that

(\*\*) There is an isomorphism  $\underline{\mathrm{Ext}}_W^1(F_*W,\mathbf{G}_a^\sharp)\cong \mathbf{G}_a/\mathbf{G}_a^\sharp\cong \mathbf{G}_a^{\mathrm{dR}}$ , which is  $\mathbf{G}_m$ -equivariant for the standard action on the target  $\mathbf{G}_a^{\mathrm{dR}}$ , and the action on  $\mathbf{G}_a^\sharp$  on the source.

This immediately implies the desired claim, so let us now prove (\*) and (\*\*).

*Proof of* (\*). It suffices to show that the map  $V: F_*W \to W$  gives an isomorphism

$$\underline{\operatorname{Hom}}_W(F_*W, F_*W) \to \underline{\operatorname{Hom}}_W(F_*W, W).$$

To prove this, first note that the source is

$$\underline{\operatorname{Hom}}_W(F_*W, F_*W) \cong \underline{\operatorname{Hom}}_{F_*W}(F_*W, F_*W) \cong F_*W,$$

where the first isomorphism is because  $F_*W$  is a quotient of W. From right to left, this isomorphism sends  $x \in F_*W$  to  $F_*W \xrightarrow{x} F_*W$ . Therefore, we need to show that the map

$$F_*W \to \underline{\operatorname{Hom}}_W(F_*W, W)$$

sending  $x \in F_*W$  to  $F_*W \xrightarrow{x} F_*W \xrightarrow{V} W$  is an isomorphism. Applying  $\underline{\mathrm{Hom}}_W(-,W)$  to the exact sequence

$$0 \to \mathbf{G}_{a}^{\sharp} \to W \xrightarrow{F} F_{*}W \to 0,$$

we obtain

$$0 \to \underline{\operatorname{Hom}}_W(F_*W, W) \to \underline{\operatorname{Hom}}_W(W, W) \to \underline{\operatorname{Hom}}_W(\mathbf{G}_a^{\sharp}, W).$$

The middle term is evidently W, so it suffices to show that the kernel of the map  $W \to \underline{\operatorname{Hom}}_W(\mathbf{G}_a^\sharp, W)$  is isomorphic to  $F_*W$ .

Observe that the map  $W \to \underline{\mathrm{Hom}}_W(\mathbf{G}_a^{\sharp}, W)$  factors as

(13) 
$$W \to \underline{\operatorname{Hom}}_{W}(\mathbf{G}_{a}^{\sharp}, \mathbf{G}_{a}^{\sharp}) \to \underline{\operatorname{Hom}}_{W}(\mathbf{G}_{a}^{\sharp}, W).$$

Indeed, if  $x \in W$ , the map  $\mathbf{G}_a^{\sharp} \to W$  sending  $y \mapsto xy$  lands in W[F] (since F(xy) = F(x)F(y) = 0). Therefore, (13) gives a commutative diagram

The map  $\mathbf{G}_a \to \underline{\mathrm{Hom}}_W(\mathbf{G}_a^\sharp, W)$  is injective, and the map  $W \to \mathbf{G}_a$  is surjective. In particular, the kernel of the map  $W \to \underline{\mathrm{Hom}}_W(\mathbf{G}_a^\sharp, W)$  can be identified with the kernel of  $W \to \mathbf{G}_a$ , which is precisely  $F_*W$ , as desired.

*Proof of* (\*\*). The cofiber sequence

$$\mathbf{G}_a^{\sharp} \to W \xrightarrow{F} F_* W$$

induces a cofiber sequence

$$\underline{\mathrm{Hom}}_W(W,\mathbf{G}_a^\sharp) \to \underline{\mathrm{Hom}}_W(\mathbf{G}_a^\sharp,\mathbf{G}_a^\sharp) \to \underline{\mathrm{Ext}}_W^1(F_*W,\mathbf{G}_a^\sharp).$$

The first term is simply  $\mathbf{G}_a^{\sharp}$ , and the second term can be identified with  $\mathbf{G}_a$  by Footnote 4. It follows that there is a cofiber sequence

$$\mathbf{G}_a^{\sharp} \to \mathbf{G}_a \to \underline{\operatorname{Ext}}_W^1(F_*W, \mathbf{G}_a^{\sharp}),$$

giving the desired identification.

11

The isomorphism of Proposition 3.10 is very useful: suppose one has a map  $X \to \mathbf{Z}_p^{\mathbb{N}}$  of stacks over  $\mathbf{A}_{\hbar}^1/\mathbf{G}_m$  which one wants to prove is an isomorphism. Let  $\mathbb{I} \to \mathbb{O}_X$  denote the ideal given by the zero locus of  $\hbar$ , and suppose that  $\mathbb{O}_X$  is  $\mathbb{I}$ -complete. If the induced map  $X_{\hbar=0} \to (\mathbf{Z}_p^{\mathbb{N}})_{\hbar=0}$  is an isomorphism, then completeness implies that the original map  $X \to \mathbf{Z}_p^{\mathbb{N}}$  is itself an isomorphism. It often turns out to be much easier to study  $X_{\hbar=0}$ . For instance, one can argue in this manner to show that the stack associated to the even filtration ([HRW22]) on  $\mathrm{TC}^-(\mathbf{Z}_p)$  is isomorphic to  $\mathbf{Z}_p^{\mathbb{N}}$ . (Moreover,  $\mathrm{TC}^-(\mathbf{Z}_p) \simeq (\tau_{\geq 0}j_{\mathbf{C}}^{t\mathbf{Z}/p})^{\hbar S^1}$  as  $\mathbf{E}_1$ -rings, using which one can show that the stack associated to the even filtration on  $(\tau_{\geq 0}j_{\mathbf{C}}^{t\mathbf{Z}/p})^{\hbar S^1}$  is also isomorphic to  $\mathbf{Z}_p^{\mathbb{N}}$ .) The desired isomorphism over  $\hbar=0$  is afforded by the following:

**Lemma 3.11.** The stack associated to the even filtration on THH( $\mathbf{Z}_p$ ) is isomorphic to  $\mathbf{G}_a^{\mathrm{dR}}/\mathbf{G}_m$ .

*Proof.* There is an isomorphism  $\pi_* \mathrm{THH}(\mathbf{Z}_p/S[\![\widetilde{p}]\!]) \cong \mathbf{Z}_p[\sigma^2(\widetilde{p}-p)]$ , with  $\sigma^2(\widetilde{p}-p)$  in weight -1. There is an isomorphism of cosimplicial rings

$$\pi_* \text{THH}(\mathbf{Z}_p / S[\widetilde{p}_1, \cdots, \widetilde{p}_{\bullet}]) \cong \mathbf{Z}_p[\sigma^2(\widetilde{p}_1 - p)] \langle \sigma^2(\widetilde{p}_1 - \widetilde{p}_2), \cdots, \sigma^2(\widetilde{p}_1 - \widetilde{p}_{\bullet}) \rangle,$$

which encodes the standard coaction of a divided power algebra on a polynomial ring. Namely, the maps

$$\mathbf{Z}_p[\sigma^2(\widetilde{p}-p)] \rightrightarrows \mathbf{Z}_p[\sigma^2(\widetilde{p}_1-p)]\langle \sigma^2(\widetilde{p}_1-\widetilde{p}_2)\rangle$$

send

$$\sigma^2(\widetilde{p}-p) \mapsto \sigma^2(\widetilde{p}_1-p), \ \sigma^2(\widetilde{p}-p) \mapsto \sigma^2(\widetilde{p}_1-p) + \sigma^2(\widetilde{p}_1-\widetilde{p}_2).$$

This is therefore the same cosimplicial object computing  $\mathbf{G}_a^{\mathrm{dR}}$  as the quotient  $\mathbf{G}_a/\mathbf{G}_a^{\sharp}$ . But the totalization  $\mathrm{Tot}(\mathrm{THH}(\mathbf{Z}_p/S[\![\widetilde{p}_1,\cdots,\widetilde{p}_{\bullet}]\!]))$  is equivalent to  $\mathrm{THH}(\mathbf{Z}_p)$ , so that the above cosimplicial object defines the stack associated to the even filtration on  $\mathrm{THH}(\mathbf{Z}_p)$ , as desired.

### REFERENCES

- [Bha22] B. Bhatt. Prismatic F-gauges. Lecture notes available at https://www.math.ias.edu/~bhatt/teaching/mat549f22/lectures.pdf, 2022.
- [BL22a] B. Bhatt and J. Lurie. Absolute prismatic cohomology. https://arxiv.org/abs/2201.06120, 2022.
- [BL22b] B. Bhatt and J. Lurie. The prismatization of *p*-adic formal schemes. https://arxiv.org/abs/2201.06124, 2022.
- [Dri22] V. Drinfeld. Prismatization. https://arxiv.org/abs/2005.04746, 2022.
- [HRW22] J. Hahn, A. Raksit, and D. Wilson. A motivic filtration on the topological cyclic homology of commutative ring spectra. https://arxiv.org/abs/2206.11208, 2022.

## 1 Oxford St, Cambridge, MA 02139

Email address: sdevalapurkar@math.harvard.edu, December 8, 2022