Software Testing Project Report

Ehraz Hasan Md Zainul Haque MT2021045 MT2021073

Prof - Meenakshi D'Souza

GitHub link - https://github.com/zaindol/Software-Testing.git

INDEX -

1) Algorithms

- Anagram

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

- Binary Search

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

- Selection Sort

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

2) Mathematical procedure

- Contruct 2D Matrix

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

- Pythagorean Triplet

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

- Area

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

- Square Root

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

- Roman to Int

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

3) Data Structure

- Remove Linked List Element value

- Basic Block
- CFG
- Prime path coverage
- Edge pair coverage

Problem - Control flow Graph Based

Tool used - JUnit

Algorithms

Anagram Code -

```
import java.util.Arrays;
       public class Anagram {
6 @
           public static boolean anagram(String str1 , String str2){
                    removing the space
           String s1 = str1.replaceAll( regex: "\\s", replacement: "");
           String s2 = str2.replaceAll( regex: "\\s", replacement: "");
           boolean status = true;
11
                      checking the length
               if (s1.length() != s2.length()) {
               status = false;
           } else {
                   char[] ArrayS1 = s1.toLowerCase().toCharArray();
                   char[] ArrayS2 = s2.toLowerCase().toCharArray();
                   Arrays.sort(ArrayS1);
                   Arrays.sort(ArrayS2);
                   status = Arrays.equals(ArrayS1, ArrayS2);
               return status;
```

- Basic Block -

Lines	Block Number	remark
6 - 11	1	We have called all the function
12 - 13	2	If condition
14 - 20	3	Else condition
21	4	Final statement

CFG

2 test paths are needed for Prime Path Coverage

Test Paths	Test Requirements that are toured by test paths directly
[1,2,4]	[1,2,4]
[1,3,4]	[1,3,4]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,4]	None
[1,3,4]	None

Infeasible prime paths are:

None

2 test paths are needed for Edge-Pair Coverage

Test Paths	Test Requirements that are toured by test paths directly
[1,2,4]	[1,2,4]
[1,3,4]	[1,3,4]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,4]	None
[1,3,4]	None

Binary Search Code -

```
package Methods.Algorithm;
         public class BinarySearch {
              public static int binarysearch (int arr[], int x)
4 @
              {
                   int l = 0, r = arr.length - 1, res = -1;
                   while (<u>l</u> <= <u>r</u>) {
                        int m = 1 + (r - 1) / 2;
                        if (arr[m] == x) {
                             \underline{res} = m;
                             break;
                        if (arr[m] < x)
                             \underline{1} = m + 1;
                        else
                            \underline{\mathbf{r}} = \mathbf{m} - \mathbf{1};
                   }
                   return res;
20
```

- Basic Block -

Lines	Block Number	Remark
4 - 6	1	Starting
7 - 8	2	While loop
9 - 11	3	If statment
13	4	Second if
14	5	If part
15 - 17	6	Else part

CFG

Infeasible prime paths are: **None**

4 test paths at	re needed for Edge-Pair Coverage
Test Paths	Test Requirements that are toured by test paths directly
[1,2,3,7]	[1,2,3], [2,3,7]
[1,2,7]	[1,2,7]
[1,2,3,4,6,7]	[1,2,3], [2,3,4], [3,4,6], [4,6,7]
[1,2,3,4,5,7]	[1,2,3], [2,3,4], [3,4,5], [4,5,7]
Test Paths	Test Requirements that are toured by test paths with sid

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,3,7]	None
[1,2,7]	None
[1,2,3,4,6,7]	None
[1,2,3,4,5,7]	None

Infeasible Edge-Pairs are:

None

Selection sort Code -

Basic Block -

Lines	Block number	remark
5	1	Starting For loop
6 - 7	2	Starting of 2nd For
8	3	If condition
9	5	After True if condition
12 - 15	4	After false for condition
17	6	Final statement

CFG

Test Paths	Test Requirements that are toured by test paths directly	
[1,2,4,1,6]	[1,2,4], [1,6], [2,4,1], [4,1,6]	
[1,2,3,5,2,4,1,6]	[1,2,3], [1,6], [2,3,5], [2,4,1], [3,5,2], [5,2,4], [4,1,6]	
[1,2,3,2,3,2,4,1,6]	[1,2,3], [1,6], [2,3,2], [2,4,1], [3,2,3], [3,2,4], [4,1,6]	
[1,2,3,5,2,3,2,4,1,6]	[1,2,3], [1,6], [2,3,5], [2,3,2], [2,4,1], [3,5,2], [3,2,4], [5,2,3],	[4,1,6]
[1,2,4,1,2,4,1,6]	[1,2,4], [1,6], [2,4,1], [4,1,2], [4,1,6]	
Test Paths	Test Requirements that are toured by test paths with sidetrips	
[1,2,4,1,6]	None	
[1,2,3,5,2,4,1,6]	None	
[1,2,3,2,3,2,4,1,6]	[1,2,3], [2,3,2], [3,2,4]	
[1,2,3,5,2,3,2,4,1,6]	[3,5,2], [5,2,4]	

Infeasible Edge-Pairs are:
None

[1,2,4,1,2,4,1,6]

5 test paths are needed for Prime Path Coverage

None

Test Paths	Test Requirements that are toured by test paths directly	
[1,2,4,1,2,3,5,2,4,1,6]	[3,5,2,4,1,6], [4,1,2,3,5], [2,4,1,2], [2,3,5,2], [1,2,4,1]	
[1,2,4,1,2,4,1,6]	[2,4,1,2], [1,2,4,1], [4,1,2,4]	
[1,2,3,5,2,3,2,4,1,6]	[3,2,4,1,6], [3,5,2,3], [2,3,5,2], [2,3,2]	
[1,2,3,5,2,3,5,2,4,1,6]	[3,5,2,4,1,6], [3,5,2,3], [2,3,5,2], [5,2,3,5]	
[1,2,3,2,3,2,4,1,6]	[3,2,4,1,6], [2,3,2], [3,2,3]	
Test Paths	Test Requirements that are toured by test paths with side	etrips
	Test Requirements that are toured by test paths with side [2,4,1,2], [1,2,4,1], [4,1,2,4]	etrips
[1,2,4,1,2,3,5,2,4,1,6]		etrips
[1,2,4,1,2,3,5,2,4,1,6] [1,2,4,1,2,4,1,6]	[2,4,1,2], [1,2,4,1], [4,1,2,4]	etrips
[1,2,4,1,2,3,5,2,4,1,6] [1,2,4,1,2,4,1,6] [1,2,3,5,2,3,2,4,1,6]	[2,4,1,2], [1,2,4,1], [4,1,2,4] [1,2,4,1]	etrips

Infeasible prime paths are:

None

Mathematical Problem

Construct 2D Array -

```
package Methods.Mathematical;

public class Construct2D {

    public static int[][] construct2DArray(int[] original, int m, int n) {

        if(m * n != original.length) {

            return new int[0][0];

        }

        int[][] answer = new int[m][n];

        int rCount = 0, cCount = 0, len = original.length;

        for(int i=0;i<len;i++){

            answer[rCount][cCount++] = original[i];

        if(cCount = n) {

            rCount++;

            cCount = 0;

        }

        return answer;

}

return answer;

}
</pre>
```

Basic block -

Lines	Block number	remark
5	1	Starting if
6 - 7	2	Edge case
8 - 9	3	Statement
10	4	For loop
11 - 12	5	If condition
13 - 14	6	Inner statements
18	7	Exit

CFG

Test Paths	Test Requirements that are toured by test paths directly
[1,2]	[1,2]
[1,3,4,7]	[1,3,4], [3,4,7]
[1,3,4,5,6,4,7]	[1,3,4], [3,4,5], [4,5,6], [5,6,4], [6,4,7]
[1,3,4,5,4,5,4,7]	[1,3,4], [3,4,5], [4,5,4], [5,4,5], [5,4,7]
[1,3,4,5,6,4,5,4,7]	[1,3,4], [3,4,5], [4,5,6], [4,5,4], [5,6,4], [5,4,7], [6,4,5]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2]	None
[1,3,4,7]	None
[1,3,4,5,6,4,7]	None
[1,3,4,5,4,5,4,7]	[1,3,4], [3,4,5], [4,5,4], [5,4,7]
[1,3,4,5,6,4,5,4,7]	[5,6,4], [6,4,7]

Infeasible Edge-Pairs are:
None

5 test paths are needed for Prime Path Coverage

Test Paths	Test Requirements that are toured by test paths directly	
[1,3,4,7]	[1,3,4,7]	
[1,3,4,5,6,4,5,6,4,7]	[1,3,4,5,6], [4,5,6,4], [6,4,5,6], [5,6,4,7], [5,6,4,5]	
[1,3,4,5,6,4,5,4,7]	[1,3,4,5,6], [4,5,6,4], [5,6,4,5], [4,5,4], [5,4,7]	
[1,3,4,5,4,5,4,7]	[4,5,4], [5,4,7], [5,4,5]	
[1,2]	[1,2]	

Test Paths	Test Requirements that are toured by test paths with sidetrips	
[1,3,4,7]	None	
[1,3,4,5,6,4,5,6,4,7]	[1,3,4,5,6], [4,5,6,4], [5,6,4,7]	
[1,3,4,5,6,4,5,4,7]	[4,5,6,4], [5,6,4,7], [4,5,4]	
[1,3,4,5,4,5,4,7]	[4,5,4], [5,4,7]	
[1,2]	None	

Infeasible prime paths are:

None

Pythagorean Triplet -

```
package Methods.Mathematical;

public class PythagoreanTriple {
    public static boolean pythagoreantriple(int a,int b,int c) {
        boolean res = true;
        int max = Math. max(a, Math.max(b, c));
        int min = Math.min(a, Math.min(b, c));
        int mid = a + b + c - max - min;

        if (min <=0 || mid <= 0 || max <=0) {
            res = false;
        } else {
            res = (min * min) + (mid * mid) == (max * max);
        }
        return res;
}
</pre>
```

Basic Block -

Lines	Block number	Remark
4 - 9	1	Entry statement
10	2	Inner if
11 - 13	3	Inner else
14	4	Exit

CFG -

2 test paths are needed for Prime Path Coverage

Test Paths	Test Requirements that are toured by test paths directly
[1,2,4]	[1,2,4]
[1,3,4]	[1,3,4]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,4]	None
[1,3,4]	None

Infeasible prime paths are:

None

2 test paths are needed for Edge-Pair Coverage

Test Paths	Test Requirements that are toured by test paths directly
[1,2,4]	[1,2,4]
[1,3,4]	[1,3,4]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,4]	None
[1,3,4]	None

Area -

```
package Methods.Mathematical;
public class Area {
    public double area(int input, double a, double b) {
         double ans = 0;
        switch (input) {
                      System.out.println("sides cannot be negative");
                      \underline{ans} = -1;
                      break;
                  <u>ans</u> = 6 * a * a;
             case 2:
                  if (a < 0) {
                      System.out.println("sides cannot be negative");
                      \underline{ans} = -1;
                  <u>ans</u> = 4 * Math.PI * a * a;
                  break;
                      System.out.println("sides cannot be negative");
                      \underline{ans} = -1;
                      break;
             ans = Math.PI * a * (a + Math.pow((b * b + a * a), 0.5));
```

```
case 4:
        if (a < 0 || b < 0) {
             System.out.println("sides cannot be negative");
             ans = -1;
             break;
        <u>ans</u> = 3 * Math.PI * a * a;
        break;
        if (a < 0 || b < 0) {
             System.out.println("sides cannot be negative");
             <u>ans</u> = -1;
             break;
        \underline{ans} = 2 * (Math.PI * a * a + Math.PI * a * b);
        break;
    default:
        System.out.println("invalid input");
        \underline{ans} = -1;
System.out.println("Result: " + ans);
return <u>ans;</u>
```

Basic block -

Lines	Block number	remarks
4 - 6	1	Starting
8	2	Case 1
15	3	Case 2
24	4	Case 3
32	5	Case 4
42	6	Case 5
49 - 51	7	default
9 - 11	8	Inside if
13	9	Outside if
17 - 19	10	Inside if
21	11	Outside if
25 - 27	12	Inside if
30	13	Outside if
33 - 36	14	Inside if
39	15	Outside if
43 - 45	16	Inside if
47	17	Outside if
53- 54	18	Final

11 test paths are needed for Prime Path Coverage

Test Paths	Test Requirements that are toured by test paths directly
[1,3,11,18]	[1,3,11,18]
[1,4,12,18]	[1,4,12,18]
[1,3,10,18]	[1,3,10,18]
[1,2,8,18]	[1,2,8,18]
[1,2,9,18]	[1,2,9,18]
[1,4,13,18]	[1,4,13,18]
[1,6,16,18]	[1,6,16,18]
[1,6,17,18]	[1,6,17,18]
[1,5,15,18]	[1,5,15,18]
[1,5,14,18]	[1,5,14,18]
[1,7,18]	[1,7,18]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,3,11,18]	None
[1,4,12,18]	None
[1,3,10,18]	None
[1,2,8,18]	None
[1,2,9,18]	None
[1,4,13,18]	None
[1,6,16,18]	None
[1,6,17,18]	None
[1,5,15,18]	None
[1,5,14,18]	None
[1,7,18]	None

Infeasible prime paths are:
None

Test Paths	Test Requirements that are toured by test paths directly
[1,2,8,18]	[1,2,8], [2,8,18]
[1,2,9,18]	[1,2,9], [2,9,18]
[1,3,10,18]	[1,3,10], [3,10,18]
[1,3,11,18]	[1,3,11], [3,11,18]
[1,4,12,18]	[1,4,12], [4,12,18]
[1,4,13,18]	[1,4,13], [4,13,18]
[1,5,14,18]	[1,5,14], [5,14,18]
[1,5,15,18]	[1,5,15], [5,15,18]
[1,6,16,18]	[1,6,16], [6,16,18]
[1,6,17,18]	[1,6,17], [6,17,18]
[1,7,18]	[1,7,18]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,8,18]	None
[1,2,9,18]	None
[1,3,10,18]	None
[1,3,11,18]	None
[1,4,12,18]	None
[1,4,13,18]	None
[1,5,14,18]	None
[1,5,15,18]	None
[1,6,16,18]	None
[1,6,17,18]	None
[1,7,18]	None

Infeasible Edge-Pairs are:
None

Roman to Int -

```
public static int romanToInt(String s) {
    Map<Character, Integer> romanToNumber = new HashMap<>();
    romanToNumber.put('I', 1);
    romanToNumber.put('V', 5);
    romanToNumber.put('X', 10);
    romanToNumber.put('L', 50);
    romanToNumber.put('C', 100);
    romanToNumber.put('D', 500);
    romanToNumber.put('M', 1000);
    int result = 0;
    for(int \underline{i} = 0; \underline{i} \le s.length()-1; \underline{i}++){
        char romanNumb = s.charAt(\underline{i});
        if(romanNumb == 'I' || romanNumb == 'X' || romanNumb == 'C') {
             if(\underline{i} != s.length()-1) {
                 char next = s.charAt(\underline{i}+1);
                 if((romanNumb == 'I' && (next == 'V' || next == 'X')) ||
                          (romanNumb == 'X' && (next == 'L' || next == 'C')) ||
                          (romanNumb == 'C' && (next == 'D' || next == 'M'))) {
                      result -= romanToNumber.get(romanNumb);
        result += romanToNumber.get(romanNumb);
```

Basic block -

Links	Block number	remarks
8 - 17	1	Starting
18	2	For loop
19 - 21	3	If condition
22	4	Inner if condition
23 - 25	5	If condition
28 - 30	6	Body
34	7	Exit

CFG -

Test Paths	Test Requirements that are toured by test paths directly
[1,2,3,4,2,7]	[1,2,3], [2,3,4], [3,4,2], [4,2,7]
[1,2,3,4,5,2,7]	[1,2,3], [2,3,4], [3,4,5], [4,5,2], [5,2,7]
[1,2,3,2,3,2,7]	[1,2,3], [2,3,2], [3,2,3], [3,2,7]
[1,2,3,4,2,3,2,7]	[1,2,3], [2,3,4], [2,3,2], [3,4,2], [3,2,7], [4,2,3]
[1,2,3,4,5,6,2,7]	[1,2,3], [2,3,4], [3,4,5], [4,5,6], [5,6,2], [6,2,7]
[1,2,3,4,5,2,3,2,7]	[1,2,3], [2,3,4], [2,3,2], [3,4,5], [3,2,7], [4,5,2], [5,2,3]
[1,2,3,4,5,6,2,3,2,7]	[1,2,3], [2,3,4], [2,3,2], [3,4,5], [3,2,7], [4,5,6], [5,6,2], [6,2,3]
Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,3,4,2,7]	None
[1,2,3,4,5,2,7]	None
[1,2,3,2,3,2,7]	[1,2,3], [2,3,2], [3,2,7]
[1,2,3,4,2,3,2,7]	[3,4,2], [4,2,7]
[1,2,3,4,5,6,2,7]	None

Infeasible Edge-Pairs are:

[1,2,7]

11 test paths are needed for Prime Path Coverage

[1,2,3,4,5,2,3,2,7] [4,5,2], [5,2,7] [1,2,3,4,5,6,2,3,2,7] [5,6,2], [6,2,7]

Test Paths	Test Requirements that are toured by test paths directly
[1,2,3,4,5,6,2,3,2,7]	[3,4,5,6,2,3], [2,3,4,5,6,2], [1,2,3,4,5,6], [3,2,7], [2,3,2]
[1,2,3,4,5,6,2,3,4,5,6,2,7]	[3,4,5,6,2,3], [2,3,4,5,6,2], [1,2,3,4,5,6], [3,4,5,6,2,7], [6,2,3,4,5,6], [5,6,2,3,4,5], [4,5,6,2,3,4]
[1,2,3,4,5,6,2,3,4,5,2,7]	[3,4,5,6,2,3], [2,3,4,5,6,2], [1,2,3,4,5,6], [5,6,2,3,4,5], [4,5,6,2,3,4], [3,4,5,2,7], [2,3,4,5,2]
[1,2,3,4,5,6,2,3,4,2,7]	[3,4,5,6,2,3], [2,3,4,5,6,2], [1,2,3,4,5,6], [4,5,6,2,3,4], [3,4,2,7], [2,3,4,2]
[1,2,3,4,5,2,3,2,7]	[3,4,5,2,3], [2,3,4,5,2], [3,2,7], [2,3,2]
[1,2,3,4,5,2,3,4,2,7]	[3,4,5,2,3], [2,3,4,5,2], [4,5,2,3,4], [3,4,2,7], [2,3,4,2]
[1,2,3,4,5,2,3,4,5,2,7]	[3,4,5,2,3], [3,4,5,2,7], [2,3,4,5,2], [4,5,2,3,4], [5,2,3,4,5]
[1,2,3,4,2,3,2,7]	[3,4,2,3], [2,3,4,2], [3,2,7], [2,3,2]
[1,2,3,4,2,3,4,2,7]	[3,4,2,7], [3,4,2,3], [2,3,4,2], [4,2,3,4]
[1,2,3,2,3,2,7]	[3,2,3], [3,2,7], [2,3,2]
[1,2,7]	[1,2,7]
Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,3,4,5,6,2,3,2,7]	[2,3,4,5,6,2], [3,4,5,6,2,7], [2,3,2]
[1,2,3,4,5,6,2,3,4,5,6,2,7]	[2,3,4,5,6,2], [1,2,3,4,5,6], [3,4,5,6,2,7]
[1,2,3,4,5,6,2,3,4,5,2,7]	[2,3,4,5,6,2], [3,4,5,6,2,7], [3,4,5,2,7], [2,3,4,5,2]
[1,2,3,4,5,6,2,3,4,2,7]	[2,3,4,5,6,2], [3,4,5,6,2,7], [3,4,2,7], [2,3,4,2]
[1,2,3,4,5,2,3,2,7]	[3,4,5,2,7], [2,3,4,5,2], [2,3,2]
[1,2,3,4,5,2,3,4,2,7]	[3,4,5,2,7], [2,3,4,5,2], [3,4,2,7], [2,3,4,2]
[1,2,3,4,5,2,3,4,5,2,7]	[3,4,5,2,7], [2,3,4,5,2]
[1,2,3,4,2,3,2,7]	[3,4,2,7], [2,3,4,2], [2,3,2]
[1,2,3,4,2,3,4,2,7]	[3,4,2,7], [2,3,4,2]
[1,2,3,2,3,2,7]	[3,2,7], [2,3,2]
[1,2,7]	None

Square Root -

```
package Methods.Mathematical;
       public class SquareRoot {
            public static int squareroot(int x)
               if(x <= 1) return x;</pre>
               int start = 1;
               int end = x/2;
               while(start < end) {</pre>
                    int mid = (start + (end-start)/2) + 1;
                    int div = x/mid;
                    if(div == mid) return mid;
                    if(div > mid) start = mid;
                    else end = mid-1;
                }
                return start;
20
```

Basic block -

Links	Block number	Remarks
6	0	If condition
7 - 8	1	Starting node
10	2	While loop
11 - 14	3	If condition
15	4	Final
16	5	If condition
17	6	Else
18	7	Final

CFG

Test Paths	Test Requirements that are toured by test paths directly
[0,1,9]	[0,1,9]
[0,1,2,7]	[0,1,2], [1,2,7]
[0,1,2,3,4,5,2,7]	[0,1,2], [1,2,3], [2,3,4], [3,4,5], [4,5,2], [5,2,7]
[0,1,2,3,4,6,2,7]	[0,1,2], [1,2,3], [2,3,4], [3,4,6], [4,6,2], [6,2,7]
[0,1,2,3,4,6,2,3,8]	[0,1,2], [1,2,3], [2,3,4], [2,3,8], [3,4,6], [4,6,2], [6,2,3]
[0,1,2,3,4,5,2,3,8]	[0,1,2], [1,2,3], [2,3,4], [2,3,8], [3,4,5], [4,5,2], [5,2,3]

Test Paths	Test Requirements that are toured by test paths with sidetrips
[0,1,9]	None
[0,1,2,7]	None
[0,1,2,3,4,5,2,7]	None
[0,1,2,3,4,6,2,7]	None
[0,1,2,3,4,6,2,3,8]	None
[0,1,2,3,4,5,2,3,8]	None

Infeasible Edge-Pairs are: None

9 test paths are needed for Prime Path Coverage

9 test paths are needed for Prime Path Coverage		
Test Paths	Test Requirements that are toured by test paths directly	
[0,1,2,3,4,6,2,3,8]	[0,1,2,3,4,6], [3,4,6,2,3], [2,3,4,6,2], [4,6,2,3,8]	
[0,1,2,3,4,5,2,3,8]	[0,1,2,3,4,5], [2,3,4,5,2], [3,4,5,2,3], [4,5,2,3,8]	
[0,1,2,3,8]	[0,1,2,3,8]	
[0,1,2,3,4,6,2,3,4,5,2,7]	[0,1,2,3,4,6], [3,4,6,2,3], [2,3,4,5,2], [2,3,4,6,2], [3,4,5,2,7], [6, [4,6,2,3,4]]	,2,3,4,5],
[0,1,2,3,4,6,2,3,4,6,2,7]	[0,1,2,3,4,6], [3,4,6,2,3], [3,4,6,2,7], [2,3,4,6,2], [6,2,3,4,6], [4,2,3,4,6]	,6,2,3,4]
[0,1,2,3,4,5,2,3,4,6,2,7]	[0,1,2,3,4,5], [2,3,4,5,2], [3,4,6,2,7], [3,4,5,2,3], [2,3,4,6,2], [5,4,5,2,3,4]	,2,3,4,6],
[0,1,2,3,4,5,2,3,4,5,2,7]	[0,1,2,3,4,5], [2,3,4,5,2], [3,4,5,2,3], [3,4,5,2,7], [5,2,3,4,5], [4,5,2,7], [5,2,3,4,5], [4,5,2,7], [4,5,2	,5,2,3,4]
[0,1,2,7]	[0,1,2,7]	
[0,1,9]	[0,1,9]	
To at Dath a		
Test Paths	Test Requirements that are toured by test paths with sidetrips	
[0,1,2,3,4,6,2,3,8]	Test Requirements that are toured by test paths with sidetrips [0,1,2,3,8]	
[0,1,2,3,4,6,2,3,8]	[0,1,2,3,8]	
[0,1,2,3,4,6,2,3,8] [0,1,2,3,4,5,2,3,8] [0,1,2,3,8]	[0,1,2,3,8] [0,1,2,3,8]	
[0,1,2,3,4,6,2,3,8] [0,1,2,3,4,5,2,3,8] [0,1,2,3,8] [0,1,2,3,4,6,2,3,4,5,2,7]	[0,1,2,3,8] [0,1,2,3,8] None	
[0,1,2,3,4,6,2,3,8] [0,1,2,3,4,5,2,3,8] [0,1,2,3,8] [0,1,2,3,4,6,2,3,4,5,2,7] [0,1,2,3,4,6,2,3,4,6,2,7]	[0,1,2,3,8] [0,1,2,3,8] None [0,1,2,3,4,5], [2,3,4,5,2], [3,4,6,2,7], [2,3,4,6,2], [3,4,5,2,7]	
[0,1,2,3,4,6,2,3,8] [0,1,2,3,4,5,2,3,8] [0,1,2,3,8] [0,1,2,3,4,6,2,3,4,5,2,7] [0,1,2,3,4,6,2,3,4,6,2,7] [0,1,2,3,4,5,2,3,4,6,2,7]	[0,1,2,3,8] [0,1,2,3,8] None [0,1,2,3,4,5], [2,3,4,5,2], [3,4,6,2,7], [2,3,4,6,2], [3,4,5,2,7] [0,1,2,3,4,6], [3,4,6,2,7], [2,3,4,6,2]	
[0,1,2,3,4,6,2,3,8] [0,1,2,3,4,5,2,3,8] [0,1,2,3,8] [0,1,2,3,4,6,2,3,4,5,2,7] [0,1,2,3,4,6,2,3,4,6,2,7] [0,1,2,3,4,5,2,3,4,6,2,7]	[0,1,2,3,8] [0,1,2,3,8] None [0,1,2,3,4,5], [2,3,4,5,2], [3,4,6,2,7], [2,3,4,6,2], [3,4,5,2,7] [0,1,2,3,4,6], [3,4,6,2,7], [2,3,4,6,2] [0,1,2,3,4,6], [2,3,4,5,2], [3,4,6,2,7], [2,3,4,6,2], [3,4,5,2,7]	

Infeasible prime paths are:

None

Datastructure Problem

Remove Linked List Element -

```
public class RemoveLinkedListElement {
    public static ListNode removeElements(ListNode head, int val) {
        while(head!=null && head.val == val){
            head = head.next;
        }

        ListNode current_node = head;
        while(current_node !=null && current_node.next!=null){
        if(current_node.next.val == val){
            current_node.next.next;
        }
        else{
            current_node = current_node.next;
        }
        return head;
}
```

Basic Block -

Links	Block number	Remarks
7	1	While loop
8	2	Inner
11	3	Statement
12	4	While loop
13	5	If condition
14	6	statment
17	7	else
20	8	Final

CFG

Test Paths	Test Requirements that are toured by test paths directly
[1,2,1,2,1,3,4,8]	[1,2,1], [2,1,2], [2,1,3], [1,3,4], [3,4,8]
[1,3,4,5,6,4,8]	[1,3,4], [3,4,5], [4,5,6], [5,6,4], [6,4,8]
[1,3,4,5,6,4,5,7,4,8]	[1,3,4], [3,4,5], [4,5,6], [4,5,7], [5,6,4], [5,7,4], [6,4,5], [7,4,8]
[1,3,4,5,7,4,5,7,4,8]	[1,3,4], [3,4,5], [4,5,7], [5,7,4], [7,4,5], [7,4,8]
Test Paths	Test Requirements that are toured by test paths with sidetrips
[1,2,1,2,1,3,4,8]	[1,2,1], [2,1,3]
[1,3,4,5,6,4,8]	None

Infeasible Edge-Pairs are:

[1,3,4,5,6,4,5,7,4,8] None [1,3,4,5,7,4,5,7,4,8] None

None

9 test paths are needed for Prime Path Coverage

y 5,2,7], [6,2	2,3,4,5],
	2,3,4,5],
	2,3,4,5],
	2,3,4,5],
	2,3,4,5],
1 (1 [1	
,4,6], [4,6	5,2,3,4]
1,6,2], [5,2	2,3,4,6],
3,4,5], [4,5	5,2,3,4]
detrips	
5,2,7]	
5,2,7]	
5,2,7]	
	3,4,5], [4,5

Infeasible prime paths are:

None