

Cursos: Bacharelado em Ciência da Computação e

Bacharelado em Sistemas de Informação

<u>Disciplinas:</u> (1493A) Teoria da Computação e Linguagens Formais,

(4623A) Teoria da Computação e Linguagens Formais e

(1601A) Teoria da Computação

Professora: Simone das Graças Domingues Prado

e-mail: simonedp@fc.unesp.br

home-page: wwwp.fc.unesp.br/~simonedp/discipl.htm

Apostila 02 - Linguagens Regulares Exercícios

- **01)** Desenvolva AFD que reconheçam as seguintes linguagens sobre $\Sigma = \{a,b\}$
 - a) {w | w possui aaa como subpalavra}
 - b) {w | o sufixo de w é aa}
 - c) {w | w possui número ímpar de a e b}
 - d) {w | w possui número par de a e ímpar de b ou w possui número par de b e ímpar de a}
 - e) {w | o quinto símbolo da direita para a esquerda de w é a}
- **02)** Desenvolva AFN que reconheçam as seguintes linguagens sobre $\Sigma = \{a,b\}$
 - a) $\{w_1w_2w_1 \mid w_2 \text{ é qualquer e } |w_1| = 3\}$
 - b) {w | o décimo símbolo da direita para a esquerda de w é a}
 - c) {w | w possui igual número de símbolos a e b e (qualquer prefixo de w possui, no máximo, dois a a mais que b ou qualquer prefixo de w possui, no máximo, dois b a mais que a)}
- **03)** Desenvolva Autômatos Finitos (AFD ou AFN) que reconheçam as linguagens sobre $\Sigma = \{a,b\}$ que:
 - a) contenha exatamente dois símbolos a
 - b) contenha pelo menos dois símbolos b
 - c) contenha pelo menos dois símbolos c consecutivos
 - d) contenha no máximo três símbolos c consecutivos
 - d) contenha uma quantidade par de símbolos a
 - e) contenha uma quantidade ímpar de símbolos b
 - f) contenha no mínimo um e no máximo 3 símbolos a
 - g) a quantidade total de símbolos nas cadeias é par
 - h) a quantidade total de símbolos nas cadeias é impar

04) Mostre a sequência de configurações assumidas pelo AFD abaixo durante a análise das cadeias abcdabc e abdabcd. Determine se essas cadeias pertencem ou não a linguagem reconhecida pelo AFD.

$$\begin{split} M &= (\{\ q_0,\, q_1,\, q_2,\, q_3\},\, \{\ a,\, b,\, c,\, d\ \},\, \delta,\, q_0,\, \{q_3\})\\ \delta(q_0,\, a) &=\ q_1 & \delta(q_1,\, b) = q_2 & \delta(q_2,\, c) = q_3\\ \delta(q_3,\, c) &=\ q_3 & \delta(q_3,\, d) = q_0 \end{split}$$

05) Mostre a sequência de configurações assumidas pelo AFD abaixo durante a análise das cadeias abbca e abaac. Determine se essas cadeias pertencem ou não a linguagem reconhecida pelo AFD.

$$\begin{split} M &= (\{q_0,\,q_1\},\,\{\,a,\,b,\,c\,\,\},\,\delta,\,q_0,\,\{q_1\})\\ \delta(q_0,\,a) &= \,\,q_1 & \delta(q_1,\,b) = q_1 & \delta(q_1,\,c) = q_0 \end{split}$$

$$\begin{array}{ll} \textbf{06)} \mbox{ Seja M um AFN com } M = (\{\ q_0,\ q_1,\ q_2\},\ \{\ 0,\ 1\ \},\ \delta,\ q_0,\ \{q_1\})\ e \\ \delta(q_0,\ 0) = \{q_0\ ,\ q_1\} & \delta(q_1,\ 0) = \{q_2\} & \delta(q_2,\ 1) = \{q_2\} \\ \delta(q_0,\ 1) = \{q_1\} & \delta(q_1,\ 1) = \{q_2\} \end{array}$$

Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.

$$\begin{array}{ll} \textbf{07)} \mbox{ Seja M um AFN com } M = (\{\ q_0,\ q_1,\ q_2\},\ \{\ 0,\ 1\ \},\ \delta,\ q_0,\ \{q_1\})\ e \\ \delta(q_0,\ 0) = \{q_0\} & \delta(q_1,\ 0) = \{q_2\} & \delta(q_2,\ 0) = \{q_2\} \\ \delta(q_0,\ 1) = \{q_1\} & \delta(q_1,\ 1) = \{\ q_1,\ q_2\} & \delta(q_2,\ 1) = \{q_1\} \end{array}$$

Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.

$$\begin{array}{ll} \textbf{08)} \ \text{Seja M um AFN com M} = (\{\ q_0,\ q_1,\ q_2,\ q_f\},\ \{\ a,\ b\ \},\ \delta,\ q_0,\ \{q_f\})\ e \\ & \delta(q_0,\ a) = \{q_1\} \qquad \delta(q_1,\ a) = \{q_1,\ q_f\} \qquad \delta(q_2,\ a) = \{q_2,\ q_f\} \qquad \delta(q_f,\ a) = \{q_f\} \\ & \delta(q_0,\ b) = \{q_2\} \qquad \delta(q_1,\ b) = \{q_1\} \qquad \delta(q_2,\ b) = \{q_2\} \qquad \delta(q_f,\ b) = \{q_f\} \\ & \text{Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.} \end{array}$$

$$\begin{array}{ll} \textbf{09)} \ \text{Seja M um AFN com M} = (\{\ q_0,\ q_1,\ q_2,\ q_f\},\ \{\ a,b\ \},\ \delta,\ q_0,\ \{q_f\})\ e \\ \delta(q_0,\ a) = \{q_1\} & \delta(q_1,\ a) = \{q_1,\ q_f\} & \delta(q_2,\ a) = \{q_2\} \\ \delta(q_0,\ b) = \{q_2\} & \delta(q_1,\ b) = \{q_1\} & \delta(q_2,\ b) = \{q_2,\ q_f\} \\ \text{Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.} \end{array}$$

10) Seja M um AFN com M = ({ q₀, q₁, q₂, q_f}, { a, b }, δ, q₀, {q_f}) e
$$\delta(q_0, a) = \{q_0, q_1\}$$
 $\delta(q_1, a) = \{q_f\}$ $\delta(q_f, a) = \{q_f\}$ $\delta(q_f, b) = \{q_f\}$ $\delta(q_f, b) = \{q_f\}$ Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.

11) Seja L = {ab*c*} reconhecida pelo AFN com M = ({ q₀, q₁, q₂}, { a, b }, δ, q₀, { q₁, q₂}) e
$$\delta(q_0, a) = \{q_1, q_2\}$$
 $\delta(q_1, b) = \{q_1, q_2\}$ $\delta(q_2, c) = \{q_2\}$ Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.

12) Seja L = $\{w \in \{a,b,c,d\}^* \mid w \text{ possui a subcadeia abcd}\}$ reconhecida pelo AFN com

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b, c, d\}, \delta, q_0, \{q_4\}) e$$

$$\delta(q_0, a) = \{q_0, q_1\} \qquad \delta(q_0, b) = \{q_0\} \qquad \qquad \delta(q_0, c) = \{q_0\} \qquad \qquad \delta(q_0, d) = \{q_0\}$$

$$\delta(q_1, b) = \{q_2\}$$
 $\delta(q_2, c) = \{q_3\}$ $\delta(q_3, d) = \{q_4\}$

$$\delta(q_4, a) = \{q_4\}$$
 $\delta(q_4, b) = \{q_4\}$ $\delta(q_4, c) = \{q_4\}$ $\delta(q_4, d) = \{q_4\}$

Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.

13) Seja L = $\{w \in \{0,1\}^* \mid w \text{ possui o símbolo } 1 \text{ na terceira posição a partir do final} \}$ reconhecida pelo AFN com M = $(\{q_1, q_2, q_3, q_4\}, \{0,1\}, \delta, q_1, \{q_4\})$ e

$$\delta(q_1, 0) = \{q_1\}$$
 $\delta(q_1, 1) = \{q_1, q_2\}$

$$\delta(q_2, 0) = \{q_3\}$$
 $\delta(q_2, 1) = \{q_3\}$

$$\delta(q_3, 0) = \{q_4\}$$
 $\delta(q_3, 1) = \{q_4\}$

Mostre 5 cadeias reconhecidas por M. Encontre o AFD equivalente.

14) Seja M um AFD com estados A, B, C, D e E, sendo A o estado inicial e E o estado final. Os símbolos de entrada são 0 e 1, e δ como na tabela abaixo. Mostre 5 cadeias reconhecidas por M. Encontre o AFM deste autômato. A tabela de transição de M é

δ	0	1
A	В	D
В	C	Е
С	В	Е
D	C	Е
Е	Е	Е

15) O Autômato Finito não Determinístico M reconhece a Linguagem $L = \{w \mid w \text{ possui aa como sufixo}\}$, então $M = \{\{q_0, q_1, q_2\}, \{a,b\}, \delta, q_0, \{q_2\}\}\}$. Encontre um Autômato Finito Determinístico equivalente.

δ_1	a	b
q_0	q_0 , q_1	q_0
q_1	q_2	q_4
q_2	-	-

16) Verifique que o AFD abaixo é mínimo, aplicando a ele o processo de minimização, e mostrando que o resultado final é isomorfo do AFD inicial. Seja M o AFD com estados A, B, C, D, E e F, sendo A o estado inicial; e F o único estado final. Os símbolos de entrada são a e b. A tabela de transição de M é

δ	a	b
A	В	A
В	C	В
С	D	C
D	Е	D
Е	F	Е
F	A	F

- 17) Construa um AFD mínimo que aceite a linguagem L no alfabeto $\Sigma = \{a, b\}$, com L = $\{ cdxcd \mid c, d \in \Sigma, x \in \Sigma^* \}$
- **18)** Considere um Autômato Finito Determinístico $M = \{\{q_0, q_1, q_2, q_3, q_4\}, \{a,b\}, \delta, q_0, \{q_3,q_4\}\}$. Mostre 5 cadeias reconhecidas por M. Encontre o AFD M' mínimo.

δ	a	b
q_0	q_1	ı
q_1	q_3	q_2
q_2	q_4	q_2
q_3	q_3	q_2
q ₄	q ₃	q_2

19) Considere um Autômato Finito Determinístico $M = \{\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a,b\}, \delta, q_0, \{q_2, q_3, q_4\}\}$. Mostre 5 cadeias reconhecidas por M. Encontre o AFD M' mínimo.

δ	a	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_4	q_5
q_3	q_4	q_5
q_4	q ₄	q_5
q_5	q_5	q_5

20) Considere um Autômato Finito Determinístico $M = \{\{q_0, q_1, q_2, q_3, q_4\}, \{a,b,c\}, \delta, q_0, \{q_2, q_4\}\}\}$. Mostre 5 cadeias reconhecidas por M. Encontre o AFD M' mínimo.

. Lincom	10 0 7 11 .	D 141 111	11111110.
δ	a	b	C
q_0	q_0	q_1	q_3
q_1	-	q_1	q_2
q_2	-	q_3	q_2
q_3	q_4	-	q_3
q ₄	q ₄	q_1	-

21) Considere um Autômato Finito Determinístico $M = \{\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a,b\}, \delta, q_0, \{q_2, q_3\}\}\}$. Mostre 5 cadeias reconhecidas por M. Encontre o AFD M' mínimo.

δ	a	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_4	q_5
q_3	q_4	q_5
q ₄	q ₄	q ₅

22) Considere um Autômato Finito $M = \{\{q_1, q_2, q_3, q_4\}, \{a,b\}, \delta, q_1, \{q_4\}\}\}$. Mostre 5 cadeias reconhecidas por M. Encontre o AFD M' mínimo.

δ	a	b
q_1	$\{q_1, q_2\}$	$\{q_1\}$
q_2	$\{q_{3}\}$	1
q_3	-	$\{q_4\}$
q_4	-	•

23) Considere a Gramática Linear à Direita, $G = (\{S, A, B\}, \{a,b\}, P, S)$, onde P é dado por:

$$S \rightarrow A$$

$$A \rightarrow aB$$

$$B \rightarrow aC \mid bB$$

$$C \rightarrow aC \mid bB \mid \lambda$$

Mostre 5 cadeias geradas por G. Encontre o Autômato Finito $M = \{Q, \{a,b\}, \delta, S, F\}$ que reconhece a linguagem gerada por G. Desenhe o autômato.

24) Considere a Gramática Linear à Direita, $G = (\{S, A, B, C\}, \{a, b, c\}, P, S)$, onde P é dado por:

$$P = \{ S \rightarrow aA, A \rightarrow bB, B \rightarrow cC, C \rightarrow c \}$$

Mostre 5 cadeias geradas por G. Encontre o Autômato Finito $M = \{Q, \{a,b,c\}, \delta, S, F\}$ que reconhece a linguagem gerada por G.

25) Considere a Gramática Linear à Direita, $G = (\{S, X, Y\}, \{a,b,c\}, P, S)$, onde P é dado por:

$$P = \{ S \rightarrow aX \mid \lambda, X \rightarrow bX \mid bbY \mid c, Y \rightarrow Yc \mid cc \mid abc \mid \lambda \}$$

Mostre 5 cadeias geradas por G. Encontre o Autômato Finito $M = \{Q, \{a,b,c\}, \delta, S, F\}$ que reconhece a linguagem gerada por G.

26) Considere o Autômato Finito M que reconhece a Linguagem $L = \{w \mid w \text{ possui aa ou bb como subcadeia}\}$, então $M = \{\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\}\}$

δ	a	b
q_0	q_1	q_2
q_1	q_3	q_2
q_2	q_1	q_3
q_3	q_3	q_3

Encontre a Gramática $G = (V, \{a,b\}, P, S)$ que reconhece a linguagem gerada por G

27) Dados os autômatos M_1 e M_2 como definidos abaixo, encontre $M_3 = M_1$. M_2 e $M_4 = M_1$. Assim M3 vai ser o resultado da concatenação de M_1 com M_2 e M4 o complemento de M_1

$$M_1$$
 reconhece a Linguagem $L_1 = \{w \mid w \text{ possui aa como prefixo}\}$, então

$$M_1 = \{ \{q_0, q_1, q_2, q_3, q_4\}, \{a,b\}, \delta_1, q_0, \{q_2\} \}$$

 M_2 reconhece a Linguagem $L_2 = \{w \mid w \text{ possui aa ou bb como subcadeia}\}$, então

$$M_2 = \{ \{q_5, q_6, q_7, q_8\}, \{a,b\}, \delta_2, q_5, \{q_8\} \}$$

δ_1	a	b
q_0	q_1	q_3
q_1	q_2	q_4
q_2	q_2	q_2
q_3	q_3	q_3
Q ₄	q_4	q_4

δ_2	a	b
q_5	q_6	q_7
q_6	q_8	q_7
q_7	q_6	q_8
q_8	q_8	q_8

- 28) Construir um AFN que aceita a linguagem associada às seguintes ER:
- a) $r = a^* (a a + b b)$
- b) r = (a + b)* (a + b b)
- c) $r = (a \ a) * (b \ b) * b$
- **29)** Construa a Expressão Regular (ER) que represente as linguagens sobre $\Sigma = \{a, b, c, d\}$
 - a) {w | w possui no mínimo um símbolo a}
 - b) {w | w possui exatamente dois símbolos a}
 - c) {w | w possui um número par de símbolos a}
 - d) {w | w é iniciada com o símbolo a e termina com o símbolo b ou c}
 - e) {w | w contem apenas os símbolos a, b, c com no mínimo um símbolo}
- **30)** Construa a Expressão Regular (ER), D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - a) $N = \{números naturais decimais sem sinal\}$ sobre D
 - b) $R = \{\text{números reais decimais sem sinal}\}\ \text{sobre } D \cup \{.\}$
 - c) L = {números reais decimais com sinal} sobre D \cup {., +, -, λ }