Paper Template

Jennifer Lin

Northwestern University

Sample Abstract

Contents

	Introduction 1.1 A Subsection	1 1
2	Tables and Graphics2.1 Math Equations	2 3
3	Insert Code	3
4	Multiple Columns text	4

1 Introduction

Begin Writing paper here

1.1 A Subsection

I am citing a paper here Graham et al. (2009)

2 Tables and Graphics

Here is a table using the booktabs package

Table 1: Caption for the Table

Instances				
Foundation	Democrat	Republican	t	Effect Size (d)
Harm	9.03	10.7	-0.867	-0.144
Fairness	2.04	2.84	-1.260	-0.222
Ingroup	3.34	5.34	-2.487*	-0.431
Authority	3.20	8.97	-5.053***	-1.007
Purity	1.88	4.06	-4.347***	-0.714

Notes: $(*)p = .1, *p = .05, **p = .01, ***p \le .001$

Here is a Figure

Figure 1: Caption for the graph

2.1 Math Equations

Here is a math equation in two ways

$$E = mc^2 (1)$$

$$E = mc^2$$

3 Insert Code

```
1 import numpy as np
2
  def incmatrix (genl1, genl2):
3
           m = len(genl1)
4
           n = len(genl2)
5
           M = None #to become the incidence matrix
6
           VT = np. zeros((n*m, 1), int) #dummy variable
7
8
  #compute the bitwise xor matrix
           M1 = bitxormatrix (genl1)
10
           M2 = np. triu (bitxormatrix (genl2),1)
11
12
13 for i in range (m-1):
  for j in range (i+1, m):
14
15
           [r,c] = np. where (M2 == M1[i,j])
16 for k in range(len(r)):
           VT[(i)*n + r[k]] = 1;
17
           VT[(i)*n + c[k]] = 1;
18
           VT[(j)*n + r[k]] = 1;
19
           VT[(j)*n + c[k]] = 1;
20
21
22 if M is None:
           M = np.copy(VT)
23
24 else:
           M = np.concatenate((M, VT), 1)
25
26
```

```
27 VT = np.zeros((n*m,1), int)
28
29 return M
```

4 Multiple Columns text

thing 1 thing 2

References

Graham, J., J. Haidt, and B. A. Nosek (2009). Liberals and conservatives rely on different sets of moral foundations. *Journal of personality and social psychology* 96(5), 1029.