Práctica 2 :Convolución lineal y circular utilizando la DFT

21/03/2024

I. Objetivos

- Realizar operaciones de suavizado y de reducción de ruido en imágenes utilizando filtros espaciales de bloque y binomiales.
- Realizar operaciones de detección de bordes en imágenes, tanto limpias como ruidosas, utilizando filtros basados en aproximaciones de gradientes y laplacianos, así como derivadas de primer y segundo orden de funciones Gausianas (binomiales).
- Mejorar la nitidez de las imágenes sin ruido y con ruido usando los filtros unsharp masking.

II. Introducción

Durante la realización de esta práctica se llevó a cabo una pequeña investigación que ayuda a la compresión del tema, ya que hay muchos elementos intrínsecos que complican los cálculos matemáticos, por ello tener una buena defición ayuda a mentalizar dichos cálculos y que sea más sencillo.

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

En el caso anterior definimos la operación de acuerdo a los elementos que se lleven se logra un efecto u otro.

Esta expresión representa la convolución de las funciones (f) y (g). En términos generales, la convolución es una operación que describe cómo la forma de una función es modificada por la otra. En este caso, (f) y (g) son las dos funciones que se están convolucionando, y τ es la variable de integración. La integral se extiende desde $-\infty$ hasta $+\infty$, lo que significa que se consideran todos los posibles valores de τ .

Partimos de la idea de una convolución para poder tomar entender lo que son los filtros

III. Desarrollo

Actividad 1

Para todos los puntos siguientes, utilizar una imagen sin ruido y otra imagen con ruido. La imagen con ruido se puede generar a partir de la imagen sin ruido usando el siguiente comando de MATLAB: J = IMNOISE(I, 'TIPO'), donde TIPO es una cadena que puede tomar valores 'gaussian', 'localvar', etc.

Solución

El ruido es un valor no deseado, por ello si ya se tiene una imagen que tiene valores establecidos, sólo se tiene que agregar un valor aleatorio a cada pixel para decir que tiene ruido con respecto a la imagen original, muestro el resultado de las dos imágenes, el código se anexa en colab.

Actividad 2

Aplicar los filtros paso bajas de bloque a la imagen sin ruido y a la imagen con ruido usando filtros de orden 3x3, 5x5, 7x7 y 11x11.

Solución

La fórmula para crear este tipo de filtros es:

$$M_{N\times N} = \frac{1}{N^2} \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1_N \end{bmatrix}$$

Lo que dice la anterior ecuación es que se crea una matriz NxN dimensiones (cuadrada) donde todos los elementos de la matriz tienen un valor de 1, y el valor que multiplica a la matriz es 1 entre el numero de elementos de la matriz o igual a $\frac{1}{N^2}$.

Para el caso de 3x3 es el siguiente:

$$M_{3\times3} = \frac{1}{3^2} \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix}$$

Ahora resolvamos en código para automatizar en diferentes valores de N y obtenemos el siguiente resultado:

Actividad 3

Aplicar los filtros paso bajas binomiales a la imagen sin ruido y a la imagen con ruido usando filtros de orden 3x3, 5x5, 7x7 y 11x11.

Solución:

Actividad 4

- 1. Aplicar a la imagen sin ruido y con ruido los filtros basados en la primera derivada de gausiana o detectores de borde siguientes:
 - De bloque [1 -1].
 - Prewitt en la dirección X y en la dirección Y.
 - Sobel en la dirección X y en la dirección Y.
 - Basados en la primera derivada de Gaussiana de orden 5x5, 7x7 y 11x11.

Actividad 5

- 1. De igual manera, aplicar a la imagen sin ruido y a la imagen con ruido los filtros basados en la segunda derivada de gausiana siguientes:
 - Laplaciano
 - Basados en la segunda derivada de Gaussiana de orden 5x5, 7x7 y 11x11.

Actividad 6

- 1. Difuminar las imágenes sin ruido y con ruido usando un filtro paso bajas de orden 5x5, de tal manera que se obtenga una imagen sin ruido y con pérdida de nitidez y otra imagen con ruido y perdida de nitidez. Para cada uno de los siguientes incisos, filtrar las imágenes utilizando el filtro unsharp masking encontrado con los siguientes tipos de filtro paso bajas:
 - Filtro paso bajas de bloque de orden 3x3 y 7x7.
 - Filtro paso bajas binomial de orden 3x3 y 7x7.

DESARROLLO

.

Resultados

Conclusiones:

Codigo Fuente

 ${\#section.unnumbered}$

Bibliografía

Referencia: