ALGEBRA Chapter 21

2th
Session

DESIGUALDADES

¿QUIÉN INVENTÓ LOS SÍMBOLOS DE LAS DESIGUALDADES >; < ?

Los símbolos < y > se introdujeron por primera vez por el matemático inglés Thomas Harriot (1560-1621) en su obra Artis Analyticae Praxis publicada en Londres en 1631. Se comenta que Harriot fue inspirado por un símbolo que había visto en el brazo de un nativo americano (ver Figura) para "inventar" los símbolos de las desigualdades.

Thomas Harriot

HELICO

HELICO THEORY

ales

Ley de tricotomía: Para dos números reales a y b solo se cumple una de las siguientes proposiciones: a < b; a = b; a > b

Propiedades

1)
$$Si \quad a > b \quad y \quad b > c$$

2)
$$Si \quad a > b \quad y \quad m \in \mathbb{R}^+$$

$$a+m>b+m$$

$$a-m>b-m$$

3) Si
$$a > b$$
 y $m > 0$

$$a \cdot m > b \cdot m$$

$$\frac{a}{m} > \frac{b}{m}$$

Intervalos

Definición:

Es un subconjunto de los números reales, generalmente comprendido entre 2 valores extremos.

Ejemplo:

$$A = \{x \in \mathbb{R} / 2 \le x < 12 \}$$

$$B = \{x \in \mathbb{R} / -5 \le x \le 6\}$$

Clasificación

- Cerrado [a; b]
 Abierto (a; b)
 Semicerrado (a; b)

II. NO ACOTADOS

I. Intervalo acotado

INTERVALOS	Desigualdad	Notación de Intervalos	Representación Gráfica
1 Cerrado	$a \le x \le b$	$x \in [a;b]$	$-\infty$ a b $+\infty$
2 Abierto	a < x < b	$x \in \langle a; b \rangle$	$-\infty$ a b $+\infty$
3 Semiabierto	$a \le x < b$	$x \in [a;b\rangle$	$-\infty$ a b $+\infty$
	$a < x \le b$	$x \in \langle a; b]$	$-\infty$ a b $+\infty$

II. Intervalo no acotado

Desigualdad	Notación de Intervalos	Representación Gráfica
$x \leq b$	$x \in \langle -\infty; b]$	$b \rightarrow \infty$
<i>x</i> < <i>b</i>	$x \in \langle -\infty; b \rangle$	$b \rightarrow +\infty$
$x \ge b$	$x \in [b; \infty)$	$-\infty$ b $+\infty$
x > b	$x \in \langle b; \infty \rangle$	$-\infty$ b $+\infty$

Sean $A = \langle 3; 10 \rangle y B = \langle 7; 12 \rangle$. Halle $A \cap B$

RESOLUCIÓN:

Rpta.: $A \cap B = \langle 7; 10 \rangle$

Sabiendo que $M = [5; 10] y N = \langle 7; 12 \rangle$. Halle $M \cup N$

RESOLUCIÓN:

Rpta.: $M \cup N = [5; 12)$

Si
$$A = [-2; 5]$$
 y $B = [2; 6]$. Halle $A - B$

RESOLUCIÓN:

Rpta.: A - B = [-2; 2)

Si $x \in [1; 4]$, indique el intervalo al cual pertenece 3x - 2

RESOLUCIÓN:

Rpta.. [1; 10]

Si se sabe que $x \in \langle 1; 4 \rangle$, indique el máximo valor entero al cual pertenece $\frac{2x-3}{5}$, siendo esta la edad de Victoria. ¿Cuál es esa edad?

RESOLUCIÓN

Máx. = 1

Rpta. Victoria tiene 1 año

Mirtha le pregunta a su madre acerca del número de feriados nacionales que tuvo el año 2021, a lo cual su mamá le responde que para averiguarlo tendría que indicar el máximo valor entero del intervalo al cual pertenece la expresión -x + 9, si se tiene que $x \in [3; 8]$

RESOLUCIÓN:

$$x \in [1,6]$$
 Max. Valor entero

Rpta.: Hay 6 feriados

Si $(2x + 3) \in \langle 5; 13 \rangle$, halle el intervalo al cual pertenece -x + 1

RESOLUCIÓN:

