Introduction to SVM

Charles Moseley, Aditya Joshi, Joseph Zhang

Support Vector Machines

Support Vector Machines are supervised learning models, highly used for data analysis and recognizing patterns.

It is help for classification and regression.

We will mainly discuss the classification today.

SVM Algorithm

Given a training set, which is marked in two categories respectively.

SVM training algorithm builds a model that assigns new data into one or the other categories, to make it a non-probabilistic binary linear classifier.

SVM model is training a clear 'gap' to separate two categories, as wide as possible.

Then, the original data in the two categories will be predicted to a category based on which side of the 'gap' they fall on.

Eg. Two features lie on two axes, two data categories mapped How to separate two categories of data perfectly?

The hyperplane that maximize the margin between two categories of data

The vector data that margin lines touch are Support Vectors

(circled)

It also works on non-linearly separable dataset

Use kernel trick, interpolation Z axis for non-linear data hyperplane to separate data

model

Let us see how to use it

We now use the built-in dataset Breast Cancer to train our

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

Use the built-in dataset Breast Cancer for sklearn
In [3]: from sklearn.datasets import load_breast_cancer

Let's check our dataset:

569 instances, 30 numeric attributes, to predict the tumor is malignant or benign; # we use cancer 'data' and 'target' to do the analysis, to predict its malignant or benign.

```
In [11]: cr = load breast cancer()
                                                                                       print(cr['data'])
In [12]: cr.keys()
                                                                                        [[1.799e+01 1.038e+01 1.228e+02 ... 2.654e-01 4.601e-01 1.189e-01]
Out[12]: dict keys(['data', 'target', 'frame', 'target names', 'DESCR', 'feature names',
                                                                                         [2.057e+01 1.777e+01 1.329e+02 ... 1.860e-01 2.750e-01 8.902e-02]
         'filename', 'data module'])
                                                                                         [1.969e+01 2.125e+01 1.300e+02 ... 2.430e-01 3.613e-01 8.758e-02]
                                                                                        print(cr['target'])
In [15]: print(cr['DESCR'])
         .. _breast_cancer_dataset:
         Breast cancer wisconsin (diagnostic) dataset
                                                                                         print(cr['target names'])
         **Data Set Characteristics:**
                                                                                         ['malignant' 'benign']
             :Number of Instances: 569
```

Data Preparation

Sort out the attributes of cancer 'data' with 'feature_names' and cancer 'target' into new dataset, then split the dataset into train and test

```
crd = pd.DataFrame(cr['data'], columns=cr['feature names'])
crd.head(2)
                                                                        mean
                                        mean
                                                     mean
           mean
                     mean
                            mean
          texture perimeter
                                   smoothness compactness concavity
                             area
                                                                               symmetry
                                                                       points
                                                    n from sklearn.model selection import train test split
    17 99
            10.38
                     122.8 1001.0
                                       0 11840
                          1326.0
                                       0.08474
                     132.9
                                                      x = crd
                                                      y = cr['target']
2 rows x 30 columns
                                                      X train, X test, y train, y test = train test split(
                                                      x, y, test size=0.3)
                                                                                                # 30% proportion for test data split
```

Training the SVM model, using GridSearchCV for best parameter

C (Regularisation): C is the penalty parameter, it tells SVM optimisation how much error is bearable, C is high it will classify all the data points correctly, also there is a chance to overfit;

Gamma: It defines how far influences the calculation of plausible line of separation, low gamma means far away points also be considered to get the decision boundary.

Verbose: control the verbosity, 3 is a normal setting. Higher verbosity gives more messages, and may burn your

```
from sklearn.svm import SVC # capital SVC = support vector classification
from sklearn.model selection import GridSearchCV
param = {'C':[0.1,1,10,100,1000], 'gamma':[1,0.1,0.01,0.001,0.0001]}
gd = GridSearchCV(SVC(), param, verbose=3) # give a number for verbose to test
                                                 gd.best_params_
                                                 {'C': 1, 'gamma': 0.0001}
gd.fit(x train, y train)
Fitting 5 folds for each of 25 candidates, totalling 125 fits
                                                 gd.best estimator
0.05
                                                       SVC
SVC(C=1, gamma=0.0001)
0.05
0.05
```

Prediction and Interpretation

After training model, test the prediction, call the confusion matrix and classification report

Confusion Matrix: Report diagonal values

```
gd_pred = gd.predict(x_test)

from sklearn.metrics import classification_report, confusion_matrix

print(confusion_matrix(y_test,gd_pred))
print('\n')
print(classification_report(y_test, gd_pred))

[[ 56   6]
   [ 4 105]]
```

	precision	recall	f1-score	support
0	0.93	0.90	0.92	62
1	0.95	0.96	0.95	109
accuracy			0.94	171
macro avg	0.94	0.93	0.94	171
weighted avg	0.94	0.94	0.94	171

Actual Values

Negative (0)

Positive (1)	TP	FP
Negative (0)	FN	TN

Predicted Values

Positive (1)

Understand classification report

Accuracy: how often our classifier is right

Precision: how often the predicted positive is right

Recall: the model's ability to predict positive values,

How often model actually predict correct positive

F1-score: harmonic mean of recall and precision,

Taking both of them into consideration

Support: Actual occurrence in the training model

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Recall =
$$\frac{TP}{TP + FN}$$

Hyperplanes

For a p dimensional data space, a hyperplane is a p-1 dimensional plane that divides the data into two groups of classification. For $X_1 cdots X_p$ attributes, the hyperplane is of the form,

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$
, (Hastie)

and satisfies properties that for $t_1 cdots t_n \in \{1, -1\}$ and $i \in \{1 cdots n\}$ where n is the number of observations in the data,

$$t_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) > 0$$
. (Hastie)

Maximal Margin Hyperplane

The goal of the maximal margin hyperplane, is to create a hyperplane with the greatest margin between the hyperplane and the nearest data points or support vectors.

In matrix notation,

$$t_i y(\mathbf{x}_i) = t_i(\mathbf{w}^T \mathbf{x}_i + w_0) > 0$$
. (Bishop)

The point \mathbf{x}_i has a distance from the hyperplane of,

$$\frac{t_i y(\mathbf{x}_i)}{||\mathbf{w}||}$$
. (Bishop)

The margin is the distance between the hyperplane and the closest points to the hyperplane (support vectors),

$$\min_{i=1}^{n} \frac{t_i y(\mathbf{x}_i)}{||\mathbf{w}||}.$$
 (Murphy)

We add constraint or rescaling factor,

$$\sum_{j=1}^{p} \beta_j^2 = 1, \text{ (Hastie)}$$

so that for a support vector \mathbf{x}_i , $t_i y(\mathbf{x}_i) = 1$.

So we can rewrite the previous constraint as,

$$t_i y(\mathbf{x}_i) = t_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1$$
, (Bishop)

for all i.

And, now we seek the maximal margin by,

$$\max_{\mathbf{w}, w_0} \min_{i=1}^n \frac{t_i y(\mathbf{x}_i)}{||\mathbf{w}||}. \text{ (Murphy)}$$

which can be simplified to minimizing $||\mathbf{w}||^2$,

$$\min_{\mathbf{w}, w_0} \frac{1}{2} ||\mathbf{w}||^2. \text{ (Murphy)}$$

Soft Margins

What if our data cannot be perfectly separated? That is where soft margins come in. We add the soft margin principle to the maximal margin classifier to get the support vector classifier or soft margin classifier. (Hastie)

The support vector classifier allows for some data points to be on the wrong side of the margin and even on the wrong side of the hyperplane subject to a tuning parameter. (Hastie)

We introduce slack variables ϵ_i for $i \in (1 \dots n)$ where,

 $\epsilon_i = 0$, for data points on the correct side of the margin, $\epsilon_i = (t_i - y(\mathbf{x}_i))$, for data points on the wrong side of the margin.

So, data points on the hyperplane have $\epsilon_i = 1$, and data points on the wrong side of the hyperplane have $\epsilon_i > 1$. And any points on the wrong side of the margin are considered support vectors.

Then we introduce the budget C where,

$$\sum_{i=1}^{n} \epsilon_i \le C, \text{ (Hastie)}$$

and again rewrite the previous constraint as,

$$t_i y(\mathbf{x}_i) = t_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1 - \epsilon_i$$
. (Bishop)

And now we seek the optimal support vector classifier by,

(Hinge Loss)
$$\min_{\mathbf{w}, w_0, \epsilon} \left(\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \epsilon_i \right). \text{ (Bishop)}$$

 X_1

(Hastie)

 X_1

Non-linear Classification

There are cases where it would be unsatisfactory to use a linear classifier for a particular data set. We need more flexibility in our model to handle these kind of data sets.

This is done by the use of kernels. Kernels are an efficient way to map our data in an extra dimension. Our support vector classifier now becomes a support vector machine. (Hastie)

Kernels

Essentially, kernels, $k(\mathbf{x}, \mathbf{x}')$, measure the similarity between two data points. There are many different ways to measure similarity, and hence there are many different kernels. In the case of a linear kernel,

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$
 (Bishop)

We can use other kernels to create a non-linear classifier such as a polynomial kernel,

$$k(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}')^d$$
 (Hastie)

where d is a positive integer, or a radial kernel,

$$k(\mathbf{x}, \mathbf{x'}) = exp(-\gamma \sum_{i=1}^{p} (x_{ij} - x_{i'j})^2) \text{ (Hastie)}$$

We use the kernels when seeking the optimal support vector classifier, then substitute the kernel into the classifier for classifying testing data.

The use of the linear kernel will return the same support vector classifier previously seen and looks like,

$$y(\mathbf{x}) = \beta_0 + \sum_{i=1}^{n} \alpha_i k(\mathbf{x_i}, \mathbf{x})$$
 (Hastie)

where $\alpha_i, i \in \{1...n\}$ are parameters for each observation and is non-zero only for non-support vectors.

The optimal support vector machine parameters are found by minimizing,

$$\sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} a_n a_m t_n t_m k(\mathbf{x_n}, \mathbf{x_m}) \text{ (Bishop)}$$

subject to constraints,

$$0 \le a_n \le C,$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Multiple Classes

There are a couple of ways to do multi-class SVM.

The one-vs-all method trains one class as a positive and the rest of the classes as a negative for each class. The one-vs-one method trains each pair of classes.

Figure 14.14 (a) The one-versus-rest approach. The green region is predicted to be both class 1 and class 2. (b) The one-versus-one approach. The label of the green region is ambiguous. Based on Figure 4.2 of (Bishop 2006a).

(Murphy)

Comparison with other Classifiers

• SVM vs Logistic Regression:

SVM can handle non-linear solutions whereas logistic regression can only handle linear solutions.

Linear SVM handles outliers better, as it derives maximum margin solution.

Hinge loss in SVM outperforms log loss in LR.

• SVM vs Random Forest

Random Forest is intrinsically suited for multiclass problems, while SVM is intrinsically two-class.

For a classification problem Random Forest gives you probability of belonging to class. SVM gives you distance to the boundary

References

Hastie, Trevor; James, Gareth; Witten, Daniela; Tibshirani, Robert; Taylor, Jonathan. "An Introduction to Statistical Learning with applications in Python". "https://www.statlearning.com/". 2023.

Bishop, Christopher M. "Pattern Recognition and Machine Learning". Springer. 978-0387-31073-2. 2006.

Murphy, Kevin P. "Machine Learning: A Probabilistic Perspective". The MIT Press. 978-0-262-01802-9. 2012

Demonstration Screenshots

VISUALISING THE DATA


```
#will simply tell you how many Malignent and Benign cases we have.
#Malignent= 200~ and Benign = 350~ approx.
sns.countplot(df_cancer['target'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fba9340f650>

#plotting a scatter plot diagram for mean area anf mean smoothness, you can plot any feature combination scatterplot

sns.scatterplot(x='mean area',y='mean smoothness',hue='target',data =df_cancer)

<matplotlib.axes._subplots.AxesSubplot at 0x7fba93971510>

Python

```
#here we made a heatmap figure of correlation of all the columns
plt.figure(figsize =(20,10))
sns.heatmap(df_cancer.corr(), annot =True)
```

mean radius - 1 0.32 1 0.99 0.17 0.51 0.68 0.82 0.15 -0.31 0.68 0.097 0.67 0.74 -0.22 0.21 0.19 0.38 -0.1 -0.045 0.97 0.3 0.97 0.94 0.12 0.41 0.53 0.74 0.16 0.00710	0.73
mean texture - 0.32 1 0.33 0.32 -0.023 0.24 0.3 0.29 0.071-0.076 0.28 0.39 0.28 0.26 0.0066 0.19 0.14 0.16 0.00910.054 0.35 0.91 0.36 0.34 0.078 0.28 0.3 0.3 0.11 0.12 0	1.42
mean perimeter 1 0.33 1 0.99 0.21 0.56 0.72 0.85 0.18 0.26 0.69 0.087 0.69 0.74 0.2 0.25 0.23 0.41 0.0820.005 0.97 0.3 0.97 0.94 0.15 0.46 0.56 0.77 0.19 0.051 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.74
mean area - 0.99 0.32 0.99 1 0.18 0.5 0.69 0.82 0.15 0.28 0.73 0.066 0.73 0.8 -0.17 0.21 0.21 0.37 0.072 0.02 0.96 0.29 0.96 0.96 0.12 0.39 0.51 0.72 0.140.00370	0.71 - 0.8
mean smoothness - 0.17 -0.023 0.21 0.18 1 0.66 0.52 0.55 0.56 0.58 0.3 0.068 0.3 0.25 0.33 0.32 0.25 0.38 0.2 0.28 0.21 0.036 0.24 0.21 0.81 0.47 0.43 0.5 0.39 0.5 -0.000 0.0	0.36
mean compactness - 0.51 0.24 0.56 0.5 0.66 1 0.88 0.83 0.6 0.57 0.5 0.046 0.55 0.46 0.14 0.74 0.57 0.64 0.23 0.51 0.54 0.25 0.59 0.51 0.57 0.87 0.82 0.82 0.51 0.69 4	
mean concavity - 0.68 0.3 0.72 0.69 0.52 0.88 1 0.92 0.5 0.34 0.63 0.076 0.66 0.62 0.099 0.67 0.69 0.68 0.18 0.45 0.69 0.3 0.73 0.68 0.45 0.75 0.88 0.86 0.41 0.51	-06
mean concave points - 0.82 0.29 0.85 0.82 0.55 0.83 0.92 1 0.46 0.17 0.7 0.021 0.71 0.69 0.028 0.49 0.44 0.62 0.095 0.26 0.83 0.29 0.86 0.81 0.45 0.67 0.75 0.91 0.38 0.37 0.000 0.0	0.78
mean symmetry - 0.15 0.071 0.18 0.15 0.56 0.6 0.5 0.46 1 0.48 0.3 0.13 0.31 0.22 0.19 0.42 0.34 0.39 0.45 0.33 0.19 0.091 0.22 0.18 0.43 0.47 0.43 0.43 0.47 0.43 0.49 0.44 0.49 0.44 0.45 0.45 0.45 0.45 0.45 0.45 0.45	
mean fractal dimension -0.31-0.076-0.26-0.28 0.58 0.57 0.34 0.17 0.48 1 0000110.16 0.04-0.09 0.4 0.56 0.45 0.34 0.35 0.69 0.25-0.051-0.21-0.23 0.5 0.46 0.35 0.18 0.33 0.77 0.	
radius error - 0.68 0.28 0.69 0.73 0.3 0.5 0.63 0.7 0.3 0.0001 1 0.21 0.97 0.95 0.16 0.36 0.33 0.51 0.24 0.23 0.72 0.19 0.72 0.75 0.14 0.29 0.38 0.53 0.095 0.05 0.05 0.05 0.05 0.05 0.05 0.0	
texture error -0.097 0.39 -0.0870.0660.0680.0460.0760.021 0.13 0.16 0.21 1 0.22 0.11 0.4 0.23 0.19 0.23 0.41 0.28 -0.11 0.41 -0.1 -0.0830.0740.0920.069-0.12 -0.13-0.0460.0	
perimeter error - 0.67 0.28 0.69 0.73 0.3 0.55 0.66 0.71 0.31 0.04 0.97 0.22 1 0.94 0.15 0.42 0.36 0.56 0.27 0.24 0.7 0.2 0.72 0.73 0.13 0.34 0.42 0.55 0.11 0.085 0.13 0.34 0.42 0.55 0.11 0.085 0.13 0.34 0.42 0.55 0.11 0.085 0.13 0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	100000
area error - 0.74 0.26 0.74 0.8 0.25 0.46 0.62 0.69 0.22 0.09 0.95 0.11 0.94 1 0.075 0.28 0.27 0.42 0.13 0.13 0.76 0.2 0.76 0.81 0.13 0.28 0.39 0.54 0.0740.018 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	-() 2
smoothness error -0.220.0066 -0.2 -0.17 0.33 0.14 0.099.0028 0.19 0.4 0.16 0.4 0.15 0.075 1 0.34 0.27 0.33 0.41 0.43 -0.23-0.075-0.22 -0.18 0.31 -0.0560.058 -0.1 -0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Section 1
	0.29
concavity error - 0.19 0.14 0.23 0.21 0.25 0.57 0.69 0.44 0.34 0.45 0.33 0.19 0.36 0.27 0.27 0.8 1 0.77 0.31 0.73 0.19 0.1 0.23 0.19 0.17 0.48 0.66 0.44 0.2	
concave points error - 0.38 0.16 0.41 0.37 0.38 0.64 0.68 0.62 0.39 0.34 0.51 0.23 0.56 0.42 0.33 0.74 0.77 1 0.31 0.61 0.36 0.087 0.39 0.34 0.22 0.45 0.55 0.6 0.14 0.31 0.32 0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34	7.771
symmetry error - 0.1 0.00910.0820.072 0.2 0.23 0.18 0.095 0.45 0.35 0.24 0.41 0.27 0.13 0.41 0.39 0.31 0.31 1 0.37 0.13-0.077 -0.1 -0.11-0.013 0.06 0.037 -0.03 0.09 0.0780.0 fractal dimension error -0.0430.0540.00550.02 0.28 0.51 0.45 0.26 0.33 0.69 0.23 0.28 0.24 0.13 0.43 0.8 0.73 0.61 0.37 1 -0.0370.00320.0010.023 0.17 0.39 0.38 0.22 0.11 0.59 0.0 0.0010	078
worst radius - 0.97 0.35 0.97 0.96 0.21 0.54 0.69 0.83 0.19 -0.25 0.72 -0.11 0.7 0.76 -0.23 0.2 0.19 0.36 -0.13-0.037 1 0.36 0.99 0.98 0.22 0.48 0.57 0.79 0.24 0.093-0	and the same of th
	0.2 0.46
worst perimeter - 0.97 0.36 0.97 0.96 0.24 0.59 0.73 0.86 0.22 0.21 0.72 -0.1 0.72 0.76 0.22 0.26 0.23 0.39 -0.1 -0.001 0.99 0.37 1 0.98 0.24 0.53 0.62 0.82 0.27 0.14 0.001 0.001 0.001 0.99 0.37 1 0.98 0.24 0.53 0.62 0.82 0.27 0.14 0.001 0.	
worst area - 0.94 0.34 0.94 0.96 0.21 0.51 0.68 0.81 0.18 -0.23 0.75 0.083 0.73 0.81 0.18 0.2 0.19 0.34 0.11 0.023 0.98 0.35 0.98 1 0.21 0.44 0.54 0.75 0.21 0.08 0	
worst smoothness - 0.12 0.078 0.15 0.12 0.81 0.57 0.45 0.45 0.43 0.5 0.14 0.074 0.13 0.13 0.23 0.17 0.22 0.013 0.17 0.22 0.23 0.24 0.21 1 0.57 0.52 0.55 0.49 0.62 0	0.4
worst compactness - 0.41 0.28 0.46 0.39 0.47 0.87 0.75 0.67 0.47 0.46 0.29 0.092 0.34 0.28 0.056 0.68 0.48 0.45 0.06 0.39 0.48 0.36 0.53 0.44 0.57 1 0.89 0.8 0.61 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.0	MAIN.
worst concavity - 0.53 0.3 0.56 0.51 0.43 0.82 0.88 0.75 0.43 0.35 0.38 0.069 0.42 0.39 0.058 0.64 0.66 0.55 0.037 0.38 0.57 0.37 0.62 0.54 0.52 0.89 1 0.86 0.53 0.69 0	and the same of th
	0.79
	0.42
	0.32
target -0.73 -0.42 -0.74 -0.71 -0.36 -0.6 -0.7 -0.78 -0.33 0.013 -0.570.0083-0.56 -0.55 0.067 -0.29 -0.25 -0.410.00650.078 -0.78 -0.78 -0.78 -0.73 -0.42 -0.59 -0.66 -0.79 -0.42 -0.32	1
	-
mean radius mean texture mean perimeter mean smoothness mean compactness mean concavity ean concavity ean concavity error smoothness error concavity error symmetry error symmetry error symmetry error worst radius worst serimeter worst smoothness worst concavity radius worst compactness worst concavity radius worst concavity radius worst compactness worst concavity rifactal dimension	arget
mean ramean ramean ramean ramean ramean ramean exymen ramean is smoothrucave por an symmmal dimen radius e texture e texture e texture e area se rimeter e rimeter e ramearis points e area e area e area se rimeter e ramearis points e area e area se rimeter e ramearis e spoints e area e area se rimeter e rimeter e rimeter e rimeter e area so othness e actuess e area se area e area concaviti y e spoints e area concaviti y e ramoothri rat compacti rat conca neave po neave po al dimen	4
mean re mean te mean perii mean symr mean concave p mean concave perimeter perimeter perimeter compactness concavity concave points symmetry symmetry worst remootl worst smootl worst compac worst compac worst concave p	
mean mean corr mean corr mean corr mean corr mean corr rai texi texi texi perim symm symm worst sr worst sr worst corr worst corr st fractal d	
mean mean nean nean nean nean nean nean	
mes mes fraction was a second of the second	

Confusion Matrix for LR

Confusion Matrix for SVM

Confusion Matrix for RF

