Méthodes assistées par ordinateur pour la description rigoureuse d'ensembles atteignables de problèmes linéaires contraints

Ivan Hasenohr

Doctorat sous la direction de Camille Pouchol, Yannick Privat et Christophe Zhang

Université Paris Cité

Groupe de Travail Modélisation, Analyse, Simulation

Sommaire

- Théorie du contrôle
- Non-atteignabilité
- 3 Preuves assistées par ordinateur
- Atteignabilité assistée par ordinateur
- Conclusion

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité
- 3 Preuves assistées par ordinateur
- 4 Atteignabilité assistée par ordinateur
- Conclusion

On appelle système contrôlé le système :

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \in \mathbb{R}^n \\ u(t) \in \mathcal{U}_0 \subset \mathbb{R}^m & \forall t \in [0, T], \end{cases}$$
 (S)

et on note $y(\cdot;y_0,u):[0,T]\to\mathbb{R}^n$ sa solution, ainsi que $\mathcal{U}=\{u\in L^2(0,T;\mathbb{R}^m), \forall t\in[0,T], u(t)\in\mathcal{U}_0\}$. En notant $(S_t)_{t\geq0}$ le semi-groupe engendré par A et L_T l'application entrée-sortie:

$$L_T: u \mapsto \int_0^T S_{T-t} Bu(t) dt,$$

on a:

$$y(T; y_0, u) = S_T y_0 + L_T u.$$

Soit $y_f \in \mathbb{R}^n$, soit $\mathcal{U} \subset L^2(0,T,\mathbb{R}^m)$. On dit que y_f est \mathcal{U} -atteignable pour (S) de y_0 en temps T si :

$$\exists u \in \mathcal{U}, \quad y(T; y_0, u) = y_f \iff \exists u \in \mathcal{U}, \quad L_T u = y_f - S_T y_0).$$

Par la suite, U_0 sera supposé convexe et compact, et on prendra $y_0 = 0$. On notera $L_T U$ l'ensemble atteignable.

Exemple : le tram

Considérons le système

$$\begin{cases} \dot{y} = Ay + Bu \\ y(0) = 0 \in \mathbb{R}^2 \\ u(t) \in [-M, M] \quad \forall t \in [0, T], \end{cases}$$

avec

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Exemple : le tram

Pour ce système, avec T = M = 1:

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité
- 3 Preuves assistées par ordinateur
- 4 Atteignabilité assistée par ordinateur
- Conclusion

Fonction support

Pour A convexe, fermé et non-vide dans un espace de Hilbert H, on appelle fonction support :

$$\sigma_A: \begin{cases} H & \to \mathbb{R} \cup \{+\infty\} \\ y & \mapsto \sup_{x \in A} \langle x, y \rangle. \end{cases}$$

En particulier :

$$\forall p_f \in \mathbb{R}^n, \quad \sigma_{L_T U}(p_f) = \sigma_U(L_T^* p_f).$$

Fonction support

Fonction support

Théorème de non-atteignabilité

On note:

$$J: \begin{cases} \mathbb{R}^n & \to \mathbb{R} \\ p_f & \mapsto \sigma_{\mathcal{U}}(L_T^* p_f) - \langle p_f, y_f \rangle. \end{cases}$$

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

On remarquera que ce résultat est également valable en dimension infinie.

Théorème de non-atteignabilité

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité
- 3 Preuves assistées par ordinateur
- 4 Atteignabilité assistée par ordinateur
- 6 Conclusion

Théorème assisté par ordinateur

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Théorème assisté par ordinateur

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Théorème

Soit $J_d: \mathbb{R}^n \to \mathbb{R}$ une discrétisation de J, et $e: \mathbb{R}^n \to \mathbb{R}_+^*$ tels que

$$\forall p_f \in \mathbb{R}^n, \quad J_d(p_f) - e(p_f) < J(p_f) < J_d(p_f) + e(p_f).$$

Alors s'il existe $p_f \in \mathbb{R}^n$ tel que $J_d(p_f) + e(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Discrétisation de l'équation adjointe

$$J: \begin{cases} \mathbb{R}^{n} & \to \mathbb{R} \\ p_{f} & \mapsto \sigma_{\mathcal{U}}(L_{T}^{*}p_{f}) - \langle p_{f}, y_{f} \rangle. \end{cases}$$

$$\sigma_{\mathcal{U}}: \begin{cases} L^{2}(0, T; \mathbb{R}^{m}) & \to \mathbb{R} \\ u & \mapsto \sup_{v \in L^{2}(0, T; \mathbb{R}^{m})} \langle u, v \rangle \end{cases}$$

$$L_{T}^{*}: \begin{cases} \mathbb{R}^{n} & \to L^{2}(0, T; \mathbb{R}^{m}) \\ p_{f} & \mapsto (t \mapsto B^{*}S_{T-t}^{*}p_{f}) \end{cases}$$

Discrétisation de l'équation adjointe

Fonction support

Comme on suppose \mathcal{U} de la forme :

$$\mathcal{U} = \{ u \in L^2(0, T; \mathbb{R}^m), \forall t \in [0, T], u(t) \in \mathcal{U}_0,$$

on a:

$$\forall u \in L^2(0,T;\mathbb{R}^m), \quad \sigma_{\mathcal{U}}(u) = \int_0^T \sigma_{\mathcal{U}_0}(u(t)) dt,$$

où $\sigma_{\mathcal{U}_0}$ est 1-homogène, et M- lipschitizienne (car $\mathcal{U}_0 \subset B(0,M) \subset \mathbb{R}^n$). On discrétise donc l'EDO adjointe avec un schéma d'ordre 1, Euler implicite.

Discrétisation de l'équation adjointe

Schéma numérique

$$(L_T^*)_d: p_f \mapsto \left(B^*(\operatorname{Id} - \Delta t A^*)^{N_t - i} p_f\right)_{i \in [[0, N_t - 1]]}$$

$$(\sigma_{\mathcal{U}})_d:(u_i)_{i\in \llbracket 0,N_T-1\rrbracket}\mapsto \sum_{i=0}^{N_t-1}\sigma_{\mathcal{U}_0}(u_i)$$

$$J_d: p_f \mapsto (\sigma_{\mathcal{U}})_d((L_T^*)_d p_f) - \langle p_f, y_f \rangle.$$

Majoration des erreurs de discrétisation

Théorème

Pour l'EDO adjointe :

$$\begin{cases} \dot{p}(t) = A^* p(t) & \forall t \in [0, T] \\ p(0) = p_f, \end{cases}$$

avec:

- $(p_n)_{n \in [0,N_t]}$ la discrétisation de p par le schéma d'Euler implicite
- $-A^*$ $m\alpha$ -accrétif, avec $\alpha \in [0, \frac{\pi}{2}]$.

Alors $\forall n \in [0, N_t],$

$$||p(t_n) - p_n|| \le \Delta t \min \left(\frac{1 + \sqrt{2}}{\cos(\alpha)} ||A^* p_f||, \frac{1}{2} t_n ||(A^*)^2 p_f|| \right).$$

Majoration des erreurs de discrétisation

Théorème

Sous les hypothèses précédentes, $\forall p_f \in \mathbb{R}^n$:

$$\left|J(p_f) - J_{\Delta t}(p_f)\right| \leq \Delta t \, M \|B\| \left(\frac{1}{2} T \|A\| \|p_f\| + \sum_{n=0}^{N_t-1} \|p(t_n) - p_n\|\right) + \|y_0\| \|p(T) - p_{N_t}\|.$$

En particulier : $|J(p_f) - J_{\Delta t}(p_f)| = O(\Delta t)$.

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut considérer la potentielle erreur et en tenir compte à chaque calcul :

En pratique, le package Intlab (sur Matlab) de Siegfried M. Rump s'en charge parfaitement.

Théorème avec erreurs

Théorème

Soit:

- $J_d: \mathbb{R}^n \to \mathbb{R}$ la discrétisation de J via le schéma d'Euler implicite
- $e_d: \mathbb{R}^n \to \mathbb{R}_+^*$ l'erreur totale de discrétisation
- $e_a: \mathbb{R}^n \to \mathbb{R}^*_+$ l'erreur totale d'arrondis lors du calcul de J_d .

On a alors:

$$\forall p_f \in \mathbb{R}^n, \quad J_d(p_f) - e_d(p_f) - e_d(p_f) < J(p_f) < J_d(p_f) + e_d(p_f) + e_d(p_f),$$

et s'il existe $p_f \in \mathbb{R}^n$ tel que $J_d(p_f) + e_d(p_f) + e_a(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Illustration

Dualité de Fenchel

Le problème de contrôle se reformule :

$$\inf_{u\in L^2(0,T;\mathbb{R}^m)} \delta_{\mathcal{U}}(u) + \delta_{\{y_f\}}(L_T u),$$

où, pour C un ensemble convexe fermé non-vide :

$$\delta_C(x) = \begin{cases} 0 & \text{si } x \in C \\ +\infty & \text{si } x \notin C. \end{cases}$$

Dualité de Fenchel

Le problème de contrôle se reformule :

$$\inf_{u\in L^2(0,T;\mathbb{R}^m)} \delta_{\mathcal{U}}(u) + \delta_{\{y_f\}}(L_T u),$$

où, pour C un ensemble convexe fermé non-vide :

$$\delta_C(x) = \begin{cases} 0 & \text{si } x \in C \\ +\infty & \text{si } x \notin C. \end{cases}$$

Le problème de minimisation dual associé est :

$$\inf_{p_f \in \mathbb{R}^n} \sigma_{\mathcal{U}}(L_T^* p_f) - \langle p_f, y_f \rangle.$$

Dualité de Fenchel

Sous des hypothèses assez faibles, on obtient :

$$\inf_{u\in L^2(0,T;\mathbb{R}^m)} \delta_{\mathcal{U}}(u) + \delta_{\{y_f\}}(L_T u) = -\inf_{p_f\in\mathbb{R}^n} \sigma_{\mathcal{U}}(L_T^* p_f) - \langle p_f, y_f\rangle.$$

Cette structure primal-dual permet l'utilisation d'algorithmes efficaces pour la recherche de minimiseurs. Par exemple, l'algorithme de Chambolle-Pock.

Preuve assistée par ordinateur de non-atteignabilité

Méthode:

- ① Algorithme de Chambolle-Pock : minimiser J_d pour trouver $p_f \in \mathbb{R}^n$ tel que $J_d(p_f) < 0$
- ② IntLab: vérifier que $J_d(p_f) + e_d(p_f) + e_a(p_f) < 0$.

Exemple de théorème numérique

Théorème

Pour
$$y_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $M = 1$, $T = 1$, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, pour le système contrôlé
$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \\ u(t) \in [-M, M] & \forall t \in [0, T], \end{cases}$$

le point
$$y_f = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$
 n'est pas atteignable. En effet, pour $p_f = \begin{pmatrix} -0.8 \\ 0.6 \end{pmatrix}$, on a $J(p_f; y_f) \in [-0.0513, -0.0483].$

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité
- 3 Preuves assistées par ordinateur
- 4 Atteignabilité assistée par ordinateur
- 6 Conclusion

Approche géométrique

Approche géométrique

Approche géométrique

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité
- 3 Preuves assistées par ordinateur
- 4 Atteignabilité assistée par ordinateur
- Conclusion

Conclusion

- Non-atteignabilité:
 - minimisation d'une fonctionnelle convexe pour prouver numériquement la non-atteignabilité d'un état
 - potentiellement extensible à la dimension infinie
 - article en cours de rédaction
- Atteignabilité:
 - détermination d'une approximation rigoureuse de l'ensemble atteignable par des polygones intérieurs et extérieurs
 - non-extensible à la dimension infinie