<u>TD2 - Bertolotti</u>	Pt		A E	8 C	D N	lote
1 Donner le nom de la boucle de régulation.	0,5	Α				0,5
2 Donner le nom de la grandeur réglée.	0,5	Α				0,5
3 Donner le nom de l'organe de réglage.	0,5	Α				0,5
4 Donner le nom de la grandeur réglante.	0,5	Α				0,5
5 Donner le nom d'une perturbation.	0,5	Α				0,5
6 Donner le nom des éléments intervenants dans la boucle de régulation.	0,5	Α				0,5
7 Sur la capture d'écran ci-dessus, donner la valeur de la consigne.	0,5	Α				0,5
8 Sur la capture d'écran ci-dessus, donner la valeur de la mesure.	0,5	Α				0,5
9 En déduire la valeur de l'erreur statique.	1	Α				1
10 Enregistrer la réponse du système à un échelon de commande de 5%.	1					0
11 Le système est-il stable ?	1					0
12 Le système est-il intégrateur ?	1					0
13 Expliquer l'évolution de la mesure.	1					0
14 Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?	1					0
15 Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?	1					0
16 Quel doit être le sens d'action du régulateur ? Justifier votre réponse.	1	Х				0
17 Enregistrer l'évolution de la mesure pour un gain égal au gain critique Ac.	1	Х				0
18 Donner la valeur du gain critique ainsi que celle de la période des oscillations.	1	Х				0
19 En déduire les réglages du régulateur PID.	1	Х				0
20 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1	Х				0
Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.	1	Х				0
22 Déterminer des réglages du correcteur PID permettant une réponse à ±10% la plus rapide possible.	1					0
23 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1					0
Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.	1					0
25 Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.	1		П			0

Bertolotti

TD2 Steamer - Régulation à un élément

2

Dans un premier temps, installer le logiciel <u>steamer</u> sur votre ordinateur. Lancer le logiciel pour répondre aux questions suivantes :

Le <u>fichier aide</u> pour bien débuter.

I. Analyse de la boucle

Q1 : Donner le nom de la boucle de régulation.	0.5
Régulation de niveau	
Q2 : Donner le nom de la grandeur réglée.	0.5
Niveau	
Q3 : Donner le nom de l'organe de réglage.	0.5
LV	
Q4 : Donner le nom de la grandeur réglante.	0.5
C'est le débit entrant	
Q5 : Donner le nom d'une perturbation.	0.5
Le débit de vapeur	
Q6 : Donner le nom des éléments intervenants dans la boucle de régulation.	0.5
LV LIC LT	

Q7 : Sur la capture d'écran ci-dessus, donner la valeur de la consigne.

???50%

Q8 : Sur la capture d'écran ci-dessus, donner la valeur de la mesure.

???50%

Q9 : En déduire la valeur de l'erreur statique.

1
???0%

II. Boucle ouverte

Q11: Le système est-il stable?

?

Attendre que la mesure se stabilise vers 50%, puis mettre le système dans l'état initial et manuel en cliquant sur les boutons :

On pourra régler le défilement sur 4s/carreau.

On pourra réinitialiser le graphe.

Q10 : Enregistrer la réponse du système à un échelon de commande de 5%.


```
? Q12 : Le système est-il intégrateur ? ? Q13 : Expliquer l'évolution de la mesure. ? Q14 : Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ? ? Q15 : Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?
```

III. Réglage de la boucle - Méthode de Ziegler&Nichols

Q16 : Quel doit être le sens d'action du régulateur ? Justifier votre réponse.

Q17: Enregistrer l'évolution de la mesure pour un gain égal au gain critique A_c.

?

Q18 : Donner la valeur du gain critique ainsi que celle de la période des oscillations.

Q19 : En déduire les réglages du régulateur PID.

1

1

Q20: Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.

1

Q21 : Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

1

2

Q24: Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

déterminés.

?

Q25 : Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.

