1217E: Functional Programming

Nao Hirokawa JAIST

Term 2-1, 2022

http://www.jaist.ac.jp/~hirokawa/lectures/fp/

1217E: Functional Programming

1/21

Lorenz and Colossus

Schedule			
10/12 10/14 10/19 10/21 10/26 10/28	introduction algebraic data types I algebraic data types II applications program reasoning data structures I	,	interpreters compilers termination confluence verification review
11/2 11/4	data structures II computational models	12/5	exam

valuation	
kam (60) + reports (40)	

2/21

Colossus (UK, 1943)

Mission

1217E: Functional Programming

codebreak enemies' communications

Scientific Solution

- linguistic methods reduce task to combinatorial problems
- developed super-efficient device for Boolean operations
- Boolean operations are enough for computation

I217E: Functional Programming 3/21 I217E: Functional Programming 4/21

Computational Models

how to formalize execution of program?

- **Turing machine**
- **■** register machine
- \blacksquare μ -recursive functions
- lambda calculus
- **■** combinatory logic
- term rewriting

I217E: Functional Programming

5/21

Terms

Definitions

- **signature** \mathcal{F} function symbols with arities
- lacktriangleq variables $\mathcal V$ $\mathcal F \cap \mathcal V = \varnothing$ infinitely many
- terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$ smallest set such that

$$\frac{x \in \mathcal{V}}{x \in \mathcal{T}(\mathcal{F}, \mathcal{V})} \qquad \frac{f^{(n)} \in \mathcal{F} \quad t_1, \dots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V})}{f(t_1, \dots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{V})}$$

lacktriangledown ground terms $\mathcal{T}(\mathcal{F})=\mathcal{T}(\mathcal{F},\varnothing)$

Example

$$\begin{split} \text{for } \mathcal{F} &= \{\mathbf{0}^{(0)}, \mathbf{s}^{(1)}, \mathsf{add}^{(2)}\} \text{ and } \mathcal{V} = \{x, y, \ldots\} \\ &\quad \mathsf{add}(\mathbf{s}(x), y) \in \mathcal{T}(\mathcal{F}, \mathcal{V}) \quad \text{ and } \quad \mathsf{add}(\mathbf{s}(\mathbf{0}), \mathbf{0}) \in \mathcal{T}(\mathcal{F}) \end{split}$$

7/21

Regarding Computation as Rewriting

program in Haskell

 $\mathsf{data}\;\mathsf{Nat}=\mathsf{Z}\;|\;\mathsf{S}\;\mathsf{Nat}$

$$\begin{array}{ll} \operatorname{add} \operatorname{Z} y &= y \\ \operatorname{add} \left(\operatorname{S} x\right) y &= \operatorname{S} \left(\operatorname{add} x y\right) \end{array}$$

computation

$$\begin{split} & \frac{\text{add } (S \ (S \ Z)) \ (S \ Z)}{S \ (\text{add } (S \ Z) \ (S \ Z))} \\ & = S \ (S \ (\text{add } Z \ (S \ Z))) \\ & = S \ (S \ (S \ Z)) \end{split}$$

I217E: Functional Programming

(applicative) term rewrite system

$$\mathcal{R} = \left\{ \begin{array}{ll} \mathtt{add} \ \mathsf{Z} \ y & \to y \\ \mathtt{add} \ (\mathsf{S} \ x) \ y \to \mathsf{S} \ (\mathtt{add} \ x \ y) \end{array} \right\}$$

rewriting

$$\begin{array}{c} \operatorname{add} \left(S\left(S\;Z\right)\right) \left(S\;Z\right) \\ \to_{\mathcal{R}} S\left(\operatorname{add} \left(S\;Z\right) \left(S\;Z\right)\right) \\ \to_{\mathcal{R}} S\left(S\left(\operatorname{add}\;Z\left(S\;Z\right)\right)\right) \\ \to_{\mathcal{R}} S\left(S\left(S\;Z\right)\right) \end{array}$$

6/21

Variables in Terms

Definition

$$\mathcal{V}\mathsf{ar}(t) = \left\{ egin{array}{ll} \{t\} & \mathsf{if}\ t \in \mathcal{V} \ \mathcal{V}\mathsf{ar}(t_1) \cup \cdots \cup \mathcal{V}\mathsf{ar}(t_n) & \mathsf{if}\ t = f(t_1, \ldots, t_n) \end{array}
ight.$$

Example

$$\begin{aligned} \mathcal{V}\mathrm{ar}(\mathsf{add}(\mathsf{s}(x),y)) &= \mathcal{V}\mathrm{ar}(\mathsf{s}(x)) \cup \mathcal{V}\mathrm{ar}(y) \\ &= \mathcal{V}\mathrm{ar}(x) \cup \mathcal{V}\mathrm{ar}(y) \\ &= \{x\} \cup \{y\} \\ &= \{x,y\} \end{aligned}$$

Substitutions

Definition

lacktriangledown $\sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V})$ is substitution if $\mathcal{D}om(\sigma) = \{x \in \mathcal{V} \mid \sigma(x) \neq x\}$ is finite

 $\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ maps variable x_i to t_i and other variable y to y

Example

$$\begin{split} \det & \sigma = \{x \mapsto \mathsf{s}(y), \ y \mapsto \mathsf{s}(0)\} \\ & \mathsf{add}(\mathsf{s}(x), \mathsf{add}(y, z)) \sigma = \mathsf{add}(\mathsf{s}(\sigma(x)), \mathsf{add}(\sigma(y), \sigma(z))) \\ & = \mathsf{add}(\mathsf{s}(\mathsf{s}(y)), \mathsf{add}(\mathsf{s}(0), z)) \end{split}$$

1217E: Functional Programming

9/21

Term Rewrite Systems

Definition

lacksquare rewrite rule $\ell
ightarrow r$ is pair of terms with

$$\ell \notin \mathcal{V}$$
 and $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$

term rewrite system (TRS) \mathcal{R} is set of rewrite rules

Example

$$\begin{split} \text{for TRS } \mathcal{R} = \left\{ \begin{array}{l} \operatorname{add}(0,y) \to y \\ \operatorname{add}(\operatorname{s}(x),y) \to \operatorname{s}(\operatorname{add}(x,y)) \end{array} \right\} \\ \operatorname{add}(\operatorname{s}(0),\operatorname{s}(0)) \to_{\mathcal{R}} \operatorname{s}(\operatorname{add}(0,\operatorname{s}(0)) \to_{\mathcal{R}} \operatorname{s}(\operatorname{s}(0)) \end{split}$$

Contexts

Definition

- context is term in $\mathcal{T}(\mathcal{F} \cup \{\Box\}, \mathcal{V})$ with one hole \Box
- $lackbox{|} C[t]$ denotes result of replacing \Box in C by t

Example

$$\det C = \mathsf{s}(\mathsf{add}(\square,y))$$

$$C[\mathsf{s}(x)] = \mathsf{s}(\mathsf{add}(\mathsf{s}(x),y))$$

1217E: Functional Programming

10/21

More Notations

Definition

- \bullet $s \to_{\mathcal{R}}^* t$ if $s \to_{\mathcal{R}}^n t$ for some $n \geqslant 0$
- $\blacksquare \mathsf{NF}(\mathcal{R}) = \{ t \in \mathcal{T}(\mathcal{F}, \mathcal{V}) \mid t \to_{\mathcal{R}} u \text{ for no } u \in \mathcal{T}(\mathcal{F}, \mathcal{V}) \}$
- u is normal form of t if $t \to_{\mathcal{R}}^* u \in \mathsf{NF}(\mathcal{R})$

Example

$$\begin{split} \text{for TRS } \mathcal{R} &= \left\{ \begin{array}{l} \operatorname{add}(0,y) \to y \\ \operatorname{add}(\operatorname{s}(x),y) \to \operatorname{s}(\operatorname{add}(x,y)) \end{array} \right\} \\ \operatorname{add}(\operatorname{s}(0),\operatorname{s}(0)) \to_{\mathcal{R}} \operatorname{s}(\operatorname{add}(0,\operatorname{s}(0)) \to_{\mathcal{R}} \operatorname{s}(\operatorname{s}(0)) \in \operatorname{NF}(\mathcal{R}) \end{split}$$

Pattern Matching Algorithm

Definition (Matching Problem)

instance: terms s, t

question: $s\sigma = t$ for some σ ?

Matching Algorithm

- 1 start with $\{s \mapsto t\}$
- 2 repeatedly apply following transformation rules

$$\begin{split} \{f(s_1,\ldots,s_n) \mapsto f(t_1,\ldots,t_n)\} \cup S &\implies \{s_1 \mapsto t_1,\ldots,s_n \mapsto t_n\} \cup S \\ \{f(s_1,\ldots,s_n) \mapsto g(t_1,\ldots,t_n)\} \cup S &\implies \bot & \text{if } f \neq g \\ \{f(s_1,\ldots,s_n) \mapsto x\} \cup S &\implies \bot \\ \{x \mapsto t\} \cup S &\implies \bot & \text{if } x \mapsto t' \in S \text{ with } t \neq t' \end{split}$$

1217E: Functional Programming

13/21

Example for Pattern Matching II

$$\left\{ \begin{split} & \left\{ \mathbf{s}(x) + (x+y) \mapsto \mathbf{s}(0+x) + ((0+0)+x) \right\} \\ & \Longrightarrow \left\{ \begin{array}{c} \mathbf{s}(x) \mapsto \mathbf{s}(0+x) \\ x+y \mapsto (0+0)+x \end{array} \right\} \\ & \Longrightarrow \left\{ \begin{array}{c} x \mapsto 0+x \\ x+y \mapsto (0+0)+x \end{array} \right\} \\ & \Longrightarrow \left\{ \begin{array}{c} x \mapsto 0+x \\ x \mapsto 0+0 \\ y \mapsto x \end{array} \right\} \\ & \Longrightarrow \bot \quad \cdots \text{ no matching substitution}$$

Example for Pattern Matching I

$$\begin{split} & \{ \mathsf{add}(x, \mathsf{s}(\mathsf{add}(y, z)) \mapsto \mathsf{add}(\mathsf{s}(y), \mathsf{s}(\mathsf{add}(\mathsf{add}(x, 0), z))) \} \\ & \Longrightarrow \left\{ \begin{array}{c} x \mapsto \mathsf{s}(y) \\ \mathsf{s}(\mathsf{add}(y, z)) \mapsto \mathsf{s}(\mathsf{add}(\mathsf{add}(x, 0), z)) \end{array} \right\} \\ & \Longrightarrow \left\{ \begin{array}{c} x \mapsto \mathsf{s}(y) \\ \mathsf{add}(y, z) \mapsto \mathsf{add}(\mathsf{add}(x, 0), z) \end{array} \right\} \\ & \Longrightarrow \left\{ \begin{array}{c} x \mapsto \mathsf{s}(y) \\ y \mapsto \mathsf{add}(x, 0) \\ z \mapsto z \end{array} \right\} \quad \cdots \quad \mathsf{matching} \; \mathsf{substitution} \end{aligned}$$

1217E: Functional Programming

14/21

To Handle Higher-Order Functions...

Program in Haskell

$$\max f [] = []$$

$$\max f (x : xs) = f x : \max f xs$$

Term Rewrite System (really?)

for
$$\mathcal{F}=\{\max^{(2)},[\,]^{(0)},:^{(2)}\}$$
 and $\mathcal{V}=\{x,xs,f,\ldots\}$
$$\max(f,[\,])\to[\,]$$

$$\max(f,x:xs)\to f(x):\max(f,xs)$$

f(x) is not valid term

Applicative Terms

Definition

- applicative signature consists of constant symbols and one binary application symbol ○
- 2 applicative terms are terms over applicative signature

Juxtaposition Notation

$$t_1 \ t_2 \ t_3 \ \cdots \ t_n$$
 denotes $((t_1 \circ t_2) \circ t_3) \circ \cdots \circ t_n$

Example (Applicative Term)

let
$$\mathcal{F} = \{ \circ^{(2)}, \mathsf{map}^{(0)}, []^{(0)}, :^{(0)} \}$$
 and $\mathcal{V} = \{ f, x, xs, \ldots \}$

$$(f\ x): \mathsf{map}\ f\ xs = ((:)\circ (f\circ x))\circ ((\mathsf{map}\circ f)\circ xs)$$

1217E: Functional Programming

17/2

Homework 1/3

- 1 Compute C[t] or $t\sigma$.

 - $C = \square$ and t = s(x).

 - 4 t = g(x, y, z) and $\sigma = \{x \mapsto y, y \mapsto x\}$
- 2 Is there a substitution σ such that $t\sigma = u$?
 - 1 t = f(x, s(y)) and u = f(s(x), s(s(0)))
 - 2 t = f(x, s(y)) and u = f(s(x), g(y))

Applicative Term Rewrite Systems

Definition

applicative TRSs are TRSs over applicative signatures

Example

consider applicative TRS over $\{o^{(2)}, map^{(0)}, []^{(0)}, :^{(0)}\}$

$$\mathcal{R} = \left\{ \begin{array}{c} \operatorname{id} x \to x \\ \operatorname{map} f \left[\right] \to \left[\right] \\ \operatorname{map} f \left(x : xs\right) \to f \ x : \operatorname{map} f \ xs \end{array} \right\}$$

where s:t stands for (:) s t

$$\mathsf{map}\;\mathsf{id}\;(0:[\,])\to_{\mathcal{R}}\underline{\mathsf{id}\;0}:\mathsf{map}\;\mathsf{id}\;[\,]\to_{\mathcal{R}}0:\mathsf{map}\;\mathsf{id}\;[\,]\to_{\mathcal{R}}0:[\,]$$

1217E: Functional Programming

18/21

Homework 2/3

3 Consider the TRS \mathcal{R} over the signature $\{++^{(2)},[]^{(0)},:^{(2)}\}$:

$$3 + + : \quad [] + + ys \rightarrow ys \qquad \qquad + + : \quad (x : xs) + + ys \rightarrow x : (xs + + ys)$$

Indicate the rewrite rule $\ell \to r$, context C, and substitution σ of each rewrite step $C[\ell\sigma] \to_{\mathcal{R}} C[r\sigma]$:

$$\begin{array}{c} (1:(2:[])) + + (3:[]) \\ \downarrow_{\mathcal{R}} \quad (\ell \to r) = + + \\ 2, \ C = \Box, \ \text{and} \quad \sigma = \begin{cases} x \mapsto 1 \\ xs \mapsto 2:[] \\ ys \mapsto 3:[] \end{cases} \\ 1:(2:[]) + + (3:[])) \\ \downarrow_{\mathcal{R}} \qquad ? \\ 1:(2:([] + + (3:[]))) \\ \downarrow_{\mathcal{R}} \qquad ? \\ 1:(2:(3:[])) \end{array}$$

Homework 3/3

- 4 Let $\mathcal{R} = \{b(\mathsf{a}(x)) \to \mathsf{a}(b(x))\}$ and $s = b(\mathsf{a}(b(\mathsf{a}(x))))$. Compute the following sets.
 - $1 \{t \mid s \to_{\mathcal{R}} t\}$
 - $2 \{t \mid s \to_{\mathcal{R}}^* t\}$
- 5 Without using juxtaposition notation, represent the following applicative TRS:

$$S x y z \to x z (y z)$$

$$K x y \to x$$

$$I x \to x$$

For instance, the third rule is represented by $I \circ x \to x$. Note that this system is known as combinatory logic.

I217E: Functional Programming

21/21