

차량 이미지의 스크래치 위치 파악을 위한 Image Segmentation 모델 개발

AIB 11기 - 김현승

목차

프로젝트 팀 구성 및 역할 **02**

프로젝트 수행 절차 및 방법

프로젝트 수행 결과 04

05 자체 평가 의견

프로젝트 개요

Greencar

시간, 비용

기업에서 제공 받은 데이터 + Al-Hub 데이터

명확한 스크래치는 파악할 수 있는 수준의 Image Segmentation 모델

loU Score 0.20 이상

구현 내용

"Input Image를 받아서 스크래치가 난 부분은 1, 스크래치 외의 부분은 0으로 예측하는 모델을 만든다."

개발 환경 및 파이프 라인

모델링

시각화

U-Net

U-Net3Plus

matpletlib

DeepLabV3

기대 효과

사용자가 차량의 이미지를 모델에 넣고, 모델은 스크래치 위치를 마스킹 한다.

마스킹 된 이미지를 통해 해당 차량의 스크래치 유무를 판단할 수 있다.

차량 이미지를 검토하는 인원이 일일이 모든 사진을 분류해야 하는 번거로움이 줄어든다.

입력 이미지

출력 이미지

수행 절차

구분	기간	활동	비고
이미지 라벨링	7/14(목) ~ 7/15(금)	스크래치 이미지 라벨링	Pixel Annotation Tool 사용
데이터 수집	7/18(월) ~ 7/19(화)	기업 데이터, Al-Hub 데이터 수집	약 16,500개
데이터 전처리	7/20(수) ~ 7/22(금)	이미지 크기 조정, 색상 조정, 광원 제거, 마스킹 이미지 생성 등	
모델링	7/25(월) ~ 7/29(금)	U-Net, DeepLabV3 모델링	학습: 약 13,500개 검증: 약 2,800개
모델 개선	8/1(월) ~ 8/4(목)	U-Net 하이퍼 파라미터 조정, U-Net3Plus 모델 학습	Optimizer, Learning Rate, LR Scheduler

사용한 방법

- 1) 학습에 사용할 데이터가 부족해서 검증 데이터와 테스트 데이터는 동일하게 사용했다.
- 2) 손실 함수로는 Dice Loss를 사용했고, DeepLabV3 모델만 Binary Cross Entropy를 사용했다.
- 3) 학습은 차량의 이미지에서 스크래치가 난 부분을 1, 스크래치 외의 부분을 0으로 예측하도록 이루어진다.
- 4) 데이터는 스크래치가 있는 부분보다 스크래치가 없는 부분이 많은 즉 1의 class보다 0의 class가 훨씬 많은 불균형 데이터이다.

데이터 소개 및 전처리

기업 3,000개 + Al-Hub 13,000개 = 학습: 약 13,500개 검증: 약 2,800개

RGB

Gray

No light

모델 설명

U-Net: Segmentation 모델 중 하나로 이전 층의 공간 정보를 최대한 보존하면서 이미지를 픽셀 단위로 분류 시키는 모델이다.

Encoding(Down Sampling)

Decoding(Up Sampling)

모델 설명

Encoding(Down Sampling)

- 1) Input image를 받는다.
- 2) 3 x 3 합성곱 연산 수행 + ReLU(피처맵의 크기는 줄고, 채널의 수는 늘어난다.)
- → 2)번의 과정을 2회 반복한다.
- 3) 2 x 2 Max pooling 연산을 수행하여 피처맵의 크기를 절반으로 줄인다.
- → 위 과정을 4번 반복하여 채널의 수는 늘리면서 피처맵의 크기는 줄인다.

Decoding(Up Sampling)

- 5) Up sampling을 통해 Down sampling과는 반대로 채널의 수는 줄이고, 피처맵의 크기는 키운다.
- \rightarrow 매칭되는 down sampling의 피처맵의 일부를 up sampling 과정에서 합쳐서 이전의 위치 정보가 손실되지 않게 한다.
- 6) 위 과정을 4번 반복한다.
- 7) 최종 결과물로 class 크기 만큼의 채널수를 가진 원본과 비슷한 크기의 피처맵이 만들어 진다.

출력값은 픽셀 단위의 확률값(Ex. 해당 픽셀이 어느 클래스에 속하는지)

성능

	모델(하이퍼 파라미터)		Loss	IoU Score	비고
	U-Net	Epochs 150, Batch 4, Lr 0.001, Adam	0.7082	0.1842	기업 데이터만 사용
	U-Net	Epochs 100, Batch 4, Lr 0.001, Adam	0.6272	0.1916	Al-Hub 데이터 추가
'' 	DeepLabV 3	Epochs 50, Batch 16, Lr 0.001, Adam	0.5212(BCE)	0.1470	성능 저하
	U-Net	Epochs 100, Batch 4, Lr 0.001, Adam	0.6483	0.1808	광원 제거

성능

모델(혀	이퍼 파라미터)	Loss	IoU Score	비고
U-Net	Epochs 100, Batch 4, Lr 0.001, RMSP, CosineAnnealingLR	0.6094	0.2042	Gray scale
U-Net	Epochs 100, Batch 4, Lr 0.0001, Adam, CosineAnnealingWarm Restarts	0.6039	0.2107	최고 성능
U-Net	Epochs 10, Batch 4, Lr 0.0001, Adam, Lambda LR	0.6858	0.1602	비교 모델
U-Net3Plus	Epochs 10, Batch 4, Lr 0.001, Adam, Lambda LR	0.6542	0.1831	비교 모델

결과 시각화

BCE

U-Net(광원제거)

DeepLabV3

U-Net(Best)

U-Net3Plus

한계 및 해결방안

	한계	해결 방안	
	스트레치 외의 손상에 대해서는 분류하지 못했다.	스크래치 외의 손상 데이터를 제공 받는다면 찍힘, 벌어짐 등과 같은 다른 손상도 다중 분류로 해결할 수 있다.	
데이터 양이 적어서 과적합을 해결하기 어려웠다.		더 많은 시간과 좋은 GPU 환경이 주어진다면 Al- Hub에서 제공하는 100GB 이상의 데이터를 사용할 수	
	U-Net3Plus 모델을 더 깊게 학습시키지 못했다.	있고, 성능이 좋은 U-Net3Plus 모델을 더 깊게 학습시킴으로써 지금보다 더 좋은 모델을 만들 수 있다.	

1) 성능을 많이 높이진 못했지만 도입부에 세웠던 IoU Score 목표를 달성해서 뿌듯했다.

2) 기업과 연계하여 진행한 프로젝트 덕분에 현업에 사용되는 데이터를 직접 사용할 수 있어서 좋았다.

3) 모델의 성능을 높이기 위해 진행했던 전처리나, 하이퍼 파라미터 튜닝들이 현업에서 내가 해야 할 일이기 때문에 좋은 경험이 됐다.

Thank You

