Political Rents Under A Changing Electoral System

Bas Machielsen a.h.machielsen@uu.nl

Utrecht University

December 8, 2021

Motivation

Motivation

- There is strong empirical evidence that politicians use public office to serve private interests. They can do so in various ways:
 - Monetary (e.g. Eggers & Hainmuller, 2009; Fisman et al., 2014)
 - Nepotism (Dal Bo et al., 2009; Fafchamps & Labonne, 2017, Folke et al., 2017)
 - Ideology (Mian et al., 2010)
- The literature that investigates under which circumstances politicians can accrue political rents. Factors that matter:
 - High-corruption environment (Fisman et al., 2014)
 - Electoral competition and the media (Svaleryd & Vlachos, 2009)
 - Opaque public procurement (Baltrunaite, 2020)
- Contemporary literature teaches that features of the political system influence the degree to which politicians can engage in rent-seeking activity.

This Study

- Most studies are static in nature and do not focus on the institutional determinants of political rents.
- This study focuses on a *dynamic* environment in which the political system changes: the case of the Netherlands (1860-1917)
- Many aspects of the political system changed:
 - The rise of the career politician (Career Paths)
 - Political party formation and party politics
 - Suffrage extensions and universal suffrage
- Setting allows me to investigate the influence of changing institutions on the magnitude of political rents available to politicians.

The case of the Netherlands

- 19th century political changes comparable to many other (European) countries
 - Repeated suffrage extensions (1887, 1896) culminating in universal suffrage
 - From political factions to explicit political parties (Protestants, Catholics, Liberals)
- Bicameral system: a Lower House and an Upper House
 - Politics concentrated in Lower House: from 75 to 100 seats
 - Modest formal salary (2500 guilders)
- ullet Elections on the basis of a district system at the time o Many (close) elections
- I employ a regression discontinuity methodology based on close elections to estimate political rents using the method of Cattaneo et al. (2019)
 - Detailed data on characteristics of politicians to examine what allows politicians to accrue rents

Results - Overview

• I first replicate the methodology from the contemporary literature to show the existence of political rents in the 19th century Netherlands:

 And then set out out to find the influence of career paths, party politics & organization and suffrage extensions on political rents.

Data & Methodology

Sources

- Elections: Repositorium Tweede Kamerverkiezingen (Repository Lower House Elections)
 - Contains detailed data on every election that took place in the district system (1848-1917)
 - Includes lists of candidates for each election, and amount of votes
 - On this basis, I calculate the Margin and find candidates in close elections
- Probate inventories: Memories van Successie
 - Archival source available from 1877-1921
 - Measure of political rents: wealth at death
 - Finding rate: about 70% of inventories
 - Main reason for absence: probate inventory registered in other place than place of death.

Other Sources

- HDNG Database, containing information about Dutch Municipalities, including demographics, religious composition, taxes levied, professional composition at various points in time
 - Used to extract birthplace and district characteristics
- Newspaper recommendations:
 - Newspaper recommendations of each candidate, turnout, no. of times participated, year of election, extracted from the Repositorium
 - Used to extract several other election- and candidate characteristics
- Politiek Documentatie Centrum:
 - Used to find demographic characteristics for politicians
 - Age at election, lifespan, year of death
 - Nonpoliticians: from Delpher and genealogy websites

Close Elections

- I take into account multi-candidate elections (cf. Lee, 2008)
- Somewhat more complicated definition of the running variable Margin. For candidate i in election e:

$$\mathsf{Margin}_{i,e} = rac{\mathsf{Votes}_{i,e} - \mathsf{Votes}_{j,e}}{\mathsf{Total} \ \mathsf{Votes}_e}$$

where j is the Marginal Loser if i is a Winning Contender, and j is the Marginal Winner if i is a Losing Contender.

I then regard an individual as having taken part in a close election if $|{\sf Margin}_{i,e}| < 0.2$. Using this criterion, about 600 close elections (out of approx. 2400)

Method

- I use the methodology by Cattaneo et al. (2019), who implement a local linear MSE-optimal RD Estimator
- This estimator optimally trades off bias and variance when picking the bandwidth
 - Consistent with recommendations of Imbens and Gelman (2018)
 - Bias-corrected (Robust) confidence intervals for inference
- Specification:

$$g(W_i) = \alpha + \delta \cdot 1_{\mathsf{Margin}_i > 0} + \eta \cdot \mathsf{Margin}_i + X_i \beta + \epsilon_i$$

• I use two variants of $g: g(.) = \log(.)$ and g(.) = ihs(.)

Analysis

Covariate Balance

• The identifying assumption of the design implies that the control group (non-politicians) should be similar to the politicians at the margin: this gives evidence that the potential outcomes are not discontinuous at the cut-off point.

	Margin < 0.2			Margin < 0.05				
	Politicians	Non-Politicians	p-val.	Politicians	Non-Politicians	p-val.	RD Estimate (SD)	
Panel A: Newspaper Recom	mendations							
rec_ar	0.16	0.14	0.693	0.16	0.22	0.354	0.034 (0.132)	
rec_lib	0.34	0.29	0.242	0.37	0.32	0.506	-0.204 (0.166)	
rec_soc	0.04	0.02	0.370	0.03	0.00	0.045**	0.036 (0.033)	
rec_kath	0.20	0.16	0.283	0.17	0.20	0.577	-0.100 (0.137)	
Panel B: Pre-Election Demo	graphic Chara	cteristics						
lifespan	20.73	19.67	0.290	20.17	20.24	0.973	-0.469 (4.065)	
age_at_election	51.14	49.16	0.022**	51.18	46.20	0.005***	4.995 (4.200)	
yod	1906.39	1900.77	0.000***	1904.95	1900.38	0.039**	4.479 (4.073)	
Panel C: Election Characteri	stics							
yoe	1885.60	1880.99	0.000***	1884.67	1880.03	0.029**	4.964 (4.289)	
howmany_before_alg	2.62	0.59	0.000***	1.77	0.71	0.002***	1.547 (0.942)	
log(turnout)	8.38	7.90	0.000***	8.58	8.29	0.109	0.180 (0.343)	
log(turnout_previous_el)	8.05	7.72	0.000***	8.31	7.99	0.059*	0.169 (0.314)	

Covariate Balance - Cont'd

	Margin < 0.2			Margin < 0.05					
	Politicians	Non-Politicians	p-val.	Politicians	Non-Politicians	p-val.	RD Estimate (SD)		
Panel D: Birthplace Chara	Panel D: Birthplace Characteristics								
birthplace_share_cath	0.31	0.28	0.333	0.31	0.28	0.494	-0.020 (0.104)		
birthplace_share_prot	0.65	0.69	0.116	0.65	0.68	0.325	0.006 (0.098)		
birthplace_agri	0.03	0.07	0.000***	0.02	0.07	0.004***	-0.045 (0.031)		
birthplace_indus	0.22	0.20	0.049**	0.23	0.20	0.028**	0.033 (0.035)		
taxespercap_1859	3.66	3.82	0.305	3.87	3.96	0.771	1.144 (0.755)		
taxespercap_1889	4.32	4.69	0.031**	4.55	4.73	0.539	1.122 (0.764)		
distance_bp_hag	187.25	83.60	0.067*	91.34	83.91	0.530	-6.350 (30.337)		
Panel E: District Characte	eristics								
district_share_prot	0.70	0.70	0.916	0.70	0.71	0.592	0.060 (0.089)		
district_share_cath	0.26	0.27	0.627	0.25	0.25	0.959	-0.073 (0.088)		
district_agri	0.06	0.07	0.275	0.04	0.05	0.938	-0.018 (0.042)		
district_indus	0.23	0.24	0.210	0.23	0.24	0.361	0.000 (0.036)		

Geographic Variation

• The elections also seem to be spread out geographically:

Main Results

 The results show a significant and positive effect, irrespective of the inclusion of several covariates.

	Log(Wealth)	lhs(\	Vealth)
	(1)	(2)	(3)	(4)
Panel A: Baseline Estimates				
Coefficient	2.142	1.995	3.383	2.096
SE (BC)	(0.978)**	(0.662)***	(1.646)**	(1.171)**
SE (Rob.)	(1.191)*	(0.797)***	(1.928)**	(1.402) *
Mean DV Politicians (1%)	11.846	11.846	11.888	11.888
Mean DV Non-Politicians (1%)	10.134	10.134	9.504	9.504
N (Politicians)	323	323	348	348
N (Non-Politicians)	258	258	263	263
Bandwidth	Optimal	$2 \times Optimal$	Optimal	2 × Optimal
Panel B: Estimates With Selected	Covariates			
Coefficient	2.170	1.799	2.623	1.345
SE (BC)	(0.935)**	(0.573)***	(1.213)***	(0.879)**
SE (Rob.)	(1.088)**	(0.766)***	(1.648)*	(1.236)
Mean DV Politicians (1%)	11.846	11.846	11.888	11.888
Mean DV Non-Politicians (1%)	10.134	10.134	9.504	9.504
N (Politicians)	254	254	275	275
N (Non-Politicians)	249	249	253	253
Bandwidth	Optimal	$2 \times Optimal$	Optimal	$2 \times Optimal$

Mechanisms: Career Paths

Career Paths

- Did politicians accrue rents by means of their network? Were they able to capure privileged, exclusive positions afterwards?
 - Most of the politicians staying in politics stayed in the Lower House or became burgemeesters

	Colonial		Ві	ısiness	Politics	
	Yes	No	Yes	Yes No		No
	(1)	(2)	(3)	(4)	(5)	(6)
Without Covar	iates					
Coefficient	1.709	2.257	1.46	2.413	3.832	1.957
SE (BC)	(1.389)	(1.000)**	(1.404)	(0.927)***	(1.363)***	(1.052)*
SE (Rob.)	(1.685)	(1.218)*	(1.705)	(1.128)**	(1.618)***	(1.268)
N Treated	35	288	62	261	47	276
N Control	258	258	258	258	258	258
With Covariate	es					
Coefficient	1.067	1.852	1.479	2.052	3.648	1.948
SE (BC)	(1.526)	(1.092)	(1.490)	(1.023)**	(1.315)***	(0.996)**
SE (Rob.)	(1.878)	(1.316)	(1.800)	(1.231)*	(1.586)**	(1.202)*
N Treated	28	214	49	193	32	210
N Control	241	241	241	241	241	241

Career Paths

- Politicians who stayed in the Lower House for a long time were also able to collect more rents
 - I analyze the rents acquired by politicians with a longer period of stay in the Lower House compared to those with a shorter period of stay (*Tenure*)

	Log(W	ealth)	Ihs(Wealth)		
	Tenure > 20	Tenure < 5	Tenure > 20	Tenure < 5 (4)	
	(1)	(2)	(3)		
Coefficient	3.087	1.897	3.528	2.566	
SE (BC)	(1.541)**	(0.954)**	(2.083)*	(2.069)	
SE (Rob.)	(1.800)*	(1.169)	(2.314)*	(2.401)	
N (Politicians)	44	72	50	85	
N (Non-Politicians)	241	241	245	245	
Bandwidth	Optimal	Optimal	Optimal	Optimal	

Mechanisms: Party Organization

Party Organization - Differences between parties

- I focus on the difference between parties.
- Very large effect for Protestant politicians, intermediate for liberals and invisible for Catholic politicians.

Party Organization - Within Parties

- I exploit the establishment of political parties to find out whether politicians with the same political allegiance have been able to accumulate more or less rents after establishment (and joining of) a political party.
 - I can do this using newspaper recommendations to identify party alignment

		No Covariates			With Covariates			
	After	Before	Diff. (p-value)	After	Before	Diff. (p-value)		
	(1)	(2)		(3)	(4)			
Panel A: All co	ontrol observa	tions						
Coefficient	2.073	2.216	-0.143	2.296	3.552	-1.256		
SE (BC)	(0.952)**	(1.180)**	0.462	(0.963)**	(1.209)***	0.20		
SE (Rob.)	(1.161)*	(1.416)*		(1.166)**	(1.435)***			
N Treated	202	121		202	121			
N Control	258	258		258	258			
Covariates	No	No		Yes	Yes			
Panel B: Cont	emporaneous	control observ	ations					
Coefficient	1.635	2.705	-1.07	1.887	4.683	-2.79		
SE (BC)	(1.080)	(1.798)	0.305	(1.035)*	(1.807)**	0.09		
SE (Rob.)	(1.320)	(2.074)		(1.268)	(2.170)**			
N Treated	202	92		202	92			
N Control	151	107		151	107			
Covariates	No	No		Yes	Yes			

Mechanisms: Suffrage Extensions

Electoral Competition over Time

- Do political rents change significantly following suffrage extensions?
 - The graph shows CI's based on bootstrapped standard errors.

Electoral Competition - Turnout

- At the level of the district, does more turnout mean more monitoring, and lower rents?
 - I estimate the difference in rents between upper-quantile observations (in terms of relative turnout) and lower-quantiles.

Conclusion

Conclusion

- Politicians who just won elections are substantially wealthier at the end of their life than their contenders who just lost, even though pre-election, they were equal in many aspects.
- Rewards obtained through staying longer in politics
 - Access to other political functions with discretion
 - Possibility of rent-seeking, superior information
- Political rents mainly concentrated among Protestant and Liberal politicians
 - Large contrast with Catholics, possibly because of low value of rents for Catholic politicians
- These politicians are not constrained (enough) by their party
 - Consistent with voting behavior serving as a signal, or as catering to interest groups
 - Still, political parties limit voting freedom and thus the possibility to accrue rents
- Electoral discipline and monitoring plays a very small role

Robustness Checks

Sensitivity of Estimates to Bandwidth

 Standard estimates (with covariates) appear not to be sensitive to the particular bandwidth choice:

Density Plot

Flexible Optimal Bandwidth on Both Sides

	Log(V	Vealth)	Ihs(V	Vealth)
	(1)	(2)	(3)	(4)
Panel A: Baseline Estimates				
Coefficient	1.951	2.004	2.989	2.217
SE (BC)	(0.750)***	(0.529)***	(1.272)***	(0.946)***
SE (Rob.)	(0.906)**	(0.686)***	(1.571)**	(1.184)**
Mean DV Politicians (1%)	11.846	11.846	11.888	11.888
Mean DV Non-Politicians (1%)	10.134	10.134	9.504	9.504
N (Politicians)	323	323	348	348
N (Non-Politicians)	258	258	263	263
Bandwidth	Optimal	$2 \times Optimal$	Optimal	2 × Optimal
Panel B: Estimates With Selected	Covariates			
Coefficient	2.055	1.715	2.728	1.399
SE (BC)	(0.701)***	(0.477)***	(0.804)***	(0.674)***
SE (Rob.)	(0.931)**	(0.697)***	(1.308)**	(1.077)*
Mean DV Politicians (1%)	11.846	11.846	11.888	11.888
Mean DV Non-Politicians (1%)	10.134	10.134	9.504	9.504
N (Politicians)	254	254	275	275
N (Non-Politicians)	249	249	253	253
Bandwidth	Optimal	$2 \times Optimal$	Optimal	$2 \times Optimal$

Metropolitan vs. Rural Areas

- Political Rents for politicians who have been born inside and outside a radius of x km of the Hague (governmental capital)
 - Politicians born within the Randstad (radius of about 60/70 km within the Hague) garner much more rents than politicians born outside.

Flexible Optimal Bandwidth - Career Paths

- I estimate the rents for long-serving (tenure > 20) and short-serving (tenure < 5) politicians in the Lower House.
 - Politicians who stay longer are able to obtain more rents than politicians who stay shorter.

	Log(W	ealth)	Ihs(W	Ihs(Wealth)		
	Tenure > 20	Tenure < 5	Tenure > 20	Tenure < 5		
	(1)	(2)		(4)		
Coefficient	3.533	1.872	3.579	2.442		
SE (BC)	(1.401)**	(0.890)**	(1.837)*	(1.773)		
SE (Rob.)	(1.618)**	(1.100)*	(1.988)**	(2.075)		
N (Politicians)	44	72	50	85		
N (Non-Politicians)	241	241	245	245		
Bandwidth	Optimal	Optimal	Optimal	Optimal		

Flexible Optimal Bandwidth - Party Organization

- These estimates use the optimal bandwidth estimated at each side of the cut-off point
 - The estimates in (4) are again significant at the 10% level

	No Covariates			With Covariates			
	After	Before	Diff. (p-value)	After	Before	Diff. (p-value)	
	(1)	(2)		(3)	(4)		
Panel A: All co	ontrol observati	ons					
Coefficient	1.977	2.178	-0.143	2.29	3.555	-1.265	
SE (BC)	(0.751)***	(1.006)**	0.462	(0.890)***	(1.071)***	0.204	
SE (Rob.)	(0.906)**	(1.214)*		(1.078)**	(1.296)***		
N Treated	202	121		202	121		
N Control	258	258		258	258		
Covariates	No	No		Yes	Yes		
Panel B: Conte	emporaneous c	ontrol observa	itions				
Coefficient	1.594	3.098	-1.504	1.939	4.876	-2.937	
SE (BC)	(0.997)	(1.608)*	0.237	(0.983)*	(1.767)***	0.081	
SE (Rob.)	(1.213)	(1.941)		(1.202)	(2.074)**		
N Treated	202	92		202	92		
N Control	151	107		151	107		
Covariates	No	No		Yes	Yes		