Equivalence Relations and Apartness Relations

The Clowder Project Authors

May 3, 2024

OOTJ This chapter contains some material about reflexive, symmetric, transitive, equivalence, and apartness relations.

Contents

1	Refl	exive Relations	2
	1.1		
	1.2	The Reflexive Closure of a Relation	
2	Sym	ımetric Relations	4
	2.1	Foundations	4
	2.2	The Symmetric Closure of a Relation	5
3	Trar	nsitive Relations	7
	3.1	Foundations	7
	3.2	The Transitive Closure of a Relation	8
4	Equivalence Relations		10
	4.1	Foundations	10
	4.2	The Equivalence Closure of a Relation	11
5	Quo	tients by Equivalence Relations	12
	5.1	Equivalence Classes	12
	5.2	Quotients of Sets by Equivalence Relations	13
Α	Oth	er Chapters	18

00ТК 1 Reflexive Relations

00TL 1.1 Foundations

Let *A* be a set.

Definition 1.1.1.1. A **reflexive relation** is equivalently:

- · An \mathbb{E}_0 -monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \chi_A)$.
- · A pointed object in (**Rel**(A, A), γ_A).

QUEIN Remark 1.1.1.2. In detail, a relation R on A is **reflexive** if we have an inclusion

$$\eta_R : \chi_A \subset R$$

of relations in **Rel**(A, A), i.e. if, for each $a \in A$, we have $a \sim_R a$.

OOTP Definition 1.1.1.3. Let A be a set.

00TR

1. The **set of reflexive relations on** A is the subset $Rel^{refl}(A, A)$ of Rel(A, A) of Rel(A, A) spanned by the reflexive relations.

2. The **poset of relations on** A is is the subposet $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.

OOTS Proposition 1.1.1.4. Let R and S be relations on A.

00TT 1. Interaction With Inverses. If R is reflexive, then so is R^{\dagger} .

OOTU 2. Interaction With Composition. If R and S are reflexive, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

00TV 1.2 The Reflexive Closure of a Relation

Let R be a relation on A.

 $^{^1}$ Note that since $\mathbf{Rel}(A,A)$ is posetal, reflexivity is a property of a relation, rather than extra structure.

- **Definition 1.2.1.1.** The **reflexive closure** of \sim_R is the relation $\sim_R^{\text{refl}_2}$ satisfying the following universal property:³
 - (\star) Given another reflexive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\mathsf{refl}} \subset \sim_S$.
- **Construction 1.2.1.2.** Concretely, \sim_R^{refl} is the free pointed object on R in $(\text{Rel}(A, A), \chi_A)^4$, being given by

$$egin{aligned} R^{\mathsf{refl}} &\stackrel{\mathsf{def}}{=} R \coprod^{\mathsf{Rel}(A,A)} \Delta_A \ &= R \cup \Delta_A \ &= \{(a,b) \in A \times A \mid \mathsf{we have} \ a \sim_R b \ \mathsf{or} \ a = b\}. \end{aligned}$$

Proof. Clear.

- Proposition 1.2.1.3. Let R be a relation on A.
- 00TZ 1. Adjointness. We have an adjunction

$$\left((-)^{\text{refl}} \dashv \stackrel{\leftarrow}{\varpi}\right): \quad \mathbf{Rel}(A,A) \underbrace{\stackrel{(-)^{\text{refl}}}{}}_{\stackrel{\leftarrow}{\varpi}} \mathbf{Rel}^{\text{refl}}(A,A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathrm{refl}}\Big(R^{\mathrm{refl}},S\Big)\cong\mathbf{Rel}(R,S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{refl}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 00U0 2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then $R^{\text{refl}} = R$.
- 00U1 3. Idempotency. We have

$$(R^{\text{refl}})^{\text{refl}} = R^{\text{refl}}.$$

² Further Notation: Also written R^{refl} .

³ Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

⁴Or, equivalently, the free \mathbb{E}_0 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A, A)), \chi_A)$.

00U2 4. Interaction With Inverses. We have

$$\begin{pmatrix}
Rel(A, A) & \xrightarrow{(-)^{\text{refl}}} & Rel(A, A) \\
\begin{pmatrix}
R^{\dagger}
\end{pmatrix}^{\text{refl}} & = \begin{pmatrix}
R^{\text{refl}}
\end{pmatrix}^{\dagger}, & \begin{pmatrix}
-)^{\dagger}
\end{pmatrix} & \begin{pmatrix}
-)^{\dagger}
\end{pmatrix} & \begin{pmatrix}
-)^{\dagger}
\end{pmatrix} & Rel(A, A).$$

$$Rel(A, A) \xrightarrow{(-)^{\text{refl}}} & Rel(A, A).$$

00U3 5. Interaction With Composition. We have

$$\mathsf{Rel}(A,A) \times \mathsf{Rel}(A,A) \xrightarrow{\diamond} \mathsf{Rel}(A,A)$$

$$(S \diamond R)^{\mathsf{refl}} = S^{\mathsf{refl}} \diamond R^{\mathsf{refl}}, \qquad \underset{(-)^{\mathsf{refl}} \times (-)^{\mathsf{refl}}}{\overset{}{\bigvee}} \qquad \underset{(-)^{\mathsf{refl}} \times (-)^{\mathsf{refl}}}{\overset{}{\bigvee}} \qquad \underset{(-)^{\mathsf{refl}} \times (-)^{\mathsf{refl}}}{\overset{}{\bigvee}} \qquad \mathsf{Rel}(A,A).$$

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the reflexive closure of a relation, stated in Definition 1.2.1.1.

Item 2, The Reflexive Closure of a Reflexive Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Proposition 1.1.1.4.

00U4 2 Symmetric Relations

00U5 2.1 Foundations

Let *A* be a set.

- **Definition 2.1.1.1.** A relation R on A is **symmetric** if we have $R^{\dagger} = R$.
- **Remark 2.1.1.2.** In detail, a relation R is symmetric if it satisfies the following condition:
 - (\star) For each $a, b \in A$, if $a \sim_R b$, then $b \sim_R a$.
- **00U8 Definition 2.1.1.3.** Let *A* be a set.

1. The **set of symmetric relations on** A is the subset $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.

2. The **poset of relations on** A is is the subposet $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.

OOUB Proposition 2.1.1.4. Let R and S be relations on A.

OOUC 1. Interaction With Inverses. If R is symmetric, then so is R^{\dagger} .

00UD 2. Interaction With Composition. If R and S are symmetric, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

00UE 2.2 The Symmetric Closure of a Relation

Let R be a relation on A.

00UA

- **Definition 2.2.1.1.** The **symmetric closure** of \sim_R is the relation $\sim_R^{\text{symm}_5}$ satisfying the following universal property:⁶
 - (*) Given another symmetric relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{symm}} \subset \sim_S$.
- **Construction 2.2.1.2.** Concretely, \sim_R^{symm} is the symmetric relation on A defined by

$$R^{\text{symm}} \stackrel{\text{def}}{=} R \cup R^{\dagger}$$

= $\{(a, b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } b \sim_R a\}.$

Proof. Clear.

OOUH Proposition 2.2.1.3. Let R be a relation on A.

00UJ 1. Adjointness. We have an adjunction

$$\left((-)^{\operatorname{symm}}\dashv \overline{\Xi}\right)\colon \quad \operatorname{Rel}(A,A) \underbrace{\overset{(-)^{\operatorname{symm}}}{\overleftarrow{\Xi}}} \operatorname{Rel}^{\operatorname{symm}}(A,A),$$

⁵ Further Notation: Also written R^{symm} .

⁶Slogan: The symmetric closure of R is the smallest symmetric relation containing R.

witnessed by a bijection of sets

$$Rel^{symm}(R^{symm}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{symm}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

OOUK 2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then $R^{\text{symm}} = R$.

00UL 3. Idempotency. We have

$$(R^{\text{symm}})^{\text{symm}} = R^{\text{symm}}$$
.

00UM 4. Interaction With Inverses. We have

$$\left(R^{\dagger}\right)^{\text{symm}} = \left(R^{\text{symm}}\right)^{\dagger}, \qquad \underset{(-)^{\dagger}}{\left(-\right)^{\dagger}} \qquad \text{Rel}(A, A) \xrightarrow[-]{\text{symm}} \qquad \text{Rel}(A, A).$$

$$Rel(A, A) \xrightarrow[-]{\text{symm}} \qquad \text{Rel}(A, A).$$

00UN 5. Interaction With Composition. We have

$$\mathsf{Rel}(A,A) \times \mathsf{Rel}(A,A) \xrightarrow{\diamond} \mathsf{Rel}(A,A)$$

$$(S \diamond R)^{\mathsf{symm}} = S^{\mathsf{symm}} \diamond R^{\mathsf{symm}}, \qquad (-)^{\mathsf{symm}} \times (-)^{\mathsf{symm}} \downarrow \qquad \qquad \downarrow (-)^{\mathsf{symm}}$$

$$\mathsf{Rel}(A,A) \times \mathsf{Rel}(A,A) \xrightarrow{\diamond} \mathsf{Rel}(A,A).$$

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the symmetric closure of a relation, stated in Definition 2.2.1.1.

Item 2, The Symmetric Closure of a Symmetric Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Proposition 2.1.1.4.

00UP 3 Transitive Relations

00UQ 3.1 Foundations

Let *A* be a set.

00UR **Definition 3.1.1.1.** A transitive relation is equivalently:⁷

- · A non-unital \mathbb{E}_1 -monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \diamond)$.
- · A non-unital monoid in (**Rel** $(A, A), \diamond$).

Remark 3.1.1.2. In detail, a relation R on A is **transitive** if we have an inclusion

$$\mu_R: R \diamond R \subset R$$

of relations in Rel(A, A), i.e. if, for each $a, c \in A$, the following condition is satisfied:

(\star) If there exists some $b \in A$ such that $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.

00UT Definition 3.1.1.3. Let *A* be a set.

00UV

- 1. The **set of transitive relations from** A **to** B is the subset $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.
 - 2. The **poset of relations from** A **to** B is is the subposet **Rel**^{trans}(A) of **Rel**(A, A) spanned by the transitive relations.

OOUW Proposition 3.1.1.4. Let R and S be relations on A.

00UX 1. Interaction With Inverses. If R is transitive, then so is R^{\dagger} .

00UY 2. Interaction With Composition. If R and S are transitive, then $S \diamond R$ may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: See [MSE 2096272].8

 $^{^7}$ Note that since $\mathbf{Rel}(A,A)$ is posetal, transitivity is a property of a relation, rather than extra structure.

⁸ Intuition: Transitivity for R and S fails to imply that of $S \diamond R$ because the composition operation for relations intertwines R and S in an incompatible way:

00UZ 3.2 The Transitive Closure of a Relation

Let R be a relation on A.

- **Definition 3.2.1.1.** The **transitive closure** of \sim_R is the relation \sim_R^{trans9} satisfying the following universal property:¹⁰
 - (★) Given another transitive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{trans}} \subset \sim_S$.
- **Construction 3.2.1.2.** Concretely, \sim_R^{trans} is the free non-unital monoid on R in $(\text{Rel}(A,A),\diamond)^{11}$, being given by

$$R^{\text{trans}} \stackrel{\text{def}}{=} \prod_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \bigcup_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \left\{ (a,b) \in A \times B \middle| \text{ there exists some } (x_1, \dots, x_n) \in R^{\times n} \right\}.$$
such that $a \sim_R x_1 \sim_R \dots \sim_R x_n \sim_R b$

Proof. Clear.

- **00V2 Proposition 3.2.1.3.** Let R be a relation on A.
- 00V3 1. Adjointness. We have an adjunction

$$((-)^{\text{trans}} \dashv \overline{\varpi}): \text{Rel}(A, A) \underbrace{\downarrow}_{\overline{\varpi}}^{(-)^{\text{trans}}} \text{Rel}^{\text{trans}}(A, A),$$

- 1. If $a \sim_{S \diamond R} c$ and $c \sim_{S \diamond r} e$, then:
 - (a) There is some $b \in A$ such that:

i.
$$a \sim_R b$$
;

ii.
$$b \sim_S c$$
;

(b) There is some $d \in A$ such that:

i.
$$c \sim_R d$$
;

ii.
$$d \sim_S e$$
.

⁹ Further Notation: Also written R^{trans} .

 $^{^{10}}$ Slogan: The transitive closure of R is the smallest transitive relation containing R.

¹¹Or, equivalently, the free non-unital \mathbb{E}_1 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A,A)),\diamond)$.

witnessed by a bijection of sets

$$Rel^{trans}(R^{trans}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\text{Rel}^{\text{trans}}(A, A))$ and $S \in \text{Obj}(\text{Rel}(A, B))$.

2. The Transitive Closure of a Transitive Relation. If R is transitive, then $R^{trans} = R$.

00V5 3. Idempotency. We have

$$(R^{\text{trans}})^{\text{trans}} = R^{\text{trans}}.$$

00V6 4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{trans}} = (R^{\text{trans}})^{\dagger}, \qquad (-)^{\dagger} \downarrow \qquad \downarrow (-)^{\dagger}$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{trans}}} \text{Rel}(A, A)$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{trans}}} \text{Rel}(A, A).$$

00V7 5. Interaction With Composition. We have

$$(S \diamond R)^{\operatorname{trans}} \overset{\operatorname{poss.}}{\neq} S^{\operatorname{trans}} \diamond R^{\operatorname{trans}}, \qquad (-)^{\operatorname{trans}} \times (-)^{\operatorname{trans}} \bigvee \qquad \bigvee_{(-)^{\operatorname{trans}} \times (-)} (-)^{\operatorname{trans}} \bigvee (-)^{\operatorname{trans}} \otimes \operatorname{Rel}(A, A) \xrightarrow{\diamond} \operatorname{Rel}(A, A).$$

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 3.2.1.1.

Item 2, The Transitive Closure of a Transitive Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

Item 4, Interaction With Inverses: We have

$$\begin{split} \left(R^{\dagger}\right)^{\text{trans}} &= \bigcup_{n=1}^{\infty} \left(R^{\dagger}\right)^{\diamond n} \\ &= \bigcup_{n=1}^{\infty} \left(R^{\diamond n}\right)^{\dagger} \\ &= \left(\bigcup_{n=1}^{\infty} R^{\diamond n}\right)^{\dagger} \\ &= \left(R^{\text{trans}}\right)^{\dagger}, \end{split}$$

where we have used, respectively:

- 1. Construction 3.2.1.2.
- 2. Constructions With Relations, Item 4 of Proposition 3.12.1.3.
- 3. Constructions With Relations, Item 1 of Proposition 3.6.1.2.
- 4. Construction 3.2.1.2.

Item 5, Interaction With Composition: This follows from Item 2 of Proposition 3.1.1.4.

1

00V8 4 Equivalence Relations

00V9 4.1 Foundations

Let *A* be a set.

- **Definition 4.1.1.1.** A relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive.¹²
- **Example 4.1.1.2.** The **kernel of a function** $f: A \to B$ is the equivalence relation $\sim_{\mathsf{Ker}(f)}$ on A obtained by declaring $a \sim_{\mathsf{Ker}(f)} b$ iff f(a) = f(b).

 $^{^{12}}$ Further Terminology: If instead R is just symmetric and transitive, then it is called a **partial** equivalence relation.

¹³The kernel Ker(f): $A \rightarrow A$ of f is the underlying functor of the monad induced by the adjunction $Gr(f) \rightarrow f^{-1}$: $A \rightleftharpoons B$ in **Rel** of Constructions With Relations, Item 2 of Proposition 3.1.1.2.

OOVC Definition 4.1.1.3. Let A and B be sets.

1. The **set of equivalence relations from** A **to** B is the subset $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.

2. The **poset of relations from** A **to** B is is the subposet $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.

00VF 4.2 The Equivalence Closure of a Relation

Let R be a relation on A.

00VE

Definition 4.2.1.1. The **equivalence closure**¹⁴ of \sim_R is the relation $\sim_R^{\text{eq}_{15}}$ satisfying the following universal property:¹⁶

 (\star) Given another equivalence relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{eq}} \subset \sim_S$.

Construction 4.2.1.2. Concretely, \sim_R^{eq} is the equivalence relation on A defined by

$$R^{\text{eq}} \stackrel{\text{def}}{=} \left(\left(R^{\text{refl}} \right)^{\text{symm}} \right)^{\text{trans}}$$

$$= \left(\left(R^{\text{symm}} \right)^{\text{trans}} \right)^{\text{refl}}$$

$$= \begin{cases} \text{there exists } (x_1, \dots, x_n) \in R^{\times n} \text{ satisfying at least one of the following conditions:} \\ \text{1. The following conditions are satisfied:} \\ \text{(a) We have } a \sim_R x_1 \text{ or } x_1 \sim_R a; \\ \text{(b) We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ \text{(c) We have } b \sim_R x_n \text{ or } x_n \sim_R b; \\ \text{2. We have } a = b. \end{cases}$$

Proof. From the universal properties of the reflexive, symmetric, and transitive closures of a relation (Definitions 1.2.1.1, 2.2.1.1 and 3.2.1.1), we see that it suffices to prove that:

¹⁴ Further Terminology: Also called the **equivalence relation associated to** \sim_R .

¹⁵ Further Notation: Also written R^{eq} .

¹⁶ Slogan: The equivalence closure of R is the smallest equivalence relation containing R.

00VJ 1. The symmetric closure of a reflexive relation is still reflexive.

00VK 2. The transitive closure of a symmetric relation is still symmetric.

which are both clear.

OOVL Proposition 4.2.1.3. Let R be a relation on A.

00VM 1. Adjointness. We have an adjunction

$$\left((-)^{\operatorname{eq}}\dashv \overline{\varpi}\right)\colon \quad \operatorname{Rel}(A,B) \underbrace{\overset{(-)^{\operatorname{eq}}}{-}}_{\overline{\varpi}} \operatorname{Rel}^{\operatorname{eq}}(A,B),$$

witnessed by a bijection of sets

$$Rel^{eq}(R^{eq}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{eq}(A, B))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

00VN 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence relation, then $R^{\rm eq}=R$.

00VP 3. Idempotency. We have

$$(R^{eq})^{eq} = R^{eq}$$
.

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 4.2.1.1.

Item 2, The Equivalence Closure of an Equivalence Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

00VQ 5 Quotients by Equivalence Relations

00VR 5.1 Equivalence Classes

Let A be a set, let R be a relation on A, and let $a \in A$.

Definition 5.1.1.1. The **equivalence class associated to** a is the set [a] defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\}$$

$$= \{x \in X \mid a \sim_R x\}.$$
 (since R is symmetric)

00VT 5.2 Quotients of Sets by Equivalence Relations

Let *A* be a set and let *R* be a relation on *A*.

Definition 5.2.1.1. The **quotient of** X **by** R is the set X/\sim_R defined by

$$X/\sim_R \stackrel{\text{def}}{=} \{[a] \in \mathcal{P}(X) \mid a \in X\}.$$

- **Remark 5.2.1.2.** The reason we define quotient sets for equivalence relations only is that each of the properties of being an equivalence relation—reflexivity, symmetry, and transitivity—ensures that the equivalences classes [a] of X under R are well-behaved:
 - · Reflexivity. If R is reflexive, then, for each $a \in X$, we have $a \in [a]$.
 - · Symmetry. The equivalence class [a] of an element a of X is defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\},\$$

but we could equally well define

$$[a]' \stackrel{\text{def}}{=} \{x \in X \mid a \sim_R x\}$$

instead. This is not a problem when R is symmetric, as we then have $[a] = [a]'^{17}$

- Transitivity. If R is transitive, then [a] and [b] are disjoint iff $a \not\sim_R b$, and equal otherwise.
- **Proposition 5.2.1.3.** Let $f: X \to Y$ be a function and let R be a relation on X.
- 1. As a Coequaliser. We have an isomorphism of sets

$$X/\sim_R^{\operatorname{eq}}\cong\operatorname{CoEq}\left(R\hookrightarrow X\times X\stackrel{\operatorname{pr}_1}{\underset{\operatorname{pr}_2}{\to}}X\right),$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

¹⁷When categorifying equivalence relations, one finds that [a] and [a]' correspond to presheaves and copresheaves; see ??, ??.

00VY 2. As a Pushout. We have an isomorphism of sets¹⁸

$$X/{\sim_R^{\mathsf{eq}}} \cong X \coprod_{\mathsf{Eq}(\mathsf{pr}_1,\mathsf{pr}_2)} X, \qquad \bigwedge^{\mathsf{r}} \qquad \bigwedge^{\mathsf{r}} \qquad \bigwedge$$

$$X \leftarrow \mathsf{Eq}(\mathsf{pr}_1,\mathsf{pr}_2).$$

where $\sim_R^{\rm eq}$ is the equivalence relation generated by \sim_R .

3. The First Isomorphism Theorem for Sets. We have an isomorphism of sets 19,20

$$X/\sim_{\mathsf{Ker}(f)} \cong \mathsf{Im}(f).$$

- 00W0 4. Descending Functions to Quotient Sets, I. Let R be an equivalence relation on X. The following conditions are equivalent:
 - (a) There exists a map

$$\bar{f}: X/\sim_R \to Y$$

$$\operatorname{Eq}(\operatorname{pr}_1,\operatorname{pr}_2)\cong X\times_{X/\sim_R^{\operatorname{eq}}}X, \qquad \qquad \bigvee_{X \ \longrightarrow \ X/\sim_R^{\operatorname{eq}}}X$$

¹⁹ Further Terminology: The set $X/\sim_{\mathsf{Ker}(f)}$ is often called the **coimage of** f, and denoted by $\mathsf{Coim}(f)$.

 20 In a sense this is a result relating the monad in **Rel** induced by f with the comonad in **Rel** induced by f, as the kernel and image

$$\operatorname{Ker}(f): X \to X,$$

$$\operatorname{Im}(f) \subset Y$$

of f are the underlying functors of (respectively) the induced monad and comonad of the adjunction

$$\left(\operatorname{Gr}(f) \dashv f^{-1}\right): A \xrightarrow{\downarrow \atop f^{-1}} B$$

¹⁸Dually, we also have an isomorphism of sets

making the diagram

commute.

- (b) We have $R \subset \text{Ker}(f)$.
- (c) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).
- 00W1 5. Descending Functions to Quotient Sets, II. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then \overline{f} is the unique map making the diagram

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \exists ! \qquad \bar{f}$$

$$X/\sim_R$$

commute.

6. Descending Functions to Quotient Sets, III. Let R be an equivalence relation on X. We have a bijection

$$\operatorname{\mathsf{Hom}}_{\mathsf{Sets}}(X/\sim_R,Y)\cong \operatorname{\mathsf{Hom}}^R_{\mathsf{Sets}}(X,Y),$$

natural in $X,Y\in {\sf Obj}({\sf Sets})$, given by the assignment $f\mapsto \bar f$ of Items 4 and 5, where ${\sf Hom}^R_{\sf Sets}(X,Y)$ is the set defined by

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X,Y) \stackrel{\text{def}}{=} \left\{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X,Y) \middle| \begin{array}{l} \text{for each } x,y \in X, \\ \text{if } x \sim_R y, \text{then} \\ f(x) = f(y) \end{array} \right\}.$$

7. Descending Functions to Quotient Sets, IV. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:

- (a) The map \overline{f} is an injection.
- (b) We have R = Ker(f).
- (c) For each $x, y \in X$, we have $x \sim_R y$ iff f(x) = f(y).

8. Descending Functions to Quotient Sets, V. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:

(a) The map $f: X \to Y$ is surjective.

(b) The map $\overline{f}: X/\sim_R \to Y$ is surjective.

9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and let \sim_R^{eq} be the equivalence relation associated to R. The following conditions are equivalent:

00W6 (a) The map f satisfies the equivalent conditions of Item 4:

· There exists a map

$$\bar{f}: X/\sim_R^{\mathsf{eq}} \to Y$$

making the diagram

commute.

· For each $x, y \in X$, if $x \sim_R^{eq} y$, then f(x) = f(y).

00W7 (b) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).

Proof. Item 1, *As a Coequaliser*: Omitted.

Item 2, As a Pushout: Omitted.

Item 3, The First Isomorphism Theorem for Sets: Clear.

Item 4, Descending Functions to Quotient Sets, I: See [Pro24c].

Item 5, Descending Functions to Quotient Sets, II: See [Pro24d].

of Constructions With Relations, Item 2 of Proposition 3.1.1.2.

Item 6, Descending Functions to Quotient Sets, III: This follows from Items 5 and 6.

Item 7, Descending Functions to Quotient Sets, IV: See [Pro24b].

Item 8, Descending Functions to Quotient Sets, V: See [Pro24a].

Item 9, Descending Functions to Quotient Sets, VI: The implication Item 9a \implies Item 9b is clear.

Conversely, suppose that, for each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y). Spelling out the definition of the equivalence closure of R, we see that the condition $x \sim_R^{\text{eq}} y$ unwinds to the following:

- (\star) There exist $(x_1, \dots, x_n) \in R^{\times n}$ satisfying at least one of the following conditions:
 - 1. The following conditions are satisfied:
 - (a) We have $x \sim_R x_1$ or $x_1 \sim_R x$;
 - (b) We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \leq i \leq n-1$;
 - (c) We have $y \sim_R x_n$ or $x_n \sim_R y$;
 - 2. We have x = y.

Now, if x = y, then f(x) = f(y) trivially; otherwise, we have

$$f(x) = f(x_1),$$

$$f(x_1) = f(x_2),$$

$$\vdots$$

$$f(x_{n-1}) = f(x_n),$$

$$f(x_n) = f(y),$$

and f(x) = f(y), as we wanted to show.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- **Category Theory**
 - 8. Categories

Relations

5. Relations

Bicategories

Types of Morphisms in Bicategories

6. Constructions With Relations

Apartness Relations

7. Equivalence Relations and

References

[MSE 2096272] Akiva Weinberger. Is composition of two transitive relations tran-

sitive? If not, can you give me a counterexample? Mathematics Stack Exchange. URL: https://math.stackexchange.

com/q/2096272 (cit. on p. 7).

[Pro24a] Proof Wiki Contributors. Condition For Mapping from Quotient

Set To Be A Surjection—Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_

Set_to_be_Surjection (cit. on p. 17).

[Pro24b] Proof Wiki Contributors. Condition For Mapping From Quotient

Set To Be An Injection—Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_

Set_to_be_Injection (cit. on p. 17).

[Pro24c] Proof Wiki Contributors. Condition For Mapping From Quotient

Set To Be Well-Defined — Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Well-Defined (cit. on p. 16).

[Pro24d] Proof Wiki Contributors. Mapping From Quotient Set When De-

fined Is Unique — Proof Wiki. 2024. URL: https://proofwiki.
org/wiki/Mapping_from_Quotient_Set_when_Defined_

is_Unique (cit. on p. 16).