Força Magnética

Força Magnética sobre uma carga pontual

Regra da mão direita

- Cargas em movimento podem sofrer ação de forças magnéticas. Cargas em repouso não.
- ullet Como estamos trabalhando com produto vetorial, a direção e sentido de $\overrightarrow{F_B}$ podem ser determinados através da **regra da mão direita**.
- Na hora de usar a regra da mão direita, não se esqueça de considerar o sinal da carga. Se a carga for positiva, a regra da mão direita vai te dar a direção e sentido da força magnética. Se a carga for negativa, o sentido da força magnética deve ser trocado.

Trajetória circular

- Se uma partícula pontual com carga Q>0 se move em uma região com campo magnético \overrightarrow{B} , ela apresentará uma trajetória circular.

Nesse caso, a força magnética funciona como força centrípeta.

Trajetória helicoidal

- Se a velocidade tiver uma componente paralela ao campo magnético, essa componente vai seguir como se nada tivesse acontecido.
- · Nesse caso, a partícula passa a descrever uma trajetória helicoidal.

Força resultante nula

Efeito Hall - Força resultante nula sobre o elétron

 No caso de um condutor conduzindo uma corrente elétrica (i), a velocidade do elétron é a velocidade de deriva, dada por:

Força Magnética sobre um Fio Condutor

l = A/d

de Hall

V = Ed

Força em corpos carregados

• O vetor $d\overrightarrow{l}$ tem módulo infinitesimal dl e a direção e sentido da corrente elétrica em qualquer ponto do fio condutor.

• A direção e sentido da força magnética no fio são determinados pelo produto vetorial $d\overrightarrow{l} \times \overrightarrow{B}$.

Fio retilíneo

$$\overrightarrow{F_B} = \overrightarrow{L} \times \overrightarrow{B}$$

 $\stackrel{
ightarrow}{L}$ é o vetor que tem o módulo igual ao tamanho do fio e a direção e sentido da corrente que passa por ele.

Fio deslizante

 Se quisermos calcular a velocidade, basta integrar a expressão acima, prestando atenção em quais termos são constantes para tirarmos da integral.

$$\begin{array}{ccc} \text{Vetor} \\ \text{velocidade do} & \longrightarrow & \vec{v} = \int \left(\frac{l}{m} \vec{L} \times \vec{B}\right) dt \\ \text{fio } [m/s] \\ \end{array}$$

Momento Magnético Dipolar

Momento dipolo magnético

- O vetor área tem o módulo igual a área da espira;
- Para achar o sentido do vetor área, você tem que saber o sentido da corrente. Então, basta você enrolar os seus dedos no sentido da corrente que o seu polegar vai dar o sentido do vetor área;

Momento dipolar magnético de um imã

• Em um imã, o momento de dipolo tem sentido do polo Sul para o polo Norte.

Momento dipolar magnético de uma bobina

- · A espira se comporta exatamente como um imã, possuindo um dipolo magnético;
- O torque magnético não depende do formato da espira, depende apenas da sua área;

Trabalho Magnético sobre uma Espira

• Se um agente externo faz o um dipolo magnético girar de uma orientação inicial θ_i para uma orientação final θ_f e se o dipolo permanece estacionário antes e depois da mudança de orientação, o trabalho W_a realizado pelo campo magnético sobre o dipolo magnético é dado por:

Campo Magnético Gerado por um Fio

Campo gerado por uma Carga Pontual em Movimento

Campo gerado por um Fio Infinito

Força entre Correntes Paralelas

- Correntes paralelas → Os fios se atraem;
- Correntes antiparalelas → Os fios se repelem;

Campo Magnético Gerado por uma Bobina

Campo Magnético Gerado por uma Espira

Nessa equação tem duas situações que vale darmos uma olhada, que correspondem ao campo elétrico: para pontos muitos distantes $(z\gg R)$ e no centro da espira (z=0).

$$\begin{bmatrix}
\vec{B}(z) \approx \frac{\mu_0 i R^2}{2z^3} (\hat{z}) \\
(z \gg R)
\end{bmatrix}$$

$$\begin{bmatrix}
\vec{B}(z) = \frac{\mu_0 i}{2R} (\hat{z}) \\
(z = 0)
\end{bmatrix}$$

Campo Magnético Gerado por uma Bobina

Uma bobina nada mais é do que um arranjo com N espiras. Dessa forma, o campo magnético gerado por ela, em pontos muito distantes $(z\gg R)$, é dado por:

$$|\vec{B}(z) \approx \frac{\mu_0 NiR^2}{2z^3} (\hat{z})|$$

Podemos ainda escrever essa equação em função do momento dipolo magnético ($\mu=NiA$), onde a $A=\pi R^2$ corresponde à área da espira.

$$\vec{\frac{B}{B}}(z) \approx \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3} (\hat{z})$$

Lei de Biot-Savart Geral

- O vetor \overrightarrow{dl} (em verde) é tangente ao fio, sempre no sentido da corrente;
- O vetor unitário \hat{r} aponta do fio para o ponto onde estamos calculando o campo magnético;

Quando a Lei de Biot-Savart é útil?

- Para calcular o campo magnético gerado por segmentos retilíneos;
- Para calcular o campo magnético gerado por segmentos circulares (ou semicirculares), que costumam aparecer bastante;

Lei de Ampère

- Na Lei de Ampère a nossa integral é numa CURVA! Esta curva é chamada de Amperiana;
- O vetor \overrightarrow{dl} em questão é o vetor infinitesimal que é $extbf{tangente}$ à curva C em todos os pontos;
- Por se tratar de uma integral de linha, a curva ${\cal C}$ deve estar ${f orientada}$;

I_{int} é uma corrente constante que passa por dentro da nossa curva C;

Campo magnético no interior de um condutor

Condutor com corrente uniformemente distribuída

$$J = \frac{I}{A} = const. \qquad \Rightarrow \quad B(r) = \frac{\mu_0 i r}{2\pi R^2}$$

Lei de Ampère em Solenóides

Um solenóide é uma bobina helicoidal formada por espiras circulares muito próximas.

Lei de Ampère em Toróides

Um toróide pode ser descrito como um solenóide cilíndrico que foi encurvado até as extremidades se tocarem, formando assim um anel.

Materiais Magnéticos

A permeabilidade magnética (μ) pode ser diferente dependendo do meio.

• Mas como relacionar esse μ especial com o valor de μ_0 que estamos acostumados?

Em relação aos valores de χ_m , podemos concluir algumas coisas:

- Se $\chi_m < 0$, o material é **diamagnético**. São materiais que não possuem momento magnético permanente e nem podem ser imantados.
- Se $\chi_m>0$, o material pode ser **paramagnético** ou **ferromagnético**.
 - Se χ_m for positivo porém pequeno $(10^{-5} \sim 10^{-3})$ então o material será **paramagnético**: são materiais que não possuem momento magnético permanente mas que podem ser imantados um pouquinho caso estejam em um campo magnético forte.
 - Se χ_m for positivo e grande, temos o **ferromagnetismo**: são materiais que podem se tornam permanentemente imãs caso estejam em presença de campo magnético, respondendo fortemente a esse campo.

Equações de Maxwel

$$\overrightarrow{
abla} = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$

Lei de Gauss

Lei de Gauss Magnética

Como não existem monopólos magnéticos:

Lei de Faraday-Lenz

Lei de Ampère-Maxwell

Equações da Onda Eletromagnética

Usando a propriedade matemática:

$$\nabla \times \left(\nabla \times \overrightarrow{\pmb{F}}\right) = \nabla \bigg(\nabla \bullet \overrightarrow{\pmb{F}}\bigg) - \nabla^2 \overrightarrow{\pmb{F}}$$

$$abla^2 \overrightarrow{m{F}} = \left(rac{\partial^2 F_x}{\partial x^2} + rac{\partial^2 F_y}{\partial y^2} + rac{\partial^2 F_z}{\partial z^2}
ight)$$

Chegamos nas seguintes equações:

$$\nabla^2 \overrightarrow{E} = \mu_0 \epsilon_0 \frac{\partial^2 \overrightarrow{E}}{\partial t^2}$$

$$abla^2 \overrightarrow{B} = \mu_0 \epsilon_0 rac{\partial^2 \overrightarrow{B}}{\partial t^2}$$

Que são equações de onda tridimensionais do tipo:

$$abla^2 \overrightarrow{m{F}} = rac{1}{v^2} rac{\partial^2 \overrightarrow{m{F}}}{\partial t^2}$$

Onde:

$$v = rac{1}{\sqrt{\mu_0 \epsilon_0}} = 3 ullet 10^8 \ m/s = c \ igg(velocidade \ da \ luz igg)$$

Propriedades Ondulatórias da Luz

Ondas Eletromagnéticas

Campos Elétrico e Magnético

$$\overrightarrow{E} \perp \overrightarrow{B}$$

Frequência e Comprimento de Onda

$$\omega = 2\pi f$$
 $k = \frac{2\pi}{\lambda}$ $E = cB$

Propagação das Ondas Eletromagnéticas

Direção de Propagação ($\widehat{m{k}}$)

$$\hat{k} = \frac{\overrightarrow{E} \times \overrightarrow{B}}{\left\|\overrightarrow{E} \times \overrightarrow{B}\right\|}$$

Número de Onda (\overrightarrow{k})

$$\overrightarrow{k}=rac{2\pi}{\lambda}\hat{k}$$

Campo Elétrico em uma Direção $\widehat{m{k}}$ Qualquer

$$\overrightarrow{E} = E_{mlpha x} \mathrm{co}\,\mathrm{s}igg(\overrightarrow{k}ullet\overrightarrow{r}\,\mp\omega t + \phiigg)\widehat{n}$$

onde
$$\overrightarrow{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

Sentido da propagação

Energia da Onda Eletromagnética

Densidade de Energia (u)

$$u = \frac{Energia}{Volume}$$

Densidade de Energia do Campo Elétrico ($oldsymbol{u_E}$)

$$\mathrm{u_E}=rac{1}{2}\epsilon_0 E^2$$

Densidade de Energia do Campo Magnético ($oldsymbol{u_B}$)

$$\mathbf{u}_{\mathrm{B}} = \frac{1}{2\mu_{\mathrm{0}}}B^{2}$$

Densidade de Energia da Onda Eletromagnética (u)

$$u=\frac{1}{2}\epsilon_0 E^2+\frac{1}{2\mu_0}B^2$$

Usando as relações:

$$E = cB$$

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

$$u = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2\mu_0} B^2 = \epsilon_0 E^2$$

Vetor de Poynting e Intensidade

Fluxo de Energia (S)

$$Fluxo\: de\: Enegia = \frac{Pot \hat{e}ncia}{\textit{A}\: rea}$$

$$S = \frac{1}{A} \frac{dU}{dt}$$

Fluxo de Energia da Onda Eletromagnética

$$S = \epsilon_0 c E^2 = \frac{EB}{\mu_0}$$

Vetor de Poynting ($\overrightarrow{m{S}}$)

$$\|\overrightarrow{S}\| = \frac{EB}{\mu_0}$$

 \overrightarrow{S} é paralelo a \hat{k} e também a $\left(\overrightarrow{E} imes \overrightarrow{B}
ight)$.

$$\overrightarrow{S} \parallel \overrightarrow{k} \parallel \overrightarrow{E} \times \overrightarrow{B}$$

$$\overrightarrow{S} = \frac{\overrightarrow{E} \times \overrightarrow{B}}{\mu_0}$$

Intensidade da Radiação (I)

$$I = S_{m\acute{e}dio} = \frac{1}{2} \frac{E_{m\acute{a}x} B_{m\acute{a}x}}{\mu_0}$$

Potência da Luz (P)

Em uma superfície fechada, calculamos a potência total emitida por uma fonte

$$oldsymbol{P} = \oint \overrightarrow{oldsymbol{S}} ullet oldsymbol{d} \overrightarrow{oldsymbol{A}}$$

Numa fonte pontual,

$$I = \frac{P}{4\pi r^2}$$

A potência em uma certa área ${\cal A}$ é

$$P = \int_{\acute{a}rea} \overrightarrow{S} \cdot d\overrightarrow{A}$$