

Directional association inference challenged by severe dropout in single-cell RNAseq data

Eliška Dvořáková dvorael1@fel.cvut.cz

supervisor: Prof. Joe Song

Motivation

- Single-cell RNA sequencing (scRNA) allows to gain RNAseq from small amount of initial material. (single cell)
- New field of study focus on data from single cell.
- scRNA suffers from 0.9 dropout.
- Methods for Bulk RNA-seq performs close to random
- New methods FunChisq [1].

Bulk RNA-seq

Input material: multiple cell

No dropout

1000 samples

Column

Single-cell RNA-seq

- Input material: single cell
- 0.9 dropout
- 1000 samples

· · · · · · · · · · · · · · · · · · ·			
	869.1	35.1	26.1
Row	36.1	2.1	1.1
	27.1	4.1	0.1

scRNA

Column

Methods

- 1. Pearson's Correlation test
- 2. Mutual Information
- 3. Conditional Entropy (directional)
- 4. Pearson's χ^2 -test
- 5. Functional χ^2 -test (directional) [1]

Simulated dataset

Size: 200 tables

Dimension: 3x3

Samples: 1000

Noise: 0.0, 0.2

Dropout: 0.2, 0.8, 0.9, 0.99

- Configurations:
 - 1. Detection of relationship
 - 2. Detection of relationship direction

Results 1st Configuration

Results 2nd Configuration

Real dataset biological background

- Dataset gained from Tung et al. [2]
- single-cell Fluidigm C1 platform
- three C1 replicates from three human induced pluripotent stem cell (iPSC) lines
- unique molecular identifiers (UMI) to all samples
- The paper is focused on finding source of variation in gene expression data.
 - Genotype
 - UMI counts are biased

Real dataset

- Subset of 40 genes
- Configurations:
 - Person vs Gene (true) and Gene vs Person (false) only for differentially expressed genes.
 - 2. Person vs Gene (true for differentially expressed genes)

Column

Data discretization

Discretized

Results 1st configuration

Tables with strongest inference for each

Chisq Person to ENSG00000142871

method

Tables with strongest inference for each method

CondEtrp ENSG00000215910 to Person

FunChisq ENSG00000142871 to Person

Results 2nd configuration

Conclusion

- Simulated dataset
- Real dataset
- Future work
 - Answer How many samples are needed to gain at least 70% accuracy?
 - Add test for multiple noise
 - Process whole real dataset

References

- [1] Zhang, Y., & Song, M. (2013). Deciphering interactions in causal networks without parametric assumptions. *arXiv* preprint arXiv:1311.2707.
- [2] Tung, P.Y., Blischak, J. D., Hsiao, C. J., Knowles, D. A., Burnett, J. E., Pritchard, J. K., &Gilad, Y. (2017). Batch effects and the effective design of single cell gene expression studies. Sci Rep, 7, 39921.