Correction du TD

I | Interférences de 2 ondes sonores frontales

1) À partir de HP1, les ondes parcourent la distance D+x pour arriver au micro. À partir de HP2, elles parcourent la distance D-x. Ainsi,

$$\Delta\varphi_{1/2}(\mathbf{M}) = -k\Delta L_{1/2}(\mathbf{M}) + \underbrace{\Delta\varphi_0(\mathbf{M})}_{=0 \text{ d'après l'énoncé}}$$

$$= -k\left(|\mathbf{HP_1M}| - |\mathbf{HP_2M}|\right)$$

$$= -k\left(\cancel{\mathcal{D}} + x - (\cancel{\mathcal{D}} - x)\right)$$

$$\Leftrightarrow \Delta\varphi_{1/2}(\mathbf{M}) = -2kx$$

2) Les ondes p_1 et p_2 étant de même amplitude P_0 , on a que l'onde somme $p(t) = p_1(t) + p_2(t)$ est d'amplitude P telle que

$$P = 2P_0 \cos\left(\frac{\Delta\varphi(M)}{2}\right) \Leftrightarrow P = 2P_0 \cos(-kx)$$

3) On a interférences constructives si l'amplitude est maximale, ici pour $\cos(-kx_n) = \pm 1 \Leftrightarrow -kx_n = n\pi$. Or,

$$-kx_n = n\pi \Leftrightarrow -\frac{2\pi}{\lambda}x_n = n\pi \Leftrightarrow \boxed{x_n = n\frac{\lambda}{2}}$$

4) Les maximums se trouvent aux positions x_n . La distance entre deux maximums est donc

$$d = x_{n+1} - x_n = \frac{\lambda}{2}$$

5) Étant donné que $\lambda = cT = c/f$, on trouve

$$\frac{\lambda}{2} = d \Leftrightarrow \frac{c}{2f} = d \Leftrightarrow \boxed{c = 2df}$$
 avec
$$\begin{cases} d = 21,2 \times 10^{-2} \text{ m} \\ f = 800 \text{ Hz} \end{cases}$$
 A.N. :
$$\boxed{c = 339 \text{ m} \cdot \text{s}^{-1}}$$

C'est la valeur usuelle de célérité du son dans l'air à 20 °C.

${ m I}$ ${ m I}$ Interférences sur la cuve à ondes

1) Par définition,

$$\Delta \varphi_{1/2}(\mathbf{M}) = -k\Delta L_{1/2}(\mathbf{M}) = -k(d_1 - d_2) = \frac{2\pi}{\lambda}(d_2 - d_1)$$

Et pour avoir des interférences destructives,

$$\Delta \varphi_{1/2}(\mathbf{M}) = (2m+1)\pi \Leftrightarrow \frac{2\pi}{\lambda}(d_2 - d_1) = (2m+1)\pi \Leftrightarrow \boxed{d_2 - d_1 = \left(m + \frac{1}{2}\right)\lambda}$$

2) Avec $S_1S_2 = a$, on observe que tout l'axe x > a/2 correspond à une ligne de vibration minimale, c'est-à-dire un endroit de l'espace où les interactions sont destructives, i.e. $d_2 - d_1 = (m + 1/2)\lambda$. Or, pour x > a/2, on a

$$d_2 - d_1 = S_2M - S_1M = S_2M - S_1S_2 + S_2M \Leftrightarrow d_2 - d_1 = -a$$

On en déduit donc

$$\left| \frac{a}{\lambda} \right| = m + \frac{1}{2}$$

c'est-à-dire que a/λ est un demi-entier (1/2, 3/2, 5/2...). Le résultat est le même en raisonnant sur x < -a/2.

3) Entre S_1 et S_2 , on prend 3 cas extrêmes pour déterminer l'amplitude de d_2-d_1 :

$$\diamond$$
 En S₁, $d_2 = -a$ et $d_1 = 0$, donc

$$d_2 - d_1 = -a$$

 \diamond En O, $d_2 = -a/2$ et $d_1 = a/2$, donc

$$d_2 - d_1 = 0$$

 \diamond En S₂, $d_2 = 0$ et $d_1 = a$, donc

$$d_2 - d_1 = -a$$

Ainsi,

$$-a \leqslant d_2 - d_1 \leqslant a$$

Or, entre S_1S_2 on observe plusieurs vibrations minimales, donnant chacune $d_2 - d_1 = (m + \frac{1}{2})\lambda$. On en compte 8 entre S_1S_2 , correspondant chacune à un ordre d'interférence m. À partir de O et vers les x croissants, on a la première vibration minimale pour m = 0, la deuxième pour m = 1, la troisième pour m = 2 et la dernière pour m = 3; on a de même par symétrie vers les x décroissants. Ainsi, l'ordre d'interférence obtenu le plus grand est m = 3, et on n'a pas l'ordre d'interférence m = 4 sinon on aurait une parabole en plus de chaque côté. Ainsi,

$$\left(3 + \frac{1}{2}\right)\lambda < a \leqslant \left(4 + \frac{1}{2}\right)\lambda$$

puisqu'on observe qu'il reste une distance sur S_1S_2 après l'ordre 3 avant d'atteindre S_2 et que si a dépasse $(4+1/2)\lambda$ on verrait la parabole correspondant à l'ordre 4. Comme on a déterminé à la question précédente que $\frac{a}{\lambda} = m + \frac{1}{2}$, avec cette étude on a $3 < m \le 4$ avec $m \in \mathbb{N}$, autrement dit m = 4, soit

$$\boxed{\frac{a}{\lambda} = \frac{9}{2}}$$

4) Le contraste correspond à une grande différence entre les valeurs maximales et minimales. Or, sur (Oy) on a $d_2 = d_1$ donc $d_2 - d_1 = 0$, c'est-à-dire que les ondes sont en phase et les interférences constructives, donc l'amplitude est maximale et le contraste est élevé.

III Trombone de KŒNIG

1)

$$\Delta \varphi_{2/1}(\mathbf{M}) = -k\Delta L_{2/1}(\mathbf{M}) = -k(\mathbf{OT}_2 - \mathbf{OT}_1)$$

Or, si on déplace T_2 par rapport à T_1 de d, l'onde passant dans T_2 doit parcourir 2d de plus, une fois pour chaque partie rectiligne; ainsi

$$\Delta \varphi_{2/1}(\mathbf{M}) = -2kd$$

2) Cette observation traduit qu'un décalage de 11,5 cm fait passer d'une interférence destructive à celle qui la suit, donc augmente le déphasage de 2π ou la différence de marche de λ . On a donc

$$|2kd| = 2\pi \Leftrightarrow \frac{2\pi}{\lambda}d = \pi \Leftrightarrow \boxed{2df = c}$$
 avec
$$\begin{cases} d = 11.5 \times 10^{-2} \text{ m} \\ f = 1500 \text{ Hz} \end{cases}$$
 A.N. : $\boxed{c = 345 \text{ m} \cdot \text{s}^{-1}}$

IV Interférences et écoute musicale

1) Chaque onde parcourt la distance enceinte – auditaire directement, mais l'onde réfléchie parcourt en plus 2D entre l'auditaire et le mur. Ainsi, la célérité étant notée c, on a

$$\tau = \frac{2D}{c}$$

2) La source étant similaire pour les deux ondes, la phase à l'origine des temps est la même; de plus il est indiqué que la réflexion sur le mur n'implique pas de déphasage supplémentaire, donc le déphasage n'est dû qu'à la propagation. Ainsi, l'onde réfléchie a un déphasage

$$\Delta \varphi_{r/i}(\mathbf{M}) = \omega \tau = \frac{4\pi f D}{c}$$

3) Il peut y avoir une atténuation de l'amplitude si les deux ondes sont en opposition de phase, et donc que les interférences sont destructives, c'est-à-dire

$$\Delta \varphi_{r/i}(\mathbf{M}) = (2n+1)\pi \Leftrightarrow \frac{4\pi fD}{c} = (2n+1)\pi \Leftrightarrow \boxed{f = (2n+1)\frac{c}{4D}}$$

avec $n \in \mathbb{N}$. Étant donné que le domaine audible s'étant de $(20 ; 20 \times 10^3)$ Hz, il faudrait que la plus petite fréquence d'atténuation, celle avec n = 0, soit au-delà de $20 \,\mathrm{kHz}$; autrement dit on cherche

$$f_{\text{max}} < \frac{c}{4D} \Leftrightarrow \boxed{D < \frac{c}{4f_{\text{max}}}} \quad \text{avec} \quad \begin{cases} c = 342 \,\text{m} \cdot \text{s}^{-1} \\ f_{\text{max}} = 20 \,\text{kHz} \end{cases}}$$

$$A.N. : \boxed{D < 4.3 \,\text{mm}}$$

On est donc sûrx de ne pas avoir d'atténuation dans l'audible si on colle notre oreille au mur... ce qui est réalisable, mais correspond presque à ne pas avoir d'interférences du tout.

4) Quand D augmente, l'onde réfléchie par le mur finit par avoir une amplitude faible devant l'onde directe étant donné qu'une onde sphérique voit son amplitude diminuer avec le rayon : les interférences deviennent de plus en plus négligeables.

${f V}^{\,ar{}}$ Mesure de l'épaisseur d'une lame de verre

1) En notant (SM) le chemin optique de S à M, la différence de marche en M est donnée par

$$\delta_{1/2}(M) = (ST_1M) - (ST_2M) = (ST_1) + (T_1M) - (ST_2) - (T_2M)$$

La source étant sur l'axe optique et l'indice étant le même sur cette portion, on a $(ST_1) = (ST_2)$. On se retrouve donc à calculer le chemin optique à partir des trous. Or, le chemin de T_2 à M se fait dans l'air, donc $(T_2M) = T_2M$. En notant F_1 et F_2 les points d'entrée et de sortie du rayon lumineux dans la lame de verre tels que $F_1F_2 = e$, on a

$$(T_1M) = (T_1F_1) + (F_1F_2) + (F_2M)$$

$$= T_1F_1 + n_ve + F_2M$$

$$= T_1F_1 + n_ve + F_1F_2 - F_1F_2 + F_2M$$

$$= T_1F_1 + F_1F_2 + F_2M + (n_v - 1)e$$

$$= T_1M + (n_v - 1)e$$

Avec $T_1M = T_1F_1 + F_1F_2 + F_2M$. Autrement dit,

$$\delta_{1/2}(M) = T_1M - T_2M + (n_v - 1)e$$

et avec le résultat usuel de différence de marche des trous d'Young, c'est-à-dire $\Delta L_{1/2}(M) = ax/D$ (attention à la notation de la distance entre les fentes!), on trouve bien

$$\delta_{1/2}(\mathbf{M}) = \frac{ax}{D} + (n_v - 1)e$$

Autrement dit, la différence de chemin optique est celle sans la lame à laquelle s'ajoute le retard pris par l'onde issue de T_1 qui va moins vite/parcourt une plus grande distance (à la célérité c) à cause du verre. On retrouve bien que si $n_v = 1$, la différence de chemin optique est celle attendue sans lame de verre.

2)

$$\delta_{1/2}(\mathbf{M}) = 0 \Leftrightarrow \frac{ax_c}{D} - (n_v - 1)e = 0 \Leftrightarrow \boxed{x_c = \frac{(n_v - 1)eD}{a}}$$

En l'absence de la lame de verre, la frange centrale serait sur l'axe optique, en x = 0: dans cette situation, elle s'est donc décalée de x_c .

3) On isole:

$$e = \frac{ax_c}{D(n_v - 1)} \quad \text{avec} \quad \begin{cases} a = 100 \,\mu\text{m} \\ D = 1,00 \times 10^9 \,\mu\text{m} \\ n_v = 1,57 \\ x_c = 28,5 \times 10^7 \,\mu\text{m} \end{cases}$$

4) Application numérique :

$$e = 50.0 \, \mu \text{m}$$

5) La frange centrale, en première approximation, n'est pas distinguable des autres franges brillantes correspondant également à des interférences constructives : on a donc sa position modulo l'interfrange, soit

$$x_c \equiv x_c \quad \left[\frac{\lambda D}{a}\right]$$

et ainsi

$$e \equiv e \quad \left[\frac{\lambda}{n_v - 1}\right]$$

Autrement dit, la mesure de e n'est possible que modulo $\lambda/(n_v - 1) = 0.9 \,\mu\text{m}$: la mesure de la lame de verre ne serait donc pas réalisable avec cette expérience, puisqu'elle est plus grande que $0.9 \,\mu\text{m}$.

VI | Contrôle actif du bruit en conduite

1) Entre l'instant où le signal est détecté par le micro 1 et l'instant où ce signal passe en A, il s'écoule un temps égal à L/c. Pendant ce temps, il faut que le contrôleur calcule et produise le signal qu'il envoie dans le haut-parleur, et que ce signal se propage jusqu'à A, ce qui prend le temps ℓ/c . Ainsi, le temps disponible pour le calcul est

$$\frac{L-\ell}{c}$$

2) La phase du signal de bruit arrivant en A est

$$\varphi_{\text{bruit}} = \varphi_1 - kL$$

La phase du signal de correction arrivant en A est

$$\varphi_{\rm corr} = \varphi_{\rm HP} - k\ell$$

Pour avoir interférences destructives, il faut que $\varphi_{corr} = \varphi_{bruit} + \pi$, c'est-à-dire

$$\Delta \varphi_{c/b}(\mathbf{A}) = \varphi_{\mathrm{HP}} - \varphi_1 = \frac{\omega}{c}(\ell - L) + \pi$$

3) Le micro 1 capte un signal qui est la superposition du bruit et du signal émis par le haut-parleur se propageant à partir de A vers l'amont. Le micro 2 donne un contrôle du résultat et permet la détermination du meilleur signal de correction.

VII Mesure de la vitesse du son avec des trous d'Young

1) L'interfrange dans une expérience de trous d'Young dont les fentes sont séparées de a est

$$i = \frac{\lambda D}{a}$$

2) On mesure avec une règle graduée au millimètre pour mesurer (conversion d'échelle comprise) $4i = 17.1 \,\mathrm{cm}$. La précision est ici limitée par l'écart entre deux positions de mesure du détecteur. Avec l'échelle de la figure et le facteur $1/\sqrt{3}$, on trouve l'incertitude-type de mesure $u_{4i} = 0.8 \,\mathrm{cm}$. Ainsi,

$$i = (4.3 \pm 0.2) \,\mathrm{cm}$$

3) En utilisant l'expression de l'interfrange et de $\lambda=c/f,$ on a

$$c = \lambda f = \frac{fa}{D} \Leftrightarrow c = 3.4 \times 10^2 \,\mathrm{m \cdot s^{-1}}$$

On détermine son incertitude avec la formule de propagation :

$$\frac{u(\lambda)}{\lambda} = \sqrt{\left(\frac{u(i)}{i}\right)^2 + \left(\frac{u(a)}{a}\right)^2 + \left(\frac{u(D)}{D}\right)^2} \quad \text{avec} \quad \begin{cases} \lambda = 8,4 \text{ mm} \\ i = 4,3 \text{ cm} \\ u(i) = 0,2 \text{ cm} \\ a = 10,0 \text{ cm} \\ u(a) = \frac{1 \text{ mm}}{\sqrt{3}} = 0,6 \text{ mm} \\ D = 50,0 \text{ cm} \\ u(D) = \frac{1 \text{ mm}}{\sqrt{3}} = 0,6 \text{ mm} \end{cases}$$
 A.N. :
$$c = (3,4 \pm 0,1) \times 10^2 \text{ m} \cdot \text{s}^{-1}$$

4) La diminution de l'amplitude des interférences lorsque x augmente est due au phénomène de diffraction par un trou d'YOUNG. Sur la figure 2, on peut voir que l'amplitude des interférences s'annule pour $x_a \approx 15$ cm. Or, d'après la figure 1, $\tan(\theta) = x_a/D$; ainsi, en combinant avec $\sin(\theta) \approx \lambda/2r$ et avec l'approximation des petits angles $(\tan(\theta) \approx \theta)$ et $\sin(\theta) \approx \theta$, on a

$$\frac{x_a}{D} \approx \frac{\lambda}{2r} \Leftrightarrow r \approx \frac{\lambda D}{2x_a} \approx 1.4 \,\mathrm{cm}$$

VIII Interférences ultrasonores sur un cercle

1) a - On a

b – E_1H est la différence $E_1M - E_2M = r_1 - r_2 = \Delta L_{1/2}(M)$ avec les notations du cours ; autrement dit, c'est la différence de marche entre les deux ondes.

c – En raisonnant dans le triangle E_1E_2H , considéré rectangle, on a $E_1H=a\sin\theta$. D'où le déphasage :

$$\Delta \varphi_{2/1}(\mathbf{M}) = \frac{2\pi a \sin \theta}{\lambda}$$

d – L'amplitude est maximale pour des interférences constructives, soit pour $\Delta \varphi_{2/1}(M) = 2p\pi$ avec $p \in \mathbb{Z}$; sur θ ça donne donc

$$\boxed{\sin \theta = p \frac{\lambda}{a}} \Leftrightarrow \theta = \sin \left(p \frac{\lambda}{a} \right)$$

On regarde donc quels sont les ordres d'interférences p tels que $\theta \in (-30 ; 30)^{\circ}$:

 $\diamond~p=0 \Rightarrow \theta=0^\circ,$ soit un maximum pour tout l'axe x : c'était attendu étant donné les symétries du problème ;

 $\diamond~p=\pm 1 \Rightarrow \theta=\pm 12^{\circ},$ donnant deux points symétriques par rapport à (Ox);

 $\diamond~p=\pm2\Rightarrow\theta=\pm25^{\circ},$ pratiquement le double des valeurs précédentes.

p>2 donne des valeurs en-dehors de l'intervalle.

2) e – On a interférences destructives si $\Delta \varphi_{2/1}(M) = (2p+1)\pi$, soit

$$\boxed{\sin \theta = \left(p + \frac{1}{2}\right) \frac{\lambda}{a}} \Leftrightarrow \theta = \operatorname{asin}\left(\left(p + \frac{1}{2}\right) \frac{\lambda}{a}\right)$$

 $\diamond \ p = 0 \Rightarrow \theta = \pm 6^{\circ} \, ;$

$$\diamond \ p = 1 \Rightarrow \theta = \pm 19^{\circ}.$$

f – Pour des ondes reçues avec la même amplitude, l'opposition de phase conduit à une annulation totale de l'amplitude somme.