

# Proposta de teste de avaliação

| M  | Matemática A |     |     |       |       |     |  |  |  |
|----|--------------|-----|-----|-------|-------|-----|--|--|--|
| 11 | o            | ANC | DE: | ESCOI | A DIT | ADE |  |  |  |

Duração: 120 minutos | Data:



Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Na figura, está representado, em esquema, um terreno com a forma de um triângulo [ABC], em que  $\overline{AC} = 50$  m,  $\overline{BC} = 70$  m e  $B\hat{A}C = 60^{\circ}$ .



O comprimento, em metros, de [AB] é igual a:

- **(A)** 78
- **(B)** 80
- **(C)** 82
- **(D)** 84
- 2. Na figura, está representado o quadrado  $\begin{bmatrix} ABCD \end{bmatrix}$  de lado 2. M é o ponto médio de  $\begin{bmatrix} AB \end{bmatrix}$ .



O valor do produto escalar  $\overrightarrow{MC} \cdot \overrightarrow{MD}$  é:

- **(A)** 0
- **(B)** 2
- **(C)** 3
- **(D)** 4
- 3. Na figura, estão representadas, num referencial ortonormado xOy:
  - a circunferência de centro C que passa no ponto B, de coordenadas (4,0);
  - a reta t, definida pela equação x-2y+4=0 e tangente à circunferência no ponto A, de abcissa 4.



**3.1.** Seja  $\alpha$  a inclinação da reta t.

Determine o valor de  $5\cos\alpha\cos\left(\frac{\pi}{2} + \alpha\right)$ .

3.2. Determine a equação reduzida da circunferência da figura.





4. Na figura, estão representados, num referencial o.n. Oxyz:

- os pontos A, B e C;
- a superficie esférica de centro no ponto C, definida pela equação  $(x-2)^2 + (y+4)^2 + (z-3)^2 = 9$ ;



Sabe-se que o ponto A tem coordenadas (3, -2, 5) e que [AB] é um diâmetro da superficie esférica.



 $\alpha$ 

**4.1.** As coordenadas do ponto B são:

- (A) (5, -7, 0)
- **(B)** (4, -3, 1)
- (C) (0, -5, 5)
- **(D)** (1, -6, 1)

Determine uma equação do plano  $\alpha$ . Apresente essa equação na forma ax + by + cz + d = 0, com  $a, b, c, d \in \mathbb{R}$ .

De uma sucessão  $(u_n)$ , sabe-se que, para todo o  $n \in \mathbb{N}$ ,  $u_n - u_{n+1} = \frac{1}{n^2 + n}$ . 5.

**5.1.** Se o quarto termo de  $(u_n)$  é igual a  $\frac{21}{20}$ , então o quinto termo é igual a:

- **(A)** 1

- **(B)**  $\frac{11}{10}$  **(C)**  $\frac{29}{30}$  **(D)**  $\frac{61}{60}$

Sabendo que  $(u_n)$  é uma sucessão de termos positivos, justifique que é convergente.

Considere a sucessão  $(v_n)$  de termo geral  $v_n = \frac{n+2}{n+1}$  e a função f, de domínio  $\mathbb{R}^+ \setminus \{1\}$ , definida 6. por  $f(x) = \frac{\sqrt{x-x}}{(x-1)^2}$ .

**6.1.** Estude a sucessão  $(v_n)$  quanto à monotonia.

- **6.2.** A que é igual  $\lim f(v_n)$ ?
  - **(A)**
- **(B)**
- **(C)** 0
- **(D)**

Mostre que o gráfico da função f tem uma assíntota horizontal.



7. De uma progressão aritmética  $(a_n)$ , sabe-se que  $a_{26} = 100$  e que a soma dos 101 primeiros termos é igual a 0.

Determine uma expressão do termo geral de  $(a_n)$ .

8. Num determinado instante, um reservatório com a capacidade de 10 000 litros contém uma mistura de 2000 litros de água com 2000 litros de sumo de maçã. A partir desse instante inicial, duas condutas de caudal constante introduzem, no reservatório, sumo de manga e sumo de laranja à razão de 400 litros por hora e 600 litros por hora, respetivamente.

O processo termina logo que o reservatório fique cheio.

- **8.1.** Mostre que a percentagem de sumo de laranja existente no reservatório, t horas após começar a ser aí introduzido, é dada por  $P(t) = \frac{3t}{20+5t}$ ,  $0 \le t \le 6$ .
- **8.2.** Ao fim de quanto tempo o reservatório contém 35% de sumo de laranja? Apresente o resultado em horas e minutos.
- **9.** Considere a função f, de domínio  $\mathbb{R}$ , definida por  $f(x) = \frac{1}{2} + 4x^3 \frac{3}{2}x^4$ .
  - **9.1.** Determine a equação reduzida da reta tangente ao gráfico de f no ponto de abcissa 1.
  - **9.2.** Estude a função f quanto à monotonia e determine, caso existam, os extremos relativos.

#### **FIM**

#### Cotações:

| • | çoes.               |    |      |      |      |     |      |      |      |      |      |    |      |      |     |      |       |
|---|---------------------|----|------|------|------|-----|------|------|------|------|------|----|------|------|-----|------|-------|
|   | Item                |    |      |      |      |     |      |      |      |      |      |    |      |      |     |      |       |
|   | Cotação (em pontos) |    |      |      |      |     |      |      |      |      |      |    |      |      |     |      |       |
|   | 1.                  | 2. | 3.1. | 3.2. | 4.1. | 4.2 | 5.1. | 5.2. | 6.1. | 6.2. | 6.3. | 7. | 8.1. | 8.2. | 9.1 | 9.2. | Total |
|   | 10                  | 10 | 15   | 15   | 10   | 10  | 10   | 10   | 15   | 10   | 15   | 15 | 15   | 15   | 10  | 15   | 200   |





#### Formulário

#### Geometria

Comprimento de um arco de circunferência:

 $\alpha r$  ( $\alpha$ : amplitude, em radianos, do ângulo ao centro; r: raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:  $\frac{\alpha r^2}{2}$  ( $\alpha$ : amplitude, em radianos, do ângulo ao centro; r: raio)

Área lateral de um cone:  $\pi rg$  (r: raio da base; g: geratriz)

Área de uma superfície esférica:  $4\pi r^2$  ( r : raio)

**Volume de uma pirâmide:**  $\frac{1}{3} \times \acute{A}rea da base \times Altura$ 

**Volume de um cone:**  $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$ 

Volume de uma esfera:  $\frac{4}{3}\pi r^3$  (r: raio)

#### Progressões

Soma dos n primeiros termos de uma progressão  $(u_n)$ :

**Progressão aritmética:**  $\frac{u_1 + u_n}{2} \times n$ 

**Progressão geométrica:**  $u_1 \times \frac{1-r^n}{1-r}$ 

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u\ v)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = n u^{n-1} u'$$
,  $(n \in \mathbb{R})$ 



#### Proposta de resolução

1. De acordo com a figura, vem:

$$\overline{AB} = x + y$$

$$\frac{x}{50} = \cos 60^{\circ} \Leftrightarrow x = 50 \times \frac{1}{2} \Leftrightarrow x = 25$$

$$\frac{h}{50} = \sin 60^{\circ} \Leftrightarrow h = 50 \times \frac{\sqrt{3}}{2} \Leftrightarrow h = 25\sqrt{3}$$

$$y^{2} + h^{2} = 70^{2}$$



$$\overline{AB} = 25 + 55 = 80$$

Em alternativa, pela lei dos cossenos:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$70^{2} = 50^{2} + c^{2} - 2 \times 50c \times \cos 60^{\circ} \Leftrightarrow$$

$$\Leftrightarrow 4900 = 2500 + c^{2} - 50c \Leftrightarrow$$

$$\Leftrightarrow c^{2} - 50C - 2400 = 0 \Leftrightarrow$$

$$\Leftrightarrow c = \frac{50 \pm \sqrt{2500 + 4 \times 2400}}{2} \Leftrightarrow c = \frac{50 \pm \sqrt{12100}}{2} \Leftrightarrow$$

$$\Leftrightarrow c = \frac{50 \pm 110}{2} \Leftrightarrow c = 80 \lor c = -30$$

 $y^{2} + (25\sqrt{3})^{2} = 70^{2} \Leftrightarrow y^{2} = 4900 - 25^{2} \times 3 \Leftrightarrow y = \sqrt{3025} \Leftrightarrow y = 55$ 



Como  $\overline{AB} > 0$ ,  $\overline{AB} = 80$ .

Resposta: (B)





Em alternativa, adotando um referencial conveniente, temos:

$$\overrightarrow{MD} = (2, 1) \text{ e } \overrightarrow{MC} = (2, -1)$$
  
 $\overrightarrow{MC} \cdot \overrightarrow{MD} = 2 \times 2 - 1 \times 1 = 3$ 



Resposta: (C)





3. 
$$t: x-2y+4=0 \Leftrightarrow 2y=x+4 \Leftrightarrow y=\frac{1}{2}x+2$$

$$B(4,0)$$

**3.1.** O declive da reta  $t \notin m = \frac{1}{2}$ .

Se  $\alpha$  é a inclinação da reta t, então  $\tan \alpha = \frac{1}{2}$  e  $0 < \alpha < \frac{\pi}{2}$ .

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + \left(\frac{1}{2}\right)^2 = \frac{1}{\cos^2 \alpha} \Leftrightarrow 1 + \frac{1}{4} = \frac{1}{\cos^2 \alpha} \Leftrightarrow \frac{1}{\cos^2 \alpha} = \frac{5}{4} \Leftrightarrow \cos^2 \alpha = \frac{4}{5}$$

$$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \frac{4}{5} = \frac{1}{5}$$

Como  $0 < \alpha < \frac{\pi}{2}$ , vem:

$$\cos \alpha = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} e \sin \alpha = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}$$

Então:

$$5\cos\alpha\cos\left(\frac{\pi}{2} + \alpha\right) = 5\cos\alpha\left(-\sin\alpha\right) = -5\cos\alpha\sin\alpha =$$
$$= -5 \times \frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = -5 \times \frac{2}{\sqrt{5} \times \sqrt{5}} = -5 \times \frac{2}{5} = -2$$

**3.2.** 
$$t: y = \frac{1}{2}x + 2$$

O ponto A(4, y) pertence à reta t.

Logo, 
$$y = \frac{1}{2} \times 4 + 2 \Leftrightarrow y = 4$$
.

Portanto, A(4,4).



Se a reta t é tangente à circunferência no ponto A, então a reta r, que passa no ponto A(4,4) e é perpendicular à reta t, passa no centro da circunferência.

Declive da reta 
$$r: m' = -\frac{1}{m} = -2$$

Equação da reta 
$$r: y-4=-2(x-4) \Leftrightarrow y=-2x+8+4 \Leftrightarrow y=-2x+12$$

Como [AB] é uma corda da circunferência, a mediatriz de [AB] passa no centro, C.

Sendo A(4,4) e B(4,0), a mediatriz de [AB] é a reta s de equação  $y = \frac{4+0}{2} \Leftrightarrow y = 2$ .



O centro da circunferência é o ponto de interseção das retas r e s, logo:

$$\begin{cases} y = -2x + 12 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} 2 = -2x + 12 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} 2x = 10 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} x = 5 \\ y = 2 \end{cases}$$

C(5,2)

Raio da circunferência:

$$r = \overline{AC} = \sqrt{(5-4)^2 + (2-4)^2} = \sqrt{1+4} = \sqrt{5}$$

Equação da circunferência:

$$(x-5)^2 + (y-2)^2 = 5$$

4.

**4.1.** A superfície esférica tem centro no ponto C(2, -4, 3) e raio 3.

$$A(3, -2, 5)$$

$$\overrightarrow{AC} = C - A = (2, -4, 3) - (3, -2, 5) = (-1, -2, -2)$$

$$B = C + \overrightarrow{CB} = C + \overrightarrow{AC} = (2, -4, 3) + (-1, -2, -2) = (1, -6, 1)$$

Resposta: (D)

**4.2.** Se o plano  $\alpha$  é tangente à superficie esférica no ponto A, então  $\overrightarrow{AC}(-1, -2, -2)$  é um vetor normal a esse plano. Por outro lado, como o plano  $\alpha$  passa no ponto A(3, -2, 5), vem:

$$-1(x-3)-2(y+2)-2(z-5)=0 \Leftrightarrow$$

$$\Leftrightarrow -x+3-2y-4-2z+10=0 \Leftrightarrow$$

$$\Leftrightarrow -x-2y-2z+9=0 \Leftrightarrow$$

$$\Leftrightarrow x+2y+2z-9=0$$

Logo, x + 2y + 2z - 9 = 0 é uma equação do plano  $\alpha$ .

5. 
$$\forall n \in \mathbb{N}, u_n - u_{n+1} = \frac{1}{n^2 + n}$$

**5.1.** 
$$u_4 = \frac{21}{20}$$

$$u_4 - u_5 = \frac{1}{4^2 + 4} \Leftrightarrow \qquad \qquad \left| u_n - u_{n+1} \right| = \frac{1}{n^2 + n} \land n = 4$$

$$\Leftrightarrow \frac{21}{20} - u_5 = \frac{1}{20} \Leftrightarrow u_5 = \frac{21}{20} - \frac{1}{20} \Leftrightarrow$$

$$\Leftrightarrow u_5 = \frac{21}{20} - \frac{1}{20} \Leftrightarrow u_5 = \frac{20}{20} \Leftrightarrow u_5 = 1$$

Resposta: (A)



Se  $(u_n)$  é uma sucessão de termos positivos, então  $u_n > 0$ ,  $\forall n \in \mathbb{N}$ , ou seja,  $(u_n)$  é minorada.

Por outro lado, 
$$\forall n \in \mathbb{N}$$
,  $u_n - u_{n+1} = \frac{1}{n^2 + n} \Leftrightarrow \forall n \in \mathbb{N}$ ,  $u_{n+1} - u_n = -\frac{1}{n^2 + n}$ .

Logo  $\forall n \in \mathbb{N}$ ,  $u_{n+1} - u_n < 0$ , ou seja,  $(u_n)$  é decrescente.

Portanto, podemos concluir que  $(u_n)$  é convergente, porque toda a sucessão decrescente e minorada é convergente.

**6.** 
$$v_n = \frac{n+2}{n+1}$$
;  $f(x) = \frac{\sqrt{x}-x}{(x-1)^2}$ 

**6.1.** 
$$v_{n+1} - v_n = \frac{n+1+2}{n+1+1} - \frac{n+2}{n+1} = \frac{(n+1)(n+3) - (n+2)(n+2)}{(n+2)(n+1)} =$$

$$=\frac{n^2+3n+n+3-n^2-4n-4}{(n+2)(n+1)}=\frac{-1}{(n+2)(n+1)}$$

 $v_{n+1} - v_n < 0, \ \forall n \in \mathbb{N}$ . Logo,  $(v_n)$  é monótona decrescente.

**6.2.** 
$$\lim v_n = \lim \frac{n+2}{n+1} = \lim \frac{n}{n} = 1$$

Como  $(v_n)$  é decrescente,  $\lim v_n = 1$  por valores superiores a 1.

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{\sqrt{x} - x}{(x - 1)^{2}} = \lim_{x \to 1^{+}} \frac{(\sqrt{x} - x)(\sqrt{x} + x)}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{x - x^{2}}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x(x - 1)}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac{-x}{(x - 1)^{2}(\sqrt{x} + x)} = \lim_{x \to 1^{+}} \frac$$

Como  $v_n \to 1^+$  e  $\lim_{x \to 1^+} f(x) = -\infty$ , conclui-se que  $\lim_{x \to 1^+} f(v_n) = -\infty$ .

#### Resposta: (D)

**6.3.** 
$$D_f = ]0, 1[ \cup ]1, +\infty[$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{x} - x}{(x - 1)^2} = \lim_{x \to +\infty} \frac{\sqrt{x} - x}{x^2 - 2x + 1} = \lim_{x \to +\infty} \frac{x \left(\frac{\sqrt{x}}{x} - 1\right)}{x \left(x - 2 + \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\frac{1}{\sqrt{x}} - 1}{x \left(x - 2 + \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\frac{1}{\sqrt{x}} - 1}{x \left(x - 2 + \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{\sqrt{x}} - 1}{x - 2 + \frac{1}{x}} = \frac{0 - 1}{+\infty - 2 + 0} = 0$$

Logo, a reta de equação y = 0 é uma assíntota ao gráfico de f.



7. 
$$a_n = a_1 + (n-1) \times r$$

$$a_{26} = 100$$
;  $S_{101} = 0$ 

$$\begin{cases} a_{26} = 100 \\ S_{101} = 0 \end{cases} \Leftrightarrow \begin{cases} a_1 + (26 - 1) \times r = 100 \\ \frac{a_1 + a_{101}}{2} \times 101 = 0 \end{cases} \Leftrightarrow \begin{cases} a_1 + 25r = 100 \\ a_1 + a_{101} = 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} a_1 + 25r = 100 \\ a_1 + a_1 + 100r = 0 \end{cases} \Leftrightarrow \begin{cases} a_1 + 25r = 100 \\ 2a_1 + 100r = 0 \end{cases} \Leftrightarrow \begin{cases} -50r + 25r = 100 \\ a_1 = -50r \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} -25r = 100 \\ a_1 = -50r \end{cases} \Leftrightarrow \begin{cases} r = -4 \\ a_1 = -50 \times (-4) \end{cases} \Leftrightarrow \begin{cases} r = -4 \\ a_1 = 200 \end{cases}$$

$$a_n = 200 + (n-1) \times (-4)$$

$$a_n = 200 - 4n + 4$$

$$a_{n} = -4n + 204$$

8.

**8.1.** Quantidade, em litros, de mistura existente decorridas t horas:

Sumo de manga 
$$400t$$

Total 
$$4000 + 1000 t$$

Percentagem de sumo de laranja:

$$P(t) = \frac{600t}{4000 + 1000t} = \frac{6t}{40 + 10t} = \frac{3t}{20 + 5t}$$

No instante inicial, existem, no reservatório, 2000 + 2000 = 4000 litros de líquido.

$$10\ 000 - 4000 = 6000$$

São vertidos, no reservatório, 400 + 600 = 1000 litros de sumo por hora. Logo, o reservatório fica cheio ao fim de 6 horas.

Portanto, 
$$P(t) = \frac{3t}{20+5t}$$
, com  $0 \le t \le 6$ .

**8.2.** Pretendemos resolver a equação P(t) = 35%.

$$P(t) = 0.35 \Leftrightarrow \frac{3t}{20+5t} = 0.35 \land 0 \le t \le 6 \Leftrightarrow$$

$$\Leftrightarrow 3t = 7 + 1,75 \ t \land 0 \le t \le 6 \Leftrightarrow 1,25 \ t = 7 \land 0 \le t \le 6 \Leftrightarrow t = \frac{7}{1,25} \land 0 \le t \le 6 \Leftrightarrow$$

$$\Leftrightarrow t = 5,6 \text{ h} \Leftrightarrow t = 5 \text{ h} 36 \text{ min}$$

$$|0,6 \times 60 = 36|$$

O reservatório contém 35% de sumo de laranja decorridas 5 h 36 min.





9. 
$$f(x) = \frac{1}{2} + 4x^3 - \frac{3}{2}x^4$$

**9.1.** 
$$f(1) = \frac{1}{2} + 4 \times 1^3 - \frac{3}{2} \times 1^4 = \frac{1}{2} + 4 - \frac{3}{2} = 4 - 1 = 3$$

Ponto de tangência: P(1,3)

$$f'(x) = \left(\frac{1}{2} + 4x^3 - \frac{3}{2}x^4\right)' = 0 + 12x^2 - 4 \times \frac{3}{2}x^3 = 12x^2 - 6x^3$$

Declive: 
$$m = f'(1) = 12 - 6 = 6$$

Equação pedida: 
$$y-3=6(x-1) \Leftrightarrow y=6x-6+3 \Leftrightarrow y=6x-3$$

**9.2.** 
$$f'(x) = 0 \Leftrightarrow 12x^2 - 6x^3 = 0 \Leftrightarrow 6x^2(2-x) = 0 \Leftrightarrow$$

$$\Leftrightarrow$$
 6 $x^2 = 0 \lor 2 - x = 0 \Leftrightarrow x = 0 \lor x = 2$ 

| х      | $-\infty$ | 0 |   | 2                | +∞ |
|--------|-----------|---|---|------------------|----|
| $6x^2$ | +         | 0 | + | +                | +  |
| 2-x    | +         | + | + | 0                | _  |
| f'     | +         | 0 | + | 0                | _  |
| f      | 7         | 0 | 7 | 1 <del>7</del> 2 | \  |

$$f(2) = \frac{1}{2} + 4 \times 2^3 - \frac{3}{2} \times 2^4 = \frac{1}{2} + 4 \times 8 - \frac{3}{2} \times 16 =$$
$$= \frac{1}{2} + 32 - 24 = \frac{1}{2} + 8 = \frac{17}{2}$$

A função f é estritamente crescente em  $]-\infty,2]$  e estritamente decrescente em  $[2,+\infty[$  .

A função f admite um máximo relativo (e absoluto) igual a  $\frac{17}{2}$  para x = 2.

