Solutions to Homework 12

Math 55B

1. Evaluate $\sum_{1}^{\infty} 1/n^6$ using the Laurent series for $\pi \cot \pi z$ around z = 0.

The meromorphic 1-form $\omega := \pi \cot \pi z \, dz/z^6$ on $\mathbb C$ has poles at the integers, and simple poles at the nonzero integers z=n, with residue $1/n^6$, $n \in \mathbb Z \setminus \{0\}$. As for the residue at z=0, it equals the coefficient of z^5 in the Laurent expansion of $\pi \cot \pi z$ near z=0; found to be $-2\pi^6/945$. Apply the residue theorem to the integral of ω over a big circle $|z|=N+1/2,\ N\in\mathbb N$. Since $\pi\cot\pi z$ is bounded below on the circle |z|=N+1/2, this integral approaches 0 as $N\to\infty$. The residue theorem then gives the information that $\sum_{n\in\mathbb Z} \mathrm{Res}(\omega,n)=0$, which translates into $\sum_{n\geq 1} 1/n^6 = \pi^6/945$.

2. Evaluate $\int_0^{2\pi} d\theta/(2-\sin\theta)$.

We have, by the simplest type of applications of the residue theorem in evaluating real integrals, the reparametrization and evaluation as follows:

$$\int_{0}^{2\pi} \frac{d\theta}{2 - \sin \theta} = \int_{S^{1}} \frac{1}{2 - (z - z^{-1})/2i} \frac{dz}{iz}$$

$$= -2 \int_{S^{1}} \frac{dz}{z^{2} - 4iz - 1} = -4\pi i \operatorname{Res} \left(\frac{dz}{z^{2} - 4iz - 1}, i(2 - \sqrt{3}) \right)$$

$$= -4\pi i \cdot \frac{1}{2\sqrt{3}} = \frac{2\pi}{\sqrt{3}},$$

by a simple calculation.

3. Evaluate $\int_0^\infty dx/(1+x^2)^2$.

We integrate the 1-form $dz/(1+z^2)^2$ on the half-circular path $[-R,R] \cup \{|z|=R,\operatorname{Im}(z)>0\}$, in the clockwise direction. Since the integrand is $o(R^{-1})$ as $R\to\infty$ while the arclength is proportional to R, the limit of this integral as $R\to\infty$ equals the real limit integral $\int_{-\infty}^{+\infty} dx/(1+x^2)^2=2\int_0^\infty dx/(1+x^2)^2$. On the other hand, the meromorphic 1-form $dz/(1+z^2)^2$ has the unique simple pole z=i, with residue -i/4, in the region enclosed by the integration path; and the residue theorem shows

the integral to be equal to $2\pi i \cdot (-i/4) = \pi/2$, for every R > i. The conclusion, upon taking the limit $R \to \infty$, is that $2 \int_0^\infty dx/(1+x^2)^2 = \pi/2$, or $\int_0^\infty dx/(1+x^2)^2 = \pi/4$.

4. Evaluate $\int_0^\infty x^{-a}/(x+1) dx$ for 0 < a < 1.

Consider the following path of integration: join the point $\infty \in \widehat{\mathbb{C}}$ to the point 0 along the real positive axis, then traverse a circular loop based at 0 and perpendicular to the real axis, of large radius R, and then return to ∞ along the real positive axis. Integrate the 1-form $z^{-a} \, dz/(z+1)$ along this path. The integral over the first leg of the journey (the real positive axis) is the negative -I(a) of the desired answer; the integral along the circular part approaches 0 as $R \to \infty$, because the integrand is $O(R^{-1-a})$ and the arclength of the circle is proportional to R. In the approach back to ∞ along the positive real axis, the integral gets twisted by $1^{-a} := e^{-2a\pi i}$ from the analytic continuation of x^{-a} , and the total integral along over loop, as $R \to \infty$, approaches $(e^{-2a\pi i} - 1)I(a)$. On the other hand, the integral (for R > 1) is equal, by the residue theorem, to $2\pi i \operatorname{Res}(z^{-a} \, dz/(z+1), -1) = 2\pi i (-1)^{-a} := 2\pi i e^{-a\pi i}$; letting $R \to \infty$, we conclude the evaluation $I(a) = 2\pi i \frac{e^{-a\pi i}}{e^{-2a\pi i}-1} = \pi \cdot \frac{2i}{e^{-a\pi i}-e^{a\pi i}} = \pi/\sin a\pi$.

5. Given $p \in \mathbb{C}$, construct explicitly a sequence $z_n \to 0$ with $\exp(1/z_n) \to p$. Can you, in fact construct such a sequence with $\exp(1/z_n) = p$?

If $p \neq 0$, we may as well construct such a sequence with $\exp(1/z_n) = p$: choose any logarithm a of p, and define $z_n := (a+2\pi in)^{-1}$, which certainly approaches 0 as $n \to \infty$. For p = 0, do this construction for a sequence p_1, p_2, \ldots approaching 0, and diagonalize.

6. Let $p_t(z) = z^n + a_1(t)z^{n-1} + \cdots + a_0(t)$ be a polynomial whose coefficients are analytic functions near t = 0. Suppose $p_0(z)$ has only simple zeros. Prove that there are analytic functions $b_i(t)$ defined near t = 0 such that $p_t(z) = \prod_{i=1}^{n} (z - b_i(t))$.

Let q_1, \ldots, q_n be the zeros of $p_0(z)$. Choose r > 0 sufficiently small so that the disks $|z - q_i| \le r$ are disjoint, and let s > 0 be sufficiently small so that $p_t(z)$ does not vanish on the regions $|z - q_i| = r, |t| < s$ (such an s exists, simply by continuity of $p_t(z)$). Then, for |t| < s, the polynomial $p_t(z)$ has precisely one zero, call it $b_i(t)$, in each disks $|z - q_i| < r$: this, by the usual **Rouché** argument, is because the function

 $n_i(t) = \frac{1}{2\pi i} \int_{|z-q_i|=r} \frac{(d/dz)p_t(z)}{p_t(z)} dz$ counting the zeros inside $|z-q_i| < r$ is integer-valued and continuous, hence identically $n_i(0) = 1$. Given this, using the general formula $\operatorname{Res}(g\,df/f,p) = g(p)\operatorname{mult}_p(f(z))$ for analytic functions f,g, the **residue theorem** provides an integral formula for $b_i(t)$, ensuring its analyticity:

$$b_i(t) = \frac{1}{2\pi i} \int_{|z-q_i|=r} z \frac{(d/dz)p_t(z)}{p_t(z)} dz, \quad i = 1, \dots, n.$$

7. Prove or disprove: if $f: \Delta \to \mathbb{C}$ is an analytic function with n zeros, then f'(z) has at least n-1 zeros in Δ . What happens if "at least" is replaced by "at most?"

Both propositions are false. The function $e^{nz} - 1$ has many zeros on Δ , but its derivative ne^{nz} has none. The function $e^{z^{n+1}}$ has no zeros, but its derivative $(n+1)z^ne^{z^{n+1}}$ vanishes to order n at z=0.

8. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function satisfying f(z+1) = f(z). Show that there exists an analytic function g(z) on the punctured plane \mathbb{C}^{\times} such that $f(z) = g(e^{2\pi i z})$. What is g(z) for $f(z) = \tan \pi z$? Show that if $f(z_n) \to 0$ whenever $\text{Im}(z_n) \to \infty$, then f(z) = 0.

We may define $g(z) := f(\log(z)/(2\pi i))$ without ambiguity, because of the \mathbb{Z} -periodicity of f(z). Then g(z) is analytic on $\mathbb{C} - \mathbb{R}^{\leq 0}$, because $\log z$ has an analytic branch on this region; and likewise, g(z) is analytic on $\mathbb{C} - \mathbb{R}^{\geq 0}$. Analyticity being a local property, it follows that the function g(z), which we defined set-theoretically on \mathbb{C}^{\times} , is in fact analytic on $(\mathbb{C} - \mathbb{R}^{\leq 0}) \cup (\mathbb{C} - \mathbb{R}^{\geq 0}) = \mathbb{C}^{\times}$, as required.

For the example with the function $\tan \pi z$, note that $\tan \pi z = i(e^{-i\pi z} - e^{i\pi z})/(e^{i\pi z} + e^{-i\pi z})$.

Finally, if $f(z) \to 0$ as $|\text{Im}(z)| \to \infty$, \mathbb{Z} -periodicity implies f(z) is bounded, therefore constant, therefore 0.

9. Show that $f(z) := \sum_{n \in \mathbb{Z}} (z - n)^{-2}$ converges locally uniformly to an analytic function on $\mathbb{C} - \mathbb{Z}$, and conclude that $f(z) = \pi^2 / \sin^2(\pi z)$.

Uniform convergence on $\{|z| \leq R\} \cap \{|z-n| \geq r, \text{ all } n \in \mathbb{Z}\}$ is by comparison with $\sum n^{-2}$: on this compact region we have the uniform domination

 $|f(z)| \le \sum_{n \in \mathbb{Z}} |z - n|^{-2} = \sum_{|n| \le R+1} |z - n|^{-2} + \sum_{|n| > R+1} |z - n|^2 \le (2R+3)/r + 2\sum_{k \ge 1} k^{-2} < (2R+3)/r + 4$, showing in particular uniform convergence on this region. Uniform limits of analytic functions are analytic, and the compact regions $\{|z| \leq R\} \cap \{|z-n| \geq r, \text{ all } n \in \mathbb{Z}\}$ cover $\mathbb{C} - \mathbb{Z}$, hence we obtain the first clause: the series for f(z) is absolutely and locally uniformly convergent away from \mathbb{Z} , and defines an analytic function on $\mathbb{C} - \mathbb{Z}$. This function is \mathbb{Z} -periodic, has double poles at the integers, with principal part $1/(z-n)^2$ of the pole z=n. We verify that $\pi^2/\sin^2(\pi z)$ has these same properties: it is a \mathbb{Z} -periodic, meromorphic function on \mathbb{C} whose poles are located at the integers \mathbb{Z} ; and to find the principal part of the pole z=n, it suffices by periodicity to consider n=0, in which case the expansion $\pi^2 / \sin^2(\pi z) = \pi^2 / (\pi^2 z^2 + o(z^3)) = z^{-2} + o(1)$ shows the principal part to be z^{-2} , as required. Thus, the principal parts of the difference $G(z) := f(z) - \pi^2/\sin^2(\pi z)$ cancel, and G(z) is a Z-periodic entire function; to show it is 0, it suffices by 8 above to check that $|G(z)| \to 0$ as $|\operatorname{Im}(z)| \to \infty$, and this in turn suffices to be checked separately for |f(z)| and $|\pi^2/\sin^2(\pi z)|$. For the latter case, it suffices to note that $|\sin(x+iy)|^2 = |\sin x \cosh y + i \cos x \cosh y| =$ $\cosh^2 y + \sinh^2 y$ approaches ∞ exponentially fast as $y \to \infty$, as both $\begin{aligned} & \sinh, \cosh \, \operatorname{do:} \, \sinh y = (e^y - e^{-y})/2, \, \cosh y = (e^y + e^{-y})/2. \, \text{ And for the former, note } |f(x+iy)| \leq \sum_{n \in \mathbb{Z}} |(x-n)+iy|^{-2} = \sum_{n \in \mathbb{Z}} |(x-n)^2 + y^2|^{-1} \leq 2 \sum_{k \geq 1} 1/(k^2 + y^2) \to_{y \to \infty} 0. \end{aligned}$

10. Find A, B, C such that $\sum_{n \in \mathbb{Z}} (z - n)^{-4} = \frac{A}{\sin^4(\pi z)} + \frac{B}{\sin^2(\pi z)} + C$, and use this result to evaluate $\sum 1/n^4$.

We twice differentiate the result in 9. to obtain $6\sum_{n\in\mathbb{Z}}(z-n)^{-4}=(\pi^2/\sin^2\pi z)''=(-2\pi\cot\pi z\cdot\pi^2/\sin^2(\pi z))'=2\pi^2/\sin^2\pi z\cdot\pi^2/\sin^2\pi z-4\pi^2\cot^2\pi z\cdot\pi^2/\sin^2\pi z=2\pi^4/\sin^4\pi z-4\pi^4(1-\sin^2\pi z)/\sin^2\pi z=\pi^4/\sin^4\pi z-4\pi^4/\sin^2\pi z$, getting the required evaluation with $A=\pi^4, B=-2\pi^4/3, C=0$. Subtracting $1/z^4$ on both sides and evaluating at z=0 (that is, comparing the constant terms of the Laurent expansions): using $\pi^2/\sin^2\pi z=\frac{1}{z^2}\frac{1}{1-\pi^2z^2/3+2\pi^4z^4/45+O(z^6)}=\frac{1}{z^2}\cdot(1+\pi^2z^2/3+\pi^4z^4/15+O(z^6))$ and hence $\pi^4/\sin^2\pi z=\frac{1}{z^4}\cdot(1+2\pi^2z^2/3+11\pi^4z^4/45+O(z^6))$, we find this coefficient to be $\frac{11}{45}\pi^4-\frac{2\pi^4}{3}\frac{1}{3}=\frac{\pi^4}{45}$. Thus, $\sum_{n\neq 0}1/n^4=\pi^4/45$, or $\sum_{n\geq 1}=\pi^4/90$.