SIO 207A: Fundamentals of Digital Signal Processing Class 15

Florian Meyer

Scripps Institution of Oceanography Electrical and Computer Engineering Department University of California San Diego

UC San Diego

JACOBS SCHOOL OF ENGINEERING

n

Discrete Fourier Transform

$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$$

$$= \sum_{n=0}^{N-1} x[n] w_N^{kn}$$

$$w_N = e^{-j\frac{2\pi}{N}}$$

 \bullet For every X(k) there are N complex multiply-adds. Thus, for N values of X(k) , there are N^2 multiply-adds.

Decimation in Time Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} \left[x[2n] w_N^{2nk} + x[2n+1] w_N^{(2n+1)k} \right] \qquad k = 0, 1, \dots, N$$
 even indexed points odd indexed points
$$N/2 \text{ points} \qquad N/2 \text{ points}$$

$$w_N = e^{-j2\pi/8}$$

 $w_N^2 = e^{-j(2)2\pi/8} = e^{-j2\pi/4} = w_{N/2}$

see also Section 9.3 in Oppenheim & Schafer, 1999

2

Decimation in Time Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x[2n] w_{N/2}^{nk} + w_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] w_{N/2}^{nk} \qquad k = 0, 1, \dots, N-1$$

$$\frac{(N/2)^2 \text{ multiply-adds}}{(N/2 \text{ point DFT})} \frac{(N/2)^2 \text{ multiply-adds}}{(N/2 \text{ point DFT})}$$

Decimation in Time Algorithm

$$\begin{split} X(k) &= \sum_{n=0}^{\frac{N}{2}-1} x[2n] \, w_{N/2}^{nk} + w_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] \, w_{N/2}^{nk} \qquad k=0,1,\dots,N-1 \\ &= A(k) + w_N^k B(k) \end{split}$$

Since DFT is periodic in k (or frequency) the value of A(k) and B(k) for k < N/2 repeat for k > N/2 . Thus,

$$X(k+N/2)=A(k)+w_N^{k+N/2}B(k) \qquad k=0,1,\dots,\frac{N}{2}-1$$
 and $w_N^{N/2}=e^{-j\frac{2\pi}{N}\frac{N}{2}}=-1$

4

Decimation in Time Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x[2n] w_{N/2}^{nk} + w_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] w_{N/2}^{nk} \qquad k = 0, 1, \dots, N-1$$
$$= A(k) + w_N^k B(k)$$

$$X(k) = A(k) + w_N^k B(k)$$
 $k = 0, 1, ..., N/2 - 1$ (ii)

Thus, we can synthesize and N-point DFT from the N/2-point DFTs using the synthesized expressions (i) and (ii) and save half of the multiply-adds

Total Number of Operations: $(N/2)^2 + (N/2)^2 + N \approx N^2/2$ multiply adds

→ saving by a factor of two

6

Decimation in Time Algorithm

- Extend this idea to the N/2-point A(k) and B(k) DFTs yields pairs of N/4-points DFTs, etc.
- Fig 9.7 in Oppenheim & Schafer, 1999 shows full algorithm diagram for ${\cal N}=8$
- Data enters full diagram in scrambled order (bit reversed order)

		51. 5	
Index	Binary	Bit Reversed	Decimal
0	060		0
	001	100	4
Z	010	010	2
3	611	110	
4			;
,	100	001	,
5	101		·
4	10,	101	
_	110	011	
7	1 \ \		

Computational Savings: Instead of N^2 we only perform $N\log_2N$ multiply adds e.g., if

$$N = 1024 = 2^{10} \qquad N^2 = 1,048,526 \qquad N \log_2 N = 10,240$$

_

Figure 9.7 Flow graph of complete decimation-in-time decomposition of an 8-point DFT computation.

Figure 9.8 Flow graph of basic butterfly computation in Figure 9.7.

8

Decimation in Frequency – FFT Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] w_N^{nk} + x[n+N/2] w_N^{(n+N/2)k} \right] \qquad k = 0, 1, \dots, N-1$$

$$= \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] + w_N^{(N/2)k} x[n+N/2] \right] w_N^{nk}$$

$$w_N^{N/2k} = 1$$
 $k = 0, 2, 4, ..., N - 2$ $w_N^{nk} = w_{N/2}^{nk'}$ $k = 2k'$ $w_N^{N/2k} = -1$ $k = 1, 3, 5, ..., N - 1$

Decimation in Frequency – FFT Algorithm

$$X(2k') = \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] + x[n+N/2] \right] w_{N/2}^{nk'} \quad k' = 0, \dots, N/2 - 1$$

$$X(2k'+1) = \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] + w_N^{N/2(2k'+1)} x[n+N/2] \right] w_N^{n(2k'+1)}$$

$$= \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] - x[n+N/2] \right] w_N^{nk'} w_{N/2}^{nk'}$$

$$= e^{-j\frac{2\pi}{N}n}$$

10

Flow Graph – Decimation in Frequency

Figure 9.20 Flow graph of complete decimation-in-frequency decomposition of an 8-point DFT computation.