## 0.1 Producto cuña

A lo largo de las siguientes tres secciones voy a desarrollar herramienta topológica para poder estudiar a fondo la relación

 $\pi_n(X, x_0) := [(\mathbb{S}^n, 1), (X, x_0)]$ 

y cómo usarlo para relacionar los diferentes grupos fundamentales de un espacio basado. La primera construcción es el producto cuña:

Sea  $\{(X_j, x_j)\}_{j \in J}$  una familia de espacios basados,  $\sqcup_j (X_j, x_j)$  su unión disjunta e identifico todos los puntos base en uno sólo. Más precisamente defino  $B = \{x_j\}_{j \in J}$ , el conjunto de todos los puntos bases y hago cociente sobre B (ie. identifico a todos los elementos en B y a los demás los identifico sólo con ellos mismos). Así si define el producto cuña:

$$\bigvee_{j \in J} (X_j, x_j) := \frac{\bigsqcup (X_j, x_j)}{\{x_j\}}$$

con la topología cociente.

**Lema 1.** El producto cuña en  $\operatorname{Top}_*$  es un coproducto, es decir para cualquier familia  $\{(X_j, x_j)\}_{j \in J}$  de espacios basados existen morfismos  $\{\mu_i : (X_i, x_i) \to \vee (X_j, x_j)\}_{j \in J}$  tales que cumplen la siguiente propiedad universal: Si  $(Y, y_0)$  es cualquier espacio basado junto con morfismos  $\{f_i : (X_i, x_i) \to (Y, y_0)\}_{i \in J}$  entonces existe un único morfismo  $\theta : \vee (X_j, x_j) \to (Y, y_0)$  que hace el siguiente diagrama conmutar:

$$\bigvee(X_j, x_j) \xrightarrow{\theta} (Y, y_0)$$

$$(X_i, x_i)$$

$$(1)$$

*Proof.* Primero exhibo los morfismos  $\mu_i:(X_i,x_i)\to \vee(X_j,x_j)$ : para toda  $i\in J$ , existe una inclusión natural:

$$u_i: (X_i, x_i) \longrightarrow \bigsqcup_{j \in J} (X_j, x_j)$$

que hace  $x \mapsto x \in \sqcup(X_j, x_j)$ . Si compongo esta inclusión con la identificación natural  $\nu : \sqcup(X_j, x_j) \twoheadrightarrow \vee(X_j, x_j)$ , puedo definir  $\mu_i := \nu \circ u_i$ . Afirmo que  $\vee(X_j, x_j)$  junto con  $\{\mu_i : (X_i, x_i) \to \vee(X_j, x_j)\}$  es un coproducto.

Sea  $(Y, y_0)$  un espacio basado con morfismos  $\{f_i : (X_i, x_i) \to (Y, y_0)\}_{i \in J}$ . Puedo definir de manera natural la función:

$$\sqcup f_j : \bigsqcup_{j \in J} (X_j, x_j) \longrightarrow (Y, y_0) \quad \text{con} \quad (\sqcup f_j(x)) = f_i(x) \text{ si } x \in X_i.$$

Como la unión es disjunta,  $\Box f_j$  está bien definida y es continua (porque cada  $f_j$  lo es). Observa que por definición  $f_i = \Box f_j \circ u_i$  donde  $u_i$  es la inclusión natural de  $(X_i, x_i)$  en  $\Box (X_i, x_i)$ .

Además, es una función basada porque  $\sqcup f_j(x_i) = f_i(x_i) = y_0$  para toda  $i \in J$ . Esta última igualdad implica que  $(\sqcup f_j)[B] = \{y_0\}$  y así  $\sqcup f_j$  se factoriza a través de  $\vee (X_j, x_j)$ ; a esta nueva función (continua de espacios basados) la llamo  $\vee f_j$ :

Ahora sólo falta ver que  $\theta = \forall f_j$  satisface el diagrama conmutativo (1), es decir que  $f_i = \forall f_j \circ \mu_i$ . Esto se sigue inmediatamente de todas las definiciones que he dado y el diagrama conmutativo anterior:

$$\forall f_i \circ \mu_i = \forall f_i \circ (\nu \circ u_i) = (\forall f_i \circ \nu) \circ u_i = \sqcup f_i \circ u_i = f_i.$$

Observa que si  $\star \in \vee(X_j, x_j)$  es su punto base natural, entonces para  $x_i \in (X_i, x_i)$  en la preimagen bajo (cualquier)  $\mu_i$  tenemos que  $\vee f_j(\star) = \vee f_j(\mu_i(x_i)) = f_i(x_i) = y_0$ . Entonces  $\vee f_j$  es un morfismo en  $\mathbf{Top}_*$ . La unicidad de  $\vee f_j$  se sigue de que el coproducto es un objeto inicial en una categoría adecuada.  $\square$ 





Figure 1:  $X \vee Y \subset X \times Y$ 

Figure 2:  $\mathbb{S}^1 \vee \mathbb{S}^1 \subset \mathbb{T}^2$ 

Nota. Al morfismo  $\forall f_j$  se le puede dar una fórmula: sea  $[x] \in \forall (X_j, x_j)$ , entonces  $x \in \sqcup (X_j, x_j)$  y puedo asumir sin pérdida de generalidad que  $x \in X_i$  para una  $i \in J$ . Observa que  $\sqcup f_j(x) = f_i(x) \in Y$ . Por construcción tengo que

$$\forall f_i([x]) = f_i(x) \quad \text{si} \quad x \in (X_i, x_i).$$

Antes de seguir, observa que si considero el producto cuña de dos espacios  $(X, x_0)$  y  $(Y, y_0)$  entonces hay una manera canónica de ver  $X \vee Y$  encajado en  $X \times Y$  como el conjunto  $(X \times \{y_0\}) \cup (\{x_0\} \times Y)$ . Ve la figura 1 para el caso general y la figura 2 para el caso particular  $\mathbb{S}^1 \vee \mathbb{S}^1 \subset \mathbb{T}^2$ .

En efecto, si denoto  $V := (X \times \{y_0\}) \cup (\{x_0\} \times Y)$  y defino las siguientes dos funciones  $f_X : X \to V$  y  $f_Y : Y \to V$  como

$$f_X(x) = (x, y_0)$$
 y  $f_Y(y) = (x_0, y)$ ,

claramente tengo dos morfismos de espacios basados (ie.  $f_X$  y  $f_Y$  son continuas y basadas) y como el producto cuña es un coproducto en  $\mathbf{Top}_*$  existe un único morfismo  $g := f_X \vee f_Y$  de  $X \vee Y$  a V tal que:

$$g([z]) = \begin{cases} f_X(z) = (z, y_0) & \text{si } z \in X \\ f_Y(z) = (x_0, z) & \text{si } z \in Y \end{cases}$$

Para construir el inverso, observa que V se puede descomponer un una unión disjunta  $V = ((X - x_0) \times \{y_0\}) \sqcup (\{y_0\} \times (Y - y_0)) \sqcup \{(x_0, y_0)\}$ . Ahora defino la siguiente función:

$$h(x,y) := \begin{cases} [x] & \text{si } x \neq x_0, \ y = y_0 \\ [y] & \text{si } x = x_0, \ y \neq y_0 \\ \star & \text{si } x = x_0, \ y = y_0 \end{cases}$$

donde  $\star \in X \vee Y$  es el punto base canónico (ie  $\star = [x_0] = [y_0]$ ). Esta función es claramente continua porque sobre cada componente de V, h es la restricción de la función continua  $X \to X \vee Y$ ,  $Y \to X \vee Y$  y la función constante  $(x_0, y_0) \mapsto \star$ . Claramente:

$$(g \circ h)(x,y) = \begin{cases} g([x]) = (x, y_0) & \text{si } x \neq x_0, \ y = y_0 \\ g([y]) = (x_0, y) & \text{si } x = x_0, \ y \neq y_0 = \text{Id}_V \\ g(\star) = (x_0, y_0) & \text{si } x = x_0, \ y = y_0 \end{cases}$$

у

$$(h \circ g)([z]) = \begin{cases} h(z, y_0) = [z] & \text{si } z \in X \\ h(x_0, z) = [z] & \text{si } z \in Y \end{cases} = \operatorname{Id}_{X \vee Y}.$$

por lo tanto  $X \vee Y \approx V = (X \times \{y_0\}) \cup (\{x_0\} \times Y) \subset X \times Y$ . Observa que la continuidad de g y h requieren que V tenga la topología de subespacio de la topología producto en  $X \times Y$ .

En general, si tomamos el producto cuña de una familia arbitraria de espacios basados, no necesariamente podemos encajar  $\vee(X_j, x_j)$  en  $\prod(X_j, x_j)$  (ie. que  $\vee(X_j, x_j)$  sea homeomorfo a su imagen). Pero no todo se pierde:

**Ejercicio 1.** Sea  $\{(X_j, x_j)\}_{j \in J}$  una familia de espacios basados y sean  $\lambda_i : (X_i, x_i) \to \prod (X_j, x_j)$  las inclusiones naturales definidas por

$$\lambda_i(x) = \{z_j\}_{j \in J} \quad \text{con} \quad z_j = \begin{cases} x & \text{si } j = i \\ x_j & \text{si } j \neq i \end{cases}.$$

Entonces el morfismo inducido

$$\forall \lambda_j : \bigvee_{j \in J} (X_j, x_j) \longrightarrow \prod_{j \in J} X_j$$

es inyectivo.

*Proof.* Como en el lema 1, sean  $\{\mu_j: (X_j,x_j) \to \vee (X_j,x_j)\}_{j\in J}$  los morfismo canónicos que hacen que  $\vee (X_j,x_j)$  sea el coproducto en de  $\{(X_j,x_j)\}$  en  $\mathbf{Top}_*$ . Además, sean  $\pi_i: \prod (X_j,x_j) \to (X_i,x_i)$  las proyecciones canónicas definidas por

$$\pi_i(\{y_j\}_{j\in J}) = y_i \in (X_i, x_i).$$

Sean  $[x], [x'] \in \vee(X_j, x_j)$  elementos distintos con  $x \in (X_i, x_i)$  y  $x' \in (X_l, x_l)$ . Como las clases de x y x' son distintas, al menos una de ellos (sin pérdida de generalidad supongo que x) no es un punto base, ie.  $x \neq x_i$ .

Ahora si  $i \neq l$  entonces:

$$\forall \lambda_j([x]) = \lambda_i(x) = \{z_j\} \neq \{z_j'\} = \lambda_l(x') = \forall \lambda_j([x'])$$

porque por definición los elementos  $\{z_j\}$  y  $\{z_j'\}$  difieren en la *i*-ésima entrada donde valen x y  $x_i$  respectivamente.

Si i = l, entonces:

$$\forall \lambda_j([x]) = \lambda_i(x) = \{z_j\} \neq \{z_j'\} = \lambda_i(x') = \forall \lambda_j([x'])$$

porque los elementos  $\{z_j\}$  y  $\{z_j'\}$  difieren nada más en la *i*-ésima entrada donde valen x y x' respectivamente que por hipótesis son distintos porque  $[x] \neq [x']$  y  $x, x' \in X_i$ .

Por lo tanto si  $[x] \neq [x']$  tengo que  $\forall \lambda_j([x]) \neq \forall \lambda_j([x'])$  y  $\forall \lambda_j$  es inyectiva.