Corrigé rattrapage

Exercice 1:(9pts)

Soit X la surface d'une maison mesurée en m^2 . Le traitement de l'information relatif à 100 maisons a permis de dresser l'histogramme de la variable statistique X.

1) Quelle est la nature du caractère étudié?

La nature du caractère étudié est quantitatif continu.

2) Depuis le graphe, déterminer le tableau statistique

Les	n_i	n_{ic}	f_i	f_{ic}	$n_i x_i$	$n_i x_i^2$
classes						
[84, 88[10	10	0.1	0.1	860	73960
86						
[88, 92[25	35	0.25	0.35	2250	202500
90						
[92, 96[30	65	0.3	0.65	2820	265080
94						
[96, 100[20	85	0.2	0.85	1960	192080
98						
[100, 104[15	100	0.15	1	1530	156060
102						
La	100	/	1	/	9420	889680
somme						

3) Calculer la moyenne et l'écart type de la variable X.

1

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_i X_i = \frac{9420}{100} = \mathbf{94}, \mathbf{2}$$

$$V(X) = \left(\frac{1}{n} \sum_{i=1}^{k} n_i X_i^2\right) - \overline{X}^2 = \frac{889680}{100} - 94, 2^2 = \mathbf{23}, \mathbf{16}$$

$$\sigma_X = \sqrt{V(X)} = \sqrt{23, 16} = \mathbf{4}, \mathbf{81}$$

4) Représenter graphiquement le mode, et le calculer par la méthode d'interpolation.

$$\mathbf{Mo} = (b-a) + a \frac{\Delta_1}{\Delta_1 + \Delta_2} = 92 + 4 \frac{5}{5+10} = \mathbf{93,33}$$

La classe modale est [92, 96[

$$l_1 = 92$$
 $a = 96 - 92 = 4$ $d_1 = 30 - 15 = 5d_2 = 30 - 20 = 10$

5) Déterminer graphiquement la médiane, et la calculer par la méthode d'interpolation.

$$q_{0.5} = a + (b - a) \frac{n\alpha - n_{ic-1}}{n_i} = 92 + 4 \frac{50 - 35}{30} = 94$$

 $n\alpha = 100 \times 0.5 = 50 \text{ alors } q_{0.5} \in [92, 96[$
 $a = 92 \ b - a = 4 \ n_{ic-1} = 35 \ n_i = 30$

6) Calculer le coefficient de variation de cette série statistique.

$$C_v = \frac{\sigma_X}{\bar{X}} = \frac{4,81}{94,2} = \mathbf{0}, \mathbf{051}$$

Exercice 2:(8pts)

On a mesuré la résistance thermique (notée Y et mesurée en m²°C/W) d'un isolant de doublage de murs. Les mesures effectuées pour plusieurs épaisseurs (notée X et mesurée en cm) de l'isolant ont donné les résultats suivants :

Y	[0, 2[[2, 4[[4, 6]
X			
[30, 50[1	1	0
[50, 70[0	2	0
[70, 90[0	2	0
[90, 110[0	0	2

On donne:
$$\sum_{i=1}^{4} n_{i,x} x_{i} = 560$$
, $\sum_{i=1}^{3} n_{i,j} y_{j} = 26$, $\sum_{i=1}^{4} n_{i,x} x_{i}^{2} = 43200$, $\sum_{i=1}^{3} n_{i,j} y_{j}^{2} = 96$, $et \sum_{i=1}^{4} \sum_{i=1}^{3} n_{ij} x_{i} y_{j} = 2000$

1) Calculer les moyennes marginales \overline{x} et \overline{y} .

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_{i.} X_i = \frac{560}{8} = 70$$
 $\overline{Y} = \frac{1}{n} \sum_{j=1}^{l} n_{.j} Y_j = \frac{26}{8} = 3.25$

2) Calculer le coefficient de corrélation linéaire de X et Y.

$$Cov(X,Y) = S_{xy} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} X_i Y_j - \overline{X} \, \overline{Y} = \frac{2000}{8} - 70 \times 3.25 = 22.5$$

$$V(X) = \left(\frac{1}{n} \sum_{i=1}^{k} n_{i.} X_i^2\right) - \overline{X}^2 = \frac{43200}{8} - 70^2 = 500$$

$$V(Y) = \left(\frac{1}{n} \sum_{j=1}^{l} n_{.j} Y_j^2\right) - \overline{Y}^2 = \frac{96}{8} - 3.25^2 = 1.4375$$

$$Cov(X,Y) = \frac{S_{xy}}{\sqrt{1000}} = \frac{22.5}{\sqrt{1000}} = 0.839$$

$$Cov(X,Y) = \frac{S_{xy}}{\sigma_X \sigma_Y} = \frac{22.5}{\sqrt{500} \times \sqrt{1.4375}} = 0.839$$

3) En utilisant la méthode des moindres carrés, déterminer l'équation de la droite d'ajustement de YenX.

$$\mathbf{D}: y = ax + b$$
 avec $\mathbf{a} = \frac{S_{xy}}{V(X)}$ et $\hat{\mathbf{b}} = \overline{Y} - a\overline{X}$

$$a = \frac{22.5}{500} = 0.045$$
 $b = 3.25 - 0.045 \times 70 = 0.1$

$$y = 0.045 x + 0.1$$

4) Estimer la résistance obtenue avec une épaisseur d'isolant de 120 cm.

$$y = 0.045 \times 120 + 0.1 = 5.5$$

Exercice 3:(3pts)

On jette 3 fois de suite une pièce de monnaie bien équilibrée. Considérons les événements suivants

C= « 2 jets consécutifs donnent 'face' »

1) Décrire les événements A, B et C.

$$A = \{(i, j, k); i = F \text{ et } j \text{ et } k \in \{P, F\}\}\$$
 et son cardinal est $|A| = \tilde{A}_1^1 \tilde{A}_2^1 = 1 * 2^2 = 4$

$$\begin{split} \mathbf{B} &= \big\{ (i,j,k); i \in \{P,F\}, j = F \ et \ k \in \{P,F\} \big\} \ \text{et son cardinal est } |\mathbf{B}| = \tilde{A}_2^1 \ \tilde{A}_1^1 \ \tilde{A}_2^1 = \tilde{A}_1^1 \tilde{A}_2^1 = 4 \\ \mathbf{C} &= \{(i,j,k); \{i,j\} = \{F,F\} \ et \ k \in \{P,F\} \ ou \ i \in \{P,F\} \ et \ \{j,k\} = \{F,F\} \big\} \ \text{et son cardinal est} \\ |C| &= \tilde{A}_1^2 \ \tilde{A}_2^1 + \tilde{A}_1^1 \tilde{A}_1^2 = 1 * 2 + 1 * 1 = 3 \end{split}$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{8} = \frac{1}{2},$$
 $P(B) = \frac{|B|}{|\Omega|} = \frac{4}{8} = \frac{1}{8}$ et $P(C) = \frac{|C|}{|\Omega|} = \frac{3}{8}$