

BUNDESREPUBLIK **DEUTSCHLAND**

(5) Int. Cl.⁷:

DEUTSCHES PATENT- UND MARKENAMT Aktenzeichen: 102 50 083.5 Anmeldetag: 25. 10. 2002 Offenlegungstag: 24. 12. 2003

A 61 K 45/00

66 Innere Priorität:

102 27 077.5

17.06.2002

Anmelder:

Grünenthal GmbH, 52078 Aachen, DE

(74) Vertreter:

Kutzenberger & Wolff, 50668 Köln

Erfinder:

Bartholomäus, Johannes, Dr., 52080 Aachen, DE; Kugelmann, Heinrich, 52068 Aachen, DE

® Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE 25 30 563 A1 US 39 80 766 A 62 28 863 B1 US WO 95/20 947 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Gegen Missbrauch gesicherte Darreichungsform

Die vorliegende Erfindung betrifft eine gegen parenteralen Mißbrauch gesicherte, feste Darreichungsform, enthaltend neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential wenigstens ein viskositätserhöhendes Mittel, das in einem mit Hilfe einer notwendigen Mindestmenge an einer wäßrigen Flüssigkeit aus der Darreichungsform gewonnenen Extrakt ein Gel bildet, welches beim Einbringen in eine weitere Menge einer wäßrigen Flüssigkeit visuell unterscheidbar bleibt.

Beschreibung

[0001] Die vorliegende Erfindung betrifft eine gegen parenteralen Mißbrauch gesicherte, feste Darreichungsform enthaltend neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential wenigstens ein viskositätserhöhendes Mittel, das in einem mit Hilfe einer notwendigen Mindestmenge an einer wäßrigen Flüssigkeit aus der Darreichungsform gewonnenen Extrakt ein Gel bildet, welches beim Einbringen in eine weitere Menge einer wäßrigen Flüssigkeit visuell unterscheidbar bleibt.

[0002] Eine Vielzahl von pharmazeutischen Wirkstoffen weist neben einer ausgezeichneten Wirksamkeit auf ihrem betreffenden Anwendungsgebiet auch ein Mißbrauchspotential auf, d. h. sie können von einem Mißbraucher eingesetzt werden, um Wirkungen herbeizuführen, die nicht ihrem Bestimmungszweck entsprechen. So werden beispielsweise Opiate, die eine exzellente Wirksamkeit bei der Bekämpfung von starken bis sehr starken Schmerzen zeigen, von Mißbrauchern häufig zum Einleiten rauschartiger, euphorisierender Zustände verwendet.

[0003] Darreichungsformen, die Wirkstoffe mit Mißbrauchspotential enthalten, führen üblicherweise selbst bei der oralen Einnahme mißbrauchlich hoher Mengen nicht zu dem vom Mißbraucher gewünschten Ergebnis, da die Wirkstoffe im Blut nur langsam ansluten. Um dennoch einen Mißbrauch zu ermöglichen, werden die entsprechenden Darreichungsformen vom Mißbraucher zerkleinert, z. B. gemörsert, und der Wirkstoff aus dem durch Zerkleinerung der Darreichungsform erhaltenen Pulver mit Hilfe einer vorzugsweise wäßrigen Flüssigkeit extrahiert und die resultierende Lösung, ggf. nach Filtration durch Watte oder Zellstoff, parenteral, insbesondere intravenös, appliziert. Bei dieser Art der Verabreichung kommt es zu einem gegenüber der oralen Applikation beschleunigten Ansluten des Wirkstoffes mit dem vom Mißbraucher gewünschten Ergebnis.

[0004] Zur Verhinderung dieser Form des Mißbrauchs wurde in der US 4,070,494 vorgeschlagen, der Extraktion eines Wirkstoffes aus einer Darreichungsform durch Zusatz eines quellbaren Mittels vorzubeugen. Dieses quillt bei der Zugabe von Wasser auf und bewirkt, daß nur eine geringe Menge an Wirkstoff-haltiger, vom Mißbraucher parenteral applizierbare Flüssigkeit erhalten wird.

[0005] Ein entsprechender Ansatz zur Verhinderung des parenteralen Mißbrauchs liegt auch der in der WO 95/20947 offenbarten Mehrschichttablette zugrunde, die jeweils den Wirkstoff mit Mißbrauchspotential und einen oder mehrere Gelbildner, in verschiedenen Schichten aufweist.

[0006] Bei den im Stande der Technik beschriebenen Darreichungsformen ist es dem Mißbraucher jedoch weiterhin möglich, das durch Zugabe von Wasser erhaltene Gemisch aus Gel und Flüssigkeit mit einer Injektionskanüle aufzuziehen und sich dieses parenteral, insbesondere intravenös, zu verabreichen.

[0007] Die Aufgabe der vorliegenden Erfindung bestand daher darin, eine Darreichungsform für Wirkstoffe mit Mißbrauchspotential zur Verfügung zu stellen, die bei bestimmungsgemäßer Applikation deren therapeutische Wirkung gewährleistet, aus welcher diese aber nicht mit Hilfe einfacher Extraktionsverfahren in eine parenteral, insbesondere intravenös, zu verabreichende Form übergeführt werden können.

[0008] Diese Aufgabe wurde durch die erfindungsgemäße, gegen parenteralen Mißbrauch gesicherte, feste Darreichungsform gelöst, die neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential wenigstens ein viskositätserhöhendes Mittel aufweist, das in einem mit Hilfe einer notwendigen Mindestmenge an einer wäßrigen Flüssigkeit aus der Darreichungsform gewonnenen Extrakt ein Gel bildet, welches beim Einbringen in eine weitere Menge einer wäßrigen Flüssigkeit visuell unterscheidbar bleibt.

[0009] Visuelle Unterscheidbarkeit im Sinne der vorliegenden Erfindung bedeutet, daß das mit Hilfe einer notwendigen Mindestmenge an wäßriger Flüssigkeit gebildete, Wirkstoff-haltige Gel beim Einbringen vorzugsweise mit einer Injektionsnadel in eine weitere Menge wäßriger Flüssigkeit von 37°C im wesentlichen unlöslich und zusammenhängend bleibt und nicht auf einfache Weise so dispergiert werden kann, daß eine parenterale, insbesondere intravenöse, gefahrlose Applikation möglich ist. Vorzugsweise beträgt die Dauer der visuellen Unterscheidbarkeit wenigstens eine Minute. [0010] Die Viskositätserhöhung des Extrakts führt dazu, daß dessen Nadelgängigkeit bzw. Spritzbarkeit erschwert wird. Des weiteren führt sie dazu, daß der erhaltene Extrakt beim Einbringen in eine weitere Menge wäßriger Flüssigkeit,

z. B. durch Einspritzen in Blut, zunächst in Form eines weitgehend zusammenhängenden Fadens erhalten bleibt, der zwar durch mechanische Einwirkung in kleinere Bruchstücke zerteilt, nicht aber so dispergiert oder sogar gelöst werden kann, daß eine parenterale, insbesondere intravenöse, Applikation gefahrlos möglich ist.

[0011] Fine intravenöse Applikation eines entsprechenden Extraktes würde daher mit großer Wahrscheinlichkeit zur

[0011] Eine intravenöse Applikation eines entsprechenden Extraktes würde daher mit großer Wahrscheinlichkeit zur Verstopfung von Gefäßen, verbunden mit schweren Embolien bis hin zum Tod des Mißbrauchers führen.

[0012] Pharmazeutische Wirkstoffe mit Mißbrauchspotential sind dem Fachmann, ebenso wie deren einzusetzende Mengen und Verfahren zu deren Herstellung, an sich bekannt und können als solche in Form entsprechender Derivate, insbesondere Ester oder Ether, oder jeweils in Form entsprechender physiologisch verträglicher Verbindungen, insbesondere in Form ihrer Salze oder Solvate, in der erfindungsgemäßen Darreichungsform vorliegen. Die erfindungsgemäße Darreichungsform eignet sich auch für die Verabreichung von mehreren Wirkstoffen. Vorzugsweise wird sie zur Verabreichung eines Würkstoffs eingesetzt.

[0013] Die erfindungsgemäße Darreichungsform eignet sich insbesondere zur Verhinderung des Mißbrauchs eines pharmazeutischen Wirkstoffs, der ausgewählt ist aus der Gruppe bestehend aus Opiaten, Opioiden, Tranquillantien, vorzugsweise Benzodiazepinen, Stimulantien und weiteren Betäubungsmitteln.

[0014] Ganz besonders eignet sich die erfindungsgemäße Darreichungsform zur Verhinderung des Mißbrauchs eines Opiates, Opioids, Tranquillanz oder eines anderen Betäubungsmittels, das ausgewählt ist aus der Gruppe bestehend aus N-{1-[2-(4-Ethyl-5-oxo-2-tetrazolin-1-yl)ethyl]-4-methoxymethyl-4-piperidyl) propionanilid (Alfentanil), 5,5-Diallyl-barbitursäure (Allobarbital), Allylprodin, Alphaprodin, 8-Chlor-1-methyl-6-phenyl-4H-[1, 2,4]triazolo[4,3-a][1,4]-benzodiazepin (Alprazolam), 2-Diethylaminopropiophenon (Amfepramon), (±)-a-Methylphenethylamin (Amfetamin), 2-(α-Methylphenethylamino)-2-phenylacetonitril (Amfetaminil), 5-Ethyl-5-isopentylbarbitursäure (Amobarbital), Anileridin, Apocodein, 5,5-Diethylbarbitursäure (Barbital), Benzylmorphin, Bezitramid, 7-Brom-5-(2-pyridyl)-1H-1,4-benzodiazepin-2(3H)-on (Bromazepam), 2-Brom-4-(2-chlorphenyl)-9-methyl-6H-thieno(3,2-t][1,2,4]triazolo(4,3-a)

5

15

35 •

55

a](1,4]diazepin (Brotizolam), 17-Cyclopropylmethyl-4,5\alpha-epopxy-7\alpha[(S)-1-hydroxy-1,2,2-trimethyl-propyl]-6-methoxy-6,14-endo-ethanomorphinan-3-ol (Buprenorphin), 5-Butyl-5-ethylbarbitursäure (Butobarbital), Butorphanol, (7-Chlor-1,3-d ihyd ro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl)-dimethyl-carbamat (Camazepam), (1S,2S)-2-Amino-1-phenyl-1-propanol (Cathin/D-Norpseudoephedrin), 7-Chlor-N-methyl-5-phenyl-3H-1,4-benzodiazepin-2ylamin-4-oxid (Chlordiazepoxid), 7-Clor-1-methyl-5-phenyl-1H-1,5-benzodiazepin-2,4(3H,5H)-dion (Clobazam), 5-(2-Chlorphenyl)-7-nitro-1H-1,4-benzodiazepin-2(3H)-on (Clonazepam), Clonitazen, 7-Chlor-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-carbonsäure (Clorazepat), 5-(2-Chlorphenyl)-7-ethyl-1-methyl-1Hthieno(2,3-e][1,4]diazepin-2(3H)-on (Clotiazepam), 10-Chlor-11 b-(2chlorphenyl)-2,3,7,11b-tetrahydrooxazolo(3,2-d][1,4]benzodiazepin-6(5H)on (Cloxazolam), (-)-Methyl-[3β-benzoyloxy-2β(1aH, 5aH)-tropancarboxylat] (Cocain), 4, 5α-Epoxy-3-methoxy-17methyl-7-morphinen-6α-ol (Codein), 5-(1-Cyclohexenyl)-5-ethylbarbitursäure (Cyclobarbital), Cyclorphan, Cyprenorphin, 7-Chlor-5-(2-chlorphenyl)-1H-1,4-benzodiazepin-2(3H)-on (Delorazepam), Desomorphin, Dextromoramid, (+)-(1-Benzyl-3-dimethylamino-2-methyl-1-phenylpropyl)propionat (Dextropropoxyphen), Dezocin, Diampromid, Diamorphon, 7-Chlor-1-methyl-5-phenyl-1 H-1,4-benzodiatepin-2(3H)-on (Diazepam), 4,5α-Epoxy-3-methoxy-17-methyl-6α-morphinanol (Dihydrocodein), 4,5α-Epoxy-17-methyl-3,6a-morphinandiol (Dihydromorphin), Dimenoxadol, Dimephetamol, Dimethylthiambuten, Dioxaphetylbutyrat, Dipipanon, (6aR, 10aR)-6,6,9-Trimethyl-3-pentyl-6a,7, 8, 10atetrahydro-6H-benzo[c]chromen-1-ol (Dronabinol), Eptazocin, 8-Chlor-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepin (Estazolam), Ethoheptazin, Ethylmethylthiambuten, Ethyl-[7-chlor-5-(2-fluorphenyl)-2,3-dihydro-2-oxo-1 H-1,4 benzodiazepin-3-carboxylat] (Ethylloflazepat), 4,5α-Epoxy-3-ethoxy-17-methyl-7-morphinen-6a-ol (Ethylmorphin), Etonitazen, 4,5α-Epoxy-7α-(1-hydroxy-1 -methylbutyl)-6-methoxy-17-methyl-6,14-endo-etheno-morphinan-3ol (Etorphin), N-Ethyl-3-phenyl-8,9,10-trinorbornan-2-ylamin (Fencamfamin), 7-[2-(α-Methylphenethylamino)ethyl]theophyllin) (Fenetyllin), 3-(\alpha-Methylphenethylamino)propionitril (Fenproporex), N-(1-Phenethyl-4-piperidyl)propionanilid (Fentanyl), 7-Chlor-5-(2-fluorphenyl)-1-methyl-1 H-1,4-benzodiazepin-2(3H)-on (Fludiazepam), 5-(2-Fluorphenyl)-1-methyl-7-nitro-1H-1,4-benzodiazepin-2(3H)-on (Flunitrazepam), 7-Chlor-1-(2-diethylaminoethyl)-5-(2-fluorphenyl)-1H-1,4-benzodiazepin-2(3H)-on (Flurazepam), 7-Chlor-5-phenyl-1 -(2,2,2-trifluorethyl)-1H-1,4-benzodiazepin-2(3H)-on (Halazepam), 10-Brom-11 b-(2-fluorphenyl)-2, 3,7,11 b-tetrahydro[1,3]oxazolo[3,2-d][1,4]benzodiazepin-6(5H)-on (Haloxazolam), Heroin, 4,5α-Epoxy-3-methoxy-17-methyl-6-morphinanon (Hydrocodon), 4,5α-Epoxy-3-hydroxy-17-methyl-6-morphinanon (Hydromorphon), Hydroxypethidin, Isomethadon, Hydroxymethylmorphinan, 11-Chlor-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3]oxazino[3,2-d][1,4]benzodiazepin-4,7(6H)-dion (Ketazolam), 1-[4-(3-Hydroxyphenyl)-1-methyl-4-piperidyl]-1-propanon (Ketobemidon), (3S,6S)-6-Dimethylamino-4,4-diphenylheptan-3-ylacetat (Levacetylmethadol (LAAM)), (-)-6-Dimethylamino-4,4-diphenyl-3-heptanon (Levomethadon), (-)-17-Methyl-3-morphinanol (Levorphanol), Levophenacylmorphan, Lofentanil, 6-(2-Chlorphenyl)-2-(4-methyl-1-piperazinylmethylen)-8-nitro-2Himidazo[1,2-a][1,4] benzodiazepin-1(4H)-on (Loprazolam), 7-Chlor-5-(2-chlorphenyl)-3-hydroxy-1H-1,4-benzodiazepin-2(3H)-on (Lorazepam), 7-Chlor-5-(2-chlorphenyl)-3-hydroxy-1-methyl-1H-1,4-benzodiazepin-2(3H)-on (Lormetazepam), 5-(4-Chlorphenyl)-2,5-dihydro-3H-imidazo[2,1-a]isoindol-5-ol (Mazindol), 7-Chlor-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepin (Medazepam), N-(3-Chlorpropyl)-amethylphenethylamin (Mefenorex), Meperidin, 2-Methyl-2-propyltrimethylendicarbamat (Meprobamat), Meptazinol, Metazocin, Methylmorphin, N,α-Dimethylphenethylamin (Metamfetamin), (±)-6-Dimethylamino-4,4-diphenyl-3-heptanon (Methadon), 2-Methyl-3-o-tolyl-4(3H)-chinazolinon (Methaqualon), Methyl-[2-phenyl-2-(2-piperidyl)acetat] (Methylphenidat), 5-Ethyl-1-methyl-5-phenylbarbitursäure (Methylphenobarbital), 3,3-Diethyl-5-methyl-2,4-piperidindion (Methyprylon), Metopon, 8-Chlor-6-(2-fluorphenyl)-1-methyl-4H-imidazo[1,5-a][1,4]benzodiazepin (Midazolam), 2-(Benzhydrylsulfinyl)acetamid (Modafinil), 4,5α-Epoxy-17-methyl-7-morphinen-3,6α-diol (Morphin), Myrophin, (±)-trans-3-(1,1-Dimethylheptyl)-7,8,10,10α-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo [b, djpyran-9(6αH)-on (Nabilon), Nalbuphen, Nalorphin, Narcein, Nicomorphin, 1-Methyl-7-nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nimetazepam), 7-Nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nitrazepam), 7-Chlor-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nordazepam), Norlevorphanol, 6-Dimethylamino-4,4-diphenyl-3-hexanon (Normethadon), Normorphin, Norpipanon, der geronnene Saft der zur Art Papaver somniserum gehörenden Pslanzen (Opium), 7-Chlor-3-hydroxy-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Oxazcpam), (cis-trans)-10-Chlor-2, 3,7,11btctrahydro-2-methyl-11 bphenyloxazolo[3,2-d][1,4] benzodiazepin-6-(5H)-on (Oxazolam), 4,5α-Epoxy-14-hydroxy-3-methoxy-17-methyl-6-morphinanon (Oxycodon), Oxymorphon, Pflanzen und Pflanzenteile der zur Art Papaver somniferum (einschließlich der Unterart setigerum) gehörenden Pflanzen (Papaver somniferum), Papaveretum, 2-Imino-5-phenyl-4-oxazolidinon (Pernolin), 1,2,3,4,5,6-Hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6-methano-3-benzazocin-8-ol (Pentazocin), 5-Ethyl-5-(1-methylbutyl)-barbitursäure (Pentobarbital), Ethyl-(1-methyl-4-phenyl-4-piperidincarboxylat) (Pethidin), Phenadoxon, Phenomorphan, Phenazocin, Phenoperidin, Piminodin, Pholcodein, 3-Methyl-2-phenylmorpholin (Phenmetrazin), 5-Ethyl-5-phenylbarbitursäure (Phenobarbital), α,α-Dimethylphenethylamin (Phentermin), 7-Chlor-5-phenyl-1-(2-propinyl)-1H-1,4-benzodiazepin-2(3H)-on (Pinazepam), α-(2-Piperidyl)benzhydrylalkohol (Pipradrol), 1'-(3-Cyan-3,3-diphenylpropyl)[1,4'-bipiperidin]-4'-carboxamid (Piritramid), 7-Chlor-1 -(cyclopropylmethyl)-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Prazepam), Profadol, Proheptazin, Promedol, Properidin, Propoxyphen, N-(1-Methyl-2-piperidinoethyl)-N-(2-pyridyl)propionamid, Methyl [3-[4-methoxycarbonyl-4-(Nphenylpropanamido) piperidino] propanoat] (Remifentanil), 5-sec-Butyl-5-ethylbarbitursäure (Secbutabarbital), 5-Allyl-5-(1-methylbutyl)-barbitursäure (Secobarbital), N-{4-Methoxymethyl-1-[2-(2-thienyl)ethyl]-4-piperidyl)propionanilid (Sufentanil), 7-Chlor-2-hydroxy-methyl-5-phenyl-1 H-1,4-benzodiazepin-2(3H)-on (Temazepam), 7-Chlor-5-(1-cyclohexenyl)-1-methyl-1H-1,4-benzodiazepin-2(3H)-on (Tetrazepam), Ethyl-(2-dimethylamino-1-phenyl-3-cyclohexen-1-carboxylat) (Tilidin (cis und trans)), Tramadol, 8-Chlor-6-(2-chlorphenyl)-1-methyl-4H-[1, 2,4]triazolo[4,3-a][1,4]benzodiazepin (Triazolam), 5-(1-Methylbutyl)-5-vinylbarbitursäure (Vinylbital), (1R*,2R*)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (1R, 2R, 4S)-2-[Dimethylamino)methyl-4-(p-fluorbenzyloxy)-1-(m-methoxyphenyl)cyclohexanol sowie für entsprechende stereoisomere Verbindungen, jeweils deren entsprechende Derivate, insbesondere Ester oder Ether, und jeweils deren physiologisch verträgliche Verbindungen, insbesondere deren Salze und Solvate. [0015] Die Verbindungen (1R*,2R*)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol und (1R, 2R, 4S)-2-[Di-

٦ ×

methylamino)methyl-4-(p-fluorbenzyloxy)-1-(mmethoxyphenyl)cyclohexanol, deren physiologisch verträglichen Verbindungen, insbesondere deren Hydrochloride sowie Verfahren zu ihrer Herstellung sind beispielsweise aus aus EP-A-693475 bzw. EP-A-780369 bekannt. Die entsprechenden Beschreibungen werden hiermit als Referenz eingeführt und gelten als Teil der Offenbarung.

[0016] Zur Überprüfung, ob ein viskositätserhöhendes Mittel zur Anwendung in der erfindungsgemäßen Darreichungsform geeignet ist, wird dieses in einer entsprechenden Darreichungsform formuliert, die so erhaltene Darreichungsform zerkleinert, vorzugsweise gemörsert, und mit 10 ml Wasser bei 25°C extrahiert. Bildet sich hierbei ein Gel, welches den vobenstehend genannten Bedingungen genügt, eignet sich das entsprechende viskositätserhöhende Mittel zur Herstellung einer erfindungsgemäßen Darreichungsform.

[0017] Vorzugsweise kommen eine oder mehrere viskositätserhöhende Mittel in der erfindungsgemäßen Darreichungsform zum Einsatz, die ausgewählt sind aus der Gruppe bestehend aus mikrokristalliner Cellulose mit 11 Gew.-% Carboxymethylcellulose-Natrium (Avicel® RC 591), Carboxymethylcellulose-Natrium (Blanose, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), Polyacrylsäure (Carbopol® 980 NF, Carbopol® 981), Johannisbrotkernmehl (Cesagum® LA-200, Cesagum® LID/150, Cesagum® LN-1), Citrus-Pectin (Cesapectin® HM Medium Rapid Set), Wachsmaisstärke (C*Gel 04201®), Natriumalginat (Frimulsion ALG (E401)®) Guarkernmehl (Frimulsion BM®, Polygum 26/1-75®), Iota-Carrageen (Frimulsion D021®), Karaya Gummi, Gellangummi (Kelcogel F®, Kelcogel LT100®), Galaktomannan (Meyprogat 150®), Tarakernmehl (Polygum 43/1®), Propylenglykoalginat (Protanal-Ester SD-LB®), Apfelpektin, Pektin aus Zitronenschale, Natrium-Hyaluronat, Tragant, Taragummi (Vidogum SP 200®), fermentiertes Polysaccharid-Welan Gum (K1A96), Xanthan-Gummi (Xantural 180®). Die in Klammern angegebenen Bezeichnungen sind die Handelsnamen, unter denen die jeweiligen Materialien am Markt geführt sind. Im allgemeinen ist eine Menge von 0,1 bis 5 Gew.-% der viskositätserhöhenden Mittel ausreichend, um die vorstehend genannten Bedingungen zu erfüllen.

[0018] Die viskositätserhöhenden Mittel liegen in der erfindungsgemäßen Darreichungsform bevorzugt in Mengen von 5 mg pro Darreichungsform, d. h. pro Dosiereinheit vor.

[0019] In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung kommen solche viskositätserhöhende Mittel zum Einsatz, die bei der Extraktion aus der Darreichungsform mit der notwendigen Mindestmenge an wäßriger Flüssigkeit ein Gel bilden, das Luftblasen einschließt. Die so erhaltenen Gele zeichnen sich durch ein trübes Erscheinungsbild aus, durch das der potentielle Mißbraucher zusätzlich optisch gewarnt und von dessen parenteraler Applikation abgehalten wird.

10020] Der Wirkstoff bzw. die Wirkstoffe mit Mißbrauchspotential und die viskositätserhöhenden Mittel sowie ggf. physiologisch verträgliche Hilfsstoffe können nach üblichen, dem Fachmann bekannten Methoden zu der erfindungsgemäßen Darreichungsform formuliert werden. Entsprechende Methoden zur Formulierung der erfindungsgemäßen Darreichungsform sind dem Fachmann an sich bekannt, beispielsweise aus "Coated Pharmaceutical Dosage Forms – Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials" von Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1. Auflage, 1998, Medpharm Scientific Publishers. Die entsprechende Literaturbeschreibung wird hiermit als Referenz eingeführt und gilt als Teil der Offenbarung.

[0021] Überraschenderweise ist es möglich, die Wirkstoffe und die viskositätserhöhenden Mittel ohne räumliche Trennung voneinander in der erfindungsgemäßen Darreichungsform zu kombinieren, ohne daß die Freisetzung des Wirkstoffs bei bestimmungsgemäßer Applikation der Darreichungsform gegenüber einer entsprechenden Darreichungsform, die das viskositätserhöhende Mittel nicht aufweist, beeinträchtigt wird.

[0022] Selbstverständlich ist es aber auch möglich, die viskositätserhöhenden Mittel und die Wirkstoffe in räumlich voneinander getrennter Anordnung in der Darreichungsform zu kombinieren.

[0023] Die erfindungsgemäßen, festen, gegen parenteralen Mißbrauch geschützten Darreichungsformen eignen sich bevorzugt zur oralen oder rektalen Applikation, besonders bevorzugt zur oralen Applikation.

[0024] Sofern die erfindungsgemäße Darreichungsform zur rektalen Applikation vorgesehen ist, liegt sie bevorzugt in Form eines Suppositoriums vor.

[0025] Ist die erfindungsgemäße Darreichungsform zur oralen Applikation vorgesehen, liegt sie vorzugsweise in Form einer Tablette, einer Kapsel oder in Form eines oralen osmotischen therapeutischen Systems (OROS) vor.

[0026] Orale osmotische therapeutische Systeme sowie geeignete Materialien und Verfahren zu ihrer Herstellung sind dem Fachmann an sich bekannt, beispielsweise aus US 4,612,008, US 4,765,989 und US 4,783,337. Die entsprechenden Beschreibungen werden hiermit als Referenz eingeführt und gelten als Teil der Offenbarung.

[0027] Das entsprechende orale osmotische therapeutische System kann bevorzugt als Ein- oder Zweikammersystem, jeweils mit einschichtigem oder mehrschichtigem Aufbau vorliegen. Vorzugsweise besteht die Push-Schicht in diesen Systemen, d. h. die Schicht, die durch ihr Quellen den osmotischen Druck erzeugt, durch den die darüber liegende Schicht aus dem System herausgedrückt wird, zumindest teilweise aus den erfindungsgemäß zum Einsatz kommenden viskositätserhöhenden Mitteln.

[0028] In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung liegt die oral applizierbare, erfindungsgemäße Darreichungsform in multipartikulärer Form enthaltend jeweils die Gesamtmischung aus Wirkstoff und viskositätserhöhendem Mittel, vorzugsweise in Form von Mikrotabletten, Mikrokapseln, Mikropellets, Granulaten, Sphäroiden, Perlen oder Pellets, vorzugsweise in Kapseln abgefüllt oder zu Tabletten verpreßt, vor. Vorzugsweise weisen die mulitpartikulären Formen eine Größe im Bereich von 0,1 bis 3 mm, besonders bevorzugt im Bereich von 0,5 bis 2 mm auf.

[0029] Die erfindungsgemäßen Darreichungsform kann vorzugsweise auch einen oder mehrere Wirkstoffe, abgemischt mit dem viskositätserhöhenden Mittel, zumindest teilweise in retardierter Form aufweisen, wobei die Retardierung mit Hilfe von üblichen, dem Fachmann bekannten Materialien und Verfahren erzielt werden kann, beispielsweise durch Einbetten des Wirkstoffes in eine retardierende Matrix oder durch das Aufbringen eines oder mehrerer retardierender Überzüge. Bevorzugt kann die retardierte Freisetzung des Wirkstoffes auch durch die gezielte Auswahl eines oder mehrerer der vorstehend genannten viskositätserhöhenden Mittel in geeigneten Mengen als Matrixmaterial erreicht werden. Das für die jeweils gewünschte Freisetzung des Wirkstoffes geeignete Mittel und dessen Menge kann der Fachmann

durch einfache Vorversuche ermitteln, wobei selbstverständlich darauf zu achten ist, daß es beim Versuch des Mißbrauchs der resultierenden Darreichungsform, wie vorstehend beschrieben, zu einer Gelbildung kommt. In jedem Fall ist darauf zu achten, daß die retardierenden Hilfsstoffe, ebenso wie weitere, ggf. vorhandene Hilfsstoffe nicht mit der Gelbildung interferieren oder die Stabilität des gebildeten Gels beeinträchtigen.

[0030] Sofern die erfindungsgemäße Darreichungsform zur oralen Applikation vorgesehen ist, kann sie auch einen magensaftresistenten Überzug aufweisen, der sich in Abhängigkeit vom pH-Wert der Freisetzungsumgebung auflöst.

[0031] Durch diesen Überzug wird erreicht, daß die erfindungsgemäße Darreichungsform bei bestimmungsgemäßer Applikation den Magentrakt unaufgelöst passiert und der Wirkstoff erst im Darmtrakt zur Freisetzung gelangt. Vorzugsweise löst sich der magensaftresistente Überzug bei einem pH-Wert zwischen 5 und 7,5 auf.

[0032] Entsprechende Materialien und Verfahren zur Retardierung von Wirkstoffen sowie zum Aufbringen magensaftresistenter Überzüge sind dem Fachmann an sich bekannt, beispielsweise aus "Coated Pharmaceutical Dosage Forms – Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials" von Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1. Auflage, 1998, Medpharm Scientific Publishers. Die entsprechende Literaturbeschreibung wird hiermit als Referenz eingeführt und gilt als Teil der Offenbarung.

[0033] In einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Darreichungsform den Wirkstoff neben seiner retardierten Form auch in seiner unretardierten Form. Durch Kombination mit dem sofort freigesetzten Wirkstoff läßt sich eine hohe Initialdosis zur schnellen Schmerzlinderung erzielen. Die langsame Freisetzung aus der retardierten Form verhindert dann ein rasches Abklingen der Wirkung.

[0034] Im folgenden wird die Erfindung anhand von Beispielen erläutert. Diese Erläuterungen sind lediglich beispielhaft und schränken den allgemeinen Erfindungsgedanken nicht ein.

Beispiele

Beispiel 1

[0035] Matrixtabletten mit folgender Zusammensetzung pro Tablette

(-)-(1R,2R)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)phenol-Hydrochlorid	100 mg	
Hydroxypropylmethylcellulose (Metolose 90 SH 100.000 von Fa. Shinetsu), 100.000 mPa·s	70 mg	30
Xanthan, NF	10 mg	
Mikrokristalline Cellulose (Avicel PH 102 von Fa. FA. FMC)	123 mg	25
Hochdisperses Siliciumdioxid	4 mg	35
Magnesiumstearat	3 mg	
Gesamtmenge	310 mg	40

wurden in einer Ansatzgröße von 1000 Tabletten in folgender Weise hergestellt: Alle Bestandteile wurden eingewogen und auf einer Siebmaschine Quadro Comil U10 unter Verwendung einer Siebgröße von 0,813 mm gesiebt, in einem Containermischer (Bohle LM 40) 15 min ± 15 s bei einer Drehzahl von 20 ± 1 U/min gemischt und auf einer Korsch EKO Exzenterpresse zu drageegewölbten Tabletten mit einem Durchmesser von 10 mm, einem Wölbungsradius von 8 mm und einem mittleren Tablettengewicht von 310 mg gepreßt.

[0036] Die Freisetzung in vitro wurde bestimmt unter Anwendung der Ph. Eur. Paddle Method bei 75 U/min in 900 ml Puffer pH 6,8 nach Ph. Eur. bei 37°C und mit UVspektrometrischem Nachweis und ist in folgender Tabelle nebst eines Vergleiches mit einer entsprechenden Tablette mit 80 mg Hydroxypropylmethylcellulose ("HPMC") ohne Xanthan-Zusatz wiedergegeben.

55

50

5

20

25

60

Zeit [min]	Freigesetzte	Freigesetzte
	Gesamtmenge des	Gesamtmenge des
	Wirkstoffs [%] aus	Wirkstoffs [%] aus
	Tabletten gemäß	Tabletten mit 80 mg
	Beispiel 1 (70 mg	HPMC (ohne Xanthan)
	HPMC +10 mg Xanthan(
0	0	0
30	19	18
240	62	59
480	83	80
600	88	87
720	93	93

[0037] Eine der Xanthan-haltigen Tabletten wurde gemörsert und mit 10 ml Wasser geschüttelt. Es bildete sich eine viskose, trübe Suspension. Nach Absetzen der groben, festen Bestandteile der Suspension wurde diese in eine Spritze mit einer Nadel mit 0,9 mm Durchmesser aufgezogen. Die aufgezogene Extraktionsflüssigkeit wird in 37°C warmes Wasser gespritzt, wobei deutlich Fäden mit dem Durchmesser der Nadel extrudiert wurden, die sich nicht mit dem Wasser gemischt haben. Unter Rühren wurden die Fäden geteilt, aber nicht gelöst; wobei die Bruchstücke der Fäden mit dem bloßen Auge erkennbar bleiben. Bei Injektion eines derartigen Extraktes in Blutgefäße käme es zu Verstopfungen in den Gefäßen.

Beispiel 2

30

35

40

45

[0038] Matrixtabletten mit folgender Zusammensetzung pro Tablette

(-)-(1R,2R)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)phenol-Hydrochlorid	100 mg
Hydroxypropylmethylcellulose (Metolose 90 SH 100.000 von Fa. Fa. Shinetsu),	40 mg
100.000 mPa⋅s	
Xanthan, NF	40 mg
Mikrokristaline Cellulose (Avicel PH 102 von Fa. FA. FMC)	123 mg
Hochdisperses Siliciumdioxid	4 mg
Magnesiumstearat	3 mg
Gesamtmenge	310 mg

wurden wie in Beispiel 1 angegeben hergestellt und bezüglich ihrer Freisetzung untersucht.

Zeit [min]	Freigesetzte Gesamtmenge de Wirkstoffs [%]			
0	O			
30	19			
240	61			
480	81			
600	87			
720	91			

[0039] Eine der Tabletten wurde gemörsert und mit 10 ml Wasser geschüttelt. Es bildete sich eine viskose, trübe Suspension, deren Viskosität höher als in Beispiel 1 war; mit eingeschlossenen Luftblasen. Nach Absetzen der groben, festen Bestandteile der Suspension wurde diese in eine Spritze mit einer Nadel mit 0,9 mm Durchmesser aufgezogen. Die aufgezogene Extraktionsflüssigkeit wurde in 37°C warmes Wasser gespritzt, wobei deutlich Fäden mit dem Durchmesser

der Nadel extrudiert wurden, die sich nicht mit dem Wasser mischten. Unter Rühren konnten die Fäden geteilt, aber nicht gelöst werden; wobei die Bruchstücke der Fäden mit dem bloßen Auge erkennbar blieben. Bei Injektion eines derartigen Extraktes in Blutgefäße käme es zu Verstopfungen in den Gefäßen.

Beispiel 3

[0040] Die aus einer Tablette gemäß Beispiel 2 gewonnene Extraktionsflüssigkeit wird durch eine 0,55 mm Nadel gespritzt; es kommt bei 2 von 3 Ausspritzversuchen zu Blockaden in der Nadel, so daß die Flüssigkeit die Nadel nicht passieren kann.

Beispiel 4

[0041] Matrixtabletten mit folgender Zusammensetzung pro Tablette

100 mg
80 mg
123 mg
4 mg
3 mg
310 mg

wurden wie in Beipiel 1 angegeben hergestellt.

[0042] Eine dieser Tabletten wurden gemörsert und mit 10 ml Wasser geschüttelt. Es bildete sich eine viskose, trübe Suspension, deren Viskosität höher als in Beispiel 1 und und Luftblasen eingeschlossen hatte. Nach Absetzen der groben, festen Bestandteile der Suspension wurde diese in eine Spritze mit einer Nadel mit 0,9 mm Durchmesser aufgezogen. Die aufgezogene Extraktionsflüssigkeit wurde in 37°C warmes Wasser gespritzt, wobei deutlich erkennbare Fäden mit dem Durchmesser der Nadel extrudiert wurden, die sich nicht mit dem Wasser mischten. Unter Rühren konnten die Fäden geteilt, aber nicht gelöst werden; wobei Bruchstücke der Fäden mit dem bloßen Auge erkennbar blieben. Bei Injektion eines derartigen Extraktes in Blutgefäße käme es zu Verstopfungen in den Gefäßen.

Beispiele 5-8

[0043] Matrixtabletten mit folgender Zusammensetzung pro Tablette

Beispiel	5	6	7	8
(-)-(1R,2R)-3-(3-Dimethylamino-1-ethyl-2-	100 mg	100 mg	100 mg	100 mg
methyl-propyl)phenol-Hydrochlorid				
Hydroxypropylmethylcellulose (Metolose 90	80 mg	80 mg	80 mg	80 mg
SH 100.000 von Fa. Fa. Shinetsu), 100.000				
mPa·s				
Carboxymethylcellulose (Tylose C300)	10 mg	 		
Carboxymethylcellulose (Tylose C600)		10 mg		
Hydroxyethylcellulose (Tylose H300)			10 mg	
Hydroxyethylcellulose (Tylose H4000)				10 mg
Mikrokristalline Cellulose (Avicel PH 102	123 mg	123 mg	123 mg	123 mg
von Fa. FA. FMC)				
Hochdisperses Siliciumdioxid	4 mg	4 mg	4 mg	4 mg
Magnesiumstearat	3 mg	3 mg	3 mg	3 mg
Sesamtmenge	320 mg	320 mg	320 mg	320 mg

wurden wie in Beipiel 1 angegeben hergestellt.

[0044] Jeweils eine dieser Tabletten wurde gemörsert und mit 10 ml Wasser geschüttelt. Es bildete sich eine viskose, trübe Suspension mit eingeschlossenen Luftblasen. Nach Absetzen der groben, festen Bestandteile der Suspension wurde diese in eine Spritze mit einer Nadel mit 0,9 mm Durchmesser aufgezogen. Die aufgezogene Extraktionsflüssigkeit

7

10

15

20

5

25

40

35

45

50

55

60

wurde in 37°C warmes Wasser gespritzt, wobei deutlich Fäden mit dem Durchmesser der Nadel extrudiert wurden, die sich nicht mit dem Wasser mischten. Unter Rühren konnten die Fäden geteilt, aber nicht gelöst werden, wobei die Bruchstücke der Fäden mit dem bloßen Auge erkennbar blieben. Bei Injektion eines derartigen Extraktes in Blutgefäße käme es zu Verstopfungen in den Gefäßen.

Beispiele 9–14

Matrixtabletten mit folgender Zusammensetzung pro Tablette

10	Beispiel	9	10	11	12	13	14
	Morphinsulfat Pentahydrat	60 mg					
	Hydroxypropylmethylcellulose	60 mg					
15	(Metolose 90 SH 15.000 von						
	Fa. Fa. Shinetsu), 15.000						
	mPa·s						
20	Xanthan, NF	10 mg	30 mg				
	Carboxymethylcellulose			10 mg			
	(Tylose C300)						
25	Carboxymethylcellulose				10 mg		
	(Tylose C600)						
	Hydroxyethylcellulose (Tylose					10 mg	
30	H300)						
	Hydroxyethylcellulose (Tylose						10 mg
	H4000)					400	400
35	Mikrokristalline Cellulose	123 mg					
	(Avicel PH 102 von Fa. FA.			•			
	FMC)						
40	Hochdisperses Siliciumdioxid	4 mg					
,,,	Magnesiumstearat	3 mg					

[0045] Jeweils eine dieser Tabletten wurde gemörsert und mit 10 ml Wasser geschüttelt. Es bildete sich eine viskose, trübe Suspension mit eingeschlossenen Luftblasen. Nach Absetzen der groben, festen Bestandteile der Suspension wurde diese in eine Spritze mit einer Nadel mit 0,9 mm Durchmesser aufgezogen. Die aufgezogene Extraktionsflüssigkeit wurde in 37°C warmes Wasser gespritzt, wobei deutlich Fäden mit dem Durchmesser der Nadel extrudiert wurden, die sich nicht mit dem Wasser mischten. Unter Rühren konnten die Fäden geteilt, aber nicht gelöst werden, wobei die Bruchstücke der Fäden mit dem bloßen Auge erkennbar blieben. Bei Injektion eines derartigen Extraktes in Blutgefäße käme es zu Verstopfungen in den Gefäßen.

55

5

60

Beispiele 15-19

Kapseln mit folgender Zusammensetzung der einfachen Pulvermischung pro Kapsel (Kapselgröße 4)

5

10

15

20

25

35

50

55

Beispiel	15	16	17	18	19
Morphinsulfat Pentahydrat	20 mg				
Xanthan, NF	10 mg				
Carboxymethylcellulose (Tylose C300)		10 mg			
Carboxymethylcellulose (Tylose C600)			10 mg		
Hydroxyethylcellulose (Tylose H300)				10 mg	
Hydroxyethylcellulose (Tylose H4000)					10 mg
Mikrokristalline Cellulose (Avicel PH 102 von Fa. FA. FMC)	68 mg				
Hochdisperses Siliciumdioxid	1 mg				
Magnesiumstearat	1 mg				

[0046] Jeweils eine dieser Tabletten wurde gemörsert und mit 10 ml Wasser geschüttelt. Es bildete sich eine viskose, trübe Suspension mit eingeschlossenen Luftblasen. Nach Absetzen der groben, festen Bestandteile der Suspension wurde diese in eine Spritze mit einer Nadel mit 0,9 mm Durchmesser aufgezogen. Die aufgezogene Extraktionsflüssigkeit wurde in 37°C warmes Wasser gespritzt, wobei deutlich Fäden mit dem Durchmesser der Nadel extrudiert wurden, die sich nicht mit dem Wasser mischten. Unter Rühren konnten die Fäden geteilt, aber nicht gelöst werden, wobei die Bruchstücke der Fäden mit dem bloßen Auge erkennbar blieben. Bei Injektion eines derartigen Extraktes in Blutgefäße kärne es zu Verstopfungen in den Gefäßen.

Patentansprüche

- 1. Gegen parenteralen Mißbrauch gesicherte, feste Darreichungsform, dadurch gekennzeichnet, daß sie neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential wenigstens ein viskositätserhöhendes Mittel aufweist, das in einem mit Hilfe einer notwendigen Mindestmenge an einer wäßrigen Flüssigkeit aus der Darreichungsform gewonnene Extrakt ein Gel bildet, welches beim Einbringen in eine weitere Menge einer wäßrigen Flüssigkeit visuell unterscheidbar bleibt.
- 2. Darreichungsform gemäß Anspruch 1, dadurch gekennzeichnet, daß der Wirkstoff ein pharmazeutischer Wirkstoff ausgewählt aus der Gruppe bestehend aus Opiaten, Opioiden, Tranquillantien, vorzugsweise Benzodiazepinen, Stimulantien und weiteren Betäubungsmitteln ist.
- 3. Darreichungsform gemäß Anspruch 2, dadurch gekennzeichnet, daß der Wirkstoff ein Opiat, Opioid, Tranquillanz oder ein weiteres Betäubungsmittel ist, ausgewählt aus der Gruppe bestehend aus N-{1-[2-(4-Ethyl-5-oxo-2-tetrazolin-1-yl)ethyl]-4-methoxymethyl-4-piperidyl}propionanilid (Alfentanil), 5,5-Diallylbarbitursäure (Allobarbital), Allylprodin, Alphaprodin, 8-Chlor-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]-benzodiazepin (Alprazolam), 2-Diethylaminopropiophenon (Amfepramon), (±)-α-Methylphenethylamin (Amfetamin), 2-(α-Methylphenethylamino)-2-phenylacetonitril (Amfetaminil), 5-Ethyl-5-isopentylbarbitursäure (Amobarbital), Anileridin, Apocodein, 5,5-Diethylbarbitursäure (Barbital), Benzylmorphin, Bezitramid, 7-Brom-5-(2-pyridyl)-1H-1,4-benzodiazepin-2(3H)-on (Bromazepam), 2-Brom-4-(2-chlorphenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin (Brotizolam), 17-Cyclopropylmethyl-4,5α-epopxy-7a((S)-1-hydroxy-1,2,2-trimethyl-propyl]-6-methoxy-6,14-endo-ethanomorphinan-3-ol (Buprenorphin), 5-Butyl-5-ethylbarbitursäure (Butobarbital), Butorphanol, (7-Chlor-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl)-dimethyl-carbamat (Camazepam). (1S,S2)-2-Amino-1-phenyl-1-propanol (Cathin/D-Norpseudoephedrin), 7-Chlor-N-methyl-5-phenyl-3H-1,4-benzodiazepin-2-ylamin-4-oxid (Chlordiazepoxid), 7-Clor-1-methyl-5-phenyl-1H-1,5-benzodiazepin-2,4(3H,5H)dion (Clobazam), 5-(2-Chlorphenyl)-7-nitro-1H-1,4-benzodiazepin-2(3H)-on (Clonazepam), Clonitazen, 7-Chlor-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-carbonsäure (Clorazepat), 5-(2-Chlorphenyl)-7-ethyl-1-methyl-1H-thieno[2,3-e][1,4]diazepin-2(3H)-on (Clotiazepam), 10-Chlor-11b-(2chlorphenyl)-2,3,7,11b-tetrahydrooxazolo[3,2-d](1,4]benzodiazepin-6(5H)-on (Cloxazolam), (-)-Methyl-[3β-benzoyloxy-2β(1aH, 5aH)-tropancarboxylat] (Cocain), 4,5α-Epoxy-3-methoxy-17-methyl-7-morphinen-6aol (Codein), 5-(1-Cyclohexenyl)-5-ethylbarbitursäure (Cyclobarbital), Cyclorphan, Cyprenorphin, 7-Chlor-5-(2-chlorphenyl)-1H-1,4-benzodiazepin-2(3H)-on (Delorazepam), Desomorphin, Dextromoramid, (+)-(1-Benzyl-3-dimethylamino-2-methyl-1-phenylpropyl)propionat (Dextropropoxyphen), Dezocin, Diampromid, Diamorphon, 7-Chlor-1-methyl-5-phenyl-1H-1,4-benzodiatepin-2(3H)-on (Diazepam), 4,5α-Epoxy-3-methoxy-17-methyl-6amorphinanol (Dihydrocodein), 4,5α-Epoxy-17-me-

5

10

15

20

25

30

35

45

50

55

60

65

thyl-3,6a-morphinandiol (Dihydromorphin), Dimenoxadol, Dimephetamol, Dimethylthiambuten, Dioxaphetylbutyrat, Dipipanon, (6aR, 10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10atetrahydro-6H-benzo[c]chromen-1-ol (Dronabinol), Eptazocin, 8-Chlor-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepin (Estazolam), Ethoheptazin, Ethyl-Ethyl-[7-chlor-5-(2-fluorphenyl)-2,3-dihydro-2-oxo-1H-1,4 benzodiazepin-3-carboxylat] methylthiambuten, (Ethylloflazepat), 4,5α-Epoxy-3-ethoxy-17-methyl-7-morphinen-6α-ol (Ethylmorphin), Etonitazen, 4,5α-Epoxy-7α-(1-hydroxy-1-methylbutyl)-6-methoxy-17-methyl-6,14-endo-etheno-morphinan-3-ol (Etorphin), N-Ethyl-3phenyl-8,9,10-trinorbornan-2-ylamin (Fencamfamin), 7-[2-(α-Methylphenethylamino)ethyl]-theophyllin) (Fenetyllin), 3-(α-Methylphenethylamino)propionitril (Fenproporex), N-(1-Phenethyl-4-piperidyl)propionanilid (Fentanyl), 7-Chlor-5-(2-fluorphenyl)-1-methyl-1 H-1,4-benzodiazepin-2(3H)-on (Fludiazepam), 5-(2-Fluorphenyl)-1methyl-7-nitro-1H-1,4-benzodiazepin-2(3H)-on (Flunitrazepam), 7-Chlor-1-(2-diethylaminoethyl)-5-(2-fluorphenyl)-1H-1,4-benzodiazepin-2(3H)-on (Flurazepam), 7-Chlor-5-phenyl-1-(2,2,2-trifluorethyl)-1H-1,4-benzodiazepin-2(3H)-on (Halazepam), 10-Brom-11b-(2-fluorphenyl)-2,3,7,11 b-tetrahydro[1,3]oxazolo[3,2-d][1,4]benzodiazepin-6(5H)-on (Haloxazolam), Heroin, 4,5α-Epoxy-3-methoxy-17-methyl-6-morphinanon (Hydrocodon), 4,5α-Epoxy-3-hydroxy-17-methyl-6-morphinanon (Hydromorphon), Hydroxypethidin, Isomethadon, Hydroxymethyl-11-Chlor-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3]oxazino[3,2-d][1,4]benzodiazepinmorphinan, 4,7(6H)-dion (Ketazolam), 1-[4-(3-Hydroxyphenyl)-1-methyl-4-piperidyl]-1-propanon (Ketobernidon), (3S,6S)-6-Dimethylamino-4,4-diphenylheptan-3-ylacetat (Levacetylmethadol (LAAM)), (-)-6-Dimethylamino-4,4-diphenyl-3-heptanon (Levomethadon), (-)-17-Methyl-3-morphinanol (Levorphanol), Levophenacylmorphan, Lofentanil, 6benzodiazepin-1(4H)-on (2-Chlorphenyl)-2-(4-methyl-1-piperazinylmethylen)-8-nitro-2H-imidazo[1,2-a][1,4] (Loprazolam), 7-Chlor-5-(2-chlorphenyl)-3-hydroxy-1H-1,4-benzodiazepin-2(3H)-on (Lorazepam), 7-Chlor-5-(2-chlorphenyl)-3-hydroxy-1H-1,4-benzodiazepin-2(3H)-0-hydroxy-1H-1,4-benzodiazepin-2(3H)-0-hydroxy-1H-1,4-benzodiazepin-2(3H) chlorphenyl)-3-hydroxy-1-methyl-1H-1,4-benzodiazepin-2(3H)-on (Lormetazepam), 5-(4-Chlorphenyl)-2,5-dihydro-3H-imidazo[2,1-a]isoindol-5-ol (Mazindol), 7-Chlor-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepin (Medazepam), N-(3-Chlorpropyl)-amethylphenethylamin (Mefenorex), Meperidin, 2-Methyl-2-propyltrimethylendicarbamat (Meprobamat), Meptazinol, Metazocin, Methylmorphin, N,a-Dimethylphenethylamin (Metamfetamin), (±)-6-Dimethylamino-4,4-diphenyl-3-heptanon (Methadon), 2-Methyl-3-o-tolyl-4(3H)-chinazolinon (Methaqualon), Methyl-[2-phenyl-2-(2-piperidyl)acetat] (Methylphenidat), 5-Ethyl-1-methyl-5-phenylbarbitursäure (Methylphenobarbital), 3,3-Diethyl-5-methyl-2,4-piperidindion (Methyprylon), Metopon, 8-Chlor-6-(2-fluorphenyl)-1methyl-4H-imidazo[1,5-a][1,4]benzodiazepin (Midazolam), 2-(Benzhydrylsulfinyl)acetamid (Modafinil), 4,5α-Epoxy-17-methyl-7-morphinen-3,6α-diol (Morphin), Myrophin, (±)-trans-3-(1,1-Dimethylheptyl)-7,8,10,10α-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo [b, djpyran-9(6aH)-on (Nabilon), Nalbuphen, Nalorphin, Narcein, Nicomorphin, 1-Methyl-7-nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nimetazepam), 7-Nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nitrazepam), 7-Chlor-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nordazepam), Norlevorphanol, 6-Dimethylamino-4,4-diphenyl-3-hexanon (Normethadon), Normorphin, Norpipanon, der geronnene Saft der zur Art Papaver somniferum gehörenden Pflanzen (Opium), 7-Chlor-3-hydroxy-5-phenyl-1H-1,4benzodiazepin-2(3H)-on (Oxazepam), (cis-trans)-10-Chlor-2,3,7,11b-tetrahydro-2-methyl-11bphenyloxazolo[3,2d][1,4] benzodiazepin-6-(5H)-on (Oxazolam), 4,5\alpha-Epoxy-14-hydroxy-3-methoxy-17-methyl-6-morphinanon (Oxycodon), Oxymorphon, Pflanzen und Pflanzenteile der zur Art Papaver somniferum (einschließlich der Unterart setigerum) gehörenden Pflanzen (Papaver somniferum), Papaveretum, 2-Imino-5-phenyl-4-oxazolidinon (Pernolin), 1,2,3,4,5,6-Hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6-methano-3-benzazocin-8-ol (Pentazocin), 5-Ethyl-5-(1-methylbutyl)-barbitursäure (Pentobarbital), Ethyl-(1-methyl-4-phenyl-4-piperidincarboxylat) (Pethidin), Phenadoxon, Phenomorphan, Phenazocin, Phenoperidin, Piminodin, Pholcodein, 3-Methyl-2-phenylmorpholin (Phenmetrazin), 5-Ethyl-5-phenylbarbitursäure (Phenobarbital), α , α -Dimethylphenethylamin (Phentermin), 7-Chlor-5-phenyl-1-(2-propinyl)-1H-1,4-benzodiazepin-2(3H)-on (Pinazepam), α-(2-Piperidyl)benzhydrylalkohol (Pipradrol), 1'-(3-Cyan-3,3-diphenylpropyl)[1,4'-bipiperidin]-4'-carboxamid (Piritramid), 7-Chlor-1-(cyclopropylmethyl)-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Prazepam), Profadol, Proheptazin, Promedol, Properidin, Propoxyphen, N-(1-Methyl-2-piperidinoethyl)-N-(2-pyridyl)propionamid, Methyl [3-[4-methoxycarbonyl-4-(Nphenylpropanamido)piperidino]propanoat) (Remifentanil), 5-sec-Butyl-5-ethylbarbitursäure (Sechutabarbital), 5-Allyl-5-(1 -methylbutyl)-barbitursäure (Secobarbital), N-{4-Methoxymethyl-1-[2-(2-thienyl)ethyl]-4-piperidyl}propionanilid (Sufentanil), 7-Chlor-2-hydroxy-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Temazepam), 7-Chlor-5-(1-cyclohexenyl)-1-methyl-1H-1,4-benzodiazepin-2(3H)-on (Tetrazepam), Ethyl-(2-dimethylamino-1phenyl-3-cyclohexen-1-carboxylat) (Tilidin (cis und trans)), Tramadol, 8-Chlor-6-(2-chlorphenyl)-1-methyl-4H-[1,2,4]triazolol[4,3-a][1,4]benzodiazepin (Triazolam), 5-(1-Methylbutyl)-5-vinylbarbitursäure (Vinylbital), (1R*, 2R*)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (1R, 2R, 4S)-2-[Dimethylamino)methyl-4-(p-fluorbenzyloxy)-1-(mmethoxyphenyl)cyclohexanol sowie jeweils entsprechende stereoisomere Verbindungen und jeweils deren entsprechende Derivate, insbesondere Ester oder Ether, und jeweils deren physiologisch verträgliche

Verbindungen, insbesondere Salze und Solvate.

4. Darreichungsform gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, daß siE ein Stimulanz aufweist, ausgewählt aus der Gruppe bestehend aus Amphetamin, Norpseudoephedrin, Methylphenidat und jeweils ggf. deren entsprechenden physiologischen Verbindungen, insbesonderen deren Basen, Salzen und Solvaten.

5. Darreichungsform gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie ein oder mehrere viskositätserhöhende ausgewählt aus der Gruppe bestehend aus mikrokristalliner Cellulose mit 11 Gew.-% Carboxymethylcellulose-Natrium (Avicel® RC 591), Carboxymethylcellulose-Natrium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), Polyacrylsäure (Carbopol® 980 NF, Carbopol® 981), Johannisbrotkernmehl (Cesagurri LA-200, Cesagum® LID/150, Cesagum® LN-1), Citrus-Pectin (Cesapectin® HM Medium Rapid Set), Wachsmaisstärke (C*Gel 04201®), Natriumalginat (Frimulsion ALG (E401)®), Guarkemmehl (Frimulsion BM®, Polygum 26/1-75®), Iota-Carrageen (Frimulsion D021®), Karaya Gummi, Gellangummi (Kelcogel F®, Kelcogel LT100®), Galaktomannan (Meyprogat 150 ®), Tarakernmehl (Polygum 43/1®), Propylenglykoalginat (Protanal-Ester SD-LB®), Apfelpektin, Pektin aus Zitronenschale, Natrium-Hyaluronat, Tragant, Taragummi (Vidogum SP

200%), fermentiertes Polysaccharid- Welan Gum (K1A96) und Xanthan-Gummi (Xantural 1866) aufweist.

- 6. Darreichungsform gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie die viskositätserhöhenden Mittel in einer Menge von ≥ 5 mg pro Darreichungsform, d. h. pro Dosiereinheit aufweist.
- 7. Darreichungsform gemäß einem der Ansprüche 1 bis 6 zur oralen Applikation.
- 8. Darreichungsform gemäß Anspruch 7, dadurch gekennzeichnet, daß sie in Form einer Tablette, einer Kapsel oder in Form eines oralen osmotischen therapeutischen Systems (OROS) vorliegt.
- 9. Darreichungsform gemäß Anspruch 7, dadurch gekennzeichnet, daß sie in multipartikulärer Form, vorzugsweise in Form von Mikrotabletten, Mikrokapseln, Mikropellets, Granulaten, Sphäroiden, Perlen oder Pellets, vorzugsweise in Kapseln abgefüllt oder zu Tabletten verpreßt, vorliegt.
- 10. Darreichungsform gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie wenigstens einen Wirkstoff zumindest teilweise in retardierter Form aufweist.
- 11. Darreichungsform gemäß einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß sie einen magensaftresistenten Überzug aufweist.

15

20

25

30

35

40

45

50

55

60

- Leerseite -
