The $E.\ coli$ molecular phenotype under different growth conditions

Supplementary material

Mehmet U. Caglar, John R. Houser, Craig S. Barnhart,
Daniel R. Boutz, Sean M. Carroll, Aurko Dasgupta, Walter F. Lenoir,
Bartram L. Smith, Viswanadham Sridhara, Dariya K. Sydykova,
Drew Vander Wood, Christopher J. Marx,
Edward M. Marcotte*, Jeffrey E. Barrick*, Claus O. Wilke*

September 28, 2016

Contents

List of Figures

S1	Summary GO annotations	4
S2	Significantly altered KEGG pathways for mRNA samples in exponential phase tested for	
	glycerol against glucose	5
S3	Significantly altered KEGG pathways for mRNA samples in exponential phase tested for	
	against glucose	6
S4	Significantly altered KEGG pathways for mRNA samples in exponential phase tested for	
	lactate against glucose	7
S5	Significantly altered KEGG pathways for protein samples in exponential phase tested for	
	gluconate against glucose	8
S6	Significantly altered KEGG pathways for protein samples in exponential phase tested for	
	lactate against glucose	9
S7	Significantly altered KEGG pathways for protein samples in stationary phase tested for	
	glycerol against glucose	10
S8	Significantly altered KEGG pathways for protein samples in stationary phase tested for	
	gluconate against glucose	11
S9	Significantly altered KEGG pathways for protein samples in stationary phase tested for	
	lactate against glucose	12
S10	Significantly altered KEGG pathways for mRNA samples in exponential phase tested for	
	low Mg^{+2} levels against base Mg^{+2}	13
S11	Significantly altered KEGG pathways for mRNA samples in exponential phase tested for	
	high Mg^{+2} against base Mg^{+2}	14
S12	Significantly altered KEGG pathways for protein samples in exponential phase tested for	
	high Mg^{+2} against base Mg^{+2}	15
S13	Significantly altered KEGG pathways for mRNA samples in stationary phase tested for	
	high Mg^{+2} against base Mg^{+2}	16
S14	Significantly altered KEGG pathways for mRNA samples in exponential phase tested for	
	high Na^{+1} against base Na^{+1}	17
S15	Significantly altered KEGG pathways for protein samples in exponential phase tested for	
	high Na^{+1} against base Na^{+1}	18
S16	Significantly altered KEGG pathways for mRNA samples in stationary phase tested for	
	high Na^{+1} against base Na^{+1}	19
S17	Significantly altered KEGG pathways for protein samples in stationary phase tested for	
	high Na^{+1} against base Na^{+1}	20
S18	Significantly altered GO annotations associated with molecular functions for mRNA sam-	
	ples in exponential phase tested for glycerol against glucose	21
S19	Significantly altered GO annotations associated with molecular functions for mRNA sam-	
	ples in exponential phase tested for lactate against glucose	22
S20	Significantly altered GO annotations associated with molecular functions for mRNA sam-	
	ples in exponential phase tested for low Mg^{+2} against base Mg^{+2}	23
S21	Significantly altered GO annotations associated with molecular functions for protein sam-	
	ples in exponential phase tested for high Na^{+1} against base Na^{+1}	24
S22	Significantly altered GO annotations associated with molecular functions for protein sam-	
	ples in stationary phase tested for high Na ⁺¹ against base Na ⁺¹	25

List of Tables

Supplementary Figures

Α	mRNA	Protein	
	structural constituent of ribosome structural molecule activity		lowMg
			highMg
		structural constituent of ribosome structural molecule activity	highNa
	structural constituent of ribosome structural molecule activity		glycerol
			gluconate
	structural constituent of ribosome structural molecule activity		lactate
В	mRNA	Protein	lowMg
В	mRNA	Protein	lowMg highMg
В	mRNA	Protein 1. structural constituent of ribosome 2. structural molecule activity	
В	mRNA	structural constituent of ribosome	highMg
В	mRNA	structural constituent of ribosome	highMg highNa

Figure S1: Significantly differentially expressed Molecular Functions generated by GO annotations. For each condition, we show the top-5 differentially expressed MF as determined by either mRNA or protein abundances. (A) exponential phase. (B) stationary phase.

Figure S2: Significantly differentially expressed KEGG pathways and associated genes with glycerol as carbon source in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. In figure we show up to 10 most significantly changed pathways and for each pathway we show up to 15 of the most significantly changing genes.

Figure S3: Significantly differentially expressed KEGG pathways and associated genes with gluconate as carbon source in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. In figure we show up to 10 most significantly changed pathways and for each pathway we show up to 15 of the most significantly changing genes.

Figure S4: Significantly differentially expressed KEGG pathways and associated genes with lactate as carbon source in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. In figure we show up to 10 most significantly changed pathways and for each pathway we show up to 15 of the most significantly changing genes.

Figure S5: Significantly differentially expressed KEGG pathways and associated genes with gluconate as carbon source in exponential phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. In figure we show up to 10 most significantly changed pathways and for each pathway we show up to 15 of the most significantly changing genes.

Figure S6: Significantly differentially expressed KEGG pathways and associated genes with lactate as carbon source in exponential phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. In figure we show up to 10 most significantly changed pathways and for each pathway we show up to 15 of the most significantly changing genes.

Figure S7: Significantly differentially expressed KEGG pathways and associated genes with glycerol as carbon source in stationary phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. In figure we show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S8: Significantly differentially expressed KEGG pathways and associated genes with gluconate as carbon source in stationary phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S9: Significantly differentially expressed KEGG pathways and associated genes with lactate as carbon source in stationary phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S10: Significantly differentially expressed KEGG pathways and associated genes with low $\mathrm{Mg^{+2}}$ levels in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S11: Significantly differentially expressed KEGG pathways and associated genes with high $\mathrm{Mg^{+2}}$ levels in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S12: Significantly differentially expressed KEGG pathways and associated genes with high $\mathrm{Mg^{+2}}$ levels in exponential phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S13: Significantly differentially expressed KEGG pathways and associated genes with high $\mathrm{Mg^{+2}}$ levels in stationary phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S14: Significantly differentially expressed KEGG pathways and associated genes with high $\mathrm{Na^{+1}}$ levels in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S15: Significantly differentially expressed KEGG pathways and associated genes with high Na⁺¹ levels in exponential phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S16: Significantly differentially expressed KEGG pathways and associated genes with high $\mathrm{Na^{+1}}$ levels in stationary phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S17: Significantly differentially expressed KEGG pathways and associated genes with high Na⁺¹ levels in stationary phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S18: Significantly differentially expressed GO annotations related with molecular functions and associated genes with glycerol as carbon source in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S19: Significantly differentially expressed GO annotations related with molecular functions and associated genes with lactate as carbon source in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S20: Significantly differentially expressed GO annotations related with molecular functions and associated genes with low Mg^{+2} levels in exponential phase, as determined by mRNA abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S21: Significantly differentially expressed GO annotations related with molecular functions and associated genes with high Na⁺¹ levels in exponential phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.

Figure S22: Significantly differentially expressed GO annotations related with molecular functions and associated genes with high Na⁺¹ levels in stationary phase, as determined by protein abundances. The top differentially expressed KEGG pathways are shown along the y axis, and the relative fold change of the corresponding genes is shown along the x axis. We show up to 10 most significantly changed pathways and for each pathway, we show up to 15 of the most significantly changing genes.