離散最適化基礎論 第 4 回 クラスタリング (1): k-センター

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2017年11月10日

最終更新: 2017年11月10日 11:38

主題

離散最適化のトピックの1つとして<mark>幾何的被覆問題</mark>を取り上げ、 その<mark>数理</mark>的側面と計算的側面の双方を意識して講義する

なぜ講義で取り扱う?

- ▶ 「離散最適化」と「計算幾何学」の接点として重要な役割を 果たしているから
- ▶ 様々なアルゴリズム設計技法・解析技法を紹介できるから
- ▶ 応用が多いから

スケジュール 前半 (予定)

1 幾何的被覆問題とは?	(10/6)
★ 国内出張のため休み	(10/13)
2 最小包囲円問題 (1):基本的な性質	(10/20)
3 最小包囲円問題 (2): 乱択アルゴリズム	(10/27)
★ 文化の日のため休み	(11/3)
4 クラスタリング (1): k-センター	(11/10)
5 幾何ハイパーグラフ (1): VC 次元	(11/17)
★ 調布祭 のため 休み	(11/24)
$oldsymbol{6}$ 幾何ハイパーグラフ $(2):arepsilon$ ネット	(12/1)

注意:予定の変更もありうる

スケジュール 後半 (予定)

	(10 /0)
7 幾何的被覆問題 (1):線形計画法の利用	(12/8)
8 幾何的被覆問題 (2):シフト法	(12/15)
g 幾何的被覆問題 (3):局所探索法	(12/22)
🔟 幾何的被覆問題 (4):局所探索法の解析	(1/5)
⋆ センター試験準備 のため 休み	(1/12)
💵 幾何ハイパーグラフ (3) : $arepsilon$ ネット定理の証明	(1/19)
$leve{1}$ 幾何アレンジメント (1) :合併複雑度と $arepsilon$ ネット	(1/26)
○ 幾何アレンジメント (2):合併複雑度の例	(2/2)
14 最近のトピック	(2/9)
15 期末試験	(2/16?)

注意:予定の変更もありうる

クラスタリング

- ▶ クラスタリング:様々な最適化モデル
 - ▶ k-センター, k-メディアン, k-ミーンズ
- ▶ k-センター:近似アルゴリズム
- ▶ k-センター:近似アルゴリズムの限界

復習:連続型単位円被覆問題

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

出力

▶ 単位円の集合 \mathcal{D}' で次を満たすもの (\mathcal{D}' が P を被覆する) 任意の $p \in P$ に対して、ある $D \in \mathcal{D}'$ が存在して、 $p \in D$

目的

▶ |D'| の最小化

復習:連続型単位円被覆問題

連続型単位円被覆問題 (continuous unit disk cover problem)

入力

ightharpoonup 平面上の点集合 $P = \{p_1, p_2, \dots, p_n\}$

出力

▶ 単位円の集合 \mathcal{D}' で次を満たすもの (\mathcal{D}' が P を被覆する) 任意の $p \in P$ に対して、ある $D \in \mathcal{D}'$ が存在して、 $p \in D$

目的

▶ |𝒯'| の最小化

単位円ではなく、異なる半径の円を用いると?

用いる円の半径を大きくすると, より少ない円で十分かもしれない (多くなることはない)

単位円ではなく、異なる半径の円を用いると?

用いる円の半径を大きくすると, より少ない円で十分かもしれない (多くなることはない)

半径を大きくすると、被覆に用いる円の最小数は単調非増加

半径と最適な円の数の関係 (2)

単位円被覆問題:半径を1としたとき,円の最小数を問う

k-センター問題: 円の数をkとしたとき, 最小半径を問う

半径と最適な円の数の関係 (3)

1-センター問題 = 最小包囲円問題

復習:最小包囲円問題

最小包囲円問題

平面上にいくつか点が与えられたとき それらをすべて含む円の中で面積が最小のものを求めよ

注意:円に対しては、面積の最小化 ⇔ 半径の最小化

● クラスタリング:様々なモデル

② k-センター問題:近似アルゴリズム

③ k-センター問題:近似アルゴリズムの限界

4 今日のまとめ

クラスタリング:設定

クラスタリングの設定

- ▶ X: データがとられる集合 (母集団)
- S⊆X:とられたデータ (標本) の集合
- ▶ 各要素 x, y の非類似度 d(x, y) が定められている

クラスタリングの目標

- ▶ ある規準に基づいて、点をいくつか選ぶ
- → 「規準」によって,異なる名称が用いられる

クラスタリング: 先ほどの設定

- $X = \mathbb{R}^2$, $S \subseteq X$
- ▶ 非類似度 d:ユークリッド距離 (直線距離)
- ▶ 規準:k 個の点 $c_1, \ldots, c_k \in X$ を選んで、次の量の最小化

$$\max_{x \in S} \min_{i=1,\dots,k} d(c_i, x)$$

クラスタリング: 先ほどの設定

- $X = \mathbb{R}^2$, $S \subseteq X$
- ▶ 非類似度 d:ユークリッド距離 (直線距離)
- ▶ 規準:k 個の点 $c_1, \ldots, c_k \in X$ を選んで、次の量の最小化

$$\max_{x \in S} \min_{i=1,\dots,k} d(c_i, x)$$

クラスタリング:様々な最適化モデル (1)

規準によって、様々な最適化モデルが得られる

規準:k 個の要素 $c_1,\ldots,c_k\in X$ を選んで,次の量の最小化

$$\max_{x \in S} \min_{i=1,...,k} d(c_i,x)$$
 連続型 k -センター問題

$$\sum_{x \in S} \min_{i=1,...,k} d(c_i,x)$$
 連続型 k -メディアン問題

$$\sum_{x \in S} \min_{i=1,\dots,k} d(c_i,x)^2$$
 連続型 k -ミーンズ問題

「k」ではなく「p」を使うことも多い

クラスタリング:様々な最適化モデル (2)

規準によって、様々な最適化モデルが得られる

規準:k個の要素 $c_1,\ldots,c_k\in S$ を選んで、次の量の最小化

$$\max_{x \in S} \min_{i=1,...,k} d(c_i, x)$$

離散型 *k*-センター問題

$$\sum_{x \in S} \min_{i=1,\dots,k} d(c_i, x)$$

離散型 *k*-メディアン問題

$$\sum_{x \in S} \min_{i=1,\dots,k} d(c_i, x)^2$$

離散型 *k-*ミーンズ問題

「k」ではなく「p」を使うことも多い

非類似度について

非類似度 $d: X^2 \to \mathbb{R}$ は次の性質を満たすものとする

- 1 任意の $x,y \in X$ に対して, $d(x,y) \ge 0$
- ② 任意の $x, y \in X$ に対して, $d(x, y) = 0 \Leftrightarrow x = y$
- ③ 任意の $x,y \in X$ に対して,d(x,y) = d(y,x) (対称性)
- 4 任意の $x,y,z\in X$ に対して, $d(x,y)\leq d(x,z)+d(z,y)$ (三角不等式)

これら4つの性質を持つ関数は距離 (metric) と呼ばれる

連続型 1-センター問題の最適解 → 外接円 (最小包囲円)

•

連続型 1-センター問題の最適解 → 外接円 (最小包囲円)

連続型 1-メディアン問題の最適解 → フェルマー点 (トリチェリ点)

連続型 1-ミーンズ問題の最適解 → 重心

比較

● クラスタリング:様々なモデル

② k-センター問題:近似アルゴリズム

③ k-センター問題:近似アルゴリズムの限界

4 今日のまとめ

k-センター問題に対する近似アルゴリズム

ここからの目標

離散型 k-センター問題に対する近似アルゴリズムを設計すること

ここで与えるアルゴリズムは 連続型 *k-*センター問題に対しても近似アルゴリズムとなる

知られていること

離散型 k-センター問題は NP 困難 (ユークリッド平面上の問題でも)

復習:近似アルゴリズム

 $\alpha \geq 1$ とする

定義: α 近似解

最小化問題に対する α 近似解とは、その問題に対する解 X で

最適値 \leq X に対する目的関数値 \leq $\alpha \cdot$ 最適値

を満たすもののこと (この α のことを近似比と呼ぶことがある)

定義: α 近似アルゴリズム

最小化問題に対する α 近似アルゴリズムとは、必ず α 近似解を出力するアルゴリズムのこと

アイディア

 α 近似解がよい近似 \iff α が小さい

つまり、 α が小さい近似アルゴリズムを設計することが目的

アルゴリズム (1)

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ はじめは、任意の要素を選択する

k = 4 のときの例

アルゴリズム (1)

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ はじめは、任意の要素を選択する

k = 4 のときの例

•

_

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ 2個目からは、今まで選択した要素から最も遠い S の要素を選択する

k = 4 のときの例

•

.

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ 2個目からは、今まで選択した要素から最も遠い S の要素を選択する

k = 4 のときの例

,

_

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ 2個目からは、今まで選択した要素から最も遠い S の要素を選択する

k = 4 のときの例

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ 2個目からは、今まで選択した要素から最も遠い S の要素を選択する

k = 4 のときの例

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ 2個目からは、今まで選択した要素から最も遠い S の要素を選択する

k = 4 のときの例

アルゴリズム (2)

離散型 k-センター問題に対する近似アルゴリズム

k 個の要素を選択するまで、以下を繰り返す

▶ 2個目からは、今まで選択した要素から最も遠い S の要素を選択する

k = 4 のときの例

アルゴリズム (3)

離散型 k-センター問題に対する近似アルゴリズム

つまり、 c_1, \ldots, c_{i-1} まで選択したとき、 c_i は次のように選択する

lacktriangle c_i は $\min_{j=1,...,i-1} d(x,c_j)$ を最大化する $x\in S$

k = 4 のときの例

アルゴリズム:まとめ

入力 *S*, *k*

- (1) *S* の任意の点を選び, *c*₁ とする
- (2) i = 2, ..., k に対して,以下を繰り返す
- (2-1) $\min_{j=1,\ldots,i-1} d(x,c_j)$ を最大化する $x \in S$ を c_i とする
 - (3) $r = \max_{x \in S} \min_{i=1,...,k} d(x, c_i)$ とする
 - (4) クラスタの中心を c_1, \ldots, c_k , クラスタ半径を r として終了

O(k|S|) 時間で動作するように実装できる (それほど難しくない)

アルゴリズムの解析 (1)

定理:アルゴリズムの近似比

このアルゴリズムは必ず2近似解を出力する

証明:

- ▶ アルゴリズムの出力する要素を $c_1, c_2, ..., c_k$ として、 得られる半径を r とする
- ▶ 最適解において選択された要素を $c_1^*, c_2^*, \dots, c_k^*$ として、 最適解の半径を r^* とする
- ▶ 半径 r が要素 $x \in S$ と $c_i \in S$ によって達成されるとする すなわち, $d(x, c_i) = r$

アルゴリズムの解析 (1)

定理:アルゴリズムの近似比

このアルゴリズムは必ず2近似解を出力する

証明:

- ▶ アルゴリズムの出力する要素を $c_1, c_2, ..., c_k$ として、 得られる半径を r とする
- ▶ 最適解において選択された要素を $c_1^*, c_2^*, \dots, c_k^*$ として、 最適解の半径を r^* とする
- ▶ 半径 r が要素 $x \in S$ と $c_i \in S$ によって達成されるとする すなわち, $d(x, c_i) = r$

アルゴリズムの解析 (2)

定理:アルゴリズムの近似比

このアルゴリズムは必ず2近似解を出力する

証明 (続):

- ▶ このとき, $C = \{c_1, c_2, ..., c_k, x\}$ とすると, 任意の $c, c' \in C$ に対して, $d(c, c') \ge r$
- ▶ 一方で,|C| = k+1 であるから,ある j に対して, 2つの要素 $c, c' \in C$ が存在して, $d(c, c_i^*) \le r^*$, $d(c', c_i^*) \le r^*$
- ▶ 三角不等式を用いると、 $r \le d(c,c') \le d(c,c_j^*) + d(c',c_j^*) \le 2r^*$

アルゴリズムの解析 (2)

定理:アルゴリズムの近似比

このアルゴリズムは必ず2近似解を出力する

証明 (続):

- ▶ このとき, $C = \{c_1, c_2, \dots, c_k, x\}$ とすると, 任意の $c, c' \in C$ に対して, $d(c, c') \ge r$
- ▶ 一方で,|C| = k+1 であるから,ある j に対して, 2つの要素 $c, c' \in C$ が存在して, $d(c, c_i^*) \le r^*$, $d(c', c_i^*) \le r^*$
- ▶ 三角不等式を用いると、 $r \le d(c,c') \le d(c,c_j^*) + d(c',c_j^*) \le 2r^*$

アルゴリズムの解析 (2)

定理:アルゴリズムの近似比

このアルゴリズムは必ず2近似解を出力する

証明 (続):

- ▶ このとき, $C = \{c_1, c_2, \dots, c_k, x\}$ とすると, 任意の $c, c' \in C$ に対して, $d(c, c') \ge r$
- ▶ 一方で,|C| = k+1 であるから,ある j に対して, 2つの要素 $c, c' \in C$ が存在して, $d(c, c_i^*) \le r^*$, $d(c', c_i^*) \le r^*$
- ▶ 三角不等式を用いると、 $r \le d(c,c') \le d(c,c_j^*) + d(c',c_j^*) \le 2r^*$

● クラスタリング:様々なモデル

② k-センター問題:近似アルゴリズム

③ k-センター問題:近似アルゴリズムの限界

4 今日のまとめ

k-センター問題に対する近似アルゴリズムの限界

「アルゴリズムの限界」ということばの意味

- ▶ 特定のアルゴリズムに対する限界
- ▶ 任意のアルゴリズムに対する限界

ここでは、「特定のアルゴリズムに対する限界」を見る

目標

いま考えたアルゴリズムの近似比が2よりも小さくないことを証明する

<u>証明の方針</u>:アルゴリズムが2よりもよい近似比を持つ解を出力しない ような問題例を構成する

k=1 のとき:

• • •

k=1 のとき:

k=1 のとき:

k=1 のとき:

k=1 のとき:

アルゴリズムの出力 =2, 最適値 ≤ 1

k=2 のとき:

k=2 のとき:

• • • •

アルゴリズムの出力 =2, 最適値 ≤ 1

k=2 のとき:

アルゴリズムの出力
$$=2$$
, 最適値 ≤ 1

 $k \geq 3$ のとき,演習問題

● クラスタリング:様々なモデル

② k-センター問題:近似アルゴリズム

③ k-センター問題:近似アルゴリズムの限界

4 今日のまとめ

クラスタリング

- ▶ クラスタリング:様々な最適化モデル
 - ▶ k-センター, k-メディアン, k-ミーンズ
- ▶ k-センター:近似アルゴリズム
- ▶ k-センター:近似アルゴリズムの限界

k-センター問題に対する近似アルゴリズムは次の論文に基づく

► Teofilo F. Gonzalez, Clustering to Minimize the Maximum Intercluster Distance. Theor. Comput. Sci. **38** 293–306 (1985)

http://www.cs.ucsb.edu/~teo/

k-センター:近似アルゴリズムの限界 — 補足

「アルゴリズムの限界」ということばの意味

- ▶ 特定のアルゴリズムに対する限界
- ▶ 任意のアルゴリズムに対する限界

先ほどは、「特定のアルゴリズムに対する限界」を見た

任意のアルゴリズムに対する限界

 $P \neq NP$ という仮定の下で、任意の $\epsilon > 0$ に対して

- ightharpoonup 多項式時間 $(2-\epsilon)$ 近似アルゴリズムは存在しない (Gonzalez '85)
- ▶ ユークリッド平面上に限っても, 多項式時間 1.822 近似アルゴリズムは存在しない (Feder, Greene '88)

未解決問題

ユークリッド平面上の k-センター問題に対して 2 よりよい近似比を達成する多項式時間アルゴリズムはあるか?

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

● クラスタリング:様々なモデル

② k-センター問題:近似アルゴリズム

③ k-センター問題:近似アルゴリズムの限界

4 今日のまとめ