Пример.
$$\langle a,b \rangle$$
 $f:\langle a,b \rangle \to \mathbb{R}$

 $\forall n \in \mathbb{N} \, x^n$ — непрерывно

Любой многочлен непрерывен, выражение вида

$$\frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_0}$$

тоже непрерывно на области определения.

Теорема 1. О непрерывности композиции
$$f:D\subset X\to Y$$
 $g:E\subset Y\to Z$ $f(D)\subset E$ f — непр. в $x_0\in D$, g — непр. в $f(x_0)$ Тогда $g\circ f$ непр. в x_0

Proof. По Гейне.

Проверяем, что
$$\forall (x_n): x_n \in D, x_n \to x_0 \quad g(f(x_n)) \stackrel{?}{\to} g(f(x_0))$$
 $y_n := f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$ $y_n \in E$ $\Rightarrow g(y_n) \to g(y_0)$

Примечание.
$$f(x) = x \sin \frac{1}{x}$$

раженана:
$$f(x) = x \sin x$$
 $g(x) = |sign(x)|$
 $x \to 0 \ f(x) \to 0$
 $y \to 0 \ g(y) \to 1$
 $x \to 0 \ g(f(x)) \to 1?$ — неверно
Ho: $x_n = \frac{1}{\pi n} \to 0 \ f(x_n) = 0 \ g(f(x_n)) \to 0$

Теорема 2. О пределе композиции

$$f:D\subset X o Y$$
 $g:E\subset Y o Z$ $f(D)\subset E$ $a-$ предельн. точка D $f(x) \overset{}{\longrightarrow} A$ $A-$ предельн. точка E $g(y) \overset{}{\longrightarrow} B$ $\exists V(a) \ \ \forall x\in \dot{V}(a)\cap D \ \ f(x)
eq A \ \ (*)$ Тогда $g(f(x)) \overset{}{\longrightarrow} B$

Proof. По Гейне.

Проверяем, что
$$\forall (x_n): \substack{x_n \in D \\ x_n \to a \\ x_n \neq a}} g(f(x_n)) \xrightarrow{?} B$$
 $y_n := f(x_n) \xrightarrow[n \to +\infty]{} A$ $y_n \in E$ При больших N $y_n \in V(a) \Rightarrow y_n \neq A$ $\Rightarrow g(y_n) \to B$

Примечание. Вместо (*) можно рассмотреть условие $A \in E - g$ — непр. в A.

Теорема 3. Топологическое определение непрерывности

$$f:X o Y$$
 — непр. на $X\Leftrightarrow \forall G\subset Y$, откр. $f^{-1}(G)$ — откр. в X .

Proof. "
$$\Rightarrow$$
" $x_0 \in f^{-1}(G)$? $\exists V(x_0) \subset f^{-1}(G)$ f — непр. в x_0 $\forall U(f(x_0))$ $W(x_0)$ $\forall x \in W$ $f(x) \in U$ $f(x_0) \in G$ — откр. $\Rightarrow \exists U_1(f(x_0)) \subset G$ Для U_1 $\exists W(x_0) : x \in W$ $f(x) \in U_1 \subset G$

M3137y2019 November 25, 2019

$$W(x_0)\subset f^{-1}(G)$$
 " \Leftarrow " $x_0\in X$? непр. f в x_0 $orall U(f(x_0))$ $\exists W(x_0)$ $\forall x\in W$ $\forall f(x)\in U$ — надо проверить $U(f(x_0))$ — откр. $\Rightarrow f^{-1}(U(f(x_0)))$ — откр., а $x_0\in f^{-1}(U(f(x_0)))$, значит $\exists W(x_0)\subset f^{-1}(U(f(x_0)))$ Для любого $x\in W(x_0)$ будет выполняться $f(x)\in U(f(x_0))$ \square Примечание. $f:[0,2]\to\mathbb{R}$ $f(x)=x$ $f^{-1}((1,+\infty))=(1,2]$ — открыто в $[0,2]$

Теорема 4. Вейерштрасса о непрерывном образе компакта. $f: X \to Y$ — непр. на X Eсли X — комп., то f(X) — комп.

Пемма 1. $A \subset \mathbb{R}, A$ — ограничено и замкнуто $\Rightarrow \sup A \in A$

Proof. По техническому описанию
$$\sup A$$
 если $\sup A \notin A \Rightarrow \sup A$ — предельная точка A . Для $\varepsilon = \frac{1}{n} \quad \exists x_n \in A : \sup A - \frac{1}{n} < x_n \leq \sup A$, т.е. $x_n \to \sup A$

Proof.
$$?f(X)$$
 — комп.

$$f(X)\subset\bigcup G_{\alpha}$$
 G_{α} – откр. в Y . $X\subset\bigcup f^{-1}(G_{\alpha})$ – откр. т.к. f – непр. $\xrightarrow[X-\text{ комп.}]{}$ $\exists \alpha_{1}\dots\alpha_{n}$ $X\subset\bigcup_{i=1}^{n}f^{-1}(G_{\alpha_{i}})$ \Rightarrow

$$f(X) \subset \bigcup_{i=1}^{n} G_{\alpha_i}$$

Следствие. Непрерывный образ компакта замкнут и ограничен.

Следствие. (1-я теорема Вейерштрасса)

$$f:[a,b] o\mathbb{R}$$
 — непр. Тогда f — огр.

Следствие.
$$f:X \to \mathbb{R}$$

$$X$$
 — комп., f — непр. на X

Тогда
$$\exists \max_{X} f, \min_{X} f$$

$$\exists x_0, x_1 : \forall x \in X \quad f(x_0) \le f(x) \le f(x_1)$$

Следствие. $f:[a,b] \to \mathbb{R}$ — непр.

 $\exists \max f, \min f$

1 О-символика

Определение.
$$f,g:D\subset X\to\mathbb{R}$$
 x_0 — пр. точка D Если $\exists V(x_0)\ \exists \varphi:V(x_0)\cap D\to\mathbb{R}$ $f(x)=g(x)\varphi(x)$ при $x\in V(x_0)\cap D$

- 1. φ ограничена. Тогда говорят f=O(g) при $x\to x_0$ "f ограничена по сравнению с g при $x\to x_0$ "
- 2. $\varphi(x) \xrightarrow[x \to x_0]{} 0$ f беск. малая по отношению к g при $x \to x_0$, f = o(g)
- 3. $\varphi(x) \xrightarrow[x \to x_0]{} 1$ f и g экв. при $x \to x_0$ $f \underset{x \to x_0}{\sim} g$

M3137y2019

$$q, f: D \subset X \to \mathbb{R}$$

Определение. $\exists c > 0 \ \, \forall x \in D \ \, f = O(g) \ \, |f(x)| < c|g(x)| - f$ ограничена по сравнению с g на множестве D.

Определение. В условиях прошлых определений $f = O(g), g = O(f) \Leftrightarrow f \asymp g$ – асимптотически сравнимы на множестве D, "величины одного порядка".

Примечание. Первое определение $\Leftrightarrow f = O(g)$ на $V(x_0) \cap D$ в смысле второго определения $\Leftrightarrow \frac{f}{g}$ — orp. на $V(x_0) \cap D$ (если $g \neq 0$)

Второе определение $\Longleftrightarrow_{g \neq 0} rac{f}{g} \to 0$

Третье определение $\frac{\widetilde{f}}{g} \to 1$ (если $g \neq 0$)

Следствие. 1. $f \sim g, x \to x_0 \Leftrightarrow f = g + o(g), x \to x_0 \Leftrightarrow f = g + o(f), x \to x_0$

Proof.

$$\frac{f}{g} \to 1, x \to x_0$$

$$\frac{f(x)}{g(x)} = 1 + \alpha(x)$$

$$\alpha(x) \xrightarrow[x \to 0]{} 0$$

$$f(x) = g(x) + \alpha(x)g(x) = g(x) + o(x)$$

Аналогично для $\frac{g}{f} = 1$.

2.
$$f = o(g) \Rightarrow f = O(g)$$

Proof.
$$f(x) = \alpha(x)g(x)$$
 $\alpha(x) = 0 \Rightarrow \alpha(x) - \text{orp.}$

3.
$$\alpha \neq 0$$
 $f \underset{x \to x_0}{\sim} \alpha g$. Тогда $f \asymp g, x \to x_0$

Proof.

$$\varepsilon := \frac{\alpha}{2} \quad \exists V(x_0) \quad \forall x \in V(x_0) \cap D \quad \frac{\alpha}{2} < \frac{f(x)}{g(x)} < \frac{3}{2}\alpha$$

Пример. 1.

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1 \quad \sin x = x + o(x), x \to 0$$

2.

$$\frac{1 - \cos x}{x^2} \xrightarrow[x \to 0]{} \frac{1}{2} \quad \cos x = 1 - \frac{x^2}{2} + o(x^2)$$
$$\frac{1 - \cos x}{x^2} = \frac{1}{2} + o(\frac{1}{2}), x \to 0$$
$$\cos x = 1 - \frac{1}{2}x^2 + x^2o(\frac{1}{2})$$

M3137y2019

$$\frac{e^x - 1}{x} \xrightarrow[x \to 0]{} 1 \quad e^x = 1 + x + o(x)$$

4.

$$\frac{\ln(1+x)}{x} \xrightarrow[x\to 0]{} 1 \quad \ln(1+x) = x + o(x)$$

5.

$$(1+x)^{\alpha} = 1 + \alpha o(x), x \to 0$$

Пример. Таблица эквивалентных для $x \to 0$:

$$\sin x \sim x$$

$$\sinh x \sim x$$

$$\tan x \sim x$$

$$\arctan x \sim x$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$\cosh x - 1 \sim \frac{x^2}{2}$$

$$e^x - 1 \sim x$$

$$\ln(1+x) \sim x$$

$$(1+x)^{\alpha} - 1 \sim \alpha x$$

$$a^x - 1 \sim x \ln a$$

Теорема 5. $f, \tilde{f}, g, \tilde{g}: D \subset X \to \mathbb{R}$ x_0- предельная точка D $f \sim \tilde{f}, g \sim \tilde{g}$ при $x \to x_0$ Тогда

$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} \tilde{f}(x)\tilde{g}(x)$$

, т.е. если \exists один из пределов, то \exists и второй и имеет место равенство

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\tilde{f}(x)}{\tilde{g}(x)}$$

, если x_0 лежит в области определения $rac{f}{g}$

Proof.

$$f(x)g(x) = \tilde{f}(x)\tilde{g}(x)\frac{f}{\tilde{f}}\frac{g}{\tilde{g}} \to \tilde{f}(x)\tilde{g}(x)\cdot 1\cdot 1$$

Примечание. В условиях теоремы $\lim_{x \to x_0} f + g \neq \lim_{x \to x_0} (\tilde{f} + \tilde{g})$

M3137y2019

1.1 Асимптотическое разложение

Определение.
$$g_n:D\subset X\to\mathbb{R}$$
 x_0 — пред. точка D

$$\forall n \quad g_{n+1}(x) = o(g_n), x \to x_0$$

Пример. $g_n(x) = x^n, n = 0, 1, 2 \dots x \to 0$ $g_{n+1} = xg_n, x \to 0$

 (g_n) называется шкала асимптотического разложения.

$$f:D\to\mathbb{R}$$

Если $f(x) = c_0 g_0(x) + c_1 g_1(x) + \ldots + c_n g_n(x) + o(g_n)$, то это асимптотическое разложение f по шкале (g_n)

Теорема 6. О единственности асимптотического разложения

$$f,g_n:D\subset X o\mathbb{R}$$
 x_0 — предельная точка D $orall n\ g_{n+1}=o(g_n),x o x_0$ $\exists U(x_0)\ orall x\in \dot{U}(x_0)\cap D\ orall i\ g_i(x)\neq 0$

Если
$$f(x) = c_0 g_0(x) + \ldots + c_n g_n(x) + o(g_n(x))$$

 $f(x) = d_0 g_0(x) + \ldots + d_m g_m(x) + o(g_m(x))$

$$|n \leq m|$$

Тогда $\forall i \ c_i = d_i$

Proof. $k := min\{i : c_i \neq d_i\}$

$$f(x) = c_0 g_0 + \ldots + c_{k-1} g_{k-1} + c_k g_k + o(g_k)$$

$$f(x) = c_0 g_0 + \ldots + c_{k-1} g_{k-1} + d_k g_k + o(g_k)$$

$$0 = (c_k - d_k)g_k + o(g_k)$$

$$d_k - c_k = \frac{o(g_k)}{g_k(x)} \xrightarrow[x \to x_0]{} 0$$

Пример. Пусть $f(x) = Ax + B + o(1), x \to +\infty$

Прямая y = Ax + B — наклонная асимптота к графику f при $x \to +\infty$