# UofT-MAT257-2014 Note

hysw, etc(will add later)...

## January 17, 2015

| C        | ontents                                   |    | 9.6 Properties of integral                                       |
|----------|-------------------------------------------|----|------------------------------------------------------------------|
| 1        | KW                                        | 2  | 9.7 Properties of rectifiable set 10                             |
|          |                                           |    | 10 Change of Variables                                           |
| 2        | TODO                                      | 2  | 11 Manifolds 1:                                                  |
| 3        | Basic knowledge                           | 3  |                                                                  |
|          | 3.1 Abbreviations                         | 3  | 12 Lecture Notes 13                                              |
|          | 3.2 Multi-index Notation                  | 3  | 12.1 2015-01-05 Monday                                           |
| 4        | Linear Algebra                            | 4  | 12.1.2 Open Sets 13                                              |
|          | 4.1 Definitions                           | 4  | 12.2 2015-01-07 Wednesday                                        |
| <b>5</b> | Topology                                  | 5  | 12.3.1 Existence of the Integral 13                              |
|          | 5.1 Definitions                           | 5  | 12.3.2 Evaluation of the Integral 14                             |
|          | 5.2 Partition of unity                    | 5  | 12.3.3 Integral Over a Bounded Set 14<br>12.3.4 Rectifiable Sets |
| 6        | Measure Theory                            | 6  | 12.5.4 Rectifiable Sets                                          |
|          | 6.1 Measure zero                          | 6  |                                                                  |
|          | 6.2 Theorems                              | 6  |                                                                  |
| 7        | General Calculus                          | 7  |                                                                  |
|          | 7.1 Definitions                           | 7  |                                                                  |
|          | 7.2 Extreme Value Theorem                 | 7  |                                                                  |
|          | 7.3 Intermediate Value Theorem            | 7  |                                                                  |
|          | 7.4 Mean Value Theorem                    | 7  |                                                                  |
| 8        | Differential Calculus                     | 8  |                                                                  |
|          | 8.1 Definitions                           | 8  |                                                                  |
|          | 8.2 Notations                             | 8  |                                                                  |
|          | 8.3 Differentiability Theorems            | 8  |                                                                  |
|          | 8.4 Continuously Differentiable Functions | 8  |                                                                  |
|          | 8.5 Chain Rule                            | 8  |                                                                  |
|          | 8.6 Inverse Function Theorem              | 8  |                                                                  |
|          | 8.7 Implicit Function Theorem             | 9  |                                                                  |
|          | 8.8 Taylor's theorem                      | 9  |                                                                  |
| 9        | Integral Calculus                         | 10 |                                                                  |
|          | 9.1 Definitions                           | 10 |                                                                  |
|          | 9.2 Riemann condition                     | 10 |                                                                  |
|          | 9.3 Riemann-Lebesgue theorem              | 10 |                                                                  |
|          | 9.4 Fundamental theorem of Calculus       | 10 |                                                                  |
|          | 9.5 Fubini's theorem                      | 10 |                                                                  |

Page 2 2 TODO

## 1 KW

Euclidean n-space  $\mathbb{R}^n$ , norm, inner product, usual basis, distance, closed rectangle, open rectangle, open, closed, interior, exterior, boundary, open cover, compact(etc...), Heine-Borel Theorem, function, composition, component function, projection function  $\pi^i$ , continuous function, continuous & compact, oscillation, Jacobian matrix, chain rule, partial derivative, continuously differentiable, inverse functions, implicit functions,

## 2 TODO

Munkers 11.3, 13.\*, 14.3, 14.4, 15.\*

## 3 Basic knowledge

Note, this section is for something that does not fit anywhere

## 3.1 Abbreviations

cts Continuous

msr Measure

## 3.2 Multi-index Notation

- $\alpha = (\alpha_1, \dots, \alpha_n)$
- $|\alpha| = \alpha_1 + \dots + \alpha_n$
- $\alpha! = \alpha_1! \cdots \alpha_n!$
- $\bullet \ x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$
- $\partial^{\alpha} f = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_n^{\alpha_n} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}}$

Page 4 4 LINEAR ALGEBRA

## 4 Linear Algebra

## 4.1 Definitions

**norm** A function  $p: V \to \mathbb{R}$  such that

For all  $a \in F$  and all  $u, v \in V$ 

- $p(v) \ge 0 \land [p(v) = 0 \iff v = 0]$  (separates points)
- p(av) = |a|p(v) (absolute homogeneity)
- $p(u+v) \le p(u) + p(v)$  (triangle inequality)

inner product A function  $\langle x,y \rangle: V \times V \to \mathbb{R}$  such that

For all  $x, y, z \in V$  and  $c \in \mathbb{F}$ .

- $\bullet \ \langle x, y \rangle = \langle y, x \rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle cx, y \rangle = c \langle x, y \rangle = \langle x, cy \rangle$
- $\langle x, x \rangle > 0$  if  $x \neq 0$

Page 5 5 TOPOLOGY

## 5 Topology

### 5.1 Definitions

**metric** A function  $d: X \times X \to \mathbb{R}$  such that For all  $x, y, z \in X$ 

- $d(x,y) \geq 0$
- $d(x,y) = 0 \iff x = y$
- d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$

 $\epsilon$ -neighborhood  $\mathbf{U}(x;\epsilon) = \{y | d(x,y) < \epsilon\}$ 

open set in metric space A set  $U \subseteq X$  is said to be open in X if  $\forall x \in U \exists \epsilon > 0[\mathbf{U}(x;\epsilon) \subseteq U]$  note that finite intersections and arbitrary unions of open set are open set

**closed set in metric space** A set contains all its limit point.

note that closed set is complement of open set in topology

## 5.2 Partition of unity

TODO

## 6 Measure Theory

### 6.1 Measure zero

Let  $A \subseteq \mathbb{R}^n$ . We say A has <u>measure zero</u> in  $\mathbb{R}^n$  if for every  $\epsilon > 0$ , there is a covering  $Q_1, Q_2, \ldots$  of A by countably many rectangles such that  $\sum_{i=1}^{\infty} v(Q_i) < \epsilon$ . If this inequality holds, we often say that the <u>total volume</u> of the rectangles  $Q_1, Q_2, \ldots$  is less than  $\epsilon$ .

## 6.2 Theorems

 $\{Munkers-11.1\}$ 

- 1. If  $B \subseteq A$  and A has measure zero in  $\mathbb{R}^n$ , the so does B.
- 2. Let A be the union of the collection of sets  $A_1, A_2, \ldots$  If each  $A_i$  has measure zero, so does A.
- 3. A set A has measure zero in  $\mathbb{R}^n$  if and only i

## 7 General Calculus

### 7.1 Definitions

#### oscillation

Given  $a \in Q$  define  $A_{\delta} = \{f(x)|x \in Q \land |x-a| < \delta\}$ . Let  $M_{\delta}(f) = \sup A_{\delta}$ , and let  $m_{\delta}(f) = \inf A_{\delta}$ , define oscillation at f by  $\operatorname{osc}(f;a) = \inf_{\delta>0}[M_{\delta}(f) - m_{\delta}(f)]$ . f is cts at a iff  $\operatorname{osc}(f;a) = 0$ 

### 7.2 Extreme Value Theorem

Suppose  $f: X \to \mathbb{R}$  is continuous and X is compact, then  $\exists x_0 \in X$  such that  $\forall x \in X. f(x) \leq f(x_0)$ .

### 7.3 Intermediate Value Theorem

Suppose  $E \in \mathbb{R}$  is connected and  $f: E \to \mathbb{R}$  is continuous.

Suppose f(x) = a and f(y) = b for some  $x, y \in E$  and a < b.

Then  $\forall a < c < b \exists$  some  $z \in E$  such that f(z) = c.

#### 7.4 Mean Value Theorem

Suppose  $\phi: [a, b] \to \mathbb{R}$  is

- continuous at each point of **closed** interval [a, b]
- differentiable at each point of **open** interval (a, b)

Then there exists a point  $c \in (a, b)$  such that  $\phi(b) - \phi(a) = \phi'(c)(b - a)$ .

## 8 Differential Calculus

### 8.1 Definitions

**differentiable** f is differentiable at a if there is an n by m matrix B such that

$$\frac{f(a+h) - f(a) - B \cdot h}{|h|} \to 0 \quad \text{as} \quad h \to 0$$

The matrix B is unique.

**Directional derivative** Given  $u \in \mathbb{R}^m$  which  $u \neq 0$  define

$$f'(a; u) = \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}$$

Provide the limit exists.

**Partial derivative** Define the  $j^{\text{th}}$  partial derivative of f at a to be the directional derivative of f at a with respect to the vector  $e_j$ , provide derivative exists.

$$D_j f(a) = \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t}$$

#### 8.2 Notations

Df(a): derivative of f at a

f'(a; u): directional derivative of f at a respect to vector u.

 $D_i f(a) : j^{\text{th}}$  partial derivative of f at a.

 $f_i$ :  $i^{\text{th}}$  component function of f.

 $\nabla g$ : gradient of g,  $\nabla g = \mathbf{grad}g = \sum_i (D_i g)e_i$ 

Jf: Jacobian matrix,  $J_{ij} = D_j f_i(a)$ 

## 8.3 Differentiability Theorems

#### Theorems Munkers.5.1

If f is differentiable at a then all directional derivative of f at a exist and  $f'(a; u) = Df(a) \cdot u$ 

### Theorems Munkers.5.2

If f is differentiable at a then f is continuous at a.

#### Theorems Munkers.5.3

If f is differentiable at a then  $Df(a) = [D_1f(a) \ D_2f(a) \ \cdots \ D_mf(a)].$ 

Theorems Munkers.5.4

- a.  $[f \text{ is differentiable at } a] \Leftrightarrow \forall i [f_i \text{ is differentiable at } a].$
- b. If f is differentiable at a, then its derivative is the n by m matrix whose  $i^{\text{th}}$  row is the derivative of the function  $f_i$ .  $(Df(a))_i = Df_i(a)$

## 8.4 Continuously Differentiable Functions

A function is  $C^1$  if all of its partial derivatives are continous. A function is  $C^r$  if all of its partial derivatives are  $C^{r-1}$ .

#### Munkers 6.1

If  $f:[a,b] \to \mathbb{R}$  is continuous on [a,b] and differentiable on (a,b), then there exists  $c \in (a,b)$  such that f(b) - f(a) = f'(c)(b-a).

#### Munkers 7.3

Let A be open in  $\mathbb{R}^m$ ; let  $f: A \to \mathbb{R}$  be differentiable on A. If A contains the line segment with end points a and a+h, then there is a point c=a+th with 0 < t < 1 of this line segment such that f(a+h) - f(a) = (Df(c))h.

#### Munkers 6.2

Let A be open in  $\mathbb{R}^m$ . Suppose that the partial derivative  $D_i f_i(x)$  of the component function of f exists at each point x of A and are continuous on A. Then f is differentiable at each point of A.

#### Munkers 6.3

Let A be open in  $\mathbb{R}^m$ , let  $f: A \to \mathbb{R}$  be a function of class  $\mathbb{C}^2$ . Then for each  $a \in A$ :  $D_k D_j f(a) = D_j D_k f(a)$ .

#### 8.5 Chain Rule

Let  $A \subset \mathbb{R}^m$ . Let  $B \subset \mathbb{R}^n$ . Let  $f : A \to \mathbb{R}^n$  and  $g : B \to \mathbb{R}^p$ , with  $f(A) \subset B$ . Suppose f(a) = b. If f is differentiable at a and g is differentiable at b, then the composite function  $g \circ f$  is differentiable at a. Furthermore,

$$D(g \circ f)(a) = Dg(b) \cdot Df(a)$$

#### 8.6 Inverse Function Theorem

Let A be open in  $\mathbb{R}^n$ . Let  $f: A \to \mathbb{R}^n$  be of class  $C^r$ .

**IF** Df(x) is invertible at  $a \in A$ .

**THEN** There exists a neighborhood of a such that

- $f|_U$  is injective AND f(U) = V open in  $\mathbb{R}^n$
- the inverse function is of class  $C^r$
- $f^{-1}(y) = [f'(f^{-1}(y))]^{-1}$

## 8.7 Implicit Function Theorem

Suppose  $f: A \to \mathbb{R}^n$  be of class  $C^r$ .

Write f in the form f(x, y), for  $x \in \mathbb{R}^k$  and  $y \in \mathbb{R}^n$ .

**IF**  $(a,b) \in A$  AND f(a,b) = 0 AND  $\det \frac{\partial f}{\partial y}(a,b) \neq 0$ 

**THEN** There exists  $B \in \mathbb{R}^k$ ,  $a \in B$  and a unique  $g : B \to \mathbb{R}^n$  such that g(a) = b AND  $\forall x \in B. f(x, g(x)) = 0$  AND g is  $C^r$ 

### Munkers 9.1

Let A be open in  $\mathbb{R}^{k+n}$ , B be open in  $\mathbb{R}^k$ .

Let  $f: A \to \mathbb{R}^n$ ,  $g: B \to \mathbb{R}^n$  be differentiable.

Write f in the form f(x, y), for  $x \in \mathbb{R}^k$  and  $y \in \mathbb{R}^n$ .

**IF** f(x, g(x)) = 0 AND  $\frac{\partial f}{\partial y}$  is invertible

**THEN**  $Dg(x) = -\left[\frac{\partial f}{\partial y}(x, g(x))\right]^{-1} \cdot \frac{\partial f}{\partial x}(x, g(x))$ 

## 8.8 Taylor's theorem

Suppose  $f: \mathbb{R}^n \to \mathbb{R}$  is of class  $C^k$  on an open convex set S. If  $a \in S$  and  $a + h \in S$ , then

$$f(a+h) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(a)}{\alpha!} h^{\alpha} + R_{a,k}(h),$$

If f is of class  $C^{k+1}$  on S, for some  $c \in (0,1)$  we have

$$R_{a,k}(h) = \sum_{|\alpha|=k+1} \frac{\partial^{\alpha} f(a+ch)}{\alpha!} h^{\alpha}$$

## 9 Integral Calculus

Note, Riemann Integral was taught in this class.

#### 9.1 Definitions

rectangle (in  $\mathbb{R}^n$ )  $Q = [a_1, b_1] \times [a_2, b_2] \times [a_n, b_n]$ 

component interval of Q  $[a_i, b_i]$ 

**volume of** Q  $v(Q) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$ 

partition TODO

subinterval(determined by P) OMIT

subrectangle(determined by P) OMIT

mech of P OMIT

refinement OMIT

common refinement OMIT

?-  $m_R(f) = \inf\{f(x)|x \in R\}$ 

?-  $M_R(f) = \inf\{f(x)|x \in R\}$ 

lower sum  $L(f, P) = \sum_{R} m_R(f) \cdot v(R)$ 

**upper sum**  $U(f,P) = \sum_{R} M_{R}(f) \cdot v(R)$ 

lower integral  $\int_{Q} f = \sup_{P} \{L(f, P)\}$ 

upper integral  $\overline{\int_O} f = \inf_P \{L(f, P)\}$ 

oscillation TODO

rectifiable set A bounded set  $S \in \mathbb{R}^n$  is rectifiable if the constant function 1 is integrable over S. S is rectifiable iff S is bounded and BdS has measure zero

volume of a rectifiable set  $v(S) = \int_S 1$ 

#### 9.2 Riemann condition

Given: Q a rectangle,  $f: Q \to \mathbb{R}$  a bounded function.

$$\left| \underline{\int_{Q}} f = \overline{\int_{Q}} f \text{ iff } \forall \epsilon_{>0} \exists P[U(f, P) - L(f, P) \le \epsilon] \right|$$

P is a partion of Q

Corollary/Theorem: every constant function is integrable.

## 9.3 Riemann-Lebesgue theorem

A function on a compact interval [a, b] is Riemann integrable if and only if it is bounded and continuous almost everywhere (the set of its points of discontinuity has measure zero, in the sense of Lebesgue measure). [wiki] [11.2]

### 9.4 Fundamental theorem of Calculus

- If f is continuous on [a, b], and if  $F(X) = \int_a^x f$  for  $x \in [a, b]$ , then F'(x) exists and equals f(x).
- If f is continious on [a,b], and if g is a function such that g'(x)=f(x) for  $x\in [a,b]$  then  $\int_a^b f=g(b)-g(a)$

#### 9.5 Fubini's theorem

Let  $Q = A \times B$ , where A is a rectangle in  $\mathbb{R}^k$  and B is a rectangle in  $\mathbb{R}^n$ . If f is bounded function and integrable over Q, then  $\underline{\int_{y \in B} f(x, y)}$  and  $\overline{\int_{y \in B} f(x, y)}$  are integrable over A and

$$\int_{Q} f = \int_{x \in A} \int_{y \in B} f(x, y) = \int_{x \in A} \overline{\int_{y \in B}} f(x, y)$$

## 9.6 Properties of integral

TODO

## 9.7 Properties of rectifiable set

TODO

## 10 Change of Variables

```
Diffeomorphism [wiki]
f:A\to B is a diffeomorphism if f is a bijection AND
f and f^{-1} are of class C^r.
Moreover f is called C^r-diffeomorphism
Change of Variables Theorem ^{\left[17.2\right]}
LET opensets U, V \subseteq \mathbb{R}
     g: U \to V a diffeomorphism
     f: V \to \mathbb{R} be a continuous function
THEN f is intergrable over B
     IFF (f \circ g) | \det Dg | is integrable over A
NOTE \int_B f = \int_A (f \circ g) |\det Dg|
Substitution rule ^{[17.1]}
LET I = [a, b], J = [c, d] \subseteq \mathbb{R}
     g: I \to J of class C^1
     f: J \to \mathbb{R} is continuous
IF \forall x \in (a,b) [g'(x) \neq 0]
THEN \int_{g(a)}^{g(b)} f = \int_a^b (f \circ g)g'
     equivalently \int_J f = \int_I (f \circ g) |g'|
```

Page 12 11 MANIFOLDS

# 11 Manifolds

Page 13 12 LECTURE NOTES

## 12 Lecture Notes

## 12.1 2015-01-05 Monday

#### 12.1.1 Review

 $\begin{aligned} \mathbf{THM} &: \mathbf{rectifiable} \\ \mathbf{LET} &: \mathbf{S} \subset \mathbb{R}^n \text{ be bounded} \end{aligned}$ 

**THEN**: S is rectifiable

**IFF**  $\partial S$  has measure zero, equivalently  $\chi_s$  is integrable **IDEA**: rectifiable is a property of the boundary of a set. If the boundary has measure zero then the set is rectifiable.

DEFN: volume

**LET** :  $S \subset \mathbb{R}^n$  be bounded and *rectifiable* 

**THEN**: define the volume of S as:

 $V(S) := \int_{\mathcal{S}} 1 := \int_{\mathcal{Q}} \chi_x$ 

THM: partition of unity

LET:  $A \subset \mathbb{R}^n$ ,  $\{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$  be an open cover of A

**THEN**:  $\exists$  a collection of  $C^{\infty}$  functions  $\{\psi_{\beta}\}_{{\beta}\in\mathcal{B}}$  s.t

i  $\forall x \in A \quad 0 < \psi_{\beta} \le 1 \quad \forall \beta \in \mathcal{B}$ 

ii  $\forall x \in A \quad \exists$  open neighbourhood V of x such that: all but finitely many  $\psi_{\beta}$  vanish on V (*locally finite*)

iii  $\forall x \in A \quad \sum_{\beta \in \mathcal{B}} \psi_{\beta}(x) \equiv 1$ 

iv  $\forall x \in A \quad \exists \alpha \text{ such that}$ 

 $\operatorname{supp}(\psi_{\beta}) \subset U_{\alpha}$ , ie  $\{x | \psi_{\beta}(x) \neq 0\} \subset U_{\alpha}$ 

A collection of functions satisfying i, ii, iii is called a partition of unity

It is subordinate to the open cover  $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$  if it satisfies condition iv

## 12.1.2 Open Sets

DEFN: extended integral

**LET**:  $U^{open} \subset \mathbb{R}^n$ ,  $f: U \to \mathbb{R}$  is continuous

**IF**  $f \geq 0$ 

**THEN**: define then extended integral of f over U as:  $\int_{\mathbb{D}} f = \sup \{ \int_{\mathbb{D}} f \mid \mathbb{D} \in \mathbb{C} \}$ 

U where D is compact, rectifiable}

**IF** f is arbitrary and  $\int_{\Pi} f_+$ ,  $\int_{\Pi} f_-$  exist

**THEN**: define then extended integral of f over U as:

 $\int_{\Pi} f := \int_{\Pi} f_{+} - \int_{\Pi} f_{-}$  where

 $f_{+}(x) = \max\{f(x), 0\} \text{ and } f_{-}(x) = \min\{-f(x), 0\}$ 

**THM**: mnk 15.2

**LET**:  $U^{open} \subset \mathbb{R}^n$ ,  $f: U \to \mathbb{R}$  is continuous

Choose an exhaustion of U by compact  $K_i$  such that

 $K_1 \subset K_2^{\circ} \subset K_2 \subset K_3^{\circ} \dots$  and  $U = \bigcup_{i=1}^{\infty} K_i$ 

f has an extended integral

**IFF** the sequence  $\int_{\mathbf{k}_i} |f_i|$  is bounded

**THEN**:  $\int_{\mathbf{u}} f = \lim_{i \to \infty} \int_{\mathbf{k}_i} f$ 

**RMK**: If  $U^{open} \subset \mathbb{R}^n$ , then  $\int_{\mathbf{u}} f$  refers to the *extended* integral

**THM**: mnk 15.4

**LET**: U<sup>open</sup> is bounded,  $f: U \to \mathbb{R}^n$  is bounded and

continuous **THEN**:

i the extended integral exists

ii if the ordinary integral exists, then they are equal

**THM**: mnk 16.5

**LET**:  $U^{open} \subset \mathbb{R}^n$ ,  $f: U \to \mathbb{R}$  is continuous,  $\{\psi_i\}$  be a

partition of unity with compact support

**THEN** :  $\int_{\mathbf{u}} f$  exists

**IFF**  $\sum_{i=1}^{\infty} \int_{\mathbb{R}^n} \psi_i |f|$  converges to a finite number

In this case  $\int_{\mathbf{u}} f = \sum_{i=1}^{\infty} (\int_{\mathbf{u}} \psi_i f)$ 

## 12.2 2015-01-07 Wednesday

Note: this is not finished -\_-.

- Diffeomorphism
- Change of Variables
- Substitution Rule

## 12.3 2015-01-07 Wednesday

#### 12.3.1 Existence of the Integral

**DEFN**: integral

**LET**: Q be a rectangle,  $f: Q \to \mathbb{R}$  be a bounded

 $\underline{\underline{\text{function}}}$ , define:

 $\overline{\int}_{\Omega} f := \inf\{L(f, P)\}$  as the upper integral

 $\underline{\int}_{\mathcal{O}} f := \sup\{L(f, \mathcal{P})\}$  as the lower integral

**IF** then the upper and lower sums agree

**THEN**: f is *integrable* over Q

Page 14 LECTURE NOTES

THM: Riemann Condition

**LET**: Q be a rectangle,  $f: Q \to \mathbb{R}$  be a bbd fn

**THEN**: upper and lower integral agree

**IFF** given  $\epsilon > 0$  there is a partition P such that:

 $U(f, P) - L(f, P) < \epsilon$ 

**IDEA**: necessary condition for the existence

THM: mnk 11.2

**LET** :  $Q \subset \mathbb{R}^n$ ,  $f : Q \to \mathbb{R}$  be a bounded function.

Define D to be the set of points for which f fails to be

continuous

**THEN** :  $\int_{O} f$  exists

**IFF** D has measure zero (f is almost continuous every-

THM: mnk 11.3

**LET**:  $Q \subset \mathbb{R}^n$ ,  $f: Q \to \mathbb{R}$ . Assume f is integrable

**IF** f vanishes except on a set of measure zero

**THEN**:  $\int_{\mathcal{Q}} f = 0$ 

**IF** f is non-negative and  $\int_{Q} f = 0$ 

**THEN**: f = 0 almost everywhere

#### 12.3.2 Evaluation of the Integral

THM: Fundamental Theory of Calculus

**LET** :  $f : [a, b] \to \mathbb{R}$  be continuous

**IF**  $F(x) = \int_a^x f(x)$  for  $x \in [a, b]$  **THEN**:  $D \int_a^x f(x) = f(x)$ 

**IF** g is a function such that  $g'(x) = f(x) \ \forall x$ 

**THEN**:  $\int_a^x Dg = g(x) - g(a)$ 

THM: Fubini's Theorem

**LET**:  $Q = A \times B$ , where  $A \subset \mathbb{R}^k$  and  $B \subset \mathbb{R}^n$ .

 $f: \mathbb{Q} \to \mathbb{R}$  be bdd, write f(x, y) for  $x \in \mathbb{A}$  and  $y \in \mathbb{B}$ .

For each  $x \in A$  consider upper and lower integrals

 $\underline{\int}_{y\in B} f(x,y)$  and  $\int_{y\in B} f(x,y)$ 

 $\mathbf{IF} f$  is integrable over Q

**THEN**: these two functions are integrable over Q and

 $\int_{\mathbf{Q}} f = \int_{x \in \mathbf{A}} \underline{\int}_{y \in \mathbf{B}} f(x, y) = \int_{x \in \mathbf{A}} \overline{\int}_{y \in \mathbf{B}} f(x, y)$ 

#### 12.3.3Integral Over a Bounded Set

THM: mnk 13.5

LET:  $S \subset \mathbb{R}^n$  be bounded,  $f: S \to \mathbb{R}$  be bounded and continuous function. Define E to be the set of all points

 $x_0 \in \partial S$  for which the condition  $\lim_{x\to x_0} f(x) = 0$  fails

**IF** E has measure zero

**THEN**: f is integrable over S

Converse also holds

THM: mnk 13.6

LET:  $S \subset \mathbb{R}^n$  be bounded,  $f: S \to \mathbb{R}$  be bounded and

continuous function, and  $A = S^{\circ}$ .

**IF** f is integrable over S

**THEN**: f is integrable over A and

 $\int_{\mathcal{S}} f = \int_{\mathcal{A}} f$ 

### 12.3.4 Rectifiable Sets