ME 6280 Design and Optimization of Energy Systems

End-Semester Examination

Time 3 hrs. Max Marks – 100

Instructions

- 1) Please follow the honor code and do not discuss the questions with anyone else.
- 2) You are allowed to use any internet resource, book, etc freely.
- 3) Make any assumptions necessary if you feel some data is missing. However, write down clearly all the assumptions you are making for the question
- 4) If you have used a code for a problem, that should be submitted as well. Name the code as ProblemX_CodeName_ROLLNO.m or ProblemX_CodeName_ROLL.py. You will be given credit for the question only if the code gives exactly the output that you have reported.
- 5) Even when you use a code, report the first, final iteration's answer, and the number of iterations by hand.
- 6) Do not just submit the codes. Write down the formulation by hand for each answer clearly.

Submission

- 1) A separate sheet for the final answers has been sent to you (ME6280_FinalAnswers_ROLLNO.docx). Rename it by replacing ROLLNO with your actual roll number. Fill in the final answers in the space provided.
- 2) Submit all the handwritten answers in a single file titled ME6280_ROLLNO.pdf
- 3) Include all your codes with the name ProblemX_CodeName_ROLLNO.m. For example, if you wrote a code for Fibonacci in Q1, you could name it Problem1_Fibonacci_ROLLNO.m
- 4) Zip all these files under the name ME6280_ROLLNO.zip and upload it to Learn.
- 5) In case the upload is not working for some reason, immediately email the zip file to your respective TA.

1) Consider a thermal system whose heat dissipation rate is given by $Q = 2.6 + 7.0v^{0.3}$, where Q is in kW and v is the velocity in m/s of the fluid being used as the medium for accomplishing the heat transfer. The accompanying pumping power is given by $P = 1.8 + 0.01v^{2.1}$. It is desired to maximize the performance parameter Q/P. (15 marks)

Conduct a one variable search in v to obtain the optimal velocity by using

- a) Dichotomous Search. Choose an appropriate δ that will allow the final accuracy.
- b) Fibonacci search
- c) Golden Section search

Initial interval of uncertainty is 1 < v < 10 m/s. Obtain the final v to an accuracy of 3 decimal places. Report the following (in the final answers sheet)

	a (v)	b (v)	Q/P at midpoint	Iterations for convergence
Dichotomous				
Fibonacci				
Golden Section				

2) The first stage of a space shuttle consists of a **central liquid engine consisting of 3 nozzles** and **2 solid straps on external boosters**. For convenience, assume complete expansion in the nozzles i.e pressure at exit = ambient pressure. The exit gas velocities are $v_{e1} = 4000 \, m/s$ and $v_{e2} = 1500 \, m/s$. Based on the design of the nozzles \dot{m}_1 and \dot{m}_2 are the mass flow rates (in kg/s) for **each** of the central nozzles and external boosters respectively. (15 marks)

Optimize \dot{m}_1 and \dot{m}_2 for maximum total thrust. Recall that thrust for a single nozzle/booster is given by $\dot{m}v$.

The constraints are:

- a) The maximum propellant weight that can be carried given by 6.2 $\dot{m}_1 + 2.4 \ \dot{m}_2 \le 6300$
- b) The **total** fuel that can be carried in the main central tank is 650 tons and this has to burn for 8 mins.
- c) In the external casings, the **total** (including both casings) fuel that can be carried is 900 tons and this has to burn for 2 mins.
- d) Because of the nozzle geometry the constraint is $5.3 \,\dot{m}_1 + 2.8 \dot{m}_2 \le 7800$

Solve the problem using the Simplex method. Show all calculations by hand.

Report the following (in the final answers sheet)

Optimal $\dot{m_1}$	Optimal $\dot{m_2}$	Optimal Thrust

3) The operating point of a centrifugal pump is to be determined. The pump performance curve is given by $\Delta P = a + bQ^n$. The following data is given for the pump performance (35 marks)

$Q(m^3/s)$	$\Delta P(N/m^2)$
1.4	232739.2
1.3	236731.8
2.7	212226.8
2.1	225390.2
3.1	193265.2
3.4	191154.2
4.4	151174.2
4.6	149267.2
5.7	99156.8
5.8	94750.8

The system load characteristics is given by $\Delta P = 40 \times 10^3 + 156.2 \times 10^3 Q^{1.8}$. Here, ΔP is the static pressure rise and Q is the discharge.

- (a) Find the load characteristics of the pump starting from an initial guess of $a = 250 \times 10^3$, b = -5000, c = 2.5. Use appropriate tolerances for the question.
- (b) Show the information flow in the system using an information flow diagram
- (c) Obtain the operating conditions of the system by solving the appropriate information flow diagram starting from an initial guess of $\Delta P = 200 \times 10^3 N/m^2$ and $Q = 1 m^3/s$

Report the following (in the final answers sheet)

	а	b	n
Pump characteristics			

	ΔΡ	Q
Operating conditions		

4) Most of the industries use Screw conveyors to transport a wide range of materials. As a part of your project, you are proposing a new screw conveyor network to optimize power consumption for the factory. As a part of the calculation process, you must calculate corrected material HP. Collected data for this is as follows: (35 marks)

Calculated	Corrected
HP (x)	HP (y)
0.201813	0.522508
0.549789	1.294212
0.865762	1.808682
1.288098	2.355305
1.741791	2.83119
2.222954	3.262058
2.806504	3.705788
3.389966	4.104502
3.961491	4.438907

For convenience, we wish to fit a curve to the above data.

- (i) Pose the above as a least square problem for the following types of curves
 - a) Quadratic curve (b) Cubic curve (c) Power Law -- αx^b
- (ii) For each of these curves determine the optimal coefficients using linear regression.
- (iii) For the Power law in part (ii), reobtain the coefficients using Conjugate Gradient and Newton's Method for the optimization.

Report the following (in the final answers sheet)

	w_0	w_1	w_2	w_3
Quadratic				
Cubic				
Power Law				

The number of iterations it would take for the Conjugate Gradient and Newton to converge

	Conjugate	Newton
Quadratic		
Cubic		
Power Law		