

DISCOVERY SERVICES

Medicinal Chemistry Reference Sheet

Bon	d Length:	s and Distances Angs	van der Waals Ra	dii Angstroms Å	
C-H	1.09	C-0	1.43	Н	1.20
C-C	1.54	C=0	1.20	С	1.70
C-N	1.47	C=C	1.34	N	1.55
C-S	1.92	0-H	0.96	0	1.52
C-F	1.40	H-H	0.74	F	1.35
C-CI	1.77	C=0••H-0	2.7-3.0	CI	1.75
C-Br	1.94	C=0••H-N	1.5-2.5	Br	1.85
C-I	2.14	π stack C-C	3.3-4.3	S	1.80
N-H	1.01	Edge-to-face C-C	3.7-4.7	Р	1.90

% Ionization at pH7.4				
Ad	cid	Base		
pKa	%	pKa	%	
4.4	99.9	4.4	0.1	
5.4	99	5.4	1	
6.4	90	6.4	10	
7.4	50	7.4	50	
8.4	10	8.4	90	
9.4	1	9.4	99	
10.4	0.1	10.4	99.9	

Solubility Conversions		
mg/mL → μ mol		
(value / Mw)		
*1,000,000		
μ mol \rightarrow mg/mL		
µmor → mg/mc (value x Mw)		

/1,000,000

Ligand Efficiency (LE): ΔG/HAC = -1.4 LogKi/HAC				
Ki(nM)	Mw 300	400	450	500
10000	0.19	0.14	0.13	0.11
1000	0.37	0.28	0.26	0.23
100	0.43	0.33	0.30	0.26
10	0.49	0.38	0.34	0.30
1	0.56	0.42	0.38	0.34

Binding Energy			
Ki (nM)	-LogKi	ΔG	
10000	5	-7.0	
1000	6	-8.4	
100	7	-9.8	
10	8	-11.2	
1	9	-12.6	

IC50(nM)	pIC50
1000	6.0
100	7.0
30	7.5
10	8.0
1	9.0

Gibbs Free Energy		
$\Delta G = \Delta H - T \Delta S$		
$\Delta G = -1.4 \text{ LogKi}$		
1 kcal = -4.18kJ		

Total clearance

Half life

AUC

 $V_{d\,ss}$

MRT

 $F_{p.o}$

PPB

 $F_{\text{\tiny u}}$

PK Parameters used in Drug Discovery

Volume of distribution at steady state (apparent)

Mean residence time (of a molecule in the body)

Bioavailability following oral administration

Maximum measured concentration

Area under the concentration-time curve

Volume of distribution (apparent)

Time of maximum concentration

Plasma protein binding (% bound)

Fraction unbound (% unbound/100)
Concentration unbound (F_u x C_{total})

Amino Acids				
Alanine	Ala	А		
Arginine	Arg	R		
Asparagine	Asn	N		
Aspartic acid	Asp	D		
Cysteine	Cys	С		
Glutamine	Gln	Q		
Glutamic acid	Glu	E		
Glycine	Gly	G		
Histidine	His	Н		
Isoleucine	lle	I		
Leucine	Leu	L		
Lysine	Lys	K		
Methionine	Met	М		
Phenylalanine	Phe	F		
Proline	Pro	Р		
Serine	Ser	S		
Threonine	Thr	T		
Tryptophan	Trp	W		
Tyrosine	Tyr	Υ		
Valine	Val	V		

Methionine	Met	M	
Phenylalanin	e Phe	F	Propertie
Proline	Pro	Р	Absorpt
Serine	Ser	S	H-bond accep
Threonine	Thr	Т	H-bond donor
Tryptophan	Trp	W	PSA
Tyrosine	Tyr	Υ	
Valine	Val	V	- LogP
	Units		Rotatable bon
	ng.h/m	ıL	
	mL/min	/kg	Proper
	L/kg		- BBB I
	L/kg		H-bond total
	h		H-bond donor
	h		- PSA
	%		- Mw
			LogD
	ng/ml		

h

%

ng/mL

Saliva	6.4	
Stomach	1-3	
Small intestine	5.5-7	
Blood	7.4	
Urine	5.8	
Approx. Volumes (L/kg)		
Total body water	0.60	
Intracellular fluid	0.34	
Extracellular fluid	0.26	
Blood	0.07	
Plasma	0.04	

Physiological Fluid pH

Absorption (Lipinski)		
H-bond acceptors	<10	
H-bond donors	<5	
PSA	<140	
Mw	< 500	
LogP	<5	
Rotatable bonds	<10	

Properties Favoring BBB Penetration		
H-bond total	<8	
H-bond donors	<2	
PSA	<70	
Mw	<450	
LogD	1-3	
N+0 atoms	<6	

Species Parameters			Liver blood flow	Glomerular filtration rate
	Wt (kg)	Body Water (L)	(mL/min/kg)	(mL/min/kg)
Mouse	0.02	0.015	90	14
Rat	0.25	0.17	60	5.2
Dog	10	6.0	31	6.1
Monkey	5	3.5	44	2.1
Human	70	42	21	1.8

Impact of LogD on Drug-like Properties							
LogD	Solubility	Cell permeability	Metabolism	V_{d}	F _{p.o}	BBB penetration	Renal clearance
<1	++++	+ (Paracelluar if Mw<200)	+	+	+	+	++++
1-3	++	++	++	++	++++	++++	+++
3-5	+	++++	++	++++	++	++	++
>5	+	++++	+++++	++++	+	+	+

Increasing Cell Permeability	
Remove ionizable groups	
Increase lipophilicity	
Replace polar groups with isosteres	
Reduce H-bonding	
Reduce polarity	
Reduce size and Mw	
Add non-polar side chain	
Convert to pro-drug	

Increasing Solubility	
Add ionizable groups	
Reduce lipophilicity	
Add polar groups	
Add H-bond donors	
Reduce molecular weight	
Break aromatic co-planarity	
Increase 3D shape (fraction sp3)	
Convert to pro-drug	

Reducing Phase I Metabolism
Reduce lipophilicity
Block sites of metabolism
Modify labile functional groups
Cyclization
Modify ring size
Invert chiral centers

Isosteres used in Medicinal Chemistry

neuuciliy Fila	196 II MICIANOIISIII
Block Phase I	metabolism to phenols
Introduce steri Phase I metab	ic hindrance around site of olism
Add electron v	vithdrawing group near site of
Phase I metab	olism
Replace pheno	ols by isosteres
Reducing hEF	RG Inhibition
Reduce nKa o	f the amine

Reducing hERG Inhibition
Reduce pKa of the amine
Introduce steric bulk around amine
Reduce lipophilicity
Reduce aryl ring count
Add an acidic group
Introduce H-bond acceptors
Rigidify structure

Inc	reasing BBB Penetration
Re	move H-bond donors
Re	place external H-bonds by internal
Re	duce size and molecular weight
Re	move carboxylic acids
Inc	rease lipophilicity
Re	duce P-gp efflux
Inc	rease affinity for transporters

Increasing Dissolution Rate
Reduce particle size
Convert to a salt
Pre-dissolve as oral solution
Formulate with surfactant

Reducing PPB
Reduce LogD
Increase pKa of acidic groups
Increase pKa of basic groups
Increase polarity

Collaboration fosters innovation.

Over the past two decades, our team has delivered an unmatched number of preclinical drug candidates, many of which have progressed to clinical proof-of-concept or beyond. Combined with more than 340 patents, our results speak for themselves.

www.criver.com askcharlesriver@criver.com