S.-T. Yau College Student Mathematics Contests 2019

Probability and Statistics

Team (4 problems)

1) Suppose $(X_n)_{n\geq 1}$ is a sequence of i.i.d. random variables and the common law is exponential with parameter one. Show that

$$\mathbb{P}\left[\limsup_{n\to\infty}\frac{X_n}{\log n}=1\right]=1.$$

- 2) Let $(X_n)_{n\geq 1}$ be i.i.d. real random variables and set $S_n=\sum_{i=1}^n X_i$ for $n\geq 1$. Suppose that for some constant $c\in\mathbb{R}$ we have $S_n/n\to c$ as $n\to\infty$ almost surely. Show that X_1 has a finite first moment and $\mathbb{E}[X_1]=c$.
- 3) Consider uniform permutation of $\{1, 2, ..., n\}$ and denote by X_n the number of cycles in the permutation. Find a sequence of reals $(a_n)_{n\geq 1}$ such that

$$\lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{a_n} = 1,$$

and justify your answer.

- 4) The Erdös-Rényi random graph G(n,p) with parameters $n \geq 1$ and $p \in [0,1]$ is the random graph whose vertex set is $V = \{1, 2, ..., n\}$ and where for each pair $i \neq j \in V$ the edge $i \leftrightarrow j$ is present with probability p independently of all the other pairs.
 - (a) For $\epsilon > 0$, if $p_n \ge (1 + \epsilon) \frac{\log n}{n}$, then

$$\mathbb{P}[G(n, p_n) \text{ has an isolated vertex}] \to 0, \text{ as } n \to \infty.$$

(b) For $\epsilon > 0$, if $p_n \leq (1 - \epsilon) \frac{\log n}{n}$, then

$$\mathbb{P}[G(n, p_n) \text{ has an isolated vertex}] \to 1, \text{ as } n \to \infty.$$