Using Integral Dispersion Relations to Extend the LHC Reach for New Physics

Peter Denton

TASI

June 6, 2014

[arxiv:]1311.1248, PRD 89, 035013 with T. J. Weiler

Overview

- 1. Brief derivation of IDRs
- 2. TOTEM experiment
- 3. Three ways of modeling new physics
- 4. Results: measurable effects

Some necessary formulas

1. Cauchy's integral formula

$$f(z') = \frac{1}{2\pi i} \oint_{\partial A} \frac{f(z)}{z - z'} dz$$

2. The optical theorem

$$\sigma_{tot} = \frac{4\pi}{p} \Im f(\theta = 0)$$

3. Definitions

$$\rho(E) \equiv \frac{\Re f(E, t = 0)}{\Im f(E, t = 0)} \qquad E \equiv \frac{s - u}{4m}$$

Integration contour

Integral Dispersion Relations

$$\rho_{pp}(E)\sigma_{pp}(E) = \frac{4\pi}{p}\Re f(0) + \frac{E}{p\pi}\mathcal{P}\int_{m}^{\infty}dE'\frac{p'}{E'}\left[\frac{\sigma_{pp}(E')}{E'-E} - \frac{\sigma_{p\bar{p}}(E')}{E'+E}\right]$$

IDR \Rightarrow model dependent calculation of ρ .

Comparing ρ

$$16\pi \left. \frac{d\sigma}{dt} \right|_{t=0} = (\rho^2 + 1)\sigma_{tot}^2$$

 \Rightarrow model independent calculation of $\rho.$

SM parametrization

- 1. Froissart bound says $\sigma \leq C \log^2(E/E_0)$ asymptotically for some constants
- 2. Pomeranchuk theorem (c_4) says that $\sigma_{pp}-\sigma_{p\bar{p}} \to 0$ as $E \to \infty$
- 3. Standard parametrization:

$$\sigma_{pp,p\bar{p}}(E) = c_0 + c_1 \log(E/m) + c_2 \log^2(E/m) + c_3(E/m)^{-\frac{1}{2}} \pm c_4(E/m)^{\alpha-1}$$

Experiment

- 1. TOTEM: $\rho = 0.145$ at $\sqrt{s} = 7$ TeV (large errors)
- 2. SM Prediction: $\rho = 0.1345$ at $\sqrt{s} = 7$ TeV
- 3. "Signal": $(\rho-\rho_{\rm SM})/\rho_{\rm SM}=$ 0.0781 (a 0.1 σ "signal")

SM pp cross section and three simple modifications

We want to retain the $\log^2 s$ growth asymptotically

$$\sigma(s) = \sigma_{SM}(s)[1 + h_i(s)].$$

The first modification is a simple step function:

$$h_1(s) = d\Theta(s - s_{thr})$$
.

More physical modifications to the pp cross section

SUSY contributions are too small $\mathcal{O}(10^{-9})$. RPV SUSY could provide a much larger effect.

More physical modifications to the pp cross section

We reduce the cross section by a phase space ratio given by

$$\sqrt{\frac{\lambda(\hat{\mathfrak{s}},M_\chi^2,0)}{\lambda(\hat{\mathfrak{s}},0,0)}}=1-\frac{M_\chi^2}{\hat{\mathfrak{s}}}$$

We integrate this in terms of the parton distribution functions giving a modification of

$$h_2(s, M_{\chi}) = z \sum_{i,j} \int_{x_1 x_2 > M_{\chi}^2/s} dx_1 dx_2$$

$$\times f_i(x_1, M_{\chi}) f_j(x_2, M_{\chi}) x_1 x_2 \left(1 - \frac{M_{\chi}^2}{\hat{s}} \right)$$

Where $z = \sigma_{inel}/\sigma_{tot} \sim 0.7$.

Yet another pp cross section modification

We cut final states into two blocks by pseudorapidity and we let M_X be the mass of the more massive one. Let $\xi \equiv M_X^2/s$.

$$\frac{d\sigma}{d\xi} = \frac{1+\xi}{\xi^{1+\epsilon}} \qquad \qquad \epsilon \sim 0.08$$

To modify the pp cross section the integration bounds change.

$$h_3(s) = z \frac{1 - 2\epsilon + (\epsilon - 1)\xi_{\chi}^{-\epsilon} + \epsilon \xi_{\chi}^{1 - \epsilon}}{1 - 2\epsilon + (\epsilon - 1)\xi_{\rho}^{-\epsilon} + \epsilon \xi_{\rho}^{1 - \epsilon}} \Theta(1 - \xi_{\chi})$$

Exotic models

Other exotic models may give rise to significant σ_{pp} increases:

- 1. Kaluza-Klein modes
- 2. Weak scale gravity

These can be generally described as a step function, h_1 , at the relevant energy with the magnitude of the step large - up to a factor of ten.

pp cross section modifications

Results: h_1 step function

Results: h_1 step function to large d

Results: h_2 perturbative approach

Results: h_3 non-perturbative approach

Discussion and confusions

- 1. IDRs can be used to detect large changes in σ_{pp} .
- 2. Perturbative models do not allow for large enough modifications.
- 3. A non-perturbative approach is more successful in a narrow region.

UHECR $\Rightarrow E_{CR} \gtrsim 50 \text{ EeV} = 5 \times 10^{19} \text{ eV}.$

Things we don't know:

- 1. Composition: If UHECR are p, Fe, something inbetween.
- 2. Acceleration: How the flux we see is accelerated in astrophysical phenomena.
- 3. Sources: Where exactly do they come from.
- 4. Magnetic fields: How much UHECRs are bent inbetween galaxies and in our own galaxy.
- 5. Extensive air showers: How the showers propagate in the atmosphere.

Backup: Non-perturbative cross section reproduces Froissart bound when properly expanded

We noted that the cross section function that goes into the modification h_3 rises like $\log^2 s$ in the appropriate limit:

$$\begin{split} \sigma &\propto 1 - \xi_p - \log \xi_p \\ &+ \left(1 - \xi_p + \xi_p \log \xi_p + \frac{1}{2} \log^2 \xi_p\right) \epsilon + \mathcal{O}(\epsilon^2) \end{split}$$

with higher order ϵ terms resulting in higher orders of log s following the above pattern.

- 1. Several partial-sky experiments look at the sky: HiRes (Utah) and Pierre Auger Observatory (Argentina).
- 2. There is no (significant) evidence of anisotropy from these experiments.
- 3. Reconstructing anisotropies with partial-sky coverage is non-trivial.
- 4. One (of several) proposed new experiments is EUSO on the ISS to provide near uniform full-sky coverage.

Parameterize anisotropies in spherical harmonics and the power spectrum,

$$I(\Omega) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell}^m Y_{\ell}^m(\Omega)$$

$$C_{\ell} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell}^m|^2$$

See 1401.5757 (conference proceedings) for an introduction to our approaches.