## Comparison of Introductory Zero-Knowledge Proof Examples

By Navid Roux orcid.org/0000-0002-8348-2441, 2020-06-10.

Latest version always at https://github.com/ComFreek/zero-knowledge-proofs-comparison-table. This work is licensed under a "CC BY-SA 4.0" license.



|                                                                                                                                         | Sudoku                                                                                                                                                                                                                                                                                                                                                                                                    | 3-COL                                                                                                                                                                                                                                                                                                                                                                                                       | Hamiltonian Cycle                                                                                                                                                   | Any "hard" Graph Property                                                     | Discrete Log (variant)                                                                                       | Discrete Log (Schnorr variant)                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           | Graph $G$ is 3-colorable                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                     | Let $L \in NP$ be any graph-isomorphism-                                      | Let $\mathbb{G}$ of order $q$ and $y \in \mathbb{Z}_q$ be fixed.                                             | Let $\mathbb{G}$ of order $q$ and $y \in \mathbb{G}$ be fixed.                                                                                              |
|                                                                                                                                         | Partial sudoku $\Psi$ is solvable                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             | Graph $G$ is $\operatorname{Hamiltonian}^1$                                                                                                                         | invariant graph property believed to be hard. <sup>3</sup>                    | I know $x \in \mathbb{Z}_q$ such that                                                                        | I know $x \in \mathbb{Z}_q$ such that                                                                                                                       |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               | [x] = y                                                                                                      | [x] = y                                                                                                                                                     |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     | Graph $G \in L$                                                               |                                                                                                              |                                                                                                                                                             |
|                                                                                                                                         | Solution $\overline{\Psi}$                                                                                                                                                                                                                                                                                                                                                                                | 3-coloring $w$                                                                                                                                                                                                                                                                                                                                                                                              | Hamiltonian cycle $w$                                                                                                                                               | Certificate $w$                                                               | x                                                                                                            | x                                                                                                                                                           |
| Iteration                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
| 1. Rerandomization by $P$                                                                                                               | Pick set isomorphism $i: \{1, \dots, 9\} \rightarrow \{1, \dots, 9\}$                                                                                                                                                                                                                                                                                                                                     | Pick color permutation $i: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$                                                                                                                                                                                                                                                                                                                                             | Pick graph isomorphism $i \colon G \to G'$ (just relabel vertices)                                                                                                  | Pick graph isomorphism $i: G \to G'$ (just relabel vertices)                  |                                                                                                              |                                                                                                                                                             |
| 1. Problem Statement                                                                                                                    | 1. $\Psi' := i[\Psi]$ is solvable                                                                                                                                                                                                                                                                                                                                                                         | 1/-(choose same graph $G$ )                                                                                                                                                                                                                                                                                                                                                                                 | 1. $G' := i[G]$ is Hamiltonian                                                                                                                                      | 1. $G' := i[G] \in L$                                                         | Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random                                                         | Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random                                                                                                        |
| 2. Solution                                                                                                                             | 2. $\overline{\Psi}' := i[\overline{\Psi}]$ is solution to $\Psi'$                                                                                                                                                                                                                                                                                                                                        | 2. $w' := i[w]$ is alternative 3-coloring for $G$                                                                                                                                                                                                                                                                                                                                                           | 2. $w' := i[w]$ is Hamiltonian cycle for $G'^2$                                                                                                                     | 2. $w' := i[w]$ is certificate for $G'$                                       | Y v                                                                                                          | d A                                                                                                                                                         |
| 2. Commitment by $P$                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             | Send all of                                                                                                                                                         | Send all of                                                                   |                                                                                                              |                                                                                                                                                             |
|                                                                                                                                         | Send all of                                                                                                                                                                                                                                                                                                                                                                                               | Send all of                                                                                                                                                                                                                                                                                                                                                                                                 | • G                                                                                                                                                                 | • G                                                                           | Send all of                                                                                                  |                                                                                                                                                             |
|                                                                                                                                         | • $\left(\operatorname{com}(\overline{\Psi'}_{j,k})\right)_{1 \leq j,k \leq 9}$                                                                                                                                                                                                                                                                                                                           | • G                                                                                                                                                                                                                                                                                                                                                                                                         | • G'                                                                                                                                                                | • G'                                                                          | $\hat{g}:=[r]$                                                                                               | C 1 []                                                                                                                                                      |
|                                                                                                                                         | • $com(\Psi')$                                                                                                                                                                                                                                                                                                                                                                                            | • $(\operatorname{com}(w'_v))_{v \in V(G)}$ – coloring of                                                                                                                                                                                                                                                                                                                                                   | • $com(i)$                                                                                                                                                          | • $com(i)$                                                                    | • com(r)                                                                                                     | Send $[r]$                                                                                                                                                  |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           | each vertex                                                                                                                                                                                                                                                                                                                                                                                                 | • $com(w')$                                                                                                                                                         | • $com(w')$                                                                   | ,                                                                                                            |                                                                                                                                                             |
|                                                                                                                                         | Ask for one of                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                                                                                                                                                                 | , ,                                                                           |                                                                                                              |                                                                                                                                                             |
| 3. Pose Challenge by $V$                                                                                                                | the nine permuted rows                                                                                                                                                                                                                                                                                                                                                                                    | Pick edge $(u,v) \leftarrow E(G)$ uniformly at random and ask for coloring of $u$ and $v$                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                               |                                                                                                              | Pick $c \leftarrow \mathbb{Z}_q$ uniformly at random.<br>Ask for $cx + r$ and denote response by resp.                                                      |
|                                                                                                                                         | the nine permuted rows     the nine permuted columns                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                             | Ask for one of                                                                                                                                                      | Ask for one of                                                                | Ask for one of                                                                                               |                                                                                                                                                             |
|                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             | • isomorphism $i \colon G \to G'$<br>• Hamiltonian cycle $w'$ in $G'$                                                                                               | • isomorphism $i : G \to G'$                                                  | • <i>r</i>                                                                                                   |                                                                                                                                                             |
|                                                                                                                                         | • the nine permuted squares                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     | • certificate $w'$ for $G' \in L$                                             | • x + r                                                                                                      |                                                                                                                                                             |
|                                                                                                                                         | • permuted statement                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               | and denote response by resp.                                                                                 |                                                                                                                                                             |
|                                                                                                                                         | In total, this gives $9 + 9 + 9 + 1 = 28$ challenge types                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
| 4. Respond to challenge by $P$                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             | canonical: respond exac                                                                                                                                             | tly with what was asked                                                       |                                                                                                              |                                                                                                                                                             |
| 5. Verify response by $V$                                                                                                               | Check                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                             | Check                                                                                                                                                               |                                                                               | Check                                                                                                        |                                                                                                                                                             |
|                                                                                                                                         | • that no numbers occur twice in                                                                                                                                                                                                                                                                                                                                                                          | Check that coloring of $u$ and $v$ are distinct                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>conditions on isomorphism,</li> <li>or check that cycle is indeed<br/>Hamiltonian</li> </ul>                                                               | Check      conditions on isomorphism,      or check that certificate is valid | • that indeed $\hat{g} = [\text{resp.}]$                                                                     |                                                                                                                                                             |
|                                                                                                                                         | row, column, or square,                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               | • that [resp.] = $y + \hat{g}$                                                                               |                                                                                                                                                             |
|                                                                                                                                         | • or that the permuted statement is in fact a permutation                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               | namely if indeed $[x] = y$ , then $y + \hat{g} = [x] + [r] = [x + r] = [\text{resp.}]$                       |                                                                                                                                                             |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             | Since step 4 above is canonical, pr                                                                                                                                 | rovers can convince with prob. of 1                                           |                                                                                                              |                                                                                                                                                             |
| P actually had a solution                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     | -                                                                             |                                                                                                              |                                                                                                                                                             |
| Soundness $P$ cannot convince $V$ for                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
| statements not in the                                                                                                                   | $\left(\frac{27}{28}\right)^{\text{\#iter}}$                                                                                                                                                                                                                                                                                                                                                              | $\left(\frac{ E(G) -1}{ E(G) }\right)^{\text{\#iter}}$                                                                                                                                                                                                                                                                                                                                                      | $\left(\frac{1}{2}\right)^{\text{\#iter}}$                                                                                                                          | $\left(\frac{1}{2}\right)^{\text{\#iter}}$                                    | -/-                                                                                                          | -/-                                                                                                                                                         |
| language. Shown are the success prob. of still                                                                                          | (28)                                                                                                                                                                                                                                                                                                                                                                                                      | E(G)                                                                                                                                                                                                                                                                                                                                                                                                        | (2)                                                                                                                                                                 | $\left(\overline{2}\right)$                                                   | ,                                                                                                            | ,                                                                                                                                                           |
| trying to do so                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
| Soundness of Knowledge                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
| P cannot convince $V$                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                   | ,                                                                             | $(1)^{\#iter}$                                                                                               | $(1)^{\text{#iter}}$                                                                                                                                        |
| without having a witness.                                                                                                               | -/-                                                                                                                                                                                                                                                                                                                                                                                                       | -/-                                                                                                                                                                                                                                                                                                                                                                                                         | -/-                                                                                                                                                                 | -/-                                                                           | $\left(\frac{1}{2}\right)$                                                                                   | $\left(\frac{1}{2}\right)$                                                                                                                                  |
| Shown are the success prob. of still trying to do                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
| SO                                                                                                                                      | In each round V learns either a Sudoku                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
|                                                                                                                                         | In each round, $V$ learns $either$ a Sudoku "building block" (row, column, square)                                                                                                                                                                                                                                                                                                                        | In each round, $V$ just learns the round-<br>dependent colorings of two nodes: $w'_{*}$ .                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           | dependent colorings of two nodes: $w'_u$ and $w'_v$ . This is useless information                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                     |                                                                               |                                                                                                              |                                                                                                                                                             |
|                                                                                                                                         | "building block" (row, column, square) of the permuted solution $or$ the permuted solution statement. The second case is obviously useless. In the first                                                                                                                                                                                                                                                  | dependent colorings of two nodes: $w'_u$ and $w'_v$ . This is useless information as such and can furthermore – due to the rerandomization – not be correlated                                                                                                                                                                                                                                              | In each round, $V$ learns $either$ a useless                                                                                                                        |                                                                               | In each round, Wleaving with in a visit                                                                      | In each round, $V$ only learns $[r]$ and                                                                                                                    |
| Zero Knowledge                                                                                                                          | "building block" (row, column, square) of the permuted solution $or$ the permuted solution statement. The second case is obviously useless. In the first case, $V$ only learns what the round's permutation $i$ does on the numbers that                                                                                                                                                                  | dependent colorings of two nodes: $w'_u$ and $w'_v$ . This is useless information as such and can furthermore – due to the rerandomization – not be correlated with colorings learnt in other rounds.                                                                                                                                                                                                       | isomorphism or a Hamiltonian cycle in $G' \cong G$ . Since the graph isomorphism                                                                                    | Same argument as in the call to the left                                      | In each round, $V$ learns $either$ a useless random $r$ or $x + r$ . In the latter case,                     | cx + r for a c chosen by them. Due to                                                                                                                       |
| $egin{align*} \mathbf{Zero} & \mathbf{Knowledge} \ V & \mathbf{doesn't} & \mathbf{learn} & \mathbf{anything} \ \end{bmatrix}$           | "building block" (row, column, square) of the permuted solution $or$ the permuted solution statement. The second case is obviously useless. In the first case, $V$ only learns what the round's permutation $i$ does on the numbers that the original puzzle $\Psi$ had already pre-                                                                                                                      | dependent colorings of two nodes: $w'_u$ and $w'_v$ . This is useless information as such and can furthermore – due to the rerandomization – not be correlated with colorings learnt in other rounds. Note that if $V$ asked instead for colorings of three vertices, then the learned                                                                                                                      | isomorphism or a Hamiltonian cycle in $G' \cong G$ . Since the graph isomorphism problem is believed to be hard, learning                                           | Same argument as in the cell to the left.                                     | random $r$ or $x + r$ . In the latter case, however, since $r \sim \mathcal{U}(\mathbb{Z}_q)$ , we also have | $cx + r$ for a $c$ chosen by them. Due to DLOG assumed to be hard in $\mathbb{G}$ , in the eyes of $V$ we have $r \sim \mathcal{U}(\mathbb{Z}_q)$ and hence |
| $egin{aligned} \mathbf{Zero} & \mathbf{Knowledge} \ V & \mathrm{doesn't\ learn\ anything} \ \mathrm{about\ the\ witness} \end{aligned}$ | "building block" (row, column, square) of the permuted solution $or$ the permuted solution statement. The second case is obviously useless. In the first case, $V$ only learns what the round's permutation $i$ does on the numbers that the original puzzle $\Psi$ had already prefilled in the corresponding row, column, or square. In particular, nothing is                                          | dependent colorings of two nodes: $w'_u$ and $w'_v$ . This is useless information as such and can furthermore – due to the rerandomization – not be correlated with colorings learnt in other rounds. Note that if $V$ asked instead for colorings of three vertices, then the learned colorings could very well possess more                                                                               | isomorphism or a Hamiltonian cycle in $G' \cong G$ . Since the graph isomorphism                                                                                    | Same argument as in the cell to the left.                                     | random $r$ or $x + r$ . In the latter case,                                                                  | $cx + r$ for a $c$ chosen by them. Due to DLOG assumed to be hard in $\mathbb{G}$ , in the                                                                  |
| Zero Knowledge $V$ doesn't learn anything about the witness                                                                             | "building block" (row, column, square) of the permuted solution $or$ the permuted solution statement. The second case is obviously useless. In the first case, $V$ only learns what the round's permutation $i$ does on the numbers that the original puzzle $\Psi$ had already prefilled in the corresponding row, column, or square. In particular, nothing is learned about the solution entries, i.e. | dependent colorings of two nodes: $w'_u$ and $w'_v$ . This is useless information as such and can furthermore – due to the rerandomization – not be correlated with colorings learnt in other rounds. Note that if $V$ asked instead for colorings of three vertices, then the learned colorings could very well possess more information content. Namely, it isn't granted anymore that all three vertices | isomorphism or a Hamiltonian cycle in $G' \cong G$ . Since the graph isomorphism problem is believed to be hard, learning about such a cycle in $G'$ without learn- | Same argument as in the cell to the left.                                     | random $r$ or $x + r$ . In the latter case, however, since $r \sim \mathcal{U}(\mathbb{Z}_q)$ , we also have | $cx + r$ for a $c$ chosen by them. Due to DLOG assumed to be hard in $\mathbb{G}$ , in the eyes of $V$ we have $r \sim \mathcal{U}(\mathbb{Z}_q)$ and hence |
| Zero Knowledge $V$ doesn't learn anything about the witness                                                                             | "building block" (row, column, square) of the permuted solution $or$ the permuted solution statement. The second case is obviously useless. In the first case, $V$ only learns what the round's permutation $i$ does on the numbers that the original puzzle $\Psi$ had already prefilled in the corresponding row, column, or square. In particular, nothing is                                          | dependent colorings of two nodes: $w'_u$ and $w'_v$ . This is useless information as such and can furthermore – due to the rerandomization – not be correlated with colorings learnt in other rounds. Note that if $V$ asked instead for colorings of three vertices, then the learned colorings could very well possess more information content. Namely, it isn't                                         | isomorphism or a Hamiltonian cycle in $G' \cong G$ . Since the graph isomorphism problem is believed to be hard, learning about such a cycle in $G'$ without learn- | Same argument as in the cell to the left.                                     | random $r$ or $x + r$ . In the latter case, however, since $r \sim \mathcal{U}(\mathbb{Z}_q)$ , we also have | $cx + r$ for a $c$ chosen by them. Due to DLOG assumed to be hard in $\mathbb{G}$ , in the eyes of $V$ we have $r \sim \mathcal{U}(\mathbb{Z}_q)$ and hence |

- 2 Here, v is effectively a sequence of edges, on which the isomorphism is applied elementwise.
- 3 Take for example HAMILTONIAN, 3-COL, or CLIQUE. From  $L \in \mathsf{NP}$  it follows that for every  $G \in L$  there is a certificate w for membership of length poly(|G|) that can be verified in poly(|G|) time.
- By graph-isomorphism invariance we demand that for  $G \cong G'$  witnessed by an isomorphim  $i: G \to G'$ , certificates w for  $G \in L$  can be transformed to certificates w' for  $G' \in L$ . We denote the latter by i[w]. 4 This is a simple lemma holding for arbitrary groups. The security of the OTP is based on this,
- usually phrased in the language of the group  $(\{0,1\}^n, \oplus)$ .

## Useful Links

- Sudoku (slightly different challenges are given, though)
  - https://manishearth.github.io/blog/2016/08/10/interactive-sudoku-zero-knowledge-proof/
  - https://manishearth.github.io/sudoku-zkp/zkp.html
- 3-COL: [GMW91]
- Hamiltonian Cycle: [Wik20b], originally due to [Blu86]
- Any "hard" Graph Property: sketched on my own; [Blu86] describes this, too
- Discrete Log (variant): [Wik20a]
- Discrete Log (Schnott variant)
  - Lecture Notes by Prof. Schröder on "Privacy-Preserving Cryptocurrencies" (currently non-public; only accessible to students enrolled in their course)
  - [Sch90]

## References

- Manuel Blum. "How to Prove a Theorem So No One Else Can Claim It". In: Proceedings of the International Congress of Mathematicians. Berkeley, California, USA: Almquist & Wiksell, 1986, pp. 1444–1451. URL: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.469.9048&rep=rep1&type=pdf.
- [GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. "Proofs That Yield Nothing but Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems". In: J. ACM 38.3 (July 1991), pp. 690–728. ISSN: 0004-5411. DOI: 10.1145/116825.116852. URL: https://doi.org/10.1145/116825.116852.
- C. P. Schnorr. "Efficient Identification and Signatures for Smart Cards". In: Advances in Cryptology CRYPTO' 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer New York, 1990, pp. 239–252. ISBN: 978-0-387-34805-6. [Sch 90]
- Wikipedia contributors. Zero-knowledge proofs (Discrete log of a given value) Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge\_proof&oldid=957331895#Discrete\_ [Wik20a] log\_of\_a\_given\_value.
- Wikipedia contributors. Zero-knowledge proofs (Hamiltonian cycle for a large graph)— Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge\_proof&oldid=957331895# [Wik20b] Hamiltonian\_cycle\_for\_a\_large\_graph.