

در اینجا با افزایش تعداد نخ ها به ۸ ، میزان overhead بیشتر از زمان محاسبات می شود. چون حجم محاسبات کم است

128*128	1 thread	2 threads	4 threads	8 threads
	0.010816	0.008971	0.004493	0.007615
	0.020489	0.014493	0.005919	0.007884
	0.023435	0.009613	0.007519	0.005299
	0.019563	0.012618	0.007516	0.004306
	0.027737	0.014369	0.006995	0.007364
	0.028016	0.014067	0.007467	0.006778
	0.028461	0.012697	0.007573	0.007236
	0.027151	0.014457	0.008213	0.003115
	0.027684	0.014054	0.007909	0.00525
	0.027841	0.014738	0.002955	0.003407
Average	0.024119	0.013008	0.006656	0.005825
	sec	sec	sec	sec

1 0.024119 2 0.013008

4 0.006656 8 0.005825

calculation time per number of threads

در اینجا افزایش تعداد نخ ها از ۴ به ۸ افزایش قابل ملاحظه ای در کارایی به وجود نمی آورد و تنها وقت پردازنده صرف **overhead** های ناشی از نخ های اضافه می شود

پس در این حالت نیز تنها ۴ نخ برای محاسبات کافی است.

128

1 0.142213

2 0.089262 4 0.04371

8 0.044457

calculation time per number of threads

در این حالت نیز مثل حالت قبل ممکن است برای ۴ و ۸ نخ مقادیر زمان صرف شده نزدیک به هم باشد. پس باز هم ۴ نخ کافی خواهد بود.

512*512	1 thread	2 threads	4 threads	8 threads
	0.911439	0.488989	0.222611	0.208865
	0.874398	0.428283	0.269243	0.212406
	0.916571	0.496361	0.395709	0.211628
	0.87067	0.510615	0.39989	0.211547
	0.83732	0.487643	0.224375	0.213852
	0.916439	0.431403	0.473763	0.255867
	0.935021	0.494385	0.233416	0.21099
	0.902766	0.511786	0.397476	0.211495
	0.849026	0.50093	0.225307	0.246809
	0.915232	0.472781	0.222081	0.248017
Average	0.892888	0.482318	0.306387	0.223148
	sec	sec	sec	sec

1 0.892888

2 0.482318

4 0.306387

8 0.223148

calculation time per number of threads

از این حالت به بعد با سنگین تر شدن محاسبات، وجود ۸ نخ تاثیر مثبت خود را نشان می دهد. البته speed up حاصل اط ۸ نخ برای ماتریس های ۵۱۲ تایی خیلی زیاد نیست.

512

1024*1024	1 thread	2 threads	4 threads	8 threads
	9.57191	4.561515	2.310196	2.188885
	9.675899	4.85921	2.393382	2.166379
	9.46823	4.760934	2.334367	2.173508
	9.461341	4.863726	2.449701	2.195609
	9.628691	4.84372	2.317895	2.202297
	9.527498	4.837622	2.313041	2.199797
	9.350195	4.787525	2.298817	2.138248
	9.497831	4.894487	2.358085	2.229367
	9.712412	4.825344	2.425856	2.216009
	9.68401	4.893461	2.418072	2.169596
Average	9.557802	4.812754	2.361941	2.18797
	sec	sec	sec	sec

9.557802
4.812754

4 2.361941 8 2.18797

calculation time per number of threads

1024

با دو برابر شدن ابعاد ماتریس ها زمان صرف شده برای محاسبات آن ها ده برابر می شود. این موضوع از طریق مقایسه عدد ها مشخص می شود. در اینجا مانند حالت ۵۱۲*۵۱۲ استفاده از ۸ نخ زیاد در بهبود زمان پاسخ موثر نیست چون همه ی هسته های سیستم را درگیر میکند اما حتی به میزان ۱.۵ برابر نیز gain نمی دهد.

108.6389
54.72402

4 28.27418 8 22.52891

calculation time per number of threads

توضيحات كاملا مشابه حالت قبل

2048*2048	1 thread	2 threads	4 threads	8 threads
	000 1171	500.207	055.7700	020 0205
	988.1171	500.306	255.7622	230.2325
	987.254	574.6027	258.8329	228.3161
	994.3047	539.1982	280.4317	231.0264
	996.1087	623.8232	262.6073	228.4637
	1008.598	557.0056	286.2518	233.8396
	1035.404	505.7855	276.9679	227.5177
	1009.734	507.8955	290.4678	228.3634
	1003.344	501.3734	308.3353	230.5777
	1009.807	502.6862	260.3585	232.0117
	1019.915	500.5306	263.1249	229.9145

Average

1005.259	531
sec	S

1 1005.259 2 531.3207

4 274.314 8 230.0263

31.3207	274.314	230.0263
sec	sec	sec

calculation time per number of threads

4096

در اینجا مشخص است که به علت حجم بسیار بالای محاسبات افزایش نخ ها تا ۸ عدد، در کاهش زمان محاسبات بسیار موثر است

تحلیل افزایش اندازه ماتریس ها

	64	128	256	512	1024	2048	4096
1	0.0033317	0.024119	0.142213	0.892888	9.557802	108.6389	1005.259
2	0.001788	0.013008	0.089262	0.482318	4.812754	54.72402	531.3207
4	0.000709	0.006656	0.04371	0.306387	2.361941	28.27418	274.314
8	0.000893	0.005825	0.044457	0.223148	2.18797	22.52891	230.0263

مقایسه کلی

در این قسمت می توان نمایی کلی از همه نتایج محاسبات را بدست آورد..

محاسباتی که در این فایل آورده شده اند به این گونه بوده که زمان اندازه گیری شده برابر تفاضل زمان ایجاد اولین نخ تا زمان پایان آخرین نخ می باشد.

همانطور که در نمودار قابل مشاهده است رابطه افزایش حجم ماتریس ها به زمان صرف شده لگاریتمی می باشد و تنها در حالت هایی که ماتریس ها کوچک باشند نمودار ها شکل طبیعی خود را از دست می دهند که این موضوع به دلیل کارایی منفی تعداد زیاد نخ ها است.

<u>نتایج کسب شده نشان می دهند:</u>

تا ثیر وجود ۸ نخ از این جهت زیاد نبوده که پردازنده استفاده شده ۴ هسته فیزیکی داشته و ۴ هسته دیگر منطقی بوده اند که این موضوع باعث می شود نتایج به نتایج ۴ نخ نزدیک باشد.

افزایش نخ ها از ۱ به ۲ و از ۲ به ۴ تقریبا باعث نصف شدن زمان محاسبه می گردند.

به ازای دو برابر شدن ابعاد ماتریس ها، زمان محاسبه حاصل ضرب آن ها ۱۰ برابر می شود.

با افزایش تعداد نخ ها در ماتریس های بزرگ تر کاهش زمانی از نصف کمی کمتر است. در حالی که در ماتریس های کوچک تر زمان محاسبات بیشتر از نصف کاهش می یابد. این موضوع نشان می دهد که با بزرگ شدن ماتریس ها cache miss به علت context switch بیشتر اتفاق می افتد که این در زمان محاسبات خود را نشان می دهد. (در این حالات overhead ناشی از context switch زیاد نیست – البته بجز حالت ۸ نخی–)

پس با زیاد شدن حجم ماتریس و همچنین با زیاد شدن تعداد نخ ها Cache miss افزایش می افتد و نقش Cache در کاهش زمان محاسبات کمرنگ تر می شود.