Математика.

О некоторых экстремальных прямых

Ипатова Виктория

ГБОУ «Химический лицей № 1303», город Москва

Научный руководитель: Привалов Александр Андреевич, МПГУ, доцент, к.ф.-м.н.

Аннотация.

Пусть имеется n точек $\{A_1, A_2, ..., A_n\}$ $(n \ge 2)$ на плоскости. Требуется

1. Найти на плоскости прямую l, с наименьшей суммой расстояний до этих точек, т.е. такую, что неравенство

$$\sum_{i=1}^{n} \rho(A_{i}, l) \leq \sum_{i=1}^{n} \rho(A_{i}, l_{1})$$

выполняется для любой прямой l_1 на плоскости.

2. Найти прямую l, наименее уклоняющуюся от этих точек, т.е. такую, что

$$\max_{1 \le i \le n} \rho(A_i, l) \le \max_{1 \le i \le n} \rho(A_i, l_1), \forall l_1,$$

где $\rho(A,l)$ – расстояние от точки A до прямой, l_1 – произвольная прямая на плоскости.

3. Найти прямую l, с наименьшей суммой квадратов расстояний до этих точек, т.е. такую, что неравенство

$$\sum_{i=1}^{n} \rho^{2}(A_{i}, l) \leq \sum_{i=1}^{n} \rho^{2}(A_{i}, l_{1})$$

выполняется для любой прямой l_1 .

Запишем уравнение произвольной прямой l:

$$ax + by + c = 0$$
,

Тогда расстояние от точки $A(x_0, y_0)$ до l равно:

$$\rho(A, l) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Для удобства, будем искать уравнение прямой в виде:

$$y\cos\alpha - x\sin\alpha + c = 0 \tag{1}$$

где α – угол образованной прямой с осью абсцисс (Оx), c – некоторое число и наши задачи сводятся к минимизации функций

$$S_{1} = S_{1}(\alpha, c) = \sum_{i=1}^{n} |y_{i} \cos \alpha - x_{i} \sin \alpha + c|,$$

$$S_{\infty} = S_{\infty}(\alpha, c) = \max_{1 \le i \le n} |y_{i} \cos \alpha - x_{i} \sin \alpha + c|,$$

$$S_{2} = S_{2}(\alpha, c) = \sum_{i=1}^{n} (y_{i} \cos \alpha - x_{i} \sin \alpha + c)^{2},$$
(*)

где (x_i, y_i) – координаты точек $A_i(x_i, y_i)$, i=1,...n.

def. *Норма* — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.

Очевидно, что функции (*) непрерывны по переменным α и c, поэтому задачи 1-3 имеют решения. Прямая l – решение первой задачи, является наименее уклоняющейся от точек $\{A_1, A_2, ..., A_n\}$ прямой в l_1 -метрике (по норме пространства l_1). Решением задачи 3 является прямая наименее уклоняющейся от точек $\{A_1, A_2, ..., A_n\}$ в l_2 -метрике (по норме пространства l_2 или евклидовой метрике). И, наконец, решение второй задачи — наименее уклоняющейся от точек $\{A_1, A_2, ..., A_n\}$ прямой в равномерной метрике (l_∞ -метрике или по норме пространства l_∞ или пространства m).

Напомним, $l_p(p \ge 1)$ – множество всех линейное пространство последовательностей

 $z=(z_1,\,z_2,\dots)$ с нормой $\|\,z\,\|_p=\left(\sum_j|\,z_j\,|^p\right)^{\frac{1}{p}}$, если $p=\infty$, то \boldsymbol{l}_∞ – множество всех ограниченных последовательностей – линейное пространство с нормой $\|\,z\,\|=\|\,z\,\|_\infty=\max_j\,|\,z_j\,|$ (равномерная норма) .

Рассмотрим 1 задачу

Гипотеза 1.

Среди любых различных точек $\{A_1, A_2, ..., A_n\}$ на плоскости существуют такие две точки, что для прямой l, проходящей через них, и любой другой прямой l_1 на плоскости, сумма расстояний от l до точек $\{A_1, A_2, ..., A_n\}$ не больше суммы расстояний от l_1 до точек $\{A_1, A_2, ..., A_n\}$, т.е.

$$\sum_{i=1}^{n} \rho(A_{i}, l) \leq \sum_{i=1}^{n} \rho(A_{i}, l_{1}), \forall l_{1}$$

Набросок доказательства:

Введем координаты точек $\{A_1, A_2, ..., A_n\}$: $A_i(x_i, y_i)$, i=1,...n. Тогда задача сводится к нахождению прямой l, при которой функция

$$S_1(\alpha, c, l) = \sum_{i=1}^n \rho(l, A_i) = \sum_{i=1}^n |y_i \cos \alpha - x_i \sin \alpha + c|$$
(2)

принимает минимальное значение. Эта функция двух переменных является непрерывной и ограниченной, значит, по теореме Вейерштрасса достигает своего минимального значения. То есть задача разрешима.

Пусть l – искомая прямая, т.е. $S_1(\alpha,c,l_1) \ge S_1(\alpha,c,l)$ (2) для любой прямой l_1 . Обозначим $S_1(\alpha,c,l) = S_0$

Докажем, что тогда прямая будет содержать по крайней мере одну точку из $\{A_1, A_2, ..., A_n\}$.

Введем систему координат так, чтобы ось абсцисс совпадала с прямой l, ось ординат вдоль нормали к прямой l и центр совпадал с точкой (x_1,y_1) . Очевидно, что некоторые из точек $\{A_1, A_2, ..., A_n\}$ лежат над прямой l, а некоторые под l (в противном случае l не наилучшая прямая).

$$S_0 = \sum_{i} y_i - \sum_{j} y_j$$
 (3)

где
$$\sum_{+}^{+} \mathcal{Y}_{i}$$
 сумма точек, лежащих выше координатной прямой, а $\sum_{-}^{-} \mathcal{Y}_{j}$ ниже

Предположим, что ни одна из точек $\{A_1, A_2, ..., A_n\}$ не лежит на l, т.е. на оси абсцисс. Докажем, что тогда наилучшее приближение S_0 можно уменьшить вращением прямой l вокруг начала координат (0,0):

$$\sum_{i=2}^{n} \rho(l, A_i) = \sum_{i=2}^{n} |y_i \cos \alpha - x_i \sin \alpha| = \cos \alpha (\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} y_i) - \sin \alpha (\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i) = S_0 \cos \alpha - S_1 \sin \alpha$$

Где $S_1 = \sum_+ x_i - \sum_- x_j$. Теперь, если S_I меньше нуля, то повернем l по часовой стрелки (α <0); если это выражение неотрицательно, то – против часовой стрелки (α >0); если же S_I =0, то крутим в любую сторону. Как не сложно видеть во всех случаях $S_1(\alpha,0)$ будет меньше S_0 . Неравенство (2) нарушится и следовательно прямая будет содержать по крайней мере одну точку из $\{A_1, A_2, ..., A_n\}$. Пусть это точка A_1 . Предположим, что l не содержит ни одной точки множества $\{A_2, ..., A_n\}$.

Введем систему координат с осью абсцисс, совпадающей с прямой l и началом в точке A_1 . Тогда в этой системе координат все точки $\{A_2, ..., A_n\}$ будут иметь не нулевые ординаты. Повторяя предыдущие рассуждения, докажем существования точки множества $\{A_2, ..., A_n\}$ и прямой l. Гипотеза доказана.

Рассуждая аналогично мы можем прийти к решению нашей второй задачи. А именно, доказать следующую гипотезу.

Задача 2

Гипотеза 2.

Среди любых различных точек $\{A_1, A_2, ..., A_n\}$ на плоскости существуют такие три точки A, B, C, что наименее уклоняющаяся от $\{A_1, A_2, ..., A_n\}$ прямая l такая, что

$$\max_{1 \le i \le n} \rho(A_i, l) \le \max_{1 \le i \le n} \rho(A_i, l_1), \forall l_1,$$

содержит среднюю линию треугольника АВС.

Набросок доказательства.

Пусть l — наилучшая прямая и

$$s_0 = \max_{1 \le i \le n} \rho(A_i, l) \le \max_{1 \le i \le n} \rho(A_i, l_1), \quad \forall l_1.$$
 (*1)

Для удобства изложения, представим себе, что эта прямая горизонтальная.

Понятно, что найдется точка, например, A_1 такая, что $s_0 = \rho(A_1,l)$. Если других таких точек не существует, т.е. $\rho(A_i,l) < s_0, \ i=2,3,...,n$, то небольшим параллельным сдвигом прямой l к точке A_1 получим прямую l_1 , не удовлетворяющую (*1). Значит существует две точки, пусть A_1 и A_2 такие, что $s_0 = \rho(A_1,l) = \rho(A_2,l)$. Если эти точки находятся по одну сторону от прямой и если при этом других таких точек не существует, то небольшим параллельным сдвигом прямой l к точке A_1 получим прямую l_1 , не удовлетворяющую (*1). Если эти точки находятся по разные стороны и если при этом других таких точек не существует, то небольшим поворотом вокруг точки $B = \frac{A_1 + A_2}{2}$, получим прямую l_1 , также не удовлетворяющую неравенству (*1). То же самое произойдет для трех точек (пусть A_1, A_2 и $A_3, s_0 = \rho(A_1,l) = \rho(A_2,l) = \rho(A_3,l)$ и $\rho(A_i,l) < s_0, \ i=3,...,n)$, из которых две $(A_1$ и A_2) лежат над (под) прямой l, а третья a_3 — под l и правее a_1 и a_2 (в этом случае поворот вокруг a_1 0 или a_2 1 или a_3 2 или a_4 3 на a_4 4 (в этом случае поворот вокруг a_1 4 или a_2 6 или a_2 6 на a_3 6 на a_4 7 или a_4 8 на a_4 9 на a_4 9

Следовательно, найдутся три точки, например, A_1 , A_2 и A_3 , что $s_0 = \rho(A_1, l) = \rho(A_2, l) = \rho(A_3, l)$ и расположены они попеременно над и под прямой l. Не сложно видеть, что эта прямая проходит через среднюю линию треугольника $A_1A_2A_3$. Гипотеза доказана.

Гипотеза 3.

Среди любых различных точек $\{A_1, A_2, ..., A_n\}$ на плоскости существует такая прямая l, что для любой другой прямой l_1 , сумма квадратов расстояний от l до точек $\{A_1, A_2, ..., A_n\}$ не больше суммы квадратов расстояний от l_1 до точек $\{A_1, A_2, ..., A_n\}$, т.е.

$$\sum_{i=1}^{n} \rho^{2}(A_{i}, l) \leq \sum_{i=1}^{n} \rho^{2}(A_{i}, l_{1}), \forall l_{1},$$

при этом $M \in l$, где M- центр масс $\left(\sum_{i=1}^n \overrightarrow{MA_i} = \overrightarrow{0}\right)$.

Набросок доказательства.

Поскольку функция $S(\alpha,c)$ непрерывно дифференцируемая функция, поэтому в точке минимума ее частные производные обращаются в ноль. Найдем производную по переменной c и, приравняв ее к нулю, получим:

$$\begin{cases} S(c)' = 0 \\ S(\alpha)' = 0 \end{cases} \Rightarrow 2\sum_{i=1}^{n} (y_i \cos \alpha - x_i \sin \alpha + c) = 0 \Leftrightarrow c = -\frac{\cos \alpha}{n} \sum y_i + \frac{\sin \alpha}{n} \sum x_i$$

Уравнение сводится к виду:

$$(y-y_c)\cos\alpha - (x-x_c)\sin\alpha + c = 0$$

где $x_c = \frac{1}{n} \sum_{i=1}^n x_i$ и $y_c = \frac{1}{n} \sum_{i=1}^n y_i$ координаты центра масс системы точек $\{A_1, A_2, ..., A_n\}$ с единичными массами.

Без потери общности, можно считать, начало координат совпадает с этим барицентром системы точек $\{A_1, A_2, ..., A_n\}$, тогда c=0,

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 0 \tag{4}$$

Кроме того, можно считать, что

$$\sum_{i=1}^{n} x_i y_i = 0 \tag{5}$$

В самом деле, если $\sum_{i=1}^n x_i y_i \neq 0$, то повернем нашу систему координат на некоторый угол β , тогда в новой системе Ox'y' координаты точек $\{A_1, A_2, ..., A_n\}$ будут иметь вид:

$$\begin{cases} x_i' = x_i \cos \beta - y_i \sin \beta \\ y_i' = x_i \sin \beta + y_i \cos \beta \end{cases}, i = 1,...n$$

Приравнивая к нулю сумму $\sum_{i=1}^{n} X_{i}' y_{i}'$, получим тригонометрическое уравнение:

$$0 = \sum_{i=1}^{n} x_i' y_i' = (\cos^2 \beta - \sin^2 \beta) \sum_{i=1}^{n} x_i y_i + \cos \beta \sin \beta \sum_{i=1}^{n} (x_i^2 - y_i^2),$$

$$ctg \, 2\beta = \left(\sum_{i=1}^{n} x_i y_i\right)^{-1} \sum_{i=1}^{n} (x_i^2 - y_i^2)$$

одним из решений которого и является β . Таким образом, можно считать, что условие (5) выполняется.

Наша задача сводится к исследованию на экстремум функции одной переменной $S(\alpha, 0)$:

$$S(\alpha,0) = \sum_{i=1}^{n} (y_i \cos \alpha - x_i \sin \alpha)^2$$

Отсюда и (5) имеем

$$S(\alpha,0) = \cos^2 \alpha \sum_{i=1}^n y_i^2 + \sin^2 \alpha \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i^2 + \sin^2 \alpha \sum_{i=1}^n (x_i^2 - y_i^2)$$

Заметим, что если $\sum_{i=1}^{n} (x_i^2 - y_i^2) = 0$, то функция $S(\alpha,0)$ тождественно равна константе.

Предположим, что

$$\sum_{i=1}^{n} x_i^2 > \sum_{i=1}^{n} y_i^2 \tag{6}$$

тогда получим окончательную оценку для $S(\alpha,0)$:

$$\sum_{i=1}^{n} y_i^2 \le S(\alpha, 0) \le \sum_{i=1}^{n} x_i^2 \tag{7}$$

где знаки равенства достигаются при $\alpha = 0$ и $\alpha = \frac{\pi}{2}$, т.е. прямая y=0 доставляет минимум функции $S(\alpha,0)$, а перпендикулярная ей прямая x=0 — максимум.

Таким образом, мы доказали, что прямая, обеспечивающая минимум суммы $\sum_{i=1}^{n} \rho^{2}(A_{i}, l)$ среди всех прямых l, проходит через центр масс системы точек $\{A_{1}, A_{2}, ..., A_{n}\}$ и может являться единственной такой прямой, при этом перпендикулярная ей прямая, проходящая через центр масс обеспечивает максимум этой суммы среди всех прямых, проходящая через центр масс; или для некоторых систем $\{A_{1}, A_{2}, ..., A_{n}\}$ прямой, обеспечивающей минимум суммы $\sum_{i=1}^{n} \rho^{2}(A_{i}, l)$ может быть любая прямая проходящая через центр масс $\{A_{1}, A_{2}, ..., A_{n}\}$.

Гипотеза доказана.

В связи с последним замечанием рассмотрим следующую задачу:

Пусть имеется n точек $\{A_1, A_2, ..., A_n\}$, (n > 2) на плоскости. Требуется найти такую точку $P(x_0, y_0)$, сумма квадратов расстояний от точек $\{A_1, A_2, ..., A_n\}$ до любой прямой будет постоянной (не зависящей от l) величиной.

Гипотеза 4.

Для любых точек $\{A_1,\ A_2,...,\ A_n\}$ на плоскости существуют точки $P_1,\ P_2$ плоскости (не обязательно различные) и число $C=C(A_1,...,\ A_n,\ P_1,\ P_2)$, такое что $\left|A_il\right|^2+...+\left|A_nl\right|^2=C$ для любой прямой l, проходящей через P_1 или P_2 .

Набросок доказательства.

Пусть $\{A_1, A_2, ..., A_n\}$ – множество точек на плоскости. Введем систему координат так, чтобы для координат точек A_i , i=1,...n, выполнялись условия (4) и (5).

Далее, пусть $P(x_0,y_0)$ – искомая точка, тогда сумма квадратов расстояний от точек $A_i(x_i,y_i)$, i=1,...n, до произвольной прямой, проходящей через P равно

$$S(\delta) = \sum_{i=1}^{n} ((x_i - x_0) \cos \delta + (y_i - y_0) \sin \delta)^2$$

Открывая скобки и пользуясь формулами: $2\sin\delta\cos\delta = \sin2\delta, 2\cos^2\delta = 1 + \cos2\delta$, и $2\sin^2\delta = 1 - \cos2\delta$, получаем:

$$S(\delta) = S_0 + S_1(\delta)$$

где S_0 – величина, не зависящая от δ :

$$S_0 = \frac{1}{2} \sum_{i=1}^{n} \left((x_i - x_0)^2 + (y_i - y_0)^2 \right),$$

а $S_1(\delta)$ – тригонометрический полином $F\cos 2\delta + G\sin 2\delta$ с коэффициентами:

$$F = \frac{1}{2} \left(\sum_{i=1}^{n} (x_i - x_0)^2 - \sum_{i=1}^{n} (y_i - y_0)^2 \right)$$
$$G = \sum_{i=1}^{n} (x_i - x_0)(y_i - y_0)$$

По условию задачи искомая точка $P(x_0,y_0)$ должна быть такой, чтобы функция $S(\delta)$ не зависела от δ . Ввиду независимости функций $\cos 2\delta$ и $\sin 2\delta$ величина $S_1(\delta)$ не будет зависеть от δ . только в том случае, когда F и G равны нулю. То есть приходим к системе из двух уравнений с двумя неизвестными x_0 и y_0 :

$$\begin{cases} F = 0 \\ G = 0 \end{cases}$$
 или
$$\begin{cases} \sum_{i=1}^{n} (x_i - x_0)^2 = \sum_{i=1}^{n} (y_i - y_0)^2 \\ \sum_{i=1}^{n} (x_i - x_0)(y_i - y_0) = 0 \end{cases}$$
 (8)

Пользуясь формулами (4) и (5) уравнения этой системы легко преобразовать, например, так

$$\sum_{i=1}^{n} (x_i - x_0)(y_i - y_0) = \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i y_0 - \sum_{i=1}^{n} y_i x_0 + \sum_{i=1}^{n} y_0 x_0 = n y_0 x_0$$

и в итоге получить систему

$$\begin{cases} \sum_{i=1}^{n} x_i^2 + nx_0^2 = \sum_{i=1}^{n} y_i^2 + ny_0^2 \\ x_0 y_0 = 0 \end{cases}$$
 (9)

Отсюда имеем:

- 1. Если $\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2$, то решением задачи будет единственная точка (0,0) центр масс системы $\{A_1,A_2,\ldots,A_n\}$.
- 2. Если $\sum_{i=1}^{n} x_{i}^{2} > \sum_{i=1}^{n} y_{i}^{2}$, то x_{0} =0 и из первого уравнения системы следует, что решением

задачи будут точки
$$P_{\scriptscriptstyle 1,2}\!\!\left(0,\pm\sqrt{rac{1}{n}\sum_{i=1}^n\left(x_i^2-y_i^2
ight)}
ight)$$
 или $P_{\scriptscriptstyle 1,2}\!\!\left(\pm\sqrt{rac{1}{n}\sum_{i=1}^n\left(y_i^2-x_i^2
ight)},0
ight)$ — в

противном случае. Очевидно, что эти точки симметричны относительно (0,0).

Из неравенств (6) и (7) в доказательстве гипотезы 3 следует, что прямая l, проходящая через точки P_1 и P_2 такова, что неравенство

$$\sum_{i=1}^{n} \rho^{2}(A_{i}, l) \geq \sum_{i=1}^{n} \rho^{2}(A_{i}, l_{1})$$

выполняется для всех прямых l_1 , проходящих через центр масс системы точек $\{A_1, A_2, \ldots, A_n\}$.

Гипотеза доказана.

Рассмотрим задачу о том как могут располагаться точки $\{A_1, A_2, ..., A_n\}$ плоскости относительно друг друга. Для этого приведем следующую полезную лемму, доказательство которой следует из системы (8):

Лемма.

Точка $P(x_0, y_0)$ является решением задачи для точки $A_1(x_1, y_1), A_2(x_2, y_2), ..., A_n(x_n, y_n)$

в том и только в том случае, если векторы

$$m{f} = egin{pmatrix} x_1 - x_0 \\ x_2 - x_0 \\ \dots \\ x_n - x_0 \end{pmatrix}$$
 и $m{g} = egin{pmatrix} y_1 - y_0 \\ y_2 - y_0 \\ \dots \\ y_n - y_0 \end{pmatrix}$ ортогональны и имеют равные длины.

Из леммы следует, что если точки $\{A_1, A_2, ..., A_n\}$ являются вершинами правильного многоугольника, то решением задачи будет центр масс этих точек. Тогда можно считать, что точки $\{A_1, A_2, ..., A_n\}$ имеют координаты:

$$A_{j+1}\left(\cos\left(\frac{2\pi j}{n}\right),\sin\left(\frac{2\pi j}{n}\right)\right), \quad j=0,1,...,n-1. \text{ Тогда, т.к. при } n>2$$

$$\sum_{j=0}^{n-1}e^{\frac{4\pi i j}{n}}=\sum_{j=0}^{n-1}\cos\left(\frac{4\pi j}{n}\right)+i\sum_{j=0}^{n-1}\sin\left(\frac{4\pi j}{n}\right)=0 \quad (i-\text{мнимая единица}), \text{ то}$$

$$\sum_{j=0}^{n-1}\cos^2\left(\frac{2\pi j}{n}\right)=\frac{n}{2}+\frac{1}{2}\sum_{j=0}^{n-1}\cos\left(\frac{4\pi j}{n}\right)=\frac{n}{2}, \quad \sum_{j=0}^{n-1}\sin^2\left(\frac{2\pi j}{n}\right)=\frac{n}{2}-\frac{1}{2}\sum_{j=0}^{n-1}\cos\left(\frac{4\pi j}{n}\right)=\frac{n}{2}$$

$$\sum_{j=0}^{n-1}\cos\left(\frac{2\pi j}{n}\right)\sin\left(\frac{2\pi j}{n}\right)=\frac{1}{2}\sum_{j=0}^{n-1}\sin\left(\frac{4\pi j}{n}\right)=0$$

Отсюда и леммы следует, что P(0,0) – решение задачи.

В случае n=3 верно и обратное утверждение.

Гипотеза 5.

Если в гипотезе 4 для точек A_1 , A_2 , A_3 точки P_1 и P_2 совпадают (P_1 = P_2), то треугольник $A_1A_2A_3$ правильный.

Набросок доказательства.

Введем систему координат Оху так, чтобы точка P(0,0) была решением задачи для точек A, B, C. Пусть $A(x_1,y_1)$, $B(x_2,y_2)$ и $C(x_3,y_3)$ – вершины треугольника ABC.

Так как
$$P(0,0)$$
 – решение задачи, то в силу леммы векторы $\boldsymbol{f} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ и $\boldsymbol{g} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$

перпендикулярны и имеют равные длины.

Так как P(0,0) точек A, B, C, то $x_1+x_2+x_3=y_1+y_2+y_3=0$, значит векторы \boldsymbol{f} и \boldsymbol{g}

перпендикулярны вектору
$$\mathbf{\emph{e}} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 ($\mathbf{\emph{fe}} = 0$ и т.к. $\mathbf{\emph{ge}} = 0$) т.е. координаты векторов $\mathbf{\emph{f}}$ и $\mathbf{\emph{g}}$ лежат в

плоскости x+y+z=0. Найдем все такие векторы.

Выберем два произвольных ортогональных вектора e_1, e_2 с равными длинами и

перпендикулярными вектору
$$e$$
, например, $e_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ и $e_2 = \begin{pmatrix} \sqrt{3} \\ -\sqrt{3} \\ 0 \end{pmatrix}$

Матрицей перехода от стандартного базиса (i, j, k) трехмерного пространства к ортогональному базису (e_1, e_2, e) является матрица

$$\Psi = \begin{pmatrix} 1 & \sqrt{3} & 1 \\ 1 & -\sqrt{3} & 1 \\ -2 & 0 & 1 \end{pmatrix} \tag{10}$$

Семейство ортогональных единичных векторов
$$\boldsymbol{a} = \begin{pmatrix} \cos t \\ \sin t \\ 0 \end{pmatrix}$$
 и $\boldsymbol{b} = \begin{pmatrix} -\sin t \\ \cos t \\ 0 \end{pmatrix}$, где $(0 \le t \le 2\pi)$,

описывает все пары векторов перпендикулярных вектору k. Поэтому (с точностью до множителя) семейство искомых векторов f и g находим с помощью матрицы (10)

$$f = \Psi \boldsymbol{a} = \begin{pmatrix} \cos t + \sqrt{3} \sin t \\ \cos t - \sqrt{3} \sin t \\ -2 \cos t \end{pmatrix} = 2 \begin{pmatrix} \cos \left(t - \frac{\pi}{3}\right) \\ \cos \left(t + \frac{\pi}{3}\right) \\ -\cos t \end{pmatrix} \quad \text{if } \boldsymbol{g} = \Psi \boldsymbol{b} = 2 \begin{pmatrix} \cos \left(t + \frac{\pi}{6}\right) \\ -\cos \left(t - \frac{\pi}{6}\right) \\ \sin t \end{pmatrix}$$

Отсюда и леммы координаты вершин треугольника АВС можно принять как

$$A\left(\cos\left(t-\frac{\pi}{3}\right),\cos\left(t+\frac{\pi}{6}\right)\right), \ B\left(\cos\left(t+\frac{\pi}{3}\right),-\cos\left(t-\frac{\pi}{6}\right)\right), \ \text{if} \ C\left(-\cos t,\sin t\right)$$

Найдем длины сторон этого треугольника:

$$|AB|^{2} = \left(\cos\left(t - \frac{\pi}{3}\right) - \cos\left(t + \frac{\pi}{3}\right)\right)^{2} + \left(\cos\left(t + \frac{\pi}{6}\right) + \cos\left(t - \frac{\pi}{6}\right)\right)^{2} = 4\sin^{2}t\sin^{2}\frac{\pi}{3} + 4\cos^{2}t\cos^{2}\frac{\pi}{6} = 3$$

$$|AC|^{2} = \left(\cos\left(t - \frac{\pi}{3}\right) + \cos t\right)^{2} + \left(\cos\left(t + \frac{\pi}{6}\right) - \sin t\right)^{2} = 4\cos^{2}\left(t - \frac{\pi}{6}\right)\cos^{2}\frac{\pi}{6} + \left(\sin\left(t - \frac{\pi}{3}\right) + \sin t\right)^{2} = 4\cos^{2}\left(t - \frac{\pi}{6}\right)\cos^{2}\frac{\pi}{6} + 4\sin^{2}\left(t - \frac{\pi}{6}\right)\cos^{2}\frac{\pi}{6} = 3$$

Аналогично, $|BC| = \sqrt{3}$, т.е. треугольник ABC равносторонний.

Далее, очевидно, что любая другая пара f, g перпендикулярных векторов с длинами равными $\sqrt{3}$ и ортогональными вектору e, получаются из векторов e_1 , e_2 поворотом на некоторый α , т.е. $f = e_1 \cos \alpha - e_2 \sin \alpha$ и $g = e_1 \sin \alpha + e_2 \cos \alpha$. Но, тогда легко видеть, что координаты новых трех вершин, полученных из координат векторов f и g будут также получаться из координат вершин A, B, C поворотом на этот же угол α , т.е. образуют равносторонний треугольник.

Гипотеза доказана.

Заметим, что гипотеза не обобщается на случай n>3. В самом деле, векторы

$$m{e}_1 = egin{pmatrix} \sqrt{6} \\ -\sqrt{6} \\ 0 \\ 0 \end{pmatrix}, \ m{e}_2 = egin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ -2\sqrt{2} \\ 0 \end{pmatrix}$$
 и $m{e}_3 = egin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$. Поэтому, в силу леммы, точка $P(0,0)$ – решения

задачи, например, для следующих наборов точек: $A_1(\sqrt{6},\sqrt{2})$, $A_2(-\sqrt{6},\sqrt{2})$, $A_3(0,-2\sqrt{2})$, $A_4(0,0)$ и $A_1(\sqrt{6},1)$, $A_2(-\sqrt{6},1)$, $A_3(0,1)$, $A_4(0,-3)$. Но, точки ни одного из этих наборов не образуют правильный четырехугольник, хотя и интересны.

Отметим, что прямые l из гипотез 3 и 4 – это хорошо известная в механике и геометрии *ось* инерции, а суммы $\sum_{i=1}^{n} x_i y_i$ называют моментами инерции.

Литература

- [1] Препарата Ф., Шеймос М., Вычислительная геометрия: Введение, М.: Мир, 1989
- [2] Рудин У., Основы математического анализа, М.: Мир, 1966
- [3] Тарг С. М. Краткий курс теоретической механики: Учебник для вузов.— 10-е изд., перераб. и доп. М.: Высш. шк., 1986