Predicting Body Fat

Percentage body fat (underwater) is often looked at by health professionals as an indicator of an individual's health. Although, it is a useful data point, calculating (underwater) percentage bodyfat is expensive and often inconvenient. As such, it would be useful to create a model to predict (underwater) percentage bodyfat. Using Ordinary Least Squares (OLS) and two different Neural Network Models; one basic and one more complex, I will analyze a dataset that contains various body circumference measurements. After determining which of the models is most accurate, I will use it to make a prediction for the (underwater) percentage bodyfat for a sample individual.

The first step was to run an Ordinary Least Squares (OLS) model with the Y-variable being Percent Bodyfat.

Ordinary Least Squares (OLS)

Source	RSquare	RASE	Freq
Training Set	0.7206	4.1208	151
Validation Set	0.8063	4.1121	50
Test Set	0.6657	5.1177	51

As can be seen in the table above, the results of the model were accurate on all the data and represented a 0.6657 R-Square on the Test Dataset.

After running an OLS model as a base model to compare other models to, the next model I decided to run was the default basic Neural Network model with 20 tours. The result is a slightly less accurate model with an R-Square value of 0.5987.

Neural Network: Basic

Measures	Value
RSquare	0.5986669
RMSE	5.6073595
Mean Abs Dev	4.4563325
-LogLikelihood	160.29394
SSE	1603.5665
Sum Freq	51

After running an OLS and a default Neural Network model, my next step was to run a more Complex Neural Network model, again using 20 tours. In doing so I had two layers and three nodes for all three activation functions.

Neural Network: Complex

Measures	Value
Rsquare	0.5009456
RMSE	6.2528766
Mean Abs Dev	4.6897406
-LogLikelihood	165.85099
SSE	1994.0218
Sum Freg	51

Again, the result is an accurate model with an R-square of 0.5009; but it is slightly less accurate than the Basic Neural Network Model and far less accurate than the OLS model.

Although, just from comparing the R-square values for the two models I can be confident which model is a stronger predictor, I will still do a model comparison to confirm.

Model Comparison

Validation	Predictor	Creator	RSquare	RASE	AAE	Freq
Training	Predicted Percent body fat NN Basic	Neural	0.7798	3.6582	2.9368	151
Training	Predicted Percent body fat NN Complex	Neural	0.7680	3.7557	2.9650	151
Training	Pred Formula Percent body fat OLS	Fit Least Squares	0.7206	4.1208	3.3320	151
Validation	Predicted Percent body fat NN Basic	Neural	0.8368	3.7735	3.0090	50
Validation	Predicted Percent body fat NN Complex	Neural	0.8298	3.8545	2.9443	50
Validation	Pred Formula Percent body fat OLS	Fit Least Squares	0.8063	4.1121	3.5172	50
Test	Predicted Percent body fat NN Basic	Neural	0.5987	5.6074	4.4563	51
Test	Predicted Percent body fat NN Complex	Neural	0.5009	6.2529	4.6897	51
Test	Pred Formula Percent body fat OLS	Fit Least Squares	0.6657	5.1177	4.0480	51

As can be seen in the table above, the "Ordinary Least Squares" model has a much larger R-square when looking at the "Test" data. Not only does this model have a higher R-Square as compared to the Basic and Complex Neural Network, it also has a lower AAE, again suggesting that it is a stronger model. Knowing that the OLS model is the most, it is next important to look at which variables had the biggest influence on the model. Outside of JMP, this is a very difficult task as it is hard to make a connection between variables as can be seen in the table below.

JMP offers an ability to better analyze which variables have the strongest impact on the model known as profilers. In looking at the Basic Neural Network "Variable Profilers" table below, it is obvious that "Abdomen Circumference" is the variable that has the highest impact on the percentage of bodyfat. This makes logical sense in that if you imagine an individual with a larger abdomen circumference, it is likely that they have extra bodyfat.

Variable Profilers

Column	Main Effect	Total Effect
Abdomen circumference (cm)	0.799	0.868
Weight (lbs)	0.028	0.047
Height (inches)	0.024	0.043
Chest circumference (cm)	0.026	0.043
Hip circumference (cm)	0.015	0.029
Thigh circumference (cm)	0.009	0.016
Age (years)	0.007	0.014
Wrist circumference (cm)	0.007	0.014
Neck circumference (cm)	0.005	0.01
Biceps (extended) circumference (cm)	0.003	0.006
Forearm circumference (cm)	0.003	0.005
Knee circumference (cm)	0.002	0.004
Ankle circumference (cm)	0.002	0.003

In analyzing the graphs of the variable profilers below, it is also clear that "Abdomen Circumference" has the highest correlation with bodyfat.

After determining the most accurate model, as well as analyze which variables had the strongest impact on the equation, I then used that model to predict the (underwater) percent bodyfat of a sample individual with the following measurements:

Neck circumference (cm)= 38.8

Chest circumference (cm)=100.4

Abdomen circumference (cm)=89

Hip circumference (cm)= 93.2

Thigh circumference (cm)= 57.0

Knee circumference (cm)=34.8

Ankle circumference (cm)= 20.6

Biceps (extended) circumference (cm)= 33.9

Forearm circumference (cm)= 28.3

Wrist circumference (cm)= 18.0

The most accurate model, the OLS model, predicted an (underwater) Percentage Bodyfat of 17.8139%. The Basic Neural Network Model predicted the (underwater) percentage bodyfat to be 20.862390809%. The Complex Neural Network Model, which was slightly less accurate, predicted a lower (underwater) percentage bodyfat of 18.804416815%.