UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

PAUTA EVALUACIÓN DE RECUPERACIÓN, ÁLGEBRA Y ÁLGEBRA LINEAL, 520142.

(1) Dado el sistema:

$$\begin{array}{rcl}
x + 2y - z & = & k_1 \\
2x - y - 3z & = & k_2 \\
x - 3y - 2z & = & k_3
\end{array}$$

Determine una relación entre los parámetros k_1 , k_2 y k_3 de modo que el sistema sea compatible.

Solución

$$\begin{pmatrix} 1 & 2 & -1 & k_1 \\ 2 & -1 & -3 & k_2 \\ 1 & -3 & -2 & k_3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & k_1 \\ 0 & -5 & -1 & k_2 - 2k_1 \\ 0 & -5 & -1 & k_3 - k_1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & k_1 \\ 0 & -5 & -1 & k_2 - 2k_1 \\ 0 & 0 & 0 & k_1 - k_2 + k_3 \end{pmatrix}$$

10 puntos

Luego el sistema es compatible si

$$k_1 + k_3 - k_2 = 0$$
 o bien $k_2 = k_1 + k_3$.

5 puntos

(2) Dadas las siguientes rectas en \mathbb{R}^3 :

$$\mathcal{L}_1 = \{(x, y, z) : x = 0 \land z = 2\}$$
 y $\mathcal{L}_2 = \{(x, y, z) : 1 - x = y \land z = 0\}$

- (2.1) Determine la forma paramétrica de \mathcal{L}_1 y \mathcal{L}_2 .
- (2.2) Determine un vector \mathbf{v} perpendicular a ambas rectas.
- (2.3) Sea $A_1 = (0,1,2) \in \mathcal{L}_1$ y $A_2 = (0,1,0) \in \mathcal{L}_2$. Sabiendo que la norma de la proyección de $\overrightarrow{A_2A_1}$ sobre \boldsymbol{v} es igual a la distancia entre \mathcal{L}_1 y \mathcal{L}_2 , calcule dicha distancia.

Solución

(2.1) El único valor libre de \mathcal{L}_1 es y entonces lo tomamos como parámetro. Así, las ecuaciones paramétricas son: x = 0, y = t, z = 2, de donde:

$$\mathcal{L}_1 = \{(0,0,2) + y(0,1,0) : t \in \mathbb{R}\}\$$

3 puntos

Tomando y como parámetro en \mathcal{L}_2 , tenemos que las ecuaciones paramétricas son y = t, x = 1 - y = 1 - t, z = 0, de donde:

$$\mathcal{L}_2 = \{(1,0,0) + t(-1,1,0) : t \in \mathbb{R}\}\$$

4 puntos

2.2 Un vector perpendicular a ambas rectas se obtiene haciendo el producto cruz entre sus vectores directores, así v = (0, 0, 1) es perpendicular a \mathcal{L}_1 y \mathcal{L}_2 . También podemos obtener v simplemente observando que los vectores directores de ambas rectas tienen la tercera coordenada nula, lo que significa que son perpendiculares al eje \mathbb{Z} .

6 puntos

2.3 $\overrightarrow{A_2A_1} = A_1 - A_2 = (0,0,2)$ es paralelo a v entonces su proyección sobre v es el mismo: $\overrightarrow{A_2A_1} = (0,0,2)$. Su norma es 2, luego la distancia entre \mathcal{L}_1 y \mathcal{L}_2 es 2.

7 puntos

- (3) En este problema usted debe determinar si las siguientes afirmaciones son verdaderas o falsas. En cada caso usted debe justificar su respuesta.
 - (3.1) Existen V_1 y V_2 dos subespacios de \mathbb{R}^4 que verifican

$$\dim(V_1) = 2$$
, $\dim(V_2) = 3$ y $\dim(V_1 \cap V_2) = 0$.

Solución FALSO. Pues por teorema de clases se tiene que

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

de donde $V_1 + V_2$ sería un subespacio de \mathbb{R}^4 de dimensión igual a 5.

3 puntos

(3.2) Todo subconjunto de \mathbb{R}^6 que contiene siete vectores distintos es linealmente dependiente.

Solución <u>VERDADERO</u>. Por teorema, la cardinalidad de todo conjunto linealmente independiente de \mathbb{R}^6 es menor o igual a la cardinalidad de una base de \mathbb{R}^6 (que es igual a 6).

3 puntos

(3.3) Las coordenadas del polinomio p(x) = 1 + x con respecto a la base $B = \{1, 2x + x^2, x^2 + 1\}$ de $\mathcal{P}_2(\mathbb{R})$ están dadas por el vector (1, 1, 0).

Solución FALSO De ser cierto se tendría que:

$$1 + x = 1 \cdot 1 + 1 \cdot (2x + x^{2}) + 0 \cdot (x^{2} + 1) = 1 + 2x + x^{2}.$$

lo que es falso.

4 puntos

(3.4) Sea V un espacio vectorial real y sean U_1 y U_2 dos subespacios de V tales que $V = U_1 \oplus U_2$. No existen vectores $u_1 \in U_1$ y $u_2 \in U_2$, no nulos, tales que $u_1 + u_2 = \theta_V$.

Solución <u>VERDADERO</u> Se sabe que $\theta_V = \theta_V + \theta_V$ con $\theta_V \in U_1$ y $\theta_V \in U_2$. Como $V = U_1 \oplus U_2$ se sabe que esta descomposición es única.

4 puntos

(3.5) Se tiene que $\{p(x) \in \mathcal{P}_3(\mathbb{R}) : xp'(x) = p(x)\} = \langle \{x\} \rangle$.

Solución <u>VERDADERO</u> Sea $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathcal{P}_3(\mathbb{R})$ entonces $p'(x) = a_1 + 2a_2x + 3a_3x^2$. Así se tiene que si p(x) = xp'(x) entonces $a_0 = 0$, $a_1 \in \mathbb{R}$, $a_2 = 0$ y $a_3 = 0$. Luego

$$\{p(x) \in \mathcal{P}_3(\mathbb{R}) : xp'(x) = p(x)\} = \langle \{x\} \rangle.$$

4 puntos

(3.6) Sea $S = \langle \{(1,0,1), (1,1,-1), (2,1,0)\} \rangle$ subespacio vectorial de \mathbb{R}^3 . Se tiene que $S^{\perp} = \{\theta_{\mathbb{R}^3}\}.$

Solución FALSO Se tiene que $S = \langle \{(1,0,1), (1,1,-1)\} \rangle$ puesto que

$$(2,1,0) = (1,0,1) + (1,1,-1),$$

luego $\dim(S) = 2$ de donde $\dim(S^{\perp}) = 1$.

4 puntos

(3.7) El conjunto $W = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}) : A \text{ es invertible}\}$ es un subespacio vectorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$. Solución FALSO W no es un subespacio vectorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$ puesto que la matriz nula, el elemento nulo de $\mathcal{M}_{2\times 2}(\mathbb{R})$, no pertenece a W pues ella no es invertible.

3 puntos

3/diciembre/2003.

RAD/FCHH/AGS/LNB/ags.