Architettura degli Elaboratori – II sem. AA 2018-19 Prova scritta – canale H-Z – Appello del 07.02.2020

Cognon	ne	Nome	Nome			matr. N86			
	maiuscolo stampatello		maiuscolo stampatello		solo le ultime 4 cifre				
	codice esame	2→ 01570 (12	2 CFU) 🗌		U2322	(9 CFU)			
			Es	ionero SI	<u> </u>	voto			
Per es	sere ammessi all'or	ale senza riserva o	occorre supera	are I e II par	te con ui	1 voto >:	<u>= 18</u>		
		I parte (3 p	ounti ma	x per q	uesit	:o)			
1- Si	rappresenti in form					,			
Bi	it 31 30-	23 22	216	15	·8 7-	·	-0		
	Segno espor	ente (8bit)	 m a n	t i s s	s a (2	23 bit)			
2- Si rappresenti in decimale il numero in formato IEEE754 a 32bit, di seguito rappresentato in esadecimale:									
	0xc244000	0 →		(in dec	imale)				
gı	rappresenti in binar rande avendo a disp alore in decimale	-			•				
			→						
	msb	lsb	decimale	con segno					
da	operazione di somm à origine a condizior	i di errore ? Spiega	are:		•				
			•••••		••••••		••••••		

5- Si scriva la forma duale della funzione F(A,B,C) = (A or B) and C in forma canonica SOP

indicando i mintermini presenti (ad esempio: $F_{duale} = m_2 + m_3$).

Note:

- si indica con A* il complemento di A, con B* il compl. di B, con C* il compl. di C
- si assuma $m_0 = A^* B^*C^*$, $m_1 = A^* B^*C$, ...

F_{duale} =

6- Un multiplexer 4:1 ha i due bit di selezione pilotati dai letterali A, B e sugli ingressi costanti booleane ed espressioni booleane in cui compaiono i letterali C e D:

$$i_{A*B*}=1$$
, $i_{A*B}=(C \text{ xor D})$, $i_{AB*}=1$, $i_{AB}=(C*D*)$

Scrivere in forma canonica POS la funzione F(A,B,C,D) generata dal multiplexer.

- 7- Data la funzione **F(A,B,C) = (AB)+C***, si determini la funzione **G** tale che: F+G=1 e FG=0 -> G(A,B,C,D) = _____
- 8- Si scriva in forma di mappa di Karnaugh la funzione G(A,B,C,D) tale che $(F \times G) = m1 + m2 + m3$. Si scriva poi la funzione G minimizzata, indicando i ricoprimenti sulla mappa.

		F(A,B,C,D)	G(A,B,C,D)	
		CD	CD	
		00 01 11 10	00 01 11 10	G(A,B,C,D) =
	00	1 1 1 1		(forma minima)
ΑB	01	0 0 1 0		
	11	0 1 0 1		
	10	1 0 0 0		

9- Un automa di Moore possiede cinque stati (S0, S1, S2, S3, S4), un ingresso e una uscita. Supponendo di usare 3 flip-flops D per codificare lo stato, quanti sono gli stati inutilizzati? A partire da un qualunque dei suoi cinque stati, quanti stati diversi da quello di partenza puo', al piu', raggiungere ? Spiegare.

10- l'automa a stati finiti riportato di fianco e' inizializzato nello stato S1. Indicare lo stato assunto al ventesimo ciclo di clock

Il parte (10 punti max per quesito)

1- Il datapath di un processore con architettura multicycle impiega 5 colpi di clock (t0,1,2,3,4) per eseguire una istruzione. Si assuma che un operando dell'ALU sia caricato in R4 al tempo t2 e l'altro operando sia caricato in R5 al tempo t3. R4 e R5 sono FF di tipo D positive edge triggered. Si progetti un automa di Moore che piloti CE4 (clock enable di R4) e CE5 (clock enable di R5):

a) si tracci l'evoluzione temporale dei segnali CE4 e CE5 e si completi il bubble diagram;

b) si calcolino le funzioni di prossimo stato e di uscita:

Funzioni di prossimo stato:

 $Q_{0next} = F_0(Q_2, Q_1, Q_0) =$

 $Q_{1\text{next}} = F_1(Q_2, Q_1, Q_0) =$

 $Q_{2next} = F_2(Q_2, Q_1, Q_0) =$

Funzioni di uscita:

 $CE4 = G_0(Q_2, Q_1, Q_0) = \underline{\hspace{1cm}}$

CE5 = $G_1(Q_2,Q_1,Q_0) =$ _____

2- Indicare in binario il contenuto del registro R2 dopo l'esecuzione di questo programma

 3- Un sistema a 24 bit dotato di memoria virtuale dispone di una TLB di 4 locazioni e di una tabella dei numeri di pagina. TLB (a sinistra) e tabella (a destra) sono inizializzati come mostrato in figura: bit di validità 1 11111001 0 11111000 1 bit di 1 Numero di pagina validità Numero di pagina virtuale fisica 0 1 0000000000000010 10000000 11111111 1 3 0000000000000011 1 111111111 00000000 1 0 000000000001000 11000000 0 11100000 0 0000000000001111 0 0 a) Quante locazioni contiene la Tabella dei numeri di pagina? -> b) Supponendo che vengano generati i tre indirizzi virtuali seguenti (a 24 bit): (1) 00000000 00000011 00000000 (2) 00000000 00000000 00000010 (3) 11111111 11111111 10000000 Indicare per ciascuno di essi il relativo indirizzo fisico, se disponibile, oppure il meccanismo di page fault: (2): _____