IN THE SPECIFICATION:

Please replace paragraph 112 on pages 43-44 with the following:

Referring to Fig. 16A, a dispenser 1' is shown in a condition where web material 203 has been fed from a stub roll 204 through a feed mechanism formed by a feed roller 33', a pinch roller 35', a middle chassis member 9' and a face plate structure 43'. A reserve roll mounted in an upper pair of supports (not shown) has a leading portion of sheet material 18' hanging down in front of a feed nip 37'. Pivotally mounted transfer bar 200 is spring loaded rearwardly by spring 201, which is braced against an inside front surface of closed cover 13'. Transfer bar 200 is held in a set position by a pivotally mounted transfer link 205. Transfer link 205 is biased to its most counter-clockwise position by a tension spring 207. The pivotal motion of transfer link 205 is limited in both directions by pins 209, 211. When the web 203 from stub roll-207_204 is completely depleted, the dispenser control system senses this (in a manner as has been described), and power is applied to transfer motor 199.

Please replace paragraph
$$\frac{123}{123}$$
 on page 47 with the following:

Referring to Fig. 20, dispenser 1 preferably includes, as a sheet request switch/sensor 237249, a proximity sensing system for detecting the presence of a user's hands or the like as they approach the front of dispenser 1. As generally described in application Serial No. 09/081,637, the sensor may be of any suitable type, and preferably is a non-contact sensor such as a capacitive or IR sensor. In the illustrated preferred embodiment, a proximity sensor antenna plate 239 (see, e.g., Figs. 11-12) is driven by an oscillator circuit. The oscillator circuit is coupled with microprocessor 115, which detects the presence of a user's hand based upon a voltage related to the amplitude of the oscillations. Microprocessor 115 activates motor 49 when a hand is detected, so as to drive feed roller 33 and thereby dispense a length of the material.