HOMEWORK #6 SOLUTION

Yihua Guo (yhguo@umich.edu), Qi Chen (alfchen@umich.edu), Tianyi Ma (mtianyi@umich.edu)

1. Exercise 6.1 Illustrate local sensitivity analysis

Problem: Make an original example to illustrate the local-analysis concepts of this chapter.

Solution: Consider the standard-form problem (P_b) with m=3 and n=5

$$\begin{array}{rcl}
f(b) & := & \min & c'x \\
Ax & = & b; \\
x & \ge & \mathbf{0},
\end{array}$$

where

$$A := \begin{pmatrix} 1 & -1 & 0 & -1 & 0 \\ 0 & -4 & 2 & 2 & 0 \\ 0 & -9 & 0 & 6 & 3 \end{pmatrix} , \quad b := (1, 2, 18)' , \quad c := (16, 7, 20, 10, 4)' .$$

Consider a fixed basis $\beta = \{1, 4, 5\}$ for (P_b) . Associated with that basis is the basic solution $\bar{x}_{\beta} = A_{\beta}^{-1}b = (2, 1, 4)'$ and the corresponding dual solution $\bar{y}' = c'_{\beta}A_{\beta}^{-1} = (16, 9, 4/3)$, which is feasible for the dual of (P_b) . We have

$$f(b) = \bar{y}'b = 16b_1 + 9b_2 + (4/3)b_3,$$

for $b \in \mathcal{B}$ where $\mathcal{B} \subset \mathbb{R}^m$ is the solution set of m linear inequalities (more details below). We have

$$\frac{\partial f}{\partial b_i} = \bar{y}_i, \ i = 1, ..., m.$$

The \mathcal{B} represents that the change to a single right-hand side element b_i should keep $\bar{b}_i > 0$ for i = 1, ..., m. Let the right hand change be $b + \Delta_i e^i$. Then $A_{\beta}^{-1}(b + \Delta_i e^i) \geq \mathbf{0}$. Let $h^i := A_{\beta}^{-1}e^i$. This means that Δ_i must be in the interval $[L_i, U_i]$, where

$$L_i := \max_{k:h_k^i>0} -\bar{b}_k/h_k^i$$

, and

$$U_i := \min_{k: h_k^i < 0} -\bar{b}_k/h_k^i$$

We can confirm through AMPL that $\Delta_1 \in [-2, +\infty)$, $\Delta_2 \in [-2, 4]$, and $\Delta_3 \in [-12, +\infty)$ (consistent with Table 1).

Next, we define a function $g: \mathbb{R}^n \to \mathbb{R}$ via

$$\begin{array}{rclcrcl} g(c) &:= & \min & c'x \\ & & Ax &= & b \; ; \\ & & x &\geq & \mathbf{0} \; , \end{array}$$

with the same parameters. Consider a fixed basis $\beta = \{1, 4, 5\}$ for (P^c) . Similarly, we have $g(c) = c'_{\beta}\bar{x}_{\beta} = 2c_1 + c_4 + 4c_5$, which is a linear function on $c \in \mathcal{C}$. If only changing a single c_i and the optimal basis keeps, the interval of c_i are: $c_1 \in [-23/3, 18], c_2 \in [-64, +\infty), c_3 \in [18, +\infty), c_4 \in [-25.5, 12],$ and $c_5 \in [3, 75]$.

Date: March 26, 2014.

2. Exercise 6.2 Illustrate global sensitivity analysis

Problem: Using AMPL, make an original example, with at least three constraints, graphing the objective value of (P), as a single b[i] is varied from $-\infty$ to $+\infty$. As you work on this, bear in mind Theorem 6.3.

Solution: Consider the standard-form problem (P) with m=3 and n=5

where

$$A := \left(\begin{array}{cccc} 1 & -1 & 0 & -1 & 0 \\ 0 & -4 & 2 & 2 & 0 \\ 0 & -9 & 0 & 6 & 3 \end{array} \right) \; , \quad b := (1,2,18)' \; , \quad c := (16,7,20,10,4)' \; .$$

Using AMPL, at each time we vary only one b_i from b and check the range of b_i in which the optimal basis for (P) keeps the same. We show the optimal basis as follows:

	b_1		$(-\infty, -13)$		(-13, -1)			$(-1,+\infty)$	
optimal basis β		$\{2, 3, 4\}$		$\{2, 4, 5\}$				$\{1, 4, 5\}$	
$c'_{\beta}A^{-1}_{\beta}$		$(-12.8 \ 10 \ -3.8)$		(-23/3 - 17/6)			4/3) (16 9 4/3)		4/3)
objective value		$-12.8b_1 - 48.4$		$(-23/3)b_1 + 55$			5/3	$16b_1 + 42$	
	b_2		$(-\infty,0)$		(0,6)		(6, -	$(6,+\infty)$	
	optimal basis β		$\{1, 2, 5\}$		$\{1, 4, 5\}$		$\{1, 3, 4\}$		
	$c'_{\beta}A^{-1}_{\beta}$		(16 - 8.75 4/3)		(16 9 4/3)		$(16\ 10\ 18)$		
	objective value		$-8.75b_2 + 40$		$9b_2 + 40$		$10b_2 + 34$		
	b_3		$(-\infty,0)$		(0,6) $(6,+$		(6, +0)	0)	
	optimal basis β		$\{1, 2, 3\}$	+	$\{1, 3, 4\}$		$\{1, 4, 5\}$		
	$c'_{\beta}A^{-1}_{\beta}$		$(16\ 10\ -7)$) (16 10 1)		16 9 4/3)		
	objective	value	$-7b_3 + 36$	$b_3 + 36$		(4)	$(4/3)b_3 + 34$		
TABLE 1 Changing single h, from $-\infty$ to $+\infty$									

Table 1. Changing single b_i from $-\infty$ to $+\infty$

As we get the above data from AMPL, we graph the objective value of (P) as a single b_i is varied from $-\infty$ to $+\infty$ in Figure 1.

FIGURE 1. Objective value of (P) as a single b_i is varied from $-\infty$ to $+\infty$

3. Exercise 6.3 "I feel that I know the change that is needed." - Mahatma Gandhi

Problem: We are given 2m numbers satisfying $L_i \leq 0 \leq U_i$, i = 1, 2, ..., m. Let β be an optimal basis for all of the m problems

(3.1)
$$\min \quad c'x \\ \text{s.t.} \quad Ax = b + \Delta_i e^i; \\ x \ge 0.$$

for all Δ_i satisfying $L_i \leq \Delta_i \leq U_i$. Lets be clear on what this means: For each i individually, the basis β is optimal when the ith right-hand side component is changed from b_i to $b_i + \Delta_i$, as long as Δ_i is in the interval $[L_i, U_i]$.

The point of this problem is to be able to say something about *simultaneously* changing all of the b_i . Prove that we can simultaneously change b_i to

$$\tilde{b}_i := b_i + \lambda_i \left\{ \begin{array}{c} L_i \\ U_i \end{array} \right\}$$

where $\lambda_i \geq 0$, when $\sum_{i=1}^m \lambda_i \leq 1$. [Note that in the formula above, for each i we can i = 1 pick either L_i (a decrease) or U_i (an increase)].

Proof:

Let
$$D_i = \left\{ \begin{array}{c} L_i \\ U_i \end{array} \right\}$$
, so $\max_{k:h_k^i > 0} -\frac{\overline{b}_k}{h_k^i} \le D_i \le \min_{k:h_k^i < 0} -\frac{\overline{b}_k}{h_k^i}$, where $\overline{b} = A_{\beta}^{-1}b \ge 0$, $h^i = A_{\beta}^{-1}e^i$, and $k = 1$. m

Thus, what we need to prove is that the basis β is optimal when we simultaneously change b_i to $\tilde{b}_i := b_i + \lambda_i D_i$, where $\sum_{i=1}^m \lambda_i = 1$. In the other word, we need to prove that the basis β is optimal for (3.2), where $\sum_{i=1}^m \lambda_i = 1$.

(3.2)
$$\min_{\substack{c'x\\ \text{s.t.}}} c'x\\ Ax = b + \sum_{i=1}^{m} \lambda_i D_i e^i;\\ x > 0.$$

Consider a fixed and optimal basis β for (3.3). For β to be optimal for (3.2), we need $A_{\beta}^{-1}(b + \sum_{i=1}^{m} \lambda_i D_i e^i) = \overline{b} + \sum_{i=1}^{m} \lambda_i D_i h^i \geq 0$.

(3.3)
$$\min_{s.t.} c'x \\
s.t. Ax = b; \\
x \ge 0.$$

For
$$k = 1...m$$
,
$$\overline{b}_k + \sum_{i=1}^m \lambda_i D_i h_k^i$$

$$= \overline{b}_k + \sum_{i=1,h_k^i > 0}^m \lambda_i D_i h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i D_i h_k^i$$

$$\geq \overline{b}_k + \sum_{i=1,h_k^i > 0}^m \lambda_i (\max_{k':h_{k'}^i > 0} - \frac{\overline{b}_{k'}}{h_k^i}) h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i (\min_{k':h_{k'}^i < 0} - \frac{\overline{b}_{k'}}{h_{k'}^i}) h_k^i$$

$$\geq \overline{b}_k + \sum_{i=1,h_k^i > 0}^m \lambda_i (-\frac{\overline{b}_k}{h_k^i}) h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i (-\frac{\overline{b}_k}{h_k^i}) h_k^i$$

$$= \overline{b}_k + \sum_{i=1,h_k^i > 0}^m \lambda_i (-\overline{b}_k) + \sum_{i=1,h_k^i < 0}^m \lambda_i (-\overline{b}_k)$$

$$= \overline{b}_k + \sum_{i=1}^m \lambda_i (-\overline{b}_k)$$

$$= \overline{b}_k + (-\overline{b}_k) \sum_{i=1}^m \lambda_i$$

$$\geq \overline{b}_k + (-\overline{b}_k)$$

Thus, $\overline{b} + \sum_{i=1}^{m} \lambda_i D_i h^i \geq 0$, and β is feasible and hence still optimal for (3.2).

4. Exercise 6.4 Domain for objective variations

Problem: Prove Theorem 6.4: The domain of g is a convex set.

Proof:

Suppose that c^j is in the domain of g, for j = 1, 2. Therefore, there exist x^j that are feasible for (4.1), for j = 1, 2.

(4.1)
$$\min_{s.t.} c^{j'}x$$

$$s.t. \quad Ax = b;$$

$$x \ge 0.$$

For any $0 < \lambda < 1$, consider $\hat{c} := \lambda c^1 + (1 - \lambda)c^2$, to prove the domain of g is a convex set, we need to prove that (4.2) is feasible and not unbounded.

Consider $\widehat{x} := \lambda x^1 + (1 - \lambda)x^2$,

 $\therefore x^j$ that are feasible for (4.1), for j=1,2

 $\therefore x^j \geq 0$, and $Ax^j = b$, for j = 1, 2

$$\therefore A\widehat{x} = A(\lambda x^{1} + (1 - \lambda)x^{2}) = \lambda Ax^{1} + (1 - \lambda)Ax^{2} = \lambda b + (1 - \lambda)b = b$$

$$\therefore \lambda > 0$$

$$\therefore \widehat{x} = \lambda x^1 + (1 - \lambda)x^2 \ge 0$$

$$\hat{x}$$
 is a feasible solution to (4.2)

 \therefore (4.2) is feasible

Consider the objective function $\hat{c}'x$ of (4.2),

- $\therefore c^j$ is in the domain of g, for j=1,2
- \therefore (4.1) is not unbounded for j = 1, 2
- $\therefore \exists k^j \in \mathbb{R}$, for any x, such that $c^{j'}x \geq k^j$, for j = 1, 2
- $\therefore \text{ for a feasible solution } \overline{x} \text{ of } (4.2), \ \widehat{c'} \overline{x} = (\lambda c^1 + (1 \lambda)c^2)' \overline{x} = \lambda c^{1'} \overline{x} + (1 \lambda)c^{2'} \overline{x} \ge (\lambda k^1 + (1 \lambda)k^2)$
- $\therefore k^1, k^2 \in \mathbb{R}, \, 0 < \lambda < 1$
- \therefore (4.2) is feasible and not unbounded
- $\therefore \hat{c}$ is in the domain g
- \therefore the domain of g is a convex set

5. Exercise 6.5 Concave piecewise-linear function

Problem: Prove Theorem 6.5: g is a concave piecewise-linear function on its domain. **Proof:**

The function g is

(5.1)
$$g(c) := \min \quad c'x$$
s.t.
$$Ax = b;$$

$$x > 0.$$

So a basis β is feasible or not for (5.1), independent for c_{β} . So g can be written as

$$g(c) = \min \left\{ c'_{\beta}(A_{\beta}^{-1}b) : \beta \text{ is a feasible basis for } (5.1) \right\}$$

- $\therefore c'_{\beta}(A_{\beta}^{-1}b)$ are affine functions
- \therefore g is the pointwise minimum of a finite number of affine functions
- \therefore g is a concave piecewise-linear function