ML & LinAlg Math Cheat Sheet

November 20, 2017

Contents

1	Notation	1
2	Derivative 2.a Vector Gradient	2
3	Determinant Operator	2
	3.a Random Properties	2
4	Trace Operator	2
	4.a Properties	2
	4.a.i $\operatorname{tr}(c\mathbf{A} + d\mathbf{B}) = c\operatorname{tr}(\mathbf{A}) + d\operatorname{tr}(\mathbf{B})$	2
	4.a.ii $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}^{\top}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}\boldsymbol{B}^{\top}) = \sum_{i,j} a_{ij}b_{ij}$	2
	4.a.iii $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \operatorname{tr}(\mathbf{A} \mathbf{x} \mathbf{x}^{\top})$	2
	4.b Derivatives	2
	4.b.i $\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top}) \dots \dots$	2
	4.c Relation to Determinant	3
5	Expected Values	3
A	Proofs	3
	A.a Trace	
	A.a.i $\nabla_x \operatorname{tr}(xx^{ op}A) = x^{ op}(A+A^{ op})$	3

1 Notation

Vectors are column vectors denoted by lower-case bolded variables, such that

$$oldsymbol{x} = egin{bmatrix} x_1 \ dots \ x_N \end{bmatrix}.$$

A row vector is denoted $\boldsymbol{x}^{\top} = [x_1 \dots x_N]$. A matrix is indicated by a bolded upper-case variable, such that an $N \times M$ matrix is

$$m{A} = \{a_{ij}\} = [m{a}_1 \cdots m{a}_M] = \left[egin{array}{c} m{a}_1^{ op} \ dots \ m{a}_N^{ op} \end{array}
ight] = \left[egin{array}{ccc} a_{1,1}^{ op} & \cdots & a_{1,M} \ dots & \ddots & dots \ a_N^{ op} & \cdots & a_{N,M} \end{array}
ight].$$

For some random variable x, let $\mathbb{E}[x]$ denote its expected value.

2 Derivative

2.a Vector Gradient

$$\nabla_{\boldsymbol{x}} \boldsymbol{y} = \left[\frac{\partial \boldsymbol{y}}{\partial x_1}, \dots, \frac{\partial \boldsymbol{y}}{\partial x_N}\right] \tag{1}$$

3 Determinant Operator

3.a Random Properties

For scalar c and $N \times N$ identity matrix I,

$$\det(cI) = c^N.$$

4 Trace Operator

Defined for $N \times N$ square matrix \boldsymbol{A} as

$$\operatorname{tr}(\boldsymbol{A}) \stackrel{\text{def}}{=} \sum_{i}^{N} a_{ii} \tag{2}$$

4.a Properties

4.a.i
$$\operatorname{tr}(c\mathbf{A} + d\mathbf{B}) = c\operatorname{tr}(\mathbf{A}) + d\operatorname{tr}(\mathbf{B})$$

For scalars c and d, square matrices \boldsymbol{A} and \boldsymbol{B} .

4.a.ii
$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}^{\top}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}\boldsymbol{B}^{\top}) = \sum_{i,j} a_{ij}b_{ij}$$

And clearly, also $\operatorname{tr}(\boldsymbol{B}^{\top}\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}^{\top}) = \sum_{i,j} a_{ij}b_{ij} = \operatorname{tr}(\boldsymbol{A}\boldsymbol{B}).$

4.a.iii
$$x^{\top}Ax = \operatorname{tr}(Axx^{\top})$$

This can be seen from

$$\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} = \left[\begin{array}{ccc} \sum_{i=1}^{N} x_i a_{i,1} & \cdots & \sum_{i=1}^{N} x_i a_{i,N} \end{array} \right] \boldsymbol{x} = \sum_{j=1}^{N} x_j \sum_{i=1}^{N} x_i a_{i,j} = \sum_{j=1}^{N} \sum_{i=1}^{N} a_{i,j} (\boldsymbol{x} \boldsymbol{x}^{\top})_{i,j} = \operatorname{tr}(\boldsymbol{A} \boldsymbol{x} \boldsymbol{x}^{\top}).$$

2

The last equality follows from section 4.a.ii.

4.b Derivatives

4.b.i
$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top})$$

For square matrix \boldsymbol{A} . Note that $\boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top}) = 2\boldsymbol{x}^{\top}\boldsymbol{A}$ for symmetric \boldsymbol{A} . See appendix $\boldsymbol{A}.a.i$ for proof.

4.c Relation to Determinant

5 Expected Values

For $x \in \mathbb{R}^d$, with expected value $\mathbb{E}[x] = \mu$ and covariance matrix $\Sigma = \mathbb{E}[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^{\top}]$,

$$\mathbb{E}[x_i^2] = \Sigma_{i,i} + \mu_i^2 \tag{3}$$

$$\mathbb{E}[\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}] = \operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}$$
(4)

$$\mathbb{E}_x \left[(y - \boldsymbol{x} \top \boldsymbol{w})^2 \right] = (y - \boldsymbol{w}^\top \boldsymbol{\mu})^2 + \boldsymbol{w}^\top \boldsymbol{\Sigma} \boldsymbol{w}.$$
 (5)

A Proofs

A.a Trace

A.a.i
$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top})$$

This proof can likely be generalized to non-square matrixes (and possibly some communicativeness, given the flexibility afforded by the trace), but the restricted case is presented here.

For square $N \times N$ matrix \boldsymbol{A} ,

$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \frac{d}{d\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \frac{d}{d\boldsymbol{x}}\sum_{i}^{N}\sum_{k}^{N}x_{i}x_{k}a_{ik}.$$

Recall eq. (1), and consider for any $j \in \{1, ..., N\}$:

$$\frac{\partial}{\partial x_j} \sum_{i=1}^{N} \sum_{k=1}^{N} x_i x_k a_{ik} = [x_1 a_{1,j} + x_2 a_{2,j} + \dots + x_{j-1} a_{j-1,j} + x_{j+1} a_{j+1,j} + \dots + x_N a_{N,j}]$$

$$+ \frac{\partial}{\partial x_j} \sum_{k=1}^{N} x_j x_k a_{jk}$$

$$= \left[\sum_{i=1}^{N} x_i a_{ij} - x_j a_{jj} \right] + \sum_{k=1}^{N} x_k a_{jk} - x_j a_{jj} + \frac{\partial}{\partial x_j} x_j x_j a_{jj}$$

$$= \sum_{i=1}^{N} x_i a_{ij} + \sum_{k=1}^{N} x_k a_{jk} - 2x_j a_{jj} + 2x_j a_{jj}$$

$$= \mathbf{x}^{\top} \mathbf{a}_j + \mathbf{x}^{\top} [\mathbf{a}^{\top}]_j,$$

where $[\boldsymbol{a}^{\top}]_{j}$ is the jth column of A^{\top} .

This equally applies for any j in $1 \dots N$, and so for the full gradient:

$$\nabla_{\boldsymbol{x}}\operatorname{tr}(\boldsymbol{x}\boldsymbol{x}^{\top}\boldsymbol{A}) = \frac{d}{d\boldsymbol{x}}\sum_{i}^{N}\sum_{k}^{N}x_{i}x_{k}a_{ik} = [\boldsymbol{x}^{\top}\boldsymbol{a}_{1}\cdots\boldsymbol{x}^{\top}\boldsymbol{a}_{N}] + [\boldsymbol{x}^{\top}[\boldsymbol{a}^{\top}]_{1}\cdots\boldsymbol{x}^{\top}[\boldsymbol{a}^{\top}]_{N}]$$
$$= \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top}).$$