# MA 109 Recap Week 1

Recap Slides

Rohan Nafde Hrishikesh Jedhe Deshmukh

https://github.com/RohanNafde

### Logarithmic Function

$$\ln x = \int_1^x \frac{1}{t} dt \text{ for } x > 0$$

# **Exponential Function**

$$\exp(x) = y \iff \ln y = x$$

$$\frac{d}{dx}(e^{x}) = e^{x}$$

#### Area under a Curve

Let  $f:[a,b]\to\mathbb{R}$  be a bounded function. Suppose  $f\geq 0$  on [a,b], let

$$R_f = \{(x, y) \in \mathbb{R}^2 : a \le x \le b \text{ and } 0 < y < f(x)\}$$

We say that  $R_f$  has an area if f is Reimann integrable, and we define

$$Area(R_f) = \int_a^b f(x) dx$$

#### Area between Curves

Let  $f_1, f_2 : [a, b] \to \mathbb{R}$  be integrable functions such that  $f_1 < f_2$ . Let  $R = \{(x, y) \in \mathbb{R}^2 : a \le x \le b \text{ and } f_1(x) \le y \le f_2(x)\}$  be the region between the curves  $y = f_1(x)$  and  $y = f_2(x)$ . Define

Area
$$(R) = \text{Area}(R_{f_2-f_1}) = \int_a^b (f_2(x) - f_1(x)) dx$$





## Curve given by Polar Coordinates

Let R denote the region bounded by the curve  $r = p(\theta)$  and the rays  $\theta = \alpha$  and  $\theta = \beta$  where  $-\pi \le \alpha < \beta \le \pi$ .

$$R = \{ (r \cos \theta, r \sin \theta) : \alpha \le \theta \le \beta \text{ and } 0 \le r \le p(\theta) \}$$

Area
$$(R) = \frac{1}{2} \int_{\alpha}^{\beta} p(\theta)^2 d\theta = \int_{\alpha}^{\beta} r^2 d\theta$$

#### Volume of a Solid

Let D be a bounded subset of  $\mathbb{R}^3$ . A cross-section of D obtained by cutting D by a plane in  $\mathbb{R}^3$  is called a slice of D.

Let a < b, and suppose D lies between the planes x = a and x = b, which are perpendicular to the x-axis. For  $s \in [a, b]$ , consider the slice of D by the plane x = s, namely  $(x, y, z) \in D : x = s$ , and suppose it has an "area" A(s). Then,

$$Vol(D) = \int_a^b A(x) dx$$

#### Parametrized Curve

A parametrized curve or a path C in  $\mathbb{R}^2$  is given by (x(t), y(t)), where  $x, y : [\alpha, \beta] \to \mathbb{R}$  are continuous functions.

## Arc length of a smooth curve

Arc Length of C is given by,

length(C) = 
$$\int_{\alpha}^{\beta} \sqrt{x'(t)^2 + y'(t)^2} dt$$

# Arc Length in Polar Coordinates

Let C be given by a polar equation  $r = p(\theta)$ ,  $\theta \in [\alpha, \beta]$ . As a parametrized curve, C is given by  $(x(\theta), y(\theta))$ , where

$$x(\theta) = p(\theta)\cos\theta$$
 and  $y(\theta) = p(\theta)\sin\theta$ ,  $\theta \in [\alpha, \beta]$ 

Suppose the function p is continuously differentiable on  $[\alpha,\beta]$ 

$$\operatorname{length}(C) = \int_{\alpha}^{\beta} \sqrt{p(\theta)^2 + p'(\theta)^2} d\theta$$