CMOS 模拟集成电路原理 第十周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年11月17日

目录

1	电路	理解与分析	1
2	搭建	电路	2
	2.1	差分对	2
	2.2	电流源负载	2
	2.3	线性跨导环-非并联部分	3
	2.4	线性跨导环-并联到电流镜负载部分	4
	2.5	输出级	4
3	电路	性能	5
	3.1	差分增益带宽积	5
	3.2	放大性能	5
	3.3	功耗测试	5
Li	st of	f Figures	
	1	线性跨导回路电路	2
	2	基本电路图	3
	3	尺寸参数	4
	4	电路状态	5
	5	增益带宽积	5
	6	模块封装	6
	7	10 倍运放接法	6
	8	10 倍运放效果	6
	9	静态工作电流	6

1 电路理解与分析

本次实验电路如图1,进行以下几个模块的拆分:

- 差分对: MN1+MI(1,2)。输出差分电流
- 电流放大器: M(5-8, 11-14) 。对输入的差分电流转化成电压输出。将 $I_+ I_-$ 变化为 I_{in} 。 MA(5-10) ,可看作电阻 R_{in} ,为 MA(3,4) 提供偏置,并且和输出作为线性跨导回路。
- 输出级: 通过 MA(1,2) 放大电压信号。

图 1: 线性跨导回路电路

分析需要的放大倍数:

$$\frac{10A}{A+11} = 9.5$$

解得 A = 209 ,五倍冗余 A = 1045 。

这是一个两级的放大器,第一级是电压-电流放大,其大小为 $g_{m,I}$,估算为 0.1m; 第二级输入的电压是电流通过电阻转换成的,大小为 $R_{in}=g_{m,9}r_{o,9}r_{o,10}$ 估算为 $0.01\times(1/\lambda I)^2=0.01(10/10u)^2=10^{10}$ 。最后一级电流设为 0.5m 。放大为 $g_{m,o}R_L=0.15$ 总体放大为 15×10^4 ,必然满足条件。

由于必须设计反馈电容,考虑主极点: $g_{m,I}/2\pi C_c$,以及为了在 200k 增益不下降时工作,留足裕度到 10M ,选择 5p , 1m/75p=30M ,此时 $\alpha=2$ 符合经验。

考虑静态功耗,设置输出级电流为 500u ,输入级为 $100u \times 2$,线性跨导环为 5u ,其他为 10u 。

2 搭建电路

基本电路图如 $\mathbf{82}$ 。设置长度为 L=1u,接下来进行分析。

图 2: 基本电路图

2.1 差分对

对于差分对来说,其输入共模为 0.9V ,且按照估算,其电流需要有 100u ,设其源极电压为 0.2V ,漏极电压为 1.2V ,其下方 MN1 按照电流镜进行设置,为 200u 。电流镜应尽量宽,来使得其消耗的电压较小,让差分对可以达到较高的栅源电压,计算得到 MI(1-2) 为 4u 为了其驱动能力,增大三倍到 12u,MN1 在过驱动电压为 0.1V 时为 40u 。

2.2 电流源负载

对于这样两端为电流镜负载,而中间需要连接到线性跨导环的并联两端,因此需要保持MA(3-4)上下分别作为最后一级的 PMOS 和 NMOS 栅极电压,限制到 1.2V 和 0.6V 左右。

按照之前分析过程,设置其静态电流为 $10u^{-1}$,从上到下的 PMOS 过驱动电压分别设置为 0.15V 、0.15V ,计算得到的宽为 28u ,3u ,同样地,考虑驱动能力,以及减少电压裕度的消耗,分别扩展到 50u ,40u 。使用电流镜实现。

NMOS 分析过程是类似的,但是需要注意到折叠电流镜的存在,下面这一路的电压消耗会

¹最上面管子为 110u。

尽量小,靠下的 M(5-6) 的栅极电压预设为 0.6V 而 M(7-8) 设计为 0.8V ,得到的尺寸为 1u 和 2u 。

2.3 线性跨导环-非并联部分

在不考虑跨导环结构仅仅考虑静态工作点时,三个管子的结构是为了 MA(3-4) 提供偏置,因此需要其偏置点大约到 $NMOS\ 1V$, $PMOS\ 0.6V$,此处将两个二极管接法的管子尺寸设为一致,将另一电流镜控制的管子尺寸设为响应的比例,计算得到二极管接法 PMOS 管子在 0.2V 过驱动尺寸为 1u, NMOS 管子为 1u, 0 是取得原始尺寸会存在电流镜处为前一级提供偏置电压不符合,因此将三个管子比例做适当调节,满足静态工作要求。

2.4 线性跨导环-并联到电流镜负载部分

之前两个小节设定好了管子的三个电压,此时可以适当调节两个管子的电流比例,来满足在输出级的电压需求。

2.5 输出级

将电流设置为线性跨导环的120倍,基本达到500u的电流。

尺寸与偏置总结

最终,得到的尺寸如**图 3**。但是由于 MA1 的输入电压太高,需要拉低,将 M(5-6) 调到了 线性区,而这对增益影响较小,如**图 4**。为了让输出级宽长比更大,将 L 改到 0.2u。

3 电路性能

3.1 差分增益带宽积

利用 VCVS 等产生输出差分信号,开启交流信号,输出负载为 32Ω 和 10pF ,得到增益如 **图 5** ,增益和增益带宽积为 80k 与 22M ,电路分析的结果为 15k 与 30M 基本符合。

3.2 放大性能

在进行静态功耗的测量之前进行封装,将参数写入后,效果如 $\bf 86$,进行外部连线,效果如 $\bf 87$,进行 TRANS 仿真,效果如 $\bf 88$,峰-峰值为 $\bf 11V$,满足作业要求。

3.3 功耗测试

静态工作点的电流如**图9**, 总电流为760u+3n+3n+106u+5u+200u+5u+10u=1.086mA。满足条件。

图 3: 尺寸参数

1	11	200u
2	12	106u
3	13	10u
4	14	10u
5	16	5u
6	17	5u
7	L	1u
8	WB1	40u
9	WB2	50u
10	WB3	40u
11	WB4	1u
12	WB5	2u
13	WB6	10u

13	WB6	10u			
14	WB7	1u			
15	WI	12u			
16	Wcl	1u			
17	Wc2	8u			
18	Wn1	5u			
19	Wn2	5u			
20	Wol	480u			
21	Wo2	120u			
22	Wp1	10u			
23	Wp2	10u			
24	vb4	0.8			
25	vcom	0.9			
26	vdif	0			

图 4: 电路状态

图 5: 增益带宽积

图 6: 模块封装

图 7: 10 倍运放接法

图 8: 10 倍运放效果

图 9: 静态工作电流