数据隐私HW1

范翔宇 PB18000006

A1

recursive(c,l)-diversity即 r_1 <c($r_l+r_{l+1}+...+r_m$),而其中概率 r_k 对应于数据 s_k ,且 $r_1>r_2>...>r_m$ 。该式确保了概率较大的数据出现的概率如 r_1 不会过大,也确保了概率较小的数据出现的概率如 r_m 等也不会过小,达到了一个balance的目的。该式的实际意义将各数据分为 s_1 , s_2 ,…, s_{l-1} 和 s_l+s_{l+1} …+ s_m 共|类,并且其中每类的概率之间也不会相差太大,那么这样攻击者在试图利用概率攻击时便会遇到阻碍。允许攻击者最多拥有l-2条类似"Bob does not have heart disease"的背景知识,是因为攻击者最多依靠这些背景知识从 s_1 , s_2 ,…, s_{l-1} 和 s_l+s_{l+1} …+ s_m 中排除(l-2)类数据,即最少也会剩下两种概率相差不大的数据让攻击者难以抉择。因此,recursive(c,l)-diversity可以防范最多有l-2条类似"Bob does not have heart disease"的背景知识的攻击者。

A2

分类讨论:

①将Race泛化到 R_0 ,ZipCode泛化到 Z_0 ,即都不泛化(泛化到 R_0 ,Z0意义下同),题目已经讨论过,在这不赘述,不符合题意。

②将Race泛化到 R_1 , ZipCode泛化到 Z_0 , 则得下表

Race: R_1	${\sf ZipCode:} Z_0$
person	94138
person	94142
person	94142
person	94142

其中为达到2匿名,要suppress ZipCode = 94141的记录,MaxSup = 1,符合题意。

③将Race泛化到 R_0 ,ZipCode泛化到 Z_1 ,得到下表

Race: R_0	${\bf ZipCode:} Z_1$
asian	9413*
asian	9413*
asian	9414*
asian	9414*
black	9414*
black	9414*

其中为达到2匿名,要suppress Race = white的记录和Race = black同时ZipCode = 94138的记录,MaxSup = 2,不符合题意。

④将Race泛化到 R_1 ,ZipCode泛化到 Z_1 ,得到下表(version_1)

Race: R_1	ZipCode: Z_1
person	9413*
person	9414*

其中为达到2匿名,不需要Suppress,符合题意。那么也就意味着可以多Suppress一条记录,来达到更多的可能性。

⑤将Race泛化到 R_1 ,ZipCode泛化到 Z_1 ,得到下表(version_2)

Race: R_1	${\sf ZipCode} : Z_1$
person	9413*
person	9414*
person	9414*
person	9414*

其实与④类似,但是其中为达到2匿名,Suppress了一条ZipCode = 9414*的记录,MaxSup = 1,符合题意。

⑥将Race泛化到 R_1 ,ZipCode泛化到 Z_1 ,得到下表(verison_3)

Race: R_1	ZipCode: Z_1
person	9413*
person	9413*
person	9413*
person	9414*

其实与④类似,但是其中为达到2匿名,Suppress了一条ZipCode = 9413*的记录,MaxSup = 1,符合题意。

⑦将Race泛化到 R_0 ,ZipCode泛化到 Z_2 ,得到下表

Race: R_0	${\sf ZipCode} : Z_2$
asian	941**
black	941**
black	941**
black	941**

其中为达到2匿名,要suppress Race = white的记录,MaxSup = 1,符合题意。

⑧将Race泛化到 R_1 ,ZipCode泛化到 Z_2 ,得到下表(version_1)

Race: R_1	${\bf ZipCode:} Z_2$
person	941**

其中为达到2匿名,不需要Suppress,符合题意。那么也就意味着可以多Suppress一条记录,来达到更多的可能性。

⑨将Race泛化到 R_1 ,ZipCode泛化到 Z_2 ,得到下表(version_2)

Race: R_1	${\bf ZipCode:} Z_2$
person	941**

其中为达到2匿名,可以Suppress一条ZipCode = 941**的记录,MaxSup = 1符合题意。

综上,为满足2匿名,有2456789共七种可能性。

A3

首先对于总体,有如下分布Q,其中Q(Salary = ik) = $\frac{1}{9}$,其中i = 3, 4, 5, 6, 7, 8, 9, 10, 11。

对于第一个等价类,分布为 P_1 (Salary = ak) = $\frac{1}{3}$, 其中a = 3, 5, 9;

当然对于 P_1 (Salary = bk) = 0,其中b = 4,6,7,8,10,11。

根据公式ri = pi - qi(i = 1, 2, ..., m), 按顺序求得:

r1 = p1 - q1 =
$$P_1$$
(Salary = 3k) - Q(Salary = 3k) = $\frac{2}{9}$;

$$r2 = p2 - q2 = P_1(Salary = 4k) - Q(Salary = 4k) = -\frac{1}{9}$$
;

r3 = p3 - q3 =
$$P_1$$
(Salary = 5k) - Q(Salary = 5k) = $\frac{2}{9}$;

r4 = p4 - q4 =
$$P_1$$
(Salary = 6k) - Q(Salary = 6k) = $-\frac{1}{9}$;

r5 = p5 - q5 =
$$P_1$$
(Salary = 7k) - Q(Salary = 7k) = $-\frac{1}{9}$;

r6 = p6 - q6 =
$$P_1$$
(Salary = 8k) - Q(Salary = 8k) = $-\frac{1}{9}$;

r7 = p7 - q7 =
$$P_1$$
(Salary = 9k) - Q(Salary = 9k) = $\frac{2}{9}$;

r8 = p8 - q8 =
$$P_1$$
(Salary = 10k) - Q(Salary = 10k) = $-\frac{1}{9}$;

r9 = p9 - q9 =
$$P_1$$
(Salary = 11k) - Q(Salary = 11k) = $-\frac{1}{9}$

而EMD的公式为D[P,Q] = $\frac{1}{m-1} \sum_{i=1}^{m} |\sum_{j=1}^{i} \mathsf{rj}|$

代入即有D[P_1 ,Q] = $\frac{1}{8}$ {| $\frac{2}{9}$ | + | $\frac{2}{9}$ - $\frac{1}{9}$ | + | $\frac{2}{9}$ - $\frac{1}{9}$ - $\frac{1}{9}$ + | $\frac{2}{9}$ - $\frac{1}{9}$ - | $\frac{2}{9}$ -

对于第二个等价类分析同上,不过 P_2 (Salary = ak) = $\frac{1}{3}$,其中的a变为6,8,11;其余概率为0。

代入之后求得{r1, r2, r3, r4, r5, r6, r7, r8, r9} = $\{-\frac{1}{9}, -\frac{1}{9}, -\frac{1}{9}, \frac{2}{9}, -\frac{1}{9}, \frac{2}{9}, -\frac{1}{9}, -\frac{1}{9}, \frac{2}{9}\}$

代入即有D[P_2 ,Q] = $\frac{1}{8}$ { $\left|-\frac{1}{9}\right|+\left|-\frac{1}{9}-\frac{1}{9}\right|+\left|-\frac{1}{9}-\frac{1}{9}-\frac{1}{9}\right|+\left|-\frac{1}{9}-\frac{1}{9}-\frac{1}{9}+\frac{2}{9}\right|+\left|-\frac{1}{9}-\frac{1}{9}-\frac{1}{9}+\frac{2}{9}+\frac{2}{9}-\frac$

对于第三个等价类分析同上,不过 P_3 (Salary = ak) = $\frac{1}{3}$,其中的a变为4,7,10;其余概率为0。

代入之后求得{r1, r2, r3, r4, r5, r6, r7, r8, r9} = $\{-\frac{1}{9}, \frac{2}{9}, -\frac{1}{9}, \frac{2}{9}, -\frac{1}{9}, \frac{2}{9}, -\frac{1}{9}, \frac{2}{9}, -\frac{1}{9}, \frac{2}{9}, -\frac{1}{9}\}$

代入即有D[P_3 ,Q] = $\frac{1}{8}$ { $\left|-\frac{1}{9}\right|+\left|-\frac{1}{9}+\frac{2}{9}\right|+\left|-\frac{1}{9}+\frac{2}{9}-\frac{1}{9}\right|+\left|-\frac{1}{9}+\frac{2}{9}-\frac{1}{9}-\frac{1}{9}+\frac{1}{9}-\frac{1}{9}+\frac{2}{9}-\frac{1}{9}-\frac{1}{9}+\frac{2}{9$

 $\mathbb{I} = \max\{ \mathbb{D}[P_1, \mathbb{Q}], \ \mathbb{D}[P_2, \mathbb{Q}], \ \mathbb{D}[P_3, \mathbb{Q}] \} = \max\{ \frac{1}{6}, \ \frac{1}{6}, \ \frac{1}{12} \} = \frac{1}{6}$

A4

(a)Age, Gender, Nationality, Salary

(b)generalization hierarchies

Age:

Gender:

Nationality:

Salary:

泛化后即得的最后结果即:

Age	Gender	Nationality	Salary
[18,27]	Н	American	[16K,22K]
[18,27]	Н	American	[16K,22K]
[18,27]	Н	American	[26K,40K]
[18,27]	Н	American	[26K,40K]
[18,27]	Н	Asian	[26K,40K]
[18,27]	Н	Asian	[26K,40K]
[32,36]	Н	Asian	[26K,40K]
[32,36]	Н	Asian	[26K,40K]
[32,36]	Н	Asian	[26K,40K]
[38,52]	Н	Asian	[45K,64K]
[38,52]	Н	Asian	[45K,64K]
[38,52]	Н	American	[45K,64K]
[38,52]	Н	American	[45K,64K]

calculation of the loss metric:

$$\mathsf{Age:LM} = \frac{6 \times (27 - 18) + 3 \times (36 - 32) + 4 \times (52 - 38)}{13 \times (52 - 18)} = \frac{61}{221} \approx 0.276;$$

Gender: LM = 1(F和M全部泛化为H);

Nationality:LM =
$$\frac{6\times0+7\times\frac{3}{4}}{13}$$
 = $\frac{21}{52}$ \approx 0.404;

Salary: LM =
$$\frac{2\times(22K-16K)+7\times(40K-26K)+4\times(64K-45K)}{13\times(64K-16K)} = \frac{31}{104} \approx$$
 0.298;

```
ALL: LM = \Sigma(part LM) = 0.276 + 1 + 0.404 + 0.298 = 1.978
```

(c)可以像第二题一样对generalization hierarchies 穷举并且计算对应的LM,找出在满足条件的同时LM最优的情况。也可以基于LM的大小像实验那样结合generalization hierarchies 进行二分查找。

A5

(a)先验概率: P(X=0) = 0.01, P(X∈[200,800]) = (800-200+1) × 0.00099 = 0.59499。

后验概率:

对于x = 0的情况

method(a),结合贝叶斯公式: $P(R_1(X) = 0 | X = 0) = 0.2$, $P(R_1(X) = 0 | X \neq 0) = 0.8 \times 0.001 = 0.0008$;

$$P(X = 0 \mid R_1(X) = 0) = \frac{P(X = 0, R_1(X) = 0)}{P(R_1(X) = 0)} = \frac{P(R_1(X) = 0 \mid X = 0) P(X = 0)}{P(R_1(X) = 0)}$$

$$= \frac{P(R_1(X){=}0|X{=}0)P(X{=}0)}{P(R_1(X){=}0|X{=}0)P(X{=}0) + P(R_1(X){=}0|X{\neq}0)P(X{\neq}0)}$$

$$= \frac{0.2 \times 0.01}{0.2 \times 0.01 + 0.0008 \times (1 - 0.01)}$$

= 0.716

 $\mathsf{method(b):} \ \ \mathsf{P}(R_2(\mathsf{X}) = 0 \,|\, \mathsf{X} \in [0,100] \,\cup\, [901,1000]) = \frac{1}{(100-0+1)+(1000-901+1)} = 0.00498;$

 $P(R_2(X) = 0 | X \in [101,900]) = 0;$

$$P(X = 0 | R_2(X) = 0) = \frac{P(X = 0, R_2(X) = 0)}{P(R_2(X) = 0)} =$$

$$P(R_2(X)=0|X=0)P(X=0)$$

 $\overline{P(R_2(X) = 0|X = 0)P(X = 0) + P(R_2(X) = 0|X \in [1,100] \cup [901,1000])P(X \in [1,100] \cup [901,1000]) + P(R_2(X) = 0|X \in [101,900])P(X \in [101,900])P(X \in [1,100] \cup [901,1000])P(X \in [1,10$

$$= \frac{0.00498 \times 0.01}{0.00498 \times 0.01 + 0.00498 \times 0.00099 \times 200 + 0}$$

= 0.048

method(c): 令"a uniformly random number in {0; · · · ; 1000}"为C。

则

$$P(R_3(X) = 0 \mid X \in [0,100] \cup [901,1000]) = P(R_3(X) \rightarrow R_2(X), R_2(X) = 0 \mid X \in [0,100] \cup [901,1000])$$

$$+P(R_3(X) \to C, C = 0 \mid X \in [0,100] \cup [901,1000]) = 0.5 \times 0.00498 + 0.5 \times \frac{1}{1000-0+1} = 0.00299$$

$$P(R_3(X) = 0 | X \in [101,900]) = P(R_3(X) \rightarrow R_2(X), R_2(X) = 0 | X \in [101,900])$$

+P(
$$R_3({
m X})
ightarrow$$
 C, C = 0 | X \in [101,900]) = 0.5 $imes$ 0 + 0.5 $imes$ $\frac{1}{1000-0+1}$ = 0.0004995

$$\mathsf{P}(\mathsf{X} = \mathsf{0} \,|\, R_3(\mathsf{X}) = \mathsf{0}) = \frac{P(X = 0, R_3(X) = 0)}{P(R_3(X) = 0)} =$$

$$P(R_3(X)=0|X=0)P(X=0)$$

 $\overline{P(R_3(X) = 0 | X = 0) P(X = 0) + P(R_3(X) = 0 | X \in [1,100] \cup [901,1000]) P(X \in [1,100] \cup [901,1000]) + P(R_3(X) = 0 | X \in [101,900]) P(X \in [101,900]) P(X$

$$=\frac{0.00299\times0.01}{0.0029\times0.01+0.00299\times0.00099\times200+0.0004995\times0.00099\times800}$$

= 0.0294

对于 $x \in [200,800]$,进行同上的分析,但是这里分母的概率 $P(R_n(X) = 0)$ 为了简便都沿用x = 0的计算。

$$\begin{array}{l} \operatorname{method(a):} \operatorname{P(X} \in [200,\!800] \,|\, R_1(\mathrm{X}) = 0) = \frac{P(X \in [200,\!800], R_1(x) = 0)}{P(R_1(X) = 0)} = \\ \frac{P(R_1(X) = 0 | X \in [200,\!800]) P(X \in [200,\!800])}{P(R_1(X = 0))} \end{array}$$

$$= \frac{P(R_1(X) = 0 | X \in [200,800]) P(X \in [200,800])}{P(R_1(X) = 0 | X = 0) P(X = 0) + P(R_1(X) = 0 | X \neq 0) P(X \neq 0)}$$

$$= \frac{(0.8 \times 0.001) \times 0.59499}{0.2 \times 0.01 + 0.0008 \times (1 - 0.01)}$$

= 0.171

$$\begin{split} \text{method(b): P(X\in[200,800]\,|\,}R_2(\text{X}) &= 0) = \frac{P(X\in[200,800],R_2(X)=0)}{P(R_2(X)=0)} = \\ &P(R_2(X)=0|X\in[200,800])P(X\in[200,800]) \end{split}$$

 $\overline{P(R_2(X) = 0 | X = 0)P(X = 0) + P(R_2(X) = 0 | X \in [1,100] \cup [901,1000])P(X \in [1,100] \cup [901,1000]) + P(R_2(X) = 0 | X \in [101,900])P(X \in [$

$$= \frac{0 \times 0.59499}{0.00498 \times 0.01 + 0.00498 \times 0.00099 \times 200 + 0}$$

= 0

method(c): P(X \in [200,800] | R_3 (X) = 0) = $\frac{P(X \in [200,800], R_3(X) = 0)}{P(R_3(X) = 0)}$ =

 $P(R_3(X){=}0|X{\in}[200{,}800])P(X{\in}[200{,}800])$

 $\overline{P(R_3(X) = 0 | X = 0)P(X = 0) + P(R_3(X) = 0 | X \in [1,100] \cup [901,1000])P(X \in [1,100] \cup [901,1000]) + P(R_3(X) = 0 | X \in [101,900])P(X \in [$

$$=\frac{0.0004995\times0.59499}{0.0029\times0.01+0.00299\times0.00099\times200+0.0004995\times0.00099\times800}$$

= 0.292

(b)评价method的Information Gain = $P(X|R_i(X)-P(X))$, 算得方案c的最小,即method c最好。

A6

(a)当
$$P_f(\Phi(U)) \leq \alpha$$
时

$$P_f(\Phi(U)|R(U)=v) = \sum_{u \in \Phi^{-1}} P_f(U=u|R(U)=v) = \sum_{u \in \Phi^{-1}} \frac{P_f(U=u,R(U)=v))}{P_f(R(U)=v)} = \sum_{u \in \Phi^{-1}} \frac{P_f(R(U)=v)P_f(U=u)}{P_f(R(U)=v)} = \sum_{u \in \Phi^{-1}} \frac{P_f(R(U)=v)}{P_f(R(U)=v)} = \sum_{u \in \Phi^{-1}}$$

$$= \sum_{u \in \Phi^{-1}} \frac{P(R(u) = v) P_f(U = u)}{P_f(R(U) = v)} = \frac{1}{P_f(R(U) = v)} \; \sum_{u \in \Phi^{-1}} P(R(u) = v) P_f(U = u)$$

取 $u_1 = arg \ max_{u \in \Phi^{-1}} P(R(u) = v)$,那么即有

$$P_f(\Phi(U)|R(U)=v) \leq rac{P(R(u_1)=v)}{P_f(R(U)=v)} \Sigma_{u\in\Phi} P_f(U=u)$$
 = $rac{P(R(u_1)=v)}{P_f(R(U)=v)} P_f(\Phi(U))$,记为式a。

同理可得

$$P_f(\overline{\Phi}(U)|R(U)=v)\geq rac{P(R(u_2)=v)}{P_f(R(U)=v)}P_f(\overline{\Phi}(U))$$
,记为式b。

进一步得

$$\frac{\pi a}{\pi b} = \frac{P_f(\Phi(U)|R(U)=v)}{1 - P_f(\Phi(U)|R(U)=v)} \le \frac{P(R(u_1)=v)P_f(\Phi(U))}{P(R(u_2)=v)P_f(\overline{\Phi}(U))} \le \gamma \frac{\alpha}{1 - \alpha}$$

可以推得

$$P_f(\Phi(U)|R(U)=v) \leq rac{lpha\gamma}{lpha\gamma+(1-lpha)}=eta$$

即不存在upward(α , β)-privacy breach.

同理,当 $P_f(\Phi(U)) > \beta$ 时,也不存在downwar(α, β)-privacy breach。