\blacktriangleright Dạng 2. TÌM THAM SỐ ĐỂ HÀM SỐ CÓ CỰC TRỊ, CÓ CỰC TRỊ TẠI x_0

Loại 1. Tìm m để hàm số có cực trị.

a) Điều kiện để hàm số bậc 3 $y=ax^3+bx^2+cx+d$ ($a\neq 0$) có cực trị. Ta có $y'=3ax^2+2bx+c$.

Đồ thị hàm số có 2 điểm cực trị khi phương trình y'=0 có hai nghiệm phân biệt $\Leftrightarrow b^2-3ac>0$.

b) $Diều\ kiện\ để\ hàm\ số\ f(x)=ax^4+bx^2+c(a\neq 0)\ có\ cực\ trị.$ Ta có $y'=4ax^3+2bx=2x(2ax^2+b)$

Trường hợp 1. $ab \ge 0$. Khi đó f'(x) có nghiệm duy nhất x = 0 và f'(x) đổi dấu đúng một lần khi đi qua x = 0. Do đó f(x) chỉ có đúng một điểm cực trị.

Trường hợp 2. ab < 0. Khi đó f'(x) có ba nghiệm phân biệt và f'(x) đổi dấu liên tiếp khi x đi qua ba nghiệm này. Do đó f(x) có ba điểm cực trị.

Loai 2. Tìm m để hàm số đạt cực tri tại x_0 .

<u>Bài toán</u>. Tìm tham số để hàm số y = f(x) đạt cực trị tại điểm $x = x_0$? **Phương pháp:**

Bước 1. Tìm tập xác định \mathcal{D} . Tính đạo hàm y' và y''.

Bước 2. Dựa vào nội dung định lí 3.

Giả sử y = f(x) có đạo hàm cấp 2 trong khoảng $(x_0 - h; x_0 + h)$, với h > 0.

Nếu $y'(x_0) = 0$, $y''(x_0) > 0$ thì x_0 là điểm cực tiểu.

Nếu $y'(x_0) = 0$, $y''(x_0) < 0$ thì x_0 là điểm cực đại.

Nếu $y'(x_0) = 0$, $y''(x_0) = 0$ thì cần xét dấu y' theo m.

Bước 3. Với m vừa tìm, thế vào hàm số và thử lai.

A Nếu đề bài yêu cầu tìm giá trị cực trị tương ứng, ta sẽ thế $x = x_0$, m = ? vào y = f(x).

1. Các ví dụ

VÍ DỤ 1. Tìm tham số m để các hàm số

a)
$$y = x^3 - 3x^2 + (m-1)x + 2$$
 có cực trị.

b)
$$y = \frac{1}{3}(m-1)x^3 + (m-2)x^2 - 4x + 1$$
 không có cực trị.

c)
$$y = -x^4 + 2(2m-1)x^2 + 3$$
 có đúng 1 cực trị.

d)
$$y = x^4 + 2(m^2 - 1)x^2 + 1$$
 có 3 điểm cực trị.

e)
$$y = mx^4 + (m^2 - 9)x^2 + 1$$
 có 2 điểm cực đại và 1 điểm cực tiểu.

f)
$$y = mx^4 + (2m-1)x^2 + m - 2$$
 chỉ có cực đại và không có cực tiểu.

🗭 Lời giải.

a) $y' = 3x^2 - 6x + m - 1$.

Hàm số có cực trị \Leftrightarrow hàm số có hai điểm cực trị \Leftrightarrow y'=0 có hai nghiệm phân biệt

$$\Leftrightarrow 9 - 3(m - 1) > 0 \Leftrightarrow m < 4.$$

b)
$$y' = (m-1)x^2 + 2(m-2)x - 4$$
.
Trường hợp 1. $m-1 = 0 \Leftrightarrow m = 1$.

		NO	-
ப	и(к	$\mathbf{N}(\mathbf{O})$	13

Khi đó, $y' = -2x - 4 = 0 \Leftrightarrow x = -2$.

Ta có y' là nhị thức nhậc nhất nên y' đổi dấu khi x qua x=-2.

Vậy hàm số có cực trị, suy ra loại m=1.

Trường hợp 2. $m-1 \neq 0 \Leftrightarrow m \neq 1$.

Hàm số không có cực trị $\Leftrightarrow y' = 0$ vô nghiệm hoặc có nghiệm kép $\Leftrightarrow (m-2)^2 +$

 $4(m-1) \le 0 \Leftrightarrow m^2 \le 0 \Leftrightarrow m = 0.$

Vậy
$$m = 0$$
.

c)
$$y' = -4x^3 + 4(2m - 1)x$$
.

Hàm số có đúng 1 cực trị $\Leftrightarrow -16(2m-1) \ge 0 \Leftrightarrow m \le \frac{1}{2}$.

d)
$$y' = 4x^3 + 4(m^2 - 1)x$$
.

Hàm số có 3 điểm cực trị \Leftrightarrow 16 $(m^2 - 1) < 0 \Leftrightarrow -1 < m < 1$.

e)
$$y' = 4mx^3 + 2(m^2 - 9)$$
.

Hàm số có 2 điểm cực đại và 1 điểm cực tiểu

$$\Leftrightarrow \begin{cases} 4m < 0 \\ 8m\left(m^2 - 9\right) < 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ m^2 - 9 > 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ m > 3 \quad \Leftrightarrow m < -3. \end{cases}$$

f)
$$y' = 4mx^3 + 2(2m - 1)x$$
.

Trường hợp 1. m=0.

Khi đó, $y = -x^2 - 2$ và y' = -2x.

Ta có $y' = 0 \Leftrightarrow x = 0$.

Bảng biến thiên của hàm số

x	$-\infty$		0		$+\infty$
y'		+	0	_	
y	$-\infty$		-2		$-\infty$

Từ bảng biến thiên ta thấy hàm số có cực đại và không có cực tiểu, suy ra m=0 thỏa mãn.

Trường hợp 2. $m \neq 0$.

Hàm số có cực đại và không có cực tiểu

$$\Leftrightarrow \begin{cases} 4m < 0 \\ 8m(2m-1) \ge 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ 2m-1 \le 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ m \le \frac{1}{2} \end{cases} \Leftrightarrow m < 0.$$

VÍ DU 2. Tìm tham số m để các hàm số

a)
$$y = x^3 - (m-1)x + 1$$
 đạt cực tiểu tại $x = 2$.

b)
$$y=\frac{1}{3}x^3-mx^2+\left(m^2-m+1\right)x+1$$
 đạt cực đại tại $x=1.$

c)
$$y = \frac{1}{4}(m-1)x^4$$
 đạt cực đại tại $x = 0$.

d)
$$y = -x^4 + 2(m-2)x^2 + m - 3$$
 đạt cực đại tại $x = 0$.

e)
$$y = x^4 - 2mx^2 + 2m + m^4 - 5$$
 đạt cực tiểu tại $x = -1$.

🗭 Lời giải.

a) $y' = 3x^2 - m + 1$.

Hàm số đạt cực tiểu tại $x = 2 \Rightarrow y'(2) = 0 \Leftrightarrow m = 13$.

Với m = 13, ta có $y' = 3x^2 - 12$.

Ta có
$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 2 \\ x = -2. \end{bmatrix}$$

Bảng xét dấu của đạo hàm

x	-0	∞	-2		2		$+\infty$
y'		+	0	_	0	+	

Từ bảng xét dấu ta có x=2 là điểm cực tiểu của hàm số. Vây m = 13.

b) $y' = x^2 - 2mx + m^2 - m + 1$.

Hàm số đạt cực đại tại $x=1 \Rightarrow y'(1)=0 \Leftrightarrow m^2-3m+2=0 \Leftrightarrow \begin{bmatrix} m=1\\ m=2. \end{bmatrix}$

Với m = 1, ta có $y' = x^2 - 2x + 1 = (x - 1)^2 \ge 0$.

Suy ra hàm số đồng biến, suy ra không có cực trị, loại m=1.

Với m = 2, ta có $y' = x^2 - 4x + 3$.

Ta có
$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 3. \end{bmatrix}$$

Bảng xét dấu của đạo hàm

x	$-\infty$		1		3		$+\infty$
y'		+	0	_	0	+	

Từ bảng xét dấu ta có x = 1 là điểm cực đại của hàm số. Vây m=2.

c) $y' = 4(m-1)x^3$.

Với m = 1, ta có $y = 0, \forall x \in \mathbb{R}$.

Khi đó y là hàm hằng, suy ra hàm số không có cực trị, loại m=1.

Với m < 1, ta có $y' = 0 \Leftrightarrow x = 0$.

Bảng xét dấu của đạo hàm

x	$-\infty$		0		$+\infty$
y'		+	0	_	

Từ bảng xét dấu ta có x=0 là điểm cực đại của hàm số, suy ra m<1: thỏa

Với m > 1, ta có $y' = 0 \Leftrightarrow x = 0$.

Bảng xét dấu của đao hàm

x	$-\infty$		0		$+\infty$
y'		_	0	+	

Từ bảng xét dấu ta có x=0 là điểm cực tiểu của hàm số, suy ra m>1: loại. Vậy m < 1.

d)
$$y' = -4x^3 + 4(m-2)x = -4x(x^2 - (m-2)).$$

Ta có $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m - 2. \end{bmatrix}$

Với $m-2 \le 0 \Leftrightarrow m \le 2$, ta có $y'=0 \Leftrightarrow x=0$.

Bảng xét dấu của đạo hàm

x	$-\infty$		0		$+\infty$
y'		+	0	_	

Từ bảng xét dấu ta có x=0 là điểm cực đại của hàm số, suy ra $m\leq 2$: thỏa mãn.

Với
$$m-2>0 \Leftrightarrow m>2$$
, ta có $y'=0 \Leftrightarrow \begin{bmatrix} x=0\\ x=\sqrt{m-2}\\ x=-\sqrt{m-2}. \end{bmatrix}$

Bảng xét dấu của đạo hàm

x	$-\infty$	$-\sqrt{m-2}$			0	$\sqrt{m-2}$			$+\infty$
y'		+	0	_	0	+	0	_	

Từ bảng xét dấu ta có x=0 là điểm cực tiểu của hàm số, suy ra m>2: loại. Vậy $m\leq 2$.

e) $y' = 4x^3 - 4mx$.

Hàm số đạt cực tiểu tại $x = -1 \Rightarrow y'(-1) = 0 \Leftrightarrow m = 1$.

Với
$$m = 1$$
, ta có $y' = 4x^3 - 4x = 4x(x^2 - 1) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \\ x = -1 \end{bmatrix}$

Bảng xét dấu của đạo hàm

x	$-\infty$		-1		0		1		$+\infty$
y'		_	0	+	0	_	0	+	

Từ bảng xét dấu ta có x=-1 là điểm cực tiểu của hàm số, suy ra m=1: thỏa mãn.

Vậy m=1.

2. Các câu hỏi trắc nghiệm

CÂU 1. Hàm số $y = x^3 + mx + 2$ có cả cực đại và cực tiểu khi

A. m < 0.

B. m > 0.

C. $m \ge 0$.

D. $m \le 0$.

🗭 Lời giải.

 $y'=3x^2+m.$ Hàm số $y=x^3+mx+2$ có cả cực đại và cực tiểu khi và chỉ khi y'=0 có hai nghiệm phân biệt. Vậy m<0.

Chọn đáp án (A)

CÂU 2. Cho hàm số $y = (m-2)x^3 - mx - 2$. Với giá trị nào của m thì hàm số có cực trị?

A. 0 < m < 2.

B. m < 1.

C. $m > 2 \lor m < 0$.

D. m > 1.

🗭 Lời giải.

Tập xác định $\mathcal{D} = \mathbb{R}$.

Ta có $y' = 3(m-2)x^2 - m$.

Cho $y' = 0 \Leftrightarrow 3(m-2)x^2 - m = 0$ (1).

 \odot TH1: Xét $m=2 \Rightarrow y'=-2 < 0, \forall x \in \mathbb{R}$ nên hàm số đã cho không có cực trị.

 \odot TH2: Xét $m \neq 2$.

Hàm số có cực trị khi $\Delta' > 0 \Leftrightarrow m(m-2) > 0 \Leftrightarrow \begin{bmatrix} m > 2 \\ m < 0. \end{bmatrix}$

Vậy m > 2 hoặc m < 0.

Chọn đáp án C

CÂU 3. Tìm tất cả tham số thực của m để hàm số $y = \frac{1}{3}(m+2)x^3 + x^2 + \frac{1}{3}mx - 2$ có cực đại, cực tiểu.

- **A.** $m \in (-3, -2) \cup (-2, 1)$.
- **B.** $m \in (-3; 1)$.
- **C.** $m \in (-\infty; -3) \cup (1; +\infty)$.
- **D.** $m \in (-2; 1)$.

🗩 Lời giải.

$$y' = (m+2)x^2 + 2x + \frac{1}{3}m.$$

Hàm số có cực đại, cực tiểu khi phương trình y'=0 có hai nghiệm phân biệt

$$\Leftrightarrow \begin{cases} \Delta' > 0 \\ m+2 \neq 0 \end{cases} \Leftrightarrow \begin{cases} 1 - \frac{1}{3}m^2 - \frac{2}{3}m > 0 \\ m \neq -2 \end{cases} \Leftrightarrow \begin{cases} -3 < m < 1 \\ m \neq -2 \end{cases} \Leftrightarrow \begin{bmatrix} -3 < m < -2 \\ -2 < m < 1. \end{cases}$$

Chọn đáp án \bigcirc

CÂU 4. Xác định các giá trị của tham số m để đồ thị hàm số $y = mx^4 - m^2x^2 + 2016$ có 3 điểm cực tri?

A. m < 0.

B. m > 0.

C. $\forall m \in \mathbb{R} \setminus \{0\}.$

D. Không tồn tại giá trị của m.

🗭 Lời giải.

Tập xác định $\mathcal{D} = \mathbb{R}$.

Ta có $y' = 4mx^3 - 2xm^2$.

Để hàm số có 3 điểm cực trị khi $\begin{cases} a \neq 0 \\ a \cdot b < 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 0 \\ -8m^3 < 0 \end{cases} \Leftrightarrow m > 0.$

Chọn đáp án B

CÂU 5. Hàm số $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có cực trị khi

A. y' = 0 vô nghiệm.

B. y' = 0 có duy nhất một nghiệm.

C. y' = 0 có nghiệm.

D. y' = 0 có 2 nghiệm phân biệt.

🗭 Lời giải.

Chon đáp án (D)

CÂU 6. Hàm số $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có cực đại, cực tiểu khi

A. y' = 0 vô nghiêm.

B. y' = 0 có duy nhất một nghiệm.

C. y' = 0 có nghiệm.

D. y' = 0 có 2 nghiệm phân biệt.

Lời giải.

Chon đáp án (D)

CÂU 7. Hàm số $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có cực đại, cực tiểu và $x_{\rm CD} < x_{\rm CT}$ khi

- **A.** y'=0 có nghiệm, a>0.
- **B.** y' = 0 có hai nghiệm phân biệt, a > 0.
- **C.** y'=0 có nghiệm, a<0.
- **D.** y'=0 có hai nghiệm phân biệt, a<0.

Lời giải.

Chọn đáp án (B)

CÂU 8. Hàm số $y = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có cực đại, cực tiểu và $x_{\rm CD} > x_{\rm CT}$ khi

- **A.** y' = 0 có nghiệm, a > 0.
- **B.** y' = 0 có hai nghiệm phân biệt, a > 0.
- **C.** y'=0 có nghiệm, a<0.
- **D.** y' = 0 có hai nghiệm phân biệt, a < 0.

🗩 Lời giải.

Chọn đáp án D

\sim 11			\sim τ	
SI.	IICK	- 13	C)I	

CÂU 9. Hàm số $y = ax^4 + bx^2 + c$ $(a \neq 0)$ có 3 điểm cực trị khi và chỉ khi

A. b < 0. **B.** ab > 0. **c.** ab < 0.

p Lời giải.

Chon đáp án (D)

CÂU 10. Hàm số $y = ax^4 + bx^2 + c$ $(a \neq 0)$ có 1 điểm cực trị khi và chỉ khi **B.** $ab \ge 0$. **C.** ab < 0.

A. b > 0.

Chọn đáp án (B)

🗭 Lời giải.

CÂU 11. Đồ thi hàm số $y = ax^4 + bx^2 + c$ có 1 cực đại và 2 cực tiểu khi và chỉ

$$\mathbf{A.} \quad \begin{cases} a < 0 \\ b \neq 0 \end{cases}.$$

$$\mathbf{B.} \quad \begin{cases} a \neq 0 \\ b > 0 \end{cases}.$$

B.
$$\begin{cases} a \neq 0 \\ b > 0 \end{cases}$$
 C.
$$\begin{cases} a > 0 \\ b < 0 \end{cases}$$
 D.
$$\begin{cases} a > 0 \\ b > 0 \end{cases}$$

$$\begin{array}{ll}
\mathbf{D.} & \begin{cases} a > 0 \\ b > 0 \end{cases}
\end{array}$$

Chọn đáp án (C)

CÂU 12. Hàm số $y = ax^4 + bx^2 + c$ $(a \neq 0)$ có 1 cực tiểu và 2 cực đại khi và chỉ

$$\mathbf{A.} \quad \begin{cases} a < 0 \\ b > 0 \end{cases}.$$

$$\begin{cases} a > 0 \\ b \neq 0 \end{cases}$$

B.
$$\begin{cases} a > 0 \\ b \neq 0 \end{cases}$$
 C.
$$\begin{cases} a < 0 \\ b \geq 0 \end{cases}$$
 D.
$$\begin{cases} a > 0 \\ b > 0 \end{cases}$$

$$\begin{array}{ll}
\mathbf{D.} & \begin{cases} a > 0 \\ b > 0 \end{cases}
\end{array}$$

🗭 Lời giải.

Chon đáp án (A)

CÂU 13. Tìm tập hợp tất cả các giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 + mx^2 - mx^2$ $(4+4m)x+m^2$ có cực đại và cực tiểu.

A.
$$(-2; +\infty)$$
.

B.
$$\mathbb{R}$$
.

C.
$$\mathbb{R} \setminus \{-2\}.$$

Lời giải.

 $y' = x^2 + 2mx - (4+4m).$

Hàm số có cực đại và cực tiểu $\Leftrightarrow y' = 0$ có hai nghiệm phân biệt

$$\Leftrightarrow m^2 + 4 + 4m = (m+2)^2 > 0 \Leftrightarrow m \neq -2.$$

Chon đáp án (C)

CÂU 14. Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = x^3 - 3mx^2 +$ 3mx + 3m không có cực tri?

Lời giải.

 $y' = 3x^2 - 6mx + 3m$.

Hàm số không có cực trị $\Leftrightarrow y' = 0$ vô nghiệm hoặc có nghiệm kép $\Leftrightarrow 9m^2 - 9m \leq 1$ $0 \Leftrightarrow 0 \leq m \leq 1$. Vậy $m \in \{0, 1\}$.

Chọn đáp án (D)

CÂU 15. Hàm số $y = \frac{1}{3}x^3 + (m-1)x^2 + (3m^2 - 4m + 1)x$ có hai cực trị khi tham số $m \in (a; b)$ với a, b là các số thực. Tính S = a + b.

A.
$$S = 1$$
.

B.
$$S = -3$$
.

C.
$$S = 5$$
.

D.
$$S = -5$$
.

P Lời giải.

 $y' = x^2 + 2(m-1)x + 3m^2 - 4m + 1.$

Hàm số có hai cực trị $\Leftrightarrow y' = 0$ có hai nghiệm phân biệt

$$\Leftrightarrow (m-1)^2 - (3m^2 - 4m + 1) > 0 \Leftrightarrow -2m^2 + 2m > 0 \Leftrightarrow 0 < m < 1.$$

Suy ra $m \in (0, 1)$, hay a = 0 và b = 1.

Vậy S = a + b = 0 + 1 = 1.

Chọn đáp án (A)

CÂU 16. Xác định các giá trị của tham số m để đồ thị hàm số $y = mx^4 - m^3x^2 + 2016$ có ba điểm cực tri.

A. m > 0.

B. $m \neq 0$.

c. $\forall m \in \mathbb{R} \setminus \{0\}.$

D. Không tồn tại giá trị của m.

Lời giải.

Hàm số đã cho có ba điểm cực trị $\Leftrightarrow ab < 0 \Leftrightarrow -m^4 < 0 \Leftrightarrow m^4 > 0 \Leftrightarrow m \neq 0$. Chọn đáp án \bigcirc

CÂU 17. Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y=\frac{1}{2}x^4-mx^2+\frac{3}{2}$ có đúng một cực trị.

A. $m \le -1$.

B. $m \le 0$.

C. $m \ge 0$.

D. m > 0.

🗭 Lời giải.

Hàm số đã cho có đúng một cực trị $\Leftrightarrow ab \geq 0 \Leftrightarrow -\frac{m}{2} \geq 0 \Leftrightarrow m \leq 0.$

Chọn đáp án B

CÂU 18. Tìm m để hàm số $y=x^4-2mx^2+2m+m^4-5$ đạt cực tiểu tại x=-1.

A. m = -1.

B. m = 1.

C. $m \neq -1$.

 $\mathbf{D.} \ m \neq 1.$

🗭 Lời giải.

Ta có $y' = 4x^3 - 4mx$, $y'' = 12x^2 - 4m$.

Hàm số $y = x^4 - 2mx^2 + 2m + m^4 - 5$ đạt cực tiểu tại x = 1 nên điều kiện cần $\begin{cases} y'(-1) = 0 \\ y''(-1) > 0. \end{cases}$

Suy ra $\begin{cases} -4 + 4m = 0 \\ 12 + 4m > 0 \end{cases} \Leftrightarrow m = 1.$

Thử lại ta thấy m=1 thỏa yêu cầu bài toán.

Chọn đáp án B

CÂU 19. Giá tri của m để hàm số $y = mx^4 + 2x^2 - 1$ có ba điểm cực tri là

ÀU 19. Giá tr **A.** m < 0.

B. $m \leq 0$.

 $\mathbf{C.} \quad m \neq 0.$

D. m > 0.

🗭 Lời giải.

Đây là hàm trùng phương có ba cực trị khi và chỉ khi hệ số a và b trái dấu. Do đó chọn m < 0.

 $\dot{\text{Chọn}}$ đáp án $\dot{\text{A}}$

CÂU 20. Tìm giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

A. m = -7.

B. m = 5.

C. m = -1.

m - 1

🗭 Lời giải.

Ta có $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3\pi \Rightarrow y' = x^2 - 2mx + m^2 - 4; y'' = 2x - 2m.$

Hàm số đạt cực đại tại x=3 với điều kiện cần $\begin{cases} y'(3)=0\\ y''(3)<0 \end{cases} \Leftrightarrow \begin{cases} m^2-6m+5=0\\ -2m+6<0 \end{cases} \Leftrightarrow$

m=5.

Thử lại thấy m = 5 thỏa mãn.

Chọn đáp án B

CÂU 21. Hàm số $y = 2x^3 - 3(m+1)x^2 + 6mx$ có cực trị khi

A. $m \neq 1$.

B. $m \neq 0$.

C. m > 0.

D. m < 1.

🗭 Lời giải.

Ta có $y' = 6x^2 - 6(m+1)x + 6m$.

Để hàm số có cực trị khi và chỉ khi phương trình y'=0 có hai nghiệm phân biệt $\Leftrightarrow \Delta'>0 \Leftrightarrow m^2-2m+1>0 \Leftrightarrow m\neq 1$.

Chon đáp án A

CÂU 22. Tìm giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}(m^2 + 1)x^2 + (3m - 2)x + m$ đạt cực đại tại x = 1.

A. m = 2.

B. m = -2.

C. m = 1.

D. m = -1.

Lời giải.

Tập xác định: $\mathscr{D} = \mathbb{R}$. Ta có $y' = x^2 - (m^2 + 1) x + (3m - 2)$. Nếu hàm số đạt cực đại tại x = 1 (giả thiết), suy ra:

$$y'(1) = 1^{2} - (m^{2} + 1) \cdot 1 + (3m - 2) = 0$$

$$\Leftrightarrow 1^{2} - (m^{2} + 1) \cdot 1 + (3m - 2) = 0$$

$$\Leftrightarrow -m^{2} + 3m - 2 = 0$$

$$\Leftrightarrow \boxed{m = 2}$$

Thử lại: Khi m=2 thì y''(1)=-1<0. Vậy khi m=2 thì hàm số đạt cực đại tại x = 1.

Chọn đáp án (A)

CÂU 23. Tìm giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - m - 1)x$ đạt cực đại tại x = 1.

A. m = 2.

B. m = 3.

C. $m \in \emptyset$.

D. m = 0.

🗭 Lời giải.

Tập xác định $\mathcal{D} = \mathbb{R}$. Ta có $y' = x^2 - 2mx + m^2 - m - 1$; y'' = 2x - 2m. Hàm số đạt cực đại tại x = 1 suy ra $y'(1) = 0 \Leftrightarrow m^2 - 3m = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = 3 \end{bmatrix}$

 \bigcirc Với m=0: $y''(1)=2>0 \Rightarrow x=1$ là điểm cực tiểu của hàm số.

 \bigcirc Với m=3: $y''(1)=-4<0 \Rightarrow x=1$ là điểm cực đại của hàm số.

Vậy m=3 là giá trị cần tìm.

Chọn đáp án (B)

CÂU 24. Tìm m để hàm số $y = mx^3 - (m^2 + 1) x^2 + 2x - 3$ đạt cực tiểu tại x = 1.

A. $m = \frac{3}{2}$. **B.** $m = -\frac{3}{2}$. **C.** m = 0.

Ta có: $y' = 3mx^2 - 2(m^2 + 1)x + 2$, $y'' = 6mx - 2(m^2 + 1)$. Để hàm số đã cho đạt cực tiểu tại x = 1 thì

$$\begin{cases} y'_{(1)} = 0 \\ y''_{(1)} > 0 \end{cases} \Leftrightarrow \begin{cases} -2m^2 + 3m = 0 \\ -2m^2 + 6m - 2 > 0 \end{cases} \begin{cases} \begin{bmatrix} m = 0 \\ m = \frac{3}{2} \\ \frac{3 - \sqrt{5}}{2} < m < \frac{3 + \sqrt{5}}{2} \end{cases} \Leftrightarrow m = \frac{3}{2}.$$

Chọn đáp án (A)

CÂU 25. Tìm tất cả các giá trị thực của tham số m để hàm số $y = x^4 + mx^2$ đạt cực tiểu tại x = 0.

A. $m \leq 0.$

B. m = 0.

c. $m \ge 0$.

D. m > 0.

🗭 Lời giải.

Ta có:
$$y = x^4 + mx^2 \Rightarrow y' = 4x^3 + 2mx = 2x(2x^2 + m)$$
.
 $y' = 0 \Rightarrow 2x(2x^2 + m) = 0 \Rightarrow \begin{cases} x = 0 \\ x^2 = -\frac{m}{2} \end{cases}$.

 \bigcirc Nếu $m \geq 0$ ta có bảng biến thiên:

x	$-\infty$	0		$+\infty$
y'	_	0	+	
y	+∞	0		$+\infty$

Suy ra hàm số đạt cực tiểu tại x = 0.

\bigcirc Nếu m < 0 ta có bảng biến thiên:

x	$-\infty$		x_1		0		x_3		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞	y g	$y(x_1)$		0 \		$y\left(x_{2}\right)$		$+\infty$

Suy ra hàm số đạt cực đại tại x = 0.

Vậy hàm số đạt cực tiểu tại x = 0 khi $m \ge 0$.

Chọn đáp án (C)

CÂU 26. Hàm số $y = x^3 + 2ax^2 + 4bx - 2018$ $(a, b \in \mathbb{R})$ đạt cực trị tại x = -1. Khi đó hiệu a-b là

A. -1.

B. $\frac{4}{3}$. **C.** $\frac{3}{4}$. **D.** $-\frac{3}{4}$.

🗭 Lời giải.

Ta có $y' = 3x^2 + 4ax + 4b$.

Hàm số đạt cực trị tại x=-1 nên $y'(-1)=0 \Rightarrow 3-4a+4b=0 \Rightarrow a-b=\frac{3}{4}$.

Chọn đáp án (C)

 $bx + a^2$. Tính f(3).

A. f(3) = 17.

B. f(3) = 49.

C. f(3) = 34. **D.** f(3) = 13.

🗭 Lời giải.

Ta có $f'(x) = 3x^2 + 2ax + b$ và f''(x) = 6x + 2a.

Tà co f(x) = 5x + 2ax + 6 và f(a) = 5x + 2aVì M(0;4) là điểm cực đại của đồ thị hàm số nên $\begin{cases} f(0) = 4 \\ f'(0) = 0 \end{cases} \Rightarrow \begin{cases} a^2 = 4 \\ b = 0 \end{cases} \Rightarrow \begin{cases} a < 0 \end{cases}$

$$\begin{cases} a = -2 \\ b = 0. \end{cases}$$

Suy ra $f(x) = x^3 - 2x^2 + 4$. Vây f(3) = 13.

Chọn đáp án (D)

CÂU 28. Giả a, b, c là các số thực thỏa mãn đồ thị hàm số $y = x^3 + ax^2 + bx + c$ đi qua điểm (1;0) và có điểm cực trị (-2;0). Tính giá trị biểu thức $T=a^2+b^2+c^2$.

A. 25.

🗭 Lời giải.

Ta có $y' = 3x^2 + 2ax + b$.

Đồ thị hàm số $y = x^3 + ax^2 + bx + c$ đi qua điểm (1;0) nên a + b + c = -1.

Đồ thị hàm số có điểm cực trị (-2;0) nên $\begin{cases} 4a-2b+c=8\\ y'(-2)=0 \end{cases} \Leftrightarrow \begin{cases} 4a-2b+c=8\\ -4a+b=-12. \end{cases}$

\circ		NOT	
SIL	IIC K	NOL	ь.

Xét hệ phương trình $\begin{cases} a+b+c=-1\\ 4a-2b+c=8\\ -4a+b=-12 \end{cases} \Leftrightarrow \begin{cases} a=3\\ b=0\\ c=-a \end{cases}$

Vây $T = a^2 + b^2 + c^2 = 25$

Chọn đáp án (A)

CÂU 29. Có tất cả bao nhiêu giá trị nguyên của m để hàm số $y = x^8 + (m-2)x^5 - x^6$ $(m^2 - 4) x^4 + 1$ đạt cực tiểu tại x = 0?

C. 4.

D. Vô số.

🗭 Lời giải.

Ta có
$$y' = 8x^7 + 5(m-2)x^4 - 4(m^2 - 4)x^3 = x^3 \left[\underbrace{8x^4 + 5(m-2)x - 4(m^2 - 4)}_{g'(x)}\right].$$

Ta xét các trường hợp sau:

- **②** Nếu $m^2 4 = 0 \Rightarrow m = \pm 2$. Khi $m=2 \Rightarrow y'=8x^7 \Rightarrow x=0$ là điểm cực tiểu. Khi $m = -2 \Rightarrow y' = x^4 (8x^4 - 20) \Rightarrow x = 0$ không là điểm cực tiểu.
- **⊙** Nếu $m^2 4 \neq 0 \Rightarrow m \neq \pm 2$. Khi đó ta có $y' = x^2 \left[8x^5 + 5(m-2)x^2 4(m^2 4)x \right]$. Số cực trị của hàm $y = x^8 + (m-2)x^5 - (m^2-4)x^4 + 1$ bằng số cực trị của hàm g'(x).

$$\begin{cases} g'(x) = 8x^5 + 5(m-2)x^2 - 4(m^2 - 4)x \\ g''(x) = 40x^4 + 100(m-2)x - 4(m^2 - 4). \end{cases}$$

Nếu x=0 là điểm cực tiểu thì q''(0)>0. Khi đó

$$-4(m^2-4) > 0 \Leftrightarrow m^2-4 < 0 \Rightarrow -2 < m < 2 \Rightarrow m \in \{-1, 0, 1\}.$$

Vây có 4 giá tri nguyên của m.

Chọn đáp án (C)

CÂU 30. Cho hàm số $y = \frac{1}{3} \sin 3x + m \sin x$. Tìm tất cả các giá trị của m để hàm số đạt cực đại tại điểm $x = \frac{n}{3}$

A.
$$m = 0$$
.

B.
$$m > 0$$
.

C.
$$m = \frac{1}{2}$$
. **D.** $m = 2$.

D.
$$m = 2$$

Dòi giải.

Ta có $y' = \cos 3x + m \cos x \Rightarrow y'' = -3 \sin 3x - m \sin x$.

Hàm số đạt cực đại tại điểm
$$x = \frac{\pi}{3}$$
 với điều kiện cần \Leftrightarrow
$$\begin{cases} y'\left(\frac{\pi}{3}\right) = 0 \\ y''\left(\frac{\pi}{3}\right) < 0 \end{cases} \Leftrightarrow \begin{cases} -1 + \frac{1}{2}m = 0 \\ -\frac{\sqrt{3}}{2}m < 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{\sqrt{3}}{2}m < 0 \end{cases}$$

m=2.

Thử lai thấy m=2 thỏa mãn.

Chọn đáp án (D)

CÂU 31. Cho hàm số $f(x) = x + m + \frac{n}{x+1}$ (với m, n là các tham số thực). Tìm m, n để hàm số đạt cực đại tại x = -2 và f(-2) = -2.

A. Không tồn tại giá trị của m, n. **B.** m = -1; n = 1.

C.
$$m = n = 1$$
.

D.
$$m = n = -2$$
.

P Lời giải.

Ta có
$$f'(x) = 1 - \frac{n}{(x+1)^2}$$
.

Hàm số đạt cực đại tại x = -2 và f(-2) = -2 nên ta có

$$\begin{cases} f'(-2) = 0 \\ -2 + m + \frac{n}{-1} = -2 \end{cases} \Leftrightarrow \begin{cases} 1 - \frac{n}{(-1)^2} = 0 \\ m - n = 0 \end{cases} \Leftrightarrow m = n = 1.$$

Chọn đáp án (C)

CÂU 32. Biết đồ thị hàm số $y = x^4 + bx^2 + c$ chỉ có một điểm cực trị là điểm có tọa độ (0; -1) thì b, c thỏa mãn điều kiện nào?

A. $b \ge 0$ và c = -1.

B. b < 0 và c = -1.

C. $b \ge 0 \text{ và } c > 0.$

D. b > 0 và c tùy ý.

🗭 Lời giải.

Vì đồ thị hàm số $y = x^4 + bx^2 + c$ chỉ có một điểm cực trị nên a, b trái dấu hoặc $b = 0 \Rightarrow b \le 0.$

Mặt khác ta có điểm cực trị là điểm có tọa độ (0; -1) nên ta có c = -1.

Chon đáp án (A)

CÂU 33. Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x + m$. Với giá trị nào của m hàm số đạt cực đại tại x=2?

A. m = 1.

B. m = 1 hoặc m = 3.

C. m = 3.

D. m = 0.

🗭 Lời giải.

 $y' = 3x^2 - 6mx + 3(m^2 - 1); y'' = 6x - 6m.$

Đề hàm số đạt cực
 đại tại x=2 thì x=2 là nghiệm của phương trình y'=0 và y''(2) < 0, tức là $m^2 - 4m + 3 = 0 \Leftrightarrow \begin{bmatrix} m = 1 \\ m = 3 \end{bmatrix}$ và $y''(2) = 12 - 6m < 0 \Leftrightarrow m > 2$.

Kết hợp hai điều kiện ta được m=3.

Chọn đáp án (C)

CÂU 34. Hàm số $y=\frac{x^2+mx+1}{x+m}$ đạt cực đại tại x=2 khi giá trị của m bằng **C.** 1. **D.** -3.

🗭 Lời giải.

Xét hàm sô $y = \frac{x^2 + mx + 1}{x + m}$.

Ta có
$$\mathscr{D} = \mathbb{R} \setminus \{-m\}$$
.

$$y' = \frac{x^2 + 2mx + m^2 - 1}{(x+m)^2}.$$

Hàm số đạt cực đại tại x=2 nên $y'(2)=0 \Leftrightarrow \frac{m^2+4m+3}{(2+m)^2}=0 \Leftrightarrow m^2+4m+3=$

$$0 \Leftrightarrow \begin{bmatrix} m = -1 \\ m = -3. \end{bmatrix}$$

Với
$$m = -1$$
 ta có $y = \frac{x^2 - x + 1}{x - 1}$ và $y' = \frac{x^2 - 2x}{(x - 1)^2}$; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$

Bảng xét dấu của y'

x	$-\infty$		0		1	2		$+\infty$
y'		+	0	_	_	0	+	

Ta thấy, hàm số đạt cực tiểu tại x = 2 (loại).

Với
$$m = -3$$
 ta có $y = \frac{x^2 - 3x + 1}{x - 3}$ và $y' = \frac{x^2 - 6x + 8}{(x - 3)^2}$; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 2 \\ x = 4 \end{bmatrix}$

Bảng xét dấu của y'

x	$-\infty$		2		3		4		$+\infty$
y'		+	0	_		_	0	+	

Ta thấy, hàm số đạt cực tại x = 2 (thỏa).

Vây m = -3.

Chọn đáp án (D)

a		\sim 1	/	ХU	\frown	TE
	UH	C.	\	N	U	ıE

CÂU 35. Hàm số $y = x^3 - 3x^2 + mx$ đạt cực tiểu tại x = 2 khi

A. m = 0.

B. $m \neq 0$.

Lời giải.

Đạo hàm $f'(x) = 3x^2 - 6x + m$ và f''(x) = 6x - 6.

Yêu cầu bài toán tương đương với $\begin{cases} f'(2) = 0 \\ f''(2) > 0 \end{cases} \Leftrightarrow \begin{cases} 3 \cdot 4 - 6 \cdot 2 + m = 0 \\ 12 - 6 > 0 \end{cases} \Leftrightarrow m = 0.$

Cách trắc nghiệm. Thay ngược đáp án nhưng lâu hơn cách tự luận.

Chọn đáp án (A)

CÂU 36. Tìm tất cả các giá trị thực của tham số m để hàm số $y = mx^3 + x^2 + x^2$ $(m^2-6)x+1$ đạt cực tiểu tại x=1.

A. m = 1.

B. m = -4.

C. m = -2.

D. m = 2.

🗭 Lời giải.

Ta có $y' = 3mx^2 + 2x + m^2 - 6$ suy ra y'' = 6mx + 2.

Hàm số đạt cực tiểu tại
$$x = 1 \Leftrightarrow \begin{cases} f'(1) = 0 \\ f''(1) > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3m + 2 + m^2 - 6 = 0 \\ 6m + 2 > 0 \end{cases} \Leftrightarrow \begin{cases} m^2 + 3m - 4 = 0 \\ 6m + 2 > 0 \end{cases} \Leftrightarrow m = 1.$$

Chon đáp án (A

CÂU 37. Tìm m để hàm số $y = x^5 + mx + m^2$ đạt cực tiểu tại x = 0.

A. m = 1.

B. m = 0.

C. m = -1.

D. Không tồn tại m.

Lời giải.

Ta có $y' = 5x^4 + m$.

Vì hàm số đạt cực tiểu tại x = 0 nên y'(0) = 0 hay m = 0.

Với m=0 thì $y'=5x^4\geq 0, \forall x\in\mathbb{R}$ nên hàm số không có cực trị. Vậy không tồn tại

Chọn đáp án (D)

CÂU 38. Xác định các giá trị của tham số m để đồ thị hàm số $y = mx^4 - m^3x^2 + 2016$ có 3 điểm cực trị?

A. m = 0.

B. m > 0.

C. $\forall m \in \mathbb{R} \setminus \{0\}.$

D. Không tồn tại giá trị của m.

🗩 Lời giải.

Tập xác định: $\mathcal{D} = \mathbb{R}$.

TH1: m = 0 hàm số trở thành $y = 2016 \Rightarrow D$ ồ thị hàm số không có điểm cực trị.

TH2: $m \neq 0$.

Ta có $y' = 4mx^3 - 2m^3x$.

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = \frac{m^2}{2} \end{bmatrix}$$

Đồ thị hàm số có 3 điểm cực trị $\Leftrightarrow \frac{m^2}{2} \neq 0 \Leftrightarrow m \neq 0$.

Chon đáp án (C)

CÂU 39. Cho hàm số $y = x^3 - 2x^2 + ax + b$ $(a, b \in \mathbb{R})$ có đồ thi (C). Biết đồ thi (C) có điểm cực trị là A(1;3). Tính giá trị P=4a-b.

A. P = 3.

B. P = 2.

C. P = 4.

D. P = 1.

Lời giải.

Ta có $y' = 3x^2 - 4x + a$.

Từ giả thiết A(1;3) là điểm cực trị ta có $\begin{cases} y(1) = 3 \\ y'(1) = 0 \end{cases} \Leftrightarrow \begin{cases} a+b=4 \\ a-1=0 \end{cases} \Leftrightarrow \begin{cases} b=3 \\ a=1. \end{cases}$

Vây P = 4a - b = 1.

Chọn đáp án (D)

CÂU 40. Hàm số $y = x^3 - 2mx^2 + m^2x - 2$ đạt cực tiểu tại x = 1 khi

A. m = 2.

B. m = 1.

C. m = -1.

D. m = -2.

🗭 Lời giải.

Ta có $y' = 3x^2 - 4mx + m^2 \Rightarrow y'' = 6x - 4m$. Hàm số đạt cực tiểu tại x = 1 khi và chỉ khi

$$\begin{cases} y'(1) = 0 \\ y''(1) > 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 4m + 3 = 0 \\ 6 - 4m > 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m = 1 \\ m = 3 \\ m < \frac{3}{2} \end{cases} \Leftrightarrow m = 1. \end{cases}$$

Chọn đáp án (B)

CÂU 41. Hàm số $y = x^4 - 2mx^2 + m - 1$ có đúng một cực trị khi và chỉ khi **B.** m > 0. **C.** m tùy ý.

🗭 Lời giải.

Ta có $y' = 4x^3 - 4mx = 4x(x^2 - m); y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{cases} (*).$

Hàm số có đúng một cực trị khi và chỉ khi (*) vô nghiệm hoặc có 1 nghiệm x = 0. Vây $m \leq 0$.

Chọn đáp án (A)

CÂU 42. Cho hàm số $f(x) = x^3 + ax^2 + bx + c$ và giả sử A, B là hai điểm cực trị của đồ thị hàm số. Giả sử đường thẳng AB đi qua gốc tọa độ, tìm giá trị nhỏ nhất của P = abc + ab + c.

D. $-\frac{25}{9}$.

🗭 Lời giải.

Ta có $f'(x) = 3x^2 + 2ax + b$.

Đồ thị hàm số có hai điểm cực trị $A, B \Rightarrow f'(x) = 0$ có hai nghiệm phân biệt $\Leftrightarrow a^2 - 3b > 0.$

Ta có $f(x) = \left(\frac{x}{3} + \frac{a}{9}\right) f'(x) + \frac{6b - 2a^2}{9} \cdot x + \frac{9c - ab}{9}$

 \Rightarrow đường thẳng đi qua hai điểm cực trị $A,\,B$ là $d\colon y=\frac{6b-2a^2}{\mathsf{q}}\cdot x+\frac{9c-ab}{\mathsf{q}}.$

d đi qua gốc tọa độ $\Rightarrow 9c - ab = 0 \Leftrightarrow ab = 9c$.

 $P = abc + ab + c = 9c^2 + 10c = \left(3c + \frac{5}{3}\right)^2 - \frac{25}{9} \ge -\frac{25}{9}$

 $\Rightarrow P \text{ nhỏ nhất là } -\frac{25}{9} \text{ đạt được khi và chỉ khi } \begin{cases} 3c + \frac{5}{3} = 0 \\ 9c - ab = 0 \end{cases} \Leftrightarrow \begin{cases} c = -\frac{5}{9} \\ ab = -5 \\ c^2 - 3b > 0 \end{cases}$

Chon đáp án (D)

NOTE \blacktriangleright Dạng 3. Xác định tham số m để hàm số có cực trị thỏa điều kiện cho trước

Bài toán 1. Cho hàm số $y = f(x, m) = ax^3 + bx^2 + cx + d$. Tìm tham số m để đồ thị hàm số có 2 điểm cực trị x_1, x_2 thỏa mãn điều kiện K cho trước?

Bước 1. Tập xác định $\mathcal{D} = \mathbb{R}$. Tính đạo hàm: $y' = 3ax^2 + 2bx + c$.

Bước 2. Hàm số có 2 điểm cực trị $\Leftrightarrow y'=0$ có 2 nghiệm phân biệt $\Leftrightarrow \begin{cases} a\neq 0\\ \Delta'=b^2-3ac>0 \end{cases}$ và giải hệ này sẽ tìm được $m\in D_1$.

Bước 3. Gọi x_1, x_2 là 2 nghiệm của phương trình y'=0. Theo định lý Viète, ta có $S=x_1+x_2=-\frac{2b}{3a}$ và $P=x_1x_2=\frac{c}{3a}$.

Bước 4. Biến đổi điều kiện K về dạng S và P. Từ đó giải ra tìm được $m \in D_2$.

Bước 5. Kết luận các giá trị m thỏa mãn: $m = D_1 \cap D_2$.

Bài toán 2. Hàm số bậc bốn trùng phương $y = f(x, m) = ax^4 + bx^2 + c$ có 3 điểm cực trị thỏa điều kiện K.

Buốc 1. $y' = 4ax^3 + 2bx = 0 \Leftrightarrow \begin{cases} x = 0 \\ g(x) = 2ax^2 + b = 0. \end{cases}$

Bước 2. Hàm số có 3 điểm cực trị $\Leftrightarrow ab < 0 \Rightarrow m \in D_1$.

Bước 3. Giải $g(x) = 0 \Leftrightarrow x_{1,2} = \pm \sqrt{-\frac{b}{2a}} \Rightarrow y_1 = y_2 = f\left(\sqrt{-\frac{b}{2a}}\right)$.

Do đó tọa độ ba điểm cực trị sẽ là $A(0;c), B(x_1;y_1), C(x_2;y_2)$ và do tính đối xứng nên tam giác ABC luôn cân tai A.

Bước 4. Dựa vào điều kiện đề bài cho để tìm $m \in D_2 \Rightarrow m = D_1 \cap D_2$.

1. Các ví dụ

VÍ DU 1. Tìm tham số m để các hàm số

- a) $y = \frac{2}{3}x^3 mx^2 2(3m^2 1)x + \frac{2}{3}$ có hai điểm cực trị x_1, x_2 thỏa mãn $x_1x_2 + 2(x_1 + x_2) = 1$.
- b) $y = x^3 3mx + 1$ với đồ thị (C) có hai điểm cực trị B và C sao cho tam giác ABC cân tại A(2;3).
- c) $y=2x^3-3(m+1)x^2+6mx$ với đồ thị (C) có hai điểm cực trị A và B sao cho $AB\perp d$, với $d\colon y=x+2$.
- d) $y=x^3-3mx^2+3m^3$ với đồ thị (C) có hai điểm cực trị A và B sao cho $S_{OAB}=48.$
- e) $y = x^4 2(m+1)x^2 + m^2$ có 3 điểm cực trị tạo thành 3 đỉnh của một tam giác vuông.
- f) $y=x^4-2mx^2$ có ba điểm cực trị tạo thành tam giác có diện tích nhỏ hơn 1.

VÍ DỤ 2. Tìm m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 + m - 1)x + 1$ đạt cực trị tại 2 điểm $x_1; x_2$ thỏa mãn $|x_1 + x_2| = 4$.

A. m = 2.

B. Không tồn tại m.

C. m = -2.

D. $m = \pm 2$.

QUICK NOTE

Lời giải.

Ta có $y' = x^2 - 2mx + m^2 + m - 1$.

Hàm số có hai điểm cực tri khi và chỉ khi y'=0 có hai nghiêm phân biệt hay

$$\Delta > 0 \Leftrightarrow m^2 - (m^2 + m - 1) > 0 \Leftrightarrow m < 1.$$

Do x_1 và x_2 là nghiệm của phương trình y'=0 nên $x_1+x_2=2m$.

Theo giả thiết $|x_1 + x_2| = 4 \Leftrightarrow |2m| = 4 \Leftrightarrow \begin{vmatrix} m = 2 \\ m = -2 \end{vmatrix}$. So với điều kiện, ta nhận m = -2.

Chon đáp án (C)

2. Câu hỏi trắc nghiệm

CÂU 1. Cho hàm số $y = -x^3 + (2m+1)x^2 - (m^2 - 3m + 2)x - 4$. Tìm m để hàm số có cực đại, cực tiểu nằm 2 phía trục tung

A. $m \in (1; 2)$.

C. $m \in (-\infty; 1) \cup (2; +\infty)$.

D. $m \in (-\infty; 1] \cup [2; +\infty)$.

🗭 Lời giải.

Dao hàm $y' = -3x^2 + 2(2m+1)x - (m^2 - 3m + 2)$. Goi x_1 và x_2 là 2 cực tri của hàm số.

Theo yêu cầu bài toán ta có $x_1 \cdot x_2 < 0 \Leftrightarrow \frac{m^2 - 3m + 2}{3} < 0 \Leftrightarrow 1 < m < 2$.

Chọn đáp án (A)

CÂU 2. Tìm tất cả các giá trị của tham số m để hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}(m+5)x^2 + mx$ có điểm cực đại, cực tiểu và $|x_{\rm CD} - x_{\rm CT}| = 5$.

A. m = 0.

B. $m = \{-6, 0\}.$ **C.** m = 6.

D. $m = \{6; 0\}.$

🗭 Lời giải.

Ta có $y' = x^2 - (m+5)x + m$.

Để hàm số có điểm cực đại và cực tiểu thì $y' = x^2 - (m+5)x + m = 0$ có hai nghiệm

Suy ra $\Delta > 0 \Leftrightarrow (m+5)^2 - 4m > 0 \Leftrightarrow m^2 + 6m + 25 > 0, \forall m \in \mathbb{R}$. Áp dụng định lý Vi-ét ta có $\begin{cases} x_{\text{CD}} + x_{\text{CT}} = m + 5 \\ x_{\text{text}C\times \text{CT}} = m \end{cases}$. Khi đó

 $|x_{\text{CD}} - x_{\text{CT}}| = 5 \Leftrightarrow (x_{\text{CD}} + x_{\text{CT}})^2 - 4x_{C\S} \cdot x_{\text{CT}} = 25 \Leftrightarrow (m+5)^2 - 4m - 25 = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = -6 \end{bmatrix}$

Chọn đáp án (B)

CÂU 3. Gọi x_1, x_2 là hai điểm cực trị của hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x$ $m^3 + m$. Tìm tất cả các giá trị của tham số thực m để $x_1^2 + x_2^2 - x_1 x_2 = 7$. **A.** $m = \pm 1$. **B.** $m = \pm 2$. **C.** m = 0. **D.** $m = \pm \sqrt{2}$.

Lời giải.

 $y' = 3x^2 - 6mx + 3(m^2 - 1); \Delta' = 9 > 0, \forall m \text{ nên hàm số luôn có 2 cực trị } x_1, x_2$ $\int x_1 + x_2 = 2m$ $\int x_1 x_2 = m^2 - 1.$

Khi đó $x_1^2 + x_2^2 - x_1 x_2 = 7 \Leftrightarrow (x_1 + x_2)^2 - 3x_1 x_2 = 7 \Leftrightarrow m^2 = 4 \Leftrightarrow m = \pm 2.$ Chọn đáp án (B)

CÂU 4. Đồ thị hàm số $y = x^3 - (3m+1)x^2 + (m^2 + 3m + 2)x + 3$ có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi:

A. 1 < m < 2.

B. -2 < m < -1. **C.** 2 < m < 3.

🗭 Lời giải.

Ta có $y' = 3x^2 - 2(3m+1)x + m^2 + 3m + 2$. Yêu cầu bài toán tương đương với $ac < 0 \Leftrightarrow 3 \cdot (m^2 + 3m + 2) < 0 \Leftrightarrow (m^2 + 3m + 2) < 0 \Leftrightarrow -2 < m < -1.$

Chọn đáp án (B)

CÂU 5. Với giá trị nào của m thì đồ thị hàm số $y = \frac{1}{3}x^3 - mx^2 + (m+2)x$ có hai điểm cực trị nằm về phía bên phải trục tung?

A. m = 2.

B. 0 < m < 2.

Lời giải.

Ta có tập xác định $\mathcal{D} = \mathbb{R}$, đạo hàm $y' = x^2 - 2mx + m + 2$.

Đồ thị hàm số có hai điểm cực trị nằm về bên phải trục tung khi phương trình y'=0

có hai nghiệm dương phân biệt, khi đó $\begin{cases} m^2 - m - 2 > 0 \\ 2m > 0 \\ m + 2 > 0 \end{cases} \Leftrightarrow \begin{cases} m < -1 \\ m > 2 \\ m > 0 \\ m > -2 \end{cases} \Leftrightarrow m > 2.$

Chon đáp án (D)

CÂU 6. Tìm m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m+2)x - 1$ có hai điểm cực trị trong khoảng $(0; +\infty)$?

 $\mathbf{A.} \ \ (-\infty; 2].$

Lời giải.

Ta có: $y' = x^2 - 2mx + m + 2$.

Hàm số có 2 điểm cực trị trong $(0; +\infty)$ khi và chỉ khi phương trình y' = 0 có 2 nghiệm dương phân biệt hay \Leftrightarrow $\begin{cases} \Delta' > 0 \\ P > 0 \\ S > 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - m - 2 > 0 \\ 2m > 0 \\ m + 2 > 0 \end{cases} \Leftrightarrow \begin{cases} m < -1 \lor m > 2 \\ m > 0 \\ m > -2 \end{cases}$

m > 2.

Chọn đáp án (B)

CÂU 7. Tìm tất cả các giá trị thực của tham số a sao cho hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 + ax + 1$ đạt cực trị tại điểm x_1, x_2 thỏa mãn: $\left(x_1^2 + x_2 + 2a\right)\left(x_2^2 + x_1 + 2a\right) = 9$

A. a = 2.

Lời giải.

Đạo hàm $y' = x^2 - x + a$. Xét phương trình $y' = 0 \Leftrightarrow x^2 - x + a = 0$.

Để hàm số có hai cực trị $\Leftrightarrow y' = 0$ có 2 nghiệm phân biệt $\Leftrightarrow 1 - 4a > 0 \Leftrightarrow a < \frac{1}{4}$.

Ta có theo định lý Vi-ét $S = x_1 + x_2 = 1$ và $P = x_1x_2 = a$.

Ta có $x_1^2 - x_1 + a = 0 \Leftrightarrow x_1^2 = x_1 - a$ và $x_2^2 - x_2 + a = 0 \Leftrightarrow x_2^2 = x_2 - a$.

Theo để bài, $(x_1^2 + x_2 + 2a)(x_2^2 + x_1 + 2a) = 9$

$$\Leftrightarrow (x_1 - a + x_2 + 2a)(x_2 - a + x_1 + 2a) = 9 \Leftrightarrow (x_1 + x_2 + a)^2 = 9 \Leftrightarrow (1 + a)^2 = 9 \Leftrightarrow \begin{bmatrix} a = 2 \\ a = -4 \end{bmatrix}$$

So sánh điều kiện, nhận a = -4.

Chọn đáp án (B)

CÂU 8. Cho hàm số $y = \frac{2}{3}x^3 + (m+1)x^2 + (m^2 + 4m + 3)x - 3$, (m là tham số)thực). Tìm điều kiện của m để hàm số có cực đại cực tiểu và các điểm cực trị của đồ thị hàm số nằm bên phải của trục tung.

A. -5 < m < -1. **B.** -5 < m < -3. **C.** -3 < m < -1. **D.** $\begin{vmatrix} m > -1 \\ m < -5 \end{vmatrix}$.

🗭 Lời giải.

 $y' = 2x^2 + 2(m+1)x + (m^2 + 4m + 3).$

Yêu cầu bài toán thỏa mãn trở thành y'=0 có hai nghiệm dương phân biệt, từ đó

$$\begin{cases} \Delta' > 0 \\ S > 0 \\ P > 0 \end{cases} \Leftrightarrow \begin{cases} (m+1)^2 - 2(m^2 + 4m + 3) > 0 \\ -(m+1) > 0 \\ \frac{m^2 + 4m + 3}{2} > 0 \end{cases} \Leftrightarrow \begin{cases} m \in (-5; -1) \\ m < -1 \\ m \in (-\infty; -3) \cup (-1; +\infty) \end{cases} \Leftrightarrow m \in (-\infty; -3) \cup (-1; +\infty)$$

Vậy -5 < m < 3 thỏa mãn yêu cầu bài toán.

Chon đáp án (B)

CÂU 9. Cho hàm số $y = x^3 - 3x^2 + mx - 1$, tìm giá trị của tham số m để hàm số có hai cực trị x_1 , x_2 thỏa $x_1^2 + x_2^2 = 3$.

A.
$$m = \frac{3}{2}$$
.

B.
$$m = 1$$
.

C.
$$m = -2$$

C.
$$m = -2$$
. **D.** $m = \frac{1}{2}$.

D Lời giải.

Tập xác định $\mathcal{D} = \mathbb{R}$. Ta có đạo hàm $f'(x) = 3x^2 - 6x + m$.

Hàm số có hai cực trị x_1, x_2 khi f'(x) = 0 có hai nghiệm phân biệt $\Leftrightarrow 9 - 3m > 0 \Leftrightarrow$

Theo hệ thức Vi-et, $x_1 + x_2 = 2$ và $x_1 \cdot x_2 = \frac{m}{3}$.

Ta có: $x_1^2 + x_2^2 = 3 \Leftrightarrow (x_1 + x_2)^2 - 2x_1x_2 = 3 \Leftrightarrow 2^2 - 2 \cdot \frac{m}{3} = 3 \Leftrightarrow m = \frac{3}{3}$.

Chọn đáp án (A)

CÂU 10. Cho hàm số $y = 3x^4 - 2mx^2 + 2m + m^4$. Tìm tất cả các giá trị của m để đồ thị hàm số đã cho có ba điểm cực trị tạo thành tam giác có diện tích bằng

A. m = -3.

B.
$$m = 3$$
.

C.
$$m = 4$$
.

D.
$$m = -4$$
.

🗭 Lời giải.

Ta có $y' = 12x^3 - 4mx = 4x(3x^2 - m)$. Đề đồ thị hàm số có ba điểm cực trị thì m > 0.

Khi đó tọa độ các điểm cực trị là $A\left(0;2m+m^4\right), B\left(\sqrt{\frac{m}{3}};m^4-\frac{m^2}{3}+2m\right), C\left(-\sqrt{\frac{m}{3}};m^4-\frac{m^2}{3}+2m\right)$

Tam giác ABC cân tại A nên có diện tích $S_{ABC} = \frac{1}{2} \cdot BC \cdot d(A;BC) = \frac{1}{2} \cdot 2\sqrt{\frac{m}{2}} \cdot \frac{m^2}{2} = \frac{1}{2} \cdot BC \cdot d(A;BC)$

$$\sqrt{\frac{m}{3}} \cdot \frac{m^2}{3}.$$

Theo đề bài ta có $\sqrt{\frac{m}{3}} \cdot \frac{m^2}{3} = 3 \Leftrightarrow m = 3.$

Chon đáp án (B)

CÂU 11. Tìm m để hàm số $y = x^3 - 3x^2 + mx - m^3$ có hai điểm cực trị x_1 ; x_2 thỏa $m\tilde{a}n \ x_1^2 + x_2^2 = 3.$

A.
$$m = -\frac{3}{2}$$
.

B.
$$m = -3$$
. **C.** $m = 3$. **D.** $m = \frac{3}{2}$.

C.
$$m = 3$$

D.
$$m = \frac{3}{2}$$
.

D Lời giải.

Tập xác định $\mathcal{D} = \mathbb{R}$. Ta có $y' = 3x^2 - 6x + m$.

Vậy hàm số có hai điểm cực trị x_1 ; x_2 thỏa mãn $x_1^2 + x_2^2 = 3$ khi và chỉ khi

y'=0 có hai nghiệm phân biệt x_1 ; x_2 thỏa mãn $x_1^2+x_2^2=3\Leftrightarrow \begin{cases} \Delta'>0\\ x_1^2+x_2^2=3 \end{cases}$

$$\begin{cases} 9 - 3m > 0 \\ (x_1 + x_2)^2 - 2x_1x_2 = 3 \end{cases} \Leftrightarrow \begin{cases} m < 3 \\ 2m = 3 \end{cases} \Leftrightarrow m = \frac{3}{2}.$$

Chọn đáp án (D)

CÂU 12. Cho hàm số $y = \frac{1}{3}x^3 - (m+2)x^2 + (m^2 + 4m + 3) + 5m^3 + 1(1)$. Gọi mlà số thực để hàm số (1) đạt cực đại tại x_1 , đạt cực tiểu tại x_2 sao cho $x_1^2 = x_2$. Khi đó khẳng định nào sau đây đúng.

A. $m \in (-3; 3)$.

B. m > 6.

C. $m \in (3;6)$.

Lời giải.

Ta có $y' = x^2 - 2(m+2)x + m^2 + 4m + 3$. Tại $y' = 0 \Leftrightarrow x^2 - 2(m+2)x + m^2 + 4m + 3 = 2m + 2m + 2m + 3$ $\int x = m + 1$ x = m + 3.

Ta có biệt thức $\Delta' = (m+2)^2 - (m^2+4m+3) = 1 > 0$. Do đó hàm số luôn có 2 điểm cực trị.

a		/ 1	ч	$\boldsymbol{\frown}$	
		c r	м		_

Bảng biến thiên như hình

Khi đó $x_1 = m + 1, x_2 =$ m+3.

Do $x_1^2 = x_2$ nên

$(m{+}1)^2$	= m + 3	$\Leftrightarrow m^2$	+m-

	x	$-\infty$		m+1		m+3		$+\infty$
	y'		+	0	_	0	+	
				y(m+1)	.)			$+\infty$
2	$y = 0 \Leftrightarrow$	$\begin{bmatrix} m = \\ -\infty \end{bmatrix}$	<i>1</i> −2.			y(m+3)	3)	

Chọn đáp án (A)

CÂU 13. Tìm tất cả giá trị của tham số m để đồ thị hàm số $y = -x^4 + 2mx^2$ có ba điểm cực trị tạo thành một tam giác đều.

A. m > 0.

B. $m = \sqrt[3]{3}$.

C. $m = \pm \sqrt[3]{3}$.

D. m = 1.

p Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R}$. Đạo hàm $y' = -4x^3 + 4mx$. Tại $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{bmatrix}$

Hàm số có 3 điểm cực trị $\Leftrightarrow y' = 0$ có 3 nghiệm phân biệt $\Leftrightarrow m > 0$.

Lúc đó đồ thị hàm số có 3 điểm cực trị $A(0;0), B(-\sqrt{m}; m^2), C(\sqrt{m}; m^2)$.

Ta có $AB = AC = \sqrt{m^4 + m}, BC = 2\sqrt{m}.$

Theo giả thiết, ta có $AB = BC \Leftrightarrow \sqrt{m+m^4} = 2\sqrt{m} \Leftrightarrow m^4 - 3m = 0 \Leftrightarrow$

 $m = \sqrt[3]{3} \Leftrightarrow m = \sqrt[3]{3}.$

Chọn đáp án (B)

CÂU 14. Gọi m_0 là giá trị thực của tham số m để đồ thị hàm số $y = x^4 + 2mx^2 + 4$ có 3 điểm cực trị nằm trên các trục tọa độ. Mệnh đề nào sau đây là đúng?

A. $m_0 \in (-5; -3)$.

B. $m_0 \in \left(-\frac{3}{2}; 0\right)$.

c. $m_0 \in \left(-3; -\frac{3}{2}\right)$.

D. $m_0 \in (1;3)$.

Ta có $y = x^4 + 2mx^2 + 4 \Rightarrow y' = 4x^3 + 4mx$.

Với $y' = 0 \Leftrightarrow 4x^3 + 4mx = 0 \Leftrightarrow$ $\begin{bmatrix} x = 0 \Rightarrow y = 4 \\ x = \sqrt{-m} \Rightarrow y = 4 - m^2 \\ x = -\sqrt{-m} \Rightarrow y = 4 - m^2 \end{bmatrix} (m < 0).$

Yêu cầu bài toán xảy ra khi $4 - m^2 = 0 \Leftrightarrow m = \pm 2 \Rightarrow m = -2(m < 0)$. Chọn đáp án (C)

CÂU 15. Cho hàm số $y = -\frac{1}{3}x^3 + x^2 + mx + 1$. Tìm tập hợp các giá trị của m để hàm số đạt cực trị tại các điểm x_1, x_2 thỏa mãn $x_1^2 + x_2^2 = 6$.

A. {0}.

B. $(-1; +\infty)$. **C.** $\{2\}$.

D. {1}.

🗭 Lời giải.

Đạo hàm $y' = -x^2 + 2x + m$.

Để hàm số có hai điểm cực trị thì y'=0 có hai nghiệm phân biệt $\Leftrightarrow \Delta'=1+m>$ $0 \Leftrightarrow m > -1$.

Khi m > -1, ta có hoành độ cực trị x_1, x_2 là nghiệm của phương trình y' = 0.

Theo định lý Vi-ét ta có $\begin{cases} x_1 + x_2 = 2 \\ x_1 \cdot x_2 = -m \end{cases}$. Yêu cầu bài toán là

$$x_1^2 + x_2^2 = 6 \Leftrightarrow (x_1 + x_2)^2 - 2x_1 \cdot x_2 = 6 \Leftrightarrow 4 + 2m = 6 \Leftrightarrow m = 1.$$

Chọn đáp án (D)

CÂU 16. Cho đồ thị hàm số $y = -x^3 + 3mx + 1$ có hai điểm cực trị A, B thỏa mãn tam giác OAB vuông tại O (O là gốc tọa độ). Khẳng định nào dưới đây đúng?

A.
$$-1 <$$

A.
$$-1 < m < \frac{1}{3}$$
. **B.** $1 < m < 3$. **C.** $-\frac{1}{2} < m < 1$. **D.** $-2 < m < 0$.

🗭 Lời giải.

Đạo hàm $y' = -3x^2 + 3m$. Tại $y' = 0 \Leftrightarrow -3x^2 + 3m = 0 \Leftrightarrow x^2 = m \Leftrightarrow m > 0$. Khi m > 0, phương trình y' = 0 có hai nghiệm phân biệt là $x = \pm \sqrt{m}$. Gọi $A(\sqrt{m}; 1+2m\sqrt{m}), B(\sqrt{m}; 1-2m\sqrt{m})$ là hai điểm cực trị của (C_m) . \overrightarrow{D} ể tam giác OAB vuông tại O thì

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Leftrightarrow \sqrt{m} \cdot (-\sqrt{m}) + \left(1 + 2m\sqrt{m}\right)\left(1 - 2m\sqrt{m}\right) = 0 \Leftrightarrow -4m^3 - m + 1 = 0 \Leftrightarrow m = \frac{1}{2} \cdot \dots$$

Chọn đáp án (C)

CÂU 17. Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = $x^4 - 2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.

A. m < 1.

B. 0 < m < 1.

C. $0 < m < \sqrt[3]{4}$.

🗭 Lời giải.

Hàm số $y = x^4 - 2mx^2$ có. Ta có $y' = 4x^3 - 4mx$; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{bmatrix}$

Để đồ thi hàm số có ba điểm cực tri thì m > 0.

Khi đó ba điểm cực trị là O(0;0), $B\left(-\sqrt{m};-m^2\right)$, $C\left(\sqrt{m};-m^2\right)$.

Ta có tam giác OBC cân tại O, với $I(0; -m^2)$ là trung điểm của BC.

Theo yêu cầu bài toán, ta có $S_{ABC} = \frac{1}{2}OI \cdot BC = \frac{1}{2}|-m^2| \cdot 2\sqrt{m} < 1 \Leftrightarrow 0 < m < 1.$

Chon đáp án (B)

CÂU 18. Điểm M(3;-1) thuộc đường thẳng đi qua hai điểm cực đại và cực tiểu của đồ thi hàm số $y = x^3 - x + m$ khi m bằng

A. 2.

B. 1.

D. 0.

🗭 Lời giải.

Ta có $y' = 3x^2 - 1$; $\frac{y}{y'} = \frac{x^3 - x + m}{3x^2 - 1} = \frac{1}{3}x + \frac{-\frac{2}{3}x + m}{3x^2 - 1} = \frac{1}{3}x\left(3x^2 - 1\right) - \frac{2}{3}x + m$.

Suy ra phương trình qua 2 điểm cực đại và cực tiểu là $y = \frac{-2}{3}x + m$.

Thay M(3;-1) vào ta có $-1 = \frac{-2}{3} \cdot 3 + m \Rightarrow -1 = -2 + m \Rightarrow m = 1$.

Chọn đáp án (B)

CÂU 19. Giả sử đồ thị của hàm số $y = x^3 - 3mx^2 + m$ có hai điểm cực trị A, B. Tìm tất cả các giá trị thực của tham số m để đường thẳng AB song song với đường thẳng d: y = 1 - 2x?

A. m = 1.

B. m = -1.

C. m=1; m=-1.

D. m=2; m=-2.

🗭 Lời giải.

Công thức phương trình đường thẳng qua điểm cực trị là $y = \frac{-2(b^2 - 3ac)}{\alpha_a}x + \frac{1}{2}$ 9a

Phương trình đường thẳng qua hai điểm cực trị A,B là $AB\colon y=-2m^2x+m.$

Vì AB # d nên $\begin{cases} -2m^2 = -2 \\ m \neq 1 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m = 1 \\ m = -1 \\ m = -1 \end{cases} \Leftrightarrow m = -1. \end{cases}$

Chon đáp án (B)

CÂU 20. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = x^3 - x^3$ $3mx^2 + 4m^3$ có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4

với O là gốc tọa độ. $\mathbf{A.} \quad m = -\frac{1}{\sqrt{2}}; \ m = \frac{1}{\sqrt{2}}.$

B. m = -1; m = 1.

	QU	ICK	NOTE	
		• • • • •		
		• • • • •		
				• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • •		• • • • • • • • • • • • • • • • • • • •
		• • • • •		• • • • • • • • • • • • • • • • • • • •
		• • • • •		• • • • • • • • • • • • • • • • • • • •
		• • • • •		
		• • • • •		• • • • • • • • • • • • • • • • • • • •
		• • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • •		• • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •				

	C.	m	=
_			

 $\mathbf{D.} \ m \neq 0.$

Dèi giải.

Ta có $y' = 3x^2 - 6mx = 3x(x - 2m)$ và y'' = 6x - 6m. Tại $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2m \end{bmatrix}$.

Để hàm số có hai điểm cực trị thì $y''(0) \neq 0$ và $y''(2m) \neq 0$, hay $m \neq 0$. Khi đó, ta có tọa độ hai điểm A và B là $A\left(0;4m^{3}\right),\,B(2m;0).$

Vậy tam giác OAB vuông tại O và $S_{OAB} = \frac{1}{2}OA \cdot OB = \frac{1}{2}\left|4m^3\right| \cdot |2m| = 4m^4$. Ta cần $S_{OAB} = 1 \Leftrightarrow 4m^4 = 1 \Leftrightarrow m = \frac{1}{\sqrt{2}}$ hoặc $m = -\frac{1}{\sqrt{2}}$ (thỏa mãn $m \neq 0$).

Chọn đáp án (A)