Chapter 3.5 Practice Problems

EXPECTED SKILLS:

- Be able to compute the local linear approximation of a function at a specific value.
- Know how to use the local linear approximation to estimate a given quantity.

PRACTICE PROBLEMS:

For problems 1-4, calculate the Local Linear Approximation, L(x), for the given function at the specified value of x_0 . Also, sketch f(x) and L(x) over the indicated interval

1. $f(x) = x^2 + 1$, $x_0 = 1$, [0, 2]

2. $f(x) = \frac{1}{2x - 1}, x_0 = 1, [0, 2]$

3. $f(x) = e^{-x}, x_0 = 0, [-1, 1]$

4. $f(x) = \tan(x), x_0 = \frac{\pi}{4}, \left[0, \frac{\pi}{2}\right]$

For problems 5-10, use an appropriate local linear approximation to approximate the following values.

- $5. (5.05)^3$ 128.75
- 6. $\sqrt{101}$ 10.05
- $7. \sqrt[3]{28}$ $\boxed{\frac{82}{27}}$

- 8. $e^{0.9}$ $\frac{9}{10}e$
- 9. cos 0.1
- 10. $\sin 61^{\circ}$ $\sqrt{\frac{3}{2}} + \frac{\pi}{360}$
- 11. Show that $(1-x)^5 \approx 1-5x$ for x near 0.
- 12. Show that $\ln(2x) \approx 2x 1$ for x near $\frac{1}{2}$.
- 13. Consider $f(x) = (x+1)^{13}$.

 - (b) Using your approximation, estimate $(0.99)^{13}$. $\boxed{0.87}$
 - (c) Using your approximation, estimate $(1.01)^{13}$ $\boxed{1.13}$
- 14. Let $f(x) = x^2$.
 - (a) Calculate the Local Linear Approximation, L(x), for f(x) at x = a. $\boxed{L(x) = 2ax a^2}$
 - (b) Does L(x) overestimate or underestimate f(x) near x = a? Explain.

L(x) is always an underestimate of f(x) for x near a. Graphically, this should make sense since the tangent line to $f(x) = x^2$ is always below its graph.

To show that L(x) is always an underestimate, we will show that $L(x) \leq f(x)$ for all values of x. In other words, we will show that $L(x) - f(x) \leq 0$ for all x. So, we compute:

$$L(x) - f(x) = 2ax - a^{2} - x^{2}$$

$$= -(x^{2} - 2ax + a^{2})$$

$$= -(x - a)^{2}$$

$$< 0$$

- 15. **Multiple Choice:** Which of the following is the best local linear approximation for $f(x) = \tan(x)$ near $x = \frac{\pi}{4}$?
 - (a) $1 + \left(x \frac{\pi}{4}\right)$
 - (b) $1 + \frac{1}{2} \left(x \frac{\pi}{4} \right)$
 - (c) $1+\sqrt{2}\left(x-\frac{\pi}{4}\right)$
 - (d) $1 + 2\left(x \frac{\pi}{4}\right)$
 - (e) $2 + 2\left(x \frac{\pi}{4}\right)$

D