SECOND SEMESTER B.Tech EXAMINATION, JUNE - 2023 COMPUTATIONAL PHYSICS

Time: 3 Hours

Maximum Marks: 100

Instructions: I. Missing data may be suitably assumed.

II. Physical constants

- i. Mass of the electron $m_e = 9.1 \times 10^{-31} kg$
- ii. Mass of proton, neutron $m_n, m_p = 1.67 \times 10^{-27} kg$
- iii. Charge of the electron $e = 1.602 \times 10^{-19} C$
- iv. Planck's constant $h = 6.626 \times 10^{-34}/s$
- **v.** Velocity of light $c = 3 \times 10^8 m/s$
- vi. Boltzmann's constant $k = 1.38 \times 10^{-23} J/K$
- **vii.** Acceleration due to gravity $g = 9.8 \, m/s^2$

ANSWER ALL QUESTIONS, PART – A

5 X 2=10

				5 X Z=	
	a.	Give any two characteristics of simple harmonic motion.	L-1	CO1	02
	b.	State Heisenberg's uncertainty principle.	L-1	CO2	02
	c.	Explain the conditions for laser action.	L-2	CO3	02
	d.	Explain the propagation mechanism in an optical fiber.	L-2	CO4	02
	e.	Differentiate between digital and analog signals.	L-1	CO5	02
		PART - B			5=30
2.	а.	Derive an expression for effective force constant for two springs connected in series combination.	L-2	COI	05
		· . OR			
	b.	A free particle is executing simple harmonic motion in a straight line. The maximum velocity it attains during any oscillations is 52.8 m/s. Find the linear frequency of the oscillations, its amplitude is 0.4m.	L-3	CO1	05
3.	a.	Compute the first 3 permitted energy values in eV for an electron in a box of width $2 \times 10^{-10} m$.	L-3	CO2	05
	•	OR			
	b.	Discuss the properties of wavefunction.	L-2	CO2	05
4.	a.	Discuss the three ways of interaction of radiation with matter.	L-2	CO3	05
		OR			
	b.	A laser is emitting a laser beam with an average power if 2.5 mW. Find the number of photons emitted per second by the laser. The wavelength of the emitted radiation is 6328Å.	L-3	CO3	05
5.	a.	Discuss the application of optical fibers in point to point communication system. OR	L-2	CO4	05

Centre

Jain Global Campus

1					
	b.	Find the attenuation in an optical fiber of length 500 m, when a light of power 100 mW emerges out of the fiber with a power of 95 mW.	f-3	CO4	05
6.	а.	Explain NOT, AND, and OR gates with the help of truth table and gate symbol.	L-2	CO5	Q 5
		OR			,
•	b.	Explain NAND and NOR universal gates and show that they can be used to realize NOT, AND, and OR gates.	L-2	Ç05	05
7	a.	A medium in thermal equilibrium at temperature 300K has two energy levels with wavelength separation of $1\mu m$. Find the ratio of population densities of the upper and lower levels. Write the python code for solving this problem. \degree	L-3	Ç06	05
		OR			
6:	b.	The N.A of an optical fiber is 0.2 when surrounded by air. Determine the refractive index of its core given the refractive index of cladding as 1.59. Also find the acceptance angle when it	L-3	CO6	05
		is in a medium of refractive index 1.33. Write the python code to solve this problem.			
•			<u> </u>	<u> </u>	
		PART - C		6 X 10	=60
8.	a.	Obtain differential equation for damped oscillations and hence solve to get displacement of damped oscillations.	L-3	CO1	10
		OR			
. •	b.	Obtain the equations for amplitude and phase of the forced oscillations.	L-3	CO1	10
9.	a.	Set up time-independent one-dimensional Schrodinger's wave	L-3	CO2	10
was been a second and the second and		equation.	·		
		OR	<u> </u>		
	b.	Deduce time-independent Schrodinger's wave equation for a particle in one dimensional potential well of infinite height and discuss the solutions.	L-3	CO2	10
			ļ		
10.	а.	Derive an expression for energy density in terms of Einstein coefficient.	L-3	CO3	10
		OR			
	b.	Explain the requisites satisfied by a laser system and Describe the construction and working of CO2 laser using suitable diagrams.	L-3	CO1	10
11.	а.	What is numerical aperture? Derive an expression for numerical aperture in terms of refractive index of core and cladding and hence obtain the condition for propagation.	L-3	CO4	10
*	- 1	OR			
	b.	Explain the factors contributing to attenuation in an optical fiber.	Ł-3	CO4	10
	<u></u>				· -

		Derive an expression for attenuation coefficient of an optical fiber			
	teller trettande for trave				
12.	a.	Explain the realization of half adder using logic gates.	L-3	CO5	10
		OR	***************************************		
	b.	Explain the realization of full adder using logic gates.	L-3	CO5	10
13.	a.	Describe the experimental approach for the determination of wavelength of given laser source.	L-4	CO6	10
		OR		<u> </u>	
	b.	Describe the determination of force constant of a mechanical spring using simulation method.	L-4	CO6	10