

Mašinsko učenje

profesor: Prof. Dr. Milan Milosavljević

asistent: doc. dr. Vladimir Matić

email: vmatic@singidunum.ac.rs

PITANJE 1. UVOD U IPYTHON: NUMPY, SCIPY

PRIVATNI Univerzitet

Kratak uvod u NumPy - Numerical Python biblioteku

```
In [1]: # "#" Ovo je znak za komentar.
    # Uvezli smo biblioteku numpy kao instancu np koristeci komandu import
    import numpy as np

In [2]: # np sada mozemo koristiti u velikom broju primera.
    # ukoliko otkucamo np. i pritisnemo TAB dobićemo listu mogucih funkcija
    # kreiramo niz od 6 elemenata
    a= np.array([0, 1, 2, 3, 4, 5])

In [3]: # a * 3 u slucaju da je a numpy instanca, mnozi se svaki element sa 3
    a = a * 3
```


Ovo je vazan koncept u NumPy-ju (slican kao i u Matlabu). # Vectorization:: moguce je procesirati nizove na brz nacin bez koriscenja loop petlji

Indeksiranje

Indeksiranje

```
In [13]: N = 10
         x = np.arange(N)
In [14]: # ovom naredbom type mozemo proveriti koji je tip podataka x. --> numpy.ndarray
         type(x)
Out[14]: numpy.ndarray
In [15]: print(x)
         [0 1 2 3 4 5 6 7 8 9]
In [16]: # Indeksiranje pocinje od 0, do N-1
         x[0]
Out[16]: 0
In [17]: print(x[1], x[5], x[-1])
         (1, 5, 9)
In [18]: print(x[2:5])
         [2 3 4]
```


- # Funkcije za brzo procesiranje pojedinacnih elemenata niza
- # "Element-wise processing". U Matlabu se za ovo koristila tacka, npr. ".*"


```
In [27]: t2 = np.arange(0,1, 0.001)
         import matplotlib.pyplot as plt
In [28]:
In [29]: plt.plot(t,x)
Out[29]: [<matplotlib.lines.Line2D at 0x8f5e588>]
           1.0
           0.5
           0.0
          -0.5
```

0.4

0.6

0.8

1.0

-1.0 L

0.2

PITANJE 2. LINEARNI KLASIFIKATORI

PRIVATNI Univerzitet

Linearni klasifikator – primer u .ipynb

Linearni klasifikator

S obzirom da su na slici raspodele dveju rapodela N(1,1) i N(4,1) – Normalna gausova raspodela, intuitivno je jasno da granicu podele treba postaviti na 2.5, kako bi se maksimizovala razlika izmđu centara.

Linearni klasifikator

U ovom slučaju, povećali smo varijansu "plave" raspodele. Ona je sada N(4,3) i vidi se da je raspodela šira u odnosu na prethodni slučaj. Klasifikacija sada deluje "teža", a da bismo umanjili broj pogrešno klasifikovanih elemenata, potrebno je granicu pomeriti u levu stranu u odnosu na tačku 2.5. Primetimo da je ovde linearna klasifikacija ustvari "prag" vrednost (engl. threshold).

Linearni klasifikator

 Najjednostavniji matematički oblik linearnog klasifikatora dat je sledećom jednačinom koja predstavlja linearnu funkciju ulaznog vektora x:

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

 w- se naziva težinski vektor (engl. weight vector), dok se w0 naziva pomeraj (bias) ili prag (threshold). Ulazni vektor pridružuje se klasi C1 ako je y(x)>= 0 i klasi C2 u suprotnom slučaju.

Linearni klasifikator - ilustarcija

Primer

- Neka je linearna diskriminaciona funkcija data relacijom
 y(x) = 2*x1 + 3*x2-4
- Ukoliko su koordinate (x1,x2) = (2,1) ova instanca će pripadati klasi 2*2 + 3*1 -4 = 3 > 0, dakle klasi 1.
- Slično tome, tačka sa koordinatama (1,-1) će pripadati
 2*1 + 3*(-1) -4 =-5 <0, dakle klasi 2.

Posmatrajući jednačinu

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

- jasno je da je zadatak projektovanja linearnog klasifikatora da se odrede koeficijenti w i w0.
- Jedna od metoda je korišćenje metode najmanjih kvadrata.
- Međutim, za razliku od linearne regresije, mnogo efektnija metoda za linearnu klasifikaciju je Linearna Diskriminantna Analiza (LDA). Takođe, zove se još i Fischer-ova analiza po Fischeru koji ju je definisao 1938. godine.

- Primetimo takođe, da u zavisnosti od ulazne dimenzije vektora x, zavisi i funkcija odluke.
- Kada je x dimenzije 2, funkcija odluke je prava. U slučaju da ulazni vektor x ima 3 parametra, recimo (x1, x2 i x3), funkcija odluke biće ravan.
- Dakle, dimenzija diskriminacione funkcije je za jedan manja od dimenzija ulaznih podataka.

 Razmotrimo sada opštiji klasifikacioni problem sa dve klase, gde je dimenzija vektora x jednaka 2. Neka klasi C1 pripada N1 elemenata, dok klasi C2 pripada N2 elementa. Vektori srednjih vrednosti za ove dve klase date su sledećim formulama:

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n, \qquad \mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} \mathbf{x}_n$$

 Najjednostavniji pristup bi bio da se kao i u prethodnom slučaju maksimizuje rastojanje centara koji su projektovani na osu y,

$$m_2 - m_1 = \mathbf{w}^{\mathrm{T}}(\mathbf{m}_2 - \mathbf{m}_1)$$

$$m_k = \mathbf{w}^{\mathrm{T}}\mathbf{m}_k$$

 >> mk – je dakle vrednost centra klastera projektovana na y osu.

 Uvođenjem ograničenja za parametre w, suma(w^2=1) i dalje korišćenjem Lagranževih multiplikatora za rešavanje maksimizacionog problema sa ograničenjem dobijamo:

Projektovani centar klastera minus vrednost koja ce predstavljati varijansu. želimo da maksimizujemo razliku projektovanih centara.

 Neka je projekcija podataka na jednodimenzionu osu y data sledećom formulom.

$$y = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

- Klasifikaciju možemo izvršiti kao i u prvobitnom primeru uvođenjem praga. Ukoliko je y veće od neke vrednosti w0, element pripada prvoj klasi i obrnuto.
- Unutar klasna varijansa (rasejanje), data je onda sledećom formulom:

$$s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$$
 $y_n = \mathbf{w}^T \mathbf{x}_n S_1^{NIVE} S_1^2 + S_2^2.$

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

PCA vs. LDA

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

good projection: separates classes well