Problema 20. Demostreu que, si G és un grup, el seu centre $Z(G) := \{g \in G : gh = hg, \text{ per a tot } h \in G\}$ és un subgrup normal de G.

Solució

En primer lloc anem a veure que Z(G) compleix les condicions de grup:

- 1) Associativitat i operació interna(*): $g_1, g_2 \in Z(G), h \in G \Longrightarrow (g_1g_2)h = g_1(g_2h) = g_1(hg_2) = (g_1h)g_2 = (hg_1)g_2 = h(g_1g_2) \Longrightarrow g_1g_2 \in Z(G).$
- (*)Utilitzem la propietat associativa (que es compleix) per demostrar que hi ha una operació interna, veiem que l'operació del grup restringeix a Z(G).
 - 2) Existència d'element neutre: $e \in G$, $he = eh \ \forall h \in G \Longrightarrow e \in Z(G)$.
 - 3) Cada element té un simètric: $g \in Z(G)$, g' simètric de g, i $gh = hg \ \forall h \in G$

Ara, sabent que e = gg', tenim: $h'g = ehg' = (g'g)(hg') = (g'h)(gg') = g'he = g'h \Longrightarrow g' \in Z(G)$.

A continuació comprovem que $Z(G) \triangleleft G$:

Siguin R_d i R_e relacions d'equivalència en G per la dreta i per l'esquerra respectivament.

Sabem que $Z(G) \subseteq G$ és un subgrup normal de G si, i només si, $R_d = R_e$.

Per definició, amb $a, h \in G$, tenim que:

$$aR_dh \iff ah^{-1} \in Z(G) \iff a \in Z(G)h$$

$$aR_eh \iff h^{-1}a \in Z(G) \iff a \in hZ(G)$$

De la definició de Z(G), centre de G, tenim que gh = hg, $\forall h \in G$ i, com que $g \in Z(G)$, veiem que es compleix $Z(G)h = hZ(G) \iff gh = hg$. D'aquesta manera arribem a veure que si $Z(G)h = hZ(G) \implies a \in Z(G)h = hZ(G) \implies aR_dh = aR_eh \iff R_d = R_e$. I, al complir-se aquesta igualtat, ja tenim $Z(G) \triangleleft G$, c.v.d.