The Virtual Admittance Control of Sending End Converter for Offshore Wind Farm Integration

Zhekai Li¹, Liliuyuan Liang², Renxin Yang¹, Xu Cai¹

¹Department of Electrical Engineering Shanghai Jiao Tong University, ²Contemporary Amperex Technology Co., Limited

INTRODUCTION

To integrate and transfer bulk <u>offshore wind</u>
<u>power</u> to the onshore grid, the <u>voltage source</u>
<u>converter-based high voltage direct current</u>
(<u>VSC-HVDC</u>) transmission system is
becoming a promising scheme.

Isolated Island Operation Low Overcurrent Capability

<u>Dual closed-loop control</u> is widely utilized in the SEC

Designed for the 2-level converter with the filter capacitor

Commonly used Modular Multilevel Converter (MMC)

CONVENTIONAL DUAL CLOSED-LOOP CONTROL SCHEME

VIRTUAL ADMITTANCE CONTROL OF SEC

PARAMETER DESIGN

RESULT AND CONCLUSION

- > The virtual admittance control strategy has better steady-state performance.
- Under the condition of a sudden drop in wind farm power: 1. <u>More quickly without oscillation</u>; 2. <u>Transient voltage peak of 1.25p.u</u>. (much smaller).
- Under the condition of active voltage drop of SEC: 1. Avoid the problems of losing feedforward and decoupling terms; 2. Saturation of the outer loop.
- Parameter design: L_v and R_v : 1. \downarrow (Unstable, RHP); 2. \uparrow (Reduces the active power transmission limit).

