- k is always lies between 0 and 1 so $\hat{u}_i \leq \overline{r}_i$ • For large n_i , k will be close to 1 and so \hat{u}_i will be close to \bar{r}_i
- k also close to 1 when $\hat{\sigma}_e^2$ small relative to $\hat{\sigma}_{ij}^2$
- Greater shrinkage (k closer to zero) when n_i small or $\hat{\sigma}_e^2$ is large
 - relative to $\hat{\sigma}_{ii}^2$ (high within-group variability), i.e. when we have little
 - information about the group. Then the group mean $\hat{\beta}_0 + \hat{u}_i$ is pulled towards the overall mean $\hat{\beta}_0$