

## Aprendizaje Automático Probabilístico

# Optimización

Alfons Juan

Departamento de Sistemas Informáticos y Computación

# Índice

| 8.0 Resumen                                  | 1  |
|----------------------------------------------|----|
| 8.1 Introducción                             | 8  |
| 8.1.1 Optimización local vs global           | 9  |
| 8.1.1.1 Condiciones de optimalidad local     | 11 |
|                                              | 13 |
| 8.1.3 Optimización convexa vs no-convexa     | 15 |
|                                              | 15 |
|                                              | 16 |
|                                              | 20 |
| 8.1.3.4 Funciones fuertemente convexas       | 22 |
|                                              | 24 |
| 8.1.4.1 Subgradientes                        | 27 |
| 8.2 Métodos de primer orden                  | 29 |
| 8.2.1 Dirección de descenso                  | 30 |
| 8.2.2 Tamaño de paso o factor de aprendizaje | 31 |
| 8.2.2.1 Tamaño de paso constante             |    |
|                                              | 35 |



| 8.2.3 Ratios de convergencia 8.2.4 Momentum 8.2.4.1 Momentum 8.2.4.2 Momentum Nesterov                                                                                                                                                                                                                                                         | 38<br>43<br>44<br>46                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 8.3 Métodos de segundo orden 8.3.1 Método de Newton 8.3.2 BFGS y otros métodos quasi-Newton 8.3.3 Métodos en regiones de confianza                                                                                                                                                                                                             | <b>49</b> 50 55 57                                             |
| 8.4.1 Aplicación a problemas de sumas finitas 8.4.2 Ejemplo: SGD para ajustar regresión lineal 8.4.3 Elección del tamaño de paso 8.4.4 Promediado iterativo 8.4.6 SGD precondicionado 8.4.6.1 ADAGRAD 8.4.6.2 RMSPROP y ADADELTA 8.4.6.3 ADAM 8.4.6.4 Problemas con los factores adaptativos 8.4.6.5 Matrices de precondicionado no diagonales | 61<br>62<br>63<br>65<br>72<br>73<br>74<br>75<br>77<br>79<br>80 |

| 8.5 Optim  | ización con restricciones                 | 81       |
|------------|-------------------------------------------|----------|
| 8.5.1 Mul  | Itiplicadores de Lagrange                 | <br>. 83 |
| 8.5.1.1    | Éjemplo 2D cuadrático con una restricción | <br>. 86 |
| 8.5.2 Las  | s condiciones KKT                         | <br>87   |
| 8.5.3 Pro  | gramación lineal                          | <br>90   |
| 8.5.3.1    | El algoritmo simplex                      | <br>91   |
| 8.5.3.2    | Aplicaciones                              | <br>91   |
| 8.5.4 Pro  | gramación cuadrática                      | <br>92   |
| 8.5.4.1    | Ejemplo: objetivo cuadrático 2d           | <br>93   |
| 8.5.4.2    | Aplicaciones                              | <br>96   |
| 8.7 Optim  | ización acotada                           | 97       |
|            | algoritmo general                         | <br>     |
| 8.7.2 El a | algoritmo EM                              | <br>101  |
| 8.7.2.1    | Cota inferior                             | <br>102  |
|            | Paso E                                    |          |
|            | Paso M                                    |          |
|            | mplo: EM para un GMM                      |          |
|            | Paso E                                    |          |
|            | Paso M                                    |          |

| 8.8 | Optim   | ización sin derivadas y caja-negra | 119 |
|-----|---------|------------------------------------|-----|
|     | 8.7.3.5 | Noconvexidad de la NLL             | 117 |
|     | 8.7.3.4 | Estimación MAP                     | 112 |
|     | 8.7.3.3 | Ejemplo                            | 111 |

#### 8.0. Resumen

- Introducción: optimización continua, no discreta!
  - ▶ Dicotomía 1: local o global?
    - → Global para problemas convexos...ahora son no convexos
    - → Local es lo que se hace... condiciones de optimalidad
  - Dicotomía 2: con o sin restricciones?
    - → Mejor sin restricciones (p.e. con ayuda de la softmax)
    - → Las de igualdad requieren multiplicadores de Lagrange; las de desigualdad, si son pocas, quizás las podemos ignorar
  - Dicotomía 3: convexa o no?
    - → Si un problema es convexo, un óptimo local es global!
  - Dicotomía 4: suave o no?
    - → Suave si objetivo y restricciones son continuamente diferenciables... constante de Lipschitz
    - → No suave "por poco"... subgradiente



- ► *Métodos de primer orden:* basados en derivadas de primer orden del objetivo...  $\theta_{t+1} = \theta_t + \eta_t d_t$ 
  - ho *Dirección de descenso:*  $d_t$  tal que  $\mathcal{L}(\boldsymbol{\theta} + \eta \boldsymbol{d}_t) < \mathcal{L}(\boldsymbol{\theta})$ 
    - $\mapsto$  **Descenso por gradiente:** negativo del gradiente,  $oldsymbol{d}_t = -oldsymbol{g}_t$
  - $\triangleright$  Tamaño de paso o factor de aprendizaje:  $\{\eta_t\}$ ?
    - $\rightarrow$  Constante:  $\eta_t = \eta \dots$  difícil de ajustar en la práctica
    - → Búsqueda lineal: exacta o aproximada . . . Armijo-Goldstein
  - $\triangleright$  Ratios de convergencia:  $\mu: |\mathcal{L}(\boldsymbol{\theta}_{t+1} \mathcal{L}(\boldsymbol{\theta}_*))| \leq \mu |\mathcal{L}(\boldsymbol{\theta}_t) \mathcal{L}(\boldsymbol{\theta}_*)|$ 
    - $\mapsto$  Objetivo cuadrático:  $\mathbf{A} \succ 0$ ,  $\mu = \left(\frac{\kappa(\mathbf{A}) 1}{\kappa(\mathbf{A}) + 1}\right)^2$ ,  $\kappa(\mathbf{A}) = \frac{\lambda_{\max}(\mathbf{A})}{\lambda_{\min}(\mathbf{A})}$
    - $\rightarrow$  *No cuadrático:*  $\approx$  cuadrático cerca de local  $\rightarrow$   $\kappa$ (Hessiana)
  - ▶ Momentum: heurístico para acelerar la convergencia
    - $\mapsto$  Estándar:  $m{m}_t = eta \ m{m}_{t-1} + m{g}_{t-1}$  y  $m{\theta}_t = m{\theta}_{t-1} \eta_t \ m{m}_t$ , eta < 1
      - EWMA:  $m{m}_t = \sum_{\tau=0}^{t-1} eta^{ au} m{g}_{t-\tau-1} \overset{m{g}_{t-\tau-1}=m{g}}{=} m{g} \sum_{\tau=0}^{t-1} eta^{ au} \overset{m{f}}{=} \frac{m{g}}{1-eta}$
    - $\mapsto$  *Nesterov:* extrapola  $\theta_{t+1}$  para amortiguar oscilaciones



- ightharpoonup *Métodos de segundo orden:* añaden la Hessiana de  $\mathcal L$  o aprox.
  - ho Método de Newton:  $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t \eta_t \mathbf{H}_t^{-1} \boldsymbol{g}_t$ 
    - $\mapsto$  Primero halla  $oldsymbol{d}_t$  tal que  $\mathbf{H}_toldsymbol{d}_t=-oldsymbol{g}_t$
    - $\mapsto$  Luego  $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta_t \boldsymbol{d}_t$  con  $\eta_t$  hallado por búsqueda lineal
  - ho *Métodos quasi-Newton:* aproximan  $\mathbf{H}_t$  con  $\mathbf{B}_t$ , obtenida iterativamente a partir de los gradientes hallados en cada paso
    - $\mapsto$  *BFGS (Broyden–Fletcher–Goldfarb–Shanno):* aplica actualizaciones sucesivas de rango dos . . . *Wolfe;* alt  $\mathbf{C}_t \approx \mathbf{H}^{-1}$
    - $\mapsto$  *Limited memory BFGS (L-BFGS):* aproxima  $\mathbf{H}_t^{-1} \mathbf{g}_t$  con las M actualizaciones más recientes
  - ho *Métodos en regiones de confianza:* no fijan  $d_t$  y luego  $\eta_t$ , sino al revés; aproximan  $\mathcal{L}$  alrededor de  $\theta_t$  y buscan una dirección óptima... *regularización de Tikhonov*



▶ Descenso por gradiente estocástico: descenso por gradiente aplicado a optimización estocástica,  $\mathcal{L}(\theta) = \mathbb{E}_{q(z)}[\mathcal{L}(\theta, z)]$ 

$$oldsymbol{ heta}_{t+1} \overset{oldsymbol{z}_t \sim q}{=} oldsymbol{ heta}_t - \eta_t \, 
abla \mathcal{L}(oldsymbol{ heta}_t, oldsymbol{z}_t) \overset{q(oldsymbol{z})}{=} \overset{ ext{indep }oldsymbol{ heta}}{=} oldsymbol{ heta}_t - \eta_t \, oldsymbol{g}_t$$

- ho *Aplicación a problemas de sumas finitas:* en minimización del riesgo empírico con N muestras, observamos un *minibatch* de  $B \ll N$  muestras en la iteración t
- ▶ Ejemplo: SGD para ajustar regresión lineal: se conoce como mínimos cuadrados, regla delta o Widrow-Hoff
- ▶ Elección del tamaño de paso: Robbins-Monro
- Promediado iterativo: EWMA para reducir la varianza
- ho SGD precondicionado:  $m{ heta}_{t+1} = m{ heta}_t \eta_t \mathbf{M}_t^{-1} m{g}_t$  con precondicionador diagonal  $\mathbf{M}_t$  ADAGRAD, RMSPROP, ADADELTA O ADAM



- ► Optimización con restricciones: de igualdad y desigualdad
  - Multiplicadores de Lagrange: solo restricciones de igualdad
  - Las condiciones KKT: para el caso general ... estacionaridad, factibilidad primal y dual, y holgura complementaria
  - Programación lineal: objetivo lineal con restricciones lineales
  - Programación cuadrática: objetivo cuadrático con restricciones lineales



- ► Optimización acotada: basada en una cota inferior del objetivo
  - ▷ Algoritmo majorize-minorize (MM): basado en una función sustituta, cota inferior  $Q(\theta, \theta^t) \le LL(\theta)$  que toca el objetivo en  $\theta^t$ ,  $Q(\theta^t, \theta^t) = LL(\theta^t)$ :  $\theta^{t+1} = \arg\max_{\theta} Q(\theta, \theta^t)$
  - ▷ Algoritmo expectation maximization (EM): algoritmo MM para calcular el MLE o MAP de modelos con datos perdidos

$$LL(\boldsymbol{\theta}) = \sum_{n=1}^{N} \log p(\boldsymbol{y}_n \mid \boldsymbol{\theta}) = \sum_{n=1}^{N} \log \left[ \sum_{\boldsymbol{z}_n} p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta}) \right]$$

- $\mapsto$  *Evidence lower bound (ELBO):*  $\&L(\theta, q_{1:N}) \le LL(\theta)$  (Jensen)
- $\mapsto$  Paso E: cálculo de  $q_n^* = p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta}) \to \pounds(\boldsymbol{\theta}, q_n^*) = \log p(\boldsymbol{y}_n \mid \boldsymbol{\theta})$
- $\mapsto$  *Paso M:* maximización de la log-verosimilitud completa esperada,  $\boldsymbol{\theta}^{t+1} = \arg\max_{\boldsymbol{\theta}} \sum_{n} \mathbb{E}_{q_n^t(\boldsymbol{z}_n)}[\log p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta})]$
- → Aplicación a mixturas de Gaussianas
- → Estimación MAP: para mixturas de Gaussianas (robusta)
- → Noconvexidad de la NLL: label switching problem



- Optimización sin derivadas y caja-negra: optimización mediante búsqueda en rejilla para selección de modelos
  - Para exploración de hiperparámetros y cuesta "horrores"



### 8.2. Métodos de primer orden

- ► Los *métodos de primer orden* son métodos iterativos basados en derivadas de primer orden del objetivo
- ▶ Dado un punto de inicio  $\theta_0$ , la iteración t consiste en hacer:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta_t \, \boldsymbol{d}_t \tag{22}$$

- ►  $\eta_t$  es el tamaño del paso (step size) o factor de aprendizaje (learning rate)
- ▶  $d_t$  es la *dirección de descenso*, como el negativo del *gradiente*,  $g_t = \nabla_{\theta} \mathcal{L}(\theta)|_{\theta_t}$
- ► Se termina al alcanzar un punto estacionario, de gradiente nulo

#### 8.2.1. Dirección de descenso

▶ d es una dirección de descenso si existe un  $\eta_{max} > 0$  tal que

$$\mathcal{L}(\boldsymbol{\theta} + \eta \boldsymbol{d}) < \mathcal{L}(\boldsymbol{\theta})$$
 para todo  $0 < \eta < \eta_{\text{max}}$  (23)

▶ La dirección de máximo ascenso en f es la del gradiente actual:

$$g_t \triangleq \nabla \mathcal{L}(\boldsymbol{\theta})|_{\boldsymbol{\theta}_t} = \mathcal{L}(\boldsymbol{\theta}_t) = g(\boldsymbol{\theta}_t)$$
 (24)

▶ d es dirección de descenso si el ángulo  $\theta$  entre d y  $-g_t$  es menor de 90 grados y satisface:

$$\boldsymbol{d}^{t}\boldsymbol{g}_{t} = \|\boldsymbol{d}\|\|\boldsymbol{g}_{t}\|\cos(\theta) < 0 \tag{25}$$

Descenso por gradiente (gradient descent) o más pronunciado (steepest descent): escogemos el negativo del gradiente

$$\boldsymbol{d}_t = -\boldsymbol{g}_t \tag{26}$$



### 8.2.2. Tamaño de paso o factor de aprendizaje

▶ Learning rate schedule: secuencia de tamaños de paso  $\{\eta_t\}$ 

### 8.2.2.1. Tamaño de paso constante

La opción más simple consiste en usar un learning rate constante  $\eta_t = \eta$  (27)

- ightharpoonup Si  $\eta$  es demasiado grande, el método puede no converger
- ightharpoonup Si  $\eta$  es demasiado pequeño, el método covergerá muy lentamente
- ► Ejemplo:  $\mathcal{L}(\theta) = 0.5(\theta_1^2 \theta_2)^2 + 0.5(\theta_1 1)^2$ 
  - $\triangleright$  Con  $\eta = 0.1$  converge lentamente
  - $\triangleright$  Con  $\eta = 0.6$  oscila y no converge

#### 8.2.2.2. Búsqueda lineal

Búsqueda lineal consiste en hallar el tamaño de paso óptimo en la dirección escogida mediante optimización:

$$\eta_t = \underset{\eta > 0}{\arg\min} \, \phi_t(\eta) \tag{31}$$

$$= \underset{\eta>0}{\arg\min} \, \mathcal{L}(\boldsymbol{\theta}_t + \eta \, \boldsymbol{d}_t) \tag{32}$$

- ► Búsqueda lineal exacta consiste en resolver analíticamente la optimización anterior, si se puede
  - $\triangleright$  En particular, si  $\mathcal{L}$  es convexa,  $\phi$  también lo es y sí se puede

### 8.2.3. Ratios de convergencia

- Queremos algoritmos que converjan rápidamente a un óptimo
- Descenso por gradiente converge con ratio lineal en problemas convexos con gradiente acotado por una constante de Lipschitz
- ▶ Ratio de convergencia:  $\mu \in (0,1)$  tal que

$$|\mathcal{L}(\boldsymbol{\theta}_{t+1} - \mathcal{L}(\boldsymbol{\theta}_*))| \le \mu |\mathcal{L}(\boldsymbol{\theta}_t) - \mathcal{L}(\boldsymbol{\theta}_*)| \tag{39}$$

► El ratio puede derivarse explícitamente en algunos problemas

### ► Ratio de convergencia de un objetivo cuadrático:

Consideremos un objetivo cuadrático

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2}\boldsymbol{\theta}^t \mathbf{A}\boldsymbol{\theta} + \boldsymbol{b}^t \boldsymbol{\theta} + c \quad \text{con} \quad \mathbf{A} \succ 0$$
 (40)

- Aplicamos descenso por gradiente con búsqueda lineal exacta
- ▷ Se puede ver que el ratio de convergencia es

$$\mu = \left(\frac{\lambda_{\text{max}}(\mathbf{A}) - \lambda_{\text{min}}(\mathbf{A})}{\lambda_{\text{max}}(\mathbf{A}) + \lambda_{\text{min}}(\mathbf{A})}\right)^2 = \left(\frac{\kappa(\mathbf{A}) - 1}{\kappa(\mathbf{A}) + 1}\right)^2 \tag{41}$$

donde el número de condición de A,

$$\kappa(\mathbf{A}) = \frac{\lambda_{\mathsf{max}}(\mathbf{A})}{\lambda_{\mathsf{min}}(\mathbf{A})} \tag{42}$$

mide la curvatura del objetivo (respecto a un bol simétrico)

### 8.7. Optimización acotada

- Optimización acotada o MM (majorize-minimize): clase de algoritmos de optimización de gran interés en ML
  - Algoritmo expectation-maximization (EM): caso especial de algoritmo MM muy usado en ML



### 8.7.1. El algoritmo general

- ► *Objetivo:* maximizar  $LL(\theta)$
- ► Función sustituta (surrogate): construimos una función cota inferior del objetivo,  $Q(\theta, \theta^t)$ , que lo iguala en un  $\theta^t$  dado:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^t) \le LL(\boldsymbol{\theta}) \quad \mathbf{y} \quad Q(\boldsymbol{\theta}^t, \boldsymbol{\theta}^t) = LL(\boldsymbol{\theta}^t)$$
 (137)

- ▷ Si se cumplen ambas condiciones, decimos que *minoriza* LL
- ► Algoritmo majorize-minimize (MM): para t = 0, 1, ...

$$\boldsymbol{\theta}^{t+1} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \ Q(\boldsymbol{\theta}, \boldsymbol{\theta}^t) \tag{138}$$

 $\triangleright$  Si  $\theta^{t+1}$  se escoge tal que  $Q(\theta^{t+1}, \theta^t) \ge Q(\theta^t, \theta^t)$ :

$$LL(\boldsymbol{\theta}^{t+1}) \ge Q(\boldsymbol{\theta}^{t+1}, \boldsymbol{\theta}^t) \ge Q(\boldsymbol{\theta}^t, \boldsymbol{\theta}^t) = LL(\boldsymbol{\theta}^t)$$
 (139)



► Ejemplo:  $Q(\theta, \theta^t)$  toca  $LL(\theta)$  en  $\theta^t$ ; su maximización da lugar a  $\theta^{t+1}$  y  $Q(\theta, \theta^{t+1})$  toca  $LL(\theta)$  en  $\theta^{t+1}$ ; su maximización da lugar a  $\theta^{t+2}$ , etc.



- ► Similitud con el método de Newton: si Q es una cota inferior cuadrática, el MM se asemeja al método de Newton, pues ajusta y optimiza una aproximación cuadrática del objetivo repetidamente
  - Diferencia: MM garantiza un mejora del objetivo en cada iteración, incluso si no es convexo, pero Newton no
  - Ejemplo: a la izquierda Newton se "pasa de largo" buscando un máximo y a la derecha se va a un mínimo





(a) Overshooting.

(b) Seeking the wrong root.



### 8.7.2. El algoritmo EM

- Algoritmo expectation maximization (EM): algoritmo de optimización acotada para calcular el estimador MLE o MAP de modelos probabilísticos con datos perdidos o variables ocultas
  - ▷ **Notación:** para cada dato n,  $y_n$  denota su parte observada y  $z_n$  su parte perdida u oculta
  - Algoritmo EM básico: repetir los siguientes dos pasos
    - → Paso E (expectation): estimación de datos perdidos
    - → Paso M (maximization): cálculo del MLE o MAP a partir de los datos completos



#### 8.7.2.1. Cota inferior

Objetivo: maximizar la log-verosimilitud de los datos observados

$$LL(\boldsymbol{\theta}) = \sum_{n=1}^{N} \log p(\boldsymbol{y}_n \mid \boldsymbol{\theta})$$
 (140)

$$= \sum_{n=1}^{N} \log \left[ \sum_{\boldsymbol{z}_n} p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta}) \right]$$
 (141)

Dificultad: difícil de optimizar a causa del logaritmo delante del sumatorio ► Evidence lower bound (ELBO): dado un conjunto de distribuciones arbitrarias sobre cada  $z_n$ ,  $q_n(z_n)$ , la desigualdad de Jensen (sección 6.2.4) permite construir una función  $E(\theta, q_{1:N})$  cota inferior de la log-verosimilitud marginal o evidencia:

$$LL(\boldsymbol{\theta}) = \log p(\boldsymbol{y}_{1:N} \mid \boldsymbol{\theta})$$
 (142)

$$= \sum_{n=1}^{N} \log \left[ \sum_{\boldsymbol{z}_n} q_n(\boldsymbol{z}_n) \frac{p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta})}{q_n(\boldsymbol{z}_n)} \right]$$
(143)

$$\geq \sum_{n=1}^{N} \sum_{\boldsymbol{z}_n} q_n(\boldsymbol{z}_n) \log \frac{p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta})}{q_n(\boldsymbol{z}_n)}$$
 (144)

$$= \sum_{n} \underbrace{\mathbb{E}_{q_n}[\log p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta})] + \mathbb{H}(q_n)}_{\mathbf{k}(\boldsymbol{\theta}, q_n \mid \boldsymbol{y}_n)}$$
(145)

$$= \sum_{n} \mathbb{E}(\boldsymbol{\theta}, q_n) \triangleq \mathbb{E}(\boldsymbol{\theta}, \{q_n\}) = \mathbb{E}(\boldsymbol{\theta}, q_{1:N})$$
 (146)



#### 8.7.2.2. Paso E

▶ *Paso E:* cálculo de  $q_n^* = p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta})$  y, así,  $\mathbb{E}(\boldsymbol{\theta}, q_n^*) = \log p(\boldsymbol{y}_n \mid \boldsymbol{\theta})$ 

$$L(\boldsymbol{\theta}, q_n) = \sum_{\boldsymbol{z}_n} q_n(\boldsymbol{z}_n) \log \frac{p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta})}{q_n(\boldsymbol{z}_n)}$$
(147)

$$= \sum_{\boldsymbol{z}_n} q_n(\boldsymbol{z}_n) \log \frac{p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta}) p(\boldsymbol{y}_n \mid \boldsymbol{\theta})}{q_n(\boldsymbol{z}_n)}$$
(148)

$$= \sum_{\boldsymbol{z}_n} q_n(\boldsymbol{z}_n) \log \frac{p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta})}{q_n(\boldsymbol{z}_n)} + \sum_{\boldsymbol{z}_n} q_n(\boldsymbol{z}_n) \log p(\boldsymbol{y}_n \mid \boldsymbol{\theta})$$
 (149)

$$= - \mathbb{KL}(q_n(\boldsymbol{z}_n) \parallel p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta})) + \log p(\boldsymbol{y}_n \mid \boldsymbol{\theta})$$
 (150)

$$\stackrel{q_n = q_n^*}{=} \log p(\boldsymbol{y}_n \mid \boldsymbol{\theta}) \tag{151}$$

pues  $\mathbb{KL}(q_n(\boldsymbol{z}_n) \parallel p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta})) = 0$  sii  $q_n \triangleq q_n^* = p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta})$ 

▶ Función sustituta: dado que  $\mathbb{E}(\theta, \{q_n^*\}) = \mathbb{L}\mathbb{L}(\theta)$ , la función

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^t) = \mathbb{E}(\boldsymbol{\theta}, \{q_n^* = p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta}^t)\})$$
(152)

es ELBO por Jensen,

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^t) \le LL(\boldsymbol{\theta}) \tag{153}$$

y toca  $LL(\boldsymbol{\theta})$  en  $\boldsymbol{\theta}^t$  al tomar  $\{q_n^* = p(\boldsymbol{z}_n \mid \boldsymbol{y}_n, \boldsymbol{\theta}^t)\}$ ,

$$Q(\boldsymbol{\theta}^t, \boldsymbol{\theta}^t) = LL(\boldsymbol{\theta}^t)$$
 (154)

- ▶ Paso E aproximado: si el cálculo de  $q_n^* = p(\mathbf{z}_n \mid \mathbf{y}_n, \boldsymbol{\theta})$  es muy costoso, podemos emplear una aproximación a la misma y la Q, aunque menos ajustada, sigue siendo ELBO
  - ▷ Aproximación directa: comprobamos que la LL no decrece; cosa quizás sencilla si solo consideramos distribuciones delta
  - ▷ EM variacional: EM generalizado en marco Bayesiano



#### 8.7.2.3. Paso M

**Expected complete data log likelihood:** el paso M maximiza  $\mathbb{E}(\theta, \{q_n^t\})$  con respecto a  $\theta$ , donde las  $\{q_n^t\}$  son las distribuciones halladas en el paso E de la iteración t; ahora bien, como los términos de entropía  $\mathbb{H}(q_n)$  no dependen de  $\theta$ , podemos ignorarlos,

$$LL^{t}(\boldsymbol{\theta}) = \sum_{n} \mathbb{E}_{q_{n}^{t}(\boldsymbol{z}_{n})}[\log p(\boldsymbol{y}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta})]$$
 (155)

ightharpoonup caso familia exponencial: si la probabilidad conjunta pertenece a la familia exponencial, no necesitamos  $\{q_n^t\}$ ; bastan estadísticos suficientes esperados,  $\mathbb{E}[\mathcal{T}(\boldsymbol{y}_n, \boldsymbol{z}_n)]$ ,

$$LL^{t}(\boldsymbol{\theta}) = \sum_{n} \mathbb{E}[\mathcal{T}(\boldsymbol{y}_{n}, \boldsymbol{z}_{n})^{t}\boldsymbol{\theta} - A(\boldsymbol{\theta})]$$
 (156)

$$= \sum_{n} (\mathbb{E}[\mathcal{T}(\boldsymbol{y}_{n}, \boldsymbol{z}_{n})]^{t} - A(\boldsymbol{\theta}))$$
 (157)



► Paso M: maximización de la log-verosimilitud completa esperada

$$\boldsymbol{\theta}^{t+1} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \sum_{n} \mathbb{E}_{q_n^t(\boldsymbol{z}_n)}[\log p(\boldsymbol{y}_n, \boldsymbol{z}_n \mid \boldsymbol{\theta})]$$
 (158)

▷ Caso familia exponencial: se resuelve en forma cerrada



### 8.7.3. Ejemplo: EM para un GMM

#### 8.7.3.1. Paso E

▶ Responsability: el paso E calcula la responsabilidad del clúster k en la generación del dato n, según la estimación actual de los parámetros  $\theta^{(t)}$ ,

$$r_{nk}^{(t)} = p^*(z_n = k \mid \boldsymbol{y}_n, \boldsymbol{\theta}^{(t)})$$
 (159)

$$= \frac{\pi_k^{(t)} p(\boldsymbol{y}_n \mid \boldsymbol{\theta}_k^{(t)})}{\sum_{k'} \pi_{k'}^{(t)} p(\boldsymbol{y}_n \mid \boldsymbol{\theta}_{k'}^{(t)})}$$
(160)

#### 8.7.3.2. Paso M

► Log-verosimilitud completa esperada: versión ponderada de la LL para la Gaussiana multivariada; sea  $z_{nk} = 1$  ( $z_n = k$ ),

$$LL^{t}(\boldsymbol{\theta}) = \mathbb{E}\left[\sum_{n} \log p(z_{n} \mid \boldsymbol{\pi}) + \log p(\boldsymbol{y}_{n} \mid z_{n}, \boldsymbol{\theta})\right]$$
(161)

$$= \mathbb{E}\left[\sum_{n} \log \left(\prod_{k} \pi_{k}^{z_{nk}}\right) + \log \left(\prod_{k} \mathcal{N}(\boldsymbol{y}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{nk}}\right)\right]$$
(162)

$$= \sum_{n} \sum_{k} \mathbb{E}[z_{nk}] \log \pi_k + \sum_{n} \sum_{k} \mathbb{E}[z_{nk}] \log \mathcal{N}(\boldsymbol{y}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
(163)

$$= \sum_{n} \sum_{k} r_{nk}^{(t)} \log(\pi_k)$$

$$-\frac{1}{2}\sum_{k}\sum_{n}r_{nk}^{(t)}\left[\log|\mathbf{\Sigma}_{k}|+(\mathbf{y}_{n}-\boldsymbol{\mu}_{k})^{t}\mathbf{\Sigma}_{k}^{-1}(\mathbf{y}_{n}-\boldsymbol{\mu}_{k})\right]+\text{const} \quad (164)$$

► Solución cerrada: sea  $r_k^{(t)} \triangleq \sum_n r_{nk}(t)$ 

$$\mu_k^{(t+1)} = \frac{1}{r_k^{(t)}} \sum_n r_{nk}(t) y_n$$
 (165)

$$\Sigma_k^{(t+1)} = \frac{1}{r_k^{(t)}} \sum_n r_{nk}(t) (\boldsymbol{y}_n - \boldsymbol{\mu}_k^{(t+1)}) (\boldsymbol{y}_n - \boldsymbol{\mu}_k^{(t+1)})^t$$
(166)

$$= \frac{1}{r_k^{(t)}} \left( \sum_n r_{nk}(t) \boldsymbol{y}_n \boldsymbol{y}_n^t \right) - \boldsymbol{\mu}_k^{(t+1)} (\boldsymbol{\mu}_k^{(t+1)})^t$$
 (167)

$$\pi_k^{(t+1)} = \frac{1}{N} \sum_{n} r_{nk}(t) = \frac{r_k^{(t)}}{N}$$
 (168)

#### **Ejemplo** 8.7.3.3.

► Old Faithful: GMM ajustado con el EM a datos 2d del géiser Old Faithful (minutos siguiente erupción vs duración; estandarizados)



#### 8.7.3.4. Estimación MAP

▶ *Problema del colapso de la varianza*: si  $\Sigma_k = \sigma_k^2 \mathbf{I}$  y  $\mu_k$  se asigna a un único punto,  $y_n$ , su verosilimilitud diverge con  $\sigma_k \to 0$ 

$$\mathcal{N}(\boldsymbol{y}_n \mid \boldsymbol{\mu}_k = \boldsymbol{y}_n, \sigma_k^2 \mathbf{I}) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^0$$
 (169)

Estimación MAP: maximiza la log-verosimilitud completa esperada más un log-prior

$$LL^{t}(\boldsymbol{\theta}) = \left[\sum_{n} \sum_{k} r_{nk}^{(t)} \log \pi_{k} + \sum_{n} \sum_{k} r_{nk}^{(t)} \log p(\boldsymbol{y}_{n} \mid \boldsymbol{\theta}_{k})\right] + \log p(\boldsymbol{\pi}) + \sum_{k} \log p(\boldsymbol{\theta}_{k})$$

$$(170)$$

### ► Algoritmo EM:

- ▶ Paso E: igual que para el MLE
- ho *Paso M para los coeficientes:* con prior *Dirichlet,*  $\pi \sim \text{Dir}(\alpha)$ , conjugada de la categórica,

$$\tilde{\pi}_k^{(t+1)} = \frac{r_k^{(t)} + \alpha_k - 1}{N + \sum_k \alpha_k - K}$$
 (171)

 $\rightarrow$  Coincide con el MLE con un prior uniforme,  $\alpha_k = 1$ 

▶ Paso M para las componentes: con prior Normal-Inverse-Wishart, conjugada de la Gaussiana multivariada,

$$p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \text{NIW}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \mid \widecheck{\boldsymbol{m}}, \widecheck{\kappa}, \widecheck{\nu}, \widecheck{\mathbf{S}})$$
 (172)

 $\mapsto$  Con  $\kappa = 0$ , las  $\mu_k$  no se regularizan, por lo que el prior solo afecta a las  $\Sigma_k$  y los estimadores MAP son:

$$\tilde{\boldsymbol{\mu}}_k^{(t+1)} = \hat{\boldsymbol{\mu}}_k^{(t+1)} \tag{173}$$

$$\widetilde{\boldsymbol{\Sigma}}_{k}^{(t+1)} = \frac{\widetilde{\mathbf{S}} + \widehat{\boldsymbol{\Sigma}}_{k}^{(t+1)}}{\widetilde{\boldsymbol{\nu}} + r_{k}^{(t)} + D + 2}$$
(174)

 $\mapsto$  Covarianza a priori: si  $s_d = \frac{1}{N} \sum_n (x_{nd} - \bar{x}_d)^2$  es la varianza global en la dimensión d, una posibilidad consiste en usar

$$\widetilde{\mathbf{S}} = \frac{1}{K^{1/D}} \operatorname{diag}(s_1^2, \dots, s_D^2)$$
 (175)

 $\mapsto$  El hiperparámetro  $\widecheck{\nu}$  controla la fuerza del prior; una elección usual es el prior propio más débil:  $\widecheck{\nu}=D+1$ 



- $\triangleright$  *Ejemplo:* mixtura de K=2 componentes a ajustar con N=100 datos sintéticos en D dimensiones (D=1 en la gráfica)
  - $\rightarrow$  La primera componente es un pico estrecho (con  $\sigma_1 \approx 0$ ) centrado en un único dato  $x_1$



▷ Ejemplo (cont.): fracción del número de veces (de 5 intentos) que el EM presenta problemas numéricos con MLE y MAP



#### 8.7.3.5. Noconvexidad de la NLL

Noconvexidad de la NLL: la log-verosimilitud de una mixtura suele tener múltiples modas, esto es, más de un óptimo global

$$LL(\boldsymbol{\theta}) = \sum_{n=1}^{N} \log \sum_{z_n=1}^{K} p(\boldsymbol{y}_n, z_n \mid \boldsymbol{\theta})$$
 (176)

ho *Ejemplo:* 200 puntos de una mixtura de 2 Gaussianas 1d con  $\pi_k = 0.5$ ,  $\sigma_k = 5$ ,  $\mu_1 = -10$  y  $\mu_2 = 10$ ; y verosimilitud  $p(\mathcal{D} \mid \mu_1, \mu_2)$ 



→ Label switching problem: 2 óptimos cambiando etiquetas



#### ► Complejidad del problema: label switching problem

- $\triangleright$  Es difícil establecer el número de modas pues, aunque potencialmente hay K! etiquetados distintos, muchos picos pueden reducirse al mezclarse con otros cercanos
- ▷ Número de modas exponencial: en cualquier caso, puede haber un número de modas exponencial con K, por lo que el problema es NP-duro
- Óptimo local: únicamente podemos aspirar a encontrar un buen óptimo local, por lo general posible con una buena inicialización

