

Master seminar: Solving localization problem in first person computer games with deep learning

Yauheni Selivonchyk¹,

Prof. Dr. Christian Bauckhage²,

Prof. Dr. Stefan Wrobel².

Mr. Sc. Rafet Sifa²

¹Institute of Computer Science, University of Bonn

²Fraunhofer IAIS

April 25, 2017

Introduction

Outline

Introduction

- Introduction
 - Unsupervised learning
 - Localization problem
- 2 Approach
 - Model design
 - Metrics
- 3 Evaluation
 - Data collection
 - Results

Unsupervised learning

Importance of unsupervised learning for AI

Figure: Slide from "Predictive learning" opening address given by Yann Lecun at NIPS2016.

Unsupervised learning

Introduction

Key components of finding a solutions

- Sufficient amount of training data
- Computational feasibility of the problem

Localization

Localization as a task of extracting, tracking or predicting object's position in some environment from available sensory data

Localization example: Tracking

Figure: Pedestrian tracking visualization ¹.

¹H. Cho et. al. "Real-Time Pedestrian and Vehicle Detection for Automotive Active Safety Systems"

Introduction

Localization example: SLAM

Figure: Example solution of SLAM problem on PC3 dataset (courtesy of University of Michigan).

Introduction

Localization problem

Localization example: surgery

Figure: Mapping the position of a tool in minimally invasive surgery [http://biorobotics.ri.cmu.edu/research/medicalSLAM.html].

Motivation. Continuied

Goal of this work: reconstruction of the actors trajectory in first-person shooter (games) from visual data.

Figure: Example visual data.

Autoencoder model

Autoencoders learn to project the input x into some embedding space $h \in H$ and simultaneously reconstruct the original information \hat{x} .

Introduction Model design

Model pre-training. Motivation

Extremely high compression rates 76200 (160*120*4) \rightarrow 3..6 are notoriously difficult to learn.

Introduction Model design

Common irregularities in the manifold space

- High density region
- 2 Low density regions
- 3 High curvature of the manifold

Model design

Common irregularities in the manifold space

- 1 High density region
 - Apply random noise in the encoding space to increase "save" distance between frames
- 2 Low density regions
 - Add "max-distance" penalty
- 3 High curvature of the manifold
 - Regularize local continuity of in the embedding space

Predictive regularization

Try to estimate positional encoding of the next frame using last two frames of the video.

Model regularization

Figure: Complete model with regularization.

Complete model structure

Figure: Complete model with regularization.

Data collection

Data collection

Results

Results

Definition

Summary

■ The **first main message** of your talk in one or two lines.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.