一、问题定义与数学模型

N 皇后问题是一个经典的组合优化问题, 数学定义如下:

在 N×N 的棋盘上放置 N 个皇后, 使得:

- 1. 任何两个皇后都不能处于同一行
- 2. 任何两个皇后都不能处于同一列
- 3. 任何两个皇后都不能处于同一条对角线上(包括主对角线和反对角线)

该问题可以转化为寻找一个 N 元组: $(x_1, x_2, ..., x_n)$, 其中 x_i 表示第 i 行皇后所在的列,且满足:

- 1. 所有 xi 互不相同(列约束)
- 2. 对于任意 i≠j, 有 | x_i x_j| ≠ |i j| (对角线约束)
- 二、基础回溯算法实现

1. 算法核心思想

回溯算法通过深度优先搜索(DFS)遍历解空间树,在每一步尝试所有可能的选择:若当前选择满足约束条件,则继续递归搜索下一层若不满足约束条件,则回溯到上一层,尝试其他选择实现如下:

def solve_backtrack_basic(self, find_all: bool = True) -> List[List[int]]:
 self.solutions = [] # 存储所有解
 self.solution_count = 0 # 解的数量
 self.call_count = 0 # 递归调用次数

def backtrack(board: List[int], row: int):
 self.call count += 1

if row == self.n: # 找到一个解
self.solutions.append(board[:])
self.solution_count += 1
return not find_all # 若只需一个解,则终止搜索

for col in range(self.n):

if self.is_safe(board, row, col):
 board[row] = col # 放置皇后
 if backtrack(board, row + 1): # 递归处理下一行
 return True

return False # 该路径无解

board = [-1] * self.n # 初始化棋盘 backtrack(board, 0) # 从第 0 行开始 return self.solutions

2. 算法复杂度分析

时间复杂度: O(N!), 最坏情况下需要遍历所有可能的排列

空间复杂度: O(N), 主要用于存储棋盘状态

递归调用次数:约为 ○ (N^N),实际因剪枝会显著减少

三、集合优化回溯算法

1. 优化思路

```
基础算法的安全检查需要 O(N)时间,通过维护三个集合,可以将安全检查优化到 O(1):
cols: 已放置皇后的列集合
diag1: 已放置皇后的主对角线集合(主对角线满足 row - col 为定值)
diag2: 已放置皇后的反对角线集合(反对角线满足 row + col 为定值)
实现如下:
def solve_backtrack_optimized(self, find_all: bool = True) -> List[List[int]]:
    self.solutions = []
    self.solution_count = 0
    self.call count = 0
    def backtrack(board: List[int], row: int, cols: Set[int], diag1: Set[int], diag2: Set[int]):
        self.call_count += 1
        if row == self.n:
            self.solutions.append(board[:])
            self.solution count += 1
            return not find_all
        for col in range(self.n):
            if self.is_safe_optimized(cols, diag1, diag2, row, col):
                # 放置皇后并更新集合
                board[row] = col
                cols.add(col)
                diag1.add(row - col)
                diag2.add(row + col)
                if backtrack(board, row + 1, cols, diag1, diag2):
                    return True
                # 回溯: 移除皇后并恢复集合
                cols.remove(col)
                diag1.remove(row - col)
                diag2.remove(row + col)
        return False
    board = [-1] * self.n
    cols = set()
    diag1 = set()
    diag2 = set()
    backtrack(board, 0, cols, diag1, diag2)
    return self.solutions
```

2. 优化效果分析 时间复杂度: 理论上仍为 O(N!), 但单次安全检查从 O(N) 降至 O(1) 空间复杂度: 增加 O(N) 空间存储三个集合 实际性能: 当 N 较大时,运行时间显著减少(实验中 N=12 时加速 4.92 倍) 四、对称性优化算法 1. 对称性原理 N 皇后问题存在多种对称性, 其中最明显的是左右对称性: 若解 $S = (x_1, x_2, ..., x_n)$ 是合法解,则其镜像解 $S' = (n-1-x_1, n-1-x_2, ..., n-1-x_n)$ 也是合法解 2. 优化策略 第一行约束: 仅在第一行的前 n//2 列放置皇后 解生成: 对找到的每个解, 自动生成其镜像解 **去重处理**:确保镜像解不会重复添加(当解本身对称时) 实现如下: def solve_with_symmetry(self, find_all: bool = True) -> List[List[int]]: if self.n == 1: # 特殊情况处理 return [[0]] self.solutions = Π self.solution_count = 0 $self.call_count = 0$ def backtrack(board: List[int], row: int, cols: Set[int], diag1: Set[int], diag2: Set[int]): self.call count += 1 if row == self.n: self.solutions.append(board[:]) self.solution count += 1 return not find all # 第一行仅搜索前半部分列 col_range = range(self.n // 2) if row == 0 else range(self.n) for col in col_range: if self.is_safe_optimized(cols, diag1, diag2, row, col): board[row] = col cols.add(col) diag1.add(row - col) diag2.add(row + col) if backtrack(board, row + 1, cols, diag1, diag2): return True

cols.remove(col)

diag1.remove(row - col)

diag2.remove(row + col)

return False

```
board = [-1] * self.n
cols = set()
diag1 = set()
diag2 = set()
backtrack(board, 0, cols, diag1, diag2)
```

生成镜像解

original_solutions = self.solutions[:]
for solution in original_solutions:
 mirrored = [self.n - 1 - col for col in solution]
 if mirrored not in self.solutions: # 避免对称解重复
 self.solutions.append(mirrored)
 self.solution_count += 1

return self.solutions

4. 优化效果分析

搜索空间: 理论上减少约 50% 的搜索空间

递归调用次数:实验中 N=12 时调用次数减少约 50%

实际性能: 当 N≥7 时,加速比接近 2 倍, N=12 时达到 11.60 倍

五.实验结果

N	解数	基础时间		化时间	对称时间	基础调用	优化调用	对称调用	优化加速比	对称加速比
		0.0000	0.0000	0.0000	17	17		0.00	0.00	
		0.0000	0.0000	0.0000	1 54	54		0.00	0.00	
		0.0010	0.0000	0.0000	153	I 153	77	0.00	0.00	
		0.0020	0.0010	0.0005	552	552	237	1.96	3.70	
		0.0080	0.0036	0.0020	2057	2057	1029	2.25	4.03	
		0.0395	0.0155	0.0079	8394	1 8394	3691	2.54	5.00	
	724	0.2119	0.0717	0.0374	35539	35539	17770	2.96	5.67	
11	2680	1.2040	0.3459	0.1938	166926	166926	75534	3.48	6.21	
12	14200	7.0248	1.8883	2.0934	856189	856189	428095	3.72	3.36	