

complexity: $T_{worst}(N) = \Theta(\log(N))$ deletion from a heap to delete the minimum, · identify the last element k in the array (the last leaf entry) - percolate k down from the root, always moving up the smaller of the two children. 15 delete 7

Lin 15

22 17 14

23 32 31 30 30 (27)

23 32 31 30 30 Example G. 77 delete lin 722 30 27 19 22 17 23 30 27 19 7 30 31 31 32 23 31 31 2 (30)

	W	atu	L	_	on	ł	V	لىار	jı.		λυρ	pli	2ei	e	h.	lig	0	lel	et	Ō	u.	(
	W	ha	J	ū	_	ni U	g h	+	O	hi	(d		eu	γp	ty	?													
	_				6		_	,	_					12	1 (3													
																		7. (d	L	20	0.	(1./	a l	P	da f	e Qu	
																-	cc a	ud	! !	me M	Z ZVE	d	ن	up	u	ي لمو	Per.	J	
	_																												
	4	rich	<u>K</u>	.:		H	06	hC	e		(1e	.Cv	P	y '	4	ai	10	y	۲,	el	Ks		by		SC	ut)he	l	5
						(VG	di	ιe		la	r ge	<u></u>	W	Qu		ac	cy	l	عا	29	>	e	nfr	y)			
_	1.											_																	
10 -	H	w	-	W	za,	د	Of	o e	as	10	45	_																	
•	· {	îhq	1	Mi	0	:				la	50	1)	θ	(1)													
•	fi	hd	. /	W	٨×												ll	7	Ce		le	ar	es	J	i. E)			
	l																1			t/					W)	·			
																			2	_									