

ME6206L Series Low ESR Cap Compatable Positive Voltage Regulators

ME6206L series are highly

precise, low power consumption, high voltage, positive voltage regulators manufactured using CMOS and laser trimming technologies .The series provides large currents with a significantly small dropout voltage.

The series is compatible with low ESR ceramic capacitors .The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

Selection Guide

FEATURES

- Highly Accurate: ±2%;
- Output voltage range: 1.5V~5.0V (selectable in 0.1V steps);
- Low power consumption: Typ. =8.0 μ A;
- Large output current: 300mA;
- Input voltage: up to 6 V
- Dropout voltage:
 - 0.2V at 100mA and 0.40V at 200mA;
- · Input Stability
- •Be available to regulator and reference voltage;
- Packages: SOT23-3, SOT89-3, SOT23, TO-92

APPLICATIONS

- Battery powered equipment;
- Communication tools:
- Mobile phones;
- Portable games;
- Portable AV systems;
- Cameras, Video systems;
- Reference voltage sources.

PINCONFIGURATION

PIN ASSIGNMENT

ME6206Lxx

PIN							
М3	Р	P1	Х	Т	NAME	FUNCTION	
SOT23-3	SOT89-3	SOT89-3	SOT23	TO-92			
1	1	2	1	1	Vss	Ground	
2	3	1	2	3	Vout	Output	
3	2	3	3	2	Vin	input	

Block Diagram

Absolute Maximum Ratings

PARAMETER		SYMBOL	DESCRIPTION	UNIT	
Input Voltage		V_{IN}	6.5	V	
Output Current		l _{out}	500	mA	
Output Voltage		V_{out}	Vss-0.3 ~ Vout+0.3	V	
	SOT23-3	Pd	300	mW	
Power	SOT89-3	Pd	500	mW	
Dissipation	SOT23	Pd	300	mW	
	TO-92	Pd	500	mW	
Operating Ambient Temperature		T_{Opr}	-25 ~ +85	$^{\circ}$	
Storage Temperature		T_{stg}	-40 ~ +125	$^{\circ}$	

Electrical Characteristics

ME6206L33

(Vin=Vout+1V,Cin=Cout=1u,Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V _{IN}				6	V
Maximum Output Voltage	I _{OUT} (max)	V _{IN} =Vout+1V		300		mA
Load Regulation	ΔV_{OUT}	V _{IN} =Vout+1V 1mA≤I _{OUT} ≤100mA		14		mV
Dropout Voltage (Note 3)	V_{dif1}	I _{OUT} =80mA		180		mV
	V _{dif2}	I _{OUT} =200mA		380		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		9		μА
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \bullet V_{OUT}}$	I_{OUT} =40mA Vout+1V \leq V_{IN} \leq 6V		0.03		%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		50		dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		55		mA

Note:

1. V_{OUT} (T): Specified Output Voltage

 $2.V_{OUT}$ (E) : Effective Output Voltage (le. The output voltage when " V_{OUT} (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value.)

 $3.V_{dif}$: $V_{IN1} - V_{OUT}$ (E)'

 V_{IN1} : The input voltage when $V_{\text{OUT}}(E)$ ' appears as input voltage is gradually decreased.

V_{OUT} (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized lout $\{V_{OUT}(T)+1.0V\}$ is input.

Test Circuits

www. microne. com. cn

Type Characteristics

Package

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.