Exercise 1 (Exercise 3). Let c_n be the number of sequences of length n in which:

- \diamond Each number is one of 0, 1, 2, 3.
- ♦ No two 3's are consecutive.

For instance 0221030132 is a valid sequence but 033112333 is not.

- i) Find a recursion for c_n (this should be similar to the Fibonacci recurrence). Remember to include the initial conditions!
- ii) Use the recursion to find a closed form for the generating function of c_n .
- iii) Use the formula discussed in class for solving linear recurrences to find an explicit formula for c_n in terms of n.

Answer

i) First, we can observe that the total number of sequences of length n with characters $0, \ldots, 3$ is 4^n . Dividing this amount into conditioned sequences and forbidden sequences we get the following

$$4^n = c_n + f_n,$$

where c_n is the quantity we are looking for and f_n is the number of *forbidden* sequences of length n. This is, sequences which do have 33 as a substring. After considering the initial conditions:

$$f_0 = 0, f_1 = 0, f_2 = 1, f_3 = 7, f_4 = 40,$$

it is possible to conjecture that

$$f_{n+2} = 3f_{n+1} + 3f_n + 4^n.$$

To prove this recurrence we will append a digit to a length (n+1) sequence. There are several ways to this:

- \diamond If the digit we are appending is either 0, 1 or 2, we are not adding any more forbidden substrings. So for each of those digits, our count of forbidden sequences goes up by f_{n+1} . Right now we have $3f_{n+1}$ forbidden sequences.
- ♦ If the digit we are appending is 3, there are two cases:
 - Either the last digit of the (n+1) sequence is 0, 1 or 2 in which case we are not adding more forbidden strings. Each of those possibilities accounts for f_n forbidden sequences. This adds up to our past total to get $3f_{n+1} + 3f_n$.

- If the last digit of the (n + 1) sequence is 3, then we just added a forbidden substring. Counting this is the same as counting all (n + 2) strings which end in 33. This amount is 4^n .

In total, we have $3f_{n+1} + 3f_n + 4^n$ forbidden sequences of length n. Then by our initial relation we have

$$c_n = 4^n - f_n = -(3f_{n+1} + 3f_n), f_0 = 0, f_1 = 0.$$

ii) Let us derive a generating function for f_n and from that we will obtain c_n 's generating function.

Call F, (f_n) 's generating function, then the recurrence

$$f_{n+2} = 3f_{n+1} + 3f_n + 4^n$$

translates to the equation

$$\frac{F(x) - f_0 - f_1 x}{x^2} = \frac{3(F(x) - f_0)}{x} + 3F(x) + \frac{1}{1 - 4x}.$$

Applying the initial conditions we get

$$\frac{F(x)}{x^2} = \frac{3F(x)}{x} + 3F(x) + \frac{1}{1 - 4x}.$$

We can solve for F to obtain

$$F(x)\left(\frac{1}{x^2} - \frac{3}{x} - 3\right) = \frac{1}{1 - 4x},$$

$$\Rightarrow F(x)\left(\frac{1 - 3x - 3x^2}{x^2}\right) = \frac{1}{1 - 4x},$$

$$\Rightarrow F(x) = \frac{1}{1 - 4x}\left(\frac{x^2}{1 - 3x - 3x^2}\right).$$

Now let us factor $1 - 3x - 3x^2$ by taking $x = \frac{-3 \pm \sqrt{21}}{6}$, where α is the root with + while β , the one with negative. Then

$$(1 - 3x - 3x^2) = -3(x - \alpha)(x - \beta) = -3\alpha\beta \left(1 - \frac{x}{\alpha}\right) \left(1 - \frac{x}{\beta}\right)$$
$$= \frac{-3}{ab}(1 - ax)(1 - bx),$$

where a, α and b, β are pairs of reciprocals. We can now continue to solve F as a sum of partial fractions as follows

$$F(x) = \frac{-abx^2}{3(1-4x)(1-ax)(1-bx)} = \frac{A}{1-ax} + \frac{B}{1-bx} + \frac{C}{1-4x}.$$

Homogenizing the denominator on the equation to the right we get

$$\frac{-ab}{3}x^2 = A(1-4x)(1-bx) + B(1-4x)(1-ax) + C(1-ax)(1-bx).$$

Since this equation holds for any value of x, we might substitute certain values to get cleaner equations for A, B and C:

$$\begin{cases} (x = \alpha) \Rightarrow \frac{-ab}{3}\alpha^2 = A(1 - 4\alpha)(1 - b\alpha) = A\alpha^2(4 - a)(b - a), \\ \Rightarrow \frac{-ab}{3(4 - a)(b - a)} = A, \\ (x = \beta) \Rightarrow \frac{-ab}{3}\beta^2 = B(1 - 4\beta)(1 - a\beta) = B\beta^2(4 - b)(a - b), \\ \Rightarrow \frac{-ab}{3(4 - b)(a - b)} = B, \\ (x = 1/4) \Rightarrow \frac{-ab}{3 \cdot 16} = C(1 - a/4)(1 - b/4) = \frac{C}{16}(4 - a)(4 - b), \\ \Rightarrow \frac{-ab}{3(4 - a)(4 - b)} = C. \end{cases}$$

Comparing coefficients $(1-ax)(1-bx) = 1 - (a+b)x + abx^2$, we have that a+b=3 and ab=-3. Expanding (4-a)(4-b)=16-4(a+b)+ab=16-12-3=1. From this we get $\underline{C=1}$. Also, using the polarization identity it holds that

$$|a+b|^2 - |a-b|^2 = 4ab \Rightarrow |a-b|^2 = -(-12-9) = 21 \Rightarrow |a-b| = \sqrt{21}.$$

We also have that $\beta < -\frac{1}{2} < \alpha$, so b > -2 > a. This means that $a - b = -\sqrt{21}$. From this we can replace in A and B's expressions:

$$A = \frac{1}{(4-a)\sqrt{21}}, \ B = \frac{-1}{(4-b)\sqrt{21}}$$

so in the end we have the expression for *F*:

$$F(x) = \left(\frac{1}{(4-a)\sqrt{21}}\right)\frac{1}{1-ax} + \left(\frac{-1}{(4-b)\sqrt{21}}\right)\frac{1}{1-bx} + \frac{1}{1-4x}.$$

If C(x) is (c_n) 's generating function, then the following equation holds C(x) + F(x) = 1/(1-4x) which means that

$$C(x) = \left(\frac{1}{(4-b)\sqrt{21}}\right)\frac{1}{1-bx} + \left(\frac{-1}{(4-a)\sqrt{21}}\right)\frac{1}{1-ax}.$$

iii) Combining the terms in F's generating function we get

$$F(x) = \sum_{n=0}^{\infty} x^n$$

^aEven though the recurrence is not in terms of c's, it's still a recursive formula. The derivation for c_n 's recursive formula lies below this answer.

We can also construct the recurrence in terms of the allowed sequences c_n . Take any length n allowed sequence, then there are two possibilities:

- \diamond The last digit is 0, 1 or 2, then the rest of the sequence is a length (n-1) allowed sequence. For each digit we count c_{n-1} allowed sequences. So in total we have $3c_{n-1}$ allowed sequences.
- \diamond If the last digit is 3, then the second-to-last digit can't be three. There are only 3 other possibilities: 0, 1 or 2. For each of these the remaining length n sequence has to fullfil the condition. Which means we count c_{n-2} allowed sequences per digit.

This total amounts to $c_n = 3c_{n-1} + 3c_{n-2}$. With this recurrence we have counted all the possibilities since the only options for the last digit are the ones mentioned above.

Exercise 2 (Exercise 5). Carlitz defined the q-Stirling numbers of the second kind as follows:

Given a set partition B of [n] into k blocks, let its blocks be B_1, B_2, \ldots, B_k where the blocks are written in order by their minimum element from least to greatest. Then an inversion of B is a pair (b, B_j) where b is in some block B_i to the left of B_j (that is, i < j) and $b > \min(B_j)$.

For instance, in the set partition

we have the inversions $(3, \{2,4\})$, $(6, \{2,4\})$ and $(6, \{5,7\})$. We write inv(B) to denote the total number of inversions in B, and define

$$S_q(n,k) = \sum_B q^{\text{inv}(B)}$$

with B ranging over all set partitions of [n] into k blocks.

Prove that the *q*-Stirling numbers satisfy the recursion

$$S_q(n,k) = S_q(n-1,k-1) + (1+q+q^2+\cdots+q^{k-1})S_q(n-1,k).$$

Answer

It is paramount to understand that even if S_q is "qounting" the set partitions of [n] into k blocks by inversions, in the end S_q is a polynomial. So to prove this identity we will separate the set of set partitions into partitions where n is its own block, and partitions where $\exists j (n \in B_j)$. We have the following

$$S_q(n,k) = \sum_{B \in \mathcal{O}} q^{\text{inv}(B)} + \sum_{B \in \mathcal{I}} q^{\text{inv}(B)}$$

where we have defined sets \mathcal{O}, \mathcal{I} in the following manner:

- \diamond 0 is the set of *the set of set partitions of* [n] *into* k *blocks* such that n is OUT of other blocks, in this sense $\exists j(B_j = \{n\})$ for $B \in O$.
- \diamond On the other hand \Im is the set of set partitions of [n] into k blocks such that n is IN one of the k blocks.
- ♦ We can further decompose $J = \bigcup_{j=1}^{k} J_j$ where J_j is the set of set partitions of [n] into k blocks such that $n \in B_j$ (IN block j). (Recall that the B_j 's are ordered by $\min(B_j)$.)

We can find a bijection between 0 and the set of set partitions of [n-1] into k-1 blocks given by

$$F: \mathcal{O} \to (aforementioned set), A \mapsto A \setminus \{n\}$$

with its inverse being $B \mapsto B \cup \{n\}$. This function is well defined since every $A \in \mathcal{O}$ can be seen as a set $\widetilde{A} \cup \{n\}$. Thus

$$\sum_{B\in \mathcal{O}} q^{\mathrm{inv}(B)} = \sum_{F(B)\in F[\mathcal{O}]} q^{\mathrm{inv}(F(B))} = \sum_B q^{\mathrm{inv}(B)} = S_q(n-1,k-1),$$

where the third sum runs B through the set of set partitions of [n-1] into k-1 blocks and this, by definition, is $S_q(n-1,k-1)$.

Let us now consider a partition $B \in \mathcal{I}_{\ell}$, we can associate B to a partition of [n-1] with k blocks by removing n from B_j .