Foundation of Cryptography (0368-4162-01), Intoduction

Adminstration + Introduction

Iftach Haitner, Tel Aviv University

Tel Aviv University.

February 18, 2014

Part I

Administration and Course Overview

Section 1

Administration

Iftach Haitner. Schriber 20, email iftachh at gmail.com Reception: Sundays 9:00-10:00 (please coordinate via email in advance)

- Iftach Haitner. Schriber 20, email iftachh at gmail.com Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?

- Iftach Haitner. Schriber 20, email iftachh at gmail.com Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?
- Mailing list: 0368-4162-01@listserv.tau.ac.il

- Iftach Haitner. Schriber 20, email iftachh at gmail.com Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?
- Mailing list: 0368-4162-01@listserv.tau.ac.il
 - Registered students are automatically on the list (need to activate the account by going to https://www.tau.ac.il/newuser/)

- Iftach Haitner. Schriber 20, email iftachh at gmail.com Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?
- Mailing list: 0368-4162-01@listserv.tau.ac.il
 - Registered students are automatically on the list (need to activate the account by going to https://www.tau.ac.il/newuser/)
 - If you're not registered and want to get on the list (or want to get another address on the list), send e-mail to: listserv@listserv.tau.ac.il with the line:

subscribe 0368-3500-34 <Real Name>

- Iftach Haitner. Schriber 20, email iftachh at gmail.com Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?
- Mailing list: 0368-4162-01@listserv.tau.ac.il
 - Registered students are automatically on the list (need to activate the account by going to https://www.tau.ac.il/newuser/)
 - If you're not registered and want to get on the list (or want to get another address on the list), send e-mail to: listserv@listserv.tau.ac.il with the line:
 - subscribe 0368-3500-34 <Real Name>
- Ourse website:

```
http:
//www.cs.tau.ac.il/~iftachh/Courses/FOC/Spring14
(or just Google iftach and follow the link)
```

O Class exam 80

- O Class exam 80
- 4 Homework 20%: 5-6 exercises.

- Class exam 80
- Homework 20%: 5-6 exercises.
 - ► Recommended to use use LATEX (see link in course website)

- Class exam 80
- Homework 20%: 5-6 exercises.
 - Recommended to use use LaTEX (see link in course website)
 - Exercises should be sent to ? or put in mailbox ?, in time!

and..

Slides

and..

- Slides
- 2 English

Course Prerequisites

- Some prior knowledge of cryptography (such as 0369.3049) might help, but not necessarily
- Basic probability.
- **3** Basic complexity (the classes \mathcal{P} , \mathcal{NP} , \mathcal{BPP})

Course Material

- Books:
 - Oded Goldreich. Foundations of Cryptography.
 - 2 Jonathan Katz and Yehuda Lindell. An Introduction to Modern Cryptography.
- 2 Lecture notes
 - 2013 Course.
 - 2 Ran Canetti www.cs.tau.ac.il/~canetti/f08.html
 - Yehuda Lindell

```
u.cs.biu.ac.il/~lindell/89-856/main-89-856.html
```

- Luca Trevisan www.cs.berkeley.edu/~daw/cs276/
- Salil Vadhan people.seas.harvard.edu/~salil/cs120/

Section 2

Course Topics

Course Topics

Basic primitives in cryptography (i.e., one-way functions, pseudorandom generators and zero-knowledge proofs).

- Focus on formal definitions and rigorous proofs.
- The goal is not studying some list, but to understand cryptography.
- Get ready to start researching

Part II

Foundation of Cryptography

What is Cryptography?

- What is Cryptography?
- Hardness assumptions, why do we need them?

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $\mathcal{P} \neq \mathcal{NP}$ suffice?

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $\mathcal{P} \neq \mathcal{NP}$ suffice?

 \mathcal{NP} : all (languages) $L \subset \{0,1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $\mathcal{P} \neq \mathcal{NP}$ suffice?

 \mathcal{NP} : all (languages) $L \subset \{0,1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:

1 V(x, w) = 0 for any $x \notin L$ and $w \in \{0, 1\}^*$

- What is Cryptography?
- 4 Hardness assumptions, why do we need them?
- **3** Does $\mathcal{P} \neq \mathcal{NP}$ suffice?
 - \mathcal{NP} : all (languages) $L \subset \{0,1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:
 - **1** V(x, w) = 0 for any $x \notin L$ and $w \in \{0, 1\}^*$
 - of for any $x \in L$, $\exists w \in \{0, 1\}^*$ with $|w| \le p(|x|)$ and V(x, w) = 1

- What is Cryptography?
- ② Hardness assumptions, why do we need them?
- **3** Does $\mathcal{P} \neq \mathcal{NP}$ suffice?
 - \mathcal{NP} : all (languages) $L \subset \{0,1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:
 - **1** V(x, w) = 0 for any $x \notin L$ and $w \in \{0, 1\}^*$
 - ② for any $x \in L$, $\exists w \in \{0, 1\}^*$ with $|w| \le p(|x|)$ and V(x, w) = 1
 - $\mathcal{P} \neq \mathcal{NP}$: i.e., $\exists L \in \mathcal{NP}$, such that for any polynomial-time algorithm A, $\exists x \in \{0,1\}^*$ with $A(x) \neq 1_I(x)$

- What is Cryptography?
- 2 Hardness assumptions, why do we need them?
- **3** Does $\mathcal{P} \neq \mathcal{NP}$ suffice?
 - \mathcal{NP} : all (languages) $L \subset \{0,1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:
 - **1** V(x, w) = 0 for any $x \notin L$ and $w \in \{0, 1\}^*$
 - of for any $x \in L$, $\exists w \in \{0, 1\}^*$ with $|w| \le p(|x|)$ and V(x, w) = 1
 - $\mathcal{P} \neq \mathcal{NP}$: i.e., $\exists L \in \mathcal{NP}$, such that for any polynomial-time algorithm A, $\exists x \in \{0,1\}^*$ with $A(x) \neq 1_L(x)$
 - **polynomial-time algorithms:** an algorithm A runs in polynomial-time, if $\exists p \in \text{poly}$ such that the running time of A(x) is bounded by p(|x|) for any $x \in \{0, 1\}^*$

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $\mathcal{P} \neq \mathcal{NP}$ suffice?
 - \mathcal{NP} : all (languages) $L \subset \{0,1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:
 - **1** V(x, w) = 0 for any $x \notin L$ and $w \in \{0, 1\}^*$
 - ② for any $x \in L$, $\exists w \in \{0, 1\}^*$ with $|w| \le p(|x|)$ and V(x, w) = 1
 - $\mathcal{P} \neq \mathcal{NP}$: i.e., $\exists L \in \mathcal{NP}$, such that for any polynomial-time algorithm A, $\exists x \in \{0,1\}^*$ with $A(x) \neq 1_L(x)$
 - **polynomial-time algorithms:** an algorithm A runs in polynomial-time, if $\exists p \in \text{poly}$ such that the running time of A(x) is bounded by p(|x|) for any $x \in \{0,1\}^*$
- Problems: hard on the average. No known solution

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $P \neq NP$ suffice?
 - \mathcal{NP} : all (languages) $L \subset \{0,1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:
 - **○** V(x, w) = 0 for any $x \notin L$ and $w \in \{0, 1\}^*$
 - ② for any $x \in L$, $\exists w \in \{0, 1\}^*$ with $|w| \le p(|x|)$ and V(x, w) = 1
 - $\mathcal{P} \neq \mathcal{NP}$: i.e., $\exists L \in \mathcal{NP}$, such that for any polynomial-time algorithm A, $\exists x \in \{0,1\}^*$ with $A(x) \neq 1_L(x)$
 - **polynomial-time algorithms:** an algorithm A runs in polynomial-time, if $\exists p \in \text{poly}$ such that the running time of A(x) is bounded by p(|x|) for any $x \in \{0,1\}^*$
- Problems: hard on the average. No known solution
- One-way functions: an efficiently computable function that no efficient algorithm can invert.

Part III

Notation

Notation I

- For $t \in \mathbb{N}$, let $[t] := \{1, ..., t\}$.
- Given a string $x \in \{0,1\}^*$ and $0 \le i < j \le |x|$, let $x_{i,...,j}$ stands for the substring induced by taking the i,...,j bit of x (i.e., x[j]...,x[j]).
- Given a function f defined over a set \mathcal{U} , and a set $\mathcal{S} \subseteq \mathcal{U}$, let $f(\mathcal{S}) := \{f(x) : x \in \mathcal{S}\}$, and for $y \in f(\mathcal{U})$ let $f^{-1}(y) := \{x \in \mathcal{U} : f(x) = y\}$.
- poly stands for the set of all polynomials.
- The worst-case running-time of a *polynomial-time algorithm* on input x, is bounded by p(|x|) for some $p \in poly$.
- A function is polynomial-time computable, if there exists a polynomial-time algorithm to compute it.
- PPT stands for probabilistic polynomial-time algorithms.
- A function $\mu \colon \mathbb{N} \mapsto [0,1]$ is negligible, denoted $\mu(n) = \text{neg}(n)$, if for any $p \in \text{poly there exists } n' \in \mathbb{N}$ with $\mu(n) \le 1/p(n)$ for any n > n'.

Distribution and random variables I

- The support of a distribution P over a finite set \mathcal{U} , denoted Supp(P), is defined as $\{u \in \mathcal{U} : P(u) > 0\}$.
- Given a distribution P and en event E with $\Pr_P[E] > 0$, we let $(P \mid E)$ denote the conditional distribution P given E (i.e., $(P \mid E)(x) = \frac{D(x) \land E}{\Pr_P[E]}$).
- For $t \in \mathbb{N}$, let let U_t denote a random variable uniformly distributed over $\{0, 1\}^t$.
- Given a random variable X, we let $x \leftarrow X$ denote that x is distributed according to X (e.g., $\Pr_{x \leftarrow X}[x = 7]$).
- Given a final set S, we let $x \leftarrow S$ denote that x is uniformly distributed in S.
- We use the convention that when a random variable appears twice in the same expression, it refers to a *single* instance of this random variable. For instance, Pr[X = X] = 1 (regardless of the definition of X).

Distribution and random variables II

- Given distribution P over \mathcal{U} and $t \in \mathbb{N}$, we let P^t over \mathcal{U}^t be defined by $D^t(x_1, \dots, x_t) = \prod_{i \in [t]} D(x_i)$.
- Similarly, given a random variable X, we let X^t denote the random variable induced by t independent samples from X.