λ -calculus

Valeran MAYTIE

Halting problem

There is no λ -term H such has H[t] = T if T has a normal form and H[T] = F if T has no normal form.

Let N the set of λ -term that have a normal form.

N is not empty (it contains all the variables) and N is not equal to Λ because it not contains the λ -term Ω . So we have $\Lambda \setminus N$ non-empty and non-equal to Λ

By Scott's theorem, the set N is not recursively separable. So the λ -term H does not exist.

List in pure λ calculus

We define this useful lambda term:

• $[I] = \lambda x.x$

• $\langle t, u \rangle = \lambda x.x \ t \ u$

• $[T] = \lambda x \ y.x$

• $\pi_1 \langle t, u \rangle = \langle t, u \rangle [T]$

• $[F] = \lambda x \ y.y$

• $\pi_2 \langle t, u \rangle = \langle t, u \rangle [F]$

We define our integers as follows :

• [0] = [I]

• $[isZ] = \lambda n.\pi_1 t$

• $[S] = \lambda n.\langle [F], n \rangle$

• $[P] = \lambda n.\pi_2 t$

We take the following fixpoint :

$$\begin{aligned} A &= (\lambda xy.y(xxy)) \\ \Theta &= A \ A \end{aligned}$$

Finally, we define our lists as follows:

- [Nil] = $\lambda n f. n$
- $[x :: l] = \lambda n f. f x [l]$

The list 0::1::[Nil] is represented as follows:

$$\lambda n_0 \ f_0. \ f_0 \ [0] \ (\lambda n_1 \ f_1. \ f_1 \ [1] \ (\lambda n \ f. \ n))$$

The function $nth \ k \ l$ which return the k^{nth} element of the list l. We return an option if k is too large. The options are defined as follows:

- $[None] = \lambda ns. n$
- $[Some(x)] = \lambda ns. \ sx$

Now we can define nth function:

Listing 1: Nth function on list

We want to proof this property $\forall k \ l \ x, nth \ [k] \ [l] =_{\beta} nth \ [k+1] \ [x :: l].$

Proof – The calculations have been simplified to make the proof easier to read. We proceed by induction on [k]:

• if
$$k = 0$$

- if $l = [Nil]$, then

$$nth [0] [Nil] \rightarrow_{\beta}^{*} [Nil] [None] (...)$$

$$nth [1] [x :: [Nil]] \rightarrow_{\beta}^{*} nth [0] [Nil]$$

$$\rightarrow_{\beta} [None]$$

$$\rightarrow_{\beta}^{*} [None]$$

$$- \text{ if } l = [x' :: [l]], \text{ then }$$

$$nth \ [0] \ [x' :: [l]] \rightarrow_{\beta}^{*} \ [isZ] \ [0] \ [Some(x')] \ (\dots)$$

$$nth \ [1] \ [x :: x' :: [l]] \rightarrow_{\beta}^{*} \ nth \ [0] \ [x' :: [l]]$$

$$\rightarrow_{\beta}^{*} \ [Some(x')]$$

• if k = n + 1 by induction hypothesis we know that $\forall l \ x, nth \ [n] \ [l] =_{\beta} nth \ [n + 1] \ [x :: l]$

$$nth [k+2] [x' :: x :: l] \rightarrow_{\beta}^{*} nth [n+1] [x :: l]$$

$$=_{\beta} nth [n] [l]$$

One step on nth Induction Hypothesis