MAT389 Fall 2013, Problem Set 7

Complex exponentials

7.1 Find all the possible values of x^i for $x \in \mathbb{R}^{\times}$.

Hint: consider the cases x < 0 and x > 0 separately.

7.2 Let c = a + bi be a fixed complex number, where $c \neq 0, \pm 1, \pm 2, ...$, and note that i^c is multiple-valued. What restrictions must be placed on the constant c so that the values of $|i^c|$ are all the same?

Inverse trigonometric functions

7.3 Find expressions for the derivatives of the multivalued functions.

$$\operatorname{argsinh} z = \log \left[z + (z^2 + 1)^{1/2} \right], \qquad \operatorname{argcosh} z = \log \left[z + (z^2 - 1)^{1/2} \right],$$
$$\operatorname{argtanh} z = \frac{1}{2} \log \frac{1+z}{1-z}.$$

Hint: notice that, as in the case of inverse trigonometric functions, the derivatives might be different for different branches of these functions.

Combining branch cuts

7.4 Every polynomial of degree d with complex coeffcients can be written as a product

$$P(z) = a_d \prod_{j=1}^{d} (z - z_j)$$

where the $z_i \in \mathbb{C}$ are its d roots, and $a_d \in \mathbb{C}$ is the coefficient of its highest degree term—this statement is equivalent to the Fundamental Theorem of Algebra.

Fix $R > \max_{j=1,\dots,d} |z_j|$, and let $C_R = \{z \in \mathbb{C} \mid |z| = R\}$. In each of the following cases, either choose a determination of the function $f(z) = P(z)^{1/n}$ so that it is holomorphic at every point of C_R or explain why it is impossible.

- (i) n=2, d=1: $z_1=0$.
- (ii) n = 2, d = 2: $z_1 = i$, $z_2 = -i$.
- (iii) n = 2, d = 6: $z_j = \omega^j$ with $\omega = e^{\pi i/3}$.
- (iv) n = 3, d = 3: $z_1 = -1$, $z_2 = 0$, $z_3 = 1$.
- (v) n = 3, d = 3: $z_1 = -1$, $z_2 = i$, $z_3 = 1$.
- (vi) n = 2, d = 2: $z_1 = z_2 = 1$.

Riemann surfaces

7.5 For your choice of branch cuts in (ii) in the previous problem, explain how to glue the two sheets into a Riemann surface for the corresponding function.

Arcs and contours

7.6 Find a parametrization of the ellipse given by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

that traverses it in the counter-clockwise direction.

- **7.7** Why is $z(t) = (1+i)t^3$ for $-1 \le t \le 1$ not a smooth arc? Give another parametrization of the same line segment in the complex plane that is indeed a smooth arc.
- **7.8** Why is $z(t) = t^2 + t^3i$ for $-1 \le t \le 1$ not a smooth arc? Can you give a parametrization of the same curve in the complex plane that is a smooth arc?