Artin Algebra

Zixun Xiong

February 2023

Contents

1	Inti	oduction	2					
	1.1	Theorem	2					
	1.2	Corollary	2					
	1.3	Proposition	2					
	1.4	Theorem	2					
	1.5	Box	2					
	1.6	Definition	2					
2	matrix 3							
	2.1	matrix multiplication	3					
	2.2		4					
3	Gro	ups	4					
	3.1	Groups and subgroups	4					
			4					
			4					
		3.1.3 symmetric group	5					
		3.1.4 Subgroup	5					

1 Introduction

1.1	Theorem
T	heorem
h	is is
1.2	Corollary
C	orollary
1.3	Proposition
Pı	roposition
1.4	Theorem
Le	emma
1.5	Box
1.6	Definition
D	efinition

2 matrix

2.1 matrix multiplication

Definition

M(T):matrix of a linear map; notation: $M(T,(v_1,\cdots,v_n),(w_1,\cdots,w_m))$

$$Tv_k = A_{1,k}w_1 + \cdots + A_{m,k}w_m$$

$$A_{m,n} = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{pmatrix}$$

for $A = M(T, (u_1, \dots, u_p), (v_1, \dots, v_n)), C = M(S, (v_1, \dots, v_n), (w_1, \dots, w_m))$, thus A is a n by p matrix, and C is a m by n matrix. We can derive the form of Matrix multiplication via mapping as followed:

$$(CA)u_k = C(Au_k) \tag{1}$$

$$= C(A_{1,k}v_1 + \dots + A_{n,k}v_n) \tag{2}$$

$$= A_{1,k}Cv_1 + \dots + A_{n,k}Cv_n \tag{3}$$

$$=\sum_{i=1}^{n} A_{i,k} C v_i \tag{4}$$

$$= \sum_{i=1}^{n} A_{i,k} \sum_{j=1}^{m} C_{j,i} w_j$$
 (5)

$$= \sum_{i=1}^{m} \sum_{i=1}^{n} A_{i,k} C_{j,i} w_j \tag{6}$$

then we get $(CA)_{j,k} = \sum_{i=1}^{n} C_{j,i} A_{i,k}$

2.2 upper triangle matrix

3 Groups

3.1 Groups and subgroups

3.1.1 group

Group

A group is a set together with a law of composition that has the following properties:

- $\forall a, b, c \in G, (ab)c = a(bc)$
- $\exists 1 \in G, \forall a \in G, \text{ s.t. } a1 = 1a = a$
- $\forall a \in G, \exists b \in G, \text{ s.t.}, ab = ba = 1$

order of group it's the number of elements it contains.

$$|G| = number of elements$$

Here are some intuition for associative law:

$$T \xrightarrow{f} T \xrightarrow{g} T \xrightarrow{h} T \longleftrightarrow g \xrightarrow{g \circ f} T \xrightarrow{h} T \longleftrightarrow g \xrightarrow{g \circ f} T \xrightarrow{h \circ g} T \xrightarrow{h$$

Law of Cancellation

a, b,
$$c \in G$$
, if $ab = ac$ or $ba = ca$, then $b = c$ if $ab = b$ or $ba = b$, then $a = 1$

It needs to be mentioned that a must be invertible.

3.1.2 permutation

permutation

A permutation of a set S is a bijective map p from a set S to itself:

$$p:S\to S$$

for example, p is a permutation over set $\{1, 2, 3, 4\}$:

i	1	2	3	4	5
p(i)	3	5	4	1	2

Since p(3) = 4, P(4) = 1, p(1) = 3, we have $(3 \ 4 \ 1)$. Similarly, we have $(2 \ 5)$. Thus we can write P as $(2 \ 5)$, $(3 \ 4 \ 1)$.

The product of 2 perturbations can be written as: $qp = [(1 \ 4 \ 5 \ 2)] \circ [(2 \ 5)(3 \ 4 \ 1)] = (3 \ 5 \ 1)$. (hint: $qp(3) = q(3) \circ p(3)$, for p 3 \rightarrow 4, for q 4 \rightarrow 5, thus for pq, 3 \rightarrow 5)

3.1.3 symmetric group

symmetric group

The group of permutations of the set of indices $\{1,2,\cdots n\}$, denoted by S_n

Attention, a symmetric group is a group of mapping, working on a set of mapping.

In S_2 , one of elements(2!) must be 1, then we call it $\{1, g\}$, then we have a table gg, 1g g1 g1 g1 only gg is not defined. Assume gg = g, then according to law of cancellation, we have g = 1, it's forbidden, thus we only have gg = 1.

In S_3 , let $x = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 2 \end{pmatrix}$, then we have:

$$x^3 = 1$$
 $y^2 = 1$ $yx = x^2y$ $xy = yx^2$ (7)

thus we can eliminate some perturbations and get all of them in a distinctive way:

$$S_3 = \{1, x, x, x^2, y, xy, x^2y\}$$
(8)

This is an important example, since $xy \neq yx$, it's the smallest group whose law of composition is not commutative.

3.1.4 Subgroup

subgroup

A subset H of group G is a subgroup if it has the following properties:

• Closure: If a and b are in H, then ab are in H

• Identity: 1 is in H

• Inverse: if a is in H then a^-1 is in H