Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 0 792 264 B1**

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 27.02.2002 Bulletin 2002/09
- (21) Application number: 95939677.1
- (22) Date of filing: 15.11.1995

- (51) Int Cl.⁷: **C07D 205/08**, C07D 409/12, C07D 401/12, A61K 31/395, A61K 31/44
- (86) International application number: **PCT/US95/14134**
- (87) International publication number: WO 96/16037 (30.05.1996 Gazette 1996/25)

(54) SULFUR-SUBSTITUTED AZETIDINONE COMPOUNDS USEFUL AS HYPOCHOLESTEROLEMIC AGENTS

SULFUR-SUBSTITUIERTE AZETDINONE ALS HYPOCHOLESTEROLMISCHMITTEL COMPOSES D'AZETIDINONE SUBSTITUEE PAR LE SOUFRE, UTILISES COMME AGENTS HYPOCHOLESTEROLEMIQUES

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SF

Designated Extension States: **LT LV**

- (30) Priority: 18.11.1994 US 342197 05.06.1995 US 463619
- (43) Date of publication of application: 03.09.1997 Bulletin 1997/36
- (73) Proprietor: SCHERING CORPORATION Kenilworth New Jersey 07033 (US)
- (72) Inventors:
 - McKITTRICK, Brian, A.
 Bloomfield, NJ 07003 (US)
 - DUGAR, Sundeep Bridgewater, NJ 08807 (US)
 - BURNETT, Duane, A. Fanwood, NJ 07023 (US)

(74) Representative:

von Kreisler, Alek, Dipl.-Chem. et al Patentanwälte, von Kreisler-Selting-Werner, Bahnhofsvorplatz 1 (Deichmannhaus) 50667 Köln (DE)

(56) References cited:

EP-A- 0 337 549 EP-A- 0 524 595 WO-A-94/14433 WO-A-95/08532 WO-A-95/26334

 ORG. MAGN. RESON. (ORMRBD,00304921);79; VOL.12 (1); PP.34-8, STEVENS INST. TECHNOL.;DEP. CHEM. CHEM. ENG.; HOBOKEN; NJ; USA, BOSE A K ET AL 'NMR spectral studies. XIV. Carbon-13 nuclear magnetic resonance studies on.beta.-lactams'

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 0 792 264 B

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

25

30

35

40

45

50

55

BACKGROUND OF THE INVENTION

[0001] The present invention relates to sulfur-substituted azetidinones useful as hypocholesterolemic agents in the treatment and prevention of atherosclerosis, and to the combination of a sufur-substituted azetidinone of this Invention and a cholesterol biosynthesis inhibitor for the treatment and prevention of atherosclerosis.

[0002] Atherosclerotic coronary heart disease (CHD) represents the major cause for death and cardiovascular morbidity in the western world. Risk factors for atherosclerotic coronary heart disease include hypertension, diabetes mellitus, family history, male gender, cigarette smoke and serum cholesterol. A total cholesterol level in excess of 225-250 mg/dl is associated with significant elevation of risk of CHD.

[0003] Cholesteryl esters are a major component of atherosclerotic lesions and the major storage form of cholesterol in arterial wall cells. Formation of cholesteryl esters is also a key step in the intestinal absorption of dietary cholesterol. Thus, inhibition of cholesteryl ester formation and reduction of serum cholesterol is likely to inhibit the progression of atherosclerotic lesion formation, decrease the accumulation of cholesteryl esters in the arterial wall, and block the intestinal absorption of dietary cholesterol.

[0004] A few azetidinones have been reported as being useful in lowering cholesterol and/or in inhibiting the formation of cholesterol-containing lesions In mammalian arterial walls. U.S. 4,983,597 discloses N-sulfonyl-2-azetidinones as anticholesterolemic agents and Ram, et al., in <u>Indian J. Chem., Sect. B, 29B</u>, 12 (1990), p. 1134-7, disclose ethyl 4-(2-oxoazetidin-4-yl)phenoxy-alkanoates as hypolipidemic agents. European Patent Publication 264,231 discloses 1-substituted-4-phenyl-3-(2-oxo-alkylidene)-2-azetidinones as blood platelet aggregation inhibitors.

[0005] European Patent 199,630 and European Patent Application 337,549 disclose elastase inhibitory substituted azetidinones said to be useful in treating inflammatory conditions resulting In tissue destruction which are associated with various disease states, e.g. atherosclerosis.

[0006] WO93/02048, published February 4, 1993, discloses substituted β -lactams useful as hypocholesterolemic agents. WO94/14433, published July 7, 1994, discloses the combination of substituted β -lactams as defined in WO93/02048 with cholesterol biosynthesis inhibitors.

[0007] The regulation of whole-body cholesterol homeostasis in humans and animals Involves the regulation of dietary cholesterol and modulation of cholesterol biosynthesis, bile acid biosynthesis and the catabolism of the cholesterol-containing plasma Ilpoproteins. The liver is the major organ responsible for cholesterol biosynthesis and catabolism and for this reason, It is a prime determinant of plasma cholesterol levels. The liver Is the site of synthesis and secretion of very low density lipoproteins (VLDL) which are subsequently metabolized to low density lipoproteins (LDL) in the circulation. LDL are the predominant cholesterol-carrying lipoproteins in the plasma and an increase in their concentration is correlated with increased atherosclerosis.

[0008] When intestinal cholesterol absorption is reduced, by whatever means, less cholesterol is delivered to the liver. The consequence of this action is decreased hepatic lipoprotein (VLDL) production and an increase in the hepatic clearance of plasma cholesterol, mostly as LDL. Thus, the net effect of inhibiting intestinal cholesterol absorption is a decrease in plasma cholesterol levels.

[0009] The inhibition of cholesterol biosynthesis by 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (EC1.1.1.34) Inhibitors has been shown to be an effective way to reduce plasma cholesterol (Witzum, *Circulation, 80*, 5 (1989), p. 1101-1114) and reduce atherosclerosis. Combination therapy of an HMG CoA reductase inhibitor and a bile acid sequestrant has been demonstrated to be more effective in human hyperlipidemic patients than either agent In monotherapy (Illingworth, *Drugs, 36* (Suppl. 3) (1988), p. 63-71).

SUMMARY OF THE INVENTION

[0010] Hypocholesterolemic compounds of the present invention are represented by the formula I

$$Ar^{1} \times_{m} \bigcap_{R^{1}}^{R} Y_{n}^{S(O)_{r}} \bigwedge_{Ar^{2}}^{Ar^{2}}$$

or a pharmaceutically acceptable salt thereof, wherein:

Ar¹ is aryl, R¹⁰-substituted aryl or heteroaryl selected from pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl,

imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

Ar² is anyl or R⁴-substituted anyl; Ar³ is anyl or R⁵-substituted anyl;

5 X and Y are independently selected from the group consisting of -CH₂-, CH(C₁₋₆ alkyl)-and -C(di-C₁₋₆ alkyl)-;

R is $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$ or $-O(CO)NR^6R^7$;

R¹ is hydrogen, C₁₋₆ alkyl or aryl; or

R and R¹ together are =O; q is 0 or 1; r is 0, 1 or 2;

10

15

25

30

35

40

45

50

55

 R^9

m and n are independently 0, 1, 2, 3, or 4; provided that the sum of m, n and q is 2, 3 or 4;

R⁴ is 1-5 substituents independently selected from the group consisting of C₁₋₆ alkyl, -OR⁶, -O(CO)R⁶, -O(CO)NR⁶R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)OR⁹, -NR⁶(CO)NR⁷R⁸, -NR⁶SO₂R⁹, -COOR⁶, -CONR⁶R⁷, -COR⁶, -SO₂NR⁶R⁷, S(O)₀₋₂R⁹, -O(CH₂)₁₋₁₀-COOR⁶, -O(CO)NR⁶R⁷, -O(CH₂)₁₋₁₀-COOR⁶, -O(CO)NR⁶R⁷, -O(CH₂)₁₋₁₀-COOR⁶, -O(CO)NR⁶R⁷, -O(CO)NR⁶

(CH₂)₁₋₁₀CONR⁶R⁷, -(C₁₋₆ alkylene)COOR⁶ and -CH=CH-COOR⁶;

R5 is 1-5 substituents independently selected from the group consisting of -OR6, -O(CO)R6, -O(CO) OR9, -O(CH₂)₁₋₅OR6, -O(CO)NR6R7, -NR6R7, -NR6(CO)R7, -NR6(CO)OR9, -NR6(CO)NR7R8, -NR6SO₂R9, -COOR6, -CONR6R7, -COR6, -SO₂NR6R7, S(O)₀₋₂R9, -O(CH₂)₁₋₁₀-COOR6, -O

 $(CH_2)_{1-10}CONR^6R^7$, $-CF_3$, -CN, $-NO_2$, halogen, $-(C_{1-6}$ alkylene) $COOR^6$ and $-CH=CH-COOR^6$;

20 R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyl, aryl and aryl-substituted

is C₁₋₆ alkyl, aryl or aryl-substituted C₁₋₆ alkyl, and

 R^{10} is 1-5 substituents independently selected from the group consisting of C_{1-6} alkyl, $-OR^6$, $-O(CO)R^6$,

 $-O(CO)OR^9, -O(CH_2)_{1-5}OR^6, -O(CO)NR^6R^7, -NR^6R^7, -NR^6(CO)R^7, -NR^6(CO)OR^9, -NR^6(CO)NR^7R^8, -NR^6SO_2R^9, -COOR^6, -CONR^6R^7, -COR^6, -SO_2NR^6R^7, S(O)_{0-2}R^9, -O(CH_2)_{1-10}-COOR^6, -O(CH_2)_{1-10}-COOR$

(CH₂)₁₋₁₀CONR⁶R⁷, -CF₃, -CN, -NO₂ and halogen.

[0011] Within the scope of formula I, there are two preferred structures. In formula IA, q is zero and the remaining variables are as defined above, and in formula IB, q is 1 and the remaining variables are as defined above:

Ar1 Xm Yn S(O), Ar2 Ar1 Xm R1 Yn S(O), Ar3

[0012] R^4 , R^5 and R^{10} are each preferably 1-3 independently selected substituents. Preferred are compounds of formula I wherein Ar^1 is phenyl, R^{10} -substituted phenyl or thienyl, especially (4- R^{10})-substituted phenyl or thienyl. Ar^2 is preferably R^4 -substituted phenyl, especially (4- R^4)-substituted phenyl. Ar^3 is preferably phenyl or R^5 -substituted phenyl, especially (4- R^5)-substituted phenyl. When Ar^1 is R^{10} -substituted phenyl, R^{10} is preferably halogeno, especially fluoro. When Ar^2 is R^4 -substituted phenyl, R^4 is preferably- R^6 , especially wherein R^6 is hydrogen or R^6 is preferably halogeno, especially fluoro. Especially preferred are compounds of formula I wherein R^6 is phenyl, 4-fluorophenyl or thienyl, R^6 is 4-(alkoxy or hydroxy)phenyl, and R^6 is phenyl or 4-fluorophenyl.

[0013] X and Y are each preferably -CH₂-. The sum of m, n and q is preferably 2, 3 or 4, more preferably 2. When q is 1, n is preferably 1 to 5.

[0014] Preferences for X, Y, Ar¹, Ar² and Ar³ are the same in each of formulae IA and IB.

[0015] In compounds of formula IA, the sum of m and n is preferably 2, 3 or 4, more preferably 2. Also preferred are compounds wherein the sum of m and n is 2, and r is 0 or 1.

[0016] In compounds of formula IB, the sum of m and n is preferably 1, 2 or 3, more preferably 1. Especially preferred are compounds wherein m is zero and n is 1. R^1 is preferably hydrogen and R is preferably -OR⁶ wherein R^6 is hydrogen, or a group readily metabolizable to a hydroxyl (such as -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷, defined above), or R and R^1 together form a =O group.

[0017] The present invention also relates to the use of a sulfur-substituted azetidinone cholesterol absorption inhibitor of formula I for combined use with a cholesterol biosynthesis inhibitor (and, similarly, use of a cholesterol biosynthesis inhibitor for combined use with a sulfur-substituted azetidinone cholesterol absorption inhibitor of formula I for the

preparation of a medicament to treat or prevent atherosclerosis or to reduce plasma cholesterol levels.

[0018] In yet another aspect, the invention relates to a pharmaceutical composition comprising an effective amount of a sulfur-substituted azelldinone cholesterol absorption inhibitor of formula I, a cholesterol biosynthesis inhibitor, and a pharmaceutically acceptable carrier. In a final aspect, the invention relates to a kit comprising in one container an effective amount of a sulfur-substituted azetidinone cholesterol absorption inhibitor of formula I in a pharmaceutically acceptable carrier, and In a separate container, an effective amount of a cholesterol biosynthesis inhibitor In a pharmaceutically acceptable carrier.

DETAILED DESCRIPTION:

5

10

20

25

30

35

40

45

[0019] As used herein, the term "lower alkyl" means straight or branched alkyl chains of 1 to 6 carbon atoms.

[0020] "Aryl" means phenyl, naphthyl, indenyl, tetrahydronaphthyl or indanyl.

[0021] "Heteroaryl" means pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrrimidinyl or pyridazinyl. All positional isomers wherein the heteroaryl ring Is attached through a carbon atom are contemplated, e.g., 2-pyridyl, 3-pyridyl and 4-pyridyl, and 2-thienyl and 3-thienyl. "Halogeno" means fluorine, chlorine, bromine or iodine atoms.

[0022] The above statement, wherein R^6 , R^7 and R^8 are said to be independently selected from a group of substituents, means that R^6 , R^7 and R^8 are independently selected, but also that where an R^6 , R^7 or R^8 variable occurs more than once in a molecule, those occurrences are independently selected (e.g., if R is -OR⁶ wherein R^6 is hydrogen, R^4 can be -OR⁶ wherein R^6 is lower alkyl).

[0023] Compounds of the invention have at least one asymmetric atom and therefore all isomers, including enantiomers and diastereomers are contemplated as being part of this invention. The invention includes d and I isomers in both pure form and in admixture, including racemic mixtures. Isomers can be prepared using conventional techniques, either by reacting chiral starting materials or by separating isomers of a compound of formula I. Isomers may also include geometric isomers, e.g. when a double bond is present. All such geometric isomers are contemplated for this invention.

[0024] Those skilled in the art will appreciate that for some compounds of formula I, one isomer will show greater pharmacological activity than another isomer.

[0025] Compounds of the invention with an amino group can form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those in the art. The salt is prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt. The free base form may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium bicarbonate. The free base form differs from its respective salt form somewhat in certain physical properties, such as solubility in polar solvents, but the salt is otherwise equivalent to its respective free base form for purposes of the invention.

[0026] Certain compounds of the invention are acidic (e.g., those compounds which possess a carboxyl group). These compounds form pharmaceutically acceptable salts with inorganic and organic bases. Examples of such salts are the sodium, potassium, calcium, aluminum, gold and silver salts. Also included are salts formed with pharmaceutically acceptable amines such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine and the like.

[0027] Cholesterol biosynthesis inhibitors for use in the combination of the present invention include HMG CoA reductase inhibitors such as lovastatin, pravastatin, fluvastatin, simvastatin, and Cl-981; HMG CoA synthetase inhibitors, for example L-659,699 ((E,E)-11-[3'R-(hydroxymethyl)-4'-oxo-2'R-oxetanyl]-3,5,7R-trimethyl-2,4-undecadienoic acid); squalene synthesis inhibitors, for example squalestatin 1; and squalene epoxidase inhibitors, for example, NB-598 ((E) -N-ethyl-N-(6,6-dimethyl-2-hepten-4-ynyl)-3-[(3,3'-bithiophen-5-yl)methoxy]benzene-methanamine hydrochloride) and other cholesterol biosynthesis inhibitors such as DMP-565. Preferred HMG CoA reductase inhibitors are lovastatin, pravastatin and simvastatin.

[0028] Compounds of formula I can be prepared by known methods, for example those described below.

50

Method A:

[0029]

5

15

20

25

30

35

40

45

50

55

 $Ar^{1}-X_{m}-(C)_{q}-Y_{n}-S CO_{2}H \xrightarrow{1) \text{ dehydrating agent }} Ar^{1}-X_{m}-(C)_{q}-Y_{n}-S \xrightarrow{Ar^{2}} N \xrightarrow{Ar^{2}} Q X_{m}$ $= Q X_{m}-(C)_{q}-Y_{n}-S CO_{2}H \xrightarrow{1) \text{ dehydrating agent }} Ar^{1}-X_{m}-(C)_{q}-Y_{n}-S \xrightarrow{Ar^{2}} N \xrightarrow{Ar^{2}} Q X_{m}-S \xrightarrow{Ar^{2}} Q X$

[0030] Compounds of formula I wherein r is zero, R¹¹ is a protected hydroxy group, wherein the protecting groups are as defined below in Table 1, and the remaining variables are as defined above, i.e., compounds of formula Ia, can be prepared according to the above reaction scheme, wherein a carboxylic acid of formula II is reacted with an imine of formula III in the presence of a base such as triethylamine and a suitable dehydrating agent such as dimethylphosphoramidous dichloride. The resultant compound is treated with an acid such as hydrofluoric acid to obtain the thio compound of formula Ia. When the protected hydroxy group R¹¹ is an alkoxy or benzyloxy group, such a protecting group need not be removed to obtain a compound of formula I, but other protecting groups can be removed using conventional techniques to obtain compounds of formula I wherein R is hydroxy.

[0031] Compounds wherein R is hydroxy can be converted by well known techniques to other compounds of formula I wherein R is functionalized, i.e., it is -OR^{6a}, -O(CO)R⁶, -O(CO)OR⁹, or -O(CO)NR⁶R⁷, wherein R⁶, R⁷ and R⁹ are as defined above and R^{6a} is lower alkyl, aryl, or aryl-lower alkyl. For example, treatment of the alcohol with an alkyl halide in the presence of a suitable base such as NaH will afford alkoxy-substituted compounds (i.e., R or R² is OR⁶, wherein R⁶ is lower alkyl); treatment of the alcohol with an acylating agent such as acetylchloride will result in compounds wherein R or R² is -OC(O)R⁶; treatment of the alcohol with phosgene followed by an alcohol of the formula HOR⁹ affords compounds substituted with a -OC(O)OR⁹ group; and treatment of the alcohol with phosgene followed by an amine of the formula HNR⁶R⁷ affords compounds wherein R or R² is -OC(O)NR⁶R⁷.

[0032] Compounds of formula la wherein q is 1, and R and R¹ form an =0 group can be converted to the corresponding compounds wherein R¹ is hydrogen and R is OH by treatment with a reducing agent such as sodium borohydride.

[0033] To prepare the corresponding sulfinyl compounds, i.e., compounds of formula I wherein r is 1, and the remaining variables are as defined above (compounds of formula Ib), treat the hydroxy-protected thio compound of formula Ia with 1 equivalent of an oxidant such as a peracid, e.g., m-chloroperbenzoic acid, or sodium metaperiodate:

$$la \xrightarrow{\text{oxidation (1 eq.)}} Ar^1 - X_m - (C)_q - Y_n - S \xrightarrow{R^1} R^2$$

$$R^1 \longrightarrow R^1$$

$$R^1 \longrightarrow R^2$$

$$R^3 \longrightarrow R^3$$

[0034] To prepare the corresponding sulfonyl compounds, i.e., compounds of formula I wherein r is 2, and the remaining variables are as defined above (compounds of formula Ic), treat the hydroxy-protected thio compound of formula Ia with 2 equivalents of an oxidant as described: above :

la
$$\frac{\text{oxidation (2 eq.)}}{\text{Ar}^{1}-X_{m}-(C)_{q}-Y_{n}-S} \xrightarrow{\text{Ar}^{2}} \text{ic}$$

Compounds of fomulae lb and lc can be deprotected at R11 as necessary to obtain compounds of formula I.

Method B:

5 **[0035]**

15

20

25

30

35

50

55

[0036] Compounds of formula Ia, wherein the variables are as defined above, can be prepared by reacting a protected mercaptoacetic acid of formula IV, wherein Q is a sulfur-protecting group such as benzyl or substituted-benzyl, with an imine as described in Method A. The protecting group Q is then removed, and the mercapto group is alkylated with a compound of the formula

$$Ar^{1} \times X_{m}^{(C)_{q}} \cdot Y_{n} - L$$

wherein L is a leaving group such as bromo or iodo.

[0037] Using the methods described in Method A, compounds of formula la prepared by Method B can be converted to sulfinyl and sulfonyl compounds, compounds wherein R and R^1 are =0 can be converted to compounds wherein R is H and R^1 is OH, and compounds wherein R is hydroxy can be converted to functionalized hydroxy groups.

45 Method C:

[0038] Compounds of formula I wherein r is zero and the remaining variables are as defined above can be prepared in an enantioselective manner as follows:

$$Ar^{1}-X_{m}-(C)_{q}-Y_{n}-SH+OP$$

$$VI$$

$$VI$$

$$Ar^{1}-X_{m}-(C)_{q}-Y_{n}-SH+OP$$

$$Ph$$

$$VIII$$

$$VIII$$

$$VIII$$

$$Ph$$

$$VIII$$

IX
$$\frac{i) \text{ BSA}}{ii) \text{ TBAF}} \stackrel{\text{Ar}^1 - X_m - (C)_q - Y_n - S_n}{\text{R}^1} + \frac{\text{Ar}^2 - X_m - (C)_q - Y_n - S_n}{\text{R}^1} + \frac{\text{Ar}^2 - X_m - (C)_q - Y_n - S_n}{\text{R}^1} = \frac{\text{Ar}^2}{\text{R}^2}$$

The chloroacylated oxizolidinone auxiliary of formula VII is reacted with the mercaptan of formula VI, wherein the variables are as defined above, in the presence of a base such as triethylamine in an inert solvent such as $\mathrm{CH_2Cl_2}$. The resultant compound of formula VIII is treated with $\mathrm{TiCl_4}$ in the presence of a base such as diisopropylethylamine (Hunig's base), reacted with an imine of formula III, and then the reaction is quenched with an acid such as acetic acid. The resulting compound of formula IX is then cyclized by reaction with a silylating agent such as bis(trimethylsilyl) acetamide (BSA) and a fluoride catalyst such as tetra butyl ammonium fluoride (TBAF). The cyclization product is separated into cis and trans isomers of formulae Id and Ie using conventional purification techniques, e.g., flash chromatography.

Compounds of formulae Id and Ie can be converted to the corresponding sulfinyl and sulfonyl compounds by reaction with a peracid as described above or with a reagent such as (R) or (S) (10-camphor-sulfonyl)-oxaziridine. For example, a compound of formula Id can be converted to the corresponding sulfinyl compounds, If and Ig, as follows:

Id
$$\frac{\text{mCPBA or}}{\text{(R) or (S)}} \text{Ar}^1 - \text{X}_m - \text{(C)}_q - \text{Y}_n - \text{S}_{A_n} - \text{Ar}^2 + \text{Ar}^1 - \text{X}_m - \text{(C)}_q - \text{Y}_n - \text{S}_{A_n} - \text{Ar}^2 + \text{Ar}^3 - \text{Ar}^3 - \text{Ar}^3 + \text{Ar}^3 - \text{Ar}^3$$

[0039] Before or after separation into cis and trans isomers, as suitable, compounds of formulae Id and Ie can be deprotected at R¹¹, and compounds wherein R is OH can be functionalized as described in Method A.
[0040] Starting compounds II, III, IV, VI and VII are all either commercially available, well known in the art, or are prepared via known methods.

[0041] Reactive groups not involved in the above processes can be protected during the reactions with conventional protecting groups which can be removed by standard procedures after the reaction. The following Table 1 shows some typical protecting groups:

5		Table 1
	Group to be Protected	Group to be Protected and
•	Tiolected	Protecting Group
10	- COOH	-COOalkyl, -COObenzyl,-COOphenyl
	NH	NCOalkyl, NCObenzyl, NCOphenyl
15		NCH ₂ OCH ₂ CH ₂ Si(CH ₃) ₃ NC(O)OC(CH ₃) ₃ ,
20	į	N-benzyl, NSi(CH ₃) ₃ , NSi-C(CH) ₃
25	-NH ₂	CH ₃
	-он	-OCH ₃ ,OCH ₂ OCH ₃ ,OSi-C(CH) ₃
30		CH₃ −OSi(CH₃)₃, or −OCH₂phenyl

[0042] We have found that the compounds of this invention lower serum lipid levels, in particular serum cholesterol levels. Compounds of this invention have been found to inhibit the intestinal absorption of cholesterol and to significantly reduce the formation of liver cholesteryl esters in animal models. Thus, compounds of this invention are hypocholesterolemic agents by virtue of their ability to inhibit the intestinal absorption and/or esterification of cholesterol; they are, therefore, useful in the treatment and prevention of atherosclerosis in mammals, in particular in humans.

[0043] The in vivo activity of the compounds of formula I can be determined by the following procedure:

In Vivo Assay of Hypolipidemic Agents Using the Hyperlipidemic Hamster

35

40

45

50

55

[0044] Hamsters are separated into groups of six and given a controlled cholesterol diet (Purina Chow #5001 containing 0.5% cholesterol) for seven days. Diet consumption is monitored to determine dietary cholesterol exposure in the face of test compounds. The animals are dosed with the test compound once daily beginning with the initiation of diet. Dosing is by oral gavage of 0.2mL of corn oil alone (control group) or solution (or suspension) of test compound in corn oil. All animals moribund or in poor physical condition are euthanized. After seven days, the animals are anesthetized by intramuscular (IM) injection of ketamine and sacrificed by decapitation. Blood is collected into vacutainer tubes containing EDTA for plasma lipid analysis and the liver excised for tissue lipid analysis. Lipid analysis is conducted as per published procedures (Schnitzer-Polokoff, R., et al, *Comp. Biochem. Physiol.*, *99A*, 4 (1991), p. 665-670) and data is reported as percent reduction of lipid versus control.

[0045] The present invention also relates to a pharmaceutical composition comprising a compound of formula I and a pharmaceutically acceptable carrier. The compounds of formula I can be administered in any conventional dosage form, preferably an oral dosage form such as a capsule, tablet, powder, cachet, suspension or solution. The formulations and pharmaceutical compositions can be prepared using conventional pharmaceutically acceptable excipients and additives and conventional techniques. Such pharmaceutically acceptable excipients and additives include non-toxic compatible fillers, binders, disintegrants, buffers, preservatives, anti-oxidants, lubricants, flavorings, thickeners, color-

ing agents, emulsifiers and the like.

[0046] The daily hypocholesteremic dose of a compound of formula I is about 0.1 to about 30 mg/kg of body weight per day, preferably about 0.1 to about 15 mg/kg. For an average body weight of 70 kg, the dosage level is therefore from about 5 mg to about 1000 mg of drug per day, given in a single dose or 2-4 divided doses. The exact dose, however, is determined by the attending clinician and is dependent on the potency of the compound administered, the age, weight, condition and response of the patient.

[0047] For the combinations of this invention wherein the sulfur-substituted azetidinone is administered in combination with a cholesterol biosynthesis inhibitor, the typical daily dose of the cholesterol biosynthesis inhibitor is 0.1 to 80 mg/kg of mammalian weight per day administered in single or divided dosages, usually once or twice a day: for example, for HMG CoA reductase inhibitors, about 10 to about 40 mg per dose is given 1 to 2 times a day, giving a total daily dose of about 10 to 80 mg per day, and for the other cholesterol biosynthesis inhibitors, about 1 to 1000 mg per dose is given 1 to 2 times a day, giving a total daily dose of about 1 mg to about 2000 mg per day. The exact dose of any component of the combination to be administered is determined by the attending clinician and is dependent on the potency of the compound administered, the age, weight, condition and response of the patient.

[0048] Where the components of a combination are administered separately, the number of doses of each component given per day may not necessarily be the same, e.g. where one component may have a greater duration of activity, and will therefore need to be administered less frequently.

[0049] Since the present invention relates to the reduction of plasma cholesterol levels by treatment with a combination of active ingredients wherein said active ingredients may be administered separately, the invention also relates to combining separate pharmaceutical compositions in kit form. That is, a kit is contemplated

wherein two separate units are combined: a cholesterol biosynthesis inhibitor pharmaceutical composition and a sulfursubstituted azetidinone cholesterol absorption inhibitor pharmaceutical composition. The kit will preferably include directions for the administration of the separate components. The kit form is particularly advantageous when the separate components must be administered in different dosage forms (e.g. oral and parenteral) or are administered at different dosage intervals.

[0050] Following are examples of preparing compounds of formula I. The terms cis and trans refer to the relative orientations at the azetidinone 3- and 4-positions unless otherwise indicated. The term "J" refers to the proton NMR coupling constant in hertz (Hz) between the 3-and 4-substituted protons of the azetidinone. CD spectra were obtained as solutions in methanol.

Example 1

[0051]

[00

5

10

15

20

25

30

35

40

45

50

55

Step 1: Heat a mixture of 4-fluoroaniline (128 ml) and 4-t-butyldimethylsiloxy benzaldehyde (290 g) in toluene (1.2L) to reflux under a Dean-Stark trap. After 24 h, concentrate in vacuo and dissolve the residue in warm hexane (0.2L). Cool to -20°C and collect the resultant imine (378 g, 94% yield) by filtration; mp 51.4-52.2°C.

Step 2: To a mixture of phenethylmercapto acetic acid (0.55 g) [prepared in two steps by i) reaction of phenethylmercaptan and ethyl bromoacetate and ii) saponification with ethanolic aqueous NaOH], the imine prepared in step 1 and triethylamine (TEA) (1.2 ml) in CH₂Cl₂ (20 ml), add dimethylaminophosphoryldichloride at 0°C. Stir overnight while allowing the reaction to warm to room temperature (rt). Partition the mixture between ethyl acetate (EtOAc) and 10 % NaHCO₃. Wash (H₂O), dry (MgSO₄) and concentrate the organic layer, then purify the residue by flash chromatography on silica using hexane/EtOAc (20:1) to obtain a yellow oil (0.48 g, 34%). Resolve this oil by HPLC with a Chiralcel OD column using hexane/isopropyl alcohol (66:1) and collect the second peak.

Step 3: Treat the product of step 2 (215 mg) in CH_3CN (21 ml) at 0°C with 48% HF (2.5 ml). Stir overnight while allowing the reaction to warm to rt. Partition the mixture between ether (Et_2O) and cold water and wash the organic

layers with 10 % NaHCO₃ and water. Dry (MgSO₄) and concentrate the organic layer and purify the residue by flash chromatography on silica using hexane/EtOAc (5:1) to collect the title compound (1) as a colorless solid (0.16 g, 96%). SIMS 394 (M+H), 256 (100%); Elemental analysis calculated for $C_{23}H_{20}NO_2SF \cdot 0.25H_2O$: C 69.41, H 5.19, N 3.52; found C 69.42, H 5.26, N 3.45; $[\alpha]_D^{25} = +44.8^\circ$ (1.25 mg/ml CH₃OH); 1H NMR CDCL₃: 2.95 (m, 4H), 3.93 (d, J=2.4Hz, 1H), 4.67 (d, J=2.4Hz, 1H), 5.06 (s, 1H), 6.85 (d, 1H), 6.92 (dd, 2H), 7.15-7.3 (9H).

Method B:

[0052]

5

10

20

25

30

35

40

45

50

Ph S.,

1

Ph S N OH

<u>1a</u>

Step 1: Add dropwise a solution of chloroacetyl chloride (9.76 ml) in CH₂Cl₂ (110 ml) to a 0°C solution of (S)-4-phenyl oxazolidinone (10.0 g), TEA (35 ml) and dimethylaminopyridine (DMAP) (0.5 g) in CH₂Cl₂ (150 ml). Gradually warm the reaction to rt, then add silica gel (approx. 50 g) and concentrate in vacuo. Purify the residue by flash chromatography on silica using EtOAc/hexane (1:4) to give a colorless solid (11.3 g, 77%).

Step 2: Add phenethyl mercaptan to a solution of the product of step 1 (6.0 g) and TEA (5.1 ml) in CH₂Cl₂ (0.1 L). Stir at rt for 16 h, then add silica gel (approx 50 gm) and concentrate in vacuo. Purify the residue by flash chromatography on silica using EtOAc/hexane (1:4) to give a colorless solid (7.81 g, 92 %) which can be crystallized from EtOAc/ hexane (1:4).

Step 3: Add titanium tetraisoproxide (7.5 ml) to a stirring solution of $TiCl_4$ (75 ml of 1N $TiCl_4$ in CH_2Cl_2) in CH_2Cl_2 (200 ml) at 0°C. After 15 min., add the product of step 2 (34.1 g), and 5 min. later add the imine from Method A, step 1 (66 g). Cool the reaction to -40°C, wait 20 min. and add diisopropyl ethylamine (35 ml). After 15 h at -40°C, cool the reaction to -70°C and add isopropyl alcohol (250 ml). Gradually warm to rt over 6 h, then add 0.1N HCl (500 ml) and partition the reaction mixture with El_2O . Wash (H_2O) and dry ($MgSO_4$) the organic layer, concentrate, and purify the residue by crystallization from CH_3OH to give a colorless solid (30.9 g, 46%).

Step 4: Heat a solution of the product of step 3 (10 g) in toluene (0.5 l) to 90°C and add *N,O*-bis(trimethylsilyl) acetamide (BSA) (7.4 ml). After 1 h, cool the reaction to 45°C and add tetrabutylammonium fluoride (TBAF) (0.47 g). Periodically over the next 18 hr add additional BSA (a total of 3 molar equivalents) and continue stirring at 45°C. After a total time of 24 h, dilute the reaction with CH₃OH (150 ml) and stir at rt for 1 h. Concentrate the mixture in vacuo and purify by flash chromatography on silica using hexane/EtOAc (10:1) to elute the trans isomer. Continue to elute with hexane/EtOAc 5:1 to give the cis isomer.

<u>Step 5</u>: Separately treat solutions of the trans and cis isomers from step 4 in CH₃CN with aqueous HF according to the procedure of Method A, step 3, to give the trans and cis azetidinones 1 and 1a, respectively.

1a: CIMS 394(M+H) 100%; Elemental analysis calculated for $C_{23}H_{20}NO_2SF$: C 70.21, H 5.13, N 3.56, S 8.15; found C 70.33, H 5.43, N 3.71, S 8.20. 1H NMR CDCl₃: 2.78 (m, 4H), 4.52 (d, J=5Hz, 1H), 5.23 (d, J=5Hz, 1H), 6.82-7.3 (13H). **[0053]** Using the procedure described in Example 1, method B, steps 3 and 4, use 4-methoxybenzylidene anisidine to prepare the following compounds:

<u>1b</u>: Elemental analysis calculated for $C_{24}H_{23}NO_2S$: C 74.01, H 5.95, N 3.6, S 8.22; found C 74.19, H 6.0, N 3.73, S 8.03; [θ] 232nM = +3.4x10⁴, [θ] 248 nM = -3.07 x10⁴; 1H NMR CDCl₃: 2.95 (m, 4H), 3.82 (s, 3H), 3.95 (d, J=2.2Hz, 1H), 4.72 (d, J=2.2Hz, 1H), 6.9-7.3 (14H); SIMS 390(M+H), 252 (100%).

1c: 1H NMR CDCl₃: 2.78 (m, 4H), 3.8 (s, 3H), 4.53 (d, J=5.5Hz, 1H), 5.27 (d, J=5.5Hz, 1H), 6.9-7.3 (14H).

Example 2

[0054]

[0055] Heat a solution of compound $\underline{1}$ from Example 1 (2.3 g) and (1s)-(+)-(10-camphorsulfonyl)oxaziridine (1.48 g) in tetrahydrofuran (THF) (40 ml) to reflux. After 14 h, concentrate the reaction mixture and purify the residue by flash chromatography on silica using CH₂Cl₂/isopropyl alcohol (100:1) to elute first diastereomer 2a (0.6g, 25%): Elemental analysis calculated for C₂₃H₂₀NO₃SF: C 67.47, H 4.92, N 3.42; found C 67.12, H 5.02, N 3.43; [θ] 219nM = -5.49 x10⁴, [θ] 254 nM = +5.2 x10⁴; [α]_D²⁵= +214.4° (1.25 mg/ml Ch₃OH); 1H NMR CDCl₃: 3.15 (m, 3H), 3.92 (m, 2H), 5.25 (d, J=2.5Hz, 1H), 6.0 (bs, 1H), 6.8-6.9 (4H), 7.15-7.35 (8H); CIMS 410(M+H). Next, elute diastereomer 2b, then crystallize diastereomer 2b from isopropyl alcohol (IPA) to give a colorless solid (1.48 g, 62%). Elemental analysis calculated for C₂₃H₂₀NO₃SF: C 67.47, H 4.92, N 3.42; found C 67.28, H 4.89, N 3.45; [θ] 233nM = +5.56 x10⁴, [θ] 251 nM = -2.79 x10⁴; [α]_D²⁵= -16° (1.25 mg/ml CH₃OH); 1H NMR CDCl₃: 3.1-3.4 (m, 4H), 4.2 (d, J=2Hz, 1H), 5.39 (d, J=2.Hz, 1H), 6.7 (d, 2H), 6.95 (m, 2H), 7.15-7.35 (8H); CIMS 410(M+H).

[0056] Use the procedure from Example 2 with compound 1a from Example 1 to obtain the following compounds:

 $\underline{\text{2c:}}$ Elemental analysis calculated for $C_{23}H_{20}NO_3SF$: C 67.47, H 4.92, N 3.42, S 7.83.; found C 67.21. H 5.0. N 3.5. S $\overline{\text{7.48}}$.

2d: Elemental analysis calculated for C₂₃H₂₀NO₃SF: C 67.47, H 4.92, N 3.42, S 7.83; found C 67.5, H 5.11, N 3.6, S 7.71.

Example 3

[0057]

5

10

15

20

25

30

35

40

45

Ph S. Ph 3a

<u>3b</u>

[0058] Treat compound $\underline{1b}$ from Example 1 (0.36 g) in CH_2CI_2 (15 ml) at 0°C with m-chloroperbenzoic acid (mCPBA) (0.16 g) at -78°C. After 2 h, add dilute $NaHSO_3$ and warm the mixture to rt. Partition with EtOAc and sequentially wash the organic layer with 10% $NaHCO_3$ and brine, then dry (MgSO₄) and concentrate in vacuo. Purify the residue by HPLC on silica using EtOAc/hexane (1:2) to elute compounds 3a (0.185 g) and 3b (0.10 g).

 $\underline{3a}$: Elemental analysis calculated for $C_{24}H_{23}NO_3S$: C 71.09, H 5.72, N 3.45: found C 70.87, H 5.55, N 3.52; [θ] 220 $\overline{nM} = -5.36 \times 10^4$, [θ] 257 $\overline{nM} = +5.46 \times 10^4$; 1H NMR CDCl₃: 3.15 (m, 3H), 3.8 (s, 3H) 3.9 (m, 1H), 3.94 (d, J=2.5Hz, 1H), 5.33 (d, J=2.5Hz, 1H), 6.9-7.35 (14H).

[0059] Use the procedure of example 3 with compound 1c obtain the following products:

55

3c: Elemental analysis calculated for $C_{24}H_{23}NO_3S \cdot 0.2 H_2O$: C 70.46, H 5.77, N 3.42; found C 70.49, H 5.78, N 3.52; 10 H NMR CDCl₃: 2.85 (m, 1H), 2.95 (m, 1H), 3.12 (m, 1H), 3.62 (m, 1H), 3.8 (s, 3H), 4.4 (d, J=5.6Hz, 1H), 5.35 (d, J=5.6Hz, 1H), 6.9-7.35 (14H).

Example 4

5

15

20

25

30

35

40

45

50

55

[0060]

Ph OAc F 4

[0061] Treat compound 2b (60 mg) in CH₂Cl₂ (5 ml) with TEA (0.025 ml) and acetic anhydride (0.017 ml). After 2 h, concentrate the reaction mixture and purify the residue by flash chromatography on silica using EtOAc/hexane (1:1). to give a white solid. Elemental analysis calculated for C₂₅H₂₂NO₄SF: C 66.5, H 4.91, N 3.1, S 7.1; found C 66.28, H 5.10, N 3.29, S 6.99.

[0062] Use the above procedure for preparing compound 4 with compounds 2c and 2d to obtain the following products 4a and 4b, respectively:

 $\frac{4a}{7.02}; \text{Elemental analysis calculated for C}_{25}\text{H}_{22}\text{NO}_4\text{SF}; \text{C }66.5, \text{H }4.91, \text{N }3.1, \text{S }7.1; \text{found C }66.36, \text{H }5.13, \text{N }3.23, \text{S }7.02; \text{1H NMR CDCI}_{3}; 2.32 (s, 3H), 2.92 (m, 2H), 3.14 (m, 1H), 3.7 (m, 1H), 4.42 (d, J=5.7Hz, 1H), 5.38 (d. J=5.8Hz.)$

1H), 7.0 (m. 2H), 7.12-7.35 (9H), 7.44 (d, 2H).

Ph S N F 4b

<u>4b</u>: 1H NMR CDCl₃: 2.32 (s, 3H), 3.15 (m, 3H), 3.38 (m, 1H), 4.72 (d, J=5.3Hz, 1H), 5.58 (d, J=5.2Hz, 1H), 7.0 (m, 2H), 7.15-7.35 (9H), 7.40 (d, 2H).

Example 5

[0063]

F 5

30

5

10

15

20

25

<u>Step1</u>: Add TEA (14 ml) to a mixture of 4-methoxybenzylchloride (13 ml) and ethyl-2-mercaptoacetate (10 ml) in CH_2CI_2 (0.2L) under N_2 . After 48 h, dilute the reaction with EI_2O (0.5 L) and sequentially wash the organic phase with 0.3N HCl (3x) and 10 % $NaHCO_3$. Dry and concentrate the organic layer to give an oil (22 g). Dissolve a portion of the oil (5 g) in THF (75 ml) and water (75 ml) and add LiOH (1 g). After stirring for 72 h, dilute the reaction with water (0.15 L) and extract with hexane (0.2 L). Acidify the aqueous phase with 1N HCl and extract with EtOAc. Wash (H_2O), and dry ($MgSO_4$) the organic layer and concentrate to give a yellow solid (4.25 g, 96%).

35

Step2: Treat a mixture of the product of step 1 (1 g) and the imine from Example 1, Method A, step 1 (1.55 g) in $\overline{\text{CH}_2\text{Cl}_2}$ (40 ml) with dimethylamino phosphoryldichloride (0.56 ml) at 0°C. Warm to rt and stir for 16 h. Dilute the reaction with Et_2O (100 ml) and wash sequentially with 1N HCl, 10% NaHCO₃ and brine. Dry (MgSO₄) and concentrate the organic phase and purify the resultant residue by flash chromatography on silica using hexane:EtOAc (20:1) to yield an oil (0.75g, 30%).

40

45

Step 3: Add mercuric acetate (121 mg) to a solution of the product of step 2 (0.2 g) in trifluoroacetic acid (5 ml) at 0° C. After 15 min., partition the reaction mixture between H₂O and Et₂O. Wash, dry and concentrate the organic layer and purify the residue by flash chromatography on silica using hexane:EtOAc (10:1) to give an oil (0.15g). Step 4: Add 2-bromo-4'-fluoroacetophenone (86 mg) to a mixture of the product of step 3 (0.15 g) and TEA (0.06 ml) in CH₂Cl₂ (5 ml) at rt under N₂. After 5 h, dilute the reaction with Et₂O and wash sequentially with 1N HCl, 10% NaHCO₃ and brine. Dry and concentrate the organic layer and purify the residue by flash chromatography on silica using hexane:EtOAc (9:1) to give an oil. Resolve this by HPLC using a Chiralcel AS column with hexane:IPA (85: 15) to elute enantiomer 5(1) ([θ] 228nM = -3.77x10³, [θ] 244nM =+3.34 x10³) and then enantiomer 5(2) ([θ] 228nM = +3.65x10³, [θ] 244nM = -3.24 x10³).

50

Step 5: Treat enantiomer 5(2) with HF according to the procedure of Example 1, Method A, step 3, to obtain compound 5. Elemental analysis calculated for $C_{23}H_{17}NO_3SF_2$: C 64.93, H 4.03, N 3.29, S 7.52; found C 64.87, H 4.39, N 3.31, S 7.25.

[0064]

5

10

6a (diastereomer a)
6b (diastereomer b)

15

20

25

Step 1: Add NaBH₄ (28 mg) to a solution of enantiomer 5(2) from step 4 of Example 5 (0.4 g) in CH₃OH (20 ml). After 2 h, partition the reaction mixture between Et_2O and H_2O . Dry and concentrate the organic layers and purify the residue by flash chromatography using EtOAc;hexane (1:6) to give diastereomers 6(1) and 6(2).

Step 2: Individually treat diastereomers 6(1) and 6(2) from step 1 with HF according to the procedure of Example 1, Method A, step 3, to obtain 6a and 6b.

<u>6a</u>: 1H NMR in CDCl₃: 2.85 (dd, J=6, 12Hz, 1H), 3.04 (dd, J=3, 12 Hz, 1H), 4.06 (d, J=2.4Hz, 1H), 4.7 (d, J=2.4Hz, 1H), 4.9 (d, J=3, 9Hz, 1H), 6.85-7.35 (12H).

<u>6b</u>: 1H NMR in CDCl₃: 3.01 (m, 2H), 3.97 (d, J=2.2Hz, 1H), 4.7 (d, J= 2.2Hz, 1H), 4.92 (d, J=4, 8Hz, 1H), 6.85-7.36 (12 H).

Example 7

[0065]

30

35

40

45

7a: diastereomer a7b: diastereomer b

7c: diastereomer c

F 7d: diastereomer d

Step 1: Treat diastereomer 6(1) from Example 6, step 1, with mCPBA as described in Example 3. Purify the products by HPLC on silica gel, eluting with EtOAc:hexane (1:2) to obtain diastereomers 7(1) and 7(2).

Step 2: Individually treat diastereomers 7(1) and 7(2) from step 1 with HF as described in Example 1, Method A, step 3, to obtain 7a and 7b. 1H NMR CDCl₃ with 10% CD_3OD :

<u>7a</u>: 3.35 (d, 1H), 3.75 (dd, 1H), 4.22 (s, 1H), 5.20 (m, 2H), 6.80 (d, 2H), 6.9 (m, 2H), 7.04 (m, 2H), 7.24 (m, 4H), 7.38 (m, 2H).

50 <u>7b</u>: 3.02 (dd, 1H), 3.26 (m, 1H), 4.21 (d, J=2.1Hz, 1H) 5.14 (dd, 1H), 5.41 (d, J=2.1Hz, 1H), 6.78 (d, 2H), 6.9 (m, 2H), 6.98 (m, 2H), 7.18 (m, 4H), 7.28 (m, 2H).

Melting points: 7a: 207-211°C; 7b: 110°C (dec.).

[0066] Using the procedures of steps 1 and 2, treat diastereomer 6(2) from Example 6, step 1, to obtain 7c and 7d. 1H NMR CDCl₃ with 10% CD₃OD:

7c: 3.12 (dd, 1H), 3.30 (m, 1H), 4.45 (d, J=2.2Hz, 1H) 5.04 (dd, 1H), 5.39 (d, J=2.2Hz, 1H), 6.78 (d, 2H), 6.88 (m, 2H), 6.94 (m, 2H), 7.20 (m, 6H).

<u>7d</u>: 3.10 (dd, 1H), 3.72 (m, 1H), 4.07 (d, J=2.5Hz, 1H), 5.09 (dd, J=2.3, 11.0Hz, 1H), 5.17 (d, J=2.5Hz, 1H), 6.78 (d, 2H), 6.85 (m, 2H), 6.98 (m, 2H), 7.18 (m, 4H), 7.30 (m, 2H).

Melting points: 7c: 98°C (dec.); 7d: 106.5°C (dec.).

Example 8

[0067]

5

10

15

20

30

35

40

45

50

55

[0068] Treat a solution of the racemic product from Example 1, Method A, step 2 (0.185 g) in CH_2CI_2 (20 ml) with mCPBA. After 3 h, add NaHSO₃ and NaHCO₃ and stir for 10 minutes, then extract with EtOAc. Purify the organic fraction by flash chromatography on silica using hexane:EtOAc (4:1) to give compound 8 as a white solid (0.15g, 76%). Elemental analysis calculated for $C_{24}H_{23}NO_4S$: C 68.39, H 5.5, N 3.32; found C 68.12, H 5.49, N 3.37. EIMS 421 (M+). 1H NMR: 3.2 (m, 2H), 3.55 (m, 2H), 3.80 (s, 3H), 4.23 (d, J=2.4Hz, 1H), 5.53 (d, J=2.4Hz, 1H), 6.9 (d, 2H), 7.1 (m, 1H), 7.28(11H).

Example 9

25 [0069]

9a: diastereomer a 9b: diastereomer b

Step 1: Treat the product from Example 5, step 4, enantiomer 5(2) according to the procedure of Example 3. Purify the product by flash chromatography using EtOAc:hexane (1:3) to yield diastereomer 9(1) and diastereomer 9(2). Step 2: Individually treat diastereomers 9(1) and 9(2) from step 1 with HF according to the procedure of Example 1, Method A, step 3, to obtain 9a and 9b.

[0070]

5

10

S.N.N.

15

20

Step 1: Use the procedure of Example 1, Method B, Steps 1 to 4, substituting p-methoxybenzyl mercaptan in Step 2 for phenethyl mercaptan.

Step 2: Treat the trans isomer of Step 1 with mercuric acetate to obtain the product of Example 5, Step 3, in optically pure form.

Step 3: React the product of Step 2 with 1'-bromo-2-acetylthiophene according to the procedure of Example 5, Steps 4 and 5, to obtain the title compound as a solid, m.p 148-150°C.

Example 11

25 **[0071]**

S O N

35

40

30

[0072] Carry out the procedure of Example 10, Step 3, using 1'-bromo-3-acetylthiophene to obtain the title compound as a solid, m.p. 176-178°C. Elemental analysis calculated for $C_{21}H_{16}NO_3S_2F$: C 61.01, H 3.90, N 3.39, S 15.48; found C 61.33, H 4.12, N 3.51, S 15.37.

Example 12

[0073]

45

50

[0074] Carry out the procedure of Example 10, Step 3, using 1'-bromo-3-acetylpyridine to obtain the title compound as a solid, m.p. 74-90°C. FAB MS 409 (M*H).

[0075]

5

10

20

25

S. OH

[0076] Carry out the procedure of Example 10, Step 3, using 1'-bromo-4-acetylpyridine to obtain the title compound, m.p. 65-69°C. Elemental analysis calculated for C₂₂H₁₇N₂O₃SF: C 64.69, H 4.20, N 6.86, S 7.85; found C 65.00, H 4.43, N 6.77, S 7.65.

Example 14

[0077]

S, OH

30

[0078] Carry out the procedure of Example 10, Step 3, using 1'-bromo-2-acetylpyridine to obtain the title compound, m.p. 59-64°C.

Example 15

[0079]

40

45

35

OH S NOF

55

50

[0080] Treat the compound of Example 11 with NaBH₄ in CH₃OH to obtain a mixture of diastereomers as a solid, m. p. 65-70°C. Elemental analysis calculated for $C_{21}H_{18}NO_3S_2F$: C 60.71, H 4.37, N 3.37, S 15.4; found C 60.67, H 4.48, N 3.40, S 15.87.

[0081]

5

10

OH S... OH

15

[0082] Treat the compound of Example 12 with NaBH₄ in CH₃OH at 0°C. After 30 min., pour into CH₂Cl₂-water, separate the CH₂Cl₂ layer and purify the product by flash chromatography on silica gel, eluting with CH₂Cl₂:CH₃OH (95:5) to obtain the title compound as a solid, m.p. 85-90°C.

20 Example 17

[0083]

25

30

35

[0084] Using the procedure of Example 16, treat the compound of Example 13 to obtain the title compound, m.p. 95-98°C. Elemental analysis calculated for $C_{22}H_{19}N_2O_3SF$: C 64.38, H 4.67, N 6.82, S 7.81; found C 64.09, H 4.95, N 6.67, S 8.06.

Example 18

40 [0085]

45

50

Step 1: Treat the cis isomer prepared in Example 10, Step 1, according to the procedure of Example 10, Step 2, to obtain a solid.

55

Step 2: React the product of Step 1 according to the procedure of Example 5, Steps 4 and 5, to obtain the title comound as a solid, m.p. 180-185°C. Elemental analysis calculated for $C_{23}H_{17}NO_2SF_2$: C 64.93, H 4.03, N 3.29, S 7.54; found C 65.13, H 4.16, N 3.43, S 7.70.

[0086]

5

10

F OH S OH

15 [0087] Treat the product of Example 18, Step 1, with NaBH₄ according to the procedure of Example 16, and treat the resultant product with HF according to the procedure of Example 1, Method A, Step 3, to obtain the title compound, m.p. 95-105°C.

[0088] The following formulations exemplify some of the dosage forms of this invention. In each the term "active compound" designates a compound of formula I.

EXAMPLE A

[0089]

25

30

20

Tablets			
No.	Ingredient	mg/tablet	mg/tablet
1	Active Compound	100	500
2	Lactose USP	122	113
3	Com Starch, Food Grade, as a 10% paste in Purified Water	30	40
4	Corn Starch, Food Grade	45	40
5	Magnesium Stearate	3	7
	Total	300	700

35

40

45

Method of Manufacture

[0090] Mix Item Nos. 1 and 2 in suitable mixer for 10-15 minutes. Granulate the mixture with Item No. 3. Mill the damp granules through a coarse screen (e.g., 1/4", 0.63 cm) if necessary. Dry the damp granules. Screen the dried granules if necessary and mix with Item No. 4 and mix for 10-15 minutes. Add Item No. 5 and mix for 1-3 minutes. Compress the mixture to appropriate size and weight on a suitable tablet machine.

EXAMPLE B

[0091]

50

Capsules			
No.	Ingredient	mg/tablet	mg/tablet
1	Active Compound	100	500
2	Lactose USP	106	123
3	Corn Starch, Food Grade	40	70
4	Magnesium Stearate NF	4	7
	Total	250	700

Method of Manufacture

5

10

15

20

25

30

35

40

[0092] Mix Item Nos. 1, 2 and 3 in a suitable blender for 10-15 minutes. Add Item No. 4 and mix for 1-3 minutes. Fill the mixture into suitable two-piece hard gelatin capsules on a suitable encapsulating machine.

[0093] Representative formulations comprising a cholesterol biosynthesis inhibitor are well known in the art. It is contemplated that where the two active ingredients are administered as a single composition, the dosage forms disclosed above for substituted azetidinone compounds may readily be modified using the knowledge of one skilled in the art.

[0094] Using the test procedures described above, the following in vivo data were obtained for representative compounds of formula I. Data is reported as percent change (i.e., percent reduction in cholesterol esters) versus control, therefore, negative numbers indicate a positive lipid-lowering effect.

	% Red		
Ex. #	Serum Cholest.	Cholest. Esters	Dose mg/kg
1	-27	-83	1
3b	-20	-82	1
4a	-22	-55	1
10	-57	-87	3

[0095] For racemic compounds of formula I or active diastereomers or enantiomers of compounds of formula I, compounds administered at dosages of 0.1-25 mg/kg show a range of -21 to -97% reduction in cholesterol esters, and a -57 to 0% reduction in serum cholesterol. Compounds preferably show a range of -21 to -97% reduction in cholesterol esters at a dosage range of 0.1 to 3 mg/kg, more preferably a range of -21 to -97% reduction in cholesterol esters at a dosage range of 0.1 to 1 mg/kg.

Claims

1. A compound represented by the formula

$$Ar^{1} \times_{m} \stackrel{R}{\underset{R^{1}}{|}} Y_{n}^{S(O)_{r}} \stackrel{Ar^{2}}{\underset{N}{|}} I$$

or a pharmaceutically acceptable salt thereof, wherein

45	Ar ¹	is aryl, R ¹⁰ -substituted aryl or heteroaryl selected from pyridyl, isoxazolyl, furanyl, pyrrolyl,		
	Ar ²	thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl; is arvl or R4-subsituted arvl:		
	= ==	,		
	Ar ³	is aryl or R ⁵ -substituted aryl;		
	X and Y	are independently selected from the group consisting of -CH ₂ -, CH(C ₁₋₆ alkyl)- and -C(di-C ₁₋₆		
		alkyl)-;		
	R	is -OR ⁶ , -O(CO)R ⁶ , -O(CO)OR ⁹ or -O(CO)NR ⁶ R ⁷ ;		
50	R ¹	is hydrogen, C ₁₋₆ alkyl or aryl; or		
	R and R ¹	together are =O;		
55	q	is 0 or 1;		
	r	is 0, 1 or 2;		
	m and n	are independently 0, 1, 2, 3, or 4; provided that the sum of m, n and q is 2, 3 or 4;		
	R ⁴	is 1-5 substituents independently selected from the group consisting of C ₁₋₆ alkyl, -OR ⁶ , -O(CO)		
		R^{6} , $-O(CO)OR^{9}$, $-O(CH_{2})_{1-5}OR^{6}$, $-O(CO)NR^{6}R^{7}$, $-NR^{6}R^{7}$, $-NR^{6}(CO)R^{7}$, $-NR^{6}(CO)OR^{9}$, $-NR^{6}$		
		$(CO)NR^7R^8$ $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $S(O)_{0.2}R^9$, $-O$		
		$(00)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$ $(01)^{(1)}$		

	$(CH_2)_{1-10}$ - $COOR^6$, $-O(CH_2)_{1-10}CONR^6R^7$, $-(C_{1-6}$ alkylene) $COOR^6$ and $-CH=CH-COOR^6$;
R⁵	is 1-5 substituents independently selected from the group consisting of -OR ⁶ , -O(CO)R ⁶ , -O(CO)
	OR9, -O(CH ₂) ₁₋₅ OR6, -O(CO)NR6R7, -NR6R7, -NR6(CO)R7, -NR6(CO)OR9, -NR6(CO)NR7R8,
	-NR6SO ₂ R9, -COOR6, -CONR6R7, -COR6, -SO ₂ NR6R7, S(O) ₀₋₂ R9, -O(CH ₂) ₁₋₁₀ -COOR6, -O
	(CH ₂) ₁₋₁₀ CONR ⁶ R ⁷ , -CF ₃ , -CN, -NO ₂ , halogen, -(C ₁₋₆ alkylene)COOR ⁶ and -CH=CH-COOR ⁶ ;
R^6 , R^7 and R^8	are independently selected from the group consisting of hydrogen, C ₁₋₆ alkyl, aryl and aryl-sub-
	stituted C ₁₋₆ alkyl;
R ⁹	is C ₁₋₆ alkyl, aryl or aryl-substituted C ₁₋₆ alkyl, and
R ¹⁰	is 1-5 substituents independently selected from the group consisting of C ₁₋₆ alkyl, -OR ⁶ , -O(CO)
	R6, -O(CO)OR9, -O(CH ₂) _{1.5} OR6, -O(CO)NR6R7, -NR6R7, -NR6(CO)R7, -NR6(CO)OR9, -NR6
	$(CO)NR^7R^8$ $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $S(O)_{0.2}R^9$, $-O$
	$(CH_2)_{1,10}$ - $COOR^6$, $-O(CH_2)_{1,10}CONR^6R^7$, $-CF_3$, $-CN$, $-NO_2$ and halogen.

- 2. A compound of claim 1 wherein Ar¹ is phenyl, R¹⁰-substituted phenyl or thienyl, Ar² is R⁴-substituted phenyl and Ar³ is phenyl or R⁵-substituted phenyl.
 - 3. A compound of claim 1 or 2 wherein q is 0, X and Y are each -CH2-and the sum of m and n is 2, 3 or 4.
- 4. A compound of claim 1 or 2 wherein q is 1, X and Y are each -CH₂-, the sum of m and n is 1, 2 or 3, R¹ Is hydrogen and R is -OR⁶, wherein R⁶ is hydrogen, or wherein R and R¹ together form a =O group.
 - 5. A compound of claim 1 selected from the group consisting of

5

```
trans-1-(4-fluorophenyl)-4-(4-hydroxyphenyl)-3-[(2-phenylethyl)-thio]-2-azetidinone;
25
              trans-4-(4-methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)thio]-2-azetidinone;
              cis-4-(4-methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)thio]-2-azetidinone;
              trans-1-(4-fluorophenyl)-4-(4-hydroxyphenyl)-3-[(2-phenylethyl)-sulfinyl]-2-azetidinone;
              cis-1-(4-fluorophenyl)-4-(4-hydroxyphenyl)-3-[(2-phenylethyl)-sulfinyl]-2-azetidinone:
              trans-4-(4-methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)sulfinyl]-2-azetidinone;
              cis-4-(4-methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)sulfinyl]-2-azetidinone;
30
              trans-4-[1-(4-fluorophenyl)-4-oxo-3-[(2-phenylethyl)sulfinyl]-2-azetidinyl]-phenyl acetate;
              cis-4-[1-(4-fluorophenyl)-4-oxo-3-[(2-phenylethyl)sulfinyl]-2-azetidinyl]-phenyl acetate;
               (+/-)-trans-4-(4-methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)-sulfonyl]-2-azetidinone;
              trans-1-(4-fluorophenyl)-3-[[2-(4-fluorophenyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
              trans-1-(4-fluorophenyl)-3-[[2-(4-fluorophenyl)-2-hydroxyethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
35
               (3R,4R) 1-(4-fluorophenyl)-3-[[2-(4-fluorophenyl)-2-oxoethyl]-sulfinyl]-4-(4-hydroxyphenyl)-2-azetidinone;
               1-(4-fluorophenyl)-3(R)-[[2-(4-fluorophenyl)-2(R)-hydroxyethyl]-sulfinyl]-4(R)-(4-hydroxyphenyl)-2-azetidi-
               1-(4-fluorophenyl)-3(R)-[[2-(4-fluorophenyl)-2(S)-hydroxyethyl]-sulfinyl]-4(R)-(4-hydroxyphenyl)-2-azetidi-
40
               (3R,4R) trans-1-(4-fluorophenyl)-3-[[2-(2-thienyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
               (3R,4R) trans-1-(4-fluorophenyl)-3-[[2-(3-thienyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
               (3R,4R) trans-1-(4-fluorophenyl)-3-[[2-(3-pyridinyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
               (3R,4R) trans-1-(4-fluorophenyl)-3-[[2-(4-pyridinyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
               (3R,4R) trans-1-(4-fluorophenyl)-3-[[2-(2-pyridinyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
45
               (3R,4R) trans-1-(4-fluorophenyl)-3-[[2-hydroxy-2-(3-thlenyl)ethyl]-thlo]-4-(4-hydroxyphenyl)-2-azetidinone;
               (3R,4R) trans-1-(4-fluorophenyl)-3-[[2-hydroxy-2-(4-pyridinyl)ethyl]-thio]-4-(4-hydroxyphenyl)-2-azetidinone;
               (3S,4R) cis-1-(4-fluorophenyl)-3-[[2-(4-fluorophenyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
               (3S,4R) cis-1-(4-fluorophenyl)-3-[[2-(4-fluorophenyl)-2-hydroxyethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinone;
50
```

- **6.** A pharmaceutical composition for the treatment or prevention of atherosclerosis, or for the reduction of plasma cholesterol levels, comprising a compound as defined in any of claims 1, 2, 3, 4 or 5, alone or in combination with a cholesterol biosynthesis inhibitor, and a pharmaceutically acceptable carrier.
- 7. A process for the preparation of a pharmaceutical composition as claimed in claim 6 which comprises admixing a compound of any of claims 1, 2, 3, 4 or 5, alone or in combination with a cholesterol biosynthesis inhibitor, with a pharmaceutically acceptable carrier.

- **8.** The use of a compound of any of claims 1, 2, 3, 4 or 5 for the preparation of a medicament for the treatment or prevention of atherosclerosis, or for the reduction of plasma cholesterol levels, comprising a compound of any of claims 1, 2, 3, 4 or 5, alone or in combination with a cholesterol biosynthesis inhibitor, and a pharmaceutically acceptable carrier.
- 9. A kit comprising in separate containers in a single package pharmaceutical compositions for use in combination to treat or prevent atherosclerosis or to reduce plasma cholesterol levels which comprises in one container an effective amount of a cholesterol biosynthesis Inhibitor in a pharmaceutically acceptable carrier, and in a second container, an effective amount of a compound of any of claims 1, 2, 3, 4 or 5 in a pharmaceutically acceptable carrier.
- 10. A process for preparing a compound of claim 1 comprising

A)

5

10

15

25

30

35

40

45

50

55

 $Ar^{1} \cdot X_{m'}(\overset{P}{C})_{q} \cdot Y_{n} - S \cap CO_{2}H + N \stackrel{Ar^{2}}{\longrightarrow} Ar^{1} \cdot X_{m'}(\overset{P}{C})_{q} \cdot Y_{n} \cdot S \stackrel{Ar^{2}}{\longrightarrow} Ar^{3}$

Reacting a carboxylic acid of formula II, wherein Ar¹, X, Y, m, n, q and R¹ are as defined in claim 1 and R¹¹ Is a protected hydroxy group, with an amine of formula III, wherein Ar² and Ar³ are as defined in claim 1, in the presence of a base and a dehydrating agent, followed by an acid, to obtain a compound of formula Ia, wherein the variables are as defined above, and, when R¹¹ is not alkoxy or benzyloxy, converting R¹¹ to hydroxy; or B)

$$Q-S \xrightarrow{Ar^2} Ar^1 \xrightarrow{R^{11}} Ar^1 \xrightarrow{(C)_{q-Y_n-L}} Ar^1 \xrightarrow{X_m \xrightarrow{R^{11}}} X_m \xrightarrow{(C)_{q-Y_n}} Ar^2$$

$$V \qquad X \qquad \qquad ka$$

Alkylating a mercapto-substituted azetidinone of formula V, wherein Ar² ans Ar³ are as defined In claim 1 and Q is a sulfur-protecting group, with a compound of formula X, wherein Ar¹, X, Y, m, n, q and R¹ are as defined in claim 1, R¹¹ Is a protected hydroxy group and L is a leaving group to obtain a compound of formula Ia as defined above in process A, and, when R¹¹ is not alkoxy or benzyloxy, converting R¹¹ to hydroxy; or C)

Cyclizing a chiral compound of formula IX, wherein Ar¹, Ar², Ar³, X, Y, m, n, q and R¹ are as defined in claim 1, R¹¹ is a protected hydroxy group and Ph is phenyl, with a silylating agent and a fluoride catalyst to obtain a mixture of cis and trans isomers Id and Ie, wherein the variables are as defined above for formula Ia in process A, and, when R¹¹ is not alkoxy or benzyloxy, converting R¹¹ to hydroxy, and optionally separating said isomers; or

- D) Oxidizing a compound of formula la. Id or le to the corresponding sulfinyl and sulfonyl compounds; or
- E) Converting an R¹¹ alkoxy or benzyloxy group in a compound of formula la, ld or le to the corresponding hydroxy group; or
- F) Converting a compound of formula I wherein R is hydroxy to a compound of formula I wherein R is -OR⁶, -O(CO)R⁶, -O(CO)OR⁶, or -O(CO)NR⁶R⁷, or wherein R and R¹ together are =O.

Patentansprüche

5

10

15

20

25

30

35

40

45

50

55

1. Verbindung, die durch die Formel

Ar1. Xm (C)q Yn S(O)r Ar2

dargestellt wird, oder ein pharmazeutisch annehmbares Salz derselben, worin

Ar¹ Aryl, R¹⁰-substituiertes Aryl oder Heteroaryl ist, das aus Pyridyl, Isoxazolyl, Furanyl, Pyrrolyl,

Thienyl, Imidazolyl, Pyrazolyl, Thiazolyl, Pyrazinyl, Pyrimidinyl oder Pyridazinyl ausgewählt ist;

Ar² Aryl oder R⁴-substituiertes Aryl ist; Ar³ Aryl oder R⁵-substituiertes Aryl ist;

X und Y unabhängig voneinander aus der Gruppe ausgewählt sind, bestehend aus -CH₂-, CH(C₁₋₈-Al-

kyl)- und -C(di-C₁₋₆-Alkyl)-;

R -OR6, -O(CO)R6, -O(CO)OR9 oder -O(CO)NR6R ist;

R¹ Wasserstoff, C₁₋₆-Alkyl oder Aryl ist, oder

R und R¹ zusammen =O sind;

q 0 oder 1 ist; r 0, 1 oder 2 ist;

m und n unabhängig voneinander 0, 1, 2, 3 oder 4 sind; mit der Maßgabe, dass die Summe aus m, n und

q 2, 3 oder 4 ist

R⁴ 1-5 Substituenten ist, die unabhängig voneinander aus der Gruppe ausgewählt sind, bestehend

aus C_{1-6} -Alkyl, $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$, $-NR^6R^7$, $-NR^6$ (CO) R^7 , $-NR^6(CO)OR^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $S(O)_{0-2}R^9$, $-OC(CH_2)_{1-10}$ -COOR 6 , $-O(CH_2)_{1-10}CONR^6R^7$, (C_{1-6} -Alkylen)COOR 6

und -CH=CH-COOR6;

R⁵ 1-5 Substituenten ist, die unabhängig voneinander aus der Gruppe ausgewählt sind, bestehend

aus -OR6, -O(CO)R6, -O(CO)OR9, -O(CH₂)₁₋₅OR6, -O(CO)NR6R7, -NR6R7, -NR6(CO)R7, -NR6 (CO)OR9, -NR6(CO)NR7R8, -NR6SO₂R9, -COOR6, -CONR6R7, -COR6, -SO₂NR6R7, S(O)₀₋₂R9, -O(CH₂)₁₋₁₀-COOR6, -O(CH₂)₁₋₁₀CONR6R7, -CF₃, -CN, -NO₂, Halogen, (C₁₋₆-Alkylen)COOR6

und -CH=CH-COOR6:

R⁶, R⁷ und R⁸ unabhängig voneinander aus der Gruppe ausgewählt sind, bestehend aus Wasserstoff, C₁₋₆-

Alkyl, Aryl und arylsubstituiertem C₁₋₆-Alkyl;

R⁹ C₁₋₆-Alkyl, Aryl oder arylsubstituiertes C₁₋₆-Alkyl ist; und

R¹⁰ 1-5 Substituenten ist, die unabhängig voneinander aus der Gruppe ausgewählt sind, bestehend

 $\text{aus C}_{1\text{-}6}\text{-}\text{Alkyl}, -\text{OR}^6, -\text{O(CO)R}^6, -\text{O(CO)OR}^9, -\text{O(CH}_2)_{1\text{-}5}\text{OR}^6, -\text{O(CO)NR}^6\text{R}^7, -\text{NR}^6\text{R}^7, -\text{NR}^6\text{CO)} \\ \text{R}^7, -\text{NR}^6\text{(CO)OR}^9, -\text{NR}^6\text{(CO)NR}^7\text{R}^8, -\text{NR}^6\text{SO}_2\text{R}^9, -\text{COOR}^6, -\text{CONR}^6\text{R}^7, -\text{COR}^6, -\text{SO}_2\text{NR}^6\text{R}^7, \text{SO}_2\text{NR}^6\text{R}^7, -\text{COR}^6, -\text{CONR}^6, -\text{CONR}^6$

 $(O)_{0-2}R^9$, $-O(CH_2)_{1-10}$ - $COOR^6$, $-O(CH_2)_{1-10}CONR^6R^7$, $-CF_3$, -CN, $-NO_2$ und Halogen.

- 2. Verbindung gemäß Anspruch 1, worin Ar¹ Phenyl, R¹⁰-substituiertes Phenyl oder Thienyl ist, Ar² R⁴-substituiertes Phenyl ist, und Ar³ Phenyl oder R⁵-substituiertes Phenyl ist.
- Verbindung gemäß den Ansprüchen 1 oder 2, worin q 0 ist, X und Y jeweils -CH₂- sind, und die Summe von m und n 2, 3 oder 4 ist.
- 4. Verbindung gemäß den Ansprüchen 1 oder 2, worin q 1 ist, X und Y jeweils -CH₂- sind, die Summe von m und n 1, 2 oder 3 ist, R¹ Wasserstoff ist und R -OR⁶ ist, worin R⁶ Wasserstoff ist, oder worin R und R¹ zusammen eine =O-Gruppe bilden.
- 5. Verbindung gemäß Anspruch 1, die aus der Gruppe ausgewählt ist, bestehend aus:

5

10

40

45

50

```
trans-1-(4-Fluorphenyl)-4-(4-hydroxyphenyl)-3-[(2-phenylethyl)-thio]-2-azetidinon;
              trans-4-(4-Methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)thio]-2-azetidinon;
15
              cis-4-(4-Methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)thio]-2-azetidinon;
              trans-1-(4-Fluorphenyl)-4-(4-hydroxyphenyl)-3-[(2-phenylethyl)-sulfinyl]-2-azetidinon;
              cis-1-(4-Fluorphenyl)-4-(4-hydroxyphenyl)-3-[(2-phenylethyl)-sulfinyl]-2-azetidinon;
              trans-4-(4-Methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)sulfinyl]-2-azetidinon;
              cis-4-(4-Methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)sulfinyl]-2--azetidinon:
20
              trans-4-[1-(4-Fluorphenyl)-4-oxo-3-[(2-phenylethyl)sulfinyl]-2-azetidinyl] phenylacetat;
              cis-4-[1-(4-Fluorphenyl)-4-oxo-3-[(2-phenylethyl)sulfinyl]-2-azetidinyl]phenylacetat;
               (+/-)-trans-4-(4-Methoxyphenyl)-1-phenyl-3-[(2-phenylethyl)-sulfonyl]-2-azetidinon;
              trans-1-(4-Fluorphenyl)-3-[[2-(4-fluorphenyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinon;
              trans-1-(4-Fluorphenyl)-3-[[2-(4-fluorphenyl)-2-hydroxyethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinon;
25
               (3R,4R)-1-(4-Fluorphenyl)-3-[[2-(4-fluorphenyl)-2-oxoethyl]-sulfinyl]-4-(4-hydroxyphenyl)-2-azetidinon;
               1-(4-Fluorphenyl)-3(R)-[[2-(4-fluorphenyl)-2(R)-hydroxyethyl]-sulfinyl]-4(R)-(4-hydroxyphenyl)-2-azetidinon;
               1-(4-Fluorphenyl)-3(R)-[[2-(4-fluorphenyl)-2(S)-hydroxyethyl]-sulfinyi]-4(R)-(4-hydroxyphenyl)-2-azetidinon;
               (3R,4R)-trans-1-(4-Fluorphenyl)-3-[[2-(2-thienyl)-2-oxoethyl]-thio]-4-(4-hydroxyphenyl)-2-azetidinon;
               (3R,4R)-trans-1-(4-Fluorphenyl)-3-[[2-(3-thienyl)-2-oxoethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinon;
30
               (3R,4R)-trans-1-(4-Fluorphenyl)-3-[[2-(3-pyridinyl)-2-oxoethyl]-thio]-4-(4-hydroxyphenyl)-2-azetidinon;
               (3R,4R)-trans-1-(4-Fluorphenyl)-3-[[2-(4-pyridinyl)-2-oxoethyl]-thio]-4-(4-hydroxyphenyl)-2-azetidinon;
               (3R,4R)-trans-1-(4-Fluorphenyl)-3-[[2-(2-pyridinyl)-2-oxoethyl]-thio]-4-(4-hydroxyphenyl)-2-azetidinon;
               (3R,4R)-trans-1-(4-Fluorphenyl)-3-[[2-hydroxy-2-(3-thienyl)ethyl]-thio]-4-(4-hydroxyphenyl)-2-azetidinon;
               (3R,4R)-trans-1-(4-Fluorphenyl)-3-[[2-hydroxy-2-(4-pyridinyl)-ethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinon;
35
               (3S,4R)-cis-1-(4-Fluorphenyl)-3-[[2-(4-fluorphenyl)-2-oxoethyl]-thio]-4-(4-hydroxyphenyl)-2-azetidinon;
               (3S,4R)-cis-1-(4-Fluorphenyl)-3-[[2-(4-fluorphenyl)-2-hydroxy-ethyl]thio]-4-(4-hydroxyphenyl)-2-azetidinon.
```

- 6. Pharmazeutische Zusammensetzung zur Behandlung oder Prävention von Atherosklerose oder zur Reduktion von Plasma-Cholesteringehalten, umfassend eine Verbindung gemäß irgendeinem der Ansprüche 1, 2, 3, 4 oder 5 allein oder in Kombination mit einem Inhibitor der Cholesterinbiosynthese, und einen pharmazeutisch annehmbaren Träger.
- 7. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung gemäß Anspruch 6, umfassend das Vermischen einer Verbindung gemäß irgendeinem der Ansprüche 1, 2, 3, 4 oder 5 allein oder in Kombination mit einem Inhibitor der Cholesterinbiosynthese, mit einem pharmazeutisch annehmbaren Träger.
- 8. Verwendung einer Verbindung gemäß irgendeinem der Ansprüche 1, 2, 3, 4 oder 5 zur Herstellung eines Arzneimittels zur Behandlung oder Prävention von Atherosklerose oder zur Reduktion von Plasma-Cholesteringehalten, umfassend eine Verbindung gemäß irgendeinem der Ansprüche 1, 2, 3, 4 oder 5 allein oder in Kombination mit einem Inhibitor der Cholesterinbiosynthese, und einen pharmazeutisch annehmbaren Träger.
- 9. Kit, umfassend in separaten Behältern in einer einzigen Packung pharmazeutische Zusammensetzungen, die in Kombination verwendet werden sollen, um Atherosklerose zu behandeln oder zu verhindern oder Plasma-Cholesteringehalte zu reduzieren, der in einem Behälter eine wirksame Menge eines Inhibitors der Cholesterinbiosynthese in einem pharmazeutisch annehmbaren Träger umfasst und in einem zweiten Behälter eine wirksame Menge einer Verbindung gemäß irgendeinem der Ansprüche 1, 2, 3, 4 oder 5 in einen pharmazeutisch annehmbaren Träger umfasst.

10. Verfahren zur Herstellung einer Verbindung gemäß Anspruch 1, umfassend

A)

$$Ar^{1} \cdot X_{m} \cdot (\overset{\overset{}{C}}{C})_{q} \cdot Y_{n} - S \cap CO_{2}H + \overset{\overset{}{N} \wedge Ar^{2}}{N} \xrightarrow{Ar^{3} \times m} \overset{\overset{\overset{}{R}^{11}}{(\overset{}{C})_{q}} \cdot Y_{n} \cdot S}{\overset{}{R}^{1}} \xrightarrow{\overset{}{N} \wedge Ar^{2}}$$

die Umsetzung einer Carbonsäure der Formel II, worin Ar¹, X, Y, m, n, q und R¹ wie im Anspruch 1 definiert sind, und R¹¹ eine geschützte Hydroxygruppe ist, mit einem Amin der Formel III, worin Ar² und Ar³ wie im Anspruch 1 definiert sind, in Gegenwart einer Base und eines Dehydratationsmittels, anschließend einer Säure, um eine Verbindung der Formel Ia zu erhalten, worin die Variablen wie oben definiert sind, und worin, wenn R¹¹ nicht Alkoxy oder Benzyloxy ist, R¹¹ in Hydroxy überführt wird; oder B)

$$Q = S \longrightarrow Ar^2 \longrightarrow Ar^1 \longrightarrow Ar^1 \longrightarrow Ar^1 \longrightarrow Ar^2 \longrightarrow Ar^2 \longrightarrow Ar^2 \longrightarrow Ar^2 \longrightarrow Ar^3 \longrightarrow Ar 3 \longrightarrow Ar^3 \longrightarrow$$

die Alkylierung eines Mercapto-substituierten Azetidinons der Formel V, worin Ar² und Ar³ wie im Anspruch 1 definiert sind, und Q eine Schwefelschutzgruppe ist, mit einer Verbindung der Formel X, worin Ar¹, X, Y, m, n, q und R¹ wie im Anspruch 1 definiert sind, R¹¹ eine geschützte Hydroxygruppe ist, und L eine Austrittsgruppe ist, um eine Verbindung der Formel la zu erhalten, die oben im Verfahren A definiert ist, und worin, wenn R¹¹ nicht Alkoxy oder Benzyloxy ist, R¹¹ in Hydroxy überführt wird; oder C)

die Cyclisierung einer chiralen Verbindung der Formel IX, worin Ar¹, Ar², Ar³, X, Y, m, n, q und R¹ wie im Anspruch 1 definiert sind, R¹¹ eine geschützte Hydroxygruppe ist, und Ph Phenyl ist, mit einem Silylierungsmittel und einem Fluorid-Katalysator, um eine Mischung von cis- und trans-Isomeren Id und le zu erhalten,

worin die Variablen wie oben für die Formel la im Verfahren A definiert sind, und worin, wenn R¹¹ nicht Alkoxy oder Benzyloxy ist, R11 in Hydroxy überführt wird; und gegebenenfalls das Trennen der Isomere; oder

D) die Oxidation einer Verbindung der Formeln la, Id oder le zu den entsprechenden Sulfinyl- und Sulfonylverbindungen; oder

E) die Überführung einer R¹¹-Alkoxy- oder Benzyloxygruppe in einer Verbindung der Formeln la, Id oder le in die entsprechende Hydroxygruppe, oder

F) die Überführung einer Verbindung der Formel I, worin R Hydroxy ist, in eine Verbindung der Formel I, worin R-OR6, -O(CO)R6, -O(CO)OR6 oder -O(CO)NR6R7 ist, oder worin R und R1 zusammen =O sind.

Revendications

5

10

15

20

25

35

40

45

50

55

1. Composé représenté par la formule

ou un sel pharmaceutiquement acceptable, où

Ar1 est aryle, aryle R¹⁰ substitué ou hétéroaryle sélectionné parmi pyridyle, isoxazolyle, furanyle, pyr-

rolyle, thiényle, imidazolyle, pyrazolyle, thiazolyle, pyrazinyle, pyrimidinyle ou pyridazinyle;

 Ar^2 est aryle ou aryle R4 substitué;

Ar³ est aryle ou aryle R5 substitué;

sont indépendamment sélectionnés dans le groupe consistant en -CH₂-, CH(alkyle C₁₋₆)- et -C(di-X et Y 30

alkyle C₁₋₆)-;

est -OR6, -O(CO)R6, -O(CO)OR2 ou -O(CO)NR6R7; R

 R^1 est hydrogène, alkyle C₁₋₆ ou aryle; ou

R et R1 ensemble sont =O;

est 0 ou 1; q est 0, 1 ou 2;

sont indépendamment 0, 1, 2, 3, ou 4; à condition que la somme de m, n et q soit 2, 3 ou 4; m et n

R4 est 1-5 substituants indépendamment sélectionnés dans le groupe consistant en alkyle C₁₋₆, -OR⁶, $-O(CO)R^6, -O(CO)OR^9, -O(CH_2)_{1-5}OR^6, -O(CO)NR^6R^7, -NR^6R^7, -NR^6(CO)R^7, -NR^6(CO)OR^9, -O(CO)R^6, -O(CO)OR^9, -O(C$ $-NR^{6}(CO)NR^{7}R^{8}, -NR^{6}SO_{2}R^{9}, -COOR^{6}, -CONR^{6}R^{7}, -COR^{6}, -SO_{2}NR^{6}R^{7}, S(O)_{0-2}R^{9}, -O(CH_{2})_{1-10}-COOR^{6}, -O(CH_{2})_{1-10}-CONR^{6}R^{7}, - (alkylène\ C_{1-6})\ COOR^{6}\ et\ -CH=CH-COOR^{6};$

 R^5 est 1-5 substituants indépendamment sélectionnés dans le groupe consistant en -OR6, -O(CO) $R^6, -O(CO)OR^9, -O(CH_2)_{1-5}OR^6, -O(CO)NR^6R^7, -NR^6R^7, -NR^6(CO)R^7, -NR^6(CO)OR^9, -NR$

 $\mathsf{NR}^7\mathsf{R}^6,\, -\mathsf{NR}^6\mathsf{SO}_2\mathsf{R}^9,\, -\mathsf{COOR}^6,\, -\mathsf{CONR}^6\mathsf{R}^7,\, -\mathsf{COR}^6,\, -\mathsf{SO}_2\mathsf{NR}^6\mathsf{R}^7,\, \mathsf{S(O)}_{0\text{-}2}\mathsf{R}^9,\, -\mathsf{O(CH}_2)_{1\text{-}10}-\mathsf{COOR}^6,\, -\mathsf{SO}_2^2\mathsf{NR}^6\mathsf{R}^7,\, -\mathsf{S(O)}_{0\text{-}2}\mathsf{R}^9,\, -\mathsf{O(CH}_2)_{1\text{-}10}-\mathsf{COOR}^6,\, -\mathsf{O(CH}_2)_{1\text{-}10}-\mathsf{COOR}^6,\, -\mathsf{O(CH}_2)_{1\text{-}10}-\mathsf{COOR}^6,\, -\mathsf{O(CH}_2)_{1\text{-}10}-\mathsf{O$ $-\mathsf{O}(\mathsf{CH}_2)_{1\text{--}10}-\mathsf{CONR}^6\mathsf{R}^7,\ -\mathsf{CF}_3,\ -\mathsf{CN},\ -\mathsf{NO}_2,\ \mathsf{halogène},\ (\mathsf{alkylène}\ \mathsf{C}_{1\text{--}6})\mathsf{COOR}^6\ \mathsf{et}\ -\mathsf{CH}=\mathsf{CH}-\mathsf{COOR}^6;$

R6, R7 et R8 sont indépendamment sélectionnés dans le groupe consistant en hydrogène, alkyle C₁₋₆, aryle et

alkyle C₁₋₆ aryle substitué;

 R^9 est alkyle C₁₋₆, aryle et alkyle C₁₋₆ aryle substitué; et

 R^{10} est 1-5 substituants indépendamment sélectionnés dans le groupe consistant en alkyle C_{1-6:} -OR⁶:

> $-O(CO)R^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$, $-NR^6R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)OR^9$, $-O(CO)R^8$ $-NR^{6}(CO)NR^{7}R^{8}$, $-NR^{6}SO_{2}R^{9}$, $-COOR^{6}$, $-CONR^{6}R^{7}$, $-COR^{6}$, $-SO_{2}NR^{6}R^{7}$, $S(O)_{0-2}R^{9}$, $-O(COR^{6}R^{7})$

 $(CH_2)_{1-10}$ - $COOR^6$, $-O(CH_2)_{1-10}$ $CONR^6R^7$, $-CF_3$, -CN, $-NO_2$ et halogène.

Composé de la revendication 1 où Ar1 est phényle, phényle R10-substitué ou thiényle, Ar2 est phényle R4-substitué et Ar3 est phényle ou phényle R5-substitué.

3. Composé de la revendication 1 ou 2 où q est O, X et Y sont chacun -CH₂- et la somme de m et n est 2, 3 ou 4.

- 4. Composé de la revendication 1 ou 2 où q est 1, X et Y sont chacun -CH₂-, la somme de m et n est 1, 2 ou 3, R¹ est hydrogène et R est -OR⁶, où R⁶ est hydrogène ou bien où R et R¹ forment ensemble un groupe =O.
- 5. Composé de la revendication 1 sélectionné dans le groupe consistant en

```
trans-1-(4-fluorophényl)-4-(4-hydroxyphényl)-3-[(2-phényléthyl)thio]-2-azétidinone;
              trans-4-(4-méthoxyphényl)-1-phényl-3-[(2-phényléthyl)thio]-2-azétidinone;
              cis-4-(4-méthoxyphényl)-1-phényl-3-[(2-phényléthyl)-thio]-2-azétidinone;
              trans-1-(4-fluorophényl)-4-(4-hydroxyphényl)-3-[(2-phényléthyl)-sulfinyl]-2-azétidinone;
10
              cis-1(4-fluorophényl)-4-(4-hydroxyphényl)-3-[(2-phényléthyl)-sulfinyl]-2-azétidinone;
              trans-4-(4-méthoxyphényl)-1-phényl-3-[(2-phényléthyl)-sulfinyl]-2-azétidinone;
              cis-4-(4-méthoxyphényl)-1-phényl-3-[(2-phényléthyl)-sulfinyl]-2-azétidinone;
              trans-4-[1-(4-fluorophényl)-4-oxo-3-[(2-phényléthyl) sulfinyl]-2-azétidinyl]-phényl acétate;
              cis-4-[1-(4-fluorophényl)-4-oxo-3-[(2-phényléchyl) sulfinyl]-2-azétidinyl]-phényl acétate;
15
               (+/-)-trans-4-(4-méthoxyphényl)-1-phényl-3-[(2-phényléthyl)-sulfonyl]-2-azétidinone;
              trans-1-(4-fluorophényl)-3-[[2-(4-fluorophényl)-2-oxoéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
              trans-1-(4-fluorophényl)-3-[[2-(4-fluorophényl)-2-hydroxyéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
               (3R,4R)1-(4-fluorophényl)-3-[[2-(4-fluorophényl)-2-oxoéthyl]sulfinyl]-4-(4-hydroxyphényl)-2-azétidinone;
               1-(4-fluorophényl)-3(R)-[[2-(4-fluorophényl)-2(R)-hydroxyéthyl]-sulfinyl]-4(R)-(4-hydroxyphényl)-2-azétidino-
20
              1-(4-fluorophényl)-3(R)-[[2-(4-fluorophényl) -2(S)-hydroxyéthyl]-sulfinyl]-4(R)-(4-hydroxyphényl)-2-azétidino-
              ne:
               (3R,4R)trans-1-(4-fluorophényl)-3-[[2-(2-thiényl)-2-oxoéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
               (3R,4R)trans-1-(4-fluorophényl)-3-[[2-(2-thiényl)-2-oxoéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
25
               (3R,4R)trans-1-(4-fluorophényl) -3-[[2- (3-pyridinyl)-2-oxoéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
               (3R,4R)trans-1-(4-fluorophényl)-3-[[2-(3-pyridinyl)-2-oxoéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
               (3R,4R)trans-1-(4-fluorophényl)-3-[[2-(2-pyridinyl)-2-oxoéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
               (3R,4R)trans-1-(4-fluorophényl)-3-[[2-hydroxy-2- (3-thiényl)éthyl]-thio]-4-(4-hydroxyphényl)-2-azétidinone;
               (3R,4R)trans-1-(4-fluorophényl)-3-[[2-hydroxy-2-(4-pyridinyl)éthyl]thio]-4- (4-hydroxyphényl)-2-azétidinone;
               (3S,4R)cis-1-(4-fluorophényl)-3-[[2-(4-fluorophényl)-2-oxoéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
30
               (3S,4R)cis-1-(4-fluorophényl)-3-[[2-(4-fluorophényl)-2-hydroxéthyl]thio]-4-(4-hydroxyphényl)-2-azétidinone;
```

- 6. Composition pharmaceutique pour le traitement ou la prévention de l'athérosclérose, ou pour la réduction des niveaux de cholestérol dans le plasma, comprenant un composé tel que défini dans l'une des revendications 1,2,3,4 ou 5, seul ou en combinaison avec un inhibiteur de la biosynthèse du cholestérol et un support pharmaceutiquement acceptable.
- 7. Procédé pour la préparation d'une composition pharmaceutique selon la revendication 6, qui comprend le mélange d'un composé de l'une quelconque des revendications 1,2,3,4 ou 5, seul ou en combinaison avec un inhibiteur de la biosynthèse du cholestérol, avec un support pharmaceutiquement acceptable.
 - 8. Utilisation d'un composé de l'une des revendications 1,2,3,4 ou 5 pour la préparation d'un médicament pour le traitement ou la prévention de l'athérosclérose ou pour la réduction des niveaux de cholestérol dans le plasma, comprenant un composé de l'une des revendications 1,2,3,4 ou 5, seul ou en combinaison avec un inhibiteur de la biosynthèse du cholestérol et un support pharmaceutiquement acceptable.
 - 9. Kit comprenant, dans des conteneurs séparés dans un seul emballage des compositions pharmaceutiques à utiliser en combinaison pour traiter ou prévenir l'athérosclérose ou pour réduire les niveaux de cholestérol dans le plasma, qui comprend dans un conteneur une quantité efficace d'un inhibiteur de la biosynthèse du cholestérol dans un support pharmaceutiquement acceptable et dans un second conteneur une quantité efficace d'un composé de l'une des revendications 1,2,3,4 ou 5 dans un support pharmaceutiquement acceptable.
 - 10. Procédé de préparation d'un composé de la revendication 1 comprenant

55 A)

5

35

40

45

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap CO_{2}H + N \wedge Ar^{2} \longrightarrow Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

$$Ar^{1} \cdot X_{m} \cdot (C)_{q} \cdot Y_{n} \cdot S \cap Ar^{2}$$

La réaction d'un acide carboxylique de formule II, où Ar¹,x,Y,m,n,q et R¹ sont tels que définis à la revendication 1 et R¹¹ est un groupe hydroxy protégé, avec une amine de formule III, où Ar² et Ar³ sont tels que définis à la revendication 1, en présence d'une base et d'un agent déshydratant avec ensuite un acide pour obtenir un composé de formule Ia, où les variables sont telles que définies ci-dessus et quand R¹¹ n'est ni alcoxy ni benzyloxy, la conversion de R¹¹ en hydroxy; ou

$$Q-S \longrightarrow Ar^{2} \longrightarrow Ar^{1} \times_{m} (C)_{q-Y_{n}-L} \longrightarrow Ar^{1} \times_{m} (C)_{q-Y_{n}} \times_{m} (C)_{$$

L'alkylation d'une azétidinone de formule V mercapto substituée, où Ar^2 et Ar^3 sont tels que définis à la revendication 1 et Q est un groupe protecteur de soufre, avec un composé de formule X, où Ar^1 ,X,Y,m,n,q et R^1 sont tels que définis dans la revendication 1, R^{11} est un groupe hydroxy protégé et L est un groupe partant, pour obtenir un composé de la formule la telle que définie ci-dessus dans le procédé A, et quand R^{11} n'est ni alcoxy ni benzyloxy, la conversion de R^{11} en hydroxy; ou C)

La cyclisation d'un composé chiral de formule IX, où Ar^1 , Ar^2 , Ar^3 , X, Y, m, n, q et R^1 sont tels que définis à la revendication 1, R^{11} est un groupe hydroxy protégé et Ph est phényle, avec un agent silylant et un catalyseur de fluorure pour obtenir un mélange des isomères cis et trans ld et le, où les variables sont telles que définies ci-dessus pour la formule la dans le procédé A, et, quand R^{11} n'est ni alcoxy, ni benzyloxy, la conversion de R^{11} en hydroxy et facultativement la sépération desdits isomères; ou

- D) L'oxydation d'un composé de formule la, ld ou le en composés sulfinyle et sulfonyle correspondants; ou E) La conversion d'un groupe alcoxy ou benzyloxy de R¹¹ dans un composé de formule la, ld ou le en groupe hydroxy correspondant; ou
- F) La conversion d'un composé de formule I où R est hydroxy en un composé de formule I où R est -OR 6 , -O(CO)OR 6 , ou -O(CO)NR 6 R 7 , ou bien où R et R 1 ensemble sont =O.