- 1. Give regular expressions for the following languages.
 - i) The set of all strings with an equal number of 0's and l's, such that no prefix has two more 0's than l's, nor two more l's than 0's.
 - ii) $L = \{a^n b^m : n < 4, m \le 3\}.$
- 2. Prove $L = \{0^n | n \text{ is a perfect square}\}\$ is not regular.

3. If L is a language, and a is a symbol, then L/a, the quotient of L and a, is the set of strings w such that wa is in L. For example, if $L = \{a, aab, baa\}$, then $L/a = \{\varepsilon, ba\}$. Prove that if L is regular, so is L/a. Hint: Start with a DFA for L and consider the set of accepting states.

4. Here is a transition table for a DFA:

	0	1
$\rightarrow q_1$	q_2	q_1
q_2	q_3	q_1
$*q_3$	q_3	q_2

- a) Give all the regular expressions $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and $R_{ij}^{(2)}$. Try to simplify the expressions as much as possible. Note: Think of state q_i as if it were the state with integer number i.
- b) Give a regular expression for the language of the automaton.