TD 7 : Analyse réelle (Indications)

Indications pour l'exercice 1 :

- a) Trouver un équivalent avec une fonction de la forme $\frac{1}{r^{\alpha}}$ en $+\infty$
- b) Trouver un équivalent avec une fonction de la forme $\frac{1}{r^{\alpha}}$ en $+\infty$
- c) Trouver un équivalent avec une fonction de la forme $\frac{1}{r^{\alpha}}$ en $+\infty$
- d) Comparer avec une fonction de la forme $\frac{1}{x^{\alpha}}$ avec $\alpha > 1$ en $+\infty$
- e) Comparer avec une fonction de la forme $\frac{1}{x^{\alpha}}$ avec $\alpha \leq 1$ en $+\infty$
- f) Comparer avec une fonction de la forme $\frac{1}{x^{\alpha}}$ avec $\alpha>1$ en $+\infty$
- g) Comparer avec une fonction de la forme $\frac{1}{x^{\alpha}}$ avec $\alpha \leq 1$ en $+\infty$
- h) Comparer avec une fonction de la forme $\frac{1}{x^{\alpha}}$ avec $\alpha > 1$ en $+\infty$

Indications pour l'exercice 2:

- a) Montrer que l'intégrale converge absolument en majorant la valeur absolue
- b) Montrer que l'intégrale converge absolument en majorant la valeur absolue
- c) Montrer que l'intégrale converge absolument en majorant la valeur absolue
- d) Montrer que l'intégrale converge absolument en majorant la valeur absolue
- e) Trouver un équivalent en 0 grâce à un DL, puis comparer cet équivalent à une fonction de la forme $\frac{1}{x^{\alpha}}$
- f) Comparer avec une fonction de la forme $\frac{1}{x^{\alpha}}$

Indications pour l'exercice 3:

- 1. (a) Utiliser les propriétés du logarithme pour transformer l'expression et se ramener à des expressions de la forme $\ln(1+x_n)$ avec $\lim_{n\to+\infty}x_n=0$.
 - (b) Par télescopage (v_n) converge $\iff \sum (v_n v_{n+1})$ converge.
 - (c) Exprimer la limite de (u_n) en fonction de celle de (v_n) .
- 2. (a) Calcul d'intégrale par simples primitives.
 - (b) Montrer que (W_n) est une suite décroissante et minorée par 0
 - (c) Il suffit de poser le changement de variable $t = \frac{\pi}{2} x$ et d'utiliser la relation $\sin\left(\frac{\pi}{2} x\right) = \cos(x)$ valable pour tout réel x
 - (d) Utiliser l'égalité $\sin^2(x) + \cos^2(x) = 1$
 - (e) Écrire que $\sin^{n+2}(x) = \sin(x) \times \sin^{n+1}(x)$, puis primitiver le premier terme et dériver le second dans l'IPP.
 - (f) Montrer grâce à la relation précédente que pour tout entier $n:(n+2)W_{n+1}W_{n+2}=(n+1)W_nW_{n+1}$. La suite $((n+1)W_nW_{n+1})$ est donc constante et donc égale à son premier terme pour tout $n \in \mathbb{N}$.
 - (g) Passer à la limite dans $W_n W_{n+1} = \frac{\pi}{2(n+1)}$
 - Montrer que pour tout $n \in \mathbb{N}$, $\frac{n+2}{n+1} \ge \frac{W_n}{W_{n+1}} \ge 1$
 - Le résultat précédent permet de dire que $W_n \sim W_{n+1}$ et donc que $W_n W_{n+1} \sim W_n^2$, à réinjecter dans la limite de la question précédente.
 - (h) Raisonner par récurrence sur n
 - (i) Appliquer l'équivalent $W_n = \sqrt{\frac{\pi}{2n}}$ (qui se déduit de 2.g)) à la suite (W_{2n})

Indications pour l'exercice 4 :

- 1. Faire le changement de variable indiqué dans l'intégrale sur un segment de la forme [0,A] avant de faire tendre A vers
- 2. Faire le changement de variable indiqué sur un intervalle de la forme $[\varepsilon, 1]$ avant de faire tendre ε vers 0, puis sur un intervalle de la forme [1, A] avant de faire tendre A vers $+\infty$.

Indications pour l'exercice 5 :

- 1. Écrire que $\sin(k\theta) = \frac{e^{ik\theta} e^{-ik\theta}}{2i}$ avant de séparer la somme en 2 et d'appliquer la formule du binôme de Newton.
- 2. Montrer que l'équation $P(\lambda) = 0$ est équivalent à $Z^n = 1$ avec $Z = \frac{1 + e^{i\theta} \lambda}{1 + e^{-i\theta} \lambda}$ et utiliser le résultat du cours sur les racines n-èmes de l'unité.
- 3. Utiliser la caractérisation $Z \in \mathbb{R} \iff \overline{Z} = Z$.

Indications pour l'exercice 6:

- 1. Montrer par récurrence sur n la propriété $\mathcal{P}(n)$: « u_n est bien défini et $u_n > 0$ »
- 2. Montrer que (u_n) est croissante et montrer par l'absurde qu'elle ne converge pas.
- 3. Utiliser le développement limité de $\ln(1+x_n)$ avec $\lim_{n\to+\infty}x_n=0$. On doit trouver $u_{n+1}^{\beta}-u_n^{\beta}=\beta u_n^{\beta-3}+o(u_n^{\beta-3})$.
- 4. Pour $\beta = 3$ on a $\lim_{n \to +\infty} u_{n+1}^3 u_n^3 = 3$. Appliquer ensuite le théorème de Césàro à la suite $(u_{n+1}^{\beta} u_n^{\beta})$.

Indications pour l'exercice 7 :

- 1. Comparer avec une fonction de la forme $\frac{1}{4\alpha}$.
- 2. Faire une intégration par partie.
- 3. Raisonner par récurrence sur n
- 4. Poser $x=\sqrt{t}$ pour calculer $\Gamma(1/2)$ à l'aide de l'intégrale de Gauss. La valeur de $\Gamma(3/2)$ s'en déduit ensuite grâce à la relation prouvée à la question précédente.

Indications pour l'exercice 8 :

Appliquer le TVI à $q: x \mapsto f(x) - x$ pour l'existence.

Pour l'unicité appliquer l'hypothèse sur f à deux réels $x, y \in [0, 1]$ tels que f(x) = x et f(y) = y.

Indications pour l'exercice 9 :

- 1. Pour tout $x \ge 0$, $x = \sqrt{x} \cdot \sqrt{x}$.
- 1. Four tout $x \ge 0$, at x = 0.

 2. Pour tout $x \ge 0$ et $x \ge 1$, $x = \underbrace{x^{1/n} \times x^{1/n} \times \cdots \times x^{1/n}}_{n \text{ fois}}$
- 3. Écrire $f(x^{1/n})^n$ à l'aide d'une exponentielle et utiliser le DL f(x) = f(1) + f'(1)(x-1) + o(x-1) pour montrer que $\lim_{n\to+\infty} f(x^{1/n})^n = x^{f'(1)}$. Attention, il faut composer plusieurs DL successivement pour parvenir à ce résultat.
- 4. Raisonner par l'absurde en supposant p < 0 et en étudiant la limite en 0 dans l'inégalité précédente.
- 5. Raisonner par l'absurde en supposant l'existence d'un réel $x_0 > 0$ tel que $f(x_0) > x_0^p$ et en appliquant l'hypothèse de départ à x_0 et à $\frac{1}{x_0}$. Le cas $x_0 = 0$ pourra ensuite se faire par continuité de f en 0.

2