EMV-konformes Design

Industrial Electronics (MECH-M-3-IEL-ILV)

Master Mechatronic & Smart Technologies

3. Semester

Lehrveranstaltungsleiter: Thomas Gadner

Jahrgang: MA-MECH-23-BB

Verfasser: Lukas Sieß

7. Februar 2025

Inhaltsverzeichnis

1	Einleitung	1
2	Task 1	2
	2.1 PID Auslegung	3
3	Task 2	4
4	Layout-Empfehlungen für das Board-Design	6
ANHANG		Ш
Α	Anhang	Ш
	A 1 MATLAB Skript	Ш

1 Einleitung

2 Task 1

Abbildung 2.1: FFT LTC3639 mit Filter

Abbildung 2.2: FFT LTC3639 mit Filter

Abbildung 2.3: FFT LTC3639 mit Filter

2.1 PID Auslegung

Abbildung 2.4: FFT LTC3639 mit Filter

3 Task 2

Abbildung 3.1: FFT LTC3639 mit Filter

Abbildung 3.2: FFT LTC3639 mit Filter

Abbildung 3.3: FFT LTC3639 mit Filter

Abbildung 3.4: Messung mit $R_{load}=2\,\Omega$

Abbildung 3.5: Messung mit $R_{load}=4\,\Omega$

4 Layout-Empfehlungen für das Board-Design

Für ein EMV-konformes Design mit dem LTC3639 sollten folgende Punkte beachtet werden:

- 1. **Kondensatoren nahe den Pins des LTC3639** platzieren, um parasitäre Induktivitäten und Widerstände zu minimieren.
- 2. **Masseverbindungen** durch ein durchgehendes Masse-Plane sicherstellen, um Rauschen und Spannungsdifferenzen zu reduzieren.
- 3. Schleifenflächen minimieren, um elektromagnetische Störungen zu verringern.
- 4. **Hochfrequenz- und Niedrigfrequenzkomponenten** räumlich oder auf verschiedenen Plane-Ebenen trennen.
- 5. **Thermisches Management** durch ausreichende Kühlflächen für Wärmequellen wie den LTC3639.
- 6. **Filterkomponenten** nah an den Regleranschlüssen platzieren, um leitungsgebundene Störungen zu dämpfen.
- 7. **Signalpfade kurz halten** und unnötige Kreuzungen zwischen Hoch- und Niedrigfrequenzleitungen vermeiden.
- 8. **Stromversorgungsleitungen** breit und direkt führen, um Spannungsabfälle und Erwärmung zu minimieren.

Diese Maßnahmen verbessern die EMV-Leistung und die Zuverlässigkeit des Designs.

A Anhang

A.1 MATLAB Skript

