

Study Guide for NTR 306 Midterm

- One continuous, 75-minute attempt Yes, it is timed!
 - If you have SSD accommodations for extra time, it will be automatically added to your exam
- Approximately 40 questions
 - Multiple choice, matching, T/F, fill-in-the-blank
 - ~Half of questions are application-based (i.e., word problems)
 - Chapters 1-7
 - Open book: use class materials only (e.g., notes you have taken (or SSD notes), textbook/e-book, lecture slides, lecture videos, etc.) – NO internet searches! Please show academic integrity.
- o 100 points

This study guide does NOT contain every theme that will be on the midterm, nor will every theme in this study guide be tested. This is a guide – you are in control of your own preparation!

- Factors that influence food choices
- Six classes of nutrients:
 - Organic vs inorganic
 - Energy yielding vs non-energy yielding
 - kcalorie values of energy yielding nutrients
 - Macronutrients vs micronutrients
- Scientific Method
- Study Designs & Interpreting the Evidence

- Dietary Reference Intakes (DRI)
 - o EAR, RDA, AI, UL
- Estimated Energy Requirement (EER)
- Acceptable Macronutrient Distribution Ranges
 - Carbohydrate, fat, and protein
 - Calculate daily kcalories/grams within AMDRs
- Nutrition information sources
 - Registered Dietitians
 - Analyzing information from different sources (e.g. internet)

- Diet-planning principles
 - Adequacy, balance, energy control, nutrient density, moderation, variety
- Dietary Guidelines for Americans
 - Healthy Eating Index
 - Current Recommendations
- USDA Food Patterns
 - Analyze meals for the six food groups and subgroups
 - Serving sizes and equivalent measures for six food groups and subgroups
- My Plate

- Food processing
 - Whole, fortified, minimally processed, ultra-processed
 - o Grains: refined, enriched, whole-grain
- American dietary habits
 - Overconsumption and underconsumption of certain nutrients
- Nutrition labels:
 - Differences between claims on nutrition labels:
 - o Nutrient claims, health claims, structure-function claims
 - Interpreting nutrition facts labels:
 - Finding serving size, calculating total kcalories, calculating kcalories from each of the major nutrient groups (e.g. fat, carbohydrates, protein), interpreting ingredients list, new labels vs old labels

- Digestive processes
 - Food's journey from ingestion to excretion (pathway through digestive organs and sphincters; transition from food to bolus to chyme to stool)
 - Muscular actions
 - Secretions: enzymes, juices, bile, mucus
 - pH changes throughout digestive processes
- Absorptive processes
 - Anatomy and pathways of nutrient absorption
 - Vascular system (i.e. bloodstream) vs lymphatic system
- Specific digestive and absorptive processes for energy nutrients
 - Fats, proteins, carbohydrates

- Digestive reactions: condensation vs hydrolysis
- GI microbiota functions
- GI hormone action and negative feedback loops
 - Gastrin, secretin, CCK
- Common digestive problems

Soluble fiber:

- Dissolving in water, gel formation (viscous), fermentation, and the ability to lower blood cholesterol
- Examples: barley, oats, legumes

• Insoluble fiber:

- Indigestible components of the diet that promote bowel movements, alleviate constipation and prevent diverticular disease
- Examples: wheat bran, legumes, brown rice

- Carbohydrate characteristics and digestion:
 - Monosaccharides: glucose, fructose, galactose
 - Disaccharides: maltose, sucrose, lactose
 - Polysaccharides: glycogen, starch (amylose, amylopectin), fiber (soluble, insoluble)
- Carbohydrate digestion:
 - Mouth (salivary amylase)
 - Stomach (none)
 - Small Intestine, primary site (pancreatic amylase; maltase; sucrase; lactase)
 - Large Intestine (none); Fermentation
- Carbohydrate absorption:
 - Active transporters (glucose and galactose); Passive (Fructose)

- Carbohydrate metabolism
 - o Glucose storage (glycogen), use for immediate energy or stored as fat
 - Organ uses (Brain first, others second)
 - Glucose and hormone interactions:
 - Blood glucose rises (during/after meals): triggers release of insulin (moves glucose to cells to store excess) → blood glucose level is lowered
 - Blood glucose falls (between meals, overnight): triggers release of glucagon (moves glucose out of storage to fuel body) → blood glucose level is raised
 - Irregularities: Diabetes & Hypoglycemia
- Health impacts of carbohydrates and recommended intakes
 - Simple Sugars
 - Low/No calorie Sweeteners
 - Starches & Fibers

- Degrees of unsaturation of fats: saturated vs monounsaturated vs polyunsaturated
 - Characteristics and molecular structures of each
 - Hydrogenation
 - Trans-fats
- Others: Phospholipid & Sterol characteristics
- Digestive pathways and absorption processes of lipids
 - Mouth (lipase); Stomach (lipase); Small Intestine, primary (Bile, Lipases)
 - o lymphatic system to circulation (fat globules \rightarrow micelles \rightarrow chylomicrons \rightarrow VLDL, etc.)
- Fat Metabolism
 - Circulating TG → FAs (muscle & adipose tissue use lipoprotein lipase)
 - Adipose TG → FAs (hormone sensitive lipase)
- Lipoprotein types, characteristics, and health implications
 - Dietary cholesterol vs blood cholesterol; TG vs Cholesterol

Chylomicrons VLDL B. "Ferry Boat" for triglycerides LDL Cholesterol excretion HDL D. Synthesized in the liver

E. Deliver lipids to body cells

- Fatty acids:
 - Linoleic vs linolenic
 - Omega-3 fatty acids vs omega-6 fatty acids
 - Essential, non-essential, conditionally essential
- Relationships between different fats and health outcomes
 - Chronic disease
- Metabolic changes due to dietary insufficiencies:
 - Low-carb diet
 - Gluconeogenesis

- Roles of protein in the body
- Amino acids
 - Essential, nonessential
- Protein digestion
 - Mouth (nothing)
 - Stomach (HCL, pepsin)
 - Small Intestine (proteases, peptidases)
- Protein absorption active transporters (AAs)
- Protein metabolism
 - Nitrogen balance
 - Amino Acid Pool
 - Urea production and excretion

- Protein deficiency
- Protein & Health
 - No effects on CVD, T2D, or Cancer
 - Benefits for weight management, glycemic control, appetite control, satiety, performance
- Protein quantities
 - RDA vs. Optimal Amounts

- Reactions: catabolic vs anabolic
- Role of enzymes and coenzymes
- Metabolic compounds: Acetyl CoA and pyruvate
- Glycolysis (conversion of glucose to pyruvate)
- Pyruvate's options: lactate vs Acetyl CoA
 - Cori cycle
- Glycerol and fatty acid pathways
- Amino acid metabolic pathways

NOTE: Amino acids that can be used to make glucose are called *glucogenic*; amino acids that are converted to acetyl CoA are called *ketogenic*.

- TCA cycle
- Electron transport chain
- Metabolic processes of overconsumption of energy nutrients
 - Fat, carbohydrate, protein

^aAlcohol is not included because it is a toxin and not a nutrient, but it does contribute energy to the body. After detoxifying the alcohol, the body uses the remaining two carbon fragments to build fatty acids and stores them as fat.

^bThe muscles' stored glycogen provides glucose only for the muscle in which the glycogen is stored.