組み合せ論的ホッジ理論 雑記帳

2025年3月19日

1 バーグマン扇など

命題 1.1 扇 Σ とその部分集合 Δ を考える。任意の Δ の錐 δ に対し δ の面すべてが Δ に属すると仮定する。このとき Δ は扇である。

証明 勝手な二つの錐 δ_1 , $\delta_2 \in \Delta$ に対し $\delta_1 \cap \delta_2$ が共通の面であることを示せば良いが、それは $\Delta \subset \Sigma$ であることと Σ が扇であることから従う。

命題 1.2 E を有限集合とし \mathcal{P} を $\mathcal{P}(E)$ の順序フィルターとする。このとき $\Sigma_{\mathcal{P}}$ に属する二つの錐 $\sigma_{I_1<\mathscr{F}_1}$ と $\sigma_{I_2<\mathscr{F}_2}$ に対し, $\sigma_{I_1<\mathscr{F}_1}$ $\subset \sigma_{I_2<\mathscr{F}_2}$ となるのは I_1 $\subset I_2$ かつ \mathscr{F}_1 $\subset \mathscr{F}_2$ となるときかつその時に限る。

証明 $I_1 \subset I_2$ かつ $\mathcal{F}_1 \subset \mathcal{F}_2$ のときに $\sigma_{I_1 < \mathcal{F}_1} \subset \sigma_{I_2 < \mathcal{F}_2}$ となることは定義から従う。

逆に $\sigma_{I_1<\mathscr{F}_1}\subset\sigma_{I_2<\mathscr{F}_2}$ が成立する時を考える。 $I_1\not\in I_2$ であったとすると元 $i\in I_1\setminus I_2$ が少なくとも一つ存在し $\mathbf{e}_i\in\sigma_{\emptyset<\mathscr{F}_2}$ である。ゆえに $\{i\}\in\mathscr{F}_2$ であり $I_2=\emptyset$ である。 \mathscr{F}_2 が全順序部分集合であることから $I_1=I_1$ は一元集合である。すちなわち $\{i\}$ であるがこれは $I_1\not\in\mathscr{P}$ であることに矛盾し $I_1\subset I_2$ であることが従う。次に $\mathscr{F}_1\not\in\mathscr{F}_2$ であったと仮定し $F\in\mathscr{F}_1\setminus\mathscr{F}_2$ を一つ取る。 $\mathbf{e}_F\in\sigma_{I_2<\mathscr{F}_2}$ であるから

$$\mathbf{e}_F = \sum_{i \in I_2} \lambda_i \mathbf{e}_i + \sum_{G \in \mathcal{F}_2} \lambda_G \mathbf{e}_G, \; \lambda_i, \; \lambda_G \in \mathbb{R}_{>0}$$

のような一意的な表示が得られるが,F の取り方からすべての $G \in \mathscr{F}_2$ に対し $\lambda_G = 0$ となる。したがって $F \subset I_2$ であるが $\mathscr P$ が順序フィルターであることから $I_2 \in \mathscr P$ となり矛盾が生じる。ゆえに $\mathscr F_1 \subset \mathscr F_2$ である。 \blacksquare

命題 1.3 E を有限集合とし \mathcal{P} を $\mathcal{P}(E)$ の順序フィルターとする。このとき $\Sigma_{\mathcal{P}}$ に属する二つの錐 $\sigma_{I_1 < \mathscr{F}_1}$ と $\sigma_{I_2 < \mathscr{F}_2}$ に対し, $\sigma_{I_1 < \mathscr{F}_1} \cap \sigma_{I_2 < \mathscr{F}_2} = \sigma_{(I_1 \cap I_2) < (\mathscr{F}_1 \cap \mathscr{F}_2)}$ が成立する。

証明 定義から直ちに $\sigma_{I_1<\mathscr{F}_1}\cap\sigma_{I_2<\mathscr{F}_2}$ $\supset \sigma_{(I_1\cap I_2)<(\mathscr{F}_1\cap\mathscr{F}_2)}$ であることは従うので逆の 包含が成立することを示す。

[AHK18, Prop. 2.4] より $\Sigma_{\mathcal{P}}$ は特に扇であるので $\sigma_{I_1 < \mathscr{F}_1} \cap \sigma_{I_2 < \mathscr{F}_2}$ は $\sigma_{I_1 < \mathscr{F}_1}$ の面である。ゆえに $\sigma_{I_1 < \mathscr{F}_1} \cap \sigma_{I_2 < \mathscr{F}_2} = \sigma_{I_3 < \mathscr{F}_3}$ となる $I_3 \subset I_1$ と $\mathscr{F}_3 \subset \mathscr{F}_1$ が存在する。命題 1.2 より $I_3 \subset I_2$ かつ $\mathscr{F}_3 \subset \mathscr{F}_2$ となるので $I_3 \subset I_1 \cap I_2$ かつ $\mathscr{F}_3 \subset \mathscr{F}_1 \cap \mathscr{F}_2$ となり逆の 包含が成立することが従う。

参考文献

[AHK18]Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: *Ann. of Math. (2)* **188**.2 (2018), pp. 381–452.