Enoncé

EXERCICE N° 1 (6 points)

Soit une droite fixe D et un point fixe A n'appartenant pas à la droite D. On construit le cercle (\mathcal{C}) de centre A et tangent à la droite D.

- 1) Soit H le projeté orthogonal de A sur la droite D et F un point variable sur (\mathcal{C}) -{H}.
- a- Vérifier que le point F est le foyer d'une parabole P ayant pour directrice la droite D et passant par le point A.
- b- Préciser le point F_o foyer de la parabole P qui admet A pour sommet.
- 2) On désigne par (F) la famille des paraboles de directrice commune D et passant par A. Soit P et P' deux paraboles de la famille (F) de foyers respectifs F et F'.
- c- Montrer que si F et F' sont diamétralement opposés sur le cercle (**C**) alors les tangentes en A à P et P' sont perpendiculaires.
- d- Etudier la réciproque.
- 3) On fait varier le point F sur \mathcal{C} -{H,F₀}et on désigne par B le deuxième point d'intersection de la parabole P de foyer F et de directrice D avec la droite (FA).
- a- Montrer que le point B varie sur une parabole (F) dont on précisera le foyer et la directrice.
- b- Montrer que les paraboles P et (F) ont même tangente en B.

EXERCICE N° 2 (4 points)

Dans l'espace orienté, on considère un carré ABCD et on désigne par E le milieu de [AB], par F celui de [CD] et par E' un point, distinct de E, tel que (EE') soit perpendiculaire au plan P du carré ABCD. Soit O le milieu de [E'F].

- 1) On note Q le plan (EE'F) et on pose :
- $f = S_O \circ S_P \circ u$ $S_O \circ u$ la réflexion de plan Q et S_P la réflexion de plan P.

Préciser la nature de f et la caractériser.

2) Soit Δ la droite passant par le point O et parallèle à la droite (EF) et g le demi-tour d'axe Δ Déterminer le plan P' tel que : $g=S_PoS_O$.

Où S_{P'} est la réflexion de plan P'.

3) Soit h=gof

Préciser la nature de l'application h et la caractériser.

PROBLEME (10 points)

Dans tout le problème, P désigne un plan rapporté à un repère orthonormé (o, i, j). On pose $D =]-\infty, -1[\cup [0, +\infty [$ et $D^* =]-\infty, -1[\cup [0, +\infty [$.

A- Soit f la fonction définie par :

$$\begin{cases} f(x) = x \operatorname{Log}(1 + \frac{1}{x}) & \text{si } x \in D^* \\ f(0) = 0 \end{cases}$$

- 1) a Montrer que f est continue à droite en 0.
- b- Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat obtenu.
- 2) a- Montrer que f est dérivable sur D^* et calculer f'(x) pour $x \square D^*$.
- b- Etudier les variations de la fonction f' sur D^* . En déduire que f'(x)>0 pour tout x de D^* .
- c- Dresser le tableau de variation de la fonction f et tracer sa courbe représentative (C) dans le plan P.
- 3) Soit α un nombre réel vérifiant : $0 < \alpha < 1$
- a- Calculer l'aire $A(\alpha)$ de la région du plan délimitée par la courbe (C) et les droites d'équations respectives $y=0, x=\alpha$ et x=1.
- b- Calculer $\lim_{\alpha \to 0^+} A(\alpha)$
- B- Soit Δ la droite d'équation $x = -\frac{1}{2}$
- 1) Tracer, dans le plan P, la courbe (C') déduite de la courbe (C) par la symétrie orthogonale S_{\square} d'axe Δ .
- 2) Soit M(x,y) et M'(x',y') deux points du plan P.
- c- Soit $x \in D^*$ et M(x,y) un point du plan P. Vérifier que $(-x-1)\in D^*$ et montrer que M est un point de (C') si et seulement si y = f(-x-1).

d- On désigne par g la fonction admettant (C') comme courbe représentative.

Montrer que pour tout x de D* on a : $g(x)=(x+1)Log(1+\frac{1}{x})$

- C- 1) Justifier que pour tout n de IN^* , f(n)<1< g(n).
- 2) Soit (u_n) et (v_n) les suites définies sur IN* par :

$$u_n = (1 + \frac{1}{n})^n$$
 et $v_n = (1 + \frac{1}{n})^{n+1}$

- a- Montrer que pour tout n de IN^* , $u_n < e < v_n$.
- b- Montrer que pour tout n de IN*, v_n - u_n < $\frac{e}{n}$
- c- Déduire des questions précédentes la limite de u_n puis celle de v_n lorsque n tend vers $+\infty$.