$$\int (x) = \frac{x^2}{\sqrt{x^4 + 4}}$$

Derivatives (work omitted):
$$f'(x) = \frac{8x}{(x^2+4)^{3/2}}$$

 $f''(x) = -8 \cdot \frac{5x^4-4}{(x^4+4)^{5/2}}$

- · Domain: (-00,00) (denum is never 0).
 - · Intercepts: (0.0) is the only x- or y-intercept.
 - . symmetry: f(x) = f(-x); the function is even.
 - · Asymptotes: no vertical asymptotes (no discontinuities).

 To find honiz asymptotes:

$$\lim_{x \to -\infty} \frac{x^2}{\sqrt{x^4 + 41}} = \lim_{x \to -\infty} \frac{1}{\frac{1}{x^2} \sqrt{x^4 + 41}} = \lim_{x \to -\infty} \frac{1}{\sqrt{1 + 4/x^4}}$$

$$= 1/\sqrt{1 + 4/x^2} = \frac{1}{1}.$$

similarly,
$$\lim_{x\to\infty} \frac{x^2}{\sqrt{x^4+4}} = \lim_{x\to\infty} \frac{1}{\sqrt{1+4/x^4}} = 1$$

horize asymptote at $y=1$

. Sign chart for f'(x):

	8×	(x2+4) 3/2	f,	राउ		
×<0	_	+	-	dec.	7	lucal min.
×>0	+	+	+	inc.	J	@ X=0.
						(0.0).

$$f(x) = \frac{x^2}{\sqrt{x^4 + 4}}, cont.$$

$$f'(x)=0$$
 when $5x''=4,ix$
 $x=\pm \sqrt[4]{415}$.

4 8	5x4-4	-8 (x4+4)512	£ ,,	concoff
× < - 415	+	_	1	dom
- 4/5 <x 4="" 45<="" <="" th=""><th>- (*)</th><th>e s - gentr</th><th>+ (</th><th>up</th></x>	- (*)	e s - g entr	+ (up
x> 4415	1 +	-	_	down

=) inflection points at
$$x = \pm 4\sqrt{4/5} (\approx \pm 0.945)$$

Note
$$f(\pm 4/15) = \frac{\sqrt{4/5}}{\sqrt{\frac{2}{5}+4}} = \frac{\sqrt{4/5}}{\sqrt{24/5}} = \frac{1}{\sqrt{6}} (\approx 0.408)$$

· The sketch:

$$\int (x) = \frac{x^2}{1-x^2}$$

$$f(x) = \frac{x^2}{1 - x^2} \qquad f'(x) = \frac{2x}{(1 - x^2)^2} \qquad f''(x) = -2 \frac{1 + 3x^2}{(x^2 - 1)^3}.$$

- Domain: everything but $x = \pm 1$ (where denone is 0).
- · Intercepts: just (0.0).
 - . Symmetry: this is an even function since $\frac{(-x)^2}{1-(-x)^2} = \frac{x^2}{1-x^2}$.
 - . A symptotes: Vertical asymptotes at $x=\pm 1$, since the numerator goes to (±1)2=1 but the denominator goes to O.

Honiz. asymptotes:
$$\lim_{X \to \pm \infty} \frac{\chi^2}{1-\chi^2} = \lim_{X \to \pm \infty} \frac{1}{1-1/\chi^2} = \frac{1}{1-1/(2\pi)^2}$$

$$= \frac{1}{1-1/\infty} = \frac{1}{1-1/(2\pi)^2}$$

$$= \frac{1}{1-1/(2\pi)} = \frac{1}{1-1/(2\pi)^2}$$

$$= \frac{1}{1-1/(2\pi)} = \frac{1}{1-1/(2\pi)}$$

$$= \frac{1}{1-1/(2\pi)} = \frac{1}{1-1/(2\pi$$

. Sign chart for f'(x): divide at x=0,±1 (f'6x1=0 at x=0, & f'(x) undefined at $x=\pm 1$).

1	2×	1 (1-x2)2	ţ,	f &	
(-0,-1)	~	+	-	dec.	
	-	+	-	dec.	7 (local min.)
(-1, D)	+	+	+	inc.] [@ (0,0)
(0,1)	+	+	+	inc.	
- (11			-		-

. Sign chart for f"(x):

f"(x) is never 0, since the numerator 1+3x2 is never 0. f''(x) is undefined at $x=\pm 1$. So divide there

`	-2	1+3×2	(x21)3	f ''	f concar
(-v, -1)	-	+	+	-	down
(1, \(\delta\)	_	+	-	+	up
		+	+	_	down

$$f(x) = \frac{x^2}{1-x^2}, cont.$$

$$\int \int (x) = \sqrt{x^2 + 1} - x$$

$$f(x) = \sqrt{x^2 + 1} - x$$
 $f'(x) = \frac{x}{\sqrt{x^2 + 1}} - 1$ $f'''(x) = \frac{1}{(x^2 + 1)^{3/2}}$ (work omitted)

- · Domain: (-00,00)
- (0, 1) is y-intercept. Intercent: x-intercept since $x \neq \sqrt{x^2+1}$
 - · Symmetry: not even, odd, on periodic.
 - · Asymptotes no vertical asymptotes (flx) continuous).

honiz:
$$\lim_{x\to -\infty} f(x) = \sqrt{(-\omega)^2+1} - (-\omega)$$

= $\infty + \omega = \infty$.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (\sqrt{x^{2}+1} - x) = \lim_{x \to \infty} \frac{(\sqrt{x^{2}+1} - x)(\sqrt{x^{2}+1} + x)}{\sqrt{x^{2}+1} + x}$$

$$= \lim_{x \to \infty} \frac{(x^{2}+1) - x^{2}}{\sqrt{x^{2}+1} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{x^{2}+1} + x}$$

$$= \frac{1}{\sqrt{\omega^{2}+1} + \omega} = \frac{1}{\cos^{2}+\omega} = 0.$$

y=0 is a hoirs asymptote. (approached on the right only).

· Sign chart of f'(x): solving f'(x)=0 given

=> there are no sulim to D=f'lu). file) is defined for all => no critical points.

Now, f'(0) =- 1. Since f'(x) never changes sign (no critical pts) it is always negative.

f(x) decreases every where.

$$f(x) = \sqrt{x^2+1} - x$$
, cont.

- Signs of f"(x).

$$f''(x) = \frac{1}{(x^2+1)^{312}}$$
 is always positive.
 $(x^2+1>0)$.

f(x) is always concave up.

· Sketch:

always decreasing.