```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
```

impord data

data =pd.read_csv("/content/garments_worker_productivity.csv")

Looking at the dataset

data.head(5)

	date	quarter	department	day	team	targeted_productivity	smv	wip	over_time	incentive	idle_time	idle_men	no_of_s
0	1/1/2015	Quarter1	sweing	Thursday	8	0.80	26.16	1108.0	7080	98	0.0	0	
1	1/1/2015	Quarter1	finishing	Thursday	1	0.75	3.94	NaN	960	0	0.0	0	
2	1/1/2015	Quarter1	sweing	Thursday	11	0.80	11.41	968.0	3660	50	0.0	0	
3	1/1/2015	Quarter1	sweing	Thursday	12	0.80	11.41	968.0	3660	50	0.0	0	
4	1/1/2015	Quarter1	sweing	Thursday	6	0.80	25.90	1170.0	1920	50	0.0	0	
7	‡												
4													>

describe data
data.describe()

1

data.info()

	team	targeted_productivity	smv	wip	over_time	incentive	idle_time	idle_men	no_of_style_cha
count	1197.000000	1197.000000	1197.000000	691.000000	1197.000000	1197.000000	1197.000000	1197.000000	1197.000
mean	6.426901	0.729632	15.062172	1190.465991	4567.460317	38.210526	0.730159	0.369256	0.150
std	3.463963	0.097891	10.943219	1837.455001	3348.823563	160.182643	12.709757	3.268987	0.427
min	1.000000	0.070000	2.900000	7.000000	0.000000	0.000000	0.000000	0.000000	0.000
25%	3.000000	0.700000	3.940000	774.500000	1440.000000	0.000000	0.000000	0.000000	0.000
50%	6.000000	0.750000	15.260000	1039.000000	3960.000000	0.000000	0.000000	0.000000	0.000
75%	9.000000	0.800000	24.260000	1252.500000	6960.000000	50.000000	0.000000	0.000000	0.000
max	12.000000	0.800000	54.560000	23122.000000	25920.000000	3600.000000	300.000000	45.000000	2.000

Looking at the features types

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1197 entries, 0 to 1196
Data columns (total 15 columns):

Data	columns (total 15 colu	mns):	
#	Column	Non-Null Count	Dtype
0	date	1197 non-null	object
1	quarter	1197 non-null	object
2	department	1197 non-null	object
3	day	1197 non-null	object
4	team	1197 non-null	int64
5	targeted_productivity	1197 non-null	float64
6	smv	1197 non-null	float64
7	wip	691 non-null	float64
8	over_time	1197 non-null	int64
9	incentive	1197 non-null	int64
10	idle_time	1197 non-null	float64
11	idle_men	1197 non-null	int64
12	no_of_style_change	1197 non-null	int64
13	no_of_workers	1197 non-null	float64
14	actual_productivity	1197 non-null	float64
dtyp	es: float64(6), int64(5), object(4)	
memo	ry usage: 140.4+ KB		

```
12/5/22, 11:53 PM
```

```
(1197, 15)
# Looking at the columns
data.columns
     Index(['date', 'quarter', 'department', 'day', 'team', 'targeted_productivity',
             'smv', 'wip', 'over_time', 'incentive', 'idle_time', 'idle_men', 'no_of_style_change', 'no_of_workers', 'actual_productivity'],
            dtype='object')
# Looking at the null values in each feature
data.isnull().sum()
     date
                                    0
     quarter
                                    0
     department
                                    a
     day
                                    0
     team
                                    0
     targeted_productivity
                                    0
     smv
                                    a
     wip
                                 506
     over_time
                                    0
     incentive
                                    0
     idle_time
                                    a
     idle men
                                    0
     no_of_style_change
                                    0
     no_of_workers
                                    0
     actual_productivity
                                    0
     dtype: int64
# Percentage of null values in the dataset
data.isnull().sum() / data.shape[0] * 100
                                   0.000000
                                   0.000000
     auarter
                                   0.000000
     department
                                   0.000000
     day
                                   0.000000
     team
                                   0.000000
     targeted_productivity
                                   0.000000
                                  42.272348
     wip
     over_time
                                   0.000000
     incentive
                                   0.000000
     idle_time
                                   0.000000
     idle men
                                   0.000000
     no_of_style_change
                                   0.000000
     no_of_workers
                                   0.000000
     actual_productivity
                                   0.000000
     dtype: float64
# Separate categorical and numerical data for simplicity in analysis
cat = data.select dtypes(include='object')
num = data.select_dtypes(exclude='object')
#showing the catgory columns
for col in cat.columns:
    print(f"{col}")
    print(cat[col].unique())
    print()
     ['1/1/2015' '1/3/2015' '1/4/2015' '1/5/2015' '1/6/2015' '1/7/2015'
       '1/8/2015' '1/10/2015' '1/11/2015' '1/12/2015' '1/13/2015' '1/14/2015' '1/15/2015' '1/17/2015' '1/18/2015' '1/19/2015' '1/20/2015' '1/21/2015'
       '1/22/2015' '1/24/2015' '1/25/2015' '1/26/2015' '1/27/2015' '1/28/2015'
       '1/29/2015' '1/31/2015' '2/1/2015' '2/2/2015' '2/3/2015' '2/4/2015' '2/5/2015' '2/7/2015' '2/8/2015' '2/9/2015' '2/10/2015' '2/11/2015'
      '2/12/2015' '2/14/2015' '2/15/2015' '2/16/2015' '2/17/2015' '2/18/2015'
       '2/19/2015' '2/22/2015' '2/23/2015' '2/24/2015' '2/25/2015' '2/26/2015'
       '2/28/2015' '3/1/2015' '3/2/2015' '3/3/2015' '3/4/2015' '3/5/2015'
       '3/7/2015' '3/8/2015' '3/9/2015' '3/10/2015' '3/11/2015']
     ['Quarter1' 'Quarter2' 'Quarter3' 'Quarter4' 'Quarter5']
     department
     ['sweing' 'finishing' 'finishing']
```

```
['Thursday' 'Saturday' 'Sunday' 'Monday' 'Tuesday' 'Wednesday']
# Department Attribute has space present in one of the values which needs to modification
print('Unique Values in Department before cleaning:')
print(data.department.unique())
print()
data['department'] = data.department.str.strip()
print('Unique Values in Department afer cleaning:')
print(data.department.unique())
     Unique Values in Department before cleaning: ['sweing' 'finishing' 'finishing']
     Unique Values in Department afer cleaning:
     ['sweing' 'finishing']
#showing the numerical columns
for n in num.columns:
    print(n)
     targeted_productivity
     smv
     wip
     over_time
     incentive
     idle_time
     idle men
     no_of_style_change
     no_of_workers
     actual_productivity
# checking the categorical feature for make sure all name and group is correct
cat.quarter.value_counts()
     Quarter1
                 360
     Quarter2
                 335
     Quarter4
                 248
     Quarter3
                 210
     Quarter5
                 44
     Name: quarter, dtype: int64
cat.department.value_counts()
     sweing
                   691
     finishing
                   257
     finishing
                   249
     Name: department, dtype: int64
cat.day.value_counts()
     Wednesday
                  208
                  203
     Sunday
     Tuesday
                  201
     Thursday
                  199
     Monday
                  199
     Saturday
                  187
     Name: day, dtype: int64
import matplotlib.pyplot as plt
plt.plot(data['date'], data['quarter'])
```


	date	quarter	department	day	team	targeted_productivity	smv	wip	over_time	incentive	idle_time	idle_men	no_of_
date													
2015- 01-01		Quarter1	sweing	Thursday	8	0.80	26.16	1108.0	7080	98	0.0	0	
2015- 01-01		Quarter1	finishing	Thursday	1	0.75	3.94	NaN	960	0	0.0	0	
2015- 01-01		Quarter1	sweing	Thursday	11	0.80	11.41	968.0	3660	50	0.0	0	
2015- 01-01		Quarter1	sweing	Thursday	12	0.80	11.41	968.0	3660	50	0.0	0	
2015- 01-01		Quarter1	sweing	Thursday	6	0.80	25.90	1170.0	1920	50	0.0	0	
%													
4													•

when we checked all feature for null value ,the result shows that "wip" feature has 42% null value and we try to replace the missing data with use interpolate function.

data['wip'].interpolate(method='time',inplace=True)
data.wip

```
date
2015-01-01
             1108.0
2015-01-01
              795.0
2015-01-01
              968.0
2015-01-01
              968.0
2015-01-01
             1170.0
2015-03-11
              935.0
2015-03-11
              935.0
2015-03-11
               935.0
2015-03-11
              935.0
2015-03-11
              935.0
Name: wip, Length: 1197, dtype: float64
```

One of our targets is to dedicate the time feature is an essential and effective factor or not. So, we can first clarify the month of the date and add this feature to our dataset.

```
# Clarify month of date and add to featurs
data['month'] = data['date'].dt.month_name()
data.head()
```

```
date quarter department
                                            day team targeted_productivity
                                                                                       wip over_time incentive idle_time idle_men no_of_
                                                                               smv
      date
      2015- 2015-
                   Quarter1
                                sweing Thursday
                                                     8
                                                                         0.80 26.16 1108.0
                                                                                                 7080
                                                                                                              98
                                                                                                                         0.0
                                                                                                                                    0
     01-01 01-01
     2015- 2015- Ouarter1
                               finishina Thursday
                                                                         በ 75
                                                                               3 94
                                                                                      795 N
                                                                                                  960
                                                                                                                         \cap
                                                                                                                                    Λ
As you can see we add a one feature with month name
     n1_n1 n1_n1 Quarter i
                                sweing inursday
                                                                         U.8U 11.41
                                                                                                              วบ
                                                                                                                         υu
                                                                                      ฯทซ ม
                                                                                                 สตตบ
The data is divided into categorical features, and we will look at how they are made up
# Add the month and no_of_style_change features to categorical
cat = [ 'quarter', 'department', 'day', 'team', 'no_of_style_change', 'month']
# make pie charts with "For" structure for categorical feature
for i in range(len(cat)):
   print(cat[i])
   data[cat[i]].value_counts().plot.pie(autopct='%.2f %%')
   plt.show()
   print()
```

quarter

department

team

With a Bar chart, we can Analyse the features individually

data.quarter.value_counts().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0db8d2a00>

data.day.value_counts().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0db76dc40>

data.team.value_counts().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0db6c7fd0>

data.department.value_counts().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0db6ac700>

data.month.value_counts().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0db5e11c0>

num.columns

```
# Creat histogram with "FOR" for numerical feature
for i in range(len(num.columns)):
    print(num.columns[i])
    num.iloc[:, i].plot(kind='hist')
    plt.show()
    print()
```



```
# Creat boxplots for numerical feature
num.boxplot(column = [ 'idle_time', 'idle_men', 'no_of_workers'],figsize=(8,8) )
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0dbb4fee0>

num.boxplot(column=['wip'],figsize=(8,7))

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0dcc4bcd0>

num.boxplot(column=['incentive'],figsize=(8,7))

num.boxplot(column = ['targeted_productivity', 'actual_productivity'],figsize=(8,7))

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0dc0dd070>

fig_dims = (12,7)
fig, ax = plt.subplots(figsize=fig_dims)
sns.histplot(data=data[['actual_productivity']],ax=ax)
plt.show()


```
fig_dims = (12,7)
fig, ax = plt.subplots(figsize=fig_dims)
sns.histplot(data=data[['targeted_productivity', 'actual_productivity']],ax=ax)
plt.show()
```


corrMatrix = data.corr()
fig, ax = plt.subplots(figsize=(15,15)) # Sample figsize in inches
sns.heatmap(corrMatrix, annot=True, linewidths=.5, ax=ax)
plt.show()

- we can see that there is a very high correlation between SMV and no_of_workers.
- over_time and no_of)workers are correlated

```
fig, ax = plt.subplots(figsize = (8,7))
sns.scatterplot(x=data['smv'], y=data['no_of_workers'])
```


fig, ax = plt.subplots(figsize = (8,7))
sns.scatterplot(x=data['no_of_workers'], y=data['over_time'])

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0e9d2c4f0>

Let us look at few features which have numeric values but are in fact categorical

```
#check few feature which in fact they are categorical
data['no_of_style_change'].value_counts()
```

0 1050 1 114 2 33

Name: no_of_style_change, dtype: int64

Encoding: Performing encoding on the categorical data

```
data[['quarter', 'department', 'day', 'team', 'no_of_style_change', 'month']]
```

		quarter	department	day	team	<pre>no_of_style_change</pre>	month	1
	date							
	2015-01-01	Quarter1	sweing	Thursday	8	0	January	
	2015-01-01	Quarter1	finishing	Thursday	1	0	January	
	2015-01-01	Quarter1	sweing	Thursday	11	0	January	
	2015-01-01	Quarter1	sweing	Thursday	12	0	January	
	2015-01-01	Quarter1	sweing	Thursday	6	0	January	
	2015-03-11	Quarter2	finishing	Wednesday	10	0	March	
data['team']=data 'no_of_style pd.get_dummi	change [, , ,	f_style_char	nge'].a	astype(str)		
data.	pping Date od drop(columns head()			O				

	targeted_productivity	smv	wip	over_time	incentive	idle_time	idle_men	no_of_workers	actual_productivity	quarter_Quart
date										
2015- 01-01	0.80	26.16	1108.0	7080	98	0.0	0	59.0	0.940725	
2015- 01-01	0.75	3.94	795.0	960	0	0.0	0	8.0	0.886500	
2015- 01-01	0.80	11.41	968.0	3660	50	0.0	0	30.5	0.800570	
2015- 01-01	0.80	11.41	968.0	3660	50	0.0	0	30.5	0.800570	
2015- 01-01	0.80	25.90	1170.0	1920	50	0.0	0	56.0	0.800382	
5 rows ×	40 columns									
%										
4										•

Scaling

```
from sklearn.preprocessing import MinMaxScaler
cols_to_scale = ['smv', 'wip', 'over_time', 'incentive', 'no_of_workers', 'idle_time', 'idle_men']
min_max_scaler = MinMaxScaler()
data[cols_to_scale] = min_max_scaler.fit_transform(data[cols_to_scale])
data.head()
```

After encoding and scaling, we can see and describe now dataset shap

data.describe()

	targeted_productivity	smv	wip	over_time	incentive	idle_time	idle_men	no_of_workers	actual_producti
count	1197.000000	1197.000000	1197.000000	1197.000000	1197.000000	1197.000000	1197.000000	1197.000000	1197.00
mean	0.729632	0.235427	0.053902	0.176214	0.010614	0.002434	0.008206	0.374826	0.73
std	0.097891	0.211832	0.094878	0.129198	0.044495	0.042366	0.072644	0.255146	0.17
min	0.070000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.23
25%	0.700000	0.020132	0.034999	0.055556	0.000000	0.000000	0.000000	0.080460	0.65
50%	0.750000	0.239257	0.044646	0.152778	0.000000	0.000000	0.000000	0.367816	0.77
75%	0.800000	0.413473	0.053515	0.268519	0.013889	0.000000	0.000000	0.632184	0.85
max	0.800000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.12

8 rows × 40 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1197 entries, 2015-01-01 to 2015-03-11
Data columns (total 40 columns):

#	Column	Non-Null Count	Dtype
0	targeted productivity	1197 non-null	float64
1	smv	1197 non-null	float64
2	wip	1197 non-null	float64
3	over_time	1197 non-null	float64
4	incentive	1197 non-null	float64
5	idle_time	1197 non-null	float64
6	idle_men	1197 non-null	float64
7	no_of_workers	1197 non-null	float64
8	actual_productivity	1197 non-null	float64
9	quarter_Quarter1	1197 non-null	uint8
10	quarter_Quarter2	1197 non-null	uint8
11	quarter_Quarter3	1197 non-null	uint8
12	quarter_Quarter4	1197 non-null	uint8
13	quarter_Quarter5	1197 non-null	uint8
14	department_finishing	1197 non-null	uint8
15	department_sweing	1197 non-null	uint8
16	day_Monday	1197 non-null	uint8
17	day_Saturday	1197 non-null	uint8
18	day_Sunday	1197 non-null	uint8
19	day_Thursday	1197 non-null	uint8
20	day_Tuesday	1197 non-null	uint8
21	day_Wednesday	1197 non-null	uint8
22	team_1	1197 non-null	uint8
23	team_10	1197 non-null	uint8
24	team_11	1197 non-null	uint8
25	team_12	1197 non-null	uint8
26	team_2	1197 non-null	uint8
27	team_3	1197 non-null	uint8
28	team_4	1197 non-null	uint8
29	team_5	1197 non-null	uint8
30	team_6	1197 non-null	uint8
31	team_7	1197 non-null	uint8
32	team_8	1197 non-null	uint8
33	team_9	1197 non-null	uint8
34	no_of_style_change_0	1197 non-null	uint8
35	no_of_style_change_1	1197 non-null	uint8
36	no_of_style_change_2	1197 non-null	uint8
37	month_February	1197 non-null	uint8
38	month_January	1197 non-null	uint8
39	month_March	1197 non-null	uint8
атур	es: float64(9), uint8(3	1)	

#Training & Splitting

from sklearn import datasets

memory usage: 129.8 KB

 $from \ sklearn.tree \ import \ DecisionTreeClassifier$

```
from sklearn.model_selection import KFold, cross_val_score
#from sklearn.model_selection import StratifiedKFold, cross_val_score
import warnings
warnings.filterwarnings('ignore')
X, y = data.drop(['actual_productivity'], axis=1), data['actual_productivity']#.astype(int)
clf = DecisionTreeClassifier(random_state=42)
##ss = ShuffleSplit(train size=0.6, test size=0.3, n splits = 5)
#scores = cross_val_score(clf, X, y, cv = ss)
k_folds = KFold(n_splits = 5)
scores = cross_val_score(clf, X, y, cv = k_folds)
#sk_folds = StratifiedKFold(n_splits = 5)
#scores = cross_val_score(clf, X, y, cv = sk_folds)
print("Cross Validation Scores: ", scores)
print("Average CV Score: ", scores.mean())
print("Number of CV Scores used in Average: ", len(scores))
      Cross Validation Scores: [nan nan nan nan nan]
      Average CV Score: nan
      Number of CV Scores used in Average: 5
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
print(X_train.shape)
      (837, 39)
input_shape = 39
from sklearn.linear_model import Ridge
from sklearn.feature_selection import RFE
# Creating an estimator
ridge = Ridge()
# Creating RFE object
rfe = RFE(estimator = ridge, n_features_to_select = input_shape, verbose = 1)
# Fitting the training data into our model
rfe.fit(X_train, y_train)
list(zip(X_train.columns,rfe.support_,rfe.ranking_))
      [('targeted_productivity', True, 1),
       ('smv', True, 1), ('wip', True, 1),
       ('over_time', True, 1),
       ('incentive', True, 1), ('idle_time', True, 1),
       ('idle_men', True, 1),
       ('no_of_workers', True, 1),
       ('quarter_Quarter1', True, 1),
       ('quarter_Quarter2', True, 1),
       ('quarter_Quarter3', True, 1), ('quarter_Quarter4', True, 1), ('quarter_Quarter5', True, 1),
       ('department_finishing', True, 1),
       ('department_sweing', True, 1),
       ('day_Monday', True, 1),
('day_Saturday', True, 1),
       ('day_Sunday', True, 1),
       ('day_Thursday', True, 1),
('day_Tuesday', True, 1),
('day_Wednesday', True, 1),
       ('team_1', True, 1),
('team_10', True, 1),
       ('team_11', True, 1),
('team_12', True, 1),
('team_2', True, 1),
       ('team_3', True, 1),
('team_4', True, 1),
('team_5', True, 1),
('team_6', True, 1),
       ('team_6', True, 1),
('team_7', True, 1),
       ('team_8', True, 1),
```

```
('team_9', True, 1),
      ('no_of_style_change_0', True, 1),
      ('no_of_style_change_1', True, 1),
      ('no_of_style_change_2', True, 1),
      ('month_February', True, 1),
     ('month_January', True, 1), ('month_March', True, 1)]
# Let us look at the columns which have been supported by the RFE
RFE_ridge_support_columns = X_train.columns[rfe.support_]
RFE ridge support columns
    'month_March'],
          dtype='object')
# Preparing a new dataset containing only the RFE support columns data
X_train = X_train[RFE_ridge_support_columns]
# Preparing a new dataset containing only the RFE support columns data
X_test = X_test[RFE_ridge_support_columns]
X test.head()
```

	targeted_productivity	smv	wip	over_time	incentive	idle_time	idle_men	no_of_workers	quarter_Quarter1	quarter_Qua
date										
2015- 03-09	0.7	0.366241	0.067878	0.231481	0.008333	0.0	0.0	0.551724	0	
2015- 01-24	0.8	0.000000	0.031149	0.062500	0.000000	0.0	0.0	0.080460	0	
2015- 02-10	0.8	0.239257	0.038633	0.157407	0.013889	0.0	0.0	0.367816	0	
2015- 02-12	0.7	0.024197	0.026087	0.069444	0.000000	0.0	0.0	0.149425	0	
2015- 01-13	0.8	0.445219	0.052087	0.395833	0.016667	0.0	0.0	0.632184	0	

5 rows × 39 columns

from sklearn import linear model

Applying metric's formula from sklearn import metrics models_metrics = pd.DataFrame(columns = ['models', 'mae', 'mse', 'rmse', 'mape', 'R2']) def evaluate_model(model,Y_actual,Y_Predicted, df): mape = np.mean(np.abs((Y_actual - Y_Predicted)/Y_actual))*100 mae=metrics.mean_absolute_error(Y_actual, Y_Predicted) mse=metrics.mean_squared_error(Y_actual, Y_Predicted) rmse=np.sqrt(metrics.mean_squared_error(Y_actual, Y_Predicted)) r2 = metrics.r2_score(Y_actual, Y_Predicted) df2 = {'models':model,'mae':mae,'mse':mse, 'rmse':rmse, 'mape':mape, 'R2': r2} df = df.append(df2, ignore_index = True) return df #Model Building from sklearn.linear_model import Ridge, Lasso from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor

 $from \ sklearn. ensemble \ import \ Random Forest Classifier, \ AdaBoost Classifier$

```
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor

#Linear Regression Model
# Building a model
model_linear = LinearRegression()
model_linear.fit(X_train,y_train)
#Prediction using test set
y_linear_pred = model_linear.predict(X_test)
models_metrics = evaluate_model('Linear Regression', y_test, y_linear_pred, models_metrics)
```

```
plt.scatter(y_test, y_linear_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for Linear Regression Model")
plt.show()
```



```
#Lasso Model
# Building a model
model_lasso = Lasso()
model_lasso.fit(X_train,y_train)
#Prediction using test set
y_lasso_pred = model_lasso.predict(X_test)
models_metrics = evaluate_model('Lasso Regression', y_test, y_lasso_pred, models_metrics)

plt.scatter(y_test, y_lasso_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for Lasso Regression Model")
plt.show()
```

```
#Ridge Model
#Ridge Model
#Building a model
model_ridge = Ridge()
model_ridge.fit(X_train,y_train)
#Prediction using test set
y_ridge_pred = model_ridge.predict(X_test)
# Checking with metrics
models_metrics = evaluate_model('Ridge Regression', y_test, y_ridge_pred, models_metrics)

plt.scatter(y_test, y_ridge_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for Ridge Regression Model")
plt.show()
```


models_metrics

	models	mae	mse	rmse	mape	R2	1
0	Linear Regression	0.104630	0.020869	0.144462	17.649078	0.245628	
1	Lasso Regression	0.127489	0.027683	0.166383	22.537563	-0.000680	

2 Ridge Regression 0.102079 0.018746 0.136915 17.483005 0.322390

```
#Decision Tree
model_dt = DecisionTreeRegressor(random_state = 0)
model_dt.fit(X_train,y_train)
#Prediction using test set
y_dt_pred = model_dt.predict(X_test)
# Checking with metrics
models_metrics = evaluate_model('Decision Tree Regression', y_test, y_dt_pred, models_metrics)

plt.scatter(y_test, y_dt_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for Decision Tree Regression Model")
plt.show()
```

```
#Random Forest
# Building a model
model_rf = RandomForestRegressor(n_estimators = 100 , random_state = 10)
model_rf.fit(X_train,y_train)
#Prediction using test set
y_rf_pred = model_rf.predict(X_test)
# Checking with metrics
models_metrics = evaluate_model('Random Forest Regression', y_test, y_rf_pred, models_metrics)

plt.scatter(y_test, y_rf_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for Random Forest Regression Model")
plt.show()
```



```
#SVR Models
model_svr = SVR(C=25)
model_svr.fit(X_train, y_train)
y_svr_pred = model_svr.predict(X_test)
# model_svr.score(x2_test, y2_test)
models_metrics = evaluate_model('Support Vector Regression', y_test, y_svr_pred, models_metrics)

plt.scatter(y_test, y_svr_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for SVR Regression Model")
plt.show()
```

```
Actual vs Predicted for SVR Regression Model
#KNeighbors Regression
model_kn = KNeighborsRegressor()
model_kn.fit(X_train, y_train)
y_kn_pred = model_kn.predict(X_test)
models_metrics = evaluate_model('KNeighbour Regression def', y_test, y_kn_pred, models_metrics)
                           TOTAL PROPERTY OF STREET
model_kn = KNeighborsRegressor(n_neighbors=3)
model\_kn.fit(X\_train, y\_train)
y_kn_pred = model_kn.predict(X_test)
models_metrics = evaluate_model('KNeighbour Regression 3', y_test, y_kn_pred, models_metrics)
plt.scatter(y_test, y_kn_pred)
plt.plot([y\_test.min(), y\_test.max()], [y\_test.min(), y\_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for KNeighbors Regression Model")
plt.show()
```



```
#XG Boost
import xgboost as xgb
xgbr = xgb.XGBRegressor(verbosity = 0)
xgbr.fit(X_train, y_train)
y_xgb_pred = xgbr.predict(X_test)
models_metrics = evaluate_model('XGBoost', y_test, y_xgb_pred, models_metrics)
plt.scatter(y_test, y_xgb_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for XGBoost Model")
plt.show()
```



```
#Gradient Boosting
from sklearn.ensemble import GradientBoostingRegressor
model_gbr = GradientBoostingRegressor(alpha=0.9,learning_rate=0.05, max_depth=2, min_samples_leaf=5, min_samples_split=2, n_estimators=100, r

model_gbr.fit(X_train, y_train)
y_gbr_pred = model_gbr.predict(X_test)
models_metrics = evaluate_model('Gradient Boost', y_test, y_gbr_pred, models_metrics)
plt.scatter(y_test, y_gbr_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel("Actual Productivity")
plt.ylabel("Predicted Productivity")
plt.title("Actual vs Predicted for Gradient Boost Model")
plt.show()
```


models_metrics

	models	mae	mse	rmse	mape	R2
0	Linear Regression	0.104630	0.020869	0.144462	17.649078	0.245628
1	Lasso Regression	0.127489	0.027683	0.166383	22.537563	-0.000680
2	Ridge Regression	0.102079	0.018746	0.136915	17.483005	0.322390
3	Decision Tree Regression	0.097947	0.030112	0.173529	16.671211	-0.088481
4	Random Forest Regression	0.076509	0.014719	0.121320	13.286285	0.467959
5	Support Vector Regression	0.125738	0.026929	0.164101	20.415145	0.026575
6	KNeighbour Regression def	0.103148	0.022045	0.148477	18.535759	0.203116
7	KNeighbour Regression 3	0.100779	0.022295	0.149316	17.986969	0.194076
8	XGBoost	0.079848	0.014027	0.118434	13.393031	0.492969
9	Gradient Boost	0.086104	0.015304	0.123711	15.096265	0.446784

✓ 0s completed at 11:41 PM

• ×