Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет информационных технологий и программирования Кафедра компьютерных технологий

Рыбак Андрей Викторович

Представление структур данных индуктивными семействами и доказательства их свойств

Научный руководитель: ассистент кафедры ТП Я. М. Малаховски Санкт-Петербург

Содержание

Введение	. 4
Глава 1. Обзор предметной области	. 5
1.1 Структуры данных	
1.1.1 Функциональные структуры данных	
1.2 Индуктивные семейства и зависимые типы	
1.3 Agda	. 6
1.4 Выводы по главе 1	7
Глава 2. Описание реализованной структуры данных	. 9
2.1 Постановка задачи	. 9
2.2 Структура данных «двоичная куча»	
2.2.1 Заполнение дерева	. 10
2.3 Тип данных для двоичной кучи	. 10
2.4 Вставка элементов	10
2.4.1 Вставка элементов в заполненное дерево	. 10
2.4.2 Вставка элементов в незаполненное дерево	. 10
$2.5 \operatorname{todo3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	10
2.5.1 subsection	10
2.5.2	10
2.6	
2.7 Выводы по главе 2	
Заключение	. 11
Список литературы	. 12

Введение

Структуры данных используются в программировании повсеместно для упрощения хранения и обработки данных. Свойства структур данных происходят из инвариантов, которые эта структура данных соблюдает.

Практика показывает, что тривиальные структуры и их инварианты данных хорошо выражаются в форме индуктивных семейств. Мы хотим узнать насколько хорошо эта практика работает и для более сложных структур.

В данной работе рассматривается представление в форме индуктивных семейств структуры данных приоритетная очередь типа «двоичная куча».

Глава 1. Обзор предметной области

В <...> структуры данных позволяют хранить и обрабатывать множество однотипных и/или логически связанных данных в вычислительной технике. Задача (?) структур данных — облегчить написание программ для программистов и ускорить обработку данных.

1.1. Структуры данных

Структуры данных используются в программировании для абстрагирования обработки связанных и однородных данных.

Часто используемые структуры данных ... включаются в стандартные библиотеки языков программирования. Существует несколько различных Основные из них:

• foobar

1.1.1. Функциональные структуры данных

... В отличие от ...

1.2. Индуктивные семейства и зависимые типы

Индуктивные семейства — это типы данных, которые могут зависеть от типов и значений. Например, тип векторов индексированных длиной

module VecSample where

data \mathbb{N} : Set where

 $\mathsf{zero}: \mathbb{N}$

 $succ: \mathbb{N} \to \mathbb{N}$

data $Vec A : \mathbb{N} \to Set$ where

nil: Vec A zero

$$\mathsf{cons} : \forall \ \{n\} \to A \to \mathsf{Vec} \ A \ n \to \mathsf{Vec} \ A \ (\mathsf{succ} \ n)$$

Такое определение позволяет нам описать функцию head для такого списка, которая не может бросить исключение:

$$\mathsf{head} : \forall \ \{A\} \ \{n\} \to \mathsf{Vec} \ A \ (\mathsf{succ} \ n) \to A$$

У аргумента функции head тип Vec A (succ n), то есть вектор, в котором есть хотя бы один элемент. Это позволяет произвести сопоставление с образцом только по конструктору cons:

$$\mathsf{head}\ (\mathsf{cons}\ a\ as) = a$$

Одной из областей применения индуктивных семейств являются системы интерактивного доказательства теорем.

Индуктивные семейства позволяют формализовать математические структуры, кодируя утверждения о структурах в них самих, тем самым перенося сложность из доказательств в определения.

1.3. AGDA

 $Agda\ [1]$ — чистый функциональный язык программирования с зависимыми типами.

В Agda есть поддержка модулей.

${\color{blue} \textbf{module AgdaDescription where}}$

В коде на Agda широко используются символы Unicode. Пример — определение типа натуральных чисел.

data \mathbb{N} : Set where

zero: N

 $\mathrm{succ}:\mathbb{N}\to\mathbb{N}$

В Agda функции можно определять как mixfix операторы. Пример — сложение натуральных чисел:

$$\begin{array}{l} -+_: \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{zero} + b = b \\ \text{succ } a+b = \text{succ } (a+b) \end{array}$$

Символы подчеркивания обозначают места для аргументов.

Зависимые типы позволяют определять типы, зависящие (или индексированные) от значений других типов. Пример — список, индексированный длиной:

```
data Vec\ (A:Set): \mathbb{N} \to Set\ where nil\ : Vec\ A\ zero cons: \forall\ \{n\} \to A \to Vec\ A\ n \to Vec\ A\ (succ\ n)
```

В фигурные скобки заключаются неявные аргументы.

Такое определение позволяет нам описать функцию head для такого списка, которая не может бросить исключение:

$$\mathsf{head} : \forall \ \{A\} \ \{n\} \to \mathsf{Vec} \ A \ (\mathsf{succ} \ n) \to A$$

У аргумента функции head тип Vec A (succ n), то есть вектор, в котором есть хотя бы один элемент. Это позволяет произвести сопоставление с образцом только по конструктору cons:

$$\mathsf{head}\ (\mathsf{cons}\ a\ as) = a$$

1.4. Выводы по главе 1

Рассмотрены некоторые существующие подходы к Описаны различные Кратко описана Кратко описаны особенности языка про-

граммирования Agda.

Глава 2. Описание реализованной структуры данных

В данной главе описывается разработанная функциональная структура данных приоритетная очередь типа «двоичная куча».

2.1. Постановка задачи

Целью данной работы является разработка типов данных для представления структуры данных и инвариантов.

Требования к данной работе:

- Разработать типы данных для представления структуры данных
- Реализовать функции по работе со структурой данных
- Используя разработанные типы данных доказать выполнение инвариантов.

2.2. Структура данных «двоичная куча»

Определение 2.1. Двоичная куча или пирамида [2] — такое двоичное подвешенное дерево, для которого выполнены следующие три условия:

- Значение в любой вершине не больше (если куча для минимума), чем значения её потомков.
- На i-ом слое 2^i вершин, кроме последнего. Слои нумеруются с нуля.
- Последний слой заполнен слева направо (как показано на рисунке 2.1).

Рис. 2.1: Пример заполненной кучи для минимума

2.2.1. Заполнение дерева

2.3. Тип данных для двоичной кучи

2.4. ВСТАВКА ЭЛЕМЕНТОВ

2.4.1. Вставка элементов в заполненное дерево

2.4.2. Вставка элементов в незаполненное дерево

2.5. TODO3

2.5.1. subsection

2.5.2.

2.6.

2.7. Выводы по главе 2

Разработаны типы данных для представления структуры данных двоичная куча.

Заключение

В данной работе реализована структура данных «двоичная куча». Разработаны типы данных для представления структуры данных и инвариантов индуктивными семействами. Реализованы функции для работы со структурой данных. Было доказано соблюдение инвариантов с использованием вспомогательных типов данных.

Таким образом, данная работа удовлетворяет поставленным требованиям.

Список литературы

- $1. \quad Agda\ language.\ http://wiki.portal.chalmers.se/agda/pmwiki.php.$
- 2. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. Introduction to Algorithms, Second Edition. The MIT Press и McGraw-Hill Book Company, 2001. ISBN: 0-262-03293-7, 0-07-013151-1.