Opgave 1

a)

Da $f(x) = \sin(\frac{1}{x})$ er en positiv, kontinuert og aftagende funktion på intervallet $[1, \infty)$, kan vi bruge sætning 2.20 til at konkludere om rækken $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$ er konvergent eller divergent. Det gør vi ved at undersøge det uegentlige integrale $\int_{1}^{\infty} \sin(\frac{1}{x}) dx$. Ved brug af sætningen for partiel integration[2, sætning 5.35] får vi først

$$\int_{1}^{\infty} \sin(\frac{1}{x}) dx = \lim_{b \to \infty} \int_{1}^{b} \sin(\frac{1}{x}) dx$$

$$= \lim_{b \to \infty} \left[\sin(\frac{1}{x}) x \right]_{1}^{b} - \int_{1}^{b} \frac{-\cos(\frac{1}{x})}{x} dx$$

$$= \lim_{b \to 0} \frac{\sin(b)}{b} - \sin(1) - \lim_{b \to \infty} \int_{1}^{b} \frac{-\cos(\frac{1}{x})}{x} dx$$

Her kan vi bruge grænseværdien $\lim_{b\to 0} \frac{\sin(b)}{b} = 1$ og sætningen for integration ved substition[2, sætning 5.39] til at definere $u = \frac{1}{x}$ og få

$$\lim_{b \to 0} \frac{\sin(b)}{b} - \sin(1) - \lim_{b \to \infty} \int_1^b \frac{-\cos(\frac{1}{x})}{x} dx$$

$$= 1 - \sin(1) - \lim_{b \to \infty} \int_1^{\frac{1}{b}} \frac{\cos(u)}{u} du$$

$$= 1 - \sin(1) + \lim_{b \to \infty} \int_{\frac{1}{a}}^1 \frac{\cos(u)}{u} du$$

Herfra kan vi se at det originale integrale $\int_1^\infty \sin(\frac{1}{x})$ er endeligt hvis og kun hvis det uegentlige integrale $\int_0^1 \frac{\cos(x)}{x}$ er endeligt. Vi undersøger nu denne grænseværdi

$$\lim_{b \to \infty} \int_{\frac{1}{b}}^{1} \frac{\cos(u)}{u} du$$

$$\geq \lim_{b \to \infty} \int_{\frac{1}{b}}^{1} \frac{\cos(1)}{u} du$$

$$= \lim_{b \to \infty} \cos(1) \left[\log(u) \right]_{\frac{1}{b}}^{1}$$

$$= \cos(1) \lim_{b \to \infty} \log(1) - \log(\frac{1}{b}) = \infty$$

Altså kan vi konkludere at $\int_1^\infty \sin(\frac{1}{x})$ er divergent, og dermed er rækken $\sum_{n=1}^\infty \sin(\frac{1}{n})$ divergent.

b)

Vi kan kigge på rækken som en differens af to rækker hvor den ene består af $\sum_{n=2}^{\infty} \frac{1}{n^2}$ og den anden består af $\sum_{n=2}^{\infty} \frac{1}{n \log(n)}$. Fra eksempel 2.23[1] kan vi genkende den først som en konvergent p-række, og med brug af sætning 2.9[1] kan vi se at rækken vi er interesseret i vil divergere/konvergere hvis rækken $\sum_{n=2}^{\infty} \frac{1}{n \log(n)}$ divergerer/konvergerer. Vi undersøger derfor denne række ved brug af integraltesten¹ [1, sætning 2.20], da $f(x) = \frac{1}{x \log(x)}$ er en positiv, kontinuert og aftagende funktion på intervallet $[2, \infty)$. Vi får det uegentlige

 $^{^{1}}$ Sætningen siger specifikt at den kan bruges for rækker som starter i n=1, men der er intet i beviset der ikke kan generaliseres til en vilkårlig start værdi

integrale ved brug af integration ved substition [2, sætning 5.39] hvor $u = \log(x)$ til at være

$$\lim_{b \to \infty} \int_{2}^{b} \frac{1}{x \log(x)} dx$$

$$= \lim_{b \to \infty} \int_{\log(2)}^{\log(b)} \frac{1}{x \cdot u} x du$$

$$= \lim_{b \to \infty} \int_{\log(2)}^{\log(b)} \frac{1}{u} du$$

$$= \lim_{b \to \infty} [\log(u)]_{\log(2)}^{\log(b)}$$

$$= \lim_{b \to \infty} \log \log(b) - \log \log(2) = \infty$$

Hvorfra vi kan konkludere at dette integrale divergerer, og dermed divergerer rækken $\sum_{n=2}^{\infty} \frac{1}{n^2} - \frac{1}{n \log n}$.

c)

Ved at forkorte udtrykket i den absolutte række kan vi se at

$$\begin{split} &\sum_{n=1}^{\infty} \left| (-1)^n \frac{(n+c)^2 - (n-c)^2}{n} \right| \\ &= \sum_{n=1}^{\infty} \left| \frac{(n+c)^2 - (n-c)^2}{n} \right| \\ &= \sum_{n=1}^{\infty} \left| \frac{n^2 + c^2 + 2nc - n^2 - c^2 + 2nc}{n} \right| \\ &= \sum_{n=1}^{\infty} \left| \frac{4nc}{n} \right| \\ &= \sum_{n=1}^{\infty} |4c| \end{split}$$

Hvorfra vi kan se ud fra divergenstesten [1, Sætning 2.2] at den eneste tidspunkt denne række vil konvergere er for c = 0, da rækken $\{4c\}_{n \in \mathbb{N}}$ vil divergere for alle andre $c \in \mathbb{R}$.

Opgave 2

Da rækken er alternerende kan vi bruge Leibniz' test [1, sætning 2.30] til at se rækken konvergerer, eftersom den absolutte talfølge $\{\frac{1}{n(n+1)}\}_{n\in\mathbb{N}}$ er monoton aftagende og går mod 0.

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{n(n+1)} \right| = \lim_{n \to \infty} \left| \frac{1}{n(n+1)} \right| = 0$$

At den er monotont aftagende kommer fra at

$$\frac{1}{n(n+1)} > \frac{1}{(n+1)(n+2)} \iff n(n+1) < (n+1)(n+2)$$

$$\iff n^2 + n < n^2 + 3n + 2$$

$$\iff n < 3n + 2$$

Altså vil rækken konvergere og ved brug af observation 2.31[1] kan vi se at den vil konvergere mod $s \in [s_4, s_5]$, hvor s_4 og s_5 er de delsummer vi får af de først 4 og 5 led i rækken. De er givet ved

$$s_4 = \frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \frac{1}{4 \cdot 5} = \frac{11}{30}$$
$$s_5 = s_4 + \frac{1}{5 \cdot 6} = \frac{4}{10}$$

Altså konvergerer den mod $s \in [\frac{3}{10}, \frac{4}{10}].$

Opgave 3

a)

Ved brug af rodtesten [1, sætning 2.26] kan vi undersøge for hvilke a,b>0 at rækken vil konvergere. Vi undersøger derfor følgende grænseværdi²

$$\begin{split} &\lim_{n\to\infty}\sqrt[n]{\frac{n^{an+b}}{(an+b)^n}} = \lim_{n\to\infty}\frac{n^{a+\frac{b}{n}}}{an+b} \\ &= \lim_{n\to\infty}\frac{n^{a-1}\cdot n^{\frac{b}{n}}}{a+\frac{b}{n}} = \frac{\lim_{n\to\infty}n^{a-1}\cdot n^{\frac{b}{n}}}{\lim_{n\to\infty}a+\frac{b}{n}} \\ &= \frac{\lim_{n\to\infty}n^{a-1}\cdot n^{\frac{b}{n}}}{a} = \frac{\lim_{n\to\infty}n^{a-1}\cdot \lim_{n\to\infty}n^{\frac{b}{n}}}{a} \\ &= \frac{\lim_{n\to\infty}n^{a-1}}{a} \end{split}$$

Her er det vigtigt at bemærke at grænseværdien kan splittes op i tæller og nævner i brøken eftersom nævneren er konvergent, og ligeledes må produktet $\lim_{n\to\infty} n^{a-1} \cdot n^{b/n}$ splittes op da $\lim_{n\to\infty} n^{b/n} = 1$.

Herfra får vi følgende konklusion fra rodtesten

$$\lim_{n \to \infty} n^{a-1} = \begin{cases} 0 & \text{if } a < 1\\ \infty & \text{if } a > 1 \end{cases}$$

Altså kan vi konkludere at den original række vil konvergere for a < 1 og et vilkårligt b.

b)

Vi undersøger så tilfældet for a = 1, hvor rodtesten er inkonklusiv. Vi kan omskrive følgen og se at

$$\frac{n^{n+b}}{(n+b)^n} = \left(\frac{n \cdot n^{\frac{b}{n}}}{n+b}\right)^n = \left(\frac{n^{\frac{b}{n}}}{1+\frac{b}{n}}\right)^n = \frac{n^b}{\left(1+\frac{b}{n}\right)^n}$$

Undersøger man $\lim_{n\to\infty} (1+\frac{b}{n})^n$ vil man kunne få stærk inspiration fra eksempel 1.47 [1] og se at

$$\log\left((1+\frac{b}{n})^n\right) = n \cdot \log(1+\frac{b}{n}) = \frac{\log(1+\frac{b}{n})}{\frac{1}{n}}$$

$$= \frac{\log\left(\frac{\frac{1}{b}}{\frac{1}{b}} + \frac{\frac{1}{n}}{\frac{1}{b}}\right)}{\frac{1}{b}} = \frac{\log\left(\frac{\frac{1}{b} + \frac{1}{n}}{\frac{1}{b}}\right)}{\frac{1}{b}} = \frac{\log\left(\frac{1}{b} + \frac{1}{n}\right) - \log\left(\frac{1}{b}\right)}{\frac{1}{b}}$$

²Der bliver brugt adskillige regneregler for grænseværdier, alle er fundet fra [2, kapitel 2.4]

Hvilket er en differenskvotient for $\log(x)$, som vi ved er $\log'(\frac{1}{b}) = \frac{1}{\frac{1}{b}} = b$. Altså kan vi konkludere at

$$\lim_{n \to \infty} (1 + \frac{b}{n})^n = \lim_{n \to \infty} \exp\left(\log\left((1 + \frac{b}{n})^n\right)\right)$$
$$= \exp\left(\lim_{n \to \infty} \log\left((1 + \frac{b}{n})^n\right)\right) = \exp\left(b\right)$$

Vi trækker her på kontinuitet af exp og log samt sætning 1.45 [1]. Vi kan hurtigt konkludere at både exp og log er kontinuerte funktioner i følgens elementer eftersom $(1 + \frac{b}{n})^n > 1$ for b > 0 hvor begge funktioner er kontinuerte.

Så til konklusion må vi have at

$$\lim_{n \to \infty} \frac{n^b}{\left(1 + \frac{b}{n}\right)^n} = \lim_{n \to \infty} \frac{n^b}{\exp(b)} = \infty$$

uanset valget af b så længe b > 0. Altså konkluderer vi ved brug af divergenstesten [1, sætning 2.2] at talrækken $\sum_{n=1}^{\infty} \frac{n^{n+b}}{(n+b)^n}$ er divergent da talfølgen ikke har grænseværdi 0.

Opgave 4

 \mathbf{a}

Jeg definerer først $S_N(x) := \sum_{n=1}^N \frac{1-\sin(nx)}{n^p}$. Vi er derfor interesserede i funktionsfølgen $\{S_N(x)\}_{N\in\mathbb{N}}$. For denne funktionsfølge må vi da have at

$$\forall x \in \mathbb{R} \forall n \in \mathbb{N} : |S_N(x)| = \left| \frac{1 - \sin(nx)}{n^p} \right| \le \frac{2}{n^p}$$

Ud fra dette kan vi bruge Weierstrass' Majoranttest[1, sætning 3.24] til at konkludere at $\sum_{n=1}^{\infty} \frac{1-\sin(nx)}{n^p}$ konvergerer uniformt på \mathbb{R} , da $\sum_{n=1}^{\infty} \frac{2}{n^p}$ er en p-række som konvergerer for p>1 [1, eksempel 2.23].

Da uniform konvergens mdefører punktvis konvergens har vi derfor at rækken konvergerer punktvis.

b)

Vi kan starte med at konkludere fra forrige opgave at $S_N(x)$ konvergerer uniformt mod s^p på \mathbb{R} for p > 1. Derudover kan vi også se at $S_N(x)$ er kontinuert på \mathbb{R} fordi at summen af kontinuerte funktioner giver en kontinuert funktion. Hvert led i $S_N(x)$ er kontinuert på \mathbb{R} simpelthen fordi at $\sin(nx)$ er kontinuert på \mathbb{R} . Altså har vi en funktionsfølge $\{S_n(x)\}_{n\in\mathbb{N}}$ hvor hvert element i følge er kontinuert og den konvergerer uniformt mod s^p , altså må s^p være kontinuert på \mathbb{R} grundet sætning 3.13[1].

c)

Det kan rimelig let ses at $S_N(x)$ er differentiabel for $x \in \mathbb{R}$ da $1 - \sin(nx)$ er differentiabel. Jeg starter derfor med at kigge på følgen $\{S_n(x)'\}_{n \in \mathbb{N}}$. Da kan jeg se at følgens elementer er givet ved:

$$S_N(x)' = \left(\sum_{n=1}^N \frac{1 - \sin(nx)}{n^p}\right)' = \sum_{n=1}^N \left(\frac{1 - \sin(nx)}{n^p}\right)' = \sum_{n=1}^N \frac{-\cos(nx) \cdot x}{n^p} = \sum_{n=1}^N \frac{-\cos(nx)}{n^{p-1}}$$

Da vil jeg kunne se at rækken $\sum_{n=1}^{\infty} \frac{-\cos(nx)}{n^{p-1}}$ konvergerer uniformt på $\mathbb R$ for p>2, igen grundet Weierstrass' Majoranttest[1, sætning 3.24] da

$$\left| \frac{-\cos(nx)}{n^{p-1}} \right| \le \frac{1}{n^{p-1}}$$

Hvilket igen udgør elementer i en p-række som konvergerer for p > 2.

Altså har vi nu at $\{S_N(x)\}_{N\in\mathbb{N}}$ konvergerer uniformt mod s^p på \mathbb{R} for p>1, og $\{S_N(x)'\}_{N\in\mathbb{N}}$ konvergerer uniformt mod $\sum_{n=1}^{\infty} \frac{-\cos(nx)}{n^{p-1}}$ på \mathbb{R} for p>2. Da vil vi kunne bruge korollar 3.20 til at konkludere at s^p er differentiabel for p>2 og $s^p(x)'=\sum_{n=1}^{\infty} \frac{-\cos(nx)}{n^{p-1}}$. Ydermere har vi faktisk allerede kunne argumenteret for at $s^p(x)'$ er kontinuert af samme grunde som i opgave b). Altså at hver følgeelement $S_N(x)'$ er kontinuert (da $\cos(x)$ er kontinuert) og vi har uniform konvergens mod $s^p(x)'$, da må det følge af sætning 3.13[1] at $s^p(x)'$ er kontinuert.

d)

Opgaven her består af fuldstændig samme argumentation som i delopgave c), derfor vil jeg hoppe lidt hurtigere henover nogle af detaljerne. Da $-\cos(nx)$ er differentiabel, kan vi finde $S_N(x)''$:

$$S_N(x)'' = \left(\sum_{n=1}^N \frac{-\cos(nx)}{n^{p-1}}\right)' = \sum_{n=1}^N \left(\frac{-\cos(nx)}{n^{p-1}}\right)' = \sum_{n=1}^N \frac{\sin(nx) \cdot x}{n^{p-1}} = \sum_{n=1}^N \frac{\sin(nx)}{n^{p-2}}$$

Her kan man igen bruge Weierstrass' Majoranttest med $\frac{1}{n^{p-2}}$ som majorrantrække til at se at $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^{p-2}}$ konvergerer uniformt på \mathbb{R} for p>3. Da $S_N(x)''$ er kontinuert og konvergerer uniformt kan vi igen konkludere at $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^{p-2}}$ er kontinuert. Da vi har uniform konvergens for både $\{S_N(x)'\}_{n\in\mathbb{N}}$ og $\{S_N(x)''\}_{n\in\mathbb{N}}$, kan vi igen bruge korollar 3.20 til at konkludere at $s^p(x)'' = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^{p-2}}$. Altså kan vi konkludere at $s^p(x)$ er C^2 for p>3.

Litteratur

- [1] H. Schlichtkrull S. Eilers, M. Christiandl. Analyse 1. 5. udgave edition, 2023.
- [2] T. G. Madsen S. Eilers, E. Hansen. Indledende Matematisk Analyse. 12. udgave edition, 2021.