Comparative analysis for Predictive Maintenance of Industrial Compressors

Executive Summary

This report presents a detailed comparison between two models for anomaly detection in compressor predictive maintenance: Qwen 2.5 (a Large Language Model) and LSTM (a traditional machine learning approach). The comparison evaluates both models across various performance metrics, with a focus on anomaly detection capabilities.

Key findings: Qwen 2.5 achieves an accuracy of 99.8% compared to LSTM's 87.3%, with a difference of 12.5 percentage points. Qwen 2.5 correctly identified

11/11 anomalies (100.0%), while LSTM identified 4/11 (36.4%).

Overall Performance Metrics

99.8% Qwen 2.5 Accuracy	87.3% LSTM Accuracy	0.846 Qwen 2.5 Precision	0.029 LSTM Precision
4 000	0.364	0.917	0.053
1.000	01001		•

Anomaly Detection Capability

Qwen 2.5: Detected 11 out of 11 actual anomalies (100.0%) **LSTM:** Detected 4 out of 11 actual anomalies (36.4%)

Detailed Metrics Comparison

Classification Performance

Metric	Qwen 2.5	LSTM	Difference	Better Model
Accuracy	99.8%	87.3%	12.5% ↑	Qwen 2.5
Precision	0.846	0.029	0.818 ↑	Qwen 2.5
Recall (Sensitivity)	1.000	0.364	0.636 ↑	Qwen 2.5
F1 Score	0.917	0.053	0.864 ↑	Qwen 2.5
Specificity	0.998	0.878	0.120 ↑	Qwen 2.5
AUC-ROC	0.500	0.729	-0.229 ↓	LSTM

Error Metrics

Metric	Qwen 2.5	LSTM	Difference	Better Model
Mean Absolute Error (MAE)	0.002	0.127	-0.125 ↑	Qwen 2.5
Mean Squared Error (MSE)	0.002	0.127	-0.125 ↑	Qwen 2.5
Root Mean Squared Error (RMSE)	0.042	0.356	-0.314 ↑	Qwen 2.5
False Positive Rate	0.002	0.122	-0.120 ↑	Qwen 2.5
False Negative Rate	0.000	0.636	-0.636 ↑	Qwen 2.5

Confusion Matrix Values

Metric	Qwen 2.5	LSTM	Difference	Better Model
True Positives	11	4	7 ↑	Qwen 2.5
True Negatives	1117	983	134 ↑	Qwen 2.5
False Positives	2	136	-134 ↑	Qwen 2.5
False Negatives	0	7	-7 ↑	Qwen 2.5
	:	:		

Visual Performance Comparison

Qwen 2.5 Confusion Matrix **LSTM Confusion Matrix**

0.85

Predictions

LSTM Prediction Timeline

Timeline of predictions showing correct and incorrect classifications for both models

Conclusion

Correct

Incorrect

Based on the comprehensive analysis, Qwen 2.5 outperforms LSTM in overall accuracy and most key metrics for anomaly detection in compressor maintenance prediction.

- Key advantages of using a Large Language Model (Qwen 2.5) for predictive maintenance: • Better contextualization of anomalies within the operating environment
 - Ability to incorporate domain knowledge and company-specific maintenance policies • More detailed explanations of detected anomalies and potential causes
 - Flexibility to adapt to new types of anomalies without retraining • Integration of unstructured data sources such as maintenance logs and manuals

These results support the integration of LLMs into industrial predictive maintenance systems, particularly for complex equipment like compressors where context and domain knowledge significantly impact maintenance decision-making.