MATH 2031 Introduction to Real Analysis

October 8, 2012

Tutorial Note 4

Countability

(I) Definition:

A set S is **countably infinite** iff \exists bijection $f : \mathbb{N} \to S$ (i.e. $Card S = \aleph_0$)

(II) Definition:

A set S is **countable** iff S is finite or S is countably infinite.

(III) Definition:

A set S is uncountable iff S is not countable. (So a set is uncountable implies it must be infinite).

(IV) Bijection Theorem:

Let $g: S \to T$ be a bijection. S is countable $\Leftrightarrow T$ is countable.

(V) Countable Subset Theorem:

Let $A \subseteq B$. If B is countable, then A is countable. (Contrapositive: If A is uncountable, then B is uncountable.)

(VI) Countable Union Theorem:

If $\forall n \in \mathbb{N}$, A_n is countable, then $\bigcup_{n \in \mathbb{N}} A_n$ is countable. In general, we can take union over a countable set, instead of \mathbb{N} .(i.e. countable union of countable sets is countable).

(VII) Product Theorem:

For $n \in \mathbb{N}$, if $A_1, A_2, \dots A_n$ are countable, then $A_1 \times A_2 \times \dots \times A_n$ is countable. (i.e. finite product of countable sets is countable).

(VIII) Injection Theorem:

Let $f:A\to B$ be an injection. If B is countable, then A is countable. (contrapositive: if A is uncountable, then B is uncountable.)

(IX) Surjection Theorem:

Let $g:A\to B$ be an surjection. If A is countable, then B is countable. (contrapositive: if B is uncountable, then A is uncountable.)

Problem 1 Determine if the following sets are countable or not

- (i) the integers \mathbb{Z}
- (ii) the rational number Q
- (iii) the irrational number $\mathbb{R} \setminus \mathbb{Q}$

Solution:

(i) It's countable since there is a bijection $f: \mathbb{N} \to \mathbb{Z}$ given as follow,

$$f(n) = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$

(ii) It's countable

Since
$$\mathbb{Q} = \{\frac{m}{n} : m, n \in \mathbb{Z} \text{ and } n > 0\} = \bigcup_{m \in \mathbb{Z}} \{\frac{m}{n} : m, n \in \mathbb{Z} \text{ and } n > 0\}$$

It's a countable union of a countable set, so \mathbb{Q} is countable.

(iii) Recall that \mathbb{R} is uncountable and by above part \mathbb{Q} is a countable set. Assume the irrational number $\mathbb{R} \setminus \mathbb{Q}$ is countable, then $\mathbb{R} = \mathbb{Q} \cup \mathbb{R} \setminus \mathbb{Q}$ which is a union of 2 countable sets. Contradiction. Hence, $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.

Problem 2 Determine the following set is countable or not

$$A = \{ (0.a_1 a_2 \cdots a_{100}) : a_i \in \mathbb{N} \}$$

Solution:

We can consider the following bijection $g: A \to \times_{n=1}^{100} \mathbb{N}$ given by $g((0.a_1a_2 \cdots a_{100})) = (a_1, a_2, \cdots a_{100})$, with the inverse $g^{-1}: \times_{n=1}^{100} \mathbb{N}$ to A given by $g^{-1}((a_1, a_2, \cdots, a_{100})) = (0.a_1a_2 \cdots a_{100})$.

As \mathbb{N} is countable, then $\times_{n=1}^{100}\mathbb{N}$ is a finite product of countable set, which is countable. Then A is bijective to $\times_{n=1}^{100}\mathbb{N}$, so it's also countable.

Problem 3 Let $\{x \in \mathbb{R} : x^5 + 8x^3 - 7x + 10 \in \mathbb{N}\}\$

Solution:

$$\{x \in \mathbb{R} : x^5 + 8x^3 - 7x + 10 \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{x \in \mathbb{R} : x^5 + 8x^3 - 7x + 10 = n\}.$$

Noted that $x^5 + 8x^3 - 7x + 10 = n$ has at most 5 elements as it's a polynomials over \mathbb{R} of degree 5. Thus the set is in fact a countable union of finite set. Therefore, it's countable.

Problem 4 Determine the following sets are countable or not

- (i) $A = \{a^4 + e^b : a \in \mathbb{Z} \text{ and } b \in \mathbb{R} \setminus \mathbb{Q} \}$
- (ii) $B = \{ \sin(|x|) + x : x \in \mathbb{R} \}$
- (iii) $C = \{(x^y, \pi z^3) : x, y \in \mathbb{Z}, z \in \mathbb{R} \setminus \mathbb{Q}\}$
- (iv) $D = \{(x^2, [y]) : x \in \mathbb{Q} \text{ and } y \in \mathbb{R} \}$ where, [y] is the greatest integer less then y

Solution:

(i) We can see that $A = \{a^4 + e^b : a \in \mathbb{Z} \text{ and } b \in \mathbb{R} \setminus \mathbb{Q}\} = \bigcup_{a \in \mathbb{Z}} \{a^4 + e^b : b \in \mathbb{R} \setminus \mathbb{Q}\} \supseteq \{e^b : b \in \mathbb{R} \setminus \mathbb{Q}\}$

Consider the set $\{e^b:b\in\mathbb{R}\setminus\mathbb{Q}\}$, as e^x is a strictly increasing function, we can define a function $f:\mathbb{R}\setminus\mathbb{Q}\to\{e^b:b\in\mathbb{R}\setminus\mathbb{Q}\}$ given by $f(b)=e^b$ which is injective. (Since $f(b)=f(b')\Rightarrow e^b=e^{b'}\Rightarrow b=b'$). By injection theorem, as $\mathbb{R}\setminus\mathbb{Q}$ is uncountable, $\{e^b:b\in\mathbb{R}\setminus\mathbb{Q}\}$ is uncountable, then by countable subset theorem, $A\supseteq\{e^b:b\in\mathbb{R}\setminus\mathbb{Q}\}$, so A is also uncountable.

(ii) As $B = \{\sin(|x|) + x : x \in \mathbb{R}\} = \{\sin(x) + x : x \in [0, \infty)\} \cup \{-\sin(x) + x : x \in (-\infty, 0)\}$. Consider the subset $\{\sin(x) + x : x \in [0, \frac{\pi}{2})\}$ of $\{\sin(x) + x : x \in [0, \infty)\}$, then $\sin(x) + x$ is a strictly increasing function on $[0, \frac{\pi}{2})$ as its derivative is positive, so we can define a function $f : [0, \frac{\pi}{2}) \to \{\sin(x) + x : x \in [0, \frac{\pi}{2})\}$ given by $f(x) = \sin(x) + x$. then by injection theorem, $[0, \frac{\pi}{2})$ is uncountable implies $\{\sin(x) + x : x \in [0, \frac{\pi}{2})\}$ is also uncountable.

As $B \supseteq \{\sin(x) + x : x \in [0, \infty)\} \supseteq \{\sin(x) + x : x \in [0, \frac{\pi}{2})\}$, we get B is uncountable by countable subset theorem.

(iii) Notice that the projection to the second coordinate $P:C=\{(x^y,\pi z^3):x,y\in\mathbb{Z},z\in\mathbb{R}\setminus\mathbb{Q}\}\to\{\pi z^3:z\in\mathbb{R}\setminus\mathbb{Q}\}$ given by P((a,b))=b is a surjection.

Also, we could see that there is a bijection $f: \{\pi z^3: z \in \mathbb{R} \setminus \mathbb{Q}\} \to \mathbb{R} \setminus \mathbb{Q}$ given by $f(a) = \sqrt[3]{\frac{a}{\pi}}$, with the inverse $f^{-1}: \mathbb{R} \setminus \mathbb{Q} \to \{\pi z^3: z \in \mathbb{R} \setminus \mathbb{Q}\}$ given by $f^{-1}(z) = \pi z^3$. In particular, $f: \{\pi z^3: z \in \mathbb{R} \setminus \mathbb{Q}\} \to \mathbb{R} \setminus \mathbb{Q}$ is surjective.

Since the composition of surjections is again surjection, $f \circ P : C \to \mathbb{R} \setminus \mathbb{Q}$ is a surjection. As $\mathbb{R} \setminus \mathbb{Q}$ is an uncountable set, C is also uncountable.

(iv) A priori, the set D has a variable y coming from an uncountable set \mathbb{R} . Usually we would guess it's also uncountable. However, here we should beware that such [y] is an integer.

Then
$$D\subseteq \underbrace{\mathbb{Q}\times\mathbb{Z}}_{\text{countable}}$$
 , so D is countable.