

ModelArts

用户指南

发布日期 2018-11-15

目录

1 文档导读	1
2 准备工作	2
2.1 申请 ModelArts	2
2.2 ModelArts 全局配置	2
2.3 上传数据至 OBS	4
3 如何使用 ModelArts	5
3.1 ModelArts 使用简介	5
3.2 自动学习: 零基础构建 AI 模型	5
3.3 预置算法: 快速生成模型	9
3.4 代码开发: AI 开发全流程管理	13
4 自动学习	21
4.1 自动学习简介	21
4.2 创建自动学习项目	22
4.3 图像分类	23
4.3.1 数据标注	23
4.3.2 模型训练	27
4.3.3 部署上线	28
4.4 物体检测	29
4.4.1 数据标注	29
4.4.2 模型训练	31
4.4.3 部署上线	32
4.5 预测分析	33
4.5.1 数据标注	33
4.5.2 模型训练	33
4.5.3 部署上线	34
5 数据管理	37
5.1 数据管理简介	37
5.2 数据标注	37
5.3 数据集	37
6 开发环境	40
7 训练作业	43

用户指南	目录
/ 14 / 3 11 11 3	L *3*

/147 4H-114	
7.1 训练作业简介	
7.2 预置算法	47
7.3 作业参数管理	
7.4 TensorBoard	49
8 模型管理	52
9 部署上线	56
9.1 部署上线简介	56
9.2 在线服务	56
9.3 批量服务	64
9.4 边缘服务	66
10 市场	
11 修订记录	74

1 文档导读

本文档包含了使用ModelArts前的准备工作、如何使用ModelArts以及各功能模块操作的相关指导,您可以根据表1-1查找您需要的内容。

表 1-1 文档导读

阶段	章节
使用ModelArts前必做的准备工作	申请ModelArtsModelArts全局配置上传数据至OBS
了解如何使用ModelArts,并基于入门样例快速熟悉ModelArts三种AI模型开发方式流程和相关操作	● 自动学习:零基础构建AI模型● 预置算法:快速生成模型● 代码开发: AI开发全流程管理
熟悉ModelArts自动学习相关操作	● 自动学习
熟悉ModelArts管理控制台中数据管理、开发环境、训练作业、模型管理及部署上线相关操作	● 数据管理● 开发环境● 训练作业● 模型管理● 部署上线
查看ModelArts市场中共享的数据集和模型	● 市场

2 准备工作

2.1 申请 ModelArts

当前ModelArts处于公测阶段,需要申请公测并通过审核才能使用ModelArts。

您可以登录**华为云**,进入ModelArts管理控制台,单击"立即申请",并填写申请信息以申请ModelArts公测。(您也可以直接点击https://console.huaweicloud.com/modelarts/?region=cn-north-1#/beta,进入申请ModelArts公测页面)

□□说明

- 申请完成后请等待系统管理员审核,您可在"我的公测"页面查看审批状态。当审批状态为 "审批通过"时,则可以开始使用ModelArts。
- 公测审批当前是人工审批,一般需要等待2~3天,如遇节假日顺延。

2.2 ModelArts 全局配置

由于使用ModelArts时,您使用的Notebook、训练作业、模型和服务需要使用对象存储功能;若没有添加访问密钥,则无法使用对象存储功能。因此在使用ModelArts进行AI模型开发前,您需要完成以下2个步骤:

- 1. 获取访问密钥
- 2. 添加访问密钥

获取访问密钥

步骤1 登录华为云,打开"我的凭证"页面(您可直接点击https://console.huaweicloud.com/iam/#/myCredential, 进入"我的凭证"页面)。

步骤2 单击"管理访问密钥"页签,单击"新增访问密钥"按钮。

步骤3 在弹出的"新增访问密钥"对话框,输入当前用户的登录密码,通过已验证手机或已验证邮箱进行验证,输入对应的验证码,如图2-1所示。

图 2-1 新增访问密钥

新增访问密钥

单击"确定"生成您的访问密钥并下载,单击"取消"返回我的凭证。

已验证手机	+86 151****99	通过已验证邮箱验证
* 登录密码		
* 短信验证码		免费获取短信验证码
		确定 取消

步骤4 单击"确定"。

步骤5 根据浏览器提示,保存密钥。密钥会直接保存到浏览器默认的下载文件夹中。

步骤6 打开下载下来的"credentials.csv"文件既可获取到访问密钥(AK和SK)。

----结束

添加访问密钥

步骤1 在ModelArts控制台界面,单击左侧导航栏"全局配置"。

步骤2 单击"全局配置"界面中的"添加访问密钥",在弹出的对话框中,填写获取的访问密钥,如图2-2所示。

图 2-2 添加访问密钥

添加访问密钥

*访问密钥(AK)	请输入访问密钥
*私有访问密钥(SK)	请输入私有访问密钥
如何创建访问密钥?	
	确定 取消

□说明

- "访问密钥"填写Access Key Id, "私有访问密钥"填写Secret Access Key。
- 请确保所填写的AK、SK为当前账号所获取的。

步骤3 单击"确认",完成访问密钥的添加。

----结束

2.3 上传数据至 OBS

使用ModelArts处理数据时,需要先将数据上传到华为云对象存储服务(OBS)桶中。您可以登录OBS管理控制台,单击"创建桶"。OBS桶创建完成后,可以在您创建的OBS桶中创建文件夹,然后再进行数据的上传。

□ 说明

由于当前ModelArts部署在华北-北京一,您在创建OBS桶时请选择华北-北京一。

OBS上传数据的详细操作请参见《对象存储服务控制台指南》。

3 如何使用 Model Arts

3.1 ModelArts 使用简介

ModelArts是面向AI开发者的一站式开发平台,通过AI开发全流程管理助您智能、高效地创建AI模型和一键部署到云、边、端。

ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。通过ModelArts您可以使用以下三种方式进行AI 模型的开发:

- 1. 如果您是业务开发者,无AI开发经验,您可以使用ModelArts的自动学习功能,进行零基础构建AI模型,详细介绍请参见自动学习:零基础构建AI模型。
- 2. 如果您是AI初学者,有一定AI开发经验,您可以上传业务数据至OBS,然后对 ModelArts预置的算法进行重训练,从而得到新模型,详细介绍请参见**预置算法:** 快速生成模型。
- 3. 如果您是AI工程师,熟悉代码编写和调测,您可以使用ModelArts提供的在线代码 开发环境,编写训练代码进行AI模型的开发,详细介绍请参见**代码开发: AI开发 全流程管理**。

3.2 自动学习:零基础构建 AI 模型

ModelArts自动学习功能可以根据标注数据自动设计模型、自动调参和训练、自动压缩和部署模型,不需要代码编写和模型开发经验,即可实现零基础构建AI模型。

当前自动学习支持快速创建图像分类、物体检测和预测分析模型。图像分类是识别图片中是否是某类物体。物体检测是识别图片里每个物体的位置、类别。预测分析是对结构化数据做出分类或者数值预测。

使用流程

使用自动学习零基础构建AI模型流程如图3-1所示。

2018-11-15 5

图 3-1 自动学习使用流程

准备工作

- 申请ModelArts
- ModelArts全局配置
- · 上传数据至OBS

创建自动学习项目

当前可创建图像分类、物体检测和预测分析三类自动学习项目

• 预测分析

数据标注

• 指定数据Label列 及类型

图片标注

• 对未标注的图片添加标签或修改已标注图片

自动训练

- 完成数据标注后, 可开始模型训练
- 可根据实际需求训 练多个版本

自动训练

- •设置训练参数,开始模型训练
- 可根据实际需求训 练多个版本

部署上线

- 选择准确度理想的 模型部署上线
- 可进行代码调试并查看结果

部署上线

- 选择准确度理想的 模型部署上线
- 可添加图片进行测试并查看结果

入门样例场景描述

"云宝"是华为云的吉祥物,本样例基于ModelArts平台,详细介绍如何使用自动学习对预置的云宝数据集进行训练,快速构建云宝图像识别应用。

操作步骤主要分为4部分:

- 1. **数据准备**:通过ModelArts市场中预置的数据集,创建自动学习项目中所需要的云宝数据集。
- 2. **创建物体检测项目**:使用云宝数据集创建物体检测项目。
- 3. 自动训练: 创建项目后,发布训练。
- 4. **部署上线:** 完成模型训练后,进行服务的部署及测试。

∭说明

● 使用ModelArts开始本样例操作前,请完成准备工作中的申请ModelArts和ModelArts全局配置。

数据准备

步骤1 登录"ModelArts"管理控制台,单击左侧导航栏"市场"。在"数据集"页签,找到自动学习对应的云宝预置数据集"Yunbao-Data-Set"。

步骤2 单击进入该预置数据集Yunbao-Data-Set详情页面,单击"导入到我的数据集",页面会自动跳转到"数据管理>数据集"页面进行创建。

步骤3 查看创建的云宝数据集(Yunbao-Data-Set)。在"数据集目录"页签获取创建的云宝数据集的桶信息,如图3-2所示。

图 3-2 云宝数据集桶信息

数据集

----结束

创建物体检测项目

步骤1 在ModelArts管理控制台,单击左侧导航栏"自动学习"。

步骤2 单击物体检测方框中的"创建项目",在弹出的对话框中填写项目名称,训练数据选择云宝数据集OBS路径/yunbao-data-set-c79800ac-abb5-40f4-8398-60e50f503649/Data/(确保目录结构正确,选择到Data层),如图3-3所示。

图 3-3 创建项目

创建项目		×
*名称	demo-yb-8826	
*训练数据	/yunbao-data-set-c79800ac-abb5-40f4-8398- 请提前将需要的数据上传至OBS桶,如何上传数据	
描述		
	0/200	
	确定 取消	

步骤3 单击"确定",完成物体检测项目创建。

----结束

自动训练

步骤1 在自动学习项目列表中单击项目名称,进入当前自动学习项目"数据标注"页签。

步骤2 在数据标注页面单击 , 执行数据源同步操作,同步完成后如<mark>图3-4</mark>所示。

图 3-4 数据源同步

∭说明

● 预置的云宝数据集部分图片已经标注,您可以直接使用已经标注的图片进行训练。您也可以 在"未标注"页签,完成所有图片的标注,图片标注操作请参见图片标注。

步骤3 单击右侧的"开始训练",启动模型训练。

----结束

部署上线

步骤1 当"模型训练"页签中训练状态为"已完成"时,单击页签右侧"部署",完成物体检测模型的部署。

步骤2 部署成功后,可在"部署上线"页签上传图片测试,如图3-5所示。

如模型准确率不满足预期,可在"数据标注"页签中添加图片并进行标注,重新进行模型训练及部署上线。

图 3-5 服务测试

----结束

3.3 预置算法: 快速生成模型

ModelArts预置了多种已经训练好的模型,您可以上传自己的业务数据对预置模型进行重训练,无需编写代码即可快速生成模型。

使用流程

使用预置算法快速生成模型流程如图3-6所示。

图 3-6 预置算法使用流程

准备工作

- 申请ModelArts
- ModelArts全局配置
- 上传数据至OBS

数据处理

- •如是图片数据,可 对未标注图片添加 标签
- 创建训练数据集

模型训练

• 使用预置算法创建 训练作业,进行模 型的训练

部署上线

• 可将模型部署为在 线服务、批量服务 或边缘服务

导入模型

训练结束后,导入 模型至模型管理

入门样例场景描述

本样例基于ModelArts平台,详细介绍如何使用flowers数据集对预置ResNet_v1_50模型进行重训练,快速构建花卉图像分类应用。

操作步骤主要分为4部分:

- 1. 数据准备:下载flowers数据集,上传数据至华为云对象存储服务(OBS)中。
- 2. 模型训练: 使用flowers训练集对ResNet v1 50模型重训练。
- 3. 导入模型:训练结束后,导入模型至模型管理。
- 4. **部署上线:**将得到的模型,部署为在线预测服务,并添加图片进行测试。

□说明

● 使用ModelArts开始本样例操作前,请完成准备工作中的申请ModelArts和ModelArts全局配置

数据准备

步骤1 下载并解压缩数据集压缩包 "flower_photos.tgz", flowers数据集的下载路径为: https://dls-public-data.obs.cn-north-1.myhwclouds.com/tensorflow/modelarts flowers.zip。

步骤2 参见上传数据至OBS,将数据集上传至OBS桶中(假设OBS桶路径为: "s3://modelarts-example/datasets/flowers_split")。

该路径下包含了模型训练需要的所有图像文件, 目录下有5种类别, 分别为: daisy, dandelion, roses, sunflowers, tulips, 目录结构为:

s3://modelarts-example/datasets/flowers_split
 |- 01.jpg
 |- 01.txt
 |- ...
 |- n.jpg

|- n.txt |- ...

----结束

模型训练

步骤1 单击ModelArts左侧导航栏的"训练作业",在"预置算法"页签找到名称为 ResNet_v1_50的模型,单击右侧"创建训练"。

步骤2 在"创建训练作业"界面填写参数,如图3-7所示。

其中"数据的存储位置"(s3://modelarts-example/datasets/flowers_split),即数据所在的父目录; "运行参数",增加参数max_epoches=10,max_training_time=100000(防止数据量大时获取数据速度慢,训练时间过长而退出训练); "训练输出位置"请选择一个路径(建议新建一个文件夹s3://modelarts-example/log)用于保存输出模型和预测文件。

∭说明

参数 \max_{epoches} : 1个epoch代表整个数据集,此处表示训练10个epoch,数值可更改,不填写时使用默认值。

图 3-7 使用预置算法创建训练作业

创建训练作业 🔻	返回作业列表
*名称 版本 描述	train_flowers V0001 版本信息为自动生成 xxx 3/256
一键式参数配置 * 数据来源	如果您创建之前已保存过参数配置,可选择已有参数帮助您快速配置,点击选择 作业参数配置。 数据集 数据存储位置
* 算法来源	* 数据存储位置 /modelarts-example/datasets/flowers_s 选择
运行参数	* 预置算法 ResNet_v1_50
*训练输出位置	增加运行参数 /modelarts-example/log/ 一般训练输出位置为空目录,如果该目录下已有文件,请确保这些文件需要被加载。
*计算节点规格 *计算节点个数	2核 8GiB 1*P100
□ 保存作业参数	

步骤3 参数确认无误后,单击"立即创建"完成训练作业的创建。

----结束

导入模型

步骤1 在ModelArts"模型管理"界面,单击左上角"导入",参考图3-8填写参数。

其中"元模型来源"选择"指定元模型位置", "选择元模型"的路径与训练模型中"训练输出位置"保持一致(s3://modelarts-example/log), "AI引擎"选择"TensorFlow"。

图 3-8 导入模型

步骤2 单击"立即创建"。当模型状态为"正常"时,则表示导入成功。

----结束

部署上线

步骤1 在ModelArts"部署上线"界面,单击"在线服务"页签上方的"部署",参考图3-9填写参数,单击"立即创建",完成模型的部署。

图 3-9 部署为在线服务

步骤2 在"在线服务"界面中,单击服务名称,进入详情页面,可添加图片进行测试。
----结束

3.4 代码开发: AI 开发全流程管理

ModelArts集成了Jupyter Notebook,您可以通过创建开发环境,自行编写模型训练代码和调测,然后使用编写好的训练代码创建训练作业,进行模型的训练和部署。

使用流程

通过自行编写代码进行AI模型开发流程如图3-10所示。

图 3-10 代码开发使用流程

入门样例场景描述

MNIST数据集为手写数字图像数据集,每张图片大小为28*28像素,每张图片上有一个手写阿拉伯数字,数字分别为从0~9。

本样例基于ModelArts平台,详细介绍如何使用MXNet框架编写模型训练代码,然后进行模型的训练和部署,实现MNIST数据集的手写数字图像识别应用。

操作步骤主要分为5部分:

- 1. 数据准备:下载MNIST数据集,上传数据至OBS。
- 2. 编写训练代码: 创建Notebook,编写模型训练代码。
- 3. 模型训练: 使用编写好的模型训练代码创建训练作业,进行模型的训练。
- 4. 导入模型: 训练结束后,导入模型,得到新模型。
- 5. 部署上线:将得到的模型,部署为在线预测服务。

□ 说明

使用ModelArts开始本样例操作前,请完成准备工作中的申请ModelArts和ModelArts全局配置。

数据准备

步骤1 下载MNIST数据集。下载路径为: http://data.mxnet.io/data/mnist/。

数据集文件说明如下:

- t10k-images-idx3-ubyte.gz: 验证集, 共包含10000个样本。
- t10k-labels-idx1-ubyte.gz:验证集标签,共包含10000个样本的类别标签。
- train-images-idx3-ubyte.gz: 训练集, 共包含60000个样本。
- train-labels-idx1-ubyte.gz: 训练集标签, 共包含60000个样本的类别标签。

步骤2 解压缩4个压缩文件,参见**上传数据至OBS**,将数据集上传至华为云OBS桶 (假设OBS 桶路径为: s3://mxnet-test/data/)。

----结束

编写训练代码

步骤1 单击ModelArts左侧导航栏"开发环境",进入"Notebook"页签。

步骤2 单击左上角的"创建"。在"创建Notebook"界面填写参数,其中镜像类型选择 MXNet-1.2.1-python3.6或MXNet-1.2.1-python2.7,存储位置为s3://mxnet-test/code/。

步骤3 在开发环境列表中,单击所创建开发环境右侧的"打开",进入Jupyter Notebook文件目录界面,如图3-11所示。单击右上角的"New",选择"Python 3",进入代码开发界面。

图 3-11 Notebook 开发界面

步骤4 参见如下训练代码,在Cell中填写数据代码。单击运行按钮 → ,运行代码。

```
import mxnet as mx
import argparse
import logging
import os
# load data
def get mnist iter(args):
    train_image = args.data_url + 'train-images.idx3-ubyte'
    train lable = args.data url + 'train-labels.idx1-ubyte'
    train = mx.io.MNISTIter(image=train_image,
                            label=train lable,
                            data_shape=(1, 28, 28),
                            batch size=args.batch size,
                            shuffle=True,
                            flat=False,
                            silent=False,
                            seed=10)
   return train
# create network
def get_symbol(num_classes=10, **kwargs):
   data = mx.symbol.Variable('data')
    data = mx.sym.Flatten(data=data)
    fc1 = mx.symbol.FullyConnected(data = data, name='fc1',
num hidden=128)
   act1 = mx.symbol.Activation(data = fc1, name='relu1',
act_type="relu")
   fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2',
num hidden = 64)
   act2 = mx.symbol.Activation(data = fc2, name='relu2',
act type="relu")
   fc3 = mx.symbol.FullyConnected(data = act2, name='fc3',
num_hidden=num_classes)
   mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
   return mlp
def fit(args):
    # create kvstore
   kv = mx.kvstore.create(args.kv_store)
   head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s'
   logging.basicConfig(level=logging.DEBUG, format=head)
   logging.info('start with arguments %s', args)
    # get train data
   train = get mnist iter(args)
    # create checkpoint
   checkpoint = mx.callback.do checkpoint(args.train url if kv.rank ==
0 else "%s-%d" % (
        args.train url, kv.rank))
    # create callbacks after end of every batch
```

```
batch_end_callbacks = [mx.callback.Speedometer(args.batch_size,
args.disp batches)]
    # get the created network
   network = get symbol(num classes=args.num classes)
    # create context
   devs = mx.cpu() if args.num_gpus == 0 else [mx.gpu(int(i)) for i in
range(args.num_gpus)]
   # create model
   model = mx.mod.Module(context=devs, symbol=network)
    # create an initialization method
   initializer = mx.init.Xavier(rnd type='gaussian', factor type="in",
magnitude=2)
    # create params of optimizer
   optimizer_params = {'learning_rate': args.lr, 'wd' : 0.0001}
    # run
   model.fit(train,
              begin epoch=0,
              num epoch=args.num epochs,
              eval data=None,
              eval metric=['accuracy'],
              kvstore=kv,
              optimizer='sgd',
              optimizer params=optimizer params,
              initializer=initializer,
             arg params=None,
              aux params=None,
              batch end callback=batch end callbacks,
              epoch_end_callback=checkpoint,
              allow missing=True)
   if args.export model == 1 and args.train url is not None and
len(args.train url):
        import moxing.mxnet as mox
        end_epoch = args.num_epochs
        save path = args.train url if kv.rank == 0 else "%s-%d" %
(args.train url, kv.rank)
        params path = '%s-%04d.params' % (save path, end epoch)
        json path = ('%s-symbol.json' % save path)
        logging.info(params path + 'used to predict')
        pred params path = os.path.join(args.train url, 'model',
'pred model-0000.params')
        pred_json_path = os.path.join(args.train_url, 'model',
'pred model-symbol.json')
        mox.file.copy(params_path, pred_params_path)
        mox.file.copy(json path, pred json path)
        for i in range(1, args.num epochs + 1, 1):
           mox.file.remove('%s-%04d.params' % (save path, i))
        mox.file.remove(json path)
if name == ' main ':
    # parse args
   parser = argparse.ArgumentParser(description="train mnist",
formatter class=argparse.ArgumentDefaultsHelpFormatter)
   parser.add argument('--num classes', type=int, default=10,
                       help='the number of classes')
    parser.add_argument('--num_examples', type=int, default=60000,
                       help='the number of training examples')
   parser.add argument('--data url', type=str, default='s3://obs-lpf/
data/', help='the training data')
   parser.add argument('--lr', type=float, default=0.05,
                       help='initial learning rate')
    parser.add argument('--num epochs', type=int, default=10,
                       help='max num of epochs')
```

```
parser.add_argument('--disp_batches', type=int, default=20,
                        help='show progress for every n batches')
    parser.add_argument('--batch_size', type=int, default=128,
                        help='the batch size')
    parser.add_argument('--kv_store', type=str, default='device',
                        help='key-value store type')
   parser.add argument('--train url', type=str, default='s3://obs-lpf/
ckpt/mnist',
                        help='the path model saved')
   parser.add argument('--num gpus', type=int, default='0',
                        help='number of gpus')
   parser.add argument('--export model', type=int, default=1, help='1:
export model for predict job \
                                                                      0:
not export model')
    args, unkown = parser.parse_known_args()
   fit(args)
```

----结束

模型训练

步骤1 在ModelArts管理控制台"训练作业"界面,单击左上角的"创建",参考图3-12填写训练作业参数。

图 3-12 创建训练作业

其中,运行参数 "num_epochs" 为训练需要迭代的次数,默认10。"batch_size"为训练的每一步包含的样本数量大小,默认128。参数"kv store",如果是单计算节点设

置为'local'或'device',如果是多计算节点设置为'dist_sync'或'dist_sync_device',如图3-13所示。

图 3-13 运行参数

步骤2 单击"立即创建",完成训练作业的创建。

----结束

导入模型

步骤1 在"模型管理"界面,单击左上角"导入",参考图3-14填写参数。

图 3-14 导入模型

其中,元模型的路径需要设置为.params和.json文件所在文件夹的上一层文件夹,比如**图3-15**红框的路径:/mxnet-test/ckpt/。

图 3-15 元模型指定路径

存储位置

"推理代码"参考dls_classification_service.py,并将推理代码上传到obs,并将其文件路径设置到模型参数配置中的"推理代码"输入框。

步骤2 单击"立即创建",完成模型的导入。

----结束

部署上线

步骤1 在ModelArts"部署上线"界面,单击"在线服务"页签上方的"部署",参考图3-16 填写参数,单击"立即创建",完成模型的部署。其中"input_data_name"为输入数据的名称,"input_data_shape"为输入数据需要的形状,"output_data_shape"为模型输出数据的形状,"0,10"表示输出的类别在0到10之间。

图 3-16 部署为在线服务

步骤2 在"在线服务"界面中,单击服务的名称,进入服务详情页面,可添加图片进行测试,如图3-17所示。其中'class'就是类的名称,比如第一项class为6,就是数字6这一类。类后的参数为概率,即预测为6的可能性为100%,别的数字都为0。

图 3-17 在线服务测试

如果您想使用自己的手写图片,可以参考**make_your_mnist.py**,只需修改图片数据的路径即可,其中原图需要使用黑底白字。

----结束

2018-11-15 20

4 自动学习

4.1 自动学习简介

使用ModelArts自动学习开发AI模型,无需编写代码,您只需上传数据,通过自动学习提供的UI向导完成数据标注、发布训练即可训练出高质量模型,然后部署上线并进行测试。

自动学习界面说明

自动学习界面主要分为2部分,界面上方列举了当前支持的自动学习项目类型,单击"创建项目"可**创建自动学习项目**,界面下方为已创建的自动学习项目列表,您可以在列表右上方根据项目的类型进行过滤显示,或者在文本框中输入名称,单击 Q 进行查询。

自动学习项目列表说明如表4-1所示。

表 4-1 自动学习项目列表说明

参数名称	说明
项目名称	项目的名称。 单击项目名称可进入当前项目详情页面。
项目类型	项目的类型。 当前支持图像分类、物体检测和预测分析三种类型的项目。
训练状态	当前项目最新版本的训练状态。 包括未开始、初始化、部署中、提交失败、运行中、删除中、已完成、运行失败、已丢失。
OBS路径	当前项目数据存放的OBS路径。
创建时间	项目创建的时间。
描述	项目的简要描述。

参数名称	说明
操作	对已创建项目的操作。
	● "删除": 删除当前自动学习项目。
	● "停止":停止当前训练状态为"运行中"的自动学习项目。

4.2 创建自动学习项目

使用ModelArts自动学习前,首先需要创建一个自动学习项目,本节为您介绍如何创建自动学习项目以及OBS数据路径规则要求。

步骤1 单击自动学习界面中"创建项目",弹出"创建项目"对话框,如图4-1所示。

图 4-1 创建项目

创建项目

* 名称	test
* 训练数据	/auto-learning-test/test/ 请提前将需要的数据上传至OBS桶,如何上传数据
描述	
	0/200
	确定 取消

步骤2 在"创建项目"对话框中填写参数,参数说明如表4-2所示。

表 4-2 参数说明

参数名称	说明
名称	项目的名称。 名称只能包含数字、字母、下划线和中划线,长度不能超过20位且 不能为空。

参数名称	说明
训练数据	OBS数据路径。
	1. 图像分类、物体检测项目的OBS数据路径需符合以下规则:
	- 如不需要提前上传进行标注的图片,请创建一个空文件夹用 于存放工程后期生成的文件,例如:/obs-xxx/data-cat。
	- 如需要提前上传进行标注的图片,请创建一个空文件夹,然 后将需要标注的图片存放在该文件夹下,图片的文件格式支 持JPG、JPEG、PNG、BMP。
	- 如您将已标注好的图片上传至OBS,请按照如下规范上传:
	data_url
	label_map_dict
	其中,"data_url"为文件夹名,图像分类图片和标签文档(.txt)需同名,物体检测图片和标签文档(.xml)同名;"label_map_dict"为标签的索引文件,标签索引值为标签名-四位字母或数字组成随机字符串,例如cat-JNac。
	且data_url文件夹下不允许存在以上说明的文件之外的任何其 他文件夹及文件。
	2. 预测分析项目的OBS数据路径需符合以下规则:
	- 输入数据的OBS路径应指向数据文件,且数据文件不能直接 放在OBS桶的根目录下,例如:/obs-xxx/data/input.csv。
	- 输入数据的格式必须为csv格式,数据文件不包括表头,有效数据行数必须大于150行。
描述	对项目的简要描述。

步骤3 单击"确定",完成自动学习项目的创建。

----结束

4.3 图像分类

4.3.1 数据标注

图像分类"数据标注"界面主要分为4部分内容,如图4-2所示,4个区域的内容介绍如表4-3所示。

图 4-2 图像分类数据标注界面

表 4-3 界面内容介绍

区域	说明
1	图片的统计信息,包含图片总数、已标注图片数量及标签名称、未标注图片数量。
2	图片的相关操作,可对图片进行添加、删除、预览操作,并可同步OBS桶中最新上传的图片。同时可以单个或批量选择图片,然后在区域3完成图片标签的添加。 图片的相关详细操作请参见: 图片预览 添加图片 删除图片 数据源同步
3	图片标注,详细标注操作请参见 图片标注 。
4	完成数据标注后,设置训练参数,开始自动训练。

图片预览

单击浮于图片上方的"图片预览",即可进行图片的预览。

图片标注

由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。通过ModelArts您可对图片进行一键式批量添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注,具体操作如下。

□说明

一张图片支持添加多个不同的标签。

- 添加标签
 - a. 选择未标注的图片。单击区域1中的"未标注",然后在区域2单击浮于图片 上方的"选择图片"依次选中图片,或勾选上方"选择所有"选中该页面所 有图片。

b. 添加标签。选中图片后,在区域3输入标签名称或从弹出的列表中选择已添加的标签,然后按Enter键添加,如**图4-3**所示。

图 4-3 图像分类图片标注

- c. 单击"确定",完成选中图片的标注操作。
- 删除或修改单个图片标签
 - a. 单击区域1中的"已标注",然后在区域2单击浮于图片上方的"选择图片" 选中图片。
 - b. 单击区域3中标签右侧 ,删除该标签。然后在上方输入新的标签名称,或 从弹出的列表中选择已添加的标签,然后按Enter键添加,如**图4-4**所示。

图 4-4 删除并添加新标签

- c. 单击"确定",完成单个图片标签的删除并添加新标签的操作。
- 批量删除或修改图片标签
 - a. 单击区域1中的"已标注",然后单击下方需要批量修改或删除的标签名称,如图4-5所示。

b. 单击标签右侧 , 在弹出的对话框中可重命名标签名称。或者单击标签右侧 , 在弹出对话框中, 可选择"删除标签"或"删除标签及图片"。

添加图片

通过数据添加操作,可将您本地的图片快速添加到ModelArts,同时自动拷贝到创建项目时选择的OBS桶中。单击区域2中的"添加",在弹出的对话框中单击"添加文件"并选择要添加的图片,即可完成图片的添加操作。

□□说明

图片只支持JPG、JPEG、PNG、BMP, 且一次上传所有图片的总大小不能超过8MB。

删除图片

通过数据删除操作,可将需要丢弃的图片数据快速删除。单击浮于图片上方的"选择图片"依次选中需要删除的图片,或者勾选上方"选择所有"选中该页面所有图片,然后单击区域2中"删除",即可完成图片的删除操作。

数据源同步

为了快速获取用户OBS桶中最新图片,可单击区域2右上角的 , 快速将通过OBS 上传的图片数据添加到ModelArts。

4.3.2 模型训练

完成图片标注后,可进行模型的训练。本节为您介绍如何进行模型训练的发布、查看训练结果。

发布训练

由于用于训练的图片,至少有2种以上的分类,每种分类的图片数不少于5张。因此在发布训练之前,请确保已标注的图片符合要求,否则"开始训练"会处于灰色状态。

训练设置如图4-6所示,参数设置可参考表4-4所示。

图 4-6 训练设置

表 4-4 训练设置参数说明

名称	说明
训练时长不大于 (h)	设置训练时长。 输入值不能小于0.05,如不设置,默认为1。
推理时间不小于(ms)	设置推理时间。 输入值不能小于50,如不设置,默认为300。
推理环境	设置推理环境,当前有2核 8GiB和2核 8GiB 1*P4两种可选。

查看训练结果

训练结束后,可在图像分类"模型训练"界面查看模型训练结果。

图像分类"模型训练"界面主要分为3部分内容,如图4-7所示,3个区域的内容介绍如表4-5所示。

图 4-7 图像分类模型训练界面

表 4-5 界面内容介绍

区域	说明
1	版本管理。 模型训练的版本,包括版本名称、版本状态、创建时间以及准确率。
2	训练详情。 当前版本的训练详情,包括: • 训练准确率、训练状态、开始训练时间以及训练时长。 • 评估结果。
3	分类统计表。 包括不同标签对应的准确率、精确率和召回率。可在左上角文本框中输入 标签名,单击 ② 进行查询。

4.3.3 部署上线

模型训练完成后,您可在训练版本管理中选择最优的训练模型部署上线。

部署模型

完成模型训练后,可选择准确率理想且训练状态为"已完成"的版本部署上线。单击"模型训练"页签右上角"部署",即可完成模型的部署操作。

服务测试

模型部署完成后,您可添加图片进行测试。在"部署上线"界面,单击图片选择按钮""",然后选择图片。图片上传成功后,单击"测试"即可进行服务的测试,右侧会显示测试结果,如图4-8所示。

图 4-8 服务测试

4.4 物体检测

4.4.1 数据标注

物体检测"数据标注"界面主要分为3部分内容,如图4-9所示,3个区域的内容介绍如表4-6所示。

图 4-9 物体检测数据标注界面

表 4-6 界面内容介绍

区域	说明
1	图片的统计信息,包含图片总数、已标注图片数量及标签名称、未标注图片数量。

区域	说明
2	图片的相关操作,可对图片进行添加、删除操作,并可同步OBS桶中最新上传的图片。同时可以单个或批量选择图片,进行图片的标注操作。图片的相关详细操作请参见: 图片标注 添加图片 删除图片 数据源同步
3	完成数据标注后,设置训练参数,开始训练。

图片标注

● 物体标注

- a. 单击浮于图片上方的"图片标注",进入图片标注界面。
- b. 用鼠标框选图片中的物体区域,然后在弹出的对话框中输入标签名称,单击"确定",如图4-10所示。

图 4-10 物体检测图片标注

- c. 完成当前图片中所有物体标注后,可选择左侧图片目录中其他未标注图片, 重复上一步骤,完成所有图片的标注。
- 删除或修改单个图片物体标注
 - a. 单击区域1中的"已标注"。
 - b. 单击浮于图片上方的"图片标注",进入图片标注界面。(单击"已标注" 后您可以单击下方标签名称,区域2将仅显示含此标签图片。)
 - c. 单击页面右侧的 , 可删除当前物体标注,并可参见**物体标注**重新对图片中物体进行标注。单击页面右侧的 , 可修改当前物体标注名称。
- 批量修改或删除图片物体标注

a. 单击"已标注",然后单击下方需要批量修改或删除的图片物体标注名称,如**图4-11**所示。

图 4-11 批量修改或删除图片物体标注

b. 单击标签右侧 , 在弹出的对话框中可重命名标签名称。或者单击标签右侧 , 在弹出对话框中, 可选择"删除标签"或"删除标签及图片"。

添加图片

通过数据添加操作,可将用户本地计算机的图片快速添加到ModelArts,同时自动拷贝到创建项目时选择的OBS桶中。单击区域2中的"添加",在弹出的对话框中单击"添加文件"并选择要添加的图片,即可完成图片的添加操作。

□□说明

图片只支持JPG、JPEG、PNG、BMP, 且一次上传所有图片的总大小不能超过8MB。

删除图片

通过数据删除操作,可将需要丢弃的图片数据快速删除。单击浮于图片上方的"选择图片"依次选中需要删除的图片,或者勾选上方"选择所有"选中该页面所有图片,单击区域2中"删除",即可完成图片的删除操作。

数据源同步

为了快速获取用户OBS桶中最新图片,可单击区域2右上角的 ,快速将通过OBS上传的图片数据添加到ModelArts。

4.4.2 模型训练

完成数据标注后,可进行模型的训练。本节为您介绍如何进行模型训练的发布、查看训练结果。

发布训练

完成数据标注后,可在"数据标注"页面设置训练参数,训练设置如<mark>图4-12</mark>所示,参数说明如**表4-7**所示。

图 4-12 训练设置

表 4-7 训练设置参数说明

名称	说明
训练时长不大于(h)	设置训练时长。 输入值不能小于0.05,如不设置,默认为1。
推理时间不小于 (ms)	设置推理时间。 输入值不能小于50,如不设置,默认为500。
推理环境	设置推理环境,当前有2核 8GB和2核 8GB 1*P4两种可选。

查看训练结果

训练结束后,可在物体"模型训练"界面查看模型训练结果。

4.4.3 部署上线

模型训练完成之后,您可在训练版本管理中选择最优训练结果进行模型部署。

部署模型

完成模型训练后,可选择准确率理想且训练状态为"已完成"的版本部署上线。单击 "模型训练"页签右上角"部署",即可完成模型的部署操作。

服务测试

模型部署完成后,您可添加图片进行测试。在"部署上线"界面,单击图片选择按钮""",然后选择图片。图片上传成功后,单击"测试"即可进行服务的测试。

4.5 预测分析

4.5.1 数据标注

在预测分析"数据标注"界面,可预览数据并完成Label列及类型的选择,如图4-13所示。

attr_1 attr_2 technician single 44.0 secondar 35.0 management married tertiary 28.0 management tertiary tertiary 43,0 □ 训练时长设置(默认5小时)

图 4-13 预测分析数据标注界面

选择 Label 及类型

步骤1 选择数据Label列,在"选择Label列"下拉框中输入需要设置为Label列的名称,单击 □进行搜索。搜索出来后,单击名称即完成数据Label列的选择。

步骤2 选择Label类型,在"Label类型"选定Label列的数据类型。

----结束

4.5.2 模型训练

完成数据Label列及类型选择后,可进行模型的训练。本节为您介绍如何进行模型训练的发布、查看训练结果。

发布训练

完成数据Label列及类型选择后,单击图4-13左下角"训练",即可开始模型的训练。

查看训练结果

训练结束后,可在"模型训练"界面查看模型训练结果。预测分析"模型训练"界面主要分为版本管理、训练详情两部分内容,如图4-14所示。

图 4-14 预测分析模型训练界面

表 4-8 界面内容介绍

区域	说明
版本管理	模型训练的版本,包括版本名称、版本状态、创建时间。
训练详情	当前版本的训练详情,包括评估结果、ROC曲线、P-R曲线。其中,单
	击 ^业 ,可将ROC曲线或P-R曲线保存为图片。

4.5.3 部署上线

模型训练完成之后,您可在训练版本管理中选择最优训练结果进行模型部署。

部署模型

完成模型训练后,可选择训练状态为"已完成"的版本部署上线。单击"模型训练" 页签右上角"部署",即可完成服务的部署操作。

服务测试

模型部署完成后,您可输入代码进行测试。在"部署上线"界面的"代码调试"框中输入调试代码,然后单击"测试",即可在"返回结果"中输出测试结果,如图4-15所示。

图 4-15 服务测试

代码调试说明如下。

● 输入代码

```
{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"data": {
"count": 1,
"req_data": [
{
   "attr_1": "58",
   "attr_2": "management",
   "attr_3": "married",
   "attr_4": "tertiary",
   "attr_5": "yes",
   "attr_6": "yes",
   "attr_7": "123"
}
}
```

其中,attr_1~attr_7为输入的预测数据。

● 返回结果

```
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"result": {
"service_name": "d6909770-f78d-4a9b-ab9d-daad70ccc337",
"service version": "d657dd99-68f6-438e-9a76-9e8336bf37be",
"count": 1,
"resp_data": [
"probabilitycol": 0,
"attr_7": "123",
"attr 6": "yes",
"attr_5": "yes",
"attr_4": "tertiary",
"attr_3": "married",
"attr_2": "management",
"attr 1": 58,
```

```
"predictioncol": "no"
}

!
}
```

其中,predictioncol为attr_7的预测结果。

5 数据管理

5.1 数据管理简介

在使用数据进行模型训练之前,您可在"数据管理"页面对数据进行处理、创建数据集并进行数据集版本管理。

● 数据标注

可创建数据标注作业,可进行图像分类、物体检测两种类型的人工标注。

● 数据集

可创建数据集、发布多个版本,并可进行版本之间的对比。

5.2 数据标注

在数据管理"数据标注"页面列举了用户所创建的数据标注作业,单击左上方"创建"可创建新的标注作业,创建步骤可参见**创建数据标注作业**。

创建数据标注作业后,单击作业名称可进入数据标注页面,图像分类标注请参见**图像 分类数据标注**,物体检测标注请参见**物体检测数据标注**。

创建数据标注作业

步骤1 单击数据标注页面左上方"创建"。

步骤2 在"创建数据标注作业"页面填写参数,单击"创建"。

□□说明

当前人工标注类型仅支持图像分类和物体检测两种类型的标注作业。

----结束

5.3 数据集

数据管理"数据集"界面主要分为4部分内容,4个区域内容介绍如表5-1所示。

图 5-1 数据集界面

表 5-1 界面内容介绍

区域	说明
1	数据集列表,列举用户所创建的数据集,同时可进行如下操作:
	● 查询:输入数据集名称单击 Q 查询。
	● 修改: 单击"✓"可修改数据集名称、描述。
	● 删除: 单击"່□"可对数据进行删除。
	● 创建: 单击" [•] 创建 "可创建数据集,详细步骤参见 创建数据集 。
2	当前版本数据集信息,包括当前数据的数量、桶名称及当前版本状态。同时可进行如下操作: • 添加文件: 单击"添加文件",在弹出的对话框中选择文件,单击"确定",完成图片的添加操作。 • 删除: 选中区域4中的图片,单击"删除",完成图片的删除操作。 • 发布新版本:单击"发布新版本",可在弹出的对话框中填写描述,单击"确定",完成新版本发布操作。 • 数据源同步:单击"数据源同步",可快速将通过OBS上传的图片数据添加到ModelArts。
3	可选择"详细信息"和"图标"两种显示方式。在"详细信息"显示模式下,可单击文件名称对图片文件进行预览。 可输入文件名称进行简单搜索,或者输入文件大小范围、格式、上传时间段进行高级搜索。
4	当前版本数据集文件列表,包含文件名称、文件大小、格式及上传时间。

创建数据集

步骤1 单击图5-1区域1中的" [•] • 创建"。

步骤2 在弹出的对话框中输入名称、描述,并选择数据集存储路径。

步骤3 单击"确定",完成数据集的创建。

----结束

版本管理

在数据集"版本管理"界面,可查看版本演进过程、版本名称、状态等信息,并且可进行数据集版本的对比,如图5-2所示。

图 5-2 版本管理

数据集版本对比

单击图5-2右侧的"对比",可进入数据集版本对比界面,如图5-3所示。

图 5-3 数据集版本对比

6 开发环境

开发环境简介

ModelArts集成了基于开源的Jupyter Notebook,可为您提供在线的交互式开发调试工具。您可以通过创建开发环境,自行编写模型训练代码和调测,然后基于该代码进行模型的训练。创建Notebook具体操作请参见创建Notebook。

□□说明

- 您也可以在本地环境进行代码的开发和调测,然后把已调测好的代码上传至OBS桶中,无需 创建开发环境。
- 关于Jupyter Notebook的操作问题,请参见Jupyter Notebook使用文档。

开发环境界面说明

表 6-1 Notebook 列表说明

参数名称	说明							
名称	用户所创建的Notebook名称。							
状态	当前Notebook的运行状态,包括启动中、运行中、停止中、停止、未知。							
描述	对Notebook的简要描述,在创建Notebook时填写。							
创建时间	用户创建Notebook的时间。							
操作	对Notebook的操作,包括: ● "打开": 进入Notebook进行代码开发。 ● "启动": 启动Notebook。 ● "停止": 停止Notebook。 ● "删除": 删除Notebook。							

单击Notebook名称前的 V ,可以查看该Notebook的详情,包括名称、镜像类型和存储位置信息。

创建 Notebook

步骤1 单击Notebook界面左上方的"创建",进入创建笔记本页面,如图6-1所示。

图 6-1 创建 Notebook

创建 Notebook	く 返回 Notebook 列表	
* 名称	notebook	
描述		
		0/256
*镜像类型	TF-1.8.0-python36 ▼	
★规格	2核 8GiB	
存储位置 ②	/train-job-test/code/ 选择	i

步骤2 填写Notebook名称和描述,选择镜像类型、规格、存储位置,参数说明如表6-2所示。

表 6-2 参数说明

参数名称	说明
名称	Notebook的名称。只能包含数字、字母、下划线和中划线,长度不能超过20位且不能为空。
描述	对Notebook的简要描述。
镜像类型	当前支持的镜像类型有TF-1.8.0-python36、TF-1.8.0-python27、MXNet-1.2.1-python3.6、MXNet-1.2.1-python2.7、Caffe-1.0.0-python2.7、ML-1.0.0-python27、Spark-2.2.0-python2.7。
规格	当选择的镜像类型为ML-1.0.0-python27时,规格为1核 2GiB。选择其他镜像类型时,规格为2核 8GiB。
存储位置	在Notebook中编写的代码所存储的OBS桶。

步骤3 单击"立即创建",完成Notebook的创建。

----结束

打开 Notebook

单击Notebook列表右侧的"打开",进入Jupyter Notebook文件目录界面,如图6-2所示。

图 6-2 Jupyter Notebook 开发界面

您可以通过Jupyter界面控制台上的"ModelArts Examples"选项卡,访问ModelArts提供的所有Jupyter Notebook示例,示例说明如表6-3所示。

表 6-3 示例说明

示例名称	说明
pyspark	使用基于spark.ml库实现一个"银行理财预期"的二分类,算法选择为逻辑回归,使用的镜像为Spark-2.2.0-python2.7。
sklearn	使用基于sk-learn库实现一个"银行理财预期"的二分类,算法选择为随机森林,使用的镜像为ML-1.0.0-python27。
xgboost	使用xgboost实现一个"银行理财预期"的二分类,算法选择为xgboost分类器,使用的镜像为ML-1.0.0-python27。

Notebook示例使用nbexamplesJupyter扩展,它允许您查看示例笔记本的只读版本或创建它的副本,以便您可以修改和运行它。有关nbexamples扩展的更多信息,请参阅https://github.com/danielballan/nbexamples。

单击图6-2 "Files"页签右上角"New",可进入代码开发界面,如图6-3所示。其中,通过"convert to python file"按钮,可直接将您输入的代码保存为py文件到工作目录。

图 6-3 代码开发界面

了 训练作业

7.1 训练作业简介

ModelArts为用户提供了基于CPU+GPU的模型训练环境,您可以使用已完成的模型训练代码创建训练作业。为了方便用户在训练模型时调整参数,ModelArts还提供了可视化功能,您可以将训练作业时得到的Summary文件(TensorBoard日志文件)中的计量指标进行图形化效果展示。

训练作业界面说明

在ModelArts"训练作业"界面,您可进行训练作业的创建、作业参数管理以及 TensorBoard相关操作。

在"训练作业"界面,列举了用户所创建的训练作业,如图7-1所示。在该界面您可以创建训练作业,也可以在列表右上方根据状态进行过滤显示,或在文本框中输入作业名称,单击 Q 进行查询,训练作业列表说明如表7-1所示。

图 7-1 训练作业界面

表 7-1 训练作业列表说明

参数名称	说明							
名称	训练作业的名称。单击名称,进入该训练作业详情页面,详情参见 查 看训练作业详情。							
状态	当前训练作业运行状态。包括初始化、运行中、已完成、运行失败、 删除中、部署中、作业丢失、已取消、提交失败。							
版本数量	当前训练作业的版本数量。可单击训练作业名称进入训练作业详情, 单击"修改",启动新版本的训练作业。							
运行时长	当前训练作业的运行时长。							
创建时间	当前训练作业的创建时间。							
描述	当前训练作业的简要描述。							
操作	对训练作业的操作。							
	● "停止":停止运行中的训练作业。							
	● "删除": 删除当前训练作业。							

创建训练作业

步骤1 单击图7-1左上方"创建",进入创建训练作业界面,如图7-2所示。

图 7-2 创建训练作业

一键式参数配置	如果您创建之前已	保存过参数配置,可选择已有参数帮助您快速配置,点击选择作业参数配置。
* 数据来源	数据集	数据存储位置
	* 选择数据集	bgreeff-up ▼ 选择版本 bgreeff_V002 ▼
* 算法来源	预置算法	常用框架
	* Al引擎	TensorFlow ▼ TF-1.8.0-pytho ▼
	*代码目录	/weilei-code/code/ 选择
	* 启动文件	/weilei-code/code/kin-i3d-yundao/train_nlb.py 选择
运行参数	+ 増加运行参数	
* 训练输出位置		选择
	一般训练输出位置为多	空目录,如果该目录下已有文件,请确保这些文件需要被加载。
	014100:014	40100
* 计算节点规格	2核 8GiB 1	*P100 2核 8GiB
* 计算节点个数	- 1 +	

保存作业参数

步骤2 在创建训练作业界面填写参数,参数说明如表7-2所示。

表 7-2 参数说明

参数名称	说明				
名称	训练作业的名称。				
版本	训练作业的版本,版本信息为自动生成。				
描述	训练作业的简要描述。				
数据来源	训练作业所需要的数据。 ● "数据集":选择数据集及版本。 ● "数据存储位置":从OBS桶中选择训练数据。				

参数名称	说明					
算法来源	训练作业的算法。					
	● "预置算法": ModelArts预置的算法,目前有5种可选, 详细介绍请参见 <mark>预置算法</mark> 。					
	● "常用框架":选择AI引擎和版本,选择代码目录及启动 文件。					
运行参数	设置代码中的命令行参数值。请确保参数名称和代码的参数名称一致。					
训练输出位置	选择训练结果的存储位置。					
计算节点规格	当前有2核 8GiB 1*P100和2核 8GiB两种规格可选。					
计算节点个数	计算节点个数,最大为2。					

□说明

- 如您创建之前已保存过参数配置,可选择已有参数快速配置参数。单击"作业参数配置", 在弹出对话框中选择训练参数。
- 您也可以保存当前参数配置。勾选"保存训练参数",填写训练参数名称和描述,完成当前参数配置的保存。

步骤3 单击"立即创建",完成训练作业的创建。

----结束

查看训练作业详情

在训练作业列表中,单击作业名称即可进入训练作业详情页面。以AI引擎为 TensorFlow的训练作业为例: "版本管理"页签主要分为5部分,如图7-3所示,5个区域的内容介绍如表7-3所示。

图 7-3 训练作业详情界面

表 7-3 界面内容介绍

区域	说明
1	版本过滤显示,可单击 🤻 ,选择显示的版本。
2	当前版本的信息,包括版本名称、状态、运行时间。
3	对当前版本的一些操作,包括: • "创建TensorBoard":基于当前训练版本创建TensorBoard,详细参见创建TensorBoard作业。 说明 TensorBoard目前只支持TensorFlow引擎,因此只有采用AI引擎为TensorFlow的训练作业才可以创建TensorBoard作业。 • "创建模型":基于当前训练版本创建模型,详细参见导入模型。 • "修改":修改当前训练参数,单击"确定",启动新版本的训练作业。 • "更多操作":可保存当前训练的作业参数、停止当前运行中的训练和删除当前版本训练作业。
4	当前版本的配置信息、日志、结果和资源占用情况。
5	训练版本对比,可查看训练版本之间的对比,包含运行参数、F1值、召回率、精确率、准确率。

在"溯源图"页签可查看数据、训练、模型及服务之间的溯源图。

7.2 预置算法

在"预置算法"页签,列举了所有ModelArts预置的已训练好的模型,您可以在列表的右上方文本框中输入模型名称,单击 过于查询操作,如图7-4所示,预置模型列表说明如表7-4所示。

图 7-4 预置算法

	名称	\$ 用途	\$ 引擎类型	精度	‡	大小 (MB)	\$ 创建时间	\$	操作
~	retinanet_resnet_v1_50	物体的类别和位置	TensorFlow,TF-1.8.0-python2.7	83.15%(mAP)		255.15	2018/11/07 11:32:44		创建训练
~	inception_v3	图像标签	TensorFlow,TF-1.8.0-python2.7	78.00%(top1), 93.90%(top5)		103.78	2018/11/06 21:22:57		创建训练
~	darknet_53	图像标签	MXNet,MXNet-1.1.0-python2.7	78.56%(top1), 94.43%(top5)		158.89	2018/11/06 10:57:56		创建训练
~	ResNet_v1_50	图像标签	TensorFlow,TF-1.8.0-python2.7	74.2%(top1), 91.7%(top5)		200.84	2018/06/21 13:53:07		创建训练
~	Faster_RCNN_ResNet_v1_50	物体的类别和位置	TensorFlow,TF-1.8.0-python2.7	73.6%(mAP)		281.16	2018/06/21 13:53:07		创建训练
~	Faster_RCNN_ResNet_v2_50	物体的类别和位置	MXNet,MXNet-1.1.0-python2.7	80.05%(mAP)		182.09	2018/05/03 10:07:04		创建训练
~	SegNet_VGG_BN_16	像素级分类标签	MXNet,MXNet-1.1.0-python2.7	89%(pixel acc)		112.41	2018/05/03 10:07:04		创建训练
~	ResNet_v2_50	图像标签	MXNet,MXNet-1.1.0-python2.7	75.55%(top1), 92.6%(top5)		97.76	2018/03/28 14:33:00		创建训练

表 7-4 模型列表说明

参数名称	说明
名称	模型的名称,例如: "ResNet_v1_50"。单击名称前的 V ,查看模型详情信息,如表7-5所示。

参数名称	说明
用途	模型的应用场景,包括图像标签、物体的类别和位置、像素级分类标签。
引擎类型	模型训练时所使用的深度学习引擎类型。
精度	模型的识别精度。 ● 图像标签模型使用 "top1"、"top5"。 ● 物体的类别和位置模型使用 "mAP"。 ● 像素级分类标签模型用 "pixel acc"。
大小(MB)	模型的大小,单位为MB。
创建时间	模型的创建时间。
操作	对当前模型的操作。 "创建训练":使用该预置模型创建训练作业,操作步骤请参见 使 用预置模型创建训练。

单击模型名称前的 💙 , 可以查看该模型的详情, 如表7-5所示。

表 7-5 模型详情

参数名称	说明
训练数据集	训练该模型所使用的数据集。
数据格式	使用该模型时要求的数据输入格式。
运行参数	训练该模型时的所使用的参数。
引擎类型	训练该模型时所使用的深度学习引擎。
模型输出	模型的输出结果。
描述	模型的简要描述。

使用预置模型创建训练

单击预置算法列表右侧的"创建训练",即可进入创建训练作业页面,参数填写可参见**创建训练作业**。

7.3 作业参数管理

在"作业参数管理"界面,列举了用户所创建的训练参数,如图7-5所示。您可以对训练参数进行编辑、删除操作,还可以基于已创建的训练参数快速创建训练。

图 7-5 作业参数管理

7.4 TensorBoard

对于采用AI引擎为TensorFlow的训练作业,您可以使用模型训练时产生的Summary文件来创建TensorBoard作业。

为了保证训练结果中输出Summary文件,您需要进行如下操作:

- 1. 对于TensorFlow用户:需要在代码里添加Summary相关代码。
- 2. 对于MoXing用户:要求MoXing中mox.run中的参数save_summary_steps>0,并且超参summary_verbosity≥1。

□说明

- 如果您想显示其他指标,可以在model_fn的返回值类型mox.ModelSpec中log_info中添加张量 (仅支持0阶张量,即标量),添加的张量会被写入到Summary文件中。
- 如果您希望在Summary文件中写入更高阶的张量,只需要在model_fn中使用TensorFlow原生的tf.summary的方式添加即可。

在"TensorBoard"页签,列举了用户所创建的TensorBoard作业。您可以在右上方根据状态进行过滤显示,或者在文本框中输入TensorBoard作业名称,单击 Q 进行查询。TensorBoard作业列表说明如表7-6所示。

表 7-6 TensorBoard 作业列表说明

参数名称	说明	
名称	TensorBoard作业的名称。	
状态	当前TensorBoard作业运行状态,包括初始化、排队中、运行中、已取消、作业丢失。	
运行时长	TensorBoard作业的运行时长。	
创建时间	TensorBoard作业的创建时间。	
描述	TensorBoard作业的简要描述。	
操作	对TensorBoard作业的操作,包括: "停止":停止运行中或创建中的TensorBoard作业。"删除":删除当前TensorBoard作业。"运行":运行当前TensorBoard作业。	

创建 TensorBoard 作业

步骤1 单击TensorBoard页签左上方"创建",进入创建TensorBoard界面,如图7-6所示。

图 7-6 创建 TensorBoard

创建TensorBoard	< 返回TensorBoard
基本信息	
★名称	
*日志路径 ②	选择
描述	
	0/256
备注:TensorBoard目	前只支持TensorFlow引擎。

步骤2 填写TensorBoard作业名称、选择日志路径。

步骤3 单击"立即创建",完成TensorBoard作业的创建。

----结束

打开 TensorBoard 作业

单击TensorBoard作业名称,即可打开TensorBoard作业显示界面,如图7-7所示。

2018-11-15 50

图 7-7 TensorBoard 界面

8 模型管理

模型管理简介

AI模型的开发和调优往往需要大量的迭代和调试,数据集的变化、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。

ModelArts模型管理可导入所有训练版本生成的模型,可实现对所有迭代和调试的模型进行统一管理,通过数据、训练和模型之间的版本演进溯源图,还可实现模型的溯源管理。

模型管理界面说明

ModelArts "模型管理"界面主要分为2部分,如图8-1所示,2个区域内容介绍如表8-1所示。

图 8-1 模型管理界面

表 8-1 界面内容介绍

区域	说明
1	模型列表,列举了用户所创建的模型,同时可进行如下操作:
	● 查询:输入模型名称单击 ○ 查询。
	● 删除:选中模型后,单击模型右侧"喧"可删除当前选中的模型。
	● 导入模型: 单击"导入"可导入新模型,详细步骤参见 导入模型 。
2	列举了当前模型版本信息,可查看版本详情、溯源图,可创建新版本、部署模型、共享模型以及删除版本。
	模型版本相关详细操作请参见: 创建新版本
	● 查看版本详情
	● 部署模型
	● 共享模型

导入模型

步骤1 单击图8-1区域1上方的"导入",进入导入模型页面。

步骤2 在导入模型页面填写相关参数,参数说明如表8-2所示。

表 8-2 参数填写说明

参数名称	说明
名称	模型的名称
版本	设置所创建模型的版本。
描述	模型的简要描述。
元模型来源	可从训练中选择,或指定元模型位置。 ● "从训练中选择":选择训练作业及版本。 ● "指定元模型位置":选择元模型存储路径和AI引擎,当前支持 TensorFlow、MXNet、Caffe、Spark_MLlib、AutoModel、 Scikit_Learn、XGBoost几种引擎。
推理代码	自定义模型推理处理逻辑。 通过配置推理代码,可实现对推理请求API的输入预处理或推理结果 输出的后处理。当前仅支持Python代码,且当训练作业引擎为 MXNet时,必须添加推理代码,代码实现可参见https://github.com/ huawei-clouds/modelarts-mxnet。

参数名称	说明
高级配置	● 入参 定义模型的输入参数,便于模型的元数据管理。当需要将模型部 署为批量服务时必须设置正确的入参,批量服务根据此入参构造 推理请求体。
	出参 定义模型的输出参数,便于模型的元数据管理。运行时依赖
	- 从ModelArts中训练出的模型且未自定义推理代码,则此项可 不填,ModelArts会自动配置所有运行时依赖。
	如自定义推理代码时引入了第三方库,则需要补充依赖包, 通过配置安装方式、安装包名称、版本、约束等。

步骤3 单击"立即创建",完成模型的导入。

----结束

创建新版本

单击图8-1中区域2左上角的"创建新版本",进入导入模型界面,参见导入模型填写参数,单击"立即创建",完成新版本的创建操作。

部署模型

单击**图8-1**中区域2右上角的"部署",可快速将当前版本模型部署为在线服务、批量服务、边缘服务,部署参数设置可分别参见**在线服务、批量服务、边缘服务**。

查看版本详情

单击版本名称即可进入版本详情页面。

共享模型

通过ModelArts共享功能,您可以将您训练好的模型共享给您指定的用户。您也可以在控制台"市场"中查看其它用户的共享给您的模型以及您的共享。

将您的模型共享给其他用户操作如下。

步骤1 单击图8-1区域2右上角的"共享"。

步骤2 在弹出的对话框中,填写发布者名称、选择模型图标和共享的用户ID,如图8-2所示,参数填写如表8-3所示。

图 8-2 共享模型

共享模型

发布者 ②	Anonymous		
模型图标 ②			
*共享的用户 ②	请输入用户ID	● 共享	
	已共享给0个用户		
	用户		操作
		关闭	

表 8-3 参数说明

名称	说明	
发布者	模型市场中显示的发布者名称,共享后将不能修改。	
模型图标	模型市场中显示的模型图标。可单击" ² "选择共享图标,且共享后将不能修改。	
共享的用户	输入用户ID。 说明 ● 用户ID可从"我的凭证"中获取。● 輸入多个用户ID时,用户ID之间请用","隔开,且不允许出现特殊字符及空格。	

步骤3 单击"关闭",完成模型的共享操作。

您可以在ModelArts管理控制台"市场"中"我的共享"页签查看您的共享。

----结束

9 部署上线

9.1 部署上线简介

在完成训练作业并生成模型后,可在"部署上线"页面对模型进行部署。ModelArts当前支持三种部署类型:在线服务、批量服务和边缘服务。

● 在线服务

在线服务对每一个推理请求会同步给出推理的结果。成功部署为在线服务后,可 查看服务详情并进行服务测试。

● 批量服务

批量服务是对批量数据进行推理的批量推理作业。

● 边缘服务

边缘服务是将模型部署到华为云智能边缘平台。

9.2 在线服务

在线服务界面说明

在部署上线"在线服务"界面,列举了用户所创建的在线服务,如图9-1所示。您可以在右上方文本框中输入服务名称,单击 ②进行查询,服务列表说明如表9-1所示。

单击左上角"部署"可以部署新的服务,具体操作请参见部署为在线服务。

□说明

公测期间,在线服务运行30分钟后自动停止。如需继续使用,请重新启动服务。

图 9-1 在线服务

表 9-1 在线服务列表说明

参数名称	说明	
服务	在线服务的名称。单击服务的名称,可 查看服务详情 。	
状态	当前在线服务的状态,包括部署中、运行中、停止、异常、 告警。 说明	
	当状态为"异常"时,请检查参数配置并重新部署。当状态为"告警"时,需要停止当前服务并重新启动。	
推理方式	服务的推理方式,在线服务。	
调用失败次数/调用 总次数	服务调用的失败次数/总次数。	
发布时间	当前在线服务的发布时间。	
描述	在线服务的简要描述。	
操作	对服务的操作,包括: "修改":可对服务的描述、选择模型及配置进行修改。 "停止":停止当前运行中的服务。 "启动":启动当前已停止的服务。	

部署为在线服务

步骤1 单击在线服务界面左上方的"部署",在部署页面填写参数,如**图9-2**所示,参数说明如表9-2所示。

2018-11-15 57

图 9-2 部署界面

表 9-2 参数说明

参数名称	说明
名称	在线服务的名称。
描述	在线服务的简要描述。
模型管理	选择训练好的模型及版本。
分流	设置当前实例节点的流量占比。 如您仅部署一个版本模型,请设置为100%。如您添加多个版本进 行灰度发布,多个版本分流之和设置为100%。
计算节点规格	当前有2核 8GiB、2核 8GiB 1*P4两种可选。
计算节点个数	当前可选1或2个计算节点个数。
环境变量	设置环境变量。
添加模型进行 灰度发布	ModelArts提供多版本支持和灵活的流量策略,您可以通过使用灰度发布,实现模型版本的平滑过渡升级。

步骤2 完成参数填写后,单击"立即创建"。

----结束

查看服务详情

单击服务名称,即可进入服务详情页面。在线服务详情页面分为3部分内容,如**图9-3** 所示,3个区域的内容介绍如**表9-3**所示。

图 9-3 在线服务详情页面

表 9-3 界面内容介绍

区域	说明	
1	对服务的操作,包括:	
	● "停止":停止当前运行中的服务。	
	● "删除": 删除当前服务。	
	● "修改": 修改当前服务。	
2	服务的相关信息,包括服务名称、服务ID、状态和描述。	
3	服务的调用指南、配置信息、测试、监控信息、更新日志及溯源图。	

服务测试

在"测试"页签可进行代码调试或添加图片测试,图片测试如图9-4所示,代码调试说明请参见服务测试。

图 9-4 添加图片测试

访问在线服务

若在线服务的状态处于"运行中",则表示在线服务已部署成功,您可以使用以下两种方式向在线服务发起预测请求。

方式一: 使用图形界面的软件进行预测(以Postman为例)

步骤1 下载Postman软件并安装,或直接在chrome浏览器添加postman扩展程序(也可使用其它支持发送post请求的软件)。

步骤2 打开Postman,如图9-5所示。

图 9-5 Postman 界面

步骤3 在Postman界面填写参数,以图像分类举例说明。

● 选择POST任务,将在线服务的调用地址(通过在线服务详情界面-调用指南页签查看,如图9-6所示)复制到POST后面的方框。Headers栏的Key值填写为"X-Auth-Token",Value值为您获取到的Token(关于如何获取token,请参考获取请求认证),如图9-7所示。

图 9-6 查看调用 URL

图 9-7 参数填写

- 在Body栏下,根据模型的输入参数不同,可分为2种类型:文件输入、文本输入。
 - a. 文件输入

选择"form-data"。在"KEY"值填写模型的入参,比如本例中预测图片的参数为"images"。然后在"VALUE"值,选择文件,上传一张待预测图片(当前仅支持单张图片预测),如图9-8所示。

图 9-8 填写 Body

b. 文本输入

选择"raw",选择JSON(application/json)类型,在下方文本框中填写请求体,请求体样例如下:

```
{
  "meta": {
    "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
  "data": {
    "req_data": [
      {
        "sepal_length": 3,
        "sepal_width": 1,
        "petal_length": 2.2,
        "petal_width": 4
      }
    ]
  }
}
```

其中,meta中可携带uuid,调用时传入一个uuid,返回预测结果时回传此uuid用于跟踪请求,**如无此需要可不填写meta。**data包含了一个req_data的数组,可传入单条或多条请求数据,其中每个数据的参数由模型决定,比如本例中的sepal length、sepal width等。

步骤4 参数填写完成,点击"send"发送请求,结果会在Response下的对话框里显示。

- 文件输入形式的预测结果样例如**图9-9**所示,返回结果的字段值根据不同模型可能 有所不同。
- 文本输入形式的预测结果样例如图9-10所示,请求体包含meta及data。如输入请求中包含uuid,则输出结果中回传此uuid。如未输入,则为空。data包含了一个resp_data的数组,返回单条或多条输入数据的预测结果,其中每个结果的参数由模型决定,比如本例中的sepal length、predictresult等。

图 9-9 文件输入预测结果

图 9-10 文本输入预测结果

----结束

方式二: 使用curl命令发送预测请求

使用curl命令发送预测请求的命令格式也分为文件输入、文本输入两类。

1. 文件输入

curl -F 'images=@图片路径' -H 'X-Auth-Token:Token值" -X POST 在线服务地址。

- "-F"是指上传数据的是文件,本例中参数名为**images**,这个名字可以根据 具体情况变化,@后面是图片的存储路径。
- "-H"是post命令的headers,headers的key值为**X-Auth-Token**,这个名字为固定的,**Token值**是用户获取到的token值(关于如何获取token,请参考**Token** 认证)。
- "POST"后面跟随的是在线服务的调用地址。

curl命令文件输入样例:

```
curl -F 'images=@/home/data/test.png' -H 'X-Auth-
Token:MIISkAY***80T9wHQ==' -X POST https://modelarts-infers-1.cn-
north-1.myhuaweicloud.com/v1/infers/eb3e0c54-3dfa-4750-
af0c-95c45e5d3e83
```

2. 文本输入

```
curl -d '{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
```

```
"data": {
"req_data": [
{
    "sepal_length": 3,
    "sepal_width": 1,
    "petal_length": 2.2,
    "petal_width": 4
}
]
}-H 'X-Auth-Token:MIISkAY***80T9wHQ==' -X POST https://modelarts-infers-1.cn-north-1.myhuaweicloud.com/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83
```

- "-d"是Body体的文本内容。

9.3 批量服务

批量服务界面说明

在部署上线"批量服务"界面,列举了用户所创建的批量服务。您可以在界面右上方文本框中输入服务名称,单击 〇进行查询,服务列表说明如**表9-4**所示。

单击左上角"部署"可以部署新的服务,具体操作请参见部署为批量服务。

表 9-4 批量服务列表说明

参数名称	说明
服务	服务的名称。单击服务的名称,可 查看服务详情 。
状态	当前服务的状态,包括部署中、运行中、运行完成、停止、异常。
	说明 当状态为"异常"时,请检查参数配置并重新部署。
推理方式	服务的推理方式,批量服务。
发布时间	批量服务的发布时间。
描述	批量服务的简要描述。
操作	对服务的操作,包括:
	● "修改":可对服务的描述、选择模型及版本、数据目录位置、 训练参数、计算节点规格及个数进行修改。
	● "启动": 启动当前批量服务。
	● "停止": 停止当前批量服务。

部署为批量服务

步骤1 单击批量服务界面上方的"部署",在部署页面填写参数,参数说明如表9-5所示。

表 9-5 参数说明

参数名称	说明
名称	批量服务的名称。
描述	批量服务的简要描述。
选择模型及版本	选择训练好的模型及版本。
输入数据目录位置	选择输入数据的目录位置。
环境变量	设置环境变量。
输出数据目录位置	选择批量预测结果的保存位置。
计算节点规格	当前有2核 8GiB、2核 8GiB 1*P4两种可选。
计算节点个数	当前可选1或2个计算节点个数。

步骤2 完成参数填写后,单击"立即创建",完成部署。

----结束

查看服务详情

单击服务名称,即可进入服务详情页面。批量服务详情页面分为3部分内容,如**图9-11** 所示,3个区域的内容介绍如**表9-6**所示。

图 9-11 批量服务详情页面

表 9-6 界面内容介绍

区域	说明
1	对服务的操作。
	● "修改":修改当前批量服务参数。
	● "删除": 删除当前批量服务。
2	服务的相关信息,包括服务名称、服务ID、状态、数据目录位置等。
3	服务的日志和溯源图。

9.4 边缘服务

边缘服务界面说明

在部署上线"边缘服务"界面,列举了用户所创建的边缘服务。您可以在界面右上方文本框中输入服务名称,单击 〇进行查询,服务列表说明如**表9-7**所示。

单击左上角"部署"可以部署新的服务,具体操作请参见部署为边缘服务。

表 9-7 边缘服务列表说明

参数名称	说明
服务	边缘服务的名称。单击服务的名称,可 查看服务详情 。
状态	当前服务的状态,包括部署中、运行中、停止、异常。 说明 当状态为"异常"时,请检查参数配置并重新部署。
推理方式	服务的推理方式,边缘服务。
发布时间	边缘服务的发布时间。
描述	边缘服务的简要描述。
操作	对服务的操作,包括: "修改":可对服务的描述、计算节点规格修改,可添加环境变量、边缘节点。"启动":启动当前边缘服务。

部署为边缘服务

步骤1 单击边缘服务界面上方的"部署",在部署页面填写参数,参数说明如表9-8所示。

表 9-8 参数说明

参数名称	说明
名称	边缘服务的名称。
描述	边缘服务的简要描述。
模型管理	选择模型及版本。
计算节点规格	当前有2核 8GiB、2核 8GiB 1*P4两种可选。
环境变量	添加环境变量。

步骤2 完成参数填写后,单击选择边缘节点"添加",在弹出的"添加节点"对话框中选择 节点。选择好节点后,单击"确定"。

∭说明

边缘节点是您自己的边缘计算设备,用于运行边缘应用,处理您的数据,并安全、便捷地和云端应用进行协同。

步骤3 单击"立即创建",完成边缘服务的部署。

----结束

查看服务详情

单击边缘服务名称,可进入当前边缘服务详情页面。

访问边缘服务

当边缘服务和边缘节点的状态都处于"运行中",如图9-12所示,则表示边缘服务已在边缘节点成功部署。

图 9-12 服务状态

您可以通过以下两种方式,在能够访问到边缘节点的网络环境中,对部署在边缘节点上的边缘服务发起预测请求。

方式一: 使用图形界面的软件进行预测(以Postman为例)

步骤1 下载Postman软件并安装,或直接在chrome浏览器添加postman扩展程序(也可使用其它支持发送post请求的软件)。

步骤2 打开Postman,如图9-13所示。

图 9-13 Postman 界面

步骤3 在Postman界面填写参数,以图像分类举例说明。

● 选择POST任务,将某个边缘节点的调用地址(通过边缘服务详情界面-节点信息页签查看,如图9-14所示)复制到POST后面的方框,如图9-15所示。

图 9-14 查看调用 URL

服务 > ServiceTest

图 9-15 参数填写

- 在Body栏下,根据模型的输入参数不同,可分为2种类型:文件输入、文本输入。
 - a. 文件输入

选择"form-data"。在Key值填写模型的入参,比如本例中预测图片的参数为"images"。然后在value值,选择文件,上传一张待预测图片(当前仅支持单张图片预测),如图9-16所示。

图 9-16 填写 Body

b. 文本输入

选择"raw",选择JSON(application/json)类型,在下方文本框中填写请求体,请求体样例如下。

```
{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"data": {
"req_data": [
```

```
{
"sepal_length": 3,
"sepal_width": 1,
"petal_length": 2.2,
"petal_width": 4
}
]
}
```

其中,meta中可携带uuid,调用时传入一个uuid,返回预测结果时回传此uuid用于跟踪请求,**如无此需要可不填写meta**。data包含了一个req_data的数组,可传入单条或多条请求数据,其中每个数据的参数由模型决定,比如本例中的sepal_length、sepal_width等。

步骤4 参数填写完成,点击"send"发送请求,结果会在Response下的对话框里显示。

- 文件输入形式的预测结果样例如**图9-17**所示,返回结果的字段值根据不同模型可能有所不同。
- 文本输入形式的预测结果样例如**图9-18**所示,请求体包含meta及data。如输入请求中包含uuid,则输出结果中回传此uuid。如未输入,则为空。data包含了一个resp_data的数组,返回单条或多条输入数据的预测结果。其中每个结果的参数由模型决定,比如本例中的sepal_length、predictresult等。

图 9-17 文件输入预测结果

图 9-18 文本输入预测结果

```
http://192.168.0.158:1033
   POST ∨
   1 + {
   2 +
         "meta": {
           "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
   3
   4
   5 🕶
         "data": {
   6 +
           "req_data": [
             {
               "sepal_length": 3,
   8
   9
               "sepal_width": 1,
               "petal_length": 2.2,
  10
               "petal_width": 4
  11
  12
  13
           1
  14
         }
  15 }
Body
         Cookies
                    Headers (6)
                                    Test Results
 Pretty
                                ISON V
           Raw
           "meta": {
               "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
   4
            data": {
   5 +
                "res_data": [
   6 +
   7 +
   8
                       "sepal_length": 3,
                       "sepal_width": 1,
                       "petal_length": 2.2,
  10
                        "petal_width": 4,
  11
                        "predictresult": 0
  12
  13
                   }
  14
               ]
  15
  16 }
```

----结束

方式二: 使用curl命令发送预测请求

使用curl命令发送预测请求的命令格式也分为文件输入、文本输入两类。

1. 文件输入

curl -F 'images=@图片路径'-X POST 边缘节点服务地址。

- "-F"是指上传数据的是文件,本例中参数名为**images**,这个名字可以根据 具体情况变化,@后面是图片的存储路径。
- "POST"后面跟随的是边缘节点的调用地址。

curl命令文件输入预测样例:

```
curl -F 'images=@/home/data/cat.jpg' -X POST http://
192.168.0.158:1032
```

预测结果如图9-19所示。

图 9-19 curl 命令文件输入预测结果

2. 文本输入

```
curl -d '{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"data": {
"req_data": [
{
"sepal_length": 3,
"sepal_width": 1,
"petal_length": 2.2,
"petal_width": 4
}
]
}' -X POST 边缘节点服务地址
```

● "-d"是Body体的文本内容,如模型为文本输入,则需要用此参数。

curl命令文本输入预测样例:

```
curl -d '{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"data": {
"req_data": [
{
"sepal_length": 3,
"sepal_width": 1,
"petal_length": 2.2,
"petal_width": 4
}
]
}' -X POST http://192.168.0.158:1033
```

预测结果如图9-20所示。

图 9-20 curl 命令文本输入预测结果

```
root@modelarts006:/# curl -X POST \
    http://192.168.0.158:1033/ \
    -d '{
        "meta": {
            "ouid": "10eb0091-887f-4839-9929-cbc884f1e20e"
        },
        "sepal_length": 3,
            "sepal_length": 1,
            "petal_length": 2.2,
            "petal_length": 4
        }
        }
     }
     }
     *
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     **
     *

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*
```

10市场

ModelArts市场中列举了其他用户共享的模型、ModelArts预置的数据集及您共享给其他用户的模型。

共享模型

在"模型"界面中,列举了其他用户共享给您的所有模型,如图10-1所示。您可按共享类型和模型类型分类显示,或者在搜索框中输入模型名称、模型类型,单击 进行查询。单击模型名称可进入模型详情页面,您可查看当前模型详情,可单击详情页右上角"保存到我的模型"将当前模型导入至"模型管理",同时您还可以提交您对当前模型的评论和评分。

∭说明

共享类型"公共"中的模型为所有用户可见,"私人"中的模型为仅您或部分用户可见。

图 10-1 模型界面

ModelArts 预置数据集

在"数据集"界面中,列举了ModelArts预置的所有数据集,如图10-2所示。单击数据集名称可进入数据集详情页面,单击详情页右上角"导入到我的数据集"将当前数据集导入至"数据管理->数据集",同时您还可以提交您对当前数据集的评论和评分。

图 10-2 数据集界面

我的共享

在"我的共享"界面中,列举了您共享给所有用户或您指定用户的模型。您可按共享类型或模型类型进行分类显示,或者在搜索框中输入模型名称、模型类型,单击 Q进行查询。

单击模型名称可进入模型详情页面,可查看当前模型详情。单击详情页面右上角"修改共享",在弹出的对话框中修改共享模型设置。

🔲 说明

- 共享类型 "公共"中的模型为所有用户可见, "私人"中的模型为共享给指定用户的模型, 仅指定的用户可见。
- 服务公测期间,仅支持共享给指定用户。

11修订记录

发布日期	修改说明
2018-11-15	第二次正式发布。 ● 修改 修改了使用flowers数据集对预置ResNet_v1_50模型进行重训练 数据下载路径、部分步骤。
2018-11-08	第一次正式发布。