1a Avaluació	Tecnologia industrial	2n Batxillerat
Global		Data:
Nom i cognoms:		Qualificació:

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

- 1. (0,5 pts) Una bombona de gas butà conté $12,5\,kg$ d'aquest gas en estat líquid a una pressió de $303\,kPa$ quan es troba a $20^{\circ}\,C$. Aquestes bombones estan dissenyades perquè, si la pressió arriba a $2\,634\,kPa$, salti la vàlvula de seguretat i surti el gas de l'interior. La bombona s'escalfa fins a $600^{\circ}\,C$. Considerant el butà un gas ideal, es pot afirmar que
 - (a) la bombona explotarà.
 - (b) es dispararà la vàlvula de seguretat.
 - (c) la pressió augmentarà fins a $902, 8 \, kPa$.
 - (d) la pressió a l'interior de la bombona no canviarà.
- 2. **(0,5 pts)** Un cilindre de doble efecte té un diàmetre interior de 40 mm, un diàmetre de tija de 25 mm i una cursa de 300 mm. Si la pressió de treball és de 0,6 MPa, quina és la força que fa el cilindre en el procés de retrocés?
 - (a) $294,5 \,\mathrm{N}$
 - (b) 459,5 N
 - (c) $754,0 \,\mathrm{N}$
 - (d) $1,051 \,\mathrm{kN}$
- 3. L'ajuntament d'un poble ha aprovat un pla de millora energètica i ambiental que inclou la installació de conjunts de plaques solars fotovoltàiques en un dels edificis municipals amb la finalitat de cobrir un r=15% de la demanda d'electricitat. La potència total instal·lada en aquest edifici és $P_{inst}=30\,kW$ i s'estima un consum mitjà c=75% durant t=12h/dia. El factor d'emissió de la comercialització elèctrica és $FE=241\,g\,CO_2/(kWh)$. L'ajuntament ha escollit una placa que té una àrea efectiva $A=1,45\,m^2$ i que, en condicions normals (és a dir, a $20^{\circ}\,C$ i una intensitat de radiació solar $I_{rad}=1\,000\,W/m^2$) subministra una potència $P_{placa}=194\,W$. Determineu:
 - (a) (0,5 pts) L'energia total consumida E_{cons} en un any a l'edifici municipal.
 - (b) (0,5 pts) La potència P_{foto} que ha de subministrar la instal·lció fotovoltaica.
 - (c) (0,5 pts) El rendiment de la placa η_{placa} .
 - (d) (1 pt) El nombre mínim de plaques fotovoltaiques n_p necessari suposant condicions normals.
 - (e) (0,5 pts) Les emissions de gasos amb efecte d'hivernacle (CO_2) que s'evitaria emetre a l'atmosfera durant un any Δm .

- 4. S'utilitza un petit generador elèctric dièsel per a subministrar electricitat a llocs on no arriba el corrent elèctric. El sistema es compon d'un motor dièsel (amb una velocitat de gir del motor $n=3\,000\,\mathrm{min}^{-1}$) i un alternador monofàsic units directament per un eix comú. El gasoil utilitzat té un poder calorífic $p_c=44,8\,MJ/kg$ i una densitat $\rho_{gasoil}=0,85\,kg/L$. La potència subministrada pel motor dièsel és $P_{mot}=7,457\,kW$, i la subministrada per l'alternador $P_{elèc}=5,5\,kW$. El sistema disposa d'un dipòsit de combustible de volum $V=14\,L$ que garanteix $t=13\,h$ d'autonomia en les condicions descrites. Determineu:
 - (a) (0,5 pts) El rendiment de l'alternador η_{alt} .
 - (b) (1 pt) El consum del motor dièsel c_{gasoil} en g/h.
 - (c) (0,5 pts) El rendiment del motor η_{mot} .
 - (d) (0,5 pts) La potència total dissipada P_{diss} pel conjunt.
- 5. Una central de carbó té n=3 grups de turbines de vapor amb una potència $P_{turb}=362\,MW$ cada un i utilitza carbó del tipus lignit amb un poder calorífic $p_{c,c}=28,\,400\,kJ/kg$ i una densitat $\rho=1\,050\,kg/m^3$. La central està en funcionament les 24 hores del dia i té un rendiment $\eta_c=0,236$. Determineu:
 - (a) (0,5 pts) L'energia diària consumida E_{cons} que cal aportar a la central.
 - (b) (0.5 pts) La massa de carbó m_c diària necessària perquè funcioni.

S'estima que si la central treballés amb querosé (de poder calorífic $p_{c,q} = 43\,400\,kJ/kg$) n'utilitzaria $m_q = 6\,177\cdot 10^3\,kg$ diaris i mantindria la potència subministrada per cada turbina. Determineu, en aquest cas:

- (c) (1 pt) El nou rendiment de la central η_q .
- 6. En una instal·lació, una bomba accionada per un motor tèrmic, fa pujar un volum $V = 600 \, m^3$ d'aigua fins una altura $h = 3,6 \, m$ en un temps $t = 10 \, h$ de funcionament estacionari. Determineu:
 - (a) (0,5 pts) El treball W fet per la bomba.
 - (b) (0,5 pts) La potència hidràulica P_h que desenvolupa la bomba.
 - (c) (1 pt) El rendiment η del grup motobomba, si el motor ha consumit c=3L d'un combustible de densitat $\rho=850\,kg/m^3$ i de poder calorífic $p_c=42,5\,MJ/kg$