1

Assignment 9

Sri Harsha CH

Abstract—This document explains the method of performing QR decomposition on a 2×2 matrix.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment9/ code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment9

1 Problem

Find the QR decomposition of the given matrix.

$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \tag{1.0.1}$$

2 Explanation

QR decomposition of a square matrix is given by,

$$\mathbf{A} = \mathbf{QR} \tag{2.0.1}$$

where \mathbf{Q} is an orthogonal matrix and \mathbf{R} is an upper triangular matrix.

Given matrix,

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \tag{2.0.2}$$

The column vectors of the matrix is given by,

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \tag{2.0.3}$$

Equation (2.0.2) can be written in form of (2.0.3) as,

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{q_1} & \mathbf{q_2} \end{pmatrix} \begin{pmatrix} u_1 & u_3 \\ 0 & u_2 \end{pmatrix} = \mathbf{QR}$$
 (2.0.4)

where,

$$u_1 = ||\mathbf{a}|| = \sqrt{1^2 + 2^2} = \sqrt{5}$$
 (2.0.5)

$$\mathbf{q_1} = \frac{\mathbf{a}}{u_1} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \tag{2.0.6}$$

$$u_3 = \frac{\mathbf{q_1}^T \mathbf{b}}{\|\mathbf{q_1}\|^2} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 2\\ -2 \end{pmatrix} = \frac{-2}{\sqrt{5}}$$
 (2.0.7)

$$\mathbf{q_2} = \frac{\mathbf{b} - u_3 \mathbf{q_1}}{\|\mathbf{b} - u_3 \mathbf{q_1}\|} = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix}$$
(2.0.8)

$$u_2 = \mathbf{q_2}^T \mathbf{b} = \left(\frac{2}{\sqrt{5}} - \frac{1}{\sqrt{5}}\right) \begin{pmatrix} 2\\ -2 \end{pmatrix} = \frac{6}{\sqrt{5}}$$
 (2.0.9)

Substituting equation (2.0.5) to (2.0.9) in (2.0.4),

$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} & -\frac{2}{\sqrt{5}} \\ 0 & \frac{6}{\sqrt{5}} \end{pmatrix}$$
(2.0.10)

3 Solution

The QR decomposition is,

$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} & -\frac{2}{\sqrt{5}} \\ 0 & \frac{6}{\sqrt{5}} \end{pmatrix}$$
(3.0.1)