Contents

0.1	$\label{lem:methyl-1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate~ {\bf 124}~.~.$	3
0.2	4-Bromo- N -(2-oxotetrahydrothiophen-3-yl) butanamide ${\bf 125}$	3
0.3	4-Azido- N -(2-oxotetrahydrothiophen-3-yl) butanamide ${\bf 126}$	4
0.4	$Methyl\ 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl) piper the properties of the properties of$	a
	zin-1-yl)-1,4-dihydroquinoline-3-carboxylate ${\bf 127}$	5
0.5	$1- Cyclopropyl-6-fluoro-4-oxo-7- (4-(4-(4-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1 \\ H-(4-(4-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1 \\ H-(4-(4-(4-(4-(4-0xo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1 \\ H-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-$	
	1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid ${\bf 128}$	6
0.6	1- Cyclopropyl-6-fluoro-4-oxo-7- (4-((((4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-0xo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-0xo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-0xo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-0xo-4-((2-0xotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-0xo-4-((2-0xotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-0xo-4-((2-0xotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-0xo-4-((2-0xotetrahydrothiophen-3-yl)amino)butyl)-1-((((4-(4-(4-0xo-4-((2-0xotetrahydrothiophen-3-yl)amino)butyl)-1-(((4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(
	$1 \\ H-1,2,3-\text{triazol-4-yl}) \\ \text{butanoyl}) \\ \text{oxy}) \\ \text{methoxy}) \\ \text{carbonyl}) \\ \text{piperazin-1-yl})-1,4-\text{dihydroquinoline-3-carbonyl}) \\ \text{carbonyl}) \\ \text{piperazin-1-yl})-1,4-\text{dihydroquinoline-3-carbonyl}) \\ \text{carbonyl}) \\ \text{piperazin-1-yl})-1,4-\text{dihydroquinoline-3-carbonyl}) \\ \text{carbonyl}) \\ \text{piperazin-1-yl})-1,4-\text{dihydroquinoline-3-carbonyl}) \\ \text{carbonyl}) \\ carb$	
	boxylic acid 129	7
0.7	4-Bromo- N -(2-methoxyphenyl) butanamide ${\bf 130}$	8
0.8	4-Bromo- N -(3-methoxyphenyl) butanamide ${\bf 131}$	8
0.9	4-Azido- N -(2-methoxyphenyl) butanamide 132	9
0.10	4-Azido- N -(3-methoxyphenyl) butanamide 133	10
0.11	$Methyl\ 1-cyclopropyl-6-fluoro-7-(4-(4-((2-methoxyphenyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxobutyl)$	
	1,4-dihydroquinoline-3-carboxylate 134	10
0.12	$Methyl\ 1-cyclopropyl-6-fluoro-7-(4-(4-((3-methoxyphenyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxobutyl)$	
	1,4-dihydroquinoline-3-carboxylate ${\bf 135}$	11
0.13	$1- Cyclopropyl-6-fluoro-7- (4-(4-(4-((2-methoxyphenyl)amino)-4-oxobutyl)-1\\ H-1,2,3-triazol-4-yl) burner (2-methoxyphenyl) burner (2-methoxyphen$	t
	yl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ${\bf 136}$	12
0.14	$1- Cyclopropyl-6-fluoro-7- (4-(4-((3-methoxyphenyl)amino)-4-oxobutyl)-1\\ H-1,2,3-triazol-4-yl) burketing a superior of the control of the c$	t
	yl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ${\bf 137}$	14
0.15	$\label{lem:methyl} Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1, 4-dihydro-1-cyclopropyl-6-fluoro-4-oxo-1, 4-dihydro-1-cyclopropyl-6-fluoro-4-oxo-1-cyclopropyl-6-fluoro-4-oxo-1, 4-dihydro-1-cyclopropyl-6-fluoro-4-oxo-1-cyclopropyl-6-fluoro-4-$	
	quinoline-3-carboxylate 138	15
0.16	4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl) piperazin-1-yl) but a substitution of the contraction of the co	an
	oic acid, trifluoroacetic acid salt 139	16
0.17	(1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 140 and (1R,2R)-2-(((S)-1-phenylethyl)amino)cyclopentan-1-ol (1R,2R)-2-(((S)-1-phenylethyl)amino)cyclopentan-1-ol (1R,2R)-2-(((S)-1-phenylethyl)amino)cyclopentan-1-ol (1R,2R)-((S)-((S)-phenylethyl)amino)cyclopentan-1-ol (1R,2R)-((S)-((S)-phenylethyl)amino)cyclopentan-1-ol (1R,2R)-((S)-((S)-phenylethyl)amino)cyclopentan-1-ol (1R,2R)-((S)-((S)-phenylethyl)ami)
	cyclopentan-1-ol 141	17
	(1S,2S)-2-Aminocyclopentan-1-ol 142	
0.19	(1R,2R)-2-Aminocyclopentan-1-ol 143	19
0.20	$(1R,2R)\text{-}2\text{-}((\textit{tert}\text{-butyldimethylsilyl})\text{oxy})\text{cyclopentan-}1\text{-amine }\textbf{144}\ \dots\ \dots\ \dots\ \dots\ \dots\ \dots\ \dots$	19
	4-Chloro- N -((1 S ,2 S)-2-hydroxycyclopentyl) butanamide 145	
0.22	4-Chloro- N -((1 R ,2 R)-2-hydroxycyclopentyl) butanamide ${\bf 146}$	21
0.23	$\label{eq:condition} \mbox{4-Azido-$N-((1R,2R)-2-((tert-butyldimethylsilyl)oxy)$ cyclopentyl) butanamide ${\bf 147}$$	21
0.24	4-Azido- N -((1 S ,2 S)-2-hydroxycyclopentyl) butanamide 148	22
0.25	4-Azido- N -((1 R ,2 R)-2-hydroxycyclopentyl) butanamide 149	23
0.26	$\label{lem:methyl-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-\text{hydroxycyclopentyl})\text{amino})-4-\text{oxobutyl}) piperazin-1-(4-(4-((1S,2S)-2-\text{hydroxycyclopentyl})\text{amino})-4-\text{oxobutyl}) piperazin-1-(4-((1S,2S)-2-\text{hydroxycyclopentyl})) piperazin-1-(4-((1S,2S)-2-\text{hydroxycyclopentyl})) piperazin-1-(4-((1S,2S)-2-\text{hydroxycyclopentyl})) piperazin-1-(4-((1S,2S)-2-\text{hydroxycyclopentyl})) piperazin-1-(4-((1S,2S)-2-\text{hydroxycyclopentyl})) piperazin-1-(4-((1S,2S)-2-\text{hydroxycyclopentyl})) piperazin-1-(4-((1S,2S)-2-((1S,2S)-2-\text{hydroxycyclopentyl})) piperazin-1-(4-((1S,2S)-2-(($	
	1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate ${\bf 150}$	24
0.27	$\label{lem:methyl-1-cyclopropyl-6-fluoro-7-(4-(4-(((1R,2R)-2-\text{hydroxycyclopentyl})\text{amino})-4-\text{oxobutyl}) piperazin-1-(4-(4-((1R,2R)-2-\text{hydroxycyclopentyl})\text{amino})-4-\text{oxobutyl}) piperazin-1-(4-((1R,2R)-2-\text{hydroxycyclopentyl})$	
	1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate ${\bf 151}$	25
0.28	$\label{lem:methyl} Methyl (R)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclopentyl)amino)butyl) piperazin-property (2-oxocyclopentyl) amino) butyl) amino) $	
	1-yl)-1,4-dihydroquinoline-3-carboxylate 152	26

0.29	7-(4-(4-(4-(1-(4-((1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-((1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-((tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-((tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy)-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy-1H-1,2,3-1-(tert-butyldimethylsilyl)oxy-1H-1,2,3-1-(tert-butyldimethylsilyl)o	
	triazol-4-yl)butyl) piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid acid acid acid acid acid acid ac	
	153	27
0.30	1- Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(1-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(1-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(1-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(1-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(4-(1-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
	triazol-4-yl) butyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ${\bf 154}$	28
0.31	1- Cyclopropyl-6-fluoro-7- (4-(4-(1-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(1-(4-((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
	triazol-4-yl) butyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ${\bf 155}$	29
0.32	(trans)-2-Aminocyclohexan-1-ol 156	30
0.33	4-Chloro- N -(($trans$)-2-hydroxycyclohexyl) butanamide ${\bf 157}$	31
0.34	4-Azido- N -(($trans$)-2-hydroxycyclohexyl) butanamide ${\bf 158}$	31
0.35	$\label{lem:methyl-1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-\text{hydroxycyclohexyl})\text{amino})-4-\text{oxobutyl})piperazin-pipera$	
	1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate ${\bf 159}$	32
0.36	$Methyl\ 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-((2-oxocyclohexyl)amino)-butyl)-1-cyclopropyl-6-fluoro-6-f$	
	1,4-dihydroquinoline-3-carboxylate 160	33
0.37	$1- Cyclopropyl-6-fluoro-7- (4-(4-(1-(4-(((\textit{trans})-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1 \\ H-1,2,3-(1-4-(1-(4-(1-(4-(((\textit{trans})-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1 \\ H-1,2,3-(1-4-(1-(4-(((-(1-(4-(((-(1-(1-(1-(1-(1-(1-(1-(1-(1-(1-(1-(1$	
	triazol-4-yl) butyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid	34
0.38	$1- Cyclopropyl-6-fluoro-4-oxo-7- (4-(4-(4-(4-oxo-4-((2-oxocyclohexyl)amino)butyl)-1 \\ H-1,2,3-triazol-1-(4-(4-(4-(4-0xo-4-((2-oxocyclohexyl)amino)butyl)-1 \\ H-1,2,3-triazol-1-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-$	
	4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 162	35

0.1 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 124

Ciprofloxacin 97 (10.0 g, 30 mmol, 1 eq.) and p-toluenesulfonic acid (8.60 mg, 44.5 mmol, 1.5 eq.) were refluxed in methanol (500 ml) for 72 h. The mixture was cooled to room temperature and NaHCO₃ (sat., aq., 100 ml) and water (300 ml) were added. The product was extracted with CH₂Cl₂ (2 × 400 ml), which was dried over MgSO₄ and evaporated under reduced pressure. **124** was obtained as a white amorphous solid (9.16 g, 26.5 mmol, 83.3 %).

TLC $R_f = 0.13 \ (5 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2947.9 (C-H), 2834.9 (C-H), 1720.9 (ester C=O), 1616.8 (quinolone C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 8.55 (s, 1 H, ortho to C(=O)OCH₃), 7.71 (d, J = 13.5 Hz, 1 H, ortho to F), 7.41 (d, J = 7.2 Hz, 1 H, meta to F), 3.83 (s, 3 H, C $\underline{\text{H}}_3$), 3.62 (tt, J = 7.4, 3.5 Hz, 1 H, NC $\underline{\text{H}}_4$ (CH₂)₂), 3.24 - 3.29 (m, 4 H, HN(CH₂C $\underline{\text{H}}_2$)CH₂C $\underline{\text{H}}_2$), 3.02 - 3.10 (m, 4 H, HN(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 1.31 - 1.38 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.12 - 1.20 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.2 ($\underline{C}(=O)CC(=O)OCH_3$), 166.8 ($\underline{C}(=O)OCH_3$), 154.9 (d, J = 248.0 Hz, ipso to F), 150.1 ($\underline{C}=CC(=O)OCH_3$), 146.6 (d, J = 10.4 Hz, ipso to piperazine), 139.9 (para to F), 123.3 (d, J = 6.9 Hz, para to piperazine), 113.0 (d, J = 23.4 Hz, ortho to C=O and ortho to F), 110.1 ($\underline{C}C(=O)OCH_3$), 107.1 (d, J = 3.5 Hz, meta to C=O and meta to F), 52.3 ($\underline{C}H_3$), 51.7 ($\underline{H}N(CH_2\underline{C}H_2)CH_2CH_2$), 51.6 ($\underline{H}N(CH_2CH_2)CH_2CH_2$), 46.5 ($\underline{H}N(\underline{C}H_2)\underline{C}H_2$), 36.4 ($\underline{N}\underline{C}H(CH_2)\underline{C}H_2$), 8.7 ($\underline{N}CH(\underline{C}H_2)\underline{C}H_2$)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.8 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 346.1569, [M+H]⁺ found, [C₁₈H₂₁FN₃O₃]⁺ requires 346.1567

The data are consistent with the literature.?

0.2 4-Bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide 125

$$S \xrightarrow{N} H$$
 Br

3-Aminodihydrothiophen-2(3H)-one hydrochloride **163** (15.0 g, 97.6 mmol, 1 eq.) and NaHCO₃ (16.4 g, 195 mmol, 2 eq.) were added to $\mathrm{CH_2Cl_2}$ (150 ml) and water (150 ml). 4-Bromobutyryl chloride **42** (11.3 ml, 107 mmol, 1.1 eq.) was added dropwise over 45 min at 0 $^{\circ}\mathrm{C}$ and the mixture was stirred for a further 1 h. The

organic layer was separated and the aqueous layer was extracted with a second portion of $\mathrm{CH_2Cl_2}$ (150 ml). The combined organic layers were dried over $\mathrm{MgSO_4}$ and evaporated under reduced pressure. 125 was obtained as a white, amorphous solid (22.7 g, 85.8 mmol, 87.9 %)

TLC $R_f = 0.19 (50 \% \text{ EtOAc/PE})$

IR (neat) ν_{max} / cm⁻¹ = 3265.9 (amide N-H), 3063.2 (amide N-H), 1694.3 (thiolactone C=O), 1650.5 (amide C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 6.08 (d, J = 6.1 Hz, 1 H, N<u>H</u>), 4.54 (dt, J = 12.9, 6.5 Hz, 1 H, C<u>H</u>NH), 3.49 (t, J = 6.4 Hz, 2 H, C<u>H</u>₂Br), 3.37 (ddd, J = 12.2, 11.5, 5.3 Hz, 1 H, SC<u>H</u>H), 3.26 (ddd, J = 11.5, 6.9, 1.3 Hz, 1 H, SCH<u>H</u>), 2.91 (dddd, J = 12.5, 6.7, 5.3, 1.3 Hz, 1 H, SCH₂C<u>H</u>H), 2.45 (t, J = 7.4 Hz, 1 H, C(=O)C<u>H</u>H), 2.45 (t, J = 6.8 Hz, 1 H, C(=O)CH<u>H</u>), 2.20 (quin, J = 6.7 Hz, 1 H, C(=O)CH₂C<u>H</u>₂), 1.96 (dddd, J = 12.7, 12.5, 12.2, 7.0 Hz, 1 H, SCH₂CH<u>H</u>)

Orientation are not unambiguous without noesy.

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 205.4 (SC(=O)), 172.1 (NHC(=O)), 59.4 (CHNH), 34.1 (C(=O)CH₂), 33.1 (CH₂Br), 31.8 (SCH₂CH₂), 28.0 (C(=O)CH₂CH₂), 27.5 (SCH₂)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

The compound has been synthesised previously?,? but characterisation was not published.

0.3 4-Azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide 126

$$S \xrightarrow{O} H$$
 N_3

4-Bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide ${\bf 125}$ (6.00 g, 27.0 mmol, 1 eq.) and NaN $_3$ (3.51 g, 54.1 mmol, 2 eq.) were refluxed in acetonitrile (120 ml) for 1.5 h. The solvent was evaporated under reduced pressure and the residue was partitioned between water (150 ml) and ${\rm CH_2Cl_2}$ (150 ml). The aqueous layer was extracted twice more with ${\rm CH_2Cl_2}$ (2 × 150 ml) and the combined organic fractions were dried with MgSO $_4$ and evaporated under reduced pressure. ${\bf 126}$ was obtained as a yellow, sticky solid (4.60 g, 20.1 mmol, 89.3 %).

TLC $R_f = 0.19 \ (50 \% \ EtOAc/PE)$

IR (neat) ν_{max} / cm⁻¹ = 3285.6 (N-H), 2963.9 (C-H), 2100.2 (azide), 1697.4 (thiolactone C=O), 1647.4 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.71 (d, J = 7.3 Hz, 1 H, N<u>H</u>), 4.54 (dt, J = 13.0, 7.0 Hz, 1 H, C<u>H</u>NH), 3.30 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂N₃), 3.31 (td, J = 11.7, 5.3 Hz, 1 H, 1 H, SC<u>H</u>H), 3.19 (ddd, J = 11.3, 7.0, 1.2 Hz, 1 H, SCH<u>H</u>), 2.70 (dddd, J = 12.4, 6.8, 5.3, 1.2 Hz, 1 H, SCH₂C<u>H</u>H), 2.29 (t, J = 7.5 Hz, 1 H, C(=O)C<u>H</u>H), 2.28 (t, J = 7.1 Hz, 1 H, C(=O)CH<u>H</u>), 1.97 (qd, J = 12.4, 7.0 Hz, 1 H, SCH₂CH<u>H</u>), 1.85 (quin, J = 6.9 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 205.4 (SC(=O)), 172.3 (NHC(=O)), 59.4 (CHNH), 50.6 (CH₂N₃),

 $32.8 (C(=O)\underline{C}H_2), 31.8 (SCH_2\underline{C}H_2), 27.5 (S\underline{C}H_2), 24.6 (C(=O)CH_2\underline{C}H_2)$

HRMS (ESI⁺) m/z / Da = 251.0565, [M+Na]⁺ found, [C₈H₁₂N₄NaO₂S]⁺ requires 251.0573

The compound has not been reported previously.

0.4 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 127

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate **124** (50 mg, 0.145 mmol, 1 eq.), 4-bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide **125** (34.5 mg, 0.145 mmol, 1 eq.) and K_2CO_3 (20 mg, 0.145 mmol, 1 eq.) were stirred in acetonitrile (2 ml) at 50 °C under argon. After 24 h a further portion of **125** (34.5 mg, 0.145 mmol, 1 eq.) was added. After another 24 h a further portion was added (69.0 mg, 0.290 mmol, 2 eq.). After another 24 h the temperature was raised so the mixture was at reflux. After a final 24 h the precipitate was filtered off and the filtrate was purified by column chromatography (SiO₂, 5-10 % MeOH/CH₂Cl₂). **127** was obtained as a cream-coloured amorphous solid (9.4 mg, 0.018 mmol, 12.2 %).

TLC $R_f = 0.47 (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2944.2 (C-H), 2832.4 (C-H), 1722.4 (ester C=O), 1700.4 (thiolactone C=O), 1669.6 (amide C=O), 1617.3 (quinolone C=O)

¹H NMR (500 MHz, MeOD) δ / ppm = 8.53 (s, 1 H, ortho to C(=O)OCH₃), 7.68 (d, J=13.4 Hz, 1 H, ortho to F), 7.41 (d, J=7.3 Hz, 1 H, meta to F), 4.67 (dd, J=12.9, 6.9 Hz, 1 H, CHNH), 3.83 (s, 3 H, OCH₃), 3.61 (tt, J=6.9, 4.1 Hz, 1 H, NCH(CH₂)₂), 3.39 - 3.49 (m, 5 H, SCHH), 3.26 - 3.33 (m, 1 H, SCHH and CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.93 - 3.03 (m, 4 H, CH₂CH₂CH₂N(CH₂)CH₂), 2.79 (br. t, J=7.2, 7.2 Hz, 2 H, C(=O)CH₂CH₂CH₂CH₂), 2.59 (dddd, J=12.4, 6.9, 5.4, 1.4 Hz, 1 H, SCH₂CHH), 2.39 (t, J=7.20 Hz, 1 H, C(=O)CHH), 2.38 (t, J=6.94 Hz, 1 H, C(=O)CHH), 2.18 (qd, J=12.4, 7.0 Hz, 1 H, SCH₂CHH), 1.97 (quin, J=7.2 Hz, 2 H, C(=O)CH₂CH₂C), 1.32 - 1.37 (m, 2 H, NCH(CHH)₂), 1.13 - 1.19 (m, 2 H, NCH(CHH)₂)

¹³C NMR (126 MHz, MeOD) δ / ppm = 207.0 (SC(=O)), 175.7 (NHC(=O)), 175.1 (C(=O)CC(=O)OCH₃), 166.6 (C(=O)OCH₃), 154.7 (d, J=249.0 Hz, ipso to F), 150.2 (s, CH=CC(=O)OCH₃), 145.6 (d, J=10.6 Hz, ipso to piperazine), 139.8 (para to F), 123.5 (d, J=6.9 Hz, para to piperazine), 113.1 (d, J=23.6 Hz, ortho to C=O and ortho to F), 110.0 (CC(=O)OCH₃), 107.4 (meta to C=O and meta to F), 60.2 (CHNH), 58.5 (C(=O)CH₂CH₂CH₂), 53.8 (CH₂CH₂CH₂N(CH₂)CH₂), 52.3 (OCH₃), 50.1 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 50.0 (CH₂CH₂CH₂N(CH₂CH₂), 36.5 (NCH(CH₂)₂), 34.5 (C(=O)CH₂), 31.7 (SCH₂CH₂), 28.1 (SCH₂), 22.9 (C(=O)CH₂CH₂CH₂), 8.7 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -125.4 (s, ciprofloxacin F)

The compound has been synthesised previously.[?], Only HRMS characterisation was published, and this agrees with the result above.

check??

0.5 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinol ine-3-carboxylic acid 128

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **164** (15 mg, 36.7 μ mol, 1 eq.) and 4-azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide **126** (12.5 mg, 55.1 μ mol, 1.5 eq.) were dissolved in 1:9:10 % water/t-BuOH/DMSO (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (182 μ l, 18.2 μ mol, 0.5 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (367 μ l, 36.7 μ mol, 1 eq., 100 mM, aq.). The mixture was stirred at r.t. under argon for 7 d. Water (50 ml) and 10 % i-PrOH/CHCl₃ (10 ml) were added, the organic layer was separated and the aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (2 × 10 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 50 ml) and 10 % i-PrOH/CHCl₃ (50 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **128** was obtained as a white amorphous solid (16.5 mg, 25.9 μ mol, 70.6 %).

IR (neat) ν_{max} / cm⁻¹ = 2918.8 (C-H), 1712.7 (carboxylic acid C=O and thiolactone C=O), 1657.6 (amide C=O), 1626.8 (quinolone C=O), 1616.2 (triazole)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.23 (br s, 1 H, C(=O)O<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 8.23 (d, J=8.5 Hz, 1 H, N<u>H</u>), 7.90 (d, J=13.4 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.56 (d, J=7.5 Hz, 1 H, meta to F), 4.59 (ddd, J=12.7, 8.4, 6.8 Hz, 1 H, C<u>H</u>NH), 4.31 (t, J=7.0 Hz, 2 H, C<u>H</u>₂NCH=C), 3.80 - 3.86 (6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.34 - 3.37 (m, 1 H, SC<u>H</u>H), 3.32 (br t, J=4.1 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 3.27 (ddd, J=11.1, 6.9, 1.4 Hz, 1 H, SC<u>H</u><u>H</u>), 2.64 (t, J=7.6 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br t, J=4.7 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.34 - 2.44 (m, 3 H, SCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂C<u>H</u>₂), 2.12 (t, J=7.9 Hz, 1 H, C(=O)C<u>H</u>H), 2.12 (t, J=7.0 Hz, 1 H, C(=O)CH<u>H</u>), 2.04 (m, 3 H, SCH₂C<u>H</u><u>H</u> and C(=O)CH₂C<u>H</u>₂), 1.64 (quin, J=7.5 Hz, 2 H, CH=CCH₂CH₂), 1.28 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.15 - 1.20 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 205.6 (S<u>C</u>(=O)), 176.4 (<u>C</u>(=O)CC(=O)OH), 171.4 (NH<u>C</u>(=O)), 166.0 (<u>C</u>(=O)OH), 153.1 (d, J=249.3 Hz, ortho to F), 148.0 (<u>C</u>H=CC(=O)OH), 146.9 (CH=<u>C</u>CH₂), 145.3 (d, J=10.1 Hz, ipso to piperazine), 139.2 (para to F), 121.8 (<u>C</u>H=CCH₂), 118.6 (d, J=7.7 Hz, para to piperazine), 111.0 (d, J=23.3 Hz, ortho to C=O and ortho to F), 106.7 (<u>C</u>C(=O)OH), 106.4 (d, J=2.9 Hz, meta to

$$\begin{split} & \text{C=O and } \textit{meta} \text{ to F)}, 58.2 \text{ (SC(=O)\underline{C}HNH)}, 57.4 \text{ (CH=CCH$_2$CH$_2$CH$_2$CH$_2$N)}, 52.4 \text{ (CH$_2$CH$_2$CH$_2$N(\underline{C}H$_2$)\underline{C}H$_2$)}, \\ & 49.5 \text{ (CH$_2$CH$_2$CH$_2$N(CH$_2$\underline{C}H_2$)$CH$_2$CH$_2$)}, 49.5 \text{ (CH$_2$CH$_2$N(CH$_2$CH$_2$)CH_2\underline{C}H$_2$)}, 48.6 \text{ (\underline{C}H$_2$NCH=C$)}, 35.9 \text{ (N$\underline{C}H(CH$_2$)$_2$)}, 31.9 \text{ (NHC(=O)\underline{C}H$_2$)}, 30.1 \text{ (\underline{C}H$_2$CHNH)}, 26.9 \text{ (CH=CCH$_2$\underline{C}H_2$)}, 26.8 \text{ ($\underline{S}\underline{C}H$_2$)}, 25.9 \text{ (NHC(=O)\underline{C}H$_2$)}, \\ & \text{CH$_2$\underline{C}H_2$)}, 25.8 \text{ (CH=CCH$_2\underline{C}H$_2$)}, 25.0 \text{ (CH=C\underline{C}H$_2$)}, 7.6 \text{ (NCH(\underline{C}H$_2$)$_2$)} \end{split}$$

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.9 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 640.2739, [M+H]⁺ found, [C₃₁H₃₉FN₇O₅S]⁺ requires 640.2712

0.6 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-((((4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butanoyl)oxy)methoxy)carbonyl)pipe razin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 129

1-Cyclopropyl-6-fluoro-7-(4-(((hex-5-ynoyloxy)methoxy)carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-ca rboxylic acid **165** (203 mg, 0.407 mmol, 1 eq.), 4-azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide **126** (92.8 mg, 0.407 mmol, 1 eq.), CuI (40 mg, 0.190 mmol, 0.5 eq.) and DIPEA (0.356 ml, 0.264 mg, 2.04 mmol, 5 eq.) were stirred in CH₂Cl₂ (18.6 ml) at r.t. under Ar for 3 h. The mixture was fitered and the filtrate was dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 5-10 % MeOH/CH₂Cl₂). **129** was obtained as pale brown/yellow amorphous solid (14.7 mg, 20.2 μ mol, 5.0 %).

TLC $R_f = 0.40 \ (5 \% \ \text{CH}_2\text{Cl}_2/\text{MeOH})$

IR (neat) ν_{max} / cm⁻¹ = 3054.9 (C-H), 1715.8 (carboxylic acid C=O and ester C=O), 1696.2 (carbamate C=O and thiolactone C=O), 1651.2 (amide C=O), 1629.2 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.16 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH), 8.21 (d, J = 8.5 Hz, 1 H, N<u>H</u>), 7.89 (d, J = 13.1 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C<u>H</u>=CCH₂), 7.57 (d, J = 7.4 Hz, 1 H, meta to F), 5.74 (s, 1 H, OC<u>H</u>₂O), 4.58 (ddd, J = 12.6, 8.1, 7.2 Hz, 1 H, C<u>H</u>NH), 4.30 (t, J = 6.9 Hz, 2 H, C(=O)CH₂CH₂C<u>H</u>₂N), 3.80 (tt, J = 6.9, 3.6 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.62 (br t, J = 5.2, 5.2 Hz, 4 H, C(=O)N(C<u>H</u>₂)C<u>H</u>₂), 3.38 (td, J = 11.4, 5.5 Hz, 1 H, SC<u>H</u>H), 3.34 (br. s, 4 H, C(=O)N(CH₂C<u>H</u>₂)CH₂CH₂C), 3.27 (ddd, J = 11.0, 6.9, 1.6 Hz, 1 H, SCH<u>H</u>), 2.64 (t, J = 7.6 Hz, 2 H, CH=CC<u>H</u>₂), 2.44 (t, J = 7.5 Hz, 2 H, C<u>H</u>₂C(=O)O), 2.40 (dddd, J = 12.3, 6.8, 5.4, 1.4 Hz, 1 H, SCH₂C<u>H</u>H), 2.12 (t, J = 7.8 Hz, 1 H, NHC(=O)C<u>H</u>H), 2.12 (t, J = 6.8 Hz, 1 H, NHC(=O)CH<u>H</u>), 1.98 - 2.07 (m, 3 H, SCH₂C<u>H</u>H and NHC(=O)CH₂C<u>H</u>₂), 1.86 (quin, J = 7.5 Hz, 2 H, CH=CCH₂C<u>H</u>₂), 1.29 - 1.36 (m, 2 H, NCH(C<u>H</u>H)₂), 1.14 - 1.21 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 205.5 (S<u>C</u>(=O)), 176.4 (<u>C</u>(=O)CC(=O)OH), 171.8 (<u>C</u>(=O)OCH₂O), 171.3 (NH<u>C</u>(=O)), 165.9 (<u>C</u>(=O)OH), 152.8 (d, J = 249.7 Hz, ipso to F), 152.9 (O<u>C</u>(=O)N), 148.1 (<u>C</u>H=CC(=O)OH), 146.0 (CH=<u>C</u>CH₂), 144.9 (d, J = 9.6 Hz, ipso to piperazine), 139.1 (para to F), 122.0 (<u>C</u>H=CCH₂), 118.9 (d, J = 7.5 Hz, para to piperazine), 111.0 (d, J = 23.5 Hz, ortho to C=O and ortho to F), 106.8 (<u>C</u>C(=O)OH,

and meta to C=O and meta to F), 80.3 (OCH₂O), 58.2 (CHNH), 49.1 (C(=O)N(CH₂CH₂)CH₂CH₂CH₂), 49.1 (C(=O)N(CH₂CH₂)CH₂CH₂), 48.6 (C(=O)CH₂CH₂CH₂N), 43.4 (N(CH₂)CH₂), 43.0 (N(CH₂)CH₂), 35.9 (NCH (CH₂)₂), 32.7 (CH=CCH₂CH₂CH₂C(=O)), 31.8 (NHC(=O)CH₂), 30.1 (SCH₂CH₂), 26.8 (SCH₂), 25.8 (C(=O)CH₂CH₂CH₂CH₂N), 24.2 (CH=CCH₂CH₂CH₂C(=O)), 24.0 (CH=CCH₂CH₂CH₂CH₂C(=O)), 7.6 (NCH(CH₂)₂)

HRMS (ESI⁺) m/z / Da = 728.2502, [M+H]⁺ found, [C₃₃H₃₉FN₇O₉S]⁺ requires 728.2503

The compound has not been reported previously.

0.7 4-Bromo-N-(2-methoxyphenyl)butanamide 130

2-Methoxyaniline 166 (9.12 ml, 10.0 g, 81.2 mmol, 1 eq.) and NaHCO₃ (8.19 g, 97.4 mmol, 1.2 eq.) were dissolved in water (100 ml) and $\rm CH_2Cl_2$ (100 ml). The mixture was cooled to 0 °C and 4-bromobutyryl chloride 42 (9.40 ml, 15.1 g, 81.2 mmol, 1 eq.) was added dropwise over 15 min. The mixture was stirred at 0 °C for 1.5 h, then the aqueous layer was removed. The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 130 was obtained as an initially colourless liquid which slowly turned blue then black if left out on the bench (11.0 g, 40.6 mmol, 50.0 %).

TLC $R_f = 0.16 \ (10 \% \ EtOAc/P.E.)$

 $\begin{aligned} \mathbf{IR} \text{ (neat) } \nu_{max} \text{ / cm}^{-1} &= 3410.2 \text{ (N-H), } 3313.4 \text{ (N-H), } 2961.6 \text{ (C-H), } 2939.5 \text{ (C-H), } 2902.5 \text{ (C-H), } 1676.4 \text{ (amide C=O)} \end{aligned}$

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.32 (dd, J = 8.0, 1.7 Hz, 1 H, ortho to NH), 7.85 (br s, 1 H, N<u>H</u>), 7.02 (td, J = 7.9, 1.7 Hz, 1 H, para to NH), 6.93 (td, J = 7.7, 1.4 Hz, 1 H, para to OCH₃), 6.85 (dd, J = 8.1, 1.5 Hz, 1 H, ortho to OCH₃), 3.85 (s, 3 H, C<u>H</u>₃), 3.50 (t, J = 6.4 Hz, 2 H, C<u>H</u>₂Br), 2.56 (t, J = 7.1 Hz, 2 H, C(=O)C<u>H</u>₂), 2.25 (quin, J = 6.7 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 169.4 (<u>C</u>(=O)), 147.6 (*ipso* to OCH₃), 127.2 (*ipso* to NH), 123.5 (*para* to NH), 120.7 (*para* to OCH₃), 119.6 (*ortho* to NH and *meta* to OCH₃), 109.8 (*ortho* to OCH₃ and *meta* to NH), 55.5 (<u>C</u>H₃), 35.4 (C(=O)<u>C</u>H₂), 33.1 (<u>C</u>H₂Br), 27.9 (C(=O)CH₂<u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = 272.0287, [M+H]⁺ found, [C₁₁H₁₅BrNO₂]⁺ requires 272.0286

The compound has not been reported previously.

0.8 4-Bromo-N-(3-methoxyphenyl)butanamide 131

3-Methoxyaniline **167** (3.04 ml, 3.33 g, 27.1 mmol, 1 eq.) and NaHCO $_3$ (2.73 g, 32.5 mmol, 1.2 eq.) were dissolved in water (30 ml) and $\mathrm{CH_2Cl_2}$ (30 ml). The mixture was cooled to 0 °C and 4-bromobutyryl chloride **42** (3.13 ml, 5.03 g, 27.1 mmol, 1 eq.) was added dropwise over 5 min. The mixture was stirred at 0 °C for 1 h, then the aqueous layer was removed. The organic layer was dry-loaded onto $\mathrm{SiO_2}$ and purified by column chromatography using a Combiflash ($\mathrm{SiO_2}$, 0-100 % $\mathrm{EtOAc/P.E.}$). **131** was obtained as a pale pink amorphous solid (3.66 g, 13.5 mmol, 49.6 %).

how to report?

TLC $R_f = 0.18 \ (25 \% \ EtOAc/P.E.)$

IR (neat) $\nu_{max} / \text{cm}^{-1} = 1670.9 \text{ (amide C=O)}$

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.45 (s, 1 H, N<u>H</u>), 7.27 (t, J = 2.2 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.14 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.02 (d, J = 8.3 Hz, 1 H, para to OCH₃), 6.62 (dd, J = 8.2, 2.1 Hz, 1 H, para to NH), 3.71 (s, 3 H, C<u>H</u>₃), 3.42 (t, J = 6.5 Hz, 2 H, C<u>H</u>₂Br), 2.51 (t, J = 6.9 Hz, 2 H, C(=O)C<u>H</u>₂), 2.19 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 170.3 (\underline{C} (=O)), 159.9 (*ipso* to OCH₃), 139.0 (*ipso* to NH), 129.5 (*meta* to OCH₃ and *meta* to NH), 112.1 (*para* to OCH₃), 109.9 (*para* to NH), 105.7 (*ortho* to OCH₃ and *ortho* to NH), 55.2 (\underline{C} H₃), 35.3 (\underline{C} (=O) \underline{C} H₂), 33.2 (\underline{C} H₂Br), 28.0 (\underline{C} (=O)CH₂ \underline{C} H₂)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

The compound has not been reported previously.

0.9 4-Azido-N-(2-methoxyphenyl)butanamide 132

4-Bromo-N-(2-methoxyphenyl)butanamide **130** (2.05 g, 7.51 mmol, 1 eq.) and NaN₃ (1.17 g, 18.0 mmol, 2.4 eq.) were refluxed in acetonitrile (100 ml) for 2 h. The mixture was cooled and filtered, and the fitrate was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 8-14 % then hold at 14 % EtOAc/P.E.). **132** was obtained as an initially colourless liquid which slowly turned blue then black if left out on the bench (0.469 g, 2.00 mmol, 26.7 %).

how to report?

TLC $R_f = 0.20 \ (25 \% \ EtOAc/P.E.)$

IR (neat) ν_{max} / cm⁻¹ = 3419.7 (N-H), 3329.6 (N-H), 2094.8 (azide), 1672.3 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.32 (dd, J = 7.9, 1.0 Hz, 1 H, ortho to NH), 7.86 (br s, 1 H, N<u>H</u>), 7.00 (td, J = 7.5, 1.5 Hz, 1 H, para to NH), 6.90 (td, J = 7.7, 1.1 Hz, 1 H, para to OCH₃), 6.83 (dd, J = 8.1, 1.4 Hz, 1 H, ortho to OCH₃), 3.81 (s, 3 H, C<u>H</u>₃), 3.33 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂Br), 2.42 (t, J = 7.2 Hz, 2 H, C(=O)C<u>H</u>₂), 1.94 (quin, J = 6.9 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 169.5 (<u>C</u>(=O)), 147.6 (*ipso* to OCH₃), 127.1 (*ipso* to NH), 123.4

(para to NH), 120.5 (para to OCH₃), 119.5 (ortho to NH and meta to OCH₃), 109.6 (ortho to OCH₃ and meta to NH), 55.2 ($\underline{\text{CH}}_3$), 50.3 ($\underline{\text{CH}}_2$ N₃), 33.9 ($\underline{\text{C}}(=O)\underline{\text{C}}\text{H}_2$), 24.3 ($\underline{\text{C}}(=O)\text{CH}_2\underline{\text{C}}\text{H}_2$)

HRMS (ESI⁺) m/z / Da = 257.1010, [M+H]⁺ found, [C₁₁H₁₄N₄NaO₂]⁺ requires 257.1014

The data are consistent with the literature.?

0.10 4-Azido-N-(3-methoxyphenyl)butanamide 133

$$\bigcup_{O} \bigvee_{H} \bigcup_{O} N_3$$

4-Bromo-N-(3-methoxyphenyl) butanamide **131** (2.05 g, 7.51 mmol, 1 eq.) and NaN₃ (1.17 g, 18.0 mmol, 2.4 eq.) were refluxed in acetonitrile (100 ml) for 7 h. The mixture was cooled and filtered, and the fit rate was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-100 % EtOAc/P.E.). **133** was obtained as an straw-coloured liquid (0.294 g, 1.25 mmol, 16.7 %).

how to report?

TLC $R_f = 0.37 (50 \% \text{ EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 3298.3 (N-H), 2094.7 (azide), 1661.7 (amide C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 8.63 (br s, 1 H, N<u>H</u>), 7.26 (t, J = 2.3 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.15 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.01 (dd, J = 7.8, 1.6 Hz, 1 H, para to OCH₃), 6.63 (dd, J = 8.2, 1.9 Hz, 1 H, para to NH), 3.69 (s, 3 H, C<u>H</u>₃), 3.28 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂N₃), 2.39 (t, J = 7.4 Hz, 2 H, C(=O)CH₂), 1.91 (quin, J = 7.0 Hz, 2 H, C(=O)CH₂CH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 170.8 (<u>C</u>(=O)), 159.6 (*ipso* to OCH₃), 138.9 (*ipso* to NH), 129.2 (*meta* to OCH₃ and *meta* to NH), 112.3 (*para* to OCH₃), 109.5 (*para* to NH), 106.0 (*ortho* to OCH₃ and *ortho* to NH), 54.8 (<u>C</u>H₃), 50.4 (<u>C</u>H₂N₃), 33.6 (C(=O)<u>C</u>H₂), 24.4 (C(=O)CH₂<u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

The compound has not been reported previously.

0.11 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((2-methoxyphenyl)amino)-4-oxobutyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 134

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 124 (500 mg, 1.45 mmol, 1 eq.), 4-bromo-N-(2-methoxyphenyl)butanamide 130 (788 mg, 2.90 mmol, 2 eq.), DIPEA (1.28 ml, 950 mg, 7.35 mmol, 5 eq.), NaI (275 mg, 1.83 mmol, 1.3 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 4 h. The mixture was dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 4 % MeOH/CH₂Cl₂). 134 was obtained as a bright pink glass (79.7 mg, 0.149 mmol, 10.2 %).

how to report?

TLC $R_f = 0.40 \ (10 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2947.1 (C-H), 2833.7 (C-H), 1718.9 (ester C=O), 1685.3 (amide C=O), 1617.3 (quinolone C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.48 (s, 1 H, ortho to C(=O)OCH₃), 8.36 (d, J = 7.9 Hz, 1 H, ortho to NH), 7.87 - 7.99 (m, 2 H, ortho to F and NH), 7.19 (d, J = 6.5 Hz, 1 H, meta to F), 7.01 (t, J = 7.5 Hz, 1 H, para to NH), 6.93 (t, J = 7.7 Hz, 1 H, para to OCH₃), 6.85 (d, J = 7.9 Hz, 1 H, ortho to OCH₃), 3.88 (s, 3 H, C(=O)OCH₃), 3.85 (s, 3 H, aromatic OCH₃), 3.41 (tt, J = 6.9, 4.0 Hz, 1 H, NCH(CH₂)₂), 3.25 (br t, J = 5.0, 5.0 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.67 (br t, J = 5.0, 5.0 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂CH₂N), 2.47 (t, J = 7.1 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.97 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.25 - 1.33 (m, 2 H, NCH(CHH)₂), 1.07 - 1.14 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 172.9 ($\underline{\mathbf{C}}$ (=O)CC(=O)OCH₃), 170.8 (NH $\underline{\mathbf{C}}$ (=O)), 166.2 ($\underline{\mathbf{C}}$ (=O)O CH₃), 153.3 (d, J = 248.0 Hz, ipso to F), 148.2 ($\underline{\mathbf{C}}$ =CC(=O)OCH₃), 147.6 (ipso to OCH₃), 144.4 (d, J = 10.4 Hz, ipso to piperazine), 137.9 (para to F), 127.6 (ipso to NH), 123.4 (para to NH), 122.7 (d, J = 7.8 Hz, para to piperazine), 121.0 (para to OCH₃), 119.7 (ortho to NH and meta to OCH₃), 113.0 (d, J = 22.5 Hz, ortho to C=O and ortho to F), 109.8 (ortho to OCH₃ and meta to NH, and $\underline{\mathbf{CC}}$ (=O)OCH₃), 104.7 (meta to C=O and meta to F), 57.2 (CH₂CH₂CH₂N), 55.6 (aromatic OCH₃), 52.7 (CH₂CH₂CH₂N($\underline{\mathbf{CH}}$ 2)CH₂), 51.9 (C(=O)OCH₃), 49.8 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.8 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 35.5 ($\underline{\mathbf{CH}}$ 2 CH₂CH₂N), 34.5 (NCH(CH₂)₂), 22.3 (CH₂CH₂CH₂N), 8.0 (NCH($\underline{\mathbf{CH}}$ 2)₂)

HRMS (ESI⁺) m/z / Da = 537.2523, [M+H]⁺ found, [C₂₉H₃₄FN₄O₅]⁺ requires 537.2513

The compound has not been reported previously.

0.12 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((3-methoxyphenyl)amino)-4-oxobutyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 135

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate $\mathbf{124}$ (500 mg, 1.45 mmol, 1 eq.), 4-bromo-N-(3-methoxyphenyl)butanamide $\mathbf{131}$ (788 mg, 2.90 mmol, 2 eq.), DIPEA (1.28 ml, 950 mg, 7.35 mmol, 5 eq.), NaI (275 mg, 1.83 mmol, 1.3 eq.) and acetonitrile (10 ml) were stirred in a mi-

how to report?

crowave reactor at 100 °C for 4 h. The mixture was evaporated under reduced pressure and partitioned between $\mathrm{CH_2Cl_2}$ (50 ml) and water (50 ml). The organic layer was separated off and the aqueous layer was extracted again with $\mathrm{CH_2Cl_2}$ (50 ml). The combined organic layers were dried with $\mathrm{MgSO_4}$ and purified by column chromatography ($\mathrm{SiO_2}$, 0-4 % $\mathrm{MeOH/CH_2Cl_2}$). 135 was obtained as an off-white amorphous solid (81.7 mg, 0.152 mmol, 10.5 %).

TLC $R_f = 0.38 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3270.8 (amide N-H) 2943.8 (C-H), 2817.0 (C-H), 1729.5 (ester C=O), 1682.0 (amide C=O), 1613.5 (quinolone C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 8.56 (s, 1 H, ortho to C(=O)OCH₃), 8.06 (d, J = 13.3 Hz, 1 H, ortho to F), 8.02 (br s, 1 H, NH), 7.34 (t, J = 1.7 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.25 (d, J = 7.0 Hz, 1 H, meta to F), 7.20 (t, J = 8.2 Hz, 1 H, meta to OCH₃ and meta to NH), 6.98 (dd, J = 7.8, 1.7 Hz, 1 H, para to OCH₃), 6.65 (dd, J = 8.2, 2.1 Hz, 1 H, para to NH), 3.93 (s, 3 H, C(=O)OCH₃), 3.80 (s, 3 H, aromatic OCH₃), 3.42 (tt, J = 6.8, 3.7 Hz, 1 H, NCH(CH₂)₂), 3.31 (br t, J = 4.3, 4.3 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂)CH₂CH₂), 2.73 (br t, J = 4.5, 4.5 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂)CH₂), 2.58 (t, J = 6.5 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 2.48 (t, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 2.00 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.29 - 1.36 (m, 2 H, NCH(CHH)₂), 1.11 - 1.17 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.1 (\underline{C} (=O)CC(=O)OCH₃), 170.9 (NH \underline{C} (=O)), 166.3 (\underline{C} (=O)O CH₃), 160.1 (*ipso* to OCH₃), 153.3 (d, J=250.1 Hz, *ipso* to F), 148.4 (\underline{C} =CC(=O)OCH₃), 144.1 (d, J=10.1 Hz, *ipso* to piperazine), 139.4 (*ipso* to NH), 138.0 (*para* to F), 129.6 (*meta* to NH and *meta* to OCH₃), 123.3 (d, J=6.4 Hz, *para* to piperazine), 113.4 (d, J=23.3 Hz, *ortho* to C=O and *ortho* to F), 111.8 (*para* to OCH₃), 110.0 (\underline{C} C(=O)OCH₃), 109.8 (*para* to NH), 105.5 (*ortho* to OCH₃ and *ortho* to NH), 105.0 (*meta* to C=O and *meta* to F), 57.0 (CH₂CH₂CH₂N), 55.3 (aromatic OCH₃), 52.6 (CH₂CH₂CH₂N(\underline{C} H₂)CH₂), 52.1 (C(=O)OCH₃), 49.2 (CH₂CH₂CH₂N(CH₂CH₂)CH₂), 35.2 (\underline{C} H₂CH₂CH₂N), 34.6 (NCH(CH₂)₂), 21.7 (CH₂CH₂CH₂N), 8.2 (NCH(\underline{C} H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -123.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 537.2500, [M+H]⁺ found, [C₂₉H₃₄FN₄O₅]⁺ requires 537.2513

The compound has not been reported previously.

0.13 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((2-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carb oxylic acid 136

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **164** (24.1 mg, 58.6 μ mol, 1 eq.) and 4-azido-N-(2-methoxyphenyl)butanamide **132** (13.7 mg, 58.5 μ mol, 1 eq.) were dissolved in water (3 ml), t-BuOH (9 ml) and CH₂Cl₂ (9 ml), and the mixture was degassed by bubbling through N₂. A solution of CuSO₄ and THPTA (117 μ l, 5.85 μ mol, 0.1 eq., 50 mM, aq.) was added, followed by a solution of sodium ascorbate (234 μ l, 11.7 μ mol, 0.2 eq., 50 mM, aq.). The mixture was stirred at room temperature under argon for 16 h. Water (25 ml), CH₂Cl₂ (25 ml) and MeOH (5 ml) were added and the organic layer was separated off, dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 3-23 % MeOH/CH₂Cl₂). **136** was obtained as a clear glass (14.7 mg, 22.8 μ mol, 39.0 %).

how to phrase this?

how to report??

TLC $R_f = 0.28 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2926.5 (C-H), 2846.6 (C-H), 1723.4 (carboxylic acid C=O), 1682.0 (amide C=O), 1625.8 (quinolone C=O), 1612.8 (triazole)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 15.05 (br s, 1 H, C(=O)O<u>H</u>), 8.76 (s, 1 H, ortho to C(=O)OH), 8.31 (dd, J = 8.0, 1.7 Hz, 1 H, ortho to NH), 8.00 (d, J = 13.0 Hz, 1 H, ortho to F), 7.83 (br s, 1 H, N<u>H</u>), 7.37 (s, 1 H, C<u>H</u>=CCH₂), 7.35 (d, J = 7.2 Hz, 1 H, meta to F), 7.04 (td, J = 7.7, 1.7 Hz, 1 H, para to NH), 6.95 (td, J = 7.8, 1.5 Hz, 1 H, para to OCH₃), 6.88 (dd, J = 8.1, 1.4 Hz, 1 H, ortho to OCH₃), 4.47 (t, J = 6.7 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.88 (s, 3 H, C<u>H</u>₃), 3.54 (tt, J = 6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.35 (br t, J = 4.7 Hz, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.76 (t, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 2.46 (t, J = 6.8 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 2.32 (quin, J = 6.7 Hz, 2 H, C(=O)CH₂CH₂CH₂CH₂N), 1.75 (quin, J = 7.6 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.61 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.35 - 1.42 (m, 2 H, NCH(C<u>H</u>H)₂), 1.17 - 1.22 (m, 2 H, NCH(CH<u>H</u>)₂)

¹⁹**F NMR** (376.45 MHz, CDCl₃) δ / ppm = -120.7 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 646.3132, [M+H]⁺ found, [C₃₄H₄₁FN₇O₅]⁺ requires 646.3153

The compound has not been reported previously.

0.14 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((3-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carb oxylic acid 137

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **164** (24.1 mg, 58.6 μ mol, 1 eq.) and 4-azido-N-(3-methoxyphenyl)butanamide **133** (13.7 mg, 58.5 μ mol, 1 eq.) were dissolved in water (1 ml), t-BuOH (9 ml) and CH₂Cl₂ (10 ml), and the mixture was degassed by bubbling through N₂. A solution of CuSO₄ and THPTA (58.5 μ l, 5.85 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (117 μ l, 11.7 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 2 h, then the solvent was removed under reduced pressure. The resudue was partitioned between water (15 ml) and CH₂Cl₂ (15 ml), and the aqueous layer was extracted a further four times with CH₂Cl₂ (4 × 15 ml). The combined organic layers were dried with MgSO₄, dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-10 % MeOH/CH₂Cl₂). **137** was obtained as a clear glass (1.9 mg, 2.9 μ mol, 5.0 %).

TLC $R_f = 0.22 \ (10 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2922.8 (C-H), 2849.5 (C-H), 1725.8 (carboxylic acid C=O), 1684.7 (amide C=O), 1624.5 (quinolone C=O), 1612.2 (triazole)

¹**H NMR** (400 MHz, DMSO d₆) δ / ppm = 15.23 (br s, 1 H, C(=O)O<u>H</u>), 9.89 (s, 1 H, N<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 7.90 (d, J = 13.4 Hz, 1 H, ortho to F), 7.88 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.6 Hz, 1 H, meta to F), 7.27 (t, J = 2.1 Hz, 1 H, ortho to C=O and ortho to F), 7.16 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.08 (d, J = 7.8 Hz, 1 H, para to OCH₃), 6.59 (ddd, J = 8.1, 2.4, 0.7 Hz, 1 H, para to NH), 4.36 (t, J = 6.9 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.81 (tt, J = 6.7, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.70 (s, 3 H, C<u>H</u>₃), 3.28 - 3.32 (m, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.64 (t, J = 7.5 Hz, 2 H, CH=CCH₂), 2.56 (m, J = 4.2, 4.2 Hz, 4 H, CH=CCH₂CH₂CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.38 (t, J = 7.3 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 1.64 (quin, J = 7.4 Hz, 2 H, C(=O)C<u>H</u>₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.1 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.64 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, CH=CCH₂CH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, CH=CCH₂CH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, CH=CCH₂CH₂CH₂CH₂CH₂CH₂CH₂N)

N), $24.9 \text{ (CH=CCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N)}$, $7.6 \text{ (NCH}(\underline{\text{CH}}_2)_2)$

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -121.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 646.3159, [M+H]⁺ found, [C₃₄H₄₁FN₇O₅]⁺ requires 646.3153

The compound has not been reported previously.

0.15 Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-flu-oro-4-oxo-1,4-dihydroquinoline-3-carboxylate 138

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate **124** (200 mg, 0.579 mmol, 1 eq.), tert-butyl 4-bromobutanoate **168** (103 μ l, 130 mg, 0.581 mmol, 1 eq.), NaI (86.9 mg, 0.580 mmol, 1 eq.), TEA (316 μ l, 229 mg, 2.27 mmol, 4 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 8 h. A second portion of tert-butyl 4-bromobutanoate **168** (103 μ l, 130 mg, 0.581 mmol, 1 eq.) was added, and the mixture was stirred in a microwave reactor at 100 °C for a further 8 h. The mixture was then dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-4 % MeOH/CH₂Cl₂). **138** was obtained as a white amorphous solid (141 mg, 0.289 mmol, 49.9 %).

how to report?

how to report?

should be

TLC $R_f = 0.12 \ (4 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2961.6 (C-H), 2830.5 (C-H), 1732.2 (*t*-Bu ester C=O) 1717.2 (ciprofloxacin ester C=O), 1620.6 (quinolone C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 8.39 (s, 1 H, ortho to C(=O)OCH₃), 7.82 (d, J = 13.3 Hz, 1 H, ortho to F), 7.17 (d, J = 7.2 Hz, 1 H, meta to F), 3.83 (s, 3 H, C $\underline{\text{H}}_3$), 3.40 (tt, J = 7.2, 3.6 Hz, 1 H, NC $\underline{\text{H}}_4$ (CH₂)2), 3.22 (t, J = 4.3 Hz, 4 H, CH₂N(CH₂C $\underline{\text{H}}_2$)CH₂CH₂), 2.63 (t, J = 4.4 Hz, 4 H, CH₂N(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 2.41 (t, J = 7.3 Hz, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.25 (t, J = 7.4 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.78 (quin, J = 7.3 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.41 (s, 9 H, C((C $\underline{\text{H}})_3$)₃), 1.24 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.09 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

[a] 65.9 ranges [a] ipso ideally, [a] pso go back [a] pso if time $[a] CH_2$ [a] pso [a] pso

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 172.7 (\underline{C} (=O)CC(=O)OCH₃), 172.6 (\underline{C} (=O)OC(CH₃)₃), 165.9 (\underline{C} (=O)OCH₃), 153.1 (d, J = 249.7 Hz, ipso to F), 148.1 (\underline{C} =CC(=O)OCH₃), 144.3 (d, J = 10.4 Hz, ipso to piperazine), 137.7 (para to F), 122.5 (d, J = 6.9 Hz, para to piperazine) 112.6 (d, J = 22.5 Hz, ortho to C=O and ortho to F), 109.5 (\underline{C} C(=O)OCH₃) 104.7 (meta to C=O and meta to F), 80.0 (\underline{C} (CH₃)₃), 57.4 (C(=O)CH₂CH₂CH₂N), 52.7 (C(=O)CH₂CH₂CH₂N(CH₂)CH₂), 51.7 (\underline{C} H₃), 49.7 (C(=O)CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.7 (C(=O)CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 34.4 (\underline{N} CH(CH₂)₂), 33.2 (C(=O)CH₂), 28.0 (C(\underline{C} H₃)₃), 22.0 (C(=O)CH₂CH₂CH₂), 7.9 (\underline{N} CH(\underline{C} H₂)₂)

¹⁹**F NMR** (376.45 MHz, CDCl₃) δ / ppm = -123.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 488.2562, [M+H]⁺ found, [C₂₆H₃₅FN₃O₅]⁺ requires 488.2561

The compound has not been reported previously.

0.16 4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-yl)butanoic acid, trifluoroacetic acid salt 139

Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-car-boxylate **169** (20 mg, 41.0 μ mol) and TFA (0.2 ml) were stirred in CH₂Cl₂ (1.8 ml) at r.t. for 16 h then evaporated under reduced pressure. **139** was obtained as a white solid (21.4 mg, 39.2 μ mol, 95.6 %).

not
sure
how to
draw/nar
this?

mp $T / ^{\circ}C = 225-231 \text{ (CH}_2Cl_2, decomposes)}$

IR (neat) ν_{max} / cm⁻¹ = 1722.7 (ciprofloxacin ester C=O), 1699.0 (alkyl carboxylic acid C=O), 1673.3 (TFA C=O), 1614.6 (quinolone C=O)

¹**H NMR** (400 MHz, DMSO d₆) δ / ppm = 8.47 (s, 1 H, ortho to C(=O)OH), 7.80 (d, J = 13.2 Hz, 1 H, ortho to F), 7.47 (d, J = 7.4 Hz, 1 H, meta to F), 3.73 (s, 3 H, C $\underline{\text{H}}_3$), 3.66 (tt, J = 7.2, 3.7 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.30 - 3.54 (br s, 8 H, CH₂N(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$ and CH₂N(CH₂C $\underline{\text{H}}_2$)CH₂C $\underline{\text{H}}_2$) 3.13 - 3.22 (m, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.36 (t, J = 7.1 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.87 - 1.98 (m, 2 H, C $\underline{\text{H}}_2$ CH₂N(CH₂)CH₂), 1.22 - 1.30 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.06 - 1.15 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 173.5 (CH₂C(=O)OH), 171.6 (C(=O)CC(=O)OCH₃), 164.9 (C(=O)OCH₃), 158.2 (q, J = 31.5 Hz, CF₃C(=O)OH), 152.5 (d, J = 247.6 Hz, ipso to F), 148.5 (C=CC(=O)OH), 142.3 (d, J = 10.7 Hz, ipso to piperazine), 138.0 (para to F), 122.6 (d, J = 6.4 Hz, para to piperazine), 117.2 (q, J = 299.8 Hz, CF₃), 111.9 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 109.1 (C(=O)OCH₃), 106.9 (meta to C=O and meta to F), 55.1 (C(=O)CH₂CH₂CH₂N), 51.4 (CH₃), 50.8 (C(=O)CH₂CH₂CH₂N(CH₂CH₂), 46.7 (C(=O)CH₂CH₂CH₂N(CH₂CH₂), 34.9 (NCH (CH₂)₂), 30.6 (C(=O)CH₂), 19.1 (C(=O)CH₂CH₂), 7.6 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -73.6 (s, C<u>F</u>₃), -124.6 (s, ciprofloxacin <u>F</u>)

HRMS (ESI⁺) m/z / Da = 432.1921, [M+H]⁺ found, [C₂₂H₂₇FN₃O₅]⁺ requires 432.1935

The compound has not been reported previously.

0.17 (1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 140 and (1R,2R)-2-(((S)-1-phenylethyl)amino)cyclopentan-1-ol 141

(S)-1-phenylethan-1-amine 170 (7.85 ml, 7.38 g, 60.9 mmol, 1 eq.) was dissolved in CH_2Cl_2 (50 ml) and stirred rapidly at 0 °C. A solution of AlMe₃ (31 ml, 2.0 M in heptane, 60.9 mmol) was added dropwise and the solution was stirred at 0 °C for 1 h. A solution of cyclohexene oxide 171 (5.71 ml, 5.50 g, 65.4 mmol, 1.1 eq.) in CH_2Cl_2 (50 ml) was then added dropwise, and the mixture was stirred at 0 °C for a further 3 h, followed by 48 h at r.t.. The mixture was cooled to 0 °C and NaF (11 g, 262 mmol, 4.3 eq.) was added portionwise, followed by water (7.00 ml, 7.00 g, 389 mmol, 6.4 eq.) and CH_2Cl_2 (50 ml). The suspension was allowed to warm to r.t. and stirred for 1 h, then filtered through Celite and washed with CH_2Cl_2 (500 ml). The filtrate was dried with K_2CO_3 , concentrated under reduced pressure and purified by column chromatography (SiO₂, 20:5:1 hexane:EtOAc:TEA). 140 was obtained as a pale yellow oil (4.08 g, 19.9 mmol, 32.6 %). 141 was obtained as pale yellow crystals (4.48 g, 21.8 mmol, 35.8 %).

(1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 140

TLC $R_f = 0.25$ (15:5:1 hexane:EtOAc:TEA)

IR (neat) ν_{max} / cm⁻¹ = 3300.0 (br, O-H), 2959.7 (C-H), 2870.1 (C-H)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 7.28 - 7.38 (m, 4 H, ortho and meta to CHCH₃), 7.21 - 7.28 (m, 1 H, para to CHCH₃), 3.83 (q, J = 6.6 Hz, 1 H, CHCH₃), 3.78 (q, J = 7.0 Hz, 1 H, CHOH), 2.62 (dt, J = 8.2, 7.2 Hz, 1 H, CHNH), 1.97 (quin, J = 6.7 Hz, 1 H, CH₂CHNH), 1.90 (quin, J = 6.9 Hz, 1 H, CH₂CHOH), 1.56 - 1.68 (m, CH₂CH₂CHOH), 1.43 (dq, J = 12.5, 8.0 Hz, 1 H, CH₂CHOH), 1.37 (d, J = 6.6 Hz, 3 H, CH₃), 1.25 - 1.36 (m, 1 H, CH₂CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 144.75 (*ipso* to CHCH₃), 128.26 (*meta* to CHCH₃), 126.72 (*para* to CHCH₃), 126.30 (*ortho* to CHCH₃), 77.65 (<u>C</u>HOH), 63.38 (<u>C</u>HNH), 56.20 (<u>C</u>HCH₃), 31.74 (<u>C</u>H₂CHOH), 29.22 (<u>C</u>H₂CHNH), 24.58 (<u>C</u>H₃), 19.57 (<u>C</u>H₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.1554, [M+H]⁺ found, [C₁₃H₂₀NO]⁺ requires 206.1545 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -92.8 (c / g(100 ml)⁻¹ = 1.19, MeOH)

(1R,2R)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 141

TLC $R_f = 0.36$ (15:5:1 hexane:EtOAc:TEA)

mp $T / {}^{\circ}C = 66-71.5$ (hexane, EtOAc, TEA)

IR (neat) ν_{max} / cm⁻¹ = 3150.0 (br, O-H), 2950.9 (C-H), 2868.2 (C-H)

fix image sizes

ings for subtitles ¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 7.28 - 7.34 (m, 4 H, ortho and meta to CHCH₃), 7.20 - 7.26 (m, 1 H, para to CHCH₃), 3.86 (q, J = 6.6 Hz, 1 H, CHCH₃), 3.85 (q, J = 6.6 Hz, 1 H, CHOH), 2.83 (td, J = 7.6, 5.7 Hz, 1 H, CHNH), 1.85 - 1.97 (m, 1 H, CHHCHOH), 1.77 (dtd, J = 12.9, 7.9, 7.9, 4.9 Hz, 1 H, CHHCHNH), 1.55 - 1.68 (m, 2 H, CH₂CH₂CHOH), 1.47 - 1.55 (m, 1 H, CHHCHOH), 1.36 (d, J = 6.6 Hz, 3 H, CH₃), 1.12 (dq, J = 12.7, 8.1 Hz, 1 H, CHHCHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 145.61 (*ipso* to CHCH₃), 128.08 (*meta* to CHCH₃), 126.61 (*para* to CHCH₃), 126.33 (*ortho* to CHCH₃), 77.43 (<u>C</u>HOH), 64.45 (<u>C</u>HNH), 56.62 (<u>C</u>HCH₃), 32.01 (<u>C</u>H₂CHOH), 30.56 (<u>C</u>H₂CHNH), 23.30 (<u>C</u>H₃), 20.06 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.1553, [M+H]⁺ found, [C₁₃H₂₀NO]⁺ requires 206.1545

$$[\alpha]_D^{20}$$
 / °10⁻¹cm²g⁻¹ = -23.9 (c / g(100 ml)⁻¹ = 0.96 , MeOH)

The compounds have been synthesised previously,?,?,? but NMR data were not published.

consister with other data?

$0.18 \quad (1S,2S)$ -2-Aminocyclopentan-1-ol 142

(1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol **140** (3.90 g, 19.0 mmol, 1 eq.), $Pd(OH)_2$ (20 wt. % on C, moistened with 50 wt. % water, 1 g, 0.712 mmol, 0.04 eq.) and MeOH (50 ml) were stirred in a Paar hydrogenator at r.t. and 3 atm for 2 days. The mixture was then filtered through Celite and evaporated under reduced pressure. **142** was obtained as a yellow oil (1.92 g, 19.0 mmol, 100 %).

TLC $R_f = 0.10 \ (10 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3300.0 (br, O-H), 2958.3 (C-H), 2871.5 (C-H)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.77 (ddd, J=6.6, 6.2, 5.6, 1 H, C<u>H</u>OH), 3.00 (td, J=7.3, 5.6 Hz, 1 H, C<u>H</u>NH₂), 2.00 (dtd, J=13.0, 7.7, 7.7, 5.6 Hz, 1 H, C<u>H</u>HCHNH₂), 1.97 (ddt, J=13.0, 8.7, 6.6, 6.6 Hz, 1 H, C<u>H</u>HCHOH), 1.63 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.53 (ddt, J=13.0, 9.5, 6.2, 6.2 Hz, 1 H, CH<u>H</u>CHOH), 1.37 (ddt, J=13.0, 8.3, 7.8, 7.8 Hz, 1 H, CHHCHNH₂)

 $^{13}\mathbf{C}$ NMR (101 MHz, MeOD) δ / ppm = 80.7 (<u>C</u>HOH), 60.8 (<u>C</u>HNH₂), 33.2 (<u>C</u>H₂CHOH), 32.1 (<u>C</u>H₂CHNH₂), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 102.0917, [M+H]⁺ found, [C₅H₁₂NO]⁺ requires 102.0913

 $[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -30.9 \ (c / \text{g}(100 \text{ ml})^{-1} = 1.5 \text{, EtOH})$

The data are consistent with the literature. ?,?

check

$0.19 \quad (1R,2R)$ -2-Aminocyclopentan-1-ol 143

(1R,2R)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol **141** (3.00 g, 14.6 mmol, 1 eq.), $Pd(OH)_2$ (20 wt. % on C, moistened with 50 wt. % water, 0.5 g, 0.356 mmol, 0.025 eq.) and MeOH (50 ml) were stirred in a Paar hydrogenator at r.t. and 2.5 atm for 2 days. The mixture was then filtered through Celite and evaporated under reduced pressure. **143** was obtained as a yellow oil (1.48 g, 14.6 mmol, 100 %).

TLC $R_f = 0.10 (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3300.0 (O-H), 2969.2 (C-H), 2872.7 (C-H)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.77 (ddd, J=6.6, 6.2, 5.6, 1 H, C<u>H</u>OH), 3.00 (td, J=7.4, 5.6 Hz, 1 H, C<u>H</u>NH₂), 2.00 (dtd, J=13.0, 7.7, 7.7, 5.6 Hz, 1 H, C<u>H</u>HCHNH₂), 1.97 (ddt, J=13.0, 8.7, 6.4, 6.4 Hz, 1 H, C<u>H</u>HCHOH), 1.64 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.53 (ddt, J=13.0, 9.5, 6.2, 6.2 Hz, 1 H, CH<u>H</u>CHOH), 1.37 (ddt, J=12.8, 8.5, 7.7, 7.7 Hz, 1 H, CH<u>H</u>CHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 80.6 (<u>C</u>HOH), 60.7 (<u>C</u>HNH₂), 33.2 (<u>C</u>H₂CHOH), 32.2 (<u>C</u>H₂CHNH₂), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 102.0915, [M+H]⁺ found, [C₅H₁₂NO]⁺ requires 102.0913

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 33.4 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.5, \text{EtOH})$$

The data are consistent with the literature.[?],?

$0.20 \quad (1R,2R)$ -2-((tert-butyldimethylsilyl)oxy)cyclopentan-1-amine 144

(1R,2R)-2-aminocyclopentan-1-ol **143** (0.480 g, 4.75 mmol) was stirred in dry $\mathrm{CH_2Cl_2}$ (20 ml) under $\mathrm{N_2}$ at 0 °C. TEA (3.14 ml, 2.28 g, 22.5 mmol, 5 eq.) was added dropwise, followed by TBSOTf (3 ml, 3.45 g, 13.1 mmol, 3 eq.) dropwise. The reaction was allowed to reach r.t. and stirred for 1 h. The reaction was quenched with $\mathrm{NH_4Cl}$, diluted with $\mathrm{CH_2Cl_2}$ (20 ml) and washed with water (20 ml). The organic phase was dried with $\mathrm{Na_2SO_4}$, concentrated under reduced pressure and purified by column chromatography (SiO₂, 4 % MeOH/CH₂Cl₂). **172**(RR) was obtained as a yellow oil (1.00 g, 4.64 mmol, 97.7 %).

TLC $R_f = 0.23$ (10 % MeOH/CH₂Cl₂, ninhydrin stain)

check stains for others ¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 4.13 (q, J = 5.8 Hz, 1 H, CHOSi), 3.31 (td, J = 7.1, 5.2 Hz, 1 H, CHNH₂), 2.09 - 2.19 (m, 1 H, CHHCHNH₂), 1.97 (ddq, J = 8.8, 7.0, 6.0, 6.0, 6.0 Hz, 1 H, CHHCHOSi), 1.74 - 1.86 (m, 2 H, CH₂CH₂CHOSi), 1.64 - 1.74 (m, 1 H, CHHCHOSi), 1.58 (ddt, J = 13.2, 9.1, 6.0, 6.0 Hz, 1 H, CHHCHNH₂), 0.88 (s, 9 H, C(CH₃)₃), 0.09 (s, 3 H, SiCH₃), 0.07 (s, 3 H, SiCH₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 76.3 (<u>C</u>HOSi), 59.7 (<u>C</u>HNH), 32.2 (<u>C</u>H₂CHOSi), 26.8 (<u>C</u>H₂CHNH₂), 25.6 (<u>C</u>(<u>C</u>H₃)₃), 19.7 (<u>C</u>H₂CH₂CHOSi), 17.7 (<u>C</u>(CH₃)₃), -4.8 (Si<u>C</u>H₃), -5.2 (Si<u>C</u>H₃)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

 $[\boldsymbol{\alpha}]_{D}^{20} / {}^{\circ}10^{-1} \text{cm}^{2}\text{g}^{-1} = ?? (c / \text{g}(100 \text{ ml})^{-1} = ??, \text{MeOH})$

0.21 4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl)butanamide 145

(1S,2S)-2-aminocyclopentan-1-ol **142** (500 mg, 4.94 mmol, 1 eq.), TEA (827 μ l, 600 mg, 5.93 mmol, 1.2 eq.) and CH₂Cl₂ (20 ml) were stirred at 0°C. 4-Chlorobutyryl chloride **173**(608 μ l, 766 mg, 5.43 mmol, 1.1 eq.) was added dropwise over 5 min. The mixture was stirred at 0°C for 30 min, then water (50 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with CH₂Cl₂ (7×50 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, Et₂O). **174**(SS) was obtained as a white amorphous solid (651 mg, 3.16 mmol, 64.1 %).

TLC $R_f = 0.35$ (EtOAc, ninhydrin stain)

mp T / °C = ?? (??)

IR (neat) ν_{max} / cm⁻¹ = 3277.6 (N-H and O-H), 2962.2 (C-H), 2876.0 (C-H), 1636.3 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.12 (br s, 1 H, N<u>H</u>), 4.42 (br s, 1 H, O<u>H</u>), 3.94 (q, J = 6.6 Hz, 1 H, C<u>H</u>OH), 3.82 (tt, J = 8.4, 5.3 Hz, 1 H, C<u>H</u>NH), 3.60 (t, J = 6.2 Hz, 2 H, C<u>H</u>2Cl), 2.38 (t, J = 7.2 Hz, 2 H, C<u>H</u>2C=O), 2.05 - 2.16 (m, 3 H, C<u>H</u>HCHNH and C<u>H</u>2CH₂Cl), 1.96 - 2.04 (m, 1 H, C<u>H</u>HCHOH), 1.74 - 1.85 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.58 - 1.73 (m, 2 H, CH<u>H</u>CH₂CHOH and CH<u>H</u>CHOH), 1.43 (dq, J = 12.7, 8.3 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.4 (<u>C</u>HOH), 60.6 (<u>C</u>HNH), 44.4 (<u>C</u>H₂Cl), 32.8 (<u>C</u>H₂C=O), 32.4 (<u>C</u>H₂CHOH), 30.1 (<u>C</u>H₂CHNH), 28.0 (<u>C</u>H₂CH₂Cl), 21.1 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 228.0787, [M+Na]⁺ found, [C₉H₁₆ClNNaO₂]⁺ requires 228.0762

 $[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -13.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.5, \text{MeOH})$

stains for others

0.22 4-Chloro-N-((1R,2R)-2-hydroxycyclopentyl)butanamide 146

(1R,2R)-2-aminocyclopentan-1-ol **143** (72.3 mg, 716 μ mol, 1 eq.), TEA (500 μ l, 363 mg, 3.58 mmol, 5 eq.) and CH₂Cl₂ (5 ml) were stirred at 0°C. 4-Chlorobutyryl chloride **173**(179 μ l, 226 mg, 1.60 mmol, 1.1 eq.) was added dropwise over 5 min. The mixture was stirred at 0°C for 30 min, then water (10 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with 10 % *i*-PrOH/CHCl₃ (2 × 10 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, Et₂O). **146** was obtained as a white amorphous solid (35.6 mg, 173 μ mol, 24.2 %).

times
with
spaces?

TLC $R_f = 0.35$ (EtOAc)

mp T / °C = ?? (??)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 6.05 (br s, 1 H, N<u>H</u>), 4.55 (br s, 1 H, O<u>H</u>), 3.95 (q, J=6.6 Hz, 1 H, C<u>H</u>OH), 3.82 (tt, J=8.4, 5.3 Hz, 1 H, C<u>H</u>NH), 3.60 (t, J=6.2 Hz, 2 H, C<u>H</u>₂Cl), 2.38 (t, J=7.0 Hz, 2 H, C<u>H</u>₂C=O), 2.05 - 2.17 (m, 3 H, C<u>H</u>HCHNH and C<u>H</u>₂CH₂Cl), 1.94 - 2.05 (m, 1 H, C<u>H</u>HCHOH), 1.74 - 1.86 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.58 - 1.74 (m, 2 H, CH<u>H</u>CH₂CHOH and CH<u>H</u>CHOH), 1.42 (dq, J=12.5, 8.4 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.4 (<u>C</u>HOH), 60.6 (<u>C</u>HNH), 44.4 (<u>C</u>H₂Cl), 32.8 (<u>C</u>H₂C=O), 32.4 (<u>C</u>H₂CHOH), 30.2 (<u>C</u>H₂CHNH), 28.0 (<u>C</u>H₂CH₂Cl), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.0939, [M+H]⁺ found, [C₉H₁₇ClNO₂]⁺ requires 206.0948

 $[\alpha]_D^{20}$ / °10⁻¹cm²g⁻¹ = 10.0 (c / g(100 ml)⁻¹ = 0.05, MeOH)

0.23 4-Azido-N-((1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)butanamide 147

(1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentan-1-amine 144 (50 mg, 0.232 mmol, 1 eq.) and NaHCO₃ (22.0 mg, 0.262 mmol, 1.1 eq.) were added to CH₂Cl₂ (3 ml) and water (3 ml). 4-Bromobutyryl chloride (25.3 ml, 40.5 mg, 0.219 mmol, 0.95 eq.) was added dropwise at 0 °C and the mixture was stirred for 3 h. The aqueous layer was removed and NaN₃ (100 mg, 1.54 mmol, 6.6 eq.) and DMF (3 ml) were added. The mixture was stirred

check
brackets inside for
all

at 40 °C for 6 h. The solvents were then evaporated using a N_2 stream and the residue was purified by column chromatography (SiO₂, 0.5 % MeOH/CH₂Cl₂). **175**(RR) was obtained as a clear liquid (71 mg, 0.217 mmol, 99.2 %).

TLC $R_f = 0.84 \ (1 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3287.9 (N-H), 2953.4 (C-H), 2933.2 (C-H), 2882.7 (C-H), 2857.1 (C-H), 2094.9 (azide), 1639.4 (amide C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 5.35 (d, J = 5.1 Hz, 1 H, N<u>H</u>), 3.97 - 4.01 (m, 1 H, C<u>H</u>OSi), 3.93 - 3.98 (m, 1 H, C<u>H</u>NH), 3.35 (t, J = 6.6 Hz, 2 H, C<u>H</u>₂N₃), 2.24 (t, J = 7.0 Hz, 2 H, C<u>H</u>₂C=O), 2.09 - 2.19 (m, 1 H, C<u>H</u>HCHNH), 1.89 - 1.97 (quin, J = 6.8 Hz, 2 H, C<u>H</u>₂CH₂N₃), 1.74 - 1.84 (m, 2 H, C<u>H</u>HCHOSi and C<u>H</u>HCH₂CHOSi), 1.60 - 1.70 (m, 1 H, CH<u>H</u>CH₂CHOSi), 1.51 - 1.61 (m, 1 H, CH<u>H</u>CHOSi), 1.31 - 1.39 (m, 1 H, CH<u>H</u>CHNH), 0.87 (s, 9 H, C(C<u>H</u>₃)₃), 0.08 (s, 3 H, SiC<u>H</u>₃), 0.06 (s, 3 H, SiC<u>H</u>₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 171.17 (<u>C</u>=O), 77.80 (<u>C</u>HOSi), 58.36 (<u>C</u>HNH), 50.77 (<u>C</u>H₂N₃), 33.29 (<u>C</u>H₂C=O), 32.57 (<u>C</u>H₂CHOSi), 29.36 (<u>C</u>H₂CHNH), 25.72 (<u>C</u>(<u>C</u>H₃)₃), 24.77 (<u>C</u>H₂CH₂N₃), 20.40 (<u>C</u>H₂CH₂CHOSi), 17.95 (<u>C</u>(CH₃)₃), -4.75 (Si<u>C</u>H₃)

HRMS (ESI⁺) m/z / Da = 327.2221, [M+H]⁺ found, [C₁₅H₃₁N₄O₂Si]⁺ requires 327.2216

 $[\alpha]_D^{20}$ / °10⁻¹cm²g⁻¹ = 12.4 (c / g(100 ml)⁻¹ = 0.5, MeOH)

0.24 4-Azido-N-((1S,2S)-2-hydroxycyclopentyl)butanamide 148

$$\bigcup_{-}^{OH} \bigcup_{O}^{H} \bigcup_{$$

4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl)butanamide **145** (200 mg, 0.972 mmol, 1 eq.) and NaN₃ (126 mg, 1.94 mmol, 2 eq.) were stirred in acetonitrile (4 ml) at 50 °C for 16 h. The solvent was then evaporated under reduced pressure and the residue was partitioned between water (20 ml) and 10 % i-PrOH/CHCl₃ (20 ml). The aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (3 × 20 ml) and the combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. **148** was obtained as white needles (181 mg, 0.852 mmol, 87.6 %).

TLC $R_f = 0.35$ (EtOAc, ninhydrin stain)

cneck stains for oth-

mp $T / {}^{\circ}\text{C} = 56\text{-}59.5 \ (i\text{-PrOH, CHCl}_3)$

IR (neat) ν_{max} / cm⁻¹ = 3279.9 (N-H and O-H), 2965.6 (C-H), 2875.4 (C-H), 2094.6 (azide), 1636.8 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.72 (d, J = 4.4 Hz, 1 H, N<u>H</u>), 4.82 (br. s., 1 H, O<u>H</u>), 3.88 (q, J = 6.6

Hz, 1 H, C<u>H</u>OH), 3.75 (tdd, J = 8.4, 8.4, 6.6, 4.4 Hz, 1 H, C<u>H</u>NH), 3.28 (t, J = 6.6 Hz, 2 H, C<u>H</u>₂N₃), 2.23 (t, J = 7.3 Hz, 2 H, C<u>H</u>₂C=O), 2.04 (dtd, J = 13.0, 8.0, 8.0, 4.9 Hz, 1 H, C<u>H</u>HCHNH), 1.92 (dtd, J = 13.0, 7.6, 7.6, 5.8 Hz, 1 H, C<u>H</u>HCHOH), 1.84 (quin, J = 7.0 Hz, 2 H, C<u>H</u>₂CH₂N₃), 1.59 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.54 (ddt, J = 12.7, 9.0, 6.7, 6.7 Hz, 1 H, CH<u>H</u>CHOH), 1.39 (dq, J = 12.9, 8.4 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 78.8 (<u>C</u>HOH), 59.9 (<u>C</u>HNH), 50.5 (<u>C</u>H₂N₃), 32.5 (<u>C</u>H₂C=O), 32.0 (<u>C</u>H₂CHOH), 29.5 (<u>C</u>H₂CHNH), 24.6 (<u>C</u>H₂CH₂N₃), 20.7 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 235.1174, [M+Na]⁺ found, [C₉H₁₆N₄NaO₂]⁺ requires 235.1171

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -10.2 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.5, \text{MeOH})$$

0.25 4-Azido-N-((1R,2R)-2-hydroxycyclopentyl)butanamide 149

4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl) butanamide **145** (35.0 mg, 0.170 mmol, 1 eq.) and NaN $_3$ (22.1 mg, 0.340 mmol, 2 eq.) were stirred in a cetonitrile (2 ml) at 50 °C for 24 h. The reaction mixtures was then partitioned between water (20 ml) and 10 % i-PrOH/CHCl $_3$ (5 ml). The aqueous layer was extracted again with 10 % i-PrOH/CHCl $_3$ (2 × 5 ml) and the combined organic fractions were dried with MgSO $_4$ and evaporated under reduced pressure. **148** was obtained as a white solid (16.2 mg, 0.0764 mmol, 45.0 %).

TLC $R_f = 0.35$ (EtOAc)

IR (neat) ν_{max} / cm⁻¹ = 3286.7 (N-H and O-H), 2957.6 (C-H), 2930.6 (C-H), 2860.7 (C-H), 2094.7 (azide), 1642.2 (amide C=O)

 $^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \ \mathrm{CDCl_{3}}) \ \delta \ / \ \mathrm{ppm} = 5.82 \ (\mathrm{br} \ \mathrm{s}, 1 \ \mathrm{H}, \ \mathrm{N}\underline{\mathrm{H}}), \ 4.45 \ (\mathrm{br. s.}, 1 \ \mathrm{H}, \ \mathrm{O}\underline{\mathrm{H}}), \ 3.96 \ (\mathrm{q}, \ \mathrm{J} = 6.6 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{OH}), \ 3.83 \ (\mathrm{tdd}, \ \mathrm{J} = 8.5, \ 8.5, \ 6.0, \ 4.6 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{NH}), \ 3.37 \ (\mathrm{t}, \ \mathrm{J} = 6.4 \ \mathrm{Hz}, 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{N}_{3}), \ 2.31 \ (\mathrm{t}, \ \mathrm{J} = 7.2 \ \mathrm{Hz}, 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C} = \mathrm{O}), \ 2.09 \ - \ 2.19 \ (\mathrm{m}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}\mathrm{NH}), \ 1.99 \ - \ 2.06 \ (\mathrm{m}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}\mathrm{O}\mathrm{H}), \ 1.90 \ - \ 1.97 \ (\mathrm{m}, 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C}\mathrm{H}_{2}\mathrm{N}_{3}), \ 1.60 \ - \ 1.85 \ (\mathrm{m}, 3 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{C}\mathrm{H}\mathrm{O}\mathrm{H}), \ 1.42 \ (\mathrm{dq}, \ \mathrm{J} = 12.8, \ 8.3 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ \mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{C}\mathrm{H}\mathrm{N}\mathrm{H})$

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.7 (<u>C</u>HOH), 61.0 (<u>C</u>HNH), 50.7 (<u>C</u>H₂N₃), 32.8 (<u>C</u>H₂C=O), 32.6 (<u>C</u>H₂CHOH), 30.5 (<u>C</u>H₂CHNH), 24.7 (<u>C</u>H₂CH₂N₃), 21.3 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 235.1178, [M+Na]⁺ found, [C₉H₁₆N₄NaO₂]⁺ requires 235.1171

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 10.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.01, \text{MeOH})$$

0.26 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 150

139 (200 mg, 0.367 mmol, 1 eq.), 142 (80 mg, 0.791 mmol, 2.1 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiim ide hydrochloride (112 mg, 0.584 mmol, 1.6 eq.), 1-hydroxybenzotriazole (96 mg, 0.710 mmol, 1.9 eq.) and DIPEA (192 μ l, 142 mg, 1.10 mmol, 3 eq.) were dissolved in DMF (5 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-60 % acetonitrile/water over 12 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and CH₂Cl₂ (10 ml). The organic layer was removed and the aqueous layer was extracted twice more with CH₂Cl₂ (2 × 10 ml). The combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. 150 was obtained as a white amorphous solid (73.0 mg, 0.142 mmol, 38.7 %).

TLC $R_f = 0.43 \ (30 \% \ \text{MeOH/EtOAc})$

IR (neat) ν_{max} / cm⁻¹ = 2972.9 (C-H), 2901.5 (C-H), 1728.4 (ester C=O), 1656.3 (amide C=O), 1612.9 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 8.44 (s, 1 H, ortho to C(=O)OC<u>H</u>₃), 7.75 (d, J = 13.5 Hz, 1 H, ortho to F), 7.70 (d, J = 7.2 Hz, 1 H, CHN<u>H</u>), 7.43 (d, J = 7.5 Hz, 1 H, meta to F), 4.74 (d, J = 4.0 Hz, 1 H, CHO<u>H</u>), 3.78 - 3.82 (m, 1 H, C<u>H</u>OH), 3.74 - 3.78 (m, 1 H, C<u>H</u>NH), 3.74 (s, 3 H, C<u>H</u>₃), 3.65 (tt, J = 7.2, 3.9 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.25 (t, J = 4.8 Hz, 4 H, CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.57 (br s, 4 H, CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.34 (t, J = 7.4 Hz, 2 H, C<u>H</u>₂N(CH₂)CH₂), 2.11 (t, J = 7.4 Hz, 2 H, C<u>H</u>₂CH₂CH₂N(CH₂)CH₂), 1.92 (dddd, J = 13.0, 8.7, 7.3, 6.0 Hz, 1 H, C<u>H</u>HCHNH), 1.78 (dddd, J = 12.6, 8.9, 6.3, 6.3 Hz, 1 H, C<u>H</u>HCHOH), 1.69 (quin, J = 7.3 Hz, 2 H, C<u>H</u>₂CH₂N(CH₂)CH₂), 1.54 - 1.65 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.42 (ddt, J = 13.1, 8.2, 5.3, 5.3 Hz, 1 H, CH<u>H</u>CHOH), 1.32 (dddd, J = 13.4, 8.5, 6.8, 5.8 Hz, 1 H, CH<u>H</u>CHNH), 1.21 - 1.29 (m, 2 H, NCH(C<u>H</u>H)₂), 1.07 - 1.13 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 171.9 (CH₂C(=O)NH), 171.6 (C(=O)CC(=O)OCH₃), 165.0 (C(=O)OCH₃), 152.6 (d, J = 246.5 Hz, ipso to F), 148.3 (C=CC(=O)OCH₃), 143.9 (d, J = 10.7 Hz, ipso to piperazine), 138.1 (para to F), 121.8 (d, J = 6.4 Hz, para to piperazine), 111.5 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 109.0 (CC(=O)OCH₃), 106.2 (meta to C=O and meta to F), 76.3 (CHOH), 57.6 (CHNH), 57.2 (CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N(CH₂)CH₂), 51.3 (CH₃), 49.6 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 34.8 (NCH(CH₂)₂), 33.3 (C(=O)CH₂), 32.2 (CH₂CHOH), 29.5 (CH₂CHNH), 22.5 (C(=O)CH₂CH₂), 20.6 (CH₂CH₂CHOH), 7.6 (NCH(CH₂)₂)

 $^{19}\mathbf{F}$ NMR (376.45 MHz, DMSO d₆) δ / ppm = -124.3 (ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 515.2661, [M+H]⁺ found, [C₂₇H₃₆FN₄O₅]⁺ requires 515.2670

0.27 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1R,2R)-2-hydroxycyclopentyl)amin o)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 151

139 (52.1 mg, 95.5 μ mol, 1 eq.), 143 (19.5 mg, 193 μ mol, 2 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (29.7 mg, 155 μ mol, 1.6 eq.), 1-hydroxybenzotriazole (25.8 mg, 191 μ mol, 2 eq.) and DIPEA (33.3 μ l, 24.7 mg, 191 μ mol, 2 eq.) were dissolved in DMF (2 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 5 ml) and CH₂Cl₂ (5 ml). The organic layer was removed and the aqueous layer was extracted twice more with CH₂Cl₂ (2 × 5 ml). The combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. 150 was obtained as a white amorphous solid (4.9 mg, 9.5 μ mol, 9.9 %).

not done yet?

TLC $R_f = 0.38 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2937.7 (C-H), 1721.4 (ester C=O), 1620.5 (amide C=O and quinolone C=O)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.44 (s, 1 H, ortho to C(=O)OC $\underline{\text{H}}_3$), 7.75 (d, J=13.5 Hz, 1 H, ortho to F), 7.69 (d, J=6.9 Hz, 1 H, CHN $\underline{\text{H}}$), 7.43 (d, J=7.6 Hz, 1 H, meta to F), 4.73 (br s, 1 H, CHO $\underline{\text{H}}$), 3.77 - 3.81 (m, 1 H, C $\underline{\text{H}}$ OH), 3.74 - 3.77 (m, 1 H, C $\underline{\text{H}}$ NH), 3.73 (s, 3 H, C $\underline{\text{H}}_3$), 3.65 (tt, J=6.9, 4.0 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.24 (br. t, J=4.2, 4.2 Hz, 4 H, CH₂N(CH₂CH₂)CH₂CH₂), 2.55 (br t, J=5.0, 5.0 Hz, 4 H, CH₂N(C $\underline{\text{H}}_2$)CH₂), 2.32 (t, J=7.2 Hz, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.10 (t, J=7.4 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.92 (dddd, J=13.0, 8.7, 7.3, 6.0 Hz, 1 H, C $\underline{\text{H}}$ HCHNH), 1.77 (ddt, J=12.6, 8.9, 6.3, 6.3 Hz, 1 H, C $\underline{\text{H}}$ HCHOH), 1.68 (quin, J=7.4 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂N(CH₂)CH₂), 1.53 - 1.64 (m, 2 H, C $\underline{\text{H}}_2$ CH₂CHOH), 1.42 (ddt, J=12.9, 8.4, 5.2, 5.2 Hz, 1 H, CH $\underline{\text{H}}$ CHOH), 1.31 (ddt, J=13.0, 8.6, 6.4, 6.4 Hz, 1 H, CH $\underline{\text{H}}$ CHNH), 1.22 - 1.28 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.06 - 1.12 (m, 2 H, NCH(CH $\underline{\text{H}}$ H)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 171.9 (NH<u>C</u>(=O)CH₂), 171.5 (<u>C</u>(=O)CC(=O)OCH₃), 165.0 (<u>C</u>(=O)OCH₃), 152.6 (d, J=247.4 Hz, *ipso* to F), 148.2 (<u>C</u>=CC(=O)OCH₃), 143.9 (d, J=10.3 Hz, *ipso* to piperazine), 138.1 (*para* to F), 121.7 (d, J=6.4 Hz, *para* to piperazine), 111.5 (d, J=23.0 Hz, *ortho* to C=O and *ortho* to F), 109.0 (<u>C</u>C(=O)OCH₃), 106.2 (*meta* to C=O and *meta* to F), 76.2 (<u>C</u>HOH), 57.6 (<u>C</u>HNH), 57.2 (CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N(<u>C</u>H₂)<u>C</u>H₂), 51.3 (<u>C</u>H₃), 49.6 (CH₂CH₂CH₂N(CH₂<u>C</u>H₂)CH₂CH₂), 49.6 (CH₂CH₂CH₂N(CH₂CH₂), 34.7 (N<u>C</u>H(CH₂)₂), 33.2 (C(=O)<u>C</u>H₂), 32.2 (<u>C</u>H₂CHOH), 29.5 (<u>C</u>H₂CH NH), 22.5 (C(=O)CH₂CH₂), 20.6 (<u>C</u>H₂CH₂CHOH), 7.5 (NCH(<u>C</u>H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -125.5

HRMS (ESI⁺) m/z / Da = 515.2667, [M+H]⁺ found, $[C_{27}H_{36}FN_4O_5]^+$ requires 515.2670

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 8.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.05, \text{MeOH})$$

0.28 Methyl (R)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclopentyl)am ino)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 152

Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate **151** (20.0 mg, 38.9 μ mol, 1 eq.) and Dess-Martin Periodane (32.8 mg, 77.4 μ mol, 2 eq.) were stirred in CH₂Cl₂ (3 ml) for 6 h. The solvent was removed under reduced pressure and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 10 min). The combined pure fractions were evaporated under reduced pressure, then NaHCO₃ (aq., sat., 30 ml) and 10 % i-PrOH/CHCl₃ (30 ml) were added. The organic layer was removed and dried with MgSO₄, then evaporated under reduced pressure. **152** was obtained as a white amorphous solid (11.3 mg, 22.0 μ mol, 56.7 %).

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.46 (s, 1 H, ortho to C(=O)OC \underline{H}_3), 7.78 (d, J=13.5 Hz, 1 H, ortho to F), 7.45 (d, J=7.4 Hz, 1 H, meta to F), 4.02 (dt, J=11.1, 8.2 Hz, 1 H, C \underline{H} NH), 3.73 (s, 3 H, C \underline{H}_3), 3.65 (tt, J=6.9, 3.9 Hz, 1 H, NC \underline{H} (CH₂)₂), 3.40 (s, 10 H, CH₂CH₂C \underline{H}_2 N(C \underline{H}_2 C \underline{H}_2)C \underline{H}_2 C(\underline{H}_2), 2.05 - 2.29 (m, 5 H, NHC(=O)C \underline{H}_2 , C \underline{H}_2 C(=O)CHNH and C \underline{H} HCHNH), 1.89 - 1.96 (m, 1 H, C \underline{H} HCH₂CHNH), 1.69 - 1.80 (m, 3 H, CH \underline{H} CH₂CHNH, CH \underline{H} CHNH and NHC(=O)CH₂C \underline{H}_2), 1.24 - 1.29 (m, 2 H, NCH(C \underline{H} H)₂), 1.07 - 1.12 (m, 2 H, NCH(CH \underline{H})₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 215.2 (<u>C</u>(=O)CHNH), 171.7 (NH<u>C</u>(=O)CH₂), 171.7 (<u>C</u>(=O)CC (=O)OCH₃), 165.1 (<u>C</u>(=O)OCH₃), 152.6 (d, J=246.6 Hz, *ipso* to F), 148.4 (<u>C</u>=CC(=O)OCH₃), 138.1 (*para* to F), 109.1 (<u>C</u>C(=O)OCH₃), 56.3 (<u>C</u>HNH), 51.4 (<u>C</u>H₃), 35.6 (<u>C</u>H₂C(=O)CHNH), 34.8 (N<u>C</u>H(CH₂)₂), 28.8 (<u>C</u>H₂CHNH), 18.1 (<u>C</u>H₂CH₂CHNH), 7.6 (NCH(<u>C</u>H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.3

HRMS (ESI⁺) m/z / Da = 513.2495, [M+H]⁺ found, [C₂₇H₃₄FN₄O₅]⁺ requires 513.2513

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 6.7 (c / \text{g}(100 \text{ ml})^{-1} = 0.075, \text{MeOH})$$

 $0.29 \quad 7\text{-}(4\text{-}(4\text{-}(((1R,2R)\text{-}2\text{-}((tert\text{-butyldimethylsilyl})\text{oxy})\text{cyclopentyl})\text{amino})\text{-}4\text{-}oxobutyl)\text{-}1H\text{-}1,2,3\text{-triazol-}4\text{-}yl)\text{butyl})\text{piperazin-}1\text{-}yl)\text{-}1\text{-cyclopropyl-}6\text{-fluoro-}4\text{-}oxo\text{-}1,4\text{-dihydroquinoline-}3\text{-carboxylic acid }153$

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **164** (42.9 mg, 104 μ mol, 1 eq.) and 4-azido-N-((1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)butanamide **175**(RR) (33.9 mg, 104 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (104 μ l, 10.4 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (208 μ l, 20.8 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 16 h, then solvent was removed under reduced pressure. The resudue was partitioned between water (10 ml) and CH₂Cl₂ (10 ml), the organic layer was separated and the aqeous layer was extracted again with CH₂Cl₂ (10 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. **153** was obtained as a clear glass (67.1 mg, 90.9 μ mol, 87.4 %).

IR (neat) ν_{max} / cm⁻¹ = 2951.3 (C-H), 2929.2 (C-H), 2855.5 (C-H), 1741.0 (carboxylic acid C=O), 1640.3 (amide C=O), 1626.6 (quinolone C=O), 1612.3 (triazole)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 8.67 (s, 1 H, ortho to C(=O)OH), 7.87 (d, J = 13.1 Hz, 1 H, ortho to F), 7.34 (s, 1 H, CH=CCH₂), 7.33 (d, J = 8.2 Hz, 1 H, meta to F), 5.92 (t, J = 6.6 Hz, 1 H, CHNH), 4.35 (t, J = 6.7 Hz, 2 H, CH₂NCH=C), 3.96 - 4.02 (m, 1 H, CHOSi), 3.90 - 3.96 (m, 1 H, CHNH), 3.55 (tt, J = 6.7, 4.0 Hz, 1 H, NCH(CH₂)₂), 3.34 (br t, J = 5.0 Hz, 4 H, CH₂N(CH₂CH₂)CH₂CH₂), 2.71 (t, J = 7.5 Hz, 2 H, CH=CCH₂), 2.66 (br s, 4 H, CH₂N(CH₂)CH₂), 2.46 (t, J = 7.3 Hz, 2 H, CH₂N(CH₂)CH₂), 2.03 - 2.22 (m, 5 H, CHHCHNH, C(=O)CH₂ and C(=O)CH₂CH₂), 1.65 - 1.83 (m, 4 H, CHHCHOSi, CHHCH₂CHOSi and NCH=CCH₂CH₂), 1.47 - 1.65 (m, 4 H, CHHCHOSi, CHHCH₂CHOSi and NCH=CCH₂CH₂CH₂), 1.33 - 1.41 (m, 3 H, CHHCHNH and NCH(CHH)₂), 1.14 - 1.20 (m, 2 H, NCH(CHH)₂), 0.82 (s, 9 H, C(CH₃)₃), 0.03 (s, 3 H, SiCH₃), 0.01 (s, 3 H, SiCH₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 176.9 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 170.9 (CH₂ $\underline{\mathbf{C}}$ (=O)NH), 166.9 ($\underline{\mathbf{C}}$ (=O)OH), 153.5 (d, J=251.4 Hz, ipso to F), 147.9 (CH= $\underline{\mathbf{C}}$ CH₂), 147.2 ($\underline{\mathbf{C}}$ =CC(=O)OH), 145.8 (d, J=10.4 Hz, ipso to piperazine), 139.0 (para to F), 120.9 (N $\underline{\mathbf{C}}$ H=CCH₂), 119.4 (d, J=7.8 Hz, para to piperazine), 112.0 (d, J=23.4 Hz, ortho to C=O and ortho to F), 107.7 ($\underline{\mathbf{C}}$ C(=O)OH), 104.7 (d, J=3.5 Hz, meta to C=O and meta to F), 77.7 ($\underline{\mathbf{C}}$ HOSi), 58.2 ($\underline{\mathbf{C}}$ HNH), 57.9 (CH=CCH₂CH₂CH₂CH₂N), 52.6 (CH=CCH₂CH₂CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂), 49.5 (d, J=6.1 Hz, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.9 (d, J=3.5 Hz, $\underline{\mathbf{C}}$ H₂NCH=CCH₂), 35.3 (N $\underline{\mathbf{C}}$ H(CH₂)₂), 32.6 (C(=O) $\underline{\mathbf{C}}$ H₂), 32.6 ($\underline{\mathbf{C}}$ H₂CHOSi), 29.3 ($\underline{\mathbf{C}}$ H₂CHNH), 27.2 (CH=CCH₂CH₂CH₂), 26.0 - 26.3 (C(=O)CH₂CH₂ and CH=CCH₂CH₂CH₂), 25.6 (C($\underline{\mathbf{C}}$ H₃)₃), 25.4 (CH=C $\underline{\mathbf{C}}$ H₂), 20.4 ($\underline{\mathbf{C}}$ H₂CH₂CHOSi), 17.8 ($\underline{\mathbf{C}}$ (CH₃)₃), 8.1 (NCH($\underline{\mathbf{C}}$ H₂)₂), -4.8 (Si $\underline{\mathbf{C}}$ H₃)

HRMS (ESI+) m/z / Da = 738.4164, [M+H]+ found, [C₃₈H₅₇FN₇O₅Si]+ requires 738.4169

0.30 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquin oline-3-carboxylic acid 154

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **164** (42.9 mg, 104 μ mol, 1 eq.) and 4-azido-N-((1S,2S)-2-hydroxycyclopentyl)butanamide **148** (22.0 mg, 104 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (104 μ l, 10.4 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (208 μ l, 20.8 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 16 h. Water (30 ml) and CH₂Cl₂ (30 ml) were added, the organic layer was separated and the aqueous layer was extracted again with CH₂Cl₂ (4 × 30 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **154** was obtained as a white amorphous solid (17.6 mg, 28.2 μ mol, 27.1 %).

IR (neat) ν_{max} / cm⁻¹ = 2967.0 (C-H), 2902.2 (C-H), 1721.4 (carboxylic acid C=O), 1646.7 (amide C=O), 1627.0 (quinolone C=O), 1613.0 (triazole)

¹H NMR (700 MHz, DMSO d₆) δ / ppm = 8.64 (s, 1 H, ortho to C(=O)OH), 7.87 (d, J = 13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, CH=CCH₂), 7.75 (d, J = 7.1 Hz, 1 H, CHNH), 7.54 (d, J = 7.5 Hz, 1 H, meta to F), 4.73 (d, J = 3.8 Hz, 1 H, CHOH), 4.29 (t, J = 6.9 Hz, 2 H, CH₂NCH=C), 3.78 - 3.83 (m, 1 H, NCH(CH₂)₂), 3.75 - 3.78 (m, 1 H, CHOH), 3.71 - 3.75 (m, 1 H, CHNH), 3.31 (br t, J = 4.3 Hz, 4 H, CH₂N(CH₂CH₂)CH₂CH₂CH₂), 2.63 (t, J = 7.5 Hz, 2 H, CH=CCH₂), 2.56 (br t, J = 4.2 Hz, 4 H, CH₂N(CH₂)CH₂), 2.37 (t, J = 7.3 Hz, 2 H, CH₂N(CH₂)CH₂), 2.03 - 2.06 (m, 2 H, C(=O)CH₂), 1.97 - 2.02 (m, 2 H, C(=O)CH₂CH₂), 1.89 (dddd, J = 13.1, 8.9, 7.4, 5.7 Hz, 1 H, CHHCHNH), 1.75 (ddt, J = 13.0, 8.9, 6.4, 6.4 Hz, 1 H, CHHCHOH), 1.61 - 1.66 (m, 2 H, CH=CCH₂CH₂), 1.57 - 1.61 (m, 1 H, CHHCH₂CHOH), 1.54 - 1.57 (m, 1 H, CHHCHOH), 1.49 - 1.53 (m, 2 H, CH=CCH₂CH₂), 1.40 (ddt, J = 13.0, 8.4, 5.3, 5.3 Hz, 1 H, CHHCHOH), 1.29 - 1.32 (m, 2 H, NCH(CHH)₂), 1.25 - 1.29 (m, 1 H, CHHCHNH), 1.13 - 1.20 (m, 2 H, NCH(CHH)₂)

¹³C NMR (175 MHz, DMSO d₆) δ / ppm = 176.3 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 170.9 (NH $\underline{\mathbf{C}}$ (=O)CH₂), 166.1 ($\underline{\mathbf{C}}$ (=O)OH), 153.0 (d, J = 251.4 Hz, ipso to F), 147.9 ($\underline{\mathbf{C}}$ =CC(=O)OH), 146.9 (CH= $\underline{\mathbf{C}}$ CH₂), 145.2 (d, J = 8.7 Hz, ipso to piperazine), 139.2 (para to F), 121.7 (N $\underline{\mathbf{C}}$ H=CCH₂), 118.7 (d, J = 5.8 Hz, para to piperazine), 111.0 (d, J = 23.3 Hz, ortho to C=O and ortho to F), 106.3 (meta to C=O and meta to F and $\underline{\mathbf{C}}$ C(=O)OH),

 $76.2\ (\underline{\text{CHOH}}), 57.6\ (\underline{\text{CHNH}}), 57.4\ (\text{CH=CCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N}), 52.5\ (\text{CH=CCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N}(\underline{\text{CH}}_2)\underline{\text{CH}}_2), 49.5\ (\underline{\text{CH}}, 2\text{CH}_2\text{C$

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -122.1 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 624.3314, [M+H]⁺ found, [C₃₂H₄₃FN₇O₅]⁺ requires 624.3310

 $[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} {\rm cm}^2 {\rm g}^{-1} = \text{-}3.6 \ (c \ / \ {\rm g}(100 \ {\rm ml})^{-1} = 0.0833, \ {\rm MeOH})$

0.31 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquin oline-3-carboxylic acid 155

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **164** (82.0 mg, 199 μ mol, 4 eq.) and 4-azido-N-((1R,2R)-2-hydroxycyclopentyl)butanamide **149** (11.0 mg, 51.8 μ mol, 1 high? eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (156 μ l, 15.6 μ mol, 0.3 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (312 μ l, 31.2 μ mol, 0.6 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 3 d. Water (10 ml) and 10 % i-PrOH/CHCl₃ (10 ml) were added, then the organic layer was separated and dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **155** was obtained as a white amorphous solid (7.2 mg, 11.5 μ mol, 22.2 %).

IR (neat) ν_{max} / cm⁻¹ = 2954.9 (C-H), 2917.9 (C-H), 2850.2 (C-H), 1722.1 (carboxylic acid C=O), 1647.3 (amide C=O), 1626.7 (quinolone C=O) 1611.9 (triazole)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.67 (s, 1 H, ortho to C(=O)OH), 7.91 (d, J=13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.74 (d, J=6.7 Hz, 1 H, CHN<u>H</u>), 7.56 (d, J=7.4 Hz, 1 H, meta to F), 4.71 (d, J=3.7 Hz, 1 H, CHO<u>H</u>), 4.29 (t, J=6.6 Hz, 2 H, C<u>H</u>₂NCH=C), 3.82 (tt, J=6.5, 4.3 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.69 - 3.79 (m, 2 H, C<u>H</u>OH and C<u>H</u>NH), 3.30 - 3.34 (m, 6 H, CH=CCH₂CH₂CH₂CH₂N(C<u>H</u>₂C<u>H</u>₂)C<u>H</u>₂C<u>H</u>₂), 2.64 (t, J=7.4 Hz, 2 H, CH=CC<u>H</u>₂), 1.95 - 2.08 (m, 4 H, C(=O)C<u>H</u>₂C<u>H</u>₂), 1.89 (dddd, J=12.8, 8.9, 7.4, 5.8 Hz, 1 H, C<u>H</u>HCHNH), 1.75 (ddt, J=12.7, 9.0, 6.2, 6.2 Hz, 1 H, C<u>H</u>HCHOH), 1.48 - 1.68 (m, 6 H, CH=CCH₂C<u>H</u>₂C<u>H</u>₂ and C<u>H</u>₂CH₂CHOH), 1.40 (ddt, J=13.0, 8.3, 5.3, 5.3

Hz, 1 H, CH $\underline{\text{H}}$ CHOH), 1.28 - 1.35 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.24 - 1.31 (m, 1 H, CH $\underline{\text{H}}$ CHNH), 1.15 - 1.21 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} (=O)CC(=O)OH), 170.9 (NH \underline{C} (=O)CH₂), 166.0 (\underline{C} (=O)OH), 153.0 (d, J=249.6 Hz, *ipso* to F), 148.1 (\underline{C} =CC(=O)OH), 146.7 (CH= \underline{C} CH₂), 145.2 (d, J=8.3 Hz, *ipso* to piperazine), 139.2 (*para* to F), 121.8 (N \underline{C} H=CCH₂), 118.7 (*para* to piperazine), 111.0 (d, J=23.2 Hz, *ortho* to C=O and *ortho* to F), 106.7 (\underline{C} C(=O)OH), 106.5 (*meta* to C=O and *meta* to F), 76.2 (\underline{C} HOH), 57.5 (\underline{C} HNH), 57.4 (br s, CH=CCH₂CH₂CH₂CH₂N), 52.3 (br s, CH=CCH₂CH₂CH₂CH₂N(\underline{C} H₂), 49.3 (br s, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.8 (\underline{C} H₂NCH=CCH₂), 35.9 (N \underline{C} H(CH₂)₂), 32.2 (\underline{C} H₂CHOH), 32.0 (C(=O) \underline{C} H₂), 29.4 (\underline{C} H₂CHNH), 26.7 (CH=CCH₂ \underline{C} H₂), 26.0 (C(=O)CH₂ \underline{C} H₂), 25.5 (CH=CCH₂CH₂CH₂), 24.9 (CH=C \underline{C} H₂), 20.5 (CH₂CH₂CHOH), 7.6 (NCH(\underline{C} H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -121.5

HRMS (ESI⁺) m/z / Da = 624.3298, [M+H]⁺ found, [C₃₂H₄₃FN₇O₅]⁺ requires 624.3310

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -25.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.08, \text{MeOH})$$

explain discrepancy

0.32 (trans)-2-Aminocyclohexan-1-ol 156

Cyclohexene oxide 176 (10 ml, 9.70 g, 98.8 mmol, 1 eq.), NH $_3$ (90 ml, 35 % w/w aq., 27.7 g, 791 mmol, 8 eq.) and MeOH (100 ml) were stirred at r.t. for 72 h. The solvent was removed by blowing a stream of N $_2$ over it, followed by evaporation under high vacuum

TLC $R_f = 0.04 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3350.4 (N-H), 3306.2 (br, O-H), 2926.9 (C-H), 2852.6 (C-H)

 $^{1}\mathbf{H}\ \mathbf{NMR}\ (400\ \mathrm{MHz},\ \mathrm{CDCl_{3}})\ \delta\ /\ \mathrm{ppm} = 3.01\ (\mathrm{td},\ J = 9.4,\ 4.8\ \mathrm{Hz},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{OH}),\ 2.80\ -\ 2.92\ (\mathrm{m},\ 2\ \mathrm{H},\ \mathrm{O}\underline{\mathrm{H}}\ \mathrm{and}\ \mathrm{N}\underline{\mathrm{H}_{2}}),\ 2.35\ (\mathrm{ddd},\ J = 11.1,\ 9.1,\ 4.1\ \mathrm{Hz},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{NH_{2}}),\ 1.77\ -\ 1.84\ (\mathrm{m},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{CH}\mathrm{OH}),\ 1.69\ -\ 1.76\ (\mathrm{m},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{CH}\mathrm{OH}),\ 1.65\ -\ 1.66\ (\mathrm{m},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{CH_{2}}\mathrm{CH}\mathrm{OH}),\ 1.45\ -\ 1.56\ (\mathrm{m},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{CH_{2}}\mathrm{CH}\mathrm{NH_{2}}),\ 1.07\ -\ 1.19\ (\mathrm{m},\ 3\ \mathrm{H},\ \mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{CH_{2}}\mathrm{CH}\mathrm{OH},\ \mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{CH_{2}}\mathrm{CH}\mathrm{NH_{2}})$

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 75.4 (<u>C</u>HOH), 56.6 (<u>C</u>HN₂), 33.8 (<u>C</u>H₂CHOH and <u>C</u>H₂CHN₂), 24.7 (<u>C</u>H₂CH₂CH₂CH₂CH₂), 24.6 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 116.1070, [M+H]⁺ found, [C₆H₁₄NO]⁺ requires 116.1070

0.33 4-Chloro-N-((trans)-2-hydroxycyclohexyl)butanamide 157

(Trans)-2-aminocyclohexan-1-ol **156** (1.04 g, 9.03 mmol, 1 eq.), TEA (1.65 ml, 1.20 g, 11.8 mmol, 1.3 eq.) and $\mathrm{CH_2Cl_2}$ (50 ml) were stirred at 0°C. 4-Chlorobutyryl chloride **173** (1.22 ml, 1.54 g, 10.9 mmol, 1.2 eq.) was added dropwise over 5 min. The mixture was stirred at 0°C for 30 min, then water (50 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with 10 % *i*-PrOH/CHCl₃ (2 × 50 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, 0-100 % EtOAc/Et₂O). **157** was obtained as white needles (1.51 g, 6.87 mmol, 76.1 %).

TLC $R_f = 0.19 \; (\text{Et}_2\text{O})$

mp $T / ^{\circ}\text{C} = 72.5\text{-}75.7 (i\text{-PrOH, CHCl}_3)$

IR (neat) ν_{max} / cm⁻¹ = 3289.9 (N-H), 3250.0 (O-H), 2927.6 (C-H), 2857.1 (C-H), 1629.2 (amide C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.60 (t, J = 6.6 Hz, 2 H, C $\underline{\text{H}}_2$ Cl), 3.51 - 3.60 (m, 1 H, C $\underline{\text{H}}$ NH), 3.28 - 3.39 (m, 1 H, C $\underline{\text{H}}$ OH), 2.37 (td, J = 7.4, 2.3 Hz, 2 H, C(=O)C $\underline{\text{H}}_2$), 2.06 (quin, J = 7.0 Hz, 2 H, C(=O)CH₂C $\underline{\text{H}}_2$), 1.97 - 2.01 (m, 1 H, C $\underline{\text{H}}$ HCHOH), 1.85 - 1.93 (m, 1 H, C $\underline{\text{H}}$ HCHNH), 1.70 - 1.77 (m, 1 H, C $\underline{\text{H}}$ HCH₂CHOH), 1.64 - 1.70 (m, 1 H, C $\underline{\text{H}}$ HCH₂CHNH), 1.24 - 1.35 (m, 3 H, CH $\underline{\text{H}}$ CH₂CHOH, CH $\underline{\text{H}}$ CH₂CHNH and CH $\underline{\text{H}}$ CHOH), 1.13 - 1.25 (m, 1 H, CH $\underline{\text{H}}$ CHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.0 ($\underline{\mathbf{C}}$ (=O)), 74.1 ($\underline{\mathbf{C}}$ HOH), 56.3 ($\underline{\mathbf{C}}$ HNH), 45.3 ($\underline{\mathbf{C}}$ H₂Cl), 35.6 ($\underline{\mathbf{C}}$ H₂CHOH), 34.5 ($\underline{\mathbf{C}}$ (=O) $\underline{\mathbf{C}}$ H₂), 32.7 ($\underline{\mathbf{C}}$ H₂CHNH), 30.1 ($\underline{\mathbf{C}}$ (=O)CH₂ $\underline{\mathbf{C}}$ H₂), 25.8 ($\underline{\mathbf{C}}$ H₂CH₂CHNH), 25.5 ($\underline{\mathbf{C}}$ H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 242.0925, [M+Na]⁺ found, [C₁₀H₁₈ClNNaO₂]⁺ requires 242.0924

0.34 4-Azido-N-((trans)-2-hydroxycyclohexyl)butanamide 158

$$\bigcap_{OH} \bigcap_{H} \bigcap_{N_3}$$

4-Chloro-N-((trans)-2-hydroxycyclohexyl) butanamide **157** (345 mg, 1.57 mmol, 1 eq.) and NaN₃ (180 mg, 2.77 mmol, 1.75 eq.) were stirred in DMF (12 ml) at 50 °C for 16 h. Water (50 ml) and 10 % i-PrOH/CHCl₃ (50 ml) were added, and the organic layer was removed. The aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (50 ml) and the combined organic fractions were dried with MgSO₄. The solvent was evaporated under reduced pressure, and then by using a N₂ stream. **177** was obtained as large white prisms (347 mg, 1.53 mmol, 97.5 %).

TLC $R_f = 0.23$ (EtOAc)

mp $T / {}^{\circ}\text{C} = 74.5 - 75.7 \ (i\text{-PrOH, CHCl}_3)$

IR (neat) ν_{max} / cm⁻¹ = 3299.0 (N-H), 3207.8 (O-H), 2944.3 (C-H), 2927.9 (C-H), 2859.2 (C-H), 2089.2 (azide), 1624.0 (amide C=O)

¹H NMR (400 MHz, MeOD) δ / ppm = 7.87 (d, J = 7.9 Hz, 1 H, N<u>H</u>), 5.27 (d, J = 4.3 Hz, 1 H, O<u>H</u>), 3.56 (td, J = 10.5, 4.4 Hz, 1 H, C<u>H</u>NH), 3.28 - 3.41 (m, 3 H, C<u>H</u>OH and C<u>H</u>₂N₃), 2.30 (td, J = 7.4, 2.7 Hz, 2 H, C(=O)C<u>H</u>₂), 1.95 - 2.03 (m, 1 H, C<u>H</u>HCHOH), 1.87 (m, 3 H, C(=O)CH₂C<u>H</u>₂ and C<u>H</u>HCHNH), 1.70 - 1.76 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.63 - 1.70 (m, 1 H, C<u>H</u>HCH₂CHNH), 1.25 - 1.38 (m, 3 H, CH<u>H</u>CH₂CHOH, CH<u>H</u>CH₂CHNH and CH<u>H</u>CHOH), 1.14 - 1.24 (m, 1 H, CH<u>H</u>CHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.1 (<u>C</u>(=O)), 74.0 (<u>C</u>HOH), 56.3 (<u>C</u>HNH), 52.0 (<u>C</u>H₂N₃), 35.5 (<u>C</u>H₂CHOH), 34.3 (C(=O)<u>C</u>H₂), 32.7 (<u>C</u>H₂CHNH), 26.3 (C(=O)CH₂<u>C</u>H₂), 25.8 (<u>C</u>H₂CH₂CHNH), 25.5 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 249.1331, [M+Na]⁺ found, [C₁₀H₁₈N₄NaO₂]⁺ requires 249.1327

0.35 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 159

139 (200 mg, 0.367 mmol, 1 eq.), 156 (91.1 mg, 0.791 mmol, 2.1 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodi imide hydrochloride (112 mg, 0.584 mmol, 1.6 eq.), 1-hydroxybenzotriazole (96 mg, 0.710 mmol, 1.9 eq.) and DIPEA (192 μ l, 142 mg, 1.10 mmol, 3 eq.) were dissolved in DMF (5 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 10 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and CH₂Cl₂ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 150 was obtained as a white amorphous solid (73.0 mg, 0.142 mmol, 38.7 %).

IR (neat) ν_{max} / cm⁻¹ = 3302.5 (N-H), 2929.8 (C-H), 2850.6 (C-H), 2832.9 (C-H), 1698.1 (ester C=O), 1646.4 (amide C=O), 1613.8 (quinolone C=O)

¹H NMR (400 MHz, MeOD) δ / ppm = 8.60 (s, 1 H, ortho to C(=O)OC<u>H</u>₃), 7.79 (d, J = 13.5 Hz, 1 H, ortho to F), 7.46 (d, J = 7.2 Hz, 1 H, meta to F), 3.84 (s, 3 H, C<u>H</u>₃), 3.62 - 3.68 (m, 1 H, NC<u>H</u>(CH₂)₂), 3.58 (td, J = 10.3, 4.2 Hz, 1 H, C<u>H</u>NH), 3.38 (br s, 4 H, CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 3.32 - 3.36 (m, 1 H, C<u>H</u>OH), 2.83 (br s, 4 H, CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.60 (t, J = 7.3 Hz, 2 H, C(=O)CH₂CH₂C<u>H</u>₂N), 2.32 (td, J = 7.1, 3.1 Hz, 2 H, C(=O)C<u>H</u>₂), 1.96 - 2.04 (m, 1 H, C<u>H</u>HCHOH), 1.87 - 1.96 (m, 3 H, C<u>H</u>HCHNH and C(=O)CH₂C<u>H</u>₂), 1.72 - 1.77 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.66 - 1.72 (m, 1 H, C<u>H</u>HCH₂CHNH), 1.25 - 1.39 (m, 5 H, CH<u>H</u>CHOH, CHHCH₂CHOH, CHHCH₂CHNH and NCH(CHH)₂), 1.15 - 1.25 (m, 3 H, CHHCHOH and NCH(CHH)₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.8 (CH₂C(=O)NH), 175.3 (C(=O)CC(=O)OCH₃), 166.8 (C(=O)OCH₃), 154.9 (d, J = 248.8 Hz, ipso to F), 150.2 (C=CC(=O)OCH₃), 146.1 (d, J = 10.8 Hz, ipso to piperazine), 139.9 (para to F), 123.5 (d, J = 7.5 Hz, para to piperazine), 113.2 (d, J = 23.2 Hz, ortho to C=O and ortho to F), 110.2 (CC(=O)OCH₃), 107.2 (meta to C=O and meta to F), 74.1 (CHOH), 58.9 (C(=O)CH₂CH₂CH₂N), 56.4 (CHNH), 54.0 (C(=O)CH₂CH₂CH₂N(CH₂)CH₂), 52.3 (CH₃), 50.5 (d, J = 5.0 Hz, C(=O)CH₂CH₂CH₂N(CH₂CH₂CH₂N), 36.4 (NCH(CH₂)₂), 35.7 (CH₂CHOH), 35.1 (C(=O)CH₂), 32.8 (CH₂CHNH), 25.9 (CH₂CH₂CHNH), 25.5 (CH₂CHOH), 23.5 (C(=O)CH₂CH₂CH₂), 8.7 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.7 (ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 529.2827, [M+H]⁺ found, [C28H38FN4O5]⁺ requires 529.2826

0.36 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 160

Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1, 4-dihydroquinoline-3-carboxylate $\bf 159$ (5.2 mg, 9.84 μ mol, 1 eq.) and Dess-Martin Periodane (16.4 mg, 38.7 μ mol, 4 eq.) were stirred in CH₂Cl₂ (3 ml) for 6 h. The solvent was removed under reduced pressure and the residue was purified by preparatory HPLC (5-95 % acetonitrile/water over ??)

TLC $R_f = 0.74 \ (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2921.2 (C-H), 2851.6 (C-H), 1721.4 (ketone C=O), 1698.0 (ester C=O), 1639.3 (amide C=O), 1620.0 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 8.45 (s, 1 H, ortho to C(=O)OC<u>H</u>₃), 7.87 (d, J = 6.2 Hz, 1 H, N<u>H</u>), 7.76 (d, J = 13.4 Hz, 1 H, ortho to F), 7.44 (d, J = 7.5 Hz, 1 H, meta to F), 4.42 (dddd, J = 13.0, 7.6, 6.0, 1.0 Hz, 1 H, C<u>H</u>NH), 3.73 (s, 3 H, C<u>H</u>₃), 3.65 (tt, J = 7.1, 3.9 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.25 (br s, 4 H, CH₂N(CH₂C<u>H₂)CH₂), 2.45 - 2.53 (m, 1 H, C<u>H</u>HC(=O)CHNH), 2.36 (br s, 2 H, C(=O)CH₂CH₂C<u>H</u>₂N), 2.26 (dtt, J = 13.4, 2.6, 2.6, 1.6, 1.6 Hz, 1 H, C<u>H</u><u>H</u>C(=O)CHNH), 2.16 - 2.22 (m, 2 H, C(=O)C<u>H</u>₂CH₂CH₂N), 2.12 (ddq, J = 12.7, 6.0, 2.8, 2.8, 2.8 Hz, 1 H, C<u>H</u>HCHNH), 2.00 (ddquin, J = 13.2, 6.0, 2.9, 2.9, 2.9, 2.9 Hz, 1 H, C<u>H</u>HCH₂C(=O)), 1.65 - 1.83 (m, 4 H, C<u>H</u>₂CH₂CHNH), 1.41 - 1.56 (m, 2 H, CH<u>H</u>CHNH and CH<u>H</u>CH₂C(=O)), 1.20 - 1.30 (m, 2 H, NCH(C<u>H</u>H)₂), 1.05 - 1.13 (m, 2 H, NCH(CH<u>H</u>)₂)</u>

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 207.5 (\underline{C} (=O)CHNH), 171.7 (\underline{C} (=O)CC(=O)OCH₃), 171.6 (CH₂ \underline{C} (=O)NH), 165.0 (\underline{C} (=O)OCH₃), 152.6 (d, J = 247.6 Hz, ipso to F), 148.3 (\underline{C} =CC(=O)OCH₃), 143.9 (br s, ipso to piperazine), 138.1 (para to F), 121.8 (d, J = 6.4 Hz, para to piperazine), 111.5 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 109.0 (\underline{C} C(=O)OCH₃), 106.3 (meta to C=O and meta to F), 57.0 (\underline{C} HNH and C(=O)CH₂CH₂CH₂N), 52.3 (br s, C(=O)CH₂CH₂CH₂N(\underline{C} H₂), 51.3 (\underline{C} H₃), 49.5 (br

s, $C(=O)CH_2CH_2CH_2N(CH_2\underline{C}H_2)CH_2\underline{C}H_2)$, 40.6 ($C\underline{H}_2C(=O)CHNH$), 34.8 ($N\underline{C}H(CH_2)_2$), 33.9 ($C\underline{H}_2CHNH$), 32.9 ($C(=O)\underline{C}H_2CH_2CH_2N$), 27.2 ($C\underline{H}_2CH_2C(=O)CHNH$), 23.8 ($C\underline{H}_2CH_2CHNH$), 22.4 (br s, $C(=O)CH_2\underline{C}H_2$ CH_2N), 22.4 ($CH_2CH_2CH_2$ CH_2CH_2 CH_2N), 22.4 (CH_2CH_2 CH_2 CH_2 CH

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -124.3 (ciprofloxacin <u>F</u>)

HRMS (ESI⁺) m/z / Da = 527.2654, [M+H]⁺ found, [C₂₈H₃₆FN₄O₅]⁺ requires 527.2670

0.37 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquino-line-3-carboxylic acid 161

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **164** (40 mg, 97.2 μ mol, 1 eq.) and 4-azido-N-((trans)-2-hydroxycyclohexyl)butanamide **158** (22.0 mg, 97.2 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (97.2 μ l, 9.72 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (194 μ l, 19.4 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at r.t. under argon for 16 h. Water (50 ml) and 10 % i-PrOH/CHCl₃ (50 ml) were added, then the organic layer was separated and dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-70 % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 50 ml) and 10 % i-PrOH/CHCl₃ (50 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **161** was obtained as a white amorphous solid (30.3 mg, 47.5 μ mol, 48.9 %).

IR (neat) ν_{max} / cm⁻¹ = 3345.4 (N-H), 2927.6 (C-H), 2859.6 (C-H), 2814.7 (C-H), 1727.0 (carboxylic acid C=O), 1641.7 (amide C=O), 1625.8 (quinolone C=O), 1619.0 (triazole)

¹³C NMR (101 MHz, DMSO d_6) δ / ppm = 176.4 (<u>C</u>(=O)CC(=O)OH), 170.9 (CH₂<u>C</u>(=O)NH), 166.0

 $(\underline{\mathbf{C}}(=\mathbf{O})\mathbf{OH}), 153.1 \; (\mathbf{d}, J = 252.1 \; \mathbf{Hz}, ipso \; \mathbf{to} \; \mathbf{F}), 148.0 \; (\underline{\mathbf{C}}=\mathbf{CC}(=\mathbf{O})\mathbf{OH}), 146.9 \; (\mathbf{CH}=\underline{\mathbf{C}}\mathbf{CH}_2), 145.3 \; (\mathbf{d}, J = 10.0 \; \mathbf{Hz}, ipso \; \mathbf{to} \; \mathbf{piperazine}), 139.2 \; (para \; \mathbf{to} \; \mathbf{F}), 121.8 \; (\mathbf{N}\underline{\mathbf{C}}\mathbf{H}=\mathbf{CCH}_2), 118.5 \; (\mathbf{d}, J = 8.3 \; \mathbf{Hz}, para \; \mathbf{to} \; \mathbf{piperazine}), 110.9 \; (\mathbf{d}, J = 23.2 \; \mathbf{Hz}, ortho \; \mathbf{to} \; \mathbf{C}=\mathbf{O} \; \mathbf{and} \; ortho \; \mathbf{to} \; \mathbf{F}), 106.7 \; (\underline{\mathbf{C}}\mathbf{C}(=\mathbf{O})\mathbf{OH}), 106.3 \; (\mathbf{d}, J = 3.3 \; \mathbf{Hz}, meta \; \mathbf{to} \; \mathbf{C}=\mathbf{O} \; \mathbf{and} \; meta \; \mathbf{to} \; \mathbf{F}), 71.4 \; (\underline{\mathbf{C}}\mathbf{HOH}), 57.4 \; (\mathbf{C}\mathbf{H}=\mathbf{CCH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{D}), 54.2 \; (\underline{\mathbf{C}}\mathbf{HNH}), 52.4 \; (\mathbf{C}\mathbf{H}=\mathbf{CCH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{N}(\underline{\mathbf{C}}\mathbf{H}_2)\underline{\mathbf{C}}\mathbf{H}_2), 49.5 \; (\mathbf{C}\mathbf{H}=\mathbf{CCH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_2), 48.8 \; (\mathbf{C}(=\mathbf{O})\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{C}\mathbf{H}_2\mathbf{$

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -121.4 (ciprofloxacin \underline{F})

HRMS (ESI⁺) m/z / Da = 638.3480, [M+H]⁺ found, [C₃₃H₄₅FN₇O₅]⁺ requires 638.3466

0.38 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(4-oxo-4-((2-oxocyclohexyl)amino)bu tyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carbo xylic acid 162

IR (neat) ν_{max} / cm⁻¹ = 2941.2 (C-H), 2859.8 (C-H), 1719.8 (carboxylic acid C=O and ketone C=O), 1656.8 (amide C=O), 1625.6 (quinolone C=O), 1613.5 (triazole)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.65 (s, 1 H, ortho to C(=O)OH), 7.94 (d, J=7.7 Hz, 1 H, N $\underline{\text{H}}$), 7.88 (d, J=13.4 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C $\underline{\text{H}}$ =CCH₂), 7.55 (d, J=7.3 Hz, 1 H, meta to F), 4.40 (dddd, J=12.8, 7.6, 6.1, 1.1 Hz, 1 H), 4.31 (t, J=7.0 Hz, 1 H, C(=O)CH₂CH₂CH₂HN), 4.31 (t, J=6.9 Hz, 1 H, C(=O)CH₂CH₂CH₂CH₂N(CH₂CH₂), 3.31 (br. s, 4 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂CH₂CH₂), 2.64 (t, J=7.5 Hz, 2 H, CH=CCH₂), 2.56 (br t, J=5.0, 5.0 Hz, 4 H, CH₂CH₂CH₂N(CH₂)CH₂), 2.45 - 2.52 (m, 1 H, CHHC(=O)), 2.38 (t, J=7.1 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 2.25 (dtt, J=13.4, 2.6, 2.6, 1.6, 1.6 Hz, 1 H, CHHC(=O)), 2.07 - 2.17 (m, 3 H, C(=O)CH₂CH₂CH₂CH₂N and CHHCHNH), 1.96 - 2.05 (m, 3 H, C(=O)CH₂CH₂CH₂CH₂N) and CHHCH₂CH₂N), 1.68 - 1.81 (m, 2 H, CHHCH₂CHNH), 1.64 (quin, J=7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂CH₂N), 1.40 - 1.56 (m, 5 H, CHHCH₂C(=O), CHHCHNH and CH=CCH₂CH₂CH₂CH₂N), 1.27 - 1.34 (m, 2 H, NCH(CHH)₂), 1.13 - 1.20 (m, 2 H, NCH(CHH)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 207.4 (\underline{C} (=O)CHNH), 176.3 (\underline{C} (=O)CC(=O)OH), 170.8 (CH₂ \underline{C} (=O)NH), 166.0 (\underline{C} (=O)OH), 153.0 (d, J=246.4 Hz, *ipso* to F), 147.9 (\underline{C} =CC(=O)OH), 146.8 (CH= \underline{C} CH₂),

¹⁹**F NMR** (376 MHz, DMSO d₆) δ / ppm = -121.7 (s, ciprofloxacin F)

some TFA

HRMS (ESI⁺) m/z / Da = 636.3303, [M+H]⁺ found, [C₃₃H₄₃FN₇O₅]⁺ requires 636.3310