MA 214: Numerical Analysis Notes

Aryaman Maithani

February 5, 2020

DISCLAIMER

This is just a collection of formulae/algorithms compiled together.

In the case of algorithms, I explain the procedure concisely. However, do not take this as a substitute for lecture slides as I don't go into the theory at all.

Also, I've modified some things compared to the lecture slides wherever I felt it was an error. So, be warned.

1 Interpolation

1. Lagrange Polynomials

Let x_0, x_1, \ldots, x_n be n+1 distinct points in [a, b]. Let $f : [a, b] \to \mathbb{R}$ be a function whose value is known at those aforementioned points.

We want to construct a polynomial p(x) of degree $\leq n$ such that $p(x_i) = f(x_i)$ for all $i \in \{0, ..., n\}$. Towards this end, we define the polynomials $I_k(x)$ for $k \in \{0, ..., n\}$ in the following manner:

$$I_k(x) := \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}.$$

(Intuitive understanding: I_k is a degree n polynomial such that $I_k(x_j) = 0$ if $k \neq j$ and $I_k(x_k) = 1$.) Now, define p(x) as follows:

$$p(x) := \sum_{i=0}^{n} f(x_i) I_i(x)$$

2. Newton's form

Let x_0, x_1, \ldots, x_n be n+1 distinct points in [a, b]. Let $f : [a, b] \to \mathbb{R}$ be a function whose value is known at those aforementioned points.

We want to construct a polynomial $P_n(x)$ of degree $\leq n$ such that $p(x_i) = f(x_i)$ for all $i \in \{0, \dots, n\}$.

We define the divided differences (recursively) as follows:

$$f[x_0] := f(x_0)$$

$$f[x_0, x_1, \dots, x_k] := \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$
 for all $1 < k \le n$

With this in place, the desired polynomial $P_n(x)$ is (not so) simply:

$$P_n(x) := f[x_0] + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ \dots$$

$$\vdots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Remarks. Note that $x - x_n$ does not appear in the last term.

Note that given $P_n(x)$, it is simple to construct $P_{n+1}(x)$.

3. Osculatory Interpolation

This is essentially the same as the previous case.

I'll state the problem in the form I think is the simplest. (Any other form can be reduced to this.) Suppose we are given k+1 distinct points x_0, \ldots, x_k in [a,b] and a function $f:[a,b] \to \mathbb{R}$ which is sufficiently differentiable.

Suppose we are given the following values:

$$f^{(0)}(x_0), f^{(1)}(x_0), \dots, f^{(m_1-1)}(x_0)$$

$$f^{(0)}(x_1), f^{(1)}(x_1), \dots, f^{(m_2-1)}(x_1)$$

$$\vdots$$

$$f^{(0)}(x_k), f^{(1)}(x_k), \dots, f^{(m_k-1)}(x_k)$$

(Notation: $f^{(0)}(x) = f(x)$ and $f^{(n)}(x)$ is the n^{th} derivative.)

Thus, we are given $m_1 + m_2 + \cdots + m_k =: n + 1$ data. As usual, we now want to compute a polynomial $P_n(x)$ that agrees with f at all the data. (That is, all the given derivatives must also be same.) As it goes without saying, $P_n(x)$ must have degree $\leq n$.

To do this, we list the above points as follows:

$$\underbrace{x_0, x_0, \dots x_0}_{m_1}, \underbrace{x_1, x_1, \dots, x_1}_{m_2}, \dots, \underbrace{x_k, x_k, \dots, x_k}_{m_k}.$$

Now, we just apply the above (Newton's) formula with the following modification in the definition of the divided difference:

$$f[\underbrace{x_i, x_i, \dots, x_i}_{p+1 \text{ times}}] := \frac{f^{(p)}(x_i)}{p!}.$$

4. Richardson Extrapolation

Suppose that for sufficiently small $h \neq 0$, we have the formula:

$$M = N_1(h) + k_1h + k_2h^2 + k_3h^3 + \cdots$$

for some constants k_1, k_2, k_3, \ldots

Define the following:

$$N_j(h) := N_{j-1}(h/2) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{2^{j-1} - 1}$$
 for $j \ge 2$.

Choose some h sufficiently small (whatever that means). Then, $N_j(h)$ keeps becoming a better approximation of M as j increases.

We create a table of h and $N_i(h)$ as follows:

 $N_4(h)$ will be a good approximation, then.

(Look at slide 15 of Lecture 7 for an example.)

Special case

Sometimes, we may have the following scenario:

$$M = N_1(h) + k_2h^2 + k_4h^4 + \cdots$$

In this case, we define:

$$N_j(h) := N_{j-1}(h/2) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{4^{j-1} - 1} \quad \text{ for } j \ge 2.$$

Then, we do the remaining stuff as before.

2 Numerical Integration

$$I = \int_{a}^{b} f(x) \mathrm{d}x$$

1. Rectangle Rule

$$I\approx (b-a)f(a)$$

$$E^R=f'(\eta)\frac{(b-a)^2}{2}, \text{ for some } \eta\in [a,b]$$

2. Midpoint Rule

$$I\approx (b-a)f\left(\frac{a+b}{2}\right)$$

$$E^M=\frac{f''(\eta)}{2}\frac{(b-a)^3}{24}, \text{ for some }\eta\in[a,b]$$

3. Trapezoidal Rule

$$I \approx \frac{1}{2}(b-a)[f(a)+f(b)]$$

$$E^T = -f''(\eta)\frac{(b-a)^3}{12}, \text{ for some } \eta \in [a,b]$$

4. Corrected Trapezoidal

$$I \approx \frac{1}{2}(b-a)[f(a)+f(b)] + \frac{(b-a)^2}{12}(f'(a)-f'(b))$$

$$E^{CT} = f^{(4)}(\eta)\frac{(b-a)^5}{720}, \text{ for some } \eta \in [a,b]$$

5. Composite Trapezoidal

$$I \approx \frac{h}{2} [f(x_0) + 2 \sum_{i=1}^{N-1} f(x_i) + f(x_N)]$$

$$E_C^T = -f''(\xi) \frac{h^2(b-a)}{12}, \text{ for some } \xi \in [a,b]$$

Here, Nh = b - a.

6. Simpson's Rule

$$\begin{split} I &\approx \frac{b-a}{6} \left\{ f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right\} \\ E^S &= -\frac{1}{90} f^{(4)}(\eta) \left(\frac{b-a}{2}\right)^5, \text{ for some } \eta \in [a,b] \end{split}$$

7. Composite Simpson's

$$I \approx \frac{h}{6} [f(x_0) + 2 \sum_{i=1}^{N-1} f(x_i) + 4 \sum_{i=1}^{N} f\left(x_{i-1} + \frac{h}{2}\right) + f(x_N)]$$
$$E_C^S = -f^{(4)}(\xi) \frac{(h/2)^4 (b-a)}{180}, \text{ for some } \xi \in [a, b]$$

Here, Nh = b - a.

8. Gaussian Quadrature

Let $Q_{n+1}(x)$ denote the $(n+1)^{\text{th}}$ Legendre polynomial.

Let r_0, \ldots, r_{n+1} be its roots. (These will be distinct, symmetric about the origin and will lie in the interval [-1,1].

For each $i \in \{0, \ldots, n\}$, we define c_i as follows:

$$c_i := \int_{-1}^1 \left(\prod_{k=0, k \neq i}^n \frac{x - x_k}{x_i - x_k} \right) \mathrm{d}x.$$

Then, we have

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n} f(r_i) c_i.$$

Moreover, if f is a polynomial of degree $\leq 2n+1$, then the above is "approximation" is exact.

Standard values:

$$\begin{array}{l} n=0:Q_1(x)=x \text{ and } x_0=0.\ c_0=2.\\ n=1:Q_2(x)=x^2-\frac{1}{3} \text{ and } x_0=-\frac{1}{\sqrt{3}},\ x_1=\frac{1}{\sqrt{3}}.\ c_0=c_1=1.\\ n=2:Q_3(x)=x^3-\frac{3}{5}x \text{ and } x_0=-\sqrt{\frac{3}{5}},\ x_1=0,\ x_2=\sqrt{\frac{3}{5}}.\ c_0=c_2=5/9,\ c_1=8/9. \end{array}$$

9. Improper integrals using Taylor series method

Suppose we have $f(x) = \frac{g(x)}{(x-a)^p}$ for some $0 and are asked to calculate <math>I = \int_0^b f(x) dx$.

For the sake of simplicity, I assume a = 0 and b = 1.

Let $P_4(x)$ denote the fourth Taylor polynomial of g around a. (In this case 0.)

Now, compute
$$I_1 = \int_0^1 \frac{P_4(x)}{x^p} dx$$
. This can be integrated exactly. (Why?)
Now, we approximate $I - I_1$.

Define

$$G(x) := \begin{cases} \frac{g(x) - P_4(x)}{x^p} & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0 \end{cases}$$

Then, approximate $I_2 = \int_0^1 G(x) dx$ using the composite Simpson's rule.

For the case of a = 0, b = 1 and N = 2 for the composite Simpson's part, we get that $I_2 \approx \frac{1}{12} [2G(0.5) + 4G(0.25) + 4G(0.75) + G(1)].$

That is, finally:

$$I \approx \int_0^1 \frac{P_4(x)}{x^p} dx + \frac{1}{12} [2G(0.5) + 4G(0.25) + 4G(0.75) + G(1)].$$

10. Adaptive Quadrature

Let $I = \int_{-\infty}^{0} f(x) dx$ be the integral that we want to approximate.

Suppose that ϵ is the accuracy to which we want I. That is, we want a number P such that $|P-I| < \epsilon$. Here is what you do:

Subdivide [a, b] into N intervals: $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$. (Naturally, $a = x_0 \le x_1 \le \ldots \le x_n = x_n \le x_$

Now, for each subinterval, compute the following values:

$$S_{i} = \frac{h}{6} \left(f(x_{i}) + 4f\left(x + \frac{h}{2}\right) + f\left(x_{i+1}\right) \right), \text{ and}$$

$$\overline{S_{i}} = \frac{h}{12} \left(f(x_{i}) + 4f\left(x_{i} + \frac{h}{2}\right) + 2f\left(x_{i} + \frac{h}{2}\right) + 4f(x_{i} + \frac{3h}{4}) + f(x_{i+1}) \right).$$

Now, calculate $E_i = \frac{1}{15} |\overline{S_i} - S_i|$.

Now, if $E_i \leq \frac{x_i - x_{i-1}}{b-a} \epsilon$, then move on to the next interval.

Otherwise, subdivide again to better approximate $\int_{-\infty}^{x_i} f(x) dx$.

Finally, sum up all the $\overline{S_i}$ s and that's the answer. That is,

$$I \approx P = \sum_{i=1}^{n} \overline{S_i}.$$

11. Romberg Integration

Essentially the baby of composite Trapezoidal rule and Romberg integration.

Suppose we want to calculate $\int_a^b f(x) dx$. Let N be a power of 2.

$$T_N := \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{N-1} f(a+ih) + f(x_N) \right], \text{ where } Nh = b - a.$$

Note that T_N can be computed using $T_{N/2}$ (assuming $N \neq 2^0$) as:

$$T_N = \frac{T_{N/2}}{2} + h \sum_{i=1}^{N/2} f(a + (2i - 1)h).$$

Now for $m \geq 1$, we define:

$$T_N^m = T_N^{m-1} + \frac{T_N^{m-1} - T_{N/2}^{m-1}}{4^m - 1}.$$

(Where T_N^0 is just $T_{N.}$)

(Also, for some reason, T'_N has been used instead of T^1_N .) Note that $\frac{N}{2^m}$ must be an integer for T^m_N to be defined. We create a table as follows:

N	$\mid T_N \mid$	T_N'	T_N^2	T_N^3
$\overline{1}$	T_1			
2	T_2	T_2^1		
4	T_4	$T_2^1 \ T_4^1$	T_4^2	
8	T_8	T_8^1	T_8^2	T_8^3

 T_8^3 will be a good approximation, then.

(Look at slide 25 of Lecture 7 for an example.)

Remark. It can be shown that $I=T_N+c_2h^2+c_4h^4+\cdots$. This is why we used the special case formula of 1. 4.