

Copyright (c) 1993 - 2004 Compugen Ltd.

AM protein - protein search using SW model

run on: October 6, 2004, 15:50:37 ; Search time 123 Seconds
(without alignments)
399,701 Million cell updates/sec

968

1. EIGENSTÄNDIGE VERHÄLTNISSE

scoring table: BLOSUM62

卷之三

searched: 1586107 seqs, Residues: 282547505

Total number of hits satisfying chosen parameters: 15886107

minimum DB seg length: 0

maximum DB seq length: 200000000

post-processing: Minimum Match 0

Maximum Match 100%
Minimum Match 100%

database :
A_Genebased_2y2d10U4:
1_Genebased_1808-*

2: Geunessgap1990s:*

geneseqp20016 *
14

geneseqp 20028***

7 : ~~genesisxx2003bs~~ : *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed.

סודות

Result No.	Score	Query	Match	Length	DB ID	Description
1	896	100.0	174	1	AAP80965	G-CSF ded
2	896	100.0	174	1	AAP90470	G-colony
3	896	100.0	174	2	AAR13679	Granulocy
4	896	100.0	174	2	AAR26909	Human G-C
5	896	100.0	174	2	AAR34707	Human CSF
6	896	100.0	174	2	Aaw02204	Human G-C
7	896	100.0	174	3	AAY78937	Granulocy
8	896	100.0	174	3	AAB14850	Human gra
9	895	100.0	174	3	AAY97016	Mature gr
10	896	100.0	174	4	Aae12153	Human hG-
11	896	100.0	174	4	Aab61930	Human gra
12	896	100.0	174	4	Aab85332	Codon opt
13	896	100.0	174	4	Aam52110	Human G-C
14	896	100.0	174	4	Aae11983	Human wil
15	896	100.0	174	5	Aau79877	Human gra
16	896	100.0	174	5	Aau97116	Wild-type
17	896	100.0	174	5	Aae14694	Human gra
18	896	100.0	174	6	ABR55839	Human gra
19	896	100.0	174	6	Aae30598	Human gra
20	896	100.0	174	6	ABG74368	Partial h
21	896	100.0	174	6	ABR62687	Human gra
22	896	100.0	174	7	ADC56722	Human pro
23	896	100.0	174	7	ABR61548	Human gra
24	896	100.0	174	7	ABR61549	Human gra

29-JUN-1988.

23-DEC-1986; 87EP-00119157.

(KYOW) KYOWA HAKKO KOGYO KK.

Kuga T, Komatsu Y, Miyaji H, Sato M, Okabe M, Morimoto M;
Itoh S, Yamasaki M;

WPI; 1988-176825/26.
N-PSDB; AAN80947.

Human granulocyte colony stimulating factor polypeptide derivs. - having at least one different aminoacid, giving high specific activity and stability.

Disclosure; Page ?; 68pp; English.

The sequence of the gene is carried on plasmid pCSF1-2 isolated from a cDNA library prepared from mRNA extracted from peripheral blood macrophages. The deduced protein sequence agrees with those determined for G-CSF from the human squamous cell line CHU-II and the human bladder cancer cell line 5637. The DNA can be used as a "master gene" for the construction of mutant genes which encode variants of hG-CSF which differ by at least one AA. See also AAP80963 and AAP80964, and AAP82874-92

Sequence 174 AA;

Db 121 MEELGMAPALQOPTQGAMPAFASAFAQRAGGVLVASHLQSFL
RESULT 3
AAR13679
ID AAR13679 standard; protein; 174 AA.
XX
AC AAR13679;
XX
DT 25-MAR-2003 (revised)
DT 13-NOV-1991 (first entry)
XX
DE Granulocyte colony stimulating factor.
XX
KW G-CSF; neutropaenia.

SU LT 2
P90470 AAP90470 standard; protein; 174 AA.
AAP90470;
25-MAR-2003 (revised)
01-NOV-1989 (First entry)
G-colony stimulating factor.
G-colony stimulating factor; G-CSF; lysine-depleted variant;
site-directed mutagenesis; human.
Homo sapiens.

29-JUN-1989.
22-DEC-1988; 88WO-US004633.
23-DEC-1987; 87US-00137043.
(GEMY) GENETICS INST INC.
Shaw G;
WPI; 1989-206594/28.
N-PSDB; AAN90256.
New lysine depleted variants of polypeptide - opt. modified with hydrophilic residues, biologically active but with altered solubility, stability.

Disclosure; Fig 4; 35pp; English.
DNA of G-CSF (G-colony stimulating factor) (see corresp. AN90256). Used in the patent to create lysine depleted variants by site-directed mutagenesis, or synthesis. (Updated on 25-MAR-2003 to correct PA field.)

Sequence 174 AA;

Query Match	Local Similarity	Score	DB 1;	Length
100.0%	100.0%	896		174;
Pred. No.	Mismatches			
3.8e-90;	0;			
Indels	Gaps			
0;	0;			
Matches	Conservative			
174;	0;			
TPLGPASSLPPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP				60
1				
TPLGPASSLPPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP				60
1				
LSSCPSQALQLAGGCLSQLHSGFLYQGLLQALEGISPELGPTLDLQLDVADFARTIWQQ				120
61				
LSSCPSQALQLAGGCLSQLHSGFLYQGLLQALEGISPELGPTLDLQLDVADFARTIWQQ				120
61				
MEEIGMAPALQOPTQQGAMPAFASAFQRARRAGGVLVASHLQSFLEVEVSYRVLRHLAQP				174
121				

RESULT 3	
AAR13679	AAR13679 standard; protein; 174 AA.
ID	AAR13679
XX	AC AAR13679;
XX	DT 25-MAR-2003 (revised)
XX	DT 13-NOV-1991 (first entry)
DE	Granulocyte colony stimulating factor.
XX	KW G-CSF; neutropaenia.
XX	OS Synthetic.
XX	PN GB2241505-A.
XX	PD 04-SEP-1991.
XX	PF 27-FEB-1991; 91GB-00041260.
XX	PR 27-FEB-1990; 90GB-00004390.
XX	PR 27-FEB-1991; 91GB-00004126.
XX	PA (ICIL) IMPERIAL CHEM IND PLC.
XX	PI Hockney RC, Kara BV;
XX	DR WPI; 1991-262013/36.
XX	DR N-PSDB; AAQ13329.
XX	PT Polypeptide prodn. by fermenting transformed host cells - in presen
PT	PT non-auxotrophic aminoacid to increase prod. accumulation, esp. for
PT	PT granulocyte colony stimulating factor.
XX	PS Disclosure; Fig 6; 69pp; English.
XX	CC The protein was expressed from a synthetic gene designed to include
CC	CC several restriction sites to facilitate manipulation and to have A/
CC	CC codons at the 5' end of the coding region. Other codons were chosen
CC	CC those preferred for expression in E. coli. The gene was cloned into
CC	CC expression plasmid for the prodn of G-CSF for use in the management
CC	CC neutropaenia etc. See also AAR14224. (Updated on 25-MAR-2003 to corr
CC	CC field.) (Updated on 25-MAR-2003 to correct PA field.)
XX	SQ Sequence 174 AA;
	Query Match 100.0%; Score 896; DB 2; Length 174;
	Best Local Similarity 100.0%; Pred. No. 3.8e-90;
	Matches 174; Conservative 0; Mismatches 0; Indels 0; Gap 0
Qy	1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLQATYKLCHPEELVLIGHSLGIPW
Db	1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLQATYKLCHPEELVLIGHSLGIPW
Qy	61 LSSCPSSQALQLLAGCQLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADEFATTIWIW
Db	61 LSSCPSSQALQLLAGCQLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADEFATTIWIW
Qy	121 MEELGMAPALQOPTQGAMPAFASAFOQRAGGVLVASHLQSFLEVSYRVLRLAQP 174
Db	121 MEELGMAPALQOPTQGAMPAFASAFOQRAGGVLVASHLQSFLEVSYRVLRLAQP 174
RESULT 4	
AAR26909	AAR26909 standard; protein; 174 AA.
ID	AAR26909
XX	AC AAR26909;

25-MAR-2003 (revised)	AC AAR34707;
20-MAY-1998 (first entry)	XX DT 10-JUN-1993 (first entry)
Human G-CSF.	XX DE Human CSF analogue.
	XX Colony stimulating factor; cancer; tumour; sarcoma; lymphoma; melanoma; ricin A; immunotoxins; neutropaenia; chemotherapy; radiation; therapy; autologous bone marrow transplantation; AIDS; severe infection; myelodysplastic syndromes; abnormal granulocyte function.
Synthetic.	XX OS
EP502637-A2.	XX PN JPO5009131-A.
09-SEP-1992.	XX PF 17-FEB-1992; 92EP-00301465.
	XX PR 26-FEB-1991; 91GB-00004017.
	XX PR 29-APR-1991; 91GB-00009188.
(ICIL) IMPERIAL CHEM IND PLC.	XX PA (CHUS) CHUGAI PHARM CO LTD.
(ZENE) ZENECA LTD.	XX DR WPI; 1993-061608/08.
Barth PT;	XX XX
WPI; 1992-301941/37.	PT Anticancer drug showing good apothanaisia effect - contains immuno:therapeutic agent for cancer, human colony stimulating factor and anticancer drug.
N-PSDB; AAQ28371.	PT PS Disclosure; Page 3; 10pp; Japanese.
Vector contg. inducible selection gene - encodes heterologous polypeptide e.g. ricin A and G-CSF.	XX CC The sequence is that of human colony stimulating factor, which can be with an immunotherapeutic agent for cancer and an anticancer drug in a novel anticancer compsn. The compsn. has excellent anticancer effects, not shown by sole administration of the single components. It shows good life prolonging effects and has tumour growth inhibiting effects for mammalian cancers. It is esp. effective for treatment of early stage cancer and after cancer surgery. Treatable diseases include various kinds of sarcoma, malignant lymphoma, malignant melanoma, malignant chlorionic tumour, phalia cancer, various kinds of digestive organ cancer, lung cancer, etc. See also AAR32258
Claim 8; Fig 10; 73pp; English.	XX SQ Sequence 174 AA;
This sequence is encoded by the synthetic gene AAQ28371. The plasmid containing the coding gene contains a novel inducible selection gene which is only expressed during the construction and testing phases of genetic manipulation. When the subsequent plasmid carrying the cloned gene is stably maintained in its bacterial host, the need for selection ceases. Cultures grown to express the cloned gene prod. will not require addn. of the selection drug and will not express the prod. of the selection gene. In this case the product of the cloned gene is human G-CSF which is used to treat neutropaenia associated with chemotherapy, radiation therapy, or autologous bone marrow transplantation, to stimulate bone marrow suppression associated with AIDS, in the treatment of myelodysplastic syndromes characterised by granulocyte functional abnormalities and as an adjunct to the treatment of severe infections. (Updated on 25-MAR-2003 to correct PN field.) (Updated on 25-MAR-2003 to correct PA field.)	XX Query Match 100.0%; Score 896; DB 2; Length 174; Best Local Similarity 100.0%; Pred. No. 3.8e-90; Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Db	1 TPLGPASSLPOSFLLKCLEEQVRKIQGDGAALQERKLCATYKLCHPEELVLLGHSLGIPWAP 60 1 TPLGPASSLPOSFLLKCLEEQVRKIQGDGAALQERKLCATYKLCHPEELVLLGHSLGIPWAP 60
Db	1 LSSCPSQALQLAGGLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADEFATTIWOQ 120 1 LSSCPSQALQLAGGLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADEFATTIWOQ 120
Db	1 MEELGMAPALOPTQGAMPAFASAQRAGGVVLVASHLQSFLLEVSYRVLRLHAQP 174 1 MEELGMAPALOPTQGAMPAFASAQRAGGVVLVASHLQSFLLEVSYRVLRLHAQP 174
Db	RESULT 6 AAW02204
Db	XX AC AAW02204 standard; protein; 174 AA.
Db	XX DT 10-OCT-1996 (first entry)
	XX DE Human G-CSF for stimulating peripheral blood cell prodn.
	XX KW Human; interleukin; hil-11; granulocyte colony stimulating factor; hg-CSF; in vivo; increase; production; peripheral blood cells; hIFN-g; hIL-1; hIL-3; stem cell factor; leukaemia inhibitory factor;
	XX KW Human; interluekin; hil-11; granulocyte colony stimulating factor; DE

KW erythropoietin; GM-CSF; M-CSF; transplant; treatment; transfusion;
 KW blood system disease.
 XX PR 08-JUL-1998; 98JP-00192722.
 XX PR 25-MAR-1999; 99JP-00081549.
 OS XX (KIRIN) KIRIN AMGEN INC.
 Homo sapiens.
 PN PA
 JP08127539-A.
 XX PI Nomura H, Ueki Y;
 XX DR WPI; 2000-182173/16.
 XX PT Powder preparation for mucosal administration of polymeric drug, e.g.
 PT peptide, protein, antibody, vaccine or antigen.
 XX Disclosure; Page 39-40; 45pp; Japanese.
 XX CC This sequence represents a human granulocyte colony-stimulating factor (G-
 CSF) polypeptide. G-CSF is used in a powder preparation which is
 administered via the mucus membrane. The preparation comprises a
 polymeric medicine and a cationic polymer. The preparation is used for
 the mucosal administration of polymeric pharmaceuticals and has good
 absorption through the mucous membrane and improved bioavailability
 CC PS Sequence 174 AA;
 XX SQ Query Match 100.0%; Score 896; DB 3; Length 174;
 Best Local Similarity 100.0%; Pred. No. 3.8e-90;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 CC QY 1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKLICATYKLCHPEELVLLGHSLGIPWAP 60
 CC 1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKLICATYKLCHPEELVLLGHSLGIPWAP 60
 CC Db 61 LSSCPSQALQLLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQDVADEFTTIWQQ 120
 CC 61 LSSCPSQALQLLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQDVADEFTTIWQQ 120
 CC QY 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQDVADEFTTIWQQ 120
 CC Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQDVADEFTTIWQQ 120
 CC QY 121 MEELGMAPALQOPTQGAMPFAFASAFORRAGGVVLVASHLQSFLFLEVSYRLHLAQP 174
 CC Db 121 MEELGMAPALQOPTQGAMPFAFASAFORRAGGVVLVASHLQSFLFLEVSYRLHLAQP 174
 CC SQ Sequence 174 AA;
 CC Query Match 100.0%; Score 896; DB 2; Length 174;
 CC Best Local Similarity 100.0%; Pred. No. 3.8e-90;
 CC Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 CC DB ID AAB14850 standard; protein; 174 AA.
 CC QY 1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKLICATYKLCHPEELVLLGHSLGIPWAP 60
 CC 1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKLICATYKLCHPEELVLLGHSLGIPWAP 60
 CC DB ID AAB14850;
 CC QY 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQDVADEFTTIWQQ 120
 CC 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQDVADEFTTIWQQ 120
 CC DB DT 19-DEC-2000 (first entry)
 CC QY 121 MEELGMAPALQOPTQGAMPFAFASAFORRAGGVVLVASHLQSFLFLEVSYRLHLAQP 174
 CC 121 MEELGMAPALQOPTQGAMPFAFASAFORRAGGVVLVASHLQSFLFLEVSYRLHLAQP 174
 CC DB DE Human granulocyte colony stimulating factor #1.
 CC KW Human; granulocyte colony stimulating factor; G-CSF; neutropaenia;
 CC KW bone marrow suppression; infection.
 CC OS Homo sapiens.
 CC XX WO2000040728-A1.
 CC PD 13-JUL-2000.
 CC XX PP 06-JAN-2000; 2000WO-US000300.
 CC XX PR 06-JAN-1999; 99US-0115131P.
 CC XX PR 05-FEB-1999; 99US-0118831P.
 CC XX PA (XENC-) XENCOR INC.
 CC XX PI Dahiyat B, Luo P;
 CC XX DR WPI; 2000-465988/40.
 CC DR N-PSDB; AAA73324.
 CC XX PT A non-naturally occurring granulopoietic activity protein (GPA) for

PT treating granulocyte colony stimulating factor (G-CSF)-responsive disease
 PT comprises an amino acid sequence less than 95% identical to hG-CSF.
 XX Disclosure; Fig 1; 63pp; English.

CC The present sequence is the protein sequence for the human granulocyte
 CC colony stimulating factor (G-CSF). This protein is involved in the
 CC proliferation and differentiation of granulocytes in the blood. The
 CC sequence was used to create the proteins of the invention, which are
 CC designated granulopoietic activity (GPA) proteins. These can be used
 CC instead of G-CSF, which has a short half-life in the blood and is
 CC unstable in storage, in treatments for neutropaenia associated with
 CC cancer therapies, radiation accidents, bone marrow transplantation, bone
 CC marrow suppression conditions such as AIDS, myelodysplastic syndromes
 CC characterised by granulocyte functional abnormalities, and severe
 CC infections. They can also be used to enhance peripheral blood progenitor
 CC cell collection
 XX Sequence 174 AA;

Query Match 100.0%; Score 896; DB 3; Length 174;
 Best Local Similarity 100.0%; Pred. No. 3.8e-90;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 QY 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 Db 61 LSSCPSPQALQLAGCLSQLHSGFLYQGLLQALEGGISPELGPTLDTLQDVFATTIWWQQ 120
 QY 61 LSSCPSPQALQLAGCLSQLHSGFLYQGLLQALEGGISPELGPTLDTLQDVFATTIWWQQ 120
 Db 121 MEELGMAPALQPTQGAMPAPAFASAFQRAGGYLVASHLQSFLEVSYRVLRLAQP 174
 QY 121 MEELGMAPALQPTQGAMPAPAFASAFQRAGGYLVASHLQSFLEVSYRVLRLAQP 174
 Db 121 MEELGMAPALQPTQGAMPAPAFASAFQRAGGYLVASHLQSFLEVSYRVLRLAQP 174

RESULT 9

AY97016 standard; protein; 174 AA.

XX AAY97016;
 AC AAY97016;
 DT 31-OCT-2000 (first entry)
 DE Mature granulocyte colony stimulating factor.
 KW G-CSF; granulocyte colony stimulating factor; sustained-release;
 KW biocompatible polyol/oil suspension; anti-inflammatory.
 XX Homo sapiens.
 OS Homo sapiens.
 PN WO200038652-A1.
 PD 06-JUL-2000.
 XX 99WO-US030527.
 PF 20-DEC-1999;
 XX 98US-00221181.
 PR 23-DEC-1998;
 PR 23-NOV-1999;
 XX 99US-0048205.
 PA (AMGE-) AMGEN INC.
 XX Goldenberg MS, Shan D, Beekman AC;
 XX WPI; 2000-452289/39.
 DR WPI; 2001-616523/71.

XX Pharmaceutical composition for the sustained-release of a biologically active agent (BAA), such as granulocyte colony stimulating factor, comprises incorporating the BAA into a biocompatible polyol/oil suspension.
 XX Claim 7; Page 11; 38pp; English.

XX A pharmaceutical composition comprising a biologically active agent (BAA) incorporated into a biocompatible polyol/oil suspension which contains a thickener is new. The compositions are used for the sustained-release of a BAA such as an interferon consensus, EPO, granulocyte-colony stimulating factor, stem cell factor, leptin, tumor necrosis factor-binding protein, interleukin-1 receptor antagonist, brain derived neurotrophic factor, glial derived neurotrophic factor, neutrophic factor 3, osteoprotegerin, granulocyte macrophage colony stimulating factor, megakaryocyte derived growth factor, keratinocyte growth factor, thrombopoietin, or novel erythropoiesis stimulating protein (claimed).
 CC The release of a medicament can be controlled to provide longer periods of consistent release that previous methods of treatment do not achieve, such as repeated injections. Blood levels of the active ingredient can be controlled, providing an enhanced prophylactic, therapeutic, or diagnostic effect as well as greater safety, patient convenience and patient compliance. The compositions can lead to dose sparing and a lower cost of protein production. Bioavailability and protein protection, stability and potency are increased
 XX SQ Sequence 174 AA;

Query Match 100.0%; Score 896; DB 3; Length 174;
 Best Local Similarity 100.0%; Pred. No. 3.8e-90;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 QY 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 Db 61 LSSCPSPQALQLAGCLSQLHSGFLYQGLLQALEGGISPELGPTLDTLQDVFATTIWWQQ 120
 QY 61 LSSCPSPQALQLAGCLSQLHSGFLYQGLLQALEGGISPELGPTLDTLQDVFATTIWWQQ 120
 Db 61 MEELGMAPALQPTQGAMPAPAFASAFQRAGGYLVASHLQSFLEVSYRVLRLAQP 174
 QY 121 MEELGMAPALQPTQGAMPAPAFASAFQRAGGYLVASHLQSFLEVSYRVLRLAQP 174
 Db 121 MEELGMAPALQPTQGAMPAPAFASAFQRAGGYLVASHLQSFLEVSYRVLRLAQP 174

RESULT 10

XX AAE12153 standard; protein; 174 AA.
 ID AAE12153
 ID AAE12153
 XX AC AAE12153;
 XX DT 18-DEC-2001 (First entry)
 XX DE Human hG-CSF inserted into plasmid p19CSFm.
 XX KW Human; Granulocyte colony stimulating factor; hG-CSF; protease; Factor Xa; kanamycin resistance; endoxylanase signal peptide.
 XX OS Homo sapiens.
 XX PN WO200173081-A1.
 XX PD 04-OCT-2001.
 XX PF 31-MAR-2001; 2001WO-KR000549.
 XX PR 31-MAR-2000; 2000KR-00017052.
 XX PA (KOAD) KOREA ADV INST SCI & TECHNOLOGY.
 XX PI Lee S, Jeong K;
 XX DR WPI; 2001-616523/71.
 XX PT N-PSDB; AAD19771.
 PT Recombinant plasmid vector comprising an endoxylanase signal sequence, human Granulocyte colony stimulating factor gene and other components, when transformed into microorganism useful for preparing the colony
 PT stimulating factor.

XX PS Example 1; Fig 3; 50pp; English.

XX DR WPI: 2001-138357/14.

XX N-PSDB; AAF56684.

CC The invention relates to an Escherichia coli producing and secreting human granulocyte colony stimulating factor (hG-CSF), more specifically, to a recombinant plasmid constructed to express secretory hG-CSF in E. coli, an E. coli transformed with that plasmid to secrete hG-CSF, and a process for preparing hG-CSF using the transformed hG-CSF. The recombinant plasmid vector comprises of a kanamycin resistance gene, a promoter, an endoxylanase signal sequence, a nucleotide sequence coding for an oligopeptide consisting of 13 amino acids including 6 consecutive histidine residues and a hG-CSF. E.coli transformed with recombinant plasmid vector is useful for preparing hG-CSF. The method comprises culturing the microorganism to obtain a hG-CSF fusion protein and treating the fusion protein with a protease preferably Factor Xa, to obtain a hG-CSF, where the fusion protein is obtained from the culture by employing Ni-column. The present sequence is human hG-CSF inserted into plasmid p19CSFm

XX SQ Sequence 174 AA;

Query	Match	Score	DB	Length
QY	1 TPLGPASSLHQSEFLKCLQEVRKIQGDGAALQEKLICATYKLCHPEELVLLQHSLGIPWAP	100.0%	96	4
Db	1 TPLGPASSLHQSEFLKCLQEVRKIQGDGAALQEKLICATYKLCHPEELVLLQHSLGIPWAP	100.0%	90	4
QY	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLIQALEGISPELGPTLDTLQLDVADEFATTIQQ	100.0%	120	4
Db	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLIQALEGISPELGPTLDTLQLDVADEFATTIQQ	100.0%	120	4
QY	121 MEELGMAPALQPTQGAMPAFASAFQRRAGGVLYASHLQSFLEVSYRVLRLAQP	100.0%	174	4
Db	121 MEELGMAPALQPTQGAMPAFASAFQRRAGGVLYASHLQSFLEVSYRVLRLAQP	100.0%	174	4

XX SQ Sequence 174 AA;

Query	Match	Score	DB	Length
QY	1 TPLGPASSLHQSEFLKCLQEVRKIQGDGAALQEKLICATYKLCHPEELVLLQHSLGIPWAP	100.0%	96	4
Db	1 TPLGPASSLHQSEFLKCLQEVRKIQGDGAALQEKLICATYKLCHPEELVLLQHSLGIPWAP	100.0%	90	4
QY	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLIQALEGISPELGPTLDTLQLDVADEFATTIQQ	100.0%	120	4
Db	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLIQALEGISPELGPTLDTLQLDVADEFATTIQQ	100.0%	120	4
QY	121 MEELGMAPALQPTQGAMPAFASAFQRRAGGVLYASHLQSFLEVSYRVLRLAQP	100.0%	174	4
Db	121 MEELGMAPALQPTQGAMPAFASAFQRRAGGVLYASHLQSFLEVSYRVLRLAQP	100.0%	174	4

XX RESULT 11

ID AAB61930 standard; protein; 174 AA.

XX AC AAB61930;

XX DT 08-MAY-2001 (first entry)

DE Human granulocyte-colony stimulating factor (hG-CSF).

KW Granulocyte-colony stimulating factor; G-CSF; hematopoietic; AIDS; chemotherapy; immunodeficiency disease; anti-HIV; cytostatic; antibacterial; gene therapy.

OS Homo sapiens.

FH Key Location/Qualifiers

FT Misc-difference₁ /note= "can be replaced by Ser"

FT Misc-difference₂ /note= "can be replaced with met"

FT Misc-difference₃ /note= "can be replaced with Val"

FT Misc-difference₁₇ /note= "can be replaced with Ser, Thr, Ala or Gly"

XX PN WO200104329-A1.

XX PD 18-JAN-2001.

XX PA 07-JUL-2000; 2000WO-KR000733.

XX PR 08-JUL-1999; 99KR-00027418.

XX PA (HANMI) HANMI PHARM CO LTD.

XX PI Kwon SC, Jung SY, Bae SM, Lee GS;

XX DR WPI: 2001-451839/48.

XX N-PSDB; AAH22902.

PT Novel polypeptides exhibiting granulocyte-colony stimulating factor

PT activity and conjugates between the polypeptide and a non-polypeptide
PT moiety, useful for treating leukopenia, AIDS and bacterial or other
PT infections.

XX Example 1; Page 91-92; 94pp; English.

CC The invention provides a polypeptide (PP) conjugate (I) exhibiting
CC granulocyte-colony stimulating factor (G-CSF) activity, comprising PP
CC with an amino acid (aa) sequence that differs from aa sequence of human G
CC -CSF by at least one aa residue comprising an attachment group for a non-
CC PP group and having a non-PP group bound to attachment of PP, and the
CC polypeptide (II) portion of (I) exhibiting G-CSF activity. (I) and (II)
CC are useful for treating general hematopoietic disorders, including
CC disorders arising from radiation therapy or from chemotherapy, AIDS or
CC immunodeficiency diseases, leukopenia and bacterial or other infections.
CC (II) is useful for therapeutic, diagnostic and other purposes and in
CC particular finds use as intermediate products for preparation of (I). (I)
CC and (II) are used for preventing infection in cancer patients undergoing
CC radiation therapy, chemotherapy and bone marrow transplants, to
CC mobilize progenitor cells for collection in peripheral blood progenitor
CC cell transplants and to support treatment of patients with acute
CC myeloid leukemia. A nucleotide sequence encoding (II) is useful in gene
CC therapy applications. (I) has increased functional in vivo half-life,
CC increased serum half-life, reduced renal clearance, reduced receptor-
CC mediated clearance, reduced side effects, such as bone pain, reduced
CC immunogenicity and/or increased bioavailability. The present sequence
CC represents a mature hG-CSF with codon usage optimised for the encoding
CC DNA, for expression in E. coli. This is used in the construction of
CC synthetic genes encoding hG-CSF.
XX Sequence 174 AA;

Query Match 100.0%; Score 896; DB 4; Length 174;
Best Local Similarity 100.0%; Pred. No. 3.8e-90;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
SQ Disclosure; Page 23-24; 28pp; Japanese.

CC The invention relates to a stable powdered preparation for transmucosal administration comprising
CC a polymeric drug, cationic polymer and basic amino acid.
XX Stable powdered preparation for transmucosal administration comprises
PT polymeric drug, cationic polymer and basic amino acid.
XX Disclosure; Page 23-24; 28pp; Japanese.

CC The invention relates to a stable powdered preparation for transmucosal
CC administration (preferably nasally) comprising a polymeric form of drug
CC (preferably peptides), a cationic polymer and at least one basic amino
CC acid or its salt. The present sequence is that of human G-CSF polypeptide
XX Sequence 174 AA;

Query	Match	Score	DB	Length
QY	1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKULCATYKLCHPEELVLLGHSLGLIPWAP	100.0%	4	174
Db	1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKULCATYKLCHPEELVLLGHSLGLIPWAP	100.0%	4	174
QY	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWOQQ	120	0	174
Db	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWOQQ	120	0	174
QY	121 MEELGMAPALOPTQGAMPAPAFASAFAQRAGGVLYASHLQSLEVSYRVLRHLAQP	174	0	174
Db	121 MEELGMAPALOPTQGAMPAPAFASAFAQRAGGVLYASHLQSLEVSYRVLRHLAQP	174	0	174

RESULT 14
AAE11983
ID AAE11983 standard; protein; 174 AA.

XX AC

XX DT 18-DEC-2001 (first entry)

XX DE Human wild-type granulocyte colony stimulating factor (G-CSF).

XX KW Human; interferon-gamma; IFNG; interferon-alpha; FSH;

XX KW follicle stimulating hormone; granulocyte colony stimulating factor;

XX KW G-CSF; interleukin 10; IL-10; medicament; pulmonary administration;

XX KW circulatory administration.

XX OS Homo sapiens.

XX PN WO200168141-A2.

XX PD 20-SEP-2001.

XX PF 16-MAR-2001; 2001WO-DK000182.

XX PR 17-MAR-2000; 2000DK-0000447.

DE Human G-CSF polypeptide SEQ ID NO 2.

XX PR 20-MAR-2000; 2000US-0190844P.

KW PR 25-AUG-2000; 2000WO-DK000471.

XX PR 13-NOV-2000; 2000WO-DK000631.

PA PA (MAXY-) MAXYGEN APS.

PI Hansen CK;

XX DR WPI; 2001-616274/71.

XX PT Dispersions of particles for administration to the lung and circulatory

XX PT System by inhalation, e.g. from a nebulizer.

XX PS Claim 22; Page 138-139; 139pp; English.

XX CC The present invention relates to novel dispersions of a conjugate

comprising at least one non-polypeptide moiety covalently attached to a polypeptide variant, wherein the amino acid sequence of the polypeptide variant differs from that of the corresponding wild-type human polypeptide in that at least 1 residue comprising an attachment group for the non-polypeptide group has been introduced and/or removed. The wild-type human polypeptide is selected from the group consisting of interferon-gamma (IFNG), interferon-beta, interferon alpha, follicle stimulating hormone, (FSH), interleukin 10 (L-10) and granulocyte colony stimulating factor (G-CSF). The dispersion is used for the preparation of a medicament for pulmonary and/or circulatory administration. The present sequence is human wild type granulocyte colony stimulating factor (G-CSF)

SQ Sequence 174 AA;

Query Match	100.0%	Score 896;	DB 4;	Length 174;
Best Local Similarity	100.0%	Pred. No. 3.8e-90;	Gaps 0;	
Matches	174;	Conservative 0;	Mismatches 0;	Indels 0;
Qy	1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP	60		
Db	1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP	60		
Qy	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVAFTTIWQQ	120		
Db	61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVAFTTIWQQ	120		
Qy	121 MEEELGMAPALQPTQGAMPFAFASAQQRAGGVLYASHLQSFLEVSYRVLHLAQP	174		
Db	121 MEEELGMAPALQPTQGAMPFAFASAQQRAGGVLYASHLQSFLEVSYRVLHLAQP	174		

RESULT 15

AAU79877

ID AAU79877 standard; protein; 174 AA.

XX AC AAU79877;

XX DT 15-JUL-2002 (first entry)

DE Human granulocyte colony-stimulating factor (G-CSF).

XX Human; granulocyte colony-stimulating factor; G-CSF; vasoactive;
 XX pulmonary; immunosuppressive; cerebroprotective; nephroprotective;
 XX respiratory; cardiant; antiarteriosclerotic; ischaemic cerebral disorder;
 XX external wound; transplant rejection; ischaemic cerebrovascular disease;
 XX cerebral apoplexy; cerebral infarction; ischaemic kidney disease;
 XX ischaemic pulmonary disease; coronary occlusion; ischaemic limb disease;
 XX ischaemic heart disease; myocardial ischaemia; myocardial infarction;
 XX cardiac insufficiency; arteriosclerosis; kinésithérapie; pharmacotherapy;
 XX haemokinesis reconstruction; arteriosclerosis obliterans; gene therapy;
 XX intramuscular transplantation.

XX OS Homo sapiens.

XX PN WO200222163-A1.

XX PD 21-MAR-2002.

XX PF 13-SEP-2001; 2001WO-JP007946.

XX PR 13-SEP-2000; 2000JP-00277562.

XX PA (CHUS) CHUGAI SEIYAKU KK.

XX PI Miyai T, Tamura M;

XX DR 2002-371949/40.

XX Remedies for ischemic diseases comprise human granulocyte colony-
 PT stimulating factor.
 XX Disclosure; Page 4-5; 21pp; Japanese.
 XX PS

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: October 6, 2004, 16:02:01 ; Search time 3.2 Seconds
 (without alignments)
 280.716 Million cell updates/sec

Title: US-10-009-792C-19

Perfect score: 896 Sequence: 1 TPLGPASSLPQSFLLKCLEQ.....SHLQSFLFLEVSYRVLRLAQP 174

Scoring table: BL0SUM62 Gapop 10.0 , Gapext 0.5

Searched: 389414 seqs, 51625971 residues

Total number of hits satisfying chosen parameters: 389414

Minimum DB seq length: 0
 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
 Maximum Match 100%

Listing first 45 summaries

Database : Issued_Patents_AA:*

1: /cgn2_6/ptodata/2/iaa/5A_COMB.pep:*

2: /cgn2_6/ptodata/2/iaa/5B_COMB.pep:*

3: /cgn2_6/ptodata/2/iaa/6A_COMB.pep:*

4: /cgn2_6/ptodata/2/iaa/6B_COMB.pep:*

5: /cgn2_6/ptodata/2/iaa/PCTUS_COMB.pep:*

6: /cgn2_6/ptodata/2/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
1	896	100.0	174	1	US-08-225-224-5	Sequence 5, Appli
2	896	100.0	174	2	US-08-431-459A-31	Sequence 31, Appli
3	896	100.0	174	3	US-08-722-258-5	Sequence 5, Appli
4	896	100.0	174	3	US-09-221-181-1	Sequence 1, Appli
5	896	100.0	174	4	US-09-904-196B-1	Sequence 1, Appli
6	896	100.0	174	4	US-09-462-941-6	Sequence 6, Appli
7	896	100.0	174	4	US-09-479-313B-2	Sequence 2, Appli
8	896	100.0	174	4	US-09-760-008A-1	Sequence 1, Appli
9	896	100.0	174	5	PCT-US95-04468-5	Sequence 5, Appli
10	896	100.0	174	6	S194592-26	Patent No. 5194592
11	896	100.0	175	1	US-08-010-099-2	Sequence 2, Appli
12	896	100.0	175	1	US-08-167-721-1	Sequence 1, Appli
13	896	100.0	175	1	US-08-428-732-6	Sequence 6, Appli
14	896	100.0	175	1	US-08-448-716-2	Sequence 2, Appli
15	896	100.0	175	2	US-08-321-510-2	Sequence 2, Appli
16	896	100.0	175	2	US-08-570-943-1	Sequence 1, Appli
17	896	100.0	175	2	US-08-879-760-2	Sequence 2, Appli
18	896	100.0	175	3	US-08-505-187-4	Sequence 4, Appli
19	896	100.0	175	3	US-09-304-186-2	Sequence 2, Appli
20	896	100.0	175	4	US-09-230-733-1	Sequence 1, Appli
21	896	100.0	175	4	US-09-479-313B-15	Sequence 15, Appli
22	896	100.0	175	4	US-09-754-532-2	Sequence 2, Appli
23	896	100.0	175	5	PCT-US95-01729-2	Sequence 2, Appli
24	896	100.0	176	3	US-08-469-318-161	Sequence 161, App
25	896	100.0	176	3	US-08-468-609A-161	Sequence 161, App
26	896	100.0	176	4	US-08-446-872A-161	Sequence 161, App
27	896	100.0	176	4	US-08-762-227A-161	Sequence 161, App

28	896	100.0	204	3	PCT-US95-01185-161	Sequence 161, App
29	896	100.0	204	2	US-08-797-689-14	Sequence 14, App
30	896	100.0	204	1	US-09-984-186-14	Sequence 14, App
31	896	100.0	204	3	US-08-792-019B-10	Sequence 10, App
32	896	100.0	204	3	US-08-988-819-10	Sequence 10, App
33	896	100.0	204	3	US-09-016-534-10	Sequence 5, Appli
34	896	100.0	307	3	US-08-097-869-5	Sequence 121, App
35	896	100.0	307	3	US-08-469-318-121	Sequence 121, App
36	896	100.0	307	3	US-08-468-609A-134	Sequence 146, App
37	896	100.0	307	3	US-08-469-318-146	Sequence 147, App
38	896	100.0	307	3	US-08-468-609A-121	Sequence 121, App
39	896	100.0	307	3	US-08-468-609A-146	Sequence 134, App
40	896	100.0	307	3	US-08-468-609A-146	Sequence 146, App
41	896	100.0	307	3	US-08-468-609A-146	Sequence 146, App
42	896	100.0	307	3	US-08-468-609A-147	Sequence 147, App
43	896	100.0	307	4	US-08-446-872A-121	Sequence 121, App
44	896	100.0	307	4	US-08-446-872A-134	Sequence 134, App
45	896	100.0	307	4	US-08-446-872A-146	Sequence 146, App

ALIGNMENTS

RESULT 1	US-08-225-224-5	%	Sequen 5, Application US/08225224
/	/	/	Patent No. 5635599
/	/	/	GENERAL INFORMATION:
/	/	/	APPLICANT: PASTAN, Ira
/	/	/	ATTORNEY: KREITMAN, Robert J.
/	/	/	TITLE OF INVENTION: CIRCULARLY PERMUTATED LIGANDS AND
/	/	/	CIRCULARLY PERMUTED FUSION PROTEINS
/	/	/	NUMBER OF SEQUENCES: 57
/	/	/	CORRESPONDENCE ADDRESS:
/	/	/	ADDRESSEE: Townsend and Townsend Khourie and Crew
/	/	/	STREET: Steuart Street Tower, One Market Plaza
/	/	/	CITY: San Francisco
/	/	/	STATE: California
/	/	/	COUNTRY: US
/	/	/	ZIP: 94105-1493
/	/	/	COMPUTER READABLE FORM:
/	/	/	MEDIUM TYPE: Floppy disk
/	/	/	COMPUTER: IBM PC compatible
/	/	/	OPERATING SYSTEM: PC-DOS/MS-DOS
/	/	/	SOFTWARE: PatentIn Release #1.0, Version #1.25
/	/	/	CURRENT APPLICATION DATA:
/	/	/	APPLICATION NUMBER: US/08/225, 224
/	/	/	FILING DATE: 8-APR-1994
/	/	/	CLASSIFICATION: 530
/	/	/	ATTORNEY/AGENT INFORMATION:
/	/	/	NAME: Weber, Ellen L.
/	/	/	REGISTRATION NUMBER: 32, 762
/	/	/	REFERENCE/DOCKET NUMBER: 15280-193
/	/	/	TELECOMMUNICATION INFORMATION:
/	/	/	TELEPHONE: (415) 543-9600
/	/	/	TELEFAX: (415) 543-5043
/	/	/	INFORMATION FOR SEQ ID NO: 5:
/	/	/	SEQUENCE CHARACTERISTICS:
/	/	/	LENGTH: 174 amino acids
/	/	/	TYPE: amino acid
/	/	/	STRANDEDNESS: unknown
/	/	/	TOPOLOGY: unknown
/	/	/	MOLECULE TYPE: protein
/	/	/	FEATURE: NAME/KEY: Protein
/	/	/	LOCATION: 1:174
/	/	/	OTHER INFORMATION: /label= G-CSF
US-08-225-224-5	5	%	Query Match 100.0%; Best Local Similarity 100.0%; Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60

QY 61 LSSCPSQALQAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIQQ 120
 Db 61 LSSCPSQALQAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIQQ 120

QY 121 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYRVLRHLAQP 174
 Db 121 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYRVLRHLAQP 174

RESULT 2

US-08-431-459A-31

; Sequence 31, Application US/08431459A

; Patent No. 5840543

; GENERAL INFORMATION:

; APPLICANT: Hockney, Robert C.

; APPLICANT: Kara, Bhupendra V.

; TITLE OF INVENTION: FERMENTATION PROCESS

; NUMBER OF SEQUENCES: 35

; CURRENT APPLICATION DATA:

; ADDRESSSEE: PILLSBURY MADISON & SUTRO, L.L.P.

; STREET: 1100 New York Avenue, N.W.

; CITY: Washington

; STATE: DC

; COUNTRY: USA

; ZIP: 20005-3918

; COMPUTER READABLE FORM:

; MEDIUM TYPE: 1.44M diskette

; COMPUTER: IBM PC compatible

; OPERATING SYSTEM: PC-DOS/MS-DOS

; SOFTWARE: PatentIn Release #1.0, Version #1.25

; CURRENT APPLICATION DATA:

; APPLICATION NUMBER: US/08/431,459A

; FILING DATE: 01-MAY-1995

; CLASSIFICATION: 435

; PRIOR APPLICATION DATA:

; APPLICATION NUMBER: US 08/215,676

; FILING DATE: 22-MAR-1994

; PRIOR APPLICATION DATA:

; APPLICATION NUMBER: US 07/661,306

; FILING DATE: 27-FEB-1991

; PRIOR APPLICATION DATA:

; APPLICATION NUMBER: GB 9004390.2

; FILING DATE: 27-FEB-1990

; INFORMATION FOR SEQ ID NO: 31:

; SEQUENCE CHARACTERISTICS:

; LENGTH: 174 amino acids

; TYPE: amino acid

; TOPOLOGY: linear

; US-08-431-459A-31

Query Match 100.0%; Score 896; DB 3; Length 174;
 Best Local Similarity 100.0%; Pred. No. 4.3e-92; Indels 0; Gaps 0;
 Matches 174; Conservative 0; Mismatches 0; Delins 0; Gaps 0;

QY 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60

QY 61 LSSCPSQALQAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIQQ 120
 Db 61 LSSCPSQALQAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIQQ 120

QY 61 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYRVLRHLAQP 120
 Db 61 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYRVLRHLAQP 120

QY 121 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYRVLRHLAQP 174
 Db 121 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYRVLRHLAQP 174

RESULT 4

US-09-221-181-1
 ; Sequence 1, Application US/09221181
 ; Patent No. 6245740RESULT 3
 US-08-722-258-5

GENERAL INFORMATION:
 / APPLICANT: GOLDENBERG, MERRILL
 / APPLICANT: SHAN, DAXIAN
 / APPLICANT: BEERMAN, ALICE
 / TITLE OF INVENTION: POLYOL/OIL SUSPENSIONS FOR SUSTAINED RELEASE OF
 / FILE REFERENCE: A-576
 / CURRENT APPLICATION NUMBER: US/09/221,181
 / NUMBER OF SEQ ID NOS: 1
 / SOFTWARE: Patentin ver. 2.0
 / SEQ ID NO: 1
 / LENGTH: 174
 / TYPE: PRT
 / ORGANISM: granulocyte colony-stimulating factor
 US-09-221-181-1

Query Match 100.0%; Score 896; DB 3; Length 174;
 Best Local Similarity 100.0%; Pred. No. 4.3e-92;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TPLGPASSLPOSFLIKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPOSFLIKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

Qy 61 LSSCPSQALQLAGCLSQLHSGFLFYLQGLLQALEGISPELGPLDTLQLDVADFATTIWOQ 120
 Db 61 LSSCPSQALQLAGCLSQLHSGFLFYLQGLLQALEGISPELGPLDTLQLDVADFATTIWOQ 120

Qy 121 MEELGMAPALOPTQGAMPFAFASAFORRAGGYLVASHLQSFLEVSYRVLRLAQP 174
 Db 121 MEELGMAPALOPTQGAMPFAFASAFORRAGGYLVASHLQSFLEVSYRVLRLAQP 174

RESULT 5
 US-09-904-196B-1
 / Sequence 1, Application US/09904196B
 / Patent No. 6555660
 / GENERAL INFORMATION:
 / APPLICANT: NISSEN, TORBEN LAUSSGAARD
 / APPLICANT: ANDERSEN, KIM VILBOUR
 / APPLICANT: HANSEN, CHRISTIAN KARSTEN
 / APPLICANT: MIKKELSEN, JAN MOLLER
 / TITLE OF INVENTION: G-CSF CONJUGATES
 / FILE REFERENCE: 31-000700US
 / CURRENT APPLICATION NUMBER: US/09/904,196B
 / CURRENT FILING DATE: 2001-07-11
 / PRIOR APPLICATION NUMBER: US/09/760,008
 / PRIOR FILING DATE: 2001-05-11
 / PRIOR APPLICATION NUMBER: 60/176,376
 / PRIOR FILING DATE: 2000-01-14
 / PRIOR APPLICATION NUMBER: 60/189,506
 / PRIOR FILING DATE: 2000-03-15
 / PRIOR APPLICATION NUMBER: 60/215,644
 / PRIOR FILING DATE: 2000-06-30
 / PRIOR APPLICATION NUMBER: DK PA 2000 00024
 / PRIOR FILING DATE: 2000-01-10
 / PRIOR APPLICATION NUMBER: DK PA 2000 00341
 / PRIOR FILING DATE: 2000-03-02
 / PRIOR APPLICATION NUMBER: DK PA 2000 00943
 / PRIOR FILING DATE: 2000-06-16
 / NUMBER OF SEQ ID NOS: 15
 / SOFTWARE: Patentin Ver. 2.1
 / SEQ ID NO: 1
 / LENGTH: 174
 / TYPE: PRT
 / ORGANISM: Homo sapiens
 US-09-904-196B-1

Query Match 100.0%; Score 896; DB 4; Length 174;
 Best Local Similarity 100.0%; Pred. No. 4.3e-92;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

RESULT 6
 US-09-462-941-6
 / Sequence 6, Application US/09462941
 / Patent No. 6608183
 / GENERAL INFORMATION:
 / APPLICANT: Cox III, George N.
 / APPLICANT: Boulder Biotechnology, Inc.
 / TITLE OF INVENTION: Derivatives of Growth Hormone and Related Proteins
 / FILE REFERENCE: 4152-1-PUS
 / CURRENT APPLICATION NUMBER: US/09/462,941
 / CURRENT FILING DATE: 2000-01-14
 / PRIOR APPLICATION NUMBER: 60/052,516
 / PRIOR FILING DATE: 1997-07-14
 / NUMBER OF SEQ ID NOS: 41
 / SOFTWARE: Patentin Ver. 2.0
 / SEQ ID NO: 6
 / LENGTH: 174
 / TYPE: PRT
 / ORGANISM: Homo sapiens
 US-09-462-941-6

Query Match 100.0%; Score 896; DB 4; Length 174;
 Best Local Similarity 100.0%; Pred. No. 4.3e-92;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TPLGPASSLPOSFLIKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPOSFLIKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

Qy 61 LSSCPSQALQLAGCLSQLHSGFLFYLQGLLQALEGISPELGPLDTLQLDVADFATTIWOQ 120
 Db 61 LSSCPSQALQLAGCLSQLHSGFLFYLQGLLQALEGISPELGPLDTLQLDVADFATTIWOQ 120

Qy 121 MEELGMAPALOPTQGAMPFAFASAFORRAGGYLVASHLQSFLEVSYRVLRLAQP 174
 Db 121 MEELGMAPALOPTQGAMPFAFASAFORRAGGYLVASHLQSFLEVSYRVLRLAQP 174

RESULT 7
 US-09-479-313B-2
 / Sequence 2, Application US/09479313B
 / Patent No. 6627186
 / GENERAL INFORMATION:
 / APPLICANT: Dahiyat, Bassil I.
 / APPLICANT: Luo, Peizhi
 / TITLE OF INVENTION: NUCLEIC ACIDS AND PROTEIN VARIANTS OF hG-CSF WITH GRANULOPOETIC ACTIVITY
 / FILE REFERENCE: A-67614-2/RFT/RMS/RMK
 / CURRENT APPLICATION NUMBER: US/09/479,313B
 / CURRENT FILING DATE: 2000-01-06
 / PRIOR APPLICATION NUMBER: US 60/115,131
 / PRIOR FILING DATE: 1999-01-06
 / PRIOR APPLICATION NUMBER: US/09/479,313B
 / PRIOR FILING DATE: 1999-02-05
 / NUMBER OF SEQ ID NOS: 18
 / SOFTWARE: Patentin version 3.2
 / SEQ ID NO: 2
 / LENGTH: 174
 / TYPE: PRT
 / ORGANISM: Homo sapiens
 / ;

US-09-479-313B-2

Query Match 100.0%; Score 896; DB 4; Length 174;
Best Local Similarity 100.0%; Pred. No. 4.3e-92;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 TPLGPASSLPQSFLLKCLBQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
Db 1 TPLGPASSLPQSFLLKCLBQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

QY 61 LSSCPSQALQLAGLCSQHSGFLFQGLLQALEGISPELGPLTLDLQLDVADFATTIWWQQ 120
Db 61 LSSCPSQALQLAGLCSQHSGFLFQGLLQALEGISPELGPLTLDLQLDVADFATTIWWQQ 120

QY 121 MEELGMAPALQOPTQAMPAPASAFORRAGGVLYASHLQSFLEVSYRVLRHLAQP 174
Db 121 MEELGMAPALQOPTQAMPAPASAFORRAGGVLYASHLQSFLEVSYRVLRHLAQP 174

RESULT 8
US-09-760-008A-1

Sequence 1, Application US/09760008A
Patent No. 6646110
GENERAL INFORMATION:
APPLICANT: NISSEN, TORBEN LAUESGAARD
APPLICANT: ANDERSEN, KIM VILBOUR
APPLICANT: HANSEN, CHRISTIAN KARSTEN
APPLICANT: MIRKELSEN, JAN MOLLIER
TITLE OF INVENTION: G-CSF CONJUGATES
FILE REFERENCE: 31-000700US
CURRENT APPLICATION NUMBER: US/09/760,008A
CURRENT FILING DATE: 2001-05-11
PRIOR APPLICATION NUMBER: 60/176,376
PRIOR FILING DATE: 2000-01-14
PRIOR APPLICATION NUMBER: 60/189,506
PRIOR FILING DATE: 2000-03-15
PRIOR APPLICATION NUMBER: 60/215,644
PRIOR FILING DATE: 2000-06-30
PRIOR APPLICATION NUMBER: DK PA 2000 00024
PRIOR FILING DATE: 2000-01-10
PRIOR APPLICATION NUMBER: DK PA 2000 00341
PRIOR FILING DATE: 2000-03-02
PRIOR APPLICATION NUMBER: DK PA 2000 00943
PRIOR FILING DATE: 2000-06-16
NUMBER OF SEQ ID NOS: 15
SOFTWARE: Patentin Ver. 2.1
SEQ ID NO: 1
LENGTH: 174
TYPE: PRT
ORGANISM: Homo sapiens
US-09-760-008A-1

Query Match 100.0%; Score 896; DB 4; Length 174;
Best Local Similarity 100.0%; Pred. No. 4.3e-92;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 TPLGPASSLPQSFLLKCLBQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
Db 1 TPLGPASSLPQSFLLKCLBQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

QY 61 LSSCPSQALQLAGLCSQHSGFLFQGLLQALEGISPELGPLTLDLQLDVADFATTIWWQQ 120
Db 61 LSSCPSQALQLAGLCSQHSGFLFQGLLQALEGISPELGPLTLDLQLDVADFATTIWWQQ 120

QY 121 MEELGMAPALQOPTQAMPAPASAFORRAGGVLYASHLQSFLEVSYRVLRHLAQP 174
Db 121 MEELGMAPALQOPTQAMPAPASAFORRAGGVLYASHLQSFLEVSYRVLRHLAQP 174

RESULT 9
PCT-US95-04468-5
Sequence 5, Application PC/TUS9504468
GENERAL INFORMATION:

APPLICANT: CIRCULARLY PERMUTATED LIGANDS AND CIRCULARLY PERMUTED FUSION PROTEINS
TITLE OF INVENTION: CIRCULARLY PERMUTED LIGANDS AND CIRCULARLY PERMUTED FUSION PROTEINS
NUMBER OF SEQUENCES: 59
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: Patentin Release #1.0, Version #1.30
CURRENT APPLICATION DATA:
APPLICATION NUMBER: PCT/US95/04468
FILING DATE: 07-APR-1995
CLASSIFICATION:
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: US 08/225,224
FILING DATE: 08-APR-1994
ATTORNEY/AGENT INFORMATION:
NAME: Weber, Ellen L.
REGISTRATION NUMBER: 32,762
REFERENCE/DOCKET NUMBER: 15280-193-1PC
TELECOMMUNICATION INFORMATION:
TELEPHONE: (415) 543-9600
TELEFAX: (415) 543-5043
INFORMATION FOR SEQ ID NO: 5:
SEQUENCE CHARACTERISTICS:
LENGTH: 174 amino acids
TYPE: amino acid
STRANDEDNESS: unknown
TOPOLOGY: unknown
MOLECULE TYPE: protein
FEATURE:
NAME/KEY: Protein
LOCATION: 1..174
OTHER INFORMATION: /label= G-CSF
PCT-US95-04468-5

Query Match 100.0%; Score 896; DB 5; Length 174;
Best Local Similarity 100.0%; Pred. No. 4.3e-92;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 TPLGPASSLPQSFLLKCLBQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
Db 1 TPLGPASSLPQSFLLKCLBQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

QY 61 LSSCPSQALQLAGLCSQHSGFLFQGLLQALEGISPELGPLTLDLQLDVADFATTIWWQQ 120
Db 61 LSSCPSQALQLAGLCSQHSGFLFQGLLQALEGISPELGPLTLDLQLDVADFATTIWWQQ 120

QY 121 MEELGMAPALQOPTQAMPAPASAFORRAGGVLYASHLQSFLEVSYRVLRHLAQP 174
Db 121 MEELGMAPALQOPTQAMPAPASAFORRAGGVLYASHLQSFLEVSYRVLRHLAQP 174

RESULT 10
5194592-26
; Patent No. 5194592
; APPLICANT: YOSHIDA, HAJIME
; TITLE OF INVENTION: MONOCLONAL ANTIBODIES TO NOVEL POLYPEPTIDES DERIVATIVES OF HUMAN GRANULOCYTE COLONY STIMULATING FACTOR
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/07/318,527
; FILING DATE: 3-MAR-1989
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: 136,647
; FILING DATE: 22-DEC-1987
; SEQ ID NO: 26:
; LENGTH: 174
; 5194592-26

Query Match 100.0%; Score 896; DB 6; Length 174;
Best Local Similarity 100.0%; Pred. No. 4.3e-92;

	Matches	174 ;	Conservative	0 ;	Mismatches	0 ;	Indels	0 ;	Gaps	0 ;
Y	1	TPLGPASSLPOSFLIKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVILGHSLGIPWAP	60							
b	1	TPLGPASSLPOSFLIKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVILGHSLGIPWAP	60							
Y	61	LSSCPSQALQLAGGLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADEFATTIWOQQ	120							
b	61	LSSCPSQALQLAGGLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADEFATTIWOQQ	120							
Y	121	MEELGMAPALQOPTQGAMPFAFASAFOQRAGGVLVASHLQSFLEVSYRVLRLHLAQP	174							
b	121	MEELGMAPALQOPTQGAMPFAFASAFOQRAGGVLVASHLQSFLEVSYRVLRLHLAQP	174							

RESULT 11
MS-08-010-099-2
Sequence 2, Application US/08010099
Patent No. 5581476

GENERAL INFORMATION:

APPLICANT: Osslund, Timothy
TITLE OF INVENTION: G-CSF ANALOG COMPOSITIONS AND METHODS
NUMBER OF SEQUENCES: 110

CORRESPONDENCE ADDRESS:

ADDRESSEE: Amgen, Inc.

STREET: Amgen Center, 1840 DeHavilland Drive

CITY: Thousand Oaks

STATE: California

COUNTRY: USA

ZIP: 91320-1789

COMPUTER READABLE FORM:

EDIUM TYPE: Floppy disk

COMPUTER: IBM PC compatible

OPERATING SYSTEM: PC-DOS/MS-DOS

SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:

FILING DATE: CLASSIFICATION: 435
ATTORNEY/AGENT INFORMATION:
NAME: Pessin, Karol
REGISTRATION NUMBER: 34,899
TELECOMMUNICATION INFORMATION:
TELEPHONE: 805/499-5725
TELEFAX: 805/499-8011
INFORMATION FOR SEQ ID NO: 2:
SEQUENCE CHARACTERISTICS:
LENGTH: 175 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: Protein

Query	Match	Score	DB	Length
Best Local Similarity	100.0%	896	1	175;
Pred. No.	100.0%	4.4e-92;		
Matches	174; . Conservative	0;	Mismatches	0;
			Indels	0;
			Gaps	0;
Y	1 TPLGPASSLPQSFLIKCLEQVQRKIQGDGAALQEKLCAKYKLCHPEELVLGHSLGIIPWAP	60		
bb	2 TPLGPASSLPQSFLIKCLEQVQRKIQGDGAALQEKLCAKYKLCHPEELVLGHSLGIIPWAP	61		
Y	61 LSSCPSQALLQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWIQQ	120		
bb	62 LSSCPSQALLQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWIQQ	121		
Y	121 MEELGMAPALOPTQGAMPFAASFQRRAGGVILVASHLQSFLEVSYVRHLAQF	174		
bb	122 MEELGMAPALOPTQGAMPFAASFQRRAGGVILVASHLQSFLEVSYVRHLAQF	175		

RESULT 12
US-08-167-721-1
Sequence 1. Application US/08167721

```

; Patent No. 5597562
; GENERAL INFORMATION:
; APPLICANT: No. 5597562ura, Hideaki
; TITLE OF INVENTION: Oral Dosage Form of Biologically Active
; TITLE OF INVENTION: Proteins
; NUMBER OF SEQUENCES: 1
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Marshall, O'Toole, Gerstein, Murray &
; ADDRESS: Bicknell
; STREET: Two First National Plaza, 20 South Clark
; STREET: Street
; CITY: Chicago
; STATE: Illinois
; COUNTRY: USA
; ZIP: 60603
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DCS
; SOFTWARE: PatentIn Release #1.0, Version #1.25
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/167,721
; FILING DATE:
; CLASSIFICATION: 424
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: US/07/994,076
; FILING DATE:
; APPLICATION NUMBER: US/07/709,622
; FILING DATE:
; ATTORNEY/AGENT INFORMATION:
; NAME: Borun, Michael F.
; REGISTRATION NUMBER: 25447
; REFERENCE/DOCKET NUMBER: 11009/30403
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: (312) 346-5750
; TELEFAX: (312) 984-9740
; TELEX: 25-3856
; INFORMATION FOR SEQ ID NO: 1:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 175 amino acids
; TYPE: amino acid
; TOPOLOGY: linear
; MOLECULE TYPE: protein
; US-08-167-721-1

; Query Match          100.0%; Score 896; DB 1; Length 175;
; Best Local Similarity 100.0%; Pred. No. 4.4e-92;
; Matches 174; Conservative 0; Mismatches 0; Indels 0
; Qy      1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGH
; Db      2 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGH

; Qy      61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVAI
; Db      62 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVAI

; Qy      121 MEELGMAPALQOPTQGAMPFAFASAFQRAGGVLVASHLQSFILEVSYRVLRLH
; Db      122 MEELGMAPALQOPTQGAMPFAFASAFQRAGGVLVASHLQSFILEVSYRVLRLH

; RESULT 13
; US-08-428-732-6
; Sequence 6, Application US/08428732
; Patent No. 5606024
; GENERAL INFORMATION:
; APPLICANT: Boone, Thomas C.
; APPLICANT: Miller, Allan L.
; TITLE OF INVENTION: DNA Encoding Canine Granulocyte Colony
; TITLE OF INVENTION: Stimulating Factor (G-CSF)
; NUMBER OF SEQUENCES: 6

```

CORRESPONDENCE ADDRESS:
ADDRESSEE: Amgen Inc.
STREET: 1840 Dehavenland Drive
CITY: Thousand Oaks
STATE: California
COUNTRY: USA
ZIP: 91320-1789

COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/428,732
FILING DATE:
CLASSIFICATION:
ATTORNEY/AGENT INFORMATION:
NAME: Crandall, Craig A.
REFERENCE/DOCKET NUMBER: A-173-C2
INFORMATION FOR SEQ ID NO: 6:
SEQUENCE CHARACTERISTICS:
LENGTH: 175 amino acids
TYPE: amino acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: protein

-08-428-732-6

Query Match 100.0% ; Score 896 ; DB 1 ; Length 175 ;
 Best Local Similarity 100.0% ; Pred. No. 4.4e-92 ;
 Matches 174 ; Conservative 0 ; Mismatches 0 ; Indels 0

1	TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKKICATYKLCHPEELVLLGH
2	TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKKICATYKLCHPEELVLLGH
61	LSSCPSQALQLAGGLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVA
62	LSSCPSQALQLAGGLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVA
121	MEELGMAPALQPTQGAMPAAFASAFAFORRAGGVLVASHLQSFILEVSYRVLRLA
122	MEELGMAPALOPTOGAMPAAFASAFAFORRAGGVLVASHLQSFILEVSYRVLRLA

SULT 14
-08-448-716-2
Sequence 2, Application US/08448716
Patent No. 5790421

GENERAL INFORMATION:

APPLICANT: Osslund, Timothy D.
TITLE OF INVENTION: G-CSF ANALOG COMPOSITIONS AND METHODS
NUMBER OF SEQUENCES: 110
CORRESPONDENCE ADDRESS:
ADDRESSEE: Amgen Inc.
STREET: Amgen Center, 1840 DeHavilland Drive
CITY: Thousand Oaks
STATE: California
COUNTRY: United States of America
ZIP: 91320-1789

COMPUTER READABLE FORM:

EDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.25

APPLICATION NUMBER: US/08/
FILING DATE: 24-MAY-1995
CLASSIFICATION: 530
ATTORNEY/AGENT INFORMATION:
NAME: Pessin, Karol
REGISTRATION NUMBER: 34,89
TELECOMMUNICATION INFORMATION

```

TELEPHONE: 805/499-5725
TELEFAX: 805/499-8011
INFORMATION FOR SEQ ID NO: 2:
SEQUENCE CHARACTERISTICS:
LENGTH: 175 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: protein
US-08-448-716-2

Query Match          100.0%;  Score 896;  DB 1;  Length 175;
Best Local Similarity 100.0%;  Pred. No. 4.4e-92;
Matches 174;  Conservative 0;  Mismatches 0;  Indels 0;  Gaps 0;

Qy      1 TPLGPASSLPOSFLKKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
Db      2 TPLGPASSLPOSFLKKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 61

Qy      61 LSSCPSQALQLAGGLSQLHSGGLFLYQGGLQALEGISPELGPTELQLDVADFTTIWQQ 120
Db      62 LSSCPSQALQLAGGLSQLHSGGLFLYQGGLQALEGISPELGPTELQLDVADFTTIWQQ 121

Qy      121 MEELGMAPALQOPTQGAMPAFASAFQRAGGVLVASHLQSFLEVSYRVLRLAQP 174
Db      122 MEELGMAPALQOPTQGAMPAFASAFQRAGGVLVASHLQSFLEVSYRVLRLAQP 175

RESULT 15
US-08-321-510-2
; Sequence 2, Application US/08321510
; Patent No. 5824784
; GENERAL INFORMATION:
;   APPLICANT: Kinstler, Olaf B.
;   APPLICANT: Gabriel, Nancy E.
;   APPLICANT: Farrar, Christine E.
;   APPLICANT: DePrince, Randolph B.
; TITLE OF INVENTION: N-Terminally Modified Protein
; NUMBER OF SEQUENCES: 2
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Amgen Inc.
; STREET: 1840 Dehavilland Drive
; CITY: Thousand Oaks
; STATE: California
; COUNTRY: USA
; ZIP: 91320
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: PatentIn Release #1.0, Version #1.25
; CURRENT APPLICATION DATA:
;   APPLICATION NUMBER: US/08/321,510
;   FILING DATE:
;   CLASSIFICATION: 424
; ATTORNEY/AGENT INFORMATION:
;   NAME: Pessin, Karol M.
;   REFERENCE/DOCKET NUMBER: A-286
; INFORMATION FOR SEQ ID NO: 2:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 175 amino acids
; TYPE: amino acid
; STRANDEDNESS: Single
; TOPOLOGY: linear
; MOLECULE TYPE: protein
; US-08-321-510-2

Query Match          100.0%;  Score 896;  DB 2;  Length 175;
Best Local Similarity 100.0%;  Pred. No. 4.4e-92;
Matches 174;  Conservative 0;  Mismatches 0;  Indels 0;  Gaps 0;
Qy      1 TPLGPASSLPOSFLKKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

```

Db 2 TPLGPASSLPOSFLIKCLEQVRKIQGDDAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 61
Qy 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGGISPELGPTLDTLQLDVADFATTIWWQQ 120
Db 62 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGGISPELGPTLDTLQLDVADFATTIWWQQ 121
Qy 121 MEEIGMAPALQPTQGAMPFAFASAFQRAGGVLYASHLQSFLEVSYRVLRLAQP 174
Db 122 MEEIGMAPALQPTQGAMPFAFASAFQRAGGVLYASHLQSFLEVSYRVLRLAQP 175

Search completed: October 6, 2004, 16:07:55
Job time : 34 secs

GenCore version 5.1.6
(c) 1993 - 2004 Compugen Ltd.
Copyright

DM protein - protein search, using SW model

Title: US-10-009-792C-19
Perfect score: 896
Sequence: 1 TPLGPASSLPQSFLLKCLEQ. SHLQSFLFLEVSYRVLRLHLAQP 174
Scoring table: BLOSUM62

gap ± 0.0 , gap ± 0.3

לעומת הדרישות הנדרש בתקופה המודרנית, מושג זה מתקיים רק במקרה של מילוי כל אחד מהdosimetry requirements.

בכמזה מילויים נודע לנו מהו סארכזטן פולימריזציה:

maximum DB seq length: 2000000000

post-processing: Minimum Match 0%

Lesson 2000

Listing first 45 summaries

Published Applications AA: * Database:

1: /egmz_8_g̚ccata/z_puwpaa/USU_NEW
2: /cgnz_6_ntodata/z_puwpaa/BCT_NEW

3 : 3 :
4 : 4 : /cgn2_6/ptodata/2/nubpaa/US06_PU

2: /cgn2_6/pcodata/z/pwbpaa/030/NE
3: /cgn2_6/pcodata/z/pwbpaa/PCTWS_P

8 : /cgn2_6/poddata/2/pubdata/usos_pun
9 : /cgn2_6/poddata/2/poddata/usos_pun

10: /cgn2/6/ptodata/2/pubpaa/US09B

12: /cgn2-6/ptodata/2/pubpaa/us09 N

14: /cgn2_6/ptodata/2/pubpaa/US10B

16: /cgn2_6/ptodata/2/pubpaas/us10_NN

18: /cgn2_6/ptodata/2/pubpaa/us60_p

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

COMMUNES

Result No.	Score	Query Match	Length	DB ID	Description
1	896	100.0	174	9	US-09-760-008A-1
2	896	100.0	174	9	US-09-950-473-2
3	896	100.0	174	9	US-09-921-114-1
4	896	100.0	174	10	US-09-950-123-2
5	896	100.0	174	12	US-10-411-037-2
6	896	100.0	174	12	US-10-411-026-2
7	896	100.0	174	12	US-10-467-396-1
8	896	100.0	174	12	US-10-436-784-1
9	896	100.0	174	13	US-10-016-403-1
10	896	100.0	174	13	US-10-003-496-1
11	896	100.0	174	14	US-10-192-294-1
12	896	100.0	174	14	US-10-009-792A-19
13	896	100.0	174	14	US-10-318-966-1
14	896	100.0	174	14	US-10-400-377-6
15	896	100.0	174	14	US-10-400-377-6

卷之三

RESULT 1
US-09-760-008A-1
; Sequence 1, Application US/09760008A
; Patent No. US2002000483A1
GENERAL INFORMATION:
; APPLICANT: NISSEN, TORBEN LAUESGAARD
; APPLICANT: ANDERSEN, KIM VILBOUR
; APPLICANT: HANSEN, CHRISTIAN KARSTEN
; APPLICANT: MIKKELSEN, JAN MOLLER
TITLE OF INVENTION: G-CSF CONJUGATES
FILE REFERENCE: 31-000700US
CURRENT APPLICATION NUMBER: US/09/760,008A
CURRENT FILING DATE: 2001-05-11
PRIOR APPLICATION NUMBER: 60/176,376
PRIOR FILING DATE: 2000-01-14
PRIOR APPLICATION NUMBER: 60/189,506
PRIOR FILING DATE: 2000-03-15
PRIOR APPLICATION NUMBER: 60/215,644
PRIOR FILING DATE: 2000-06-30
PRIOR APPLICATION NUMBER: DK PA 2000 00024
PRIOR FILING DATE: 2000-01-10
PRIOR APPLICATION NUMBER: DK PA 2000 00341
PRIOR FILING DATE: 2000-03-02
PRIOR APPLICATION NUMBER: DK PA 2000 00943
NUMBER OF SEQ ID NOS: 15
SOFTWARE: PatentIn Ver. 2.1
SEQ ID NO 1
LENGTH: 174
TYPE: PRT
ORGANISM: Homo sapiens
US-09-760-008A-1

Query Match 100.0%; Score 896;
Best Local Similarity 100.0%; Pred. No.
Matches 174; Conservative 0;
MisMatch 0;

卷之三

RESULT 3
US-09-921-114-1
; Sequence 1, Application US/09921114
; Patent No. US20020177688A1
; GENERAL INFORMATION:
; APPLICANT: ISHIKAWA ET AL
; TITLE OF INVENTION: CHEMICALLY MODIFIED G-CSF
; FILE REFERENCE: 11009/3/6193A
; CURRENT APPLICATION NUMBER: US/09/921,114
; CURRENT FILING DATE: 2001-08-02
; PRIOR APPLICATION NUMBER: US 09/518, 896
; PRIOR FILING DATE: 2000-03-06
; PRIOR APPLICATION NUMBER: US 08/957, 719
; PRIOR FILING DATE: 1997-10-27
; PRIOR APPLICATION NUMBER: US 07/983, 620
; PRIOR FILING DATE: 1992-11-30
; NUMBER OF SEQ ID NOS: 2
; SOFTWARE: Patentin version 3.1
; SEQ ID NO 1
; LENGTH: 174
; TYPE: PRT
; ORGANISM: Homo sapiens
; US-09-921-114-1

Query Match 100.0%; Score 896; DB 9; Length 174;
Best Local Similarity 100.0%; Pred. No. 2.3e-85;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLQCATYKLCHPEELVLLGHSLGIPWAP 60
Qy 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Qy 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174
Db 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174

RESULT 2
US-09-950-473-2
; Sequence 2, Application US/09950473
; Patent No. US20020151488A1
; GENERAL INFORMATION:
; APPLICANT: Lauffenburger, Douglas
; TITLE OF INVENTION: G-CSF Analog Compositions and Methods
; FILE REFERENCE: 01017/37732
; CURRENT APPLICATION NUMBER: US/09/950, 473
; CURRENT FILING DATE: 2001-09-10
; NUMBER OF SEQ ID NOS: 2
; SOFTWARE: Patentin version 3.0
; SEQ ID NO 2
; LENGTH: 174
; TYPE: PRT
; ORGANISM: Homo sapiens
; US-09-950-473-2

Query Match 100.0%; Score 896; DB 10; Length 174;
Best Local Similarity 100.0%; Pred. No. 2.3e-85;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLQCATYKLCHPEELVLLGHSLGIPWAP 60
Qy 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Qy 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174
Db 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174

RESULT 4
US-09-950-123-2
; Sequence 2, Application US/09950123
; Publication No. US20030166527A1
; GENERAL INFORMATION:
; APPLICANT: Casim, Casim
; APPLICANT: Lauffenburger, Douglas
; APPLICANT: Tidor, Bruce
; TITLE OF INVENTION: G-CSF Analog Compositions and Methods
; FILE REFERENCE: 01017/37377
; CURRENT APPLICATION NUMBER: US/09/950, 123
; CURRENT FILING DATE: 2001-09-10
; NUMBER OF SEQ ID NOS: 8
; SOFTWARE: Patentin version 3.0
; SEQ ID NO 2
; LENGTH: 174
; TYPE: PRT
; ORGANISM: Homo sapiens
; US-09-950-123-2

Query Match 100.0%; Score 896; DB 10; Length 174;
Best Local Similarity 100.0%; Pred. No. 2.3e-85;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLQCATYKLCHPEELVLLGHSLGIPWAP 60
Qy 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Qy 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174
Db 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174

RESULT 5
US-10-411-037-2
; Sequence 2, Application US/10411037
; Publication No. US20040043446A1
; GENERAL INFORMATION:
; APPLICANT: Neose Technologies, Inc.
; APPLICANT: DeFrees, Shawn
; APPLICANT: Zopf, David
; APPLICANT: Bayer, Robert
; APPLICANT: Hakes, David
; APPLICANT: Chen, Xi
; APPLICANT: Bowe, Caryn
; TITLE OF INVENTION: ALPHA GALACTOSIDASE A: REMODELING AND GLYCOCOCONJUGATION OF ALPHA
; FILE REFERENCE: 040853-01-5082
; CURRENT APPLICATION NUMBER: US/10/411, 037
; CURRENT FILING DATE: 2003-04-09
; PRIOR APPLICATION NUMBER: US 60/328, 523
; PRIOR FILING DATE: 2001-10-10
; PRIOR APPLICATION NUMBER: US 60/344, 692

Query Match 100.0%; Score 896; DB 9; Length 174;

Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLQCATYKLCHPEELVLLGHSLGIPWAP 60
Qy 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIWOQ 120
Qy 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174
Db 121 MEELGMAPALQOPTQGAMPAFASAFORRAGGVLVASHLQSFILEVSYRVLRHLAQOP 174

PRIOR FILING DATE: 2001-10-19
 PRIOR APPLICATION NUMBER: US 60/387,292
 PRIOR FILING DATE: 2002-06-07
 PRIOR APPLICATION NUMBER: US 60/391,777
 PRIOR FILING DATE: 2002-06-25
 PRIOR APPLICATION NUMBER: US 60/396,594
 PRIOR FILING DATE: 2002-07-17
 PRIOR APPLICATION NUMBER: US 60/404,249
 PRIOR FILING DATE: 2002-08-16
 PRIOR APPLICATION NUMBER: US 60/407,527
 PRIOR FILING DATE: 2002-08-28
 NUMBER OF SEQ ID NOS: 75
 SOFTWARE: PatentIn version 3.2
 SEQ ID NO 2
 LENGTH: 174
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-10-411-037-2

Query Match 100.0%; Score 896; DB 12; Length 174;
 Best Local Similarity 100.0%; Pred. No. 2.3e-85;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPOSFLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Qy 61 LSSCPSQALQLAGCLSQLHSGFLFYGGLQALEGISPELGPLDTLQLDVADFATTIWOQ 120
 Db 61 LSSCPSQALQLAGCLSQLHSGFLFYGGLQALEGISPELGPLDTLQLDVADFATTIWOQ 120
 Qy 121 MEELGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYVRVLHLAQP 174
 Db 121 MEELGMAPALOPTQGAMPFAFASAFORRAGGVLVASHLQSFLEVSYVRVLHLAQP 174

RESULT 7

US-10-467-396-1

; Sequence 1, Application US/10467396
 ; Publication No. US20040062749A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Carr, Francis J.
 ; APPLICANT: Carter, Graham
 ; APPLICANT: Jones, Tim
 ; APPLICANT: Williams, Stephen
 ; TITLE OF INVENTION: MODIFIED GRANULOCYTE COLONY STIMULATING
 ; FACTOR (G-CSF) WITH REDUCED IMMUNOGENICITY
 ; FILE REFERENCE: MBR-113
 ; CURRENT APPLICATION NUMBER: US/10/467,396
 ; CURRENT FILING DATE: 2003-08-05
 ; PRIOR APPLICATION NUMBER: EP 01102617.6
 ; PRIOR FILING DATE: 2001-02-06
 ; PRIOR APPLICATION NUMBER: EP 01103954.2
 ; PRIOR FILING DATE: 2001-02-19
 ; PRIOR APPLICATION NUMBER: PCT/EP/02/01171
 ; PRIOR FILING DATE: 2002-02-05
 ; NUMBER OF SEQ ID NOS: 52
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 1
 ; LENGTH: 174
 ; TYPE: PRT
 ; ORGANISM: Homo Sapien
 US-10-467-396-1

TITLE OF INVENTION: PROTEIN REMODELING METHODS AND PROTEINS/PEPTIDES PRODUCED BY THE

FILE REFERENCE: 040853-01-503
 CURRENT APPLICATION NUMBER: US/10/411,026
 CURRENT FILING DATE: 2003-04-09
 PRIOR APPLICATION NUMBER: US 60/328,523
 PRIOR FILING DATE: 2001-10-10
 PRIOR APPLICATION NUMBER: US 60/344,692
 PRIOR FILING DATE: 2001-10-19
 PRIOR APPLICATION NUMBER: US 60/387,292
 PRIOR FILING DATE: 2002-06-07
 PRIOR APPLICATION NUMBER: US 60/404,249
 PRIOR FILING DATE: 2002-08-16
 PRIOR APPLICATION NUMBER: US 60/391,777
 NUMBER OF SEQ ID NOS: 75
 SOFTWARE: PatentIn version 3.2
 SEQ ID NO 2
 LENGTH: 174
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-10-411-026-2

RESULT 8

US-10-436-784-1

; Sequence 1, Application US/10436784
 ; Publication No. US20030204057A1
 ; GENERAL INFORMATION:
 ; APPLICANT: ISHIKAWA ET AL
 ; TITLE OF INVENTION: CHEMICALLY-MODIFIED G-CSF
 ; FILE REFERENCE: 11009/36193A
 ; CURRENT APPLICATION NUMBER: US/10/436,784
 ; CURRENT FILING DATE: 2003-05-12

PRIOR APPLICATION NUMBER: US 09/518,896
 PRIOR FILING DATE: 2000-03-06
 PRIOR APPLICATION NUMBER: US 08/957,719
 PRIOR FILING DATE: 1997-10-27
 PRIOR APPLICATION NUMBER: US 07/983,620
 PRIOR FILING DATE: 1992-11-30
 NUMBER OF SEQ ID NOS: 2
 SOFTWARE: PatentIn version 3.1
 SEQ ID NO 1
 LENGTH: 174
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-10-436-784-1

Query Match 100.0%; Score 896; DB 13; Length 174;
 Best Local Similarity 100.0%; Pred. No. 2.3e-85;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

QY 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIQQ 120
 Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIQQ 120

QY 121 MEELGMAPALQOPTQGAMPAPAFASAFAQRAGGVLVASHLQSFILESYVRVLHLAQP 174
 Db 121 MEELGMAPALQOPTQGAMPAPAFASAFAQRAGGVLVASHLQSFILESYVRVLHLAQP 174

QY 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIQQ 120
 Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIQQ 120

QY 121 MEELGMAPALQOPTQGAMPAPAFASAFAQRAGGVLVASHLQSFILESYVRVLHLAQP 174
 Db 121 MEELGMAPALQOPTQGAMPAPAFASAFAQRAGGVLVASHLQSFILESYVRVLHLAQP 174

RESULT 9
 US-10-016-403-1
 Sequence 1, Application US/10016403
 Publication No. US20020107505A1
 GENERAL INFORMATION:
 APPLICANT: Holladay, Leslie A.
 TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
 NUMBER OF SEQUENCES: 10
 CORRESPONDENCE ADDRESS:
 STREET: 25 West Main Street, Stroud, Willink, Thompson & Howard
 CITY: Madison
 STATE: WI
 COUNTRY: USA
 ZIP: 53701-2236
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/10/016,403
 FILING DATE: 10-Dec-2001
 CLASSIFICATION: <Unknown>
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/466,610
 FILING DATE: 1995-JUN-06
 ATTORNEY/AGENT INFORMATION:
 NAME: Frenchick, Grady J.
 REGISTRATION NUMBER: 29,018
 REFERENCE/DOCKET NUMBER: 8734,28
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 608-257-2281
 TELEFAX: 608-257-7643
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 174 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 FEATURE: NAME/KEY: Peptide

RESULT 11
 US-10-192-294-1
 Sequence 1, Application US/10192294
 Publication No. US20030118612A1
 GENERAL INFORMATION:
 APPLICANT: NISSEN, Torben Lauesgaard
 TITLE OF INVENTION: G-CSF Conjugates
 FILE REFERENCE: 0258us310
 CURRENT APPLICATION NUMBER: US/10/192,294
 CURRENT FILING DATE: 2002-07-10
 PRIOR APPLICATION NUMBER: US/09/904,196
 PRIOR FILING DATE: 2001-07-11

Query Match 100.0%; Score 896; DB 13; Length 174;
 Best Local Similarity 100.0%; Pred. No. 2.3e-85;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

QY 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIQQ 120
 Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLQLDVADEFATTIQQ 120

QY 121 MEELGMAPALQOPTQGAMPAPAFASAFAQRAGGVLVASHLQSFILESYVRVLHLAQP 174
 Db 121 MEELGMAPALQOPTQGAMPAPAFASAFAQRAGGVLVASHLQSFILESYVRVLHLAQP 174

Publication No. US20030158375A1
; GENERAL INFORMATION:
; APPLICANT: NISSEN, TORBEN LAUESGAARD
; APPLICANT: ANDERSEN, KIM VILBOUR
; APPLICANT: HANSEN, CHRISTIAN KARSTEN
; APPLICANT: MIKKELSEN, JAN MOLLER
; APPLICANT: SCHAMBYE, HANS THALSGARD
; TITLE OF INVENTION: G-CSF POLYPEPTIDES AND CONJUGATES
; FILE REFERENCE: 0208us620
; CURRENT APPLICATION NUMBER: US/10/318,966
; CURRENT FILING DATE: 2002-12-13
; PRIOR APPLICATION NUMBER: 09/904,196
; PRIOR FILING DATE: 2001-07-11
; PRIOR APPLICATION NUMBER: 09/760,008
; PRIOR FILING DATE: 2001-01-10
; PRIOR APPLICATION NUMBER: 60/176,376
; PRIOR FILING DATE: 2000-01-14
; PRIOR APPLICATION NUMBER: 60/189,506
; PRIOR FILING DATE: 2000-03-15
; PRIOR APPLICATION NUMBER: 60/215,644
; PRIOR FILING DATE: 2000-06-30
; PRIOR APPLICATION NUMBER: DK PA 2000 00024
; PRIOR FILING DATE: 2000-01-10
; PRIOR APPLICATION NUMBER: 60/215,644
; PRIOR FILING DATE: 2000-03-02
; PRIOR APPLICATION NUMBER: DK PA 2000 00943
; PRIOR FILING DATE: 2000-06-16
; NUMBER OF SEQ ID NOS: 15
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
; LENGTH: 174
; TYPE: PRT
; ORGANISM: Homo sapiens
US-10-192-294-1

Query Match 100.0%; Score 896; DB 14; Length 174;
Best Local Similarity 100.0%; Pred. No. 2.3e-85;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
Db 1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

Qy 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADFATTIWOQ 120
Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADFATTIWOQ 120

Qy 121 MEELGMAPALQPTQGAMPAPAFASAFQRRAGGVLVASHLQSFILEVSYRVLRIHQ 174
Db 121 MEELGMAPALQPTQGAMPAPAFASAFQRRAGGVLVASHLQSFILEVSYRVLRIHQ 174

RESULT 12
US-10-009-792A-19
; Sequence 19, Application US/10009792A
; Publication No. US20030153049A1
; GENERAL INFORMATION:
; APPLICANT: LEE, Sang-Yup
; APPLICANT: JEONG, Ki-Jun
; TITLE OF INVENTION: ESCHERICHIA COLI STRAIN SECRETING HUMAN
; TITLE OF INVENTION: GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)
; FILE REFERENCE: HYLEE60.001APC
; CURRENT APPLICATION NUMBER: US/10/009,792A
; CURRENT FILING DATE: 2002-10-29
; PRIOR APPLICATION NUMBER: PCT/KR01/00549
; PRIOR FILING DATE: 2001-03-31
; PRIOR APPLICATION NUMBER: KR 10-2000-0017052
; PRIOR FILING DATE: 2000-03-31
; NUMBER OF SEQ ID NOS: 27
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 19
; LENGTH: 174
; TYPE: PRT
; ORGANISM: Homo sapiens
US-10-009-792A-19

Query Match 100.0%; Score 896; DB 14; Length 174;
Best Local Similarity 100.0%; Pred. No. 2.3e-85;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
Db 1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60

Qy 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADFATTIWOQ 120
Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDLQLDVADFATTIWOQ 120

RESULT 14
US-10-400-377-6
; Sequence 6, Application US/10400377
; Publication No. US20030162949A1
; GENERAL INFORMATION:
; APPLICANT: COX III, George N
; APPLICANT: Bolder Biotechnology, Inc.
; TITLE OF INVENTION: Derivatives of Growth Hormone and Related Proteins
; FILE REFERENCE: 4152-1-PUS
; CURRENT APPLICATION NUMBER: US/10/400,377
; CURRENT FILING DATE: 2003-03-26
; PRIOR APPLICATION NUMBER: US/09/462,941
; PRIOR FILING DATE: 2000-01-14
; PRIOR APPLICATION NUMBER: 60/052,516
; PRIOR FILING DATE: 1997-07-14
; NUMBER OF SEQ ID NOS: 41
; SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 6
; LENGTH: 174
; TYPE: PRT
; ORGANISM: Homo sapiens
US-10-318-966-1
; Sequence 1, Application US/10318966

US-10-400-377-6

```

Query Match      100.0%; Score 896; DB 14; Length 174;
Best Local Similarity 100.0%; Pred. No. 2.3e-85;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
QY      1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVTLGHSLGIPWAP 60
Db      1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVTLGHSLGIPWAP 60
QY      61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWIQQ 120
Db      61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWIQQ 120
QY      121 MEEIGMAPALQPTQGAMPAFASAFOARRGGVLVASHLQSFLEVSYRVLRHLAQP 174
Db      121 MEEIGMAPALQPTQGAMPAFASAFOARRGGVLVASHLQSFLEVSYRVLRHLAQP 174

```

RESULT 15

```

US-10-400-708-6
; Sequence 6, Application US/10400708
; Publication No. US20030166865A1
; GENERAL INFORMATION:
; APPLICANT: COX III, George N
; APPLICANT: Bolder Biotechnology, Inc.
; TITLE OF INVENTION: Derivatives of Growth Hormone and Related Proteins
; FILE REFERENCE: 4152-1-PUS
; CURRENT APPLICATION NUMBER: US/10/400,708
; CURRENT FILING DATE: 2003-03-26
; PRIOR APPLICATION NUMBER: US/09/462,941
; PRIOR FILING DATE: 2000-01-14
; PRIOR APPLICATION NUMBER: 60/052,516
; PRIOR FILING DATE: 1997-07-14
; NUMBER OF SEQ ID NOS: 41
; SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 6
; LENGTH: 174
; TYPE: PRT
; ORGANISM: Homo sapiens
US-10-400-708-6

```

Query Match 100.0%; Score 896; DB 14; Length 174;
Best Local Similarity 100.0%; Pred. No. 2.3e-85;
Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
QY 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVTLGHSLGIPWAP 60
Db 1 TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVTLGHSLGIPWAP 60
QY 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWIQQ 120
Db 61 LSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWIQQ 120
QY 121 MEEIGMAPALQPTQGAMPAFASAFOARRGGVLVASHLQSFLEVSYRVLRHLAQP 174
Db 121 MEEIGMAPALQPTQGAMPAFASAFOARRGGVLVASHLQSFLEVSYRVLRHLAQP 174

Search completed: October 6, 2004, 16:18:30

Job time : 128 secs

Query Match 100.0%; Score 896; DB 1; Length 204;
 Best Local Similarity 100.0%; Pred. No. 7.8e-78;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 TPLGPASSLPQSFLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 31 TPLGPASSLPQSFLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 90

Qy 61 LSSCPSOALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPQLDQLQADFATTIWOQ 120
 Db 91 LSSCPSOALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPQLDQLQADFATTIWOQ 150

Qy 121 MEELGMAPALQOPTQGAMPASFASAFORRAGGVLYASHLQSLEVSYRLRHLAQP 174
 Db 151 MEELGMAPALQOPTQGAMPASFASAFORRAGGVLYASHLQSLEVSYRLRHLAQP 204

RESULT 2
 A24573 granulocyte colony-stimulating factor precursor variant splice form CHU-2 - human
 N;Alternate names: colony-stimulating factor 3; G-CSF
 C;Species: Homo sapiens (man)
 C;Date: 30-Jun-1988 #sequence_revision 30-Jun-1988 #text_change 16-Jul-1999
 C;Accession: A24573
 R;Nagata, S.; Tsuchiya, M.; Asano, S.; Kaziro, Y.; Yamazaki, T.; Yamamoto, O.; Hirata, Y;
 Nature 319, 415-418, 1986
 A;Title: Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor
 A;Reference number: A24573; MUID:86118679; PMID:3484805

A;Molecule type: mRNA
 A;Residues: 1-207 <NAG>
 A;Cross-references: EMBL:X03438; NID:g31689; PIDN:CAA27168.1; PMID:g31690
 C;Comment: This variant splice form is not expressed in three other cell lines and may
 C;Genetics:
 A;Gene: GDB:CSF3
 A;Cross-references: GDB:119083; OMIM:138970
 A;Map position: 17q11.2-17q12
 A;Introns: 14/1; 68/3; 104/3; 153/3
 C;Superfamily: interleukin-6
 C;Keywords: cytokine; glycoprotein; growth factor; monomer
 F;1-30/Domain: signal sequence #status predicted <SIG>
 F;31-207/Product: Granulocyte colony-stimulating factor variant splice form CHU-2 #status
 F;69-75,97-107/Disulfide bonds: #status predicted

Query Match 98.7%; Score 884.5; DB 2; Length 207;
 Best Local Similarity 98.3%; Pred. No. 9.9e-77;
 Matches 174; Conservative 0; Mismatches 0; Indels 3; Gaps 1;

Qy 1 TPLGPASSLPQSFLKCLEQVRKIQGDGAALQEKL---CATYKLCHPEELVLLGHSLGIP 57
 Db 31 TPLGPASSLPQSFLKCLEQVRKIQGDGAALQEKLVECATYKLCHPEELVLLGHSLGIP 90

Qy 58 WAPLSSCPSPS0ALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPQLDQLQADFATTI 117
 Db 91 WAPLSSCPSPS0ALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPQLDQLQADFATTI 150

Qy 118 WQMEELGMAPALQOPTQGAMPASFASAFORRAGGVLYASHLQSLEVSYRLRHLAQP 174
 Db 151 WQMEELGMAPALQOPTQGAMPASFASAFORRAGGVLYASHLQSLEVSYRLRHLAQP 207

RESULT 3
 T09255 granulocyte colony-stimulating factor precursor - cat (fragment)
 C;Species: Felis silvestris catus (domestic cat)
 C;Date: 11-Jun-1999 #sequence_revision 11-Jun-1999 #text_change 20-Jun-2000
 R;Dunham, S.P.; Onions, D.E.
 submitted to the EMBL Data Library, September 1996
 A;Description: Cloning, sequence and expression of feline granulocyte colony stimulating factor precursor - cat
 A;Reference number: Z16630
 A;Accession: T09255
 A;Status: preliminary; translated from GB/EMBL/DDBJ

Qy 1 TPLGPASSLPQSFLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 21 TPLGPASSLPQSFLKCLEQVRKIQADGTALQERLCAAAHKLCPEELVLLGHALGIPQAP 80

Qy 61 LSSCPSOALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPQLDQLQADFATTIWOQ 120
 Db 81 LSSCPSOALQLTGCLRQLHSGLFLYQGLLQALAGISPELAPTDLMLQDITDFAINIWQQ 140

Qy 121 MEELGMAPALQOPTQGAMPASFASAFORRAGGVLYASHLQSLEVSYRLRHLAQP 174
 Db 141 MEDVGMAPAVPPTQGTMPTFTSAFQRAGGTIVASNLQSFLEVAYRAIRHFTKP 194

RESULT 4
 T10268 granulocyte colony-stimulating factor - sheep (fragment)
 C;Species: Ovis orientalis aries, Ovis ammon aries (domestic sheep)
 C;Date: 16-Jul-1999 #sequence_revision 16-Jul-1999 #text_change 21-Jul-2000
 C;Accession: T10268
 R;O'Brien, P.M.; Seow, H.F.; Rothel, J.S.; Wood, P.R.
 DNA Seq. 4, 339-342, 1994
 A;Title: Cloning and sequencing of an ovine granulocyte colony-stimulating factor cDNA.
 A;Reference number: Z17009; MUID:95102116; PMID:7528579
 A;Accession: T10268
 A;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Molecule type: mRNA
 A;Cross-references: EMBL:L07939; NID:g310381; PIDN:AAA68006.1; PMID:g310382
 C;Genetics:
 A;Gene: CSF
 C;Function:
 A;Description: stimulates the differentiation and proliferation of hematopoietic progeni
 C;Superfamily: interleukin-6
 C;Keywords: cytokine; growth factor; macrophage

Query Match 82.4%; Score 738; DB 2; Length 174;
 Best Local Similarity 82.2%; Pred. No. 6.9e-63;
 Matches 143; Conservative 10; Mismatches 21; Indels 0; Gaps 0;

Qy 1 TPLGPASSLPQSFLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPQSFLKCLEQVRKIQADGAEELQERLCAAAHKLCPEELVLLGHSLGIPQAP 60

Qy 61 LSSCPSOALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPQLDQLQADFATTIWOQ 120
 Db 61 LSSCPSOALQLTSCLDQHGGLFLYQGLLQALAGISPELAPTDLQLDVTDFATNIWLQ 120

Qy 121 MEELGMAPALQOPTQGAMPASFASAFORRAGGVLYASHLQSLEVSYRLRHLAQP 174
 Db 121 MEDVGAVAVPQPTQGTMPTFTSAFQRAGGTIVASNLQSFLEVAYRAIRHFTKP 194

RESULT 5
 A26496 granulocyte colony-stimulating factor precursor - mouse
 N;Alternate names: G-CSF
 C;Species: Mus musculus (house mouse)
 C;Date: 05-Oct-1988 #sequence_revision 05-Oct-1988 #text_change 16-Jul-1999
 C;Accession: A29536; A26496; S02493

R; Tsuchiya, M.; Kaziro, Y.; Nagata, S.
 Eur. J. Biochem. 165, 7-12, 1987
 A; Title: The chromosomal gene structure for murine granulocyte colony-stimulating factor
 A; Reference number: A29536; MUID:87190474; PMID:3494605
 A; Accession: A29536
 A; Molecule type: DNA
 A; Residues: 1-208 <TSU>
 A; Cross-references: GB: X05402; NID: g51059; PIDN: CAA28986.1; PID: g51060
 R; Tsuchiya, M.; Asano, S.; Kaziro, Y.; Nagata, S.
 Proc. Natl. Acad. Sci. U.S.A. 83, 7633-7637, 1986
 A; Title: Isolation and characterization of the cDNA for murine granulocyte colony-stimulating factor gene
 A; Reference number: A26496; MUID:87017003; PMID:3489940
 A; Accession: A26496
 A; Molecule type: mRNA
 A; Residues: 1-208 <TS2>
 A; Cross-references: GB: M13926; NID: g193451; PIDN: AAA37672.1; PID: g309248
 R; Simpson, R.J.; Nice, E.C.; Nicola, N.A.
 Biol. Chem. Hoppe-Seyler 368, 1327-1331, 1987
 A; Title: Structural studies on the murine granulocyte colony-stimulating factor.
 A; Reference number: S02493; MUID: 88106998; PMID:3501294
 A; Accession: S02493
 A; Status: preliminary
 A; Molecule type: protein
 A; Residues: 31-34, 'X', 36-43, 48-51, 'X', 53-57, 'X', 60-71, 159-164, 'X', 166-176, 183-198, 'X', 200
 C; Genetics:
 A; Introns: 14/1; 71/3; 107/3; 156/3
 C; Superfamily: interleukin-6
 C; Keywords: cytokine; growth factor; macrophage; monomer

Query Match 3 LGPASSSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAPLS 62
 Best Local Similarity 75.9%; Pred. No. 1.4e-53;
 Matches 129; Conservative 9; Mismatches 32; Indels 0; Gaps 0;

Db 39 LPPSPLPLPRSFLLKSLQEVVKIQASGSVILLEQLCATYKLCHPEELVLLGHSLGIPKASLS 98

Qy 63 SCPSQALQLAGCLSQLHSGFLFQYGLLQALEGISPELGPITLEQDVADEFATTIWOOME 122
 Db 99 GCSSQALQQTQCLSQLHSGCLCYGLLQALSQISPALAPTDLQLQDVAFNFATTIWOOME 158

Qy 123 ELGMAPALQOPTQGAMPFAFASAFORRAGGVLVASHLQSLEFVSYRVLRHLA 172
 Db 159 NLGVAPTVQPTQSAMPAFTSAFQRAGGVLAISYLGFFLETARLALHHLA 208

RESULT 6
 JC5043
 granulocyte colony-stimulating factor precursor - rat
 C; Species: Rattus norvegicus (Norway rat)
 C; Date: 21-Jan-1997 #sequence_revision 21-Jan-1997 #text_change 16-Jul-1999
 C; Accession: JC5043
 R; Han, S.W.; Ramesh, N.; Osborne, W.R.A.
 Gene 175, 101-104, 1996
 A; Title: Cloning and expression of the cDNA encoding rat granulocyte colony-stimulating factor gene
 A; Reference number: JC5043; MUID: 97074656; PMID: 8917083
 A; Accession: JC5043
 A; Molecule type: mRNA
 A; Residues: 1-214 <HAN>
 A; Cross-references: GB: U37101; NID: g1680658; PIDN: AAC52915.1; PID: g1680659
 A; Experimental source: skin fibroblasts
 C; Comment: This receptor acts on precursor hematopoietic cells to control the production of granulocytes.
 C; Superfamily: interleukin-6
 F; 1-21/Domain: signal sequence #status predicted <SIG>
 F; 22-214/Product: granulocyte colony-stimulating factor #status predicted <MAT>

Query Match 3 LGPASSSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAPLS 62
 Best Local Similarity 73.8%; Pred. No. 6.9e-53;
 Matches 127; Conservative 10; Mismatches 35; Indels 0; Gaps 0;

Qy 30 LPPSPLPLPRSFLLKSLQEVVKIQARNTTEELQLCATYKLCHPEELVLFQGSGFFILANFQRFLETAYRALRHLAR 200

RESULT 7
 A42247
 myelomonocytic growth factor precursor - chicken
 N; Alternative names: colony-stimulating factor CMGF
 C; Species: Gallus gallus (chicken)
 C; Date: 16-Feb-1994 #sequence_revision 18-Nov-1994 #text_change 16-Jul-1999
 C; Accession: A42247; S03633
 R; Sterneck, E.; Blattner, C.; Graf, T.; Leutz, A.
 Mol. Cell. Biol. 12, 1728-1735, 1992
 A; Title: Structure of the chicken myelomonocytic growth factor gene and specific activation
 A; Reference number: A42247; MUID: 92195319; PMID: 1549124
 A; Accession: A42247
 A; Status: preliminary
 A; Molecule type: DNA
 A; Residues: 1-201 <STE>
 A; Note: sequence extracted from NCBI backbone (NCBIN: 89832; NCBIPI: 89836)
 R; Leutz, A.; Damm, K.; Sterneck, E.; Ness, S.; Frank, R.; Gausepohl, H.; Pa
 EMBO J. 8, 175-181, 1989
 A; Title: Molecular cloning of the chicken myelomonocytic growth factor (cmgf) reveals r
 A; Reference number: S03633; MUID: 89231616; PMID: 2785450
 A; Accession: S03633
 A; Molecule type: mRNA
 A; Residues: 1-201 <LEU>
 A; Cross-references: EMBL: X14477; PIDN: CAA32639.1; PID: g63597
 C; Superfamily: interleukin-6
 C; Keywords: Glycoprotein
 F; 1-23/Domain: signal sequence #status predicted <SIG>
 F; 24-201/Product: myelomonocytic growth factor #status predicted <MAT>
 F; 123,137/Binding site: carbohydrate (Asn) (covalent) #status predicted
 Query Match 33.9%; Score 304; DB 2; Length 201;
 Best Local Similarity 40.6%; Pred. No. 1.6e-21;
 Matches 67; Conservative 28; Mismatches 68; Indels 2; Gaps 1;

Qy 11 QSPFLKKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAPLS 70
 Db 36 QLFUHKNLEFRKIRGDVAALQRAVCDFQOLCTEEELQLVQPDPHLVQAPLDOCKKRGFQ 95

Qy 71 LAGCLSQLHSGFLFQGLLQALEGISPELGPITLEQDVADEFATTIWOOME 130
 Db 96 AEVCFTQIRAGLHAYDLSLGAVRLLPNHTTLVETLQLDAANLSSNIQQQMEDLGLDTVT 155

Qy 131 QPTQ--GAMPFAFASAFORRAGGVLVASHLQSLEFVSYRVLRHLAQ 173
 Db 156 LPAEQRSPPTESGFQQQVGFFILANFQRFLETAYRALRHLAR 200

RESULT 8
 A46621
 prointerleukin 6 - pig
 C; Species: Sus scrofa domestica (domestic pig)
 C; Date: 21-Feb-1997 #sequence_revision 21-Feb-1997 #text_change 16-Jul-1999
 C; Accession: I46621
 R; Richards, C.; Saklatva, J.
 Cytokine 3, 269-276, 1991
 A; Title: Molecular Cloning and Sequence of Porcine Interleukin 6 cDNA and Expression of
 A; Reference number: I46621; MUID: 91338547; PMID: 1873476
 A; Status: preliminary
 A; Molecule type: mRNA
 A; Residues: 1-212 <RIC>
 A; Cross-references: GB: M86722; NID: g164624; PIDN: AAC37333.1; PID: g164625
 C; Genetics:

This Page Blank (uspto)

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: October 6, 2004, 15:51:18 ; Search time 23 Seconds
 (without alignments)
 393.922 Million cell updates/sec

Title: US-10-009-792C-19
 Perfect score: 896
 Sequence: 1 TPLGPASSLPQSFLLKCLEQ. SHLQSFLFLEVSYRVLRLHQAQP 174

Scoring table: BLCSUM62
 Gapop 10.0 , Gapext 0.5

Searched: 141681 seqs, 52070155 residues

Total number of hits satisfying chosen parameters: 141681

Minimum DB seq length: 0
 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : SwissProt_42:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
1	884.5	98.7	207	1	CSF3_HUMAN	P09919	homo sapien
2	744	83.0	194	1	CSF3_FELCA	O02708	felis silve
3	738	82.4	174	1	CSF3_SHEEP	Q28746	ovis aries
4	734	81.9	175	1	CSF3_CANFA	P35834	canis famili
5	727	81.1	195	1	CSF3_BOVIN	P35833	bos taurus
6	702	78.3	195	1	CSF3_PIG	O02837	sus scrofa
7	641	71.5	208	1	CSF3_MOUSE	P09920	mus musculus
8	304	33.9	201	1	MGF_CHICK	P13854	gallus gallu
9	106.5	11.9	212	1	IL6_PIG	P26893	sus scrofa
10	101	11.3	205	1	IL6_ORCOR	Q28747	orcinus orc
11	100	11.2	208	1	IL6_HORSE	Q95181	equus cabal
12	95	10.6	208	1	IL6_FELCA	P41683	felis silve
13	89.5	10.0	2175	1	HMCU_DROME	P10180	drosophila
14	86	9.6	208	1	IL6_BOVIN	P26892	bos taurus
15	84.5	9.4	209	1	IL6_CAPII	Q28819	phoca vitul
16	84	9.4	208	1	IL6_DROME	P29455	capra hircu
17	84	9.4	208	1	IL6_SHEEP	P29455	ovis aries
18	80.5	9.0	406	1	SYT2_AERPE	Q9YFY3	aeropyrum p
19	79.5	8.9	207	1	IL6_CANFA	P41323	canis famili
20	78.5	8.8	300	1	GGPP_MOUSE	Q9WTT0	m geranylge
21	78	8.7	316	1	KHSE_PSEAE	P29364	pseudomonas
22	77	8.6	247	1	RECO_NEIGO	Q9ZHY2	neisseria g
23	76.5	8.5	195	1	CNTF_CHICK	Q02011	gallus galli
24	76.5	8.5	294	1	GGPP_BOVIN	P56966	b geranylge
25	76.5	8.5	383	1	ARGE_SHIFL	P59600	shigella fl
26	76.5	8.5	506	1	ER11_BRANA	065727	brassica na
27	76	8.5	1704	1	ABC3_HUMAN	Q99758	homo sapien
28	75.5	8.4	156	1	KAMC_SACHI	P25919	saccharopol
29	75.5	8.4	3027	1	POLG_PYEV1	Q05057	parsnip yel
30	75	8.4	199	1	IL11_HUMAN	P20809	homo sapien
31	75	8.4	330	1	OXF2_HUMAN	Q8nb61	homo sapien
32	74.5	8.3	212	1	IL6_HUMAN	P05231	homo sapien
33	74	8.3	367	1	CD55_HUMAN	Q13319	homo sapien

ALIGNMENTS

34	74	8.3	2504	1	FAS_HUMAN
35	73.5	8.2	383	1	ARGE_ECOLI
36	73.5	8.2	737	1	RECG_MYCTU
37	73	8.1	204	1	CTF2_MOUSE
38	73	8.1	836	1	VG26_BPML5
39	72.5	8.1	203	1	P59257 vibrio vuln
40	72.5	8.1	383	1	ARGE_ECOL6
41	72.5	8.1	383	1	ARGE_ECOL6
42	72	8.0	1399	1	Z291_HUMAN
43	71.5	8.0	300	1	GGPP_HUMAN
44	71.5	8.0	518	1	ER12_BRANA
45	71.5	8.0	836	1	GCSE_HUMAN

RESULT 1

CSF3_HUMAN	STANDARD;	PRT;	207 AA.
ID	CSF3_HUMAN		
AC	P09919;		
DT	01-MAR-1989	(Rel. 10, Created)	
DT	01-MAR-1989	(Rel. 10, Last sequence update)	
DT	10-OCT-2003	(Rel. 42, Last annotation update)	
DE	Granulocyte colony-stimulating factor precursor (G-CSF) (Pluripotient)		
DB	(Filgrastim) (Lenograstim).		
GN	CSF3.		
OS	Homo sapiens (Human)		
OC	Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.		
OX	NCBI_TaxID=9606;		
[1]			
RP	SEQUENCE FROM N.A.		
RX	MEDLINE=86118679; PubMed=3484805;		
RA	Nagata S., Tsuchiya M., Asano S., Kaziro Y., Yamamoto T., Yamamoto O., Hirata Y., Kubota N., Oheda M., Nomura H., Ono M.;		
RA	"Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor.";		
RT	Nature 319:415-418(1986).		
RL	[2]		
RN	SEQUENCE FROM N.A.		
RX	MEDLINE=86220137; PubMed=2423327;		
RA	Nagata S., Tsuchiya M., Asano S., Yamamoto O., Hirata Y., Kubota N., Oheda M., Nomura H., Yamazaki T.;		
RA	"The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor.";		
RT	EMBO J. 5:575-581(1986). [3]		
RN	SEQUENCE FROM N.A.		
RX	MEDLINE=87196936; PubMed=3494801;		
RA	Devlin J.J., Devlin P.E., Myambo K., Lilly M.B., Rado T.A., Warren M.K.;		
RA	"Expression of granulocyte colony-stimulating factor by human cell lines.";		
RT	J. Leukoc. Biol. 41:302-306(1987).		
RL	[4]		
RN	SEQUENCE FROM N.A., AND VARIANTS MET-157 AND THR-174.		
RA	Rieder M.J., Carrington D.P., Chung M.-W., Lee K.L., Poel C.L., Yi Q., Nickerson D.A.;		
RA	"Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells.";		
RL	(JUN-2001) to the EMBL/GenBank/DDJB databases.		
RN	[5]		
RP	SEQUENCE OF 19-207 FROM N.A.		
RX	MEDLINE=86151684; PubMed=2420009;		
RA	Souza L.M., Boone T.C., Gabrilove J., Lai P.H., Zsebo K.M., Murdock D.C., Chazin V.R., Bruszevski J., Lu H., Chen K.K., Barendt J., Blatzer E., Moore M.A.S., Mertelsmann R., Welte K.;		
RA	"Recombinant human granulocyte colony-stimulating factor: effects on Science 232:61-66(1986). [6]		
RN	CARBOHYDRATE-LINKAGE SITE.		
RX	MEDLINE=93293942; PubMed=7685769;		
RA	Clogston C.L., Hu S., Boone T.C., Lu H.S.;		

"Glycosidase digestion, electrophoresis and chromatographic analysis of recombinant human granulocyte colony-stimulating factor glycoforms produced in Chinese hamster ovary cells.";
J. Chromatogr. A 637:55-62(1993).

[7] STRUCTURE BY NMR.
RP MEDLINE=93106200; PubMed=1281794;
RX Zink T.; Ross A.; Ambrosius D.; Rudolph R.; Holak T.A.;
RA Hill C.P.; Osslund T.D.; Eisenberg D.;
RT "Secondary structure of human granulocyte colony-stimulating factor determined from NMR spectroscopy. Loop mobility in a four-helix-bundle protein";
RL FEBS Lett. 314:435-439 (1992).
RN [8] STRUCTURE BY NMR.
RX MEDLINE=94304859; PubMed=7518249;
RA Zink T.; Ross A.; Luers K.; Cieslar C.; Rudolph R.; Holak T.A.;
RT "Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy. Loop mobility in a four-helix-bundle protein";
RT Biochemistry 33:8453-8463 (1994).
RN [9] RP X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS).
RX MEDLINE=93281718; PubMed=7685117;
RA Hill C.P.; Osslund T.D.; Eisenberg D.;
RT "The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors";
RL Proc. Natl. Acad. Sci. U.S.A. 90:5167-5171(1993).
CC -- FUNCTION: GRANULOCYTE/MACROPHAGE COLONY-STIMULATING FACTORS ARE CYTOKINES THAT ACT IN HEMATOPOIESIS BY CONTROLLING THE PRODUCTION, DIFFERENTIATION, AND FUNCTION OF 2 RELATED WHITE CELL POPULATIONS OF THE BLOOD, THE GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS CSF INDUCES GRANULOCYTES.
CC -- SUBUNIT: Monomer.
CC -- SUBCELLULAR LOCATION: Secreted.
CC -- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=Long; Sequence=Displayed;
CC IsoID=P09919-1; Sequence=Displayed;
CC Name=Short;
CC IsoID=P09919-2; Sequence=VSP_002673;
CC -- PTM: O-GLYCAN CONSISTS OF GAL-GALNAC DISACCHARIDE WHICH CAN BE MODIFIED WITH UP TO TWO SIALIC ACID RESIDUES (DONE IN RECOMBINANTLY EXPRESSED G-CSF FROM CHO CELLS).
CC -- PHARMACEUTICAL: Available under the names Neupogen or Granulokine (Amgen/Roche) and Granocyte (Rhone-Poulenc). Used to treat neutropenia (a disorder characterized by an extremely low number of neutrophils in blood).
CC -- SIMILARITY: Belongs to the IL-6 superfamily.
CC -- CAUTION: REF.4 MISQUOTES THE GENE NAME AS "CSF1".
CC -- DATABASE: NAME=Neupogen/Granulokine;
CC NOTE=Clinical information on Neupogen/Granulokine;
WWW="http://www.neupogen.com/".

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/>).

DR EMBL; X03438; CAA27168.1; -.
DR EMBL; M13008; AAA03056.1; -.
DR EMBL; X03656; CAA27291.1; -.
DR EMBL; X03655; CAA27290.1; -.
DR EMBL; AF388025; AAK62469.1; -.
DR EMBL; M17706; AAA35882.1; -.
DR PIR; A24573; A24573.
DR PDB; 1RHG; 31-JAN-94.
DR PDB; 1GNC; 31-JUL-94.
DR PDB; 1CD9; 08-MAR-00.
DR PDB; 1PGR; 08-MAR-00.
DR Genew; HGNC:2438; CSF3.

RESULT 2
CSF3_FBLCA STANDARD; PRT; 194 AA.
ID CSF3_FBLCA STANDARD; PRT; 194 AA.
AC 002708;
DT 30-MAY-2000 (Rel. 39, Created)
DT 30-MAY-2000 (Rel. 39, Last sequence update)
DT 10-OCT-2003 (Rel. 42, Last annotation update)
DE Granulocyte colony-stimulating factor precursor (G-CSF) (Fragment).
GN CSF3.
OS Felis silvestris catus (Cat).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Carnivora; Fissipedia; Felidae; Felis.
OX NCBI_TaxID=9685;
RN SEQUENCE FROM N.A.
RP STRAIN=European shorthair; TISSUE=Lung;
RC MEDLINE=21389237; PubMed=11497496;
RX Durham S.P., Onions D.E.;
RA

"Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor."

RT Cytokine 14:347-351 (2001).
 RT MACROPHAGE COLONY-STIMULATING FACTORS ARE
 CC CYTOKINES THAT ACT IN HEMATOPOIESIS BY CONTROLLING THE PRODUCTION,
 CC DIFFERENTIATION, AND FUNCTION OF 2 RELATED WHITE CELL POPULATIONS
 CC OF THE BLOOD, THE GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS
 CC CSF INDUCES GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS
 CC SUBUNIT: Monomer.
 CC SUBCELLULAR LOCATION: Secreted.

CC PTM: O-glycosylated (By similarity).
 CC SIMILARITY: Belongs to the IL-6 superfamily.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

DR EMBL; Y08558; CAA69853_1; -. DR PIR; T09255; T09255.
 DR HSSP; P35834; 1BGE.
 DR InterPro; IPR003629; GCSF MGF.
 DR InterPro; IPR003573; IL6_MGF_GCSF.
 DR Pfam; PF00489; IL6_1.
 DR PRINTS; PR00433; IL6GCSFMGF.
 DR ProDom; PD008388; GCSF MGF; 1.
 DR SMART; SM00126; IL6; 1.
 DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 DR Cytokine; Growth factor; Glycoprotein; Signal.
 KW NON TER
 FT SIGNAL <1 20 POTENTIAL.
 FT CHAIN 21 194 GRANULOCYTE COLONY-STIMULATING FACTOR.
 FT DISULFID 56 62 BY SIMILARITY.
 FT DISULFID 84 94 BY SIMILARITY.
 FT CARBOHYD 153 153 O-LINKED (GALNAC. . .) (BY SIMILARITY).
 SQ SEQUENCE 194 AA; 21154 MW; F72B7AB3DAE7385E CRC64;

Query Match 83.0%; Score 744; DB 1; Length 194;
 Best Local Similarity 81.0%; Pred. No. 2.3e-61;
 Matches 141; Conservative 11; Mismatches 22; Indels 0; Gaps 0;

QY 1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 Db 21 TPLGETSSLPQSFLLKCLEQVRKVQADGTALQERLCAAHKLCHPEELVLLGHALGIPQAP 80

QY 61 LSSCPSQALQLAGLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWOQ 120
 Db 81 LSSCSQSLQLTGLRQLHSGLFLYQGLLQALAGISPELAAPTLDMLQLDITDAINIWOQ 140

QY 121 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLYASHLQSLEVSYRVLRHLAQP 174

Db 141 MEDVGMADAVPPQTGTMPTTSAFORRAGTTLVASQNLSFLEVAYRALRHFTKP 194

RX MEDLINE=95102116; PubMed=7528579;
 RA O'Brien P.M.; Seow H.F.; Rothel J.S.; Wood P.R.;
 RT "Cloning and sequencing of an ovine granulocyte colony-stimulating
 CC factor cDNA.";
 RT DNA Seq. 4:339-342 (1994).
 CC -!- FUNCTION: GRANULOCYTE/MACROPHAGE COLONY-STIMULATING FACTORS ARE
 CC CYTOKINES THAT ACT IN HEMATOPOIESIS BY CONTROLLING THE PRODUCTION,
 CC DIFFERENTIATION, AND FUNCTION OF 2 RELATED WHITE CELL POPULATIONS
 CC OF THE BLOOD, THE GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS
 CC CSF INDUCES GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS
 CC SUBUNIT: Monomer.
 CC -!- SUBCELLULAR LOCATION: Secreted.
 CC -!- PTM: O-glycosylated (By similarity).
 CC -!- SIMILARITY: Belongs to the IL-6 superfamily.
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).
 CC or send an email to license@isb-sib.ch).
 CC EMBL; L07939; AAA68006_1; -. DR PIR; T10268; T10268.
 DR HSSP; P35833; 1BGC.
 DR InterPro; IPR003629; GCSF MGF.
 DR InterPro; IPR003573; IL6_MGF_GCSF.
 DR Pfam; PF00489; IL6_1.
 DR PRINTS; PR00433; IL6GCSFMGF.
 DR ProDom; PD008388; GCSF MGF; 1.
 DR SMART; SM00126; IL6; 1.
 DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 DR Cytokine; Growth factor; Glycoprotein.
 KW DISULFID 36 42 BY SIMILARITY.
 FT DISULFID 64 74 BY SIMILARITY.
 FT CARBOHYD 133 133 O-LINKED (GALNAC. . .) (BY SIMILARITY).
 SQ SEQUENCE 174 AA; 18806 MW; BA5AA8F8D23ACD1E CRC64;
 Query Match 82.4%; Score 738; DB 1; Length 174;
 Best Local Similarity 82.2%; Pred. No. 7.3e-61;
 Matches 143; Conservative 10; Mismatches 21; Indels 0; Gaps 0;

QY 1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 Db 1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAP 60
 QY 61 LSSCPSQALQLAGLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIWOQ 120
 Db 61 LSSCSQSLQLTGLRQLHSGLFLYQGLLQALAGISPELAAPTLDMLQLDITDAINIWOQ 120
 QY 121 MEEIGMAPALOPTQGAMPFAFASAFORRAGGVLYASHLQSLEVSYRVLRHLAQP 174
 Db 121 MEDVGMADAVPPQTGTMPTTSAFORRAGTTLVASQNLSFLEVAYRALRHFTKP 174

RESULT 3
 CSF3_SHEEP
 ID CSF3_SHEEP STANDARD; PRT; 174 AA.
 AC Q28746;
 DT 30-MAY-2000 (Rel. 39, Created)
 DT 30-MAY-2000 (Rel. 39, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Granulocyte colony-stimulating factor (G-CSF).
 GN CSF3.
 OS Ovis aries (Sheep).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
 OC Bovidae; Caprinae; Ovis.
 OX NCBI_TaxID=9940;
 RN [1] SEQUENCE FROM N.A.
 RP

RESULT 4
 CSF3_CANFA
 ID CSF3_CANFA STANDARD; PRT; 175 AA.
 AC P35834;
 DT 01-JUN-1994 (Rel. 29, Created)
 DT 01-JUN-1994 (Rel. 29, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Granulocyte colony-stimulating factor (G-CSF).
 GN CSF3.
 OS Canis familiaris (Dog).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis.
 OX NCBI_TaxID=9615;
 RN X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS).
 RX MEDLINE=94076341; PubMed=7504736;
 RA Lovejoy B., Cascio D., Eisenberg D.;

"Crystal structure of canine and bovine granulocyte-colony stimulating factor (G-CSF).";

J. Mol. Biol. 234:640-653 (1993).

-!- FUNCTION: GRANULOCYTE/MACROPHAGE COLONY-STIMULATING FACTORS ARE CYTOKINES THAT ACT IN HEMATOPOIESIS BY CONTROLLING THE PRODUCTION, DIFFERENTIATION, AND FUNCTION OF 2 RELATED WHITE CELL POPULATIONS OF THE BLOOD, THE GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS CSF INDUCES GRANULOCYTES.

-!- SUBUNIT: Monomer.

-!- SUBCELLULAR LOCATION: Secreted.

-!- PTM: O-glycosylated.

-!- SIMILARITY: Belongs to the IL-6 superfamily.

DR PDB; 1BGD; 31-OCT-93.

DR InterPro; IPR003629; GCSF MGF.

DR InterPro; IPR003573; IL6_MGF_GCSF.

DR Pfam; PF00489; IL6; 1.

DR PRINTS; PR00433; IL6GCSFMGF.

DR ProDom; PD008388; GCSF_MGF; 1.

DR SMART; SM00126; IL6; 1.

DR Cytokine; PS00254; INTERLEUKIN_6; 1.

KW Cytokine; Growth factor; Glycoprotein; 3D-structure.

FT DISULFID 37 43

FT DISULFID 65 75

FT CARBOHYD 134 134

O-LINKED (GALNAC. . .) (BY SIMILARITY).

FT STRAND 10 10

FT HELIX 12 39

FT HELIX 45 55

FT TURN 56 56

FT HELIX 63 65

FT TURN 67 69

FT HELIX 72 92

FT TURN 93 95

FT TURN 98 100

FT HELIX 101 125

FT TURN 126 126

FT HELIX 144 144

FT TURN 172 172

FT STRAND 173 173

SQ SEQUENCE 175 AA; 18858 MW; 2BC26B24990C6DB3 CRC64;

Query Match 81.9%; Score 734; DB 1; Length 175;

Best Local Similarity 80.9%; Pred. No. 1.7e-60;

Matches 140; Conservative 11; Mismatches 22; Indels 0; Gaps 0;

QY 2 PLGPASSLPOSFLKCLQEVRKIQGDGAALQEKKCATYKLCHPEELVLLGHSLGIPWAPL 61

Db 3 PLGPTGPLPQSFLKCLQEQRMRKVQADGTALQETLCATHQLCHPEELVLLGHALGIPQPPL 62

QY 62 SSCPSSQALQAGLSQLHSGFLYQGLLQALEGISPELGPTLQLDVADEFATTIWCQM 1.21

Db 63 SSSCSQALQMLGCLRQLHSGFLYQGLLQALAGISPELAPLTQLDTDFAINIWQCM 122

QY 122 EELGMAPALOPTQGAMPAFASAFQRAGGVLYASHLQSFLFLEVSYRVLRLHAQP 174

Db 123 EDLGMAPAVPTQGTMPAFTSAFQRAGGVLYASNLSQSFLEAYRALRHFAKP 175

RESULT 5
CSF3_BOVIN STANDARD; PRT; 195 AA.

AC P35833; Q9TV89; Score 727; DB 1; Length 195;

DT 01-JUN-1994 (Rel. 29, Created)

DT 16-OCT-2001 (Rel. 40, Last sequence update)

DT 28-FEB-2003 (Rel. 41, Last annotation update)

DE Granulocyte colony-stimulating factor precursor (G-CSF).

GN CSF3 OR GCSF.

OS Bos taurus (Bovine).

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Ruminantia; Pecora; Bovoidea;

OC Bovidae; Bovinae; Bos.

NCBI_TaxID=9913;

[1]

SEQUENCE FROM N.A.
STRAIN=Holstein;
RC Heidari M., Kehrl M.E. Jr.;
RA "Cloning, sequencing, and analysis of cDNA encoding bovine granulocyte colony stimulating factor.";
RT Submitted (SEP-1998) to the EMBL/GenBank/DDBJ databases.
RL [2]
RN X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS).
RX MEDLINE=94076341; PubMed=7504736;
RA Lovejoy B., Cascio D., Eisenberg D.;
RT "Crystal structure of canine and bovine granulocyte-colony stimulating factor (G-CSF).";
RL J. Mol. Biol. 234:640-653 (1993).
CC FUNCTION: GRANULOCYTE/MACROPHAGE COLONY-STIMULATING FACTORS ARE CYTOKINES THAT ACT IN HEMATOPOIESIS BY CONTROLLING THE PRODUCTION, DIFFERENTIATION, AND FUNCTION OF 2 RELATED WHITE CELL POPULATIONS OF THE BLOOD, THE GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS CSF INDUCES GRANULOCYTES.
CC SUBUNIT: Monomer.
CC SUBCELLULAR LOCATION: Secreted.
CC PTM: O-glycosylated.
CC SIMILARITY: Belongs to the IL-6 superfamily.
DR PDB; 1BGD; 31-OCT-93.
DR InterPro; IPR003629; GCSF MGF.
DR InterPro; IPR003573; IL6_MGF_GCSF.
DR Pfam; PF00489; IL6; 1.
DR PRINTS; PR00433; IL6GCSFMGF.
DR ProDom; PD008388; GCSF_MGF; 1.
DR SMART; SM00126; IL6; 1.
DR Cytokine; PS00254; INTERLEUKIN_6; 1.
KW Cytokine; Growth factor; Glycoprotein; 3D-structure.
FT DISULFID 37 43
FT DISULFID 65 75
FT CARBOHYD 134 134
FT STRAND 10 10
FT HELIX 12 39
FT HELIX 45 55
FT TURN 56 56
FT HELIX 63 65
FT TURN 67 69
FT HELIX 72 92
FT TURN 93 95
FT TURN 98 100
FT HELIX 101 125
FT TURN 126 126
FT HELIX 144 144
FT TURN 172 172
FT STRAND 173 173
SQ SEQUENCE 175 AA; 18858 MW; 2BC26B24990C6DB3 CRC64;
This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).
CC SUBUNIT: Monomer.
CC PTM: O-glycosylated.
CC SIMILARITY: Belongs to the IL-6 superfamily.
CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).
CC DR EMBL; AF092533; ADD16102..1; ..
DR PDB; 1BGC; 31-OCT-93.
DR InterPro; IPR003629; GCSF_MGF.
DR InterPro; IPR003573; IL6_MGF_GCSF.
DR Pfam; PF00489; IL6; 1.
DR PRINTS; PR00433; IL6GCSFMGF.
DR ProDom; PD008388; GCSF_MGF; 1.
DR SMART; SM00126; IL6; 1.
DR PROSITE; PS00254; INTERLEUKIN_6; 1.
DR Cytokine; Growth factor; Glycoprotein; Signal; 3D-structure.
KW SIGNAL 1 21
FT DISULFID 22 195
FT CHAIN 22 63
FT DISULFID 57 63
FT CARBOHYD 85 95
FT CONFLICT 93 94
FT SIGNAL 1 21
FT DISULFID 22 60
FT HELIX 65 69
FT TURN 70 71
FT HELIX 72 75
FT TURN 76 76
FT HELIX 83 85
FT TURN 87 89
FT HELIX 92 112
FT TURN 113 115
FT HELIX 121 145
FT TURN 118 120
SQ SEQUENCE 195 AA; 21431 MW; 8C06119E4ADFBA73 CRC64;
Query Match 81.1%; Score 727; DB 1; Length 195;
Best Local Similarity 81.0%; Pred. No. 8.5e-60;
Matches 141; Conservative 11; Mismatches 22; Indels 0; Gaps 0;
Qy 1 TPLGPASSLPOSFLKCLQEVRKIQGDGAALQEKKCATYKLCHPEELVLLGHSLGIPWAP 60
Db 22 TPLGPARSFLPKCLEQVRKIQGDGAALQEKKCATYKLCHPEELVLLGHSLGIPWAP 81
Qy 61 LSSCPSQALQLAGCLSQHSGFLYQGLLQALEGISPELGPTLQLDVADEFATTIWCQM 120
Db 82 LSSCSSQSSLQTSCLNQHGGFLYQGLLQALEGISPELGPTLQLDVADEFATTIWCQM 141

QY 121 MEELGMAPALQTOGAMPFAFASAQRRAGGVLVASHIQLQSPLEVSYRVLHIAQP 174
 Db 142 MEDLGAAPAVQPTQGAMPTFTSAFQRRAAGGVLVASQLHRFLELAYGLRYLAEP 195

RESULT 6
 CSF3_PIG ID-CSF3_PIG STANDARD; PRT; 195 AA.
 AC 002837; O19180;
 DT 15-JUL-1998 (Rel. 36, Created)
 DT 30-MAY-2000 (Rel. 39, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Granulocyte colony-stimulating factor precursor (G-CSF).
 GN CSF3.
 OS Sus scrofa (Pig).
 OC Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Cetartiodactyla; Suiidae; Sus.
 OX NCBI_TaxID=9823;
 RN [1] SEQUENCE FROM N.A.
 RA Kulmburg P.;
 RL Submitted (JAN-1997) to the EMBL/GenBank/DDJBJ databases.
 RN [2] RP SEQUENCE FROM N.A.
 RC TISSUE=Liver;
 RA Gloster S.E., Sandeman R.M., Strom A.D.G.;
 RT "Cloning of a cDNA and gene encoding porcine granulocyte-colony
 stimulating factor.";
 RL Submitted (SEP-1997) to the EMBL/GenBank/DDJBJ databases.

CC -!- FUNCTION: GRANULOCYTE/MACROPHAGE COLONY-STIMULATING FACTORS ARE
 CC CYTOKINES THAT ACT IN HEMATOPOIESIS BY CONTROLLING THE PRODUCTION,
 CC DIFFERENTIATION, AND FUNCTION OF 2 RELATED WHITE CELL POPULATIONS
 CC OF THE BLOOD, THE GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS
 CC CSF INDUCES GRANULOCYTES (BY SIMILARITY).
 CC -!- SUBUNIT: Monomer.
 CC -!- SUBCELLULAR LOCATION: Secreted.
 CC -!- PTM: O-glycosylated (By similarity).
 CC -!- SIMILARITY: Belongs to the IL-6 superfamily.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (see <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).

CC DR EMBL; Y10494; CAA71518.1; .
 CC DR EMBL; U68482; AAB70701.1; .
 CC DR EMBL; U68481; AAB70700.1; -.
 CC DR HSSP; P235833; 1BGC.
 CC DR InterPro; IPR003629; GCSF_MGF.
 CC DR InterPro; IPR003573; IL6_MGF_GCSF.
 CC DR Pfam; PF00489; IL6; 1.
 CC DR PRINTS; PR00433; IL6GCSFMGF.
 CC DR PRODOM; PD008388; GCSF_MGF; 1.
 CC DR SMART; SM00126; IL6; 1.
 CC DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 CC KW Cytokine; Growth factor; Glycoprotein; Signal.
 CC FT SIGNAL 1 21 POTENTIAL.
 CC FT CHAIN 22 195 GRANULOCYTE COLONY-STIMULATING FACTOR.
 CC FT DISULFID 57 63 BY SIMILARITY.
 CC FT DISULFID 85 95 BY SIMILARITY.
 CC FT CARBOHYD 154 154 O-LINKED (GALNAc. . .) (BY SIMILARITY).
 CC FT CONFLICT 123 123 A -> R (IN REF. 1).
 CC SQ SEQUENCE 195 AA; 21214 MW; 84787F20DB0AE1C CRC64; -

Query Match 78.3%; Score 702; DB 1; Length 195;
 Best Local Similarity 79.2%; Pred. No. 1.7e-57;
 Matches 137; Conservative 11; Mismatches 25; Indels 0; Gaps 0;
 FT SIGNAL 1 30
 FT CHAIN 31 208 GRANULOCYTE COLONY-STIMULATING FACTOR.
 FT DISULFID 72 78 BY SIMILARITY.

QY 23 PLGPASSLPQSFLKCLEQVRKIQADGAELQERLCATHKLCHPOELVLLGHSLGLPQASL 82
 Db 62 SSCPSQALQLAGCLSQLHSGFLYQGLLQALEGISPELGPTLDLQLDVADATTIQQM 121
 QY 83 SSCSSQALQLTGCLNQLHGGLVLYQGLLQALAGISPELAPALDLQLDVTDATNWLQM 142

RESULT 7
 CSF3_MOUSE ID-CSF3_MOUSE STANDARD; PRT; 208 AA.
 AC P09920;
 DT 01-MAR-1989 (Rel. 10, Created)
 DT 01-MAR-1989 (Rel. 10, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Granulocyte colony-stimulating factor precursor (G-CSF).
 GN CSF3 OR CSFG.
 OS Mus musculus (Mouse).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 OC NCBI_TaxID=10090;
 OX NCBI_TaxID=[1];
 RN SEQUENCE FROM N.A.
 RP SEQUENCE FROM N.A.
 RX MEDLINE=87017003; PubMed=34899940;
 RA Tsuchiya M., Asano S., Kaziro Y., Nagata S.;
 RT "Isolation and characterization of the cDNA for murine granulocyte
 colony-stimulating factor."
 RT Proc. Natl. Acad. Sci. U.S.A. 83:7633-7637 (1986).
 RL [2]
 RN SEQUENCE FROM N.A.
 RP SEQUENCE FROM N.A.
 RX MEDLINE=87190474; PubMed=3494605;
 RA Tsuchiya M., Kaziro Y., Nagata S.;
 RT "The chromosomal gene structure for murine granulocyte colony-
 stimulating factor.";
 RL Eur. J. Biochem. 165:7-12 (1987).
 CC -!- FUNCTION: GRANULOCYTE/MACROPHAGE COLONY-STIMULATING FACTORS ARE
 CC CYTOKINES THAT ACT IN HEMATOPOIESIS BY CONTROLLING THE PRODUCTION,
 CC DIFFERENTIATION, AND FUNCTION OF 2 RELATED WHITE CELL POPULATIONS
 CC OF THE BLOOD, THE GRANULOCYTES AND THE MONOCYTES-MACROPHAGES. THIS
 CC CSF INDUCES GRANULOCYTES (BY SIMILARITY).
 CC -!- SUBUNIT: Monomer.
 CC -!- SUBCELLULAR LOCATION: Secreted.
 CC -!- PTM: O-glycosylated (By similarity).
 CC -!- SIMILARITY: Belongs to the IL-6 superfamily.

This SWISS-PROT entry is copyright. It is produced through a collaboration
 between the Swiss Institute of Bioinformatics and the EMBL outstation -
 the European Bioinformatics Institute. There are no restrictions on its
 use by non-profit institutions as long as its content is in no way
 modified and this statement is not removed. Usage by and for commercial
 entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 or send an email to license@isb-sib.ch).

This SWISS-PROT entry is copyright. It is produced through a collaboration
 between the Swiss Institute of Bioinformatics and the EMBL outstation -
 the European Bioinformatics Institute. There are no restrictions on its
 use by non-profit institutions as long as its content is in no way
 modified and this statement is not removed. Usage by and for commercial
 entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 or send an email to license@isb-sib.ch).

CC DR EMBL; M13926; AAA37672.1; .
 CC DR EMBL; X05402; CAA28986.1; .
 CC DR PIR; A29536; A26496.
 CC DR HSSP; P09919; 1RHG.
 CC DR MGI; 1339751; CSF3.
 CC DR InterPro; IPR003629; GCSF_MGF.
 CC DR InterPro; IPR003573; IL6_MGF_GCSF.
 CC DR InterPro; IPR00489; IL6; 1.
 CC DR Pfam; PF00489; IL6; 1.
 CC DR PRINTS; PR00433; IL6GCSFMGF.
 CC DR PRODOM; PD008388; GCSF_MGF; 1.
 CC DR SMART; SM00126; IL6; 1.
 CC DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 CC KW Cytokine; Growth factor; Glycoprotein; Signal.
 CC FT SIGNAL 1 21 POTENTIAL.
 CC FT CHAIN 22 195 GRANULOCYTE COLONY-STIMULATING FACTOR.
 CC FT DISULFID 57 63 BY SIMILARITY.
 CC FT DISULFID 85 95 BY SIMILARITY.
 CC FT CARBOHYD 154 154 O-LINKED (GALNAc. . .) (BY SIMILARITY).
 CC FT CONFLICT 123 123 A -> R (IN REF. 1).
 CC SQ SEQUENCE 195 AA; 21214 MW; 84787F20DB0AE1C CRC64; -

Query Match 78.3%; Score 702; DB 1; Length 195;
 Best Local Similarity 79.2%; Pred. No. 1.7e-57;
 Matches 137; Conservative 11; Mismatches 25; Indels 0; Gaps 0;
 FT SIGNAL 1 30
 FT CHAIN 31 208 GRANULOCYTE COLONY-STIMULATING FACTOR.
 FT DISULFID 72 78 BY SIMILARITY.

FT DISULFID 100 110 BY SIMILARITY.
 FT CARBOHYD 169 169 O-LINKED (GALNAC. .) (BY SIMILARITY).
 SQ SEQUENCE 208 AA; 22421 MW; 0BF3622135C906DB CRC64;

Query Match 71.5%; Score 641; DB 1; Length 208;
 Best Local Similarity 75.9%; Pred. No. 7.3e-52;
 Matches 129; Conservative 9; Mismatches 32; Indels 0; Gaps 0;

YQ 3 LGPASLLPQSLKLCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAPLS 62
 DB 39 LPPSPLPLRSPFLIKSLEQVRKIQASGSVLLQEQCLAYKLCHPEELVLLGHSLGIPKASLS 98

YQ 63 SCP\$OALQLAGLCLSOLHSGLFLYQGLLQALEGISPELGPTLDLQDVAFTTIQOME 122
 DB 99 GCSSQALQQTQCLSQLHSGLCLYQGLLQALSGISPALAPTDLQDVAFTTIQOME 158

YQ 123 ELGMAPALQOPTOGAMPAFASA\$AFORRAGGVLVASHLQSFLFLEVSYRVLRLAQ 172
 DB 159 NLGVAPTVQOPTQSAMPAFTSAFQRAGGVLAISYLGFFLETARLALHHLA 208

RESULT 8
MGF_CHICK
 ID MGF_CHICK STANDARD; PRT; 201 AA.
 AC P13854;
 DT 01-JAN-1990 (Rel. 13, Created)
 DT 01-JAN-1990 (Rel. 13, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Myelomonocytic growth factor precursor (MGF).
 OS Gallus gallus (Chicken).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
 OC Gallus.
 RN [1]
 RP SEQUENCE FROM N.A. MEDLINE=89231616; PubMed=2785450;
 RA Leutz A., Damm K., Sterneck E., Kowenz E., Ness S., Frank R.,
 RA Gausepohl H., Pan Y.-C.E., Smart J., Hayman M., Graf T.;
 RT "Molecular cloning of the chicken myelomonocytic growth factor (cMGF)
 RT reveals relationship to interleukin 6 and granulocyte colony
 RT stimulating factor";
 RL EMBO J. 8:175-181(1989).
 RN [2]
 RP SEQUENCE FROM N.A. MEDLINE=92195319; PubMed=1549124;
 RX Sterneck E., Blattner C., Graf T., Leutz A.;
 RT "Structure of the chicken myelomonocytic growth factor gene and
 RT specific activation of its promoter in avian myelomonocytic cells by
 RT protein kinases.";
 RL Mol. Cell. Biol. 12:1728-1735(1992).
 CC !- FUNCTION: HEMATOPOIETIC GROWTH FACTOR THAT STIMULATES THE
 CC PROLIFERATION AND COLONY FORMATION OF NORMAL AND TRANSFORMED AVIAN
 CC CELLS OF THE MYELOID LINEAGE.
 CC !- SUBCELLULAR LOCATION: Secreted.
 CC !- SIMILARITY: Belongs to the IL-6 superfamily.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (see <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).

CC DR EMBL; M85034; AAA48694.1; -.
 DR EMBL; X14477; CAA32639.1; -.
 DR PIR; A42247; A42247.
 DR HSSP; P35834; 1BGD.
 DR InterPro; IPR003629; GCSF_MGF.
 DR InterPro; IPR003573; IL6_MGF_GCSF.
 DR Pfam; PF00489; IL6; 1.
 DR PRINTS; PR00433; IL6GCSFMGF.

DR ProDom; PDO08388; GCSF_MGF; 1.
 DR SMART; SM00126; IL6; 1.
 DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 KW Growth Factor; Glycoprotein; Signal.

FT SIGNAL 1 23 MYELOMONOCYTIC GROWTH FACTOR.
 FT CHAIN 24 201 BY SIMILARITY.
 FT DISULFID 61 67 BY SIMILARITY.
 FT CARBOHYD 89 99 N-LINKED (GLCNAC. .) (POTENTIAL).
 FT CARBOHYD 123 123 N-LINKED (GLCNAC. .) (POTENTIAL).
 SQ SEQUENCE 137 137 N-LINKED (GLCNAC. .) (POTENTIAL).
 SQ 201 AA; 22373 MW; 240A8DD21B4244E6 CRC64;

Query Match 33.9%; Score 304; DB 1; Length 201;
 Best Local Similarity 40.6%; Pred. No. 6.6e-21;
 Matches 28; Mismatches 68; Indels 2; Gaps 1;

QY 11 QSF\$LKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWAPLSSCP\$QALQ 70
 DB 36 QLF\$HKNLLEFTRKIRGDVAALQRAVCDFQLCTEEEQLVQDPDPLQDCHKRGFQ 95

QY 71 LAGGLSQLHSGLFLYQGLLQALEGISPELGPTLDLQDVAFTTIQOMEELGMAPAL 130
 DB 96 AEVCFTQIRAGLHAYHDSLIGAVLRLLPNHTTLVETQLQDAANLSSNIQQQM\$EDGLDTVT 155

QY 131 OPTO--GAMP\$AFASAFORRAGGVLYASHLQSFLFLEVSYRVLRLAQ 173
 DB 156 LPAEQRSP\$PPTFSGPFQQVGGFFILANFORFLETAYRALRHLAR 200

RESULT 9
IL6_PIG
 ID IL6_PIG STANDARD; PRT; 212 AA.
 AC P26893; Q95KN6;
 DT 01-AUG-1992 (Rel. 23, Created)
 DT 28-FEB-2003 (Rel. 41, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Interleukin-6 precursor (IL-6).
 IL6
 OS Sus scrofa (Pig).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus.
 NCBI_TaxId=9823;
 [1] RN SEQUENCE FROM N.A. MEDLINE=91338547; PubMed=1873476;
 RN P26893; Q95KN6;
 RX Richards C., Saklatvala J.;
 RA "Molecular cloning and sequence of porcine interleukin 6 cDNA and
 RT expression of mRNA in synovial fibroblasts in vitro.";
 RT Cytokine 3:269-276(1991).
 [2] RN SEQUENCE FROM N.A. MEDLINE=92360284; PubMed=1497880;
 RN P26893; Q95KN6;
 RX Mathiilagan N., Bixby J.A., Roberts M.R.;
 RA "Expression of interleukin-6 in porcine, ovine, and bovine
 RT preimplantation conceptus.";
 RT Mol. Reprod. Dev. 32:324-330(1992).
 RN P26893; Q95KN6;
 RX SEQUENCE FROM N.A. MEDLINE=91338547; PubMed=1873476;
 RC STRAIN=Landrace x Meishan; TISSUE=Blood;
 RA Liu S., Meng M., Gao R.;
 RT "Cloning and expression of porcine interleukin 6 gene from Landrace x Meishan
 hybrid swine.";
 RT Submitted (SEP-2000) to the EMBL/GenBank/DDBJ databases.
 RL !- FUNCTION: IL-6 is a cytokine with a wide variety of biological
 CC functions: it plays an essential role in the final differentiation
 CC of B-cells into Ig-secreting cells, it induces myeloma and
 CC plasmacytoma growth, it induces acute phase reactants.
 CC hepatocytes it induces nerve cells differentiation, in
 CC -!- SUBCELLULAR LOCATION: Secreted.
 CC -!- SIMILARITY: Belongs to the IL-6 superfamily.

the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

-!- SIMILARITY: Belongs to the IL-6 superfamily.
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).
 CC

DR EMBL; M86722; AAC3733.1; -. DR EMBL; M80258; AAC27127.1; -. DR EMBL; AF309651; AUG27730.1; -. DR PIR; I46590; I46590.
 DR PIR; I46621; I46621.
 DR HSSP; P05231; 1ALU.
 DR InterPro; IPR003573; IL6_MGF_GCSF.
 DR InterPro; IPR003574; Interleukin_6.
 DR Pfam; PF00489; IL6; 1.
 DR PRINTS; PR00433; IL6GCSFMGF.
 DR PRODOM; PD004356; Interleukin_6; 1.
 DR SMART; SM00126; IL6; 1.
 DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 KW Acute phase; Cytokine; Growth factor; Glycoprotein; Signal.
 FT SIGNAL 1 29 BY SIMILARITY.
 FT CHAIN 30 212 BY SIMILARITY.
 FT DISULFID 72 78 BY SIMILARITY.
 FT DISULFID 101 111 BY SIMILARITY.
 FT CONFLICT 30 30 E -> G (IN REF. 1).
 SQ SEQUENCE 212 AA; 23952 MW; 1E736FB230B4FC5D CRC64;
 Query Match 11.9%; Score 106.5; DB 1; Length 212;
 Best Local Similarity 22.6%; Pred. No. 0.0098;
 Matches 36; Conservative 33; Mismatches 85; Indels 5; Gaps 3;
 QY 16 KCLEQVRKIQGDGAALQERKICATYKLCHPEELVLLGHSIGIP-WAPLSSCPSQALQLAGC 74
 Db 52 KTEBLIKYIIGKISAMRKEMCEKYKEKENSKEVLAENNLPKMAEKDGCFOSGFQNQETC 111
 QY 75 LSQLHSGLFLYQGLLQALEGGISPELGPTLDLQLDYADFATTIWQQMBELGMAPALQPT- 133
 Db 112 IMRITGLVEFQIYDLYQKEYESNKGNAVEAQVISTKALIQTLRQKGKNPDKATTNPPT 171
 QY 134 -QGAMPFAFS--AFQRAGGVLYASHLQSFLFLEVSYRVLR 169
 Db 172 NAGLIDKLQSQNEWMKNTKIIILRLSLEDFLQFSLRAIR 210
 RESULT 10
 IL6_ORCOR STANDARD; PRT; 205 AA.
 ID IL6_ORCOR
 AC Q28747;
 DT 30-MAY-2000 (Rel. 39, Created)
 DT 30-MAY-2000 (Rel. 39, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Interleukin-6 precursor (IL-6) (Fragment).
 GN IL6.
 OS Orcinus orca (killer whale).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Cetartiodactyla; Cetacea; Odontoceti; Delphinidae;
 OC Orcinus.
 NCBI_TaxID=9733;
 RN [1]
 RP SEQUENCE FROM N.A.
 RX MEDLINE=96163018; PubMed=8575817;
 RA King D.P., Schrenzel M.D., McKnight M.L., Reidarson T.H., Hanni K.D.,
 RA Stott J.L., Ferrick D.A.;
 RA "Molecular cloning and sequencing of interleukin 6 cDNA fragments from
 RT the harbor seal (Phoca vitulina), killer whale (Orcinus orca), and
 RT Southern sea otter (Enhydra lutris nereis).";
 RT Immunogenetics 43:190-195 (1996).
 RL -!- FUNCTION: IL-6 is a cytokine with a wide variety of biological
 CC functions: it plays an essential role in the final differentiation
 CC of B-cells into Ig-secreting cells, it induces myeloma and
 CC plasmacytoma growth, it induces nerve cells differentiation, in
 CC hepatocytes it induces acute phase reactants (By similarity).
 CC -!- SUBCELLULAR LOCATION: Secreted.

-!- SIMILARITY: Belongs to the IL-6 superfamily.
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).
 CC

DR EMBL; L46803; AAB01429.1; -. DR HSSP; P05231; 1ALU.
 DR InterPro; IPR003573; IL6_MGF_GCSF.
 DR InterPro; IPR003574; Interleukin_6.
 DR Pfam; PF00489; IL6; 1.
 DR PRINTS; PR00433; IL6GCSFMGF.
 DR PRODOM; PD004356; Interleukin_6; 1.
 DR SMART; SM00126; IL6; 1.
 DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 KW Acute phase; Cytokine; Growth factor; Glycoprotein; Signal.
 FT NON TER 1 1 BY SIMILARITY.
 FT SIGNAL <1 21 BY SIMILARITY.
 FT CHAIN 22 205 BY SIMILARITY.
 FT DISULFID 64 70 BY SIMILARITY.
 FT DISULFID 93 103 BY SIMILARITY.
 FT CARBOHYD 164 164 N-LINKED (GLCNAC. . .) (POTENTIAL).
 SQ SEQUENCE 205 AA; 23266 MW; 6308F3A457960832 CRC64;
 Query Match 11.3%; Score 101; DB 1; Length 205;
 Best Local Similarity 20.6%; Pred. No. 0.03;
 Matches 32; Conservatives 34; Mismatches 83; Indels 6; Gaps 2;

QY 21 VRKIQGDGAALQEKICATYKLCHPEELVLLGHSIGIP-WAPLSSCPSQALQLAGC 79
 Db 49 IKYILGKISAMRKEMCEKYDKCENSKEAENNLPKMAEKDGCFOSGFQNQETCLMRIT 108
 QY 80 SGLFLYQGLLQALEGGISPELGPTLDLQLDAFATTIWQQMEEELGMAPALQPTQGA--- 136
 Db 109 TGLLEYQIYLQDLYQKEYEGDKEAIEAVQISKALAQIILRQKVNPDEVTTTPDPTTNASLM 168
 QY 137 -MPAFASAFORRAGGVLYASHLQSFLFLEVSYRVLR 169
 Db 169 NNLSQNDWMMNTKIIILRLSLENFLQFSLRAIR 203

RESULT 11
 IL6_HORSE STANDARD; PRT; 208 AA.
 ID IL6_HORSE
 AC Q95181; O19007; 046568;
 DT 01-NOV-1997 (Rel. 35, Created)
 DT 15-JUL-1999 (Rel. 38, Last sequence update)
 DT 10-OCT-2003 (Rel. 42, Last annotation update)
 DE Interleukin-6 precursor (IL-6).
 GN IL6.
 OS Equus caballus (Horse).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Perissodactyla; Equidae; Equus.
 NCBI_TaxID=9796;
 RN [1]
 RP SEQUENCE FROM N.A.
 RX MEDLINE=20579380; PubMed=11137120;
 RA Swiderski C.M., Huder J.B., von Rechenberg B., Akens M., Auer J.;
 RA "Molecular cloning of equine interleukin-6";
 RT "Molecular cloning, sequencing, and expression of equine interleukin-
 RT 6";
 RT "Submitted (JUL-1997) to the EMBL/GenBank/DDBJ databases."
 RL [3]
 RN SEQUENCE FROM N.A.
 RA Lai A.C.K.;

RT "Cloning and expression of equine interleukin-6.";
 RL Submitted (JAN-1998) to the EMBL/GenBank/DDBJ databases.
 CC -!- FUNCTION: IL-6 is a cytokine with a wide variety of biological
 CC functions; it plays an essential role in the final differentiation
 CC of B-cells into Ig-secreting cells, it induces myeloma and
 CC plasmacytoma growth, it induces nerve cells differentiation, in
 CC hepatocytes it induces acute phase reactants (By similarity).
 CC -!- SUBCELLULAR LOCATION: Secreted.
 CC -!- SIMILARITY: Belongs to the IL-6 superfamily.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).

DR EMBL; U64794; AAB87703_1; -.
 DR EMBL; AF005227; AAB62246_1; -.
 DR PIR; T09216; T09216.
 DR HSSP; P05231; IAUU.
 DR InterPro; IPR003573; IL6_MGF_GCSF.
 DR InterPro; IPR003574; Interleukin_6.
 DR PF00489; IL6; 1.
 DR PRINTS; PRO0433; IL6GCSFMGF.
 DR PRODOM; PD004356; Interleukin_6; 1:
 DR SMART; SM00126; IL6; 1.
 DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 KW Acute phase; Cytokine; Growth factor; Glycoprotein; Signal.
 FT SIGNAL 1 27 POTENTIAL.
 FT CHAIN 28 208 INTERLEUKIN-6.
 FT DISULPID 69 75 BY SIMILARITY.
 FT DISULPID 98 108 BY SIMILARITY.
 FT CARBOHYD 71 71 N-LINKED (GLCNAC. . .) (POTENTIAL).
 FT CARBOHYD 184 184 N-LINKED (GLCNAC. . .) (POTENTIAL).
 FT CONFLICT 4 5 LS -> FF (IN REF. 1).
 FT CONFLICT 8 8 T -> A (IN REF. 3).
 FT CONFLICT 137 137 I -> V (IN REF. 2).
 FT CONFLICT 205 205 V -> I (IN REF. 3).
 SQ SEQUENCE 208 AA; 23325 MW; A62F4C234056BF66 CRC64;

Query Match 11.2%; Score 100; DB 1; Length 208;
 Best Local Similarity 21.6%; Pred. No. 0.038; Mismatches 35; Indels 8; Gaps 3;
 Matches 38; Conservative 38;

QY 2 PLGPASSLPQSFLI----KCLQVVKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIP 57
 DB 31 PLGEDDETTSGPLTTADKTQKHIIYILGKISALKNEMCNFSKCENSKEVLAENNLLNP 90

QY 58 -WAPLSSCPSQALQLAGCLSQLHSGLFYQGLLQALEGISPELGPTLTDLOLDVADFATT 116
 DB 91 KMAEKDGCFQSGFNQETCLMKITGLSEFQIYLEYLQNEFKGEKENIKTMQISTKVLVQI 150

QY 117 IWQMEELGMA--PALOPTQGAMPFAFQRRAGGVLYASHLQSFLEVSYVRVL 169
 DB 151 LMQKMKRNPEVTTDPDTAKSSILLAKLHSQNNEWLKNTTTHLRLSLEDFLQFSLRAVR 206

RESULT 12
 IL6_FELCA STANDARD; PRT; 208 AA.
 AC P41683;
 DT 01-NOV-1995 (Rel. 32, Created)
 DT 01-NOV-1995 (Rel. 32, Last sequence update)
 DT 28-FEB-2003 (Rel. 41, Last annotation update)
 DE Interleukin-6 precursor (IL-6).
 GN Felis silvestris catus (Cat).
 OS Felidae; Carnivora; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Carnivora; Fissipedia; Felidae; Felis.
 NCBI_TaxID=9685;

[1] SEQUENCE FROM N.A.
 RP MEDLINE=94162386; PubMed=8117820;
 RX Ohashi T.; Matsumoto Y.; Watari T.; Goitsuka R.; Tsujimoto H.;
 RA Hassegawa A.;
 RT "Molecular cloning of feline interleukin-6 cDNA.";
 RL J. Vet. Med. Sci. 55:941-944 (1993).
 RN [2] SEQUENCE FROM N.A.
 RP TISSUE=Lymphocytes;
 RC MEDLINE=94052249; PubMed=8234373;
 RX Bradley W.G.; Gibbs C.; Kraus L.; Good R.A.; Day N.K.;
 RT "Molecular cloning and characterization of a cDNA encoding feline
 RT interleukin-6.";
 RT Proc. Soc. Exp. Biol. Med. 204:301-305 (1993).
 CC -!- FUNCTION: IL-6 is a cytokine with a wide variety of biological
 CC functions: it plays an essential role in the final differentiation
 CC of B-cells into Ig-secreting cells, it induces myeloma and
 CC plasmacytoma growth, it induces nerve cells differentiation, in
 CC hepatocytes it induces acute phase reactants.
 CC -!- SUBCELLULAR LOCATION: Secreted.
 CC -!- SIMILARITY: Belongs to the IL-6 superfamily.
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).
 CC DR EMBL; L16914; AAA16620_1;
 CC DR EMBL; D13227; BAA02507_1; -.
 CC DR PIR; 146084; 146084.
 CC DR HSSP; P05231; IL6.
 CC DR InterPro; IPR003573; IL6_MGF_GCSF.
 CC DR InterPro; IPR003574; Interleukin_6.
 CC DR Pfam; PF00489; IL6; 1.
 CC DR PRINTS; PRO0433; IL6GCSFMGF.
 CC DR PRODOM; PD004356; Interleukin_6; 1.
 CC DR SMART; SM00126; IL6; 1.
 CC DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 CC KW Acute phase; Cytokine; Growth factor; Glycoprotein; Signal.
 CC DR SIGNAL 1 27 POTENTIAL.
 CC FT CHAIN 28 208 INTERLEUKIN-6.
 CC FT DISULPID 69 75 BY SIMILARITY.
 CC FT DISULPID 98 108 BY SIMILARITY.
 CC FT CARBOHYD 71 71 N-LINKED (GLCNAC. . .) (POTENTIAL).
 CC FT CARBOHYD 184 184 N-LINKED (GLCNAC. . .) (POTENTIAL).
 CC FT CONFLICT 4 5 LS -> FF (IN REF. 1).
 CC FT CONFLICT 8 8 T -> A (IN REF. 3).
 CC FT CONFLICT 137 137 I -> V (IN REF. 2).
 CC FT CONFLICT 205 205 V -> I (IN REF. 3).
 CC SQ SEQUENCE 208 AA; 23325 MW; A62F4C234056BF66 CRC64;
 CC FT SIGNAL 1 27 POTENTIAL.
 CC FT CHAIN 28 208 INTERLEUKIN-6.
 CC FT DISULPID 69 75 BY SIMILARITY.
 CC FT DISULPID 98 108 BY SIMILARITY.
 CC FT CONFLICT 2 2 T -> N (IN REF. 2).
 CC FT CONFLICT 45 45 S -> P (IN REF. 2).
 CC FT CONFLICT 133 133 E -> K (IN REF. 2).
 CC FT CONFLICT 173 187 AKLQSQQEFLRHTTI -> LSCSHRRVAEAHHN (IN
 CC REF. 2).
 CC FT CONFLICT 200 201 FS -> LR (IN REF. 2).
 CC SQ SEQUENCE 208 AA; 233401 MW; 93B4456B2989CA4C CRC64;

Query Match 10.6%; Score 95; DB 1; Length 208;
 Best Local Similarity 23.9%; Pred. No. 0.11; Mismatches 70; Indels 50; Gaps 9;
 Matches 47; Conservative 30; Sequence 208 AA;

QY 2 PLGPASSLPQSFLI----KCLQVVKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIP 57
 DB 31 PLGGDATSNRLPLTSADKMEELIKEYLGKISALKKEMCDNNYKCEDSKBAEENNLLPK 90

QY 58 WAPLSSCPSPQALQLAGCLSQLHSGLFYQGLLQALEGISPELGPTLTDLOLDVADFATT 116
 DB 91 LAERDGCFQSGFNQETCLTRITGLQEFOIYLKFLQDKYEGDEENAKSVYTSTNVLLQML 150

QY 93 EGISPPELGPILDTLQLDVADFTATTWQOMEELGMAPALOPTQGAMPASAQRARRAGGV 152
 DB 151 K---RKGRNQDEVTPV----PTV----EVGLQAKLQSQE----EWLRHTTIHL 189

QY 153 VASHLQSFLEVSYRVL 169

RESULT 13			
HMCU_DRONE	ID	HMCU_DRONE STANDARD;	PRT; 2175 AA.
AC P10180; Q9W3Q6;			
DT 01-MAR-1989 (Rel. 10, Created)			
DT 01-MAR-1989 (Rel. 10, Last sequence update)			
DT 10-OCT-2003 (Rel. 42, Last annotation update)			
DE Homeobox protein cut.			
GN CT OR CG11387.			
OS Drosophila melanogaster (Fruit fly).			
OC Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;			
OC Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;			
OC Ephydrioidea; Drosophilidae; Drosophila.			
OX NCBI_TaxID=7227;			
RN [1]			
RP SEQUENCE FROM N.A.			
RC MEDLINE=88232956; PubMed=2897632;			
RA Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., George R.A., Lewis S.E., Richards S., Ashburner M., Henderson S.N., Sutton G.G., Wortman J.R., Yandell M.D., Zhang Q., Chen L.X., Brandon R.C., Rogers Y.-H.C., Blazej R.G., Champe M., Pfeiffer B., Wan K.H., Doyle C., Baxter E.G., Helt G., Nelson C.R., Miklos G.L., Abril J.F., Agbayani A., An H.-J., Andrews-Pfannkoch C., Baldwin Ballew R.M., Basu A., Baxendale J., Bayraktaroglu L., Beasley E.M., Beeson K.Y., Benos P.V., Berman B.P., Bhandari D., Bolshakov S., Borkova D., Botchan M.R., Bouck J., Brokstein P., Brottier P., Burtis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P., de Pablo B., Delcher A., Deng Z., Mays A.D., Dew I., Dietz S.M., Dodson K., Doup L.E., Downes M., Dugan-Rocha S., Dunkov B.C., Dun Durbin K.J., Evangelista C.C., Ferraz C., Ferreira S., Fleischman Fosler C., Gabrielian A.E., Garg N.S., Gelbart W.M., Glasser K., Glodek A., Gong F., Gorrell J.H., Gu Z., Guan P., Harris M., Harris N.L., Harvey D.A., Heiman T.J., Hernandez J.R., Houck J., Hostin D., Houston K.A., Howland T.J., Wei M.-H., Ibegwam C., Jalali M., Kalush F., Karpen G.H., Ke Z., Kennison J.A., Ketchum Kimmel B.E., Kodira C.D., Kraft C., Kravitz S., Kulp D., Lai Z., Lasko P., Lei Y., Levitsky A.A., Li J.H., Li Z., Liang Y., Lin X., Liu X., Mattei B., McIntosh T.C., McLeod M.P., McPherson D., Merkulov G., Milshina N.V., Mobarry C., Morris J., Moshrefi A., Mount S.M., MOY M., Murphy B., Murphy L., Nusskern D.R., Nelson D.L., Nelson D.R., Nixon K., Palazzolo M., Pittman G.S., Pan S., Pollard J., Puri V., Reese M., Reinert K., Remington K., Saunders R.D.C., Scheeler F., Shen H., Shue B.C., Siden-Kiamos I., Simpson M., Skupski M.P., Smith T., Spier E., Spradling A.C., Stapleton M., Strong R., Sun E., Svirskas R., Tector C., Turner R., Venter E., Wang A.H., Wang X., Wang Z.-Y., Wasserman D.A., Weissenbach J., Williams S.M., Woodage T., Worley K.C., Wu D., Yang S., Yao Q.A., Ye J., Yeh R.-F., Zaveri J.S., Zhan M., Zhang G., Zhao Q., Zheng X.H., Zhong F.N., Zhou X., Zhu S., Zhu X., Smith Gibbs R.A., Myers E.W., Rubin G.M., Venter J.C.; "The genome sequence of <i>Drosophila melanogaster</i> ," Science 287:2185-2195 (2000).			
RL -!- FUNCTION: Regulator of cell fate decisions in multiple lineages			
CC Specifically, functions as a determination factor that specifies sensory organ identity in precursor cells. Probably also involved in cell type specification of Malpighian tubules. In absence of cut gene external sensory organs are transformed into chordotonal organs.			
CC -!- SUBCELLULAR LOCATION: Nuclear (Probable).			

Db	151 IQILKOKIADLITTPATNTDLERMQSSNEWVKNAKILLIRNLLENFLQFSURAIR	206
Db	1493 AQQAQQAQHQHQQQAAQHQHQQHLAQ	1519
<p>RESULT 14 IL6_BOVIN STANDARD; PRT; 208 AA.</p> <p>ID IL6_BOVIN AC P26892; DT 01-AUG-1992 (Rel. 23, Created) DT 01-AUG-1992 (Rel. 23, Last sequence update) DT 28-FEB-2003 (Rel. 41, Last annotation update) DE Interleukin-6 precursor (IL-6). GN IL6. OS Bos taurus (Bovine). OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea; Bovidae; Bovinae; Bos. RN [1] RP SEQUENCE FROM N.A. RC STRAIN=Holstein; RX MEDLINE=93076003; PubMed=1446077; RA Droogmans L.; Cludts I.; Cleuter Y.; Kettmann R.; Burny A.; RT "Nucleotide sequence of bovine interleukin-6 cDNA."; RL DNA Seq. 2:411-413(1992).</p> <p>CC FUNCTION: IL-6 is a cytokine with a wide variety of biological functions: it plays an essential role in the final differentiation of B-cells into Ig-secreting cells, it induces myeloma and plasmacytoma growth, it induces nerve cells differentiation, in hepatocytes it induces acute phase reactants.</p> <p>CC SUBCELLULAR LOCATION: Secreted. CC SIMILARITY: Belongs to the IL-6 superfamily.</p> <p>CC This SWISS-PROT entry is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/) or send an email to license@isb-sib.ch.</p> <p>CC DR EMBL; X57317; CAA40572.1; -. DR HSSP; P05231; IL6. DR InterPro; IPR003573; IL6_MGF_GCSF. DR InterPro; IPR003574; Interleukin_6. DR PFam; PF00489; IL6; 1. DR PRINTS; PR00433; IL6GCSFMGF. DR PRODOM; PD004356; Interleukin_6; 1. DR SMART; SM00126; IL6; 1. DR PROSITE; PS00254; INTERLEUKIN_6; 1. KW Acute phase; Cytokine; Growth_factor; Glycoprotein; Signal.</p> <p>FT SIGNAL 1 1 1 BY SIMILARITY. FT CHAIN 30 208 INTERLEUKIN_6. FT DISULFID 72 78 BY SIMILARITY. FT DISULFID 101 111 BY SIMILARITY. FT CARBOHYD 38 38 N-LINKED (GLCNAC. . .) (POTENTIAL). SQ SEQUENCE 208 AA; 23758 MW; A0F00B9BA2EC341 CRC64; Score 86; DB 1; Length 208;</p> <p>Query Match 9.4%; Score 84.5; DB 1; Length 209; Best Local Similarity 22.0%; Pred. No. 1; Matches 35; Conservative 37; Mismatches 89; Indels 5; Gaps 2;</p> <p>QY 2 PLG---PASSLPQSFLLKCLEQ---VRKIQGDGAALOEKLCAKYKLCHPEELVLIGHSL 54 31 PLGEDFXNDTPGRLLITTPKTEALIKRMVDKISAMRKICEKNDECESSKETLAENKL 90</p> <p>QY 55 GIP-WAPLSSCPSPQLQAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTQLDVADEF 113 91 NLPKMEEEKDGCFQSGFNQOAICLIRTAGLLEYQYLQDLYEGNQENYVDRLNKRINTL 150</p> <p>QY 114 ATTIIWQOOMEELGMAPALQOPTQGAMPFAFASAQRAGGVLVASHLQSLEVESYRVL 169</p> <p>Db 16 KCLEQVRKIQGDGAALOEKLCAKYKLCHPEELVLIGHSLGIP-WAPLSSCPSPQLLAGC 74 49 KMEEEFIKYIILGKISALRKEMCDKYNKCEDSKAENNRPLKLABKDGCFCQSGFQNQETC 108 75 LSQLHSGLFLYQGLLQLA 209 AA; 23483 MW; 75144922E43B48E9 CRC64; Query Match 9.4%; Score 84.5; DB 1; Length 209;</p> <p>Db 109 LTRITTGILLEFQIHLKYIQANYEGNKEDANSVYISTKLVQMLMKVKSQDEVTTPDPTT 168</p> <p>QY 131 OPTQGAMPFAFASAQRAGGVLVASHLQSLEVESYRVL 169</p> <p>Db 169 DTSLOQAILKAQDKWLKHTTIIHLRSLEDFLQFSLRAVR 207</p>		

Search completed: October 6, 2004, 16:04:29
Job time : 25 secs

This Page Blank (uspto)

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: October 6, 2004, 15:58:27 ; Search time 117 Seconds
 (without alignments)
 469.232 Million cell updates/sec

Title: US-10-009-792C-19

Perfect score: 896 1 TPLGPASSLPOSFLLKCLEQ.....SHIQSFILEVSYRVLRLAQP 174

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

Sequence: 1017041 seqs, 315518202 residues

Total number of hits satisfying chosen parameters: 1017041

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%
 Listing first 45 summaries

Database : SPTREMBL 25:*

```

1: sp_archaea:*
2: sp_bacteria:*
3: sp_fungi:*
4: sp_human:*
5: sp_invertebrate:*
6: sp_mammal:*
7: sp_minc:*
8: sp_organelle:*
9: sp_phage:*
10: sp_plant:*
11: sp_rabbit:*
12: sp_virus:*
13: sp_unclassified:*
14: sp_rvirus:*
15: sp_bacteriaph:*
16: sp_archeap:*
17: sp_archeap:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
1	896	100.0	200	4	Q8N4W3	Q8n4w3 homo sapien
2	744	83.0	195	6	Q9GJU0	Q9gju0 felis silve
3	634	70.8	214	11	P97712	P97712 rattus norv
4	511	57.0	127	6	Q8MKEO	Q8mke0 equus cabal
5	111	12.4	241	13	Q9OYI0	Q9oyi0 gallus gall
6	110.5	12.3	212	6	Q8MJ75	Q8mj75 sus scrofa
7	108	12.1	208	6	Q9XTB0	Q9xtb0 delphinaptere
8	96	10.7	189	4	Q9H2A5	Q9h2a5 homo sapien
9	94.5	10.5	455	16	Q8D706	Q8d706 vibrio vuln
10	94	10.5	345	16	Q9KTL6	Q9ktl6 vibrio chol
11	93	10.4	189	4	Q9NPF7	Q9npf7 homo sapien
12	89.5	10.0	214	6	Q8BMKE5	Q8bmke5 sus scrofa
13	88.5	9.9	666	16	Q9A523	Q9a523 caulobacter
14	88.5	9.9	786	16	Q9I019	Q9i019 pseudomonas
15	88.5	9.9	1931	2	Q8RJY3	Q8rjy3 stigmatella
16	86	9.6	502	8	Q34008	Q34008 beta vulgar

Query Match Score 896; DB 4; Length 200;
 Best Local Similarity 100.0%; Pred. No. 1.9e-7;
 Matches 174; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	1 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 60
Db	27 TPLGPASSLPOSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLGIPWAP 86

RESULT 1
 Q8N4W3
 ID Q8N4W3
 AC Q8N4W3;
 PRELIMINARY;
 PRT; 200 AA.
 RP SEQUENCE FROM N.A.
 RC TISSUE=Skin;
 RA Strausberg R.;
 RL Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
 DR EMBL; BC033245; FAH33245.1; -
 DT 01-OCT-2002 (TREMBLrel. 22, Created)
 DT 01-OCT-2002 (TREMBLrel. 22, Last sequence update)
 DT 01-JUN-2003 (TREMBLrel. 24, Last annotation update)
 DE Hypothetical Protein.
 DR GO:0005576; C:extracellular; IEA.
 DR Homo sapiens (Human).
 OS Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OC NCBI_TaxID=9606;
 DR [1]
 RN [1]

SEQUENCE FROM N.A.
 RC InterPro; IPR03629; GCSF_MGF.
 DR InterPro; IPR03573; IL6_MGF_GCSF.
 DR PF00489; IL6; 1.
 DR PFam; PF00433; IL6GCSFMGF.
 DR Prints; PR00433; IL6GCSFMGF.
 DR ProDom; PD008388; GCSF_MGF; 1.
 DR SMART; SM00126; IL6; 1.
 DR PROSITE; PS00254; INTERLEUKIN_6; 1.
 KW Hypothetical protein.
 SQ SEQUENCE 200 AA; 21543 MW; 8648AA55B329A96C CRC64;

SQ	SEQUENCE	241 AA;	26790 MW;	657F8049F25BD2F8	CRC64;
DR	InterPro; IPR003629; GCSF MGF.				
DR	InterPro; IPR003573; IL6_MGF_GCSF.				
DR	PF00489; IL6; 1.				
PRINTS; PR00433; IL6GCSFMGF.					
DR	ProDom; PD008388; GCSF_MGF; 1.				
SMART; SM00126; IL6; 1.					
PROSITE; PS00254; INTERLEUKIN_6; 1.					
SEQUENCE	127 AA; 13657 MW; 25559C2569802077 CRC64;				
3Q	3 LGPSSLP-----QSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCH 43				
Db	41 LPAAAAPLPAAADSSGEVGLLEEAGARRALLCEPLARVLDRAVQLDEMCKKFTVCE 100				
Query Match	Score 511; DB 6; Length 127;				
Best Local Similarity	12.4%; Pred. No. 5.5e-41;				
Matches 101; Conservative	9; Mismatches 17; Indels 0; Gaps 0;				
48 VLLGHSLGLIPWAPLSSCPSSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELAG-----CLSQLHSGLFLYQGLLQALEGISPE 98					
44 PEEVLVLGHSLGLIPWAPLSSCPSSQALQLAG-----CLSQLHSGLFLYQGLLQALEGISPE 98					
Db	44 PEEVLVLGHSLGLIPWAPLSSCPSSQALQLAG-----CLSQLHSGLFLYQGLLQALEGISPE 98				
QY	44 PEEVLVLGHSLGLIPWAPLSSCPSSQALQLAG-----CLSQLHSGLFLYQGLLQALEGISPE 98				
Db	101 NSMEMLVRNNNLNP----KVTEEDGCLLAGEDEEKCLTKLSSGLFAFQTYLEFIQETFDS 156				
QY	99 LGPTLDLQLDVADEPATTIWOQMAPALOPTQGAMPAPAFASAFOARRAGGVVL----LGPTLDLQLDVADEPATTIWOQMAPALOPTQGAMPAPAFASAFOARRAGGVVL 107				
Db	108 LDVADPATTIWOQMAPALOPTQGAMPAPAFASAFOARRAGGVVLQSFLEVSYRV 167				
QY	157 EKQNVESLCYSTKHLAATIRQMV----INPDEVVIP--DSAACKSLLANLKSSDKDW 206				
Db	61 LDVTDEATNWIQOMEDLGIVAPVQPTHGPMPTFASAFQARRAGGVLVASNQLQRFILELAYRG 120				
QY	153 --VASHL----QSFLFLEVSYRVLRHL 171				
Db	207 TEKITMHLLLRDFTSFMEKTVRAVRYL 233				
RESULT 6					
Q8MJ75	PRELIMINARY; PRT; 212 AA.				
ID	Q8MJ75; PRELIMINARY; PRT; 212 AA.				
AC	Q8MJ75; PRELIMINARY; PRT; 212 AA.				
DT	01-OCT-2002 (TREMBLrel. 22; Created)				
AC	01-OCT-2002 (TREMBLrel. 22; Last sequence update)				
DT	01-OCT-2003 (TREMBLrel. 25; Last annotation update)				
DE	IL-6.				
OS	.Sus scrofa (Pig).				
OC	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Suidae; Sus.				
NCBI_TaxID	9823; [1]				
RN	SEQUENCE FROM N.A.				
RA	Lee D., Yoo H., Choi I.; -				
RT	"Sequencing of Porcine IL-6 in Korea." ; Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.				
RL	EMBL; AF518322; AJM74938.1; -				
DR	GO; GO:0005576; C:extracellular; IEA.				
DR	GO; GO:0005125; F:cytokine activity; IEA.				
DR	GO; GO:0005138; F:interleukin-6 receptor binding; IEA.				
DR	GO; GO:0006955; P:immune response; IEA.				
DR	InterPro; IPR003573; IL6_MGF_GCSF.				
DR	InterPro; IPR003574; Interleukin_6.				
DR	PFam; PF00489; IL6; 1.				
DR	PRINTS; PRO0433; IL6GCSFMGF.				
RT	DR PRODOM; PD004356; Interleukin_6; 1.				
RT	DR SMART; SM00126; IL6; 1.				
RT	DR PROSITE; PS00254; INTERLEUKIN_6; 1.				
SQ	SEQUENCE 212 AA; 23881 MW; 1F540E7030BCFD77 CRC64; [3]				
Query Match	Score 12.3%; DB 6; Length 212;				
Best Local Similarity	23.3%; Pred. No. 0.015;				
Matches 37; Conservative	32; Mismatches 85; Indels 5; Gaps 3;				
16 KCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLGHSLGLIP-WAPLSSCPSSQALQLAGC 74					
Db	52 KTTEELIKYILGKISAMREEMCEKYKCENSKEVLAENNLNLPKMAEKDGCFQSGFNQETC 111				
QY	75 LSOLHSGLFLYQGLLQALEGISPELGPTLQLDVAFTTIWOQMEELGMAPALOPT- 133				
Db	112 LMRITTGIVFQIYLQKEYYESNKGNVEAQISTKALIQTILRQKGKNPDKATTNPNTT 171				
QY	134 -QGAMPAPAS--AFORRAGGVLVASHLQSFLLEVSYRVLR 169				
Db	172 NAGLLDDKLQSQNNEWMRNTKILLILRSLEDFLQFSLRAIR 210				
RESULT 7					
SIGNAL	1 47				
CHAIN	48 241				

ID Q9XT80; AC Q9XT80; DT 01-NOV-1999 (TREMBLrel. 12, Created) DT 01-NOV-1999 (TREMBLrel. 12, Last sequence update) DT 01-OCT-2003 (TREMBLrel. 25, Last annotation update) DE Interleukin_6.	PRELIMINARY; PRT; 208 AA.	DR Genew; HGNC:15488; IL23A. SEQUENCE 189 AA; 20744 MW; BFB5C0F42D4C1E3A CRC64;
OS Delphinapterus leucas (Beluga whale). OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Cetacea; Odontoceti; Monodontidae; Delphinapterus.	DR NCBI_TaxID=9749; RN [1]; RP SEQUENCE FROM N.A.	Query Match 10.7%; Score 96; DB 4; Length 189; Best Local Similarity 26.1%; Pred. No. 0.31; Matches 48; Conservative 19; Mismatches 77; Indels 40; Gaps 9;
DR GO; GO:0005576; C:extracellular; IEA.	DR GO; GO:0005125; F:cytokine activity; IEA.	QY 14 LLKCLEQVRKIQGDGA-----AQEKLCATYKLCHPEELVLLGH-----SLG 55
DR GO; GO:0005138; F:interleukin-6 receptor binding; IEA.	DR GO; GO:0006955; P:immune response; IEA.	Db 12 LLPWTAQGRAVPGGSSPAWTQCOQLSQKLCTLAWSAHP---LVGHMDLREGDEETND 67
DR InterPro; IPR003573; IL6_MGF_GCSF.	DR InterPro; IPR003574; Interleukin_6.	QY 14 LPWAPL-SCPSQALQ----LAGCLSQLHSGFLFLYQGLL-QALEGISPELGPTLDTLQLDV 110
DR PF00489; IL6_1.	DR PRINTS; PR00433; IL6GSFMGF.	Db 12 VPHIQCGDCDPQGLRDNQSFCQLQRTHOGLIFYEKLLGSDIFTG-EPSLLPDSPVAQLHA 126
DR PRODOM; PD004356; Interleukin_6; 1.	DR SMART; SM00126; IL6_1.	QY 111 ADFATTIWIQOME----ELGMAPALQPTQGAMPFAFASAFQRRAGGVVLVASHLQSFFLEVSYR 166
DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR SEQUENCE 208 AA; 23456 MW; 81CC85C6E80389C4 CRC64;	Db 127 SLLGLSQLQPEGHHWETQQIPSLSPSQ----PWQRLLLRFKILRSLOQAFVAVAAR 178
DR HSSP; P05231; 1ALU.	DR GO; GO:0005576; C:extracellular; IEA.	QY 167 VLRH 170
DR GO; GO:0005125; F:cytokine activity; IEA.	DR GO; GO:0005138; F:interleukin-6 receptor binding; IEA.	Db 179 VFAH 182
DR GO; GO:0006955; P:immune response; IEA.	DR InterPro; IPR003573; IL6_MGF_GCSF.	RESULT 9
DR InterPro; IPR003574; Interleukin_6.	DR PF00489; IL6_1.	Q8D706 ID Q8D706 PRELIMINARY; PRT; 455 AA.
DR PRINTS; PR00433; IL6GSFMGF.	DR PRODOM; PD004356; Interleukin_6; 1.	AC Q8D706; DT 01-MAR-2003 (TREMBLrel. 23, Created)
DR SMART; SM00126; IL6_1.	DR SMART; SM00126; IL6; 1.	DT 01-MAR-2003 (TREMBLrel. 23, Last sequence update)
DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR SEQUENCE 208 AA; 23456 MW; 81CC85C6E80389C4 CRC64;	DT 01-JUN-2003 (TREMBLrel. 24, Last annotation update)
DR HSSP; P05231; 1ALU.	DR GO; GO:0005576; C:extracellular; IEA.	DE Biopolymer transport protein.
DR GO; GO:0005576; C:extracellular; IEA.	DR GO; GO:0005125; F:cytokine activity; IEA.	VV20363.
DR GO; GO:0005138; F:interleukin-6 receptor binding; IEA.	DR GO; GO:0006955; P:immune response; IEA.	GN Vibrio vulnificus.
DR GO; GO:0006955; P:immune response; IEA.	DR InterPro; IPR003573; IL6_MGF_GCSF.	OS Bacteria; Proteobacteria; Gammaproteobacteria; Vibionales; Vibrioaceae; Vibrio.
DR InterPro; IPR003574; Interleukin_6.	DR PF00489; IL6_1.	OC
DR PF00489; IL6_1.	DR PRINTS; PR00433; IL6GSFMGF.	OC
DR PRODOM; PD004356; Interleukin_6; 1.	DR SMART; SM00126; IL6_1.	NCBI_TaxID=672;
DR SMART; SM00126; IL6; 1.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	RN [1]
DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR SEQUENCE 208 AA; 23456 MW; 81CC85C6E80389C4 CRC64;	SEQUENCE FROM N.A.
DR HSSP; P05231; 1ALU.	DR GO; GO:0005576; C:extracellular; IEA.	RC STRAIN=CMCP6;
DR GO; GO:0005125; F:cytokine activity; IEA.	DR GO; GO:0005138; F:interleukin-6 receptor binding; IEA.	RA Rhe J.H., Kim S.Y., Chung S.S., Kim J.J., Moon Y.H., Jeong H., Choy H.E;
DR GO; GO:0006955; P:immune response; IEA.	DR GO; GO:0006955; P:immune response; IEA.	RA "Complete genome sequence of <i>Vibrio vulnificus</i> CMCP6.";
DR InterPro; IPR003573; IL6_MGF_GCSF.	DR InterPro; IPR003574; Interleukin_6.	RT Submitted (DEC-2002) to the EMBL/GenBank/DDBJ databases.
DR InterPro; IPR003574; Interleukin_6.	DR PF00489; IL6_1.	RL DR EML; AE016809; AA007321.1; -
DR PF00489; IL6_1.	DR PRINTS; PR00433; IL6GSFMGF.	DR GO; GO:0008565; F:protein transporter activity; IEA.
DR PRODOM; PD004356; Interleukin_6; 1.	DR SMART; SM00126; IL6_1.	DR GO; GO:0006810; P:protein transport; IEA.
DR SMART; SM00126; IL6; 1.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR InterPro; IPR002898; MotA_Exbb.
DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR SEQUENCE 208 AA; 23456 MW; 81CC85C6E80389C4 CRC64;	DR Pfam; PF01618; MotA_Exbb; 1.
DR HSSP; P05231; 1ALU.	DR GO; GO:0005576; C:extracellular; IEA.	KW Complete proteome.
DR GO; GO:0005125; F:cytokine activity; IEA.	DR GO; GO:0005138; F:interleukin-6 receptor binding; IEA.	SEQ NCBI_TaxID=455 AA; 49446 MW; 241A87B1CD8E942 CRC64;
DR GO; GO:0006955; P:immune response; IEA.	DR GO; GO:0006955; P:immune response; IEA.	Query Match 10.5%; Score 94.5; DB 16; Length 455;
DR InterPro; IPR003573; IL6_MGF_GCSF.	DR InterPro; IPR003574; Interleukin_6.	Best Local Similarity 24.6%; Pred. No. 1.2; Matches 43; Conservative 15; Mismatches 40; Indels 77; Gaps 7;
DR SMART; SM00126; IL6_1.	DR SMART; SM00126; IL6; 1.	DE Interleukin 23 p19 subunit.
DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	OS Homo sapiens (Human).
DR HSSP; P05231; 1ALU.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Cetacea; Odontoceti; Monodontidae; Delphinapterus.
DR GO; GO:0005576; C:extracellular; IEA.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
DR GO; GO:0005125; F:cytokine activity; IEA.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	OX NCBI_TaxID=9606;
DR GO; GO:0006955; P:immune response; IEA.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	RN [1]
DR InterPro; IPR003573; IL6_MGF_GCSF.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	RP SEQUENCE FROM N.A. MEDLINE=20567322; PubMed=11114383;
DR SMART; SM00126; IL6; 1.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	RA Oppmann B., Lesley R., Blom B., Timans J.C., Xu Y., Hunte B., Vega F.,
DR PRODOM; PD004356; Interleukin_6; 1.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	RA Yu N., Wang J., Singh K., Zonin F., Vaisberg B., Churakova T., Liu M.-R., Gorman D., Wagner J., Zuravski S., Liu Y.-J., Abrams J.S., Moore K.W., Rennick D., de Waal-Malefyt R., Hannum C., Bazan J.F., Kastelein R.A.;
DR SMART; SM00126; IL6; 1.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	RA Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12.";
DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	RT Immunity 13:715-725(2000); DR AF301620; AAG37232.1; -.
DR HSSP; P05231; 1ALU.	DR PROSITE; PS00254; INTERLEUKIN_-6; 1.	DR Q9KTL6 PRELIMINARY; PRT; 345 AA.

DT 01-JUN-2003 (TREMBLrel. 17, Last sequence update)
 DE Oligopeptide transporter, OPT family.
 GN CC2646.

OS Caulobacter crescentus; Caulobacter; Alphaproteobacteria; Caulobacterales;
 OC Caulobacteraceae; Caulobacter.
 OX NCBI_TaxID=155892;

RN [1]
 RP SEQUENCE FROM N.A.
 RC STRAIN=ATCC 19089 / CB15;
 RX MEDLINE=21173698; PubMed=112559647;
 RA Nierman W.C., Feldblum T.V., Laub M.T., Paulsen I.T., Nelson K.E.,
 RA Nierman J., Heidelberg J.F., Alliey M.R.K., Ohta N., Maddock J.R.,
 RA Potocka I., Nelson W.C., Newron A., Stephens C., Phadke N.D., Ely B.,
 RA DeBoy R.T., Dodson R.J., Durkin A.S., Gwinn M.L., Haft D.H.,
 RA Kolenay J.F., Smit J., Craven M.B., Khouri H., Shetty J., Berry K.,
 RA Utterback T., Tran K., Wolf A., Vamathevan J., Ermolaeva M., White O.,
 RA Salzberg S.L., Venter J.C., Shapiro L., Fraser C.M.;
 RT "Complete genome sequence of Caulobacter crescentus.";
 RL PROC. NATL. ACAD. SCI. U.S.A. 98:4136-4141(2001).
 DR EMBL; AE005932; AAK24613.1; -.
 DR PIR; A87577; A87577;
 DR TIGR; CC2646; -.
 DR InterPro; IPRO04814; OPT_fam.
 DR InterPro; IPRO04813; Tetrpept_transpt.
 DR PFam; PF03169; OPT; 1.
 DR TIGRFAMS; TIGR00728; OPT_sfam; 1.
 DR TIGRFAMS; TIGR00733; TIGR00733; 1.
 KW Complete proteome.
 SQ SEQUENCE 666 AA; 67569 MW; 1ED3FF2886CA8B6C0 CRC64;

Query Match 9.9%; Score 88.5; DB 16; Length 786;
 Best Local Similarity 32.5%; Pred. No. 7.1;
 Matches 37; Conservative 14; Mismatches 48; Indels 15; Gaps 4;

QY 50 LGHSLGIPWAPLSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLD 109
 Db 196 LGAASCATGIGASS--SLAIMGAGHLMGTVGVAMFTGLFIAWAIIVPLTLVTPMPEAD 253

QY 110 VADFATTIWIQ-QMEEELG-----MAPALQP-TQGAMPAPASAQFQRAGG 150
 Db 254 AATHALTWIKSQRFLGAGVIGAAAIIWTIAKLVGPIITSGLKSFAAAQARKAGG 307

RESULT 14
 Q9I019 PRELIMINARY; PRT; 786 AA.

AC Q9I019;
 DT 01-MAR-2001 (TREMBLrel. 16, Created)
 DT 01-MAR-2001 (TREMBLrel. 16, Last sequence update)
 DT 01-OCT-2003 (TREMBLrel. 25, Last annotation update)
 DE Probable sensor/response regulator hybrid.
 GN PA2824.

OS Pseudomonas aeruginosa.
 OC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
 OC Pseudomonaceae; Pseudomonas.
 OX NCBI_TaxID=287;

RN [1]
 RP SEQUENCE FROM N.A.
 RC STRAIN=ATCC 15692 / PAO1;
 RX MEDLINE=20437337; PubMed=10984043;
 RA Stover C.K., Pham X.-Q.T., Erwin A.L., Mizoguchi S.D., Warrener P.,
 RA Hickey M.J., Brinkman F.S.L., Rufnagle W.O., Kowalik D.J., Lagrou M.,
 RA Garber R.L., Goltry L., Tolentino E., Westbroek-Wadman S., Yuan Y.,
 RA Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R.M.,
 RA Smith K.A., Spencer D.H., Wong G.K.-S., Wu Z., Paulsen I.T.,
 RA Reizer J., Saier M.H., Hancock R.E.W., Lory S., Olson M.V.;
 RT "Complete genome sequence of Pseudomonas aeruginosa PAO1, an
 RT opportunistic pathogen.";
 RL Nature 406:959-964(2000).
 CC -!- SIMILARITY: THE N-TERMINAL REGION IS SIMILAR TO THAT OF OTHER
 REGULATORY COMPONENTS OF SENSORY TRANSDUCTION SYSTEMS. . . ; IEA.

CC DR -!- SIMILARITY: TO PROKARYOTE SENSORY TRANSDUCTION PROTEINS.
 CC DR EMBL; AE004709; AG06212.1; -.
 DR PIR; F83292; F83292.
 DR HSSP; P06143; 1AB6.
 DR GO; GO:0016020; C:membrane; IEA.
 DR GO; GO:0005524; F:ATP binding; IEA.
 DR GO; GO:0003677; F:DNA binding; IEA.
 DR GO; GO:0016301; F:kinase activity; IEA.
 DR GO; GO:0016740; F:transferase activity; IEA.
 DR GO; GO:0000156; F:two-component response regulator activity; IEA.
 DR GO; GO:0000155; F:two-component sensor molecule activity; IEA.
 DR GO; GO:0007600; F:sensory perception; IEA.
 DR InterPro; IPRO03594; ATPBind ATPase.
 DR InterPro; IPRO04358; Bact_sens_dr_C.
 DR InterPro; IPRO05467; His_Kinase.
 DR InterPro; IPRO03661; His_KinA_N.
 DR InterPro; IPRO01789; Response_reg.
 PFam; PF02518; HATPase_c; 1.
 DR SMART; SMO0388; HISKA; T.
 DR SMART; SMO0448; REC; 1.
 DR PROSITE; PS50109; HIS_KIN; 1.
 DR PROSITE; PS50110; RESPONSE_REGULATORY; 1.
 DR PROSITE; PS50110; RESPONSE_REGULATOR; 1.
 DR PRODOM; PD000039; Response_reg; 1.
 DR SMART; SMO0387; HATPase_c; 1.
 DR SMART; SMO0388; HISKA; T.
 DR SMART; SMO0448; REC; 1.
 DR PROSITE; PS50109; HIS_KIN; 1.
 DR PROSITE; PS50110; RESPONSE_REGULATOR; 1.
 DR KW Kirasae; Phosphorylation; Sensory transduction; transferase;
 KW Complete proteome.
 SQ SEQUENCE 786 AA; 85860 MW; 3B134513F3538F7C CRC64;

Query Match 9.9%; Score 88.5; DB 16; Length 786;
 Best Local Similarity 29.2%; Pred. No. 8.6;
 Matches 50; Conservative 19; Mismatches 49; Indels 53; Gaps 10;

QY 26 GDGAALQEKLC-ATYKLCHPEELVLLG--HSLGIPWAPLSSCPSSQALQLAG-CLSQLHSG 81
 Db 490 GLGLALTRKLCEAMOGELTVESTVGLGSLSFVGPLAPVSP-FLQALPLRGRVIAQCSAN 548

QY 82 LFLYQGLLQALEGISPE-----LGPTLDLTLQLDVFATTIWIQQMEEELGMA 127
 Db 549 ---SGLAQIQLQTWLPRWGLEYKRLETDDSLGHSLDYLISDCPDCL-----MGLR 595

QY 128 PALOPTQGAMPAPAFASAFORRAGGVVASHLQSFL-EVSYRV-LRHLAQP 174
 Db 596 PSI-----GTPIILVTAYGFSFLEPELARRLSPLRQLARP 629

RESULT 15
 Q8RJY3 PRELIMINARY; PRT; 1931 AA.
 ID Q8RJY3
 AC DT 01-JUN-2002 (TREMBLrel. 21, Created)
 AC DT 01-JUN-2002 (TREMBLrel. 21, Last sequence update)
 AC DT 01-OCT-2003 (TREMBLrel. 25, Last annotation update)
 DT 01-OCT-2003 (TREMBLrel. 25, Last annotation update)
 DE STID protein.
 GN STID.
 OS Stigmatella aurantiaca.
 OC Bacteria; Proteobacteria; Deltaproteobacteria; Myxococcales;
 OC Cystobacterineae; Cystobacteraceae; Stigmatella;
 OC NCBI_TaxID=41;
 RN RP SEQUENCE FROM N.A.
 RN RC STRAIN=SG a15;
 RN RC Gaitatzis N., Silakowski B., Kunze B., Nordsiek G., Blocker H.,
 RN RA Hofle G., Muller R.;
 RN RT "The biosynthesis of the aromatic myxobacterial electron transport
 inhibitor stigmatellin is directed by a novel type of modular
 polyketide synthase.";
 RN RL Submitted (MAR-2002) to the EMBL/GenBank/DBJ databases.
 DR EMBL; AJ421825; CAD19088.1; -.
 DR GO; GO:0008875; F:S-adenosylmethionine-dependent methyltransf. . . ; IEA.

This Page Blank (uspto)

DR GO; GO:0016740; F:transferase activity; IEA.
 DR GO; GO:0006633; P:fatty acid biosynthesis; IEA.
 DR GO; GO:0008152; P:metabolism; IEA.
 DR InterPro; IPR001227; Ac trans.
 DR InterPro; IPR000794; Ketoacyl synth.
 DR InterPro; IPR001601; Methyltransf.
 DR InterPro; IPR006163; P bind.
 DR InterPro; IPR000051; SAM bind.
 DR InterPro; IPR002155; Thiolase.
 DR Pfam; PF00698; ACYL transf; 1.
 DR Pfam; PF00109; ketoacyl-synt; 1.
 DR Pfam; PF02801; ketoacyl-synt_C; 1.
 DR Pfam; PF00550; pp-binding; 1.
 DR PROSITE; PS50075; ACP DOMAIN; 1.
 DR PROSITE; PS00606; B_KETOACYL SYNTHASE; 1.
 DR PROSITE; PS00098; THIOLASE_1; 1.
 KW Phosphopantetheine; Transferase.
 SQ SEQUENCE 1931 AA; 208260 MW; 6DEAA0F496A9A84F CRC64;

Query Match Score 9.9%; Score 88.5; DB 2; Length 1931;
 Best Local Similarity 25.3%; Pred. No. 25;
 Matches 41; Conservative 24; Mismatches 48; Indels 49; Gaps 6;

Qy 6 ASSLPOQFLKCLEQVRKIQGDGAALQERKLCATYK--LCHPEELVLLGHSLGIPWAPLS 62
 Db 734 ASNGPERSTVL-----SGDPAALEEQVLTSLRQEVFCRPVVDVASHS----- 775

Qy 63 SCPSQALQLLAGCLSQLHSGLFLYQGLLQALEGISPELGPFTLQLDVADEFATTIWQOME 122
 Db 776 -----PQMEPLPELERGLAVLQPRRAAVPFYSTVLGDVLDGRRLDASYWARNL---- 824

Qy 123 ELGMAPALQOPTQGAMPFAFASAFORRAGGYLYASHLQSLEVS 164
 Db 825 ---RSPVTL-----FFQSLQR----LIAAGHFLIEVS 849

Search completed: October 6, 2004, 16:06:34
 Job time : 121 secs

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 9, 2004, 01:28:34 ; Search time 27.6529 Seconds
 (without alignments)
 3612.319 Million cell updates/sec

Title: US-10-009-792C-26

perfect score: 180

Sequence: 1 atgtttaaggttaaaaagaa.....tccctgtcaaggtagtttagag 180

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 682709 seqs, 277475446 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing First 45 summaries

Database :

Issued Patents NA:
 1: /cgn2_6/ptodata/2/ina/5A_COMB.seq:*

2: /cgn2_6/ptodata/2/ina/5B_COMB.seq:*

3: /cgn2_6/ptodata/2/ina/6A_COMB.seq:*

4: /cgn2_6/ptodata/2/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/2/ina/PCTUS_COMB.seq:*

6: /cgn2_6/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
1	89.2	49.6	642	1	US-08-104-445-2	Sequence 2, App1
2	89.2	49.6	1413	1	US-08-104-445-1	Sequence 1, App1
3	79	43.9	1349	4	US-09-570-856B-2	Sequence 2, App1
4	50.8	28.2	1207	1	US-08-575-964-2	Sequence 2, App1
5	50.8	28.2	1207	2	US-08-963-500-2	Sequence 2, App1
6	50.6	28.1	546	3	US-08-469-318-177	Sequence 177, App
7	50.6	28.1	546	3	US-08-469-318-178	Sequence 177, App
8	50.6	28.1	546	3	US-08-468-609A-177	Sequence 177, App
9	50.6	28.1	546	3	US-08-468-609A-178	Sequence 178, App
10	50.6	28.1	546	4	US-08-446-872A-177	Sequence 177, App
11	50.6	28.1	546	4	US-08-446-872A-178	Sequence 178, App
12	50.6	28.1	546	4	US-08-762-227A-177	Sequence 177, App
13	50.6	28.1	546	4	US-08-762-227A-178	Sequence 178, App
14	50.6	28.1	546	5	PCT-US95-01185-177	Sequence 177, App
15	50.6	28.1	546	5	PCT-US95-01185-178	Sequence 178, App
16	50.6	28.1	906	3	US-08-469-318-53	Sequence 53, App1
17	50.6	28.1	906	3	US-08-468-609A-53	Sequence 53, App1
18	50.6	28.1	906	4	US-08-446-872A-53	Sequence 53, App1
19	50.6	28.1	906	4	US-08-762-227A-53	Sequence 53, App1
20	50.6	28.1	906	5	PCT-US95-01185-53	Sequence 53, App1
21	50.6	28.1	921	3	US-08-469-318-72	Sequence 72, App1
22	50.6	28.1	921	3	US-08-469-318-75	Sequence 75, App1
23	50.6	28.1	921	3	US-08-469-318-78	Sequence 78, App1
24	50.6	28.1	921	3	US-08-469-318-84	Sequence 84, App1
25	50.6	28.1	921	3	US-08-468-609A-72	Sequence 72, App1
26	50.6	28.1	921	3	US-08-468-609A-75	Sequence 75, App1
27	50.6	28.1	921	3	US-08-468-609A-78	Sequence 78, App1

RESULT 1
 US-08-104-445-2
 / Sequence 2, Application 08/104445
 / Patent No. 5306633
 / GENERAL INFORMATION:
 / APPLICANT: GOTTSCHALK, MICHAEL
 / APPLICANT: SCHAFFER, ERWIN
 / APPLICANT: SPRESSLER, BRUNO
 / TITLE OF INVENTION: BACTERIAL XYLANASE, METHOD FOR ITS PRODUCTION, BACTERIA PRODUCING A XYLANASE, DNA FRAGMENT, ENCODING A XYLANASE, PLASMID CONTAINING THE DNA FRAGMENT, BAKING AGENTS CONTAINING A XYLANASE, AND METHOD FO
 / NUMBER OF SEQUENCES: 3
 / CORRESPONDENCE ADDRESS:
 / ADDRESSEE: OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT,
 / ADDRESS: P.O.C.
 / STREET: 1755 S. Jefferson Davis Highway, Suite 400
 / CITY: Arlington
 / STATE: Virginia
 / COUNTRY: U.S.A.
 / ZIP: 22202
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patent In Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: 08/104,445
 FILING DATE:
 CLASSIFICATION: 435
 ATTORNEY/AGENT INFORMATION:
 NAME: Oblon, No. 5306633man F.
 REGISTRATION NUMBER: ~ 24, 618
 REFERENCE/DOCKET NUMBER: 583-179-0
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (703) 413-3000
 TELEFAX: (703) 413-2220
 TELEX: 248855 OPAT UR
 INFORMATION FOR SEQ ID NO: 2:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 642 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: unknown
 TOPOLOGY: unknown
 MOLECULE TYPE: DNA (genomic)
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 1..639
 US-08-104-445-2

Query Match 49.6%; Score 89.2; DB 1; Length 642;
 Best Local Similarity 76.8%; Pred. No. 4.8e-20;
 Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;

Qy 1 ATGTTAAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 Db 1 ATGTTAAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 60

Qy 61 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120
 Db 61 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Qy 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 121 GCGGGACAGTAACGGCAGTCA 142

RESULT 2 US-08-104-445-1
 ; Sequence 1, Application 08/104445
 ; Patent No. 5306633
 ; GENERAL INFORMATION:
 ; APPLICANT: GOTTSCHALK, MICHAEL
 ; APPLICANT: SCHUSTER, ERWIN
 ; APPLICANT: SPROESSLER, BRUNO
 ; TITLE OF INVENTION: BACTERIAL XYLANASE, METHOD FOR ITS
 ; PRODUCTION, BACTERIA PRODUCING A XYLANASE, DNA FRAGMENT,
 ; NUMBER OF SEQUENCES: 3
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT,
 ; ADDRESSSEEE: P.C.
 ; STREET: 1755 S. Jefferson Davis Highway, Suite 400
 ; CITY: Arlington
 ; STATE: Virginia
 ; COUNTRY: U.S.A.
 ; ZIP: 22202
 ; COMPUTER READABLE FORM:
 ; COMPUTER: IBM PC compatible
 ; OPERATING SYSTEM: PC-DOS/MS-DOS
 ; SOFTWARE: PatentIn Release #1.0, Version #1.25
 ; CURRENT APPLICATION DATA:
 ; APPLICATION NUMBER: 08/104,445
 ; FILING DATE:
 ; CLASSIFICATION: 435
 ; ATTORNEY/AGENT INFORMATION:
 ; NAME: Oblon, NO. 5306633man F.
 ; REGISTRATION NUMBER: 24, 618
 ; REFERENCE/DOCKET NUMBER: 583-179-0
 ; TELECOMMUNICATION INFORMATION:
 ; TELEPHONE: (703) 413-3000
 ; TELEFAX: (703) 413-2220
 ; TELEX: 248855 OPAT UR
 ; INFORMATION FOR SEQ ID NO: 1:
 ; SEQUENCE CHARACTERISTICS:
 ; LENGTH: 1413 base pairs
 ; TYPE: nucleic acid
 ; STRANDEDNESS: unknown
 ; TOPOLOGY: unknown
 ; MOLECULE TYPE: DNA (genomic)

Query Match 49.6%; Score 89.2; DB 1; Length 1413;
 Best Local Similarity 76.8%; Pred. No. 6.7e-20;
 Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;

Qy 1 ATGTTAAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 Db 506 ATGTTAAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 565

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

RESULT 3 US-09-570-856B-2
 ; Sequence 2, Application US/09570856B
 ; Patent No. 6682923
 ; GENERAL INFORMATION:
 ; APPLICANT: Bentzien, Joerg M.
 ; APPLICANT: Dahiyat, Bassil I
 ; TITLE OF INVENTION: NOVEL THERMOSTABLE ALKALIPHILIC XYLANASE
 ; FILE REFERENCE: A-67478-1/RFT/RMS/RMK
 ; CURRENT APPLICATION NUMBER: US/09/570,856B
 ; CURRENT FILING DATE: 2002-04-15
 ; PRIOR APPLICATION NUMBER: US 60/133,714
 ; PRIOR FILING DATE: 1999-05-12
 ; NUMBER OF SEQ ID NOS: 34
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 2
 ; LENGTH: 1349
 ; TYPE: DNA
 ; ORGANISM: Bacillus circulans
 ; US-09-570-856B-2

Qy Query Match 43.9%; Score 79; DB 4; Length 1349;
 ; Best Local Similarity 79.0%; Pred. No. 1.6e-16;
 ; Matches 94; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 Db 392 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTATCGGCAGCTTTAATGAGTATTAGC 451

Qy 61 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTATCGGCAGCTTTAATGAGTATTAGC 119
 Db 452 TGTTTCTGGCAACCGCCTCTGCAGCTAGCAGACTGCAAAATTGGACTGATGG 510

RESULT 4 US-08-575-964-2
 ; Sequence 2, Application US/08575964
 ; Patent No. 5736384
 ; GENERAL INFORMATION:
 ; APPLICANT: Fukunaga, No. 5736384uyuki
 ; APPLICANT: Iwasaki, Yoji
 ; APPLICANT: Kono, Satoko
 ; APPLICANT: Rita, Yukio
 ; APPLICANT: Izumi, Yoshiya
 ; TITLE OF INVENTION: THERMOSTABLE XYLANASE
 ; NUMBER OF SEQUENCES: 3
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: Fish & Richardson P.C.
 ; STREET: 4225 Executive Square, Suite 1400
 ; CITY: La Jolla
 ; STATE: CA
 ; COUNTRY: USA
 ; ZIP: 92037
 ; COMPUTER READABLE FORM:
 ; MEDIUM TYPE: Floppy disk
 ; COMPUTER: IBM PC compatible
 ; OPERATING SYSTEM: PC-DOS/MS-DOS
 ; SOFTWARE: PatentIn Release #1.0, Version #1.25
 ; CURRENT APPLICATION DATA:
 ; APPLICATION NUMBER: 08/104,445
 ; FILING DATE:
 ; CLASSIFICATION: 435
 ; ATTORNEY/AGENT INFORMATION:
 ; NAME: Oblon, NO. 5306633man F.
 ; REGISTRATION NUMBER: 24, 618
 ; REFERENCE/DOCKET NUMBER: 583-179-0
 ; TELECOMMUNICATION INFORMATION:
 ; TELEPHONE: (703) 413-3000
 ; TELEFAX: (703) 413-2220
 ; TELEX: 248855 OPAT UR
 ; INFORMATION FOR SEQ ID NO: 1:
 ; SEQUENCE CHARACTERISTICS:
 ; LENGTH: 1413 base pairs
 ; TYPE: nucleic acid
 ; STRANDEDNESS: unknown
 ; TOPOLOGY: unknown
 ; MOLECULE TYPE: DNA (genomic)

Query Match 49.6%; Score 89.2; DB 1; Length 1413;
 Best Local Similarity 76.8%; Pred. No. 6.7e-20;
 Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;

Qy 1 ATGTTAAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 Db 506 ATGTTAAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 565

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Qy 61 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120
 Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Qy 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 121 GCGGGACAGTAACGGCAGTCA 142

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 625

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGGG 120

Db 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 626 GCGGGACAGTAACGGCAGTCA 647

Db 566 ATGTTCTGGCAACCGCCTCTGCAGCTGGCACAGATTACTGGCAAATTGGACTGACGG

REFERENCE/DOCKET NUMBER: 07898/002001
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 619/678-5070
 TELEFAX: 619/678-5099
 TELEX: 200154
 INFORMATION FOR SEQ ID NO: 2:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 1207 base pairs .
 TYPE: nucleic acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 ORIGINAL SOURCE:
 ORGANISM: Bacillus sp.
 STRAIN: 2113
 FEATURE:
 NAME/KEY: P CDS
 LOCATION: 379...1029
 IDENTIFICATION METHOD: by experiment
 OTHER INFORMATION:
 US-08-963-500-2

Query Match 28.2%; Score 50.8; DB 1; Length 1207;
 Best Local Similarity 74.4%; Pred. No. 3.2e-07;
 Matches 64; Conservative 0; Mismatches 22; Indels 0; Gaps 0;

Qy 1 ATGTTAAGTTAAAGAAATTCTTAGTGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 Db 397 ATGATTAAGTCTAAAAGAAATTCTTGACGGTATGTATTGCAGCATTAAATGAGTTTACG 456

Qy 61 ATGTTTCTGCACCGCCTCTGCAGC 86
 Db 457 TTGTTGCAGCAACCTCAAATGCAGC 482

RESULT 5
 US-08-963-500-2
 Sequence 2, Application US/08963500
 Patent No. 5916795
 GENERAL INFORMATION:
 APPLICANT: Fukunaga, No. 5916795uyuki
 APPLICANT: Iwasaki, Yuji
 APPLICANT: Kono, Satoko
 APPLICANT: Kita, Yukio
 APPLICANT: Izumi, Yoshiya
 TITLE OF INVENTION: THERMOSTABLE XYLANASE
 NUMBER OF SEQUENCES: 3
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Fish & Richardson P.C.
 STREET: 4225 Executive Square, Suite 1400
 CITY: La Jolla
 STATE: MA
 COUNTRY: USA
 ZIP: 92037
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.30
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/963,500
 FILING DATE:
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/575,964
 FILING DATE: 20-DEC-1995
 ATTORNEY/AGENT INFORMATION:
 NAME: Haile, Lisa A.
 REGISTRATION NUMBER: 38,347
 REFERENCE/DOCKET NUMBER: 07898/002001
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 619/678-5070
 TELEFAX: 619/678-5099

TELELEX: 200154
 INFORMATION FOR SEQ ID NO: 2:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 1207 base pairs .
 TYPE: nucleic acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 ORIGINAL SOURCE:
 ORGANISM: Bacillus sp.
 STRAIN: 2113
 FEATURE:
 NAME/KEY: P CDS
 LOCATION: 379...1029
 IDENTIFICATION METHOD: by experiment
 OTHER INFORMATION:
 US-08-963-500-2

Query Match 28.2%; Score 50.8; DB 2; Length 1207;
 Best Local Similarity 74.4%; Pred. No. 3.2e-07;
 Matches 64; Conservative 0; Mismatches 22; Indels 0; Gaps 0;

Qy 1 ATGTTAAGTTAAAGAAATTCTTAGTGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 Db 397 ATGATTAAGTCTAAAAGAAATTCTTGACGGTATGTATTGCAGCATTAAATGAGTTTACG 456

Qy 61 ATGTTTCTGCACCGCCTCTGCAGC 86
 Db 457 TTGTTGCAGCAACCTCAAATGCAGC 482

RESULT 6
 US-08-469-318-177
 Sequence 177, Application US/08469318
 Patent No. 6022535
 GENERAL INFORMATION:
 APPLICANT:
 TITLE OF INVENTION: Multivariant IL-3 Hematopoiesis Fusion
 NUMBER OF SEQUENCES: 196
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/469,318
 FILING DATE:
 CLASSIFICATION:
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/446,872
 FILING DATE:
 INFORMATION FOR SEQ ID NO: 177:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 US-08-469-318-177

Query Match 28.1%; Score 50.6; DB 3; Length 546;
 Best Local Similarity 93.0%; Pred. No. 2.7e-04;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGTCCAGGCCAGCTCCCTGCTCAAGTGCTTAGAG 180
 Db 7 ACACCATAGGCCCTGCCAGCTCCCTGCTCAAGTGCTTAGAG 63

RESULT 7
 US-08-469-318-178
 Sequence 178, Application US/08469318

Patent No. 6022535
 GENERAL INFORMATION:
 APPLICANT: Title of Invention: Multivariable IL-3 Hematopoiesis Fusion Protein
 NUMBER OF SEQUENCES: 196
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/469,318
 FILING DATE:
 CLASSIFICATION:
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/446,872
 FILING DATE: Sequence 177, Application US/08468609A
 INFORMATION FOR SEQ ID NO: 178:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 US-08-469-318-178

Query Match 28.1%; Score 50.6; DB 3; Length 546;
 Best Local Similarity 93.0%; Pred. No. 2.7e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

QY 124 ACTCCGTTAGGTCAAGCCAGGCCAGCTCCCTGGCTCAAGTGCTTAGAG 180
 Db 7 ACACCATTAGGACTGCCAGGCTCCCTGGCTCAAGTGCTTAGAG 63

RESULT 8
 US-08-468-609A-177
 Sequence 177, Application US/08468609A
 Patent No. 6030812
 GENERAL INFORMATION:
 APPLICANT: Abrams, Mark A.
 BAYER, S. C.
 Braford-Goldberg, Sarah R.
 Caparon, Maire H.
 Easton, Alan M.
 Klein, Barbara K.
 McKearn, John P.
 Ollins, Peter O.
 Paik, Kumman
 Thomas, John W.
 TITLE OF INVENTION: Fusion Proteins Comprising Multiply Mutated Interleukin-3 (IL-3)
 NUMBER OF SEQUENCES: 197
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Dennis A. Bennett, G.D. Searle & Co.,
 Corporate Patent Dept.
 STREET: P. O. Box 5110
 CITY: Chicago
 STATE: Illinois
 ZIP: 60680
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/468,609A
 FILING DATE: 06-JUN-1995
 CLASSIFICATION:
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/192,325
 FILING DATE: 14-FEB-1994
 ATTORNEY/AGENT INFORMATION:
 NAME: Bennett, Dennis A.
 REGISTRATION NUMBER: 34,547
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (314) 737-6986
 TELEFAX: (314) 737-6972
 INFORMATION FOR SEQ ID NO: 178:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid

Patent No. 6022535
 GENERAL INFORMATION:
 APPLICANT: Title of Invention: Multivariable IL-3 Hematopoiesis Fusion Protein
 NUMBER OF SEQUENCES: 196
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/468,609A
 FILING DATE: 06-JUN-1995
 CLASSIFICATION:
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/192,325
 FILING DATE: 14-FEB-1994

;

STRANDEDNESS: double

;

TOPOLogy: linear

;

MOLECULE TYPE: DNA (genomic)

US -08-468-609A-178

Query Match 28.1%; Score 50.6; DB 3; Length 546;
Best Local Similarity 93.0%; Pred. No. 2.7e-07;
Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Db 124 ACTCCGTTAGGCCAGGGCTCCCTGCCAGAGCTTCCAAAGTGCTTAGAG 180
7 ACACCATAGGAACTGCCAGCTCCCTGCCAGAGCTTCCTCAAGTGCTTAGAG 63

RESULT 10 US-08-446-872A-177
; Sequence 177, Application US/08446872A
; Patent No. 6361977
; GENERAL INFORMATION:
; APPLICANT: Abrams, Mark A.
; APPLICANT: Bauer, S. C.
; APPLICANT: Bradford-Goldberg, Sarah R.
; APPLICANT: Caparon, Maire H.
; APPLICANT: Easton, Alan M.
; APPLICANT: Klein, Barbara K.
; APPLICANT: McKearn, John P.
; APPLICANT: Ollins, Peter O.
; APPLICANT: Paik, Kumnan
; APPLICANT: Thomas, John W.
; TITLE OF INVENTION: Multivariant IL-3 Hematopoiesis
; NUMBER OF SEQUENCES: 197
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Dennis A. Bennett, G.D. Searle & Co.,
; STREET: P. O. Box 5110
; CITY: Chicago
; STATE: Illinois
; COUNTRY: USA
; ZIP: 60680
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: Patent In Release #1.0, Version #1.25
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/446,872A
; FILING DATE: 06-JUN-1995
; CLASSIFICATION: 424
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: US 08/192,325
; FILING DATE: 14-FEB-1994
; ATTORNEY/AGENT INFORMATION:
; NAME: Bennett, Dennis A.
; REGISTRATION NUMBER: C-2790/1
; REFERENCE/DOCKET NUMBER: C-2790/1
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: (314) 737-6986
; TELEFAX: (314) 737-6972
; INFORMATION FOR SEQ ID NO: 178:
; LENGTH: 546 base pairs
; SEQUENCE CHARACTERISTICS:
; TYPE: nucleic acid
; STRANDEDNESS: double
; TOPOLOGY: linear
; MOLECULE TYPE: DNA (genomic)
; US-08-446-872A-178

Query Match 28.1%; Score 50.6; DB 4; Length 546;
Best Local Similarity 93.0%; Pred. No. 2.7e-07;
Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGCCAGGGCTCCCTGCCAGAGCTTCCCTGCTCAAAGTGCTTAGAG 180
Db 7 ACACCATAGGAACTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAAGTGCTTAGAG 63

RESULT 12 US-08-762-222A-177
; Sequence 177, Application US/0876222A
; Patent No. 6436387
; GENERAL INFORMATION:
; APPLICANT: Abrams, Mark A.

Bauer, S. C.
 Bradford-Goldberg, Sarah R.
 Caparon, Maire H.
 Easton, Alan M.
 Klein, Barbara K.
 McKearn, John P.
 Olins, Peter O.

Paik, Kumnan
 Thomas, John W.

TITLE OF INVENTION: Multivarient IL-3 Hematopoiesis Fusion Protein

NUMBER OF SEQUENCES: 197

CORRESPONDENCE ADDRESS:
 ADDRESSEE: Dennis A. Bennett, G.D. Searle & Co.,
 Corporate Patent Dept.
 STREET: P. O. Box 5110
 CITY: Chicago
 STATE: Illinois
 COUNTRY: USA
 ZIP: 60680

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patent In Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/762,227A
 FILING DATE: 09-Dec-1996
 CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/192,325
 FILING DATE: 14-FEB-1994
 APPLICATION NUMBER: US 08/446,872
 FILING DATE: 14-FEB-1994
 ATTORNEY/AGENT INFORMATION:
 NAME: Bennett, Dennis A.
 REGISTRATION NUMBER: 34,547
 REFERENCE/DOCKET NUMBER: C-2790/5

TELECOMMUNICATION INFORMATION:
 TELEPHONE: (708) 470-6501
 TELEFAX: (708) 470-6881

INFORMATION FOR SEQ ID NO: 178:

SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)

SEQUENCE DESCRIPTION: SEQ ID NO: 178:
 US-08-762-227A-178

Query Match 28.1%; Score 50.6; DB 4; Length 546;
 Best Local Similarity 93.0%; Pred. No. 2.7e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

RESULT 14
 PCT-US95-01185-177

GENERAL INFORMATION:
 APPLICANT: Abrams, Mark A.
 Bauer, S. C.
 Bradford-Goldberg, Sarah R.
 Caparon, Maire H.
 Easton, Alan M.
 Klein, Barbara K.
 McKearn, John P.
 Olins, Peter O.

Paik, Kumnan
 Thomas, John W.

TITLE OF INVENTION: Multivarient IL-3 Hematopoiesis Fusion Protein

NUMBER OF SEQUENCES: 197

CORRESPONDENCE ADDRESS:
 ADDRESSEE: Dennis A. Bennett, G.D. Searle & Co.,
 Corporate Patent Dept.
 STREET: P. O. Box 5110
 CITY: Chicago
 STATE: Illinois
 COUNTRY: USA
 ZIP: 60680

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patent In Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/762,227A
 FILING DATE: 09-Dec-1996
 CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/192,325
 FILING DATE: 14-FEB-1994
 APPLICATION NUMBER: US 08/446,872
 FILING DATE: 06-JUN-1995
 ATTORNEY/AGENT INFORMATION:
 NAME: Bennett, Dennis A.
 REGISTRATION NUMBER: 34,547
 REFERENCE/DOCKET NUMBER: C-2790/5

TELECOMMUNICATION INFORMATION:
 TELEPHONE: (708) 470-6501
 TELEFAX: (708) 470-6881

INFORMATION FOR SEQ ID NO: 178:

SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)

SEQUENCE DESCRIPTION: SEQ ID NO: 178:
 US-08-762-227A-178

Query Match 28.1%; Score 50.6; DB 4; Length 546;
 Best Local Similarity 93.0%; Pred. No. 2.7e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

RESULT 14
 PCT-US95-01185-177

GENERAL INFORMATION:
 APPLICANT: Abrams, Mark A.
 Bauer, S. C.
 Bradford-Goldberg, Sarah R.
 Caparon, Maire H.
 Easton, Alan M.
 Klein, Barbara K.
 McKearn, John P.
 Olins, Peter O.

INFORMATION FOR SEQ ID NO: 177:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 PCT-US95-01185-177

Query Match 28.1%; Score 50.6; DB 5; Length 546;
 Best Local Similarity 93.0%; Pred. No. 2.7e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGTCCAGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAG 180
 Db 7 ACACCATAGGCCCTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCTTAGAG 63

RESULT 15
 PCT-US95-01185-178
 Sequence 178, Application PC/TUS9501185
 GENERAL INFORMATION:
 APPLICANT:
 TITLE OF INVENTION: Multivariable IL-3 Hematopoiesis Fusion
 TITLE OF INVENTION: Protein
 NUMBER OF SEQUENCES: 196
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: PCT/US95/01185
 FILING DATE: 02-FEB-1995
 CLASSIFICATION:
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/192325
 FILING DATE: 14-FEB-1994
 INFORMATION FOR SEQ ID NO: 178:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 PCT-US95-01185-178

Query Match 28.1%; Score 50.6; DB 5; Length 546;
 Best Local Similarity 93.0%; Pred. No. 2.7e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGTCCAGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAG 180
 Db 7 ACACCATAGGCCCTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCTTAGAG 63

Search completed: October 9, 2004, 04:24:24
 Job time : 28.6529 secs

This Page Blank (uspto)

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 8, 2004, 21:19:03 ; Search time 136.728 Seconds
 (without alignments)
 5592.665 Million cell updates/sec

Title: US-10-009-792C-26
 Perfect score: 180
 Sequence: 1 atgttaaggttaaaaagaa.....tccctgtcaaatgttgcttagag 180

Scoring table: IDENTITY NUC Gapop 10.0 , Gapext 1.0

Searched: 3373863 seqs, 2124099041 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%

Listing First 45 summaries

Database :	N_Geneseq_29Jan04:*			
	1: geneseqn1980s:*			
	2: geneseqn1990s:*			
	3: geneseqn2000s:*			
	4: geneseqn2001as:*			
	5: geneseqn2001bs:*			
	6: geneseqn2002as:*			
	7: geneseqn2003as:*			
	8: geneseqn2003bs:*			
	9: geneseqn2003cs:*			
	10: geneseqn2004s:*			

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
1	180	100.0	180	4	AAD19775	Aad19775 Human hG-Aaq56052 Sequence	
2	89.2	49.6	642	2	AAQ56052	Aaq56052 Sequence	
3	89.2	49.6	1413	2	AAQ66480	Aaq66480 Sequence	
4	87.6	48.7	642	3	AAA47153	Aaa47153 DNA encod	
5	86	47.8	135	4	AAD19774	Aad19774 Human hG-Aaa47157 DNA encod	
6	79.6	44.2	642	3	AAA47157	Aaa47157 DNA encod	
7	79.6	44.2	642	3	AAA47155	Aaa47155 DNA encod	
8	79.6	44.2	642	3	AAA47156	Aaa47156 DNA encod	
9	79	43.9	642	3	AAA47154	Aaa47154 DNA encod	
10	79	43.9	645	5	AAS13814	Aas13814 DNA encod	
11	79	43.9	645	9	ADC27538	Adc27538 Bacillus	
12	79	43.9	1349	3	AAC88889	Aac88889 Bacillus	
13	79	43.9	1349	6	AAL48894	Aal48894 B circula	
14	52	28.9	644	5	AAI71848	Aai71848 Recombina	
15	50.6	28.1	546	2	AAQ97205	Aaq97205 pMON13010	
16	50.6	28.1	546	2	AAQ97206	Aaq97206 pMON13499	
17	50.6	28.1	546	3	AAA03772	Aaa03772 Human G-C	
18	50.6	28.1	546	3	AAA03773	Aaa03773 Human G-C	
19	50.6	28.1	546	6	ABX00088	Abx00088 Human int	
20	50.6	28.1	546	6	ABX00087	Abx00087 Human int	
21	50.6	28.1	630	1	AAN70029	Aan70029 Mature na	
22	50.6	28.1	906	2	AAQ97167	Aaq97167 pMON13023	
23	50.6	28.1	906	3	Aaa03736	Aaa03736 Human int	

24	50.6	28.1	906	6	ABX00010	Abx00010 Human int
25	50.6	28.1	921	2	AAQ97198	Aaq97198 pMON13066
26	50.6	28.1	921	2	AAQ97186	Aaq97186 pMON13026
27	50.6	28.1	921	2	AAQ97189	Aaq97189 pMON13043
28	50.6	28.1	921	2	AAQ97192	Aaq97192 pMON13151
29	50.6	28.1	921	3	AAA03746	Aaa03746 Human int
30	50.6	28.1	921	3	AAA03752	Aaa03752 Human int
31	50.6	28.1	921	3	AAA03740	Aaa03740 Human int
32	50.6	28.1	921	3	AAA03743	Aaa03743 Human int
33	50.6	28.1	921	6	ABX00029	Abx00029 Human int
34	50.6	28.1	921	6	ABX00035	Abx00035 Human int
35	50.6	28.1	921	6	ABX00032	Abx00032 Human int
36	50.6	28.1	921	6	ABX00041	Abx00041 Human int
37	50.6	28.1	966	2	AAQ97185	Aaq97185 pMON13060
38	50.6	28.1	966	2	AAQ97191	Aaq97191 pMON13045
39	50.6	28.1	966	2	AAQ97184	Aaq97184 pMON13058
40	50.6	28.1	966	2	AAQ97187	Aaq97187 pMON13063
41	50.6	28.1	966	2	AAQ97193	Aaq97193 pMON13152
42	50.6	28.1	966	2	AAQ97182	Aaq97182 pMON13034
43	50.6	28.1	966	3	AAA03741	Aaa03741 Human int
44	50.6	28.1	966	3	AAA03745	Aaa03745 Human int
45	50.6	28.1	966	3	AAA03736	Aaa03736 Human int

ALIGNMENTS

RESULT 1		
ID AAD19775	XX	AC AAD19775;
XX	DT 18-DEC-2001 (First entry)	
XX	DE Human hG-CSF DNA 5' end inserted into plasmid PTHSCSFMI.	
XX	KW Human; Granulocyte colony stimulating factor; hG-CSF; protease; Factor Xa; kanamycin resistance; endoxylanase signal peptide; ds.	
XX	OS Homo sapiens.	
XX	FH Key	Location/Qualifiers
	CDS	1. .180
FT		/*tag= a /product= "Human hG-CSF protein fragment"
FT		/note= "CDS does not include stop codon"
FT		/partial
FT		1. .84
FT		/*tag= b /note= "Endoxylanase signal sequence"
FT		85. .123
FT		/*tag= c /note= "Nucleotides encoding an inserted oligopeptide"
FT		124. .180
FT		/*tag= d /product= "Human mature hG-CSF protein fragment"
FT		WO200173081-A1.
FT		31-MAR-2001; 2001WO-KR000549.
XX	PR 31-OCT-2001.	
XX	PR 31-MAR-2001; 2001WO-KR000549.	(KOAD) KOREA ADV INST SCI & TECHNOLOGY.
XX	PR 31-MAR-2000; 2000KR-00017052.	Lee S, Jeong K;
XX	DR WPI; 2001-616523/71.	
XX	DR P-PSDB; AAE12157.	

PT Recombinant plasmid vector comprising an endoxylanase signal sequence,
 PT human granulocyte colony stimulating factor gene and other components,
 PT when transformed into microorganism useful for preparing the colony
 PT stimulating factor.

XX Claim 3; Fig 12; 50pp; English.

XX The invention relates to an Escherichia coli producing and secreting
 CC human granulocyte colony stimulating factor (hG-CSF), more specifically,
 CC to a recombinant plasmid constructed to express secretory hG-CSF in E.
 CC coli, an E. coli transformed with that plasmid to secrete hG-CSF, and a
 CC process for preparing hG-CSF using the transformed hG-CSF. The
 CC recombinant plasmid vector comprises of a kanamycin resistance gene, a
 CC promoter, an endoxylanase signal sequence, a nucleotide sequence coding
 CC for an oligopeptide consisting of 13 amino acids including 6 consecutive
 CC histidine residues and a hG-CSF. E. coli transformed with recombinant
 CC plasmid vector is useful for preparing hG-CSF. The method comprises
 CC culturing the microorganism to obtain a hG-CSF fusion protein and
 CC treating the fusion protein with a protease preferably Factor Xa, to
 CC obtain a hG-CSF, where the fusion protein is obtained from the culture by
 CC employing Ni-column. The present sequence is a DNA encoding human hG-CSF
 CC N-terminal region inserted into plasmid pTHSCSFmII

XX Sequence 180 BP; 44 A; 50 C; 40 G; 46 T; 0 U; 0 Other;
 SQ Query Match 100.0%; Score 180; DB 4; Length 180;
 Best Local Similarity 100.0%; Pred. No. 1.8e-50;
 Matches 180; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

RESULT 3
 AAQ66480

ID AAQ66480 standard; DNA; 1413 BP.
 XX AAQ66480;
 AC AAQ66480;
 DT 25-MAR-2003 (revised)
 DT 10-AUG-1994 (First entry)
 DE Sequence comprising xylanase coding sequence.
 XX Xylanase; Bacillus subtilis; baking; bread; yeast; food; foodstuffs;
 KW bread; pastry; ss.
 XX Bacillus subtilis.
 OS
 XX FH Location/Qualifiers
 XX FT 506. .1209
 FT /*tag= a "Modified xylanase."
 FT /product= "Modified xylanase."
 XX PN DE4226528-A1.
 XX PD 17-FEB-1994.
 XX PF 11-AUG-1992; 92DE-04226528.
 XX PR 11-AUG-1992; 92DE-04226528.
 XX PA (ROHIG) ROEHM GMBH.
 XX PI Gottschalk M, Sproessler B, Schuster E;
 XX DR WPI; 1994-058089/08.

XX New xylanase obtd. from Bacillus subtilis - useful in baking agents for
 PT increased vol. of baking prods.
 XX PS Example 4; Page 9; 11pp; German.
 XX PA (ROHIG) ROEHM GMBH.
 XX PI Gottschalk M, Sproessler B, Schuster E;
 XX DR WPI; 1994-058089/08.
 XX PR 11-AUG-1992; 92DE-04226528.
 XX PR 11-AUG-1992; 92DE-04226528.
 XX PA (ROHIG) ROEHM GMBH.

CC The modified xylanase is used as a baking agent, preferably for yeast
 CC pastry and white bread. (Updated on 25-MAR-2003 to correct PN field.)
 XX SQ Sequence 1413 BP; 408 A; 280 C; 317 G; 408 T; 0 U; 0 Other;
 XX DR P-PSDB; AAR47200.
 XX DR Query Match 49.6%; Score 89.2; DB 2; Length 1413;

PT New xylanase obtd. from Bacillus subtilis - useful in baking agents for
 PT increased vol. of baking prods.
 XX PS Claim 4; Page 10; 11pp; German.

XX The modified xylanase is used as a baking agent, preferably for yeast
 CC pastry and white bread. (Updated on 25-MAR-2003 to correct PN field.)
 XX SQ Sequence 642 BP; 191 A; 122 C; 166 G; 163 T; 0 U; 0 Other;
 XX Query Match 49.6%; Score 89.2; DB 2; Length 642;
 Best Local Similarity 76.8%; Pred. No. 1.2e-19;
 Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;
 QY 1 ATGTTAAGTTAAAAGAAATTCTTAGTGGGATTAACGCCAGCTTTCATGAGTATCAGC
 1 ATGTTAAGTTAAAAGAAATTCTTAGTGGGATTAACGCCAGCTTTCATGAGTATCAGC
 DB 61 ATGTTTCTGGCAACCGCCTCTGCAGCTGGCCGACCATCACCATATCGAGGA 120
 61 ATGTTTCTGGCAACCGCCTCTGCAGCTGGCAACGATTACTGGCAAATTGGACTGACGG 120
 QY 121 AGGACTCCGTAGGTCCAGCCA 142
 DB 121 GCGGGACAGTAAACGAGTCA 142

RESULT 3
 AAQ66480

ID AAQ66480 standard; DNA; 1413 BP.
 XX AAQ66480;
 AC AAQ66480;
 DT 25-MAR-2003 (revised)
 DT 10-AUG-1994 (First entry)
 DE Sequence comprising xylanase coding sequence.
 XX Xylanase; Bacillus subtilis; baking; bread; yeast; food; foodstuffs;
 KW bread; pastry; ss.
 XX Bacillus subtilis.
 OS
 XX FH Location/Qualifiers
 XX FT 506. .1209
 FT /*tag= a "Modified xylanase."
 FT /product= "Modified xylanase."
 XX PN DE4226528-A1.
 XX PD 17-FEB-1994.
 XX PF 11-AUG-1992; 92DE-04226528.
 XX PR 11-AUG-1992; 92DE-04226528.
 XX PA (ROHIG) ROEHM GMBH.
 XX PI Gottschalk M, Sproessler B, Schuster E;
 XX DR WPI; 1994-058089/08.

XX New xylanase obtd. from Bacillus subtilis - useful in baking agents for
 PT increased vol. of baking prods.
 XX PS Example 4; Page 9; 11pp; German.
 XX PA (ROHIG) ROEHM GMBH.
 XX PI Gottschalk M, Sproessler B, Schuster E;
 XX DR WPI; 1994-058089/08.
 XX PR 11-AUG-1992; 92DE-04226528.
 XX PR 11-AUG-1992; 92DE-04226528.
 XX PA (ROHIG) ROEHM GMBH.

Best Local Similarity 76.8%; Pred. No. 1.7e-19;
 Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;

Query 1 ATGTTAAGTTAAAAGAATTCTTAGTGGGATTAAACGGCATTTCATGAGTACGC 60
 DB 506 ATGTTAAGTTAAAAGAATTCTTAGTGGGATTAAACGGCATTTCATGAGTACGC 565

Query 61 ATGTTTCTGCAACCAGCCTCTGCAGCTGCCGCCACCATCACCATATCGAGGA 120
 DB 566 ATGTTTCTGGCAACCGCCTCTGCAGCTGCCACAGATTACTGGCAAGGG 625

Query 121 AGGACTCCGGTTAGGTCCAGCCA 142
 DB 626 GGCGGACAGTAAACGCACTCA 647

RESULT 4
 AAA47153 standard; DNA; 642 BP.
 XX
 AC AAA47153;
 XX DT 03-OCT-2000 (first entry)
 DE DNA encoding a bacterial endo-beta-1,4-xylanase protein.
 KW Endo-beta-1,4-xylanase inhibitor; wheat flour; xylanase; bakery product;
 KW dough; dough preparation; ss.
 XX OS Bacillus subtilis.

XX Key Location/Qualifiers
 FH CDS 1. .642
 FT /*tag= a
 FT /product= "xylanase"
 XX WO200039289-A2.
 XX PD 06-JUL-2000.
 XX PP 17-DEC-1999; 99WO-IB002071.
 XX PR 23-DEC-1998; 98GB-00028599.
 PR 06-APR-1999; 99GB-00007805.
 PR 15-APR-1999; 99GB-00008645.
 XX PA (DANI-) DANISCO AS.
 XX PI Sibbesen O, Sorensen JF;
 XX DR 2000-465744/40.
 DR P-PSDB; AAY93751.
 XX PT Mutant xylanase protein identified using xylanase inhibitor useful for
 preparing non-sticky dough for bakery products.
 XX Disclosure; Page 107; 112pp; English.
 PS XX The present sequence encodes an endo-beta-1,4-xylanase. The specification
 CC also describes an endo-beta-1,4-xylanase inhibitor, which is obtained
 CC from wheat flour. The specification also describes a mutant xylanase
 CC protein. The xylanase is useful for preparing a foodstuff, preferably a
 CC bakery product or a substance (e.g. a dough) for making the bakery
 CC product. Wild type xylanase or mutant xylanase is useful for preparing a
 CC dough that is less sticky than a dough comprising a fungal xylanase. The
 CC xylanase inhibitor is useful for screening high degree resistance
 CC xylanases for dough preparation. The xylanase is also useful for
 CC preparing a non-sticky dough. A combination of xylanase and the inhibitor in
 CC is useful for calibrating and/or determining the quantity of inhibitor in
 CC a wheat flour sample
 XX Sequence 642 BP; 192 A; 122 C; 164 G; 164 T; 0 U; 0 Other;
 SQ

Query Match 48.7%; Score 87.6; DB 3; Length 642;
 Best Local Similarity 76.1%; Pred. No. 4.2e-19;
 Matches 108; Conservative 0; Mismatches 34; Indels 0; Gaps 0;

QY 1 ATGTTAAGTTAAAAGAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGGC 60
 DB 1 ATGTTAAGTTAAAAGAATTCTTAGTGGGATTAAACGGCAGCTTCATGAGTATCAGC 60

QY 61 ATGTTTCTGCAACCAGCCTCTGCAGCTGCCGCCACCATCACCATATCGAGGA 120
 DB 61 ATGTTTCTGGCAACCGCCTCTGCAGCTGCCACATCACCATACTGAGGG 120

QY 121 AGGACTCCGGTTAGGTCCAGCCA 142
 DB 121 GGCGGACAGTAAACGCACTCA 142

RESULT 5
 AAD19774 standard; DNA; 135 BP.
 XX ID AAD19774
 AC AAD19774;
 XX DT 18-DEC-2001 (first entry)
 DE Human hG-CSF DNA 5' end inserted into plasmid pTrcSCSFmII.
 XX Human; Granulocyte colony stimulating factor; hG-CSF; protease;
 KW Factor Xa; kanamycin resistance; endoxylanase; signal peptide; ds.
 XX OS Homo sapiens.

XX Key Location/Qualifiers
 FH CDS 1. .135
 FT /*tag= a
 FT /product= "Human hG-CSF protein fragment"
 FT /note= "CDS does not include stop codon"
 FT /partial
 FT sig_peptide 1. .84
 FT mat_peptide 85. .135
 FT /*tag= b
 FT /*tag= c
 FT /product= "Human mature hG-CSF protein fragment"
 XX WO200173081-A1.
 XX PD 04-OCT-2001.
 XX PP 31-MAR-2001; 2001WO-KR000549.
 XX PR 31-MAR-2000; 2000KR-00017052.
 XX PA (KOAD) KOREA ADV INST SCI & TECHNOLOGY.
 XX PI Lee S, Jeong K;
 XX DR WPI; 2001-616523/71.
 XX DR P-PSDB; AAE12156.

The invention relates to an Escherichia coli producing and secreting
 CC human granulocyte colony stimulating factor (hG-CSF), more specifically,
 CC to a recombinant plasmid constructed to express secretory hG-CSF in E.
 CC coli, an E. coli transformed with that plasmid to secrete hG-CSF, and a
 PT process for preparing hG-CSF using the transformed hG-CSF. The
 CC recombinant plasmid vector comprises of a kanamycin resistance gene, a
 CC promoter, an endoxylanase signal sequence, a nucleotide sequence coding
 CC Example 4; Fig 9; 50pp; English.

The invention relates to an Escherichia coli producing and secreting
 CC human granulocyte colony stimulating factor (hG-CSF), more specifically,
 CC to a recombinant plasmid constructed to express secretory hG-CSF in E.
 CC coli, an E. coli transformed with that plasmid to secrete hG-CSF, and a
 PT process for preparing hG-CSF using the transformed hG-CSF. The
 CC recombinant plasmid vector comprises of a kanamycin resistance gene, a
 CC promoter, an endoxylanase signal sequence, a nucleotide sequence coding
 CC

for an oligopeptide consisting of 13 amino acids including 6 consecutive histidine residues and a hG-CSF. E.coli transformed with recombinant plasmid vector is useful for preparing hG-CSF. The method comprises culturing the microorganism to obtain a hG-CSF fusion protein and treating the fusion protein with a protease preferably Factor Xa, to obtain a hG-CSF, where the fusion protein is obtained from the culture by employing Ni-column. The present sequence is a DNA encoding human hG-CSF N-terminal region inserted into plasmid pTRCSCSFMI

Query	Match	Score	DB	Length
Best Local Matches	Similarity	47.8%	4	135;
QY	ATGTTAAGTTAAAAGAAATTCTTAGTGGATTAAACGGCAGCTTTCATGAGTATCAGC	60		
QY	ATGTTAAGTTAAAAGAAATTCTTAGTGGATTAAACGGCAGCTTTCATGAGTATCAGC	60		
QY	ATGTTCTGCAACCGCCTCTGCAGCTGGCCGGCACCATCACCATATCGAGGGAA	120		
QY	ATGTTCTGCAACCGCCTCTGCA-	-	-	84
QY	AGGACTCCGTAGGTCCAGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGC	174		
QY	ACTCCGTAGGTCCAGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGC	135		

RESULT 6
 AAA47157
 ID AAA47157 standard; DNA; 642 BP.
 XX
 AC AAA47157;
 XX DT 03-OCT-2000 (first entry)
 XX DE DNA encoding a bacterial endo-beta-1,4-xylanase mutant XM3.
 XX KW Endo-beta-1,4-xylanase inhibitor; wheat flour; xylanase; bakery product;
 KW dough; dough preparation; ss.
 XX
 OS Synthetic.
 OS *Bacillus subtilis*

Key	Location/Qualifiers
FH	1..642
CDS	/tag=a
FT	/product="xylanase mutant"
FT	

XX	PN	WO200039289-A2.
XX	XX	
PD	06-JUL-2000.	
XX	PF	17-DEC-1999;
XX	PR	23-DEC-1998;
	PR	06-APR-1999;
	PR	15-APR-1999;
	PR	98GB-00028599.
	PR	99GB-00007805.
	PR	99GB-00008645.

XX (DANI-) DANISCO AS .
PA
XXX Sibbesen O, Sorensen JE ;
PI
XX WPI ; 2000-465744/40 .
DR P-PSDB ; AAY93755 .
DR
XX PPT
OT

XXX
PS
XXX
The present sequence encodes a mutant endo-beta-1,4-xylanase. The
specification also describes an endo-beta-1,4-xylanase inhibitor, which
Claim 3; Page 111; 112PP; English.

is obtained from wheat flour. The specification also describes a mutant xylanase protein. The xylanase is useful for preparing a foodstuff, preferably a bakery product or a substance (e.g. a dough) for making the bakery product. Wild type xylanase or mutant xylanase is useful for preparing a dough that is less sticky than a dough comprising a fungal xylanase. The xylanase inhibitor is useful for screening high degree resistance xylanases for dough preparation. The xylanase is also useful for preparing a non-sticky dough. A combination of xylanase and the inhibitor is useful for calibrating and/or determining the quantity of inhibitor in a wheat flour sample.

SQ	Sequence	642 BP;	192 A;	110 C;	162 G;	178 T;	0 U;	0 Other;
	Query Match	44.2%	; Score	79.6	; DB	3	; Length	642;
	Best Local Similarity	72.5%	; Pred. No.	2.1e-16;				
	Matches	103	; Conservative	0	; Mismatches	39	; Indels	0
								; Gaps 0
Qy	1 ATGTTAACGTTAAAAGAAATTCTTAGTGGATTAAACGGCAGCTTTCATGAGTATCAGGC	60						
Db	1 ATGTTAACGTTAAAAGAAATTCTTAGTGGATTATCGGCAGCTTTAATGAGTATTAGC	60						
Qy	6.1 ATGTTTTCGCAACCCGCTCTGCAGCTGGCCCGACCATCACCATAATCGAGGGGA	120						
Db	6.1 TTGTTTCCGCAACCCGCTCTGCAGCTAGCACAGACTACTGGCAAATTGGACTGATGGG	120						
Qy	12.1 AGGACTCCGTTAGGTCCAGCCA	142						
Db	12.1 GGCGGTACCGTAAACGCTGTCA	142						

06-JUL-2000.
17-DEC-1999; 99WO-1B002071.
23-DEC-1998; 98GB-000028599.
06-APR-1999; 99GB-00007805.
15-APR-1999; 99GB-00008645.
(DANI-) DANISCO AS.
Sibbesen O, Sorensen JF;
WPI; 2000-465744/40.
P-PSDB; AAY93753.
Mutant xylanase protein identified using xylanase inhibitor useful for
preparing non-sticky dough for bakery products.
Claim 3; Page 109; 112pp; English.

This Page Blank (uspto)

XX Sequence 546 BP; 95 A; 189 C; 157 G; 105 T; 0 U; 0 Other;
SQ 28.1%; Score 50.6; DB 2; Length 546;
Query Match Best Local Similarity 93.0%; Preq. No. 1.2e-06;
Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;
Qy 124 ACTCCGTTAGGTCCAGGCCAGCTCCCTGCCAGAGCTTCCGTCAAGTGCTTAGAG 180
Db 7 ACACCATTAAGGACCTGCCAGCTCCCTGCCAGAGCTTCCGTCAAGTGCTTAGAG 63

Search completed: October 9, 2004, 02:07:18
Job time : 138.728 secs

CC protein has been modified to exhibit enhanced thermophilicity,
 CC alkaphilicity, or thermostability occurring B.
 CC circulans xylanase, and has at least 5 amino acid substitutions. A
 CC bleaching agent comprising a modified xylanase is useful for bleaching
 CC pulp, in the bioconversion of lignocellulosic materials to fuels, for
 CC clarifying juice and wine, extracting coffee, plant oils and starch,
 CC producing food thickeners, altering texture in bakery products, e.g.
 CC improving the quality of dough, helping bread to rise and processing of
 CC wheat and corn for starch production, use as animal food additives to aid
 CC in the digestibility of feedstuffs and in the washing of super precision
 CC devices and semiconductors. The present sequence is a coding sequence of
 CC a xylanase protein described in the exemplification of the invention
 XX Sequence 1349 BP; 396 A; 232 C; 312 G; 409 T; 0 U; 0 Other;

Query Match 43.9%; Score 79; DB 6; Length 1349;
 Best Local Similarity 79.0%; Pred. No. 4.5e-16;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAAAGAAATTCTTGTGGGATTAACGGCAGCTTCATGAGTATCAGC 60
 Db 392 ATGTTTAAGTTAAAAAGAAATTCTTGTGGGATTAATGAGTATTAGC 451
 QY 61 ATGTTTTCTGCAACCGCCCTGCAGCTGGCCGCCACCATCACCATATCGAGGG 119
 Db 452 TTGTTTGGCAACCGCCCTGCAGCTAGCACAGACTACTGGCAAATTGGACTGATGG 510

RESULT 14
 AA171848

ID AA171848 standard; cDNA; 644 BP.

XX AC AA171848;
 XX DT 07-JAN-2002 (first entry)

DE Recombinant human granulocyte colony stimulating factor cDNA.

KW Human; granulocyte colony stimulating factor; rhG-CSF; recombinant; ss.

XX OS Homo sapiens.

XX FH Key Qualifiers 94. .621
 FT /*tag= a
 FT /product= "rhG-CSF"
 XX PN CN1167150-A.
 XX PR 05-JUN-1996; 96CN-00106418.
 XX PD 10-DEC-1997.
 XX PI Su Y, Kong T, Wang C;
 XX DR WPI:2001-590346/67.
 XX DR P-PSDB; AAM51536.

PT Production of recombinant human granulocyte colony stimulation factor.

PS Disclosure; Page 8 (disclosure); 15pp; Chinese.

XX The invention relates to a method for producing recombinant human
 CC granulocyte colony stimulating factor (rhG-CSF). The method includes the
 CC following steps: (a) reverse transcription-polymerase chain reaction of
 CC the human granulocyte colony stimulating factor gene; (b) transforming
 CC Escherichia coli; (c) renaturation of protein by hollow fibre
 CC ultrafiltration dialysis; (d) passing the renatured protein through ion
 CC exchange chromatography, hydrophobic chromatography and molecular sieve

CC chromatography which are combined together sequentially; and (e)
 CC purifying so to obtain a high yield of high-purity medicinal rhG-CSF
 CC protein. The present sequence encodes rhG-CSF

XX SQ Sequence 644 BP; 128 A; 216 C; 172 G; 128 T; 0 U; 0 Other;
 Query Match 28.9%; Score 52; DB 5; Length 644;
 Best Local Similarity 91.7%; Pred. No. 4.2e-07;
 Matches 55; Conservative 0; Mismatches 5; Indels 0; Gaps 0;
 QY 121 AGGACTCCGTTAGTTCAGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGCTTAGAG 180
 Db 94 ATGACACCATTAGGCCATTAGCCCTGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGCTTAGAG 153

RESULT 15
 AAQ97205

ID AAQ97205 standard; DNA; 546 BP.

XX AC AAQ97205;
 XX DT 25-AUG-1999 (first entry)

XX PMON13010 DNA sequence.
 DE PMON13010 DNA sequence.
 XX KW Interleukin; IL-3; CSF; colony stimulating factor; cytokine; lymphokine;
 KW mutant; mutein; fusion protein; linker; ss.
 XX OS Synthetic.
 OS Homo sapiens.

XX PN WO9521254-A1.
 XX PD 10-AUG-1995.
 XX PF 02-FEB-1995; 95WO-US001185.
 XX PR 04-FEB-1994; 94US-00192325.
 XX PA (SEAR) SEARLE & CO G D.

XX PR 04-FEB-1994; 94US-00192325.

XX PT 10-AUG-1995.

XX PT 02-FEB-1995; 95WO-US001185.

XX PT Bauer CS, Abrams MA, Bradford-Goldberg SR, Caparon MH, Easton AM;
 PI Klein BK, McKearn JP, Olins PO, Paik K, Thomas JW;
 XX PA (SEAR) SEARLE & CO G D.
 XX DR WPI: 1995-283774/37.
 DR P-PSDB; AAR79336.

XX PT Fusion proteins comprising a human interleukin-3 variant, a linker and
 PT interleukin-3, a variant or a colony stimulating factor - useful to
 PT increase haematopoietic cell prodn. in a mammal.

XX PS Example 15; Page 183-184; 447pp; English.

XX A new fusion protein is disclosed which has the formula R1-L-R2; R2-L-R1,
 CC R1-R2, R2-R1, R1-L-R1 or R1-R1, where R1 is a mutant or variant of human
 CC interleukin-3 (IL-3), R2 is a second colony stimulating factor (CSF)
 CC including cytokine, lymphokine, interleukin, haematopoietic growth factor
 CC or IL-3 variant, and L is a linker. Generic sequences are described in
 CC AAW03235 - AAW03242, and specifically claimed examples are shown in
 CC AAR79298-R79335 and AAR79342-R79345. The fusion protein is made by
 CC recombinant DNA techniques. Specifically claimed examples of DNA
 CC sequences which encode these proteins are shown in AAQ97167-Q97204 and
 CC AAQ97222-Q97227. The fusion protein is used to increase haematopoietic
 CC cell production. It is also useful as an IL-3 antagonist or as a discrete
 CC antigenic fragment for production of antibodies useful in immunoassays
 CC and immunotherapy. Antagonists are used to block the growth of certain
 CC cancer cells and in treatment of asthma. The fusion protein can also be
 CC used to stimulate bone marrow and blood cell activation and growth in
 CC vitro before infusion; and to treat diseases characterised by decreased
 CC levels of myeloid, erythroid, lymphoid and/or megakaryocyte cells of the
 CC haematopoietic system. The protein has the usual activity of both its
 CC component proteins, but may have increased synergistic activity and
 CC reduced undesired side effects

DR P-PSDB; ADC27541, ADC27530.
 XX WPI; 2000-679800/66.
 PT DR
 PT P-PSDB; AAB48530.
 PT Non naturally occurring XA protein with enhanced thermophilicity,
 PT alkalophilicity or thermostability relative to the naturally occurring
 PT Bacillus circulans xylanase is used in an agent for bleaching pulp.
 XX
 PS Example 2; Page 38; 63pp; English.
 XX
 This invention relates to a novel variant xylanase protein or its
 fragment having xylanase activity. The variants have one or more amino
 acid modifications so that the protein or fragment has an altered
 sensitivity to a xylanase inhibitor and has an altered thermosensitivity
 as compared with a parent xylanase enzyme. The variant xylanases of the
 invention are useful for degrading or modifying a plant cell wall, and
 for processing a plant material. They may be useful for baking,
 processing cereals, starch production, in processing wood, and enhancing
 the bleaching of wood pulp. They may also be useful for a variety of
 applications such as animal feed, flour separation (wetmilling) and paper
 and pulp production. In addition, they may also be useful for preparing a
 flour dough. The enzymes of the invention may alter or reduce the
 viscosity derived from the presence of hemicellulose or arabinoxylan in a
 solution or system comprising plant cell wall material, and for modifying
 food and/or feed supplement comprising xylan. Use of the variant
 xylanases in baking processes improves the properties of flour based
 doughs and products made from the doughs. The baked products have highly
 desirable characteristics with respect to blood volume, crumb structure
 and appearance and additionally have an extended shelf-life. The enzymes
 of the invention have reduced thermosensitivity and inhibitor
 sensitivity, which allows a reduction in the amount of xylanase required
 for animal feed, starch production and baking. The present sequence is
 the cDNA sequence which encodes the wild-type *Bacillus subtilis* xylanase
 which was used to create the variant xylanases of the invention.

XX
 CC This invention relates to a novel variant xylanase protein or its
 fragment having xylanase activity. The variants have one or more amino
 acid modifications so that the protein or fragment has an altered
 sensitivity to a xylanase inhibitor and has an altered thermosensitivity
 as compared with a parent xylanase enzyme. The variant xylanases of the
 invention are useful for degrading or modifying a plant cell wall, and
 for processing cereals, starch production, in processing wood, and enhancing
 the bleaching of wood pulp. They may also be useful for a variety of
 applications such as animal feed, flour separation (wetmilling) and paper
 and pulp production. In addition, they may also be useful for preparing a
 flour dough. The enzymes of the invention may alter or reduce the
 viscosity derived from the presence of hemicellulose or arabinoxylan in a
 solution or system comprising plant cell wall material, and for modifying
 food and/or feed supplement comprising xylan. Use of the variant
 xylanases in baking processes improves the properties of flour based
 doughs and products made from the doughs. The baked products have highly
 desirable characteristics with respect to blood volume, crumb structure
 and appearance and additionally have an extended shelf-life. The enzymes
 of the invention have reduced thermosensitivity and inhibitor
 sensitivity, which allows a reduction in the amount of xylanase required
 for animal feed, starch production and baking. The present sequence is
 the cDNA sequence which encodes the wild-type *Bacillus subtilis* xylanase
 which was used to create the variant xylanases of the invention.

XX
 SQ Sequence 645 BP; 192 A; 111 C; 163 G; 179 T; 0 U; 0 Other;
 XX
 Query Match 43.9%; Score 79; DB 9; Length 645;
 Best Local Similarity 79.0%; Pred. No. 3.4e-16;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 DB 4 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAACGGCAGCTTCATGAGTATCAGC 63
 XX
 Query Match 43.9%; Score 79; DB 9; Length 645;
 Best Local Similarity 79.0%; Pred. No. 3.4e-16;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 DB 4 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAACGGCAGCTTCATGAGTATCAGC 63
 XX
 Query Match 43.9%; Score 79; DB 9; Length 645;
 Best Local Similarity 79.0%; Pred. No. 3.4e-16;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 DB 4 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAACGGCAGCTTCATGAGTATCAGC 63
 XX
 Query Match 43.9%; Score 79; DB 9; Length 645;
 Best Local Similarity 79.0%; Pred. No. 3.4e-16;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;

QY 1 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAACGGCAGCTTCATGAGTATCAGC 60
 DB 392 ATGTTTAAGTTAAAGAAATTCTTAGGGATTAAATGAGTATTAGC 451
 QY 61 ATGTTTTCTGCAACCCTCTGCAGCTGGCCGCCACCATCACCATCACCATCGAGGG 119
 DB 452 TTGTTTTGGCAACCGCCCTCTGCAGCTAGCACAGACTTGAAATTGGACTGATGG 510
 XX
 RESULT 13
 AAL48894 standard; DNA; 1349 BP.
 ID AAL48894
 XX AC AAL48894;
 XX DT 24-OCT-2002 (first entry)
 XX DE B circulans xylanase coding sequence.
 XX KW Xylanase activity; enzyme; thermostable; xylanase; pulp bleaching;
 KW liquid clarification; coffee extraction; plant oil extraction; gene;
 KW starch extraction; food thickener; animal food additive; mutant; ds.
 XX OS Bacillus circulans.
 XX PN WO200238746-A2.
 XX PD 16-MAY-2002.
 XX PF 09-NOV-2001; 2001WO-US048018.
 XX PR 10-NOV-2000; 2000US-00710050.
 XX PA (XENC-) XENCOR INC.
 XX PI Bentzien J, Dahiyat B;
 XX DR 2002-608200/65.
 XX PT Novel xylanase activity protein, useful in bleaching process of pulp and
 PT in food and animal feed industry, has enhanced thermostability and
 PT alkalophilicity.
 XX Disclosure; Fig 1C; 121pp; English.
 XX
 The present invention relates to a non-naturally occurring xylanase
 CC comprising an amino acid sequence less than 97%
 CC identical to a naturally occurring *Bacillus circulans* xylanase, where the
 XX
 (XENC-) XENCOR INC.

XX
 AAC88889 standard; DNA; 1349 BP.
 ID AAC88889
 XX AC AAC88889;
 XX DT 05-MAR-2001 (first entry)
 XX DE Bacillus circulans xylanase DNA sequence.
 XX KW Bacillus circulans; xylanase; xylanase activity; XA; bleaching agent; ds.
 XX OS Bacillus circulans.
 XX PN WO200068396-A2.
 XX PD 16-NOV-2000.
 XX PF 12-MAY-2000; 2000WO-US013172.
 XX PR 12-MAY-1999; 99US-0133714P.
 XX PA (XENC-) XENCOR INC.
 XX

PS Disclosure; Page 108; 112pp; English.

The present sequence encodes an endo-beta-1,4-xylanase. The specification also describes an endo-beta-1,4-xylanase inhibitor, which is obtained from wheat flour. The xylanase is useful for preparing a foodstuff, preferably a bakery product or a substance (e.g. a dough) for making the bakery product. Wild type xylanase or mutant xylanase is useful for preparing a dough that is less sticky than a dough comprising a fungal xylanase. The xylanase inhibitor is useful for screening high degree resistance xylanases for dough preparation. The xylanase is also useful for preparing a non-sticky dough. A combination of xylanase and the inhibitor is useful for calibrating and/or determining the quantity of inhibitor in a wheat flour sample

XX SQ Sequence 642 BP; 191 A; 110 C; 163 G; 178 T; 0 U; 0 Other;
 Query Match 43.9%; Score 79; DB 3; Length 642;
 Best Local Similarity 79.0%; Pred. No. 3.4e-16;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAAAGAAATTCTTAGTGGGATTAACGGCAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAAGAAATTCTTAGTGGGATTAATGAGTTAACGCTTAATGATTAGC 60
 QY 61 ATGTTTCTGCAACCGCCCTCTGCAGCTGCCGCCACCATCACCATCACCATCGAGGG 119
 Db 61 TTGTTCGGCAACGCCCTCTGCAGCTAGCACAGACTACTGGAAATTGGACTGATGG 119

RESULT 10
 AAS13814

ID AAS13814 standard; DNA; 645 BP.

XX AC AAS13814;

XX DT 18-DEC-2001 (first entry)

DE DNA encoding *Bacillus subtilis* xylanase.

KW Xylanase; plant cell wall; baking; cereal; starch production; wood; wood pulp bleaching; hemicellulose; arabinoxylan; foodstuff; ds.

XX OS *Bacillus subtilis*.

XX Key Location/Qualifiers

FT 98. 645

FT /*tag= a

FT /product= "xylanase"

XX PN WO200166711-A1.

XX PD 13-SEP-2001.

XX PR 08-MAR-2001; 2001WO-IB000426.

XX PR 08-MAR-2000; 2000GB-00005585.

XX PR 27-JUN-2000; 2000GB-00015751.

XX PA (DANI-) DANISCO AS.

XX PI Sibbesen O, Sorensen JF;

XX DR WPI; 2001-596834/67.

XX P-PSDB; AAU07391.

PT Novel variant xylanase polypeptide or its fragment useful for degrading or modifying plant cell wall, comprises amino acid modifications such that the polypeptide has altered sensitivity to xylanase inhibitor.
 XX Example 3; Page 43; 70pp; English.

CC The invention relates to a variant xylanase polypeptide (I) or its fragment having xylanase activity, comprising one or more amino acid CC modifications such that (I) or its fragment has an altered sensitivity to CC a xylanase inhibitor as compared with the parent xylanase enzyme. (I) or CC its coding sequence (II) is useful for degrading or modifying plant cell CC wall or for processing a plant material by contacting the plant cell wall CC or plant material with (I) or (II). (I) is useful for modifying plant CC materials, and in baking, processing cereals, starch production, CC processing wood and enhancing the bleaching of wood pulp. (I) is useful CC for altering the viscosity derived from the presence of hemicellulose or CC arabinoxylan in a solution or system comprising plant cell wall material. CC (I) is useful for preparing a foodstuff such as bread, pretzels, CC tortillas, cakes, cookies, biscuits or crackers. The present sequence CC represents the coding sequence of *Bacillus subtilis* xylanase as described CC in the method of the invention

XX SQ Sequence 645 BP; 192 A; 111 C; 163 G; 179 T; 0 U; 0 Other;
 Query Match 43.9%; Score 79; DB 5; Length 645;
 Best Local Similarity 79.0%; Pred. No. 3.4e-16;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAAAGAAATTCTTAGTGGGATTAACGGCAGCTTTCATGAGTATCAGC 60
 Db 4 ATGTTTAAGTTAAAAAGAAATTCTTAGTGGGATTAATGAGTTAACGCTTAATGATTAGC 63
 QY 61 ATGTTTCTGCAACCGCCCTCTGCAGCTGCCGCCACCATCACCATCACCATCGAGGG 119
 Db 64 TTGTTCGGCAACGCCCTCTGCAGCTAGCACAGACTACTGGAAATTGGACTGATGG 122

RESULT 11
 ADC27538

ID ADC27538 standard; cDNA; 645 BP.

XX AC ADC27538;

XX DT 18-DEC-2003 (first entry)

DE *Bacillus subtilis* xylanase cDNA sequence.

XX KW xylanase; xylanase inhibitor; thermosensitivity; plant cell wall; plant material; baking; processing cereal; starch production; processing wood; wood pulp bleaching; animal feed; flour separation; wetmilling; paper and pulp production; flour dough; hemicellulose; arabinoxylan; food supplement; xylan; baking process; bread volume; crumb structure; crumb appearance; shelf-life; gene; ss.

XX OS *Bacillus subtilis*.

XX FH Key

FT CDS 4. 645

FT /*tag= b /product= "Bacillus subtilis xylanase enzyme"

FT sig_peptide 4. 87

FT mat_peptide FT /*tag= a 88. 642

FT /*tag= c /label= Mature_Bacillus_subtilis_xylanase

XX PN WO2003020923-A1.

XX PD 13-MAR-2003.

XX PR 30-AUG-2002; 2002WO-IB003797.
 (DANI-) DANISCO AS.
 XX PI Sibbesen O, Sorensen JF;
 XX DR WPI; 2003-332934/31.

The present sequence encodes a mutant endo-beta-1,4-xylanase. The specification also describes an endo-beta-1,4-xylanase inhibitor, which is obtained from wheat flour. The xylanase is useful for preparing a foodstuff, preferably a bakery product or a substance (e.g. a dough) for making the bakery product. Wild type xylanase or mutant xylanase is useful for preparing a dough that is less sticky than a dough comprising a fungal xylanase. The xylanase inhibitor is useful for screening high degree resistance xylanases for dough preparation. The xylanase is also useful for preparing a non-sticky dough. A combination of xylanase and the inhibitor is useful for calibrating and/or determining the quantity of inhibitor in a wheat flour sample

XX Sequence 642 BP; 187 A; 115 C; 162 G; 178 T; 0 U; 0 Other;

SQ Score 44.2%; Score 79.6; DB 3; Length 642;

Query Match Best Local Similarity 72.5%; Pred. No. 2.1e-16;

Matches 103; Conservative 0; Mismatches 39; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGGTTTCATGAGTATCAGC 60

Db 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTATCGGTAAATGAGTATTAGC 60

Qy 61 ATGTTTTCTGCAAACCGCCCTGCAGCTGCCGCACCATCACCATACCATAATCGAGGG 120

Db 61 TTGTTTGGCAACCGCCTGCAGCTAGCAGACTACTGGAAATTGGACTGATGGG 120

Qy 121 AGGACTCCGTTAGGTCCAGCCA 142

Db 121 GGGGTACCGTAAACGCTGTCA 142

Claim 3; Page 110; 112pp; English.

The present sequence encodes a mutant endo-beta-1,4-xylanase. The specification also describes an endo-beta-1,4-xylanase inhibitor, which is obtained from wheat flour. The xylanase is useful for preparing a foodstuff, preferably a bakery product or a substance (e.g. a dough) for making the bakery product. Wild type xylanase or mutant xylanase is useful for preparing a dough that is less sticky than a dough comprising a fungal xylanase. The xylanase inhibitor is useful for screening high degree resistance xylanases for dough preparation. The xylanase is also useful for preparing a non-sticky dough. A combination of xylanase and the inhibitor is useful for calibrating and/or determining the quantity of inhibitor in a wheat flour sample

XX Sequence 642 BP; 189 A; 113 C; 161 G; 179 T; 0 U; 0 Other;

SQ Score 44.2%; Score 79.6; DB 3; Length 642;

Query Match Best Local Similarity 72.5%; Pred. No. 2.1e-16;

Matches 103; Conservative 0; Mismatches 39; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTAAACGGCAGGTTTCATGAGTATCAGC 60

Db 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTATCGGTAAATGAGTATTAGC 60

Qy 61 ATGTTTTCTGCAAACCGCCCTGCAGCTGCCGCACCATCACCATACCATAATCGAGGG 120

Db 61 TTGTTTGGCAACCGCCTGCAGCTAGCAGACTACTGGAAATTGGACTGATGGG 120

Qy 121 AGGACTCCGTTAGGTCCAGCCA 142

Db 121 GGGGTACCGTAAACGCTGTCA 142

RESULT 8
AAA47156 ID AAA47156 standard; DNA; 642 BP.
XX AC AAA47156;
XX DT 03-OCT-2000 (first entry)
XX DE DNA encoding a bacterial endo-beta-1,4-xylanase mutant XM2.
XX KW Endo-beta-1,4-xylanase inhibitor; wheat flour; xylanase; bakery product; dough; dough preparation; ss.
XX OS Synthetic.
OS Bacillus subtilis.
XX FH Location/Qualifiers
FT 1..642
FT /*tag= a
FT /product= "xylanase mutant"
XX PN WO200039289-A2.
XX PD 06-JUL-2000.
XX PF 17-DEC-1999; 99WO-1B002071.
XX PR 23-DEC-1998; 98GB-00028599.
PR 06-APR-1999; 99GB-00007805.
PR 15-APR-1999; 99GB-00008645.
XX PA (DANI-) DANISCO AS.
XX PI Sibbesen O, Sorensen JF;
XX DR WPI; 2000-465744/40.
DR P-PSDB; AAY93754.
XX PT Mutant xylanase protein identified using xylanase inhibitor useful for preparing non-sticky dough for bakery products.

RESULT 9
AAA47154 ID AAA47154 standard; DNA; 642 BP.
XX AC AAA47154;
XX DT 03-OCT-2000 (first entry)
XX DE DNA encoding a bacterial endo-beta-1,4-xylanase protein.
XX KW Endo-beta-1,4-xylanase inhibitor; wheat flour; xylanase; bakery product; dough; dough preparation; ss.
XX OS Bacillus subtilis.
XX FH Location/Qualifiers
Key 1..642
CDS /*tag= a
FT /product= "xylanase"
FT FT
XX PN WO200039289-A2.
XX PD 06-JUL-2000.
XX PF 17-DEC-1999; 99WO-1B002071.
XX PR 23-DEC-1998; 98GB-00028599.
PR 06-APR-1999; 99GB-00007805.
PR 15-APR-1999; 99GB-00008645.
XX PA (DANI-) DANISCO AS.
XX PI Sibbesen O, Sorensen JF;
XX DR WPI; 2000-465744/40.
DR P-PSDB; AAY93752.
XX PT Mutant xylanase protein identified using xylanase inhibitor useful for preparing non-sticky dough for bakery products.

GenCore version 5.1.6
(c) 1993 - 2004 Compugen Ltd.

score greater than or equal to the score of the result being printed,
and is derived by analysis of the total score distribution.

SUMMARIES

OM nucleic - nucleic search, using sw model								
Run on:	October 8, 2004, 21:23:54	Search time	937.383 Seconds					
				(without alignments)				
Title:	US-10-009-792C-26	8322.904	Million cell updates/sec					
Perfect score:	180	1 atgtttaagtttaaaaagaa.....tcctgtctcaaggtagtttagag 180						
Sequence:								
Scoring table:	IDENTITY_NUC							
	Gapop 10.0 , Gapext 1.0							
Searched:	3470272 seqs, 21671516995 residues							
Total number of hits satisfying chosen parameters:	6940544							
Minimum DB seq length:	0							
Maximum DB seq length:	2000000000							
Post-processing:	Minimum Match 0%							
	Maximum Match 100%							
	Listing first 45 summaries							
Database :	GenEmbl:*							
	1: gb_ba:*							
	2: gb_htg:*							
	3: gb_in:*							
	4: gb_om:*							
	5: gb_ov:*							
	6: gb_pat:*							
	7: gb_ph:*							
	8: gb_pl:*							
	9: gb_pr:*							
	10: gb_ro:*							
	11: gb_sts:*							
	12: gb_sy:*							
	13: gb_un:*							
	14: gb_vl:*							
	15: em_ba:*							
	16: em_fun:*							
	17: em_hum:*							
	18: em_in:*							
	19: em_mu:*							
	20: em_om:*							
	21: em_or:*							
	22: em_ov:*							
	23: em_pat:*							
	24: em_ph:*							
	25: em_pl:*							
	26: em_ro:*							
	27: em_st:*							
	28: em_un:*							
	29: em_vl:*							
	30: em_htg_hum:*							
	31: em_htg_inv:*							
	32: em_htg_other:*							
	33: em_htg_mus:*							
	34: em_htg_pln:*							
	35: em_htg_rod:*							
	36: em_htg_mam:*							
	37: em_htg_vrt:*							
	38: em_sy:*							
	39: em_htgo_hum:*							
	40: em_htgo_mus:*							
	41: em_htgo_other:*							

ALIGNMENTS

RESULT 1
BSU51675
LOCUS Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus;
DEFINITION (bases 1 to 1620)
AF441773
Sequence
AX244979
Sequence
AF490979
Sequence
AF441773
Sequence
X59058
Bacillus sp.
M36648
B.subtilis
AF027723
Bacillus ci
BD247935
Novel the
AX047508
Sequence
AX608888
Sequence
AF027868
Bacillus su
299114
Bacillus su
AF490980
Bacillus
AJ536759
Bacillus
Z34519
Bacillus su
AR244980
Sequence
E000512
Sequence
E11905
DNA encodin
BD017497
Thermosta
AR202281
Sequence
AR223282
Sequence
AR223283
Sequence
AR223284
Sequence
E01423
DNA sequenc
I05086
Sequence 11
AR202204
Sequence
AR223206
Sequence
AR202223
Sequence
AR202226
Sequence
AR202229
Sequence

1620 bp DNA linear BCT 31-JAN-1999
(xyna) gene, complete
cds.
U51675
U51675.1 GI:4204770
KEYWORDS
ORGANISM
REFERENCE
AUTHORS
TITLE
JOURNAL
Submitted (18-MAR-1996) Sun Chang Kim, Biological Sciences, Korea

Pred. No. is the number of results predicted by chance to have a

Advanced Institute of Science and Technology, 373-1, Kusong-dong
Yusong-ku, Taejon 305-701, Korea
Location/Qualifiers
1. .1620
/organism="Bacillus sp."
/mol_type="genomic DNA"
/db_xref="taxon:1409"
RBS 360. .365
gene 372. .1013
/gene="xyNA"
CDS 372. .1013
/gene="xyNA"
/function="xylan hydrolysis"
/note="similar to B. subtilis xylanase, Swiss-Prot
Accession Number P18429"
/codon_start=1
/transl_table=11
/product="endo-1,4-beta-xylanhydrolase"
/protein_id="AAD10834.1"
/db_xref="GI:4204771"
/translation="MFKEFKKKFLVGLTAAFMSISMFSATAAAGTDYQWNWTDGCGTV
NAVNGSGGNYSVNWSNTGNFVVGKWTGSPERTINYAGWAPNGNGLTLYGWTRA
PLIEYYVVDSWGTYRPTGYKGTVKSDGGTYDIYTTRYNAPSIDGDNNTFTQYWSVR
QSKRPTGSNAAITFSNHVNAWKSHGMNLGSNWAYQVLATEGYKSSGSNNVTW"

ORIGIN

Query Match 50.4%; Score 90.8; DB 1; Length 1620;
Best Local Similarity 77.5%; Pred. No. 1.3e-19;
Matches 110; Conservative 0; Mismatches 32; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 60
Db 372 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 431
Qy 61 ATGTTTCTGCAACCCGCCTCTGAGCTGCCGGCACCATCACCATACTGAGGGA 120
Db 432 ATGTTTCTGCAAACCCGCCTCTGAGCTGCCACAGATTACTGGCAAAATTGGACTGACGG 491
Qy 121 AGGACTCCGTAGGTCCAGCCA 142
Db 492 GGGGAACAGTAAACGCAGTCA 513

RESULT 2

A36647 641 bp DNA linear PAT 05-MAR-1997
DEFINITION Sequence 2 from Patent EP0585617.
VERSION A36647.1 GI:2293950
KEYWORDS SOURCE Bacillus subtilis
ORGANISM Bacillus subtilis
REFERENCE 1 (bases 1 to 641)
AUTHORS ROEHM GMBH (DE)
COMMENT Other Publication US 5306633 940426
TITLE Other Publication FI 933519 940212
JOURNAL Other Publication DE 4226528 940217.
FEATURES Location/Qualifiers
1. .1413

Query Match 49.6%; Score 89.2; DB 6; Length 1413;
Best Local Similarity 76.8%; Pred. No. 4.3e-19;
Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 60
Db 506 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 565
Qy 61 ATGTTTCTGCAACCCGCCTCTGAGCTGCCGGCACCATCACCATACTGAGGGA 120
Db 566 ATGTTTCTGCAAACCCGCCTCTGAGCTGCCACAGATTACTGGCAAAATTGGACTGACGG 625
Qy 121 AGGACTCCGTAGGTCCAGCCA 142
Db 626 GGGGGACAGTAAACGCAGTCA 647

RESULT 4
BD234184 LOCUS BD234184
DEFINITION Proteins.
1. .>641
/note="unnamed protein product"
/codon_start=1
/transl_table=11
/protein_id="CAA02246.1"

/db_xref="GI:2293951"
/db_xref="REMTREMBL:CAA02246"
/translation="MFKEFKKKFLVGLTAAFMSISMFSATAAAGTDYQWNWTDGCGTV
NAVNGSGGNYSVNWSNTGNFVVGKWTGSPERTINYAGWAPNGNGLTLYGWTRA
PLIEYYVVDSWGTYRPTGYKGTVKSDGGTYDIYTTRYNAPSIDGDNNTFTQYWSVR
QSKRPTGSNAAITFSNHVNAWKSHGMNLGSNWAYQVLATEGYKSSGSNNVTW"

ORIGIN

Query Match 49.6%; Score 89.2; DB 6; Length 641;
Best Local Similarity 76.8%; Pred. No. 3.7e-19;
Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 60
Db 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 60
Qy 61 ATGTTTCTGCAACCCGCCTCTGAGCTGCCAGCTTCATGAGTATCAGC 120
Db 61 ATGTTTCTGCAAACCCGCCTCTGAGCTGCCACAGATTACTGGCAAAATTGGACTGACGG 120
Qy 121 AGGACTCCGTAGGTCCAGCCA 142
Db 121 GGGGGACAGTAAACGCAGTCA 142

RESULT 3

A36646 LOCUS A36646
DEFINITION Sequence 1 from Patent EP0585617.
VERSION A36646
KEYWORDS SOURCE Bacillus subtilis
ORGANISM Bacillus subtilis
REFERENCE 1 (bases 1 to 1413)
AUTHORS Gottschalk,M.D., Schuster,E.D. and Sproessler,B.D.
TITLE Bacterial Xylanase, method for its production and its application
in manufacturing bread
Patent: EP 0585617-A 1 09-MAR-1994;
ROEHM GMBH (DE)
Other publication US 5306633 940426
Other publication FI 933519 940212
Other publication DE 4226528 940217.
JOURNAL
FEATURES Source
1. .1413
/organism="Bacillus subtilis"
/mol_type="unassigned DNA"
/strain="RH 1321"
/db_xref="taxon:1423"

ORIGIN

Query Match 49.6%; Score 89.2; DB 6; Length 1413;
Best Local Similarity 76.8%; Pred. No. 4.3e-19;
Matches 109; Conservative 0; Mismatches 33; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 60
Db 506 ATGTTTAAGTTAAAGAAATTCTTAGTGGATTAACGGCAGCTTCATGAGTATCAGC 565
Qy 61 ATGTTTCTGCAACCCGCCTCTGAGCTGCCGGCACCATCACCATACTGAGGGA 120
Db 566 ATGTTTCTGCAAACCCGCCTCTGAGCTGCCACAGATTACTGGCAAAATTGGACTGACGG 625
Qy 121 AGGACTCCGTAGGTCCAGCCA 142
Db 626 GGGGGACAGTAAACGCAGTCA 647

RESULT 4
BD234184 LOCUS BD234184
DEFINITION Proteins.
1. .>641
/note="unnamed protein product"
/codon_start=1
/transl_table=11
/protein_id="CAA02246.1"

ACCESSION BD234184
 VERSION BD234184.1 GI:33043954
 KEYWORDS JP 2002533121-A/1.
 SOURCE synthetic construct
 ORGANISM synthetic construct
 artificial sequences.
 1 (bases 1 to 642)
 Sibbesen,O. and Soerensen,J.F.
 Proteins
 Patent: JP 2002533121-A 1 08-OCT-2002;
 DANISCO AS

COMMENT OS Artificial Sequence
 PN JPNP 2002533121-A/1
 PD 08-OCT-2002
 PF 17-DEC-1999 JP 20000591181
 PR 23-DEC-1998 GB 9828599.2, 06-APR-1999 GB 9907805.7 PR
 15-APR-1999 GB 9908645.6
 PI OLE SIBBESSEN, JENS FRISBAEK SOERENSEN
 PC C12N15/09,A21D2/26,C07K14/415,C12N1/15,C12N1/19,C12N1/20 PC
 ,C12N1/21,C12N5/10,
 PC C12N9/42,C12P21/02,C12Q1/34,C12N15/00,C12N5/00 CC
 Description of Artificial Sequence:wild-type xylanase FH
 Key
 Location/Qualifiers
 FT source 1. .642 /organism='Artificial Sequence'.
 FEATURES source
 FT Location/Qualifiers
 1. .642 /organism='synthetic construct'
 /mol_type="genomic DNA"
 /db_xref="taxon:32630"
 ORIGIN
 Query Match 48.7%; Score 87.6; DB 6; Length 642;
 Best Local Similarity 76.1%; Pred. No. 1.3e-18;
 Matches 108; Conservative 0; Mismatches 34; Indels 0; Gaps 0;
 KEYWORDS 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATAACGGCAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATAACGGCAGCTTTCATGAGTATCAGC 60
 Qy 61 ATGTTTCTGCAACCGCTCTGCAGTGGCCGCCACCATCACCATATCGAGGGA 120
 Db 61 ATGTTTCTGCAACCGCTCTGCAGTGGCACAGATTACTGGAAATTGGACTGACGGG 120
 Qy 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 121 GGCGGGACAGTAAACGCAAGTCA 142

RESULT 5
 AX027170
 LOCUS Sequence 4 from Patent WO0039289.
 DEFINITION 642 bp DNA linear PAT 16-SEP-2000
 ACCESSION AX027170
 VERSION GI:10188157
 KEYWORDS synthetic construct
 SOURCE synthetic construct
 ORGANISM synthetic construct
 artificial sequences.
 1 Soerensen,J.F. and Sibbesen,O.
 Proteins
 Patent: WO 0039289-A 4 06-JUL-2000;
 SOERENSEN JENS FRISBAEK (DK) ; DANISCO (DK) ; SIBBESSEN OLE (DK)
 FEATURES source
 /organism='synthetic construct'
 /mol_type="unassigned DNA"
 /db_xref="taxon:32630"
 /note="wild-type xylanase"
 ORIGIN
 Query Match 48.7%; Score 87.6; DB 6; Length 642;

Query Match 44.2%; Score 79.6; DB 6; Length 642;
 Best Local Similarity 72.5%; Pred. No. 7.2e-16;
 Matches 103; Conservative 0; Mismatches 39; Indels 0; Gaps 0;
 KEYWORDS 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATAACGGCAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGGATTATGGGATTATGGGATTATGGGATTATGG 60
 Qy 61 ATGTTTCTGCAACCGCTCTGCAGTGGCCGCCACCATCACCATATCGAGGGA 120
 Db 61 TTGTTTCTGCAACCGCTCTGCAGTGGCACAGACTACTGGAAATTGGACTGATGGG 120
 Qy 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 121 GGCGGTACCGTAAACGCTGTCA 142

RESULT 7
 BD234187
 LOCUS
 DEFINITION Proteins

PC C12N9/42, C12P21/02, C12Q1/34, C12N5/00, C12N5/00 CC
 Description of Artificial Sequence:mutant xylanase FH Key

LOCATION/QUALIFIERS
 FT source 1. .642 /organism='Artificial Sequence'.
 FT Location/Qualifiers 1. .642 /organism="synthetic construct"
 /mol_type="genomic DNA"
 /db_xref="taxon:32630"

FEATURES SOURCE
 FT source
 ORIGIN
 OS Artificial Sequence
 PN JP 2002533121-A/4
 PD 08-OCT-2002
 PF 17-DEC-1999 JP 2000591181
 PR 23-DEC-1998 GB 9828599.2, 06-APR-1999 GB 9907805.7 PR
 PR 15-APR-1999 GB 9908645.6
 PI OLE SIBBESSEN, JENS FRISBAEK SOERENSEN
 PC C12N15/09, A21D2/26, C07K14/415, C12N1/15, C12N1/19, C12N1/20 PC
 ,C12N1/21, C12N5/10,
 PC C12N9/42, C12P21/02, C12Q1/34, C12N5/00, C12N5/00 CC
 Description of Artificial Sequence:mutant xylanase FH Key .
 Location/Qualifiers 1. .642 /organism='Artificial Sequence'.
 FT source
 FEATURES SOURCE 1. .642 /organism="synthetic construct"
 /mol_type="genomic DNA"
 /db_xref="taxon:32630"

ORIGIN
 Query Match 44.2%; Score 79.6; DB 6; Length 642;
 Best Local Similarity 72.5%; Pred. No. 7.2e-16;
 Matches 103; Conservative 0; Mismatches 39; Indels 0; Gaps 0;

QY 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGATTAAACGGCAGCTTICATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGATTATCGGCAGCTTAAATGAGTATTAGC 60

QY 61 ATGTTTCGGCAACCGCCCTCTGCAGCTGGCACCACCATCACCATATCGAGGA 120
 Db 61 TTGTTTCGGCAACCGCCCTCTGCAGCTGGCACCACCATCACCATATCGAGGA 120

QY 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 121 GGCGGTACCGTAAACGCTGTCA 142

RESULT 9
 AX027174 LOCUS AX027174 642 bp DNA linear PAT 16-SEP-2000
 DEFINITION Sequence 8 from Patent WO0039289.
 ACCESSION AX027174
 VERSION AX027174.1 GI:10188159
 KEYWORDS
 SOURCE synthetic construct
 ORGANISM synthetic construct
 ARTIFICIAL SEQUENCES 1
 REFERENCE Soerensen, J.F. and Sibbesen, O.
 AUTHORS Proteins
 TITLE
 JOURNAL SOERENSEN JENS FRISBAEK (DK) ; DANISCO (DK) ; SIBBESSEN OLE (DK)
 FEATURES SOURCE
 LOCATION/QUALIFIERS 1. .642 /organism="synthetic construct"
 /mol_type="unassigned DNA"
 /db_xref="taxon:32630"
 /note="mutant xylanase"

ORIGIN
 Query Match 44.2%; Score 79.6; DB 6; Length 642;
 Best Local Similarity 72.5%; Pred. No. 7.2e-16;
 Matches 103; Conservative 0; Mismatches 39; Indels 0; Gaps 0;

QY 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGATTAAACGGCAGCTTICATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAAATTCTTAGTGGATTATCGGCAGCTTAAATGAGTATTAGC 60

QY 61 ATGTTTCGGCAACCGCCCTCTGCAGCTGGCACCACCATCACCATATCGAGGA 120
 Db 61 TTGTTTCGGCAACCGCCCTCTGCAGCTGGCACCACCATCACCATATCGAGGA 120

QY 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 121 GGCGGTACCGTAAACGCTGTCA 142

RESULT 8
 BD234188 LOCUS BD234188 642 bp DNA linear PAT 17-JUL-2003
 DEFINITION Proteins.
 ACCESSION BD234188
 VERSION BD234188.1 GI:33043958
 KEYWORDS JP 2002533121-A/5.
 SOURCE synthetic construct
 ORGANISM synthetic construct
 ARTIFICIAL SEQUENCES 1
 REFERENCES 1 (bases 1 to 642)
 AUTHORS Sibbesen, O. and Soerensen, J.F.
 TITLE
 JOURNAL DANISCO AS
 COMMENT OS Artificial Sequence
 PN JP 2002533121-A/5
 PD 08-OCT-2002
 PF 17-DEC-1999 JP 2000591181
 PR 23-DEC-1998 GB 9828599.2, 06-APR-1999 GB 9907805.7 PR
 15-APR-1999 GB 9908645.6
 PI OLE SIBBESSEN, JENS FRISBAEK SOERENSEN
 PC C12N15/09, A21D2/26, C07K14/415, C12N1/15, C12N1/19, C12N1/20 PC
 ,C12N1/21, C12N5/10,

RESULT 10
 AX027176 LOCUS AX027176 642 bp DNA linear PAT 16-SEP-2000
 DEFINITION Sequence 10 from Patent WO0039289.

ACCESSION AX027176 VERSION AX027176.1 GI:10188160
 SOURCE synthetic construct
 ORGANISM synthetic construct artificial sequences.
 REFERENCE
 AUTHORS Soerensen, J.F. and Sibbesen, O.
 TITLE Proteins
 JOURNAL Patent: WO 0039289-A 10 06-JUL-2000;
 SOERENSEN JENS FRISBAEK (DK) ; DANISCO (DK) ; SIBBESEN OLE (DK)
 FEATURES Location/Qualifiers
 source 1. .642
 /organism="synthetic construct"
 /mol_type="unassigned DNA"
 /db_xref="taxon:32630"
 /note="mutant xylanase"
 ORIGIN
 Query Match 44.2%; Score 79.6; DB 6; Length 642;
 Best Local Similarity 72.5%; Pred. No. 7.2e-16;
 Matches 103; Conservative 0; Mismatches 39; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAAAGAAATTCTTAGTGGGATAAACGGCAAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAATTCTTAGTGGGATAATGGCAGCTTAAATGAGTATTAGC 60
 QY 61 ATGTTTCCTGCAACCGCCTCTGCAGCTGGCCCGCACCATCACCATCACCATCGAGGGA 120
 Db 61 TTGTTTCGGCAACGGCCTCTGCAGCTAGCACAGACTACTGGACTGTGAGGG 120
 QY 121 AGGACTCCGTTAGGTCCAGCCA 142
 Db 121 GCGGGTACCGTAACGCTGTCA 142
 /organism="Artificial Sequence".
 FEATURES Source
 /organism="synthetic construct"
 /mol_type="genomic DNA"
 /db_xref="taxon:32630"
 ORIGIN
 Query Match 43.9%; Score 79; DB 6; Length 642;
 Best Local Similarity 79.0%; Pred. No. 1.2e-15;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAAAGAAATTCTTAGTGGGATAAACGGCAAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAATTCTTAGTGGGATAATGGCAGCTTAAATGAGTATTAGC 60
 QY 61 ATGTTTCCTGCAACCGCCTCTGCAGCTGGCCGCCACCATCACCATCACCATCGAGGG 119
 Db 61 TTGTTTCGGCAACGGCCTCTGCAGCTAGCACAGACTACTGGCAAATTGGACTGTGAGGG 119
 RESULT 11
 LOCUS AX027178 DEFINITION Sequence 12 from Patent WO0039289.
 ACCESSION AX027178
 VERSION AX027178.1 GI:10188161
 KEYWORDS SOURCE synthetic construct
 ORGANISM synthetic construct artificial sequences.
 REFERENCE
 AUTHORS Soerensen, J.F. and Sibbesen, O.
 TITLE Proteins
 JOURNAL Patent: WO 0039289-A 12 06-JUL-2000;
 SOERENSEN JENS FRISBAEK (DK) ; DANISCO (DK) ; SIBBESEN OLE (DK)
 FEATURES Location/Qualifiers
 source 1. .642
 /organism="synthetic construct"
 /mol_type="unassigned DNA"
 /db_xref="taxon:32630"
 /note="mutant xylanase"
 ORIGIN
 Query Match 44.2%; Score 79.6; DB 6; Length 642;
 Best Local Similarity 72.5%; Pred. No. 7.2e-16;
 Matches 103; Conservative 0; Mismatches 39; Indels 0; Gaps 0;
 QY 1 ATGTTTAAGTTAAAAAGAAATTCTTAGTGGGATAAACGGCAAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAATTCTTAGTGGGATAATGGCAGCTTAAATGAGTATTAGC 60
 QY 61 ATGTTTCCTGCAACGGCCTCTGCAGCTGGCCGCCACCATCACCATCACCATCGAGGGA 120
 Db 61 TTGTTTCGGCAACGGCCTCTGCAGCTAGCACAGACTACTGGCAAATTGGACTGTGAGGG 120
 QY 121 AGGACTCCGTTAGGTCCAGCCA 142

ORIGIN
 Query Match 43.9%; Score 79; DB 6; Length 642;
 Best Local Similarity 79.0%; Pred. No. 1.2e-15;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;

QY 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGGATTAACGGCAGCTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGGATTAATGGATTATCGGCAGCTTAATGAGTATTAGC 63

QY 61 ATGTTTAAGTTCTGCAACCCGCTCTGCAGCTGGCCCCGACCATCACCATACGAGGG 119
 Db 64 TTGTTTCGGCAACCGCCTCTGCAGCTACTGGCAAATTGGACTGTAGCGACAGACTACTGGCAAATTGGACTGTAGCG 122

Db 61 TTGTTTCGGCAACCCGCTCTGCAGCTACTGGCAAATTGGACTGTAGCGACAGACTACTGGCAAATTGGACTGTAGCG 119

Search completed: October 9, 2004, 03:08:35
 Job time : 941.383 secs

RESULT 14
 AX244979 AX244979 645 bp DNA linear PAT 28-SEP-2001
 DEFINITION Sequence 10 from Patent WO0166711.
 ACCESSION AX244979
 VERSION AX244979.1 GI:15859704
 KEYWORDS
 SOURCE Bacillus subtilis
 ORGANISM Bacillus subtilis
 Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.
 REFERENCE Sibbesen, O. and Soerensten, J.F.
 AUTHORS Xylanase variants having altered sensitivity to xylanase inhibitors
 TITLE Patent: WO 0166711-A 10 13-SEP-2001;
 JOURNAL DANISCO A/S (DK)
 FEATURES Location/Qualifiers
 source 1. .645
 /organism="Bacillus subtilis"
 /mol_type="unassigned DNA"
 /db_xref="taxon:1423"
 ORIGIN
 Query Match 43.9%; Score 79; DB 6; Length 645;
 Best Local Similarity 79.0%; Pred. No. 1.2e-15;
 Matches 94; Conservative 0; Mismatches 25; Indels 0; Gaps 0;

QY 1 ATGTTTAAGTTAAAGAAATTCTTAGTGGGATTAACGGCAGCTTCATGAGTATCAGC 60
 Db 4 ATGTTTAAGTTAAAGAAATTCTTAGTGGGATTAATGGAGCTTAATGAGTATTAGC 63

QY 61 ATGTTTCGGCAACCCGCTCTGCAGCTGGCCCCGACCATCACCATACGAGGG 119
 Db 64 TTGTTTCGGCAACCCGCTCTGCAGCTACTGGCAAATTGGACTGTAGCGACAGACTACTGGCAAATTGGACTGTAGCG 122

RESULT 15
 AX717003 AX717003 645 bp DNA linear PAT 15-APR-2003
 DEFINITION Sequence 9 from Patent WO03020923.
 ACCESSION AX717003
 VERSION AX717003.1 GI:29890250
 KEYWORDS
 SOURCE Bacillus subtilis
 ORGANISM Bacillus subtilis
 Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.
 REFERENCE Sibbesen, O. and Soerensten, J.F.
 AUTHORS Xylanase variants
 TITLE Patent: WO 03020923-A 9 13-MAR-2003;
 JOURNAL DANISCO A/S (DK)
 FEATURES Location/Qualifiers
 source 1. .645
 /organism="Bacillus subtilis"
 /mol_type="unassigned DNA"
 /db_xref="taxon:1423"
 ORIGIN
 Query Match 43.9%; Score 79; DB 6; Length 645;

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 9, 2004, 00:53:40 ; Search time 3228.76 Seconds
 (without alignments)
 4837.123 Million cell updates/sec

Title: US-10-009-792C-18_COPY_88_610
 Perfect score: 523
 Sequence: 1 accccccctggccctgccc...acgccaccttgc...ccatc 523

Scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0

Searched: 27513289 seqs, 14931090276 residues

Total number of hits satisfying chosen parameters: 55026578

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing First 45 summaries

Database : EST:
 1: em_estba:
 2: em_estbum:
 3: em_estin:
 4: em_estmu:
 5: em_estov:
 6: em_estpl:
 7: em_estro:
 8: em_htc:
 9: gb_est1:
 10: gb_est2:
 11: gb_htc:
 12: gb_est3:
 13: gb_est4:
 14: gb_est5:
 15: em_estfun:
 16: em_estom:
 17: em_gss_inv:
 18: em_gss_pln:
 19: em_gss_vrt:
 20: em_gss_fun:
 21: em_gss_mam:
 22: em_gss_mus:
 23: em_gss_pro:
 24: em_gss_rod:
 25: em_gss_phg:
 26: em_gss_vrl:
 27: em_gss_vsi:
 28: gb_gss1:
 29: gb_gss2:
 30: em_est:
 31: em_gss:
 32: em_gss:
 33: em_gss:
 34: em_gss:
 35: em_gss:
 36: em_gss:
 37: em_gss:
 38: em_gss:
 39: em_gss:
 40: em_gss:
 41: em_gss:
 42: em_gss:
 c: em_gss:
 43: em_gss:
 44: em_gss:
 45: em_gss:
 46: em_gss:
 47: em_gss:
 48: em_gss:
 49: em_gss:
 50: em_gss:
 51: em_gss:
 52: em_gss:
 53: em_gss:
 54: em_gss:
 55: em_gss:
 56: em_gss:
 57: em_gss:
 58: em_gss:
 59: em_gss:
 60: em_gss:
 61: em_gss:
 62: em_gss:
 63: em_gss:
 64: em_gss:
 65: em_gss:
 66: em_gss:
 67: em_gss:
 68: em_gss:
 69: em_gss:
 70: em_gss:
 71: em_gss:
 72: em_gss:
 73: em_gss:
 74: em_gss:
 75: em_gss:
 76: em_gss:
 77: em_gss:
 78: em_gss:
 79: em_gss:
 80: em_gss:
 81: em_gss:
 82: em_gss:
 83: em_gss:
 84: em_gss:
 85: em_gss:
 86: em_gss:
 87: em_gss:
 88: em_gss:
 89: em_gss:
 90: em_gss:
 91: em_gss:
 92: em_gss:
 93: em_gss:
 94: em_gss:
 95: em_gss:
 96: em_gss:
 97: em_gss:
 98: em_gss:
 99: em_gss:
 100: em_gss:
 101: em_gss:
 102: em_gss:
 103: em_gss:
 104: em_gss:
 105: em_gss:
 106: em_gss:
 107: em_gss:
 108: em_gss:
 109: em_gss:
 110: em_gss:
 111: em_gss:
 112: em_gss:
 113: em_gss:
 114: em_gss:
 115: em_gss:
 116: em_gss:
 117: em_gss:
 118: em_gss:
 119: em_gss:
 120: em_gss:
 121: em_gss:
 122: em_gss:
 123: em_gss:
 124: em_gss:
 125: em_gss:
 126: em_gss:
 127: em_gss:
 128: em_gss:
 129: em_gss:
 130: em_gss:
 131: em_gss:
 132: em_gss:
 133: em_gss:
 134: em_gss:
 135: em_gss:
 136: em_gss:
 137: em_gss:
 138: em_gss:
 139: em_gss:
 140: em_gss:
 141: em_gss:
 142: em_gss:
 143: em_gss:
 144: em_gss:
 145: em_gss:
 146: em_gss:
 147: em_gss:
 148: em_gss:
 149: em_gss:
 150: em_gss:
 151: em_gss:
 152: em_gss:
 153: em_gss:
 154: em_gss:
 155: em_gss:
 156: em_gss:
 157: em_gss:
 158: em_gss:
 159: em_gss:
 160: em_gss:
 161: em_gss:
 162: em_gss:
 163: em_gss:
 164: em_gss:
 165: em_gss:
 166: em_gss:
 167: em_gss:
 168: em_gss:
 169: em_gss:
 170: em_gss:
 171: em_gss:
 172: em_gss:
 173: em_gss:
 174: em_gss:
 175: em_gss:
 176: em_gss:
 177: em_gss:
 178: em_gss:
 179: em_gss:
 180: em_gss:
 181: em_gss:
 182: em_gss:
 183: em_gss:
 184: em_gss:
 185: em_gss:
 186: em_gss:
 187: em_gss:
 188: em_gss:
 189: em_gss:
 190: em_gss:
 191: em_gss:
 192: em_gss:
 193: em_gss:
 194: em_gss:
 195: em_gss:
 196: em_gss:
 197: em_gss:
 198: em_gss:
 199: em_gss:
 200: em_gss:
 201: em_gss:
 202: em_gss:
 203: em_gss:
 204: em_gss:
 205: em_gss:
 206: em_gss:
 207: em_gss:
 208: em_gss:
 209: em_gss:
 210: em_gss:
 211: em_gss:
 212: em_gss:
 213: em_gss:
 214: em_gss:
 215: em_gss:
 216: em_gss:
 217: em_gss:
 218: em_gss:
 219: em_gss:
 220: em_gss:
 221: em_gss:
 222: em_gss:
 223: em_gss:
 224: em_gss:
 225: em_gss:
 226: em_gss:
 227: em_gss:
 228: em_gss:
 229: em_gss:
 230: em_gss:
 231: em_gss:
 232: em_gss:
 233: em_gss:
 234: em_gss:
 235: em_gss:
 236: em_gss:
 237: em_gss:
 238: em_gss:
 239: em_gss:
 240: em_gss:
 241: em_gss:
 242: em_gss:
 243: em_gss:
 244: em_gss:
 245: em_gss:
 246: em_gss:
 247: em_gss:
 248: em_gss:
 249: em_gss:
 250: em_gss:
 251: em_gss:
 252: em_gss:
 253: em_gss:
 254: em_gss:
 255: em_gss:
 256: em_gss:
 257: em_gss:
 258: em_gss:
 259: em_gss:
 260: em_gss:
 261: em_gss:
 262: em_gss:
 263: em_gss:
 264: em_gss:
 265: em_gss:
 266: em_gss:
 267: em_gss:
 268: em_gss:
 269: em_gss:
 270: em_gss:
 271: em_gss:
 272: em_gss:
 273: em_gss:
 274: em_gss:
 275: em_gss:
 276: em_gss:
 277: em_gss:
 278: em_gss:
 279: em_gss:
 280: em_gss:
 281: em_gss:
 282: em_gss:
 283: em_gss:
 284: em_gss:
 285: em_gss:
 286: em_gss:
 287: em_gss:
 288: em_gss:
 289: em_gss:
 290: em_gss:
 291: em_gss:
 292: em_gss:
 293: em_gss:
 294: em_gss:
 295: em_gss:
 296: em_gss:
 297: em_gss:
 298: em_gss:
 299: em_gss:
 300: em_gss:
 301: em_gss:
 302: em_gss:
 303: em_gss:
 304: em_gss:
 305: em_gss:
 306: em_gss:
 307: em_gss:
 308: em_gss:
 309: em_gss:
 310: em_gss:
 311: em_gss:
 312: em_gss:
 313: em_gss:
 314: em_gss:
 315: em_gss:
 316: em_gss:
 317: em_gss:
 318: em_gss:
 319: em_gss:
 320: em_gss:
 321: em_gss:
 322: em_gss:
 323: em_gss:
 324: em_gss:
 325: em_gss:
 326: em_gss:
 327: em_gss:
 328: em_gss:
 329: em_gss:
 330: em_gss:
 331: em_gss:
 332: em_gss:
 333: em_gss:
 334: em_gss:
 335: em_gss:
 336: em_gss:
 337: em_gss:
 338: em_gss:
 339: em_gss:
 340: em_gss:
 341: em_gss:
 342: em_gss:
 343: em_gss:
 344: em_gss:
 345: em_gss:
 346: em_gss:
 347: em_gss:
 348: em_gss:
 349: em_gss:
 350: em_gss:
 351: em_gss:
 352: em_gss:
 353: em_gss:
 354: em_gss:
 355: em_gss:
 356: em_gss:
 357: em_gss:
 358: em_gss:
 359: em_gss:
 360: em_gss:
 361: em_gss:
 362: em_gss:
 363: em_gss:
 364: em_gss:
 365: em_gss:
 366: em_gss:
 367: em_gss:
 368: em_gss:
 369: em_gss:
 370: em_gss:
 371: em_gss:
 372: em_gss:
 373: em_gss:
 374: em_gss:
 375: em_gss:
 376: em_gss:
 377: em_gss:
 378: em_gss:
 379: em_gss:
 380: em_gss:
 381: em_gss:
 382: em_gss:
 383: em_gss:
 384: em_gss:
 385: em_gss:
 386: em_gss:
 387: em_gss:
 388: em_gss:
 389: em_gss:
 390: em_gss:
 391: em_gss:
 392: em_gss:
 393: em_gss:
 394: em_gss:
 395: em_gss:
 396: em_gss:
 397: em_gss:
 398: em_gss:
 399: em_gss:
 400: em_gss:
 401: em_gss:
 402: em_gss:
 403: em_gss:
 404: em_gss:
 405: em_gss:
 406: em_gss:
 407: em_gss:
 408: em_gss:
 409: em_gss:
 410: em_gss:
 411: em_gss:
 412: em_gss:
 413: em_gss:
 414: em_gss:
 415: em_gss:
 416: em_gss:
 417: em_gss:
 418: em_gss:
 419: em_gss:
 420: em_gss:
 421: em_gss:
 422: em_gss:
 423: em_gss:
 424: em_gss:
 425: em_gss:
 426: em_gss:
 427: em_gss:
 428: em_gss:
 429: em_gss:
 430: em_gss:
 431: em_gss:
 432: em_gss:
 433: em_gss:
 434: em_gss:
 435: em_gss:
 436: em_gss:
 437: em_gss:
 438: em_gss:
 439: em_gss:
 440: em_gss:
 441: em_gss:
 442: em_gss:
 443: em_gss:
 444: em_gss:
 445: em_gss:
 446: em_gss:
 447: em_gss:
 448: em_gss:
 449: em_gss:
 450: em_gss:
 451: em_gss:
 452: em_gss:
 453: em_gss:
 454: em_gss:
 455: em_gss:
 456: em_gss:
 457: em_gss:
 458: em_gss:
 459: em_gss:
 460: em_gss:
 461: em_gss:
 462: em_gss:
 463: em_gss:
 464: em_gss:
 465: em_gss:
 466: em_gss:
 467: em_gss:
 468: em_gss:
 469: em_gss:
 470: em_gss:
 471: em_gss:
 472: em_gss:
 473: em_gss:
 474: em_gss:
 475: em_gss:
 476: em_gss:
 477: em_gss:
 478: em_gss:
 479: em_gss:
 480: em_gss:
 481: em_gss:
 482: em_gss:
 483: em_gss:
 484: em_gss:
 485: em_gss:
 486: em_gss:
 487: em_gss:
 488: em_gss:
 489: em_gss:
 490: em_gss:
 491: em_gss:
 492: em_gss:
 493: em_gss:
 494: em_gss:
 495: em_gss:
 496: em_gss:
 497: em_gss:
 498: em_gss:
 499: em_gss:
 500: em_gss:
 501: em_gss:
 502: em_gss:
 503: em_gss:
 504: em_gss:
 505: em_gss:
 506: em_gss:
 507: em_gss:
 508: em_gss:
 509: em_gss:
 510: em_gss:
 511: em_gss:
 512: em_gss:
 513: em_gss:
 514: em_gss:
 515: em_gss:
 516: em_gss:
 517: em_gss:
 518: em_gss:
 519: em_gss:
 520: em_gss:
 521: em_gss:
 522: em_gss:
 523: em_gss:
 524: em_gss:
 525: em_gss:
 526: em_gss:
 527: em_gss:
 528: em_gss:
 529: em_gss:
 530: em_gss:
 531: em_gss:
 532: em_gss:
 533: em_gss:
 534: em_gss:
 535: em_gss:
 536: em_gss:
 537: em_gss:
 538: em_gss:
 539: em_gss:
 540: em_gss:
 541: em_gss:
 542: em_gss:
 543: em_gss:
 544: em_gss:
 545: em_gss:
 546: em_gss:
 547: em_gss:
 548: em_gss:
 549: em_gss:
 550: em_gss:
 551: em_gss:
 552: em_gss:
 553: em_gss:
 554: em_gss:
 555: em_gss:
 556: em_gss:
 557: em_gss:
 558: em_gss:
 559: em_gss:
 560: em_gss:
 561: em_gss:
 562: em_gss:
 563: em_gss:
 564: em_gss:
 565: em_gss:
 566: em_gss:
 567: em_gss:
 568: em_gss:
 569: em_gss:
 570: em_gss:
 571: em_gss:
 572: em_gss:
 573: em_gss:
 574: em_gss:
 575: em_gss:
 576: em_gss:
 577: em_gss:
 578: em_gss:
 579: em_gss:
 580: em_gss:
 581: em_gss:
 582: em_gss:
 583: em_gss:
 584: em_gss:
 585: em_gss:<br

Location/Qualifiers		Source	
1..906	/organism="Homo sapiens"		
/mol_type="mRNA"			
/db_xref="taxon:9606"			
/clone="IMAGE:6719127"			
/cell_line="ZR-75-1, MCF7, SK-BR-3, MDA-MB-231, HERT-HME1, LNCap"			
/lab_host="EMDH10B"			
/clone_lib="MAPCL"			
/note="Vector: pCMV-SPORT6; Site_1: EcoRV; Site_2: Not I; Subtracted with brain, liver, lung, kidney and muscle. Directionally cloned. Priming method: oligo-dT. Average insert size: 1800 bp. Library amplification: 26,000 fold. Kristi A. Egland, James J. Vincent, Robert Strausberg, Bungkook Lee & Ira Pastan: Discovery of new breast cancer genes encoding membrane and secreted proteins. Manuscript submitted."			
ORIGIN		ORIGIN	
Query Match 100.0%; Score 523; DB 14; Length 906;	Best Local Similarity 100.0%; Pred. No. 7.3e-97; Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	Query Match 100.0%; Score 523; DB 12; Length 1080;	Best Local Similarity 100.0%; Pred. No. 7.9e-97; Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCCTAGAGCAA 60	1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCCTAGAGCAA 60	1 ACCCCCCCTGGCCACTCTGGCATGGGCACTCTGGCATGGCCTACATAAGC 240	1 ACCCCCCCTGGCCACTCTGGCATGGGCACTCTGGCATGGCCTACATAAGC 240
80 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCCTAGAGCAA 139	80 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCCTAGAGCAA 139	260 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120	260 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120
61 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120	61 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120	320 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGACACTCTGGGATGGCTGGCATGGCCTACATAAGC 319	320 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGACACTCTGGGATGGCTGGCATGGCCTACATAAGC 319
140 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 199	140 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 199	380 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGCATGGCAG 379	380 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGCATGGCAG 379
Qy 121 CTGTGCCACCCGAGGGCTGGGACACTCTGGCATGGCATTCCCCTGGCTCCC 180	Qy 121 CTGTGCCACCCGAGGGCTGGGACACTCTGGCATGGCATTCCCCTGGCTCCC 180	Qy 141 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGACACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGCATGGCAG 364	Qy 141 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGACACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGCATGGCAG 364
Db 200 CTGTGCCACCCGAGGGCTGGGACACTCTGGCATGGCATTCCCCTGGCTCCC 259	Db 200 CTGTGCCACCCGAGGGCTGGGACACTCTGGCATGGCATTCCCCTGGCTCCC 259	Qy 145 ACCCCCCCTGGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCCTAGAGCAA 60	Qy 145 ACCCCCCCTGGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAGTGCCTAGAGCAA 60
Qy 181 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 240	Qy 181 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 240	Db 145 ACCCCCCCTGGCCACTCTGGCATGGGCACTCTGGCATGGCCTACATAAGC 204	Db 145 ACCCCCCCTGGCCACTCTGGCATGGGCACTCTGGCATGGCCTACATAAGC 204
Db 260 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 319	Db 260 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 319	Qy 61 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120	Qy 61 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120
Qy 241 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGATGGCTGGCATGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 300	Qy 241 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGATGGCTGGCATGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 300	Db 205 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 264	Db 205 GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 264
Db 320 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGATGGCTGGCATGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 379	Db 320 GGCCTTTCCCTCTACCAAGGGCTCTACCAAGGGCTCTGGGATGGCTGGCATGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 379	Qy 121 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120	Qy 121 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAG 120
Qy 301 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAG 360	Qy 301 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAG 360	Db 265 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 324	Db 265 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 324
Db 380 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAG 439	Db 380 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAG 439	Qy 181 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAGC 240	Qy 181 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGTGTGCCACCTACAAGC 240
Qy 361 ATGGAAAGAACCTGGGAATGGCCCTGCCAGGGCTCTAGTTGCCACCTACAAG 420	Qy 361 ATGGAAAGAACCTGGGAATGGCCCTGCCAGGGCTCTAGTTGCCACCTACAAG 420	Db 325 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 384	Db 325 CTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 384
Db 440 ATGGAAAGAACCTGGGAATGGCCCTGCCAGGGCTCTAGTTGCCACCTACAAG 499	Db 440 ATGGAAAGAACCTGGGAATGGCCCTGCCAGGGCTCTAGTTGCCACCTACAAG 499	Qy 241 GGCCTTTCCCTCTACCAAGGGCGCTCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 300	Qy 241 GGCCTTTCCCTCTACCAAGGGCGCTCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 300
Qy 421 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 480	Qy 421 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 480	Db 385 GGCCTTTCCCTCTACCAAGGGCGCTCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 444	Db 385 GGCCTTTCCCTCTACCAAGGGCGCTCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 444
Db 500 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 559	Db 500 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 559	Qy 301 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 360	Qy 301 CCCACCTTGAAACACTGGCAGCTGGGACGTTGGGACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 360
Qy 481 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 523	Qy 481 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 523	Db 445 CCCACCTTGAAACACTGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 504	Db 445 CCCACCTTGAAACACTGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAGGGCAGCTGGGACACTCTGGGATGGCTGGCATGGCAG 504
Db 560 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 602	Db 560 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 602	Qy 361 ATGGAAGAACCTGGGAATGGCCCTGCCAGGGCAGCTAGTTGCCACCTACAAG 420	Qy 361 ATGGAAGAACCTGGGAATGGCCCTGCCAGGGCAGCTAGTTGCCACCTACAAG 420
Qy 361 ATGGAAGAACCTGGGAATGGCCCTGCCAGGGCAGCTAGTTGCCACCTACAAG 420	Qy 361 ATGGAAGAACCTGGGAATGGCCCTGCCAGGGCAGCTAGTTGCCACCTACAAG 420	Db 505 ATGGAAGAACCTGGGAATGGCCCTGCCAGGGCAGCTAGTTGCCACCTACAAG 564	Db 505 ATGGAAGAACCTGGGAATGGCCCTGCCAGGGCAGCTAGTTGCCACCTACAAG 564
LOCUS BM553432	LOCUS BM553432	Qy 421 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 480	Qy 421 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 480
DEFINITION AGENCOURT_6572502	DEFINITION AGENCOURT_6572502	Db 565 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 624	Db 565 GCCTCTGCTTCCAGGGCGGGCAGGGCTCTAGTTGCCACCTACAAG 624
KEYWORDS EST.	KEYWORDS EST.	Qy 481 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 523	Qy 481 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 523
SOURCE Homo sapiens	SOURCE Homo sapiens	Db 625 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 667	Db 625 CTGGAGGTGTGGTACCGGGTCTACGGCACCTTGCCAGGCCT 667
ORGANISM Homo sapiens	ORGANISM Homo sapiens		

RESULT 3
 LOCUS BM554035
 DEFINITION AGENCOURT_6580951 NIH_MGC_41 Homo sapiens cDNA clone IMAGE:5469210 5', mRNA sequence.
 ACCESSION BM554035
 VERSION BM554035.1 GI:18793290 EST.
 KEYWORDS SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominoi; Homo.
 1 (bases 1 to 1123)
 REFERENCE AUTHORS NIH-MGC http://mgc.ncbi.nih.gov/
 TITLE JOURNAL National Institutes of Health, Mammalian Gene Collection (MGC)
 COMMENT Unpublished (1999)
 Contact: Robert Straussberg, Ph.D.
 Email: cgapps-r@mail.nih.gov
 Tissue Procurement: DCTD/DTP
 CDNA Library Preparation: Rubin Laboratory
 CDNA Library Arrayed by: The I.M.A.G.E. Consortium (L1NL)
 DNA Sequencing by: Agencourt Bioscience Corporation
 Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/L1NL at:
<http://image.lnl.gov>
 Plate: L1LCM1974 row: a column: 19
 High quality sequence stop: 753.

FEATURES source
 1. .1123
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /clone="IMAGE:5469210"
 /tissue_type="amelanotic melanoma, cell line"
 /lab_host="DH10B (phage-resistant)"
 /clone_lib="NIH MGC_41"
 /note="Organ: skin; Vector: pOTB7; Site 1: XhoI; Site 2: EcoRI; CDNA made by oligo-dT priming. Directionally cloned into EcoRI/XhoI sites using the following 5' adaptor: GGCACGAG(G). Library constructed by Ling Hong in the laboratory of Gerald M. Rubin (University of California, Berkeley) using ZAP-CDNA synthesis kit (Stratagene) and Superscript II RT (Life Technologies). Note: this is a NIH_MGC Library."

ORIGIN
 Query Match Score 523; DB 12; Length 1123;
 Best Local Similarity 100.0%; Pred. No. 8e-97; Mismatches 0; Indels 0; Gaps 0;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	1	ACCCCCCTGGCCAGTCCCTGCCAGGCTTCTGCTCAAGTGTAGAGCAA	60	Query Match Score 522; DB 12; Length 983;
Db	146	ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGTAGAGCAA	205	Best Local Similarity 99.8%; Pred. No. 1.2e-96;
Qy	61	GTGAGGAAGATCAGGGCGATGGCGAGCTGGCACCTAACAAAG	120	Mismatches 0; Indels 0; Gaps 0;
Db	206	GTGAGGAAGATCAGGGCGATGGCGAGCTGGCACCTAACAAAG	265	
Qy	121	CTGTGCCACCCGAGGAGCTGGTGTGGACACTCTGGCATCCCTGGCTCCC	180	
Db	266	CTGTGCCACCCGAGGAGCTGGTGTGGACACTCTGGCATCCCTGGCTCCC	325	
Qy	181	CTGAGGAGCTGCCAGGCCACTCCATAGC	240	
Db	326	CTGAGGAGCTGCCAGGCCACTCCATAGC	385	
Qy	241	GGCCTTTTCTCTACAGGGCTCTGAGGGAAGGAACTGGGT	300	
Db	386	GGCCTTTTCTCTACAGGGCTCTGAGGGAAGGAACTGGGT	445	
Qy	301	CCCACCTGGACACACTGGAGCTGGCACCTTGCCACCATCTGGCAGCAG	360	

1 ACCCCCCCTGGCCAGTCCCTGCCAGGCTTCTGCTCAAGTGTAGAGCAA 60
 145 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGTAGAGCAA 204
 61 GTGAGGAAGATCAGGGCGATGGCGAGCTGGCACCTAACAAAG 120
 205 GTGAGGAAGATCAGGGCGATGGCGAGCTGGCACCTAACAAAG 264

QY	121	CTGTGCCAACCCGAGGAGCTGGCTGGACACTCTGGCATCCCCGGCTCCC 180	Db	275	ACCCCCCTGGCCCTGCCAGAGCTTCCAGCTCAAGTGCTTAGAGCAA 334
Db	265	CTGTGCCAACCCGAGGAGCTGGCTGGACACTCTGGCATCCCCGGCTCCC 324	Qy	61	GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGCCACCTACAAG 120
Qy	181	CTGAGCCAGCTGCCAACCCGAGGAGCTGGCAAGCTGCTGAGCCAACCTCCATAGC 240	Db	335	GTGAGGAAGATCCAGGGCGATGGGCAGGGCAGCTGGCCACCTACAAG 394
Db	325	CTGAGGAGCTGCCAACCCGAGGAGCTGGCAAGCTGCTGAGCCAACCTCCATAGC 384	Qy	121	CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCCGGCTCCC 180
Qy	241	GGCCTTTCCTCTAACCGGGCTCCCTGAGGGGCTGGAAAGGGATCTCCCCGGAGTTGGGT 300	Db	395	CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCCGGCTCCC 454
Db	385	GGCCTTTCCTCTAACCGGGCTCCCTGAGGGGCTGGAAAGGGATCTCCCCGGAGTTGGGT 444	Qy	181	CTGAGGAGCTGCCAACCTGGCAGCTGGCTGGAGCTGGCCACCTACAAGTCCATAGC 240
Qy	301	CCCACCTGGACACACTGGCAGCTGGAGCTGGCACCTGGCACCACCATCTGGCAGAG 360	Db	455	CTGAGGAGCTGCCAACCTGGCTGGAGCTGGCCACCTACAAGTCCATAGC 514
Db	445	CCCACCTGGACACACTGGCAGCTGGAGCTGGCACCTGGCAGAG 504	Qy	241	GGCCTTTCCTCTAACCGGGCTCCCTGAGGGGCTGGAAAGGGATCTCCCCGGAGTTGGGT 300
Qy	361	ATGGAGAAGACTGGGAATGGCCCCTGGCAGGCCACCCAGGTGCCATGGCCCTTC 420	Db	515	GGCCTTTCCTCTAACCGGGCTCCCTGAGGGATCTCCCCGGAGTTGGGT 574
Db	505	ATGGAGAAGACTGGGAATGGCCCCTGGCAGGCCACCCAGGTGCCATGGCCCTTC 564	Qy	301	CCCACCTGGACACACTGGCAGCTGGAGCTGGCACCCACCATCTGGCAGAG 360
Qy	421	GCCTCTGCTTTCCAGGCCGGGGTCCCTAGTGCCTCCCATCTGCAGAGCTTC 480	Db	575	CCCACCTGGACACACTGGCAGCTGGCACCTGGCCATGGCCACCCATCTGGCAGAG 634
Db	565	GCCTCTGCTTTCCAGGCCGGGGTCCCTAGTGCCTCCCATCTGCAGAGCTTC 624	Qy	361	ATGGAGAAGACTGGGAATGGCCCCTGGCAGGCCACCCAGGGTGCCATGGCCCTTC 420
Qy	481	CTGGAGGTGTGTAACGGCGTCTACGCCACCTTGCCAGCCCT 523	Db	635	ATGGAGAAGACTGGGAATGGCCCCTGGCAGGCCACCCAGGGTGCCATGGCCAGAG 694
Db	625	CTGGAGGTGTGTAACGGCGTCTACGCCACCTTGCCAGCCCT 667	Qy	421	GCCTCTGCTTTCCAGGCCGGGGTCCCTAGTGCCTCCATCTGCAGAGCTTC 480
Qy			Db	695	GCCTCTGCTTTCCAGGCCGGGGTCCCTAGGAGGGCTGGCTCCATCTGCAGAGCTTC 754
Db			Qy	481	CTGGAGGTGTGTAACGGCGTCTACGCCACCTTGCCAGCCCT 523
			Db	755	CTGGAGGTGTGTAACGGCGTCTACGCCACCTTGCCAGCCCT 797
RESULT 5			RESULT 6		
CD013924		CD013924 897 bp mRNA linear EST 21-OCT-2003	LOCUS	BM923410	1096 bp mRNA linear EST 12-MAR-2002
		90138839 single gene library Homo sapiens cDNA, mRNA sequence.	DEFINITION	AGENCOURT 6625827 NIH_MGC_116 Homo sapiens cDNA clone IMAGE:5759022	5' mRNA sequence.
			ACCESSION	BM923410	
		CD013924 1 GI:37777454	VERSION	BM923410.1 GI:19373789	
			KEYWORDS	EST.	
		Homo sapiens (human)	SOURCE	Homo sapiens	
		Homo sapiens	ORGANISM	Eukaryota; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.	
			REFERENCE	1 (bases 1 to 897)	
			AUTHORS	Jin,P., Fu,G.K., Wilson,A.D., Yang,J., Chien,D., Hawkins,P.R., Au-Young,J. and Stuve,L.L.	
			TITLE	PCR isolation and cloning of novel splice variant mRNAs from known drug target genes	
			JOURNAL	Unpublished (2003)	
			COMMENT	Contact: Jin, P.	
				Incyte Corporation 3160 Porter Drive, Palo Alto, CA 94304, USA Tel: 650 621 8639 Fax: 650 621 8965 Email: pjin@incyte.com	
			FEATURES	Location/Qualifiers	
				1. .897 /organism="Homo sapiens" /mol_type="mRNA" /db_xref="taxon:9606" /clone_lib="Single gene library"	
				/note="Vector: pDrive Cloning Vector; RT-PCR was performed using gene-specific primers flanking the open-reading frame. PCR products were subcloned into pDrive Cloning Vector and sequenced completely using M13 forward and reverse primers. Sequencing gaps were closed by re-sequencing using primers flanking the gapped areas."	
					ORIGIN
					/mol_type="mRNA" /db_xref="taxon:9606" /clone="IMAGE:5759022" /lab_host="DHL0B" /clone_id="NIH_MGC_116" /note="Organ: pooled colon, kidney, stomach; Vector: pCMV-SPORT6; Site 1: Site 1; Site 2: ECORV (destroyed); RNA source anonymous pool of 3 colons, age 26 yo male, 49 yo
Query	1	ACCCCCCTGGGCCCTGCCAGCTCCCTGCTCAAGTGCTTAGAGCAA 60	Query Match	99.7%	Score 521.4; DB 14; Length 897;
			Best Local Similarity	99.8%; Pred. No. 1.5e-96;	
			Matches 522; Conservative	0; Mismatches 1; Indels 0; Gaps 0;	

Female, 71 yo male colon; 46 yo male kidney, and pool of 2 stomachs, 62 yo male and 70 yo female. Library is oligo-dT primed and directionally cloned (ECORV site is destroyed upon cloning). Average insert size 1.4 kb, insert size range 1-3 kb. Library is normalized and enriched for full-length clones and was constructed by C. Gruber (Invitrogen). Research Genetics tracking code 0023. Note: this is a NIH MGC Library.

Clone distribution: MGCI clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at:
<http://image.llnl.gov>

plate: LLAM12363 row: n column: 11
High quality sequence start: 10
High quality sequence stop: 599.
Location/Qualifiers

ORGIGIN

Query	Match	Score	Length	Best Local Similarity	Pred. No.	Matches	Indels	Gaps
QY	1 ACCCCCCCTGGCCAGCTCCCTGCCAGGCTTCCAGAGCTCAAGTGCTTAGAGCAA	521.4	1096;	99.7%	1.7e-96;	0;	0;	0;
Db	181 CTGAGCAGCTGCCAGCCAGGCTTCCAGCTGCTGAGCCAACTCCATAGC	12	12	99.8%	Pred. No.	1.7e-96;	0;	0;
QY	309 CTGAGCAGCTGCCAGCCAGCCAGGCTCCAGGAGCTGTGCAACCTACAAG	120	120	99.8%	Score	521.4;	DB 12;	Length 1096;
Db	249 CTGTGCCACCCGGAGGCTGGTGGCTGGTGGACTCTGGCATCCCTGGCTCCC	180	180	99.7%	Match	521.4;	DB 12;	Length 1096;
QY	241 GGCCTTTCTACCAGGGCTCCTGCAGGCCCTGGAAAGGGATCTCCCGAGTTGGGT	300	300	99.8%	Best Local Similarity	99.8%;	Pred. No.	1.7e-96;
Db	369 GGCCTTTCTACCAGGGCTCCTGCAGGCCCTGGAAAGGGATCTCCCGAGTTGGGT	428	428	99.8%	Matches	0;	Mismatches	1;
QY	301 CCCACCTGGACACACTGCAGCTGGGACTTGCACCCATCTGGCAGCAG	360	360	99.8%	Conservative	0;	Indels	0;
Db	429 CCCACCTGGACACACTGCAGCTGGGACTTGCACCCATCTGGCAGCAG	488	488	99.8%	QY	1	ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCAGAGCTTAGAGCAA	60
QY	361 ATGGAAGAACTGGGAATGGCCCTGCCAGGGCTCCTGGCAGGCTGGCCATGCCGCCCTTC	420	420	99.8%	Db	127 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTAGAGCAA	186	
Db	489 ATGGAAGAACTGGGAATGGCCCTGCCAGGGCTCCTGGCAGGCTGGCCATGCCGCCCTTC	548	548	99.8%	QY	61 GTGAGGAAGATCCAGGGCGATGGGCAGGGCTCCAGGAGAAAGCTGTGCCCCACCTACAAG	120	
QY	421 GCCTCTGGTACCGCCGACTTGCCTGCCACCCATCTGGCAGGCTTC	480	480	99.8%	Db	187 GTGAGGAAGATCCAGGGCGATGGGCAGGGCTGTGCCCCACCTACAAG	246	
Db	549 GCCTCTGGTACCGCCGGCAGGGGCTCTGGTGGACTTGCACCCATCTGGCAGGCTTC	608	608	99.8%	QY	121 CTGTGCCACCCGGAGGAGCTGGTGGACTCTCTGGCATCCCTGGCTCCC	180	
QY	481 CTGGAGGTGTGTACCGCGTCTACGGCACCTGCCAGGCCCT	523	523	99.8%	Db	247 CTGTGCCACCCGGAGGACTGGTGTCTGGCATCCCTGGCTCCC	306	
Db	609 CTGGAGGTGTGTACCGCGTCTACGGCACCTGCCAGGCCCT	651	651	99.8%	QY	181 CTGAGCAGCTGCCAGGGCCCTGCAAGGCTGCTGGCAGGCTTC	240	
QY	BM906188 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. EST: 1 (bases 1 to 1141)	7	7	99.8%	Db	307 CTGAGCAGCTGCCAGGGCTCTGGCAGGCTGGCTCCC	366	
Db	BM906188 DEFINITION NIH_MGC_125 Homo sapiens CDNA clone IMAGE:5590090 5', mRNA sequence.	7	7	99.8%	QY	241 GGCTTTCTCTACCAAGGGCTCTGGCAGGCTGGCCATCTGGCAGGCTTC	420	
QY	BM906188 AGENCOURT 6621301 NIH_MGC_125 Homo sapiens CDNA clone IMAGE:5590090 5', mRNA sequence.	7	7	99.8%	Db	367 GGCTTTCTCTACCAAGGGCTCTGGCAGGCTGGCCATCTGGCAGGCTTC	546	
QY	BM906188 ACCESSION BM906188 GI:19356567	7	7	99.8%	QY	301 CCCACCTGGACACACTGCAGCTGGGACTTGCACCCATCTGGCAGGCTTC	360	
Db	BM906188 VERSION EST: National Institutes of Health, Mammalian Gene Collection (MGC) Homo sapiens (human)	7	7	99.8%	Db	427 CCCACCTGGACACACTGCAGCTGGGACTTGCACCCATCTGGCAGGCTTC	486	
QY	BM906188 SOURCE NIH-MGC http://mgc.nci.nih.gov/.	7	7	99.8%	QY	361 ATGGAAGAACTGGGAATGGCCCTGCCAGGGCTCCTGGCAGGCTGGCTTC	420	
Db	BM906188 COMMENT Unpublished (1999)	7	7	99.8%	Db	487 ATGGAAGAACTGGGAATGGCCCTGCCAGGGCTCCTGGCAGGCTGGCTTC	546	
QY	BM906188 JOURNAL CONTACT: Robert Strausberg, Ph.D.	7	7	99.8%	QY	421 GCCTCTGGCTTCCAGGGGGCTAGTGTGCCATCTGGAGAGCTTC	480	
Db	BM906188 TISSUE Email: cgabbs@mail.nih.gov	7	7	99.8%	Db	547 GCCTCTGGCTTCCAGGGGGCTAGTGTGCCATCTGGAGAGCTTC	606	
QY	BM906188 DEFINITION AGENCOURT 6620268 NIH_MGC_125 Homo sapiens CDNA clone IMAGE:5590315 5', mRNA sequence.	7	7	99.8%	QY	481 CTGGAGGRGTGTACGGCCACCTTGCCAGGCCCT	523	
Db	BM906188 KEYWORDS NIH-MGC http://mgc.nci.nih.gov/.	7	7	99.8%	Db	607 CTGGAGGTGTGTACGGCCACCTTGCCAGGCCCT	649	
QY	BM906188 ORGANISM AUTHOR National Institutes of Health, Mammalian Gene Collection (MGC)	7	7	99.8%	RESULT 8			
Db	BM906188 TITLE JOURNAL	7	7	99.8%	BM906367			
QY	BM906188 COMMENT TISSUE Procurement: Invitrogen	7	7	99.8%	LOCUS DEFINITION	BM906367		
Db	BM906188 REFERENCE DNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)	7	7	99.8%	ACCESSION	AGENCOURT 6620268 NIH_MGC_125 Homo sapiens CDNA clone IMAGE:5590315 5', mRNA sequence.		
QY	BM906188 AUTHOR NIH-MGC http://mgc.nci.nih.gov/.	7	7	99.8%	VERSION	BM906367		
Db	BM906188 TITLE JOURNAL	7	7	99.8%	CONTACT	BM906367		

Db	391	GAGTGGTCCACCTGGACACACTGGCAGCTGGGACTTGCACCACATC	450	Db	355	GTGAGGAAGATCCAGGGGATGGCGCAGGCCAGGGTCCAGGAGAAGCTGTGCCACCTACAAG	414	
Qy	352	TGGCAGCAGATGAACTGGGAATGGCCCCTGCCTGCAGGCCACCCAGGGTGCATG	411	Qy	121	CTGTGCCACCCGGAGGAGCTGGCTGGACTCTGGCAACTCTGGCTCCC	180	
Db	451	TGGCAGCAGATGAACTGGGAATGGCCCCTGCCTGCAGGCCACCCAGGGTGCATG	510	Db	415	CTGTGCCACCCGGAGGAGCTGGCTGGACTCTGGCAACTCTGGCTCCC	474	
Qy	412	CGGGCTTCGCTCTGCTTCCAGGCCGGGAGGGGTCTAGTTGCCATCTG	471	Qy	181	CTGAGCAGCTGCCAGGGCCCTGCAGCTGGCAGGAGCTGCTTGAAGCCAACCTCATAGC	240	
Db	511	CGGGCTTCGCTCTGCTTCCAGGCCGGGAGGGGTCTAGTTGCCATCTG	570	Db	475	CTGAGCAGCTGCCAGGGCCCTGCAGCTGGCAGGAGCTGCTTGAAGCCAACCTCATAGC	534	
Qy	472	CAGAGCTTCCAGGGTGTGTTACCGCCACCTGCCAGCCCT	523	Qy	241	GGCCTTTCTACAGGGCTCCCTGCAGGCCAGGGATCTGGCAGGGTGGGT	300	
Db	571	CAGAGCTTCCAGGGTGTGTTACCGCCACCTGCCAGCCCT	622	Db	535	GGCCTTTCTACAGGGCTCCCTGCAGGCCAGGGATCTGGCAGGGTGGGT	594	
Db	RESULT 10			Qy	301	CCACCTTGGACACACTGCAGCTGGGACTTGCACCCATCTGGCAGGCAG	360	
LOCUS	BM915836	BM915836	993 bp	mRNA	418	CCCACCTGGACACACTGCAGCTGGGACTTGCACCCATCTGGCAGGCAG	654	
DEFINITION	AGENCOURT_6639697	NIH_MGC_41	Homo sapiens	linear	418	ATGGAAGMAACTGGGATGG-CCCGCTGCCCTGCAGGCCACCCAGGGTGC	655	
ACCESSION	BM915836	5'	mRNA sequence.	EST.	655	ATGGAAGAACTGGGATGGCCTGGGATGGCCATGCCGGGCT	714	
VERSION	BM915836.1	GI:19366215			Qy	419	TGCCTCTGCTTCCAGGCCGGGAGGGTCCCTAGTTGCAGAGCT	478
KEYWORDS					Db	715	TGCCTCTGCTTCCAGGCCGGGAGGGTCCCTAGTTGCAGAGCT	774
SOURCE	Homo sapiens (human)				Qy	479	TCTGGAGGGTGTGTTACCGCGTTCTACGCCACCTGCCAGCCT	523
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.				Db	775	TCCTGGAGGGTGTGTTACCGCGTTCTACGCCACCTGCCAGCCT	819
REFERENCE	NIH-MGC	http://mgc.nci.nih.gov/						
AUTHORS	National Institutes of Health, Mammalian Gene Collection (MGC)							
TITLE	Unpublished (1999)							
JOURNAL	Contact: Robert Straussberg, Ph.D. Email: cgapps-r@mail.nih.gov							
COMMENT	Tissue Procurement: DCTD/DTP CDNA Library Preparation: Rubin Laboratory CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Agencourt Bioscience Corporation Clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov/							
FEATURES	Plate: LLCM2007 row: j column: 16 High quality sequence start: 17 High quality sequence stop: 711. Location/Qualifiers							
source	1..993 /organism="Homo sapiens" /mol_type="mRNA" /clone="IMAGE:5482095" /tissue_type="amelanotic melanoma, cell line" /lab_host="DH10B (phage-resistant)" /clone_lib="NIH_MGC_41" /note="Organ: skin; Vector: pOTB7; Site 1: XbaI; Site 2: EcoRI; cDNA made by oligo-dT priming. Directionally cloned into EcoRI/XbaI sites using the following 5' adaptor: GGCACGAG(G). Library constructed by Ling Hong in the laboratory of Gerald M. Rubin (University of California, Berkeley) using ZAP-cDNA synthesis kit (Stratagene) and Superscript II RT (Life Technologies). Note: this is a NIH-MGC Library."							
ORIGIN	Query Match 95.5%; Score 499.4; DB 12; Length 993; Best Local Similarity 99.4%; Pred. No. 5.2e-92; Matches 522; Conservative 0; Mismatches 1; Indels 2; Gaps 2;							
Qy	1	ACCCCCCTGGCCCTGCCAGGCTCCCTGCTCAAGTGGCTTAGACCAA	60	gene	<1..>608 /gene="CSF3" /locus_tag="HCM5378"			
Db	295	ACCCCCCTGGCCCTGCCAGGCTCCCTGCTCAAGTGGCTTAGACCAA	354	ORIGIN	Query Match 95.1%; Score 497.6; DB 29; Length 608;			
Qy	61	GTGAGGAAGATCAGGGCGATGGCGCAGGCCAGGGAAAGCTGTGCCACCTACAAG	120					

Best Local Similarity 97.6%; Pred. No. 9.7e-92; Mismatches 0; Indels 9; Gaps 1;

	Matches	Local Similarity	Pred.	No.	Mismatches	Indels	Gaps
QY	1	ACCCCCCTGGGCCAGCTCCCTGCCAGGCTTCTGCTCAAAGTGCTTAGAGCAA	60				
Db	75	ACCCCCCTGGGCCAGCTCCCTGCCAGGCTTCTGCTCAAAGTGCTTAGAGCAA	134				
QY	61	GTGAGGAAGATCCAGGGCATGGGCAGGGCTCCAGGAGAAGCT-----GTGTGCC	111				
Db	135	GTGAGGAAGATCCAGGGCATGGGCAGGGCTCCAGGAGAAGCTGGTAGGTGTGCC	194				
QY	112	ACCTACAAAGCTGTGCCACCCGAGGAGCTGGTCGGACACTCTGGCATCCCC	171				
Db	195	ACCTACAAAGCTGTGCCACCCGAGGAGCTGGTCGGACACTCTGGCATCCCC	254				
QY	172	TGGGCTCCCTGAGCAGTGGCCAGGCCAGCAGCTGGCAGGTGAGCCAA	231				
Db	255	TGGGCTCCCTGAGCAGTGGCCAGGCCAGCAGCTGGCAGGTGAGCCAA	314				
QY	232	CTCCATAGGGCTTTTCCCTTACAGGGCTCTGGAGGCTCTCCCC	291				
Db	315	CTCCATAGGGCTCTCCCTACAGGGCTCTGGAGGCTCTCCCC	374				
QY	292	GAGTTGGTCCCACCTTGGACACACTGCACTGGGACTCGCCGACCACATC	351				
Db	375	GAGTTGGTCCCACCTTGGACACACTGCACTGGGACTTGGCACCACATC	434				
QY	352	TGGCACACAGATGGAAACTTGGGAATGGCCCTGAGCCACGGGTGCCATG	411				
Db	435	TGGCACACAGATGGAAACTTGGGAATGGCCCTGAGCCACGGGTGCCATG	494				
QY	412	CGGGCCTTGGCCTCTGGAAATGGCCCTGAGCCACGGGTCCATCTG	471				
Db	495	CGGGCCTTGGCCTCTGGAAATGGCCCTGAGCCACGGGTCCATCTG	554				
QY	472	CAGAGCTTCTGGAGGTGTGGTACGGCACCTGGCCAGGGTCTAGTTGCCCTCCATCTG	523				
Db	555	CAGAGCTTCTGGAGGTGTGGTACGGCACCTGGCCAGGGTCTAGTTGCCCTCCATCTG	606				
RESULT 12							
LOCUS	BM423896	990 bp	mRNA	linear	EST 29-JAN-2002		
DEFINITION	AGENCOURT 6399123 NIH_MGC_41 Homo sapiens cDNA clone IMAGE:5517129					Db	
5' mRNA Sequence							
ACCESSION	BM423896					QY	
VERSION	BM423896.1	GI:18392108					Db
KEYWORDS							
SOURCE	Homo sapiens (human)					QY	
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.						Db
REFERENCE	NIH-MGC http://mgc.ncbi.nlm.nih.gov/						
AUTHORS	National Institutes of Health, Mammalian Gene Collection (MGC)						
TITLE	Unpublished (1999)						
JOURNAL	Contact: Robert Strausberg, Ph.D. Email: cgabbs-r@mail.nih.gov						
COMMENT	Tissue Procurement: DCTD/DTP CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Agencourt Bioscience Corporation Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Plate: LLCM2018 row: n column: 10 High quality sequence stop: 542.						
FEATURES	Location/Qualifiers						
source	1. .990 /organism="Homo sapiens" /mol_type="mRNA" /db_xref="taxon:9606" /clone="IMAGE:5517129"						

CDNA Library Preparation: Invitrogen Corp
 CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
 DNA Sequencing by: Agencourt Bioscience Corporation
 Clone distribution: MGC clone distribution information can be
 found through the I.M.A.G.E. Consortium/LLNL at:
<http://image.llnl.gov>
 Plate: LLAM14276 row: d column: 14
 High quality sequence stop: 562.

FEATURES	source
Location/Qualifiers	1. . 986
	/organism="Homo sapiens" /mol_type="mRNA" /db_xref="taxon:9606" /clone="IMAGE:6719006" /cell_line="ZR-75-1, MCF7, SK-BR-3, MDA-MB-231, hTERT-HME1, LNCap" /lab_host="EMDH10B" /clone_lib="MAPCL" /note="vector: PCMV-SPORT6; Site_1: EcoRV; Site_2: Not Subtracted with brain, liver, lung, kidney and muscle. Directionally cloned. Priming method: oligo-dT. Average insert size: 1800 bp. Library amplification: 26,000 fo Kristi A. Egland, James J. Vincent, Robert Strausberg, Bungook Lee & Ira Pastan: Discovery of new breast cancer genes encoding membrane and secreted proteins. Manuscript submitted."

5', mRNA sequence.
 BM556479
 BM556479.1 GI:18797743
 EST.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 1012)
 AUTHORS NIH-MGC http://mgc.ncbi.nih.gov/
 TITLE National Institutes of Health, Mammalian Gene Collection (MGC)
 JOURNAL Unpublished (1999)
 COMMENT Contact: Robert Strausberg, Ph.D.
 Email: cgapbs-r@mail.nih.gov
 Tissue Procurement: DCTD/DTP
 CDNA Library Preparation: Rubin Laboratory
 CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
 DNA Sequencing by: Agencourt Bioscience Corporation
 Clone distribution: MGC clone distribution information can be
 found through the I.M.A.G.E. Consortium/LLNL at:
<http://image.llnl.gov>
 Plate: LLCM1969 row: c column: 13
 High quality sequence start: 19
 High quality sequence stop: 745.
 Location/Qualifiers
 1. . 1012
 source
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /clone="IMAGE:5467332"
 /tissue_type="amelanotic melanoma, cell line"
 /lab_host="DH10B (phage-resistant)"
 /clone_lib="NIH MGC_41"
 /note="Organ: skin; vector: pOTB7; Site 1: XbaI; Site 2:
 EcoRI; cDNA made by oligo-dT priming. Directionally cloned
 into EcoRI/XbaI sites using the following 5' adaptor:
 GGCACGAG(G). Library constructed by Ling Hong in the
 laboratory of Gerald M. Rubin (University of California,
 Berkeley) using ZAP-cDNA synthesis kit (Stratagene) and
 Superscript II RT (Life Technologies). Note: this is a
 NIH_MGC Library."
 ORIGIN
 Query Match 92.4%; Score 483; DB 12; Length 1012;
 Best Local Similarity 97.5%; Pred. No. 1.2e-88;
 Matches 512; Conservative 0; Mismatches 10; Indels 3; Gaps
 Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTCCTGCTCAAGTGCTTAGAGCAA 60
 Db 298 ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTCCTGCTCAAGTGCTTAGAGCAA 35
 Qy 61 GTGAGGAAGATCCAGGGCGATGGGGCAGGGCCCTGCCAGCTGGACACTCTGGCATCCCCCTGGCTCCC 12
 Db 358 GTGAGGAAGATCCAGGGCGATGGGGCAGCCAGGGCTGGACACTCTGGCATCCCCCTGGCTCCC 41
 Qy 121 CTGTGCCACCCGAGGAGCTGGTGGCTGGACACTCTGGCATCCCCCTGGCTCCC 18
 Db 418 CTGTGCCACCCGAGGAGCTGGTGGCTGGACACTCTGGCATCCCCCTGGCTCCC 47
 Qy 181 CTGAGCAGCTGCCAGCCAGGGCCCTGCCAGCTGGAGCTGGCTGGAGCTGGCATCCCCCTGGCTCCC 24
 Db 478 CTGAGCAGCTGCCAGCCAGGGCCCTGCCAGCTGGAGCTGGCATCCCCCTGGCTGGAGCTGGCATCCCCCTGGCTCCC 53
 Qy 241 GGCCCTTCTACCAGGGCTCTGCAGGGCAAGGGATCTCCCCGAGTTGGGT 30
 Db 538 GGCCCTTCTACCAGGGCTCTGCAGGGCAAGGGATCTCCCCGAGTTGGGT 59
 Qy 301 CCCACCTTGGACACACTGAGCTGGAGCTGGGACTTGGCCACCCATCTGGCAGCAG 36
 Db 598 CCCACCTTGGACACACTGAGCTGGCCACCCATCTGGCAGCAG 65
 Qy 361 ATGGAAAGAACTGGGAATGGCCCTGCCCTGGCCACCCACAGCTGGCAGCAG 42

Db 658 ATGGAAGAACTGGGAATGGCCCCCTGCCCCAGCCACCCAGGGTGCCATGCCGCCTTC 717 Db 129 ACCCCCCTGGCCCTGCCAGCTCCATCTGCTCAAGTGCTTAAGTAGGCAA 188
 Qy 421 GCCTCTGCTTCCAGGCCGG--CAGGAGGGTCCTAGTTGCCTCCCATCTGGCAGAGCT 478 Qy 61 GTGAGGAAGATCCAGGGATGGCAGGGCTCCAGGAAAGCTGTGTGCCACCTACAAG 120
 Db 718 GCCTCTGCTTCCAGGCCGGCAGGGTCTGGTGCCTGGTCAAGCT 777 Db 189 GTGAGGAAGATCCAGGGATGGCAGGGCTCCAGGAAAGCTGTGTGCCACCTACAAG 248
 Qy 479 TCCT-GGAGGTGTGTAACGGTCTACGCCACCTTCCCCAGCCC 522 Qy 121 CTGTGCCACCCGAGGAGCTGGTGTGCTGGCATCCCTGGGCTCCC 180
 Db 778 TCCTGGAGGGTTCTGTAACGGTCTACGCCACCTTCCCCAGCCC 822 Db 249 CTGTGCCACCCGAGGAGCTGGTGTGCTGGCATCCCTGGGCTCCC 308

RESULT 15
 CB126975 CB126975 554 bp mRNA linear EST 29-JAN-2003
 DEFINITION K-EST0176151 C1SNU17 Homo sapiens cDNA clone C1SNU17-14-A07 5',
 mRNA sequence.
 ACCESSION CB126975
 VERSION CB126975.1 GI:28089170
 KEYWORDS EST.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Eukaryota; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 554)
 AUTHORS Kim, N.S., Hahn, Y., Oh, J.H., Lee, J.Y., Ahn, H.Y., Chu, M.Y., Kim, M.R.,
 Oh, K.J., Cheong, J.E., Sohn, H.Y., Kim, J.M., Park, H.S., Kim, S. and
 Kim, Y. S
 TITLE 21C Frontier Korean EST Project 2001
 JOURNAL Unpublished (2002)
 COMMENT Contact : Kim YS
 Genome Research Center
 Korea Research Institute of Bioscience & Biotechnology
 52 Eoeun-dong Yuseong-gu, Daejeon 305-333, South Korea
 Tel: +82-42-860-4470
 Fax: +82-42-860-4409
 Email: Yongsung@mail.kribb.re.kr
 Plate: 14 row: A column: 07
 High quality sequence stop: 554.

FEATURES source
 1. .554
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /clone="C1SNU17-14-A07"
 /sex="F"
 /tissue_type="Uterine"
 /cell_type="Epithelial"
 /cell_line="SNU-17"
 /lab_host="Top10F"
 /clone_lib="C1SNU17"
 /note="Organ: Cervix; Vector: PCNS-D2; Site 1: EcoRI; Site 2: NotI; The poly (A)+ RNA was dephosphorylated with bacterial alkaline phosphatase (BAP) and then decapped with tobacco acid pyrophosphatase (TAP). The decapped intact mRNA was ligated with DNA-RNA linker including EcoRI site by treatment of T4 RNA ligase and the first strand cDNA was synthesized from oligo dT-selected mRNA by priming with dT-tailed vector. The dT-tailed vector was adjusted to have about 60nt. The cDNA vector was circularized with E. coli DNA ligase after digestion of EcoRI which site is also included in vector. An RNA strand converted to a DNA strand by Okayama-Berg method. The obtained cDNA vectors were used for transformation of competent cells E. coli Top10F by electroporation method. The cDNA libraries constructed by this method are full-length enriched cDNA library."

ORIGIN
 Query Match 81.5%; Score 426; DB 14; Length 554;
 Best Local Similarity 100.0%; Pred. No. 4.3e-77;
 Matches 426; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCAGGGCTCTGCTCAAGTGCTTAGAGCAA 60

GenCore version 5.1.6
(c) 1993 - 2004 Compugen Ltd.

Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 9, 2004, 03:08:44 ; Search time 449.349 Seconds
(without alignments)
5900.506 Million cell updates/s

Title: US-10-009-792C-18_COPY_88_610
Perfect score: 523
Sequence: 1 accccccctggccctgccag.....acggccaccctgtcccgccct 523

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 3340653 seqs, 2534783454 residues

Total number of hits satisfying chosen parameters: 6681306

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database :

```

Published_Applications_NA:*
1: /cgn2_6/ptodata/2/pubbna/US07_PUBCOMB.seq:*
2: /cgn2_6/ptodata/2/pubbna/PCT_NEW_PUB.seq:*
3: /cgn2_6/ptodata/2/pubbna/US06_NEWPUB.seq:*
4: /cgn2_6/ptodata/2/pubbna/US06_PUBCOMB.seq:*
5: /cgn2_6/ptodata/2/pubbna/US07_NEWPUBCOMB.seq:*
6: /cgn2_6/ptodata/2/pubbna/PCTUS_PUBCOMB.seq:*
7: /cgn2_6/ptodata/2/pubbna/US08_NEWPUB.seq:*
8: /cgn2_6/ptodata/2/pubbna/US08_PUBCOMB.seq:*
9: /cgn2_6/ptodata/2/pubbna/US09_NEWPUBCOMB.seq:*
10: /cgn2_6/ptodata/2/pubbna/US09_PUBCOMB.seq:*
11: /cgn2_6/ptodata/2/pubbna/US09C_PUBCOMB.seq:*
12: /cgn2_6/ptodata/2/pubbna/US09_NEWPUB.seq:*
13: /cgn2_6/ptodata/2/pubbna/US09_NEWPUB.seq2:*
14: /cgn2_6/ptodata/2/pubbna/US10A_PUBCOMB.seq:*
15: /cgn2_6/ptodata/2/pubbna/US10B_PUBCOMB.seq:*
16: /cgn2_6/ptodata/2/pubbna/US10C_PUBCOMB.seq:*
17: /cgn2_6/ptodata/2/pubbna/US10_NEWPUB.seq:*
18: /cgn2_6/ptodata/2/pubbna/US60_NEWPUB.seq:*
19: /cgn2_6/ptodata/2/pubbna/US60_PUBCOMB.seq:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match Length	DB	ID	Description
1	523	100.0	531	15	US-10-009-792A-20	Sequence 20,
2	523	100.0	615	15	US-10-009-792A-18	Sequence 18,
3	523	100.0	630	13	US-10-609-346-17	Sequence 17,
4	523	100.0	1498	12	US-10-447-315-18	Sequence 18,
5	523	100.0	2352	13	US-10-609-346-7	Sequence 7, P
6	522	99.8	1365	10	US-09-968-362-21	Sequence 21,
7	522	99.8	1368	10	US-09-968-362-17	Sequence 17,
8	522	99.8	1371	10	US-09-968-362-19	Sequence 19,
9	521.4	99.7	525	13	US-10-411-037-1	Sequence 1, P
10	521.4	99.7	525	13	US-10-411-026-1	Sequence 1,
11	521.4	99.7	525	17	US-10-410-962-1	Sequence 1,
12	521.4	99.7	525	17	US-10-411-049-1	Sequence 1,
13	521.4	99.7	525	17	US-10-410-930-1	Sequence 1,
14	521.4	99.7	525	17	US-10-410-997-1	Sequence 1,

RESULT 2
US-10-009-792A-18
; Sequence 18, Application US/10009792A
; Publication No. US20030153049A1
; GENERAL INFORMATION:
; APPLICANT: LEE, Sang-Yup
; TITLE OF INVENTION: GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)
; FILE REFERENCE: HYL0060-001APC
; CURRENT FILING DATE: 2002-10-29
; PRIOR APPLICATION NUMBER: PCT/KR01/00549
; PRIOR FILING DATE: 2001-03-31
; NUMBER OF SEQ ID NOS: 27
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO: 18
; LENGTH: 615
; TYPE: DNA
; ORGANISM: Homo sapiens
; US-10-009-792A-18

Query Match 100.0%; Score 523; DB 15; Length 615;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAGCAA 60
88 ACCCCCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAGCAA 147

Query Match 100.0%; Score 523; DB 15; Length 615;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 GTGAGGAAGATCCAGGGGATGGGCAGGGCTGGACACTCTGGCATCCCTGGGTCCC 120
61 GTGAGGAAGATCCAGGGGATGGGCAGGGCTGGACACTCTGGCATCCCTGGGTCCC 276

Query Match 100.0%; Score 523; DB 15; Length 615;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 180
148 GTGAGGAAGATCCAGGGGATGGGCAGGGCTGGACACTCTGGCATCCCTGGGTCCC 207

Query Match 100.0%; Score 523; DB 15; Length 615;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 180
121 CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 240

Query Match 100.0%; Score 523; DB 15; Length 615;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 267
208 CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 300

Query Match 100.0%; Score 523; DB 15; Length 615;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 CTGAGCAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 240
181 CTGAGCAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 327

Query Match 100.0%; Score 523; DB 15; Length 615;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 ATGGAAGAAACTGGGAATGGCCCTGGAGGGATCTCCCCCGAGTTGGGT 300
268 ATGGAAGAAACTGGGAATGGCCCTGGAGGGATCTCCCCCGAGTTGGGT 516

RESULT 3
US-10-609-346-17
; Sequence 17, Application US/10609346
; Publication No. US20040063635A1
; GENERAL INFORMATION:
; APPLICANT: Yu, Zailin
; TITLE OF INVENTION: RECOMBINANT HUMAN ALBUMIN FUSION PROTEINS WITH LONG-LASTING BIOLOGICAL ACTIVITY
; FILE REFERENCE: ZYU-0603
; CURRENT APPLICATION NUMBER: US/10/609,346
; CURRENT FILING DATE: 2003-06-26
; PRIOR APPLICATION NUMBER: US 60/392,948
; PRIOR FILING DATE: 2002-07-01
; NUMBER OF SEQ ID NOS: 40
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO: 17
; LENGTH: 630
; TYPE: DNA
; ORGANISM: Homo sapiens
; US-10-609-346-17

Query Match 100.0%; Score 523; DB 13; Length 630;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAGCAA 60
97 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAGCAA 156

Query Match 100.0%; Score 523; DB 13; Length 630;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 GTGAGGAAGATCCAGGGGATGGGCAGGGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 120
61 GTGAGGAAGATCCAGGGGATGGGCAGGGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 156

Query Match 100.0%; Score 523; DB 13; Length 630;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 GTGAGGAAGATCCAGGGGATGGGCAGGGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 180
121 CTGTGCCACCCGAGGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 217

Query Match 100.0%; Score 523; DB 13; Length 630;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 CTGAGCAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 240
181 CTGAGCAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 336

Query Match 100.0%; Score 523; DB 13; Length 630;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 CGCCTTTCTACAGGGGCTCTGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 360
337 CGCCTTTCTACAGGGGCTCTGAGCTGGCTGGACACTCTGGCATCCCTGGGTCCC 396

Query Match 100.0%; Score 523; DB 13; Length 630;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 CCCACCTTGGACACTCTGGCATCCCTGGGTCCC 301
397 CCCACCTTGGACACTCTGGCATCCCTGGGTCCC 456

Query Match 100.0%; Score 523; DB 13; Length 630;
Best Local Similarity 100.0%; Pred. No. 1.6e-133;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 ATGGAAGAAACTGGGAATGGCCCTGGAGGGATCTCCCCCGAGTTGGGT 420
457 ATGGAAGAAACTGGGAATGGCCCTGGAGGGATCTCCCCCGAGTTGGGT 516

RESULT 4
 US-10-447-315-18
 ; Sequence 18, Application US/10447315
 ; Publication No. US20040071687A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Rafii, Shahin
 ; APPLICANT: Heissig, Beate
 ; APPLICANT: Hattori, Koichi
 ; TITLE OF INVENTION: Adult Stem Cell Recruitment
 ; FILE REFERENCE: 1676.006US1
 ; CURRENT APPLICATION NUMBER: US/10/447,315
 ; CURRENT FILING DATE: 2003-05-28
 ; PRIORITY APPLICATION NUMBER: US 60/383,658
 ; PRIORITY FILING DATE: 2002-05-28
 ; NUMBER OF SEQ ID NOS: 28
 ; LENGTH: 1498
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-10-447-315-18

Query Match 100.0%; Score 523; DB 12; Length 1498;
 Best Local Similarity 100.0%; Pred. No. 1.7e-133;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 ACCCCCCCTGGCCCTGCCAGGCTTCCCTGCTCAAGTGCTTAGAGCAA 60
 Db 121 ACCCCCCCTGGCCCTGCCAGGCTTCCCTGCTCAAGTGCTTAGAGCAA 180

QY 61 GTGAGGAAGATCAGGGCGATGGCCAGGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 180
 Db 181 GTGAGGAAGATCAGGGCGATGGCCAGGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 180

QY 121 CTGTGCCACCCCGAGGAGCTGGCTGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 180
 Db 1948 CTGTGCCACCCCGAGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 2007

QY 181 CTGAGGAGACTGCCAACGCCAGGGCCCTGCAGGTGGCTGGAGCTGGCATCCCCTGGCTCC 240
 Db 2008 CTGAGGAGACTGCCAACGCCAGGGCCCTGCAGGTGGCTGGAGCTGGCATCCCCTGGCTCC 2067

QY 241 GGCCCTTTCTACAGGGGGCTCTGCAGGGGATCTCCCCGGAGTTGGGT 300
 Db 2068 GGCCCTTTCTACAGGGGGCTCTGCAGGGGATCTCCCCGGAGTTGGGT 2127

QY 301 CCCACCTTGGACACACTGGAAATGGGAACTGGCCGACTTTGCCACCATCTGGCAGGAG 360
 Db 2128 CCCACCTTGGACACACTGGAAATGGGAACTGGCCGACTTTGCCACCATCTGGCAGGAG 2187

QY 361 ATGGAAAGAACTGGGAATGGGAACTGGCCACCCAGGGTGCCTGGCCATGGGGCTTC 420
 Db 2188 ATGGAAAGAACTGGGAATGGGAACTGGCCACCCAGGGTGCCTGGCCATGGGGCTTC 2247

QY 421 GCCTCTGCTTCCAGGCCCTAGCCACCTTGCCACCATCTGGCAGGAG 480
 Db 541 GCCTCTGCTTCCAGGCCCTAGCCACCTTGCCACCATCTGGCAGGAG 600

QY 361 ATGGAAAAGAACTGGGAATGGGAACTGGCCACCCAGGGTGCCTGGCCATGGGGCTTC 420
 Db 481 ATGGAAAAGAACTGGGAATGGGAACTGGCCACCCAGGGTGCCTGGCCATGGGGCTTC 540

QY 421 GCCTCTGCTTCCAGGCCCTAGCCACCTTGCCACCATCTGGCAGGAGCTTC 480
 Db 541 GCCTCTGCTTCCAGGCCCTAGCCACCTTGCCACCATCTGGCAGGAGCTTC 600

QY 481 CTGGAGGGTGTGTCAGCCACCTTGCCACCTTGCCACCATCTGGCAGGAGCTTC 523
 Db 601 CTGGAGGGTGTGTCAGCCACCTTGCCACCATCTGGCAGGAGCTTC 643

RESULT 5
 US-10-609-346-7
 ; Sequence 7, Application US/10609346
 ; Publication No. US20040063635A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Yu, Zailin
 ; APPLICANT: Fu, Yan
 ; TITLE OF INVENTION: RECOMBINANT HUMAN ALBUMIN FUSION PROTEINS WITH LONG-LASTING BIOLOGICAL ACTIVITY
 ; FILE REFERENCE: ZYU-0603
 ; CURRENT APPLICATION NUMBER: US/10/609, 346
 ; CURRENT FILING DATE: 2003-06-26
 ; PRIOR APPLICATION NUMBER: US 60/392, 948
 ; PRIOR FILING DATE: 2002-07-01
 ; NUMBER OF SEQ ID NOS: 40
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 7
 ; LENGTH: 2352
 ; TYPE: DNA
 ; ORGANISM: Artificial Sequence
 ; FEATURE:
 ; OTHER INFORMATION: DNA of HSA-GCSF
 US-10-609-346-7

Query Match 100.0%; Score 523; DB 13; Length 2352;
 Best Local Similarity 100.0%; Pred. No. 1.7e-133;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 ACCCCCCCTGGCCCTGCCAGGCTTCCCTGCTCAAGTGCTTAGAGCAA 60
 Db 1828 ACCCCCCCTGGCCCTGCCAGGCTTCCCTGCTCAAGTGCTTAGAGCAA 1887

QY 61 GTGAGGAAGATCCAGGGCGATGGCCAGGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 180
 Db 1888 GTGAGGAAGATCCAGGGCGATGGCCAGGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 1947

QY 121 CTGTGCCACCCCGAGGAGCTGGCTGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 180
 Db 1948 CTGTGCCACCCCGAGGAGCTGGCTGGAGCTGGCATCCCCTGGCTCC 2007

QY 181 CTGAGGAGACTGCCAACGCCAGGGCCCTGCAGGTGGCTGGAGCTGGCATCCCCTGGCTCC 240
 Db 2008 CTGAGGAGACTGCCAACGCCAGGGCCCTGCAGGTGGCTGGAGCTGGCATCCCCTGGCTCC 2067

QY 241 GGCCCTTTCTACAGGGGGCTCTGCAGGGGATCTCCCCGGAGTTGGGT 300
 Db 2068 GGCCCTTTCTACAGGGGGCTCTGCAGGGGATCTCCCCGGAGTTGGGT 2127

QY 301 CCCACCTTGGACACACTGGAAATGGGAACTGGCCGACTTTGCCACCATCTGGCAGGAG 360
 Db 2128 CCCACCTTGGACACACTGGAAATGGGAACTGGCCGACTTTGCCACCATCTGGCAGGAG 2187

QY 361 ATGGAAAGAACTGGGAATGGGAACTGGCCACCCAGGGTGCCTGGCCATGGGGCTTC 420
 Db 2188 ATGGAAAGAACTGGGAATGGGAACTGGCCACCCAGGGTGCCTGGCCATGGGGCTTC 2247

QY 421 GCCTCTGCTTCCAGGCCCTAGCCACCTTGCCACCATCTGGCAGGAGCTTC 480
 Db 2248 GCCTCTGCTTCCAGGCCCTAGCCACCTTGCCACCATCTGGCAGGAGCTTC 2307

QY 481 CTGGAGGGTGTGTCAGCCACCTTGCCACCTTGCCACCATCTGGCAGGAGCTTC 523
 Db 2308 CTGGAGGGTGTGTCAGCCACCTTGCCACCATCTGGCAGGAGCTTC 2350

Matches 522; Conservative 0; Mismatches 0; Indels 0; Gaps 0; LENGTH: 525 ; TYPE: DNA ; ORGANISM: Homo sapiens ; US-10-411-037-1

Query Match 99.7%; Score 521.4; DB 13; Length 525;

Best Local Similarity 99.8%; Pred. No. 4.5e-13;

Matches 522; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGGCTCCTGCTCAAGTGCTTAGAGCAA 60
Db 106 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTTCCAGCTAAGTGCTTAGAGCAA 165

Qy 61 GTGAGGAAGATCAGGGGATGGCTCGGACACTCTGGCATCCCTGGCTCCC 120
Db 166 GTGAGGAAGATCAGGGGATGGCTCGGACACTCTGGCATCCCTGGCTCCC 165

Qy 121 CTGTGCCACCCGAGGAGCTGGGACTCTGGCATCCCTGGCTCCC 180
Db 226 CTGTGCCACCCGAGGAGCTGGGACACTCTGGCATCCCTGGCTCCC 285

Qy 181 CTGAGCAGCTGCCAGGGCTGGCAGGCTGGCAACTCCATAGC 240
Db 286 CTGAGCAGCTGCCAGGGCTGGCAGGCTGGCAACTCCATAGC 345

Qy 241 GGCCCTTTCCCTACCAAGGGGATCTCCCGAGTTGGGT 300
Db 346 GGCCCTTTCCCTACCAAGGGGATCTCCCGAGTTGGGT 405

Qy 301 CCCACCTTGGACACACTGGAGCTGGGACTTGGCACCCACCATCTGGCAGCAG 360
Db 406 CCCACCTTGGACACACTGGAGCTGGGACTTGGCACCCACCATCTGGCAGCAG 465

Qy 361 ATGGAAAGAACTTGGGAATGGCCCTGGCAGCTGGCCACCCAGGGTGCCTTC 420
Db 466 ATGGAAAGAACTTGGGAATGGCCCTGGCAGCCACCCAGGGTGCCTTC 525

Qy 421 GCCTCTGCTTTCAGCGCCGGCTAGTTGCCATCTGCAGAGCTTC 480
Db 526 GCCTCTGCTTTCAGCGCCGGCTAGTTGCCATCTGCAGAGCTTC 585

Qy 481 CTGGAGGTGTGTAACGGCTTACGCACCTTGCCAGCCC 522
Db 586 CTGGAGGTGTGTAACGGCTTACGCACCTTGCCAGCCC 627

RESULT 9 US-10-411-037-1

Sequence 1, Application US/10411037
Publication No. US2004004346A1

GENERAL INFORMATION:

APPLICANT: Neose Technologies, Inc.

APPLICANT: DeFreees, Shawn

APPLICANT: Zopf, David

APPLICANT: Bayer, Robert

APPLICANT: Hakes, David

APPLICANT: Chen, Xi

TITLE OF INVENTION: ALPHA GALACTOSIDASE A: REMODELING AND GLYCOCONJUGATION OF ALPHA

FILE REFERENCE: 040853-01-5082

CURRENT APPLICATION NUMBER: US/10/411,037

PRIOR APPLICATION NUMBER: US 2003-04-09

PRIOR FILING DATE: 2001-10-10

PRIOR APPLICATION NUMBER: US 60/344,692

PRIOR FILING DATE: 2001-10-19

PRIOR APPLICATION NUMBER: US 60/387,292

PRIOR FILING DATE: 2002-06-07

PRIOR APPLICATION NUMBER: US 60/391,777

PRIOR FILING DATE: 2002-06-25

PRIOR APPLICATION NUMBER: US 60/396,594

PRIOR FILING DATE: 2002-07-17

PRIOR APPLICATION NUMBER: US 60/404,249

PRIOR FILING DATE: 2002-08-16

PRIOR APPLICATION NUMBER: US 60/407,527

PRIOR FILING DATE: 2002-08-28

NUMBER OF SEQ ID NOS: 75

SOFTWARE: Patentin version 3.2

SEQ ID NO: 1

RESULT 10 US-10-411-026-1

Sequence 1, Application US/10411026

Publication No. US20040063911A1

GENERAL INFORMATION:

APPLICANT: Neose Technologies, Inc.

APPLICANT: DeFreees, Shawn

APPLICANT: Zopf, David

APPLICANT: Bayer, Robert

APPLICANT: Hakes, David

APPLICANT: Chen, Xi

TITLE OF INVENTION: PROTEIN REMODELING METHODS AND PROTEINS/PEPTIDES PRODUCED BY THE

FILE REFERENCE: 040853-01-5053

CURRENT APPLICATION NUMBER: US/10/411,026

PRIOR APPLICATION NUMBER: US 2003-04-09

PRIOR APPLICATION NUMBER: US 60/328,523

PRIOR FILING DATE: 2001-10-10

PRIOR APPLICATION NUMBER: US 60/344,692

PRIOR FILING DATE: 2001-10-19

PRIOR APPLICATION NUMBER: US 60/387,292

PRIOR FILING DATE: 2002-06-07

PRIOR APPLICATION NUMBER: US 60/391,777

PRIOR FILING DATE: 2002-06-25

PRIOR FILING DATE: 2002-07-17

PRIOR APPLICATION NUMBER: US 60/404,249

PRIOR FILING DATE: 2002-08-16

PRIOR APPLICATION NUMBER: US 60/407,527

PRIOR FILING DATE: 2002-08-28

NUMBER OF SEQ ID NOS: 75

SOFTWARE: Patentin version 3.2

SEQ ID NO: 1

PRIOR APPLICATION NUMBER: US 60/387,292
 PRIOR FILING DATE: 2002-06-07
 PRIOR APPLICATION NUMBER: US 60/391,777
 PRIOR FILING DATE: 2002-06-25
 PRIOR APPLICATION NUMBER: US 60/396,594
 PRIOR FILING DATE: 2002-07-17
 PRIOR APPLICATION NUMBER: US 60/404,249
 PRIOR FILING DATE: 2002-08-16
 PRIOR APPLICATION NUMBER: US 60/407,527
 PRIOR FILING DATE: 2002-08-28
 NUMBER OF SEQ ID NOS: 1
 SOFTWARE: Patentin version 3.2
 SEQ ID NO: 1
 LENGTH: 525
 TYPE: DNA
 ORGANISM: Homo sapiens
 US-10-411-026-1

Query Match 99.7%; Score 521.4; DB 13; Length 525;
 Best Local Similarity 99.8%; Pred. No. 4.5e-133;
 Matches 522; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

Qy	Db	Match	Score	DB	Length	
1	1	ACCCCCCTGGCCCTGCCAGAGCTCCAGGAGCTTCCAGGAAAGCTGGCCACCTACAAG	60	1	525;	
61	61	GTGAGGAAGATCCAGGGGATGGCGAGGCAGGCTCCAGGAAAGCTGGCTCAAGTGCTTAGAGCAA	60	1	GTGAGGAAGATCCAGGGGATGGCGAGGCAGGCTCCAGGAAAGCTGGCTCAAGTGCTTAGAGCAA	60
121	121	CTGTGCCACCCGAGGAGCCTGGACACTCTCTGGCATCCCCCTGGCTCCC	120	1	CTGTGCCACCCGAGGAGCCTGGACACTCTCTGGCATCCCCCTGGCTCCC	120
181	181	CTGAGCAGCTGCCACCCAGGCCAGGCTGGCAGGTGGTGGCTCGGACACTCTCTGGCATCCCCTGGCTCCC	180	1	CTGAGCAGCTGCCACCCAGGCCAGGCTGGCAGGTGGTGGCTCGGACACTCTCTGGCATCCCCTGGCTCCC	180
241	241	GGCCCTTTCTTACCAAGGGCTCCTGCAGCTGGCCAGGCTGGCAACTCCATAAGC	240	1	GGCCCTTTCTTACCAAGGGCTCCTGCAGCTGGCCAGGCTGGCAACTCCATAAGC	240
301	301	CCCACCTGGAACACTGGAAATGGCCCTGGACGCTGGCCAGGCTGGCAACTCCATAAGC	300	1	CCCACCTGGAACACTGGAAATGGCCCTGGACGCTGGCCAGGCTGGCAACTCCATAAGC	300
361	361	ATGGAAAGAACACTGGAAATGGCCCTGGACGCTGGCCAGGCTGGCAACTCCATAAGC	360	1	ATGGAAAGAACACTGGAAATGGCCCTGGACGCTGGCCAGGCTGGCAACTCCATAAGC	360
421	421	GCCTCTGCTTCCAGGGCCAGGGCTGGACGCTGGCCAGGCTGGCAACTCCATAAGC	420	1	GCCTCTGCTTCCAGGGCCAGGGCTGGACGCTGGCCAGGCTGGCAACTCCATAAGC	420
481	481	CTGGAGGTGTCGTACCGCGTTCTACGCCACCTTGCCAGGCC	523	1	CTGGAGGTGTCGTACCGCGTTCTACGCCACCTTGCCAGGCC	523
481	481	CTGGAGGTGTCGTACCGCGTTCTACGCCACCTTGCCAGGCC	523	1	CTGGAGGTGTCGTACCGCGTTCTACGCCACCTTGCCAGGCC	523

RESULT 11
 US-10-410-962-1
 Sequence 1, Application US/10410962
 Publication No. US20040077836A1
 GENERAL INFORMATION:
 APPLICANT: Neose Technologies, Inc.
 APPLICANT: DeFrees, Shawn
 APPLICANT: Zopf, David
 APPLICANT: Bayer, Robert
 APPLICANT: Hakes, David
 APPLICANT: Chen, Xi
 APPLICANT: Bowe, Caryn
 TITLE OF INVENTION: GRANULOCYTE COLONY STIMULATING FACTOR: REMODELING AND GLYCOCONJUGATION OF G-CSF
 FILE REFERENCE: 040853-01-5054
 CURRENT APPLICATION NUMBER: US/10/410,962
 CURRENT FILING DATE: 2003-04-09
 PRIOR APPLICATION NUMBER: US 60/328,523
 PRIOR FILING DATE: 2001-10-10
 PRIOR APPLICATION NUMBER: US 60/344,692
 PRIOR FILING DATE: 2001-10-19

RESULT 12
 US-10-411-049-1
 Sequence 1, Application US/10411049
 Publication No. US20040082026A1
 GENERAL INFORMATION:
 APPLICANT: Neose Technologies, Inc.
 APPLICANT: DeFrees, Shawn
 APPLICANT: Zopf, David
 APPLICANT: Bayer, Robert
 APPLICANT: Hakes, David
 APPLICANT: Chen, Xi
 APPLICANT: Bowe, Caryn
 TITLE OF INVENTION: INTERFERON ALPHA: REMODELING AND GLYCOCONJUGATION OF INTERFERON ALPHA
 TITLE OF INVENTION: ALPHA

FILE REFERENCE: 040853-01-5055
 CURRENT APPLICATION NUMBER: US 10/411,049
 CURRENT FILING DATE: 2003-04-09
 PRIOR APPLICATION NUMBER: US 60/328,523
 PRIOR FILING DATE: 2001-10-10
 PRIOR APPLICATION NUMBER: US 60/344,692
 PRIOR FILING DATE: 2001-10-19
 PRIOR APPLICATION NUMBER: US 60/387,292
 PRIOR FILING DATE: 2002-06-07
 PRIOR APPLICATION NUMBER: US 60/391,777
 PRIOR FILING DATE: 2002-06-25
 PRIOR APPLICATION NUMBER: US 60/396,594
 PRIOR FILING DATE: 2002-07-17
 PRIOR APPLICATION NUMBER: US 60/404,249
 PRIOR FILING DATE: 2002-08-16
 PRIOR APPLICATION NUMBER: US 60/407,527
 NUMBER OF SEQ ID NOS: 75
 SOFTWARE: PatentIn version 3.2
 SEQ ID NO: 1
 LENGTH: 525
 TYPE: DNA
 ORGANISM: Homo sapiens
 US-10-411-049-1

Query Match 99.7%; Score 521.4; DB 17; Length 525;
 Best Local Similarity 99.8%; Pred. No. 4.5e-133;
 Matches 522; Conservative 0; Mismatches 1; Indels 0; Gaps 0;
 SEQ ID NO: 1

Db 1 ACCCCCCCTGGCCATGGGAGATCAGGGAGCTCCAGGCCAGACTCTGGCATCCCTGGCTCCC 60
 1 ACCCCCCCTGGCCATGGGAGATCAGGGAGCTCCCTGGCATCCCTGGCTCCC 60

Qy 1 GTGAGGAAGATCAGGGAGCTCCAGGCCAGACTCTGGCATCCCTGGCTCCC 60
 1 GTGAGGAAGATCAGGGAGCTCCCTGGCATCCCTGGCTCCC 60

Db 121 CTGTGCCACCCCGAGGAGCTGGGAGCTGGCTCGGACACTCTGGCATCCCTGGCTCCC 180
 121 CTGTGCCACCCCGAGGAGCTGGCTCGGACACTCTGGCATCCCTGGCTCCC 180

Qy 121 CTGTGCCACCCCGAGGAGCTGGCTCGGACACTCTGGCATCCCTGGCTCCC 180
 121 CTGTGCCACCCCGAGGAGCTGGCTCGGACACTCTGGCATCCCTGGCTCCC 180

Db 181 CTGAGCAGTGCACGGCCAGGCCAGGGCTTGAGCCAACTCCATAGC 240
 181 CTGAGCAGTGCACGGCCAGGCCAGGGCTTGAGCCAACTCCATAGC 240

Qy 181 CTGAGCAGTGCACGGCCAGGCCAGGGCTTGAGCCAACTCCATAGC 240
 181 CTGAGCAGTGCACGGCCAGGCCAGGGCTTGAGCCAACTCCATAGC 240

Db 241 GGCTTTTCCTCTACCACTGGGAGCTGGGAGCTGGGAGCTGGGGATCTCCCGAGTTGGGT 300
 241 GGCTTTTCCTCTACCACTGGGAGCTGGGAGCTGGGAGCTGGGGATCTCCCGAGTTGGGT 300

Qy 241 CCCACCTGGACACACTGGGAGCTGGGAGCTGGGAGCTGGGAGCTGGGGATCTCCCGAGTTGGGT 300
 241 CCCACCTGGACACACTGGGAGCTGGGAGCTGGGAGCTGGGGATCTCCCGAGTTGGGT 300

Db 301 ATGGAAGAACTGGAATGGCCCTGGCAGGCCAACCTGGGAGCTGGGGATCTCCCGAGTTGGGT 360
 301 ATGGAAGAACTGGAATGGCCCTGGCAGGCCAACCTGGGAGCTGGGGATCTCCCGAGTTGGGT 360

Qy 361 ATGGAAGAACTGGAATGGCCCTGGCAGGCCAACCTGGGAGCTGGGGATCTCCCGAGTTGGGT 420
 361 ATGGAAGAACTGGAATGGCCCTGGCAGGCCAACCTGGGAGCTGGGGATCTCCCGAGTTGGGT 420

Db 421 GCCTCTGGCTTCAGGGGGCTAGTGGCCATCTGGCAGAGCTTC 480
 421 GCCTCTGGCTTCAGGGGGCTAGTGGCCATCTGGCAGAGCTTC 480

Qy 421 ATGGAAGAACTGGGAGCTGGGAGCTGGGGATCTGGGGATCTGGGGATCTGGGGATCTGGGG 480
 421 ATGGAAGAACTGGGAGCTGGGAGCTGGGGATCTGGGGATCTGGGGATCTGGGG 480

Db 481 CTGGAGGTGTCGTTAGGCCAACCTGGCCAGGCCAGCCCT 523
 481 CTGGAGGTGTCGTTAGGCCAACCTGGCCAGGCCCT 523

RESULT 13
 US-10-410-930-1
 ; Sequence 1, Application US/10410930
 ; Publication No. US2004011516A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Neose Technologies, Inc.
 ; DeFrees, Shawn

RESULT 14
 US-10-410-997-1
 ; Sequence 1, Application US/10410997
 ; Publication No. US20040126838A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Neose Technologies, Inc.
 ; APPLICANT: Defrees, Shawn
 ; APPLICANT: Zopf, David
 ; APPLICANT: Bayer, Robert
 ; APPLICANT: Hakes, David
 ; APPLICANT: Chen, Xi
 ; APPLICANT: Bowe, Caryn

TITLE OF INVENTION: FOLLICLE STIMULATING HORMONE: REMODELING AND GLYCOCOCONJUGATION OF

FILE REFERENCE: 040853-01-5059
 CURRENT APPLICATION NUMBER: US 10/410, 997
 CURRENT FILING DATE: 2003-04-09
 PRIOR APPLICATION NUMBER: US 60/328, 523
 PRIOR FILING DATE: 2001-10-10
 PRIOR APPLICATION NUMBER: US 60/344, 692
 PRIOR FILING DATE: 2001-10-19
 PRIOR APPLICATION NUMBER: US 60/387, 292
 PRIOR FILING DATE: 2002-06-07
 PRIOR APPLICATION NUMBER: US 60/391, 777
 PRIOR FILING DATE: 2002-06-25
 PRIOR APPLICATION NUMBER: US 60/396, 594
 PRIOR FILING DATE: 2002-07-17
 PRIOR APPLICATION NUMBER: US 60/404, 249
 PRIOR FILING DATE: 2002-08-16
 PRIOR APPLICATION NUMBER: US 60/407, 527
 PRIOR FILING DATE: 2002-08-28
 NUMBER OF SEQ ID NOS: 75
 SOFTWARE: PatentIn version 3.2
 SEQ ID NO 1
 LENGTH: 525
 TYPE: DNA
 ORGANISM: Homo sapiens
 US-10-410-997-1

Query Match 99.7%; Score 521.4; DB 17; Length 525;
 Best Local Similarity 99.8%; Pred. No. 4.5e-133;
 Matches 522; Mismatches 0; Gaps 0;
 ;
 Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGGAGCTTCCAGGAACTACAAG 60
 Db 1 GTGAGGAAGATCCAGGGCGATGGCGAGGGCTCCCTGCCAGGAACTACAAG 60
 Qy 61 GTGAGGAAGATCCAGGGCGATGGCGAGGGCTCCCTGCCAGGAACTACAAG 60
 Db 61 GTGAGGAAGATCCAGGGCGATGGCGAGGGCTCCCTGCCAGGAACTACAAG 60
 Qy 121 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCTCTGGGCATCCCTGGCTCCC 180
 Db 121 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCTCTGGGCATCCCTGGCTCCC 180
 Qy 181 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCCATAGC 240
 Db 181 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCCATAGC 240
 Qy 181 CGCCTTTCTCTTACCAAGGGGCTCCTGAGGTGGCTGGCAACTCCATAGC 180
 Db 181 CGCCTTTCTCTTACCAAGGGGCTCCTGAGGTGGCTGGCAACTCCATAGC 180
 Qy 241 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360
 Db 241 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360
 Qy 301 ATGGAAGAACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 420
 Db 301 ATGGAAGAACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 420
 Qy 361 GCCTCTGGCTTCAGGGGGCAGGGGCTGGCAACTCCATAGC 480
 Db 361 GCCTCTGGCTTCAGGGGGCAGGGGCTGGCAACTCCATAGC 480
 Qy 421 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360
 Db 421 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360

RESULT 15
 US-10-411-012-1
 ; Sequence 1, Application US/10411012
 ; Publication No. US20040132640A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Neose Technologies, Inc.
 ; APPLICANT: DeFrees, Shawn
 ; APPLICANT: Zopf, David
 ; APPLICANT: Bayer, Robert
 ; APPLICANT: Hakes, David
 ; APPLICANT: Chen, Xi
 ; APPLICANT: Bowe, Caryn
 ; TITLE OF INVENTION: GLYCOPEGYLATION METHODS AND PROTEINS/PEPTIDES PRODUCED BY THE
 ; FILE REFERENCE: 040853-01-5051
 ; CURRENT APPLICATION NUMBER: US/10/411, 012
 ; CURRENT FILING DATE: 2003-04-09
 ; PRIOR APPLICATION NUMBER: US 60/328, 523
 ; PRIOR FILING DATE: 2001-10-10
 ; PRIOR APPLICATION NUMBER: US 60/344, 692
 ; PRIOR FILING DATE: 2001-10-19
 ; PRIOR APPLICATION NUMBER: US 60/387, 292
 ; PRIOR FILING DATE: 2002-06-07
 ; PRIOR APPLICATION NUMBER: US 60/391, 777
 ; PRIOR FILING DATE: 2002-06-25
 ; PRIOR APPLICATION NUMBER: US 60/396, 594
 ; PRIOR FILING DATE: 2002-07-17
 ; PRIOR APPLICATION NUMBER: US 60/404, 249
 ; PRIOR FILING DATE: 2002-08-16
 ; PRIOR APPLICATION NUMBER: US 60/407, 527
 ; PRIOR FILING DATE: 2002-08-28
 ; NUMBER OF SEQ ID NOS: 75
 ; SOFTWARE: PatentIn version 3.2
 ; SEQ ID NO 1
 ; LENGTH: 525
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 ; US-10-411-012-1
 ; SOFTWARE: PatentIn version 3.2
 ; SEQ ID NO 1
 ; LENGTH: 525
 ;
 Query Match 99.7%; Score 521.4; DB 17; Length 525;
 Best Local Similarity 99.8%; Pred. No. 4.5e-133;
 Matches 522; Mismatches 0; Gaps 0;
 ;
 Qy 1 ACCCCCCCTGGCCCTGCCAGGAGCTCCCTGCCAGGAACTACAAG 60
 Db 1 GTGAGGAAGATCCAGGGCGATGGCGAGGGCTCCCTGCCAGGAACTACAAG 60
 Qy 61 GTGAGGAAGATCCAGGGCGATGGCGAGGGCTCCCTGCCAGGAACTACAAG 60
 Db 61 GTGAGGAAGATCCAGGGCGATGGCGAGGGCTCCCTGCCAGGAACTACAAG 60
 Qy 121 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCTCTGGGCATCCCTGGCTCCC 180
 Db 121 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCTCTGGGCATCCCTGGCTCCC 180
 Qy 181 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCCATAGC 240
 Db 181 CTGAGCCACCCGAGGAGCTGGCTGGCAACTCCATAGC 240
 Qy 181 CGCCTTTCTCTTACCAAGGGGCTCCTGAGGTGGCTGGCAACTCCATAGC 180
 Db 181 CGCCTTTCTCTTACCAAGGGGCTCCTGAGGTGGCTGGCAACTCCATAGC 180
 Qy 241 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360
 Db 241 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360
 Qy 301 ATGGAAGAACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 420
 Db 301 ATGGAAGAACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 420
 Qy 361 GCCTCTGGCTTCAGGGGGCAGGGGCTGGCAACTCCATAGC 480
 Db 361 GCCTCTGGCTTCAGGGGGCAGGGGCTGGCAACTCCATAGC 480
 Qy 421 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360
 Db 421 CCCACCTGGACACACTGGAAATGGCCCCCTGGCAGCTGGCAACTCCATAGC 360

Qy	361	ATGGAAAGAACTGGAATGGCCCTGCCCTGCAGCCCACCCAGGGTGCCTGCCATGCCGGCCCTTC 420
Db	361	ATGGAAAGAACTGGAATGGCCCTGCCCTGCAGCCCACCCAGGGTGCCTGCCATGCCGGCCCTTC 420
Qy	421	GCCTCTGCTTTCAAGCGCCGGCAGGAAGGGTCCATTAGTTGCCTCCATCTGCAGAGCTTC 480
Db	421	GCCTCTGCTTTCAAGCGCCGGCAGGAAGGGTCCATTAGTTGCCTCCATCTGCAGAGCTTC 480
Qy	481	CTGGAGGTGTCGTACCGGTACGCCACCTTGCCAGCCCT 523
Db	481	CTGGAGGTGTCGTACCGGTACGCCACCTTGCCAGCCCT 523

Search completed: October 9, 2004, 06:22:17
Job time : 452.349 secs

This Page Blank (uspto)

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 9, 2004, 01:28:34 ; Search time 80.3471 Seconds
(without alignments)
3612.319 Million cell updates/sec

Title: US-10-009-792C-18_COPY_88_610

Perfect score: 523
Sequence: 1 accccccctggccctgcccag.....acgccaccatggcccgccct 523

Scoring table: IDENTITY NUC
GapOp 10.0 , Gapext 1.0

Searched: 682709 seqs, 277475446 residues

Total number of hits satisfying chosen parameters: 1365418

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing First 45 summaries

Database :

Issued Patents NA:*

1: /cgn2_6/ptodata/2/ina/5A_COMB.seq:*

2: /cgn2_6/ptodata/2/ina/5B_COMB.seq:*

3: /cgn2_6/ptodata/2/ina/6A_COMB.seq:*

4: /cgn2_6/ptodata/2/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/2/ina/PCTUS_COMB.seq:*

6: /cgn2_6/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
1	523	100.0	525	1	US-08-434-411-1		Sequence 1, Appli
2	523	100.0	525	1	US-08-434-402-1		Sequence 1, Appli
3	523	100.0	525	1	US-08-783-288-1		Sequence 1, Appli
4	523	100.0	525	2	US-08-890-640-1		Sequence 1, Appli
5	523	100.0	525	6	5194592-25		Patent No. 5194592
6	510.2	97.6	541	2	US-08-797-689-13		Sequence 13, Appli
7	510.2	97.6	541	4	US-09-984-186-13		Sequence 13, Appli
8	510.2	97.6	2382	1	US-08-256-938-1		Sequence 1, Appli
9	509.2	97.4	2455	1	US-08-256-938-3		Sequence 1, Appli
10	509.2	97.4	2455	2	US-08-797-689-15		Sequence 15, Appli
11	509.2	97.4	2455	4	US-09-984-186-15		Sequence 15, Appli
12	507	96.9	525	3	US-08-149-101A-1		Sequence 1, Appli
13	507	96.9	525	5	PCT-US94-12873-1		Sequence 1, Appli
14	503.8	96.3	546	3	US-08-469-318-177		Sequence 177, App
15	503.8	96.3	546	3	US-08-468-609A-177		Sequence 177, App
16	503.8	96.3	546	4	US-08-446-872A-177		Sequence 177, App
17	503.8	96.3	546	4	US-08-762-227A-177		Sequence 177, App
18	503.8	96.3	546	5	PCT-US95-01185-177		Sequence 177, App
19	503.8	96.3	921	3	US-08-469-318-72		Sequence 72, Appli
20	503.8	96.3	921	3	US-08-469-318-75		Sequence 75, Appli
21	503.8	96.3	921	3	US-08-469-318-78		Sequence 78, Appli
22	503.8	96.3	921	3	US-08-468-609A-72		Sequence 72, Appli
23	503.8	96.3	921	3	US-08-468-609A-75		Sequence 75, Appli
24	503.8	96.3	921	3	US-08-468-609A-78		Sequence 78, Appli
25	503.8	96.3	921	4	US-08-446-872A-72		Sequence 72, Appli
26	503.8	96.3	921	4	US-08-446-872A-75		Sequence 75, Appli
27	503.8	96.3	921	4	US-08-446-872A-78		Sequence 78, Appli

ALIGNMENTS

RESULT 1	US-08-434-411-1	Sequence 1, Application US/08434411
		Patent No. 5681720
		GENERAL INFORMATION:
		APPLICANT: KUGA, TETSURO
		APPLICANT: MIYAJI, HIROMASA
		APPLICANT: SATO, MORIYUKI
		APPLICANT: OKABE, MASAMI
		APPLICANT: MORIMOTO, MAKOTO
		APPLICANT: ITOH, SEIGA
		APPLICANT: YAMASAKI, MOTOZO
		APPLICANT: YOKOO, YOSHIHARU
		APPLICANT: YAMAGUCHI, KAZUO
		APPLICANT: YOSHIDA, HAJIME
		APPLICANT: YOSHINORI, KOMATSU
		TITLE OF INVENTION: NOVEL POLYPEPTIDES
		NUMBER OF SEQUENCES: 61
		CORRESPONDENCE ADDRESS:
		ADDRESSEE: NIXON & VANDERHYE P.C.
		STREET: 1100 NORTH GLEBE ROAD
		CITY: ARLINGTON
		STATE: VIRGINIA
		COUNTRY: U.S.A.
		ZIP: 22201-4714
		COMPUTER READABLE FORM:
		FLOPPY disk
		COMPUTER: IBM PC compatible
		OPERATING SYSTEM: PC-DOS/MS-DOS
		SOFTWARE: Patent In Release #1.0, Version #1.30
		CURRENT APPLICATION DATA:
		APPLICATION NUMBER: US/08/434,411
		FILING DATE: 03-MAY-1995
		CLASSIFICATION: 435
		PRIOR APPLICATION DATA:
		APPLICATION NUMBER: JP 306799/86
		FILING DATE: 23-DEC-1986
		PRIOR APPLICATION DATA:
		APPLICATION NUMBER: 04-MAR-1988
		FILING DATE: 31-MAR-1988
		ATTORNEY/AGENT INFORMATION:
		NAME: CRAWFORD, ARTHUR
		REGISTRATION NUMBER: 25327
		REFERENCE/DOCKET NUMBER: 249-73
		TELECOMMUNICATION INFORMATION:
		TELEPHONE: (703) 816-4000
		TELEFAX: (703) 816-4100

TELEX: 200797 NIXN UR
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 525 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 1..522 /product= "HUMAN GRANULOCYTE COLONY
 OTHER INFORMATION: STIMULATING FACTOR"
 US-08-434-411-1

Query Match 100.0%; Score 523; DB 1; Length 525;
 Best Local Similarity 100.0%; Pred. No. 5.5e-115;
 Matches 523; Conservatives 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCCAGAGGTTCCCTGCTCAAGTGCCTTAGAGCAA 60
 Db 1 ACCCCCCCTGGCCCTGCCAGCTCCCCAGAGGTTCCCTGCTCAAGTGCCTTAGAGCAA 60

Qy 61 GTGAGGAAGATCCAGGGCGATGGCGCAGGGCTCCAGGAGAAAGCTGTGCCCCACCTAACAG 120
 Db 61 GTGAGGAAGATCCAGGGCGATGGCGCAGGGCTCCAGGAGAAAGCTGTGCCCCACCTAACAG 120

Qy 121 CTGTGCCACCCCCAGGGAGCTGGTGTGGACACTCTCTGGCATCCCCGGGGCTTC 180
 Db 121 CTGTGCCACCCCCAGGGAGCTGGTGTGGACACTCTCTGGCATCCCCGGGGCTTC 180

Qy 181 CTGAGCAGCTGCCAGCCAGGGCCCTGCAGCTGGCAGGTGGCTGCTTGAGCCAACTCCATAGC 240
 Db 181 CTGAGCAGCTGCCAGCCAGGGCCCTGCAGCTGGCAGGTGGCTGCTTGAGCCAACTCCATAGC 240

Qy 241 GGCTTTCCCTCTACCAAGGGCTCCTGAGGCCAGGTGGCTGCTTGAGCCAACTCCATAGC 240
 Db 241 GGCTTTCCCTCTACCAAGGGCTCCTGAGGCCAGGTGGCTGCTTGAGCCAACTCCATAGC 240

Qy 301 CCCACCTTGGACACACTGCAGCTGGACCTGGCCAGGGACTTGGCACCCACCATCTGGCAGCAG 360
 Db 301 CCCACCTTGGACACACTGCAGCTGGACCTGGCACCCACCATCTGGCAGCAG 360

Qy 361 ATGAAAGAACTGGGAATGGCCCCCTGCCCTGCCAGGGTCCATGCCGGCCTC 420
 Db 361 ATGAAAGAACTGGGAATGGCCCCCTGCCCTGCCAGGGTCCATGCCGGCCTC 420

Qy 421 GCCTCTGCTTCCAGGCCAGGGCAGCCACCCAGGGTCCCTAGTTGCGAGAGCTC 480
 Db 421 GCCTCTGCTTCCAGGCCAGGGCAGCCACCCAGGGTCCCTAGTTGCGAGAGCTC 480

Qy 481 CTGGAGGTGTGTAACGGGTTCTACGGCACCTGGCCAGGCCCT 523
 Db 481 CTGGAGGTGTGTAACGGGTTCTACGGCACCTGGCCAGGCCCT 523

RESULT 2
 US-08-434-402-1
 ; Patent No. 5714581, Application US/08434402
 ; GENERAL INFORMATION:
 ; APPLICANT: KUGA, TETSURO
 ; APPLICANT: MIYAJI, HIROMASA
 ; APPLICANT: SATO, MORIYUKI
 ; APPLICANT: OKABE, MASAMI
 ; APPLICANT: MORIMOTO, MAKOTO
 ; APPLICANT: ITOH, SEIGA
 ; APPLICANT: YAMASAKI, MOTO
 ; APPLICANT: YOKOO, YOSHIHARU
 ; APPLICANT: YAMAGUCHI, KAZUO
 ; APPLICANT: YOSHIDA, HAJIME
 ; APPLICANT: YOSHINORI, KOMATSU
 ; TITLE OF INVENTION: NOVEL POLYPEPTIDES

; NUMBER OF SEQUENCES: 61
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: NIXON & VANDERHYE P.C.
 ; STREET: 1100 NORTH GLEBE ROAD
 ; CITY: ARLINGTON
 ; STATE: VIRGINIA
 ; COUNTRY: U.S.A.
 ; ZIP: 22201-4714
 ; COMPUTER READABLE FORM:
 ; MEDIUM TYPE: Floppy disk
 ; COMPUTER: IBM PC compatible
 ; OPERATING SYSTEM: PC-DOS/MS-DOS
 ; SOFTWARE: PatentIn Release #1.0, Version #1.30
 ; CURRENT APPLICATION DATA:
 ; APPLICATION NUMBER: US/08/434,402
 ; FILING DATE: 03-MAY-1995
 ; CLASSIFICATION: 530
 ; PRIOR APPLICATION DATA:
 ; APPLICATION NUMBER: JP 306799/86
 ; FILING DATE: 23-DEC-1986
 ; PRIOR APPLICATION DATA:
 ; APPLICATION NUMBER: JP 51357/88
 ; FILING DATE: 04-MAR-1988
 ; PRIOR APPLICATION DATA:
 ; APPLICATION NUMBER: JP 80088/88
 ; FILING DATE: 31-MAR-1988
 ; ATTORNEY/AGENT INFORMATION:
 ; NAME: CRAWFORD, ARTHUR
 ; REGISTRATION NUMBER: 25327
 ; REFERENCE/DOCKET NUMBER: 249-72
 ; TELECOMMUNICATION INFORMATION:
 ; TELEPHONE: (703) 816-4000
 ; TELEFAX: (703) 816-4100
 ; TELEX: 200797 NIXN UR
 ; INFORMATION FOR SEQ ID NO: 1:
 ; SEQUENCE CHARACTERISTICS:
 ; LENGTH: 525 base pairs
 ; TYPE: nucleic acid
 ; STRANDEDNESS: double
 ; TOPOLOGY: linear
 ; MOLECULE TYPE: DNA (genomic)
 ; FEATURE:
 ; NAME/KEY: CDS
 ; LOCATION: 1..522
 ; OTHER INFORMATION: /product= "HUMAN GRANULOCYTE COLONY
 ; STIMULATING FACTOR"
 ; OTHER INFORMATION:
 ; US-08-434-402-1
 Query Match 100.0%; Score 523; DB 1; Length 525;
 Best Local Similarity 100.0%; Pred. No. 5.5e-115;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCCAGAGGTTCCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60
 Db 1 ACCCCCCCTGGCCCTGCCAGCTCCCCAGAGGTTCCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60

Qy 121 CTGAGCAGCTGCCAGCCAGGGCCCTGCAGCTGGCAGGTGGCTGCTTGAGCCAACTCCATAGC 240
 Db 121 CTGAGCAGCTGCCAGCCAGGGCCCTGCAGCTGGCAGGTGGCTGCTTGAGCCAACTCCATAGC 240

Qy 181 CTGAGCAGCTGCCAGCCAGGGCCCTGCAGCTGGCAGGTGGCTGCTTGAGCCAACTCCATAGC 240
 Db 181 CTGAGCAGCTGCCAGCCAGGGCCCTGCAGCTGGCAGGTGGCTGCTTGAGCCAACTCCATAGC 240

Qy 241 GGCTTTCCCTCTACCAAGGGCTCCTGAGGCCAGGTGGCTGCTTGAGCCAACTCCATAGC 240
 Db 241 GGCTTTCCCTCTACCAAGGGCTCCTGAGGCCAGGTGGCTGCTTGAGCCAACTCCATAGC 240

Qy 301 CCCACCTTGGACACACTGCAGCTGGACCTGGCCAGGGACTTGGCACCCACCATCTGGCAGCAG 360
 Db 301 CCCACCTTGGACACACTGCAGCTGGACCTGGCACCCACCATCTGGCAGCAG 360

Qy 361 ATGAAAGAACTGGGAATGGCCCCCTGCCCTGCCAGGGTCCATGCCGGCCTC 420
 Db 361 ATGAAAGAACTGGGAATGGCCCCCTGCCCTGCCAGGGTCCATGCCGGCCTC 420

Qy 421 GCCTCTGCTTCCAGGCCAGGGCAGCCACCCAGGGTCCCTAGTTGCGAGAGCTC 480
 Db 421 GCCTCTGCTTCCAGGCCAGGGCAGCCACCCAGGGTCCCTAGTTGCGAGAGCTC 480

Qy 481 CTGGAGGTGTGTAACGGGTTCTACGGCACCTGGCCAGGCCCT 523
 Db 481 CTGGAGGTGTGTAACGGGTTCTACGGCACCTGGCCAGGCCCT 523

Qy 61 GTGAGGAAGATCCAGGGCATGGCGATGGCGAGGTGGCTGGCTCAAGTGCCTTAGAGCAA 60
 Db 61 GTGAGGAAGATCCAGGGCATGGCGAGGTGGCTGGCTCAAGTGCCTTAGAGCAA 60

Qy 121 CTGTGCCACCCCCAGGGCTCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60
 Db 121 CTGTGCCACCCCCAGGGCTCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60

Qy 181 CTGAGCAGCTGCCAGCCAGGGCTCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60
 Db 181 CTGAGCAGCTGCCAGCCAGGGCTCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60

Qy 241 GGCCTTTCTTACAGGGCTCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60
 Db 241 GGCCTTTCTTACAGGGCTCCTGCCAGGTGGCTCAAGTGCCTTAGAGCAA 60

Qy 301 CCCACCTTGGACACACTGCAGCTGGACCTGGCACCCACCATCTGGCAGCAG 360
 Db 301 CCCACCTTGGACACACTGCAGCTGGACCTGGCACCCACCATCTGGCAGCAG 360

; STRANDEDNESS: double
 ; TOPOLOGY: linear
 ; MOLECULE TYPE: DNA (genomic)
 ; FEATURE:
 ; NAME/KEY: CDS
 ; LOCATION: 1..522
 ; OTHER INFORMATION:
 ; OTHER INFORMATION: /product= "HUMAN GRANULOCYTE COLONY
 ; STIMULATING FACTOR"
 ; US-08-783-288-1
 ;
 ; Query Match Score 523; DB 1; Length 525;
 ; Best Local Similarity 100.0%; Pred. No. 5.5e-115;
 ; Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0
 ;
 Qy 1 ACCCCCCCTGCCAGCTCCCTGCCATGGGTTAGAGCTTCAAGTGCTTAGAGCAA 60
 Db 1 ACCCCCCCTGGCCCTGCCACCATCTGGCAG 360
 ;
 ; RESULT 3
 ; US-08-783-288-1
 ; Sequence 1, Application US/08783288
 ; Patent No. 5795968
 ; GENERAL INFORMATION:
 ; APPLICANT: KUGA, TETSURO
 ; APPLICANT: MIYAJI, HIROMASA
 ; APPLICANT: SATO, MORIYUKI
 ; APPLICANT: OKABE, MASAMI
 ; APPLICANT: MORIMOTO, MAKOTO
 ; APPLICANT: ITOH, SEIGA
 ; APPLICANT: YAMASAKI, MOTOOC
 ; APPLICANT: YOKOO, YOSHIHARU
 ; APPLICANT: YAMAGUCHI, KAZUO
 ; APPLICANT: YOSHIDA, HAJIME
 ; APPLICANT: YOSHINORI, KOMATSU
 ; TITLE OF INVENTION: NOVEL POLYPEPTIDES
 ; NUMBER OF SEQUENCES: 61
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: NIXON & VANDERHYE P.C.
 ; STREET: 1100 NORTH GLEBE ROAD
 ; CITY: ARLINGTON
 ; STATE: VIRGINIA
 ; COUNTRY: U.S.A.
 ; ZIP: 22201-4714
 ; COMPUTER READABLE FORM:
 ; MEDIUM TYPE: Floppy disk
 ; COMPUTER: IBM PC compatible
 ; OPERATING SYSTEM: PC-DOS/MS-DOS
 ; SOFTWARE: Patent in Release #11.0, Version #1.30
 ; CURRENT APPLICATION DATA:
 ; APPLICATION NUMBER: US/08/783,288
 ; FILING DATE: 10-JAN-1997
 ; CLASSIFICATION: 536
 ; PRIOR APPLICATION DATA:
 ; APPLICATION NUMBER: US 08/434,411
 ; FILING DATE: 03-MAY-1995
 ; APPLICATION NUMBER: JP 306799/86
 ; FILING DATE: 23-DEC-1986
 ; PRIOR APPLICATION DATA:
 ; APPLICATION NUMBER: JP 51357/88
 ; FILING DATE: 04-MAR-1988
 ; PRIOR APPLICATION DATA:
 ; APPLICATION NUMBER: JP 80088/88
 ; FILING DATE: 31-MAR-1988
 ; ATTORNEY/AGENT INFORMATION:
 ; NAME: CRAWFORD, ARTHUR
 ; REGISTRATION NUMBER: 25327
 ; REFERENCE/DOCKET NUMBER: 249-73
 ; TELECOMMUNICATION INFORMATION:
 ; TELEPHONE: (703) 816-4000
 ; TELEFAX: (703) 816-4100
 ; TELEX: 200797 NIXN UR
 ; INFORMATION FOR SEQ ID NO: 1:
 ; SEQUENCE CHARACTERISTICS:
 ; LENGTH: 525 base pairs
 ; TYPE: nucleic acid
 ;
 ; TITLE OF INVENTION: NOVEL POLYPEPTIDES
 ; NUMBER OF SEQUENCES: 61
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: NIXON & VANDERHYE P.C.
 ; STREET: 1100 NORTH GLEBE ROAD
 ; CITY: ARLINGTON

STATE: VIRGINIA
COUNTRY: U.S.A.
ZIP: 22201-4714
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: Patentin Release #1.0, Version #1.30
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/890,640
FILING DATE:
CLASSIFICATION: 435
PRIOR APPLICATION DATA:
APPLICATION NUMBER: US 08/434,411
FILING DATE: 03-MAY-1995
APPLICATION NUMBER: JP 306799/86
FILING DATE: 23-DEC-1986
PRIOR APPLICATION DATA:
APPLICATION NUMBER: JP 51357/88
FILING DATE: 04-MAR-1988
PRIOR APPLICATION DATA:
APPLICATION NUMBER: JP 80088/88
FILING DATE: 31-MAR-1988
ATTORNEY/AGENT INFORMATION:
NAME: CRAWFORD, ARTHUR
REGISTRATION NUMBER: 25327
REFERENCE/DOCKET NUMBER: 249-73
TELECOMMUNICATION INFORMATION:
TELEPHONE: (703) 816-4000

Qy	361	ATGGAAGAACTGGGAATGGCCCTGCCCTGCAGCCCACGGTGCCTGCAGCCCCACTGGCATGGCCTTC	420
Db	361	ATGGAAGAACTGGGAATGGCCCTGCCCTGCAGCCCACGGTGCCTGCAGCCCCACTGGCATGGCCTTC	420
Qy	421	GCCTCTGCTTCCAGGCCGGCGAGGAGGGCTTAGTGCCTCCCATCTGCAGAGCTTC	480
Db	421	GCCTCTGCTTCCAGGCCGGCGAGGAGGGCTTAGTGCCTCCCATCTGCAGAGCTTC	480
Qy	481	CTGGAGGTGTCGTACCGCGTTCTACGCCACCTGCCAGCCCT	523
Db	481	CTGGAGGTGTCGTACCGCGTTCTACGCCACCTGCCAGCCCT	523

RESULT 5
5194592-25
; Patent No. 5194592
; APPLICANT: YOSHIDA, HAJIME
; TITLE OF INVENTION: MONOCLONAL ANTIBODIES TO NOVEL
; POLYPEPTIDES DERIVTIVES OF HUMAN GRANULOCYTE COLONY
; STIMULATING FACTOR
; NUMBER OF SEQUENCES: 83
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/07/318,527
; FILING DATE: 3-MAR-1989
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: 136,647
; FILING DATE: 22-DEC-1987
; SEQ ID NO:25:
; LENGTH: 525

Query Match	Score	DB	Length
Best Local Matches	100.0%	23	525;
Local Similarity	100.0%	2	525;
Mismatches	0;	5.5e-115;	
Conservative	0;	Indels	0;
		Gaps	0;
1 ACCCCCCCTGCCAGCTCCAGGCTTCCCTGCCAGGCTCAAGTGCTTAGAGCAA	60	Qy	
1 ACCCCCCCTGCCAGCTCCCTGCCAGGCTTCAGGCTCAAGTGCTTAGAGCAA	60	Db	
61 GTGAGGAAGATCCAGGGCGATGGCCAGGGAGCTGTGTGCCACCTACAAG	120	Qy	
61 GTGAGGAAGATCCAGGGCGATGGCCAGGGAGCTGTGTGCCACCTACAAG	120	Db	
121 CTGTGCCACCCGAGGAGCTGGCTCGGACACTCTGGCATCCTGGCTCCC	180	Qy	
121 CTGTGCCACCCGAGGAGCTGGCTGGCATGGGACTCTGGCTCCC	180	Db	
181 CTGAGCAGCTGCCACGGCCCTGGCAGGTGGCAGGCTGCTTAGCCAACTCCATAGC	240	Qy	
181 CTGAGCAGCTGCCACGGCCCTGGCAGGTGGCAGGCTTCTAGCCAACTCCATAGC	240	Db	
241 GGCCCTTTCTACCGGGCTCCCTGCAGGCCCTGGAAAGGGATCTCCCGAGTTGGGT	300	Qy	
241 GGCCCTTTCTACCGGGCTCCCTGCAGGCCCTGGAAAGGGATCTCCCGAGTTGGGT	300	Db	
301 CCCACCTTGGACACACTGGCAGCTGGCAGCTGGCAGGCTTCTACGCCACCTTGCCGACT	360	Qy	
301 CCCACCTTGGACACACTGGCAGCTGGCAGGCTTCTACGCCACCTTGCCGACT	360	Db	

US-08-797-689-13
; Sequence 13, Application US/08797689
; Patent No. 5876969

GENERAL INFORMATION:
; APPLICANT: Fleer, Reinhard
; APPLICANT: Fournier, Alain
; APPLICANT: Guittot, Jean-Dominique
; APPLICANT: Jung, Gerard
; APPLICANT: Yeh, Patrice

TITLE OF INVENTION: NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITION

TITLE OF INVENTION: NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITION

NUMBER OF SEQUENCES: 36

CORRESPONDENCE ADDRESS:
; ADDRESSEE: Rhone-Poulenc Rorer Inc.
; STREET: 500 Arcola Road, 3C43
; CITY: Collegeville
; STATE: PA
; COUNTRY: USA
; ZIP: 19426

COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: Macintosh
; OPERATING SYSTEM: System 7.1
; SOFTWARE: Word 5.1 (Patentin)

CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/797,689
; FILING DATE: 31-JAN-1997

PRIOR APPLICATION DATA:
; APPLICATION NUMBER: PCT/FR93/000085
; FILING DATE: 28-JAN-1993
; ATTORNEY/AGENT INFORMATION:
; NAME: Smith Ph.D., Julie K.
; REGISTRATION NUMBER: P-38,619
; REFERENCE/DOCKET NUMBER: ST92006-US
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: (610) 454-3839
; TELEFAX: (610) 454-3808
; INFORMATION FOR SEQ ID NO: 13:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 541 base pairs
; TYPE: nucleic acid
; STRANDEDNESS: double
; TOPOLOGY: linear
; MOLECULE TYPE: cDNA
; FEATURE:
; NAME/KEY: CDS
; LOCATION: 3..536
; US-08-797-689-13

Query Match 97.6%; Score 510.2; DB 2; Length 541;
Best Local Similarity 98.5%; Pred. No. 5.9e-112;
Matches 515; Conservative 0; Mismatches 8; Indels 0; Gaps 0;

QY 61 GTGAGCAAGATCAGGGCGATGGGCCAGGAGCTCCCTGCCCCAGAGCTTCTGTCAAAGTGCTTAGACAA 60
Db 72 GTGAGGAAGATCAGGGCGATGGGCCAGGAGCTCCCTGCCCCAGAGCTTCTGTCAAAGTGCTTAGACAA 71

QY 121 CTGTGCCACCCGAGGAGCTGGACTCTCTGGCATCCCTGGCAAGCTGGCTCC 120
Db 132 CTGTGCCACCCGAGGAGCTGGACTCTCTGGCATCCCTGGCTCC 191

QY 181 CTGACCAAGCTGCCAGGCCAGGGCTGCTGGCAACTCCATAGC 240

Db 192 CTGAGCTCTGCCAGCCAGGCCAGGGCTGCTGGCAAGCTGGCTGCTGAGCCAACTCCATAGC 251

Db 241 GGCTTTTCTACAGGGCTCCCTGCAGGCCAGGGATCTCCCGAGTTGGGT 300
QY 252 GGCTTTTCTACAGGGCTCCCTGCAGGCCAGGGATACTGGCTGGGT 311

QY 301 CCCACCTGGACACACTGCAGCTGGACGCTGGCACACCATTGGCAG 360
Db 312 CCCACCTGGACACACTGCAGCTGGACGCTGGCACACCATTGGCAG 371

QY 361 ATGAAAGAAGTGGATGGCCCTGAGCCCACCCAGGGTGCATGCCCTTC 420
Db 372 ATGAAAGAAGTGGATGGCCCTGAGCCCACCCAGGGTGCATGCCCTTC 431

QY 421 GCCTCTGCCTTCCAGGCCAGGGTCTAGTTGCCTCCATCTGAGAGCTTC 480
Db 432 GCCTCTGCCTTCCAGGCCAGGGTCTGGCTAGCCATCTGAGAGCTTC 491

QY 481 CTGGAGGTGTCTACGCCACCTTGCCACCTTGCCACTCTGAGAGCTTC 523
Db 492 CTGGAGGTGTCTACGCCACCTTGCCACTCTGAGAGCTTC 534

RESULT 7 US-09-984-186-13
; Sequence 13 Application US/0984186
; Patent No. 6686179

GENERAL INFORMATION:
; APPLICANT: Fleer, Reinhard
; Fournier, Alain
; Guittot, Jean-Dominique
; Jung, Gerard
; Yeh, Patrice

TITLE OF INVENTION: NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITION

NUMBER OF SEQUENCES: 36
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Rhone-Poulenc Rorer Inc.
; STREET: 500 Arcola Road, 3C43
; CITY: Collegeville
; STATE: PA
; COUNTRY: USA
; ZIP: 19426

COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: Macintosh
; OPERATING SYSTEM: System 7.1
; SOFTWARE: Word 5.1 (Patentin)
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/09/984,186
; FILING DATE: 29-Oct-2001
; CLASSIFICATION: <Unknown>
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: US/08/797,689
; FILING DATE: 31-JAN-1997
; APPLICATION NUMBER: US 08/256,927
; FILING DATE: 28-JUL-1994
; APPLICATION NUMBER: FR 92/01064
; FILING DATE: 31-JAN-1992

PRIOR APPLICATION DATA:
; APPLICATION NUMBER: PCT/FR93/000085
; FILING DATE: 28-JAN-1993
; ATTORNEY/AGENT INFORMATION:
; NAME: Smith Ph.D., Julie K.
; REGISTRATION NUMBER: P-38,619
; REFERENCE/DOCKET NUMBER: ST92006-US
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: (610) 454-3839
; TELEFAX: (610) 454-3808
; INFORMATION FOR SEQ ID NO: 13:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 541 base pairs
; TYPE: nucleic acid
; STRANDEDNESS: double
; TOPOLOGY: linear
; MOLECULE TYPE: cDNA
; FEATURE:
; NAME/KEY: CDS
; LOCATION: 3..536
; US-08-797-689-13

ATTORNEY/AGENT INFORMATION:
; NAME: Smith Ph.D., Julie K.
; REGISTRATION NUMBER: P-38,619
; TELEPHONE: (610) 454-3839
; TELEFAX: (610) 454-3808
; INFORMATION FOR SEQ ID NO: 13:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 541 base pairs

TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 3..536
 SEQUENCE DESCRIPTION: SEQ ID NO: 13:

US-09-984-186-13

Query Match 97.6%; Score 510.2; DB 4; Length 541;
 Best Local Similarity 98.5%; Pred. No. 5.9e-112;
 Matches 515; Conservative 0; Mismatches 8; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAACTGCCTTAGAGCAA 60
 Db 12 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAACTGCCTTAGAGCAA 71

Qy 61 GTGAGGAAGATCCAGGGCATGGCGCAGGGCTCCAGGAGAAAGCTGTGTCACCTACAAG 120
 Db 72 GTGAGGAAGATCCAGGGCATGGCGCAGGGCTCCAGGAGAAAGCTGTGTCACCTACAAG 131

Qy 121 CTGTGCCACCCCCGAGGAGCTGGTGTGCTGGACACTCTCTGGCATCCCCGGCTCCC 180
 Db 132 CTGTGCCACCCCCGAGGAGCTGGTGTGCTGGACACTCTCTGGCATCCCCGGCTCCC 191

Qy 181 CTGAGCACCTGCCAGGCCCTGCCAGCTGGCAGGTGCTTGACCCAACCTCCATAGC 240
 Db 192 CTGAGCTCCAGCCAGGGCTTGAGCTGGCAGGTGCTGTGCTTGACCCAACCTCCATAGC 251

Qy 241 GGCTTTTCTTACAGGGGCTCTGGAGGGATCTCTGGCATCCCCGGAGTTGGGT 300
 Db 252 GGCTTTTCTTACAGGGGCTCTGGAGGGATCTCTGGCATCCCCGGAGTTGGGT 311

Qy 301 CCCACCTTGACACACTGCACTGGACCTGGCAGCTGGCAGCTGGCAGCGAG 360
 Db 312 CCCACCTTGACACACTGCACTGGACCTGGCAGCTGGCAGCTGGCAGCGAG 371

Qy 361 ATGAAAGAACTGGGAATGGCCCCCTGGACGTGGCAGCTGGCACCACATTGGCAGCTTC 420
 Db 372 ATGAAAGAACTGGGAATGGCCCCCTGGACGTGGCAGCTGGCACCACATTGGCAGCTTC 431

Qy 421 GCCTCTGCTTCCAGGCCGGCAGGGGTCTAGTTCGCTCCATCTGCAGAGCTTC 480
 Db 432 GCCTCTGCTTCCAGGCCGGCAGGGGTCTGGTGTGCTGCACTCTGCAGAGCTTC 491

Qy 481 CTGGAGCTGCTGCACTGGCTTACGCCACCTTGGCCAGGGCT 523
 Db 492 CTGGAGCTGCTGCACTGGCTTACGCCACCTTGGCCAGGGCT 534

RESULT⁸
 US-08-256-938-1
 ; Sequence 1, Application US/08256938
 ; Patent No. 565863
 ; GENERAL INFORMATION:
 ; APPLICANT: Yeh, Patrice
 ; TITLE OF INVENTION: NEW POLYPEPTIDES HAVING GRANULOCYTE
 ; COLONY STIMULATING ACTIVITY, PREPARATION THEREOF AND
 ; PHARMACEUTICAL COMPOSITIONS CONTAINING SAID POLYPEPTIDES
 ; NUMBER OF SEQUENCES: 12
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: Rhone-Poulenc Rorer Inc.
 ; STREET: 500 Arcola Road, 3C43
 ; CITY: Collegeville
 ; STATE: PA
 ; ZIP: 19426
 ; COUNTRY: USA
 ; COMPUTER READABLE FORM:
 ; MEDIUM TYPE: Floppy disk
 ; COMPUTER: Macintosh
 ; OPERATING SYSTEM: System 7.1
 ; SOFTWARE: Word 5.0 (PatentIn)

; LOCATION: 620.631
 ; OTHER INFORMATION: /label= polyGly-linker
 ; US-08-256-938-3

S 9
 -08-256-938-3
 Sequence 3, Application US/08256938
 Patent No. 5665863

GENERAL INFORMATION:
 APPLICANT: Yeh, Patrice
 TITLE OF INVENTION: NEW POLYPEPTIDES HAVING GRANULOCYTE COLONY STIMULATING ACTIVITY, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAID POLYPEPTIDES
 TITLE OF INVENTION: PHARMACEUTICAL COMPOSITIONS CONTAINING SAID POLYPEPTIDES
 NUMBER OF SEQUENCES: 12
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Rhone-Poulenc Rorer Inc.
 STREET: 500 Arcola Road, 3C43
 CITY: Collegeville
 STATE: PA
 COUNTRY: USA
 ZIP: 19426
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: Macintosh
 OPERATING SYSTEM: System 7.1
 SOFTWARE: Word 5.0 (PatentIn)
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/256,938
 FILING DATE:
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: FR 92/01065
 FILING DATE: 31-JAN-1992
 ATTORNEY/AGENT INFORMATION:
 NAME: Goodman, Rosanne
 REGISTRATION NUMBER: 32,534
 REFERENCE/DOCKET NUMBER: ST92007-US
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (610) 454-3817
 TELEFAX: (610) 454-3808
 INFORMATION FOR SEQ ID NO: 3:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 2455 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 26..2389
 FEATURE:
 NAME/KEY: misc_feature
 LOCATION: 106..111
 OTHER INFORMATION: /label= ApaI-site
 FEATURE:
 NAME/KEY: misc_feature
 LOCATION: 280..285
 OTHER INFORMATION: /label= SstI-site
 FEATURE:
 NAME/KEY: misc_feature
 LOCATION: 2376..2382
 OTHER INFORMATION: /label= MstII-site
 FEATURE:
 NAME/KEY: sig_peptide
 LOCATION: 26..97
 FEATURE:
 NAME/KEY: misc_feature
 LOCATION: 0..1.4e-111
 OTHER INFORMATION: 0; Mismatches 8; Indels 0; Gaps 0

Query Match 97.4%; Score 509.2; DB 1; Length 2455;
 Best Local Similarity 98.5%; Pred. No. 1.4e-111;
 Matches 514; Conservative 0; Mismatches 8; Indels 0; Gaps 0;

1 ACCCCCCCTGGCCAGCTCCCTGCCACCTTGCCAGCC 523
 98 ACCCCCCCTGGCCAGCTCCCTGCCACCTTGCCAGCC 2375

1 ACCCCCCCTGGCCAGCTCCCTGCCACCTTGCCAGCC 60
 98 ACCCCCCCTGGCCAGCTCCCTGCCACCTTGCCAGCC 157

QY 61 GTGAGGAAGATCCAGGGCGATGGCGAGGCTTCTGCTCAAGTAGGCAA 120
 Db 158 GTGAGGAAGATCCAGGGCGATGGCGAGGCTTCTGCTCAAGTAGGCAA 217

QY 121 CTGTGCCACCCCAGGAGCTGGTGGCAGACTCTGGCATCCC 180
 Db 218 CTGTGCCACCCCAGGAGCTGGTGGCAGACTCTGGCATCCC 277

QY 181 CTGAGCTGCCAGGGAGCTGGTGGCAGACTCTGGCATCCC 240
 Db 278 CTGAGCTGCCAGGGAGCTGGTGGCAGACTCTGGCATCCC 337

QY 241 GGCCCTTTCTTCTACCGGGCTCCTGCAGCTGCCAGGTCTGGGATCTCCC 300
 Db 338 GGCCCTTTCTTCTACCGGGCTCCTGCAGCTGCCAGGTCTGGGATCTGGGATCTGGG 397

QY 301 CCCACCTGGACACACTGCAGCTGGCAGCTTGCACCATCTGGCAGCAG 360
 Db 398 CCCACCTGGACACACTGCAGCTGGCAGCTTGCACCATCTGGCAGCAG 457

QY 361 ATGGAAGAACTGGGAATGGCCATGCCAGGGTGCATGCCGGCCTTC 420
 Db 458 ATGGAAGAACTGGGAATGGCCATGCCAGGGTGCATGCCGGCCTTC 517

QY 421 GCCTCTGCTTTCCAGGCCGGCAGGAGGGTCTAGTTGCCTCCATCTGCAGAGCTTC 480
 Db 518 GCCTCTGCTTTCCAGGCCGGCAGGAGGGTCTAGGCATCTGCAGAGCTTC 577

QY 481 CTGGAGGTGTCGTACCGCGCACCTTGCCAGGCC 522
 Db 578 CTGGAGGTGTCGTACCGCGCACCTTGCCAGGCC 619

RESULT 10
 US-08-797-689-15
 Sequence 15, Application US/08797689
 Patent No. 5876969

GENERAL INFORMATION:
 APPLICANT: Fleer, Reinhard
 APPLICANT: Fournier, Alain
 APPLICANT: Guittot, Jean-Dominique
 APPLICANT: Jung, Gerard
 APPLICANT: Yeh, Patrice
 TITLE OF INVENTION: NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITION
 TITLE OF INVENTION: CONTAINING SAID POLYPEPTIDES
 NUMBER OF SEQUENCES: 36
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Rhone-Poulenc Rorer Inc.
 STREET: 500 Arcola Road, 3C43
 CITY: Collegeville
 STATE: PA
 COUNTRY: USA
 ZIP: 19426
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: Macintosh
 OPERATING SYSTEM: System 7.1
 SOFTWARE: WORD 5.1 (PatentIn)
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/797,689

PATENT NO. 6686179
 GENERAL INFORMATION:
 APPLICANT: Fleer, Reinhard
 Fournier, Alain
 Guittot, Jean-Dominique
 Jung, Gerard
 Yeh, Patrice

TITLE OF INVENTION: NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES,
 PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITION
 CONTAINING SAID POLYPEPTIDES

NUMBER OF SEQUENCES: 36

CORRESPONDENCE ADDRESS:
 ADDRESSEE: Rhone-Poulenc Rorer Inc.
 STREET: 500 Arcola Road, 3C43
 CITY: Collegeville
 STATE: PA
 COUNTRY: USA
 ZIP: 19426

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: Macintosh
 OPERATING SYSTEM: System 7.1
 SOFTWARE: Word 5.1 (PatentIn)

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/984,186
 FILING DATE: 29-Oct-2001
 CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US/08/797,689
 FILING DATE: 31-JAN-1997
 APPLICATION NUMBER: US 08/256,927
 FILING DATE: 28-JUL-1994
 APPLICATION NUMBER: FR 92/01064
 FILING DATE: 31-JAN-1992
 APPLICATION NUMBER: PCT/FR93/00085
 FILING DATE: 28-JAN-1993
 ATTORNEY/AGENT INFORMATION:
 NAME: Smith Ph.D., Julie K.
 REGISTRATION NUMBER: P-38,619
 PRIORITY NUMBER: STR92006-US

TELECOMMUNICATION INFORMATION:
 TELEPHONE: (610) 454-3839
 TELEFAX: (610) 454-3808

INFORMATION FOR SEQ ID NO: 15:

SEQUENCE CHARACTERISTICS:
 LENGTH: 2455 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA

FEATURE:
 NAME/KEY: CDS
 LOCATION: 26..2389

US-08-797-689-15

Query Match 97.4%; Score 509.2; DB 2; Length 2455;
 Best Local Similarity 98.5%; Pred. No. 1.4e-111;
 Matches 514; Conservative 0; Mismatches 8; Indels 0; Gaps 0;

QY 1 ACCCCCCCTGGCCCTGCCAGCCGCTCCAGAGCTTCTGCCTCAAGTGCTTAAGGCAA 60
 D9 98 ACCCCCCCTGGCCCTGCCAGCTCCCTGCGAGCTCCAGAGCTTCTGCCTAGGCAA 157

QY 61 GTGAGGAAGATCCAGGGCATGGCGATGGCGACTCCAGGGAGAAAGCTGTGTGCCACCTAACAG 120
 D9 158 GTGAGGAAGATCCAGGGCATGGCGATGGCGAGCTCCAGGGAGAAAGCTGTGTGCCACCTAACAG 217

QY 121 CTGTGCCACCCCCGAGGGCTGGTGCTGGACACTCTCTGGGCATCCCTGGCTCC 180
 D9 218 CTGTGCCACCCCCGAGGGCTGGTGCTGGACACTCTCTGGGCATCCCTGGCTCC 277

QY 181 CTGAGCAGCTGCCAGCCAGGGCCCTGCAGCTGGCTGCTGGACACTCTCTGGCTCC 240
 D9 278 CTGAGCTCCCTGCCAGCCAGGGCCCTGCAGCTGGCTGCTGGCAAGCTCCATAGC 337

QY 241 GGCCACCTGGACACACTGGCAGCTGGGACTTCGGCAGGGATCTCCCGAGTTGGGT 300
 D9 338 GGCTTTCTCTACAGGGCTCTGCAGGCCCTGGAAAGGGATATCCCCGGAGTTGGGT 397

QY 301 CCCACCTGGACACACTGGCAGCTGGGACTTCGGCAGGGATCTCCCGAGTTGGGT 360
 D9 398 CCCACCTGGACACACTGGCAGCTGGCAGGGATCTCCCGAGTTGGCAGCAG 457

QY 361 ATGGAAGAAACTGGAAATGGCCCTGCCTGCAGGCCACCCAGGTGCCATCGCCCTTC 420
 D9 458 ATGGAAGAAACTGGAAATGGCCCTGCCTGCAGGCCACCCAGGTGCCATCGCCCTTC 517

QY 421 GCCTCTGCTTCCAGGGGGCAGGGGGCTTAGTTGCCATCGCAGAGCTTC 480
 D9 518 GCCTCTGCTTCCAGGGGGCAGGGGGCTCTGGCTAGCCATCTGGCAGGCTTC 577

QY 481 CTGGAGGCTGGCTGTAACGGGTTCTAGGCCACCTTGGCAGGCC 522
 D9 578 CTGGAGGCTGGCTGTAACGGGTTCTAGGCCACCTTGGCAGGCC 619

QY 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGGCCAGGCTTCTGGCTCAAGTGCTTAAGGCAA 60
 D9 98 ACCCCCCCTGGCCCTGCCAGCTCCCTGGCCAGGCTTCTGGCTCAAGTGCTTAAGGCAA 157

QY 61 GTGAGGAAGATCCAGGGCATGGCGAGCTGGCTGCTGGCAACTCTGGCTCCC 120
 D9 158 GTGAGGAAGATCCAGGGCATGGCGAGCTGGCTGCTGGCAACTCTGGCTCCC 217

QY 121 CTGTGCCACCCCCGAGCTGGCTGCTGGCTGCTGGCTGCTGCTGAGCTTC 180
 D9 218 CTGTGCCACCCCCGAGGGCTGGCTGCTGGCTGCTGCTGAGCTTC 277

RESULT 11
 US-09-984-186-15
 ; Sequence 15, Application US/09984186

278	CTGAGGCTCCTGCCAGCCAGGCCCTGAGCTGGCAGGTGGCTTGAGCTTACATAGC	337
241	GGCCCTTTCCCTACAGGGCTCCTGCAGGCCCTGGAAAGGGATCTCCCCGAGTTGGGT	300
338	GGCCCTTTCCCTACAGGGCTCCTGCAGGCCCTGGAAAGGGATATCCCCGAGTTGGGT	397
301	CCCACCTTGGACACACTGCAGCTGGACCGTGGCGACTTGGCACCACATCTGGCAGCACAG	360
398	CCCACCTTGGACACACTGCAGCTGGACCGTGGCAGCTTGGCACCACATCTGGCAGCACAG	457
361	ATGGAAGAACCTGGGAATGGCCCATGGCCCTGCAGGCCACCCAGGGTGCATGCCGGCCTTC	420
458	ATGGAAGAACCTGGGAATGGCCCATGGCCCTGCAGGCCACCCAGGGTGCATGCCGGCCTTC	517
421	GCCTCTGCTTCCAGGCCGGCAGGAGGGTCCCTAGTTGCCTCCCATCTGCAGAGCTTC	480
518	GCCTCTGCTTCCAGGCCGGCAGGGTCCCTGGCTAGCCATCTGCAGAGCTTC	577
481	CTGGAGGGTGTCTGTAACGCCGGTTCTACGCCACCTTGGCCAGGCC	522
578	CTGGAGGGTGTCTGCTACCGCGTTCTACGCCACCTTGGCCAGGCC	619

SUIT 12
-08-149-101A-1
Sequence 1, Application US/08149101A
Patent No. 6171824

GENERAL INFORMATION:

APPLICANT: Todaro, George J.
APPLICANT: Leung, David W.
APPLICANT: Rose, Timothy M.

TITLE OF INVENTION: HYBRID CYTOKINES

NUMBER OF SEQUENCES: 26

CORRESPONDENCE ADDRESS:

ADDRESSEE: Cell Therapeutics, Inc.
STREET: 200 Elliott Avenue West, Suite 400

CITY: Seattle
STATE: Washington
COUNTRY: U.S.A.
ZIP: 98119

COMPUTER READABLE FORM:

MEDIUM TYPE: 3.5" disk, 1.44Mb, double side, high density
COMPUTER: AST-IBM Compatible
OPERATING SYSTEM: MS-DOS Version 6
SOFTWARE: WORD for WINDOWS

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/149,101A
FILING DATE: 8-NO- 6171824-1993
CLASSIFICATION: 530

PRIOR APPLICATION DATA:

APPLICATION NUMBER: US08/097,869
FILING DATE: 27-JUL-1993

ATTORNEY/AGENT INFORMATION:

NAME: Oster, Jeffrey B. and Faciszewski, Stephen
REGISTRATION NUMBER: 32,585 and 36,131, respectively
REFERENCE/DOCKET NUMBER: 0105A

TELECOMMUNICATION INFORMATION:

TELEPHONE: (206) 282-7100
TELEFAX: (206) 284-6206

INFORMATION FOR SEQ ID NO: 1:

SEQUENCE CHARACTERISTICS:

LENGTH: 525
TYPE: nucleic acid
STRANDEDNESS: double stranded
TOPOLOGY: linear
MOLECULE TYPE: cDNA to mRNA
HYPOTHETICAL: no
ANTI-SENSE: no
FRAGMENT TYPE:
ORIGINAL SOURCE:
ORGANISM: homo sapien
STRAIN:

RESULT 14
US-08-469-318-177
; Sequence 177, Application US/08469318
; Patent No. 6022535
; GENERAL INFORMATION:
; APPLICANT:

RESULT 15
US-08-468-609A-177
Sequence 177, Application US/08468609A
Patent No. 6030812
GENERAL INFORMATION:
APPLICANT: Abrams, Mark A.
APPLICANT: Bauer, S. C.
APPLICANT: Braford-Goldberg, Sarah

APPLICANT: Caparon, Maire H.
 APPLICANT: Easton, Alan M.
 APPLICANT: Klein, Barbara K.
 APPLICANT: McKearn, John P.
 APPLICANT: Oins, Peter O.
 APPLICANT: Paik, Kumman
 APPLICANT: Thomas, John W.

NUMBER OF SEQUENCES: 197

CORRESPONDENCE ADDRESS:
 ADDRESSEE: Dennis A. Bennett, G.D. Searle & Co.,
 STREET: P. O. Box 5110
 CITY: Chicago
 STATE: Illinois
 COUNTRY: USA

ZIP: 60680

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/468,609A
 FILING DATE: 06-JUN-1995
 CLASSIFICATION:

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/192,325
 FILING DATE: 14-FEB-1994
 ATTORNEY/AGENT INFORMATION:
 NAME: Bennett, Dennis A.
 REGISTRATION NUMBER: 34,547
 REFERENCE/DOCKET NUMBER: C-2790/3

TELECOMMUNICATION INFORMATION:
 TELEPHONE: (314) 737-6986
 TELEFAX: (314) 737-6972

INFORMATION FOR SEQ ID NO: 177:

SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)

US -08-468-609A-177

Query Match 96.3%; Score 503.8; DB 3; Length 546;
 Best Local Similarity 97.7%; Pred. No. 1.9e-110;
 Matches 51; Conservative 0; Mismatches 12; Indels 0; Gaps 0;

QY	1	ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA	60
Db	7	ACACATTAGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA	66
QY	61	GTGACGAAGATCAGGGCGATGGCGAGCTGGCGAGCGCTCCAGGAAGCTGTTGCCCACCTAACAAAG	120
Db	67	GTGAGGAGATCAGGGCGATGGCGAGCTGGCGAGCGCTCCAGGAAGCTGTTGCCCACCTAACAAAG	126
QY	121	CTGTGCCACCCGAGGAGCTGGCTGCTGGACACTCTCTGGGCATCCCTGGCTCC 180	
Db	127	CTGTGCCACCCGAGGAGCTGGCTGCTGGACACTCTCTGGGCATCCCTGGCTCC 186	
QY	181	CTGACGCTGCCCCAGCCAGGCTCCTGCAGGCCCCCTGAGCTGGCAGGCTGCTGGACACTCCATAGC 240	
Db	187	CTGACGCTGCCCCAGCCAGGCTCCTGCAGGCCCCCTGAGCTGGCAGGCTGCTGGACACTCCATAGC 246	
QY	241	GGCCTTTCTCTACCAAGGGCTCCTGCAGGCCCTGGAAAGGAATCTCCCGAGTTGGT 300	
Db	247	GGCCTTTCTCTACCAAGGGCTCCTGCAGGCCCTGGAAAGGAATCTCCCGAGTTGGT 306	
QY	301	CCACCTGGACACACTGGACGCTGGACGTCGCCAGCTGGACACTCCATAGC 360	
Db	307	CCACCTGGACACACTGGACGCTGGACGTCGCCAGCTGGACACTCCATAGC 366	

This Page Blank (uspto)

Maximum DB seq_length: 2000000000 ALIGNMENTS

Maximum Match 100%

Result No.	Score	Query Match	Length	DB ID	Description
1	523	100.0	525	1 AAN80947	Aan80947 G-CSF gen
2	523	100.0	531	4 AAD19772	Aad19772 Human hG-
3	523	100.0	615	4 AAD19771	Aad19771 Human hG-
4	523	100.0	1520	1 AAN70223	Aan70223 Plasmid p
5	523	100.0	1520	1 AAN71320	Aan71320 Sequence
6	523	100.0	1521	1 AAN60937	Aan60937 Plasmid p
7	523	100.0	1525	1 AAN81478	Aan81478 Sequence
8	523	100.0	1525	1 AAN91086	Aan91086 Plasmid p
9	521.4	99.7	525	7 ACC78869	Acc78869 Human gra
10	521.4	99.7	549	3 ABA94177	Ab94177 Granulocy
11	521.4	99.7	1415	1 AAN71089	Aan71089 Sequence
12	521.4	99.7	1508	7 ABX63825	Abx63825 Human cDN
13	513.4	98.2	644	5 AAI71848	Aai71848 Recombina
14	510.2	97.6	540	2 AAZ21169	Aaz21169 Recombina
15	510.2	97.6	556	1 AAN90533	Aan90533 Synthetic
16	510.2	97.6	777	3 AAA71317	Aaa71317 Mammalian
17	510.2	97.6	780	3 AAA71312	Aaa71312 MF alpha1
18	510.2	97.6	2382	2 AAQ45987	Aaq45987 prepro-HS
19	509.2	97.4	2455	2 AAQ45988	Aaq45988 G-CSF-(G1
20	508.6	97.2	1039	2 AAQ24283	Aaq24283 IL-3:G-CS
21	507.6	97.1	522	4 AAF56684	Aaf56684 Human gra
22	507	96.9	525	2 AAQ87151	Aaq87151 Human gra
	506	96.7	525	6 ARK68973	Abk68973 cDNA enco

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
1	523	100.0	525	1	AAN80947	G-CSF gen
2	523	100.0	531	4	AAD19772	Human hG-
3	523	100.0	615	4	AAD19771	Human hG-
4	523	100.0	1520	1	AAN70223	Plasmid p
5	523	100.0	1520	1	AAN71320	Sequence
6	523	100.0	1521	1	AAN60937	Plasmid p
7	523	100.0	1525	1	AAN81478	Sequence
8	523	100.0	1525	1	AAN91086	Plasmid p
9	521.4	99.7	525	7	ACC78869	Human gra
10	521.4	99.7	549	3	ABA94177	Granulocy
11	521.4	99.7	1415	1	AAN71089	Sequence
12	521.4	99.7	1508	7	ABX63825	Human CDN
13	513.4	98.2	644	5	AAI71848	Recombina
14	510.2	97.6	540	2	AAZ21169	Aai71169
15	510.2	97.6	556	1	AAN90533	Synthetic
16	510.2	97.6	777	3	AAA71317	Mammalian
17	510.2	97.6	780	3	AAA71312	MF alpha1
18	510.2	97.6	2382	2	AAQ45987	Prepro-HS
19	509.2	97.4	2455	2	AAQ45988	G-CSF- (G1
20	508.6	97.2	1039	2	AAQ24283	IL-3 : G-CS
21	507.6	97.1	522	4	AAF56684	Human gra
22	507	96.9	525	2	AAQ87151	Human gra
23	506	96.7	522	6	ARK68973	CDNA enco

Human granulocyte colony stimulating factor polypeptide derivs. - having at least one different aminoacid, giving high specific activity and stability.

Disclosure; Page ?; 68pp; English.

The sequence is carried on plasmid pCSF1-2 isolated from a cDNA library prepared from mRNA extracted from peripheral blood macro-phages. It encodes a protein whose AA sequence agrees with those determined for G-CSF from the human squamous cell line CHU-II and the human bladder cancer cell line 5637. It can be used as a "master gene" for the construction of mutant genes which encode variants of hG-CSF which differ by at least one AA. See also AAN80945 and AAN80946

Sequence 525 BP; 85 A; 192 C; 151 G; 97 T; 0 U; 0 Other;

Query Match Score 523; DB 1; Length 525;
 Best Local Similarity 100.0%; Pred. No. 2.2e-107;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGCTTAGAGCAA 60
 Db 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGCTTAGAGCAA 60

Qy 61 GTGAGGAAGATCCAGGGCGATGGCAGGGCTCCAGGAAAGCTGTGCCCCACCTAACAG 120
 Db 61 GTGAGGAAGATCCAGGGCGATGGCAGGGCTCCAGGAAAGCTGTGCCCCACCTAACAG 120

Qy 121 CTGTGCACACCCGAGGAGCTGGTGTGCTGGACACTCTCTGGCATCCCCGGCTCCC 180
 Db 121 CTGTGCACACCCGAGGAGCTGGTGTGCTGGACACTCTCTGGCATCCCCGGCTCCC 180

Qy 181 CTGAGGAAGCTGCCAGCCAGGGCTGAGCTGGCAGGCAACTCCATAGC 240
 Db 181 CTGAGGAAGCTGCCAGCCAGGGCTGAGCTGGCAGGCAACTCCATAGC 240

Qy 241 GGCCCTTCCTCTACCGGGCTCTGAGGATCTCCCCGAGTTGGGT 300
 Db 241 GGCCCTTCCTCTACCGGGCTCTGAGGATCTCCCCGAGTTGGGT 300

Qy 301 CCCACCTTGGCACACTGCAGCTGGCACCTGGCAGGAG 360
 Db 301 CCCACCTTGGCACACACTGCAGCTGGCACCATGGCAGGAG 360

Qy 361 ATGGAAGAACTTGGGAATGGCCATGGCCGACTTGGCACCACCTGGCAGGCTC 420
 Db 361 ATGGAAGAACTTGGGAATGGCCATGGCCGACTTGGCAGGCTC 420

Qy 421 GCCTCTGCTTCCAGGGCACTGGGCTGGAGCTGGCAGGCTC 480
 Db 421 GCCTCTGCTTCCAGGGCACTGGGCTGGAGCTGGCAGGCTC 480

Qy 481 CTGGAGGTGTGCTACCGCGTCTACGGCACCTTGGCCAGGCCCT 523
 Db 481 CTGGAGGTGTGCTACCGCGTCTACGGCACCTTGGCCAGGCCCT 523

RESULT 2
 AAD19772 standard; DNA; 531 BP.
 XX Human hG-CSF gene inserted into plasmid PEDCSFm.
 XX Human; Granulocyte colony stimulating factor; hG-CSF; protease;
 KW Factor Xa; kanamycin resistance; endoxylanase signal peptide; ds.
 OS Homo sapiens.
 XX Location/Qualifiers
 FN 1..528
 FT /*tag= a
 FT /product= "Human hG-CSF protein"
 PN WO200173081-A1.
 XX 04-OCT-2001.
 PD 31-MAR-2001; 2001WO-KR000549.
 PR 31-MAR-2000; 2000KR-00017052.
 PA (ROAD) KOREA ADV INST SCI & TECHNOLOGY.
 XX PI Lee S, Jeong K.

WPI; 2001-616523/71.
 DR P-PSDB; AAE12154.
 DR XX

Recombinant plasmid vector comprising an endoxylanase signal sequence, human granulocyte colony stimulating factor gene and other components, when transformed into microorganism useful for preparing the colony stimulating factor.

Example 2; Fig 5; 50pp; English.

The invention relates to an Escherichia coli producing and secreting human granulocyte colony stimulating factor (hG-CSF), more specifically, to a recombinant plasmid constructed to express secretory hG-CSF in E. coli, an E. coli transformed with that plasmid to secrete hG-CSF, and a process for preparing hG-CSF using the transformed hG-CSF. The recombinant plasmid vector comprises of a kanamycin resistance gene, a promoter, an endoxylanase signal sequence, a nucleotide sequence coding for an oligopeptide consisting of 13 amino acids including 6 consecutive histidine residues and a hG-CSF. E.coli transformed with recombinant plasmid vector is useful for preparing hG-CSF. The method comprises culturing the microorganism to obtain a hG-CSF fusion protein and treating the fusion protein with a protease preferably Factor Xa, to obtain a hG-CSF, where the fusion protein is obtained from the culture by employing Ni-column. The present sequence is human hG-CSF gene inserted into plasmid PEDCSFm.

XX Sequence 531 BP; 89 A; 192 C; 151 G; 99 T; 0 U; 0 Other;

XX Query Match Score 100.0%; Score 523; DB 4; Length 531;
 XX Best Local Similarity 100.0%; Pred. No. 2.2e-107;
 XX Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGGCTCCCTGCCAGGAGCTTCTGCTCAAGTGCTTAGAGCAA 60
 Db 4 ACCCCCCCTGGCCCTGCCAGGCTCCCTGCCAGGAGCTTCTGCTCAAGTGCTTAGAGCAA 60

Qy 61 GTGAGGAAGATCCAGGGCGATGGCAGGGCTCCAGGAAAGCTGTGCCCCACCTAACAG 120
 Db 64 GTGAGGAAGATCCAGGGCGATGGCAGGGCTCCAGGAGAAAGCTGTGCCCCACCTAACAG 120

Qy 121 CTGTGCACACCCGAGGAGCTGGTGTGCTGGACACTCTCTGGCATCCCCGGCTCCC 180
 Db 124 CTGTGCACACCCGAGGAGCTGGTGTGCTGGACACTCTCTGGCATCCCCGGCTCCC 180

Qy 181 CTGAGGAAGCTGCCAGCCAGGGCTGAGCTGGCAGGCAACTCCATAGC 240
 Db 184 CTGAGGAAGCTGCCAGCCAGGGCTGAGCTGGCAGGCAACTCCATAGC 240

Qy 241 GGCCCTTCCTCTACCGGGCTCTGAGGATCTCCCCGAGTTGGGT 300
 Db 241 GGCCCTTCCTCTACCGGGCTCTGAGGATCTCCCCGAGTTGGGT 300

Qy 301 CCCACCTTGGCACACTGCAGCTGGCACCTGGCAGGAG 360
 Db 304 CCCACCTTGGCACACACTGCAGCTGGCACCATGGCAGGAG 360

Qy 361 ATGGAAGAACTTGGGAATGGCCATGGCCGACTTGGCACCACCTGGCAGGCTC 420
 Db 364 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 420

Qy 421 GCCTCTGCTTCCAGGGCACTGGGCTGGAGCTGGCAGGCTC 480
 Db 424 GCCTCTGCTTCCAGGGCACTGGCAGGCTGGAGCTGGCAGGCTC 480

Qy 481 CTGGAGGTGTGCTACCGCGTCTACGGCACCTTGGCCAGGCCCT 523
 Db 484 CTGGAGGTGTGCTACCGCGTCTACGGCACCTTGGCCAGGCCCT 523

Qy 523 ATGGAAGAACTTGGGAATGGCCATGGCCGACTTGGCACCACCTGGCAGGCTC 580
 Db 523 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 580

Qy 580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 580
 Db 580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 580

Qy 630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 630
 Db 630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 630

Qy 680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 680
 Db 680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 680

Qy 730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 730
 Db 730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 730

Qy 780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 780
 Db 780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 780

Qy 830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 830
 Db 830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 830

Qy 880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 880
 Db 880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 880

Qy 930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 930
 Db 930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 930

Qy 980 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 980
 Db 980 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 980

Qy 1030 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1030
 Db 1030 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1030

Qy 1080 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1080
 Db 1080 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1080

Qy 1130 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1130
 Db 1130 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1130

Qy 1180 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1180
 Db 1180 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1180

Qy 1230 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1230
 Db 1230 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1230

Qy 1280 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1280
 Db 1280 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1280

Qy 1330 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1330
 Db 1330 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1330

Qy 1380 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1380
 Db 1380 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1380

Qy 1430 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1430
 Db 1430 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1430

Qy 1480 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1480
 Db 1480 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1480

Qy 1530 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1530
 Db 1530 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1530

Qy 1580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1580
 Db 1580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1580

Qy 1630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1630
 Db 1630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1630

Qy 1680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1680
 Db 1680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1680

Qy 1730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1730
 Db 1730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1730

Qy 1780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1780
 Db 1780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1780

Qy 1830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1830
 Db 1830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1830

Qy 1880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1880
 Db 1880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1880

Qy 1930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1930
 Db 1930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1930

Qy 1980 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1980
 Db 1980 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 1980

Qy 2030 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2030
 Db 2030 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2030

Qy 2080 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2080
 Db 2080 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2080

Qy 2130 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2130
 Db 2130 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2130

Qy 2180 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2180
 Db 2180 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2180

Qy 2230 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2230
 Db 2230 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2230

Qy 2280 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2280
 Db 2280 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2280

Qy 2330 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2330
 Db 2330 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2330

Qy 2380 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2380
 Db 2380 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2380

Qy 2430 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2430
 Db 2430 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2430

Qy 2480 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2480
 Db 2480 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2480

Qy 2530 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2530
 Db 2530 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2530

Qy 2580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2580
 Db 2580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2580

Qy 2630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2630
 Db 2630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2630

Qy 2680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2680
 Db 2680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2680

Qy 2730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2730
 Db 2730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2730

Qy 2780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2780
 Db 2780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2780

Qy 2830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2830
 Db 2830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2830

Qy 2880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2880
 Db 2880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2880

Qy 2930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2930
 Db 2930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2930

Qy 2980 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2980
 Db 2980 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 2980

Qy 3030 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3030
 Db 3030 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3030

Qy 3080 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3080
 Db 3080 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3080

Qy 3130 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3130
 Db 3130 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3130

Qy 3180 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3180
 Db 3180 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3180

Qy 3230 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3230
 Db 3230 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3230

Qy 3280 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3280
 Db 3280 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3280

Qy 3330 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3330
 Db 3330 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3330

Qy 3380 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3380
 Db 3380 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3380

Qy 3430 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3430
 Db 3430 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3430

Qy 3480 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3480
 Db 3480 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3480

Qy 3530 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3530
 Db 3530 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3530

Qy 3580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3580
 Db 3580 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3580

Qy 3630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3630
 Db 3630 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3630

Qy 3680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3680
 Db 3680 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3680

Qy 3730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3730
 Db 3730 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3730

Qy 3780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3780
 Db 3780 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3780

Qy 3830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3830
 Db 3830 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3830

Qy 3880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3880
 Db 3880 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3880

Qy 3930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3930
 Db 3930 ATGGAAGAACTTGGGAATGGCCATGGCCACCACCTGGCAGGCTC 3930

XX AAD19771;
 AC 208 CTGTGCCACCCGGAGGCTGGCTGCTGGACACTCTGGCATCCCCGGCTCCC 267
 XX 18-DEC-2001 (first entry)
 DE Human hG-CSF gene inserted into plasmid p19CSFm.
 XX Human; Granulocyte colony stimulating factor; hG-CSF; protease;
 Factor Xa; kanamycin resistance; endoxylanase signal peptide; ds.
 XX OS Homo sapiens.
 XX Key Location/Qualifiers
 PH 88 . 612
 FT /*tag= a
 FT /product= "Human hG-CSF protein"
 FT /note= "CDS does not include start codon"
 FT /partial
 XX PN WO200173081-A1.
 XX PD 04-OCT-2001.
 XX PF 31-MAR-2001; 2001WO-KR0000549.
 XX PR 31-MAR-2000; 2000KR-000017052.
 XX PA (KOAD) KOREA ADV INST SCI & TECHNOLOGY.
 XX PI Lee S, Jeong K;
 XX DR 2001-616523/71.
 XX DR -PSDB; AAE12153.
 XX PT Recombinant plasmid vector comprising an endoxylanase signal sequence,
 PT human granulocyte colony stimulating factor gene and other components,
 PT when transformed into microorganism useful for preparing the colony
 PT stimulating factor.
 XX PS Example 1; Fig 3 ; 50pp; English.
 XX CC The invention relates to an Escherichia coli producing and secreting
 CC human granulocyte colony stimulating factor (hG-CSF), more specifically,
 CC to a recombinant plasmid constructed to express secretory hG-CSF in E.
 CC coli, an E. coli transformed with that plasmid to secrete hG-CSF, and a
 CC process for preparing hG-CSF using the transformed hG-CSF. The
 CC recombinant plasmid vector comprises of a kanamycin resistance gene, a
 CC promoter, an endoxylanase signal sequence, a nucleotide sequence coding
 CC for an oligopeptide consisting of 13 amino acids including 6 consecutive
 CC histidine residues and a hG-CSF. E. coli transformed with recombinant
 CC plasmid vector is useful for preparing hG-CSF. The method comprises
 CC culturing the microorganism to obtain a hG-CSF fusion protein and
 CC treating the fusion protein with a protease preferably Factor Xa, to
 CC obtain a hG-CSF, where the fusion protein is obtained from the culture by
 CC employing Ni-column. The present sequence is human hG-CSF gene inserted
 CC into plasmid p19CSFm.
 XX SQ Sequence 615 BP; 105 A; 219 C; 178 G; 113 T; 0 U; 0 Other;
 .Query Match 100.0%; Score 523; DB 4; Length 615;
 Best Local Similarity 100.0%; Pred. No. 2.2e-107;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 PA PA (CHUS) CHUGAI SEIYAKU KK.
 XX PI Yamazaki T, Nagata S, Tsuchiya M;
 XX DR WPI; 1987-124182/18.
 XX P-PSDB; AAP70162.
 XX PT Poly:peptide with human granulocyte colony stimulating factor activity -
 PT is obt'd. by cultivating transformant formed by recombinant DNA
 PT procedures.
 XX
 Db 1 ACCCCCTGGCCAGGCTCCCTGCCAGGCTCAGTGCCTAGGCAA 60
 Db 88 ACCCCCCCTGGCCAGGCTCCCTGCCAGGCTCAGTGCCTAGGCAA 147
 QY 61 GTGAGGAAAGATCAGGGCGATGGGCAAGCTGTGCCCCACCTAACAG 120
 Db 148 GTGAGGAAAGATCAGGGCGATGGGCAAGCTGTGCCCCACCTAACAG 207
 QY 121 CTGTGCCACCCGAGGCTGGACTCTGGCACACTCTGGCATCCCCGGCTCCC 180

PS Disclosure; Fig 4; 73pp; English.

XX PN EP217404-A.

CC XX 08-APR-1987.

CC XX 03-OCT-1986; 86EP-00113671.

CC XX 04-OCT-1985; 85JP-00220450.

CC PR 02-JUN-1986; 86JP-00125660.

XX XX PA (CHUS) CHUGAI SEIYAKU KK.

SQ Sequence 1520 BP; 303 A; 402 C; 328 T; 0 U; 0 Other;

Query Match 100.0%; Score 523; DB 1; Length 1520;

Best Local Similarity 100.0%; Pred. No. 2.5e-107;

Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCCRTCCRGCTCAAGTGCCTTAGAGCAA 60

Db 121 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTCCAGGCTCAAGTGCCTTAGAGCAA 180

QY 61 GTGAGGAAGATCCAGGGGATGGGGCAGGGCTCCAGGAGAAAGCTGTGCCACCTACAAG 120

Db 181 GTGAGGAAGATCCAGGGGATGGGCAGGGCTCCAGGAGAAAGCTGTGCCACCTACAAG 240

QY 121 CTGTGCACCCCCGAGGACTCTCTGGACACTCTCTGGCATCCCCCTGGGCTCC 180

Db 241 CTGTGCACCCCCGAGGAGCTGGTGCTGGACACTCTCTGGCATCCCCCTGGGCTCC 300

QY 181 CTGAGGAGCTGCCAGGCCAGGGCTTGAGCTGGCAGGGCTGCTTGAGCCAACCTCCATAGC 240

Db 301 CTGAGGAGCTGCCAGGCCAGGGCTTGAGCTGGCAGGGCTGCTTGAGCCAACCTCCATAGC 360

QY 241 GGCTTTCCCTCTACCAAGGGGCTCCCTGCAAGGGGATCTCCCCCGAGTTGGGT 300

Db 361 GGCTTTCCCTCTACCAAGGGGCTCCCTGCAAGGGGATCTCCCCCGAGTTGGGT 420

QY 301 CCCACCTGGACACACTGCAGCTGGACGTGCCACCATTGGCAGGAG 360

Db 421 CCCACCTGGACACACTGCAGCTGGACGTGCCACCATTGGCAGGAG 480

QY 361 ATGGAAGAAGACTGGGAATGGCCCTCTGGCAGCTGCCATCTGGGCCCTTC 420

Db 481 ATGGAAGAAGACTGGGAATGGCCCTCTGGCAGCTGCCACCATTGGCAGGCTC 540

QY 421 GCCTCTGGCTTCCAGGGGGCTCTGGCAGGGGGCTCTGGCAGAGGCTC 480

Db 541 GCCTCTGGCTTCCAGGGGGCTCTGGCAGGGGGCTCTGGCAGAGGCTC 600

QY 481 CTGGAGGTGTGCGTAACCGCGTTCTACGCCAACCTTGGCCAGGCCCT 523

Db 601 CTGGAGGTGTGCGTAACCGCGTTCTACGCCAACCTTGGCCAGGCCCT 643

RESULT 5

AAN71320 QY CCACCTGGACACACTGCAGCTGGCAGCTGCCACCATTGGCAGGAG 360

ID AAN71320 standard; cDNA; 1520 BP.

XX DB 421 CCCACCTGGACACACTGCAGCTGGCAGCTGCCACCATTGGCAGGAG 480

AC AAN71320; DT 23-APR-1991 (first entry)

XX DB 481 ATGGAAGAAGACTGGGAATGGCCCTCTGGCAGGGCTCTGGGCCCTTC 540

DE Sequence encoding human granulocyte colony stimulating factor (hGCSF) in DE PBRV2.

XX DB 421 GCCTCTGGCTTCCAGGGGGCTCTAGTTGGCAGAGGCTC 480

KW Leukopenia therapy; neutropenia; eosinopenia; lymphopenia; ss.

XX DB 541 GCCCTGGCTTCCAGGGGGCTAGTTGGCAGAGGCTC 600

OS Homo sapiens.

XX QY 481 CTGGAGGTGTGCGTAACCGCGTTCTACGCCAACCTTGGCCAGGCCCT 523

FH DB 601 CTGGAGGTGTGCGTAACCGCGTTCTACGCCAACCTTGGCCAGGCCCT 643

FT Location/Qualifiers

31. .120

FT /*tag= a

FT 121. .645

FT /*tag= b

XX

RESULT 6

AAN60937 ID AAN60937 standard; DNA; 1521 BP.

XX AAN60937; Db 421 CCCACCTGGACACACTGCAGTGGACGTCGCCGACTTGCCACCACCATCTGGCAGCAG 480
 AC QY 361 ATGGAAGAACTGGAAATGGCCCCCTGCCAGGGCCTGCCATGCCGGCCTTC 420
 XX DT 18-OCT-1991 (first entry) Db 481 ATGGAAGAACTGGAAATGGCCCCCTGCCATGCCGGCCTTC 540
 DE Plasmid pBRY2 insert encoding granulocyte CSF.
 XX QY 421 GCCTCTGGCTTCAGGCCAGGGCTCCTAGTGCATGCCATCTGCAGGCTTC 480
 G-CSF; granulocyte colony stimulating factor; antimicrobial.
 XX Db 541 GCCTCTGGCTTCAGGCCAGGGCTCCTAGTGCATGCCATCTGCAGGCTTC 600
 OS Synthetic.
 XX QY 481 CTGGAGGGTGTGTAACGCCACCTTGCCAGGCCCT 523
 XX Db 601 CTGGAGGGTGTGTAACGCCACCTTGCCAGGCCCT 643
 FH Location/Qualifiers
 Key ID AAN81478 standard; CDNA; 1525 BP.
 CDS XX
 FT 31. .645
 FT /*tag= a
 FT 121 /*tag= b
 FT mat_peptide RESULT 7
 FT XX
 PN WOB604506-A. AC AAN81478;
 XX PD 14-AUG-1986.
 XX PF 07-FEB-1986; 86WO-JP0000053.
 XX PR 08-FEB-1985; 85JP-00023777.
 PR 03-DEC-1985; 85JP-00270839.
 XX PA (CHUS) CHUGAI SEIYAKU KK.
 PA (ONOM/) ONO M.
 XX PI Ono M, Nomura H, Tamura M, Matsumoto M; OS Homo sapiens.
 XX DR WPI; 1986-225384/34.
 DR P-PSDB; AAP61341.
 XX PT Infection-protection inducing agent - contains human granulocyte colony
 PT stimulating factor obtd. by cell culture or recombinant technology.
 XX PS Disclosure; Fig 4; 139pp; Japanese.
 XX CC The plasmid encodes a novel polypeptide having human granulocyte colony
 CC stimulating factor activity. The CSF may be produced either from a cell-
 line secreting the factor into its medium, or from a transformant
 CC microorganism. The product induces high immunity to infection by
 CC anaerobic and aerobic bacteria and fungi.
 XX SQ Sequence 1521 BP; 304 A; 488 C; 402 G; 327 T; 0 U; 0 Other;
 XX Query Match 100.0%; Score 523; DB 1; Length 1521;
 Best Local Similarity 100.0%; Pred. No. 2.5e-107;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 XX PR 11-AUG-1987; 87EP-00307114.
 PR 24-FEB-1988.
 XX PD 11-AUG-1986; 86US-00895154.
 PR 18-NOV-1986; 86US-00932037.
 XX PA (CETU) CETUS CORP.
 XX PI Devlin JJ, Devlin PE, Kawasaki ES, Warren MK;
 XX DR WPI; 1988-051585/08.
 DR P-PSDB; AAP81162.
 XX PT Human recombinant granulocyte colony-stimulating factor - causes
 PT differentiation of granulocytes and monocytes from bone marrow progenitor
 PT cells.
 XX PS Example; Fig 4; 61pp; English.
 XX The major difference between this clone and the CHU-2 cDNA clones of
 CC Nagata et al. (EMBO Journal 5:3,575-581(1986)) are given in PT of
 CC AAN81478. The G-CSF was detected in purified mRNA fraction obtd. by
 CC

PR 24-JUL-1987; 87US-00077188.
 XX
 PA (CETU) CETUS CORP.
 XX PI Kawasaki ES, Devlin JJ, Martin G, O'rouke E, Clark R;
 XX DR WPI; 1989-061174/08.
 XX PT Recombinant Baculovirus transfer vectors - used for prodn. of colony
 PT stimulating factor in Baculovirus-insect cell expression system.
 XX Disclosure; Fig 3; 68pp; English.
 XX
 CC The cDNA insert of PP12 contains 11 more bases than the CHU-2 G-CSF
 CC clone. The major difference between this clone, derived from MIA PaCa-2,
 CC and CHU-2 clone is a 9 bp insertion in the CHU-2 clone between bases 237
 CC and 238. There are two other differences: an A at position 588 (G in the
 CC CHU-2 clone) is a silent third base change, and a T at position 1237 (C in
 CC the CHU-2 clone) in the 3' untranslated region. See also AAN91085
 XX SQ Sequence 1525 BP; 303 A; 490 C; 403 G; 328 T; 0 U; 1 Other;
 Query Match 100.0%; Score 523; DB 1; Length 1525;
 Best Local Similarity 100.0%; Pred. No. 2.5e-107;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 DB PS
 DB
 QY 1 ACCCCCCCTGGCCAGCTCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGTAGAGCAA 60
 133 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGTAGAGCAA 192
 XX Disclosure; Fig 3; 68pp; English.
 XX
 CC The cDNA insert of PP12 contains 11 more bases than the CHU-2 G-CSF
 CC clone. The major difference between this clone, derived from MIA PaCa-2,
 CC and CHU-2 clone is a 9 bp insertion in the CHU-2 clone between bases 237
 CC and 238. There are two other differences: an A at position 588 (G in the
 CC CHU-2 clone) is a silent third base change, and a T at position 1237 (C in
 CC the CHU-2 clone) in the 3' untranslated region. See also AAN91085
 XX SQ Sequence 1525 BP; 303 A; 490 C; 403 G; 328 T; 0 U; 1 Other;
 Query Match 100.0%; Score 523; DB 1; Length 1525;
 Best Local Similarity 100.0%; Pred. No. 2.5e-107;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 QY 1 ACCCCCCCTGGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGTAGAGCAA 60
 133 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGTAGAGCAA 192
 DB
 QY 1 ATGGAGAAGATCCAGGGCGATGGGCAGGCCAGCCACTGGCTGGCATGGGACACTCTGGCTGGGT 300
 313 CTGAGCAGCTGCCCTGGCAGGGCTGGCATGGCAACTCCATAGC 372
 DB
 QY 241 GGCCCTTTCCCTCTACCAAGGGCTCCTGCCAGGGATCTCCCCCGAGTTGGGT 300
 373 GGCCCTTTCCCTCTACCAAGGGCTCCTGCCAGGGATCTCCCCCGAGTTGGGT 432
 DB
 QY 301 CCCACCTTGGACACACTGGCACGCTGGACGGTGGCCACCATTCTGGCAGGAG 360
 433 CCCACCTTGGACACACTGGCACGCTGGACGGTGGCCACCATTCTGGCAGGAG 492
 DB
 QY 361 ATGGAAAGAACTTGGGAATGGCCCCCTGCCAGGGTGGCACGCTGGCCCTTC 420
 493 ATGGAAAGAACTTGGGAATGGCCCCCTGCCAGGGTGGCACGCTGGCCCTTC 552
 DB
 QY 421 GCCTCTGCTTCCAGGCCAGGGTCCTAGTTGCCATCTGCAGAGCTTC 480
 553 GCCTCTGCTTCCAGGCCAGGGTCCTAGTTGCCATCTGCAGAGCTTC 612
 DB
 QY 481 CTGGAGGTGTGTACGGCCACCTTGCCAGGGTCCTAGTTGCCAGGCCT 523
 613 CTGGAGGTGTGTACGGCCACCTTGCCAGGCCT 655
 DB
 QY 301 CCCACCTTGGACACACTGGCACGCTGGCCACCATTCTGGCAGGAG 360
 433 CCCACCTTGGACACACTGGCACGCTGGCCACCATTCTGGCAGGAG 492
 DB
 QY 361 ATGGAAAGAACTGGGAATGGCCCCCTGCCAGGGTCCATCTGGCAGGCTTC 420
 493 ATGGAAAGAACTGGGAATGGCCCCCTGCCAGGGTCCATCTGGCAGGCTTC 552
 DB
 QY 421 GCCTCTGCTTCCAGGCCAGGGTCCTAGTTGCCATCTGCAGAGCTTC 480
 553 GCCTCTGCTTCCAGGCCAGGGTCCTAGTTGCCATCTGCAGAGCTTC 612
 DB
 QY 481 CTGGAGGTGTGTACGGCCACCTTGCCAGGCCT 523
 613 CTGGAGGTGTGTACGGCCACCTTGCCAGGCCT 655
 DB
 RESULT 9
 AC AAN91086
 XX ID AAN91086 standard; DNA; 1525 BP.
 XX
 AC ACC78869
 ID ACC78869 standard; DNA; 525 BP.
 XX
 AC ACC78869;
 XX
 DT 02-SEP-2003 (first entry)
 XX DE Human granulocyte colony stimulating factor (G-CSF) encoding DNA.

	1	ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA	60
Db	61	GTGAGGAAGATCAGGGGATGGGCTCCAGGAGAACACTCTGGCATCCCCGGCTCCC	180
Qy	61	GTGAGGAAGATCAGGGGATGGGCTCCAGGAGAACACTCTGGCATCCCCGGCTCCC	180
Db	61	CTGTGCCACCCGAGGAGCTGGTGCCTCGGACACTCTGGCATCCCCGGCTCCC	180
Qy	121	CTGTGCCACCCGAGGAGCTGGTGCCTCGGACACTCTGGCATCCCCGGCTCCC	180
Db	121	CTGTGCCACCCGAGGAGCTGGTGCCTCGGACACTCTGGCATCCCCGGCTCCC	180
Qy	181	CTGAGCAGCTGCCAGGGCCAGGGCTGGCAGGGCTGGTGCCTAGCCAACTCCATAGC	240
Db	181	CTGAGCAGCTGCCAGGGCCAGGGCTGGCAGGGCTGGTGCCTAGCCAACTCCATAGC	240
Key	Location/Qualifiers		
CDS	1. .525		
FT	/*tag= a		
FT	/product= "G-CSF"		
FT	W02003031464-A2.		
XX	17-APR-2003.		
XX	09-OCT-2002; 2002WO-US0322263.		
XX	PF		
XX	PR 10-OCT-2001; 2001US-0328523P.		
XX	PR 19-OCT-2001; 2001US-0344692P.		
XX	PR 28-NOV-2001; 2001US-0334233P.		
XX	PR 28-NOV-2001; 2001US-0334301P.		
XX	PR 07-JUN-2002; 2002US-0387292P.		
XX	PR 25-JUN-2002; 2002US-0391777P.		
XX	PR 17-JUL-2002; 2002US-0396594P.		
XX	PR 16-AUG-2002; 2002US-0404249P.		
XX	PR 28-AUG-2002; 2002US-0407527P.		
XX	PA (NEOS-) NEOSE TECHNOLOGIES INC.		
XX	PI De Frees S, Zopf D, Bayer R, Bowe C, Hakes D, Chen X;		
XX	WPI; 2003-449162/42.		
XX	DR P-PSDB; ABR55839.		
XX	PT Remodeling a peptide, by removing a saccaryl subunit from the peptide to form truncated glycan, and adding or deleting glycosyl groups to a peptide and/or adding modifying group of a peptide to remodel the peptide.	RESULT 10	
XX	PT De Frees S, Zopf D, Bayer R, Bowe C, Hakes D, Chen X;	ABA94177	
XX	PT WPI; 2003-449162/42.	standard; cDNA; 549 BP.	
XX	PT DR P-PSDB; ABR55839.	ABA94177	
PS	Example; Fig 52; 900pp; English.	AC	
XX	The invention relates to a cell-free, in vitro method of remodeling a peptide. The method involves removing a saccaryl subunit from the peptide, thus forming a truncated glycan, and contacting the truncated glycan with at least one glycosyl transferase and at least one glycosyl donor under conditions suitable to transfer at least one glycosyl group to the truncated glycan, thus remodeling the peptide. Conjugates can be formed between a granulocyte colony stimulating factor (G-CSF) peptide, Factor IX peptide, follicle stimulating hormone peptide, Factor VIII peptide, Factor IX peptide, erythropoietin (EPO) peptide, granulocyte macrophage colony stimulating factor (GM-CSF) peptide, interferon-gamma peptide, alpha-1-protease inhibitor (A-1-PI) peptide, beta-glucosidase peptide, tissue plasminogen activator (TPA) peptide, interleukin-2 (IL-2) peptide, Factor VIII peptide, TNFalpha receptor/immunoglobulin (Ig) G fusion peptide, urokinase peptide, anti-insulin peptide, hepatitis B surface antigen (HbsAg), chimeric anti-HER2 antibody peptide, anti-respiratory syncytial virus (RSV) F peptide, anti-CD20 antibody peptide, recombinant DNase peptide, anti-TNF alpha peptide, insulin peptide, hepatitis B surface antigen (HbsAg), human growth hormone (HGH) peptide, and a modifying group, where the modifying group is covalently attached to the peptide through an intact glycosyl linking group. The method is useful for a cell-free, in vitro method of remodeling the above mentioned peptides. The present sequence represents a human G-CSF encoding DNA	XX	
XX	Sequence 525 BP; 84 A; 192 C; 152 G; 97 T; 0 U; 0 Other;	Key	Location/Qualifiers
XX	XX	DT 08-MAY-2002 (first entry)	1. .549
XX	XX	DE Granulocyte colony stimulating factor related nucleotide sequence.	/*tag= a
XX	XX	KW Granulocyte colony stimulating factor; G-CSF; gene; ss.	/partial
XX	XX	OS unidentified.	/product= "G-CSF"
XX	XX	XX	/note= "no start codon given"
XX	XX	XX	KR98077885-A.
XX	XX	XX	16-NOV-1998.
XX	XX	XX	23-APR-1997; 97KR-00015210.
XX	XX	XX	23-APR-1997; 97KR-00015210.
XX	XX	XX	(MOKA-) MOKAM LIFE SCI RES CENT.
XX	XX	XX	PA Sohn YD, Lee EG, Kim SH, Park DH;
XX	XX	XX	PI WPI; 2000-035728/03.
XX	XX	XX	DR P-PSDB; ABB05960.
XX	XX	XX	PT Recombinant microorganism expressing granulocyte colony stimulating factor and process for preparing the recombinant protein therefrom.
Query Match	99.7%	Score 521.4; DB 7; Length 525;	
Best Local Similarity	99.8%	Pred. No. 4.9e-107; 0; Mismatches 1;	0; Gaps 0;
Matches 522;	Conservative		
Query	1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA	60	

XX Disclosure; Page 11; 16pp; Korean.

PS XX 1797..1802
 FT FT /*tag= C

CC PN WO8701132-A.
 CC XX 26-FEB-1987.
 CC PD 22-AUG-1986; 86WO-US001708.

XX PR 23-AUG-1985; 85US-00768954.
 PR 23-AUG-1985; 85US-00768959.
 PR 03-MAR-1986; 86US-00835548.

SQ Sequence 549 BP; 90 A; 199 C; 160 G; 100 T; 0 U; 0 Other;
 Best Local Similarity 99.8%; Pred. No. 5e-107;
 Matches 522; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

QY 1 ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGCTTAGAGCAA 60
 D5 25 ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGGCTTCTGCTCAAGTGCTTAGAGCAA 84
 QY 61 GTGAGGAAGATCCAGGGGATGGCGAGCTCCAGGAGAACGTGTGCCCCACCTACAG 120
 QY 85 GTGAGGAAGATCCAGGGGATGGCGAGCTCCAGGAGAACGTGTGCCCCACCTACAG 144
 DB 121 CTGTGCCACCCCCGAGGAGCTGCTGCTGGACACTCTGGCATCCCCGGCTCCC 180
 DB 145 CTGTGCCACCCCCGAGGAGCTGCTGCTGGACACTCTGGCATCCCCGGCTCCC 204
 PS Disclosure; Page 22-24; 79pp; English.

QY 181 CTGAGCAGCTGCCAGCCAGGCCCTGCAAGCTGGCAGGGCTGCTGAGCCAACCTCCATAGC 240
 DB 205 CTGAGCAGCTGCCAGCCAGGCCCTGCAAGCTGGCAGGGCTGCTGAGCCAACCTCCATAGC 264
 QY 241 GGCCTTTCTCTACCAAGGGGCTCCTGCAAGGGATCTCCCGAGTTGGGT 300
 DB 265 GGCCTTTCTCTACCAAGGGGCTCCTGCAAGGGATCTCCCGAGTTGGGT 324
 QY 301 CCCACCTGGACACACTGCAGCTGGACGTGGCAGCTGGCAGCTGGCACCACATCTGGCAG 360
 DB 325 CCCACCTGGACACACTGCAGCTGGCAGCTGGCAGCTGGCACCACATCTGGCAG 384
 QY 361 ATGGAAGAACTGGAAATGGCCCTGCCCCCATGGGTGCCATGGCCAGGGCTTC 420
 DB 385 ATGGAAGAACTGGAAATGGCCCTGCCCCATGGGTGCCATGGCCAGGGCTTC 444
 QY 421 GCCTCTGCTTCCAGGCCGGGGTCTCTGAGAGGCTTC 480
 DB 445 GCCTCTGCTTCCAGGCCGGGGTCTCTGAGAGGCTTC 504
 QY 481 CTGGAGGTGTGCTACCGGTTCTACGCCACCTTGCCAGGCCCT 523
 DB 505 CTGGAGGTGTGCTACCGGCCACCTTGCCAGGCCCT 547
 QY 561 ATGGAAGAACTGGAAATGGCCCTGCCCCCATGGGTGCCATGGCCAGGGCTTC 180
 DB 577 CTGAGCAGCTGCCAGGCCCTGCAAGCTGGCAGGGCTGCTGAGCCAACCTCCATAGC 216
 QY 181 CTGAGCAGCTGCCAGGCCCTGCAAGCTGGCAGGGCTGCTGAGCCAACCTCCATAGC 240
 DB 217 CTGAGCAGCTGCCAGGCCCTGCAAGCTGGCAGGGCTGCTGAGCCAACCTCCATAGC 276
 QY 241 GGCCCTTCTCTACCAAGGGGCTCCTGCAAGGGATCTCCCGAGTTGGGT 300
 DB 277 GGCCCTTCTCTACCAAGGGGCTCCTGCAAGGGATCTCCCGAGTTGGGT 336
 QY 301 CCCACCTGGACACACTGGAAATGGCCCTGCAAGGGCTGCTGAGGCCACCTTGCCAG 360
 DB 337 CCCACCTGGACACACTGGCACTGGCAGCTGGCAGCTGGCAGCTGGCAG 396
 QY 361 ATGGAAGAACTGGAAATGGCCCTGCAAGGGCTGCTGAGGCCACCTTGCCAG 420
 DB 397 ATGGAAGAACTGGAAATGGCCCTGCAAGGGCTGCTGAGGCCACCTTGCCAG 456
 QY 421 GCCTCTGCTTCCAGGCCGGGGCAGGAGGGCTCTGCAAGAGCTTC 480
 DB 457 GCCTCTGCTTCCAGGCCGGGGTCTGCAAGAGCTTC 516

RESULT 11
 AAN71089 standard; DNA; 1415 BP.
 XX AC AAN71089;
 XX DT 25-MAR-2003 (revised)
 XX DT 26-APR-1991 (first entry)
 DE Sequence of human granulocyte colony stimulating factor (hpG-CSF) cDNA
 DE clone Pp2.
 XX KW Haematopoietic disorders; therapy; aplastic anaemia;
 KW bone marrow transplant; burn wounds; leukaemia; ds.
 XX OS Homo sapiens.
 XX FH Key Location/Qualifiers
 FT CDS 1..36
 FT / *tag= a
 FT mat_peptide 37..561
 FT / *tag= b

Qy	481 CTGGAGGTGTCGTACCGCGTCTACGCCACCTTGCCAGCCCC 523	CC	http://seqdata.uspto.gov/sequence.html?DocID=20020137081
Db	517 CTGGAGGTGTCGTACCGCGTCTACGCCACCTTGCCAGCCCC 559	XX	Sequence 1508 BP; 294 A; 484 C; 402 G; 328 T; 0 U; 0 Other;
		Query Match 99.7%; Score 521.4; DB 7; Length 1508;	
		Best Local Similarity 99.8%; Pred. No. 5.6e-107;	
		Matches 522; Conservative 0; Mismatches 1; Indels 0; Gaps 0;	
RESULT 12			
ID	ABX63825 standard; cDNA; 1508 BP.	QY	1 ACCCCCCTGGCCAGCTCCAGGAGCTCCAGGAGCTCAAGTGCTTAGAGCAA 60
XX	Human cDNA #825 differentially expressed in activated vascular tissue.	DB	114 ACCCCCCTGGCCCTGCCAGCTCCCTGCCAGCTCAAGTGCTTAGAGCAA 173
DE		QY	61 GTGAGGAAGATCCAGGGGATGGCGAGCGCTCCAGGAGCTCAAGTGCTTAGAGCAA 120
XX	Human; gene; ss; vascular tissue; cytostatic; atherosclerosis; cardiant; hypotensive; antidiabetic; gynaecological; vasotrophic; cerebroprotective; gene therapy; vascular disease; cancer; coronary; artery disease; hypertension; diabetes; pre-eclampsia; restenosis; ischaemia-reperfusion injury; stroke.	DB	174 GTGAGGAAGATCCAGGGGATGGCGAGCTCAAGTGCTTAGAGCAA 233
KW		QY	121 CTGTGCCACCCGAGAGCTGGTCTGGACACTCTGGCATCCCTGGCTCCC 180
KW		DB	234 CTGTGCCACCCGAGAGCTGGTCTGGACACTCTGGCATCCCTGGCTCCC 293
KW		QY	181 CTGAGCAGCTGCCAGCCAGGGCTGCAGCTGGCAGCTGGCTGCAGCTGGCAGCTGGCATCCCTGGCTCCC 240
KW		DB	294 CTGAGCAGCTGCCAGCCAGGGCTGCAGCTGGCAGCTGGCATCCCTGGCTCCC 353
OS	Homo sapiens.	QY	241 GGCCCTTTCTACAGGGGCTCTGGAGGGATCTCCCCGGAGTTGGGCT 300
PN	US2002137081-A1.	DB	354 GGCCCTTTCTACAGGGCTCTGGAGGGATCTCCCCGGAGTTGGGCT 413
XX		QY	301 CCCACCTTGGCACACTGCAGCTGGGACTTGGCACCACATCTGGCAGCAG 360
PD		DB	414 CCCACCTTGGCACACTGCAGCTGGGACTTGGCACCACATCTGGCAGCAG 473
XX	08-JAN-2002; 2002US-00044090.	QY	361 ATGGAAGAACTGGAAATGGCCATGGGTGCCATGGCCCTTC 420
PF		DB	474 ATGGAAGAACTGGGATGGCCATGGGTGCCACCATCTGGCAGCAG 533
PR	28-JUL-2000; 2000US-0222469P.	QY	421 GCCTCTGCTTCCAGGCCCTGCAGCCACCCAGGGTGCCTGCAGCTGGCAGCTTC 480
PR	08-JAN-2001; 2001US-0260483P.	DB	534 GCCTCTGCTTCCAGGCCCTGCAGCCACCCAGGGTGCCTGCAGCTGGCAGCTTC 593
XX	(BAND/) BANDMAN O.	QY	481 CTGGAGGTGTCGTACCGCGTCTACGCCACCTTGCCAGCCCT 523
PA		DB	594 CTGGAGGTGTCGTACGCCACCTTGCCAGCCCT 636
PI	Bandman O;		
XX	WPI; 2003-110597/10.		
DR			
XX	Combination for diagnosing, staging, treating, or monitoring the progression of treatment of a vascular disease, e.g. atherosclerosis, comprises several cDNAs that are differentially expressed in activated vascular tissue.		
PT			
PT			
PT			
XX			
PS	Claim 1; Page; 18pp; English.		
XX	This invention relates to a combination comprising several cDNAs that are differentially expressed in activated vascular tissue. The invention also discloses a high throughput method for detecting differentially expressed cDNAs in a sample. The cDNAs of the invention may have antiarteriosclerotic; cytostatic; cardiant; hypotensive; antidiabetic; gynaecological; vasotrophic and cerebroprotective activities and may be used in gene therapy. The cDNAs of the invention may be used in a high-throughput methods for detecting differential expression of one or more cDNAs in a sample, or screening several molecules or compounds to identify a molecule or compound that specifically binds a cDNA of the invention. A protein encoded by the cDNA may be used to screen several molecules or compounds to identify a ligand that specifically binds to the protein, or to produce or purify an antibody to the protein that can be used to detect a protein in a sample or purify a natural or recombinant protein from a sample. The nucleotides may be useful for diagnosing, staging, treating, or monitoring the progression of treatment of a vascular disease, e.g. atherosclerosis, cancer, coronary artery disease, hypertension, diabetes, pre-eclampsia, ischaemia-reperfusion injury, restenosis, or stroke. The cDNAs can also be used for large-scale genetic or gene expression analysis of several new nucleic acid molecules. Antibodies to the proteins encoded by the cDNAs are useful for diagnosing pre-pathologic disorders, and chronic or acute diseases associated with abnormalities in the expression, amount or distribution of the protein. The present sequence represents a cDNA of the invention that is differentially expressed in activated vascular tissue. Note: The sequence data for this patent did not form part of the specification, but was obtained in electronic format directly from USPTO at		
CC		RESULT 13	
CC		AAI171848	
CC		ID AAI171848 standard; cDNA; 644 BP.	
CC		XX	
CC		AC AAI171848;	
CC		XX	
CC		DT 07-JAN-2002 (first entry)	
CC		XX	Recombinant human granulocyte colony stimulating factor cDNA.
CC		XX	Human; granulocyte colony stimulating factor; rhG-CSF; recombinant; ss.
CC		XX	Homo sapiens.
CC		XX	
CC		FH Key	
CC		FT CDS	
CC		FT /tag= "rhG-CSF"	
CC		FT /product= "rhG-CSF"	
CC		XX	CN1167150-A.
CC		XX	10-DEC-1997.
CC		XX	
CC		XX	05-JUN-1996; 96CN-00106418.
CC		XX	
CC		XX	05-JUN-1996; 96CN-00106418.
CC		XX	
CC		PA (JIUYUAN GENE ENG CO LTD HANGZHOU.	

This Page Blank (uspto)

GenCore version 5.1.6
 (c) 1993 - 2004 Compugen Ltd.

score greater than or equal to the score of the result being printed,
 and is derived by analysis of the total score distribution.

SUMMARIES

OM nucleic - nucleic search, using sw model	Run on:	October 8, 2004, 21:23:54	Search time	2723.62 Seconds	Description			
					Result No.	Score	Query Match Length DB	ID
Title: US-10-009-792C-18_COPY_88_610					1	523	100.0	AR024358
Perfect score: 523					2	523	100.0	AR091731
Sequence: 1 acccccctggccctgccag.....acgccaccttggccaggccct 523					3	523	100.0	E01731
Scoring table: IDENTITY_NUC					4	523	100.0	E02573
Scoring table: Gapop 10.0 , Gapext 1.0					5	523	100.0	E07164
Searched: 3470272 seqs, 21671516995 residues					6	523	100.0	E09431
Total number of hits satisfying chosen parameters: 6940544					7	523	100.0	E15131
Minimum DB seq length: 0					8	523	100.0	Human mRNA
Maximum DB seq length: 2000000000					9	523	100.0	I71150
Post-processing: Minimum Match 0%					10	523	100.0	I83709
Post-processing: Maximum Match 100%					11	523	100.0	AR363055
Listing first 45 summaries					12	523	100.0	X03655
Database : GenEmbl:*					13	523	100.0	E01219
1: gb_ba:*					14	523	100.0	cdNA encodi
2: gb_htg:*					15	523	100.0	Sequence 11
3: gb_in:*					16	523	100.0	Sequence 5
4: gb_om:*					17	521.4	99.7	M13008
5: gb_ov:*					18	521.4	99.7	Human granu
6: gb_pat:*					19	520.4	99.5	BC033245
7: gb_ph:*					20	520.4	99.5	BC033245
8: gb_p1:*					21	519.8	99.4	E08529
9: gb_pr:*					22	519.8	99.4	E37811
10: gb_ro:*					23	519.8	99.4	Vector. 6/2
11: gb_sts:*					24	519.8	99.4	BD000076
12: gb_sy:*					25	510.2	97.6	BD178096
13: gb_un:*					26	510.2	97.6	BD178096
14: gb_vl:*					27	510.2	97.6	BD178096
15: em_ba:*					28	510.2	97.6	BD178096
16: em_fun:*					29	509.2	97.4	BD178096
17: em_hum:*					30	509.2	97.4	BD178096
18: em_in:*					31	509.2	97.4	BD178096
19: em_mu:*					32	507	96.9	BD178096
20: em_om:*					33	506	96.7	BD178096
21: em_or:*					34	506	96.7	BD178096
22: em_ov:*					35	504.4	96.4	BD178096
23: em_pat:*					36	504.4	96.4	BD178096
24: em_ph:*					37	504.4	96.4	BD178096
25: em_p1:*					38	504.2	96.4	BD178096
26: em_ro:*					39	504.2	96.4	BD178096
27: em_sts:*					40	503.8	96.3	BD178096
28: em_un:*					41	503.8	96.3	BD178096
29: em_vl:*					42	503.8	96.3	BD178096
30: em_htg_hum:*					43	503.8	96.3	BD178096
31: em_htg_inv:*					44	503.8	96.3	BD178096
32: em_htg_other:*					45	503.8	96.3	BD178096

ALIGNMENTS

RESULT 1	AR024358	525 bp	DNA	linear	PAT 05-DEC-1998
LOCUS	AR024358	Sequence 1 from patent US 5795968.			
DEFINITION	AR024358				
ACCESSION	AR024358				
VERSION	AR024358.1	GI:3977652			
KEYWORDS	Unknown.				
SOURCE	Unclassified.				
ORGANISM	Unclassified.				
REFERENCE	1 (bases 1 to 525)				
AUTHORS	Kuga,T., Miyaji,H., Sato,M., Morimoto,M., Itoh,S., Yamasaki,M., Yokoo,Y., Yamauchi,K., Yoshida,H. and Komatsu,Y.				
TITLE	Polypeptide derivatives of human granulocyte colony stimulating factor				

Pred. No. is the number of results predicted by chance to have a

FT mat_peptide 1. .525 /product='mature peptide of hG-CSF'.

FEATURES FT Location/Qualifiers 1. .525 /organism="Homo sapiens" /mol_type="genomic RNA" /db_xref="taxon:9606" ORIGIN

Query Match 100.0%; Score 523; DB 6; Length 525;
Best Local Similarity 100.0%; Pred. No. 2.5e-86;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 ACCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGTCAAGTGCTTAGAGCAA 60
Db 1 ACCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGTCAAGTGCTTAGAGCAA 60

QY 61 GTGAGGAAGATCAGGGCGATGGCGAGGGCTCAGGGAGAAGCTGTGTGCCACCTAACAG 120
Db 61 GTGAGGAAGATCAGGGCGATGGCGAGGGCTCAGGGAGAAGCTGTGTGCCACCTAACAG 120

QY 121 CTGTGCCACCCCGAGGAGCTGGCTGCTGGACACTCTGGCATCCCCCTGGCTCCC 180
Db 121 CTGTGCCACCCCGAGGAGCTGGCTGCTGGACACTCTGGCATCCCCCTGGCTCCC 180

QY 181 CTGAGCACTGGACACTGCAGCTGGAGCTGGACACTCTGGCATCCCCCTGGCTCCC 240
Db 181 CTGAGCACTGGACACTGCAGCTGGAGCTGGACACTCTGGCATCCCCCTGGCTCCC 240

QY 241 CCCACCTGGACACACTGCAGCTGGAGCTGGACACTCTGGCAGCAG 300
Db 241 CCCACCTGGACACACTGCAGCTGGAGCTGGACACTCTGGCAGCAG 300

QY 301 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 360
Db 301 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 360

QY 361 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 420
Db 361 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 420

QY 421 GCCTGCTTTCAAGGCCAGGGCTCTAGTGGCCATGCCATCTGCAGAGCTTC 480
Db 421 GCCTGCTTTCAAGGCCAGGGCTCTAGTGGCCATGCCATCTGCAGAGCTTC 480

QY 481 CTGGGGTGTGTACCGCCTACGCACCTGGCCAGGCCCT 523
Db 481 CTGGGGTGTGTACCGCCTACGCACCTGGCCAGGCCCT 523

RESULT 4 E02573 525 bp RNA linear PAT 29-SEP-1997
LOCUS E02573 DNA encoding human colony-stimulating factor (hG-CSF).
DEFINITION E02573 Human
ACCESSION E02573.1 GI:2170803
VERSION JP 1990227075-A/1.
KEYWORDS Homo sapiens (human)
SOURCE Homo sapiens
ORGANISM Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 525)
AUTHORS Sasaki,K., Nishi,T., Yasumura,S., Sato,M. and Itou,S.
TITLE NEW POLYPEPTIDE
JOURNAL Patent:JP 1990227075-A 1 10-SEP-1990;
COMMENT OS Homo sapiens (human)
PN JP 1990227075-A/1
PD 10-SEP-1990
PF 28-SEP-1989 JP 1989253097
PR 29-SEP-1988 JP 88P 245705
PI SASAKI KATSUTOSHI, NISHI TATSUYA, YASUMURA SHIGEYOSHI, PI
SATO MORIYUKI,

PI ITOU SEIGA
PC C12N9/72, C07K13/00, C07K15/14, C12N1/21, C12N5/10, C12N9/64, PC
C12N15/27, C12N15/58, C12N15/70, C12N15/85, C12P21/02, C12P21/02, (C12N1/21,
C12R1:19),
PC (C12P21/02, C12R1:19), (C12P21/02, C12R1:91);
CC strandedness: Double;
CC topology: Linear;
CC hypothetical: No;
CC anti-sense: No;
CC *source: cell-type=lymphoblast Lukii;
CC *source: clone=pCSRF1-2;
Key FH
FH mat_peptide 1. .522 /product='human colony-stimulating FT
FT
FT
FEATURES Source
1. .525
/organism="Homo sapiens"
/mol_type="genomic RNA"
/db_xref="taxon:9606"
ORIGIN
Query Match 100.0%; Score 523; DB 6; Length 525;
Best Local Similarity 100.0%; Pred. No. 2.5e-86;
Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
QY 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGTCAAGTGCTTAGAGCAA 60
Db 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGTCAAGTGCTTAGAGCAA 60
QY 61 GTGAGGAAGATCAGGGCGATGGCGAGGGCTCAGGGAGAAGCTGTGTGCCACCTAACAG 120
Db 61 GTGAGGAAGATCAGGGCGATGGCGAGGGCTCAGGGAGAAGCTGTGTGCCACCTAACAG 120
QY 121 CTGTGCCACCCCGAGGAGCTGGCTGCTGGACACTCTGGCATCCCCCTGGCTCCC 180
Db 121 CTGTGCCACCCCGAGGAGCTGGCTGCTGGACACTCTGGCATCCCCCTGGCTCCC 180
QY 181 CTGAGCACTGGACACACTGCAGCTGGAGCTGGACACTCTGGCAGCAG 240
Db 181 CTGAGCACTGGACACACTGCAGCTGGAGCTGGACACTCTGGCAGCAG 240
QY 241 CCCACCTGGACACACTGCAGCTGGAGCTGGACACTCTGGCAGCAG 300
Db 241 CCCACCTGGACACACTGCAGCTGGAGCTGGACACTCTGGCAGCAG 300
QY 301 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 360
Db 301 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 360
QY 361 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 420
Db 361 ATGAAAGAACTGGGAATGGCCCCCTGCCAGCTGGCACCCATCTGGCAGCAG 420
QY 421 GCCTGCTTTCAAGGCCAGGGCTCTAGTGGCCATGCCATCTGCAGAGCTTC 480
Db 421 GCCTGCTTTCAAGGCCAGGGCTCTAGTGGCCATGCCATCTGCAGAGCTTC 480
QY 481 CTGGGGTGTGTACCGCCTACGCACCTGGCCAGGCCCT 523
Db 481 CTGGGGTGTGTACCGCCTACGCACCTGGCCAGGCCCT 523

RESULT 5 E07164 525 bp RNA linear PAT 29-SEP-1997
LOCUS E07164 CDNA encoding human G-CSF.
DEFINITION E07164
ACCESSION E07164
VERSION E07164.1 GI:2175311
KEYWORDS JP 1994092994-A/1.
SOURCE Homo sapiens (human)

ORGANISM	Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 525)	Db	421 GCCTCTGCTTCCAGCGGGCAGGGGGCCTAGTCATCTGCAGAGCTTC 480
REFERENCE	Kuga, T., Komatsu, Y., Miyaji, H., Sato, M., Okabe, M., Morimoto, M., Itoh, S., Yamazaki, M., Yokoo, Y., and Yamaguchi, K.	Qy	481 CTGGAGGTGCTGTACCGCGTTCTAGGCCACCTTGCCCAGGCCCT 523
AUTHORS		Db	481 CTGGAGGTGCTGTACCGCGTTCTAGGCCACCTTGCCCAGGCCCT 523
TITLE	NEW POLYPEPTIDE		
JOURNAL	Patent: JP 1994092994-A 1 05-APR-1994;		
COMMENT	OS Homo sapiens (human) PN JP 1994092994-A/1		
PD	05-APR-1994		
PF	23-DEC-1987 JP 1992214376		
PR	23-DEC-1986 JP 86P 306799		
PI	KUGA TETSUO, KOMATSU YUKI, MIYAJI HIROMASA, SATO MORIYUKI, PI		
OKABE MASAMI,			
PI	MORIMOTO MAKOTO, ITOU SEIGA, YAMAZAKI MOTO, YOKOO YOSHIHARU,		
PI	YAMAGUCHI KAZUO		
PC	C07K13/00, A61R3/02, C12N1/21, C12N15/27, C12P21/02, (C12N1/21, PC C12R1:19), (C12P21/02, C12R1:19);		
CC	strandedness: Double;		
CC	topology: Linear;		
CC	hypothetical: No;		
CC	anti-sense: No;		
FH	key Location/Qualifiers		
FT	source 1..525 /organism='Homo sapiens' /cell_type='macrophage' /clone='pcSF1-2',		
FT	1..525 /product='human G-CSF'.		
FDS	Location/Qualifiers		
FT	1..525 /organism="Homo sapiens" /mol_type="genomic RNA" /db_xref="taxon:9606"		
FEATURES	source		
ORIGIN	Query Match 100.0%; Score 523; DB 6; Length 525; Best Local Similarity 100.0%; Pred. No. 2.5e-86; Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;		
Db	1 ACCCCCCTGGCCCTGCCAGGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 60 1 ACCCCCCTGGCCCTGCCAGGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 60		
Qy	61 GTGAGGAAGATCCAGGGATGGCGAGGGCTCCAGGGAAAGCTGTGCCACCTAACAG 120 61 GTGAGGAAGATCCAGGGATGGCGAGGGCTCCAGGGAAAGCTGTGCCACCTAACAG 120		
Db	121 CTGTCGCACCCCCAGGGCTCTGGACACTCTGGACATCCCCCTGGGCTCC 180 121 CTGTCGCACCCCCAGGGCTCTGGACACTCTGGACATCCCCCTGGGCTCC 180		
Qy	181 CTGAGGAGCTGCCCTACAGGGGCTCTGGACAGCTGGCAGGGATCTCCCGAGTTGGGT 240 181 GGCTTTCTCTACAGGGGCTCTGGACAGCTGGCAGGGATCTCCCGAGTTGGGT 240		
Db	181 ATGGAAACTGGGAATGGCCCTGCCCCAGGGCTGCCATGGCCAACTCCATAGC 240 181 ATGGAAACTGGGAATGGCCCTGCCCCAGGGCTGCCATGGCCAACTCCATAGC 240		
Qy	241 CCCACCTGGACACACTGCAGCTGGACGTGCCACCATCTGGCAGCAG 360 241 GGCTTTCTCTACAGGGGACTCTGGACAGCTGGCAGGGATCTCCCGAGTTGGGT 300		
Db	241 CCCACCTGGACACACTGCAGCTGGACGTGCCACCATCTGGCAGCAG 360 241 CCCACCTGGACACACTGCAGCTGGACGTGCCACCATCTGGCAGCAG 360		
Qy	301 CCCACCTGGACACACTGCAGCTGGACGTGCCACCATCTGGCAGCAG 360 301 CCCACCTGGACACACTGCAGCTGGACGTGCCACCATCTGGCAGCAG 360		
Db	361 ATGGAAACTGGGAATGGCCCTGCCCCAGGGCTGCCATGGCCAACTCCATAGC 420 361 ATGGAAACTGGGAATGGCCCTGCCCCAGGGCTGCCATGGCCAACTCCATAGC 420		
Qy	361 ATGGAAACTGGGAATGGCCCTGCCCCAGGGCTGCCATGGCCAACTCCATAGC 420 361 ATGGAAACTGGGAATGGCCCTGCCCCAGGGCTGCCATGGCCAACTCCATAGC 420		
Db	421 GGCTTTCTCTACAGGGGACTCTGGACAGCTGGCAGGGATCTCCCGAGTTGGGT 300 421 GGCTTTCTCTACAGGGGACTCTGGACAGCTGGCAGGGATCTCCCGAGTTGGGT 300		
Qy	421 GGCTTTCTCTACAGGGGACTCTGGACAGCTGGCAGGGATCTCCCGAGTTGGGT 300 421 GGCTTTCTCTACAGGGGACTCTGGACAGCTGGCAGGGATCTCCCGAGTTGGGT 300		

RESULT 7

E15131 LOCUS E15131 525 bp DNA linear PAT 28-JUL-1999
DEFINITION Human mRNA for granulocyte-colony stimulating factor.

ACCESSION E15131 1 GI:5709814
VERSION E15131.1
KEYWORDS JP 1998052281-A/1.
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
1 (bases 1 to 525)

REFERENCE Kuga, T., Komatsu, Y., Miyaji, H., Sato, M., Okabe, M., Morimoto, M., Itoh, S.,
AUTHORS Itoh, S., Yamazaki, M., Yokoo, Y. and Yamaguchi, K.
TITLE NEW POLYPEPTIDE
COMMENT Patent: JP 1998052281-A 1 24-FEB-1998;
JOURNAL KYOWA HAKKO KOGYO CO LTD
OS Homo sapiens (human)
PN JP 1998052281-A/1
PD 24-FEB-1998
PF 23-DEC-1987 JP 1997114630
PR 23-DEC-1986 JP 86P 306799
PI KUGA TETSUO, KOMATSU YUKI, MIYAJI HIROMASA, SATO MORIYUKI, PI
OKABE MASAMI,
PI MORIMOTO MAKOTO, ITOU SEIGA, YAMAZAKI MOTO, YOKOO YOSHIHARU,
PI YAMAGUCHI KAZUO
PC C12N15/09, A61K3/00, C07K14/535, C12N1/21, C12P21/02, (C12P21/02,
C12R1:19);
PC strandedness: Double;
CC topology: Linear;
FH Key Location/Qualifiers
FT source 1. .525
FT /organism="Homo sapiens"
FT /cell_type='peripheral blood macrophage' FT
mat_peptide 1. .522
FT /product='G-CSF'
FEATURES source 1. .525
Location/Qualifiers
1. organism="Homo sapiens"
/mol_type="Genomic DNA"
/db_xref="taxon:9606"
ORIGIN

Query Match 100.0%; Score 523; DB 6; Length 525;
Best Local Similarity 100.0%; Pred. No. 2.5e-86;
Matches 523; Conservativeness 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 60
Db 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 60

Query Match 100.0%; Score 523; DB 6; Length 525;
Best Local Similarity 100.0%; Pred. No. 2.5e-86;
Matches 523; Conservativeness 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 60
Db 1 ACCCCCCCTGGCCCTGCCAGCTCCCTGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 60

Query Match 100.0%; Score 523; DB 6; Length 525;
Best Local Similarity 100.0%; Pred. No. 2.5e-86;
Matches 523; Conservativeness 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 GTGAGGAAGATCAGGGCGATGGCGAGGCCTCCAGGAAGCTGTGTCACCTACAAG 120
Db 1 GTGAGGAAGATCAGGGCGATGGCGAGGCCTCCAGGAAGCTGTGTCACCTACAAG 120

Query Match 100.0%; Score 523; DB 6; Length 525;
Best Local Similarity 100.0%; Pred. No. 2.5e-86;
Matches 523; Conservativeness 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 CTGAGCAGCTGCCAGGGCCCTGCCAGCTGGCTGCTGAGCTGGCAACTCCATAGC 240
Db 1 CTGAGCAGCTGCCAGGGCCCTGCCAGCTGGCTGCTGAGCTGGCAACTCCATAGC 240

Query Match 100.0%; Score 523; DB 6; Length 525;
Best Local Similarity 100.0%; Pred. No. 2.5e-86;
Matches 523; Conservativeness 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 GTGAGGAAGATCAGGGCGATGGCGAGGCCTCCAGGAAGCTGTGTCACCTACAAG 120
Db 1 GTGAGGAAGATCAGGGCGATGGCGAGGCCTCCAGGAAGCTGTGTCACCTACAAG 120

241	GGCCTTTCCCTTACCAAGGGCTCTGGAGGCCCTGGAGGGATCTCCCCGAGTTGGGT	300	QY	361	ATGGAAGAAACTGGGAATGGCCATGCCCATGGGGCTGGAGGGTGGCATGGGGCTTC	420	
241	GGCCTTTCCCTTACCAAGGGCTCTGGAGGCCCTGGAGGGATCTCCCCGAGTTGGGT	300	Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	
QY	301	CCCACCTTGGACACACTGCAGCTGGAGCTCGCCGACATTGGCACCACATCTGGCAGGAG	360	Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480
Db	301	CCCACCTTGGACACACTGCAGCTGGAGCTCGCCGACATTGGCACCACATCTGGCAGGAG	360	QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523
QY	361	ATGGAAGAACTGGGAATGGCCCTGCCATGGGGCTGGAGGGATCTGGCAGGAG	420	Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523
Db	361	ATGGAAGAACTGGGAATGGCCCTGCCATGGGGCTGGAGGGATCTGGCAGGAG	420	RESULT 10			
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	AR363055	525 bp	DNA	PAT 03-SEP-2003
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	LOCUS	AR363055	Sequence 25	from patent US 5194592.
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	DEFINITION	Sequence 25	from patent	US 5194592.
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ACCESSION	AR363055		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	VERSION	AR363055.1	GI:34423821	
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	KEYWORDS			
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	SOURCE	Unknown.		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	ORGANISM	Unknown.		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	Unclassified.		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	1 (bases 1 to 525)		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Yoshida, H.		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Monoclonal antibodies to novel polypeptide derivatives of human		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	granulocyte colony stimulating factor		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Patent: US 5194592-A 25 16-MAR-1993;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Location/Qualifiers		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="genomic DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5194592-A 25 16-MAR-1993;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="unassigned DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5714581-A 1 03-FEB-1998;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="unassigned DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5714581-A 1 03-FEB-1998;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="unassigned DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5714581-A 1 03-FEB-1998;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="unassigned DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5714581-A 1 03-FEB-1998;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="unassigned DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5714581-A 1 03-FEB-1998;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="unassigned DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5714581-A 1 03-FEB-1998;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	REFERENCE	/organism="unknown"		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	AUTHORS	/mol_type="unassigned DNA"		
QY	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	TITLE	Query Match 100.0%; Score 523; DB 6; Length 525;		
Db	421	GCCTCTGCTTCCAGGCCGGCAGGGCTCTAGTGCTCCCATCTGCAGAGCTTC	480	JOURNAL	Best Local Similarity 100.0%; Pred. No. 2.5e-86;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	FEATURES	Mismatches 0; Indels 0; Gaps 0;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	LOCATION/QUALIFIERS	Matches 523; Conservative 0;		
QY	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	SOURCE	Patent: US 5714581-A 1 03-FEB-1998;		
Db	481	CTGGAGGTGTCGTACCCGGTCTACGCCACCTTGGCCAGGCCCT	523	ORIGIN	1. 525		</td

RESULT 11
 HUMGCSF HUMGCSF 660 bp mRNA linear PRI 27-APR-1993
 LOCUS Human granulocyte colony stimulating factor mRNA, complete cds.
 DEFINITION M17706
 ACCESSION M17706.1 GI:183040
 VERSION 1
 KEYWORDS granulocyte colony stimulating factor.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 660)
 Devlin,J.J., Devlin,P.E., Myambo,K., Lilly,M.B., Rado,T.A. and
 Warren,M.K.
 Expression of granulocyte colony-stimulating factor by human cell
 lines
 J. Leukoc. Biol. 41 (4), 302-306 (1987)

JOURNAL J. Leukoc. Biol. 41 (4), 302-306 (1987)
 MEDLINE 87196936
 PUBMED 3494801
 COMMENT Original source text: Human MIA PaCa-2 cell line, cDNA to mRNA,
 (library of Kawasaki et al.), clone pp12.

FEATURES Source
 FEATURES Location/Qualifiers
 1. .660
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 43. .657
 /note="granulocyte colony stimulating factor precursor"
 /codon_start=1
 /protein_id="AAA35882.1"
 /db_xref="GI:183041"
 /translation="MAGPATQSPMKLMLQALQELKCATYKLCHPEEVLGLGSLGIPWAPLSSCPSQLQLA
 LKCLEQVRKIQGDGAALQELKCATYKLCHPEEVLGLGSLGIPWAPLSSCPSQLQLA
 GCLSQLHSGLFYQGLLQALEGISPELGLPTLDLQLDVAFTTIWQQMEELGMAPAL
 QPTQGAMPFAFASAFQRAGGVLVASHLQSFLFLEVSYRLHQQP"

CDS 43. .132
 /note="granulocyte colony stimulating factor signal
 peptide"
 133. .654
 /product="granulocyte colony stimulating factor signal
 peptide"
 mat_peptide
 ORIGIN Unreported.

Query Match 100.0%; Score 523; DB 9; Length 660;
 Best Local Similarity 100.0%; Pred. No. 2.4e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 133 ACCCCCTGGCCCTGCCAGGTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAGCAA 60
 192 sig_peptide
 312 ORIGIN

Db 133 ACCCCCTGGCCCTGCCAGGTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAGCAA 192
 192 sig_peptide
 312 Query Match 100.0%; Score 523; DB 9; Length 1498;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 61 GTGAGGAAGATCAGGGCAGTGGCGAGCAGCTCCAGGAAAGCTGTGCCCCACCTAACAG 60
 120 mat_peptide
 193 GTGAGGAAGATCAGGGCAGTGGCGAGCAGCTCCAGGAAAGCTGTGCCCCACCTAACAG 252
 252 misc_feature
 121 polyA_site
 253 ORIGIN

Db 181 CTGAGCAGCTGCCAGCCAGCTGGAGGTGGCTGGACACTCTGGCATCCCTGGCTCCC 312
 240 Query Match 100.0%; Score 523; DB 9; Length 1498;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 313 CTGAGCAGCTGCCAGCCAGCTGGAGGTGGCTGGACACTCTGGCTCCC 372
 372 Db 181 GTGAGGAAGATCCAGGGCAGTGGCTGGACACTCTGGCTCCC 492
 61 Query Match 100.0%; Score 523; DB 9; Length 1498;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 241 CCCACTTCTTCTACAGGGCTCCTGAGGGATCTCCCGAGTTGGGT 300
 373 GGCTTTCTTCTACAGGGCTCCTGAGGGATCTCCCGAGTTGGGT 432
 432 Db 181 GTGAGGAAGATCCAGGGCAGTGGCTGGACACTCTGGCTCCC 492
 61 Query Match 100.0%; Score 523; DB 9; Length 1498;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 301 CCCACTTCTACAGGGCTCCTGAGGGATCTCCCGAGTTGGGT 360
 433 CCCACTTCTACAGGGCTCCTGAGGGATCTCCCGAGTTGGGT 492
 492 Db 181 GTGAGGAAGATCCAGGGCAGTGGCTGGACACTCTGGCTCCC 420
 121 Query Match 100.0%; Score 523; DB 9; Length 1498;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 361 ATGGAAGAACTGGGAATGGCCCCCTGAGCCACCCAGGGTGCCTACCTGAGCTGGCTCCC 180
 493 ATGGAAGAACTGGGAATGGCCCCCTGAGCCACCCAGGGTGCCTACCTGAGCTGGCTCCC 300
 300 Db 241 CTGTCGCCACCCGAGGAGCTGGTGTGGCTGGACACTCTGGCTCCC 552

QY 181 CTGAGCAGTGCCTCCAGGCCAGCTGGCAGGTGCTTGAGCCAACCTCATAGC 240
 Db 301 CTGAGCAGTGCCTCCAGGCCAGCTGGCAGGTGCTTGAGCCAACCTCATAGC 360
 QY 241 GGCCTTTCTACCAAGGGCTCCTGCAGGGGATCTGGAAAGGGTGGGT 300
 Db 361 GGCCTTTCTACCAAGGGCTCCTGCAGGGGATCTGGAAAGGTGGGT 420
 QY 301 CCCACTTGGACACTGCACTGGACACTGGACACTGGCAGCGAG 360
 Db 421 CCCACTTGGACACTGGACACTGGCAGCGAG 480
 QY 361 ATGGAAGAACTGGGAATGGCCCTGCAGCCACCCAGGGTGCATGCCGCCTC 420
 Db 481 ATGGAAGAACTGGGAATGGCCCTGCAGCCACCCAGGGTGCATGCCGCCTC 540
 QY 421 GCCTCTGCTTTCCAGGCCAGGGTCTAGTTGCAGAGCTC 480
 Db 541 GCCTCTGCTTTCCAGGCCAGGGTCTAGTTGCCTCCATCTGCAGAGCTC 600
 QY 481 CTGGAGGTGTCTACGGCCACCTTGCCAGGGTCCAGCCAGCCCT 523
 Db 601 CTGGAGGTGTCTACGGCCACCTTGCCAGGGTCCAGCCAGCCCT 643

RESULT 13
 E01219 LOCUS E01219 1521 bp RNA linear PAT 29-SEP-1997
 DEFINITION cDNA encoding human G-CSF.
 ACCESSION E01219
 VERSION 1 GI:2169478
 KEYWORDS 1 (bases 1 to 1521)
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 Yamazaki, T., Yamamoto, O., Hirata, Y., Sekimori, Y. and Osada, J.
 AUTHORS NOVEL POLYPEPTIDE
 TITLE Patent: JP 1987129298-A 1 11-JUN-1987;
 JOURNAL CHUGAI PHARMACEUT CO LTD
 COMMENT OS Human
 PN JP 1987129298-A/1
 PD 11-JUN-1987
 PF 02-DEC-1985 JP 1985269455
 PI YAMAZAKI TATSUJI, YAMAMOTO OSAMI, HIRATA YUICHI, PI SEKIMORI
 YASUO,
 .PI OSADA JUICHI
 PC C07K13/00, C07H21/04, C12N15/00, C12P21/02;
 CC strandedness: Double;
 CC topology: Linear;
 CC hypothetical: No;
 CC anti-sense: No;
 CC *source: cell_type=oral cavity tumor cells;
 CC *source: cell_line=CHU-2;
 FH Key Location/Qualifiers
 FH CDS 31. .645 /product='human G-CSF'
 FT sig_peptide 31. .120 /note='human G-CSF preursor'
 FT mat_peptide 121. .642 /note='human G-CSF'
 FT 5' UTR 1. .30
 FT 3' UTR 645. .1499
 FT polyA_site 1500. .1522
 FT mRNA 1. .1522
 FEATURES Location/Qualifiers
 source 1. .1521
 /organism="Homo sapiens"
 /mol_type="genomic RNA"
 /db_xref="taxon:9606"
 ORIGIN

Query Match 100.0%; Score 523; DB 6; Length 1521;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 1 ACCCCCCCTGGCCAGCTCCCTGGCCAGAGCTCTGCTCAAGTGCTTAGGCCAA 60
 Db 121 ACCCCCCCTGGCCAGCTCCCTGGCCAGAGCTCTGCTCAAGTGCTTAGGCCAA 180
 Qy 61 GTGAGGAAGATCCAGGGATGGCGATGGCGAGGGTCCAGGAACTACAAG 120
 Db 181 GTGAGGAAGATCCAGGGATGGCGAGGGTCCAGGAAAGCTGTGTCACCTACAAG 240
 Qy 121 CTGTGCCACCCAGGGATGGCTGAGCTCTGGCATCCCCTGGCTCCC 180
 Db 241 CTGTGCCACCCAGGGATGGCTGAGCTCTGGCATCCCCTGGCTCCC 300
 Qy 181 CTGAGCAGTGCCTGCAGGCTGGCAGCTGGCTTGAGCCAACCTCATAGC 240
 Db 301 CTGAGCAGTGCCTGCAGGCTGGCAGCTGGCTTGAGCCAACCTCATAGC 360
 Qy 241 GCCCTTTCTACCAAGGGTCTGCAGGGATCTCCCATCTGCAGTTGGGT 300
 Db 361 GCCCTTTCTACCAAGGGTCTGCAGGGATCTGGCTTGAGCCAACCTCATAGC 420
 Qy 301 CCCACCTTGACACACTGGCACTGGCCCTGCAGCCACCCAGGGTGCCTC 420
 Db 541 CCCACCTTGACACACTGGCACTGGCCATGCCGCCTCTGAGCTGGCTTC 540
 Qy 361 ATGGAAGAAACTGGCAATGGCCCTGAGCTGGCCATGCCGCCTC 540
 Db 481 ATGGAAGAAACTGGGAATGGCCCTGAGCTGGCCATGCCGCCTC 540
 Qy 421 GCCTCTGCTTTCCAGGCCAGGGTCCATCTGCAGAGCTCTGGCAGCAG 360
 Db 541 GCCTCTGCTTTCCAGGCCAGGGTCCATCTGCAGAGCTCTGGCAGCAG 420
 Qy 481 CTGGAGGTGTCTACGGCCACCTTGCCAGGGTCCATGCCAGCCCT 523
 Db 601 CTGGAGGTGTCTACGGCCACCTTGCCAGGGTCCATGCCAGCCCT 643

RESULT 14
 I05333 LOCUS 105333 1525 bp DNA linear PAT 02-DEC-1994
 DEFINITION Sequence 11 from Patent EP 0256843.
 ACCESSION 105333
 VERSION 105333.1 GI:591091
 KEYWORDS Unknown
 SOURCE Unknown
 ORGANISM Unknown
 UNCLASSIFIED 1 (bases 1 to 1525)
 REFERENCE Devlin,J.J., Devlin,P.E., Kawasaki,E.S. and Warren,M.K.
 AUTHORS Title Expression of g-csf and mutants thereof and their use
 JOURNAL Patent: EP 0256843-A1 11-24-FEB-1988;
 FEATURES Location/Qualifiers
 1. .1525
 /organism="unknown"
 /mol_type="unassigned DNA"

Query Match 100.0%; Score 523; DB 6; Length 1525;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 1 ACCCCCCCTGGCCAGCTCCCTGGCCAGAGCTCTGCTCAAGTGCTTAGGCCAA 60
 Db 133 ACCCCCCCTGGCCCTGCGAGCTCCCTGGCCAGAGCTCTGCTCAAGTGCTTAGGCCAA 192
 Qy 61 GTGAGGAAGATCCAGGGATGGCGAGGGTCCAGGAAAGCTGTGTCACCTACAAG 120
 Db 193 GTGAGGAAGATCCAGGGATGGCGAGGGTCCAGGAAAGCTGTGTCACCTACAAG 252

121 CTGAGGCCACCCGAGGAACCTGGACTCTGGACACTCTGGCATCCTGGCTCCC 180
 253 CTGAGGCCACCCGAGGAACCTGGACTCTGGACACTCTGGCATCCTGGCTCCC 312
 Qy 301 CCCACCTTGGACACACTGGAGCTGGCAGGCTGCTGAGCCAACTCCATAGC 420
 Db 433 CCCACCTTGGACACACTGGAGCTGGCAGGCTGCTGAGCCAACTCCATAGC 492
 Qy 361 ATGGAAGAAACTGGGAATGGCCCCCTGGAGCCACCCAGGGTGCCTGCAGAGCTTC 480
 Db 493 ATGGAAGAAACTGGGAATGGCCCCCTGGAGCCACCTGGCAGGCTTC 552
 Qy 421 GCCTCTGCTTTCCAGGCCCCCTGGAGCCACCCAGGGTGCCTGCAGAGCTTC 421
 Db 553 GCCTCTGCTTTCCAGGCCCCCTGGAGCCACCTGGCAGGCTTC 612
 Qy 481 CTGGAGGTGTTCTACCGCGTTCTAGTTGCCTCCATAGCCACCTTGCCCAGCCCT 523
 Db 613 CTGGAGGTGTTCTACCGCGTTCTAGTTGCCTCCACCTTGCCCAGCCCT 655
 Search completed: October 9, 2004, 03:08:31
 Job time : 2729.62 secs

Qy 301 CCCACCTTGGACACACTGGGGCTCTGGAGCCACTTGGCACCCAGGGATCTCCCCGGAGTTGGGT 300
 Db 433 CCCACCTTGGACACACTGGGGCTCTGGAGCCACTTGGCACCCAGGGATCTCCCCGGAGTTGGGT 372
 Qy 361 ATGGAAGAAACTGGGAATGGCCCCCTGGAGCCACCCAGGGTGCCTGCAGAGCTTC 420
 Db 493 ATGGAAGAAACTGGGAATGGCCCCCTGGAGCCACCCAGGGTGCCTGCAGAGCTTC 492
 Qy 421 GCCTCTGCTTCCAGGCCCCGGAGGGTCTAGTTGCCTCCATCTGCAGAGCTTC 480
 Db 553 GCCTCTGCTTCCAGGCCCCGGAGGGTCTAGTTGCCTCCATCTGCAGAGCTTC 612
 Qy 481 CTGGAGGTGTTCTACCGCGTTCTACGCCACCTTGCCCAGCCCT 523
 Db 613 CTGGAGGTGTTCTACCGCGTTCTACGCCACCTTGCCCAGCCCT 655

RESULT 15

LOCUS	108669	1525 bp	DNA	linear	PAT 02-DEC-1994
DEFINITION	Sequence 1 from Patent WO 8801297.				
ACCESSION	108669				
VERSION	108669.1				
KEYWORDS					
SOURCE	Unknown.				
ORGANISM	Unclassified.				
REFERENCE	1 (bases 1 to 1525)				
AUTHORS	Devlin, J.J., Kawasaki, E.S. and Warren, M.K.				
JOURNAL	Patent: WO 8801297-A1 25-FEB-1988;				
FEATURES	Location/Qualifiers				
Source	1..1525				
	/organism="unknown"				
	/mol_type="unassigned DNA"				
ORIGIN					

Query Match 100.0%; Score 523; DB 6; Length 1525;
 Best Local Similarity 100.0%; Pred. No. 2.1e-86;
 Matches 523; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1	ACCCCCCTGGCCCTGGCAAGCTCCCTGGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 60
Db 133	ACCCCCCTGGCCCTGGCAAGCTCCCTGGCCAGAGCTTCTGCTCAAGTGCTTAGAGCAA 192
Qy 61	GTGAGGAAGATCCAGGGCGATGGGCCAGGGCTCCAGGAGAACGCTGTGCCCCACCTACAAG 120
Db 193	GTGAGGAAGATCCAGGGCGATGGGCCAGGGAGCTGGTGTGCCCCACCTACAAG 252
Qy 121	CTGTGCCACCCAGGCCAGGGAGCTGGTGTGCTGGACACTCTGGCATCCTGGCTCCC 180
Db 253	CTGTGCCACCCAGGCCAGGGAGCTGGTGTGCTGGACACTCTGGCATCCTGGCTCCC 312
Qy 181	CTGAGCAGCTGCCACCCAGGCCAGGGAGCTGGTGTGCTGGACACTCTGGCATCCTGGCTCCC 240
Db 313	CTGAGCAGCTGCCACCCAGGCCAGGGAGCTGGTGTGCTGGACACTCTGGCATCCTGGCTCCC 372
Qy 241	GGCCTTTCTCTTACCCAGGGCTCCTGGAGCCCTGGAAAGGGATCTCCCCGGAGTTGGGT 300
Db 373	GGCCTTTCTCTTACCCAGGGCTCCTGGAGCCCTGGAAAGGGATCTCCCCGGAGTTGGGT 432

This Page Blank (uspto)

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 9, 2004, 00:53:40 ; Search time 1111.24 Seconds

(without alignments)
4837.123 Million cell updates/secTitle: US-10-009-792C-26
Perfect score: 180
Sequence: 1 atgttaaggttaaaaagaa.....tcctgctcaagtgttagag 180Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 27513289 seqs, 14931090276 residues

Total number of hits satisfying chosen parameters: 55026578

Minimum DB seq length: 0
Maximum DB seq length: 2000000000Post-processing: Minimum Match 0%
Maximum Match 100%
Listing First 45 summariesDatabase : EST:
1: em_estba:*
2: em_estbum:*
3: em_estin:*
4: em_estmu:*
5: em_estov:*
6: em_estpl:*
7: em_estro:*
8: em_htc:*
9: gb_est1:*
10: gb_est2:*
11: gb_htc:*
12: gb_est3:*
13: gb_est4:*
14: gb_est5:*
15: em_estfun:*
16: em_estom:*
17: em_gss_hum:*
18: em_gss_inv:*
19: em_gss_pln:*
20: em_gss_vrt:*
21: em_gss_fun:*
22: em_gss_mam:*
23: em_gss_mus:*
24: em_gss_pro:*
25: em_gss_rod:*
26: em_gss_phg:*
27: em_gss_vrl:*
28: gb_gssi:*
29: gb_gss2:*RESULT 1
CB705562
LOCUS
DEFINITIONCB705562 trcx1-000003-c7-a trcx1 (10261) Rattus norvegicus cDNA clone
trcx1-00003-c7 5', mRNA sequence.ACCESSION CB705562.1
VERSION GI:29762710
KEYWORDS EST.

Rattus norvegicus (Norway rat)

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae;

Rattus.

REFERENCE 1 (bases 1 to 346)

AUTHORS Amgen EST Program.

TITLE Amgen Rat EST Program

JOURNAL Unpublished (2003)

COMMENT Contact: Dan Fitzpatrick

Amgen, Inc

One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA

Tel: 805 447-4881

Plate: 00003 row: C column: 7.

FEATURES Location/Qualifiers

Source 1. 346 /organism="Rattus norvegicus"

/mol_type="mRNA"

/db_xref="taxon:10116"

SUMMARIES

Result No. Score Query Match Length DB ID Description

1 52 28.9 346 14 CB705562 AMGNNUC:T

2 49 27.2 314 14 CB136760 K-EST0189

3 49 27.2 554 14 CB126975 K-EST0176

4 49 27.2 579 14 CB127794 K-EST0177

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No. Score Query Match Length DB ID Description

1 52 28.9 346 14 CB705562 AMGNNUC:T

2 49 27.2 314 14 CB136760 K-EST0189

3 49 27.2 554 14 CB126975 K-EST0176

4 49 27.2 579 14 CB127794 K-EST0177

/clone="trcxl-00003-c7"
/tissue_type="choroid plexus brain"
/cDNA_Lib="trcxl (10261)"
/note="Vector: pcAv; Site_1: SalI; Site_2: NotI; choroid
plexus brain region"

ORIGIN

Query Match	27.2%	Score 49;	DB 14;	Length 314;
Best Local Similarity	84.6%	Pred. No.	0.00028;	
Matches	55;	Mismatches	0;	Indels 0;
Conservative	0;	Gaps	0;	

QY 28.9%; Score 52; DB 14; Length 346;
Best Local Similarity 72.8%; Pred. No. 3.4e-05;
Matches 67; Conservative 0; Mismatches 25; Indels 0; Gaps 0;

QY 89 GCGGCAACCATACCATACGGAAAGGACTCCGTAGGTCCAGGCCAGCTCCC 148
Db 28 GCGCGGAAGTCCAAAGTCCATGACCCAGTCTAGAACCCCCCTGGCCCTGCCAGCTCCC 87

QY 149 TGCCCAAGAGCTTCTGCTCAGTGCTTAGAG 180
Db 88 TGCCCCAGAGCTTCTGCTCAGTGCTTAGAG 119

RESULT 2

CB136760 LOCUS CB136760 314 bp mRNA linear EST 29-JAN-2003
DEFINITION K-EST0189338 L5HLK1 Homo sapiens cDNA clone L5HLK1-42-H10 5', mRNA sequence.
ACCESSION CB136760
VERSION CB136760.1 GI:28104242
KEYWORDS EST
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 554)
AUTHORS Kim,N.S., Hahn,Y., Oh,J.H., Lee,J.Y., Ahn,H.Y., Chu,M.Y., Kim,M.R., Oh,K.J., Cheong,J.E., Sohn,H.Y., Kim,J.M., Park,H.S., Kim,S. and Kim,Y.S.
TITLE 21C Frontier Korean EST Project 2001
JOURNAL Unpublished (2002)
COMMENT Contact: Kim YS
Genome Research Center
Korea Research Institute of Bioscience & Biotechnology
52 Boeun-dong Yuseong-gu, Daejeon 305-333, South Korea
Tel: +82-42-860-4470
Fax: +82-42-860-4409
Email: Yongsung@mail.kribb.re.kr
Plate: 14 row: A column: 07
High quality sequence stop: 554.
Location/Qualifiers 1..554

FEATURES

source /organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
/clone="C1SNU17-14-A07"
/sex="F"
/tissue_type="Uterine"
/organism="Homo sapiens"
/cell_type="Epithelial"
/cell_line="SNU-17"
/lab_host="Top10F"
/clone_lib="C1SNU17"
/note="Organ: Cervix; Vector: PCNS-D2; Site_1: EcoRI; Site_2: NotI; The poly (A)+ RNA was dephosphorylated with bacterial alkaline phosphatase (BAP) and then decapped with tobacco acid pyrophosphatase (TAP). The decapped intact mRNA was ligated with DNA-RNA linker including EcoRI site by treatment of T4 RNA ligase and the first strand cDNA was synthesized from oligo dT-selected mRNA by priming with dT-tailed vector. The dT-tailed vector was adjusted to have about 60nt. The cDNA vector was circularized with E. coli DNA ligase after digestion of ECO RI which site is also included in vector. An RNA strand converted to a DNA strand by Okayama-Berg method. The obtained cDNA vectors were used for transformation of competent cells E. coli Top10F, by electroporation method. The cDNA libraries constructed by this method are full-length enriched cDNA library."

ORIGIN

Query Match	27.2%	Score 49;	DB 14;	Length 554;
-------------	-------	-----------	--------	-------------

Best Local Similarity 84.6%; Pred. No. 0.00034; Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

Qy 116 AGGAAAGGACTCCGTAGTCCAGGCCAGCTCCTGCCAGGCTTCCCTGCTCAAGTGCT 175
Db 121 AGGAAGCCACCCCCCTGGCCAGCTCCCTGCCAGGCTTCCCTGCTCAAGTGCT 180

Qy 176 TAGAG 180
Db 181 TAGAG 185

RESULT 5
BG548320

LOCUS 598 bp mRNA linear EST 04-APR-2001
DEFINITION NIH_MGC_77 Homo sapiens cDNA clone IMAGE:4703159 5', mRNA sequence.

ACCESSION BG548320
VERSION BG548320.1
KEYWORDS EST.

SOURCE Organism Homo sapiens (human)
Organism Homo sapiens (human)
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Butheria; Primates; Catarrhini; Hominidae; Homo.
National Institutes of Health, Mammalian Gene Collection (MGC)
Unpublished (1999)

REFERENCE AUTHORS TITLE
Contact: Robert Strausberg, Ph.D.
Email: cgabbs-r@mail.nih.gov
Tissue Procurement: CLONTECH Laboratories, Inc.
CDNA Library Preparation by: The I.M.A.G.E. Consortium (LLNL)
CDNA Library Arrayed by: Incyte Genomics, Inc.
DNA Sequencing by: Incyte Genomics, Inc.
Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at:
<http://image.llnl.gov>
Plate: LLCM1541 row: b column: 24
High quality sequence stop: 597.

FEATURES Source
1. .598
/organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
/clone="IMAGE:4703159"
/lab_host="DH10B (T1 phage-resistant)"
/clone_id="NIH_MGC_77"
/note="Organ: lung; Vector: pDNR-LIB (Clontech); Site 1: SfiI (ggccattatggcc); Site 2: SfiI (ggccattatggcc); Site 3: SfiI (ggccattatggcc); Site 3 adaptor sequence: 5'-CACGGCCATATTGGCC-3', and 3' adaptor sequence: 5'-ATTCTAGAGGGCGAGGGGGCACATG-dT(30)BN-3' (where B = A, C, or G and N = A, C, G, or T). Average insert size 1.9 kb (range 0.5-4.0 kb). 12/15 colonies contained inserts by PCR. This library was enriched for full-length clones and was constructed by Clontech Laboratories (Palo Alto, CA). Note: this is a NIH_MGC Library."

ORIGIN Query Match 27.2%; Score 49; DB 12; Length 598;
Best Local Similarity 84.6%; Pred. No. 0.00035;
Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

Qy 116 AGGGAAAGGACTCCGTAGTCCAGGCCAGGCTTCCCTGCCAGGCTTCCCTGCTCAAGTGCT 175
Db 80 AGGAAGCCACCCCCCTGGCCAGCTCCCTGCCAGGCTTCCCTGCTCAAGTGCT 139

Qy 176 TAGAG 180
Db 140 TAGAG 144

RESULT 6
AY414901

LOCUS 608 bp DNA linear GSS 17-DEC-2003
DEFINITION Pan troglodytes CSF3 gene, VIRTUAL TRANSCRIPT, partial sequence,

Query Match Best Local Similarity 84.6%; Pred. No. 0.00035;
Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

	FEATURES	source	Location/Qualifiers
ACCESSION	genomic survey sequence.		
VERSION	AY414901 AY414901.1 GI:39770860		
KEYWORDS	GSS.		
SOURCE	Pan troglodytes (chimpanzee)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Pan. 1 (bases 1 to 608)		
REFERENCE	Clark,A.G., Glaowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
AUTHORS			
TITLE	Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios		
JOURNAL	Science 302 (5652), 1960-1963 (2003)		
PUBMED	14671302		
REFERENCE	2 (bases 1 to 608)		
AUTHORS	Clark,A.G., Glaowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
TITLE	Direct Submission		
JOURNAL	Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA		
COMMENT	This sequence was made by sequencing genomic exons and ordering them based on alignment.		
FEATURES	Location/Qualifiers		
source	1. .608 /organism="Pan troglodytes" /mol_type="genomic DNA" /db_xref="taxon:9598". <1..>608 /gene="CSF3" /locus_tag="HCM5378"		
ORIGIN			
RESULT	8		
CD013926	Query Match 27.2%; Score 49; DB 29; Length 608; Best Local Similarity 84.6%; Pred. No. 0.00035; Matches 55; Conservative 0; Indels 0; Gaps 0;		
DEFINITION	90138855 Single gene library Homo sapiens cDNA, mRNA sequence.		
ACCESSION	CD013926		
VERSION	CD013926.1 GI:37777456		
KEYWORDS	EST.		
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 622)		
REFERENCE	Jin,P., Fu,G.K., Wilson,A.D., Yang,J., Chien,D., Hawkins,P.R., Au-Young,J. and Stuve,L.L.		
AUTHORS			
TITLE	PCR isolation and cloning of novel splice variant mRNAs from known drug target genes		
JOURNAL	Unpublished (2003)		
COMMENT	Contact: Jin, P. Incyte Corporation 3160 Porter Drive, Palo Alto, CA 94304, USA Tel: 650 621 8639 Fax: 650 621 8965 Email: pjin@incyte.com		
ORIGIN			
RESULT	27.2%; Score 49; DB 29; Length 624; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Indels 0; Gaps 0;		
CD013926	Query Match 27.2%; Score 49; DB 14; Length 622; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;		
DEFINITION	AGGAAGGACTCCGTAGGTCCAGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 175		
ACCESSION	QY 116 AGGAAGGACTCCGTAGGTCCAGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
VERSION	Db 91 AGGAAGGCCACCCCTGGCCCTGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
KEYWORDS			
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Butheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 624)		
REFERENCE	Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
AUTHORS			
TITLE	Inferreding nonneutral evolution from human-chimp-mouse orthologous gene trios		
JOURNAL	Science 302 (5652), 1960-1963 (2003)		
PUBMED	14671302		
REFERENCE	2 (bases 1 to 624)		
AUTHORS	Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
TITLE	Direct Submission (16-NOV-2003) Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA		
JOURNAL	Submitted (16-NOV-2003)		
COMMENT	This sequence was made by sequencing genomic exons and ordering them based on alignment.		
FEATURES	Location/Qualifiers		
source	1. .624 /organism="Homo sapiens"		
ORIGIN			
RESULT	8		
CD013926	Query Match 27.2%; Score 49; DB 29; Length 622; Best Local Similarity 84.6%; Pred. No. 0.00035; Matches 55; Conservative 0; Indels 0; Gaps 0;		
DEFINITION	90138855 Single gene library Homo sapiens cdNA, mRNA sequence.		
ACCESSION	CD013926		
VERSION	CD013926.1 GI:37777456		
KEYWORDS	EST.		
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 622)		
REFERENCE	Jin,P., Fu,G.K., Wilson,A.D., Yang,J., Chien,D., Hawkins,P.R., Au-Young,J. and Stuve,L.L.		
AUTHORS			
TITLE	PCR isolation and cloning of novel splice variant mRNAs from known drug target genes		
JOURNAL	Unpublished (2003)		
COMMENT	Contact: Jin, P. Incyte Corporation 3160 Porter Drive, Palo Alto, CA 94304, USA Tel: 650 621 8639 Fax: 650 621 8965 Email: pjin@incyte.com		
ORIGIN			
RESULT	27.2%; Score 49; DB 29; Length 624; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Indels 0; Gaps 0;		
CD013926	Query Match 27.2%; Score 49; DB 14; Length 622; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;		
DEFINITION	AGGGAAAGGACTCCGTAGGTCCAGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 175		
ACCESSION	QY 116 AGGGAAAGGACTCCGTAGGTCCAGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
VERSION	Db 91 AGGGAAAGGCCACCCCTGGCCCTGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
KEYWORDS			
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Butheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 624)		
REFERENCE	Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
AUTHORS			
TITLE	Inferreding nonneutral evolution from human-chimp-mouse orthologous gene trios		
JOURNAL	Science 302 (5652), 1960-1963 (2003)		
PUBMED	14671302		
REFERENCE	2 (bases 1 to 624)		
AUTHORS	Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
TITLE	Direct Submission (16-NOV-2003) Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA		
JOURNAL	Submitted (16-NOV-2003)		
COMMENT	This sequence was made by sequencing genomic exons and ordering them based on alignment.		
FEATURES	Location/Qualifiers		
source	1. .624 /organism="Homo sapiens"		
ORIGIN			
RESULT	8		
CD013926	Query Match 27.2%; Score 49; DB 29; Length 622; Best Local Similarity 84.6%; Pred. No. 0.00035; Matches 55; Conservative 0; Indels 0; Gaps 0;		
DEFINITION	90138855 Single gene library Homo sapiens cdNA, mRNA sequence.		
ACCESSION	CD013926		
VERSION	CD013926.1 GI:37777456		
KEYWORDS	EST.		
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 622)		
REFERENCE	Jin,P., Fu,G.K., Wilson,A.D., Yang,J., Chien,D., Hawkins,P.R., Au-Young,J. and Stuve,L.L.		
AUTHORS			
TITLE	PCR isolation and cloning of novel splice variant mRNAs from known drug target genes		
JOURNAL	Unpublished (2003)		
COMMENT	Contact: Jin, P. Incyte Corporation 3160 Porter Drive, Palo Alto, CA 94304, USA Tel: 650 621 8639 Fax: 650 621 8965 Email: pjin@incyte.com		
ORIGIN			
RESULT	27.2%; Score 49; DB 29; Length 624; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Indels 0; Gaps 0;		
CD013926	Query Match 27.2%; Score 49; DB 14; Length 622; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;		
DEFINITION	AGGGAAAGGACTCCGTAGGTCCAGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 175		
ACCESSION	QY 116 AGGGAAAGGACTCCGTAGGTCCAGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
VERSION	Db 91 AGGGAAAGGCCACCCCTGGCCCTGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
KEYWORDS			
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Butheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 624)		
REFERENCE	Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
AUTHORS			
TITLE	Inferreding nonneutral evolution from human-chimp-mouse orthologous gene trios		
JOURNAL	Science 302 (5652), 1960-1963 (2003)		
PUBMED	14671302		
REFERENCE	2 (bases 1 to 624)		
AUTHORS	Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
TITLE	Direct Submission (16-NOV-2003) Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA		
JOURNAL	Submitted (16-NOV-2003)		
COMMENT	This sequence was made by sequencing genomic exons and ordering them based on alignment.		
FEATURES	Location/Qualifiers		
source	1. .624 /organism="Homo sapiens"		
ORIGIN			
RESULT	8		
CD013926	Query Match 27.2%; Score 49; DB 29; Length 622; Best Local Similarity 84.6%; Pred. No. 0.00035; Matches 55; Conservative 0; Indels 0; Gaps 0;		
DEFINITION	90138855 Single gene library Homo sapiens cDNA, mRNA sequence.		
ACCESSION	CD013926		
VERSION	CD013926.1 GI:37777456		
KEYWORDS	EST.		
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Butheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 622)		
REFERENCE	Jin,P., Fu,G.K., Wilson,A.D., Yang,J., Chien,D., Hawkins,P.R., Au-Young,J. and Stuve,L.L.		
AUTHORS			
TITLE	PCR isolation and cloning of novel splice variant mRNAs from known drug target genes		
JOURNAL	Unpublished (2003)		
COMMENT	Contact: Jin, P. Incyte Corporation 3160 Porter Drive, Palo Alto, CA 94304, USA Tel: 650 621 8639 Fax: 650 621 8965 Email: pjin@incyte.com		
ORIGIN			
RESULT	27.2%; Score 49; DB 29; Length 624; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Indels 0; Gaps 0;		
CD013926	Query Match 27.2%; Score 49; DB 14; Length 622; Best Local Similarity 84.6%; Pred. No. 0.00036; Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;		
DEFINITION	AGGGAAAGGACTCCGTAGGTCCAGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 175		
ACCESSION	QY 116 AGGGAAAGGCCACCCCTGGCCCTGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
VERSION	Db 91 AGGGAAAGGCCACCCCTGGCCCTGCCAGTCCCTGCCAGAGCTCCTGCTCAA GTGCT 150		
KEYWORDS			
SOURCE	Homo sapiens (human)		
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Butheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 624)		
REFERENCE	Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.		
AUTHORS			
TITLE	Inferreding nonneutral evolution from human-chimp-mouse orthologous gene trios		

RESULT 9
 Db CD013925 CD013925 789 bp mRNA linear EST 21-OCT-2003
 LOCUS DEFINITION 90138939 Single gene library Homo sapiens cDNA, mRNA sequence.
 ACCESSION CD013925
 VERSION CD013925.1 GI:37777455
 KEYWORDS EST.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 789)
 REFERENCE Jin, P., Fu, G.K., Wilson, A.D., Yang, J., Chien, D., Hawkins, P.R.,
 AUTHORS Au-Young, J. and Stuve, L.L.
 TITLE PCR isolation and cloning of novel splice variant mRNAs from known
 drug target genes
 Unpublished (2003)
 COMMENT Contact: Jin, P.
 Incyte Corporation
 3160 Porter Drive, Palo Alto, CA 94304, USA
 Tel: 650 621 8639
 Fax: 650 621 8965
 Email: pjin@incyte.com.

FEATURES source
 1. .789 Location/Qualifiers
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /clone_lib="Single gene library"
 /note="Vector: pDrive Cloning Vector; RT-PCR was performed
 using gene-specific primers flanking the open-reading
 frame. PCR products were subcloned into pDrive Cloning
 Vector and sequenced completely using M13 forward and
 reverse primers. Sequencing gaps were closed by
 re-sequencing using primers flanking the gapped areas."
 ORIGIN

Query Match Score 49; DB 14; Length 802;
 Best Local Similarity 84.6%; Pred. No. 0.00039;
 Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;
 DEFINITION BM009358
 LOCUS NIH_MGC_41 Homo sapiens cDNA clone IMAGE:5443757 5',
 mRNA sequence.
 ACCESSION BM009358
 VERSION BM009358.1 GI:16523712
 KEYWORDS EST.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 817)
 REFERENCE NIH-MGC http://mgc.nci.nih.gov/
 AUTHORS National Institutes of Health, Mammalian Gene Collection (MGC)
 TITLE Unpublished (1999)
 JOURNAL Tissue Procurement: DCTD/DTP
 COMMENT Contact: Robert Strausberg, Ph.D.
 Email: cgapbs-r@mail.nih.gov
 TISSUE PREPARATION: Ling Hong/Rubin Laboratory
 CDNA LIBRARY ARRAYER: The I.M.A.G.E. Consortium (LNL)
 DNA SEQUENCING: Incyte Genomics, Inc.
 CLONE DISTRIBUTION: MGC clone distribution information can be
 found through the I.M.A.G.E. Consortium/LNL at:
 http://image.llnl.gov/
 PLATE: LLCM14284 row: j column: 15
 HIGH QUALITY SEQUENCE STOP: 249.
 LOCATION/QUALIFIERS 1. .802

JOURNAL COMMENT
 CONTACT: Robert Strausberg, Ph.D.
 EMAIL: cgapbs-r@mail.nih.gov
 TISSUE PROCUREMENT: Kristi A. Egland, Ira Pastan
 CDNA LIBRARY PREPARATION: Invitrogen Corp
 CDNA LIBRARY ARRAYER: The I.M.A.G.E. Consortium (LNL)
 DNA SEQUENCING: Agencourt Bioscience Corporation
 CLONE DISTRIBUTION: MGC clone distribution information can be
 found through the I.M.A.G.E. Consortium/LNL at:
 http://image.llnl.gov/
 PLATE: LLAM14284 row: j column: 15
 HIGH QUALITY SEQUENCE STOP: 249.
 LOCATION/QUALIFIERS 1. .802

/organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /clone="IMAGE:6722223"
 /cell_line="ZR-75-1, MCF7, SK-BR-3, MDA-MB-231,
 INTERT-HME1, LNCAp"
 /lab_host="EMDH10B"
 /clone_lib="MAPCL"
 /note="Vector: PCMV-SPORT6; Site 1: EcoRV; Site 2: Not I;
 Subtracted with brain, liver, lung, kidney and muscle.
 Directionally cloned. Priming method: oligo-dT. Average
 Insert size: 1800 bp. Library amplification: 26,000 fold.
 Kristi A. Egland, James J. Vincent, Robert Strausberg,
 Bungkook Lee & Ira Pastan: Discovery of new breast
 cancer genes encoding membrane and secreted proteins.
 Manuscript submitted."

FEATURES source
 1. .789 Location/Qualifiers
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /clone_lib="Single gene library"
 /note="Vector: pDrive Cloning Vector; RT-PCR was performed
 using gene-specific primers flanking the open-reading
 frame. PCR products were subcloned into pDrive Cloning
 Vector and sequenced completely using M13 forward and
 reverse primers. Sequencing gaps were closed by
 re-sequencing using primers flanking the gapped areas."
 ORIGIN

Query Match Score 49; DB 14; Length 802;
 Best Local Similarity 84.6%; Pred. No. 0.00039;
 Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;
 DEFINITION BM009358
 LOCUS NIH_MGC_41 Homo sapiens cDNA clone IMAGE:5443757 5',
 mRNA sequence.
 ACCESSION BM009358
 VERSION BM009358.1 GI:16523712
 KEYWORDS EST.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 1 (bases 1 to 817)
 REFERENCE NIH-MGC http://mgc.nci.nih.gov/
 AUTHORS National Institutes of Health, Mammalian Gene Collection (MGC)
 TITLE Unpublished (1999)
 JOURNAL Tissue Procurement: DCTD/DTP
 COMMENT Contact: Robert Strausberg, Ph.D.
 Email: cgapbs-r@mail.nih.gov
 TISSUE PREPARATION: Ling Hong/Rubin Laboratory
 CDNA LIBRARY ARRAYER: The I.M.A.G.E. Consortium (LNL)
 DNA SEQUENCING: Incyte Genomics, Inc.
 CLONE DISTRIBUTION: MGC clone distribution information can be
 found through the I.M.A.G.E. Consortium/LNL at:
 http://image.llnl.gov/
 PLATE: LLCM1921 row: m column: 06
 HIGH QUALITY SEQUENCE STOP: 745.
 LOCATION/QUALIFIERS 1. (bases 1 to 802)

REFERENCE NIH-MGC http://mgc.nci.nih.gov/
 AUTHORS National Institutes of Health, Mammalian Gene Collection (MGC)
 TITLE

ACCESSION BI822673
 VERSION BI:15934223
 KEYWORDS EST.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 948)
 AUTHORS NIH-MGC http://mgc.nci.nih.gov/
 TITLE National Institutes of Health, Mammalian Gene Collection (MGC)
 JOURNAL Unpublished (1999)
 COMMENT Contact: Robert Strausberg, Ph.D.
 Email: cgaps-r@mail.nih.gov
 Tissue Procurement: Life Technologies, Inc.
 CDNA Library Preparation: Life Technologies, Inc. (LLNL)
 DNA Sequencing by: The I.M.A.G.E. Consortium (LLNL)
 Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov
 Plate: LLAMIL1441 row: k column: 02
 High quality sequence stop: 845.
 FEATURES SOURCE
 1. .948 Location/Qualifiers
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /clone="IMAGE:5177209"
 /lab_host="DH10B"
 /clone_lib="NIH_MGC_115"
 /note="Organ: pooled brain, lung, testis; Vector: pCMV-SPORT6; Site_1: NotI; Site_2: EcoRV (destroyed); RNA source anonymous pool of 6 male brains, age range 23-27; 1 male lung, age 27; and 1 male testis, age 69. Library is oligo-dT primed and directionally cloned (EcoRV site is destroyed upon cloning). Average insert size 1.8 kb, insert size range 1-3 kb. Library is normalized and enriched for full-length clones and was constructed by C. Gruber (Invitrogen). Research Genetics tracking code 021. Note: this is a NIH_MGC Library."
 ORIGIN
 Query Match Score 49; DB 12; Length 983;
 Best Local Similarity 84.6%; Pred. No. 0.00042;
 Matches 55; Conservative 0; Mismatches 10; Indels 0; Gaps 0;
 Qy 116 AGGGAAAGGACTCCGGTTAGGTCCAGCCAGCTCCCTGCCAGAGCTCCTGCTCAAGTGC 175
 Db 287 AGGAAGCCACCCCCCTGGGCCAGCTCCCTGCCAGCTCCTGCTCAAGTGC 346
 Qy 176 TAGAG 180
 Db 347 TAGAG 351
 RESULT 15
 BM557421 BM557421 983 bp mRNA linear EST 20-FEB-2002
 LOCUS AGENCOURT_6578800 NIH_MGC_41 Homo sapiens cDNA clone IMAGE:5466747
 DEFINITION 5' mRNA sequence.
 ACCESSION BM557421
 VERSION BM557421.1 GI:18799394
 KEYWORDS EST.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 983)
 AUTHORS NIH-MGC http://mgc.nci.nih.gov/
 TITLE National Institutes of Health, Mammalian Gene Collection (MGC)
 JOURNAL Unpublished (1999)
 COMMENT Contact: Robert Strausberg, Ph.D.
 Email: cgaps-r@mail.nih.gov

This Page Blank (uspto)

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 9, 2004, 03:08:44 ; Search time 154.651 Seconds

(without alignments)
 5900.506 Million cell updates/sec

Title: US-10-009-792C-26

Perfect score: 180

Sequence: 1 atgttaaatccaaatggat.....tcctgtcaatgcgttagag 180

Scoring table: IDENTITY-NUC
 Gapop 10_0 , Gapext 1.0

Searched: 3340653 seqs, 2534783454 residues

Total number of hits satisfying chosen parameters:

6681306

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published Applications NA:*

1: /cgn2_6/ptodata/2/pubpna/us07_PUBCOMB.seq;*

2: /cgn2_6/ptodata/2/pubpna/pct_NEW_PUB.seq;*

3: /cgn2_6/ptodata/2/pubpna/us06_PUBCOMB.seq;*

4: /cgn2_6/ptodata/2/pubpna/us07_NEW_PUB.seq;*

5: /cgn2_6/ptodata/2/pubpna/us07_PUBCOMB.seq;*

6: /cgn2_6/ptodata/2/pubpna/pctus_PUBCOMB.seq;*

7: /cgn2_6/ptodata/2/pubpna/us08_NEW_PUB.seq;*

8: /cgn2_6/ptodata/2/pubpna/us09_PUBCOMB.seq;*

9: /cgn2_6/ptodata/2/pubpna/us09A_PUBCOMB.seq;*

10: /cgn2_6/ptodata/2/pubpna/us09B_PUBCOMB.seq;*

11: /cgn2_6/ptodata/2/pubpna/us09C_PUBCOMB.seq;*

12: /cgn2_6/ptodata/2/pubpna/us09_NEW_PUB.seq;*

13: /cgn2_6/ptodata/2/pubpna/us10A_PUBCOMB.seq;*

14: /cgn2_6/ptodata/2/pubpna/us10B_PUBCOMB.seq;*

15: /cgn2_6/ptodata/2/pubpna/us10C_PUBCOMB.seq;*

16: /cgn2_6/ptodata/2/pubpna/us10_NEW_PUB.seq;*

17: /cgn2_6/ptodata/2/pubpna/us10_NNEW_PUB.seq;*

18: /cgn2_6/ptodata/2/pubpna/us60_NNEW_PUB.seq;*

19: /cgn2_6/ptodata/2/pubpna/us60_PUBCOMB.seq;*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
1	180	100.0	180	15	US-10-009-792A-26	Sequence 26, App1
2	86	47.8	135	15	US-10-009-792A-24	Sequence 24, App1
3	79	43.9	645	15	US-10-237-386-10	Sequence 10, App1
4	72.8	40.4	657	15	US-10-237-386-11	Sequence 11, App1
5	50.6	28.1	546	15	US-10-083-446-177	Sequence 177, App1
6	50.6	28.1	546	15	US-10-083-446-178	Sequence 178, App1
7	50.6	28.1	906	15	US-10-083-446-53	Sequence 53, App1
8	50.6	28.1	921	15	US-10-083-446-72	Sequence 72, App1
9	50.6	28.1	921	15	US-10-083-446-75	Sequence 75, App1
10	50.6	28.1	921	15	US-10-083-446-78	Sequence 78, App1
11	50.6	28.1	921	15	US-10-083-446-84	Sequence 84, App1
12	50.6	28.1	966	15	US-10-083-446-68	Sequence 68, App1
13	50.6	28.1	966	15	US-10-083-446-70	Sequence 70, App1
14	50.6	28.1	966	15	US-10-083-446-71	Sequence 71, App1

Sequence 73, App1
 Sequence 77, App1
 Sequence 79, App1
 Sequence 67, App1
 Sequence 74, App1
 Sequence 76, App1
 Sequence 17, App1
 Sequence 289, App1
 Sequence 290, App1
 Sequence 292, App1
 Sequence 293, App1
 Sequence 295, App1
 Sequence 296, App1
 Sequence 297, App1
 Sequence 298, App1
 Sequence 299, App1
 Sequence 313, App1
 Sequence 18, App1
 Sequence 17, App1
 Sequence 263, App1
 Sequence 264, App1
 Sequence 265, App1
 Sequence 266, App1
 Sequence 267, App1
 Sequence 268, App1
 Sequence 269, App1
 Sequence 270, App1
 Sequence 21, App1
 Sequence 17, App1
 Sequence 26, Application US-10009792A
 ; Publication No. US20030153049A1
 ; GENERAL INFORMATION:
 ; APPLICANT: LEE, Sang-Yup
 ; JEONG, Ki-Jun
 ; TITLE OF INVENTION: ESCHERICHIA COLI STRAIN SECRETING HUMAN
 ; GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)
 ; FILE REFERENCE: HYLEE60.001APC
 ; CURRENT APPLICATION NUMBER: US-10-009-792A
 ; CURRENT FILING DATE: 2002-10-29
 ; PRIORITY APPLICATION NUMBER: PCT/KR01/00549
 ; PRIOR FILING DATE: 2001-03-31
 ; PRIORITY NUMBER: KR 10-2000-0017052
 ; NUMBER OF SEQ ID NOS: 27
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 26
 ; LENGTH: 180
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-10-009-792A-26

RESULT 1
 US-10-009-792A-26
 ; Sequence 26, Application US-10009792A
 ; Publication No. US20030153049A1
 ; GENERAL INFORMATION:
 ; APPLICANT: LEE, Sang-Yup
 ; JEONG, Ki-Jun
 ; TITLE OF INVENTION: ESCHERICHIA COLI STRAIN SECRETING HUMAN
 ; GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)
 ; FILE REFERENCE: HYLEE60.001APC
 ; CURRENT APPLICATION NUMBER: US-10-009-792A
 ; CURRENT FILING DATE: 2002-10-29
 ; PRIORITY APPLICATION NUMBER: PCT/KR01/00549
 ; PRIOR FILING DATE: 2000-03-31
 ; PRIORITY NUMBER: KR 10-2000-0017052
 ; NUMBER OF SEQ ID NOS: 27
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 26
 ; LENGTH: 180
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-10-009-792A-26

Query Match 100.0%; Score 180; DB 15; Length 180;
 Best Local Similarity 100.0%; Pred. No. 1.2e-53;
 Matches 180; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAAGAAATCTTAGGGATTAAAGGCAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAAGAAATCTTAGGGATTAAAGGCAGCTTTCATGAGTATCAGC 60
 Qy 61 ATGTTTCTGCAACGCCCTCTGCAGCTGGCCACCATCACCATTCAGCTTAGAG 120
 Db 61 ATGTTTCTGCAACGCCCTCTGCAGCTGGCCACCATCACCATTCAGCTTAGAG 120
 Qy 121 AGGACTCCGTAGTCCAGCCAGCTCCCTGCTCAAGTGCTTAGAG 180

RESULT 2
 US-10-009-792A-24
 ; Sequence 24, Application US/10009792A
 ; Publication No. US20030153049A1
 ; GENERAL INFORMATION:
 ; APPLICANT: LEE, Sang-Yup
 ; INVENTION: ESCHERICHIA COLI STRAIN SECRETING HUMAN
 ; TITLE OF INVENTION: GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)
 ; FILE REFERENCE: HYLEE60.001APC
 ; CURRENT APPLICATION NUMBER: US/10/009,792A
 ; CURRENT FILING DATE: 2002-10-29
 ; PRIOR APPLICATION NUMBER: PCT/KR01/00549
 ; PRIOR FILING DATE: 2001-03-31
 ; PRIOR APPLICATION NUMBER: KR 10-2000-0017052
 ; PRIOR FILING DATE: 2000-03-31
 ; NUMBER OF SEQ ID NOS: 27
 ; SOFTWARE: FastSEQ For Windows Version 4.0
 ; SEQ ID NO: 24
 ; LENGTH: 135
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 ; US-10-009-792A-24

Query Match 1 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 47.8%; Score 86; DB 15; Length 135;
 Best Local Similarity 77.6%; Pred. No. 3.1e-20; Mismatches 0; Indels 39; Gaps 1;
 Matches 135; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 60
 Db 1 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 60
 Qy 61 ATGTTTCGTCAACCCGCTCTGCAGCTGGCCGACCATCACCATTCAGGGGA 120
 Db 61 ATGTTTCGTCAACCCGCTCTGCAGCTGGCCGACCATCACCATTCAGGGGA 84
 Qy 121 AGGACTCCCGTTAGGTCCAGCCAGCTCCCTGCCAGCTCAAGTGC 174
 Db 85 ---ACTCCGTAGTCCAGCAGCTCCCTGCCAGCTCAAGTGC 135

RESULT 3
 US-10-237-386-10
 ; Sequence 10, Application US/10237386
 ; Publication No. US20030180895A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Danisco A/S
 ; APPLICANT: Sibbesen, Ole
 ; INVENTION: Xylanase Variants Having Altered Sensitivity to Xylanase Inhibitor
 ; FILE REFERENCE: 674509-2046
 ; CURRENT APPLICATION NUMBER: PCT/IB01/00426
 ; PRIOR APPLICATION NUMBER: GB 0005585.5
 ; PRIOR FILING DATE: 2001-03-08
 ; PRIOR APPLICATION NUMBER: GB 0005585.5
 ; PRIOR FILING DATE: 2000-03-08
 ; PRIOR APPLICATION NUMBER: PCT/IB01/00426
 ; PRIOR FILING DATE: 2001-03-08
 ; NUMBER OF SEQ ID NOS: 66
 ; SOFTWARE: PatentIn version 3.0
 ; SEQ ID NO: 11
 ; LENGTH: 657
 ; TYPE: DNA
 ; ORGANISM: Unknown
 ; FEATURE: OTHER INFORMATION: B. subtilis xylanase sequence with added restriction site
 ; US-10-237-386-11

Query Match 1 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 40.4%; Score 72.8; DB 15; Length 657;
 Best Local Similarity 91.7%; Pred. No. 3.2e-15; Mismatches 7; Indels 0; Gaps 0;
 Matches 77; Conservative 0; Mismatches 7; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 60
 Db 4 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 63

RESULT 4
 US-10-237-386-11
 ; Sequence 11, Application US/10237386
 ; Publication No. US20030180895A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Danisco A/S
 ; APPLICANT: Sibbesen, Ole
 ; INVENTION: Xylanase Variants Having Altered Sensitivity to Xylanase Inhibitor
 ; FILE REFERENCE: 674509-2046
 ; CURRENT APPLICATION NUMBER: US/10/237,386
 ; CURRENT FILING DATE: 2002-12-06
 ; PRIOR APPLICATION NUMBER: PCT/IB01/00426
 ; PRIOR FILING DATE: 2001-03-08
 ; PRIOR APPLICATION NUMBER: GB 0005585.5
 ; PRIOR FILING DATE: 2000-03-08
 ; PRIOR APPLICATION NUMBER: PCT/IB01/00426
 ; PRIOR FILING DATE: 2001-03-08
 ; NUMBER OF SEQ ID NOS: 66
 ; SOFTWARE: PatentIn version 3.0
 ; SEQ ID NO: 11
 ; LENGTH: 657
 ; TYPE: DNA
 ; ORGANISM: Unknown
 ; FEATURE: OTHER INFORMATION: B. subtilis xylanase sequence with added restriction site
 ; US-10-237-386-11

Query Match 1 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 40.4%; Score 72.8; DB 15; Length 657;
 Best Local Similarity 91.7%; Pred. No. 3.2e-15; Mismatches 7; Indels 0; Gaps 0;
 Matches 77; Conservative 0; Mismatches 7; Indels 0; Gaps 0;

Qy 1 ATGTTTAAGTTAAAGAAATTCTTAGGGGATTAACGGCAGCTTTCATGAGTATCAGC 60
 Db 64 ATGTTTCGGCAACCGCTCTGCAGCTGGGATTATGGCAGCTTAAATGAGTATTAGC 87

RESULT 5
 US-10-083-446-177
 ; Sequence 177, Application US/10083446
 ; Publication No. US20030185790A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Abrams, Mark A.
 ; APPLICANT: Bauer, S. C.
 ; APPLICANT: Bradford-Goldberg, Sarah R.
 ; APPLICANT: Caparon, Maire H.
 ; APPLICANT: Easton, Alan M.
 ; APPLICANT: Klein, Barbara K.
 ; APPLICANT: McKearn, John P.
 ; APPLICANT: Ollins, Peter O.
 ; APPLICANT: Paik, Kumran
 ; APPLICANT: Thomas, John W.
 ; INVENTION: Methods Of Ex-Vivo Expansion Of Hematopoietic Cells
 ; Using Multivariant (IL-3) Hematopoiesis Chimera Proteins
 ; NUMBER OF SEQUENCES: 197
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: S. Christopher Bauer, Pharmacia Corporation
 ; Corporate Patent Dept., Mail Zone O4E

Query Match 1 ATGTTTCGGCAACCGCTCTGCAGCTGGGATTATGGCAGCTTAAATGAGTATTAGC 84
 Best Local Similarity 79.0%; Pred. No. 2e-17; Length 645;
 Matches 107; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

STREET: 800 N. Lindbergh
 CITY: St. Louis
 STATE: Missouri
 COUNTRY: USA
 ZIP: 63167

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/10/083,446
 FILING DATE: 26-Feb-2002
 CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/762,227
 FILING DATE: 09-DEC-1996
 APPLICATION NUMBER: US 08/192,325
 FILING DATE: 14-FEB-1994
 APPLICATION NUMBER: US 08/446,872
 FILING DATE: 06-JUN-1995

ATTORNEY/AGENT INFORMATION:
 NAME: S. Christopher Bauer
 REGISTRATION NUMBER: 42,305
 REFERENCE/DOCKET NUMBER: C-2790/6
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (636) 737-6257
 TELEFAX: (636) 737-5452

INFORMATION FOR SEQ ID NO: 177:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 546 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 SEQUENCE DESCRIPTION: SEQ ID NO: 177:
 US-10-083-446-177

Query Match 124 ACTCCGTTAGGTCCAGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 180
 Best Local Similarity 93.0%; Pred. No. 2.4e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;
 Qy 7 ACACCATAGGCCCTGCCAGCTCCCTGCTCAAGTGCTTAGAG 63
 Db

Query Match 124 ACTCCGTTAGGTCCAGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 180
 Best Local Similarity 93.0%; Pred. No. 2.4e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;
 Qy 7 ACACCATAGGCCCTGCCAGCTCCCTGCTCAAGTGCTTAGAG 63
 Db

RESULT 6 US-10-083-446-178
 Sequence 178, Application US/10083446
 Publication No. US20030185790A1

GENERAL INFORMATION:
 APPLICANT: Abrams, Mark A.
 Bauer, S. C.
 Bradford-Goldberg, Sarah R.
 Caparon, Maire H.
 Easton, Alan M.
 Klein, Barbara K.
 McKearn, John P.
 Olins, Peter O.
 Paik, Kumnan
 Thomas, John W.

TITLE OF INVENTION: Methods Of Ex-Vivo Expansion Of Hematopoietic Cells
 Using Multivariant (IL-3) Hematopoiesis Chimera Proteins

NUMBER OF SEQUENCES: 197
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: S. Christopher Bauer, Pharmacia Corporation
 STREET: 800 N. Lindbergh
 CITY: St. Louis
 STATE: Missouri
 ZIP: 63167

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/10/083, 446
 FILING DATE: 26-Feb-2002
 CLASSIFICATION: <Unknown>
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/762, 227
 FILING DATE: 09-DEC-1996
 APPLICATION NUMBER: US 08/192, 325
 FILING DATE: 14-FEB-1994
 APPLICATION NUMBER: US 08/446, 872
 FILING DATE: 06-JUN-1995

ATTORNEY/AGENT INFORMATION:
 NAME: S. Christopher Bauer
 REGISTRATION NUMBER: 42, 305
 REFERENCE/DOCKET NUMBER: C-2790/6

TELECOMMUNICATION INFORMATION:
 TELEPHONE: (636) 737-6257
 TELEFAX: (636) 737-5452

INFORMATION FOR SEQ ID NO: 53:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 906 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (Genomic)
 SEQUENCE DESCRIPTION: SEQ ID NO: 53:
 US-10-083-446-53

Query Match 28.1%; Score 50.6; DB 15; Length 906;
 Best Local Similarity 93.0%; Pred. No. 3e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGTCAGCCAGCTCCCTGCCAGAGCTTCCAGTCAGCTCAAGTGCTTAGAG 180
 Db 7 ACACCATTAGGGCCTGCCAGCTCCCTGCCAGAGCTTCCAGTCAGTGCTTAGAG 63

RESULT 9
 US-10-083-446-75
 Sequence 75, Application US/10083446
 Publication No. US20030185790A1

GENERAL INFORMATION:
 APPLICANT: Abrams, Mark A.
 Bauer, S. C.
 Bradford-Goldberg, Sarah R.
 Caparon, Maire H.
 Easton, Alan M.
 Klein, Barbara K.
 McKearn, John P.
 Oliins, Peter O.
 Paik, Kumnan
 Thomas, John W.

TITLE OF INVENTION: Methods Of Ex-Vivo Expansion Of Hematopoietic Cells
 Using Multivarient (IL-3) Hematopoiesis Chimera Proteins

NUMBER OF SEQUENCES: 197
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: S. Christopher Bauer, Pharmacia Corporation
 STREET: 800 N. Lindbergh
 CITY: St. Louis
 STATE: Missouri
 COUNTRY: USA
 ZIP: 63167

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patent In Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/10/083, 446
 FILING DATE: 26-Feb-2002
 CLASSIFICATION: <Unknown>
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/762, 227
 FILING DATE: 09-DEC-1996
 APPLICATION NUMBER: US 08/192, 325
 FILING DATE: 14-FEB-1994
 APPLICATION NUMBER: US 08/446, 872

PRIOR APPLICATION DATA:

FILING DATE: 06-JUN-1995
ATTORNEY/AGENT INFORMATION:
NAME: S. Christopher Bauer
REGISTRATION NUMBER: 42, 305
REFERENCE/DOCKET NUMBER: C-2790/6

TELECOMMUNICATION INFORMATION:
TELEPHONE: (636) 737-6257
TELEFAX: (636) 737-5452

INFORMATION FOR SEQ ID NO: 78:
SEQUENCE CHARACTERISTICS:
LENGTH: 921 base pairs
TYPE: nucleic acid
STRANDEDNESS: double
TOPOLogy: linear
MOLECULE TYPE: DNA (genomic)
SEQUENCE DESCRIPTION: SEQ ID NO: 78:
US-10-083-446-78

Query Match 28.1%; Score 50.6; DB 15; Length 921;
Best Local Similarity 93.0%; Pred. No. 3.1e-07;
Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

QY 124 ACTCCGTTAGGTCCAGGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 180
Db 7 ACACCATAGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 63

RESULT 10
US-10-083-446-78
Sequence 78, Application US/10083446
Publication No. US20030185790A1

GENERAL INFORMATION:
APPLICANT: Abrams, Mark A.
Bauer, S. C.
Braford-Goldberg, Sarah R.
Caparon, Maire H.
Easton, Alan M.
Klein, Barbara K.
McKearn, John P.
Olins, Peter O.
Paik, Kumman
Thomas, John W.

TITLE OF INVENTION: Methods Of Ex-Vivo Expansion Of Hematopoietic Cells
Using Multivarient (IL-3) Hematopoiesis Chimera Proteins

NUMBER OF SEQUENCES: 197
CORRESPONDENCE ADDRESS:
ADDRESSEE: S. Christopher Bauer, Pharmacia Corporation
STREET: 800 N. Lindbergh
CITY: St. Louis
STATE: Missouri
COUNTRY: USA
ZIP: 63167

COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS

CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/10/083, 446
FILING DATE: 26-Feb-2002
CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/762, 227
FILING DATE: 09-DEC-1996
APPLICATION NUMBER: US 08/192, 325
FILING DATE: 14-FEB-1994
CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/762, 227
FILING DATE: 09-DEC-1996
APPLICATION NUMBER: US 08/192, 325
FILING DATE: 14-FEB-1994
APPLICATION NUMBER: US 08/446, 872
FILING DATE: 06-JUN-1995

ATTORNEY/AGENT INFORMATION:
NAME: S. Christopher Bauer
REGISTRATION NUMBER: 42, 305
REFERENCE/DOCKET NUMBER: C-2790/6

TELECOMMUNICATION INFORMATION:
TELEPHONE: (636) 737-6257
TELEFAX: (636) 737-5452

INFORMATION FOR SEQ ID NO: 84:
SEQUENCE CHARACTERISTICS:

LENGTH: 921 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 SEQUENCE DESCRIPTION: SEQ ID NO: 84:
 US-10-083-446-84

Query Match 28.1%; Score 50.6; DB 15; Length 921;
 Best Local Similarity 93.0%; Pred. No. 3.1e-07;
 Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

QY 124 ACTCCGGTTAGGTCCAGGCCAGCTCCCTGCCCCAGAGCTTCCAGTGCTCAAGTGCTTACAG 180
 Db 400 ACACCATTAAGGCCCTGCCAGCTCCCTGCCCCAGAGCTTCCAGTGCTCAAGTGCTTACAG 501

RESULT 13
 US-10-083-446-70
 ; Sequence 70, Application US/10083446
 ; Publication No. US20030185790A1

GENERAL INFORMATION:
 / APPLICANT: Abrams, Mark A.
 Bauer, S. C.
 Bradford-Goldberg, Sarah R.
 Caparon, Maire H.
 Easton, Alan M.
 Klein, Barbara K.
 McKearn, John P.
 Ollins, Peter O.
 Paik, Kumanan
 Thomas, John W.

TITLE OF INVENTION: Methods Of Ex-Vivo Expansion Of Hematopoietic Cells
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: S. Christopher Bauer, Pharmacia Corporation
 STREET: 800 N. Lindbergh
 CITY: St. Louis
 STATE: Missouri
 ZIP: 63167

NUMBER OF SEQUENCES: 197
 NUMBER OF SEQUENCES: 197
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: S. Christopher Bauer, Pharmacia Corporation
 STREET: 800 N. Lindbergh
 CITY: St. Louis
 STATE: Missouri
 ZIP: 63167

CURRENT APPLICATION DATA:
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US/10/083,446
 FILING DATE: 26-Feb-2002
 CLASSIFICATION: <Unknown>

ATTORNEY/AGENT INFORMATION:
 NAME: S. Christopher Bauer
 REGISTRATION NUMBER: 42,305
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (636) 737-6257

INFORMATION FOR SEQ ID NO: 70:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 966 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear

MOLECULE TYPE: DNA (genomic)
 SEQUENCE DESCRIPTION: SEQ ID NO: 70:
 US-10-083-446-70

INFORMATION FOR SEQ ID NO: 68:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 966 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)

Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 180
Db 445 ACACCATGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 501

RESULT 14
US-10-083-446-71
; Sequence 71, Application US/10083446
; Publication No. US20030185790A1

GENERAL INFORMATION:
APPLICANT: Abrams, Mark A.
Bauer, S. C.
Braford-Goldberg, Sarah R.
Caparon, Maire H.
Easton, Alan M.
Klein, Barbara K.
McKearn, John P.
Olins, Peter O.
Paik, Kumnan

Thomas, John W.

TITLE OF INVENTION: Methods Of Ex-Vivo Expansion Of Hematopoietic Cells Using Multivarient (IL-3) Hematopoiesis Chimera Proteins

NUMBER OF SEQUENCES: 197

CORRESPONDENCE ADDRESS:
ADDRESSEE: S. Christopher Bauer, Pharmacia Corporation
STREET: 800 N. Lindbergh
CITY: St. Louis
STATE: Missouri
ZIP: 63167

COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/10/083, 446
FILING DATE: 26-Feb-2002
CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/762, 227
FILING DATE: 09-DEC-1996
APPLICATION NUMBER: US 08/192, 325
FILING DATE: 14-FEB-1994
APPLICATION NUMBER: US 08/446, 872
FILING DATE: 06-JUN-1995
ATTORNEY/AGENT INFORMATION:
NAME: S. Christopher Bauer
REGISTRATION NUMBER: 42, 305
TELECOMMUNICATION INFORMATION:
TELEPHONE: (636) 737-6257
TELEFAX: (636) 737-5452

INFORMATION FOR SEQ ID NO: 73:
SEQUENCE CHARACTERISTICS:
LENGTH: 966 base pairs
TYPE: nucleic acid
STRANDEDNESS: double
TOPOLOGY: linear
MOLECULE TYPE: DNA (genomic)
SEQUENCE DESCRIPTION: SEQ ID NO: 73:
US-10-083-446-73

Query Match 28.1%; Score 50.6; DB 15; Length 966;
Best Local Similarity 93.0%; Pred. No. 3.1e-07;
Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 180
Db 445 ACACCATGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 501

Query Match 28.1%; Score 50.6; DB 15; Length 966;
Best Local Similarity 93.0%; Pred. No. 3.1e-07;
Matches 53; Conservative 0; Mismatches 4; Indels 0; Gaps 0;

Qy 124 ACTCCGTTAGGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 180
Db 445 ACACCATGGCCCTGCCAGCTCCCTGCCAGAGCTTCCCTGCTCAAGTGCTTAGAG 501

Search completed: October 9, 2004, 06:22:17
Job time : 154.651 secs

This Page Blank (uspto)