Прогноз и фильтрация коррелированных временных рядов

Метенева Антонина Викторовна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н., доц. Т.М. Товстик Рецензент — к.ф.-м.н., доц. Н.П. Алексеева

Санкт-Петербург 2014г.

Постановка задачи

Даны временные ряды, состоящие из реальных наблюдений — курсы изменения доллара, евро, золота и серебра. Основная задача — построить прогноз исходных данных. Для этого необходимо:

- установить взаимосвязь между временными рядами, используя корреляционный анализ;
- подобрать процессы авторегрессии;
- используя критерий Дики—Фуллера, исследовать ряды на стационарность;
- построить прогноз для стационарных рядов;
- проверить пары нестационарных рядов на коинтегрированность;
- при помощи фильтрации найти прогноз коинтегрированных нестационарных временных рядов.

Основные определения

Определение

Процесс авторегрессии порядка n — это случайный процесс X_t , который удовлетворяет разностному уравнению

$$X_t + a_1 \cdot X_{t-1} + a_2 \cdot X_{t-2} + a_3 \cdot X_{t-3} + \dots + a_n \cdot X_{t-n} = b_0 \cdot \xi_t$$
, (1)

где ξ_t при различных t являются независимыми случайными величинами c $\mathbb{E}\xi_t=0$, $\mathbb{D}\xi_t=1$, $\mathbb{E}\xi_t\cdot\xi_s=0$, при $t\neq s$.

Определение

Процесс авторегрессии (1) **стационарен**, если все корни характеристи ческого уравнения $q(z)=1+a_1\cdot z+\cdots+a_n\cdot z^n$ по модулю больше 1.

Основные определения

Определение

Нестационарные ряды X_t , k-тые разности $X_t^{(k)}$ которых являются стационарными, называются **интегрированными k-го порядка**.

$$X_t^{(k)} = \begin{cases} X_t^{(k-1)} - X_{t-1}^{(k-1)} & k > 1 \\ X_t - X_{t-1} & k = 1 \end{cases}$$

Определение

Интегрированные ряды первого порядка X_t и Y_t называются коинтегрированными, если существует вектор $\beta=(\beta_1,\beta_2)\neq 0$, для которого $Z_t=\beta_1\cdot X_t+\beta_2\cdot Y_t$ — стационарный ряд.

Исходные данные

Исходными данными послужили временные ряды — курсы доллара, евро, золота, серебра.

Рис. 1: Данные после усреднения - доллар, евро

Рис. 2: Данные после усреднения - золото, серебро

Каждый из представленных рядов имеет N=196 наблюдений. Единица деления равна 7 дням.

Зависимости данных

Коэффициенты корреляции для доллара представлены на Рис. 3, для евро — на Рис. 4.

euro & euro

Рис. 3: Доллар

Рис. 4: Евро

Взаимные коэффициенты корреляции

Наибольшая зависимость была выявлена у пар: доллар — евро, золото —серебро, что продемонстрировано на Рис. 5 и Рис. 6. Иную взаимосвязь наблюдаем между долларом и серебром — Рис. 7.

Рис. 5: Значения взаимных выборочных коэффициентов корреляций между долларом и евро

Рис. 6: Значения взаимных выборочных коэффициентов корреляций между золотом и серебром

Рис. 7: Значения взаимных выборочных коэффициентов корреляций между долларом и серебром

Усеченные данные. Доллар — евро

Усеченные временные ряды N=65 представлены на Рис. 8. Значения взаимных выборочных коэффициентов корреляции демонстрирует Рис. 9.

Рис. 8: Усеченные данные — доллар, евро

Рис. 9: Значения взаимных выборочных коэффициентов корреляций между долларом и евром

Проверка на наличие единичного корня

Стандартный критерий Дики—Фуллера, проверяет наличие единичного корня у процесса авторегрессии первого порядка $X_t = \widehat{a}_1 \cdot X_{t-1} + \mathcal{E}_t$.

Основная гипотеза

$$H_0: a_1 = 1,$$
 (2)

т.е. характеристический многочлен имеет единичный корень и процесс X_t не является стационарным.

Гипотеза (2) отвергается в пользу альтернативы $H_1:a_1<1$ при значениях

$$\widehat{a}_1 < \widehat{a}_{1 \kappa \mathsf{put}}.$$
 (3)

Оценка $\widehat{a}_{1\mathsf{крит}}$ для критерия Дики—Фуллера

Моделируем процесс $X_t=a\cdot X_{t-1}+\xi_t$ при a=1, где ξ_t — независимые стандартные нормально распределенные случайные величины, тогда $X_0=\xi_0$.

$$X_t = \sum_{k=0}^{t} \xi_k, t = 0, \dots, N.$$
 (4)

По методу наименьших квадратов находим оценку

$$\widehat{a}_{1} = \frac{\sum_{k=1}^{N} X_{t} X_{t-1}}{\sum_{k=1}^{N} X_{t-1}^{2}}$$
 (5)

Реализуем K=10000 раз. Получаем оценки $\widehat{a}_1(j)$, где $j=1,\cdots,10000$. Упорядочиваем их в порядке возрастания: $\widehat{a}_1^*(j)<\cdots<\widehat{a}_K^*(j)$.

При 5% уровне значимости получаем $j=10000\cdot 0.05=500$ и полагаем $\widehat{a}_{1{\rm крит}}=\widehat{a}_1^*(500).$

При N=65: $\widehat{a}_{1 \mathrm{крит}}=0.880$. При N=196: $\widehat{a}_{1 \mathrm{крит}}=0.959$.

Расширенный критерий Дики-Фуллера

Рассмотрим авторегрессию n порядка

$$X_t = a_1 \cdot X_{t-1} + a_2 \cdot X_{t-2} + \dots + a_n \cdot X_{t-n} + b_0 \cdot \xi_t. \tag{6}$$

После преобразования получаем:

$$X_{t} = \rho \cdot X_{t-1} + (\theta_{1} \cdot \Delta X_{t-1} + ... + \theta_{n-1} \cdot \Delta X_{t-n+1}) + b_{0} \cdot \xi_{t},$$
 (7)

где
$$\rho = a_1 + a_2 + ... + a_n$$
, $\theta_j = -(a_{j+1} + ... + a_n)$.

Основная гипотеза принимает вид: $H_0:
ho = 1$

Полученное уравнение авторегрессии для доллара:

$$X_t = 1.005 \cdot X_{t-1} + 0.096 \cdot X_{t-2} - 0.178 \cdot X_{t-3} + 1.374 \cdot \xi_t. \tag{8}$$

Для доллара имеем $\widehat{\rho}=0.885$, для объема выборки N=65 критическое значение $\widehat{\rho}_{\text{крит}}=0.880$, т.е. процесс (8) является нестационарным.

Самый близкий корень к единичному равен 1.083.

Стационарные ряды. Прогноз

Прогноз для процесса авторегрессии

$$X_t = a_1 \cdot X_{t-1} + a_2 \cdot X_{t-2} + a_3 \cdot X_{t-3} + \dots + a_n \cdot X_{t-n} + b_0 \cdot \xi_t \quad (9)$$

имеет вид:

$$\widehat{X}(t,\tau) = \sum_{k=1}^{n} \alpha_{k,\tau} \cdot X_{t+1-k},\tag{10}$$

где $lpha_{k, au}$ находятся из (11), q(z)— характеристическое уравнение (9).

$$\frac{1}{q(z)} = \sum_{k=0}^{\tau-1} \alpha_k \cdot z^k + z^{\tau-1} \cdot \frac{\alpha_{1,\tau} \cdot z + \alpha_{2,\tau} \cdot z^2 + \dots + \alpha_{n,\tau} \cdot z^n}{q(z)}.$$
 (11)

 $\mathsf{T}\mathsf{a}\mathsf{б}\mathsf{л}\mathsf{u}\mathsf{u}\mathsf{a}$ 1: Сравнение прогноза $\widehat{X}(t, au)$ с наблюдением X(t+ au) для доллара

τ	$\widehat{X}(t, au)$	X(t+ au)	модуль расхож- дения	ошибка в процентном соотношении, %
1	28,477	29,809	1,332	4,468
2	29,205	30,185	1,080	3,578
3	28,423	29,658	1,235	4,164

Нестационарные ряды. Прогноз

Теорема

Если есть два нестационарных коинтегрированных процесса — X(t) и Y(t), а

$$Z^k(t) = X(t) - A \cdot Y(t-k), k > 0 —$$
 стационарная линейная комбинация,

тогда прогноз $\widehat{X}(t,\tau)$ нестационарного процесса X(t) на τ шагов вперед равен

$$\widehat{X}(t, au) = \widehat{Z}^k(t, au) + A\cdot Y(t+ au-k),$$
 где $au \leq k.$ (12)

Прогноз нестационарного процесса

Рассмотрим комбинацию усеченных коинтегрированных нестационарных рядов при k=3:

$$Z_t^3 = X_t^d - 0.933 \cdot Y_{t-3}^e, \tag{13}$$

где X_t^d — доллар, Y_{t-3}^e — евро. Полученные корни $z_1=1.159-3.041i,\,z_2=1.159+3.041i,\,z_3=1.205,$ следовательно, ряд Z_t^3 стационарен.

Прогноз:
$$\widehat{X}_t^d = \widehat{Z}_t^3 - 0.933 \cdot Y_{t-3}^e$$
. (14)

 $\mbox{ Табли Ца}\ 2\colon$ Сравнение прогноза $\widehat{X}(t,\tau)$ при k=3 с наблюдением $X(t+\tau)$ для доллара по евро

τ	$\widehat{X}(t,\tau), k=3$	X(t+ au)	модуль расхож-	ошибка в процент-
			дения при $k=3$	ном соотношении, %
1	29,783	29,809	0,026	0,087
2	29,205	30,185	0,980	3,247
3	28,471	29,658	1, 187	4,002

Результаты

- Изучена взаимосвязь исходных экономических временных рядов.
- Проведена проверка на стационарность каждого из рядов двумя способами:
 - решением соответствующих характеристических уравнений,
 - с помощью критерия Дики—Фуллера.
- Представлены методы прогнозирования стационарных и нестационарных временных рядов.
- Для коинтегрированных рядов найдена формула фильтрации, т.е. нахождение прогноза одного нестационарного процесса по другому.