Various bias techniques for MOSFET circuits

How do we make a constant current source with MOSFETs?

Constant current source:

→ Current mirror

$$I_{D1} = \frac{1}{2} k_n \left(\frac{W}{L} \right)_1 \left(V_{GS} - V_t \right)^2$$

$$I_{D1} = I_{REF} = \frac{V_{DD} - V_{GS}}{R}$$

Assuming Q₁, Q₂ have same properties (k_n'),

$$I_{O} = I_{D2} = \frac{1}{2}k'_{n}\left(\frac{W}{L}\right)_{2}\left(V_{GS} - V_{tn}\right)^{2}$$

$$\frac{I_{O}}{I_{REF}} = \frac{\left(W/L\right)_{2}}{\left(W/L\right)_{1}}$$

Limitation on
$$V_o$$
? $V_o \ge V_{GS} - V_t$

Mismatches between I_{REF} and I_O

Due to channel-length modulation

For two
$$Q_1$$
 and Q_2
 $I_0 = I_{REF}$ only if $V_{DS1} = V_{DS2} \rightarrow V_0 = V_{GS}$

As V_O increased, I_O increases from I_{REF}

$$I_O = I_{REF} + \frac{V_O - V_{GS}}{r_0}$$

Comparison with BJT current mirror?

 V_{DD} =3V, Q_1 and Q_2 are identical with L= 1μm, W=100μm, V_t =0.7V, k_n '=200μA/V², r_o = 200k Ω

- 1. Determine R for I_0 =100 μ A.
- 2. What is the lowest value for V_0 ?
- 3. How much I_O changes when V_O changes 1V?

$$I_{2} = I_{REF} \frac{\left(W/L\right)_{2}}{\left(W/L\right)_{1}}$$

$$I_3 = I_{REF} \frac{\left(W/L\right)_3}{\left(W/L\right)_1}$$

$$I_3 = I_4$$

$$I_5 = I_4 \frac{\left(W/L\right)_5}{\left(W/L\right)_4}$$

Current-steering circuits: current source (Q₅), current sink (Q₂)

Current source as a resistor → Active load

(Remember Q₂ has r₀)

Gain for CS amplifier with PMOS current mirror

$$-g_{m} (r_{O1} || r_{O2})$$

PMOS current mirror provides large "Drain" resistance (Active Load) as well as bias current!

→ Good for IC!

$$\begin{split} &V_{DD}\text{=}3\text{V}, \ V_{tn}\text{=}|V_{tp}|\text{=}0.6\text{V}, \ k_{n}\text{'}\text{=}200\mu\text{A/V}^{2}, \ k_{p}\text{'}\text{=}65\mu\text{A/V}^{2}, \\ &L\text{=}0.4\mu\text{m}, \ W\text{=}4\mu\text{m}, \ r_{o1}\text{=}200\text{k}\Omega, \ r_{o2,3}\text{=}100\text{k}\Omega, \\ &I_{REF}\text{=}100\mu\text{A}. \end{split}$$

- 1. What is the small-signal voltage gain, v_O/v_I ?
- 2. What is the maximum v_O for which the above is valid?

1.
$$A_v = -g_{m1}(r_{o1} || r_{o2})$$

$$g_{m1} = \sqrt{2k'_n \left(\frac{W}{L}\right)_1} I_{REF} = \sqrt{2 \times 200 \times \frac{4}{0.4} \times 100} = 0.63 \text{ mA/V}$$

$$\therefore A_v = -0.63 \text{ (mA/V)} \cdot (200 || 100) \text{ (k}\Omega) = -42$$

2. For Q₃,
$$I_{REF} = \frac{1}{2}k_{p}'\left(\frac{W}{L}\right)_{3}\left(V_{SG,3} - \left|V_{tp}\right|\right)^{2} + \frac{V_{SD,3}}{r_{o}}$$

$$100 = \frac{1}{2} \times 65\left(\frac{4}{0.4}\right)\left(V_{SG} - 0.6\right)^{2} + \frac{V_{SG,3}}{100K}$$

$$\therefore V_{SG} \sim 1.12V$$

For
$$v_{O,\text{max}}$$
, $V_{SD2,\text{min}} = V_{SG} - |V_{tp}| = 1.12 - 0.6 = 0.52V$

$$\therefore v_{O,\text{max}} = V_{DD} - V_{SD2,\text{min}} = 2.48V$$