

Extended Kalman Filter

Robot Localization and Mapping 16-833

Michael Kaess

March 1, 2021
Slides courtesy of Ryan Eustice

Nonlinear Dynamic Systems

Most realistic robotic problems involve nonlinear functions

$$\mathbf{x}_{t} = g(\mathbf{u}_{t}, \mathbf{x}_{t-1}) + \varepsilon_{t}$$

$$\mathbf{z}_{t} = h(\mathbf{x}_{t}) + \delta_{t}$$

• Again, suppose: $x \sim \mu_x, \Sigma_x$

$$y = x + b$$
 $y = f(x)$

- Approach: approximate f(x) with Taylor expansion
 - What point should we approximate f(x) around?

- First-order Taylor expansion
 - Let's review 1D case

$$y \approx \left. \frac{df}{dx} \right|_{x_0} (x - x_0) + f(x_0)$$

Generalized case:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2, \dots) \\ f_2(x_1, x_2, \dots) \\ \dots \end{bmatrix}$$

$$\mathbf{y} \approx \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots \\ \dots & \dots & \dots \end{bmatrix} \begin{bmatrix} x_1 - x_{1_0} \\ x_2 - x_{2_0} \\ \dots & \dots \end{bmatrix} + \begin{bmatrix} f_1(x_{1_0}, x_{2_0}) \\ f_2(x_{1_0}, x_{2_0}) \\ \dots & \dots \end{bmatrix}$$

"Jacobian"

$$\mathbf{y} \approx J|_{\mathbf{x_0}}(\mathbf{x} - \mathbf{x_0}) + \mathbf{f}(\mathbf{x_0})$$

$$\mathbf{y} = \mathbf{f}(\mathbf{x})$$

 $\mathbf{y} \approx J|_{\mathbf{x_0}}(\mathbf{x} - \mathbf{x_0}) + \mathbf{f}(\mathbf{x_0})$

$$\mathbf{y} \approx J|_{\mathbf{x}_0} \mathbf{x} - J|_{\mathbf{x}_0} \mathbf{x}_0 + \mathbf{f}(\mathbf{x}_0)$$

$$y = Ax + b$$
$$\Sigma_y = A\Sigma_x A^T$$

Non-linear case is reduced to linear case via first-order Taylor approximation. Expansion point \mathbf{x}_0 is typically taken as the mean.

What do we lose by dropping higher order terms?

Linearity Assumption Revisited

Nonlinear Function

Nonlinear Gaussian Filters

- Approach 1: Extended Kalman Filter
 - Approximate the model!
 - Linearize our nonlinear plant and/or observation model(s) about the current mean and use the linear KF equations.

EKF Linearization via First Order Taylor Series

EKF Linearization: Large Variance

EKF Linearization: Narrow Variance

EKF Linearization: First Order Taylor Series Expansion

• Prediction:

$$g(\mathbf{u}_{t}, \mathbf{x}_{t-1}) \approx g(\mathbf{u}_{t}, \mu_{t-1}) + \frac{\partial g(\mathbf{u}_{t}, \mu_{t-1})}{\partial \mathbf{x}_{t-1}} (\mathbf{x}_{t-1} - \mu_{t-1})$$

$$g(\mathbf{u}_{t}, \mathbf{x}_{t-1}) \approx g(\mathbf{u}_{t}, \mu_{t-1}) + G_{t}(\mathbf{x}_{t-1} - \mu_{t-1})$$

• Correction:

$$h(\mathbf{x}_{t}) \approx h(\overline{\mu}_{t}) + \frac{\partial h(\overline{\mu}_{t})}{\partial \mathbf{x}_{t}} (\mathbf{x}_{t} - \overline{\mu}_{t})$$
$$h(\mathbf{x}_{t}) \approx h(\overline{\mu}_{t}) + H_{t}(\mathbf{x}_{t} - \overline{\mu}_{t})$$

EKF Algorithm*

1. Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

2. Prediction:

3.
$$\overline{\mu}_t = g(\mathbf{u}_t, \mu_{t-1})$$

$$\mathbf{4.} \qquad \overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$$

5. Correction:

$$6. K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1}$$

7.
$$\mu_t = \overline{\mu}_t + K_t(\mathbf{z}_t - h(\overline{\mu}_t))$$

$$\mathbf{8.} \qquad \boldsymbol{\Sigma}_t = (\boldsymbol{I} - \boldsymbol{K}_t \boldsymbol{H}_t) \boldsymbol{\Sigma}_t$$

9. Return μ_t , Σ_t

$$H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial \mathbf{x}_{t}} \qquad G_{t} = \frac{\partial g(\mathbf{u}_{t}, \mu_{t-1})}{\partial \mathbf{x}_{t-1}}$$

Linear KF

$$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}\mathbf{u}_{t}$$

$$\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (\mathbf{z}_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

^{*} The form shown assumes additive process and observation model noise

EKF Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: $O(k^{2.376} + n^2)$

- Not optimal!
- Can diverge if nonlinearities are large!
- Can work surprisingly well even when all assumptions are violated!

KF, EKF and UKF

- Kalman filter requires linear models
- EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

Unscented Kalman Filter (UKF)

Taylor Approximation (EKF)

Linearization of the non-linear function through Taylor expansion

Unscented Transform

Compute a set of (so-called) sigma points

Unscented Transform

Transform each sigma point through the non-linear function

Unscented Transform

Compute Gaussian from the transformed and weighted sigma points

Nonlinear Gaussian Filters

- Approach 2: Unscented Kalman Filter
 - Approximate the PDF!
 - Use the full nonlinear plant and observation models and recompute 1st and 2nd order statistics.

UKF Linearization via Unscented Transform

UKF Sigma-Point Estimate: Large Variance

UKF Sigma-Point Estimate: Narrow Variance

UKF vs. EKF

Unscented Transform Overview

- Compute a set of sigma points
- Each sigma point has a weight
- Transform the point through the non-linear function
- Compute a Gaussian from weighted points

 Avoids need to linearize around the mean as Taylor expansion (and EKF) does

Sigma Points

- How to choose the sigma points?
- How to set the weights?

Sigma Points Properties

- How to choose the sigma points?
- How to set the weights?
- Select $\mathcal{X}^{[i]}, w^{[i]}$ so that:

$$\sum_{i} w^{[i]} = 1$$

$$\boldsymbol{\mu} = \sum_{i} w^{[i]} \boldsymbol{\mathcal{X}}^{[i]}$$

$$\Sigma = \sum_{i} w^{[i]} (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu}) (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu})^{\top}$$

• There is no unique solution for $\boldsymbol{\mathcal{X}}^{[i]}, w^{[i]}$

Sigma Points

Choosing the sigma points

$$\mathcal{X}^{[0]} = \mu$$

First sigma point is the mean

Sigma Points

Choosing the sigma points

Real Symmetric Matrix Square Root

- ullet Defined as $S ext{ with } \Sigma = SS^{ullet}$
- Computed via diagonalization

$$\Sigma = VDV^{-1}
= V \begin{pmatrix} d_{11} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & d_{nn} \end{pmatrix} V^{-1}
= V \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

Real Symmetric Matrix Square Root

Thus, we can define

$$S = V \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

$$\mathbf{P}_y = \mathbf{A} \mathbf{P}_x \mathbf{A}^\top$$

so that

$$SS = (VD^{1/2}V^{-1})(VD^{1/2}V^{-1}) = VDV^{-1} = \Sigma$$

ullet S and Σ have the same Eigenvectors

Cholesky Matrix Square Root

Alternative definition of the matrix square root

$$L \text{ with } \Sigma = LL^{\top}$$

- Result of the Cholesky decomposition
- Numerically stable solution
- Often used in UKF implementations

 Actually, any such square root factorization is ok, e.g., could use factorization

$$\Sigma = AA^{\top}$$
 where $A = VD^{\frac{1}{2}}$

Sigma Points and Eigenvectors

• Sigma points can but do not have to lie on the main axes of \sum

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)\Sigma}\right)_i \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)\Sigma}\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$$

Sigma Points Example

Sigma Point Weights

Weight sigma points

for computing the covariance

Recover the Gaussian

Compute Gaussian from weighted and transformed points

$$\boldsymbol{\mu}' = \sum_{i=0}^{2n} w_m^{[i]} g(\boldsymbol{\mathcal{X}}^{[i]})$$

$$\Sigma' = \sum_{i=0}^{2n} w_c^{[i]} (g(\boldsymbol{\mathcal{X}}^{[i]}) - \boldsymbol{\mu}') (g(\boldsymbol{\mathcal{X}}^{[i]}) - \boldsymbol{\mu}')^{\top}$$

(Scaled) Unscented Transform

Figure 3.2: Schematic diagram of the unscented transformation.

Source: Van Der Merwe, Thesis

Unscented Transform Summary

Sigma points

$$m{\mathcal{X}}^{[0]} = m{\mu}$$
 $m{\mathcal{X}}^{[i]} = m{\mu} + \left(\sqrt{(n+\lambda) \Sigma}\right)_i \quad \text{for } i = 1, \dots, n$
 $m{\mathcal{X}}^{[i]} = m{\mu} - \left(\sqrt{(n+\lambda) \Sigma}\right)_i \quad \text{for } i = n+1, \dots, 2n$

$$\begin{array}{lll} \bullet \text{ Weights} & w_m^{[0]} & = & \frac{\lambda}{n+\lambda} \\ & w_c^{[0]} & = & w_m^{[0]} + (1-\alpha^2+\beta) \\ & w_m^{[i]} & = & w_c^{[i]} & = & \frac{1}{2(n+\lambda)} \quad \text{for } i=1,\dots,2n \\ & & \text{Courtesy: Cyrill Stachniss} \end{array}$$

SUT Parameters

- Free parameters as there is no unique solution
- Scaled Unscented Transform suggests

$$\kappa \geq 0$$
 Influence how far the sigma points are away from the mean

$$\lambda = \alpha^2(n+\kappa) - n$$

$$\beta = 2$$
 Optimal choice for Gaussians

SUT Parameters

- Choose $\kappa \geq 0$
 - to guarantee positive semi-definiteness of the covariance matrix. The specific value of κ is not critical though, so a good default choice is $\kappa = 0$.
- Choose $0 < \alpha \le 1$
 - to control the "size" of the sigma-point distribution and should be chosen to avoid sampling non-local effects when the nonlinearities are strong; a default choice is $\alpha=1$.
- Choose $\beta \geq 0$
 - to incorporate knowledge of the higher-order moments of the distribution. For example, for a Gaussian prior the optimal choice is $\beta = 2$.
- The original (un-scaled) UT transform is equivalent to:
 - SUT with $\alpha = 1, \beta = 0$

(Scaled) Unscented Transform

Sigma points

$$\chi^0 = \mu$$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_{i}$$

Weights

$$w_m^0 = \frac{\lambda}{n+\lambda}$$
 $w_c^0 = \frac{\lambda}{n+\lambda} + (1-\alpha^2 + \beta)$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_{i}$$
 $w_{m}^{i} = w_{c}^{i} = \frac{1}{2(n+\lambda)}$ for $i = 1,...,2n$

Pass sigma points through nonlinear function

$$\psi^i = g(\chi^i)$$

Recover mean and covariance

$$\mu' = \sum_{i=0}^{2n} w_m^i \psi^i$$

$$\Sigma' = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu') (\psi^i - \mu')^T$$

$$\lambda = \alpha^2(n+\kappa) - n$$

$$0 < \alpha \le 1$$
 Sigma point scaling

$$\beta \ge 0$$
 Higher-order moment matching

$$\kappa \ge 0$$
 Scalar tuning parameter

Examples

Examples

• How to apply UT to estimation??

UKF (Unscented Kalman Filter)

UKF uses the Kalman Update

- KF is the Best Linear Unbiased Estimator (BLUE)
 - i.e., if we restrict our estimator to the class of linear estimators, then the KF is the best *linear* MMSE estimator*

– What should A and b be?

* Note: a nonlinear estimator could do <u>better!!</u>

To derive, we want our error to be orthogonal to the measurement space

Estimator

$$\hat{\mathbf{x}} = A\mathbf{z} + \mathbf{b}$$

Error

$$\tilde{\mathbf{x}} = \mathbf{x} - \hat{\mathbf{x}}$$

Unbiased

$$E[\tilde{\mathbf{x}}] = \mathbf{0}$$

• Orthogonal $\tilde{\mathbf{x}} \perp \mathbf{z}$ $E[\tilde{\mathbf{x}}\mathbf{z}^{\top}] = 0$

Best Linear Unbiased Estimator (BLUE)

• Unbiased
$$\Rightarrow \mathbf{b} = \mu_x - A\mu_z$$

• Orthogonal
$$\Rightarrow A = \Sigma_{\mathbf{x}\mathbf{z}} \Sigma_{\mathbf{z}\mathbf{z}}^{-1}$$

Estimator

$$\hat{\mathbf{x}} = \mu_x + \Sigma_{\mathbf{x}\mathbf{z}} \Sigma_{\mathbf{z}\mathbf{z}}^{-1} (\mathbf{z} - \mu_z)$$

Matrix MSE

$$E[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\top}] = \Sigma_{\mathbf{x}\mathbf{x}} - \Sigma_{\mathbf{x}\mathbf{z}}\Sigma_{\mathbf{z}\mathbf{z}}^{-1}\Sigma_{\mathbf{z}\mathbf{x}}$$

- Remarks
 - The best estimator (in the MMSE sense) for Gaussian Random variables is identical to
 - The best linear unbiased estimator for arbitrarily distributed random variables with the same first- and second-order moments.

EKF Algorithm*

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t$):

2:
$$\bar{\boldsymbol{\mu}}_t = g(\mathbf{u}_t, \boldsymbol{\mu}_{t-1})$$

3:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^\top + R_t$$

4:
$$K_t = \bar{\Sigma}_t H_t^{\top} (H_t \bar{\Sigma}_t H_t^{\top} + Q_t)^{-1}$$

5:
$$\boldsymbol{\mu}_t = \bar{\boldsymbol{\mu}}_t + K_t(\mathbf{z}_t - h(\bar{\boldsymbol{\mu}}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \Sigma_t$$

7: return
$$\boldsymbol{\mu}_t, \Sigma_t$$

97

^{*} The form shown assumes additive process and observation model noise

EKF to UKF – Prediction

Unscented

- Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t$): 1:
- replace this by sigma point
- $ar{m{\mu}}_t = \ ar{\Sigma}_t =$ propagation of the motion 3:

4:
$$K_t = \bar{\Sigma}_t \ H_t^{\top} (H_t \ \bar{\Sigma}_t \ H_t^{\top} + Q_t)^{-1}$$

5:
$$\mu_t = \bar{\mu}_t + K_t(\mathbf{z}_t - h(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \Sigma_t$$

return $\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t$

UKF Algorithm – Prediction*

1: Unscented_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t$):

2:
$$\mathcal{X}_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \sqrt{(n+\lambda)\Sigma_{t-1}} \quad \mu_{t-1} - \sqrt{(n+\lambda)\Sigma_{t-1}})$$

3:
$$\bar{\boldsymbol{\mathcal{X}}}_t^* = g(\mathbf{u}_t, \boldsymbol{\mathcal{X}}_{t-1})$$

4:
$$\bar{\boldsymbol{\mu}}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\boldsymbol{\mathcal{X}}}_t^{*[i]}$$

5:
$$\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_t^{*[i]} - \bar{\mu}_t) (\bar{\boldsymbol{\mathcal{X}}}_t^{*[i]} - \bar{\mu}_t)^\top + R_t$$

* The form shown assumes additive process and observation model noise

EKF to UKF – Correction

Unscented

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t$):

2: $\bar{\mu}_t =$ replace this by sigma point

3: $\bar{\Sigma}_t = \text{propagation of the motion}$

use sigma point propagation for the expected observation and Kalman gain

5:
$$\mu_t = \bar{\mu}_t + K_t(\mathbf{z}_t - h(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \Sigma_t$$

7: return
$$\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t$$

UKF Algorithm – Correction (1)*

6:
$$\bar{\boldsymbol{\mathcal{X}}}_{t} = (\bar{\boldsymbol{\mu}}_{t} \quad \bar{\boldsymbol{\mu}}_{t} + \sqrt{(n+\lambda)\bar{\Sigma}_{t}} \quad \bar{\boldsymbol{\mu}}_{t} - \sqrt{(n+\lambda)\bar{\Sigma}_{t}})$$
7: $\bar{\boldsymbol{\mathcal{Z}}}_{t} = h(\bar{\boldsymbol{\mathcal{X}}}_{t})$
8: $\hat{\boldsymbol{z}}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top} + Q_{t}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_{t}^{[i]} - \bar{\boldsymbol{\mu}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top}$

* The form shown assumes additive process and observation model noise

UKF Algorithm – Correction (1)*

6:
$$\bar{\boldsymbol{\mathcal{X}}}_{t} = (\bar{\boldsymbol{\mu}}_{t} \quad \bar{\boldsymbol{\mu}}_{t} + \sqrt{(n+\lambda)\bar{\Sigma}_{t}} \quad \bar{\boldsymbol{\mu}}_{t} - \sqrt{(n+\lambda)\bar{\Sigma}_{t}})$$
7: $\bar{\boldsymbol{\mathcal{Z}}}_{t} = h(\bar{\boldsymbol{\mathcal{X}}}_{t})$
8: $\hat{\boldsymbol{z}}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top} + Q_{t} \longrightarrow \Sigma_{t}^{z,z}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_{t}^{[i]} - \bar{\boldsymbol{\mu}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top}$
11: $K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1}$ (from BLUE)

* The form shown assumes additive process and observation model noise

UKF Algorithm – Correction (2)

6:
$$\bar{\boldsymbol{\mathcal{X}}}_{t} = (\bar{\boldsymbol{\mu}}_{t} \quad \bar{\boldsymbol{\mu}}_{t} + \sqrt{(n+\lambda)\bar{\Sigma}_{t}} \quad \bar{\boldsymbol{\mu}}_{t} - \sqrt{(n+\lambda)\bar{\Sigma}_{t}})$$
7: $\bar{\boldsymbol{\mathcal{Z}}}_{t} = h(\bar{\boldsymbol{\mathcal{X}}}_{t})$
8: $\hat{\boldsymbol{z}}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top} + Q_{t}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_{t}^{[i]} - \bar{\boldsymbol{\mu}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top}$
11: $K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1}$
12: $\boldsymbol{\mu}_{t} = \bar{\boldsymbol{\mu}}_{t} + K_{t}(\mathbf{z}_{t} - \hat{\mathbf{z}}_{t})$
13: $\Sigma_{t} = \bar{\Sigma}_{t} - K_{t} S_{t} K_{t}^{\top}$

Courtesy: Cyrill Stachniss

14:

return $\boldsymbol{\mu}_t, \Sigma_t$

UKF

This version of the algorithm implicitly

additive

assumes

zero-mean
process and
observation
noise

1: Algorithm Unscented_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2:
$$X_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \gamma \sqrt{\Sigma_{t-1}} \quad \mu_{t-1} - \gamma \sqrt{\Sigma_{t-1}})$$

3:
$$\bar{\mathcal{X}}_t^* = g(u_t, \mathcal{X}_{t-1})$$

4:

6:

7:

8:

$$\bar{\mu}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{X}}_t^{*[i]}$$
 Take care with means of circular quantities

$$\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t) (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t)^T + R_t$$

$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \gamma \sqrt{\bar{\Sigma}_t} \quad \bar{\mu}_t - \gamma \sqrt{\bar{\Sigma}_t})$$

$$\bar{Z}_t = h(\bar{X}_t)$$

$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$$

$$S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$$

10:
$$\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$$

11:
$$K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$$

12:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

13:
$$\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$$

14: return
$$\mu_t$$
, Σ_t

Means of Circular Quantities

• Trick is to map angles θ_i to the unit circle

Take arithmetic mean of Cartesian quantities

$$\overline{\cos} = \sum_{i=0}^{2N} \cos(\theta_i) w_m^{[i]} \quad \overline{\sin} = \sum_{i=0}^{2N} \sin(\theta_i) w_m^{[i]}$$

Map back to corresponding "average" angle*

$$\bar{\theta} = \operatorname{atan2}(\overline{\sin}, \overline{\cos})$$

*Note: poor approx when θ_i is widely distributed

Similarly

Map angular differences, such as

$$(\mathcal{X}^{[i]} - \mu)$$
 to $[-\pi, \pi]$

when computing innovation and covariance expressions, e.g.:

$$\begin{split} \Sigma_{xx} &= \sum_{i=0}^{2N} w_c^{[i]} (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu}_x) (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu}_x)^\top \\ \Sigma_{xz} &= \sum_{i=0}^{2N} w_c^{[i]} (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu}_x) (\boldsymbol{\mathcal{Z}}^{[i]} - \boldsymbol{\mu}_z)^\top \end{split}$$

i.e.
$$2\pi$$
-0 = 0 !!!

UKF vs. EKF

UKF vs. EKF (Small Covariance)

UKF vs. EKF – Banana Shape

UKF Summary

- Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications
- Better linearization than EKF: Accurate in first two derivatives* of Taylor expansion (EKF only first term)
- Derivative-free: No Jacobians needed
- Still not optimal!

* Accurate in first three derivatives if Gaussian prior

UKF vs. EKF

- Same results as EKF for linear models
- Better approximation than EKF for non-linear models
- Differences often "somewhat small"
- No Jacobians needed for the UKF
- Same complexity class
- Slightly slower than the EKF

Literature

112

Unscented Transform and UKF

- Thrun et al.: "Probabilistic Robotics", Chapter 3.4
- "A New Extension of the Kalman Filter to Nonlinear Systems" by Julier and Uhlmann, 1995
- "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models", PhD Thesis, Rudolph van der Merwe, 2004