

BLG 231E DIGITAL CIRCUITS FINAL EXAM SOLUTIONS

QUESTION 1 (35 Points):

You can answer Parts (a), (b), and (c) independently of each other.

a) [10 Points]

Overflow cases (V=1):

The logic expression for the output V in the **first canonical form**:

$$V = \overline{X} \cdot \overline{A_3} \cdot \overline{B_3} \cdot Z_3 + \overline{X} \cdot A_3 \cdot B_3 \cdot \overline{Z_3} + X \cdot \overline{A_3} \cdot B_3 \cdot Z_3 + X \cdot A_3 \cdot \overline{B_3} \cdot \overline{Z_3}$$

b) [10 Points]

After the subtraction operation (**X=1**):

If
$$Z_3 = 0$$
 AND $V = 0$ OR $Z_3 = 1$ AND $V = 1$, then $A \ge B \to W = 0$
If $Z_3 = 1$ AND $V = 0$ OR $Z_3 = 0$ AND $V = 1$, then $A < B \to W = 1$
 $W = Z_3 \cdot \overline{V} + \overline{Z_3} \cdot V = Z_3 \oplus V$

c) [15 Points]

After the subtraction operation (**X=1**):

If $C_{out} = 1$ (no borrow), then $A \ge B \rightarrow Y = A$

If $C_{out} = 0$ (borrow), then $A < B \rightarrow Y = B$

BLG 231E DIGITAL CIRCUITS FINAL EXAM (Question 2 of 3)

QUESTION 2 (35 Points):

Note that Parts (a), (b), and (c) below are not related.

a) [15 points]

i.
$$Q_1^+ = \overline{Q_0} \cdot 0 + Q_0 \cdot \overline{Q_1} = \overline{Q_1} \cdot Q_0$$

$$Q_0^+ = \overline{Q_1} \cdot 0 + \overline{Q_1} \cdot \overline{Q_0} = \overline{Q_1} \cdot \overline{Q_0}$$

ii.

Q_1Q_0	$Q_1^+ Q_0^+$
00 —	O 1
01 —	→ 10
10	→ 00
00 —	O 1

b) [10 points]

i.

State transition, output table

S ⁺ , Z v						
s^{X}	0	1	Z			
A	A	В	0			
В	A	В	1			

State transition,

output table with state codes

Q^+, Z_X	l	i tabic	with s	ıaı
QX	0	1	Z	
0	0	1	0	
1	0	1	1	

ii.

Q transitions

Transition table for T flip-flop:

QQ	T	
00	0	
01	1	
10	1	
11	0	

Flip-flop excitation: $T = \bar{Q}X + Q\bar{X} = Q \oplus T$ Output function: Z = Q

c) [10 points]

7(+ : 1)	1			
Z(t+1)	B ₀₀	01	11	10
Z(t)	00	01	11	10
0	0	Ü	1	0
1	0	1	1	1

$$Z(t+1) = A B + B Z(t) + A Z(t)$$

A memory unit must have

- 1) two stable states: There are two stable states here (Z=0 and Z=1)
- 2) control input(s), which can be used to change or preserve the state of the unit: AB=11 sets the circuit, AB=00 resets it, AB=01 or AB=10 preserves the state of the unit.
- : YES, this circuit can be used as a memory unit.

BLG 231E DIGITAL CIRCUITS FINAL EXAM (Question 3 of 3)

QUESTION 3 (30 Points):

Note that Parts (a) and (b) below are not related.

a) [15 points]

Another possible solution using one decoder. However, it uses two more logic gates.

b) [15 points]

Remember: NMOS: if VGS>0, ON; if VGS=0, OFF

PMOS: if VGS<0, ON; if VGS=0, OF

Gates (G) of transistors Q3 and Q4 are connected to the drains (D) of the Q1 and Q2.

Α	В	Q1	Q2	Q3	Q4	Q5	Q6	Z
L	L	OFF	ON	ON	OFF	OFF	ON ON OFF OFF	L
L	Η	ON	OFF	OFF	ON	OFF	ON	Н
Н	L	OFF	ON	ON	OFF	ON	OFF	L
Н	Η	ON	OFF	OFF	ON	ON	OFF	L