Основы комбинаторики. Перестановки, подсчёт их количества

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 17.10.2023

Содержание лекции

- Комбинаторное доказательство
- Перестановки, подсчёт количества
- Факториальная система счисления

Комбинаторное доказательство

Способ нахождения мощности множества путем установления биекции с множеством известной мощности.

Пусть у нас есть пончики 5 видов: с ванилью (B), шоколадом (Ш), карамелью (К), сгущенкой (С) и сахарной пудрой (П).

Задача 1: Кол-во способов купить \leq по одному пончику каждого вида?

Решение: Установим биекцию между множеством способов купить пончики и множеством двоичных кортежей длины 5.

Для (0,1,0,0,1) скажем, что, если на \emph{i} -й позиции в кортеже стоит 0, то мы купили пончик такого вида, а если 1 — то нет. Итого $2^5=32$.

Задача 2: Хотим купить 12 пончиков, неважно какого вида.

Решение: количество способов сделать это равно количеству двоичных кортежей длины 16, в которых ровно 4 единицы.

Нули в кортеже снова обозначают пончики, причем нули, идущие до i-й единицы отвечают за количество пончиков i-го вида.

 $(0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,0)\leftrightarrow 2$ В, 0 Ш, 5 К, 3 С, 2 П. Итого C_{16}^4 .

Мощность множества всех подмножеств

A – произвольное конечное множество, |A|=m.

 $\phi:\ A o 1:m.$ Если ϕ – биекция, то ϕ называется **нумерацией** эл-ов A.

 $X = 1 : m, S \subseteq X$. Определим $\chi : 2^X \to \{0,1\}^m$ следующим образом:

$$orall S\subseteq X$$
 $\chi(S)=(\chi(S)_1,\ldots,\chi(S)_m)$, где $\chi(S)_i=\left[egin{array}{cc} 1 & ,i\in S \\ 0 & ,i\notin S \end{array}\right]$

 χ по построению биекция (подмножество \leftrightarrow кортеж).

Построим
$$\psi:\{0,1\}^m \to 0: (2^m-1)$$
 таким образом: $\psi(x) = \sum_m x_i \cdot 2^{m-i}$,

где $x=(x_1,\ldots,x_m)$. ψ тоже биекция!

Таким образом, построена биекция между A и 1:m, между $2^{1:m}$ и $\{0,1\}^m$ и, наконец, между $\{0,1\}^m$ и $0:(2^m-1)$.

Тогда $|2^A| = |2^{1:m}| = |\{0,1\}^m| = |0:(2^m-1)| = 2^m$.

Перестановки. Подсчёт количества

Определение: Перестановкой множества 1:n называется $\langle a_1,\ldots,a_n \rangle$, где $\forall i \in 1:n \ a_i \in 1:n, \ \forall j \in (i+1):n \ a_i \neq a_j.$

Обозначим $\langle 1:n \rangle$ – множество всех перестановок.

 $a \in \langle 1:n \rangle$ – перестановка. Определим её ключ $T(a) \coloneqq (t_1^a, \dots, t_n^a),$

 $t_i^a = \left| \{j \in (i+1) : n \mid a_j < a_i\} \right|$ – кол-во элементов перестановки, стоящих после i-го, которые при этом меньше i-го элемента перестановки.

Утверждение 1: $a,b \in \langle 1:n \rangle, a \neq b \Rightarrow T(a) \neq T(b)$

Док-во: так как перестановки различны $\exists k \in 1: n$ – наименьший индекс, в котором перестановки различаются $a_k \neq b_k, \forall i \in 1...(k-1): a_i = b_i.$ Считаем $a_k < b_k$.

Так как $\{a_1,\ldots,a_{k-1}\}=\{b_1,\ldots,b_{k-1}\},\{a_k,\ldots,a_n\}=\{b_k,\ldots,b_n\}.$

Следовательно, $\forall x \in \{a_{k+1}, \dots, a_n\}$, $x < a_k \Rightarrow x \in \{b_{k+1}, \dots, b_n\}$, $x < b_k$. Тогда, по построению $T: t_k^a \leq t_k^b$. Но при этом $a_k \in \{b_{k+1}, \dots, b_n\}$,

 $a_k < b_k \Rightarrow t_k^a < t_k^b \Rightarrow T(a) \neq T(b)$.

Утверждение 2: $a,b \in \langle 1:n \rangle, T(a) \neq T(b) \Rightarrow a \neq b$

Док-во: $\Pi^n \coloneqq \big\{(\pi_1,\dots,\pi_n) : \ \forall i \in 1\dots n \ 0 \le \pi_i \le (n-i) \big\}$. Все ключи перестановок $T(a) \ \forall a \in \langle 1:n \rangle$ попадают в это множество по построению. Покажем, что по ключу можно ! образом восстановить перестановку.

Пример: T=(3,6,3,2,4,3,1,0,0). Первый элемент перестановки должен лежать в множестве $\{1,2,3,4,5,6,7,8,9\}$ и в этом множестве должно быть ровно три элемента меньше него. Получается, на первом месте в перестановке должно стоять число 4. Теперь нужно найти в множестве оставшихся чисел $\{1,2,3,5,6,7,8,9\}$ число такое, что в этом множестве есть ровно шесть чисел меньше его. Таким числом будет 8. Повторяя данный процесс, получим перестановку $\langle 4,8,5,3,9,7,2,1,6\rangle$, причем, поскольку все элементы перестановки различны, перестановку можно было восстановить единственным способом.

Задача: восстановить перестановку $a \in \langle 1:n \rangle$ такую, что T(a) = T.

Определим мн-во p^i элементов 1:n, которые ещё не получили своё место

в перестановке; тогда $p^1 = 1:n$.

Формализуем алгоритм: дано $T \in \Pi^n$.

За один шаг алгоритма добавляется один элемент $\Rightarrow |p^i| = n-i+1$. Пронумеруем эл-ты p^i по \nearrow : $\forall k,j \in 1: (n-i+1), k < j \Rightarrow p^i_k < p^i_i$

Пронумеруем эл-ты p^i по \nearrow : $\forall k,j \in \mathbb{I}: (n-i+1), k < j \Rightarrow p^i_k < p^i_j$

Тогда получается, что элемент множеств p^i такой, что в множестве p^i содержится ровно T_i элементов, меньших него, — это $p^i_{T_i+1}$.

Тогда $a_i=p_{T_i+1}^i$. Множество элементов перестановки, стоящих в перестановке после a_i , будет равно $p^{i+1}=p^i\setminus\{p_{T_i+1}^i\}$ и в нём будет ровно T_i элементов меньше a_i , то есть $T(a)_i=T_i$.

Факториальная система счисления

$$n_f=\phi_m\phi_{m-1}\ldots\phi_1$$
, $n_{10}=\sum_{i=1}^m\phi_i\cdot i!$ u $\forall i\in 1:m\ 0\leq\phi_i\leq i$

Напоминание: $\Pi^n \coloneqq \big\{ (\pi_1, \dots, \pi_n) : \forall i \in 1 : n \ 0 \le \pi_i \le (n-i) \big\}.$

Утверждение: Любое натуральное число представимо в факториальной системе счисления единственным образом.

Док-во: Π^n биективно $\langle 1:n \rangle$ (доказано ранее)

Можно построить биекцию из Π^n в множество чисел, запись которых в факториальной системе счисления имеет меньше, чем n знаков (при необходимости выкидываем или дописываем ведущие нули).

Утверждение: Все числа, запись которых в факториальной системе счисления имеет менее n знаков, меньше n!.

Док-во: По индукции. База: n=2. Имеем 1<2!.

Переход: Если тах число m_n , в записи которого менее n знаков, меньше n!, то при переходе к n+1 получим $m_n+n!\cdot n < n!\cdot (n+1)=n!\cdot n+n!$

 $\ensuremath{\mathsf{VTверж}}$ дение: Все числа, меньшие n!, представимы в факториальной системе счисления с менее, чем n знаками.

Док-во: Есть a < n!. Обозначим $a_0 \coloneqq a, n_0 = n$.

Найдём max $k_0: \ k_0 \cdot (n_0-1)! \leq a_0. \ k_0 < n_0$ тк иначе $a_0 \geq k_0 (n_0-1)! \geq n_0!$

При этом $a_1=a_0-k_0\cdot (n_0-1)!<(n_0-1)!$. Тогда $a_1:=a_0-k_0\cdot (n_0-1)!, n_1=n_0-1\dots$ Алгоритм конечен, т.к. через n-1 шаг $a_{n-1}< n_{n-1}!=(n-(n-1))!=1$ а т.к. $\forall i\in 0:(n-1)$ $a_i\geq 0, a_{n-1}=0\Rightarrow k_0\dots k_{n-1}$ — корректное представление a в факториальной системе счисления.

Таким образом, мы построили биекцию между множеством 0:(n!-1) и множеством чисел, запись которых в факториальной системе счисления имеет не более n знаков. Тогда для любого натурального m получаем, что, поскольку существует некоторое натуральное n такое, что n!>m, m представимо в факториальной системе счисления.