Data Science with Python

Name: Varsha Deshpande

Project: Comcast Telecom Consumer Complaints

Question 1: Import data into Python environment.

Python Code:

import pandas as pd
cust_data =
pd.read_csv("/home/labsuser/Datasets/Comcast_telecom_complaints_data.csv")
cust_data.head(10)

Screenshots with output: (#printing 10 records output)

	Ticket #	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone
0	250635	Comcast Cable Internet Speeds	22- 04-15	22-Apr-15	3:53:50 PM	Customer Care Call	Abingdon	Maryland	21009	Closed	No
1	223441	Payment disappear - service got disconnected	04- 08-15	04-Aug-15	10:22:56 AM	Internet	Acworth	Georgia	30102	Closed	No
2	242732	Speed and Service	18- 04-15	18-Apr-15	9:55:47 AM	Internet	Acworth	Georgia	30101	Closed	Yes
3	277946	Comcast Imposed a New Usage Cap of 300GB that	05- 07-15	05-Jul-15	11:59:35 AM	Internet	Acworth	Georgia	30101	Open	Yes
4	307175	Comcast not working and no service to boot	26- 05-15	26-May-15	1:25:26 PM	Internet	Acworth	Georgia	30101	Solved	No
5	338519	ISP Charging for arbitrary data limits with ov	06- 12-15	06-Dec-15	9:59:40 PM	Internet	Acworth	Georgia	30101	Solved	No
6	361148	Throttling service and unreasonable data caps	24- 06-15	24-Jun-15	10:13:55 AM	Customer Care Call	Acworth	Georgia	30101	Pending	No
7	359792	Comcast refuses to help troubleshoot and corre	23- 06-15	23-Jun-15	6:56:14 PM	Internet	Adrian	Michigan	49221	Solved	No
8	318072	Comcast extended outages	06- 01-15	06-Jan-15	11:46:30 PM	Customer Care Call	Alameda	California	94502	Closed	No
9	371214	Comcast Raising Prices and Not Being Available	28- 06-15	28-Jun-15	6:46:31 PM	Customer Care Call	Alameda	California	94501	Open	Yes

• Insights:

Pandas library and read_csv method was used to extract data and head was used to print out only first 10 records.

Question 2 : Provide the trend chart for the number of complaints at monthly and daily granularity levels.

I. Monthly Trend Chart:

Python Code:

```
import pandas as pd
import datetime as dt
import numpy as np
import matplotlib.pyplot as plt
cust data =
pd.read_csv("/home/labsuser/Datasets/Comcast_telecom_complaints_data.csv")
cust_data.head(10)
cust_data['Date'] = pd.to_datetime(cust_data['Date'],format="%d-%m-%y")
cust_data['Month'] = cust_data['Date'].dt.month
#Month wise data trend chart
plt.plot(cust_data.groupby(['Month']).count()['Ticket #'],label="Count of
Tickets",marker='o')
plt.xlabel('Month')
plt.ylabel('Count')
plt.xticks(np.arange(0,14,2))
plt.legend()
```

Screenshots with output:

Insights:

As per the trend chart, 6th month(June) has the most number of complaints. Second to it is 4th month(April) and then the 5rd month(May).

The trend shows a decline in the number of complaints at the start and towards the end of the considered years.

II. Daily Trend Chart:

```
Python Code:
   import pandas as pd
   import datetime as dt
   import numpy as np
   import matplotlib.pyplot as plt
   cust data =
   pd.read csv("/home/labsuser/Datasets/Comcast telecom complaints data.csv")
   cust data.head(10)
   cust_data['Date'] = pd.to_datetime(cust_data['Date'],format="%d-%m-%y")
   cust data['Month'] = cust data['Date'].dt.month
   #Month wise data trend chart
   plt.plot(cust_data.groupby(['Month']).count()['Ticket #'],label="Count of
   Tickets",marker='o')
   plt.xlabel('Month')
   plt.ylabel('Count')
   plt.xticks(np.arange(0,14,2))
   plt.legend()
   #Date wise data trend chart
   plt.figure(0)
   plt.figure(figsize=(100,10))
   plt.plot(cust_data.groupby(['Date_month_year']).count()['Ticket #'],label="Count of
   Tickets daily",marker='o')
   plt.xlabel('Date')
   plt.ylabel('Count')
   plt.legend()
```

• Screenshots with output: (attaching zoomed in screenshot due to poor visibility of overall data plot) (Attached saved plot in submission of screenshots section)

Insights:

As per the daily trend chart, 23rd June 2015 (190) and 24th June 2015(218) have the highest number of complaints. The rest dates have complaints number at a consistent scale between 0-50 or 50 -100.

Question 3: Provide a table with the frequency of complaint types.

Which complaint types are maximum i.e., around internet, network issues, or across any other domains.

Python Code:

print("Grouped_data-> \n",cust_data.groupby(['Customer Complaint']).count().sort_values('Ticket #',ascending=False)['Ticket #'])
print("As per the counts most of the complaints are of the category - Comcast. Some of them are related to Comcast internet and even billing.")

• Screenshots with output:

```
Grouped_data->
Customer Complaint
Comcast
                                                         83
Comcast Internet
                                                         18
Comcast Data Cap
comcast
Comcast Billing
Comcast internet speeds extremely slow
Comcast internet speeds
Comcast internet service that I was NEVER able to use
Comcast internet price high
xfinity customer service
Name: Ticket #, Length: 1841, dtype: int64
As per the counts most of the complaints are of the category - Comcast. Some of them are related to Comcast internet and even billi
ng.
```

• Insights:

As per the analysed result, most of the complaints are of the category: Comcast (83 complaints)

Some other categories like Comcast Internet, Comcast Data Cap are also seen to have some complaints to the lower than Comcast but similar scale of number with each other (10-20 complaints).

Question 4: Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed.

Python Code:

#Creating new Status variable for Open and Closed Complaints
cust_data.loc[cust_data['Status'].str.contains('Open') | cust_data['Status'].str.contains('Pending'), 'Cstatus'] = 'Open'
cust_data.loc[cust_data['Status'].str.contains('Solved') | cust_data['Status'].str.contains('Closed'), 'Cstatus'] = 'Closed'
cust_data['Cstatus','Status']].head(10)

Screenshots with output:(printing the values of this new column for first 10 records):

• Insights: None

Question 5: Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3. Provide insights on:

- Which state has the maximum complaints
- Which state has the highest percentage of unresolved complaints
- Python Code:

#Statewise Open and closed complaints bar graph. Blue -> Open and Orange -> Closed

```
aggregated = pd.crosstab(cust_data['State'],cust_data['Cstatus'])
aggregated new = pd.DataFrame(aggregated)
print("Aggregated Data -> \n",aggregated_new.head(10))
plt.figure(figsize=(100,30))
plt.bar(aggregated new.index,aggregated new.Open,label='Open')
plt.bar(aggregated_new.index,aggregated_new.Closed,bottom=aggregated_new.Open,label='Clo
sed')
plt.legend()
aggregated_new['Total'] = aggregated_new.sum(axis=1)
aggregated new['Unresolved Complaints %'] = (aggregated new.Open/aggregated new.Total) *100
print("Aggregated Data with Total and Percentage data -> \n",aggregated new.head(10))
highest_comp = aggregated_new[aggregated_new.Total == aggregated_new.Total.max()]['Total']
print("State with max number of complaints: ", aggregated_new[aggregated_new.Total ==
aggregated_new.Total.max()].index.values,"\nNumber of complaints -> \n",highest_comp)
highest perc = aggregated new[aggregated new['Unresolved Complaints %'] ==
aggregated new['Unresolved Complaints %'].max()]['Unresolved Complaints %']
print("State with max percentage of unresolved complaints: ",
aggregated new[aggregated new['Unresolved Complaints %'] == aggregated new['Unresolved Complaints
%'].max()].index.values, "\nPercentage -> \n",highest_perc )
```

Screenshots with output: (Printing first 10 for visibility)

Aggregated Data ->		
Cstatus	Closed	0pen
State		
Alabama	17	9
Arizona	14	6
Arkansas	6	0
California	159	61
Colorado	58	22
Connecticut	9	3
Delaware	8	4
District Of Columbia	14	2
District of Columbia	1	0
Florida	201	39

```
Aggregated Data with Total and Percentage data ->
Cstatus
                  Closed Open Total Unresolved Complaints %
State
                               26
                                               34.615385
Alabama
                    17 9
                    14
                          6
                               20
                                               30.000000
Arizona
Arkansas
                      6
                           0
                                  6
                                                 0.000000
                   159 61 220
                                               27.727273
California
                    58 22
                                80
                                               27,500000
Colorado
Connecticut
                     9 3 12
                                               25.000000
Delaware
                     8 4 12
                                               33.333333
District Of Columbia 14 2 16
District of Columbia 1 0 1
Florida 201 39 240
                                               12.500000
                                                 0.000000
                                               16.250000
State with max number of complaints : ['Georgia']
Number of complaints ->
State
Georgia 288
Name: Total, dtype: int64
State with max percentage of unresolved complaints : ['Kansas']
Percentage ->
State
Kansas
Name: Unresolved Complaints %, dtype: float64
```

Zoomed in version, due to visibility. Attaching the saved image to submission screenshots as a jpg.

Insights:

As per the graph analysis

- the state "Georgia" has the most number of complaints (288)
- the state "Kansas" has the highest percentage of unresolved complaints. (50%)

Question 6: Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls

Python Code:

```
aggregated_recvd_via = pd.crosstab(cust_data['Received Via'],cust_data['Cstatus'])
aggregated_recvd = pd.DataFrame(aggregated_recvd_via)
aggregated_recvd['Total'] = aggregated_recvd_via.sum(axis=1)
aggregated_recvd['Resolved Complaints %'] =
(aggregated_recvd['Closed']/aggregated_recvd['Total']) *100
print("Aggregated Data with total & Percentage columns ->\n",aggregated_recvd)

print("Percentage of Closed complaints via - Customer Care Call is - " +
str(int(aggregated_recvd.loc['Customer Care Call']['Resolved Complaints %'])) + "%")
print("Percentage of Closed complaints via - Internet is - " +
str(int(aggregated_recvd.loc['Internet']['Resolved Complaints %'])) + "%")
```

Screenshots with output :

```
Aggregated Data with total & Percentage columns ->
Cstatus Closed Open Total Resolved Complaints %
Received Via
Customer Care Call 864 255 1119 77.211796
Internet 843 262 1105 76.289593
Percentage of Closed complaints via - Customer Care Call is - 77%
Percentage of Closed complaints via - Internet is - 76%
```

Insights:

As per the analysis results the percentage of resolved complaints received via

- Customer Care Call 77.2%
- Internet 76.2%