Acides carboxyliques et dérivés

Nomenclature et structure

Formule brute

$$R-C \stackrel{/\!\!/}{\sim}_{OH}$$

acide + radical (correspondant au nombre d'atomes de C) + oïque

		formique
		acétique
		propionique
		butyrique
CH3(CH2)3COOH	Acide pentanoïque	valérique
CH3(CH2)4COOH	Acide hexanoïque	caproïque

	Acide malonique
	Acide lactique
	Acide succinique
acide butanedioïque	
HOOC-CH2-CH(OH)-COOH	Acide malique
Acide 2-hydroxybutanedioïque	

≥ C₁₂: acides gras constitutifs des lipides

saturés

C₁₂ acide laurique

C₁₆ acide palmitique

C₁₈ acide stéarique

C₂₀ acide arachidique

insaturés

C₁₈H₃₄O₂ acide oléique

C₁₈H₃₂O₂ acide linoléique

C₁₈H₃₀O₂ acide linolénique

C₂₀H₃₂O₂ acide arachidonique

Propriétés physiques

$$R - C = 0$$

$$0$$

$$0 - H^{\delta +}$$

- ✓ Composés polaires
- Existence de liaisons hydrogène
- ✓ Liquides à température ambiante

Solides pour acides gras saturés

Le point de fusion diminue avec l'insaturation

Acide stéarique 18:0 70°C

Acide oléïque 18:1(9) 13°C

Acide linoléïque 18:2(9,12) - 5,8°C

Acide linolenique 18:3(9,12,15) - 49,5°C

Réactivité

réactions acido-basiques (acidité renforcée par groupement inducti attracteur)

réactions de réduction

réactions de transformation — dérivés carboxyliques

Préparation

- Oxydation des alcools, des aldéhydes ou des cétones
- Oxydation des chaînes latérales des aromatiques

$$CH_3$$
 \longrightarrow CO

Addition d'un organo-magnésien sur CO₂

$$R - MgX + O = C = O \longrightarrow O = C - OMgX \xrightarrow{HX} O = C - OH + MgX_2$$

Hydrolyse des nitriles

$$R-C \equiv N + 2 H_2O \longrightarrow R - C \stackrel{O}{\longleftrightarrow} + NH_3$$

5 fonctions dérivées du groupement carboxylique

$$R-C \stackrel{O}{\underset{O-R'}{=}}$$

$$R-C \stackrel{O}{\underset{X}{\stackrel{O}{=}}}$$

$$R-C-O-C-R'$$
O
O

- Amide
$$R-C < NH_2$$

Acide carboxylique

Les esters

Nomenclature

RCOOR'
Rate de R'

CH₂COOCH₃ éthancate de méthyle

Les esters

Propriétés physiques

Liquides à température ambiante (t_{éb} plus basse que les acides)
Solubilité aqueuse plus faible que les acides (perte des liaisons hydrogènes)

Les esters

> Formation

$$R$$
— $COOH + R'OH \longrightarrow R$ — $COOR' + H2O$

- > Réactivité
- Hydrolyse
- Saponification (obtention de savon)
- Condensation de Claisen (idem aldolisation et cétolisation)

$$R-CH-C \xrightarrow{O} COR' \xrightarrow{base forte} R-CH-C \xrightarrow{O} COR' \xrightarrow{R-CH-C} COR' \xrightarrow{ion \, enolate} R-CH-C \xrightarrow{O} COR' \xrightarrow{ion \, enolate} R-CH-C \xrightarrow{O} COR' \xrightarrow{R-CH-C} COR'$$

Les chlorures d'acides

Nomenclature

RCOCI Chlorure de Royle CH3CH2COCI chlorure de propanoyle

- > Propriétés physiques
 - ✓ liquides, ou solides à température ambiante.
 - ✓ solubilité aqueuse très forte

Les chlorures d'acides

> Formation

Réactivité

Electrophiles forts : même réaction qu'avec les acides mais plus rapides

Substitutions électrophiles : réactions de Friedel et Crafts

Avec les alcools
 — esters
 RCOCI + R'OH — RCOOR' + HCI

Les chlorures d'acides

Avec NH3 ou une amine — amides

- Avec les organo-magnésiens cétones
 RCOCI + R'MgX RCOR' + MgXCI
- Hydrolyse
 — acides
 RCOCI + R'OH
 — RCOOH + HCI
- Hydrogénation aldéhydes

RCOCI +
$$H_2 \longrightarrow RCOH + HCI$$

Les anhydrides d'acides

Nomenclature

RCOOOCR' anhydride R R'

CH3CH2COOCCH3 anhydride éthanoïque propanoïque

- Propriétés physiques
- ✓ liquides, ou solides à température ambiante.
- ✓ solubilité aqueuse très forte (redécomposition en acides)

Les anhydrides d'acides

> Formation

> Réactivité

Mêmes réactions qu'avec les chlorures d'acides

Les amides

$$R-C-NH_2$$

$$R-C-N < R'$$
O

Amide

Amide N-substitué

Amide N,N-substitué

Nomenclature

Radical + amide

CH3CH2CONH2: propanamide

CH3CH2CONHCH3: N-méthylpropanamide

Les amides

- Propriétés physiques
 - √ liquides à 20°C
 - ✓ solubilité aqueuse forte
- > Formation

Action de NH₃ sur les acides, chlorures d'acides ou anhydrides d'acides

> Réactivité

Amides moins basiques que les amines

Les amides

- > Réactivité
- Réduction → amines

$$\begin{array}{ccc}
R - C - NH_2 & \xrightarrow{\text{LiAlH}_4} & R - CH_2 - NH_2 \\
O & & & & & \\
\end{array}$$

Deshydratation — nitriles

Acide carboxylique

Acide carboxylique

