P2. Problema 3.

Autor: José María Lorenzo Magán

Academia Deimos www.academiadeimos.com

Enunciado:

Calcular la probabilidad de que al extender en una sola fila las 40 cartas de una baraja española queden al menos dos sotas consecutivas.

Resuelto en Vol. 1. Pag. 209.

Planteamiento:

Definimos el suceso A = "quedan al menos dos sotas consecutivas".

Para calcular la probabilidad de este suceso vamos a pasar al *contrario*:

 \overline{A} = "no quedan dos sotas consecutivas".

Y acudimos a la técnica empleada en el problema 5 del documento P1 para calcular los casos favorables:

Planteamiento:

 Coloquemos 36 cuadrados y 37 círculos, de modo que a la derecha y a la izquierda de cada cuadrado haya un círculo.

- Coloquemos en cada cuadrado una carta que no sea sota.
- Seleccionemos 4 de los 37 círculos donde colocaremos las 4 sotas.
- Una vez colocadas las 4 sotas, eliminamos los 33 círculos vacíos y obtendremos una ordenación de las 40 cartas sin sotas consecutivas.

Casos favorables:

El número de ordenaciones posibles de las 40 cartas sin que haya sotas consecutivas será:

Nº de formas de colocar las 36 no sotas en los cuadrados

 N^o de formas de colocar las 4 sotas en los círculos $= P_{36} \cdot V_{37,4} = 36! \cdot 37 \cdot 36 \cdot 35 \cdot 34$

Solución

Dado que el número de casos posibles es $P_{40} = 40!$, la probabilidad pedida será:

$$p(A) = 1 - p(\overline{A}) = 1 - \frac{36! \cdot 37 \cdot 36 \cdot 35 \cdot 34}{40!} = 1 - \frac{36 \cdot 35 \cdot 34}{40 \cdot 39 \cdot 38} = \frac{137}{494}$$