

Lista de Exerícios de Cálculo Numérico Professor Marcio Antônio de Andrade Bortoloti

25/04/2023

1. Usando arredondamento para quatro dígitos significativos, efetua a operação e escreva o resultado na forma normalizada

$$\frac{0.5971 \times 10^3}{0.4268 \times 10^{-1}}.$$

- 2. Considere o sistema $\mathcal{F}(3,3,2,2)$. Dizer quais das seguintes afirmações são verdadeiras. Para as que forem falsas, dizer como seria o correto.
 - a) No sistema dado, podemos representar 181 números.
 - b) A representação de $(0.342)_{10}$ no sistema dado é 0.101×3^{0} .
 - c) A representação de $(15.342)_{10}$ no sistema dado é $0.120 \times 3^{\circ}$.
 - d) O maior número positivo deste sistema é 0.111×3^2 .
 - e) O menor número positivo deste sistema é 0.100×3^{-2} .
 - f) O número $(38)_{10}$ não pode ser representado no sistema dado.
- 3. Considere a equação $f(x) = 2x^2 5x + 2 = 0$, cujas raízes são $x_1 = 0$ e $x_2 = 2$. Considere ainda os processos iterativos:

a)
$$x_{k+1} = \frac{2x_k^2 + 2}{5}$$
,

b)
$$x_{k+1} = \sqrt{\frac{5x_k}{2} - 1}$$
.

Qual dos dois processos você utilizaria para obter a raíz x_1 ? Por quê?

4. Considere a fórmula para determinar a raíz cúbica de Q:

$$x_{k+1} = \frac{1}{3} \left[2x_k + \frac{Q}{x_k^2} \right], \quad k = 0, 1, 2, \dots$$

- a) Mostre que a fórmula anterior é um caso especial do método de Newton.
- b) Usando a fórmula dada no ı'tem a) calcule $\sqrt{3}4$, co mprecisão de 10^{-2} , determinando o valor inicial através de um gráfico.
- 5. Seja $f(x) = x^4 5x$, $x \in [-1, 1]$. Aproximar f(x) por um polinômio do segundo grau usando o método dos mínimos quadrados.
- 6. A intensidade de uma força radioativa é dada por $I=I_0e^{-\alpha t}$. Através de observações, tem-se

Determinar $I_0 \in \alpha$.

7. Dada a tabela

calcular

$$\int_0^{0.8} xe^x dx$$

pela regra do trapézio usando os pontos.