MetaboSPAN-vignette

Andrew Patt

Introduction

MetaboSPAN is being run on a pathway network based on RaMP2. Relevant stats about the analysis are listed in the table below.

```
library(metabospan)
library(RaMP)
library(magrittr)
library(dplyr)
conpass_bw = 'mysql123'
host_bw = "localhost"
dbname_bw = "ramp2"
username_bw = "root"
socket_bw=paste0(
    '/lscratch/',
   Sys.getenv('SLURM_JOB_ID'),
    '/mysql/mysql.sock')
## Parameters for MetaboSPAN
metabs_of_interest_cutoff=5
background_cutoff=5
load("../data/example metabolites.rda")
start_time=Sys.time()
start=Sys.time()
metabolite_distances=measure_metabolite_distance(metabolites,
                                                  biospecimen = "Adipose",
                                                  conpass=conpass_bw,
                                                  socket=socket_bw, dbname=dbname_bw)
#> setting diag of graph to zero
#> Correcting for hub degrees.
#> normalizing column vectors!
#> normalizing column vectors!
print(Sys.time()-start)
#> Time difference of 0.03996062 secs
visualize_metabolite_distances(metabolite_distances)
abline(v=metabs_of_interest_cutoff)
```

Metabolite proximity distribution


```
metabolite_panel<-c(background_ids,proximal_metabolites)</pre>
metabolite_panel<-metabolite_panel[which(!is.na(metabolite_panel))]</pre>
metabolite_distances_bg=measure_metabolite_distance(
    metabolite_panel,
    biospecimen = "Adipose",
    conpass=conpass_bw,socket=socket_bw, dbname=dbname_bw)
#> setting diag of graph to zero
#> Correcting for hub degrees.
#> normalizing column vectors!
#> normalizing column vectors!
proximal_metabolites_bg<-extract_proximal_metabolites(</pre>
    metabolite_panel,
    metabolite_distances_bg,
    biospecimen = "Adipose",
    absolute_cutoff=background_cutoff,
    conpass=conpass_bw,socket=socket_bw, dbname=dbname_bw
)
#> [1] "Extracting 5 metabolite(s)"
expanded_metabolites_of_interest=c(metabolites,
              as.vector(proximal_metabolites))
## Get pathways from RaMP
pathwaydf <-
    getPathwayFromAnalyte(
        analytes = expanded_metabolites_of_interest,
        NameOrIds="ids",
        conpass=conpass_bw,socket=socket_bw, dbname=dbname_bw)
expanded_background = c(metabolite_panel,
          proximal_metabolites_bg)
backgrounddf <-getPathwayFromAnalyte(</pre>
    analytes = expanded_background,
    NameOrIds="ids",
    conpass=conpass_bw,socket=socket_bw, dbname=dbname_bw)
pathways_FDR<-runCombinedFisherTest(pathwaydf,</pre>
                                     backgrounddf,
                                     biospecimen_background="Adipose",
                                     conpass=conpass_bw,socket=socket_bw,
                                     dbname = dbname_bw,
#> [1] "Running Fisher's tests on metabolites"
#> [1] "Fisher Testing ....."
#> [1] "Keeping 92 pathways"
#> [1] "Calculated p-values for 157 pathways"
#> [1] 92 4
#> [1] "pathwayRampId" "Pval"
                                        "Num In Path" "Total In Path"
```

```
## plot_pathway_results(pathways,thresh=0.1,title="MetaboSPAN results")
pathwaydf default <-
   getPathwayFromAnalyte(
        analytes =
            c(metabolites),
       NameOrIds="ids",
        conpass=conpass_bw,socket=socket_bw, dbname=dbname_bw)
backgrounddf_default <-getPathwayFromAnalyte(</pre>
   analytes =
        c(as.vector(background_ids)),
   NameOrIds="ids",
        conpass=conpass_bw,socket=socket_bw, dbname=dbname_bw)
pathways_FDR_default<-
   runCombinedFisherTest(pathwaydf_default,
                          backgrounddf_default,
                          biospecimen_background = "Adipose",
                          MCall=F,
                          conpass=conpass_bw,socket=socket_bw, dbname=dbname_bw)
#> [1] "Running Fisher's tests on metabolites"
#> [1] "Fisher Testing ....."
#> [1] "Keeping 45 pathways"
#> [1] "Calculated p-values for 87 pathways"
#> [1] 45 4
```

Pathway Results

Pathways Summary table

#> [1] "pathwayRampId" "Pval"

stat	value
Number of significant metabolites	16.00
Number of panel metabolites	511.00
Similarity cutoff for significant list addition	5.00
Similarity cutoff for background list addition	5.00
Number of metabolites added to significant list	5.00
Number of metabolites added to panel list	5.00
Number of MetaboSPAN pathways with FDR pval < 0.05	22.00
Number of conventional (unexpanded) pathways with FDR pval < 0.05	4.00
Number of MetaboSPAN pathways with nominal pval < 0.05	22.00
Number of conventional (unexpanded) pathways with nominal pval < 0.05	4.00
Jaccard overlap of pathways < 0.05 between methods	1.00
Time it took to generate this report (minutes)	0.36

"Num_In_Path" "Total_In_Path"

Significant MetaboSPAN pathways (p < 0.05)

```
pathways_FDR$fishresults%>%dplyr::filter(Pval<0.05)%>%
    dplyr::select(pathwayName, Pval_FDR, Pval) %>%
    dplyr::arrange(pathwayName) %>%
```

		<i>-</i> \
knitr	:kable	()
TITLE OF .	·HUDIC	` /

pathwayName	Pval_FDR	Pval
Biogenic amine synthesis	0.0000368	6.40e-06
Class A/1 (rhodopsin-like receptors)	0.0000010	1.00e-07
Disorders of transmembrane transporters	0.0001016	2.43e-05
Free fatty acid receptors	0.0000596	1.29e-05
G alpha (q) signaling events	0.0000006	1.00e-07
G alpha (q) signalling events	0.0000007	1.00e-07
Incretin synthesis, secretion, and inactivation	0.0000003	0.00e+00
Incretin synthesis, secretion, and inactivation	0.0000003	0.00e+00
Methionine de novo and salvage pathway	0.0000184	3.00e-06
Neuronal System	0.0000003	0.00e+00
Neurotransmitter release cycle	0.0000003	0.00e+00
Neurotransmitter release cycle	0.0000567	1.11e-05
Omega-9 fatty acid synthesis	0.0000000	0.00e+00
Peptide hormone metabolism	0.0000003	0.00e+00
Phosphatidylcholine catabolism	0.0000002	0.00e+00
Purine metabolism and related disorders	0.0000184	3.00e-06
SLC transporter disorders	0.0000953	2.18e-05
Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1)	0.0000003	0.00e+00
Trans-sulfuration and one-carbon metabolism	0.0000101	1.40e-06
Transmission across Chemical Synapses	0.0000003	0.00e+00
Transport of bile salts and organic acids, metal ions and amine compounds	0.0000596	1.29 e - 05
Transport of bile salts and organic acids, metal ions and amine compounds	0.0000567	1.11e-05

Significant default pathways (p < 0.05)

```
pathways_FDR_default$fishresults%>%dplyr::filter(Pval<0.05) %>%
    dplyr::select(pathwayName, Pval_FDR, Pval) %>%
    dplyr::arrange(pathwayName) %>%
    knitr::kable()
```

pathwayName	Pval_FDR	Pval
Disorders of transmembrane transporters	4.57e-05	4.1e-06
Omega-9 fatty acid synthesis	1.50e-05	7.0e-07
Purine metabolism and related disorders	1.50e-05	5.0e-07
SLC transporter disorders	4.57e-05	3.6e-06

Metabolites added to set of interest

¹ Betaine

³ L-Carnitine

${\rm commonName}$

- 4 Palmitelaidic acid
- 6 Acetylcholine
- 8 Stearoyl-CoA

Metabolites added to background

commonName

- 1 Prostaglandin D2
- 4 Epinephrine
- 6 Oleic acid
- 9 Nicotinic acid
- $11 \quad TG(16:0/18:0/18:2(9Z,12Z)) \\$

Chemical