Лекция №5.

Линейная модель множественной регрессии (базовая модель эконометрики)

План

- 1. Завершение обсуждения схемы построения эконометрических моделей;
- 2. Линейная модель множественной и парной регрессии (базовая модель эконометрики);
- 3. Уравнение наблюдения объекта (схема Гаусса-Маркова), компактная запись схемы Гаусса-Маркова и понятие статичсктической процедуры оценивания параметров модели.

На прошлой лекции присупили к обсуждению схемы построения эконометрических моделей:

- 1. Спецификая модели;
- 2. Сбор и проверка статистической информации;
- 3. Оценивание (найстройка) модели;
- 4. Проверка адектватности (верификации) модели

Мы разобрали **1 пункт.** Там же подчеркнули, что спецификация эконометрической модели непременно включает в себя неизвестные константы a_0, a_1 , которые называют параметрами модели. В самом общем виде спецификация модели записывается так: $F(\vec{x}_t, \vec{y}_t; \vec{p}) = \vec{u}_t$. Здесь мы начинаем выявлять константы.

$$\begin{cases} Y = C + I \\ = a_0 + a_1 \cdot Y + u \\ 0 < a_1 < 1 \\ E(u) = 0, E(u^2) = \sigma_u^2 \end{cases}$$

Добавим, что спецификация временного ряда квартальных уровней ВВП России включает в себя 8 констант:

$$(a_0, a_1, a_2, a_3, b_1, b_2, b_3, \sigma_u)$$

Второй этап состоит в сборе и проверке статистической информации в виде конкретных реальных значений переменных входящих в модель. Примером второго этапа служат данные из таблицы № 1 из лекции № 1.

Замечание. Собранная статистическая информация разделяется на две части причём большая часть именуется обучаещей выборкой и предназначена для определения параметров модели; остальная информация именуется тестовой

или контролирующей выборкой и используется для проверки адекватности молели.

На третьем этапе схемы методами математической статистики оцениваются параметры модели по обучающей выборке. 4 и 5 практическое занятие служит иллюстрация 3 этапа. Подчеркнём, что всегда удаётся вычислить только приближённые значения параметров $\widetilde{\vec{p}}$ (оценки). Причина приближённого значения оценок параметров состоит в наличии случайных возмущений, пораждённых неучтёнными факторами.

Четвёртый этап состоит из проверки адекватности оценённой модели $F\left(\vec{x}_t,\ \vec{y}_t;\ \widetilde{\vec{p}}\right) = \vec{u}_t$ путём сопоставления прогнозов значений эндогенных перменных из контролирующей выборки $\tilde{y}_t = f\left(\vec{x}_t,\ \widetilde{\vec{p}}\right)$ (3.1.11) с реальными значениями. Модели признаётся адекватной, если ошибки прогнозов не превышают критические уровни $|\tilde{y}_t - y_t|$ (ошибка прогноза) $\leq e_{\text{крит}}\left(\tilde{y}_t\right)$ (3.1.12) (15% или $2-3\ \sigma$).

Вывод: схема построения эконометрических моделей состоит из 4 этапов и если модель признаётся не адекватной, то экономист возращается на первый этап и выявляет ошибки спецификации модели.

Линейная модель множественной регрессии (базовая модель эконометрики)

Модель со следующей спецификацией

$$\begin{cases} y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k + u \\ E(u) = 0; \ E(u^2) = \sigma_u^2; \end{cases}$$
 (3.2.1)

является базовой моделью эконометрики и называется линеной моделью множественной регресии. Символом y обозначена единственная объясняемая переменная; символом $(x_1, x_2, \ldots, x_k)(3.2.3)$ обозначены предопределённые (объясняющие переменные); символами $(a_0, a_1, \ldots, a_k)(3.2.4)$ обозначены константы и носят название коэффициенты модели (более полно, коэффициентов функции регрессии).

$$\tilde{y} = a_0 + a_1 x_1 + a_2 x_2 + \ldots + a_k x_k$$

Символом \tilde{y} обозначена функция объясняющий перменных, имеющая смысл той части эндогенной переменной y, которая объясняется предопределёнными перменными модели; величина \tilde{y} носит название функции регрессии и с точки зрения теории вероятностей является условным математическим ожидание велечины y; u обозначено случайное возмущение.

Смысл коэффициента a_q при переменной x_q

 a_j имеет смысл ожидаемого предельного значения переменной y по переменной x_j .

$$E(\triangle y) = a_j \cdot \triangle x_j \tag{3.2.4}$$

Пример (линейной модели множественной модели). Вернёмся к нашей предшествующей лекции и рассмотрим модель квартальных уровней ВВП России с кубическим трендом. Объясняемые переменные - это квартальные уровни датированные кварталами или t, связанный с календарём следующим правилом t=1, для первого квартала 2011 года.

$$\begin{cases} Y_t = a_0 + a_1 \cdot t + b_1 \cdot d_1(t) + b_2 \cdot d_2(t) + b_3 \cdot d_3(t) + u_t \\ E(u) = 0; \ E\left(u^2\right) = \sigma_u^2; \\ t = 1, \ 2, \ 3, \dots \\ t = 1 \ \Rightarrow 1 \ \text{квартал 2011 года} \end{cases} \tag{3.2.5}$$

Объясняющими переменными служит 6 переменных: $(t, t^2, t^3, d_1(t), d_2(t), d_3(t))$. Замечание. Обратим внимание, что в линейной модели множесвтенной регрессии среди объяснящих переменных $d_1(t), d_2(t), d_3(t)$, только одная является независимой - переменная t. Это значит, что в ЛММР объясняющие переменные могут быть как независимыми друг от друга, так и являться известными функциями каких-то других переменных велечин. Запомним, что аргумент - независим, а экзогенная переменная может быть зависимой.

Линейная модель парной регрессии

Простейшим случаем ЛММР служит модель парной регрессии с одной объясняющей переменной.

$$\begin{cases} y = a_0 + a_1 \cdot x + u \\ E(u) = 0; \ E(u^2) = \sigma_u^2; \end{cases}$$
 (3.2.6)

Приведём важный для инвестиционного анализа пример инвестиционной модели. Является рыночная модель ценной бумаги.

$$\begin{cases} r = \alpha + \beta \cdot r_I + u \\ E(u) = 0; E(u^2) = \sigma_u^2; \end{cases}$$
 (3.2.7)

ДЗ Рыночная модель ценной бумаги У. Шарп, Г. Александер, Д. Бэйли. Объясняющие - это доходность на акцию за 1 месяц r. Доходность на рыночный актив r_I .

Добавим в следующей таблице приведены значения переменных r b r_I рыночной модели компании Лукойл.

Вывод: линейная модель имеет спецификацию (3.2.1), которая имеет следующие параметры ($a_0, a_1, \ldots, a_k, \sigma_u$). Приступаем к статистической процедуре оценивания этих параметров.

Разместим обучающую выборку при построении ЛММР в следующей таблице: Подставляем каждую строчку в уравнение модели (2.1)

№ наблюдений	y	x_1	x_2	 x_k
1	y_1	$x_{1,1}$	$x_{2,1}$	 $x_{k,1}$
2	y_2	$x_{1,2}$	$x_{2,2}$	 $x_{k,2}$
:	:	:	:	 :
n	y_n	$x_{1,n}$	$x_{2,n}$	 $x_{k,n}$

В итоге получим следующую систему уравнений наблюдений в рамках (2.1):

$$\begin{cases} y_1 = a_0 + a_1 x_{1,1} + a_2 x_{2,1} + \dots + a_k x_{k,1} + u \\ y_2 = a_0 + a_1 x_{1,2} + a_2 x_{2,2} + \dots + a_k x_{k,2} + u \\ \dots \\ y_n = a_0 + a_1 x_{1,n} + a_2 x_{2,n} + \dots + a_k x_{k,n} + u \end{cases}$$

Её принято называть схемой Гаусса-Маркова.

Компактная запись:

$$\vec{y} = X \cdot \vec{a} + \vec{u} \tag{3.3.4}$$

 \vec{y} это схема левых частей. X — это матрица значений объяняющих перменных, расширенная столбцом 1 (если есть свободный член a_0), \vec{a} —вектор коэффициентов модели k+1. \vec{u} — веутор случайных возмущейний.