Magidor Characterization of Supercompactness and Generic Ultrapower

陈泽晟

2020/7/22

1/47

- 回顾: 可测基数与初等嵌入
- 2 Seed Theory
 - Seed Lemma & Closure Lemma
- Supercompactness
 - 嵌入刻画
 - 超滤刻画
 - Magidor 刻画
- Generic Ultrapower

回顾: 可测基数与初等嵌入

定义

一个基数 κ 是可测基数当且仅当存在一个初等嵌入 $j: V \prec M$ 使得 $\mathrm{crit}(j) = \kappa$, 并且 $\kappa M \subseteq M$.

等价地, κ 是可测基数当且仅当 κ 上存在一个 κ -完备的非主超滤 (κ -complete nonprincipal ultrafilter). 如果存在这样一个滤超滤, 我们也 会将它叫做测度 (measure).

定义 (Ultrapower)

令 Z 为一个集合, U 为 Z 上的一个超滤. 我们考虑所有 $f: Z \to V$, 并且定义等价关系: $f = g \Leftrightarrow \{i \in Z \mid f(i) = g(i)\} \in U$ (直觉: f 跟 g 在 U 认为的大多数情况下都相等).

类似地, 定义元素关系为 $f \in {}^* g \Leftrightarrow \{i \in Z \mid f(i) \in g(i)\} \in U$.

给定一个 f, 与 f 等价的 g 将会构成真类. 我们应用 Scott's trick 来使得f 的等价类构成集合:

 $\llbracket f \rrbracket_U = \{ g \mid f = g \land (\forall h)(h = f \rightarrow \operatorname{rank}(g) \leq \operatorname{rank}(h)) \}.$ 当 U 在语境中清楚时,我们会省略掉 U 这个下标。

 $\diamondsuit \prod_U V/=^* := \{ [\![f]\!] \mid f: Z \to V \}.$

定理 (Łoś 定理)

 $\prod_U V/=^*\models \varphi[\llbracket f_1 \rrbracket,...,\llbracket f_n \rrbracket]$,当且仅当 $\{i\in Z\mid V\models \varphi[f_1(i),...,f_n(i)]\}\in U$ (直觉: φ 在 f_j 们的投票选择参数的情况下,在 U 认为的大多数情况都成立)

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q C

推论

定义函数 $j'=j_U:V\to\prod_UV/=^*$ 为 $a\mapsto [c_a]=[\lambda x.a]$, 则 j 是一个初等嵌入, 即

$$V \vDash \varphi[a_1, ..., a_n] \Leftrightarrow \prod_U V / =^* \vDash \varphi[j'(a_1), ..., j'(a_n)]$$

事实

如果 κ 是可测基数并且 U 是 κ 上的 κ -完备非主超滤,那么 $\prod_U V/=^*$ 将会是 set-like, well-founded, and extensional. 所以我们可以使用 Mostowski collapse 来得到传递类 Ult=Ult(V,U) 以及 collapse isomorphism $\pi:(Ult=Ult(V,U),\in)\cong(\prod_U V/=^*,\in^*)$. 我们将 $\pi(\llbracket f \rrbracket)$ 写作 $\llbracket f \rrbracket$ 令 $j=j_U:=\pi\circ f':V\to Ult$,则 j 为初等嵌入. 不严谨地,我们会把 Ult 也叫做 ultrapower 和把 j 叫做 ultrapower embedding

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 夕久(*)

Seed Theory

给定一个 $j: V \prec M$, $\operatorname{crit}(j) = \kappa$, 我们可以用 κ "种" 出一个 κ -完备的非主超滤:

$$U_j = \{X \subseteq \kappa \mid \kappa \in j(X)\}$$

这样一个非主超滤在文献中也叫做 the normal measure derived from *j*, 或者 the derived measure.

事实

Ui 有着如下性质:

- ① (uniform) 如果 $X \in U_j$, 那么 $|X| = \kappa$
- ② (weakly uniform) 由上一点推论出: 对于任意 $\gamma < \kappa$, $[\gamma, \kappa) \in U_j$
- ③ (normal) 如果 $f: \kappa \to \kappa$ 满足 $\{i \in \kappa \mid f(i) < i\} \in U$, 那么则存在 $\gamma < \kappa$ 使得 $\{i \in \kappa \mid f(i) = \gamma\} \in U$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ りへぐ

推论 (Reflection argument)

 $\circ \kappa$ 为可测基数, 则 κ 是第 κ 个不可达基数

证明.

让 $j: V \prec M$ 见证 κ 的可测性. 取 the derived measure U_j 并且构造 Ult (V, U_j) . 因为 κ 在 V 中是不可达基数, 并且不可达性是一个 Π_1 性质, 所以 Ult \models " $\kappa < j(\kappa)$ 是不可达基数". 令 $I = \{\gamma < \kappa \mid \gamma \}$ 是不可达基数}, 我们则可以由上述断定 $\kappa \in j(I)$, 所以 $I \in U_j$. 根据 uniformity, $|I| = \kappa$, 即 κ 底下的不可达基数有 κ 那么多个.

定义

如果 $j: V \prec M$, $\operatorname{crit}(j) = \kappa$, 令 Z 为任意集合, 令 $U_a = \{X \subseteq Z \mid a \in j(X)\}$, 我们称 $a \in j(Z)$ 为超滤 $U_a \subseteq \mathcal{P}(Z)$ 的种子. 如果对于 V 中的某个函数 f, 我们有 j(f)(a) = b, 那么我们说 a 生成 (generates) b. 如果 M 中每一个元素都被 a 所生成, 那么我们说 a 生成 M.

定理 (Seed Lemma)

一个初等嵌入 $j: V \prec M$ 是一个 $ultrapower\ embedding\ 当且仅当存在一个种子 <math>a$ 使得 a 生成 M. 如果这个 a 存在, 那么令 a 为 U_a 的种子, 我们则有 [f]=j(f)(a)

定理 (Seed Lemma)

一个初等嵌入 $j: V \prec M$ 是一个 ultrapower embedding 当且仅当存在一个种子 a 使得 a 生成 M. 如果这个 a 存在, 那么令 a 为 U_a 的种子, 我们则有 [f] = j(f)(a)

证明.

 (\Rightarrow) : 令 Z 为一个集合, U 为 Z 上的一个非主超滤, 令 $\mathrm{id}: Z \to Z$ 为 $z \mapsto z$. 则 $[\mathrm{id}] \in j(Z)$. 我们证明 $[\mathrm{id}]$ 生成 M. 令 $f: Z \to V$ 为函数, c_f 为 $\lambda x.f$. 则我们有

$$j(f)([id]) = [c_f]([id]) = [\langle f(i) \mid i \in Z \rangle] = [f].$$

陈泽晟 (UCI)

(⇐): 假设种子 a 生成 M, 我们定义 $U = \{X \subseteq Z \mid a \in j(X)\}$. 这样一个 U 将是一个 $\mathrm{crit}(j) = \kappa$ -完备非主超滤. 我们用 U 来构建相应的 ultrapower embedding $j_U: V \prec \mathrm{Ult}(V, U)$. 我们将证明 $j = j_U$, $M = \mathrm{Ult}(V, U)$. 定义 $k: \mathrm{Ult}(V, U) \to M$ 为 $k([f]_U) = j(f)(a)$. 我们验证 k 是良定义的 (invariant under choice of representative), 即:

$$f =_{U} g \Leftrightarrow \{i \in Z \mid f(i) = g(i)\} \in U$$
$$\Leftrightarrow a \in j(\{i \in Z \mid f(i) = g(i)\})$$
$$\Leftrightarrow j(f)(a) = j(g)(a)$$

同样的论证也能告诉我们 k 是一个 \in -homomorphism. 同时, 由于 a 生成 M, 所以 k 将会是满射. 所以 k 是一个 \in -isomorphism. 然而内模型上的 \in -isomorphism 只有 identity 这一种 (假设 k 不是 identity, 取最小 rank 的 $x \neq k(x)$, 得到矛盾). 所以 $M = \mathrm{Ult}(V, U)$, 以及

$$j_U(x) = [c_x] = k([c_x]) = j(c_x)(a) = j(x)$$

陈泽晟(UCI) Fudan forcing seminar 2020/7/22 1

推论

令 $j: V \prec M$ 为初等嵌入, $\operatorname{crit}(j) = \kappa$, 则 j 为 κ 上的一个 normal measure 相应的 ultrapower embedding 当且仅当 κ 是一个生成 M 的种子

证明用到一个事实: 在 κ 上的 normal measure 构造的 ultrapower 里, $[id] = \kappa$.

引理 (Closure Lemma)

令 $j: V \prec M$ 为 ultrapower embedding, 令 $\lambda \in \mathrm{Ord}$. 则 ${}^{\lambda}M \subseteq M$ 当且仅 当 j" $\lambda \in M$

Proof: (⇒): 显然.

(⇐): 根据 Seed Lemma, 存在种子 a 生成 M. 令 $\langle z_{\alpha} \mid \alpha < \lambda \rangle \in {}^{\lambda}M$. 因为 a 生成 M, 所以每一个 z_{α} 都对应着一个 f_{α} , 使得 $j(f_{\alpha})(a) = z_{\alpha}$. 此时我们考虑 $j(\langle z_{\alpha} \mid \alpha < \lambda \rangle)$. 在 M 中,这是一个长度为 $j(\lambda)$ 的序列,其中如果 $\beta < \lambda$,则第 $j(\beta)$ 项为 $j(f_{\alpha})$. 但是因为 $j"\lambda \in M$,所以 $\langle j(f_{\alpha})(a) \mid \alpha \in j"\lambda \rangle \in M$. 而这个序列就是 $\langle z_{\alpha} \mid \alpha < \lambda \rangle$. \square

13 / 47

Supercompactness

定义

我们说一个基数 κ 是 λ -supercompact(超紧?) 的, 当且仅当存在初等嵌入 $i: V \prec M$ 满足

- $\operatorname{crit}(j) = \kappa$
- $j(\kappa) > \lambda$
- ${}^{\lambda}M\subseteq M$

如果对于所有 λ , κ 都是 λ -supercompact 的, 那么我们说 κ 是一个 supercompact cardinal.

Supercompactness

定义

我们说一个基数 κ 是 λ -supercompact(超紧?) 的,当且仅当存在初等嵌入 $j: V \prec M$ 满足

- $\operatorname{crit}(j) = \kappa$
- $j(\kappa) > \lambda$
- ${}^{\lambda}M\subseteq M$

如果对于所有 λ , κ 都是 λ -supercompact 的, 那么我们说 κ 是一个 supercompact cardinal.

一些观察: 如果 κ 是可测基数, 那么 κ 是 κ -supercompact. 如果 $\lambda' < \lambda$ 并且 κ 是 λ -supercompact, 那么 κ 也是 λ' -supercompact.

一些观察: supercompact 的定义与我们目前接触到的大基数定义有一个非常本质的区别: 它不是 local 的 (它不能在某一个集合结构上得到验证). 这里具体的意思是: 如果 κ 是强不可达基数 (Π_1 性质), 这件事情在 V_κ 中就能知道; 如果 κ 是可测基数 (Σ_2 性质, 感兴趣的同学可以自行验证), 那么见证这个性质的超滤在 $V_{\kappa+2}$ 就能找到. 相比之下, supercompact 是一个 "global property", 我们无法在哪个 V_λ 中知道 κ 是 supercompact (不过如果 κ 不是 supercompact 的话, 那么这点可以在某个 V_λ 中知道).

最小的 supercompact 要比最小的 measurable 大上许多:

Proposition

如果 κ 是 supercompact, 那么 κ 是第 κ 个可测基数.

证明.

我们用反射论证. 令 $j: V \prec M$ 见证 κ 的 2^{κ} -supercompact. 取 derived measure $U = \{X \subseteq \kappa \mid \kappa \in j(X)\}$. 但是由于 $2^{\kappa}M \subseteq M$, κ 上的每一个超滤都在 M 中. 所以 $M \vDash$ " $\kappa < j(\kappa)$ 是可测基数". 所以如果 $N = \{\gamma < \kappa \mid \gamma$ 是可测基数 $\}$, 那么 $\kappa \in j(N)$. 因此 $N \in U$. 所以 κ 下面的可测基数有 κ 那么多.

直觉上, supercompact 应该要比可测基数有着更强的反射性质. 下面命题则体现出了两者反射性质的差别之一.

事实

令 κ 为可测基数, 假设 GCH 在 κ 之下成立, 那么 $2^{\kappa}=\kappa^+$ (即 GCH 在 κ 处也成立)

Proposition

令 κ 为 supercompact, 假设假设 GCH 在 κ 之下成立, 则 GCH 成立.

证明.

我们证明: 如果 κ 是 λ -supercompact 并且 GCH 在 κ 之下成立, 那么 GCH 在 λ 之下也成立. 令 j: $V \prec M$ 见证 κ 的 λ -supercompactness. 因 为 $V \vDash$ "GCH 在 κ 之下成立", 所以 $M \vDash$ "GCH 在 $j(\kappa)$ 之下成立". 由于 $j(\kappa) > \lambda$, 所以如果 $\alpha \leq \lambda$, 则 $(2^{\alpha})^{M} = (\alpha^{+})^{M}$. 此时又因为我们有 $\lambda M \subseteq M$, 所以我们可以对 $\alpha \leq \lambda + 1$ 归纳证明 $V_{\alpha} = (V_{\alpha})^{M}$, 所以 $2^{\alpha} \leq (2^{\alpha})^{M} = (\alpha^{+})^{M} = \alpha^{+}$.

陈泽昆(UCI) Fudan forcing seminar 2020/7/22 17 / 47

我们可以证明一个更一般的事实: 如果 κ 是 supercompact, 那么 $V_{\kappa} \prec_2 V$. 我们先证明一个引理:

引理

对于不可数基数 κ , $H_{\kappa} \prec_1 V$. 这里 $H_{\kappa} = \{x : |\operatorname{trcl}(x)| < \kappa\}$ 是一个传递集合.

证明.

如果 $H_{\kappa} \vDash \varphi$, 其中 φ 是 Σ_1 , 那么根据 Σ_1 的向上绝对性, V 也同样满足 φ .

假设 $V \vDash \exists x \psi(x, a)$, 其中 ψ 是 Δ_0 , $a \in H_\kappa$. 根据反射原理, 存在 $V_\alpha \vDash \exists x \psi(x, a)$. 令 $N(|N| < \kappa)$ 为 $\operatorname{trcl}(a)$ 在 V_α 中的 Skolem hull. 则 N 是 extensional 和 well-founded 的. 令 M 为 N 的 Mostowski collapse, 则 $M \subseteq H_\kappa$. 而因为 $M \vDash \exists x \psi(x, a)$, 而 Σ_1 是向上绝对的, 所以 $H_\kappa \vDash \exists x \psi(x, a)$.

18 / 47

如果 κ 是 supercompact, 那么 $V_{\kappa} \prec_2 V$.

首先注意因为 κ 是不可达基数, 所以 $H_{\kappa} = V_{\kappa}$, 如果

证明.

 $V_{\kappa} \models (\exists x)(\forall y)\psi(x,y,c)$, 则根据前面的引理, $V_{\kappa} \prec_1 V$, 所以 Σ_2 语句对 V_{ε} 来说是向上绝对的, 所以 V 也满足这个语句. 相反地. 现在假设 $V \models (\exists x)(\forall y)\psi(x,y,c)$, 其中 $c \in V_{\kappa}$. 令 a 见证这一语 句. 我们挑选足够大的 λ 使得 $a \in V_{\lambda}$, 并且令 $i : V \prec M$ 见证 κ 的 $|V_{\lambda}|$ -supercompactness. 注意到如果 $|V_{\lambda}|M \subset M$, 那么 $a \in V_{\lambda} = (V_{\lambda})^M \subseteq M$ (suppose not, take counterexample of least rank). 所以: $V \models (\forall y) \psi(a, y, c)$, 并且 $a, c \in M$, 根据 Π_1 的向下绝对性, $M \models (\forall y) \psi(a, y, c)$. 又因为 $a, c \in (V_{i(\kappa)})^M$, 我们再一次使用向下绝对性 得到 $V_{j(\kappa)}^M \models (\forall y)\psi(a,y,c)$. 但是 j(c)=c, 所以这告诉了我们 $M \vDash "V_{j(\kappa)} \vDash (\exists x)(\forall y)\psi(x,y,j(c))$ ". 此时根据 j 的初等性, 我们可以得到: $V \vDash "V_{\kappa} \vDash (\exists x)(\forall y)\psi(x, y, c)".$

Filter Characterization

在考虑 Magidor characterization 之前, 我们先给出 supercompact 的另外一个等价的一阶定义 (Magidor 的证明中将会用到这个定义). 要理解这个定义背后的思想, 我们回顾一下之前的一个引理:

引理 (Closure Lemma)

令 $j: V \prec M$ 为 ultrapower embedding, 令 $\lambda \in \mathrm{Ord}$. 则 ${}^{\lambda}M \subseteq M$ 当且仅 当 j" $\lambda \in M$

如果 $i: V \prec M$ 见证 κ 的 λ -supercompactness, 那么 $i"\lambda \in M$. 这个方向不需要假设 i 是一个 ultrapower embedding. 我们想要一个对超滤的推广,使得我们可以得到形如"如果存在一个如何如何的超滤,那么这个超滤的 ultrapower $j: V \prec \mathrm{Ult}$ 满足 $j"\lambda \in M"$ 这样的结论. 因为 j 是 ultrapower embedding, 所以上述引理就告诉了我们 j 见证 κ 的 λ -supercompactness" 的条件.

此时 seed theory 的一般性就可以派上用场了.

之前介绍 seed theory 时,我们并没有要求种子必须要是哪些类型的对象,所以除了拿序数本身当种子之外,我们还可以考虑拿序数集来当种子。如果 $j: V \prec M$ 是一个初等嵌入, $\mathrm{crit}(j) = \kappa$,我们可以尝试拿 j" λ 来当种子.也就是说,我们种出来的 derived measure 将会是 $U = \{X \mid j$ " $\lambda \in j(X)\}$.

之前介绍 seed theory 时,我们并没有要求种子必须要是哪些类型的对象,所以除了拿序数本身当种子之外,我们还可以考虑拿序数集来当种子。 如果 $j: V \prec M$ 是一个初等嵌入, $\mathrm{crit}(j) = \kappa$,我们可以尝试拿 j" λ 来当种子.也就是说,我们种出来的 derived measure 将会是 $U = \{X \mid j$ " $\lambda \in j(X)\}$.

我们先观察一下 U 会生活在哪里 (是什么类型的对象). 如果 $X \in U$, 那么 j" $\lambda \in j(X)$. 此时我们注意到 j" $\lambda \in \mathcal{P}(j(\lambda))$. 所以 U 的元素应该是 $\mathcal{P}(\lambda)$ 的子集 (对比见证可测性的超滤, 那种超滤的元素是 κ 的子集). 我们还可以更精确地控制我们想要的空间: 注意到 |j" $\lambda| = \lambda < j(\kappa)$, 所以我们可以只考虑 $P(\lambda)$ 上那些势小于 κ 的集合就行了, 我们的滤只需要测量这些集合的大小. 这自然地为我们引入了如下定义.

之前介绍 seed theory 时,我们并没有要求种子必须要是哪些类型的对象,所以除了拿序数本身当种子之外,我们还可以考虑拿序数集来当种子。如果 $j: V \prec M$ 是一个初等嵌入, $\mathrm{crit}(j) = \kappa$,我们可以尝试拿 j" λ 来当种子.也就是说,我们种出来的 derived measure 将会是 $U = \{X \mid j$ " $\lambda \in j(X)\}$.

我们先观察一下 U 会生活在哪里 (是什么类型的对象). 如果 $X \in U$, 那么 j" $\lambda \in j(X)$. 此时我们注意到 j" $\lambda \in \mathcal{P}(j(\lambda))$. 所以 U 的元素应该是 $\mathcal{P}(\lambda)$ 的子集 (对比见证可测性的超滤, 那种超滤的元素是 κ 的子集). 我们还可以更精确地控制我们想要的空间: 注意到 |j" $\lambda| = \lambda < j(\kappa)$, 所以我们可以只考虑 $P(\lambda)$ 上那些势小于 κ 的集合就行了, 我们的滤只需要测量这些集合的大小. 这自然地为我们引入了如下定义.

定义

令 $\kappa \leq \lambda$ 为基数. $\mathcal{P}_{\kappa}\lambda = \{X \subseteq \lambda : |X| < \kappa\}.$

定义

假设 $j: V \prec M$ ($\operatorname{crit}(j) = \kappa$) 满足 $j(\kappa) > \lambda$ 并且 $j''\lambda$ 生成 M, 那么我们就说 j 是一个 λ -supercompact embedding.

根据 seed lemma, λ -supercompact embedding 将会是 ultrapower embedding. 所以我们想刻画能给我们带来 λ -supercompact embedding 的超滤.

2020/7/22

22 / 47

定义

令 U 为 $\mathcal{P}_{\kappa}\lambda$ 上的 κ -完备超滤, 我们说 U 是精细 (fine) 的, 当且仅当对于每个 $\alpha < \lambda$, 我们都有 $X_{\alpha} = \{s \in \mathcal{P}_{\kappa}\lambda \mid \alpha \in s\} \in U$.

定义

令 $f: X \to \lambda$ 为定义在 $X \subseteq \mathcal{P}_{\kappa}\lambda$ 上的函数, 我们说 f 是 regressive 的, 当且仅当 $f(s) \in s$ 对所有的 $s \in X$ 都成立. 如果 $Y \subseteq X$, 那 "f 在 Y 上是 regressive 的" 意思是 $f \upharpoonright Y$ 是 regressive 的.

定义

令 U 为 $\mathcal{P}_{\kappa}\lambda$ 上的 κ 超滤, 我们说 U 是 normal 的, 当且仅当对于任意的 $f:\mathcal{P}_{\kappa}\lambda\to\lambda$ 我们都有: 如果 f 在一个 U 中的集合上是 regressive 的, 那 么 f 将会在 U 中的一个集合上是 constant 的.

利用这些定义,我们将在接下来的 3 个 slides 里给出 supercompact 的 filter characterization

假设 $i: V \prec M$ 见证 κ 的 λ -supercompactness, 那么通过 $i''\lambda$ 得到的 derived measure $U := \{X \subseteq \mathcal{P}_{\kappa} \lambda \mid j"\lambda \in j(X)\}$ 则是 normal 和精细的

证明.

 κ -完备性的证明与可测基数的情况类似. 我们检查精细性. 令 $\alpha < \lambda$, 以 及 $X_{\alpha} = \{s \in \mathcal{P}_{\kappa} \lambda \mid \alpha \in s\}$, 我们想证明 $X_{\alpha} \in U$, 即 $j''\lambda \in j(X_{\alpha})$. 根据初 等性: $j(X_{\alpha}) = \{s \in \mathcal{P}_{j(\kappa)}j(\lambda) : j(\alpha) \in s\}$. 显然, $\alpha \in \lambda$ 蕴涵 $j(\alpha) \in j$ " λ . normality: 今 $f: \mathcal{P}_{\kappa} \lambda \to \lambda$ 在 $X \in U$ 上为 regressive 的, 这意味着 $j''\lambda \in i(X)$, 即 $i(f)(j''\lambda) \in j''\lambda$. 注意到 $j''\lambda = \{j(\alpha) \mid \alpha \in \lambda\}$. 所以 $j(f)(j''\lambda) = j(\alpha)$ 对于某个 $\alpha < \lambda$ 成立. 也就是说,

 $f''\lambda \in J(\{s \in \mathcal{P}_{\kappa}\lambda \mid f(s) = \alpha\})$. 根据 U 的定义, 我们断定 $\{s \in \mathcal{P}_{\kappa} \lambda \mid f(s) = \alpha\} \in U.$

24 / 47

假设 $j: V \prec M$ 是 $\mathcal{P}_{\kappa}\lambda$ 上的一个 normal, fine measure 相应的 ultrapower embedding, 那么 $j"\lambda = [id] \in M$, 并且 $^{\lambda}M \subseteq M$.

证明.

我们只需要证明 j" $\lambda = [id] (id : \mathcal{P}_{\kappa}\lambda \to \mathcal{P}_{\kappa}\lambda)$. 这样 Closure Lemma 就能告诉我们 ${}^{\lambda}M \subseteq M$.

j" $\lambda \subseteq [id]$: 令 $\alpha \in \lambda$. 根据精细性我们有 $X_{\alpha} \in U$, 注意到 $X_{\alpha} = \{s \in \mathcal{P}_{\kappa}\lambda \mid \alpha \in s\}$, 所以 $j(\alpha) \in [id]$ (因为 $\{s \in \mathcal{P}_{\kappa}\lambda \mid c_{\alpha}(s) \in id(s)\} = X_{\alpha}$).

 $[\mathrm{id}] \subseteq j$ " λ : 令 $[f] \in [\mathrm{id}]$,则 $\{s \in \mathcal{P}_{\kappa}\lambda \mid f(s) \in s = \mathrm{id}(s)\} \in U$. 此时根据 normality, 我们可以找到 $\gamma < \lambda$ 使得 $\{s \in \mathcal{P}_{\kappa}\lambda \mid f(s) = c_{\gamma}(s) = \gamma\} \in U$. 所以 $[f] = [c_{\gamma}] = j(\gamma) \in j$ " λ .

假设假设 $j: V \prec M$ 是 $\mathcal{P}_{\kappa}\lambda$ 上的一个 normal, fine measure 相应的 ultrapower embedding. 那么 $\operatorname{crit}(j) = \kappa$ 并且 $j(\kappa) > \lambda$

证明.

在 Seed Lemma 的证明中,我们留意到 [id] 是一个通过 j 能生成 M 的种子. 也就是说,M 中的每一个元素都形如 j(f)([id]). 根据上一个命题, $j(f)([id]) = j(f)(j"\lambda)$. 对于 $x \in \mathcal{P}_{\kappa}\lambda$,我们定义 $\kappa_x = x \cap \kappa$, $\lambda_x = \operatorname{otp}(x)$.

我们留意到 $otp(j"\lambda) = \lambda$. 考虑函数 $x \mapsto \lambda_x$, 由于 $otp(j"\lambda)$ 不会因为背景空间改变而改变,我们有 $j(x \mapsto \lambda_x)(j"\lambda) = \lambda$. 所以我们知道 $[x \mapsto \lambda_x] = \lambda$. 此时注意到对于任意 $x \in \mathcal{P}_\kappa \lambda$, 我们都有 $\lambda_x < \kappa$, 所以 $j(\kappa) = [c_\kappa] > \lambda$ (因为 $\{y \in \mathcal{P}_\kappa \lambda \mid c_\kappa(y) > (x \mapsto \lambda_x)(y)\} \in U$).

假设假设 $j: V \prec M$ 是 $\mathcal{P}_{\kappa}\lambda$ 上的一个 normal, fine measure 相应的 ultrapower embedding. 那么 $\mathrm{crit}(j) = \kappa$ 并且 $j(\kappa) > \lambda$

证明.

在 Seed Lemma 的证明中,我们留意到 [id] 是一个通过 j 能生成 M 的种子. 也就是说,M 中的每一个元素都形如 j(f)([id]). 根据上一个命题, $j(f)([id]) = j(f)(j^n\lambda)$. 对于 $x \in \mathcal{P}_\kappa \lambda$,我们定义 $\kappa_x = x \cap \kappa$, $\lambda_x = \operatorname{otp}(x)$.

我们留意到 $otp(j"\lambda) = \lambda$. 考虑函数 $x \mapsto \lambda_x$, 由于 $otp(j"\lambda)$ 不会因为背景空间改变而改变,我们有 $j(x \mapsto \lambda_x)(j"\lambda) = \lambda$. 所以我们知道 $[x \mapsto \lambda_x] = \lambda$. 此时注意到对于任意 $x \in \mathcal{P}_\kappa \lambda$,我们都有 $\lambda_x < \kappa$,所以 $j(\kappa) = [c_\kappa] > \lambda$ (因为 $\{y \in \mathcal{P}_\kappa \lambda \mid c_\kappa(y) > (x \mapsto \lambda_x)(y)\} \in U$).

把这三个命题放在一起,我们就有了一个在 ZFC 中可以表达的 supercompact 的定义: κ 是 supercompact 的,当且仅当对于每一个 $\lambda > \kappa$,在 $\mathcal{P}_{\kappa}\lambda$ 上都有一个 normal fine measure.

Magidor Characterization

定理 (Magidor)

 κ 是 supercompact 当且仅当对于任意 $\alpha > \kappa$, 都存在一个 $\beta < \kappa$, 以及初等嵌入 $k \colon V_{\beta} \prec V_{\alpha}$, 使得 $k(\mathrm{crit}(k)) = \kappa$

证明.

(⇒): 给定 $\alpha > \kappa$, 令 $j: V \prec M$ 见证 $|V_{\alpha}|$ -supercompact. 令 $\hat{j} = j \upharpoonright V_{\alpha}$. 根据初等性, 不难看出 $\hat{j}: V_{\alpha} \prec (V_{j(\alpha)})^{M}$. 由于 M 对于 $|V_{\alpha}|$ -序列闭包, 则 $V_{\alpha} = (V_{\alpha})^{M}$, 所以 $\hat{j} \in M$. 那么此时 M 会认为 $\hat{j}: V_{\alpha} \prec V_{j(\alpha)}$. 如果我们对 α, k 进行 existential generalization, 那么就可以得到 $M \vDash \exists \beta < j(\kappa) \exists k: V_{\beta} \prec V_{j(\alpha)} \land k(\mathrm{crit}(k)) = j(\kappa)$. 这个命题返回 到 V 上就是 $V \vDash \exists \beta < \kappa \exists k: V_{\beta} \prec V_{\alpha} \land k(\mathrm{crit}(k)) = \kappa$

27 / 47

证明.

(⇐): \diamondsuit $\lambda > \kappa$. 我们想要证明 $\mathcal{P}_{\kappa}\lambda$ 上存在一个 normal, fine measure.

考虑 $\lambda + \omega$. 根据假设,存在一个 $\beta < \kappa$ 以及 $k: V_{\beta} \prec V_{\lambda + \omega}$. 令 $\mathrm{crit}(k) = \delta$. 则根据假设有 $j(\delta) = \kappa$. 此时留意 $V_{\lambda + \omega} \models$ "存在一个最大的极限序数" \wedge " λ 是最大的极限序数". 根据初等性, $V_{\beta} \models$ 存在一个最大的极限序数". 如果 γ 是 V_{β} 认为的最大的极限序数, 那么 $k(\gamma) = \lambda$. 注意: $\mathcal{P}_{\delta}\gamma) \subseteq V_{\beta}$,并且 k" $\beta \in \mathcal{P}_{\kappa}\lambda$. 我们接下来就要用 k" β 做种子来种一个 normal fine measure. 具体地,我们定义 $U \subseteq P(P_{\delta}\gamma)$:

$$X \in U \Leftrightarrow k"\beta \in k(X)$$

跟之前同样的论证也能告诉我们 U 是在 $P(P_{\delta}\gamma$ 上的 normal fine measure. 对这个命题使用 k, 我们得到: k(U) 是 $\mathcal{P}_{k(\delta)}k(\gamma) = \mathcal{P}_{\kappa}\lambda$ 上的 normal fine measure.

◆ロト ◆個ト ◆意ト ◆意ト · 意 · からぐ

一些规定

给定一个偏序集 $\langle \mathbb{P}, \leq \rangle$, 我们说 $G \subseteq \mathbb{P}$ 是一个 filter, 当且仅当:

- $(\forall p, q \in G)(\exists r \in G)(r \leq p \land r \leq q)$
- $(\forall p \in G)(\forall q \in \mathbb{P})(p \leq q \rightarrow q \in G)$

 $D \subseteq \mathbb{P}$ 是稠密 (dense) 的, 当且仅当 $(\forall p \in \mathbb{P})(\exists q \leq p)(q \in D)$.

如果 \mathbb{P} 中存在一个元素 x 满足 $(\forall y \in \mathbb{P})(y \le x)$, 我们会将 x 写作 1. (我们甚至可以默认我们接触的力迫偏序都有一个 1 元素. 这样得到的力迫跟 Weaver 定义的是等价的. 见 Kunen 第 7 章练习 B1, B2).

我们力迫时不再用 generic ideal, 而是用 generic filter (这与文献中的用法更一致). 因为 filter 就是 ideal 的 dual notion, 所以这个选择仅仅是出于方便.

Generic Ultrapower: the big picture

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

Generic Ultrapower: the big picture

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

问题是, 有时候我们不知道 V 中有没有大基数, 或者有时候我们知道 V 中不能有大基数, 或者是有时候 V 中的大基数太大了, 以至于对眼前的问题无法产生什么影响. 更具体一些, 我们有下面这个难题

Generic Ultrapower: the big picture

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

问题是, 有时候我们不知道 V 中有没有大基数, 或者有时候我们知道 V 中不能有大基数, 或者是有时候 V 中的大基数太大了, 以至于对眼前的问题无法产生什么影响. 更具体一些, 我们有下面这个难题

我们想要有对象使得我们能像有大基数那样利用反射论证或者别的 什么论证方法。

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

问题是, 有时候我们不知道 V 中有没有大基数, 或者有时候我们知道 V 中不能有大基数, 或者是有时候 V 中的大基数太大了, 以至于对眼前的问题无法产生什么影响. 更具体一些, 我们有下面这个难题

- 我们想要有对象使得我们能像有大基数那样利用反射论证或者别的 什么论证方法。
- 但是反射论证的强度来自于 ultrapower 嵌入的强度

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

- 我们想要有对象使得我们能像有大基数那样利用反射论证或者别的 什么论证方法。
- 但是反射论证的强度来自于 ultrapower 嵌入的强度
- 我们希望我们嵌入的 ultrapower 是 well-founded 的

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

- 我们想要有对象使得我们能像有大基数那样利用反射论证或者别的 什么论证方法。
- 但是反射论证的强度来自于 ultrapower 嵌入的强度
- 我们希望我们嵌入的 ultrapower 是 well-founded 的
- 一旦我们的 ultrafilter 是 ω_1 -complete 的, 那么所嵌入的模型就是 well-founded 的, 但是嵌入的 critical point 就是大基数了

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

- 我们想要有对象使得我们能像有大基数那样利用反射论证或者别的 什么论证方法。
- 但是反射论证的强度来自于 ultrapower 嵌入的强度
- 我们希望我们嵌入的 ultrapower 是 well-founded 的
- 一旦我们的 ultrafilter 是 ω_1 -complete 的, 那么所嵌入的模型就是 well-founded 的, 但是嵌入的 critical point 就是大基数了
- 相反地, 如果我们的 ultrafilter 不是 ω₁-complete 的, 那么我们嵌入 的 ultrapower 也不会是 well-founded 的

现在我们进入 generic ultrapower 的话题. 我们知道, 存在 $j: V \prec M$ 等价于存在一个可测基数. 这里的 j 是一个可定义真类. 特别地, j 是在 V(这里的 V 指的是目前所处的宇宙) 中定义的. 一旦有 j 满足这个定义, V 中就自动有了大基数.

- 我们想要有对象使得我们能像有大基数那样利用反射论证或者别的 什么论证方法。
- 但是反射论证的强度来自于 ultrapower 嵌入的强度
- 我们希望我们嵌入的 ultrapower 是 well-founded 的
- 一旦我们的 ultrafilter 是 ω_1 -complete 的, 那么所嵌入的模型就是 well-founded 的, 但是嵌入的 critical point 就是大基数了
- 相反地, 如果我们的 ultrafilter 不是 ω₁-complete 的, 那么我们嵌入 的 ultrapower 也不会是 well-founded 的

从现在开始,为了跟力迫法符号更一致,我们用 M 来表述目前我们所处的模型 (或者在讨论中一开始的模型),在文献里,我们也会叫 M 作 ground model.

一个想法: 我们是不是可以不管 M 中有没有我们想要的超滤, 转而考虑我们可不可能"假装"这样的一个超滤存在? 比较天真地, 我们想在 M 中找到一个偏序, 然后考虑 M 上的一个 generic filter, 接下来我们就想办法让这个 generic filter 在 M[G] 变成一个 ultrafilter, 然后我们再在 M[G] 中操作这个 ultrafilter 以及相应的 ultrapower.

当然, 这个想法是需要小心操作的. 首先, 我们不可能凭空在 M[G] 中变出一个 normal measure 来. 因为这样我们就能证明类似 $\operatorname{Con}(\operatorname{ZFC}) \to \operatorname{Con}(\operatorname{ZFC} + \operatorname{LC})$ 这样子的命题.

在实际操作上,我们将会控制使得我们的 generic normal measure 只测量 M 中的集合,我们的 ultrapower 也只考虑 M 中的函数,这样子我们相当于就在 M[G] 中定义了一个 M 的 ultrapower 以及嵌入 $j: M \prec \mathrm{Ult}$. 特别的,我们不会默认这样的 j 会蕴涵大基数存在,因为在 M[G] 的视角来看,j 并不是一个 $V \prec \mathrm{Ult}$ 的嵌入 (M[G] 视角中的 V 就是 M[G] 所有元素构成的真类).

一个不太恰当但是可以帮助理解的类比:假设 V 中存在一个可测基数,则存在一个 $j: L \prec L$ 的初等嵌入.这个情况下我们并不会说 $L \vDash$ "存在一个 Reinhardt 基数". 原因就是这个 j 是 V 中的产物.这个类比不恰当的地方是因为如下事实: $0^\#$ 无法被集合力迫添加 (见 Jech exercise 18.2).

Metamathematical Subtlety

如果我们想在 M[G] 中操作定义域为 M 的嵌入,我们需要有什么方法在 M[G] 中讨论 M 的元素。然而至少表面上,我们没有理由认为 M 是否在 M[G] 中是可定义的真类。我们有三个处理方法:

- 在语言中添加一个符号 M, 并且规定 p | x ∈ M 当且仅当 {q | (∃x ∈ M)(q | x = τ)} 是在 p 下稠密的. 不难验证, 如果 G 是一个 generic, 那么
 - $\{val(\tau,G) \mid (\exists p \in G)(p \Vdash \tau \in M)\} = \{val(\check{x},G) \mid x \in M\} = M$
- 由于每一篇论证都只会用到有穷条公理,而在基数算术上,集合力迫只会影响到 initial segment of cardinals,所以我们可以选取一个非常大的正则基数 θ (例如远远大于 $2^{2^{2^{|\mathbb{P}|}}}$),然后再考虑 H_{θ} 的 ultrapower.

Metamathematical Subtlety

第三个方法,也是目前最干净的处理方法 (虽然在历史上最晚出现) 则是直接回答开头的问题: M 在 M[G] 中是一个可定义的类.

定理 (Laver, Woodin)

令 $M \models ZFC$, $\mathbb{P} \in M$, $G \subseteq \mathbb{P}$ 为一个 generic filter, 令 $\gamma = |\mathbb{P}|^M$ 则在 M[G]中, M 是一个以 $(\mathcal{P}(\gamma))^M$ 为参数的可定义真类 (definable from the parameter $(\mathcal{P}(\gamma))^M$)

Hamkins 把这个定理叫做 "the first theorem of set-theoretic geology". 该 领域两个类似的 open questions:

- Laver-Woodin 定理, 但是但把条件改成 M ⊨ ZF
- M 跟 M[G] 中间的 symmetric extension 是否是可定义的

Metamathematical Subtlety

一个概念性的小问题: 如果 M 在 M[G] 是可定义的, 那么我们也可以在 M 中定义 $1 \Vdash \varphi^M(\hat{x})$ 这个关系, 然而这个关系等价于 $M \models \varphi[x]$. 所以我们在 M 中定义了 M 的真. 这与塔斯基不可定义定理矛盾. 这是怎么回事呢?

Generic Ultrapower

我们接下来对 ultrafilter 进行推广.

定义

令 M 为 ZFC 的传递模型, 令 κ 为 M 中的基数. 我们说 $D \subseteq \mathcal{P}^M(\kappa)$ 是一个 M-ultrafilter 当且仅当

- $\kappa \in D, \emptyset \notin D$
- $X \in D \land Y \in D \Rightarrow X \cap Y \in D$
- $(X \in D \land X \supseteq Y \in M) \Rightarrow Y \in D$
- 对于任意的 $X \subseteq \kappa$, 如果 $X \in M$, 那么 $X \in D$ 或者 $\kappa \setminus X \in D$
- $D \in \kappa$ -完备的,当且仅当对于任意的 $\alpha < \kappa$,如果 $\langle X_{\xi} : \xi < \alpha \rangle \in M$ 并且 $\{X_{\xi} : \xi < \alpha\} \subseteq D$,那么 $\bigcap_{\xi < \alpha} X_{\xi} \in D$
- $D \neq D$ 是 normal 的,当且仅当对于任意的 $f \in M$,如果 $f \neq X \in D \neq D$ regressive,那么 $f \neq A$ 会在某个 $f \neq D$ 是 constant

我们可以把之前的 ultrafilter 看作 V-ultrafilter. 一点观察: M-ultrafilter 不一定要在 M 里, 而且 κ-完备的 M-ultrafilter 不一定实际上 κ=完备. ¬

如果 / 是 κ 上的 ideal (即 $\emptyset \in I, \kappa \notin I$, / 对有限并集封闭, / 对子集封闭), 我们称 $F = \{\kappa \setminus X \mid X \in I\}$ 为 / 的 dual filter.

我们说 / 是 normal 的, 当且仅当 / 的 dual filter 是 normal 的.

陈泽晟(UCI) Fudan forcing seminar 2020/7/22 37 / 47

令 M 为 ZFC 的传递模型, κ 为 M 中的不可数正则基数, 令 I 为 M 中 κ 上的一个 ideal 我们定义以下偏序集 $\langle P, \leq \rangle$:

- $X \in P \Leftrightarrow (X \subseteq \kappa \land X \notin I)$
- $X \leq Y \Leftrightarrow X \subseteq Y$

令 $G \subseteq P$ 为 $P \perp M$ -generic filter(即对 M 中任意稠密 $D \subseteq P$, $G \cap D \neq \emptyset$).

引理

- ⑤ G 是 κ 上的一个 M-ultrafilter, 并且 G ⊇ F, 其中 F 为 I 的 dual filter
- 如果 / 在 M 中是 κ-完备的, 那么 G 就是一个 κ-完备的 M-ultrafilter.
- 如果 I 是 normal 的, 那么 G 也是 normal 的.

 $G \in \mathcal{L}$ 上的一个 M-ultrafilter, 并且 $G \supseteq F$, 其中 F 为 I 的 dual filter

证明.

G 是 M-filter: 留作练习.

 $G \in M$ -ultrafilter: 如果 $X \subseteq \kappa$, 我们写 $\kappa \setminus X \supset X^c$. 我们断言 $\{Y \in P \mid Y \subseteq X \lor Y \subseteq X^c\}$ 是稠密的: 如果 $Z \in P$, 那么 $Z \cap X \not\equiv Z \cap X^c$ 必须有一个在 P 内. 这是因为如果 $Z \cap X \not\in P$ 以及 $Z \cap X^c \not\in P$, 那么根据 P 的定义, $Z \cap X \in I$, $Z \cap X^c \in I$. 而由于 I 对并集闭包, $(Z \cap X) \cup (Z \cap X^c) = Z \in I$. 这与 $Z \in P$ 矛盾

 $(Z \cap X) \cup (Z \cap X^c) = Z \in I$. 这与 $Z \in P$ 矛盾.

 $G \supseteq F$: 如果 $X \in F$, 那么 $\{Y \in P \mid Y \subseteq X\}$ 在 P 中稠密: 考虑 $Z \in P$, 我们宣称 $(Z \cap X) \in P$. 如果 $(Z \cap X) \notin P$, 那么根据 P 的定义 $(Z \cap X) \in I$. 而因为 $X \in F$ 并且 $F \in I$ 的 dual filter, 我们有 $(Z \cap X) \cup X^c \in I$, 这蕴涵了 $Z \in I$, 与 $Z \in P$ 矛盾.

如果 / 在 M 中是 κ -完备的, 那么 G 就是一个 κ -完备的 M-ultrafilter.

证明.

我们这里用到 κ -完备 ultrafilter 的一个等价定义: $G \in \kappa$ 上的 κ -完备的 ultrafilter 当且仅当对于任意的 $\gamma < \kappa$, 如果 $\bigcup_{\alpha < \gamma} X_{\alpha} \in G$, 那么存在一个 β 使得 $X_{\beta} \in G$.

现在假设 $\bigcup_{\alpha<\gamma} X_{\alpha}=$,我们宣称 $\{Y\in P\mid (\exists\alpha)Y\subseteq X_{\alpha}\}$ 在 P 中稠密: 如果 $Z\in P$,那么肯定存在 α 满足 $Z\cap X_{\alpha}\in P$. 假设不然: 那么 $Z\cap X_{\alpha}\in I$ 对于所有 $\alpha<\gamma$ 成立,则 $\bigcup_{\alpha<\gamma}(Z\cap X_{\alpha})=\kappa\in I$. 这与 ideal 的定义矛盾.

如果 I 是 normal 的, 那么 G 也是 normal 的

证明.

令 $X \in G$, $f \in M$. 假设 f 在 X 上是 regressive 的, 则取 F 中的任意元素 Y, 此时注意到 f 在 $X \cap Y$ 上也是 regressive 的. 如果 $(X \cap Y) \in F$, 那么根据 F 的 normality, 命题就得证了. 不然的话, 定义 $f: Y \to \kappa$ 为

$$f(\alpha) = \begin{cases} f(\alpha) & \text{如果} \alpha \in X \cap Y \\ \emptyset & \text{otherwise} \end{cases}$$

则 f 在 Y 上 regressive, 此时根据 F 的 normality, 我们知道 f 在某个 $Z \in F$ 上 constant. 但是 $f \upharpoonright (X \cap Y \cap Z) = f \upharpoonright (X \cap Y \cap Z)$

陈泽晟(UCI) Fudan forcing seminar 2020/7/22

令 κ 为不可数正则基数,令 I 为 κ 上 κ -完备的 ideal,并且对于所有 $\alpha \in \kappa$,我们都有 $\{\alpha\} \in I$. 令 G, P 与前文定义相同. 那么根据上面的引 理,在 M[G] 中,G 是一个 κ -完备的 nonprincipal M-ultrafilter. 所以在 M[G] 中,我们可以正常定义 $\mathrm{Ult}(M,G)$. 具体地:我们考虑所有 $f:\kappa \to M$,并且定义等价关系: $f=^*g \Leftrightarrow \{i \in \kappa \mid f(i) = g(i)\} \in G$ 定义元素关系为 $f\in^*g \Leftrightarrow \{i \in \kappa \mid f(i) \in g(i)\} \in G$. $[f]=\{g\mid f=^*g \land (\forall h)(h=^*f \to \mathrm{rank}(g) \leq \mathrm{rank}(h))\}$. 令 $\mathrm{Ult}(M,G)=\{[f]\mid f:\kappa \to M\}$.

Łoś 定理也同样成立:

$$\mathrm{Ult}(M,G) \vDash \varphi[[f_1],...,[f_n]], \Leftrightarrow \{i \in \kappa \mid M \vDash \varphi[f_1(i),...,f_n(i)]\} \in G$$

所以我们可以在 M[G] 中定义 $j: M \prec \mathrm{Ult}(M,G), j(a) = [c_a] = [\lambda x.a]$

令 N = Ult(M, G). 如果 $x \in \text{Ord}^N$, 那么我们写 $\text{otp}^N(x) = \{y \in \text{Ord}^N \mid y \in^N x\}$. 如果 $otp^N(x)$ 是一个序数 γ , 那我们就把 x 考虑作 γ .

N 中的序数 (在 M[G] 看来) 不一定是 well-founded 的, 但是利用 G 的完备性, 我们可以和可测基数的情况一样证明 N 中序数的一些基本性质

引理

- ① 如果 $\gamma < \kappa$, 那么 $j(\gamma) = \gamma$
- $(\kappa) \neq \kappa$
- ③ 如果 G 是 normal 的, 那么 $[id] = \kappa$.

generic ultrapower 的应用

定理 (Silver)

令 κ 为 cofinality 为 ω_1 的 singular cardinal. 假设 $2^{\lambda} = \lambda^+$ 对所有 $\lambda < \kappa$ 成立, 则 $2^{\kappa} = \kappa^+$

证明.

在 M 中,我们考虑 ω_1 上的 nonstationary ideal $I=X\subseteq\omega_1\mid X$ is nonstationary}. 令 P,G 与前文定义相同. 因为 $(|P|\leq 2^{\omega_1}<\kappa)^M$,所以 |P| 满足 κ -cc,因此 κ 以上的基数在 M[G] 中得以保留.

generic ultrapower 的应用

定理 (Silver)

令 κ 为 cofinality 为 ω_1 的 singular cardinal. 假设 $2^{\lambda} = \lambda^+$ 对所有 $\lambda < \kappa$ 成立, 则 $2^{\kappa} = \kappa^+$

证明.

在 M 中,我们考虑 ω_1 上的 nonstationary ideal $I=X\subseteq\omega_1\mid X$ is nonstationary}. 令 P,G 与前文定义相同. 因为 $(|P|\le 2^{\omega_1}<\kappa)^M$,所以 |P| 满足 κ -cc,因此 κ 以上的基数在 M[G] 中得以保留.

现在令工作环境为 M[G]. G 是 $(\omega_1)^M$ 上的一个 normal, ω_1 -完备的 M-ultrafilter. 我们令 $N=\mathrm{Ult}(M,G)$, $j:M\prec N$

令 $\langle \kappa \rangle_{\alpha} \mid \alpha < \omega_1$ 为 M 中见证 κ 共尾性的一个序列. 这个序列可以看成一个定义在 ω_1 上的函数 e: $e(\alpha) = \kappa_{\alpha}$. 在无歧义的情况下,我们也用 e 表示 [e]. 令 e^+ 为 e 在 N 中的后继基数.

对于 M 中的每一个 $X \subseteq \kappa$, 我们定义 $f_X : \omega_1^M \to M$ 为 $f_X(\alpha) = X \cap \kappa_\alpha$. $[f_X]$ 将会是 e 的子集. 如果 $X \neq Y$, 那么 $\{\alpha \in (\omega_1)^M \mid f_X(\alpha) = f_Y(\alpha)\}$ 是一个势小于 ω_1^M 的集合. 所以 $[f_X] \neq [f_Y]$. 所以 $|\mathcal{P}^M(\kappa)| \leq |\mathcal{P}^N(e)|$

令 $\langle \kappa \rangle_{\alpha} \mid \alpha < \omega_1$ 为 M 中见证 κ 共尾性的一个序列. 这个序列可以看成一个定义在 ω_1 上的函数 e: $e(\alpha) = \kappa_{\alpha}$. 在无歧义的情况下,我们也用 e 表示 [e]. 令 e^+ 为 e 在 N 中的后继基数.

对于 M 中的每一个 $X \subseteq \kappa$, 我们定义 $f_X : \omega_1^M \to M$ 为 $f_X(\alpha) = X \cap \kappa_\alpha$. $[f_X]$ 将会是 e 的子集. 如果 $X \neq Y$, 那么 $\{\alpha \in (\omega_1)^M \mid f_X(\alpha) = f_Y(\alpha)\}$ 是一个势小于 ω_1^M 的集合. 所以 $[f_X] \neq [f_Y]$. 所以 $|\mathcal{P}^M(\kappa)| \leq |\mathcal{P}^N(e)|$

此时我们注意到, $\{\alpha \mid M \vDash 2^{e(\alpha)} = e(\alpha)^+\} \in G$, 所以根据 Łoś 定理, $N \vDash 2^e = e^+$. 所以在 N 中, 存在一个 $\mathcal{P}^N(e)$ 与 $ext(e^+) = \{x \in \operatorname{Ord}^N \mid x \in^N e^+\}$ 的双射. 所以在 M[G] 中我们可以看到 $|\mathcal{P}^M(\kappa)| \leq |\mathcal{P}^N(e)| = |ext(e^+)|$

- (ロ) (個) (注) (注) (注) の((

令 $\langle\kappa\rangle_{\alpha}\mid\alpha<\omega_{1}$ 为 M 中见证 κ 共尾性的一个序列. 这个序列可以看成一个定义在 ω_{1} 上的函数 e: $e(\alpha)=\kappa_{\alpha}$. 在无歧义的情况下, 我们也用 e 表示 [e]. 令 e^{+} 为 e 在 N 中的后继基数.

对于 M 中的每一个 $X \subseteq \kappa$, 我们定义 $f_X : \omega_1^M \to M$ 为 $f_X(\alpha) = X \cap \kappa_\alpha$. $[f_X]$ 将会是 e 的子集. 如果 $X \neq Y$, 那么 $\{\alpha \in (\omega_1)^M \mid f_X(\alpha) = f_Y(\alpha)\}$ 是一个势小于 ω_1^M 的集合. 所以 $[f_X] \neq [f_Y]$. 所以 $|\mathcal{P}^M(\kappa)| \leq |\mathcal{P}^N(e)|$

 $N \models 2^e = e^+$. 所以在 N 中, 存在一个 $\mathcal{P}^N(e)$ 与 $ext(e^+) = \{x \in \operatorname{Ord}^N \mid x \in^N e^+\}$ 的双射. 所以在 M[G] 中我们可以看到 $|\mathcal{P}^M(\kappa)| \leq |\mathcal{P}^N(e)| = |ext(e^+)|$

此时我们注意到, $\{\alpha \mid M \models 2^{e(\alpha)} = e(\alpha)^+\} \in G$, 所以根据 Łoś 定理,

我们现在宣称 $e=\sup\{j(\kappa_\gamma)\mid \gamma<\omega_1^M\}$. 这是因为如果 [f] 是一个比 e 小的序数, 那么我们可以找到 $X\in G$ 满足 $\{\alpha\in Lim\mid f(\alpha)<\kappa_\alpha\}=X$. 而由于 α 是极限序数, 所以每个 $f(\alpha)$ 都会小于某个 $\kappa_{\gamma(\alpha)}$, 其中 $\gamma(\alpha)<\alpha$. 如果我们考虑函数 $(\alpha\mapsto\gamma(\alpha))$, 那么根据 G 的 normality, 则存在一个 γ 使得这个函数在 G 中某个集合上永远是 γ . 这说明了 $[f]<^N\kappa_{\gamma}$.

陈泽晟(UCI) Fudan forcing seminar 2020/7/22 46/47

(在 M[G] 中), 每个 $\gamma \in \omega_1^M$ 都满足 $|ext(j(\kappa_\gamma))| \leq |(\kappa_\gamma^{\omega_1})^M| < \kappa$. 而因为 e 是 $j(\kappa)$ 的最小上界, 所以 $|ext(e)| \leq \kappa$

(在 M[G] 中), 每个 $\gamma \in \omega_1^M$ 都满足 $|ext(j(\kappa_\gamma))| \leq |(\kappa_\gamma^{\omega_1})^M| < \kappa$. 而因为 e 是 $j(\kappa)$ 的最小上界, 所以 $|ext(e)| \leq \kappa$

如果 $x<^Ne^+$, 那么在 N 中我们可以找到 x 到 e 的双射, 所以 $|ext(x)|\leq |ext(e)|<\kappa$. 我们推论 $|ext(e^+)|$ 是一个线序集, 且其中每个 initial segment 的大小都不大于 κ , 那么这意味着 $|ext(e^+)|\leq \kappa^+$. 根据上一页的结果, 我们有 $|\mathcal{P}^M(\kappa)|\leq \kappa^+$. 这是在 M[G] 中得到的结果, 也就是说, 我们得到的是 $(|\mathcal{P}^M(\kappa)|)^{M[G]}\leq (\kappa^+)^{M[G]}$. 但是由于 κ 之上的基数都不受力迫影响, 所以 $(|\mathcal{P}^M(\kappa)|)^M\leq (\kappa^+)^M$ 也成立. 即 $(2^\kappa=\kappa^+)^M$.