DISKRETNE STRUKTURE

- RELACIJE -

I DEO

Šta je to relacija?

U raznim oblastima se često javlja potreba da se između izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

Na primer, često se javlja potreba

- da se izvesni objekti uporede prema nekom zadatom kriterijumu,
- da se poređaju u skladu sa nekim pravilom,
- da se odrede izvesne sličnosti između objekata, i da se oni grupišu u grupe međusobno sličnih objekata, itd.

U matematici se sve ovo može uraditi korišćenjem matematičkog pojma relacije, koji definišemo i bavimo se njime u daljem tekstu.

Binarne relacije

Binarnu relaciju ϱ na nepraznom skupu A definišemo kao bilo koji podskup Dekartovog kvadrata A^2 :

$$\varrho\subseteq A^2$$
.

Ako je

$$(x,y)\in \varrho,$$

onda kažemo

x je u relaciji ϱ sa y.

Često umesto $(x, y) \in \varrho$ pišemo $x \varrho y$.

Primeri binarnih relacija

- a) Skup $\varrho=\{(1,2),(1,3),(2,3)\}$ je jedna binarna relacija na skupu $\{1,2,3\}$. Umesto $(1,2)\in\varrho$, piše se $1\,\varrho\,2$.
 - Kako je to relacija manje za brojeve, uobičajeno označavanje je 1 < 2.
- b) Na partitivnom skupu proizvoljnog skupa A, inkluzuja \subseteq je jedna binarna relacija.
- c) Skup $\{(x,x) \mid x \in A\}$ određuje relaciju jednakosti na nepraznom skupu A; oznaka relacije je =, odnosno piše se a=a za svaki element $a \in A$.

Primeri binarnih relacija

d) Poznate binarne relacije na skupu prirodnih brojeva \mathbb{N} , pored jednakosti, jesu i <, \leq , |, a njihove definicije su:

$$x < y \Leftrightarrow (\exists z)(x+z=y)$$
 manje (strogo manje) $x \leqslant y \Leftrightarrow (x=y \lor x < y)$ manje ili jednako $x \mid y \Leftrightarrow (\exists z)(x \cdot z=y)$ deli, je delitelj

Analogno prvim dvema definišu se i relacije

> veće (strogo veće) > veće ili jednako

n-arne relacije

Slično pojmu binarne relacije, za bilo koji prirodan broj n uvodimo pojam n-arne relacije ϱ na nepraznom skupu A koja se definiše kao bilo koji podskup Dekartovog stepena A^n .

Broj n se naziva arnost ili dužina relacije ϱ .

Relacije arnosti 1 nazivamo unarne relacije.

Unarne relacije su zapravo "obični" podskupovi skupa A.

Relacije arnosti 2 su upravo binarne relacije.

Relacije arnosti 3 nazivamo ternarne relacije.

U matematici se najčešće radi sa binarnim relacijama.

Zato, jednostavnosti radi, umesto binarna relacija mi govorimo kraće samo relacija.

Primeri n-arnih relacija

a) Ako je A skup tačaka na pravoj, onda se svojstvom

$$x$$
 je između y i z

definiše jedna ternarna relacija na A.

b) Skup

$$\{(x,y,z)\mid x^2+y^2=z^2\}$$

je ternarna relacija na skupu \mathbb{R} .

c) Skup \mathbb{N}_p parnih brojeva je unarna relacija na skupu \mathbb{N} .

Grafičko predstavljanje relacija

Kao što smo ranije rekli, Dekatrov kvadrat A^2 skupa A se grafički predstavlja kvadratom čija donja i leva ivica predstavljaju skup A.

Binarne relacije na A se u tom slučaju predstavljaju kao skupovi tačaka sa odgovarajućim koordinatama u tom kvadratu.

U ovom primeru je $(a,b)\in \varrho$, što pišemo $a\,\varrho\,b$, dok $(c,d)\notin \varrho$.

Grafičko predstavljanje relacija

Ako je skup A konačan, onda kvadrat A^2 predstavljamo mrežom horizontalnih i vertikalnih duži, čiji preseci predstavljaju tačke iz A^2 .

Relaciju $\varrho\subseteq A^2$ predstavljamo tako što parove tačaka iz ϱ u toj mreži označavamo malim kružićima.

Na primer, za $A=\{a,b,c,d\}$, gornja slika predstavlja relaciju

$$\varrho = \{(a,b), (a,c), (b,b), (b,c), (c,b), (c,d), (d,a), (d,d)\}.$$

Bulove matrice

Relacija ϱ na konačnom skupu $A = \{a_1, a_2, \ldots, a_n\}$ može se predstaviti i Bulovom matricom

$$M_arrho = egin{bmatrix} lpha_{1,1} & lpha_{1,2} & \ldots & lpha_{1,n} \ lpha_{2,1} & lpha_{2,2} & \ldots & lpha_{2,n} \ \ldots & \ldots & \ldots \ lpha_{n,1} & lpha_{n,2} & \ldots & lpha_{n,n} \end{bmatrix}$$

gde je

$$lpha_{i,j} = \left\{egin{array}{ll} 1 & \mathsf{ako}\; (a_i, a_j) \in arrho \ 0 & \mathsf{ako}\; (a_i, a_j)
otin arrho \end{array}
ight.$$

Matrica se naziva Bulovom jer se sastoji samo od Bulovih vrednosti – nula (oznaka za netačno) i jedinica (oznaka za tačno).

Primer Bulove matrice

Ranije razmatrana relacija

$$\varrho = \{(a,b), (a,c), (b,b), (b,c), (c,b), (c,d), (d,a), (d,d)\},\$$

na skupu $A = \{a, b, c, d\}$, može se predstaviti Bulovom matricom:

$$M_{arrho} = egin{bmatrix} 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 \end{bmatrix}$$

Primetimo da ova matrica veoma liči na kvadratnu mrežu (rotiranu za -90°), kojom je ranije bila predstavljena ista ova relacija.

Relacije i grafovi

Još jedan način grafičkog predstavljanja relacija je uz pomoć grafova.

Orijentisani graf ili digraf je uređeni par (G,E) za koji važi:

- -G je neprazan skup, koji nazivamo skupom čvorova, a njegove elemente čvorovima grafa;
- $-E\subseteq G^2$ je neprazan skup koji nazivamo skupom grana, a njegove elemente granama grafa.

Jasno, E je ništa drugo do binarna relacija na skupu čvorova G.

Za granu $e=(a,b)\in E$ kažemo da počinje u čvoru a a završava se u čvoru b, što grafički predstavljamo na sledeći način:

$$a \rightarrow b$$

Jednostavnosti radi, kada je iz konteksta jasno da se radi o digrafu, umesto "digraf" kažemo i samo "graf".

Neka je graf G = (G, E) zadat sa:

$$G = \{a, b, c\}, \quad E = \{(a, b), (a, c), (b, b), (b, c), (c, b)\}.$$

Jednostavnosti radi, kada je iz konteksta jasno da se radi o digrafu, umesto "digraf" kažemo i samo "graf".

Neka je graf G = (G, E) zadat sa:

$$G = \{a, b, c\}, \quad E = \{(a, b), (a, c), (b, b), (b, c), (c, b)\}.$$

$$\stackrel{\boldsymbol{c}}{\circ}$$

$$oldsymbol{a}$$

$$\overset{\mathtt{o}}{b}$$

Jednostavnosti radi, kada je iz konteksta jasno da se radi o digrafu, umesto "digraf" kažemo i samo "graf".

Neka je graf G = (G, E) zadat sa:

$$G = \{a, b, c\}, \quad E = \{(a, b), (a, c), (b, b), (b, c), (c, b)\}.$$

Ovaj graf (relaciju) grafički predstavljamo na sledeći način:

 $\stackrel{\boldsymbol{c}}{\circ}$

Jednostavnosti radi, kada je iz konteksta jasno da se radi o digrafu, umesto "digraf" kažemo i samo "graf".

Neka je graf G = (G, E) zadat sa:

$$G = \{a, b, c\}, \quad E = \{(a, b), (a, c), (b, b), (b, c), (c, b)\}.$$

Jednostavnosti radi, kada je iz konteksta jasno da se radi o digrafu, umesto "digraf" kažemo i samo "graf".

Neka je graf G = (G, E) zadat sa:

$$G = \{a, b, c\}, \quad E = \{(a, b), (a, c), (b, b), (b, c), (c, b)\}.$$

Jednostavnosti radi, kada je iz konteksta jasno da se radi o digrafu, umesto "digraf" kažemo i samo "graf".

Neka je graf G = (G, E) zadat sa:

$$G = \{a, b, c\}, \quad E = \{(a, b), (a, c), (b, b), (b, c), (c, b)\}.$$

Jednostavnosti radi, kada je iz konteksta jasno da se radi o digrafu, umesto "digraf" kažemo i samo "graf".

Neka je graf G = (G, E) zadat sa:

$$G = \{a, b, c\}, \quad E = \{(a, b), (a, c), (b, b), (b, c), (c, b)\}.$$

Još jedan primer grafa

Neka je graf (G,E) grafički prikazan sa

Tada je $G=\{a,b,c\}$ i

$$E = \{(a,b), (a,c), (b,b), (c,a), (c,c)\}.$$

Napomenimo da granu oblika (a,a) zovemo petlja.

Malo o terminologiji

Naziv "graf" potiče upravo od grafičkog načina njihovog predstavljanja.

Naziv "orijentisani graf" ističe činjenicu da kod svake grane razlikujemo njen početni i njen završki čvor.

U grafičkom predstavljanju grafa, orijentacija je određena strelicom.

"Digraf" je skraćenica naziva orijentisanog grafa na engleskom jeziku – "directed graph".

U matematici se takođe izučavaju i neorijentisani grafovi.

Za razliku od orijentisanih grafova, kod kojih je grana uređeni par čvorova, kod neorijentisanih grafova grana je neuređeni par čvorova.

Zadatak 1.1. Neka je $A=\{2,4,5,8,9,10\}$ i neka je ϱ relacija na A definisana sa

 $a \, \varrho \, b \, \stackrel{\mathrm{def}}{\Leftrightarrow} \, a \, \mathsf{deli} \, b \, \mathsf{u} \, \mathsf{skupu} \, \mathbb{N}.$

- (a) Predstaviti relaciju ϱ kao skup uređenih parova.
- (b) Predstaviti relaciju ϱ grafom.
- (c) Predstaviti relaciju ϱ Bulovom matricom.

Rešenje: a) Imamo da je

$$\varrho = \{(2,2), (2,4), (2,8), (2,10), (4,4), (4,8), (5,5), (5,10), (8,8), (9,9), (10,10)\}.$$

(b) Kako je

$$\varrho = \{(2,2), (2,4), (2,8), (2,10), (4,4), (4,8), (5,5), (5,10), (8,8), (9,9), (10,10)\},\$$

 ϱ se može predstaviti grafom na jedan od sledećih načina:

(c) Kako je

$$\varrho = \{(2,2), (2,4), (2,8), (2,10), (4,4), (4,8), (5,5), (5,10), (8,8), (9,9), (10,10)\},\$$

 ϱ se može predstaviti sledećom Bulovom matricom:

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Kako se iz ovog predstavljanja ne vidi baš jasno koja vrsta, odnosno kolona, odgovara određenom elementu iz A, to relaciju ϱ možemo predstaviti i tablicom

	2	4	5	8	9	10
2	1	1	0	1	0	1
4	0	1	0	1	0	0
5	0	0	1	0	0	1
8	0	0	0	1	0	0
9	0	0	0	0	1	0
2 4 5 8 9 10	0	0	0	0	0	1

Neke važne relacije

Prazna relacija definiše se kao prazan podskup od A^2 .

Puna ili univerzalna relacija definiše se kao ceo skup A^2 .

Relacija jednakosti na skupu A naziva se često i dijagonalna relacija ili dijagonala i označava se sa Δ .

Dakle, $\Delta = \{(x,x) \mid x \in A\}$

Operacije sa relacijama

Kako relacije na skupu A predstavljaju podskupove od A^2 , to se pojmovi presek relacija, unija relacija i komplement relacije definišu kao preseci skupova:

$$arrho \cap heta = \{(x,y) \in A^2 \mid (x,y) \in arrho \wedge (x,y) \in heta\}; \ arrho \cup heta = \{(x,y) \in A^2 \mid (x,y) \in arrho \vee (x,y) \in heta\}; \ \overline{arrho} = \{(x,y) \in A^2 \mid (x,y)
ot\in arrho\}.$$

Jednakost i inkluzija relacija

Jednakost relacija takođe definišemo kao jednakost skupova,

$$arrho = heta \stackrel{ ext{def}}{\Leftrightarrow} (orall (x,y) \in A^2) \, (x,y) \in arrho \Leftrightarrow (x,y) \in heta \,),$$

a inkluziju relacija kao inkluziju skupova:

$$arrho\subseteq heta\stackrel{\mathrm{def}}{\Leftrightarrow}(orall(x,y)\in A^2)\,(x,y)\inarrho\Rightarrow(x,y)\in heta\,).$$

Inverzna relacija

Inverzna relacija relacije ϱ na skupu A, u oznaci ϱ^{-1} , je relacija na skupu A definisana sa:

$$arrho^{-1}=\{(y,x)\in A^2\mid (x,y)\in arrho\}.$$

Na slici se vidi da se inverzna relacija ϱ^{-1} dobija rotacijom relacije ϱ oko dijagonale.

Primeri operacija sa relacijama

Razmatramo relacije na skupu prirodnih brojeva N.

- a) Presek relacija \leq i \geq je relacija jednakosti, a njihova unija je puna relacija, tj. \mathbb{N}^2 .
- b) Komplement relacije < je relacija ≥, a inverzna relacija za < je relacija >.
- c) Relacija jednakosti je sama sebi inverzna, a njen komplement je relacija \(\neq \).
- d) Relacija deli, |, je podskup relacije ≤.

Kompozicija relacija

Kompozicija ili proizvod relacija ϱ i θ na skupu A je relacija $\varrho \circ \theta$ na A, definisana na sledeći način:

$$arrho\circ heta = \{(x,y)\in A^2 \mid (\exists z\in A)((x,z)\in arrho\wedge (z,y)\in heta)\}$$

odnosno

$$arrho\circ heta = \{(x,y)\in A^2 \mid (\exists z\in A)(\,x\,arrho\,z\,\wedge\,z\, heta\,y\,)\}$$

Drugim rečima, relacija θ se nastavlja (nadovezuje) na ϱ .

To nadovezivanje može se grafički prikazati na sledeći način

Primer kompozicije relacija

Neka je $A=\{a,b,c,d\}$, i

$$\varrho = \{(a,b), (a,c), (a,d), (b,d)\}, \ \theta = \{(b,a), (b,c), (d,c)\}.$$

Tada je

$$\varrho \circ \theta = \{(a,a),(a,c),(b,c)\},\ \theta \circ \varrho = \{(b,b),(b,c),(b,d)\}.$$

Isti primer – drugi način

Neka je ponovo $A=\{a,b,c,d\}$, i

$$\varrho = \{(a,b), (a,c), (a,d), (b,d)\}, \ \theta = \{(b,a), (b,c), (d,c)\}.$$

Ove relacije možemo grafički predstaviti tako da relaciji ϱ odgovaraju plave strelice, a relaciji θ crvene.

Tada relacijama $\varrho \circ \theta$ i $\theta \circ \varrho$ odgovaraju kombinacije strelica:

$$\varrho \circ \theta$$
: plava-crvena; $\theta \circ \varrho$: crvena-plava

Dakle,

$$\varrho\circ\theta=\{(a,a),(a,c),(b,c)\},\ \theta\circ\varrho=\{(b,b),(b,c),(b,d)\}.$$

Asocijativnost kompozicije

Tvrđenje 1: Za proizvoljne relacije ϱ , θ i σ na skupu A važi:

$$\varrho \circ (\theta \circ \sigma) = (\varrho \circ \theta) \circ \sigma,$$

tj. kompozicija relacija je asocijativna operacija.

Dokaz:

Dokazaćemo samo da važi inkluzija

$$\varrho \circ (\theta \circ \sigma) \subseteq (\varrho \circ \theta) \circ \sigma,$$

jer se obratna inkluzija dokazuje na potpuno isti način.

Asocijativnost kompozicije

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

Asocijativnost kompozicije

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$
 $\Rightarrow (\exists x \in A) \qquad \land$
 \Rightarrow
 \Rightarrow
 \Rightarrow
 \Rightarrow

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$
 $\Rightarrow (\exists x \in A)(a,x) \in \varrho \land$
 \Rightarrow
 \Rightarrow
 \Rightarrow
 \Rightarrow

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \land (x,b) \in \theta \circ \sigma$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \land (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A) \qquad (a,x) \in \varrho \land$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \land (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \land (\qquad \land \qquad)$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge)$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge (y,b) \in \sigma)$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge (y,b) \in \sigma)$$

$$\Rightarrow (\exists y \in A)(\exists x \in A)$$

$$\Rightarrow$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge (y,b) \in \sigma)$$

$$\Rightarrow (\exists y \in A)(\exists x \in A)((a,x) \in \varrho \wedge (x,y) \in \theta) \wedge (y,b) \in \sigma$$

$$\Rightarrow$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge (y,b) \in \sigma)$$

$$\Rightarrow (\exists y \in A)(\exists x \in A)((a,x) \in \varrho \wedge (x,y) \in \theta) \wedge (y,b) \in \sigma$$

$$\Rightarrow (\exists y \in A) \qquad \wedge (y,b) \in \sigma$$

$$\Rightarrow (\exists y \in A) \qquad \wedge (y,b) \in \sigma$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge (y,b) \in \sigma)$$

$$\Rightarrow (\exists y \in A)(\exists x \in A)((a,x) \in \varrho \wedge (x,y) \in \theta) \wedge (y,b) \in \sigma$$

$$\Rightarrow (\exists y \in A)(a,y) \in \varrho \circ \theta \wedge (y,b) \in \sigma$$

$$\Rightarrow$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge (y,b) \in \sigma)$$

$$\Rightarrow (\exists y \in A)(\exists x \in A)((a,x) \in \varrho \wedge (x,y) \in \theta) \wedge (y,b) \in \sigma$$

$$\Rightarrow (\exists y \in A)(a,y) \in \varrho \circ \theta \wedge (y,b) \in \sigma$$

$$\Rightarrow (a,b) \in (\varrho \circ \theta) \circ \sigma$$

$$(a,b) \in \varrho \circ (\theta \circ \sigma) \Rightarrow$$

$$\Rightarrow (\exists x \in A)(a,x) \in \varrho \wedge (x,b) \in \theta \circ \sigma$$

$$\Rightarrow (\exists x \in A)(\exists y \in A)(a,x) \in \varrho \wedge ((x,y) \in \theta \wedge (y,b) \in \sigma)$$

$$\Rightarrow (\exists y \in A)(\exists x \in A)((a,x) \in \varrho \wedge (x,y) \in \theta) \wedge (y,b) \in \sigma$$

$$\Rightarrow (\exists y \in A)(a,y) \in \varrho \circ \theta \wedge (y,b) \in \sigma$$

$$\Rightarrow (a,b) \in (\varrho \circ \theta) \circ \sigma$$

Ovim smo dokazali da je $\varrho \circ (\theta \circ \sigma) \subseteq (\varrho \circ \theta) \circ \sigma$. \square

Tvrđenje 2: Postoji skup A i relacije ϱ i θ na A takve da je

$$\varrho \circ \theta \neq \theta \circ \varrho$$
.

tj. da kompozicija relacija ne mora biti komutativna operacija.

Dokaz: U primeru kompozicije relacija koji smo dali napred je

$$\varrho \circ \theta \neq \theta \circ \varrho$$
,

što dokazuje naše tvrđenje. □

Tvrđenje 3: Za proizvoljnu relaciju ϱ na skupu A važi

$$\varrho \circ \Delta = \Delta \circ \varrho = \varrho$$
.

Dokaz: Neka je $(x,y)\in \varrho\circ\Delta$. To znači da postoji $z\in A$ takav da je $(x,z)\in \varrho$ i $(z,y)\in\Delta$, odnosno $(x,z)\in \varrho$ i z=y, odakle dobijamo da je $(x,y)\in\varrho$. Prema tome, dokazali smo da je $\varrho\circ\Delta\subseteq\varrho$.

Sa druge strane, ako je $(x,y)\in \varrho$, tada imamo da je $(x,y)\in \varrho$ i $(y,y)\in \Delta$, pa prema definiciji kompozicije relacija dobijamo da je $(x,y)\in \varrho\circ \Delta$. Ovim smo dokazali da je $\varrho\subseteq \varrho\circ \Delta$, pa konačno zaključujemo da je $\varrho\circ \Delta=\varrho$.

Na isti način dokazujemo da je $\Delta \circ \varrho = \varrho$. \square

Tvrđenje 3: Za proizvoljne relacije ρ , θ i σ na skupu A važi:

(a)
$$\rho \circ (\theta \cup \sigma) = (\rho \circ \theta) \cup (\rho \circ \sigma); \quad (\rho \cup \theta) \circ \sigma = (\rho \circ \sigma) \cup (\theta \circ \sigma);$$

(b)
$$\rho \circ (\theta \cap \sigma) \subseteq (\rho \circ \theta) \cap (\rho \circ \sigma); \quad (\rho \cap \theta) \circ \sigma \subseteq (\rho \circ \sigma) \cap (\theta \circ \sigma);$$

(c)
$$(\rho \cup \theta)^{-1} = \rho^{-1} \cup \theta^{-1}$$
;

(d)
$$(\rho \cap \theta)^{-1} = \rho^{-1} \cap \theta^{-1}$$
;

(e)
$$(\rho \circ \theta)^{-1} = \theta^{-1} \circ \rho^{-1}$$
;

(f)
$$(\rho^{-1})^{-1} = \rho$$
;

(g)
$$(\overline{\rho})^{-1} = \overline{(\rho^{-1})}$$
.

Dokaz: Ostavlja se za vežbu.

Tvrđenje 3: Za proizvoljne relacije ρ , θ i σ na skupu A važi:

$$ho \subseteq \theta \ \Rightarrow \ \sigma \circ \rho \subseteq \sigma \circ \theta, \qquad \rho \subseteq \theta \ \Rightarrow \ \rho \circ \sigma \subseteq \theta \circ \sigma.$$

$$\rho \subset \theta \Rightarrow \rho \circ \sigma \subset \theta \circ \sigma$$

Dokaz: Neka je $\rho \subseteq \theta$.

Ako $(x,y)\in\sigma\circ
ho$, tada postoji $z\in A$ takav da je $(x,z)\in\sigma$ i $(z,y)\in
ho$. Kako je $ho\subseteq heta$, to imamo da je $(x,z)\in \sigma$ i $(z,y)\in heta$, što znači da je $(x,y) \in \sigma \circ \theta$.

Prema tome, dobili smo da je $\sigma \circ \rho \subseteq \sigma \circ \theta$, čime je dokazana prva implikacija.

Druga implikacija se dokazuje analogno.

Refleksivne relacije

Relacija ϱ na skupu A je refleksivna ako za svaki $x \in A$ važi

$$(x,x)\in\varrho$$
.

Drugim rečima, relacija ϱ je refleksivna ako i samo ako je

$$\Delta \subseteq \varrho$$

tj., ako ϱ sadrži dijagonalu.

Prema tome, dijagonala je refleksivna relacija.

Za relaciju ϱ na A, relacija $\varrho\cup\Delta$ je najmanja refleksivna relacija na A koja sadrži ϱ , i zovemo je refleksivno zatvorenje relacije ϱ .

Simetrične relacije

Relacija ϱ na A je simetrična ako za sve $x,y\in A$ važi

$$(x,y)\in arrho \Rightarrow (y,x)\in arrho.$$

Drugim rečima, ϱ je simetrična relacija ako je $\varrho\subseteq\varrho^{-1}$, što je ekvivalentno sa $\varrho=\varrho^{-1}$.

Naziv "simetrična" potiče iz činjenice da su to relacije simetrične u odnosu na dijagonalu, što je prikazano na sledećoj slici:

Antisimetrične relacije

Relacija ϱ na A je antisimetrična ako za sve $x,y\in A$ važi

$$(x,y)\in arrho \ \wedge \ (y,x)\in arrho \ \Rightarrow \ x=y,$$

Ovaj uslov je ekvivalentan sa

$$\varrho \cap \varrho^{-1} \subseteq \Delta$$
.

Drugim rečima, antisimetrična relacija ne može sadržati nijedan par različitih tačaka u A^2 simetričan u odnosu na dijagonalu.

Odatle i potiče naziv "antisimetrična" relacija.

Tranzitivne relacije

Relacija arrho na A je tranzitivna ako za sve $x,y,z\in A$ važi

$$(x,y)\in \varrho \wedge (y,z)\in \varrho \Rightarrow (x,z)\in \varrho.$$

Ekvivalentna formulacija ovog uslova je $\varrho \circ \varrho \subseteq \varrho$.

Tranzitivnost se grafički može predstaviti na sledeći način – ako je x u relaciji sa y, i y je u relaciji sa z, onda se trougao može zatvoriti relacijom između x i z:

Tranzitivno zatvorenje relacije

Neka je ϱ relacija na skupu A. Za $n \in \mathbb{N}^0$, n-ti stepen relacije ϱ , u oznaci ϱ^n , definišemo sa:

$$arrho^0 \stackrel{\mathrm{def}}{=} \Delta$$

$$\varrho^1 \stackrel{\mathrm{def}}{=} \varrho$$

$$arrho^0 \stackrel{
m def}{=} \Delta \qquad \qquad arrho^1 \stackrel{
m def}{=} arrho \qquad \qquad arrho^{n+1} \stackrel{
m def}{=} arrho^n \circ arrho$$

Takođe, relacije ϱ^+ i ϱ^* definišemo na sledeći način:

$$arrho^+ \stackrel{\mathrm{def}}{=} igcup_{n \in \mathbb{N}} arrho^n$$

$$arrho^+ \stackrel{\mathrm{def}}{=} igcup_{n \in \mathbb{N}} arrho^n \qquad \qquad arrho^* \stackrel{\mathrm{def}}{=} igcup_{n \in \mathbb{N}^0} arrho^n$$

- a) ϱ^+ je najmanja tranzitivna relacija na A koja sadrži ϱ , i zovemo je tranzitivno zatvorenje relacije ρ ;
- b) ϱ^* je najmanja refleksivna i tranzitivna relacija na A koja sadrži ϱ , i zovemo je refleksivno-tranzitivno zatvorenje relacije ϱ .

Putevi u grafu

Neka je dat graf (G,E), čvorovi $a,b\in G$ i neka je

$$e_1 = (a_1, b_1), e_2 = (a_2, b_2), \ldots, e_n = (a_n, b_n) \in E$$

niz grana za koje važi

- $-a=a_1$ (a je početni čvor);
- $-b_n=b$ (b je završni čvor);
- $b_k=a_{k+1}$ (grana e_{k+1} se nadovezuje na granu e_k), za svaki k, $1\leqslant k\leqslant n-1.$

Tada za ovaj niz grana kažemo da je put iz čvora a u čvor b, a broj n grana u nizu nazivamo dužinom tog puta.

Putevi u grafu

Tranzitivno zatvorenje relacije ϱ na skupu A može se predstaviti pomoću puteva u grafu (A,ϱ) , na sledeći način:

 $(a,b)\in \varrho^+$ ako i samo ako postoji put iz a u b.

Takođe, za $n \in \mathbb{N}$ važi:

 $(a,b)\in \varrho^n$ ako i samo ako postoji put dužine n iz a u b.

Na ovaj način bi smo mogli izraziti i tranzitivnost relacije:

Relacija ϱ na skupu A je tranzitivna ako i samo ako svaki put u grafu (A,ϱ) ima prečicu dužine 1, tj., postoji grana koja spaja početnu i krajnju tačku tog puta.

a) Relacije =, \leq , \geqslant i | na skupu $\mathbb N$ prirodnih brojeva su refleksivne.

Sve te relacije su i tranzitivne, = je simetrična a \leq , \geqslant i \mid su antisimetrične.

Ako relaciju deljenja | posmatramo na skupu celih brojeva, tada ona nije antisimetrična. Na primer, za svaki ceo broj $n \neq 0$ važi: $-n \mid n$ i $n \mid -n$, pri čemu je $n \neq -n$.

b) Relacija $\varrho = \{(1,1),(1,2),(2,2)\}$ je refleksivna na skupu $\{1,2\}$, ali nije na skupu $\{1,2,3\}$, jer ne sadrži dijagonalu ovog poslednjeg.

- c) Relacija $\varrho=\{(x,y)\mid |x-y|<1\}$ na skupu realnih brojeva $\mathbb R$ je refleksivna i simetrična, ali nije tranzitivna.
- d) Relacija paralelnosti za prave u ravni:

$$p\|q \stackrel{ ext{def}}{\Leftrightarrow} p$$
 i q se ne seku ili se poklapaju

je refleksivna, simetrična i tranzitivna.

Relacija ortogonalnosti

$$p\bot q \stackrel{\mathrm{def}}{\Leftrightarrow} p$$
 i q se seku pod pravim uglom

je samo simetrična.

Zadatak 1.2. Neka je na skupu celih brojeva zadata sledeća relacija

$$x \varrho y \Leftrightarrow (\exists u \in \mathbb{Z}) \ x = yu.$$

Koja od sledećih svojstava ima ova relacija:

- (a) refleksivna
- (b) simetrična
- (c) anti-simetrična
- (d) tranzitivna

Rešenje: Dokazaćemo da ova relacija ima svojstva (a) i (d), a nema ostala svojstva.

(a) Relacija ϱ je refleksivna jer za svaki $x\in\mathbb{Z}$ važi da je $x=x\cdot 1$, što znači da je $x\,\varrho\,x$.

- (b) Relacija ϱ nije simetrična jer je, na primer, $6 \varrho 2$, a nije $2 \varrho 6$. Naime, postoji $u \in \mathbb{Z}$ tako da je $6 = 2 \cdot u$ (u = 3), ali ne postoji $v \in \mathbb{Z}$ tako da je $2 = 6 \cdot v$.
- (c) Relacija ϱ nije anti-simetrična, jer su, na primer, 2 i -2 različiti elementi iz $\mathbb Z$ za koje važi da je $2\,\varrho-2$ i $-2\,\varrho\,2$. Naime, $2=(-2)\cdot(-1)$ i $-2=2\cdot(-1)$.
- (d) Relacija ϱ je tranzitivna jer ako su $x,y,z\in\mathbb{Z}$ elementi takvi da je $x\,\varrho\,y$ i $y\,\varrho\,z$, odnosno postoje $u,v\in\mathbb{Z}$ tako da je x=yu i y=zv, tada je

$$x = yu = (zv)u = z(vu),$$

i kako je jasno da je $vu\in\mathbb{Z}$, to dobijamo da je $x\,\varrho\,z$. $\ \square$

Zadatak 1.3. Neka je $S=\{1,2,3\}$ i neka je relacija R na S zadata sa

$$R = \{(2,1), (1,2), (3,3), (2,2), (1,1)\}.$$

Koja od sledećih svojstava ima ova relacija:

- (a) refleksivna
- (b) simetrična
- (c) anti-simetrična
- (d) tranzitivna

Rešenje: Dokazaćemo da R ima svojstva (a), (b) i (d), a nema (c).

(a) Relacija

$$R = \{(2,1), (1,2), (3,3), (2,2), (1,1)\}$$

je refleksivna jer sadrži sve parove (1,1), (2,2) i (3,3) sa dijagonale Dekartovog kvadrata skupa S.

- (b) Relacija R je i simetrična, jer van dijagonale sadrži samo parove (1,2) i (2,1), koji su međusobno simetrični.
- (c) Relacija R nije anti-simetrična, jer sadrži parove (1,2) i (2,1), pri čemu je $1 \neq 2$.

(d) Kako su za $R = \{(2,1), (1,2), (3,3), (2,2), (1,1)\}$ tačne sledeće implikacije

$$(1,1) \in R \land (1,1) \in R \Rightarrow (1,1) \in R$$
 $(1,1) \in R \land (1,2) \in R \Rightarrow (1,2) \in R$
 $(1,2) \in R \land (2,1) \in R \Rightarrow (1,1) \in R$
 $(1,2) \in R \land (2,2) \in R \Rightarrow (1,2) \in R$
 $(2,1) \in R \land (1,1) \in R \Rightarrow (2,1) \in R$
 $(2,1) \in R \land (1,2) \in R \Rightarrow (2,2) \in R$
 $(2,2) \in R \land (2,1) \in R \Rightarrow (2,2) \in R$
 $(2,2) \in R \land (2,2) \in R \Rightarrow (2,2) \in R$
 $(3,3) \in R \land (3,3) \in R \Rightarrow (3,3) \in R$

to zaključujemo da je ${\it R}$ tranzitivna relacija.

Primetimo da je zadatak bilo moguće uraditi i na drugi način.

Naime, možemo uočiti da su svi elementi iz skupa $\{1,2\}$ međusobno u relaciji R, dok je 3 u relaciji samo sa samim sobom.

Prema tome, kolekcija koja se sastoji od skupova $\{1,2\}$ i $\{3\}$ je particija skupa S, i dva elementa iz S su u relaciji R ako i samo ako su u istom bloku te particije, odakle zaključujemo da je R relacija ekvivalencije koja odgovara toj particiji.

Iz toga potom dalje sledi da R ima svojstva (a), (b) i (d), a nema svojstvo (c). \square

Relacije ekvivalencije

Relacija ϱ na skupu A je relacija ekvivalencije na A ako je

- refleksivna
- 2 simetrična
- **10** tranzitivna

Umesto "relacija ekvivalencije" ponekad kažemo samo "ekvivalencija".

Glavni primer relacija ekvivalencije je jednakost, tj. dijagonalna relacija.

To je najmanja relacija ekvivalencije na A, u smislu da svaka relacija ekvivalencije na A mora da je sadrži, dok nijedan pravi podskup od Δ nema svojstvo refleksivnosti, pa nije relacija ekvivalencije na A.

I univerzalna relacija je relacija ekvivalencije.

Primeri relacija ekvivalencije

Primer 1.1. Neka je n proizvoljan prirodan broj, i neka je relacija \equiv_n na skupu $\mathbb Z$ svih celih brojeva definisana sa

$$x \equiv_n y \stackrel{\mathrm{def}}{\Leftrightarrow} n \mid x-y,$$

ili, ekvivalentno, sa

 $x \equiv_n y \overset{\text{def}}{\Leftrightarrow} x$ i y imaju isti ostatak pri deljenju sa n.

Dokazati da je \equiv_n relacija ekvivalencije.

Napomena 1.1. Relacija \equiv_n poznata je pod nazivom kongruencija po modulu n.

Dokaz: (1) Za svaki $x \in \mathbb{Z}$ imamo da $n \mid 0 = x - x$, odakle je $x \equiv_n x$, što znači da je relacija \equiv_n refleksivna.

Primeri relacija ekvivalencije

(2) Za proizvoljne $x,y\in\mathbb{Z}$ imamo da je

$$x \equiv_n y \Leftrightarrow n \mid x-y \Leftrightarrow n \mid -(x-y) \Leftrightarrow n \mid y-x \Leftrightarrow y \equiv_n x,$$

- i dakle, relacija \equiv_n je simetrična.
- (3) Neka su $x,y,z\in\mathbb{Z}$ elementi takvi da je $x\equiv_n y$ i $y\equiv_n z$, tj. $n\mid x-y$ i $n\mid y-z$. Tada

$$n \mid (x - y) + (y - z) = x - z,$$

pa je $x\equiv_n z$, što znači da je \equiv_n tranzitivna relacija.

Prema tome, \equiv_n je relacija ekvivalencije. \square

Primer 1.2. Relacija paralelnosti za prave u ravni, paralelnost za ravni u prostoru, sve su to primeri relacija ekvivalencije.

Klase ekvivalencije

Neka je ϱ relacija ekvivalencije na A i $a \in A$.

Klasa ekvivalencije elementa a u odnosu na relaciju ekvivalencije ϱ definiše se kao skup svih elemenata iz A koji su u relaciji ϱ sa a, tj.

$$[a]_{\varrho}\stackrel{\mathrm{def}}{=}\{x\in A\mid a\, \varrho\, x\}.$$

Takođe govorimo i ϱ -klasa elementa a, ili kraće samo klasa elementa a, u slučajevima kada je jasno o kojoj se relaciji ekvivalencije radi.

Osnovna svojstva klasa

Tvrđenje 1.

- 1) Svaka klasa je neprazna klasa elementa $oldsymbol{x}$ sadrži makar taj element.
 - Dokaz: Za svaki $x \in A$, zbog refleksivnosti imamo da je $x \varrho x$, pa je $x \in [x]_{\varrho}$.
- 2) Ukoliko su dva elementa x i y u relaciji ϱ , tada su njihove klase jednake, tj. oni određuju jednu istu klasu: $[x]_{\varrho} = [y]_{\varrho}$.
 - Dokaz: Neka je $a \in [x]_{\varrho}$, tj. $a \varrho x$. Prema pretpostavci, $x \varrho y$, pa na osnovu tranzitivnosti dobijamo da je $a \varrho y$, tj. $a \in [y]_{\varrho}$.
 - Odavde zaključujemo da je $[x]_{\varrho}\subseteq [y]_{\varrho}$. Na isti način dokazujemo i obratnu inkluziju, čime dobijamo da je $[x]_{\varrho}=[y]_{\varrho}$.

Osnovna svojstva klasa

3) Ukoliko x i y nisu u relaciji ϱ , tada su njihove klase disjunktne.

Dokaz: Pretpostavimo da postoji $a \in [x]_{\varrho} \cap [y]_{\varrho}$. Tada je $a \varrho x$ i $a \varrho y$, pa na osnovu simetričnosti i tranzitivnosti dobijamo da je $x \varrho y$, što je u suprotnosti sa polaznom pretpostavkom.

Odavde zaključujemo da klase $[x]_{\varrho}$ i $[y]_{\varrho}$ moraju biti disjunktne.

Iz 2) i 3) sledi da ako dve klase $[x]_{\varrho}$ i $[y]_{\varrho}$ nisu disjunktne, tj. imaju neprazan presek, onda moraju da budu jednake.

Osnovna svojstva klasa

4) Unija svih ϱ -klasa je jednaka celom skupu A.

Dokaz: Kako su sve ϱ -klase sadržane u A, to je i njihova unija sadržana u A.

Obratno, kako je svaki element $x\in A$ sadržan u nekoj ϱ -klasi, tj. $x\in [x]_{\varrho}$, to je jasno da je A sadržan u uniji svih ϱ -klasa.

Prema tome, dokazali smo da je A jednak uniji svih ϱ -klasa.

Kada neku ϱ -klasu zapišemo u obliku $[x]_{\varrho}$, tada kažemo da je x predstavniik te klase.

Kako je $[x]_{\varrho}=[y]_{\varrho}$, za svaki $y\in [x]_{\varrho}$ (prema 2)), to ravnopravno sa x i y može predstavljati tu klasu, tj., klasu ekvivalencije može označavati (predstavljati) svaki njen član.

Primeri klasa

a) Neka je arrho relacija na skupu $A=\{1,2,3,4,5,6\}$ zadata sa

$$\mathbf{ili\ matricom}\ M_{\varrho} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Tada je ϱ relacija ekvivalencije sa klasama

$$egin{align} [1]_{arrho} &= [2]_{arrho} = [4]_{arrho} = \{1,2,4\}, \ [3]_{arrho} &= [6]_{arrho} = \{3,6\}, \ [5]_{arrho} &= \{5\}. \ \end{gathered}$$

Primeri klasa

b) Klase ekvivalencije za relaciju \equiv_3 na \mathbb{N}^0 su skupovi brojeva sa istim ostatkom pri deljenju sa 3:

$$\{1,4,7,\ldots\}; \{2,5,8,\ldots\}; \{0,3,6,9,\ldots\}.$$

- c) Dijagonala na proizvoljnom skupu A ima jednočlane klase: svaki element je samo sa sobom u relaciji pa je i sam u klasi.
- d) Relacija paralelnosti razbija skup svih pravih u ravni na pravce: u istoj klasi su sve međusobno paralelne prave.

Razbijanje skupa na klase

Kao što smo videli, relacija ekvivalencije razbija skup na međusobno disjunktne klase ekvivalencije.

Relacija ekvivalencije grupiše, udružuje u jednu klasu sve one elemente koje objedinjuje zajedničko svojstvo - ono koje opisuje ta relacija.

Na primer, kod relacije \equiv_3 , to je svojstvo da imaju isti ostatak pri deljenju sa 3.

Razbijanje skupa na klase

Zadatak 1.4. Neka je $A = \{1, 2, 3\}$.

Odrediti koje od sledećih relacija definisanih na A su relacije ekvivalencije, i za one koje su relacije ekvivalencije odrediti njihove klase:

(a)
$$R_1 = \{(2,2), (1,1)\}$$

(b)
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

(c)
$$R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (3,1), (1,3)\}$$

(d)
$$R_4 = \{(1,1), (2,2), (3,3), (1,2), (3,2), (2,1)\}$$

(e)
$$R_5 = \{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)\}$$

Rešenje: Dokazaćemo da relacije (b) i (e) jesu relacije ekvivalencije, a ostale nisu.

(a) Relacija $R_1 = \{(2,2), (1,1)\}$ očito nije refleksivna, jer ne sadrži par (3,3), zbog čega nije ni relacija ekvivalencije.

Razbijanje skupa na klase

- (b) Relacija $R_2=\{(1,1),(2,2),(3,3)\}$ je očigledno relacija ekvivalencije čije su klase jednoelementne: $\{1\}$, $\{2\}$, $\{3\}$.
- (c) Relacija $R_3 = \{(1,1),(2,2),(3,3),(1,2),(2,1),(3,1),(1,3)\}$ je očito refleksivna i simetrična, ali nije tranzitivna, pa nije relacija ekvivalencije.

Naime, imamo da je $(2,1) \in R_3$ i $(1,3) \in R_3$, ali $(2,3) \notin R_3$.

- (d) Relacija $R_4=\{(1,1),(2,2),(3,3),(1,2),(3,2),(2,1)\}$ nije relacija ekvivalencije, jer nije simetrična. Zaista, $(3,2)\in R_4$, ali $(2,3)\notin R_4$.
- (e) U slučaju relacije

$$R_5 = \{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)\}$$

imamo da su svi elementi iz skupa A međusobno u toj relaciji, što znači da je to univerzalna relacija na A, odnosno, R_5 je relacija ekvivalencije sa samo jednom klasom: $\{1,2,3\}$. \square

Particije

Dakle, relacija ekvivalencije određuje jednu particiju (razbijanje) skupaA na međusobno disjunktne skupove čija je unija ceo skupA.

To nas dovodi do sledeće formalne definicije:

Familiju $\{A_i\}_{i\in I}$ podskupova skupa A zovemo particija ili razbijanje skupa A ako za tu familiju važi sledeće: sledeće uslove:

- 1) Za svaki $i \in I$ je $A_i \neq \emptyset$;
- 2) Za sve $i,j \in I$ je ili $A_i \cap A_j = \emptyset$ ili $A_i = A_j$;
- 3) $\bigcup \{A_i \mid i \in I\} = A$.

Skupove A_i nazivamo blokovima particije Π .

Particije

Ako je ϱ relacija ekvivalencije na skupu A, tada prema Tvrđenju 2, familija svih ϱ -klasa jeste jedna particija skupa A.

Tu particiju označavamo sa Π_{ϱ} , tj.

$$\Pi_{arrho} \stackrel{\mathrm{def}}{=} \{ [x]_{arrho} \, | \, x \in A \}.$$

Obratno, ako je data particija $\Pi=\{A_i\,|\,i\in I\}$ skupa A, tada možemo definisati relaciju $\varrho_{_\Pi}$ na A na sledeći način:

$$(x,y)\in arrho_\Pi \overset{\mathrm{def}}{\Leftrightarrow} (\exists i\in I) \,\, x,y\in A_i,$$

tj. ako x i y pripadaju istom bloku particije Π .

Tvrđenje 2:

- a) Za svaku relaciju ekvivalencije ϱ na skupu A, Π_{ϱ} je particija od A.
- b) Za svaku particiju Π skupa A, ϱ_{Π} je relacija ekvivalencije na A.
- c) Štaviše, važi i sledeće:

$$arrho_{(\Pi_{arrho})} = arrho \quad {\sf i} \quad \Pi_{(arrho_\Pi)} = \Pi.$$

Jednakosti iz Tvrđenja 3, pod c), mogu se pojasniti na sledeći način:

c1) Ako za relaciju ekvivalencije ϱ formiramo odgovarajuću particiju Π_{ϱ} , a potom za tu particiju formiramo odgovarajuću relaciju ekvivalencije $\varrho_{_{(\Pi_{\varrho})}}$, onda dobijamo relaciju ekvivalencije od koje smo krenuli.

$$arrho \longrightarrow \Pi_arrho \longrightarrow arrho_{(\Pi_arrho)} = arrho$$

c2) Ako za particiju Π formiramo odgovarajuću relaciju ekvivalencije ϱ_{Π} , a potom za tu relaciju ekvivalencije formiramo odgovarajuću particiju $\Pi_{(\varrho_{\Pi})}$, onda dobijamo particiju od koje smo krenuli.

$$\Pi \longrightarrow \varrho_{\Pi} \longrightarrow \Pi_{(\varrho_{\Pi})} = \Pi$$

Zadatak 1.5. Neka je $A = \{1, 2, 3, 4, 5, 6, 7\}$.

Odrediti koje od sledećih kolekcija skupova predstavljaju particije skupa A. Za one koje nisu particije navesti razlog zbog čega to nisu.

- (a) $\{\{1,2\},\emptyset,\{3,4,5\},\{6,7\}\}$
- (b) $\{\{1,4\},\{2,3,7\},\{5,6\}\}$
- (c) $\{\{1,7\},\{3,4,6\}\}$
- (d) $\{\{1,5\},\{3,4,5\},\{2,6,7\}\}$
- (e) $\{\{1,2,3,4,5,6,7\}\}$

Rešenje: Dokazaćemo da kolekcije (b) i (e) jesu particije skupa A, dok ostale nisu.

Potsetićemo se da kolekcija podskupova od A jeste particija tog skupa ako se sastoji od nepraznih skupova, koji su po parovima disjunktni i unija im je ceo skup A.

- (a) Kolekcija $\{\{1,2\},\emptyset,\{3,4,5\},\{6,7\}\}$ nije particija skupa A jer se ne sastoji od nepraznih skupova.
- (b) Kolekcija $\{\{1,4\},\{2,3,7\},\{5,6\}\}$ je particija jer se sastoji od nepraznih, međusobno disjunktnih skupova čija je unija jednaka celom skupu A.
- (c) Kolekcija $\{\{1,7\},\{3,4,6\}\}$ se sastoji od nepraznih, disjunktnih podskupova od A, ali unija tih podskupova nije ceo skup A (2 i 5 nisu u toj uniji), pa ni to nije particija skupa A.
- (d) Kolekcija $\{\{1,5\},\{3,4,5\},\{2,6,7\}\}$ nije particija od A jer skupovi $\{1,5\}$ i $\{3,4,5\}$ iz te kolekcije nisu međusobno disjunktni.
- (e) Kolekcija $\{\{1,2,3,4,5,6,7\}\}$ je particija skupa A sa samo jednim blokom celim tim skupom A. \square

Faktor skup

Particiju koja odgovara relaciji ekvivalencije ϱ na skupu A nazivamo takođe i faktor skupom skupa A u odnosu na ϱ .

Drugim rečima, faktor skup skupa A u odnosu na relaciju ekvivalencije ϱ je skup svih klasa ekvivalencije skupa A u odnosu na ϱ .

Taj faktor skup označavamo sa A/ϱ .

Kao što se vidi sa slike desno, faktor skup se zapravo dobija tako što se svaka ρ-klasa sažme u jedan element.

