CURSO DE PROGRAMACIÓN COMPETITIVA URJC - 2018

Sesión 2 (3ª Semana)

David Morán (ddavidmorang@gmail.com)
Juan Quintana (juandavid.quintana@urjc.es)
Sergio Pérez (sergioperezp1995@gmail.com)

Contenidos

- Complejidad en tiempo y espacio
- Estructuras de Datos Básicas
 - Arrays, Matrices
 - Listas, Pilas, Colas
 - Árboles Generales y Binarios

Contenidos

- Algoritmos de Ordenamiento y Búsqueda
 - Bubble Sort, Selection Sort, Merge Sort,
 Quick Sort
 - Colas de Prioridad
 - Búsqueda Binaria, Búsqueda Ternaria
 - Exponenciación Logarítmica

- Motivación:
 - No se admite cualquier solución
- Restricciones:
 - Tiempo de ejecución
 - Memoria utilizada

- TLE (Time limit exceeded)
 - rebasó el tiempo asignado
 - condición muy restrictiva
- MLE (Memory limit exceeded)
 - agotó la memoria asignada
 - el límite no suele ser muy ajustado (depende de la competición)

- Según la competición
 - Especificaciones del juez (CPU/Cores, RAM, ...)
 - Sesión de pruebas antes del concurso
- ¿De qué me sirve esto?
 - Ejemplo: SWERC'18 era imposible conseguir TLE adrede

 En muchas competiciones formales te dan las especificaciones de la computadora donde se llevarán a cabo todas las evaluaciones ¿De qué me sirve esto?

- Observar un problema y pensar, ¿Qué complejidad se necesita?
 - ¿cuánto tarda en ejecutarse?
 - ¿cuánta memoria consume?
- Formular la complejidad exacta en tiempo y memoria es "laborioso"...

- NO necesitamos realizar un cálculo exacto de la complejidad (ni tendremos tiempo)
- Un cálculo intuitivo "a ojo" nos sirve para realizar una estimación

- Estimar la complejidad en tiempo:
 - Contar bucles anidados
 - Conocer la complejidad de:
 - funciones utilizadas
 - estructuras de datos y sus operaciones
- ¡Siempre pensar en el peor caso!

- Notación O-grande
- cota superior asintótica
 - ¿cómo se comporta nuestro algoritmo cuando el tamaño del problema (n) crece indefinidamente?
 - Nunca será mayor que su cota (a partir de cierto punto x₀)

Big-O Complexity Chart

Elements

- Para O(Lg(N))
- Para O(N)
- Para O(NLg(N))
- Para O(N²)
- Para O(N³)
- Para O(N⁴)
- Para O(2^N)
- Para O(N!)

$$N = [0, 2^{1000000}]$$

$$N = [0, 1.000.000]$$

$$N = [0, 100.000]$$

$$N = [0, 5.000]$$

$$N = [0, 500]$$

$$N = [0, 60]$$

$$N = [0,25]$$

$$N = [0,12]$$

Ejemplo 1

```
const int MAXN = 1000;
const int MAXM = 2500;
int mat[MAXN][MAXM];
int main(){
    int N,M;
    scanf("%d %d",&N,&M);
    for(int i=0;i<N;i++){</pre>
        for(int j=0; j<M; j++){
             scanf("%d", &mat[i][j]);
```

Ejemplo 2

```
int mat[MAXN][MAXM];
int main(){
    int N,M;
    scanf("%d %d",&N,&M);
    for(int i=0;i<N;i++){</pre>
         for(int j=0; j<M; j++){</pre>
             scanf("%d",&mat[i][j]);
             if(mat[i][j] % 3 == 0){
                  for(int k=0;k<N;k++){</pre>
                      mat[k][j] = mat[i][j]-20;
             else[
                  mat[i][j]++;
```

- Vectores
- Listas
- Pilas
- Colas
- Colas de prioridad (heap)
- Map (estructura <clave, valor>)
- Set (AVL)

Vectores

- Estructura en la cual se guardan valores sobre un elemento
- Funciona como un array, en memoria se guarda en espacios contiguos

Vectores / Vector

- ¡Si crece en mucha medida sin una previa reserva puede ser mortal!
- Su tamaño puede cambiar dinámicamente y esto lo convierte en un objetivo ideal para crear matrices dispersas
- El equivalente en Java podría ser ArrayList

Listas / List

- Estructura en la cual se guardan valores sobre un elemento, insertando en cualquier lugar un nuevo elemento
- Posiciones de memoria no-contiguas
- Inserciones y borrados mucho más fáciles de lograr internamente

Listas / List

- No se puede tener acceso directo a un elemento en específico (salvo primero o último)
- Puede servir tanto de pila como de cola
- Equivalente en Java: LinkedList

Pilas / stack

- Estructura donde el último elemento en llegar es el primero en salir (LIFO)
- No utiliza espacio contiguo de memoria
- Sólo se puede insertar elementos apilándolos
- Sólo se puede pedir elementos del tope de la pila

Pilas / stack

- En algunos casos, la pila puede "simular" una pila de sistema para reducir el tiempo de ejecución
- Ideal para DFS y otros algoritmos recursivos
- Equivalente en Java: Stack (obsoleto)

Colas / queue

- Estructura donde el primer elemento en llegar es el primero en salir (FIFO)
- No utiliza espacio contiguo de memoria
- Sólo se puede insertar elementos al final (encolando)

Colas / queue

- Sólo se puede pedir el elemento del principio de la cola
- Ideal para BFS
- Equivalente en Java: Queue

Colas de prioridad / priority_queue

- Se ordenan de mayor a menor sus elementos (prioridad), internamente se puede representar como un heap (montículo)
- Solo se puede sacar el elemento tope de la estructura (en este caso el mayor elemento vendrá primero)
- Equivalente en Java: PriorityQueue

Mapa / map

- Contenedor asociativo que guarda claves únicas y les asocia a un valor
- Se puede acceder directamente a elementos guardados si se coloca su clave, en tal caso, se devolverá el valor asociado
- Al ser un árbol binario balanceado, todas sus operaciones son logarítmicas (también podría ser tabla hash)
- Equivalente en Java: HashMap / TreeMap

Conjuntos / set

- Árbol binario balanceado, ordena naturalmente de menor a mayor (podría ser tabla hash)
- No admite elementos repetidos
- Equivalente en Java: TreeSet / HashSet

Arboles Binarios

- Estructura que tiene un nodo raíz
- Desde el nodo raíz podrán haber hasta dos hijos, de esos hijos pueden haber otros dos hijos más y así sucesivamente.

Arboles Binarios

- Se puede implementar con punteros (llevando cuenta en una estructura aparte cuál es el nodo derecho e izquierdo)
- Con arrays, teniendo en cuenta que el índice 0 es la raíz, el hijo izquierdo sería 0*2+1 y el derecho sería 0*2+2 (para el índice n, el hijo izquierdo será n*2+1 y el derecho n*2+2)

Árboles Generales

- Implementándolos a través de una clase llevando cuenta del nodo raíz y en cada nodo llevar cuenta de los hijos en un array.
- Ideales para Tries (futuro)

Estructura	Adición	Deleción	Búsqueda
Vector / Array	O(1)*	O(1)*	O(N)*
Lista	O(1)	O(1)	O(N)
Pila	O(1)	O(1)	O(N)
Cola	O(1)	O(1)	O(N)
Set	O(LgN)*	O(LgN)*	O(LgN)*
Мар	O(LgN)*	O(LgN)*	O(LgN)
Priority_Queue	O(LgN)	O(LgN)	O(N)

Algoritmos de Ordenamiento

Algunos problemas requieren tener ordenados una serie de elementos para dar una respuesta

- Algoritmos de ordenación
- Estructuras de datos ordenadas

... es importante su eficiencia

Algoritmos de Ordenamiento

- BubbleSort y SelectionSort
 - Complejidad: O(n²) (ineficientes)
 - No se incluyen en las bibliotecas estándar
 - Se implementan como ejercicio de aprendizaje

Algoritmos de Ordenamiento

- Quicksort / Mergesort
 - Complejidad: O(nLog(n))
 - Ya están implementadas en las bibliotecas básicas ¡No hay que programarlos!

Algoritmos de Ordenamiento

- C++
 - std:sort()
- Java
 - Collections.sort() -> MergeSort*
 - Arrays.sort() -> Quicksort* (para tipos primitivos)

*En realidad son variantes más eficientes

- Se implementan sobre funciones monótonas crecientes / decrecientes
- Para todo x se tiene que cumplir:
 - \circ f(x) > f(x+1)
 - \circ \circ f(x) < f(x+1)
- Su complejidad es logarítmica


```
Pseudocódigo:
inferior = 0, superior = N
mientras superior-inferior > 1
 medio = (superior+inferior)/2
 si f(medio) < objetivo
  inferior = medio
 sino
  superior = medio
```

Búsqueda Ternaria

- Se implementan sobre funciones parabólicas donde haya un solo punto mínimo ó máximo
- Su complejidad es 2*Log₃(N)
- No es muy común encontrarse con este tipo de problemas

Búsqueda Ternaria


```
Pseudocódigo:
inferior = 0, superior = N
mientras superior-inferior > 1
 m1 = (superior+inferior*2)/3
 m2 = (superior*2+inferior)/3
 si f(m1) < f(m2)
  inferior = m1
 sino
  superior = m2
```

- Una forma de elevar a^b siempre que b sea entero
 - Se deja a ejercicio razonar como se haría en una matriz
- Parte de la base de divide y vencerás y de la propiedad de que a ^ b * a ^ b = a ^ (b+b)

Pseudocódigo

```
si b == 1 retornar a

sino

tmp = f(a, b/2)

si b % 2 (impar)

retornar tmp*tmp*a

sino

retornar tmp*tmp
```

Ejemplo:

$$2^{10} => 2^{5*}2^{5}$$
 $2^{5} => 2^{2*}2^{2*}2$
 $2^{2} => 2^{1*}2^{1}$
 $2^{1} = 2$

Ejemplo:

$$2^{10} \Rightarrow 2^{5*}2^{5} = 32*32 = 1024$$

 $2^{5} \Rightarrow 2^{2*}2^{2*}2 = 4*4*2 = 32$
 $2^{2} \Rightarrow 2^{1*}2^{1} = 2*2 = 4$
 $2^{1} = 2$

Semana que viene

- Algoritmos Voraces
- Grafos

¡Hasta la próxima semana!

Ante cualquier duda sobre el curso o sobre los problemas podéis escribirnos (preferiblemente copia a los tres)

David Morán (ddavidmorang@gmail.com)
Juan Quintana (juandavid.quintana@urjc.es)
Sergio Pérez (sergioperezp1995@gmail.com)