Model of Model Input Data Acquiring and Processing and Output

Input Data

Data	Developed by	Resolution	Updated	Download Site
Global Watershed	WRI		Every year	https://www.wri.org/resources/data-sets/aqueduct-global-maps-30-data
GFMS output (Flood depth above threshold)	UMD & NASA	12km	Updated every 3 hours	http://eagle2.umd.edu/flood/download/
GloFas Output	EC & ECMWF		Updated every day	
HWRF	NOAA	6km	Updated evey 6 hour for the forecasted tropical cyclone	https://www.emc.ncep.noaa. gov/gc_wmb/vxt/HWRF/abo ut.php?branch=link
DFO	DFO	250m	Updated every day	https://floodmap.modaps.eosd is.nasa.gov/index.php
VIIRS	NOAA	375m	Updated every day	https://www.ssec.wisc.edu/fl ood-map-demo/ftp-link

Output: https://js-157-200.jetstream-cloud.org/ModelofModels/

Codes: https://github.com/Global-Flood-Assessment/ModelOfModels/tree/master/data

1. Global Watershed

- a. The global watershed developed by WRI is downloaded manually from https://www.wri.org/resources/data-sets/aqueduct-global-maps-30-data
- b. The folder named "Y2019M07D12_Aqueduct30_V01" will be downloaded and the geodatabase the study used is within the subfolder: Y2019M07D12_Aqueduct30_V01\Y2019M07D12_Aqueduct30_V01\baseline\annual\arcmap\y2019m07d12_aqueduct30_v01.gdb
- c. The shapefile within this geodatabase is dissolved using attribute "pfaf_id" which will be used to integrate GFMS and GloFas output after projection.
- d. Along with pfaf id, other attributes that are used and joined are:
 - gid_0: Three letter country code renamed as ISO
 - name 0: Country name renamed as ADMIN0
 - name 1: Major Administrative area name renamed as ADMIN1

rfr score: Riverine Flood Risk score

cfr score: Coastal Flood Risk score

e. The final attributes with Field Name: { pfaf_id, ISO, Admin0, Admin1, rfr_score, cfr_score} is saved as "Attributes.csv" and uploaded in GitHub.

https://github.com/Global-Flood-Assessment/ModelOfModels/blob/master/Flood_Severity_Calculation/Attributes.csv

2. GFMS output (Flood depth above threshold) download and processing

Output file: **Flood_by_storm_***yyyymmddhh*.csv at https://is-169-84.jetstream-cloud.org/ModelofModels/gfms/

File contains the GFMS output data integrated with global watershed with fieldname:

pfaf id: Global Watershed ID

GFMS TotalArea km: Area of flooded watershed in square kilometer unit

GFMS %Area: Percentage of flooded area

GFMS MeanDepth: mean depth of flood above threshold within the watershed

GFMS MaxDepth: Max depth of flood above threshold within the watershed

GFMS Duration: Cumulative Duration in hours if watershed (more than 100 sqkm) is flooded

3. GloFas output download and Processing

Output file: **threspoints_***yyyymmdd***00.csv**/**geojson**/**xlsx.** at https://is-169-84.jetstream-cloud.org/ModelofModels/glofas/

File contains the GloFas output data integrated with global watershed with field name:

Point No: The point no of the station

Station: Station name

Basin: the name of the river basin where station is placed

Country: The name of country wherestation resides

Lat: Latitudinal position of the station

Lon: Longitudinal position of the station

Upstream area: The upstream area of the basin from station

Forecast Date: The flood forecasted date and time

max EPS: ensemble predictions (EPS) of flood event with return period (2/5/20) years

^{*} Features with -9999 pfaf_id is removed. For the features with missing gid_0, name_0 and name_1, the shapefile is overlaid with global boundary map and name is given manually based on where the centroid of the watersheds resides on.

GloFAS 2yr: EPS of 2 year return period

GloFAS 5yr: EPS of 5 year return period

GloFAS 20y: EPS of 20 year return period

Alert level: Alert level of the flood (1-3)

Days until peak:

pfaf_id: Global Watershed ID

Note: Within watershed features (pfaf id) more than one station may reside.

4. HWRF ouput download and Processing

The python programming for the download of all rainfall data and integration of it to the WRI Watershed is uploaded in GitHub and can be found here: https://github.com/Global-Flood-Assessment/ModelOfModels/tree/master/HWRF_Rainfall_Processing.

Output file: 1. hwrf.yyymmddhhrainfall.csv at

https://js-169-84.jetstream-cloud.org/ModelofModels/HWRF/HWRF summary

2. hwrf.yyymmddhhrainfall.csv at

https://js-169-84.jetstream-cloud.org/ModelofModels/HWRF/HWRF image/

The csv file contains the attributes with field name:

pfaf_id: Global watershed ID

Rain_TotalArea_km: Area of watershed in square kilometer unit that gets the precipitation

perc Area: Percentage area of the watershed that gets the precipitation

MeanRain: Mean Rainfall in unit inches within the watershed

MaxRain: MaximumRainfall in unit inches within the watershed

5. Flood Severity Calculation

Python File: **Flood_Severity_Calculation.py** uploaded at https://github.com/Global-Flood-Assessment/ModelOfModels/blob/master/Flood_Severity_Calculation.py

- i. Read the CSV files from GFMS output (step 2) as *GFMS Table.csv*
- ii. Assign score and to each flood attribute based on the weightage provided in *weightage.csv* and add the score together.
- iii. Read the GloFas output (step 3) as *GloFas Table.csv*.
- iv. Assign score for each flood attribute (GloFAS_2yr, GloFAS_5yr, GloFAS_20y, Alert_level, Days_until_peak) output based on the weightage provided in *weightage.csv* and add the score together.

- v. The hazard score form GloFas for each watershed (pfaf_id) is the average of the score of all station within same watershed.
- vi. Read the CSV file with attributes from Global Watershed i.e. *Attributes.csv.* (from Step 1)
- vii. Join all three CSV files based on pfaf_id. The total hazard score is summation of hazard score from both model. Double the hazard score from the respective model if any event is missed by any model.
- viii. Calculate **Severity** using a Cumulative Distribution Function (CDF) such that the total dynamic hazard score from both models are fitted with a logarithmic value of scaled RFR score or scaled CFR score whichever maximum as mean and unit standard deviation
- ix. Use severity to derive **Alert** message as: "Information" when 0% < Severity < 35%; "Advisory" when $35\% \le \text{Severity} < 60\%$; "Watch" when $60\% \le \text{Severity} < 80\%$ and; "Warning" when Severity $\ge 80\%$.
- x. Write the output *Final_Attributes_yyyymmdd.csv* and *Attributes clean yyyymmdd.csv* file.
- xi. Write the output file *GloFas_error.csv* if any attributes of station from the GloFas have error in it. That data of that particular station data will be skipped and then, the number, the name of station, associated watershed id and the first encountered error will be listed row wise.

weightage.csv

This is the csv file provided with limit criteria/ initial weightage for attribute from GFMS and GloFas and, minimum and maximum score assigned to calculated the hazard score and is uploaded at

https://github.com/Global-Flood-Assessment/ModelOfModels/blob/master/Flood_Severity_Calculation/Weightage.csv. The table have following fieldname: { GFMS Area wt,

GFMS_Area_Min_pt, GFMS_Area_max_pt, GFMS_Meandepth_wt, GFMS_Meandepth_Minpt, GFMS Meandepth Maxpt, GFMS Maxdepth wt, GFMS Maxdepth Minpt,

GFMS_Maxdepth_Maxpt, GFMS_Duration_wt, GFMS_Duration_Minpt,

 $GFMS_Duration_Maxpt, EPS_Twoyear_wt, EPS_Fiveyear_wt, EPS_Twtyyear_wt,$

Alert_score}. The values for these field name is provided based on the Weighting criteria below

Product Description	Initial Weighting
The total area of watershed impacted by flood	1 pt for every 1000sqkm, Max =10
Percentage of watershed area impacted from flood	1 pt for every 5%, Max = 10 (eg. 66% = 10)
The mean depth of flood above the threshold in a watershed in mm	1 pt for every 10 mm, Max = 10 (eg. 56 mm = 5.6)

Max depth of flood	1 pt for every 10
above threshold in a	mm, Max =10 (eg.
watershed in mm	890 mm = 8.9)
Number of 3-hr	Continuous days of
intervals a specific area	at least 100 sqkm
has been flooded (at	overlap, 1 per day,
least 100 square km	Max= 10 (eg. 66 hrs
overlap in each interval)	= 2.75)
EPS greater than threshold exceedance for 2, 5 and 20 year return period flood event (%)	10 pt for 100% Max = 10 (eg. 66% = 6.6)
Alert Level 1 2 and 3 with 3 greatest value	1, 2 and 3 = 3, 7 and 10 respectively
Number of days until	Weight in days
the peak forecast arrives	where 1 = 10, 2=9,
at an observation point	10 or greater = 1

6. Flood Severity Calculation including HWRF and GFMS and GloFas

Python File: MoM+HWRF_severity.ipynb at

https://github.com/Global-Flood-Assessment/ModelOfModels/tree/master/MOM_and_HWRF_I ntegration_and_Flood_Severity

- i. Repeat all the steps from Flood Severity Calculation from (i) to (vii) and (xi). The hazard Score is replace by the name **MOM_Score**.
- ii. Read the CSV files from HWRF output (step 4) as *HWRF_Table.csv*
- iii. Assign score and to each rainfall attribute based on the weightage provided in HRRF_*Weightage.csv* and add the score together and name the field as "**HWRFTot Score**"
- iv. Join this HWRF table with score to the csv file from step i.
- v. Compare the **MOM_Score** and **HWRFTot_Score** and assign the field "**Hazard_Score**" with maximum among them.
- vi. If the **HWRFTot_Score** > **MOM_Score** assign the field "**Flag**"=1.
- vii. Calculate **Severity** using a Cumulative Distribution Function (CDF) such that the Hazard_Score are fitted with a logarithmic value of scaled RFR score or scaled CFR score whichever maximum as mean and unit standard deviation
- viii. Use severity to derive **Alert** message as: "Information" when 0% < Severity < 35%; "Advisory" when $35\% \le$ Severity < 60%; "Watch" when $60\% \le$ Severity < 80% and; "Warning" when Severity $\ge 80\%$.
- ix. Write the output Final_Attributes_yyyymmddhhHWRFUpdated.csv and Attributes clean yyyymmddhhHWRFUpdated.csv file.

HWRF Weightage.csv

This is the csv file provided with limit criteria/ initial weightage for attribute from HWRF and, minimum and maximum score assigned to calculated the h **HWRFTot_Score** and is uploaded at

https://github.com/Global-Flood-Assessment/ModelOfModels/blob/master/MOM_and_HWRF_Integration_and_Flood_Severity/HWRF_Weightage.csv. The table have following fieldname: {
HWRF_Area_wt, HWRF_Area_Min_pt, HWRF_Area_max_pt, HWRF_percArea_wt,
HWRF_percArea_Min_pt, HWRF_percArea_max_pt, HWRF_MeanRain_minwt,
HWRF_MeanRain_increment, HWRF_MeanRain_Minpt, HWRF_MeanRain_Maxpt,
HWRF_MaxRain_minwt, HWRF_MaxRain_increment, HWRF_MaxRain_Minpt,
HWRF_MaxRain_Maxpt }. The values for these field name is provided based on the Weighting criteria below.

Product Description	Weighting and Score
The total area of watershed impacted by the rain (Rain_TotalArea_km)	1 pt for every 1000 sqkm, Max=10
Percentage of watershed area impacted by rain (perc_Area)	1 pt for 5% are aflooded, Max=10
The mean rainfall in a watershed, inches (MeanRain)	1pt for 2 in rain and add 1 pt for every 0.5 inch rain increment, Max=10 (e.g. 4.5in=6)
The maximum rainfall in a watershed, inches (MaxRain)	1pt for 4 in rain and add 1 pt for every 1 inch rain increment, Max=10 (e.g. 4.5in =1.5)

The GFMS GloFAS and HWRF Integration approach is also shown in the flowchart below.

7. DFO Data download and processing

The python programming for the download of global flood observed data and integration of it to the WRI Watershed is uploaded in GitHub and can be found here: https://github.com/Global-Flood-Assessment/ModelOfModels/tree/master/DFO_Processing.

Output file: 1. **DFO_***yyyymmdd*.**csv** at

https://js-169-84.jetstream-cloud.org/ModelofModels/DFO/DFO summary

2. DFO yyyymmdd.csv at

https://js-169-84.jetstream-cloud.org/ModelofModels/DFO/DFO_image

The csv file contains the attributes with field name:

pfaf_id: Global watershed ID

- 1-Day_TotalArea_km2: Area of watershed in square kilometer unit that is flooded based on one day observed data
- 1-Day_perc_Area: Percentage area of the watershed that gets flooded based on one day observed data
- 1-Day_CS_TotalArea_km2: Area of watershed in square kilometer unit that is flooded based on one day observed data with cloud shadow masking applied

- 1-Day_CS_perc_Area: Percentage area of the watershed that gets flooded based on one day observed data with cloud shadow masking applied
- 2-Day_TotalArea_km2: Area of watershed in square kilometer unit that is flooded based on two day observed data and cloud shadow masking is also applied
- 2-Day_perc_Area: Percentage area of the watershed that gets flooded based on two day observed data and cloud shadow masking is also applied
- 3-Day_TotalArea_km2: Area of watershed in square kilometer unit that is flooded based on three day observed data and cloud shadow masking is also applied
- 3-Day_perc_Area: Percentage area of the watershed that gets flooded based on three day observed data and cloud shadow masking is also applied

8. Flood Severity Calculation including MOM output (HWRF, GFMS, and GloFas) and DFO

Python File: MoM+DFO.ipynb at:

 $https://github.com/Global-Flood-Assessment/ModelOfModels/blob/master/DFO_Integration_with_MOM$

- i. Read *Final_Attributes_yyyymmddhhHWRFUpdated.csv* as MOM File and DFO *yyyymmdd.csv* as DFO File.
- ii. On the DFO file assign score to each DFO attribute (excluding 1-Day_TotalArea_km2 and 1-Day_perc_Area) based on the weightage provided in **DFO_Weightage.csv** and add the score together and name the field as "**DFOTotal_Score**"
- iii. Join this DFO file with score to the MOM file via pfaf id.
- iv. Compare the **DFOTotal_Score** and **Hazard_Score** and update the field "**Hazard_Score**" with maximum among them.
- v. If the **DFOTotal Score > Hazard Score** update the field "**Flag**"=2.
- vi. Calculate **Severity** using a Cumulative Distribution Function (CDF) such that the Hazard_Score are fitted with a logarithmic value of scaled RFR score or scaled CFR score whichever maximum as mean and unit standard deviation
- vii. Use severity to derive **Alert** message as: "Information" when 0% < Severity < 35%; "Advisory" when 35% ≤ Severity < 60%; "Watch" when 60% ≤ Severity < 80% and; "Warning" when Severity ≥ 80%.
- viii. Write the output Final_Attributes_yyyymmddhhMOM+DFOUpdated.csv and Attributes clean yyyymmddhhMOM+DFOUpdated.csv file.

Weightage DFO.csv

This is the csv file provided with limit criteria/ initial weightage for attribute from DFO and, minimum and maximum score assigned to calculate the **DFOTotal_Score** and is uploaded at:

<u>https://github.com/Global-Flood-Assessment/ModelOfModels/blob/master/DFO_Integration_with_MOM/Weightage_DFO.csv.</u>

The table have following fieldname: { DFO_Area_wt, DFO_Area_Min_pt, DFO_Area_max_pt, DFO_percArea_wt, DFO_percArea_Minpt, DFO_percArea_Maxpt, one_Day_Multiplier, two_Day_Multiplier, three_Day_Multiplier}. The values for these field name is provided based on the Weighting criteria below.

Product Description	Weighting and Score
1-Day_CS_TotalArea_km2	1 pt for every 100 sqkm, Max=10
1-Day_CS_perc_Area	1 pt for 1% area flooded, Max=10
2-Day_TotalArea_km2	1.5 pt for every 100 sqkm, Max=15
2-Day_perc_Area	1.5 pt for every 1% area, Max=15
3-Day_TotalArea_km2	2.5 pt for every 100 sqkm, Max=25
3-Day_perc_Area	2.5 pt for every 1% area, Max=25

9. VIIRS Data download and processing

The python programming for the download of global flood observed data and integration of it to the WRI Watershed is uploaded in GitHub and can be found here: https://github.com/Global-Flood-Assessment/ModelOfModels/tree/master/VIIRS_Proces sing.

Output file: 1. VIIRS_Flood_yyyymmdd.csv at https://is-169-84.jetstream-cloud.org/ModelofModels/VIIRS/VIIRS_summary

2. VIIRS_1day_compositeyyyymmdd_flood.tiff at https://js-169-84.jetstream-cloud.org/ModelofModels/VIIRS/VIIRS_image

3. VIIRS_5day_compositeyyyymmdd_flood.tiff at https://is-169-84.ietstream-cloud.org/ModelofModels/VIIRS/VIIRS_image

The csv file contains the attributes with field name:

pfaf_id: Global watershed ID

onedayFlood_Area_km: Area of watershed in square kilometer unit that is flooded based on one day observed data

onedayperc_Area: Percentage area of the watershed that gets flooded based on one day observed data

fivedayFlood_Area_km: Area of watershed in square kilometer unit that is flooded based on five day composite observed data with cloud shadow masking applied

fivedayperc_Area: Percentage area of the watershed that gets flooded based on five day composite observed data with cloud shadow masking applied

10. Flood Severity Calculation including MOM output (HWRF, GFMS, and GloFas), DFO and VIIRS

Python File: MoM+VIIRS.ipynb at:

https://github.com/Global-Flood-Assessment/ModelOfModels/blob/master/VIIRS+MOM

- i. Read *Final_Attributes_yyyymmddhh_MOM+DFOUpdated.csv* as MOM+DFO File and VIIRS Flood *yyyymmdd.*csv as VIIRS File.
- ii. On the VIIRS file assign score to each VIIRS attribute based on the weightage provided in VIIRS_Weightage.csv and add the score together and name the field as "VIIRSTotal Score"
- iii. Join this VIIRS file with score to the MOM+DFO file via pfaf_id.
- iv. Compare the VIIRSTotal_Score and Hazard_Score and update the field "Hazard Score" with maximum among them.
- v. If the VIIRSTotal_Score > Hazard_Score update the field "Flag"=3.
- vi. Calculate **Severity** using a Cumulative Distribution Function (CDF) such that the Hazard_Score are fitted with a logarithmic value of scaled RFR score or scaled CFR score whichever maximum as mean and unit standard deviation
- vii. Use severity to derive **Alert** message as: "Information" when 0% < Severity < 35%; "Advisory" when 35% ≤ Severity < 60%; "Watch" when 60% ≤ Severity < 80% and; "Warning" when Severity ≥ 80%.
- viii. Write the output
 Final_Attributes_yyyymmddhhMOM+DFO+VIIRSUpdated.csv and
 Attributes clean yyyymmddhhMOM+DFO+VIIRSUpdated.csv file.

VIIRS Weightage.csv

This is the csv file provided with limit criteria/ initial weightage for attribute from VIIRS Flood and, minimum and maximum score assigned to calculate the **VIIRSTotal_Score** and is uploaded at:

 $\underline{https://github.com/Global-Flood-Assessment/ModelOfModels/tree/master/VIIRS\%2BMOM/VIIRS\ Weightages.csv.}$

The table have following fieldname: { VIIRS_Area_wt, VIIRS_Area_Min_pt, VIIRS_Area_max_pt, VIIRS_percArea_wt, VIIRS_percArea_Minpt, VIIRS_percArea_Maxpt, one_Day_Multiplier, five_Day_Multiplier}. The values for these field names are provided based on the Weighting criteria below.

Product Description	Weighting and Score
onedayFlood_Area_km	1.5 pt for every 100 sqkm, Max=15
onedayperc_Area	1.5 pt for 1% area flooded, Max=15
fivedayFlood_Area_km	3.5 pt for every 100 sqkm, Max=35
fivedayperc_Area	3.5 pt for every 1% area, Max=35

The summary of field name and description that are present in the "Final_Attributes_yyyymmddhhMOM+DFO+VIIRSUpdated.csv"

Field Name	Description
pfaf id	Global Watershed ID
FID	ID generated by GIS
area km2	Area of the watershed in sqkm
ISO	Three letter country code
Admin0	Name of the country where the centroid of the watershed lies
Admin1	Name of the major administration boundary of the country
rfr score	Riverine Flood risk of the watershed
cfr score	Coastal Flood risk of the watershed
Resilience Index	Lack of Resilience Index of the country from PDC
NormalizedLackofResilience	Normalized value of Resilience Index
Alert level	Alert level of the observing points from GloFas
Days_until_peak	Days until peak of the flood reach to the observing point from GloFas
GloFAS_2yr	Probability that flood of return period 2 year will reach from GloFas
GloFAS_5yr	Probability that flood of return period 5 year will reach from GloFas
GloFAS_20yr	Probability that flood of return period 20 year will reach from GloFas
Alert Score	Score for the Alert level from GloFas
PeakArrivalScore	Score for the Days until peak from GloFas
TwoYScore	Score for the GloFAS_2yr flood probability
FiveYScore	Score for the GloFAS 5yr flood probability
TwtyYScore	Score for the GloFAS_20yr flood probability
Sum Score x	Summation of all scores from the GloFAs*
GFMS_TotalArea_km	Area of flooded watershed in square kilometer unit due to flood depth above threshold from GFMS
GFMS_perc_Area	Percentage area of the flooded watershed due to flood depth above threshold from GFMS
GFMS_MeanDepth	Mean Depth of flood above threshold from GFMS within the watershed
GFMS_MaxDepth	Max Depth of flood above threshold from GFMS within the watershed
GFMS_Duration	Cumulative Duration in hours if watershed (more than 100 sqkm) is flooded from flood above threshold from GFMS
GFMS area score	Score for the GFMS TotalArea km
GFMS perc area score	Score for the GFMS_perc_Area
MeanD_Score	Score for the GFMS_MeanDepth
MaxD Score	Score for the GFMS MaxDepth
Duration_Score	Score for the GFMS_Duration

Sum Score y	Summation of all the scores from GFMS*
MOM Score	Summation of Sum Score x and Sum Score y
Hazard Score	Maximum of MOM Score, HWRFTot Score,
	DFOTotal Score or VIIRSTotal Score
Rain TotalArea km	Area of the watershed impacted by the rainfall from HWRF
perc Area	Percantage of the area of the watershed impacted by the
-	rainfall from HWRF
MeanRain	Mean Rainfall within the watershed in inches
MaxRain	Maximum Rainfall within the watershed in inches
HWRF area score	Score for the Rain TotalArea km from HWRF
HWRF percarea score	Score for the perc Area from HWRF
MeanRain_Score	Score for the MeanRain from HWRF
MaxRain Score	Score for the MaxRain from HWRF
HWRFTot_Score	Summation of all the scores from HWRF
Flag	Tag (1, 2 and 3) for the updated hazard score due to HWRF, DFO and VIIRS respectively
1-Day TotalArea km2	Area of watershed in square kilometer unit that is flooded
1-Day_Total/filea_kiii2	based on one day observed data
1-Day perc Area	Percentage area of watershed that is flooded based on one day
1 2 w) _p 010_1 110w	observed data from DFO
1-Day CS TotalArea km2	Area of watershed in square kilometer unit that is flooded
	based on one day observed data with cloud shadow masking
	applied from DFO
1-Day_CS_perc_Area	Percentage area of watershed that is flooded based on one day
	observed data with cloud shadow masking applied from DFO
2-Day_TotalArea_km2	Area of watershed in square kilometer unit that is flooded
	based on two day observed data and cloud shadow masking is
	applied from DFO
2-Day_perc_Area	Percentage area of watershed that is flooded based on two day
	observed data and cloud shadow masking is applied from DFO
2 Day Total Area Irm?	
3-Day_TotalArea_km2	Area of watershed in square kilometer unit that is flooded based on three day observed data and cloud shadow masking
	is applied from DFO
3-Day perc Area	Percentage area of watershed that is flooded based on two day
2 Day_pore_r nou	observed data and cloud shadow masking is applied from
	DFO
DFO area 1day score	Score for 1-Day CS TotalArea km2 from DFO
DFO percarea 1day score	Score for 1-Day CS perc Area from DFO
DFO area 2day score	Score for 2-Day TotalArea km2 from DFO
DFO percarea 2day score	Score for 2-Day perc Area from DFO
DFO area 3day score	Score for 3-Day TotalArea km2 from DFO
DFO percarea 3day score	Score for 3-Day perc Area from DFO
DFOTotal_Score	Summation of the scores from DFO

onedayFlood_Area_km	Area of watershed in square kilometer unit that is flooded based on one day observed data of VIIRS
onedayperc_Area	Percentage area of watershed that is flooded based on one day observed data of VIIRS
fivedayFlood_Area_km	Area of watershed in square kilometer unit that is flooded based on five day composite observed data of VIIRS
fivedayperc_Area	Percentage area of watershed that is flooded based on five day composite observed data of VIIRS
VIIRS area 1day score	Score for onedayFlood Area km from VIIRS
VIIRS percarea 1day score	Score for onedayperc Area from VIIRS
VIIRS_area_5day_score	Score for fivedayFlood_Area_km from VIIRS
VIIRS percarea 5day score	Score for fivedayperc Area from VIIRS
VIIRSTotal_Score	Summation of all the scores from VIIRS
Scaled Riverine Risk	Scaled rfr score
Scaled_Coastal_Risk	Scaled cfr_score
Severity	Severity value of the watershed based on Hazard_Score, and maximum of Scaled Riverine Risk and Scaled Coastal Risk
Alert	Flood alert generated for the watershed based on the Severity

Github Repos:

MoM development at IU: https://github.com/Global-Flood-Assessment/ModelOfModels

MoM Production at PDC: https://github.com/Global-Flood-Assessment/MoMProduction

Notes:

In IU server: MoM runs with two different watershed shape files

• GloFAS, GFMS, GFO: wastershed_prj_latlon.shp - 2020-04-23

• HWRF, VIIRS: Watershed pfaf id.shp – 2021-02-18

In PDC server: MoM runs with Watershed_pfaf_id.shp for all the procedures

We are currently working on updating the IU server, https://github.com/Global-Flood-Assessment/ModelOfModels/issues/23