CS486: Artificial Intelligence

Homework 7 (15 pts) Hidden Markov Models Due 30 October @ 1630

Consider the HMM shown below.

The prior probability $P(X_0)$, dynamics model $P(X_{t+1}|X_t)$, and sensor model $P(E_t|X_t)$ are as follows:

X_0	$P(X_0)$
0	0.75
1	0.25

X_{t+1}	X_t	$P(X_{t+1} X_t)$
0	0	0.65
1	0	0.35
0	1	0.0
1	1	1.0

E_t	X_t	$P(E_t X_t)$
a	0	0.35
b	0	0.5
С	0	0.15
a	1	0.85
b	1	0.1
С	1	0.05

We perform a first dynamics update, and fill in the resulting belief distribution $B^\prime(X_1)$.

X_1	$B'(X_1)$
0	0.4875
1	0.5125

We incorporate the evidence $E_1=a$. We fill in the evidence-weighted distribution $P(E_1=a|X_1)B'(X_1)$, and the (normalized) belief distribution $B(X_1)$.

X_1	$P(E_1=a X_1)B'(X_1)$
0	0.170625
1	0.435625

X_1	$B(X_1)$
0	0.281443298969
1	0.718556701031

You get to perform the second dynamics update. Fill in the resulting belief distribution $B^\prime(X_2)$.

X_2	$B'(X_2)$	
0	0.18293814433	
1	0.81706185567	

Now incorporate the evidence $E_2=c$. Fill in the evidence-weighted distribution $P(E_2=c|X_2)B'(X_2)$, and the (normalized) belief distribution $B(X_2)$.

X_2	$P(E_2=c X_2)B'(X_2)$
0	0.0274407216495
1	0.040853092783

X_2	$B(X_2)$
0	0.401803909729
1	0.598196090271

$$B'(x_2 = 0) = P(X_2|X_1)B(X_1)$$

$$= P(x_2 = 0|x_1 = 0)B(x_1 = 0) + P(x_2 = 0|x_1 = 1)B(x_1 = 1)$$

$$= 0.65 \cdot 0.281443298969$$

$$= 0.18293814433$$

$$B'(x_2 = 1) = 1 - B'(x_2 = 0)$$

$$= 0.81706185567$$

$$P(E_2 = c | x_2 = 0)B'(x_2 = 0) = 0.15 \cdot 0.18293814433$$
$$= 0.97255927835$$
$$P(E_2 = c | x_2 = 1)B'(x_2 = 1) = 0.05 \cdot 0.81706185567$$
$$= 0.0408530927835$$

$$B(x_2 = 0) = \frac{0.0274407216495}{0.0274407216495 + 0.0408530927835}$$
$$= 0.401803909729$$

$$B(x_2 = 1) = \frac{0.0408530927835}{0.0274407216495 + 0.0408530927835}$$
$$= 0.598196090271$$

For the following HMM:

The prior probability $P(X_0)$, dynamics model $P(X_{t+1}|X_t)$, and sensor model $P(E_t|X_t)$ are as follows:

X_0	$P(X_0)$
0	0.0
1	1.0

X_{t+1}	X_t	$P(X_{t+1} X_t)$
0	0	0.7
1	0	0.3
0	1	0.35
1	1	0.65

E_t	X_t	$P(E_t X_t)$
a	0	0.4
b	0	0.25
С	0	0.35
a	1	0.2
b	1	0.55
С	1	0.25

Assume the sensor is broken and we get no more evidence readings. We are forced to rely on dynamics updates, only, going forward.

What is the stationary distribution for X_{∞} ?

X_{∞}	$ ilde{B}(X_{\infty})$
0	0.53846
1	0.46153

$$P(x_{\infty} = 0) = P(x_{\infty} = 0 | x_{\infty} = 0) P(x_{\infty} = 0) + P(x_{\infty} = 0 | x_{\infty} = 1) (1 - P(x_{\infty} = 0))$$

$$X = P(x_{\infty} = 0 | x_{\infty} = 0) X + P(x_{\infty} = 0 | x_{\infty} = 1) (1 - X)$$

$$X = 0.7X + 0.35(1 - X)$$

$$X = 0.7X + 0.35 - 0.35X$$

$$X - 0.7X + 0.35X = 0.35$$

$$0.65X = 0.35$$

$$X = 0.53846$$

$$\tilde{B}(x_{\infty} = 0) = 0.53846$$

$$\tilde{B}(x_{\infty} = 1) = 1 - 0.53846 = 0.46153$$