Nombres Complexes

1 Formule de De Moivre

Démontrer la formule de De Moivre: $(\cos \phi + i \sin \phi)^n = \cos n\phi + i \sin n\phi$. Rappeler les interprétations graphiques pour les additions et multiplications complexes.

Faire l'interprétation graphique de la formule de De Moivre.

2 Racines de l'unité

Soit n un entier strictement positif. Situer les racines n-ième de l'unité sur la boule unité du plan complexe.

À l'aide de la figure, conjecturer la somme de toutes les racines de l'unité.

Démontrer proprement la conjecture.

Que peut-on dire de leur produit?

3 Racines complexes d'un polynôme réel de degré impair

Soit P un polynôme à coefficients réels.

Soit x une racine complexe de P, i.e. P(x) = 0.

Montrer que le conjugué de x, \overline{x} , est aussi une racine complexe de P.

Que peut-on dire sur le nombre de racines complexes non réels de ce polynôme? On admet le théorème fondamental de l'algèbre, alors un polynôme de degré $n \neq 0$ admet n racines complexes éventuellement confondues.

Montrer que P admet une racine réelle.

4 Exponentielle complexe

Montrer que l'exponentielle complexe n'est pas injective.

5 Inégalité de Bell

Montrer qu'il existe des points a, a', b, b' sur la sphére unité de l'espace tels que $(< a, b > + < b, a' > + < a', b' > - < b', a >) \ge 2$ (on confond ici les points avec leurs coordonées).

Intérêt: Pour montrer que Monsieur Einstein a eu tort quand il a postulé l'existence de variables cachées.

6 Demi-plan complexe

On définit $\mathbb{H}=\{z\in\mathbb{C}\mid Im\ z>0\}$ le demi-plan du plan complexe. Montrer que $z\in\mathbb{H}$ ssi $-\frac{1}{z}\in\mathbb{H}$. On se donne z,a deux nombres complexes. Montrer que $|1-z\overline{a}|^2-|z-a|^2=(1-|z|^2)(1-|a|^2)$. En déduire que si |a|<1, alors |z|=1 ssi $f(a,z)=|\frac{z-a}{\overline{a}z-1}|=1$. Que se passe-t-il si |z|<1?

7 Identité de Lagrange et l'inégalité de Cauchy-Schwarz

Page 20, Complex Analysis, Eberhard Greitag & Rolf Busam