<220>

10/516795 DT12 Rec'd PCT/PTO 0 3 DEC 2004 PCT/US03/17638

1/90 SEQUENCE LISTING

<110>	Susan M. Freier Brenda F. Baker Kenneth W. Dobie	
<120> EXPRES	ANTISENSE MODULATION OF STEROL REGULATORY ELEMENT-BINDING PROTESSION	EIN−1
<130>	ISIS0046-500	
<150>	US 10/161996	
<151>	2002/06/04	•
<160>	273	
<210> <211> <212> <213>	20	
<220>	. =	
<223>	Antisense Oligonucleotide	
<400> tccgt	1 catcg ctcctcaggg	20
<210> <211> <212> <213>	→ 20	
<220>		
<400>	Antisense Oligonucleotide 2 gcgcga gcccgaaatc	20
<220>	>	
<223>	> Antisense Oligonucleotide	
<400> atgca	> 3 attctg cccccaagga	20
<212	> 4 > 4154 > DNA > H. sapiens	

<221> CDS <222> (167)...(3610)

(222) (1077	3010)										
<400> 4 taacgag	gaa cttt	togoog go	gccgggc	c gcc	tctga	agg	ccag	ggca	gg a	cacg	aacgc	60
gcggagc	ggc ggcg	gcgact ga	gagccgg	g gcc	gcggo	cgg.	cgct	ccct	ag g	aagg	gccgt	120
		ccggcg g						cc a		ac g	ag	175
cca ccc Pro Pro 5	Phe Ser	gag gcg Glu Ala	gct ttg Ala Leu 10	gag Glu	cag (Gln)	gcg Ala	ctg Leu 15	ggc Gly	gag Glu	ccg Pro	tgc Cys	. 223
gat ctg Asp Leu 20	gac gcg Asp Ala	gcg ctg Ala Leu 25	ctg acc Leu Thr	gac Asp	atc (Ile (gaa Glu 30	gac Asp	atg Met	ctt Leu	cag Gln	ctt Leu 35	271
atc aac Ile Asr	aac caa Asn Glr	gac agt Asp Ser 40	gac ttc Asp Phe	cct Pro	ggc Gly 45	cta Leu	ttt Phe	gac Asp	cca Pro	ccc Pro 50	tat Tyr	319
gct ggg Ala Gly	agt ggg Ser Gly 5	g gca ggg 7 Ala Gly 5	ggc aca Gly Thr	gac Asp 60	cct Pro	gcc Ala	agc Ser	ccc Pro	gat Asp 65	acc Thr	agc Ser	367
tcc cca Ser Pro	ggc ago Gly Se: 70	ttg tct Leu Ser	cca cct Pro Pro	Pro	gcc Ala	aca Thr	ttg Leu	agc Ser 80	tcc Ser	tct Ser	ctt Leu	415
gaa gco Glu Ala 85	a Phe Le	g agc ggg ı Ser Gly	ccg cag Pro Glr 90	gca Ala	gcg Ala	ccc Pro	tca Ser 95	ccc Pro	ctg Leu	tcc Ser	cct Pro	463
ccc cad Pro Gli 100	g cct gc n Pro Al	a ccc act a Pro Thr 105	Pro Lev	aag Lys	atg Met	tac Tyr 110	ccg Pro	tcc Ser	atg Met	ccc Pro	gct Ala 115	511
ttc tcc Phe Se	c cct gg r Pro _{i:} Gl	g cct ggt y Pro Gly 120	atc aaq Ile Lys	gaa Glu	gag Glu 125	tca Ser	gtg Val	cca Pro	ctg Leu	agc Ser 130	atc Ile	559
ctg car Leu Gl	g acc cc n Thr Pr 13	c acc cca o Thr Pro 5	cag cco Gln Pro	ctg Leu 140	cca Pro	ggg Gly	gcc Ala	ctc Leu	ctg Leu 145	cca Pro	cag Gln	607
agc tt Ser Ph	c cca gc e Pro Al 150	c cca gco a Pro Ala	cca cca Pro Pro 15	Gln	ttc Phe	agc Ser	tcc Ser	acc Thr 160	cct Pro	gtg Val	tta Leu	655
ggc ta Gly Ty 16	r Pro Se	c cct ccc r Pro Pro	g gga gge o Gly Gly 170	c ttc y Phe	tct Ser	aca Thr	gga Gly 175	agc Ser	cct Pro	ccc Pro	G] À Gga	703
aac ac Asn Th 180	c cag ca r Gln Gl	g ccg cto n Pro Lei 18!	ı Pro Gl	c ctg y Leu	cca Pro	ctg Leu 190	Ala	tcc Ser	ccg Pro	cca Pro	ggg Gly 195	751
gtc cc Val Pr	g ccc gt o Pro Va	c tcc tto 1 Ser Lev 200	g cac ac u His Th	c cag r Gln	gtc Val 205	Glr	g agt Ser	gtg Val	gtc Val	Pro 210	Gln	799

·)

W	O 03/	1020	19						2 (0.0						PCI	/USU3/1/638
			aca Thr 215													847
			tcg Ser													895
			gca Ala													943
			aag Lys													. 991
			GJ À āāā													1039
			cca Pro 295													1087
ctc Leu	gca Ala	gct Ala 310	ggc Gly	agc Ser	aag Lys	gcc Ala	ccg Pro 315	gcc Ala	tct [,] Ser	gcc Ala	cag Gln	agc Ser 320	cgt Arg	gga Gly	gag Glu	1135
			gcc Ala													1183
			atc Ile													1231
			aaa Lys													1279
			cac His 375													1327
_		_	gtc Val			_			_	_	_	_		_	_	1375
			gga Gly													1423
			gac Asp													1471
	_	-	agc Ser		_				_			_		_		1519
	_		agt Ser 455	_	_			-	Ser		-			_	_	1567

W	WO 03/102019						PC						PCT	/US03/17638		
									4/90							
аσ	σca	aaσ	cca	gag	cag	cgg	ccg	tct	ctg	cac	agc	cgg	ggc	atg	ctg	1615

aag Lys	gca Ala	aag Lys 470	cca Pro	gag Glu	cag Gln	cgg Arg	ccg Pro 475	tct Ser	ctg Leu	cac His	agc Ser	cgg Arg 480	ggc Gly	atg Met	ctg Leu	1615
gac Asp	cgc Arg 485	tcc Ser	cgc Arg	ctg Leu	gcc Ala	ctg Leu 490	tgc Cys	acg Thr	ctc Leu	Val	ttc Phe 495	ctc Leu	tgc Cys	ctg Leu	tcc Ser	1663
tgc Cys 500	aac Asn	ccc Pro	ttg Leu	gcc Ala	tcc Ser 505	ttg Leu	ctg Leu	ggg Gly	gcc Ala	cgg Arg 510	Gly	ctt Leu	ccc Pro	agc Ser	ccc Pro 515	1711
tca Ser	gat Asp	acc Thr	acc Thr	agc Ser 520	gtc Val	tac Tyr	cat His	agc Ser	cct Pro 525	Gly ggg	cgc Arg	aac Asn	gtg Val	ctg Leu 530	ggc Gly	1759
acc Thr	gag Glu	agc Ser	aga Arg 535	gat Asp	ggc Gly	cct Pro	ggc Gly	tgg Trp 540	gcc Ala	cag Gln	tgg Trp	ctg Leu	ctg Leu 545	ccc Pro	cca Pro	1807
gtg Val	gtc Val	tgg Trp 550	ctg Leu	ctc Leu	aat Asn	Gly ggg	ctg Leu 555	ttg Leu	gtg Val	ctc Leu	gtc Val	tcc Ser 560	ttg Leu	gtg Val	ctt Leu	1855
ctc Leu	ttt Phe 565	gtc Val	tac Tyr	ggt Gly	gag Glu	cca Pro 570	gtc Val	aca Thr	cgg Arg	ccc Pro	cac His 575	tca Ser	ggc	ccc Pro	gcc Ala	1903
gtg Val 580	Tyr	ttc Phe	tgg Trp	agg Arg	cat His 585	cgc Arg	aag Lys	cag Gln	gct Ala	gac Asp 590	Leu	gac Asp	ctg Leu	gcc Ala	cgg Arg 595	1951
gga Gly	gac Asp	ttt Phe	gcc Ala	cag Gln 600	gct Ala	gcc Ala	cag Gln	cag Gln	ctg Leu 605	Trp	ctg Leu	gcc Ala	ctg Leu	cgg Arg 610	gca Ala	1999
ctg Leu	Gly	cgg Arg	Pro 615	Leu	ccc Pro	acc Thr	tcc Ser	cac His 620	Leu	gac Asp	ctg Leu	gct Ala	tgt Cys 625	Ser	ctc Leu	2047
cto	tgg Trp	aac Asņ 630	L, Lieu	atc Ile	cgt Arg	cac His	ctg Leu 635	Leu	cag Gln	cgt Arg	ctc Leu	tgg Trp 640	Val	ggc Gly	cgc Arg	2095
tg <u>c</u> Trp	cto Leu 645	ı Ala	ggc Gly	cgg Arg	gca Ala	ggg Gly 650	Gly	ctg Leu	cag Gln	cag Glr	gac Asp 655	Cys	gct Ala	ctg Leu	cga Arg	2143
gto Val 660	. Asp	gct Ala	ago a Ser	gcc Ala	ago Ser 665	: Ala	cga Arg	gac Asp	gca Ala	gco Ala 670	a Leu	gto Val	tac Tyr	cat His	aag Lys 675	2191
cto Lev	g cad u His	c caq s Gli	g cto n Lei	g cac ı His 680	Thi	ato Met	: G17	g aag y Lys	g cad s His 685	Thi	a ggo	ggg Gly	g cad y His	c cto Lev 690	act Thr	2239
gc: Al:	e acc	c aad	c cto n Lev 69!	ı Ala	g cto a Lei	g agt 1 Sei	gco Ala	c cto Lei 700	ı Ası	c cto	g gca u Ala	a gaq a Glu	g tgt i Cy: 70:	s Ala	a ggg a Gly	2287
ga As	t gco p Ala	c gte a Va 71	l Se	t gto r Val	g gcq L Ala	g acq a Thi	g cto Lev 71	ı Ala	gae a Gl	g ato	c tat e Ty:	t gte r Val 720	LAL	g gct a Ala	gca Ala	2335

WO 03/102019

ttg aga gtg aag acc agt ctc cca cgg gcc ttg cat ttt ctg aca cgc 2383

Leu Arg Val Lys Thr Ser Leu Pro Arg Ala Leu His Phe Leu Thr Arg 735

ttc ttc ctg agc agt gcc cgc cag gcc ttg ctg ctg gca cag agt ggc tca 2431

Phe Phe Leu Ser Ser Ala Arg Gln Ala Cys Leu Ala Gln Ser Gly Ser

750 2479 gtg cct cct gcc atg cag tgg ctc tgc cac ccc gtg ggc cac cgt ttc Val Pro Pro Ala Met Gln Trp Leu Cys His Pro Val Gly His Arg Phe ttc gtg gat ggg gac tgg tcc gtg ctc agt acc cca tgg gag agc ctg 2527 Phe Val Asp Gly Asp Trp Ser Val Leu Ser Thr Pro Trp Glu Ser Leu 780 2575 tac agc ttg gcc ggg aac cca gtg gac ccc ctg gcc cag gtg act cag Tyr Ser Leu Ala Gly Asn Pro Val Asp Pro Leu Ala Gln Val Thr Gln 795 790 cta ttc cgg gaa cat ctc tta gag cga gca ctg aac tgt gtg acc cag 2623 Leu Phe Arg Glu His Leu Leu Glu Arg Ala Leu Asn Cys Val Thr Gln 810 815 ccc aac ccc agc cct ggg tca gct gat ggg gac aag gaa ttc tcg gat 2671 Pro Asn Pro Ser Pro Gly Ser Ala Asp Gly Asp Lys Glu Phe Ser Asp 825 820 2719 gee etc ggg tac etg cag etg etg aac age tgt tet gat get geg ggg Ala Leu Gly Tyr Leu Gln Leu Leu Asn Ser Cys Ser Asp Ala Ala Gly 845 gct cct gcc tac agc ttc tcc atc agt tcc agc atg gcc acc acc acc 2767 Ala Pro Ala Tyr Ser Phe Ser Ile Ser Ser Ser Met Ala Thr Thr 860 2815 ggc gta gac ccg gtg gcc aag tgg tgg gcc tct ctg aca gct gtg gtg Gly Val Asp Pro Val Ala Lys Trp Trp Ala Ser Leu Thr Ala Val Val atc cac tgg ctg cgg cgg gat gag gcg gct gag cgg ctg tgc ccg 2863 Ile His Trp. Leu Arg Arg Asp Glu Glu Ala Ala Glu Arg Leu Cys Pro 895 890 2911 ctg gtg gag cac ctg ccc cgg gtg ctg cag gag tct gag aga ccc ctg Leu Val Glu His Leu Pro Arg Val Leu Gln Glu Ser Glu Arg Pro Leu 905 910 ccc agg gca gct ctg cac tcc ttc aag gct gcc cgg gcc ctg ctg ggc 2959 Pro Arg Ala Ala Leu His Ser Phe Lys Ala Ala Arg Ala Leu Leu Gly 920 tgt gcc aag gca gag tct ggt cca gcc agc ctg acc atc tgt gag aag 3007 Cys Ala Lys Ala Glu Ser Gly Pro Ala Ser Leu Thr Ile Cys Glu Lys 940 935 3055 gcc agt ggg tac ctg cag gac agc ctg gct acc aca cca gcc agc agc Ala Ser Gly Tyr Leu Gln Asp Ser Leu Ala Thr Thr Pro Ala Ser Ser 955 tcc att gac aag gcc gtg cag ctg ttc ctg tgt gac ctg ctt ctt gtg 3103 Ser Ile Asp Lys Ala Val Gln Leu Phe Leu Cys Asp Leu Leu Val 970

WO 03/102019 PCT/US	03/17638
6/90	2161
gtg cgc acc agc ctg tgg cgg cag cag ccc ccg gcc ccg gcc cca Val Arg Thr Ser Leu Trp Arg Gln Gln Gln Pro Pro Ala Pro Ala Pro 980 985 990 995	3151
gca gcc cag ggc gcc agc agc agg ccc cag gct tcc gcc ctt gag ctg Ala Ala Gln Gly Ala Ser Ser Arg Pro Gln Ala Ser Ala Leu Glu Leu 1000 1005 . 1010	3199
cgt ggc ttc caa cgg gac ctg agc agc ctg agg cgg ctg gca cag agc Arg Gly Phe Gln Arg Asp Leu Ser Ser Leu Arg Arg Leu Ala Gln Ser 1015 1020 1025	3247
ttc cgg ccc gcc atg cgg agg gtg ttc cta cat gag gcc acg gcc cgg Phe Arg Pro Ala Met Arg Arg Val Phe Leu His Glu Ala Thr Ala Arg 1030 1035 1040	3295
ctg atg gcg ggg gcc agc ccc aca cgg aca cac cag ctc ctc gac cgc Leu Met Ala Gly Ala Ser Pro Thr Arg Thr His Gln Leu Leu Asp Arg 1045 1050 1055	3343
agt ctg agg cgg cgg gca ggc ccc ggt ggc aaa gga ggc gcg gtg gcg Ser Leu Arg Arg Arg Ala Gly Pro Gly Gly Lys Gly Gly Ala Val Ala 1060 1065 1070 1075	3391
gag ctg gag ccg cgg ccc acg cgg cgg gag cac gcg gag gcc ttg.ctg Glu Leu Glu Pro Arg Pro Thr Arg Arg Glu His Ala Glu Ala Leu Leu 1080 1085 1090	3439
ctg gcc tcc tgc tac ctg ccc ccc ggc ttc ctg tcg gcg ccc ggg cag Leu Ala Ser Cys Tyr Leu Pro Pro Gly Phe Leu Ser Ala Pro Gly Gln 1095 1100 1105	3487
cgc gtg ggc atg ctg gct gag gcg gcg cgc aca ctc gag aag ctt ggc Arg Val Gly Met Leu Ala Glu Ala Ala Arg Thr Leu Glu Lys Leu Gly 1110 1115 1120	3535
gat cgc cgg ctg ctg cac gac tgt cag cag atg ctc atg cgc ctg ggc Asp Arg Arg Leu His Asp Cys Gln Gln Met Leu Met Arg Leu Gly 1125 1130 1135	3583
ggt ggg acc act gtc act tcc agc tag accccgtgtc cccggcctca Gly Gly Thr Thr Val Thr Ser Ser 1140 1145	3630
gcacccctgt ctctagccac tttggtcccg tgcagcttct gtcctgcgtc gaagctttga	3690
aggccgaagg cagtgcaaga gactctggcc tccacagttc gacctgcggc tgctgtgtgc	3750 .
cttcgcggtg gaaggcccga ggggcgcgat cttgacccta agaccggcgg ccatgatggt	3810
gctgacctct ggtggccgat cggggcactg caggggccga gccattttgg ggggcccccc	3870
teettgetet geaggeacet tagtggettt ttteeteetg tgtacaggga agagaggggt	3930
acattteect gtgetgaegg aageeaactt ggettteeeg gaetgeaage agggetetge	3990
cccagaggcc tctctctccg tcgtgggaga gagacgtgta catagtgtag gtcagcgtgc	4050
ttagcctcct gacctgaggc tcctgtgcta ctttgccttt tgcaaacttt attttcatag	4110
attgagaagt tttgtacaga gaattaaaaa tgaaattatt tata	4154

WO 03/102019	7/90	PCT/US03/17638
<211> 19 <212> DNA <213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 5 gtcctgcgtc gaagctttg		19
<210> 6 <211> 19 <212> DNA <213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 6 aggtcgaact gtggaggcc		19
<210> 7 <211> 25 <212> DNA <213> Artificial Sequence	.:	
<220>		
<223> PCR Probe		
<400> 7 aggccgaagg cagtgcaaga gactc		25
<210> 8 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> PCR Primer		
<400> 8 gaaggtgaag gtcggagtc	•	19
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 9 gaagatggtg atgggatttc		20

WO 03/102019 PCT/US03/17638 8/90

<210> 10 <211> 20 <212> DNA <213> Artificial Sequence		·		
<220>				
<223> PCR Probe				
<400> 10 caagetteec gtteteagee				20
<210> 11 <211> 3891 <212> DNA <213> M. musculus				
<220>				
<400> 11 aaaatcggcg cggaagctgt cggggta	gcg tctgcacgcc	ctaggggcgg	ggcgcggacc	60
acggagccat ggattgcaca tttccca	gtt tccggggaac	ttttccttaa	cgtgggccta	120
gtccgaagcc gggtgggcgc cggcgcc	atg gacgagctgg	ccttcggtga	ggcggctctg	180
gaacagacac tggccgagat gtgcgaa	ctg gacacagcgg	ttttgaacga	catcgaagac	240
atgctccagc tcatcaacaa ccaagac	agt gacttccctg	gcctgtttga	cgcccctat	300
gctgggggtg agacagggga cacaggc	ccc agcagcccag	gtgccaactc	tcctgagagc	360
ttctcttctg cttctctggc ctcctct	ctg gaagccttco	tgggaggacc	caaggtgaca	420
cctgcaccct tgtcccctcc accatcg	gca cccgctgctt	taaagatgta	cccgtccgtg.	480
teceettti eeeetgggee tgggate	aaa gaggagccag	tgccactcac	catcctacag	540
cctgcagcgc cacagccgtc accgggg	acc ctcctgcctc	cgagcttccc	cgcaccaccc	600
gtacagetca gecetgegee egtgetg	ggt tactcgagco	: tgccttcagg	cttctcaggg	660
accettecag gaaacactea geageea	cca tctagcctgo	: cgctggcccc	tgcaccagga	720
gtcttgccca cccctgccct gcacacc	cag gtccaaagct	tggcctccca	gcagccgctg	780
ccagecteag cagecectag aacaaac	act gtgacctcad	aggtccagca	ggtcccagtt	840
gtactgcagc cacacttcat caaggca	gac tcactgctgc	tgacagctgt	gaagacagat	900
gcaggagcca ccgtgaagac tgcaggo	atc aġcaccctgo	g ctcctggcac	agccgtgcag	960
gcaggtcccc tgcagaccct ggtgagt	gga gggaccatci	tggccacagt	acctttggtt	1020
gtggacacag acaaactgcc catccad	cga ctcgcagct	g gcagcaaggc	cctaggctca	1080
gctcagagcc gtggtgagaa gcgcaca	agcc cacaatgcc	a ttgagaagcg	ctaccggtct	1140
tctatcaatg acaagattgt ggagcto	caaa gacctggtg	g tgggcactga	agcaaagctg	1200
aataaatctg ctgtcttgcg caaggco	catc gactacatc	c gcttcttgca	gcacagcaac	1260
cagaagetea ageaggagaa eetgae	ccta ctttgtgca	c acaaaagcaa	atcactgaag	1320

				_		
gacctggtgt	cagcttgtgg	cagtggagga	ggcacagatg	tgtctatgga	gggcatgaaa	1380
cccgaagtgg	tggagacgct	tacccctcca	ccctcagacg	ccggctcacc	ctcccagagt	1440
agccccttgt	cttttggcag	cagagctagc	agcagtggtg	gcagtgactc	tgagcccgac	1500
agtccagcct	ttgaggatag	ccaggtcaaa	gcccagcggc	tgccttcaca	cagccgaggc	1560
atgctggacc	gctcccgcct	ggccctgtgt	gtactggcct	ttctgtgtct	gacctgcaat	1620
cctttggcct	cgctgttcgg	ctggggcatt	ctcactccct	ctgatgctac	gggtacacac	1680
cgtagttctg	ggcgcagcat	gctggaggca	gagagcagag	atggctctaa	ttggacccag	1740
tggttgctgc	cacccctagt	ctggctggcc	aatggactac	tagtgttggc	ctgcttggct	1800
cttctctatg	tctatgggga	acctgtgact	aggccacact	ctggcccagc	tgtacacttc	1860
tggagacatc	gcaaacaagc	tgacctgaat	ttggcccggg	gagatgttcg	cccagctgct	1920
caacagctgt	ggctagccct	gcaagcgctt	ggccggcccc	tgcccacctc	aaacctggat	1980
ctggcctgca	gtctgctttg	gaacctcatc	cgccacctgc	tccagcgtct	ctgggtgggc	2040
cgctggctgg	caggccaggc	cgggggcctg	ctgagggacc	gtgggctgag	aaaggatgcc	2100
cgtgccagtg	cccgggatgc	ggctgttgtc	taccataagc	tgcaccagct	gcatgccatg	2160
ggcaagtaca	caggaggaca	tcttgctgct	tctaacctgg	cactaagtgc	cctcaacctg	2220
gctgagtgcg	caggagatgc	tatctccatg	gcaacactgg	cagagatcta	tgtggcagcg	2280
tgcctgaggg	tcaaaaccag	cctcccaaga	gccctgcact	tcttgacacg	tttcttcctg	2340
agcagcgccc	gccaggcctg	cctagcacag	agcggctcgg	tgcctcttgc	catgcagtgg	2400
ctctgccacc	ctgtaggtca	ccgtttcttt	gtggacgggg	actgggccgt	gcacggtgcc	2460
ccccggaga	gcctgtacag	cgtggctggg	aacccagtgg	atccgctggc	ccaggtgacc	2520
cggctattcç	gtgaacatct	cctagagcga	gcgttgaact	gtattgctca	geceagecea	2580
ggggcagctg	acggagacag	ggagttctca	gatgcccttg	gatatctgca	gttgctaaat	2640
agctgttctg	atgctgccgg	ggctcctgcg	tgcagtttct	ctgtcagctc	cagcatggct	2700
gccaccacto	g gcccagaccc	agtggccaag	tggtgggcct	cactgacago	tgtggtgatc	2760
cactggctga	a ggcgggatga	agaggcagct	gagcgcttgt	acccactggt	agagcatatc	2820
ccccaggtg	tgcaggacac	tgagagaccc	ctgcccaggg	cagetetgta	ctccttcaag	2880
gctgcccgg	g ctctgctgga	ccacagaaag	gtggaatcta	gcccagccag	g cctggccatc	2940
tgtgagaag	g ccagtgggta	cctgcgggac	agcttagcct	ctacaccaac	tggcagttcc	3000
attgacaag	g ccatgcagct	gctcctgtgt	gatctactto	ttgtggccc	g taccagtctg	3060
tggcagcgg	c agcagtcacc	agcttcagtc	caggtagcto	c acggtacca	g caatggaccc	3120
caggcctct	g ctctggagct	gcgtggtttc	caacatgaco	tgagcagcc1	t gcggcggttg	3180
gcacagagc	t teeggeetge	: tatgaggagg	gtattcctad	c atgaggccad	c agctcggctg	3240

atggcaggag	caagtcctgc	ccggacacac	cagctcctgg	atcgcagtct	gaggaggagg	3300
gcaggttcca	gtggcaaagg	aggcactaca	gctgagctgg	agccacggcc	cacatggcgg	3360
gagcacaccg	aggccctgct	gttggcatcc	tgctatctgc	cccctgcctt	cctgtcggct	3420
cctgggcagc	gaatgagcat	gctggccgag	gcggcacgca	ccgtagagaa	gcttggcgat	3480
caccggctac	tgctggactg	ccagcagatg	ctcctgcgcc	tgggcggcgg	aaccaccgtc	3540
acttccagct	agaccccaaa	gctttccctt	gaggaccttt	gtcattggct	gtggtcttcc	3600
agagggtgag	cctgacaagc	aatcaggacc	atgccgacct	ctagtggcag	atctggaaat	3660
tgcagaggct	gcactggccc	gatggcaccc	tcttgctctg	taggcacctt	agtggctttt	3720
ccctagctga	ggctcaccct	gggagacctg	tacatagtgt	agatccggct	gggcctggct	3780
ccagggcagg	cccatgtact	actttgactt	ttgcaaactt	tattttcata	ggttgagaaa	3840
ttttgtacag	aatattaaaa	aatgaaatta	tttataaaaa	aaaaaaaaa	a	3891

<210> 12

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 12

ttggccacag tacctttggt t

<210> 13

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 13

ctgagcctag ggccttgct 19

<210> 14

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Probe

<400> 14

catccaccga ctcgcagctg g

21

21

WO 03/102019 PCT/US03/17638 11/90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PCR Primer <400> 15 20 .ggcaaattca acggcacagt <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PCR Primer <400> 16 20 gggtctcgct cctggaagat <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PCR Probe <400> 17

aaggccgaga atgggaagct tgtcatc

27

<210> 18 <211> 27001 <212> DNA ·· <213> H. sapiens

<220>

ttaattetgg tttattteaa cecaceteat tgggacecet teceteette etgeeceaee 60 tggctctgtc cctaggccac agaaccaggt tcggtttcca gccctcttct caacagggct 120 gcctgctctg atctagtccc agcttgtgat gatccagggc agcctggctc tgatctaaag 180 cacagetace tetteettge ggeceetate etggetgete etgggaataa gtgecaaate 240 300 tggggtcaga cagccctggg gccagtcttc cttgggtact ggcttcctcc ttcaggagct gcactgggcc cactggtatc ctatccctac agctggatct gggaggaaac cagatgacga 360 aattccagcc tctttctttg gccactcctg tcctcaagag gccaatcttc tggtttcttt 420 gcagagagg ggcaggctga tctcacaggt catgctcccc tccacattgt cactagcctc 480 ccagcctgcc cgtgagaaag catcattagg cccatgttac aaatgaggaa aattgaggca 540

			12/90			
gagtgatgta	actggcccag	cagttacatc	aggcctgctc	acaacacagc	aggcctggga	600
cccctataac	ttggatcctg	gtctgtcttg	ttctaaagag	tcaaatctag	gaaatgagga	660
aatgaagttt	gggatgggcc	caggcctggg	gcttccactc	ggcttccttg	cttggtgctg	720
gagaaacaga	ggcccagaga	gggggctcgg	cttgcccgcg.	ttcccgcagc	agccggccag	780
aggccgctgc	cattgtgcgc	gaggctggat	aaaatgaatg	actggagggc	gctctggagg	840
aggggccggc	tgaggggaga	tttgtggcgc	agaccgggga	tcaggggtcc	cccgctctct	900
caaggtgggg	cggggccgtc	tatctgggag	ggcgggtcct	ccccgaaagg	ccccgcctcc .	960
gcctcgaccg	cccagcagag	ctgcggccgg	gggaacccag	tttccgagga	acttttcgcc	1020
ggcgccgggc	cgcctctgag	gccagggcag	gacaggaacg	cgcggagcgg	cggcggcgac	1080
tgagagccgg	ggccgcggcg	gcgctcccta	ggaagggccg	tacgaggcgg	cgggcccggc	1140
gggcctcccg	gaggaggcgg	ctgcgccatg	gacgagccac	ccttcagcga	ggcggctttg	1200
gagcaggcgc	tgggcgagcc	gtgcgatctg	gacgcggcgc	tgctgaccga	catcgaaggt	1260
gcgtcagggc	gggcagggct	tgaagctgcg	ccgggtggcg	cgagtagġġġ	gcgcgcaggt	1320
gtctccctgg	cctttgtctc	cccacgggc	gccagctccg	tgctgtgctc	gcgcgggact	1380
teceggtgte	: tctgagctcg	gtgtcccgag	cctcaccgag	cctccctggt	tcccgcgcta	1440
gcgtctcggg	ccgcgcgctt	gtgggtgagg	gctcctgggc	cgggccgggg	tcccttggcg	1500
gctccgggc	gggacacgtg	cgcctctacg	cgtcccaggc	cgggtgccgc	ccgaccggtg	1560
actctccago	cctgtgatgg	ccacggctga	agctggggac	ccaggcgtcg	ccgaagctcc	1620
gececagee	cagccgtgac	gtaattgcga	ggttactcac	ggtcattccc	tccggcccga	1680
gagttcagct	cggcgtcgga	gctcttgcgc	atgcgcatgg	gegetgeete	gcgcccttcc	1740
cccgcctcgt	gtcgggttct	cccggtctgc	gacgggcaca	gcctccgcac	tcattcactg	1800
acatccacc	g aatgccaggc	cccgtcttag	gcaccgaggg	tttacagaca	gacctgggta	1860
cccctctt	tagggaacac	aaaaatctcc	cgggaaacca	aacgggtatt	tagttgtacc	1920
ttgggtgga	g cgaggctggg	ggagggcagg	gatgtggcta	ctttgggtag	agcggtcagg	1980
gacttctaa	g ctgagacctg	agggtcacco	ccaggaccag	g caaggaaaga	tgttttccag	2040
gccacggca	a gggaagggca	aaggcctcga	ggcagggcct	aagtgtgagg	agttagaggc	2100
ttgcaaagg	a gtgaggtcag	ggaggaggag	gacgcaaaco	gacttggtcg	gccagggaaa	2160
gggcggagc	a gaacagtggc	accggcttcc	: atctttggag	g catcacccto	gctgtgatga	2220
gaaggggtt	t ggggccaato	g gtggcaccaa	gtgccaatta	a ggaggcccgt	tgcttccatt	2280
ttgtagata	g agcaaacgga	agcccctago	: aaattgcctg	g catggtttct	gtgcaggagt	2340
tttagcagc	a ctagctaagt	tgcacttggt	tgatgaggaa	a actgaggcca	a aggtcgcagg	2400
aacaagatg	c ctagactcad	agcctgaato	g gacatgtcc	a tggaacccgt	ggccaccctg	2460

WO 03/102019 PCT/US03/17638 13/90

			13/90			
gggttggcaa	aacagatata	tctatgccac	caccactcct	gccctactgc	agccttgcag	2520
atgagcccag	ctggttgcca	gccccagaag	cttcccagcc	ctccctcctt	cccctgggg	2580
ctgggctagg	ggaggacccc	agaggagagg	ccctgattgt	gaggcttttc	caaaacagcc	2640
tcccctatcc	ctggcacgag	gggttgtcct	tcactgccct	ctggagtgat	gaaccctgaa	2700
atcccaagcc	ctagggagat	ctgggcctga	ctcaactacc	agttccacat	cactgggccc	2760
agtgagtgta	gtcccaagag	gcaacgtgac	caagccagga	ggacatgcgc	tttggggtca	2820
gaacttgaac	ctggacactc	ctcacttcct	ttgtcatcct	gctcaagccc	tctcaccctc.	2880
țaaaccttag	tttccacctc	cagaaaaatg	atgcaaaccc	tcccttcatg	ggcaagttgg	2940
acaacagaac	ccgttctggg	ccacaggtct	gatacagacc	tttgtttgtt	tgtttgtttg	3000
ttttctgcag	tggcgcaatt	ttggctcact	gcaagctcct	cctcctgggt	tcacgccatt	3060
ctcctgcctt	agtctcccaa	gtagctggga	ctacaggcgc	cagccaccac	gcctggctaa	3120
ttttttgtat	ttttagtaga	gacggggttt	cactgtgcta	gccaggatgg	tctcgatctc	3180
ctgaccttgt	gatccgcccg	cctcagcctc	ccaaagtgct	gggattacag	gtgtgagcca	3240
ccgctcccag	cccagacctt	tcttactgac	agaatctggt	ctgggccaga	ggtctgatac	3300
agacctttct	tactgactca	tggataaaaa	cattgtctct	ccagaaccaa	aggccaggca	3360
tgggcagcca	tgtggcccaa	ggtctagtct	atgagagagt	gggggcagtc	ccagcccctt	3420
gaagactggg	ggcagcccct	tctcactagg	cagggctcag	ctttacccac	ttcagtagag	3480
gatttttcag	tttttattca	aacttcctgt	ttttcttccc	aattacacac	atctttttc	3540
attgtagaaa	acttagaaaa	tgcaagtgag	caaaaagaag	aaaataaaat	ctttagacct	3600
ggggtggtgg	ctcacaccta	taatcccagc	acttgggagg	tcgaagcaag	aggatgactt	3660
gtgtccagga	gtttgagacc	agcctgggca	acatgacaaa	atcctgtctc	: tacaaaaata	3720
aaaaattago	Tgggtgtggg	tgacatgtgc	ctgtagtctc	: agctactctg	gaggctgaag	3780
· tgggaggatt	gcttgagcct	ggacttagag	gctgcagtga	gctataacca	tgccgttgca	3840
ctcagcctgg	g.atgacagagt	gagattctgt	ttcaaaaaa	a actttaaaco	taccacccag	3900
agataagcc	tgctaattat	gtgaaagagc	ttttcttctc	tctctctct	tctctctgtg	3960
tgtttatat	g tgtttgggga	tgggtgcaca	ctcttcataa	a acttttttt	ttttgagaca	4020
gggtctcgct	t cttttgccca	tgctgtagtc	cagtggcat	g atctcagcto	c actgcaaact	4080
ctgcctctc	a ggttcaagag	attctccago	tcccaagta	g ctgggatta	c agtcatgcac	4140
cgccacgcc	t ggttaaattt	tgtatttta	a gtagagatg	g ccatgttgg	c caggctggtc	4200
tcgaactcc	t gagctcaggt	gatctgccc	a cctcagcct	c tcaaaagtg	c tgggattaca	4260
gggcatgaa	c caccatgcc	ggccttcato	c aattttta	a aaacgactt	t attgaggtat	4320
actttatgt	a tcacaaaatt	tacccattt	t tagtatatc	a ttcaatgat	t tttagttaac	4380

WO 03/102019 PCT/US03/17638

14/90 tttttgagtt gtgtgacaat tactagctgt cgaacatttt tatcacacag tgagatccct 4440 tatacttctt tagtcagttc ctgttcctgc tcccagcccc gggcagctgt ggatctgtat 4500 4560 ttttgagacg gagtcttgct ctgtcgccca ggctggagtg cagtggtgcg atcttggctc 4620 actgcaagct ccgcctccca ggttcaaaca gttctgcctc agcctcccga gtagctggga 4680 ttacaggcac ctgccaccac gcccggctaa tttttttgta tttttagtag agatggggtt 4740 tcaccatgtt agccaggatg gtctcgatct cctgaccttg tgatctgccc acctcggcct 4800 cccaacgttc tggaattaca ggcgtgagcc accgcgcccg gctggatctg tattttata 4860 aattaaaata gggtccattg gttcacagct gattggaatc tgcttggttc catgtcaaca 4920 gccagacgac agtaaggttt cctcttatta cccacctgat tccctgtcga tggacaccta 4980 ggttgtttta tctttataaa ctgctgcagt ggacactgag gccggttttt ttctttgttt 5040 ttttttttt gtttgtttgt ttttgagaca gagtcttgct ctgtcaccca ggctggagtg 5100 cagtggcgcg atctcggctc actgcaaact ccgcctcccg ggttcacacc attctcctgc 5160 5220 ctcagcctcc cgagtagctt gggactatag gtgcgtgcca ccatgcctgg ctaatttttt gtatttttag tagagacggg gtttcaccgt gttagccagg atggtctcga tctcctgacc 5280 tcatgatctg cccgcctcgg cctcccaaag tgctgggatt acaggcgtga gccactgtgc 5340 5400 ctggccactg aggccagtct ttgcccggat cctcactgtg ttcctaggat gaggttctgg 5460 gaggggaatt gctggtcaga ggtcgagcct gcttttgaag cttcttctac caggagtgga gctgagcagg tttgataagg tctgaagatt tgggggtgga aatgccaggt cccttgagag 5520 5580 acatgaggga taagaggggg ccaggctggc cttgagtgcc agagtgcaga gctgggctag 5640 atgtgaggac agtcgggggt cagagcaggg gcacaccgag cttcagttcc ctctggctgc ttggatggag gatcgtaatg tgaacagaaa acactaattg agtacttact gtgtttcaga 5700 cagtgtgttg ataatcccac ttaatcccct gacaacccca agtaggtaga catatgatga 5760 5820 agatgacggc cttgaggacc agagaggtta agtgatttgc ctgagatcac acagccagat 5880 gatggcaaag ccagaattca aacccaggct gtgggctcca gagcctagct cttaagctct taagcactgg gctcctaaga atggggatga ggggttgagg gaggctcctc cacaggggct 5940 actctggggg cctggaagtg ggtcacagag gggtcagagg ctatgtggct acctccccat 6000 6060 cccagtccag agcagtgttt gagtcattag actgggaacc agccctggtg agccagccaa 6120 gggccttggg ccccatccgg tcctgctgcc tgccacagcc aaactcttgt catgtgaatg gatttgggga tggagctgcc tccatgagtc cttgcatctg tgggtgaagg cactgccctg 6180 6240 qctatagtgt ccctgggttt gagtcctgca tctgcaccaa gacctcaggt gagcctgtct 6300 ccttctgggc ctcagagtac cttgcagctg tcgggggagg atggatcagg agatggccct

WO 03/102019 PCT/US03/17638

gtacctgtgt tggggattat tgttaagccc gtggcagtct tcacctccct gctgaggatt aatttatcca attttgcaca agcttatgag tgcagaagag gcagacggaa acagagttct 6420 ggccaagagc ctggaacagg gcctcggggt ctctttccta tgcctggacc ccgtcatgtc 6480 tgctctttgt ctgtcggacc ccagatgtct gccaagcccc gtcagaggct gcttcccaga 6540 aagcccttct gggtgtcacc ttgccccgag cagtgcgttc tcagagttct cccgccctga 6600 tgtccctccc agcatgccca gcccagccac aacagggcct tgcttctagt catgtgtctg 6660 gctgtttgct gggtccaggc cagccctggt agggcacaat gggggcccgc tctgccaccc 6720 catacctctc cccaggatat ctcatgcccc agttctctcc ctagttccac caagcactgg 6780 6840 cactccttag aaaacacagc tctagactag ttactgccct agcttacagc acagaactcc -cctggtctcc aaccattcat ggctccctag tgctccaaga taaagttccc ttgtctcagc 6900 6960 cgggttggga gttaccttct gcccaacatt cacctagctg gacacaaaca tcctgagtga cccggtcagc tccaggcagg agtcactgcc agcagaggcc tgggatctgg actttgcctg 7020 ctgacaggtg gagcccaggc cggccagagg aagtgcctct gaccttgtct cctagcagcc 7080 acqqqccatq tqqacatqcc ttttqaccct gggcactgac agtgtgtgac agcctgcacc 7140 atgtgctcca caggggcggc tgtgtgtgtc gggggtgagg tggggaaagc cttaactggc 7200 7260 tcaqqqqtqa qaqqtcaqqq aqccattgag actggctcca ggtgtgggtc ccctgctggg ttggggcttg tgggaggtgg gacggggctg ggggtccatc cccctagggg gaatttgtgg 7320 7380 cctacccga accetgtttg agetecttte ctaactgact eccegteect geacetgtet eccageagge ettgeetetg catgetgeee etgeeagget etggggteee tgtgeteeet 7440 7500 gcagctagaa ggctgggatc aggggtctta acaagcagcc ctactgtatg accttggaca agtccaagaa ccttcaggtt cttaacaatg taaagggagc agtactaaaa gcagcttctt ggaattgtgg ggatccgatg agtgaaggct taagcagtgc atggcacata gtaggccctg 7620 7680 aaccaatgcc agttagtgtt attattatca ccatttagcc agatgcagtg gctcacgcct ataatcttat tgactttaga ggctgaggtt ggaggattgc ttgagaccag gagttcaaga 7740 7800 ccagcctggg caacatagca aggccctgtt tgttttagag aaaacaaaca aatcaccatt tagagcacct aaccagtacc tggcacgcga taggtttagc tcaacaaatg ttagcagcaa 7860 7920 ttacccaagg agcctgtqct ggaagtttct aggatgtacc aggctatggt tccaagttct 7980 gagcatctac catgtggtgg tctggagttg gtgagagaca ggatggggct gactaggcca gtggggagca cccccccca tggggaacaa gcaccctatc cttggcttcc atggaagata 8040 8100 attgatgctq qqcacaqtqq ctcacqcctq taatcccagc actttgggag gctgaggcag ggggatcgct tgagtctggg agttcaagac cagcctgggc aacattgtga gacccaaact 8160 aaaaaaatta gcttggcatg gtggagtgtg cctgtcgtcc cagctactca ggaggctgag 8220

WO 05/1020			16/90			8280
	gaggattgct					
ccactacact	ccagcctggg	caacatagtg	aggccctgtc	tcaaaacaaa	caaacaaaaa	8340
gaacctgctg	aggaagcagt	gtttctggct	gggggaggac	gggcagagtg	gccatctggc	8400
cacagatggc	ggtttctgtg	caaaacacat	caaggcagcc	ttggaaatgt	gagtgaaagc	8460
accttcaaag	ttctggtcac	agccttggga	ctaagcaaag	ccaccaaaag	tacataaaag	8520
acaatgacca	tcacccagtg	ccggtgatgc	tagaaggaaa	gggaatacgt	tgtagggaag	8580
gttgtaaagg	gctttatctt	ttccagactg	gagcctggca	gctcgaaaac	atcttgctgc	8640
cttcatatga	gctttaaaac	aagctgcaga	gaaacaactc	aagagggaga	aatatatata	8700
tatatgtgtg	tgtgtgtgta	tgtgtgagtg	tgtgtgtgtg	tgtgtataca	tatatatata	8760
tatatatata	tatatatatt	tttttttt	tttaagatgg	agtctcgttc	tgtcaccagg	8820
ctggagtgca	gtggtacaat	ctcggctcac	tgcaacctcc	gcctcctggg	ttcaaatgat	8880
tctcctgcgt	cagcctccca	agcagctggg	actataggca	cataccacca	cgcccagcta	8940
atttttgtat	ttttagtaga	ggctggattt	caccatgttg	gccaggatgg	ttttgatctc	9000
ctgacctcgt	gatctgcctg	ccttagcctc	ccaaagtgtt	gggattacag	gcgtgagcca	9060
gtttgtttt	agagacgggg	tcttgctctg	tcacccaggc	tggaatacca	tggcacaatc	9120
acagctcgct	gcaatgttga	actcccgggt	tcaagggatc	ctcccacctc	agcctccaga	9180
gtaatggaga	ctacaggctc	atgccaccat	gcccagctat	ttttaaaact	ttgtagagat	9240
ggggccttgc	: tacattgccc	aggctggtct	tgaactcctg	ggctcaagtg	atctgcctgc	9300
ctttgcctcc	: caaagtgctg	ttattacagg	tgtgagcccc	tgcgcctaac	cttagcactg	9360
ccattttgac	: tgaaaacagg	tgcccagcag	caggggctac	teccagaatt	gccactgcat	9420
caggcccgtg	ggttgtttc	agctgccagt	gataagtatg	tgöcetgggc	: cacctctcgg	9480
acaaggtgtc	tgaattggtg	ccgaccagca	tcacatgtaa	ttgccatctc	gcaggtgctg	9540
ctgagggtaa	a ttccgcacac	ctgtagctcc	gggaagagco	: tagtggggag	gaggaaacgt	9600
ggctctgagg	g.tttatagggt	cagacggtca	gtatgttggg	g agctggcato	tggaggggca	9660
cagacaagg	g aagaatggga	ggtggcatca	gagcaagttt	: tgatggagga	ataggaattc	9720
accaggtgga	a aagggcattc	ctggtggagg	gaacageete	g gccttcaata	gcttgtggtg	9780
ttcagaaago	c aggcagggaa	agggaggccc	agggagacad	cagttagggg	g atgggggtgg	9840
aggcagacga	a gggtggagga	agccatggct	ggagtctgca	a cggcctctga	a ctggggtccc	9900
tgctgtggt	c agccctgtgc	: tgggtgaggc	tggggtcaca	a gctggttcaq	g gccctgacag	9960
gaggggccc	c cagctgaggo	ccagcctcta	atttggcag	g gcaggtggat	t aggtctgggg	10020
gggtggtgg	t taggaagcct	ccaggaggag	g gcagtgccg	g agctgagcc	t taaagagctt	10080
cgtgttgtc	c tctctgtctt	tgcactctgo	c acacactca	c tgaactgcg	a caaatgagga	10140

tagetggtca gggcagaggc aggccggagt tggggctcac tgctgtccc cacaggctgg 10200 ggctgaaggg caggctctgg ggccgcagaa tggggtttgt gtaccagatt cttcatatgg 10260 cagctgtggg actttgggca cgaggcctcc gtctgagcct tagtttcctc aagaggacct 10320 gcgcccaggt gcacctgggg ctccagccat gggtgcgtcc cattccggga agagctggca 10380 cacacttgtg cccccggggc agccatgagt gcacaaaggg cagcctgtgc cactgctgga 10440 tacacgacca gctgagaaca cgaggaccgc cgactccagt taggaggatc aaggaagtgc 10500 ctggtgggag cagaacagca ggtggggtgc agcccagctc cctggaggga tggtgggcac 10560 ccatcctcac cctgctgcct ccattagcag gccgagaggg tgtgctctgg aatcccatga 10620 gcacctgtgc cacatcctcc cctgtggctg accettcttc acagttggtg cagetttgtg 10680 gtctgtagtg cagggatcaa ttggcaaatc cctttcccac ccattccctg gagaattggg 10740 gtccttggct cagatgacag accaacctga gttggaatcc cagctccttg gtggccgtcc 10800 tggcctccac cccctcactg cctccgctcc tcctatcctg cccacgccca ctgcagggcc 10860 tttgcacaca ctgtttcttc tgccctccct tccggcccac tccctcatat cattcagtcc 10920 teettteaga tgteacetee taagatggge tgeeetgace aceteateta taatggeeee 10980 agtgcctggc acaggattgg cacacagtag atattgtcag agatggatct gggttctgtg 11040 gacaaggctg tgggggcagg tgaagagctc cctcttccag gaggttgttt ggggttcaag 11100 gccttgtttg ggttgtaggc ttctgtgctg gtcagcgttg ggccctacaa gcgcatgcca 11160 tgaggcctgc ccaggatttc cctcatggcc tcacagaata catcggccag agtcattaaa 11220 gggcgcctgc.atctgccttc agagagaggt ttgaaggtag aactggggag ggatgccagg 11280 tgggggttca ggtttcctgt tgggtcctga tagaatcagg gcaggagagg aagaagaaga 11340 gggaagagga ggaacccagg cttggggagg ggtggcaggg cttcacaagc ctggggaagg 11400 tgaactaggg agcagttggg gccaccatgg cccagagtct atgcctcctc ttccttcctg 11460 tgttcagagt gtgtgtggga accacaaggg ccttctcagt gttcataggg aagcccggtt 11520 cacccatggg tgggccgcaa tttgggtgcc acagtgagcc cctagagacc agctctccca 11580 gcttccagga cagggactag gggaggcaag agaggctctt ccttaaattg tgcacccaag 11640 gtgcctcage tgccttacte tagactggce cegttaacte ceettaaaaa aaaaaaaaaa 11700 aagactcagt cgaatggtaa tggagctcca acgtgaatac tgcaagtatc aggcaactca 11760 ctacctgact ttccagttct aaaccattct aattgctgta gagagaacta acctttgttg 11820 agactgttga gtgatggatg ttttacacac ttgctttccc agaattccca cctctggaga 11880 tcgtaggtgt gggagctcag agggtgggga gtggactgtc cccatcacac agcaagggag 11940 gggctaaagg aagagcaggg cctggcatgc agccccagat agcccacttg ggtgtgtctc 12000 tgagggaggc tgcagggctg gctctagagt ttcctttttc agtcttaacc tggtgaccag 12060

			18/90			
cttccacaga	aattggcacg	gtgactcatg	cctgtaatcg	caacacattg	ggaggccgag	12120
gtgggaggat	cacctgaggt	caggagttcg	agaccagcct	ggccaacgtg	gtgaaaccct	12180
gtctctacta	aaaatacaaa	aattacattt	cattacaggt	gtggtggcgc	acacctgtaa	12240
tcccagctac	tcaggaggct	gaggcaggag	agtcacttga _.	acccgggagg	tagaggttgc	12300
agtgagctga	gatcgtgtca	ctgcactcca	gcctgggtga	cagagccaga	ctctgtctca	12360 ·
aaaaaaaaa	aaaaaaaaa	agaaattggc	cagtagatca	gccccagggg	agagtgagcc	12420
agggtttggc	caggccttga	gtttcagagg	ctggccatgg	ccagtggcac	ccaggccctt	12480
ccccttcct	cggggcatct	tagcttagtc	tgtgccctct	gcccaagggc	cagccctctg	12540
ttcccaggtc	acaccccctc	ctcttggaag	gcccccccg	cccaccccc	atcagagtct	12600
ttaatgactc	tgctgcccct	ggggctcaga	gagcaaccgc	cctctcccat	cgcgcttcct	12660
cagtgggatg	ggagggggtt	agagcaggaa	gatgagacaa	ataaagacac	aataagaggc	12720
aggaatatgt	ggtaaagcca	agatgggtaa	ggggaggga	caggcttgac	tgttcacagt	12780
ggccctggcc	ctgctgtctc	aggctagtat	ctgcttgttg	gtctcaccac	attctaggct	12840
cagaaactgg	ggagcaaagt	aatgaaagaa	ccaggctggg	aggccatggg	gaactcatgc	12900
ctggagttca	gctctcagtg	tgcttttggg	tcaaggacgc	ttccctgtct	taagtcactc	12960
atgtcagagc	ctttgccaag	agcaatgctg	tgttttgttt	tgggggtgag	ggaacacccg	13020
cgggctgagg	ggagggttgg	gccatgctag	agaggccgtc	tgttgtcctt	gaacctccca	13080
aagctgggaa	ataagggcct	gggctggacg	gcggtggcga	ggacaggttg	cgagagagac	13140
atggctgggt	tttcttgctt	agggtcctga	atagagagca	aggttgaggc	cgcagggacc	13200
ccagccccca	atggactgct	gagtcgctgg	gtctgcccag	ggttcaggca	ccctctcagg	13260
ttgcagccaa	ctggggtgtg	gaccaggcag	aggcgctggc	ctgcagtttg	gggcagaggc	13320
aġgctttgct	ggtggtctac	ttggctgcaa	aatcaactgg	ccaggetetg	atcactttgt	13380
gtgtgtgtgt	gtgtgtaact	tttacctttg	acaaaagagg	gaagacaggo	: ccaggcacct	13440
cctcaaaaga	accctagagc	ctgtcacccc	ttccttaccc	atcttctgtc	ctagggactg	13500
cagcccttcc	tggcttccca	gggccctaca	atgaatagtg	ggtcgggact	: cacttggtga	13560
ctgctgggtt	gtgaggcctt	gagggggagg	ggcagactto	acccatctg	g cagagggaca	13620
tcggtgctgg	g cagtcaggaa	acccttattt	ccaggcctca	gtttcccgga	a agtgacctgt	13680
tttcaggagt	ggcctcatcc	cagaccatca	gccccgctgt	ggtgaggggl	ggccccttcc	: 13740
tggggctgc	c ctagaagggg	gaggtccctg	cacccaccgo	agctgccact	cggcagccct	13800
tggccttaat	t taaacgcttc	ttgcgtacta	agtgctgcad	c ccatattate	c țecetteta	13860
cattcgacg	c cagggagata	atgactgtco	tgttttctg	g aggagtaaa	c ggagggttgg	g 13920
agcggttaa	g gctcgctcag	ggtgccagc	g aaccagtgat	t ttcgaacac	a gagttctggt	13980

19/90 gtgttgggcc aggacttctc tgctttgacc ctttaacgaa gggggcggga gctgagggcc 14040 agtgaccgcc agtaaccccg gcagacgctg gcaccgagcg ggttaaaggc ggacgtccgc 14100 tagtaacccc aaccccattc agcgccgcgg ggtgaaactc gagcccccgc cgccgtgggg 14160 aggtgggggg ggggccgggg ccgggcccta gcgaggcggc agcgcggccg ctgattggcc 14220 gegegegete acceeatgee eggeeegeag eecegaaggg eggggegggg egggaeetge 14280 aggcggggcg gggctgggc ggggctgggg gcggggcggg gcggggcggg cgcgccgcag 14340 cgctcaacgg cttcaaaaat ccgccgcgcc ttgacaggtg aagtcggcgc ggggaggggt 14400 agggccaacg gcctggacgc cccaagggcg ggcgcagatc gcggagccat ggattgcact 14460 ttcgaaggta tttttggagg cctccccacc agccctttat acaatgcctc cgtctcctgc 14520 aggttctcct ggggtgggcg ggcatgcggg ctacgcaact tgagcaggaa agagccctt 14580 cccgagggag aaggtgtgac agttaccagc tcgctgggga agtggagggc tacctccaac 14640 caaattagtg tcccctgcaa ctcaaggggg aagggtttgc ttagagaccc aaaagcagca 14700 tecegaceta agagggtttg gagggagagg gtggtettet etacattete tgeaceeget 14760 ttgggacagg accaggagga agcagggagg agggcccgtt gtccctctgc cacagcgtct 14820 gccctattca gcaccctgc ctattgtggg catcttagac ttttcaggaa gacagtggga 14880 gccctagatt gtcaaaattg tcagtttttc tttcaggcct cagtttcccc catctatcga 14940 agaggeteae aeggaetggg gtaaagggat gggaaaeeet geagttgaaa gteeattatg 15000 acttgatgac ttgtgacctg gggggtccac aaaccaggag agtttctact tgagaagcca 15060 ggaagactgg ggctgccacc ccatcctgtt ctgccaactg ctctaggaaa ttcccctcct 15120 gcagtagctt ccctgcctgg gtacctgtca gtaggcaatg ttgggtctcc actcggtgcc 15180 agctgcctgc caagcaaagc ctcgggcagc cgtaccaaaa ggggtttagt cttttctgtt 15240 gtacagatga ggaaactggg gccagtgaga ggaggctgtt ggtccaggct ccacttcaag 15300 ctggtggtgg gcagggctgg gagctcaggc tggggatcct gagagcactg gaggccccca 15360 tgggtcctgt agagcattct gacccagtgg gtgccaccac gagtgggtta gagggccctg 15420 ggctgagcca gataggctgc tagtcaccag ctgggggaga gggcccttgg ccaggtgggg 15480 ctgaggtggg agtgtgtccc agtctgtatg aggaggaagg agtcaggaca gacagcactt 15540 gcttttacag agatgaaatc aaagccctga gtggccaggc ctgggtcttg aggctacttg 15600 gctgcaggca aagcctggac ttgagcccag aactctacac agagacacac tggttggcca 15660 tgtggccagc agctggcttg gccctaagcc ttggtctgtt ccactgagta atgggttggt 15720 gatggcagcc tggctcttgg cttcttagtg gggcaagaaa aggcagagag acaatagatt 15780 tgggattttg tagacctggg tttgaacccc actgcatgct cttgggctgc ttgtggtcct 15840 ccctgagcct cagtgtcttt tcttgtctcc aagatgaggt gagctaatct tttgaggtag 15900

			20/90			
tctagggtag (
gtctctgact (ctataagaac	ttaggccagt	aagtcacctc	tctacagctc	agtttcttca	16020
cgtgtagaat (ggggccaatg	atcacatcac	cctctcagct	gtgggtgagg	attaggggtc	16080
tagcctggcc	ccatcaatgt	gggtagcccc	acagcgggcc _.	tggcttttgg	accagaccca	16140
cccttctgac	atgggccccc	acccttagag	tccttctagt	gtggatgagg	accctgctct	16200
gatctggggt	cctcttgggg	gacttccctg	tctgccattc	tctttgggga	tcctgcgctg	16260
ccctaggaag	agtgggccca	ggctgcacag	ttggtccttg	gtcacagagg	atcccaccac	16320
ttcttcaggg	cctcaaggca	atcctgcctc	tctctgcacc	cctcttcccc	ctgtaaactg	16380
aggggagggg	aaaatcaccc	actcctcagc	agtttctaag	ttgctttgtc	aaattcagtg	16440
cccagaggat	cctgctgggg	gtgcgtttta	ggatgagacc	aggagtggcc	aatggtgggg	16500
tgtggggccc	atcgctccta	tatgaagacc	ccctctgccc	tagactgctc	ctccctcccc	16560
atccccatct	ccatcccaaa	gactggagct	gctggatctg	tggatggagg	cgtgcccccc	16620
gtttcacaca	ttgagaaaca	ggccccaagt	ggagccaggg	aaggctgcac	ctgggcctct	16680
ggattccttt	tgttctgtgt	ggggttgggg	gtgatggact	gtggagaggg	caggagagct	16740
gtctggaagg	gttggtcacc	tcatgggcaa	atgcttggaa	gctggtctga	gtccacggtg	16800
cagtgtgtat	gtgtgtgtgt	gtgtgtgtgt	gtatgtgtgt	ggactcagag	gtggatgtct	16860
tgtagaatgc	atgccccatg	aagacaggag	taaaagttta	ccaccatcca	catcaagcta	16920
caggacactc	ccagctcccc	agaaagttgc	ttagttctag	gcagggattt	cccttattca	16980
cagccgggag	cagtgcctgg	catagtgtgg	gcactcagca	ctcagcacat	gctcactgga	17040
tgagtgaatg	aatgtgagcc	tgctgtttgc	tgtggactaa	ggatgtttct	. agatgtttgg	17100
gcaaataccg	gatggtggga	agagctcagg	ctctgaagtc	: tgcagtcttg	ggcccgacco	: 17160
tgggctcagc	cccagcctag	ctgtggggca	agattgtgag	ccttgtggtg	cccaccttgt	17220
ccaggtattg	tgatgcactc	gcagcagcag	gcattgcttt	agacagcaca	a ggtgctcgca	17280
aaatggctgt	atgtccggga	acaccagete	ctgtgggtg	ctttctgtc	tggtggcatt	17340
gcccacacat	acagctgtgt	gccaacaagg	gttgtgcaaa	a taaggttgto	g tttggatgtg	17400
tgtgatgccc	tgtttggggg	tcagtctctg	cctcactcac	c gcaccctct1	t ctccttttc	a 17460
cagacatgct	tcagcttatc	aacaaccaag	g acagtgacti	coctggoot	a tttgaccca	17520
cctatgctgg	gagtggggca	gggggcacag	g accetgeea	g ccccgatac	c agctcccca	g 17580
gcagcttgtc	tccacctcct	gccacattga	a gctcctctc	t tgaagcctt	c ctgagcggg	c 17640
cgcaggcagc	geceteacee	: ctgtcccct	c cccagcctg	c acceacted	a ttgaagatg	t 17700
acccgtccat	geeegettte	: tcccctggg	c ctggtatca	a ggaagagtc	a gtgccactg	a 17760
gcatcctgca	gacccccacc	ccacagece	c tgccagggg	c cctcctgcc	a cagagcttc	c 17820

cagececage eccaeegeag tteageteea eccetgtgtt aggetaceec ageceteegg 17880 gaggettete tacaggtaag ggggatgtgt ggegggaggg gacacceggg gtggggette 17940 caggagcaca ggaagaagct tctgctgtga tgtgagtaga ggtctgtgca ggctttagaa 18000 actggggctc cactcggctg cttgagatgc cctgttacta gcagtcctgg tgtgcttgtt 18060 gccggggtag gcgcaacctc gcactggagg cctggcttga agccagtgca tttgcatcag 18120 agcccaggca gggactgtcc ataggaagcc acatggggca atgactcatc caaggccagt 18180 cggtgataga gacctgaaga gcaggttgaa agtgggagag ggaggtctgt gtctgcagcc 18240 ccactggctt ccccgccagg ggtcccgccc gtctccttgc acacccaggt ccagagtgtg 18360 gtccccagc agctactgac agtcacagct gccccacgg cagcccctgt aacgaccact 18420 gtgacctcgc agatccagca ggtcccggtg agggggtctg gccaggggtt ggggaggggg 18480 cagocccago ccagacacao agottacago caagoctoto coaccotcag gtootgotgo 18540 agccccactt catcaaggca gactcgctgc ttctgacagc catgaagaca gacggagcca 18600 ctgtgaaggc ggcaggtctc agtcccctgg tctctggcac cactgtgcag acagggcctt 18660 tgccggtggg tgacgtgggc agggcataag ggagtggggt ctacacacac acacacatgc 18720 ccacctggta acatgtgcct ggccctgcag accctggtga gtggcggaac catcttggca 18780 acagtcccac tggtcgtaga tgcggagaag ctgcctatca accggctcgc agctggcagc 18840 aaggccccgg cctctgccca gagccgtgga gagaagcgca cagcccacaa cgccattgag 18900 aagcgctacc gctcctccat caatgacaaa atcattgagc tcaaggatct ggtggtgggc 18960 actgaggcaa aggtgtggag aggcctgcag gggcacagac cggggtgtcc ctaggaagga 19020 acagatcagg ggcaactgga aggaagagag ggagtgagac tgagcctgga caagcaggga 19080 attggaattc agcctcccca ggcctggcca gcctcgttta tttagttaaa ctggtttgca 19140 ggcctcttca ataaaggtgg ggctgtgcta ggcattgggg atgcagcaat gaacaagaca 19200 gacaaaaatt gtccctcaaa gaagagccga ccttctggtg ggggagatgg acagtaggca 19260 ggatgaataa gtgctcgaga ccaccacgtt tggctcgttg cagagaaagc aggaagagga 19320 tggtgagggt cccctggtgg tagccaggga aggcctccct gagatggcgg caggcacagc 19380 agcagetage cagaceetge tgtetgeate ttacatteta accetatgee eggeetggga 19440. ggtgggtgct actaggcgag gaacggttca ggtagaagga acaagtgcaa aggtcctgag 19500 gcagtaatgt tgcaaagcag ctccgcaccc ccttgctagg gctctccaac cccacaaccc 19560 ccgacctgac aggccacctg tgcgctcccc ctccctccca caccgtgcag ctgaataaat 19620 ctgctgtctt gcgcaaggcc atcgactaca ttcgctttct gcaacacagc aaccagaaac 19680 tcaagcagga gaacctaagt ctgcgcactg ctgtccacaa aagcagtgag tcctggcttt 19740

attgagetee agtetggeet ettetetage ettgeteeae eteceggeee eaccecatee 19800 ctagececae eccaecettg gttetggeee accetetgee etgeceaect eaccettgge 19860 tgtagccctg cattcagctc tagtcccttg gttacctctg gtcctgaaag agacctggtg 19920 cctccctttg gccctaaccc agccccatca aagcgtcctg ggctagcttt aggagctaca 19980 gtagtcccta ggcctccaag ggcctaggct ctgatttggg gtcacatatc cagcctttac 20040 tcctggctct gttcctttcg gcccacagaa tctctgaagg atctggtgtc ggcctgtggc 20100 agtggaggga acacagacgt gctcatggag ggcgtgaaga ctgaggtgga ggacacactg 20160 accccaccc cctcggatgc tggctcacct ttccagagca gccccttgtc ccttggcagc 20220 aggggcagtg gcagcggtgg cagtggcagt gactcggagc ctgacagccc agtctttgag 20280 gacagcaagg ttgggccctg ccacggtgcc cccttcccca ctcccagcca tatcctctga 20340 gcctcatgac agggccggga agaccctaac agatcctacc tcccatttca tagacagaat 20400 aactgaggcc tggagccacg tggggtccca cagtaaggtg ggcagaatcc tgacccccc 20460 cttcccagcc ccatgctctc tggggtccct ccgattctgc cctcaccacc ctgcccaacc 20520 ccaccaggca aagccagagc agcggccgtc tctgcacagc cggggcatgc tggaccgctc 20580 ccgcctggcc ctgtgcacgc tcgtcttcct ctgcctgtcc tgcaacccct tggcctcctt 20640 gctgggggcc cgggggcttc ccagccctc agataccacc agcgtctacc atagccctgg 20700 gcgcaacgtg ctgggcaccg agagcagagg tgggaccggc cagcctgggc atctttggga 20760 gggacactcg gggtgagccc ccaggcttgt gaacttgggg ctctggattt cctgggagct 20820 gtgtccccag ctttccctct gtccatagat ggccctggct gggcccagtg gctgctgccc 20880 ccagtggtct ggctgctcaa tgggctgttg gtgctcgtct ccttggtgct tctctttgtc 20940 tacggtgage cagteacacg geoceactea ggeocegeeg tgtacttetg gaggeatege 21000 aagcaggctg acctggacct ggcccgggta aggggctggc cccggcagag tgggcagggc 21060 agggacccca ggctgtgaag gtgctgggtg tcaacccttg ttcctgctcc ctgtgcacac 21120 catgaatctg tecegteete eetgtgeeta gecaegeate egeagaeece caecaeceet 21180 ccagagcctg ctgtggacgg ctcttctgag ctttggggca gctgctctga cctcactttt 21240 ctcacctgga aaaccctcat ccacagggag actttgccca ggctgcccag cagctgtggc 21300 tggccctgcg ggcactgggc cggccctgc ccacctccca cctggacctg gcttgtagcc 21360 tcctctggaa cctcatccgt cacctgctgc agcgtctctg ggtgggccgc tggctggcag 21420 gccgggcagg gggcctgcag caggactgtg ctctgcgagt ggatgctagc gccagcgccc 21480 gagacgcagc cctggtctac cataagctgc accagctgca caccatgggt aggactgagc 21540 gtggggcggg ctccgaggtg ctccctgctg cctgtgctcc acccacagcc tcatgcctgc 21600 ttgccttcca gggaagcaca caggcgggca cctcactgcc accaacctgg cgctgagtgc 21660

	•		23/90			
cctgaacctg	gcagagtgtg	caggggatgc		gcgacgctgg	ccgagatcta	21720
tgtggcggct	gcattgagag	tgaagaccag	tctcccacgg	gccttgcatt	ttctgacagt	21780
gagtgggttg	gggggatggc	gggagtgggg	agggtggggc	gcctgaggct	ccctgggtaa	21840
gagctacacg	ggatgtggca	gtggttacca	gggggactcc	aggccaagct	gggactcggc	21900
ccggggtctg	gccccaggct	gtgtccactg	tgacagccca	gtacccaccc	ctacagcgct	21960
tcttcctgag	cagtgcccgc	caggcctgcc	tggcacagag	tggctcagtg	cctcctgcca	22020
tgcagtggct	ctgccacccc	gtgggccacc	gtttcttcgt	ggatggggac	tggtccgtgc	22080
tcagtacccc	atgggagagc	ctgtacagct	tggccgggaa	cccaggtgct	ctcttacccc	22140
ttccctgtcc	cctctcctgt	ccctcatcct	cattcctgtc	ctgtcccttg	tcgcctgaat	22200
ctctggctgt	ctctggccac	cccagtcctt	ctccctgcca	tgggttgttg	ctgtgggggt	22260
tgcaggaagg	gaaaggcctg	ggtgcctctc	gttcccattg	gggctttcag	aagcacatgc	22320
agggattgat	gggcagatgg	ctaattggag	aagtgacccc	aggcagtgcc	gctgtggagt	22380
aaggaagcgg	agccaacaat	ggcatcttct	caagtcggtt	ttcctttgga	agcagtgtag	22440
ggcaggcctc	agtgttgtct	cctggccaag	gctggtgctg	gtgatagtta	tgtccacccg	22500
ctttcccctg	tccttggcag	gggctgcacc	caggggcatg	ccggcacttc	ccagtggccc	22560
taggtgtggc	cccagcccac	ccaggaaaaa	gcccttagct	tggagaggag	ggtggggccc	22620
tgctccccac	cccactcacc	tcctcctctc	cacagtggac	cccctggccc	aggtgactca	22680
gctattccgg	gaacatctct	tagagcgagc	actgaactgt	gtgacccagc	ccaaccccag	22740
ccctgggtca	gctgatgggg	acaagtaagt	gtcgttgtgc	cctcctccag	gcaaggcccc	22800
teeggeggga	ttctgagaat	agctctggcc	tcaaccctgt	ggagagagcc	cagagctggg	22860
ctaccgtgcg	-tgccatgcac	gcttcattcc	tctctgagtt	tcctctcccc	accagcctgt	22920
gggaggagac	ägtggcactt	tgcagagcca	ggggccaggc	tgtactctgg	agggcaggtg	22980
gggagcaccc	tcctaggacc	cctgccatct	gttccgacag	ccagctctct	ccttccacag	23040
ggaattctcg	gatgccctcg	ggtacctgca	gctgctgaac	agctgttctg	·atgctgcggg	23100
ggctcctgcc	tacagettet	ccatcagttc	cagcatggcc	accaccaccg	gtgagtcccc	23160
ggcccctgtc	ctggctccct	tctcagctcc	cccgtgcagc	gtgactgagg	gttcagggga	23220
ccctccctct	tetgeaggeg	tagacccggt	ggccaagtgg	tgggcctctc	tgacagctgt	23280
ggtgatccac	tggctgcggc	gggatgagga	ggcggctgag	cggctgtgcc	cgctggtgga	23340
gcacctgccc	: cgggtgctgc	aggagtctga	gtgagtgcac	: ggcaggttcc	tcctgcctgg	23400
tecegggete	: agccttcctc	atcccctggg	cactgtgcct	cactcagcct	ttgttctgtg	23460
caggaggagt	caccaccttt	tttcctcagg	gaactcgago	: cagggaagtg	gggggcactc	23520
agccagggct	: tgtggactgg	tctgactggc	actcttctgc	cctggtccca	acaggagacc	23580

			24/90			
cctgcccagg	gcagctctgc	actccttcaa	ggctgcccgg	gccctgctgg	gctgtgccaa	23640
ggcagagtct	ggtccagcca	gcctgaccat	ctgtgagaag	gccagtgggt	acctgcagga	23700
cagcctggct	accacaccag	ccagcagctc	cattgacaag	gtgaggggtg	gggtcagggg	23760
cctggcaggg	ctgggggatt	cagctttcca	ttccctggtt	cctctcccca	gcccccaggg	23820
gctgcagaag	accatggggt	tagcccaagc	agcacaggat	agggggtcca	gcagaccctg	23880
ctttttggct	aaggcttctg	tccagaggag	aggggttgcc	cctatctggc	ctcagtttcc	23940
ccatccctgg	gaggagggg	gtggatggtg	tggtaggatc	cctttggagg	ccctgcatca	24000
ggagggctgg	acagctgctc	ccgggccggt	ggcgggtgtg	ggggccgaga	gaggcgggcg	24060
gccccgcggt	gcattgctgt	tgcattgcac	gtgtgtgagg	cgggtgcagt	gcctcggcag	24120
tgcagcccgg	agccggcccc	tggcaccacg	ggcccccatc	ctgcccctcc	cagagctgga	24180
gccctggtga	cccctgccct	gcctgccacc	cccaggccgt	gcagctgttc	ctgtgtgacc	24240
tgcttcttgt	ggtgcgcacc	agcctgtggc	ggcagcagca	gccccggcc	ccggccccag	24300
cagcccaggg	caccagcagc	aggccccagg	cttccgccct	tgagctgcgt	ggcttccaac	24360
gggacctgag	cagcctgagg	cggctggcac	agagetteeg	gcccgccatg	cggagggtga	24420
gtgcccgatg	gccctgtcct	caagacgggg	agtcaggcag	tggtggagat	ggagagccct	24480
gagcctccac	tctcctggcc	cccaggtgtt	cctacatgag	gccacggccc	ggctgatggc	24540
gggggccagc	cccacacgga	cacaccagct	cctcgaccgc	agtctgaggc	ggcgggcagg	24600
ccccggtggc	aaaggaggtg	agggggcagc	tgctgaccag	ggatgtgctg	tctgctcagc	24660
agggaagggç	gcacatggga	tgtgatacca	agggaggctg	tgtgtgtgtc	agacgggaca	24720
gacaggcctg	gcgcagtggc	tcacacctag	cactttggga	ggctcagttg	ggaggacagc	24780
ttgagcccag [.]	gagttggagg	ccgcagtgag	cctgagtgac	agggagagtc	cctgtctcaa	24840
aaaaaaaaa	agaccaagca	tcttcttgat	ggttacctga	"tgacaattcc	tttcacaagg	24900
aatcagtggg	gtgactgtca	tttgtgggat	acatgactgc	acgtgcgtga	ctcagtctgt	24960
ggactttgtg	tgtgggctga	gactagggtg	gggagagggg	aacccgccag	gcccccgcca	25020
ggtacctgtg	tgccaggtac	aggcggctgg	tgccgtggct	tgtgtgtggg	cagggctccc	25080
gcgggggcġt	ggccagcttg	agacccatcc	ctgacacatc	ctcgtgtgcg	caggcgcggt	25140
ggcggagctg	gagccgcggc	ccacgcggcg	ggagcacgcg	gaggccttgc	tgctggcctc	25200
ctgctacctg	cccccggct	tcctgtcggc	gcccgggcag	cgcgtgggca	tgctggctga	25260
ggcggcgcgc	acactcgaga	agcttggcga	tcgccggctg	ctgcacgact	gtcagcagat	25320
gctcatgcgc	ctgggcggtg	ggaccactgt	cacttccago	: tagaccccgt	gtccccggcc	25380
tcagcacccc	tgtctctagc	cactttggtc	ccgtgcagct	tetgteetge	gtcgaagctt	25440
tgaaggccga	aggcagtgca	agagactctg	gcctccacag	ttcgacctgc	ggctgctgtg	25500

tgccttcgcg gtggaaggcc cgaggggcgc gatcttgacc ctaagaccgg cggccatgat 25560 ggtgctgacc tctggtggcc gatcggggca ctgcaggggc cgagccattt tggggggccc 25620 ccctccttgc tctgcaggca ccttagtggc ttttttcctc ctgtgtacag ggaagagag 25680 ggtacatttc cctgtgctga cggaagccaa cttggctttc ccggactgca agcagggctc 25740 tgccccagag gcctctctct ccgtcgtggg agagagacgt gtacatagtg taggtcagcg 25800 tgcttagcct cctgacctga ggctcctgtg ctactttgcc ttttgcaaac tttattttca 25860 tagattgaga agttttgtac agagaattaa aaatgaaatt atttataatc tgggttttgt 25920 gtcttcagct gatggatgtg ctgactagtg agagtgcttg ggccctcccc cagcacctag 25980 ggaaaggett eccetecee teeggeeaca aggtacacaa ettttaaett agetetteee 26040 gatgtttgtt tgttagtggg aggagtgggg agggctggct gtatggcctc cagcctacct 26100 gttccccctg ctcccagggc acatggttgg gctgtgtcaa cccttagggc ctccatgggg 26160 tcagttgtcc cttctcacct cccagctctg tccccatcag gtccctgggt ggcacgggag 26220 gatggactga cttccaggac ctgttgtgtg acaggagcta cagcttgggt ctccctgcaa 26280 gaagtetgge acgteteace teccecatee eggeeeetgg teateteaca geaaagaage 26340 ctcctcctc ccgacctgcc gccacactgg agaggggca cagggggggg ggaggtttcc 26400 tgttctgtga aaggccgact ccctgactcc attcatgccc cccccccag cccctcctt 26460 cattcccatt ccccaaccta aagcctggcc cggctcccag ctgaatctgg tcggaatcca 26520 cgggctgcag attttccaaa acaatcgttg tatctttatt gactttttt ttttttttt 26580 tctgaatgca atgactgttt tttactctta aggaaaataa acatctttta gaaacagctc 26640 gatacacaca atcttcagtg tgaagcaata tactaataag aacactagtc gtcttaacat 26700 ttacagtett catatatatt atatatatgt atatgtatae atatatatae actatataae 26760 gaggccagat ataatacaca cgtttaccat tttacagtca tatgtacagg aagttgctag 26820 ggcggccctg ggctgggggc tgcgtcaggc ctatcgaagc gtggacagag ctgaggacac 26880 ggacggacag gcggacggac tggcagggac tggcccgggc cggtggtggc tgcgtggaca 26940 agtggcgtcg cggtagcccc ttacccggca aaggcccggt tggggctctg ttgcgggcgc 27000 27001

<220>

<400> 19
ccttgacagg tgaagtcggc gcggggaggg gtagggccaa cggcctggac gccccaaggg 60
cgggcgcaga tcgcggagcc atggattgca ctttcgaaga catgcttcag cttatcaaca 120

<210> 19

<211> 698

<212> DNA

<213> H. sapiens

				•		
accaagacag 1	tgacttccct (ggcctatttg a	acccacccta	tgctgggagt	ggggcagggg	180
gcacagaccc 1	tgccagcccc (gataccagct (ccccaggcag	ctagtctcca	cctcctgcca	240
cattgagctc o	ctctcttgaa (gccttcctga (gcgggccgca	ggcagcgccc	tcacccctgt	300
cccctcccca (geetgeacee a	actccattga a	agatgtaccc	gtccatgccc	gctttctccc	360
ctgggcctgg t	tatcaaggaa (gagtcagtgc (cactgagcat	cctgcagacc	cccaccccac	420
agcccctgcc a	aggggccctc (ctgccacaga q	gcttcccagc	cccagcccca	cctgagttca	480
gctccacccc t	tgtgttaggc 1	taccccagcc (ctcctggagg	ctactctaca	ggaagccctc	540
ccgggaacac (ccagcagccg (ctgcctggcc t	tgccactggc	ttccccgaca	ggggtcccgc	600
ccgtctcctt o	gcacacccgg q	gtccagagtg t	tggtccccca	gtagctactg	acagtcacag	660
ctggccccac t	tgcagcccct 1	igaacgacca d	ctgtgact			698
<210> 20 <211> 4154 <212> DNA <213> H. sap <220> <221> CDS <222> (167).				.:		
<400> 20 taacgaggaa c	ettttegeeg g	Jedeedddee .d	gcctctgagg	ccagggcagg	acacgaacgc	60
						60 120
taacgaggaa d	ggeggegaet o	gagageeggg ç	gccgcggcgg	cgctccctag	gaagggccgt	
taacgaggaa c	ggeggegaet oggeggggggggggggggggggggggggggggggggg	gagageeggg oggeeteeegg a	aggaggcggc	cgctccctag tgcgcc atg Met 1 ctg ggc gag	gaagggccgt gac gag Asp Glu ccg tgc	120
gcggagcggc gacgaggcggc gacgaggcggc gacgaggcggc gacgaggcggc gacgaggcggc gacgaggcggc gacgaggcggc gacgagggcggc gacgagggagg	ggcggcgact ogggcccggcg oggcggggggggggggggggggggg	gagageeggg oggeteegg a ggeeteegg a g get ttg ga a Ala Leu Gl 10 g etg ace ga a Leu Thr As	gccgcggcgg aggaggcggc ag cag gcg lu Gln Ala	cgctccctag tgcgcc atg Met 1 ctg ggc gag Leu Gly Glu 15 gac atg ctt	gaagggccgt gac gag Asp Glu ccg tgc Pro Cys cag ctt	120 175
cca ccc ttc Pro Pro Phe	ggcggcgact ogggcccggcg ogggcgggcgggggggggggggggg	gagageeggg oggeteegg a g get ttg ga a Ala Leu Gl 10 g ctg acc ga a Leu Thr As	gccgcggcgg aggaggcggc ag cag gcg lu Gln Ala ac atc gaa sp Ile Glu 30 ct ggc cta	cgctccctag tgcgcc atg Met 1 ctg ggc gag Leu Gly Glu 15 gac atg ctt Asp Met Leu	gaagggccgt gac gag Asp Glu ccg tgc Pro Cys cag ctt Gln Leu 35 ccc tat	120 175 223
cca ccc ttc. Pro Pro Phe 5 gat ctg gac. Asp Leu Asp 20 atc aac aac	ggcggcgact of gggcccggcg of gag gag gcg ctg Ala Ala Leu 25 caa gac agt Gln Asp Ser 40 ggg gca ggg	gagageceggg of geetecegg and a leu Gland acc gas leu Thr Associated acc gas	gccgcggcgg aggaggcggc ag cag gcg lu Gln Ala ac atc gaa sp Ile Glu 30 ct ggc cta ro Gly Leu 45	cgctccctag tgcgcc atg Met 1 ctg ggc gag Leu Gly Glu 15 gac atg ctt Asp Met Leu ttt gac cca Phe Asp Pro	gaagggccgt gac gag Asp Glu ccg tgc Pro Cys cag ctt Gln Leu 35 ccc tat Pro Tyr 50 acc agc Thr Ser	120 175 223 271
cca ccc ttc. Pro Pro Phe 5 gat ctg gac. Asp Leu Asp 20 atc aac aac. Ile Asn Asn	ggcggcgact of gggcccggcg of agc gag gcg sto Ala Ala Leu 25 caa gac agt Gln Asp Ser 40 ggg gca ggg Gly Ala Gly 55	gagageceggg of geetecegg and a second and second acceptance gas ac	gccgcggcgg aggaggcggc ag cag gcg lu Gln Ala ac atc gaa sp Ile Glu 30 ct ggc cta ro Gly Leu 45 ac cct gcc sp Pro Ala 60 ct gcc aca	cgctccctag tgcgcc atg Met 1 ctg ggc gag Leu Gly Glu 15 gac atg ctt Asp Met Leu ttt gac cca Phe Asp Pro agc ccc gat Ser Pro Asp 65	gaagggccgt gac gag Asp Glu ccg tgc Pro Cys cag ctt Gln Leu	120 175 223 271 319

ccc Pro 100	cag Gln	cct Pro	gca Ala	ccc Pro	act Thr 105	cca Pro	ttg Leu	aag Lys	atg Met	tac Tyr 110	ccg Pro	tcc Ser	atg Met	ccc Pro	gct Ala 115	511
ttc Phe	tcc Ser	cct Pro	GJA GGG	cct Pro 120	ggt Gly	atc Ile	aag Lys	gaa Glu	gag Glu 125	tca Ser	gtg Val	cca Pro	ctg Leu	agc Ser 130	atc Ile	559
ctg Leu	cag Gln	acc Thr	ccc Pro 135	acc Thr	cca Pro	cag Gln	ccc Pro	ctg Leu 140	cca Pro	Gly	gcc Ala	ctc Leu	ctg Leu 145	cca Pro	cag Gln	607
agc Ser	ttc Phe	cca Pro 150	gcc Ala	cca Pro	gcc Ala	cca Pro	ccg Pro 155	cag Gln	ttc Phe	agc Ser	tcc Ser	acc Thr 160	cct Pro	gtg Val	tta Leu	655
ggc Gly	tac Tyr 165	ccc Pro	agc Ser	cct Pro	ccg Pro	gga Gly 170	ggc Gly	ttc Phe	tct Ser	aca Thr	gga Gly 175	agc Ser	cct Pro	ccc Pro	Gly ggg	703
aac Asn 180	acc Thr	cag Gln	cag Gln	ccg Pro	ctg Leu 185	cct Pro	ggc Gly	ctg Leu	cca Pro	ctg Leu 190	gct Ala	tcc Ser	ccg Pro	cca Pro	ggg Gly 195	751
gtc Val	ccg Pro	ccc Pro	gtc Val	tcc Ser 200	ttg Leu	cac His	acc Thr	cag Gln	gtc Val 205	cag Gln	agt Ser	gtg Val	gtc Val	ccc Pro 210	cag Gln	799
cag Gln	cta Leu	ctg Leu	aca Thr 215	gtc Val	aca Thr	gct Ala	gcc Ala	ccc Pro 220	acg Thr	gca Ala	gcc Ala	cct Pro	gta Val 225	acg Thr	acc Thr	847
act Thr	gtg Val	acc Thr 230	tcg Ser	cag Gln	atc Ile	cag Gln	cag Gln 235	gtc Val	ccg Pro	gtc Val	ctg Leu	ctg Leu 240	cag Gln	ccc Pro	cac His	895
ttc Phe	atc Ile 245	aag Lys	gca Ala	gac Asp	tcg Ser	ctg Leu 250	ctt Leu	ctg Leu	aca Thr	gcc Ala	atg Met 255	aag Lys	aca Thr	gac Asp	gga Gly	943
gcc Ala 260	Thr	gtg Val	_aag Lys	gcg Ala	gca Ala 265	ggt Gly	ctc Leu	agt Ser	ccc Pro	ctg Leu 270	gtc Val	tct Ser	Gly	acc Thr	act Thr 275	991
gtg Val	cag Gln	aca Thr	GJ A aaa	cct Pro 280	ttg Leu	ccg Pro	acc Thr	ctg Leu	gtg Val 285	agt Ser	ggc	gga Gly	acc Thr	atc .Ile 290	Leu	1039
				Leu							ctg Leu			Asn		1087
ctc Leu	gca Ala	gct Ala 310	Gly	agc Ser	aag Lys	gcc Ala	ccg Pro 315	Ala	tct Ser	gcc Ala	cag Gln	ago Ser 320	Arg	gga Gly	gag Glu	1135
aag Lys	cgc Arg 325	Thr	gcc Ala	cac His	aac Asn	gcc Ala 330	Ile	gag Glu	aag Lys	cgc Arg	tac Tyr 335	Arg	tcc Ser	tcc Ser	atc	1183
	Asp					Leu					. Val				gca Ala 355	1231

												•				
-	_		aaa Lys		_	-	_	_	_	-		_			_	1279
	_		cac His 375	-		_			_	_				_	_	1327
			gtc Val													1375
			gga Gly													1423
			gac Asp		_					_	-	-				1471
			agc Ser													1519
			agt Ser 455													1567
			cca Pro													1615
			cgc Arg													1663
			ttg Leu													1711
tca Ser	gat Asp	acc Thr	acc Thr	agc Ser 520	gtc Val	tac Tyr	cat His	agc Ser	cct Pro 525	G] À aaa	cgc Arg	aac Asn	gtg Val	ctg Leu 530	ggc Gly	1759
			aga Arg 535													1807
			ctg Leu													1855
			tac Tyr													1903
			tgg Trp													1951
gga Gly	gac Asp	ttt Phe	gcc Ala	cag Gln 600	gct Ala	gcc Ala	cag Gln	cag Gln	ctg Leu 605	tgg Trp	ctg Leu	gcc Ala	ctg Leu	cgg Arg 610	gca Ala	1999

ctg Leu	ggc Gly	cgg Arg	ccc Pro 615	ctg Leu	ccc Pro	acc Thr	tcc Ser	cac His 620	ctg Leu	gac Asp	ctg Leu	gct Ala	tgt Cys 625	agc Ser	ctc Leu	2047
ctc Leu	tgg Trp	aac Asn 630	ctc Leu	atc Ile	cgt Arg	cac His	ctg Leu 635	ctg Leu	cag Gln	cgt Arg	ctc Leu	tgg Trp 640	gtg Val	ggc Gly	cgc Arg	2095
tgg Trp	ctg Leu 645	gca Ala	ggc Gly	cgg Arg	gca Ala	ggg Gly 650	ggc Gly	ctg Leu	cag Gln	cag Gln	gac Asp 655	tgt Cys	gct Ala	ctg Leu	cga Arg	2143
gtg Val 660	gat Asp	gct Ala	agc Ser	gcc Ala	agc Ser 665	gcc Ala	cga Arg	gac Asp	gca Ala	gcc Ala 670	ctg Leu	gtc Val	tac Tyr	cat His	aag Lys 675	2191
ctg Leu	cac His	cag Gln	ctg Leu	cac His 680	acc Thr	atg Met	GJÀ âââ	aag Lys	cac His 685	aca Thr	ggc Gly	ggg Gly	cac His	ctc Leu 690	act Thr	2239
														gca Ala		2287
gat Asp	gcc Ala	gtg Val 710	tct Ser	gtg Val	gcg Ala	acg Thr	ctg Leu 715	gcc Ala	gag Glu	atc Ile	tat Tyr	gtg Val 720	gċg Ala	gct Ala	gca Ala	2335
ttg Leu	aga Arg 725	gtg Val	aag Lys	acc Thr	agt Ser	ctc Leu 730	cca Pro	cgg Arg	gcc Ala	ttg Leu	cat His 735	ttt Phe	ctg Leu	aca Thr	cgc Arg	2383
ttc Phe 740	ttc Phe	ctg Leu	agc Ser	agt Ser	gcc Ala 745	cgc Arg	cag Gln	gcc Ala	tgc Cys	ctg Leu 750	gca Ala	cag Gln	agt Ser	ggc Gly	tca Ser 755	2431
gtg Val	cct Pro	cct Pro	gcc Ala	atg Met 760	cag Gln	tgg Trp	ctc Leu	tgc Cys	cac His 765	ccc Pro	gtg Val	ggc	cac His	cgt Arg 770	ttc Phe	2479
ttc Phe	gtg Val	gat <u>.</u> Asp	ggg Gly 775	gac Asp	tgg Trp	tcc Ser	gtg Val	ctc Leu 780	agt Ser	acc Thr	cca Pro	tgg Trp	gag Glu 785	agc Ser	ctg Leu	2527
tac Tyr	agc Ser	ttg Leu 790	gcc Ala	ggg	aac Asn	cca Pro	gtg Val 795	gac Asp	ccc Pro	ctg Leu	gcc Ala	cag Gln 800	Val	act .Thr	cag Gln	2575
cta Leu	ttc Phe 805	Arg	gaa Glu	cat His	ctc Leu	tta Leu 810	gag Glu	cga Arg	gca Ala	ctg Leu	aac Asn 815	tgt Cys	gtg Val	acc Thr	cag Gln	2623
ccc Pro 820	Asn	ccc Pro	agc Ser	cct Pro	ggg Gly 825	tca Ser	gct Ala	gat Asp	GJY	gac Asp 830	Lys	gaa Glu	ttc Phe	tcg Ser	gat Asp 835	2671
					Gln					Cys				gcg Ala 850	Gly	2719
				Ser					Ser					Thr	acc	2767

ggc Gly	gta Val	gac Asp 870	ccg Pro	gtg Val	gcc Ala	aag Lys	tgg Trp 875	tgg Trp	gcc Ala	tct Ser	ctg Leu	aca Thr 880	gct Ala	gtg Val	gtg Val	2815
atc Ile	cac His 885	tgg Trp	ctg Leu	cgg Arg	cgg Arg	gat Asp 890	gag Glu	gag Glu	gcg Ala	gct Ala	gag Glu 895	cgg Arg	ctg Leu	tgc Cys	ccg Pro	2863
ctg Leu 900	gtg Val	gag Glu	cac His	ctg Leu	ccc Pro 905	cgg Arg	gtg Val	ctg Leu	cag Gln	gag Glu 910	tct Ser	gag Glu	aga Arg	ccc Pro	ctg Leu 915	2911
ccc Pro	agg Arg	gca Ala	gct Ala	ctg Leu 920	cac His	tcc Ser	ttc Phe	aag Lys	gct Ala 925	gcc Ala	cgg Arg	gcc Ala	ctg Leu	ctg Leu 930	ggc Gly	2959
											acc Thr					3007
											aca Thr					3055
tcc Ser	att Ile 965	gac Asp	aag Lys	gcc Ala	gtg Val	cag Gln 970	ctg Leu	ttc Phe	ctg Leu	tgt Cys	gac Asp 975	ctg Leu	ctt Leu	ctt Leu	gtg Val	3103
gtg Val 980	cgc Arg	acc Thr	agc Ser	ctg Leu	tgg Trp 985	cgg Arg	cag Gln	cag Gln	cag Gln	ccc Pro 990	ccg Pro	gcc Ala	ccg Pro	gcc Ala	cca Pro 995	3151
gca Ala	gcc Ala	cag Gln	ggc Gly	gcc Ala 100	Ser	agc Ser	agg Arg	ccc Pro	cag Gln 100	Ala	tcc Ser	gcc Ala	ctt Leu	gag Glu 1010	Leu	3199
		Phe		Arg					Leu		cgg Arg			Gln		3247
			Ala					Phe			gag Glu		Thr			3295
		Ala					Thr				cag Gln 105	Leu				3343
agt Ser 106	Leu	agg Arg	cgg Arg	cgg Arg	gca Ala 106	Gly	ccc Pro	ggt Gly	ggc Gly	aaa Lys 107	gga Gly O	ggc Gly	gcg Ala	gtg Val	gcg Ala 1075	3391
gag Glu	ctg Leu	gag Glu	ccg Pro	cgg Arg 108	Pro	acg Thr	cgg Arg	cgg Arg	gag Glu 108	His	gcg Ala	gag Glu	gcc Ala	ttg Leu 109	Leu	3439
ctg Leu	gcc Ala	tcc Ser	tgc Cys 109	Tyr	ctg Leu	ccc Pro	ccc Pro	ggc Gly 110	Phe	ctg Leu	tcg Ser	gcg Ala	ccc Pro 110	Gly	cag Gln	3487
			Met					Ala			ctc Leu		Lys			3535

31/90`

gat cgc cgg ctg ctg cac gac tgt cag cag atg ctc atg cgc ctg ggc Asp Arg Arg Leu Leu His Asp Cys Gln Gln Met Leu Met Arg Leu Gly	3583
1125 1130 1135	
ggt ggg acc act gtc act tcc agc tag acccegtgtc ceeggectca Gly Gly Thr Thr Val Thr Ser Ser 1140 1145	3630
gcacccctgt ctctagccac tttggtcccg tgcagcttct gtcctgcgtc gaagctttga	3690
aggccgaagg cagtgcaaga gactctggcc tccacagttc gacctgcggc tgctgtgtgc	3750
cttcgcggtg gaaggcccga ggggcgcgat cttgacccta agaccggcgg ccatgatggt	3810
gctgacetet ggtggccgat eggggcaetg eaggggeega gecattttgg ggggeeece	3870
teettgetet geaggeacet tagtggettt ttteeteetg tgtacaggga agagaggggt	3930
acatttccct gtgctgacgg aagccaactt ggctttcccg gactgcaagc agggctctgc	3990
cccagaggcc tctctctccg tcgtgggaga gagacgtgta catagtgtag gtcagcgtgc	4050
ttagectect gaeetgagge teetgtgeta etttgeettt tgcaaacttt atttteatag	4110
attgagaagt tttgtacaga gaattaaaaa tgaaattatt tata	4154
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220>	
<223> Antisense Oligonucleotide	
<400> 21 tgtctgcaca gtggtgccag	20
<210> 22 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 22 ctccgagtca ctgccactgc	20
<210> 23 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	

<400> 23

WO 03/102019	32/90	PCT/US03/17638
tgaagcatgt cttcgaaagt	32/90	20
<210> 24 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 24 gtcactgtct tggttgttga	·	20
<210> 25 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	. :	
<400> 25 gggaagtcac tgtcttggtt		. 20
<210> 26 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 26 ggccagggaa gtcactgtct		20
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		•
<400> 27 gagtctgcct tgatgaagtg		. 20
<210> 28 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

WO 03/102019	33/90	PCT/US03/17638
<400> 28 gccttgctgc cagctgcgag		20
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 29 gcagatttat tcagctttgc		20
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. 1	
<223> Antisense Oligonucleotide		
<400> 30 agacagcaga tttattcagc		20
<210> 31 <211> 20 <212> DNA <213> Artificial Sequence "		
<220>		
<223> Antisense Oligonucleotide	•	
<400> 31 gcgcaagaca gcagatttat		20
<210> 32 <211> 20 <212> DNA <213> Artificial Sequence	·.	
<220>		
<223> Antisense Oligonucleotide		
<400> 32 gccttgcgca agacagcaga		20
<210> 33 , <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

WO 03/102019	34/90	PCT/US03/17638
<400> 33 cgatggcctt gcgcaagaca		20
<210> 34 <211> 20 <212> DNA <213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide		
<400> 34 gtagtcgatg gccttgcgca		20
<210> 35 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. :	
<223> Antisense Oligonucleotide	•	
<400> 35 aggcgggagc ggtccagcat	·	20
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide <400> 36 ggcagagcca_ctgcatggca		20
<210> 37 <211> 20 <212> DNA . <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 37 gaggcccacc acttggccac		20
<pre> <210> 38 <211> 20 <212> DNA <213> Artificial Sequence</pre>		
<220>		

WO 03/102019	35/90	PCT/US03/17638
<223> Antisense Oligonucleotide		
<400> 38 gccagtggat caccacagct		20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		- ·
<400> 39 ccgggcagcc ttgaaggagt		20
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. :	
<223> Antisense Oligonucleotide		
<400> 40 actggccttc tcacagatgg		20
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 41 gcaggtaccc actggccttc		20
<210> 42 <211> 20 <212> DNA <213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide		
<400> 42 ctatgaaaat aaagtttgca		20
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		

<210> 48 <211> 20 <212> DNA

<213> Artificial Sequence

WO 03/102019	37/90	PCT/US03/17638
<220>		
<223> Antisense Oligonucleotide		
<400> 48 ccctgtggaa ggagagagct		20
<210> 49 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		- •
<223> Antisense Oligonucleotide		
<400> 49 gggtctacgc ctgcagaaga		20
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence	.:	
<220>		
<223> Antisense Oligonucleotide		
<400> 50 gggcactcac cctccgcatg		20
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 51 gtccaggccg ttggccctac		20
<210> 52 <211> 20 <212> DNA <213> Artificial Sequence	•	
<220>		
<223> Antisense Oligonucleotide		
<400> 52 agtgcaatcc atggctccgc		20
<210> 53 <211> 20 <212> DNA <213> Artificial Sequence		

<220>		
<223> Antisense Oligonucleotide		
<400> 53 gataagctga agcatgtctt		20
<210> 54 <211> 20		
<212> DNA <213> Artificial Sequence		
<220>		-
<223> Antisense Oligonucleotide		
<400> 54 gtcctgccct ggcctcagag		20
<210> 55		
<211> 20 <212> DNA	.:	
<213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide		
<400> 55 tggctcgtcc atggcgcagc		20
tygotogico atygogoayo		20
<210> 56		
<211> 20 <212> DNA		
<213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide		
<400> 56		20
cgcctcgctg aagggtggct		
<210> 57		
<211> 20 <212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 57		20
ctgaagcatg tcttcgatgt		20
<210> 58		

<210> 58 <211> 20 <212> DNA

WO 03/102019	39/90	PCT/US03/17638
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 58 ctcaatgtgg caggaggtgg	·	20
<210> 59 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 59 tgggaagctc tgtggcagga		20
<210> 60 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 60 ccagtggcag gccaggcagc		20
<210> 61 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	· ·	
<223> Antisense Oligonucleotide		
<400> 61 agggtcggca aaggccctgt		20
<210> 62 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 62 tgcgagccgg ttgataggca		20
<210> 63 <211> 20		

WO 03/102019	40/90	PCT/US03/17638
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 63 gctgtgcgct tctctccacg	•	20
<210> 64 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide <400> 64 tgcccaccac cagatccttg		20
<210> 65 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 65 cgcagactta ggttctcctg		20
<210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220>		
<223> Antisense Oligonucleotide		
<400> 66 tgcttttgtg gacagcagtg		20
<210> 67 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 67 ctgccacagg ccgacaccag		20

<210> 68

WO 03/102019	41/00	PCT/US03/17638
	41/90	
<211> 20 <212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	·	
<400> 68 cagectgett gegatgeete		20
<210> 69 <211> 20		
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 69 ccaggtccag gtcagcctgc		20
ccaggecoag geoagootgo	. :	
<210> 70	·	
<211> 20		
<212> DNA <213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide		
<400> 70 gcttatggta gaccagggct		20
gottatggta gaccaggget		
<210> 71	•	
Z211× 20		
<211> 20 <212> DNA <213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide		
<400> 71		20 '
gtgtgcttcc ccatggtgtg		
<210> 72		
<211> 20		
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
•		
<400> 72 cgccacatag atctcggcca	,	20
- 3 - 2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3		·

		• *
WO 03/102019	42/90	PCT/US03/17638
<210> 73	42/90	
<211> 20		
<211> 20 <212> DNA		
<213> Artificial Sequence		
_		
<220>		
<223> Antisense Oligonucleotide	•	
<400> 73		
atgcagccgc cacatagatc		20
4010) 74		
<210> 74		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		÷
<223> Antisense Oligonucleotide		
<400> 74	•	
ctcgctctaa gagatgttcc	. :	20
<210> 75		•
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 75		
atcagctgac ccagggctgg		20
		20
<210> 76		
<211> 20	• • •	
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 76		
ggcatccgag aattccttgt		20
<210> 77		
<211> 20		
<212> DNA		·
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 77		_
tacgccggtg gtggtggcca		20

÷

3. 2.**4**

aggcgcatga gcatctgctg

<210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 78 20 gctggaccag actctgcctt <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 79 20 agctgctggc tggtgtggta <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 80 . 20 cgcagctcaa gggcggaagc <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 81 20 tctgctgaca gtcgtgcagc <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 82

20

<210> 83 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	•
<223> Antisense Oligonucleotide	
<400> 83 ggaagtgaca gtggtcccac	. 20
<210> 84 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 84 gggtctagct ggaagtgaca	20
<210> 85 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 85 cacgggacca aagtggctag	20
w w	
<210> 86 <211> 20	
<212> DNA <213> Artificial Sequence	
<220>	4
<223> Antisense Oligonucleotide	
<400> 86 caggacagaa gctgcacggg	20
<210> 87 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 87	

WO 03/102019	45/90		PCT/US03/17638
ggcacacagc agccgcaggt		-	. 20
<210> 88 <211> 20 <212> DNA <213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleotide			
<400> 88 cttccaccgc gaaggcacac			20
<210> 89 <211> 20 <212> DNA <213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleotide		.:	
<400> 89 atggccgccg gtcttagggt		•	20
<210> 90 <211> 20 <212> DNA <213> Artificial Sequence			
<220>			•
<223> Antisense Oligonucleotide			
<400> 90 cagcaccatc atggccgccg			20
<210> 91 <211> 20 <212> DNA <213> Artificial Sequence	·	·	
<220>			
<223> Antisense Oligonucleotide			
<400> 91 ctaaggtgcc tgcagagcaa			20
<210> 92 <211> 20 <212> DNA <213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleotide			

WO 03/102019	46/90	PCT/US03/17638
<400> 92 acagggaaat gtacccctct		20
<210> 93 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 93 tggcttccgt cagcacaggg	•	20
<210> 94 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. =	
<223> Antisense Oligonucleotide		
<400> 94 tccgggaaag ccaagttggc		20
<210> 95 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 95 tcaggagget aagcacgetg		20
<210> 96 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 96 agtttgcaaa aggcaaagta		20
<210> 97 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		•

;

÷

47/90[°]

<400> 97 20 ttaattctct gtacaaaact <210> 98 <211> 616 <212> DNA <213> M. musculus <220> <400> 98 ggatccagaa ctggatcatc agccccccc tccttgaaac aagtgttctc atcctggggc 60 gctctqctag ctagatgacc ctgcaccacc aactgccact atctaaaggc agctattggc 120 cttcctcaqa ctqtaqqcaa atcttqctqc tqccattcqa tqcqaaqqqc caqgaqtqgq 180 taaactgagg ctaaaatggt ccaggcaagt tctgggtgtg tgcgaacgaa ccagcggtgg 240 300 gaacacagag cttccgggat caaagccaga cgccgtccgg attccggacc caggctcttt tcggggatgg ttgcctgtgc ggcaggggtt gggacgacag tgaccgccag taaccccagc 360 gcgcgctggc gcagacgcgg ttaaaggcgg acgccgcta gtaaccccgg ccccattcag 420 agcaccggga gaaacccgag ctgccgccgt cgggggtggg cggggcccta atggggcgcg 480 540 gcgcggctgc tgattggcca tgtgcgctca cccgaggggc ggggcacgga ggcgatcggc 600 gggctttaaa gcctcgcggg gcctgacagg tgaaatcggc gcggaagctg tcggggtagc 616 gtctgcacgc cctagg <210> 99 <211> 491 <212> DNA <213> M. musculus ----<220> <221> unsure <222> 352 <223> unknown <221> unsure <222> 415 <223> unknown <223> <400> 99 aaaatcggcg cggaagctgt cggggtagcg tctgcacgcc ctaggggcgg ggcgcggacc 60 acggagccat ggattgcaca tttgaagaca tgctccagct catcaacaac caagacagtg 120 acttcccggg cctgtttgac gcccctatg ctgggggtga gacaggggac acaggcccca 180 gcagcccagg tgccaactet cetgagaget tetettetge ttetetggec teetetetgg 240

aagcetteet gggaggaeee aaggtgaeae etgeaeeett gteeeeteea eeateggeae 3	00
ccgctgcttt aaagatgtac ccgtccgtgt cccccttttc ccctgggcct gngatcaaag 3	60
aggagecagt gecaeteace atectacage etgeagegee acageegtea eeggngaeee 4	20
tectgeetee gagetteece geaceaceeg tacageteag eeetgegeee gtgetgggtt 4	80
actcgagcct g	91
<210> 100	

<211> 8128

<212> DNA

<213> M. musculus

<220>

<221> unsure

<222> 3861

<223> unknown

<221> unsure

<222> 3862

<223> unknown

<221> unsure

<222> 3863

<223> unknown

<221> unsure

<222> 3864

<223> unknown

<221> unsure

<222> 3865

<223> unknown

<221> unsure

<222> 3866 ...

<223> unknown

<221> unsure

<222> 3867

<223> unknown

<221> unsure

<222> 3868

<223> unknown

<221> unsure

<222> 3869

<223> unknown

<221> unsure

<222> 3870

<223> unknown

<221> unsure

<222> 3871

<223> unknown
<221> unsure

49/90 '

PCT/US03/17638

<222>	3872
<223>	unknown

<221> unsure

<222> 3873

<223> unknown

<221> unsure

<222> 3874

<223> unknown

<221> unsure

<222> 3875

<223> unknown

<221> unsure

<222> 3876

<223> unknown

<221> unsure

<222> 3877

<223> unknown

<221> unsure

<222> 3878

<223> unknown

<221> unsure

<222> 3879

<223> unknown

<221> unsure

<222> 3880

<223> unknown

<221> unsure

<222> 3881.

<223> unknown

<221> unsure

<222> 3882 <223> unknown

<221> unsure

<222> 3883

<223> unknown

<221> unsure

<222> 3884

<223> unknown

<221> unsure

<222> 3885

<223> unknown

<221> unsure

<222> 3886

<223> unknown

<221> unsure

<222> 3887

<223> unknown

PCT/US03/17638 WO 03/102019 50/90

. .:

- <222> 3888
- <223> unknown
- <221> unsure
- <222> 3889
- <223> unknown
- <221> unsure
- <222> 3890
- <223> unknown
- <221> unsure
- <222> 3891
- <223> unknown
- <221> unsure
- <222> 3892
- <223> unknown
- <221> unsure
- <222> 3893
- <223> unknown
- <221> unsure
- <222> 3894
- <223> unknown
- <221> unsure
- <222> 3895
- <223> unknown
- <221> unsure
- <222> 3896
- <223> unknown
- <221> unsure
- <222> 3897
- <223> unknown
- <221> unsure <222> 3898
- <223> unknown-
- <221> unsure
- <222> 3899
- <223> unknown
- <221> unsure
- <222> 3900
- <223> unknown
- <221> unsure
- <222> 3901
- <223> unknown
- <221> unsure
- <222> 3902
- <223> unknown
- <221> unsure
- <222> 3903
- <223> unknown
- <221> unsure

PCT/US03/17638 WO 03/102019

<222> 3904

<223> unknown

<221> unsure

<222> 3905

<223> unknown

<221> unsure

<222> 3906

<223> unknown

<221> unsure

<222> 3907

<223> unknown

<221> unsure

<222> 3908

<223> unknown

<221> unsure

<222> 3909

<223> unknown

<221> unsure

<222> 3910

<223> unknown

<221> unsure

<222> 3911

<223> unknown

<221> unsure

<222> 3912

<223> unknown

<221> unsure

<222> 3913

<223> unknown

<221> unsure <222> 3914

<223> unknown

<221> unsure

<222> 3915

<223> unknown

<221> unsure

<222> 3916

<223> unknown

<221> unsure

<222> 3917

<223> unknown

<221> unsure

<222> 3918

<223> unknown

<221> unsure

<222> 3919

<223> unknown

.

PCT/US03/17638

<222> 3920

<223> unknown

<221> unsure

<222> 3921

<223> unknown

<221> unsure

<222> 3922

<223> unknown

<221> unsure

<222> 3923

<223> unknown

<221> unsure

<222> 3924

<223> unknown

<221> unsure

<222> 3925

<223> unknown

<221> unsure

<222> 3926

<223> unknown

<221> unsure

<222> 3927

<223> unknown

<221> unsure

<222> 3928

<223> unknown

<221> unsure

<222> 3929

<223> unknown

<221> unsure

<222> 3930

<223> unknown

<221> unsure

<222> 3931

<223> unknown

<221> unsure

<222> 3932

<223> unknown

<221> unsure

<222> 3933

<223> unknown

<221> unsure

<222> 3934

<223> unknown

<221> unsure

<222> 3935

<223> unknown

WO 03/102019 PCT/US03/17638

<222> 3936

<223> unknown

<221> unsure

<222> 3937

<223> unknown

<221> unsure

<222> 3938

<223> unknown

<221> unsure

<222> 3939

<223> unknown

<221> unsure

<222> 3940

<223> unknown

<221> unsure

<222> 3941

<223> unknown

<221> unsure

<222> 3942

<223> unknown

<221> unsure

<222> 3943

<223> unknown

<221> unsure

<222> 3944

<223> unknown

<221> unsure

<222> 3945

<223> unknown

<221> unsure

<222> 3946

<223> unknown

<221> unsure

<222> 3947

<223> unknown

<221> unsure

<222> 3948

<223> unknown

<221> unsure

<222> 3949

<223> unknown

<221> unsure

<222> 3950

<223> unknown

<221> unsure

<222> 3951

<223> unknown

WO 03/102019 PCT/US03/17638 54/90

<222	> 3952
<223>	unknown
	unsure
	> 3953
<223	> unknown
/221°	> unsure
	> 3954
<223	> unknown
<221	> unsure
<222	> 3955
<223	> unknown
1223	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
<221	> unsure > 3956
<222	> 3956
	> unknown
<221	> unsure
<222	> 3957
<223	> unknown
	> unsure
	> 3958
<223	> unknown
/221	> unsure
	> 3959
	> 3939 > unknown
<223	> unknown
<221	> unsure

<222> 3960 <223> unknown

<223>

<400> 100 60 cagctcacaa attgactaca aaggcagttt ggccatcaaa caaggaatgt ccttgtgcag cccctcagac ctgagattat aagcatcagc tgtcataccc ggttccccca ccccacctcc 120 ccctgctttt taaatttatt ttttgcttct ttatttttct atacctggct ttttgtgggg 180 240 gttaaactcg ggtccctccc tttgcctgca cagcaagcac ccactaatgg agctgtcttc ccagcccctc tgcataagtg gggcttgctg tgtaagtggt tgaggcccag atgactgtgg 300 gccttttcgg aggcctgcca cagcaccctg tgctgtctct ctgcatatac gaaggcgata 360 aaggctgctt ggcccagggc tcacctcagg ccgtgactga ctatatagga gcagactgta 420 480 taggcaccgt ggatcagcag aactgagcca gggtctcaag tgcttcccga ggccactgag ggctcttgat ccttctctgg accttggtgt cctcactggg aagaggtcct gagcacaagc 540 600 gtgactgttt catcagcctg cgtgtagcct atccccttcc aggaagaacc acattctttt 660 aatgccctgg agcagggcct ttgagtgcac aaaaggcagt ctatacccct gtgccctggc 720 acccatacga cagccaagga ccagagtgcc tgccagggac ttctgaggag taagggcctg

			55/90	_		
gggagcagca	gggcaggctg	catgcctgaa	aaaacagtga	gccatagccc	agtcctctaa	780
cctgcaagtc	cccaagcagg	gggcactgtc	ctgtgtcctc	ggtgggaggt	ggtgccactt	840
ctctatgcag	cctgctcccc	ttctctctcc	tgcgctcctt	caggggatgg	gataggttgg	900
aaatcctgta	ggctcactgg	gatcccagca	taacctgtcc.	ttacccgagc	cactgtttct	960
gcctctgccc	tcacacctag	cttgtacggt	ttccgtcttt	ggctttgcct	tttcttctgg	1020
ccagagagtt	ttccttccct	tgtagcccta	tttattcaga	ctacactcaa	gtgtcacgtc	1080
cccaggcagc	cttgataccc	acctgtcttt	gcttgcccag	cctctcacct	ctgccactcg .	1140
tctcacatcc	ctccccaac	cccaccccga	gcatgtgcgc	agctggttcc	ttggtggagt	1200
ggaagtatcc	accaggggct	ggatctctcg	tgttgtcccc	agcaagtggc	tttcacctag	1260
gatggtcctt	tgattctgtt	ggggagggc	agccgaggct	tcaggtttcc	ggttgaagcc	1320
agataggatc	agggcttgag	aagggagtat	aggaggcttg	tgcccgggtc	cccttttgtc	1380
cttttgcttc	aaatcacata	tgtgacctgg	aagtctgtgc	acggttgtga	gaagtcagta	1440
ttcagcatgc	cctgatggct	cgtagcttgg	ttactgtggt	gcccctttcc	agactgcagg	1500
acctactgag	ccctagtcct	tcctagggtg	aggcaaggaa	cactctcacg	ttaggtgtgt	1560
agcgtgttag	gtgtgtagcg	tgctggctga	·tgtctcccct	cagttcttgg	gtggccctac	1620
tcattccctt	taaaatgtta	aaaacctacc	aggtgcccag	gactgactca	gtcctgcagc	1680
tcagggtcta	gtttgcaggt	ctagccaatt	ccagcggctg	ttgagaggaa	acacctttgc	1740
tgaaaccttt	ttgagtgggt	agattcttta	ttaacttgtt	ctggaatcgc	caccccaggg	1800
aggggtagag	tctggacctg	ggggctctta	gaggcatccg	gctcccgatg	catagctggt	1860
ggggaaaaga	aaagaaaggc	cgcagcacac	agctgcagat	ccttggcaag	gcttattctc	1920
aaggagcttg	caaagctggc	tttaaggtcc	cgtttcctct	caagacttcc	ccctggccac	1980
cagcatctac	agacatgagc	tagcgacccg	gctcagaagg	tggtgagggg	ggaggccagg	2040
cagcatggac	acacattctg	ctagttgtca	ggcctgccc	: cggtccagtg	cttgactaag	2100
gcttttgtac	tcacaagcgt	gcccacatgc	ttgggtcaca	cttgtccagt	gtccagatac	2160
ggacaggggt	ggggagacgt	gaccccacct	gtacggagtt	tcgatgagcc	teceegeete	2220
· tgcaagtctt	tctgtattcg	ggactcagat	gtcagaagga	a gcagagtagg	gtcaacactg	2280
ggaagcctca	tgcctggact	ccageceee	cccccccc	cgtgttgggg	tcagggctct	2340
tecctgeett	cagttgggtg	aggtcagagg	ttttcccago	g agctgtgcat	ggtttgggga	2400
ctctcgagca	cttgcaggct	ggacagaacg	gtgtcataaa	a aagatgtttt	ctttggaatg	2460
aacctcctat	gaggatgtga	aaagacctag	aaaggggato	aggggaatgt	cagacacacg	2520
tgtctgtttc	ccagacaaga	ctctgaaaag	agagatgggd	c cacaagtccc	tgacacacat	2580
aaggtgacta	cttggtcgct	ggacccctca	cagactgtgt	gagtccctgc	g tctgccaact	2640

			56/90	•		
				gttgctggcc		2700
ggtgatggta	atggcgggag	tatgtgtgtg	cacatgcttg	tgtgtgcaca	ggtatgaaag	2760
ctttcaattt	gccagcaagg	gacagggaca	gatttggcat	acccttaata	tccactgcct	2820
ttcccttctg	tcccagagac	tggttcctgt	gcaggccttt.	gcagagtgct	ataagagaat	2880
cgagtaaggc	ttcacttgtt	gactgctggg	ggctgtgata	cctggaggga	agacactgac	2940
ccagcctagg	ggcatcagag	ctgagagcag	gatatcctgg	acgcgtgatt	tgaggaagga	3000
tttccctagc	tcactcctga	aggcagtttc	atgagggatc	cagaactgga	tcatcagccc .	3,060
cccctcctt	gaaacaagtg	ttctcatcct	ggggcgctct	gctagctaga	tgaccctgca	3120
ccaccaactg	ccactatcta	aaggcaacta	ttggccttcc	tcagactgta	ggcaaatctt	3180
gctgctgcca	ttcgatgcga	agggccagga	gtgggtaaac	tgaggctaaa	atggtccagg	3240
caagttctgg	gtgtgtgcga	acgaaccagc	ggtgggaaca	cagagettee	gggatcaaag	3300
ccagacgccg	tccggattcc	ggacccaggc	tcttttcggg	gatggttgcc	tgtgcggcag	3360
gggttgggac	gacagtgacc	gccagtaacc	ccagcgcgcg	ctggcgcaga	cgcggttaaa	3420
ggcggacgcc	cgctagtaac	cccggcccca	ttcagagcac	cgggagaaac	ccgagctgcc	3480
gccgtcgggg	gtgggcgggg	ccctaatggg	gcgcggcgcg	gctgctgatt	ggccatgtgc	3540
gctcacccga	ggggcggggc	acggaggcga	tcggcgggct	ttaaagcctc	gcggggcctg	3600
acaggtgaaa	tcggcgcgga	agctgtcggg	gtagcgtctg	cacgccctag	gggcggggcg	3660
cggaccacgg	agccatggat	tgcacatttg	aaggtacttt	ggggaggacc	ctgcactcta	3720
ttactttgcc	agggtctctg	cagcggactg	cagtacggtg	ttctaacaga	gaatgcagga	3780
cggcccttcc	ccaccttggg	ctggaaattg	gtgggcctct	ttatcctgct	taaggaccga	3840
caccttgcaa	tttgcaactt	nnnnnnnnn	nnnnnnnnn	nnnnnnnnnn	nnnnnnnnn	3900
nnnnnnnnn	nnnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	3960
gagcctgcct	tcaggcttct	caggtgagcg	agtgatggaa	gaagagtggc	cgctgtgctc	4020
ttacagagga	attcccaggo	ttcagaagtt	aggtggtcat	cctgcgacct	gagatgccct	4080
ttggttctgg	gcccagtgca	tecceccaac	cccagttgt	gcagctggaa	ggtgacatgt	4140
gcagggtctg	tcctgctatg	aagtaatggg	gatagttato	, tgaggccagt	cggggtaaag	4200
gtcggcaagg	cagcctgtgc	cagcaacctt	aaactctgto	tctgcaggga	cccttccagg	4260
aaacactcag	cagccaccat	ctagectgee	gctggcccct	gcaccaggag	tcttgcccac	4320
ccctgccctg	cacacccagg	, tccaaagctt	ggcctccca	g cagccgctgc	cagcctcagc	4380
agcccctaga	acaaacacto	g tgacctcaca	a ggtccagcag	g gtcccagtga	gtgggtctga	4440
ccaggaaggt	agggggtgg	g gacgcctggc	ttggatgct	g ctcgcttaca	gcttggcccc	4500
tcccatccag	gttgtactgo	e agccacactt	catcaaggc	a gactcactgo	: tgctgacagc	4560

57/90 tgtgaagaca gatgcaggag ccaccgtgaa gactgcaggc atcagcaccc tggctcctgg 4620 cacagccgtg caggcaggtc ccctgcaggt agatggctca ggcacaaggg agactatggg 4680 ggggggggga gggttggctg cgcatgtgtc tgtccacctg gtgagatgca tctgacccca 4740 cagaccctgg tgagtggagg gaccatcttg gccacagtac ctttggttgt ggacacagac 4800 aaactgccca tccaccgact cgcagctggc agcaaggccc taggctcagc tcagagccgt 4860 ggtgagaagc gcacagccca caatgccatt gagaagcgct accggtcttc tatcaatgac 4920 aagattgtgg agctcaaaga cctggtggtg ggcactgaag caaaggtacg gccaaaggcc 4980 Egcgagactc aggtcagggt gaccagggaa gaaatggggc acatcagcca gccggggatg 5040 ggattaggtc agtcctcgtc acttagtcat atgcatcaac ttgtctgggt ctaggcagtc 5100 ccgtttgcgg agttaggtct tatcaagggc agcctggata aagaaagctg gtctatgcat 5160 tgaggggggg tggtgatgaa gcacagaaat cctgtcctgg aggaactgac tccctagggg 5220 agtagtggga attgcagcgg ctggctccca tgttcgggga agaaaccagg accagtgaaa 5280 gttgtggttg tgaactgggt ggtcaaggaa ggtctcaccg tagagagctg agggtgtagg 5340 gaatgtgagg tggagacagc aggggccgca gctgggagac accgttgtga gtattcacag 5400 ggtgactttt atctctgccc tgtggagtgg gtactgtcag gagacagcag cataggagag 5460 ttgtagtcag aaggaaccgt cccgtccaga ggccccgagg cagctgtgac gcagagcggc 5520 tettacetge tetegtacet gtggtcaggt ceaettgget ggetgageee tetecetete 5580 ctcacagctg aataaatctg ctgtcttgcg caaggccatc gactacatcc gcttcttgca 5640 5700 gcacagcaac cagaagctca agcaggagaa cctgacccta cgaagtgcac acaaaagcag tgagtcccag cccctcccc ccgcccccc cccctgctg tcctggccac tatgccgttg 5760 ctgtgaagac actatgacca tggtcaggtt tattaaaggc ttacagtttc aggggtgaac 5820 ccatgaccac agtggtggcg gcaggcagac aggcttggcg cttggagcag tagccgagag 5880 ctcaaatatt gagacagcca caaggccaag agaaagagct agctgagaat agtgtggggt 5940 tttgaaattt caaagcctac cacagtgaca cccctcctcc agcaaggcca cacctcccaa 6000 tectteccaa acaggaatgg gaaccaageg gteaaaeggg accetetgaa agecattete 6060 6120 atteagatty ccaecetgat getgeettet ctatecetge ccaacettgt etetggetet caccctacct tggcccctgt tttgagcata acagaaccat ccaagtcctg gcgcttggcg 6180 6240 gccaggcctc tctcaccagc cctgttcttt ctgcctacag aatcactgaa ggacctggtg tcagcttgtg gcagtggagg aggcacagat gtgtctatgg agggcatgaa acccgaagtg 6300 gtggagacgc ttacccctcc accctcagac gccggctcac cctcccagag tagccccttg 6360 tcttttggca gcagagctag cagcagtggt ggtagtgact ctgagcccga cagtccagcc 6420 tttgaggata gccaggttgg actctgcaat atggcccctt ccctctccca gcagccctgc 6480

58/90	0
	~

				58/90			
agtctcc	tcc	accttttagc	ctcgcctttg	gggctagctg	agctctatgc	ccttacctcc	6540
cttgctc	cct	gccaggtcaa	agcccagcgg	ctgccttcac	acagccgagg	catgctggac	6600
cgctccc	gcc	tggccctgtg	tgtactggcc	tttctgtgtc	tgacctgcaa	tcctttggcc	6660
tcgcttt	tcg	gctggggcat	tctcactccc	tctgatgcta _.	cgggtacaca	ccgtagttct	6720
gggcgca	gca	tgctggaggc	agagagcaga	ggtgagtcag	gtcagcccag	gtgttgtcgg	6780
cagagac	ctt	tgggactttg	gatttccgga	gaactgagtt	ctcagacctt	ttctttgcct	6840
gtagatg	gct	ctaattggac	ccagtggttg	ctgccacccc	tagtctggct	ggccaatgga	6900
ctactag	tgt	tggcctgctt	ggctcttctc	tttgtctatg	gggaacctgt	gactaggcca	6960
cactctg	gcc	cggctgtaca	cttctggaga	catcgcaaac	aagctgacct	ggatttggcc	7020
cgggtaa	ggg	gctgaccctg	aggaggcggg	gtggggcccc	gggcctggaa	ggtgctgggt	7080
gcctctg	ctc	acttcatttt	ctccagtctg	tctcatcccc	cgccttcaga	gctcctgact	7140
ctagggg	ccc	agacaagggg	gtaccctgct	gccatccctg	ctgccatttt	tcttactgag	7200
aatcttt	tct	ctagggagat	ttcccccagg	ctgctcaaca	gctgtggctg	gccctgcaag	7260
cgctggg	gccg	gcccctgccc	acctcaaacc	tggatctggc	ctgcagtctg	ctttggaacc	7320
tcatccg	gcca	cctgctccag	cgtctctggg	tgggccgctg	gctggcaggc	caggccgggg	7380
gcctgct	gag	ggaccgtggg	ctgaggaagg	atgcccgtgc	cagtgcccgg	gatgcggctg	7440
ttgtcta	acca	taagctgcac	cagctgcatg	ccatgggtat	ggctggctgg	gagctgggct	7500
ccgaggg	gtcc	ccaccacacc	gtcacctcct	gtcctcatgc	ctcacccact	ttgcaggcaa	7560
gtacaca	agga	ggacatcttg	ctgcttctaa	cctggcacta	agtgccctca	acctggctga	7620
gtgcgca	agga	gatgctatct	ccatggcaac	actggcagag	atctatgtgg	cageggeeet	7680
gagggto	caaa	accagcctcc	caagagccct	gcacttcttg	acagtgagta	ggctgatggg	7740
gacaggg	gctg	ggggctcctc	tttacaactc	tcaacctgtc	acttccaggg	caaggggcta	7800
aacagga	atgt	ggcagtggtt	agcaggtggg	ctgtaggccc	tcctgggatc	caactgggag	7860
ccagtgt	tgac	agttctgttc	cttccctaca	gcgtttcttc	ctgagcagcg	cccgccaggc	7920
ctgccta	agca	cagagcggct	cggtgcctct	tgccatgcag	tggctctgcc	accctgtagg	7980
tcaccgt	tttc	tttgtggacg	gggactgggc	cgtgcacggt	gccccccgg	agagcctgta	8040
cagcgt	ggct	gggaacccag	gtgctttctc	gttctgttct	tacccctgcc	tcatccctgt	8100
ccctate	gtca	cattgcactg	tcccctct				8128

<210> 101 <211> 20 <212> DNA

<213> Artificial Sequence

WO 03/102019	59/90	PCT/US03/17638
<223> Antisense Oligonucleotide		
<400> 101 tggagcatgt cttcaaatgt		20
<210> 102 <211> 20 <212> DNA <213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide	•	
<400> 102 tgtgcaatcc atggctccgt		20
<210> 103 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	.:	
<223> Antisense Oligonucleotide		
<400> 103 aagagaagct ctcaggagag		20
<210> 104 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 104 ccttgggtcc tcccaggaag		20
<210> 105 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide		
<400> 105 ggacaagggt gcaggtgtca		20
<210> 106 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		

<213> Artificial Sequence

WO 03/102019	61/90	PCT/US03/17638
<220>		
<223> Antisense Oligonucleotide		
<400> 111 ccatagacac atctgtgcct		20
<210> 112 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		• •
<223> Antisense Oligonucleotide		
<400> 112 gctcagagtc actgccacca		20
<210> 113 <211> 20 <212> DNA <213> Artificial Sequence	.:	
<220>		
<223> Antisense Oligonucleotide		
<400> 113 gggctttgac ctggctatcc		20
<210> 114 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antis <u>e</u> nse Oligonucleotide		
<400> 114 ttagagccat ctctgctctc		20
<210> 115 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 115 gcagcaacca ctgggtccaa		20
<210> 116 <211> 20 <212> DNA <213> Artificial Sequence		

<400> 116
agtccattgg ccagccagac 20

<210> 117
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide

<400> 117
ccaagcaggc caacactagt 20

<210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220>

<223> Antisense Oligonucleotide

<400> 118

tgcgatgtct ccagaagtgt 20

<210> 119
<211> 20
<212> DNA
<213> Artificial Sequence

<223> Antisense Oligonucleotide
<400> 119

gccagatcca ggtttgaggt 20

<210> 120 <211> 20 <212> DNA <213> Artificial Sequence <220>

<223> Antisense Oligonucleotide

<400> 120
tggcctgcca gccagcggcc 20

<210> 121 .

<211> 20 <212> DNA

WO 03/102019	63/90	PCT/US03/17638
<213> Artificial Sequence	03/70	
<220>		
<223> Antisense Oligonucleotide		
<400> 121 gtgtacttgc ccatggcatg		20
<210> 122 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 122 agatctctgc cagtgttgcc		20
<210> 123 <211> 20 <212> DNA <213> Artificial Sequence	.:	
<220>		
<223> Antisense Oligonucleotide		
<400> 123 gacctacagg gtggcagagc		20
<210> 124 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 124 ctgggttccc agccacgctg	·.	20
<210> 125 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 125 ggcatctgag aactccctgt		20
<210> 126 <211> 20		

WO 03/102019	64/90	PCT/US03/17638
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 126 ccacttggcc actgggtctg	·	20
<210> 127 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 127 agccttgaag gagtacagag		20
<210> 128 <211> 20 <212> DNA <213> Artificial Sequence	.:	
<220>		
<223> Antisense Oligonucleotide		
<400> 128 cacctttctg tggtccagca		20
<210> 129 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide		
<400> 129 atggccaggc tggctgggct		20
<210> 130 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 130 tcacacagga gcagctgcat		20

<210> 131

WO 03/102019	65/90	PCT/US03/17638
<211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 131 caagaagtag atcacacagg		20
<210> 132 <211> 20 <212> DNA <213> Artificial Sequence		- •
<220>		
<223> Antisense Oligonucleotide		
<400> 132 cattgctggt accgtgagct	. :	20
<210> 133 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 133 ctccagagca gaggcctggg		20
<210> 134 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide		
<400> 134 aaccacgcag ctccagagca		20
<210> 135 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide		
<400> 135 tcatgttgga aaccacgcag		20

WO 03/102019	66/90	PCT/US03/17638
<210> 136 <211> 20 <212> DNA <213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide		
<400> 136 gctgctcagg tcatgttgga		20
<210> 137 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 137 gctgtggcct catgtaggaa	.:	20
<210> 138 <211> 20 <212> DNA <213> Artificial Sequence		•
<220>		
<223> Antisense Oligonucleotide		
<400> 138 catcagccga gctgtggcct	·	20
<210> 139 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 139 ccgggcagga cttgctcctg		20
<210> 140 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 140 tttgccactg gaacctgccc		20

67/90	
<210> 141 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 141 gtgtgctccc gccatgtggg	20
<210> 142 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 142 caggagcatc tgctggcagt	20
<210> 143 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 143 gggtctagct ggaagtgacg	20
<210> 144 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 144 tetgecacta gaggteggea	20
<210> 145 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	,
<223> Antisense Oligonucleotide	
<400> 145 gcctacagag caagagggtg	20

<210> 146 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 146 aaaatttctc aacctatgaa	20
<210> 147 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 147 tgagaacact tgtttcaagg	20
<210> 148 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 148	20
gccaatagct gcctttagat	
<210> 149 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 149 gtgttcccac cgctggttcg	20
<210> 150 <211> 20 <212> DNA <213> Artificial Sequence	·
<220>	
<223> Antisense Oligonucleotide	
<400> 150	

WO 03/102019	69/90	PCT/US03/17638
ttactggcgg tcactgtcgt		20
<210> 151 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 151 ttggccgtac ctttgcttca		20
<210> 152 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	.:	
<400> 152 ccacactatt ctcagctagc		20
<210> 153 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 153 agaaggcagc atcagggtgg		20
<210> 154 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 154 ttcagtgatt ctgtaggcag		20
<210> 155 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

WO 03/102019	70/90	PCT/US03/17638
<400> 155 agagtccaac ctggctatcc	·	20
<210> 156 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		•
<223> Antisense Oligonucleotide		
<400> 156 cttacccggg ccaaatccag		20
<210> 157 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. :	
<223> Antisense Oligonucleotide		
<400> 157 gggatgagac agactggaga		20
<210> 158 <211> 20 <212> DNA <213> Artificial Sequence		·
<220>		
<223> Antisense Oligonucleotide	•	
<400> 158 gtgtacttgc ctgcaaagtg		20
<210> 159 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 159 ctggcaccac tgtgcagaca		20
<210> 160 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 160 gcagtggcag tgactcggag		20

WO 03/102019	PCT/US03/17638

71/90 <210> 161 <211> 20 <212> DNA <213> H. sapiens <220> <400> 161 20 tcaacaacca agacagtgac <210> 162 <211> 20 <212> DNA <213> H. sapiens <220> <400> 162 20 aaccaagaca gtgacttccc <210> 163 <211> 20 <212> DNA <213> H. sapiens <220> <400> 163 20 agacagtgac ttccctggcc <210> 164 <211> 20 <212> DNA . <213> H. sapiens <220> <400> 164· 20 cacttcatca aggcagactc <210> 165 <211> 20 <212> DNA <213> H. sapiens <220> <400> 165 20 ctcgcagctg gcagcaaggc

<210> 166 <211> 20 <212> DNA <213> H. sapiens <220>

<400> 166

WO 03/102019	73/00	PCT/US03/17638
gcaaagctga ataaatctgc	72/90	20
3		
<210> 167 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 167 gctgaataaa tctgctgtct		20
<210> 168 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 168 ataaatctgc tgtcttgcgc	. :	20
<210> 169 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 169 tctgctgtct tgcgcaaggc		20
<210> 170 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 170 tgtcttgcgc aaggccatcg		20
<210> 171 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 171 tgcgcaaggc catcgactac		20
<210> 172 <211> 20 <212> DNA <213> H. sapiens		
	•	

<220>

WO 03/102019	73/90	PCT/US03/17638
<400> 172 atgctggacc gctcccgcct		20
<210> 173 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 173 tgccatgcag tggctctgcc		20
<210> 174 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 174 gtggccaagt ggtgggcctc	.:	20
<210> 175 <211> 20 <212> DNA <213> H. sapiens		·
<220>		
<400> 175 agctgtggtg atccactggc		20
<210> 176 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 176 actccttcaa ggctgcccgg	·.	20
<210> 177 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400>·177 ccatctgtga gaaggccagt		20
<210> 178 <211> 20 <212> DNA <213> H. sapiens		

PCT/US03/17638

WO 03/102019	74/90	PCT/US03/17638
<220>		
<400> 178 gaaggccagt gggtacctgc		20
<210> 179 <211> 20 <212> DNA <213> H. sapiens	·	
<220>		
<400> 179 tgcaaacttt attttcatag		20
<210> 180 <211> 20 <212> DNA <213> H. sapiens		
<220>	.:	
<400> 180 ccttgacagg tgaagtcggc		20
<210> 181 <211> 20 <212> DNA <213> H. sapiens		
<220>	·	
<400> 181 atttctgcag gaagccctcc		20
<210> 182 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 182 caccgtgcag ctgaataaat		20
<210> 183 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 183 ctcctggcca aggctggtgc		20
<210> 184 <211> 20		

 $\langle \cdot \rangle$

WO 03/102019	75/90	PCT/US03/17638
<212> DNA <213> H. sapiens	,	
<220>		
<400> 184 catgcggagg gtgagtgccc		20
<210> 185 <211> 20 <212> DNA <213> H. sapiens		,
<220>		
<400> 185 gtagggccaa cggcctggac		20
<210> 186 <211> 20 <212> DNA '<213> H. sapiens	. :	
<220>		
<400> 186 gcggagccat ggattgcact		20
<210> 187 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 187 aagacatgct tcagcttatc		20
<210> 188 <211> 20 <212> DNA <213> H. sapiens		• .
<220>	· ·	
<400> 188 ctctgaggcc agggcaggac	•	20
<210> 189 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 189 gctgcgccat ggacgagcca		20

WO 03/102019	76/90	PCT/US03/17638
<210> 190 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 190 agccaccett cagegaggeg	·	20
<210> 191 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 191 acatcgaaga catgcttcag		20
<210> 192 <211> 20 <212> DNA <213> H. sapiens	. . .	
<220>		
<400> 192 ccacctcctg ccacattgag	•	20
<210> 193 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 193 tectgecaca <u>g</u> agettecca		20
<210> 194 <211> 20 <212> DNA <213> H. sapiens	•	
<220>		
<400> 194 gctgcctggc ctgccactgg		20
<210> 195 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 195 acagggcctt tgccgaccct		20

77/90

<210> 196 <211> 20 <212> DNA <213> H. sapiens	
<220>	
<400> 196 tgcctatcaa ccggctcgca	20
<210> 197 <211> 20 <212> DNA <213> H. sapiens	٠
<220>	
<400> 197 cgtggagaga agcgcacagc	20
<210> 198 <211> 20 <212> DNA <213> H. sapiens	
<220>	
<400> 198 caaggatctg gtggtgggca	20
<210> 199 <211> 20 <212> DNA <213> H. sapiens	
<220>	
<400> 199 caggagaacc taagtctgcg	20
<210> 200 <211> 20 <212> DNA <213> H. sapiens	
<220>	
<400> 200 cactgctgtc cacaaaagca	20
<210> 201 <211> 20 <212> DNA <213> H. sapiens	
<220>	

WO 03/102019	78/90	PCT/US03/17638
<400> 201 ctggtgtcgg cctgtggcag		20
<210> 202 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 202 gaggcatcgc aagcaggctg		20
<210> 203 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 203 gcaggctgac ctggacctgg	. =	20
<210> 204 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 204 agccctggtc taccataagc		20
<210> 205 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 205 tggccgagat ctatgtggcg		20
<210> 206 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 206 gatctatgtg geggetgeat		20
<210> 207 <211> 20 <212> DNA <213> H. sapiens		

WO 03/102019	79/90	PCT/US03/17638
<220>	·	
<400> 207 ggaacatctc ttagagcgag		20
<210> 208 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 208 ccagccctgg gtcagctgat		20
<210> 209 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 209 aaggcagagt ctggtccagc		20
<210> 210 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 210 taccacacca gccagcagct		20
<210> 211 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 211 gcttccgccc ttgagctgcg	•.	20
<210> 212 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 212 cagcagatgc tcatgcgcct		20
<210> 213 <211> 20 <212> DNA	,	

WO 03/102019	2012	PCT/US03/17638
<213> H. sapiens	80/90	
<220>		
<400> 213 gtgggaccac tgtcacttcc		20
<210> 214 <211> 20 <212> DNA <213> H. sapiens		
<220>		- •
<400> 214 tgtcacttcc agctagaccc	•	20
<210> 215 <211> 20 <212> DNA <213> H. sapiens		
<220>	.:	
<400> 215 ctagccactt tggtcccgtg		20
<210> 216 <211> 20 <212> DNA <213> H. sapiens	·	
<220>		
<400> 216 cccgtgcagc ttctgtcctg		20
<210> 217 <211> 20 = Constant		
<220>		
<400> 217 acctgcggct gctgtgtgcc		20
<210> 218 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 218 gtgtgccttc gcggtggaag		20

<210> 219

WO 03/102019	81/90	PCT/US03/17638
<211> 20 <212> DNA <213> H. sapiens	·	
<220>		
<400> 219 cggcggccat gatggtgctg		20
<210> 220 <211> 20 <212> DNA <213> H. sapiens	·	
<220>		
<400> 220 ttgctctgca ggcaccttag		20
<210> 221 <211> 20 <212> DNA <213> H. sapiens	.:	
<220>		
<400> 221 agaggggtac atttccctgt		20
<210> 222 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 222 ccctgtgctg acggaagcca		20
<210> 223 <211> 20 <212> DNA <213> H. sapiens	·.	
<220>		
<400> 223 gccaacttgg ctttcccgga		20
<210> 224 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 224 cagegtgett ageeteetga		20

PCT/US03/17638 82/90 <210> 225 <211> 20 <212> DNA <213> H. sapiens <220> <400> 225 20 tactttgcct tttgcaaact <210> 226 <211> 20 <212> DNA <213> H. sapiens <220> <400> 226 20 agttttgtac agagaattaa <210> 227 <211> 20 <212> DNA <213> M. musculus <220> <400> 227 20 acggagccat ggattgcaca <210> 228 <211> 20 <212> DNA <213> M. musculus <220> <400> 228 20 cttcctggga ggacccaagg <210> 229 <211> 20 <212> DNA <213> M. musculus <220> <400> 229 20 tgacacctgc acccttgtcc <210> 230 <211> 20

<212> DNA

<400> 230

<220>

<213> M. musculus

WO 03/102019		PCT/US03/17638
agccagtgcc actcaccatc	83/90	20
agccagiged acceaectato		
<210> 231 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 231 cacagacaaa ctgcccatcc		20
<210> 232 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 232 cgtggtgaga agcgcacagc	. :	20
<210> 233 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 233 ccacaatgcc attgagaagc		20
<210> 234 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 234 . ggtgtcagct tgtggcagtg		20
<210> 235 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 235 aggcacagat gtgtctatgg		20
<210> 236 <211> 20 <212> DNA <213> M. musculus		
<220>		

WO 03/102019	84/90	PCT/US03/17638
<400> 236 tggtggcagt gactctgagc		20
<210> 237 <211> 20 <212> DNA <213> M. musculus	·	
<220>		
<400> 237 ggatagccag gtcaaagccc	·	20
<210> 238 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 238 ttggacccag tggttgctgc	.:	20
<210> 239 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 239 gtctggctgg ccaatggact		20
<210> 240 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 240 actagtgttg gcctgcttgg		20
<210> 241 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 241 acacttctgg agacatcgca		20
<210> 242 <211> 20 <212> DNA <213> M. musculus		-

WO 03/102019	85/90	PCT/US03/17638
<220>		
<400> 242 acctcaaacc tggatctggc		20
<210> 243 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 243 ggccgctggc tggcaggcca		20
<210> 244 <211> 20 <212> DNA <213> M. musculus		
<220>		.:
<400> 244 catgccatgg gcaagtacac		20
<210> 245 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 245 ggcaacactg gcagagatct		20
<210> 246 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 246 gctctgccac cctgtaggtc		20
<210> 247 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 247 cagcgtggct gggaacccag		20

<210> 248 <211> 20

WO 03/102019	86/90	PCT/US03/17638
<212> DNA <213> M. musculus		
<220>		
<400> 248 acagggagtt ctcagatgcc		20
<210> 249 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 249 cagacccagt ggccaagtgg	·	20
<210> 250 <211> 20 <212> DNA <213> M. musculus	. 5	
<220>		
<400> 250 ctctgtactc cttcaaggct		20
<210> 251 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 251 tgctggacca cagaaaggtg		20
<210> 252 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 252 atgcagctgc tcctgtgtga		20
<210> 253 <211> 20 <212> DNA <213> M. musculus		
<220>	·	
<400> 253 cctgtgtgat ctacttcttg		20

~*	•	DOTALCO ALECO
WO 03/102019	87/90	PCT/US03/17638
<210> 254		
<211> 20 <212> DNA		
<213> M. musculus		
<220>		
<400> 254		
ageteaeggt accageaatg		20
<210> 255		
<211> 20 <212> DNA		- •
<213> M. musculus		
<220>		
<400> 255		
tgctctggag ctgcgtggtt		20
<210> 256		
<211> 20	. .	
<212> DNA <213> M. musculus		
<220>		
<400> 256 ctgcgtggtt tccaacatga		20
ctgcgtggtt tccaacatga		20
<210> 257		
<211> 20		
<212> DNA <213> M. musculus		
<220>		
<400> 257		20
ttectacatg_aggecacage		20
<210> 258		
<211> 20		
<212> DNA	••	
<220>		
<400> 258		
aggccacagc tcggctgatg		20
•		
<210> 259		
<211> 20 <212> DNA		
<213> M. musculus		
<220>		

20

<400> 259 caggagcaag tootgcccgg

88/90

<210> 260 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 260 gggcaggttc cagtggcaaa	20
<210> 261 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 261 cccacatggc gggagcacac	20
<210> 262 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 262 tgccgacctc tagtggcaga	20
<210> 263 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 263 caccetettg etetgtagge	20
<210> 264 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 264 . ttcataggtt gagaaatttt	20
<210> 265 <211> 20 <212> DNA <213> M musculus	

<213> M. musculus

<220>

WO 03/102019	89/90	PCT/US03/17638
<400> 265 ccttgaaaca agtgttctca		20
<210> 266 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 266 atctaaaggc agctattggc		20
<210> 267 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 267 acgacagtga ccgccagtaa	. :	20
<210> 268 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 268 tgaagcaaag gtacggccaa		20
<210> 269 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 269 gctagctgag aatagtgtgg		20
<210> 270 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 270 ccaccctgat gctgccttct		20
<210> 271 <211> 20 <212> DNA <213> M. musculus		

WO 03/102019 PCT/US03/17638 90/90 <220> <400> 271 20 ggatagccag gttggactct <210> 272 <211> 20 <212> DNA <213> M. musculus <220> <400> 272 20 ctggatttgg cccgggtaag <210> 273 <211> 20 <212> DNA <213> M. musculus <220> <400> 273 20 cactttgcag gcaagtacac