COMP-170: Homework #4

Ben Tanen - February 26, 2017

Problem 3

Let $L = \{\langle M \rangle \mid M \text{ only accepts odd inputs } \}$. Prove $\overline{A_{TM}} \leq_m L$.

* * *

We want to prove $\overline{A_{TM}} \leq_m L$. To do this, we will construct a function $f: \Sigma_{\overline{ATM}}^* \to \Sigma_L^*$ such that $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. Once we show f satisfies this criteria, we can see that $\overline{A_{TM}} \leq_m L$.

First, we will claim $\overline{A_{TM}} \leq_m L$. To prove this claim, we will first show how $\overline{A_{TM}}$ and L relate to each other (using the "Tony Square").

	$\overline{A_{TM}}$	ig L
IN	M doesn't accept w	M' only accepts odd inputs
OUT	M accepts w	M' does not just accepts odd inputs

Now that we've built our "Tony Square", we can define our function. Let $f: \Sigma_{\overline{ATM}}^* \to \Sigma_L^*$ be defined as follows:

f on input $\langle M, w \rangle$ outputs $\langle M' \rangle$, where M' is defined as:

$$M'$$
 on input x :

If
$$x = 1$$
, $ACCEPT$
If $x = 2$, run M on w
If M accepts w , $ACCEPT$
Else, $LOOP$

Given our definition of f, we claim that f is computable. Because M' is a valid Turing machine and f is a finite function, we can see that f is indeed computable.

Now, we can go through two cases to show that f correctly satisfies $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. Consider the following two cases:

1. Suppose $\langle M, w \rangle \in \overline{A_{TM}}$ such that M does not accept w. We can see that regardless of $\langle M, w \rangle$, M' accepts 1. Because M doesn't accept w, we can see that M' will loop on every other input (including 2). Thus, $L(M') = \{1\}$ so we can see that M' only accepts odd inputs. Thus $\langle M' \rangle \in L$.

2. Suppose $\langle M, w \rangle \not\in \overline{A_{TM}}$ such that M accepts w. Again, we see that M' accepts 1. Additionally, because M accepts w, we can see that M' also accepts 2. M' will loop on every other input. Thus, $L(M') = \{1, 2\}$ so we can see that M' accepts odd and even inputs. Thus $\langle M' \rangle \not\in L$.

Given these two cases, we can thus see that f does indeed satisfy the claim $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. Therefore, we can see that $\overline{A_{TM}} \leq_m L$. \boxtimes