

HackerRank

X

Polar Coordinates *

Your Polar Coordinates submission got 10.00 points.

Try the next challenge | Try a Random Challenge

Problem Submissions Leaderboard Editorial A

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.

A complex number z Capture.PNG

$$z = x + yj$$

is completely determined by its real part $m{x}$ and imaginary part $m{y}$. Here, j is the imaginary unit.

A polar coordinate ($m{r},m{arphi}$)

is completely determined by modulus $m{r}$ and phase angle $m{arphi}$

If we convert complex number ${\pmb z}$ to its polar coordinate, we find:

- $m{r}$: Distance from $m{z}$ to origin, i.e., $\sqrt{m{x^2+y^2}}$
- $m{arphi}$: Counter clockwise angle measured from the positive $m{x}$ -axis to the line segment that joins $m{z}$ to the origin.

Python's cmath module provides access to the mathematical functions for complex numbers.

This tool returns the phase of complex number \boldsymbol{z} (also known as the argument of \boldsymbol{z}).

>>> phase(complex(-1.0, 0.0)) 3.1415926535897931

abs

This tool returns the modulus (absolute value) of complex number $oldsymbol{z}$.

>>> abs(complex(-1.0, 0.0)) 1.0

You are given a complex $oldsymbol{z}$. Your task is to convert it to polar coordinates.

Input Format

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature

