Recommendation System

What is it?

- Recommendation System/Engine
 - Data filtering tools that make use of algorithms and data to recommend the most relevant items (product/movies/services/information etc.) to a particular user.

Why?

We live in a world of information overload due

to internet.

"Information overload occurs when the amount of input to a system exceeds its processing capacity. Decision makers have fairly limited cognitive processing capacity. Consequently, when information overload occurs, it is likely that a reduction in decision quality will occur." – Gross (1964)

Why?

- Users expose to the whole digital world, their experiences, behaviours, preferences and interests.
- A recommendation engine provides an efficient way for companies to provide consumers with personalised information and solutions.

Netflix gets 16 million new sign-ups thanks to lockdown – BBC

Amazon and Netflix witnessed more than 60% growth in subscriber base during lockdown: Velocity MR Study – Financial Express

How?

- Recommendation Engine needs to know you better in order to provide effective suggestions
- Information collection and integration critical aspect of the process.

Explicit interactions

 Information about your past activity, your ratings, reviews and other information about your profile, such as gender, age, or investment objectives

Implicit interactions

device you use for access, clicks on a link, location, and dates.

User-Item Interaction Matrix

Process Involved

Types of Recommender Systems

Recommender systems

Content based methods

Define a model for user-item interactions where users and/or items representations are given (explicit features).

Collaborative filtering methods

Model based

Define a model for user-item interactions where users and items representations have to be learned from interactions matrix.

Memory based

Define no model for user-item interactions and rely on similarities between users or items in terms of observed interactions.

Hybrid methods

Mix content based and collaborative filtering approaches.

(a). Collaborative Filtering

(b). Content Filtering

Content based filtering

- Based on a single user's interactions and preference.
- Uses metadata collected from a user's history and interactions.
 - For example, recommendations will be based on looking at established patterns in a user's choice or behaviours.
 - Returning information such as products or services will relate to your likes or views.
- The more information that the user provides, the higher the accuracy.

Content based filtering

- Case-based Recommender
 - Evaluate items' similarities
 - Extensively deployed in e-commerce
 - Typical Example
 - A recommendation like 'products similar to this'
- Suffer from 'cold start' problems
 - when a recommender system cannot draw inferences for a query due to lack of sufficient information

Collaborative filtering

- Based on multiple users interactions and preferences
- Recommendations are based on other users with similar tastes or situations.
 - 'Next buy' recommendations is a typical usage
- Has higher accuracy than content-based filtering. But, can also introduce some increased variability and sometimes less interpretable results.

Collaborative Filtering – Memory based

Collaborative Filtering – Memory based – User-User Vs. Item-Item

Collaborative Filtering – Model based

- Rely on user-item interactions information and assume a latent model supposed to explain these interactions.
 - For example, matrix factorisation algorithms consists in decomposing the huge and sparse user-item interaction matrix into a product of two smaller and dense matrices:
 - a user-factor matrix (containing users representations) that multiplies a factor-item matrix (containing items representations).
 - close users in terms of preferences as well as close items in terms of characteristics ends up having close representations in the latent space.

Hybrid Methods

 A system that combines content-based filtering and collaborative filtering could take advantage of both methods

Metrics

Accuracy

 fraction of correct recommendations out of the total possible recommendations

Coverage measures

 the number of items or users that the system is actually able to provide recommendation for

Mean Square Error

Common Challenges

- Sparsity of data
- Latent association
- Scalability

References

- https://marutitech.com/recommendationengine-benefits/
- https://medium.com/voice-tech-podcast/asimple-way-to-explain-the-recommendationengine-in-ai-d1a609f59d97
- https://towardsdatascience.com/introduction-torecommender-systems-6c66cf15ada
- https://www.interactiondesign.org/literature/article/informationoverload-why-it-matters-and-how-to-combat-it