Profiling – III and Revision

Lecture 25 April 17, 2024

Profiling

```
for (int i=0; i<50; i++)
{
    MPI_Barrier (MPI_COMM_WORLD);
    MPI_Alltoall(message, arrSize, MPI_INT, recvMessage, arrSize, MPI_INT, MPI_COMM_WORLD);
}</pre>
```

Alltoall - NPROCS=4, Data size = 4 KB

Max. barrier time: 0.2 ms

Alltoall - NPROCS=4, Data size = 4 MB

Max. barrier time: 1.2 ms

Max. Alltoall time: 7.8 ms

Alltoall - NPROCS=16, Data size = 4 KB

Alltoall - NPROCS=16, Data size = 4 MB

Bcast - 16P, 4 KB

Bcast – 16P, 4 MB

Bcast - 32P, 4 KB

Bcast – 32P, 4 MB

Revision

Communication Graph Mapping

	512		256		
512				64	256
			512		64
256		512		512	
	64		512		64
	256	64		64	

Q1: What are the communicating pairs?

Q2: Distance/hops between the communicating pairs?

Q3: Total hop-bytes?

Estimation Function

- $f_{est}(t, p, M) = \text{Cost of placing a task } t \text{ onto processor } p \text{ under current task mapping } M$
- Estimate how critical it is to place a task in the current cycle, select the task with maximum criticality
- *T_k* is the set of tasks yet to be placed
- P_k is the set of processors that are available

$$T_k \cup \overline{T}_k = \emptyset$$
$$P_k \cup \overline{P}_k = \emptyset$$

Graph Model for SpMV

- Computation load?
 - Similar for both processors

- Number of communications?
 - 8 as per this graph
 - Actually 6

Parallel I/O

Access Pattern

Each process reads a small chunk of data from a common file

MPI_File_set_view (fh, displacement, etype, filetype, "native", info)
MPI_File_read_all (fh, data, datacount, MPI_INT, status)

Multiple Non-contiguous Accesses

P0	P1
P2	Р3

- Every process' local array is noncontiguous in file
- Every process needs to make small I/O requests
- Can these requests be merged?

Revision Q3: 3D domain decomposition

```
17 //initialize
18 for (int i=0; i<N; i++)
   for (int j=0; j<N; j++)
    for (int k=0; k<N; k++)
20
    data[i][j][k] = (rank+1) * (i+j+k);
21
22 int xStart=_____
yStart=____
zStart=
23 int xEnd= ______
yEnd=
zEnd=
```

Revision Q4

A 3D matrix of size NxNxN was written to the file in the usual XYZ memory order. P processes read this 3D matrix from a file using parallel I/O following a 1D domain decomposition along Y-axis. Write an MPI code snippet for this (you may ignore the obvious initializations and finalizations). Assume that N is divisible by P.

Revision Q5

A sequential program P consists of three parts A, B, C. Part B is not parallelizable. Parts A and C are parallelizable. The sequential runtimes are Sa, Sb, Sc for the parts A, B, C respectively. Derive the speedup of P on N processes, where the overhead to parallelize part A is Oa, overhead to parallelize part C is Oc.

Revision Q6

