

Desarrollo del ejercicio de calcular N host en la red 172.16.0.0

Lo primero que calculamos es la cantidad de Hosts. Sumamos 500+50+20+20+6 = 596 Un número elevado a la 2, que sea mayor y cercano a 596.

Aplicamos la fórmula 2ⁿ – 2 Executor 2ⁿ8=256 en la 2ⁿ9=512 2ⁿ10=1024

El valor de n sería 10 ya que $2^{10} - 2 = 1024 - 2 = 1022$. Y ese número es cercano y mayor a 596. De 32 bit, entonces si n para los host es 10, nos quedarían 32-10=22 para la red, o sea que nuestro prefijo seria / 22, o sea, que nuestra máscara de subred es:

Ahora representamos nuestra red en binarios

10101100.00010000.00000000.00000000 172.16.0.0

La red 172.16.0.0 / 22 la vamos a dividir en dos subredes, eso quiere decir que ahora nos quedaría:

Partimos entonces desde 172.16.0.0. / 23

Empezamos con la representación en binario:

10101100.00010000.0000000<u>0</u>0.00000000 172.16.0.0 1^{ra} Subred

Donde su máscara de subred sería

11111111111111111111110.0000000 255.255.254.0

La posición 23 en negrita y subrayado la cambiamos a 1

10101100.00010000.0000000<u>1</u>0.00000000 172.16.2.0 2^{da} Subred

Donde su máscara de subred sería

11111111.11111111.11111110.00000000

255.255.254.0

Analizando nos podemos dar cuenta que en la primera subred tendremos 255 host mas 255 menos dos posiciones para red y broadcast. Total tendríamos 508 hosts. Mas de lo que necesitábamos. Eso quiere decir que el cálculo está bien.

Teniendo la 2da Subred, partimos de ella

172.16.2.0 / 23

empezamos a calcular a partir de ésta, otras subredes, porque ahora necesitamos 50 hosts para Recursos Humanos.

Empezamos con la fórmula $2^n - 2$ que de un valor mayor o igual a 50. Probemos con n = 6. Aplicando la fórmula seria $2^6 - 2 = 64 - 2 = 62$. Cumple la norma, es mayor que 50. Entonces si n = 6 es para los hosts, cuanto seria n para la red? Seria 32 - 6 = 26.

Partimos entonces desde 172.16.2.0 / 26

Donde la dirección en binario es:

10101100.00010000.00000010.00000000 172.16.2.0

Donde su máscara de subred sería

La división parte desde la posición 26, detallen la misma en negrita y subrayado.

10<mark>10</mark>1100.00010000.00000010.0**0**0000000 172.16.2.0 1^{ra} Subred

Do<mark>nde</mark> su máscara de subred sigue siendo

111<mark>11</mark>11.11111111111111111111111000000 255.255.255.192

Excelencia Académica

10101100.00010000.00000010.0<u>1</u>0000000 172.16.2.64 2^{da} Subred

Donde su máscara de subred sigue siendo

Teniendo la siguiente Subred, partimos de ella

172.16.2.64 / 26

empezamos a calcular a partir de ésta, otras subredes, porque ahora necesitamos 20 hosts para Oficina Legal.

Empezamos con la fórmula $2^n - 2$ que de un valor mayor o igual a 20. Probemos con n = 5. Aplicando la fórmula seria $2^5 - 2 = 32 - 2 = 30$. Cumple la norma, es mayor que 20. Entonces si n = 5 es para los hosts, cuanto seria n para la red? Seria 32 - 5 = 27.

Partimos entonces desde 172.16.2.64 / 27

Donde la dirección en binario es:

10101100.00010000.00000010.01000000 172.16.2.64

Donde su máscara de subred sería

11111111.111111111111111111111100000 255.255.255.224

La división parte desde la posición 27, detallen la misma en negrita y subrayado.

10101100.00010000.00000010.01 0 000000	172.16.2.64	1 ^{ra} Subred
Donde su máscara de subred sigue siendo		
11111111.11111111.11111111.11100000	255.255.255.224	
10101100.00010000.00000010.01 <u>1</u> 00000	172.16.2.96	2 ^{da} Subred
Donde su máscara de subred sigue siendo		
11111111.11111111.11111111.11100000	255.255.255.224	

Teniendo la siguiente Subred, partimos de ella

172.16.2.96 / 27

empezamos a calcular a partir de ésta, otras subredes, porque ahora también necesitamos 20 hosts para Oficina de Ventas.

Continuamos con la fórmula $2^n - 2$ que de un valor mayor o igual a 20. Sabemos que con n = 5. Se nos cumple la norma, donde el resultado es mayor que 20, el resultado que da es 30. Entonces si n = 5 es para los hosts, sabemos que sería n para la red igual a 27.

Seguimos entonces con 172.16.2.96 / 27

Donde la dirección en binario es:

La división parte desde la posición 27, detallen la misma en negrita y subrayado.

1010 <mark>11</mark> 00.00010000.00000010.01 <u>1</u> 000000	172.16.2.96	1 ^{ra} Subred
Donde su máscara de subred sigue siendo	ris	
11111111.11111111.11111111.11100000	255.255.255.224	
10101100.00010000.00000010. <u>1</u> 0000000	172.16.2.128	2 ^{da} Subred
Donde su máscara de subred sigue siendo		
11111111.11111111.11111111.11100000	255.255.255.224	

En esta parte, se encuentra un detalle. Como ya tenemos unos (1) en la posición 26 y 27 lo que nos queda es apagarlos y prender la posición siguiente mayor, que sería la posición 25.

Teniendo la siguiente Subred que dividimos en /27, partimos de ella para calcular las WAN, donde se necesitan dos (2) direcciones para cada una de ellas y necesitamos calcular 3 (ver Figura). 172.16.2.128 / 27

Ahora también necesitamos 2 hosts para WAN 1.

Empezamos con la fórmula $2^n - 2$ que de un valor mayor o igual a 2. Probemos con n = 2. Aplicando la fórmula seria $2^2 - 2 = 4 - 2 = 2$. Cumple la norma, es igual que 2. Entonces si n = 2 es para los hosts, cuanto seria n para la red? Seria 32 - 2 = 30.

Partimos entonces desde 172.16.2.128 / 30

Donde la dirección en binario es:

10101100.00010000.00000010.10000000 172.16.2.128

Donde su máscara de subred es

La división parte desde la posición 30, detallen la misma en negrita y subrayado.

10101100.00010000.00000010.10000 <u>0</u> 00	172.16.2.128	1 ^{ra} Subred
Donde su máscara de subred sigue siendo		
11111111.11111111.11111111.11111100	255.255.255.252	
10101100.00010000.0000010.10000 <u>1</u> 00	172.16.2.132	2 ^{da} Subred
Donde su máscara de subred sigue siendo		
11111111.11111111.11111111.11111100	255.255.255.252	

Seguimos calculando porque todavía nos faltan 2 WAN con 2 direcciones:

10101100.00010000.00000010.10000 <u>1</u> 00	172.16.2.132	1 ^{ra} Subred
Donde su máscara de subred sigue siendo 11111111111111111111111111100	255.255.255.252	
	233.233.232	
10101100.00010000.0000010.1000 <u>1</u> 000	172.16.2.136	2 ^{da} Subred
Donde su máscara de subred sigue siendo	IBACOBBY"	
11111111111111111111111111111111111111	255.255.255.252	

Seguimos calculando porque para la última WAN con 2 direcciones:

101 <mark>011</mark> 00.00010000.00000010.1000 <u>1</u> 000	172.16.2.136	1 ^{ra} Subred
Donde su máscara de subred sigue siendo	češa.	
11111111.11111111.11111111.11111100	255.255.255.252	
10101100.00010000.00000010.1000 <u>11</u> 00	172.16.2.140	2 ^{da} Subred
Donde su máscara de subred sigue siendo		
11111111 1111111 11111111 11111100	255 255 255 252	

RECUERDA QUE AL FINAL DEBES LLENAR LA TABLA CON LOS DATOS OBTENIDOS

SUBRED	RED	1ER HOST	ULT HOST	BROADCAST	MASCARA
Corporativa					
RRHH					
Legal					
Ventas					
Wan1					
Wan2					
Wan3					