You must show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided. Illegible work falls under the *Intended Purpose* policy.

You must upload any digital submission as a SINGLE PDF DOCUMENT. Multiple file submissions or files of any other type will not be accepted.

This assignment is worth $10/60~(\approx 9.5\%)$ of Problem Assignment points

7 T	
lon	20.
11011	TC

- 1. Convert the following as indicated: (2 points)
 - (a) 00101001_2 to a decimal integer,

(b) 00101100_2 to a hexadecimal integer,

1,, .

Answer:______16

(c) $B1_{16}$ to an 8-bit unsigned binary integer, and

3=11

Answer:

10110001

Cont.

(d) 212_{10} to an 8-bit unsigned binary integer.

Answer: 1101 0100

- 2. Compute the **4-bit binary** sum of the following 4-bit unsigned binary integers. Provide the base-10 result as well. Do allow values to overflow—that is do not add bits in excess of the 4 bits. Additionally, provide decimal(base₁₀) integer values ¹: (2 points)
 - (a) 0011 + 0111

Ų.	\f\
310	710

Answer: 1010₂

Answer:______10

(b) 1010 + 0111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1010
0001

Answer:	0001

Take into account overflow. Do not tell me that $15_{10} + 15_{10} = 30_{10}$. I know you know that. Due to overflow in 4-bit, $15_{10} + 15_{10} = 14_{10}$, i.e., at least 5-bits are necessary to count above 15.

- 3. Convert the following to 8-bit two's complement-encoded binary integers and perform the indicated operations. You must show all conversions into and out of two's complement encoding. Provide your results in 8-bit two's complement binary and base-10 or base-16, based on problems' radii: (2 points)
 - (a) $27_{10} 15_{10} = 274645$

Answer:

 $\frac{12}{10}$

$$-1A_{16} = -00011010_{2}$$

$$-17_{16} = -00011010_{2}$$

$$-00011010_{2}$$

$$-17_{16} = -00010111_{2}$$

$$00010111_{2}$$

$$00010111_{3}$$

2
-31

4. For each of the following, show their conversion to binary coded decimals (BCD) as 8421-code: (2 points

(a) 572₁₀

Answer: 0101 0111 0010

(b) 213₄

Answer: 0011 1001

- 5. Decode the two following 8-bit binary ${\bf strings}$ into ASCII characters²: (2 points)
 - $(a) \ 01100011 \ 01010011 \ 01000011 \ 01100101$

0110 0011 01010011 01000011 01100101 C S C E

A	cSCe
Answer:	

Answer: CC> ja va

²You may use the 7-bit ASCII from the book, but do keep in mind ASCII values, like all values in a computer, are at least 8-bits in size. Simply add a 0 as the most significant bit of each character from the book.