Fuzzy Merging with Company Names

Richard Vogg

Sep 26th, 2019

The input

The input

dirty_list

Haliburton

ExxonMobile

ABBOTT LABORATORIES

Marrriott

Self

Activision Blizzard

Quest dianotstics

Unemployed

MARRIOT

500,000 names

The input

clean_list	dirty_list
3M Company	Haliburton
Abbott Laboratories	ExxonMobile
AbbVie Inc.	ABBOTT LABORATORIES
ABIOMED Inc	Marrriott
Accenture plc	Self
Activision Blizzard	Activision Blizzard
Adobe Systems Inc	Quest dianotstics
Advanced Micro Devices Inc	Unemployed
Advance Auto Parts	
AES Corp	MARRIOT

500,000 names

S&P500 list

The stringdist package

- Approximate matching and string distance calculations for R.
- Many distance functions: Hamming, Levenshtein, Longest common substring, qgram, Jaro-Winkler
- Computes in parallel when possible

1	2	3	4	5	6	7	8	9
В	R	Ε	Α	K	F	A	S	Т

В	Α	S	Ε	В	Α	L	L
1	2	3	4	5	6	7	8

$$sim_{j}(s_{1}, s_{2}) = \begin{cases} 0, & if \ m = 0 \\ \frac{1}{3} \left(\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right), & else. \end{cases}$$

$$sim_{j}(s_{1},s_{2}) = \begin{cases} 0, & if \ m = 0 \\ \frac{1}{3} \left(\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right), & else. \end{cases}$$

$$sim_{j}(s_{1},s_{2}) = \begin{cases} 0, & if \ m = 0 \\ \frac{1}{3} \left(\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right), & else. \end{cases}$$

$$sim_{j}(s_{1},s_{2}) = \begin{cases} 0, & if \ m = 0 \\ \frac{1}{3} \left(\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right), & else. \end{cases}$$

$$sim_{j}(s_{1},s_{2}) = \begin{cases} 0, & if \ m = 0 \\ \frac{1}{3} \left(\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right), & else. \end{cases}$$

$$sim_{j}(s_{1},s_{2}) = \begin{cases} 0, & if \ m = 0 \\ \frac{1}{3} \left(\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right), & else. \end{cases}$$

$$sim_{j}("breakfast","baseball") = \frac{1}{3}(\frac{4}{9} + \frac{4}{8} + \frac{4-1}{4})$$

= 0.56

$$sim_{j}(s_{1}, s_{2}) = \begin{cases} 0, & if \ m = 0 \\ \frac{1}{3} \left(\frac{m}{|s_{1}|} + \frac{m}{|s_{2}|} + \frac{m-t}{m} \right), & else. \end{cases}$$

Jaro-Winkler similarity

1	2	3	4	5	6	7	8	9
В	R	Е	Α	K	F	А	S	Т

$$sim_{jw}$$
 ("breakfast", "baseball")
= $0.56 + 0.1(1 - 0.56) = 0.60$

$$sim_{jw}(s_1, s_2) = sim_j + lp(1 - sim_j)$$

The process: cleaning

cleandata

```
cleaner <- function(data) {
  wordremove <- c(" and "," comp "," company","companies"," corp
  "," inc ","[.]com")
  data <- data %>% tolower() %>%
     {gsub(paste(wordremove,collapse='|'),"",.)} %>%
     {gsub("[[:punct:]]","",.)} %>%
     {gsub("[[:blank:]]","",.)}
  return(data)
}
```

The process: cleaning


```
clean_list_cl <- cleaner(clean_list)
dirty_list_cl <- cleaner(dirty_list)</pre>
```

The process: distance matrix

harleydavidson
cincinattifinancial
questdiagnostics

cincinattifinancial	harleydavison	otherexample	questdiags
0.67	0.01	0.54	0.51
0	0.66	0.64	0.68
0.47	0.46	0.63	0.08

The process: minima detection

	cincinattifinancial	harleydavison	otherexample	questdiags
harleydavidson	0.67	0.01	0.54	0.51
cincinattifinancial	0	0.66	0.64	0.68
questdiagnostics	0.47	0.46	0.63	0.08

```
output <- data.frame(original=dirty_list)
best_fit <- apply(distmatrix,2,which.min) %>% as.integer()
output$best_fit <- clean_list[best_fit]
output$distance <- apply(distmatrix,2,min)</pre>
```

The process: thresholding

harleydavidson
cincinattifinancial
questdiagnostics

cincinattifinancial	harleydavison	otherexample	questdiags
0.67	0.01	0.54	0.51
0	0.66	0.64	0.68
0.47	0.46	0.63	0.08

output\$final <- ifelse(control\$distance<0.12,control\$best_fit,NA)</pre>

The output

result	distance	best_fit	original
NA	0.306	Teleflex	Self-employed
Mohawk Industries	0.088	Mohawk Industries	Mohawk Ind
Cincinnati Financial	0.000	Cincinnati Financial	cincinnati financial
Illumina Inc	0.073	Illumina Inc	Illumin
Harley-Davidson	0.029	Harley-Davidson	HARLEY DAVIDSEN
Oracle Corp.	0.080	Oracle Corp.	Oracle
Harley-Davidson	0.000	Harley-Davidson	Harley Davidson
NA	0.300	NRG Energy	burger king
Halliburton Co.	0.054	Halliburton Co.	Haliburton
NA	0.244	Sealed Air	Self

The value of Fuzzy merging

Descriptive

- S&P 500 customer analysis
- Regional opportunities

Predictive

- Add value to predictive models
- Churn analysis

Combinations

Identify
 customers in
 managing
 positions in
 S&P 500
 companies

Other applications

Our approach: Dirty list vs clean list

Fuzzy search

Record linkage

De-duplication

Thank you!

richard.vogg@web.de

Richard Vogg

@richard_vogg