CAGD 作业 6

刘紫檀 SA21229063

目标

进行 piecewise cubic 的 B 样条曲线交互式插值程序的编写。

原理

B 样条选用如下基函数:

此时, 曲线可以表示成为如下形式

$$x(t) = \sum_{i=0}^n N_{i,k}(t) d_i \quad t \in \cap_i \operatorname{supp}\{N_{i,k}\}$$

其中 d_i 为第 i 个控制点 (i = 0, ..., n)

de Boor 算法

展开上面的表达式,可以得到如下算法:

$$egin{aligned} d_i^j &= (1-lpha_i^j)d_{i-1}^{j-1} + lpha_i^jd_i^{j-1} \ ext{where} \ lpha_i^j &= rac{t-t_i}{t_{i+k-j}-t_i} \ ext{and} \ d_i^0 &= d_i \end{aligned}$$

用上面的递推式求得 d_r^{k-1} 即为 x(t) 的值。

分片 C^2 连续插值

给定 $\{d_i\}_{i=0}^n$, 我们需要获得如下问题的解:

$$egin{aligned} x(s_i) &= d_i & i = 0, \dots, n \ x(s) &\in C^2 & s &\in [s_0, s_n] \end{aligned}$$

且我们希望我们的函数 x(t) 为 B 样条。

由于 k 阶 B 样条为 C^{k-2} 阶连续,为了达到 C^2 连续,我们需要让 k=4。

同时,我们希望 $x(s_0)=d_0$ 且 $x(s_n)=d_n$,但是我们知道对于一般的 B 样条来说,t 的定义域位于 $[t_k,t_{k+n}]$,这样我们取节点函数为 $(s_0,\ldots,s_0,s_1,\ldots,s_n,\ldots,s_n)$,其中 s_0 和 s_n 分别重复 k 次,这样就可以达到 $x(s_0)=d_0$ 和 $x(s_n)=d_n$ 且 $t\in[s_0,s_n]$ 都有 C^{k-2} 连续的效果了。

此时, 我们对于 k=4 的问题, 有如下方程成立:

$$egin{cases} x(s_0) = d_0 \ x(s_i) = N_{i,4}(s_i)d_i + N_{i+1,4}(s_i)d_{i+1} + N_{i+2,4}(s_i)d_{i+2} \ x(s_n) = d_{n+2} \end{cases}$$

解此方程即可。

 $N_{i,4}$ 计算如下:

$$\begin{split} N_{i,2} &= \frac{t-t_i}{t_{i+1}-t_i} N_{i,1} + \frac{t_{i+2}-t}{t_{i+2}-t_{i+1}} N_{i+1,1} \\ &= \frac{t-t_i}{t_{i+1}-t_i} N_{i,1} + \frac{t_{i+2}-t}{t_{i+2}-t_{i+1}} N_{i+1,1} \\ &= \begin{cases} \frac{t-t_i}{t_{i+1}-t_i} & t \in [t_i,t_{i+1}] \\ \frac{t_{i+2}-t}{t_{i+2}-t_{i+1}} & t \in [t_{i+1},t_{i+2}] \\ 0 & \text{otherwise} \end{cases} \\ N_{i,3} &= \frac{t-t_i}{t_{i+2}-t_i} N_{i,2} + \frac{t_{i+3}-t}{t_{i+3}-t_{i+1}} N_{i+1,2} \\ &= \begin{cases} \frac{t-t_i}{t_{i+2}-t_i} & t \in [t_i,t_{i+1}] \\ \frac{t-t_i}{t_{i+2}-t_i} & t_{i+1}-t_i \\ \frac{t-t_i}{t_{i+2}-t_i} & t_{i+2}-t \\ \frac{t-t_i}{t_{i+2}-t_i} & t_{i+3}-t \\ \frac{t-t_i}{t_{i+3}-t_i} & t_{i+3}-t \\ 0 & t \in [t_{i+1},t_{i+2}] \end{cases} \\ &= \begin{cases} \frac{t-t_i}{t_{i+3}-t_i} & t_{i+3}-t \\ \frac{t-t_i}{t_{i+3}-t_{i+1}} & t_{i+3}-t \\ \frac{t-t_i}{t_{i+3}-t_{i+1}} & t_{i+3}-t \\ \frac{t-t_i}{t_{i+3}-t_{i+1}} & t_{i+3}-t \\ 0 & t \in [t_{i+1},t_{i+2}] \end{cases} \\ &= \frac{t-t_i}{t_{i+3}-t_i} N_{i,3} + \frac{t_{i+4}-t}{t_{i+4}-t_{i+1}} N_{i+1,3} \\ &= \frac{t-t_i}{t_{i+3}-t_i} N_{i,3} + \frac{t_{i+4}-t}{t_{i+4}-t_{i+1}} N_{i+1,3} \end{cases} \\ &= \frac{t-t_i}{t_{i+3}-t_i} N_{i,3} + \frac{t_{i+4}-t}{t_{i+4}-t_{i+1}} N_{i+1,3} \end{cases}$$

写完才意识到其实这个可以在程序里面动态求,没必要全展开再编程,也未必快

结果展示

PITFALL

实现的时候一个坑是这样:

```
double computeN(const Eigen::VectorXd& tKnots, double t, int i, int k) {
  if (k == 1) {
    if (tKnots(i) \le t \&\& tKnots(i+1) > t) {
       return 1.0;
    } else {
       return 0.0;
  } else {
    double left = 0.0;
    left = tKnots(i + k - 1) - tKnots(i) == 0.0 ? 0.0 : (t - tKnots(i)) /
(\mathsf{tKnots}(\mathsf{i} + \mathsf{k} - 1) - \mathsf{tKnots}(\mathsf{i})) \ * \ \mathsf{computeN}(\mathsf{tKnots}, \ \mathsf{t}, \ \mathsf{i}, \ \mathsf{k} - 1);
    double right = 0.0;
    right = tKnots(i + k) - tKnots(i + 1) == 0.0 ? 0.0 : (tKnots(i + k) - t) /
(tKnots(i + k) - tKnots(i + 1)) * computeN(tKnots, t, i + 1, k - 1);
    return left + right;
 }
}
```

这个方案在多重边界节点的情况下是有问题的。

先考虑一个基础问题, $N_{i,1}$ 的区间问题,如果取 $[t_i,t_{i+1}]$ 为 1 的话, $N_{i,2}$ 在 $t=t_{i+1}$ 的时候的值会有一个跳变(如果是均匀网格且 h=1 的话,那就是 2,而左右的极限都是 1),所以 $[t_i,t_{i+1}]$ 不是很合适。不过,可以考虑用 $[t_i,t_{i+1})$,如上面的做法。

但是,这个做法又有什么问题呢?如果现在是 k=2, n=2 的一个多重节点方案的话,那就是有 $t_0=t_1 < t_2 < t_3 = t_4$,此时我们希望基函数是如下所示

而不是

(这俩的区别在于黄色的基函数在 t_3 的值为 1 还是为 0)

显然,后者是没法正确采样到 $t=t_3$ 处的节点的值的。 $t_3\to t_4$ 的时候 $N_{2,2}$ 的第二项被粗暴的处理成了 0(如上面代码),在这里就会出现问题。那么,应该怎么办才好呢?

一个启发是,我们挑一个 C^0 连续的 N 当起点往上定义,因为 C^0 ,如果我们有一半区间(如 $[t_0,t_1]$)被挤到了测度为 0 的一个点的话,我们可以用另一半来"恢复"这一点的值。这样就可以得到处处有良好定义的 C^0 的 B 样条基函数了。也就是这样:

```
inline double computeN(
  const Eigen::VectorXd& tKnots,
  double t,
  int i,
  int k
```

```
) {
   double res;
   if (k == 2) {
     if (tKnots(i) \le t & tKnots(i+1) >= t & tKnots(i) != tKnots(i+1)) {
        res = (t - tKnots(i)) / (tKnots(i+1) - tKnots(i));
      } else if (tKnots(i+1) \leftarrow t \&\& tKnots(i+2) >= t \&\& tKnots(i+1) !=
tKnots(i+2)) {
        res = (tKnots(i+2) - t) / (tKnots(i+2) - tKnots(i+1));
      } else {
        res = 0;
      }
      return res;
    }
   double leftTerm = 0;
      assert(i + k - 1 < tKnots.size());
      double dividend = tKnots(i+k-1) - tKnots(i);
     if (dividend == 0) {
       leftTerm = 0;
      } else {
        double Nres = computeN(tKnots, t, i, k-1);
        leftTerm = (Nres == 0) ? 0 : (t - tKnots(i)) / dividend * Nres;
     }
    }
   double rightTerm = 0;
      assert(i + k < tKnots.size());</pre>
      double dividend = tKnots(i+k) - tKnots(i+1);
      if (dividend == 0) {
        rightTerm = 0;
      } else {
        double Nres = computeN(tKnots, t, i+1, k-1);
        rightTerm = (Nres == 0) ? 0 : (tKnots(i+k) - t) / dividend * Nres;
     }
   }
    return leftTerm + rightTerm;
  }
```

那么我们用这个 Scheme 就可以修好 $N_{i,2}$ 的情况,但是可以证明对于 $N_{i,4}$ 的情况也好用。原因如下:

考虑一个最简单的 k=4 的多重边界点的情况,即 $t_0=t_1=t_2=t_3< t_4< t_5=t_6=t_7=t_8$,此时当然会遇到比如计算 $N_{0,2}$ 的情况,但是这个值不重要,因为比如求取 $N_{1,4}$ 的时候需要 $N_{1,3}$ 需要 $N_{1,2}$,但是此时 $N_{1,2}$ 前面的系数是 C/0 形式,会被赋值为 0,所以有影响的是诸如 $N_{2,3}$,最后是从 $N_{2,2}$ 来的值,这样根据 C^0 补出来的那个点 t_3 的函数值就是正确的,所以这个求取 N 的方法没问题。

鉴别这种问题的最好方法就是调一个很低的采样数,然后观察恰好等于端点的值是否能正确求解。