

DCS Chain: A Flexible Private Blockchain System

Jianwu Zheng, Siyuan Zhao, Zheng Wang, Li Pan, Jianhua Li

02 DCS Chain

03 Evaluation

04 Conclusion

Blockchain

- Provide decentralized, immutable, transparent solutions for various fields.
- A pivotal force for social and economic progress.
- Public vs. Private Blockchain

Blockchain system overview

DCS trilemma

Supposes that it is impossible for a distributed system to simultaneously achieve the three essential properties:

- Decentralization
- Consistency
- Scalability

- **B**itcoin
- Decentralization
- **†** Consistency
- Scalability

Hyperledger

- Decentralization
- **†** Consistency
- **†** Scalability

Deficiency

- The applicability is poor and can not be applied to a variety of environments
- ▼ The evaluation indicator can not clearly meet the user's selection requirements

Challenge

- How to define and quantify DCS trilemma properties?
- How to adjust the system parameters to **adjust the DCS**?
- How to achieve a complete flexible blockchain system?

The ideal (but impossible) blockchain system.

The resulted optimal blockchain systems.

02 DCS Chain

03 Evaluation

04 Conclusion

System Overview

The architecture of DCS Chain

Definition of DCS

Decentralization:

- Network independence from a trusted third party.
- Reflects node participation and equity.

Consistency:

- Immutable and uniform data across nodes.
- Verifiable state via complete history.

Scalability:

- > The performance of a blockchain system.
- Performance scales with resource allocation.

Quantification of DCS

- D_{rate} : **Decentralization** strength correlates with consensus nodes.
- **C**_{rate}: Consistency quantified inversely to consensus delay.
- $ightharpoonup S_{rate}$: Scalability gauged by high throughput for data tasks.

$$D_{rate} = 1 - \frac{1}{n}$$

$$C_{rate} = \frac{1}{e^t}$$

$$S_{rate} = 1 - \frac{1}{\log_{10} \theta}$$

where n represents the total number of consensus nodes, t denotes the latency, and θ signifies the throughput.

Dynamic Adjustment Mechanism

The dynamic adjustment mechanism is the core feature for achieving optimal performance under the guidance of the DCS theory.

Number of Consensus Nodes

- It directly affects decentralization.
- Increased nodes lead to lower throughput and higher latency.

Consensus Protocol

- Consensus protocols influence blockchain performance.
- Protocols' complexities impact throughput and latency.

Batch Size

- Batch size affects block packaging efficiency and overhead.
- Larger batches can boost throughput but increase latency.

System Fundamentals

Consensus Protocols

> PBFT

Polynomial time, Practical, 2 phases

HotStuff

Linear view-change, Optimistic responsiveness, 3 phases

HotStuff-2

Two view-change path, 2 phases

Protocol	Comp.	Worst	View- Change	Phases	
PBFT	O(n ²)	O(n³)	O(n ²)	2	
HotStuff	O(n)	O(n ²)	O(n)	3	
HotStuff-2	O(n)	O(n ²)	O(n)	2	

System Fundamentals

Local Network Simulation

Construct a quickly deployable local cluster architecture through local network.

- Modular Design for Scalability and Flexibility
- Control Over Network Conditions
- Cost-Effective testing and deployment

Local Network

Real Network

02 DCS Chain

03 Evaluation

04 Conclusion

Evaluation

Experiment Setup

The system was deployed on a local machine (Core(TM) i5-1240P 1.70GHz with 16.0GB of memory) by measuring end-to-end experimental data on the client side.

Task

DCS performance on the following three elements:

◆ Number of nodes: {4, 10, 16, 22}

◆ BatchSize: {512, 1024, 2048, 4096, 9182, 16384}

Protocol type: {PBFT, HotStuff, HotStuff-2}

Protocol	Comm.	Worst	View-Change	Phases
PBFT	O(n ²)	O(n³)	O(n ²)	2
HotStuff	O(n)	O(n ²)	O(n)	3
HotStuff-2	O(n)	O(n ²)	O(n)	2

DCS Performance

Impact of Number of Nodes on DCS Performance Metrics

- > Decentralization: Shows a **positive correlation** / with the number of nodes.
- Consistency: Shows a negative correlation \ with the number of nodes.
- > Scalability: Shows a **negative correlation** \ with the number of nodes.

DCS Performance

Impact of BatchSize on DCS Performance Metrics

- > Decentralization: Shows **no correlation** with the BatchSize.
- > Consistency: Shows a **negative correlation** \ with the BatchSize.
- > Scalability: Shows a **positive correlation** / with the BatchSize.

Evaluation

Comparison of signature

Comparison of the efficiency of the sm2 signature in PBFT and the threshold signature in HotStuff

Sm2: github.com/xlcetc/cryptogm/sm/sm2

TSS: go.dedis.ch/kyber/v3

When the number of nodes reaches 40, the cost of threshold signature is smaller than that of sm signature.

	Basic-HotStuff						PBFT					
node	tss_sign	tss_comb	tss_verify	sign_num	comb_num	verify_num	one round	sm2_sign	sm2_verify	sign_num	verify_num	one round
4	0.137	5.583	1.817	12	3	16	41.145	0.020	0.073	9	36	5.022
13	0.143	16.435	1.752	39	3	52	155.948	0.021	0.080	27	351	54.873
22	0.151	29.792	1.732	66	3	88	254.577	0.020	0.072	45	990	153.298
31	0.169	41.321	1.870	93	3	124	357.435	0.031	0.074	63	1953	308.673
40	0.184	55.164	1.866	120	3	160	481.300	0.026	0.078	81	3240	505.518
49	0.143	66.793	1.737	147	3	196	567.818	0.025	0.075	99	4851	758.537
58	0.147	82.659	1.876	174	3	232	691.204	0.021	0.083	117	6786	1064.016
67	0.143	95.363	1.788	201	3	268	780.069	0.029	0.080	135	9045	1425.550
76	0.131	110.441	1.689	228	3	304	897.952	0.022	0.082	153	11628	1817.495
85	0.131	128.841	1.955	255	3	340	1050.857	0.032	0.094	171	14535	2313.922
94	0.131	141.685	1.782	282	3	376	1137.699	0.031	0.088	189	17766	2788.523
100	0.133	151.305	1.775	300	3	400	1256.474	0.020	0.093	201	20100	3073.888
Note	-	-	-	3n	3	4n	-	-	-	2n+1	n(2n+1)	-

Evaluation

Comparison of signature

This explains why PBFT performed better than HotStuff in the previous experiment.

Common sm2 signatures have been optimized enough. However, the threshold signature needs

to be optimized.

The cost of signature and verification in a consensus protocol round

02 DCS Chain

03 Evaluation

04 Conclusion

Conclusion

This paper presents a flexible private blockchain system based on the DCS trilemma—**DCS Chain**.

- The definition and quantification of the DCS indicators, allowing for a multidimensional description of system performance.
- A dynamic adjustment mechanism, achieving theoretically optimal blockchain performance.
- A complete and flexible set of core private blockchain components, making it suitable for common application scenarios.

Thank you!

Paper: https://arxiv.org/abs/2406.12376

Code: https://github.com/zhengwang100/DCSChain