One-Week PINN Project — Checklist & Repo Layout (Denmark Soil Moisture)

A tight, printable 1-page checklist to run a full-time PINN MVP in 5 days. No code—just the playbook.

Snapshot

- **Goal:** Fit a PINN that reconstructs $\theta(z,t)$ at one Danish site (multi-depth sensors) with 1-D Richards + van Genuchten–Mualem; free-drainage bottom; flux top (rain evap).
- Outputs: Cleaned dataset + data card, diagnostics, bucket baseline, PINN fit & learned params, 5–7 page report.
- Cadence: Hourly (preferred) or daily; Europe/Copenhagen timezone.

Day-by-Day

Day 1 — **Data & EDA** - [] Select station & season (≥3 depths, ≥3–5 rain events). - [] Acquire $\theta(z,t)+QC$ (ISMN/HOBE), meteo (DMI), optional soils (SoilGrids/OpenLandMap). - [] Harmonize: timezone, cadence, units (θ m³/m³; precip mm/step; depth m). - [] QC: drop bad flags; mask long θ gaps; smooth met spikes only. - [] Plots: $\theta(z,t)$ heatmap; event-aligned $\Delta\theta$; rough water balance ($P - ET_0 vs \Delta S$).

Day 2 — **Problem Spec** - [] Freeze physics (1-D Richards; van G-M; bare soil or fixed shallow uptake). - [] Boundary conditions: top flux (rain – evap), bottom unit gradient; initial θ profile. - [] Non-dimensionalization (z, t, head); write scales in spec. - [] Decide learned params: (α , n, Ks, θ r, θ s) global; (optional) two-layer. - [] Losses: data, PDE residual, BC/IC, parameter-prior penalties. - [] Collocation sampling plan (densify near surface & rain windows). - [] Time splits (Train 70% / Val 15% / Test 15%, keep events intact).

Day 3 — First Training Pass - [] Initialize params within pedotransfer bounds. - [] Curriculum: start data-heavy; ramp PDE/BC weights. - [] Track: per-depth RMSE (Train/Val), water balance, parameter ranges. - [] Early stop on Val; save best checkpoint.

Day 4 — Tighten & Compare - [] Build simple bucket baseline; calibrate 1–2 knobs. - [] Add small top-flux correction term (L2-penalized) if met forcing imperfect. - [] Ablation: remove parameter priors once; note Δ in metrics. - [] Choose best PINN variant by Test RMSE + physical plausibility.

Day 5 — **Package & Report** - [] Compute deep drainage q_bottom(t); cumulative drainage. - [] Compare learned (α , n, Ks, θ r, θ s) to soil-class ranges. - [] Quick LOEO (leave-one-event-out) sanity check. - [] Finalize artifacts (data, figs, config) + short report.

Data Prep & QC (Quick Checks)

- [] θ within [θ r, θ s]; no long saturation plateaus unless justified.
- [] Rain events list (thresholds: \geq 2 mm/hr or \geq 5 mm/day) for sampling/plots.
- [] ET₀ (FAO-56) computed once; used for sanity only.
- [] Soil texture by depth extracted; pedotransfer \rightarrow wide bounds for (α , n, Ks, θ r, θ s).

Training & Evaluation

- [] Non-dimensional inputs/targets; gradient clipping enabled.
- [] Collocation resampling where PDE residual high (fronts, surface).
- [] Metrics: RMSE per depth; event timing (wetting-front lag); mass balance drift.
- [] Compare vs bucket baseline on Val/Test.

Success Criteria

- Fit: Test RMSE \leq 0.03–0.05 m³/m³ per depth; plausible wetting-front timing.
- **Physics:** No $\theta > \theta$; reasonable drainage; learned params within soil-class ranges.
- Beat baseline: PINN improves RMSE and event timing vs bucket.

Risks & Fast Mitigations

- Training instability: data-first curriculum; normalize; clip grads.
- Bad top flux: enable small trainable correction (strongly penalized).
- Heterogeneity: defer layering unless Day 3 already stable.
- **Time sink:** keep MLP+tanh (5–8 layers); one file + config.

Repo Layout (barebones)

```
pinndk/
─ README.md
                                # What/why; quickstart; reproduction steps
├ config.yaml
                                # Paths, cadence, hyperparams, loss weights
⊢ spec.md
                                # Physics, BCs, scales, losses, splits
├ data/
  ⊢ raw/
                                # Original downloads (ISMN, DMI, soils)
   ├ clean/
                                # siteX.parquet/CSV + event_list.csv
  └ meta/
                                # soil_priors.yaml; station_metadata.json
├ figs/
                                # Heatmaps, event stacks, fits, balance, tables
                               # Single entry: load→QC→EDA→train→eval→export
   \vdash pipeline.py\midjl
```

"Data Card" Template (fill once)

- Site & Period: name, lat/lon, start-end dates, timezone.
- Sensors: depths (m), sampling cadence, QC flags used, outages.
- Meteo: source(s), variables, cadence, missing intervals.
- Soils: texture by depth; source & date; pedotransfer used; parameter bounds.
- **Preprocessing:** resampling rules, unit conversions, filters.
- **Events:** detection thresholds; number of events; notable extremes.
- **Splits:** train/val/test dates; rationale.
- Known Issues: rain gauge gaps, sensor drift, site notes.

Notes

- Keep all plots legible in grayscale for printing.
- Log every assumption in spec.md; do not change mid-week without noting.