Gaspar Daguet
Julien Thillard
Louwen Fricout
Albin Chaboissier

Une généralisation de la suite de Fibonacci

1. Introduction

La suite de Fibonacci a tout d'abord été étudiée en Inde via un problème de combinatoire dans des sortes de poèmes au V^e siècle avant J.-C. par Pingala [1] notamment. Puis, elle a été étudiée en Italie par le célèbre Léonard de Pise, plus connu sous le nom de Fibonacci, dans un problème sur la taille d'une population de lapins apparu dans son ouvrage *Liber abaci* [2] en 1202.

Cette suite aura toujours créé un certain engouement, et donc énormément de généralisation ont été créé comme les suites de Lucas [3].

Mais parmi toutes ces généralisations, beaucoup sont laissées de coté, et nous allons nous intéresser à l'une d'entre elles.

2. Définition

Comme beaucoup le savent la suite de Fibonacci est construite de manière récurrente en sommant les deux termes précédent et en prenant $F_0=1$ et $F_1=1$ (ou parfois $F_0=0$ et $F_1=1$), i.e.

$$\forall n \in \mathbb{N}, F_n \coloneqq \begin{cases} F_0 = F_1 = 1 \\ F_{n+2} = F_{n+1} + F_n, n \geq 2 \end{cases}$$

Pour généraliser cette suite nous n'allons pas sommer les deux termes précédents, mais le terme précédent et un terme se trouvant p terme plus loin de ce premier terme et pour ce faire nous avons besoin que les p premiers termes valent 1, i.e.

$$\forall n, p \in \mathbb{N}, F_n^{(p)} \coloneqq \begin{cases} F_j^{(p)} = 1, \text{si } 0 \leq j \leq p \\ F_{n+p+1}^{(p)} = F_{n+p}^{(p)} + F_n^{(p)} \text{ si } n > p \end{cases}$$

On nomme p comme étant l'ordre de la suite engendré et $\left(F_n^{(p)}\right)_{n\in\mathbb{N}}$ la suite engendré pour un certain entier p

Proposition 1: Définition par récurrence équivalente

Nous pouvons considérer la définition suivante comme équivalente à la définition précédente :

$$\forall n, p \in \mathbb{N}, F_{n-p}^{(p)} = \begin{cases} F_j^{(p)} = 0, \text{si } 0 \le j p \end{cases}$$

Ce qui revient à décaler les termes de la suite de p rangs.

Preuve:

Il est évident que les deux définitions sont équivalentes moyennant un décalage car les p-1 premier termes de la seconde définitions valent 0 et le p-ième vaut 1

Q.E.D.

3. Exemple de suite généré

Pour p = 0:

Par la définition:

$$\forall n \in \mathbb{N}, F_n^{(0)} = \begin{cases} F_0^{(0)} = 1 \\ F_{n+1} = F_n + F_n = 2F_n \end{cases}$$

On retombe sur un suite géométrique de raison 2 et de premier terme 1, donc

$$F_n^{(0)} = 2^n$$

Pour p = 1

On retombe par construction sur la suite de Fibonacci, donc

$$\forall n \in \mathbb{N}, F_n^{(1)} = \begin{cases} F_0 = F_1 = 1 \\ F_{n+2} = F_{n+1} + F_n \end{cases}$$

ou par la formule de Binet $F_n^{(1)}=\frac{1}{\sqrt{5}}\Big(\varphi^{n+1}-{\varphi'}^{n+1}\Big)$ avec $\varphi=\frac{1+\sqrt{5}}{2}$ et $\varphi'=-\frac{1}{\varphi}$

Pour p = 2

Par la définition:

$$\forall n \in \mathbb{N}, F_n^{(2)} = \begin{cases} F_0 = F_1 = F_2 = 1 \\ F_{n+3} = F_{n+2} + F_n \end{cases}$$

Ainsi on tombe sur la suite des vaches de Narayana [4] D'expression fonctionnelle $F_n^{(2)}=\frac{\lambda^{n+2}}{(\lambda-\nu)(\lambda-\mu)}+\frac{\mu^{n+2}}{(\mu-\nu)(\mu-\lambda)}+\frac{\nu^{n+2}}{(\nu-\lambda)(\nu-\mu)}$ avec λ,μ et ν les racines complexes du polynôme: x^3-x^2-1

A voir

Si $p \longrightarrow +\infty$

Par la définition, les p premiers termes valent 1, donc on pose

$$\forall n \in \mathbb{N}, F_n^{(+\infty)} = 1$$

4. Écriture fonctionnelle des suites

Proposition 2: Expression fonctionnelle de $\left(F_n^{(p)}\right)_{n\in\mathbb{N}}$ Soit $R_1,R_2,...,R_{p+1}$ les racines complexes du polynômes $x^{p+1}-x^p-1$ Alors

$$F_n^{(p)} = \sum_{i=1}^{p+1} \frac{R^{n+p}}{\prod\limits_{\substack{j=1\\j\neq i}}^{p+1} R_i - R_j}$$

Preuve:

Pour démontrer cette proposition nous utiliserons la seconde définition de la suite, qui décale les termes de la suite avec p zéros [def].

Le théorème d'Alembert-Gauss nous assure que le polynôme caractéristique $x^{p+1}-x^p-1$ possède p+1 racines complexes, notées: $R_1,R_2,...,R_{p+1}$

p+1 racines complexes, notées: $R_1,R_2,...,R_{p+1}$ Ainsi $F_{n-p}^{(p)}=\sum_{i=1}^{p+1}\lambda_iR_i^n$ avec λ_i des constantes qu'il reste à déterminer.

Pour cela, nous posons le système suivant grâce aux p premiers termes qui sont définis :

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_{p+1} = F_0^{(p)} = 0 \\ \lambda_1 R_1 + \lambda_2 R_2 + \lambda_3 R_3 + \ldots + \lambda_{p+1} R_{p+1} = F_1^{(p)} = 0 \\ \lambda_1 R_1^2 + \lambda_2 R_2^2 + \lambda_3 R_3^2 + \ldots + \lambda_{p+1} R_{p+1}^2 = F_2^{(p)} = 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1 R_1^{p+1} + \lambda_2 R_2^{p+1} + \lambda_3 R_3^{p+1} + \ldots + \lambda_{p+1} R_{p+1}^{p+1} = F_p^{(p)} = 1 \end{cases}$$

Ce qui est équivalent au système suivant :

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ R_1 & R_2 & R_3 & \dots & R_{p+1} \\ R_1^2 & R_2^2 & R_3^2 & \dots & R_{p+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R_1^{p+1} & R_2^{p+1} & R_3^{p+1} & \dots & R_{p+1}^{p+1} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \vdots \\ \lambda_{p+1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

On reconnaît la transposée d'une matrice de Vandermonde carré d'ordre p+1 dont les coefficients sont deux à deux distincts. Cette matrice est donc inversible, notons A cette matrice et Λ la matrice composée des coefficients que l'on cherche. On a alors :

$$\Lambda = \mathbf{A}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Ainsi ce produit indique que l'on ne s'intéresse qu'à la dernière colonne de A^{-1} . De plus, on sait que le *i*-ème coefficient de la dernière ligne de l'inverse d'une matrice de Vandermonde [5] (colonne ici, car on a la transposée) est égale à :

$$\prod_{\substack{p+1\\j\neq i}}^{p+1}R_i-R_j$$

Donc

$$\forall i \in [\![1;p+1]\!], \lambda_i = \frac{1}{\displaystyle\prod_{\substack{j=1\\j \neq i}}^{p+1} R_i - R_j}$$

Ainsi en remplacant les λ_i dans $\sum_{i=1}^{p+1} \lambda_i R_i^n,$ on trouve bien:

$$F_{n-p}^{(p)} = \sum_{i=1}^{p+1} \frac{R_i^n}{\prod\limits_{\substack{j=1\\j\neq i}}^{p+1} R_i - R_j}$$

Ainsi en revenant à la définition :

$$F_n^{(p)} = \sum_{i=1}^{p+1} \frac{R_i^{n+p}}{\prod\limits_{\substack{j=1\\j\neq i}}^{p+1} R_i - R_j}$$

Q.E.D.

Proposition 3: Expression fonctionnelle via le triangle de Pascal

$$\forall n,p \in \mathbb{N}, \sum_{k=0}^{\left\lfloor \frac{n}{p+1} \right\rfloor + 1} \binom{n-pk}{k}$$

Preuve:

Posons
$$P(n): F_n^{(p)} = \sum_{k=0}^{\left\lfloor \frac{n}{p+1} \right\rfloor + 1} \binom{n-pk}{k}$$

Initialisation : Pour $n \leq p$, on a

$$\sum_{k=0}^{\left\lfloor \frac{n}{p+1}\right\rfloor+1} \binom{n-pk}{k} = \sum_{k=0}^{1} \binom{n-pk}{k} = \underbrace{\binom{n}{0}}_{=1} + \underbrace{\binom{n-p}{1}}_{n-p \leq 0 \text{ donc } 0} = 1$$

H'er'edit'e: Soit $n\in\mathbb{N}$ tel que $\forall k\in[\![0,n]\!],P(k)$ soit vraie.

$$\begin{split} F_{n+1}^{(p)} &= F_{n-p}^{(p)} + F_n^{(p)} \\ &= \sum_{k=0}^{\left \lfloor \frac{n-p}{p+1} \right \rfloor + 1} \binom{n-p-pk}{k} + \sum_{k=0}^{\left \lfloor \frac{n}{p+1} \right \rfloor + 1} \binom{n-pk}{k} \\ &= \sum_{k=1}^{\left \lfloor \frac{n-p}{p+1} \right \rfloor + 2} \binom{n-p-p(k-1)}{k-1} + \sum_{k=0}^{\left \lfloor \frac{n}{p+1} \right \rfloor + 1} \binom{n-pk}{k} \end{split}$$

Or ${n\choose -1}=0$ donc on peut décaler l'indice de la première somme à k=0 :

$$F_{n+1}^{(p)} = \sum_{k=0}^{\left \lfloor \frac{n-p}{p+1} \right \rfloor + 2} \binom{n-pk}{k-1} + \sum_{k=0}^{\left \lfloor \frac{n}{p+1} \right \rfloor + 1} \binom{n-pk}{k}$$

On peut alors essayer de regrouper les deux sommes

$$\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 = \left\lfloor \frac{n+p+2}{p+1} \right\rfloor \text{ et } \left\lfloor \frac{n}{p+1} \right\rfloor + 1 = \left\lfloor \frac{n+p+1}{p+1} \right\rfloor \text{ donc } \left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \ge \left\lfloor \frac{n}{p+1} \right\rfloor + 1$$

On souhaite donc montrer que $\left|\frac{n-p}{p+1}\right|+2>n-p\left(\left|\frac{n-p}{p+1}\right|+2\right)$: on a

$$\begin{split} \frac{n-p}{p+1} - 1 < \left\lfloor \frac{n-p}{p+1} \right\rfloor &\Leftrightarrow (p+1) \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) > n-p + (p+1) \\ &\Leftrightarrow -(p+1) \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < -n-1 \\ &\Leftrightarrow n - (p+1) \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < -1 \\ &\Leftrightarrow n - p \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < -1 + \left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \\ &\Leftrightarrow n - p \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < \left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \end{split}$$

Donc $\binom{n-\left\lfloor\frac{n-p}{p+1}\right\rfloor+2}{\left\lfloor\frac{n-p}{p+1}\right\rfloor+2}=0$, ce qui permet d'utiliser $\left\lfloor\frac{n-p}{p+1}\right\rfloor+2$ comme indice commun aux deux sommes, qu'on peut donc regrouper :

$$\begin{split} F_{n+1}^{(p)} &= \sum_{k=0}^{\left \lfloor \frac{n-p}{p+1} \right \rfloor + 2} \left(\binom{n-pk}{k-1} + \binom{n-pk}{k} \right) \\ &= \sum_{k=0}^{\left \lfloor \frac{n-p}{p+1} + 1 \right \rfloor + 1} \binom{(n+1)-pk}{k} \\ &= \sum_{k=0}^{\left \lfloor \frac{n+1}{p+1} \right \rfloor + 1} \binom{(n+1)-pk}{k} \end{split}$$

Donc P(n+1) est vraie.

Par le principe de récurrence p-ième, $P(n): F_n^{(p)} = \sum_{k=0}^{\left\lfloor \frac{n}{p+1} \right\rfloor + 1} \binom{n-pk}{k}$

Q.E.D.

N.B: pour p = 1 et p = 0, on retombe bien sur des résultats connues a savoir:

$$\forall n \in \mathbb{N}, F_n^{(1)} = \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor + 1} \binom{n-k}{k}$$

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n+1} {n \choose k} = 2^n = F_n^{(0)}$$

On retrouve, comme pour Fibonacci, le faite que revient à sommer les valeurs du triangle de Pascale avec une diagonale qui est de plus en plus penché en fonction de p pour retrouver les termes de la suite d'ordre p, exemple ci-dessus

5. Sur les limites de quotients des $\left(F_n^{(p)} ight)$

Le ratio de deux termes successifs de la suite de Fibonacci a toujours été porteur de mystère et d'ésotérisme, néanmoins il en reste intéressant de s'y intéresser.

C'est pourquoi nous allons voir les propriétés de deux généralisation de la limite de quotient.

1ère généralisation:

Pour cette première généralisation, nous ne généraliserons par réellement le quotient, i.e. que nous allons nous intéresser à:

$$\forall p \in \mathbb{N}, \lim_{n \to +\infty} \frac{F_{n+1}^{(p)}}{F_n^{(p)}}$$

Regardons ce que cela donne pour certains p:

Pour
$$p = 0$$

On sais que $\forall n \in \mathbb{N}, F_n^{(0)} = 2^n$ Ainsi

$$\frac{F_{n+1}^{(0)}}{F_n^{(0)}} = \frac{2^{n+1}}{2^n} = 2 \underset{n \to +\infty}{\longrightarrow} 2$$

Pour p = 1

Il est connue que la limite du quotient la suite de Fibonacci tend vers $\frac{1+\sqrt{5}}{2}$

Pour p > 1

Au delà 1, il devient difficile de calculer algébriquement le quotient, nous pouvons donc le calculer informatiquement jusqu'à p=30:

On remarque clairement que le quotient tend vers 1.

On peut définir l'approximation suivante à partir de cette courbe :

$$\mathbf{A}_p = 1 + \frac{1}{\left(1 + p\right)^{\log_2(\varphi)}} \text{ avec } \varphi = \frac{1 + \sqrt{5}}{2}$$

Dont voici la courbe représentative :

	1,4033/1232
3	1,380277569
4	1,324717957
5	1,285199033
6	1,255422871
7	1,232054631
8	1,213149723
9	1,197491434
10	1,184276322
11	1,172950750
12	1,163119791
13	1,154493551
14	1,146854042
15	1,140033937
16	1,133902490
17	1,128355940
18	1,123310806
19	1,118699108
20	1,114464880
21	1,110561598
22	1,106950245
23	1,103597835
24	1,100476279
25	1,097561494
26	1,094832708
27	1,092271899
28	1,089863353
29	1,087593296
30	1,085449605

 R_p

1,618033989

0

Conjecture:

Le quotient noté ${\cal R}_p$ peut s'écrire avec une sorte de fraction continue :

$$R_p = 1 + \frac{1}{\left(1 + \frac{1}{\left(1 + \frac{1}{\ldots}\right)^p}\right)^p}$$

2ième généralisation

Pour mieux coller à la définition on peut au lieux de faire la limite du quotient entre deux termes successif, on peut faire la limite du quotient entre deux termes séparé par p-1 termes noté Q_p , i.e.:

$$\forall p \in \mathbb{N}, Q_p = \lim_{n \to +\infty} \frac{F_{n+p}^{(p)}}{F_n^{(p)}}$$

Regardons également ce que cela donne pour certaine valeur de p

Pour p = 0

On a: $\forall n \in \mathbb{N}, F_n^{(0)} = 2^n$

Ainsi:

$$\frac{F_n^{(0)}}{F_n^{(0)}} = 1 \underset{n \to +\infty}{\longrightarrow} 1 = Q_0$$

Pour p = 1

Dans ce cas on retombe sur le même quotient étudier plus haut donc:

$$\lim_{n \to +\infty} \frac{F_{n+1}^{(1)}}{F_n^{(1)}} = \frac{1 + \sqrt{5}}{2} = Q_1$$

Pour p > 1

De même que pour la 1er généralisation, on a calculé le quotient jusqu'à p=30 compilé également en un tableau:

p	quotient
0	1,0000
1	1,6180
2	2,1479
3	2,6297
4	3,0796
5	3,5063
6	3,9151
7	4,3093
8	4,6915
9	5,0635
10	5,4266

11	5,7820
12	6,1305
13	6,4728
14	6,8095
15	7,1411
16	7,4681
17	7,7908
18	8,1096
19	8,4247
20	8,7363

21	9,0447
22	9,3501
23	9,6527
24	9,9526
25	10,2499
26	10,5449
27	10,8375
28	11,1280
29	11,4164
30	11,7028

Proposition 4:

Rappelle: on note ${\cal R}_p$ le ratio de la première généralisation et ${\cal Q}_p$ celle de la deuxième alors on a:

$$\forall p \in \mathbb{N}, \left(R_p\right)^p = Q_p$$

Preuve:

Soit $p \in \mathbb{N}$

$$\frac{F_{n+p}^{(p)}}{F_n^{(p)}} = \prod_{k=n}^{n+p} \frac{F_{k+1}^{(p)}}{F_k^{(p)}}$$

En passant à la limite dans l'égalité et comme le quotient de deux termes successif tend vers R_p , on obtient:

$$Q_{p} = \prod_{k=n}^{n+p} R_{p} = \prod_{k=0}^{p} R_{p} = (R_{p})^{p}$$

Q.E.D.

6. Comportement de $(F_n^{(p)})$ sur $\mathbb N$

Proposition 5:

$$\forall p \in \mathbb{N}, \forall n \in \llbracket 0; p \rrbracket, F_n^{(p)} = 1$$

Preuve:

Ceci est immédiat via la définition

Proposition 6:

$$\forall p \in \mathbb{N}, \forall n \in [p+1; 2p+1], F_n^{(p)} = 1+n-p$$

i.e. que pour n compris entre p et 2p, $F_n^{(p)}$ se comporte comme une suite arithmétique de raison 1 et de premier termes 1-p

Preuve:

Soient $p \in \mathbb{N}$ et $n \in [[p+1; 2p+1]]$

Alors comme n > p on peut appliquer la formule de récurrence,

Ainsi:

$$F_n^{(p)} = F_{n-1}^{(p)} + F_{n-p-1}^{(p)}$$

Or $p+1 \leq n \leq 2p+1$ donc $0 \leq n-p-1 \leq p$ donc $F_{n-p-1}^{(p)} = 1$ Donc:

$$F_n^{(p)} = F_{n-1}^{(p)} + 1$$

Donc $\left(F_n^{(p)}\right)_{p+1\leq n\leq 2p+1}$ est suite arithmétique de raison 1 et de premier termes $F_{p+1}^{(n)}=F_p^{(p)}+F_0^{(p)}=2$ Donc

$$\forall p \in \mathbb{N}, \forall [p+1; 2p+1], F_n^{(p)} = 1 + n - p$$

Q.E.D.

Conjecture:

soit $k\in\mathbb{N}$, les termes modulo 2 de $F_{kp+1}^{(p)}$ à $F_{(k+1)p}^{(p)}$ forme un paterne Note: Ceci à déjà été démontrer dans les cas particuliers pour k=0 et k=1

7. Dessin créé par $\left(F_n^{(p)}\right)$ modulo 2 Si l'on prend sur une feuille à carreaux et que l'on mets dans la case d'indice n,p, le termes $F_n^{(p)}$ modulo 2, et que l'on colorise la dite case en noir ou en blanc si sa valeur est 1 ou 0, comme cidessous:

Figure 1: dessin réalisé pour un nombre petit de cases

On remarque en premier lieu que des motifs apparaissent entre les droites d'équations : $y = -\frac{x}{n}$ avec $n \in \mathbb{N}^*$, ce qui revient à la conjecture précédente De plus, si l'on prend de très grandes valeurs de p et de n on obtient :

Figure 2: Motifs obtenus pour $n \ge 10$ millions et p entre 0 et 10 mille

On voit ici, un triangle de Sierpiński étiré de plus en plus vers le bas et arrondie vers des valeurs bien précises.

On peut supposer que le triangle apparaît grâce aux liens entre les suites de Fibonacci d'ordre p et le triangle de Pascal, qui fait également apparaître cette fractale par construction similaire.

8. Propriétés diverses des suites $(F_n^{(p)})$

Proposition 7: Formule du jump

$$\forall p, n, n' \in \mathbb{N}, F_{n+n'}^{(p)} = F_n^{(p)} F_{n'}^{(p)} + \sum_{k=1}^p F_{n-k}^{(p)} F_{n'+k-p-1}^{(p)}$$

(NB: on admet que, $\forall p \in \mathbb{N}, \forall n \in \llbracket -p, -1 \rrbracket, F_n^{(p)} = 0$, ce qui est cohérent avec les généralisation au négatifs de chaque suite, et la formule de récurrence. On peut d'ailleurs noter que cette formule (et sa preuve) restent valides dans cette généralisation aux n négatifs)

Preuve:

Il est plus simple, pour l'objet de la preuve, de considérer la formule équivalente suivante:

$$\forall p, i \in \mathbb{N}, \forall j \in [\![0,i]\!], F_i^{(p)} = F_{i-j}^{(p)} F_j^{(p)} + \sum_{k=1}^p F_{i-j-k}^{(p)} F_{j+k-p-1}^{(p)}$$

(C'est la formule précédente en prenant i=n+n' et j=n')

Prouvons la proposition pour tout p et i par récurrence sur j

Soit $p, i \in \mathbb{N}$

Initialisation: i = 0

$$F_{i-0}^{(p)}F_0^{(p)} + \sum_{k=1}^p F_{i-0-k}^{(p)}F_{0+k-p-1}^{(p)} = F_i^{(p)} \times 1 + \sum_{k=1}^p F_{i-k}^{(p)} \times 0 = F_i^{(p)}$$

Récurrence: supposons que $\exists j \in \mathbb{N}, F_i^{(p)} = F_{i-j}^{(p)} F_j^{(p)} + \sum_{k=1}^p F_{i-j-k}^{(p)} F_{j+k-p-1}^{(p)}$ et posons un tel j. On a alors:

$$\begin{split} F_i^{(p)} &= F_{i-j}^{(p)} F_j^{(p)} + \sum_{k=1}^p F_{i-j-k}^{(p)} F_{j+k-p-1}^{(p)} \\ &= \left(F_{i-j-1}^{(p)} + F_{i-j-p}^{(p)}\right) F_j^{(p)} + \sum_{k=0}^{p-1} F_{i-j-k-1}^{(p)} F_{j+k+1-p-1}^{(p)} \\ &= F_{i-j-1}^{(p)} F_j^{(p)} + \underbrace{F_{i-j-p}^{(p)} F_{j+p+1-p-1}^{(p)}}_{\text{peut rentrer comme terme p dans la somme} + \sum_{k=1}^{p-1} F_{i-j-k-1}^{(p)} F_{j+k+1-p-1}^{(p)} + \underbrace{F_{i-j-1}^{(p)} F_{j-p}^{(p)}}_{\text{terme k=0 de la somme}} \\ &= F_{i-j-1}^{(p)} \left(F_j^{(p)} + F_{j-p}^{(p)}\right) + \sum_{k=1}^p F_{i-j-k-1}^{(p)} F_{j+k+1-p-1}^{(p)} \\ &= F_{i-(j+1)}^{(p)} F_{j+1}^{(p)} + \sum_{k=1}^p F_{i-(j+1)-k}^{(p)} F_{(j+1)+k-p-1}^{(p)} \end{split}$$

On a alors prouvé que la formule est valable pour j + 1, donc, par récurrence sur j (et comme cela est vrai pour tout i et pour tout p):

$$\forall p,i \in \mathbb{N}, \forall j \in [\![0,i]\!], F_i^{(p)} = F_{i-j}^{(p)} F_j^{(p)} + \sum_{k=1}^p F_{i-j-k}^{(p)} F_{j+k-p-1}^{(p)}$$

Q.E.D.

Application

Cette formule, lorsque bien utilisée, permet de calculer en complexitée tempoerelle $O(p^2 * \log(n))$ le terme n de la suite F(p), en ne manipulant que des entiers, et sans connaiscance préalable de la suite (par exemple les racines du polynôme caractéristique) (voir algo_jump.c)

References

- 1. Pingala. https://fr.wikipedia.org/wiki/Pingala_(math%C3%A9maticien)
- 2. Liber abbaci
- 3. Suite de Lucas. https://fr.wikipedia.org/wiki/Suite_de_Lucas
- 4. Suite des vaches de Narayana. https://oeis.org/A000930
- 5. The Inverse matrix of Vandermonde matrix. http://www.vesnik.math.rs/vol/mv19303.pdf