

Science of Psychology

PSY W1001 Section 2 MW 8:40-9:55 Fall 2012

Monday, September 10
Behavioral
Neuroscience

Announcements

- Be sure to sign in on the attendance sheet.
 - Separate sheets of registered students and waiting list.
 - Add your name to the back if you are not on the waiting list.
- At the end of lecture today
 - Discussion of Experimental Participation Requirement
 - No one is forced to do experiments
 - If you will not be 18 before the fall reading break, or have ethical objections to participation please see me by Sept. 24th to arrange for an alternative assignment.
- Disability Services is looking for a note-taker for this class.
 - You do receive compensation. E-Mail me if interested.
- IF YOU ARE ON THE WAITING LIST
 - I will sign Add/Drop forms after lecture this morning.

Any Questions?

• I'll try to remember to ask this at the beginning of each lecture, but do feel free to interrupt if you have questions from material presented in the previous class.

How much do you know already?

- What percentage of your brain do you use?
- What species has the largest brain?
- Does alcohol kill brain cells?
- Is the left hemisphere of your brain the logical, organized thinking side and the right hemisphere the creative and original side?
- Do certain games make you smarter by exercising your brain?
- Is it true that you cannot grow new brain cells as an adult?

Myth busting

- The answer to each of the preceding questions is a very very loud NO!!!!
- For example:
- MYTH: you only use 10% of your brain
- TRUTH: you use the whole thing, all the time, in different ways
- ORIGIN: The origin of this myth is unknown. Perhaps it is from the ratio of neurons to glia in the brain (1:10) and the glia weren't well understood.
- Normal human brain function includes activity in all areas at the appropriate time
 - Some activity levels increase or decrease to allow for specific behavior
- Lots of mistaken ideas about the brain.
 - And no, alcohol doesn't necessarily kill brain cells, but it's not exactly healthy either!!

Demonstration

- How fast can your brain work?
 - Does anyone want to earn a dollar?

Processing takes time

Information processing in the brain

- Input
- Processing
- Output

- Predictive cues
 - Allow output to precede specific input cue
 - More about how we learn this coming up in a few weeks.

Brain Communication

- The basic (cellular) units of the brain
 - Neurons and Glia

- Neurons
 - Communication
- Glia
 - Support functions

Glia — The Misunderstood Cell

- Oligodendrocytes/Schwann Cells
 - Builds the myelin sheath
 - Deteriorates in MS
 - More on this in a minute

Astrocytes

- Phagocytosis, support neurons
 - Possibly a conduit from blood supply
 - Modulation of neuronal responses

Microglia

- Phagocytosis, immune responses
- Many protective functions

The Neuron

- This is a bipolar neuron
 - Dendrites
 - Input area
 - Receive information
 - Deliver it to cell body
 - Cell Body
 - Central processing area
 - Decision about whether or not to continue the signal
 - Axon
 - Output area
 - Signal travels to end to send a message to other neurons

Language of the Neuron – Communication in the Brain

- Electrical signals travel through the cell
 - Ions move across the cell membrane
- Movement of the electrical charge across the membrane is the communication signal
 - Action Potential
 - Axon
 - Graded Potential
 - Dendrite

Structure of a Neuron

o 2001 Sinauer Associates, Inc.

- Lipid Bilayer tube
- Proteins embedded inside, outside, and spanning through the membrane.
 - Channels
- Ions are in different concentrations inside and outside of the axon
- Matrix of the neuron
 - Sodium (Na+)
 - Potassium(K+)
 - Chloride(Cl-)
 - Calcium (Ca++)
 - Protein Anions (proteins with -)
- More negative charge inside the membrane relative to outside (polarization)

Resting Potential of the Neuron

o 2001 Sinauer Associates, Inc.

- Cells have an electrical charge caused by different ions and proteins
- Na+ channels are normally closed, K+ channels are normally open.
 - Resting potential from K+
 - Balance of osmotic and electrostatic forces
- Ion movement across membrane changes that charge
- Movement of the electrical charge along the dendrite and axon carries information
 - This the language of the neuron

Communication within neurons

Action Potential

- In the axon
- All or none event
- Change in charge opens Na+ channels to allow sodium in (more + inside the neuron)
- Returns to resting state

Graded Potentials

- In the dendrite
- Not an all-or-none event
- Can get smaller over time and distance

Moving the signal

- Ions don't stay in one place
 - Diffusion
- In the action potential diffusion of Na+ triggers more channels to open
- This continues until the signal reaches the end of the axon
- Slightly different in the dendrite.

Fast vs. Slow Communication

- Myelin covers some axons, leaving gaps.
- Action potential occurs only at the gaps
- Faster method of travel of a signal down the axon
- Multiple sclerosis is the degeneration of myelin

- Slower ot incomplete communication
- Saltatory conduction animation

Communication Between Neurons

- Action potential reaches the end of the axon
 - Presynaptic ending
- Small sacs of neurotransmitters (vesicles)
- Diffusion of chemical signal across synaptic cleft
- Receptors respond to neurotransmitter
- Action at receptor produces postsynaptic potential in the dendrite of next cell
- One neuron \rightarrow one NT
 - (but sometimes more than one)

What does the transmitter do?

 Action at the receptor on the post synaptic neuron (dendrite)

 Message to a different neuron

How does the signal end?

- Neurotransmitter is deactivated
 - Enzymatic Degradation
 - Reuptake (active transport mechanism)

Deactivating Enzymes

Summary

- Message received at dendrite
- Graded potential travels toward cell body
- Action potential starts and travels to the end of the axon.
- Neurotransmitter is released
- Signal sent to next neuron
- Neurotransmitter taken back up into original cell or metabolized

Neurotransmitters and their actions

- LOTS of neurotransmitters
 - Biggies:
 - Dopamine (DA)
 - Serotonin (5HT)
 - Norepinephrine (NE)
 - Gammaaminobutyric acid (GABA)
 - Acetylcholine (Ach)
 - Glutamate (Glu)
 - Current research is focusing on interactions between neurotransmitters
 - DA and Glu in schizophrenia
 - 5HT and NE in depression
 - DA and adenosine in motivation

Messing with the system

- Altering the neurotransmitter signal
 - Agonist actions
 - Act like neurotransmitters
 - Increase actions of neurotransmitters
 - Antagonist actions
 - Decrease action of neurotransmitters
 - Block actions of neurotransmitters

Put it all together to explain....

- SSRI
 - Selective serotonin reuptake inhibitor
 - What does it do?
 - Is an SSRI and agonist or an antagonist drug?
- Is this depiction accurate?
 - Advertisement

Why do neurons matter?

- Action of many neurons together can produce behavior
 - Motor responses
 - Initiating behavior
 - Decisions, choices, thoughts, feelings
 - Turning up the volume, or turning it down

Next time

- Organization of the brain
 - Structures and functions

• Research in Neuroscience

• Now: Please stay seated for a description of the experimental participation requirement.

Study Questions

- How much of your brain do you use?
- What is the difference between neurons and glia?
- What happens to the glia in MS (multiple sclerosis)? Be specific about the type of glial cell, as well as the effect of the disorder on normal function.
- How is the action of a neuron like the input \rightarrow processing \rightarrow output model of information processing? Use this to explain why I can catch a dollar that I drop intentionally, but another person finds it very difficult to catch a dollar that I drop.
- Draw and label a bipolar neuron, including everything you can think of to include.
- What is the function of the dendrite? The cell body? The axon?
- What is the language of the neuron?
- What is the difference between a graded potential and an action potential? Include things like voltage-sensitive sodium channels, all-or-none effect, etc.
- How does myelin speed the rate of travel of the action potential? Be specific about the action potential
- How is communication <u>between</u> neurons achieved? Be specific about the actions at the axon of the sending cell, the gap between neurons, and the protein receptors on the receiving cell.
- What does a neurotransmitter do?
- How does the signal from one neuron to another end?
- How does and SSRI drug act at the synapse? Is it an agonist or an antagonist? (Be prepared to answer a question like this about a hypothetical drug.)
- What are different ways a drug can have an agonist action? An antagonist action?
- How does the activity of a single neuron relate to activity that is measured by techniques like functional magnetic resonance imaging (fMRI)? (note: you will need information from the following lecture to answer this question)
- Why is it important to understand the functioning of neurons?