應數一線性代數 2020 春,期末考

學號	長:
本次	《考試共有 10 頁 (包含封面),有 14 題。如有缺頁或漏題,請立刻告知監考人員。
考討	式須知:
•	請在第一頁以及最後一頁填上姓名學號,並在每一頁的最上方屬名,避免釘書針斷裂後考卷遺失。
•	不可翻閱課本或筆記。
•	計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
	高師大校訓:誠敬弘遠
誠,	一生動念都是誠實端正的。敬,就是對知識的認真尊重。宏,開拓視界,恢宏心胸。遠,任重致遠,不畏艱難。
	請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

1. (10 points) Find the projection matrix P for the plane W: 3x + 2y + z = 0 in \mathbb{R}^3 and the find the projection \vec{b}_w of $\vec{b} = [4, 2, -1]$ on it. T = [4, 2, -1]

of
$$\vec{b} = [4, 2, -1]$$
 on it. $\begin{bmatrix} 11 \\ -2 \\ \end{bmatrix}$, $P = \begin{bmatrix} 5 & -6 & -3 \\ -6 & 10 & -2 \\ \end{bmatrix}$ Answer: $\vec{b}_w = \begin{bmatrix} 14 & -29 \\ \end{bmatrix}$, $P = \begin{bmatrix} 14 & -29 \\ \end{bmatrix}$ 13

2. (10 points) Find the lease squares straight line fit to the four points (0,1) (1,3) (2,4) (3,4) and use it to approximate the fifth points (4, a).

Answer: the line equation = $1.5 + \chi$, a= 5.5

3. (5 points) Find the coordinate vector of $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ in M_2 relative to $\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right)$ Answer: $\underline{\begin{bmatrix} 3, 5, 1, 1 \end{bmatrix}}$

4. (10 points) Find the five fifth roots of -243i. (need not simplify)

A: 3 (
$$GS(\frac{3\pi}{10} + \frac{2k\pi}{5}) + \lambda Sin(\frac{3\pi}{10} + \frac{2k\pi}{5}))$$
, $k = 0.1.2.3.4$

5. (10 points) Find the matrix representations $R_{B,B}$, $R_{B',B'}$ and an invertible C such that $R_{B',B'} = C^{-1}R_{B,B}C$ for the given linear transformation T.

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as <u>reflection</u> of \mathbb{R}^3 through the plane x+y-z=0; B=E, B'=([1,0,1],[1,-1,0],[1,1,-1]).

Is $C=C_{BB'}$ or $C_{BB'}$?

6. (5 points) Express $(\sqrt{3}+i)^6$ in the form a+bi for a,b are real numbers. Answer: $a=\underline{}$, $b=\underline{}$.

7. (10 points) Using the Gram-Schmidt process to transform the basis $\{[1,i,1-i],[1+i,1-i,1]\}$ into an orthogonal basis and then extend it as an orthogonal basis for \mathbb{C}^3 .

Answer: the found orthogonal basis for \mathbb{C}^3 is $\underbrace{\{[1,i,1-i],[1+i,1-i,1]\}}_{\{1,i,1-i\},[3+3],\{5-5],\{2,1\}}_{\{1,i,1-i\},[3+3],\{5-5],\{2,1\}}$

8. (10 points) Find an unitary matrix U and a diagonal matrix D such that $D = U^{-1}AU$. Also find where

A =
$$\begin{bmatrix} 1 & -i & 0 \\ i & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad U = \begin{bmatrix} \sqrt{5} & -\sqrt{5} & 0 \\ \sqrt{5} & \sqrt{5} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

9. (10 points) Find a Jordan canonical form and a Jordan basis for the given matrix.

$$J = \begin{bmatrix}
i & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 & 0 \\
2 & 0 & -1 & 0 & 2
\end{bmatrix}$$

$$basis = \begin{cases}
\begin{bmatrix}
i & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
2 & 0 & -1 & 0 & 2
\end{bmatrix}$$

10. (10 points) Find a polynomial in A that gives the zero matrix.

$$\begin{bmatrix} i & 0 & 0 & 0 & 0 \\ 0 & i & 1 & 0 & 0 \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ \end{bmatrix}$$

11. (5 points) Prove or disprove the following: All 2 × 2 matrix with determinant 1 is an orthogonal matrix.

12. (10 points) Find all the possible 2×2 real matrix that is unitarily diagonalizable.

13. (5 points) Prove that for $\vec{u}, \vec{v} \in \mathbb{C}^n$, $(\vec{u}^*\vec{v})^* = \overline{\vec{u}^*\vec{v}} = \vec{v}^*\vec{u} = \vec{u}^T \overline{\vec{v}}$

- 14. (10 points) Prove the following:
 - (a) Show that every Hermitian matrix is normal.
 - (b) Show that every unitary matrix is normal.
 - (c) Show that, if $A^* = -A$, then A is normal.

應數一線性代數期末考,	學器.	胜 夕.	. 以下中悶券人	早指偿

Question:	1	2	3	4	5	6	7	8
Points:	10	10	5	10	10	5	10	10
Score:								
Question:	9	10	11	12	13	14		Total
Points:	10	10	5	10	5	10		120
Score:								