Calcul de la fonction de Mertens

Vie Paul & Servigne Joseph

4 octobre 2024

Introduction

La fonction de Mertens est une fonction arithmétique définie par la somme des fonctions de Möbius, notée ${\it M}$:

$$M(n) = \sum_{k=1}^{n} \mu(k) \tag{1}$$

où μ est la fonction de Möbius, définie par :

$$\mu(k) = \begin{cases} 1 & \text{si } k = 1 \\ 0 & \text{si } k \text{ a un facteur carr\'e} \\ (-1)^r & \text{si } k \text{ est produit de } r \text{ nombres premiers distincts} \end{cases}$$

Objectif

L'objectif de ce projet est de calculer la fonction de Mertens pour de grands entiers n.

- ▶ Elle est liée à la fonction ζ de Riemann.
- La conjecture de Riemann stipule que les zéros non triviaux de la fonction ζ ont une partie réelle égale à $\frac{1}{2}$.
- ▶ La conjecture de Mertens stipule que $|M(x)| \le \sqrt{x}$ pour tout réel x, mais a été réfutée en 1985 par Odlyzko et te Riele.
- ▶ Si $M(n) = O(n^{\frac{1}{2} + \epsilon})$ pour tout $\epsilon > 0$, cela implique que la conjecture de Riemann est vraie.

Formule d'inversion de Möbius

Soit f et g deux fonctions arithmétiques. Si pour tout entier n on a

$$g(n) = \sum_{d \mid n} f(d) \tag{3}$$

alors pour tout entier n on a

$$f(n) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right) \tag{4}$$

Preuve.

$$\sum_{d|n} \mu(d)g\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \sum_{I|\frac{n}{d}} f(I) = \sum_{I|n} f(I) \sum_{\substack{d|n\\I|\frac{n}{d}}} \mu(d)$$

$$= \sum_{I|n} f(I) \sum_{\substack{d|\frac{n}{I}}} \mu(d) = \sum_{I|n} f(I) \sum_{\substack{m|\frac{n}{I}}} \mu(m) = f(n)$$

Théorème sur la fonction de Mertens

Pour tout réel u et x tels que $1 \le u \le x$, on a l'égalité suivante :

$$M(x) = M(u) - \sum_{m \le u} \mu(m) \sum_{\frac{u}{m} < n \le \frac{x}{m}} M\left(\frac{x}{mn}\right).$$
 (5)

- Preuve basée sur la formule d'inversion de Möbius.
- La somme interne se réécrit comme une double somme sur les diviseurs.
- ightharpoonup Simplification via la somme des valeurs de μ sur les diviseurs.

Méthode de calcul

- Réduction des termes dans la formule de départ.
- ▶ Utilisation de la fonction arithmétique $\alpha(n) = \lfloor \frac{y}{n} \rfloor$.
- ▶ Lemme clé : $\alpha(n)$ prend au plus $2\lfloor \sqrt{y} \rfloor + 1$ valeurs.

$$\sum_{m=1}^{u} \left(\left\lfloor \frac{x}{m} \right\rfloor - \left\lfloor \frac{u}{m} \right\rfloor \right) \ge \left\lfloor x \right\rfloor - \left\lfloor u \right\rfloor = x + O(u)$$

Réduction du nombre de termes

- Réécriture de la formule en utilisant le Lemme précédent.
- ► Nouvelle décomposition :

$$M(x) = M(u) - S_1(x, u) - S_2(x, u)$$
 (6)

$$S_1(x, u) = \sum_{m \le u} \mu(m) \sum_{\frac{u}{m} < n \le \sqrt{\frac{x}{m}}} M(\frac{x}{mn})$$

$$S_2(x, u) = \sum_{k \le \sqrt{x}} M(k) \sum_{m \le \min(u, \frac{x}{k^2})} \mu(m) l(\frac{x}{m}, k)$$

où
$$I(y, k) = \#\{n : \sqrt{y} < n \le y, \lfloor \frac{y}{n} \rfloor = k\}$$

Réduction du nombre de termes

Le nombre de termes de $S_1(x, u)$ et $S_2(x, u)$ est $O(\sqrt{xu})$

- ▶ Preuve par l'étude de la série $U_n = \sum_{m \le n} \frac{1}{\sqrt{m}}$.
- ▶ Réduction efficace du nombre de termes à évaluer.

$$B_{1}(x,u) = \sum_{m \leq u} \sum_{\frac{u}{m} < n \leq \sqrt{\frac{x}{m}}} 1 = \sum_{m \leq u} \left(\lfloor \sqrt{\frac{x}{m}} \rfloor - \lfloor \frac{u}{m} \rfloor \right) < \sqrt{x} \sum_{m \leq u} \frac{1}{\sqrt{m}}$$

$$(7)$$

Calcul de $\mu(n)$ avec le Crible d'Ératosthène

▶ Algorithme pour tabuler les valeurs de $\mu(n)$:

```
Data: 2 Entiers : b > a > 0
Result: une table t(n) des valeurs de \mu(n) pour a < n < b
forall i \in [a; b] do
       t(i) \leftarrow 1
end
forall p premier t.q p \in [2; \sqrt{b}] do
       forall m multiple de p^2 t.q m \in [a; b[ do t(m) \leftarrow 0
       end
       forall m multiple de p t.q m \in [a; b[ do
              t(m) \leftarrow t(m) \cdot -p
       end
end
forall n \in [a; b] do
       if t(n) \neq 0 then
              if |t(n)| < n then
                      t(n) \leftarrow t(n) \cdot -1
              end
              if t(n) > 0 then
                      t(n) \leftarrow 1
              end
              if t(n) < 0 then
                      t(n) \leftarrow -1
              end
       end
end
```

Complexité des Calculs

- Complexité du calcul de I(y, k) : O(1)
- ► Complexité du Crible d'Ératosthène : $O(x \ln(\ln(x)))$
- ▶ Complexité de l'algorithme pour calculer $\mu(n)$:

$$O((b-a)\ln(\ln(b)) + \frac{\sqrt{b}}{\ln(b)}) \tag{8}$$

Calcul de la Fonction de Mertens

- Introduction de la tabulation de M(n) pour des blocs de taille L.
- ► Complexité de la tabulation : $O(L \ln(\ln(a_{k+1})) + \frac{\sqrt{a_{k+1}}}{\ln(a_{k+1})})$.

Démonstration.

- ▶ Tabuler μ de a_k à a_{k+1} .
- $M(a_k + I) = \mu(a_k + I) + M(a_k + I 1)$ pour $0 \le I < a_{k+1} a_k$.

Minimisation de la Complexité

Lemma

La complexité de M(n) est $O(\sqrt{xu} + \frac{x}{u} \ln(\ln(\frac{x}{u})))$.

Démonstration.

- ▶ $O(\frac{x}{u}\ln(\ln(\frac{x}{u})))$: Complexité de la tabulation de μ et des nombres premiers jusqu'à $\frac{x}{u}$.
- ► Tabulation par blocs de taille L n'affecte pas la complexité de $S_1(x, u)$ et $S_2(x, u)$.

Nombre de termes de $S_1(x, u)$

ightharpoonup Calcul de $S_1(x, u)$:

$$S_1(x, u) = \sum_{m \le u} \mu(m) \sum_{\frac{u}{m} < n \le \sqrt{\frac{x}{m}}} M\left(\frac{x}{mn}\right)$$

Le nombre de termes de S_1 calculé par des blocs de taille L est :

$$\sum_{m \leq u} \sum_{k \leq \frac{x}{ul}} \left(\min \left(\left\lfloor \frac{x}{m a_k} \right\rfloor, \left\lfloor \sqrt{\frac{x}{m}} \right\rfloor \right) - \max \left(\left\lfloor \frac{x}{m a_{k+1}} \right\rfloor, \left\lfloor \frac{u}{m} \right\rfloor \right) \right)$$

Démonstration.

Voir démonstration détaillée dans le document.

Complexité de $S_1(x, u)$

$$\sum_{m \leq u} \sum_{k \leq \frac{x}{ul}} \left(\min \left(\left\lfloor \frac{x}{m a_k} \right\rfloor, \left\lfloor \sqrt{\frac{x}{m}} \right\rfloor \right) - \max \left(\left\lfloor \frac{x}{m a_{k+1}} \right\rfloor, \left\lfloor \frac{u}{m} \right\rfloor \right) \right)$$

- ► Subdivision de $\left[\frac{u}{m}, \sqrt{\frac{x}{m}}\right]$.
- $\triangleright \sum_{k \leq \frac{x}{n!}} (\ldots) \leq \sqrt{\frac{x}{m}}.$
- ▶ Complexité en temps de $S_1(x, u) : O(\sqrt{xu})$.

Complexité de $S_2(x, u)$

$$S_2(x, u) = \sum_{k \le \sqrt{x}} M(k) \sum_{m \le \min(u, \frac{x}{k^2})} \mu(m) l\left(\frac{x}{m}, k\right)$$

- $\blacktriangleright \mu(m), M(k), I\left(\frac{x}{m}, k\right)$ obtenus en O(1).
- ► Complexité en temps de $S_2(x, u)$:

$$\sum_{m \le u} \sum_{k \le \sqrt{\frac{x}{m}}} 1 = \sum_{m \le u} \sqrt{\frac{x}{m}}$$

► Complexité : $O(\sqrt{xu})$.

Optimisation de u

- Posons $u = x^{1/3} \ln(\ln(x))^{2/3}$.
- La complexité devient :

$$\sqrt{xu} + \frac{x}{u}\ln(\ln(\frac{x}{u})) = x^{2/3}\ln(\ln(x))^{1/3} + \frac{x^{2/3}}{\ln(\ln(x))^{2/3}}\ln(\ln(\frac{x}{u}))$$
$$= O(x^{2/3}\ln(\ln(x))^{1/3}).$$

Calcul de la Partie Entière de la Racine n-ième

- ▶ Problème : Calculer $\lfloor \sqrt[n]{a} \rfloor$ pour un entier $a \ge 1$.
- Méthode basée sur l'algorithme de Newton et généralisée à partir de $\lfloor \sqrt{a} \rfloor$.

Data: un entier positif a

Result: le nombre m t.q. $m^n \le a < (m+1)^n$

$$\begin{array}{c} x \leftarrow a \\ y \leftarrow \lfloor \frac{(n-1)x + \frac{a}{x^{n-1}}}{n} \rfloor \\ \textbf{while } y < x \textbf{ do} \\ \mid x \leftarrow y \\ y \leftarrow \lfloor \frac{(n-1)x + \frac{a}{x^{n-1}}}{n} \rfloor \end{array}$$

end

return x

Algorithm 1: Calcul de $|\sqrt[n]{a}|$

Preuve de la Validité de l'Algorithme

- Basée sur la méthode de Newton pour résoudre $x^n a = 0$.
- Utilisation de l'inégalité arithmético-géométrique.

$$\frac{(n-1)x + \frac{a}{x^{n-1}}}{n} \ge \sqrt[n]{a}$$

$$x_{k+1} = \lfloor \frac{(n-1)x_k + \frac{a}{x_k^{n-1}}}{n} \rfloor$$

$$x_{k+1} \ge \lfloor \sqrt[n]{a} \rfloor$$

- ▶ Algorithme termine si $x_k \leq \lfloor \sqrt[n]{a} \rfloor$.
- Garantit $x_k = |\sqrt[n]{a}|$ à la fin de l'algorithme.

Choix du Facteur L

- L doit être suffisamment grand pour limiter les appels à la tabulation de μ .
- ▶ Définition : $L \ge u$ pour une complexité en espace O(L).
- Utilisation de L = 256u pour $n = 10^{17}$ nécessitant environ 2 Go de RAM.

Implémentation en C

- ▶ Implémentation en langage C pour la performance.
- Objectif : éviter les erreurs d'arrondi et comprendre toutes les fonctions du programme.
- Code disponible sur :

```
https://moule.informatique.univ-paris-diderot.fr/
-/snippets/6/raw/main/mertens_compute.c
```

Tableau des Valeurs de M(n)

n	<i>M</i> (<i>n</i>)	Cpu time (ms)	Real time (s)
10 ¹⁶	-3195437	5132270	5137
2×10^{16}	-7192737	8245970	8253
3×10^{16}	-1493402	10810250	10819
4×10^{16}	18329011	13057600	13068
$5 imes 10^{16}$	15092343	15077940	15091
6×10^{16}	-15262206	17073420	17087
7×10^{16}	45264522	18851100	18866
8×10^{16}	-43148849	20596880	20613
9×10^{16}	-27907378	22541820	22560
10 ¹⁷	-21830254	24166000	24185

Résultats vérifiés avec la littérature.