Nested Subcritical Flows Within Supercritical Systems

R.C. Hendricks Lewis Research Center Cleveland, Ohio

M.J. Braun and R.L. Wheeler III University of Akron Akron, Ohio

R.L. Mullen
Case Western Reserve University
Cleveland, Ohio

Prepared for the 20th Annual Cavitation and Multiphase Flow Forum sponsored by the American Society of Mechanical Engineers Albuquerque, New Mexico, June 24-26, 1985

-2518

NESTED SUBCRITICAL FLOWS WITHIN SUPERCRITICAL SYSTEMS

R.C. Hendricks National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

> M.J. Braun and R.L. Wheeler III University of Akron Akron, Ohio 44325

> R.L. Mullen Case Western Reserve University Cleveland, Ohio 44106

ABSTRACT

In supercritical systems the design inlet and outlet pressures are maintained above the thermodynamic critical pressure $P_{\rm C}$. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with back-pressure greater than $P_{\rm C}$ and a rotor (bearing) with ambient pressure greater than $P_{\rm C}$ illustrate the existence of subcritical pressure regimes nested within supercritical systems.

NOMENCLATURE

- C clearance, cm
- D diameter, cm
- D_c density at thermodynamic critical point, q/cm^3
- i index indicating inlet number
- e eccentricity
- G mass flux, g/s cm²
- Gr reduced mass flux, G/G*
- G* thermodynamic parameter, $\sqrt{P_{CPC}/Z_{C}}$, 6010 g/s cm² for nitrogen
- L spacer length, cm
- aperture (orifice, Borda) length, cm
- P pressure, MPa
- Pr reduced pressure, P/Pc

- R radius
- R_q gas constant
- S entropy, J/q K
- T temperature, K
- Tr reduced temperature, T/Tc
- w mass flow rate, g/sec
- Z axial coordinate, cm
- Z_{C} compressibility factor, $P/\rho R_{Q}T$
- θ circumferential coordinate, rad
- ρ density, q/cm³
- n viscosity
- ω angular velocity

Subscripts

- c thermodynamic critical point
- e exit
- in inlet
- s static
- O stagnation

INTRODUCTION

Many current operational supercritical systems have been designed on a simple rule of thumb – maintain the design inlet and outlet pressures well above the thermodynamic critical pressure $P_{\rm C}$ to circumvent two-phase flow and other associated uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule

of thumb is adequate in many low-power designs but, as will be demonstrated, it is inadequate for high-performance turbomachines and linear systems.

Global thermodynamics permits local events that are considered unstable or unattainable when viewed in terms of total process dynamics. It becomes a matter of refining one's view of the black box containing the system. For example, local "violations" of thermodynamics are termed metastabilities. Classic among these are the work of Skripov (1) and applied work such as fracture, boiling, and condensing (2,3). More recently the metastable character of water was investigated (4).

Thus the concept of a two-phase region nested within a supercritical region would be considered not only unstable but unrealistic. However, there is no reason for such an exclusion as it depends on the thermohydromechanics that exist within components (the black box) operating at pressures above the thermodynamic critical point. Such conditions do not violate any thermodynamic hypotheses but are a source of incompatibility for the practicing engineer.

This paper demonstrates that two-phase regions can be nested within a supercritical pressure system. Furthermore conditions for the existence of nested zones are prevalent for sharp-edge inlets and for eccentrically loaded high-performance turbomachines operating above the thermodynamic critical pressure.

SIMPLE GEOMETRIES

Borda-Inlet Tube

Within a single-phase fluid, nested two-phase flows near sharp-edge inlets are commonplace and are in many cases represented as cavitation; however, the ambient pressure is subcritical. Consider the pressure profile of Fig. 1 (5-7). The inlet is sharp, and the L/D can be as high as 120 (6). The working fluid is nitrogen ($P_C = 3.417 \text{ MPa}$, $T_C = 126.3 \text{ K}$, Dc = 0.3105 g/cm³). The geometry is given in Fig. 1(a). The system was well instrumented and care was taken to maintain an adiabatic environment. For this configuration the inlet pressure was much greater than P_C , but the pressure just 0.54 mm (0.020 in) from the sharp-edge inlet was less than saturation based on stagnation conditions $^2P_S(S_0)$. Downstream there is an immediate recovery toward $P_S(S_0)$, or pseudocritical $^3P(S_0)$, but full recovery could occur anywhere between this point and the exit as illustrated by the three different profiles. These profiles were achieved by two methods: inlet stagnation condition control, and exit backpressure control.

Inlet control. With controlled inlet stagnation conditions the pressure at the exit remained subcritical, but the pressure within the tube downstream of the inlet was supercritical for isotherms 127.8 K and 130.5 K (Fig. 1(b)). This fully defines a two-phase flow nested between two zones at supercritical pressure. These results are somewhat open to question as $S_0 > S_C$. However, $S_0 < S_C$ for run 1133

 $^{1}\text{Perhaps}$ as a fracture surface that when viewed from close up appears with discontinuities everywhere yet appears continuous and smooth when viewed from afar. $^{2}\text{P}_{\text{S}}\left(\text{S}_{0}\right)$ is the static pressure as a function of stagnation entropy.

(Fig. 1(c), where the recovery pressure was greater than P_c . Run 1133 is inlet temperature controlled and nested, but the nesting is marginal.

Backpressure control. For run 1248 (Fig. 1(c)) the backpressure was increased sufficiently to move the pressure discontinuity ("shock") within the nozzle. A two-phase zone occurred but was at most weakly nested (all downstream pressures were less than $P_{\rm C}$). For run 1547 the backpressure was increased above $P_{\rm C}$, but there was little change in the two-phase zone within the tube nested between $P_{\rm O}$ (at -27 cm) and $P_{\rm C}$ (at 0 cm), where $P_{\rm O}$ and $P_{\rm C}$ are greater than $P_{\rm C}$.

Four Sequential Axially Aligned Borda or Orifice Inlets

A more complex flow is established by a sequence of orifices or Borda apertures (8,9). The pressure profiles of Fig. 2(a) are for N Bordas in sequence with T_0 approaching $T_{\rm c}$ and backpressure dependent on downstream losses. The pressure signature here illustrates a nested set of two-phase zones within Borda 2, between the supercritical pressure zones of Borda 1 and Borda 3. With the inlet stagnation conditions constant the backpressure to Borda 4 was varied until $P_{\rm e} > P_{\rm C}$ within Borda 2; the two-phase zones remain nested between P_0 and $P_{\rm e}$, which are both greater than $P_{\rm c}$. Run 2879 (Fig. 2), illustrates that such zones can also exist within Borda 1. Because of an experimental facility limitation on P_0 , nested regions could be approached in Borda 3 but not fully established; exclusion is therefore not warranted for either Borda 3 or Borda 4.

For orifice flows, which may never choke, the pressures in the nested subcritical zones are often higher than saturation pressure. These zones shift to higher pressures as backpressure is increased and may not exhibit two-phase behavior (Fig. 2(b), orifice 2).

TURBOMACHINE CONFIGURATIONS

Normally seals and bearings for high-performance turbomachines operate at small eccentricities. However, during abnormal events or even the limit-cycle type of event, dimensionless eccentricities can approach 1 (rubbing).

Seals

Figure 3(a) illustrates the geometry of a high-performance turbomachine seal such as for the space shuttle main engine (SSME) (8,10). The working fluid is parahydrogen ($P_{C}=1.2928$ MPa, $T_{C}=32.976$ K, $D_{C}=0.0314$ g/cm³). The pressure profiles (Figs. 3(b)-(d)) are for a fully eccentric, nonrotating shaft. The inlet pressure is greater than P_{C} , as is the pressure at the inlet to the third step (Fig. 3(b)). However, immediately downstream of the step the pressure on one "side" of the seal ($\theta=0$) remains above P_{C} , while the pressure on the opposite "side" ($\theta=\pi$) is nearly P_{S} . Thus the circumferential pressure profile possesses all states between P_{I} at $\theta=0$ to approximately $P_{S} < P_{C}$ at $\theta=\pi$. Furthermore the system backpressure could be increased above P_{C} , demonstrating yet another nested distribution – now in both θ and Z (Fig. 3(c)). To corroborate these results, the tests were repeated (e.g., Fig. 3(d)). Thus with eccentric seals pressure gradients of sufficient magnitude can exist to nest two-phase zones both axially and circumferentially.

Bearings

Unlike those for a seal the axial pressure gradients for a bearing are usually small, but the

 $^{^3}$ Pseudocritical: extrapolation of the saturation locus to the knee of the Joule-Tompson locus constrained by the locii of specific heat maximums. 4 For $S_0 > S_C$, pseudonesting can occur, but two phases may not occur.

circumferential gradients are usually much larger. 5 With the establishment of nested zones in seal flows, such nested zones should occur naturally in bearings. The two-phase zone downstream of the minimum clearance in a bearing is well known, and the pressure and temperature on the stator have been mapped for a lowperformance machine (12). It is also noted in (12) that the two-phase zone began to collapse as system ambient pressure was increased. However, calculations (13) for a similar high-performance bearing in fluid hydrogen at high eccentricity (Table 1) reveal a twophase zone nested within a system where $P_{in} > P_e > P_c$ (Fig. 4). Nested two-phase zones in a bearing can lead to the onset of instabilities, contrary to the axial flow seal. The onset of the nested zone depends on the bearing parameter, but onset is prevalent at lower ambient pressure (e.g., one-tenth those of Table 1), high eccentricity, and high rotating speed and for large geometries. This effect remains to be verified. If it is correct, this demonstrates yet another method of achieving nested two-phase zones, those not requiring a sharp geometrical configuration to "trigger" the event, spontaneous nucleation within the metastable field being necessary and sufficient.

SUMMARY

Zones of two-phase flows have been shown to be nested within a supercritical pressure envelope. These zones are established by controlling inlet stagnation conditions, exit backpressure, or combinations. The zones can be "triggered" by discontinuous changes in geometry or by significant pressure gradients. For high-performance turbomachine seals and possibly bearings, nested two-phase zones can be found in the circumferential and axial coordinates. The phenomenon in bearings remains to be demonstrated experimentally.

REFERENCES

- 1. Skripov, V.P., <u>Metastable Liquids</u>, Wiley, New York, 1974.
- 2. Frenkel, J., <u>Kinetic Theory of Liquids</u>, Dover Publications, New York, 1955.
- 3. Hendricks, R.C., Mullen, R.L., and Braun, M.J., "Analogy Between Cavitation and Fracture Mechanics," ASME/JSME Thermal Engineering Conference, Proceedings, Vol. 1, ASME, New York, 1983, pp. 35-42.

stability (11). 6 Modified bearing parameter = $(6nR_{\omega}/_{\Delta}PCe)(e/C)$

- 4. Angus, S., Imperial College, London, private communication.
- 5. Hendricks, R.C., and Simoneau, R.J., "Some Flow Phenomena in a Constant Area Duct with a Borda Type Inlet Including the Critical Region," ASME Paper 78-WA/HT-37, Dec. 1978.
- 6. Hendricks, R.C., "Some Observations of a Free Jet Phenomenon in a 90-Degree-Sharp-Edge-Inlet Geometry," Advances in Cryogenic Engineering, Vol. 25, Plenum Press, New York, 1980, pp. 506-520.
- 7. Hendricks, R.C., "Some Aspects of a Free Jet Phenomenon to 105 L/D in a Constant Area Duct," <u>International Congress of Refrigeration</u>, 15th, Vol. 2, Organizing and Scientific Committee of the 15th International Congress of Refrigeration, Italy, 1980, Paper B1-78.
- 8. Hendricks, R.C., "A Comparison of Flow Rates and Pressure Profiles for N-Sequential Inlets and Three Related Seal Configurations," <u>Advances in Cryogenic Engineering</u>, Vol. 30, Plenum Press, New York, 1983, pp. 837-846.
- 9. Hendricks, R.C., and Stetz, T.T., "Flow Rates and Pressure Profiles for One to Four Axially Alined Borda Inlets," NASA TP-2390, 1984.
- 10. Hendricks, R. C., "A Comparative Evaluation of Three Shaft Seals Proposed for High Performance Turbomachinery," NASA TM-83021, 1982.
- 11. Childs, D.W., Hendricks, R.C., and Vance, J.M., eds.: Rotordynamic Instability Problems in High-Performance Turbomachinery, NASA CP-2133, 1980.

 12. Braun, M.J., and Hendricks, R.C., "An Experi-
- 12. Braun, M.J., and Hendricks, R.C., "An Experimental Investigation of Vaporous/Gaseous Cavity Characteristics of an Eccentric Journal Bearing," ASLE Transactions, Vol. 27, No. 1, Jan. 1984, pp. 1-14.
- 13. Braun, M.J., and Hendricks, R.C., "An Experimental Investigation of the Effect of Pressure and Temperature Levels on the Development and Nature of the Cavitation Region in a Submerged Journal Bearing," Cavitation and Multiphase Flow Forum, ASME, New York, 1983, pp. 69-71.
- 1983, pp. 69-71.
 14. Hendricks, R.C., and Stetz, T.T., "Flow Through Aligned Sequential Orifice-Type Inlets," NASA TP-1967, 1982.

⁵Both seals and bearings can be designed to take advantage of these pressure gradients to provide significant damping and stiffness, which enhances stability (11).

TABLE 1. BEARING PARAMETERS FOR ANALYTICAL SOLUTIONS

Geometry:
Diameter, mm (in.)
Hydrodynamic:
Inlet pressure, P_{in} , MPa (psia) 13.8 (2000) Exit pressure, P_{e} , MPa (psia) 13.45 (1950) Maximum pressure, P_{max} , MPa (psia) 27.16 (3938) Minimum pressure, P_{min} , MPa (psia) 20 (36) Inlet temperature, T_{in} , K (R) 20 (36) Speed, rad/sec (rpm)

(a) Configuration geometry.

Figure 1. - Pressure profile for nitrogen flow through high-L/D tube with Borda inlet. (Dimensions are in centimeters (inches).)

Figure 1. - Concluded.

Figure 2. - Pressure profile for flow through four sequential axially aligned inlets.

(a) Three-step shaft seal.

Figure 3 - Pressure profile for fully eccentric, nonrotating, three-step SSME seal configuration.

Figure 3. - Concluded.

Figure 4. – Analytical pressure map for high-speed journal bearing with P_{in} > P_e > P_c. P_{in} = 13.8 MPa (2000 psi); P_e = 13.45 MPa (1950 psi); N = 75000 rpm; e_x = e_y = 0.68; T_{in} = 20 K (36 ^oR); P_{amb} = 0.1 MPa (14.7 psi); T_{amb} = 56 K (100 ^oR).

1. Report No. NASA TM-86980	2. Government Accession	on No.	. Recipient's Catalog No) .
4. Title and Subtitle		5	. Report Date	
Nested Subcritical Flows Within Supercritical Systems			,	:
			6. Performing Organization Code 506-60-42	
7. Author(s)		8	. Performing Organization	n Report No.
R.C. Hendricks, M.J. Braun, R.L. Wheeler III,		III,	E-2518	
and R.L. Mullen	10	. Work Unit No.	-	
9. Performing Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135			11. Contract or Grant No.	
			13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address			Technical Memorandum	
National Aeronautics and S Washington, D.C. 20546	14 14	. Sponsoring Agency Co	de	
In supercritical systems t above the thermodynamic cr rule of thumb to circumven regime nested within the s ties in heat transfer, flu The simple rule of thumb i for high-performance turbo regions can exist. Exampl than P _C and a rotor (bea trate the existence of sub systems.	itical pressure t problems assocupercritical preid mechanics, are sadequate in mamachines and lires for a free-jering) with ambies	P _C . Designers ciated with a substance system along the more power demands any low-power demands systems, who et expansion with ent pressure great	rely on this boritical presong with the ulled property varies is in the property of the proper	simple sure incertain- iations. nadequate -phase greater illus-
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Two phase; Supercritical; S Flows; Cryogenics	Subcritical;	Unclassified - STAR Category		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this Unclass		21. No. of pages	22. Price*