Let's Talk About

BEING GREEDY

Algorithmen in der Bioinformatik

2. Genom-Umordnung- Gierige Algorithmen -

Prof. Dr. Gunnar Klau

Nach Jones & Pevzner: An Introduction to Bioinformatics Algorithms, Ch.

Hinweise zum Urheberrecht

Bitte verzichten Sie in dieser Lehrveranstaltung auf Bild- und Tonaufzeichnungen.

Weitere Informationen finden Sie im Studierendenportal

Hinweise zum Urheberrecht

Das Veröffentlichen oder Teilen von Bild- und Tonaufzeichnungen dieser Lehrveranstaltung ist nicht gestattet.

Weitere Informationen finden Sie im Studierendenportal

Human-Mouse-Rat Ancestor 44)))))))))))))) Biologie

Mouse-Rat

Mouse-Rat

A

Biologie Mouse-Rat Ancestor 440004444444040 4444 440044404000000 404444Db4Dbbb0 44444444

Rat

Mouse

Weißkohl vs.

Brassica oleracea var. capitata f. alba

Kohlrabi

Brassica oleracea gongylodes

- Gemeinsamer Vorfahre
- Unterschiedliches Aussehen und Geschmack
- Mitochondriale DNA ist zu 99% gleich
- Unterschied: Gen-Anordnung!

mtDNA: Gen-Ordnung

Genom-Umordnung: Mutationen

Genom-Umordnung: Mutationen

Inversionen (Umkehrungen) sind die häufigste Ordnungs-Mutation!

Umkehrungen sind falsch aufgelöste Knoten

[Blöcke sind Gene]

Umkehrungen sind falsch aufgelöste Knoten

[Blöcke sind Gene]

Mensch-Maus: X-Chromosom

Gemeinsamer Vorfahre vor ~ 75 Millionen Jahren

Maus

Mensch

Fragen:

- Wie identifizieren wir Blöcke, die ähnlich (unverändert) geblieben sind?
 →®schnelles Alignment (siehe später im Kurs)
- > Wie sah das Genom des Vorfahrens aus?
 - → nur durch Vergleich mit weiteren Genomen zu beantworten
- Welche Schritte haben zu den unterschiedlichen Anordnungen geführt?

Die Geschichte des X-Chromsoms

Mensch-Maus: Genom-Vergleich

~245 Umordnungs-Mutationen:

Wen interessiert das?

Philadelphia-Chromosom

- ightharpoonup Translokation zwischen Chr. 22 \rightarrow 9
- ➤ Haben 90% aller Patienten mit Chronic Myelogenous Leukemia (CML)

Fusion gene auf dem Philadelphia-Chromosom

The fusion gene activates signal transduction pathways such as RAS/MAPK, PI-3 kinase, c-CBL and CRKL pathways, JAK-STAT, and the Src pathway.

Darmkrebs

Human-Mouse-Rat Ancestor

Umkehrungen ordnen:

das Problem

(44440004400004

44

44>>>4>>40>4

44>>>4>>4

Mouse

Rat

Umkehrungen und Genordnung

Die Genordnung wird durch eine Permutation π beschrieben:

$$\pi = \pi_{1} \dots \pi_{i-1} \pi_{i} \pi_{i+1} \dots \pi_{j-1} \pi_{j} \pi_{j+1} \dots \pi_{n}$$

$$\rho(i,j)$$

$$\pi_{1} \dots \pi_{i-1} \pi_{j} \pi_{j-1} \dots \pi_{i+1} \pi_{i} \pi_{j+1} \dots \pi_{n}$$

Die Umkehrung ρ (i, j) verdreht ein 'Bruchstück' von i bis j in π .

Umkehrungen: Beispiel

Umkehrungsabstand: Das Problem

Ziel: Für zwei vorgegebene Permutationen: finde die kürzeste Abfolge von Umkehrungen, die eine Permutation in die andere überführt.

Eingabe: Permutationen π und σ

<u>Ausgabe</u>: Eine Abfolge von Umkehrungen $\rho_1, \dots \rho_t$, die π in σ überführt, so dass t minimal ist (für alle möglichen Abfolgen $\rho_1, \dots \rho_v$)

Definition:

 $d(\pi, \sigma) := Umkehrungsabstand$

:= kleinstmöglicher Wert für t für gegebene π und σ

Sortieren durch Umkehrungen: Das Problem

Ziel: Für **eine** vorgegebene Permutationen: finde die kürzeste Abfolge von Umkehrungen, die sie in die Identitäts-Permutation (1,..,n) überführt.

Eingabe: Permutation π

Ausgabe: Eine Abfolge von Umkehrungen $\rho_1, \dots \rho_t$, die π in die Einheits-Permutation überführt, so dass t minimal ist (für alle möglichen Abfolgen $\rho_1, \dots \rho_v$)

Vorzeichen?

Das Pfannkuchen-Problem

- Der Koch ist nachlässig: seine Pfannkuchen haben alle unterschiedliche Größen.
- Der Kellner will sie ordnen: der Größte unten, der Kleinste oben.
- Dazu nimmt er jeweils eine Gruppe von Pfannkuchen hoch und dreht sie um (Flip)

Gegeben ein beliebiger Stapel, löse das mit der minimalen Anzahl von *Flips*.

Das Pfannkuchen-Problem

Ziel: Für einen vorgegebenen Stapel von *n* Pfannkuchen: Was ist die minimale Anzahl von Flips, um den Stapel zu ordnen?

Eingabe: Permutation π

Ausgabe: Eine Abfolge von Präfix-Umkehrungen $\rho_1, \dots \rho_t$, die π in die Identitäts-Permutation überführen, so dass t minimal ist (für alle möglichen $\rho_1, \dots \rho_v$).

Human-Mouse-Rat Ancestor

44>>>>>

Mouse-Rat Ancestor

Gierige Algorithmen

4444444

Mouse

Rat

Pfannkuchen-Problem: Gieriger Algorithmus

Idee: Sortiere den jeweils größten unsortierten Pfannkuchen ein: zuerst nach oben (1. Flip), dann an seinen Platz (2. Flip)

 \Rightarrow max. 2(n-1) Flips insgesamt (der letzte Pfannkuchen stimmt automatisch)

Christos Papadimitriou & William Gates: höchstens 5/3 (n + 1) Flips

Sortieren durch Umkehrungen: Gieriger Ansatz

In π = 1 2 3 6 4 5 sind die ersten drei Elemente sortiert \rightarrow lassen wir so

Die Länge des bereits sortierten Präfixes nennen wir $prefix(\pi)$ (=3)

Idee: erhöhe $prefix(\pi)$ bei jedem Schritt

 \Rightarrow Anzahl von Umkehrungen ist max. (n-1)

Gieriger Algorithmus: Pseudocode

SimpleReversalSort(π)

```
1 for i \leftarrow 1 to n-1

2 j \leftarrow Position des i-ten Elements in \pi (i.e., \pi_j = i)

3 if j \neq i

4 \pi \leftarrow \pi * \rho(i, j)

5 output \pi

6 if (\pi \text{ ist Identiät}) return
```

Liefert SimpleReversalSort die optimale Lösung?

$$\pi = (6, 1, 2, 3, 4, 5)$$

Approximationsalgorithmen (Minimierung)

Sei $OPT(\pi) \neq 0$ der optimale Lösungswert bei Eingabe π , zum Beispiel die optimale Anzahl Reversals beim Sortieren durch Umkehren oder die minimale Distanz (TotalDistance) beim Median-String-Problem.

Dann ist der **Approximationsfaktor** eines Algorithmus A **auf Eingabe** π :

$$A(\pi) / OPT(\pi)$$

Approximationsfaktor eines Algorithmus A: schlechtester Approximationsfaktor über alle Eingaben. Bei Minimierungsproblemen:

$$\alpha = \max_{\pi} A(\pi) / OPT(\pi)$$

Bemerkung: bei Maximierungsproblemen gilt $\alpha = \min_{\pi} A(\pi) / OPT(\pi)$

Human-Mouse-Rat Ancestor

Mouse-Rat Ancestor

Bruchstellen

(Breakpoints)

Mouse

Rat

Nachbarschaften & Bruchstellen

Permutation $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_{n-1} \pi_n$

Definitionen:

- ≥ Zwei Elemente π_i und π_{i+1} sind benachbart :⇔ $\pi_{i+1} = \pi_i \pm 1$
- > Zwischen zwei Elementen $π_i$ und $π_{i+1}$ befindet sich eine Bruchstelle : $⇔ π_i$ und $π_{i+1}$ sind <u>nicht</u> benachbart
- \triangleright $b(\pi) := \#$ Bruchstellen in π

Beispiel: $\pi = 1 \ 9 \ 3 \ 4 \ 7 \ 8 \ 2 \ 6 \ 5$

Erweiterte Permutationen

Damit die Bruchstellen vollständige Auskunft über die Sortierung geben, fügen wir zwei Elemente π_0 = 0 und π_{n+1} = n+1 an.

Beispiel:
$$\pi = 1 \mid 9 \mid 3 \mid 4 \mid 7 \mid 8 \mid 2 \mid 6 \mid 5$$
 $\pi = 0 \mid 1 \mid 9 \mid 3 \mid 4 \mid 7 \mid 8 \mid 2 \mid 6 \mid 5 \mid 10$

Umkehrungsabstand & Bruchstellen

Jede Umkehrung entfernt maximal zwei Bruchstellen

Beispiel:

$$\pi = 0 2 3 1 4 6 5 7$$

⇒ Umkehrungsabstand ≥ # Bruchstellen / 2

Besser Sortieren durch Bruchstellen?

BreakPointReversalSort?(π)

5

return

```
1 while b(\pi) > 0

2 Finde die Umkehrung \rho(i,j), die b(\pi \cdot \rho(i,j)) minimiert

3 \pi \leftarrow \pi \cdot \rho(i,j)

4 output \pi
```


Human-Mouse-Rat Ancestor

44}}

Korrekter Algorithmus

Mouse

Mouse-Rat Ancestor

Rat

Strips

Definitionen:

- Streifen: ein Intervall zwischen zwei aufeinanderfolgenden Bruchstellen
- Abnehmender Streifen: Elemente in abnehmender Folge (z. B. 6 5 oder 4 3 2)
- Zunehmender Streifen: Elemente in zunehmender Folge (z. B. 5 6 oder 2 3 4)
- > 1-elementige Streifen können zu- oder abnehmend sein. Wir definieren sie als abnehmend (mit Ausnahme von 0 und n + 1)

Beispiel:

Reduzierung der Bruchstellen

Theorem:

Wenn die Permutation π wenigstens einen abnehmenden Streifen hat, dann existiert eine Umkehrung ρ , die die Anzahl der Breakpoints vermindert (d.h.: $\exists \mathbb{Z} b(\pi \cdot \mathbb{Z}) < b(\pi)$).

Beweis:

Wähle denjenigen abnehmenden Streifen in π Imit dem kleinsten Element k. Dann ist k das letzte Element in diesem Streifen. Dann muss k-1 das letzte Element in einem zunehmenden Streifen sein. Umkehrung des Intervalls zwischen k-1 und k einschließlich k (wenn k-1 links von k; sonst zwischen k und k-1 einschließlich k-1) bringt die beiden zusammen und beseitigt damit mind. eine Bruchstelle. $_{QED}$

Was, wenn alle Streifen zunehmend sind?

Dann drehen wir einfach einen um!

Korrektes Sortieren durch Umkehrungen!

CorrectBreakpointReversalSort(π)

```
while b(\pi) > 0
if \pi hat einen abnehmenden Streifen
Wähle Umkehrung \rho, die b(\pi \cdot \rho) minimiert
else
Wähle Umkehrung \rho für zunehmenden Streifen in \pi
\pi \leftarrow \pi \cdot \rho
output \pi
return
```

Performance-Garantie

$$= \frac{\max(\text{Schritte in Approximation})}{\min(\text{Schritte in optimaler L\"osung})}$$

Approximation durch <u>CorrectBreakpointReversalSort()</u>: Mindestens jeder 2. Schritt eliminiert mindestens eine Bruchstelle \Rightarrow 2 max. 2 $b(\pi)$ Schritte

Bestmögliche Lösung:

Jeder Schritt eliminiert höchstens 2 Bruchstellen

- \Rightarrow min. $b(\pi)/2$ Schritte
- Performance-Garantie: $A = \frac{2b(\pi)}{\frac{b(\pi)}{2}} = 4$

Take home messages

- Verständnis von Genomumordnungen ist wichtig
- Eine Version (nicht die relevanteste)
 - Sortieren von Permutationen ohne Vorzeichen
- Approximationsalgorithmen
- Gierige Algorithmen
- Sortieren über Bruchstellen ergibt Faktor 4, viel besser als SimpleReversalSort

Das Motivsucheproblem

Ziel: Finde genau ein ∠—mer für jede DNA-Sequenz einer vorgebenen Menge, so dass der Konsensusscore über die ∠—mere maximal ist.

Eingabe: Eine **t** x **n** Matrix **DNA** sowie 🛴 (die Länge des gesuchten Motivs)

<u>Ausgabe</u>: Ein Vektor mit t Startpositionen $s = (s_1, s_2, ... s_t)$, so dass Score(s, t, DNA) maximal ist.

Brachialmethode: $O(\ell t n^t)$, etwas eleganter $O(\ell t n 4^\ell)$: [letzte Vorlesung]

zu langsam für realistische Probleme

Gierige Motivsuche: CONSENSUS

Idee: Suche die beste Lösung für Sequenz *i* unter der Annahme, dass die beste Lösung für 1...*i*-1 schon gefunden ist!

Starte mit 2 der t Sequenzen

- Finde die 2 ähnlichsten *I*-mere darin, d.h.: finde $\mathbf{s}=(s_1, s_2)$ mit maximalem Score(\mathbf{s} , 2, DNA)
- Iterativ für Sequenz i = 3, ..., t: Finde das dazu ähnlichste I-mer in Sequenz i, d.h.: finde s_i mit maximalem Score(s, i, DNA) für s=(s₁,...,s_{i-1},s_i...)

CONSENSUS: Permutiere Reihenfolge **1000** mal und merke bestes Motiv.

Score berechnet für *i* Sequenzen

Score berechnet

für 2 Sequenzen

Resultat:

- Nicht exakt (evtl. gibt es bessere Motive)
- Schlechter Approximationsfaktor (Übung)
- Sehr schnell (die meiste Zeit für die 2 ersten *I-*mere)
- Ergebnis häufig sehr gut

GreedyMotifSearch()

```
GreedyMotifSearch(DNA, t, n, I)
                                                                     Bisher bester
         bestMotif \leftarrow \mathbb{P}(1, 1, ..., 1)
1.
                                                                     Startvektor
                                                      Aktueller
         s ← ②(1, 1, ..., 1)←
2.
                                                      Startvektor
3.
         for s_1 \leftarrow 21 to n-l+1
                                                                                         Score berechnet
                                                                                         für t'=2
             for s_2 \leftarrow 21 to n - l + 1
4.
                  if Score(s, 2, DNA) > Score(bestMotif, 2, DNA)
5.
                       bestMotif_1 \leftarrow \mathbb{S}_1
6.
7.
                      bestMotif_2 \leftarrow \mathbb{S}_2
8.
         s_1 \leftarrow ?bestMotif_1
         s_2 \leftarrow 2bestMotif_2
9.
10.
         for i \leftarrow ?3 to t
                                                                                         Score berechnet
11.
             for 2s_i \leftarrow 2 to n-1+2
                                                                                         für t'=i
                  if Score(s, i, DNA) > Score(bestMotif, i, DNA)
12.
13.
                      bestMotif_{i} \mathbb{Z} \leftarrow \mathbb{Z}s_{i}
14.
             s_i \leftarrow \mathbb{D}bestMotif_i
15.
         return bestMotif
```

Programme zur Motivsuche

CONSENSUS
Hertz, Stormo (1989-1999)

GibbsDNA
Lawrence et al (1993)

MITRA
Eskin, Pevzner (2002)

Pattern Branching
Price, Pevzner (2003)

Grisotto Carvallo, Olivera (2011)

➤ **MEME**Bailey et al. (1995-2011)

> ...

Take home messages

- Verständnis von Genomumordnungen ist wichtig
- Eine Version (nicht die relevanteste)
 - Sortieren von Permutationen ohne Vorzeichen
- Approximationsalgorithmen
- Gierige Algorithmen
- Sortieren über Bruchstellen ergibt Faktor 4, viel besser als SimpleReversalSort
- Motivsuche geht viel schneller (aber nicht mehr exakt) mit gierigen Algorithmen.