Convex Optimization

Yunwei Ren

Contents

2	Convex Sets		
	2.1	Definition of convexity	
	2.2	Examples	
	2.3	Operations that preserve convexity	
	2.4	Separation theorems and supporting hyperplanes	
	2.5	Convex cones and generalized inequalities	
3	Cor	nvex Functions	
	3.1	Definition of convexity	
	3.2	Examples	
	3.3	Operations that preserve convexity	
4	Cor	nvex Optimization Problems	
	4.1	Basic terminology and optimality conditions	

2 Convex Sets

2.1 Definition of convexity

1.

Proof. For k = 2, $\theta_1 x_1 + \theta_2 x_2 \in C$ holds by definition. We argue by induction on k and assume that the inclusion holds for k < m. When k = m, denoting $\sum_{i=1}^{m-1} \theta_i$ by s,

$$\sum_{i=1}^{m} \theta_i x_i = s \sum_{i=1}^{m-1} \frac{\theta_i x_i}{s} + \theta_m x_m.$$

Since $\sum_{i=1}^{m-1} \theta_i/s = 1$, by the induction hypothesis, $\sum_{i=1}^{m-1} \theta_i x_i/s \in C$. Meanwhile, as $s + \theta_m = 1$, $\sum_{i=1}^m \theta_i x_i \in C$, completing the proof.

2.

Proof. Clear that the intersection of two convex sets is still convex. Hence, the intersection of $C \subset \mathbb{R}^n$ and any line is convex as long as C is convex.

Now we suppose that the intersection of C and any line is convex. For any $x_1, x_2 \in C$, $C_l = C \cap \{\theta x_1 + (1 - \theta)x_2 : \theta \in \mathbb{R}\}$ is convex and therefore $\theta x_1 + (1 - \theta)x_2 \in C_l \subset C$ for every $0 < \theta < 1$. Thus, C is convex.

The above argument, $mutatis\ mutandis$, gives the second result.

3.

Proof. For every $\theta \in [0,1]$, the process of bisecting the interval implies there exists a series $\langle \delta_n \rangle$ whose sum is θ . Hence, for every $a, b \in C$, $x_n = a + (b-a) \sum_{n=1}^{\infty} \delta_n$ converges to $a + \theta(b-a)$. Meanwhile, the midpoint convexity implies $x_n \in C$ for every n. And since C is closed, $a + \theta(b-a) \in C$. Thus, C is convex.

4.

Proof. Let D be the intersection of all convex sets containing C. If $x \in C$, then its is a convex combination of some points in C. Hence, for every convex set containing C, it contains x. Therefore, $\operatorname{\mathbf{conv}} C \subset D$. For the converse, since $\operatorname{\mathbf{conv}} C$ itself is a convex set containing C, $D \subset \operatorname{\mathbf{conv}} C$. Thus, $\operatorname{\mathbf{conv}} C = D$.

2.2 Examples

5.

Solution.
$$|b_2 - b_1|/||a||_2$$
.

7.

$$\begin{array}{l} \textit{Proof.} \ \|x-a\|_2 \leq \|x-b\|_2 \ \text{iff} \ \langle x-a,x-a\rangle \leq \langle x-b,x-b\rangle \ \text{iff} \ 2\langle x,b-a\rangle \leq \langle b,b\rangle - \langle a,a\rangle. \\ \text{Namely,} \ 2(b-a)^T x \leq \|b\|_2^2 - \|a\|_2^2. \end{array}$$

Proof.

(a) It is trivial when a_1 and a_2 are linearly dependent, so we assume that a_1 and a_2 are linearly independent. We first tackle the problem for orthonormal a_1 and a_2 and then reduce the general situation to it.

Suppose that a_1 and a_2 are orthonormal. Let $S_0 = \operatorname{span}(a_1, a_2)$ and (b_1, \ldots, b_{n-2}) a basis of S_0^{\perp} . Then

$$x \in S_0 \quad \Leftrightarrow \quad \begin{bmatrix} b_1^T \\ \vdots \\ b_{n-2}^T \end{bmatrix} x = Bx = 0.$$

For $y = y_1 a_1 + y_2 a_2 \in S_0$, $y_1 \leq 1$ iff $a_1^T y \leq 1$ as (a_1, a_2) is an orthonormal basis of S_0 . Hence,

$$-1 \le y_1, y_2 \le 1 \quad \Leftrightarrow \quad \begin{bmatrix} a_1^T \\ a_2^T \\ -a_1^T \\ -a_2^T \end{bmatrix} y = Ay \le \mathbf{1}.$$

Thus, for orthonormal a_1 and a_2 , $S = \{x : Bx = 0, Ax \leq 1\}$, a polyhedron.

Now we only assume the liner independence of a_1 and a_2 . We know that there exists some invertible n-by-n matrix a_1 such that $[\tilde{a}_1, \tilde{a}_2] = R[a_1, a_2]$ and a_1 and a_2 are orthonormal. Denoting the set described in the problem with respect to a_1 and a_2 by a_1 by a_2 by a_3 by a_4 by a_4

$$S(a_1, a_2) = \{x : \tilde{B}Rx = 0, \tilde{A}Rx \leq 1\}.$$

- (b) Yes, and the provided form has already satisfied the requirement.
- (c) No. Note that $\langle x,y\rangle_2 \leq 1$ for all y with 2-norm 1 implies

$$||x||_2 = \langle x, x/||x|| \rangle_2 \le 1.$$

And by the Cauchy-Schwarz inequality, for every $||x|| \le 1$, $\langle x, y \rangle_2$ holds for every $||y||_2 = 1$. Hence, S is the intersection of the unit ball and $\{x : x \succeq 0\}$, which is not a polyhedron.

(d) Yes. Let $\tilde{S} = \{x \in \mathbb{R}^n : x \succeq 0, ||x||_{\infty} \leq 1\}$, which is clearly a polyhedron since when $x \succeq 0, ||x||_{\infty} \leq 1$ is equivalent to $[e_1, \ldots, e_n]x \preceq \mathbf{1}$ where e_i is the *i*-th vector in the standard basis of \mathbb{R}^n .

Now we show that $S = \tilde{S}$. Suppose that $x \succeq 0$. If $\langle x, y \rangle_2 \leq 1$ for all y with 1-norm 1, then $x_i = \langle x, e_i \rangle_2 \leq 1$. Namely, $||x||_{\infty} \leq 1$. Meanwhile, if $||x||_{\infty} \leq 1$,

$$\langle x, y \rangle \le \sum_{i=1}^{n} x_i |y_i| \le 1$$

as it is just the weighted average of x_1, \ldots, x_n . Hence, $S = \tilde{S}$, completing the proof. \square

 $^{^{1}}$ We can use QR factorization to construct the matrix explicitly

2.9

Proof.

(a) By the definition,

$$x \in V \Leftrightarrow \|x - x_0\|_2^2 - \|x - x_i\|_2^2 \le 0$$

$$\Leftrightarrow 2\langle x, x_i - x_0 \rangle \le \langle x_i, x_i \rangle - \langle x_0, x_0 \rangle \quad \text{for } i = 1, \dots, K$$

$$\Leftrightarrow 2 \begin{bmatrix} \langle x, x_1 - x_0 \rangle \\ \vdots \\ \langle x, x_K - x_0 \rangle \end{bmatrix} \preceq \begin{bmatrix} \|x_1\|_2^2 - \|x_0\|_2^2 \\ \vdots \\ \|x_K\|_2^2 - \|x_0\|_2^2 \end{bmatrix}$$

$$\Leftrightarrow 2 \begin{bmatrix} (x_1 - x_0)^T \\ \vdots \\ (x_K - x_0)^T \end{bmatrix} x \preceq \begin{bmatrix} \|x_1\|_2^2 - \|x_0\|_2^2 \\ \vdots \\ \|x_K\|_2^2 - \|x_0\|_2^2 \end{bmatrix}$$

Hence, V is a polyhedron. Intuitively, the border of a Voronoi set are the lines with the same distances to x_0 and x_i .

(b) Suppose that $P = \{x : \alpha_k^T x \leq b_k, k = 1, \dots, K\}$. Let x_0 be any point of P and we construct the other points by reflection. For each k, let \tilde{x}_k be any point of $\{x : \alpha_k^T x = b_k\}$, $U_k = I - 2\alpha_k \alpha_k^T / \|\alpha_k\|_2^2$, the Householder matrix, and

$$R_k(x) = U_k(x - \tilde{x}_k) + \tilde{x}_k = x + 2\frac{\alpha_k}{\|\alpha_k\|_2^2} (b_k - \alpha_k^T x).$$

It is easy to verified that P is the Voronoi region of x_0 with respect to $R_1(x_0), \ldots, R_K(x_0)$.

10.

Proof.

(a) Suppose $x_1, x_2 \in C$ and $\theta \in (0, 1)$. Let $x = \theta x_1 + (1 - \theta)x_2$. Since A is symmetric, $x_2^T A x_1 = x_1^T A x_2$. Thus,

$$f(x) = x^{T} A x + b^{T} x + c$$

= $\theta^{2} x_{1}^{T} A x_{1} + 2\theta (1 - \theta) x_{1}^{T} A x_{2} + (1 - \theta)^{2} x_{2}^{T} A x_{2}$
+ $\theta b^{T} x_{1} + (1 - \theta) b^{T} x_{2} + \theta c + (1 - \theta) c.$

Note that

$$\theta^{2} x_{1}^{T} A x_{1} + \theta b_{1}^{T} x_{1} + \theta c = \theta (x_{1}^{T} A x_{1} + b_{1}^{T} x_{1} + c) - \theta (1 - \theta) x_{1}^{T} A x_{1}$$

$$< -\theta (1 - \theta) x_{1}^{T} A x_{1}$$

and we can get a similar inequality for x_2 . Hence,

$$f(x) \le -\theta(1-\theta)(x_1^T A x_1 - 2x_1^T A x_2 + x_2^T A x_2)$$

= $-\theta(1-\theta)(x_1 - x_2)^T A(x_1 - x_2) \le 0$

as $A \succeq 0$. Hence, C is convex.

(b) Put
$$H = \{x : g^T x + h = 0\}, B = A + \lambda g g^T \text{ and } C_B = \{x \in \mathbb{R}^n : x^T B x + b^T x + c - \lambda h^2 \le 0\}.$$

By (a), C_B is convex and so does $C_B \cap H$. Suppose $x \in H$, then $x^T B x = x^T A x + \lambda h^2$. Therefore, $C_B \cap H = C$. Thus, C is convex.

2.3 Operations that preserve convexity

16.

Proof. For every $(a, b_1 + b_2), (c, d_1 + d_2) \in S$ and $0 \le \theta \le 1$, let

$$z_{\theta} = \theta(a, b_1 + b_2) + (1 - \theta)(c, d_1 + d_2) = (x, y_1 + y_2)$$

where

$$x = \theta a + (1 - \theta)c$$
, $y_i = \theta b_i + (1 - \theta)d_i$ for $i = 1, 2$.

Since S_i is convex and $(a, b_i), (c, d_i) \in S_i$,

$$(x, y_i) = \theta(a, b_i) + (1 - \theta)(c, d_i) \in S_i.$$

Hence, S is convex.

18.

Proof. Let $\theta: \mathbb{R}^n \to \mathbb{R}^{n+1}$ be defined by $x \mapsto (x,1)$ and $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ the perspective function. It can be verified that $f = P \circ Q \circ \theta$. Now we show that $g = P \circ Q^{-1} \circ \theta$ is the inverse of f. Clear that $P \circ \theta = I$, the identity map on \mathbb{R}^n . Hence,

$$f \circ g = P \circ Q \circ \theta \circ P \circ Q^{-1} \circ \theta = I.$$

Similarly, $g \circ f = I$. Thus, f is invertible and $g = f^{-1}$.

2.4 Separation theorems and supporting hyperplanes

20.

Proof. Let N = A and x_0 be such that $Ax_0 = b$. We prove the hint first. Suppose for all $x \in N$, $\langle x_0 + x, c \rangle = d$. Hence, $\langle x_0, c \rangle + \langle x, c \rangle = d$, which implies $\langle x, c \rangle = 0$ and

$$\langle x_0, c \rangle = d. \tag{1}$$

Since $\langle x, c \rangle = 0$ for all $x \in N$, $N = \text{null } A \subset \{c\}^{\perp}$ and therefore, range $A^T \supset \{c\}$. Thus, there exists a λ such that $A^T \lambda = c$. Substituting this into (1) yields

$$d = \langle x_0, A^T \lambda \rangle = \langle A x_0, \lambda \rangle = b^T \lambda.$$

And the proof of the converse is straightforward.

Now we show the proposition. First we suppose such an x does not exist. Namely, $D = x_0 + N$ and \mathbb{R}^n_{++} are disjoint. Since D is an affine set and \mathbb{R}^n_{++} is convex and open, by the converse separating theorem, there exists some nonzero $c \in \mathbb{R}^n$ and scalar d such that $c^T y \leq d$ for all $y \in D$ and $c^T y \geq d$ for all $y \in C$. Since the image of an affine set under a linear mapping is still an affine set, $c^T y \leq d$ for all $y \in D$ implies $c^T y = d$ for all $y \in D$. Then, by our previous result, there exists a λ such that $c = A^T \lambda$ and $d = b^T \lambda$. Since $c \neq 0$, $A^T \lambda \neq 0$. Meanwhile, from $c^T y \geq d$ for all $y \in C$ we conclude $y \succeq 0$, otherwise we may choose $y \in C$ which is a large positive number on the position where the component of y is negative and zero elsewhere to lead to a contradiction. Thus, $A^T \lambda \succeq 0$. Finally, with the same approach, we conclude that $d \leq 0$ and therefore $b^T \lambda \leq 0$.

For the converse, our discussion shows that the existence of such a λ implies a separating hyperplane of C and D. Since C is open, it does not intersect with the separating hyperplane. Hence, there is no x satisfying $x \succ 0$ and Ax = b, completing the proof. \square

22. TODO

23.

Proof.
$$A = \{(x, y) \in \mathbb{R}^2 : y \le 0\}$$
 and $B = \{(x, y) \in \mathbb{R}^2 : x > 0, y \ge 1/x\}.$

25.

Proof. Since $P_{\text{inner}} = \mathbf{conv}\{x_1, \dots, x_K\}$ is the smallest convex set that contains $\{x_1, \dots, x_K\}$, $\{x_1, \dots, x_k\} \subset C$ as C is closed and C is convex, $P_{\text{inner}} \subset C$. Meanwhile, it follows from the definition that $C \subset P_{\text{outer}}$.

26.

Proof. If C = D, then clear that $S_C = S_D$. For the converse, we argue by contradiction. Assume the existence of some $x_0 \in C$ such that $x_0 \notin D$. Since D is closed and convex, there exists a hyperplane strictly separate x_0 and D, that is, there exists some nonzero $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $a^T x < b$ for all $x \in D$ and $a^T x_0 > b$. Then by the definition of the support function,

$$S_C(a) \ge a^T x_0 > b > a^T x$$
, for all $x \in D$.

Hence, $S_C(a) > \sup_{x \in D} a^T x = S_D(a)$. Contradiction. Thus, $C \subset D$. Interchanging the roles of C and D yields $C \supset D$. Therefore, C = D.

27. TODO

2.5 Convex cones and generalized inequalities

31.

Solution.

(a) For $\lambda_1, \lambda_2 \in K^*$ and $\theta_1, \theta_2 > 0$, since

$$f = \langle \cdot, \theta_1 \lambda_1 + \theta_2 \lambda_2 \rangle = \theta_1 \langle \cdot, \lambda_1 \rangle + \theta_2 \langle \cdot, \lambda_2 \rangle,$$

f also maps K into \mathbb{R}_+ . Namely, $\theta_1 \lambda_1 + \theta_2 \lambda_2 \in K^*$.

- (b) If $f = \langle \cdot, \lambda \rangle$ maps K_2 into \mathbb{R}_+ , then, as $K_1 \subset K_2$, it maps K_1 into \mathbb{R}_+ . Thus, $K_2^* \subset K_1^*$.
- (c) Suppose $(\lambda_n) \subset K^*$ be a sequence converging to $\lambda \in \mathbb{R}^n$. Then, by the continuity of the inner product, for every $x \in K$, $\langle x, \lambda \rangle = \lim_{n \to \infty} \langle x, \lambda_n \rangle \geq 0$. Hence, $\lambda \in K^*$. Namely, K^* is closed.
- (d) If $y \in \operatorname{int} K^*$, then there exists some $\varepsilon > 0$ such that for all Δy with $\|\Delta y\| < \varepsilon$, $y + \Delta y \in K$, that is, $(y + \Delta y)^T x \ge 0$ for all $x \in \operatorname{cl} K$. For each x, put $\Delta y = -\varepsilon x/2\|x\|$ and then we obtain $y^T x > 0$.

For the converse, suppose that $y \notin \operatorname{int} K^*$. Namely, for all $\varepsilon > 0$, there exists some Δy with $\|\Delta y\| < \varepsilon$ such that $(y + \Delta y)^T x_0 \le 0$ for some $x_0 \in \operatorname{cl} K$. This time, put $\Delta y = \varepsilon x_0/2\|x_0\|$ and then we get $y^T x_0 \le 0$.

(e) We argue by contradiction. Assume that there exists some nonzero $y \in K^*$ such that $-y \in K^*$. Then for every $x \in K$, $\langle x, \pm y \rangle \geq 0$, which yields $\langle x, y \rangle = 0$, i.e.,

 $K \subset \{y\}^T$. Since $\dim\{y\}^T < n$, K can not have nonempty interior. Contradiction. Thus, K^* is pointed.

- (f) For every $x \in \operatorname{\mathbf{cl}} K$, $x^T y \geq 0$ for all $y \in K^*$. Hence, $x \in K^{**}$. Thus, $\operatorname{\mathbf{cl}} K \subset K^{**}$. For the converse, note that $\operatorname{\mathbf{cl}} K$, a closed convex cone, is fully determined by its supporting hyperplanes at the origin. Namely, if x satisfies $y^T x \geq 0$ for all $y \in (\operatorname{\mathbf{cl}} K)^* = K^*$, then $x \in \operatorname{\mathbf{cl}} K$. From this we conclude $K^{**} \subset \operatorname{\mathbf{cl}} K$. Thus, $K^{**} = K$.
- (g) We argue by contradiction. Assume that **int** K^* is empty. Then, by (d), if $y \in K^*$, then $y^Tx = 0$ for all $x \in \operatorname{\mathbf{cl}} K$. Namely, $K^* \subset (\operatorname{\mathbf{cl}} K)^{\perp}$. Therefore, $(K^*)^{\perp} \supset \operatorname{\mathbf{cl}} K = K^{**}$ where the equality comes from (f). Thus, for all $x \in K^{**}$, $-x^Ty = x^Ty = 0$ for all $y \in K^*$, which contradict the assumption that K is pointed. Thus, $\operatorname{\mathbf{int}} K^* \neq \varnothing$. (This proof should be reviewed.)

32.

Solution. $\langle y, Ax \rangle \ge 0$ for all $x \succeq 0$ iff $\langle A^T y, x \rangle \ge 0$ for all $x \succeq 0$ iff $A^T y \succeq 0$. Hence, $K^* = \{y : A^T y \succeq 0\}.$

35.

Proof. Denote this set by \mathcal{C} . Note that $z^T X z = \mathbf{tr}(zz^T X)$. Hence, X is copositive iff $\langle zz^T, X \rangle \geq 0$ for all $z \succeq 0$. Namely,

$$C = \bigcap_{z \succeq 0} \{ X \in \mathbf{S}^n : \langle zz^T, X \rangle \ge 0 \}, \tag{2}$$

the intersection of some half spaces. Hence, \mathcal{C} is a closed convex cone. Since \mathcal{C} contains the set of all positive semidefinite matrices, it is solid. Meanwhile, if $\pm X \in \mathcal{C}$, then $z^T X z = 0$ for all $z \succeq 0$. Hence, X = 0. Thus, \mathcal{C} is a proper cone.

Note that \mathcal{C}^* is just the collection of the inward normal vectors of supporting hyperplanes of \mathcal{C} at the origin. By (2), $\mathcal{C}^* = \{zz^T : z \succeq 0\}$.

3 Convex Functions

3.1 Definition of convexity

1.

Proof.

(a) Clear that $\frac{b-x}{b-a}$, $\frac{x-a}{b-a} \ge 0$ and the sum of them is 1 for all $x \in [a,b]$. Hence, by the definition of convexity,

$$f(x) = f\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b).$$

(b) By (a),

$$\frac{f(x) - f(a)}{x - a} \le \frac{\frac{b - x}{b - a}f(a) + \frac{x - a}{b - a}f(b) - f(a)}{x - a} = \frac{f(b) - f(a)}{b - a}.$$

And a similar argument gives the second inequality.

- (c) Just let x approach a and b respectively and we get these two inequalities.
- (d) By (c), for every $a < b \in \operatorname{dom} f$,

$$f'(b) - f'(a) \ge \frac{f(b) - f(a)}{b - a} - f'(a) \ge 0.$$

Let $a \to b-$ and we get $f''(b-) \ge 0$. Since f is twice differentiable, this implies $f''(b) \ge 0$. This argument, mutatis mutandis, yields $f''(a) \ge 0$.

3. There is another proof which shows the concavity by showing the convexity of **hypo** g. But I think there exists some faults related to the domain of f in that proof.

Proof. We show that g is concave. For every $y_1, y_2 \in (f(a), f(b))$, suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is convex,

$$\frac{y_1 + y_2}{2} = \frac{f(x_1) + f(x_2)}{2} \ge f\left(\frac{x_1 + x_2}{2}\right).$$

Since f is increasing, so is q. Hence,

$$g\left(\frac{y_1+y_2}{2}\right) \ge g\left(f\left(\frac{x_1+x_2}{2}\right)\right) = \frac{x_1+x_2}{2} = \frac{1}{2}g(y_1) + \frac{1}{2}g(y_2).$$

Thus, g is concave.

5. Running average of a convex function

Proof. Put t = sx, then

$$F(x) = \frac{1}{x} \int_0^1 f(sx) d(sx) = \int_0^1 f(sx) ds.$$

It can be verified that for fixed s, f(sx) is convex in x. Hence, for every $\lambda \in (0,1)$, $a,b \in \operatorname{dom} F$,

$$F(\lambda a + (1 - \lambda)b) \le \int_0^1 \{\lambda f(sa) + (1 - \lambda)f(sb)\} = \lambda F(a) + (1 - \lambda)F(b).$$

Thus, F is convex.

8. Second-order condition for convexity

Proof. First we prove the case $f: \mathbb{R} \to \mathbb{R}$. If f is convex, then **dom** f is convex by definition. Meanwhile, for every x and t, by the first-order condition,

$$\frac{f(x+t) - f(x) - f'(x)t}{t^2} \ge 0.$$

Let $t \to 0$ and we obtain $f''(x) \ge 0$. For the converse, f''(x) implies that f' is monotonically increasing. Thus, by the mean-value theorem, there exists some c between x and y such that

$$f(y) - f(x) = f'(c)(y - x) \ge f'(x)(y - x),$$

Namely, f is convex.

Now we prove the general case. Recall that f is convex iff f is convex along all lines. For fixed $x, u \in \mathbb{R}^n$, define g(t) = f(x + tu). By our previous result, g is convex iff

$$0 \le g''(t) = u^T \nabla^2 f(x_0 + tu)u$$
 for all t .

Namely, $\nabla^2 f(x) \succeq 0$ for all $x \in \mathbb{R}^n$.

13.

Proof. Define $f(x) = \sum_{i=1}^{n} x_i \log x_i$. Some computation yields $D_{kl}(u, v) = f(u) - f(v) - \nabla f(v)^T (u - v)$. The inequality and the equality condition follows immediately from the fact that f is strictly convex.

3.2 Examples

16.

Solution.

- (a) Convex. For every $x \in \mathbb{R}$, $f''(x) = e^x > 0$.
- (b) Quasiconcave. For every $(x_1, x_2)^T \in \mathbb{R}^2_{++}$, $\nabla^2 f = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, which is neither positive semidefinite nor negative semidefinite. Hence, f is not convex or concave. Its superlevel sets S_{α} , however, are convex as

$$\frac{(x_1 + x_2)(y_1 + y_2)}{4} \ge \sqrt{x_1 x_2 y_1 y_2} \ge \alpha$$

as long as $(x_1, x_2), (y_1, y_2) \in S_{\alpha}$.

(c) Convex. For every $(x_1, x_2) \in \mathbb{R}^2_{++}$,

$$\nabla^2 f(x_1, x_2) = \frac{1}{x_1 x_2} \begin{bmatrix} \frac{2}{x_1^2} & \frac{1}{x_1 x_2} \\ \frac{1}{x_1 x_2} & \frac{2}{x_2^2} \end{bmatrix}.$$

Since both $2/x_1^3x_2$ and $\det(\nabla^2 f)$ are positive, $\nabla^2 f$ is positive definite. Thus, f is convex.

(d) Quasilinear. For every $(x_1, x_2) \in \mathbb{R}^2_{++}$,

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 0 & -1/x_2^2 \\ -1/x_2^2 & 2x_1/x_2^3 \end{bmatrix},$$

which is neither positive nor negative semidefinite since $(x \pm \sqrt{x_1^2 + x_2^2})/x_2^3$, the eigenvalues of $\nabla^2 f$, always have different signs. However, since it sublevel sets $S_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} : x_1/x_2 \leq \alpha\} = \{(x_1, x_2) \in \mathbb{R}^2_{++} : [1, -\alpha][x_1, x_2]^T \leq 0\}$, which is convex, f is quasiconvex. Similarly, f is quasiconcave. Thus, f is quasilinear.

(e) Convex. For every $(x_1, x_2) \in \mathbb{R} \times \mathbb{R}_{++}$,

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 1/x_2 & -2x_1/x_2^2 \\ -2x_1/x_2^2 & 2x_1^2/x_2^3 \end{bmatrix},$$

which is positive semidefinite since both $1/x_2$ and $\det(\nabla^2 f)$ are nonnegative.

(f) Concave. For every $(x_1, x_2) \in \mathbb{R}^2_{++}$,

$$\nabla^2 f(x_1, x_2) = \alpha(\alpha - 1) x_1^{\alpha} x_2^{1-\alpha} \begin{bmatrix} x_1^{-2} & -(x_1 x_2)^{-1} \\ -(x_1 x_2)^{-1} & x_2^{-2} \end{bmatrix},$$

which is negative definite since both $\alpha(\alpha-1)x_1^{\alpha}x_2^{1-\alpha}x_1^{-2}$ and $\det(\nabla^2 f)$ are negative. \square

17.

Proof. Put $z_k = (x_1^k, \dots, x_n^k)$. Then the Hessian of f is

$$\nabla^2 f(x) = (1 - p)(\mathbf{1}^T z_p)^{1/p - 2} (z_{p-1} z_{p-1}^T - \mathbf{1}^T z_p \operatorname{\mathbf{diag}}(z_{p-2})).$$

Put $K = (1-p)(\mathbf{1}^T z_p)^{1/p-2}$, a nonnegative constant. For every $v \in \mathbb{R}^n$,

$$v^{T} \nabla^{2} f(x) v = K v^{T} (z_{p-1} z_{p-1}^{T} - \mathbf{1}^{T} z_{p} \operatorname{\mathbf{diag}}(z_{p-2})) v$$

$$= K \left\{ \left(\sum_{i=1}^{n} v_{i} x_{i}^{p-1} \right)^{2} - \left(\sum_{i=1}^{n} x_{i}^{p} \right) \left(\sum_{i=1}^{n} x_{i}^{p-2} v_{i}^{2} \right) \right\}$$

$$< 0.$$

where the inequality comes from the Cauchy-Schwarz inequality $(a^Tb)^2 \leq (a^Ta)(b^Tb)$ with $a_i = x_i^{p/2}$ and $b_i = x_i^{p/2-1}v_i$. Thus, f is concave.

19. Nonnegative weighted sums and integrals

Proof.

(a) For each
$$k = 1, ..., r$$
, let $f_k(x) = \sum_{i=1}^k x_i[i]$, which is convex. Put $\beta_1 = \alpha_1 - \alpha_2$, $\beta_2 = \alpha_2 - \alpha_3$, ... $\beta_r = \alpha_r$.

Since $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_r$, $\beta_i \geq 0$ for $i = 1, \ldots, r$. Hence, $f = \beta_1 f_1 + \cdots + \beta_r f_r$, being a nonnegative weighted sum of convex functions, is convex.

(b) Note that $T(x,\omega)$ is linear in x for fixed ω . Hence, it can be verified via definition the convexity of $\operatorname{dom} f$ and $-\log T(x,\omega)$ is also convex in x. Hence, $f(x) = \int_0^{2\pi} \{-\log T(x,\omega)\} d\omega$ is convex.

21.

Proof.

- (a) By Prob.20(a), $||A^{(i)}x b^{(i)}||$ is convex for each i = 1, ..., k and consequently f, the pointwise maximum of them, is convex.
- (b) Let $E \subset \mathbb{R}^n$ be the collection of all vectors whose entries are ± 1 or 0. Then for each $c \in E$, $x \mapsto c^T x$ defines a convex function. Since $f(x) = \max_{c \in E} c^T x$, it is also convex.

22.(a)

Proof. Put $g(y) = \log(\sum_{i=1}^n e^{y_i})$ and h(x) = Ax + b where $A = [a_1, \dots, a_n]^T$ and $b = [b_1, \dots, b_n]^T$. Then $j = g \circ h$ is convex on \mathbb{R}^n . Hence, $\operatorname{dom} f = \{x : j(x) < 1\}$ is convex. Meanwhile, -j is concave, $-\log$ is convex and the extension of it to \mathbb{R} is non-increasing. Therefore, $f(x) = -\log(-j(x))$ is convex.

3.3 Operations that preserve convexity

30. Convex hull or envelope of a function

Proof. Let h be any convex function such that $h(x) \leq f(x)$ for all x. Then $\operatorname{epi} f \subset \operatorname{epi} h$. Since $\operatorname{conv} \operatorname{epi} f$ is the smallest convex set that contains $\operatorname{epi} f$ and $\operatorname{epi} h$ is convex as h is convex, $\operatorname{conv} \operatorname{epi} f \subset \operatorname{epi} h$. Namely, $(x,t) \in \operatorname{conv} \operatorname{epi} f$ implies $(x,t) \in \operatorname{epi} h$, that is, $h(x) \leq t$. Take infimum on the both sides and we get $h(x) \leq g(x)$.

31.

Proof.

(a) Note that g(0) = 0. Hence, if t = 0, g(tx) = g(0) = 0 = tg(x). For t > 0, putting $\beta = \alpha/t$,

$$g(tx) = \inf_{\beta > 0} \frac{f(\beta tx)}{\beta} = t \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha} = tg(x).$$

(b) Let h be any homogenous underestimator of f. For every $\varepsilon > 0$, by definition, there is some β such that

$$g(x) + \varepsilon \ge \frac{f(\beta x)}{\beta} \ge \frac{h(\beta x)}{\beta} = h(x).$$

Since the choice of ε is arbitrary, this implies $g(x) \ge h(x)$.

(c) Consider the function $p : \operatorname{dom} f \times \mathbb{R}_{++}$, $(x, \alpha) \mapsto f(\alpha x)/\alpha$. Since \mathbb{R}_{++} is convex and $g(x) = \inf_{\alpha>0} p(x, \alpha)$, g is convex as long as p is. Now we show the convexity of p. Note that

$$\begin{array}{lll} (x,\alpha,s) \in \operatorname{\mathbf{epi}} p & \iff & f(\alpha x)/\alpha \leq s \\ & \iff & f(\alpha x) \leq \alpha s \\ & \iff & (\alpha x,\alpha s) \in \operatorname{\mathbf{epi}} f. \end{array}$$

As a consequence, p is convex as f is.

4 Convex Optimization Problems

4.1 Basic terminology and optimality conditions

1.

Solution.

- (a) f_0 attains its optimal 3/5 at (2/5, 1/5).
- (b) It is unbounded below.
- (c) Optimal value = 0; Optimal set = $\{(0, x_2) : x_2 \ge 1\}$.
- (d) f_0 attains its optimal 1/3 at (1/3, 1/3).