CH08-320201

Algorithms and Data Structures ADS

Lecture 26

Dr. Kinga Lipskoch

Spring 2019

Backtracking: Motivation¹

Example Sudoku solving

					1	2	1
		3	5				9
	6				7		1
7				3			ľ
	4			8			
1							
	1	2					4
8 5					4		1
5				6			
							_

6	7	2	0	0	1	_	1	_
6	/	3	8	9		5		2
9	1	2	7	3	5	4	8	6
8	4	5	6		2		7	3
7	9	8			1			4
5	2	6	4		3			1
1	3	4	5		9	2	6	7
4	6	9	1	2	8	7	3	5
2	8	7	3	5	6		4	9
3	5	1	9	4	7	6	2	8

ADS Spring 2019 2 / 24

 $^{^1}$ Source of slides: Steven Skiena, Lecture slides, Stony Brook University

Solving Sudoku

- Solving Sudoku puzzles involves a form of exhaustive search of possible configurations.
- However, exploiting constraints to rule out certain possibilities for certain positions enables us to prune the search to the point people can solve Sudoku by hand.
- Backtracking is a general algorithm which can be used to implement exhaustive search programs correctly and efficiently.

Backtracking Technique

- ▶ Backtracking is a systematic method to iterate through all the possible configurations of a search space.
- It is a general algorithm/technique which must be customized for each individual application.
- ▶ In the general case, we will model our solution as a vector $a = (a_1, a_2, ..., a_n)$, where each element a_i is selected from a finite ordered set S_i .
- Such a vector might represent an arrangement where a_i contains the ith element of the permutation.
- ▶ Or the vector might represent a given subset S, where a_i is true if and only if the ith element of the universe is in S.

The Idea of Backtracking

- ▶ At each step in the backtracking algorithm, we start from a given partial solution, $a = (a_1, a_2, ..., a_k)$, and try to extend it by adding another element at the end.
- After extending it, we must test whether what we have so far is a solution.
- ▶ If not, we must then check whether the partial solution is still potentially extendible to some complete solution.
- If so, recur and continue. If not, we delete the last element from a and try another possibility for that position, if one exists.

Recursive Backtracking

```
1 Backtrack(a, k)
2    if a is a solution
3       print(a)
4    else {
5       k = k +1
6       compute S[k]
7       while S[k] != empty do
8       a[k] = an element in S[k]
9       S[k] = S[k] - a[k]
10       Backtrack(a, k)
11 }
```

ADS Spring 2019 6 / 24

Backtracking and DFS

- Backtracking is just depth-first search on an implicit graph of configurations.
- Backtracking can easily be used to iterate through all subsets or permutations of a set.
- Backtracking ensures correctness by enumerating all possibilities.
- ► For backtracking to be efficient, we must prune the search space.

Implementation

```
1 bool finished = FALSE; /* all solutions? */
2 backtrack(int a[], int k, data input) {
    int c[MAXCANDIDATES]; /* cand. next pos. */
3
    int ncandidates; /* next pos. cand. count */
    int i; /* counter */
    if (is_a_solution(a, k, input))
6
7
      process_solution(a, k, input);
    else {
      k = k+1;
9
      construct_candidates(a, k, input, c,
10
        &ncandidates);
11
      for (i=0; i<ncandidates; i++) {</pre>
12
        a[k] = c[i];
13
        backtrack(a, k, input);
14
        if (finished) return; /* term. early */
15
      }}}
16
```

ADS

Is a Solution?

- ▶ is_a_solution(a, k, input)
- ▶ This boolean function tests whether the first k elements of vector a are a complete solution for the given problem.
- ► The last argument, input, allows us to pass general information into the routine.

Construct Candidates

- construct_candidates(a, k, input, c, &ncandidates);
- ► This routine fills an array c with the complete set of possible candidates for the kth position of a, given the contents of the first k -1 positions.
- ► The number of candidates returned in this array is denoted by ncandidates.

Process Solution

- process_solution(a, k)
- ► This routine prints, counts, or somehow processes a complete solution once it is constructed.
- Backtracking ensures correctness by enumerating all possibilities. It ensures efficiency by never visiting a state more than once.
- Because a new candidates array c is allocated with each recursive procedure call, the subsets of not-yet-considered extension candidates at each position will not interfere with each other.

Constructing all Subsets (1)

- ▶ How many subsets are there of an *n*-element set?
- ➤ To construct all 2ⁿ subsets, set up an array/vector of n elements, where the value of a_i is either true or false, signifying whether the ith item is or is not in the subset.
- ▶ To use the notation of the general backtrack algorithm, $S_k = (true, false)$, and v is a solution whenever $k \ge n$.
- ▶ What order will this generate the subsets of $\{1,2,3\}$? $(1) \rightarrow (1,2) \rightarrow (1,2,3)* \rightarrow (1,2,-)* \rightarrow (1,-) \rightarrow (1,-,3)* \rightarrow (1,-,-)* \rightarrow (1,-) \rightarrow (1) \rightarrow (-) \rightarrow (-,2) \rightarrow (-,2,3)* \rightarrow (-,2,-)* \rightarrow (-,-) \rightarrow (-,-,3)* \rightarrow (-,-,-)* \rightarrow (-,-) \rightarrow (-) \rightarrow ()$

ADS Spring 2019 12 / 24

Constructing all Subsets (2)

- ▶ We can construct the 2^n subsets of n items by iterating through all possible 2^n length—n vectors of *true* or *false*, letting the ith element denote whether item i is or is not in the subset.
- ▶ Using the notation of the general backtrack algorithm, $S_k = (true, false)$, and a is a solution whenever $k \ge n$.

Constructing all Subsets (3)

```
is_a_solution(int a[], int k, int n) {
    return (k == n); /* is k == n? */
3 }
4 construct_candidates(int a[], int k, int n, int
     c[], int *ncandidates) {
   c[0] = TRUE:
   c[1] = FALSE:
7 *ncandidates = 2;
8 }
9 process_solution(int a[], int k) {
    int i; /* counter */
10
    print("(");
11
    for (i=1; i<=k; i++)</pre>
12
      if (a[i] == TRUE)
13
        print(i);
14
    print(")");}
15
```

ADS

Main Routine: Subsets

► Finally, we must instantiate the call to backtrack with the corresponding arguments.

```
generate_subsets(int n) {
   int a[NMAX]; /* solution vector */
   backtrack(a, 0, n);
}
```

Iterative Backtracking

- Stack data structure v to store solution(s).
- ▶ Top index of the stack is k.
- Algorithm iterates, adding/modifying/deleting values on the top of stack
 - ▶ Initialize value on the top of stack Init(k)
 - ► Modify value on the top of stack Successor(k)
 - ► Validate value on the top of stack Valid(k)
 - If value on the top of stack valid, we may have a solution Solution(k), if yes print – Print(k)
 - 3 possibilities of stack index:
 - ▶ No change k
 - ► Add new value k++
 - ► Go down on stack if value on top not good k--

Permutations Example n = 4 (1)

ADS Spring 2019 17 / 24

Permutations Example n = 4 (2)

ADS Spring 2019 18 / 24

Permutations Example n = 4 (3)

ADS Spring 2019 19 / 24

Init and Successor Functions

```
void Init(int k) { // k index top of stack
    v[k]=0; // init top of stack
3 }
4
5 int Succesor(int k) {
    if (v[k]<n) { // top can increase</pre>
      v[k]++; // increment top
7
      return 1;
8
    }
    else
10
      // no increase is possible on top
11
12
 return 0;
13 }
```

< □ > < 圖 > < ≧ > < ≧ > ≥ りへご

ADS Spring 2019 20 / 24

Valid, Solution and Print Functions

```
int Valid(k) {
    for (i=1;i<k;i++) // check if value on top</pre>
      if (v[i] == v[k]) return 0; // is different
3
               // from earlier values in the stack
4
    return 1:
6 }
7 int Solution(k) {
    return (k==n);
9 }
10 void Print() {
    printf("%d : ",++countSol);
    for (i=1;i<=n;i++)</pre>
12
      printf("%d ",v[i]);
13
    printf("\n");
14
15 }
```

ADS Spring 2019 21 / 24

Main Iterative Function

```
void Back(int n) {
    k=1: Init(k):
    while (k>0) { // stack not empty
3
      isS=0; isV=0;
4
      if (k<=n) // position valid
5
        do {
6
          isS=Succesor(k);
7
          if (isS) isV=Valid(k);
8
        } while (isS && !isV); // s. but not valid
9
      if (isS) // successor and valid
10
        if (Solution(k))
11
          Print();
12
        else { // not a solution
13
          k++; Init(k); }
14
      else // no successor for top
15
        k--; }
16
```

ADS

The Eight-Queens Problem

- ► The eight queens problem is a classical puzzle of positioning eight queens on an 8 × 8 chessboard such that no two queens threaten each other.
- This a classical textbook backtracking problem.

Eight Queens: Representation

- ▶ What is concise, efficient representation for an *n*-queens solution, and how big must it be?
- ▶ Since no two queens can occupy the same column, we know that the *n* columns of a complete solution must form a permutation of *n*.
- ▶ By avoiding repetitive elements, we reduce our search space to just 8! = 40,320 quick for any reasonably fast machine.
- ▶ The critical routine is the candidate constructor.
- ▶ We repeatedly check whether the k^{th} square on the given row is threatened by any previously positioned queen.
- If so, we move on, but if not we include it as a possible candidate.
- ► Algorithm can find the 365,596 solutions for *n* = 14 in minutes.