

Introduction to summary statistics: The sample mean and median

2008 US swing state election results

2008 US swing state election results

3

Mean vote percentage

```
In [1]: import numpy as np
```

In [2]: np.mean(dem_share_PA)
Out[2]: 45.476417910447765

$$mean = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Outliers

 Data points whose value is far greater or less than most of the rest of the data

2008 Utah election results

2008 Utah election results

The median

• The middle value of a data set

2008 Utah election results

Computing the median

In [1]: np.median(dem_share_UT)

Out[1]: 22.469999999999999

Let's practice!

Percentiles, outliers, and box plots

Percentiles on an ECDF

Computing percentiles

```
In [1]: np.percentile(df_swing['dem_share'], [25, 50, 75])
Out[1]: array([ 37.3025, 43.185 , 49.925 ])
```


2008 US election box plot

Generating a box plot

Let's practice!

Variance and standard deviation

2008 US swing state election results

Variance

- The mean squared distance of the data from their mean
- Informally, a measure of the spread of data

2008 Florida election results

Statistical Thinking in Python I

2008 Florida election results

variance =
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Statistical Thinking in Python I

Computing the variance

In [1]: np.var(dem_share_FL) Out[1]: 147.44278618846064

Computing the standard deviation

```
In [1]: np.std(dem_share_FL)
Out[1]: 12.142602117687158

In [2]: np.sqrt(np.var(dem_share_FL))
Out[2]: 12.142602117687158
```


2008 Florida election results

Let's practice!

Covariance and the Pearson correlation coefficient

2008 US swing state election results

Generating a scatter plot

Covariance

• A measure of how two quantities vary together

Calculation of the covariance

Calculation of the covariance

distance from

covariance =
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Pearson correlation coefficient

$$\rho$$
 = Pearson correlation = $\frac{\text{covariance}}{(\text{std of } x) (\text{std of } y)}$

Pearson correlation coefficient examples

Let's practice!