Mathematics Homework Sheet 5

Authors: Abdullah Oguz Topcuoglu & Ahmed Waleed Ahmed Badawy Shora

Problem 1

1. -(x + y) = (-x) + (-y): By the definition of the additive inverse, we have:

$$-(x + y) + (x + y) = 0$$

Use distributivity property:

$$(-x) + (-y) + (x + y) = 0$$
$$((-x) + (-y)) + (x + y) = 0$$

So, since adding ((-x) + (-y)) to (x + y) gives 0, we can conclude that it is the additive inverse of (x + y). And that's what we are trying to prove.

2. -(x - y) = (-x) + y: Apply the rule above.

$$-(x + (-y)) = (-x) + (-(-y))$$

= (-x) + y

3. $x \cdot 0 = 0 \cdot x = 0$:

$$x \cdot 0 + x \cdot 0 = x \cdot (0+0) = x \cdot 0$$

$$x \cdot 0 + x \cdot 0 = x \cdot 0 \qquad \text{(add additive inverse of } x \cdot 0\text{)}$$

$$x \cdot 0 + (x \cdot 0 + -(x \cdot 0)) = x \cdot 0 + -(x \cdot 0)$$

$$x \cdot 0 + 0 = 0$$

$$x \cdot 0 = 0$$

And by commutativity we have $0 \cdot x = 0$.

4. $(-x) \cdot y = -(x \cdot y)$:

$$(x \cdot y) + ((-x) \cdot y) = (x + (-x)) \cdot y = 0 \cdot y = 0$$

So, $(-x) \cdot y$ is additive inverse of $(x \cdot y)$.

5.
$$x \cdot (-y) = -(x \cdot y)$$
:

$$x \cdot (-y) = x \cdot (-y)$$
 (commutativity)
= $(-y) \cdot x$ (insert this into original equation)
 $(-y) \cdot x = -(x.y)$ (true by the previous rule)

6. $(-x) \cdot (-y) = x \cdot y$: Use rule (4) to get:

$$(-x)\cdot(-y) = -(x\cdot(-y))$$

Now use rule (5) to get:

$$-(x \cdot (-y)) = -(-(x \cdot y))$$

And by the definition of additive inverse, we have:

$$-(-(x \cdot y)) = x \cdot y$$

7. x + y = z if and only if x = z - y: By the definition of addition, we have:

$$x + y = z \implies x = z - y$$

and

$$x = z - y \implies x + y = z$$

Problem 3

We want to show that only solution to the equation

$$a_1 \begin{pmatrix} 1\\i\\1+i \end{pmatrix} + a_2 \begin{pmatrix} 0\\1\\i \end{pmatrix} = 0$$

is $a_1 = 0$ and $a_2 = 0$ where $a_1, a_2 \in \mathbb{C}$. We can write this as a system of equations:

$$a_1 + 0 \cdot a_2 = 0$$

 $a_1 i + a_2 = 0$
 $a_1 (1+i) + a_2 i = 0$

The first equation gives us $a_1 = 0$. Substituting this into the second equation gives us $a_2 = 0$. Thus, the only solution is $a_1 = 0$ and $a_2 = 0$.

Now we want to show that the set

$$S = \left\{ \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix} \right\}$$

is a spanning set for \mathbb{C}^3 . This means that any vector in \mathbb{C}^3 can be written as a linear combination of the vectors in S. We can write this as:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = a_1 \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$$

This gives us the system of equations:

$$x_1 = a_1 i$$

$$x_2 = a_2 + a_3 i$$

$$x_3 = a_3$$

We can solve this system of equations for a_1 , a_2 , a_3 in terms of x_1 , x_2 , x_3 :

$$a_1 = \frac{x_1}{i}$$
 $a_3 = x_3$
 $a_2 = x_2 - a_3 i = x_2 - x_3 i$

Thus, any vector in \mathbb{C}^3 can be written as a linear combination of the vectors in S, so S is a spanning set for \mathbb{C}^3 .

$$S = \left\{ \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix} \right\}$$

Create a ne set by adding a vector from *T* to *S*:

$$S_1 = \left\{ \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix} \right\}$$

We can write the vector $\begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}$, as a linear combination of the vectors in S_1 :

$$\begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix} = a_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix} + a_3 \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix}$$

With the coefficients:

$$a_1 = -i$$

$$a_2 = 1 - i$$

$$a_3 = i$$

Thus we can get rid of the vector $\begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}$ and replace it with the vector $\begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix}$

from T.

$$S_2 = \left\{ \begin{pmatrix} 1\\i\\1+i \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\i\\1 \end{pmatrix} \right\}$$

Let's add the other vector from *T*:

$$S_3 = \left\{ \begin{pmatrix} 1\\i\\1+i \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\i\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\i \end{pmatrix} \right\}$$

We can write the vector $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, as a linear combination of the vectors in S_3 :

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ 1 \\ i \end{pmatrix}$$

With the coefficients:

$$a_1 = 0$$

$$a_2 = -i/2$$

$$a_3 = 1/2$$

Thus we can get rid of the vector $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and replace it with the vector $\begin{pmatrix} 0 \\ 1 \\ i \end{pmatrix}$ from

Т

$$S_4 = \left\{ \begin{pmatrix} 1\\i\\1+i \end{pmatrix}, \begin{pmatrix} 0\\1\\i \end{pmatrix}, \begin{pmatrix} 0\\i\\1 \end{pmatrix} \right\}$$

 S_4 still spans the same space as S.

Problem 4

(a)

We can use Steinitz theorem recursively to show that $\langle v_1,...,v_n\rangle=\langle v_1-v_2,...,v_n\rangle$. We can replace v_1 with v_1-v_2 and get:

$$\langle v_1 - v_2, v_2 - v_3, ..., v_n \rangle = \langle v_1, v_2 - v_3, ..., v_n \rangle$$

by choosing every coefficient to be 1.

We can repeat this for v_2 . Replace $v_2 - v_3$ with v_2 to get:

$$\langle v_1, v_2 - v_3, ..., v_n \rangle = \langle v_1, v_2, ..., v_n \rangle$$

Again by choosing every coefficient to be 1.

We can repeat this for every v_i . And at the end we will have:

$$\langle v_1 - v_2, v_2 - v_3, ..., v_n \rangle = \langle v_1, v_2, ..., v_n \rangle$$