Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test- II Question Paper

Degree & Branch	B.E CSE				Semester	V
Subject Code & Name	UCS1505 - INTRODUCTION TO CRYPTOGRAPHIC TECHNIQUES			Regulation: 2018		
Academic Year	2020-21	Batch	2018-22	Date	29.9.20	FN
Time: 90 Minutes	Answer All Questions			Maximum	: 50 Marks	

Part – A Answer all the questions $(10\times2=20 \text{ Marks})$ (MCQ type –Randomly post 10 questions to the student)

<kl2></kl2>	1.) Which of the following is used for authenticating a message in SSL?				
	a) Message Arbitrary Code				
	b) Machine Authentication Code	<co2></co2>			
	c) Machine Access Cipher				
	d) Message Authentication Code				
	In CBC MAC, if the message length is not a multiple of cipher block length				
	a) A new block with a length accommodating all the message bits is added.				
<kl2></kl2>	b) The remaining of block is padded with 1.	<co2></co2>			
	c) Message bits that exceed the nearest multiple are discarded.				
	d) The remaining of block is padded with $\hat{0}$.				
	Which of the following is /are offered by the Hash functions?				
	a) Authentication				
<kl2></kl2>	b) Non repudiation	<co2></co2>			
	c) Data Integrity				
	d) All of the above				
	Which of the following options are correct according to the definition of the Hash				
	Function?				
<kl2></kl2>	a) Hash Functions are mathematical functions	<co2></co2>			
(1122)	b) They compress the input values	(002)			
	c) The hash functions work on arbitrary length input but produces fixed length output.				
	d) All of the above				
	What is the value of opad in the HMAC structure in hexadecimal?				
171.0	a) 3E	G02			
<kl2></kl2>	b) 32	<co2></co2>			
	c) B6				
	d) 5C				
	Let H be a hash function, for two distinct messages x and x1, if $H(x)=H(x1)$ then this is called				
<kl2></kl2>	a) perfect secrecyb) MAC generation	<co2></co2>			
	c) collision				
	d) encryption				
	Which of the following is a reasonable combination of encryption scheme and a secure	<co2></co2>			
	message authentication code	\CO2/			
<kl2></kl2>	a) Encrypt-and-authenticate				
	b) Authenticate-then-encrypt				
L	o, reministration oner jpt				

	c) Encrypt-then-authenticate d) All of the Above	
	The DES Algorithm Cipher System consists ofrounds (iterations) each with	<co2></co2>
	a round key	1002
****	a) 12	
<kl2></kl2>	b) 18	
	c) 9	
	d) 16	
	In the DES algorithm the round key is bit and the Round Input is	<co2></co2>
	bits.	(002)
	a) 48, 32	
<kl2></kl2>	b) 64,32	
	c) 56, 24	
	d) 32, 32	
<kl2></kl2>	The number of unique substitution boxes in DES after the 48 bit XOR operation are	<co2></co2>
	a) 8	
	b) 4	
	c) 6	
	d) 12	
<kl3></kl3>	A MAC function compresses two long distinct inputs of length 11 and 12 and produces	<co3></co3>
	output of length n1,n2 then which of the following is true?	
	a) n1>n2	
	b) n1 <n2< td=""><td></td></n2<>	
	c) n1=n2	
	d) n1!=n2	
<kl3></kl3>	A transmits c1(encryption of m1) and subsequentially c2(encryption of m2) to B.	<co3></co3>
	You has some control over network and deliver c2 before c1 which causes mismatch	
	between A and B and you send back c1 to A and then send c1 again to B.	
	What are the attacks you have done and mention them in order?	
	a) Reordering, Replay, Reflection	
	b) Replay, Reflection, Reordering	
	c) Reordering, Reflection, Replay	
	d) Reordering, Replay, Reflection	
<kl3></kl3>	In a substitution permutation network given a input of 16 bits what are the following	<co3></co3>
	sequences performed for 2 rounds?	
	a) sub key k1 mixing with given Input, substitution, permutation, output1	
	sub k2 mixing with output 1, substitution, permutation	
	b) sub key k1 mixing with given Input, substitution, permutation, output1	
	sub k2 mixing with given Input, substitution, permutation	
	c) sub key k1 mixing with given Input, permutation, substitution, output1	
JZI 2:	sub k2 mixing with output 1, permutation, substitution	¿CO2:
<kl3></kl3>	For an m bit hash value, if we pick data blocks at random, we can expect to find two data	<co3></co3>
	blocks with the same hash value within attempts.	
	a) 2 ^h m	
	b) 2^(m-1) c) 2^(m/2)	
	d) $(2^{h}) - 1$	
<kl3></kl3>	In HMAC algorithm which of the following holds true?	<co3></co3>
\KL3>	MD – Message Digest, H- Hash function, Si – Input signature, So – Output signature, M-	\CU3>
	Input Message, - padding or concatenation	
	a) MD= H(Si H(So M))	
	b) MD= H(Si M) H(So M)	
	c) MD= H(Si M) H(Si M))	
	d) None of the above	
<kl3></kl3>	What is the correct order of the following statements in producing the message digest using	<co3></co3>
	HMAC algorithm starting with the message bits?	
	1. Temporary message digest is produced.	
	2. Left pad the input signature with message bits.	
	3. Hash the result using hash function H. (This statement can be used more than once)	
	4. Temporary digest is padded with output signal.	

	5. Message Digest is produced					
	a) 2->3-> 5-> 4-> 3-> 1					
	b) 2-> 3-> 1-> 4-> 3-> 5					
	c) 2-> 5-> 3-> 4-> 3-> 1					
	d) None of the above					
<kl3></kl3>	Consider an SPN with 64 bit block length based on collection of 8 bit S boxes (S1,,S8).	<co3></co3>				
	Fill the following blank					
	Key mixing: Set $x := $, where k is the current-round sub-key;					
	Substitution: Set $x := $ where xi is the i th byte of x;					
	Permutation: Permute the bits of x to obtain the output of the round.					
	a) $x \text{ EXOR } k, S1(x1) \parallel \bullet \bullet \bullet \parallel S8(x8)$					
	b) $x \text{ EXOR } x, \text{ S1}(x1) \ \bullet \bullet \bullet \ \text{S10}(x10)$					
	c) $x \text{ EXOR } x, \text{ S1}(x1) \parallel \bullet \bullet \bullet \parallel \text{S8}(x8)$					
	d) $x \text{ EXOR } k, \text{ S0}(x0) \parallel \bullet \bullet \bullet \parallel \text{S8}(x8)$					
<kl3></kl3>	For an n-bit tag and a k-bit key, the level of effort required for brute force attack on a MAC	<co3></co3>				
	algorithm is					
	a) 2^k					
	b) 2 ⁿ					
	c) $\min(2^k,2^n)$					
*** 0	d) 2 ^k /2 ⁿ	902				
<kl3></kl3>	AES uses a bit block size and a key size of bits.	<co3></co3>				
	a) 128; 128 or 256					
	b) 64; 128 or 192					
	c) 256; 128, 192, or 256 d) 128; 128, 192, or 256					
<kl3></kl3>	For the AES-128 algorithm there are similar rounds and round is	<co3></co3>				
\KL3>	different.	\CO3>				
	a) 2 pair of 5 similar rounds; every alternate					
	b) 9; the last					
	c) 8; the first and last					
	d) 10; no					
	4, 10, 10					

Part - B Answer all the questions $(2 \times 5 = 10 \text{ Marks})$

	1 a. Give an example what is vrfyk(m,t) in MAC algorithm. (2)	ļ
<kl3></kl3>	b. When m=2 bits, t=2 bits, k=2 bits, List all the possible m,t and k.(2)	<co3></co3>
	c. What is meant by oracle in the context of adversary. (1)	
	2. a. What is avalanche effect. (2)	
<kl2></kl2>	b. How to derive sub-keys from master key. Give an example. (2)	<co2></co2>
	c. What is meant by one round in feistel network? (1)	

Part – C Answer any TWO questions $(2\times10 = 20 \text{ Marks})$

<kl3></kl3>	3 a. With m=2 bits, t=2 bits, what is meant by unforgery?(1) b. Draw a flowchart combining Mac-forgeA, π and Mac(Gen, Mac, Vrfy) scheme. (3) c. What is chosen message attack and adaptive chosen message attack in the context of adversary? Which one is best for him?(2) d. Give a scenario validating the Mac-sForge scheme.(2) e. if k=3 bits, T=4 bits, M=8 bits. For T=1110, M=10110110, what is meant by brute force attack on MAC.(2)	<co3></co3>
<kl3></kl3>	4 a. List out all combination of message tag pair if T=2, M=4 bits. How many repetition you can find? (1)b. Give some sample data for the following scheme. (3)	<co3></co3>

	• Mac: on input a key $k \in \{0, 1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following (we set $\ell = \ell(n)$ in what follows):	
	1. Parse m as $m = m_1, \ldots, m_\ell$ where each m_i is of length n .	
	2. Set $t_0 := 0^n$. Then, for $i = 1$ to ℓ : Set $t_i := F_k(t_{i-1} \oplus m_i)$.	
	Output t_{ℓ} as the tag.	
	c. What are the cases CBC - MAC is secure and when it is not secure. (2)	
	d. What is collision and collision resistent ? Give an example (2)	
	e. How is it possible to forge a valid tag by adversary ? (2)	
	5. a. What is meant by Inverting a Feistel network ? (2)	
	b. List out the procedure in one round DES function. (2)	
<kl2></kl2>	c. In what cases DES is more vulnerable to attacks? (2)	<co2></co2>
	d. Give two differences of AES and DES (2).	
	e. What are weak keys in DES? (2)	

Prepared By	Reviewed By	Approved By		
Course Coordinator	PAC Team	HOD		

29/09/20	NAME: VANATHI. G. Pg D							
	CLASS: CSE-C							
	REG NO: 185001188							
	SUB: UCS 1505 - Introduction to Cryptographic Techniques							
	EXAM : CAT - 2							
	PART-C							
3								
(a)	* Definition of unforgeable:							
	TI = (aen, Mac, Vify) is existentially unforgeable if							
	Pr[Mac-forge p, n(n) = 1] = negl(n)							
	where A > PPT adversary, negl(n) ~ 1/280							
	* Since m is 2 bits long, m & {00,01, 10, 11} and after							
	t = Mack(m), t is also 2 bits long. This means							
	t ∈ {00, 01, 10, 11}							
	* If we assume each 'm'is uniquely mapped to a 't' i.e,							
	there are no collisions, the adversary cannot forge							
	a valid tag on another message m' of his choice.							
	(no t exists such that vify k (m', t) succeeds)							
	* Therefore, for m=2 x t=2, (assuming unique mappings)							
	the MAC is unforgeable.							
(b)	* Let TI = Mac (Gen, Mac, Vrfy)							
	Let A be the adversary.							
	* Mac-forge A,TI (n) is a mandomized experiment & the probability of A winning this should be negligible							
	Probability of A winning this should be negligible							

- In the above diagram, Alice is the sender & 'A' is the adversary.
- Both Alice & A know the key 'k' by running Gen (1")
- → Alice uses usual Mac procedure (Gen, Mac, Vrfy)
 to produce tag 't' & sends it along with m to Bob
- The adversary how a set of messages (Q or queries) and an oracle Mack (.). Based on his observations, he generates m' (new message) with same tag t
- -> A succeeds if Vofyn(m',t) = 1

* In a chosen message attack, the adversary can obtain ciphertexts for arbitrary plaintext messages

* In an adaptive chosen message attack, the adversary can sequest ciphertexts of more plaintexts after making observations of ciphertexts for some plaintexts

* Here, the ciphertext is basically the tag. The oracle is a blackbox where the adversary can give any message to it a get the hash value (tag)

* Here, adaptive chosen message attack is used because the adversary wants to infer something from the Oracle's outputs to forge tags for his own messages

(d) * Consider a xituation where m = 2 bits & t = 1 bit

* In this case, m & {00,01,10,113} and t & {0,13}

* One tag t' & t is definitely mapped to more than

one musage 'm' (collisions)

* If the hashing is as follows for a key 'k'

* Basically, Probability of winning = \frac{1}{2^n} where n is output size

i) here \frac{1}{2!} = 0.5. Therefore the adversary wine 50% of the time

i. Some The Mac is not existentially untorgeable by as the probability of winning by A is non-negligible

(e) * Given,

K = 3 bits

t = 4 bits

M = 8 bits

* For T = 1110 M = 10110110

* Brute-force attack:

- -> Since we know one T kM pair, we use key k'
 to compute compute the 4-bit MAC on known message
 (M) for all possible keys
- Atlear one key will produce the correct MAC (we can verify using T). 2 combinations i- 8 combinations were tried in this case
- Now, we have the key 'k' and one The M pair, Since M = 8 bits at = 4 bits, collisions are definitely present so we can generate more m' using k + MAC algorithm such that m' has the same tag.

(a)

Inverting a Feistel Network:

-> we basically do the encryption steps again but in servence order

-> If the subkeys are Sk,... Sk16,

- · 1 ct sound with Skin undoes the 16th sound of encryption
 - · Similarly perform in surverse order until 16th ground of clarryption with Sk, undoes the 1st encryption ground
- I Nok that during encryption, we encrypt only left half of the input it sight-half is used in 'F' is copied over to left half of output
 - Therefore, while investing the Feistel network, we can use left-half of cipherstext to decrypt the right half

 $\begin{cases}
R_1 & \downarrow \\
R_2 & \downarrow \\
R_2 & \downarrow
\end{cases} \xrightarrow{F} K_1$ $\downarrow K_2 & \downarrow K_1$

(b) * One enound of DES consists of the following operations:

- -> Split input into 2 halves L; & R; (32 bits each)
- $A_{i} = K_{i-1}$ $R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$

- > F takes 32-bit R; as input & 48-bit sobky as input:
 - (i) E-box (Expansion box)
 - · provides diffusion
 - · expands R from 32-bits to 48-bits by copying certain bits twice
 - (ii) X-OR with subhey (to add basically)
 - (ii) S-boxes (Substitution boxes)
 - · perovide confusion
 - · the 48-bits are split into 8 groups of 6-bits & sent to 8 different S-boxes
 - In each S-box, first k last bit of input (6-bits) is used to select now and middle u-bits are used to select columns
 - . The value at (row, col) in S-box is given as output (4-hits)
 - · Therefore we get 8 sets of 4-bits i.e., 32-bits as total output from this round
 - (iv) P- Permutation
 - · provides diffusion again
 - · It is just a 32-bit permutation performed using a table
- ith L_{i-1} and given as output k_i or R_{i-1} is given as sofput L_i from the network

(c) Vulnerabilities of DES:

(i) Brute-force attack -

Every key combination is tried until correctone is found a then we can decrypt the cipher. Only 264 possible combinations for key is there.

(ii) More powerful attacks -

Differential cryptanalysis & Linear cryptanalysis can break DES using chosen plaintexts, not as practical as prote force attacks

DES

AES

-> Works on the Feistel network structure

- → 16 erounds
- -) Data block is divided into two halves & encrypted
- principle to create confusion A diffusion
- → 10, 12, 14 rounds depending on buy Size
 - → All the bits are encrypted at once (as a block)

(e) * Weak keys -

- In the DES algorithm, we do a fixed no. of left shifts for each round; in total after 16 rounds, 28 shifts are performed for each half of subbary
- Now, it either half of the subkey is all 0s or all 1s i.e., $K_L = 0^{28} \, k \, k_R = 0^{26}$ or $k_L = 0^{25} \, L \, k_R = 1^{25} \, k_R = 1^$
- > Therefore there four keys are weak keys.

(a) Vify k (m,t) is the verification algorithm that takes key k, message m a tag t as input k outputs 1 if t is valid. This is done at the succeiver's side

Ex: Assume k = 00 hashes m = 1101 to t = 0010

Vrfyk(m,t) where m = 1101 k t = 0010 with the

same k would output I in this case

If to was oon for instance,

If an adversary modified m to m' = 1001, $Vrfy_k(m',t) = 0$ (invalid)

(b)

N A	Υ		ł				K
M,	Mo		t,	f o		k,	ko
0	0	4	0	0	•	0	10
6	1		0	1		0	1
1	0		1	0		1	O
1	1		1	1		1	1

- (C) > The oracle denoted as Mack (.) is a blackhox where the adversary can give a set of Messages (M) and get the tag values for m E M
 - The oracle enables the adversary to carry out an adaptive chosen message attack where the adversary (an forge tage based on inferences he makes from outputs of the oracle

(a) * Avalanche effect:

A change of one input bit / key bit should result in a change of approximately half of the output bits

* This is a very derivable property of encryption algorithms to prevent guessing keys, inferring something about plaintext from ciphertext difficult etc.

* In DES, the S-boxes & E-box contribute to avalanche effect

- -> The initial permutation is split into two 25-bit halves
- The each stage,

 of the L & R are grotated (indiv.) 1/2 places based

 on key schedule

- · 24 bits from each half are selected a permutated by PC2
 - · LAR are combined & sent to F as subley

- -> One sound consists of splitting the input into Li & R;
 - Then sending R; & k; (subkey)
 to function 'F' to generate some
 intermediate value
 - -> Encrypt L; by doing X-OR with Output of F
- -> Send Rias Liti & output of X-OR as Rix1