

Wrocławska

Uczenie Głębokie Dla Kriomikroskopii Elektronowej Genwro. Al

ETHZURICH

Katedra

Sztucznej

Inteligenćji

Biomakromolekuły

Biomakromolekuły, czyli proteiny i kwasy nukleinowe, są kluczowe dla funkcjonowania żywych organizmów. fundamentalne Pełnia role w procesach one biologicznych, takich jak kataliza reakcji chemicznych, przekazywanie informacji genetycznej i strukturalne wsparcie komórek. Zrozumienie ich struktury i funkcji jest niezbędne dla postępów w medycynie, biotechnologii i biologii molekularnej.

Struktury 3D

W dzisiejszych czasach jesteśmy w stanie dokonać rekonstrukcji struktury 3D biomakromolekuł z **niemalże** atomową dokładnością. Dzięki pozyskanym modelom struktur, możemy dokładnie analizować, jak molekuły oddziałują ze sobą oraz z innymi cząsteczkami, co jest fundamentem dla rozwoju nowych leków i terapii.

Cryo-EM

Kriomikroskopia elektronowa (Cryo-EM) to metoda pozwalająca na określenie struktur biomakromolekuł. Wyróżnia ją to że pozwala na obserwację molekuł w niemal naturalnym środowisku, przez co pozwala na badanie dużo większej gamy molekuł niż inne metody.

Podstawą Cryo-EM jest zamrażanie próbki zawierającej molekuły w krystalicznie przejrzystym lodzie. Tak przygotowana próbka jest bombardowana elektronami z **mikroskopu elektronowego** w celu otrzymania obrazów molekuł. Dzięki zamrożeniu próbki molekuły są widoczne z różnych perspektyw, co umożliwia użycie ich obrazów do rekonstrukcji modelu 3D.

Na otrzymanych w ten sposób zdjęciach obecnych jest 100x więcej szumu niż sygnału. Odszumienie zdjęć jest krytyczne dla uzyskania struktur o wysokiej rozdzielczości.

Problemy

- Szum w obrazach ogranicza skuteczność metody
- Istniejące metody odszumiania nie są w stanie uzyskać szczegółów w wyższych częstotliwościach

Efekty prac

- 3 metody odszumiania molekuł z Cryo-EM
- autorski potok przetwarzania obrazów z Cryo-EM pozwalający na wykorzystanie stworzonych metod.

Dane

W eksperymentach wykorzystane zostały dane z bazy danych EMPIAR (Electron Microscopy Public Image Archive). Spośród publicznie dostępnych w niej zbiorów zdjęć z cryo-EM wybraliśmy 3 zbiory. W celu dodatkowej oceny skuteczności naszych metod przeprowadzaliśmy też eksperymeenty na danych symulowanych przy użyciu symulatora **TEM-simulator**. Do wykonania symulacji wykorzystane zostały rekonstrukcje dostępne w bazie danych PDB (Protein Data Bank).

	Human Apoferritin Light Chain	Escherichia coli DPS	T20S Proteasome
EMPIAR ID	10474	10297	10474
PDB ID	6wx6	6gcm	6bdf
Kamera	Falcon3	EIGER X 500K	Gatan K2 Summit
Rozmiar	642.1 GB	23.3 GB	2.0 TB
Liczba nagrań	326	739	196
Liczba klatek nagrania	2331	32	38
Rozmiar pikseli	1.06Å X 1.06Å	1.47Å X 1.47Å	0.66Å X 0.66Å
Rozmiar klatki	4096px X 4096px	1030px X 514px	7420px X 7676px
Rozmiar cząsteczki	256px	128px	512px
Liczba cząsteczek	193 597	76 917	142 151

Opiekunowie

Zespół

- Konrad Karanowski
- Mateusz Grzesiuk
- Radosław Kuczbański

Współpracownicy

- dr Andrew Rzepiela
- dr Lukas Frey
- dr inż. Piotr Klukowski

Rozwiązania

Wszystkie metody zostały porównane z najpopularniejszym obecnie rozwiązaniem: *Noise2Noise.*

Potok Przetwarzania

Do realizacji każdego z etapów, poza odszumianiem, wykorzystany został program **RELION**. Do wykonania korekcji przemieszczeń wykorzystano program MotionCor2. Estymacja CTF wykonana została przy użyciu CTFFind4. Cząsteczki na obrazach zostały zlokalizowane przy użyciu narzędzia TOPAZ.

