Analog details behind the digital abstraction

Vikas Dhiman for ECE275

October 17, 2022

Some of the material is out of the textbook. Additional resources include Appendix B of Brown and Vranesic book, "Fundamentals of digital logic."

1 Objectives

Vir is the voltage above which the gate considers the logic level to be 14167

Definition 4 (Output high (V_{OH}) and Output low (V_{OL}) of gate).

Voltage that the gate will output

Definition 5 (Positive logic and Negative logic).

Definition 6 (Noise margins $(NM_L \text{ and } NM_H)$ of a channel).

$$N M_H = V_{OH} - V_{IH}$$

If $V_{DD}=5V$, $V_{IL}=1.35V$, $V_{IH}=3.15V$, $V_{OL}=0.33V$ and $V_{OH}=3.84V$ for both the "inverters", then what are the low and high noise margins? Can the circuit tolerate 1V of noise at the channel?

$$NM_{H} = V_{0H} - V_{EH} = 3.84 - 3.15 = 0.69V$$

 $NM_{L} = V_{1L} - V_{0L} = 1.35 - 0.33 = 1.02V$

Semiconductors and Doping 3

Not in syllabus but good to know

6.

4 MOSFET: Metal Oxide Field Effect Transistors

Remark 1. nMOS transistors pass 0's well (output between 0 and $V_{DD} - V_t$). pMOS transistors pass 1's well (output between V_t and V_{DD}).

 $\frac{f = V_s}{f = V_s}$ $\frac{f = V_s}{f = V_s}$

PMOS inputs anctwork

 γ M \hat{O} \leq Jpg OR gate 49 V P D CMOS NOR

Open-collection

pseudo-nMOS (section 1.7.8)

Definition 12 (Open-collector). Draw a open-collector output NAND sate. Can you connect this gate to a shared bus?

V W 02

A - I

Push -pull output

6 Verilog truth tables

Table 11-11—Bitwise binary AND operator Table 11-12—Bitwise binary OR

& 0 1 x z
0 0 0 0 0 0
1 0 1 x x
x 0 x x x

e 11-12—Bitwise billary OK operator										
	ı	0	1	x	z					
	0	0	1	х	х					
	1	1	1	1	1					
	х	х	1	х	х					
	z	x	1	x	x					

7 Timing diagrams and propagation delays

Example 12 (Timing diagram). Draw a timing diagram for an ideal NAND gate.

f=A&B O&× O&z

2	0	(X	2
$\bigcup_{\mathbb{Q}}$	0	0	\bigcirc	0
١		ţ	*	<i>></i>
*	Q	\succ	>	\succ
V	10	\succ	\checkmark	\succ

Timing diagrams (Section 2.9) I deal timing diagran NAND S

