1

Exercises

Exercise n°1

Consider the following NFA:

Which of the words 00, 01001, 10010, 000 and 0000 does the automaton accept?

\$

Exercise n°2

Convert the following NFA into an equivalent DFA:

Exercise n°3

Is it true that for every NFA $M=(Q,\Sigma,\delta,S,F)$ the complement of L(M) is equal to the set

$$\{w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ for some } q \in (Q \setminus F)\}$$

Exercise $n^{\circ}4$ Show that L^{R} is regular if L is regular

2

Solutions

Solution $n^{\circ}1$

Only 01001 and 000 are accepted:

- $(q_0, 01001) \vdash (q_1, 1001) \vdash (q_1, 001) \vdash (q_0, 01) \vdash (q_1, 1) \vdash (q_1, \lambda)$
- $(q_0,000) \vdash (q_1,00) \vdash (q_0,0) \vdash (q_1,\lambda)$

Solution n°3

This NFA M accepts the language

$$L = \{a, ab, ab, \dots\} = \{a^{n+1}b^m \mid n \ge 0, m \ge 0\} :$$

Then L(M)=L. Now we want to construct:

$$L(\overline{M}) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ for some } q \in (Q \setminus F) \}$$

This NFA accepts the language $L(\overline{M}) = \{\lambda\}.$

However

$$\overline{L} = \{\lambda, b, ba, bb, bab, \dots\}.$$

It proves that the statement is false, the language accepted by the complement of a NFA is not equal to the complement of the language:

$$\overline{L} = \overline{L(M)} \neq L(\overline{M}).$$

Solution n°4

Regular languages closed under complement proof:

Let L be any regular language.

L is regular
$$\iff \exists \text{ DFA M} = (Q, \Sigma, \delta, q_0, F) \text{ with } L(M) = L$$

Define the DFA $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$.

Notice that the set of accepting states and non-accepting ones of M are inverted in \overline{M} . Thus:

$$w \in L \iff M \text{ accepts } w$$

 $\iff (q_0, w) \vdash^* (q, \lambda) \text{ with } q \in F$

The transitions are the same but $q \notin Q \setminus F$, therefore:

$$w \in L \Rightarrow \overline{M}$$
 does not accepts w (i)

Similary,

$$w \notin L \Rightarrow \overline{M}$$
 accepts w (ii)

$$(i) \wedge (ii) \Rightarrow L(\overline{M}) = \overline{L}$$

We have found a DFA for the complement language so \overline{L} is regular.