TABLE II.1 FUNDAMENTAL CONSTANTS

Quantity	Symbol or definition	√5 Value
Atomic mass unit	amu	1.66054 × 10 ⁻²⁴ g 931.494 MeV
Avagadro's number	N _A	0.6022137 × 10 ²⁴ (g-mole) ⁻¹
Boltzmann's constant	k	1.38066 × 10 ⁻²³ J/°K
Compton's wavelength of the electron	λς	$8.61707 \times 10^{-5} \text{ eV/}^{\circ}\text{K}$ $2.42631 \times 10^{-10} \text{ cm}$
Electron rest mass	m _e	9.10939 × 10 ⁻³¹ Kg 5.485799 × 10 ⁻⁴ amu 0.510999 MeV
Elementary charge		1.602192 × 10 ⁻¹⁹ coul
Neutron rest mass	. M _e	1.674929 × 10 ⁻²⁷ Kg 1.008665 amu 939.56563 MeV
Planck's constant	h	6.626075 × 10 ⁻³⁴ J-sec 4.13572 × 10 ⁻¹⁵ eV-sec
Proton rest mass	$M_{\rm p}$	1.67262 × 10 ⁻²⁷ Kg 1.007276 amu 938.27231 MeV
Speed of light	c	2.997925 × 108 m/sec

^{*&}quot;Reviews of Particle Properties," Phys. Rev. D 80, No. 3 (1994).

TABLE II.2 CROSS-SECTIONS OF SOME IMPORTANT NUCLIDES IN NUCLEAR **ENGINEERING**

Atomic		Abundance	Half-life*	σ_a , † barns	σ _f , ‡ barns
number	Nuclide	a/o	Hall-life*	Og, Oams	of, + Oam
0	n		12 m		
1	1H	99.985		333 mb	
	2H	0.015		0.53 mb	
	3H		12.33 y		
3	⁶ Li	92.5		941	
	7Li	7.42		45.7 mb	
5	10B	19.6		3840	
	11B	80.4		5.5 mb	
6	12C	98.89		3.4 mb	
	12C	1.11		1.37 mb	
	14C		5736 y		
7	14N	99.64		1.9	
'	15N	0.36		24 µb	
8	160	99.756		0.190 mb	
0	170	0.039		0.239	
	180	0.204		0.16 mb	
53	1351	0.20	6.7 h		
54	135 Xe		9.17 h	2.65 × 10°‡	
	143 Pm		53.1 h		
61	149 Sm	13.83		41,000‡	
62	232Th	100	$1.41 \times 10^{10} \text{ y}$	5.13	
90	233Th	100	23.3 m	1465	15
0.0	233U		1.592 × 105 y	575‡	529‡
92	234U	0.0055	$2.46 \times 10^{5} \text{ y}$	103.47	0.465
	235U	0.72	$7.038 \times 10^{8} \text{ y}$	687.0‡	587‡
	236U	0.72	$2.34 \times 10^{7} \text{ y}$	5.2	
	238U	99.27	4.68 × 10° y	2.73‡	
	230++	99.21	23.5 m	36	14
	239U		24110 y	1020‡	749‡
94	239Pu		6564 y	289.5	0.064
	240Pu			1378	1015
					< 0.002
	²⁴¹ Pu ²⁴² Pu		14.35 y 3.733 × 10 ⁵ y	10.3	

^{*}m = minute, h = hour, y = year. †Cross sections at 0.0253 eV or 2200 m/sec.

[‡]Non-1/v absorber, see table 3.2 for non-1/v factor.

TABLE II.3 PROPERTIES OF THE ELEMENTS AND CERTAIN MOLECULES

Element or		Atomic	Atomic or Molecular	Nominal Density,	Molecules ·	-	0,,‡	- mort	Σ,+ +,-
Molecule	Symbol	Number	Weight*	g/cm²	(×10-)	oa, toamis	Darnis	Za, cm	1111
Actinium	Ac	68	722			515			
Aluminum	AI	13	26.9815	2.699	0.06024	0.230	1.49	0.01386	0.08976
Antimony	Sb	51	121.75	6.62	0.03275	5.4	4.2	0.1769	0.1376
Aroon	Ar	18	39.948	Gas		0.678	0.644		
Arsenic	As	33	74.9216	5.73	0.04606	4.3	7	0.1981	0.3224
Rarium	Ba	. 56	137.34	3.5	0.01535	1.2		0.01842	
Beryllium	Be	4	9.0122	1.85	0.1236	0.0092	6.14	0.001137	0.7589
Rismuth	Bi	83	208.980	9.80	0.02824	0.033		0.0009319	
Roron		5	10.811	2.3	0.1281	759	3.6	97.23	0.4612
Bromine	B	35	606.64	3.12	0.02351	6.8	6.1	0.1599	0.1434
Cadmium	5	48	112.40	8.65	0.04635	2450	9.6	113.56	0.2596
Calcium	30	20	40.08	1.55	0.02329	0.43		0.01001	
Carbon	0	9	12.01115	1.50	0.08023	0.0034	4.75	0.0002728	0.3811
111111									
(graphite)	,	0.0	01011	670	0.00014	0.63	47	0.01836	0.1370
Cerium	3	28	140.12	0.70	0.000610	30.0		0 2497	
Cesium	Cs	55	132.905	6.1	0.008010	0.67		165-70	
Chlorine	C	17	35.453	Gas		53.2		00000	20000
Chromium	Ç	24	51.996	7.19	0.08328	3.1	3.0	0.2382	0.3165
Cobalt	ဝ	27	58.9332	8.8	0.08993	37.2	6.7	3.345	0.6025
Copper	Cu	29	63.54	8.96	· 0.08493	3.79	7.9	0.3219	0.6709
Deuterium	0	1	2.01410	Gas		0.000053			
Duenneimm	D's	99	162.50	8.56	0.03172	930	100	29.50	3.172
Erhinm	E	89	167.26	9.16	0.03203	162	11.0	5.189	0.3523
Firemin	i di	63	151.96	5.22	0.02069	4600	8.0	95.17	0.1655
Fluorine	H	6	18.9984	Gas		0.0095	4.0		

(continued)

TABLE II.3 (CONTINUED)

Element or Molecule	Symbol	Atomic Number	Atomic or Molecular Weight*	Nominal Density, g/cm ³	Molecules per cm ³ † (×10 ³⁴)	os, tbarns	or.‡ barns	Σ_a, fcm^{-1}	Σ,
Gadolinium	PS	28	157.25	7.95	0.03045	49000	STATE SO	-	
Gallium	Ga	31	69.72	5.91	0.05105	2.9	6.5		0.331
Germanium	Ge	32	72.59	5.36	0.04447	2.3	7.5		0.333
Gold	Au	79	196.961	19.32	0.05907	98.8			
Hafnium	Hf	72	178.49	13.36	0.04508	102	00		0.360
Heavy water	D20		20.0276	1.105	0.03323	0.00133	13.6		0.451
Helium	He	2	4.0026	Gas		< 0.05			
Holmium	Но	19	164.930	8.76	0.03199	66.5	9.4		0.300
Hydrogen	Н	1	1.00797	Gass		0.332			
Indium	In	49	114.82	7.31	0.03834	193.5			
Todine	I	53	126.9044	4.93	0.02340	6.2			
Iridium	Ir	77	192.2	22.5	0.07050	426	14		0.987
Iron	Fe	26	55.847	7.87	0.08487	2,55	6'01		0.925
Krypton	K	36	83.80	Gas		25.0	7.50		
Lanthanum	La	57	138.91	6.19	0.02684	0.6	9.3		0.249
Lead	Pb	82	207.19	11.34	0.03296	0.170	11.4		0.375
Lithium	r,	3	6.942	0.53	0.04600	7.07			
Lutetium	Lu I	71	174.97	9.74	0.03353	17	00		0.268
Magnesium	Mg	12	24.3050	1.74	0.04310	0.063	3.42		0.147
Manganese	Mn	25	54.9380	7.43	0.08145	13.3	2.1		0.171
Mercury	Hg	80	200.59	13.55	0.04068	375			
Molybdenum	Mo	42	95.94	10.2	0.06403	2.65	5.8		0.371
Neodymium	PN	09	144.24	86.9	0.02914	50.5	91		0.466
Neon	Ne	01	20.1797	Gas		0.038	2.42		
Nickel	Z	28	58.71	8.90	0.09130	4.43	17.3		1.579
Nichimm	N.	41	92.906	8.57	0.05555	1.15		0.06388	

			0.3396			0.7167	0.3902		0.01988	0.09563				0.7453		0.06684			0.8038	0.3559	0.1099		0.98131	0.1787	0.03791	30100	0.5420		0.6314	0.0314
	1.090		0.4686	0.006370		0.622	49.93	36.66	0.02783	0.3333			0.1532	5.804	10.89	0.003989	0.1861	0.191	0.8875	0.4293	0.007994	3.725	0.01347	0.02162	0.02022		1.160		0.1384	0.8050
9701		3.76	5.0			11.2	7.7		1.5	3.3				11.3		6.2			24	7.6	2.2		3.2	10	0.975		6.2			20
1.85	15.3	0.00027	6.9	0.180		10.0	$\sigma_{a} = 1011.3$	$\sigma_{\rm r} = 742.5$	2.10	11.5		210	11.5	88	150	0.37	2.56	2800	26.5	11.7	0.16	63.6	0.530	0.530	0.520		21.0	61	4.7	25.5
	0.07124		0.06792	0.03539		0.06622	0.04938	0.02727	0.01325	0.02898			0.01332	0.06596	0.07263	0.01078	0.07270	0.02776	0.03349	0.03669	0.04996	0.05857	0.02541	0.01787	0.03888		0.05525		0.02945	0.03157
Gass	22.5	Gas	12.0	1.82		21.45	9.61	9.51	98.0	6.78			5.0	20	12.41	1.53	12.2	6.93	2.5	4.81	2.33	10.49	0.97	2.6	2.07		16.6		6.24	8:33
14.0067	190.2	15.9994	106.4	30.9738		195.09	239.0522	209	39.095	140.907	145	231.0359	226.0254	186.2	102.905	85.47	101.07	150.35	44.956	78.96	28.086	107.870	22.9898	87.62	32.064		180.948	66	127.60	158.925
7	16	80	46	15		78	94	84	61	59	19	91	88	75	45	37	4	62	21	34	14	47	11	38	16		73	43	52	65
Z	os	0	Pd	Ь		Pt	Pu	Po	×	Pr	Pm	Pa	Ra	Re	Rh	Rb	Ru	Sm	Sc	Se	Si	Ag	Na N	Sr	S		Ta	Te	Te	Tb
Nitrogen	Osmium	Oxvgen	Palladium	Phosphorus	(yellow)	Platinum	Plutonium	Polonium	Potassium	Praseodymium	Promethium	Protactinium	Radium	Rhenium	Rhodium	Rubidium	Ruthenium	Samarium	Scandium	Selenium	Silicon	Silver	Sodium	Strontium	Sulfur	(yellow)	Tantalum	Technetium	Tellurium	Terbium

TABLE II.3 (CONTINUED)

Element or Molecule	Symbol	Atomic	Atomic or Molecular Weight*	Nominal Density, g/cm ³	Molecules per cm ³ † (×10 ²⁴)	· o _e ,‡ barns	σ _s ,‡ barns	Σ_a , \uparrow cm $^{-1}$	Σ,.‡
The History	F	- ×	204.37	11.85	0.03492	3.4	9.7	0.1187	0.3387
Therium	É	8	232.038	11.71	0.03039	7.40	12.67	0.2249	0.3850
Thulium	Tm	09	168.934	9.35	0.03314	103	12	3.413	0.3977
Ta	Sn	50	118.69	7.298	0.03703	0.63		0.02333	
Transium	=======================================	22	47.90	4.51	0.05670	6.1	4.0	0.3459	0.2268
Tueneten	: 3	74	183.85	19.2	0.06289	18.5		1.163	
Transien	==	6	238.03	16.1	0.04833	$\sigma_{a} = 7.59$	8.90	0.3668	0.4301
Oranium	,					91.4=10		0.2025	
	^	33	50 042	19	0.07212	5.04	4.93	0.3635	0.3556
vanadium	0.11	3	18 0153	1.0	0.03343	0.664	103	0.02220	3.443
Water	N20	64	131 30	Gas		24.5	4.30		
Venon	ye.	, ,	172.04	101	0.02440	36.6	25.0	0.8930	0.6100
Ytterbium	I.O	200	113.04	10.1	0.03733	1.28	7.60	0.04778	0.2837
Yttrinm	Y	39	88.500	10.0	00000	01.1	4.3	0.07230	0.2760
Zinc	Zn	30	65.37	7.133	0.06572	01.1	7.	0.000000	0000
Zirconium	77	40	91.22	6.5	0.04291	0.185	6.40	0.007938	0.2740

*Based on 12C = 12.00000.

Four-digit accuracy for computational purposes only; last digit(s) usually is not meaningful.

neutron spectrum and are assumed to be 0.0253 eV values because σ_s is usually constant at thermal energies. The errors in σ_s tend to be large, and Cross-sections at 0.0253 eV or 2200 m/sec. The scattering cross sections, except for those of H2O and D2O, are measured values in a thermal

The value of σ_a given in the table is for pure graphite. Commercial, reactor-grade graphite contains verying amounts of contaminants and σ_a is the tabulated values of σ_s should be used with caution. (From BNL-325, 3rd ed., 1973).

The value of σ_a given in the table is for pure D₂O. Commercially available heavy water contains small amounts of ordinary water and σ_a in this case somewhat larger, say, about 0.0048 barns, so that $\Sigma_a \cong 0.0003851$ cm⁻¹ is somewhat larger.

							* *								-	,	0	
Material	0.1	0.15	0.2	0.3	0.4	0.5	0.0	.0.8	0.1	9	1.30	7	2	4	0	0	0	01
Н	.295	.265		.212	189	.173	.160	.140	.126	.113	.103	9280.	1690	9750.	.0502	.0446	1750.	.0321
Be	.132	911.		.0945	.0847	.0773	.0715	.0628	.0565	0504	.0459	.0394	.0313	.0266	.0234	.0211	1810.	1910.
0	.149	.134		901	.0953	0870	50805	7070.	9690	.0568	8150	.0444	.0356	,0304	.0270	.0245	.0213	.0194
Z	.150	.134		901	9550	6980	50807	7070.	0636	.0568	7150	.0445	.0357	9080	.0273	.0249	.0218	.0200
0	.151	.134		107	.0953	0870	9080	8070.	9690	.0568	.0518	.0445	.0359	.0309	.0276	.0254	.0224	.0206
Na EN	.151	.130		.102	.0912	.0833	0770.	9191	8090	.0546	.0496	.0427	.0348	.0303	.0274	.0254	.0229	.0215
Mg	.160	.135	.122	901.	.0944	0980	.0795	6690	.0627	.0560	.0512	.0442	.0360	.0315	.0286	.0266	.0242	.0228
Al	191	.134		.103	.0922	.0840	7770.	.0683	.0614	.0548	00500	.0432	.0353	.0310	.0282	.0264	.0241	.0229
Si	.172	.139		107	.0954	6980	.0802	9070.	.0635	7950	7150	.0447	.0367	.0323	9670	7720.	.0254	.0243
р	174	.137		104	.0928	.0846	.0780	.1685	7190	.0551	.0502	.0436	.0358	.0316	.0290	.0273	.0252	.0242
S	.188	14		.108	8560	.0874	9080	7070.	.0635	.0568	6150	.0448	.0371	.0328	.0302	.0284	.0266	.0255
Ar	.188	.135		7760.	7980.	0620	.0730	.0638	.0573	.0512	.0468	.0407	.0338	.0301	9720.	.0266	.0248	.0241
×	.215	.149		901.	.0938	.0852	9810	6890	8190	.0552	5050	.0438	.0365	.0327	.0305	.0289	.0274	.0267
Ca	.238	.158		109	5960	9280	6080	8070.	.0634	9950	.0518	.0451	.0376	.0338	.0316	.0302	.0285	.0280
Fe	34	.183		901	6160	.0828	.0762	.0664	.0595	.0531	.0485	.0424	.0361	.0330	.0313	.0304	.0295	.0294
Cn	.427	206		108	9160.	.0820	.0751	.0654	.0585	.0521	.0476	.0418	.0357	.0330	.0316	.0309	.0303	.0305
Mo	1.03	389		.130	8660	.0851	1920	.0648	5750.	.0510	.0467	.0414	.0365	.0349	.0344	.0344	.0349	.0359
Sn	1.58	563		.153	601	9880	9770.	.0647	.0568	.0501	.0459	.0408	.0367	.0355	.0355	.0358	.0368	.0383
1	1.83	.648		.165	1114	.0913	.0792	.0653	1750.	.0502	.0460	.0409	.0370	.0360	.0361	.0365	.0377	.0394
W	4.21	1.44		293	.174	.125	101	.0763	.0640	.0544	.0492	.0437	.0405	.0402	.0409	.0418	.0438	.0465
R	4.75	1.62		324	161.	.135	101	0080	6590	.0554	1050.	.0445	.0414	.0411	.0418	.0427	.0448	.0477
П	5.16	1.80		346	204	.143	.112	.0824	.0675	.0563	8050	.0452	.0420	.0416	.0423	.0433	.0454	.0484
Pb	5.29	1.84		356	208	.145	114	0836	.0684	6950	.0512	.0457	.0421	.0420	.0426	.0436	.0459	.0489
n	10.60	2.42		.452	259	176	.136	.0952	7570.	.0615	.0548	.0484	.0445	.0440	.0446	.0455	6740.	1150
Air	.151	.134		901	.0953	8980	.0804	90/0	.0636	.0567	7150.	.0445	.0357	.0307	.0274	.0250	.0220	.0202
Nal	1.57	.568		.155	111	1060	6840.	.0657	7750.	.0508	.0465	.0412	.0367	.0351	.0347	.0347	.0354	9960
H,0	167	.149		.118	901	9960	9680	9820	9070.	.0630	5750.	.0493	9650	0339	.0301	.0275	.0240	.0219
Concrete	691.	.139		101	.0954	.0870	.0804	90/0	.0635	7950.	7150.	.0445	.0363	7150	.0287	.0268	.0243	.0229
Tissue	163	144		115	100	9500	0867	1920	0683	0090	9550	0478	0384	0329	0292	.0267	.0233	,0212

^{*}From L. T. Templin, editor, Reactor Physics Constants, ANL,5800, 2nd ed., 1963; based on G. W. Grodstein National Bureau of Standards circular

†Nominal densities of the elements are given in Table II.3. For air at 1 atm and 0°C, $\rho = 1.293 \times 10^{-3}$ g/cm³; ρ (NaI)= 3.67 g/cm³, ρ (tissue) ≃ 1 (H-O)= 1 e/cm²; a (concrete)= 2.25 - 2.40 e/cm³.

THE MASS ABSORPTION COEFFICIENT (μ, / ρ) FOR SEVERAL MATERIALS, IN CM²/G* FABLE 11.5

								Cantilland	riaj ca	California-ray energy, McV	A S							
Material	0.1	0.15	0.2	0.3	0.4	0.5	9.0	8.0	1.0	1.25	1.50	2	3	4	s	9	00	01
H	.0411 .0487	.0487		.0575	6850	1650.	0650	2750.	.0557	.0533	6050	.0467	.0401	.0354	.0318	.0291	.0252	.0255
3e	.0183	.0217		.0256	.0263	.0264	.0263	.0256	.0248	.0237	.0227	.0210	.0283	4910.	.0151	.0141	.0127	.0118
0	.0215	.0246		.0288	.0296	.0297	.0296	6870	.0280	.0268	.0256	.0237	.0209	0610	7710.	9910	.0153	.0145
7	.0224	.0249		.0288	.0296	.0297	.0296	.0289	.0280	.0268	.0256	.0236	.0211	.0193	0810	1710.	.0158	.0151
0	.0233	.0252		.0289	.0296	7620.	.0296	6820	.0280	.0268	.0257	.0238	.0212	2610	.0183	.0175	0163	.0157
Na Na	.0289	.0258		.0279	.0283	.0284	.0284	.0276	.0268	.0257	.0246	.0229	.0207	10194	.0185	9710.	.0171	.0168
Mg	.0335	.0276	.0278	.0290	.0294	.0293	.0292	.0285	9720.	.0265	.0254	.0237	.0215	.0203	.0194	.0188	.0182	0180
N	.0373	.0283		.0283	.0287	.0286	.0286	.0278	.0270	.0259	.0248	.0232	.0212	.0200	.0192	.0188	.0183	.0182
Si	.0435	0300		.0291	.0293	.0290	.0290	.0282	.0274	.0263	.0252	.0236	.0217	.0206	8610	.0194	.0190	.0189
Ь	.0501	.0315		.0289	.0290	.0290	.0287	.0280	.0271	.0260	.0250	.0234	.0216	.0206	.0200	7610.	.0194	.0195
S	1090	.0351		.0301	.0301	.0300	.0298	.0288	.0279	.0268	.0258	.0242	.0224	.0215	0200	.0206	.0206	.0206
Ar	.0729	.0368		.0278	.0274	.0272	.0270	.0260	.0252	.0242	.0233	.0220	.0206	6610	.0195	0195	.0194	7610.
×	6060	.0433		.0304	.0298	.0295	.0291	.0282	.0272	.0261	.0251	.0237	.0222	.0217	.0214	.0212	.0215	.0219
Ca	1111	.0489		.0318	.0309	.0304	.0300	.0290	.0279	.0268	.0258	.0244	.0230	.0225	.0222	.0223	.0225	.0231
Fe	.225	0180		.0340	.0307	.0294	.0287	.0274	.0261	.0250	.0242	.0231	.0224	.0224	7220.	.0231	.0239	.0250
70	.310	101.		.0368	.0316	9620	.0286	.0271	.0261	.0247	.0237	.0229	.0223	.0227	.0231	.0237	.0248	.0261
Mo	.922	.294		.0617	.0422	.0348	.0315	.0281	.0263	.0248	.0239	.0233	.0237	.0250	.0262	.0274	.0296	.0316
Sn	1.469	.471		.0873	.0534	.0403	.0346	.0294	.0268	.0248	.0239	.0233	.0243	0259	.0276	.0291	.0316	.0339
	1.726	.557		.100	0589	.0433	.0366	.0303	.0274	.0252	.0241	.0236	.0247	.0265	.0283	0299	.0327	.0353
W	4.112	1.356		.230	.1219	9840.	.0599	.0426	.0353	.0302	.0281	.0271	.0287	.0311	.0335	.0355	.0390	.0426
H	4.645	1.556		.262	.138	.0892	9990	.0465	.0375	.0315	.0293	.0280	9670	.0320	.0343	.0365	.0400	.0438
L	5.057	1.717		285	.152	.0972	.0718	.0491	.0393	.0326	.0301	.0288	.0304	.0326	.0349	.0354	.0406	.0446
Pb	5.193	1.753		.294	.156	.0994	.0738	.0505	.0402	.0332	9060.	.0293	.0305	.0330	.0352	.0373	.0412	.0450
5	9.63	2.337		392	.208	.132	8960	.0628	.0482	.0383	.0346	.0324	.0332	.0352	.0374	.0394	.0443	.0474
Air	.0233	.0251		.0288	.0296	.0297	.0296	0289	.0280	.0268	.0256	.0238	.0211	.0194	.0181	:0172	0910	.0153
Nal	1.466	.476		6880	.0542	.0410	.0354	0200	.0273	.0253	.0242	.0235	.0241	.0254	.0268	.0281	.0303	.0325
H20	.0253	.0278		.0321	.0328	.0330	.0329	.0321	.0311	.0298	.0285	.0264	.0233	.0213	8610	8810	.0173	.0165
Concrete	.0416	.0300		.0284	7620.	.0296	.0295	.0287.	.0278	.0272	.0256	.0239	.0216	.0203	4610.	8810	.0180	.017
Tissue	.0271	.0282		.0312	.0317	.0320	9150.	.0311	.0300	.0288	.0276	.0256	.0220	.0206	.0192	.0182	8910.	0910

^{*}From L. T. Templin, editor, Reactor Physics Constants, ANL-5800, 2nd ed., 1963; based on G. W. Grodstein, National Bureau of Standards c. Circular 583, 1957.