(| | | | |)Triple-Integral F(n, y, z) - function n, y=g(n) = h(n,y)Krobkm Find the volume of Region D enclosed by the Surfaces $Z = \frac{n^2 + 3y^2}{z} = \frac{1}{2} \left[\frac{(n,y,z)}{(n,y,z)} \right]$ $V = \iint dz dy dn$ To Find limits of Z (4, 2)
Let w find limits of Z

Let w find limits 0

$$2 = 8 - n^{2} - y^{2}$$

$$2 = n^{2} + 3y^{2}$$

$$8 = n^{2} + 3y^{2}$$

$$4 = n^{2} + 3y^{2}$$

$$4 = n^{2} + 3y^{2}$$

$$LY = 4$$

$$Y = \pm$$

$$\frac{n-limits}{n=4+0}$$

$$n=\pm 2$$

$$y = g_2(n)$$

 $= n^{2} + 3y^{2}$ $3y^{2} + n^{2} + y^{2}$ $2 + 4y^{2}$ $-2y^{2}$ $-n^{2}$ $4-n^{2}$

2

-2 8-N-9

dz dy dn

 $\begin{cases} \sqrt{2} & 8 - 2^{2} - x^{2} - x^{2} \\ \sqrt{4x^{2}} & 8 - 2x^{2} - 4y^{2} - \sqrt{y} \\ \sqrt{4x^{2}} & 8 - 2x^{2} - 4y^{2} - \sqrt{y} \\ \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} \\ \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} \\ \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} \\ \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} \\ \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} & \sqrt{4x^{2}} \\ \sqrt{4x^{2}} & \sqrt{4x^$ $\int_{2}^{2} \left(\frac{3y - 2n^{2}y - 4/3y^{3}}{-\sqrt{4-n^{2}}} \right) = \int_{2}^{2} \frac{4-n^{2}}{-\sqrt{2}}$ $\int_{2}^{2} \sqrt{4-n^{2}} - 2n^{2} \sqrt{4-n^{2}} - 4\sqrt{3} \sqrt{4-n^{2}}$ $4\sqrt{2} \left(4-n^2\right)^{3/2} dn$

2

-

 $4\sqrt{2}$ 3 $(4-\pi^2)^{1/2}$ 3π Cylindrial co-ordinates $\iint f(m,y,z) \cdot dV = \iiint f(\gamma(080, \gamma Sih0, z)) dz$ $n = \gamma CoS8$, $y = \gamma^5$ z. Q = ta $\gamma - \gamma a hins.$ z limits (bounded above & below ! Kablem γ - limits $(\gamma = f(\theta))$ 0-limits Using Triple integration in (ylinaticalal region 6

rdrdo.

n-1(4n)

g J Using Triple 101 we find vol of region of Co-ordinates to find vol of region of bounded and by the hemisphere $z = \sqrt{2}$ bounded and by xy-plane (z=0) and below by xy-plane (z=0) and laterally by the (ylinder $x^2+y^2=9$

5-22-42