TUGAS 01 TBO "CFG"

Disusun untuk Memenuhi Tugas Individu pada Mata Kuliah Teori Bahasa dan Otomata Semester Lima yang Diampu oleh Ibu Etna Vianita, S.Mat., M.Mat.

Disusun oleh:

Puti Dhiya Salsabila Rahman 24060121140173

DEPARTEMEN ILMU KOMPUTER/INFORMATIKA
FAKULTAS SAINS DAN MATEMATIKA
UNIVERSITAS DIPONEGORO
SEMARANG

2023

- 1. Soal nomor 3 karena digit NIM terakhir adalah 3
 - 3. Diberikan Grammar G dengan produksi

$$S \rightarrow XY$$

 $X \rightarrow aX \mid bX \mid a$
 $Y \rightarrow Y \mid a \mid Y \mid b \mid a$

- a. Untuk string aaabbaabbbaa, tentukan penurunan paling kanan, dan parse tree!
- b. Tentukan bahasa yang diterima oleh G!

Jawaban:

- a. Untuk string aaabbaabbbaa, tentukan penurunan paling kanan, dan parse tree!
 - Penurunan paling kanan

$$S \rightarrow XY$$

- \rightarrow XYa
- → XYaa
- → XYbaa
- → XYbbaa
- → XYbbbaa
- → Xabbbaa
- → aXabbbaa
- → aaXabbbaa
- → aaaXabbbaa
- → aaabXabbbaa
- → aaabbXabbbaa
- → aaabbaabbbaa

Parse Tree

b. Tentukan bahasa yang diterima oleh G!

- Percobaan pertama
 - $S \rightarrow XY$
 - \rightarrow aY
 - \rightarrow aa
- Percobaan kedua
 - $S \rightarrow XY$
 - \rightarrow bXY
 - \rightarrow baY
 - → baYa
 - → baaa
- Percobaan ketiga
 - $S \rightarrow XY$
 - \rightarrow bXY
 - \rightarrow baY
 - \rightarrow baYb
 - → baab

dst...

Berdasarkan penurunan di atas, maka dapat disimpulkan bahwa bahasa yang diterima oleh G adalah $L(G) = \{aa, a^nb^m \mid n, m \geq 1\}$

2. Soal nomor 11

11. Diberikan Tata Bahasa Bebas Konteks

$$G = (V, T, S, P)$$
 dengan $V = \{S, A\}, S = S, T = \{0,1\}$ dan
$$P : \begin{cases} S \rightarrow 0A1B \\ A \rightarrow 0A|0 \\ B \rightarrow 1B|1 \end{cases}$$

Tentukan Bahasa L(G) yang memenuhi Grammar G

Jawaban:

Tentukan bahasa L(G) yang memenuhi grammar G

Percobaan pertama

$$S1 = S \rightarrow 0A1B$$

- \rightarrow 001B
- \rightarrow 0011
- Percobaan kedua

$$S2 = S \rightarrow 0A1B$$

- \rightarrow 00A1B
- \rightarrow 0001B
- → 00011B
- \rightarrow 000111
- Percobaan ketiga

$$S3 = S \rightarrow 0A1B$$

- \rightarrow 0011B
- \rightarrow 00111
- Percobaan keempat

$$S4 = S \rightarrow 0A1B$$

- \rightarrow 00A11
- \rightarrow 00011

Berdasarkan penurunan di atas, maka dapat disimpulkan bahwa string yang diterima minimal 0011 dan ada ketika 0 dan 1 perulangannya berbeda jumlah, maka bahasa L(G) yang memenuhi Grammar G adalah L(G) = $\{00^n11^m \mid n, m \geq 1\}$

- 3. Soal nomor 12
 - 12. Diberikan Tata Tahasa Bebas Konteks

$$G = (V, T, S, P)$$
 dengan $V = \{S, A\}, S = S, T = \{a, b\}$ dan
$$P : \begin{cases} S \to aA \\ A \to abS \mid b \end{cases}$$

- a. Tentukan Penurunan Tree dan Bahasa yang dihasilkan L(G)
- b. Tentukan Ekspresi Reguler untuk bahasa L(G) tersebut!

Jawaban:

a. Tentukan penurunan tree dan bahasa yang dihasilkan

Percobaan pertama

$$S1 = S \rightarrow aA$$

 \rightarrow ab

Percobaan kedua

$$S2 = S \rightarrow aA$$

- → aabS
- → aabaA
- → aabab
- Percobaan ketiga

$$S3 = S \rightarrow aA$$

- → aabS
- → aabaA
- → aabaabS
- → aabaabaA
- → aabaabab

Berdasarkan penurunan di atas, maka dapat disimpulkan bahwa string yang diterima minimal ab dan aab yang dapat berulang serta selalu berakhir dengan ab, maka bahasa yang dihasilkan L(G) adalah $L(G) = \{ab, (aab)^n ab \mid n \ge 1\}$

b. Tentukan ekspresi reguler untuk bahasa L(G) tersebut

Ekspresi regular untuk bahasa L(G) adalah R(G) = ab + (aab)*ab

- 4. Soal nomor 13
 - 13. Misalkan alphabet $\Sigma = \{a, b, c\}$. Diberikan Grammar dengan aturan produksi:

$$S \rightarrow ABa$$
.

$$A \rightarrow aab$$
.

$$B \rightarrow Ac$$

Tentukan Bahasa yang diterima Grammar tersebut!

Jawaban:

Tentukan Bahasa yang diterima Grammar tersebut!

Percobaan pertama

$$S1 = S \rightarrow ABa$$

- → aabBa
- → aabAca
- → aabaabca
- Percobaan kedua

$$S2 = S \rightarrow ABa$$

- → AAca
- → aabaabca

Berdasarkan penurunan di atas, maka dapat disimpulkan bahwa string yang diterima minimal terdapat aab dan selalu berakhir dengan ca, maka bahasa yang diterima Grammar di atas adalah $L(G) = \{(aab)^n \ ca \mid n=2\}$