802.11 THROUGHPUT

comp40660 Assignment 1, February 2020

This assignment is worth 18% of the overall grade

Motivation

- Build a simple model of 802.11 frame exchange for TCP and UDP, using OFDM of 802.11a and 802.11g
- The model will approximate the actual throughput of the network
- RTS/CTS mechanism is enabled
- No contention
- Demonstration of the calculation for 802.11a UDP case;
 work on TCP case in lab.
- Assignment will be to modify for the .11g/n/ac/ax case for both TCP and UDP.

802.11 Model

- Basic transactional model 2 different transaction types, namely UDP and TCP.
- Any 802.11 transmission of data (from higher layer) requires an acknowledgement (ACK) by the .11 MAC.
- Each TCP / UDP packet is encapsulated in a single 802.11 frame.

802.11 Frame Exchange

UDP Case

- No guarantee of delivery
- Suitable for real-time applications such as VoIP, VoD
- UDP data encapsulated into 802.11 frame and transmitted. Receiving station transmits 802.11 ACK.

802.11 Frame Exchange

TCP Case

- Reliable delivery service guaranteeing that all bytes are received and in correct order through TCP ACKs
- How is this different from the UDP case?

Data Transmission

- 802.11 uses different inter-frame spaces:
 - SIFS (Short Interframe Space)
 - High-priority transmissions can begin once SIFS has elapsed
 - ACK, RTS, CTS
 - DIFS (DCF Interframe Space)
 - Minimum idle time for contention-based services
 - Stations can have access to the medium if it has been free for a period longer than DIFS

Packet Headers

- 1500 bytes packet (TCP/UDP) is encapsulated:
 - MAC header = 34 bytes
 - SNAP LLC header = 8 bytes
 - 3 bytes LLC (logical link control) header
 - 5 bytes SNAP (sub-network access protocol) header
- => Total size = 1542 bytes

802.11a

- Amendment to the IEEE 802.11 specification
- 1999
- 5Ghz band
- Maximum data rate: 54 Mbps
- OFDM (Orthogonal Frequency Division Multiplexing)
- Available data rates: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

802.11g

- 2003
- 2.4Ghz (same as 802.11b)
- Maximum data rate: 54 Mbps
- OFDM (copied from 802.11a)
- Available data rates: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

802.11n

- 2009
- Both 2.4Ghz and 5Ghz
- Maximum data rate (20 MHz, 1 Spatial Streams): 72.2 Mbps
- Maximum optional data rate (40 MHz, 4 Spatial Streams):
 600 Mbps
- OFDM with HT (High Throughput)
- Available data rates: 72.2, 65, 57.8, 43.3, 28.9, 21.7, 14.4,
 7.2 Mbps

802.11ac

- 2013
- 5GHz band
- Maximum data rate (20MHz, 1 Spatial Stream): 96.3 Mbps
- Maximum wave 1 optional data rate (80MHz, 3 Spatial Streams): 1300 Mbps
- Maximum wave 2 optional data rate (160MHz, 8 Spatial Streams): 6933.6 Mbps
- OFDM with VHT (Very High Throughput)
- Available data rates: 96.3, 86.7, 72.2, 65, 57.8, 43.3, 28.9, 21.7, 14.4, 7.2 Mbps

802.11ax

- 2019
- Both 5Ghz and 2.4GHz band
- Maximum data rate (20MHz, 1 Spatial Stream): 143.4 Mbps
- Maximum data rate (160MHz, 8 Spatial Streams): 9607.8
 Mbps
- Introduce Modulation and Coding Sets (MCS) with 1024-QAM
- Available data rates: 143.4, 129.0, 114.7, 103.2, 86.0, 77.4, 68.8, 51.6, 34.4, 25.8, 17.2, 8.6 Mbps

Example Calculation - UDP

Case: 802.11a @ 54Mbps

SIFS	16 µs
Slot Time	9 µs
DIFS=(2*Slot Time) + SIFS	34 µs

- A single data frame exchange:
 - 1) Wait 1 DIFS
 - 2) Send RTS
 - 3) Wait 1 SIFS
 - 4) Send CTS
 - 5) Wait 1 SIFS
 - 6) Transmit data
 - 7) Wait 1 SIFS to send ACK
 - 8) Send ACK

Example Calculation - UDP (cont.)

- Data is divided into symbols before transmission.
- Different amount of bits per symbol for each data rate
 - See later slides of this set
- @54Mbps: 1 symbol encodes 216 bits
- Each symbol takes 4µs to transmit (11a/g only)
- Using OFDM each frame has 6 bits (tail) appended
- \Rightarrow 1542*8+6 = 12,342 bits
- \Rightarrow 12,342 bits / 216 bits = 58 symbols
- =>232 µs to transmit the data frame
- RTS is a 20 byte long Control Frame and CTS is a 14 byte long Control Frame → (20*8+6)/216 = 1 symbol and (14*8 + 6)/216 = 1 symbol for RTS and CTS respectively → 4 μs transmission for each frame.

Example Calculation – UDP (cont.)

- 802.11 ACK: 1 symbol (only 14 bytes) => **4 μs**
- 20µs (Preamble) sync header is transmitted before each frame

```
DIFS + Preamble + RTS + SIFS + Preamble + CTS + SIFS + Preamble + Data + SIFS + Preamble + ACK = 34\mu s + 20\mu s + 4\mu s + 16\mu s + 20\mu s + 4\mu s + 16\mu s + 20\mu s + 4\mu s = 406\mu s
```

So: time to send 1500 bytes (including IP and UDP headers) : 406 µs

Q: What is the throughput [Mbps]?

In the practical: Do the same for TCP.

Assignment

- Calculate the actual throughput for 802.11a/g/n/ac/ax and for all available data rates, for both UDP and TCP.
- Your program should accept 3 arguments:
 - Protocol (UDP/TCP)
 - Standard (802.11a, 802.11g, 802.11n, 802.11ac_w1, 802.11ac_w2, 802.11ax)
 - Available data rate for each standard (e.g. 802.11a/g: 54, 48, 36,...)
 - Note: For standard .11n/ac, consider SDur = $3.6\mu s$ only
- Your program must return for each scenario:
 - The actual throughput [Mbps] in the normal case (20MHz and 1SS) AND the best case:
 - 40MHz/4SS for .11n
 - 80MHz/3SS for .11ac_w1; 160MHz/8SS for .11ac_w2
 - 160MHz/8SS for .11ax
 - The amount of time needed to transfer 10 GB of data.

Assignment (cont.)

- Languages: C/C++, Java, Python
- Code must compile & run with no errors and be appropriately commented throughout.
- A "Readme" file is required detailing usage, and explaining:
 - Why there is a difference between the actual throughput and the advertised data rate.
 - 802.11 performance improves after each release. Briefly discuss the trade-offs involved in such improvements.

Assignment (cont.)

- Submission: Friday 28th February 2020, 23:59 sharp!!
- .zip file with source code + readme file
- Submit .zip through comp40660 page on CS Moodle
- This is an individual assignment: no group submissions will be accepted and there should be no collaboration on the assignment.
- Anti-plagiarism tools and techniques will be used to check your submission.

Notes

- The differences between .11a and .11g that you have to take into account:
 - For 802.11g, SIFS = $10 \mu s$
 - Signal Extension appended to every 802.11g frame = 6 μs
 - All other parameters, headers, tails etc. remain the same as .11a

Notes (cont.)

- Specificities of .11n and .11ac/ax that you have to take into account:
 - 11n/ac MAC header = 40 bytes
 - 802.11n/ac/ax SIFS = 16 μs
 - Symbol duration of 802.11ax: 13.6µs
 - Symbol duration of 802.11n/ac: 3.6µs (short symbol duration)
 - The preamble in .11n is 46 µs (using 4 Spatial Streams)
 - The preamble in .11ac_w1 is 56.8 µs (using 3 Spatial Streams)
 - The preamble in .11ac_w2/ax is 92.8 µs (using 8 Spatial Streams)
 - All other parameters, headers, tails etc. remain the same as .11a/g

Notes (cont.)

- 802.11n with 600 Mbps rate
 - Maximum 4 Spatial Streams
 - Maximum 40 MHz channels
- 802.11ac wave1 (802.11ac_w1) with 1300 Mbps rate
 - Maximum 3 Spatial Streams
 - Maximum 80 MHz channels
- 802.11ac wave2 (802.11ac_w2) with 6933.6 Mbps rate
 - Maximum 8 Spatial Streams
 - Maximum 160 MHz channels
- 802.11ax with 9608 Mbps rate
 - Maximum 8 Spatial Streams
 - Maximum 160 MHz channels

802.11a/g Encoding Block Sizes

- Symbol duration (SDur)
- Bits per symbol (NBits)
- Coding Rate (CRate)
- Number of sub-channels (NChan)

Data Rate = (1/SDur)*(NBits*CRate)*NChan
Data bits per OFDM symbol = NBits * CRate * NChan

Modulation	NBits	CRate	NChan	SDur	(micro	sec)	Data	Rate	(Mbps)
BPSK	1	1/2	48		4			6	
BPSK	1	3/4	48		4			9	
QPSK	2	1/2	48		4			12	
QPSK	2	3/4	48		4			18	
16-QAM	4	1/2	48		4			24	
16-QAM	4	3/4	48		4			36	
64-QAM	6	2/3	48		4			48	
64-QAM	6	3/4	48		4			54	

11a/11g Data Rates

802.11n/ac Encoding Block Sizes

802.11n/ac supports both Symbol duration $4\mu s$ (for back compatibility with 802.11a/g) and $3.6\mu s$ (short symbol duration) – you should ONLY consider SDur = $3.6\mu s$

Modulation	NBits	CRate	NChan	Data Rate (Mbps) SDur=4us	Data Rate (Mbps) SDur=3.6us
BPSK	1	1/2	52	6.5	7.2
QPSK	2	1/2	52	<mark>1.3</mark>	14.4
QPSK	2	3/4	52	19.5	21.7
16-QAM	4	1/2	52	2.6	28.9
16-QAM	4	3/4	52	39	43.3
64-QAM	6	2/3	52	<mark>52</mark>	57.8
64-QAM	6	3/4	52	58.5	65
64-QAM	6	5/6	52	65	72.2
256-QAM (11ac)	8	3/4	52	<mark>78</mark>	86.7
256-QAM (11ac)	8	5/6	52	36.7	96.3

11n and 11ac Data Rates (20 MHz, 1 SS)

802.11n/ac Maximum Data Rates

 Number of Spatial Streams (Nss): matching number of antenna pairs at the sender and the receiver ends

Channel Width	NBits	CRate	NChan	Data Rate (Mbps) SDur=3.6us (Nss=1)	11n Max Rate (Nss=4)
20 Mhz	6	5/6	52	72.2	288.8
40 Mhz	6	5/6	108	150	600

11n Max Data Rates

Channel Width	NBits	CRate	NChan	Data Rate (Mbps) SDur=3.6us (Nss=1	11ac Max Rate (Nss=8)
20 Mhz	8	5/6	52	96.3	770.4
40 Mhz	8	5/6	108	200	1600
80 Mhz	8	5/6	234	433.3	3466.4
160 Mhz	8	5/6	468	866.7	6933.6

11ac Max Data Rates

802.11ax Maximum Data rates

• 01 Spatial Stream (Nss):

	Modulation	NBits	CRate	NChan	Symbol duration (us)	Data Rate (Mbps)
	BPSK	1	1/2	234	13.6	<mark>8.6</mark>
	QPSK	2	1/2	234	13.6	17.2
	QPSK	2	3/4	234	13.6	<mark>25.8</mark>
	16-QAM	4	1/2	234	13.6	34.4
20MHz	16-QAM	4	3/4	234	13.6	<mark>51.6</mark>
ΖΟΙΝΙΠΖ	64-QAM	6	2/3	234	13.6	68.8
	64-QAM	6	3/4	234	13.6	77.4
	64-QAM	6	5/6	234	13.6	<mark>86.0</mark>
	256-QAM	8	3/4	234	13.6	103.2
	256-QAM	8	5/6	234	13.6	1 <mark>14.7</mark>
	1024-QAM	10	3/4	234	13.6	129
	1024-QAM	10	5/6	234	13.6	143.4

802.11ax Maximum Data rates

• 08 Spatial Streams (Nss):

	Modulation	NBits	CRate	NChan	Symbol duration (us)	Data Rate (Mbps)
	BPSK	1	1/2	1960	13.6	576.5
	QPSK	2	1/2	1960	13.6	1152.9
	QPSK	2	3/4	1960	13.6	1729.4
	16-QAM	4	1/2	1960	13.6	2305.9
160MHz	16-QAM	4	3/4	1960	13.6	<mark>3458.8</mark>
TOUIVINZ	64-QAM	6	2/3	1960	13.6	4611.8
	64-QAM	6	3/4	1960	13.6	5188.2
	64-QAM	6	5/6	1960	13.6	5764.7
	256-QAM	8	3/4	1960	13.6	6917.6
	256-QAM	8	5/6	1960	13.6	<mark>7686.3</mark>
	1024-QAM	10	3/4	1960	13.6	8647.1
	1024-QAM	10	5/6	1960	13.6	9607.8