

SXGA Flat Panel Controller

FEATURES

General

- Auto configuration of sampling clock frequency, phase, H/V center, as well as white balance.
- Auto detection of present or non-present or over range sync signals and their polarities.
- Composite sync separation and odd/even field detection of interlaced video.
- On-chip output PLL provide clock frequency fine-tune (inverse, duty cycle and delay).
- Selection of serial 2-wire I²C or 8-bit direct host interface to 8-bit MCU.
- 3.3V supplier, 5V I/O tolerance in 256-pin PQFP or 272-pin BGA package.

Input Processor

- Single RGB (24-bit) or Dual RGB (48-bit) input rates up to 150MHz.
- Support both non-interlaced and interlaced RGB graphic input signals.
- YUV 4:2:2 or YUV 4:1:1 (CCIR601) interlaced video input.
- Glue-less connection to Philips SAA711x digital video decoder.
- Built-in YUV to RGB color space converter.
- Compliant with digital LVDS/PanelLink TMDS input interface.
- PC input resolution up to SXGA 1280x1024 @85Hz.

Video Processor

- Independent programmable Horizontal and Vertical scaling ratios from 1/32 to 32
- Flexible de-interlacing unit for digital YUV video input data.
- Zoom to full screen resolution of de-interlaced YUV video data stream.
- Built-in programmable gain control for white balance alignments.
- Built-in programmable 8-bit or 10-bit gamma correction table.
- Built-in programmable temporal color dithering.
- Built-in programmable interpolation look-up table.
- Support smooth panning under viewing window change.

Output Processor

- Single pixel (18/24-bit) or Dual pixel (36/48-bit) per clock digital RGB output.
- Built-in output timing generator with programmable clock and H/V sync.
- Support VGA/SVGA/XGA/SXGA display resolution.
- Overlay input interface with external OSD controller.
- Double scan capability for interlaced input.

Memory Interface

- Support 48/24 bit bus width, SDRAM/SGRAM x2 or x3 configuration.
- Optional display through internal line buffer without external frame-buffer memory.
- Support power down mode.

GENERAL DESCRIPTION

The MTL003 Flat Panel Display (FPD) Controller is an input format converter for TFT-LCD Monitor or LCD TV application which accepts 15-pin D-sub RGB graphic signals (through ADC), YUV signals from digital video decoder or digital RGB graphic signals from PanelLink TMDS receiver. It includes a RGB/YUV input processor. configurable frame-buffer memory interface, video scaling up/down processor, OSD input interface and output display processor in 256-pin PQFP or 272-pin BGA package.

BLOCK DIAGRAM

APPLICATIONS

1. PIN CONNECTION

Note: Pin connection of 272-pin BGA to be defined later

2. PIN DESCRIPTION

ADC1 Input Interface (YUV or RGB or TMDS Input Data)

Name	Туре	Pin#	Description	
VSYNC	I	249	Vertical sync input	
HSYNC/CS	I	248	Horizontal or Composite sync input	
RGBSEL	0	29	Input select. 1:RGB input, 0:YUV input	
TMDSSEL	0	250	TMDS input select, active high	
CLAMP	0	247	Clamp pulse output for ADC	
IPCLK	I	253	Input pixel clock	
R1IN[7:0]/YIN[7:0]	l	2-9	Red or Y channel or TMDS input data (Single/Dual ADC)	
G1IN[7:0]/UVIN[7:0]	l	11-18	Green or UV channel or TMDS input data (Single/Dual ADC)	
B1IN[7:0]	I	20-27	Blue channel or TMDS input data (Single/Dual ADC)	
TDIE/SOG	I	251	TMDS digital input enable or Sync On Green input	

ADC2 Input Interface (RGB Data)

Name	Туре	Pin#	Description
R2IN[7:0]		31-38	Red channel input data (Dual ADC)
			or Control bit for YUV video input
			Bit 4: VPHREF, Video input Horizontal reference signal
			Bit 3: VPVS, Video input VSYNC signal
			Bit 2: VPODD, Video input ODD/EVEN field signal
			Bit 1: VPHS, Video input HSYNC signal
			Bit 0: VPCLK, Video input clock signal
G2IN[7:0]	I	40-47	Green channel input data (Dual ADC)
B2IN[7:0]	I	49-56	Blue channel input data (Dual ADC)

Display Output Interface

Name	Type	Pin#	Description
DDEN	0	124	Display data output enable for LCD panel
DVSYNC	0	123	Display Vertical sync output
DHSYNC	0	122	Display Horizontal sync output
DDCLK1	0	94	Display output clock for odd data
DDCLK2	0	93	Display output clock for even data
R1OUT[7:0]	0	113-120	Red output even data , bit[7:2] for 6-bit panel
G1OUT[7:0]	0	104-111	Green output even data , bit[7:2] for 6-bit panel
B1OUT[7:0]	0	96-103	Blue output even data , bit[7:2] for 6-bit panel
R2OUT[7:0]	0	84-91	Red output odd data , bit[7:2] for 6-bit panel
G2OUT[7:0]	0	75-82	Green output odd data , bit[7:2] for 6-bit panel
B2OUT[7:0]	0	67-74	Blue output odd data , bit[7:2] for 6-bit panel

Memory Interface

memory interrace				
Name	Туре	Pin#	Description	
MCK	0	180	Memory output clock	
MCKE	0	178	Memory clock enable	
MCS#	0	168	Memory chip select, active low.	
MRAS#	0	197	Memory row address strobe, active low	
MCAS#	0	196	Memory column address strobe, active low	
MWE#	0	195	Memory write enable, active low	
DQM[1:0]	0	198-199	Memory data mask byte enable	
BA/MA11	0	182	Memory bank address or Memory address line	
DQM3/MA10	0	149	SGRAM data mask byte enable or SDRAM address line	

DQM2/MA9	0	148	SGRAM data mask byte enable or SDRAM address line
MA[8:0]	0	183-191	Memory address line
MD[47:40]	I/O	151-158	Memory Blue (B1) data
MD[39:32]	I/O	170-177	Memory Green (G1) data
MD[31:24]	I/O	211-218	Memory Red (R1) data
MD[23:16]	I/O	140-147	Memory Blue (B0) data
MD[15:8]	I/O	160-167	Memory Green (G0) data
MD[7:0]	I/O	202-209	Memory Red (R0) data

Host Interface

Name	Type	Pin#	Description	
RST#	I	235	System reset input, active low.	
AD[7:0]	I/O	227-220	The address and data bus of 8-bit direct interface or 2-wire I ² C series bus	
			Bit 1: SDA, serial bus data	
			Bit 0: SCK, serial bus clock	
HWR#		232	Host write strobe, active low	
HRD#		233	Host read strobe, active low	
ALE	I	230	Host address latch enable for 8-bit direct bus	
HCS#	I	228	Host chip select	
BUSSEL	I	236	Bus mode selection. 0: I ² C bus, 1: 8-bit direct bus	
IRQ	0	237	Interrupt request output	

OSD Interface

Name	Type	Pin#	Description	
OCLK	0	126	Clock for external OSD	
OVSYNC	0	136	Vertical sync for external OSD	
OHSYNC	0	138	Horizontal sync for external OSD	
OSDRED	I	131	OSD red input	
OSDGRN	I	132	OSD green input	
OSDBLU	I	133	OSD blue input	
OSDINT	I	135	OSD intensity input	
OSDEN	I	134	OSD overlay enable	

Other Interface

Name	Туре	Pin#	Description	
XI	I	61	Oscillator frequency input	
XO	0	60	Oscillator frequency output	
EXTDCLK	I	246	External display clock input	
EXTMCLK	I	234	External memory clock input	
GPIO[7:0]	I/O	238-245	General purpose I/O or	
			Bit 7: ADVS, Vertical sync for A/D converter	
			Bit 6: ADHS, Horizontal sync for A/D converter	
NC	-	254	No connection	

3.3V Power and Ground

Name	Pin#	Description
DVDD	19, 30, 92, 121, 139, 159, 179, 201	Digital power 3.3V
DVSS	10, 28, 95, 112, 137, 150, 169, 200	Digital ground
PVDD	1, 48, 64, 83, 125, 129, 192, 210, 229, 252	Pad power 3.3V
PVSS	39, 57, 65, 66, 127, 128, 130, 181, 193, 194,	Pad ground
	219, 231, 255, 256	

AVDD	62, 63	Analog power 3.3V
AVSS	58, 59	Analog ground

3. FUNCTIONAL DESCRIPTION

3.1 Input Processor

General Description

The function of Input Interface is to provide the interface between MTL003 and external input devices. It can process both non-interlaced and interlaced RGB graphic input, YUV video input, and digital RGB input compliant with digital LVDS/PanelLink TMDS interface. It also contains the Decimation circuit to scale down the input image with arbitrary ratios down to 1/32 and the built-in YUV to RGB color space converter.

3.1.1 RGB Input Format

The RGB input port can work in two modes: Single Pixel mode (24 bits) and Double Pixel mode (48 bits). For Single Pixel mode, only the ports R1IN[7:0], G1IN[7:0], and B1IN[7:0] are internally sampled. For Double Pixel mode, besides the ports R1IN[7:0], G1IN[7:0], and B1IN[7:0], the ports R2IN[7:0], G2IN[7:0], and B2IN[7:0] are needed additionally. The R/G/B1IN ports are sampled at the rising edge of the RGB input clock, and the R/G/B2IN ports are sampled at the falling edge.

3.1.2 TMDS Input Format

The Digital RGB input port woks just in the same way as Sec3.1.1 except one more input pin is needed: Digital Input Enable DIEN.

With a flexible single or double pixel input interface, the supported format is up to true color, including 18 bit/pixel or 24 bit/pixel in 1 or 2 pixels/clock mode.

3.1.3 YUV Input Format

The YUV input port supports interlaced video data from the most common video decoder ICs like SAA711x. The 16 bit data bus is shared with the ports R1IN[7:0] and G1IN[7:0]. The 5 bit control signals are shared with the port R2IN[4:0]. The 16 bit data is sampled at the rising edge of the shared video clock VPCLK when the shared data enable HREF is active. The supported formats are YUV4:1:1 and YUV4:2:2 with CCIR601 standard.

3.1.4 YUV to RGB Converter

It is used to convert YCbCr format into RGB format. The basic equations are as follows:

R = Y + 1.371(Cr - 128)

G = Y - 0.698(Cr - 128) - 0.336(Cb - 128)

B = Y + 1.732(Cb - 128)

3.1.5 De-interlace mode

For interlace input, MTL003 features several de-interlacing algorithms for processing interlaced video data depending on what type of input images.

□ Static Mode

In this mode, the first and second fields are simply put together without any filtering. Two fields memory is need. It is commonly used in still image input.

☐ Toggle Mode

In this mode, only one field is displayed at the time. First field and second field is toggled displayed. The missing lines are calculated from duplicating the neighbor lines. For moving picture, it has a good quality.

□ Spatial Mode

In this mode, two fields are toggled displayed, just like Toggle mode. The missing lines are calculated from

interpolating the neighbor lines. This mode has a average good quality for still and moving picture.

3.1.6 Sync Processor

The V/H SYNC processing block performs the functions of Composite signal separation/insertion, SYNC inputs presence check, frequency counting, polarity detection and control. It contains a de-glitch circuit to filter out any pulse shorter than one OSC period treated as noise on V/H SYNC pulses.

V/H SYNC Frequency Counter

MTL003 can measure VSYNC/HSYNC frequency counted in proper clock and save the information in registers. Users can read out them to calculate VSYNC/HSYNC frequency as following formulas:

$$f_{\text{vsync}} = f_{\text{osc}} / N_{\text{vsync}} \times 1/256$$

 $f_{\text{hsync}} = f_{\text{osc}} / N_{\text{hsync}} \times 8$

Where f_{vsync} : VSYNC frequency

f_{hsync} : HSYNC frequency

 f_{osc} : oscillator clock with 14.31818 MHz

N_{vsync} : counted number of VSYNC N_{hsync} : counted number of HSYNC

□ V/H SYNC Presence Check

This function checks the input VSYNC, where Vpre flag is set when VSYNC is over 40Hz or cleared when VSYNC is under 10Hz and the input HSYNC, where Hpre flag is set when HSYNC is over 10Khz or cleared when HSYNC is under 10Hz.

□ V/H Polarity Detect

This function detects the input VSYNC/HSYNC high and low pulse duty cycle. If the high pulse duration is longer than that of low pulse, the negative polarity is asserted; otherwise, positive polarity is asserted.

□ Composite SYNC separation/insertion

MTL003 continuously monitors the input HSYNC. If the input VSYNC can be extracted from it, a CVpre flag is set. MTL003 can insert HSYNC pulse during Composite VSYNC's active time and the insertion frequency can adapt to original HSYNC's.

3.1.7 Auto Tune

Auto Tune function consists of Auto Position automatically centering the screen and Auto Calibration containing Phase Calibration, Histogram, Min/Max Value, and Pixel Grab described as below. With this auto adjustment support it is possible to measure the correct phase, frequency, gain, and offset of ADC. The horizontal and vertical back porches of input image and the horizontal and vertical active regions can also be measured. Firmware can adjust input image registers automatically by reading Auto Tune's registers in single or burst mode.

□ Auto Position

MTL003 provides Horizontal/Vertical back porch and active region values. Users can use these values to set input sample registers to aid in centering the screen automatically.

□ Phase Calibration

MTL003 provides Auto Calibration registers to measure the quality of current ADC's phase and frequency. The biggest Auto Calibration registers value means the right value of ADC's phase and frequency. MTL003 has two kinds of algorithms to calculate Auto Calibration's value. One is traditional Difference method, another is MYSON's proprietary method. It is suggested to use the latter one for better performance

☐ Histogram

Histogram means the total number of input pixels below/above one threshold value, for individual R, G, B colors. This advanced function helps firmware to analyze ADC performance. Usually Firmware can use this information to measure ADC's noise margin, adjust its offset and gain, or even aid in the mode detection.

□ Min/Max Value

Min/Max value means minimum or maximum pixel value within the specified input active image region for each RGB channel. This information is usually used to adjust ADC's offset and gain.

□ Pixel Grab

Pixel Grab means users can grab a single input pixel at any one point. The position of the point can be programmed by users. This is another traditional method to measure ADC's phase and frequency.

3.2 Video Processor

General Description

MTL003 possesses a powerful and programmable video processor by providing the following functions: Scaling Up/Down, Gain Control, Brightness Control, Gamma Correction, and Dithering Control. The block diagram of Video Processor is as follows:

Fig. 3.2.1 Video Processor Block Diagram

3.2.1 Scaling

MTL003 provides scaling function ranging from 1/32 to 32 for both up and down scaling, and for both horizontal and vertical processing. Note that the up and down scaling cannot operate in the same time, because they share the same line buffers.

For scaling up, both horizontal and vertical processing, MTL003 provides four methods:

- □ Pass Mode: Image will be passed through without considering any scaling factor.
- □ **Duplicate Mode**: Image will be scaled up/down based on scaling factor. Every point of output image comes from the input. In this method, Output image will have the good contrast but may be non-uniformed.
- □ Bilinear Mode: Image will be scaled up/down based on scaling factor. Every point of output image data will

be filtered by bilinear filter. In this method, output image will have the good scaling quality but may be blurred.

□ **Interpolation Table Mode**: Image will be scaled up/down based on scaling factor. Every point of output image data will be filtered by user defined filter.

Fig. 3.2.2 Scaling filter

Note: For scaling down, for both horizontal and vertical processing, MTL003 provides three methods: Pass mode, Duplicate mode, and Bilinear mode.

3.2.2 Gain/Brightness Control

MTL003 provides Gain and Brightness control to adjust the contrast and brightness of output color by programming gain and brightness coefficients. This adjustment is applied to RGB colors individually. Auto-white balance is possible by using this function.

3.2.3 Gamma Correction

Gamma Correction is used to compensate the non-linearity of LCD display panel. MTL003 contains a 8/10-bits Gamma table to fix this phenomenon. The 10 bit Gamma Table will have a better output quality, which is commonly used together with dithering function. Of course, traditional 8-bits Gamma correction table can also be chosen.

3.2.4 Color Dithering

MTL003 supports true color (8 bits per color) or high color (6 bits per color) display.

In the latter case, users can turn on dithering function to avoid artificial contour due to truncation. For dithering, it supports two methods:

□ Static dithering: Dithering coefficient is fixed.

□ **Temporal dithering:** Dithering coefficient will change by time.

3.3 Output Processor

General Description

Output processor provides the interface for both LCD panel and OSD controller. MTL003 can work for frame-buffer or non frame-buffer mode. If MTL003 works in frame-buffer mode, there is no restriction between input timing and output timing. If MTL003 works in non frame-butter mode, output frame rate must be equal to input frame rate and output display time must be equal to input display time, because of no frame buffer. Some functions which have to use frame buffer can't work in non frame-buffer mode, such as screen write, static mode in de-interlace, and etc.

3.3.1 Display Timing Generation

There are three display timing modes:

- Non Frame Buffer Mode: It is a low cost solution. External frame buffer is not needed. This mode is applied in the condition that output frame rate is equal to input frame. In this mode, some functions will be disable.
- □ **Frame SYNC Mode**: It is applied to video input. In this mode, output frame is synchronized to input frame. The moving pictures will have smooth change.

Fig. 3.2.3 Display Timing modes

3.3.2 OSD Overlay

MTL003 allows the integration of overlay data with the scaled output pixel stream. It provides a fully compatible OSD interface. Individual OSD clock, OSD HSYNC and OSD VSYNC are sent to external OSD device. MTL003 receives OSD Enable, OSD Red, OSD Green, OSD Blue, and OSD Intensity from external OSD device.

3.3.3 RGB Output Format

MTL003 output interface consists of two pixel ports, each containing Red, Green, and Blue color information with a resolution of 6/8 bits per color. These two ports are mapped to PORT1 and PORT2.

The control signals for output port are display horizontal sync signal (DHSYNC), display vertical sync signal (DVSYNC) and display data enable signal (DDEN).

All the signals mentioned above are synchronous to the output clock. The output timing relative to the active edge of the output clock is programmable.

There are two RGB output formats:

□ Single Pixel Mode

It is designed to support TFT panels with single pixel input. Only PORT1 is active. The frequency of DCLK1 is equal to internal display clock.

□ Dual Pixel Mode

It is designed to support TFT panels with dual pixel input. PORT1 and PORT2 are used. The first pixel is at PORT1, and the second at PORT2.

Fig. 3.2.4 Display Data Timing

3.4 Memory Interface

General Description

In frame buffer mode, the MTL003 connects to the external frame buffers by means of memory interface. The external frame memory can be made for either 1M× 16bits SDRAM or 256K× 32bits SGRAM device. Due to different applications such as VGA, SVGA, XGA as well as SXGA, the image resolution of input and output will be limited resulting from the bandwidth of memory interface. Two configurations, 24 and 48 bits bus modes will be supported to resolve the bandwidth constraint in most of applications. The clock for DRAM devices can be provided from the internal PLL circuit or the external clock applied to pin EXTMCLK and its frequency can be up to 100 MHz. The MTL003 also supplies a simple and complete memory self-testing mechanism for SDRAM and SGRAM, which can be used to detect memory cell status and to check connection in memory interface.

3.4.1 SDRAM Configuration

In current applications, the most popular organization of SDRAM is 1M×16bits. To achieve the desired bandwidth in memory interface, 2 or 3 devices have to be constructed in parallel. The memory clock range is from 50Mhz to 100Mhz by tuning the appropriate parameters for the internal PLL circuit. In 24 bits bus mode (2 devices), the maximum supported input image resolution can be up to 1024×768 @ 60Hz. The other mode in 3 devices will provide the maximum input image resolution up to 1280×1024 @ 75Hz. Table 3.4.1 gives the configuration for different input and output image format. Figure 3.4.1 shows the connection between the MTL001 and SDRAM devices in 2 configurations.

Unit: device

Output Resolution	SVGA	XGA	SXGA
Input Resolution			
YUV	2	2	3
VGA (640×480)	2	2	3
SVGA (800×600)	2	2	3
XGA (1024×768)	2	3	3
SXGA (1280×1024)	3	3	3

Table 3.4.1 SDRAM configuration in different input and output modes

3.4.2 SGRAM Configuration

The SGRAM devices in $256K\times32$ bits construction are usually used to feature the wide data bus for high speed applications. In case of SGRAM usage, the 32 bits bus of each device is divided into 2 parts to store input image data. The memory clock is able to be set the desired range as SDRAM case as well. The maximum supported input image resolution in 24 bits bus mode (2 devices) can be up to 800×600 @ 85Hz, and the 48 bits bus mode (3 devices) can give the maximum input image resolution up to 1024×768 @ 85Hz. Table 3.4.2 provides the configuration for different input and output image format. Figure 3.4.2 shows the connection between the MTL001 and SGRAM devices in 2 configurations.

Unit: device

Output Reso	lution SVGA	XGA	SXGA
Input Resolution			
YUV	2	2	3
VGA (640×480)	2	2	3
SVGA (800×600)	2	2	3
XGA (1024×768)	3	3	3

Table 3.4.2 SGRAM configurations in different input and output modes

$SDRAM(1M \times 16bits) \times 2$

$SDRAM(1M \times 16bits) \times 3$

Fig. 3.4.1 The interface between MTL003 and SDRAM

SGRAM($128K \times 32bits \times 2$) \times 2 DQ7~0 DQ7~0 MD[7:0] MD[15:8] MD[31:24] DQ15~8 MD[39:32] DQ15~8 DQ23~16 DQ23~16 DQ31~24 DQ31~24 BA/MA11 A9(BA) BA/MA11 A9(BA) A8~0 MA[8:0] A8~0 MA[8:0] DQM0 DQM0 DQM0 DQM0 DQM1 DQM1 DQM1 DQM1 DQM2/MA9 DQM2 DQM2/MA9 DQM2 DQM3/MA10 DQM3 DQM3/MA10 DQM3 MCK CLK MCK CLK CKE **MCKE** CKE **MCKE** MCS# /CS MCS# /CS MRAS# /RAS MRAS# /RAS MCAS# /CAS MCAS# /CAS MWE# /WE DSF MWE# /WE **DSF** SGRAM(128K \times 32bits \times 2) \times 3 MD[7:0] DQ7~0 MD[15:8] DQ7~0 MD[23:16] DQ7~0 MD[31:24] DQ15~8 MD[39:32] DQ15~8 MD[47:40] DQ15~8 DQ23~16 DQ23~16 DQ23~16 DQ31~24 DQ31~24 DQ31~24 BA/MA11 A9(BA) BA/MA11 A9(BA) BA/MA11 A9(BA) MA[8:0] A8~0 MA[8:0] A8~0 MA[8:0] A8~0 DQM0 DQM0 DQM0 DQM0 DQM0 DQM0 DQM1 DQM1 DQM1 DQM1 DQM1 DQM1 DQM2/MA9 DQM2 DQM2/MA9 DQM2 DQM2/MA9 DQM2 DQM3/MA10 DQM3 DQM3/MA10 DQM3 DQM3/MA10 DQM3 MCK CLK MCK CLK MCK CLK **MCKE** CKE **MCKE** CKE MCKE CKE MCS# /CS /CS MCS# /CS MCS# MRAS# /RAS /RAS /RAS MRAS# MRAS# MCAS# /CAS MCAS# /CAS MCAS# /CAS MWE# /WE DSF MWE# ΜE DSF MWE# ΜE DSF

Fig. 3.4.2 The interface between MTL003 and SGRAM

3.5 Host Interface

General Description

The main function of Host Interface is to provide the interface between MTL003 and external CPU by 2-wire I2C Bus or Direct Bus selected by the input pin BUSSEL. It can generate all the I/O decoded control timing to control all the registers in MTL003. The other function is Screen Write, which allows users to clear frame buffer, and display output as well.

3.5.1 I2C Serial Bus

The I2C serial interface use 2 wires, SCK (clock) and SDA(data I/O). The SCK is used as the sampling clock and SDA is a bi-directional signal for data. The communication must be started with a valid START condition, concluded with STOP condition and acknowledged with ACK condition by receiver.

The I2C bus device address of MTL003 is 0111010x.

AD[0] SCK, serial bus clock.

AD[1] SDA, bi-directional serial bus data.

The START condition means a HIGH to LOW transition of SDA when SCK is high, the STOP condition means a LOW to HIGH transition of SDA when SCK is high. And data of SDA only can change during SCK is low. Ref. Fig.3.5.1.

Fig. 3.5.1 START, STOP, and DATA definition

The I2C interface supports Random Write, Sequential Write, Current Address Read, Random Read and Sequential Read operations.

□ Random Write

For Random Write operation, it contains the slave address with R/W bit set to 0 and the word address which is comprised of eight bits and provides to access any one of 256 bytes in the selected memory range. Upon receipt of the word address, MTL003 responds with an Acknowledge, waits the data bits again responding an Acknowledge, and then the master generates a stop condition. Ref. Fig.3.5.2.

Fig. 3.5.2 Random Write

☐ Sequential Write

The initial step of Sequential Write is the same as Random Write, after the receipt of each word data, MTL003 will respond with an Acknowledge and then internal address counter will increment by one for next data write. If the master would stop writing data, it generates stop condition. Ref. Fig. 3.5.3.

Fig. 3.5.3 Sequential Write

□ Current Address Read

MTL003 contains an address counter which maintains the last access address incremented by one. If the last access address is n, the read data should access from address n+1. Upon receipt of the slave address with R/W bit set to 1, MTL003 generates an Acknowledge and transmits eight bits data. After receiving data the master will generate a stop condition instead of an Acknowledge. Ref. Fig. 3.5.4.

Fig. 3.5.4 Current Address Read

□ Random Read

The operation of Random Read allows accessing any address. Before reading data operation, it must issue a "dummy write" operation—a start condition, a slave address with R/W bit set to 0, and word address for read. After responding an Acknowledge, MTL003 then transmits eight bits data right after the master generating the start condition and slave address with R/W bit set to 1. After completion of receiving data, the master will generate a stop condition instead of an Acknowledge. Ref. Fig 3.5.5.

Fig. 3.5.5 Random Read

□ Sequential Read

The initial step can be as either Current Address Read or Random Read. The first read data is transmitted the same manner as other read methods. However, the master generates an Acknowledge indicating that it requires more data to read. MTL003 continues to output data for each Acknowledge received. The output data is sequential and the internal address counter increments by one for next read data. Ref. Fig. 3.5.6.

Fig. 3.5.6 Sequential Read

□ 8-bit Direct Bus

The Direct Bus use AD[7:0], HWR#, HRD#, ALE, HCS# as the interface with host. ALE is used to latch read or write address from AD[7:0] and HRD#, HWR# to access data. Ref. Fig. 3.5.7.

AD[7:0] Address and data multiplex bus. HRD# CPU read data strobe, Active Low. HWR# CPU write data strobe, Active Low.

ALE =1 latch read or write address, ALE=0 represents I/O data.

HCS# Enable signal for CPU access, Active Low.

Fig. 3.5.7 Direct Bus Timing

3.5.3 Interrupt

MTL003 supports one interrupt output signal (IRQ) which can be programmed to provide SYNC related or function status related interrupts to the system. Upon receiving the interrupt request, Firmware needs to first check the interrupt event by reading the Interrupt Flag Control registers (Reg. E8h and E9h) to decide what events are happening. After the operation is finished, Firmware needs to clear interrupt status by writing the same registers Reg. E8h and E9h. Furthermore, by using the Interrupt Flag Enable registers (Reg. EAh and EBh), each interrupt event can be masked.

3.5.4 Screen Write

Screen Write function can be used to clear frame buffer memory and then display output as well by a fixed value defined in Reg. C6h, C7h, C8h.

3.5.5 Bi-directional GPIO

MTL003 supports eight General Purpose Input and Output (GPIO) pins GPIO[7:0] on chip. The GPIO[5:0] pins are bi-directional GPIO pins, and the GPIO[7:6] pins are output only GPIO pins. There are two functions for GPIO[7:6] pins. One is to set them as output only GPIO pins, and the other is to set them as Composite decoded VSYNC/HSYNC for A/D converters in VGA input path. The data and I/O direction of GPIO[7:0] pins are respectively controlled by Reg. F4h and F5h, and each bit in registers is respectively mapped to GPIO[7:0] one by one. The following description is the process to control GPIO[0] and GPIO[6] in detail, and the control processes of GPIO[4:1] and GPIO[7] are also the same as follows respectively.

□ Bi-directional GPIO control process

- ☐ Setting Reg. F5h/D0 = 0 or 1 to assign GPIO[0] as output or input.
- ☐ Writing data to Reg. F4h/D0 when GPIO[0] is assigned to output status, otherwise reading data from Reg. F4h/D0 when GPIO[0] is input.

□ Output only GPIO control process

- ☐ Setting Reg. F5h/D6 = 0 or 1 to assign GPIO[6] as output or tri-state.
- □ Setting Reg. F6h/D0 = 1 to select output source from Reg. F4h/D6 or setting it as 0 to make GPIO[6] pin to output ADHS which is HSYNC signal decoded from VGA input Composite signal by the MTL003.
- □ Writing data to F4h/D6 when GPIO[6] is assigned to output only GPIO pin, that is, F6h/D0 = 0 and F5h/D6 = 0. If F6h/D0 is set to 1, the GPIO[6] pin outputs ADHS for AD converters in VGA input path.

3.5.6 Update Register Contents

I/O write operation to some consecutive register set can have the "Double Buffer" effect by setting the Reg. C2h/D4. Written data is first stored in an intermediate bank of latches and then transferred to the active register set by setting Reg. C2h/D1-0.

3.6 On-Chip PLL

General Description

The MTL003 needs three clock sources to drive synchronous circuits on chip. These clocks are generated from the internal Phase Lock Loop (PLL) circuits with reference to the oscillator clock which is applied to pin XI and XO by an external quartz crystal at 14.31818 MHz. First one is the same as to the oscillator clock at frequency (14.31818 MHz) to detect and measure graphic vertical and horizontal SYNC Frequency, Polarity as well as Presence. The second is memory clock to synchronize memory controller with the external frame buffers. The third is the display clock for display controller on chip and output signals to LCD panel.

3.6.1 Reference Clock

It is the counting basis of counter values in SYNC Processor such as VS and HS period count registers; that is, the read back values from these registers must multiply the period of this clock to estimate VS and HS frequency. Incorporating with polarity and frequency information of VS and HS, it can show the input graphic image mode and pixel clock frequency.

3.6.2 Memory Clock

Depending on the bandwidth of applications, DRAM types and configurations, the memory clock changes from 50 MHz to 100 MHz by way of adjusting a set of appropriate values for M, N as well as R. The formula to calculate desired frequency of memory clock is as follows:

$$f_{mclk} = f_{osc} \times M/N \times 1/R$$

Where f_{mclk} : the desired memory clock

f_{osc}: oscillator clock with 14.31818 MHz

M : post-divider ratioN : pre-divider ratioR : optional divider ratio

3.6.3 Display Clock

This clock is the synchronous clock for LCD panel. According to the LCD panel resolution of applications, the display clock range is from 24MHz to 200MHz by means of choosing a set of appropriate values for M, N as well as R. The computing formula is exactly the same as that in memory clock.

4. REGISTER DESCRIPTION

INPUT CONTROL REGISTERS

Address	Mode	Registers	Reset value
00h	R/W	Input Image Vertical Active Line Start - Low	00h
01h	R/W	Input Image Vertical Active Line Start - High	00h
02h	R/W	Input Image Vertical Active Lines - Low	00h
03h	R/W	Input Image Vertical Active Lines - High	00h
04h	R/W	Input Image Horizontal Active Pixel Start - Low	00h
05h	R/W	Input Image Horizontal Active Pixel Start - High	00h
06h	R/W	Input Image Horizontal Active Pixels - Low	00h
07h	R/W	Input Image Horizontal Active Pixels - High	00h
10h	R/W	Input Image Control Register 0	00h
11h	R/W	Input Image Control Register 1	00h
12h	R/W	Input Image Control Register 2	00h
13h	R/W	Input Image Control Register 3	00h
1Ch	R/W	HS1 Sample Window Forward Extend	00h
1Dh	R/W	HS1 Sample Window Backward Extend	00h
1Fh	RO	Input Image Status Register	-
20h	R/W	Input Image Back Porch Guard Band	00h
21h	R/W	Input Image Front Porch Guard Band	00h

FRAME SYNC REGISTERS

Address	Mode	Registers	Reset value
28h	R/W	Frame Sync Control	00h
2Ch	R/W	Input Image Vertical Lock Position - Low	00h
2Dh	R/W	Input Image Vertical Lock Position - High	00h
2Eh	R/W	Input Image Horizontal Lock Position - Low	00h
2Fh	R/W	Input Image Horizontal Lock Position - High	00h

AUTO CALIBRATION REGISTERS

Address	Mode	Registers	Reset value
30h	R/W	Auto Calibration Control 0	80h
31h	R/W	Auto Calibration Control 1	00h
34h	RO	Auto Calibration RED Value - Byte 0	-
35h	RO	Auto Calibration RED Value - Byte 1	-
36h	RO	Auto Calibration RED Value - Byte 2	-
37h	RO	Auto Calibration RED Value - Byte 3	-
38h	RO	Auto Calibration GREEN Value - Byte 0	-
39h	RO	Auto Calibration GREEN Value - Byte 1	-
3Ah	RO	Auto Calibration GREEN Value - Byte 2	-
3Bh	RO	Auto Calibration GREEN Value - Byte 3	-
3Ch	RO	Auto Calibration BLUE Value - Byte 0	-
3Dh	RO	Auto Calibration BLUE Value - Byte 1	-
3Eh	RO	Auto Calibration BLUE Value - Byte 2	-
3Fh	RO	Auto Calibration BLUE Value - Byte 3	-
40h	R/W	Pixel Grab V Reference Position – Low	00h

41h	R/W	Pixel Grab V Reference Position – High	00h
42h	R/W	Pixel Grab H Reference Position – Low	00h
43h	R/W	Pixel Grab H Reference Position – High	00h
44h	R/W	Histogram Reference Color - RED	00h
45h	R/W	Histogram Reference Color - GREEN	00h
46h	R/W	Histogram Reference Color - BLUE	00h

SYNC PROCESSOR REGISTERS

Address	Mode	Registers	Reset value
48h	R/W	SYNC Processor Control	00h
49h	R/W	Auto Position Control	00h
4Ah	R/W	Auto Position Reference Color - RED	00h
4Bh	R/W	Auto Position Reference Color - GREEN	00h
4Ch	R/W	Auto Position Reference Color - BLUE	00h
4Eh	R/W	Clamp Pulse Control 0	00h
4Fh	R/W	Clamp Pulse Control 1	00h
50h	RO	Input VS Period Count by REFCLK - Low	-
51h	RO	Input VS Period Count by REFCLK - High	-
52h	RO	Input V Back Porch Count by Input HS - Low	-
53h	RO	Input V Back Porch Count by Input HS - High	-
54h	RO	Input V Active Lines Count by Input HS - Low	-
55h	RO	Input V Active Lines Count by Input HS - High	-
58h	RO	Input HS Period Count by REFCLK - Low	-
59h	RO	Input HS Period Count by REFCLK - High	-
5Ah	RO	Input H Back Porch Count by Input Pixel Clock - Low	-
5Bh	RO	Input H Back Porch Count by Input Pixel Clock - High	-
5Ch	RO	Input H Active Pixels Count by Input Pixel Clock - Low	-
5Dh	RO	Input H Active Pixels Count by Input Pixel Clock - High	-

DISPLAY CONTROL REGISTERS

Address	Mode	Registers	Reset value
60h	R/W	Display Vertical Total - Low	00h
61h	R/W	Display Vertical Total - High	00h
62h	R/W	Display Vertical SYNC End- Low	00h
63h	R/W	Display Vertical SYNC End - High	00h
64h	R/W	Display Vertical Active Start - Low	00h
65h	R/W	Display Vertical Active Start - High	00h
66h	R/W	Display Vertical Active End - Low	00h
67h	R/W	Display Vertical Active End - High	00h
68h	R/W	Display Vertical Border Start - Low	00h
69h	R/W	Display Vertical Border Start - High	00h
6Ah	R/W	Display Vertical Border End - Low	00h
6Bh	R/W	Display Vertical Border End - High	00h
70h	R/W	Display Horizontal Total - Low	00h
71h	R/W	Display Horizontal Total - High	00h
72h	R/W	Display Horizontal SYNC End - Low	00h
73h	R/W	Display Horizontal SYNC End - High	00h
74h	R/W	Display Horizontal Active Start - Low	00h

75h	R/W	Display Horizontal Active Start - High	00h
76h	R/W	Display Horizontal Active End - Low	00h
77h	R/W	Display Horizontal Active End - High	00h
78h	R/W	Display Horizontal Border Start - Low	00h
79h	R/W	Display Horizontal Border Start - High	00h
7Ah	R/W	Display Horizontal Border End - Low	00h
7Bh	R/W	Display Horizontal Border End - High	00h
88h	R/W	Output Image Control Register 0	00h
89h	R/W	Output Image Control Register 1	00h
8Ah	R/W	Output Image Control Register 2	00h
90h	R/W	Color Gain Control - RED	80h
91h	R/W	Color Gain Control - GREEN	80h
92h	R/W	Color Gain Control - BLUE	80h
93h	R/W	Brightness Control - RED	00h
94h	R/W	Brightness Control - GREEN	00h
95h	R/W	Brightness Control - BLUE	00h
96h	R/W	Border Window Color - RED	00h
97h	R/W	Border Window Color - GREEN	00h
98h	R/W	Border Window Color - BLUE	00h
9Eh	R/W	Dithering Table Data Port	-
9Fh	R/W	Gamma Table Data Port	-
A0h	R/W	OSD Control Register	08h
A1h	R/W	OSD Adjustment Control	00h
A4h	R/W	Output Invert Control	00h
A5h	R/W	Output Tri-State Control	00h
A6h	R/W	Output Clocks Delay Adjustment	00h
A7h	R/W	Output Clocks Duty Cycle Adjustment	00h

ZOOM CONTROL REGISTERS

Address	Mode	Registers	Reset value
B0h	R/W	Zoom Control Register 0	00h
B1h	R/W	Zoom Control Register 1	00h
B2h	R/W	Zoom Vertical Scale Down Integer	00h
B3h	R/W	Zoom Horizontal Scale Down Integer	00h
B4h	R/W	Zoom Vertical Scale Ratio - Low	00h
B5h	R/W	Zoom Vertical Scale Ratio - High	00h
B6h	R/W	Zoom Horizontal Scale Ratio - Low	00h
B7h	R/W	Zoom Horizontal Scale Ratio – High	00h
BFh	R/W	Interpolation Table Data Port	-

HOST CONTROL REGISTERS

Address	Mode	Registers	Reset value
C0h	R/W	Host Control Register 0	00h
C1h	R/W	Host Control Register 1	00h
C4h	R/W	Host Screen Write Line Length - Low	00h
C5h	R/W	Host Screen Write Line Length - High	03h
C6h	R/W	Host Fill Color - RED	00h

C7h	R/W	Host Fill Color - GREEN	00h
C8h	R/W	Host Fill Color - BLUE	00h
CBh	RO	Host Access Mode Status	-

MEMORY CONTROL REGISTERS

Address	Mode	Registers	Reset value
D0h	R/W	Memory Type Control	00h
D2h	R/W	Memory Self Test Control	00h
DBh	RO	Memory Self-Test Compare Error Address – Low	-
DCh	RO	Memory Self-Test Compare Error Address – Middle	-
DDh	RO	Memory Self-Test Compare Error Address – High	-

CLOCK CONTROL REGISTERS

Address	Mode	Registers	Reset value
E0h	R/W	Clock Control Register	00h
E1h	WO	Clock Synthesizer Value Load	-
E2h	R/W	Display Clock Synthesizer M Value	0Bh
E3h	R/W	Display Clock Synthesizer N Value	32h
E4h	R/W	Memory Clock Synthesizer M Value	0Bh
E5h	R/W	Memory Clock Synthesizer N Value	32h
E6h	R/W	Clock Synthesizer R Value	00h

INTERRUPT CONTROL REGISTERS

Address	Mode	Registers	Reset value
E8h	R/W	SYNC Interrupt Flag Control	00h
E9h	R/W	General Interrupt Flag Control	00h
EAh	R/W	SYNC Interrupt Enable	00h
EBh	R/W	General Interrupt Enable	00h
ECh	R/W	HS Frequency Change interrupt Compare	00h

MISCELLANEOUS REGISTERS

Address	Mode	Registers	Reset value
F1h	R/W	Power Management Control	00h
F4h	R/W	GPIO Control Register	00h
F5h	R/W	GPIO Direction Control	00h
F6h	R/W	GPIO Misc Control	00h

Input Image Vertical Active Line Start - Low (Address 00h) (R/W)

It defines the low byte of the start position of the Vertical Active Window.

D7-0 IV_ACT_START[7:0]

Input Image Vertical Active Line Start - High (Address 01h) (R/W)

It defines the high byte of the start position of the Vertical Active Window.

D7-3 Reserved

D2-0 IV_ACT_START[10:8]

Input Image Vertical Active Lines - Low (Address 02h) (R/W)

It defines the low byte of the number of active lines of the Vertical Active Window.

D7-0 IV_ACT_LEN[7:0]

Input Image Vertical Active Lines - High (Address 03h) (R/W)

It defines the high byte of the number of active lines of the Vertical Active Window.

D7-3 Reserved

D2-0 IV_ACT_LEN[10:8]

Input Image Horizontal Active Pixel Start - Low (Address 04h) (R/W)

It defines the low byte of the start position of the Horizontal Active Window.

D7-0 IH_ACT_START[7:0]

Input Image Horizontal Active Pixel Start - High (Address 05h) (R/W)

It defines the high byte of the start position of the Horizontal Active Window.

D7-3 Reserved

D2-0 IH ACT START[10:8]

Input Image Horizontal Active Pixels - Low (Address 06h) (R/W)

It defines the low byte of the number of active pixels of the Horizontal Active Window.

D7-0 IH_ACT_WIDTH[7:0]

Input Image Horizontal Active Pixels - High (Address 07h) (R/W)

It defines the high byte of the number of active pixels of the Horizontal Active Window.

D7-3 Reserved

D2-0 IH_ACT_WIDTH[10:8]

Input Image Control Register 0 (Address 10h) (R/W)

D7 Horizontal Sampling Point Reference

0: from Input HSYNC.

1: from Input HREF (only for Video Decoder).

D6 Input YCBCR Format

0: 4-2-2 1: 4-1-1

D5 Digital RGB 6 bit Mode

0: 8 bits 1: 6 bits

D4 Digital RGB Mode Select

0: RGB Input from ADC1: RGB Input from Panel Link

D3 Input Image Format

0: RGB888 1: YCBCR

D2 Input Clock Source

0: from Graphic PLL clock.1: from Video Decoder clock.

D1 Input Image Source

0: from Graphic source through ADC.

1: from Video source through Video Decoder like SAA7111A.

D0 ADC Configuration

0: Double Pixel mode1: Single Pixel mode

Input Image Control Register 1 (Address 11h) (R/W)

D7 Reserved

D6-4 De-interlace mode Select

000: All Fields write mode 001: Toggle Field write mode 010: Spatial Filtering write mode

D3-1 Reserved

D0 Still mode Enable

0: Live mode 1: Still mode

Input Image Control Register 2 (Address 12h) (R/W)

D7 Input ODD Field Invert

0: Normal 1: Invert

D6 External Input Interlace Select

0: Non-interlace1: Interlace

D5 External Input VSYNC Polarity

0: Active Low 1: Active High

D4 External Input HSYNC Polarity

0: Active Low 1: Active High

D3 Input ODD Field Source

0: from Internal Detection 1: from External pin.

D2 Input Interlace Source

0: from Internal detection1: from Register setting (D6)

D1 Input VSYNC Polarity Source

0: from Internal detection1: from Register setting (D5)

D0 Input HSYNC Polarity Source

0: from Internal detection1: from Register setting (D4)

Input Image Control Register 3 (Address 13h) (R/W)

D7-3 Reserved

D2 Sync On Green Select

0: Select Normal HSYNC/ Composite Sync

1: Select Sync On Green

D1 Input Vertical Timing based on VSYNC

0: Leading Edge 1: Trailing Edge

D0 Input Horizontal Timing based on HSYNC

0: Leading Edge 1: Trailing Edge

Input HS Pulse Width Forward Extend (Address 1Ch) (R/W)

D7-0 Input HS Pulse Width Forward Extend by IDCLK

HS1FWEXT[7:0]: Used when Interlace First/Second Field Detection.

Input HS Pulse Width Backward Extend (Address 1Dh) (R/W)

D7-0 Input HS Pulse Width Forward Extend by IDCLK

HS1BWEXT[7:0]: Used when Interlace First/Second Field Detection.

Input Image Status Register (Address 1Fh) (RO)

D7 Display VSYNC Monitor

Show Display VSYNC signal directly.

D6 Input VSYNC Monitor

Show Input VSYNC signal directly.

D5 External Input Interlace Status

0: Non-interlace
1: Interlace

D4 Extracted CVSYNC Present Status

0: Not Present1: Present

D3 External Input VSYNC Present Status

0: Not Present 1: Present

D2 External Input HSYNC Present Status

0: Not Present 1: Present

D1 External Input VSYNC Polarity Status

0: Active Low 1: Active High

D0 External Input HSYNC Polarity Status

0: Active Low 1: Active High

Input Image Back Porch Guard Band (Address 20h) (R/W)

D7-0 Input Image Back Porch Guard Band by IDCLK

HBPGB[7:0]: Used in Auto Position detection to mask out unwanted data.

Input Image Front Porch Guard Band (Address 21h) (R/W)

D7-0 Input Image Front Porch Guard Band by IDCLK

HFPGB[7:0]: Used in Auto Position detection to mask out unwanted data.

Frame Sync Control 0 (Address 28h) (R/W)

D7-5 Reserved

D1 Frame Sync Select in Frame Buffer mode

0: Normal 1: Frame Sync

D0 Frame Buffer mode Select

0: Frame Buffer mode1: Non Frame Buffer mode

Input Image Vertical Lock Position - Low (Address 2Ch) (R/W)

It defines the low byte of the number of input lines where Display image timing synchronizes the input image source.

D7-0 IPV_LOCK_POS[7:0]

Input Image Vertical Lock Position - High (Address 2Dh) (R/W)

It defines the high byte of the number of input lines where Display image timing synchronizes the input image source.

D7-3 Reserved

D2-0 IPV LOCK POS[10:8]

Input Image Horizontal Lock Position - Low (Address 2Eh) (R/W)

It defines the low byte of the number of input pixel clocks where Display image timing synchronizes the input image source.

D7-0 IPH_LOCK_POS[7:0]

Input Image Horizontal Lock Position - High (Address 2Fh) (R/W)

It defines the high byte of the number of input pixel clocks where Display image timing synchronizes the input image source.

D7-3 Reserved

D2-0 IPH LOCK POS[10:8]

Auto Calibration Control 0 (Address 30h) (R/W)

D7 Pixel Grab Ready Flag (RO)

0: Ready 1: Not Ready

D6 Pixel Grab Update Enable

0: Stop updating
1: Continue updating

D5 Threshold Select

Used in Histogram mode or MIN/MAX mode.

0: High bound / MAX 1: Low bound / MIN

D4 Phase Calibration Method Select

0: MYSON proprietary method1: Difference Value method

D3-2 Auto Calibration Modes Select

The measured value is available one item at a time.

selected as shown:

00: Phase Calibration Mode

01: Histogram Mode10: MIN/MAX Mode11: Pixel Grab Mode

D1 Auto Calibration Burst Mode Enable

(except Pixel Grab Mode)

0: Single Mode1: Burst Mode

D0 Auto Calibration Enable (W)

(except Pixel Grab Value)

0: Disable 1: Enable

Auto Calibration Ready Flag (R)

0: Ready 1: Not Ready

Auto Calibration Control 1 (Address 31h) (R/W)

D7-3 Reserved

D2-0 Mask LSBs of Input Image Select

000: No Mask 001: Mask bit0 010: Mask bit0,1 011: Mask bit0,1,2 100: Mask bit0,1,2,3 101: Mask bit0,1,2,3,4 110: Mask bit0,1,2,3,4,5 111: Mask bit0,0,1,2,3,4,5,6

Auto Calibration RED Value - Byte 0 (Address 34h) (RO)

It states the byte 0 of the number of Phase Calibration RED value in one frame or the byte 0 of the number of Histogram Red value in one frame or the Pixel Grab RED value in one frame of Non_interlace mode or FIRST field of Interlace mode.

D7-0 CALVAL_R[7:0]

Auto Calibration RED Value - Byte 1 (Address 35h) (RO)

It states the byte 1 of the number of Phase Calibration RED value in one frame or the byte 1 of the number of Histogram Red value in one frame or the Pixel Grab GREEN value in one frame of Non_interlace mode or FIRST field of Interlace mode.

D7-0 CALVAL R[15:8]

Auto Calibration RED Value - Byte 2 (Address 36h) (RO)

It states the byte 2 of the number of Phase Calibration RED value in one frame or the byte 2 of the number of Histogram Red value in one frame or the Pixel Grab BLUE value in one frame of Non_interlace mode or FIRST field of Interlace mode.

D7-0 CALVAL_R[23:16]

Auto Calibration RED Value - Byte 3 (Address 37h) (RO)

It states the byte 3 of the number of Phase Calibration RED value in one frame.

D7-6 Reserved

D5-0 CALVAL_R[29:24]

Auto Calibration GREEN Value - Byte 0 (Address 38h) (RO)

It states the byte 0 of the number of Phase Calibration GREEN value in one frame or the byte 0 of the number of Histogram GREEN value in one frame or the Pixel Grab RED value in one frame of Non_interlace mode or SECOND field of Interlace mode.

D7-0 CALVAL_G[7:0]

Auto Calibration GREEN Value - Byte 1 (Address 39h) (RO)

It states the byte 1 of the number of Phase Calibration GREEN value in one frame or the byte 1 of the number of Histogram GREEN value in one frame or the Pixel Grab GREEN value in one frame of Non_interlace mode or SECOND field of Interlace mode.

D7-0 CALVAL_G[15:8]

Auto Calibration GREEN Value - Byte 2 (Address 3Ah) (RO)

It states the byte 2 of the number of Phase Calibration GREEN value in one frame or the byte 2 of the number of Histogram GREEN value in one frame or the Pixel Grab BLUE value in one frame of Non_interlace mode or SECOND field of Interlace mode.

D7-0 CALVAL_G[23:16]

Auto Calibration GREEN Value - Byte 3 (Address 3Bh) (RO)

It states the byte 3 of the number of Phase Calibration GREEN value in one frame.

D7-6 Reserved

D5-0 CALVAL_G[29:24]

Auto Calibration BLUE Value - Byte 0 (Address 3Ch) (RO)

It states the byte 0 of the number of Phase Calibration BLUE value in one frame or the byte 0 of the number of Histogram BLUE value in one frame or the MIN/MAX RED value in one frame.

D7-0 CALVAL B[7:0]

Auto Calibration BLUE Value - Byte 1 (Address 3Dh) (RO)

It states the byte 1 of the number of Phase Calibration BLUE value in one frame or the byte 1 of the number of Histogram BLUE value in one frame or the MIN/MAX GREEN value in one frame.

D7-0 CALVAL_B[15:8]

Auto Calibration BLUE Value - Byte 2 (Address 3Eh) (RO)

It states the byte 2 of the number of Phase Calibration BLUE value in one frame or the byte 2 of the number of Histogram BLUE value in one frame or the MIN/MAX BLUE value in one frame.

D7-0 CALVAL_B[23:16]

Auto Calibration BLUE Value - Byte 3 (Address 3Fh) (RO)

It states the byte 3 of the number of Phase Calibration BLUE value in one frame.

D7-6 Reserved

D5-0 CALVAL B[29:24]

Pixel Grab V Reference Position - Low (Address 40h) (R/W)

It states the low byte of Vertical Reference Position in Pixel Grab Mode.

D7-0 VGRAB_POS[7:0]

Pixel Grab V Reference Position - High (Address 41h) (R/W)

It states the high byte of Vertical Reference Position in Pixel Grab Mode.

D7-3 Reserved

D2-0 VGRAB_POS[10:8]

Pixel Grab H Reference Position - Low (Address 42h) (R/W)

It states the low byte of Horizontal Reference Position in Pixel Grab Mode.

D7-0 HGRAB_POS[7:0]

Pixel Grab H Reference Position - High (Address 43h) (R/W)

It states the high byte of Horizontal Reference Position in Pixel Grab Mode.

D7-3 Reserved

D2-0 HGRAB POS[10:8]

Histogram Reference Color - RED (Address 44h) (R/W)

It states the Histogram Reference RED Color in Histogram Mode.

D7-0 HIST_R[7:0]

Histogram Reference Color - GREEN (Address 45h) (R/W)

It states the Histogram Reference GREEN Color in Histogram Mode.

D7-0 HIST_G[7:0]

Histogram Reference Color - BLUE (Address 46h) (R/W)

It states the Histogram Reference BLUE Color in Histogram Mode.

D7-0 HIST_B[7:0]

SYNC Processor Control (Address 48h) (R/W)

D7-2 Reserved

D1-0 SYNC Source

00: from H/V SYNC

01: from CVSYNC (Composite SYNC)

1x: Auto switch to CVSYNC when CVSYNC is present, but VSYNC not.

Auto Position Control (Address 49h) (R/W)

D7-2 Reserved

D1 Auto Position Burst Mode Enable

0: Single Mode1: Burst Mode

D0 Auto Position Enable (W)

0: Disable 1: Enable

Auto Position Ready Flag (R)

0: Ready 1: Not Ready

Auto Position Reference Color - RED (Address 4Ah) (R/W)

It defines the red component color for selecting between black and non-black pixels.

D7-0 REF_COLOR_RED[7:0]

Auto Position Reference Color - GREEN (Address 4Bh) (R/W)

It defines the green component color for selecting between black and non-black pixels.

D7-0 REF COLOR GREEN[7:0]

Auto Position Reference Color - BLUE (Address 4Ch) (R/W)

It defines the blue component color for selecting between black and non-black pixels.

D7-0 REF_COLOR_BLUE[7:0]

Clamp Pulse Control 0 (Address 4Eh) (R/W)

D7 Clamp Pulse Mask

0: Normal

1: Mask out Clamp Pulse

D6 Clamp Pulse Start Reference Edge

0: From Input HSYNC trailing edge.1: From Input HSYNC leading edge.

D5 Clamp Pulse output Polarity

0: Active High 1: Active Low

D4-0 Clamp Pulse Start

Start of Clamp Pulse after the selected edge of Input HSYNC by Input DCLK.

Clamp Pulse Control 1 (Address 4Fh) (R/W)

D7-5 Reserved

D4-0 Clamp Pulse Width

To Adjust Clamp Pulse Width by Input DCLK.

Input VS Period Count by REFCLK - Low (Address 50h) (RO)

It states the low byte of the number of REFCLK of the Vertical Sync period measurement.

D7-0 VSPRD[7:0]

Input VS Period Count by REFCLK - High (Address 51h) (RO)

It states the high byte of the number of REFCLK of the Vertical Sync period measurement.

D7-4 Reserved

D3-0 VSPRD[11:8]

Input V Back Porch Count by Input HS - Low (Address 52h) (RO)

It states the low byte of the number of lines between the end of VSYNC and the active image.

D7-0 VBPW[7:0]

Input V Back Porch Count by Input HS - High (Address 53h) (RO)

It states the high byte of the number of lines between the end of VSYNC and the active image

D7-3 Reserved

D2-0 VBPW[10:8]

Input V Active Image Count by Input HS - Low (Address 54h) (RO)

It states the low byte of the number of the active image lines.

D7-0 VACTW[7:0]

Input V Active Image Count by Input HS - High (Address 55h) (RO)

It states the high byte of the number of the active image lines

D7-3 Reserved

D2-0 VACTW[10:8]

Input HS Period Count by REFCLK - Low (Address 58h) (RO)

It states the low byte of the number of REFCLKs of the Horizontal Sync period measurement.

D7-0 HSPRD[7:0]

Input HS Period Count by REFCLK - High (Address 59h) (RO)

It states the high byte of the number of REFCLKs of the Horizontal Sync period measurement.

D7-5 Reserved

D4-0 HSPRD[12:8]

Input H Back Porch Count by Input Pixel Clock -Low (Address 5Ah) (RO)

It states the low byte of the number of pixels between the end of HSYNC and the active image.

D7-0 HBPW[7:0]

Input H Back Porch Count by Input Pixel Clock -High (Address 5Bh) (RO)

It states the high byte of the number of pixels between the end of HSYNC and the active image.

D7-3 Reserved

D2-0 HBPW[10:8]

Input H Active Image Count by Input Pixel Clock-Low(Address 5Ch) (RO)

It states the low byte of the number of the Horizontal active image pixels.

D7-0 HACTW[7:0]

Input H Active Image Count by Input Pixel Clock-High(Address 5Dh)(RO)

It states the high byte of the number of the Horizontal active image pixels.

D7-3 Reserved

D2-0 HACTW[10:8]

Display Vertical Total - Low (Address 60h) (R/W)

It defines the low byte of the number of lines per display frame.

D7-0 DV_TOTAL[7:0]

Display Vertical Total - High (Address 61h) (R/W)

It defines the high byte of the number of lines per display frame.

D7-3 Reserved

D2-0 DV_TOTAL[10:8]

Display Vertical SYNC End - Low (Address 62h) (R/W)

It defines the low byte of Vertical SYNC end position in lines.

D7-0 DV_SYNC_END[7:0]

Display Vertical VSYNC End - High (Address 63h) (R/W)

It defines the high byte of Vertical SYNC end position in lines.

D7-3 Reserved

D2-0 DV_SYNC_END[10:8]

Note: Display Vertical SYNC Start is always equal 0.

Display Vertical Active Start - Low (Address 64h) (R/W)

It defines the low byte of Vertical Active region start position in lines.

D7-0 DV_ACT_START[7:0]

Display Vertical Active Start - High (Address 65h) (R/W)

It defines the high byte of Vertical Active region start position in lines.

D7-3 Reserved

D2-0 DV_ACT_START[10:8]

Display Vertical Active End - Low (Address 66h) (R/W)

It defines the low byte of Vertical Active region end position in lines.

D7-0 DV ACT END[7:0]

Display Vertical Active End - High (Address 67h) (R/W)

It defines the high byte of Vertical Active region end position in lines.

D7-3 Reserved

D2-0 DV_ACT_END[10:8]

Display Vertical Border Start - Low (Address 68h) (R/W)

It defines the low byte of Vertical Border start position in lines.

D7-0 DV_BOR_START[7:0]

Display Vertical Border Start - High (Address 69h) (R/W)

It defines the high byte of Vertical Border start position in lines.

D7-3 Reserved

D2-0 DV_BOR_START[10:8]

Display Vertical Border End - Low (Address 6Ah) (R/W)

It defines the low byte of Vertical Border end position in lines.

D7-0 DV BOR END[7:0]

Display Vertical Border End - High (Address 6Bh) (R/W)

It defines the high byte of Vertical Border end position in lines.

D7-3 Reserved

D2-0 DV_BOR_END[10:8]

Display Horizontal Total - Low (Address 70h) (R/W)

It defines the low byte of the number of display clock cycles per display line.

D7-0 DH_TOTAL[7:0]

Display Horizontal Total - High (Address 71h) (R/W)

It defines the high byte of the number of display clock cycles per display line.

D7-3 Reserved

D2-0 DH_TOTAL[10:8]

Display Horizontal SYNC End - Low (Address 72h) (R/W)

It defines the low byte of Horizontal SYNC end position in display clock cycles.

D7-0 DH SYNC END[7:0]

Display Horizontal SYNC End - High (Address 73h) (R/W)

It defines the high byte of Horizontal SYNC end position in display clock cycles.

D7-3 Reserved

D2-0 DH_SYNC_END[10:8]

Note: Display Horizontal SYNC Start is always equal 0.

Display Horizontal Active Start - Low (Address 74h) (R/W)

It defines the low byte of Horizontal Active region start position in display clock cycles.

D7-0 DH_ACT_START[7:0]

Display Horizontal Active Start - High (Address 75h) (R/W)

It defines the high byte of Horizontal Active region start position in display clock cycles.

D7-3 Reserved

D2-0 DH_ACT_START[10:8]

Display Horizontal Active End - Low (Address 76h) (R/W)

It defines the low byte of Horizontal Active region end position in display clock cycles.

D7-0 DH_ACT_END[7:0]

Display Horizontal Active End - High (Address 77h) (R/W)

It defines the high byte of Horizontal Active region end position in display clock cycles.

D7-3 Reserved

D2-0 DH_ACT_END[10:8]

Display Horizontal Border Start - Low (Address 78h) (R/W)

It defines the low byte of Horizontal Border start position in display clock cycles.

D7-0 DH BOR START[7:0]

Display Horizontal Border Start - High (Address 79h) (R/W)

It defines the high byte of Horizontal Border start position in display clock cycles.

D7-3 Reserved

D2-0 DH BOR START[10:8]

Display Horizontal Border End - Low (Address 7Ah) (R/W)

It defines the low byte of Horizontal Border end position in display clock cycles.

D7-0 DH_BOR_END[7:0]

Display Horizontal Border End - High (Address 7Bh) (R/W)

It defines the high byte of Horizontal Border end position in display clock cycles.

D7-3 Reserved

D2-0 DH BOR END[10:8]

Output Image Control Register 0 (Address 88h) (R/W)

D7-3 Reserved

D2 Output Pixel 18 bit RGB Mode Select

0: 24 bit RGB 1: 18 bit RGB

D1 Output Dual Pixel Data Exchange

0: Normal 1: Exchange

D0 Output Dual Pixel Select

0: Dual Pixel
1: Single Pixel

Output Image Control Register 1 (Address 89h) (R/W)

D7-6 Reserved

D5 RGB Brightness Control Enable

0: Disable 1: Enable

D4 RGB Gain Control Enable

0: Disable 1: Enable

D3-2 Reserved

D1 Border Window Function

0: OFF 1: ON

D0 Output Blank Screen

0: Normal

1: Output Pixel masked as BLACK color

Output Image Control Register 2 (Address 8Ah) (R/W)

D7 Reserved

D6 Temporal Dithering Enable

0: Static Dithering1: Temporal Dithering

D5 Dithering Table R/W Access Enable

0: Disable 1: Enable

D4 Dithering Enable

0: Disable 1: Enable

D3 Reserved

D2 10 bit Gamma Table Enable

0: 8 bit Gamma Table1: 10 bit Gamma Table

D1 Gamma Table R/W Access Enable

0: Disable 1: Enable

D0 Gamma Correction Function

0: OFF 1: ON

Color Gain Control - RED (Address 90h) (R/W)

It can be used to adjust the gain of RED component of the Display Image.

D7-0 RGAIN[7:0]

 $0(00h) \sim x1(80h) \sim x1.992185(FFh)$

Color Gain Control - GREEN (Address 91h) (R/W)

It can be used to adjust the gain of GREEN component of the Display Image.

D7-0 GGAIN[7:0]

 $0(00h) \sim x1(80h) \sim x1.992185(FFh)$

Color Gain Control - BLUE (Address 92h) (R/W)

It can be used to adjust the gain of BLUE component of the Display Image.

D7-0 BGAIN[7:0]

 $0(00h) \sim x1(80h) \sim x1.992185(FFh)$

Color Brightness Control - RED (Address 93h) (R/W)

It can be used to adjust the brightness of RED component of the Display Image.

D7-0 RBRIGHT[7:0]

-128(80h) ~ 0(00h) ~127(7Fh)

Color Brightness Control - GREEN (Address 94h) (R/W)

It can be used to adjust the brightness of GREEN component of the Display Image.

D7-0 GBRIGHT[7:0]

-128(80h) ~ 0(00h) ~127(7Fh)

Color Brightness Control - BLUE (Address 95h) (R/W)

It can be used to adjust the brightness of BLUE component of the Display Image.

D7-0 BBRIGHT[7:0]

 $-128(80h) \sim 0(00h) \sim 127(7Fh)$

Border Window Color - RED (Address 96h) (R/W)

When the Display Image is not expanded to full screen, it can be specified as the RED component of the border color.

D7-0 BCR[7:0]

Border Window Color - GREEN (Address 97h) (R/W)

When the Display Image is not expanded to full screen, it can be specified as the GREEN component of the border color.

D7-0 BCG[7:0]

Border Window Color - BLUE (Address 98h) (R/W)

When the Display Image is not expanded to full screen, it can be specified as the BLUE component of the border color.

D7-0 BCB[7:0]

Dithering Table Data Port (Address 9Eh) (R/W)

Since the Dithering Table is downloadable, this data port is the entry address.

D7-0 DITHER_PORT[7:0]

Gamma Table Data Port (Address 9Fh) (R/W)

Since the Gamma Table is downloadable, this data port is the entry address.

D7-0 GAMMA_PORT[7:0]

OSD Control Registers (Address A0h) (R/W)

D7 OSD Output Clock Select

0: from Internal Display Dot Clock 1: from Internal Display Dot Clock x 2

D6-4 Reserved

D3 OSD Function

0: OFF 1: ON

D2 OSD Intensity Enable (For MOTOROLA)

0 : OFF 1: ON

D1-0 OSD TYPE Select

00: OSDRGB = {R0000000, G0000000, B0000000} 01: OSDRGB = {RR000000, GG000000, BB0000000} 10: OSDRGB = {RRRR0000, GGGG0000, BBBB0000} 11: OSDRGB = {RRRRRRRR, GGGGGGG, BBBBBBBB}

 $\underline{R} = OSDR, \underline{G} = OSDG, \underline{B} = OSDB$

OSD Adjustment Control (Address A1h) (R/W)

D7 OSD Output HS Invert

0: Normal 1: Invert.

D6 OSD Output DCLK Invert

0: Normal 1: Invert.

D5-4 OSD Output HS Delay

4 steps to change, each of them is 1ns delay/step.

D3 OSD Input Data Sample Clock Invert

0: Normal. 1: Invert.

D2-0 OSD Input Data Sample Clock Delay

8 steps to change, each of them is 1ns delay/step.

Output Invert Control (Address A4h) (R/W)

D7 Reserved

D6 RGB Data Invert Enable

0: Disable 1: Enable

D5 Display DCLK2 Invert

0: Normal 1: Invert

D4 Display DCLK1 Invert

0: Normal 1: Invert

D3 Reserved

D2 Display Data Enable (DDEN) Invert

0: Normal 1: Invert

D1 Display VSYNC Invert

0: Normal 1: Invert

D0 Display HSYNC Invert

0: Normal 1: Invert

Output Tri_state Control (Address A5h) (R/W)

D7 Display Data R2OUT, G2OUT, B2OUT Output Disable

0: Normal 1: Tri_stated

Display Data R1OUT, G1OUT, B1OUT Output Disable

0: Normal 1: Tri_stated

D5 Display DCLK2 Output Disable

0: Normal 1: Tri_stated

D4 Display DCLK1 Output Disable

0: Normal 1: Tri_stated

D3 OSD OCLK / OVSYNC / OHSYNC Output Disable

0: Normal 1: Tri_stated

D2 Display Data Enable (DDEN) Output Disable

0: Normal 1: Tri_stated

D1 Display VSYNC Output Disable

0: Normal 1: Tri_stated

D0 Display HSYNC Output Disable

0: Normal 1: Tri_stated

Output Clocks Delay Adjustment (Address A6h) (R/W)

D7-4 Display DCLK2 delay adjustment

16 steps to adjust, Typical 1ns delay/step

D3-0 Display DCLK1 delay adjustment

16 steps to adjust, Typical 1ns delay/step

Output Clocks Duty Cycle Adjustment (Address A7h) (R/W)

D7 Display DCLK2 duty cycle Increase/Decrease

0: Decrease 1: Increase

D6-4 Display DCLK2 duty cycle adjustment

8 steps to adjust, Typical 0.5ns delay/step

D3 Display DCLK1 duty cycle Increase/Decrease

0: Decrease 1: Increase

D2-0 Display DCLK1 duty cycle adjustment

8 steps to adjust, Typical 0.5ns delay/step

Zoom Control Register 0 (Address B0h) (R/W)

D7 Vertical Scale Mode

0: Scale Up 1: Scale Down

D6-4 Vertical Scale Select

0XX: PASS mode 10X: DUPLICATE mode 110: BILINEAR mode

111: INTERPOLATION TABLE mode (only for Scale Up)

D3 Horizontal Scale Mode

0: scale up 1: scale down

D2-0 Horizontal Scale Select

0xx: PASS mode 10x: DUPLICATE mode 110: BILINEAR mode

111: INTERPOLATION TABLE mode

Zoom Control Register 1 (Address B1h) (R/W)

D7-1 Reserved

D0 Interpolation Table R/W Access Enable

0: Disable 1: Enable

Zoom Vertical Scale Down Integer Ratio Region (Address B2h) (R/W)

It defines vertical scale down integer ratio value region

D7-3 Reserved

D2-0 ZVDIV[2:0]

0 : scale down ratio = 1-1/2(exclude 1)
1 : scale down ratio = 1/2-1/4(exclude 1/2)
2: scale down ratio = 1/4-1/8(exclude 1/4)
3: scale down ratio = 1/8-1/16(exclude 1/8)
4: scale down ratio = 1/16-1/32(exclude 1/16)

Zoom Horizontal Scale Down Integer Ratio Region (Address B3h) (R/W)

It defines horizontal scale down integer ratio value region.

D7-3 Reserved

D2-0 ZHDIV[2:0]

0 : scale down ratio = 1-1/2(exclude 1)
1 : scale down ratio = 1/2-1/4(exclude 1/2)
2: scale down ratio = 1/4-1/8(exclude 1/4)
3: scale down ratio = 1/8-1/16(exclude 1/8)
4: scale down ratio = 1/16-1/32(exclude 1/16)

Zoom Vertical Scale Ratio - Low (Address B4h) (R/W)

It defines the low byte of vertical scale ratio value for scale up and down.

D7-0 ZVSF[7:0]

Zoom Vertical Scale Ratio - High (Address B5h) (R/W)

It defines the low byte of vertical scale ratio value for scale up and down.

D7-0 ZVSF[15:8]

For Scale Up ZVSF = CEIL[(input_height - 1)/ (output_height - 1)* 2^16]IV For Scale Down ZVSF = CEIL{[(input_height' - 1)/ (output_height - 1)-1]* 2^16}, where input_height' = input_height / 2^ZVDIV. The means of ZVDIV is referenced to Reg. B2h.

Zoom Horizontal Scale Ratio - Low (Address B6h) (R/W)

It defines the low byte of horizontal scale ratio value for scale up and down.

D7-0 ZHSF[7:0]

Zoom Horizontal Scale Ratio - High (Address B7h) (R/W)

It defines the high byte of horizontal scale ratio value for scale up and down.

D7-0 ZHSF[15:8]

For Scale Up ZHSF = ROUND[(Input_width -1)/ (output_width -1)* 2^16] For Scale Down ZVSF = ROUND{[(input_width' -1)/ (output_width -1)-1]* 2^16}, where input_width' = input_width / 2^ZHDIV. The means of ZHDIV is referenced to Reg. B3h.

Interpolation Table Data Port (Address BFh) (R/W)

It defines the entry address of the Interpolation table data port.

D7-0 TFPORT[7:0]

Host Control Register 0 (Address C0h) (R/W)

D7 Host Screen Write Stop Enable (WO)

0: Disable 1: Enable

D6-1 Force to 001010

D0 Host Screen Write Start Enable (W)

0: Disable 1: Enable

Host Screen Write Ready Flag (R)

0: Ready 1: Not Ready

Host Control Register 1 (Address C1h) (R/W)

D7 Reserved

D6 I2C Bus Address No Increment

0: Normal
1: No Increment

D5 Double Buffer load Select

0: Immediately

1: Delay to Display VSYNC

D4 Registers Double Buffer function Enable

0: Disable 1: Enable

D3-2 Reserved

D1 Display Registers Double Buffer Load (WO)

D0 Input Registers Double Buffer Load (WO)

Host Screen Write Line Length - Low (Address C4h) (R/W)

It defines the low byte of the vertical line length for Host Screen Write.

D7-0 HS LEN[7:0]

Host Screen Write Line Length - High (Address C5h) (R/W)

It defines the high byte of the vertical line length for Host Screen Write.

D7-3 Reserved

D2-0 HS_LEN[10:8]

Host Fill RED Color (Address C6h) (R/W)

It defines Fill Red color for Host Screen Write.

D7-0 HFR[7:0]

Host Fill GREEN Color (Address C7h) (R/W)

It defines Fill Green color for Host Screen Write.

D7-0 HFG[7:0]

Host Fill BLUE Color (Address C8h) (R/W)

It defines Fill Blue color for Host Screen Write.

D7-0 HFB[7:0]

Host Access Mode Status (Address CBh) (RO)

D7-1 Reserved

D0 Host Access Mode

0: 2-wire Serial mode (IIC)1: 8-bit Parallel mode

Memory Type Control (Address D0h) (R/W)

It defines the Memory type and size.

D7-2 Reserved

D1-0 00: 16M SDRAM X 3

01: 16M SDRAM X 2 10: 8M SGRAM X 3 11: 8M SGRAM X 2

Memory Self Test Control (Address D2h) (R/W)

It controls the operation of Memory Self Test Mode.

D7-3 Reserved

D2 Memory Self Test mode Result Status (RO)

0: Success 1: Fail

D1 Memory Self Test mode Finish Status (RO)

0: Finish 1: Not Finish

D0 Memory Self Test mode Enable

0: Disable 1: Enable

Memory Self-Test Compare Error Address – Low (Address DBh) (RO)

It defines the low byte of Memory Base Address for Memory Self-Test comparing error report.

D7-0 MSFTBA [7:0]

Memory Self-Test Compare Error Address – Middle (Address DCh) (RO)

It defines the middle byte of Memory Base Address for Memory Self-Test comparing error report.

D7-0 MSFTBA [15:8]

Memory Self-Test Compare Error Address – High (Address DDh) (RO)

It defines the high byte of Memory Base Address for Memory Self-Test comparing error report and Patterns Number.

D7 Reserved

D6-5 Memory Self-Test Patterns Number when Comparing Error

00: Pattern Constructed by Linear Memory Address01: 48 Bits Pattern Toggled between 55 and AA10: 48 Bits Pattern Toggled between AA and 55

11: Reserved

D4-0 MSFTBA [20:16]

Clock Synthesizer Control Register (Address E0h) (R/W)

D7-4 Reserved

D3 Memory Clock Source

0: Internal Memory Clock

1: External Memory Clock from pin EXTMCLK

D2 Display Clock Source

0: Internal Display Clock

1: External Display Clock from pin EXTDCLK

D1 Memory Clock Synthesizer Enable

0: Enable 1: Disable

D0 Display Clock Synthesizer Enable

0: Enable 1: Disable

Clock Synthesizer Value Load (Address E1h) (WO)

D7-2 Reserved

D1 Memory Clock Synthesizer Value Load (WO)

D0 Display Clock Synthesizer Value Load (WO)

Display Clock Synthesizer M Value (Address E2h) (R/W)

D7-0 Display Clock Synthesizer M value

Display Clock Synthesizer N Value (Address E3h) (R/W)

D7-0 Display Clock Synthesizer N value

Memory Clock Synthesizer M Value (Address E4h) (R/W)

D7-0 Memory Clock Synthesizer M value

Memory Clock Synthesizer N Value (Address E5h) (R/W)

D7-0 Memory Clock Synthesizer N value

Clock Synthesizer R Value (Address E6h) (R/W)

D7-4 Reserved

D3-2 Memory Clock Synthesizer R value

00: No divided 01: Divided by 2 1x: Divided by 4

D1-0 Display Clock Synthesizer R value

00: No divided 01: Divided by 2 1x: Divided by 4

SYNC Interrupt Flag Control (Address E8h) (R)

It contains the status of SYNC Interrupts.

D7 Display VSYNC Pulse Interrupt Status

0: No Display VSYNC pulse detected1: Any Display VSYNC pulse detected

D6 Input VSYNC Pulse Interrupt Status

0: No Input VSYNC pulse detected1: Any Input VSYNC pulse detected

D5 VSYNC Presence Change Status

0: No Change 1: Change

D4 HSYNC Presence Change Status

0: No Change 1: Change

D3 VSYNC Polarity Change Status

0: No Change1: Change

D2 HSYNC Polarity Change Status

0: No Change 1: Change

D1 VSYNC Frequency Change Status

0: No Change 1: Change

D0 HSYNC Frequency Change Status

0: No Change 1: Change

SYNC Interrupt Flag Control (Address E8h) (W)

It is used to clear the corresponding SYNC interrupt signal when Software finishes serving the interrupt service routine.

D7 Clear Display VSYNC Pulse Interrupt Enable

0: Disable 1: Enable

D6 Clear Input VSYNC Pulse Interrupt Enable

0: Disable 1: Enable

D5 Clear VSYNC Presence Change Interrupt Enable

0: Disable 1: Enable

D4 Clear HSYNC Presence Change Interrupt Enable

0: Disable 1: Enable

D3 Clear VSYNC Polarity Change Interrupt Enable

0: Disable 1: Enable

D2 Clear HSYNC Polarity Change Interrupt Enable

0: Disable 1: Enable

D1 Clear VSYNC Frequency Change Interrupt Enable

0: Disable 1: Enable

D0 Clear HSYNC Frequency Change Interrupt Enable

0: Disable 1: Enable

General Interrupt Flag Control (Address E9h) (R)

It contains the status of General Interrupts.

D7-2 Reserved

D1 Auto Position Finish Status (valid for Single mode only)

0: Not Finish 1: Finish

D0 Auto Calibration Finish Status (valid for Single mode only)

0: Not Finish 1: Finish

General Interrupt Flag Control (Address E9h) (W)

It is used to clear the corresponding general interrupt signal when Software finishes serving the interrupt service routine.

D7-2 Reserved

D1 Clear Auto Position Finish Interrupt Enable

0: Disable

1: Enable

D0 Clear Auto Calibration Finish Interrupt Enable

0: Disable 1: Enable

SYNC Interrupt Flag Enable (Address EAh) (R/W)

It is used to enable SYNC Interrupt function.

D7 Display VSYNC Pulse Interrupt Enable

0: Disable 1: Enable

D6 Input VSYNC Pulse Interrupt Enable

0: Disable 1: Enable

D5 VSYNC Presence Change Interrupt Enable

0: Disable 1: Enable

D4 HSYNC Presence Change Interrupt Enable

0: Disable 1: Enable

D3 VSYNC Polarity Change Interrupt Enable

0: Disable 1: Enable

D2 HSYNC Polarity Change Interrupt Enable

0: Disable 1: Enable

D1 VSYNC Frequency Change Interrupt Enable

0: Disable 1: Enable

D0 HSYNC Frequency Change Interrupt Enable

0: Disable 1: Enable

General Interrupt Flag Enable (Address EBh) (R/W)

It is used to enable General Interrupt functions.

D7-2 Reserved

D1 Auto Position Finish Interrupt Enable

0: Disable 1: Enable

D0 Auto Calibration Finish Interrupt Enable

0: Disable 1: Enable

HS Frequency Change Interrupt Compare (Address ECh) (R/W)

It is used to control Interrupt generation by comparing the frequency change value when Input HS Frequency Changes.

D7-0 HSCMPREG[7:0]

Power Management Control (Address F1h) (R/W)

D7 Reserved

D6 Power Down Gamma & Interpolation Table

0: Normal 1: Power Down

D5 Power Down Output Line Buffers

0: Normal 1: Power Down

D4 Power Down Input Line Buffers

0: Normal 1: Power Down

D3-2 Reserved

D1 Power Down all the clocks except REFCLK

0: Normal 1: Power Down

D0 Software Reset Enable

0: Disable 1: Enable

GPIO Control Register (Address F4h) (R/W)

It controls the data of the GPIO pins.

D7-0 GPIO[7:0]

GPIO Direction Control (Address F5h) (R/W)

It controls the In/Out direction of the GPIO pins, where "0" means Output, and "1" means Tri_state or Input.

D7-6 GPIO[7:6] Output Enable

0: Output 1: Tri_state

D5-0 GPIO[5:0] In/Out Select

0: Output 1: Input

GPIO Misc Control (Address F6h) (R/W)

It defines the GPIO pins miscellaneous control. D7-1 Reserved

D0

GPIO[7:6] Output Pins Source 0: from Reg. F4h/D7-6 1: from ADVS/ADHS

5. ELECTRICAL CHARACTERISTICS

5.1 DC CHARACTERISTICS

Table 5.1 Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
Vcc	Operation Voltage	3.0	3.3	3.6	V
Tamb	Operating Ambient Temperature	0		70	°C
Tstg	Storage Temperature	-55		150	°C

Table 5.2 DC Electrical Characteristics for 3.3 V Operation

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
VIL	Input Low Voltage				0.8	V
VIH	Input High Voltage		2.0			V
Vt-	Input Schmitt Trigger Low Voltage at pins SDA and SCK			1.0		
Vt+	Input Schmitt Trigger High Voltage at pins SDA and SCK			1.7		
VOL	Output Low Voltage				0.4	V
VOH	Output High Voltage		2.4			V
RI	Input Pull-up/Down Resistance	VIL = 0v or VIH = VCC		75		Kohm
ILI	Input Leakage Current		-10		10	uA
ILO	Output Leakage Current		-20		20	uA

5.2 AC CHARACTERISTICS

□ Input Interface Timing

Figure 5.2.1 Input Interface Timing

Table 5.2.1 Input Interface Timing

SYMBOL	PARAMETER	MIN	MAX	UNIT
Tids	Input Image Signal Setup Time for IPCLK	2		ns
Tidh	Input Image Signal Hold Time for IPCLK	3		ns
Tivhs	Input VSYNC/HSYNC Setup Time for IPCLK	2		ns
Tivhh	Input VSYNC/HSYNC Hold Time for IPCLK	3		ns

Output Interface Timing

Figure 5.2.2 Output Interface Timing

Table 5.2.2 Output Interface Timing

SYMBOL	PARAMETER	MIN	MAX	UNIT
Tdvs	Display VSYNC Output Delay to DDCLK	2		ns
Tdhs	Display HSYNC Output Delay to DDCLK	0.5		ns
Tdde	Display DDEN Output Delay to DDCLK	1		ns
Tddp	Display Data Output Delay to DDCLK	1.5		ns

Note: DDCLK phase can be adjusted relative to data and control outputs using the DDCLK_INV (Reg. A4h/D5-4) and DDCLK_DELAY[2:0] (Reg. A6h/D7-0) programming controls.

□ OSD Interface Timing

Figure 5.2.3 OSD Interface Timing

Table 5.2.3 OSD Interface Timing

SYMBOL	PARAMETER	MIN	MAX	UNIT
Tosdd	OSD VS / HS Output Delay to OCLK	2		ns
Tosds	OSD Signal Input Setup Time for OCLK	5.5		ns
Tosdh	OSD Signal Input Hold Time for OCLK	0		ns

Note: OCLK phase can be adjusted using OCLK_INV (Reg. A1h/D3) programming control and OHSYNC phase can be adjusted using OHSYNC_DELAY[1:0] (Reg. A1h/D5-4) programming control.

□ I2C Host Interface Timing

Figure 5.2.4 I2C Host Interface Timing

Table 5.2.4 I2C Host Interface Timing

SYMBOL	PARAMETER	MIN	MAX	UNIT
Thigh	Clock High Period	500		ns
Tlow	Clock Low Period	500		ns
Tsu:dat	Data in Setup Time	200		ns
Thd:dat	Data in Hold Time	100		ns
Tsu:sta	Start condition Setup Time	500		ns
Thd:sta	Start condition Hold Time	500		ns
Tsu:sto	Stop condition Setup Time	500		ns
Thd:sto	Stop condition Hold Time	500		ns

8-bit Direct Host Interface Timing

Figure 5.2.5 8-bit Direct Host Interface Timing

Table 5.2.5 8-bit Direct Host Interface Timing

SYMBOL	PARAMETER	MIN	MAX	UNIT
Tavll	Address Valid to ALE Low	3		ns
Tllax	Address Hold After ALE Low	5		ns
Trwpw	WR/RD Pulse Width	35		ns
Tllwl	ALE Low to WR/RD Low	5		ns
Tqvwh	Data Valid to WR High	3		ns
Twhqx	Data Hold After WR	10		ns
Twhlh	WR/RD High to ALE High	0		ns
Trlaz	RD Low to Address Float	-5		ns
Trldv	RD Low to Valid Data In		30	ns
Trhdz	Data Float after RD High	0	15	ns

□ Memory Interface (SDRAM/SGRAM) Timing

Figure 5.2.6 Memory Interface Timing

Table 5.2.6 Memory Interface Timing

SYMBOL	PARAMETER		MAX	UNIT
Tmck	Memory Clock Cycle Time	10		ns
Tmch	Memory Clock High Level Width	4.5		ns
Tmcl	Memory Clock Low Level Width	4.5		ns
Tmds	Data-in Setup Time for MCK	1		ns
Tmdh	Data-in Hold Time for MCK	2		ns
Tmod	Memory Output Delay to MCK	2	8.5	ns

6. PACKAGE DIMENSION

120/128/132/144/160/184/208/256L OFP

MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
0.13	0.16	0.23	0.005	0.006	0.009
0.	.40 BS	C.	0.016 BSC.		
25.20				0.992	
25.20			25.20 0.992		
-	TOLER	ANCE	S OF FO	ORM AN	ID
		PO	SITION		
	0.20 0.008				
0.20			0.008		
Χ	0.08	Χ	Χ	0.003	Х
Χ	0.07	Х	Χ	0.003	Х

- 1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 2. SIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE
 LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE
 THAN 0.08mm.

DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. THE MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.

3. THE TOP PACKAGE BOOY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BOOY SIZE.

SYMBOL	MIL	LIMETE	ER		INCH	
OTWIDOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	<u>X</u>	<u>X</u>	4.10	Χ	<u>X</u>	0.161
A1	0.25	<u>X</u>	Х	0.010	Х	Χ
A2	3.20	3.32	3.60	0.126	0.131	0.142
D	30	.60 BS	С	1.	.205 BS	Ö
D1	28	.00 BS	С	1.	.102 BS	S
E	30	.60 BS	С	1.205 BSC		
E1	28	.00 BS	С	1.102 BSC		
R2	0.08	Х	0.25	0.003	Х	0.010
R1	0.08	Х		0.003	Х	Χ
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	Х	Х	0°	Х	Χ
θ2	8	3° REF			8° REF	
θз	8	8° REF		8° REF		
С	0.09	0.15	0.20	0.004	0.005	0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.30		0.051 REF		
S	0.20	Х	Х	0.008	Х	Χ

C SEATING PLANE

Ordering Information

Standard Configurations:

Prefix	Part Type	Package Type
MTV	1 (10) 3	F:PQFP Y:BGA