МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Сети и телекоммуникации»

Тема: Изучение понятий **IP-**адреса и подсетей **B**ариант **27**

Студентка гр. 1381	 Рымарь М.И.
Преподаватель	 Фирсов М.А.

Санкт-Петербург

Цель работы.

Целью работы является изучение IP-адресации (IPv4), логического построения локальных сетей. Необходимо решить следующие задачи:

- 1. Создать две виртуальные машины.
- 2. Определить адрес сети по ІР и маске.
- 3. Определить широковещательный ІР-адрес для конкретной подсети.
- 4. Определить принадлежность ІР-адресов к одной подсети.
- 5. Построить схему сети с использованием различных масок и IP-адресов.
- 6. Проверить п. 4 на реальной инфраструктуре, построенной в VirtualBox.

Задание.

Необходимо решить следующие задачи:

- 1. Определение принадлежности IP-адресов к одной подсети. Развернуть две виртуальные машины (лаб. работа № 1), выбрать тип подключения сетевого адаптера «intnet» и выполнить следующие операции:
 - а. Получить два IP-адреса с маской у преподавателя.

Маска равна номеру в списке группы. Для данной маски следует придумать 3 IP-адреса: 2 из одной подсети, 1 — из другой, при этом адрес из другой подсети должен совпадать с предыдущими в тех октетах маски, которые равны 255.

- b. Для полученных IP-адресов определить, относятся они к одной подсети или нет. Представить процесс вычислений в отчете.
- с. Настроить IP-адреса из п. а для созданных виртуальных машин и проверить их доступность с использованием команды ping. Результат должен совпасть с п. b.
- d. Если IP-адреса не принадлежат одной подсети для подсети, в которой находится первый IP-адрес, придумать IP-адрес, который будет принадлежать данной подсети, настроить вторую виртуальную машину с использованием придуманного IP-адреса и продемонстрировать успешное выполнение ping с одной виртуальной машины к другой.

- е. Для каждого IP-адреса указать адрес подсети, широковещательный IPадрес.
- 2. Логическое проектирование сети. Используя варианты из таблицы, спроектируйте схему сети, состоящей из четырех подсетей (CIDR надо брать из вариантов), соединенных между собой несколькими маршрутизаторами. В каждой из подсетей разместите минимум 2-3 компьютера, придумайте и назначьте им IP-адреса и маски. IP-адреса не должны быть последовательными.

Вариант 27: CIDR1 – 7, CIDR2 – 19, CIDR3 – 3, CIDR4 – 27.

Выполнение работы.

1. (a) Маска равна номеру в группе — 12. Были придуманы 3 IP-адреса, два из которых находятся в одной подсети, один — в другой. Результаты вычислений представлены в таблице 1.

Маска	11111111 11110000 00000000 00000000	255.240.0.0
ІР-адрес №1	11000000 10110000 00000001 00000001	192.176.1.1
ІР-адрес №2	11000000 01000011 00000010 00000011	192.67.2.3
ІР-адрес №3	11000000 01000000 00000110 00000111	192.64.10.11

Таблица 1 — IP-адреса

- (b) Для определения, находятся ли данные IP-адреса в одной подсети, необходимо выполнить следующие шаги:
 - 1). Преобразовать маску подсети в двоичную форму:
 - 255.240.0.0 = 111111111.11110000.000000000.00000000
 - 2). Преобразовать каждый из IP-адресов в двоичную форму:
 - 192.176.1.1 = 11000000.10110000.00000001.00000001
 - 192.67.2.3 = 11000000.01000011.00000010.00000011
 - 192.64.10.11 = 11000000.01000000.00001010.00001011
- 3). Применить маску подсети к каждому IP-адресу, выполнив операцию логического "И" между каждым байтом IP-адреса и маской подсети:
 - 192.176.1.1 = 11000000.10110000.00000000.00000000
 - 192.67.2.3 = 11000000.01000000.00000000.00000000

192.64.10.11 = 11000000.01000000.000000000.00000000

Сравнить полученные значения для каждого IP-адреса. Если они совпадают, то эти адреса находятся в одной подсети. Из вычислений следует, что IP-адреса 192.67.2.3 и 192.64.10.11 находятся в одной подсети, а 192.176.1.1 находится в другой подсети.

(c), (d) Были созданы две виртуальные машины. Их конфигурации представлены соответственно на рисунках 1 и 2.

```
rymarmary@rymar1:~$ ifconfig
          Link encap:Ethernet HWaddr 08:00:27:7d:12:9d inet addr:192.67.2.3 Bcast:192.79.255.255 Mask:255.240.0.0
enp0s3
          inet6 addr: fe80::a00:27ff:fe7d:129d/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)
lo
          Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
          RX packets:432 errors:0 dropped:0 overruns:0 frame:0
          TX packets:432 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1
          RX bytes:34848 (34.8 KB) TX bytes:34848 (34.8 KB)
rymarmary@rymar1:~$
```

Рисунок 1 – Конфигурации первой виртуальной машины

```
enp0s3
           Link encap:Ethernet HWaddr 08:00:27:15:45:bc
           inet addr:192.64.10.11 Bcast:192.79.255.255 Mask:255.240.0.0
           inet6 addr: fe80::a00:27ff:fe15:45bc/64 Scope:Link
           UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
           TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
           collisions:0 txqueuelen:1000
           RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)
10
           Link encap:Local Loopback
           inet addr:127.0.0.1 Mask:255.0.0.0
           inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
           RX packets:416 errors:0 dropped:0 overruns:0 frame:0
           TX packets:416 errors:0 dropped:0 overruns:0 carrier:0
           collisions:0 txqueuelen:1
           BX butes:32416 (32.4 KB) TX butes:32416 (32.4 KB)
```

Рисунок 2 – Конфигурации второй виртуальной машины

Для проверки их доступности на одной из виртуальных машин был зафиксирован IP-адрес 192.67.2.3, а на другой виртуальной машине сначала был поставлен IP-адрес 192.176.1.1 (первый случай), затем 192.64.10.11 (второй случай).

Первый случай:

Настройка интерфейсов машин представлена на рисунках 3 и 4, соответственно. Проверка доступности с первой машины на вторую и наоборот представлена на рисунках 5 и 6, соответственно. Так как адреса машин находятся в разных подсетях, то ping не дошёл. Результат совпадает с п. (b)

```
This file describes the network interfaces available on your system and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface auto lo iface lo inet loopback

The primary network interface auto enp0s3 inet static address 192.67.2.3 netmask 255.240.0.0
```

Рисунок 3 – Настройка интерфейсов машины 1

```
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
auto enp0s3
iface enp0s3 inet static
address 192.176.1.1
netmask 255.240.0.0
```

Рисунок 4 - Настройка интерфейсов машины 2

```
Ubuntu 16.04.7 LTS rymar1 tty1

rymar1 login: rymarmary
Password:
Last login: Thu Mar 30 00:16:01 MSK 2023 on tty1
Welcome to Ubuntu 16.04.7 LTS (GNU/Linux 4.4.0-186-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

111 packages can be updated.
80 updates are security updates.
New release '18.04.6 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

rymarmary@rymar1:~$ ping 192.167.1.1
connect: Network is unreachable
rymarmary@rymar1:~$
```

Рисунок 5 – ping с 192.67.2.3 на 192.176.1.1

```
Ubuntu 16.04.7 LTS rymar1 tty1
Ubuntu 16.04.7 LTS rymar1 tty1
rymar1 login: rymarmary
Password:
Last login: Wed Mar 29 23:28:59 MSK 2023 on tty1
Welcome to Ubuntu 16.04.7 LTS (GNU/Linux 4.4.0-186-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support:
                  https://ubuntu.com/advantage
111 packages can be updated.
80 updates are security updates.
New release '18.04.6 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
rymarmary@rymar1:~$ ping 192.67.2.3
connect: Network is unreachable
rymarmary@rymar1:~$
```

Рисунок 6 - ping с 192.176.1.1 на 192.67.2.3

Второй случай:

Настройка интерфейсов машин представлена на рисунках 7 и 8, соответственно. Проверка доступности с первой машины на вторую и наоборот представлена на рисунках 9 и 10, соответственно. Так как адреса машин

находятся в одной подсети, то ping дошёл, пакеты были отправлены и получены. Результат совпадает с п. (b)

```
This file describes the network interfaces available on your system and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface auto lo iface lo inet loopback

The primary network interface auto enp0s3 inet static address 192.67.2.3 netmask 255.240.0.0
```

Рисунок 7 - Настройка интерфейсов машины 1

```
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
auto enp0s3
iface enp0s3 inet static
address 192.64.10.11
netmask 255.240.0.0
```

Рисунок 8 - Настройка интерфейсов машины 2

Рисунок 9 – ping с 192.67.2.3 на 192.64.10.11

```
rymarmary@rymar1:"$ ping 192.67.2.3

PING 192.67.2.3 (192.67.2.3) 56(84) bytes of data.

64 bytes from 192.67.2.3: icmp_seq=1 ttl=64 time=1.38 ms

64 bytes from 192.67.2.3: icmp_seq=2 ttl=64 time=1.40 ms

64 bytes from 192.67.2.3: icmp_seq=3 ttl=64 time=6.82 ms

64 bytes from 192.67.2.3: icmp_seq=4 ttl=64 time=0.802 ms

64 bytes from 192.67.2.3: icmp_seq=5 ttl=64 time=2.15 ms

64 bytes from 192.67.2.3: icmp_seq=6 ttl=64 time=2.03 ms

64 bytes from 192.67.2.3: icmp_seq=7 ttl=64 time=1.81 ms

64 bytes from 192.67.2.3: icmp_seq=8 ttl=64 time=1.16 ms

64 bytes from 192.67.2.3: icmp_seq=9 ttl=64 time=1.75 ms

64 bytes from 192.67.2.3: icmp_seq=10 ttl=64 time=1.79 ms

64 bytes from 192.67.2.3: icmp_seq=11 ttl=64 time=1.47 ms

64 bytes from 192.67.2.3: icmp_seq=12 ttl=64 time=1.90 ms

^C

---- 192.67.2.3 ping statistics ---

12 packets transmitted, 12 received, 0% packet loss, time 11051ms

rtt min/aug/max/mdev = 0.802/2.042/6.827/1.489 ms

rymarmary@rymar1:~$
```

Рисунок 10 – ping с 192.64.10.11 на 192.67.2.3

(e) Для каждого IP-адреса были найдены адрес подсети и широковещательный IP-адрес.

Для определения адреса подсети необходимо применить операцию логического "И" между IP-адресом и маской подсети. Для определения широковещательного IP-адреса необходимо инвертировать маску подсети (все биты, равные 0, заменить на 1) и выполнить операцию логического "ИЛИ" между инвертированной маской подсети и адресом подсети.

Результаты представлены в таблице 2.

№ 1	192.176.1.1	192.176.0.0	192.191.255.255
№ 2	192.67.2.3	192.64.0.0	192.79.255.255
№3	192.64.10.11	192.64.0.0	192.79.255.255

Таблица 2 – Адрес подсети и широковещательный ІР-адрес

2. Маски подсетей, взятые из таблицы по номеру варианта, представлены в таблице 3.

Маска 1 - 7	11111110 00000000 00000000 00000000	254.0.0.0
Маска 2 - 19	11111111 11111111 11100000 00000000	255.255.224.0
Маска 3 - 3	11100000 00000000 00000000 00000000	224.0.0.0
Маска 4 - 27	11111111 11111111 11111111 11100000	255.255.255.224

Таблица 3 – Маски подсетей

На рисунке 11 представлена схема сети, в таблице 4 представлены IPадреса для узлов этой сети.

Рисунок 11 – Схема сети

Узел	Интерфейс	IP-адрес	Маска
pc1	eth0	184.162.25.1	254.0.0.0
pc2	eth0	176.65.253.252	255.255.224.0
рс3	eth0	186.99.250.124	254.0.0.0
pc4	eth0	202.32.245.99	224.0.0.0
pc5	eth0	134.59.162.12	255.255.255.224
рс6	eth0	203.221.25.45	224.0.0.0
рс7	eth0	176.73.129.87	255.255.224.0
pc8	eth0	134.59.255.191	255.255.255.224
R1	eth0	184.137.201.134	254.0.0.0
R1	eth1	134.59.163.203	255.255.255.224
R2	eth0	134.59.129.124	255.255.255.224
R2	eth1	176.67.66.134	255.255.224.0
R3	eth0	185.62.125.12	254.0.0.0
R3	eth1	211.193.54.131	224.0.0.0

Таблица 4 – Узлы сети

Выводы.

Была изучена IP-адресация (IPv4), логически построена локальная сеть. Созданы две виртуальные машины. Определён адрес по IP и маске. Определён

широковещательный IP-адрес для конкретной подсети. Определена принадлежность IP-адресов к одной подсети, проверено на реальной инфраструктуре, построенной в VirtualBox. Построена схема с использованием различных масок и IP-адресов.