Подбор параметров C_0 , k, ω с использованием dde.Variable()

Рассматривалась следующая задача:

$$iq_{t} + q_{xx} + |q|^{2}q(1 - \alpha|q|^{2} + \beta|q|^{4}) = 0, \ x \in [x_{L}, x_{R}], \ t \in [0, t_{max}],$$

$$q(x, 0) = q_{0}(x),$$

$$q(x_{L}, t) = q(x_{R}, t),$$

$$q_{x}(x_{L}, t) = q_{x}(x_{R}, t),$$
(1)

имеющая решение в виде светлого солитона:

$$q(x,t) = \sqrt{\frac{\mu e^{(x-2kt-x_0)\sqrt{\mu}}}{(\frac{1}{2}e^{(x-2kt-x_0)\sqrt{\mu}} + 1)^2 - \frac{\alpha_0\mu}{3}e^{2(x-2kt-x_0)\sqrt{\mu}}}} e^{i(kx-\omega t + \theta_0)},$$

$$\mu = 4(k^2 - \omega).$$
(2)

Для (1) была исследована область определения: $x \in [-50, 50]$. В качестве параметров для отладки были взяты: $\alpha = 0.3$, $\beta = 0$, $t_{max} = 30$, $\alpha_0 = 0.35$, $k_{true} = 1$, $\omega_{true} = 0.88$, $x_0 = -30$, $\theta_0 = 0$. C_0 , k, ω делались подбираемыми, их начальные значения принимались равными 1.95, 1.05, 0.9 соответственно.

Использовались 30 тыс. точек коллокаций, 3000 точек для начального условия и 500 точек для левой и правой границ по x. Для генерации точек коллокаций использовалось псевдослучайное распределение.

Нейронная сеть включала в себя следующие слои: один входной слой с 2 нейронами, четыре скрытых слоя, каждый из которых содержал 32 нейрона, и один выходной слой с 2 нейронами. Для первого слоя применялась линейная функция активации, а для остальных слоев был выбран гиперболический тангенс.

Сначала обучение проводилось на протяжении 50000 итераций. Использовался отпимизатор Adam с параметрами: $initial_learning_rate = 5 \times 10^{-3}$, $decay_steps = 100$, $decay_rate = 0.019$. Затем нейронная сеть обучалась в течение еще 10000 итераций с использованием оптимизатора L-BFGS. В качестве его параметров были выбраны: maxcor = 50, $ftol = 2.220446049250313 \times 10^{-16}$, $qtol = 1 \times 10^{-8}$, maxiter = 10000, maxfun = 10000, maxls = 50.

Рассматривался единственный метод обработки входных и выходных данных. Входные данные обрабатывались с использованием $z=x-C_0t$. Этот вариант предобработки был выбран в силу схожести с аналитическим решением. Выходные данные обрабатывались с помощью $cos(kx-\omega t)$ и $sin(kx-\omega t)$.

Были получены следующие результаты:

Рис. 1: Результаты обработки данных с ипользованием $x-C_0t$ и $cos(kx-\omega t),$ $sin(kx-\omega t)$ для случая подбираемых параметров $C_0,$ k, ω

Обработка входа	Обработка выхода	Lw_{1_max}	Lw_{1_mean}	Lw_{2_max}	Lw_{2_mean}	Rel_h
$x - C_0 t$	$\cos(kx - \omega t), \sin(kx - \omega t)$	0.0233	0.0198	0.0236	0.0200	0.0014

Таблица 1: Основные метрики