This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(II)特許出願公開番号 特開平10-336072

(43)公開日 平成10年(1998)12月18日

(51) Int.Cl.⁶

識別記号

FΙ

H 0 4 B 1/707 7/26

H 0 4 J 13/00

D

H 0 4 B 7/26

M

審査請求 未請求 請求項の数4 〇L (全 10 頁)

(21)出願番号	特願平9-144167	(71)出顧人	392026693
			エヌ・ティ・ティ移動通信網株式会社
(22)出願日	平成9年(1997)6月2日		東京都港区虎ノ門二丁目10番1号
•		(72)発明者	福元 暁
			東京都港区虎ノ門二丁目10番1号 エヌ・
	•		ティ・ティ移動通信網株式会社内
	·.	(72)発明者	佐和橋 衛
			東京都港区虎ノ門二丁目10番1号 エヌ・
·			ティ・ティ移動通信網株式会社内
		(72)発明者	安達 文幸
		•	東京都港区虎ノ門二丁目10番1号 エヌ・
			ティ・ティ移動通信網株式会社内
		(74)代理人	弁理士 谷 義一 (外3名)

(54) 【発明の名称】 直接拡散CDMA伝送方式におけるRAKE受信機

(57)【要約】

【課題】 雑音等のみの信号を排除し、できるだけ多く の十分な受信電力を有する信号を選択してRAKE受信 する。

【解決手段】 ベースバンドの拡散変調信号はマッチトフィルタ150に入力され、拡散符号レプリカ生成部151の出力を用いて拡散変調信号を逆拡散する。 L 個のタイミングにおけるそれぞれの逆拡散された信号は復調部152で復調される。 平均受信電力測定部153においてL 個のタイミングにおけるそれぞれの平均受信電力が測定される。 最小電力検出部201 および最大電力電力を出される。 最小信号電力を最大信号電力が検出される。 最小信号電力と最大信号電力に、定数 G_A , G_B を乗算することで2つのしきい値を求めることができる。 パス選択タイミング検出部205では、 平均信号電力がしきい値 A以上、 かつ、しきい値 B以上のタイミングの中から、信号電力が大きなマルチパスのタイミングを検出していく。

【特許請求の範囲】

【請求項1】 直接拡散CDMA伝送方式におけるRA KE受信機において、

1シンボル内のチップ数の整数倍のタイミングでパスの 逆拡散された信号を出力するマッチトフィルタと、

前記マッチトフィルタからの各タイミングにおける逆拡 散された信号を復調する復調部と、

前記マッチトフィルタからの各タイミングにおける逆拡 散された信号についてそれぞれの平均信号電力を測定す る平均信号電力測定部と、

前記平均信号電力測定部の出力から、雑音や干渉成分の 合成を防ぐためのしきい値Aおよび十分な信号電力を有 する信号を選択するためのしきい値Bを決定するしきい 値演算部と、

前記平均信号電力測定部からの平均電力から、前記しき い値制御部からのしきい値Aかつしきい値Bより大きい 平均電力を有する信号を検出し、合成するマルチパスの タイミングを決定するパス選択タイミング検出部と、

前記パス選択タイミング検出部の出力により、前記復調 部から復調された信号からRAKE合成する信号を選択 20 するRAKE合成パス選択部と前記RAKE合成パス選 択部で選択された復調された信号をRAKE合成するR AKE合成器とを備えることを特徴とするRAKE受信 機。

【請求項2】 請求項1記載のRAKE受信機におい て、前記しきい値演算部は、

前記平均信号電力測定部からの全タイミングにおける平 均電力から最小電力値を検出する最小電力検出部と、 前記平均信号電力測定部からの全タイミングにおける平 均電力から最大電力値を検出する最大電力検出部と、 前記最小電力検出検出部からの最小電力値と、前記最大 電力検出部からの最大電力値とから、それぞれ前記2つ のしきい値A、Bを求めるしきい値制御部とを備えるこ とを特徴とするRAKE受信機。.

【請求項3】 請求項2記載のRAKE受信機におい て、

前記しきい値制御部は、最小電力値に定数GA (GA≥ を乗算し、最大電力値に定数G_B (0 < G_B ≤ 1). を乗算して2つのしきい値を求めることを特徴とするR AKE受信機。

【請求項4】 請求項1ないし3いずれか記載のRAK E受信機において、

'前記マッチトフィルタは、オーバーサンプリング(チッ プあたりのオーバーサンプリング数 s)をしており、 前記パス選択タイミング検出部は、全てのタイミングか ら受信信号電力の大きい順にマルチパスのタイミングを 検出する際に、既に検出したパスのタイミングに対して ±k(kは自然数)個のタイミングにおける信号を除外 して次のマルチパスのタイミングを順次検出することを 特徴とするRAKE受信機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、移動通信におい て、スペクトル拡散を用いてマルチプルアクセスを行う 直接拡散CDMA(DS-CDMA)伝送に用いられる RAKE受信機に関するものである。

2

[0002]

【従来の技術】DS-CDMA伝送方式は、情報データ 変調信号を拡散率(=チップ数/シンボル)pgの拡散 符号で広帯域の信号に拡散して伝送する方式であり、各 ユーザに異なる拡散符号を割り当てることにより、複数 の通信者が同一の周波数帯を用いて通信を行う方式であ

【0003】図5に従来のDS-CDMA伝送方式にお けるスライディング相関器を用いた受信機の構成を示 す。受信機では、アンテナ101で受信した拡散変調信 号を低雑音増幅器103で増幅した後、発振器105、 周波数混合器104、およびバンドパスフィルタ(BP F) 106を用いて中間周波数 (IF周波数) 信号に周 波数変換し、自動利得制御増幅装置(AGC増幅器)1 07で線形増幅する。AGC増幅器107においては、 受信信号の振幅包絡線を包絡線検波器108により検出 し、この振幅変動をAGC増幅器107に負帰還するこ とにより、フェージングに起因する振幅変動を補償して

【0004】AGC増幅器107により線形増幅された 信号を直交検波器109によりベースバンド信号に直交 検波する。そして、このベースバンド同相(I)、直交 (Q) 成分をそれぞれ A / D変換器 1 1 2 および 1 1 3 によりディジタル値に変換する。拡散符号生成部 (1) (N) 118で生成される、それぞれのマルチパス信 号の遅延時間に同期した拡散符号レプリカを用いて、R AKE合成パスフィンガ114中のスライディング相関 器131で逆拡散処理する。逆拡散された信号を遅延検 波あるいは同期検波を行ってデータ復調を行う。

【0005】ここでは、受信する送信フレームにおい て、情報シンボル間に一定周期でパイロットシンボルが 挿入されており、このパイロットシンボルを用いて絶対 同期検波復調を行う方式について説明する。陸上移動通 信においては基地局、移動局の相対位置の移動によりフ ェージングと呼ばれる受信信号の振幅および位相変動を 受ける。同期検波復調を行うためには、受信機において このフェージングに起因する複素包絡線、すなわち、振 幅および位相変動(あるいはチャネルと称する)を推定 する必要がある。送信情報シンボルに一定周期で挿入し たパイロットシンボルでの受信フェージング複素包絡線 を求め、この値を用いてパイロットシンボル間の情報シ ンボル位置におけるフェージング複素包絡線を求めるこ とができる。このパイロットシンボルで用いた値を用い

て各情報シンボルのフェージング複素包絡線変動(チャ

1

ネル変動)を補償する。これは、RAKE合成パスフィンガ114中のチャネル推定器132および乗算器13 3で行っている。

【0006】このチャネル変動補償された複数のマルチ パス信号を、RAKE合成器119で同相合成(RAK E合成) することにより、干渉信号あるいは熱雑音に対 して信号電力比を向上することができる。RAKE合成 するマルチパス信号の選択はサーチフィンガと称される スライディング相関器115で行う。サーチフィンガで はマルチパスサーチ範囲内におけるし個のタイミングの 逆拡散信号の平均受信信号電力を平均受信信号電力測定 部116で測定し、平均的に受信信号電力の大きなマル チパスをパス選択タイミング検出部117において選択 する。例えば、図5のように、1個のスライディング相 関器115を用いた場合には、1シンボル毎に1つのタ イミングの相関値(逆拡散値)が得られ、このタイミン グにおける逆拡散された信号の受信信号電力を測定する ことができる。そして、拡散符号のタイミングを1個づ つずらしていき全し個のタイミングについて電力測定を 行う。、

【0007】さて、RAKE合成パスの選択には(基地局、移動局間の距離変動、およびシャドウイングに起因する変動を受けた後の)平均信号電力の大きなマルチパス信号を選択する必要がある。これは、陸上移動通信環境下ではレイリーフェージングに起因する瞬時変動を受けている。従って、1回での受信信号電力の推定では、あるマルチパス信号に対してたまたまこのレイリーフェージング変動で受信信号電力が落ち込んでいるために付きる場合で、受信電力の瞬時変動の影響を取り除くために、レイリーフェージング変動を平均化した信号に対して受信信号電力を測定する必要がある。

【0008】具体的には、マルチパスサーチ範囲内のL 個のタイミングにおける逆拡散された信号について信号 電力測定をX回繰り返し、その平均信号電力により遅延 プロファイルを生成し、上位N個のRAKE合成マルチ パスを選択する。図5のように、1個のスライディング 相関器115を用いた場合には、この1回の遅延プロフ ァイルの生成にL×Xシンボル時間を要する。 f 個のス ライディング相関器(サーチフィンガ)を用いた場合に は、1回の平均的遅延プロファイルを生成するのに(L ×X) / f シンボル時間を要する。遅延プロファイルの 生成時間毎にRAKE合成フィンガで用いる拡散符号レ プリカのタイミングを更新する。移動局が基地局に対し て高速で移動する場合にはこの遅延プロファイルの変動 は早くなるために、このスライディング相関器を用いる マルチパスサーチでは、時間がかかり遅延プロファイル の変動に追従できなくなる場合がある。

【0009】高速なマルチパスサーチを行うためには、マルチパスサーチ範囲、および平均化回数を小さくすれ 50

ばよいが、サーチ範囲を狭くするとRAKE合成の時間 ダイバーシチ効果を低減することになり、また信号電力 の平均化回数を低減するとサーチフィンガによるRAK E合成マルチパスの選択を正確に行うことができなくな る。

【0010】図6に従来のDS-CDMA伝送方式におけるマッチトフィルタを用いた受信機構成を示す。なお、図6において、図5における受信機と同様の構成には同じ符号を付している。

【0011】図6において、受信した拡散変調信号は低雑音増幅器103で増幅された後、IF周波数に周波数変換される。そしてAGC増幅器107によってフェージングに起因する振幅変動を補償され、直交検波器109の出力ベースバンド信号はA/D変換器112および113でディジタル信号に変換される。ディジタル値に変換された拡散変調信号は、拡散符号レプリカ生成部151の出力を用いてタップ数pgのマッチトフィルタ150により逆拡散され、L個のタイミングの信号に分離される。ここで、sをチップのマッチトフィルタ150により逆拡散され、L個のタイミングの信号に分離される。ここで、sをチップのオーバサンプリング数とするとL=pg×sである。L個のタイミングからN個のマルチパスを選択し遅延検波あるいは同期検波を行ってデータ復調を行う。

【0012】この受信機では、送信フレームにおいて情 報シンボル間に一定周期でパイロットシンボルを挿入 し、このパイロットシンボルを用いて絶対同期検波復調 を行う方式を用いている。L個のタイミングにおけるそ れぞれの逆拡散された信号は、パイロットシンボルを用 いてチャネル推定器132でチャネルを推定し、この推 定値を用いて各情報シンボルのチャネル変動を補償す る。一方、L個のタイミングにおけるそれぞれの平均受 信信号電力が、平均信号電力測定部153において測定 され遅延プロファイルが生成され、上位N個のRAKE 合成マルチパスがパス選択タイミング検出部154を用 いて選択される。この時、受信電力の大きなタイミング からマルチパスを選択するが、オーバサンプリングによ り検出された同一マルチパスは除外して次のマルチパス を選択する。マッチトフィルタを用いた構成では、1シ ンボル周期毎にL個のタイミングにおける逆拡散された 信号が出力される。そのため、図5の構成のようなスラ イディング相関器を用いたサーチフィンガによる電力測 定が不要である。さらに、RAKE合成のためのマルチ パスの更新を高速に行うことができる。

【0013】ところで、前述したように移動局が基地局に対して高速で移動すると遅延プロファイルの形状が変動し、マルチパスの数も変化する。しかし、上記の構成の受信機は、受信信号電力の大きな上位N個のマルチパスを合成する構成であるため、マルチパス数がNより多い場合にその全てを合成して干渉成分や熱雑音に対する信号電力比を向上することができない。また、マルチパス数がNより少ない場合には、雑音成分や相互干渉成分

のみの信号および受信電力が大変小さなマルチパスを合成することにより特性が劣化する。

[0014]

【発明が解決しようとする課題】前述のように、移動局が基地局に対して高速移動した場合、遅延プロファイルの変動も高速になり形状も変化する。そのため、従来のRAKE受信機のように、合成するマルチパス数が固定されている場合、十分な受信電力をもつ全てのマルチパスを合成することができない。もしくは、干渉成分や雑音成分のみの信号を合成してしまう、ことがある。その結果、干渉成分や熱雑音に対する信号電力比を向上することができず特性が劣化する。

【0015】本発明の目的は、マッチトフィルタをベースにしたRAKE受信において、雑音成分や相互干渉成分のみの信号を除去し、かつ、できるだけ多くのマルチパスを合成するようなRAKE受信機を提供することにある。

[0016]

【課題を解決するための手段】上記本発明の目的を達成 するため、直接拡散CDMA伝送方式におけるRAKE 受信機において、1シンボル内のチップ数の整数倍のタ イミングで逆拡散された信号を出力するマッチトフィル タと、マッチトフィルタからの各タイミングにおける逆 拡散された信号を復調する復調部と、マッチトフィルタ からの各タイミングにおける逆拡散された信号について それぞれの平均信号電力を測定する平均信号電力測定部 と、平均信号電力測定部の出力から、雑音や干渉成分の 合成を防ぐためのしきい値Aおよび十分な信号電力を有 する信号を選択するためのしきい値Bを決定するしきい 値演算部と、平均信号電力測定部からの平均電力から、 しきい値制御部からのしきい値Aかつしきい値Bより大 きい平均電力を有する信号を検出し、合成するマルチパ スのタイミングを決定するパス選択タイミング検出部 と、パス選択タイミング検出部の出力により、復調部か ら復調された信号からRAKE合成する信号を選択する RAKE合成パス選択部と、RAKE合成パス選択部で 選択された復調された信号をRAKE合成するRAKE 合成器とを備えることを特徴とする。

【0017】また、前記しきい値演算部は、前記平均信号電力測定部からの全タイミングにおける平均電力から最小電力値を検出する最小電力検出部と、前記平均信号電力測定部からの全タイミングにおける平均電力から最大電力値を検出する最大電力検出部と、前記最小電力検出的の最小電力値と、前記最大電力検出部からの最大電力値とから、それぞれ前記2つのしきい値A、Bを求めるしきい値制御部とで構成することができる。【0018】そして、前記しきい値制御部は、最小電力

値に定数GA (GA≥1)を乗算し、最大電力値に定数

G_B (0 < G_B ≦ 1) を乗算して2つのしきい値を求め

ることができる。

【0019】その上、前記マッチトフィルタは、オーバーサンプリング(チップあたりのオーバーサンプリング数 s)をしており、前記パス選択タイミング検出部は、全てのタイミングから受信信号電力の大きい順にマルチパスのタイミングを検出する際に、既に検出したパスのタイミングに対して±k(kは自然数)個のタイミングにおける信号を除外して次のマルチパスのタイミングを

【0020】このように、本発明のRAKE受信機では、マッチトフィルタにより逆拡散された全てのタイミングにおける信号の平均受信電力を測定して、2つのしきい値を決定する。そして、2つのしきい値を満たす逆拡散信号の中からマルチパスを選択してRAKE合成する

順次検出することもできる。

【0021】この構成を用いることにより、雑音や干渉 成分のみの信号を除外し、かつ、受信電力が十分な大き さをもつ全てのマルチパス信号をRAKE合成できる。 そのため、遅延プロファイルの変動によりマルチパス数 が変化した場合でも、有効なパスのみを合成することが 20 できる。

【0022】この発明の構成では、特にチップレートが 高速な、すなわち広帯域DS-CDMAに対してRAK Eによる時間ダイバーシチ効果による受信品質の特性改 善を実現することができる。

[0023]

【発明の実施の形態】図面を用いて、本発明の実施の形態を説明する。

【0024】図1は、本発明の原理構成を示すブロック 図である。この図において、図6と同様の構成は、同じ 符号を付している。

【0025】さて、直交検波およびA/D変換されたベースバンドの拡散変調信号は、タップ数pgのマッチトフィルタ150に入力される。マッチトフィルタ150は拡散符号レプリカ生成部151の出力を用いて拡散変調信号を逆拡散する。sをチップ当りのオーバサンプリング数とすると、マッチトフィルタ150からL(=pg×s) 個のタイミングにおける逆拡散信号が出力される。L個のタイミングにおけるそれぞれの逆拡散された信号は復調部152で復調される。

40 【0026】また、平均受信電力測定部153において L個のタイミングにおけるそれぞれの平均受信電力が測 定される。最小電力検出部201および最大電力検出部 203では、L個のタイミングにおける最小信号電力お よび最大信号電力が検出される。しきい値制御部A20 2では検出された最小信号電力を用いてしきい値Aを求 める。また、しきい値制御部B204では検出された最 大信号電力を用いてしきい値Bを求める。しきい値Aは 雑音や干渉成分のみの信号を合成することを防ぐために 設定し、しきい値Bは十分な信号電力をもつ信号を合成 するために設定する。このように2つのしきい値を決定

しているのは、十分な信号電力をもつ全てのマルチパス を合成し、かつ、熱雑音成分および他ユーザの受信信号 の相互相関を合成しないようにして特性を向上させるた めである。これらのしきい値は、例えば、最小電力検出 部201で検出した最小信号電力と最大電力検出部20 3で検出した最大信号電力に、それぞれしきい値ゲイン を乗算することで求めることができる。パス選択タイミ ング検出部205では、L個のタイミングにおける平均 信号電力測定部出力をしきい値Aおよびしきい値Bと比 較し、平均信号電力がしきい値A以上、かつ、しきい値 B以上のタイミングの中から、信号電力が大きなマルチ

パスのタイミングを検出していく。このとき、既に選択 されたマルチパスのタイミングに対して±k(kは自然 数) 個のタイミングにおける信号は除外して、次のマル チパスのタイミングを順次検出する。検出されたマルチ パスのタイミングにおける復調部152の出力がRAK E合成パス選択部155で選択され、選択された信号が RAKE合成部119で合成される。

【0027】図1に示した本発明におけるしきい値決定 およびRAKE合成パス選択の動作を説明する。まず、 [0028]

(外1)

L個のタイミングにおける平均信号電力検出部出力 S (1) から、最小電力検出部 2018よび最大電力検出部208において、最小信号電力 🖺 👢 および最大信 号取力 --- を検出する。ただし1(1≤1≤L)である。 -- および ---

【0029】に対してしきい値Aおよびしきい値Bを次 式のように決定する。

[0030]

【数1】

 $A = \overline{S}_{min} \times G_{A}$ $B = \overline{S}_{max} \times G_{p}$

[0031] CCT, G_A ($G_A \ge 1$), G_B (0 < GB ≦1) はそれぞれしきい値決定ゲインである。次に [0032]

20

【外2】

1番目のタイミングの受信電力をS(II)を求めた2つのしきい値と比較し、 S !!! ≥ A のタイミングを検出して、まず熱雑音成分や干渉成分のみの信号を除 去する。そして、S(1) ≥Bのタイミングを検出して、受信電力が十分なタイミ ングを検出する。したがって、 $S^{(1)} \ge A$ かつ $S^{(1)} \ge B$

【0033】を満たすP個のタイミングがマルチパスの 候補として検出される。

【0034】これらのタイミングの信号の中からRAK E合成するマルチパスを選択する。まず、受信信号電力 の最も大きなタイミングの信号を1番目のマルチパスし て選択する。そして残りの候補から順次受信電力の大き なマルチパスを選択していく。このとき、既に選択され たマルチパスのタイミングに対して±k個のタイミング を除外して、次に大きな受信電力のマルチパスを選択す る。例えば、q番目に選択されたマルチパスのタイミン グを u_a とすると、 $(u_a - k) \le l \le (u_a + k)$ の タイミングに含まれる候補は次のマルチパス選択の対象 から除外する。このように選択されたマルチパスの前後 のタイミングの信号を除外するのは、オーバサンプリン グにより同じマルチパスが選択されることを防ぐためで ある。kは、例えばオーバサンプリング数をsとして、 k=s/2のように設定する。このようにしてマルチパ スの選択を繰り返し、全てのマルチパスを選択しRAK E合成を行う。

【0035】図2にマルチパスのタイミング検出の例を 示す。図のようにしきい値を満たす受信電力をもつマル 50 す。図4において、図1および図6と同様の構成は、同

30 チパスの候補のタイミングが連続している場合のタイミ ング検出について説明する。このときオーバサンプリン グ数s=4、既に選択されたマルチパスに対して候補を 除外するためのタイミングの数 k = s / 2 = 2とする。 図2中のp点におけるタイミングの信号がマルチパスと して選択されたとする。このとき、次に受信電力が大き なタイミングはp+1である。しかし、p点に対して± sの範囲にあるp-2, p-1, p+1, p+2の4点 は次に選択するマルチパスの候補から除外され、p+4 点における信号が次のマルチパスとして選択される。す ると、p+4点に対して±sの範囲にある4点のうちp +3, p+5, p+6の3点が新たに候補から除外され る。このようにして、選択されたマルチパスの前後のタ イミングにおける信号を選択しないようにする。

【0036】図3に、本発明の受信機で受信する受信信 号のフレーム構成の例を示す。Np個のパイロットシン ボルを N_s 個の情報シンボルごとに挿入するフレーム構 成である。 N_p 個のパイロットシンボルと N_s 個の情報 シンボルとで1つのスロットを構成するものとする。

【0037】図4に本発明の受信機構成の実施例を示

1۵

じ符号を付与している。

【0038】受信した拡散変調信号は低雑音増幅器103で増幅された後、発振器105および周波数混合器104によりIF周波数に周波数変換される。そしてAGC増幅器107および包絡線検波器108によって、フェージングに起因する振幅変動を補償され、直交検波される。直交検波器109の出力ベースバンド信号はA/D変換器112および113でディジタル信号に変換される。ディジタル値に変換された信号はタップ数pgマッチトフィルタ150により逆拡散される。sをチップ当りのオーバサンプリング数とするとL(=pg×s)個のタイミングにおける逆拡散信号が出力される。L個

のタイミングにおけるそれぞれの逆拡散された信号は復 調部152で復調される。

【0039】本実施例では、例えば、図3のフレーム構成におけるパイロットシンボルを用いて絶対同期検波復調を行う方式を用いている。フェージングによるチャネル変動の推定および補償をチャネル推定補償部において次のように行う。1 (1≤1≤L)番目のタイミングにおけるn番目のスロットのマッチトフィルタ出力信号を平均化して、1番目のタイミングにおける

【0040】 【外3】

n番目のスロットのパイロットシンボルフェージング複素包絡線推定値 Ê0

【0041】を次のように求める。

[0042]

【数2】

$$\hat{\xi}_{n}^{(l)} = \sum_{m=1}^{N_{P}} \frac{y_{n,m}^{(l)}}{N_{P}} \qquad (1 \le m \le N_{P})$$

【0043】ここで

[0044]

[外4]

【0045】を次式のように求める。

[0046]

【数3】

【0047】2スロットのパイトットシンボルにおける

[0048]

[外5]

$$\hat{\xi}_{(n+1)}^{(I)} = \sum_{m=1}^{N_P} \frac{y_{(n+1),m}^{(I)}}{N_P}, \quad (1 \le m \le N_P)$$
30

フェージング複素包絡線推定値 $\hat{\xi}_n^{(i)}$ と $\hat{\xi}_{(n+1)}^{(i)}$ を平均して 1 番目のタイミングにおける n 番目のスロット情報シンボルのフェージング複素包絡線 (チャネル) 推定値 $\xi_n^{(i)}$

【0049】を次式のように推定する。

[0050]

【数4】

【0051】この推定された

[0052]

【外6】

$$\tilde{\xi}_{n}^{(l)} = \frac{\hat{\xi}_{n}^{(l)} + \hat{\xi}_{(n+1)}^{(l)}}{2}$$

ξ^(f) を用いてn番目のスロットのm番目の情報シンボルのチャネル変動

【0053】を補償する。

【数5】

[0054]

$$\tilde{y}_{n,m}^{(l)} = y_{n,m}^{(l)} \tilde{\xi}_n^{(l)^*} \quad ((N_p + 1) \le m \le (N_p + N_s))$$

【0055】ここで*は複素共役を示す。また、平均信 号電力が測定され遅延プロファイルが生成される。各平 号電力測定部153で全てのタイミングにおける受信信 50 均信号電力測定部153における平均信号電力測定は例

えば次のように行う。n番目のスロットにおける1番目のタイミングのマッチトフィルタ出力信号を平均化し

【0056】 【外7】

n番目のスロットにおける 1番目のタイミングの瞬時受信電力 $\hat{S}_n^{(\prime)}$

【0057】を求めると次式のように表される。

【0059】ここで

[0058]

[0060]

【数 6 】

[外8]

 $\hat{S}_n^{(l)} = \overline{y_n^{(l)}} \ \overline{y_n^{(l)}}^*$

10

 $y_n^{(f)}$ は 1 番目のタイミングにおけるスロット n の複数パイロットシンボルの平均値

[0061] で

[0062]

【数7】

$$\overline{y_n^{(l)}} = \sum_{m=1}^{N_p} \frac{y_{n,m}^{(l)}}{N_p} = \hat{\xi}_n^{(l)}$$

【0063】である。さらに、フェージングによる変動を平均化するために直前の複数スロットにわたり瞬時受信電力を電力平均して、

[0064]

【外9】

スロットnにおける1番目のタイミングの平均受信電力 $S_{a}^{(0)}$ を求める。 $\overline{S_{a}^{(0)}}$ は、

【0065】例えば、次のような2つの方法で求められる。

【0066】(1)複数スロットの瞬時受信電力を加算 平均する方法

[0067]

【数8】

$$\overline{S_n^{(l)}} = \sum_{r=1}^{R} \hat{S}_{n-r+1}^{(l)}$$

【0068】ここでRは加算平均するスロット数である。

【0069】(2)複数スロットの瞬時受信電力を逐次 平均する方法

[0070]

【数 9 】

$$\overline{\mathbf{S}_n^{(l)}} = (1 - \alpha)\mathbf{\hat{S}}_n^{(l)} + \alpha\overline{\mathbf{S}_{(n-1)}^{(l)}}$$

【0071】ここで α は忘却係数である。このとき $R=1/(1-\alpha)$ となる。

【0072】以上のように求めたL個のタイミングの平均受信電力の中から最小信号電力およおび最大信号電力を、それぞれ、最小電力検出部201および最大電力検出部203で検出する。しきい値制御部A202では検出された最小信号電力を用いてしきい値Aを求める。また、しきい値制御部B204では検出された最大信号電力を用いてしきい値Bを求める。パス選択タイミング検出部205では、まず、L個のタイミングにおける平均信号電力測定部153の出力をしきい値Aおよびしきい値Bと比較し、平均信号電力がしきい値A以上かつしき

い値B以上のタイミングを検出する。そして、信号電力が大きなタイミングからマルチパスのタイミングを検出していく。このとき、既に選択されたマルチパスのタイミングに対して±k(kは自然数)個のタイミングにおける信号は除外して、次のマルチパスのタイミングを順次検出する。検出されたマルチパスのタイミングにおける復調部152の出力がRAKE合成パス選択部155で選択され、選択された信号がRAKE合成部119で30合成される。RAKE合成された信号はデインターリーブ回路120により誤りをランダム化され、ビタビ復号器121により復号される。そして、データ判定器12

[0073]

【発明の効果】以上、本発明のRAKE受信機では、マッチトフィルタを用いて逆拡散された全てのタイミングにおける信号の平均受信電力を測定し、その最小値および最大値から2つのしきい値を決定する。そして、受信信号電力が2つのしきい値以上の逆拡散信号からマルチパスを選択してRAKE合成する。この構成を用いることにより、雑音や干渉成分のみの信号を除外し、かつのよりな大きさをもつ全てのマルチパス信号をRAKE合成できる。そのため、遅延プロファイルの変動によりマルチパス数が変化した場合でも、有効なスのみを合成することができる。この構成は、特にチップレートが高速な、すなわち広帯域DS-CDMAに対してRAKEによる時間ダイバーシチ効果による受信品質の特性改善を実現することができる。

【図面の簡単な説明】

【図1】本発明の構成を示すブロック図である。

【図2】本発明におけるパス選択タイミング検出の説明 図である。

【図3】受信信号のフレーム構成の例を示す図である。

【図4】本発明の受信機の実施例を示すブロック図である。

【図5】従来のスライディング相関器を用いたDS-C-DMA受信機の構成を示すブロック図である。

【図6】従来のマッチトフィルタを用いたDS-CDM A受信機の構成を示すプロック図である。

【符号の説明】

- 101 アンテナ
- 102 バンドパスフィルタ (BPF)
- 103 低雜音增幅器
- 104 周波数混合器
- 105 発振器
- 106 バンドパスフィルタ (BPF)
- 107 自動利得制御増幅装置(AGC增幅器)
- 108 包絡線検波器
- 109 直交検波器
- 110, 111 ローパスフィルタ
- 112,113 A/D変換器
- 114 RAKE合成パスフィンガ

- 115 スライディング相関器
- 116 平均信号測定部
- 117 パス選択タイミング検出部

14

- 118 拡散符号生成部
- 119 RAKE合成器
- 120 デインターリーバ
- 121 ビタビ復号器
- 122 データ判定器
- 131 スライディング相関器
- 10 132 チャネル推定器
 - 133 乗算器
 - 150 マッチトフィルタ
 - 151 拡散符号レプリカ生成部
 - 152 復調部
 - 153 平均信号電力測定部
 - 155 RAKE合成パス選択部
 - 201 最小電力検出部
 - 202 しきい値制御部A
 - 203 最大電力検出部
- 20 204 しきい値制御部B
 - 205 パス選択タイミング検出部

【図1】

[図3]

[図4]

【図5】

【図6】

