COM3110/4115/6115: Text Processing

Information Retrieval:
Task definition & Document Indexing

Mark Hepple

Department of Computer Science University of Sheffield

Learning Outcomes

- By the end of the IR sessions, you should be able to:
 - implement a simple IR system (from indexing to retrieval) and
 - evaluate how well it does on a gold-standard dataset
- Assignment addresses a substantial part of the above

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Web Search Ranking
- Evaluation

Google search

jaguar

Jaguar International - Market selector page

www.jaguar.com/

Official worldwide web site of **Jaguar** Cars. Directs users to pages tailored to countryspecific markets and model-specific websites.

Jaguar International - Home

www.jaguar.com/gl/en/

8 Jul 2009

Our mission at **Jaguar** has been to create and build beautiful fast cars. The XK, XF, and XJ bring the ...

More videos for jaguar »

Jaguar Cars - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Jaguar_Cars

Jaguar Cars Ltd, known simply as Jaguar is a British luxury and sports car manufacturer, headquartered in Whitley, Coventry, England. It is part of the Jaguar ...

Jaguar - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Jaguar

The **jaguar** is a big cat, a feline in the Panthera genus, and is the only Panthera species found in the Americas. The **jaguar** is the third-largest feline after the tiger ...

Google search (contd)

jaguar south america

Jaguar - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Jaguar

The **jaguar's** present range extends from Southern United States and Mexico across much of Central **America** and **south** to Paraguay and northern Argentina.

Jaguar Cars - Jaguar (disambiguation) - Jacksonville Jaguars - Jaguarundi

Images for jaguar south america - Report images

South America - Jaguar

library.thinkquest.org/5053/SouthAmerica/jaguar.html

Jaguars are magnificent cats that prowl the **South American** jungles. They are fascinating to learn about! To jump to a section, use our Quick Jump below by ...

Jaguars, Jaguar Pictures, Jaguar Facts - National Geographic animals.nationalgeographic.com/animals/mammals/jaguar/

Jaguars are the largest of **South America's** big cats. They once roamed from the southern tip of that continent north to the region surrounding the U.S.-Mexico ...

Google search (contd)

black fast jaguar

Jaguars, Jaguar Pictures, Jaguar Facts - National Geographic

animals.nationalgeographic.com/animals/mammals/jaguar/

Learn all you wanted to know about **jaguars** with pictures, videos, photos, facts, ... **Fast** Facts. Type: Mammal; Diet: Carnivore; Average life span in the wild: 12 to ... Most **jaguars** are tan or orange with distinctive **black** spots, dubbed "rosettes" ...

Jaguar XKR black fast on trackday - YouTube

www.youtube.com/watch?v...

2 Jul 2012 - 16 sec - Uploaded by PrestigeCarCompany

Enjoy this Jaguar XKR trackday video.

http://www.prestigecarcompany.co.uk/ Prestige Super Car Sales

...

Jaguar XKR Black Pack fast racing - YouTube

www.youtube.com/watch?v...k

16 Aug 2011 - 16 min - Uploaded by MrBobkumar My XKR being driven hard thru town, hear the sounds of this beast....left window open so noise from air etc....but ...

Jaguar XKR black fast on trackday. Rear Shot - YouTube

www.youtube.com/watch?v=RmvW...

2 Jul 2012 - 17 sec - Uploaded by PrestigeCarCompany

Enjoy this Jaguar XKR trackday video.

http://www.prestigecarcompany.co.uk/ Prestige Super Car Sales

...

More videos for black fast jaquar »

Google search (contd)

- What is Google's IR system doing?
 - Finding pages that contain the words in the query.
- How does it rank these pages?
 - ♦ By "relevance" to the query.
- How does it do it so fast?
 - By clever indexing (and a lot of hardware!)

Information Retrieval: the task

Text Retrieval: find documents that are "relevant" to a user query.

- Given: a large, static document collection
- Given: an information need (keyword-based query)
- Task: find all and only documents relevant to query

Information Retrieval: the task

Typical IR systems:

- Search a set of abstracts
- Search newspaper articles
- Library search
- Search the Web

Typically: more statistics than 'language', but the object to retrieve (and process) is language

Issues in IR

- How can I formulate a query?
 - query type: normally keywords, could be natural language
- How are the documents represented?
 - indexing
- How does the system find the best-matching document?
 - retrieval model
- How does the system find it efficiently?
- How are the results presented to me?
 - unsorted list, ranked list, clusters
- How do we know whether the system is any good?
 - evaluation

Indexing

The task of finding terms that describe documents well

- Manual:
 - indexing by humans (using fixed vocabularies)
 - labour and training intensive
- Automatic:
 - ♦ Term manipulation (certain words count as the same term)
 - Term weighting (certain terms are more important than others)
 - ♦ Index terms must only derive from text

Manual Indexing

- Large vocabularies (several thousand items)
 - Dewey Decimal System
 - Library of Congress Subject Headings
 - ♦ ACM subfields of CS
 - MeSH Medical Subject Headings

Example: Manual Indexing — ACM

ACM Computing Classification System (1998)		
В	Hardware	
B.3	Memory structures	
B.3.0	General	
B.3.1	Semiconductor Memories (NEW) (was B.7.1)	
	Dynamic memory (DRAM) (NEW)	
	Read-only memory (ROM) (NEW)	
	Static memory (SRAM) (NEW)	
B.3.2	Design Styles (was D.4.2)	
	Associative memories	
	Cache memories	
	Interleaved memories	
	Mass storage (e.g., magnetic, optical, RAID)	
	Primary memory	
	Sequential-access memory	

Example: Manual Indexing — MeSH

MeSH — Medical Subject Headings

- a very large controlled vocabulary for describing/indexing medical documents, e.g. journal papers and books
- provides a hierarchy of descriptors (a.k.a. subject headings)
 - assigned to documents to describe their content
- hierarchy has a number of top-level categories, e.g.:
 - Anatomy [A]
 - Organisms [B]
 - Diseases [C]
 - Chemicals and Drugs [D]
 - ◆ Analytical, Diagnostic and Therapeutic Techniques and Equipment [E]
 - Psychiatry and Psychology [F]
 - Biological Sciences [G]

. . .

■ MeSH C14 № --- cardiovascular diseases

And a number of subcategories (more specific/detailed terms):

```
Diseases [C]
   ■ MeSH C01 № --- bacterial infections and mycoses
   ■ MeSH C02 → --- virus diseases
   ■ MeSH C03 № --- parasitic diseases
   ■ MeSH C04 A --- neoplasms
   ■ MeSH C05 № --- musculoskeletal diseases
   ■ MeSH C06 🗗 --- digestive system diseases
   ■ MeSH C07 A --- stomatognathic diseases
   ■ MeSH C08 № --- respiratory tract diseases
   ■ MeSH C09 → --- otorhinolaryngologic diseases
   ■ MeSH C10 № --- nervous system diseases
   ■ MeSH C11 --- eye diseases
   ■ MeSH C12 → --- urologic and male genital diseases
   ■ MeSH C13 --- female genital diseases and pregnancy complications
```

 And a number of subsubcategories (even more specific/detailed terms):

```
Eye Diseases [C11]

Asthenopia [C11.093]

Conjunctival Diseases [C11.187]

Conjunctival Neoplasms [C11.187.169]

Conjunctivitis [C11.187.183] +

Pterygium [C11.187.781]

Xerophthalmia [C11.187.810]

Corneal Diseases [C11.204] +

Eye Abnormalities [C11.250] +

Eye Diseases, Hereditary [C11.270] +

Eye Hemorrhage [C11.294] +
```

 And a number of subsubsubcategories (yet again more specific/ detailed terms):

```
Eye Diseases [C11]
Conjunctival Diseases [C11.187]
```

Conjunctival Neoplasms [C11.187.169]

▶ Conjunctivitis [C11.187.183]

Conjunctivitis, Allergic [C11.187.183.200]

Conjunctivitis, Bacterial [C11.187.183.220] +

Conjunctivitis, Viral [C11.187.183.240] +

Keratoconjunctivitis [C11.187.183.394] +

Reiter Syndrome [C11.187.183.749]

Pterygium [C11.187.781]

Xerophthalmia [C11.187.810]

- MEDLINE Medical Literature Analysis and Retrieval System Online
 - international database of literature for medicine and the life sciences
 - \diamond includes papers from \approx 5600 different sources (mostly journals), in various languages
 - \diamond database now holds records for \approx 26 million papers
- Each MEDLINE article indexed with 10-15 descriptors from MeSH
 - papers accessed by PubMed search engine interface, using MeSH terms (and other terms, e.g. author name, etc)
 - by default, all descriptors below a given one in the hierarchy are also included in search

Manual Indexing

Advantages:

- High precision searches
- Works well for closed collections (books in a library)

• Problems:

- Searchers need to know terms to achieve high precision
- Labellers need to be trained to achieve consistency
 - Not feasible to expect this from all content creators on the web
- \diamond Collections are dynamic \rightarrow schemes change constantly

Automatic Indexing

- No predefined set of index terms
- Instead: use natural language as indexing language
- Words in the document give information about its content
- Implementation of indices: inverted files
- This is what Google's IR system does

Automatic Indexing

A small collection of documents . . .

Document	Text
1	Pease porridge hot , pease porridge cold
2	Pease porridge in the pot
3	Nine days old
4	Some like it hot , some like it cold
5	Some like it in the pot
6	Nine days old

Say we want to search for word hot. How do we do it?

Inverted files

- A basic inverted file index
 - records for each term, the ids of the documents in which it appears
 - only matters if it *does* or *does not* appear not how many times

Doc	Text
1	Pease porridge hot, pease porridge cold
2	Pease porridge in the pot
3	Nine days old
4	Some like it hot, some like it cold
5	Some like it in the pot
6	Nine days old

Inverted files (contd)

- A more sophisticated version . . .
 - also record count of occurrences within each document
 - help find documents more relevant to query

Doc	Text
1	Pease porridge hot, pease porridge cold
2	Pease porridge in the pot
3	Nine days old
4	Some like it hot, some like it cold
5	Some like it in the pot
6	Nine days old

Num	Token	Docs
1	cold	1:1, 4:1
2	days	3:1, 6:1
3	hot	1:1, 4:1
4	in	2:1, 5:1
5	it	4:2, 5:1
6	like	4:2, 5:1
7	nine	3:1, 6:1
8	old	3:1, 6:1
9	pease	1:2, 2:1
10	porridge	1:2, 2:1
11	pot	2:1, 5:1
12	some	4:2, 5:1
13	the	2:1, 5:1

Inverted files (contd)

- A more sophisticated version . . .
 - also record position of each term occurrence within documents
 - may be useful for searching for phrases in documents

Doc	Text
1	Pease porridge hot, pease porridge cold
2	Pease porridge in the pot
3	Nine days old
4	Some like it hot, some like it cold
5	Some like it in the pot
6	Nine days old

Num	Token	Docs
1	cold	1:(6), 4:(8)
2	days	3:(2), 6:(2)
3	hot	1:(3), 4:(4)
4	in	2:(3), 5:(4)
5	it	4:(3, 7), 5:(3)
6	like	4:(2, 6), 5:(2)
7	nine	3:(1), 6:(1)
8	old	3:(3), 6:(3)
9	pease	1:(1, 4), 2:(1)
10	porridge	1:(2, 5), 2:(2)
11	pot	2:(5), 5:(6)
12	some	4:(1, 5), 5:(1)
13	the	2:(4), 5:(5)

Reading

- Baeza-Yates and Ribeiro-Neto, Modern Information Retrieval. New Yorl: ACM Press, 1999.
- C. Manning, P. Raghavan and H. Schtze, Introduction to Information Retrieval, Cambridge University Press. 2008.
- I.H. Witten, A. Moffat and T.C. Bell, Managing Gigabytes: Compressing and Indexing Documents and Images, 2nd edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.