Module 2

Day 4

Recap Last Week

- Discussed long and wide data
 - Reshaped the data using spread() and gather()
- Created our own set of functions to calculate distance to the nearest metro
 - Wrapper functions
- Discussed function safety
 - require(), warning(), stop()

Recap Last Week

Source: Redfin and WMATA

Goals for Today

R:

- Review liner models and dates
- Create non-linear models in R

Economics:

- Further exploring the relationship between distance from a metro stop and home prices
- Investigate non-linear relationship of location, distance, time on the market on home prices
- Familiarize ourselves with different methods to account for non-linear effects

Brief Review of Regressions

- Use it when we want to indentify a causal relationship
- ▶ Regression analysis is used to describe the relationship between:
 - ▶ A single response variable Y and
 - ▶ One or more predictor variables X_1 , X_2 , X_3 , ..., X_n
- Response should be continuous (but doesn't have to be!)
- Predictor variables can be continous, discrete, or categorical
 - Dummy variables are used to model categorical data

Creating an OLS Model

▶ Let's load in the data and see if there is a causal relationship between distance from the metro and home prices

```
library(tidyverse)
setwd( ) # Put your file directory here
joined_data <- read_csv("joined_data_v2.csv")</pre>
```

- ▶ What function do we use to create a regression model?
- What function do we use to create our regression tables?

The Effect of Metro Distance on Home Prices

Table 1: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET	
metro_distance	-93.621***	
	(6.467)	
Constant	503.684***	
	(8.202)	
Observations	1,179	
R^2	0.151	
Adjusted R ²	0.150	
Note:	*p<0.1; **p<0.05; ***p<0.01	

Interpreting the Results

- How do we interpret the coefficient for metro_distance?
- Does our intercept have any meaningful interpretation?
- ▶ Is our current model a good model?
 - ▶ If not, how could we improve it?

Adding States to the Model

What are factors that affect housing prices that could differ from state to state?

Comparing the Results

Table 2: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET	
	(1)	(2)
metro_distance	-93.621*** (6.467)	-81.569*** (7.352)
STATEMD	(0.407)	-54.973^{***}
STATEVA		(14.816) 0.995
Canatant	EO2 604***	(13.996)
Constant	503.684*** (8.202)	505.487*** (8.592)
Observations	1,179	1,179
R^2	0.151	0.163
Adjusted R ²	0.150	0.161

Comparing the Results

- How do we interpret the coefficients on our dummy variables?
- What happened to our metro_distance coefficient when we added our dummy variables?

Days on the Market

- Conventional wisdom says that homes that spend a long time on the market generally cost less
 - Seller may have set the price to high originally
 - Buyers may be waiting for the seller to lower the price
- Our data has the list date and the sale date
 - Work with dates to create a new variable days_on_market

Dates Review

- In R, dates are just numbers displayed in a special format
 - Generally stored as strings in our data
 - Use as.Date() to convert them from strings to date objects

- We are able to read dates in virtually any format that they are entered
 - We can find a list of formats here

Dates Review

Since dates are just numbers we can use them with mathematical functions and operations

```
date2 - date1
## Time difference of 2 days
date1 - 3
```

▶ We can also generate date sequences

[1] "2018-03-23"

```
seq(date1, date2, by = "day")
## [1] "2018-03-26" "2018-03-27" "2018-03-28"
```

Refresher Exercise

- ▶ Load in the dates.csv data file then:
 - Combine the three variables Year, Month, and Day into a single string variable Date
 - ► Convert Date into a date variable

Creating days_on_market

- Remember dates are just numbers!
- We can calculate the number of days on the market by merely subtracting the sale date by the list date and converting it back to a number

Graphing the Relationship

Source: Redfin and WMATA

Testing Our Hypothesis

- The relationship doesn't appear to be as straightforward as we initially thought
- ► Create a regression model that investigates the relationship between the days a house spends on the market and the price per square foot of a home
 - You are free to use any variable in our data set
 - Use stargazer() to display your results
 - Why do you believe your model is a good model?

Introduction to Non-Linear Models

- Made some improvements to our model, but we can still do better
- Let's think more about metro distance
 - As we move farther away from the metro, distance probably matters less
 - ▶ The effect of distance likely varies from state to state
- ► We are unable to investigate either of the above relationships with a simple linear model

Looking Back at Distance

Source: Redfin and WMATA

Adding A Quadratic Term

- ▶ In our previous models, moving from 0.5 to 0.6 miles away from the metro has the same effect on price as 2.9 to 3.0 miles away
- ► Can imagine that people pay extra to live in walking distance
 - ► The farther we move away from the metro, the less distance affects price
- ► We are able to apply mathematical transformations to the continous variables in our model
 - ▶ We would like to use a quadratic term in our model

Adding A Quadratic Term

- There are two ways we can include a quadractic term in our data:
 - 1. Using formula functions provided by R
 - Constructing a new variable called dist_sq and adding it to the model
- ► First, let's try to use the caret to take the exponenet

Did It Work?

Table 3: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET		
	(1)	(2)	
metro_distance	-93.621***	-93.621***	
	(6.467)	(6.467)	
Constant	503.684***	503.684***	
	(8.202)	(8.202)	
Observations	1,179	1,179	
R^2	0.151	0.151	
Adjusted R ²	0.150	0.150	
Note:	*p<0.1; **p<0.05; ***p<0.01		

Correcting Our Formula

- ► When we are working with formulas in R, our math operators have different meanings
 - ^ and * are used to create interactions
- Use I() to apply our math operators

Did It Work?

Table 4: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET		
	(1)	(2)	
metro_distance	-93.621***	-200.919***	
	(6.467)	(17.263)	
I(metro_distance^2)		32.547***	
		(4.869)	
Constant	503.684***	554.116***	
	(8.202)	(11.036)	
Observations	1,179	1,179	
R^2	0.151	0.182	
Adjusted R ²	0.150	0.181	
Note:	*p<0.1; **p<0.05; ***p<0.01		

Manually Constructing the Variable

- ▶ We should be right but let's double check to be sure
- Create a new variable metro_sq and use it to create a non-linear regression model
 - Compare this new model with the previous model in stargazer()
 - Are the coefficients the same?

Interpreting Our Results

- Let's look back at our regression table, do the magnitidues in our table make sense?
- Direct interpretation of our coefficients becomes much more difficult
 - The effect changes as we move farther away from a metro station
 - Should check when the effect of metro distance becomes 0
 - Can evaluate the effect at the mean metro distance
- Helpful to create a graph to visualize this relationship

broom()

- Recall our 3 main functions from the broom package
 - tidy() for creating a data frame of component statistics
 - augment() for observation level statistics (like fitted values and residuals)
 - glance()- for model level statistics (like R-squared etc.)
- We'll want to use augment() to plot our fitted values

Visulaizing the Relationship

Source: Redfin and WMATA

Visulaizing the Relationship

▶ Fill in the code to create the graph from the previous slide

Interactions

- Sometimes the effect of certain variables differs across groups in our data
- The importance of distance from the metro likely varies from state to state
 - Why might that be the case?
- To account for this type of non-linear we use an interaction term
- Below is an model expressed as an equation:
 - ▶ Price/Sq Ft = $\beta_0 + \beta_1$ distance + β_2 MD + β_3 VA + β_4 MD × distance + β_5 VA × distance