به نام خدا

گزارش تمرین سوم درس اینترنت اشیا

سپيده احمدي 400433692

پروژه شناسایی حملات سایبری با استفاده از RNN:

هدف پروژه:

شناسایی رفتارهای غیرطبیعی در ترافیک شبکه (مانند حملاتDDOS) اسکن پورت و غیره) با استفاده از شبکههای عصبی بازگشتی (RNN) و تحلیل ویژگیهای مهم برای شناسایی حملات.

مراحل انجام پروژه:

1. جمع آوری داده ها:

. دیتاست مورد استفاده:

از دیتاستهای رایج مانند CICIDS 2017 یا KDD Cup 99 برای ترافیک شبکه استفاده کنید. این دیتاستها شامل ویژگیهای زیر هستند:

- زمان وقوع
- $_{\circ}$ آدر $_{\odot}$ مبدأ
- 。 آدرس مقصد
- 。 نوع پروتکل
- o برچسب حمله (حمله یا عدم حمله)
 - . دیتاست انتخابشده برای این پروژه:

CICIDS 2017 . داده ها به صورت فایل CSV بارگذاری می شوند.

2. پیشپردازش دادهها:

مراحل پیشپردازش:

- حذف دادههای گمشده و مقادیر نامعتبر
 - مقیاس بندی ویژگی ها
- تبدیل داده ها به دنباله های زمانی با طول 100 نمونه

3. طراحی مدل RNN :

مدل پیشنهادی از یک لایه LSTM برای یادگیری الگوهای زمانی در ترافیک شبکه استفاده میکند.

4 آموزش مدل:

مدل با دادههای آموزشی آموزش داده میشود.

5. خروجی ارزیابی مدل RNN:

1. معیارهای ارزیابی:

با توجه به اجرای مدل روی دادههای تست، مقادیر زیر محاسبه میشوند:

- . در صد نمونههای در ست پیش بینی شده به کل نمونهها. (Accuracy) در صد نمونههای در ست پیش بینی شده به کل نمونهها. مثال : دقت ≈ 92
 - . یادآوری (Recall): توانایی مدل در شناسایی نمونه های حمله واقعی.

 $Recall \approx 90\%$: مثال

- F1-Score: میانگین هارمونیک دقت و یادآوری برای تعادل ارزیابی. F1-Score $\approx 91\%$: مثال : %
- ROC-AUC Score: ارزیابی عملکرد مدل در شناسایی تفاوت بین کلاسهای حمله و عدم حمله.

 $ROC\text{-}AUC \approx 0.95$: مثال

2. گزارش دستهبندی (Classification Report) :

این گزارش شامل مقادیر دقت، یادآوری و F1-Score برای هر کلاس است.

6 تحلیل نتایج:

نقاط قوت:

- مدل RNN توانایی بالایی در شناسایی رفتارهای غیر عادی زمانی دارد.
- مقدار F1-Score نشان میدهد که مدل تعادل مناسبی بین دقت و یادآوری دارد.

نقاط ضعف:

- برخی حملات با نرخ پایین ممکن است شناسایی نشوند (Underfitting در کلاسهای اقلیت.)
 - ممکن است داده های noisy (پرت) باعث کاهش عملکر د مدل شوند.

راهحلها:

- . افزایش دادهها از طریق Data Augmentation.
- استفاده از معماری ترکیبی CNN-RNN برای بهبود دقت.
 - افزودن لایه های Dropout بیشتر یا تنظیم بهینه سازی ها.

توسعه بیشتر:

- 1. اعمال Attention Mechanism براى تمركز بر الكوهاى بحراني.
 - 2. افزودن مدلهای پیشرفتهتر مانند Transformer برای تحلیل بهتر.
- 3. ارزیابی مدل روی سایر دیتاستها (مثل NSL-KDD یا UNSW-NB15).

خروجی نهایی:

مدلی دقیق و پایدار که میتواند رفتارهای غیرطبیعی شبکه را بهطور مؤثر شناسایی کند.

پایان