GravLens

Renkun Kuang

History

Gravitational
Lensing Theories

Applications

Gravitational Lensing Theories, Questions and Applications

Renkun Kuang

Tsinghua University

November 14, 2019

Overview

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

verated Questi

Applications

History

Gravitational Lensing Theories

Related Questions

Predictions from Newtonian and GR

GravLens Renkun Kuang

History

Gravitational Lensing Theories

rtelated Quest

- First proposed by Soldner (1801) using Newtonian theory, given a deflection angle (Appendix-1 (Page 71) for derivation). $\alpha = \frac{2GM}{c^2r}, \ 0.85 \ \text{arcsec for the Sun}$
- ► Einstein (1911) derived the same result using Equivalence principle and Euclidean metric
- ► Einstein (1915) derived the new result using General Relativity.
 - $\alpha = \frac{4GM}{c^2r}$, 1.7 arcsec for the Sun

Eddington's observation of the Solar Eclipse

► In 1919, Eddington measured a value close to GR's prediction using the data collected during an eclipse, stars with apparent position near the sun become visible.

Renkun Kuang

History

Gravitational ensing Theories Related Questions

The first example for GravLens: 0957+561

► Eddington (1920): Multiple light paths → multi images

 \blacktriangleright Walsh et al., (1979) quasar QSO 957+561 A,B found at $z\sim1.4$, two seen images separated by $6^{''}$

Lens: evidence

- 1. Lensing galaxy at $z\sim 0.36$
- 2. Similar spectra
- 3. Ratio of optical and radio flux
- 4. VLBI imging: small scale features

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

.....

Walsh, Carswell & Weymann 1979, 0957+561 A, B: twin quasistellar objects or gravitational lens? https://ui.adsabs.harvard.edu/abs/1979Natur.279..381W/abstract

► Einstein Field Equations:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Geodesic equations:

$$\frac{d^2x^{\beta}}{d\lambda^2} + \Gamma^{\beta}_{\mu\nu} \frac{dx^{\nu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0$$

We can calculate how gravity bends light by solving geodesic eqution.

▶ To compute the Christoffel symbols $\Gamma^{\beta}_{\mu\nu}$, requires solving for the metric tensor $g_{\mu\nu}$, which requires solving the curvature equations $R_{\mu\nu}=0$, \leftarrow ten nonlinear partial differential equations.

General Relaticity and light deflection

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Applications

Or, the velocity of the photon from the Schwarzshild metric, $ds^2 = -(1+2\Phi)dt^2 + (1-2\Phi)(dx^2 + dy^2 + dz^2),$

- ▶ and Poisson Equation, $\nabla^2 \Phi = 4\pi G \rho$,
- ▶ and light interval: $g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0$
- which gives,

$$v = \frac{\sqrt{dx^2 + dy^2 + dz^2}}{dt} = \sqrt{\frac{1 + 2\Phi}{1 - 2\Phi}} \approx 1 + 2\Phi$$

The gravitational field decreases the speed of propagation

 $https://web.stanford.edu/\ oas/SI/SRGR/notes/SchwarzschildSolution.pdf,\ The\ Schwarzschild\ Solution$

General Relaticity and light deflection

$$v=\frac{\sqrt{dx^2+dy^2+dz^2}}{dt}=\sqrt{\frac{1+2\Phi}{1-2\Phi}}\approx 1+2\Phi$$
 (natural units) $\rightarrow v=c\left(1+\frac{2}{c^2}\Phi\right)$ (SI)

- \blacktriangleright define refraction index: $n=1-\frac{2}{c^2}\Phi=1+\frac{2}{c^2}|\Phi|\geq 1$
- ▶ deflection angle: $\vec{\hat{\alpha}} = -\int \vec{\nabla}_{\perp} n dl = \frac{2}{c^2} \int \vec{\nabla}_{\perp} \Phi dl$
- which is twice of the Newtonian prediction,
- for point mass lens, $\hat{\alpha} = \frac{4GM}{bc^2}$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Thin screen approximation

- Most deflection occurs near to the lens $(|z| \sim b)$ \rightarrow treat all deflection as in the lens plane
- Projected surface density: $\Sigma(\vec{\xi}) = \int \rho(\vec{\xi}, z) dz$
- ▶ Deflection angle: $\hat{\alpha}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} \vec{\xi'}|^2} d^2 \vec{\xi'}$
- In circular symmetry cases: $\hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2\xi}$ $M(\xi) = 2\pi \int_0^\xi \Sigma(\xi') \xi' d\xi'$

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories

riciated Question

The Lens Equation

Connecting the position of images in the Lens plane and corresponding sources the Source plane.

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questi

Case 1: Point mass Lens

$$\begin{cases} \hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2 \xi} \\ \vec{\alpha}(\vec{\theta}) = \frac{D_{ds}}{D_s} \hat{\alpha}(D_d \vec{\theta}) \end{cases} \rightarrow \vec{\alpha}(\vec{\theta}) = \frac{4GM}{c^2} \frac{D_{ds}}{D_d D_s} \frac{\vec{\theta}}{|\vec{\theta}|^2}$$

Source

Lens

Observer

and $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$, if $\beta = 0$, gives the Einstein Radius,

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{ds}}{D_d D_s}}$$

The Lens equation: $\vec{\beta} = \vec{\theta} - \theta_E^2 \frac{\vec{\theta}}{|\vec{\theta}|^2}$

- ▶ if $\beta > \theta_E \rightarrow$, weakly lensed and weakly distorted image,
- if $\beta < \theta_E \rightarrow$, stronly lensed and multi images:

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

Renkun Kuang

History

Gravitational Lensing Theories

elated Questions

Case 1: Point mass Lens

Hewitt+ 1987, First Einstein Ring discovered in Radio Band & VLA

Renkun Kuang

History

Gravitational Lensing Theories

Related Question

Application

Hewitt, J., Turner, E., Schneider, D. et al. Unusual radio source MG1131+0456: a possible Einstein ring. Nature 333, 537–540 (1988) doi:10.1038/333537a0

GravLens

Magnification

Gravitational lensing preserves surface brightness (Liouville's Theorem), but changes the apparent solid angle of the source $\rightarrow magnification = \frac{Area_{image}}{Area_{source}}$

Renkun Kuang

History

Gravitational Lensing Theories

veiated Quest

GravLens

Possible Gravitational Microlensing of a Star in the Large Magellanic Cloud https://arxiv.org/pdf/astro-ph/9309052v1.pdf

Magnification

Local properties of the lens mapping, described by its Jacobian matrix A

$$A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$$
$$\mu = \left|\det\left(\frac{\partial \vec{\beta}}{\partial \vec{\theta}}\right)\right|^{-1} \equiv \left|\det\left(\frac{\partial \beta_i}{\partial \theta_j}\right)\right|^{-1}$$

If circularly symmetric,

$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta}$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

related Quest

Case 1: Point mass Lens - Magnification

Renkun Kuang

Trajectories

Time (tm)

▶ Images:

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

► Define $u = \beta \theta_E^{-1}$, Magnification:

$$\mu_{\pm} = \left[1 - \left(\frac{\theta_E}{\theta_{\pm}}\right)^4\right]^{-1}$$
$$= \frac{u^2 + 2}{2u\sqrt{u^2 + 4}} \pm \frac{1}{2}$$

► Total magnification:

$$\mu = |\mu_+| + |\mu_-| = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

e.g. for source on the Einstein Ring:

$$\beta=\theta_E, u=1
ightarrow \mu=1.34
ightarrow$$
 magnitude increase 0.32.

Magnification

History

Gravitational Lensing Theories

GravLens

ivelated Question

- Passage through potential also leads to time delay
- without potential: $t_0 = \int \frac{dl}{c}$
- with potential:

$$t_{1} = \int_{src}^{obs} \frac{dl}{v} = \int_{src}^{obs} \frac{dl}{c - \frac{2}{c}|\Phi|}$$
$$= \int_{src}^{obs} \frac{dl/c}{1 - \frac{2}{c^{2}}|\Phi|} = \int_{src}^{obs} \frac{dl}{c} [1 + \frac{2}{c^{2}}|\Phi|]$$

- $lackbox{ so, } \Delta t = \int_{src}^{obs} rac{2}{c^3} |\Phi| dl
 ightarrow {\sf Shapiro delay} \ {\sf (1964)}$
- Total time delay is the sum of the extra path length from the deflection and the gravitational time delay

$$t(\vec{\theta}) = \frac{1 + z_d}{c} \frac{D_d D_s}{D_{ds}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi \vec{\theta} \right] = t_{geom} + t_{grav}$$

- Galaxy lenses, the distributed nature of mass
- lackbox Simple model assumes that mass ightarrow particles of ideal gas
- ▶ ideal gas:
 - equation of state: $p = \frac{\rho kT}{m}$
 - In thermal equilibrium, T is related to the 1-d velocity dispersion: $m\sigma_v^2 = kT$
 - In hydrostatic equilibrium,

$$\frac{p'}{\rho} = -\frac{GM(r)}{r^2}, M'(r) = 4\pi r^2 \rho$$

- solve the EOS \rightarrow density profile: $\rho(r) = \frac{\sigma_v^2}{2\pi G} \frac{1}{r^2}$
- ightharpoonup so mass profile: $M(r)=rac{2\sigma_v^2}{G}$

Case 2: Singular Isothemal Sphere (SIS)

For ideal gas, rotational velocity in circular orbit:

$$\frac{p'}{\rho} = -\frac{GM(r)}{r^2}, M'(r) = 4\pi r^2 \rho$$

Surface mass density:

$$\begin{split} v_{rot}^2 &= GM/r \rightarrow \\ dM &= \frac{v_{rot}^2}{G} dr = 4\pi r^2 \rho(r) \rightarrow \\ \rho(r) &= \frac{v_{rot}^2}{4\pi G} \frac{dr}{r^2} \rightarrow \\ \Sigma(\xi) &= \frac{v_{rot}^2}{4\pi G} \int_{-\infty}^{\infty} \frac{dz}{(z+\xi)^2} = \frac{v_{rot}^2}{4G\xi} = \frac{\sigma_v^2}{2G\xi} \end{split}$$

where,
$$M(\xi)=2\pi\int_0^\xi \Sigma(\xi')\xi'd\xi'$$
 , and $\hat{\alpha}(\xi)=\frac{4GM(\xi)}{c^2\xi}$ which gives: $\hat{\alpha}=4\pi\frac{\sigma_v^2}{c^2}$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

verated Quest

Case 2: Singular Isothemal Sphere (SIS)

using
$$\begin{cases} \hat{\alpha} = 4\pi\sigma_v^2/c^2 \\ \vec{\alpha}(\vec{\theta}) = \hat{\alpha}(D_d\vec{\theta})D_{ds}/D_s \end{cases}$$
 and lens equation $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$

we can get:

$$\alpha = \hat{\alpha} \frac{D_{ds}}{D_s} = 4\pi \frac{\sigma_v^2}{c^2} \frac{D_{ds}}{D_s} = \theta_E$$

for strong lensing, get two images as for point mass:

$$\vec{\beta} = \vec{\theta} - \theta_E \frac{\vec{\theta}}{|\vec{\theta}|}, \frac{\vec{\theta}}{|\vec{\theta}|} = \pm 1 \rightarrow \theta_{\pm} = \beta \pm \theta_E$$

Magnification can be very large for source aligned with lens, from $\mu=\frac{\theta}{\beta}\frac{d\theta}{d\beta}\to$:

$$\mu_{\pm} = \frac{\theta_{\pm}}{\beta} = 1 \pm \frac{\theta_E}{\beta} = \left(1 \mp \frac{\theta_E}{\theta_{\pm}}\right)^{-1}$$

Separation of the two images is typically \sim arcsec for galaxy lenses:

$$\theta_E = 1''.6 \left(\frac{\sigma_v}{200kms^{-1}}\right)^2 \left(\frac{D_{ds}}{D_s}\right)$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

.....

- ► Grav Lens changes the observed brightness of the source, determined by the Jacobian matrix from the lens equation: $A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$ $\mu(\theta) = \frac{1}{\det A(\theta)}$
- \blacktriangleright Image at $\vec{\theta}$ is magnified by a factor of $|\mu(\vec{\theta})|$
- Notice that $|\mu(\vec{\theta})|$ diverge at $det A(\theta) = 0 \to$ these points in the image plane form closed curves, which is so called <u>critical lines</u>.
- Corresponding curves in the source plane obtained via the lens equation are called caustics.

Caustics and Critical lines - Point sources

Separation 0.6'', 0.7'':

The Critical Curves(blue) of two point mass(green) lens with $\mu_1 = \mu_2$ and X = 0.30 The Critical Curves(blue) of two point mass(green) lens with $\mu_1 = \mu_2$ and X = 0.35 and the corresponding Caustics(red) on source plane

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Question

https://github.com/rkkuang/aeroastro/blob/master/gravlen/critical.and.caustics/
The two-point-mass lens - Detailed investigation of a special asymmetric gravitational lens http://adsabs.harvard.edu/abs/1986A%26A...164..2375

Caustics and Critical lines - Point sources

Separation 1.0'', 1.6'':

GravLens

Renkun Kuang

Gravitational Lensing Theories

Caustics and Critical lines - Point sources

Separation 2.0'', 2.4'':

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Gravitational Lens vs Genuine Lens

 \blacktriangleright Grav lens: the observer sees the source at two distinct locations, $\alpha \propto b^{-1}$

Grav lens has no well-defined focal length and cannot produce genuine images, the "images" are corresponds merely to a direction of incidence of light on the observer, not a genuine image in the sky

▶ Genuine lens, $\alpha \propto b$

Grayl ens

Renkun Kuang

History

Gravitational Lensing Theories

elated Question

A galaxy at redshift 0.5 can be modelled as a singular isothermal sphere; its dispersion is 200km/s. A background source at redshift 2 is lensed by the foreground galaxy into two images with a brightness ratio of 3:1, what are the angular separation and time delay between the two images? You can assume the usual cosmology.

Gravl ens

Renkun Kuang

Histor

Gravitational Lensing Theories Related Questions

Applications

First assume $H_0=69.6kms^{-1}, \Omega_m=0.286, \Omega_{vac}=0.714$ then the distance of z = 0.5 and z = 2 can be computed, using theories of SIS model and the time delay function we can estimate the angular separation ~ 1.2 arcsec and time delay ~ 45 days

Two (N=2) galaxies are aligned perfectly with the Earth and a distant quasar. Each galaxy can be modelled as a singular isothermal sphere. How many Einstein rings are formed as a result? How will your results generalize when you have N>2 galaxies?

For N galaxies, the quasar will render 2^{N-1} Einstein rings, and if we consider galaxy lensed by galaxy, will generate (at most) $\sum_{i=1}^{N-1} 2^{i-1}$ more, so the total number of Einstein rings rendered by N galaxies and a quasar will be: $\sum_{i=1}^{N} 2^{i-1} = 2^{N} - 1$, at most.

GravLens

Renkun Kuang

Histor

Gravitational

Related Questions

A background source is multiply-imaged, can the brightest image arrive last?

Using the relation between effective lensing potential and magnification & time delay

Effective lensing potential:

$$\Psi(\vec{\theta}) = \frac{D_{ds}}{D_d D_s} \frac{2}{c^2} \int \Phi(D_d \vec{\theta}, z) dz, \ \vec{\nabla}_{\theta} \Psi = \vec{\alpha}$$

Jacobian matrix:
$$A = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \vec{\theta_i} \partial \vec{\theta_j}} \equiv \delta_{ij} - \Psi_{ij}$$

Magnification:
$$\mu = |det A|^{-1}$$

time delay:
$$t(\vec{\theta}) = \frac{1+z_d}{c} \frac{\vec{D}_d D_s}{\vec{D}_{ds}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \Psi(\vec{\theta}) \right]$$

$$\mu \leftarrow \Psi \rightarrow t$$

Simulation, under a potential, given a $\vec{\beta}$, solve the lens equation for $\vec{\theta_i}$ see if $\vec{\theta_k}$ which has maximum magnification also have largest time delay

GravLens

Renkun Kuang

History

ravitational ensing Theories

Related Questions

History

Gravitational Lensing Theories

Related Questions

Applications

N point mass, same redshift (single plane).

Effective lensing potential:

$$\psi(\vec{\theta}) = \frac{D_{ds}}{D_s} \frac{4G}{D_d c^2} \sum_{i=1}^{N} M_i ln |\vec{\theta} - \vec{p_i}|$$

The deflection angle:

$$\alpha(\vec{\theta}) = \frac{D_{ds}}{D_s} \frac{4G}{D_d c^2} \sum_{i=1}^{N} \frac{M_i}{|\vec{\theta} - \vec{p_i}|}$$

where $M_i, \vec{p_i}$ are the mass and position of the i_{th} point mass. Above equations can be rewritten with the Einstein Radius θ_{Ei} of the i_{th} point mass as:

$$\psi(\vec{\theta}) = \sum_{i=1}^{N} \theta_{Ei}^{2} ln |\vec{\theta} - \vec{p_i}|$$
$$\alpha(\vec{\theta}) = \sum_{i=1}^{N} \frac{\theta_{Ei}^{2} (\vec{\theta} - \vec{p_i})}{|\vec{\theta} - \vec{p_i}|^{2}}$$

The lens equation:

$$\vec{\beta} = \vec{\theta} - \alpha(\vec{\theta})$$

A background source is multiply-imaged, can the brightest image arrive last?

▶ N point mass, same redshift (single plane).

Components of the Jacobian matrix A:

$$\begin{split} A_{11} &= 1 - \sum_{i=1}^{N} \theta_{Ei}^2 \left[r^{-2} - 2(\theta_x - p_{ix})^2 r^{-4} \right] \\ A_{12} &= A_{21} = 2 \sum_{i=1}^{N} \theta_{Ei}^2 \left[(\theta_x - p_{ix})(\theta_y - p_{iy}) r^{-4} \right] \\ A_{22} &= 1 - \sum_{i=1}^{N} \theta_{Ei}^2 \left[r^{-2} - 2(\theta_y - p_{iy})^2 r^{-4} \right] \\ \text{where } r &= |\vec{\theta} - \vec{p_i}| \end{split}$$

Thus the magnification can be written as:

$$\mu = (A_{11}A_{22} - A_{12}A_{21})^{-1}$$
 Time delay: $t(\vec{\theta}) \propto \frac{1}{2}(\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta})$

So, after solve the lens equation: $\vec{\beta} = \vec{\theta} - \sum_{i=1}^N \frac{\theta_{Ei}^2 (\vec{\theta} - \vec{p_i})}{|\vec{\theta} - \vec{p_i}|^2}$, we can compare the resultant images' magnification and time delay, see if the brightest image arrive last.

A background source is multiply-imaged, can the brightest image arrive last?

GravLens

Renkun Kuang

History

Gravitational
Lensing Theories

Related Questions

Applications

▶ If
$$N = 1$$
,

for $\beta>0\text{, there will be two images,}$

$$heta_{\pm}=rac{1}{2}\left(eta\pm\sqrt{eta^2+4 heta_E^2}
ight)$$
, we can obtain the time delay

difference
$$t_- - t_+ = \frac{1}{2}\beta\sqrt{\beta^2 + 4\theta_E^2} + ln\frac{(\sqrt{\beta^2 + 4\theta_E^2} + \beta)^2}{4\theta_E^2} > 0$$
 always holds, thus the brightest image always arrive first.

A background source is multiply-imaged, can the brightest image arrive last?

If $N>1 \to {\rm test}$ by coding: def $a_i=\theta_{Ei}^2$, the system of lens equations:

$$\begin{cases} \beta_x = \theta_x - \sum_{i=1}^{N} a_i (\theta_x - p_{ix}) / r^2 \\ \beta_y = \theta_y - \sum_{i=1}^{N} a_i (\theta_y - p_{iy}) / r^2 \\ r^2 = (\theta_x - p_{ix})^2 + (\theta_y - p_{iy})^2 \end{cases}$$

- Outer loop: For a lens system of N point mass with fixed θ_{Ei} , (p_{ix}, p_{iy})
- Inner loop: Given a source position (β_x, β_y) , solve above system of equations for M images: $(\theta_{xj}, \theta_{yj})$ and compute corresponding μ_j, t_j , check if there exists a k which satisfies $\mu_k = max(\mu)$ & $t_k = max(t)$

A background source is multiply-imaged, can the brightest image arrive last?

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Applications

▶ If $N > 1 \rightarrow$ test by coding:

Yes, the brightest image can arrive last when merely ${\cal N}=2.$

Study the caustics and critical curves of two singular isothermal spheres lensing a background quasar. Study two cases 1) Both galaxies are at the same redshift and, 2) these two galaxies are at different redshifts.

Gravl ens

Renkun Kuang

Histor

iravitational ensing Theories

Related Questions

Applications

Mass density \rightarrow Surfacce mass density \rightarrow Effective lensing potential \rightarrow Jacobian matrix \rightarrow Magnification draw those points which make magnification largest \rightarrow critical lens \rightarrow caustics

case 1) Both galaxies are at the same redshift

$$\vec{\alpha}(\vec{\theta}) = \theta_{E1} \frac{\vec{\theta} - \vec{\rho_1}}{|\vec{\theta} - \vec{\rho_1}|} + \theta_{E2} \frac{\vec{\theta} - \vec{\rho_2}}{|\vec{\theta} - \vec{\rho_2}|}$$
 where $\vec{\rho_1}, \vec{\rho_2}$ are positions of Lens1, Lens2 on the lens plane. $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$

$$A = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right)$$
$$\mu(\vec{\theta}) = \frac{1}{\det A(\vec{\theta})}$$

GravLens

Renkun Kuang

History

Gravitational
Lensing Theories

Related Questions

case 1) Both galaxies are at the same redshift

Two SIS lenses ($\theta_E=1.0^{''}$), separation $1.0^{''}, 1.6^{''}$

GravLens

Renkun Kuang

History

Gravitational

Related Questions

case 1) Both galaxies are at the same redshift

Two SIS lenses ($\theta_E=1.0^{''}$), separation $2.0^{''},3.0^{''}$

GravLens

Renkun Kuang

Histor

Gravitational
Lensing Theories

Related Questions

case 1) Both galaxies are at the same redshift

Two SIS lenses ($\theta_E=1.0^{''}$), separation $4.0^{''}, 6.0^{''}$

GravLens

Renkun Kuang

History

Gravitational

Related Questions

case 2) these two galaxies are at different redshifts

Lens equations of two lens planes system:

$$\vec{\eta} = \frac{D_s}{D_1} \vec{\xi}^{(1)} - D_{1s} \vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)} \right) - D_{2s} \vec{\alpha}^{(2)} \left(\vec{\xi}^{(2)} \right)$$

$$\vec{\xi}^{(2)} = \frac{D_2}{D_1} \vec{\xi}^{(1)} - D_{12} \vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)} \right)$$

For two point mass lenses:

$$\vec{\alpha}^{(1)}\left(\vec{\xi}^{(1)}\right) = \frac{4GM_1}{c^2} \frac{\vec{\xi}^{(1)}}{|\vec{\xi}^{(1)}|^2},$$

$$\vec{\alpha}^{(2)}\left(\vec{\xi}^{(2)}\right) = \frac{4GM_2}{c^2} \frac{\vec{\xi}^{(2)} - \vec{\xi}_{M_2}^{(2)}}{|\vec{\xi}^{(2)} - \vec{\xi}_{M_2}^{(2)}|^2}$$

For two SIS lenses:
$$\vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)} \right) = \frac{4\pi\sigma_{v1}^2}{c^2} \frac{\vec{\xi}^{(1)}}{|\vec{\xi}^{(1)}|},$$

$$\vec{\alpha}^{(2)}\left(\vec{\xi}^{(2)}\right) = \frac{4\pi\sigma_{v2}^2}{c^2} \frac{\vec{\xi}^{(2)} - \vec{\xi}_{M_2}^{(2)}}{|\vec{\xi}^{(2)} - \vec{\xi}_{M_2}^{(2)}|}$$

Classification of the multiple deflection two point-mass gravitational lens models and application of catastrophe theory in lensing. Erdl, Helmut and Schneider, Peter https://ui.adsabs.harvard.edu/abs/1993A%26A...268..453E/abstract

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$\begin{split} & \text{For two SIS lenses:} \\ & \vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)} \right) = \frac{4\pi\sigma_{v1}^2}{c^2} \frac{\vec{\xi}^{(1)}}{|\vec{\xi}^{(1)}|}, \\ & \vec{\alpha}^{(2)} \left(\vec{\xi}^{(2)} \right) = \frac{4\pi\sigma_{v2}^2}{c^2} \frac{\vec{\xi}^{(2)} - \vec{\xi}_{M_2}^{(2)}}{|\vec{\xi}^{(2)} - \vec{\xi}_{M_2}^{(2)}|} \end{split}$$

Rearrange these equations:

$$\begin{split} \vec{y} &= \vec{x} - m_1 \frac{\vec{x}}{|\vec{x}|} - m_2 \frac{t^- \vec{\rho}}{|\vec{t} - \vec{\rho}|} \\ \vec{t} &= \vec{x} - m_1 \beta \frac{\vec{x}}{|\vec{x}|} \\ \text{where } m_1 &= D_{1s} \theta_1, \ m_2 = D_{2s} \theta_2, \ \beta = D_{12}/(D_2 D_{1s}), \\ \vec{\xi}^{(2)} &= D_2 \vec{t}, \ \vec{\xi}_{M_2}^{(2)} = D_2 \vec{\rho}, \ \vec{\xi}^{(1)} = D_1 \vec{x}, \ \vec{\eta} = D_s \vec{y}, \\ \theta_i &= \frac{4\pi \sigma_{vi}^2}{c^2} = 1^{''}.6 \left(\frac{\sigma_{vi}}{200km/s} \right)^2 \end{split}$$

Thus the Jacobian matrix of this two lenses system:

$$\begin{array}{l} A = \frac{\partial \vec{y}}{\partial \vec{x}} \\ \mu(\vec{x}) = \frac{1}{\det A(\vec{x})} \end{array}$$

Renkun Kuang

case 2) these two galaxies are at different redshifts

▶ Obesever, Lens1, Lens2 are on a line, e.g. $\vec{\rho} = (0,0)$, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational

Related Questions

case 2) these two galaxies are at different redshifts

▶ Obesever, Lens1, Lens2 are on a line, e.g. $\vec{\rho}=(0,0)$, and $D_1=1, D_2=1.2, D_s=2$

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (0.8,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (0.8,0)$$
, and $D_1 = 1, D_2 = 1.2, D_s = 2$

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (0.8,0)$$
, and $D_1 = 1, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (0.8,0)$$
, and $D_1 = 1, D_2 = 1.8, D_s = 2$

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

 $ightharpoonup ec{
ho} = (0.8, 0)$, and $D_1 = 1, D_2 = 1.96, D_s = 2$

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightarrow$$
 $ec{
ho} = (0.8,0)$, and $D_1 = 0.5, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0) (0.8.0.0) and a.: 200.200 in km/s

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (0.8, 0)$$
, and $D_1 = 0.2, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(2.0.0.0) and \u03c3.: 200.200 in km/s

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 1, D_2 = 1.2, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(2.0.0.0) and \u03c3.: 200.200 in km/s and the corresponding Caustics(red) on source plane

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 1, D_2 = 1.4, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(2.0.0.0) and \u03c3.: 200.200 in km/s and the corresponding Caustics(red) on source plane

GravLens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 1, D_2 = 1.6, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(2.0.0.0) and \u03c3.: 200.200 in km/s and the corresponding Caustics(red) on source plane

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 1, D_2 = 1.8, D_s = 2$

-1

-2

-1 0 1 x (arcsec)

and the corresponding Caustics(red) on source plane

1

Leng 2 at Dd/Ds = 0.90

Lens1 at Dd/Ds = 0.50 (closer to the observer)

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(2.0.0.0) and α.: 200.200 in km/s

Grayl ens

Renkun Kuang

Histor

Gravitational
Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 1, D_2 = 1.96, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0,0.0),(2.0,0.0) and σ_v: 200,200 in km/s and the corresponding Caustics(red) on source plane and the corresponding Caustics(red) on source plane 0.6 0.4 ens2 at Dd/Ds = 0.98 0.2 y (arcsec) y (arcsec) 0.0 Lens1 at Dd/Ds = 0.50 (closer to the observer) -0.2-1-0.4-2 -0.6-1 0.0 0.2 0.4 0.6 0.8 1.0 x (arcsec) x (arcsec)

GravLens

Renkun Kuang

Histor

Gravitational

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 0.2, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 0.2, D_2 = 1.6, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (2,0)$$
, and $D_1 = 0.2, D_2 = 1.8, D_s = 2$

x (arcsec)

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0) (2.0.0.0) and a.: 200.200 in km/s and the corresponding Caustics(red) on source plane and the corresponding Caustics(red) on source plane 0.4 0.3 3 -0.2 2 0.1 Lens2 at DO/Ds = 0.90y (arcsec) y (arcsec) 0.0 -0.1Lens1 at Dd/Ds = 0.10 -1(closer to the observer -0.2-2 --0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

x (arcsec)

GravLens

Renkun Kuang

Histor

Gravitational

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (3,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(3.0.0.0) and \u03c3.: 200.200 in km/s

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (3,0)$$
, and $D_1 = 1, D_2 = 1.4, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0) (3.0.0.0) and a.: 200.200 in km/s

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (3,0)$$
, and $D_1 = 1, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (3,0)$$
, and $D_1 = 1, D_2 = 1.8, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (3,0)$$
, and $D_1 = 0.2, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (3,0)$$
, and $D_1 = 0.2, D_2 = 1.8, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (3,0)$$
, and $D_1 = 0.5, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0) (3.0.0.0) and a.: 200.200 in km/s and the corresponding Caustics(red) on source plane

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (4,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(4.0.0.0) and \u03c3.: 200.200 in km/s

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (6,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(6.0.0.0) and \u03c3.: 200.200 in km/s

Gravl ens

Renkun Kuang

case 2) these two galaxies are at different redshifts

$$ightharpoonup ec{
ho} = (8,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

The Critical Curves(blue) of two SIS lens(green) located at different redshift loc: (0.0.0.0),(8.0.0.0) and \u03c3.: 200.200 in km/s

GravLens

Renkun Kuang

Gravitational Lensing Applications

- ► Cosmic telescopes: distant, faint objects observation
- ▶ 2-d mass distribution of lenses, dark matter
- Hubble constant, cosmological constant, density parameter
- **....**

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Applications

The End, Thanks!

- https://lacosmo.com/DeflectionOfLight/index.html
- ► The Mathematical Theory of Relativity, Arthur Stanley Eddington (P101)
- http://web.mit.edu/6.055/old/S2009/notes/bending-oflight.pdf
- https://www.mathpages.com/rr/s6-03/6-03.htm Gravitation and Spacetime, Hans C. Ohanian, Remo Ruffini. – 3rd ed
- https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity
- Lectures On Gravitational Lensing, Narayan & Bartelmann
- https://www.cfa.harvard.edu/ dfabricant/huchra/ay202/lectures/lecture12.pdf
- https://web.stanford.edu/ oas/SI/SRGR/notes/ SchwarzschildSolution.pdf
-

Appendix-1, Newtonian prediction

$$\begin{split} \phi(b,z) &= -\frac{GM}{(b^2+z^2)^{1/2}} \\ \alpha &= \frac{v_b}{c} = \frac{1}{c} \int \frac{d\Phi}{db} dt = \frac{1}{c^2} \int \frac{d\Phi}{db} dl \\ &\approx \frac{1}{c^2} \int \frac{d\Phi}{db} dz \\ &= \frac{GMb}{c^2} \int \frac{dz}{(b^2+z^2)^{3/2}} \\ &= \frac{GMb}{c^2} \left[\frac{z}{b^2 \sqrt{b^2+z^2}} \right]_{-\infty}^{+\infty} \\ &= \frac{2GM}{c^2b} \end{split}$$

b: impact factor

Gravitational potential simplify the calculation by integrating not along the deflected ray but along z axis

GravLens

Renkun Kuang

History

Gravitational
ensing Theories

elated Questic