⑩日本国特許庁(JP)

①特許出顧公開

⑫公開特許公報(A)

平4-139182

17

@Int.Cl.5

識別記号

庁内整理番号

❸公開 平成4年(1992)5月13日

C 07 D 405/12 A 61 K 31/40

207 ĀB J AE D 8829-4C 7475-4C 7475-4C

//(C 07 D 405/12 207:00

303:00)

7019-4C 7822-4C

審査請求 未請求 請求項の数 2 (全11頁)

50発明の名称

エポキシスクシナム酸誘導体およびその中間体

願 平2-261657 ②特

顧 平2(1990)9月29日 金出

充 個発 明 者 村 H 駬 明 幸 @発 者 角 谷 重 伽発 明 者 横 尾 千 樳 個発 明 者 畑 Ш 男 创出 顧 大正製藥株式会社 東京都豊島区高田3丁目24番1号 大正製薬株式会社内 東京都豊島区高田3丁目24番1号 大正製薬株式会社内 東京都豊島区高田3丁目24番1号 大正製薬株式会补内 東京都豊島区高田3丁目24番1号 大正製薬株式会社内

東京都豊島区高田3丁目24番1号

個代 理 弁理士 北川

1. 発明の名称

エポキシスクシナム酸誘導体およびその 中間体

2. 特許請求の範囲

(1) 式

(式中、 R 1は炭素原子数 1~10のアルキル基、 フェニル基またはベンジル基を示す。)で表わさ れるエポキシスクシナム酸誘導体およびその選挙 的に許容できる場。

(2) 式

(式中、 Riは炭素原子数1~10のアルキル基、 フェニル基またはベンジル基を示し、Rittカルボ キシル基の保護基を示す。)で表わされるエポキ シスクシナム酸誘導体。

3. 発明の詳細な説明

産業上の利用分野

本発明は医薬として有用なエポキシスクシナム 散誘導体に関し、更に詳しくはカテプシンBを特 異的に阻害するエポキシスクシナム整誘導体およ びその製造中間体に関する。

従来の技術

システインプロテアーゼに属するカルシウム依 存性中性プロテアーゼ(CANP)、カテプシン B、 カテプシンしなどは、 難病である筋ジストロ フィー症やジスタールミオパテーなどの筋崩壊疾 患において筋構造蛋白の分解に関与していると言 われている。

従来、数種のシスティンプロテアーゼの活性を 阻害する化合物として、N~(L~3~トランス~

特開平4-139182(2)

カルボキシオキシラン - 2 - カルボニル | - L - ロイシルアグマチン (アグリカルチュアル アンドバイオロジカル ケミストリー (Agric. Biol. Ches...), 第42巻、第528~528頁 (1978年)]、エボキシコハク酸ジベプチド誘導体 (特開昭 55 - 115878号)など、いくつかのエボキシコハク酸誘導体が知られている。また、最近に至り、当該システインプロテアーゼの一種であるカテプシンBのみを特異的に阻害するエボキシコハク酸誘導体が見いだされている (特顧平1 - 124751号、特顧平1 - 124752号)。

登明が解決しようとする際屋

本発明の自的は、システインプロテアーゼの一種、特にカテプシンBに対して従来知られている 化合物に比べより特異的かつ強力な阻害活性を有 する物質を提供することにある。

健題を解決するための手段

本発明者らはエポキシ基を有する化合物について観意検討した結果、カテプシンBに対して従来知られているエポキシコハク酸誘導体よりも特異

本発明において、炭素原子数1~10のアルキル ル基とは産賃状、分枝類状又は環状のアルキル であり、たとえばメチル基、エチル基、ローブチル基、ソプロヘキシルル また、カルボキシル あの保護器とはペプで ある。また、カルボキシル あの保護器とはペプシル また、カルボキシル あった はペプシル また、カルボキシル あった はペインシル また、カルボキシル あった はペインシル また、カルボキシル あった はペインシル エチル器、パラニトロペンシル が、 リ メトキシベンジル 器、パラニト ロペンジル が、 アプチル器、ペンツとドリル器、ドリメチルシリル ルス、メチル器、エチル器などである。

本発明において薬学的に許容される塩とは、たとえばナトリウム、カリウム、マグネシウム、アンモニウムなどを含む無機塩基との塩、トリエチルアミン、シクロヘキシルアミン、アルギニン、リジンなどの有機塩基や塩基性アミノ酸との塩、砂酸、塩酸、燐酸などの鉱酸との塩、または酢酸、乳酸、酒石酸、フマール酸、マレイン酸、グルタミン酸、アスパラギン酸などの有機酸や酸性アミノ酸との塩が挙げられる。

性が高くかつ強力な阻害作用を有するエポキシスクシナム酸誘導体を見いだし、本発明を完成した。 すなわち、本発明は、式!

(式中、R¹は炭素原子敷 1~10のアルキル基、フェニル基またはペンジル基を示す。)で表わされるエポキシスクシナム酸原導体およびその裏学的に許容できる塩である。

更に他の本発明は、式!の化合物の製造中間体である式!!

(式中、Rid前記と同意職、Ridカルボキシル名の保護基を示す。)で表わされるエポキシスクシナム酸誘導体である。

本発明化合物は、たとえば次のような方法で製造することができる(式中、R¹およびR²は前記と同意鏡であり、R²はR²と同一または異なったカルボキシル裏の保護器を示す。)。

特間平4-139182(2)

プチド合成化学の分野における常法により製造したジペプチド誘導体 VII と式 VI で示される化合物
1,0~2.0モル当量を、クロロホルム、酢酸エチル、
N・N・ジメチルホルムアミドなどの溶館中、 N・N・ジックロヘキシルカルボジイミド、 N・エチルー N・ー(3 ージメチルアミノプロピル)カルボジイミド塩酸塩などのカルボジイミド化合物を用いる方法、混合酸無水物法、酸ハライド法、酸アジド法、活性エステル法などペプチド合成化学の分野で透常用いられる方法、条件を用いて紹合し、式 II で示される本発明化合物を得る。

工程 d: 式 II で示される化合物のカルボキシル 基の保護基を、工程 b と同様な方法、条件により 除去し、式 I で示される本発明化合物を得る。

なお、式IVで示されるアミン体および式 VIIで示されるジペプチド誘導体は、塩酸、硫酸、p~トルエンスルホン酸などとの塩を用いてもよく、この場合にはトリエチルアミン、N・N-ジインプロビルエチルアミン、N-メチルモルフォリン、ビリジン等の塩基の存在下に反応を行うことができ

工程 a: ケミカル ファーマシューティカル ブルチン (Ches. Phers. Bull.) 、第35巻、第1098~1104頁 (1987年) に記載の方法に準じて製造することができる、式田で示されるエポキシコハク散誘導体を、クロロホルム、酢酸エチル、N,Nージメチルホルムアミドなどの溶解中、式IVで示されるアミン体1.0~2.0モル単量と反応させ、式 Vで示される化合物を得る。

工程 c: イソロイシンおよびプロリンより、ペ

δ.

発明の効果

このようにして得られた式」の化合物は、システインプロテアーゼに属するパパインおよびCANPをほとんど租書せず、カテブシンBを特異的かつ強力に阻害した。

式!の化合物を筋崩壊疾患の治療に用いるためには、本発明化合物は錠剤、丸剤、カブセル剤、 顆粒剤、注射剤などの投与製剤で、経口的または 非経口的に投与される。上記の各製剤は慣用的な 製剤技術にしたがって製造され、また通常の増量 剤、結合剤、pH舗節剤、溶解剤などの暴加剤を 素加することができる。

式 I の化合物の治療患者に対する投与量は、患者の年齢、疾病の程類および状態などにより変動し得るが、適常、 1 日あたり 1 0 ~ 2 0 0 0 mg を 1 ~ 数回に分け投与することができる。

以下に試験例を示す。

試験例

下記の方法により、パパイン、CANPおよび

特期平4-139182 (4)

カテプシン Bに対する阻害活性を測定し、その結 品を第1表に示した。

試験例1 [パパイン阻害活性]

A.J. Barrettら, ザ パイオケミカル ジャーナル (Blockes, J.), 第201巻、第188頁(1282年)の方 法により別定した。

2.5 m M 2 - メルカプトエタノール、1 m M エチレンジアミン四酢酸ナトリウム、0.1 M リン酸ナトリウムーカリウム緩衝液(p H 6.8)、 6.1 M ブリッジー3 5 (ナカライテスク製)、1%ジメチルスルホキシドおよび穏々濃度の被験業を含む反応液 0.95 m Iにパパイン溶液(シグマ社製) 2.5 μ I を加え、40℃で3 分間プレインキュペートした後、200 μ M ペンジルオキシカルポニルー L ー フェニルアラニル・1 に マブチド研究所(株)製 3.25 μ I 加えて反応を開始し、40℃で1 0 分間インキュペートした後、100 m M クロロ酢酸ナトリウムを含む100 a M 酢酸ナトリウム 経衝液(p H 4.3) 1 m I を加えて反応を停止させた。滋養した7 ー アミノー4 ーメチルクマ

クロロ酢酸をμ C A N P を加える前に添加して同様に測定したプランク値を登し引き、残存活性を求めた。 被験業を加えないで同様に測定した値を用いて算出した阻害率より 5 0 % 阻害に必要な被験業の連度を集出し 1 C s = 値として示した。

試験例3[カテプシン8阻害活性]

A.J.Barrattら, ザ バイオケミカル ジャーナル (Bioches.J.), 第201巻, 第189頁(1982年)の方 法により別定した。

2.5 mM 2 - メルカプトエタノール、1 mM エチレンジアミン四酢酸ナトリウム、0.1 M リン酸ナトリウムーカリウム緩衝液(pH 5.8)、0.1 M ブリッジー3 5 (ナカライテスク製)、1 M ジメチルスルホキシドおよび種々温度の故験薬を含む反応液 0.95 mlに 200 mMのカテプシン B 溶液(シグマ社製) 25 μ l を加え、40℃で3分間プレインキュベートした後、200 μ Mペンジルオキシカルボニルーしーフェニルアラニルーしーアルギニン 4 ーメチルクマリールー7 - アミド[ペプチド研究所(株)型] 25 μ l 加えて反応を開始した。40℃で10分間インキュ

リンの受光を島津登光光度計RF-5000を用いて励起 波長180mm、 蛍光波長440mmで割定した。 被映業 を加えないで同様に割定した値を用いて算出した 阻害率より、50%阻害に必要な被映第の濃度を算 出し! C sm値として示した。

試験例2 [CANP阻害活性]

\$.1shioraら、ザージャーナル オブ バイオケミストリー (J.8ioches.)、第84卷、第125頁(1978年)の方法により割定した。

25mM 2 ーメルカプドエタノール、5mM 塩化カルシウム、0.1Mグリセロリン酸-塩酸種衝液(p H 7.5)、0.24%アルカリ変性カゼイン、1%ジメチルスルホ中シドおよび種々濃度の被験薬を含む反応液0.45mlを30℃で5分間プレインキュペートした後、5μgのμ C A N P (カルパイン)、チカライテスク製)50μlを加えて反応を開始し、正確に30℃で20分間インキュペートした後、10%トリクロロ酢酸0.5mlを加えて反応を停止させた。 意識で60分間放復した後、3000×gで5分間速心分離し、上清の280mmにおける吸光度を割定した。10%トリ

ベートした後、108mM クロロ酢酸ナトリウムを含む100mM 酢酸ナトリウム種樹液(pH4.3) 1 mlを加えて反応を停止させた。 遊離した 7・一アミノー4 ーメチルクマリンの蛍光を島津蛍光光度計 RF-5060を用いて励起波長380nm、蛍光波長440nmで測定した。 被験薬を加えないで同様に測定した値を用いて算出した阻害率より、50% 阻害に必要な被験薬の濃度を算出し I C sm値として示した。

第 1 表 阻害活性領 [IC₈₈ (nM)]

被執棄 (化合物番号)	パパイン	CANP .	カテプシン8
1 d	57.400	> 2 0 0. 0 0 0	4 2
8 d	26.000	> 2 0 0. 0 0 0	3 2
対照真	1 8.000	> 2 0 0. 0 0 0	120

(注)

表中の被験案は、下記実施例で得られる化合物を示す。

対烈楽:Nー(Lー3ートランスーエトキシカルポニルオキシランー

2ーカルボニル) ーレーイソロイシルーレープロリン

(特職平1-124753号に記載の化合物)

特開平4-139182(6)

支货例

以下、実施例により本発明を更に詳細に説明する。

実 热 例 1

(a) しゃトランス・エボキシコハク酸ペンジル・p・n・に ロフェニルエステル 2.0g (5.8m M) を酢酸エチル 13m (に溶解し、水冷接件下、n・プロピルアミン 413mg(7.0m M) の酢酸エチル2m1溶液を滴下した。 氷冷下1時間、 宮塩にて一夜接件した後、酢酸エチル 85m 1 を加え、 1 規定アンモニア水、水、 5 米塩酸水、水、 飽和食塩水、 各100m1で順次洗った。 有機層を無水碳酸マグネシウムで乾燥後、濾過し、減圧留去した。 残渣をシリカゲルカラムクロマトグラフィー (溶魔液:酢酸エチル: n・ヘキサン=1: 2) に付し、し・3・トランス・n・プロピルカルバモイルオキシラン・2・カルボン酸ペンジルエステル 1.08gを得た。

N M R (DMSO~d_B) δ (ppp); 0,83 (3 H, t, J=7, 3 Hz).

1. 43 (2 H, tq. J=7. 3. 7. 3 Hz).

1.06(2H, dt, J=5.4.7.1Hz).

3.46 (1H.d.J=1.8Hz). 3.53 (1H.d.J=1.8Hz).

8. 34 (TH. t. J=5. 4Hz).

12.50~ 14.35 (1H. broad)

1 R v (8rcm-1;

3218, 2964, 1768, 1651, 1582, 1455,

1382. 1348. 1274. 1242. 1220. 1151.

984. 894

(c) しー3ートランス・nープロビルカルバモイルオキシラン・2ーカルボン酸 500 ag (2.9 aM)、 しーイソロイシルーしープロリンベンジルエステル塩酸塩1.04g(2.9 aM)、 Nーヒドロキシスクシン・イミド 265 ag (3.2 aM) および1ーエチル・3ー(3ージメチルアミノプロビル) カルボジイミド塩酸塩 60 9 ag (2.2 aM) を N・Nージメチルホルムアミド 13 alに溶解し、氷冷授件下、 Nーメチルモルホリン 29 3 ag (2.9 aM) の N・Nージメチルホルムアミド 2 al溶液を滴下した。氷冷下1時間、 室温にて一夜 操持した後、酢酸エチルとベンゼン4:1 の混合 3. 85 (2H, 6t, J=5, 4, 7, 2Hz).

3.63 (1H. d. J=1.8Hz). 3.68 (1H. d. J=1.8Hz).

5. 20 (2H. s), 7. 39 (5H. s).

8.39 (1H. t. J=5.4Hz)

IR v EBr cm -1;

3284. 1749, 1881. 1588, 1346, 1282,

1213. 1208. 898

(b) 16%パラジウム炭素 28 agをメタノール 20 al に 無濁し、 しー 3 ートランス・n ープロピルカルパモイルオキシラン・ 2 ーカルポン酸ペンジルエステル 85 t ag (1, 2 all) を加えた。 水素気流下、 2 時間 接拝した後、パラジウム炭素を適去し、メタノールで洗った。 建液および洗液を合わせ減圧 留去し、 しー 3 ートランス・n ープロピルカルパモイルオキシラン・ 2 ーカルポン酸 550 ag を得た。

N M R (0880-de) 5 (ppm);

0.84(3H.t.J=7.3Hz),

1. 43 (2H. tq. J=7. 3. 7. 3 Hz).

溶液 150ml を加え、5 % 塩酸水、水、飽和食膏水、水、飽和食塩水、各 150mlで順次洗った。有機層を無水硫酸マグネシウムで乾燥後、濾過し、減圧留去した。残態をシリカゲルカラムクロマトグラフィー(溶腫液:酢酸エチル: n - ヘキサン= 4:1)に付し、N - (し - 3 - トランス - n - プロピルカルバモイルオキシラン - 2 - カルボニル) - しーイソロイシル - しープロリンベンジルエステル 8 3 0 mg を 得た。

NMR (DMSO-ds) & (ppm);

0.72~ 0.88 (9H.m), 0.96~ 1.22 (1H.m),

1.36~ 1.58(1H.m).

1.42(2H, tq, J=7.3, 7.3Hz),

1. 65~ 2. 00 (4H. m). 2. 10~ 2. 28 (1H. m).

2.94~ 3.12 (2H. m), 2.47 (1H. d. J=1.8Hz),

1.52~ 1.85(2H.m). 1.85(1H.d.J=1.8Hz).

4. 25~ 4. 49 (2H. m). 5. 12 (2H. m). 7. 36 (5H. m).

8.32(1H.t.J=5.7Hz). 8.75(1H.d.J=8.4Hz)

IR v CHClg cg -1;

特別平4-139182(6)

2969. 1742. 1886. 1645. 1528. 1447. 1276. 1238. 1174. 898 MS (FAB) ; m/z:474(ME*)

(d) 10% パラジウム炭素 20mgをメタノール 20mlに 肥満し、N~(L~3~トランス~n~プロピルカ ルパモイルオキシラン~2~カルポニル)~L~イ ソロイシル~L~プロリンペンジルエステル 880 mg(1.5ml) を加えた。水素気波下、1 時間接件した 後、パラジウム炭素を減去し、メタノールで洗っ た。違液および洗液を合わせ減圧智玉し、N~(L ~3~トランス~n~プロピルカルパモイルオキ シラン~2~カルポニル)~L~イソロイシル~L ~プロリン(化合物1 d) 800mgを得た。

NMR (DMSO-da) & (ppm);

0. 84 (8H, t, J=?. 3Hz). 0. 92 (3H, d, J=6. 8Hz).

0.96~ 1.20(1H.m), 1.38~ 1.58(1H.m).

1. 42 (2H. tq. J=7. 3. 7. 3Hz).

1.67~ 2.01 (4H.m). 2.05~ 2.21 (1H.m).

2. 95~ 3. 14 (2 H. m), 3. 48 (1 H. d. J=1, 8 Hz).

実施例 1 e に関示した操作および反応条件に単拠して、 n ープロピルアミンの代わりにそれぞれエチルアミン、 イソプロピルアミン、 t ープチルアミン、 n ーブチルアミン、 n ー へ チルアミン、 n ー へ ブチルアミン、 n ー へ ブチルアミン、 n ー へ ブチルアミン、 マニリンまたはサイクロへキシルアミンそ用いて、下記第2表に示す化合物を得た。

第 2 表

化合物 番号	R [‡]	NMR (DMSO-de) & (ppm)	1 R (cm ⁻¹)
2 a	CHªCH≅-	1, 14 (3H, t, J=7, 3Hz) 3, 21 — 2, 38 (2H, m) 3, 51 (1B, d, J=1, 9Hz) 3, 99 (1H, d, J=1, 9Hz) 5, 17 (1H, d, J=12, 1Hz) 5, 26 (1H, d, J=12, 1Hz) 5, 90 — 6, 15 (1H, broad) 7, 37 (5H, S)	(KBr) 3285 1748 1656 1572 1384 1340 1275 1223 1207 894
ас	(CH ₉) ₂ CH-	1. 12 (3H, d, J=6. 5Hz) 1. 17 (2H, d, J=6. 5Hz) 3. 49 (1H, d, J=1. 9Hz) 3. 87 (1H, d, J=1. 9Hz) 3. 93 ~4. 18 (1H, m) 5. 17 (1H, d, J=12. 1Hz) 5. 26 (1H, d, J=12. 1Hz) 5. 75 ~5. 95 (1H, broad) 7. 37 (5H, s)	(KBr) 3286 1749 1656 1561 1352 1268 1232 1206 898

第2表(統合)

	(#467			
4 2	{CH₃} 3C-	1, 27 (9H, s) 2, 63 (1H, d, J=1, 9Hz) 2, 64 (1H, d, J=1, 9Hz) 5, 16 (1H, d, J=12, 3Hz) 5, 23 (1H, d, J=12, 3Hz) 7, 28~7, 53 (5H, s) 8, 98 (1H, bs)	3305 2971 1752 1668 1551 1457 1365 1279 1217 1192 1603 887	(neat)
5 a	(CH³) ² CHCH²-	0.84 (5M, d, J=8.7Hz) 1.70 (1K, tqq, J=8.7, 6.7, 8.7Hz) 2.93 (2H, ddd, J=5.7, 5.8, 1.0Hz) 3.67 (1H, d, J=1.8Hz) 3.68 (1H, d, J=1.8Hz) 5.17 (1H, d, J=12.4Hz) 5.24 (1H, d, J=12.4Hz) 7.40 (5H, 8) 8.42 (1H, t, J=5.8Hz)	3274 1749 1685 1576 1455 1282 1339 1268 1233 1206 1164 988 893	(KBr)
6 a	CH3 (CH2) 3-	0. 87 (3H, t, J=7. 1Hz) 1. 14~1. 48 (4H, m) 3. 09 (2H, dx, J=5. 6, 6, 6Hz) 3. 63 (1H, d, J=1. 8Hz) 5. 18 (1H, d, J=1. 8Hz) 5. 18 (1H, d, J=12. 8Hz) 5. 24 (1H, d, J=12. 8Hz) 7. 40 (5H, s) 8. 39 (1H, t, J=5. 6Hz)	3287 1751 1657 1558 1347 1276 1256 1230 1208 896	(KBr)

特開平4-139182(7)

第2表(数き)

3 2 24 (1				
7 .	(CH _B) _B CH (CH _B) _B -	0.45 (5E, 4, J=6, 5E) (.21 (2E, 41, 5, 6, 7, 182) (.55 (1E, 10a, J=5, 4, 6, 6 5, 5E) (.55 (1E, 41, J=5, 2, 7, 182) (.52 (1E, 4, J=1, 3E2) (.57 (1E, 4, J=1, 3E2) (.57 (1E, 4, J=1, 3E2) (.57 (1E, 4, J=1, 3E2) (.57 (1E, 4, J=5, 3E2)	2276 1745 1655 1675 1458 1385 1347 1278 1725 1703	(Ibr)
8.8	CS ₉ (CM ₂) 4-	6. 86 (JH. t. J=6. 7Hz) 1. 12-1. 52 (6H. m) 2. 61-2. 15 (2H. m) 3. 62 (1H. 6. J=1. 8Hz) 3. 65 (1H. 6. J=1. 8Hz) 5. 17 (1H. 6. J=12. 7Hz) 5. 24 (1H. 6. J=12. 7Hz) 1. 49 (5H. s) 6. 29 (1H. t. J=5. 6Hz)	3917 2827 1749 1855 1872 1458 1875 1842 1284 1231 1188 868	(R\$r)
9 a	C# ₉ (C# ₂) ₅ -	0.65 (3H. t, J=5, 5Hz) 1.14~1.50 (5H. m) 3.06 (7H. 6t, J=5, 5, 6, 5Hz) 3.06 (7H. 6t, J=1, 6Hz) 3.07 (1H. 6, J=1, 6Hz) 5.72 (2H. 6) 7.35 (5H. 6) 8.39 (1H. t, J=5, 5Hz)	\$285 2925 1750 1757 1658 1458 1458 1292 1288 1198 1198 1097	(EBr)

第2表(統合)

10a	СН _Э (СН _Е) в	0. 85 (2H, t, J=5. 5Hz) 1. 10~1. 52 (10H, a) 3. 88 (2H, dt, J=5. 4, 6. 5Hz) 3. 82 (1H, d, J=1. 8Hz) 3. 87 (1H, d, J=1. 8Hz) 5. 20 (2H, a) 7. 38 (5H, c) 8. 38 (1H, t, J=5. 4Hz)	3322 2925 1747 1851 1588 1489 1278 1343 1258 1211 1115 982	(Kår)
110	PhcH _E -	3. 71 (1H. d. J=1. SHz) 3. 74 (1H. d. J=1. SHz) 4. 31 (2H. d. J=5. SHz) 5. 17 (1H. d. J=5. SHz) 5. 24 (1H. d. J=12. 4Hz) 7. 17~7. 50 (10H. a) 8. 93 (1H. t. J=5. SHz)	3288 1747 1858 1562 1456 1342 1264 1232 1191 902	(KBr)
128	Ph-	2. 82 (1H. d. J=1, 8Hz) 3. 87 (1H. d. J=1, 8Hz) 5. 23 (2H. z) 7. 05~7. 16 (1H. m) 7. 27~7. 47 (2H. m) 7. 56~7. 87 (2H. m) 10. 48 (1H. bz)	3263 3058 1758 1659 1847 1345 1234 1237 886	(KBr)

第2表(観き)

13 a CeH41-	1. 05~1. 80 (10H, m) 2. 45~2. 55 (1H, m) 3. 82 (1H, d, J=1: 8Hz) 3. 87 (1H, d, J=1. 8Hz) 5. 18 (1H, d, J=12. 3Hz)	3276 (KBr) 2924 1749 1656 1562
	5, 24 (1H, d, J=12, 3Hz) 7, 40 (5H, s) 8, 84 (1H, d, J=7, 9Hz)	1345 1227 1204 497

祭 3 表

化合物 香号	R1	N M R (DMS0-de) 5 (ppm)	iR (cs ^{~1})
2 5	CK9CH2-	1. 83 (3H. t. J=7, 2Hz) 3. 12 (2H. dq, J=5, 5, 7, 2Hz) 3. 47 (1H. d. J=1, 8Hz) 2. 51 (1H. d. J=1, 8Hz) 8. 35 (1H. t. J=5, 5Hz) 13. 25~12, 70 (1H. broad)	8320 (KBr) 2978 1769 1651 1579 1382 1382 1382
3 Ь	(CH3) 2CH-	1. 07 (5H. 6. J=8. BH2) 2. 46 (1H. 6, J=1. BH2) 3. 50 (1H. 6, J=1. BH2) 2. 75 ~ 3. 98 (1H. a) 8. 27 (1H. 6, J=7. 3H2) 12. 80 ~ 13. 98 (1B, brosd)	3233 (Neet) 2978 3742 1662 1558 1454 1235 897
4 b	(CK ₉) ₉ C-	1, 27 (9H, s) 2, 43 (1H, d, J=1, 8Hz) 3, 54 (1H, d, J=1, 8Hz) 8, 02 (1H, bs) 13, 05~13, 75 (1H, broad)	3347 (KBr) 2978 1737 1346 1562 1458 1395 1367 1328 1224 1216

実施例 1 b に関示した操作および反応条件に準拠して、第 2 表の 2 a ~ 1 3 a の化合物より、それぞれ対応する下記第 3 表に示す化合物を得た。

特開平4-139182(8)

第3表(続き)

5 b	(CH ₂) ₂ CRCH ₂ -	8. 84 (6H, d, J=5, 5Hz) 1. 71 (1H, 1qq, J=5, 4, 6, 6, 8, 8, 6Hz) 2. 93 (2H, dd, J=5, 5, 5, 4Hz) 2. 46 (1H, d, J=1, 9Hz) 8. 57 (1H, d, J=1, 9Hz) 8. 26 (1H, 1, J=5, 5Hz) 13. 20 ~ 19, 75 (1H, broad)	3316 1733 1645 1563 1474 1326 1269 1210 993	(RBr)
6 b	си2 (сн5) 3-	0. 87 (3H, t, J=7, OBz) 1. 17~1. 50 (4H, s) 2. 09 (2H, 6t, J=5, 5, 6, 4Hz) 2. 48 (1H, d, J=1, 4Hz) 3. 52 (1H, d, J=1, 9Hz) 5. 33 (1H, t, J=5, 5Hz) 13. 46 (1H, bs)	3325 3277 2862 1742 1662 1574 1454 1385 1213 1242 892	(EBr)
7 b	(CH ⁸) ² CH (CH ²) ² −	0.87 (SH. d. J=8.6Hz) 1.37 (2H, dt. J=5.8.7.5Hz) 1.57 (1H, tqq, J=5.8, 6.6Hz) 3.11 (2H, dt. J=5.5.7.5Hz) 3.45 (1H, d. J=1.9Hz) 3.52 (1H, d. J=1.9Hz) 8.31 (1H, t. J=5.5Hz) 13.20~13.75 (1H, broad)	3335 3273 2960 1742 1861 1576 1454 1388 1211 1242 892	(KBr)

5 3 BK (6			
8 b	CR; (CH;) 4-	8. 68 (3B, 1, J=6, 7B2) 1. 12~1. 55 (6E, 1) 3. 65 (2E, 61, J=5, 5, 6, 7B2) 2. 45 (1B, 6, J=1, 6B2) 3. 13 (1B, 6, J=1, 6B2) 3. 34 (1B, 1, J=5, 5B2) 13. 26~13, 65 (1B, brasd)	3339 (KBr) 3287 2882 2882 1742 1719 1661 1827 1817 1446 1397 1281 1242 1113 495
9 b	CH ₂ (CH ₂) _b -	0. 86 (38, 1, 1=8, 582) 1. 12~1. 50 (8R, 8) 3. 83 (2R, 6t, 1=5, 5, 6, 582) 3. 65 (1R, 6, 1=1, 682) 3. 57 (1R, 6, 1=1, 682) 3. 57 (1R, 6, 1=1, 582) 12. 25~13, 50 (1R, broad)	3337 (KBr) 2264 2957 2930 1742 1742 1861 1861 1879 1455 1287 1145 1287 1145
1 O b	СН _э (СН ₂) _в -	0.86 (3H, 1. J=6.5Hz) 1.12~1.86 (10H, a) 2.86 (2H, dt. J=5.5, 5.5Hz) 2.45 (1H, dt. J=5.5Hz) 2.52 (1H, d. J=1.5Hz) 4.72 (1H, t. J=5.5Hz) 12.38~12.60 (1H, 5road)	9259 (KBr) 9221 (724 1663 1662 1576 1465 1332 1322 1225 #88

第3表(続き)

116	PbC H _Z -	3. 52 (1H. 6, J=1, 8H2) 3. 61 (1H. 6, J=1, 8H2) 4. 32 (2H. 6, J=5, 9H2) 7. 19~7. 29 (5H. m) 8. 89 (1H. c. J=5, 9H2) 13. 10~13, 80 (1H. broad)	3284 1745 1685 1588 1455 1388 1263 1288 891	(KBr)
125	Ph-	3. 62 (1H. d. J=1. 8Hz) 3. 75 (1H. d. J=1. 8Hz) 7. 92—7. 19 (1K. m) 7. 32—7. 43 (2H. m) 7. 55—7. 63 (2H. m) 18. 42 (1K. bz) 13. 90~14. 68 (1H. bros4)	3351 3270 1752 1731 1876 1805 1551 1446 1216	(EBr)
136	CeH: 1 -	1, 09~1. 98 (10H, m) 2, 41~2, 83 (1H, m) 3, 45 (1H, 4, J=1, 9Hz) 3, 53 (1H, 4, J=1, 9Hz) 6, 29 (1H, 4, J=7, 9Hz) 12, 15~12, 75 (1H, broad)	3305 2937 1728 1635 1576 1452 1332 1265 1220 1153 593 895	(181)

сом-сн-сом-н снсн₁ сн₂сн₃ RINOCO

实施例 音号	R1	NMR (DMS0-4e) & (pps)	il (cm ⁻¹)	MS (FAB) (M/2)
2 c	CH _B CH _B -	0. 78 (2H. t. J=7. 3Hz) 0. 86 (3H. d. J=6. 9Hz) 0. 96~1. 22 (7H. m) 1. 02 (3H. t. J=7. 2Hz) 1. 38~1. 12 (7H. m) 1. 88~1. 32 (5H. m) 3. 11 (7H. dq. J=5. 7. 7. 2Hz] 2. 45 (7H. d=1. 5Hz) 2. 52~3. 45 (2H. m) 2. 55 (7H. d. J=1. 5Hz) 4. 35~4. 44 (2H. m) 7. 36 (5H. m) 8. 35 (7H. t. J=5. 7Hz) 8. 77 (7H. d. J=6. 3Hz) 8. 77 (7H. d. J=6. 3Hz)	(KBr) 8292 2970 1746 1630 1546 1452 1273 1171 894	460 (MH*)
3 c	(CH ₄) ₂ CH-	0. 19 (3H. t. J=7. 4Hz) 0. 89 (3H. d. J=1. 8Hz) 0. 85~1. 25 (1H. m) 1. 97 (6H. d. J=6. 8Hz) 1. 33~1. 83 (1H. m) 1. 85~2. 24 (5H. m) 1. 85~2. 24 (5H. m) 3. 45 (1H. d. J=1. 8Hz) 3. 52~3. 98 (3H. m) 3. 65 (1H. d. J=1. 8Hz) 4. 33~4. 44 (2H. m) 5. 12 (2H. s) 7. 36 (8H. s) 8. 26 (1H. d. J=1. 7Hz) 8. 73 (1H. d. J=6. 4Hz)	(KBr) 3282 2871 1747 1630 1541 1456 1277 1177 896	474 (MH*)

実施例1cに開示した操作および反応条件に単 拠して、 第3表の2b~13bの化合物より、そ

れぞれ対応する下記第4表に示す化合物を得た。 - 728 -

特開平4-139182 (9)

第4表(続き)

		G. 78 (3H. t. 1-7, 4H2)	(IBr)	488 (RB.)
	<u> </u>	0. 65 (3H, 4, 4=6, 7B2)	3262	
	1	4. 15~1. 18 (15. a)	2569 1747	. 1
		1. 25 (5E, 5)		`]
4 c	(CH3) *C-	1. 11~1. 60 (18. a)	1687	1
	i .	1. 65~2. 60 (48. 0)	1638	!
ł	}	2, 10~1. 14 (18, m)	1525	1
	1	3. 41 (1K, 4, J=1, 482)	1455	1
1	1	2. 52~2. 68 (12. m)	1265	1
	1	3. 63 (1K. 6. J=1. 8B2)	1278	1
		3, 71~3, 65 (18, m)	1216]
		4. 35~4. 47 (28. m)	1178	1
		5. 11 (2H, a)	854	1
		7, 36 (5H, s)		- [
		8. 82 (18. bs)		1
		8. 72 (18. 4. J=8. 4H2)		
		0. 74~8. 88 (128. m)	(ter)	488 (MH*)
		0. 97~1, 29 (18. a)	3783	1
		1. 37~1. 57 (1E, e)	2962	
		1. 58~2. 00 (5H, m)	1747	1
	ł	2. 69~2. 10 (1H. m)	1621	1
		2. 77~1. 05 (2H. n)	1541	
5 c	(CHa) aCHCHa-	3. 51 (18, 4, J=1, 8Hz)	1455	
		3, 54~3, 69 (1H, m)	1286	i i
		3. 86 (18, 4, J=1, 8Hz)	1352	
1	į.	3. 71~3. 65 (1H. a)	1276	1 :
		4, 84~ 5, 80 (2H, m)	1171	1
ł	l	5. 12 (2 H, s)	908	1 :
l	1	7. 36 (5H, s)		1
ľ	1	8. 32 (18. t. J=6. 8Hz)		i i
i	I	8. 78 (1H, 4, J=8, 4Hz)	j	

第4章(数き

	4.6.)			
đc	CB _p (CR _p) _p -	8, 79 (3E, 1, J=7, 3Hz) 8, 65 (3E, 6, J=6, 8Hz) 9, 65 (3E, 1, J=6, 8Hz) 9, 95 ~ 1, 69 (4E, 0) 1, 65 ~ 2, 92 (4E, 0) 2, 18 ~ 2, 30 (1H, 0) 2, 52 ~ 3, 18 (2H, 0) 3, 47 (1E, 6, J=1, 8Hz) 3, 52 ~ 3, 59 (1E, 0) 3, 65 (1H, 6, J=1, 8Hz) 3, 70 ~ 3, 65 (1E, 0) 4, 32 ~ 4, 59 (2E, 0) 5, 12 (3E, 0) 7, 37 (5E, 0) 8, 17 (1E, 1, J=5, 6Hz) 8, 76 (1E, 6, J=6, 5Hz) 8	(CHC1 ₉) 2415 3912 2966 1742 1684 1842 1520 1448 1384 1353 1276 1297 1174 1107	488 (MH*)
7 c	(CH ₉) ₉ CH (CH ₂) ₂ -	8, 72~6, 93 (12H, m) 8, 94~1, 20 (1H, m) 1, 23~1, 27 (2H, m) 1, 23~1, 64 (2H, m) 1, 28~1, 64 (2H, m) 2, 10~2, 29 (1H, m) 2, 00~3, 20 (2H, m) 3, 46 (1H, 4, J=1, 8Hz) 3, 59~2, 59 (1H, m) 1, 64 (1H, 4, J=1, 8Hz) 2, 76~2, 65 (1H, m) 4, 25~4, 48 (2H, m) 5, 12 (2H, m) 7, 26 (5H, m) 6, 12 (1H, t, J=5, 7Hz) 8, 76 (1H, t, J=6, 4Hz) 8, 76 (1H, t, J=6, 4Hz)	(CHC t ₃) 3415 3013 2884 1742 1684 1645 1520 1447 1237 11107 896	502 (MH*)

第4表(続き)

8 c	CH3 (CH2) 4-	0. 80 (3H. t., J=7, 3Hz) 0. 85 (3H. t., J=6, 4Hz) 0. 85 (2H. t., J=6, 4Hz) 0. 85 (2H. t., J=6, 4Hz) 0. 85 (2H. t., J=6, 4Hz) 1. 87~2, 02 (4H. m) 2. 10~2, 28 (1H. m) 2. 97~3, 17 (2H. m) 3. 47 (1H. 6, J=1, 8Hz) 3. 54 (3. 85 (1H. m) 3. 65 (1H. d., J=1, 8Hz) 3. 10~3, 85 (1H. m) 4. 34~4, 50 (2H. m) 5. 12 (2H. c) 7. 12 (2H. c) 7. 12 (3H. c) 8. 32 (1H. t., J=5, 7Hz) 8. 78 (1H. d., J=8, 5Hz)	(CRC 1 ₂) 3416 3012 2985 1742 1685 1645 1620 1446 1353 1227 1174 1187 898	502 (WH*)
9 c	C8•(CH _E) 6 -	0. 88 (2H. t. J=7. 2Hz) 0. 85 (2H. t. J=5. 9Hz) 8. 86 (2H. t. J=5. 0Hz) 8. 85 (2H. t. J=5. 0Hz) 8. 95 ~ 1. 80 (10H. m) 1. 95 ~ 2. 92 (4H. m) 2. 18 ~ 2. 20 (1H. m) 2. 98 ~ 3. 15 (2H. m) 3. 47 (1H. d. J=1. 3Hz) 3. 52 ~ 2. 85 (1H. m) 3. 64 (1H. d. J=1. 3Hz) 2. 76 ~ 2. 85 (1H. m) 4. 34 ~ 4. 58 (2H. m) 7. 28 (5H. m) 8. 22 (1H. t. J=5. 9Hz) 8. 75 (1H. d. J=5. 9Hz) 8. 75 (1H. d. J=8. 2Hz)	(CHC I ₂) 3416 2965 2933 1742 1665 1845 1520 1446 1738 1173 1107 898	\$16 (MH°)

第4表(続き)

1 0 c	CH ₂ (CH ₂) ₀ -	8. 80 (3R. t. J=T. 3Rz) 0. 86 (2R. t. J=5. 5Rz) 0. 86 (2R. t. J=5. 6Rz) 8. 95~1. 60 (12R. m) 1. 65~2. 02 (4R. m) 2. 10~2. 26 (1R. m) 2. 93~2. 18 (2R. m) 3. 47 (1R. d. J=1. 5Rz) 3. 52~3. 69 (1R. m) 3. 64 (1R. d. J=1. 5Rz) 3. 70~3. 85 (1R. m) 4. 344 (4. 51 (2R. m) 6. 12 (2R. d) 7. 36 (5R. s) 3. 25 (1R. t. J=5. 6Rz) 3. 76 (1R. d. J=8. 4Rz) 3. 76 (1R. d. J=8. 4Rz)	(CHC1 ₂) 3417 2013 2984 2932 1742 1885 1845 1528 1446 1237 1107 887	538 (MH*)
110	PhCH _E -	B. 88 (2H. c, J=7, 4Hz) 8. 86 (2H. d, J=6, 8Hz) 8. 85~1, 25 (1H. m) 1. 38~1, 80 (1H. m) 1. 58~2, 92 (4H. m) 2. 10~2, 30 (1H. m) 2. 56 (1H. d, J=1, 8Hz) 3. 71 (1H. d, J=1, 8Hz) 3. 72~3, 85 (1H. m) 4. 28~4, 50 (4H. m) 5. 13 (2H. m) 7. 20~7, 50 (18H. m) 8. 80 (1H. d, J=3, 4Hz) 8. 88 (1H. c, J=5, 8Hz)	(KBr) 3286 2286 2286 1746 1879 1828 1576 1455 1284 1352 1276 1170 1006 1029 899	522 (AH*)

特開平4-139182 (10)

前4表(集き)

1 2 c	Pb-	0. 81 (3H. t. J=7. 5Hz) 0. 87 (3H. 6. J=6. 5Hz) 0. 97~1. 25 (1H. m) 1. 32~1. 53 (1H. m) 1. 57~1. 53 (4H. m) 2. 50~2. 20 (1H. m) 2. 54~3. 68 (2H. m) 2. 72 (1H. d. J=1. 7Hz) 2. 75 (1H. d. J=1. 7Hz) 4. 32~4. 55 (2H. m) 5. 12 (2H. m) 7. 62~7. 16 (1H. m) 7. 50~7. 10 (1H. m) 7. 55~7. 70 (7H. m) 7. 6. 4. J=6. 5Hz)	(KOr) 2279 2965 7746 1699 1626 1827 1446 1198 695	508 (MH*)
130	C. N. 1	0. 80 (3H. t. J=0. SHz) 10. 80 (3H. t. J=7. 3Hz) 0. 87 (3H. d. J=6. 5Hz) 0. 87 (3H. d. J=6. 5Hz) 0. 86 (1H. d. J=1. 7Hz) 3. 68 (1H. d. J=1. 7Hz) 3. 65 (1H. d. J=1. 7Hz) 3. 70~2. 86 (1H. m) 4. 35~4. 49 (2H. m) 7. 36 (5H. d. J=7. 9Hz) 8. 70 (1H. d. J=7. 9Hz)	(EBr) 3283 2933 2856 1747 1831 1536 1462 898	\$14 (MH*)

実施例1 d に関示した操作および反応条件に単 拠して、第 4 表の 2 c ~ 1 3 c ** (おったた 化合物 5: より、それぞれ対応する下記第 5 表に示す化合物 を組た。

第 5 表

実施例 書号	R t	NMR (DHS0-dg) δ (pps)	12 (ca ⁻¹)	M\$ (FAB) (M/I)
2 d	CH3CH2-	8. 83 (38. t, J=7. 28x) 0. 92 (38. d, J=6. 88x) 0. 95~1. 25 (18. a) 1. 92 (38. t, J=7. 18x) 1. 92 (38. t, J=7. 18x) 1. 93~1. 62 (18. a) 1. 65~2. 90 (84. a) 2. 14 (28. dq. J=5. 6. 7. 18x) 2. 14 (28. dq. J=5. 6. 7. 18x) 2. 50~3. 85 (28. a) 3. 65 (18. d=1. 88x) 4. 20~4. 31 (18. a) 4. 42 (18. dd. J=8. 5. 5. 58x) 4. 25 (18. t, J=5. 68x) 4. 72 (18. d, J=8. 5. 8. 58x) 4. 72 (18. d, J=8. 5. 8. 58x) 4. 72 (18. d, J=8. 5. 8. 58x) 12. 26~12. 80 (18. brosd)	(CRr) 2286 2571 1729 1821 1821 1541 1451 1130 884	376 (ME*)

前5表(統合)

#5 V 64				
		0. 88 (3H, t, J=7. 3Hz)	(EBr)	384 (MB*)
		0. 92 (38, 4, J-8, 882)	3263	
		1, 00~ 1, 30 (5H, a)	2973	
		1, 07 (6R, 4, J-B, 6Hz)	1738	1
3 d	(CH2) aCH-	1, 25~1, 63 (18, a)	1638	
		1, 68~ 2, 25 (5H, m)	1545	1
		3. 45 (18, 4, J=1, 882)	1453	
	1	3, 50~3, 95 (3H, a)	1370	1
)	3, 85 (18, 4, J=1, 8Hz)	1242	1
	1	4, 28~4, 38 (1H, m)	1191	1
	I	4, 41 (III, 64, J=8, 5, 8, 5Hz)	897	1
	1	8, 27 (18, 6, J=7, 6Hz)	ı	1
l	ì	8, 71 (18, d, J=8, 8Hz)	1	1
İ	1	12. 20~12. 75 (1H. broad)	l .	
	1	9, 83 (1H, 1, J=7, 3Hz)	(KBr)	398 (MH*)
	Ì	0. 92 (3H. 4. J=6. 7Hz)	2204	Į
		0. 95~1, 25 (1H, m)	2970	1
	1	1, 27 (88, 4)	1728	1
4 d	(CH+) +C-	1, 40~1, 62 (18, 0)	1531	
	1	1, 64~2, 02 (4H, m)	1636	
ì		2. 05~2. 22 (18, m)	1455	
		3. 49 (18. 4. J=1. BHz)	1395	
		3, 52~3, 86 (18, a)	1367	
	!	3. 83 (18. 4. J=1. 8Hz)	1223	i
		3, 69~3, 82 (18, m)	1222	
l	i	4. 18~4. 28 (18. m)	1198	I
1	1	4, 41 (18, 44, J=8, 4, 8, 48z)	895	ł
	1	8. 03 (1H. z)	1	1
1	1	8. 68 (1K. d. J=8, 4Hz)	1	1
	i	12, 25~12, 66 (1H, brosd)	1	1

第5要(続き)

B, 82 (3R, t, J=8, 8Hz) 8, 84 (6R, 4, J=6, 8Hz) 9, 84 (6R, 4, J=6, 8Hz) 1, 28 (23H, 4, J=6, 8Hz) 1, 28 (23H, 4, J=6, 8Hz) 1, 28 (23H, 4, J=6, 8Hz) 1, 28 (21H, a) 1, 28	第5要	(似き)			
6. 92 (38. 4. J=1. 8H2) 1. 38~1. 24 (18. a) 1. 38~2. 24 (18. a) 1. 38~2. 24 (18. a) 1. 38~2. 25 (18. a) 1. 38~2. 25 (18. a) 1. 38~2. 25 (18. a) 1. 38. 2. 32. 48 (18. a) 3. 81 (18. 4. J=1. 8H2) 3. 82 (18. 4. J=1. 4H2) 4. 20~4. 38 (18. a) 4. 20~4. 38 (18. a) 4. 33 (18. t, J=6. 082) 8. 36 (18. d, J=8. 582) 8. 36 (18. d, J=8. 582) 8. 30 (18. t, J=6. 082) 8. 40~1. 82 (8H. a) 12. 25~12. 75 (18. broad) 8. 40~1. 66 (68. a) 21. 43 (18. d, J=8. 582) 3. 50 (18. a) 21. 52 (18. a) 22. 52 (18. a) 23. 52 (28. a) 24. 24 (28. a) 35 (28. a) 4. 24 (38. 43. 581) 4. 24 (48. 35. 58. 581) 5. 35 (18. t, J=8. 581) 5. 35 (18. t, J=8. 781) 5. 35 (18. t, J=8. 781) 5. 95 (18. t, J=8. 781) 5. 96 (18. t) 5. 96 (18. t) 5. 96 (18. t) 5. 97 (18. t)			1		398 (MB.)
6. 88 ~ 1. 24 (1 H. m) 1. 38 ~ 1. 60 (1 H. m) 1. 38 ~ 1. 60 (1 H. m) 1. 68 ~ 2. 02 (5 H. m) 1. 69 ~ 2. 05 (2 H. m) 1. 69 ~ 3. 81 (1 H. d. J. 6 H. d. 8 H. d. 2) 1. 80 ~ 3. 82 (1 H. m) 1. 88 ~ 3. 82 (1 H. m) 1. 88 ~ 3. 83 (1 H. m) 1. 88 ~ 3. 83 (1 H. m) 1. 60 ~ 4. 32 (1 H. m) 1. 60 ~ 4. 32 (1 H. m) 1. 60 ~ 6 (6 H. m) 1. 63 ~ 1. 66 (6 H. m) 1. 64 ~ 1. 66 (6 H. m) 1. 65 ~ 1. 66 (6 H. m) 1. 6					1 1
1. 38~1. 68 (1K, m) 1. 58~2. 02 (5H, m) 1. 190 3. 81 (1H, d. J=1. 4Hz) 3. 52 ~3. 82 (1H, m) 4. 20~4. 38 (1H, m) 4. 20~4. 38 (1H, m) 4. 20 (1H, d. J=3. 5Hz) 4. 33 (1H, t, J=6. 0Hz) 8. 76 (1H, d. J=3. 5Hz) 11. 25~12. 75 (1H, broad) 8. 80~1. 82 (8H, m) 11. 83~1. 66 (5H, m) 12. 25~12. 75 (1H, m) 12. 25~12. 75 (1H, m) 12. 25~12. 75 (1H, m) 12. 25~12. 12 (2H, m) 13. 00~3. 23 (2H, m) 14. 24 (2H, d. J=1. 5Hz) 1542 1547 1548 1549 1549 1549 1549 1541 1541 1541 1542 1541 1541 1542 1541 1541					1 1
1.68~2.02 (SR. a) 1542 1.68~2.02 (SR. a) 1.642 2.93~2.25 (IR. a) 1.652 1.190 2.79~3.05 (2R. a) 1.190 900 3.51 (IR. 4.J=1.8Hz) 3.52 (IR. a) 4.92 (IR. a) 4.90 (1 1
2 (CR _B) 2 CHCH _B - 2 (CR _B) 2 CHCH _B - 3 (CR _B) 2 CHCH _B - 3 (CR _B) 2 CHCH _B - 3 (CR _B) 3 CHCH _B - 4 (CR _B) 3 CHCH _B - 4 (CR _B) 3 CHCH _B - 4 (CR _B) 3 CHCH _B - 5 (CR _B) 3 CHCH _B - 6 (CR _B) 3 CHCH _B - 7 (CR _B) 3 CHCH _B -					
2 79~3.05 (28.a) 2 79~3.05 (28.a) 3.51 (1H. 4. J=1.58tz) 2.52~3.58 (1H. a) 3.52 (1H. a) 3.58 (1H. a) 3.58 (1H. a) 3.58 (1H. a) 4.20~4.38 (1H. a) 4.43 (1H. d. J=3.58.58.58z) 8.36 (1H. t. J=5.08z) 8.76 (1H. d. J=3.58z) 12.25~12.75 (1H. broad) 1.63~1.66 (6H. a) 1.78~2.07 (4H. a) 2.64~2.32 (1H. m) 1.79~2.07 (4H. a) 2.56~3.58 (2H. a) 3.52 (1H. d. J=3.58z) 1.542 3.56 (1H. d. J=3.58z) 1.542 3.56 (1H. d. J=3.58z) 4.24~4.35 (1H. a) 4.24 (1H. d. J=3.58z) 1.725 1.725 1.726 1.727 1.727 1.728 1.72					1 1
5 d (CR _p) ₂ CRCH ₂ - 3. 51 (1H. 4. J=1. SHz) 2. 52 ~ 3. 68 (1H. a) 3. 58 (1H. d. J=1. SHz) 3. 58 (1H. d. J=1. SHz) 3. 58 ~ 3. 53 (1H. a) 4. 20 ~ 4. 38 (1H. a) 4. 40 (1H. 4d. J=8. 5. 8. 5. 8. 5Hz) 8. 33 (1H. t. J=6. 0Hz) 8. 76 [1H. d. J=8. 5Hz] 12. 26 ~ 12. 75 (1H. broad) 8. 40 ~ 1. 62 (8H. a) 11. 63 ~ 1. 66 (6H. a) 22 8 4 22 8 4 23 8 4 7 7 (4H. a) 23 8 4 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8				1	1 1
3. 52 ~ 3. 58 (1H. a) 3. 58 (1H. d. J=1. 4Hz) 3. 58 ~ 3. 52 (1H. a) 4. 20 ~ 4. 38 (1H. a) 4. 43 (1H. dd. J=5. 5. 5. 5Hz) 4. 43 (1H. dd. J=6. 5Hz) 4. 33 (1H. t. J=6. 0Hz) 5. 76 (1H. d. J=5. 5Hz) 12. 25 ~ 12. 75 (1H. broad) 5. 80 ~ 1. 82 (9H. a) 1. 63 ~ 1. 66 (9H. a) 2214 2. 58 ~ 2. 32 (1H. a) 2. 50 ~ 2. 32 (1H. a) 2. 50 ~ 2. 32 (1H. a) 2. 50 ~ 3. 23 (2H. a) 2. 52 (1H. d. J=1. 5Hz) 2. 56 ~ 3. 58 (2H. a) 2. 52 (1H. d. J=1. 5Hz) 4. 24 ~ 4. 35 (1H. a) 4. 24 (1H. d. J=1. 5Hz) 5. 36 (1H. t. J=5. 7Hz) 5. 78 (1H. t. J=5. 7Hz) 5. 78 (1H. t. J=5. 7Hz) 5. 79 (1H.					l l
3.88 (H. d. J=1.8Hz) 2.88~1.82 (H. a) 4.20~4.38 (H. a) 4.20~4.38 (H. a) 4.43 (H. d. J=3.5.8.5Hz) 4.33 (H. t. J=6.0Rz) 8.76 (H. d. J=8.5Hz) 12.25~12.75 (H. brond) 8.80~1.82 (9H. a) 1.63~1.56 (6H. a) 2.244 1.78~2.07 (4H. a) 2.68~2.32 (H. a) 1.70~3.23 (2H. a) 2.00~3.23 (2H. a) 3.52 (H. d. J=1.8Hz) 1.56~3.88 (2H. a) 1.754 2.56~4.35 (H. a) 1.724 4.24~4.35 (H. a) 4.27 (H. d. J=1.8Hz) 4.24 (4.35 (H. a) 1.725 1.726 (H. d. J=1.8Hz) 1.726 (H. d. J=1.8Hz) 1.727 1.728 (H. d. J=1.8Hz) 1.729 (H. d. J=1.8Hz) 1.720	6 d	(CH _B) ₂ CHCH ₂ -		800	
2. 58~2. 52 (1H. m) 4. 20~4. 38 (1B. m) 4. 20 (4. 38 (1B. m) 4. 43 (1H. 4d. J.=4. 5. 8. 5Hz) 8. 33 (1H. t., J=6. 0Hz) 8. 76 (1H. d. J=8. 5Hz) 12. 25~12. 75 (1H. broad) 8. 60~1. 62 (8H. m) 11. 63~1. 66 (6H. m) 2244 1. 78~2. 07 (4H. m) 2344 2. 64~2. 32 (1H. m) 1739 3. 00~3. 23 (2H. m) 1547 3. 52 (1H. d. J=1. 6Hz) 1. 547 2. 56~2. 88 (2H. m) 1452 4. 24~4. 35 (1H. m) 1726 4. 24 (1H. 4d. J=1. 8Hz) 18. 78 (1H. t., J=5. 1Hz) 18. 78 (1H. t., J=5. 1Hz) 18. 78 (1H. t., J=5. 1Hz) 18. 79 (1H. d. J=1. 5Hz) 18. 19 (1H. t., J=5. 1Hz) 18. 19 (1H. d. J=3. 5Hz) 18. 19 (1H. t., J=5. 1Hz) 18. 19 (1H. d. J=3. 5Hz)	Į.			í	1 1
### 4. 20 ~ 4. 38 (18. m) 4. 43 (1H. 4d. J=8. 5. 8. 5Hz) 4. 43 (1H. 4d. J=8. 5. 8. 5Hz) 8. 36 (1H. 4. J=8. 5Hz) 12. 25 ~ 12. 75 (1H. broad) 8. 80 ~ 1. 82 (8H. m) 1. 63 ~ 1. 66 (8H. m) 2144 2. 85 ~ 2. 32 (1H. m) 3. 00 ~ 3. 23 (2H. m) 3. 52 (1H. 4. J=8. 5Hz) 4. 22 (1H. 4. J=8. 5Hz) 4. 22 (4. 4. 35 (1H. m) 4. 24 (1H. 4. J=8. 5. 8. 5Hz) 8. 38 (1H. 1, J=8. 7Hz) 8. 38 (1H. 1, J=8. 7Hz) 8. 95 (1H. 1, J=8. 7Hz)		ì		l	1
4. 43 (1H. dd. J=8. 5. 8. 5Hz) 8. 33 (1H. t. J=6. 0Hz) 8. 76 (1H. d. J=8. 5Hz) 12. 25~12. 75 (1H. broad) 8. 80~1. 82 (8H. m) 1. 63~1. 66 (6H. m) 2244 1. 78~2. 07 (4H. m) 2. 68~2. 32 (1H. m) 2. 00~3. 23 (2H. m) 3. 52 (1H. d. J=1. 8Hz) 1. 56~3. 88 (2H. m) 1452 4. 24~4. 35 (1H. m) 1221 4. 24~4. 35 (1H. m) 1226 4. 24 (4. 1. 44. J=8. 5. 8. 5Hz) 8. 38 (1H. t. J=5. 7Hz) 8. 78 (1H. d. J=8. 51. 5Hz) 8. 78 (1H. t. J=5. 7Hz) 8. 79 (1H. d. J=8. 5Hz) 8. 95 (1H. t. J=5. 7Hz) 8. 79 (1H. d. J=8. 5Hz) 8. 95	ŀ	Į.		1	\
8. 33 (IH. t, J=6. 0Hz) 8. 76 (IH. d, J=8. 5Hz) 12. 25~12. 75 (IH. broad) 8. 80~1. 82 (8H. m) (EBF) 1. 83~1. 66 (6H. m) 2244 1. 78~2. 07 (4H. m) 2984 2. 68~2. 32 (1H. m) 1739 3. 00~3. 23 (2H. m) 1574 3. 52 (IH. d, J=1. 6Hz) 1547 2. 56~2. 88 (2H. m) 1452 4. 24~4. 35 (IH. m) 1726 4. 24~4. 35 (IH. m) 1726 4. 24~4. 35 (IH. m) 1726 4. 24 (1H. d, J=1. 8Hz) 1321 4. 24~4. 35 (IH. m) 1726 4. 37 (IH. t, J=5. 1Hz) 1985 4. 77 (IH. d, J=1. 5Hz) 1985 4. 77 (IH. d, J=3. 5Hz) 1985 4. 77 (IH. d, J=3. 5Hz) 1985	l .	ľ		1	ì
8.76 [H. d. J=8.5Hz] 12.25~12.75 (H. broad) 8.80~1.82 (8H. m) 1.63~1.66 (8H. m) 2214 3.78 (2.07 (4H. m) 2844 2.88~2.32 (1H. m) 3.00~2.32 (2H. m) 3.52 (1H. d.) 1542 2.56~2.88 (2H. m) 1452 3.56~2.88 (2H. m) 1452 4.24~4.35 (1H. m) 1728 4.24~4.35 (1H. m) 1728 4.24~4.35 (1H. m) 1728 4.24 (1H. d.4.1=8.5.5.5812) 8.38 (1H. t. J=8.7.142) 8.78 (1H. t. J=8.7.142) 8.78 (1H. t. J=8.7.142) 8.95 8.78 (1H. t. J=8.7.142) 8.78 (1H. t. J=8.5.142) 8.95		l			
12. 25~12. 75 (IH, broad) 8. 80~1. 82 (8H. a) (KBr) 1. 63~1. 66 (6H. a) 22 E4 1. 78~2. 07 (4H. a) 28 E4 2. 88~2. 32 (1H. a) 1578 3. 60~3. 23 (2H. a) 1578 3. 52 (1H. d. J=1. 8Hz) 1542 3. 86~3. 88 (2H. a) 1452 4. 24~4. 35 (1H. a) 122 E4 4. 24~4. 35 (1H. a) 122 E4 8. 38 (1H. t. J=5. 71 E2) 1180 8. 38 (1H. t. J=5. 71 E2) 895	ŀ	İ		1	
8,80~1.82(8H.m) 1,63~1.66(6H.m) 2214 1,78~2.07(4H.m) 2,64~2.32(1H.m) 1,793 3,00~3.23(2H.m) 1,52(1H.d.,1=1.6Hz) 1,56~3.88(2H.m) 1,56~3.88(2H.m) 1,56~3.88(2H.m) 1,56~3.88(2H.m) 1,56~3.88(2H.m) 1,56~3.88(2H.m) 1,56~3.88(2H.m) 1,76(1H.d.,1=1.6Hz) 1,21 1,21 1,221 1,247(1H.d.,1=1.5,1.5,1.5Hz) 1,26(1H.t.,1=5.1Hz)	i			E	
1. 63 ~ 1. 66 (5 H. m) 22 14 1. 78 ~ 2. 07 (4 H. m) 28 64 1. 78 ~ 2. 22 (1 H. m) 1739 2. 60 ~ 2. 22 (2 H. m) 15 78 2. 50 ~ 3. 22 (2 H. m) 15 78 2. 50 ~ 3. 52 (1 H. d. J=1. 6 Hz) 15 42 2. 56 ~ 3. 58 (2 H. m) 145 2 4. 24 ~ 4. 25 (1 H. m) 122 1 4. 24 ~ 4. 35 (1 H. m) 122 5 4. 47 (1 H. d. d. J=3. b. 3. 5 Hz) 11 80 8. 35 (1 H. t. J=5. T Hz) 8. 5 85 8. 79 (1 H. d. J=3. 5 Hz) 89 5	l	ļ	12. 25~12. 75 (IH. broad)	l	<u> </u>
1. 63 ~ 1. 66 (6 H, m) 22 8 4 1. 78 ~ 22. 07 (4 H, m) 2 8 8 4 2. 88 ~ 2. 32 (1 H, m) 1739 1. 00 ~ 3. 23 (2 H, m) 1528 1542 2. 88 ~ 2. 88 (2 H, m) 1542 2. 88 ~ 2. 88 (2 H, m) 1542 2. 88 ~ 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1452 2. 88 (2 H, m) 1526 2. 88 (2 H, m, m) 1526 2. 88 (3 H, m, m, m) 1526 2. 89 (3 H, m, m, m) 1542 2. 89 (3 H,			8. 80~1. 82 (8H. m)	(KBr)	398 (MH.)
2.88~2.32(1H, m) 1739 3.00~3.23(2H, m) 1638 3.52(1H, d, 2=1.8Hz) 1542 3.58~3.88(2H, m) 1452 3.78(1H, d, 3=1.8Hz) 1321 4.22~4.35(1H, m) 1321 4.42(1H, 46, J=1.5, 5, 5 Hz) 1190 8.38(1H, t, J=5, THz) 1190 8.38(1H, t, J=5, THz) 8.95 3.79(1H, t, J=5, THz) 8.95	1		1. 43~1. 66 (6H, m)	2214	1
2. 68 ~ 2. 32 (1H. m) 1739 3. 00 ~ 2. 23 (2H. m) 1638 1638 3. 52 (1H. d.) 1642 1542 1542 1542 15	1		1. 78~2. 07 (4H. m)	2964	- 1
3. \$2 (1H. d. J=1. 8Hz) 1. \$6 < 3. 88 (2H. m) 1. \$6 < 3. 88 (2H. m) 1. \$6 < 3. 88 (2H. m) 1. \$6 < 3. \$7 (1H. d. J=1. 8Hz) 1. \$7 (1H. d. J=1. 8Hz) 1. \$7 (1H. d. J=1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		Į.	2, 68~2, 32 (1H. m)	1739	1
2. \$6~2. \$8(2H, m) 1452 13. \$6~3. \$8(2H, m) 1452 13. \$1 (1H, 4, J=1, 8Hz) 1321 4. \$2~4. \$5(1H, m) 1226 4. \$4 (1H, 46, J=8, 5, 8, 5Hz) 1180 8. \$6(1H, 4, J=8, 5Hz) 895 8. \$7(1H, 4, J=8, 5Hz)	i	1	1, 00~ 1, 23 (2H, m)	1678	
Od CH ₂ (CH ₂) g- 2. 78 (H. d.)=1. 8Hz) 1321 4. 24~4. 35 (H. m) 1225 4. 47 (H. dd. J=8. 5. 8. 5Hz) 1180 8. 38 (H. t. J=8. 7Hz) 895 8. 79 (H. d.)=8. 5Hz) 895	i		3, 52 (1K, d, J=1, BHz)	1542	
4, 24~4, 35(H. m) 4, 47(H. 46, J=8, 5, 8, 5Hz) 8, 38(H. t, J=8, 1Hz) 8, 78(H. t, J=8, 5Hz) 8, 19(H. d. J=8, 5Hz)		i e	1, 55~1, 68 (2H. m)	1452	1
4, 24~4, 35 (1H, m) 1225 4, 47 (1H, 4d, J=B, 5, 8, 5Hz) 1180 8, 38 (1H, t, J=B, 7Hz) 8, 76 (1H, d, J=B, 5Hz) 895 8, 79 (1H, d, J=B, 5Hz)	6 4	CHa (CHa) a-	2. 78 (1H, 4, 3=1, 8Hz)		ľ
8. 35 (1H. t. J=5. 7Hz) 8. 79 (1H. d. J=8. 5Hz))	4. 24~4. 35 (1H. m)		ľ
8, 78 (1H, d, J=8, 5Hz)	1	1]
	ŀ	1		895	1
		1			1
12. 35~12. 80 (1H, broad)		1	12. 35~12. 80 (1H. broad)		ì

持期平4-139182 (11)

第5章(統合)

F . F	(報ぎ)			
7 d	(CH2) 2CH (CH2) 2-	0. 83 (3E. t, 1-7, 4B2) 0. 85 (8E. 4, 1-6, 6H2) 0. 95 (5E. 4, 1-6, 6H2) 1. 92 (7E. 4) 1. 27 (1E. a) 1. 43 (7E. a) 1. 40 (7E. a) 2. 05 (7E. a) 2. 05 (7E. a) 2. 05 (7E. a) 2. 05 (7E. a) 2. 05 (7E. a) 2. 05 (7E. a) 2. 05 (7E. a) 2. 05 (7E. a) 3. 45 (1E. 4, 1-1, 8H2) 3. 54 (1E. 4, 1-1, 8H2) 4. 52 (7E. a) 4. 20 (4. 30 (1E. a) 4	(EBr) 2181 2182 1739 1831 1831 1452 1235 1235 1236 1238	412 (H+*)
8 d	CH ₃ (CH ₃) 4-	8. \$3 (3H, t, J=6. 9Hz) 8. \$6 (3H, t, J=6. 7Hz) 8. \$2 (3H, d, J=6. 8Hz) 8. \$2 (3H, d, J=6. 8Hz) 1. \$5 ~ 2. \$0 (4H, e) 2. \$5 ~ 2. \$5 (4H, e) 2. \$5 ~ 2. \$5 (4H, e) 3. \$47 (1H, d, J=1. 8Hz) 3. \$5 ~ 2. \$4 (2H, e) 2. \$5 ~ 3. \$4 (2H, e) 4. \$20 ~ 4. \$25 (1H, d, J=1. 8Hz) 4. \$2 (3H, d, J=6. 8Hz) 4. \$2 (3H, d, J=6. 6. 8. 8Hz) 4. \$2 (3H, d, J=6. 6Hz) 12. \$3 ~ 12. \$48 (1H, broad)	(KBr) 3286 2983 2934 1740 1628 1641 1464 1322 1190 897	412 (MH*)

第5表(動き)

20 0 EX (
ı		0. 83 (3E, t, J=6. 8Rz)	(501)	426 (803*)
	1	8. 88 (3H. 1, J=8, 5Hz)	1254	1
	1	8. 92 (38, 6, 3=5, 682)	2952	1
		8. 88~1. 82 (188, m)	2923	1
	1	1. 67~2. 02 (48, m)	1739	
	1	2. 06~2. 25 (18, m)	1629	
	ļ	3. 00~3. 14 (28. m)	1542	ł
9 đ	CH, (CH2)	2. 47 (18. d. J=1. 8Hz)	1454	ł
		2. 52~2. 68 (18, m)	j 1822	1
		1. 64 (18, 4, J=1, 882)	1111	1
!	Į	3. 69~3. 84 (1K, a) .	685	1
	i	4. 18~4. 38 (1R. m)		i
		4. 42 (18, 44, J-6, 4, 8, 682)	1	
		8. 33 (18, 1, J=6, 682)	1	ı
		8. 78 (18. d. J=8. 482)	1	i
	1	12. 25~12. 75 (18. broad)	1	ı
		9. 83 (38, 1, J=5, 782)	(KBr)	440 (WB*)
	1	0. 86 (3H, t. J=6, 5Hz)	3245	1
		0. 92 (3H, 6, J=6, 8H2)	2962	1
	1	0. 97~1. 62 (12H, m)	2921	1
	ł	1. 87~2. 00 (4H. a)	1743	1
	•	2.06~2.26 (1H. m)	1176	
		2. 97~3. 15 (2H, m)	1542	
1 0 d	CH2 (CH2) 8-	3. 47 (18, d. J=1, 8Hz)	1455	1
	Į	3, 52~3, 68 (18, m)	1322	Ì
	ļ	3. 64 (18, 4, J=1, 8Hz)	1169	į.
		3. 68-2. 63 (1H. n)	626	l l
		4. 20~4. 21 (1K, s)	ŀ	ŀ
	ļ	4. 47 (16, 44, J=8, 6, 6, 6Hz)		Ì
		6. 32 (18, t. J=6. 6Hz)	1	
		8. 73 (1H, 6. J=8. BHz)		1
		12. 25~12. 70 (18. broad)		1

第5表(統合)

				
Į.		0, 83 (38, t, J=7, 3H2)	(EBr)	432 (MH*)
ŀ		0. 92 (38. d. J=6. 6Hz)	3286	
1	ł	0. 95~1. 28 (1H. m)	2468	1
1	ĺ	1, 18~1, 63 (1H, a)	1735	1
1		1. 65~2. 03 (4H. m)	1627	ì
Ī		2. 07~2. 24 (1H. m)	1507	
ļ		3. 50~9. 66 (1H. m)	1455	
ĺ		3. 55 (1H, 4, J=1, 9Hz)	1323	
116	PACHe-	3. 68~3. 85 (1H, m)	1227	
		3. 71 (1K, d. J=1. 8Hz)	1189	1 1
	_	4, 15~4, 50 (4K, a)	898	1
ļ	,	7. 20~7. 46 (5H, m)	ı	1
ł		8. 75 (1H. d. J=8. 4Hz)	ł	i l
ł		8. 67 (18, 1, J+6, 98z)	İ	1
l		12. 30~12. 80 (18. brest)		
		8. 85 (3H, t, J=7, 3Hz)	(SBr)	418 (MH*)
		0. 14 (3H, 4, J-6, 6Hz)	3736	1 , 1
		0. 97~1. 30 (18. a)	3274	1 1
		1. 41~1. 64 (18, m)	2969	1 1
		1, 64~1, 02 (4H, m)	1697	1
		2. 04-2. 24 (1H. m)	1674	1
l i		3, 80~1, 90 (2H, m)	1519	1 1
		3. 73 (1H, d, J=1, 7Hz)	1546	1
12 d	Ph-	3, 79 (1H, 4, J=1, 7Hz)	1447	1 1
1		4. 17~4. 32 (1H, m)	1190	1 1
1		4. 35~4. 54 (18, m)	897	1 1
		7. 02~7. 16 (1H. m)	1	1 1
	i	7. 24~7. 48 (2H. m)	ł	[]
1		7. 54~7. 70 (2H, a)	l .	t l
		8, 62 (1H, 6, J=8, 4Hz)	ſ	
1		10, 42 (1H, s)	ľ	[
		12. 25~12. 75 (IH, bread)		
		<u></u>	L	

第5表(装き)

	8. 82 (3H. s. J-7, 2Hz)	(EBr)	424 (MIL*)
	0. 94 (3M. d. J=6. 6Hz)	3291	7, 100 /
ļ	1. 06~2. 02 (14B, a)	2934	1
ł			.
į	2.05~2.24 (1H, a)	2857	
1	8. 48 (18, 4, J=1, 7Kz)	1743	l.
1	3. 50~3, 62 (28, m)	1631	
1 3 d Call, 1-	3. 65 (18, d. J=1, 7Hz)	1637	ľ
}	3. 67~3. 85 (18, m)	1451	1
į.	4. 20~4. 30 (1H, m)	894	1
	4. 30~4. 49 (1H, m)		1
	8. 21 (18, d, J=7, 982)	1	1
	8.75 (1H, 4, J=8, 4Hz)		į.
1	12, 20~12, 75 (1H, breed)	ı	1

特許出版人 大正製業株式会社 代理人 非理士 北川 富 造