# Exponentielle

### Propriétés de l'exponentielle $\mathbf{A}$

#### 1 Caractérisation

La fonction exponentielle notée exp et définie sur  $I=\mathbb{R}$  est définie par  $\exp x=e^x$ 

 $\bullet\,$ exp est dérivable sur  $\mathbb R$ 

•  $(e^x)\prime = e^x$ 

•  $e^0 = 1$ 

## Signe

 $\forall x \in \mathbb{R}, e^x > 0$ 



# Propriétés algébriques

Soient  $\forall x, y \in \mathbb{R}$ 

•  $e^x = e^y \Leftrightarrow x = y$ 

•  $e^x < e^y \Leftrightarrow x < y$ 

La fonction exponentielle vérifie les règles des puissances  $\forall x, y \in \mathbb{R} \text{ et } \forall n \in \mathbb{Z}$ 

 $\bullet \ e^{x+y} = e^x e^y$ 

•  $e^{-x} = \frac{1}{e^x}$ 

 $\bullet \ e^{x-y} = \frac{e^x}{e^y} \qquad \qquad \bullet \ (e^x)^n = e^{nx}$ 

## Étude de l'exponentielle В

#### 1 Limites

Aux bornes de son ensemble de définition, les limites de l'exponentielle sont:

 $\bullet \lim_{x \to -\infty} e^x = 0$ 

 $\bullet \lim_{x \to +\infty} e^x = +\infty$ 

## (a) Croissances comparées

 $\lim_{x \to -\infty} x e^x = 0$ 

 $\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ 

## Dérivée

## (a) Dérivée de $e^u$

u est une fonction dérivable et strictement positive sur I,  $e^u$  est alors dérivable sur I

$$(e^u)\prime(x) = u\prime(x)e^{u(x)}$$