Competing under Information Heterogeneity: Evidence from Auto Insurance

Marco Cosconati Yi Xin Fan Yizhou Jin Wu October 18, 2025

This Paper

- We develop and estimate a novel model of imperfect competition in selection markets:
 - Firms have heterogeneous information about consumers.
 - Differ in cost structure.
 - Offer differentiated products.
- We apply our method to study the Italian auto insurance industry:
 - Substantial differences in the precision of risk rating and cost structures across firms.
 - Insurers with more accurate risk rating algorithms cream-skim low-risk consumers, but they tend to have less efficient cost structures.
- Equalizing information access through a centralized bureau:
 - Significantly lowers market prices by increasing competition.
 - Boosts consumer surplus by 15.7%, nearly reaching the efficiency benchmark.
 - Reduces costs by 12 euros per contract through more efficient insurer-insuree matching.

Related Literature

- The first tractable empirical framework for analyzing imperfect competition when firms have heterogeneous information about consumers.
 - Recent empirical studies assume information is symmetrically distributed.
 (Cabral et al., 2018; Crawford et al., 2018; Nelson, 2018; Decarolis et al., 2020; Jaffe and Shepard, 2020; Curto et al., 2021; Cuesta and Sepúlveda, 2021; Tebaldi, 2024)
- We extend the classic demand estimation method (Berry, 1994; Berry et al., 1995) to address the common challenge of missing full price menus.
 - Prevalent in many empirical analyses (Goldberg, 1996; Cicala, 2015; Crawford et al., 2018; Allen et al., 2019; D'Haultfoeuille et al., 2019; Salz, 2022; Sagl, 2023)
 - Wu and Xin (2024) provide more theoretical results and technical details.
- On the policy side:
 - Antitrust policies and consumer protection with the rise of big data (Lam and Liu, 2020; Jin and Wagman, 2021; Krämer, 2021; Alcobendas et al., 2023; Jeon et al., 2023)
 - Financial market regulation
 (Einav et al., 2013; Chatterjee et al., 2023; Blattner et al., 2022; Nelson, 2025; Blattner and Nelson, 2021; Liberman et al., 2018; Hertzberg et al., 2011)

Data

- A representative sample of matched insurer-insuree panel in Rome (2013-2021).
 - Customers with tenure=0, top 10 firms + fringe firms (Firm 11).
- We observe: Summary Statistics
 - Risk factors: age, bonus-malus, residence, vehicle features, driving records, etc.
 - Premium, coverage, and contract clauses.
 - Frequency and severity of claims at each contractual year.
 - Substantial variation in premiums and claim payouts across firms. Details
- We don't observe:
 - Full price menu (only transaction prices).
 - Full set of pricing variables (factors in the data explain 50% of price variation). Details
 - Insurers incorporate different variables into their actuarial models. Survey

Do Insurers Differ in Risk Assessment Precision?

- Regressing premiums on ex-post realized claims. Details
- Certain firms' premiums are more responsive to, or more accurately reflect, estimated ex-post risk.
 - ⇒ These firms are potentially **more** informed and better at assessing consumer risk.

Model

- A static model of price competition among J insurers, indexed by $j=1,2,\ldots,J$.
- Each firm offers a standardized insurance product.
- Consumer's risk type θ : expected claim payouts.
 - Ex-ante not observed by the firms;
 - Population distribution $f_0(\theta)$ is common knowledge.

Signal Structure

- For a consumer of type θ , firm j draws a signal $\hat{\theta}_j \sim N(\theta, \sigma_j^2)$, with density $\phi(\hat{\theta}_j; \theta, \sigma_j)$.
- $1/\sigma_j$ measures firm j's information precision.
- Signals are **private** and independent **conditional on** θ .
- Related to common value auctions: signals are noisy estimates of the true but unknown common value, i.e., the cost to insure the consumer.

Risk Rating

• Firms infer the risk of the consumer upon observing the signal.

$$E(\theta|\hat{\theta}_{j}, D = j) = \int_{\theta} \theta f(\theta|\hat{\theta}_{j}, D = j) d\theta = \underbrace{\int_{\theta} \theta \Pr(D = j|\hat{\theta}_{j}, \theta) \phi(\hat{\theta}_{j}; \theta, \sigma_{j}) f_{\mathbf{0}}(\theta) d\theta}_{\int_{\theta} \Pr(D = j|\hat{\theta}_{j}, \theta) \phi(\hat{\theta}_{j}; \theta, \sigma_{j}) f_{\mathbf{0}}(\theta) d\theta}$$

- $E(\theta|\hat{\theta}_j, D=j)$ is an **equilibrium** object.
- f is posterior dist of θ conditional on the signal and the consumer being **selected** into the firm.
- Selection probability depends on all firms' pricing strategies through consumers' demand.

Pricing Strategy

• Firm *j* sets the price based on the risk evaluation:

$$p_j(\hat{\theta}_j) = \alpha_j + \beta_j \underbrace{\mathcal{E}(\theta|\hat{\theta}_j, D=j)}_{\text{risk rating}}.$$

- α_j and β_j are pricing coefficients **optimally** chosen by the firm.
- ullet $lpha_j$ relates to the baseline markup; eta_j relates to the elasticity of price wrt risk.

Demand

- Firms offer homogeneous insurance plans, but may have **unobserved** (by the econometrician) product attributes ξ_j , such as service quality or brand loyalty.
- The utility derived by a consumer i for a product from firm j:

$$U_{ij} = -\gamma_i p_j(\hat{\theta}_j) + \xi_j + \varepsilon_{ij}.$$

 ε_{ii} 's are iid utility shocks from type I extreme value dist.

• The probability that a consumer chooses firm j given $\hat{ heta}=(\hat{ heta}_1,\hat{ heta}_2,\ldots,\hat{ heta}_J)$:

$$\Pr(D = j|\hat{\theta}) = \frac{\exp(-\gamma_i p_j(\hat{\theta}_j) + \xi_j)}{\sum_{j'=1}^{J} \exp(-\gamma_i p_{j'}(\hat{\theta}_{j'}) + \xi_{j'})}.$$

• Could also allow demand parameters (γ, ξ) to vary with θ .

Profit Maximization

- Firms simultaneously choose pricing coefficients (α_j, β_j) to maximize expected profits, given common knowledge of all firms' primitives (e.g., signal distributions, costs) and $f_0(\theta)$.
- Firm j's profit $\pi_j(\alpha, \beta)$

$$\int_{\hat{\theta}} \int_{\theta} \underbrace{\left(p_{j}(\hat{\theta}_{j}) + c_{j} - k_{j}\theta\right)}_{\text{net profit}} \underbrace{\Pr(D = j|\hat{\theta})}_{\text{choice prob.}} \underbrace{\left(\prod_{j'=1}^{J} \phi(\hat{\theta}_{j'}; \theta, \sigma_{j'})\right)}_{\text{signal dist.}} \underbrace{f_{0}(\theta)}_{\text{type dist.}} d\theta d\hat{\theta}.$$

- c_j : "net benefits" of contracting with a customer irrespective of the risk.
- k_i : efficiency at processing claims.

Estimation

Estimation

- Joint Distribution of Premium and Risk Type:
 - Using a panel of claim records.

Demand:

Supply:

- ullet Joint distribution of premium and risk within firm \Longrightarrow pricing coefficients and signal dist.
- First-order conditions

 cost parameters.

Demand

- Key challenge: observe only transaction prices, not offered prices.
 - Auction: observe only winning bids, not submitted bids.
 - Roy models: observe only accepted wages, not potential wages.
- The offered and accepted price distributions are linked through the demand system.
- We propose a novel fixed-point approach that jointly estimates choice probabilities, offered price distributions, and demand parameters.

Estimation

- Wu and Xin (2024) construct an operator whose fixed point is the offered price distributions and show that it is a functional contraction.
- ξ : matched to aggregate market shares; γ : identified from sorting patterns.
- Possible to allow preference to vary with risk (need parametric assumptions).
- Key insight for supply-side estimation: offered price **monotonically increases** with signal (analogy to auction models: bid is a monotone increasing function of valuation).
- Cost parameters are identified from firms' first-order conditions.

Demand-Side Results

(A) Price sen	sitivity parameter
Constant	2.11
	(0.26)
Old	-1.21
	(0.20)
Big city	0.45
	(0.23)

- Senior consumers tend to be less price sensitive.
- We allow preferences for unobserved product attributes to vary with risk type, geography, and time.
- ξ's are generally similar across low- and high-risk groups.

Supply-Side Results

• Huge heterogeneity along **all** dimensions.

Table 3: Estimates of supply-side parameters

Firm ID	Prici	ng	Signal	Net	Claim
	Coeffic	eients	Std. Dev.	Benefits	Efficiency
	α_j	$eta_{m j}$	σ_{j}	c_{j}	k_j
1	-342.22	1.72	1339.05	1165.31	1.90
	(48.56)	(0.10)	(56.12)	(346.43)	(0.34)
2	-333.44	1.81	1217.08	1087.50	1.98
	(80.47)	(0.17)	(83.71)	(349.50)	(0.37)
3	-163.18	1.65	1053.16	1110.60	2.29
	(43.31)	(0.10)	(72.66)	(280.35)	(0.26)
4	-315.64	1.45	1178.77	1034.33	1.60
	(58.59)	(0.12)	(72.82)	(237.37)	(0.20)
5	-194.72	1.65	1117.57	922.39	1.86
	(61.41)	(0.16)	(85.78)	(290.10)	(0.31)
6	-310.08	1.47	1301.49	943.08	1.37
	(43.47)	(0.09)	(60.30)	(273.87)	(0.24)
7	-220.93	1.50	1118.80	858.29	1.54
	(90.81)	(0.19)	(115.56)	(293.74)	(0.33)
8	-1404.66	3.00	1580.41	2132.07	3.16
	(252.91)	(0.39)	(119.79)	(371.91)	(0.49)
9	-688.85	2.15	1637.52	1440.84	2.45
	(312.62)	(0.57)	(172.54)	(424.11)	(0.74)
10	-246.68	1 59	1245 79	972.73	1 79

Supply-Side Results

• Huge heterogeneity along **all** dimensions.

Table 3: Estimates of supply-side parameters

Firm ID	Prici	Pricing Signal	Signal	Net	Claim	
	Coeffic	eients	Std. Dev.	Benefits	Efficiency	
	α_j	β_{j}	σ_j	c_{j}	k_{j}	
1	-342.22	1.72	1339.05	1165.31	1.90	
	(48.56)	(0.10)	(56.12)	(346.43)	(0.34)	
2	-333.44	1.81	1217.08	1087.50	1.98	
	(80.47)	(0.17)	(83.71)	(349.50)	(0.37)	
3	-163.18	1.65	1053.16	1110.60	2.29	
	(43.31)	(0.10)	(72.66)	(280.35)	(0.26)	
4	-315.64	1.45	1178.77	1034.33	1.60	
	(58.59)	(0.12)	(72.82)	(237.37)	(0.20)	
5	-194.72	1.65	1117.57	922.39	1.86	
	(61.41)	(0.16)	(85.78)	(290.10)	(0.31)	
6	-310.08	1.47	1301.49	943.08	1.37	
	(43.47)	(0.09)	(60.30)	(273.87)	(0.24)	
7	-220.93	1.50	1118.80	858.29	1.54	
	(90.81)	(0.19)	(115.56)	(293.74)	(0.33)	
8	-1404.66	3.00	1580.41	2132.07	3.16	
	(252.91)	(0.39)	(119.79)	(371.91)	(0.49)	
9	-688.85	2.15	1637.52	1440.84	2.45	
	(312.62)	(0.57)	(172.54)	(424.11)	(0.74)	
10	-246.68	1 59	1245 79	972.73	1 79	

Correlations

- Comparative advantages along different dimensions:
 - Firms suffering lower information precision tend to have lower marginal costs.
 - Firms with higher marginal costs tend to be more efficient at processing claims.

	σ_{j}	mc_j	k_{j}
σ_j	1.00		
mc_i	-0.72	1.00	
	(0.01)		
k_j	0.64	-0.75	1.00
•	(0.03)	(0.01)	

Correlations

- Comparative advantages along different dimensions:
 - Firms suffering lower information precision tend to have lower marginal costs.
 - Firms with higher marginal costs tend to be more efficient at processing claims.

	σ_{j}	mc_j	k_{j}
σ_{j}	1.00		
mc_i	-0.72	1.00	
•	(0.01)		
k_j	0.64	-0.75	1.00
-	(0.03)	(0.01)	

Who Goes Where?

Counterfactuals¹

- Main policy: establishing a centralized bureau that collects signals from all firms and aggregates them based on information precision. The posterior estimate of each consumer's risk given all signals $E(\theta|\hat{\theta})$ is made public.
- An efficiency benchmark: the true risk type of each consumer is observed by all firms information asymmetry is completely eliminated.
- A **privacy benchmark:** firms are required to limit their use of consumer data, σ is set to be the largest currently observed in the market \implies reduce overall information availability.

Sorting Patterns

- Sorting under full information or centralized risk bureau is driven by specialization based on cost advantages.
 - ⇒ Improve market efficiency (reduce the avg cost by 3.7%).
- Sorting nearly disappears under privacy regulation.

Conclusions

- Our paper develops a novel empirical framework for studying competition under information heterogeneity.
- We focus on Italian auto insurance industry: substantial differences in the precision of risk rating across firms; however, firms with lower information precision tend to have lower costs.
- We evaluate the **equilibrium effects** of a public information policy where insurers' risk estimates are aggregated and made public through a centralized bureau:
 - a significant price reduction due to increased competition.
 - boosts consumer surplus by 15.7%, nearly matching the efficiency benchmark.
 - improves the matching efficiency between insurers and insurees.