250B: Commutative Algebra Or, Eisenbud With Details

Nir Elber

Spring 2022

CONTENTS

1	The Nullstellensatz	3
	1.1 February 10	3

THEME 1: THE NULLSTELLENSATZ

1.1 February **10**

Here we go.

1.1.1 Unique Factorization Domains

We start with the following result; it is due to Gauss.

Theorem 1.1. Fix R a unique factorization domain. Then R[x] is a unique factorization domain.

Proof. The main character is as follows.

Content

Definition 1.2 (Content). Fix $f(x) = a_0 + \cdots + a_n x^n \in R[x]$. Then we define the *content* of f to be the ideal

$$cont(f) := (a_0, \dots, a_n) \subseteq R.$$

Here is the main claim.

Lemma 1.3. Fix $f, g \in R[x]$. Then $cont(fg) \subseteq cont(f) cont(g) \subseteq rad cont(fg)$.

Proof. That $cont(fg) \subseteq cont(f) cont(g)$ follows from expanding out fg. To show the other direction, we recall from \ref{fg} that

$$\mathrm{rad}\,\mathrm{cont}(fg) = \bigcap_{\mathrm{cont}(fg)\subseteq\mathfrak{p}}\mathfrak{p}.$$

Now, for any $\mathfrak p$ containing $\cot(fg)$, we have to show that $\cot(f)\cot(g)\subseteq \mathfrak p$. But then we note that $\overline f,\overline g\in(R/\mathfrak p)[x]$ will have

$$\overline{f} \cdot \overline{g} = 0$$

by definition of \mathfrak{p} . Thus, either $\overline{f} \in \mathfrak{p}$ or $\overline{g} \in \mathfrak{p}$, so $\mathrm{cont}(f) \subseteq \mathfrak{p}$ or $\mathrm{cont}(g) \subseteq \mathfrak{p}$. This finishes the other inclusion.

The key to continue is to work with the field of fractions $K := \operatorname{Frac}(R)$, noting that any polynomial $f \in R[x]$ will have a unique factorization in K[x] (because, say, K[x] is Euclidean).

Namely, our next step is to classify irreducibles in R[x].

Lemma 1.4. Fix everything as above. Then f is irreducible in R[x] implies that f is irreducible in K[x].

Proof. We proceed by contraposition. If f(x) is not irreducible (but still not zero and not a unit), then we can write $f = g_0 h_0$ where $\deg g_0, \deg h_0 < \deg f$. Clearing denominators, we can write

$$rf = gh$$

where $g,h \in R[x]$. So now we can talk about the content. If r is a unit, then we see that f is indeed not reducible. If r is not a unit, then for each prime $p \mid f$, we see that $\operatorname{cont}(f) \operatorname{cont}(g) \subseteq \operatorname{rad} \operatorname{cont}(fg) \subseteq (p)$, so either $g \in (p)$ or $h \in (p)$, and then we can cancel out by p. In particular, we can, after enough cancelling, force r to be a unit, thus finishing.

1.1. FEBRUARY 10 250B: COMM. ALGEBRA

To finish checking that R[x] is a unique factorization domain, we recall that it suffices to show all irreducibles are prime.

Lemma 1.5. Fix everything as above. If f is irreducible, in R[x], then f is prime.

Proof. Well, if f is irreducible in R[x], then it is irreducible and hence prime in K[x]. In particular, if $f \mid gh$ for $g, h \in R[x]$, then without loss of generality

$$g = f(q/r)$$

for some $q/r \in K[x]$ so that $q \in K[x]$. In particular, fq = rg, so arguing as above we can remove the primes dividing r into q because f will not be divisible by any prime constant.

The above lemma finishes the proof.

Corollary 1.6. The ring $k[x_1, \ldots, x_n]$ is a unique factorization domain.

Proof. Induction on n.

Example 1.7. We show that $(y^2-x^3)\subseteq k[x,y]$ is prime. It suffices to show that y^2-x^3 is prime in k[x,y], for which it suffices to show that y^2-x^3 is irreducible in k(x)[y]. But y^2-x^3 is a quadratic in k(x)[y] and therefore irreducible because it has no roots: there is no y=f(x)/g(x) such that $f(x)^2/g(x)^2=x^3$.

Example 1.8. We show that $(y^2-x^3)\subseteq k[x,y]$ is prime a different way. Indeed, by sending $x\mapsto t^2$ and $y\mapsto t^3$, there is an embedding

$$\frac{k[x,y]}{(y^2-x^3)} \hookrightarrow k\left[t^2,t^3\right]$$

by a homework problem. So the quotient is a domain, so $(y^2 - x^3)$ is prime.

1.1.2 The Cayley-Hamilton Theorem

Here is the main result we are going to prove.

Theorem 1.9. Fix R a ring and $A \in R^{n \times n}$ a matrix. Then define $p_A(x) := \det(xI - A) \in R[x]$. Then $p_A(A) = 0 \in R^{n \times n}$.

This statement is usually stated in linear algebra over a field, but it should hold for arbitrary rings.

Proof. We need to pick up the following definition.

Adjugate matrix **Definition 1.10** (Adjugate matrix). Fix $A \in \mathbb{R}^{n \times n}$. Then we define the adjugate matrix by

$$C_{ij} := (-1)^{ij} \det A_{i,j},$$

where $A_{i,j}$ is the matrix A without the ith row and without the jth column.

1.1. FEBRUARY 10 250B: COMM. ALGEBRA

Example 1.11. Set

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

Then

$$C = \begin{bmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{bmatrix}.$$

We can verify by hand that $C^{\mathsf{T}}A = (\det A)I$.

The central idea behind the adjugate matrix is that it "almost inverts" A.

Lemma 1.12. Fix $A \in \mathbb{R}^{n \times n}$ with adjugate matrix C. Then $C^{\mathsf{T}}A = (\det A)I$.

Proof. Omitted.

To show the result, the key is to consider the elements of R as living in $\operatorname{End}_R(R)$, alongside with A. we define

$$A(x) := xI - A,$$

which is a matrix whose entires are in $\operatorname{End}_R(R)$. We can check that this matrix vanishes on each basis vector of R^n when we take x=A. Then we see that

$$C^{\mathsf{T}}(x)A(x) = \det(xI - A)I$$

will still vanish upon taking x=A. Expanding out $\det(xI-A)$ as a polynomial (with coefficients in $\operatorname{End}_R(R)$) finishes.

Our application to commutative algebra is as follows.

Theorem 1.13. Fix M a finitely generated R-module with n generators. Further, fix $\varphi \in \operatorname{End}_R(M)$. Then there exists some monic polynomial

$$p_{\varphi} = x^n + p_1 x^{n-1} + \dots + p_n$$

of degree n such that $p_{\varphi}(\varphi)$ is zero. In fact, if there is an ideal $I \subseteq R$ such that IM = M, then $p_k \in I^k$.

Proof. Let $\{m_1, \ldots, m_n\}$ generate M so that we can use the equations

$$\varphi(m_i) = \sum_{k=1}^n a_{ij} m_j$$

to give a matrix form for φ . Then we set p_{φ} to be the characteristic polynomial for φ , which finishes the first part by the Cayley–Hamilton theorem. For the second part, we note that IM=M can force that $a_{ij}\in I$ for each i,j, which upon writing out the coefficients for the characteristic polynomial will finish.

Let's now see some applications.

Proposition 1.14. Let M be a finitely generated R-module and $\psi \in \operatorname{End}_R(M)$. Then if ψ is surjective, then ψ is an isomorphism.

Proof. The key trick is to give M an R[t]-module structure to M by defining $R[t] \mapsto \operatorname{End}_R M$ by sending $t \mapsto \psi$. In particular, using the above, we get some p_{id} such that $p_{\operatorname{id}}(\operatorname{id}) = 0$. Further, because ψ is surjective, we see that $(t) \cdot M = M$, so when we write out

$$p_{\rm id}(x) = x^n + p_1 x^{n-1} + \dots + p_n,$$

we see that $p_i \in (t^i)$ for each i. In particular, plugging in x = id, we see that

$$0 = id + t \cdot q(t)$$

for some $q \in R[t]$. In particular, t is invertible with inverse q(t).

Remark 1.15. This need not be true even in vector spaces which are not finitely generated. For example, consider

$$V := \bigoplus_{i=1}^{\infty} k v_i$$

for some vectors $\{v_i\}_{i=1}^{\infty}$. Then we have the surjective map defined by $v_1 \mapsto 0$ and $v_i \mapsto v_{i-1}$ for i > 1, and this is not an isomorphism.

Remark 1.16. This definitely need not be true for injections giving isomorphisms. For example, $\mathbb{Z} \to 2\mathbb{Z} \hookrightarrow \mathbb{Z}$ is injective but not an isomorphism.

Corollary 1.17. Fix m and n positive integers. Then if $R^n \cong R^m$ is an isomorphism of R-modules. Then m=n.

Proof. Without loss of generality take $n \ge m$. Then we can construct a surjective map

$$R^m \cong R^n \twoheadrightarrow R^m$$
,

which must be an isomorphism by Proposition 1.14. However, the map $R^n \to R^m$ by projection has a kernel whenever n > m, so the composite would have a kernel, which is our contradiction. So we must have n = m.

1.1.3 Nakayama's Lemma

Recall the definition.

Jacobson radical **Definition 1.18** (Jacobson radical). Fix a ring R. Then we define the *Jacobson radical* by

$$\operatorname{rad} R := \bigcap_{\mathfrak{m}} \mathfrak{m}.$$

Observe that $r \in \operatorname{rad} R$ if and only if $1 - r \in R^{\times}$. In particular, $r \in \operatorname{rad} R$ if and only if 1 - r is not in any maximal ideal if and only if (1 - r) = R.

We have the following result.

Theorem 1.19 (Nakayama's lemma). Fix $I \subseteq \operatorname{rad} R$ and M a finitely generated R-module. Then if IM = M, we have M = 0.

Proof. The main idea is in the following lemma.

Lemma 1.20. Fix everything as above. Then IM = M implies that there is some $r \in I$ such that (1 - r)M = 0.

Proof. The idea is, as usual, to use Theorem 1.13. We are promised some polynomial

$$p_{\rm id}(x) := x^n + p_1 x^{n-1} + \dots + p_n,$$

where $p_k \in I^k$. But plugging in x = id gives the result after rearranging for $id^n = id$.

From this lemma the result directly follows because the promised 1-r is a unit.

Corollary 1.21. Fix $I \subseteq \operatorname{rad} R$ and M a finitely generated R-module with elements $m_1, \ldots, m_n \in M$. Then if the images $\overline{m_1}, \ldots, \overline{m_n}$ generate M/IM, then the original elements generate M.

Proof. Consider

$$M' := Rm_1 + \dots + Rm_n.$$

Then because the given elements generate M/IM, we note that M/M'=I(M/M'), so M/M'=0, so M=M'.

Here is an application, to localization.

Proposition 1.22. Fix R a local ring with M and N finitely generated R-modules. Then $M \otimes_R N = 0$ if and only if M = 0 or N = 0.

Proof. If M=0 or N=0, then of course $M\otimes_R N=0$.

In the reverse direction, suppose $M \neq 0$. Fix \mathfrak{m} the maximal ideal. Then, because M is finitely generated by some elements, we get a surjective map $M \twoheadrightarrow R/\mathfrak{m}$. Tensoring, we see that

$$M \otimes_R N \to (R/\mathfrak{m}) \otimes_R N \to 0$$

is also surjective, but then $R/\mathfrak{m} \otimes_R N = N/\mathfrak{m}N$. However, $M \otimes_R N = 0$, so $N/\mathfrak{m}N = 0$ for all maximal ideals, so N = 0.

Corollary 1.23. Fix M and N finitely generated R-modules. Then $M \otimes_R N = 0$ if and only if $\operatorname{Ann} M + \operatorname{Ann} N = R$.

Proof. If $\operatorname{Ann} M + \operatorname{Ann} N = R$, then $M \otimes_R N = 0$ by decomposing 1 = a + b where $a \in \operatorname{Ann} M$ and $b \in \operatorname{Ann} N$. In the other direction, suppose that $I := \operatorname{Ann} M + \operatorname{Ann} N \subsetneq R$. Putting I in some maximal ideal \mathfrak{m} , we note that we can localize to $R_{\mathfrak{m}}$ and then reduce to Proposition 1.22.

Corollary 1.24. Fix M and N finitely generated R-modules. Then $\operatorname{Supp}(M \otimes_R N) = \operatorname{Supp} M \cap \operatorname{Supp} N$.

Proof. Fix a prime p. Then we see that

$$(M \otimes_R N)_{\mathfrak{p}} = M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} N_{\mathfrak{p}}$$

will vanish if and only if $M_{\mathfrak{p}}=0$ or $N_{\mathfrak{p}}=0$ (in particular, $R_{\mathfrak{p}}$ is local with unique maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$, so Proposition 1.22 applies), which is precisely the statement after negation.

We note that the condition that M and N are finitely generated is crucial.

Non-Example 1.25. We note that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0$ because \mathbb{Q} is divisible and $\mathbb{Z}/n\mathbb{Z}$ is torsion. But $\mathbb{Q} \neq 0$ and $\mathbb{Z}/n\mathbb{Z} \neq 0$.

1.1.4 Integrality Preview

We will spend the rest of class on the following theorem.

Proposition 1.26. Fix R a ring and an R-algebra S := R[s]/I for some ideal I. We have the following.

- (a) S is finitely generated as an R-module if and only if I contains a monic polynomial (i.e., there is some monic $p(x) \in R[x]$ such that p(s) = 0).
- (b) S is a free, finitely generated R-module if I = (p) for some monic polynomial p.

Proof. Here we go.

(a) If S is finitely generated as an R-module, we apply Theorem 1.13 with $\varphi = \mu_s : m \mapsto sm$ to finish. In the other direction, suppose

$$p(x) := x^n + p_1 x^{n-1} + \dots + p_n$$

is a polynomial in I. Then $\{1,s,s^2,\ldots,s^{n-1}\}$ will generate S over R: indeed, it suffices to check that each s^k can be written as an R-linear combination of the $\{1,s,\ldots,s^{n-1}\}$, but we get this by induction after noting p promises

$$s^{n+\ell} = -\sum_{i=0}^{n-1} p_{n-i} s^{i+\ell}.$$

- (b) If S is a free, finitely generated R-module, we got some monic polynomial in I, so we find the nonzero polynomial of least degree. Because the generation is free, using a power basis means we can force this polynomial to be monic, which gives the result.
 - The other direction is similar to the other direction above.

We close with some definitions.

Finite

Definition 1.27 (Finite). Fix S an R-algebra. Then S is *finite* over R if and only if S is finitely geneated over R.

Integral

Definition 1.28 (Integral). Fix S an R-algebra. Then $s \in S$ is integral over R if and only if s is a root of some monic polynomial over R. If all elements $s \in S$ are integral over R, then we say S is integral over R.