Komutativna algebra - 9. domača naloga

Benjamin Benčina, 27192018

12. maj 2020

<u>Nal. 1:</u> Naj bo $m=k^2n\in\mathbb{Z}$, kjer $k,n\in\mathbb{Z}$ in n brez kvadratnih faktorjev. Pokažimo, da je celostno zaprtje $\mathbb{Z}[\sqrt{m}]$ v svojem obsegu ulomkov enako $\mathbb{Z}[\frac{1+\sqrt{n}}{2}]$, če je $n\equiv 1$ in $\mathbb{Z}[\sqrt{n}]$ sicer. Dodatno lahko predpostavimo $k\in\mathbb{N}$.

Polje ulomkov v našem primeru je $\mathbb{Q}(\sqrt{m})$, seveda pa velja $\mathbb{Q}(\sqrt{m}) = \mathbb{Q}(k\sqrt{n}) = \mathbb{Q}(\sqrt{n})$. Zanimajo nas celostni elementi oblike $a + b\sqrt{m} = a + bk\sqrt{n}$, kjer $a, b \in \mathbb{Q}$. Tak element seveda zadošča polinomu $(x - a - bk\sqrt{n})(x - a + bk\sqrt{n}) = x^2 - 2ax + a^2 - nk^2b^2$. Hočemo, da $-2a, a^2 - nk^2b^2 \in \mathbb{Z}$. Če to velja, potem seveda tudi $4(a^2 - nk^2b^2) = (2a)^2 - n(2kb)^2 \in \mathbb{Z}$ in deljivo s 4. Ker je n brez kvadratnih faktorjev, sledi $2kb \in \mathbb{Z}$. Prestavimo se v kolobar \mathbb{Z}_4 . Zgornji izraz je tam enak 0, edina kvadrata pa sta 0 in 1. Ločimo primere:

- $n \equiv 2$: V tem primeru iz $(2a)^2 \equiv 2(2kb)^2$ sledi $(2a)^2 \equiv 0$ in $(2kb)^2 \equiv 0$, saj sta 0 in 1 edina kvadrata. Če $a \notin \mathbb{Z}$, vemo pa $2a \in \mathbb{Z}$, potem $(2a)^2 \equiv 1$, kar je protislovje, torej $a \in \mathbb{Z}$. Z enakim premislekom dobimo $kb \in \mathbb{Z}$. Od tod torej $\mathbb{Z}[\sqrt{m}] = \mathbb{Z}[\sqrt{n}]$.
- $n \equiv 3$: Isti premislek kot $n \equiv 2$.
- $n \equiv 0$: Z drugimi besedami, $4 = 2^2 | n$. V tem primeru je n = 0, sicer pridemo v protislovje s predpostavko, da n nima kvadratnih faktorjev. Potem je tudi m = 0 in izjava je trivialno resnična.
- $n \equiv 1$: Tukaj je edina možnost, ko lahko $(2a)^2 \equiv 1$ in $(2kb)^2 \equiv 1$. To se na primer lahko zgodi v primeru $a = \frac{1}{2}, b = \frac{1}{2}$ za primerne k. Problem je seveda, da pokrajšamo število 2 znotraj oklepaja. Ker je 2 praštevilo, to tudi edini način, da lahko število 2 pokrajšamo, torej $\overline{\mathbb{Z}[\sqrt{m}]} = \mathbb{Z}[\frac{1}{2} + \frac{\sqrt{n}}{2}] = \mathbb{Z}[\frac{1+\sqrt{n}}{2}]$.

Hkrati smo tudi videli, da sta dobljena kolobarja res algebraično zaprta in da je bistveno, da je n brez kvadratnih faktorjev (oz. kvadratne faktorje smo primorani pridružiti številu k^2).

<u>Nal. 2:</u> Naj bo $R \subseteq S$ celostna razširitev, K algebraično zaprto polje in $f: R \to K$ homomorfizem. Pokažimo, da obstaja razširitev $F: S \to K$, torej $F|_R = f$.

Najprej opazimo, da je ker f praideal v kolobarju R, saj je K polje. Označimo $P = \ker f$. Po izreku 9.11 s predavanj (lying over) obstaja praideal $Q \triangleleft S$, ki leži nad P, saj je $R \subseteq S$ celostna razširitev. Če pogledamo kompozitum $R \to S \to S/Q$, kjer je prva preslikava inkluzija, druga pa kvocientni homomorfizem, vidimo, da je jedro tega homomorfizma točno P (po definiciji ideala Q). Prvi izrek o izomorfizmih nam da injektiven homomorfizem $\varphi \colon R/P \to S/Q$, kjer je S/Q celosten nad R/P. Če si sedaj ogledamo polji ulomkov, je Quot(S/Q) algebraična razširitev Quot(R/P) (spomnimo se, da je pojem celostne razširitve le posplošitev pojma algebraične razširitve na kolobarje, v poljih pa sta pojma enaka).

Oglejmo si diagram

$$R \xrightarrow{f} K$$

$$\downarrow^{q_R} \xrightarrow{f'} f'' \uparrow$$

$$R/P \xrightarrow{i_R} \operatorname{Quot}(R/P)$$

Začnemo s homomorfizmom f. Po prvem izreku o izomorfizmih obstaja homomorfizem f'. Potem obstaja tudi njegova razširitev v polju ulomkov f''. Radi bi, da analogen diagram velja za kolobar S. Po premisleku zgoraj seveda obstajata homomorfizma q_S in i_S . Razvijmo zgornji diagram in si oglejmo

Iz teorije razširitev polj se spomnimo, da če imamo $F \subseteq E$ algebraično razširitev, lahko vsak homomorfizem polj $F \to K$ razširimo do homomorfizma polj $E \to K$ (K je še vedno algebraično zaprto polje). Tako dobimo homomorfizem $g \colon \operatorname{Quot}(S/Q) \to K$, ki razširja homomorfizem f''. Iskana razširitev je potem očitno $F = g \circ i_S \circ q_S$.

Poskusimo poiskati še kakšen homomorfizem, ki ga ne moremo razširiti, če katera od predpostavk in izpolnjena.

Naj bo $R \subseteq S$ necelostna razširitev, kjer $R = \mathbb{C}[x]$ in $S = \mathbb{C}[x,y]/(xy-1)$, in naj bo $K = \mathbb{C}$ algebraično zaprto polje. Trdimo, da ničelnega homomorfizma $R \to K$ ne moremo razširiti na celoten S. Res, enačba xy-1=0, ki ji v S nad R zadošča polinom y, se spremeni v protislovno enačbo $0 \cdot \overline{y} - 1 = 0$ (saj x slikamo v 0).

Naj bo $Z\subseteq\mathbb{Q}$ celostna razširitev in naj bo $K=\mathbb{Z}_2$ polje, ki pa ni algebraično zaprto. Potem se kvocientnega homomorfizma $f\colon k\mapsto k$ mod 2 ne da razširiti na vsa racionalna števila. Res, naj bo F možna razširitev homomorfizma. Potem po eni strani $F(\frac{1}{2}+\frac{1}{2})=F(1)=1$, po drugi pa $F(\frac{1}{2}+\frac{1}{2})=2F(\frac{1}{2})=0$.