Regression Analysis

11) Linux Molel:

A regression model is linear model: Y= XB+E.

Where X_{nxp} is usually full rank p. Cex) contains

Categorical Variables and at least one contine

Variables. Thus. X^TX is nonsingular.

O Simple linear Regression:

 $Y_{i} = \beta, + \beta_{i} \chi_{i} + \epsilon_{i} . \quad |\epsilon_{i} \in n. \quad \overline{E}(\epsilon_{i}) = 0. \quad V_{MICL_{i}}| = \delta.$ $\Rightarrow \chi = \left(J_{n} \stackrel{\chi_{i}}{\downarrow_{n}}\right) \Rightarrow \hat{\beta} = \frac{1}{\hat{\Xi}(\chi_{i} - \bar{\chi})^{2}} \left(\frac{n\bar{\gamma} \, \bar{\Xi}(\chi_{i} - n\bar{\chi} \, \bar{\Xi}(\chi_{i} + n\bar{\chi}) \, \bar{\Xi}(\chi_{i} + n\bar{\chi})^{2}}{-n^{2} \, \bar{\chi} \, \bar{\chi} \, \bar{\chi}} \right)$ $More formly, \hat{\beta}_{i} = \frac{\bar{\Xi}(\chi_{i} - \bar{\chi}) (\gamma_{i} - \bar{\gamma})}{\bar{\Sigma}(\chi_{i} - \bar{\chi})^{2}} = \frac{\hat{C}ov(\chi, \gamma)}{\hat{V}_{MICX_{i}}}$ $mh \hat{\beta}_{i} = \bar{\gamma} - \bar{\chi} \, \hat{\beta}_{i}$ $which follows from M = (m_{ij}) . m_{ij} = \frac{1}{n} + \frac{(\chi_{i} - \bar{\chi})(\chi_{j} - \bar{\chi})}{\bar{\Xi}(\chi_{i} - \bar{\chi})^{2}}$

O Multiple Linear Regression:

 $Y_i = \beta_0 + \beta_1 X_{i1} \cdots + \beta_1 X_{ip} + \xi_i$. Is is n. $\{\delta(\xi_i) = \delta^2 : i.i.l.\}$ More generally, consider $Y = X\beta + \xi$. $X \in M^{n \times p}$.

Note that C(M) = C(X) has rank β .

Decompose into sum of β orthogonal subspace of $\lambda(M = 1)$. $C(M) = \sum_{i=1}^{p} C(Mi)$. Y(Mi) = 1. $MiM_j = 0$. $j \neq j$

Def: $Zi = (X_1, X_2, \dots, X_i)$ | $Zi \leq P$. $Z_i = 0$.

Let $P_{Zi} = Z_i (Z_i Z_i) Z_i$. Then $M_i = P_{Zi} - P_{Zi-1}$. Is is $P_{Zi} = P_{Zi-1} = P_{Zi-1}$. It easy to check $P_{Zi} = P_{Zi-1} = P_{Zi-1} = P_{Zi-1}$.

Denote: $P_{Zi} = Z_i (Z_i Z_i) Z_i$. Then $P_{Zi} = P_{Zi-1} = P$

PMK: It can be interpreted as regression

sum of squares due to add Xi when

Xi. -- Xi-1 are already in model.

 $\Rightarrow SSR(x) = \sum_{i}^{r} SSR(Xi|X_{i}-X_{i-1})$

Rmk: The orthogonal Penomposition Of CCX). Repends
on the order of Variables Xi being fit
into the model. So the decomposition may
not be unique CC.f. Unbalance ANCOVA)

(2) Best Linear Prediction:

One of the main goal and use of regression m. Lel is for prediction but not only to make inference on parameters.

That is, predict Y on basis of information of X1. X2. Xp. Find fex) to minimize:

Ecy-fex) which ned joint list of (x, Y).

i) hist of cx. Y) is known:

7hm. Let m(x) = m(Y(x)). Then $m(x) = n(gmin E(Y - f(x))^{\frac{1}{2}}$ Pf: Check $E((Y - m(x)) \in m(x) - f(x)) = 0$

Than Px 10 Almein

Prop. CoveY, fixi) = (overmix), fixi)

Pf: Check = Elly-mixi) fixi) = 0

Thm. CCriteria of Best Predictor) $\tilde{\eta}(x)$ is any predictor. Then $\tilde{\eta}(x) = m(x)$. A.S. $\Rightarrow cov(f(x)) \cdot (Y - \tilde{\eta}(x)) = 0$ for any function f.

and $E(\tilde{\eta}(x)) = My$.

Pf: (=) It's from prop. $\alpha bove$ (=) prove: $\delta^2(\tilde{\eta}(x) - m(x)) = 0$. Since $\tilde{\mathcal{E}}(\tilde{\eta}(x) - m(x)) = 0$.

Lus: $Civ(\eta - m(x), \tilde{\eta}(x) - m(x)) - cov(\eta - \tilde{\eta}(x), \tilde{\eta}(x) - m(x))$ = O + O = 0 by prop. O = 0 by and O = 0 by O = 0 by and O = 0 by and O = 0 by O = 0 by O = 0 by and O = 0 by O = 0

ii) List of cx.Y) is waknown:

We only can find best linear predictor of Y if we only know means. Vars of X.Y and COVCX.Y).

i.e. minimize E(Y-f(x)). f(x) = a+ x B.

Phy: If (X.Y) is multinomal. Then the best prediction is linear predictor:

E(Y|X) = MY + IXX IXX (X-MX)

Thn. Bx is solution of Ixx B = Ixy. Then: E(YIX)=: My + (X-Mx) Bx is best linear predictor Pf: Show = E (cY-É(YIX)) (Ê(YIX) - f(x)) =0 where fix) = n + (x-Mx) BT. > E(Y-X-XB)= E(Y-E(YIX))+ E(Ê(YIX)-D) Rmk: BLP is unique. i.e. to minimize: Ec É(YIX)-n-(X-nx)B). n=mx mn B must be solution of $Ixx \beta = Ixy$. Note it's: (MY-n) + E ((X-Mx) (B*-B)) Jo minimization require = n=My. E(D)=0 Since E(=) = (px-p) Txx (px-p). () Ixx (Px - B) = 0 () Ixx (Px - B) = 0.

(iii) Apply to multiple linear regression:

Penote: $S_{XX} = \frac{X^T (I - P_n)X}{n-1}$, $S_{XY} = \frac{X^T (I - P_n)Y}{h-1}$ $\hat{n}_X = \frac{1}{n} J_n^T X$, $\hat{n}_Y = \frac{1}{n} J_n^T Y$.

Best linear prediction of $Y_i : \hat{Y}_i = \hat{M}_Y + (\hat{X}_i - \hat{R}_X)\hat{P}_X$ Where \hat{P}_X is solution of $S_{XX}\hat{P}_i = S_{XY}$ $P_i = \hat{P}_X$ is $P_i = \hat{P}_X$.

We can obtain $P_i = \hat{P}_X$ is $P_i = \hat{P}_X$.

prop. C Criteria of BLP)

 $\tilde{\eta}(x)$ is any linear predictor. Then $\tilde{\eta}(x) = \hat{E}(Y|X)$. a.s \Leftrightarrow Cov $c \neq (x)$, $Y - \tilde{\eta}(x)$) = 0. for any linear function f and $\tilde{E}(\tilde{\eta}(x)) = M_Y$.

Pf: Set $f(x) = 2 + (x - mx)^T \beta$.

(=) (\circ) (\circ)

(E) Write $\overline{\eta}(x) = MY + (X - Mx)^T \delta$ for some δ . $= L_0 \times C f(x), Y - \overline{\eta}(x)) = \beta^T I_{XY} - \beta^T I_{XX} \delta = 0$

iv) For vector Y=(1,...1p):

If we have data x = (x, ... x2)

 $\frac{1hm}{E((Y-f(x))^{T}(Y-f(x)))} = \frac{E(Y_{P}(X))}{E((Y-f(x))^{T}(Y-f(x)))}$ $\frac{1}{E((Y-f(x))^{T}(Y-f(x)))}$

 $\frac{7hm}{f(x)} = Myi + (x-Mx)^T \beta_i^*$. $I_{xyi} \beta_i^* = I_{xx}$. 7hm $f(x) is best linear predictor of <math>\vec{Y}$.

(3) Coefficient of Determination:

O Multiple Correlation Coefficient:

Consider: $Y = J_{\alpha}\beta_{0} + X_{pxp} \beta + \xi$. $Y(X) = \beta$.

Written in $Y = J_{\alpha}\delta_{0} + (X - \frac{J_{\alpha}^{n}}{r}) \times \beta + \xi$

Where 80 = Bo + Ja XB.

Def. R= SSR is Coefficient of Determination

Where SSTOT = YTY. C = r 7 : SSR = YTCM - TO)Y M* is PCCInx, orthonormal proj.

PMK: i) SYY = SSTOT-U = YT(I-Pn)Y = I(Y:-Y)

ii) SSR = SYY-SIE.

iii) $R = 1 - \frac{SSE}{SYY}$. $D \leq R \leq 1$. R is integrated as the proportion of total variability in Y explained by indept variable. (X, -- Xp) It can measure the predictive ability of a model. R2 1. The better fit of model.

To motivate use of R to acess fit: R2 is netwally estimate of the square of multiple Correlation coefficient.

Def: The multiple correlation coefficient between Yui and $\vec{X} = (X_1 - X_1)$ is max { lorr² (Y, $q + X^T \beta$)}. $\frac{Rmk: It's \ max}{\beta} \frac{(\Sigma_{YX}\beta)^{2}}{\beta^{7}\Sigma_{XX}\beta \cdot \delta_{YY}} = \frac{max}{\beta} \frac{(\Sigma_{YX}\Sigma_{XX}\Sigma_{XX}\Sigma_{XX}\beta)^{2}}{\delta_{YY} \cdot \beta^{7}\Sigma_{XX}\beta}$ $= \frac{\Sigma_{YX}\Sigma_{XX}^{2}\Sigma_{XY}}{\delta_{YY}} \cdot \int_{0}^{\infty} M(U(Y, X)) = \frac{\Sigma_{YX}\Sigma_{XX}^{2}\Sigma_{XY}}{\delta_{YY}}$

Its estimation is
$$\frac{S_{Yx} S_{xx} S_{xy}}{\widehat{\sigma}_{YY}}$$
. $\widehat{\sigma}_{YY}^2 = Y^T (I - P_n) Y = S_{YY}$. $S_{Yx}^2 = Y^T (I - P_n) X$. $S_{xx}^2 = X^T (I - P_n) X$. $S_{xy}^2 = S_{yx}^T$. $S_{xy}^2 = S_{yx}^T$. $S_{xy}^2 = S_{yx}^T$.

Apply in Tost:

Note that
$$\frac{SSR}{SSE} = \frac{R^2}{1-R^2}$$
. Test: $H_0: \vec{B} = 0$

Then $F = \frac{Y^T(M^* - \frac{1}{n}J_n^*)Y/p}{Y^T(I-M^*)Y/(n-p-1)} = \frac{n-p-1}{p} \frac{p^2}{1-R^2} \stackrel{M_0}{\longrightarrow} F_{cp,n-p-1}$
 O Partial Correlation Coefficients:

i) We're also interested in the correlation between 2 Variables condition on a set of Variables that are already in model.

Denote: ly-x is partial correlation coefficient of Y. Y. given X. -- Xp-1.

PMK: eq.x is measure of linear relation between Y. Yo after taking the effect of X out

Note that BLP of Y=(Y.,Y2) given X is: Ê(Y|X) = MY + BX (X-MX) . IXX BX = IXY & M PIX =) Take efforts of X out of Y by looking at:

the prediction error: Y- (My + Bx (X-Mx)) Det: enx is correlation of two component of Y- (My + B* (X-Mx)).

Rmk: Cov (Y-MY - BX (X-MX)) = Gov (Y-MY) + BX Gov (X-MX) Bx - - -= IYY + BX IXX BX - IXX BX - BX IXY (Note IXX = IXX IXX IXX) = IYY - B* IXX B* = IYY - IYX IXX IXY => Calculare ly.x.

ii) In sample Care:

If we have sample: Y = (Y, Y2) = (Yn Yn) X = (xij) nxp. The estimate of Irr - Irx Ixx Ixy is Syy - Syx Sxx Sxy = 1 YT (I-M*) Y $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$

Det: Mylx is sample partial correlation coefficient Francisco to both was

iii) Mypothusis Tusti

Consider fitting: Y = Jny. + Xy, + Y2 y2 + E. where & - N co. 6 1)

```
Since CLII-m*, Y-) is C+(Jn.X) N C(Jn.X.Y.)
     Then: 55 R ( Y2 | Jn. X) = Y, PCCI-MY)Y2 Y1
                                                                                             = Y, ( I-m*) Y, (Y, (I-m*) Y, ) Y, (I-m*) Y,
                           With SSE(Jn, X) = Y, (I-M*) Y,
     => rpix = SSR(Y. | Jn. X) / SSE (Jn. X)
       To test: Ma: Cax =0 (=) Mo: Y2=0 (=) COVCY., Y. (X)=0)
          F = Y, C PCCJn.x. X.) - PCCJn.x.) Y./
                         Y, ( I - Pacja x y2) Y, / (n-p-2)
                     Y, T Pa (c I - Pacy - X1) Y1) Y1

Y, T L I - Pacy - Paccz - Pa
               = ryix Ho F(1. n-P-2)
3 Squared Predictive Correlation:
       i) S.P. C of predictor T(X) is CorreY. Tex)
             The higher SPC. The more predictive Ticx) is.
             7hm. Corre Y. Mixi) = Corre Y, mixi) =: R
                                 Pf: Ori = oni = onn oni. By Schwarz.
                                            And R= Trn = Trn = Trn = Trn / Try.
```

RMK: In fact, high SPC can also be attained by bad predictors. Since que)

is high correlated with Y lossn't mean

is figh correlated with Y lossn't mean

if que) is close enough to Y.

If we have a predictor $\hat{\eta}(x)$. We can construct a linear predictor which is at least as $\gamma \cdot \lambda$ as $\hat{\eta}(x) : \hat{\eta}(x) = M\gamma + \frac{\sigma_{\gamma}\hat{\eta}}{\sigma_{\gamma}\hat{\eta}} (\tilde{\eta}(x) - M\tilde{\eta}) \cdot i.c.$ the BLP based on $\tilde{\eta}(x)$ rather than X.

RMK: Note $\hat{\eta}\hat{\eta} = \sigma_{\gamma}\hat{\eta}/\sigma_{\gamma}\hat{\eta} = \sigma_{\gamma}\hat{\eta}$. We obtain: $Corr^{2}(Y, \hat{\eta}(x)) = \sigma_{\gamma}\hat{\eta}/\sigma_{\gamma}$

Def: We measure the goodness of such pred. $\hat{\eta}(x)$ by: $E(Y-\hat{\eta}(x))^2 = \sigma_{YY} - \sigma_{YY}$

prop. For two linearized predictor $\hat{\eta}_{i}(x)$, $\hat{\eta}_{z}(x)$. $\hat{\eta}_{z}(x)$ is better (=) Spc of $\hat{\eta}_{z}(x)$ is higher

Pf: $Corr^{z}(Y, \hat{\eta}_{i}(x)) \leq Corr^{z}(Y, \hat{\eta}_{z}(x)) = Corr^{z}(Y, \hat{\eta}_{z}(x$