The Singular Value Decomposition for Pedestrians

Daniel Topa

October 20, 2011

The Fundamental Theorem of Linear Algebra

The singular value decomposition resolves the Four Fundamental Subspaces

Example: $\mathbf{A} \in \mathbb{R}_1^{3 \times 2}$: a matrix with m=3 rows, n=2 columns and matrix rank $\rho=1$. The codomain is \mathbb{R}^3 , the domain is \mathbb{R}^2 .

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}, \quad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$

$$CODOMAIN = \mathbb{R}^{m}$$

$$= \mathcal{R}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A}^{\mathrm{T}})$$

$$= \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\} \oplus \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \right\}$$

$$\begin{aligned} \text{DOMAIN} &= \mathbb{R}^n \\ &= \mathcal{R}\left(\mathbf{A}^{\mathrm{T}}\right) \oplus \mathcal{N}\left(\mathbf{A}\right) \\ &= \operatorname{span}\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \oplus \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \end{aligned}$$

The basis matrix \mathbf{Y} is an orthogonal decomposition of the *codomain*. The basis matrix \mathbf{X} is an orthogonal decomposition of the *domain*.

Anatomy of the SVD: row and column rank deficiency

$$\mathbf{A} = \mathbf{Y} \qquad \qquad \Sigma \qquad \mathbf{X}^{\mathrm{T}}$$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{6}}{0} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Here the target matrix $\mathbf{A} \in \mathbb{R}^{3\times 2}_1$ has m=3 rows, n=2 columns and matrix rank $\rho = 1$. This matrix has rank deficiency in both the rows and the columns. All components needed for the SVD come from the product matrices $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\mathrm{T}}$. The square root of the nonzero eigenvalues comprise the diagonal entries of Σ .

product matrix:

$$\mathbf{W}_{\mathbf{x}} = \mathbf{A}^{\mathrm{T}} \mathbf{A} = 3 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

eigenvalues:

$$\lambda\left(\mathbf{W}_{x}\right) = \left\{6, 0\right\}$$

eigenvectors:

$$\left\{ \left[\begin{array}{c} -1\\ 1 \end{array} \right], \left[\begin{array}{c} 1\\ 1 \end{array} \right] \right\}$$

domain matrix:

$$\mathbf{X} = \left[egin{array}{c} rac{1}{\sqrt{2}} \left[egin{array}{c} -1 \ 1 \end{array}
ight] \left[egin{array}{c} rac{1}{\sqrt{2}} \left[egin{array}{c} -1 \ 1 \end{array}
ight] \end{array}
ight]$$

$$\mathbf{W}_{x} = \mathbf{A}^{T} \mathbf{A} = 3 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \qquad \mathbf{W}_{y} = \mathbf{A} \mathbf{A}^{T} = 5 \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

eigenvalues:

$$\lambda\left(\mathbf{W}_{y}\right) = \left\{6, 0, 0\right\}$$

eigenvectors:

$$\left\{ \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix} \right\}$$

codomain matrix:

$$\mathbf{X} = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 1 \end{bmatrix} & \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 1 \end{bmatrix} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} -1\\ \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\ 1\\ -1 \end{bmatrix} & \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 6 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \sqrt{6} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Anatomy of the SVD: full row rank

$$\begin{bmatrix} 0 & 3 & 0 \\ 1 & 2 & 2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{15} & 0 & 0 \\ 0 & \sqrt{3} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{30}} & \frac{5}{\sqrt{30}} & \frac{2}{\sqrt{30}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{-2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \end{bmatrix}$$

Here the target matrix $\mathbf{A} \in \mathbb{R}_2^{2\times 3}$ has m=2 rows, n=3 columns and matrix rank $\rho = 2$ (full column rank).

product matrix:

$$\mathbf{W}_{\mathbf{x}} = \mathbf{A}^{\mathrm{T}} \mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 13 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

eigenvalues:

$$\lambda\left(\mathbf{W}_{x}\right) = \{15, 3, 0\}$$

eigenvectors:

$$\left\{ \begin{bmatrix} 1\\5\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$$

domain matrix:

$$\mathbf{X} = \begin{bmatrix} \frac{1}{30} \begin{bmatrix} 1\\5\\2 \end{bmatrix} & \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\-1\\2 \end{bmatrix} & \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\0\\1 \end{bmatrix} \end{bmatrix} \quad \mathbf{Y} = \frac{1}{\sqrt{2}} \begin{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} & \begin{bmatrix}-1\\1\end{bmatrix} \end{bmatrix}$$

product matrix:

$$\mathbf{W}_{\mathrm{y}} = \mathbf{A}\mathbf{A}^{\mathrm{T}} = \left[\begin{array}{cc} 9 & 6 \\ 6 & 9 \end{array} \right]$$

eigenvalues:

$$\lambda\left(\mathbf{W}_{y}\right) = \{15, 3\}$$

eigenvectors:

$$\left\{ \left[\begin{array}{c} 1\\1 \end{array}\right], \left[\begin{array}{c} -1\\1 \end{array}\right] \right\}$$

codomain matrix:

$$\mathbf{Y} = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1\\1 \end{array} \right] \quad \left[\begin{array}{c} -1\\1 \end{array} \right]$$

$$\mathbf{S} = \begin{bmatrix} \sqrt{15} & 0 \\ 0 & \sqrt{3} \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \mathbf{S} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \sqrt{15} & 0 & 0 \\ 0 & \sqrt{3} & 0 \end{bmatrix}$$

Anatomy of the SVD: full row and column rank

$$\mathbf{A} = \mathbf{Y} \qquad \qquad \Sigma \qquad \qquad \mathbf{X}^{\mathrm{T}}$$

$$\begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \sqrt{2} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

The target matrix $\mathbf{A} \in \mathbb{R}_2^{2 \times 2}$ has m = 2 rows, n = 2 columns and matrix rank $\rho = 2$ (full column rank, full row rank). Notice how the eigenvalues are presented in the target matrix \mathbf{W}_{x} . This is a diagonal matrix and it is customary (but not obligatory) to read the eigenvalues from the diagonal as $\{\lambda_1, \lambda_2\}$. When we order the singular values we must reorder the eigenvectors as well.

product matrix:

$$\mathbf{W}_{x} = \mathbf{A}^{T} \mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix} \qquad \mathbf{W}_{y} = \mathbf{A} \mathbf{A}^{T} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

eigenvalues:

$$\lambda\left(\mathbf{W}_{\mathbf{x}}\right) = \{2, 8\}$$

eigenvectors:

$$\left\{ \left[\begin{array}{c} 0 \\ 1 \end{array}\right], \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \right\}$$

domain matrix:

$$\mathbf{X} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

product matrix:

$$\mathbf{W}_{\mathbf{y}} = \mathbf{A}\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

eigenvalues:

$$\lambda\left(\mathbf{W}_{y}\right)=\left\{ 2,8\right\}$$

eigenvectors:

$$\left\{ \left[\begin{array}{c} 1\\ -1 \end{array}\right], \left[\begin{array}{c} 1\\ 1 \end{array}\right] \right\}$$

codomain matrix:

$$\mathbf{X} = \left[\begin{array}{c} 1\\0 \end{array} \right] \quad \left[\begin{array}{c} 0\\1 \end{array} \right] \quad \left] \quad \mathbf{Y} = \left[\begin{array}{c} \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1\\1 \end{array} \right] \quad \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1\\-1 \end{array} \right] \end{array} \right]$$

$$\mathbf{S} = \sqrt{2} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \mathbf{S} \end{bmatrix} = \sqrt{2} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

form		decomposition products			dimension
A	=	$\mathbf{Y} \Sigma \mathbf{X}^*$			$m \times n$
\mathbf{A}^*	=	$\mathbf{X} \; \Sigma^{\mathrm{T}} \mathbf{Y}^*$			$n \times m$
\mathbf{A}^{+}	=	$\mathbf{X} \; \Sigma^{(+)} \mathbf{Y}^*$			$n \times m$
$\mathbf{A}^*\mathbf{A}$	=	$\left(\mathbf{X} \ \Sigma^{\mathrm{T}} \ \mathbf{Y}^{*}\right) \left(\mathbf{Y} \ \Sigma \ \mathbf{X}^{*}\right)$	=	$\mathbf{Y} \Sigma \Sigma^{\mathrm{T}} \mathbf{Y}^*$	$n \times n$
$\mathbf{A} \ \mathbf{A}^*$	=	$(\mathbf{Y} \Sigma \mathbf{X}^*) (\mathbf{X} \Sigma^T \mathbf{Y}^*)$	=	$\mathbf{X} \Sigma^{\mathrm{T}} \Sigma \mathbf{X}^*$	$m \times m$
$\mathbf{A}^{+}\mathbf{A}$	=	$\left(\mathbf{X} \ \Sigma^{(+)} \ \mathbf{Y}^* \right) \left(\mathbf{Y} \ \Sigma \ \mathbf{X}^* \right)$	=	$\mathbf{X} \Sigma^{(+)} \Sigma \mathbf{X}^* = \mathbf{X}_{\mathcal{R}} \mathbf{X}_{\mathcal{R}}^*$	$n \times n$
$\mathbf{A}\mathbf{A}^+$	=	$(\mathbf{Y} \Sigma \mathbf{X}^*) \left(\mathbf{X} \Sigma^{(+)} \mathbf{Y}^* \right)$	=	$\mathbf{Y} \Sigma \Sigma^{(+)} \mathbf{Y}^* = \mathbf{Y}_{\mathcal{R}} \mathbf{Y}_{\mathcal{R}}^*$	$m \times m$

pseudoinverse		basis		target		
products		products		projector	space	dimension
$\mathbf{A}^{+}\mathbf{A}$	=	$\mathbf{Y}_{\mathcal{R}}\mathbf{Y}_{\mathcal{R}}^{*}$	=	$P_{\mathcal{R}(\mathbf{A})}$	$\mathcal{R}\left(\mathbf{A} ight)$	$n \times n$
$\mathbf{A}\mathbf{A}^+$	=	$\mathbf{X}_{\mathcal{R}}\mathbf{X}_{\mathcal{R}}^{*}$	=	$P_{\mathcal{R}(\mathbf{A}^*)}$	$\mathcal{R}\left(\mathbf{A}^{*}\right)$	$m \times m$
$\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}$	=	$\mathbf{Y}_{\mathcal{N}}\mathbf{Y}_{\mathcal{N}}^{*}$	=	$P_{\mathcal{N}(\mathbf{A}^*)}$	$\mathcal{N}\left(\mathbf{A}^{*}\right)$	$m \times m$
$\mathbf{I}_n - \mathbf{A}\mathbf{A}^+$	=	$\mathbf{X}_{\mathcal{N}}\mathbf{X}_{\mathcal{N}}^{*}$	=	$P_{\mathcal{N}(\mathbf{A})}$	$\mathcal{N}\left(\mathbf{A}^{*}\right)$	$n \times n$

Linear least squares and the SVD

Given the linear system

$$\mathbf{A}x = b, \qquad \mathbf{A} \in \mathbb{R}_{\rho}^{m \times n}, \quad x \in \mathbb{R}^{n}, \quad b \in \mathbb{R}^{m}$$

the least squares x_{LS} solution is given by this expression:

$$x_{LS} = \mathbf{A}^+ b + (\mathbf{I}_n - \mathbf{A}^+ \mathbf{A}) z, \qquad z \in \mathbb{R}^n$$

= $\mathbf{A}^+ b + \mathbf{X}_{\mathcal{N}} \mathbf{X}_{\mathcal{N}}^* z$

with the vector z being arbitrary. An equivalent formulation is this:

$$x_{LS} = x_p + \left(\alpha_1 \mathbf{X}_{*,\rho+1} + \alpha_2 \mathbf{X}_{*,\rho+2} + \dots + \alpha_{n-\rho} \mathbf{X}_{*,n}\right)$$

where the scalars α_k are arbitrary. This solution directly encodes the $n-\rho$ null space vectors in the domain matrix \mathbf{X} .

condition pseudoinverse chirality
$$\rho = n \qquad \mathbf{A}^{+} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-\mathrm{L}}$$

$$\rho = m \qquad \mathbf{A}^{+} = \mathbf{A}\left(\mathbf{A}\mathbf{A}^{\mathrm{T}}\right)^{-1} = \mathbf{A}^{-\mathrm{R}}$$

$$m = n = \rho \quad \mathbf{A}^{+} = \mathbf{A}^{-1} \qquad = \mathbf{A}^{-\mathrm{L}} = \mathbf{A}^{-\mathrm{R}}$$

Σ gymnastics

$$\mathbf{S} = \mathbf{S}^{\mathrm{T}} = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_{\rho} \end{bmatrix}, \qquad \mathbf{S}^{-1} = \begin{bmatrix} \sigma_1^{-1} & & & & \\ & \sigma_2^{-1} & & & \\ & & & \ddots & \\ & & & & \sigma_{\rho}^{-1} \end{bmatrix}$$

$$\mathbf{S} \mathbf{S}^{\mathrm{T}} = \mathbf{S}^{\mathrm{T}} \mathbf{S} = \mathbf{S}^2$$

form		block matrix	dimension
Σ	=	$\left[\begin{array}{cc}\mathbf{S} & 0 \\ 0 & 0\end{array}\right]$	$m \times n$
$\Sigma^{ m T}$	=	$\left[egin{array}{cc} \mathbf{S}^{\mathrm{T}} & 0 \ 0 & 0 \end{array} ight] = \left[egin{array}{cc} \mathbf{S} & 0 \ 0 & 0 \end{array} ight]$	$n \times m$
$\Sigma^{(+)}$	=	$\left[\begin{array}{cc}\mathbf{S}^{-1} & 0 \\ 0 & 0\end{array}\right]$	$n \times m$
$\Sigma\Sigma^{\mathrm{T}}$	=	$\left[\begin{array}{cc} \mathbf{S} & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} \mathbf{S}^{\mathrm{T}} & 0 \\ 0 & 0 \end{array}\right] \qquad = \left[\begin{array}{cc} \mathbf{S}^2 & 0 \\ 0 & 0 \end{array}\right]$	$m \times m$
$\Sigma^{\mathrm{T}}\Sigma$	=	$\left[\begin{array}{cc} \mathbf{S}^{\mathrm{T}} & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} \mathbf{S} & 0 \\ 0 & 0 \end{array}\right] \qquad = \left[\begin{array}{cc} \mathbf{S}^2 & 0 \\ 0 & 0 \end{array}\right]$	$n \times n$
$\Sigma\Sigma^{(+)}$	=	$\left[egin{array}{ccc} \mathbf{S} & 0 \ 0 & 0 \end{array} ight] \left[egin{array}{ccc} \mathbf{S}^{-1} & 0 \ 0 & 0 \end{array} ight] & = & \left[egin{array}{ccc} \mathbf{I}_{ ho} & 0 \ 0 & 0 \end{array} ight]$	$m \times m$
$\Sigma^{(+)}\Sigma$	=	$\left[egin{array}{ccc} \mathbf{S}^{-1} & 0 \ 0 & 0 \end{array} ight] \left[egin{array}{ccc} \mathbf{S} & 0 \ 0 & 0 \end{array} ight] & = & \left[egin{array}{ccc} \mathbf{I}_{ ho} & 0 \ 0 & 0 \end{array} ight]$	$n \times n$
$\Sigma^{(+)}\Sigma\Sigma^{\rm T}$	=	$\left[\begin{array}{cc} \mathbf{I}_{\rho} & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} \mathbf{S} & 0 \\ 0 & 0 \end{array}\right] \qquad = \qquad \Sigma$	$m \times n$
$\Sigma^{\mathrm{T}}\Sigma\Sigma^{(+)}$	=	$\left[egin{array}{ccc} \mathbf{S}^{\mathrm{T}} & 0 \\ 0 & 0 \end{array} ight] \left[egin{array}{ccc} \mathbf{I}_{ ho} & 0 \\ 0 & 0 \end{array} ight] \qquad = \qquad \qquad \Sigma^{\mathrm{T}}$	$n \times m$

Table 0.1. Note that although the matrices Σ and Σ^{T} have the same block structure (because $S = S^{\mathrm{T}}$), the matrix and its transpose have different dimensions.

$$\mathbf{S} = \operatorname{diag}\left(2, \frac{1}{3}\right) = \begin{bmatrix} 2 & 0\\ 0 & \frac{1}{3} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \mathbf{S} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \frac{2}{0} & 0 \\ 0 & \frac{1}{3} \\ \hline 0 & 0 \end{bmatrix}$$

$$\Sigma^{\mathrm{T}} = \begin{bmatrix} \mathbf{S}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \end{bmatrix}$$

$$\Sigma^{(+)} = \begin{bmatrix} \mathbf{S}^{-1} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{array}{c} \rho \\ m - \rho \end{array}$$
 (0.1)

$$\Sigma = \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \begin{array}{c} \rho \\ m - \rho \end{array} \tag{0.2}$$