Лабораторная работа №4

Итерационный метод Якоби для полного решения задачи вычисления собственных значений и собственных векторов квадратной симметричной матрицы

Далее $n \in \mathbb{N}$, $n \ge 3$ и $A = (a_j^i)_n^n = \langle {}^{>}\boldsymbol{a}_1, \dots, {}^{>}\boldsymbol{a}_n] = [{}^{<}\boldsymbol{a}^1, \dots, {}^{<}\boldsymbol{a}^n \rangle \in L(\mathbb{R};n)$ - заданная симметричная матрица, т.е. ${}^{T}A = A$ $(a_j^i = a_i^j$ для любых $i, j = \overline{1,n}$), где ${}^{>}a_j$ $({}^{<}a^i)$ - j-ый (i-ая) столбец (строка) матрицы A, если $j = \overline{1,n}$ $(i = \overline{1,n})$. Кроме того, если $\mathbf{Q} \in \mathrm{OL}(\mathbb{R};n)$ - ортогональная матрица, то, в силу свойств ортогональных преобразований стандартного арифметического евклидова пространства ${}^{>}\mathbb{E}^n$, для любого $i = \overline{1,n}$ справедливы равенства:

$${}^{\mathsf{T}}\mathbf{Q} \cdot \mathbf{Q} \cdot {}^{\mathsf{T}}\mathbf{Q} \cdot \mathbf{Q} \cdot {}^{\mathsf{T}}\mathbf{q}_{i} = {}^{\mathsf{T}}\mathbf{q}_{i} \cdot {}^{\mathsf{T}}\mathbf{q}_{i}.$$
 (1)

Следовательно, сумма квадратов элементов матрицы A совпадает с суммой квадратов элементов матриц $Q \cdot A = \langle Q \cdot {}^{>}a_{1}, ..., Q \cdot {}^{>}a_{n} \rangle$ и $A \cdot Q = [{}^{<}a^{1} \cdot Q, ..., {}^{<}a^{n} \cdot Q > .$

Метод Якоби

Приведём итерационный метод вращений Якоби для вычисления собственных значений и векторов матрицы A, полагая, что A[0] = A - начальная матрица рассматриваемого метода вращений.

Пусть номера $\alpha, \beta \in \overline{1,n}$, где $\alpha < \beta$, таковы, что элемент a_{α}^{β} матрицы A является ненулевым и максимальным по модулю среди всех внедиагональных элементов матрицы A = A[0].

В пространстве ${}^{>}\mathbb{E}^{n}$ рассмотрим ортогональное табличное преобразование $\hat{Q}(\alpha,\beta;\varphi)$ - поворота на угол $\varphi \in [0;2\pi)$ в подпространстве $[e_{\alpha},e_{\beta}] \subseteq {}^{>}\mathbb{E}^{n}$, натянутом на стандартные векторы e_{α} и e_{β} пространства ${}^{>}\mathbb{E}^{n}$ ($\langle e_{1},...,e_{n} \rangle$ - стандартный базис пространства ${}^{>}\mathbb{E}^{n}$). Матрица $Q(\alpha,\beta;\varphi)$ такого преобразования имеет вид:

$$\mathbf{Q}(\alpha, \beta; \varphi) = \langle \mathbf{e}_1, \dots, \mathbf{e}_{\alpha-1}, s(\alpha, \beta; \varphi), \mathbf{e}_{\alpha+1}, \dots, \mathbf{e}_{\beta-1}, t(\alpha, \beta; \varphi), \mathbf{e}_{\beta+1}, \dots, \mathbf{e}_n \rangle,$$
(2)

где

$$\begin{cases} {}^{>}s(\alpha,\beta;\varphi) = \sum_{k=1}^{n} \left(\delta_{\alpha}^{k} \cos \varphi + \delta_{\beta}^{k} \sin \varphi \right) \boldsymbol{e}_{k}; \\ {}^{>}t(\alpha,\beta;\varphi) = \sum_{k=1}^{n} \left(-\delta_{\alpha}^{k} \sin \varphi + \delta_{\beta}^{k} \cos \varphi \right) \boldsymbol{e}_{k}. \end{cases}$$
(3)

В частности, если
$$\alpha=1$$
 и $\beta=3$, то $\mathbf{\mathcal{Q}}\left(1,3;\varphi\right)= \begin{bmatrix} \cos\varphi & 0 & -\sin\varphi & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & 0 \\ \sin\varphi & 0 & \cos\varphi & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \vdots \\ \vdots & \vdots & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & \vdots & \ddots & 0 & 1 \end{bmatrix}.$

Угол $\varphi \in [0;2\pi)$ выберем таким образом, чтобы элемент b^{α}_{β} матрицы $\mathbf{B} = \left(b^i_j\right)^n_n = {}^T\mathbf{Q}(\alpha,\beta;\varphi) \cdot \mathbf{A}[0] \cdot \mathbf{Q}(\alpha,\beta;\varphi) = \mathbf{A}[1]$ был нулевым. Тогда получим:

1)
$$b_{\alpha}^{\alpha} = a_{\alpha}^{\alpha} \cos^{2} \varphi + a_{\beta}^{\beta} \sin^{2} \varphi + 2a_{\beta}^{\alpha} \sin \varphi \cdot \cos \varphi;$$
$$b_{\beta}^{\beta} = a_{\alpha}^{\alpha} \sin^{2} \varphi + a_{\beta}^{\beta} \cos^{2} \varphi - 2a_{\beta}^{\alpha} \sin \varphi \cdot \cos \varphi;$$

2)
$$0 = b_{\beta}^{\alpha} = b_{\alpha}^{\beta} = -\left(a_{\alpha}^{\alpha} - a_{\beta}^{\beta}\right)\sin\varphi \cdot \cos\varphi + a_{\beta}^{\alpha}\left(\cos^{2}\varphi - \sin^{2}\varphi\right);$$

3)
$$b_k^{\alpha} = b_{\alpha}^k = a_k^{\alpha} \cos \varphi + a_k^{\beta} \sin \varphi$$
 для $k \in \overline{1, n}$, $k \neq \alpha$ и $k \neq \beta$; (4)

- 4) $b_{\beta}^{k} = b_{k}^{\beta} = -a_{\alpha}^{k} \sin \varphi + a_{\beta}^{k} \cos \varphi$ для $k \in \overline{1, n}$, $k \neq \alpha$ и $k \neq \beta$;
- 5) $b_m^k = b_k^m = a_m^k$ для $k, m \in \overline{1, n}$, $k \neq \alpha$, $k \neq \beta$, $m \neq \alpha$ и $m \neq \beta$.

Кроме того, сумма квадратов элементов матрицы A[1] = B равна сумме квадратов элементов матрицы A. Более того, из пунктов 1) – 3) формул (4) получаем:

$$(b_{\alpha}^{\alpha})^{2} + (b_{\beta}^{\beta})^{2} = (a_{\alpha}^{\alpha})^{2} + (a_{\beta}^{\beta})^{2} + 2(a_{\beta}^{\alpha})^{2}$$

Поскольку $b_i^i=a_i^i$, если $i\in\overline{1,n}$, $i\neq\alpha$ и $i\neq\beta$, то, используя инвариантность суммы квадратов элементов матрицы A, отсюда получаем, что сумма квадратов диагональных элементов матрицы A[1]=B больше аналогичной суммы квадратов диагональных элементов матрицы A[0]=A на ту же величину, на которую уменьшается сумма квадратов внедиагональных элементов матрицы A[0].

Аналогично строятся матрицы A[2], A[3],...,A[k],... рассматриваемого процесса Якоби, где

$$\lim_{k \to +\infty} \mathbf{A}[k] = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}, \operatorname{Spr}(\mathbf{A}) = \{\lambda_1, \dots, \lambda_n\},$$
 (5)

т.к. при каждом шаге этого процесса сумма всех квадратов диагональных (внедиагональных) элементов текущей матрицы A[k] увеличивается (уменьшается до «нуля»). В силу этого, с ростом $k \in \mathbb{N}$ текущая матрица A[k] «превращается» в диагональную матрицу, где на диагонали стоят все собственные значения матрицы A. Кроме того, при достаточно большом $k \in \mathbb{N}$ в столбцах матрицы $Q[k] \in \mathbf{OL}(\mathbb{R};n)$ ($A[k] = {}^T Q[k] \cdot A \cdot Q[k]$ ($Q[k] = Q_1 \cdot \ldots \cdot Q_k$, где Q_i - матрица вида (2) для $i \in \overline{1,k}$) «появляются» стоящие в соответствующем порядке нормированные собственные векторы матрицы A, образующие базис пространства ${}^{>}\mathbb{E}^n$. Следовательно, $\lim_{k \to \infty} Q[k] = Q = \langle {}^{>} q_1, \ldots, {}^{>} q_n] \in \mathbf{OL}(\mathbb{R};n)$, где

$$oldsymbol{A}\cdot{}^{>}oldsymbol{q}_{i}=\lambda_{i}\cdot{}^{>}oldsymbol{q}_{i}$$
 для любого $i\in\overline{1,n}$ и ${}^{T}oldsymbol{Q}\cdot A\cdot oldsymbol{Q}=oldsymbol{D}=egin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_{n} \end{pmatrix}$, где $\operatorname{Spr}(oldsymbol{A})=\left\{\lambda_{1},\ldots,\lambda_{n}
ight\}$.

Из пункта 2) формул (4) получения из текущей матрицы A[k] ($k \in \mathbb{N}$) итерационного процесса вращений (Якоби) последующей матрицы A[k+1] получаем, что угол $\varphi \in [0; 2\pi)$, удовлетворяющий пункту 2) формул (4) вычисляется из условия:

$$\operatorname{ctg} 2\varphi = \frac{a_{\alpha}^{\alpha}[k] - a_{\beta}^{\beta}[k]}{2a_{\beta}^{\alpha}[k]}, \quad \varphi = \frac{1}{2}\operatorname{arcctg} \frac{a_{\alpha}^{\alpha}[k] - a_{\beta}^{\beta}[k]}{2a_{\beta}^{\alpha}[k]}.$$

Используя метод Якоби, найти приближённое решение полной спектральной задачи для матрицы A, приведённой в таблицах ниже. Останов выбрать на том шаге итерации, когда максимальный по модулю внедиагональный элемент преобразованной матрицы станет меньше $\varepsilon = 0.01$. Проверить найденные приближённые собственные векторы и отвечающие им собственные значения матрицы A.

N	A				N	A				
	(10β)	1	2	3)		(10β)	-1	2	3)	
1	1	10β	3	2	2	-1	10β	3	2	
1	2	3	10β	1		2	3	10β	1	
	3	2	1	10β		3	2	1	10β	
	(10β)	-1	2	3)	4	(10β)	1	2	3)	
3	-1	10β	3	2		1	10β	-3	2	
3	2	3	10β	-1		2	-3	10β	1	
	3	2	-1	10β		3	2	1	10β	
	(10β)	1	-2	3)	6	(10β)	1	2	3)	
5	1	10β	3	2		1	10β	3	-2	
3	-2	3	10β	1		2	3	10β	1	
	3	2	1	10β		3	-2	1	10β	
	(10β)	1	2	-3)	8	(10β)	1	-2	3)	
7	1	10β	3	2		1	10β	3	2	
	2	3	10β	1		-2	3	10β	-1	
	_3	2	1	10β		3	2	-1	10β	

N	A				N	A				
9	(10β)	-1	2	3	10	(10β)	-1	-2	3	
	-1	10β	-3	2		-1	10β	3	2	
	2	-3	10β	1		-2	3	10β	1	
	3	2	1	10β		3	2	1	10β	
	(10β)	1	2	-3)	12	(10β)	-1	2	3)	
11	1	10β	-3	2		-1	10β	-3	2	
	2	-3	10β	1		2	-3	10β	1	
	_3	2	1	10β		3	2	1	10β	
	(10β)	1	2	3)	14	(10β)	1	-2	3)	
12	1	10β	-3	-2		1	10β	3	-2	
13	2	-3	10β	-1		-2	3	10 <i>β</i>	1	
	3	-2	-1	10β		3	-2	1	10β	

	(10 <i>β</i>	1	-2	3)		(10 <i>β</i>	1	2	3)
15	1	10 <i>β</i>	-3	2	16	1	10 <i>β</i>	-3	-2
	-2	-3	10β	0		2	-3	10β	1
	3	2	0	10β		3	-2	1	10β
	(10β)	1	2	3	18	(10β)	-2	2	3)
17	1	10β	3	2		-2	10β	3	2
17	2	3	10β	-4		2	3	10β	0
	3	2	-4	10β		3	2	0	10β
	(10β)	1	2	3)	20	(10β	1	2	3)
19	1	10β	-3	0		1	10β	-4	2
19	2	-3	10β	1		2	-4	10β	1
	3	0	1	10β		3	2	2	10β
	(10 <i>β</i>	1	-2	3)	22	(10β)	1	2	3)
21	1	10β	0	2		1	10β	3	0
41	-2	0	10β	1		2	3	10β	5
	3	2	-1	10β		3	0	5	10β