

Algorithms: Design and Analysis, Part II

Exact Algorithms for NP-Complete Problems

Smarter Search for Vertex Cover

The Vertex Cover Problem

Given: An undirected graph G = (V, E).

Goal: Compute a minimum-cardinality vertex cover (a set $S \subseteq V$ that includes at least one endpoint of each edge of E).

Suppose: Given a positive integer k as input, we want to check whether or not there is a vertex cover with size $\leq k$. [Think of k as "small"]

Note: Could try all possibilities, would take $\approx \binom{n}{k} = \Theta(n^k)$ time.

Question: Can we do better?

A Substructure Lemma

Substructure Lemma: Consider graph G, edge $(u, v) \in G$, integer $k \ge 1$. Let $G_u = G$ with u and its incident edges deleted (similarly, G_v). Then G has a vertex cover of size $k \iff G_u$ or G_v (or both) has a vertex cover of size (k-1)

Proof: (\Leftarrow) Suppose G_u (say) has a vertex cover S of size k-1. Write $E = E_u$ (inside G_u) $\cup F_u$ (incident to u)

Since S has an endpoint of each edge of E_u , $S \cup \{u\}$ is a vertex cover (of size k) of G.

(⇒) Let S = a vertex cover of G of size k. Since (u, v) an edge of G, at least one of u, v (say u) is in S. Since no edges of E_u incident on u, $S - \{u\}$ must be a vertex cover (of size k - 1) of G_u . QED!

A Search Algorithm

```
[Given undirected graph G = (V, E), integer k] [Ignore base cases]
```

- (1) Pick an arbitrary edge $(u, v) \in E$.
- (2) Recursively search for a vertex cover S of size (k-1) in G_u (G with u + its incident edges deleted). If found, return $S \cup \{u\}$.
- (3) Recursively search for a vertex cover S of size (k-1) in G_v . If found, return $S \cup \{v\}$.
- (4) FAIL. [G has no vertex cover with size k]

Analysis of Search Algorithm

Correctness: Straightforward induction, using the substructure lemma to justify the inductive step.

Running time: Total number of recursive calls is $O(2^k)$ [branching factor ≤ 2 , recursion depth $\leq k$] (formally, proof by induction on k)

- Also, O(m) work per recursive call (not counting work done by recursive subcalls)

