Group 10 Experiment Procedure Presentation

Introduction to project

For our project we have chosen a dataset that includes a multitude of variables about a person including Age, Credit, Housing situation etc. We will use these variables as inputs to 3 different models, a one layer logistical regression model, a single hidden layer Neural Network, and a multi hidden layered Deep Neurological Network.

Problem statement

In today's financial landscape, lending institutions must assess the risk of loan defaults with increasing precision. Traditional credit scoring methods often rely on manually crafted rules or linear models, which may fail to capture complex relationships between applicant attributes and loan outcomes. This project aims to develop a predictive model using deep learning techniques to automatically assess loan applications. By comparing the performance of logistic regression, shallow neural networks, and deep neural networks, we seek to determine the most effective approach for accurately classifying loan applications as accepted or rejected, ultimately aiding institutions in making faster and more reliable lending decisions.

RQs

1) How does the performance of a deep neural network compare to traditional machine learning models?

2) How does the performance of a deep neural network compare to shallow neural networks?

Data set description

Source & Metadata:

Dataset Name: German Credit Data

Source: UCI Machine Learning Repository

Author: Dr. Hans Hofmann

Size: 1,000 Instances, 21 Features

Target Variable: class — Binary outcome: *Good* vs. *Bad* credit risk

Rationale Behind Dataset Choice

- ✓ Real-World Relevance:
- Mirrors actual lending decisions
 - Feature Variety:
- Mix of personal & financial info
 - **✓** Binary Classification:
- Ideal for DNN with sigmoid output
 - ✓ Cost-Sensitive:
- Built-in cost matrix for evaluation

Dataset Feature Overview Table

Feature Name Type Description Status of existing checking account Status Categorical Duration in months Duration Numeric CreditHistory Categorical Credit history record Purpose Categorical Purpose of the loan (car, furniture, etc.) CreditAmount Numeric Amount of credit in Deutsche Marks Savings account/bonds status SavingsAccount Categorical EmploymentSince Present employment since (in years) Categorical InstallmentRate Numeric Installment rate as a percentage of disposable income Personal status and sex (e.g., male single, female divorced) PersonalStatusSex Categorical **Debtors** Categorical Other debtors or guarantors ResidenceSince Present residence since (in years) Numeric Property Categorical Property ownership Numeric Age in years Age OtherInstallmentPlans Other installment plans (bank, stores, none) Categorical Housing status (own, rent, free) Housing Categorical ExistingCredits Number of existing credits at this bank Numeric Job Categorical Job classification (skilled, unskilled, etc.) LiablePeople Number of people being liable to provide maintenance Numeric Telephone Categorical Has a telephone (yes/no) ForeignWorker Is a foreign worker (yes/no) Categorical Target: Good or Bad credit risk Class Categorical

Visualizations of Data Distributions

• Numeric feature distributions:

Bar Plots for categorical feature counts

Data pre-processing methods

- The dataset is split into train/test sets with a 80:20 ratio
 - Splitting is done with stratified sampling to ensure that each set has an equal ratio of label types
- New ratio columns are calculated to give the model more context
 - o monthly_credit_burden = credit_amount / duration
 - o installment per credit = installment commitment / credit amount
 - o dependents_per_credit = num_dependents / credit_amount

Data pre-processing methods

- Each numerical column is replaced with its log and standardized
 - This is done to address the right skew of the data
 - log(0) is undefined, so those values are replaced with 0
 - duration, credit_amount, installment_commitment, residence_since, age, existing_credits, num_dependents, monthly_credit_burden, installment_per_credit, dependents_per_credit
- Categorical columns with ordered categories are converted into ordinal columns
 - Categorical columns with only 2 categories are also included
 - checking_status, savings_status, employment, own_telephone, foreign_worker
- Categorical columns with independent categories are one-hot encoded
 - This means that each category is turned into an extra binary column
 - The original categorical columns are deleted
 - job, housing, other_payment_plans, property_magnitude, other_parties, personal_status, credit_history, purpose

Data pre-processing methods

```
class
        0.7
        0.3
      proportion, dtype: float64
class
good
        700
        300
      count, dtype: int64
Training set class distribution:
class
good
        0.7
      proportion, dtype: float64
        560
        240
      count, dtype: int64
Test set class distribution:
        0.7
        0.3
      proportion, dtype: float64
class
        140
         60
Name: count, dtype: int64
```

Original class distribution:

- After processing, the resulting dataset has 52 columns
 - Remember that the original has21 columns
 - All the columns are now 64-bit floats, except for the labels
 - The numerical columns also no longer have a right skew

Data preprocessing methods

<class 'pandas.core.frame.dataframe'=""></class>			
RangeIndex: 1000 entries, 0 to 999			
Data	columns (total 52 columns):		
#	Column	Non-Null Count	Dtype
0	checking_status	1000 non-null	float64
1	duration	1000 non-null	float64
2	credit_amount	1000 non-null	float64
3	savings_status	1000 non-null	float64
4	employment	1000 non-null	float64
5	installment_commitment	1000 non-null	float64
6	residence_since	1000 non-null	float64
7	age	1000 non-null	float64
8	existing_credits	1000 non-null	float64
9	num_dependents	1000 non-null	float64
10	own_telephone	1000 non-null	float64
11	foreign_worker	1000 non-null	float64
12	class	1000 non-null	object
13	monthly_credit_burden	1000 non-null	float64
14	installment_per_credit	1000 non-null	float64
15	dependents_per_credit	1000 non-null	float64
16	job_high qualif/self emp/mgmt	1000 non-null	float64
17	job skilled	1000 non-null	float64
18	job_unemp/unskilled non res	1000 non-null	float64
19	job unskilled resident	1000 non-null	float64
20	housing for free	1000 non-null	float64
21	housing_own	1000 non-null	float64
22	housing_rent	1000 non-null	float64
23	other_payment_plans_bank	1000 non-null	float64
24	other_payment_plans_none	1000 non-null	float64
25	other_payment_plans_stores	1000 non-null	float64
26	property_magnitude_car	1000 non-null	float64
27	property_magnitude_life insurance	1000 non-null	float64
28	property_magnitude_no known property	1000 non-null	float64
29	property_magnitude_real estate	1000 non-null	float64
30	other_parties_co applicant	1000 non-null	float64
31	other_parties_guarantor	1000 non-null	float64
32	other_parties_none	1000 non-null	float64
33	personal_status_female div/dep/mar	1000 non-null	float64
34	personal_status_remaie_div/sep	1000 non-null	float64
35	personal_status_male uiv/sep personal_status_male mar/wid	1000 non-null	float64
36	personal_status_male single	1000 non-null	float64
		1000 non-null	float64
37 38	credit_history_all paid		float64
	credit_history_critical/other existing credit		float64
39	credit_history_delayed previously	1000 non-null	float64
40	credit_history_existing paid	1000 non-null	
41	credit_history_no credits/all paid	1000 non-null	float64
42	purpose_business	1000 non-null	float64
43	purpose_domestic appliance	1000 non-null	float64
44	purpose_education	1000 non-null	float64
45	purpose_furniture/equipment	1000 non-null	float64
46	purpose_new car	1000 non-null	float64
47	purpose_other	1000 non-null	float64
48	purpose_radio/tv	1000 non-null	float64
49	purpose_repairs	1000 non-null	float64
50	purpose_retraining	1000 non-null	float64
51	purpose_used car	1000 non-null	float64

Hardware/Software descriptions

Software

- Python notebook running on the cloud via Google Colab
- TensorFlow (neural networks)
- Pandas (dataframes)
- Numpy (math)
- Scikit-learn (machine learning models)
- Matplotlib (graphing and charts)

Hardware

- Tesla T4 GPUs from Google Colab
- 16GB GDDR6 memory
- 2560 CUDA cores

Task assignments among team members

- Member 1: Dataset preprocessing (how the training data will be processed), description of hardware/software
- Member 2: Dataset description, why the dataset was chosen for the project and relation to research questions
- Member 3: Providing evaluation metrics, task assignments between all members, major project functionalities
- Member 4: Introduction, problem statement, and research questions (what is there to learn from this project)

3 Major functionalities of project

- DNN (Deep Neural Network)
 - At least 3 hidden layers
- Shallow Neural Network
 - 1 hidden layer
- Traditional Machine Learning Model
 - No hidden layers
- Determine the performance of each machine learning model on same dataset

Selected Evaluation Metrics

- How will we know our goals are met?
- 1. How does the performance of a deep neural network compare to traditional machine learning models?
- 2. How does the performance of a deep neural network compare to shallow neural networks?
- 3. Determining if and how well a DNN can accurately predict loan approvals from applicant data.
- Metrics
 - How easily it processes complex data
 - Time
 - Accuracy

End