При исследовании квазиклассической локализации спектра несамосопряженной задачи Штурма-Лиувилля (см. [1]) с потенциалом $Q_{\kappa}(z)=z^3+\kappa z,\ \kappa\in(-3,-1]$, возникает следующая проблема: Известно, что часть спектра внутри полуполосы $\Pi=\{\lambda=a+ib\colon a\in[0,Q_{\kappa}(-\sqrt{|\kappa/3|})],b\leqslant 0\}$, концентрируется вблизи участков кривых, заданных уравнениями

$$\operatorname{Re} \xi(\lambda, \kappa) = \operatorname{Re} \left(\int_{\alpha(\lambda, \kappa)}^{-1} e^{i\pi/4} \sqrt{Q_{\kappa}(w) - \lambda} \, dw \right) = 0, \quad \text{где} \quad Q_{\kappa}(\alpha(\lambda, \kappa)) = \lambda, \ \alpha(Q_{\kappa}(-1), \kappa) = -1,$$

$$\operatorname{Re} \eta(\lambda, \kappa) = \operatorname{Re} \left(\int_{\alpha(\lambda, \kappa)}^{\beta(\lambda, \kappa)} e^{i\pi/4} \sqrt{Q_{\kappa}(w) - \lambda} \, dw \right) = 0, \quad \text{где} \quad Q_{\kappa}(\beta(\lambda, \kappa)) = \lambda, \ \beta(0, \kappa) = 0$$

а также вблизи кривой $\operatorname{Re}(\xi(\lambda,\kappa)-\eta(\lambda,\kappa))=0$. Известно, что у указанных кривых существует единственная точка пересечения $\Lambda(\kappa)$, в приближенном поиске которой состоит решаемая здесь задача. Ниже представлена процедура решения, реализованная на языке R, использование которой позволило уточнить гипотезу

$$\frac{\operatorname{Re}\Lambda(\kappa) - Q_{\kappa}(-1)}{Q_{\kappa}(-\sqrt{|\kappa/3|}) - \operatorname{Re}\Lambda(\kappa)} \approx 2.$$

 $Q_{\kappa}(-1)$ $Q_{\kappa}(-\sqrt{|\kappa/3|})$ $\operatorname{Re} \eta > 0$ $\operatorname{Re} \xi < 0$ $\operatorname{Re} \eta < 0$ $\operatorname{Re} \xi < 0$ $\operatorname{Re} \eta < 0$

рис.1. Типичное расположение спектра при $\kappa \in (-3, -1]$

рис.2. Типичное расположение исследуемых линий уровня

§1. Предварительные сведения

По аналогии с [2], здесь $\alpha(\lambda,\kappa)$ и $\beta(\lambda,\kappa)$ – корни уравнения $Q_{\kappa}(z)=\lambda$, определенные таким образом, что при $\lambda\in\Pi$ имеем $\operatorname{Re}\alpha(\lambda,\kappa)<-\sqrt{|\kappa/3|}<\operatorname{Re}\beta(\lambda,\kappa)<0$, $\operatorname{Im}\alpha(\lambda,\kappa)<0$, $\operatorname{Im}\beta(\lambda,\kappa)>0$. Заметим, что в точках $\pm\sqrt{|\kappa/3|}$ достигаются локальные экстремумы функции $Q_{\kappa}(z)$. Кроме того, корни $\alpha(\lambda,\kappa)$, $\beta(\lambda,\kappa)$ лежат на линиях уровня $\operatorname{Re}Q_{\kappa}(x+iy)=x^3-3xy^2+\kappa x=a$. Для λ , лежащих вблизи участков кривых $\operatorname{Re}\xi=0$, $\operatorname{Re}\eta=0$, вдоль которых концентрируется спектр, имеем $\alpha(a;\kappa)>-1$.

рис. 3. Корни вещественного уравнения $Q_{\kappa}(z) = a$

рис.4. Корни комплексного уравнения $Q_{\kappa}(z) = \lambda = a + ib$

Отметим, что третий корень уравнения $Q_{\kappa}(z)=\lambda$ лежит в правой полуплоскости $\{\operatorname{Re} z>0\}$. Ветвь корня $\sqrt{Q_{\kappa}(w)-\lambda}$ выделяется таким образом, что $\operatorname{Re}\sqrt{Q_{\kappa}(w)-\lambda}>0$, $w\in(\alpha(a,\kappa),\beta(a,\kappa))$, затем продолжается по непрерывности так, что $\operatorname{Re}e^{i\pi/4}\sqrt{Q_{\kappa}(w)-\lambda}<0$ при $w\in(-1,\alpha(a,\kappa))$, и, кроме того, $\operatorname{arg}\sqrt{Q_{\kappa}(w)-\lambda}=\pi/4$ при w, лежащих на участках линий уровня $\operatorname{Re}Q_{\kappa}(z)=a$ между точками $\alpha(\lambda,\kappa)$ и $\alpha(a,\kappa)$, между $\beta(\lambda,\kappa)$ и $\beta(a,\kappa)$. При таком выборе ветви корня, функции $\operatorname{Re}\xi(a+ib,\kappa)$ и $\operatorname{Re}\eta(a+ib,\kappa)$ возрастают по b для фиксированного a. Также отметим, что величина $\operatorname{Im}Q_{\kappa}(z)$ монотонна вдоль линии уровня $\operatorname{Re}Q_{\kappa}(z)=a$.

Таким образом, ввиду монотонности $\operatorname{Re} \xi(a+ib,\kappa)$ и $\operatorname{Re} \eta(a+ib,\kappa)$ и единственности $\Lambda(\kappa)$, для локализации $\operatorname{Re} \Lambda(\kappa)$ достаточно найти точки $\lambda_{1,2}$, такие что $\operatorname{Re} \eta(\lambda_1) > 0 > \operatorname{Re} \xi(\lambda_1)$ и $\operatorname{Re} \eta(\lambda_2) < 0 < \operatorname{Re} \xi(\lambda_2)$. Тогда $\operatorname{Re} \lambda_1 < \operatorname{Re} \Lambda(\kappa) < \operatorname{Re} \lambda_2$.

$\S 2$. Локализация α и β

Для приближенного поиска вещественных частей корней с точностью до ϵ_1 воспользуемся следующей процедурой:

- 1) Уравнение $Q_{\kappa}(z)=a$. Поскольку $\operatorname{Re} Q_{\kappa}(-\sqrt{|\kappa/3|})\geq a$, то после нахождения точки на луче $z<-\sqrt{-\kappa/3}$ и точки на промежутке $z\in (-\sqrt{|\kappa/3|},0)$, в которых $\operatorname{Re} Q_{\kappa}(z)< a$, методом деления отрезка пополам получаем оценки $\alpha(a,\kappa)\in [al_1,al_2],\ \beta(a,\kappa)\in [be_1,be_2].$
- 2) Уравнение $Q_{\kappa}(z) = \lambda = a + ib$. Поскольку корни рассматриваемого уравнения лежат на линиях уровня $\operatorname{Re} Q_{\kappa}(z) = a$, оно сводится к уравнению $\operatorname{Im} Q_{\kappa}(z) = b$. Ввиду монотонности функции $\operatorname{Im} Q_{\kappa}(z)$ вдоль указанной линии уровня, при необходимости увеличивая al_1 , или уменьшая be_2 , получаем, что $\operatorname{Im} Q_{\kappa}(z) > b$ для $z = al_1 i\sqrt{(al_1^3 + \kappa \, al_1 al_1)/3al_1}$ и $z = be_2 + i\sqrt{(be_2^3 + \kappa \, be_2 a)/3be_2}$. После нахождения двух точек, в которых $\operatorname{Im} Q_{\kappa}(z) < b$, принадлежащих линии уровня $\operatorname{Re} Q_{\kappa}(z) = a$, для одной из которых $\operatorname{Re} z < al_1$, а для другой $\operatorname{Re} z \in (be_2, 0)$, методом деления отрезка пополам получаем оценки $\operatorname{Re} \alpha(\lambda, \kappa) \in [alp_1, alp_2]$, $\operatorname{Re} \beta(\lambda, \kappa) \in [bet_1, bet_2]$.

§3. Оценки интегралов

Для вычисления значений $\operatorname{Re} \xi(\lambda,\kappa), \operatorname{Re} \eta(\lambda,\kappa)$ с точностью до ϵ_2 интегрирование $e^{i\pi/4}\sqrt{Q_\kappa(w)-\lambda}$ ведется вдоль участков вещественной оси, а также вдоль линий уровня $\operatorname{Re} Q_\kappa(z)=x^3-3xy^2+\kappa x=a.$ При этом в пп. 3.1-3.5 получены оценки сверху и снизу для соответствующих интегралов.

3.1. Получим оценки интеграла вдоль участка от $\alpha(\lambda, \kappa)$ до $\alpha(a, \kappa)$, выбрав в качестве пути интегрирования кривую $z(s) = s + iy(s) = s - i\sqrt{(s^3 + \kappa s - a)/3s}, \ s \in (\text{Re}\,\alpha(\lambda, \kappa), \alpha(a, \kappa)).$

рис.5. Путь интегрирования в п. 3.1

Тогда $\operatorname{Re} Q_{\kappa}(z(s)) = a$, $\operatorname{Im} Q_{\kappa}(z(s)) = y(s)(3s^2 + \kappa - y^2(s)) \in (b,0)$ и

$$\operatorname{Re}\left(\int_{\alpha(\lambda,\kappa)}^{\alpha(a,\kappa)} e^{i\pi/4} \sqrt{Q_{\kappa}(w) - a - ib} \, dw\right) =$$

$$= \operatorname{Re}\left(\int_{\operatorname{Re}\alpha(\lambda,\kappa)}^{\alpha(a,\kappa)} e^{i\pi/4} \sqrt{iy(s)(3s^2 + \kappa - y^2(s)) - ib} \left(s - i\sqrt{(s^3 + \kappa s - a)/3s}\right)' ds\right) =$$

$$= \int_{\operatorname{Re}\alpha(\lambda,\kappa)}^{\alpha(a,\kappa)} \sqrt{\operatorname{Im}Q_{\kappa}(z(s)) - b} \left(\sqrt{(s^3 + \kappa s - a)/3s}\right)' ds.$$

В частности, поскольку $\left(\sqrt{(s^3+\kappa s-a)/3s}\right)'<0$, то вещественная часть указанного интеграла отрицательна. Интеграл сводится к вещественному, который может быть вычислен с помощью функций из стандартных математических пакетов. Этот интеграл также можно оценить следующим образом:

Обозначим $\widetilde{y}(s) = -y(s)$. Ввиду однолистности функции $Q_{\kappa}(z)$, величина $\operatorname{Im} Q_{\kappa}(z(s))$ возрастает по s. Разбивая отрезок $[\operatorname{Re} \alpha(\lambda,\kappa),\alpha(a,\kappa)]$ точками $s_0,...,s_{n+1}$, такими что $s_0=\operatorname{Re} \alpha(\lambda,\kappa),s_1=alp_2,s_n=al_1,s_{n+1}=\alpha(a,\kappa)$, получаем оценки $\operatorname{Im} Q_{\kappa}(z(s_j))<\operatorname{Im} Q_{\kappa}(z(s_{j+1}))<0,s\in(s_j,s_{j+1})$, и

$$(\widetilde{y}(s_{j+1}) - \widetilde{y}(s_j))\sqrt{\operatorname{Im} Q_{\kappa}(z(s_{j+1})) - b} < \operatorname{Re}\left(\int_{s_j}^{s_{j+1}} e^{i\pi/4}\sqrt{Q_{\kappa}(z(s)) - a - ib} z'(s)ds\right) < (\widetilde{y}(s_{j+1}) - \widetilde{y}(s_j))\sqrt{\operatorname{Im} Q_{\kappa}(z(s_j)) - b}.$$

При j=0 имеем $\operatorname{Im} Q_{\kappa}(z(s_0))=b,\ \widetilde{y}(s_1)-\widetilde{y}(s_0)=\widetilde{y}(alp_2)-\widetilde{y}(\operatorname{Re}\alpha(\lambda,\kappa))>\widetilde{y}(alp_2)-\widetilde{y}(alp_1)$ и

$$(\widetilde{y}(alp_2) - \widetilde{y}(alp_1))\sqrt{\operatorname{Im} Q_{\kappa}(z(alp_2)) - b} < \operatorname{Re} \left(\int_{s_0}^{s_1} e^{i\pi/4} \sqrt{Q_{\kappa}(z(s)) - a - ib} \, z'(s) ds \right) < 0.$$

При j = n имеем $\text{Im } Q_{\kappa}(z(s_{n+1})) = 0$ и $y(s_{n+1}) = 0$

$$(-\widetilde{y}(al_1))\sqrt{-b} < \operatorname{Re}\left(\int_{s_n}^{s_{n+1}} e^{i\pi/4} \sqrt{Q_{\kappa}(z(s)) - a - ib} \, z'(s) ds\right) < (-\widetilde{y}(al_1))\sqrt{\operatorname{Im} Q_{\kappa}(z(al_1)) - b}.$$

Число n увеличивается до тех пор, пока разность между оценками больше $\epsilon_2/4$.

3.2. Аналогично получаются оценки для интеграла вдоль участка от $\beta(a,\kappa)$ до $\beta(\lambda,\kappa)$, выбрав в качестве пути интегрирования кривую $z(s) = s + i\widetilde{y}(s) = s + i\sqrt{s^2/3 + \kappa/3 - a/3s}, s \in (\beta(a,\kappa), \operatorname{Re}\beta(\lambda,\kappa)).$

рис.6. Путь интегрирования в п. 3.2

Тогда Re
$$Q_{\kappa}(z(s)) = a$$
, Im $Q_{\kappa}(z(s)) = y(s)(3s^2 + \kappa - y^2(s)) \in (b,0)$ и

$$\operatorname{Re}\left(\int_{\beta(a,\kappa)}^{\beta(\lambda,\kappa)} e^{i\pi/4} \sqrt{Q_{\kappa}(w) - a - ib} \, dw\right) =$$

$$=\operatorname{Re}\left(\int_{\beta(a,\kappa)}^{\operatorname{Re}\beta(\lambda,\kappa)}e^{i\pi/4}\sqrt{iy(s)(3s^2+\kappa-y^2(s))-ib}\left(s+i\sqrt{s^2/3+\kappa/3-a/3s}\right)'ds\right)=$$

$$= -\int_{\beta(a,\kappa)}^{\operatorname{Re}\beta(\lambda,\kappa)} \sqrt{y(s)(3s^2 + \kappa - y^2(s)) - b} \left(\sqrt{s^2/3 + \kappa/3 - a/3s}\right)' ds.$$

В частности, отсюда может быть получено, что вещественная часть указанного интеграла отрицательна. Ввиду однолистности функции $Q_{\kappa}(z)$, величина $\operatorname{Im} Q_{\kappa}(z(s))$ убывает по s. Разбивая отрезок $[\beta(a,\kappa),\operatorname{Re}\beta(\lambda,\kappa)]$ точками $s_0,...,s_{n+1}$, такими что $s_0=\beta(a,\kappa),\ s_1=be_2,\ s_n=bet_1,\ s_{n+1}=\operatorname{Re}\beta(\lambda,\kappa),\$ получаем оценки $0>\operatorname{Im} Q_{\kappa}(z(s_j))>\operatorname{Im} Q_{\kappa}(z(s_j))>\operatorname{Im} Q_{\kappa}(z(s_{j+1})),\ s\in (s_j,s_{j+1}),$ и

$$-(\widetilde{y}(s_{j+1}) - \widetilde{y}(s_j))\sqrt{\operatorname{Im} Q_{\kappa}(z(s_j)) - b} < \operatorname{Re}\left(\int_{s_j}^{s_{j+1}} e^{i\pi/4}\sqrt{Q_{\kappa}(z(s)) - a - ib} z'(s)ds\right) < -(\widetilde{y}(s_{j+1}) - \widetilde{y}(s_j))\sqrt{\operatorname{Im} Q_{\kappa}(z(s_{j+1})) - b}.$$

При j = 0 имеем $\text{Im } Q_{\kappa}(z(s_0)) = 0$ и $y(s_0) = 0$

$$(-\widetilde{y}(s_1))\sqrt{-b} < \operatorname{Re}\left(\int_{s_0}^{s_1} e^{i\pi/4}\sqrt{Q_{\kappa}(z(s)) - a - ib} \, z'(s)ds\right) < (-\widetilde{y}(s_1))\sqrt{\operatorname{Im} Q_{\kappa}(z(s_1)) - b}.$$

При j=n имеем ${\rm Im}\,Q_\kappa(z(s_{n+1}))=b,\,\widetilde{y}(s_{n+1})-\widetilde{y}(s_n)<\widetilde{y}(bet_2)-\widetilde{y}(bet_1)$ и

$$-(\widetilde{y}(bet_2) - \widetilde{y}(bet_1))\sqrt{\operatorname{Im} Q_{\kappa}(z(s_n)) - b} < \operatorname{Re}\left(\int_{s_n}^{s_{n+1}} e^{i\pi/4}\sqrt{Q_{\kappa}(z(s)) - a - ib} \, z'(s)ds\right) < 0.$$

3.3. Получим оценки интеграла вдоль отрезка $[-1, \alpha(a, \kappa)]$

рис.7. Путь интегрирования в п. 3.3

Для этого воспользуемся формулой вещественной части корня (следствие косинуса двойного угла)

$$\operatorname{Re}\left(\int_{-1}^{\alpha(a,\kappa)} \sqrt{i(Q_{\kappa}(w) - a) + b} \, dw\right) = -\int_{-1}^{\alpha(a,\kappa)} \frac{\sqrt{\sqrt{(Q_{\kappa}(w) - a)^2 + b^2} + b}}{\sqrt{2}} \, dw.$$

Разбивая $[-1,\alpha(a,\kappa)]$ точками $s_0,...,s_{n+1}$, такими что $s_0=-1,$ $s_n=al_1,$ $s_{n+1}=\alpha(a,\kappa)$, получаем оценки $(Q_\kappa(s_{j+1})-a)^2<(Q_\kappa(s)-a)^2<(Q_\kappa(s_j)-a)^2,$ $s\in(s_j,s_{j+1}),$

$$-\frac{\sqrt{\sqrt{(Q_{\kappa}(s_{j})-a)^{2}+b^{2}+b}}}{\sqrt{2}}(s_{j+1}-s_{j}) < \operatorname{Re}\left(\int_{s_{j}}^{s_{j+1}} \sqrt{i(Q_{\kappa}(w)-a)+b} \, dw\right) <$$
$$<-\frac{\sqrt{\sqrt{(Q_{\kappa}(s_{j+1})-a)^{2}+b^{2}+b}}}{\sqrt{2}}(s_{j+1}-s_{j}).$$

При j = n имеем $Q_{\kappa}(s_{n+1}) = a$ и $s_{n+1} - s_n < al_2 - al_1$

$$-\frac{\sqrt{\sqrt{(Q_{\kappa}(al_1)-a)^2+b^2}+b}}{\sqrt{2}}(al_2-al_1) < \operatorname{Re}\left(\int_{s_{n-1}}^{s_n} \sqrt{i(Q_{\kappa}(w)-a)+b} \, dw\right) < 0.$$

3.4. Получим оценки интеграла вдоль отрезка $[\alpha(a,\kappa), -\sqrt{|\kappa/3|}]$

$$\operatorname{Re}\left(\int_{\alpha(a,\kappa)}^{-\sqrt{|\kappa/3|}} \sqrt{i(Q_{\kappa}(w)-a)+b} \, dw\right) = \int_{\alpha(a,\kappa)}^{-\sqrt{|\kappa/3|}} \frac{\sqrt{\sqrt{(Q_{\kappa}(w)-a)^2+b^2}+b}}{\sqrt{2}} \, dw.$$

Разбивая $[\alpha(a,\kappa),-\sqrt{-\kappa/3}]$ точками $s_0,...,s_{n+1}$, такими что $s_0=\alpha(a,\kappa),\,s_1=al_2,\,s_{n+1}=-\sqrt{|\kappa/3|},\,$ получаем оценки $(Q_\kappa(s_{j+1})-a)^2>(Q_\kappa(s)-a)^2>(Q_\kappa(s_j)-a)^2,\,s\in(s_j,s_{j+1}),$

$$\frac{\sqrt{\sqrt{(Q_{\kappa}(s_{j})-a)^{2}+b^{2}}+b}}{\sqrt{2}}(s_{j+1}-s_{j})<\operatorname{Re}\left(\int_{s_{j}}^{s_{j+1}}\sqrt{i(Q_{\kappa}(w)-a)+b}\,dw\right)<\frac{\sqrt{\sqrt{(Q_{\kappa}(s_{j+1})-a)^{2}+b^{2}}+b}}{\sqrt{2}}(s_{j+1}-s_{j}).$$

При j=0 имеем $Q_{\kappa}(s_0)=a$ и $s_1-s_0< al_2-al_1$

$$0 < \operatorname{Re}\left(\int_{s_0}^{s_1} \sqrt{i(Q_{\kappa}(w) - a) + b} \, dw\right) < \frac{\sqrt{\sqrt{(Q_{\kappa}(a_2) - a)^2 + b^2} + b}}{\sqrt{2}} (al_2 - al_1).$$

3.5. Получим оценки интеграла вдоль отрезка $[-\sqrt{|\kappa/3|}, \beta(a,\kappa)]$

$$\operatorname{Re}\left(\int_{-\sqrt{|\kappa/3|}}^{\beta(a,\kappa)} \sqrt{i(Q_{\kappa}(w)-a)+b} \, dw\right) = \int_{-\sqrt{|\kappa/3|}}^{\beta(a,\kappa)} \frac{\sqrt{\sqrt{(Q_{\kappa}(w)-a)^2+b^2}+b}}{\sqrt{2}} \, dw.$$

Разбивая $[-\sqrt{|\kappa/3|}, \beta(a,\kappa)]$ точками $s_0, ..., s_{n+1}$, такими что $s_0 = -\sqrt{|\kappa/3|}, s_n = be_1, s_{n+1} = \beta(a,\kappa)$, получаем оценки $(Q_{\kappa}(s_{j+1}) - a)^2 < (Q_{\kappa}(s) - a)^2 < (Q_{\kappa}(s_j) - a)^2, s \in (s_j, s_{j+1}),$

$$\frac{\sqrt{\sqrt{(Q_{\kappa}(s_{j+1})-a)^2+b^2}+b}}{\sqrt{2}}(s_{j+1}-s_j) < \operatorname{Re}\left(\int_{s_j}^{s_{j+1}} \sqrt{i(Q_{\kappa}(w)-a)+b} \, dw\right) < \frac{\sqrt{\sqrt{(Q_{\kappa}(s_j)-a)^2+b^2}+b}}{\sqrt{2}}(s_{j+1}-s_j).$$

При j = n имеем $Q_{\kappa}(s_{n+1}) = a$ и $s_{n+1} - s_n < be_2 - be_1$

$$0 < \operatorname{Re}\left(\int_{s_n}^{s_{n+1}} \sqrt{i(Q_{\kappa}(w) - a) + b} \, dw\right) < \frac{\sqrt{\sqrt{(Q_{\kappa}(be_1) - a)^2 + b^2} + b}}{\sqrt{2}} (be_2 - be_1).$$

Список литературы

- [1] Степин С. А., Фуфаев В. В. Метод фазовых интегралов в задаче квазиклассической локализации спектра // Докл. РАН, 2015. Т.462, №3. С. 283-287.
- [2] Фуфаев В. В. О линиях уровня гармонических функций, связанных с некоторыми абелевыми интегралами // Вестн. Моск. ун-та. Сер. 1 Матем. Мех., 2017. №1. С. 16-25.