PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group

Art Unit: L

Unknown

Attorney

Docket No.: 121036-062

Applicant:

Satoru SAITO et al.et al.

Invention:

FLUORINE-CONTAINING ELASTOMER

AND ITS COMPOSITION

Serial No:

Unknown

Filing Date:

September 29, 2003

Examiner:

Unknown

Certificate Under 37 CFR 1.10

'EXPRESS MAIL" MAILING LABEL NO:

EL697545526US

DATE OF DEPOSIT: <u>September 29, 2003</u>
I HEREBY CERTIFY THAT THIS PAPER OR FEE IS
BEING DEPOSITED WITH THE UNITED STATES
POSTAL SERVICE "EXPRESS MAIL POST OFFICE
TO ADDRESS" SERVICE UNDER 37 CFR 1.10 ON
THE DATE INDICATED ABOVE AND IS
ADDRESSED TO THE COMMISSIONER FOR
PATENTS, P.O. BOX 1450, ALEXANDRIA, VA
22313-1450.

on <u>September 29, 2003</u>

m.L.K

CLAIM OF PRIORITY

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

In accordance with the provisions of 35 U.S.C. 119, applicants hereby claim priority of:

Japanese Patent Application No. 2003-055183

Filed March 3, 2003

And

Japanese Patent Application No. 2003-086943

Filed March 27, 2003

And

Japanese Patent Application No. 2003-102462

Filed April 7, 2003

Certified copies of the above priority documents are being submitted herewith.

Respectfully submitted,

Michael S. Gzybows Reg. No. 32,816

BUTZEL LONG

350 South Main Street

Suite 300

Ann Arbor, Michigan 48104

(734) 995-3110

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月 3日

出 願 番 号 Application Number:

特願2003-055183

[ST. 10/C]:

[JP2003-055183]

出 願 人
Applicant(s):

ユニマテック株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年 8月 8日

【書類名】 特許願

【整理番号】 18772

【提出日】 平成15年 3月 3日

【あて先】 特許庁長官 殿

【国際特許分類】 C08F214/22

【発明者】

【住所又は居所】 茨城県北茨城市磯原町上相田831-2 ユニマテック

株式会社内

【氏名】 斉藤 智

【発明者】

【住所又は居所】 茨城県北茨城市磯原町上相田831-2 ユニマテック

株式会社内

【氏名】 金賀 淳

【特許出願人】

【識別番号】 502145313

【氏名又は名称】 ユニマテック株式会社

【代理人】

【識別番号】 100066005

【弁理士】

【氏名又は名称】 吉田 俊夫

【選任した代理人】

【識別番号】 100114351

【弁理士】

【氏名又は名称】 吉田 和子

【先の出願に基づく優先権主張】

【出願番号】 特願2002-120818

【出願日】 平成14年 4月23日

【手数料の表示】

【予納台帳番号】 006231

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 0207529

【包括委任状番号】 0207528

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 含フッ素エラストマー

【特許請求の範囲】

【請求項1】 その共重合組成が

(a)フッ化ビニリデン

50~85モル%

(b) テトラフルオロエチレン

0~25モル%

(c)パーフルオロ(メチルビニルエーテル)

7~20モル%

 $(d) CF_2 = CFO[CF_2CF(CF_3)0]nCF_3$

3~15モル%

(ただし、nは2~6の整数である)

(e)RfX(Rfは炭素数2~8の不飽和フルオロ炭化水素基であり、 0.1~2モル% 基中に1個以上のエーテル結合を有していてもよく、

Xは臭素またはヨウ素である)

である含フッ素エラストマー。

【請求項 2 】溶液粘度 η sp/c (35 \mathbb{C} 、1 重量 % メチルエチルケトン溶液) が 0.1 \sim 2.0 dl/g である請求項 1 記載の含フッ素エラストマー。

【請求項3】35℃のメチルエチルケトンに完全には溶解しない分子量を有する請求項1記載の含フッ素エラストマー。

【請求項4】 一般式 R(Br)n(I)m(ここで、Rは炭素数2~6の飽和フルオロ 炭化水素基または飽和クロロフルオロ炭化水素基であり、nおよびmは0、1または 2であり、m+nは2である)で表わされる含臭素および/またはヨウ素化合物の存在 下で共重合反応させて得られた請求項1記載の含フッ素エラストマー。

【請求項 5】 $-30\sim -45$ \mathbb{C} のガラス転移温度 \mathbb{T} Tgを有する請求項 1 または 4 記載の含フッ素エラストマー。

【請求項6】 (c)成分と(d)成分との合計共重合量が10モル%以上である請求項1または4記載の含フッ素エラストマー。

【請求項7】 (e)成分化合物がCF₂=CF0CF₂CF₂Br、CF₂=CFBr、CF₂=CHBr、CF₂=CFIまたはCF₂=CHIである請求項1または4記載の含フッ素エラストマー。

【請求項8】 含臭素および/またはヨウ素化合物が $ICF_2CF_2CF_2CF_2I$ である 請求項1または4記載の含フッ素エラストマー。

【請求項9】 有機過酸化物架橋後に以下に示される低温特性(ASTM D1329 準拠)を発現する加硫物を与える請求項1または4記載の含フッ素エラストマー。

 $-43^{\circ}\text{C} \leq \text{TR}_{10} < -30^{\circ}\text{C} < \text{TR}_{70} \leq -20^{\circ}\text{C}$

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、含フッ素エラストマーに関する。更に詳しくは、成形加工性、低温 特性および耐溶剤性にすぐれた加硫物を与え得る含フッ素エラストマーに関する

[0002]

【従来の技術】

フッ化ビニリデン-テトラフルオロエチレン-パーフルオロ(メチルビニルエーテル)を主構成単位とする含フッ素エラストマーは、含フッ素エラストマー特有のすぐれた耐熱性や耐溶剤性を有するばかりではなく、良好な低温特性をも有することから、自動車産業を始め種々の産業分野で用いられている。しかしながら、近年の技術進歩に伴う対応の面では、このような含フッ素エラストマーでは対応が困難な場合が多くみられ、特に低温特性およびメタノール等のアルコール性溶剤に対する耐性が厳しく求められるようになってきている。また、近年の排ガス規制等に伴ない、含フッ素エラストマーに対するさらなる耐熱性、耐溶剤性、低温特性が求められている。

[0003]

このような課題を解決するために、上記含フッ素エラストマーにおいて、パーフルオロ(メチルビニルエーテル)の代りに側鎖に複数のエーテル結合を有する単量体を共重合させることが提案されている(特公平5-13961号公報)。この場合、得られる共重合体をエラストマー状にするためには、この単量体を多量に共重合させなければならず、これの共重合割合が少ないと半樹脂状となり、低温特性が損われるようになる。実際には、その共重合割合は12~50モル%とされ、各実施例では25~32モル%の共重合組成とされている。しかしながら、このような単量

[0004]

【発明が解決しようとする課題】

本発明の目的は、含フッ素エラストマーが本来有する成形加工性および耐圧縮 永久歪特性を損うことなく、低温特性および耐溶剤性にすぐれた加硫物を与え得 る含フッ素エラストマーを提供することにある。

[0005]

【課題を解決するための手段】

かかる本発明の目的は、その共重合組成が

(a))フ	ツ1	化	ビ	=	IJ	デ	゛ン	
-----	----	----	---	---	---	----	---	----	--

50~85モル%

(b) テトラフルオロエチレン

0~25モル%

(c) \mathcal{C} \mathcal

7~20モル%

 $(d) CF_2 = CF_0 [CF_2 CF(CF_3)_0] nCF_3$

3~15モル%

(ただし、nは2~6の整数である)

(e)RfX(Rfは炭素数2~8の不飽和フルオロ炭化水素基であり、 0.1~2モル%

基中に1個以上のエーテル結合を有していてもよく、

Xは臭素またはヨウ素である)

である含フッ素エラストマーによって達成される。この含フッ素エラストマーは、好ましくは一般式 R(Br)n(I)m (ここで、Rは炭素数2~6の飽和フルオロ炭化水素基または飽和クロロフルオロ炭化水素基であり、nおよびmは0、1または2であり、m+nは2である)で表わされる含臭素および/またはヨウ素化合物の存在下で共重合して得られる。

[0006]

【発明の実施の形態】

含フッ素エラストマーの共重合組成比は、(a)フッ化ビニリデンが $50\sim85$ モル%、好ましくは $60\sim85$ モル%、(b)テトラフルオロエチレンが $0\sim25$ モル%、好ましくは $0\sim20$ モル%、(c)パーフルオロ(メチルビニルエーテル)が $7\sim20$ モル%、好ましくは $7\sim15$ モル%、(d)前記一般式で表わされるパーフルオロビニルエーテルが $3\sim$

15モル%、好ましくは3~10モル%、(e)前記一般式で表わされる含臭素またはヨウ素不飽和化合物が0.1~2モル%、好ましくは0.3~1.5モル%であり、これらの組成比は所望の低温特性および耐溶剤性を有する加硫物を与え得る範囲として選択されたものである。

$[0\ 0\ 0\ 7\]$

- (a) 成分のテトラフルオロエチレンには、下記(b) \sim (e) 成分がぞれぞれ共重合 される。
- (b)成分のテトラフルオロエチレンをさらに共重合させた場合には、耐溶剤性を著しく改善することができる。ただし、(b)成分の組成比率が大きすぎると低温特性が損われるので、その割合は25モル%以下、好ましくは20モル%以下とするのがよい。また、(b)成分の共重合は、メタノール・ガソリン混合燃料、エタノール・ガソリン混合燃料等の酸素含有化合物混合燃料やメタノール、エタノール等のアルコール燃料に対する耐性を著しく改善させる。
- (c)成分のパーフルオロ(メチルビニルエーテル)は、得られる共重合体に柔軟性を付与し、低温特性、特にTR試験におけるTR70値を改善するための必須成分である。
- (d)成分のパーフルオロビニルエーテルは、その一般式で表わされる化合物の単一成分を用いてもよいし、あるいは種々のn値を有する2種以上の混合物を用いてもよい。これに類似したパーフルオロビニルエーテルとしては、一般式CF2=CF0[CF2CF(CF3)0]mCF2CF2CF3が知られているが(特公平5-13961号公報)、本発明者らの検討結果によれば、後記比較例5の結果に示されるように、この単量体の共重合は低温特性を付与するが、分子量の低下、成形時の発泡等の成形加工性の低下、機械的強度の低下などが認められる。ただし、所望の性質を損わない範囲内、例えば1モル%以下の割合でこの化合物を共重合させることはできる。

前記一般式で表わされるパーフルオロビニルエーテルは、フッ化セシウム触媒、ジグライム溶剤等の存在下にCF30CF(CF3)COFとヘキサフルオロプロペンオキシドとを反応させ、次いで無水炭酸カリウムとの反応および熱分解反応を行うことによって得られ、生成物はn=2~6の混合物であるが、それを分留することによって種々のn値を有するパーフルオロビニルエーテルを分離し、それを単独で用

いることができる。あるいは、それらを分離することなく、混合物としても用いることができる。

(e) 成分の含臭素またはヨウ素化合物としては、例えば CF_2 = $CFOCF_2CF_2Br$ 、 CF_2 = $CFOCF_2CF(CF_3)$ 0 CF_2CF_2Br 、 CF_2 =CFBr、 CF_2 =CHBr、 CF_2 =CFI、 CF_2 =CHI等のRf基が炭素数2~8の不飽和フルオロ炭化水素基であり、基中に1個以上のエーテル結合を有していてもよいものも用いられ(特公昭54-1585号公報参照)、好ましくは CF_2 = $CFOCF_2CF_2Br$ 、 CF_2 =CFI、 CF_2 =CHIが用いられる。

[0008]

また、本発明に係る含フッ素エラストマー共重合体の分子量を調節する目的であるいは成形加工性、特に硬化段階での発泡を抑制する目的で、一般式R(Br)n(I)mで表わされる含臭素および/またはヨウ素化合物の存在下で共重合反応を行うことは非常に有効である(特公昭54-1585号公報参照)。

[0009]

かかる化合物としては、例えばICF₂CF₂CF₂CF₂I、ICF₂CF₂CF₂Br、ICF₂CF₂Br 等が用いられ、特にICF₂CF₂CF₂CF₂Iは硬化特性等の面からみて好適である。他の 例は、特公昭63-308008号公報、同58-4728号公報等に記載されている。

[0010]

これらの化合物は連鎖移動剤として作用し、生成する共重合体の分子量を調節する働きをする。また、連鎖移動反応の結果として、分子末端に臭素および/またはヨウ素原子が結合した共重合体が得られ、これらの部位は加硫成形段階において硬化部位として働く。ただし、重合工程でのそれの使用割合が多いと、最終成形品の機械的強度を低下させるので、それの使用割合は全単量体重量に対して約1重量%以下、好ましくは約0.5~0.01重量%とされる。

[0011]

さらに、加硫成形品の耐圧縮永久歪特性を改善するために、下記の如きパーフルオロジビニルエーテルを共重合させてもよい。その使用割合は、成形品の機械的物性の点から、全単量体重量に対して約1重量%以下、好ましくは約0.5~0.1 重量%とされる。

 CF_2 = $CFOCF_2CF(CF_3)OCF_2CF_2OCF$ = CF_2

[0012]

また、本発明の含フッ素エラストマーに求められる所望の性質を損わない範囲内において、他の単量体、例えばトリフルオロエチレン、ヘキサフルオロプロペン、クロロトリフルオロエチレン等の含フッ素単量体をさらに共重合させてもよい。

[0013]

本発明の含フッ素エラストマーは、水性乳化重合法または水性けん濁重合法によって製造することができる。水性乳化重合法では、水溶性過酸化物を単独であるいはそれと水溶性還元性物質とを組合せたレドックス系のいずれをも反応開始剤系として用いることができる。水溶性過酸化物としては例えば過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等が、また水溶性還元性物質としては例えば亜硫酸ナトリウム、亜硫酸水素ナトリウム等が用いられる。この際、水性乳化液の安定化剤として、pH調節剤(緩衡剤)、例えばリン酸一水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム等も用いられる。

$[0\ 0\ 1\ 4]$

乳化重合法に用いられる乳化剤としては、一般にフッ素化カルボン酸塩が用いられ(特公平5-13961号公報参照)、好ましくは

 $\mathtt{CF_3CF_2CF_20[CF(CF_3)CF_20]nCF(CF_3)COONH_4}$

n:1または2

が用いられる。これらの乳化剤は、約1~30重量%、好ましくは約5~20重量%の水溶液として用いられる。乳化剤量がこれよりも少ないと、モノマーおよび生成共重合体を水性媒体中に均一に分散させることができず、多すぎると経済的に不利となる。

[0015]

共重合反応は、約20~80℃、好ましくは、約25~60℃の温度で行われる。重合温度が高すぎると、成形加工時に発泡などの問題が発生し、また加硫成形品の耐圧縮永久歪特性も悪化する。また、重合圧力は、一般に約5MPa以下で行われる。

[0016]

このようにして得られる含フッ素エラストマーは、 $-30\sim -45$ $\mathbb C$ のガラス転移温度Tgを有する。また、得られる共重合体の分子量は特に限定されないが、数平均分子量Mn(GPC法、テトラヒドロフラン溶媒)が約10000~1000000、好ましくは約50000~300000であることが望ましい。また、分子量の指標としての溶液粘度 η sp/c(35 $\mathbb C$ 、1 重量%メチルエチルケトン溶液)は、約0.1~2dl/g、好ましくは約0.2~1dl/gであることが望ましいが、35 $\mathbb C$ のメチルエチルケトンに完全には溶解しない分子量を有するものも得られる。このメチルエチルケトンに溶解しない分子量を有する含フッ素エラストマーも、コンパウンドムーニー粘度(125 $\mathbb C$)のデーターから推測すると、上記溶液粘度 η sp/cの値が約0.1~2dl/gの範囲内に入るものと考えられる。

[0017]

このような性状の含フッ素エラストマーは、従来公知の種々の加硫方法、例えばパーオキサイド加硫法、ポリアミン加硫法、ポリオール加硫法あるいは放射線、電子線などの照射法によって硬化させることができるが、有機過酸化物を用いるパーオキサイド加硫法は、機械的強度にすぐれ、また架橋点の構造が安定した炭素-炭素結合を形成するため耐薬品性、耐摩耗性、耐溶剤性などにすぐれた加硫物を与えるので、特に好ましく用いられる。

[0018]

パーオキサイド加硫法に用いられる有機過酸化物としては、例えば2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)へキサン、2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)へキシン-3、ベンゾイルパーオキサイド、ビス(2,4-ジクロロベンゾイル)パーオキサイド、ジクミルパーオキサイド、ジ第3ブチルパーオキサイド、第3ブチルクミルパーオキサイド、第3ブチルパーオキシベンゼン、1,1-ビス(第3ブチルパーオキシ)-3,5,5-トリメチルシクロへキサン、2,5-ジメチルへキサン-2,5-ジヒドロキシパーオキサイド、 α , α -ビス(第3ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、第3ブチルパーオキシイソプロピルカーボネート等が挙げられる。

[0019]

これらの有機過酸化物が用いられるパーオキサイド加硫法では、共架橋剤とし

て多官能性不飽和化合物、例えばトリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリアリルトリメリテート、N,N′-m-フェニレンビスマレイミド、ジアリルフタレート、トリス(ジアリルアミン)-s-トリアジン、亜リン酸トリアリル、1,2-ポリブタジエン、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート等を併用することが好ましい。これらの共架橋剤を併用することにより、よりすぐれた加硫特性、機械的強度、圧縮永久歪特性など有する加硫物を得ることができる。

[0020]

さらに、所望により、受酸剤としてハイドロタルサイト化合物や2価金属の酸化物または水酸化物、例えばカルシウム、マグネシウム、鉛、亜鉛などの酸化物または水酸化物を用いることもできる。

[0021]

パーオキサイド加硫系に配合される以上の各成分は、含フッ素エラストマー100重量部当り、有機過酸化物が約 $0.1\sim10$ 重量部、好ましくは約 $0.5\sim5$ 重量部の割合で、また必要に応じて共架橋剤が約 $0.1\sim10$ 重量部、好ましくは約 $0.5\sim5$ 重量部の割合で用いられる。

[0022]

加硫に際しては、上記各成分に加えて、従来公知の充填剤、補強剤、可塑剤、 滑剤、加工助剤、顔料などを適宜配合することもできる。充填剤または補強剤と してカーボンブラックを用いる場合、一般には含フッ素エラストマー100重量部 当り約10~50重量部程度の割合で用いられる。

[0023]

以上の各成分は、ロール混合、ニーダ混合、バンバリー混合、溶液混合など一般に用いられる混合法によって混練され、混練された混練物は、一般に約100~2 50℃で約1~60分間程度行われるプレス加硫によって加硫され、好ましくはさらに約150~250℃で約30時間以内のオーブン加硫(二次加硫)もが行われる。

[0024]

得られた含フッ素エラストマーは、有機過酸化物架橋後に以下に示される低温 特性を発現する加硫物を与える。 $-43^{\circ} \le TR_{10} < -30^{\circ} \le TR_{70} \le -20^{\circ} \le -20^{\circ}$

ここでTR₁₀、TR₇₀値は、TRテストでサンプルを50%伸長し、ガラス転移温度Tg以下としてガラス化させた後、徐々に温度を上げていくと歪みが緩和し、初期伸長に対して10%または70%回復した温度を示している。

[0025]

また、前記TR₁₀、TR₇₀についての条件を満足させるためには、前記(c)成分のパーフルオロ(メチルビニルエーテル)と(d)成分のパーフルオロビニルエーテルとの組成合計量が10モル%以上、好ましくは15モル%以上とすることが望ましい。これらの各成分組成合計量が10モル%以下では、得られる共重合体が半樹脂状になったり、低温特性、特にTR₇₀値が悪化するようになる。

[0026]

【発明の効果】

本発明に係る含フッ素エラストマーは、それが本来有する耐熱性、成形加工性 および耐圧縮永久歪特性に加えて、低温特性(ガラス転移温度)および耐溶剤性(耐メタール性)にすぐれた加硫物を形成し得るので、0リング、オイルシール、燃 料ホース等の成形材料として有効に用いることができる。

[0027]

【実施例】

次に、実施例について本発明を説明する。

[0028]

参考例

攪拌機を備えた容量10Lのステンレス鋼製オートクレーブ中に、フッ化セシウム36g、ジグライム360gおよびCF30CF(CF3)COF 4.18kgを仕込み、一夜攪拌した後-10℃に冷却し、そこにヘキサフルオロプロペンオキシド12.0kgを150g/時間の供給速度で仕込んだ。供給終了後、この温度を保ちながら2時間攪拌を継続した後室温に戻し、攪拌を停止して静置した。その後、オートクレーブの下部取出口より、フルオロカーボン相のみを注意深く抜き取った。得られたフルオロカーボン相15.9kgを、ガスクロマトグラフィー(GC)により分析した結果、下記の組成を有していた。

 CF_3O ($CF(CF_3)CF_2O$) $nCF(CF_3)COF$

<u>n</u>	<u>GC(%)</u>
2	1
3	27
4	50
5	20
6	2

[0029]

得られたフルオロカーボン相の1.2kgおよび無水炭酸カルシウム1.2kgを、攪拌機を備えた容量10Lのガラス製反応容器に仕込み、130℃に加熱した。炭酸ガスの発生が終了した後、内部を1Torr迄減圧し、未反応のフルオロカーボン混合物および極く少量のジグライム(合計30g)を回収した。得られた生成物1.0kgをGCにより分析した結果、以下の組成を有していた。ビニル化反応は、ほぼ定量的(90%以上)に進行するため、反応の前後で組成は殆ど変化しない。

 $CF_2 = CFO \left(CF_2 CF (CF_3) 0 \right) nCF_3$

<u>n</u>	<u>GC(%)</u>
2	1
3	27
4	50
5	20
6	2

[0030]

得られたビニルエーテル化合物を蒸留し、それぞれのn値を有する化合物を単離した。各化合物の同定は、 19 F-NMR分析(ケミカルシフトはCFC $_{13}$ 基準)によって行われた。

 $(n=2)MPr_2VE$

$(n=3)MPr_3VE$

 $(n=4)MPr_4VE$

 $(n=5)MPr_5VE$

$$(n=6)MPr_6VE$$

$$F^{a} = C = C \begin{cases} F^{c} \\ OCF_{2}^{d}CF^{e}OCF_{2}^{f}CF^$$

[0031]

実施例1

容量500mlのステンレス鋼製オートクレーブ内を窒素ガスで置換し、脱気後下 記反応媒体を仕込んだ。

界面活性剤CF₃CF₂CF₂OCF(CF₃)CF₂OCF(CF₃)COONH₄ 30g Na₂HPO₄ · 12H₂O 0.5g イオン交換水 250ml

[0032]

オートクレーブ内を再び窒素ガスで置換し、脱気後以下の反応原料を仕込んだ

ページ: 14/

CF₂=CFOCF₂CF₂Br [FBrVE]

2g(0.8%)

ICF2CF2CF2CF2I [DIOFB]

0.5g

なお、カッコ内の百分率はモル%である。

[0033]

次いで、オートクレーブ内部の温度を50℃とし、そこに亜硫酸水素ナトリウム 0.01gおよび過硫酸アンモニウム0.05gをそれぞれ0.3重量%水溶液として加え、重合反応を開始させた。2時間反応を行った後冷却し、残ガスを排出して乳化液を取出し、これに5重量%塩化カルシウム水溶液を加えて重合物を凝析させ、水洗、乾燥して、下記組成(19F-NMR法による)のエラストマー状共重合体を108g得た。

VdF 71モル%

TFE 7モル%

FMVE 14モル%

 MPr_2VE 7.2 $\pm \nu$ %

FBrVE 0.8モル%

[0034]

このエラストマー状共重合体100部(重量、以下同じ)に、

MTカーボンブラック 30部

トリアリルイソシアヌレート(日本化成製品TAIC M60) 6部

有機過酸化物(日本油脂製品パーヘキサ25B-40) 1.4部

ZnO 4部

を加え、2本ロールミルで混和し、得られた硬化性組成物を180 \mathbb{C} で10分間圧縮成形して厚さ2 \mathbb{C} 00 \mathbb{C} 00

[0035]

これの加硫の際および加硫物について、次の各試験を行った。

硬化試験:モンサント・ディスク・レオメータを使用し、180℃でのt₁₀,

t90, ML, MHの値を測定

常態物性: JIS K6250, 6253に準拠

圧縮永久歪:ASTM D395 Method Bに準拠して、P24 0リングについて200℃、

70時間の値を測定

低温特性: ASTM D1329に準拠して、TR₁₀, TR₇₀値を測定

メタノール膨潤試験:25℃のメタノール中に70時間浸せき後の体積変化率を

測定

[0036]

実施例2~6、比較例1~2

実施例1において、反応媒体、反応原料および反応条件が下記表1の如くに変更された。この表1には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度 η sp/cおよびガラス転移温度Tg(SEIKO I SSC5200使用)が併記されている

表 1

				実施例	<u> </u>	較例		
		2	_3_	_4_	_5_	_6_	_1_	_2_
[反応媒体]								
界面活性剤	(g)	40	40	40	40	40	40	2
$Na_2HPO_4 \cdot 12$	H_20 (g)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
イオン交換オ	(m1)	250	250	250	250	250	250	250
[反応原料]								
VdF	(g)	40	40	40	46	46	40	40
TFE	(g)	6	6	6	-	_	6	9
FMVE	(g)	20	24	16	24	24	_	30
$\mathtt{MPr}_2\mathtt{VE}$	(g)	26	_	-	40	_	_	_
MPr ₃ VE	(g)	14	40	48	_	40	64	_
FBrVE	(g)	2	2	2	2	2	2	2
DIOFB	(g)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
[反応条件]								
温度	(\mathcal{L})	50	50	50	50	50	50	50
時間	(hrs)	14	17	20	15	20	17	12

[共重合体量]

生成量	(g)	110	107	106	103	105	101	78
[共重合体組	l成]							
VdF	(モル%)	72	72	75	84	83	82	72
TFE	(モル%)	7	7	7	_	_	8	10
FMVE	(モル%)	14	16	11	10	11	-	17
MPr ₂ VE	(モル%)	4.2	_	_	5.3	-	-	_
MPr3VE	(モル%)	2	4.2	6.2	-	5.2	9.1	-
FBrVE	(モル%)	0.8	0.8	0.8	0.7	0.8	0.9	1.0
[溶液粘度]								
η sp/c	(dl/g)	0.60	0.55	0.51	0.65	0.56	測定	0.9
							不可	
[ガラス転移	[温度]							
Tg	(\mathcal{L})	-33.5	-34.2	-35.0	-36.6	-36.9	-37.0	-31.5
[0	037]							

また、実施例2~6および比較例1~2で得られたエラストマー状共重合体を用い 、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および

加硫物について行われた各試験での測定結果は、実施例1における測定結果と共 に、次の表2に示される。

表 2

				<u> </u>					
測定項	且	l	_2_	3	4	5	6	_1_	_2
[硬化試験]									
t ₁₀	(分)	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.5
t90	(分)	1.4	1.6	1.6	1.8	1.8	2.5	1.6	1.5
ML	$(dN \cdot m)$	0.8	0.6	0.7	0.4	0.6	1.1	0.4	0.6
MH	$(dN \cdot m)$	13.6	13.9	12.5	11.4	13.3	15.5	8.3	18.0
[常態物性]									
硬さ		72	68	67	68	65	67	75	70
100%モジュラ	ラス(MPa)	_	_	_	_	5.0	6.5	6.0	5.7

破断時強	さ	(MPa)	9.6	10.4	8.4	7.2	11.6	10.7	7.4	15.0
破断時伸	び	(%)	160	160	150	150	170	150	120	200
比重			1.87	1.86	1.86	1.87	1.87	1.87	1.87	1.87
[圧縮永久3	€]									
200℃、70	時間	(%)	39	27	30	29	34	33	34	29
[低温特性]										
TR_{10}		(\mathcal{C})	-31.7	-32.5	-33.5	-34.3	-33.9	-35.8	-35.7	-30.0
TR ₇₀		(\mathcal{L})	-22.8	-24.2	-23.3	-20.1	-23.3	-24.7	+2.5	-20.0
[メタノール膨潤試験]										
体積変化	率	(%)	+21	+13	+20	+15	+39	+33	+9	+100
[0	0 3	8]								

実施例7~11、比較例3

実施例1において、亜硫酸ナトリウム量が0.04gに、過硫酸アンモニウム量が0.2gにそれぞれ変更され、また反応媒体、反応原料および反応条件が下記表3の如くに変更された。この表3には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度 η sp/cおよびガラス転移温度Tgが併記されている。

表3

		7	8	9	10	11	3	
[反応媒体]								
界面活性剤	(g)	40	40	40	40	40	40	
Na ₂ HPO ₄ · 12	H ₂ 0 (g)	0.5	0.5	0.5	0.5	0.5	0.5	
イオン交換が	k (ml)	200	200	200	200	200	200	
[反応原料]								
VdF	(g)	42	42	42	42	42	42	
FMVE	(g)	28	24	20	18	24	-	
MPr ₃ VE	(g)	-	-	-	_	22	_	
$\mathtt{MPr_4VE}$	(g)	44	44	44	50	22	68	
FBrVE	(g)	2	2	2	2	2	2	

DIOFB	(g)	0.5	0.5	0.5	0.5	0.5	0.5
[反応条件]							
温度	(\mathbb{C})	50	50	50	50	50	50
時間	(hrs)	10	10	10	10	10	10
[共重合体量	<u>.</u>						
生成量	(g)	114	110	108	115	107	110
[共重合体組成]							
VdF	(モル%)	78	80	81	82	80	90
FMVE	(モル%)	17	15	14	12	14	_
MPr3VE	(モル%)	_	-	_	_	3	_
$\mathtt{MPr_4VE}$	(モル%)	4.2	4.2	4.2	5.3	2.2	9
FBrVE	(モル%)	0.8	0.8	0.8	0.7	0.8	1.0
[溶液粘度]							
η sp/c	(dl/g)	0.41	0.31	0.45	0.40	0.46	測定
							不可
[ガラス転移	[温度]						
Tg	(\mathcal{L})	-38.6	-39.2	-39.6	-40.2	-38.7	-41.0
[0039]							

また、実施例7~11および比較例3で得られたエラストマー状共重合体を用い、 実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加 硫物について行われた各試験での測定結果は、次の表4に示される。

表 4

			実施例						
測定	項目	7	8	9	10	11	3		
[硬化試験	₹]								
t ₁₀	(分)	0.5	0.5	0.5	0.5	0.5	0.5		
t90	(分)	1.7	1.7	1.7	1.7	1.5	2.0		
ML	$(dN \cdot m)$	0.4	0.4	0.5	0.3	0.6	0.3		
MH	$(dN \cdot m)$	10.0	10.0	9.9	9.7	9.7	9.0		

[常態物性]							
硬さ		67	65	66	68	65	77
100%モジュラス	(MPa)	5.8	5.1	5.5	6.1	5.4	8.0
破断時強さ	(MPa)	11.8	10.1	12.1	10.9	10.6	9.5
破断時伸び	(%)	160	150	150	150	150	120
比重		1.87	1.87	1.86	1.86	1.87	1.87
[圧縮永久歪]							
200℃、70時間	j (%)	32	30	31	31	30	37
[低温特性]							
TR_{10}	(\mathbb{C})	-36.9	-37.5	-37.1	-37.8	-37.4	-38.7
TR_{70}	(\mathbb{C})	-26.4	-28.4	-26.0	-26.0	-28.4	-1.0
[メタノール膨潤試験]							
体積変化率	(%)	+32	+26	+34	+24	+30	+13
[004	0]						

実施例12

容量500mlのステンレス鋼製オートクレーブ内を窒素ガスで置換し、脱気後下 記反応媒体を仕込んだ。

界面活性剤CF₃CF₂CF₂OCF (CF₃) CF₂OCF (CF₃) COONH₄ 40g Na₂HPO₄ · 12H₂O 0.5g イオン交換水 200ml

[0041]

オートクレーブ内を再び窒素ガスで置換し、脱気後以下の反応原料を仕込んだ

フッ化ビニリデン [VdF] 42g(77.53%) パーフルオロ(メチルビニルエーテル) [FMVE] 18g(12.81%) CF_2 =CFOCF2CF(CF3) OCF2CF(CF3) OCF2CF(CF3) OCF3 [MPr4VE] 65g(9.25%)

 CF_2 =CFI 0.5g(0.28%)

ページ: 20/

ICF2CF2CF2I [DIOFB]

0.5g

なお、カッコ内の百分率はモル%である。

[0042]

次いで、オートクレーブ内部の温度を50°Cとし、そこに亜硫酸水素ナトリウム 0.1gおよび過硫酸アンモニウム0.5gをそれぞれ3重量%水溶液として加え、重合反応を開始させた。10時間反応を行った後冷却し、残ガスを排出して乳化液を取出し、これに5重量%塩化カルシウム水溶液を加えて重合物を凝析させ、水洗、乾燥して、下記組成(19F-NMR法による)のエラストマー状共重合体を123g得た。

VdF	86モル%
FMVE	8モル%
MPr ₄ VE	5.7モル%
FDVE	0.3モル%

この生成エラストマー共重合体の溶液粘度 η sp/cは0.30d1/g、ガラス転移温度Tg (SEIKO I SSC5200を用いて測定)は-41.3℃であった。

[0043]

実施例13

実施例12において、下記反応原料を用いた以外は、同条件で重合反応が行われた。

VdF	42g (77.64%)
FMVE	18g (12.83%)
MPr ₄ VE	65g (9.27%)
CF ₂ =CFI	0.5g (0.28%)
ICF2CF2CF2CF2I	0.5g

123g得られたエラストマー状共重合体は、実施例12と同様の組成(19 F-NMR法でVd F 86モル%、FMVE 8モル%、MPr $_4$ VE 6モル%)であり、その溶液粘度 $_{\eta}$ sp/cは0.2 8dl/g、ガラス転移温度Tgは-41.6℃であった。

[0044]

以上の実施例12~13で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について

(ただし、圧縮成形温度は170℃、二次加硫時間は4時間に変更)行われた各試験での測定結果は、次の表5に示される。

表 5

測定項目	<u> </u>	<u>実施例12</u>	<u>実施例13</u>
[硬化試験]			
t ₁₀	(分)	0.7	0.7
t90	(分)	1.9	1.9
ML	$(dN \cdot m)$	0.3	0.2
MH	$(dN \cdot m)$	8.1	6.6
[常態物性]			
硬さ		67	66
100%モジュラ	ス(MPa)	7.1	5.3
破断時強さ	(MPa)	7.9	8.4
破断時伸び	(%)	110	140
比重		1.87	1.87
[圧縮永久歪]			
200℃、70時	間 (%)	35	44
[低温特性]			
TR_{10}	(\mathbb{C})	-39.2	-39.5
TR ₇₀	(\mathbb{C})	-24.7	-25.5
[メタノール膨	潤試験]		
体積変化率	(%)	+14	+14
[00	45]		

実施例14、比較例4

実施例1において、反応媒体、反応原料および反応条件が下記表6の如くに変更された。この表6には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度 η sp/cおよびガラス転移温度Tgが併記されている。なお、 FP_3 VEは

表 6

		<u>実施例14</u>	<u>比較例 4</u>
[反応媒体]			
界面活性剤	J (g)	30	30
Na ₂ HPO ₄ · 1	12H ₂ O (g)	0.5	0.5
イオン交換	と水 (ml)	220	220
[反応原料]			
VdF	(g)	42	42
FMVE	(g)	24	24
MPr ₂ VE	(g)	44	_
FP ₃ VE	(g)	_	44
FBrVE	(g)	1.0	1.0
DIOFB	(g)	0.5	0.5
[反応条件]			
温度	(\mathbb{C})	50	50
時間	(hrs)	12	12
[共重合体量	:]		
生成量	(g)	110	108
[共重合体組	.成]		
VdF	(モル%)	80	80
FMVE	(モル%)	13	14
$\mathtt{MPr}_2\mathtt{VE}$	(モル%)	6.6	_
FP3VE	(モル%)	_	5.6
FBrVE	(モル%)	0.4	0.4
[溶液粘度]			
η sp/c	(dl/g)	0.62	0.39
[ガラス転移	温度]		
Tg	(\mathbb{C})	-35.2	-36.0
[0	0 4 6]		

また、実施例14および比較例4で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について行われた各試験での測定結果は、次の表7に示される。なお、比較例4の試験片には、著しい発泡が認められた。

表 7

測定項]	<u> </u>	<u>実施例14</u>	<u>比較例 4</u>
[硬化試験]			
t ₁₀	(分)	0.5	0.5
t90	(分)	1.7	1.8
ML	$(dN \cdot m)$	0.4	0.3
MH	$(dN \cdot m)$	11.0	8.0
[常態物性]			
硬さ		67	63
100%モジュラ	ス(MPa)	3.7	2.1
破断時強さ	(MPa)	9.3	2.3
破断時伸び	(%)	180	110
比重		1.87	1.84
[圧縮永久歪]			
200℃、70時	間 (%)	39	58
[低温特性]			
\mathtt{TR}_{10}	(\mathcal{C})	-33.1	-34.0
TR_{70}	(\mathcal{L})	-23.8	-17.7
[メタノール服	彭潤試験]		
体積変化率	(%)	+28	+28
[00	47]		

実施例15~17

実施例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表8の如くに変更された。この表8には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度 η sp/cおよびガラス転移温度Tgが併記されている。また、溶

液粘度 η sp/cは、得られた共重合体が35℃の1重量%メチルエチルケトン溶液として完全に溶解しないため測定できなかった。

表 8

		<u>実施例15</u>	<u>実施例16</u>	<u>実施例17</u>
[反応媒体]				
界面活性剤	(g)	40	40	40
Na ₂ HPO ₄ · 12H ₂ O	(g)	0.5	0.5	0.5
イオン交換水	(ml)	180	180	180
[反応開始剤]				
過硫酸アンモニウ	ム (g)	0.25	0.25	0.25
Na ₂ SO ₃	(g)	0.05	0.05	0.05
[反応原料]				
VdF	(g)	24	24	24
TFE	(g)	12	12	12
FMVE	(g)	14	14	14
MPr ₅ VE	(g)	64	72	72
FBrVE	(g)	2	2.5	2.5
DIOFB	(g)	_	0.07	0.14
[反応条件]				
温度	(\mathbb{C})	33	33	33
時間	(hrs)	12	12	12
[共重合体量]				
生成量	(g)	105	113	111
[共重合体組成]				
VdF	(モル%)	62	61	61
TFE	(モル%)	16	16	16
FMVE	(モル%)	11	11	11
MPr ₅ VE	(モル%)	10.0	10.7	10.7
FBrVE	(モル%)	1.0	1.3	1.3

[溶液粘度]

η sp/c (dl/g) 測定不可 測定不可 測定不可 [ガラス転移温度] Tg (℃) -40.9 -41.9 -42.6

[0048]

実施例15~17で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、有機過酸化物量は2部に、二次加硫条件は230℃、20時間に変更)行われた各試験での測定結果は、次の表9に示される。

表 9

測定項目		<u>実施例15</u>	<u>実施例16</u>	<u>実施例17</u>
[硬化試験]				
t ₁₀	(分)	0.5	0.5	0.5
t90	(分)	2.1	1.9	1.9
ML ($(dN \cdot m)$	2.6	1.1	0.7
MH ($(dN \cdot m)$	11.4	10.0	9.5
[常態物性]				
硬さ		62	60	61
100%モジュラン	ス(MPa)	4.3	3.7	4.8
破断時強さ	(MPa)	11.5	10.5	9.7
破断時伸び	(%)	180	190	170
比重		1.90	1.90	1.90
[圧縮永久歪]				
200℃、70時間	肾 (%)	27	35	36
[低温特性]				
TR_{10}	(\mathcal{C})	-38.3	-39.6	-40.6
TR ₇₀	(\mathcal{L})	-24.6	-29.4	-29.0
[メタノール膨	潤試験]			
体積変化率	(%)	+4.0	+4.2	+8.1

[0049]

実施例18~22

実施例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表10の如くに変更された。この表10には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度 η sp/cおよびガラス転移温度Tgが併記されている。なお、ITrFEは

CF₂=CFI

である。また、実施例18~20および22の溶液粘度 η sp/cは、前記と同様の理由で測定できなかった。

#	4	\sim
ママ	1	u

				<u>実施例</u>		
		1.8	<u>19</u>	20	21	_2 2
[反応媒体]						
界面活性剤	(g)	40	40	40	30	40
$Na_2HPO_4 \cdot 12H_2O$	(g)	0.5	0.5	0.5	0.5	0.5
イオン交換水	(m1)	200	170	200	170	200
[反応開始剤]						
過硫酸アンモニウム	(g)	0.25	0.25	0.25	0.13	0.25
Na ₂ SO ₃	(g)	0.05	0.05	0.05	0.02	0.05
[反応原料]						
VdF	(g)	26	24	30	34	24
TFE	(g)	12	14	8	24	14
FMVE	(g)	14	14	14	32	14
MPr ₃ VE	(g)	_	12		_	_
MPr ₄ VE	(g)	_	40	64	40	-
MPr ₅ VE	(g)	72	12	_	_	72
FBrVE	(g)	2	2	2	1.5	_
DIOFB	(g)	_		_	0.25	0.15
ITrFE	(g)	_	_	_	_	0.50

[反応条件]						
温度	(\mathcal{L})	33	33	50	50	40
時間	(hrs)	12	12	12	12	12
[共重合体量]						
生成量	(g)	111	103	112	124	103
[共重合体組成]						
VdF	(モル%)	65	62	70	57	61
TFE	(モル%)	16	18	10	20	19
FMVE	(モル%)	10	10	10	18	10
MPr ₃ VE	(モル%)	_	2	_	_	_
MPr ₄ VE	(モル%)	_	6	9	4.5	_
MPr ₅ VE	(モル%)	8	1	_	-	9.6
ITrFE	(モル%)		_	_	_	0.4
FBrVE	(モル%)	1	1	1	0.5	_
[溶液粘度]						
η sp/c	(dl/g)	測定	測定	測定	0.55	測定
		不可	不可	不可		不可
[ガラス転移温度]						
Tg	(\mathbb{C})	-41.9	-39.5	-40.0	-35.6	-44.1
	_					

[0050]

実施例18~22で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、実施例18~19での有機過酸化物量は2部に、実施例18~20での二次加硫条件は230℃、20時間に、実施例21での圧縮成形温度は170℃、二次加硫時間は4時間にそれぞれ変更)の各試験での測定結果は、次の表11に示される。

表11

	実施例				
測定項目	18	19	_20_	21	22
[硬化試験]					

t ₁₀	(分)	0.6	0.5	0.5	0.5	0.5
t90	(分)	2.4	2.4	2.4	1.6	1.9
ML	$(dN \cdot m)$	1.3	1.7	1.7	2.4	0.4
MH	$(dN \cdot m)$	8.2	9.6	10.0	18.5	7.4
[常態物性]						
硬さ		59	61	60	68	62
100%モジュ	ラス(MPa)	3.0	3.4	2.8	5.1	5.4
破断時強	iさ (MPa)	9.4	9.2	10.1	13.5	7.0
破断時伸	いび (%)	200	190	220	200	120
比重		1.90	1.90	1.89	1.88	1.89
[圧縮永久]	歪]					
200℃、70)時間 (%)	31	31	28	28	27
[低温特性]						
TR_{10}	(\mathbb{C})	-39.1	-37.0	-37.9	-33.7	-41.0
TR_{70}	(\mathbb{C})	-24.1	-23.4	-28.8	-26.9	-28.3
[メタノー)	ル膨潤試験]					
体積変化	字 (%)	+3.3	+3.0	+5.1	+3.4	+3.2
[0	0511					

 $[0\ 0\ 5\ 1]$

実施例23~25

実施例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表1 2の如くに変更された。この表12には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度 η sp/cおよびガラス転移温度Tgが併記されている。なお、BDFEは

CF₂=CHBr

である。また、実施例23および25の溶液粘度 η sp/cは、前記と同様の理由で測定できなかった。

表12

<u>実施例</u> _23 _24 _25

[反応媒体]				
界面活性剤	(g)	40	40	40
Na ₂ HPO ₄ · 12H ₂ O	(g)	0.5	0.5	0.5
イオン交換水	(ml)	170	210	210
[反応開始剤]				
過硫酸アンモニウ	' ム (g)	0.25	0.45	0.35
NaHSO3	(g)	0.05	0.09	0.07
[反応原料]				
VdF	(g)	30	28	30
TFE	(g)	8	10	8
FMVE	(g)	14	20	14
MPr ₄ VE	(g)	_	_	64
MPr ₅ VE	(g)	72	30	
MPr ₆ VE	(g)	_	10	
FBrVE	(g)	2.5	2.5	_
BDFE	(g)	_	_	1.0
DIOFB	(g)	_	0.08	0.1
[反応条件]				
温度	(\mathcal{L})	35	50	50
時間	(hrs)	12	12	12
[共重合体量]				
生成量	(g)	115	89	109
[共重合体組成]				
VdF	(モル%)	70	66	70
TFE	(モル%)	10	13	10
FMVE	(モル%)	10	15	10
MPr ₄ VE	(モル%)	_	_	9
MPr ₅ VE	(モル%)	9	4	
MPr ₆ VE	(モル%)		1	_

FBrVE	(モル%)	1	1	_
BDFE	(モル%)	_		1
[溶液粘度]				
η sp/c	(dl/g)	測定	0.70	測定
		不可		不可
[ガラス転移温度]				
Tg	(\mathcal{C})	-42.5	-38.5	-41.6
	•			

[0052]

実施例23~25で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、有機過酸化物量は2部に、二次加硫条件は230℃、20時間にそれぞれ変更)の各試験での測定結果は、次の表13に示される。なお、実施例25では、成形時厚さ2mmのシート表面に極くわずかの発泡が認められた。

表13

			実施例		
測定項目		_ 2 3	2 4	_2 5	
[硬化試験]					
t ₁₀	(分)	0.5	0.5	0.5	
t90	(分)	2.6	2.1	3.0	
ML	$(dN \cdot m)$	2.0	2.1	0.3	
MH	$(dN \cdot m)$	10.7	16.4	6.4	
[常態物性]					
硬さ		59	66	58	
100%モジュラス(MPa)		4.5	8.1	3.1	
破断時強	さ (MPa)	11.3	13.9	8.2	
破断時伸	び (%)	180	140	200	
比重		1.89	1.88	1.88	
[圧縮永久歪]					
200℃、70	時間 (%)	24	25	41	

[低温特性]

 TR_{10} (°C) -40.3 -36.6 -38.5

TR₇₀ (°C) -28.7 -27.7 -22.0

[メタノール膨潤試験]

体積変化率 (%) +4.3 +9.8 +6.0

【書類名】 要約書

【要約】

【課題】 含フッ素エラストマーが本来有する成形加工性および耐圧縮永久歪特性を損うことなく、低温特性および耐溶剤性にすぐれた加硫物を与え得る含フッ素エラストマーを提供する。

【解決手段】 その共重合組成が

(a)フッ化ビニリデン

50~85モル%

(b) テトラフルオロエチレン

0~25モル%

(c)パーフルオロ(メチルビニルエーテル)

7~20モル%

 $(d) CF_2 = CFO[CF_2CF(CF_3)O]nCF_3$

3~15モル%

(ただし、nは2~6の整数である)

(e)RfX(Rfは炭素数2~8の不飽和フルオロ炭化水素基であり、 0.1~2モル% 基中に1個以上のエーテル結合を有していてもよく、

Xは臭素またはヨウ素である)

である含フッ素エラストマー。この含フッ素エラストマーは、好ましくは一般式 R(Br)n(I)m (ここで、Rは炭素数2~6の飽和フルオロ炭化水素基または飽和クロロフルオロ炭化水素基であり、nおよびmは0、1または2であり、m+nは2である)で表わされる含臭素および/またはヨウ素化合物の存在下で共重合して得られる。

特願2003-055183

出願人履歴情報

識別番号

[502145313]

変更年月日
 変更理由]

2002年 4月23日 新規登録

住 所

東京都港区芝大門1-12-15

氏 名 ユニマテック株式会社

•