Lecture 1: Fundamentals of Linear Algebra and Matrix Analysis

Tianpei Xie

Sep. 1st., 2022

Contents

1	Basi	ics in Linear Algebra 3
	1.1	Linear indepenence
	1.2	Dimensions
	1.3	Isomorphism
2	Basics in Matrix	
	2.1	Linear transformation
	2.2	Matrix operations
	2.3	Rank
	2.4	Nonsingularity
3	The	Euclidean inner product and norm 6
4	Part	tition set and matrices 6
	4.1	Submatrices
	4.2	The inverse of a partitioned matrix
	4.3	The Sherman-Morrison-Woodbury formula
	4.4	Complementary nullities
	4.5	Rank in a partitioned matrix and rank-principal matrices
	4.6	Commutativity
5	Det	erminant 8
	5.1	Definition and basic properties
	5.2	Elementary row and column operations
	5.3	Reduced row echelon form
	5.4	Compound matrices
	5.5	The adjugate and the inverse
	5.6	Cramers rule
	5.7	Minors of the inverse
	5.8	Schur complements and determinantal formulae
	5.9	Determinantal identities of Sylvester and Kronecker
	5.10	The Cauchy-Binet formula
	5.11	The Laplace expansion theorem
	5.12	Derivative of the determinant
	5.13	Adjugates and compounds

6 Equivalence relations

1 Basics in Linear Algebra

- A vector space over a field F is a set V together with two operations, the (vector) addition $+: V \times V \to V$ and scale multiplication $\cdot: \mathbb{R} \times V \to V$, that satisfy the eight axioms listed below: for all $x, y, z \in V$, $\alpha, \beta \in F$,
 - 1. The associativity of addition: x + (y + z) = (x + y) + z;
 - 2. The *commutativity* of addition: x + y = y + x;
 - 3. The *identity* of addition: $\exists \ \mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{x} = \mathbf{x}$;
 - 4. The *inverse* of addition: $\forall x \in V, \exists -x \in V$, so that x + (-x) = 0;
 - 5. Compatibility of scalar multiplication with field multiplication: $\alpha(\beta \cdot \mathbf{x}) = (\alpha\beta) \cdot \mathbf{x}$;
 - 6. The *identity* of scalar multiplication: $\exists 1 \in F$, such that $1 \cdot x = x$;
 - 7. The distributivity of scalar multiplication with respect to vector addition: $\alpha \cdot (\boldsymbol{x} + \boldsymbol{y}) = \alpha \cdot \boldsymbol{x} + \alpha \cdot \boldsymbol{y}$;
 - 8. The distributivity of scalar multiplication with respect to field addition: $(\alpha + \beta) \cdot \boldsymbol{x} = \alpha \cdot \boldsymbol{x} + \beta \cdot \boldsymbol{x}$.

Elements of V are commonly called *vectors*. Elements of F are commonly called *scalars*.

- A vector space X endowed with a topology is called a *topological vector space*, denoted as (X, \mathcal{T}) , if the addition $+: X \times X \to X$ and scale multiplication $\cdot: \mathbb{R} \times X \to X$ are continuous.
- A subspace $S \subset V$ over a field F is, by itself, a vector space over F that is closed under the same operations of the vector addition and scalar multiplication as in V.

The subsets $\{0\}$ and V are always subspaces of V, so they are often called *trivial subspaces*; a subspace of V is said to be *nontrivial* if it is different from both $\{0\}$ and V. We call $\{0\}$ the zero vector space. A subspace of V is said to be a proper subspace if it is not equal to V.

- A *linear combination* of vectors in a vector space V over a field F is any expression of the form $a_1 \mathbf{v}_1 + \ldots + a_k \mathbf{v}_k$ in which k is a *positive integer*, $a_1, \ldots, a_k \in F$, and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$.
 - A linear combination is trival if $a_1 = \ldots = a_k = 0$; otherwise, it is nontrivial. A linear combination is by definition a sum of finitely many elements of a vector space.
- The span of a nonempty subset S of V, span(S), consists of all linear combinations of finitely many vectors in S.
- Let S_1 and S_2 be subspaces of a vector space over a field F. The *sum* of S_1 and S_2 is the *subspace*

$$S_1 + S_2 = \text{span}\{S_1 \cap S_2\} = \{x + y : x \in S_1, y \in S_2\}$$

If $S_1 \cap S_2 = \{0\}$, we say that the sum of S_1 and S_2 is a *direct sum* and write it as $S_1 \oplus S_2$; every $z \in S_1 \oplus S_2$ can be written as z = x + y with $x \in S_1$ and $y \in S_2$ in one and *only one way*.

1.1 Linear independence

- We say that a finite list of vectors v_1, \ldots, v_k in a vector space V over a field F is linearly dependent if and only if there are scalars $a_1, \ldots, a_k \in F$, not all zero, such that $a_1v_1 + \ldots + a_kv_k = \mathbf{0}$. Thus, a list of vectors v_1, \ldots, v_k is linearly dependent if and only if some nontrivial linear combination of v_1, \ldots, v_k is the zero vector. A list of vectors v_1, \ldots, v_k is said to have length k.
- A finite list of vectors v_1, \ldots, v_k in a vector space V over a field F is *linearly independent* if and only if $a_1v_1 + \ldots + a_kv_k = 0 \Leftrightarrow a_1 = \ldots = a_k = 0$.
- A list of vectors are linearly independent if and only if every finite sublist is linearly independent. Any list of vectors that contains the zero vector is linearly dependent.
- The *cardinality* of a finite set is the number of its (necessarily distinct) elements. If v_1, \ldots, v_k are linearly independent, then the cardinality of the set $\{v_1, \ldots, v_k\}$ is k, i.e. there is no element that is identical to others.
- A set S of vectors is said to be linearly independent if every finite list of distinct vectors in S is linearly independent; S is said to be linearly dependent if some finite list of distinct vectors in S is linearly dependent.
- A linearly independent list of vectors in a vector space V whose span is V is a **basis** for V. Each element of V can be represented as a linear combination of vectors in a basis in **one** unique way.

$$V = \text{span}(\{v_1, \dots, v_k\}) = \{v \in V : v = a_1v_1 + \dots + a_kv_k, a_i \in F\}$$

Note that removing one basis vector will result is some v that cannot be linear represented by the rest.

- A linearly independent list of vectors $(\{v_1, \ldots, v_k\})$ in V is a basis of V if and only if no list of vectors that properly *contains it* is linearly independent, i.e. it is a maximum list of independent vectors.
- A list of vectors that spans V is a basis for V if and only if no proper sublist of it spans V. The empty list is a basis for the zero vector space.
- Any linearly independent list of vectors in a vector space V may be extended, perhaps in more than one way, to a basis of V.

1.2 Dimensions

• If there is a positive integer n such that a basis of the vector space V contains exactly n vectors, then every basis of V consists of exactly n vectors; this common cardinality of bases is the dimension of the vector space V and is denoted by $\dim(V)$. Here V is finite-dimensional.

In the *infinite-dimensional* case, there is a one-to-one correspondence between the elements of any two bases.

• Let V be a finite-dimensional vector space and let S_1 and S_2 be two given subspaces of V.

The $subspace\ intersection\ lemma$ is

$$\dim(S_1) + \dim(S_2) = \dim(S_1 \cap S_2) + \dim(S_1 + S_2) \tag{1}$$

The following inequality is true

$$\dim(S_1 \cap S_2) \ge \dim(S_1) + \dim(S_2) - \dim(V) \tag{2}$$

reveals the useful fact that if $\delta = \dim(S_1) + \dim(S_2) - \dim(V) \ge 1$, then the subspace $S_1 \cap S_2$ has dimension at least δ , and hence it contains δ linearly independent vectors, namely, any δ elements of a *basis* of $S_1 \cap S_2$.

This statement can be extended. If S_1, \ldots, S_k are subspaces of V, and if $\delta = \dim(S_1) + \ldots + \dim(S_k) - (k-1)\dim(V) \ge 1$, then

$$\dim(S_1 \cap \ldots \cap S_k) \ge \delta \tag{3}$$

1.3 Isomorphism

- If U and V are vector spaces over the same scalar field F, and if $f: U \to V$ is an invertible function such that $f(a\mathbf{x} + b\mathbf{y}) = af(\mathbf{x}) + bf(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in U$ and all $a, b \in F$, then f is said to be an **isomorphism** and U and V are said to be **isomorphic** ("same structure"). Isomorphism is a bijective (one-to-one and onto) mapping that preserve linear operations.
- Two finite-dimensional vector spaces over the same field are isomorphic if and only if they have the same dimension.
- Any n-dimensional vector space over F is isomorphic to F^n .
- Specifically, if V is an n-dimensional vector space over a field F with specified basis $B = \{x_1, ..., x_n\}$, then, since any element $x \in V$ may be written uniquely as $x = a_1x_1 + ... + a_nx_n$ in which each $a_i \in F$, we may identify x with the n-vector $[x]_B = [a_1, ..., a_n]^T$. For any basis B, the mapping $x \to [x]_B$ is an isomorphism between V and F^n . $[x]_B$ is referred as the cooridnate of x in V. B forms a coordinate system of V.

2 Basics in Matrix

• A matrix is an m-by-n array of scalars from a field F. If m = n, the matrix is said to be square. The set of all m-by-n matrices over F is denoted by $M_{m,n}(F)$, and $M_{n,n}(F)$ is often denoted by $M_n(F)$.

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \dots & \dots & \dots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix} := [a_{i,j}]_{m \times n}$$

- The vector spaces $M_{n,1}(F)$ and F^n are identical.
- A *submatrix* of a given matrix is a *rectangular* array lying in specified *subsets* of the rows and columns of a given matrix.

• Suppose that $A = [ai, j] \in M_{n,m}(F)$. The **main diagonal** of A is the list of entries $a_{1,1}, a_{2,2}, \ldots, a_{q,q}$, in which $q = \min\{n, m\}$, denoted as diag $(A) = [a_{i,i}]_{i=1}^q \in F^q$.

The *p*-th superdiagonal of *A* is the list $a_{1,p+1}, a_{2,p+2}, \ldots, a_{k,p+k}$, in which $k = \min\{n, m-p\}$, $p = 0, 1, 2, \ldots, m-1$; the *p*-th subdiagonal of *A* is the list $ap + 1, 1, ap + 2, 2, \ldots, ap + l, l$, in which $l = \min\{n - p, m\}, p = 0, 1, 2, \ldots, n-1$.

2.1 Linear transformation

- 2.2 Matrix operations
- 2.3 Rank
- 2.4 Nonsingularity
- 3 The Euclidean inner product and norm
- 4 Partition set and matrices

4.1 Submatrices

- Let $\mathbf{A} \in M_{m,n}(F)$. For index sets $\alpha \subset \{1, \ldots, m\}$ and $\beta \subset \{1, \ldots, n\}$, we denote by $\mathbf{A}[\alpha, \beta]$ the (sub)matrix of entries that lie in the rows of \mathbf{A} indexed by α and the columns indexed by β .
- If $\alpha = \beta$, the submatrix $\mathbf{A}[\alpha] = \mathbf{A}[\alpha, \alpha]$ is a **principal submatrix** of \mathbf{A} . An *n*-by-*n* matrix has $\binom{n}{k}$ distinct principal submatrices of size k
- For $A \in M_n(F)$ and $k \subset \{1, ..., n\}$, $A[\{1, ..., k\}]$ is a *leading principal submatrix* and $A[\{k, ..., n\}]$ is a *trailing principal submatrix*.
- The *determinant* of an r-by-r submatrix of A is called a *minor*; if we wish to indicate the size of the submatrix, we call its determinant a *minor of size r*.

If the r-by-r submatrix is a principal submatrix, then its determinant is a **principal minor** (of size r); if the submatrix is a leading principal matrix, then its determinant is a **leading principal minor**; if the submatrix is a trailing principal submatrix, then its determinant is a trailing principal minor.

- A *signed* minor, such as those appearing in the Laplace expansion $[(-1)^{i+j} \det A_{i,j}]$ is called a *cofactor*; if we wish to indicate the size of the submatrix, we call its signed determinant a *cofactor of size r*.
- Suppose that $A \in M_n(F)$ and rank(A) = r. We say that A is $rank \ principal$ if it has a nonsingular r-by-r principal submatrix.

If there is some index set $\alpha \subseteq \{1, \ldots, n\}$ such that

$$rank(\mathbf{A}) = rank(\mathbf{A}[\alpha, \emptyset^c]) = rank(\mathbf{A}[\emptyset^c, \alpha])$$
(4)

(that is, if there are r linearly independent rows of \boldsymbol{A} such that the corresponding r columns are linearly independent), then \boldsymbol{A} is rank principal; moreover, $\boldsymbol{A}[\alpha]$ is nonsingular.

4.2 The inverse of a partitioned matrix

• Given $A \in M_n(F)$ and A^{-1} are also nonsingular. For simplicity, let A be partitioned as a 2-by-2 block matrix

$$oldsymbol{A} = \left[egin{array}{cc} oldsymbol{A}_{1,1} & oldsymbol{A}_{1,2} \ oldsymbol{A}_{2,1} & oldsymbol{A}_{2,2} \end{array}
ight]$$

with $A_{i,i} \in M_{n_i}(F)$, i = 1, 2, and $n_1 + n_2 = n$. A useful expression for the correspondingly **partitioned** presentation of A^{-1} is

$$\boldsymbol{A}^{-1} = \begin{bmatrix} \left(\boldsymbol{A}_{1,1} - \boldsymbol{A}_{1,2} \boldsymbol{A}_{2,2}^{-1} \boldsymbol{A}_{2,1} \right)^{-1} & -\boldsymbol{A}_{1,1}^{-1} \boldsymbol{A}_{1,2} \left(\boldsymbol{A}_{2,2} - \boldsymbol{A}_{2,1} \boldsymbol{A}_{1,1}^{-1} \boldsymbol{A}_{1,2} \right)^{-1} \\ -\boldsymbol{A}_{2,2}^{-1} \boldsymbol{A}_{2,1} \left(\boldsymbol{A}_{1,1} - \boldsymbol{A}_{1,2} \boldsymbol{A}_{2,2}^{-1} \boldsymbol{A}_{2,1} \right)^{-1} & \left(\boldsymbol{A}_{2,2} - \boldsymbol{A}_{2,1} \boldsymbol{A}_{1,1}^{-1} \boldsymbol{A}_{1,2} \right)^{-1} \end{bmatrix}$$
(5)

assuming that all the relevant inverses exist. The block diagonal terms $(A_{1,1}^{-1}, A_{2,2}^{-1})$ are the *inverse of Schur complement* with respect to $A_{2,2}$ and $A_{1,1}$, respectively.

• Let $\mathbf{A} = [a_{i,j}] \in M_n(F)$ be given and suppose that $\alpha \subset \{1, \ldots, n\}$ is an index set such that $\mathbf{A}[\alpha]$ is nonsingular. An important formula for det \mathbf{A} , based on the 2-partition of \mathbf{A} using α and α^c , is

$$\det \mathbf{A} = \det \left(\mathbf{A}[\alpha] \right) \det \left(\mathbf{A}[\alpha^c] - \mathbf{A}[\alpha^c, \alpha] \mathbf{A}[\alpha]^{-1} \mathbf{A}[\alpha, \alpha^c] \right)$$
 (6)

The special matrix

$$S := A/A[\alpha] = A[\alpha^c] - A[\alpha^c, \alpha] A[\alpha]^{-1} A[\alpha, \alpha^c]$$
(7)

is called the **Schur complement** of $A[\alpha]$ in A. Thus we have

$$\det \mathbf{A} = \det \left(\mathbf{A}[\alpha] \right) \, \det \left(\mathbf{A}/\mathbf{A}[\alpha] \right) \tag{8}$$

$$\begin{bmatrix} I & 0 \\ -A_{2,1}A_{1,1}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} I & -A_{1,1}^{-1}A_{1,2} \\ 0 & I \end{bmatrix} = \begin{bmatrix} A_{1,1} & 0 \\ 0 & A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2} \end{bmatrix} = \begin{bmatrix} A_{1,1} & 0 \\ 0 & A/A_{1,1} \end{bmatrix}$$

$$= \begin{bmatrix} A_{1,1} & 0 \\ 0 & A/A_{1,1} \end{bmatrix}$$
(9)

- A is nonsingular if and only if both $A_{1,1}$ and its the Schur complement $A/A_{1,1}$ are nonsingular, since $\det A = \det (A_{1,1}) \det (A/A_{1,1})$. If A is nonsingular, then $\det (A/A_{1,1}) = \det A/\det A_{1,1}$.
- ullet We can have alternative expression in inverse of block matrix for Schur complement $S:=A/A_{1.1}$

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}_{1,1} + \mathbf{A}_{1,1}^{-1} \mathbf{A}_{1,2} \mathbf{S}^{-1} \mathbf{A}_{2,1} \mathbf{A}_{1,1}^{-1} & -\mathbf{A}_{1,1}^{-1} \mathbf{A}_{1,2} \mathbf{S}^{-1} \\ -\mathbf{S}^{-1} \mathbf{A}_{2,1} \mathbf{A}_{1,1}^{-1} & \mathbf{S}^{-1} \end{bmatrix}$$
(10)

4.3 The Sherman-Morrison-Woodbury formula

Suppose that a nonsingular matrix $A = [a_{i,j}] \in M_n(F)$ has a known inverse A^{-1} and consider B = A + XRY, in which X is n-by-r, Y is r-by-n, and R is r-by-r and nonsingular. If B and $R^{-1} + YA^{-1}X$ are nonsingular, then

$$B^{-1} = (A + XRY)^{-1} = A^{-1} - A^{-1}X(R^{-1} + YA^{-1}X)^{-1}YA^{-1}$$
(11)

If r is much smaller than n, then \mathbf{R} and $\mathbf{R}^{-1} + \mathbf{Y}\mathbf{A}^{-1}\mathbf{X}$ may be much easier to invert than \mathbf{B} . For instance

$$\left(\boldsymbol{A} + \boldsymbol{x}\boldsymbol{y}^{T}\right)^{-1} = \boldsymbol{A}^{-1} - \frac{\boldsymbol{A}^{-1}\boldsymbol{x}\boldsymbol{y}^{T}\boldsymbol{A}^{-1}}{1 + \boldsymbol{y}^{T}\boldsymbol{A}\boldsymbol{x}}$$
(12)

if $\mathbf{A} = \mathbf{I}$ and $\mathbf{y}^T \mathbf{x} \neq -1$ then

$$\left(\boldsymbol{I} + \boldsymbol{x} \boldsymbol{y}^{T}\right)^{-1} = \boldsymbol{I} - \frac{\boldsymbol{x} \boldsymbol{y}^{T}}{1 + \boldsymbol{y}^{T} \boldsymbol{x}}$$

$$(13)$$

- 4.4 Complementary nullities
- 4.5 Rank in a partitioned matrix and rank-principal matrices
- 4.6 Commutativity
- 5 Determinant
- 5.1 Definition and basic properties
- 5.2 Elementary row and column operations
- 5.3 Reduced row echelon form
- 5.4 Compound matrices
- 5.5 The adjugate and the inverse
- 5.6 Cramers rule
- 5.7 Minors of the inverse
- 5.8 Schur complements and determinantal formulae
- 5.9 Determinantal identities of Sylvester and Kronecker
- 5.10 The Cauchy-Binet formula

Let $A \in M_{m,k}(F)$, $B \in M_{k,n}(F)$, and C = AB. Furthermore, let $1 \le r \le \min\{m, k, n\}$, and let $\alpha \subseteq \{1, \ldots, m\}$ and $\beta \subseteq \{1, \ldots, n\}$ be index sets, each of *cardinality* r. An expression for the α, β

minor of \boldsymbol{C} is

$$\det (\mathbf{C}[\alpha, \beta]) = \sum_{\gamma} \det (\mathbf{A}[\alpha, \gamma]) \det (\mathbf{B}[\gamma, \beta]), \qquad (14)$$

where the sum is taken over all index sets $\gamma \subseteq \{1, \dots, k\}$ of cardinality r.

- 5.11 The Laplace expansion theorem
- 5.12 Derivative of the determinant
- 5.13 Adjugates and compounds
- 6 Equivalence relations