王艺霖 2200011456

真空镀膜实验

一、实验数据与处理

1. 气体分子平均自由程与压强等外部参量的关系为

$$\bar{\lambda} = \frac{kT}{\sqrt{2}\pi\sigma^2 p} \tag{26.1}$$

在真空镀膜实验中,要求气体分子的平均自由程远大于容器线度(10cm),取为 50cm; 温度为容器内空气分子的温度,即为室温,可以取为 300K; 空气的主要成分是氮气,可以用氮气分子的直径估计空气分子的直径,氮气分子直径大约为 0.37nm。所以按照公式可以计算得

$$p = \frac{kT}{\sqrt{2}\pi\sigma^2\bar{\lambda}} = 13.6\times 10^{-3} \mathrm{Pa}$$

即真空镀膜所需要的真空度下限是 13.6×10⁻³Pa.

2. 分子泵刚启动时示数不稳定,会上下跳动,当压强到达 150Pa 以下时示数稳定下来,从稳定后开始记录系统压强的示数:

t/s	$P/\times 10^{-3} \mathrm{Pa}$	t/s	$P/\times 10^{-3} \mathrm{Pa}$	t/s	$P/ \times 10^{-3} \mathrm{Pa}$
0	144.9	210	58.4	840	23.2
10	137.1	240	54.2	900	22.3
20	129.3	270	50.4	960	21.3
30	123.1	300	47.3	1020	20.5
40	116.2	330	44.3	1080	19.8
50	110.3	360	41.8	1140	19.0
60	104.6	390	39.7	1200	18.3
70	98.8	420	37.6	1260	17.9
80	93.9	450	35.9	1320	17.3
90	88.0	480	34.3	1380	16.8
100	84.0	510	32.8	1440	16.3
110	81.4	540	31.6	1500	15.9
120	77.9	570	30.7	1560	15.4
130	75.1	600	29.6	1620	15.0
140	72.1	630	28.5	1680	14.7
150	69.9	660	27.6	1740	14.3
160	67.6	690	26.9	1800	14.0
170	65.4	720	26.0	1860	13.7
180	63.5	780	24.6		

表 1: 分子泵工作时系统的压强随时间的变化关系

对压强随时间的变化关系作图,得到图 1。利用指数衰减的公式 $p=p_0+Ae^{-t/\tau}$ 对 p-t 关系进行拟合,得到的拟合曲线如图所示,相关系数 r=0.9888,可见指数衰减是一个较好的拟合,分子泵启动后系统的压强随时间的变化关系大致满足指数衰减。

王艺霖 2200011456

图 1: 分子泵启动后压强随时间的变化关系 图 2: 预蒸发时压强随时间的变化关系

3. 真空度达到蒸镀膜所需要的下限时,加预蒸发电流(5A)。电流一开始会下降,此时需要手动调节电流使其保持在 5A 左右,之后电流逐渐趋于稳定,不再减小。这可能是因为刚通电流时钼丝的温度会升高,使得其电阻变大,而后来钼丝的产热和散热达到平衡,温度及电阻基本上不再变化。

4	加预蒸发	山沟山	正起放	元六人	主加加主	. 0	和团	0	丘二
4.		111.7/17.11	 大師 下	1/45/1/1	百/兄 川天	• '7	和图	2	所示:

t/s	$P/\times 10^{-3} \mathrm{Pa}$	t/s	$P/\times 10^{-3} \mathrm{Pa}$	t/s	$P/\times 10^{-3} \mathrm{Pa}$
0	13.6	30	15.1	60	14.2
5	13.6	32	15.2	70	14.1
10	13.8	34	15.1	72	14.0
15	13.9	36	15.1	74	13.9
20	14.1	38	14.9	76	13.8
22	14.4	40	14.8	80	13.7
24	14.6	45	14.6	90	13.6
26	14.8	50	14.4		
28	14.9	55	14.3		

表 2: 预蒸发时系统压强随时间的变化关系

可以看到,在加预蒸发电流后,系统的压强随时间先增大后减小。这是因为通入预蒸发电流后,钼丝的温度升高,杂质逐渐被蒸发,离开样品表面,这使得系统的压强升高;之后,杂质基本被蒸发干净,随着分子泵的工作,系统的压强再次降低。另外,可以注意到,在预蒸发时,压强从 15.2×10⁻³Pa 只用了 50 秒左右的时间,而在刚才启动分子泵抽真空时这个过程花了超过 4 分钟,这是因为在刚启动分子泵的时候,容器内表面吸附了许多气体分子,在抽真空的时候这些气体分子会不断脱附,之后才会被泵吸走;而预蒸发时吸附层基本已经脱附,并且蒸出来的杂质分子由于动能大,不容易吸附到表面上,所以预蒸发过程中抽真空比第一次要快许多。

5. 压强回到蒸镀膜所需下限的时候,加蒸发电流(30A左右),开始蒸镀。增大电流后, 钼丝迅速升温,发出白炽灯一样的光,将蒸镀腔内照得很亮;同时,铜开始在样品和玻璃纸 王艺霖 2200011456

窗表面沉积,玻璃纸窗的不透明度迅速增大,到几乎看不到蒸镀腔内部的时候,蒸镀完成。这个过程中系统的最大压强达到了 $1.5 \times 10^{-1} \mathrm{Pa}$ 。

6. 热蒸发方法制备薄膜的经验:

- 事先要做好准备工作: 钼丝和铜丝要用砂纸打磨掉表面的氧化层; 钼丝要平滑地弯曲成螺旋状, 不能有尖锐的折痕; 钼丝需要紧密地固连在电极上, 避免此处接触电阻过大直接烧断; 玻璃罩要小心放置, 保证其下沿和橡胶圈气密性良好;
- 在预蒸发和蒸镀的时候要时刻关注电流变化,随时准备调节;
- 蒸镀到玻璃窗不透明时要果断结束蒸镀,避免其他杂质(如玻璃纸)镀到样品表面:
- 蒸镀结束后先切换到低真空模式,当压强示数基本稳定之后再放气,避免损坏分子泵;

二、思考题

真空室放气后短时间内重复实验,获得同样真空度的时间一般会明显缩短。在第一次实验中,系统压强从 100×10^{-3} Pa 变化到 20×10^{-3} Pa 用了 994 秒,第二次实验中系统压强从 100×10^{-3} Pa 变化到 20×10^{-3} Pa 用了 776 秒,用时比第一次缩短了 22%。

这是因为在第一次实验之前,容器内表面有气体分子吸附的吸附层,当抽真空的时候 这些吸附的分子会脱附,导致抽取真空比较缓慢;而在第二次时,之前的分子层已经脱附, 新吸附的分子数量还不太多,所以第二次抽取真空会比第一次快。同时,第一次蒸镀的过程 中相当于在容器内表面也镀了一层铜,这也为第二次的真空获取提供了更加纯净的内表面, 所以第二次抽取真空速度会比第一次快很多。