# 지능형 로봇

팀 프로젝트

중간 보고서

#### 1.프로젝트 소개

프로젝트 명: 당구의 신

당구는 정확성과 전략이 중요한 스포츠로, 특히 4구에서는 최적의 경로를 아는 것이 중요하다. 본 프로젝트는 컴퓨터 비전 기술과 임베디드 보드를 활용하여 당구 4구 게임의 최적 해를 계산하는 것을 목표로 한다. 카메라로 당구대를 촬영하여 당구대와 각 색깔 별 공의 위치를 인식하고, 점수를 획득하기 위해 공을 쳐야 할 최적의 방향을 실시간으로 영상에 표시한다.

## 2.관련 기술 및 구현 개요

컴퓨터 비전: OpenCV 라이브러리를 이용하여 실시간으로 당구대와 공의 위치를 탐지한다. 당구대의 상하좌우를 고정하고, 카메라의 각도와 상관없이 당구대를 일정한 좌표 평면에 정확히 매핑하여, 당구대 내에서 공의 위치를 찾아낸다.

- 카메라 Calibration 카메라의 렌즈 왜곡을 보정하여 정확한 위치 정보를 얻는다. 이는 당구대와 공의 위치를 올바르게 인식하는 데 필수적인 과정이다. 보정을 위해 체커보드 패턴을 활용한다.
- Hough 변환 이미지에서 주로 직선이나 원을 검출하는 기법으로, 엣지를 검출한 후 특정 형태에 해당하는 위치에 투표하는 방식으로 도형을 인식한다. 이를 통해 당구대와 공과 같은 객체를 효과적으로 탐지할 수 있다.
- Object detection YOLO 모델
  YOLO 모델과 색상을 통해 당구대와 공의 위치를 감지한다. 빠르고 정확한
  객체 인식이 가능하여 실시간 데이터 처리에 적합하다.
- Perspective transform 당구대 내 각 공의 정확한 위치를 계산하기 위해 카메라 각도에 상관없이 당구대를 위에서 본 것처럼 이미지를 변환한다.

물리 시뮬레이션 및 경로 최적화: 공이 서로 충돌하는 상황과 벽에 반사되는 상황을 고려한 경로 최적화 알고리즘을 사용한다. 이를 위해 물리 시뮬레이션 라이브러리와 경로 탐색 알고리즘을 조합하여, 점수를 획득할 가능성이 높은 경로를 계산하고, 이를 실시간 영상에 시각적으로 표시한다.





# 3.현재까지의 진행 상황

시스템 구축: 최초 보고서를 통해, Jetson Xavier 와 카메라로 실시간 영상 분석이 가능한 환경을 구축하였다.

## 4. 앞으로의 계획

- YOLO 모델 훈련: 당구대의 사진 데이터를 생성하여 모델을 훈련한다.
- **당구대 및 공 탐지**: 당구대의 이미지를 Perspective Transform 하여 위에서 바라보는 모습으로 변환한 후, Hough 변환 및 YOLO 모델, 공의 색깔을 사용하여 공의 좌표를 계산한다.
- **경로 계산 알고리즘 개발**: 당구대를 평면 좌표계로 하여, 점수를 획득하기 위해 공을 쳐야 할 방향을 계산한 후, 화면에 방향을 표시한다.

## 5.프로젝트의 잠재적 확장성 및 개선 사항

- **새로운 경로 탐색**: 점수를 내기 위한 최적 경로가 여러 개일 수 있다. 여러 경로 중에서 사용자가 선택을 할 수 있도록 기능을 구현할 수 있다.
- **다양한 게임 모드 지원**: 현재는 당구 4구에 특화된 알고리즘을 개발 중이지만, 추후 3구나 포켓볼의 다른 당구 게임에도 적용할 수 있는 알고리즘을 개발할 수 있다.
- **더욱 정교한 물리 모델링**: 현재의 경로 계산은 공의 단순한 이동과 충돌을 기반으로 하고 있지만, 추후에는 공의 회전을 고려한 정밀한 모델링을 추가하여 더 현실감 있는 최적 경로 계획 기능을 개발할 수 있다.
- **휴머노이드 로봇**: 당구채를 다룰 수 있는 휴머노이드 로봇에 이 기능을 함께 사용하여 당구를 직접 칠 수 있는 로봇을 개발할 수 있다.

## 6. 레퍼런스

- https://github.com/Detail-AR/Detail\_AR
- Zhengyou Zhang. A Flexible New Technique for Camera Calibration. T-PAMI 2000