به نام خدا

گزارشکار أزمایش دوم مدارهای الکتریکی و الکترونیکی

بررسی قوانین اهم و کرشهف

چمران معینی

9941+04

هدف أزمایش: بررسی قانون اهم، قوانین ولتاژ و جریان کرشهف، قوانین تقسیم ولتاژ و تقسیم جریان

(مدار۱: دو مقاومت R2 و R3 مشابه یک پتانسیومتر عمل می کنند)

با تغییر پتانسیومتر، مقدار جریانی که از R1 رد میشود را، روی مقادیر داده شده در جدول ۱ تنظیم میکنیم و سپس اختلاف پتانسیل دو سر این مقاومت را محاسبه میکنیم.

I(mA)	1	2	3	4	5	6	7	8	
V(mv)	1	2	3	4	5	6	7	8	
(جدول ۱)									

حال نمودار تغییرات جریان برحسب پتانسیل را می کشیم که به این شکل است:

۲. ابتدا مداری مشابه مدار ۲ میبندیم.

حال مقادیر به دست آمده را با اعداد به دست آمده از قانون تقسیم ولتاژ مقایسه می کنیم:

	V_(R4)	V_(R5)	V_(R6)
:15*(680/7280)) قانون تقسيم ولتاژ		(1000/7280)*15=2.060	(5600/7280)*15=11.538
(V) آزمایش	1.4	2.06	11.6

(مدار ۳)

جریان اصلی و جریان هر شاخه را محاسبه می کنیم و رابطه ی تقسیم جریان را پیدا می کنیم. (تمام جریانها، برحسب میلی امپر نوشته شدهاند)

$$I = 7.9$$
, $I_4 = 4.4$, $I_5 = 3$, $I_6 = 0.5$

با مقایسهی جریان و مقاوت شاخهها، متوجه می شویم که نسبت عکس دارند، پس:

$$\rightarrow I_n = k\left(\frac{1}{R_n}\right) \rightarrow I = I_4 + I_5 + I_6 \rightarrow I = k\left(\frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}\right) \rightarrow k = IR_{eq}$$

پس میتوانیم نتیجه بگیری که جریان هر شاخه، از این رابطه به دست می آید:

$$I_n = I \frac{R_{eq}}{R_n}$$

۴. ابتدا مداری مشابه مدار ۴ می بندیم.

(مدار ۴)

$$I_1 = 0.5mA, \qquad I_2 = 2mA$$

سپس یک بار هر منبع را به تنهایی خاموش می کنیم، و تغییرات جریان را بررسی می کنیم.

 $I_1 = 0.07mA$, $I_2 = 0.5mA$

 $I_1 = 0.33mA$, $I_2 = 0.84mA$