Fight against terrorism

Network Tour of Data Science

Team 54:

Khalil Elleuch Mariem Belhaj Ali Mouadh Hamdi Nour Ghalia Abassi

Introduction

- Marked increasing acts of terrorism across the globe in recent decades..
- Significant number of victims due to this acts.

What are the relationships between the attacks?

Can we find significant communities sharing specific properties?

Dataset GLOBAL TERRORISM DATABASE

Global Terrorism Database

- Open-source database including information on terrorist attacks.
- The GTD includes data on domestic as well as international.
- More than 180,000 attacks.
- 1970 → 2017.

Data Cleaning

- Delete 45% of data containing "Unknown"s in Group Name (groups involved in the terrorist attacks).
 - They have a huge proportion in the dataset.
 - We will use those values to make predictions.
- Studying correlations between features.

Data visualisation

- The number of the terrorism attacks get increased exponentially in the past 20 years
- All continents/ countries are concerned!

Evolution of the attacks per region

Data visualisation

Still some countries are more concerned than others:

- Iraq is leading with almost ⅓ of terrorist attacks!
- Developed countries are the less present in our dataset.

Percentage of attacks in 2016 in each country

Victims:

- Middle East: A lot of wars during the last century.
- Africa: This can be explained by the huge number of civil wars.
- USA/ Russia

Number of kills per country

Network analysis

- Cluster terrorism attacks according to the targets
- Check if a group always attacks the same targets.
- Capture if there is a collaboration between terrorist group.

Network analysis

Targets: The victims of the attacks

targtype1_txt	Nb attacks
Private Citizens & Property	43511
Military	27984
Police	24506
Government (General)	21283
Business	20669

Organization name: Terrorist organization

gname	Nb attacks
Taliban	7478
Islamic State of Iraq and the Levant	5613
Shining Path	4555
Farabundo Marti National Liberation Front	3351
Al-Shabaab	3288

Graph construction

1. Create a bipartite graph

- **Nodes:** The organizations names given in gname feature and the targets.
- Edges: Connects each organization with its target.

2. Weighted projection to gname

- Nodes: The organizations names.
- Edges: Connects two organizations if they attacked the same target.
- Weights: Number of times the two organizations attacked the same target.

Network properties

Nodes importance:

Page Rank: Computes a ranking of the nodes in the graph based on the structure of the incoming and outgoing links.

Degree Centrality: Assumes that the node with the most connections (edges) is the most important.

Network properties

Uncover important key players in the graph with nodes importance properties:

• The same top 10 terrorist organizations appear to have highest page rank and highest degree centrality in our graph.

Some world known terrorist organization such as Kurdistan Workers'
 Party, Taliban and Hezbollah seems to have an important role in terrorist attacks.

Kurdistan Workers' Party
Tehrik-i-Taliban Pakistan
Basque Fatherland and Freedom (ETA)
Liberation Tigers of Tamil Eelam (LTTE)
Taliban
Maoists
Al-Shabaab
New People's Army (NPA)
Palestinians
Hezbollah

Clustering

Louvain community detection

- Method to extract communities from large networks (greedy optimization).
- Unfortunately, we didn't get anything relevant using this algorithm.
 - ightarrow no real separation between nodes and no clusters were detected.

Clustering

Spectral clustering

- Use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions.
- In our case, we get an interesting result:
 - **5** clusters found using spectral clustering.

Machine Learning

- Predict the 'Unknown' groups considered as our missing data.
- Select the 15 most important gnames and assign the remaining to a new class 'other'.
- Number of unknown data: 82385.

ightarrow 0.62 Accuracy to predict the unknown gnames.

Machine Learning

Predict the unknown group names using the spectral clusters

- Assign each "unknown" to a cluster not a group name.
- Split data set of known gnames into train/test set.
- Train a random forest classifier using the cluster given by the spectral clustering.

ightarrow **0.88** Accuracy to assign each unknown gname to a cluster of organisations names

Conclusion

- Importance of network analysis is to have insights on aspects of the data that we couldn't investigate.
- Machine learning procedures helps predict unknown terrorist organizations.
- Terrorism is attacking every country in the world:
 Governments need to rise awareness and invest more in fights against terrorism.

Thank you for your attention!

Any questions?

You can find the link here:

https://github.com/mouadhhamdi/NTDS_Project?fbclid=IwARoNDYzjE5HvWSpWamiUtZVQhb3I7IbDTb5hIdqUdOlDwfrdPje1RGpTY-A