Wstęp do praktycznej kryptografii

Jakub Maria Juszczakiewicz

Akademickie Stowarzyszenie Informatyczne

6 marca 2012

Przebieg wykładu

Plan prelekcji

- Czym jest kryptografia?
- Szyfry i klucze
- Które hasła są lepsze?
- Zastosowania

Czym jest kryptografia?

Kryptografia

- + Kryptoanaliza
- = Kryptologia

Podział szyfrów

Szyfry

- Historyczne
- Symetryczne
 - Strumieniowe
 - Blokowe
- Asymetryczne

ECB - Szyfrowanie

Electronic Codebook (ECB) mode encryption

ECB - Deszyfrowanie

Electronic Codebook (ECB) mode decryption

CBC - Szyfrowanie

Cipher Block Chaining (CBC) mode encryption

CBC - Deszyfrowanie

Cipher Block Chaining (CBC) mode decryption

CFB - Szyfrowanie

Cipher Feedback (CFB) mode encryption

CFB - Deszyfrowanie

Cipher Feedback (CFB) mode decryption

OFB - Szyfrowanie

Output Feedback (OFB) mode encryption

OFB - Deszyfrowanie

Output Feedback (OFB) mode decryption

Funkcja skrótu

Przykładowe funkcje skrótu: MD4, MD5, RMD-160, SHA-1, SHA-2 (224, 256, 384, 512)

Wielkość klucza a bezpieczeństwo

Rozmiar klucza	czas sprawdzania*	
32 bity	około 1 godziny 12 minuty	
33 bitów	około 2 godziny 23 minuty	
56 bity	2283 lata	
128 bitów	10782897524556318080696079 lat	

^{* -} tępo 1 000 000 sprawdzeń na sekundę

Jakie hasła są bezpieczne?

MoCnE.#?HaSIO

tojesthasloktorelatwozapamietac

Jakie hasła są bezpieczne?

tojesthasloktorelatwozapamietac

 $26^{31} =$

73143171433403393900724146770015259539275776

Spreparowane tablice ze skrótami

Jak się uchronić? - Solą.

wQPMLUD3kQgz03rLxEobOg

UMI7wa7lpus4WiuwWlk1DAgkAJtzGyXi6ldWc270 ExOlz6pURJAul1f6QZKPVPstAtU0f90wg+24jT6P GFJyW5CjFtr63FvYrYxs7PerAQzSk2FBLKDi0CgP LI7WA75YLBNbeQe1NVtFwrtqfnJ3GjeJ5fwq0BgX 9ZVNR45BFR+Cvky8qtr1zrPIMIGvYLZZZORGPX4 038Mfh7qjXhaYgNqVePkhZARleFRjmPMJUr7klj GT040zHbiUU1V87HhVfvV3pCTC1xAxXZxzgrxqDB bZwXrEZc3AuFq0FjxQl3Yk+20hG7M6TDL5bnIGJH OAkxLy2x0URBOnIGoHA

Szyfr którego nie da się złamać

	XOR		
	0	1	
0	0	1	
1	1	0	

Szyfr strumieniowy

0100011100001010010010010101010101010 - wiadomość

101001100101010101010001101111010010000 - klucz

1110000101011111110010101010001011000010-szy frogram

101001100101010101010001101111010010000 - klucz

01000111000010100100100101010001010010 - wiadomość

Blum-Blum-Shub

$$x_{n+1} = (x_n)^2 \bmod M$$

$$M=xy$$
 $x \bmod 4=3$
 $y \bmod 4=3$
 $\mathrm{NWD}(\phi(x-1),\phi(y-1)) <$ - "małe"

Szyfry asymetryczne

- 2 klucze (publiczny i prywatny)
- bazują na "trudnych" problemach matematycznych
- stosowane do podpisów cyfrowych
- inicjuje się nimi bezpieczną komunikację

Zastosowania

Przeglądarki

HTTP**S**://....

- Szyfrowane połączenie (SSL/TLS)
- Zabezpieczenie certyfikatem

Podpis cyfrowy

Signing

Verification

If the hashes are equal, the signature is valid.

Szyfrowanie plików

OpenSSL - szyfrowanie

```
$ openssl enc -aes-128-cbc -in sintel-1024-stereo.ogv
-out sintel-1024-stereo.ogv.aes
```

OpenSSL - deszyfrowanie

```
$ openssl enc -d -aes-128-cbc -in
sintel-1024-stereo.ogv.aes -out
sintel-1024-stereo.ogv.two
```

Szyfrowanie partycji

Propozycje (OpenSource)

- Linux Unified Key Setup
- TrueCrypt