Concise Caching of Driving Instructions

Jeppe Rishede Thomsen¹, Man Lung Yiu¹, Christian S. Jensen²

¹Department of Computing Hong Kong Polytechnic University

²Department of Computer Science Aarhus University

October 21, 2014

Motivation

- Many Shortest Path Queries
 - 40 % of Google Maps usage is mobile
 - 200+ million active mobile users as of may 2011
 - Users drive 12 billion miles a year with Google Maps Navigation
 - Google maps is the most used smartphone app (54% of total)
 - 1.9 Billion smartphone users (2013)

http://techcrunch.com/2011/03/11/marissa-mayer-40 of-google-maps-usage-is-mobile-and-there-are-150-million-mobile-users/

Setting

Web search scenario:

[Maarkatos et al., Computer Communications 2001]

- Can have a cache at either a proxy or server site
- Saves response- or computation- time
- Cache stores web search results
- Existing cache algorithms include:
 - -Least Recently Used
 - —Highest Query Frequency

Figure: Web Search

How does a Shortest Path Cache Work?

Cache Content			
Path	Shortest Path		
1	V1,V2,V3,V4,V7,V8,V9		
2	V1,V2,V3,V4,V5,V6		
3	V5,V4,V7		

Queries				
Query	Result	Path		
$Q_{V1,V9}$	HIT	1		
$Q_{V2,V5}$	HIT	2		
$Q_{V5,V9}$	MISS	N/A		

How do we express the Cache Performance?

Benefit is expected cost saved:

- On server: computation time
- On proxy: communication time

We need to answer:

- Which queries $Q_{s,t}$ can be answered by the path $P_{a,b}$?
- For query $Q_{s,t}$, what are the cost savings?

Given a:

- Cache Size Budget
- Query Log

Then build a cache Ψ with max benefit $\gamma(\Psi)$

Statistics Extraction

Generic Concise Path

Length vs. Utility

Statistics Extraction

Statistics Extraction

Experimental Setup

- Query logs divided equally into 2 sets:
 - historical
 - query workload
- Comparison with:
 - Least Recently Used (LRU)
 - Highest Query Frequency (HQF)

Dataset	Trajectories	Road network
Aalborg	Infati GPS data	From downloads.cloudmade.com
	4,401 trajectories	129k nodes, 137k edges
Beijing	Geo-Life GPS data	From downloads.cloudmade.com
	12,928 trajectories	76k nodes, 85k edges

Hit ratio — Proxy Scenario

Performance Savings — Server Scenario

Performance Savings — Server Scenario

Conclusion

•

End of Presentation

Thank You For Listening

Support

some extra graphs or pictures for questions