Formal Languages Homework 3

Liam Dillingham

February 12, 2019

1 Problem 2.5.2

Consider the following $\epsilon\text{-NFA}$

	ϵ	a	b	c
$\begin{array}{c} \rightarrow p \\ q \end{array}$	$\{q, r\}$ \emptyset	Ø { p}	$\{q\}$ $\{r\}$	$\{r\}$ $\{p,q\}$
8 <i>T</i>	Ø	Ø	Ø	Ø

1.1 a) Compute the ϵ -closure of each state

$$\begin{split} ECLOSE(p) &= \{p,q,r\}.\\ ECLOSE(q) &= \{p,q,r\}.\\ ECLOSE(r) &= \emptyset. \end{split}$$

1.3 c) Convert the automaton to an NFA

2 Problem 3.1.1

Write regular expressions for the following languages:

- 2.1 a) The set of strings over alphabet $\{a,b,c\}$ containing at least one a and at least one b
- 2.2 b) The set of 0's and 1's whose tenth symbol from the right end is 1
- 2.3 c) The set of strings of 0's and 1's with at most one pair of consecutive 1's

3 Problem 3.1.2

Write regular expressions for the following languages:

- 3.1 a) The set of all strings of 0's and 1's such that every pair of adjacent 0's appears before any pair of adjacent 1's
- 3.2 b) The set of strings of 0's and 1's whose number of 0's is divisible by five

4 Problem 3.1.4

Give English descriptions of the languages of the following regular expressions:

- 4.1 a) $(1+\epsilon)(00^*1)^*0^*$.
- 4.2 b) $(0^*1^*)^*000(0+1)^*$.
- 4.3 c) (0+10)*1*.