Local Probabilistic Models: Context-Specific CPDs

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Context-Specific CPDs
 - Representation
 - Ex: Augmented Student Network
 - Tree CPDs
 - Ex: Printer Diagnosis
 - Rule CPDs
 - Other Representations

Context-Specific CPDs

- Deterministic dependency is one example of structure in CPDs
- A very common type of regularity arises when we have the same effect in several contexts
 - Several different distributions are the same
- Example is given next

Srihar

Augmented Student BN: Regularity

- Model event: offered a job at Acme Consulting
 - We have a binary variable J
 - j^1 : offered job, j^0 : otherwise
 - Job depends on SAT & Reco Ltr
 - Student may apply a^1 , or not a^0

- We need to describe CPD: P(J|A,S,L)
 - Recruiter is desperate to offer job even without applying If $A=a^0$, no access to L and S. So, among 8 values of parents A,S,L, four with $A=a^0$ induces identical distributions over variable J
 - Recruiter feels SAT more important than letter
 - High SAT generates offer without letter: $P(J|a^{l},s^{l},l^{l})=P(J|a^{l},s^{l},l^{0})$
 - Low SAT requires letter
- Several values of Pa_J specify same conditional probability over J. We need 8 parameters here.

Representing regularity in CPDs

- We have seen several values of Pa_J specify the same conditional probability over J
- How to capture this regularity in our CPD representation
- Many approaches for capturing functions over a scope X that are constant over subsets of instantiations to X
 - Trees
 - Rules

Tree-CPD

- Naturally captures common elements in a CPD
 - Tree for P(J|A,S,L)
 - Internal nodes represent tests
 - on parent variables

- Leaves are annotated with distribution over J
 - $-P(a^{0})=0.2$, i.e., probability of offer without applying
 - To determine $P(J|a^{l},s^{l},l^{0})$:
 i.e., student applies, has good SAT letter immaterial
 - choose path $A=a^{I}$ and $S=s^{I}$
 - $P(j^0)=0.1, P(j^1)=0.9$
 - Which is what we use for $P(J|a^{l},s^{l},l^{0})$ Need 4 parameters instead of 8 in table

Definition of Tree CPD

- A tree-CPD for a variable X is a rooted tree
- Each t-node in the tree is either a leaf t-node or an interior t-node
- Each leaf is labeled with a distribution P(X)
- Each interior node is labeled with some variable $Z \varepsilon P a_X$
- Each interior node has a set of arcs to its children each one associated with a unique assignment $Z=z_i$ for z_i ε Val(Z)

Multiplexer CPD

- George has to decide whether to give the recruiter the letter from the Professor of CS 101 or the Professor of CS 102
- Depending on which choice C George makes the dependence will only be on one of the two

Multiplexer CPD

- A CPD $P(Y|A,Z_1,...Z_k)$ is a multiplexer CPD if $Val(A) = \{1,...,k\}$ and $P(Y|a,Z_1,...,Z_k) = \mathbf{1}\{Y = Z_a\}$
 - Where a is the value of A
 - The variable A is called the selector variable of the CPD
- In other words, the value of the selector variable is a copy of the value of one of its parents $Z_1,...,Z_k$
 - The role of A is to select the parent who is being copied

Multiplexer: Tree and BN

- (a) network fragment
- (b) tree CPD for $P(J|C,L_1,L_2)$
- (c) Modified network with new variable L that has a multiplexer CPD

Advantage of Trees

- Provide natural framework for representing context-specificity in a CPD
- People find it convenient
- Lends itself well to automated learning algorithms
 - To construct a tree automatically from a data set

Tree Application: Diagnostic Networks

Trouble-shooting of physical systems

- Context specificity is due to presence of alternative configurations
- Diagnosis of faults in a printer
 - Part of trouble-shooting network for MS Windows 95
 - Printer can be hooked up to either network via
 - Ethernet cable (Network transport medium)
 - Affects printer output only if printer is hooked to network
 - Or to local computer via cable (Local Transport medium)

Context-Specific Dependencies

(a) Real-world BN for Microsoft Online Trouble-shooting system

(b) Structure of Tree-CPD for *Printer Output* variable

Reduces no. of parameters required from 145 to 55

(b)

Rule CPD

- Trees capture the entire CPD in a single data structure
- A finer-grained specification is via rules
 - Each rule corresponds to a single entry in the CPD of the variable
- A rule ρ is a pair (c;p) where c is an assignment to some subset of variables C and $p \in [0,1]$.
- C is the scope of ρ denoted $Scope[\rho]$
- This representation decomposes a tree-CPD into its most basic elements

EX: Tree of Augmented Student BN

- There are 8 entries in the CPD tree
- Such that each one corresponds to a branch in the tree and an assignment to the varaible J itself
- Thus the CPD defines eight rules

Ex: CPD of Job in Augmented BN

There are 8 entries in the CPD tree
Such that each one corresponds to a
branch in the tree and an assignment to
the variable *J* itself

Thus the CPD defines eight rules

- ρ_1 :< a^0 , j^0 ; 0.8>
- ρ_2 :< a^0 , j^1 ; 0.2>
- ρ_3 :< a^1 , s^0 , l^0 , j^0 : 0.9>
- ρ_3 :< a^1 , s^0 , l^0 , j^1 : 0.1>
- ρ_3 :< a^1 , s^0 , l^0 , j^1 : 0.4>
- ρ_3 :< a^l , s^0 , l^l , j^l : 0.6>
- ρ_3 :< a^l , s^l , j^0 : 0.1>
- ρ_3 :< a^l , s^l , j^l : 0.9>

Definition of Rule-based CPD

- A rule-based CPD $p(X|Pa_X)$ is a set of rules R such that
- For each rule $\rho \in \mathbb{R}$ we have that $Scope[\rho] \leq \{X\} \bigvee Pa_X$
- For each assignment (x, u) to $\{X\} \bigvee Pa_X$ we have precisely one rule $(c;p) \in \mathbb{R}$ such that c is compatible with (x,u). In this case we say that $P(X=x|Pa_X=u)=p$
- The resulting CPD P(X|U) is a legal CPD in that $\sum_{x} P(x|u) = 1$

Other Representations

- Tree and rule representations are useful for representation, inference and learning
- However other representations are possible
- They both induce partitions of defined by branches of the tree or rule contexts
- Each partition is associated with a different entry in X's CPD
- Other such methods are decision diagrams, multinets and similarity networks