GLM for t-tests and ANOVAs

PSM 2

Bennett Kleinberg

29 Jan 2019

Welcome

Probability, Statistics & Modeling II

Lecture 4

The GLM for group mean comparisons

About the module

- 7.5 ECTS (0.5 UCL credits)
- = 150 learning hours
- 3 contact-hours per week

= 11 weeks with 14 hours per week

-> 11 hours self-study per week

Expected self-study

- Revise the lecture (your responsibility)
- Replicate the code/examples
- Read the required literature (read, annotate, summarise)
- Read additional literature if necessary
- Design own code examples to understand the concept
- If still unclear: post it on Moodle or ask us

What question do you have?

Brief recap logistic regression

- problem of linear models for discrete/binary outcome variables
- needed: transformation of the outcome variable

Re-transform for the interpretation!

- remember: we model the log-odds
- so: un-log the natural logarithm
- then: use the odds, or transform to probabilities

Your turn

- Linear model
- income ~ age
- intercept = 10,0000b1 = 5,000

Your turn

- Linear model
- income ~ age*gender
- intercept = 10,0000
- b1 (age) = 4,000
- b2 (gender, 0 = female, 1 = male) = 12,000
- b3 (age*gender) = 2,000

Your turn

- Logistic modelfailed ~ hours_spent
 - intercept = -10.00b1 = 0.60

Today

- Mean comparison

- t-testsANOVAGLM implementation

Mean comparisons

Numerical values

Mean:

```
## Analyst Manager
             82.92
```

SD:

```
## Analyst Manager
## 18.11735 27.84028
```

Is fraud by managers more damaging than fraud by analysts?

Non-statistical answer Yes, because:

```
## Analyst Manager
## 82.92 101.02
```

And: 101.50 > 78.66

Why is this problematic?

Sample -> Population

```
# df_ = data.frame(damage = damage, role = rep(c('Manager', 'Analyst'),
damage_ = c(round(rnorm(10000, 100, 30), 0), round(rnorm(10000, 80,
                                                                                                        plot(df_$damage, col=df_$role)
```

Inferential statistics

- infere parameters of the population
- from a sample (of that population)

All data stem from distributions

All data stem from distributions

Comparison of 2 groups

- Are the means of the groups statistically significantly different?
- Different phrasing: do the samples stem from different distributions?

Do the samples stem from different distributions?

decision criterion needed

problem: there is always some overlap

wanted: a threshold that we deem practically irrelevant in overlap

Hypothesis testing

- Null hypothesis: there is no differece (i.e. Managers == Analysts)
- Alternative hypothesis: there is a difference (e.g. Managers > Analysts)

```
'Analyst'])
  II
II
df$damage[df$role
'Manager']
  ||
mean(df$damage[df$role
```

[1] 18.1

Wanted: a value that expresses the frequentist probability of observing the mean difference of 18.10 (or more extreme) if the null hypothesis were true.

-> called the p-value

Thresholds for the p-value

- aim: test whether you can reject the null hypothesis
- wanted: a threshold that we deem practically irrelevant in overlap
- threshold is called the significance level (alpha level)
- analogous to: a threshold that we deem acceptable in making a Type I error
- used to be: p < .05
 - changes under way:
- redefine to p < .005
- justify your own threshold
- rejection of p-values altogether

Calculating the p-value

For two groups: t-test

Assumes:

normality of outcome variable

independence of observations

equality of variance (corrected by default)

(non-parametric tests -> next week)

t-test

```
t.test(df$damage ~ df$role)
```

```
## alternative hypothesis: true difference in means is not equal to 0
                                                                                             t = -3.8531, df = 84.191, p-value = 0.0002269
                                                                                                                                                                                                                                                            ## mean in group Analyst mean in group Manager
                                                                                                                                                                                                                                                                                            101.02
                                                                                                                                                        95 percent confidence interval: -27.441161 -8.758839
                                                            ## data: df$damage by df$role
Welch Two Sample t-test
                                                                                                                                                                                                                                                                                            82.92
                                                                                                                                                                                                                           sample estimates:
```

t-test reporting

```
t = -3.8531, df = 84.191, p-value = 0.0002269
```

The damage in \$ lost was higher for managers (M = 82.92, SD = 18.12), t(84.19) = -3.85, p(M = 101.92, SD = 27.83) than for analysts < .001. Note: always three decimals for the p-value, unless p < .001.

(more in week 7)

What if there are three groups?

ldea

- Test whether all three means are the same
- Could use 3 t-tests:
- Analysts vs CEOs
- CEOs vs Managers
- Managers vs Analysts
- problem: multiple t-tests increase Type 1 error
- Null hypothesis: Analyst = CEO = Manager
- Alt. hypothesis: the means are affected by the factor Position (3 levels)

Variance

Analysis of VARIANCE

Total variance = explained variance + unexplained variance

- explained variance: variation that is attributable to the factor Position
- unexplained variance: variation not attributable to the factor Position

Total variance

Total variance

damage	grandmean	squared_diff
09	84.80667	615.37071
119	84.80667	1169.18404
124	84.80667	1536.11738
28	84.80667	718.59738
26	84.80667	33.71738
06	84.80667	26.97071
121	84.80667	1309.95738
108	84.80667	537.93071
130	84.80667	2042.43738
117	84.80667	1036.41071

Total variance

Partitioning of variance

Total variance = explained variance + unexplained variance

109143.40 = explained variance + unexplained variance

Partitioning of variance

109143.40 = explained variance + unexplained variance

explained variance

- (variance group 1 * size of group 1)
- (variance group 2 * size of group 2)
- (variance group 3 * size of group 3)

Shortcut:

- $(mean group 1 grand mean)^2$
- $(mean group 2 grand mean)^2$
- (mean group 3 grand mean)²
- sum these and multiply by n per group

Explained variance

group	groupmean	grandmean	group groupmean grandmean squared_diff
Manager	104.44		
Analyst			
CEO	68.14	84.81	
SUM	I	1	SUM - 672.05

672.05 * 50

[1] 33602.5

Partitioning of variance

109143.40 = **33602.50** + unexplained variance

Λ | unexplained variance = 75540.90

We want to know: how much more variance is explained compared to non-explained.

Degrees of freedom

source variance	variance
explained (factor Position) 33602.50	33602.50
unexplained 75540.90	75540.90
total	109143.40

But: different number of values used for calculation!

Degrees of freedom (df)

df = number of values that are free to vary

source variance df	variance	df
explained (factor Position) 33602.50 2	33602.50	2
unexplained 75540.90 147	75540.90	147
total 109143.40 149	109143.40	149

- total_df = explained_df + unexplained_df
- total_df = n 1
- unexplained_df = n k
- k = number of levels of the factor (here: Position)

Corrected table of variance

source variance df mean SSq	variance	đť	mean SSq
explained (factor Position)	33602.50	7	16801
unexplained 75540.90 147 514	75540.90	147	514
total 109143.40 149 -	109143.40	149	I

How much more variance is explained compared to nonexplained?

The F-test

F-statistic = mean SSq explained / mean SSq unexplained

16801 / 514

[1] 32.68677

The explained variance (due to the factor Position) is 32.69 times higher than the unexplained variance.

Is this significant?

ANOVA in R

```
$role))
summary(aov(df__$damage ~ df_
```

```
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
                32.69 1.79e-12 ***
Df Sum Sq Mean Sq F value
             16801
               2 33602
                              147
                                                                  Signif. codes:
                ## df $role
                              ## Residuals
```

Manager, Analyst) on the damage in USD, F(2, The one-way ANOVA revealed that there was a significant main effect of Position (CEO, 147) = 32.69, p < .001.

ANOVA as omnibus test

Now we know whether there is an overall effect ...

Important: only now do you have statistical justification proceed with follow-up contrasts.

If ANOVA ns -> analysis stops here!!!!!!

ANOVA interpretation

significant main effect of Position (CEO, Manager, Analyst) on Step 1: The one-way ANOVA revealed that there was a the damage in USD, F(2, 147) = 32.69, p < .001.

Step 2: follow-up contrasts

- t-test: CEO vs Manager
- t-test: CEO vs Analysts
- t-test: Manager vs Analysts

Follow-up contrasts

```
!= 'CEO' | ~ df $role[df $role != 'CEO'])
$damage[df_$role != 'Analyst'] ~ df_$role[df_$role !=
$damage[df_$role != 'Manager'] ~ df_$role[df_$role !=
                                                                t.test(df_$damage[df_$role
                                   t.test(df_
    t.test(df_
```

comparison t df p		đŧ	۵
CEO vs Manager -7.4734 65.80 < .001	-7.4734	65.80	< .001
CEO vs Analysts	4.1717	87.70	<.001
Manager vs Analysts	Manager vs Analysts -4.33 80.31 < .001	80.31	<.001

ANOVA interpretation

significant main effect of Position (CEO, Manager, Analyst) on Step 1: The one-way ANOVA revealed that there was a the damage in USD, F(2, 147) = 32.69, p < .001.

Step 2: follow-up contrasts

ManagermeanManager104.44

knitr::kable(tapply(df__\$damage, df__\$role, mean), col.names = c('mean')

Follow-up contrasts revealed that the damaga Managers (M = 104.44, SD = 31.67), t(65.80) (in \$) was smaller when caused by CEOs (M = 68.14, SD = 13.31) than when caused by = -7.47, p < .001....

Types of ANOVAs

- One predictor (factor)
- One-way ANOVA
- 2+ levels
- Two predictors (factors)
- Two-way ANOVA
- 2+ levels by 2+ levels
- e.g. role*gender -> 2 by 3 ANOVA
- Always note whether the factor is within-subjects or between-subjects
- All factors within: within-subjects ANOVA
- All facors between: between-subjects ANOVA
- Both: mixed ANOVA

both resemble each other (main effects, interaction)

more so: they are the same for categorical predictors

- predictors in ANOVA: means vs grandmean
- predictors in linear regression: dummy coded levels

~ role, data=df lm(damage

beta SE t-statistic p-value	beta	SE	SE t-statistic p-value	p-value
(Intercept) 81.84 3.205884 25.528057 0.0000000	81.84	3.205884	25.528057	0.0000000.0
roleCEO -13.70 4.533805 -3.021744 0.0029654	-13.70	4.533805	-3.021744	0.0029654
roleManager	22.60	4.533805	4.984775	roleManager 22.60 4.533805 4.984775 0.0000017

Beta coefficients are the group means respective to the reference group!

	beta
(Intercept)	81.84
roleCEO -13.70	-13.70
roleManager	22.60

knitr::kable(tapply(df__\$damage, df__\$role, mean), col.names = c('mean') 81.84 68.14 mean 104.44 Manager Analyst CEO

Look at the output:

Linear Model:

```
p-value: 1.793e-12
 F-statistic: 32.69 on 2 and 147 DF,
```

ANOVA:

```
32.69 1.79e-12 ***
Df Sum Sq Mean Sq F value 2 33602 16801 32.69
                             75541
                                147
               df__$role
                               Residuals
```

Same omnibus logic:

- if the F-statistic in the regression is not significant
- ... then you cannot conclude an overall effect of the factor

t-test & ANOVA

- ANOVA = regression with categorical predictor(s) with 2+ evels
- t-test = one-way ANOVA with 2 two levels.
- -> t-test = regression with one categorical predictors with 2 levels

t-test & GLM

t-test

```
t = -3.8531, df = 84.191, p-value = 0.0002269
#Managers and Analysts only
```

• as ANOVA

```
summary(aov(df$damage ~ df$role))
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
                  14.85 0.000208 ***
\Pr\left(>F
ight)
F value
Df Sum Sq Mean Sq
                 8190
                  8190
                                      ## Residuals
                  ## df$role
```

• ANOVA and t-test: $F=t^2->t=\sqrt{F}$

```
(-3.8531)^2
```

```
## [1] 14.84638
```

t-test & GLM

If the ANOVA is a linear regression, so is the t-test:

~ role, data=df) lm(damage

data=df)))) knitr::kable(coefficients(summary(lm(damage ~ role,

Estimate Std. Error t value Pr(> t)	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	82.92	3.321626	24.963681	0.0000000.0
roleManager 18.10 4.697488 3.853123 0.0002083	18.10	4.697488	roleManager 18.10 4.697488 3.853123 0.0002083	0.0002083

RECAP

- comparing 2 groups
- t-test
- t-test as GLM
- comparing multiple groups
 - ANOVA as GLM

Outlook

Tutorial

- logistic regression
 - ANOVA

Next week

- Non-parametric methods
- discrete data analysis

END