seats Kyrgyz (KGZ)

Отургучтар

Сен эл аралык программалоо мелдешин уюштургуң тик бурчтук залда келет. Залда H сапта жана W колонкада тургузулган HW отургуч бар. Саптар Оден (H-1)га дейре номурланган, колонкалар Оден (W-1) га дейре номурланган. r-инчи сапта жана c-инчи колонкада турган отургуч (r,c) аркылуу белгиленет. Сен HW (Оден (HW-1)га дейре номурланган) катышуучуну чакырдың. Дагы, сен (ар бир) i-инчи $(0 \le i \le HW-1)$ катышуучуга көрсөтүлгөн (R_i,C_i) -отургучтун тизмесин туздуң. Бул тизме ар бир отургучка бир гана катышуучуну жиберет. Эгерде $0 \le r_1 \le r_2 \le H-1$, $0 \le c_1 \le c_2 \le W-1$ анда $r_1 \le r \le r_2$ аnd $c_1 \le c \le c_2$ шартына канааттандыруучу (r,c)-отургучтардын S көптүгү **тик бурчтук** деп аталат. Эгерде S тик бурчтук көптүгү k ($1 \le k \le HW$) отургучка ээ болсо жана ал отургучтарда отурган катышуучулар Оден (k-1)га дейре номурларга ээлер болсо, анда S **кооз** деп аталат. Тизмедеги кооз тик бурчтуктун саны ал тизменин **кооздугу** деп аталат. Сенин тизмең даярдаган кийин, сен эки катышуучуга көрсөтүлгөн эки отургучту алмаштыруу боюнча бир канча арызды алдын. Тагыраак, анда убакыт боюнча

0дөн (Q-1)га дейре номурланган Q арыз бар. j-инчи $(0 \le j \le Q-1)$ арызда A_j -инчи жана B_j -инчи катышуучуларга көрсөтүлгөн отургучтарды алмаштыруу жазылды. Ар бир арызды кабыл алып, сен тизмени ыкчам жаңылайсың. Ар бир жаңылоодон кийин, сенин максатың пайда болгон тизменин кооздугун эсептөө.

Implementation details

You should implement the following procedure and function:

```
give initial chart(int H, int W, int[] R, int[] C)
```

- H, W: the number of rows and the number of columns.
- R, C: arrays of length HW representing the initial seating chart.
- This procedure is called exactly once, and before any call to swap seats.

```
int swap seats(int a, int b)
```

- This function describes a request to swap two seats.
- a, b: contestants whose seats are to be swapped.
- \bullet This function is called Q times.
- This function should return the beauty of the seating chart after the swap.

Example

Let
$$H=2$$
, $W=3$, $R=[0,1,1,0,0,1]$, $C=[0,0,1,1,2,2]$, and $Q=2$.

The grader first calls give_initial_chart(2, 3, [0, 1, 1, 0, 0, 1], [0, 0, 1, 1, 2, 2]).

At first, the seating chart is as follows.

0	3	4
1	2	5

Let's say the grader calls swap_seats(0, 5). After the request 0, the seating chart is as follows.

5	3	4
1	2	0

The sets of seats corresponding to the contestants $\{0\}$, $\{0,1,2\}$, and $\{0,1,2,3,4,5\}$ are rectangular and beautiful. Thus, the beauty of this seating chart is 3, and swap_seats should return 3.

Let's say the grader calls $swap_seats(0, 5)$ again. After the request 1, the seating chart goes back to the initial state. The sets of seats corresponding to the contestants $\{0\}$, $\{0,1\}$, $\{0,1,2,3\}$, and $\{0,1,2,3,4,5\}$ are rectangular and beautiful. Hence, the beauty of this seating chart is 4, and $swap_seats$ should return 4.

The files sample-01-in.txt and sample-01-out.txt in the zipped attachment package correspond to this example. Other sample inputs/outputs are also available in the package.

Constraints

- 1 ≤ *H*
- $1 \leq W$

- $HW \le 1000000$
- $0 \le R_i \le H 1 \ (0 \le i \le HW 1)$
- $0 \le C_i \le W 1 \ (0 \le i \le HW 1)$
- $(R_i, C_i) \neq (R_j, C_j) \ (0 \leq i < j \leq HW 1)$
- $1 \le Q \le 50\,000$
- $0 \le a \le HW 1$ for any call to swap_seats
- $0 \le b \le HW 1$ for any call to swap_seats
- $a \neq b$ for any call to swap_seats

Subtasks

- 1. (5 points) $HW \le 100$, $Q \le 5000$
- 2. (6 points) $HW \le 10\,000$, $Q \le 5\,000$
- 3. (20 points) $H \le 1\,000$, $W \le 1\,000$, $Q \le 5\,000$
- 4. (6 points) $Q \leq 5\,000$, $|a-b| \leq 10\,000$ for any call to swap seats
- 5. (33 points) H = 1
- 6. (30 points) No additional constraints

Sample grader

The sample grader reads the input in the following format:

- line 1: HWQ
- line 2+i ($0 \leq i \leq HW-1$): R_i C_i
- line 2 + HW + j ($0 \le j \le Q 1$): $A_j B_j$

Here, A_j and B_j are parameters for the call to swap_seats for the request j.

The sample grader prints your answers in the following format:

ullet line 1+j ($0\leq j\leq Q-1$) : the return value of <code>swap_seats</code> for the request j