Università di Pisa

Dipartimento di Fisica Enrico Fermi Corso di Laurea in Fisica

A general overview on Lepton Flavour Universality Violation in B mesons physics

Supervisor: Prof. Dario Buttazzo Presented by: Fabio Strozzi

Sessione autunnale Anno Accademico 2021/2022

Contents

ln	dex		2
In	trodı	action	4
1	B-P	hysics Anomalies	6
	1.1	Main Processes for NC transitions	6
	1.2	Main Processes for CC transitions	9
2	Flav	your Physics	11
	2.1	Introduction to Standard Model	11
		2.1.1 Definition of Flavour eigenstates	13
		2.1.2 Flavour symmetries of SM Lagrangian	15
		2.1.3 CKM matrix	16
	2.2	Fermi Theory	18
		2.2.1 Derivation of the Fermi Theory from the SM	18
		2.2.2 Flavour Changing Neutral Currents	21
3	Nev	v Physics Effective Field Theory	23
J	3.1	Effective Semileptonic Lagrangian	24
	3.2	Fierz identities	27
	J	3.2.1 Fierzing in the scalar lagrangian	29
4	Som	ne of the possible heavy bosons	31
4	4.1	Colour-less bosons	32
	4.1	4.1.1 $B' \sim (1, 1)_0$	32 32
		4.1.2 $W' \sim (1,3)_0 \dots \dots$	33
	4.2	Leptoquarks	33
	4.2	4.2.1 Proton decay	35
	4.3	Vector Leptoquarks	37
	4.3	4.3.1 $U_1 \sim (3, 1)_{2/3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	37
		4.3.2 $U_3 \sim (3, 3)_{2/3} \ldots \ldots$	38
	4.4	Scalar Leptoquarks	39
	1.1	4.4.1 $S_1 \sim (3^*, 1)_{1/3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	40
		4.4.2 $R_2 \sim (3, 2)_{7/6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	41
		4.4.3 $\widetilde{R}_2 \sim (3, 2)_{1/6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	42
		4.4.4 $S_3 \sim (3^*, 3)_{1/3} \cdots \cdots$	42
	4.5	Summary	
	T'.)		-+-

		4.5.1	Comparison between 4-quark contributions generated	44					
5	Phenomenological Analysis 47								
_	5.1	Left Ha	nded framework	48					
		5.1.1	R_K and R_{K*}	48					
		5.1.2	Anomalous observables in LH framework	49					
	5.2	Constr	aining non anomalous observables	51					
		5.2.1	$B \to K^* \bar{\nu} \nu$	51					
		5.2.2	$R_{D^*}^{\mu e}$	52					
	5.3	Numer	ical Analysis of the Anomalies	53					
		5.3.1	Fit to NC Anomalies	53					
		5.3.2	Fit to CC Anomalies	54					
	5.4	Selection	on of possible UV scenarios	55					
		5.4.1	The EW-singlets Leptoquarks: $U_1 \& S_1 \ldots \ldots \ldots$	56					
		5.4.2	The EW-triplets Leptoquarks $U_3 \& S_3 \ldots \ldots$	57					
		5.4.3	$S_1 + U_3 \dots \dots$	58					
		5.4.4	$S_1 + S_3 \dots \dots$	59					
		5.4.5	Giving a try to colourless NP scenario	60					
6	Summary and conclusions								
Αŗ	pen	dix		63					
A	Mapping beetween Weyl and Dirac pictures A.1 Currents			64					
В	Prod	of of th	e Flavour Theorem 3	67					
C	Rou	gh esti	mation of M_{LO} from proton decay	69					

Introduction

In this work we try to explore the huge world of Beyond Standard Model (BSM) theories using as gate some recent clues indicating *Lepton Flavour Universality* (LFU) violation.

In the Standard Model (SM) every fermion field emerges as a triplet of an approximate symmetry called *Flavour Symmetry*, broken only by the Higgs couplings to fermions that acts with different intensities to the different components of these triplets named *families*.

Since the different coupling to the Higgs boson means also a different mass between the different lepton families, there is always a kinematic flavour sensitive effect enclosed in the phase space factor which affect the rate or the cross section of a process; for instance the decay of charged π produces mostly μ for this reasons, even if the coupling is the same for e and τ .

Even if in the SM there is the coupling with the Higgs Boson, which is not flavour blind, since leptons are very light (the τ , which is the heaviest, weighs less than 50 times the Higgs'vacuum expectation value) we can normally neglect the Higgs'coupling compared to gauge interactions and say that approximately SM exhibit an universality in the interaction with leptons, while interaction of quark are sensitively different for different families mostly because of the non neglectable coupling of the t quark with Higgs boson. In conclusion flavour symmetry is explicitly broken by the Higgs coupling but mantain itself well approximated in lepton sector.

If we have accepted that LFU is a good symmetry we can also understand that if we observe a consistently big effects of a coupling to leptons that depends on the generation, that effect has to emerge in a BSM framework.

Recently in different experiments were found different hints of LFU violation in semileptonic decays of the B mesons (mesons that contain a b quark). All the deviations from the SM appearing in these decays go under the name of *B-Physics Anomalies*.

The purpose of this work is, neglecting the theoretical details of every possible scenario that can provide the violation of LFU we observe, to see what are the fundamental features of the New Physics (NP) needed to accommodate these phenomena.

Since, as we will discuss, the B-Physics Anomalies appear mostly at the hadronic scale (order few GeV), we will implement a model independent approach named the Effective Field Theory (EFT) approach, as is usually done with the Fermi Theory to study low energy weak interactions. In this framework we parameterize the NP effects as de-

viations from the Lagrangian's coefficients of the operators, named Wilson coefficients, obtained from the matching to SM.

After having defined the EFT, the next step is to find the right heavy mediators which, once integrated out from the Lagrangian (as we do with W and Z bosons to get the Fermi theory), give us the appropriate contributions deed to accommodate the B-Physics Anomalies.

It will be clear that introducing SM-like heavy degrees of freedom the risk to affect the phenomenological constraints is high.

This is one of the reason because we will find pleasant to introduce Leptoquarks, i.e. coloured bosons which can be absorbed from a quark to become a lepton (or the hermitian conjugate) and try in this way to affect only semileptonic processes without disturbing others SM constraints. We will take count also of the possible colour-less bosons (heavier version of W and Z) and in both cases we will try to find the best flavour structure to accommodate the anomalies.

B-Physics Anomalies and heavy bosons are widely discussed in literature. The main purpose of this work is to offer a catalogue as much general and complete as possible of solutions obtained adding a NP mediator or combinations of them to the SM spectrum, according to the low energies contributions needed to fit the experimental data.

In this thesis we will not go beyond simplified models that extend the SM by adding (scalar or vector) bosons.

More complete UV models, where particles and processes are accommodated - with few assumptions and input values - in terms of some underlying symmetry are nevertheless the first goal. We will mention some of the most interesting UV complentions available in the literature.

QUALE DEI DUE PARAGRAFI FINALI CANCELLO \uparrow or \downarrow ?

The thesis is organized as follows. First we will introduce the context of Flavour Physics in chapter 2 explaining what are the general features of flavour breaking processes as the ones to which we address B-Physics Anomalies are.

After that we will show what are precisely the observables that show deviations from SM indicating LFU violation in chapter 1.

Then we will explain how we can include these deviations in a BSM theory implementing an Effective Field Theory (EFT) that recreates the Fermi Theory in some limits.

Afterwards we will list some possible heavy bosons and see how they affect low energy phenomena once integrated out from the lagrangian.

In the end we will see which of these low energy contributions generated are suitable to predict the anomalies through a numerical analysis of the anomalous observables.

1

B-Physics Anomalies

One of the most important and coherent deviation from SM seen in last years, with a constantly growing set of data that corroborates them, are the B-physics Anomalies. These anomalies are given by some semileptonic decays of B mesons that seem to treat differently different flavours of leptons, i.e. suggesting LFU violation in processes that involves b quark.

The clues of LFU violation in *b*-sector come from different and independent observables, nevertheless before to present them is possible to summarize some general characteristics:

- The fundamental transitions affected are always $b \to sl^+l^-$ and $b \to clv$ (or crossing transformated) to which we will refer respectively as *Neutral Current* anomalies (NC) and *Charged Current* anomalies (CC). Hence the first family of quark is not involved.
- In NC anomalies we see an excess of electrons in some decays that can be given by either a NP contribution of electron channel or a contribution for muons that interferes destructively with the SM.
- In CC anomalies NP seems to be universal for first two families but to couple more with τ , giving a preference for $b \to c\tau v$ compared to other lepton flavours.

In the anomaly concerning the LFU violation between the first two family of leptons we will assume that NP couples only with muons interfering destructively with SM contributions.

1.1 Main Processes for NC transitions

The transition $b \to s l^+ l^-$ in which the leading contribution in Fermi theory from the vertex

is, as every FCNC (see section 2.2.2), one-loop induced in the SM from the diagrams in Figure 1.1.

in which all the couplings of the leptons are flavour universal.

The first process we consider is the decay $B \to K^{(*)} l^+ l^-$ where K, K^* are respectively the pseudoscalar and the vector state of the kaon and l^{\pm} are charged leptons.

In the SM that decay gets only lepton flavour universal contribution in fact, when the leptons pair takes an enough big part of the energy available such that the phase space difference between a electron pair and a muon pair is negligible, the decay widths corresponding to $B \to K^{(*)} \mu^+ \mu^-$ and $B \to K^{(*)} e^+ e^-$ are equal. The anomalous observables we consider are the ratios R_K which are defined as:

$$R_{K^{+}} \equiv \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{-}\mu^{+})}{\mathcal{B}(B^{+} \to K^{+}e^{-}e^{+})}$$
(1.1)

$$R_{K_{S}} = \frac{\mathscr{B}(B^{+} \to K^{+}\mu^{-}\mu^{+})}{\mathscr{B}(B^{+} \to K^{+}e^{-}e^{+})}$$

$$R_{K^{*}} = \frac{\mathscr{B}(B^{+} \to K^{+}\mu^{-}\mu^{+})}{\mathscr{B}(B^{+} \to K^{+}e^{-}e^{+})}$$
(1.2)

$$R_{K^*} \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu^- \mu^+)}{\mathcal{B}(B^+ \to K^+ e^- e^+)}$$
(1.3)

$$R_{K^{*+}} \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu^- \mu^+)}{\mathcal{B}(B^+ \to K^+ e^- e^+)}$$
(1.4)

where the K^* , K^{*+} are vector mesons and K^+ , K_S are pseudoscalars and the S stays for the short-living neutral kaon which is a mixture of K_0 and \overline{K}_0 because of CP Violation.

Table 1.1: Some anomalous observables characterized by $b \to sl^+l^-$ transition. $R_H^{[q_1^2,q_2^2]}$ means the ratio R_H in which the momenta of the pair lepton-antilepton has energy at rest q^2 included beetween q_1^2 and q_2^2 .

Observable	Ex periment
$R_{K^{+}}^{[1.1,6.0]}$	$0.846^{+0.042+0.013}_{-0.039-0.012}$ [1]
$R_{K_S^0}^{[1.1,6.0]} \ R_{K^*}^{[0.045,1.1]}$	$0.846^{+0.020+0.013}_{-0.039-0.012}$ [1]
$R_{K^*}^{[0.045,1.1]}$	$0.66^{+0.11}_{-0.07} \pm 0.03$ [2]
$R_{K^*}^{[1.1,6.0]}$	$0.69^{+0.11}_{-0.07} \pm 0.05$ [2]
$R_{K_{-}^{*+}}^{[0.045,6.0]}$	$0.70^{+0.18+0.03}_{-0.13-0.04}$ [1]
$R_{pK}^{[0.1,6.0]}$	$0.86^{+0.14}_{-0.11} \pm 0.05[3]$

Analogous LFU ratios can be defined and measured for baryon decays:

$$R_{pK} \equiv \frac{\mathcal{B}(\Lambda_b \to pK^-\mu^-\mu^+)}{\mathcal{B}(\Lambda_b \to pK^-J/\psi(\to \mu^-\mu^+))} / \frac{\mathcal{B}(\Lambda_b \to pK^-\mu^-\mu^+)}{\mathcal{B}(\Lambda_b \to pK^-J/\psi(\to \mu^-\mu^+))}$$
(1.5)

The reasons why we use ratios of Branching Ratios are mainly three:

- To remove the dependence from hadronic form factors
- To remove the dependence from CKM matrix elements
- To reduce the systematic error in general

In Table 1.1 we report the experimental data from the LHCb collaboration [1-3] that seem to point to a LFU violation.

In the notation used $R_{K^*}^{[q_1^2,q_2^2]}$ is:

$$R_{H}^{\left[q_{1}^{2},q_{2}^{2}\right]} = \frac{\int_{q_{1}^{2}}^{q_{2}^{2}} dq^{2} \, \frac{d\mathcal{B}}{dq^{2}} (B \to H \mu^{+} \mu^{-})}{\int_{q_{1}^{2}}^{q_{2}^{2}} dq^{2} \, \frac{d\mathcal{B}}{dq^{2}} (B \to H e^{+} e^{-})}$$

where *H* is the corresponding hadronic state and $q^2 = (p_{l^+} + p_{l^-})^2$ is the rest frame energy of the leptons pair.

According to the momentum of the lepton pair the SM prediction is different. In fact, when the energy of leptons is high enough to neglect the phase space different between μ and e, the ratios are equal to 1 in SM because of LFU.

When we include in the measure events in which the energy of leptons q^2 is comparable with m_{μ}^2 we would need to include the phase space correction.

Plus, the contribution of the electromagnetic term given by the diagram

represents a flavour universal contribution proportional to $\frac{1}{q^2}$ because the photon propagator becomes important for low energies of the leptons pair as well.

When the range of q^2 is [0.045, 1.1] GeV^2 the photon contribution is big and we would need include it in the expressions of the observables together with the phase space factors ratio.

On the other hand when the range is wide enough (for instance [0.045, 6.0] GeV^2) we neglect that contributions that would give only a small contribution to the whole integration on that range because if the relative smallness of the low energy bin.

Hence, in that case we will neglect both the photon contribution and the phase space effect.

1.2 Main Processes for CC transitions

The CC transition $b \rightarrow cl\bar{v}$ gets its tree level contribution in Fermi Theory from

which is tree level generated in the UV theory through an exchange of W boson

and that means that whatever NP could be a candidate to accomodate the anomaly, it has to affect the transition $b \to cl\bar{v}$ with a biggest magnitude respect to the magnitude of NP contribution deed to accomodate NC anomalies, that instead is one loop induced in SM.

Table 1.2: Table with the some anomalous ratios anomalies in $b \to clv$ transition. ρ stays for the correlation beetween the ratio in D and D^* .

Observable	Ex periment	SM
$\overline{\{R_D, R_{D^*}\}}$	{0.337(30), 0.298(14)}	{0.299(3), 0.258(5)}
ho	-0.42	_
$BR(B^- \to \tau^- \bar{\nu}_{\tau})$	$1.09(24)\cdot 10^{-4}$	$0.812(54) \cdot 10^{-4}$

The ratios we will consider this time are

$$R_{D^*}^{\tau l} \equiv \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\frac{1}{2} \sum_{l=e,\mu} \mathcal{B}(B \to D^* l \nu_l)}$$
(1.6)

$$R_D \equiv \frac{\mathscr{B}(B \to D\tau \nu_{\tau})}{\frac{1}{2} \sum_{l=e,\mu} \mathscr{B}(B \to Dl\nu_l)}$$
(1.7)

In Table 1.2 we see the measured ratios compared to SM predictions provided by [4]. As we see the ratios are not predicted to be 1 in SM as in the previous case and this is due to the phase space suppression of the τ channel, the mass of which is not negligible compared to the meson masses involved. In other words at this energy scale the different mass of τ compared to μ and e brings a non neglectable kinematic factor that makes the prediction for the ratio to be

$$R_D^{SM} = \frac{\Phi_{\tau}^D}{\frac{1}{2} [\Phi_e^D + \Phi_{\mu}^D]} \equiv \eta_{\tau}^D \tag{1.8}$$

that will be used as phenomenological parameter when we will compare anomalies with a BSM scenario. Analogous is the definition of $\eta_{\tau}^{D^*}$ that is smaller because of the bigger mass of D^* compared to D.

Plus it seems that, in CC processes, NP doesn't affect first two families. In fact as reported by [5]

$$R_{D^*}^{\mu e} = \frac{\mathcal{B}(B \to D^* \mu \nu)}{\mathcal{B}(B \to D^* e \nu)} \bigg|_{exp} = 1.00 \pm 0.02$$
 (1.9)

that this time is equal to 1 even in SM prediction because $\frac{\Phi_{\mu}}{\Phi_{e}} \simeq 1$ both for decay in D and in D^{*} .

To understand what type of NP framework can fit the data better than SM, the first step is to implement an EFT with BSM contributions to some Wilson coefficients. At this level the only assumption we will do is for NP to not interact with first families of quark and leptons.

Since both the fundamental transitions of interest happen to be flavour breaking, we will describe the main features of the flavour phenomena of the SM to see how they affect four fermion operators of the Fermi theory and then we will see how possible NP effects affect the anomalous observables.

Flavour Physics

When we look for clues of New Physics one possible way is to look for processes that aren't allowed from the known model either to measure NP effects or to test the available theory.

For similar reasons a good places to look for NP clues are those processes that are predicted to be rare by the SM to bring either hints for deviations or an improvement on the measure of the SM parameters.

An environment in which lot of rare processes are treated is the *Flavour sector* of the SM. The Flavour Physics is focused on the fact that the fermion fields of the SM

$$l_L$$
, q_L , e_R , d_R , u_R

appear in three copies each, named *families* (or *generations*). These copies differ only in their mass, and hence in their coupling to the Higgs boson. Turning off the Higgs-fermions coupling there would be a big global accidental symmetry that wouldn't allow us to distinguish the different generations named *Flavour symmetry*.

It is interesting to see how the Higgs couplings to fermions (known as *Yukawa couplings*) affect the Flavour symmetry.

2.1 Introduction to Standard Model

The Standard Model of Fundamental Interactions is nowaday the most predicting and accurately tested theory available to treat a wide set of processes.

The founding principles of the SM can be summarized as follows:

- 1. A local gauge symmetry $\mathcal{G}_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ spontaneously broken at low enegies trough an Higgs mechanism with the pattern $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \to SU(3)_c \otimes U(1)_{em}$.
- 2. The theory has to be a local *renormalizable* Quantum Field Theory (QFT), i.e. the Lagrangian has to be a sum of operators Lorentz invariant with dimension, in mass unit, ≤ 4 .

3. Matter fields are defined to be irreducible representations of \mathcal{G}_{SM} and are the chiral fermions: $q_L^i \sim (3,2)_{1/6}$, $l_L^i \sim (3,2)_{-1/2}$, $e_R^i \sim (1,1)_{-1}$, $d_R^i \sim (3,1)_{-1/3}$, $u_R^i \sim (3,1)_{2/3}$ where i=1,2,3 is the family index, and the scalar responsible for the *Electro-Weak Symmetry Breaking* (EWSB) $H \sim (1,2)_{1/2}$.

The notation is $(SU(3)_c, SU(2)_L)_{U(1)_Y}$ and indicates the dimension of the representation for $SU(3)_c$ and $SU(2)_L$ and the eigenvalue of the only one generator of $U(1)_Y$.

Once stated the guidelines, we are ready to write the Lagrangian, which has to contain all the possible terms allowed by our assumptions. For simplicity we split it in pieces:

$$\mathcal{L}_{SM} = \mathcal{L}_{kin} + \mathcal{L}_H + \mathcal{L}_\theta + \mathcal{L}_Y \tag{2.1}$$

 \mathcal{L}_{kin} contains the kinetic term of fermions and gauge fields:

$$\mathcal{L}_{kin} = \sum_{\psi} i \overline{\psi} \mathcal{D} \psi - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W_j^{\mu\nu} W_{\mu\nu}^j - \frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a$$
 (2.2)

where $D_{\mu}=\partial_{\mu}-ig_{1}\frac{Y}{2}B_{\mu}-ig_{2}T_{L}^{a}W_{\mu a}-ig_{3}T_{c}^{a}G_{\mu a}$ with $T_{L}^{a}=\frac{\sigma^{a}}{2}$ and $T_{c}^{a}=\frac{\lambda^{a}}{2}$ (σ are the Pauli matrices and λ Gell-Mann matrices), while $B_{\mu}\sim(1,1)_{0}W_{\mu}\sim(1,3)_{0}$ and $G_{\mu}\sim(8,1)_{0}$ are the vector bosons arising from the local symmetry \mathcal{G}_{SM} .

 $W^i_{\mu\nu} \equiv \partial_\mu W^i_\nu - \partial_\nu W^i_\mu - \frac{i}{g_2} f^{ijk} W^j_\mu W^k_\nu$ is the gauge invariant tensor for $SU(2)_L$ bosons and f^{ijk} are the structure's constants of SU(2) and, analogously for the tensor $G^a_{\mu\nu}$ which inherit the structure's constants from SU(3) and for $B_{\mu\nu}$ that has vanishing structure's constants (since U(1) is an Abelian group).

$$\mathcal{L}_H = (D_{\mu}H)^{\dagger}D^{\mu}H + m_H^2H^{\dagger}H - \lambda(H^{\dagger}H)^2 \tag{2.3}$$

is the Higgs term that presents himself as a scalar field Lagrangian with a quartic coupling. The sign of the Higgs mass term gives us the vacuum expectation value (vev) $\langle 0|H|0\rangle \equiv \frac{v}{\sqrt{2}} = \sqrt{\frac{m_H^2}{2\lambda}} \neq 0$ responsible for the EWSB.

Finally, the Yukawa interactions:

$$\mathcal{L}_{Y} = Y_{u}^{ij} (H \overline{q}_{I}^{j}) u_{p}^{j} + Y_{d}^{ij} (H^{c} \overline{q}_{I}^{j}) d_{p}^{j} + Y_{I}^{ij} (H \overline{l}_{I}^{j}) e_{p}^{j} + h.c.$$
 (2.4)

Where the charge's conjugated $H^c \equiv \varepsilon H$ with $\varepsilon = i\sigma_2$ acting on $SU(2)_L$ space and Y are generic complex 3x3 matrices in flavour space.

In the end

$$\mathcal{L}_{\theta} = \frac{\theta_3}{32\pi} \varepsilon_{\mu\nu\rho\sigma} G_a^{\mu\nu} G^{\rho\sigma a} \tag{2.5}$$

is known as the θ – term which would imply CP violation in strong interaction. Nevertheless θ_3 is strongly bounded from the experiments and anyway this term would be neglectable for our purposes, so we will just ignore it¹.

¹Analogous theta terms arise for $SU(2)_L \otimes U(1)_Y$ gauge bosons, but they can be set to 0 through a redefinition of the gauge fields

It's clear that, without assuming renormalizability of the theory, we could have added infinit more terms to the Lagrangian. Since we have stopped at dimension 4, some more symmetry of the Lagrangian emerged accidentally and they are known as *accidental symmetries*.

2.1.1 Definition of Flavour eigenstates

In the definition of \mathcal{L}_{kin} we have set the flavour structure of the kinetic term equal to the identity δ_{ij} . Even if it seems a special choice it is consequence of the choice of the basis we use to describe fermion fields.

If we had include a generic hermitian matrix in the flavour space for every fermion field H_{ψ} , we could have diagonalized it through a transformation of fields defined as:

$$\psi^i \to \psi'^i = V_{\psi_j^i} \psi^j \tag{2.6}$$

where i, j are flavour indexes and $V_{\psi} \in SU(3)$ is such that $H_{\psi} \to H_{\psi}^{\dagger} d) = V_{\psi}^{\dagger} H^{\psi} V_{\psi}$ is diagonal, which is always possible since H_{ψ} has to be hermitian and, including the condition given by the canonical commutation rule we find $H_{\psi}^{(d)} = \mathbf{1}$.

Once we have diagonalized H_{ψ} through the transformation 2.6 we notice that, if we act on the fields again with the a generic transformation of the type 2.6 the flavour matrices of the kinetic term become $1 \to V_{\psi}^{\dagger} V_{\psi} = \mathbf{1}$.

Hence having $H^{\psi} = \mathbf{1}$, $\forall \psi$ is a consequence of the choice we made for the basis of the fermion fields deed to diagonalize the matrix H^{ψ} .

A basis that satisfies this condition is called *flavour basis* and, since the transformation 2.6 is a symmetry of \mathcal{L}_{kin} , we conclude that there are infinite flavour basis linked by the relation 2.6.

Let's see how the rotation 2.6 affects \mathcal{L}_Y . Considering only the flavour structure of the fields, the Yukawa terms transform as

$$(Hl_L)^{\dagger} Y_e e_R = H e_L^{\dagger} Y_e e_R \rightarrow H e_L^{\dagger} (V_{l_L}^{\dagger} Y_e V_{e_R}) u_R$$

$$(Hd_L)^{\dagger} Y_u u_R = H d_L^{\dagger} Y_u u_R \rightarrow H q_L^{\dagger} (V_{q_L}^{\dagger} Y_u V_{u_R}) u_R$$

$$(H^c d_L)^{\dagger} Y_u u_R = H^* u_L^{\dagger} Y_d d_R \rightarrow H^* q_L^{\dagger} (V_{q_L}^{\dagger} Y_d V_{d_R}) d_R$$

Now we use that for a generic 3x3 complex matrix two matrices exist in SU(3) such that $A \to U_1^\dagger A U_2 = A^{(d)}$ where $A^{(d)}$ is diagonal. Since we have freedom to rotate the fields through a gauge diagonal transformation (2.6 form) leaving \mathcal{L}_{kin} invariant, we can choose V_{l_L}, V_{e_R} such that $V_{l_L}^\dagger Y_e V_{e_R} = Y_e^{(d)}$ that means that leptons flavour eigenstates can diagonalize the Yukawa matrix, i.e. they are mass'eigenstates as well.

This is the proof of a theorem that will be shown later known as 1 flavour theorem.

Different is the case of quarks fields, in fact there we have two terms that can't be rotated independently. We may choose $V_{q_L} \equiv V_{d_L}$ and V_{d_R} such that $V_{d_L}^{\dagger} Y_d V_{d_R} = Y_d^{(d)}$ is diagonal but then we have no more freedom to diagonalize the up-quark Yukawa. In other words the gauge eigenstates are not mass eigenstates in the quark sector.

We can always define V_{u_L} , V_{u_R} such that $V_{u_L}^{\dagger} Y_u V_{u_R} = Y_u^{(d)}$ then, after diagonalizing the down-quark Yukawa matrix, the one corresponding to up quarks results (fixed $V_{q_L} = V_{d_I}$):

$$H\,q_L^\dagger(V_{d_L}^{\dagger}Y_uV_{u_R})u_R=H\,u_L^\dagger(V_{d_I}^\dagger V_{u_L})Y_u^{(d)}u_R\equiv H(V_{CKM}u)^\dagger Y_u^{(d)}u_R$$

where $V_{CKM} \equiv V_{u_L}^{\dagger} V_{d_L}$ is the *Cabibbo-Kobayashi-Maskawa* matrix that tells us that if we call u_L^i the mass eigenstate, the flavour eigenstate will be $V_{ii}^* u_L^j$.

Interactions of leptons are, instead, always flavour diagonal in the SM and this fact is known as the first *Flavour Theorem*:

Flavour theorem 1. Flavour breaking processes are absent in the lepton sector.

Nevertheless if we consider an extension of the SM in agreement with the *neutrino* flavour oscillation we need to include in the Lagrangian $v_R \sim (1,1)_0$ among the SM fermion fields.

This would imply an analogous mechanism in which v_L 's interaction eigenstates would be given by $v_L^{Mi} = (U_{PMNS})^i_j \ v_L^j$, where $U_{PMNS} = V_{v_L}^{\dagger} \ V_{e_L}$ is the *Pontecorvo-Maki-Nakagawa-Sakata* (PMNS) matrix introduced to explain *neutrinos flavour oscillations*. Due to the smallness of neutrino masses ($m_v \leq 0.1 \ eV$ as found by [6]) we will neglect every effect related to PMNS matrix assuming then Lepton Flavour (LF) conservation in the SM.

In conclusion the gauge interaction eigenstates, in the limit $U_{PMNS} = \mathbf{1}$ are given by:

$$q_L^i = \begin{pmatrix} V_{CKM}^* i u_{LJ} \\ d_L^i \end{pmatrix} \quad , l_L^i = \begin{pmatrix} v_L^i \\ e_L^i \end{pmatrix}. \tag{2.7}$$

From that we can conclude that, due to the unitarity of V_{CKM} the interaction terms given by the diagonal generators of $SU(2)_L$, known as *Neutral Current* (NC) interactions (placing $V_{CKM} = V$)

$$\begin{split} \overline{q}_L^i \gamma^\mu q_L^i &= \overline{u}_L^i V_{jk} \gamma^\mu V_{kl}^* u_L^l + d_L^i \gamma^\mu d_L^i = \\ &= \overline{u}_L^i \gamma^\mu u_L^i + d_L^i \gamma^\mu d_L^i \end{split}$$

Instead, in the interactions $SU(2)_L$ matrix is off diagonal, i.e. for *Charged Current* (CC) interactions we have:

$$\overline{q}_L^i \gamma^\mu \sigma^- q_L^i + h.c. = \overline{u}_L^i V_{jk} \gamma^\mu d_L + h.c.$$

that links different mass eigenstates giving rise to the so called *flavour breaking* processes.

This fact is known as the second *Flavour theorem*:

Flavour theorem 2. Flavour breaking processes in the quark sector happen just in charge current processes (exchanging W^{\pm}).

nevertheless we will see that flavour breaking NC processes can emerge in the SM, just not at tree level.

2.1.2 Flavour symmetries of SM Lagrangian

As previously mentioned, allowing terms with dimension in mass at most equal to four, the Lagrangian exhibit many additional symmetries to the ones assumed by the theory, being them exact or approximated.

Symmetries concerning the flavour has to involve fermions and hence they appear in either \mathcal{L}_{kin} or \mathcal{L}_{Y} .

In the limit in which the Yukawa couplings are vanishing $(Y_{u,d,e} = 0)$ the SM Lagrangian exhibit an accidental symmetry described by $\mathcal{G}_F = [U(3)]^5 = U(3)_q \otimes U(3)_l \otimes U(3)_u \otimes U(3)_d \otimes U(3)_e$ which is called the *Flavour Group*.

Since every matrix in U(3) can be obtained from the product of two matrix in U(3), one proportional to identity and the other with determinant equal to 1, is instructive to decompose every U(3) as $U(3) \sim SU(3) \otimes U(1)$.

All the U(1) groups are given by the gauge diagonality of kinetic term and it represents the conservation of the number of a given fermion (seen as flavour eigenstate) in every gauge interaction.

SU(3) symmetries, instead, are due to the fact that flavour matrices in \mathcal{L}_{kin} are equal to the identity, and they guarantee that every different flavour component of a given fermion interacts with gauge fields with the same intensity.

When we turn on the Yukawa couplings transforming the fields with a generic U(3) matrix in the flavour space as 2.6 doesn't leave the SM Lagrangian invariant because the Higgs couples different flavour eigenstates each other breaking explicitly \mathcal{G}_F .

Nevertheless, since the Higgs is a $SU(3)_c$ -singlet it is allowed by \mathcal{G}_{SM} to couple only quarks with quarks and this fact makes arising an accidental $U(1)_B$ symmetry under the which every quark has the same charge. This symmetry, through the Noether's theorem, implies the *Baryon Number Conservation* that consists in the conservation of the difference between the total number of quark and anti-quark in every process described by the SM.

The lepton number is conserved as well but, being the Yukawa couplings of leptons Y_e diagonal we have an independent $U(1)_i$ symmetry that acts on the i-th component of both the flavour triplets e_R^i and l_L^i , namely $[U(1)]^3 = U(1)_e \otimes U(1)_\mu \otimes U(1)_\tau$ that implies the conservation of the difference between leptons and antileptons belonging to the same generation in every process described by the SM apart from effects due to the PMNS matrix.

Then, since Yukawa matrices are far to be proportional to identity, a generic $V \in SU(3)$ would change Yukawa matrices, even if it was the same for the two fields coupling the Higgs inside a given operator.

In \mathcal{L}_{kin} we were guaranteed to have just flavour blind interactions by SU(3). When we include Yukawa couplings of quarks, Yukawa matrices break the $[SU(3)]^3$ of quark fields, so the interactions with Higgs breaks the flavour universality of quark interactions. It is important to clarify that this is not due to the fact that we can't diagonalize Yukawa matrices with a flavour basis, because even if we could do it (i.e. in the limit $V_{CKM} = 1$) the Yukawa matrices of quark, being not proportional to identity, aren't invariant under $Y_{u/d} \rightarrow V^{\dagger} Y_{u/d} V$, then $[SU(3)]^3$ of the quark sector is explicitly broken.

The same argument can be brought for the lepton sector to say that $[SU(3)]^2$ is explicitly broken because of the different mass of charged leptons. Nevertheless the situation of lepton numerically is way different from quark, in fact if the heaviest quark, the top-quark, has a mass of 173 GeV comparable with Higgs'vev ($v \approx 246~GeV$), charged leptons are way lighter; the heaviest lepton, the τ , weighs $\approx 1.7~GeV$ which means that the biggest matrix element of Y_e is $Y_e^{33} \approx \frac{1.7}{246} \approx 7 \cdot 10^{-3}$. If we neglect terms of order $\frac{m_\tau}{v}$ the flavour group $[SU(3)]^2$ of lepton sector remains unbroken giving rise to the so known Lepton~Flavour~Universality (LFU), which is realized approximately in the SM, that tells us the interactions of SM are almost flavour-blind in the lepton sector, within terms of order $\frac{m_\tau^2}{v^2}$.

Phenomenologically LFU can be tested in every process in which the phase space factor of the final state is well known, so that we can compare the dynamical effects that appear in the calculation of decay rates for any flavour of leptons involved. Some examples of ratios testing LFU in which the the ratio is given by the ratio of transition matrix elements, because is possible to neglect kinematic mass effects are:

$$\frac{\mathcal{B}(\tau \to \mu \nu_{\tau} \bar{\nu}_{\mu})}{\mathcal{B}(\tau \to e \nu_{\tau} \bar{\nu}_{e})}\bigg|_{SM} = 1 \quad ,$$

that tests electron-muon universality,

$$\frac{\mathscr{B}(\tau \to e v_{\tau} \bar{v}_{e})}{\mathscr{B}(\mu \to e v_{\mu} \bar{v}_{e})}\bigg|_{SM} = 1 \quad ,$$

that tests muon-tau universality, and many others.

Since LFU is much tested in processes involving different generations of leptons, it is often assumed to be preserved in the model building BSM.

2.1.3 CKM matrix

Diagonalizing the quark mass matrices we found that up-quark (by convention could be down as well) interaction eigenstates are rotated respect to the mass eigenstates through:

$$V \equiv V_{u_L}^{\dagger} V_{d_L} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}, \tag{2.8}$$

where every element is generally complex. Neverteheless it has to satisfy unitarity condition $V^{\dagger}V = 1$, plus it hasn't a unique form because, for what said so far in section 2.1.2, is possible to redefine CKM through a phase transformation of the single flavour components that leaves invariant \mathcal{L}_{kin} , since the $[SU(3)]^5$ symmetry was already used to diagonalize Yukawa matrices. There is actually a global phase that has to remain free due to the Baryon Number conservation $U(1)_B$, for the rest, for N families we have 2N-1 (N for down quarks, N for up quarks minus 1 for the global baryon number) phases that we can define as we prefer to write CKM matrix.

These conditions limit the number of free parameters of V. A generic NxN unitary matrix has $2N^2-N^2=N^2$ parameters because of the N^2 conditions in $V^{\dagger}V=1$. Among these N^2 parameters we have the angles describing a orthogonal matrix $\frac{N(N-1)}{2}$ plus the $\frac{N(N+1)}{2}$ phases of which 2N-1 can be chosen by redefinition of quark fields. Thus we remain with $\frac{N(N-1)}{2}$ angles and $\frac{N(N+1)}{2}-(2N-1)=\frac{N^2-3N+2}{2}$ phases.

With three families we count three angles and one phase that define our matrix. The standard parametrization is given by the product of three real rotations, and the phase included in the 1-3 rotation, i.e.

$$V = R_{12}(\theta_{12}) \cdot R_{13}(\theta_{13}, e^{i\delta}) \cdot R_{23}(\theta_{23})$$
(2.9)

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}.$$

$$(2.10)$$

where $c_{ij} \equiv cos(\theta_{ij})$ and $s_{ij} \equiv sin(\theta_{ij})$.

From this parametrization the hierarchy of the flavour breaking transition is not clear, so we to introduce *Wolfenstain's parametrization*. We define

$$\lambda \equiv s_{12}$$
 , $A\lambda^2 \equiv s_{23}$, $A\lambda^3(\rho - i\eta) \equiv s_{13}e^{-i\delta}$

We obtain, up to order λ^3

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4). \tag{2.11}$$

Since $\lambda^{exp} \simeq 0.22$ we find that, as mentioned previously, $V = 1 + O(\lambda)$, thus flavour diagonal transitions are favoured. Flavour breaking transitions are suppressed at order λ if they link first and second family, at order λ^2 if they link first and second ones and at order λ^3 if they link first and third family.

The presence if an irreducible phase in the CKM matrix is fundamental because of the third flavour theorem:

Flavour theorem 3. Applying CP transformation to the whole Lagrangian we find that $\mathcal{L}^{CP} \equiv CP(\mathcal{L})$ is equal to \mathcal{L} if and only if V_{CKM} is real.

The proof of which is reported in B.

This theorem tells us that CP violation (CPV) is predicted by the SM only if there is at least one irreducible phase in the CKM matrix. Historically when in 1964 Christenson, Cronin, Fitch and Turley observed the first evidence of CPV in neutral Kaons

system [7], the third family of quark wasn't observed yet. We have seen previously that CKM matrix has $\frac{N^2-3N+2}{2}$ irreducible phases, hence if only the two families known at the time existed CKM matrix would have been real and wouldn't have allowed CPV for the theorem 3.

In the years later, discovering the b quark, and later t quark, was good test to the newborn Flavour Sector of the SM.

2.2 Fermi Theory

The Fermi Theory is the QFT used to describe the weak processes of the SM when the energy is much below $M_W \simeq 80~GeV$.

This theory describes the weak processes at low energies ignoring the details of the UV Physics like the coupling between fermions and vectors that mediate the interaction, the mass of these mediators nor the theoretical nature of all the particles heavier than $\Lambda = 80$ GeV, which we call the *matching scale*.

In an EFT all the physics beyond the matching scale is contained in the numerical coefficient in front of the Lagrangian's operators. In fact the condition for the EFT to be a low energy version of an UV theory is for those coefficient to satisfy the *matching condition* that consists in impose the coefficients of the two theories, to recreate the same transition amplitudes at an energy equal to the matching scale.

2.2.1 Derivation of the Fermi Theory from the SM

When the energy available in a given process is not enough to produce some of the particles among the spectrum of the theory, is possible to *integrate them out* replacing the fields that describe these heavy particles with the solution of their motion equations, in that way we would automatically satisfy the matching condition for all tree level amplitudes.

We here show how to generate operators in the Fermi Theory through the integration of the W and Z bosons. Since from 2.3 can be shown that Higgs boson couples only with a linear combination of B_{μ} and W_{μ}^3 we define the mass eigenstates:

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_W & -\sin\theta_W \\ \sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} W_{\mu}^3 \\ B_{\mu} \end{pmatrix} = \begin{pmatrix} W_{\mu}^3 \cos\theta_W - B_{\mu} \sin\theta_W \\ W_{\mu}^3 \sin\theta_W + B_{\mu} \cos\theta_W \end{pmatrix},$$

where A_{μ} is the field that describes the photon which, being massless, doesn't need to be integrated out at low energy, and Z_{μ} is the field describing the Z boson, responsible for neutral current weak interactions and θ_W is the Weinberg angle defined as

$$\frac{g_1^2}{g_1^2 + g_2^2} \equiv \sin^2 \theta_W$$

Since at low energy the symmetry is broken to $U(1)_{em}$ we would like to write $W_{\mu}^{1,2}$ in electric charge eigenstates basis:

$$W_{\mu}^{\pm} \equiv \frac{W_{\mu}^1 \pm iW_{\mu}^2}{\sqrt{2}}, \quad \sigma_{\pm} \equiv \frac{\sigma_1 \pm i\sigma_2}{2}$$

hence $W_1\sigma_1 + W_2\sigma_2 = \sqrt{2}(W^+\sigma_- + W^-\sigma_+)$.

Now we can write the covariant derivative D_{μ} in term of mass eigenstates as:

$$D_{\mu} = \partial_{\mu} - i \frac{g_2}{\sqrt{2}} [W_{\mu}^{+} \sigma_{-} + W_{\mu}^{-} \sigma_{+}] - i \frac{g_2}{\cos \theta_W} Z_{\mu} (T_3 - Q \sin^2 \theta_W) - i \frac{g_2}{\sin \theta_W} Q A_{\mu} - i g_3 T_c^a G_{a\mu},$$

where $Q \equiv Y - T_3$ is the electric charge operator Then the Lagrangian that contains the W and the Z is given by:

$$\mathcal{L} \supset -\frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} - \frac{1}{2} W_{\mu\nu}^+ W_{\mu\nu}^- + \frac{M_Z^2}{2} Z_{\mu} Z^{\mu} + M_W^2 W_{\mu}^+ W^{\mu-} + Z_{\mu} J_0^{\mu} + W_{\mu}^+ J_{-}^{\mu} + W_{\mu}^- J_{+}^{\mu},$$

where

$$J_0^{\mu} = \sum_{\psi} g_Z^{\psi} \overline{\psi} \gamma^{\mu} \psi,$$

where the sum is done of every SM fermion after EWSB, i.e. $\{\psi\} = \{e_L, v_L, e_R, u_L', d_L, u_R', d_R\}$ and

$$g_Z^{\psi} = \frac{g_2}{\cos \theta_W} (T_3^{\psi} - Q^{\psi} \sin^2 \theta_W).$$
 (2.12)

The charged currents are:

$$J_{+}^{\mu} \equiv \frac{g_{2}}{\sqrt{2}} [\bar{d}_{L} \gamma^{\mu} u_{L}' + \bar{e}_{L} \gamma^{\mu} v_{L}], \quad J_{-}^{\mu} \equiv (J_{+}^{\mu})^{\dagger}$$
 (2.13)

where $u' \equiv V_{CKM}^{\dagger} u$ is the positive T_3 component of the flavour eigenstate q_L defined in section 2.1.1.

Then, the equations of motion result:

$$\frac{\delta \mathcal{L}}{\delta W_{\mu}^{+}} = 0 = M_{W}^{2} W^{\mu^{-}} + J_{-}^{\mu} \to W^{\mu^{-}} = -\frac{1}{M_{W}^{2}} J_{-}^{\mu}; \quad W^{\mu^{+}} = (W^{\mu^{-}})^{\dagger} = -\frac{1}{M_{W}^{2}} J_{+}^{\mu}$$

$$\frac{\delta \mathcal{L}}{\delta Z_{\mu}} = 0 = M_{Z}^{2} Z^{\mu} + J_{0}^{\mu} \to Z^{\mu} = -\frac{1}{M_{Z}^{2}} J_{0}^{\mu};$$

Replacing in the Lagrangian the solution of equations of motion we find the *Fermi Largrangian*

$$\mathscr{L}_F = -\frac{1}{M_W^2} J_+^{\mu} J_{\mu_-} - \frac{1}{2M_Z^2} J_0^{\mu} J_{0\mu}$$

Figure 2.1: Above: Feynman diagram for muon decay in SM, the Lagrangian terms responsible for this interaction is of the form $\sim g_2 \bar{\psi}_{1L} \gamma^{\mu} \psi_{2L} W_{\mu}$.

Below: Feynman diagram for muon decay in Fermi Theory, the Lagrangian terms responsible for this interaction is of the form $\sim G_F \bar{\psi}_{1L} \gamma^{\mu} \psi_{2L} \bar{\psi}_{3L} \gamma_{\mu} \psi_{4L}$

.

then we use the relation $M_W^2 \cos^2 \theta_W = M_Z^2$ and the definition of the *Fermi constant* $\frac{g_2^2}{4\sqrt{2}M_W^2} \equiv G_F$ to write:

$$\mathcal{L}_{F} = -\frac{4G_{F}}{\sqrt{2}} \left[\overline{u_{L}'} \gamma^{\mu} d_{L} \ \overline{d_{L}} \gamma_{\mu} u_{L}' + \overline{u_{L}'} \gamma^{\mu} d_{L} \ \overline{v_{L}} \gamma_{\mu} e_{L} + \overline{e_{L}} \gamma^{\mu} v_{L} \ \overline{d_{L}} \gamma_{\mu} u_{L}' + \overline{e_{L}} \gamma^{\mu} v_{L} \overline{v_{L}} \gamma_{\mu} e_{L} \right]$$

$$\frac{-4G_{F}}{\sqrt{2}} \left[\sum_{\psi} (T_{3}^{\psi} - Q^{\psi} \sin^{2} \theta_{W}) \overline{\psi} \gamma^{\mu} \psi \right] \left[\sum_{\chi} (T_{3}^{\chi} - Q^{\chi} \sin^{2} \theta_{W}) \overline{\chi} \gamma_{\mu} \chi \right].$$

$$(2.14)$$

Since $(\sin^2 \theta_W)^{exp} \simeq 0.22$ we notice that the weak interaction for RH fermions $(T_3 = 0)$ exist just in the neutral current form, and it gets a suppression due to the accidental smallness of θ_W .

The Lagrangian 2.14 satisfies at tree level the matching condition for every tree level amplitude of the SM, to explicit the coefficients of the flavour breaking terms we need to write $u'^i = (V^*)^{ij}u_i$.

The Fermi Theory was historically the first theory that described the weak processes as the beta decay or the muon decay (Feynman diagrams in Figure 2.1), whose leading contributions are tree level induced in the SM without any flavour suppression.

Adding all the Flavour breaking terms we get a lot of terms with a small coupling due to CKM suppression. Also it is possible to get some non trivial loop induced operators, like the neutral current flavour breaking processes, also known as *Flavour Changing Neutral Currents* (FCNC).

2.2.2 Flavour Changing Neutral Currents

As we have seen, flavour breaking processes arise at tree level just through exchange of *W* bosons. Nevertheless, at low energy we could have flavour breaking transitions in neutral current processes due to the matching to a one loop amplitude in the high energy theory.

These processes are named Flavour Changing Neutral Currents and, because of the theorem 2, they get a double suppression for the additional vertex and the loop factor.

Theorem 2 tells us that the vertex:

is not allowed at tree level in the SM, but that doesn't mean that $b \to sZ/\gamma$ transition can't arise at one loop level through a loop of W:

Now if we integrate out W's and Z bosons we get:

The FCNC $b \rightarrow s$ with the emission in the UV theory can be matched in the EFT through the effective operators defined as

$$\mathcal{O}_7 = \frac{e}{(4\pi)^2} \bar{s} \sigma_{\mu\nu} P_L b F^{\mu\nu}, \quad \mathcal{O}_7' = \frac{e}{(4\pi)^2} \bar{s} \sigma_{\mu\nu} P_R b F^{\mu\nu},$$

where we have factorized the factor $\frac{e}{(4\pi)^2}$ that is common to all the contributions to $b \to s\gamma$ in the SM.

In the UV theory the FCNC $b \to s$ can also produce a leptons pair l^+l^- through the loop diagrams in Figure 1.1 and those contributions can be matched by the EFT through

the operators

$$\mathcal{O}_{9}^{l} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} \gamma_{\mu} P_{L} s \, \bar{l} \gamma^{\mu} l, \qquad \mathcal{O}_{9}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} \gamma_{\mu} P_{R} s \, \bar{l} \gamma^{\mu} l, \\
\mathcal{O}_{10}^{l} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} \gamma_{\mu} P_{L} s \, \bar{l} \gamma^{\mu} \gamma^{5} l, \qquad \mathcal{O}_{10}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} \gamma_{\mu} P_{R} s \, \bar{l} \gamma^{\mu} \gamma^{5} l, \\
\mathcal{O}_{S}^{l} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{L} s \, \bar{l} l, \qquad \mathcal{O}_{S}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} l$$

$$\mathcal{O}_{P}^{l} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{L} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b} P_{R} s \, \bar{l} \gamma^{5} l, \qquad \mathcal{O}_{P}^{l'} = \frac{e^{2}}{(4\pi)^{2}} \bar{b}$$

where $l = e, \mu, \tau$.

Including operators generated at one-loop the effective Lagrangian becomes:

$$\mathcal{L}_{EFT} = \mathcal{L}_F - \frac{4G_F}{\sqrt{2}} \left[C_7 \mathcal{O}_7 + C_7' \mathcal{O}_7' + \sum_{i=9,10,S,P} \sum_{l=e,\mu,\tau} (C_i^l \mathcal{O}_i^l + C_i^{l'} \mathcal{O}_i^{l'}) \right]$$

where we factorized the common factor $\frac{4G_F}{\sqrt{2}} = \frac{2}{v^2}$.

The values of the coefficients C_i , C_i' suitable to satisfy the matching condition to the SM are calculated by [8].

In the coefficients C_i , named *Wilson coefficients*, are enclosed the relevant features of the UV theory: loop factors, couplings, flavour structure etc.

So if the mesaured Wilson coefficient is different from the one that allows the low energy theory to match the SM, it means that to build the EFT we need to integrate out BSM heavy particles which we don't already know.

New Physics Effective Field Theory

The first step to implement a scenario that accommodates the anomalies described so far is to study these effects in a model independent framework, i.e. an Effective Field theory deed to parametrize eventual NP contributions.

First we will categorize the different possible four fermions operators that can be generated integrating out heavy degrees of freedom, then we will focus on semileptonic operators whose give the leading contribution on processes of our interest.

If we neglect the possibility to violate barion number conservation, which is very much tested, we are left with three types of possible operators:

- Four quarks operators, which can mediate for instance the Kaon's decay in pions'channels. These operators are quite hard to match with the SM because we can have loop of gluons beetween the two SM currents which both couple with gluons. Since at the meson scale of energies the strong interaction is non-perturbative there are a lot of next to leading contributions that we have to consider.
- Four leptons operators, which can for instance mediate the muon decay. Those operators are used for processes that have just leptons both in the initial and final state avoiding all the QCD troubles for both of them. In fact the cited muon decay (shown previously as example in 2.1) is predicted so much accurately that it was the main process used to measure the Fermi's constant G_F .
- Semileptonic operators, which can mediate the charged pion's decay, but also all the processes to which we can address the B-Physics Anomalies. Of course the predictions are not clean as the purely leptonic case, nevertheless we have no gluon loop between the two SM currents and this tells us that we can see how the quark current renormalize just using global symmetries of QCD. In fact, in QCD, the vector current is conserved and so the quark current in a semileptonic decay is not affected by renormalization group of QCD. This fact reduces the theoretical uncertainty to the computation of the matrix element of a quark current between the initial and the final hadronic states.

The path to identify the proper NP begins with looking for what NP contributions are needed in the EFT to solve the discrepancy between theory and data. Once we have

included these NP contributions, the new EFT wouldn't match anymore with the SM at the matching scale, hence we will need to find the suitable UV lagrangian, filled by the proper BSM particles, deed to match these NP contributions at low energy without contradicting measures on other observables.

To compare the contributions generated in the different UV frameworks we need to choose a basis of semileptonic operators that includes all possible terms that is possible to generate through a tree level matching to an UV theory that respects the typical assumptions of the SM.

3.1 Effective Semileptonic Lagrangian

As we mentioned many times so far we want to find the coefficients that parametrize the B-Physics Anomalies which appear just in semileptonic *B* mesons decays.

In this chapter we choose to write fermion fields in Weyl picture describd in appendix A

There are many possible basis to describe all possible semileptonic operators, nevertheless to respect the Lorentz symmetry all of them has to be made of two currents both being scalars, vectors or 2-rank tensors.

The choice we make is to avoid the explicit action of charge's conjugation operator and, when it is possible, to have every current being a colour singlet (we will see later why this choice comes to be useful in the calculation of the observables).

Our first step is to collect all the effective operators that can contribute to those processes. For first we will list five operators that can be written as contraction of two vector currents.

If we assume for NP to be coupled just to LH fermions, as done by [9], we would need just two operators:

$$\begin{split} \mathcal{O}_{S} = & q_{L}^{\dagger} \overline{\sigma}^{\mu} q_{L} \ l_{L}^{\dagger} \overline{\sigma}_{\mu} l_{L} = (V^{\dagger} u_{L})^{\dagger} \overline{\sigma}^{\mu} (V^{\dagger} u_{L}) \ e_{L}^{\dagger} \overline{\sigma}_{\mu} e_{L} + d_{L}^{\dagger} \overline{\sigma}^{\mu} d_{L} \ e_{L}^{\dagger} \overline{\sigma}_{\mu} e_{L} + \\ & (V^{\dagger} u_{L})^{\dagger} \overline{\sigma}^{\mu} (V^{\dagger} u_{L}) \ v_{L}^{\dagger} \overline{\sigma}_{\mu} v_{L} + d_{L}^{\dagger} \overline{\sigma}^{\mu} d_{L} \ v_{L}^{\dagger} \overline{\sigma}_{\mu} v_{L} \\ \mathcal{O}_{T} = & q_{L}^{\dagger} \overline{\sigma}^{\mu} \sigma_{a} q_{L} \ l_{L}^{\dagger} \overline{\sigma}_{\mu} \sigma^{a} l_{L} = 2 (V^{\dagger} u_{L})^{\dagger} \overline{\sigma}^{\mu} d_{L} \ l_{L}^{\dagger} \overline{\sigma}_{\mu} v_{L} + 2 d_{L}^{\dagger} \overline{\sigma}^{\mu} (V^{\dagger} u_{L}) \ v_{L}^{\dagger} \overline{\sigma}_{\mu} l_{L} + u_{L}^{\dagger} \overline{\sigma}^{\mu} u_{L} \ v_{L}^{\dagger} \overline{\sigma}_{\mu} v_{L} + d_{L}^{\dagger} \overline{\sigma}^{\mu} d_{L} \ l_{L}^{\dagger} \overline{\sigma}_{\mu} l_{L} - \\ & d_{L}^{\dagger} \overline{\sigma}^{\mu} d_{L} \ v_{L}^{\dagger} \overline{\sigma}_{\mu} v_{L} - u_{L}^{\dagger} \overline{\sigma}^{\mu} u_{L} \ l_{L}^{\dagger} \overline{\sigma}_{\mu} l_{L} \end{split}$$

$$(3.1)$$

where S, T, say that the two currents contracting each other are in the two case a singlet and a triplet of $SU(2)_L$.

We neglected the flavour indexes, keeping them explicit we have, for instance, the singlet operator equal to $\mathcal{O} = \mathcal{O}^{ijkl} = q_L^{i} \bar{\sigma}^{\mu} q_L^{j} l_L^{k\dagger} \bar{\sigma}_{\mu} l_L^{l}$ with

$$q_L^i = \begin{pmatrix} V^{*ij} u_{LJ} \\ d_I^i \end{pmatrix} \quad , l_L^i = \begin{pmatrix} v_L^i \\ e_L^i \end{pmatrix}$$

in other words we are keeping the flavour structure free at this level, and it will be *ruled* by Wilson coefficients.

Any time we keep EW indexes implicit it means that both the vector currents composing the operator are irreducible representation of $SU(2)_L$.

Besides, looking at the electric charge eigenstates form, we notice that \mathcal{O}_S contributes only to NC processes, while \mathcal{O}_T can contribute to CC transitions as well as NC ones.

Including the RH fermions, we find three more operators involving LH vector currents compatible with the gauge symmetry \mathcal{G}_{SM} that we define:

$$\begin{split} \mathcal{O}_{LR1} = & q_L^{\dagger} \overline{\sigma}^{\mu} q_L \; e_R^{\dagger} \sigma_{\mu} e_R = (V^{\dagger} u_L)^{\dagger} \overline{\sigma}^{\mu} (V^{\dagger} u_L) \; e_R^{\dagger} \sigma_{\mu} e_R + d_L^{\dagger} \overline{\sigma}^{\mu} d_L \; e_R^{\dagger} \sigma_{\mu} e_R \\ \mathcal{O}_{LR2}^{u/d} = & q_R^{\dagger} \sigma^{\mu} q_R \; l_L^{\dagger} \overline{\sigma}_{\mu} l_L = q_R^{\dagger} \sigma^{\mu} q_R \; v_L^{\dagger} \overline{\sigma}_{\mu} v_L + q_R^{\dagger} \sigma^{\mu} q_R \; e_L^{\dagger} \overline{\sigma}_{\mu} e_L \end{split}$$

when the u/d means that we have two independent versions of the \mathcal{O}_{LR2} for q_R equal to the u_R or d_R flavour triplets. These two operators can describe just NC transitions and so the quark flavour diagonal part, which gets tree level contributions in SM, is not much interesting for us.

The flavour breaking contributions are as well generated in SM but suppressed for different reasons: the FCNC contribute given by \mathcal{O}_{LR1} described by the SM diagram:

is accidentally suppressed because of the smallness of the Weinberg's angle θ_W that suppresses the coupling beetween the Z boson and RH fermions.

 \mathcal{O}_{LR2} is even more suppressed because, even if the Z this time couple to its favourites LH fermions, to have the FCNC for RH quarks we need to flip the chirality twice (once per quark) because of the Flavour theorem 2 which states that flavour breaking couplings of the SM are allowed only in LH sector, and so the contribute is suppressed due to the light mass of the quarks involved.

The last vector-vector operators are the ones that, in the SM, take both the suppressions described above:

$$\mathcal{O}_{R}^{u/d} = q_{R}^{\dagger} \sigma^{\mu} q_{R} \; e_{R}^{\dagger} \sigma_{\mu} e_{R}$$

where again in the u/d versions according to the flavour triplet being in the place pf q_R .

Now we have three operators made up the contraction of two scalar currents. For first:

$$\mathcal{O}_{S}^{u} = q_{L}^{\dagger} u_{R} \, \varepsilon \, l_{L}^{\dagger} e_{R} = (V^{\dagger} u)_{L}^{\dagger} u_{R} \, e_{L}^{\dagger} e_{R} - d_{L}^{\dagger} u_{R} \, v_{L}^{\dagger} e_{R}$$

$$\mathcal{O}_{S}^{d} = q_{L}^{\dagger} d_{R} \, e_{R}^{\dagger} l_{L} = (V^{\dagger} u)_{L}^{\dagger} d_{R} \, e_{R}^{\dagger} v_{L} + d_{L}^{\dagger} d_{R} \, e_{R}^{\dagger} e_{L}$$

in which \mathcal{O}_S^d could indeed be written as vector currents contraction through Fierz identities, but renouncing to the request of having currents transforming as $SU(3)_c$ singlets. The ε tensor is the one introduced in section 3.2, a part that acts on $SU(2)_L$ to select the singlet in the product $\mathbf{2} \otimes \mathbf{2}$.

The last scalar-scalar possible operator is the one we call the *Leptoquark* operator:

$$\mathcal{O}_{LO} = e_R^{\dagger} q_L \, \varepsilon \, u_R^{\dagger} l_L = e_R^{\dagger} (V^{\dagger} u)_L \, u_R^{\dagger} e_L - e_R^{\dagger} d_L \, u_R^{\dagger} v_L \tag{3.2}$$

that can't be written as contraction of two colour singlet currents but only of two quarklepton scalar currents, unless we involve explicitly the charge conjugation operator, in such that

$$\varepsilon_{ij}\varepsilon_{kl} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk} \rightarrow q^c_L^{\dagger}\varepsilon_{lL} e_R^{\dagger}u_R^c = \mathcal{O}_{LQ} - \mathcal{O}_{\mathcal{S}}^u$$

that anyway wouldn't help the simplification of hadronic matrix elements since we would obtain anyway a current which appears only in this operator.

It is straightforward to see, from the electric charge's eigenstates form, that all the scalar operators can contribute both to CC and NC transitions.

In the end we mention for completeness two operators that can't be generated in an EFT through a three level matching: the *tensor* operators

$$\mathcal{O}_{T}^{u} = q_{L}^{\dagger} \sigma^{\mu\nu} u_{R} \, \varepsilon l_{L}^{\dagger} \sigma_{\mu\nu} e_{R} = u_{L}^{\dagger} \sigma^{\mu\nu} u_{R} \, e_{L}^{\dagger} \sigma_{\mu\nu} e_{R} - d_{L}^{\dagger} \sigma^{\mu\nu} u_{R} \, v_{L}^{\dagger} \sigma_{\mu\nu} e_{R}
\mathcal{O}_{T}^{d} = q_{L}^{\dagger} \sigma^{\mu\nu} d_{R} \, e_{R}^{\dagger} \overline{\sigma}_{\mu\nu} l_{L} = u_{L}^{\dagger} \sigma^{\mu\nu} d_{R} \, e_{R}^{\dagger} \overline{\sigma}_{\mu\nu} v_{L} + d_{L}^{\dagger} \sigma^{\mu\nu} d_{R} \, e_{R}^{\dagger} \overline{\sigma}_{\mu\nu} e_{L}$$
(3.3)

where $\sigma^{\mu\nu} \equiv \sigma^{\mu} \overline{\sigma}^{\nu} - \sigma^{\nu} \overline{\sigma}^{\mu}$ and $\overline{\sigma}^{\mu\nu} \equiv \overline{\sigma}^{\mu} \sigma^{\nu} - \overline{\sigma}^{\nu} \sigma^{\mu}$ nevertheless, as already mentioned, these operators can be generate through the matching to amplitudes at one or more loop level in SM. Since we will implement in the next chapter a tree level matching with eventual NP contributions at high energy we are going to neglect these last two operators.

We choose to separate the SM Lagrangian from the operators defined above, i.e. to use a Lagrangian that recreate the SM predictions in the limit $C_S = C_T = C_{LR1} = C_{LR2}^{u/d} = C_{LQ}^{u/d} = C_{LQ} = C_S^u = C_S^d = C_T^u = C_T^d = 0$:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \left[C_S \mathcal{O}_S + C_T \mathcal{O}_T + + (C_{LQ} \mathcal{O}_{LQ} + h.c.) + C_{LR1} \mathcal{O}_{LR1} + \sum_{q=u,d} \left[C_R^q \mathcal{O}_R^q + C_{LR2}^q \mathcal{O}_{LR2}^q + (C_S^q \mathcal{O}_S^q + C_T^q \mathcal{O}_T^q + h.c.) \right] \right]$$

$$(3.4)$$

in which, expilciting flavour indexes $C\mathcal{O} = C_{q_1q_2l_1l_2}\mathcal{O}^{q_1q_2l_1l_2}$ where, in our convention, q_1 and l_1 are the ones appearing in the operator daggered.

The only assumption we do on the Wilson coefficients is to neglect the coupling to first families of quarks and leptons, i.e. every $C_{q_1q_2l_1l_2}$ will be $\neq 0$ only for $(l_1,l_2) \in \{\mu,\tau\}$ and $(q_1,q_2) \in \{s,b\}$ where we have labelled every family with the name of the negative charged component of it.

3.2 Fierz identities

When we generate operators in an EFT through a tree level matching they could be different from the ones listed above, nevertheless they will always be equal to a linear combination of them.

To project the operators we generate in another basis we need to use some relations that derive from SU(N) structure known as *Fierz Identities*.

Is possible to prove that, since any hermitian matrix NxN can be written as

$$H = c_0 1 + \sum_{i=1}^{N^2 - 1} c_i T_i$$

where T_i are the generators of the fundamental representation of SU(N), these generators satisfy the completeness condition:

$$\sum_{a=1}^{N^2-1} T_{ij}^a T_{a\ kl} = \frac{1}{2} \left(\delta_{il} \delta_{jk} - \frac{1}{N} \delta_{ij} \delta_{kl} \right).$$

In the case N=2 since $\sigma_a=2T_a$ we find (keeping the sum on a implicit):

$$\sigma_{a\ ij}\sigma_{kl}^a = 2\delta_{il}\delta_{kj} - \delta_{ij}\delta_{kl} \tag{3.5}$$

this relation can help us to write the EW structure to have all the currents contracted in the operators listed in 3.1, i.e. to have every single current transforming with an irreducible representation of $SU(2)_L$.

If we need to compare two terms with the indexes sorted at the same way we can invert the relation 3.5 and obtain:

$$\sigma_{ij}^a \sigma_{a\ kl} = \frac{1}{2} (3\delta_{il}\delta_{jk} - \sigma_{il}^a \sigma_{a\ kj}). \tag{3.6}$$

For what concern the Lorentz group, since the group is $SU(2)xSU(2)^*$, the properties are similar.

Having written fermions as Weyl spinors we have explicited the relation beetween the Lorentz algebra used to define the currents and Pauli matrices:

$$\sigma^{\mu} = (\mathbf{I}, \vec{\sigma}) \qquad \overline{\sigma}^{\mu} = (\mathbf{I}, -\vec{\sigma})$$

These matrices allow us to select the Lorentz representation made up a triplet and a singlet respectively of SU(2) and $SU(2)^*$ or viceversa.

Using them we can write a current which transforms as a vector under Lorentz group, combining two spinors transforming both as the $(\frac{1}{2},0)$ or the $(0,\frac{1}{2})$, and so the current with explicit lorentz index is written with the *dotted notation*¹

$$J_R^{\mu} = (\psi_R^{\dagger})^{\alpha} (\sigma^{\mu})_{\alpha\dot{\alpha}} \chi_R^{\dot{\alpha}} \sim (0,1) \quad , J_L^{\mu} = (\psi_L^{\dagger})^{\dot{\alpha}} (\overline{\sigma}^{\mu})_{\dot{\alpha}\alpha} \chi_L^{\alpha} \sim (1,0)$$

¹The dotted indexes indicate $SU(2)^*$, i.e. the RH fermions. following the notation adopted by [10]

In which the dots distinguish the two fundamental representation of the Lorentz group. The scalar current instead is given by the product of two spinors trasforming one as $(\frac{1}{2}, 0)$ and the other as $(0, \frac{1}{2})$ that, after the action of hermitian conjugation, can form a singlet:

$$S = (\psi_R^{\dagger})^{\alpha} \chi_{L\alpha} + (\chi_L^{\dagger})^{\dot{\alpha}} \psi_{R\dot{\alpha}} \sim (0,0)$$

that for $\chi = \psi$ correspond to the fermions' mass term, indicated in Dirac representation as $S = \overline{\psi}\psi$ (see appendix A).

It is useful to introduce the charge conjugation operator:

$$C(\psi_{R(L)_{\alpha}}) \equiv (\psi_{R(L)})_{\alpha}^{c} = \varepsilon_{\alpha\beta}(\psi_{R(L)}^{*})^{\beta} \sim (\frac{1}{2}, 0) \left(\sim (0, \frac{1}{2}) \right)$$

that links the right and the left representations.

The ε is the completely antisymmetric tensor in two dimensions (fixed to the value $\varepsilon^{12} = -\varepsilon^{21} = -\varepsilon_{12} = \varepsilon_{21} = 1$) that guarantees the antisymmetry typical of the singlet.

This operator allow us to build a scalar current with two spinors belonging to the same representation of the Lorentz group.

If a scalar current is made of two copies of the same field that would introduce a \mathcal{G}_{SM} invariant mass term for fermions $(\psi^c_{L(R)})^\dagger \psi_{L(R)} \sim (0,0)$ known as *Majorana mass term*. Nevertheless it is not allowed to be in the SM lagrangian because there aren't fermions belonging to real (or pseudoreal) representation of \mathcal{G}_{SM} , in other words $(\psi^c_{L(R)})^\dagger \psi_{L(R)}$ can never be a singlet of \mathcal{G}_{SM} if $\psi_{L(R)}$ is a SM fermion (except for the case in which we include ν_R described in 2.1.1 in the spectrum of the theory).

Now that we described the structure of the vector and the scalar currents we can take back 3.5 and, mindful that $\sigma^0_{\alpha\dot{\alpha}} = \overline{\sigma}^0_{\alpha\dot{\alpha}} = \delta_{\alpha\dot{\alpha}}$, and including the minus sign to space indexes due to Minkowski's metric we write:

$$\sigma_{\mu \ \alpha \dot{\alpha}} \sigma^{\mu}_{\beta \dot{\beta}} = \delta_{\alpha \dot{\alpha}} \delta_{\beta \dot{\beta}} - \sigma_{i \ \alpha \dot{\alpha}} \sigma^{i}_{\beta \dot{\beta}} = 2(\delta_{\alpha \dot{\alpha}} \delta_{\beta \dot{\beta}} - \delta_{\alpha \dot{\beta}} \delta_{\beta \dot{\alpha}}) \tag{3.7}$$

now using that $\varepsilon_{\alpha\beta}\varepsilon_{\gamma\delta}=\delta_{\alpha\gamma}\delta_{\beta\delta}-\delta_{\alpha\delta}\delta_{\beta\gamma}$ we find:

$$\sigma^{\mu}_{\alpha\dot{\alpha}}\sigma_{\mu\beta\dot{\beta}} = 2\varepsilon_{\alpha\beta}\varepsilon_{\dot{\alpha}\dot{\beta}} = -\sigma^{\mu}_{\alpha\dot{\beta}}\sigma_{\mu\beta\dot{\alpha}} \tag{3.8}$$

And then, generalizing at the overlined matrices, we write:

$$\overline{\sigma}_{\mu}^{\dot{\alpha}\alpha}\overline{\sigma}^{\mu}{}^{\dot{\beta}\beta} = 2\varepsilon^{\alpha\beta}\varepsilon^{\dot{\alpha}\dot{\beta}} \tag{3.9}$$

$$\sigma^{\mu}_{\alpha\dot{\alpha}}\overline{\sigma_{\mu}}^{\dot{\beta}\beta} = 2\delta^{\beta}_{\alpha}\delta^{\dot{\beta}}_{\dot{\alpha}}.$$
(3.10)

Despite to the similar aspect of the equations it is clear that the relations for $SU(2)_L$ and for $SU(2)xSU(2)^*$ has to be used indipendently.

In some cases we have to use both to write the operators generated in the basis presented in section 3.1. In these cases the tensor structure could be complicated and eventually confusing.

So we are going to derive some useful results now, so that we will have them ready when we will handle the physics.

3.2.1 Fierzing in the scalar lagrangian

When we introduce to the theory scalar Leptoquarks, integrating them out from the lagrangian we could generate four-fermion operators of this shape:

$$\overline{l^{1c}}\varepsilon q^1 \ \overline{q^2}\varepsilon l^{2c} = l^1_{\alpha a} q^1_{\beta b} q^{2\star}_{\gamma c} l^{2\star}_{\delta d} \varepsilon^{ab} \varepsilon^{cd} \varepsilon^{\alpha \beta} \varepsilon^{\gamma \delta}$$

where all the fields are LH fermions, i, j, k, l are EW indexes and $\alpha, \beta, \gamma, \delta$ are Lorentz indexes and the ε of the Lorentz's group comes from the definition of charge's conjugation operator.

It is evident that that operator, as is written, doesn't belong to the list we have shown in 3.1

Since all the fermions involved are LH we expect to write them as a linear combinations of O_S and O_T . To do that we need to write

$$\varepsilon^{ab}\varepsilon^{cd}\varepsilon^{\alpha\beta}\varepsilon^{\gamma\delta} = c_1 \; \delta^{da}\delta^{bc}\overline{\sigma_{\mu}}{}^{\delta\alpha}\overline{\sigma}^{\gamma\beta^{\mu}} \; + \; c_2 \; \sigma^{da}\sigma^{bc}\overline{\sigma_{\mu}}{}^{\delta\alpha}\overline{\sigma}^{\gamma\beta^{\mu}}$$

and then switching the position of the fields using:

$$l^{1}q^{1}q^{2*}l^{2*} = (-1)^{4}q^{2*}q^{1}l^{2*}l^{1}$$

because the total number of permutations of the fields is four.

Now we use that

$$\varepsilon^{ab}\varepsilon^{cd} = \delta^{ac}\delta^{bd} - \delta^{ad}\delta^{bc} = \frac{1}{2}\sigma_a^{da}\sigma^{cb}^a - \frac{1}{2}\delta^{da}\delta^{cb}$$

Where we used 3.5 in the second equality. Then, acting on the 3.9,

$$\varepsilon^{\alpha\beta}\varepsilon^{\gamma\delta} = \frac{1}{2}\overline{\sigma}_{\mu}^{\alpha\gamma}\overline{\sigma}^{\mu}^{\ \beta\delta} = -\frac{1}{2}\overline{\sigma}_{\mu}^{\delta\alpha}\overline{\sigma}^{\mu}^{\ \gamma\beta}$$

Multiplicating we obtain:

$$\overline{l^{1c}} \varepsilon q^1 \ \overline{q^2} \varepsilon l^{2c} = \frac{1}{4} \left[q^{2\dagger} \overline{\sigma}^{\mu} q^1 \ l^{2\dagger} \overline{\sigma}_{\mu} l^1 - q^{2\dagger} \overline{\sigma}^{\mu} \sigma^a q^1 \ l^{2\dagger} \overline{\sigma}_{\mu} \sigma_a l^1 \right]$$
(3.11)

Once obtained that result is easy to derive the same in the case of the contraction of two $SU(2)_L$ -triplet scalar currents:

$$l^{1c}{}^{\dagger}\varepsilon\sigma_aq^1\ q^2{}^{\dagger}\sigma^a\varepsilon l^{2c} = l^1_{\alpha a}q^1_{\beta b}q^{2\star}_{\gamma c}l^{2\star}_{\delta d}(\sigma^a\varepsilon)^{ab}(\varepsilon\sigma_a)^{cd}\varepsilon^{\alpha\beta}\varepsilon^{\gamma\delta}$$

We already know how to treat the lorentz structure that will bring a factor $-\frac{1}{2}\overline{\sigma}_{\mu}^{\alpha\delta}\overline{\sigma}^{\mu}^{\beta\gamma}$. The EW structure instead is different:

$$\varepsilon^{ae}\varepsilon^{fd}\sigma_a^{eb}\sigma^{cf^a} = (\delta^{af}\delta^{ed} - \delta^{ad}\delta^{fe})(2\delta^{ef}\delta^{kj} - \delta^{eb}\delta^{ce}) = 2\delta^{ad}\delta^{bc} - 4\delta^{ad}\delta^{bc} + \delta^{ad}\delta^{bc} - \delta^{ac}\delta^{bd} = -(\delta^{ad}\delta^{bc} + \delta^{ac}\delta^{bd})$$

then recalling the 3.5

$$\begin{split} &\sigma^a_{da}\sigma_{cba} = 2\delta^{ac}\delta^{bd} - \delta^{ad}\delta^{bc} \rightarrow \\ &\varepsilon^{ae}\varepsilon^{fd}\sigma^{eb}_{a}\sigma^{cf^a} = -\frac{1}{2}(\sigma^{ad}_{a}\sigma^{bc^a} + 3\delta^{da}\delta^{cb}) \end{split}$$

multiplying the factors coming from EW and Lorentz group:

$$\overline{l^{1c}}\varepsilon\sigma_aq^1\ \overline{q^2}\sigma^a\varepsilon l^{2c} = \frac{1}{4} \left[3q^{2\dagger}\overline{\sigma}^{\mu}q^1\ l^{2\dagger}\overline{\sigma}_{\mu}l^1 +\ q^{2\dagger}\overline{\sigma}^{\mu}\sigma^aq^1\ l^{2\dagger}\overline{\sigma}_{\mu}\sigma_al^1 \right] \eqno(3.12)$$

that again is a combination of terms that reminds to \mathcal{O}_S and \mathcal{O}_T .

In the next section we will use these relations and some more to project the operators we generate with the *tree level matching* on the basis to which we refer to catalogue and compare the contributions arising in the different NP scenarios.

The purpose of doing that is that, once we find the numerical values of the Wilson coefficients that parametrize NP effects referring to the basis chosen in a model independent EFT, if we had these contributions referred to the same form of operators it is easy to combine them either to enhance the accommodation of the anomalies or to cancel contributions that are constrained from the experiments.

Some of the possible heavy bosons

As we previously said one possible way to modify the Wilson coefficients in an EFT (or analogously to get non vacuum values for NP Wilson coefficients) is to introduce heavy particles to the UV theory which couple with the fermions involved in the processes we want to accommodate.

When we introduce new particle interacting with the SM particles we need to look carefully at the experimental constraints. In particular the particle has to satisfy two conditions:

- The contribution to the observable given by the diagrams in which the new particles appears as virtual particles has to show agreement with the experiments, both the ones who seem anomalous to the SM and the tests to the SM.
- If the new particles interact with the particles that are smashing at the colliders, the threshold energy for the production of them has to be bigger of the rest frame energy of the experiments.

To begin we will see how we can get contributions to the anomalous observables introducing different type of heavy vector and scalar bosons.

We will begin with the most familiar case to the ones who know the SM: colour-less vectors charged under $SU(2)_L$. Indicating the quantum number as $(SU(3)_c, SU(2)_L)_Y$ we can address to these particles $B' \sim (\mathbf{1}, \mathbf{1})_0$ and $W' \sim (\mathbf{1}, \mathbf{3})_0$, where the names already suggest the connection with their SM's lighter sisters W,B^1 .

Then we will describe the vector Leptoquarks $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ and $U_3 \sim (\mathbf{3}, \mathbf{3})_{2/3}$ and scalar Leptoquarks $S_1 \sim (\mathbf{3}^{\dagger}, \mathbf{1})_{1/3}$, $S_3 \sim (\mathbf{3}^{\dagger}, \mathbf{3})_{1/3}$, $R_2 \sim (\mathbf{3}, \mathbf{2})_{7/6}$ and $\widetilde{R}_2 \sim (\mathbf{3}, \mathbf{2})_{1/6}$.

Once we have acknowledged what contributions are generated from the different bosons we will be ready to see what mediator, or what combination of mediators, is adapt to accommodate the B-Physics anomalies without contradicting the Flavour tests done so far.

¹That phenomenological are better known as W^{\pm} , Z and the photon γ because of the so known EWSB.

4.1 Colour-less bosons

4.1.1
$$B' \sim (\mathbf{1}, \mathbf{1})_0$$

The first candidate is the heaviest version of the EW singlet of the SM $B: B' \sim (\mathbf{1}, \mathbf{1})_0$. Apart from the bigger mass the main difference beetween these two bosons is the flavour structure, which is diagonal in SM and instead is kept free a priori for the BSM version. Once we have introduced this boson the most general UV Lagrangian contains:

$$\mathcal{L}_{UV} \supset \frac{M_{B'}^2}{2} B_{\mu} B^{\mu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + g_{B'} l_L^{\dagger} \overline{\sigma}^{\mu} \lambda_B^l l_L B_{\mu} + g_{B'} q_L^{\dagger} \overline{\sigma}^{\mu} \lambda_B^q q_L B_{\mu} + g_{B'} e_R^{\dagger} \sigma^{\mu} \lambda_B^e e_R B_{\mu} + g_{B'} u_R^{\dagger} \sigma^{\mu} \lambda_B^u u_R B_{\mu} + g_{B'} d_R^{\dagger} \sigma^{\mu} \lambda_B^d d_R B_{\mu}$$

$$(4.1)$$

where the λ matrices are flavour matrices that are real since B' belongs to a real representation of the gauge group.

When we go down to energies $\ll M_{B'}$ B' can't be produced on shell anymore, and so it can't appear in a process but as virtual particle. In this condition is possible to *integrate* it out from the lagrangian, i.e. replacing B'^{μ} with the solution of the equation of motion:

$$\begin{split} \frac{\delta \mathcal{L}}{\delta B_{\mu}} &= 0 = \frac{M_B^2}{2} B^{\mu} + g_{B'} l_L^{\dagger} \overline{\sigma}^{\mu} \lambda_B^l l_L + g_{B'} q_L^{\dagger} \overline{\sigma}^{\mu} \lambda_B^q q_L \\ g_{B'} e_R^{\dagger} \sigma^{\mu} \lambda_B^e e_R + g_{B'} u_R^{\dagger} \sigma^{\mu} \lambda_B^u u_R + g_{B'} d_R^{\dagger} \sigma^{\mu} \lambda_B^d d_R \rightarrow \\ B^{\mu} &= -\frac{2g_{B'}}{M_{B'}^2} \Big[l_L^{\dagger} \overline{\sigma}^{\mu} \lambda_B^l l_L + q_L^{\dagger} \overline{\sigma}^{\mu} \lambda_B^q q_L + e_R^{\dagger} \sigma^{\mu} \lambda_B^e e_R B_{\mu} + u_R^{\dagger} \sigma^{\mu} \lambda_B^u u_R B_{\mu} + d_R^{\dagger} \sigma^{\mu} \lambda_B^d d_R B_{\mu} \Big]. \end{split}$$

obtaining an effective lagrangian:

$$\mathscr{L}_{EFT} \supset -2G_{B'} \left[\left(\sum_{\psi} \psi^{\dagger} \lambda_{B}^{\psi} \sigma_{\mu} \psi \right) \left(\sum_{\chi} \chi^{\dagger} \lambda_{B}^{\chi} \sigma_{\mu} \chi \right) \right]$$

where $G_{B'} \equiv \frac{g_{B'}^2}{M_{B'}^2}$ and the sums on ψ and χ are done over every SM fermion.

Among the 25 four-fermion operators, made of all the possible combination of these five neutral currents we recognize some semileptonic operators, precisely all the ones constructed with two vectorcurrents $SU(2)_L$ -singlet inside the list shown in section 3.1. The coefficients of these operators are equal to:

$$C_S = -2G_{B'}\lambda_B^q \lambda_B^l \quad , C_R^{u/d} = -2G_{B'}\lambda_B^e \lambda_B^{u/d}$$

$$C_{LR1} = -2G_{B'}\lambda_B^q \lambda_B^e \quad , C_{LR2}^{u/d} = -2G_{B'}\lambda_B^{u/d}\lambda_B^l$$

Plus integrating out B' we generate lots of four-quarks and four-leptons operators that, according to the parameters, could generate unpleasant contributions to observables tested by EW Precision Tests (EWPT) at LEP [11] or to the meson mixing.

In particular, since to accommodate the anomaly of the $b \to sl^-l^+$ transition i need a non vacuum $(\lambda_B^{q/u/d})^{bs} = (\lambda_B^{q/u/d})^{sb}$ (where the / in this case means that has to be non

vacuum at least in one of those three flavour matrices), we could produce an unpleasant tree-level contribution to B_s mixing which is one-loop induced in the SM.

Also we have to point out that we haven't generate any operator which contributes to CC transitions, i.e. B' can't be used to accommodate the anomaly of the $b \rightarrow clv$ decays.

4.1.2
$$W' \sim (\mathbf{1}, \mathbf{3})_0$$

Since B' can't nel repositorio CC anomalies, we expect that to be done by an $SU(2)_L$ triplet as happens in SM, where $b \to c l \bar{\nu}$ is mediated by W^{\pm} bosons which are given by the non diagonal components of the $SU(2)_L$ matrix $W^a_\mu \sigma^a$. The amplitude for the fundamental process in the SM takes the leading contribution from

which takes a flavour suppression from the quark vertex equal to V_{cb} and is diagonal and flavour universal in the lepton vertex (in one words the flavour matrix is the $\mathbf{1}_{3x3}$ for what concern the lepton current).

Since the anomaly consists in a preference for the decay channel with the τ as charged lepton, the most easy try to accomodate it is another $SU(2)_L$ triplet (much heavier than the W^{\pm} to avoid collider constraints) with a bigger coupling for the third flavour component of the lepton fields, that gets involved only when b quark belongs to the process.

Adding to SM $W' \sim (\mathbf{1}, \mathbf{3})_0$ the general additional terms to high energy Lagrangian are:

$$\mathcal{L}_{UV} \supset \frac{M_{W'}^2}{2} W_{\mu}^{\prime a} W_a^{\prime \mu} - \frac{1}{4} W_{\mu\nu}^{\prime a} W_a^{\prime \mu\nu} + g_{W'} l_L^{\dagger} \overline{\sigma}^{\mu} \lambda_W^l \sigma_a l_L W_{\mu}^a + g_{W'} q_L^{\dagger} \overline{\sigma}^{\mu} \lambda_W^q \sigma_a q_L W_{\mu}^a \qquad (4.2)$$

To see how this new terms contribute to processes at hadronic scale we need again to integrate out W' to see what effective semileptonic operators are generated in the EFT.

$$\frac{\delta \mathcal{L}}{\delta W_{\mu}^{a}} = 0 = \frac{M_{W}^{2}}{2} W_{a}^{\mu} + g_{W'} l_{L}^{\dagger} \overline{\sigma}^{\mu} \sigma_{a} \lambda_{W}^{l} l_{L} + g_{W'} q_{L}^{\dagger} \overline{\sigma}^{\mu} \sigma_{a} \lambda_{W}^{q} q_{L} \rightarrow$$

$$W_{a}^{\mu} = -\frac{2g_{W'}}{M_{W'}^{2}} \left[l_{L}^{\dagger} \overline{\sigma}^{\mu} \sigma_{a} \lambda_{W}^{l} l_{L} + q_{L}^{\dagger} \overline{\sigma}^{\mu} \sigma_{a} \lambda_{W}^{q} q_{L} \right].$$

Then inserting it in the lagrangian we obtain:

$$\mathcal{L}_{EFT} \supset -2G_{W'} \left[l_{L}^{\dagger} \lambda_{W}^{l} \overline{\sigma}^{\mu} \sigma_{a} l_{L} l_{L}^{\dagger} \lambda_{W}^{l} \overline{\sigma}_{\mu} \sigma^{a} l_{L} + q_{L}^{\dagger} \lambda_{W}^{q} \overline{\sigma}^{\mu} \sigma_{a} q_{L} q_{L}^{\dagger} \lambda_{W}^{q} \overline{\sigma}_{\mu} \sigma^{a} q_{L} + 2q_{L}^{\dagger} \lambda_{W}^{q} \overline{\sigma}^{\mu} \sigma_{a} q_{L} l_{L}^{\dagger} \lambda_{W}^{l} \overline{\sigma}_{\mu} \sigma^{a} l_{L} \right]$$

$$(4.3)$$

in which we recognize the triplet operator \mathcal{O}_T in the last term implying

$$C_T = -4G_{W'}\lambda_W^l\lambda_W^q$$

with $G_{W'} \equiv \frac{g_{W'}^2}{M_{W'}^2}$. Notice that this time we generate $C_T \neq 0$ that could contribute to CC anomalous observables.

Again we generate in addition four-leptons and four-quarks operators that possible create some tensions between the anomalies solution and EWPT or meson mixing.

In conclusion colour-less vectors could together, a priori, accommodate both CC and NC anomalies but we can already see, without numerical analysis, that they generate a lot of unpleasant terms that don't easily pass the constraints once we included non semileptonic observables.

We noticed that so far we didn't need to use Fierz identities, this is due to the choice we did to write operators as contractions of $SU(3)_c$ -singlet currents, and they can couple directly to $SU(3)_c$ -singlet bosons.

4.2 Leptoquarks

A possible way to avoid the tension beetween the anomalies and the precisely tested sector of the SM is to introduce bosons with quantum numbers different from the Higgs and gauge's bosons.

A good way to proceed is to include bosons that couple leptons to quarks in order to not generate only semileptonic contributions at tree level.

Hence we introduce bosons that connect quark and lepton sector at tree level known as *Leptoquark*, allowing the vertex

There could be different shape of Leptoquarks differing from the representation under the which their fields transform under Lorentz group and under \mathcal{G}_{SM} .

The only one feature common to all the Leptoquarks is that, to link a colour triplet (or antitriplet) and a colour singlet, they have to transform under the fundamental (or antifundamental) representation of $SU(3)_c$, hence is as said that they are *coloured*.

In the limit in which the only coupling allowed for Leptoquarks is the quark-lepton coupling, we would generate at tree level just semileptonic operators. Nevertheless, because of SU(3) structure we have that:

$$3^* \otimes 3^* \sim 6^* \oplus 3$$

and hence, if the lorentz and $SU(2)_L x U(1)_Y$ symmetries allow, is possible to have the quark-quark vertex as well:

The presence of this vertex would generate the already mentioned meson mixing because of four-quarks tree level amplitudes generated. Also with both of the vertexes above allowed is possible to generate at tree level the amplitude

where the lepton is conjugated because of the $U(1)_Y$ symmetry and that would violate the Barion Number.

The easiest solution that can be adopted in a *bottom-up* approach² would be just to switch off the quark-quark vertex see what values for the other couplings are suitable to describe the phenomenology.

Instead if we would implement a properly said UV completion, kill that contribute has to be in some way justified.

In this work we won't aim to formulate a complete theory that justifies the proton stability. On the other hand since this has always been one of the reasons that have made scientists skeptics about Leptoquarks is worthy to discuss briefly this possible issue.

4.2.1 Proton decay

Before B-Physics Anomalies came up there where different attempt to go BSM making Leptoquarks arise. This is mostly because Leptoquarks emerge easily as heavy gauge bosons when we try to extend the gauge sector of the SM.

The most common reason to not believe in Leptoquarks (and as consequence in those extensions as well) has always been that some of them could mediate proton decay $p \to e^+ \pi^0$

The diagrams corresponding to the leading order amplitudes would be:

²An approach in which we worry only about the values of the parameters that explain the phenomenology without wondering about the theoretical nature of the NP.

or even in t-channel

Now the available experimental limit for the proton lifetime is $\tau_p > 10^{33} ys$ and so if LQs arise the contribute sketched above should be very suppressed.

This constraint can be satisfied in two cases:

- $M_{LQ} \simeq \Lambda_{GUT} \simeq 10^{16}~GeV$ to have a decoupling at low energies as shown in C,
- some symmetry among the assumptions of the theory set automatically to zero the quark-quark vertex. For instance if among the assumptions we can ask explictly to preserve Barion Number or Lepton Number. That happens for some Leptoquarks as consequence of the gauge symmetry \mathcal{G}_{SM} .

In the framework we have chosen we will not concern about the fundamental reasona to suppress the quark-quark but we will point out when that suppression emerges automatically from the request to respect SM symmetries.

Nevertheless, the flavour structure we have described so far helps the purpose forbidding the proton decay in π^0 e^+ at tree level. Even if we consider the favourite flavour component of the NP we are considering, i.e. the decay $p \to \tau^+ \pi^0 \to \bar{\nu}_{tau} + hadrons$ the four fermion vertex would be suppressed the with CKM matrix elements and loop factors coming from the insertion of two W loops deed to switch the flavour of quarks involved to the third family.

In which we get an additional suppression from the propagator of the τ^+ off-shell. In any case we can't state that our flavour structure is always enough to pass the experimental test, but for sure it points in the right direction.

4.3 Vector Leptoquarks

First we are going to analyze Leptoquark vectors known as $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ and $U_3 \sim (\mathbf{3}, \mathbf{3})_{2/3}$. We will see that they have some pleasant features; for instance, since they couple to vector currents the value of the hypercharge Y = 2/3 doesn't allow them to couple with a quark-quark current and hence, in general, then they can never mediate proton decay.

4.3.1
$$U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$$

The first LQ we take in consideration is the $SU(2)_L$ singlet U_1 which is one of the most popular in the available literature for reasons that will be clear later.

Including U_1 in our theory we get an UV lagrangian that reads:

$$\mathcal{L}_{UV} \supset -\frac{1}{2} U_{1\mu\nu}^{\dagger} U_{1}^{\mu\nu} + M_{U_{1}}^{2} U_{1\mu}^{\dagger} U_{1}^{\mu} + g_{U_{1}} \left[U_{1\mu} \left(q_{L}^{\dagger} \beta_{U_{1}}^{L} \overline{\sigma}^{\mu} l_{L} + d_{R}^{\dagger} \beta_{U_{1}}^{R} \sigma^{\mu} e_{R} \right) + h.c. \right]$$
(4.4)

One difference that can be seen immediately is that belonging to the fundamental representation of $SU(3)_c$, which is complex, the current coupled to it has not to be hermitian, hence the flavour matrices β are complex in general.

Treating the physics at the hadronic scale we can integrate out U_1 from the Lagrangian through the equation of motion:

$$\frac{\delta \mathcal{L}}{\delta U_{1\mu}^{\dagger}} = 0 = M_{U_1}^2 U_1^{\mu} + g_{U_1} \left[l_L^{\dagger} \beta_{U_1}^{\dagger L} \overline{\sigma}^{\mu} q_L + e_R^{\dagger} \beta_{U_1}^{\dagger R} \sigma^{\mu} d_R \right] \rightarrow
U_1^{\mu} = -\frac{g_{U_1}}{M_{U_1}^2} \left[l_L^{\dagger} \beta_{U_1}^{\dagger L} \overline{\sigma}^{\mu} q_L + e_R^{\dagger} \beta_{U_1}^{\dagger R} \sigma^{\mu} d_R \right]$$
(4.5)

Obtaining

$$\mathcal{L}_{EFT} \supset -G_{U_1} \left[l_L^{\dagger} \beta_{U_1}^L \overline{\sigma}^{\mu} q_L \, q_L^{\dagger} \beta_{U_1}^{\dagger L} \overline{\sigma}_{\mu} l_L + (q_L^{\dagger} \beta_{U_1}^L \overline{\sigma}^{\mu} l_L \, e_R^{\dagger} \beta_{U_1}^{\dagger R} \sigma_{\mu} d_R + h.c.) + e_R^{\dagger} \beta_{U_1}^R \sigma^{\mu} d_R \, d_R^{\dagger} \beta_{U_1}^{\dagger R} \sigma^{\mu} e_R \right]$$

$$(4.6)$$
where, $G_{U_1} \equiv \frac{g_{U_1}^2}{M_{U_1}^2}$.

The effective lagrangian is made of a sum of semileptonic operators, now we need to project them on the basis listed in section 3.1.

The second term is proportional to \mathcal{O}_S^d because of the relation $\overline{\sigma}_{\dot{\alpha}\alpha}^{\mu}\sigma_{\mu}^{\beta\dot{\beta}}=2\delta_{\alpha}^{\beta}\delta_{\dot{\alpha}}^{\dot{\beta}}$ it's precisely equal to $-2\mathcal{O}_S^d$, where the minus comes from the anticommutation rule for two fermion fields $\{\psi,\chi\}=0$ used three times to sort the fields in $q^*le^*d\to q^*de^*l$.

The Lorentz structure of the first and the third get us a minus sign because of the relations $\sigma^{\mu}_{\alpha\dot{\alpha}}\sigma_{\mu\ \beta\dot{\beta}}=2\varepsilon_{\dot{\alpha}\dot{\beta}}\varepsilon_{\alpha\beta}=-\sigma^{\mu}_{\alpha\dot{\beta}}\sigma_{\mu\beta\dot{\alpha}}$ and $\overline{\sigma}^{\mu}_{\dot{\alpha}\alpha}\overline{\sigma}_{\mu\dot{\beta}\beta}=2\varepsilon_{\dot{\alpha}\dot{\beta}}\varepsilon_{\alpha\beta}=-\overline{\sigma}^{\mu}_{\alpha\dot{\beta}}\overline{\sigma}_{\mu\beta\dot{\alpha}}$.

Using these relations and anticommutation of fermions we see that the third term is equal to \mathcal{O}_R while the first term seems equal to \mathcal{O}_S apart from the fact that the quark and the lepton current aren't $SU(2)_L$ singlets, in fact both quarks contract the $SU(2)_L$ index with a lepton.

To project that operator on our basis we need to recall 3.5

$$\sigma_{ad}^{i}\sigma_{cbi} = 2\delta_{ab}\delta_{cd} - \delta_{ad}\delta_{bc} \to \delta_{ab}\delta_{cd} = \frac{\sigma_{ad}^{i}\sigma_{cbi} + \delta_{ad}\delta_{cb}}{2}$$

to rewrite the first term as $-\frac{1}{2}(\mathcal{O}_S + \mathcal{O}_T)$. Adding up everything we obtain:

$$\mathcal{L}_{EFT} \supset -G_{U_1} \left[\frac{1}{2} \beta_{U_1}^L \beta_{U_1}^{\dagger L} (\mathcal{O}_S + \mathcal{O}_T) + \beta_{U_1}^R \beta_{U_1}^{\dagger R} \mathcal{O}_R^d - 2 \beta_{U_1}^R \beta_{U_1}^{\dagger L} \mathcal{O}_S^d + \right]$$
(4.7)

that means in other words

$$C_S = C_T \equiv -\frac{1}{2} G_{U_1} \beta_{U_1}^{L\dagger} \beta_{U_1}^L \quad C_R^d \equiv -G_{U_1} \beta_{U_1}^{R\dagger} \beta_{U_1}^R \quad C_S^d \equiv -2 G_{U_1} \beta_{U_1}^{R\dagger} \beta_{U_1}^L$$

The first feature we notice is that, even though we take all the possible terms in the UV lagrangian, just semileptonic contributions are generated. This means that when we accommodate the anomalies we need to be mindful of constraints that come just from semileptonic observables.

Without considering the details of the computation we can also see how one of this constraints is avoided from the fact that $C_S = C_T$. In fact $C_S = C_T \neq 0$ gives us a way to accomodate the anomaly on $b \to sl^+l^-$ where the amplitude due to NP effects is (considering just purely LH contributions) $\propto (C_S + C_T)$ as can be seen from the electric charge eigenstates form of \mathcal{O}_S and \mathcal{O}_T shown in section 3.1.

From that form we can see also that the transition $b \to s\bar{w}$ is linked to $b \to sl^+l^-$ by the gauge symmetry and results to be $\propto C_S - C_T$ which means no contribution coming from the integration of U_1 as shown by [9]. This is pleasant since $\mathcal{B}(B \to K^{\dagger}\bar{w})$ is a rare decay suppressed in SM and much constrained by experimental data and U_1 doesn't contribute to it at tree level.

4.3.2
$$U_3 \sim (\mathbf{3}, \mathbf{3})_{2/3}$$

The vector $SU(2)_L$ triplet LQ couples just to the triplet LQ current $J_T^a = q_L^{\dagger} \overline{\sigma}^{\mu} \sigma^a \beta_{U_3} l_L$ i.e. just to LH fermions so, for what said in section 3.1, we expect to generate at low energy a combination of \mathcal{O}_S and \mathcal{O}_T .

The UV lagrangian gains the following terms:

$$\mathcal{L}_{UV} \supset -\frac{1}{2} U_{3\mu\nu}^{\dagger a} U_{3a}^{\mu\nu} + M_{U_3}^2 U_{3a}^{\dagger \mu} U_{3\mu}^a + g_{U_3} \left[U_{3\mu}^a q_L^{\dagger} \beta_{U_3} \overline{\sigma}^{\mu} \sigma_a l_L + h.c \right]$$
(4.8)

To build the effective lagrangian at m_b scale we set as always

$$\frac{\delta \mathcal{L}}{\delta U_{3\mu}^{a}} = 0 = M_{U_{3}}^{2} U_{3a}^{mu} + g_{U_{3}} l_{L}^{\dagger} \beta_{U_{3}}^{\dagger} \overline{\sigma}^{\mu} \sigma_{a} q_{L} \rightarrow$$

$$U_{3a}^{\mu} = -\frac{g_{U_{3}}}{M_{U_{3}}^{2}} l_{L}^{\dagger} \beta_{U_{3}}^{\dagger} \overline{\sigma}^{\mu} \sigma_{a} q_{L}$$

$$(4.9)$$

generating

$$\mathscr{L}_{EFT} \supset -G_{U_3} \left[q_L^{\dagger} \beta_{U_3} \overline{\sigma}^{\mu} \sigma_a l_L \ l_L^{\dagger} \beta_{U_3}^{\dagger} \overline{\sigma}_{\mu} \sigma^a q_L \ \right] \tag{4.10}$$

Now we get a minus sign from the lorentz structure and one more minus from exchanging the positions of fermion fields as in the U_1 case, so that we get the fields in the operators written as contractions of colour singlet currents.

Meanwhile the EW structure recalls 3.6

$$\sigma_{ij}^{a}\sigma_{a\ kl} = \frac{1}{2}(3\delta_{il}\delta_{jk} - \sigma_{il}^{a}\sigma_{a\ kj}) \rightarrow$$

$$\mathcal{L}_{EFT} \supset -\frac{1}{2}G_{U_{3}}\beta_{U_{3}}\beta_{U_{3}}^{\dagger}[3\mathcal{O}_{S} - \mathcal{O}_{T}]$$

$$(4.11)$$

The Wilson coefficients are equal to

$$C_S = -3C_T \equiv -\frac{3}{2}G_{U_3}\beta_{U_3}\beta_{U_3}^{\dagger}$$

that give tree level contributions on both CC and NC processes.

To summarize the features of vector Leptoquarks we would say that they are a good possibility since they affect at tree level just semileptonic processes even if we include all possible terms allowed by SM symmetries.

Particularly U_1 is mentioned many times in the literature as the only one that can accommodate both anomalies alone passing most of the constraints, while U_3 is not that appreciated as solution of the anomalies but possibly it can be combined with other mediators to build a relevant model.

4.4 Scalar Leptoquarks

After having shown vectors we introduce some scalar Leptoquarks that can be help-ful for our purposes.

By convention the ones belonging to real represententation of $SU(2)_L$ are defined in the antifundamental of $SU(3)_c$ i.e. we have $S_1 \sim (3^\dagger,1)_{1/3}, S_3 \sim (3^*,3)_{1/3}$. While the $SU(2)_L$ -doublets we consider are two as well differing for the value of hypercharge: $R_2 \sim (3,2)_{7/6}$ and $\widetilde{R}_2 \sim (3,2)_{1/6}$.

In this case the values of the hypercharge allow S_1 and S_3 to couple a quark-quark current, this is not possible instead for the doublets because of $SU(2)_L$ symmetry³.

In addition, differently from vector case, the scalar current has to be made by $(\psi_{L/R})^{\dagger} \chi_{R/L}$ and it is possible to use the charge conjugation to flip the chirality since $(\psi_L^c) \sim (0, \frac{1}{2})$ and viceversa.

That was possible also for vector Leptoquark but there the hypercharge wasn't the adapt

 $^{^3}$ A doublet LQ has to couple with a left-right scalar current that has always only one conjugated field. That makes forbidden quark-quark coupling because of $SU(3)_c$ 1 $\not\supset$ 3 \otimes 3* \otimes 3.

to couple a current $(\psi_{L/R})^c \sigma^{\mu} \chi_{R/L}$ for any $\{\psi_L, \chi_R\} \in \{q_L, l_L, u_R, d_R, e_R\}$.

So, to see what current couples to a given LQ, we have to see all the currents, according to \mathcal{G}_{SM} , mindful that the charge conjugation acts as complex conjugation on the complex representations.

4.4.1
$$S_1 \sim (\mathbf{3}^*, \mathbf{1})_{1/3}$$

A scalar current which couples with a $SU(2)_L$ singlet must involve charge's conjugation, because we can't make a $SU(2)_L$ singlet with only one LH field.

Mindful of this point we find that, this time, the \mathcal{G}_{SM} symmetry allows a quark-quark coupling

Precisely the UV lagrangian that includes S_1 is:

$$\mathcal{L}_{UV} \supset (D_{\mu}S_{1})^{\dagger}D^{\mu}S_{1} + M^{2}S_{1}^{\dagger}S_{1} + + g_{S_{1}}S_{1}^{i} \left[q_{Li}^{\dagger c}\beta_{S_{1}}^{L} \varepsilon l_{L} + u_{Ri}^{\dagger c}\beta_{S_{1}}^{R} e_{R} + q_{L}^{j}^{\dagger} \lambda_{S_{1}} \varepsilon q_{L}^{c}{}^{k} \varepsilon_{ijk} \right] + h.c.$$

$$(4.12)$$

where the ε with indexes implicit is the $SU(2)_L$ tensor that guarantee the current to be a EW singlet, while ε_{ijk} is the completely antisymmetric tensor in three dimensions deed to make $SU(3)_c$ singlet.

The +h.c. term of these type of scalar currents its obtained as usual, but we have to be careful to include a minus sign that arised from $\varepsilon^{\dagger} = -\varepsilon$, i.e.

$$[(a^c)^{\dagger} \varepsilon b]^{\dagger} = -b^{\dagger} \varepsilon a^c$$

where a and b are LH fields.

Integrating out S_1 we need to explicit the colour index, since this time it is not contracted trivially in all the terms:

$$\frac{\delta \mathcal{L}_{UV}}{\delta S_{1}^{i\dagger}} = 0 = M_{S_{1}}^{2} S_{1a} - g_{S_{1}} \left[l_{L}^{\dagger} \varepsilon \beta_{S_{1}}^{L\dagger} q_{Li}^{c} + + e_{R}^{\dagger} \beta_{S_{1}}^{R\dagger} u_{Ri}^{c} + q_{L}^{\dagger c^{j}} \lambda_{S_{1}}^{\dagger} \varepsilon q_{L}^{k} \varepsilon_{ijk} \right] \rightarrow S_{1i} = \frac{g_{S_{1}}}{M_{S_{1}}^{2}} \left[l_{L}^{\dagger} \beta_{S_{1}}^{\dagger} \varepsilon q_{Li}^{c} + e_{R}^{\dagger} \beta_{S_{1}}^{R\dagger} u_{Ri}^{c} + q_{L}^{cj}^{\dagger} \lambda_{S_{1}}^{\dagger} \varepsilon q_{L}^{k} \varepsilon_{ijk} \right] \tag{4.13}$$

Inserting this term in the UV lagrangian we would obtain nine terms, for simplicity we here neglect all the BNV terms,

$$\mathcal{L}_{EFT} \supset G_{S_{1}} \left[l^{\dagger} \beta_{S_{1}}^{\dagger} \varepsilon q_{Li}^{c} + e_{R}^{\dagger} \beta_{S_{1}}^{R\dagger} \varepsilon u_{Ri}^{c} + q_{L}^{cj}^{\dagger} \lambda_{S_{1}}^{\dagger} \varepsilon q_{L}^{k} \varepsilon_{ijk} \right] \left[q_{Li}^{\dagger c} \beta_{S_{1}}^{L} \varepsilon l_{L} + u_{Ri}^{\dagger c} \beta_{S_{1}}^{R} e_{R} + q_{L}^{j}^{\dagger} \lambda_{S_{1}} \varepsilon q_{L}^{ck} \varepsilon_{ijk} \right] = G_{S_{1}} \left[l_{L}^{\dagger} \beta_{S_{1}}^{L\dagger} \varepsilon q_{Li}^{c} q_{Li}^{\dagger c} \beta_{S_{1}}^{L} \varepsilon l_{L} + e_{R}^{\dagger} \beta_{S_{1}}^{R\dagger} u_{Ri}^{c} q_{Li}^{c\dagger} \beta_{S_{1}}^{L} \varepsilon l_{L} + q_{L}^{c\dagger j} \lambda_{S_{1}}^{\dagger} \varepsilon q_{Li}^{c} q_{Li}^{c\dagger} \lambda_{S_{1}} \varepsilon q_{L}^{cm} \varepsilon_{ilm} + l_{L}^{\dagger} \beta_{S_{1}}^{L\dagger} \varepsilon q_{Li}^{c} u_{Ri}^{\dagger c} \beta_{S_{1}}^{R} e_{R} + e_{R}^{\dagger} \beta_{S_{1}}^{R\dagger} u_{Ri}^{c} u_{Ri}^{\dagger c} \beta_{S_{1}}^{R} e_{R} + (BNV terms) \right]$$

$$(4.14)$$

Here we can see four terms describing semileptonic contributions, a four-quarks term that can generate tree level amplitudes contributing to meson mixing plus four more

terms kept implicit that could violate barion number conservation.

To project these terms on our operators basis we need to recall the relations obtained using Fierz Identities of EW group together with the ones of the Lorentz group, in particular we need 3.11:

$${l^{1c}}^{\dagger} \varepsilon q^1 \; {q^2}^{\dagger} \varepsilon l^{2c} = \frac{1}{4} \big[q^2{}^{\dagger} \overline{\sigma}^{\mu} q^1 \; l^2{}^{\dagger} \overline{\sigma}_{\mu} l^1 - \; q^2{}^{\dagger} \overline{\sigma}^{\mu} \sigma^a q^1 \; l^2{}^{\dagger} \overline{\sigma}_{\mu} \sigma_a l^1 \big]$$

that projects the semileptonic term with LH fermions. Then to project the left-right semileptonic term we need to use that:

$$\varepsilon_{ii}\varepsilon_{kl} = \delta_{ik}\delta_{il} - \delta_{il}\delta_{ik}$$

obtaining two scalar operators that we recognize to be \mathcal{O}_{LQ} and $-\mathcal{O}^u_{S\uparrow}$. In the end, the completely RH term turns to a vector-vector operator using

$$arepsilon_{lphaeta}arepsilon_{\dot{lpha}\dot{eta}}=-rac{1}{2}\sigma^{\mu}_{lpha\dot{lpha}}\sigma_{\mueta\dot{eta}}$$

obtaining $-\frac{1}{2}\mathcal{O}_R$.

Adding up all the terms we obtain the following effective lagrangian:

$$\mathcal{L}_{EFT} \supset -G_{S_{1}} \left[\frac{1}{4} \beta_{S_{1}}^{L} \beta_{S_{1}}^{L\dagger} \mathcal{O}_{S} - \frac{1}{4} \beta_{S_{1}}^{L} \beta_{S_{1}}^{L\dagger} \mathcal{O}_{T} + \left[\beta_{S_{1}}^{R\dagger} \beta_{S_{1}}^{L} \mathcal{O}_{LQ} - \beta_{S_{1}}^{R\dagger} \beta_{S_{1}}^{L} \mathcal{O}_{S}^{u\dagger} + h.c. \right] - \frac{1}{2} \beta_{S_{1}}^{R\dagger} \beta_{S_{1}}^{R} \mathcal{O}_{R}^{u} + q_{L}^{cj}^{\dagger} \lambda_{S_{1}}^{\dagger} \varepsilon q_{L}^{k} \varepsilon_{ijk} q_{Ll}^{\dagger} \lambda_{S_{1}} \varepsilon q_{Lm}^{c} \varepsilon^{ilm} + (BNV terms) \right]$$

$$(4.15)$$

Here we have generated different semileptonic contributions that contribute both to CC and NC processes and a term that contributes to tree level amplitude of meson mixing, plus some BNV terms that we neglected.

There is one substantial difference with the colour-less case, in fact here we can set $\lambda_{S_1} = 0$ without affecting semileptonic contributions and turn off both four-quarks and BNV terms.

The Wilson coefficients of semileptonic operators result to be

$$C_S = -C_T \equiv \frac{G_{S_1}}{4} \beta_{S_1}^{L\dagger} \beta_{S_1}^L \quad , C_{LQ} = -C_S^{u\dagger} = G_{S_1} \beta_{S_1}^{R\dagger} \beta_{S_1}^L \quad , C_R = -\frac{1}{2} G_{S_1} \beta_{S_1}^{R\dagger} \beta_{S_1}^R$$

For what we said about U_1 is easy to see that the purely LH tree level contribute to $b \to sl^+l^-$, which is proportional to $C_S + C_T$, turns out to be null and that takes out from our toolbox a possible weapon to accommodate NC anomalies through a tree level matching.

Nevertheless as we will see S_1 is a good candidate which appears in some UV scenarios.

4.4.2
$$R_2 \sim (\mathbf{3}, \mathbf{2})_{7/6}$$

The scalar doublet with Y = 7/6 couples to a left-right current to contract the $SU(2)_L$ index.

That means that it can't generate the purely LH operators \mathcal{O}_S , \mathcal{O}_T and this is the reason why [9] neglects every LQ EW doublet.

The lagrangian terms allowed are:

$$\mathcal{L}_{UV} \supset (D_{\mu}R_{2})^{\dagger} D^{\mu}R_{2} + M_{R_{2}}^{2} R_{2}^{\dagger} R_{2} + g_{R_{2}}^{\dagger} R_{2} \left[u_{R}^{\dagger} \beta_{R_{2}}^{l} l_{L} \varepsilon + q_{L}^{\dagger} \beta_{R_{2}}^{q} e_{R} \right] + h.c.$$

$$(4.16)$$

where replacing at low energies the equation of motion

$$\frac{\delta \mathcal{L}_{UV}}{\delta R_2^{\dagger}} = 0 = M_{R_2}^2 R_2 - g_{R_2} \left[\varepsilon l_L^{\dagger} \beta_{R_2}^{l\dagger} u_R - e_R^{\dagger} \beta_{R_2}^{q\dagger} q_L \right] \rightarrow R_2 = \frac{g_{R_2}}{M_{R_2}^2} \left[\varepsilon l_L^{\dagger} \beta_{R_2}^{l\dagger} u_R - e_R^{\dagger} \beta_{R_2}^{q\dagger} q_L \right] \tag{4.17}$$

we find

$$\mathscr{L}_{EFT} \supset -G_{R_2} \left[u_R^{\dagger} \beta_{R_2}^l l_L l_L^{\dagger} \beta_{R_2}^{l\dagger} u_R + u_R^{\dagger} \beta_{R_2}^l l_L \varepsilon e_R^{\dagger} \beta_{R_2}^{q\dagger} q_L - q_L^{\dagger} \beta_{R_2}^{q\dagger} e_R \varepsilon l_L^{\dagger} \beta_{R_2}^{l\dagger} u_R + q_L^{\dagger} \beta_{R_2}^q e_R e_R^{\dagger} \beta_{R_2}^{q\dagger} q_L \right]$$

$$(4.18)$$

where we used $\varepsilon \cdot \varepsilon = -\mathbf{1}$.

The second and the third terms are equal to $(\beta_{R_2}^l\beta_{R_2}^q{}^\dagger\mathcal{O}_{LQ}+h.c.)$. The first and the fourth terms can be tranformed through

$$\delta_a^b \delta_c^d = \frac{1}{2} \sigma_{ac}^\mu \overline{\sigma_\mu}{}^{bc}$$

and, after 3 permutation of fermion fields that give us a factor $(-1)^3$, we obtain $-\frac{1}{2}\mathcal{O}_{LR1}$ and $-\frac{1}{2}\mathcal{O}_{LR2}^{u}$. Adding up we obtain

$$\mathcal{L}_{EFT} \supset G_{R_2} \left[\frac{1}{2} \beta_{R_2}^l \beta_{R_2}^{l\dagger} \mathcal{O}_{LR2}^u - \left[\beta_{R_2}^l \beta_{R_2}^{q\dagger} \mathcal{O}_{LQ}^u + h.c. \right] + \frac{1}{2} \beta_{R_2}^q \beta_{R_2}^{q\dagger} \mathcal{O}_{LR1} \right]$$
(4.19)

Again we generated only semileptonic terms without further assumptions. The Wilson coefficients result to be

$$C^{u}_{LR2} = \frac{1}{2} G_{R_2} \beta^{l}_{R_2} \beta^{l\dagger}_{R_2} \quad , C_{LQ} = -G_{R_2} \beta^{q}_{R_2} \beta^{q\dagger}_{R_2} \quad , C_{LR1} = \frac{1}{2} G_{R_2} \beta^{l}_{R_2} \beta^{q\dagger}_{R_2}$$

4.4.3
$$\widetilde{R}_2 \sim (\mathbf{3}, \mathbf{2})_{1/6}$$

We want to consider another possible value for the hypercharge of a scalar LQ EWdoublet: $\tilde{R}_2 \sim (3, 2)_{1/6}$.

In this case the Lagrangian becomes:

$$\mathcal{L}_{UV} \supset M_{\widetilde{R}_2}^2 \widetilde{R}_2^{\dagger} \widetilde{R}_2 + (D_{\mu} \widetilde{R}_2)^{\dagger} D^{\mu} \widetilde{R}_2 + g_{\widetilde{R}_2} \widetilde{R}_2 (d_R^{\dagger} \beta_{\widetilde{R}_2} l_L + h.c.)$$

$$(4.20)$$

Once integrated out \widetilde{R}_2

$$\begin{split} \frac{\delta \mathcal{L}_{UV}}{\delta R_2^{\dagger}} = & M_{\widetilde{R}_2}^2 \widetilde{R}_2 + g_{\widetilde{R}_2} l_L \beta_{\widetilde{R}_2}^{\dagger} d_R \rightarrow \\ \widetilde{R}_2 = & -\frac{g_{\widetilde{R}_2}}{M_{\widetilde{R}_2}^2} d_R^{\dagger} \beta_{\widetilde{R}_2} l_L \end{split}$$

which gives us the effective Lagrangian:

$$\mathscr{L}_{EFT} \supset -G_{\widetilde{R}_{2}} l_{L}^{\dagger} \beta_{\widetilde{R}_{2}} d_{R} d_{R}^{\dagger} \beta_{\widetilde{R}_{2}} l_{L}$$

Then using again

$$\delta_{\alpha}^{\beta}\delta_{\dot{\alpha}}^{\dot{\beta}} = \frac{1}{2}\sigma^{\mu}{}_{\alpha\dot{\alpha}}\bar{\sigma}_{\mu}^{\dot{\beta}\beta}$$

obtaining

$$\mathcal{L}_{EFT} \supset \frac{G_{\widetilde{R}_2}}{2} \mathcal{O}_{LR2}^d \to C_{LR2}^d \equiv \frac{1}{2} G_{\widetilde{R}_2} \beta_{\widetilde{R}_2}^\dagger \beta_{\widetilde{R}_2}$$

that, among the NP particles we consider, is generated only by \widetilde{R}_2 .

4.4.4
$$S_3 \sim (\mathbf{3}^*, \mathbf{3})_{1/3}$$

The last heavy boson we want to compute the affection at low energy is the scalar EW triplet.

As U_3 it couples with a triplet current, hence it doesn't interact with RH fermions. The main difference with U_3 is that it allows quark-quark coupling, in fact the UV lagrangian turns out to be:

$$\mathcal{L}_{UV} \supset (D_{\mu}S_{3a})^{\dagger}D^{\mu}S_{3}^{a} + M^{2}S_{3a}^{\dagger}S_{3}^{a} + +g_{S_{3}}S_{3}^{ia}(q_{L}^{j}{}^{\dagger}\lambda_{S_{3}}\varepsilon\sigma_{a}q_{L}^{c}{}^{k}\varepsilon_{ijk} + q_{Li}^{c}{}^{\dagger}\beta_{S_{3}}\varepsilon\sigma_{a}l_{L}) + h.c.$$

$$(4.21)$$

in which i = 1, 2, 3 is the colour index and a = 1, 2, 3 is the EW index. Again the annoying part could be turned off without affecting semileptonic operators, as for S_1 . Integrating it out

$$\begin{split} \frac{\delta \mathcal{L}_{UV}}{\delta S_3^{ia}} &= 0 = M_{S_3}^2 S_{3ia} - g_{S_3} \left[q_{Lj}^c{}^\dagger \lambda_{S_3}^\dagger \sigma_a \varepsilon q_{Lk} \varepsilon^{ijk} + l_L^\dagger \beta_{S_3}^\dagger \sigma_a \varepsilon q_L^c{}^i \right] \rightarrow \\ S_{3ia} &= \frac{g_{S_3}}{M_{S_5}^2} \left[q_{Lj}^c{}^\dagger \lambda_{S_3}^\dagger \sigma_a \varepsilon q_{Lk} \varepsilon^{ijk} + l_L^\dagger \beta_{S_3}^\dagger \sigma_a \varepsilon q_L^c{}^i \right] \end{split}$$

hence the EFT lagrangian results

$$\mathcal{L}_{EFT} \supset G_{S_3} \left[q_{Li}^{c \dagger} \beta_{S_3} \varepsilon \sigma_a l_L \, \overline{l_L} \beta_{S_3}^{\dagger} \sigma_a \varepsilon q_L^{c i} \, + \, q_{Li}^{c \dagger} \beta_{S_3} \varepsilon \sigma_a l_L \, q_{Lj}^{c \dagger} \lambda_{S_3}^{\dagger} \sigma_a \varepsilon q_{Lk} \varepsilon^{ijk} \, + \right.$$

$$\left. q_L^{j \dagger} \lambda_{S_3} \varepsilon \sigma_a q_L^{c k} \varepsilon_{ijk} \, l_L^{\dagger} \beta_{S_3}^{\dagger} \sigma_a \varepsilon q_L^{c i} \, + \, q_L^{j \dagger} \lambda_{S_3} \varepsilon \sigma_a q_L^{c k} \varepsilon_{ijk} q_{Ll}^{c \dagger} \lambda_{S_3}^{\dagger} \sigma_a \varepsilon q_{Lm} \varepsilon^{ilm} \right]$$

The first term is the only one affecting semileptonic processes at tree level. To project it on our basis we remember that we obtained 3.12

$$l^{1c}{}^{\dagger}\varepsilon\sigma_aq^1\;q^2{}^{\dagger}\sigma^a\varepsilon l^{2c} = \frac{1}{4} \left[3q^2{}^{\dagger}\overline{\sigma}^{\mu}q^1\;l^2{}^{\dagger}\overline{\sigma}_{\mu}l^1 +\;q^2{}^{\dagger}\overline{\sigma}^{\mu}\sigma^aq^1\;l^2{}^{\dagger}\overline{\sigma}_{\mu}\sigma_al^1 \right]$$

which means

$$\mathcal{L}_{EFT} \supset G_{S_{3}} \left[\frac{3}{4} \beta_{S_{3}}^{\dagger} \beta_{S_{3}} \mathcal{O}_{S} + \frac{1}{4} \beta_{S_{3}}^{\dagger} \beta_{S_{3}} \mathcal{O}_{T} + q_{Li}^{c}^{\dagger} \beta_{S_{3}} \varepsilon \sigma_{a} l_{L} q_{Lj}^{c}^{\dagger} \lambda_{S_{3}}^{\dagger} \sigma_{a} \varepsilon q_{Lk} \varepsilon^{ijk} + q_{L}^{j}^{\dagger} \lambda_{S_{3}} \varepsilon \sigma_{a} q_{L}^{ck} \varepsilon_{ijk} l_{L}^{\dagger} \beta_{S_{3}}^{\dagger} \varepsilon \sigma_{a} q_{L}^{ci} + q_{L}^{j}^{\dagger} \lambda_{S_{3}} \varepsilon \sigma_{a} q_{L}^{ck} \varepsilon_{ijk} q_{Ll}^{c}^{\dagger} \lambda_{S_{3}}^{\dagger} \sigma_{a} \varepsilon q_{Lm} \varepsilon^{ilm} \right]$$

$$(4.22)$$

As already mentioned, meson mixing and BNV amplitudes would arise at tree level just for non vacuum values of the flavour matrix λ_{S_3} that we can turn off for our purposes. The Wilson coefficients of semileptonic terms are

$$C_S = 3C_T \equiv \frac{3}{4}G_{S_3}\beta_{S_3}^{\dagger}\beta_{S_3}$$

that means, a priori, contributions to both NC and CC processes.

4.5 Summary

The last thing we need to decide what recipes are suitable to accommodate the anomalies is to see what Wilson coefficients we need to accommodate the B-Physics anomalies and derive what values of them.

Before to implement the numerical analysis we summarize what contributions are generated in the different scenarios in tables 4.1.

4.5.1 Comparison between 4-quark contributions generated

As we mentioned along the listing of heavy bosons some of them are, without furthermore assumptions on the theory, generating 4-quark operators that could affect the tested phenomena. In particular, since the flavour structure must be non vacuum in third-second family transitions in quark sector, we need to be careful to the constraints on B_s meson mixing.

As we have seen, for Leptoquarks, is possible to turn to zero the quark quark coupling without affecting semileptonic contributions. On the other hand that is not true for colour-less vectors that generate 4-quark contributions of order $\simeq \lambda^{q^2}$ and semileptonic operators of order $\simeq \lambda^q \lambda^l$ where λ_l can't be big as will because that would affect 4 leptons operators that have coefficients $\simeq \lambda^{l^2}$.

If we want to use colour-less vectors to generate the desired semileptonic contributions we need to cancel the 4-quark contributions and we want to see whether eventually that can be done by contributions generated by LQ.

To do that, we need for the contributions to cancel each other, because even if we keep

Figure 4.1: Wilson coefficients corresponding to effective generators generated by the integration of heavy vector bosons (above) and scalar bosons (below).

	B'	W'	U_1	U_3
C_S	$-2G_{B'}\lambda_B^q\lambda_B^l$	Ø	$-\frac{1}{2}G_{U_1}\beta_{U_1}^{L\dagger}\beta_{U_1}^{L}$	$-\frac{3}{2}G_{U_3}\beta_{U_3}\beta_{U_3}^{\dagger}$
C_T	Ø	$-4G_{W'}\lambda_W^q\lambda_W^l$	$-\frac{1}{2}G_{U_1}\beta_{U_1}^{L\dagger}\beta_{U_1}^{L}$	$\frac{1}{2}G_{U_3}\beta_{U_3}\beta_{U_3}^{\dagger}$
C_{LR1}	$-2G_{B'}\lambda_B^q\lambda_B^e$	Ø	Ø	Ø
C_{LR2}^{u}	$-2G_{B'}\lambda_{B}^{u}\lambda_{B}^{l}$	Ø	Ø	Ø
C_{LR2}^d	$-2G_{B'}\lambda_B^d\lambda_B^l$	Ø	Ø	Ø
$\left \begin{array}{c}C^d_{LR2}\\C^u_R\end{array}\right $	$-2G_{B'}\lambda_B^u\lambda_B^e$	Ø	Ø	Ø
C_R^d	$-2G_{B'}\lambda_B^d\lambda_B^e$	Ø	$-G_{U_1}\beta_{U_1}^{R\dagger}\beta_{U_1}^R$	Ø
C_{LQ}	Ø	Ø	Ø	Ø
C_S^u	Ø	Ø	Ø	Ø
$ \begin{array}{c c} C_{LQ} \\ C_S^u \\ C_S^d \end{array} $	Ø	Ø	$2G_{U_1}\beta_{U_1}^R\beta_{U_1}^{L\dagger}$	Ø

	S_1	R_2	\widetilde{R}_2	S_3
C_S	$\frac{1}{4}G_{S_1}\beta_{S_1}^L\beta_{S_1}^{L\dagger}$	Ø	Ø	$\frac{3}{4}G_{S_3}\beta_{S_3}^{\dagger}\beta_{S_3}$
C_T	$\begin{vmatrix} \frac{1}{4}G_{S_1}\beta_{S_1}^L\beta_{S_1}^{L\dagger} \\ -\frac{1}{4}G_{S_1}\beta_{S_1}^{L\dagger}\beta_{S_1}^L \end{vmatrix}$	Ø	Ø	$\frac{1}{4}G_{S_3}\beta_{S_3}^{\dagger}\beta_{S_3}$
C_{LR1}	Ø	$-\frac{1}{2}G_{R_2}\beta_{R_2}^l\beta_{R_2}^{q\dagger}$ $\frac{1}{2}G_{R_2}\beta_{R_2}^{l\dagger}\beta_{R_2}^l$	Ø	Ø
C_{LR2}^{u}	Ø	$-rac{1}{2}G_{R_2}eta_{R_2}^{l\dagger}eta_{R_2}^l$	Ø	Ø
C^d_{LR2}	Ø	Ø	$\frac{1}{2}G_{\widetilde{R}_2}\beta_{\widetilde{R}_2}^{\dagger}\beta_{\widetilde{R}_2}$	Ø
C_R^u C_R^d	$\frac{1}{2}G_{S_1}\beta_{S_1}^{R\dagger}\beta_{S_1}^{R}$	Ø	Ø	Ø
C_R^d	Ø	Ø .	Ø	Ø
	$-G_{S_{1}}\beta_{S_{1}}^{R\dagger}\beta_{S_{1}}^{L} G_{S_{1}}\beta_{S_{1}}^{R\dagger}\beta_{S_{1}}^{L}$	$-G_{R_2}\beta_{R_2}^{q\dagger}\beta_{R_2}^q$	Ø	Ø
C_{LQ} C_S^u C_S^d	$G_{S_1}\beta_{S_1}^{R\dagger}\beta_{S_1}^{L}$	Ø	Ø	Ø
C_S^d	Ø	Ø	Ø	Ø

contribution small at UV scale, the tree-matching level wouldn't be worthy at B mesons scale because the loop induced contributions are in general of the same order of the tree level induced ones.

The Leptoquarks that are allowed to couple two quarks by \mathcal{G}_{SM} are S_1 and S_3 , and these couplings involve only LH quarks, hence we would like to see if we can write them in terms of the left left operators that are generated by W' and B':

$$\mathcal{O}_{S}^{4q} = q_{L}^{\dagger} \overline{\sigma}_{\mu} q_{L} \ q_{L}^{\dagger} \overline{\sigma}^{\mu} q_{L}, \quad \mathcal{O}_{T}^{4q} = q_{L}^{\dagger} \overline{\sigma}_{\mu} \sigma_{a} q_{L} \ q_{L}^{\dagger} \overline{\sigma}^{\mu} \sigma^{a} q_{L}. \tag{4.23}$$

That are respectively generated by B' with coefficient $-2G_B\lambda_B^{q\dagger}\lambda_B^q$ and W' with coefficient $-2G_W\lambda_W^{q\dagger}\lambda_W^q$, where we keep in mind that the only flavour component of $\lambda_{B/W}^q$ that needs to be non vacuum to affect anomalous observables is $(\lambda_{B/W}^q)^{bs}$. Instead, four quarks operator generated from S_1 and S_3 are

$$\mathcal{O}_{S_1}^{4q} = (q_L^{cj}^{\dagger} \epsilon q_L^k q_L^{\dagger} \epsilon q_{Lm}^c) \epsilon_{ijk} \epsilon^{ilm}, \quad \mathcal{O}_{S_2}^{4q} = (q_L^{\dagger} \epsilon \sigma_a q_L^c k \overline{q_L^c} \sigma_a \epsilon q_{Lm}) \epsilon_{ijk} \epsilon^{ilm}$$

$$(4.24)$$

with coefficients respectively $-G_{S_1}\lambda_{S_1}^{\dagger}\lambda_{S_1}$ and $-G_{S_3}\lambda_{S_3}^{\dagger}\lambda_{S_3}$. The first thing we notice is that in Leptoquark case we generated operators the flavour structure is non trivial while in \mathcal{O}_S and \mathcal{O}_T is left implicit because both currents are colour singlets.

We can use the relations derived in 3.2 to write

$$\begin{split} \mathcal{O}_{S_{1}}^{4q} &= \frac{1}{4} (q_{L}^{l} \dot{\overline{\sigma}}^{\mu} q_{L}^{k} \ q_{L_{j}}^{\dagger} \overline{\sigma}_{\mu} q_{Lm}^{c} \ - \ q_{L}^{l} \dot{\overline{\sigma}}^{\mu} \sigma^{a} q_{L}^{k} \ q_{L_{j}}^{\dagger} \overline{\sigma}_{\mu} \sigma_{a} q_{Lm}^{c}) \varepsilon_{ijk} \varepsilon^{ilm} \\ \mathcal{O}_{S_{3}}^{4q} &= \frac{1}{4} (3 q_{L}^{l} \dot{\overline{\sigma}}^{\mu} q_{L}^{k} \ q_{L_{j}}^{\dagger} \overline{\sigma}_{\mu} q_{Lm}^{c} \ + \ q_{L}^{l} \dot{\overline{\sigma}}^{\mu} \sigma^{a} q_{L}^{k} \ q_{L_{j}}^{\dagger} \overline{\sigma}_{\mu} \sigma_{a} q_{Lm}^{c}) \varepsilon_{ijk} \varepsilon^{ilm} \end{split}$$

Now using the property of *Levi-Civita* tensor:

$$\varepsilon_{ijk}\varepsilon^{ilm} = (\delta_j^l \delta_k^m - \delta_j^m \delta_k^l) \tag{4.25}$$

results

$$\mathcal{O}_{S_{1}}^{4q} = \frac{1}{4} (1\mathcal{O}_{S}^{\prime 4q} - \mathcal{O}_{T}^{\prime 4q} - \mathcal{O}_{S}^{4q} + \mathcal{O}_{T}^{4q})$$

$$\mathcal{O}_{S_{3}}^{4q} = \frac{1}{4} (3\mathcal{O}_{S}^{\prime 4q} + \mathcal{O}_{T}^{\prime 4q} - 3\mathcal{O}_{S}^{4q} - \mathcal{O}_{T}^{4q})$$

where we have defined

$$\mathcal{O}_{S}^{\prime 4q} = q_{L}^{i} \,^{\dagger} \overline{\sigma}_{\mu} q_{L}^{j} \, q_{Li}^{\dagger} \overline{\sigma}^{\mu} q_{Li}, \quad \mathcal{O}_{T}^{\prime 4q} = q_{L}^{i} \,^{\dagger} \overline{\sigma}_{\mu} \sigma_{a} q_{L}^{j} \, q_{Li}^{\dagger} \overline{\sigma}^{\mu} \sigma^{a} q_{Li}. \tag{4.26}$$

that are *independent* from \mathcal{O}_S and \mathcal{O}_T .

In conclusion the four-quarks contribution of Leptoquarks is independent from the colourless one, hence they cannot cancel each other.

Phenomenological Analysis

To understand what is the proper way to set the analysis of what values of NP parameters can accommodate the anomalies we need first to analyze the clues given by the data.

The main issue of computing the Branching ratios of the semileptonic processes we are interested in is that we need, apart from the EW nature of the processes, to consider that the quark involved are *confined* in hadrons.

From now we will use as example the NC anomalous decay $B \to K^* l^+ l^-$ which is the one with the biggest significant anomaly, nevertheless the discussion can be easily applied on every $M \to M' l_1 l_2$ process, where M, M' are mesons and $l_{1,2}$ are leptons.

The decay width of $B \to K^* l^+ l^-$ is given by:

$$\Gamma(B \to K^* l^+ l^-) = \frac{1}{2m_B} \int |\mathcal{M}|^2 \frac{d^3 p_{K^*}}{(2\pi)^3 2E_{K^*}} \frac{d^3 p_{l^+}}{(2\pi)^3 2E_{l^+}} \frac{d^3 p_{l^-}}{(2\pi)^3 2E_{l^-}}$$

Where \mathcal{M} is defined to be

$$\mathcal{M} \equiv (-i) \langle B | \mathcal{O} | K^* l^+ l^- \rangle$$

in which \mathcal{O} is a given operator that at three level corresponds to the sum of lagrangian's operators that can annihilate a b quark and create s quark and a pair of charged lepton anti-lepton.

If that operator can be factorized in a piece that contain only lepton fields and another one containing only quark,hence

$$\mathcal{O} = \mathcal{O}_q(\{q\}) \cdot \mathcal{O}_l(\{l\})$$

the transition matrix element results:

$$\mathcal{M} = (-i) \langle B | \mathcal{O}_q | K^* \rangle \langle 0 | \mathcal{O}_l | l^+ l^- \rangle$$

i.e. the transition matrix is the product of a leptonic perturbative term which depends only from the form of the operator and an *hadronic matrix element* which at B-meson mass'scale is non calculable perturbatively.

Those factors are generally a bad deal because the non perturbativity of QCD limits the accuracy of theoretical predictions for these decay widths. Nevertheless if we want to compare processes where the hadronic contribution to the amplitude is given by operators with the same \mathcal{O}_{had} is possible to simplify the non perturbative contribution expressing observables in terms of ratios of branching ratios (now we are seeing the reason for the choice done at the begin of section 3.1 to write the operators as contraction of colour-singlet currents).

Even if the QCD is non perturbative at *B* mesons mass scale sometimes is possible to link different form factors without compute them explictly but just using general symmetries of strong interactions. Since QCD conserves parity it is convenient to *express from now on fermion fields in Dirac representation* through the mapping shown in appendix A.

5.1 Left Handed framework

In the SM, because of the theorem 2, flavour breaking processes get their leading contributions from LH quarks. Since any process addressed to B-Physics Anomalies is flavour breaking, a good guess is to assume that NP should involve only LH quark as well. For what concern leptons we have that for $q^2 = (p_{l^+} + p_{l^-})^2 \in [1.1; 6.0] \text{GeV}^2$ the vector like QED contribution is suppressed by the photon propagator $\simeq \frac{1}{q^2}$ and, as previously said in section 2.2, the weak contribution to RH fermions is subbressed because of to the accidental smallness of θ_W , and so every contribute given to the RH-RH lepton current is not interfering with SM requiring a big Wilson coefficient to imply sensitive deviations, that would be bounded from many semileptonic LFU ratios like

$$\frac{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}{\mathcal{B}(J/\psi \to e^+ e^-)}$$

and many others.

If we keep only the operators with a LH lepton current, we are left with \mathcal{O}_S , \mathcal{O}_T , \mathcal{O}_{LR2}^d where O_T is the only one that can contribute to CC processes.

We are going to see that another clue that pushes in the direction of a purely LH NP is given by the ratio R_{K^*}/R_K .

5.1.1 R_K and R_{K*}

From the point of view of the EW transition there is no difference beetween the decay channel in $\to K l^+ l^-$ and $\to K^* l^+ l^-$ since the quark transition is always $b \to s l^+ l^-$. In the limit in which leptons take the biggest part of the available energy (in the way we can neglect kinematic effects due to the mass difference beetween μ and e), the difference beetween the two ratios is hidden in the hadronic part of the matrix element:

$$\frac{\Gamma(B \to K^* l^+ l^-)}{\Gamma(B \to K l^+ l^-)} = \frac{|\langle B| \, C_{SM} + \sum_i C_i \mathcal{O}_i \, |K^* \rangle|^2}{|\langle B| \, C_{SM} + \sum_i C_i \mathcal{O}_i \, |K \rangle|^2}$$

Where \mathcal{O}_i are the different possible hadronic BSM operator that allow the $b \to s$ transition that products a $l_L^+ l_L^-$ pair.

Since we want the leptons pair to be LH, the hadronic part of the operator has to be a vector under Lorentz group, hence the most general form of $\sum_i C_i \mathcal{O}_i$ is given by $\bar{b} \gamma^{\mu} (\alpha_{NP} + \beta_{NP} \gamma^5) s \equiv \alpha_{NP} \mathcal{O}_V + \beta_{NP} \mathcal{O}_A$.

Since the two operators $\mathcal{O}_V \mathcal{O}_A$ have well defined spin-parity J^P (see appendix A) we find that the matrix elements are

$$\langle B | \mathcal{O}_A | K^* \rangle \equiv A(q^2), \quad \langle B | \mathcal{O}_V | K^* \rangle = 0$$

 $\langle B | \mathcal{O}_V | K \rangle \equiv V(q^2), \quad \langle B | \mathcal{O}_A | K \rangle = 0$

where $A(q^2)$ and $V(q^2)$ are unknown functions of the exchanged momentum $q^2 = (p_B - p_K^{(*)})^2$.

Now if we consider the ratio beetween

$$R_{K^*} = \frac{\Gamma(B \to K^* \mu^+ \mu^-)}{\Gamma(B \to K^* e^+ e^-)}\Big|_{SM} = 1$$
 and $R_K = \frac{\Gamma(B \to K \mu^+ \mu^-)}{\Gamma(B \to K e^+ e^-)}\Big|_{SM} = 1$

that we define $\chi_K \equiv R_{K^*}/R_K$ is of course equal to 1 in the SM since they are both 1. When we include NP effects that affect just the muon channel things could change. In fact the expectation value is done on

$$\sum \mathcal{O} = C_{SM}^K [\mathcal{O}_V - \mathcal{O}_A] + \alpha_{NP} \mathcal{O}_V + \beta_{NP} \mathcal{O}_A$$

when we have used theorem 2 to write SM leading contribution as purely LH.

At this point is straightforward to notice that in a NP scenario

$$\chi_{K} = \frac{R_{K^{*}}}{R_{K}} = \frac{|(-C_{SM}^{K} + \beta_{NP})A|^{2}}{|[C_{SM}^{K} + \alpha_{NP} + (\beta_{NP} - \beta_{NP})]V|^{2}} \frac{|C_{SM}^{K}V|^{2}}{|C_{SM}^{K^{*}}A|^{2}}$$

$$= \left|\frac{\beta_{NP} - C_{SM}^{K}}{(\beta_{NP} - C_{SM}^{K}) + \alpha_{NP} + \beta_{NP}}\right|^{2} \tag{5.1}$$

where in the last line we explicited that for NP LH, i.e. $\alpha_{NP} = -\beta_{NP}$, χ_K remains equal to 1.

Otherwise if $\alpha_{NP} + \beta_{NP} \neq 0$ one of the two ratio could get bigger according to the relative sign beetween $\alpha_{NP} + \beta_{NP}$ and $C_{SM}^{K^*}$.

In Figure 5.1.1 we see how the data prefer a framework in which just LH quark are involved and so we assume that \mathcal{O}^d_{LR2} doesn't serve our purpose.

For all these reasons we will limit our analysis to a purely LH NP, i.e. that generates significant contributions only to \mathcal{O}_S and \mathcal{O}_T reducing significantly the number of free parameters involved.

5.1.2 Anomalous observables in LH framework

The most significant B-Physics anomalies observed so far concern the ratios R_{K^*} and R_{D^*} . Since any Wilson coefficient in the lagrangian 3.4 has dimension of $[Energy]^{-2}$ we

Figure 5.1: Plot of R_{K*} and R_K variating the vector and axial New Physics contributions α_{NP} and β_{NP} in the Left-Handed limit $\alpha_{NP} = -\beta_{NP}$ (blue) and in the Right-Handed limit $\alpha_{NP} = \beta_{NP}$ (red).

choose to express them in unit of $v^{-2} = \sqrt{2}G_F = (246GeV)^{-2}$.

In the scenario in which NP couples only LH fermions it is easy to compute the previsions for those observables because, as should be clear now, non perturbative contributions are simplified in the ratio and we have just to add proper Wilson coefficients to the SM ones.

The matching to SM tells us that the Wilson coefficient of the the operator $\bar{b}_L \gamma^\mu s_L \, \bar{l}_L \gamma_\mu l_L$ is given by

$$C_{SM}^{NC} = -V_{tb}V_{ts}^* \frac{e^2}{8\pi^2} \cdot (8.314) v^{-2}$$
 (5.2)

as calculated by [8]. The ratio R_{K^*} , mindful of the electric charge eigenstates form of operators 3.1, results

$$R_{K^*} \equiv \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)} = \frac{|C_{SM}^K + C_S^{bs\mu\mu} + C_T^{bs\mu\mu}|^2}{|C_{SM}^K|^2}$$

$$= |1 + \frac{C_S^{bs\mu\mu} + C_T^{bs\mu\mu}}{C_{SM}^K}|^2$$
(5.3)

which depends only from the parameter $\delta C^{NC} = C_S^{bs\mu\mu} + C_T^{bs\mu\mu}$.

Since we are allowing only LH contributions, that are alligned with the SM, every other process $b \rightarrow sll$ expressed like a ratio beetween the BR of the muon channel and BR of the electronic channel can be expressed as 5.3, because of the factorization of hadronic contribution explained above.

For what concern CC the most significant anomalies appear in R_{D*} , R_D that take contribution only from triplet operator O_T . Mindful of the relative coefficients of different component of LH doublets given by gauge symmetry (see equation 3.1),

$$R_{D} = \frac{\mathcal{B}(B \to D^{*}\tau\bar{\nu})}{\frac{1}{2} \left[\mathcal{B}(B \to D^{*}e\bar{\nu}) + \mathcal{B}(B \to D^{*}\mu\bar{\nu}) \right]} =$$

$$= \frac{|C_{SM}^{CC} + 2C_{T}^{bs\tau\tau}V_{cs}^{*} + 2C_{T}^{bb\tau\tau}V_{cb}^{*}|^{2} + |2C_{T}^{bs\tau\mu}V_{cs}^{*} + 2C_{T}^{bb\tau\mu}V_{cb}^{*}|^{2} \eta_{\tau}}{\frac{1}{2} \left[|C_{SM}^{CC}|^{2} + |C_{SM}^{CC} + 2C_{T}^{bs\mu\mu}V_{cs}^{*} + 2C_{T}^{bb\mu\mu}V_{cb}^{*}|^{2} + |2C_{T}^{bs\mu\tau}V_{cs}^{*} + 2C_{T}^{bb\mu\tau}V_{cb}^{*}|^{2} \right]}$$
(5.4)

where η_{τ} is defined in 1.8 and, apart from that which is fixed, we introduced several new free parameters.

In this case the SM matching gives us (see section 2.2)

$$C_{SM}^{CC} = -2V_{cb}^* \, v^{-2} \tag{5.5}$$

When we are going to fit these anomalies we need to reduce the number of free parameters and we would like to do that without doing additional assumption.

A possible way to reduce them is to look at non anomalous observables that would get an important contribution from the Wilson coefficients of the NP and then use the experimental data to constraint those coefficients.

5.2 Constraining non anomalous observables

Another powerful tool that can be used to reduce the free parameters of the NP model is to use constraints derived by observables already tested that don't show deviations from the SM.

5.2.1
$$B \rightarrow K^* \bar{\nu} \nu$$

The $B \to K^* \bar{w}$ decay is linked with the so mentioned $B \to K^* l^+ l^-$ by gauge symmetry. Besides phenomenologically has the huge difference to haven't been observed yet. From [5] we get an upper limit at @95% CL and its relation with the SM prevision that s given by:

$$\mathscr{B}(B \to K^* \bar{w})_{exp} < 5.2 \,\mathscr{B}(B \to K^* \bar{w})_{SM} \tag{5.6}$$

Where the If we include NP that interacts only with LH fermions apart for the first families the expression, neglecting LF breaking contributions that would enter at order C_{NP}^2

$$\mathcal{B}(B \to K^* \bar{\nu} \nu)_{NP} = A \left[|C_{SM}^{\nu}|^2 + |C_{SM}^{\nu} + \delta C^{\nu_{\mu}}|^2 + |C_{SM}^{\nu} + \delta C^{\nu_{\tau}}|^2 \right]$$
(5.7)

where A is a given constant that includes kinematik and sum on lorentz indexes and C_{SM}^{ν} which is flavour universal because include only SM interactions is equal to

$$C_{SM}^{\nu} = 12.8 \ V_{ts}^{\star} V_{tb} \frac{e^2}{8\pi^2} \ v^{-2}$$
 (5.8)

taken by [9].

The value of $\mathcal{B}(B \to K^* \bar{\nu} \nu)_{NP}$ has to not exceed the experimental limit hence for 5.6

$$A \left[|C_{SM}^{\nu}|^{2} + |C_{SM}^{\nu} + \delta C^{\nu_{\mu}}|^{2} + |C_{SM}^{\nu} + \delta C^{\nu_{\tau}}|^{2} \right] < 5.2 \mathscr{B}(B \to K^{*} \bar{\nu} \nu)_{SM} = 5.2 \cdot 3A |C_{SM}|^{2}$$

$$\to \left| 1 + \frac{\delta C^{\nu_{\mu}}}{C_{SM}^{\nu}} \right|^{2} + \left| 1 + \frac{\delta C^{\nu_{\tau}}}{C_{SM}^{\nu}} \right|^{2} < 14.6$$
(5.9)

Using again the electric eigenstates form of 3.1 the BSM terms are $\delta C^{\nu_{\mu}} = C_S^{bs\mu\mu} - C_T^{bs\mu\mu}$ and $\delta C^{\nu_{\tau}} = C_S^{bs\tau\tau} - C_T^{bs\tau\tau}$.

Here we could have different scenarios according to the relative intensity of the two contributions in μ and τ channels. But anyway we can do some general considerations. The biggest value that both the NP contributions can singularly assume is given by the case in which one of the two δC is equal to $-C_{SM}$. The other one has in any case to respect

$$|1 + \frac{\delta C}{C_{SM}}|^2 < 14.6 \rightarrow |1 + \frac{\delta C}{C_{SM}}| < \sqrt{14.6} \approx 3.8$$
 (5.10)

and that is a limit for both coefficients which can never be exceeded. In fact it is easy to see that if $\delta C^{\nu_{\mu}}(\delta C^{\nu_{\tau}}) \neq -C_{SM}$ the upper limit on $\delta C^{\nu_{\tau}}(\delta C^{\nu_{\mu}})$ would be smaller.

That doesn't give direct constraint on Wilson coefficients, because there is a flat direction of δC given by the trasformation $(C_S, C_T) \rightarrow (C_S + x, C_T + x)$. Nevertheless if we manage to set a bound $\delta C^{NC} = C_S^{bs\mu\mu} + C_T^{bs\mu\mu}$ from the phenomenology we can derive information on the magnitude of $C_S^{bs\mu\mu}$, $C_T^{bs\mu\mu}$

5.2.2
$$R_{D^*}^{\mu e}$$

Here we look at a relative of R_{D^*} that compares the channel in muons with the channel in electrons.

The expression at leading order (neglecting again LF breaking contributions) is given by

$$R_{D^*}^{\mu e} = \frac{\mathcal{B}(B \to D^* \mu \bar{\nu})}{\mathcal{B}(B \to D^* e \bar{\nu})} = \frac{|C_{SM}^{CC} + \delta C^{CC} \mu|^2}{|C_{SM}^{CC}|^2} = 1 + \left|\frac{\delta C^{CC}}{C_{SM}^{CC}}\right|^2$$
(5.11)

where $\delta C^{CC\mu}=2C_T^{bs\mu\mu}V_{cs}^*+2C_T^{bb\mu\mu}V_{cb}^*$. We know from [5] that $R_{D^*}^{\mu e}$ is a good test for LFU beetween the first two families.

$$R_{D^*}^{\mu e}|_{exp} = 1.000 \pm 0.021$$
 (5.12)

that gives strong constraints on $\delta C^{CC\mu} = 2C_T^{bs\mu\mu}V_{cs}^* + 2C_T^{bb\mu\mu}V_{cb}^*$ and, combined with bounds on $C_T^{bs\mu\mu}$ that we can derive from $\mathcal{B}(B\to K^*\bar{\nu}\nu)$ and anomalous NC observables we can set limits on $C_T^{bb\mu\mu}$.

5.3 Numerical Analysis of the Anomalies

The next step is to find what values of the Wilson coefficients generated we need to accommodate the anomalies.

5.3.1 Fit to NC Anomalies

In Table 1.1 we have listed some anomalous observables derived from NC transitions. As we have already mentioned the expression 5.3 is valid only if the energy of the two leptons is greater than 1 *GeV* so that we can neglect phase space factor and electromagnetic contributions.

Our analysis is not a test of SM, because for that we would need to include many other observables and the anomaly could probably being hidden by the other observable values.

If we use SM as starting point the question we can ask is if a NP scenario fits the observables we say to be anomalous, better than SM itself does. Hence the only degree of freedom of the fit is the free parameter $\delta C^{NC} = C_S^{bs\mu\mu} + C_T^{bs\mu\mu}$.

Implementing a least squares fit we find that

$$\delta C^{NC}|_{best} = 0.70 \frac{e^2}{8\pi^2} V_{ts}^* V_{tb} v^{-2} \qquad \chi^2/ndof = 2.97$$

$$(0.57, 0.82) \frac{e^2}{8\pi^2} V_{ts}^* V_{tb} v^{-2} \quad whitin \ 1\sigma$$
(5.13)

hence the anomaly can be accommodated reducing C_{SM} in equation 5.2 of approximately 10%.

The point corresponding to SM ($\delta C^{NC}=0$) compared to the minimum χ^2 , is placed at $\sqrt{\Delta\chi^2}=\sqrt{\chi_{SM}^2-\chi_{min}^2}=7.81$ showing that NP model can fit the considered observables way better than SM does.

Without doing any additional assumption we can take the limit coming from the decay in neutrinos:

$$\left| 1 - \frac{C_S^{bs\mu\mu} - C_T^{bs\mu\mu}}{C_{SM}^{\nu}} \right| < 3.8$$

where the value of C_{SM}^{ν} is given in 5.8,we have that

$$-35.84 v^{-2} < \frac{(C_S^{bs\mu\mu} - C_T^{bs\mu\mu})}{\frac{e^2}{8\pi^2} V_{ts}^* V_{tb}} < 61.15 v^{-2}$$

$$-0.82v^{-2} < \frac{(C_S^{bs\mu\mu} + C_T^{bs\mu\mu})}{\frac{e^2}{8\pi^2} V_{ts}^* V_{tb}} < -0.57v^{-2} \quad \text{within } 1\sigma$$

$$(5.14)$$

We see that, having kept the flavour structure completely general, $B \to K^* \nu \nu$ doesn't give us acceptable range for the single Wilson coefficients $C_S^{bs\mu\mu}$, $C_T^{bs\mu\mu}$.

Anyway the only limit on $C_S^{bs\mu\mu}+C_T^{bs\mu\mu}$ would allow us to move as much as we want along the direction $(C_S^{bs\mu\mu},C_T^{bs\mu\mu})\to (C_S^{bs\mu\mu}+x,C_T^{bs\mu\mu}-x)$; But the range setted on $C_S^{bs\mu\mu}-C_T^{bs\mu\mu}$ limits that freedom and, in particular flavour scenarios when the bounds on δC^{ν_μ} keeping $(C_S^{bs\mu\mu},C_T^{bs\mu\mu})\simeq \mathcal{O}(\delta C^{NC})$.

Even without constraining $C_T^{bs\mu\mu}$ is possible to use the ratio $R_{D^*}^{\mu e}$ given by 5.11 to state from 5.12 that the whole coefficient $\delta C^{CC\mu}=2C_T^{bs\mu\mu}V_{cs}^*+2C_T^{bb\mu\mu}V_{cb}^*\ll C_{SM}^{CC}$, thus we remain with an expression of R_D equal to

$$R_{D} \equiv \frac{\mathcal{B}(B \to D^{*}\tau\bar{\nu})}{\frac{1}{2} \left[\mathcal{B}(B \to D^{*}e\bar{\nu}) + \mathcal{B}(B \to D^{*}\mu\bar{\nu}) \right]} \simeq$$

$$\simeq \frac{|C_{SM}^{CC} + 2C_{T}^{bs\tau\tau}V_{cs}^{*} + 2C_{T}^{bb\tau\tau}V_{cb}^{*}|^{2} \eta_{\tau}}{|C_{SM}^{CC}|^{2}} =$$

$$= \left| 1 + \frac{\delta C_{SM}^{CC}}{C_{SM}^{CC}} \right|^{2} \cdot \eta_{\tau}$$
(5.15)

where we have as well neglected LF violation contributions.

Then we have the same simple expression of the NC case with $\delta C^{CC} \equiv V_{cb}^* [2C_T^{bs\tau\tau} \frac{V_{cs}^*}{V_{cb}^*} + 2C_T^{bb\tau\tau}].$

5.3.2 Fit to CC Anomalies

The expression 5.15 is not just easier to treat than 5.4, also the only free parameter $\delta C^{CC} \equiv V_{cb}^* [2C_T^{bs\tau\tau} \frac{V_{cs}^*}{V_{cb}^*} + 2C_T^{bb\tau\tau}]$ is completely independent from δC^{NC} and hence we are going to do an independent analysis to find limits on that parameter.

Since η_{τ} is given by the measure of $R_D^{(\star)}$ we will consider the observables given by

$$\frac{R_{D^{(*)}}}{\eta_{\tau}^{D^{(*)}}} = \left| 1 + \frac{\delta C^{CC}}{C_{SM}^{CC}} \right|^2 \tag{5.16}$$

that in both cases has SM prediction equal to 1 by definition.

Setting C_{SM}^{CC} at the value 5.5 we find that the least square is found for

$$\delta C^{CC}|_{best} = -0.14 V_{cb}^* v^{-2} \qquad \chi^2/ndof = 0.042$$

$$(-0.19, -0.08) V_{cb}^* v^{-2} \quad whitin \ 1\sigma$$
(5.17)

where we find again that the anomaly is order 10% of C_{SM}^{CC} . This time the SM ($\delta C^{CC}=0$) is placed at $\sqrt{\Delta \chi^2}=\sqrt{\chi_{SM}^2-\chi_{min}^2}=2.31$ hence the anomaly is less significant than the NC case.

Now that we have numerical values for NP coefficients we are ready to see what type of UV physics we need to generate these contributions.

5.4 Selection of possible UV scenarios

In this section we are going to use numerical results found in the last section combined with UV matching done in chapter 4 summarized in table 4.1.

The single flavour components that enters in the anomalous observables are $\{C_S^{bs\mu\mu}, C_T^{bs\mu\mu}, C_T^{bs\tau\tau}, C_T^{bs\tau\tau}, C_T^{bs\tau\tau}\}$ and we have to stay mindful of bounds on $C_S^{bs\tau\tau} - C_T^{bs\tau\tau}$ given by $B \to K^* v \bar{v}$.

At 1σ level the values we need are:

$$\delta C^{NC} = C_S^{bs\mu\mu} + C_T^{bs\mu\mu} \in (0.57, 0.82) \frac{e^2}{8\pi^2} V_{ts}^* V_{tb} v^{-2}$$

$$\delta C^{CC} = V_{cb}^* \left[2C_T^{bs\tau\tau} \frac{V_{cs}^*}{V_{cb}^*} + 2C_T^{bb\tau\tau} \right] \in (-0.050, -0.020) V_{cb}^* v^{-2}$$

$$\left| 1 + \frac{\delta C^{\nu_{\mu}}}{C_{SM}^{\nu}} \right|^2 + \left| 1 + \frac{\delta C^{\nu_{\tau}}}{C_{SM}^{\nu}} \right|^2 < 14.6$$
(5.18)

where the most statistically significant deviation is given by δC^{NC} .

In table 5.2 we have listed the contributions to the observables given by the heavy bosons described in chapter 4 where We didn't include the doublets R_2 and \widetilde{R}_2 because they are allowed to couple only L-R currents by \mathcal{G}_{SM} , hence they can't generate $\mathcal{O}_{S,T}$.

Referring to tables 4.1 and 5.2 we can see what type of scenario, characterized by the insertion of one or more heavy bosons can accommodate the anomalous observables generating the contributions listed in equations 5.18.

Secondly we will see if without setting to 0 UV parameters, i.e. considering non vacuum values for all the entries in the tables 4.1 is possible to cancel all contributions to semileptonic operators different from \mathcal{O}_S and \mathcal{O}_T , that we assume constrained by observables we haven't considered, and eventually to four-quarks operators, besides for what we said in section 4.5.1 is not possible to cancel them with the heavy bosons we are considering.

	δC^{NC}	δC^{CC}	$\delta C^{ u_{\mu}(u_{ au})}$
B'	$-2G_{B'}(\lambda_B^q)^{bs}(\lambda_B^l)^{\mu\mu}$	Ø	$-2G_{B'}(\lambda_B^q)^{bs}(\lambda_B^l)^{\mu\mu(\tau\tau)}$
W'	$-4G_{W'}(\lambda_W^q)^{bs}(\lambda_W^l)^{\mu\mu}$	$-8G_{W'}V_{cb}^{*}(\lambda_{W'}^{l})^{\tau\tau}((\lambda_{W}^{q})^{bb}\frac{V_{cs}^{*}}{V_{cb}^{*}}+(\lambda_{W}^{q})^{ss})$	$4G_{W'}(\lambda_W^q)^{bs}(\lambda_W^l)^{\mu\mu(\tau\tau)}$
U_1	$-G_{U_1}(eta_{U_1}^L)^{b\mu}(eta_{U_1}^{L*})^{s\mu}$	$-G_{U_1}V_{cb}^*((\beta_{U_1}^L)^{b\tau}(\beta_{U_1}^{L*})^{s\tau}\frac{V_{cs}^*}{V_{cb}^*} + (\beta_{U_1}^L)^{b\tau}(\beta_{U_1}^{L*})^{b\tau})$	Ø
U_3	$-G_{U_3}(eta_{U_3})^{b\mu}(eta_{U_3}^*)^{s\mu}$	$G_{U_3}V_{cb}^*((\beta_{U_3})^{b\tau}(\beta_{U_3}^*)^{s\tau}\frac{V_{cs}^*}{V_{cb}^*} + (\beta_{U_3})^{b\tau}(\beta_{U_3}^*)^{b\tau})$	$-2G_{U_3}(eta_{U_3})^{b\mu}(eta_{U_3}^*)^{s\mu}$
S_1	Ø	$ -\frac{1}{2}G_{S_1}V_{cb}^*((\beta_{S_1}^L)^{b\tau}(\beta_{S_1}^{L*})^{s\tau}\frac{V_{cs}^*}{V_{cb}^*} + (\beta_{S_1}^L)^{b\tau}(\beta_{S_1}^{L*})^{b\tau}) $	$G_{S_1}(\beta_{S_1})^{b\mu}(\beta_{S_1}^{L*})^{s\mu}$
<i>S</i> ₃	$G_{S_3}(\beta_{S_3})^{b\mu}(\beta_{S_3}^*)^{s\mu}$	$G_{S_3}V_{cb}^*((\beta_{S_3})^{b\tau}(\beta_{S_3}^*)^{s\tau}\frac{V_{cs}^*}{V_{cb}^*} + (\beta_{S_3})^{b\tau}(\beta_{S_3}^*)^{b\tau})$	$\frac{1}{2}G_{S_3}(\beta_{S_3})^{b\mu}(\beta_{S_3}^*)^{s\mu}$
1σ	$(0.57, 0.82) \frac{e^2}{8\pi^2} V_{ts}^* V_{tb} v^{-2}$	$(-0.19; -0.08)V_{cb}^{\star}v^{-2}$	_

Figure 5.2: Parameters generated from the integration of heavy bosons, respect to table 4.1 we have selected the combinations involved in the observables considered.

5.4.1 The EW-singlets Leptoquarks: $U_1 \& S_1$

The first possibility we consider is to accommodate the anomalies with the insertion of the only boson U_1 .

We can assume for the coupling to RH current β_R to be small as it happens for the $SU(2)_L$ singlet of the SM, and hence neglect the coefficients of \mathcal{O}_R^d and \mathcal{O}_S^d .

Thus we remain with δC^{NC} and δC^{CC} that can be set respectively positive and negative

Thus we remain with δC^{NC} and δC^{CC} that can be set respectively positive and negative independently according to limits in 5.18 with never create tensions with $\mathcal{B}(B \to K^* \nu \nu)$ as highlighted in table 5.2.

Here the values of beta matrix has to be such that $\beta_{U_1}^{b\mu}\beta_{U_1}^{\star s\mu} < 0$ and, since we have that for any value of $\beta_{U_1}^{b\tau}$ the addend $\beta_{U_1}^{b\tau}\beta_{U_1}^{\star b\tau}$ turns to be positive we need a value for $\beta_{U_1}^{b\tau}\beta_{U_1}^{\star s\tau}$ such that $\beta_{U_1}^{b\tau}[\frac{V_{cs}^{\star}}{V_{cb}^{\star}}\beta_{U_1}^{\star s\tau} + \beta_{U_1}^{\star b\tau}] > 0$.

The automatic cancellation of contributions to neutrinos decay is one of the reason that makes U_1 one of the most popular scenarios in literature. Plus, it avoids automatically some radiative constraints from EWPT and from the $high:p_t$ searches considered in the analysis performed by [9, 12, 13].

Plus, it appears in many UV completions as shown by [9, 13, 14].

 S_1 , instead gives no tree level contributions to NC anomalies but it does generate a $\delta C^{CC} \neq 0$ (see table 5.2) and it also contributes to $b \rightarrow svv$. A possibility is to include them together giving an additional contribution to $b \rightarrow c\tau \bar{\nu}_{\tau}$ that can help to accommodate

 $R_{D(*)}$ within the values allowed by the limits on $\mathcal{B}(B \to K^* \nu \nu)$.

5.4.2 The EW-triplets Leptoquarks $U_3 & S_3$

Introducing a scalar and a vector with the same quantum numbers under \mathcal{G}_{SM} (as we would do incluing the two EW-singlets $U_1 \& S_1$) lends itself well to be implemented in an UV completion characterized by a strongly coupled sector at high energy with a global chiral symmetry $SU(N)_L \otimes SU(N)_R$ spontaneously broken at EW scale to the vectorial subgroup $SU(N)_V$.

In this scenario there are scalar and vector bosons arising with the same quantum number, the first as pseudo Nambu-Goldstone Bosons (pNGB) and the second as composite state excited by the unbroken Noether's currents of $SU(2)_V$, in analogy with the π and ρ of the chiral symmetry of QCD. In that case the contribution of the scalar would be generally bigger because of the lower mass protected by the unbroken symmetry.

Including U_3 or S_3 in the SM lagrangian we would get the same tension with $\mathcal{B}(B \to K^*\nu\nu)$. In fact being in both cases $\delta C^{\nu\mu} \propto \delta C^{NC}$ to accommodate NC anomalies we have also to contribute to $b \to s\nu_{\mu}\bar{\nu}_{\mu}$; nevertheless with a general flavour structure is possible to include the CC deviations without exceeding limits on $\delta C^{\nu\mu}$ as shown by [12].

The biggest tension comes out when we try to accommodate CC anomalies. In fact both for U_3 and S_3 , to compensate the $\beta^{b\tau}\beta^{*b\tau} > 0$ we need a big $\beta^{b\tau}\beta^{*s\tau}$ to get a negative δC^{CC} as requested by 5.18 and that corresponds to an important contribution to $\delta C^{V_{\tau}}$.

Including simultaneously both of them this tension can be avoided. In fact the total contributions result to be

$$\begin{split} \delta C^{NC} &= -G_{U_3} \beta_{U_3}^{\ b\mu} \beta_{U_3}^{*\ s\mu} - G_{S_3} \beta_{S_3}^{\ b\mu} \beta_{S_3}^{*\ s\mu} \\ \delta C^{CC} &= V_{cb}^* [G_{U_3} (\frac{V_{cs}^*}{V_{ts}^*} \beta_{U_3}^{b\tau} \beta_{U_3}^{*\ s\tau} + \beta_{U_3}^{b\tau} \beta_{U_3}^{*\ b\tau}) - \frac{1}{2} G_{S_3} (\frac{V_{cs}^*}{V_{ts}^*} \beta_{S_3}^{b\tau} \beta_{S_3}^{*\ s\tau} + \beta_{S_3}^{b\tau} \beta_{S_3}^{*\ b\tau})] \\ \delta C^{\nu_{\mu}(\nu_{\tau})} &= -2G_{U_3} \beta_{U_3}^{\ b\mu(\tau)} \beta_{U_3}^{*\ s\mu(\tau)} - \frac{1}{2} G_{S_3} \beta_{S_3}^{\ b\mu(\tau)} \beta_{S_3}^{*\ s\mu(\tau)} \end{split}$$
(5.19)

Lets consider the case in which the flavour structure is the same, i.e. $\beta_{U_3} = \beta_{S_3} \equiv \beta$ (which is reasonable if these two bosons derive from the same aspect of the theory as ρ and π). The effective contributions in 5.19 become

$$\delta C^{NC} = (G_{S_3} - G_{U_3})\beta^{b\mu}\beta^{*s\mu}$$

$$\delta C^{CC} = V_{cb}^* (G_{U_3} - \frac{1}{2}G_{S_3})(\frac{V_{cs}^*}{V_{ts}^*}\beta^{b\tau}\beta^{*s\tau} + \beta^{b\tau}\beta^{*b\tau})]$$

$$\delta C^{\nu_{\mu}(\nu_{\tau})} = (\frac{1}{2}G_{S_3} - 2G_{U_3})\beta^{b\mu(\tau)}\beta^{*s\mu(\tau)}$$
(5.20)

In this framework we can accomodate the NC anomalies for instance with $\beta^{b\mu}\beta^{*s\mu} < 0$ for $G_{S_3} > G_{U_3}$ (that is normally the case if S_3 is a pNGB).

For $G_{S_3} \simeq 4G_{U_3}$ the limits on $B \to K^* \nu \nu$ are satisfied independently from the flavour structure (asit happens for U_1), hence there are different combinations of the β elements that

can accomodate CC anomalies as well.

Otherwise we could have a problem coming from $\beta^{b\mu}\beta^{*s\mu}$ that needs to be negative to accommodate NC anomalies and that contributes to $b \to sv_{\mu}\bar{v}_{\mu}$.

For what concerns CC anomalies accommodation, assuming $G_{S_3} > 2G_{U_3}$, we need $(\frac{V_{cs}^*}{V_{ts}^*}\beta^{b\tau}\beta^{*s\tau} + \beta^{b\tau}\beta^{*b\tau})$ to be positive and, since $\beta^{b\tau}\beta^{*b\tau} \geq 0$, we don't need a big value of $\beta^{b\tau}\beta^{*s\tau}$ and hence we can choose values such that $\delta C^{\nu_{\tau}} \simeq 0$.

With a non vacuum contribution to v_{μ} channel and a vacuum one to v_{τ} could be possible (according to the magnitude of $G_{S_3} - G_{U_3}$) to accommodate the anomalies, even if a mild tuning is needed.

Instead if $G_{U_3} < G_{S_3} < 2G_{U_3}$ we would need a big value of $\beta^{b\tau}\beta^{*s\tau}$ to flip the sign of δC^{CC} producing an unpleasant big value of δC^{v_τ} . Alsowe would have a decreasement of $G_{U_3} - G_{S_3}$ requiring for a bigger $\beta^{b\mu}\beta^{*s\mu}$ which could exceed the constraint on $\mathcal{B}(B \to K^* \nu \nu)$.

In conclusion $U_3 + S_3$ can be a good candidate but it need for the NP parameters to assume particular values.

5.4.3
$$S_1 + U_3$$

We have noticed that the LQ triplets can't accommodate CC anomalies without creating tension with $\mathcal{B}(B \to K^* vv)$; on the other hand S_1 doesn't contribute to NC anomalies at tree level, in fact a possibility we need to consider is to include both of them dividing the tasks of accommodating CC and NC anomalies beetween the two of them.

The generic δC^{ν} generated are

$$\delta C^{\nu_{\mu}(\nu_{\tau})} = G_{S_1}(\beta_{S_1})^{b\mu(\tau)}(\beta_{S_1}^*)^{s\mu(\tau)} - 2G_{U_3}(\beta_{U_3})^{b\mu(\tau)}(\beta_{U_3}^*)^{s\mu(\tau)}$$
(5.21)

where $(\beta_{S_1})^{b\mu}(\beta_{S_1}^*)^{s\mu}$ is *free* in the sense that doesn't need to have any particular value since it doesn't contribute to any other anomalous observable, hence we can ask for it to have the right value to cancel the contribution to v_{μ} channel. This fact allows $(\beta_{U_3})^{b\mu(\tau)}(\beta_{U_3}^*)^{s\mu(\tau)}$ to assume the value needed for δC^{NC} (that in this case is equal to the only contribution of U_3 in table 5.2) to accommodate NC anomalies.

The contribution to $R_{D^{(*)}}$ instead is given by

$$\delta C^{CC} = V_{cb}^{*} \left[G_{U_{3}} ((\beta_{U_{3}})^{b\tau} (\beta_{U_{3}}^{*})^{s\tau} \frac{V_{cs}^{*}}{V_{cb}^{*}} + (\beta_{U_{3}})^{b\tau} (\beta_{U_{3}}^{*})^{b\tau} \right]$$

$$- \frac{1}{2} G_{S_{1}} ((\beta_{S_{1}}^{L})^{b\tau} (\beta_{S_{1}}^{L*})^{s\tau} \frac{V_{cs}^{*}}{V_{cb}^{*}} + (\beta_{S_{1}}^{L})^{b\tau} (\beta_{S_{1}}^{L*})^{b\tau}) \right]$$

$$(5.22)$$

Here we see that there are different appreciable scenarios that could arise

• If $(\beta_{S_1})^{s\tau} \simeq (\beta_{U_3})^{s\tau} \simeq 0$ we would have a negative δC^{CC} if $G_{S_1} |\beta_{S_1}^L|^{b\tau}|^2 > 2G_{U_3} |\beta_{U_3}^L|^{b\tau}|^2$ with vacuum contribution to both neutrinos channels.

- If the $(\beta_{S_1})^{s\tau} \simeq (\beta_{U_3})^{s\tau} \neq 0$ is possible to cancel $\delta C^{\nu_{\tau}}$ for $G_{S_1} \simeq 2G_{U_3}$ and then we can have a $\delta C^{CC} < 0$ for $G_{S_1} |\beta_{S_1}^L|^{b\tau}|^2 > 2G_{U_3} |\beta_{U_3}^{b\tau}|^2$.
- Since the contribution to $b \to s\nu_{\mu}\bar{\nu}_{\mu}$ is independent from the others the two $\beta^{b\tau}\beta^{*s\tau}$ are as much free as $\delta C^{\nu_{\mu}}$ is small.

In this scenario is possible to accommodate all the observables considered with many combination of numerical values of the parameters.

It is hardest from a theoretical point of view to make two such different boson fields alone, instead is possible to make them arise in multiplets in which only S_1 and U_3 don't decouple at low energies because, for instance, of their accidentally low mass.

5.4.4
$$S_1 + S_3$$

The combination of S_1 and S_3 is also a popular LQ option to accommodate B-Physics Anomalies, so we want going to see what are in general the values that UV parameters can assume to do that.

The whole contributions are given by

$$\delta C^{NC} = G_{S_{3}}(\beta_{S_{3}})^{b\mu}(\beta_{S_{3}}^{*})^{s\mu}$$

$$\delta C^{CC} = V_{cb}^{*} \left[-\frac{1}{2} G_{S_{1}}((\beta_{S_{1}}^{L})^{b\tau}(\beta_{S_{1}}^{L*})^{s\tau} \frac{V_{cs}^{*}}{V_{cb}^{*}} + (\beta_{S_{1}}^{L})^{b\tau}(\beta_{S_{1}}^{L*})^{b\tau}) + G_{S_{3}}((\beta_{S_{3}})^{b\tau}(\beta_{S_{3}}^{*})^{s\tau} \frac{V_{cs}^{*}}{V_{cb}^{*}} + (\beta_{S_{3}})^{b\tau}(\beta_{S_{3}}^{*})^{b\tau}) \right]$$

$$\delta C^{\nu\mu(\nu_{\tau})} = G_{S_{1}}(\beta_{S_{1}})^{b\mu(\tau)}(\beta_{S_{1}}^{L*})^{s\mu(\tau)} + \frac{1}{2} G_{S_{3}}(\beta_{S_{3}})^{b\mu(\tau)}(\beta_{S_{3}}^{*})^{s\mu(\tau)}$$

$$(5.23)$$

where again we notice that the contribution to $b \to s \nu_{\mu} \bar{\nu}_{\mu}$ can become small at will without affecting the other contributions and as consequence we will assume $G_{S_3}(\beta_{S_3})^{b\mu}(\beta_{S_3}^*)^{s\mu}$ to have the right value to accomodate NC anomalies.

As we have seen in section 5.4.2 the contribution to δC^{CC} given by S_3 can't become negative at will without contributing sentitively to $b \to s v_\tau \bar{v}_\tau$, nevertheless in this case that is as much less constrained as much δC^{ν_μ} is small as in the case of $S_1 + U_3$. This time we have that the contribution generated by S_1 to δC^{CC} enter with a minus sign, hence for values of $(\beta_{S_1})^{b\tau}(\beta_{S_1}^*)^{b\tau}$ not much big and negative the total contribution can

This scenario has been theoretically studied in detail by [15] that brings S_1 and S_3 out as composite states of heavy fermions charged under a strongly coupled group $SU(N_{HC})$. In this work is shown how they can emerge together with other two colourless scalar fields with the quantum numbers of H and H^c .

results negative according to the relative magnitude of G_{S_1}/G_{S_2} .

Since all these states comes out as pNGBs of a spontaneously broken global symmetry that would explain the accidental lightness of Higgs boson solving at the same time the B-Physics Anomalies and the so-known *Electroweak Scale Naturalness Problem*.

Figure 5.3: Tree level contributions to $b\bar{s} \rightarrow s\bar{b}$; the combination of them grows with the growing of single amplitudes.

Giving a try to colourless NP scenario 5.4.5

Another possible way to make two different bosons to cure independently NC and CC anomalies is to include in the lagrangian W' and B' making the effective contributions to LH operators equal to

$$\delta C^{NC} = -2G_{B'}(\lambda_{B}^{q})^{bs}(\lambda_{B}^{l})^{\mu\mu} - 4G_{W'}(\lambda_{W}^{q})^{bs}(\lambda_{W}^{l})^{\mu\mu}$$

$$\delta C^{CC} = -8G_{W'}V_{cb}^{*}(\lambda_{W'}^{l})^{\tau\tau}[(\lambda_{W}^{q})^{bb}\frac{V_{cs}^{*}}{V_{cb}^{*}} + (\lambda_{W}^{q})^{ss}]$$

$$\delta C^{\nu_{\mu}(\nu_{\tau})} = -2G_{B'}(\lambda_{B}^{q})^{bs}(\lambda_{B}^{l})^{\mu\mu(\tau\tau)} + 4G_{W'}(\lambda_{W}^{q})^{bs}(\lambda_{W}^{l})^{\mu\mu(\tau\tau)}$$
(5.24)

where we notice right away that

$$\delta C^{NC} = \delta C^{\nu_{\mu}} - 8G_{W'}(\lambda_W^q)^{bs}(\lambda_W^l)^{\mu\mu}$$

which means that we can set the elements of $\lambda_B^{q/l}$ such that $\delta C^{\nu_\mu} \simeq 0$ getting a negative value for δC^{NC} .

The further semileptonic contributions of B' can be cancelled posing the RH couplings $\lambda_B^e = \lambda_B^u = \lambda_B^d = 0$. Nevertheless even having them *sim*0 the contributions to $\mathcal{O}_R^{u/d}$ are proportional to the square of RH couplings and can be neglected, while contributions to RH-LH operators $\{\mathcal{O}_{LR1}, \mathcal{O}^u_{LR2}, \mathcal{O}^d_{LR2}\}$ can be cancelled introducing R_2 and \widetilde{R}_2 with appropriate parameters as we can see in table 4.1. The contribution to $\delta C^{NC} > 0$ force $(\lambda^q)^{bs}$ to be $\neq 0$ but it can be decreased at will

increasing $(\lambda_W^l)^{\mu\mu}$.

Nevertheless if we want to cure CC anomalies as well we would need a non vacuum value for $(\lambda_W^l)^{\tau\tau}$ combined to a non vacuum $(\lambda^l)^{\mu\mu}$ would contribute to $\tau \to \mu \nu_\tau \bar{\nu}_\mu$ tested by LEP [11]. Decreasing $(\lambda_W^l)^{\tau\tau}$ we could still get a negative contribution for δC^{CC} through $(\lambda_W^q)^{bb}$ (or even with $(\lambda_W^q)^{bs}$ which however is more unpleasant because of the B_s mixing discussed in 4.5.1).

The CC anomalies can be accommodated without disturbing much the constraints with a considerable value of $(\lambda_W^l)^{\tau\tau}(\lambda_W^q)^{bb}$.

On the other hand the NC anomalies to be accomodate need to include the parameter $(\lambda^q)^{bs} \neq 0$ that gives tree level contributions to B_s meson mixing through the amplitudes represented in figure 5.3 that are $\propto G_{B'}[(\lambda_B^q)^{bs}]^2 + G_{W'}[(\lambda_W^q)^{bs}]^2$, hence they always interfere costructively for any value of $(\lambda_{R/W}^q)^{bs}$.

In conclusion B' + W' is a good scenario only for a special choice of the UV parameters and hence it is hard to have these contributions emerging naturally from general assumptions.

Furthermore this very special choice of the parameters could be threatened from other observables or loop induced constraints we didn't consider and even for data set coming from next experiments.

Summary and conclusions

Clues of LFU violation in the physics of *B* mesons are being observed day by day. Many types of theories has been formulated and we can't know yet what is the exact form of the NP involved in these processes.

Nevertheless the guideline given by the available data is clear.

- Since B-Physics Anomalies appear only in semileptonic decays the Leptoquark
 possibility seem absolutely proper and in most of the cases described in this work
 Barion Number conservation isn't threatened significantly.
- Since these deviations are observed only in flavour breaking processes i.e. in processes that in SM involve only LH fermions. The BSM physics could a priori couple also with RH fermions. Nevertheless the coupling to RH leptons is much suppressed in the SM and hence a NP kindred to RH leptons would create some tension with the available LFU tests. Instead the RH quarks could be involved, even if the value ratio χ_K introduced in section 5.1.1 points toward a NP that involves only LH quarks.
 - Furthermore the involvement of contributions radically different from SM ones would require the computation of hadronic matrix element with non perturbative methods as done by [12] in a general analysis and by [16] that presented a complete Great Unification Theory that makes S_3 and R_2 emerge with a suitable affection to B-Physics Anomalies.
- Since the CC processes seem to be flavour universal for the first two families, to neglect the coupling with electron is an assumption that can be easily relaxed redefining the coupling to muons after we accommodated CC anomalies. Meanwhile the coupling for the first family of quark would affect the anomalous observable in a very suppressed way and, hence this phenomena never involve the *u* and *d* quark mass eigenstates it is natural to assume that first family of quark is not involved.
- U_1 is a pleasant possibility that avoids tree level contributions to $b \to sv\bar{v}$, but that features can also be implemented combining different Leptoquarks keeping a good level of generality for the UV parameters. $S_1 + S_3$ has been studied by the already mentioned [15] in a composite Higgs model but also by [9, 17].
 - The other combinations of Leptoquarks like $U_1 + S_1$, $S_1 + U_3$ and $S_3 + U_3$ aren't as much considered but they show as well many interesting features and all of them

could lend itself to be implemented in some UV completions.

The colourless option, instead, serves our purpose only making its path beetween the tight constraints of the data, in any case it has been considered as natural extension of the gauge sector of SM by [18, 19].

A

Mapping beetween Weyl and Dirac pictures

In this work fermion fields have been written in two different representations: the Dirac representation and the Weyl representation. Here we show that the two of them are equivalent and the choice of one rather than the other is done only to show different aspects of the lorentz structure.

The Weyl representation consists in writing fermion fields as irreducible representations of Lorentz group either $(\frac{1}{2},0)$ or $(0,\frac{1}{2})$, it becomes useful when the dynamic treats differently fermions transforming under different representations. We indicate them with

$$\psi_L \sim (\frac{1}{2}, 0), \quad \psi_R \sim (0, \frac{1}{2})$$

that are linked by the charge conjugation. The two fundamental representations are labelled with L, R that identify a quantum number named *chirality* which by convention is set equal to -1 for fermions in $(\frac{1}{2}, 0)$ and +1 for fermions in $(0, \frac{1}{2})$.

The scalar and vector currents that can be constructed with Weyl fields using σ^{μ} and $\overline{\sigma}^{\mu}$ and, in this picture, they belong as well to irreducible representations of Lorentz group:

$$\psi_L^{\dagger} \overline{\sigma}^{\mu} \psi_L \sim (1,0)$$

$$\psi_R^{\dagger} \sigma^{\mu} \psi_R \sim (0,1)$$

$$\psi_L^{\dagger} \psi_R + h.c. \sim (0,0)$$

then is useful to write fermion fields when interactions of these fermion are *chiral*, i.e. different for fermions belonging to $(\frac{1}{2}, 0)$ or $(0, \frac{1}{2})$.

Instead, when the interactions are *vector-like* (that means blind to chirality), can be useful to organize the two fundamental representations in a unique field:

$$\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \tag{A.1}$$

that has four components, two trasforming under $(\frac{1}{2},0)$ and the other two under $(0,\frac{1}{2})$. A field defined in this way is clearly trasforming under a reducible representation of Lorentz group (precisely $(\frac{1}{2},0)\otimes(0,\frac{1}{2})$) and it is how we represent fermions in Dirac picture.

To build currents in this picture we need to introduce a set of 4x4 matrices

$$\gamma^{\mu} = \begin{pmatrix} 0 & \overline{\sigma}^{\mu} \\ \sigma^{\mu} & 0 \end{pmatrix}$$

known as the Dirac matrices.

The product of these matrices times *i* gives us the *chirality matrix*

$$\gamma^5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} -\mathbf{1}_{2x2} & 0\\ 0 & \mathbf{1}_{2x2} \end{pmatrix}$$

where the name is due to the fact that eigenvalues of this matrix correspond to the chirality defined above.

Through this matrix we get the access to the different irreducible representations using the projectors

$$P_L = \frac{1 - \gamma^5}{2}, \quad P_R = \frac{1 + \gamma^5}{2}$$

Using them we can define a biunivoc mapping beetween Dirac and Weyl pictures

$$\psi_L^{Weyl} \to \psi_L^{Dirac} \equiv P_L q^{Dirac} = \begin{pmatrix} \psi_L^{Weyl} \\ 0 \end{pmatrix}$$

$$\psi_R^{Weyl} \to \psi_R^{Dirac} \equiv P_R \psi^{Dirac} = \begin{pmatrix} 0 \\ \psi_R \end{pmatrix}$$

and in the other way, using that $P_L + P_R = 1$

$$\psi^{Dirac} = (P_L + P_R) \psi^{Dirac} \equiv \psi_L^{Dirac} + \psi_R^{Dirac} \rightarrow \psi_L^{Weyl} + \psi_R^{Weyl}$$

Here we have shown that the two pictures are equivalent and always interchangeable. One can prefer one rather than the other according that the interaction treated were chiral or vector-like.

A.1 Currents

To build currents with Dirac fermion fields we need to use the y matrices as follows.

We define $\overline{\psi} \equiv \psi^{\dagger} \gamma^0$, hence the scalar current is given by:

$$\overline{\psi}\chi = \overline{\psi}_{I}\chi_{R} + \overline{\psi}_{R}\chi_{L} = \psi_{I}^{\dagger}\chi_{R} + \psi_{R}^{\dagger}\chi_{L}$$

where the last term is written in Weyl's representation.

The vector current, instead is given by

$$\overline{\psi}\gamma^{\mu}\chi \sim (1,0) \oplus (0,1) \tag{A.2}$$

where we have used $\{\gamma^{\mu}, \gamma^{5}\} = 0$ and $P_{L(R)}\psi_{R(L)} = 0$ to cancel L-R terms. It is clear that it is not an irreducible representation, but it is an eigenstate of parity, in fact since parity acts like γ^{0} on single fermion field

$$P(\psi) = \gamma^0 \psi \to P(\overline{\psi} \gamma^\mu \chi) = \overline{\psi} \gamma^0 \gamma^\mu \gamma^0 \chi = -\overline{\psi} \gamma^\mu \chi, \quad J^P(\overline{\psi} \gamma^\mu \chi) = 1^- \tag{A.3}$$

where we used $\{\gamma^{\mu}, \gamma^{\nu}\} = \eta^{\mu\nu}$.

It is also possible to write a *pseudovector* current that has positive parity through insertion of γ^5 matrix

$$\overline{\psi}\gamma^{\mu}\gamma^{5}\chi \to P(\overline{\psi}\gamma^{\mu}\gamma^{5}\chi) = \overline{\psi}\gamma^{0}\gamma^{\mu}\gamma^{5}\gamma^{0}\chi = \overline{\psi}\gamma^{\mu}\gamma^{5}\chi, \quad J^{P}(\overline{\psi}\gamma^{\mu}\gamma^{5}\chi) = 1^{+}$$
 (A.4)

Usual in works that use Dirac's picture semileptonic neutral current operator, for instance with quarks b and s as

$$C_9^l \mathcal{O}_9^l + C_{10}^l \mathcal{O}_{10}^l = C_9^l \, \bar{b} \gamma^\mu P_L s \, \bar{e} \gamma_\mu e + C_{10}^l \, \bar{b} \gamma^\mu P_L s \, \bar{e} \gamma_\mu \gamma^5 e \tag{A.5}$$

where the l corresponds to the family of e_L . The corrispondence with beetween these Wilson coefficients and the purely LH ones can be derived using

$$1 = P_{R} + P_{L}, \quad \gamma^{5} = P_{R} - P_{L} \rightarrow C_{9}^{l} \, \bar{b} \gamma^{\mu} P_{L} s \, \bar{e} \gamma_{\mu} e + C_{10}^{l} \, \bar{b} \gamma^{\mu} P_{L} s \, l \gamma_{\mu} \gamma^{5} l \supset (C_{9}^{l} - C_{10}^{l}) \bar{b}_{L} \gamma^{\mu} s_{L} \, \bar{e}_{L} \gamma_{\mu} e_{L} = (A.6)$$

$$(C_{9}^{l} - C_{10}^{l}) b_{L}^{\dagger} \bar{\sigma}^{\mu} s_{L} \, e_{L}^{\dagger} \bar{\sigma}_{\mu} e_{L}$$

where the last form in term of Weyl fields tells us that $C_9^l - C_{10}^l$ corresponds in our notation to $C_S^{bsll} + C_T^{bsll}$.

B

Proof of the Flavour Theorem 3

Here we report the proof of the Flavour Theorem 3. First we need to see how CP symmetry acts on the fields of SM lagrangian.

In Dirac representation terms, defining

$$\psi_L \equiv \frac{1 - \gamma_5}{2} \psi, \quad \psi_R \equiv \frac{1 + \gamma_5}{2} \psi$$

charge conjugation, C, and spatial inversion, P, act on fermions as:

$$P: \psi(\vec{x}, t) = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \to \gamma_0 \psi(-\vec{x}, t) = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix} (-\vec{x}, t)$$

$$C: \psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} (\vec{x}, t) \to i\gamma_2 \psi^*(\vec{x}, t) = \begin{pmatrix} -\varepsilon \psi_R^* \\ \varepsilon \psi_L^* \end{pmatrix} (\vec{x}, t)$$

$$CP: \psi(\vec{x}, t) = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} (\vec{x}, t) \to i\gamma_2 \gamma_0 \psi^*(-\vec{x}, t) = \begin{pmatrix} -\varepsilon \psi_L^* \\ \varepsilon \psi_R^* \end{pmatrix} (-\vec{x}, t)$$

where $\varepsilon = i\sigma_2$. Then we know that that the Higgs boson is transformed under *CP* as

$$CP: H(\vec{x},t) \to CH(-\vec{x},t) \to H^{c}(-\vec{x},t) = \varepsilon H^{*}(-\vec{x},t)$$

Instead, on the gauge fields, *CP* acts as:

$$CP \,:\, (A_{\mu}(\vec{x},t),Z_{\mu}(\vec{x},t),W_{\mu}^{\pm}(\vec{x},t),G_{\mu}) \to (-A_{\mu}(-\vec{x},t),-Z_{\mu}(-\vec{x},t),W_{\mu}^{\mp}(-\vec{x},t),-G_{\mu}^{a}(-\vec{x},t))$$

Since everyone of these bosons couples with a current with spin parity $J^P = 1^-$ (see app A) it is clear that when vector bosons couple with an hermitian current the product vector-current is CP invariant.

Also the Yukawa Lagrangian in equation 2.4 CP symmetry act exchanging the couplings of every term with his hermitian conjugate, hence \mathcal{L}_Y is CP invariant if Yukawa matrices $Y_{u/d/e}$ are hermitian.

If we work in mass eigenstates basis the Yukawa matrices are real and diagonal, thus the only possible source of CP violation is in the charged current lagrangian:

$$\mathcal{L}_{CC} = -\frac{g_2}{\sqrt{2}} \left[(V^{\dagger} u_L)^{\dagger} \overline{\sigma}_{\mu} d_L W_{\mu}^+ + d_L^{\dagger} \overline{\sigma}_{\mu} (V u_L) W_{\mu}^- \right]$$
 (B.1)

That after the acting of CP becomes

$$\mathcal{L}_{CC}^{CP} \equiv CP(\mathcal{L}_{CC}) = -\frac{g_2}{\sqrt{2}} [(V^t u_L)^{\dagger} \bar{\sigma}_{\mu} d_L W_{\mu}^{+} + d_L^{\dagger} \bar{\sigma}_{\mu} (V^t u_L) W_{\mu}^{-}]$$
 (B.2)

hence $\mathscr{L}^{CP}_{CC} = \mathscr{L}_{CC}$ if and only if $V^t = V^{\dagger}$ \square .

C

Rough estimation of M_{LQ} from proton decay

Here we will show through a naive approach why $\tau_p 10^{33} ys$ can be explained by a mediator with a mass of order $\Lambda_{GUT} \simeq 10^{16}$ GeV as we said in section 4.2.1.

The contribution given by the diagram to proton decay

if NP is flavour universal will be approximately

$$\mathcal{M} \simeq g_{NP} \frac{1}{q^2 - M_{NP}^2} g_{NP} \tag{C.1}$$

that in the limit of $q^2 \ll M_{NP}^2$ becomes

$$\mathcal{M} \simeq -\frac{g_{NP}^2}{M_{NP}^2} \tag{C.2}$$

We know that the decay width is

$$\Gamma = (const.)|\mathcal{M}|^2$$

and that it has to have the dimension of a $[mass]^1$, hence the (const.) has to have the dimension of a $[mass]^5$. Since the biggest mass in play is m_p , to get a rough estimation of the width we assume (const.) = m_p^5 .

If we assume $g_{NP} \simeq 1$ the approximate width results:

$$\Gamma \simeq \frac{m_p^5}{M_{NP}^4} \to \tau \simeq \frac{M_{NP}^4}{m_p^5} > 10^{33} \text{ ys}$$

To have the prediction in unit of years we have first to get the lifetime in gaussian units, i.e.

$$\tau \simeq \frac{M_{NP}^4}{m_p^5} \cdot (\frac{\hbar}{c^2}) = (\frac{1}{0.938})^5 (\frac{M_{NP}c^2}{1 \ GeV})^4 \cdot (6.58 \cdot 10^{-25} s)$$

hence

$$\tau \simeq \left(\frac{M_{NP}c^2}{1 \ GeV}\right)^4 \cdot (2.87 \cdot 10^{-32} \ ys) > 10^3 3ys \to M_{NP}^4 > 10^{64-65} \ GeV^4 \to M_{NP} > 10^{16} GeV$$

that explain the estimation done in section 4.2.1.

Bibliography

- ¹R. Aarj et al. (LHCb), "Tests of lepton universality using $B^0 \to K_S^0 \ell^+ \ell^-$ and $B^+ \to K^{*+} \ell^+ \ell^-$ decays", (2021).
- ²R. Aaij et al. (LHCb), "Test of lepton universality with $B^0 \to K^{*0} \ell^+ \ell^-$ decays", JHEP **o8**, 055 (2017).
- ³R. Aarj et al. (LHCb), "Test of lepton universality with $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decays", JHEP **o5**, 040 (2020).
- ⁴M. Bordone, G. Isidori, and A. Pattori, "On the Standard Model predictions for R_K and R_{K^*} ", Eur. Phys. J. C **76**, 440 (2016).
- ⁵Particle data group (2021).
- ⁶A. Osipowicz et al. (KATRIN), "KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent", (2001).
- 7 J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, "Evidence for the 2π Decay of the K_2^0 Meson", Phys. Rev. Lett. **13**, 138–140 (1964).
- ⁸W. Altmannshofer and P. Stangl, "New Physics in Rare B Decays after Moriond 2021", (2021).
- ⁹D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, "B-physics anomalies: a guide to combined explanations", JHEP **11**, 044 (2017).
- ¹⁰H. K. Dreiner, H. E. Haber, and S. P. Martin, "Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry", Phys. Rept. **494**, 1–196 (2010).
- ¹¹S. Schael et al. (ALEPH, DELPHI, L₃, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), "Precision electroweak measurements on the *Z* resonance", Phys. Rept. **427**, 257–454 (2006).
- ¹²A. Angelescu, D. Bečirević, D. A. Faroughy, and O. Sumensari, "Closing the window on single leptoquark solutions to the *B*-physics anomalies", JHEP **10**, 183 (2018).
- ¹³C. Cornella, D. A.Faroughy, J. Fuentes-Martin, G. Isidori, and M. Neubert, "Reading the footprints of the b-meson flavor anomalies", (2021).
- ¹⁴J. C. Patı and A. Salam, "Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions", Phys. Rev. D **8**, 1240–1251 (1973).
- ¹⁵D. Marzocca, "Addressing the B-physics anomalies in a fundamental Composite Higgs Model", JHEP **07**, 121 (2018).

- ¹⁶D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D. A. Faroughy, and O. Sumensari, "Scalar leptoquarks from grand unified theories to accommodate the *B*-physics anomalies", Phys. Rev. D **98**, 055003 (2018).
- ¹⁷A. Crīvellīn, D. Müller, and T. Ota, "Simultaneous explanation of R(D^(*)) and b→s μ ⁺ μ ⁻: the last scalar leptoquarks standing", JHEP **o9**, 040 (2017).
- ¹⁸S. M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente, and J. Virto, "Phenomenology of an $SU(2) \times SU(2) \times U(1)$ model with lepton-flavour non-universality", JHEP **12**, 059 (2016).
- ¹⁹S. M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente, and J. Virto, "Non-abelian gauge extensions for B-decay anomalies", Phys. Lett. B **760**, 214–219 (2016).