

Hardware Architectures for Embedded and Edge Al

<u>Prof Manuel Roveri – manuel.roveri@polimi.it</u> <u>Massimo Pavan – massimo.pavan@polimi.it</u>

Exercise session 5 – Keyword spotting training

What's keyword spotting?

- •Keyword spotting is one of the most successful examples of TinyML
 - Low-power, continuous, on-device
 - Started with english, expanded to many more languages (on-going process)
- •General ASR (Automatic Speech Recognition) still requires larger, power-hungry models
 - But it can run on mobile devices (offline dictation on smartphones)

The application

Cascade infrastracture!

Interesting application with audio?

What else can **TinyML** do with audio data?

Now Playing by Google

Latency

Provide results quickly, respond in real-time to the user

Bandwidth

Minimize data sent over the network (slow and expensive)

Accuracy

Listen continuously, but only trigger at the right time

Personalization

Trigger for the user and **not** for background noise

Security

Safeguarding the data that is being sent to the cloud (from a malevolous actor)

Privacy

Safeguarding the data that is being sent to the cloud (from anyone)

Battery

Limited energy, operate on coin-cell type batteries

Memory

Run on resource constrained devices

Need #2: **Scalability** of the whole ASR pipeline

The input data

Data collection with edge impulse

Data collection

Data collection with edge impulse

Split sample 'silence.3uostnc9'

 \times

Keyword spotting dataset

Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition

Pete Warden
Google Brain
Mountain View, California
petewarden@google.com

April 2018

- Recorded as individual words not phrases
- 1000-4000 examples for each word
- >2,500 people collecting words

Keywords on the dataset

Raw data may be confusing...

Pre-processing

Sensor data

Shifting from Time Domain to Frequency Domain

Extracting spectrograms!

Better!

Preprocessing is essential

Pre-processing can help with dimensionality reduction

For 1 second inputs, collected at 16KHz, we go from 16000 values to 40*49 = 1960 values

Designing and training a model

Tiny_conv model

In terms of weights?

For floats that's <70Kb Quantized that's <17Kb Let's try a pre-trained network for recognizing «yes» from «no» from «other»

COLAB:

https://colab.research.google.com/drive/1YH6 vXIDzzCRZOT-sLx50TNAE-LhVkcOK?usp=sharing

Train your own!

COLAB:

Feature extraction:

https://colab.research.google.com/drive/10pxaPTL0QAhlu4L7U2DAqzcwuiKAe8nC?usp=sharing

Training:

https://colab.research.google.com/drive/1j3mGVMuoQRT-TWRgmyqxb-AeVVIMcwbL?usp=sharing

Additional data and code:

https://drive.google.com/drive/folders/1 L3HJjCn536UmYnzBdzY7d2-N9LMyXQ?usp=sharing

Evaluating a model

Metrics during training

- Since during training we control the composition of the datasets, accuracy is a good metric during this phase of the algorithm.
- In general, it's good to plot the confusion matrix to control also false positive and false negative rates.
- Accuracy, precision recall and F1 score can be taken in consideration

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	tp	fp
Predicted Class: 0	fn	tn

$$Acc = \frac{tp + tn}{N}$$
 $Pre = \frac{tp}{tp + fp}$ Recall: $Rec = \frac{tp}{tp + fn}$ $F1 = \frac{2 \cdot Pre \cdot Rec}{Pre + Rec}$

Metrics during use

- With many algorithms, it's possible to trade off false positive for false negatives.
- With multiple models, we can draw a receiver-operator curve (ROC) and select an operating point.

Other metrics: efficiency

- Latency:
 - Model must be fast enough to keep up with the speech input
 - The model must run fast enough to be responsive to the end user
 - But it must run efficiently on a small processor TinyML
- Memory Usage:
 - Need to be resource aware
 - Less compute
 - Less memory
 - Use quantization

Appendix

Credits and reference

- "TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers", Daniel Situnayake, Pete Warden, O'Reilly Media, Inc.
- Online course:
 - https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
- A lot more material on TinyML:
 - http://tinyml.seas.harvard.edu/
- Special thanks to Gioele Mombelli for letting me use the code he developed for his master thesis
- Colab to better understand pre-processing and spectrograms generations:
 - https://colab.research.google.com/github/tinyMLx/colabs/blob/master/3-5-10-SpectrogramsMFCCs.ipynb