EMC TEST REPORT

Report No.: 16070217-FCC-E
Supersede Report No.: N/A

Applicant	Shenzhen Huafurui technology Co.,Ltd				
Product Name	SmartBand				
Model No.	CUBOT V1	CUBOT V1			
Serial No.	N/A				
Test Standard	FCC Part 1	5 Subpart B C	lass B:2015, Al	NSI C63.4: 2014	
Test Date	April 07 to 21, 2016				
Issue Date	April 22, 2016				
Test Result	Pass Fail				
Equipment complied with the specification					
Equipment did not comply with the specification					
Winnie.Zi	heng	David	Huang		
Winnie Zhang		David	Huang		
Test Engineer			ked By		

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	16070217-FCC-E
Page	2 of 28

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	16070217-FCC-E
Page	3 of 28

This page has been left blank intentionally.

Test Report	16070217-FCC-E
Page	4 of 28

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	7
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1	AC POWER LINE CONDUCTED EMISSIONS	8
6.2	RADIATED EMISSIONS	14
ANI	NEX A. TEST INSTRUMENT	19
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	20
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	24
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	27
ΔΝΙ	NEX F DECLARATION OF SIMILARITY	28

Test Report	16070217-FCC-E
Page	5 of 28

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070217-FCC-E	NONE	Original	April 22, 2016

2. Customer information

Applicant Name	Shenzhen Huafurui technology Co.,Ltd	
Applicant Add	Unit A, Suite 7B, Window of the Modernization Building, Huaqiangbei Blvd. Futian	
	District, Shenzhen, China	
Manufacturer	Shenzhen Huafurui technology Co.,Ltd	
Manufacturer Add	Unit A, Suite 7B, Window of the Modernization Building, Huaqiangbei Blvd. Futian	
	District, Shenzhen, China	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Report	16070217-FCC-E
Page	6 of 28

4. Equipment under Test (EUT) Information

Description of EUT:	SmartBand
Main Model:	CUBOT V1
Serial Model:	N/A
Date EUT received:	April 06, 2016
Test Date(s):	April 07 to 21, 2016
Equipment Category :	Class B
Antenna Gain:	-2.54dBi
Type of Modulation:	GFSK
RF Operating Frequency (ies):	2402-2480 MHz
Number of Channels:	BLE: 40CH
Port:	USB Port
Input Power:	Battery: Spec: 3.7Vdc,80mAh/0.3Wh
Trade Name :	CUBOT
FCC ID:	2AHZ5CUBOTV1

Test Report	16070217-FCC-E
Page	7 of 28

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result	
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance	
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance	

Measurement Uncertainty

Emissions					
Test Item Description Uncertainty					
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB			
-	-	-			

Test Report	16070217-FCC-E
Page	8 of 28

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	22°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	April 13, 2016
Tested By:	Winnie Zhang

Requirement(s):

Spec	Item	Requirement Applicable					
47CFR§15.	a)	For Low-power radio-freconnected to the public voltage that is conducted frequency or frequencied not exceed the limits in [mu] H/50 ohms line implies at the second context of					
107		Frequency ranges	Limit (
		(MHz)	QP	Average			
		0.15 ~ 0.5	66 – 56	56 – 46			
		0.5 ~ 5	56	46			
		5 ~ 30	50				
Test Setup		Test Receiver					
Procedure		EEUT and supporting eq	•		quirements of		
1 100cdule	2. The	onnected to					

Test Report	16070217-FCC-E
Page	9 of 28

	3.	The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss
		coaxial cable.
	4.	All other supporting equipment were powered separately from another main supply.
	5.	The EUT was switched on and allowed to warm up to its normal operating condition.
	6.	A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)
		over the required frequency range using an EMI test receiver.
	7.	High peaks, relative to the limit line, The EMI test receiver was then tuned to the
		selected frequencies and the necessary measurements made with a receiver bandwidth
		setting of 10 kHz.
	8.	Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark		
Result	~	Pass Fail

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	16070217-FCC-E
Page	10 of 28

Test Mode:	Charge Mode
------------	-------------

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.1656	37.78	QP	10.03	47.81	65.18	-17.37
2	L1	0.1656	23.09	AVG	10.03	33.12	55.18	-22.06
3	L1	0.2436	28.23	QP	10.03	38.26	61.97	-23.71
4	L1	0.2436	10.19	AVG	10.03	20.22	51.97	-31.75
5	L1	0.5907	25.29	QP	10.03	35.32	56.00	-20.68
6	L1	0.5907	19.98	AVG	10.03	30.01	46.00	-15.99
7	L1	0.7467	25.99	QP	10.03	36.02	56.00	-19.98
8	L1	0.7467	20.59	AVG	10.03	30.62	46.00	-15.38
9	L1	3.0546	22.14	QP	10.06	32.20	56.00	-23.80
10	L1	3.0546	14.37	AVG	10.06	24.43	46.00	-21.57
11	L1	7.1028	17.24	QP	10.11	27.35	60.00	-32.65
12	L1	7.1028	10.65	AVG	10.11	20.76	50.00	-29.24

Test Report	16070217-FCC-E
Page	11 of 28

lode: Charge Mode

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.1890	31.65	QP	10.02	41.67	64.08	-22.41
2	N	0.1890	11.22	AVG	10.02	21.24	54.08	-32.84
3	N	0.2378	26.21	QP	10.02	36.23	62.17	-25.94
4	N	0.2378	9.92	AVG	10.02	19.94	52.17	-32.23
5	N	0.3489	22.31	QP	10.02	32.33	58.99	-26.66
6	N	0.3489	15.01	AVG	10.02	25.03	48.99	-23.96
7	N	0.5907	27.07	QP	10.02	37.09	56.00	-18.91
8	N	0.5907	22.96	AVG	10.02	32.98	46.00	-13.02
9	N	0.7467	29.99	QP	10.02	40.01	56.00	-15.99
10	N	0.7467	24.80	AVG	10.02	34.82	46.00	-11.18
11	N	0.8286	29.31	QP	10.03	39.34	56.00	-16.66
12	N	0.8286	23.73	AVG	10.03	33.76	46.00	-12.24

Test Report	16070217-FCC-E
Page	12 of 28

est Mode:

Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.1617	43.35	QP	10.03	53.38	65.38	-12.00
2	L1	0.1617	21.51	AVG	10.03	31.54	55.38	-23.84
3	L1	0.1734	41.49	QP	10.03	51.52	64.80	-13.28
4	L1	0.1734	23.33	AVG	10.03	33.36	54.80	-21.44
5	L1	0.2085	39.95	QP	10.03	49.98	63.26	-13.28
6	L1	0.2085	21.69	AVG	10.03	31.72	53.26	-21.54
7	L1	0.2319	34.67	QP	10.03	44.70	62.38	-17.68
8	L1	0.2319	16.98	AVG	10.03	27.01	52.38	-25.37
9	L1	0.2709	32.20	QP	10.03	42.23	61.09	-18.86
10	L1	0.2709	17.02	AVG	10.03	27.05	51.09	-24.04
11	L1	0.3099	28.76	QP	10.03	38.79	59.97	-21.18
12	L1	0.3099	15.45	AVG	10.03	25.48	49.97	-24.49

Test Report	16070217-FCC-E
Page	13 of 28

Test Mode:	Charge Mode
------------	-------------

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.1695	33.01	QP	10.02	43.03	64.98	-21.95
2	N	0.1695	11.72	AVG	10.02	21.74	54.98	-33.24
3	N	0.1968	36.84	QP	10.02	46.86	63.74	-16.88
4	N	0.1968	15.13	AVG	10.02	25.15	53.74	-28.59
5	N	0.2163	32.52	QP	10.02	42.54	62.96	-20.42
6	N	0.2163	9.76	AVG	10.02	19.78	52.96	-33.18
7	N	0.2514	28.09	QP	10.02	38.11	61.71	-23.60
8	N	0.2514	7.00	AVG	10.02	17.02	51.71	-34.69
9	N	0.3099	24.48	QP	10.02	34.50	59.97	-25.47
10	N	0.3099	5.77	AVG	10.02	15.79	49.97	-34.18
11	N	17.1726	32.16	QP	10.23	42.39	60.00	-17.61
12	N	17.1726	22.95	AVG	10.23	33.18	50.00	-16.82

Test Report	16070217-FCC-E
Page	14 of 28

6.2 Radiated Emissions

Temperature	22°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	April 13, 2016
Tested By:	Winnie Zhang

Requirement(s):

Spec	Item	n Requirement Applicable				
47CFR§15.	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spet the level of any unwanted emission the fundamental emission. The tight edges Frequency range (MHz)	\\			
		30 - 88	Field Strength (μV/m) 100			
		88 - 216	150			
		216 960	200			
		Above 960	500			
Test Setup	Ant. Tower Support Units Turn Table Ground Plane Test Receiver					
Procedure	1.	The EUT was switched on and allower The test was carried out at the selecter characterization. Maximization of the changing the antenna polarization, and manner: a. Vertical or horizontal polarization.	ed frequency points obtained from emissions, was carried out by rot	the EUT ating the EUT, the following		

Test Report	16070217-FCC-E
Page	15 of 28

			over a full rotation of the EUT) was chosen.
		b.	The EUT was then rotated to the direction that gave the maximum
			emission.
		C.	Finally, the antenna height was adjusted to the height that gave the maximum
			emission.
	3.	The res	solution bandwidth and video bandwidth of test receiver/spectrum analyzer is
		120 kH	z for Quasiy Peak detection at frequency below 1GHz.
	4.	The reso	olution bandwidth of test receiver/spectrum analyzer is 1MHz and video
		bandwi	dth is 3MHz with Peak detection for Peak measurement at frequency above
		1GHz.	
		The re	solution bandwidth of test receiver/spectrum analyzer is 1MHz and the video
		bandw	vidth with Peak detection for Average Measurement as below at frequency
		above	1GHz.
		■ 1 kH	Hz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%)
	5.	Steps 2	2 and 3 were repeated for the next frequency point, until all selected frequency
		points v	were measured.
Remark			
Result	Pa	SS	Fail
Test Data	Yes		□ _{N/A}
	1		
Test Plot	Yes (S	ee belo	w) N/A

Test Report	16070217-FCC-E
Page	16 of 28

Test Mode : Charge Mode

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	Н	34.3964	26.06	peak	-3.50	22.56	40.00	-17.44	100	104
2	Н	35.4993	28.41	peak	-4.30	24.11	40.00	-15.89	100	340
3	Η	103.4421	27.06	peak	-10.19	16.87	43.50	-26.63	100	216
4	Η	120.2766	24.89	peak	-7.32	17.57	43.50	-25.93	100	10
5	Н	148.9625	25.45	peak	-8.42	17.03	43.50	-26.47	100	209
6	Н	175.0368	28.20	peak	-9.49	18.71	43.50	-24.79	100	104

Test Report	16070217-FCC-E
Page	17 of 28

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	V	35.4993	28.67	peak	-4.30	24.37	40.00	-15.63	100	105
2	٧	58.6126	32.17	peak	-14.20	17.97	40.00	-22.03	100	221
3	V	74.3955	34.04	peak	-13.73	20.31	40.00	-19.69	100	248
4	V	81.2117	31.63	peak	-13.71	17.92	40.00	-22.08	100	296
5	V	118.6014	26.44	peak	-7.54	18.90	43.50	-24.60	100	319
6	V	150.0108	24.88	peak	-8.40	16.48	43.50	-27.02	100	259

Test Report	16070217-FCC-E
Page	18 of 28

Above 1GHz

Frequency (MHz)	Amplitude (dΒμV/m)	Azimuth	Height (cm)	Polarity (H/V)	Factors (dB)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
1566.22	49.82	55	100	٧	-21.14	74	-24.18	PK
2041.37	50.77	122	120	V	-22.47	74	-23.23	PK
1652.33	49.37	50	150	٧	-22.72	74	-24.63	PK
2167.41	50.08	60	180	Н	-21.66	74	-23.92	PK
2868.34	49.22	120	200	Н	-22.55	74	-24.78	PK
1838.41	50.44	63	170	Н	-21.88	74	-23.56	PK

Note1: The highest frequency of the EUT is 2480 MHz, so the testing has been conformed to 5*2480 MHz=12,400 MHz.

Note 2: The frequency that above 3GHz is mainly from the environment noise.

Note3: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

Test Report	16070217-FCC-E
Page	19 of 28

Annex A. TEST INSTRUMENT

Instrument	Model	Serial#	Cal Date	Cal Due	In use	
AC Line Conducted Emissions						
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	>	
Line Impedance Stabilization Network	LI-125A	191106	09/25/2015	09/24/2016	>	
Line Impedance Stabilization Network	LI-125A	191107	09/25/2015	09/24/2016	(
LISN	ISN T800	34373	09/25/2015	09/24/2016	<	
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	<	
Radiated Emissions						
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	>	
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	>	
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	>	
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	\	
Double Ridge Horn Antenna	AH-118	71259	09/24/2015	09/23/2016	\	

Test Report	16070217-FCC-E
Page	20 of 28

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report	16070217-FCC-E
Page	21 of 28

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 2

Battery - Rear View

Mainboard - Front View

Mainboard - Rear View

Test Report	16070217-FCC-E
Page	22 of 28

LED - Front View

LED - Rear View

BLE - Antenna View

Test Report	16070217-FCC-E
Page	23 of 28

Annex B.iii. Photograph: Test Setup Photo

Test Report	16070217-FCC-E
Page	24 of 28

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Test Report	16070217-FCC-E
Page	25 of 28

Block Configuration Diagram for Radiated Emissions

Test Report	16070217-FCC-E
Page	26 of 28

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting equipment:

Manufacturer	Equipment Description	Model	Serial No
DCA	Adaptor	E2164A	Y20120311

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	10cm	ZT201508

Test Report	16070217-FCC-E
Page	27 of 28

Annex D. User Manual / Block Diagram / Schematics / Partlist

N/A

Test Report	16070217-FCC-E
Page	28 of 28

Annex E. DECLARATION OF SIMILARITY

N/A