CS 383: Machine Learning

Prof Adam Poliak
Fall 2024
10/02/2024
Lecture 12

Updated schedule

No lecture on Thursday
No lecture Wednesday 10/09

HW03 polynomial regression due last night
HW04 naive Bayes due Wednesday 10/09 (it'll be a shorter assignment)
HW05 Logisitc Regression due Tuesday after Fall break
Midterm 1 on Thursday after fall break

Midterm - Format

Multiple Choice

Short Answer

Problems to work out by hand

Outline

Evaluation Metrics

Logistic Regression

Classify a tweet as viral or not

Taylor Swift @taylorswift13 · Jan 27

The Lavender Haze video is out now. There is lots of lavender. There is lots of haze. There is my incredible costar @laith_ashley who I absolutely adored working with.

Accuracy

 Model A performs 60% accuracy, would you say this is good, decent, or awful?

 Model B performs 80% accuracy, would you say this is good, decent, or awful

 Model C performs 98% accuracy, would you say this is good decent or awful?

Evaluation: Accuracy

- Imagine we saw 1 million tweets
 - 100 of them were viral
 - 999,900 were not
- We could build a dumb classifier that just labels every tweet "not viral"
 - It would get 99.99% accuracy!!! Wow!!!!
 - But useless! Cant find the viral tweets!
- When should we not we use accuracy as our metric?
 - When data isn't balanced across labels/classes

The 2-by-2 confusion matrix

true positive false positive false negative true negative

The 2-by-2 confusion matrix

gold standard labels

system output labels system negative gold positive gold negative false positive false negative true negative

The 2-by-2 confusion matrix

gold standard labels

Evaluation: Precision

 % of items the system detected (i.e., items the system labeled as positive) that are in fact positive (according to the human gold labels)

$$\frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$

Evaluation: Recall

• % of items actually present in the input that were correctly identified by the system.

$$\mathbf{Recall} = \frac{\mathbf{true\ positives}}{\mathbf{true\ positives} + \mathbf{false\ negatives}}$$

Why Precision and recall

- Our dumb viral-classifier
 - label no tweets as "viral"

Recall = 0

(it doesn't get any of the 100 viral tweets)

Precision and recall, unlike accuracy, emphasize true positives:

finding the things that we are supposed to be looking for.

A combined measure: F

• F measure: a single number that combines P and R:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

• We almost always use balanced F_1 (i.e., β = 1)

$$F_1 = \frac{2PR}{P+R}$$

Confusion Matrix for 3-class classification

Confusion Matrix for 3-class classification

	g	gold labels	S	
	urgent	normal	spam	
urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
<i>system</i> <i>output</i> normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
spam	3	30	200	precisions= $\frac{200}{3+30+200}$
	recallu =	recalln =	recalls =	
	8	60	200	
	8+5+3	10+60+30	1+50+200	

How to combine Precision/Recall from 3 classes to get one metric

- Macroaveraging:
 - compute the performance for each class, and then average over classes
- Microaveraging:
 - collect decisions for all classes into one confusion matrix
 - compute precision and recall from that table.

Class 1: Urgent true true urgent not system urgent system 340

precision =
$$\frac{8}{8+11}$$
 = .42

not

Class 2: Normal

true

true

precision =
$$\frac{60}{60+55}$$
 = .52

Class 3: Spam

	true	true
	spam	not
system spam	200	33
system not	51	83

precision =
$$\frac{200}{200+33}$$
 = .86

Class 1: Urgent true true urgent not system urgent system 340 not

$$precision = \frac{8}{8+11} = .42$$

Class 2: Normal

	true	irue
	normal	not
system normal	60	55
system not	40	212

precision =
$$\frac{60}{60+55}$$
 = .52 precision = $\frac{200}{200+33}$ = .86

macroaverage precision

Class 3: Spam

	true	true
	spam	not
system spam	200	33
system not	51	83

precision =
$$\frac{200}{200+33}$$
 = .86

Pooled

	true	true
	yes	no
system yes	268	99
system no	99	635

Class 1: Urgent

true true urgent not system urgent system not

$$precision = \frac{8}{8+11} = .42$$

Class 2: Normal

	true	true
	normal	not
system normal	60	55
system not	40	212

$$precision = \frac{60}{60+55} = .5$$

Class 3: Spam

	true	true
	spam	not
system spam	200	33
system not	51	83

precision =
$$\frac{200}{200+33}$$
 = .86

Pooled

	true	true
	yes	no
system yes	268	99
system no	99	635

precision =
$$\frac{8}{8+11}$$
 = .42 precision = $\frac{60}{60+55}$ = .52 precision = $\frac{200}{200+33}$ = .86 microaverage precision = $\frac{268}{268+99}$ = .73

$$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$$

Outline

Evaluation Metrics

Logistic Regression

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- If you were forced to use linear regression for this problem, how could you encode y to make it real-valued?

2) What issues arise with making y real-valued?

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!