FEATURE SPACES II

Prof. Alexander Huth 10/17/2017

REMINDER

* Homework 1 due TODAY! Please email it to huth@cs.utexas.edu by midnight

SYSTEM IDENTIFICATION

$$Y = f(X)$$

* What kind of a function is f?

SYSTEM IDENTIFICATION

* Linearized model

$$Y = \mathbb{L}(X)\beta$$

Let's invent some L's

- * L should be a function that:
 - * ingests stimuli
 - * emits feature vectors

* Simplest version: time-invariant L

$$X_t \in \mathbb{R}^k$$
 k-dim vector

$$\mathbb{L}(X_t) = Z_t \in \mathbb{R}^p$$
 p-dim vector

* Simplest version: time-invariant L

- * Simplest version: time-invariant L
- * Example: X is an image with k pixels, Z is a binary vector saying which of p object categories are present in the image

- * Simplest version: time-invariant L
- * Only suitable for some situations

* More complex version: time-dependent L

$$X \in \mathbb{R}^{T imes k}$$
 Txk matrix $\mathbb{L}(X) = Z \in \mathbb{R}^{T imes p}$ Txp matrix

* More complex version: time-dependent L

- * More complex version: time-dependent L
- * Example: X_t represents which word was presented as a 1-hot vector. Z_t is the part-of-speech for that word. Time-dependence is necessary because PoS depends on word context.

e.g. "I refuse" vs. "Refuse bin"

SYNTAX PART OF SPECH

```
"Now this is a story all about how my life {adv} {pn} {v} {dt} {n} {adj} {prep} {adv} {pn} {n} got flipped-turned upside down..."
```

 $\{v-p\}$ $\{v-p\}$ $\{prep phrase\}$

time time adv 1 0 0 0 0 0 1 0 0 100 now pn 0 1 0 0 0 0 0 1 0 0 1 0 this words 001000000 001 ... is dt 000100000 parts 000 000010001 story 000

- * Hidden Markov model (HMM)
- * Example of a language model: a function that, given the previous words, returns a probability distribution over the next word.

$$P(w_i|w_1\dots w_{i-1}; heta,\phi)$$
next word HMM parameters previous words

- * We get: a sequence of observed symbols ["now", "this", "is", "a", "story", ...]
- * We think: there are hidden, underlying states

```
[a, b, c, d, e, ...]
```


 $P(x_1|z_1)$ multinomial distribution

- * Learning time: we know x, what are theta and phi?
- * Objective: find theta and phi that maximize probability of observed x
- * Hyperparameters: number of hidden states (number of possible Z values), priors on theta and phi

- * Learning time: (The easy way) Markov chain Monte Carlo (MCMC) w/ Gibbs sampling
 - * (Init.) Guess random Z
 - * Update theta & phi based on current X, Z
 - * For each Z_t , update based on Z_{t-1} , X_t , phi, & theta
 - * Repeat, repeat, repeat, repeat...

- * Inference time: we know x, we know theta, we know phi; what is $P(z \mid x)$?
- * Finally, use inferred state probabilities as features in a linearized model!

LEXICAL SEMANTICS

- * Let's create an L that captures wordlevel semantic information
- * Unlike the _{awful} syntax models, this model will be *time-invariant*

LEXICAL SEMANTICS

X' now 100 this 010 is 001 ... a 000 story 000

 $\overset{-}{\overset{\text{Features}}{}}$

time

somehow each column captures something about the meaning of the corresponding word

:

* Latent Semantic Analysis (LSA)

* Latent Semantic Analysis (LSA)

E

•

X

Z'

embedding matrix'

* word matrix' =

semantic stimulus matrix'

REMINDER FROM A FEW WEEKS AGO...

TIKHONOV REGRESSION

* this is equivalent to TIKHONOV REGRESSION on the WORDS with a prior determined by the WORD EMBEDDING

$$\frac{1}{\sigma^2} \Sigma_\beta = (C^T C)^{-1} = E^T E$$

$$\frac{1}{\sigma^2} \Sigma_\beta =$$

* i.e. the prior covariance between two words' weights is equal to the dot product of their embedding vectors

NEXT TIME

* MORE SEMANTICS!!