Teoria Kategorii

Weronika Jakimowicz

Lato 2024/25

Spis treści

1	Początek ko	níca	1
	24.02.2025	Podstawowe definicje	1
	1.	Przykłady kategorii	1
	2.	Funktory	2
	25.02.2025	Produkty i koprodukty kategorii	5
	1.	O obiektach początkowych i końcowych słów kilka	5
	2.	(Ko)granice funktorów a (ko)produtky	6
	3.	Obiekty i kategorie monoidalne	9
	03.03.2025	Funktory dołączone	11
	1.	Motywacja abstrakcyjnego nonsensu	11
	2.	Dużo przykładów funktorów dołączonych	11
	3.	Druga definicja	13
	10.03.2025	Funktory dołączone własności	14
	1.	Dowód równoważności	14
	2	Funktory dołaczone a granice	16

Początek końca

W 1945 Eilenberg oraz Mac Lane napisali książkę "General theory of natural equivalences". Jest to powszechnie uznawane jako początek ery abstrakcyjnego nonsenu.

24.02.2025 Podstawowe definicje

1. Przykłady kategorii

Definicja 1.1: kategoria

Kategoria (lokalnie mała) C składa się z:

- obiektów Ob(C)
- oraz zbiorów morfizmów dla wszystkich par $A, B \in \mathsf{Ob}(\mathcal{C})$ oznaczanego $\mathcal{C}(A, B) = \mathsf{Hom}_{\mathcal{C}}(A, B)$, które spełniają:
 - id_X ∈ C(X, X)
 - składają się w dobry sposób, tzn. mamy dobrze określone odwzorowanie

$$\mathcal{C}(A, B) \times \mathcal{C}(B, C) \rightarrow \mathcal{C}(A, C)$$
,

które jest łączne.

Powiemy, że kategoria jest mała, jeśli jej obiekty są zbiorem, a nie klasą.

Dla wygody oznaczymy

$$C_0 := \mathsf{Ob}(C)$$

a jako C_1 będziemy rozumieć wszystkie morfizmy w kategorii C.

Rozważmy kilka prostych przykładów kategorii.

Przykłady

- 1. Kategoria Set, której obiekty Set_0 to wszystkie zbiory, a Set_1 to funkcje między zbiorami z normalnym składaniem funkcji.
- 2. Set_* to kategoria zbazowanych zbiorów, tzn. jej obiektami są pary (X, x_0) , gdzie X to zbiór, a $x_0 \in X$. Morfizmy muszą wtedy zachowywać wyróżniony punkt: $f: (X, x_0) \to (Y, y_0)$, $f(x_0) = y_0$.

- 3. Top to kategoria, której obiekty to przestrzenie topologiczne, a Top_1 to funkcje ciągłe między nimi.
- 4. Toph to kategoria przestrzeni topologicznych, w której morfizmy to klasy homotopii odwzorowań między przestrzeniami. To znaczy, jeśli $X, Y \in Ob(Toph)$ oraz $f_0, f_1: X \to Y$ jest ciągłym odwzorowaniem, dla którego istnieje ciągłe przekształcenie

$$F: X \times [0,1] \rightarrow Y$$

takie, że $F(x,0)=f_0(x)$ oraz $F(x,1)=f_1(x)$, to $f_0=f_1$ jako morfizm w kategorii Toph.

Pozostaje sprawdzić, że jeśli f, f' oraz g, g' to pary homotopijnie równoważnych odwzorowań, to wówczas $f \circ g$ jest homotopijnie równoważne $f' \circ g'$.

- 5. Kategoria *Hask*, której obiekty to typy w Haskelly, a morfizmy to klasy programów.
- 6. Kategoria relacji Rel, w której obiektami Rel_0 są zbiory, a morfizmami są podzbiory produktu, tzn. Rel(X,Y) zawiera wszystkie $S\subseteq X\times Y$. Wówczas składanie $S\subseteq X\times Y$ oraz $R\subseteq Y\times Z$ definiujemy jako zbiór

$$S \circ R = \{(x, z) : (\exists y \in Y) xRy \land ySz\},$$

gdzie xRy oznacza, że $(x,y) \in R$. Złożenie to działa jak połączenie dwóch relacji spójnikiem "i".

- 7. Niech R będzie tranzytywną i zwrotną relacją na zbiorze X. Definiujemy wtedy kategorię $\mathcal C$ o obiektach $\mathcal C_0=X$ będących elementami zbioru X, a morfizmy między $a,b\in X$ to zbiór 1-elementowy $\mathcal C(a,b)=\{\star\}$, gdy xRy jest prawdą lub zbiór pustym w przeciwnym wypadku.
 - Szczególnym przypadkiem tej kategorii jest topologia na przestrzeni topologicznej, gdzie relacja R to zawieranie zbiorów otwartych.
- 8. Graf skierowany tworzy kategorię, której obiektami są jego wierzchołki, a morfizmy to zorientowane ścieżki.

2. Funktory

Definicja 1.2: funktor

Funktor F między kategoriamii $\mathcal C$ a $\mathcal D$

- każdemu obiektowi X kategorii \mathcal{C} przypisuje obiekt F(X) kategorii \mathcal{D}
- każdemu morfizmowi $\varphi\in\mathcal{C}(X,Y)$ przypisuje morfizm $F(\varphi):F(X)\to F(Y)$ w kategorii $\mathcal D$ taki, że

- $F(\psi \circ \varphi) = F(\psi) \circ F(\varphi)$
- $F(id_X) = id_{F(X)}$

Przykład

 $Ab: Gr \to Ab$ to funktor między kategorią wszystkich grup a kategorią grup abelowych, który grupie G przypisuje jej abelianizację $Ab(G) = G/[G, G] = G^{ab}$.

Definicja 1.3: kategoria odwrotna

Przez **kategorię odwrotną** do kategorii C rozumiemy kategorię C^{op} , której

- obiekty to obiekty oryginalnej kategorii: $\mathsf{Ob}(\mathcal{C}^{\mathsf{op}}) = \mathsf{Ob}(\mathcal{C})$
- morfizmy C(X, Y) "odwracają się" $C^{op}(Y, X)$.

Mówimy, że funktor $F: \mathcal{C} \to \mathcal{D}$ jest **kowariantny**, a funktor $F: \mathcal{C} \to \mathcal{D}^{op}$ kontrawariantny.

Zdefiniujmy teraz **kategorię funktorów** między kategoriami \mathcal{C} a \mathcal{D} , $Fun(\mathcal{C}, \mathcal{D})$, której obiekty to wszystkie funktory $F: \mathcal{C} \to \mathcal{D}$, a morfizmy to φ takie, że dla dowolnych $X, Y \in \mathsf{Ob}\,\mathcal{C}$ oraz $f: X \to Y$ komutuje diagram

$$F(X) \xrightarrow{\varphi_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\varphi_Y} G(Y)$$

Zbiór morfizmów w tej kategorii oznaczymy Nat(F, G) - **naturalne przekształcenia** funktora F w funktor G.

Przykład

Cup product na kohomologiach $\cup: H^m(X) \otimes H^n(X) \to H^{m+n}(X)$ jest naturalnym przekształceniem między funktorami $H^m(-) \otimes H^n(-)$ i $H^{m+n}(-)$.

Definicja 1.4: równoważność kategorii

Powiemy, że kategorie \mathcal{C} i \mathcal{D} są **równoważne**, jeśli istnieją funktory $F:\mathcal{C}\to\mathcal{D}$ oraz $G:\mathcal{D}\to\mathcal{C}$ takie, że złożenie $F\circ G$ jest naturalnie izomorficzne do $Id_{\mathcal{D}}$, a $G\circ F$ - do $Id_{\mathcal{C}}$.

Przykład

Kategoria skończenie wymiarowych przestrzeni wektorowych nad ciałem k, $Vect_k^{fin}$, jest równoważna kategorii skończenie wymiarowych macierzy nad ciałem k, $Mat^{fin}(k)$.

GRUPOID PODSTAWOWY - dla p. top X obiekty to punkty X, a morfizmy to klasy homotopii ścieżek; jak weźmiemy konkretny punkt i popatrzymy na morfizmy $x \to x$ to mamy grupe podstawową zbazowaną w tym punkcie; grupoid to funktor z p. top w kategorię kategorii (zawęzić: kat. grupoidów); wtedy funkcja ciągła to morfizm między dwoma grupoidami, a homotopia to naturalna transformacja

25.02.2025 Produkty i koprodukty kategorii

1. O obiektach początkowych i końcowych słów kilka

Definicja 1.5: obiekt początkowy i końcowy

Powiemy, że obiekt $C \in \mathcal{C}_0$ jest **początkowy**, jeśli dla każdego $D \in \mathcal{C}_0$ istnieje dokładnie jeden morfizm $C \to D$, $|\mathcal{C}(C, D)| = 1$. Analogicznie definiujemy **obiekt końcowy** C: $\forall D \in \mathcal{C}_0 |\mathcal{C}(D, C)| = 1$.

Przykłady -

- 1. W kategorii, której obiektami jest odcinek $C_0 = [0, 1]$, a morfizmy to relacja \leq obiektem początkowym jest 0, a końcowym 1.
- 2. W kategorii zbiorów obiektem początkowym jest \emptyset , a obiektem końcowym jest singleton.
- 3. W Gr grupa trywialna jest zarówno obiektem początkowym jak i końcowym.
- 4. Kategoria, która ma dwa obiekty bez morfizmów między nimi nie ma obiektu końcowego ani początkowego.

Fakt 1.6

Obiekty końcowe i początkowe, jeśli istnieją, to są jedyne z dokładnością do izomorfizmu.

Dowód

Niech C i C' będą obiektami końcowymi kategorii C. Wiemy, że $C(C,C)=\{id_C\}$, czyli komutujący diagram

$$C \xrightarrow{id_C} C$$

$$\exists !f \qquad C'$$

daje $g \circ f = id_C$. Analogiczny diagram daje $f \circ g = id_{C'}$. Stąd f i g to para wzajemnie odwrotnych izomorfizmów między C i C'

2. (Ko)granice funktorów a (ko)produtky

Niech $F:\mathcal{I}\to\mathcal{C}$ będzie funktorem, gdzie o kategorii \mathcal{I} myślimy jako o kategorii indeksów. Przez $\mathcal{C}^{\mathcal{I}}$ oznaczmy kategorię wszystkich takich funktorów. Powiemy, że funktor C jest stały, jeżeli C(i)=C dla każdego $i\in\mathcal{I}_0$ oraz $C(f)=id_C$ dla każdego morfizmu.

Budujemy kategorię, której

• obiekty to wszystkie naturalne przekształcenia funktora F w funktory stałe C, $\varphi: F \implies C$, czyli komutujące diagramy (kostożki)

- a morfizmy to strzałki C o D takie, że diagram

komutuje.

Diagram wyżej można rozpisać jako:

Definicja 1.7: kogranica funktora

Kogranicą (*granica prosta*) funktora F, $\varinjlim F$, nazywamy obiekt początkowy w wyżej zdefiniowanej kategorii naturalnych przekształceń.

Diagram wyżej możemy zdualizować i zamiast rozpatrywać naturalne przekształcenia $\varphi: F \implies C$ możemy rozważyć naturalne przekształcenia $\varphi: C \implies F$, czyli diagramy (stożki)

z morfizmami definiowanymi analogicznie.

Definicja 1.8: granica funktora

Granica (granica odwrotna) to obiekt końcowy powyższej kategorii stożków, lim F.

Rozważmy kategorię \mathcal{I} , która ma dwa obiekty $\mathcal{I}_0 = \{0,1\}$. Niech $F: \mathcal{I} \to Set$ będzie funktorem, dla którego F(0) = A, a F(1) = B. Niech φ oraz ψ będzie parą naturalnych przekształceń, dla których

gdzie pionowa strzałka istnieje i jest jedyna, bo $\varinjlim F$ to obiekt końcowy. Jeśli weźmiemy $\varinjlim F = A \times B$, a $\varphi_0 = \pi_A$ oraz $\varphi_1 = \pi_B$ będą rzutami i $f(d) = (\psi_0(d), \varphi_1(d))$, to diagram nadal jest prawdziwy.

Granica odwrotna tego samego funktora, to z kolei suma rozłączna $A \sqcup B$, bo diagram

$$F(0) = A \xrightarrow{\psi_0} D \xleftarrow{\psi_1} F(1) = B$$

$$\lim_{\varphi_0 = i_A} F(1) = B$$

$$\lim_{\varphi_0 = i_A} F(1) = B$$

gdzie $f(x) = \varphi_0(x)$, jeśli $x \in A$ oraz $f(x) = \psi_1(x)$ jeśli $x \in B$, komutuje.

Definicja 1.9: (ko)produkt —

Produktem obiektów A i B kategorii C nazywamy granicę prostą (kogranicę) funktora $F: \mathcal{I} \to C$ dla \mathcal{I} oraz F jak wyżej.

Koproduktem obiektów A i B kategorii C nazywamy granicę odwrotną (granicę) funktora $F: \mathcal{I} \to C$

Przykłady -

1. W kategorii grup produkt to iloczyn kartezjański dwóch grup, tak jak w kategorii zbiorów, tj. dla grup A, G, H komutuje diagram

Koprodukt to z kolei produkt wolny tych dwóch grup:

gdzie f nakłada na litery słów G*H pochodzące z G morfizm g, a na litery pochodzące z H - morfizm h.

2. Niech $F:\mathcal{I}\to (P,\leq)$ z dwuobiektowej kategorii \mathcal{I} w zbiór uporządkowany. Wtedy jeśli mamy diagram

$$F(0) = \mathbf{a} \longleftrightarrow \mathbf{d} \longrightarrow F(1) = \mathbf{b}$$

to znaczy, że $d \le a$, $d \le b$ oraz $d \le \varinjlim F$. Żeby więc miało to sens dla dowolnego $d \le a$, b to $\varinjlim F = \inf\{a,b\}$. Analogicznie dostajemy, że $\varliminf F = \sup\{a,b\}$.

3. Jeśli $\mathcal I$ jest kategorią o nieskończenie wielu obiektach bez morfizmów między różnymi obiektami, a $F:\mathcal I\to Set$ jest funktorem w kategorię zbiorów, to wówczas kogranicą tego funktora jest nieskończony iloczyn kartezjański $\prod_{i\in\mathcal I_0}F(i)$, a granicą – nieskończona suma rozłączna $\bigsqcup_{i\in\mathcal I_0}F(i)$.

Fakt 1.10 -

Granica i kogranica funktora, jeśli istnieje, to jest jedyna z dokładnością do izomorfizmu. Stąd również produkty i koprodukty są unikalne.

Dowód

Wynika z uniwersalności obiektów końcowych i początkowych.

Przykład -

Rozważmy funktor $F:\mathcal{I}^{op}\to \mathit{Grp}$, gdzie $\mathcal{I}=(\mathbb{N},\leq)$ taki, że dla każdych $i,j\in\mathbb{N}$, $i\leq j$ mamy

$$F(j) = \mathbb{Z}/p^j\mathbb{Z} \xrightarrow{F(i \to j) = q} F(i) = \mathbb{Z}/p^j\mathbb{Z}$$

gdzie q to morfizm ilorazowy.

Liczby *p*-adyczne to rozszerzenie liczb wymiernych różne od liczb rzeczywistych i zespolonych. Całkowite liczby *p*-adyczne to szeregi

$$\sum_{i=k}^{\infty} a_i p^i,$$

gdzie $k \in \mathbb{N}$ oraz $0 \le a_i < p$. Okazuje się, że całkowite liczby p-adyczne, \mathbb{Z}_p , można zdefiniować jako granicę funktora F:

Granica prosta takiego funktora jest trywialna, ale możemy rozważyć inny funktor, z kategorii \mathbb{Z} z porządkiem, tzn: $G: \mathbb{Z} \to Grp$ taki, że $G(n) = \mathbb{Z}/p^n\mathbb{Z}$, natomiast strzałkę $n+1 \to n$ przekształcamy na odwzorowanie

$$\mathbb{Z}/p^n\mathbb{Z} \ni x \mapsto p \cdot x \in \mathbb{Z}/p^{n+1}\mathbb{Z}.$$

Wtedy granicą prostą G jest $C_{p^{\infty}}$ - pierwiastki p^n -tego stopnia z 1, dla dowolnego n.

3. Obiekty i kategorie monoidalne

Monoid $(M, \star, 1)$ to struktura algebraiczna z binarną operacją oraz elementem neutralnym. Dodatkowo, komutować ma diagram

$$\begin{array}{ccc}
\mathsf{M}^3 & \xrightarrow{\star \times \mathsf{id}} & \mathsf{M}^2 \\
\mathsf{id} \times \star \downarrow & & \downarrow \star \\
\mathsf{M}^2 & \xrightarrow{\star} & \mathsf{M}
\end{array}$$

co znaczy, że działanie jest łączne.

Definicja 1.11: obiekt monoidalny, kategoria monoidalna

Niech $\mathcal C$ będzie kategorią z produktem i elementem początkowym. Niech $M\in\mathcal C$ będzie obiektem, dla którego mamy $\mu:M^2\to M$ oraz $\varepsilon:\{1\}\to M$ takie, że komutują diagramy

$$\begin{array}{c|c} M^3 & \xrightarrow{\mu \times id} & M^2 \\ id \times \mu \downarrow & & \downarrow \mu \\ M^2 & \xrightarrow{\mu} & M \\ M & \xrightarrow{\varepsilon \times id} & M^2 \\ id \times \varepsilon \downarrow & & \downarrow \mu \\ M^2 & \xrightarrow{\mu} & M \end{array}$$

Wtedy M jest obiektem monoidalnym.

Obiekt monoidalny w kategorii Cat nazywa się kategorią monoidalną.

Przykłady

- 1. Dowolna kategoria ${\cal C}$ z koproduktem i obiektem końcowym jest kategorią monoidalna.
- 2. Kategoria endofunktorów ma strukturę monoidalną. To znaczy, jeśli mamy dwa endofunktory F, $G \in End(\mathcal{C})$, to potrafimy je złożyć w dobry sposób. Funktor $T \in End(\mathcal{C})$ oraz dwa naturalne przekształcenia $\mu: T^2 \to T$, $\varepsilon: Id \to T$, nazywa się monadą.

03.03.2025 Funktory dołączone

1. Motywacja abstrakcyjnego nonsensu

Niech V będzie przestrzenią wektorową nad ciałem k, a B wybraną jej bazą. Dowolne odwzorowanie $B \to V$ możemy rozszerzyć na odwzorowanie liniowe $k[B] = V \to V$. To znaczy, mamy izomorfizm zbiorów

$$Hom(B, V) \cong Hom(V, V).$$

W języku abstrakcyjnego nonsensu możemy zdefiniować dwa funktory,

$$\mathsf{Set}(\mathsf{-,U}(\mathsf{-})):\mathsf{Set}^{\mathit{op}}\times\mathsf{Vect}^{\mathit{fin}}_k\to\mathsf{Set}$$

$$\mathsf{Vect}_k(k[-],-):\mathsf{Set}^{op}\times\mathsf{Vect}_k^{\mathit{fin}}\to\mathsf{Set}_{\mathsf{r}}$$

gdzie $U: Vect_k^{fin} \to Set$ to funktor zapominający strukturę przestrzeni wektorowej, między którymi istnieją naturalne izomorfizmy.

$$\mathsf{Set}(\mathsf{-}, \mathsf{U}(\mathsf{-})) \cong \mathsf{Vect}_{\mathsf{k}}(\mathsf{k}[\mathsf{-}], \mathsf{-})$$

Definicja 1.12: funktory dołączone

Niech $L: \mathcal{C} \to \mathcal{D}$ oraz $R: \mathcal{D} \to \mathcal{C}$ będą funktorami. Powiemy, że L jest **lewo dołączony** do funktora R, a R **prawo dołączony** do L, jeśli funktory

$$\mathcal{C}(-, R-), \mathcal{D}(L-, -): \mathcal{C}^{op} \times \mathcal{D} \rightarrow \mathsf{Set}$$

są naturalnie izomorficzne. Taką parę funktorów dołączonych oznaczamy $L \dashv R$.

2. Dużo przykładów funktorów dołączonych

1. Niech $R: Set_* \to Set$ będzie funktorem z kategorii zbiorów zbazowanych w kategorię zbiorów, który zapomina o punkcie bazowym. Chcemy teraz znaleźć funktor $L: Set \to Set_*$, który będzie do niego lewo dołączony. Niech $L(X) = X \cup \{X\}$ (lub bardziej obrazowo: $X \sqcup \{*\}$), gdzie y_0 poślemy na $\{X\}$, to znaczy doklejamy do X singleton i staje się on punktem wyróżnionym.

Oba funktory są różnowartościowe na obiektach, więc wystarczy przekonać się, że

$$\mathsf{Set}_*(\mathit{LX}, (\mathsf{Y}, \mathsf{y}_0)) \cong \mathsf{Set}(\mathsf{X}, \mathsf{R}(\mathsf{Y}, \mathsf{y}_0))$$

jest izomorfizmem. Dowolna funkcja $X \to Y$ rozszerza się przez posłanie $\{X\} \mapsto y_0$ na funkcję $(X, \{X\}) \to (Y, y_0)$.

2. Podobna sytuacja ma miejsce, kiedy szukamy lewo dołączony funktor do $R:Ring\to Rng$ między kategorią pierścieni z jedynką, a wszystkimi pierścieniami. Definiujemy funktor

$$L: Rng \rightarrow Ring$$

jako doklejenie \mathbb{Z} , $L(S)=\mathbb{Z}\oplus S$ z działaniem (n,s)(n',s')=(nn',ns'+ss'+n's), wtedy $(1,0_S)$ jest jedynka w nowym pierścieniu. Pozostaje przyjrzeć się co się dzieje z morfizmami, skoro

$$Rng(S, RT) \cong Ring(LS, T)$$
.

Dowolny morfizm $\varphi:S\to RT$ wystarczy, że trzyma element neutralny ze względu na dodawanie i jest addytywny. Możemy go rozszerzyć na morfizm, który całą pierwszą współrzędną $LS=\mathbb{Z}\oplus S$ posyła w $1_T\in T$, a drugą zgodnie z φ . W drugą stronę wystarczy obciąć morfizm do drugiej współrzędnej.

3. Niech $\Delta: Set \to Set \times Set$ będzie funktorem takim, że $\Delta(C) = (C, C)$. Zaczniemy od szukania funktora dołączonego do niego z prawej strony, czyli $R: Set \times Set \to Set$ takiego, że

$$\operatorname{\mathsf{Hom}}(X,R(Y,Z))\cong\operatorname{\mathsf{Hom}}(\Delta(X),(Y,Z)).$$

Od razu narzuca się $R(Y,Z)=Y\times Z$, czyli zlepiamy współrzędne $\Delta(X)$ w jedną. Przypomnijmy, że iloczyn kartezjański w kategorii zbiorów jest produktem.

Funktor lewo dołączony musi zatem spełniać

$$\operatorname{Hom}(L(X,Y),Z) \cong \operatorname{Hom}((X,Y),\Delta(Z)),$$

czyli dowolną funkcję $(X, Y) \to (Z, Z)$ musimy umieć zapisać jako funkcję z pojedynczego zbioru, którym będzie suma rozłączna $L(X, Y) = X \sqcup Y$, czyli koprodukt w kategorii zbiorów.

Historia funktora Δ uogalnia się na dowolną kategorię, w której są produkty i koprodukty:

koprodukt
$$\dashv \Delta \dashv \mathsf{produkt}$$

4. Ustalmy zbiór $Y \in Set_0$ i niech $R : Set \to Set$ będzie funktorem, który zbiorowi X przypisuje wszystkie funkcje z Y w ten zbiór, R(X) = Set(Y, X). Chcemy znaleźć funktor lewo dołączony $L : Set \to Set$ do R. Patrzymy na morfizmy i mamy

$$Set(L(X), Z) \cong Set(X, \underbrace{Set(Y, Z)}_{R(Z)})$$

zbiór po prawej to funkcje z X w funkcje z Y w Z. Można to przedstawić jako funkcje $X \times Y \to Z$, czyli $LX = X \times Y$.

Technika tłumaczenia funkcji o więcej niż jednym argumencie na sekwencję funkcji nazywamy *currying*.

5. Analogicznie jak w poprzednim przykładzie, niech R będzie pierścieniem (przemiennym z jedynką), W R-modułem i R funktorem $R:RMod\to RMod$ takim, że $R(U)=\mathrm{Hom}_R(W,U)$ będzie zbiorem homomorfizmów R-modułów. Funktorem lewo-dołączonym do R będzie wtedy $L(V)=V\otimes W$:

$$RMod(V, Hom_R(W, U)) \cong RMod(V \otimes W, U).$$

Uwaga: tensor produkt zwykle nie ma funktora lewo do siebie dołączonego.

6. Założmy, że kategoria \mathcal{C} ma produkty i ustalmy $X \in \mathcal{C}$. Rozważmy funktor $L : \mathcal{C} \to \mathcal{C}$, $L(Y) = Y \times X$. Jeśli kategoria \mathcal{C} posiada obiekty eksponencjalne, czyli wiemy jak uogólnić na nią przestrzeń funkcji $X \to Y$ (oznaczane Y^X), to funktorem prawo dołączonym do L jest właśnie funktor przypisujący obiektowi Y jego eksponens Y^X ,

$$C(Y, Z^X) \cong C(Y \times X, Z).$$

Przykładem takiej kategorii są przestrzenie "core-compact".

W ramach kontrprzykładu rozważmy funktor zapominania $U: FinGrp \rightarrow FinSet$, i załóżmy, że $L: FinSet \rightarrow FinGrp$ jest jego funktorem lewo dołączonym. Niech p będzie taką liczbą pierwszą, że p > |L(1)| (wystarczy, że są względnie pierwsze). Wtedy

$$FinSet(1, U(\mathbb{Z}_p)) \cong FinGrp(L(1), \mathbb{Z}_p)$$

gdzie po lewej zbiór ma $|\mathbb{Z}_p| = p$ różnych funkcji z singletona w zbiór elementów grupy \mathbb{Z}_p , a po prawej mamy jedynie trywialny morfizm, bo żaden element L(1) nie ma rzędu podzielnego przez p, czyli nie może przejść w żaden nietrywialny element \mathbb{Z}_p .

3. Druga definicja

Definicja 1.13: funktory dołączone (naturalne transformacje)

Rozważmy parę funktorów

$$\mathcal{C} \overset{\mathsf{L}}{\underset{\mathsf{R}}{\longleftrightarrow}} \mathcal{D}.$$

Powiemy, że L jest lewo dołączony do R i na odwrót, jeśli istnieją dwie natrualne transformacje

$$\varepsilon: \mathsf{LR} \implies 1_{\mathcal{D}} \quad \eta: 1_{\mathcal{C}} \implies \mathsf{RL}$$

takie, że komutują diagramy

 η nazywamy unit, a ε to counit.

10.03.2025 Funktory dołączone własności

1. Dowód równoważności

Twierdzenie 1.14

Dwie definicje funktorów dołączonych z poprzedniego wykładu są równoważne, tzn. naturalne transformacje *H*, *E*

$$\mathcal{D}(\mathsf{L}-,-) \overset{E}{\underset{H}{\longleftrightarrow}} \mathcal{C}(-,\mathsf{R}-)$$

istnieją \iff istnieją dwie naturalne transformacje $\varepsilon:LR\to 1_{\mathcal D}$ oraz $\eta:1_{\mathcal C}\to RL$ dla których komutują diagramy

Dowód

Niech $f: c' \to c$ będzie morfizmem w \mathcal{D} , a $g: d' \to d$ - morfizmem w \mathcal{C} .

Zacznijmy od zdefiniowania szukanych przekształceń naturalnych na obiektach. Niech $\eta_{\mathcal{C}}$

$$\mathcal{D}(\mathsf{Lc},\mathsf{Lc}) \xrightarrow{\mathsf{H}_{\mathsf{c},\mathsf{Lc}}} \mathcal{C}(\mathsf{c},\mathsf{RLc})$$

$$1_{Lc} \longrightarrow \eta_c = H(1_{Lc})$$

a ε_d definiujemy analogicznie używając E.

W drugą stronę, $H(\varphi)$ definiujemy mając η oraz ε . Dla $\varphi: Lc \to d$ definiujemy

$$\mathsf{H}(arphi) := \mathsf{R} arphi \circ \eta_{\mathsf{C}}$$
 ,

które bierze coś z c i oddaje RLc. Z drugiej strony bierzemy $\psi:c\to Rd$

$$E(\psi) := \varepsilon_{\mathbf{d}} \circ \mathsf{L} \psi.$$

Zakładamy, że H i E są naturalne i pokazujemy naturalność η , czyli komutowanie diagramu

$$RL(c') \leftarrow \frac{\eta_{c'}}{1_{\mathcal{C}}(c')}$$

$$RL(f) \downarrow \qquad \qquad \downarrow 1_{\mathcal{C}}(f)$$

$$RL(c) \leftarrow \frac{\eta_{c}}{\eta_{c}} \qquad 1_{\mathcal{C}}(c)$$

$$\begin{aligned} RLf \circ \eta_{c'} &\stackrel{\text{def. } \eta}{=} RLf \circ H(1_{Lc'}) = \\ &\stackrel{\text{funktorialność } H}{=} H(Lf \circ 1_{Lc'}) = \\ &= H(1_{Lc} \circ Lf) = \\ &= H(1_{Lc}) \circ f = \\ &\stackrel{\text{def. } \eta}{=} \eta_c \circ f. \end{aligned}$$

Analogicznie należy sprawdzić naturalność ε .

Pozostaje jeszcze udowodnić, że zdefiniowane przez nas η i ε spełnia warunek trójkąta w definicji, tzn. komutują diagramy

$$L \xrightarrow{1_L \eta} LRL \qquad \qquad R \xrightarrow{\eta 1_R} RLR \qquad \qquad \downarrow_{1_R \varepsilon} \downarrow_{1_R \varepsilon}$$

Ograniczymy się do sprawdzenia lewego diagramu.

$$Lc \xrightarrow{L(\eta_c)} LRLc$$

$$\downarrow_{Lc}$$

$$\downarrow_{Lc}$$

$$Lc$$

$$\varepsilon_{Lc} \mathit{L}(\eta_{c}) = \mathit{E}(1_{RLc}) \mathit{L}(\eta_{c}) = \mathit{E}(1_{RLc} \eta_{c}) = \mathit{EH}(1_{Lc}) = 1_{Lc}$$

 \Leftarrow

Wychodzimy teraz z założenia, że $\eta:1_{\mathcal C}\implies RL$ i $\varepsilon:LR\implies 1_{\mathcal D}$ to naturalne przekształcenia, czyli z komutowania diagramów

$$\begin{array}{cccc} c' & \xrightarrow{\eta_{c'}} & RLc' & d & \xleftarrow{\varepsilon_d} & LRd \\ f \downarrow & & \downarrow_{RLf} & g \downarrow & & \downarrow_{LRg} \\ c & \xrightarrow{\eta_c} & RLc & d' & \xleftarrow{\eta_{d'}} & LRd' \end{array}$$

dostajemy równości

$$RLf \circ \eta_{\mathit{C'}} = \eta_{\mathit{C}} \circ \mathit{f}$$

$$g \circ \varepsilon_d = \varepsilon_{d'} \circ \mathsf{LRg}$$
.

Powinniśmy najpierw pokazać, że H i E są naturalne. Zrobimy to tylko dla H. Interesuje nas diagram

$$\mathcal{D}(Lc, d) \xrightarrow{H_{c;d}} \mathcal{C}(c, Rd)$$

$$(Lf;g) \downarrow \qquad \qquad \downarrow (f;Rg)$$

$$\mathcal{D}(Lc', d') \xrightarrow{H_{c';d'}} \mathcal{C}(c', Rd')$$

$$\mathsf{EH}(\varphi) = \mathsf{E}(\mathsf{R}\varphi \circ \eta) = \mathsf{E}(\mathsf{R}\varphi)\mathsf{E}(\eta) = \varepsilon \mathsf{L}\mathsf{R}\varphi\varepsilon\mathsf{L}\eta$$

Twierdzenie 1.15

Istnieje bijekcja między zbiorem par naturalnych przekształceń (H, E) oraz (η, ε) .

Dowód

ojesu galu

2. Funktory dołączone a granice

Twierdzenie 1.16

Niech $L \dashv R$ będzie parą funktorów dołączonych. Wtedy L zachowuje granice proste, a R - granice odwrotne.

Przypomnijmy że kogranica (granica prosta) funktora $f:\mathcal{I}\to\mathcal{C}$ spełnia dla każdego g diagram

Dowód

Pokażemy tylko, że lewo dołączony funktor zachowuje kogranice, tj. dla dowolnego $d \in \mathcal{D}$ zachodzi diagram

Z uniwersalnej własności kogranicy mamy diagram

Nakładamy na niego funktor L. Potrzebujemy też strzałek $L\eta_i: Lf_i \to LRLf_i$ przychodzących z naturalnej transformacji $\eta: 1_{\mathcal{C}} \implies RL$. Dodatkowo wiemy, że $\varepsilon_d: Lrd \to d$ istnieje i jest w dodatku jedyne. Mamy więc diagram

w którym długie zielone strzałki są konsekwencją złożenia $\varepsilon_d \circ LR\psi_i = \psi_i$. Dostajemy więc $\varepsilon_d \circ Lu$ jako jedyną strzałkę $L\varinjlim f \to d$ komutującą z ψ_i oraz ψ_j .

tutaj cos o kojadrze jak mamy funkcje w przestrzeniach wektorowych

Z JAKIEGOS POWODU TUTAJ POWINNISMY DAC DEFINICJE MODULU PROJEKTYWNEGO

twierdzenie: każdy moduł wkłada się w pewien moduł injektywny