ID5059 L03 - more basis functions

C. Donovan

Today

- OOB
- Variants of basis functions: b-spline, bins
- Multidimensional bases: b-spline, others...
- Hyper-parameters and tuning

More generalisation error

- Previously saw k-fold cross validation
- A similar approach arises from bootstrapping: the Out Of Bag (OOB) error
- Bootstrapping...

My favourite equation

A model structure that will recur throughout this course (and almost every statistics course) is the apparently simple:

$$\mathbf{y} = f(\mathbf{X}, \boldsymbol{\theta}) + \mathbf{e}$$

If we are able to specify f as additive combination of the variables represented by X then our problem appears very simple:

$$\mathbf{v} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

Note ordinary multiple linear regression, analysis of variance, analysis of covariance, t-tests, polynomial regression and others fall under this model type - it is the specification of the bases in \mathbf{X} that is important.

Basis functions

- functions which are combined to produce more complex functions.
- usually simple themselves, but combine to create complex functions.
- several common methods may be viewed from the basis function perspective: polynomial regression, splines, (as we will see) regression trees, bin-smoothing, wavelet analysis, fourier analysis + many more.

Basis functions: piecewise constants

Divide the x-region(s) into K regions R_j , each having the same number of data points. Basis functions are:

$$b_j(x) = \begin{cases} 0 & x \notin R_j \\ 1 & x \in R_j \end{cases}$$

Now multiply each basis by the average of the outputs in that region.

This gives a discontinuous function, but is easy to derive and interpret.

Basis functions: piecewise constants

```
data(mcycle, package = "MASS")

# going to bin the data into 10 bins
binData <- cut(mcycle$times, breaks = seq(0, 60, length = 10)) %>%
    as.numeric() %>% as.data.frame() %>%
    rename(bin = ".")

# expand out to dummy variable to give a design matrix
binMatrix <- binData %>% fastDummies::dummy_cols(select_columns = "bin") %>%
    select(-bin) %>% mutate(y = mcycle$accel)
```

Basis functions: piecewise constants

```
binMatrix
```

```
bin_1 bin_2 bin_3 bin_4 bin_5 bin_6 bin_7 bin_8 bin_9
##
                                                                                У
## 1
                                                                              0.0
             1
                    0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
## 2
             1
                    0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -1.3
## 3
             1
                    0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
## 4
             1
                    0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                             0.0
                    0
                            0
                                   0
                                                         0
                                                                0
                                                                       0
## 5
             1
                                          0
                                                  0
                                                                            -2.7
## 6
             1
                            0
                                   0
                                                                            -2.7
## 7
                    0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
             1
## 8
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -1.3
## 9
             0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
                    1
## 10
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
## 11
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -1.3
## 12
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
                            0
                                   0
                                                         0
## 13
             0
                    1
                                          0
                                                  0
                                                                0
                                                                       0
                                                                            -2.7
## 14
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
## 15
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -5.4
## 16
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
                            0
                                   0
                                          0
                                                         0
## 17
             0
                    1
                                                  0
                                                                0
                                                                       0
                                                                            -5.4
## 18
             0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                             0.0
                    1
## 19
             0
                    1
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -2.7
                                                                            -2.7
             0
                    0
                                   0
                                                         0
                                                                0
                                                                       0
## 20
                            1
                                          0
                                                  0
## 21
             0
                            1
                                   0
                                                         0
                                                                0
                                                                             0.0
                                                                           -13.3
             0
                                   0
                                                                0
## 22
                    0
                            1
                                          0
                                                  0
                                                         0
                                                                       0
## 23
             0
                    0
                            1
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                            -5.4
                                   0
                                                         0
## 24
             0
                    0
                            1
                                          0
                                                 0
                                                                0
                                                                       0
                                                                            -5.4
## 25
             0
                    0
                            1
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                            -9.3
                                   0
                                                         0
                                                                0
                                                                          -16.0
## 26
             0
                    0
                            1
                                          0
                                                 0
                                                                       0
## 27
             0
                    0
                            1
                                   0
                                          0
                                                 0
                                                         0
                                                                0
                                                                       0
                                                                           -22.8
                                                         0
## 28
             0
                    0
                            1
                                   0
                                                                            -2.7
```

##		0	0	1	0	0	0	0	0	0 -22.8
##	30	0	0	1	0	0	0	0	0	0 -32.1
##	31	0	0	1	0	0	0	0	0	0 -53.5
##	32	0	0	1	0	0	0	0	0	0 -54.9
##	33	0	0	1	0	0	0	0	0	0 -40.2
##	34	0	0	1	0	0	0	0	0	0 -21.5
##	35	0	0	1	0	0	0	0	0	0 -21.5
##	36	0	0	1	0	0	0	0	0	0 -50.8
##	37	0	0	1	0	0	0	0	0	0 -42.9
##	38	0	0	1	0	0	0	0	0	0 -26.8
##	39	0	0	1	0	0	0	0	0	0 -21.5
	40	0	0	1	0	0	0	0	0	0 -50.8
	41	0	0	1	0	0	0	0	0	0 -61.7
	42	0	0	1	0	0	0	0	0	0 -5.4
	43	0	0	1	0	0	0	0	0	0 -80.4
##	44	0	0	1	0	0	0	0	0	0 -59.0
##	45	0	0	1	0	0	0	0	0	0 -71.0
##	46	0	0	1	0	0	0	0	0	0 -91.1
##	47	0	0	1	0	0	0	0	0	0 -77.7
##	48	0	0	1	0	0	0	0	0	0 -37.5
##	49	0	0	1	0	0	0	0	0	0 -85.6
##	50	0	0	1	0	0	0	0	0	0 -123.1
##	51	0	0	1	0	0	0	0	0	0 -101.9
	52	0	0	1	0	0	0	0	0	0 -99.1
	53	0	0	1	0	0	0	0	0	0 -104.4
##	54	0	0	1	0	0	0	0	0	0 -112.5
##	55	0	0	1	0	0	0	0	0	0 -50.8
##	56	0	0	1	0	0	0	0	0	0 -123.1
##	57	0	0	1	0	0	0	0	0	0 -85.6
##	58	0	0	1	0	0	0	0	0	0 -72.3
##	59	0	0	1	0	0	0	0	0	0 -127.2
##	60	0	0	0	1	0	0	0	0	0 -123.1
##	61	0	0	0	1	0	0	0	0	0 -117.9
##	62	0	0	0	1	0	0	0	0	0 -134.0
##	63	0	0	0	1	0	0	0	0	0 -101.9
##	64	0	0	0	1	0	0	0	0	0 -108.4
	65	0	0	0	1	0	0	0	0	0 -123.1
##		0	0	0	1	0	0	0	0	0 -123.1
##		0	0	0	1	0	0	0	0	0 -128.5
	68	0		0				0	0	
			0		1	0	0			
	69	0	0	0	1	0	0	0	0	0 -95.1
	70	0	0	0	1	0	0	0	0	0 -81.8
	71	0	0	0	1	0	0	0	0	0 -53.5
##	72	0	0	0	1	0	0	0	0	0 -64.4
##	73	0	0	0	1	0	0	0	0	0 -57.6
##	74	0	0	0	1	0	0	0	0	0 -72.3
##	75	0	0	0	1	0	0	0	0	0 -44.3
##	76	0	0	0	1	0	0	0	0	0 -26.8
##	77	0	0	0	1	0	0	0	0	0 -5.4
##	78	0	0	0	1	0	0	0	0	0 -107.1
##	79	0	0	0	1	0	0	0	0	0 -21.5
	80	0	0	0	1	0	0	0	0	0 -65.6
##		0	0	0	0	1	0	0	0	0 -16.0
##	82	0	0	0	0	1	0	0	0	0 -45.6

	00	^	•	•	^		^	^	^	^	04.0
##		0	0	0	0	1	0	0	0	0	-24.2
##	84	0	0	0	0	1	0	0	0	0	9.5
##	85	0	0	0	0	1	0	0	0	0	4.0
##	86	0	0	0	0	1	0	0	0	0	12.0
##	87	0	0	0	0	1	0	0	0	0	-21.5
##	88	0	0	0	0	1	0	0	0	0	37.5
##	89	0	0	0	0	1	0	0	0	0	46.9
##	90	0	0	0	0	1	0	0	0	0	-17.4
##	91	0	0	0	0	1	0	0	0	0	36.2
##	92	0	0	0	0	1	0	0	0	0	75.0
##	93	0	0	0	0	1	0	0	0	0	8.1
##	94	0	0	0	0	1	0	0	0	0	54.9
##	95	0	0	0	0	1	0	0	0	0	48.2
											46.2
##	96	0	0	0	0	1	0	0	0	0	
##	97	0	0	0	0	0	1	0	0	0	16.0
##	98	0	0	0	0	0	1	0	0	0	45.6
##	99	0	0	0	0	0	1	0	0	0	1.3
	100	0	0	0	0	0	1	0	0	0	75.0
##	101	0	0	0	0	0	1	0	0	0	-16.0
##	102	0	0	0	0	0	1	0	0	0	-54.9
##	103	0	0	0	0	0	1	0	0	0	69.6
##	104	0	0	0	0	0	1	0	0	0	34.8
##	105	0	0	0	0	0	1	0	0	0	32.1
##	106	0	0	0	0	0	1	0	0	0	-37.5
##	107	0	0	0	0	0	1	0	0	0	22.8
##	108	0	0	0	0	0	1	0	0	0	46.9
##	109	0	0	0	0	0	1	0	0	0	10.7
##	110	0	0	0	0	0	1	0	0	0	5.4
##	111	0	0	0	0	0	1	0	0	0	-1.3
##	112	0	0	0	0	0	1	0	0	0	-21.5
##	113	0	0	0	0	0	0	1	0	0	-13.3
##	114	0						1	0	0	30.8
	115		0	0	0	0	0				
##		0	0	0	0	0	0	1	0	0	-10.7
##	116	0	0	0	0	0	0	1	0	0	29.4
##	117	0	0	0	0	0	0	1	0	0	0.0
##	118	0	0	0	0	0	0	1	0	0	-10.7
##	119	0	0	0	0	0	0	1	0	0	14.7
##	120	0	0	0	0	0	0	1	0	0	-1.3
##	121	0	0	0	0	0	0	1	0	0	0.0
	122	0	0	0	0	0	0	1	0	0	10.7
	123	0	0	0	0	0	0	1	0	0	10.7
##	124	0	0	0	0	0	0	0	1	0	-26.8
##	125	0	0	0	0	0	0	0	1	0	-14.7
##	126	0	0	0	0	0	0	0	1	0	-13.3
##	127	0	0	0	0	0	0	0	1	0	0.0
##	128	0	0	0	0	0	0	0	1	0	10.7
	129	0	0	0	0	0	0	0	1	0	-14.7
	130	0	0	0	0	0	0	0	0	1	-2.7
	131	0	0	0	0	0	0	0	0	1	10.7
	132	0	0	0	0	0	0	0	0	1	-2.7
	133	0	0	0	0	0	0	0	0	1	10.7
1T#	100	J	J	•	v	J	•	J	•	_	10.1

Basis functions: piecewise constants

```
matplot(as.matrix(binMatrix[,-10]), type = "n", ylab = "basis value", xlab = "times")
matlines(as.matrix(binMatrix[,-10]))
```


Basis functions: piecewise constants

```
# fit this to the data - using OLS aka squared error loss
binFit <- lm(y ~ . -1, data = binMatrix)

# add to the original data for plotting
plottingData <- mcycle %>% mutate(pred = fitted(binFit))

p <- ggplot(data=plottingData) +
    geom_point(aes(x=times, y=accel), col='purple', size=1.5) +
    xlab('time (ms)') + ylab('acceleration') + ggtitle('A wiggly relationship') +
    geom_line(aes(times, pred), col = "slateblue", alpha = 0.5, size = 2) +
    theme_light()</pre>
```

Basis functions: piecewise constants

A wiggly relationship

A general local univariate basis

For calculation of a series of b-spline bases (B):

$$B_{i,j}(x) = \frac{x - \delta_i}{\delta_{i+j-1} - \delta_i} B_{i,j-1}(x) + \frac{\delta_{i+j} - x}{\delta_{i+j} - \delta_{i+1}} B_{i+1,j-1}(x)$$

Where we start with:

$$B_{i,1}(x) = \begin{cases} 1 & \delta_i \le x \le \delta_{i+1}, \\ 0 & \text{otherwise.} \end{cases}$$

Example b-spline basis

Example b-spline basis

B-splines

- B-splines are constructed to be zero outside some local region in \boldsymbol{x}
- Calculations are relatively easy

• Curves can be as smooth as desired

What about more dimensions?

- the result of multiplying a univariate basis function in one dimension against those of another
- results in a shape in higher dimensions
- two b-spline bases of degree 1 (linear) give tensor products that appear to be pyramids or ramps more curved bases such as $3^{\rm rd}$ degree (cubic) b-spline bases will give bump-like tensor products

Example b-spline basis

Example b-spline basis

Hyper-parameters

- For a particular f, we estimate its parameters against the loss function
- May be other parameters which govern the complexity/form of f: the hyper-parameters e.g. number of bases, band-width of a smoother, size of a neighborhood, learning rate of an NN, etc
- We minimise generalisation error to set these i.e. model selection, rather than model fitting
- This can be termed hyper-parameter tuning

Simple hyper-parameter example

- Splines can have a parameter that governs complexity
- Smoothing splines have a smoothing parameter that balances fidelity to data to complexity of curve a hyper-parameter that needs setting (tuning)

Simpel hyper-parameter example

Simple hyper-parameter example

```
## Warning in smooth.spline(x = mcycle$times, y = mcycle$accel, cv = T): cross-## validation with non-unique 'x' values seems doubtful
```

A wiggly relationship

Re-iterate

- loss functions for estimating model parameters given f
- generalisation error for model selection, hyper-parameter tuning

Keywords and Reading

- bootstrapping and OOB, hyper-parameter, hyper-parameter tuning
- James et~al: Section 7.1 7.4
- HT&F: Section 5.1, 5.7
- Geron: page 29-31

Work through the associated L03 markdown document