1 Shape Optimization of a Photo Gun

1.1 Geometry

- initial geometry in Figure 1
- corresponding electric field for p=3, $n_{\rm sub}=16$, $V_{\rm el}=-300$ kV and $V_{\rm ar}=1$ kV

Figure 1: Initial geometry and magnitude of electric field.

1.2 Optimization

- optimized geometry in Figure 2
- corresponding electric field for p=3, $n_{\rm sub}=16$, $V_{\rm el}=-300$ kV and $V_{\rm ar}=1$ kV
- cost function employs $I = \{14, ..., 19\}$

		$(V_{\rm el} - 625) \text{ in cm}^3$	$\frac{1}{ I } \sum_{i \in I} \max_{\mathbf{x} \in \Omega_i} \ \mathbf{E}(\mathbf{x})\ _2 \text{ in } \frac{\mathbf{m}\mathbf{v}}{\mathbf{m}}$	$\max_{\mathbf{x}\in\Omega} \ \mathbf{E}(\mathbf{x})\ _2 \text{ in } \frac{\mathbf{MV}}{\mathbf{m}}$
results:	initial	2.458	7.858	9.272
	optimized	-55.532	6.625	7.318

Figure 2: Optimized geometry and electric field.

1.3 Tracking

- general settings: Q = 100 fC
- spatial distribution: see Figure 3 for distribution generated from measurement and for comparison with laser measurement
- see Figure 4 for spatial distribution from Gaussian ($\sigma = 400 \ \mu m$)
- **temporal distribution**: Gaussian with $\sigma = 5$ ps (is measurement data available?)

Figure 3: Spatial distribution generated from measurement (2^{11} particles) and laser measurement.

Figure 4: Spatial distribution from Gaussian ($\sigma = 400 \ \mu m$, 2^{10} particles) and temporal distribution (2^{11} particles).

- **convergence of time integrator**: relative error of normalized transverse emmitance ϵ w. r. t. finest time step is shown in Figure 5
- computed with $n_x = n_y = 8$ ($h_x = h_y = 1.875 \cdot 10^{-4}$) and $n_z = 256$ ($h_z = 4.258 \cdot 10^{-4}$)
- $H = 2^{-12}$ ns used later on

Figure 5: Normalized transverse emmitance and relative error in l_{∞} -norm.

- **convergence of field map**: look at convergence with number of grid points in transverse (n_x, n_y) and longitudinal (n_z) direction individually
- Figure 6 looks at convergence of n_x , n_y for $n_z = 64$ ($h_z = 1.703 \cdot 10^{-3}$)
- Figure 7 looks at convergence of n_z for $n_x = n_y = 8$ ($h_x = h_y = 1.875 \cdot 10^{-4}$)
- $n_x = n_y = 8$ ($h_x = h_y = 1.875 \cdot 10^{-4}$) and $n_z = 256$ ($h_z = 4.258 \cdot 10^{-4}$) used for convergence studies later on
- $n_x = n_y = 16$ ($h_x = h_y = 2.5 \cdot 10^{-4}$) and $n_z = 256$ ($h_z = 4.258 \cdot 10^{-4}$) used for simulation later on (distribution from measurement is larger than that from Gaussian by more than a factor 2, see Figure 3 and Figure 4)

Figure 6: Normalized transverse emmitance and relative error in l_{∞} -norm for $n_z=64$ ($h_z=1.703\cdot 10^{-3}$) and $n_x=n_y$ variable.

Figure 7: Normalized transverse emmitance and relative error in l_{∞} -norm for n_z variable and $n_x = n_y = 8$ ($h_x = h_y = 1.875 \cdot 10^{-4}$).

- convergence of space charge: look at convergence with number of grid cells in radial (n_r) and longitudinal (n_l) direction and number of particles (n_l) separately
- Figure 8 looks at convergence of n_r , n_l for $n_l = 2^{10}$
- $n_r = n_l = 64 \ (h_r = 2.344 \cdot 10^{-5}, h_l = 1.703 \cdot 10^{-3})$ used later on
- Figure 9 looks at convergence of n_I for $n_r = n_l = 64$ $(h_r = 2.344 \cdot 10^{-5}, h_l = 1.703 \cdot 10^{-3})$
- $n_I = 2^{11}$ used for simulation later on

Figure 8: Normalized transverse emmitance and relative error in l_{∞} -norm for $n_I=2^{10}$ and n_I, n_r variable.

Figure 9: Normalized transverse emmitance and relative error in l_{∞} -norm for n_I variable and $n_r = n_l = 64$ ($h_r = 2.344 \cdot 10^{-5}$, $h_l = 1.703 \cdot 10^{-3}$).

- tracking results: simulation results for initial and optimized geometry
- continued tracking for 15 cm into the beam pipe
- initial normalized transverse emmitance for $H=2^{-12}$, $n_x=n_y=8$, $n_z=256$, $n_r=n_l=64$, $n_I=2^{11}$ and refined ($H=2^{-13}$, $n_X=n_y=16$, $n_z=512$, $n_r=n_l=128$, $n_I=2^{12}$) in Figure 10 (uses Gaussian distribution, $\tilde{\epsilon}$ signifies refined solution)
- optimized normalized transverse emmitance for $H=2^{-12}$, $n_x=n_y=16$, $n_z=256$, $n_r=n_l=64$, $n_I=2^{11}$ also in Figure 10 (uses distribution from measurement)
- rms beam size of initial geometry in Figure 11
- rms beam size of optimized geometry in Figure 12

Figure 10: Normalized transverse emmitance of initial and optimized geometry.

Figure 11: RMS beam size of initial geometry.

Figure 12: RMS beam size of optimized geometry.

References

[1] Markus Wagner. "Production and investigation of pulsed electron beams at the S-DALINAC". PhD thesis. Technische Universität Darmstadt, 2013.