Отчет по лабораторной работе №7

Дисциплина: архитектура компьютера

Романова Елизавета Романовна

Содержание

1	Цель работы	5	
2	Задание	6	
3	Теоретическое введение	7	
4	Выполнение лабораторной работы	8	
	4.1 Реализация переходов в NASM	8	
	4.2 Изучение структуры файла листинга	12	
	4.3 Задания для самостоятельной работы	14	
5	Выводы	17	
Сг	Список литературы		

Список иллюстраций

4.1	Создание каталога и файла для программы
4.2	Сохранение программы
4.3	Запуск программы
4.4	Изменение программы
4.5	Запуск измененной программы
4.6	Изменение программы
4.7	Проверка изменений
4.8	Сохранение новой программы
4.9	Проверка программы из листинга
4.10	Проверка файла листинга
4.11	Удаление операнда из программы
4.12	Просмотр ошибки в файле листинга
4.13	Проверка работы первой программы
4.14	Проверка работы второй программы

Список таблиц

1 Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

2 Задание

- 1. Реализация переходов в NASM
- 2. Изучение структуры файлов листинга
- 3. Самостоятельное написание программ по материалам лабораторной работы

3 Теоретическое введение

Для реализации ветвлений в ассемблере используются так называемые команды передачи управления или команды перехода. Можно выделить 2 типа переходов: • условный переход – выполнение или не выполнение перехода в определенную точку программы в зависимости от проверки условия. • безусловный переход – выполнение передачи управления в определенную точку программы без каких-либо условий.

4 Выполнение лабораторной работы

4.1 Реализация переходов в NASM

Создаю каталог для программ лабораторной работы №7 (рис. -fig. 4.1).

```
bash-5.2$ mkdir ~/work/arch-pc/lab07
bash-5.2$ cd ~/work/arch-pc/lab07
bash-5.2$ touch lab7-1.asm
bash-5.2$ ls
lab7-1.asm
```

Рис. 4.1: Создание каталога и файла для программы

Копирую код из листинга в файл будущей программы. (рис. -fig. 4.2).

```
| Ninctude 'In_out.asm'
| SECTION .data | msg11 D8 'CooGagenue N 1', 0 | msg21 D8 'CooGagenue N 2', 0 | msg31 D8 'CooGagenue N 3', 0 | SECTION .text | GLOBAL_start | Jamp_label2 | msg21 D8 | msg22 D8 | msg23 D
```

Рис. 4.2: Сохранение программы

При запуске программы я убедилась в том, что неусловный переход действи-

тельно изменяет порядок выполнения инструкций (рис. -fig. 4.3).

```
bash-5.2$ nasm -f elf lab7-1.asm
bash-5.2$ ld -m elf_i386 -o lab7-1 lab7-1.o
bash-5.2$ ./lab7-1
Сообщение № 2
Сообщение № 3
```

Рис. 4.3: Запуск программы

Изменяю программу таким образом, чтобы поменялся порядок выполнения функций (рис. -fig. 4.4).

```
-/work/arch-pc/lab07/lab7-1.asm-Mousepad x

File Edit Search View Document Help

1 %include 'in_out.asm'
2
3 SECTION .data
4 msg1: DB 'Cooбщение W 1', 0
5 msg2: DB 'Cooбщение W 2', 0
6 msg3: DB 'Cooбщение W 3', 0
7
8 SECTION .text
9 GLOBAL _start
10 _start:
11
12 jmp _label2
13
14 _label1:
15 mov eax, msg1
16 call sprintLF
17 jmp _end
18
19 _label2:
20 mov eax, msg2
21 call sprintLF
22 jmp _label1
23
24 _label3:
25 mov eax, msg3
26 call sprintLF
27
28 _end:
29 call quit
```

Рис. 4.4: Изменение программы

Запускаю программу и проверяю, что примененные изменения верны (рис. -fig. 4.5).

```
bash-5.2$ nasm -f elf lab7-1.asm
bash-5.2$ ld -m elf_i386 -o lab7-1 lab7-1.o
bash-5.2$ ./lab7-1
Сообщение № 2
Сообщение № 1
```

Рис. 4.5: Запуск измененной программы

Теперь изменяю текст программы так, чтобы все три сообщения вывелись в обратном порядке (рис. -fig. 4.6).

```
-/workjarch-pc/lab07/lab7-Lasm-Mousepad

File Edit Search View Document Help

Section data

magic De 'Condepress * 15', 0

magic De 'Condepress * 2', 0

magic De 'Condepress * 2', 0

magic De 'Condepress * 3', 0

Section test

Guesal ptare

starts

Janelia

Janeli
```

Рис. 4.6: Изменение программы

Работа выполнена корректно, программа в нужном мне порядке выводит сообщения (рис. -fig. 4.7).

```
bash-5.2$ nasm -f elf lab7-1.asm
bash-5.2$ ld -m elf_i386 -o lab7-1 lab7-1.o
bash-5.2$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
```

Рис. 4.7: Проверка изменений

Создаю новый рабочий файл и вставляю в него код из следующего листинга

(рис. -fig. 4.8).

```
*-/work/arch-pc/lab07/lab7-2.asm - Mousepad

x
File Edit Search View Document Help

%include 'in_out.asm'

SECTION .data
msgl db 'Beagure B: ', 6h
msg2 db 'HawGonswee 'wcno: ', 6h
A dd '20'
C dd '50'

SECTION .bss
max resb 10
B resb 10

S FECTION .text
GLOBAL_start
_start:
mov eax, msgl
call sprint

mov eex, B
mov eex, B
mov eex, B
mov eex, [A]
mov [max], ecx
cmp eex, [C]
gg check_B
mov eex, [A]
mov [max], ecx

Check_B:
mov eax, max
call atoi
mov [max], eax

mov eex, [B]
g fh nov [max], eax

mov eex, [B]
mov [max], eax

mov eex, [B]
mov [max], ecx

Check_B:
mov eax, max
call atoi
mov [max], eax

mov eex, [B]
g fin
mov [max], eax

mov eex, [B]
mov [max], ecx

Check_B:
mov eax, msg2
call sprint
mov eax, msg2
call mith
```

Рис. 4.8: Сохранение новой программы

Программа выводит значение переменной с максимальным значением, проверяю работу программы с разными входными данными (рис. -fig. 4.9).

```
bash-5.2$ nasm -f elf lab7-2.asm
bash-5.2$ ld -m elf_i386 -o lab7-2 lab7-2.o
bash-5.2$ ./lab7-2
Введите В: 15
Наибольшее число: 50
bash-5.2$ ./lab7-2
Введите В: 70
Наибольшее число: 70
bash-5.2$ ./lab7-2
Введите В: 10
Наибольшее число: 50
```

Рис. 4.9: Проверка программы из листинга

4.2 Изучение структуры файла листинга

Создаю файл листинга с помощью флага -l команды nasm и открываю его с помощью текстового редактора mousepad (рис. -fig. 4.10).

Рис. 4.10: Проверка файла листинга

Первое значение в файле листинга - номер строки, и он может вовсе не совпадать с номером строки изначального файла. Второе вхождение - адрес, смещение машинного кода относительно начала текущего сегмента, затем непосредственно идет сам машинный код, а заключает строку исходный текст прогарммы с комментариями.

Удаляю один операнд из случайной инструкции, чтобы проверить поведение файла листинга в дальнейшем (рис. -fig. 4.11).

Рис. 4.11: Удаление операнда из программы

В новом файле листинга показывает ошибку, которая возникла при попытке трансляции файла. Никакие выходные файлы при этом помимо файла листинга не создаются. (рис. -fig. 4.12).

Рис. 4.12: Просмотр ошибки в файле листинга

4.3 Задания для самостоятельной работы

Беру свой вариант - 3 - из предыдудщей лабораторной работы. Возвращаю операнд к функции в программе и изменяю ее так, чтобы она выводила переменную с наименьшим значением.

```
Код первой программы:
```

%include 'in_out.asm'

SECTION .data msg1 db 'Введите В:', 0h msg2 db 'Наименьшее число:', 0h A dd '58' C dd '5'

SECTION .bss min resb 10 B resb 10

SECTION .text GLOBAL _start _start:

mov eax, msg1 call sprint

mov ecx, B mov edx, 10 call sread
mov eax, B call atoi mov [B], eax
mov ecx, [A] mov [min], ecx
cmp ecx, [C] jg check_B mov ecx, [C] mov [min], ecx
check_B: mov eax, min call atoi mov [min], eax
mov ecx, [min] cmp ecx, [B] jb fin mov ecx, [B] mov [min], ecx
fin: mov eax, msg2 call sprint mov eax, [min] call iprintLF call quit
Проверяю корректность написания первой программы (рис. -fig. 4.13).

```
bash-5.2$ nasm -f elf lab7-2.asm
bash-5.2$ ld -m elf_1386 -o lab7-2 lab7-2.o
bash-5.2$ ./lab7-2
Введите В: 94
Наименьшее число: 58
```

Рис. 4.13: Проверка работы первой программы

Пишу программу, которая будет вычислять значение заданной функции согласно моему варианту для введенных с клавиатурых переменных а и х.

Код второй программы:

%include 'in_out.asm' SECTION .data msg_x: DB 'Введите значение переменной x:', 0 msg_a: DB 'Введите значение переменной a:', 0 res: DB 'Результат:', 0 SECTION .bss x: RESB 80 a: RESB 80 SECTION .text GLOBAL _start _start: mov eax, msg_x call sprint mov ecx, x mov edx, 80 call sread mov eax, x call atoi mov edi, eax

mov eax, msg_a call sprint mov ecx, a mov edx, 80 call sread mov eax, a call atoi mov esi, eax

cmp edi, esi jle add values mov eax, esi jmp print result

add values: mov eax, edi add eax, esi

print_result: mov edi, eax mov eax, res call sprint mov eax, edi call iprintLF call quit Транслирую и компоную файл, запускаю и проверяю работу программмы для различных значений а и х (рис. -fig. 4.14).

```
bash-5.2$ nasm -f elf lab7-3.asm
bash-5.2$ ld -m elf_i386 -o lab7-3 lab7-3.o
bash-5.2$ ./lab7-3
Введите значение переменной х: 3
Введите значение переменной а: 4
Результат: 7
ваsh-5.2$ ./lab7-3
Введите значение переменной х: 1
Введите значение переменной а: 4
Результат: 5
```

Рис. 4.14: Проверка работы второй программы

5 Выводы

При выполнении лабораторной работы я изучил команды условных и безусловных переходво, а также приобрел навыки написания программ с использованием перходов, познакомился с назначением и структурой файлов листинга.

Список литературы

- 1. Курс на ТУИС
- 2. Лабораторная работа №7
- 3. Программирование на языке ассемблера NASM Столяров А. В.