Example of missing data imputation

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information November 24, 2021

Outline

Last time:

- Measurement error
- Missing data types of missingness

Today:

• How to impute missing data

Missing data

Missing values

Common in real-world data: some rows in the data set are missing values for some of the variables

- Option 1: drop rows with NAs (complete case analysis)
 - At best, this is inefficient because we are getting rid of data
 - At worst, if missingness is associated with some of our variables, this can introduce biases
- Option 2: Replace NAs with a fixed value (e.g. mean or mode of the nonmissing values, or 0)
 - This is wrong and bad
 - Don't

Missing values are measurement errors

The third option: impute the missing values

- Missingness is a measurement error just a specific type of measurement error
- So, we can go back to the DAG, explicitly include missingness in the model
- A missing value is now just an unknown parameter
- Bayesian imputation: we fill in the missing gap, but not with a fixed value (like mean(x)); instead, with a probability distribution

Back to the DAG

The DAG for missing value imputation is especially important:

- Missingness generally has a cause
- If this cause is related to our predictors or outcome
- Put the missingness mechanism into the DAG, see what we can learn

Three forms of missingness

As we'll see, there are three major categories of missingness

- can be distinguished by the structural causal relationship between missingness and other variables
- some types allow us to impute and proceed with estimation
- some types will hopelessly confound estimates

Three unwieldy terms

- Missing completely at random (MCAR): missingness not related to predictors or outcomes
- Missing at random (MAR): missingness related to predictors, but not outcomes
- Missing not at random (MNAR): missingness related to outcomes

Easier to understand if we draw a DAG

The dog and the homework

The book has a nice metaphor:

- Students, all of whom have dogs, study a varying amount (S) and produce homework of varying quality (H)
- Predictably, S and H are positively associated students who study more produce better work
- After the homework is complete, some of the students' dogs eat their homework (D)

Our ability to estimate the causal effect of S on H will depend on the nature of the relationship between D and other variables

Missing completely at random

The first category: missing completely at random

- *D* is independent of the other variables
- Some dogs are good dogs, some are... less good dogs
- Good news: this still lets us identify causal effects, because it does not in principle affect the joint distribution of S, H – just reduces effective sample size

Missing at random

Second category: missing at random

- *D* is related to the predictors
- Students who study more spend less time with their dogs. In frustration, the dogs retaliate
- Good news: although this opens a backdoor path, it can be blocked by conditioning on S (which we were going to do anyway)

Missing not at random

Third category: missing not at random

- D is related to the outcomes
- Dogs eat specifically bad homework (or good). (Maybe the students, recognizing the homework is bad, feed it to the dog so they don't have to turn it in)
- Now we have a backdoor path that cannot be blocked.

Milk, brains, and body size

Example from the book:

- milk.csv contains data on 27 species of primate: body mass (kg)
 M, percentage of brain that is neocortex N, and energy density of milk K
- Evolutionary hypothesis: brains are extremely expensive energetically; so, species with large and complex brains produce more energetic milk, so that their brains can develop better/faster
- Regression of milk energy on % neocortex may be confounded:
 - Primates with the largest, most complex brains (humans, apes)
 are also physically larger than, e.g. lemurs and monkeys
 - Maybe milk energy is more about overall body mass?
- Causal exploration of this question in Ch. 5 of the book; today, what we're interested in is that for 12 of the 29 species, neocortex % is missing

Brief overview of the causal analysis

Three possible regressions:

- K as a function of log M; shows no relationship between K, log M
- K as a function of N; shows no relationship between K, N
- K as a function of log M, N; shows positive relationship between K, N and negative between K, log M
 - Associations mask one another because M, N are negatively associated

Brief overview of the causal analysis

Drawing causal inferences requires extra assumptions; at least 3 DAGs are compatible

- Neocortex influences body mass; both influence milk energy
- Mass influences neocortex;
 both influence energy
- Unobserved variable influences both mass and neocortex

Imputing the missing data

In Ch. 5, they do a complete case analysis – drop the 12 rows with missing observations.

Multiple regression model (base form):

$$K_i \sim \text{Normal}(\mu_i, \sigma)$$
 $\mu_i \sim \alpha + \beta_M \log M_i + \beta_N N_i$
 $\alpha \sim \text{Normal}(0, 0.5)$
 $\beta_M \sim \text{Normal}(0, 0.5)$
 $\beta_N \sim \text{Normal}(0, 0.5)$
 $\sigma \sim \text{Exponential}(1)$

Imputing the missing data

In the data set we have, the vector of N values looks like:

```
[-2.08, nan, nan, nan, nan, -0.51, -0.51, 0.01, nan, 0.21, -1.46, -0.99, -1.22, nan, nan, 0.4, nan, 0.47, nan, 0.98, nan, -0.01, nan, 0.62, 0.84, nan, 0.45, 1.46, 1.33]
```

- Some of the values are known, some are unknown
- Those that are unknown get to be parameters in our model

Imputing the missing data

New version of the model:

$$K_i \sim \text{Normal}(\mu_i, \sigma)$$
 $\mu_i \sim \alpha + \beta_M \log M_i + \beta_N N_i$
 $N_i \sim \text{Normal}(\nu, \sigma_N)$
 $\alpha \sim \text{Normal}(0, 0.5)$
 $\beta_M \sim \text{Normal}(0, 0.5)$
 $\sigma \sim \text{Exponential}(1)$
 $\sigma_N \sim \text{Exponential}(1)$

Likelihood vs. prior

The line

$$N_i \sim \text{Normal}(\nu, \sigma_N)$$

is doing a lot of work!

- When N is observed, this is treated as a likelihood
- When N is missing, this is treated as a prior
- Like in a multilevel model, the prior parameters (ν, σ_N) are learned from the data that is available

Model code

```
with pm.Model() as imputation_model:
    sigma_N = pm.Exponential("sigma_N", 1)
    sigma = pm.Exponential("sigma", 1)
   bM = pm.Normal("bM", 0, 0.5)
   bN = pm.Normal("bN", 0, 0.5)
   nu = pm.Normal("nu", 0, 0.5)
    a = pm.Normal("a", 0, 0.5)
   # PyMC3 automatically imputes missing values here
   Ni = pm.Normal("Ni", nu, sigma_N, observed=N)
   mil = a + bN * Ni + bM * M
   K_ = pm.Normal("K", mu, sigma, observed=K)
```

Result of imputation model

	mean	sd	hdi_5.5%	hdi_94.5%
bM	-0.544	0.206	-0.885	-0.233
bN	0.498	0.237	0.111	0.855
nu	-0.046	0.211	-0.381	0.281
а	0.029	0.165	-0.239	0.285
Ni_missing[0]	-0.580	0.937	-2.079	0.850
Ni_missing[1]	-0.700	0.928	-2.209	0.723
Ni_missing[2]	-0.711	0.947	-2.130	0.819

Result of imputation model

Scatterplots with only the complete cases:

Result of imputation model

With the imputed observations:

Comparison of estimates

Causal reasoning around missingness

How does the missingness affect causal inferences?

- If missingness uncorrelated with anything: no risk of bias, imputation improves precision
- If body mass influences missingness perhaps larger primates such as apes are more thoroughly studied than smaller primates such as lemurs – we're still ok
 - There is a backdoor path from the observed neocortex values to the outcome, but it is blocked by conditioning on M
- If neocortex influences missingness humans like to study primates that are similar to humans (have a lot of neocortex)
 we're in trouble

Further refinement: model the missing neocortex values as explicitly correlated with the body mass, to improve precision of imputation

Summary

Today:

• Missing data imputation example

Next up:

- Bayesian neural networks
- Approximate computational methods (variational inference, etc.)
- Dirichlet processes
- Particle filters

Have a good break!