Getting and Cleaning Data Course Project

This projected is implemented as run_analysis.R is implemented as a function that accepts two arguments working_dir and download_dir.

A valid working_dir must be supplied; if the directory is not valid the program will error out and exit.

Download_dir is where processing data from web gets down loaded. The default directory for this is a sub directory under working_dir called Data.

The functional specification for this project is

- (1) Merges the training and the test sets to create one data set.
- (2) Extracts only the measurements on the mean and standard deviation for each measurement.
- (3) Uses descriptive activity names to name the activities in the data set
- (4) Appropriately labels the data set with descriptive variable names.
- (5) From the data set in step 4, creates a second, independent tidy data set with the average of each variable for each activity and each subject.

We will source dplyr library

libarary(dplyr)

Validate that working directory passed is a valid directory & set the working directory

```
if (!file.exists (working_dir)) {
  stop ("Specify valid working directory")
}
setwd(working_dir)
```

If the directory to down load and manipulate data doesn't exists create that directory

```
if(!file.exists("./data")){dir.create("./data")}
```

Down load and Unzip the file to create raw data

This assignment was done on windows and needed method="auto" and mode="wb". The usual recommendation of curl for method did not work

```
download.file(url=fileUrl,destfile="./data/Dataset.zip",mode="wb",method="auto")
dateDownloaded <- date()
dateDownloaded
unzip(zipfile="./data/Dataset.zip",exdir="./data", overwrite = TRUE)
```

Source through directories and create a file path to all the files. We have to specify recursive=TRUE to get the subdirectories also.

```
filepath_full<- file.path("./data", "UCI HAR Dataset") files<-list.files(filepath_full, recursive=TRUE)
```

Displaying variuables in files via a debugger will display following files. The directory they are located is

C:\Coursera\Getting_Cleaning_Data_Course_Project\data\UCI HAR Dataset

Files

- [1] "activity_labels.txt"
- [2] "features_info.txt"
- [3] "features.txt"
- [4] "README.txt"
- [5] "test/Inertial Signals/body_acc_x_test.txt"
- [6] "test/Inertial Signals/body_acc_y_test.txt"
- [7] "test/Inertial Signals/body_acc_z_test.txt"
- [8] "test/Inertial Signals/body_gyro_x_test.txt"
- [9] "test/Inertial Signals/body_gyro_y_test.txt"

```
[10] "test/Inertial Signals/body_gyro_z_test.txt"
```

- [11] "test/Inertial Signals/total_acc_x_test.txt"
- [12] "test/Inertial Signals/total_acc_y_test.txt"
- [13] "test/Inertial Signals/total_acc_z_test.txt"
- [14] "test/subject_test.txt"
- [15] "test/X_test.txt"
- [16] "test/y_test.txt"
- [17] "train/Inertial Signals/body_acc_x_train.txt"
- [18] "train/Inertial Signals/body_acc_y_train.txt"
- [19] "train/Inertial Signals/body_acc_z_train.txt"
- [20] "train/Inertial Signals/body_gyro_x_train.txt"
- [21] "train/Inertial Signals/body_gyro_y_train.txt"
- [22] "train/Inertial Signals/body_gyro_z_train.txt"
- [23] "train/Inertial Signals/total_acc_x_train.txt"
- [24] "train/Inertial Signals/total_acc_y_train.txt"
- [25] "train/Inertial Signals/total acc z train.txt"
- [26] "train/subject_train.txt"
- [27] "train/X_train.txt"
- [28] "train/y_train.txt"

Read activity file

```
dataActivityTest <- read.table(file.path(filepath_full, "test", "Y_test.txt"),header = FALSE)
dataActivityTrain <- read.table(file.path(filepath_full, "train", "Y_train.txt"),header = FALSE)
```

Read the Subject files

```
dataSubjectTrain <- read.table(file.path(filepath_full, "train", "subject_train.txt"),header = FALSE)
```

dataSubjectTest <- read.table(file.path(filepath_full, "test", "subject_test.txt"),header = FALSE)

Read Features files

dataFeaturesTest <- read.table(file.path(filepath_full, "test", "X_test.txt"),header = FALSE)
dataFeaturesTrain <- read.table(file.path(filepath_full, "train", "X_train.txt"),header = FALSE)

Look at the properties of the above varibles

```
str(dataActivityTest)
## 'data.frame': 2947 obs. of 1 variable:
## $ V1: int 5 5 5 5 5 5 5 5 5 5 ...
str(dataActivityTrain)
## 'data.frame': 7352 obs. of 1 variable:
## $ V1: int 5 5 5 5 5 5 5 5 5 5 ...
str(dataSubjectTrain)
## 'data.frame':
                  7352 obs. of 1 variable:
## $ V1: int 1 1 1 1 1 1 1 1 1 ...
str(dataSubjectTest)
## 'data.frame': 2947 obs. of 1 variable:
   $ V1: int 2 2 2 2 2 2 2 2 2 2 ...
str(dataFeaturesTest)
## 'data.frame': 2947 obs. of 561 variables:
## $ V1 : num 0.257 0.286 0.275 0.27 0.275 ...
  $ V2 : num -0.0233 -0.0132 -0.0261 -0.0326 -0.0278 ...
## $ V3 : num -0.0147 -0.1191 -0.1182 -0.1175 -0.1295 ...
   $ V4 : num -0.938 -0.975 -0.994 -0.995 -0.994 ...
   $ V5 : num -0.92 -0.967 -0.97 -0.973 -0.967 ...
  $ V6 : num -0.668 -0.945 -0.963 -0.967 -0.978 ...
  $ V7 : num -0.953 -0.987 -0.994 -0.995 -0.994 ...
## $ V8 : num -0.925 -0.968 -0.971 -0.974 -0.966 ...
```

```
## $ V9 : num -0.674 -0.946 -0.963 -0.969 -0.977 ...
## $ V10 : num -0.894 -0.894 -0.939 -0.939 ...
   $ V11 : num -0.555 -0.555 -0.569 -0.569 -0.561 ...
   $ V12 : num -0.466 -0.806 -0.799 -0.799 -0.826 ...
   $ V13 : num 0.717 0.768 0.848 0.848 0.849 ...
##
  $ V14 : num  0.636 0.684 0.668 0.668 0.671 ...
   $ V15 : num 0.789 0.797 0.822 0.822 0.83 ...
## $ V16 : num -0.878 -0.969 -0.977 -0.974 -0.975 ...
   $ V17 : num -0.998 -1 -1 -1 -1 ...
## $ V18 : num -0.998 -1 -1 -0.999 -0.999 ...
   $ V19 : num -0.934 -0.998 -0.999 -0.999 -0.999 ...
   $ V20 : num -0.976 -0.994 -0.993 -0.995 -0.993 ...
   $ V21 : num -0.95 -0.974 -0.974 -0.979 -0.967 ...
  $ V22 : num -0.83 -0.951 -0.965 -0.97 -0.976 ...
##
   $ V23 : num -0.168 -0.302 -0.618 -0.75 -0.591 ...
## $ V24 : num -0.379 -0.348 -0.695 -0.899 -0.74 ...
## $ V25 : num 0.246 -0.405 -0.537 -0.554 -0.799 ...
   $ V26 : num 0.521 0.507 0.242 0.175 0.116 ...
```

\$ V27 : num -0.4878 -0.1565 -0.115 -0.0513 -0.0289 ...

\$ V30 : num 0.21196 0.19757 -0.01194 0.03077 0.00063 ...

\$ V31 : num -0.1349 -0.1946 -0.0634 -0.1293 -0.0453 ...

\$ V33 : num -0.0142 -0.3405 -0.5074 -0.4195 -0.0682 ...

\$ V34 : num -0.106 0.0776 0.1885 0.2715 0.0744 ...

\$ V35 : num 0.0735 -0.084 -0.2316 -0.2258 0.0271 ...

\$ V36 : num -0.1715 0.0353 0.6321 0.4164 -0.1459 ...

\$ V37 : num 0.0401 -0.0101 -0.5507 -0.2864 -0.0502 ...

\$ V32 : num 0.131 0.411 0.471 0.446 0.168 ...

\$ V28 : num 0.4823 0.0407 0.0327 0.0342 -0.0328 ...

\$ V29 : num -0.0455 0.273 0.1924 0.1536 0.2943 ...

##

```
## $ V38 : num 0.077 -0.105 0.3057 -0.0638 0.2352 ...
```

- ## \$ V39 : num -0.491 -0.429 -0.324 -0.167 0.29 ...
- ## \$ V40 : num -0.709 0.399 0.28 0.545 0.458 ...
- ## \$ V41 : num 0.936 0.927 0.93 0.929 0.927 ...
- ## \$ V42 : num -0.283 -0.289 -0.288 -0.293 -0.303 ...
- ## \$ V43 : num 0.115 0.153 0.146 0.143 0.138 ...
- ## \$ V44 : num -0.925 -0.989 -0.996 -0.993 -0.996 ...
- ## \$ V45 : num -0.937 -0.984 -0.988 -0.97 -0.971 ...
- ## \$ V46 : num -0.564 -0.965 -0.982 -0.992 -0.968 ...
- ## \$ V47 : num -0.93 -0.989 -0.996 -0.993 -0.996 ...
- ## \$ V48 : num -0.938 -0.983 -0.989 -0.971 -0.971 ...
- ## \$ V49 : num -0.606 -0.965 -0.98 -0.993 -0.969 ...
- ## \$ V50 : num 0.906 0.856 0.856 0.856 0.854 ...
- ## \$ V51 : num -0.279 -0.305 -0.305 -0.305 -0.313 ...
- ## \$ V52 : num 0.153 0.153 0.139 0.136 0.134 ...
- ## \$ V53 : num 0.944 0.944 0.949 0.947 0.946 ...
- ## \$ V54 : num -0.262 -0.262 -0.262 -0.273 -0.279 ...
- ## \$ V55 : num -0.0762 0.149 0.145 0.1421 0.1309 ...
- ## \$ V56 : num -0.0178 0.0577 0.0406 0.0461 0.0554 ...
- ## \$ V57 : num 0.829 0.806 0.812 0.809 0.804 ...
- ## \$ V58 : num -0.865 -0.858 -0.86 -0.854 -0.843 ...
- ## \$ V59 : num -0.968 -0.957 -0.961 -0.963 -0.965 ...
- ## \$ V60 : num -0.95 -0.988 -0.996 -0.992 -0.996 ...
- ## \$ V61 : num -0.946 -0.982 -0.99 -0.973 -0.972 ...
- ## \$ V62 : num -0.76 -0.971 -0.979 -0.996 -0.969 ...
- ## \$ V63 : num -0.425 -0.729 -0.823 -0.823 -0.83 ...
- ## \$ V64 : num -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
- ## \$ V65 : num 0.219 -0.465 -0.53 -0.7 -0.302 ...
- ## \$ V66 : num -0.43 -0.51 -0.295 -0.343 -0.482 ...

```
## $ V67 : num 0.431 0.525 0.305 0.359 0.539 ...
   $ V68 : num -0.432 -0.54 -0.315 -0.375 -0.596 ...
   $ V69 : num 0.433 0.554 0.326 0.392 0.655 ...
   $ V70 : num -0.795 -0.746 -0.232 -0.233 -0.493 ...
   $ V71 : num 0.781 0.733 0.169 0.176 0.463 ...
##
   $ V72 : num -0.78 -0.737 -0.155 -0.169 -0.465 ...
   $ V73 : num 0.785 0.749 0.164 0.185 0.483 ...
   $ V74 : num -0.984 -0.845 -0.429 -0.297 -0.536 ...
##
   $ V75 : num 0.987 0.869 0.44 0.304 0.544 ...
   $ V76 : num -0.989 -0.893 -0.451 -0.311 -0.553 ...
   $ V77 : num 0.988 0.913 0.458 0.315 0.559 ...
   $ V78 : num 0.981 0.945 0.548 0.986 0.998 ...
   $ V79 : num -0.996 -0.911 -0.335 0.653 0.916 ...
   $ V80 : num -0.96 -0.739 0.59 0.747 0.929 ...
   $ V81 : num 0.072 0.0702 0.0694 0.0749 0.0784 ...
##
   $ V82 : num  0.04575 -0.01788 -0.00491 0.03227 0.02228 ...
   $ V83 : num -0.10604 -0.00172 -0.01367 0.01214 0.00275 ...
   $ V84 : num -0.907 -0.949 -0.991 -0.991 -0.992 ...
   $ V85 : num -0.938 -0.973 -0.971 -0.973 -0.979 ...
   $ V86 : num -0.936 -0.978 -0.973 -0.976 -0.987 ...
##
   $ V87 : num -0.916 -0.969 -0.991 -0.99 -0.991 ...
   $ V88 : num -0.937 -0.974 -0.973 -0.973 -0.977 ...
   $ V89 : num -0.949 -0.979 -0.975 -0.978 -0.985 ...
##
   $ V90 : num -0.903 -0.915 -0.992 -0.992 -0.994 ...
   $ V91 : num -0.95 -0.981 -0.975 -0.975 -0.986 ...
   $ V92 : num -0.891 -0.978 -0.962 -0.962 -0.986 ...
   $ V93 : num  0.898 0.898 0.994 0.994 0.994 ...
   $ V94 : num 0.95 0.968 0.976 0.976 0.98 ...
```

\$ V95 : num 0.946 0.966 0.966 0.97 0.985 ...

```
## $ V96 : num -0.931 -0.974 -0.982 -0.983 -0.987 ...
## $ V97 : num -0.995 -0.998 -1 -1 -1 ...
   $ V98 : num -0.997 -0.999 -0.999 -0.999 -1 ...
   $ V99 : num -0.997 -0.999 -0.999 -0.999 -1 ...
   [list output truncated]
str(dataFeaturesTrain)
## 'data.frame': 7352 obs. of 561 variables:
## $ V1 : num 0.289 0.278 0.28 0.279 0.277 ...
   $ V2 : num -0.0203 -0.0164 -0.0195 -0.0262 -0.0166 ...
## $ V3 : num -0.133 -0.124 -0.113 -0.123 -0.115 ...
## $ V4 : num -0.995 -0.998 -0.995 -0.996 -0.998 ...
  $ V5 : num -0.983 -0.975 -0.967 -0.983 -0.981 ...
   $ V6 : num -0.914 -0.96 -0.979 -0.991 -0.99 ...
##
  $ V7 : num -0.995 -0.999 -0.997 -0.997 -0.998 ...
##
   $ V8 : num -0.983 -0.975 -0.964 -0.983 -0.98 ...
## $ V9 : num -0.924 -0.958 -0.977 -0.989 -0.99 ...
## $ V10 : num -0.935 -0.943 -0.939 -0.939 -0.942 ...
   $ V11 : num -0.567 -0.558 -0.558 -0.576 -0.569 ...
   $ V12 : num -0.744 -0.818 -0.818 -0.83 -0.825 ...
   $ V13 : num  0.853 0.849 0.844 0.844 0.849 ...
##
   $ V14 : num  0.686 0.686 0.682 0.682 0.683 ...
   $ V15 : num  0.814  0.823  0.839  0.838  0.838 ...
   $ V16 : num -0.966 -0.982 -0.983 -0.986 -0.993 ...
##
   $ V17 : num -1 -1 -1 -1 ...
## $ V18 : num -1 -1 -1 -1 -1 ...
   $ V19 : num -0.995 -0.998 -0.999 -1 -1 ...
   $ V20 : num -0.994 -0.999 -0.997 -0.997 -0.998 ...
   $ V21 : num -0.988 -0.978 -0.965 -0.984 -0.981 ...
## $ V22 : num -0.943 -0.948 -0.975 -0.986 -0.991 ...
```

```
## $ V23 : num -0.408 -0.715 -0.592 -0.627 -0.787 ...

## $ V24 : num -0.679 -0.501 -0.486 -0.851 -0.559 ...

## $ V25 : num -0.602 -0.571 -0.571 -0.912 -0.761 ...
```

\$ V26 : num 0.9293 0.6116 0.273 0.0614 0.3133 ...

\$ V27 : num -0.853 -0.3295 -0.0863 0.0748 -0.1312 ...

\$ V28 : num 0.36 0.284 0.337 0.198 0.191 ...

\$ V29 : num -0.0585 0.2846 -0.1647 -0.2643 0.0869 ...

\$ V30 : num 0.2569 0.1157 0.0172 0.0725 0.2576 ...

\$ V31 : num -0.2248 -0.091 -0.0745 -0.1553 -0.2725 ...

\$ V32 : num 0.264 0.294 0.342 0.323 0.435 ...

\$ V33 : num -0.0952 -0.2812 -0.3326 -0.1708 -0.3154 ...

\$ V34 : num 0.279 0.086 0.239 0.295 0.44 ...

\$ V35 : num -0.4651 -0.0222 -0.1362 -0.3061 -0.2691 ...

\$ V36 : num 0.4919 -0.0167 0.1739 0.4821 0.1794 ...

\$ V37 : num -0.191 -0.221 -0.299 -0.47 -0.089 ...

\$ V38 : num 0.3763 -0.0134 -0.1247 -0.3057 -0.1558 ...

\$ V39 : num 0.4351 -0.0727 -0.1811 -0.3627 -0.1898 ...

\$ V40 : num 0.661 0.579 0.609 0.507 0.599 ...

\$ V41 : num 0.963 0.967 0.967 0.968 0.968 ...

\$ V42 : num -0.141 -0.142 -0.142 -0.144 -0.149 ...

\$ V43 : num 0.1154 0.1094 0.1019 0.0999 0.0945 ...

\$ V44 : num -0.985 -0.997 -1 -0.997 -0.998 ...

\$ V45 : num -0.982 -0.989 -0.993 -0.981 -0.988 ...

\$ V46 : num -0.878 -0.932 -0.993 -0.978 -0.979 ...

\$ V47 : num -0.985 -0.998 -1 -0.996 -0.998 ...

\$ V48 : num -0.984 -0.99 -0.993 -0.981 -0.989 ...

\$ V49 : num -0.895 -0.933 -0.993 -0.978 -0.979 ...

\$ V50 : num 0.892 0.892 0.892 0.894 0.894 ...

\$ V51 : num -0.161 -0.161 -0.164 -0.164 -0.167 ...

```
## $ V52 : num 0.1247 0.1226 0.0946 0.0934 0.0917 ...
   $ V53 : num 0.977 0.985 0.987 0.987 0.987 ...
   $ V54 : num -0.123 -0.115 -0.115 -0.121 -0.122 ...
   $ V55 : num 0.0565 0.1028 0.1028 0.0958 0.0941 ...
   $ V56 : num -0.375 -0.383 -0.402 -0.4 -0.4 ...
##
   $ V57 : num 0.899 0.908 0.909 0.911 0.912 ...
   $ V58 : num -0.971 -0.971 -0.97 -0.969 -0.967 ...
##
   $ V59 : num -0.976 -0.979 -0.982 -0.982 -0.984 ...
   $ V60 : num -0.984 -0.999 -1 -0.996 -0.998 ...
   $ V61 : num -0.989 -0.99 -0.992 -0.981 -0.991 ...
   $ V62 : num -0.918 -0.942 -0.993 -0.98 -0.98 ...
   $ V63 : num -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
   $ V64 : num -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
##
   $ V65 : num 0.114 -0.21 -0.927 -0.596 -0.617 ...
   $ V66 : num -0.59042 -0.41006 0.00223 -0.06493 -0.25727 ...
##
   $ V67 : num 0.5911 0.4139 0.0275 0.0754 0.2689 ...
   $ V68 : num -0.5918 -0.4176 -0.0567 -0.0858 -0.2807 ...
   $ V69 : num 0.5925 0.4213 0.0855 0.0962 0.2926 ...
   $ V70 : num -0.745 -0.196 -0.329 -0.295 -0.167 ...
   $ V71 : num 0.7209 0.1253 0.2705 0.2283 0.0899 ...
##
   $ V72 : num -0.7124 -0.1056 -0.2545 -0.2063 -0.0663 ...
   $ V73 : num 0.7113 0.1091 0.2576 0.2048 0.0671 ...
   $ V74 : num -0.995 -0.834 -0.705 -0.385 -0.237 ...
##
   $ V75 : num 0.996 0.834 0.714 0.386 0.239 ...
   $ V76 : num -0.996 -0.834 -0.723 -0.387 -0.241 ...
   $ V77 : num 0.992 0.83 0.729 0.385 0.241 ...
   $ V78 : num 0.57 -0.831 -0.181 -0.991 -0.408 ...
   $ V79 : num 0.439 -0.866 0.338 -0.969 -0.185 ...
## $ V80 : num 0.987 0.974 0.643 0.984 0.965 ...
```

```
$ V81 : num  0.078 0.074 0.0736 0.0773 0.0734 ...
## $ V82 : num 0.005 0.00577 0.0031 0.02006 0.01912 ...
   $ V83 : num -0.06783 0.02938 -0.00905 -0.00986 0.01678 ...
   $ V84 : num -0.994 -0.996 -0.991 -0.993 -0.996 ...
   $ V85 : num -0.988 -0.981 -0.981 -0.988 -0.988 ...
  $ V86 : num -0.994 -0.992 -0.99 -0.993 -0.992 ...
   $ V87 : num -0.994 -0.996 -0.991 -0.994 -0.997 ...
  $ V88 : num -0.986 -0.979 -0.979 -0.986 -0.987 ...
  $ V89 : num -0.993 -0.991 -0.987 -0.991 -0.991 ...
## $ V90 : num -0.985 -0.995 -0.987 -0.987 -0.997 ...
   $ V91 : num -0.992 -0.979 -0.979 -0.992 -0.992 ...
   $ V92 : num -0.993 -0.992 -0.992 -0.99 -0.99 ...
   $ V93 : num 0.99 0.993 0.988 0.988 0.994 ...
  $ V94 : num 0.992 0.992 0.992 0.993 0.993 ...
   $ V95 : num 0.991 0.989 0.989 0.993 0.986 ...
  $ V96 : num -0.994 -0.991 -0.988 -0.993 -0.994 ...
## $ V97 : num -1 -1 -1 -1 ...
## $ V98 : num -1 -1 -1 -1 ...
  $ V99 : num -1 -1 -1 -1 -1 ...
##
   [list output truncated]
```

We are implementing the spec (1) Merges the training and the test sets to create one data set.

Merge the rows from Train and Test files for Subject , activity and features to produce unified data frame

```
dataSubject <- rbind(dataSubjectTrain, dataSubjectTest)
dataActivity <- rbind(dataActivityTrain, dataActivityTest)
dataFeatures <- rbind(dataFeaturesTrain, dataFeaturesTest)</pre>
```

Name the fields of subject and activity

```
names(dataSubject)<-c("subject")
names(dataActivity)<- c("activity")</pre>
```

Read the features.txt file and extract the field containing the names .

```
dataFeaturesNames <- read.table (file.path(filepath_full, "features.txt"), head=FALSE)
names(dataFeatures) <- dataFeaturesNames$V2
```

Do a columnar merge of subject, activity and features to create a single data frame.

```
dataCombine <- cbind(dataSubject, dataActivity)
Data <- cbind(dataFeatures, dataCombine)</pre>
```

We are implementing (2) Extracts only the measurements on the mean and standard deviation for each measurement.

We will use grep command to extract out selected columns. These columns represent variables that have mean and std in their names . we will subset (using SelectedColumns) the merged data and extract out ##### required data .

```
grep_std_string <- "mean\\(\\)|std\\(\\)"

Needed_features <- dataFeaturesNames[,2][grep(grep_std_string, dataFeaturesNames[,2])]

SelectedColumns <- c(as.character(Needed_features), "subject", "activity")

Data<-subset(Data,select=SelectedColumns) ← This piece of code acieves subsetting
```

3. Check the structures of the data frame Data

```
$ tBodyAcc-std()-X
                                 : num
                                       -0.995 -0.998 -0.995 -0.996 -0.998 ...
##
   $ tBodyAcc-std()-Y
                                 : num
                                        -0.983 -0.975 -0.967 -0.983 -0.981 ...
   $ tBodyAcc-std()-Z
                                 : num
                                        -0.914 -0.96 -0.979 -0.991 -0.99 ...
##
   $ tGravityAcc-mean()-X
                                        0.963 0.967 0.967 0.968 0.968 ...
                                 : num
   $ tGravityAcc-mean()-Y
                                 : num
                                        -0.141 -0.142 -0.142 -0.144 -0.149 ...
##
   $ tGravityAcc-mean()-Z
                                        0.1154 0.1094 0.1019 0.0999 0.0945 ...
                                 : num
##
   $ tGravityAcc-std()-X
                                        -0.985 -0.997 -1 -0.997 -0.998 ...
                                 : num
   $ tGravityAcc-std()-Y
                                        -0.982 -0.989 -0.993 -0.981 -0.988 ...
##
                                 : num
##
   $ tGravityAcc-std()-Z
                                 : num
                                        -0.878 -0.932 -0.993 -0.978 -0.979 ...
##
   $ tBodyAccJerk-mean()-X
                                 : num
                                        0.078 0.074 0.0736 0.0773 0.0734 ...
                                        0.005 0.00577 0.0031 0.02006 0.01912 ...
##
   $ tBodyAccJerk-mean()-Y
                                 : num
##
   $ tBodyAccJerk-mean()-Z
                                 : num
                                        -0.06783 0.02938 -0.00905 -0.00986 0.01678 ...
##
   $ tBodyAccJerk-std()-X
                                 : num
                                        -0.994 -0.996 -0.991 -0.993 -0.996 ...
##
   $ tBodyAccJerk-std()-Y
                                        -0.988 -0.981 -0.981 -0.988 -0.988 ...
                                 : num
##
   $ tBodyAccJerk-std()-Z
                                        -0.994 -0.992 -0.99 -0.993 -0.992 ...
                                 : num
##
   $ tBodyGyro-mean()-X
                                        -0.0061 -0.0161 -0.0317 -0.0434 -0.034 ...
                                 : num
##
   $ tBodyGyro-mean()-Y
                                        -0.0314 -0.0839 -0.1023 -0.0914 -0.0747 ...
                                 : num
##
   $ tBodyGyro-mean()-Z
                                        0.1077 0.1006 0.0961 0.0855 0.0774 ...
                                 : num
##
   $ tBodyGyro-std()-X
                                        -0.985 -0.983 -0.976 -0.991 -0.985 ...
                                 : num
##
   $ tBodyGyro-std()-Y
                                 : num
                                        -0.977 -0.989 -0.994 -0.992 -0.992 ...
##
   $ tBodyGyro-std()-Z
                                        -0.992 -0.989 -0.986 -0.988 -0.987 ...
                                 : num
   $ tBodyGyroJerk-mean()-X
                                 : num
                                        -0.0992 -0.1105 -0.1085 -0.0912 -0.0908 ...
                                        -0.0555 -0.0448 -0.0424 -0.0363 -0.0376 ...
##
   $ tBodyGyroJerk-mean()-Y
                                 : num
   $ tBodyGyroJerk-mean()-Z
                                 : num
                                        -0.062 -0.0592 -0.0558 -0.0605 -0.0583 ...
                                        -0.992 -0.99 -0.988 -0.991 -0.991 ...
##
   $ tBodyGyroJerk-std()-X
                                 : num
##
   $ tBodyGyroJerk-std()-Y
                                 : num
                                        -0.993 -0.997 -0.996 -0.997 -0.996 ...
                                 : num -0.992 -0.994 -0.992 -0.993 -0.995 ...
   $ tBodyGyroJerk-std()-Z
##
   $ tBodyAccMag-mean()
                                 : num -0.959 -0.979 -0.984 -0.987 -0.993 ...
   $ tBodyAccMag-std()
                                 : num -0.951 -0.976 -0.988 -0.986 -0.991 ...
```

```
$ tGravityAccMag-mean()
                                 : num
                                        -0.959 -0.979 -0.984 -0.987 -0.993 ...
##
   $ tGravityAccMag-std()
                                 : num
                                        -0.951 -0.976 -0.988 -0.986 -0.991 ...
##
   $ tBodyAccJerkMag-mean()
                                 : num
                                        -0.993 -0.991 -0.989 -0.993 -0.993 ...
##
   $ tBodyAccJerkMag-std()
                                        -0.994 -0.992 -0.99 -0.993 -0.996 ...
                                 : num
   $ tBodyGyroMag-mean()
                                 : num
                                        -0.969 -0.981 -0.976 -0.982 -0.985 ...
                                        -0.964 -0.984 -0.986 -0.987 -0.989 ...
##
   $ tBodyGyroMag-std()
                                 : num
##
   $ tBodyGyroJerkMag-mean()
                                        -0.994 -0.995 -0.993 -0.996 -0.996 ...
                                 : num
   $ tBodyGyroJerkMag-std()
                                        -0.991 -0.996 -0.995 -0.995 -0.995 ...
##
                                 : num
##
   $ fBodyAcc-mean()-X
                                 : num
                                        -0.995 -0.997 -0.994 -0.995 -0.997 ...
##
   $ fBodyAcc-mean()-Y
                                 : num
                                        -0.983 -0.977 -0.973 -0.984 -0.982 ...
##
   $ fBodyAcc-mean()-Z
                                 : num
                                        -0.939 -0.974 -0.983 -0.991 -0.988 ...
##
   $ fBodyAcc-std()-X
                                 : num
                                        -0.995 -0.999 -0.996 -0.996 -0.999 ...
##
   $ fBodyAcc-std()-Y
                                 : num
                                        -0.983 -0.975 -0.966 -0.983 -0.98 ...
##
   $ fBodyAcc-std()-Z
                                        -0.906 -0.955 -0.977 -0.99 -0.992 ...
                                 : num
##
   $ fBodyAccJerk-mean()-X
                                        -0.992 -0.995 -0.991 -0.994 -0.996 ...
                                 : num
##
   $ fBodyAccJerk-mean()-Y
                                 : num
                                        -0.987 -0.981 -0.982 -0.989 -0.989 ...
##
   $ fBodyAccJerk-mean()-Z
                                        -0.99 -0.99 -0.988 -0.991 -0.991 ...
                                 : num
##
   $ fBodyAccJerk-std()-X
                                        -0.996 -0.997 -0.991 -0.991 -0.997 ...
                                 : num
##
   $ fBodyAccJerk-std()-Y
                                        -0.991 -0.982 -0.981 -0.987 -0.989 ...
                                 : num
##
   $ fBodyAccJerk-std()-Z
                                 : num
                                        -0.997 -0.993 -0.99 -0.994 -0.993 ...
##
   $ fBodyGyro-mean()-X
                                        -0.987 -0.977 -0.975 -0.987 -0.982 ...
                                 : num
##
   $ fBodyGyro-mean()-Y
                                 : num
                                        -0.982 -0.993 -0.994 -0.994 -0.993 ...
##
   $ fBodyGyro-mean()-Z
                                        -0.99 -0.99 -0.987 -0.987 -0.989 ...
                                 : num
   $ fBodyGyro-std()-X
                                 : num
                                        -0.985 -0.985 -0.977 -0.993 -0.986 ...
##
   $ fBodyGyro-std()-Y
                                        -0.974 -0.987 -0.993 -0.992 -0.992 ...
                                 : num
##
   $ fBodyGyro-std()-Z
                                 : num
                                        -0.994 -0.99 -0.987 -0.989 -0.988 ...
                                 : num -0.952 -0.981 -0.988 -0.988 -0.994 ...
   $ fBodyAccMag-mean()
##
##
   $ fBodyAccMag-std()
                                 : num -0.956 -0.976 -0.989 -0.987 -0.99 ...
   $ fBodyBodyAccJerkMag-mean() : num -0.994 -0.99 -0.989 -0.993 -0.996 ...
```

```
## $ fBodyBodyAccJerkMag-std() : num -0.994 -0.992 -0.991 -0.992 -0.994 ...

## $ fBodyBodyGyroMag-mean() : num -0.98 -0.988 -0.989 -0.989 -0.991 ...

## $ fBodyBodyGyroMag-std() : num -0.961 -0.983 -0.986 -0.988 -0.989 ...

## $ fBodyBodyGyroJerkMag-mean(): num -0.992 -0.996 -0.995 -0.995 -0.995 ...

## $ fBodyBodyGyroJerkMag-std() : num -0.991 -0.996 -0.995 -0.995 -0.995 ...

## $ subject : int 1 1 1 1 1 1 1 1 1 1 ...

## $ activity : int 5 5 5 5 5 5 5 5 5 5 5 ...
```

Appropriately labels the data set with descriptive

(3) & (4) We are implementing Uses descriptive activity names to name the activities in the data set

Name the column of Data frame with meaningful names. we will use gsub function to do a global substitute of source strings to column strings as part of names.

gsub() function replaces all matches of a string, if the parameter is a string vector, returns a string vector of the same length and with the same attributes (after possible coercion to character). Elements of string ##### vectors which are not substituted will be returned unchanged (including any declared encoding).

```
##### tBody will be converted to Time_Body
##### FBody will be converted to Frequency_Body
##### tGravity will be converted to Time_Gravity
##### Acc will be converted to Accelerometer
##### Gyo will be converted to Gyroscope
##### Mag will be converted to Magnitude
##### BodyBOdy will be Converted to Body

names(Data)<-gsub("tBody", "Time_Body", names(Data))
names(Data)<-gsub("fBody", "Frequency_Body", names(Data))
names(Data)<-gsub("tGravity", "Time_Gravity", names(Data))
names(Data)<-gsub("Acc", "Accelerometer", names(Data))
names(Data)<-gsub("Gyro", "Gyroscope", names(Data))
```

names(Data)<-gsub("Mag", "Magnitude", names(Data))

names(Data)

[1] "Time_BodyAccelerometer-mean()-X"	"Time_BodyAcceleromete
r-mean()-Y" [3] "Time_BodyAccelerometer-mean()-Z"	"Time_BodyAcceleromete
r-std()-X" [5] "Time_BodyAccelerometer-std()-Y"	"Time_BodyAcceleromete
r-std()-z"	
[7] "Time_GravityAccelerometer-mean()-X" eter-mean()-Y"	"Time_GravityAccelerom
<pre>[9] "Time_GravityAccelerometer-mean()-Z" eter-std()-X"</pre>	"Time_GravityAccelerom
[11] "Time_GravityAccelerometer-std()-Y"	"Time_GravityAccelerom
eter-std()-Z" [13] "Time_BodyAccelerometerJerk-mean()-X"	"Time_BodyAcceleromete
rJerk-mean()-Y" [15] "Time_BodyAccelerometerJerk-mean()-Z"	"Time_BodyAcceleromete
rJerk-std()-X" [17] "Time_BodyAccelerometerJerk-std()-Y"	"Time_BodyAcceleromete
rJerk-std()-Z"	<u>-</u>
[19] "Time_BodyGyroscope-mean()-X" an()-Y"	"Time_BodyGyroscope-me
[21] "Time_BodyGyroscope-mean()-Z" d()-X"	"Time_BodyGyroscope-st
[23] "Time_BodyGyroscope-std()-Y"	"Time_BodyGyroscope-st
d()-z" [25] "Time_BodyGyroscopeJerk-mean()-X"	"Time_BodyGyroscopeJer
k-mean()-Y" [27] "Time_BodyGyroscopeJerk-mean()-Z"	"Time_BodyGyroscopeJer
k-std()-X"	
[29] "Time_BodyGyroscopeJerk-std()-Y" k-std()-Z"	"Time_BodyGyroscopeJer
[31] "Time_BodyAccelerometerMagnitude-mean()" rMagnitude-std()"	"Time_BodyAcceleromete
<pre>[33] "Time_GravityAccelerometerMagnitude-mean()"</pre>	"Time_GravityAccelerom
eterMagnitude-std()" [35] "Time_BodyAccelerometerJerkMagnitude-mean()"	"Time_BodyAcceleromete
rJerkMagnitude-std()" [37] "Time_BodyGyroscopeMagnitude-mean()"	"Time_BodyGyroscopeMag
nitude-std()"	-
[39] "Time_BodyGyroscopeJerkMagnitude-mean()" kMagnitude-std()"	"Time_BodyGyroscopeJer
[41] "Frequency_BodyAccelerometer-mean()-X" ometer-mean()-Y"	"Frequency_BodyAcceler
[43] "Frequency_BodyAccelerometer-mean()-Z"	"Frequency_BodyAcceler
ometer-std()-X" [45] "Frequency_BodyAccelerometer-std()-Y"	"Frequency_BodyAcceler
ometer-std()-Z" [47] "Frequency_BodyAccelerometerJerk-mean()-X"	"Frequency_BodyAcceler
ometerJerk-mean()-Y" [49] "Frequency_BodyAccelerometerJerk-mean()-Z"	"Frequency_BodyAcceler
ometerJerk-std()-X"	
<pre>[51] "Frequency_BodyAccelerometerJerk-std()-Y" ometerJerk-std()-Z"</pre>	"Frequency_BodyAcceler
[53] "Frequency_BodyGyroscope-mean()-X" pe-mean()-Y"	"Frequency_BodyGyrosco
[55] "Frequency_BodyGyroscope-mean()-Z"	"Frequency_BodyGyrosco
pe-std()-X" [57] "Frequency_BodyGyroscope-std()-Y"	"Frequency_BodyGyrosco
pe-std()-z"	, , , , , , , , , , , , , , , , , , , ,

We are implementing (5) From the data set in step 4, creates a second, independent tidy data set with the average of each variable for each activity and each subject.

Group the data, Create summary, write out the Summary.

We will be making use of group_by , summarize_each dply utility commands to achieve this.

Data_group <- group_by(Data, subject, activity)</pre>

Data_group_summary <- summarise_each(Data_group, funs(mean))</pre>

Data_group_summary

Source: local data frame [180 x 68]

Groups: subject

subj	ject a	activity Time	_BodyAcceleromete meter-mean()-Z	r-mean()-X	Time_BodyAccelerometer-me
1	1	1		0.2773308	-0.017
383819 2	1	2	-0.1111481	0.2554617	-0.023
953149 3	1	3	-0.0973020	0.2891883	-0.009
918505 4	1	4	-0.1075662	0.2612376	-0.001
308288	1	5	-0.1045442	0.2789176	-0.016
137590	1		-0.1106018		
5 5 13953	_	6	-0.1132036	0.2215982	-0.040
7 594920	2	1	-0.1055004	0.2764266	-0.018
8 412113	2	2	-0.1525139	0.2471648	-0.021
9 661416	2	3	-0.1168129	0.2776153	-0.022
10	2	4		0.2770874	-0.015
687994			-0.1092183		

Variables not shown: Time_BodyAccelerometer-std()-X (dbl), Time_BodyAccelerometer-std()-Y (dbl),

Time_BodyAccelerometer-std()-Z (dbl), Time_GravityAccelerometer-mean()-X (dbl), Time_GravityAccelerometer-mean()-Y (dbl),

```
Time_GravityAccelerometer-mean()-Z (dbl), Time_GravityAccelerometer-std()-X
(dbl), Time_GravityAccelerometer-std()-Y
(dbĺ), Time_GravityAccelerometer-std()-Z (dbl), Time_BodyAccelerometerJerk-mean()-X (dbl),
  Time_BodyAccelerometerJerk-mean()-Y (dbl), Time_BodyAccelerometerJerk-mean(
)-Z (dbl), Time_BodyAccelerometerJerk-std()-X (dbl), Time_BodyAccelerometerJerk-std()-Y (dbl), Time_BodyAccelerometerJerk-std()-Z (dbl), Time_BodyGyroscope-mean()-X
  (db1), Time_BodyGyroscope-mean()-Z (db1), Time_BodyGyroscope-mean()-Z (db1)
  Time_BodyGyroscope-std()-X (dbl),
Time_BodyGyroscope-std()-Y (dbl), Time_BodyGyroscope-std()-Z (dbl), Time_Bo
dyGyroscopeJerk-mean()-X (dbl),
Time_BodyGyroscopeJerk-mean()-Y (db1), Time_BodyGyroscopeJerk-mean()-Z (db1), Time_BodyGyroscopeJerk-std()-X (db1), Time_BodyGyroscopeJerk-std()-Y (db1), Time_BodyGyroscopeJerk-std()-Z (db1), Time_BodyAccelerometerMagnitude-mean() (db1), Time_BodyAccelerometerMagnitude-std() (db1), Time_GravityAccelerometerMagnitude-std()
tude-mean() (db1),
  Time_GravityAccelerometerMagnitude-std() (dbl), Time_BodyAccelerometerJerkM
agnitude-mean() (dbl),
  Time_BodyAccelerometerJerkMagnitude-std() (dbl), Time_BodyGyroscopeMagnitud
e-mean() (db1),
  Time_BodyGyroscopeMagnitude-std() (dbl), Time_BodyGyroscopeJerkMagnitude-me
an() (db1),
  Time_BodyGyroscopeJerkMagnitude-std() (dbl), Frequency_BodyAccelerometer-me
an()-x (db1)
  Frequency_BodyAccelerometer-mean()-Y (dbl), Frequency_BodyAccelerometer-mea
n()-z(db1),
  Frequency_BodyAccelerometer-std()-X (dbl), Frequency_BodyAccelerometer-std()
)-Y (dbl), Frequency_BodyAccelerometer-std()-Z
(dbl), Frequency_BodyAccelerometerJerk-mean()-X (dbl), Frequency_BodyAccele
rometerJerk-mean()-Y (dbl),
  Frequency_BodyAccelerometerJerk-mean()-Z (dbl), Frequency_BodyAccelerometer
Jerk-std()-X (dbl),
  Frequency_BodyAccelerometerJerk-std()-Y (dbl), Frequency_BodyAccelerometerJ
erk-std()-ź (dbĺ),
  Frequency_BodyGyroscope-mean()-X (dbl), Frequency_BodyGyroscope-mean()-Y (d
bl), Frequency_BodyGyroscope-mean()-Z (dbl),
  Frequency_BodyGyroscope-std()-X (dbl), Frequency_BodyGyroscope-std()-Y (dbl
), Frequency_BodyGyroscope-std()-Z (dbl)
  Frequency_BodyAccelerometerMagnitude-mean() (dbl), Frequency_BodyAccelerome
terMagnitude-std() (db1),
  Frequency_BodyAccelerometerJerkMagnitude-mean() (dbl), Frequency_BodyAccele
rometerJerkMagnitude-std() (dbl),
  Frequency_BodyGyroscopeMagnitude-mean() (dbl), Frequency_BodyGyroscopeMagni
tude-std() (dbl)
  Frequency_BodyGyroscopeJerkMagnitude-mean() (dbl), Frequency_BodyGyroscopeJ
erkMagnitude-std() (dbl)
write.table(Data group summary, file = "tidydata.txt",row.name=FALSE)
```

END OF PROGRAM

}

The following test run proves that tidydata.txt was created and uploaded using above piece of R code.

The output file tidydata.txt has been uploaded to github

downloaded 59.7 Mb