Analysis of Kruskal's Algo

- · We make use of Union - FIND ADT
- · FIND(i): Returns the name of the set Containing i.
- . Union (x, y): Merge the Sets with the mame x and y.

	2	1	4	2 5	6	7	8	9	2 10	4 7	7	13	14	15	7	17
1											12					

1	2	6	7	17	4
5	3	1	3	1	4

SIZE

ANALYSIS

3)

- ① Given G = (V, E) 8.t |V| = n and |E| = m.
- 2 Sort edges: (m. lag m)
- 3 $\forall (u,v) \in E$, check the Component name of u,v. $\vdots O(m)$
- A Merge Components 8.t Smaller gets merged into bigger: O(n.logn)
- 5 Total = 2 + 3 + 4

CORRECTNESS THEOREM 4

Let G be a Weighted Connected graph, and Vi, Vz be the partition of the Vertices of Ginto two disjoint non-empty Sets. Let e be an edge in G With min weight from among those with one end in Vi and other in V2. There is a min Spanning tree that has e as one of its edges.

Figure

5

- (1) Let T be the MST
- (2) If e ≠ T, the T+e is Cyclic
- (3) If in the cycle with one end in V_1 and other in V_2 .
- (4) T+e-f is a ST

(5) Since $w(e) \leq w(f)$ (6)

(6) The weight of the obtained spanning tree is no more than the Original spanning tree.