CLASSIFICAÇÃO DE MODELOS CARDÍACOS **TRIDIMENSIONAIS** RELACIONADA À PRESENÇA OU À AUSÊNCIA DE **CARDIOMIOPATIA**

SIN5007 – Reconhecimento de Padrões 1º sem. 2020 Profa. Dra. Ariane Machado Lima

Diego Pereira Dedize Luiz Gustavo de Almeida Silva Vagner Mendonça Gonçalves

AGENDA

- 01 DEFINIÇÃO DO PROBLEMA
- 02 CONJUNTO DE DADOS
- 03 PRÉ-PROCESSAMENTO
- **04** REDUÇÃO DA DIMENSIONALIDADE
- 05 MÉTODOS DE TREINAMENTO E VALIDAÇÃO
- **06** RESULTADOS E DISCUSSÕES
- 07 CONCLUSÕES
- **OR PRÓXIMOS PASSOS**

01 DEFINIÇÃO DO PROBLEMA

DEFINIÇÃO DO PROBLEMA

Objetivo: aplicar modelos de classificação e avaliar os resultados obtidos em um *dataset* composto por vetores de características extraídas de modelos 3D reconstruídos a partir de exames de Ressonância Magnética Cardíaca (RMC).

Cardiomiopatia: quadro clínico dado por uma anormalidade no miocárdio (estrutura muscular do coração) (KUMAR *et al.*, 2010 apud BERGAMASCO, 2018).

MOTIVAÇÃO

Classificar modelos 3D provenientes de exames reais. Aplicar diferentes abordagens de classificação e contribuir com a linha de pesquisa apresentada por Bergamasco (2013, 2018).

RMC

Cada amostra do *dataset* representa um modelo 3D do ventrículo esquerdo do coração do paciente, reconstruído a partir de fatias (*slices*) do exame de RMC, que pode sofrer ou não de algum tipo de Cardiomiopatia.

FONTE DOS DADOS

Dataset disponibilizado pelo Laboratório de Aplicações de Informática em Saúde (LApIS) - EACH/USP, coordenado pela Profa. Dra. Fátima L. S. Nunes.

- Composto por amostras (vetores de características) que representam/descrevem modelos cardíacos tridimensionais (modelos 3D).
- Reconstruções realizadas a partir de imagens RMC, fornecidas e classificadas por médicos especialistas do Departamento de Ressonância Magnética e Tomografia Computadorizada Cardiovascular do Instituto do Coração (InCor) da Universidade de São Paulo (USP) (BERGAMASCO, 2018).
- A Figura 1 apresentada fatias de exames de RMC de cada um dos tipos de amostras.

Figura 1 - Diferentes tipos de Cardiomiopatias – fatia 7 retirado de exames de RMC: (a) caso com Cardiomiopatia Dilatada (CMD); (b) caso sem anomalia; (c) caso com Cardiomiopatia Hipertrófica (CMH). Nota-se pelas imagens, que para CMD a região interna do ventrículo esquerdo é maior e a parede ventricular mais fina. O oposto ocorre para a anomalia de CMH que apresenta uma região interna menor e uma parede ventricular mais espessa.

(a)

(b) Fonte: Bergamasco (2018, p. 51) (c)

- Classes originais (baseadas no estado de saúde do coração do paciente):
 - sem anomalia (SAN);
 - > portador de Cardiomiopatia Hipertrófica (CMH); e,
 - portador de Cardiomiopatia Dilatada (CMD).
- › Binarização
 - > classificação par a par;
 - > foco principal: SAN X CMD.
- A Figura 2 apresenta ilustrações que representam secções de corações de cada um dos tipos de amostras descritos.
- > Quantidades de amostras (Total = 400):

Classes originais	Quantidade
SAN	101
CMH	183
CMD	116

Figura 2 - Ilustrações de secção do coração humano: (a) SAN; (b) CMD; (c) CMH.

(a) (b) (c) Fonte: adaptado de Bergamasco (2018, p. 49).

Fonte: Bergamasco (2018).

Figura 3 - Exemplo de reconstrução 3D das fatias: (a) reconstrução do endocárdio; (b) reconstrução do epicárdio; (c) reconstrução da parede ventricular.

CARACTERÍSTICA	TIPO	VALORES	OBSERVAÇÕES
Idade	DiscretaRacional	 Unidade: anos. Valor mínimo: 2. Valor máximo: 87. Qtde. de amostras com valor ausente: 5. 	> Intervalo de idades limites [0,100].
Sexo	DiscretaNominal	 Valores possíveis: Masculino (276 amostras); Feminino (124 amostras). Qtde. de amostras com valor ausente: 0. 	0 = Homem1 = Mulher
Volume (ventrículo)	DiscretaRacional	Unidade: mililitrosQtde. de amostras com valor ausente: 9	
Massa (ventrículo)	DiscretaRacional	Unidade: gramasQtde. de amostras com valor ausente: 9	
Extrator de Distâncias Local (EDL)	ContinuaRacionalMultivalorada	 Unidade: voxels Modelo 3D dividido em octantes Quantidade de valores por amostra: 8 Características ordenadas 	
Harmônicos Esféricos (SPHARMs)	ContínuaRacionalMultivalorada	 Valores negativos, zero e positivos. Quantidade de valores (coeficientes) por amostra: de 500 a 1000. 	 Cálculo de um coeficiente global (soma dos coeficientes).
Transformada de Hough	ContínuaRacionalMultivalorada	 Quantidade de valores por amostra: 30. Características ordenadas. 	

BALANCEAMENTO DAS CLASSES

Classes originais:

Classes originais	Quantidade de Amostras
SAN	101
CMH	183
CMD	116

> Estratégia adotada (inicialmente):

SAN versus CMD

 Sem necessidade, a priori, de aplicação de técnicas de balanceamento.

Figura 4 - Ilustrações de secção do coração humano: (a) SAN; (b) CMD.

(a) (b) Fonte: adaptado de Bergamasco (2018, p. 49).

AMOSTRAS COM VALORES AUSENTES

- > Idade (5), massa (4) e volume (4): poucas amostras apresentam valores ausentes.
 - optamos por preencher valores ausentes com a média encontrada na base.

NORMALIZAÇÃO

- Aplicação da classe StandardScaler da biblioteca scikit-learn (SCIKIT-LEARN, 2020d).
- Normalização do valor x de uma característica da amostra $\Rightarrow z = \frac{x-\mu}{\sigma}$, em que:
 - \rightarrow μ é a média da característica para as amostras do *dataset*;
 - \rightarrow σ é o desvio-padrão da característica para as amostras do *dataset*.

DISTRIBUIÇÕES DAS CARACTERÍSTICAS - ANÁLISES PRELIMINARES

04 REDUÇÃO DA DIMENSIONALIDADE

ANÁLISE DE COMPONENTES PRINCIPAIS (PCA)

23,89% 32,46% Variância Explicada Acumulada

> Em tais visões, não é possível se separar claramente as classes.

VARIÂNCIA EXPLICADA ACUMULADA

> Com 171 Componentes Principais (PC's), atinge-se 100% de Variância Explicada Acumulada.

VARIÂNCIA EXPLICADA ACUMULADA PARA A DEFINIÇÃO DA QUANTIDADE DE PC'S

Qtde. de PC's	Variância Explicada	Melhores Métricas – NB				
Qide. de PC s	Acumulada	Acurácia	Precisão	Revocação		
30	86,73	60,89	74,06	39,77		
35	89,70	60,43	71,17	40,68		
40	92,12	59,05	68,45	38,94		
45 93,89		60,43	72,95	40,61		
50	50 95,24		72,60	42,35		
53	95,93	62,77	74,19	45,91		
55	96,33	61,84	71,98	45,91		
60	97,13	61,36	71,00	45,91		
75	98,63	62,77	69,88	52,05		
171	100,00	59,55	62,83	49,47		

VARIÂNCIA EXPLICADA ACUMULADA PARA A DEFINIÇÃO DA QUANTIDADE DE PC'S

Qtde. de PC's	Variância Explicada	Melhores Métricas – SVM				
Qide. de PC S	Acumulada	Acurácia	Precisão	Revocação		
30	86,73	79,35	83,61	76,97		
35	89,70	83,40	87,46	82,80		
40	92,12	83,46	91,64	76,82		
45	45 93,89		89,75	77,73		
50	95,24	84,42	85,90	85,45		
53	95,93	85,74	90,58	82,88		
55	96,33	83,94	82,38	90,45		
60	97,13	84,76	84,11	88,71		
75	98,63	87,08	91,43	84,47		
171	100,00	73,20	74,83	76,59		

VARIÂNCIA EXPLICADA ACUMULADA PARA A DEFINIÇÃO DA QUANTIDADE DE PC'S

Qtde. de PC's	Variância Explicada	Melhores Métricas – MLP			
Qide. de PC S	Acumulada	Acurácia	Precisão	Revocação	
30	86,73	82,90	84,19	86,21	
35	89,70	84,78	91,21	80,15	
40	92,12	85,28	88,99	83,56	
45	93,89	85,24	87,45	85,23	
50	95,24	84,78	90,37	81,06	
53	95,93	83,42	84,46	85,23	
55	96,33	82,94	87,40	80,00	
60	97,13	81,99	86,71	79,17	
75	98,63	81,00	85,57	77,42	
171	100,00	58,07	61,55	59,39	

PCA FEATURE IMPORTANCES

	feature	importancia
0	idade	12.85
1	sexo	11.03
2	volume	8.58
3	massa	8.11
4	EDLEndo01	5.24
5	EDLEndo02	4.54
6	EDLEndo03	3.26
7	EDLEndo04	2.86
8	EDLEndo05	2.72
9	EDLEndo06	2.42
10	EDLEndo07	2.09
11	EDLEndo08	1.97
12	EDLEpi01	1.86
13	EDLEpi02	1.78
14	EDLEpi03	1.73
15	EDLEpi04	1.52

	feature	importancia
16	EDLEpi05	1.47
17	EDLEpi06	1.30
18	EDLEpi07	1.27
19	EDLEpi08	1.17
20	EDLTotal01	1.11
21	EDLTotal02	1.09
22	EDLTotal03	1.04
23	EDLTotal04	1.00
24	EDLTotal05	0.95
25	EDLTotal06	0.83
26	EDLTotal07	0.79
27	EDLTotal08	0.74
28	HoughEndo	0.73
29	HoughEpi	0.69
30	HoughParede	0.65

	feature	importancia
31	OctEndoL0001	0.61
32	OctEndoL0002	0.60
33	OctEndoL0003	0.56
34	OctEndoL0004	0.55
35	OctEndoL0005	0.52
36	OctEndoL0006	0.50
37	OctEndoL0007	0.49
38	OctEndoL0008	0.48
39	OctEndoL0101	0.42
40	OctEndoL0102	0.40
41	OctEndoL0103	0.38
42	OctEndoL0104	0.36
43	OctEndoL0105	0.32
44	OctEndoL0106	0.31
45	OctEndoL0107	0.30

	feature	importancia
46	OctEndoL0108	0.29
47	OctEndoL0201	0.26
48	OctEndoL0202	0.25
49	OctEndoL0203	0.25
50	OctEndoL0204	0.24
51	OctEndoL0205	0.23
52	OctEndoL0206	0.22

SELEÇÃO DE CARACTERÍSTICAS

RANDOM FOREST FEATURE IMPORTANCE

- Tipo: embutido.
- Determina a importância de cada feature em relação à classe alvo.
- Em seguida, selecionamos as características manualmente.

	feature	importância		feature	importância		feature	importância		feature	importân	ncia
0	idade	0.061532	15	OctEpiL1005	0.006870	30	OctParedeL0003	0.004602	45	TotalEpiSpharmL04	0.004	1055
1	massa	0.036820	16	OctEndoL0001	0.006640	31	OctEndoL0108	0.004584	46	OctEpiL0005	0.004	1048
2	OctParedeL0007	0.034217	17	OctEndoL0308	0.006627	32	OctEpiL0602	0.004548	47	OctEndoL1006	0.004	
	HoughEndo	0.030190	18	OctEndoL0104	0.006123		_			FotalEndoSpharmL05	0.004	
3	HoughEndo	0.030190	10	OCCENGOLOTO	0.006123	33	OctParedeL0206	0.004543	40	TotalEndospharmLos	0.009	1010
4	volume	0.026472	19	OctEpiL0304	0.005803	34	OctParedeL0204	0.004515	49	OctParedeL0005	0.003	3990
5	OctParedeL0107	0.024630	20	OctParedeL0807	0.005659	35	EDLEpi07	0.004437	50	OctParedeL0907	0.003	3986
6	OctEpiL0107	0.023891	21	OctEndoL0005	0.005538	36	OctParedeL0103	0.004426	51	OctEpiL0704	0.003	3964
7	HoughEpi	0.016552	22	OctEndoL0103	0.005499	37	OctEpiL0104	0.004426	52	OctEpiL0402	0.003	3904
8	OctEndoL0107	0.016287	23	OctParedeL0503	0.005160	38 t	alParedeSpharmL09	0.004295				
9	HoughParede	0.016213	24	OctEndoL0207	0.004985	39	OctParedeL0902	0.004289				
10	OctEpiL0007	0.014885	25	OctEpiL0303	0.004944	40	OctEpiL0302	0.004250				
11	OctEndoL0007	0.011996	26	OctEndoL0302	0.004909	41	OctEpiL0106	0.004210				
12	EDLEndo07	0.010936	27	OctEpiL0406	0.004831	42	OctEpiL1004	0.004202				
13	OctEndoL0006	0.008245	28	OctParedeL0307	0.004736	43	OctParedeL1006	0.004132				
14	OctEpiL0006	0.007046	29	OctEndoL0003	0.004731	44	TotalEpiSpharmL00	0.004080				23

SELECTKBEST

- > Tipo: filtro.
- > Seleciona as melhores features com base em testes estatísticos univariados.
- Mantém as features de pontuação mais alta.
- > Método para classificação utilizado: f_classif (F-Score).

	SELECTRBEST	SELECTKBEST SELECTK SELECTKBEST SELECTK		SELECTKBEST			SELECTKBEST
0	idade	15	OctEndoL0107	30	OctEpiL0303	45	OctParedeL0505
1	sexo	16	OctEndoL0108	31	OctEpiL0405	46	OctParedeL0605
2	volume	17	OctEndoL0201	32	OctEpiL0605	47	OctParedeL0706
3	massa	18	OctEndoL0605	33	OctParedeL0003	48	TotalEndoSpharmL00
4	EDLEndo07	19	OctEpiL0003	34	OctParedeL0006	40	TotalEndoSpharmE00
5	EDLEpi07	20	OctEpiL0006	35	OctParedeL0007	49	TotalEndoSpharmL01
6	EDLTota107	21	OctEpiL0007	36	OctParedeL0008	50	TotalEpiSpharmL01
7	HoughEndo	22	OctEpiL0008	37	OctParedeL0103		
8	HoughEpi	23	OctEpiL0103	38	OctParedeL0104	51	TotalParedeSpharmL00
9	HoughParede	24	OctEpiL0104	39	OctParedeL0105	52	TotalParedeSpharmL01
10	OctEndoL0003	25	OctEpiL0105	40	OctParedeL0107		
11	OctEndoL0006	26	OctEpiL0106	41	OctParedeL0108		
12	OctEndoL0007	27	OctEpiL0107	42	OctParedeL0201		
13	OctEndoL0103	28	OctEpiL0108	43	OctParedeL0306		
14	OctEndoL0104	29	OctEpiL0201	44	OctParedeL0405		

RFE - RECURSIVE FEATURE ELIMINATION

- > Tipo: camada.
- Seleciona subconjuntos recursivamente, considerando conjuntos cada vez menores de features.

	RFE		RFE		RFE		RFE
0	OctEndoL0001	15	OctEpiL0207	30	OctEpiL0907	45	OctParedeL1007
1	OctEndoL0007	16	OctEpiL0303	31	OctEpiL1007	46	TotalEndoSpharmL00
2	OctEndoL0103	17	OctEpiL0306	32	OctParedeL0007	47	TotalEndoSpharmL06
3	OctEndoL0106	18	OctEpiL0307	33	OctParedeL0008	48	TotalEndoSpharmL08
4	OctEndoL0107	19	OctEpiL0308	34	OctParedeL0105	49	TotalEpiSpharmL00
5	OctEndoL0108	20	OctEpiL0403	35	OctParedeL0107	50	TotalEpiSpharmL06
6	OctEndoL0202	21	OctEpiL0503	36	OctParedeL0108	51	TotalParedeSpharmL00
7	OctEndoL0206	22	OctEpiL0507	37	OctParedeL0201	52	TotalParedeSpharmL04
8	OctEndoL0303	23	OctEpiL0508	38	OctParedeL0202		
9	OctEndoL0308	24	OctEpiL0702	39	OctParedeL0203		
10	OctEndoL0407	25	OctEpiL0703	40	OctParedeL0207		
11	OctEndoL0808	26	OctEpiL0704	41	OctParedeL0208		
12	OctEndoL1003	27	OctEpiL0707	42	OctParedeL0308		
13	OctEpiL0007	28	OctEpiL0804	43	OctParedeL0604		
14	OctEpiL0107	29	OctEpiL0807	44	OctParedeL0608		

SFS - SEQUENTIAL FORWARD SELECTION

- Tipo: heurístico.
- A cada iteração, novas características são adicionadas ao subconjunto corrente.

	SFS_15_CV10		SFS_15_CV10		SFS_15_CV10
0	idade	15	EDLEpi04	30	HoughParede
1	sexo	16	EDLEpi05	31	OctEndoL0001
2	volume	17	EDLEpi06	32	OctEndoL0002
3	massa	18	EDLEpi07	33	OctEndoL0003
4	EDLEndo01	19	EDLEpi08	34	OctEndoL0004
5	EDLEndo02	20	EDLTota101	35	OctEndoL0005
6	EDLEndo03	21	EDLTota102	36	OctEndoL0006
7	EDLEndo04	22	EDLTota103	37	OctEndoL0007
8	EDLEndo05	23	EDLTota104	38	OctEndoL0008
9	EDLEndo06	24	EDLTota105	39	OctEndoL0102
10	EDLEndo07	25	EDLTota106	40	OctEndoL0103
11	EDLEndo08	26	EDLTota107	41	OctEpiL0001
12	EDLEpi01	27	EDLTota108	42	OctEpiL0002
13	EDLEpi02	28	HoughEndo	43	OctEpiL0003
14	EDLEpi03	29	HoughEpi	44	OctEpiL0004

Simulações	do SES	nara 50	features:	

SFS_15_CV10

OctEpiL0005

OctEpiL0006

OctEpiL0106

OctEpiL0107

49 OctParedeL0007

50 OctParedeL0107

51 OctParedeL0307

52 TotalEndoSpharmL00

45

k-Folds	Qtde. Vizinhos	Acurácia (kNN)		
	5	79,26		
	15	80,67		
10	30	74,61		
10	90	73,24		
	100	73,24		
	180	74,71		

05 MÉTODOS DE TREINAMENTO E VALIDAÇÃO

NAIVE BAYES

IMPLEMENTAÇÃO

> sklearn.naive_bayes.GaussianNB.

CALIBRAÇÃO

Fonte: SCIKIT-LEARN (2020c, n.p.).

- Parâmetro var_smoothing (α) → suavização das curvas de probabilidades para minimizar as chances de o classificador não conseguir fazer predições para cenários não contemplados pela conjunto de treinamento.
- Variação de 0.0 (sem suavização) até 1.0 (inclusive), em intervalos de 0.1.

SVM

IMPLEMENTAÇÃO

> sklearn.svm.**SVC**.

CALIBRAÇÃO

sklearn.svm.SVC¶

class sklearn.svm. SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]

Fonte: SCIKIT-LEARN (2020f, n.p.).

- › kernel → ['rbf', 'linear', 'poly', 'sigmoid']
- \rightarrow [0.0, 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5,10, 20]
- > gamma → ['auto', 'scale', 0.001, 0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.003, 0.005, 0.01, 0.02, 0.03, 0.04, 0.5, 1, 10]

auto = 1/n

scale = 1 / (n * var(X))

MLP

IMPLEMENTAÇÃO

> sklearn.neural_network.**MLPClassifier**.

sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000)

Fonte: SCIKIT-LEARN (2020d, n.p.).

CALIBRAÇÃO

- → activation → ['identity', 'logistic', 'tanh', 'relu']
- > hidden_layer_sizes →.[8, 18, 36, 53, 328]
- \rightarrow learning_rate_init \rightarrow [0.01, 0.05, 0.1]
- \rightarrow max_iter \rightarrow [30, 60, 90, 120, 150]

RANDOM FOREST

IMPLEMENTAÇÃO

> sklearn.ensemble.RandomForestClassifier.

3.2.4.3.1. sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_sar_split=2, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

CALIBRAÇÃO

Fonte: SCIKIT-LEARN (2020a, n.p.).

- > n_estimators → [100, 250, 500, 750, 1000, 1250, 1500]
- > max_features →.['sqrt', 'log2', 8, 18, 36, 53, 328]
- > criterion → ['gini', 'entropy']
- → oob_score → [False, True]
- \rightarrow ccp_alpha \rightarrow [0.0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28]

Melhores resultados de Acurácia Média obtidos com os classificadores NB, SVM, MLP e RF.

Melhores resultados de Precisão Média obtidos com os classificadores NB, SVM, MLP e RF.

Melhores resultados de Revocação Média obtidos com os classificadores NB, SVM, MLP e RF.

ANÁLISE DOS CONJUNTOS DE FEATURES

		Conjunto de Features				
		Completo	PCA Imp.	SFS	RFE	KBEST
	Idade	1	1	1	0	1
	Sexo	1	1	1	0	1
Ĭ	Volume	1	1	1	0	1
Features	Massa	1	1	1	0	1
	EDL	24	24	24	0	3
s de	HoughEndo	1	1	1	0	1
Grupos	HoughEpi	1	1	1	0	1
	HoughParede	1	1	1	0	1
	SpharmsOcts	264	22	10	8	8
	SpharmsTotais	33	0	0	0	0
	Qtde. Features	328	53	41	8	18

ANÁLISE DOS CONJUNTOS DE FEATURES

Acurácia de classificação para o conjunto PCA Importances

Naive Bayes: 77,49%

SVM: 89,42%

MLP: 89,46%

Random Forest: 90,35%

		Conjunto de Features						
		PIOLO	PCA Imp.	SFS	RFE	KBEST		
	ıdade	1	1	1	0	1		
Grupos de reatures	Sexo	1	1	1	0	1		
	Volume	1	1	1	0	1		
	Massa	1	1	1	0	1		
	EDL	24	24	24	0	3		
	HoughEndo	1	1	1	0	1		
	HoughEpi	1	1	1	0	1		
	HoughParede	1	1	1	0	1		
	SpharmsOcts	264	22	10	8	8		
	SpharmsTotais	33	0	0	0	0		
	Qtde. Features	328	53	41	8	18		

ANÁLISE DOS CONJUNTOS DE FEATURES

		Conjunto de Features					
		Completo	RF Imp.	SFS	RFE	KBEST	
_	Idade	1	1	1	0	1	
	Sexo	1	0	0	0	0	
<u>se</u>	Volume	1	1	1	0	1	
Features	Massa	1	1	1	0	1	
Grupos de Fe	EDL	24	2	2	0	2	
	HoughEndo	1	1	1	0	1	
	HoughEpi	1	1	1	0	1	
	HoughParede	1	1	1	0	1	
•	SpharmsOcts	264	41	13	12	17	
	SpharmsTotais	33	4	0	1	0	
	Qtde. Features	328	53	21	13	2 5	

ANÁLISE DOS CONJUNTOS DE FEATURES

Acurácia de classificação para o conjunto RF Importances

Naive Bayes: 77,94%

SVM: 88,51%

MLP: 87,10%

Random Forest: 92,19%

		Conjunto de Features					
			RF Imp.	SFS	RFE	KBEST	
_	raaue	1	1	1	0	1	
	Sexo	1	0	0	0	0	
īes	Volume	1	1	1	0	1	
Features	Massa	1	1	1	0	1	
Grupos de Fe	EDL	24	2	2	0	2	
	HoughEndo	1	1	1	0	1	
	HoughEpi	1	1	1	0	1	
	HoughParede	1	1	1	0	1	
•	SpharmsOcts	264	41	13	12	17	
	SpharmsTotais	33	4	0	1	0	
	Qtde. Features	328	53	21	13	25	

COMBINAÇÃO ENTRE RANKINGS

Acurácia Média de classificação para a combinação entre as *features* dos *rankigs* PCA e RF importances:

Naive Bayes: 76,13%

SVM: 88,98%

MLP: 89,03%

Random Forest: 91,28%

- Os resultados do trabalho demonstram que, para o problema apresentado, é possível se obter resultados significativos com as técnicas de Aprendizado Supervisionado experimentadas. Chegou-se a superar 90% de acurácia, com parametrizações que evidenciam a não ocorrência de overfitting.
- O conjunto de features obtido por meio do selecionador SFS foi o que apresentou melhores resultados de classificação. As evidências são de que sua natureza heurística levou à seleção das features que mais contribuem para a distinção entre as classes, conforme o evidenciado por meio da análise comparativa com os rankings PCA importances e RF importances.
- Por outro lado, os resultados menos expressivos se mostraram para o conjunto de features obtido por meio do selecionador RFE. Analisando-se tal conjunto, tomando-se também como referência os referidos rankings, observou-se que o RFE selecionou as características menos importantes para a distinção entre as classes, o que pode se justificar pela sua natureza gulosa com o descarte de features importantes para o problema, sem possibilidade de reconsideração.

- A hipótese para os resultados menos expressivos observados para os conjuntos formados por todas as características e pelas componentes principais (comparando-se com o SFS e o SELECTKBEST) se baseia na existência de features que pouco contribuem para a distinção entre as classes, mais atrapalhando do que ajudando na construção do modelo.
- O classificador Naive Bayes, na maior parte das métricas, demonstrou resultados significativamente inferiores aos demais. A hipótese para essa observação se baseia no fato de que o Naive Bayes considera as features de forma independente para a estimação das probabilidades e resolução do problema. Além disso, a quantidade de amostras pode não ter sido suficiente para cobrir todas as possibilidades/combinações de classificação possíveis.

- > De forma geral, os classificadores SVM (Ac. 90,39% SFS), Random Forest (Ac. 90,80% SFS) e MLP (Ac. 91,69% SFS) viabilizaram resultados significativos (bons!) e próximos entre si.
- Considerando que a maior parte das features são não categóricas, bem como os resultados apresentados, entendemos que o MLP se configura como o classificador mais apropriado para o problema de classificação abordado, devido à sua forma mais flexível de tratar as entradas e de construir o modelo de classificação.
- › É importante ressaltar que ainda temos muitas possibilidades de configuração de MLP a explorar, o que ainda pode melhorar os resultados aqui apresentados.

08 PRÓXIMOS PASSOS

PRÓXIMOS PASSOS

- > Complementar a base de dados com mais amostras, inclusive para gerar um conjunto de teste a parte dos *k-folds*.
- > Explorar mais os classificadores em termos de calibração, em especial o MLP, acrescentando camadas e, talvez, evoluindo para alguma arquitetura de *Deep Learning* visando a melhorar o modelo.
- Discutir com especialistas da área médica e identificar possíveis novas características para complementar a base e auxiliar na resolução do problema.
- > Explorar a classificação multiclasse para incluir a classe CMH (Cardiomiopatia Hipertrófica) nas análises.
- > Explorar comitês de classificadores para avaliar o potencial dessa técnica no contexto do problema.

REFERÊNCIAS

- > BERGAMASCO, Leila Cristina Carneiro. **Recuperação de imagens cardíacas tridimensionais por conteúdo**. 2013. 134 f. Dissertação (Mestrado em Ciências) Programa de Pós-graduação em Sistemas de Informação, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, 2013.
- BERGAMASCO, Leila Cristina Carneiro. Recuperação de objetos médicos 3D utilizando harmônicos esféricos e redes de fluxo. 2018. 181 f. Tese (Doutorado em Ciências) - Escola Politécnica, Departamento de Engenharia da Computação e Sistemas Digitais, Universidade de São Paulo, São Paulo, 2018.
- > KUMAR, V.; ABBAS, A. K.; FAUSTO, N.; ASTER, J. C.. Robbins & Cotran Patologia: Bases Patológicas das Doenças. 8 ed. Rio de Janeiro: Elsevier, 2010.
- > SCIKIT-LEARN. **sklearn.ensemble.RandomForestClassifier** scikit-learn 0.23.1 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html. Acesso em: 06 jul. 2020a.
- > SCIKIT-LEARN. **sklearn.model_selection.GridSearchCV** scikit-learn 0.23.1 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html. Acesso em: 06 jul. 2020b.
- > SCIKIT-LEARN. **sklearn.naive_bayes.GaussianNB** scikit-learn 0.23.0 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html. Acesso em: 08 mai. 2020c.
- > SCIKIT-LEARN. **sklearn.neural_network.MLPClassifier** scikit-learn 0.23.1 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html. Acesso em: 22 jun. 2020d.
- > SCIKIT-LEARN. **sklearn.preprocessing.StandardScaler** scikit-learn 0.23.1 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html. Acesso em: 14 jul. 2020e.
- > SCIKIT-LEARN. **sklearn.svm.SVC** scikit-learn 0.23.1 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC. Acesso em: 01 jun. 2020f.

MUITO OBRIGADO!

CLASSIFICAÇÃO DE MODELOS CARDÍACOS **TRIDIMENSIONAIS** RELACIONADA À PRESENÇA OU À AUSÊNCIA DE **CARDIOMIOPATIA**

SIN5007 – Reconhecimento de Padrões 1º sem. 2020 Profa. Dra. Ariane Machado Lima

Diego Pereira Dedize Luiz Gustavo de Almeida Silva Vagner Mendonça Gonçalves

