Synthèse d'images

TD2

Observation

- Un objet se perçoit par :
 - Sa forme (TD2)
 - Son aspect (TD3)

Maillages

Maillages

Généralités

- Représentation 3D la plus utilisée
 - Autres (description en fin de CM s'il reste du temps) :
 - Surface implicite
 - Nuage de points (point cloud)
 - CSG
 - Surface de subdivision
 - voxels
- Composition de
 - Sommets (vertex, vertices, vertexes)
 - Arêtes (edges)
 - Faces (faces)

Généralités sur les faces

- Polygones
 - Donc forcément plat
 - problèmes de planarité
- Généralement des triangles
 - TOUJOURS plat
 - Il y a des cas dégénérés mais ça pose rarement des problèmes
 - Avantage également : c'est convexe
 - « Soupe de triangles »

Orientation des faces

- Les faces sont orientables
 - On peut défini un devant et un derrière (front/back)
 - Localement bien défini sur une face
 - Globalement ça peut poser problème

(source : wikipedia)

Orientation des faces(suite)

- Orientation, choix du front face (devant)
 - Problématique valable également en 2D
 - CW: *clockwise*, sens horaire
 - CCW: counter clockwise, sans anti-horaire
- Utilisation dans le culling
 - Front face/back face culling
 - Optimisation par élimination de faces lors du traitement

Normale à la surface

- Vecteur unitaire
- Direction orthogonale au plan de la face
- Par extension direction orthogonale à la surface (plan tangent)

(source: wolfram)

Normale d'une face

(source: http://help.autodesk.com)

Normale: comment la calculer?

$$n \neq \vec{0}$$

 $\forall A, B \in P, \overrightarrow{AB} \cdot \vec{n} = \vec{0}$

- On veut un vecteur orthogonal à la face
- Le produit vectoriel de 2 vecteurs est orthogonal à ceux-ci
- Donc il suffit de prendre 2 vecteurs de la face et d'en faire le produit vectoriel
 - Autant prendre 2 paires de sommets non colinéaires

Normale: cas du sommet

- Normal d'un sommet
 - Plan tangent ?
 - Indéfini
 - Trop compliqué
 - Moyenne des normales des faces adjacentes
 - Éventuellement moyenne pondérée (barycentre)

Impact sur l'aspect

- Flat
- Gouraud
- Phong

(source : google images)

Orientation des faces : problèmes

- Cohérence
 - Devant/derrière
- Définition de l'intérieur
 - Nécessite un volume fermé
 - Définir l'intérieur par rapport aux faces
 - Cas tordus?

Bouteille de Klein

(source : wikipedia)

En pratique

- Outils de traitement manuel dans les modeleurs 3D
 - Flip/invert normals
 - Recalculate normals
- Processing additionnel à l'export
 - On essaie de renormaliser correctement le maillage
 - On avertit l'utilisateur en cas d'échec/incohérence
 - Bien éduquer l'utilisateur !

Indications mathématiques

- Notion de variété en géométrie (manifold)
 - de dimension 2 pour les surfaces (2-variété)
 - Condition d'orientabilité
 - Non-variété
- Topologie
 - Étude des espaces et de leurs propriétés
 - Limites, voisinages, continuité
 - Homéomorphisme

Maillages en pratique

Implémentations usuelles

- Jargon : les primitives
 - Selon l'ordre des sommets
 - Triangle Strip (ruban)
 - Triangle Fan (éventail)
 - Triangle list (soupe de triangles)

Implémentations usuelles (suite)

- Jargon : les primitives
 - Indépendamment de l'ordre des sommets
 - Triangles indexés (soupe de triangle)
 - Généralement utilisé avec des triangle lists

VB Index: 0 (-1, -1) 1 (-1, 1) 2 (1, 1) 3 (1, -1)

Vertex Buffer

(source: msdn)

Implémentations usuelles(suite)

- 2 buffers (zone en mémoire)
 - Index buffer
 - Suite d'indices définissant les primitives
 - Vertex buffer
 - Suite de sommets

Propriétés des sommets

- Un sommet peut avoir des propriétés
 - Position (P) (généralement)
 - Et:
 - Normale (N)
 - Couleur(s) (C)
 - UVs
 - Etc.

Disposition mémoire

- Array of Struct (AoS)
 - Ou interleaved
 - (PNCPNCPNC)
- Struct of Array (SoA)
 - (PPPP) (NNNN) (CCCC)
 - (PPPNNNNCCCC)
- Tous les sommets ont les mêmes propriétés pour un même maillage
 - SIMD/parallélisation par drawcall/batch

Remarques

- L'un n'est pas mieux que l'autre
 - Dépendant de la situation
 - Facteurs de coût
 - Temps de développement
 - Coût de maintenance
 - Performances
 - Hardware (GPU)
 - Accès mémoire, alignement, cache
 - Appel drivers
 - Etc.
 - Mesurez ! (profiling)

Combien de « sommets » dans ce cube?

(source: http://help.autodesk.com)

Jargon, abus et confusion

- Un « vertex » en informatique (3D) ne correspond pas exactement à la notion de sommet géométrique
 - Exemples :
 - Plusieurs vertices au même point géométrique si caractéristiques différentes
 - Position implicite (topologie par l'ordre des points)
 - Vertex = struct de données

Remarques

- Représentation
 - Compacte en mémoire
 - La plus courante
 - L'information est limitée aux sommets
 - Sauf à utiliser des textures (ci-après)
 - Mais pas forcément adaptée selon l'utilisation
- Autres structures pour représenter une information tri-dimensionnelle

Aparté sur le placage de textures

Placage de textures

- Associer à une surface une image
 - Couleurs
 - Autres attributs
 - Transparence, brillance (spéculaire), masques, ...
- Permet d'avoir une finesse supérieure à la granularité des sommets
 - Variations des attributs au sein de la face

UV mapping (paramétrisation UV)

3-D Model

p = (x, y, z)

UV Map

p = (u, v)

Texture

(source: wikipedia)

Paramétrisation

- Il faut définir un « repère » de coordonnées sur la surface
 - Surface = espace à 2 dimensions
 - Repère (s,t)
- If faut définir un repère sur les pixels de la texture/image
 - Repère (u,v)
 - En général ce sera toujours
 - Top left = (0,0), bottom right = (1,1) ou
 - Bottom left = (0,0), top right = (1,1)
- On fait la correspondance (s,t) => (u,v)
- Par abus, on parle d'UVs dans les 2 cas

Illustration

(source : wikipedia)

Normal mapping

- La normale intervient dans le calcul de l'éclairement
- Le jeu d'ombres et d'ombrage donne la perception du relief
- Perturber la normale :
 - Joue sur la perception de l'éclairement
 - Joue donc sur la perception du relief

NB : Bump mapping : ancêtre du normal mapping

Extensions sur les maillages

Connectivité

- Qui est le voisin de qui ? (Adjacence)
 - Pour les sommets ?
 - Pour les arêtes ?
 - Pour les faces ?
- Information de connectivité
 - Utile et nécessaire pour divers traitements
- Topologie du maillage

Arêtes ailées (winged edge)

UNIVERSITÉ DE STRASBOURG

Arêtes ailées (winged edge)

- Pour une arête :
 - 2 sommets ordonnées
 - 2 faces gauche et droite
 - Arêtes suivantes et précédentes dans ces 2 faces : l'ordre est un choix arbitraire (CW ou CCW)

Arêtes ailées (winged edge)

- Information de connectivité
- Structure similaire aux listes chaînées
- Extension de la structure de maillage habituelle
- Plus coûteux en mémoire
- Variante half-edge
 - On remarque que G et D sont similaires
 - On a 2 demi-arêtes pour une arête ailées
 - Une à gauche et une à droite

Demi-arête (half-edge)

- Pour une demi-arête :
 - 1 sommet (origine)
 - -1 face
 - Arête suivante et précédente dans cette face
 - Référence sur l'autre demi-arête
- Inconvenient :
 - Indirection suplémentaire pour accéder les informations de l'autre demi-arête
 - L'autre sommet, l'autre face

Inconvénients

- Parcours complexe pour :
 - Extraire les arêtes associées à un sommet
 - Parcourir tous les sommets/faces
 - En général, on stocke des indices
- Uniquement 2 faces par arête
 - 2-variété, surface régulière

Carte combinatoire et G-carte

Modélisation de la topologie

• Brins, permutations, involutions

(source: wikipedia)

Autres représentations

Surfaces implicites

(source: wikipedia)

Surfaces implicites: Exemples

- https://stemkoski.github.io/Three.js/Metabu bbles.html
- https://www.clicktorelease.com/code/bumpy
 metaballs/
- https://github.com/W5MED3LE/java-glsl
 - https://www.youtube.com/watch?v=823Q4QyxyQI

Nuage de points

(source : wikipedia)

Exemples: http://potree.org/wp/demo/

Surface de subdivision

(source : wikipedia)

Exemples: http://threejs.org/examples/webgl_modifier_subdivision.html

CSG

(source : wikipedia)

Voxels/données volumétriques

(source: wikipedia)