Predicting Bitcoin Prices by using Rolling Window LSTM model

統研所碩一 張泳樺

研究背景

USD 5 to **USD 4000**

分析方法-RNN

處理時間序列資料

- ➤ long-term dependencies
- ▶ gradients vanishing
- >LSTM

The overall structure of RNNs is very similar to that of feedforward networks.

分析方法-LSTM

Gate

- 1) input gate
- 2) forget gate
- 3) output gate

Memory ceil:

$$c_{-}in_t = tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_{c_{-}in})$$

Rolling window

將某個點的取值擴大到包含這個點的一段區間,用區間來進行判斷,此區間即窗口。

如:有100個觀測,用10個觀測

作為一個rolling window。

$$\widehat{y^{11}} = F(x^1, x^2 \dots x^{10})$$

$$\widehat{y^{12}}$$
=F(x^2 , x^3 x^{11})

.

.

•

文獻回顧

Bootstrap & fixed-size rolling window

➤ Difficulty in building a test set for model selection

Rolling window with regression model & Bayesian neural network

➤ Cannot reflect sequential characteristic in the model

Model setting-(many-to-one)

T = t

Table 2: common hyperparameter setting

Hyperparameter	
output dimension of hidden layer	10
activation function of hidden layer	hyperbolic tangent
loss function	sum of the squares
optimizer	Adam
learning rate	0.01

參數介紹

N: # of sample data

Hyperparameter tuning

P: sequence of time

q: the $i^{th}LSTM's$ training length(time-step)

N-p: models that predict N-P time series, and these model don't share weights

Model

$$\hat{y}^{j+i+q} = F_i(x^{i+j-1} \dots x^{i+j+q-1}; \theta^i)$$

$$\theta^{i*} = \underset{\theta}{\operatorname{argmin}} \sum_{j=1}^{p-q} (\hat{y}^{j+i} - y^{j+i})^2$$

conclusion

validation data

Common Maching learning:

➤ Dividing into train VS test

Rolling window LSTM model:

➤ Building a model structure

資料介紹

- 1. In particular, we thought that the degree of change of the blockchain variable had a significant effect on the target variable
- 2. The bitcoin price is the weighted sum of the daily open price, closing price, lowest price, and highest price of the bitstamp exchange

資料介紹

time:

as daily data from September 2011 to August 2017

Input:

Global Economic Measure:

1 prices of crude oil, 2 SSE, 3 gold, 4 VIX, 5 FTSE100

Global Currency:

6 USD/CNY, **7** USD/JPY, and **8** USD/CHF

Blockchain Information:

9block size, 10median confirmation time, 11hash rate, 12 miner's revenue, 13cost per transaction, 14 confirmed transactions per day, 15 the number of transactions, excluding popular addresses

Trading Information:

16 The trading volume of the bitstamp exchange \ 17 the historical value of the target variable

Hyperparameter tuning

(sequence length, training length):
(50, 25), (100, 50), (150,100), (200,150), (500,250), (1000,500), (1000,750), (1500,500), (1500,750), (1500,1000)

資料整理