Algorithms @tutorialhorizon

TE 2016 Online Coaching @ FO/- Get Animated Videos Digitized Notes Practice Tests REGISTER FREE

Home

Arrays

Linked List

Recursion

Dynamic Programming

Backtracking

Binary Tree

Trees

Difficulty Level

Interviews

MISC

ADOBE / BIT
MANIPULATION /
INTERMEDIATE /
MICROSOFT INTERVIEW /
RECURSION / TOP
COMPANIES

Q 0

Generate All Strings of n bits.

BY SJ · FEBRUARY 1, 2015

FOLLOW:

Q To search type and hit enter

Objective: - Generate All Strings of n bits, consider A[0..n-1] is an array of size n.

Example:

n = 3Output: [0, 0, 0] [1, 0, 0] [0, 1,[1, 1, 0] 0] [0, 0, 1] [1, 0, 1] [0, 1,[1, 1, 1] 1]

Approach:

- Recursion is key here.
- create a integer array of size n.
- Now if we think of every bit, it can take 2 values. 0 and 1.
- starting from the end of the string, set the bit 0 and 1 and make recursive calls

RECENT POSTS

Dynamic Programming — Longest Palindromic Subsequence

Dynamic Programming — Maximum Product Cutting Problem.

Dynamic Programming — Minimum Numbers are Required Whose Square Sum is Equal To a Given Number

Dynamic Programming — Longest Common Substring

Dynamic Programming — Longest Common Subsequence

Dynamic Programming — Rod Cutting Problem

Dynamic Programming — Coin Change Problem

Time Complexity — O(2^n) Code:

```
public class
NbitsStrings {
        int[]
arrA;
        public
NbitsStrings(int
n) {
arrA = new
int[n];
        }
        public
void nBits(int n)
{
if (n <= 0) {
System.out.printl
n(Arrays.toString
(arrA));
                 }
else {
arrA[n - 1] = 0;
nBits(n - 1);
arrA[n - 1] = 1;
```

FOLLOW ME ON TWITTER

SUBSCRIBE FOR NEW POSTS (NO SPAMS!!)

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 17 other subscribers

Email Address

Subscribe

TOP POSTS & PAGES

All Articles

Binary Search Tree Complete Implementation.

```
nBits(n - 1);
                 }
        }
        public
static void
main(String[]
args) throws
java.lang.Excepti
on {
int n = 3;
NbitsStrings i =
new
NbitsStrings(n);
i.nBits(n);
        }
}
```

```
Output:

[0, 0, 0]

[1, 0, 0]

[0, 1, 0]

[1, 1, 0]

[0, 0, 1]

[1, 0, 1]

[0, 1, 1]

[1, 1, 1]
```

Dynamic Programming - Subset Sum Problem

Dynamic Programming - Coin Change Problem

Binary Min - Max Heap

Construct a binary tree from given Inorder and Postorder Traversal

Print The Top View of a Binary Tree

Construct Binary Search Tree from a given Preorder Traversal using Recursion

Introduction To Backtracking Programming

Backtracking - N Queens Problem

ARCHIVES

August 2015 (1)
July 2015 (2)
June 2015 (9)
May 2015 (14)
April 2015 (1)
March 2015 (18)
February 2015 (20)
January 2015 (9)
December 2014 (26)
November 2014 (26)
September 2014 (28)
August 2014 (11)
July 2014 (9)

Related Posts:

- Print All Possible Valid
 Combinations Of Parenthesis of Given 'N'
- Dynamic Programming
 - Subset Sum Problem
- All N Length Strings from Given String of Length K
- Generate Well Ordered Passwords of a Given Length K
- Dynamic ProgrammingLongest CommonSubsequence
- Print All Combinations of subset of size K from Given Array
- Print All N Length Strings from Given Number K
- Find The Missing Duplicate in a Given Array.
- Find Whether TwoStrings are Permutationof each other
- Merge or Combine Two Sorted Linked Lists

Share this:

Related

Dynamic Rearrange Rearrange Program... Positive Positive - Subset and and Sum Negative Negative **Problem** Numbers Elements In "Adobe" of Array at On Each Alternate Positions Side in in an Array O(nlogn) In O(1) In "Arrays" Extra **Space** In "Amazon Questions"

Tags: Bits Recursion Strings

YOU MAY ALSO LIKE...

All acking Right
Paths — View of from Knight' a given
Top s Tour binary left to Proble tree

bottom m

right in

Two

Dimen

sional

Array

^

Algorithms © 2015. All Rights Reserved. Powered by WordPress. Theme by Alx.

200 queries in 0.457 seconds.

::