Ch 6. Symplectic rep. $\hat{\iota}: H_{\bullet}(S_g; \mathbb{Z}) \times H_{\bullet}(S_g; \mathbb{Z}) \longrightarrow \mathbb{Z}$ Can replace 72 with TR i is atternating, bilinear, nondegen V *0 3 y s.t. îlx,y) \$0. "Symplectic" Sympletic basis for W1 (5g; 72): î(xi,yi)=1 all other î's 0.

A geometric symplectic basis
in Sg is a set of oriented
curves {ai,bi}

s.t. i(ai,bi) = 1, all
other is C

and {[ai],[bi]} is a sympl. basis for 'Hi(Sg; 72).

Aside: computing homology classes

Euclidean alg. For corres not att	
Prop. A nonzero elt of H. (Sg; Z)	Repeat: bad
is rep by a scc it is primitive	
Pr S Change of coords.	
Example. $(2,0,3,0)$ in $N_1(52;\mathbb{Z})$ $2x_1+3x_2$	# curves in the
Start with:	two bundles": Step [1st bundle 2nd bundle
Choose are connect right-hand sides	0 2 3
Surger Same N. class.	2 What we a wanted!

The symplectic rep	We see: Y has ternel.
Ψ: Mod(Sg) → Sp2g Z	e.g. Tb, b sep.
Aut (H. (Sg; Z); 2)	Ker y called Torelligp (Monday).
Prop. $\psi(T_b^k)[a] = [a] + k\hat{\iota}(a,b)[b]$	
Pf. By change of coords, b is	Choose a compatible geom. Sympl. basi)
one of:	Check the formula on the basis.
	U

Surjectivity $\psi: Mod(S_g) \rightarrow S_{P2g} \mathcal{I}$ Thm. ψ is surjective. Pf#1. Hit the "elementary matrices" Pf#4. Wit the transvections: $T_V(w) = W + \hat{\iota}(V, w) \vee$ Sp2g72 = < Tv: v prim> fixed set codin 1. Find Te s.t. $\psi(T_c) = Iv$ using Eucl. alg. HF#3. Given M& Spzg7L, M(std basis) = symplectic basis. B Can soup up Euc. alg to get a geom. symp. basis B representing B. By C of Goods 7 fc Mod(Sg) f(geom)=B.

Residual finiteness G is resid. Fin if $\bigcap = 1$ or. Y feG 3 finite F, p: G -> F s.t. 9(f) ≠ id. 1hm. Mod (Sg) is resid. finite. Pf. 9=0,1 easy. ψ(f) ≠ id → use rf'ness of 5p2g Z. Remains to deal with f + Torelli = ker(V).

Fact: kery is torsion free. Assume now If = 00. Want Finite F, p: Mod (Sg) -> F, p(f) #1. Choose a hyp. metric on Sg ~ g: Tt, (Sg) → PSL21R = |somt H2 Imp = PSL2A A = Fingen subring of R. Such A is res. finite. (black box) length of curres traces of elts of PSL2R $|f| = \infty \implies \exists \ \ \mathcal{J} \in \pi_1 |S_9\rangle \quad \text{s.t.} \quad \mathcal{L}(\mathfrak{J}) \neq \mathcal{L}(f(\mathfrak{f})) \in A$ A res. fin. \Rightarrow 3 finite quotient Q st l(f) # l(f(f)) in Q. Let $H = \ker (\pi_1(S_9) \rightarrow PSL_2A \rightarrow PSL_2Q)$. $H \leq \pi_1(S_9)$

Take. F = Out(TillSg)/H).