ECE520 – VLSI Design

Lecture 3: More MOS Physics

Payman Zarkesh-Ha

Office: ECE Bldg. 230B

Office hours: Wednesday 2:00-3:00PM or by appointment

E-mail: pzarkesh@unm.edu

Review of Last Lecture

- □ "Static Parameters of Long Channel MOSFET"
- MOSFET Operational Regions
 - Cutoff region
 - Depletion region
 - Inversion region
 - Linear region (inversion)
 - Saturation region (inversion)
- Basic MOSFET Parameters
 - Threshold voltage
 - Body effect
 - Channel length modulation

Today's Lecture

- ☐ "Dynamic Parameters of Long Channel MOSFET"
- MOSFET Parasitic Capacitances
 - Overlap capacitances
 - Channel capacitances
 - Junction capacitances

Threshold Voltage Equation (Correction!)

Zero body bias threshold voltage:
$$V_{T0} = \varphi_{ms} + 2\varphi_F + \frac{\sqrt{2qN_A\varepsilon_{si}|2\varphi_F|}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

Where:
$$\varphi_F = \frac{KT}{q} Ln \left(\frac{N_A}{n_i} \right)$$
 and $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$

Threshold voltage with body bias:
$$V_T = V_{T0} + \gamma \left(\sqrt{|2\varphi_F - V_{BS}|} - \sqrt{|2\varphi_F|} \right)$$

Where:
$$\gamma = \frac{\sqrt{2qN_A \epsilon_{si}}}{C_{ox}}$$

Important Facts:

- Body bias increases threshold voltage
- Threshold voltage is positive for normal NMOS
- Threshold voltage is negative for normal PMOS

I-V Characteristic of MOSFET

Cutoff Region

When: $V_{GS} = 0$

$$I_{DS} = 0$$

Depletion Region

When: $V_{GS} < V_T$

$$I_{DS} = 0$$

Inversion Region

Linear Region (inversion)

When:
$$V_{DS} < V_{GS} - V_{T}$$

$$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

Ohmic Region (inversion)

Saturation Region (inversion)

MOS Capacitance

- □ Delay of digital CMOS circuits depends of capacitance of MOS device
- ☐ There is a trade off between parasitic capacitance and drive strength of MOS device
 - Larger C_{ox} increases the drive strength (I_{DS} equation)
 - However, larger C_{ox} increases the device parasitic capacitance
- MOS parasitic capacitance includes
 - Overlap capacitances
 - Channel capacitances
 - Junction capacitances
- ☐ Between almost every two terminals of MOS device, there is a source of parasitic capacitance

Slide: 12

MOS Parasitic Capacitances

Overlap Capacitances

- ☐ Because of the lateral S/D diffusion, there is an overlap between gate and S/D junctions
- ☐ This overlap capacitance is a constant linear capacitance

$$C_{GSOV} = C_{GDOV} = WC_{ox}X_{d}$$

Channel Capacitances

☐ Channel capacitance is a voltage dependent and non-linear capacitance

Operation Region	C _{GBCH}	C _{GSCH}	C _{GDCH}
Cutoff	C _{OX} WL _{eff}	0	0
Linear	0	$\frac{1}{2}C_{\rm ox}WL_{\rm eff}$	$\frac{1}{2}C_{OX}WL_{eff}$
Saturation	0	$\frac{2}{3}C_{OX}WL_{eff}$	0

Junction Capacitances

- ☐ Junction capacitance is the *depletion region* capacitance of S/D
- It is a <u>voltage dependent</u> capacitance (remember reverse biased diode)

$$C_{j0} = A_{D} \sqrt{\left(\frac{\varepsilon_{si} q}{2} \frac{N_{A} N_{D}}{N_{A} + N_{D}}\right) \varphi_{0}^{-1}} \qquad \varphi_{0} = \frac{KT}{q} Ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$$

Junction Capacitance Components

- The Junction capacitance of bottom plate is treated separately from the three non-gate edges
- ☐ The gate edge is often ignored since it is part of the conducting channel
- ☐ The bottom plate is usually step graded with m=0.5
- □ The sidewall are step graded with m=0.33 and face the <u>channel-stop implant</u> which has much higher doping than substrate

Junction Capacitance Components

MOS Parasitic Capacitances

$$\mathbf{C}_{GS} = \mathbf{C}_{GSCH} + \mathbf{C}_{GSOV}$$

$$C_{GD} = C_{GDCH} + C_{GDOV}$$

$$C_{GB} = C_{GBCH}$$

$$C_{SB} = C_{Sdiff}$$

$$oldsymbol{C}_{DB} = oldsymbol{C}_{Ddiff}$$