type on HW: show $y \mapsto f(x-y)f(y) \in \mathcal{L}'$ a.e.

Differentiation

We'll do L'(\(\chi^n\)

extend to L'wc (>1)

ff: Rⁿ→ C | f integ on bdd mblesets}.

Det A cube m Rⁿ is a set Q of the form $\prod_{i=1}^{n} I_{i}$ where each I_{i} is a closed interval f all of them bounded have the same length, denoted l(Q).

· For $X \in \mathbb{R}^n$, $C(x) := \{ \text{ Cubes containing } X \}$

. If Q is a cube of r>0, rQ is the cube what Same center but L(rQ) = rL(Q).

Goal: Lebesgue differentiation tum: $\forall f \in L'_{\omega c}(x^n)$, $\lim_{\ell(Q) \to 0} \frac{1}{\chi^n(Q)} \int_{Q} f d\lambda^n = f(x)$ are.

Xe Q

FTOC: Suppose
$$f \in L'(\lambda)$$
. define

$$F(x) := \int_{(-\infty,x)} f d\lambda$$
. Then $F' = f$ a.e.

$$\frac{1}{h \to 0} \frac{F(x+h) - F(x-h)}{2h} = \lim_{\substack{h \to 0 \\ x \in (x-h, x_{T}h)}} \frac{1}{A(Q)} \int_{Q} f d\lambda$$

Def: for
$$f \in L'_{loc}$$
, define $M f : \mathbb{R}^n \longrightarrow [0, \infty]$ by

$$Mf := \sup \left\{ \frac{1}{\lambda^n(Q)} \int_Q |f| d\lambda^n \mid Q \in C(x) \right\}$$

Properties:

· Mf>0 everywhere unless f=0 a.e.

HW

· Mf is lower semicontinuous (⇔ fMf>a3 is open ∀a∈R).

⇒ Mf is measurable

Example
$$f = \chi_{[-1,1]} : \mathbb{R} \longrightarrow \mathbb{C}$$

$$Mf(x) = \begin{cases} 1 & x \in [-1, 1] \\ \frac{2}{1+|x|} & x \notin [-1, 1] \end{cases}$$

$$\notin \mathcal{L}'$$

Hardy-Littlewood Maximal Theorem
$$\exists c>0 \text{ only depending on } n \text{ s.t. } \forall f \in L'(X') \text{ and a > 0.}$$

$$\lambda''(\{Mf>a\}) \leq C ||f||_{L}$$

Remark: Like a generalization of Chehyshev's Inequality:

$$\forall a>0$$
, $\int |f|d\mu > \alpha \mu(f|f|>af)$
 $f\in L'(\mu)$ $f|f|>af$

so
$$\mu(f|f|>aj) \leq \frac{\|f\|_{1}}{a}$$
.

Exercise: Let $ECIR^n$ and C a collection of cubes covering E s.t. sup $fl(Q) \mid Q \in CJ < \infty$.

Then I sequence of disjoint cubes $(\mathcal{Q}_k) \subset \mathcal{C}$ s.t.

$$\sum_{k} {\binom{N}{Q_{k}}} \geqslant 5^{-n} {\binom{N}{k}} {\binom{E}{E}}$$
 outer measure.

This is a version of the Vitali Coverny Lema:

B is a collection of open balls in IR", let

$$\mathcal{U} := \bigcup_{B \in \mathcal{B}} \mathcal{B}$$
 if $c < \lambda^n(u)$, $\exists distinition$

$$B_1, B_2, \dots, B_k \in \mathcal{B}$$
 s.t. $\sum_{i=1}^{k} \lambda^n(B_i) > 3^{-n} c$.

Pf of Vitali: Since In is regular, IKCU ept s.t.

1. In(K): Observe IA A & R s.t. KC ()A:.

 $C < \lambda^n(K)$. Observe $\exists A_1, ..., A_m \in B$ s.t. $K \subset \bigcup A_i$, chargest radius $B_i = \text{largest of the } A_i$, and $B_j = \text{largest of } A_i$ which are disjoint from $B_1, ..., B_{j-1}$.

Since there are finitely many A_i , this process terminates giving B_i, \ldots, B_k .

Trick If A_i is not one of $B_1, ..., B_k$, \exists smallest $1 \le j \le k$ s.t. $A_i \cap B_j \ne \emptyset$.

Then $\operatorname{md}(A_i) \le \operatorname{rad}(B_j) \Rightarrow A_i \subset 3B_j$.

Then $k \subset \bigcup_{i=1}^{k} A_i \subset \bigcup_{j=1}^{k} A_j \subset A_j$

HLMT: E c>0 only depending on n s.t. $\forall f \in \mathcal{L}(A^n)$ and a>0, $\lambda^n(\{Mf>a\}) \leq c \frac{\|f\|_1}{a}$.

Ef Suppose $f \in L'$ and a>0. Let $E = \{Mf>a\}$. Set $C = \{abes Q \mid \frac{1}{\lambda^n(Q)} \int_Q |f| d\lambda^n > a\}$. Then C covers E!

By the exercise,
$$\exists seq.(Q_x) \subset \zeta \quad \text{if } disjoint$$
 cubes $s_i l. \quad \sum \lambda^n (Q_x) \geq 5^{-n} \lambda^n (E)$.

Then
$$\lambda^n(E) \leq 5^n \sum \lambda^n(Q_x) < \frac{5^n}{a} \sum \int_{Q_x} |f| d\lambda^n \leq \frac{5^n}{a} \|f\|,$$

Since
$$\frac{1}{\alpha} \|f\|_{1} \gg \lambda^{n}(Q) = \ell(Q)^{n}$$
.