Clase 16 - Entradas y Salidas: Comunicación

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl

Resumen de clase pasada

Arquitectura de Computadores: Dispositivos I/O

- Todos los dispositivos que no sean
CPU o memoria, y se comuniqu
con ellos, son llamados
dispositivos de I/O

Arquitectura de Computadores: Dispositivos I/O

Un dispositivo de I/O tiene un controlador encargado de comunicarse con la CPU y la memoria, y de controlar la parte electromecánica. Todos los dispositivos que no sean CPU o memoria, y se comuniquen con ellos, son llamados dispositivos de 1/0

Arquitectura de Computadores: Memory Map

Arquitectura de Computadores: Port I/O

¿Dudas?

Arquitectura de Computadores: Dispositivos I/O

Usaremos como analogía a un curso haciendo una guía de ejercicios:

- Alumnos (I/O) hacen guía de ejercicios, si alguien termina, el profesor quiere guardar la respuesta.
 - Profesor (CPU) está corrigiendo pruebas.
 - Pizarra o proyector (Memoria), donde se pueden ver los ejercicios y anotar las respuestas.
 - Comandos: instrucciones de parte del profesor.
 - Estado: alumnos trabajando, con dudas.
 - Datos: preguntas y respuestas guía, dudas alumnos, respuestas profesor.
 - Supuestos: alumnos no hablan entre ellos, se entregan varias guías durante la clase

Revisaremos tres modelos de interacción entre alumnos y profesor

Sin proyector ni pizarrón ni copias de las guías, alumnos tímidos:

1. Polling

Arquitectura de Computadores: Polling

 - ¿Necesitamos cambio de hardware?

Arquitectura de Computadores: Polling

- ¿Necesitamos cambio de hardware?
- NO

Revisaremos tres modelos de interacción entre alumnos y profesor

Sin proyector ni pizarrón ni copias de las guías, alumnos tímidos:

1. Polling

Sin proyector ni pizarrón ni copias de las guías, alumnos preguntones y participativos:

2. Interrupción

 - ¿Necesitamos cambio de hardware?

- ¿Necesitamos cambio de hardware?
- SI, una señal de solicitud de interrupción

- 1. Dispositivo solicita interrumpir, enviando señal IRQ
- 2. CPU termina de ejecutar la instrucción actual y guarda condition codes en el stack
- 3. CPU revisa si el flag de interrupciones está activo (IF = 1). En caso contrario, saltar al paso 11.
- 4. CPU deshabilita atención de más interrupciones (IF=0)
- 5. CPU llama a la ISR asociada al dispositivo

- 6. ISR respalda estado actual de la CPU
- 7. ISR es ejecutada
- 8. ISR restaura estado de la CPU
- 9. ISR retorna
- 10. CPU habilita la atención de interrupciones (IF=1)
- 11. CPU recupera condition codes desde el stack

- Al usar varios dispositivos, es necesario incorporar un controlador de interrupciones y una tabla de vectores de interrupción

- En general, un controlador de interrupciones tendrá al menos los siguientes componentes:
- Registro de comandos y estado
- Interrupt Request Register: Registro de interrupciones en espera de atención
- In-Service Register: Registro de interrupciones en atención
- Interrupt Mask Register: Registro de enmascaramiento de interrupciones
- Circuito para manejar prioridades de interrupciones

Tipos de interrupción en la CPU

 Excepciones: Condiciones de error al ejecutar una instrucción. Estas son atendidas por la CPU (en particular, el sistema operativo) a través de ISRs específicas: exception handler

Ejemplos: división por cero, stack overflow.

 Interrupciones de software (traps): Son "llamadas al sistema operativo", interrupciones explícitas en los programas para ceder el control al sistema operativo para que realice una acción

Ejemplo: ecall

IRQ	Dispositivo	Vector de interrupción	
IRQ0	Timer del sistema	08	
IRQ1	Puerto PS/2: Teclado	09	
IRQ2	Conectada al PIC secundario	0A	
IRQ3	Puerto serial	0B	
IRQ4	Puerto serial	0C	
IRQ5	Puerto paralelo	0D	
IRQ6	Floppy disk	$0\mathrm{E}$	
IRQ7	Puerto paralelo	0F	
IRQ8	Real time clock (RTC)	70	
IRQ9-11	No tienen asociación estándar, libre uso.	71-73	
IRQ12	Puerto PS/2: Mouse	74	
IRQ13	Coprocesador matemático	75	
IRQ14	Controlador de disco 1	76	
IRQ15	Controlador de disco 2	77	

Dirección del vector	Tipo	Función asociada
00-01	Excepción	Exception handlers
02	Excepción	Usada para errores críticos del sistema, no enmascarable
03-07	Excepción	Exception handlers
08	IRQ0	Timer del sistema
09	IRQ1	Puerto PS/2: Teclado
0A	IRQ2	Conectada al PIC secundario
0B	IRQ3	Puerto serial
0C	IRQ4	Puerto serial
0D	IRQ5	Puerto paralelo
0E	IRQ6	Floppy disk
0F	IRQ7	Puerto paralelo
10	Int. de Software	Funciones de video
11-6F	Int. de Software	Funciones varias
70	IRQ8	Real time clock (RTC)
71 - 73	IRQ9-11	No tienen asociación estándar, libre uso
74	IRQ12	Puerto PS/2: Mouse
75	IRQ13	Coprocesador matemático
76	IRQ14	Controlador de disco 1
77	IRQ15	Controlador de disco 2

¿Dudas?

Revisaremos tres modelos de interacción entre alumnos y profesor

Sin proyector ni pizarrón ni copias de las guías, alumnos tímidos:

1. Polling

Sin proyector ni pizarrón ni copias de las guías, alumnos preguntones y participativos:

2. Interrupción

Pizarra interactiva, alumnos preguntones:

3. Interrupción con acceso directo a memoria

Arquitectura de Computadores: DMA

 Para permitir que los I/O tengan acceso directo a memoria se utiliza un controlador DMA

Arquitectura de Computadores: DMA

- En general, un controlador de DMA tendrá al menos los siguientes componentes:
 - Registro de comandos y estado
 - Registros de dirección de origen y destino
 - Registro contador de palabras
 - Buffer de almacenamiento temporal
 - Unidad de control

Arquitectura de Computadores: DMA e Interrupciones

 Arquitectura de un computador con memory mapped I/O, interrupciones y DMA

¿Dudas?

Bibliografía

- Apuntes históricos. Hans Löbel, Alejandro Echeverría
 - 8 Comunicación de CPU y Memoria con IO
- D. Patterson, Computer Organization and Design RISC-V. Edition: The Hardware Software Interface. Morgan Kaufmann, 2020.Capítulo 6.9. Página 529.e1, 690 en PDF

Bibliografía

- https://github.com/IIC2343/Syllabus-anteriores/tree/main/Enunciados

Clase 16 - Entradas y Salidas: Comunicación

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl