PROBLEMAS DE CIRCUITOS ELECTRÓNICOS

2º Curso de Grado en Ingeniería Informática – 19/20

TEMA 3: Amplificadores operacionales

1.- Hallar v_0 en el circuito de la figura.

- **2.-** El circuito representado es un diferenciador práctico que minimiza los problemas de ruido mediante la atenuación de las frecuencias altas.
- a) Determinar la función de transferencia $v_o(j\omega) / v_i(j\omega)$.
- b) Si $R_1C_1 = R_2C_2$ ¿hasta qué frecuencias debe ser restringida la entrada para que el circuito funcione como diferenciador?, es decir, $v_o(j\omega) = cte \cdot j\omega v_i(j\omega)$.
- c) Calcular la nueva función de transferencia cuando: (i) $C_1 \approx 0$, (ii) $C_2 \approx 0$, (iii) $C_1 \approx \infty$ y (iv) $C_2 \approx \infty$, describiendo el tipo de filtro obtenido en cada caso.

- d) ¿Para qué margen de frecuencias de la señal de entrada el circuito se comporta como un filtro paso-bajo?
- **3.-** Para el circuito derivador de la figura, determinar la forma y la amplitud de la onda de salida cuando a la entrada le suministramos una señal triangular de amplitud +/- 3V y frecuencia igual a 25Hz.

4.- Calcular la tensión de salida v_0 en el siguiente circuito, suponiendo que los amplificadores operacionales son ideales.

5.- ¿Cuál es el valor de v_2 necesario para producir v_0 = 500 mV cuando v_1 = 40 mV, R_1 = 50 K Ω y R_2 = 150 K Ω ? ¿Cuál es el valor de la corriente de salida, i_L , en las condiciones anteriores y si R_L = 4 K Ω ? Calcular la corriente suministrada por el amplificador operacional a través de su terminal de salida.

- **6.-** En el circuito de la figura, los amplificadores operacionales, supuestos ideales, están alimentados con $\pm V_{cc} = \pm 12V$. Suponiendo que la tensión de entrada toma valores en el rango $-10V \le v_i \le +10V$, calcular:
- *a)* La tensión intermedia v₂ en función de la tensión de entrada v_i.
- b) La tensión de salida v_o en función de la tensión de entrada v_i.

 $V_1 \sim V_2$

7.- En el circuito de la figura todos los amplificadores operacionales son ideales. Calcular la tensión de salida $V_{\rm o}$.

- **8.-** En el circuito de la figura el amplificador operacional es ideal. Calcular:
- La ganancia de voltaje $A_V(f)$ y su módulo $|A_V(f)|$.
- Las dos asíntotas f→0 y f→∞ y su intersección.
- Dibujar esquemáticamente $|A_V(f)|$ y sus asíntotas.

9.- (a) Obtener la expresión de la ganancia de tensión v_o/v_{in} del circuito que se muestra en la figura.

(b) Evaluar la expresión para $R_1 = 1$ kΩ, $R_2 = 10$ kΩ.

10.- Suponiendo los amplificadores operacionales ideales, y $R_1 = 2x10^4 \Omega$, $R_2 = 2x10^5 \Omega$ y $R_3 = 10^4 \Omega$:

- a) Calcular la ganancia de tensión, módulo y fase, para señales sinusoidales.
- b) Calcular los valores de C_1 y C_2 para que las frecuencias de corte a 3 dB ($|A^{máx.}|/2^{1/2}$) sean 20 Hz y 20 KHz para las etapas izquierda y derecha, respectivamente.
- c) Con los valores calculados en el apartado anterior, representar el módulo y la fase de la ganancia en función de la frecuencia.

11.- En el circuito de la figura:

- a) Calcular la tensión de salida en circuito abierto, Vo.
- b) Si se conecta la resistencia de $1K\Omega$ a la salida del circuito, calcular la intensidad I_o que suministra el operacional por su terminal de salida.

- **12.-** El amplificador operacional del circuito siguiente se considera ideal.
- a) Hallar la expresión de la ganancia de voltaje, A_V , en función de la frecuencia, f. $(A_V = v_o/v_i)$.
- b) Encontrar las frecuencias de corte para el módulo de la función obtenida.
- c) Calcular el módulo de la ganancia y hallar su valor en los casos f→0 y f→∞.

Suponiendo que $R_1=10~K\Omega,~R_2=100~K\Omega,~R_3=20~K\Omega,~R_4=9~K\Omega~y~C=4~nF~(1~nF=10^{-9}~F)$:

d) Representar A_{dB} =20 log $|A_V|$ en función de la frecuencia en escala logarítmica.

- 13.- Los amplificadores operacionales de los siguientes circuitos se suponen ideales.
- a) Deducir la característica de transferencia del circuito de la figura (a), así como la expresión de voi en función de v_i.
- b) Deducir la expresión de v_o, como función de los voltajes de entrada v_A, v_B y v_C, en el circuito de la figura (b).

14.- Suponiendo que el amplificador operacional del siguiente circuito es ideal:

a) Deducir la expresión de la ganancia de voltaje, $A_V = v_o/v_i$, en función de la frecuencia.

b) Escribir, a partir de la anterior, las expresiones de su módulo y su ángulo de fase.

c) Calcular la expresión del módulo de A_V en los límites de frecuencia $f\rightarrow 0$ y $f\rightarrow \infty$.

15.- Calcular la ganancia de tensión v_o/v_i del siguiente circuito.

16.- Demostrar que el circuito de la figura se comporta, respecto a la carga R, como una fuente de corriente, gobernada por la tensión $V_{\rm i}$

17.- Comprobar que el siguiente circuito tiene una tensión de salida igual a

$$v_{o} = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right) (v_{i2} - v_{i1}).$$

18.- Suponiendo $V_{i1}=14.7V$ y $V_{i2}=10V$: (a) Determinar la corriente que circula por las resistencias de $2K\Omega$ y de $4K7\Omega$; (b) calcular las tensiones V_{O1} y V_{O2} ; (c) calcular la suma de las potencias disipadas en todas las resistencias, así como la suma de las potencias suministradas por los dos operacionales; (d) suponiendo $V_{i1}=V_{i2}=V_i$ determinar V_{O2} en función de V_i ; (e) para $V_i=1V_i$ cuál es la potencia disipada en una resistencia de $1K\Omega$ conectada entre V_{O1} y V_{O2} .

