

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

LECTURE ON AGRICULTURAL INVESTIGATIONS

GILBERT

1884

UNIV. OF CAL. EXPT. STA. LIB.

LIDERALY, UNIVERSITY

ON

AGRICULTURAL INVESTIGATION;

BEING

A LECTURE DELIVERED OCTOBER 27, 1884,

AT

RUTGERS COLLEGE, NEW BRUNSWICK, N. J.

UNDER THE AUSPICES OF

THE NEW JERSEY AGRICULTURAL EXPERIMENT STATION,
THE STATE BOARD OF AGRICULTURE, AND
THE STATE AGRICULTURAL COLLEGE;

BY

JOHN HENRY GILBERT, M. A., LL. D., F.R.S.

OF ROTHAMSTED, ENGLAND.

AND SIBTHORPIAN PROFESSOR OF RURAL ECONOMY IN THE UNIVERSITY OF OXFORD.

PUBLISHED BY THE

SOCIETY FOR THE PROMOTION OF AGRICULTURAL SCIENCE. 1885.

AGRICULTURAL INVESTIGATION;

BEING

A LECTURE DELIVERED OCTOBER 27, 1884,

AT

RUTGERS COLLEGE, NEW BRUNSWICK, N. J.

UNDER THE AUSPICES OF

THE NEW JERSEY AGRICULTURAL EXPERIMENT STATION,
THE STATE BOARD OF AGRICULTURE, AND
THE STATE AGRICULTURAL COLLEGE;

RY

JOHN HENRY GILBERT, M. A., LL. D., F. R. S.

OF ROTHAMSTED, ENGLAND.

AND SIBTHORPIAN PROFESSOR OF RURAL ECONOMY IN THE UNIVERSITY OF OXFORD.

PUBLISHED BY THE
SOCIETY FOR THE PROMOTION OF AGRICULTURAL SCIENCE.
1885.

NOTE ON DR. GILBERT'S LECTURE.

It has been announced that Sir John Bennet Lawes, in arranging for the perpetual maintenance of the great work of Rothamsted, makes provision for a representative of that establishment to visit America every other year and lecture at appropriate places.

Dr. Gilbert was in the United States in 1882, and when it was known that he was to come again in 1884, efforts were made to have him attend the fifth annual meeting of the Society for the Promotion of Agricultural Science. As his various engagements unfortunately prevented his being in Philadelphia at the time desired, arrangements were there made to secure lectures from him at other places. He accordingly visited Lansing, Michigan, and New Brunswick, New Jersey, for the purpose, and found appreciative audiences at both places.

The lecture at Rutgers College was under the joint auspices of the New Jersey Agricultural Experiment Station, State Agricultural College, and State Board of

Agriculture.

The Society for the Promotion of Agricultural Science, having intended this lecture to be a part of its proceedings at Philadelphia, have asked and obtained permission to first publish the same in this pamphlet. For this purpose the text has been carefully revised and the tables verified by Dr. Gilbert. This kind attention is gratefully acknowledged by

THE EXECUTIVE COMMITTEE.

AGRIC. DEPT. ar in Tib.

LECTURE ON AGRICULTURAL INVESTIGATIONS.

J. H. GILBERT.

Mr. President, Professors and Students of Rutgers College, and Ladies and Gentlemen:

I ESTEEM it a high honor and a great responsibility to be called upon to address you on the present occasion;—an honor because, perhaps, I am not assuming too much in supposing that I owe the invitation to do so to the fact that the joint labors of Sir John Bennet Lawes and myself, in the furtherance of agricultural progress, which have now extended over a period of more than forty-one years, are held in some appreciation in this country;—and a responsibility, because I know that I have before me representatives of the best agricultural science in the Eastern States.

On hearing from Sir John Lawes, before leaving home, that I might probably be asked to lecture at some Agricultural Institutions in America, I at once decided that it would be inappropriate for me to attempt to discuss, in any detail, American agricultural practices or experiments; that in these matters I should be a learner rather than a teacher; and that it would be more suitable for me to give some account of the results obtained at Rothamsted, leaving my audience to decide for themselves, in great measure, how far the facts and the conclusions were applicable to American conditions.

In Germany and France very much good work has been done, both in the laboratory and feeding-shed, during the last thirty years or more; but in Germany, at any rate, we have it on the authority of Prof. Mærcker of Halle, one of their leading agricultural chemists, that systematic field experiments are almost abandoned in that country. In 1880, Prof. Mærcker stated that belief in their value was greatly diminished, and that by some they were declared to be of no value. It was objected that the chemists of the Agricultural Stations have neither the means nor the technical knowledge necessary for carrying out such experiments successfully; that neither the amount of land nor the funds at their disposal were such as to admit of any safe deductions for application in practical agriculture from the results; and that purely physiological problems could be better investigated in the laboratory or in the greenhouse. He remarked that, owing to the errors necessarily incident to field experiments conducted by those not acquainted with practical agriculture, the confidence of the practical farmer in the results has been shaken. Indeed, owing to the difficulties and the cost of such inquiries,

if conducted in a truly scientific manner, so as to be applicable for the solution of questions of fundamental and general interest, Prof. Mærcker concluded that the only field experiments which it was practicable to carry out in Germany were such as should be conducted by the practical farmer himself, to test the applicability to practice, of results and conclusions otherwise arrived at; and that, to insure that even such experiments should not be misleading, similar ones should be conducted on different descriptions of soil, and for several years in succession.

That the great cost of scientifically conducted field experiments should have prevented the more extended prosecution of them, is perhaps not surprising when I tell you that the Rothamsted field experiments, independently of all the laboratory investigations connected with them, cost considerably more than £1000 annually; whilst those which have been undertaken by the Duke of Bedford at Woburn for the past seven years, on behalf of the Royal Agricultural Society of England, and which are under the direction of Dr. Vælcker, cost not much less than this.

At various institutions in America, and preëminently at the New Jersey Agricultural Experiment Station, very much good work is being done of the character prosecuted with so much success in Germany, and recommended by Prof. Mærcker to be still further followed up; and whilst such work should be continued and extended, surely investigations of a more permanent value, and of more general application, should not be neglected. Nor can it be supposed that in so wealthy a country as America, where there is so much munificence and public spirit displayed in all matters of progress, the cost of scientifically conducted agricultural experiments will be any obstacle.

This brings me to the special subject-matter of my lecture, which is to illustrate the value of *long continued* and carefully conducted experiments, by reference to the results of one series of such experiments conducted at Rothamsted,—namely, those on the growth of wheat for more than forty years in succession on the same land—without manure, with farmyard manure, and with a great variety of chemical manures.

But, before entering upon the details of this subject, it will be well to give some account of the scope and plan of the whole investigation, of which these special results only form a part.

At Rothamsted, no questions of mere local interest or economy are undertaken. The object is rather to investigate the principles underlying fundamental practices; and whilst results obtained in one locality, on one description of soil, and with one character of climate, require to be carefully studied before conclusions applicable to other localities and to other countries can be drawn, yet it is believed that the results which have been obtained are of very general and wide application.

The general scope and plan of the field experiments has been—to grow some of the most important crops of rotation, each separately, year after year, for many years in succession on the same land, without manure, with farm-yard manure, and with a great variety of chemical manures, the same description of manure being, as a rule, applied year after year on the same plot. Experiments with different manures on the mixed herbage of permanent grass-land, on the effects of fallow, and on an actual course of rotation, without manure, and with different manures, have likewise been made. Field experiments have thus been conducted for the periods, and over the areas, indicated in the following table:

ROTHAMSTED FIELD EXPERIMENTS.

CROPS.	DURATION YEARS.	AREA,	PLOTS.
Wheet (verious menures)	41	13	37
Wheat alternated with follows		19	3/
Wheat alternated with fallow		,1	4,7 2,00
Wheat (varieties)	15	4-8	About 20
Barley (various manures)		44	29
Oats (various manures)		*	6
Beans (various manures)	32°	11	. 10
Beans (various manures)	278	1	5
Beans alternated with wheat	284	1	10
Clover (various manures)		3	18
Various Leguminous Plants		3	17
Turnips (various manures)		8	40
Sugar Beet (various manures)		8	41
Mangel Wurzel (various manures)		9	41
•		•	41
Total Root Crops	42		1
Potatoes (various manures)	9	2	10
Rotation (various manures)		$ar{2}_{rac{1}{2}}$	12
Permanent Grass (various manures)		$\tilde{7}^2$. 22
z czinancii czacc (, wrodo mandro)	1 ~0	•	

(1) Including 1 year fallow.

wheat and 5 years fallow.

(s) 4 years fallow.

(°) Clover, 12 times sown, 8 yielding crops, but 4 of them very small, 1 year wheat, 5 years barley, 12 years fallow.
(°) Including barley without manure 3 years (11th, 12th and 13th sea-

sons.)

Samples of all the experimental crops are brought to the laboratory. Weighed portions of each are partially dried and preserved for future reference or analysis. Duplicate weighed portions of each are dried at 100° C., the dry matter determined, and then burnt to ash. The quantities of ash are determined and recorded, the ashes themselves being preserved for reference or analysis. In a large proportion of the samples the total nitrogen is determined, and in some the amount existing as albuminoids, amides, and nitric acid. In selected cases, illustrating the influence of season, manures, exhaustion, etc., complete ash-analyses have been made, numbering in all more than 700. Also in selected cases, illustrating the influence of season and manuring, quantities of the experimentally grown wheat-grain have been sent to the mill, and the proportion and composition of the different mill-products has been deter-In the sugar-beet, mangel-wurzel, turnips, and potatoes, the sugar in the juice has, in many cases, been determined, by polariscope, or by copper, or both. In the case of the experiments on the mixed herbage of permanent grass-land, besides the samples taken for the determination of the chemical composition (dry matter, ash, nitrogen, woody fiber, fatty matter, and composition of ash), carefully averaged samples have frequently been taken for the determination of the botanical composition.

Samples of the soils of most of the experimental plots have been taken from time to time, generally to the depth of nine, eighteen, and twenty-seven inches, and sometimes even to four times this depth. this way more than fifteen hundred samples have been taken, submitted to partial mechanical separation, and portions of the sifted soil have been carefully prepared and preserved for analysis. In a large proportion of the samples the loss on drying at different temperatures, and at ignition, has been determined. In most, the nitrogen determinable by burning with soda-lime has been estimated. In many, the carbon, and in some the nitrogen, as nitric acid, and the chlorine, have been determined.

Almost from the commencement of the experiments the rain-fall has been measured; for more than thirty years in a gauge of one-thousandth of an acre area, as well as in an ordinary small funnel-gauge of five inches diameter. From time to time the nitrogen as ammonia (and sometimes as nitric acid) has been determined in the rain-waters, also

chlorine in many samples.

Three drain-gauges, for the determination of the quantity and composition of the water percolating, respectively through twenty inches, forty inches, and sixty inches depth of soil (with its subsoil in natural state of consolidation), have also been constructed. Each of the differently manured plots of the permanent experimental wheat-field having a separate pipe-drain, the drainage waters have been, and are frequently, connected and analyzed.

For several years in succession experiments were made to determine the amount of water given off by plants during their growth. In this way various plants, including representatives of the gramineous, the leguminous, and other families, have been experimented upon; also evergreen and deciduous trees.

Experiments upon the feeding of animals were commenced in 1847, and have been continued at intervals up to the present time. The following points have been investigated:

- 1. The amount of food, and its several constituents, consumed in relation to a given live-weight of animal within a given time.
- 2. The amount of food, and of its several constituents, consumed to produce a given amount of increase in live-weight.
- 3. The proportion, and relative development, of the different organs or parts of different animals.
- 4. The proximate and ultimate composition of the animals, in different conditions as to age and fatness, and the probable composition of their increase in live-weight during the fattening process.
- 5. The composition of the solid and liquid excreta (the manure) in relation to that of the food consumed.
- 6. The loss or expenditure of constituents by respiration and the cutaneous exhalations—that is, in the mere sustenance of the living meatand-manure-making machine.

Several hundred animals — oxen, sheep, and pigs — have been submitted to experiment. The amount, and the relative development, of the different organs and parts were determined in two calves, two heifers, fourteen bullocks, one lamb, two hundred and forty-nine sheep, and fifty-nine pigs. The percentages of water, mineral matter, fat, and nitrogenous substances were determined in certain separated parts, and in

TABLE I.

Wheat grown for forty years in succession on the same land, Broadbalk Field, Rothamsted. Results showing the effects of exhaustion, and of manure-residue. Quantities per acre. Produce—Dressed Grain in bushels.

	14 Tons Farm Yard Manure, every year.	Without Manure every year.	Mixed Mineral Manure alone.	Manur - b Ammon alone=86 gen, —	um Salts	Mixed Min.Manr Am. Salts. 172 lbs. N. 13 years, 1852-'64. Unman'd since.	Alone Ammon alone (86 gen)— Min. & A	Manure —blue; ium Salts lbs. Nitro- yellow; mm. Salts, een; ed —white
Plot Nos.	2	3	5	17	18	16	10a	10b
Harvests. 1844 1845 1846 1847 1848 1849 1850 1851	Bushels. 20½ 32 27¼ 29½ 35 31 28½ 29¾	Bushels. 15 23¼ 18 16% 14¾ 19¼ 15% 15%	Bushels.	Bushels.	Bushels.	Bushels,	27 ½ 25 ½ 19 ¼ 32 ½ 27 28 ½	Bushels. 17 % 25 % 32 % 18 28 %
8 yrs. '44-'51	28	17%	29	301/4	28%	3034	26	24%
1852 1853 1854 1855 1856	27 % 19 % 41 % 34 %	1378 578 2118 17 141/2	16% 10% 24% 18% 10%	24 % 8 % 44 % 18	14 % 19 ¼ 28 % 33 ¼ 17 %	28 % 25 % 40 % 30 % 37 %	21% 10 34% 20 24¼	22 ½ 15 ½ 39 ¼ 28 ½ 27 ¾
1857 1858 1859	41¼ 38¾ 36¼	20 18 18¾	20% 18% 20%	26¼ 33½ 20½	40 ½ 21 ¾ 32 ½	4176 84%	29 ½ 22 ½ 19	34 ½ 27¾ 25½
1860 1861 1862 1863	32½ 34½ 38¾ 44	12 1/8 11 3/8 16 17 1/4	15% 15% 17% 19%	25¾ 18¾ 27¾ 21¾	1534 3276 1834 4634	32 % 37 36 % 55%	15 ½ 12 ½ 23 ½ 39 ½	18% 16 24% 43%
1864 1865 1866 1867	40 37 1/8 32 1/8 27 1/2	16½ 13¾ 12⅓ 8¾	16% 14% 18% 9%	36% 17 26% 10%	17% 31% 12% 23%	323/8 173/8 145/8	32 ½ 25 ¼ 26 ¼ 18 ½	36¼ 30½ 28½ 19¾
1868 1869 1870 1871	41¾ 38¼ 36½ 39	16% 14¼ 15 9%	17% 15% 18% 11%	373/4 16 \(\) 343/4 16	18% 22% 19 28%	22¾ 16⅓ 18¼ 13½	2434 2034 2134 10%	27¾ 19½ 23¼ 10
1872 1873 1874 1875	31¾ 26¾ 39¼ 28¾	10¾ 11¾ 11½ 8½	12% 12% 13 9%	25 1/4 11 1/4 33 1/4 11 1/4	13 20% 14 25%	13 1/8 12 3/4 11 7/8 10 1/8	18 19 % 25 ¼ 12 %	1834 20% 2734 14%
1876 1877 1878 1879	23 1/8 24 1/8 28 1/4 16	81/8 87/8 123/8 43/4	10% 11% 14% 5%	263/2 10 29 33/2	10% 12% 15% 20%	11 978 13 % 478	12% 17% 27% 4	14 ½ 18¼ 29 % 4 %
1880 1881 1882 1883	38¾ 30¼ 32¾ 35¼	$11\frac{3}{2}$ $13\frac{3}{4}$ 11 $13\frac{7}{8}$	17% 12% 12% 15%	3234 1314 31 15% VERAGES,	15 32 15 % 38 ¾	14 % 13 ½ 10 ¾ 15 %	10 % 18 ¼ 23 ¼ 17 ¼	13½ 19¾ 26½ 18¾
4 yrs. '52-'55 4 yrs. '56-'59 4 yrs. '60-'63 4 yrs. '64-'67 4 yrs. '68-'71 4 yrs. '72-'75 4 yrs. '76-'79 4 yrs. '80-'83	30% 38 37% 344 38% 31½ 23 34%	14 ½ 17 ¾ 14 ¾ 12 ¾ 13 ¾ 10 ½ 8 ½ 12 ½	17% 20% 17% 13% 16 12 10% 14%	16 h 21 h 18 k 14 h 17 h 12 h 12 h 14 h 12 h 14 h	30% 34% 33 29% 30% 26% 22% 33%	34 (1) 42 (2) 21 ½ 17 ½ 12 9 ½ 13 ¾	21 ½ 23 ½ 22 ½ 25 ½ 19 ¼ 16 ¼ 17 ½	26¼ 28% 25¾ 28% 20% 16% 19%
8 yrs. '52-'59 8 yrs. '60-'67 8 yrs. '68-'75 8 yrs. '76-'83	34 % 35 % 35 %	16½ 13½ 12¼ 10½	10 15% 14 12%	18% 16% 15 12%	32% 31¼ 28½ 27¾	(4) 16 % 11 ¾	22¾ 24 19 16¾	27 1/4 27 1/4 20 1/8 18 1/8
16 yrs. '52-'67 16 yrs. '68-'83 32 yrs. '52-'83	35½ 31½ 33½	14% 11% 13%	17% 18%	17% 13%	31¾ 28½ 30	(6) 14 % 24 %	23% 17% 20%	27% 19% 23¼
40 yrs. '44-'83	321/8	14				/4	/4	

Average of 5 years, 1860—1864, inclusive.
 Average of 5 years, 1860—1864, inclusive.
 Average of 13 years, 1852—1864, inclusive.

⁽²⁾ Average of 3 years, 1865—1867, inclusive.
(4) Average of 11 years, 1865—1875, inclusive.
(6) Average of 19 years, 1865—1883, inclusive.

the entire bodies, of ten animals,—namely, one calf, two oxen, one lamb, four sheep, and two pigs. Complete analyses of the ashes, respectively, of the entire carcasses, of the mixed internal and other "offal" parts, and of the entire bodies, of each of these ten animals, have also been made.

From the data provided as just described, as to the chemical composition of the different descriptions of animal, in different conditions as to age and fatness, the composition of the increase whilst fattening, and the relation of the constituents stored up in increase to those consumed in food, have been estimated. To ascertain the composition of the manure in relation to that of the food consumed, oxen, sheep, and pigs have been experimented upon. The loss or expenditure of constituents, by respiration and the cutaneous exhalations, has not been determined directly, but only by difference,—that is, by calculation, founded on the amounts of dry matter, ash, nitrogen, etc., in the food, and in the (increase) fœces, and urine.

Independently of the points here enumerated, the results obtained have supplied data for the consideration of the following questions:

- 1. The characteristic demands of the animal body, for nitrogenous or non-nitrogenous constituents of food, in the exercise of muscular power.
 - 2. The sources in the food of the fat produced in the animal body.
- 3. The comparative characters of animal and vegetable food in human dietaries.

Having given a brief outline of the scope and plan of the investigations that have been in progress at Rothamsted for so many years, I propose to draw my illustrations as to the character and significance of the results obtained, mainly from those relating to the growth of wheat for more than forty years in succession on the same land:

- 1. Without manure.
- 2. With farm-yard manure.
- 3. With a great variety of chemical manures, both individual constituents and mixtures.

Table I. gives the number of bushels of dressed grain per acre without manure, and with farm-yard manure, in each of the forty years, 1844 to 1883 inclusive; and on some of the artificially manured plots, mainly selected to illustrate the effects of exhaustion and of manure-residue. In most cases in this table, and in all cases in the subsequent tables, the results obtained on the artificially manured plots are only given for the last thirty-two of the forty years, as during the first eight years the manures were not the same year after year on the same plot as they were subsequently.

FIRST. WITHOUT MANURE.

After a five-course rotation since manuring (turnips, barley, peas, wheat, oats), the first experimental wheat crop was harvested in 1844. The highest yield of the series was 23½ bushels in 1845, and the lowest

was 43/4 bushels in 1879. Other yields have been 211/8 bushels in 1854, 20 in 1857, only 5/8 in 1853, and only 8-9 bushels in 1867, 1875, 1876,

and 1877.

In the lower division of the table (I.) the average produce is given for each four years, each eight years, each sixteen years, and for the thirty-two years from 1852 to 1883 inclusive; also for the whole period of forty years. Without manure, the average annual produce over the four-year periods was 14½, 17¾, 14¾, 12¾, 13¾, 105½, 8¾, and 12½ bushels; over the eight-year periods, 16⅓, 13½, 12¼, and 10½; over the sixteen-year periods, 14⅙ and 11¾; over the thirty-two years, 13⅓, and over the forty years, 14 bushels. With such wide variations due to season, it is very difficult to estimate the rate of decline due to exhaustion. Excluding the very bad seasons, the decline due to gradual exhaustion is reckoned at from one-fourth to one-third of a bushel per acre per annum.

It is estimated that over a period of thirty years the unmanured plot yielded an average of 18.6 lbs. of nitrogen per acre per annum in the crop, and lost a minimum of 10.3 lbs. in drainage, in all 28.9 lbs.; whilst on the mixed mineral manure plot (5), it is estimated that the crop removed an average of 20.3 lbs. of nitrogen, and that at least 12 lbs. were lost by drainage, or in total 32.3 lbs. Further it is estimated that the soils lost to the depth of twenty-seven inches about two-thirds of these amounts; leaving, say, 10 lbs. more or less to be otherwise accounted for. Of this, the rain, etc., would supply 5 lbs., or perhaps rather more, and the seed about 2 lbs., so that there is but little to be provided from all other sources. Lastly, as at the commencement the soil was, agriculturally speaking, exhausted, the nitrogen supplied by it would be largely due to old accumulations.

SECOND. FARM-YARD MANURE EVERY YEAR.

In the application of farm-yard manure every constituent is supplied in excess. The highest yields of the series of years were 44 bushels in 1863, 41¾ in 1868, 41¼ in 1857, and 41⅓ in 1854. The lowest yields were 16 bushels in 1879, 19⅓ in 1853, 20½ in 1844, 23⅓ in 1876, and 24⅓ in 1877.

The average produce per acre per annum over each of the five eightyear periods was, 28, 3436, 3534, 3514, and 2856 bushels. Excluding the first eight years, and several of the recent very bad seasons, the

average produce is about 35 bushels per acre per annum.

On the farm-yard manure plot, the first nine inches of soil show a great accumulation; it is nearly twice as rich in nitrogen as any other plot, yet this richness is not proof against bad seasons; nor are the highest amounts of produce in the field obtained on this plot.

Thus, without manure, or with mineral manure alone, there is a gradual decline in yield, and with this a marked reduction in the nitrogen of the soil. With farm-yard manure, on the other hand, there is great accumulation, and yet not the fullest crops, a large proportion of the con-

stituents becoming very slowly available.

The next question is, which constituents of farm-yard manure are the most effective for wheat in this agriculturally exhausted rather heavy soil, with a raw clay subsoil. The first illustrations on this point will be drawn from Table II.

TABLE II.

Wheat grown for forty years in succession on the same land, Broadbalk Field, Rothamsted; commencing 1844. Results showing the effects of different manures for 32 years, 1852-83 inclusive. Quantities per acre. Produce—Dressed Grain in Bushels.

• .	Superpho	sphate, and S	ulphates Pota	sh, Soda, and	Magnesia.	
	Alone.	Ammsalts =43 lbs. Nitrogen.	Ammsalts =86 lbs. Nitrogen.	Ammsalts =129 lbs. Nitrogen.	Sodium Ni- trate =86 lbs. Nitrogen.	Sodium Ni- trate alone. =86 lbs. Nitrogen.
Plots.	5	6	7	8	9a.	9b
Harvests.	Bushels.	Bushels.	Bushels.	Bushels.	Bushels.	Bushels.
1852	16 7 10 1	207	26 3 23 8	271	25½ 11½ 38¾	$\frac{241}{10\frac{1}{2}}$
1853	10 1	18#	23 §	231	114	102
1854	24 }	34 8	$45\frac{1}{2}$	48	382	38 7
1855	181	28	33	$31\frac{1}{2}$	298	25 8
1856	19]	274	36 7	39 §	323	26
1857	$23\frac{3}{4}$	35	44 }	488	434	36 1
1858	18 7	287	39 [417	37 §	$23\frac{1}{2}$
1859	208	297	34 8	341	30	245
1860	157	22	274	311	325	195
1861	$15\frac{1}{2}$	275	35	35 1	33 2	$13\frac{3}{4}$
1862	174	28}	35 7	39}	431	$25\frac{7}{8}$
1863	19 §	39 8	53 §	551	55 §	41½
1864	16 7	311	453	49 1	51 	33 1
1865	14 \	25	40 1	43 §	448	29 5
1866	13 }	20½	29 7	32 1	$32\frac{1}{2}$	303
1867	91	153	22 1	301	291	22 1
1868	175	288	397	461	47 1	27 1
1869	15 ₹	215	28 §	343	39	$24\frac{1}{8}$
1870	187	$30\frac{1}{2}$	40 l	451	45 4	$26\frac{1}{2}$
1871	11 %	17	22 1	27 3	34½	17€
1872	123	204	293	35 8	404	23%
1873	123	157	22	27 1	35 1	21 ž
1874	13	25 \tilde{x}	$39\frac{1}{2}$	401	38 1	$21\frac{1}{2}$
1875	9 1	16 §	25 7	30	301	16 ½
1876	101	153	231	295	338	13
1877	114	14	19 7	24 1	40 \frac{1}{8}	$27\frac{3}{4}$
1878	$14\frac{3}{4}$	223	31 1	38 1	371	23 §
1879	54	101	16 1	20≸	22	48
1880	173	27	341	35 8	341	101
1881	121	21 3	26 🖁	304	$35\frac{1}{2}$	$22\frac{3}{4}$
1882	$12\frac{1}{2}$	23 \f	354	37	31 {	24 §
1883	153	275	36 g	417	438	19 }
		<u> </u>	AVERAGES.			
4 ys. '52-55	17 8	251	321	323	26 1	24 3
4 ys. '56-59	20 1	301/2	38 7	41	36	27 §
4 ys. '60-63	17 1	29 §	38	40 8	418	25 1
4 ys. '64-67	$13\frac{8}{8}$	231	34½	39	39 1	29
4 ys. '68-71	16	24 ⁸ / ₈	323	38 ½	414	23 7
4 ys. '72-75	12	195	29 1	33 §	36 8	20 7
4 ys. '76-79	10 §	15 7	22 3	28 1	33 1	171
4 ys. '80-83	14 3	24 7	33 [364	361	19 }
8 ys. '52-59	19	277	35½	36 7 39 1	31 g	26 1
8 ys. '60-67	15 1	26 1	36 1	39 3	40 1	27 t
8 ys. '68-75	14	22	31	36	39	228
8 ys. '76-83	12 §	208	28	321	343	181
16 vs. '52-67	171	27	357	381	$35\frac{3}{4}$	26 §
16 ys. '68-83	13	211	$29\frac{3}{2}$	34 g	$36\frac{7}{8}$	
32 ys. '52-83	151	241	323	361	361	$23\frac{1}{2}$
Excess of ave-)	,				
rage crop over	· —	8 7	$17\frac{1}{2}$	21	21	8 1
Plot 5 in bush.	<u></u>					
					-	

Taking the average for each eight or sixteen years of the thirty-two, it is seen that in every case, even with full mineral as well as nitrogenous manure, there is more or less decline in the later periods including so many bad seasons; excepting on 9a, where the nitrate of soda is always applied in the spring. The low results or great decline, on 9b, where the nitrate is used alone, show the want of minerals.

The average of the thirty-two years of mineral manure alone shows an increase of only 21/8 bushels over that of the unmanured plot, though during the preceding eight years it had been manured, whilst the unmanured plot had already grown eight unmanured wheat crops. The addition to the mineral manure of the first 43 lbs. of nitrogen (plot 6) gives an average annual increase of 876 bushels, the second 43 lbs. (plot 7) an increase of 85%, and the third 43 lbs. only 3½ bushels increase. This result affords an illustration of the inapplicability of conclusions from manure experiments, when the condition of the land is too high already, or when an excess of manure is applied. A given quantity of nitrogen in the form of nitrate, yielded more produce than an equal quantity in The nitrate, being always applied in the spring, the form of ammonia. was not subject to winter drainage. It is, however, very soluble, and becomes rapidly distributed and available; but it is, at the same time, very subject to drainage after sowing, if heavy rains follow. 1878, the ammonium-salts were applied in the autumn, and a great loss of nitrogen by winter drainage, chiefly as nitrates, was proved. To the loss of nitrogen by drainage reference will be made further on.

Thus, minerals not being deficient, the increase was in proportion to

the available nitrogen, when it was not applied in excess.

It will be of interest here to call attention to the actual amounts of carbon assimilated per acre per annum in wheat, and in barley, under different conditions of manuring; also to the increased amount assimilated under the influence of nitrogenous manures.

In Table III. are shown the estimated amounts of carbon, yielded per acre per annum, in wheat over twenty years, and in barley over twenty years; each with the complex mineral manure alone, and each with the same mineral manure and given quantities of nitrogen in addition, supplied as ammonium-salts, or as nitrate. The gain of carbon by the use of the nitrogenous manure is also given.

TABLE III.

Yield and gain of Carbon per acre per annum in crops at Rothamsted.

			Average Carbon j acre per annum				
	Wheat 2	0 years—1852,'71.	ACTUAL LBS.	LBS. GAIN.			
Complex Min	Complex Mineral Manure.						
do	do	and 43 lbs. N. as Ammonia	1590	602			
do	do	and 86 lbs. N. as Ammonia	2222	1234			
do	do	and 86 lbs. N. as Nitrate	2500	1512			
	Barley 2	0 years—1852,'71.					
Complex Min	neral Mai	nure,	1138				
do	do	and 43 lbs. N. as Ammonia	2088	950			

It is quite evident that in the case of these gramineous crops, wheat and barley, which contain a comparatively low percentage of nitrogen, and assimilate a comparatively small amount of it over a given area, there was a greatly increased amount of carbon assimilated by the addition of nitrogenous manure alone. In the case of the wheat, there was much more effect from a given amount of nitrogen supplied as nitrate, which was always applied in the spring, than from an equal quantity as ammonium-salts, which were applied in the autumn and the nitrogen of which was subject to winter drainage. There is also more effect from ammonium-salts applied to barley than to wheat; the application having been made for the former in the spring and for the latter in the autumn. It should be observed that there was this greatly increased assimilation of carbon in the wheat and in the barley for more than twenty years, without the addition of any carbon to the soil. It is, indeed, certain that, in the existing condition of our old arable soils, the increased growth of our staple starch-yielding grains is greatly dependent on a supply of nitrogen within the soil. It is equally certain that the increased production of sugar in the gramineous sugar-cane, in the tropics, is likewise greatly dependent on the supply of nitrogen within the soil.

It will further be of interest to call attention to the connection between nitrogen accumulation, chlorophyl formation, and carbon assimilation.

TABLE IV.
Relation of Carbon assimilation to Nitrogen accumulation, and to Chlorophyl formed.

	Nitrogen percentage in Dry Matter.*	Relative Amount of Chloro- phyl.	per ann	per acre um=lbs. Difference.
HAY.	1			
Gramineæ,	1.900	0.77		
Leguminosæ,	2.478	2.40		
WHEAT.				
Plot 10a,	(1.227)	2.00	1398	-824
Plot 7,	(0.566)	1.00	2222	
BARLEY.	1	i i		
<u>Plot</u> 1a,	(1.474)	3.20	1403	-685
Plot 4a,	(0.792)	1.46	2088	

^{*} The figures given in parenthesis are on the substance partially dried, but not fully dried at 100° C.

It should be observed that the amounts of chlorophyl recorded are as stated, relative, and not actual; and the figures show the relative amounts for the individual members of each pair of experiments, and not the comparative amounts as between one set of experiments and another. It should further be stated that the chlorophyl determinations were kindly made by Dr. W. J. Russell, F. R. S., of London, in specimens collected at Rothamsted, whilst the wheat and barley were still green, and actively growing.

It will be seen, in the first place, that the separated leguminous herbage of hay contained a much higher percentage of nitrogen in its dry matter than the separated gramineous herbage; and that, with the much higher percentage of nitrogen in the leguminous herbage, there was also a much higher proportion of chlorophyl.

Next, it is to be observed that the wheat plant on plot 10a, manured with ammonium-salts alone, shows a much higher percentage of nitrogen than that of plot 7, with the same amount of ammonium-salts, but with mineral manure in addition. The high proportion of chlorophyl again goes with the high nitrogen percentage; but the last column of the table shows that on plot 10a, with ammonium-salts without mineral manure, with the high percentage of nitrogen and high proportion of chlorophyl in the green produce, there was eventually a very much less assimilation of carbon. The result is exactly similar in the case of the barley; plot 1a being manured with ammonium-salts alone, and plot 4a with the same ammonium-salts and mineral manure in addition.

It is evident that the chlorophyl formation has a close connection with the amount of nitrogen assimilated; but that the carbon assimilation is not in proportion to the chlorophyl formed, if there is not a sufficiency of the necessary mineral constituents available. No doubt there had been as much or more of both nitrogen assimilated, and chlorophyl formed, over a given area, where the mineral as well as the nitrogenous manure had been applied; the lower proportion of both in the dry matter being due to the greater assimilation of carbon, and

consequent greater formation of non-nitrogenous substance.

The next point to consider is, what is the effect of the unrecovered amount of nitrogen on succeeding crops. This is illustrated by the results in the colored columns of Table I. In the table mineral manure is indicated by blue, nitrogen as ammonium-salts by yellow, and a mixture of the two by green. Plot 5 has been manured continuously for thirtytwo years with mineral manure alone; whilst plots 17 and 18 each received mineral manure, and a quantity of ammonium-salts containing 86 lbs. of nitrogen alternately. Thus we are able, for every year, to compare a plot manured with minerals, succeeding a previous application of ammonium-salts, with a plot receiving mineral manure alone yearly. It is seen that, in every case, the application of nitrogen has given a greatly increased yield, frequently doubling that of the plot with mineral manure alone. Again, in every case, the yield of the succeeding year, when the mineral manure was applied, was reduced approximately to that of the plot continuously treated with minerals alone. A glance down the alternately blue and yellow columns of plots 17 and 18, and a comparison with the blue column of plot 5, will bring these results strikingly to view. A comparison of the averages of the periods of four, eight, sixteen, and thirty-two years of this treatment clearly shows the essential identity of the results of the continuous and the alternate treatment with mineral manures. The averages for the thirtytwo years show an increase in the yield of the mineral-manure years after ammonia, over the yield of plot 5, of only 3/8 of a bushel per acre per annum in a crop of between fifteen and sixteen bushels. The noneffect, or the absence, of residual nitrogen applied in the form of ammonium-salts, is evident. In other words, nitrogen as ammonium-salts applied in any one year is practically exhausted that year, in the crop or otherwise, leaving practically none for subsequent action.

Again, plot 16, for thirteen years, from 1852 to 1864 inclusive, received annually mixed mineral manure and ammonium-salts, containing a double quantity (172 lbs.) of nitrogen; and since that time, for nineteen years (1864–1883), it has been left unmanured. During the thirteen years of heavy manuring there was a large yield, in two cases exceeding

fifty bushels, with an average for the thirteen years of 39½ bushels. The first three years during which no manure was applied, the average yield was only 21½ bushels, a decrease of nearly one-half, followed in the succeeding periods of four years each by average yields of 175%, 12, 9%, and 13¾ bushels; against, for the corresponding periods on plot 3, continuously without manure, 8½, 13¾, 105%, and 12½ bushels. Or, taking the average of the nineteen years of yield without manure on plot 16, we have 145% bushels, against, over the same years, 13½ bushels, on plot 5, with mineral manures only, since 1852, and 113½ bushels on plot 3, unmanured since 1839. It is fair to presume, moreover, that some of the greater yield of plot 16, from 1864–1883, over that of plot 3, is due to the residue of the mixed mineral manure, which, as will be seen further on, has some effect on succeeding crops.

If, as the above results have demonstrated, there is practically no residue from previous application of ammonium-salts, the question arises, What becomes of the nitrogen of the manure not taken up by the crop? This point is illustrated by the results given in Table V. The plots there tabulated all received the same amount of nitrogen in manure, with differing mineral manures, and they are given in the order of their average annual increased yield of nitrogen in the crops over plot 5, with mineral manure alone. The first column shows the estimated average annual increased yield of nitrogen per acre in the crops; the second, the estimated annual loss of nitrogen as nitric acid by drainage; the third, the estimated annual excess of nitrogen in the surface-soil over that on plot 5 with the mineral manure alone; and the last column shows the relation which that excess in the soil bears to 100 increased yield of nitrogen in the crops.

The plots were manured as follows:

Plot 10 — Amm.-salts = 86 lbs. N.

- " II Amm.-salts = 86 lbs. N., and superphosphate.
- " 12 Amm.-salts = 86 lbs. N., superphosphate and soda.
- " 13 Amm.-salts = 86 lbs. N., superphosphate and potash.
- " 14 Amm.-salts = 86 lbs. N., superphosphate and magnesia.
- " 7 Amm.-salts = 86 lbs. N., and mixed mineral manure.
- " 9 Nitrate of soda = 86 lbs. N., and mixed mineral manure.

TABLE V.

BROADBALK EXPERIMENTAL WHEAT-FIELD.

Estimated Nitrogen per acre per annum.

Plots.	In Crops over Plot 5.	Lost by Drainage over Plot 5.	In surface soil 9 inches deep over Plot 5.	Excess in surface soil to 100 increas in Crop.
	lbs.	lbs.	lbs.	lbs.
10	12.4	31.2	4.8	38.7
11	17.7	28.5	11.6	65.5
12	22.2	24.5	14.6	65.8
13	23.4	25 · 6	17.8	76 1
14	24.1	27.5	15.5	64.3
7	25.9	19.0	19.3	74 5
9	26.5	23.7	18.5	71.2

It is seen that the increased yield of nitrogen in the crops varied exceedingly with the same amount supplied in manure, according to the condition as to supply of mineral constituents. Plot 10, with the ammonium-salts alone, gives the smallest increased yield of nitrogen in the crop; and plots 7 and 9, with the most complete mineral manure, each more than twice as much; the other plots giving intermediate amounts.

The order of the estimated loss of nitrogen by drainage is almost the converse of that of the increased yield in the crops. Plot 10, which gives the least increased yield in the crop, shows the greatest loss by drainage; and plots 7 and 9, which yield the greatest increase in the crop, show the least loss by drainage.

The excess in the soils (over plot 5) is obviously much more in the order of the increased yield in the crops. Plot 10, with the least in the increase of crop and the most in the drainage, shows the least excess in the soil; whilst plots 7 and 9, with the greatest increased yield in the crop, and the least loss by drainage, show the greatest excess in the soil.

It is clear, therefore, that whilst the excess in the soil has no direct relation to the amount supplied in the manure, it has a very obvious relation to the increased yield in the crop; in other words, to the amount of growth. The last column of the table brings this out more clearly. Excepting in the case of plot 10, with the ammonium-salts alone, there is a general uniformity in the proportion of the excess in the soil over plot 5 to the increased yield in the crop over plot 5; and the variations, such as they are, have an obvious connection with the conditions of growth. Thus plots 11, 12, and 14, all with a deficient supply of potash, show approximately equal proportions retained in the soil for 100 of increase in the crop. Plots 13, 7, and 9, again, all with liberal supplies of potash, show higher, but approximately equal, proportions retained in the surface-soil for 100 of increased yield in the crop.

Upon the whole, it is obvious that the relative excess of nitrogen in the soils of the different plots is little, if at all, due to the direct retention by the soil of the nitrogen of the manure, but it is almost exclusively dependent on the difference in amount of the residue of the crops — of the stubble and roots, and perhaps of weeds.

This leads to the consideration of the actual differences in the crop with equal nitrogen supply and different mineral supply. This is illustrated by the results in Table VI., which shows the effects of mineral manures alone, of ammonium-salts alone, and of ammonium-salts with different mineral manures.

Digitized by Google

TABLE VI.

Wheat grown for forty years in succession on the same land. Broadbalk Field, Rothamsted.

Results showing the effects of Mineral Manures alone, and when used in addition to Ammonium-Salts.

Quantities per acre. Produce: Dressed Grain in bushels.

		400 lb	s. Ammoni	um-Salts=	= 86 lbs. Ni	trogen per	acre per a	nnum.
	Mixed Mineral Manure Alone.	Min. Man. 1844.	Alone, 1852 and since. Prev'sly Min. Man. 1844, '48 and '50. Am. Salts 1845, '7, '8, '9 and '51.	perphos- phate.	And Super- phosphate and Sulphate of Soda.		And Super- phosphate and Sulphate of Magnesia.	And Super- phosph't and Sulphate of Potash Soda and
-				·	ļ			Magnesia
Plot No—	Plot 5	Plot 10a	Plot 10b	Plot 11	Plot 12	Plot 13	Plot 14	Plot 7
Harvests. 8 yrs. '44,'51	Bushels. 29	Bushels. 26	Bushels. 24%	Bushels. 28½	Bushels.	Bushels. 27%	Bushels.	Bushels 29 1/4
1852	16%	21%	221/6	231/4	24 3/8	24	243/4	263/4
1853	10%	10	151/2	181/8	22%	23	22%	23 %
1854	24 1/4	34 3/8	3914	437/8	45%	44 1/4	44%	45 1/2
1855	181/4	20	281/2	21%	31¾	30¾	31 %	33
1856	191/2	24 1/4	2734	311/4	333/8	31%	34 %	367/8
1857	2334	291/8	34 1/2	391/8	43%	43%	433/8	447/8
1858 1859	18%	2278	34 ½ 27 ¾ 25 ½	32 973/	37 5%	8714	381/8	3918
<u> </u>	20%	19	20 %	273/8	3434	341/2	34 1/2	34 %
1860	15%	15 1/6 12 1/8	18% 16	223/8	27 3/8 32 3/8	26 %	2714	27¾ 35
1861 1862	15½ 17¾	231/2	24%	24 3/8 26 3/8	3334	34 1/6 32 3/8	33½ 31¼	35%
1863	19%	39 1/8	43%	4534	54	531/4	51 %	. 53 %
1864	167/8		361/4	361/2	44%	4314	411/4	4534
1865	1414	32 1/8 25 1/4	30 1/2	273	34%	37%	36 %	4014
1866	1314	2614	281/2	28	2814	24 34	28	29%
1867	91/4	181/8	19%	221/8	24 1/2	23%	223/4	22 1/8
1868	17%	. 2434	2734	331/2	397/8	391/4	41%	39%
1869	153	2014	191	2214	2734	27%	273/	283
1870	15¾ 18¾	2134	23 4	2514	3514	37	35 34	40%
1871	11%	10%	10	11	21 1/8	30⅓	24 14	221/4
1872	123/4	18	18%	271/4	291/	297/8	303/8	293/4
1873	1234	19%	20 %	191/4	22%	23 1/2	24 %	22
1874	13	251/4	27.14	32 7/8	39 1/4	371/8	36 %	391/2
1875	91/4	1234	14 %	18	251/4	271/8	2614	25 78
1876	101/2	121/6	14 1/2	143/8	191/8	25 1/8	221/8	231/2
1877	11%	17%	181/4	17%	1734	1814	181/2	1978
1878	14¾ 5%	27%	29%	29 %	2914	291/2	321/8	311/4
1879	5%	4	4 %	111/8	14	16	161/4	161/4
1880	17%	10%	13½ 19¾	25¾	29%	33	31	34 1/2
1881	12%	1814	19%	21 1/2	2334	2814	27%	26%
1882 1883	12½ 15¾	23¾ 17½	26 % 18%	303/a 263/a	34 % 30 ¾	32 ½ 34 ½	34¾ 33¾	35¾ 36¾
	10/4	1 21/2		VERAGES.	1 00/4	1 01/8	1 00/8	1 55/8
4 yrs. '52,'55	175/	. 0117			911/	30 5/8	30%	321/4
4 yrs, 02, 00	17 % 20 %	21½ 23%	26¼ 28¾	26¾ 32½	31¼ 37½	36 %	37 %	3878
4 vrs. '60 '69	1714	22 1/2	25%	29%	37 2	36%	36 1/2	38
4 vrs. '64, '67	13%	25 1/2	25 %	281/2	33	3214	321/	34 1/2
4 yrs. '68,'71	16	1934	20	23	30%	33%	323	333⁄4
4 yrs. '52,'55 4 yrs. '56,'59 4 yrs. '60,'63 4 yrs. '64,'67 4 yrs. '68,'71 4 yrs. '72,'75 4 yrs. '76,'79 4 yrs. '80,'83	12	18%	201/4	24 3/8	291/4	29%	29%	291/
4 yrs. '76,'79	10%	151/4	16%	1834	20	221/4	221/4	223/
4 yrs. '80,'83	143/4	171/2	19½	26	29 %	31%	31 %	331/4
8 yrs. '02, '09	19	2234	27 1/2	29%	341/4	33 %	34 1/4	35 1/2
8 vrs. '60.'67	151/4	24	2734	291/8	35	34%	34 %	3614
8 yrs. '68,'75 8 yrs. '76,'83	14	19	201/8	23 %	30	313/8	30%	31
8 yrs. '76,'83	12%	16%	181/8	221/8	247/8	27	27	28
l6 yrs. '52,'67 l 6 yrs. '68,'83	17 1/8 13 3/8	23% 17%	273/8 193/6	293/8 223/8	34 % 27 ½	34 29¼	34 3/8 28 7/8	35 1/8 29 1/2
32 yrs. '52,'83	151/4	201/2	231/4	261/8	31	31 %	31 1/8	3234
- , 10, 02, 00	5	108	10b	11	12	13	14	7
	<u> </u>	1 700	1 100	1 44		1 10		

For the thirty-two years,—1852 to 1883 inclusive,—each of the eight differently manured plots received the same manure each year. I will only call special attention to the average yields over periods of sixteen and thirty-two years.

Plot 5, treated with mineral manure only, gave, during the first sixteen years, an average yearly yield of 17½ bushels per acre, during the second sixteen years 13¾ bushels, and during the whole period of thirty-two

years 15 1/2 bushels.

Plot 10a, treated with ammonium-salts only, gave, during the first sixteen years, an average yearly yield of 2336 bushels per acre, during the second sixteen years 1734 bushels, and during the thirty-two years an average of 20½ bushels. Thus, ammonium-salts alone produced much more than mineral manure alone.

On plot 10b, previous to 1852,—in the years 1844, 1848, and 1850,—mineral manures had been applied, in the other years previous to 1852 (excepting in 1846, when it was unmanured), and subsequently, ammonium-salts only. The effect of the residue of the previously applied mineral manures is apparent on comparison with the yields on 10a.

On plot 10b we find, during the first period of sixteen years, an average yearly yield of 273% bushels per acre, against 233% bushels on 10a; during the second period of sixteen years 193% bushels, against 173% on 10a; and during the thirty-two years, an average yearly yield of 233% bushels, against only 203% on 10a.

Plot 11, with superphosphate but no potash, in addition to the ammonium-salts, gave, during the first sixteen years, an average yearly yield of 293% bushels per acre, during the second sixteen years 227%

bushels, and during the thirty-two years 261/8 bushels.

On plot 12, in addition to the ammonium-salts, superphosphate and sulphate of soda were applied; but potash had been applied prior to 1852. The first sixteen years produced an average yearly yield of 345% bushels per acre, the second sixteen years of 27½ bushels, and the whole thirty-two years of 31 bushels.

On plot 13, the ammonium-salts, superphosphate, and sulphate of potash were applied, and the average annual produce was, over the first sixteen years 34 bushels, over the second sixteen years 29 1/4, and

over the thirty-two years 315/8 bushels.

On plot 14, besides the ammonium-salts and superphosphate, sulphate of magnesia was applied, and some potash had been applied prior to 1852. The average annual produce was, over the first sixteen years 343% bushels, over the second sixteen years 287% bushels, and over the thirty-two years 315% bushels.

On plot 7, in addition to the ammonium-salts, superphosphate and the sulphates of potash, soda and magnesia, were applied, and gave, during the first sixteen years, an average yearly yield of 35% bushels per acre, during the second sixteen years of 29½ bushels, and during the

whole thirty-two years of 323/4 bushels.

Thus, not only the effect upon the yield of wheat of a direct supply, but of a residue from long previous applications of potash, is very noticeable. This is rendered more obvious by reference to the following table (VII.), in which the pounds per acre of potash and phosphoric acid removed during two periods of ten years each, in the total produce,

and in the grain alone, of the plots last referred to, and some others are given.

TABLE VII.

Potash and Phosphoric Acid in Grain, and in Total Produce.

Ten years, 1852-'61, and ten years, 1862-'71.

PER ACRE IN POUNDS.

		POT	ASH.		PHOSPHORIC ACID.				
	1852-	1852-'61. 1862-		-'71.	1852	1852–'61. 1862–'7			
	TOTAL GRAIN TOTAL G			TOTAL PROI	GRAIN DUCE.	TOTAL GRAIN PRODUCE.			
2	52 .6	11.8	53.5	12.4	26.5	19.6	27.3	20.1	
3	19.0	5.5	15.3	4.9	10.8	8.2	9.7	7.5	
5	26 .6	6.6	21.1	5.7	14.7	10.5	12.3	8.8	
10a	27 . 2	7.1	23.1	7.7	13.0	9.6	13.4	10.4	
10b	33.3	8.5	25.0	8.7	16.0	12.2	14 8	12.0	
11	30.9	9.3	26 0	8.8	19.8	14.9	18.0	13.6	
12	45.4	11.4	37.8	11.4	23.2	17 7	21 8	17.0	
13	53.2	11.3	55.2	12.2	22.9	17.7	23.3	18.2	
14	49.8	11.3	39.1	11.6	22.9	17.9	22.4	17.6	
7	56.0	11.9	53.0	12.3	23.8	18.4	23.4	18 5	

I will illustrate this point by referring only to the potash. Plots 3, 10a, 10b, and 11 show a deficiency of potash in both grain and total produce compared with the amounts in the produce of plots 2, 12, 13, 14 and 7, on all of which there was a sufficiency, or more or less excess, of potash available. On comparison of these results with the manuring of the plots, we find that in every case the increase of potash in the total crop depends either on a direct annual potash supply, or on a residue from previous applications. The first ten years shows more potash in the total produce with the direct supply (13 and 7) than with the residue (12 and 14); but the amount in the grain is essentially the same in each case. In the second ten years there is a greater difference in the amounts of potash in the total produce between the plots having the direct and those having only the residual supply; whilst there is scarcely any difference in the amounts in the grain, but such as it is, it is in accordance with the conditions of supply. Hence it is evident that whilst the plant in its vegetative stages assimilates according to the available supply,—it may be in excess of actual need, if there is no deficiency, the composition of the final product—the seed—is essentially the same.

We have thus traced the effects of exhaustion, of full manuring, and of nitrogenous and non-nitrogenous manures on one particular soil. It has been seen how very different is the effect of one and the same manuring in different seasons, but the real extent of this variation is more clearly brought out in Table VIII., which shows the best, the worst, and the average produce, over a period of thirty-two years, under very opposite conditions as to manuring.

TABLE VIII.

Wheat year after year on the same land. Broadbalk Field, Rothamsted.

Produce of the best season, 1863; the worst season, 1879; and
average of 32 years, 1852–1883.

		Dressed	Grain pe	r acre—	·Bushels.
Plot No.	Description of Manures—Quantities per acre.	Best Season 1863	Worst Season 1879	Diff.	Average 32 yrs. 1852'83
3 2	Unmanured	171/4	4%	12½ 28	13½ 33½
5	Mixed Mineral Manure, alone	19%	5%	14	1514
6	Mixed Min. Man. and 200 lbs. $AmmSalts = 43l$ bs. Nit.	39 %	101/2	29⅓	24 1/6
7	Mixed Min. Man. and 400 lbs. AmmSalts = 86 lbs. Nit.	53 %	1614	373/8	3234
9	Mixed Min. Man. and 550 lbs. Nitra. Soda = 86 lbs. Nit.	55 %	22	33 %	361/4
8	Mixed Min. Man. and 600 lbs. Amm. Salts=129 lbs. Nit.	55%	20%	35 🔏	361/4

We will confine our attention to the amount of dressed grain per acre in bushels. The difference in yield of the various plots in the best and worst of the thirty-two seasons is very marked. The unmanured, the mineral manured, and the heavily nitrogeneous manured plots, all suffered severely. In most cases the difference approaches, and in two cases (Plots 6 and 7 mixed mineral manure, together with 200 and 400 pounds of ammonium-salts, respectively furnishing 43 and 86 pounds of nitrogen) it actually exceeds the average produce of the plots. From these facts we see how easy it is to form wrong conclusions as to the effects of different manures, if experiments are conducted in only one season or in only a few seasons, and if the characters of the seasons are not studied.

Not only season, but soil and locality must exercise an influence. The Rothamsted results are obtained on one description of soil, and in one locality only. Reference to the following table (IX.) shows the results obtained in experiments conducted at Rothamsted during the same eight years, but in two fields; at the same place in one field for thirty-two years; at Woburn, for seven years; at Holkham, Norfolk, for three years; and at Rodmersham, Kent, for four years. Thus, the experiments were made on very various soils, under various conditions from previous treatment, and in various seasons, yet the general characters of the results are accordant.

TABLE IX.

Results of Experiments on the growth of Wheat by different Manures, on different Soils, in different Localities, and in different Seasons,

	DRESSED GRAIN PER ACRE—BUSHELS. AVERAGE ANNUAL RESULTS.					
MANURES.	Rothamsted.					
QUANTITIES PER ACRE.	8 yes 1856-		32 years— 1852–'83.			ham, Kent
	Broadbalk Field.	Hoos Field.	Broadbalk Field.	1877–'83.	1852-'54.	1856–'59.
Unmanured	16 19	15 16%	13½ 15½	15% 16%	18 191⁄4	25 % 28 %
AmmSalts, alone=86 lbs. N.	231/4	26%	20%	23 % 1)		31 1/2
Mixed Mineral Manure, and Ammonium-Salts=86 lbs.N.	38½	37%	32¾	37 %	32%	33 1/2

⁽¹⁾ By Ammonium-Salts = only 43 lbs. N.

Not only is there general accordance in the character of the results in different localities, when the averages of a number of years are taken, but the non-effect of the residue from previous application of ammoniumsalts is as marked in the sandy soil at Woburn as in the very different soil at Rothamsted, Reference to Table X, will illustrate this. Stackyard field, Woburn, received mineral manure, and ammonium-salts=86 lbs. nitrogen, for five successive years. The field was then divided, one portion receiving the same manure as before, and the other the mixed mineral manure, but no nitrogen. In the next year, 1883, the portion which had received nitrogen in the previous year received mineral manures only, and conversely the other portion, which had received mineral manure only in 1882, received both mineral manure and ammonium-It is seen that in each year, 1882 and 1883, the portion which received the nitrogenous manure yielded large crops (43½ and 45¾ bushels); whereas, the portion on which mineral manures alone succeeded ammonium-salts and large crops, yielded very small crops — 13 1/4 and 171/2 bushels, respectively, against 14% and 171/2 bushels on the plot where the same mineral manures were used year after year. It is thus seen that there was no available and effective residue where the ammonium-salts had previously been applied. It may be stated, however, that in 1884 there was notable effect from unexhausted residue of nitrogenous manure; the explanation probably being that there had been very little rain, and consequently very little loss by drainage during the winter of 1883-4.

TABLE X.

Wheat grown year after year on the same land.
Stackyard Field, Woburn.

Harvests.	Dressed Grain. Bushels.
1877	43¾ 27
1878	27
1879	31 ¼ 28¾ 43%
1880	28%
1881	43%
1882	(1) 131/4 (2) 431/4
1883	(2) 45% (1) 17%

(1) Mixed Mineral Manure alone. (2) Mix. Min. Man. and Ammonium-Salts = 86 lbs. N.

Having illustrated the soil conditions necessary for the growth of wheat, it will be well to call attention to one practical application of these long-continued field experiments. For thirty-two years (1852-83) an estimate has been made of the average produce of wheat per acre in the United Kingdom, based upon the yield at Rothamsted on the unmanured, the farm-yard manured, and three of the artificially manured plots taken as one. From this the total yield of the country has been calculated; to this the imports have been added, and the quantity required for seed deducted, the final figure showing the total amount available for consumption, and from this the consumption per head of the population has been reckoned. It may be said at once that these results proved to be very near the truth. But the point of interest to a wheat-growing and wheat-exporting country like America is, the evidence which the results afford as to the constantly increasing requirements of a largely importing country like Great Britain.

The following table (XI.) shows that during the thirty-two years, 1852-3, to 1883-4 inclusive, the area under wheat in the United Kingdom has been reduced by about one-third. The average yield per acre is estimated at 28 bushels; but owing to recent bad seasons, the average for the whole period of thirty-two years was only 27 bushels, that for the first sixteen years having been 281/4, but that for the second sixteen years only 253/4. Thus there has not only been a reduction in area under cultivation, but in yield per acre, also; this, however, is probably temporary, whilst the reduction in area will doubtless continue.

TABLE XI.

Particulars of Home Produce, Imports, and Consumption of Wheat, in the United Kingdom—32 years, 1852-3 to 1883-4.

	Estimated	l Home	Produce.	Availabl	e for cons	umption.		ble for ion per	
Harvest years, Sept. 1 to Aug. 31.	Area under Crop.	Aver'g yield per Acre.	Total Home Produce.	Homeproduce less 2¼ bush's per acre for seed.		Total.	From Home Pro- duce.	From Im- ports.	Total
	Acres.	Bushl.	Quarters.	Quarters.		Quarters.	Bush.	Bush.	Bush
1852-3	4.058.731		11.574.982	10.433.464		16.335.464	8.08	1.71	4.74
1853-4 1854-5	4.013.963 4.036.969		10.466.473 17.563.140	9.337.546 16.427.742		15.429.546 19.410.742	2.70 4.73	1.76 0.85	4.46 5.58
1855-6	4.076.447		13.922.801	12.776.300		16.041.300	3.65	0.93	4.58
1856-7	4.213.651		14.192.543	13.007.453	4.112.584	17.120.087	8.70	1.16	4.86
1857-8	4.185.974	33⅓	17.821.221	16.143.915	5.795.687	21.939.602	4.56	1.63	6.19
1858-9	4.131.822		16.309.949	15.147.874		19.703.544	4.24	1.28	5.52
1859-60	4.019.725		13.135.124	12.004.575		16.520.907	3.34	1.25	4.59
1860-1 1861-2	3.992.657 3.898.177		11.078.948 12.271.546	11.175.183		19.979.980 20.274.638	2.75 3.06	2.77 2.49	5.52 5.58
1862-3	3.823.947		13.957.554	12.882.069		22.087.155	3.51	2.51	6.02
1863-4	3.698.629		17.922.048	16.881.807		23.873.077	4.57	1.89	6.46
1864-5	3.685.493	351/4	16.216.328	15.179.783		20.680.488	4.08	1.48	5.56
1865-6	3.646.691	30 %	13.975.936	12.950.305		20.263.331	3.47	1.95	5.42
1866-7 1867-8	3.649.584 3.628.910		11.485.091 9.566.522	10.458.645 8.545.890		18.091.678 17.561.433	2.78 2.25	2.02 2.38	4.6
	3.937.275		16.733.419			23.345.364	4.09	2.02	6.13
1868-9 1869-70	3.976.147		13.419.496	15.626.060 12.301.205		22.222.731	3.20	2.58	5.78
1870-1	3.761.457	30	14.105.464	13.047.554		21.056.393	3.33	2.05	5.38
1871-2	3.818.848	24	11.456.544	10.382.493	9.316.600	19.699.093	2.62	2.35	4.97
1872-3	3.827.146		11.481.438			22.696.516	2.60	8.07	5.67
1873-4 1874-5	3.658.815 3.821.655		10.290.417 13.972.926			20.562.691 24.603.340	2.29 3.16	2.80 2.87	6.03
1875-6	3.503.709		10.018.418			22.893.079	2.19	3.36	5.50
1876-7	3.114.555		9.732.984			20.964.309	2.13	2.91	5.04
1877-8	3.311.859		10.970.533			24.447.701	2.38	3.42	5.80
1878-9	3.372.590		12.647.213			25.844.321	2.75	3.32	6.0
1879-80	3.047.752		5.905.020			21.457.778	1.17	3.82	4.99
1880-1 1881-2	3.057.784 2.960.066		9.364.464 8.880.198			24.686.672 25.247.787	1.95 1.83	3.72 3.91	5.67 5.74
1882-3	3.157.924		10.115.225			29.209.221	2.08	4.50	6.5
1883-4	2.707.949	28	9.477.822	8.616.211	15.815.878	24.432.089	1.92	3.53	5.4
				AVERAGES	١.				
4 yrs,'52-'56	4.046.528	2635	13.381.849	12.243.763		16.804.263		1.31	4.84
4 yrs. 56-60			15,239.709			18.821.022	3.96	1.33	5,2
4 yrs.'60-'64 4 yrs.'64-'68			13.807.524	12.723.768 11.783.656		21.553.713 19.149.233	3.47	1.96	5.8
4 yrs. 68-72	3.873.432	2834	13.928.731			21.580.895		2.25	5.5
4 yrs. '72-'76	3.702.831	24.96	11.440,800			22.688.906	2.56	3,02	5,5
4 yrs, '76-'80	3.211.689	2414	9.813.938			23.178.526	2.11	3.37	5.4
4 yrs.'80-'84		-	9.459.427			25.893.943	-	3,86	5.8
8 yrs. 52-60			14.310.779			17.812.643 20.351.473	3.74	1.32 2.19	5.0
8 yrs. 60-68 8 yrs. 68-76				11.619.358			2.94	2,63	5.5
8 yrs.'76-'84			9.636.682			24.536.234		3.64	5.6
16 yrs.'52-'68	3.922.586	2814	13.810.013	12,706,788	6.375.275	19,082.058	3.53	1.75	5.2
16 yrs. 68-84	3.439.721		11.160.724	10.187.052	13.148.51	23.335.567	2.48	3.14	5.6
32 yrs, '52-'84	3.681.153	27				21.208.813	3.00		5.4

The great increase of population which has taken place within the period covered by the table has, of course, necessitated greatly increased consumption, and the comparison of the home production and the foreign importation, for successive periods, becomes of much interest. The table shows that the average annual consumption over the four successive periods of eight years each, increase as follows:

```
1852-3 to 1859-60, Annual Consumption, 17,812,643 quarters. 1860-1 to 1867-8, " 20,351,473 " 1868-9 to 1875-6, " 22,134,901 " 1875-6 to 1883-4, " 24,536,234 "
```

These amounts were supplied from home produce and importation as follows:

			HOME PRODUCTION.		IMPORTATION.		
1852-3	to	1859–60,	13,159,859	quarters.	4,652,784	quarters.	
1860-1	to	1867–8,	12,253,712	"	8,097,761	"	
1868–9	to	1875–6,	11,619,353	"	10,515,548	"	
1875-6	to	1883–4,	8,754,751	"	15,781,483	"	

Thus, over the first eight years, only one-fourth of the wheat consumed was obtained from foreign sources, whilst over the last eight years, nearly two-thirds of the entire consumption were imported. It is probable that the home produce will still decline, consequent chiefly on reduction of area under cultivation; whilst with increase of population, imports must increase, and doubtless our supplies will be largely drawn from this continent.

It has been stated that, excluding recent bad seasons, the average yield of wheat per acre of the old arable soils of Great Britain, is twenty-eight bushels. Comparing this yield with that of the United States, as shown in the above table, we find, on the authority of the U. S. Census Bureau, that the general average of localities and years is 11.9 bushels per acre; a yield which is not equal to that of the continuously unmanured plot at Rothamsted, and which is considerably less than half the average yield of Great Britain under ordinary cultivation. This may be partly due to a shorter period of growth, and to rapid maturing, or in some localities to deficiency of rain; but it is probably largely also due to want of sufficient labor to clean the land, and to consequent luxuriance of weeds.

Referring to the table, we find the general averages of the different sections of the States ranging from 15.1 bushels per acre in New England, to 7.3 bushels in the South Atlantic and Eastern Gulf States. Even the North-west and Minnesota, including much prairie land, give very meager average produce for such rich soil. So long as wheat is grown on such lands under the conditions frequent, and indeed almost inevitable, in the case of new settlement,—that is, growing it year after year, with deficient cultivation, luxuriance of weeds, and the burning of the straw,—only low yields per acre can be expected. The result is due to the fact that, under such conditions, fertility is cheap and labor dear. But with increased density of population, more mixed agriculture must

TABLE XIV.

Nitrogen and Carbon in various soils.

	i Caroon in var	rous so	nıs.		
		(1) In Dry Sifted Soil.			
	Date of Soil	Nitrogen.	Ė	Carbon to 1 Nitrogen.	Authority.
	Sampling.	8	홅	5 2 8	
		‡	Carbon	S + H	
	•	7	_	Z	
ROTHAMSTED	ARABLE AND GR	ASS SOI	L8.		
		Per	Per	Per	
Roots, 1843-'52; Barley, 1853-'5; }	A month 1000	cent.	cent.	cent.	Dathamatad
Roots, 1843-'52; Barley, 1853-'5; Roots, 1858-'69; Mineral Manures. S Wheat, 1843-'4, and each year since; Mineral Manures.	April, 1870	0.0934	1 000		Rothamsted
Mineral Manures	October, 1865 October, 1881	0.1119 0.1012	1.039	9.8 10.7	"
Barley, 1852, and each year since:)	March, 1868	0.1202			"
Arghla laid down to grass (ten)	March, 1882	0.1124	1.154	10.8	
Mineral Manures	February, 1882	0.1285	• • • • •		••
Arania igia aawa ta grass (Karn-)	February, 1882	0.1509			"
Arable laid down to grass (Apple-	November, 1881 .	0.1740			
field), Spring, 1874	January, 1879	0.2057	2.412	11.7	46
Arable laid down to grass (High-)	G 1 10m0	0 4040	2.403	12.4	44
field), Spring (1), 1838	Feb & Meh 1976	0.2466	3.977	13.7	44
voly old glass land (The Lank)	1 CD. & MOII., 1070	0.220	0.011	10.,	
VARIOUS ARAB	LE SOILS IN GREA	AT BRIT	AIN.		
Mr. Prout's Farm; Broadfield—					
_surface }	•••••	0.170			Voelcker.
Mr. Prout's Farm; Blackacre—} surface		0.107			66
surface		0.171	l	l	"
Burraco)					
Wheat Soil — Midlothian		0.22			Anderson.
" Eastlothian		0.13 0.21			"
" Berwickshire		0.14			"
Red Sandstone Soil — England		0.18			Voelcker.
DAM TO CAMINI	AND CANADIAN PI	DATRIE (POTT 9	<u> </u>	
UNIED STATES	AND CANADIAN II	LAIRIN			
Illinois, U. S., No. 1		0.30 0.26			Voelcker.
" " No. 3		0.26			"
" " No. 4		0.34			"
Portage la Prairie, Manitoba — sur- (0.047	1		Dothomatod
face	• • • • • • • • • • • • • • • • • • • •	0.247		• • • • •	Rothamsted
Saskatchewan district, N. W. Terri-	•••••	0.303			"
Forty miles from Fort Ellis, N. W. Territory—surface		0.250			"
Territory — surface		3.200			
Niverville, Manitoba — 1st 12 inches.		0.261	3.42	13.1	Rothamsted.
Brandon. " "	l	0.187	2.66 7.58	14.2 12.3	"
				12.0	"
Selkirk, " "		0.618 0.428	5.21	12.2	
Selkirk, " " … Winnipeg, " " …		0.618 0.428			
Selkirk, " " … Winnipeg, " " …					
Selkirk, " " Winnipeg, " " No. 1—12 inches		0.428			C. Schmidt.
Selkirk, " " Winnipeg, " " No. 1—12 inches	RUSSIAN SOILS.	0.428 0.607 0.467	5.21	12.2	
Selkirk, " " Winnipeg, " " No. 1—12 inches	RUSSIAN SOILS.	0.428 0.607 0.467 0.188	5.21	12.2	C. Schmidt.
Selkirk, " " Winnipeg, " " No. 1—12 inches	RUSSIAN SOILS.	0.428 0.607 0.467 0.188 0.130 0.305	5.21	12.2	C. Schmidt.
Selkirk, " " Winnipeg, " " No. 1—12 inches	RUSSIAN SOILS.	0.428 0.607 0.467 0.188 0.130	5.21	12.2	C. Schmidt.

