

Capítulo 2

Dependência e Independência Linear

Prof^a. Dr^a. Eloiza Gomes Prof. Dr. Vitor Alex Oliveira Alves

Colaboradora Prof^a. Dr^a. Giovanna Lovato

Sumário

1.	Dependência e independência linear	2
1.1	Tratamento algébrico	2
1.2	Interpretação geométrica	6
1.3	Exercícios propostos	9
1.4	Exercícios propostos e resolvidos	10
1.5	Respostas de alguns exercícios propostos	11
2.	Bases	12
2.1	Propriedade fundamental das bases	13
2.2	Adição e multiplicação por escalar usando coordenadas	15
2.3	Exercícios propostos	16
2.4	Exercícios propostos e resolvidos	17
2.5	Respostas de alguns exercícios propostos	20
3.	Referências	20
4.	Apêndice - Mudança de Base	21

1. Dependência e independência linear

No estudo da Geometria em espaços tridimensionais, frequentemente ocorrem situações de paralelismo (entre retas, planos ou entre retas e planos) e coplanaridade (entre retas ou entre retas e planos). O conceito de dependência linear é ferramenta importante para o tratamento algébrico de tais situações.

De fato, a quase totalidade dos livros que tratam do Cálculo Vetorial empregam a dependência linear e seu conceito complementar, a independência linear. Neste material, estes conceitos serão abordados sob dois pontos de vista. O primeiro deles, estritamente algébrico, estabelece as definições formais de dependência e independência linear, apresentando resultados importantes para a compreensão dos problemas que serão tratados durante o curso de Geometria Analítica. O segundo ponto de vista traz as interpretações geométricas associadas à dependência e independência linear.

É importante notar que as noções de dependência e independência linear são aplicáveis a conjuntos, sequências ou n-uplas de vetores do tipo $\{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$.

1.1 Tratamento algébrico

Sejam o conjunto $S = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}\$ e os escalares $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}$.

Definição 1. O conjunto S é linearmente independente – ou, de forma abreviada, l.i. – se, e somente se, a única combinação linear dos vetores de S que gera o vetor nulo $\vec{0}$ é sua combinação linear trivial.

A definição 1 implica em que $S = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$ é l.i. se, e somente se,

$$\lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + \dots + \lambda_n \overrightarrow{u_n} = \overrightarrow{0} \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0. \tag{1}$$

Definição 2. O conjunto S é linearmente dependente – ou l.d. – se, e somente se, S não é linearmente independente. Ou seja, S é l.d. se, e somente se, além da combinação linear trivial dos vetores de S, existe uma outra combinação linear que também gera o vetor o vetor nulo $\vec{0}$.

Equivalente, a definição 2 pode ser retratada na forma:

$$S \in l.d. \Leftrightarrow \exists \lambda_1, \lambda_2, \dots, \lambda_n \text{ não todos nulos tais que } \lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + \dots + \lambda_n \overrightarrow{u_n} = \overrightarrow{0}.$$
 (2)

A equação 2 pode ser reescrita como:

$$S \notin l.d. \Leftrightarrow \lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + \dots + \lambda_n \overrightarrow{u_n} = \overrightarrow{0} \operatorname{com} \lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2 \neq 0.$$
(3)

Exemplo 1. Seja $S = \{\vec{0}, \overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$. Uma vez que $1 \cdot \vec{0} = \vec{0}$ e $0 \cdot \overrightarrow{u_1} + 0 \cdot \overrightarrow{u_2} + \cdots + 0 \cdot \overrightarrow{u_n} = \vec{0}$, é possível escrever

$$1 \cdot \vec{0} + 0 \cdot \overrightarrow{u_1} + 0 \cdot \overrightarrow{u_2} + \dots + 0 \cdot \overrightarrow{u_n} = \vec{0}. \tag{4}$$

A partir de (4), conclui-se que S é um conjunto l.d.

O exemplo 1 revela que:

Todo conjunto de vetores que inclua o vetor nulo é, necessariamente um conjunto linearmente dependente.

Exemplo 2. Considere $\vec{u} = 3\vec{v}$.

- a) Escreva três expressões diferentes do vetor nulo $\vec{0}$ como combinação linear de \vec{u} e \vec{v} .
- b) Repita o item anterior supondo que $\{\vec{u}, \vec{v}\}$ é um conjunto *l.i.*.

Para a alínea a, uma primeira expressão válida é a combinação linear trivial: $0 \cdot \vec{u} + 0 \cdot \vec{v} = \vec{0}$. De $\vec{u} = 3\vec{v}$, pode-se escrever $1\vec{u} + (-3)\vec{v} = \vec{u} + (-\vec{u}) = \vec{0}$. Finalmente, multiplicando os dois membros da igualdade anterior por um escalar k arbitrário, obtêm-se infinitas novas expressões do tipo $k\vec{u} + (-3k)\vec{v} = k\vec{u} + (-k\vec{u}) = \vec{0}$. É impossível solucionar b. De acordo com a definição 1, só há uma expressão do vetor nulo como combinação linear de \vec{u} e \vec{v} : a combinação linear trivial $0 \cdot \vec{u} + 0 \cdot \vec{v} = \vec{0}$.

Exemplo 3. Seja $2\vec{u} - \sqrt{3}\vec{v} = \vec{0}$. O conjunto $S = \{\vec{u}, \vec{v}\} \notin l.d.$. Considere o conjunto $T = \{\vec{u}, \vec{v}, \vec{w}, \vec{z}, \vec{t}\}$. Mostre que $T \notin l.d$. para quaisquer vetores $\vec{w}, \vec{z} \in \vec{t} \in \mathbb{R}^3$.

De fato, é possível escrever $2\vec{u} - \sqrt{3}\vec{v} + 0 \cdot \vec{w} + 0 \cdot \vec{z} + 0 \cdot \vec{t} = \vec{0}$ e, portanto, T é um conjunto linearmente dependente, $\forall \vec{w}, \vec{z} \in \vec{t} \in \mathbb{R}^3$.

O resultado do exemplo 3 pode ser generalizado, como visto a seguir.

Teorema 3. Seja $S = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\} \subset T$ um conjunto linearmente dependente. Então, o conjunto $T = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n, \vec{u}_{n+1}, \vec{u}_{n+2}, \vec{u}_{n+m}\}$ é também linearmente dependente.

Demonstração. Por hipótese, existem escalares $\lambda_1, \lambda_2, ..., \lambda_n$ não todos nulos e tais que $\lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + \cdots + \lambda_n \overrightarrow{u_n} = \overrightarrow{0}$. Então, para estes mesmos $\lambda_1, \lambda_2, ..., \lambda_n$ tem-se:

$$\lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + \dots + \lambda_n \overrightarrow{u_n} + 0 \cdot \overrightarrow{u_{n+1}} + 0 \cdot \overrightarrow{u_{n+2}} + \dots + 0 \cdot \overrightarrow{u_{n+m}} = \overrightarrow{0},$$

o que conclui a demonstração.

O teorema 3 pode ser enunciado de outra maneira:

Seja S um subconjunto l.d. de um conjunto T. Então T é, necessariamente, l.d..

Além disso, o teorema 3 traz como consequência:

Corolário 4. Seja $T = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_p}\}$ um conjunto l.i.. Então, qualquer subconjunto (não vazio) de T é, necessariamente, l.i..

Exemplo 4. Suponha que:

$$2\vec{u} - 3\vec{v} + 0 \cdot \vec{w} - \vec{z} = \vec{0}. \tag{5}$$

A equação (5) mostra o conjunto $\{\vec{u}, \vec{v}, \vec{w}, \vec{z}\}$ é *l.d.*. A partir de (5), pode-se escrever os vetores \vec{u}, \vec{v} e \vec{z} como combinações lineares dos demais vetores:

$$\vec{u} = \frac{3}{2}\vec{v} + 0 \cdot \vec{w} + \frac{1}{2}\vec{z}; \quad \vec{v} = \frac{2}{3}\vec{u} + 0 \cdot \vec{w} - \frac{1}{3}\vec{z}; \quad \vec{z} = 2\vec{u} + 0 \cdot \vec{w} - 3\vec{v}.$$

No entanto, (5) não permite escrever o vetor \vec{w} como combinação linear de \vec{u} , \vec{v} e \vec{z} .

Exemplo 5. Prove que $S = \{\vec{u}, \vec{v}, \vec{w}, \vec{z}\}$ é um conjunto *l.d.* se, e somente se, ao menos um de seus vetores é combinação linear dos demais.

Demonstração. Supondo *S l.d.*, existem $\lambda_1, \lambda_2, \lambda_3$ e λ_4 não todos nulos e tais que $\lambda_1 \vec{u} + \lambda_2 \vec{v} + \lambda_3 \vec{w} + \lambda_4 \vec{z} = \vec{0}$. A partir desta relação, pode-se admitir (sem perda de generalidade) que $\lambda_3 \neq 0$. Então:

$$\vec{w} = \left(-\frac{\lambda_1}{\lambda_3}\right)\vec{u} + \left(-\frac{\lambda_2}{\lambda_3}\right)\vec{v} + \left(-\frac{\lambda_4}{\lambda_3}\right)\vec{z} = \lambda_1'\vec{u} + \lambda_2'\vec{v} + \lambda_4'\vec{z}.$$

Reciprocamente, se por hipótese $\vec{w} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{z}$, é possível escrever $\vec{0} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{z} + (-1)\vec{w}$. Isto revela que $S = \{\vec{u}, \vec{v}, \vec{w}, \vec{z}\}$ é um conjunto l.d..

Os conceitos envolvidos nos exemplos 4 e 5 podem ser generalizados, como mostrado a seguir.

Teorema 5. Seja $n \ge 2$. O conjunto $S = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ é linearmente dependente se, e somente se, ao menos um dentre $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n$ é combinação linear dos outros n-1.

Demonstração. O raciocínio é dividido em dois passos:

(\Rightarrow) Por hipótese, $\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \dots + \lambda_j \vec{u}_j + \dots + \lambda_n \vec{u}_n = \vec{0}$, em que existe ao menos um $\lambda_j \neq 0$, $j \in \{1, 2, \dots, n\}$. Logo, $-\lambda_j \vec{u}_j = \lambda_1 \vec{u}_1 + \dots + \lambda_{j-1} \vec{u}_{j-1} + \lambda_{j+1} \vec{u}_{j+1} + \dots + \lambda_n \overrightarrow{u_n} = \vec{0}$. E, uma vez que $\lambda_j \neq 0$, resulta:

$$\begin{split} \overrightarrow{u_j} &= \left(-\frac{\lambda_1}{\lambda_j} \right) \overrightarrow{u_1} + \dots + \left(-\frac{\lambda_{j-1}}{\lambda_j} \right) \overrightarrow{u}_{j-1} + \left(-\frac{\lambda_{j+1}}{\lambda_j} \right) \overrightarrow{u}_{j+1} + \dots + \left(-\frac{\lambda_n}{\lambda_j} \right) \overrightarrow{u_n} \Rightarrow \\ &\Rightarrow \overrightarrow{u_i} = \lambda_1' \overrightarrow{u_1} + \dots + \lambda_{j-1}' \overrightarrow{u}_{j-1} + \lambda_{j+1}' \overrightarrow{u}_{j+1} + \dots + \lambda_n' \overrightarrow{u_n}. \end{split}$$

 $(\Leftarrow) \text{ Reciprocamente, se } \overrightarrow{u_j} = \lambda_1' \overrightarrow{u_1} + \dots + \lambda_{j-1}' \overrightarrow{u}_{j-1} + \lambda_{j+1}' \overrightarrow{u}_{j+1} + \dots + \lambda_n' \overrightarrow{u_n}, \text{ tem-se:}$

$$\lambda_1'\overrightarrow{u_1}+\cdots+\lambda_{j-1}'\overrightarrow{u}_{j-1}+\lambda_{j+1}'\overrightarrow{u}_{j+1}+\cdots+\lambda_n'\overrightarrow{u_n}=\overrightarrow{0}.$$

E, como $\lambda_i' = -1 \neq 0$, a demonstração está completa.

O teorema 5 tem uma consequência direta.

Corolário 6. Seja $n \ge 2$. O conjunto $S = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$ é linearmente independente se, e somente se, nenhum de seus vetores é combinação linear dos demais.

O teorema a seguir tem grande importância no estabelecimento do conceito de bases, assunto a ser tratado em um próximo capítulo.

Teorema 7. Se $S = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\} \subset T$ é um conjunto l.i. e $T = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}, \overrightarrow{v}\}$ é um conjunto l.d., então $\overrightarrow{v} = \alpha_1 \overrightarrow{u_1} + \alpha_2 \overrightarrow{u_2} + \cdots + \alpha_n \overrightarrow{u_n}$, com $\alpha_1, \alpha_2, ..., \alpha_n$, únicos para cada \overrightarrow{v} .

Demonstração. Por hipótese, existem $\lambda_1, \lambda_2, ..., \lambda_n, \lambda_{n+1}$ não todos nulos e tais que $\lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + \cdots + \lambda_n \overrightarrow{u_n} + \lambda_{n+1} \overrightarrow{v} = \overrightarrow{0}$. Nesta última relação, tem-se necessariamente $\lambda_{n+1} \neq 0$, pois do contrário o conjunto T seria l.i. Entãopode-se escrever:

$$\begin{split} -\lambda_{n+1}\vec{v} &= \lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + \dots + \lambda_n \overrightarrow{u_n} \Rightarrow \vec{v} = \left(-\frac{\lambda_1}{\lambda_{n+1}} \right) \overrightarrow{u_1} + \left(-\frac{\lambda_2}{\lambda_{n+1}} \right) \overrightarrow{u_2} + \dots + \left(-\frac{\lambda_n}{\lambda_{n+1}} \right) \overrightarrow{u_n} \\ &= \vec{v} = \alpha_1 \overrightarrow{u_1} + \alpha_2 \overrightarrow{u_2} + \dots + \alpha_n \overrightarrow{u_n}, \text{ em que } \alpha_j = -\frac{\lambda_j}{\lambda_{n+1}}, j = 1, 2, \dots, n. \end{split}$$

Resta demonstrar a unicidade dos coeficientes α_j . Para tanto, admite-se $\vec{v} = \alpha_1' \overrightarrow{u_1} + \alpha_2' \overrightarrow{u_2} + \cdots + \alpha_n' \overrightarrow{u_n}$. Por simples diferença, tem-se $\vec{0} = \vec{v} - \vec{v} = (\alpha_1 - \alpha_1') \overrightarrow{u_1} + (\alpha_2 - \alpha_2') \overrightarrow{u_2} + \cdots + (\alpha_n - \alpha_n') \overrightarrow{u_n}$. Uma vez que $S = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \dots, \overrightarrow{u_n}\}$ é um conjunto l.i., resulta $\alpha_j - \alpha_j' = 0 \Leftrightarrow \alpha_j = \alpha_j'$, com j = 1, 2, ..., n.

Observação 1. Conforme as definições 1 e 2, a dependência e independência linear são qualidades inerentes a um conjunto (ou sequência) de vetores, e não aos próprios vetores. No entanto, no linguajar do dia a dia, é comum dizer "os vetores \vec{u} e \vec{v} são l.i." e "os vetores \vec{u} , \vec{v} e \vec{w} são l.d.", ao invés de dizer, corretamente, "o conjunto $\{\vec{u}, \vec{v}\}$ é l.i." e "o conjunto $\{\vec{u}, \vec{v}, \vec{w}\}$ é l.d.". Deve-se evitar, no entanto, que esse abuso de linguagem cause, por exemplo, o erro de concluir que "se \vec{u} é l.i. e \vec{v} é l.i., então os vetores \vec{u} e \vec{v} são l.i.". De fato, isto nem sempre é verdade...

Observação 2. Existe uma sutil diferença entre os teoremas 5 e 7. Por um lado, o teorema 5 garante que, se $S = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$ é *l.d.*, então ao menos um dos vetores de S é combinação linear dos demais. No entanto, não especifica qual, nem quantos. A seguir são listados alguns casos:

- Seja $S_1 = \{\vec{u}, \vec{v}\}$ um conjunto l.i. e $\vec{w} \parallel \vec{v}$. Neste caso, $S_2 = \{\vec{u}, \vec{v}, \vec{w}\}$ é l.d. Tem-se então: \vec{w} é combinação linear de \vec{u} e \vec{v} ; \vec{v} é combinação linear de \vec{u} e \vec{w} ; mas \vec{u} não é combinação linear de \vec{v} e \vec{w} .
- Seja $\vec{w} = \vec{0}$ e $S_1 = \{\vec{u}, \vec{v}\}$ um conjunto l.i. Então $S_2 = \{\vec{u}, \vec{v}, \vec{w}\}$ é l.d., \vec{w} é combinação linear de \vec{u} e \vec{v} , mas \vec{u} não pode ser escrito como combinação de \vec{v} e \vec{w} . Finalmente, \vec{v} não é uma combinação de \vec{u} e \vec{w} .
- Sejam \vec{u} , \vec{v} e \vec{w} dois a dois *l.i.* e $S_2 = \{\vec{u}, \vec{v}, \vec{w}\}$ é *l.d.*. Então, qualquer um dos três vetores é combinação linear dos outros dois ¹.

Por outro lado, o teorema 7 – que aborda o caso particular em que $S = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$ é um conjunto l.i. – permite escrever $\overrightarrow{v} \in T = \{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}, \overrightarrow{v}\}$ (conjunto l.d.) como combinação linear de $\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}$. Isto não impede, entretanto, que $\overrightarrow{u_1}$ seja combinação dos demais, por exemplo.

Exemplo 6. Sejam
$$\vec{a} = \vec{u} + \vec{w}$$
, $\vec{b} = 2\vec{u} + \vec{v} - \vec{w}$ e $\vec{c} = \vec{v} - 2\vec{w}$. Prove que : $S_1 = \{\vec{u}, \vec{v}, \vec{w}\} \notin l.i. \Leftrightarrow S_2 = \{\vec{a}, \vec{b}, \vec{c}\} \notin l.i.$

Demonstração. (\Rightarrow) Admite-se que $S_1 = \{\vec{u}, \vec{v}, \vec{w}\}$ é *l.i.* e prova-se que $S_2 = \{\vec{a}, \vec{b}, \vec{c}\}$ é *l.i.* Para tanto, é preciso mostrar que a única combinação linear destes vetores capaz de gerar o vetor nulo é a combinação trivial, ou seja, $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0} \Leftrightarrow \alpha = \beta = \gamma = 0$. A partir das expressões fornecidas, tem-se:

$$\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \alpha (\vec{u} + \vec{w}) + \beta (2\vec{u} + \vec{v} - \vec{w}) + \gamma (\vec{v} - 2\vec{w}) = \vec{0}.$$
 (6)

Rearranjando os termos de (6):

$$(\alpha + 2\beta)\vec{u} + (\beta + \gamma)\vec{v} + (\alpha - \beta - 2\gamma)\vec{w} = \vec{0}. \tag{7}$$

Uma vez que, por hipótese, $S_1 = \{\vec{u}, \vec{v}, \vec{w}\}$ é *l.i.*, (7) implica em que:

$$\begin{cases} \alpha + 2\beta = 0\\ \beta + \gamma = 0\\ \alpha - \beta - 2\gamma = 0 \end{cases}$$
(8)

O sistema linear homogêneo (8) só admite solução $\alpha = \beta = \gamma = 0$ e, portanto, $S_2 = \{\vec{a}, \vec{b}, \vec{c}\}$ é um conjunto l.i.

(⇐) Reciprocamente, admite-se que $S_2 = \{\vec{a}, \vec{b}, \vec{c}\}$ é *l.i.* e prova-se que $S_1 = \{\vec{u}, \vec{v}, \vec{w}\}$ é *l.i.* Para tanto, seja o sistema linear expresso em (9):

$$\begin{cases}
\vec{a} = \vec{u} + \vec{w} \\
\vec{b} = 2\vec{u} + \vec{v} - \vec{w} \\
\vec{c} = \vec{v} - 2\vec{w}
\end{cases} \tag{9}$$

A partir de (9), obtém-se:

$$\vec{u} = -\vec{a} + \vec{b} - \vec{c}, \, \vec{v} = 4\vec{a} - 2\vec{b} + 3\vec{c}, \, \vec{w} = 2\vec{a} - \vec{b} + \vec{c}. \tag{10}$$

Com base em (10), repete-se o procedimento aplicado em (\Rightarrow). A substituição de \vec{u} , \vec{v} e \vec{w} por suas expressões e agrupamento dos termos semelhantes leva à:

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \Rightarrow (-\alpha + 4\beta + 2\gamma)\vec{a} + (\alpha - 2\beta - \gamma)\vec{b} + (-\alpha + 3\beta + \gamma)\vec{c} = \vec{0}. \tag{11}$$

Uma vez que $S_2 = \{\vec{a}, \vec{b}, \vec{c}\} \in l.i., (11)$ implica em que:

$$\begin{cases}
-\alpha + 4\beta + 2\gamma = 0 \\
\alpha - 2\beta - \gamma = 0 \\
-\alpha + 3\beta + \gamma = 0
\end{cases}$$
(12)

A única solução do sistema linear homogêneo (12) é a solução trivial $\alpha = \beta = \gamma = 0$. Logo, $S_1 = \{\vec{u}, \vec{v}, \vec{w}\}$ é l.i.

1.2 Interpretação geométrica

As definições 1 e 2 e os teoremas delas derivados acarretam as seguintes interpretações geométricas:

- i) $S = {\vec{v}} \text{ é } l.d. \text{ se } \vec{v} \neq \vec{0}.$
- ii) $S = \{\vec{u}, \vec{v}\} \in l.d.$ se $\vec{u} \parallel \vec{v}$. Caso contrário, $S = \{\vec{u}, \vec{v}\} \in l.i.$
- iii) $S = {\vec{u}, \vec{v}, \vec{w}}$ é l.d se \vec{u}, \vec{v} e \vec{w} são coplanares. Caso contrário, $S = {\vec{u}, \vec{v}, \vec{w}}$ é l.i..
- *iv*) Se $n \ge 4$, qualquer conjunto de vetores $\{\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$ é *l.d.*.

Exemplo 7. Na figura 1, os vetores estão representados nas arestas ou nas faces de um paralelepípedo. Verifique se os seguintes conjuntos de vetores são *l.i.* e justifique sua resposta.

- a) $S_1 = \{\vec{b}, \vec{c}, \vec{y}\}.$
- b) $S_2 = \{\vec{b}, \vec{x}, \vec{y}\}.$
- c) $S_3 = \{\vec{a}, \vec{b}, \vec{x}, \vec{y}\}.$
- d) $S_4 = {\vec{a}, \vec{w}}, \text{ com } \vec{w} = \vec{x} \vec{a} + \vec{b}$

Figura 1: Vetores em um paralelepípedo

O conjunto $S_1 = \{\vec{b}, \vec{c}, \vec{y}\}$ da alínea a) é l.d., uma vez que os vetores \vec{b}, \vec{c} e \vec{y} são coplanares (ou, equivalentemente, paralelos a um mesmo plano). Por outro lado, na alínea b), o conjunto $S_2 = \{\vec{b}, \vec{x}, \vec{y}\}$ é l.i. De fato, os vetores \vec{b}, \vec{x} e \vec{y} têm representantes em faces não-paralelas do paralelepípedo, ou seja, são não coplanares. O conjunto $S_3 = \{\vec{a}, \vec{b}, \vec{x}, \vec{y}\}$ da alínea c) é l.d., pois quatro vetores do espaço geométrico tridimensional são sempre linearmente dependentes (vide alínea iv – interpretações geométricas). Finalmente, a inspeção da figura 1 permite verificar que $\vec{w} = \vec{x} - \vec{a} + \vec{b} = \vec{0}$. Desta forma, na alínea d), tem-se $S_4 = \{\vec{a}, \vec{w}\} = \{\vec{a}, \vec{0}\}$. Assim, S_4 é um conjunto l.d., pois contém o vetor nulo $\vec{0}$ (vide exemplo 1).

Exemplo 8. No tetraedro OABC da figura 2, determine m para que $X = O + m\left(\frac{1}{3}\overrightarrow{OA} - \overrightarrow{OB} + \frac{1}{2}\overrightarrow{OC}\right)$ pertença ao plano ABC.

Figura 2: Tetraedro OABC

Afirmar que X pertence ao plano ABC equivale a dizer que $\{\overrightarrow{AX}, \overrightarrow{AB}, \overrightarrow{AC}\}$ é l.d., ou seja, que a equação vetorial

$$\alpha \overrightarrow{AX} + \beta \overrightarrow{AB} + \gamma \overrightarrow{AC} = \overrightarrow{0} \tag{13}$$

admite solução trivial. A estratégia de solução consiste em exprimir os vetores em (13) como combinações lineares dos vetores $l.i. \overrightarrow{OA}, \overrightarrow{OB} \in \overrightarrow{OC}$. Assim:

$$\overrightarrow{AX} = \overrightarrow{AO} + \overrightarrow{OX}$$

$$\overrightarrow{AX} = -\overrightarrow{OA} + m\left(\frac{1}{3}\overrightarrow{OA} - \overrightarrow{OB} + \frac{1}{2}\overrightarrow{OC}\right) =$$

$$\overrightarrow{AX} = \left(\frac{1}{3}m - 1\right)\overrightarrow{OA} - m\overrightarrow{OB} + \frac{1}{2}m\overrightarrow{OC}.$$
(14)

Também é possível escrever:

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB}, \tag{15}$$

$$\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = -\overrightarrow{OA} + \overrightarrow{OC}. \tag{16}$$

Substituindo (14), (15) e (16) em (13), obtém-se:

$$\left[\left(\frac{1}{3}m - 1 \right) \alpha - \beta - \gamma \right] \overrightarrow{OA} + \left(-m\alpha + \beta \right) \overrightarrow{OB} + \left(\frac{1}{2}m\alpha + \gamma \right) \overrightarrow{OC} = \overrightarrow{0}. \tag{17}$$

Uma vez que os vetores \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} são *l.i.*, (17) equivale ao sistema linear

$$\begin{cases}
\left(\frac{1}{3}m - 1\right)\alpha - \beta - \gamma = 0 \\
-m\alpha + \beta = 0 \\
\frac{1}{2}m\alpha + \gamma = 0
\end{cases}$$
(18)

Toda solução do sistema de equações lineares (18) é, portanto, solução de (13) e vice-versa. Desta maneira, afirmar que *X* pertence ao plano ABC equivale a dizer que (18) admite solução não nula. Existem, diversas maneiras de se verificar se tal fato é verdadeiro. Por exemplo, aplicando a Teorema de Cramer, (18) admite solução não nula se, e somente se:

$$\begin{vmatrix} \frac{1}{3}m - 1 & -1 & -1 \\ -m & 1 & 0 \\ \frac{1}{2}m & 0 & 1 \end{vmatrix} = 0 \tag{19}$$

Solucionando (19), tem-se m = -6.

A seguir, são abordados casos particulares do teorema 7 (de interesse imediato ao curso).

Proposição 8. Se $S = \{\vec{u}, \vec{v}\}\ \acute{e}$ um conjunto l.i. de vetores do \mathbb{R}^2 , então qualquer vetor $\vec{x} \in \mathbb{R}^2$ \acute{e} uma combinação linear única de \vec{u} e \vec{v} .

Demonstração. Sejam P, A e B pontos tais que $\vec{u} = \overrightarrow{PA}$, $\vec{v} = \overrightarrow{PB}$ e $\vec{x} = \overrightarrow{PC}$, como ilustrado na figura 3.

Figura 3: O vetor $\vec{x} = \alpha \vec{u} + \beta \vec{v}$

As retas por C paralelas a PA e a PB determinam, respectivamente, os pontos D e E nas retas PA e PB. Uma vez que \overrightarrow{PA} e \overrightarrow{PD} são paralelos e \overrightarrow{PA} é um vetor não nulo, tem-se $\overrightarrow{PD} = \alpha \overrightarrow{u}$. De forma análoga, $\overrightarrow{PE} = \beta \overrightarrow{v}$.

Assim, $\vec{x} = \overrightarrow{PC} = \overrightarrow{PD} + \overrightarrow{PE} = \alpha \vec{u} + \beta \vec{v}$. Os argumentos descritos nesta demonstração são também válidos para os casos em que C pertence a uma das retas PA e PB.

Proposição 9. Se $S = \{\vec{u}, \vec{v}, \vec{w}\}$ é um conjunto l.i. de vetores do \mathbb{R}^3 , então qualquer vetor $\vec{x} \in \mathbb{R}^3$ é uma combinação linear única de \vec{u} , \vec{v} e \vec{w} .

Demonstração. Sejam P,A,B,C e D pontos tais que $\vec{u}=\overrightarrow{PA},\vec{v}=\overrightarrow{PB},\vec{w}=\overrightarrow{PC}$ e $\vec{x}=\overrightarrow{PD}$, como visto na figura 4.

- A reta paralela a PC por D determina o ponto M no plano PAB.
- As retas por M paralelas a PA e a PB determinam, respectivamente, os pontos $Q \in N$ nas retas $PB \in PA$.
- O plano por *D* paralelo ao plano *PAB* determina o ponto *R* na reta *PC*.

Como \overrightarrow{PA} e \overrightarrow{PN} são paralelos e \overrightarrow{PA} não é nulo, pode-se escrever $\overrightarrow{PN} = \alpha \overrightarrow{u}$.

Figura 4: O vetor $\vec{x} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$

Analogamente, $\overrightarrow{PQ} = \beta \vec{v}$ e $\overrightarrow{PR} = \gamma \vec{w}$. Portanto, $\vec{x} = \overrightarrow{PD} = \overrightarrow{PN} + \overrightarrow{PQ} + \overrightarrow{PR} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$. Os argumentos utilizados são também válidos para os casos em que D pertence a uma das retas PA, PB, PC ou a um dos planos PAB, PAC, PBC (evidentemente, a figura 4 seria alterada).

1.3 Exercícios propostos

E1. Seja o espaço geométrico \mathbb{R}^3 . O conjunto $S = \{\vec{u}, \vec{v}, \vec{w}\}$ é *l.d.*. Verifique se as afirmações a seguir são verdadeiras ou falsas. Justifique sua resposta.

- a) Necessariamente, um dos vetores de S é nulo.
- b) Se $\vec{u} \neq \vec{0}$, então $\vec{v} \parallel \vec{w}$.
- c) Se \vec{u} , \vec{v} e \vec{w} são não nulos, então dois deles são paralelos.
- d) Existem três planos paralelos e distintos, o primeiro contendo a origem e extremidade de um representante de \vec{u} , o segundo contendo a origem e extremidade de um representante de \vec{v} e o terceiro contendo a origem e extremidade de um representante de \vec{w} .

 ${\bf E2.}$ Seja o espaço geométrico ${\mathbb R}^3.$ Julgue cada uma das afirmações a seguir como verdadeiro ou falsas. Justifique suas respostas.

- a) $S_1 = {\vec{u}, \vec{v}, \vec{w}} \text{ \'e } l.d. \Rightarrow S_2 = {\vec{u}, \vec{v}} \text{ \'e } l.d.$
- b) $S_1 = {\vec{u}, \vec{v}} \notin l.i. \Rightarrow S_2 = {\vec{u}, \vec{v}, \vec{w}} \notin l.i.$
- c) Se \vec{u} , \vec{v} e \vec{w} são não nulos, então $S_1 = \{\vec{u}, \vec{v}, \vec{w}\}$ é $l.d. \Rightarrow S_2 = \{2\vec{u}, -\vec{v}\}$ é l.d.
- d) $S_1 = \{\vec{u}, \vec{v}, \vec{w}\} \in l.i. \Rightarrow S_2 = \{\vec{u}, \vec{v}\} \in l.d.$
- e) Se $S_1 = {\vec{u}, \vec{v}, \vec{w}}$ é *l.d.*, então $S_2 = {\vec{u}, \vec{v}}$ tanto pode ser *l.d.* como *l.i.*.
- f) Se $S_1 = {\vec{u}, \vec{v}}$ é *l.i.*, então $S_2 = {\vec{u}, \vec{v}, \vec{w}}$ tanto pode ser *l.d.* como *l.i.*.

- **E3.** Sejam $\vec{a} = 2\vec{u} + 4\vec{v} + \vec{w}$, $\vec{b} = -\vec{u} + \frac{1}{2}\vec{v} + \frac{3}{4}\vec{w}$ e $\vec{c} = \vec{v} + \frac{1}{2}\vec{w}$. Prove que $S = \{\vec{a}, \vec{b}, \vec{c}\}$ é 1.d., quaisquer que sejam os vetores \vec{u} , \vec{v} e \vec{w} .
 - **E4.** Prove que $S_1 = \{\vec{u}, \vec{v}, \vec{w}\} \notin l.d. \Leftrightarrow S_2 = \{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\} \notin l.d.$
- **E5.** Determine o valor dos parâmetros a e b, sabendo-se que $\{\vec{u}, \vec{v}\}$ é l.i. e que $(a-1)\vec{u} + b\vec{v} = b\vec{u} (a+b)\vec{v}$.
- **E6.** Sejam \vec{u} , \vec{v} , \vec{w} e \vec{z} vetores do espaço geométrico \mathbb{R}^3 . Construa esboços de situações geométricas que ilustrem as seguintes situações:
 - a) $\{\vec{u}, \vec{v}, \vec{w}\}$ é um conjunto *l.d.*, mas $\vec{u}, \vec{v} \in \vec{w}$ são dois a dois *l.i.*.
 - b) \vec{u} , \vec{v} e \vec{w} são coplanares, mas \vec{w} não é combinação linear de \vec{u} e \vec{v} .
 - c) $\{\vec{u}, \vec{v}, \vec{w}, \vec{z}\}$ é um conjunto l.d., mas $\vec{u}, \vec{v}, \vec{w}$ e \vec{z} são três a três l.i..
 - d) \vec{z} não é combinação linear de \vec{u} , \vec{v} e \vec{w} .
 - e) É possível escrever \vec{z} por duas (ou mais) combinações lineares distintas de \vec{u} , \vec{v} e \vec{w} .
 - f) Dentre os ternos escolhidos a partir de \vec{u} , \vec{v} , \vec{w} e \vec{z} , somente o terno $\{\vec{u}, \vec{v}, \vec{w}\}$ é um conjunto l.d.

1.4 Exercícios propostos e resolvidos

E7. Seja ABCD o quadrilátero irregular representado na figura 5. M e N são pontos médios dos segmentos em que se encontram. Sendo: A = (-3,1,-2); $\vec{u} = \overrightarrow{AB} = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$; $\vec{v} = \overrightarrow{AD} = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T$ e $\overrightarrow{DC} = 3\vec{u} + \vec{v}$.

Figura 5: quadrilátero irregular

a) Justifique a afirmação: é possível escrever qualquer vetor que tem representante no plano determinado pelos pontos ABC como combinação linear de \vec{u} e \vec{v} .

Solução: Como os vetores \vec{u} e \vec{v} não são paralelos e a figura esboçada tem apenas duas dimensões, qualquer vetor do no plano determinado por *ABC* pode ser escrito como combinação linear de \vec{u} e \vec{v} .

b) Escreva o vetor \overrightarrow{MN} como combinação linear dos vetores \overrightarrow{u} e \overrightarrow{v} .

Solução:

$$\begin{split} \overrightarrow{MN} &= \overrightarrow{MC} + \overrightarrow{CN} \\ \overrightarrow{MN} &= \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{CD} \\ \overrightarrow{MN} &= \frac{1}{2} \left(\overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC} \right) - \frac{1}{2} \overrightarrow{DC} \\ \overrightarrow{MN} &= -\frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AD} \Rightarrow \overrightarrow{MN} = -\frac{1}{2} \overrightarrow{u} + \frac{1}{2} \overrightarrow{v} \end{split}$$

c) Determine as coordenadas dos pontos D e N.

Solução: Primeiramente, serão encontradas as coordenadas do ponto *D*:

$$\overrightarrow{AD} = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T$$

$$D - A = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T$$

$$D = (-3,1,-2) + \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T \Rightarrow D = (-4, 2, 0)$$

Agora, serão encontradas as coordenadas do ponto F:

$$\overrightarrow{DN} = \frac{1}{2} \overrightarrow{DC}$$

$$\overrightarrow{DC} = 3\overrightarrow{u} + \overrightarrow{v} = 3\begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T + \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T = \begin{bmatrix} 2 & 4 & -4 \end{bmatrix}^T$$

$$\overrightarrow{DN} = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}^T$$

$$N - D = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}^T$$

$$N = (-4, 2, 0) + \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}^T \Rightarrow N = (-3, 4, -2)$$

d) Determine a área do triângulo ABD, sabendo-se que a distância do ponto B ao segmento AD é $\frac{2\sqrt{5}}{\sqrt{6}}$. **Solução:** Pode-se calcular a área do triângulo ABD por:

$$A_{ABD} = \frac{b \cdot h}{2}$$

Onde a base (b) é igual a $\|\overrightarrow{AD}\|$ e a altura (h) é igual a $\frac{2\sqrt{5}}{\sqrt{6}}$. Então:

$$A_{ABD} = \frac{b \cdot h}{2} = \frac{\sqrt{(-1)^2 + 1^2 + 2^2} \cdot \frac{2\sqrt{5}}{\sqrt{6}}}{2} \Rightarrow A_{ABD} = \sqrt{5}$$

E8. Considere os vetores \vec{u} , \vec{v} e \vec{w} do \mathbb{R}^3 e o conjunto l.i. $\{\vec{u}, \vec{v}, \vec{w}\}$. Determine os números reais não nulos m e n para que os vetores $\vec{a} = 3\vec{u} + 2\vec{v} - m\vec{w}$ e $\vec{b} = \frac{m}{n}\vec{u} + \vec{v} - \vec{w}$ sejam paralelos.

Solução: Pode-se afirmar que $B = \{\vec{u}, \vec{v}, \vec{w}\}$ é uma base do \Re^3 , então tem-se:

$$\vec{a} = \begin{bmatrix} 3 & 2 & -m \end{bmatrix}_B^T$$
 e $\vec{b} = \begin{bmatrix} \frac{m}{n} & 1 & -1 \end{bmatrix}_B^T$.

Como
$$\vec{a}//\vec{b}$$
: $\frac{m}{n} = \frac{1}{2} = \frac{-1}{-m} \Rightarrow m = 2 \text{ e } n = \frac{4}{3}$.

1.5 Respostas de alguns exercícios propostos

- **E1.** a) F basta que \vec{u} , \vec{v} e \vec{w} sejam coplanares;
 - b) F basta que \vec{u} , \vec{v} e \vec{w} sejam coplanares (a afirmação é verdadeira para o espaço geométrico \mathbb{R}^2);
 - c) F novamente, coplanaridade de \vec{u} , \vec{v} e \vec{w} (a afirmação é verdadeira para o espaço geométrico \mathbb{R}^2);
 - d) V.
- **E2.** a) $F S_2$ não é, necessariamente, l.d.; b) $F \operatorname{se} \vec{w}$ for combinação linear de \vec{u} e \vec{v} , então S_2 seria l.d.;
 - c) $F S_2$ não é, necessariamente, l.d.; d) $F S_2$ é, necessariamente, l.i.; e) V; f) V.

E5.
$$a = \frac{2}{3}$$
 e $b = -\frac{1}{3}$.

2. Bases

Nesta seção são discutidos os conceitos de base e de coordenadas de um vetor em relação a uma base especificada. Também são abordadas a utilização de coordenadas na soma de vetores, na multiplicação de escalares por vetor e na análise da dependência linear de um conjunto de vetores.

Definição 10. Uma dupla ordenada l.i. $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}\}$ (ou seja, uma dupla de vetores não paralelos) é dita uma base para o espaço geométrico bidimensional \mathbb{R}^2 . Os vetores $\overrightarrow{u_1}$ e $\overrightarrow{u_2}$ são o primeiro e o segundo vetores de $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}\}$.

Figura 6: (a) $B_1 = \{\vec{u}, \vec{v}\}$ é base do \mathbb{R}^2 ; (b) $B_2 = \{\vec{p}, \vec{q}\}$ não é base do \mathbb{R}^2

A figura 6 ilustra o conceito de bases para espaços geométricos bidimensionais: em (a), os vetores não paralelos (l.i.) \vec{u} e \vec{v} constituem uma base para o \mathbb{R}^2 ; em (b) os vetores paralelos (l.d.) \vec{p} e \vec{q} não podem ser empregados como vetores de bases para o espaço \mathbb{R}^2 .

Definição 11. Uma tripla ordenada l.i. $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ (ou seja, uma tripla de vetores não coplanares) é dita uma base para o espaço geométrico tridimensional \mathbb{R}^3 . Os vetores $\overrightarrow{u_1}$, $\overrightarrow{u_2}$ e $\overrightarrow{u_3}$ são o primeiro, o segundo e o terceiro vetores de $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$.

A figura 7 ilustra o conceito de bases para espaços geométricos tridimensionais. Nela, as retas s_1 , s_2 e s_3 são construídas com o intuito de evidenciar a coplanaridade dos vetores envolvidos. Em (a), os vetores não coplanares (l.i.) \vec{u} , \vec{v} e \vec{w} constituem uma base para o \mathbb{R}^3 . Por outro lado, em (b), os vetores coplanares (l.d.) \vec{p} , \vec{q} e \vec{r} não podem ser empregados como vetores de bases para o \mathbb{R}^3 .

Figura 7: (a) $B_1=\{\vec{u},\vec{v},\vec{w}\}$ é base do \mathbb{R}^3 ; (b) $B_2=\{\vec{p},\vec{q},\vec{r}\}$ não é base do \mathbb{R}^3

2.1 Propriedade fundamental das bases

A seguir, será discutida a propriedade fundamental das bases associadas aos espaços geométricos bidimensional \mathbb{R}^2 e tridimensional \mathbb{R}^3 .

Espaço geométrico \mathbb{R}^2 : Se $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}\}$ é uma base do \mathbb{R}^2 , então todo $\overrightarrow{x} \in \mathbb{R}^2$ é expresso por uma, e uma só, combinação linear de $\overrightarrow{u_1}$ e $\overrightarrow{u_2}$. Desta maneira, existem e são únicos os números reais α e β tais que $\overrightarrow{x} = \alpha \overrightarrow{u_1} + \beta \overrightarrow{u_2}$. Esta argumentação foi demonstrada anteriormente na proposição 8.

Cada um dos escalares da dupla $[\alpha \quad \beta]^T$ é chamado *coordenada* de \vec{x} em relação à base B (ou, na base B). Assim , pré-fixada uma base, a cada vetor do \mathbb{R}^2 fica associada univocamente uma dupla ordenada de escalares, camadas *dupla de coordenadas* de \vec{x} em relação à base B.

Uma vez que se trata de uma dupla ordenada, a ordem dos escalares é de extrema importância. Desta maneira, quando se diz que α e β são as coordenadas de \vec{x} na base B, fica subentendido que vale a igualdade $\vec{x} = \alpha \overrightarrow{u_1} + \beta \overrightarrow{u_2}$ na qual α é o coeficiente do *primeiro* vetor da base B e β é o coeficiente do *segundo*. Fundamentandose nessas considerações, adota-se a notação:

$$\vec{x} = \alpha \overrightarrow{u_1} + \beta \overrightarrow{u_2} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}_B = \begin{bmatrix} \alpha & \beta \end{bmatrix}_B^T. \tag{20}$$

Exemplo 9. Na figura 8(a), ABEF e BCDE são quadrados congruentes no \mathbb{R}^2 . Seja $B = \{\vec{u}, \vec{v}\}$ uma base do \mathbb{R}^2 em que $\vec{u} = \overrightarrow{AE}$ e $\vec{v} = \overrightarrow{AF}$. Deseja-se determinar as coordenadas dos vetores $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{AD}$ e $\vec{c} = \overrightarrow{EC}$ – figura 8(b) – na base B.

Escrever \vec{a} , \vec{b} e \vec{c} com relação à base B significa representar estes vetores como combinações lineares de \vec{u} e \vec{v} e, posteriormente, associar os coeficientes de tais combinações às coordenadas dos respectivos vetores. Assim:

$$\vec{a} = \overrightarrow{AB} = \overrightarrow{AE} + \overrightarrow{EB} = \vec{u} - \vec{v} = \begin{bmatrix} 1 & -1 \end{bmatrix}_B^T;$$

$$\vec{b} = \overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD} = 2\overrightarrow{AB} + \overrightarrow{CD} = 2\vec{a} + \vec{v} = 2(\vec{u} - \vec{v}) + \vec{v} = 2\vec{u} - \vec{v} = \begin{bmatrix} 2 & -1 \end{bmatrix}_B^T;$$

$$\vec{c} = \overrightarrow{EC} = \overrightarrow{FB} = \overrightarrow{FA} + \overrightarrow{AB} = -\vec{v} + \vec{a} = -\vec{v} + \vec{u} - \vec{v} = \vec{u} - 2\vec{v} = \begin{bmatrix} 1 & -2 \end{bmatrix}_B^T.$$

Figura 8: (a) Os vetores da base $B = \{\vec{u}, \vec{v}\}\$; (b) Os vetores \vec{a}, \vec{b} e \vec{c}

Espaço geométrico \mathbb{R}^3 : Se $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ é uma base do \mathbb{R}^3 , então cada $\vec{x} \in \mathbb{R}^3$ é expresso por uma e uma só combinação linear de $\overrightarrow{u_1}$, $\overrightarrow{u_2}$ e $\overrightarrow{u_3}$. Em outras palavras, existem e são únicos os números reais α , β e γ tais que $\vec{x} = \alpha \overrightarrow{u_1} + \beta \overrightarrow{u_2} + \gamma \overrightarrow{u_3}$. Este fato foi demonstrado anteriormente na proposição 9.

Cada escalar da tripla $[\alpha \ \beta \ \gamma]^T$ é chamado *coordenada* de \vec{x} em relação à base B (ou, na base B). Portanto, escolhida uma base, a cada vetor fica associada univocamente uma tripla ordenada de escalares, chamada tripla de coordenadas de \vec{x} em relação à base B. Como se trata de uma tripla ordenada, a ordem é de extrema importância. Assim, quando se diz que α , β e γ são as coordenadas de \vec{x} na base B, fica subentendido que vale a igualdade $\vec{x} = \alpha \overrightarrow{u_1} + \beta \overrightarrow{u_2} + \gamma \overrightarrow{u_3}$ na qual α é o coeficiente do primeiro vetor da base B, β é o coeficiente do segundo e γ é o coeficiente do terceiro. A partir dessas considerações, adota-se a notação:

$$\vec{x} = \alpha \vec{u_1} + \beta \vec{u_2} + \gamma \vec{u_3} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}_B = [\alpha \quad \beta \quad \gamma]_B^T. \tag{21}$$

Exemplo 10. Na figura 9(a), ABCD é um tetraedro. Seja $B = \{\vec{a}, \vec{b}, \vec{c}\}$ uma base do \mathbb{R}^3 em que $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{AD}$ e $\vec{c} = \overrightarrow{AC}$. Deseja-se determinar as coordenadas do vetores $\vec{x} = \overrightarrow{BC}$, $\vec{y} = \overrightarrow{DC}$ e $\vec{z} = \overrightarrow{AE}$ (em que E éo ponto médio do segmento DC) na base B – vide figura 9(b).

Figura 9: (a) Os vetores da base $B = \{\vec{a}, \vec{b}, \vec{c}\}$; (b) Os vetores $\vec{x}, \vec{y} \in \vec{z}$

Como já mencionado anteriormente, escrever \vec{x} , \vec{y} e \vec{z} com relação à base B significa representar estes vetores como combinações lineares de \vec{a} , \vec{b} e \vec{c} . Posteriormente, associa-se os coeficientes de tais combinações às coordenadas dos respectivos vetores. Desta forma:

$$\vec{x} = \overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = -\vec{a} + \vec{c} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}_B^T;$$

$$\vec{y} = \overrightarrow{DC} = \overrightarrow{DA} + \overrightarrow{AC} = -\vec{b} + \vec{c} = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}_B^T;$$

$$\vec{z} = \overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE} = \vec{b} + \frac{1}{2}\overrightarrow{DC} = \vec{b} + \frac{1}{2}\vec{y} = \vec{b} + \frac{1}{2}(-\vec{b} + \vec{c}) = \frac{1}{2}\vec{b} + \frac{1}{2}\vec{c} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}_B^T.$$

Observação 1. Anteriormente, quando se estudou a descrição de um vetor relativa a um sistema de coordenadas cartesiano, afirmou-se que as coordenadas de um vetor são numericamente iguais às coordenadas do ponto extremidade deste vetor, desde que seu ponto origem esteja localizado na origem O do sistema de coordenadas. Esta definição é consistente com o conceito de base. Para justificar este fato, seja $C_2 = \{\vec{e_1}, \vec{e_2}\} - \cos \vec{e_1} = [1 \quad 0]^T \ e \ \vec{e_2} = [0 \quad 1]^T - a \ base \ canônica$ do espaço geométrico \mathbb{R}^2 . Assim, se $\vec{x} = \overrightarrow{OA} = [\alpha \quad \beta]^T$, tem-se $A = (\alpha, \beta)$ e, consequentemente,

$$\vec{x} = [\alpha \quad 0]^T + [0 \quad \beta]^T = \alpha \overrightarrow{e_1} + \beta \overrightarrow{e_2} = [\alpha \quad \beta]_{C_2}^T.$$

Analogamente, seja $C_3 = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ – com $\overrightarrow{e_1} = [1 \quad 0 \quad 0]^T$, $\overrightarrow{e_2} = [0 \quad 1 \quad 0]^T$ e $\overrightarrow{e_3} = [0 \quad 0 \quad 1]^T$ – a base canônica do espaço geométrico \mathbb{R}^3 . Desta forma, se $\vec{x} = \overrightarrow{OA} = [\alpha \quad \beta \quad \gamma]^T$, tem-se $A = (\alpha, \beta, \gamma)$ e, consequentemente,

$$\vec{x} = [\alpha \quad 0 \quad 0]^T + [0 \quad \beta \quad 0]^T + [0 \quad 0 \quad \gamma]^T = \alpha \overrightarrow{e_1} + \beta \overrightarrow{e_2} + \gamma \overrightarrow{e_3} = [\alpha \quad \beta \quad \gamma]_{C_3}^T.$$

Em suma, até o momento todos os vetores descritos neste curso possuem coordenadas referidas às bases canônicas do \mathbb{R}^2 e \mathbb{R}^3 .

Observação 2. Em situações envolvendo vários vetores, a omissão do índice que indica a base adotada pressupõe que todos estes vetores se referem à mesma base. Além disso, a não ser quando houver menção em contrário, a base adotada para representação dos vetores será a base canônica do espaço geométrico considerado.

2.2 Adição e multiplicação por escalar usando coordenadas

Sejam $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ uma base do \mathbb{R}^3 , $\lambda \in \mathbb{R}$ e os vetores $\overrightarrow{x_1} = [\alpha_1 \quad \beta_1 \quad \gamma_1]_B^T$ e $\overrightarrow{x_2} = [\alpha_2 \quad \beta_2 \quad \gamma_2]_B^T$. É válida a proposição a seguir.

Proposição 12. A adição de vetores e a multiplicação de vetores por escalar, quando se empregam coordenadas relativas à base B, se dão segundo:

$$\begin{array}{lll} a)\overrightarrow{x_1}+\overrightarrow{x_2}=[\alpha_1 & \beta_1 & \gamma_1]_B^T+[\alpha_2 & \beta_2 & \gamma_2]_B^T=[\alpha_1+\alpha_2 & \beta_1+\beta_2 & \gamma_1+\gamma_2]_B^T; \\ b) & \lambda \overrightarrow{x_1}=\lambda \cdot [\alpha_1 & \beta_1 & \gamma_1]_B^T=[\lambda \alpha_1 & \lambda \beta_1 & \lambda \gamma_1]_B^T. \end{array}$$

Demonstração. Se $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ é uma base do \mathbb{R}^3 , então:

a) É possível escrever²¹

$$\overrightarrow{x_1} + \overrightarrow{x_2} = [\alpha_1 \quad \beta_1 \quad \gamma_1]_B^T = \alpha_1 \overrightarrow{u_1} + \beta_1 \overrightarrow{u_2} + \gamma_1 \overrightarrow{u_3} + \alpha_2 \overrightarrow{u_1} + \beta_2 \overrightarrow{u_2} + \gamma_2 \overrightarrow{u_3} =$$

$$= (\alpha_1 + \alpha_2) \overrightarrow{u_1} + (\beta_1 + \beta_2) \overrightarrow{u_2} + (\gamma_1 + \gamma_2) \overrightarrow{u_3} =$$

$$= [\alpha_1 + \alpha_2 \quad \beta_1 + \beta_2 \quad \gamma_1 + \gamma_2]_B^T.$$

b) Analogamente

$$\lambda \overrightarrow{x_1} = \lambda [\alpha_1 \quad \beta_1 \quad \gamma_1]_B^T = \lambda (\alpha_1 \overrightarrow{u_1} + \beta_1 \overrightarrow{u_2} + \gamma_1 \overrightarrow{u_3}) =$$

$$= (\lambda \alpha_1) \overrightarrow{u_1} + (\lambda \beta_1) \overrightarrow{u_2} + (\lambda \gamma_1) \overrightarrow{u_3} =$$

$$= [\lambda \alpha_1 \quad \lambda \beta_1 \quad \lambda \gamma_1]_B^T.$$

 $^{^{1}}$ Nesta demonstração, é essencial que as coordenadas dos vetores envolvidos se refiram à mesma base B.

2.3 Exercícios propostos

E1. Determinar os valores de k para os quais $S = \{\vec{u} = [k \ 0 \ 1]^T, \vec{v} = [k \ 1 \ 1]^T, \vec{w} = [k^2 \ 1 \ 1]^T\}$ torna-se uma base para o espaço geométrico \mathbb{R}^3 .

E2. Verificar, caso a caso, se X_i é uma base para os respectivos espaços geométricos. Justifique suas respostas.

a)
$$X_1 = \{[1 \quad 0 \quad 0]^T, [0 \quad 1 \quad 0]^T, [0 \quad 0 \quad 1]^T\} \in \mathbb{R}^3$$

b)
$$X_2 = \{[1 \ 1 \ 1]^T, [1 \ 1 \ 0]^T, [1 \ 0 \ 0]^T\} \in \mathbb{R}^3$$

c)
$$X_3 = \{[1 \quad 0 \quad 0]^T, [0 \quad 1 \quad 0]^T, [0 \quad 0 \quad 1]^T, [1 \quad 1 \quad 1]^T\} \in \mathbb{R}^3$$

d)
$$X_4 = \{[1 \quad 0]^T, [0 \quad 1]^T, [-2 \quad 1]^T\} \in \mathbb{R}^2$$

e)
$$X_5 = \{[-1 \ 2]^T, [0 \ 1]^T\} \in \mathbb{R}^2$$

f)
$$X_6 = \{[1 \quad -4]^T, [-3 \quad 12]^T\} \in \mathbb{R}^2$$

E3. Seja $B = \{\overrightarrow{u_1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \overrightarrow{u_2} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T, \overrightarrow{u_3} = \begin{bmatrix} 0 & 1 & -2 \end{bmatrix}^T \}$ uma base do \mathbb{R}^3 . Expresse cada um dos vetores $\overrightarrow{e_1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T, \overrightarrow{e_2} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ e $\overrightarrow{e_3} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ da base canônica $C = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ do \mathbb{R}^3 na base B.

E4. Dados
$$\vec{u} = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T, \vec{v} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T, \vec{w} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T, \vec{x} = \begin{bmatrix} 1 & 4 & -3 \end{bmatrix}^T, \vec{y} = \begin{bmatrix} 2 & 3 & -1 \end{bmatrix}^T, \vec{z} = \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}^T \in \vec{t} = \begin{bmatrix} 3 & 4 & -1 \end{bmatrix}^T.$$

- a) Mostre que $B = \{\vec{u}, \vec{v}, \vec{w}\}$ é uma base do \mathbb{R}^3 .
- b) Determine quais os vetores dentre \vec{u} , \vec{v} , \vec{z} e \vec{t} que podem substituir \vec{w} na base B originando uma nova base B' do \mathbb{R}^3 .

E5. Seja o paralelepípedo ABCDA'B'C'D' – figura 10 – no qual Q, R, S e T são os pontos médios dos lados em que se situam.

Figura 10: O paralelepípedo ABCDA'B'C'D'

Sendo
$$\vec{u} = \overrightarrow{AB}$$
, $\vec{v} = \overrightarrow{AA'}$, $\vec{w} = \overrightarrow{AD}$, $\vec{r} = \overrightarrow{QR}$, $\vec{s} = \overrightarrow{QS}$ e $\vec{t} = \overrightarrow{QT}$:

- a) Expresse os vetores \vec{r} , \vec{s} e \vec{t} na base $B_1 = \{\vec{u}, \vec{v}, \vec{w}\}$ do \mathbb{R}^3 .
- b) Mostre, algebricamente, que $B_2 = \{\vec{r}, \vec{s}, \vec{t}\}$ também é base do \mathbb{R}^3 .

2.4 Exercícios propostos e resolvidos

E6. A figura 11 a seguir representa um sólido ABCDEFG cuja base ABCDEF é um hexágono regular. Considerando os vetores $\vec{u} = \overrightarrow{AB}$; $\vec{v} = \overrightarrow{GB}$; $\vec{w} = \overrightarrow{AG}$; $\vec{a} = \overrightarrow{AD}$, e os pontos A = (2,1,4); B = (2,2,3); D = (4,3,4), responda:

Figura 11: sólido ABCDEFG

a) $B = {\vec{u}, \vec{v}, \vec{w}}$ é uma base do \mathbb{R}^3 ? Justifique.

Solução: Os vetores \vec{u} , \vec{v} e \vec{w} têm representantes sobre a mesma face do sólido, logo coplanares, portanto $\{\vec{u}, \vec{v}, \vec{w}\}$ é l.d.. Assim, $B = \{\vec{u}, \vec{v}, \vec{w}\}$ não é uma base do \Re^3 .

b) Localize o ponto H na figura, sabendo-se que $4\overrightarrow{GH} + 3\overrightarrow{CH} = \overrightarrow{0}$.

Solução: Sabe-se que $\overrightarrow{GC} = \overrightarrow{GH} + \overrightarrow{HC}$, da equação $4\overrightarrow{GH} + 3\overrightarrow{CH} = \overrightarrow{0}$, tem-se que $\overrightarrow{CH} = -\frac{4}{3}\overrightarrow{GH}$, então $\overrightarrow{GC} = \overrightarrow{GH} + \frac{4}{3}\overrightarrow{GH} \Rightarrow \overrightarrow{GC} = \frac{7}{3}\overrightarrow{GH} \Rightarrow \overrightarrow{GH} = \frac{3}{7}\overrightarrow{GC}$.

c) Escreva as coordenadas do vetor \overrightarrow{DH} na base $B_1 = \{\vec{u}, \vec{v}, \vec{a}\}$.

Solução:

Pela figura tem-se que $\overrightarrow{DH} = -\vec{a} + \vec{w} + \frac{3}{7}\overrightarrow{GC} = -\vec{a} + \vec{w} + \frac{3}{7}\left(-\vec{w} + \frac{1}{2}\vec{a} + \vec{u}\right) = -\frac{11}{14}\vec{a} + \frac{4}{7}\vec{w} + \frac{3}{7}\vec{u}$. Portanto as coordenadas do vetor \overrightarrow{DH} na base $B_1 = \left\{\vec{u}, \vec{w}, \vec{a}\right\}$ é $\overrightarrow{DH} = \left[\frac{3}{7} \quad \frac{4}{7} \quad -\frac{11}{14}\right]_{B_1}^T$.

d) Escreva as coordenadas do ponto C.

Solução: Sabe-se que
$$\overrightarrow{AD} = 2\overrightarrow{BC} \Rightarrow \overrightarrow{BC} = \frac{1}{2} \begin{bmatrix} 2 & 2 & 0 \end{bmatrix}^T = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$$
.

Portanto
$$C = B + \overrightarrow{BC} = (2,2,3) + \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T = (3,3,3)$$
.

e) Determine a área do triângulo OBC.

Solução: A área do triângulo é :
$$A = \frac{b \cdot h}{2}$$
 sendo $b = \|\overrightarrow{BC}\|$ e $h = \|\overrightarrow{OM}\|$

Sabe-se que:

•
$$\overrightarrow{BC} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T \Rightarrow \|\overrightarrow{BC}\| = \sqrt{2}$$

• *M* é ponto médio do segmento *BC*.

Então, como o triangulo OBM é retângulo:

$$\left\| \overline{BO} \right\|^2 = \left(\frac{1}{2} \left\| \overline{BC} \right\| \right)^2 + h^2 \Rightarrow h = \sqrt{\frac{3}{2}}.$$

Logo:
$$A = \frac{\sqrt{2} \cdot \frac{\sqrt{3}}{\sqrt{2}}}{2} = \frac{\sqrt{3}}{2}$$

f) Determine as coordenadas do vetor $\overrightarrow{AP} = \begin{bmatrix} 2 & 0 & \frac{1}{2} \end{bmatrix}_{B_1}^T$ na base canônica do \mathbb{R}^3 . A seguir, escreva as coordenadas do ponto P e represente-o na figura.

Solução: Temos que $\vec{u} = \overrightarrow{AB} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$, $\vec{a} = \overrightarrow{AD} = \begin{bmatrix} 2 & 2 & 0 \end{bmatrix}^T$ e sabe-se que $\overrightarrow{AP} = \begin{bmatrix} 2 & 0 & \frac{1}{2} \end{bmatrix}_{B_1}^T = 2\vec{u} + \frac{1}{2}\vec{a}$. Então $\overrightarrow{AP} = \begin{bmatrix} 1 & 3 & -2 \end{bmatrix}^T \Rightarrow P = (2,1,4) + \begin{bmatrix} 1 & 3 & -2 \end{bmatrix}^T = (3,4,2)$

E7. Sendo $B = \{\vec{u}, \vec{v}, \vec{w}\}$ uma base do \mathbb{R}^3 diferente da base canônica, classifique em verdadeiro ou falso:

a) Se $\vec{a} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}_B^T$, então os vetores \vec{a} , \vec{u} e \vec{v} têm representantes coplanares.

Solução: Verdadeiro, porque é possível escrever o vetor \vec{a} em função de \vec{u} e \vec{v} .

b) As coordenadas do vetor \vec{v} na base B são $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}_R^T$.

Solução: Verdadeiro, porque $\vec{v} = 0\vec{u} + 1\vec{v} + 0\vec{w}$.

E8. Sejam os vetores $\vec{a} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$, $\vec{b} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$, $\vec{c} = \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}^T$ e $\vec{d} = \begin{bmatrix} 1 & -2 & -3 \end{bmatrix}^T$.

a) Mostre algebricamente que $B = \{\vec{a}, \vec{b}, \vec{c}\}\$ é uma base do \mathbb{R}^3 .

Solução: Calculando o determinante da matriz em que as colunas são as coordenadas dos vetores:

$$\begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -1 & 1 & 2 \end{vmatrix} = 4 \neq 0$$
, sabe-se que $\{\vec{a}, \vec{b}, \vec{c}\}$ é *l.i.* Um conjunto de 3 vetores *l.i.* forma uma base para o \Re^3 , portanto

 $B = \{\vec{a}, \vec{b}, \vec{c}\}$ é uma base do \Re^3 .

b) O vetor \vec{d} na base B é dado por $\vec{d} = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}_B^T$? Demonstre.

Solução: Sim, pois o vetor \vec{d} na base \vec{B} pode ser escrito como $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, se $\vec{d} = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}_B^T$,

então tem-se que
$$\alpha=2$$
, $\beta=-1$ e $\gamma=0$, ou seja, $\vec{d}=2\vec{a}-\vec{b}$ e $\begin{bmatrix}1\\-2\\-3\end{bmatrix}=2\begin{bmatrix}1\\0\\-1\end{bmatrix}-\begin{bmatrix}1\\2\\1\end{bmatrix}$.

E9. A figura 12 representa uma pirâmide *ABCDE*, cuja base é o losango *ABCD*. Onde $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AD}$, $\vec{w} = \overrightarrow{AE}$ e G é o ponto de trissecção do segmento EC.

Figura 12: Pirâmide ABCDE

a) Localize o ponto F na figura, tal que $5\overrightarrow{FE} + \overrightarrow{FB} = \overrightarrow{0}$.

Solução: Sabe-se que \overrightarrow{EF} + \overrightarrow{FB} = \overrightarrow{EB} . Da equação $5\overrightarrow{FE}$ + \overrightarrow{FB} = $\overrightarrow{0}$, tem-se que \overrightarrow{FB} = 5 \overrightarrow{EF} , então

$$\overrightarrow{EF} + 5\overrightarrow{EF} = \overrightarrow{EB} \Longrightarrow \overrightarrow{EF} = \frac{1}{6}\overrightarrow{EB}$$
.

b) Escreva as coordenadas do vetor \overrightarrow{AF} e \overrightarrow{AG} na base $B = \{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}.$

Solução: Primeiramente, serão encontradas as coordenadas do vetor \overrightarrow{AF} . Analisando a figura, é possível escrever que:

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF}$$

$$\overrightarrow{AF} = \overrightarrow{AB} + \frac{5}{6}\overrightarrow{BE}$$

$$\overrightarrow{AF} = \overrightarrow{AB} + \frac{5}{6}(\overrightarrow{BA} + \overrightarrow{AE})$$

$$\overrightarrow{AF} = \frac{1}{6}\overrightarrow{AB} + \frac{5}{6}\overrightarrow{AE} \Rightarrow \overrightarrow{AF} = \frac{1}{6}\overrightarrow{u} + \frac{5}{6}\overrightarrow{w} \Rightarrow \overrightarrow{AF} = \begin{bmatrix} \frac{1}{6} & 0 & \frac{5}{6} \end{bmatrix}_{R}^{T}$$

Agora, serão encontradas as coordenadas do vetor \overrightarrow{AG} . Novamente analisando a figura, é possível escrever que:

$$\overrightarrow{AG} = \overrightarrow{AE} + \overrightarrow{EG}$$

$$\overrightarrow{AG} = \overrightarrow{AE} + \frac{2}{3}\overrightarrow{EC}$$

$$\overrightarrow{AG} = \overrightarrow{AE} + \frac{2}{3}(\overrightarrow{EA} + \overrightarrow{AD} + \overrightarrow{DC})$$

$$\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD} + \frac{1}{3}\overrightarrow{AE} \Rightarrow \overrightarrow{AG} = \frac{2}{3}\overrightarrow{u} + \frac{2}{3}\overrightarrow{v} + \frac{1}{3}\overrightarrow{w} \Rightarrow \overrightarrow{AG} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}_{R}^{T}$$

c) Dentre os conjuntos $B_1 = \{\overrightarrow{AD}, \overrightarrow{AE}, \overrightarrow{DE}\}\$ e $B_2 = \{\overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{GA}\}\$ qual é base do \mathbb{R}^3 ? A seguir escreva as coordenadas dos vetores \overrightarrow{AF} e \overrightarrow{AG} na base escolhida.

Solução: B_2 é base do \mathbb{R}^3 . A partir do exercício anterior:

$$\overrightarrow{AF} = \frac{1}{6}\overrightarrow{AB} + \frac{5}{6}\overrightarrow{AE} + 0\overrightarrow{GA} \Rightarrow \overrightarrow{AF} = \begin{bmatrix} 1 & 5 & 0 \\ 6 & 6 & 0 \end{bmatrix}_{B_2}^T$$

$$\overrightarrow{AG} = 0\overrightarrow{AB} + 0\overrightarrow{AE} - 1\overrightarrow{GA} \Rightarrow \overrightarrow{AG} = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}_{B_2}^T$$

2.5 Respostas de alguns exercícios propostos

E1.
$$k \neq 0 \text{ e } k \neq 1$$
.

E2.
$$X_1$$
, X_2 e X_5 são bases.

E3.
$$\overrightarrow{e_1} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}_B^T$$
; $\overrightarrow{e_2} = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \end{bmatrix}_B^T$; $\overrightarrow{e_3} = \frac{1}{3} \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}_B^T$.

E4. O vetor \vec{z} deve substituir \vec{w} para que $B = \{\vec{u}, \vec{v}, \vec{z}\}$ seja base do \mathbb{R}^3 .

E5. a)
$$\vec{r} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -1 \end{bmatrix}_{B_1}^T$$
, $\vec{s} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix}_{B_1}^T$, $\vec{t} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}_{B_1}^T$;

3. Referências

- Camargo, I.; Boulos, P. *Geometria Analítica um tratamento vetorial*, São Paulo: Pearson Prentice Hall, 3. ed., 2005.
 - Machado, T. C., Vetores e Geometria Analítica, Edição preliminar, 2005.

4. Apêndice - Mudança de Base

Na seção anterior foi demonstrado que qualquer dupla de vetores (não nulos) não paralelos constitui uma base para o espaço geométrico \mathbb{R}^2 . Como uma extensão natural deste conceito, tem-se que qualquer tripla de vetores (não nulos) não coplanares constitui uma base para o espaço geométrico \mathbb{R}^3 .

Em outras palavras, existem *infinitas* bases para um mesmo espaço geométrico. Logo, uma vez que a descrição das coordenadas de um vetor é *única* para uma base escolhida, conclui-se que um mesmo vetor possui *infinitas* descrições, uma para cada base possível.

Em diversas situações, torna-se vantajoso escrever os vetores envolvidos em determinado problema geométrico em uma base diferente da base canônica. O procedimento que converte as coordenadas de um vetor referidas a uma base original para outra base é conhecido como *mudança* de *base*. No jargão da Álgebra Linear, a mudança de base é uma *transformação linear*, objeto de estudo posterior. Neste momento, este material se limita a apresentar o conceito de mudança de base por meio de alguns exemplos.

Exemplo 1. Os vetores \vec{u} , \vec{v} e \vec{w} ilustrados na figura 6(a, item 2) dão origem à infinitas bases para o espaço \mathbb{R}^3 . Como por exemplo, sejam as bases:

$$B_1 = {\vec{w}, \vec{u}, \vec{v}}, B_2 = {2\vec{v}, 3\vec{u}, -\vec{w}} e B_3 = {\frac{1}{2}\vec{u}, \vec{v}, 2\vec{w}}.$$

Assim, cada vetor $\vec{x} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$ pode ser escrito (de forma única em cada base) como:

$$\vec{x} = [\alpha \quad \beta \quad \gamma]_B^T = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \gamma \vec{w} + \alpha \vec{u} + \beta \vec{v} = [\gamma \quad \alpha \quad \beta]_{B_1}^T;$$

$$\vec{x} = [\alpha \quad \beta \quad \gamma]_B^T = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \frac{\beta}{2} (2\vec{v}) + \frac{\alpha}{3} (3\vec{u}) - \gamma (-\vec{w}) = \begin{bmatrix} \frac{\beta}{2} & \frac{\alpha}{2} & -\gamma \end{bmatrix}_{B_2}^T;$$

$$\vec{x} = [\alpha \quad \beta \quad \gamma]_B^T = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = 2\alpha \left(\frac{1}{2}\vec{u}\right) + \beta \vec{v} + \frac{\gamma}{2} (2\vec{w}) = \begin{bmatrix} 2\alpha \quad \beta \quad \frac{\gamma}{2} \end{bmatrix}_{B_3}^T$$

Exemplo 2. Sejam $C_2 = \{\vec{\imath}, \vec{\jmath}\}$ e $B = \{\vec{u}, \vec{v}\}$ bases do espaço geométrico \mathbb{R}^2 em que $\vec{u} = [-1 \quad 2]^T$ e $\vec{v} = [3 \quad 1]^T$ (coordenadas referidas à base canônica C_2)². Deseja-se expressar as coordenadas dos vetores $\vec{a} = [4 \quad 6]_{C_2}^T$ e $\vec{b} = [-4 \quad 1]_{C_2}^T$ base B. A figura 1 ilustra os vetores envolvidos.

Figura 1: Os vetores da base B em conjunto com \vec{a} e \vec{b} – os vetores da base canônica C_2 são omitidos em prol da clareza da figura

_

² De fato, se as coordenadas de \vec{u} e \vec{v} estivessem referidas às bases \vec{B} , suas descrições seriam $\vec{u} = \begin{bmatrix} 1 & 0 \end{bmatrix}_B^T$ e $\vec{v} = \begin{bmatrix} 0 & 1 \end{bmatrix}_B^T$

A estratégia de mudança de base consiste em escrever os vetores \vec{a} e \vec{b} como combinações lineares dos vetores da base B. Analiticamente:

$$\vec{a} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}_{C_2} = 4\vec{i} + 6\vec{j} = \alpha \vec{u} + \beta \vec{v}. \tag{1}$$

Em (1), substituem-se as coordenadas de \vec{u} e \vec{v} na base canônica para escrever:

$$\vec{a} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}_{C_2} = \alpha \begin{bmatrix} -1 \\ 2 \end{bmatrix}_{C_2} + \beta \begin{bmatrix} 3 \\ 1 \end{bmatrix}_{C_2} \tag{2}$$

A relação (2) implica no sistema linear:

$$\begin{cases}
-\alpha + 3\beta = 4 \\
2\alpha + \beta = 6
\end{cases} \Rightarrow \begin{bmatrix}
-1 & 3 \\
2 & 1
\end{bmatrix} \cdot \begin{bmatrix} \alpha \\ \beta \end{bmatrix}_B = \begin{bmatrix} 4 \\ 6 \end{bmatrix}_{C_2} \text{ (em notação matricial)}.$$
(3)

A solução de (3) revela que $\alpha = 2$ e $\beta = 2$. Assim, tem-se $\vec{a} = \begin{bmatrix} 4 & 6 \end{bmatrix}_{C_2}^T = 4\vec{i} + 6\vec{j} = 2\vec{u} + 2\vec{v} = \begin{bmatrix} 2 & 2 \end{bmatrix}_B^T$. De forma análoga, escreve-se:

$$\begin{bmatrix} -4 \\ 1 \end{bmatrix}_{C_2} = -4\vec{\imath} + \vec{\jmath} = \gamma \vec{u} + \delta \vec{v} = \gamma \begin{bmatrix} -1 \\ 2 \end{bmatrix}_{C_2} + \delta \begin{bmatrix} 3 \\ 1 \end{bmatrix}_{C_2} = \begin{bmatrix} \gamma \\ \delta \end{bmatrix}_B. \tag{4}$$

A relação (4) implica no sistema linear:

$$\begin{cases} -\gamma + 3\delta = -4 \\ 2\gamma + \delta = 1 \end{cases} \Rightarrow \begin{bmatrix} -1 & 3 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} \gamma \\ \delta \end{bmatrix}_B = \begin{bmatrix} -4 \\ 1 \end{bmatrix}_{C_2} \text{ (em notação matricial)}. \tag{5}$$

A solução de (5) mostra que $\gamma=1$ e $\delta=-1$. Logo, $\vec{b}=[-4 \quad 1]_{C_2}^T=-4\vec{\imath}+\vec{\jmath}=-\vec{u}+\vec{v}=[-1 \quad 1]_B^T$. A figura 2 ilustra as construções geométricas que corroboram os resultados analíticos obtidos.

Figura 2: (a) As coordenadas de \vec{a} na base B; (b) As coordenadas de \vec{b} na base B

Exemplo 3. Na figura 3, os pontos *M* e *N* são os pontos médios dos lados *DD'* e *AB* do paralelepípedo *ABCDA'B'C'D'*. Os pontos *R* e *S* são pontos de trissecção dos lados *D'C'* e *BB'*. Com base nesta figura, tem-se:

$$\overrightarrow{DM} = \frac{1}{2}\vec{v}; \overrightarrow{AN} = \frac{1}{2}\vec{u}; \overrightarrow{D'R} = \frac{1}{3}\vec{u}; \overrightarrow{BS} = \frac{1}{3}\overrightarrow{BB'} = \frac{1}{3}\vec{v}$$

Pedem-se:

- a) Expressar $\vec{n} = \overrightarrow{MN}$, $\vec{b} = \overrightarrow{MB}$, $\vec{s} = \overrightarrow{MS}$, $\vec{r} = \overrightarrow{MR}$ e $\vec{z} = \overrightarrow{RS}$ na base $\vec{b} = \{\vec{u}, \vec{v}, \vec{w}\}$.
- b) Mostrar, com argumentos geométricos, que $B_1 = \{\vec{n}, \vec{b}, \vec{s}\}$ também é uma base do \mathbb{R}^3 .
- c) Expressar $\vec{r} = \overrightarrow{MR}$ e $\vec{z} = \overrightarrow{RS}$ na nova base B_1 .

Figura 3: O paralelepípedo ABCDA'B'C'D'

A inspeção da figura 3 permite expressar os vetores $\vec{n} = \overrightarrow{MN}$, $\vec{b} = \overrightarrow{MB}$, $\vec{s} = \overrightarrow{MS}$, $\vec{r} = \overrightarrow{MR}$ e $\vec{z} = \overrightarrow{RS}$ na base B – alínea a:

$$\vec{n} = \overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DA} + \overrightarrow{AN} = -\frac{1}{2}\vec{v} - \vec{w} + \frac{1}{2}\vec{u} = \frac{1}{2}\vec{u} - \vec{w} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -1 \end{bmatrix}_B^T$$

$$\vec{b} = \overrightarrow{MB} = \vec{n} + \overrightarrow{NB} = \frac{1}{2}\vec{u} - \frac{1}{2}\vec{v} - \vec{w} + \frac{1}{2}\vec{u} = \vec{u} - \frac{1}{2}\vec{v} - \vec{w} = \begin{bmatrix} 1 & -\frac{1}{2} & -1 \end{bmatrix}_B^T$$

$$\vec{s} = \overrightarrow{MS} = \vec{b} + \frac{1}{3}\vec{v} = \vec{u} - \frac{1}{2}\vec{v} - \vec{w} + \frac{1}{3}\vec{v} = \vec{u} - \frac{1}{6}\vec{v} - \vec{w} = \begin{bmatrix} 1 & -\frac{1}{6} & -1 \end{bmatrix}_B^T$$

$$\vec{r} = \overrightarrow{MR} = \overrightarrow{MD'} + \overrightarrow{D'R} = \frac{1}{2}\vec{v} + \frac{1}{3}\vec{u} = \frac{1}{3}\vec{u} + \frac{1}{2}\vec{v} + 0\vec{w} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & 0 \end{bmatrix}_B^T$$

$$\vec{z} = \overrightarrow{RS} = -\vec{r} + \vec{s} = -\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & 0 \end{bmatrix}_B^T + \begin{bmatrix} 1 & -\frac{1}{6} & -1 \end{bmatrix}_B^T = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & -1 \end{bmatrix}_B^T$$
ou ainda, $\vec{z} = \overrightarrow{RS} = \overrightarrow{RC'} + \overrightarrow{C'B'} + \overrightarrow{B'S} = \frac{2}{3}\vec{u} - \vec{w} - \frac{2}{3}\vec{v} = \frac{2}{3}\vec{u} - \frac{2}{3}\vec{v} - \vec{w} = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & -1 \end{bmatrix}_B^T$

Com relação a alínea b, o conjunto $B_1 = \{\vec{n}, \vec{b}, \vec{s}\}$ pode ser considerada como uma outra base do \mathbb{R}^3 porque os vetores \vec{n} , \vec{b} e \vec{s} não são coplanares. De fato, tais vetores estão sobre arestas do tetraedro *MNBS*.

Para a alínea c, deseja-se determinar escalares α , β e γ tais que $\vec{z} = (\alpha, \beta, \gamma)_{B_1} = \alpha \vec{n} + \beta \vec{b} + \gamma \vec{s}$. O procedimento de mudança de base exige que todos os vetores envolvidos estejam escritos na base $B = \{\vec{u}, \vec{v}, \vec{w}\}$. Assim:

$$\begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & -1 \end{bmatrix}_{R}^{T} = \alpha \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -1 \end{bmatrix}_{R}^{T} + \beta \begin{bmatrix} 1 & -\frac{1}{2} & -1 \end{bmatrix}_{R}^{T} + \gamma \begin{bmatrix} 1 & -\frac{1}{6} & -1 \end{bmatrix}_{R}^{T}$$
 (6)

A equação (6) implica na construção do sistema linear:

$$\begin{cases} \frac{\alpha}{2} + \beta + \gamma = \frac{2}{3} \\ -\frac{\alpha}{2} - \frac{\beta}{2} - \frac{\gamma}{6} = -\frac{2}{3} \\ -\alpha - \beta - \gamma = -1 \end{cases}$$
 (7)

A solução de (7) é
$$\alpha = \frac{2}{3}$$
, $\beta = \frac{5}{6}$ e $\gamma = -\frac{1}{2}$. Logo, tem-se $\vec{z} = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & -1 \end{bmatrix}_B^T = \begin{bmatrix} \frac{2}{3} & \frac{5}{6} & -\frac{1}{2} \end{bmatrix}_B^T$.

Exercícios Propostos de Mudança de Base

E1. Sejam os vetores $\overrightarrow{z_1} = 2\overrightarrow{u} - \overrightarrow{v}$, $\overrightarrow{z_2} = \overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w}$, em que $B = \{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ é uma base do espaço geométrico \mathbb{R}^3 .

- a) Mostre que $Z = \{\overrightarrow{z_1}, \overrightarrow{z_2}, \overrightarrow{z_3}\}$ também é uma base do \mathbb{R}^3 .
- b) Determine as coordenadas de $\vec{b} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_B^T$ na base Z.
- c) Determine as coordenadas de $\vec{z} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_Z^T$ na base B.

E2. Sejam $B = {\vec{u}, \vec{v}, \vec{w}}$ base do \mathbb{R}^3 e os vetores $\vec{f_1} = \vec{u} - \vec{v} + 2\vec{w}, \vec{f_2} = 3\vec{v} - \vec{w}$ e $\vec{f_3} = \vec{u} + \vec{w}$.

- a) Mostrar que $F = \{\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{f_3}\}$ é também uma base do \mathbb{R}^3 .
- b) Expressar $\vec{r} = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}_B^T$ na base $F \in \vec{s} = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}_F^T$ na base B.

E3. Sejam $B = \{\vec{r}, \vec{s}, \vec{t}\}$ base do \mathbb{R}^3 e $\vec{z} = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}_B^T$. Pedem-se:

- a) Mostrar que $B_1 = \{\vec{u}, \vec{v}, \vec{w}\} = \{2\vec{s}, -\vec{t}, 3\vec{r}\}$ também é uma base do \mathbb{R}^3 .
- b) Expressar \vec{z} na base B_1 .

E4. Seja $B = \{\vec{u}, \vec{v}, \vec{w}\}$ uma base do \mathbb{R}^3 .

- a) Mostre que o terno $F = \{\vec{u}, \alpha \vec{u} + \vec{v}, \alpha \vec{u} + \vec{w}\}$ também é base do \mathbb{R}^3 , independentemente do número real α escolhido.
 - b) Dê as coordenadas de \vec{w} na base F, em função do parâmetro α .

E5. Sejam $B = \{\vec{a}, \vec{b}, \vec{c}\}$ uma base do \mathbb{R}^3 e $\vec{v} = [\alpha \quad \beta \quad \gamma]_B^T$. Determine a relação entre os números reais α, β e γ para que $\beta' = \{\vec{a} + \vec{v}, \vec{b} + \vec{v}, \vec{c} + \vec{v}\}$ também seja base do \mathbb{R}^3 .