Volumetric Reconstruction Applied to Perceptual Studies of Size and Weight

IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, 2014

Poster Session 1

J. Balzer, M. Peters, and S. Soatto

Objective

RGBD scanning system for volume estimation:

- easy to use for non-experts
- inexpensive
- non-destructive
- recovery of topological structure
- applicable to wide range of shapes and appearances
- o more precise than back-of-the-envelope estimates

Size-weight and other illusions

Method

- 1. View alignment
- others: tracking
- no texture required (similarity by closeness)
- redundancy in depth image stream
- * noise removal by averaging
- * possibly oversmoothing (\hookrightarrow drift)
- -steady motion and static scene required
- ohere: RANSAC-type wide-baseline matching
- hypotheses based on photometric correspondence
- geometric validation
- noise removal by Hodge projection

Stratification artefacts

Tracker drift

Scenect

Our method

- 2. Surface reconstruction
 - \circ topology best recovered by implicit function arphi
 - o direct estimation (cf. [3] etc.)
 - o indirect estimation:

$$\varphi = \arg\min_{\phi} \int_{\mathbb{R}^3} \frac{1}{2} \|\nabla \phi - \boldsymbol{n}\|^2 \, \mathrm{d}\boldsymbol{x}$$

(Poisson reconstruction [2])

- \circ normals $m{n}$ by finite-differencing on depth channel
- \circ noise/curl suppressed in $m{n}$ not arphi
- 3. Volume estimation
- Gauss theorem:

$$\int_{\Omega} \operatorname{div} \boldsymbol{v} d\Omega = \int_{\Gamma} \langle \boldsymbol{v}, \boldsymbol{n} \rangle d\Gamma$$

 \circ choice of $\boldsymbol{v}:=(x,0,0)^{\top}$ yields

$$V = \int_{\Gamma} \langle \boldsymbol{v}, \boldsymbol{n} \rangle \mathrm{d}\Gamma$$

- hole-filling
- -alignment with robust estimate of ground plane
- -vanishing of flow $oldsymbol{v}$ through contact surface

Yet Another Scanner (YAS)

- \circ open-source C++ implementation of complete processing pipeline
- o implements sensor model according to [1]
- o supports all Primesense/ONI devices
- QT frontend
- -file I/O in various formats
- maintenance of (calibration) parameters
- -3d viewer
- dependencies
- -OpenCV
- -QT
- OpenEXR
- -OpenNI
- Boost
- libann
- growing documentation

Download: http://bitbucket.org/jbalzer/yas

Results

Scenect K

Kinect Fusion [3]

YAS

No.	$V_{\text{manual}} \\ [10^{-3} m^3]$	$V_{\rm YAS} \\ [10^{-3}m^3]$	$E_{\mathrm{YAS}} \ [\%]$	V_{Scenect} $[10^{-3}m^3]$	$E_{ m Scenect} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$V_{\rm KinFu}$ $[10^{-3}m^3]$	$E_{ ext{KinFu}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
1	1.26	1.26	0.11	1.26	0.6	1.47	16.6
2	2.82	2.72	-3.38	2.68	-5.1	3.61	28.4
3	1.29	1.21	-6.07	1.21	-6.17	1.63	27.0
4	3.07	3.07	-0.02	2.83	-7.57	4.23	38.0
5	2.18	2.06	-5.44	2.1	-3.79	2.85	31.1
6	6.26	6.44	2.86	5.76	-7.07	7.69	22.9
7	1.66	1.79	8.22	1.75	5.65	1.67	0.55
8	1.78	1.89	6.0	1.67	-6.28	2.15	20.3
9	2.75	2.75	0.05	2.68	2.41	3.84	39.8
10	24.6	24.8	1.05	18.6	-24.4	28.8	17.1
μ	_	_	-0.34		-5.74		24.2
σ			4.59		7.76		11.5

Volumes **Errors** Kinect Fusion [3] Object

References

- [1] D. Herrera, J. Kannala, and J. Heikkilä. Joint depth and color camera calibration with distortion correction. *IEEE T. Pattern Anal.*, 34(10):2058–64, 2012.
- [2] M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction. *ACM Trans. Graph*, 32(1):1–13, 2013.
- [3] R.A. Newcombe, D. Molyneaux, D. Kim, P. Koli, A.J. Davison, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-Time Dense Surface Mapping and Tracking. *IEEE Proc. ISMAR*, 1:127–136, 2011.