

Sisteme Încorporate

Cursul 4 Consumul de energie în Embedded(2)

Facultatea de Automatică și Calculatoare Universitatea Politehnica București

http://dilbert.com/strips/comic/1995-12-19/

În cursul de azi

- Chestiuni generale
- Putere vs. Energie
- Tehnici de bază
 - Paralelism
 - VLIW (paralelism şi overhead redus)
 - Dynamic Voltage Scaling
 - Dynamic Power Management

Consumul de energie și putere

De ce avem nevoie de eficiență energetică:

"Power is considered as the most important constraint in embedded systems"

[in: L. Eggermont (ed): Embedded Systems Roadmap 2002,

[in: L. Eggermont (ed): Embedded Systems Roadmap 2002 STW]

"Power demands are increasing rapidly, yet battery capacity cannot keep up". [in Diztel et al.: Power-Aware Architecting for data-dominated applications, 2007,

Alternative de implementare

Performanță Eficiență Energetică **General-purpose processors**

Application-specific instruction set processors (ASIPs)

- Microcontroller
- DSPs (digital signal processors)

Programmable Logic

Field Programmable Gate Arrays (FPGA)

Application-specific integrated circuits (ASICs)

Flexibilitate

Conflictul putere/flexibilitate

Eficiența Energetică

© Hugo De Man, IMEC, Philips, 2007

Ce poate să facă un proiectant embedded?

- 1. Să înțeleagă unde și de ce se disipă energia într-un circuit.
- 2. Să se gândească cum să reducă consumul la toate nivelele din ierarhia de design.
- În trecut era destul de greu de implementat o astfel de abordare
- Toate eforturile erau depuse în reducerea consumului la nivel de circuit

Cuprins

- Chestiuni generale
- ► Putere vs. Energie
- Tehnici de bază
 - Paralelism
 - VLIW (paralelism şi overhead redus)
 - Dynamic Voltage Scaling
 - Dynamic Power Management

Puterea și Energia sunt interdependente

$$E = \int P(t)dt$$

$$E$$

În majoritatea cazurilor, o execuție mai rapidă înseamnă și consum mai mic de energie, dar exact opusul poate să se întâmple în momentul în careputerea trebuie mărită pentru a permite execuția rapidă.

Low Power vs. Low Energy

- Minimizarea consumului de putere este importantă pentru:
 - proiectarea sursei de alimentare
 - proiectarea stabilizatoarelor de tensiune
 - dimensiunile conexiunilor şi traseelor de alimentare
 - ■răcire (disipare eficientă a căldurii)
 - cost ridicat (estimat că va crește de la \$1 la \$3 per Watt pentru disiparea căldurii [Skadron et al. ISCA 2003])
 - spaţiu limitat
- Minimizarea consumului de energie este importantă pentru:
 - disponibilitate redusă a energiei (sisteme mobile)
 - capacitatea limitată a bateriilor (creşte prea lent)
 - costurile mari ale energiei (panouri solare, în spațiu)
 - timp de viață mărit, temperatură de operare scăzută

- Cea mai simplă poartă logică doar două tranzistoare
- •Funcționare complementară (MOS-N în conjuncție cu MOS-P)

Input = 0V -> MOS-P conduce, MOS-N blocat -> Out = 5V

•Input = 5V -> MOS-N conduce, MOS-P blocat -> Out = 0V

- Ce se întâmplă în regim tranzitoriu? (când intrarea comută)
 - ➤ Pentru o scurtă perioadă de timp (~nS) amândouă tranzistoarele sunt deschise -> scurt între Vcc și GND -> consum de energie

Consumul de putere al unei porți CMOS

Dynamic Voltage Scaling

Consumul de putere CMOS (fără leakage):

$$P \sim \alpha C_L V_{dd}^2 f$$

 V_{dd} : supply voltage

 α : switching activity

 C_L : load capacity

f : clock frequency

Întârzierea unui circuit CMOS

$$\tau \sim C_L \frac{V_{dd}}{(V_{dd} - V_T)^2}$$

 V_{dd} : supply voltage

 V_T : threshold

voltage

 $V_T \ll V_{dd}$

Scăderea V_{dd} reduce P cuadratic (f constant). Gate delay crește reciproc.

Frecvența maximă f_{max} scade liniar.

Puterea disipată în CMOS

$$P = \frac{1}{2}ACV^{2}f + \tau AVI_{short}f + VI_{leak}$$

P = putere totală

V = tensiunea de alimentare

f = frecvența de ceas

C = capacitatea liniilor de ieșire

A = activitate (tranziții logice pe ciclu de ceas)

 I_{leak} = curent de mers în gol I_{short} = curent de scurt-circuit

 τ = durata curentului de scurt-circuit

Măsurarea puterii disipate în CMOS

$$P = \frac{1}{2}ACV^{2}f + \tau AVI_{short}f + VI_{leak}$$

Puterea de comutație Puterea de scurt-circuit Puterea de mers în gol

Putere dinamică

Putere statică

Puterea dinamică

- Puterea de comutație
 - Puterea dinamică cauzată de încărcarea și descărcarea sarcinilor capacitive de la ieșirea fiecărei porți logice
 - Este "vinovată" pentru majoritatea puterii disipate întrun chip
 - Factori de influență
 - Tensiunea de alimentare (V)
 - Frecvenţa de ceas (f)
 - Activitatea (A): unele porți logice nu comută la fiecare ciclu
- Puterea de scurt-circuit
 - Putere dinamică datorată existenței curentului de scurtcircuit l_{short} care se stabilește un timp τ între alimentare și masă în momentul în care intrarea comută dintr-o stare în alta și ambele tranzistoare sunt deschise.

Puterea Statică

- Leakage current. Este predominant când circuitul este inactiv
 - Există un consum deoarece tranzistoarele nu au rezistența infinită atunci când sunt închise
- Diode leakage (neglijabil)
 - Sursa (şi drena) formează o diodă cu substratul
 - În anumite condiții dioda poate fi polarizată, determinând apariția unui curent rezidual.

Consumul de putere al procesoarelor CMOS

Principalele surse:

- ■Puterea dinamică
 - Încărcarea și descărcarea condensatoarelor parazite
- Puterea de scurt-circuit
 - Scurt-circuit între Vcc şi GND la comutare
- Leakage
 - Diode şi tranzistoare imperfecte
 - · Devine unul din factorii majori odată cu micșorarea dimensiunilor

Optimizare potențială: DVS

$$P \sim \alpha C_L V_{dd}^2 f$$

$$E \sim \alpha C_L V_{dd}^2 ft = \alpha C_L V_{dd}^2$$
 (#cycles)

Reducerea consumului de energie pentru un task dat:

- -Reducerea tensiunii de aliemntare V_{dd}
- -Reducerea activității α
- Reducerea capacității din sarcină C_L
- -Reducerea numărului de cicli #cycles

Exemplu: Voltage Scaling

Power Supply Gating

- Power gating este una dintre cele mai eficiente metode de a minimiza consumul static de putere (leakage)
 - ■Taie alimentarea unităților/componentelor inactive
 - Reduce leakage-ul

Clock gating

Deselectează unitațile logice atunci când nu sunt folosite de sistem

Care factor din formula puterii este minimizat?

Disiparea Puterii

- Puterea activă este factorul cel mai important în ziua de azi
- Puterea de mers în gol va deveni importantă odată cu mărirea integrării
- Puterea de mers în gol crește cu temperatura

Strategii de reducere a consumului

- Reducerea frecvenței de ceas (f)
 - Scade puterea medie dar mărește timpul de execuție -> consumul de energie rămâne constant
 - Metrică mai bună pentru un procesor low-power: MIPS/W ≡ million instructions per sec per watt
- Reducerea tensiunii de alimentare (V)
 - Puterea de comutație este proporțională cu V²
 - O scădere a lui V cu ½ → puterea scade cu ¼
 - De ce nu merge la nesfârșit așa?
- Reducerea activității (A)
 - Dezactivarea unor blocuri funcționale atunci când nu sunt active
- Reducerea curenților reziduali
 - Dezactivarea alimentării anumitor zone de circuit

Reducerea lui V -> Reducerea lui f

$$f_{\text{max}} \sim \frac{(V - V_{threshold})^2}{V}$$

- Frecvența maximă de ceas este direct proporțională cu V
- Reducerea puterii cu ¼ reduce frecvenţa cu ½ -> pierderi de performanţă -> consum redus
- Implicație indirectă: Paralelismul în procesare este o strategie eficientă de a reduce puterea fără pierderi de performanță

- Altfel, circuitul nu poate funcționa corect
- Reducerea V_{threshold} măreste exponențial curentul rezidual
- Puterea de mers în gol începe să fie o problemă

$$I_{leak} \sim \frac{1}{e^{(\frac{qV_{threshold}}{kT})}}$$

Cuprins

- Chestiuni generale
- Putere vs. Energie
- ► Tehnici de bază
 - Paralelism
 - VLIW (paralelism şi overhead redus)
 - Dynamic Voltage Scaling
 - Dynamic Power Management

Folosirea paralelismului

$$E \sim V_{dd}^2 \ (\text{\#cycles})$$

 $E_2 = \frac{1}{4}E_1$

Folosirea benzii de asamblare

$$E \sim V_{dd}^2 \, (\text{\#cycles})$$

 $E_2 = \frac{1}{4}E_1$

Exemplu de calcul al puterii

Area = $636 \times 833 u^2$

- · Întârziere pe calea critică: $T_{adder} + T_{comparator} = 25 \text{ ns}$
- Frecvenţa: f_{ref} = 40 MHz
- Capacitatea totală de comutație = C_{ref}
- \cdot V_{dd} = V_{ref} = 5V
- Puterea de comutație = $P_{ref} = C_{ref}V_{ref}^2f_{ref}$

Paralelizarea căii de date

Area = 1476 x 1219 μ^2

- Frecvența de ceas poate fi înjumătățită fără a pierde din productivitate: $f_{par} = f_{ref}/2 = 20 \text{ MHz}$
- · Capacitate totală de comutație= $C_{par} = 2.15C_{ref}$
- $\cdot V_{par} = V_{ref}/1.7 (=3V)$
- $\cdot P_{par} = (2.15C_{ref})(V_{ref}/1.7)^2(f_{ref}/2) = 0.37P_{ref}$

Pipeline

•
$$f_{pipe} = f_{ref}$$

 $C_{pipe} = 1.1C_{ref}$
 $V_{pipe} = V_{ref}/1.7$

- Tensiunea poate fi scăzută păstrându-se aceleași performanțe
- Pipe = $C_{pipe}V_{pipe}^2f_{pipe} = (1.1C_{ref})(V_{ref}/1.7)^2f_{ref} = 0.38P_{ref}$

Concluzii

Arhitectura	Tensiune	Arie	Putere
Originala	5V	1	1
Pipeline	2.9V	1.3	0.37
Paralel	2.9V	3.4	0.34
Pipeline- Paralel	2.0V	3.7	0.18

- + Prin paralelizare s-a redus puterea dinamică disipată de 5.5 ori.
- Suprafața circuitului a crescut de 4 ori.
- Mărirea numărului de unități logice duce la creșterea puterii disipate în regimul de mers în gol și scurt-circuit.

Cuprins

- Chestiuni generale
- Putere vs. Energie
- ► Tehnici de bază
 - Paralelism
 - VLIW (paralelism şi overhead redus)
 - Dynamic Voltage Scaling
 - Dynamic Power Management

Ajută foarte mult idelie noi...

Pentium Crusoe

Rulează aceeași aplicație multimedia.

Publicat de Transmeta [www.transmeta.com]

Arhitecturi VLIW

- Un grad foarte mare de paralelism
 - •Multe unități computaționale, (deeply) pipelined
- Arhitectură hardware simplă
 - Paralelism explicit (parallel instruction set)
 - Paralelizarea este făcută offline (compilator)

Transmeta este o <u>arhitectură VLIW tipică</u>

- 128-bit instructions (bundles):
 - 4 operations per instruction
 - 2 combinations of instructions allowed
- Register files
 - 64 integer, 32 floating point
- Some interesting features
 - 6 stage pipeline (2x fetch, decode, register read, execute, write)
 - x86 ISA execution using software techniques
 - Skip the binary compatibility problem!!
 - · Interpretation and just-in-time binary translation
 - Speculation support

Transmeta

Cuprins

- Chestiuni generale
- Putere vs. Energie
- ► Tehnici de bază
 - Paralelism
 - VLIW (paralelism şi overhead redus)
 - Dynamic Voltage Scaling
 - Dynamic Power Management

Management spațial vs. dinamic

Nu toate componentele necesită aceeași performanță.

Performanța cerută poate să varieze în timp

Optimizare potențială: DVS

$$P \sim \alpha C_L V_{dd}^2 f$$

$$E \sim \alpha C_L V_{dd}^2 ft = \alpha C_L V_{dd}^2$$
 (#cycles)

Reducerea consumului de energie pentru un task dat:

- -Reducerea tensiunii de aliemntare V_{dd}
- -Reducerea activității α
- Reducerea capacității din sarcină C_L
- -Reducerea numărului de cicli #cycles

Exemplu: INTEL Xscale

POWER-PERFORMANCE COMPARISON

Sistemul de operare trebuie să facă managementul consumului în funcție de necesități și de bugetul energetic dat.

From Intel's Web Site

Just-in-time scheduling

- Exploatează la maxim timpul oferit pentru procesarea unui volum de date.
- Procesorul rulează la o tensiune sau o frecvență redusă pentru a îndeplini sarcina exact în timpul alocat ei.

Exemplu DVS: a) Complete task ASAP

$\overline{V_{dd}[V]}$	5.0	4.0	2.5
Energy per cycle [nJ]	40	25	10
f_{max} [MHz]	50	40	25
cycle time [ns]	20	25	40

Task-ul trebuie să execute 109 cicli în 25 secunde.

Exemplu DVS: b) Două tensiuni

V_{dd} [V]	5.0	4.0	2.5
Energy per cycle [nJ]	40	25	10
f_{max} [MHz]	50	40	25
cycle time [ns]	20	25	40

Exemplu DVS: c) Tensiune optimă

$\overline{V_{dd}}$ [V]	5.0	4.0	2.5
Energy per cycle [nJ]	40	25	10
f_{max} [MHz]	50	40	25
cycle time [ns]	20	25	40

DVS: Strategie optimă

Execută task-ul în timpul fix T cu tensiunea variabilă $V_{cd}(t)$:

gate delay:
$$au \sim rac{1}{V_{dd}}$$

execution rate: $f(t) \sim V_{dd}(t)$

invariant: $\int V_{dd}(t)dt = \text{const.}$

- cazul A: execută la tensiunea x pentru T · a unități de timp și la tensiunea y pentru (1-a) · T unități de timp; Consumul de energie: T · (P(x) · a + P(y) · (1-a))
- ▶ cazul B: execută la tensiunea $z = a \cdot x + (1-a) \cdot y$ pentru T unități de timp; consumul de energie $T \cdot P(z)$

DVS: Strategie optimă

- Dacă este posibil, rularea la o frecvență constantă (tensiune) minimizează consumul de energie pentru dynamic voltage scaling:
 - **■cazul A** este întotdeauna cel mai rău dacă consumul de putere este o funcție convexă a tensiunii de alimentare

Voltage Scaling - exemplu

ultatea de Automatica si Calculatoare

Managementul energetic la nivel de sistem

Aplicație

Algoritm

Cod Sursă

Compilator

Runtime/OS

ISA

Microarhitectura

Logica

Circuit

-> Exportarea job-urilor comp. intensive

-> Procesare variabilă în funcție de calitate

-> Structuri de date îmbunătățite

-> Compilare energy-aware

-> Just-in-time scheduling

-> ISA redus

-> Filter cache

-> Clock gating

- >Reducerea tensiunii de alimentare.

Paralelizare

Filtru Cache

- O memorie cache de mici dimensiuni în faţa memoriei cache L1
- Dacă adresa înregistrează un hit în filtru, nu este trimisă mai departe
- Dacă memoria cache e mai mică -> consumul de energie per acces e mai mic.

Reducerea consumului altor componente

- Înlocuirea hard-discului cu memorie flash
 - Consum scăzut și viteză comparabilă cu DRAM
 - Ştergerea are totuşi o latenţă mare
- Echipamente wireless de comunicație
 - Idle mode la transmiţător
 - Posibilitatea de modificare a puterii de emisie
- Display şi backlight
 - Tehnicile de reducere a consumului pot micșora timpul de viață

