Обзор математического анализа IV

Сюй Минчуань

9 сентября 2020 г.

Содержание

1.1 1.2 1.3 1.4 1.5 1.6 1.7	Собственные интегралы, зависящие от параметра (ИЗП). Лек.1 Признаки равномерной сходимости несобственных ИЗП (Вейерштрасса, Дирихле-Абеля, Дини). Лек.2	3 4 5 5 6 6
1.3 1.4 1.5 1.6 1.7	ерштрасса, Дирихле-Абеля, Дини). Лек.2	5 5 6
1.4 1.5 1.6 1.7	Непрерывность и интегрируемость несобственных ИЗП на отрезке. Лек.З	5 5 6
1.4 1.5 1.6 1.7	резке. Лек.З	5 6
1.5 1.6 1.7	Дифференцируемость несобственных ИЗП. Лек.3 Интегрируемость несобственных ИЗП на полупрямой. Лек.3 . Вычисление интеграла Дирихле. Задача 3812.1	5 6
1.5 1.6 1.7	Интегрируемость несобственных ИЗП на полупрямой. Лек.3. Вычисление интеграла Дирихле. Задача 3812.1	6
1.6 1.7	Вычисление интеграла Дирихле. Задача 3812.1	
1.7	- · · · - · · · · · · · · · · · · · · ·	6
		U
4 0	Свойства Г-функции Эйлера. Лек.4	7
1.8	Свойства В-функции Эйлера. Связь между эйлеровыми ин-	
	тегралами. Лек.4	7
1.9	Асимптотическая формула для функции $\Gamma(\lambda+1), \lambda \to +\infty$.	
	Формула Стирлинга. Лек.5	8
Teo	рия рядов Фурье	8
2.1	Ортонормированные системы. Задача о наилучшем прибли-	
	жении элемента евклидова пространства. Лек.6	8
2.2	Замкнутость и полнота ортонормированных систем. Лек.7	9
2.3	Теорема Фейера. Лек.8	10
2.4	Замкнутость тригонометрической системы. Следствия из за-	
	мкнутости. Лек.7	11
2.5	Теоремы Вейерштрасса о равномерном приближении непре-	
	рывной функции. Лек.8	11
2.6	Локальная теорема Фейера. Лек.9	12
2.7	Простейшие условия равномерной сходимости и почленной	
	дифференцируемости рядов Фурье. Лек.9	12
2.8	Уточнённые условия равномерной сходимости ряда Фурье.	
	Лек.10	13
2.9	Условие сходимости тригонометрического ряда Фурье в точ-	
	ке. Сходимость ряда Фурье кусочно-гельдеровой функции.	
	Лек.12	14
2.10	Принцип локализации Римана. Лек.11	15
	1.8 1.9 Teop 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	 Свойства Γ-функции Эйлера. Лек.4 Свойства В-функции Эйлера. Связь между эйлеровыми интегралами. Лек.4 Асимптотическая формула для функции Γ(λ + 1), λ → +∞. Формула Стирлинга. Лек.5 Ортонормированные системы. Задача о наилучшем приближении элемента евклидова пространства. Лек.6 Замкнутость и полнота ортонормированных систем. Лек.7 Теорема Фейера. Лек.8 Замкнутость тригонометрической системы. Следствия из замкнутости. Лек.7 Теоремы Вейерштрасса о равномерном приближении непрерывной функции. Лек.8 Локальная теорема Фейера. Лек.9 Простейшие условия равномерной сходимости и почленной дифференцируемости рядов Фурье. Лек.9 Уточнённые условия равномерной сходимости ряда Фурье. Лек.10 Условие сходимости тригонометрического ряда Фурье в точке. Сходимость ряда Фурье кусочно-гельдеровой функции. Лек.12

2.11	Свойства преобразования Фурье. Лек.13-14	15
2.12	Условия разложимости функции в интеграл Фурье. Лек.13-14	16

1 Интегралы, зависящие от параметров

1.1 Собственные интегралы, зависящие от параметра (ИЗП). Лек.1

Рассмотрим функцию f, определённую на $\Pi=[a\leqslant x\leqslant b]\times [c\leqslant y\leqslant d]$. Пусть $\forall y\in [c,d]$ существует интеграл по $x\int_a^b f(x,y)dx$. Тогда можно сказать, что на [c,d] определена функция

$$J(y) = \int_{a}^{b} f(x, y)dx \tag{1}$$

называемая собственным интегралом, зависящим от параметра. Теорема о непрерывности собственных ИЗП Если функция $f \in \mathcal{C}(\Pi)$, то ИЗП (1) непрерывен на П (даже равномерно непрерывен по Теореме

Теорема об интегрируемости собственных ИЗП Если $f \in \mathcal{C}(\Pi)$, то J(y) интегрируема на [c,d], причем интегрирование можно проводить под знаком интеграла, т.е.

$$\int_{a}^{b} J(y)dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx \tag{2}$$

Теорема о дифференцируемости собственных ИЗП Если $f\in\mathcal{C}(\Pi)$ и $\frac{\partial f}{\partial v}(x,y)\in\mathcal{C}(\Pi),$ то J(y) дифференцируема на [c,d] и справедлива формула

$$J'(y) = \int_a^b f_y'(x, y) dx \tag{3}$$

Рассмотрим функцию f, определённую на Π . Пусть внутри него лежат две кривые: $x=\alpha(y), x=\beta(y)$. Рассмотрим область $D=\{\alpha(y)\leq x\leq \beta(y), c\leq y\leq d\}=[\alpha(y)\leq x\leq \beta(y)]\times [c\leq y\leq d]$. Пусть $\forall y\in [c,d]$ существует интеграл

$$J(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx \tag{4}$$

Теорема о непрерывности собственных ИЗП - 2 Если функция $f \in \mathcal{C}(\Pi)$, а функции $\alpha, \beta \in \mathcal{C}[c,d]$, то ИЗП (4) непрерывна на [c,d].

Теорема о дифференцируемости собственных ИЗП - 2 Пусть $f \in \mathcal{C}(\Pi)$ и $\frac{\partial f}{\partial y}(x,y) \in \mathcal{C}(\Pi)$, а $\alpha(y)$ и $\beta(y)$ дифференцируемы на [c,d] Тогда функция J(y), определенная формулой (4) дифференцируема на [c,d], причем её производная вычисляется по формуле Эйлера:

$$J'(y) = \int_{\alpha(y)}^{\beta(y)} f'_y(x, y) dx + \beta'(y) f(\beta(y), y) - \alpha'(y) f(\alpha(y), y)$$
 (5)

1.2 Признаки равномерной сходимости несобственных ИЗП (Вейерштрасса, Дирихле-Абеля, Дини). Лек.2

Несобственные интегралов 1-го рода

Пусть функция f определена в полуполосе $\Pi_{\infty}=[a\leq x<+\infty)\times[c\leq y\leq d]$ и $\forall y\in[c,d]$ сходится по x несобственный интеграл

$$J(y) = \int_{a}^{+\infty} f(x, y) dx \tag{6}$$

Будем говорить, что $cxodsumu\ddot{u}cs$ при $\forall y \in [c,d]$ несобственный интеграл (6) называется равномерно сходящимся по y на [c,d], если

$$\forall \varepsilon > 0, \exists A(\varepsilon) > a : \forall R \geq A(\varepsilon) \text{ if } \forall y \in [c,d] \Rightarrow |\int_{R}^{+\infty} f(x,y) dx| < \varepsilon. \tag{7}$$

Обозначение: $\int_a^{+\infty} f(x,y) dx \stackrel{[c,d]}{\Rightarrow}$.

Несобственные интегралов 2-го рода - лек.3

Предположим, что функция f(x,y) определена и ограничена в полуоткрытом прямоугольнике $\Pi=[a\leqslant x< b]\times [c\leqslant y\leqslant d]$ и что $\forall y\in [c,d]$ сходится несобственный интеграл второго рода $\int_a^b f(x,y)dx$, т.е. $\exists \lim_{\varepsilon\to 0+0}\int_a^{b-\varepsilon} f(x,y)dx$ Будем называть несобственный интеграл $\int_a^b f(x,y)dx$ равномерно сходящимся на сегменте [c,d], если он сходится $\forall y\in [c,d]$, и справедливо

$$\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 : \forall \alpha, 0 < \alpha < \delta(\varepsilon), \forall y \in [c, d] \Rightarrow \left| \int_{b-\alpha}^{b} f(x, y) dx \right| < \varepsilon$$
 (8)

Критерий Коши равномерной сходимости Для того, чтобы несобственный интеграл (6) сходился равномерно необходимо и достаточно, чтобы выполнялось условие Коши:

$$\forall \varepsilon > 0, \exists A(\varepsilon) > a : \forall R', R'' \ge A(\varepsilon) \text{ if } \forall y \in [c, d] \Rightarrow |\int_{R'}^{R''} f(x, y) dx| < \varepsilon. \quad (9)$$

Признак Вейерштрасса Пусть

- 1) функция f(x,y) определена в Π_{∞} и для $\forall y \in [c,d]$ интегрируема по x на [a,R] для $\forall R\geqslant a.$
- 2) Пусть функция g(x) также интегрируема на [a,R] и для неё сходится несобственный интеграл $\int_a^{+\infty} g(x) dx$. 3) Пусть, наконец, всюду в полуполосе Π_{∞} справедливо неравенство $0 \le$
- 3) Пусть, наконец, всюду в полуполосе Π_{∞} справедливо неравенство $0 \le |f(x,y)| \le g(x)$.

Тогда несобственный интеграл (6) сходится по y равномерно на [c,d].

Следствие признака Вейерштрасса Пусть функция $\varphi(x,y)$ определена и ограничена в Π_{∞} , и для $\forall y \in [c,d]$ и $\forall R>a$ интегрируема по x на [a,R]. Пусть, кроме того, функция $\psi(x)$ допускает сходимость $\int_a^{+\infty} |\psi(x)| dx$. То-

гда
$$\int_a^{+\infty} \varphi(x) \cdot \psi(x) dx \stackrel{[c,d]}{\Rightarrow}$$
 по y .

Признак Дини Пусть

- 1) функция f = f(x, y) непрерывна и неотрицательна в Π_{∞} .
- 2) Пусть также несобственный интеграл $\int_a^{+\infty} f(x,y)dx$ сходится $\forall y \in [c,d]$.
- 3) Определяемая им функция J(y) является непрерывной на [c,d].

Тогда сходимость несобственного интеграла J(y) является равномерной на

Признак Дирихле Пусть для функций f = f(x, y) и g = g(x, y) выполне-

- но: $1) \ g \stackrel{[c,d]}{\Rightarrow} 0 \ \text{при} \ x \to +\infty$ $2) \ g \ \text{монотонна по} \ x \ \text{для} \ \forall y \in [c,d]$ $3) \ \forall R > a, \forall y \in [c,d] \exists M > 0 : \left| \int_a^R f(x,y) dx \right| \leqslant M$

(Частичный интеграл от функции f равномерно ограничен)

Тогда $\int_a^{+\infty} f(x,y)g(x,y)dx \stackrel{[c,d]}{\Rightarrow}$. Признак Абеля Пусть для функций f=f(x,y) и g=g(x,y) выполнено:

- 1) $\int_a^\infty f(x,y)dx \stackrel{[c,d]}{\Rightarrow} 0$ по y, при $x \to +\infty$. 2) Функция g ограничена и монотонна по x.

Тогда $\int_a^{+\infty} f(x,y)g(x,y)dx \stackrel{[c,d]}{\Rightarrow}$.

Непрерывность и интегрируемость несобственных ИЗП на отрезке. Лек.3

Непрерывность несобственных ИЗП на отрезке Пусть f = f(x, y)непрерывна на Π_{∞} , а несобственный интеграл $J(y) = \int_a^{\infty} f(x,y) dx \stackrel{[c,d]}{\rightrightarrows}$.

Интегрируемость несобственных ИЗП на отрезке Π усть f = f(x,y)непрерывна на Π_{∞} , а несобственный интеграл $J(y) = \int_a^{\infty} f(x,y) dx \stackrel{[c,d]}{\Rightarrow}$. Тогла J(y) натагрумическа на $\int_a^{\infty} f(x,y) dx \stackrel{[c,d]}{\Rightarrow}$. гда J(y) интегрируема на [c,d], причем интегрирование можно проводить под знаком интеграла, т.е. справедлива формула:

$$\int_{c}^{d} J(y)dy = \int_{a}^{+\infty} \left(\int_{c}^{d} f(x,y)dy \right) dx \tag{10}$$

Дифференцируемость несобственных ИЗП. Лек.3

Дифференцируемость несобственных ИЗП на отрезке Пусть функции f = f(x,y) и $\frac{\partial f}{\partial y}(x,y)$ непрерывны в Π_{∞} . И, если интеграл $\int_{a}^{+\infty} f'_{y}(x,y) dx \stackrel{[c,d]}{\Longrightarrow}$, а сам несобственный интеграл $\int_{a}^{+\infty} f(x,y)dx$ сходится в некоторой точке $y \in [c,d]$, то J(y) имеет производную на [c,d], и

$$J'(y) = \int_{a}^{+\infty} f_y'(x, y) dx \tag{11}$$

Интегрируемость несобственных ИЗП на полупрямой. Лек.3

Интегрируемость несобственных ИЗП на полупрямой Пусть f=f(x,y) непрерывна и неотрицательна в четверти плоскости $\{(x,y) \mid x \geq$ $a, y \geqslant c$ }. Пусть также

- 1) интеграл $J(y)=\int_a^{+\infty}f(x,y)dx$ сходится $\forall y\geqslant c,$ и определённая им функция непрерывна.
- 2) интеграл $K(x)=\int_{c}^{+\infty}f(x,y)dy$ сходится $\forall x\geqslant a,$ и определённая им функция непрерывна.

Тогда, если сходится один из двух интегралов:

$$\int_{a}^{+\infty} K(x)dx = \int_{a}^{+\infty} dx \int_{c}^{+\infty} f(x,y)dy,$$

$$\int_{c}^{+\infty} J(y)dy = \int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y)dx$$
(12)

то сходится и второй из этих интегралов, причём они равны друг другу.

Вычисление интеграла Дирихле. Задача 3812.1

Интеграл Дирихле

$$D(\beta) = \int_0^{+\infty} \frac{\sin \beta x}{x} dx = \pi/2sgn\beta \tag{13}$$

Рассмотирим интеграл вида

$$I(\alpha) = \int_0^{+\infty} e^{-\alpha x} \frac{\sin \beta x}{x} dx, \alpha \ge 0$$
 (14)

- 1) Пусть $\beta>0$. Зафиксируем произвольный β и покажем, что $I(\alpha)\rightrightarrows$ при $\alpha \in [0, +\infty).$
- $1. e^{-\alpha x}/x \Rightarrow 0$ при $x \to +\infty$, так как $(0 \le e^{-\alpha x}/x \le 1/x)$, и по признаку Вейерштрасса).
- 2. $e^{-\alpha x}/x$ монотонно убывает по x. 3. $|\int_0^A \sin\beta x dx| = |1/\beta(1-\cos\beta A)| \le 2/\beta$, то есть частичный интеграл равномерно ограничен.

Тогда по признаку Дирихле $I(\alpha)$ сходится равномерно при $\alpha \geq 0$. Следовательно $I(\alpha) \in \mathcal{C}[0, +\infty)$.

Заметим, что $\lim_{x\to+0}e^{-\alpha x}\frac{\sin\beta x}{x}=\beta$. Тогда мы вычисляем производную от функции $I(\alpha)$ под знаком интеграла. Это обеспечивается 1) $|\frac{\partial}{\partial \alpha} e^{-\alpha x} \frac{\sin \beta x}{x}| = |e^{-\alpha x} \sin \beta x| \le e^{\alpha_0 x}$ при $\alpha \ge \alpha_0 > 0$ и α_0 произвольный,

а $\int_0^{+\infty} e^{\alpha_0 x} dx$ сходится, затем по признаку Вейерштрасса. 2) Сам интеграл $I(\alpha) = \int_0^{+\infty} e^{-\alpha x} \frac{\sin \beta x}{x} dx$ при любом фиксированном значении α , так как $e^{-\alpha x}/x$ монотонно убывает по x и стремится к 0, а $\sin \beta x$ имеет ограниченную первообразную, поэтому по признаку Дирихле этот несобственный интеграл сходится при некотором(фактически при любом) α .

Используя интегрирование по частям, мы получим $I'(\alpha)=\int_0^{+\infty}\frac{\partial}{\partial\alpha}e^{-\alpha x}\frac{\sin\beta x}{x}dx=-\beta/(\alpha^2+\beta^2)$. Интегрируем $I'(\alpha)$, получим $I(\alpha)=\int_0^{+\infty}-\beta/(\alpha^2+\beta^2)d\alpha=-\arctan\alpha/\beta+C$. Так как $|I(\alpha)|\leq\beta\int_0^{+\infty}e^{-\alpha x}dx=\beta/\alpha$ и пусть $\alpha\to+\infty$, получим $\lim_{\alpha\to+\infty}I(\alpha)=0$. Из этого получим $C=\pi/2$. Тогда $I(\alpha)=-\arctan\alpha/\beta+\pi/2$.

Теперь $D(\beta) = I(0) = \pi/2$.

- 2) Пусть $\beta < 0$, тогда $D(\beta) = -D(-\beta) = -\pi/2$
- 3) Пусть $\beta < 0$, тогда очевидно D(0) = 0.

В итоге, $D(\beta) = \pi/2sgn\beta$.

1.7 Свойства Г-функции Эйлера. Лек.4

Гамма-функцией Эйлера, или **интегралом Эйлера второго рода** называется функция от одного параметра p:

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx \tag{15}$$

Свойства Г-функции

- 1) Γ -функция существует при p > 0.
- 2) $\Gamma(p)$ непрерывна при p > 0.
- 3) Формула приведения $\forall p > 0, \Gamma(p+1) = p\Gamma(p).$
- 4) $\Gamma(n+1) = n!, n \in \mathbb{N}$.
- 5) $\Gamma(1/2) = \sqrt{\pi}$.
- 6) Дифференцирование по параметру Для любых $0 < p_0 \leqslant p \leqslant p_1 < +\infty$ и $n \in \mathbb{N}$ гамма-функция n раз дифференцируема по параметру, причем справедлива формула

$$\frac{d^n}{dp^n} \int_0^{+\infty} e^{-t} t^{p-1} dt = \int_0^{+\infty} \frac{d^n}{dp^n} \left(e^{-t} t^{p-1} \right) dt = \int_0^{+\infty} e^{-t} t^{p-1} \ln^n t dt \quad (16)$$

1.8 Свойства *В*-функции Эйлера. Связь между эйлеровыми интегралами. Лек.4

Бета-функцией Эйлера, или интегралом Эйлера первого рода называется функция, зависящая от параметров p и q:

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$$
 (17)

Свойства В-функции

1) B-функция существует при p, q > 0.

- 2) B(p,q) непрерывна при p,q > 0.
- 3) Симметрия $\forall p, q > 0, B(p, q) = B(q, p).$
- 4) Формула приведения

$$B(p+1,q) = \frac{p}{p+q}B(p,q),$$

$$B(p,q+1) = \frac{q}{p+q}B(p,q)$$
(18)

5) При $\forall p > 0, \forall n \in \mathbb{N}$:

$$B(p,n) = \frac{(n-1)!}{p(p+1)\dots(p+n-1)}$$
(19)

Если $p \in \mathbb{N}$, то

$$B(p,n) = \frac{(n-1)!(p-1)!}{(p+n-1)!}$$
(20)

Связь между эйлеровыми интегралами

При p,q>0 справедливо

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \tag{21}$$

1.9 Асимптотическая формула для функции $\Gamma(\lambda+1), \lambda \to +\infty$. Формула Стирлинга. Лек.5

Формула Стирлинга Пусть $\lambda \in \mathbb{N}$. Тогда для $\lambda !$ справедлива следующая асимптотическая оценка:

$$\lambda! = \left(\frac{\lambda}{e}\right)^{\lambda} \cdot \sqrt{2\pi\lambda} \left(1 + \gamma_{\lambda}\right) \tag{22}$$

где
$$\gamma_{\lambda}=\frac{1}{12\lambda}+\frac{1}{228\lambda^2}-\frac{139}{51840\lambda^3}-\frac{571}{2448320\lambda^4}+\underline{O}\left(\frac{1}{\lambda^5}\right)$$

2 Теория рядов Фурье

2.1 Ортонормированные системы. Задача о наилучшем приближении элемента евклидова пространства. Лек.6

Система элементов $\{\psi_j\}\in L$ называется **ортонормированной**, если $(\psi_j,\psi_k)=\delta_j^k$ - символ Кронекера.

Йример Важным примером такой системы является система

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos kx}{\sqrt{\pi}}, \frac{\sin kx}{\sqrt{\pi}} \right\} \tag{23}$$

в $L[-\pi,\pi]$ и $[-\pi,\pi]$, где $k=1,2,3,\ldots$, которая называется **тригонометри**ческой системой функций.

Пусть $\{\psi_i\}$ произвольная ортонормированная система. Фиксируем $\forall n \in \mathbb{N}$ и рассмотрим сумму $\sum_{j=1}^{n} c_j \psi j$.

Отклонение элемента g **от** f в псевдоевклидовом пространстве называют число ||f - g||.

Требуется найти $\min_{c_k} ||f - \sum_{j=1}^n c_j \psi_j||$. Оказывается, при $c_k = f_k = (f, \psi_k)$

Ряд $\sum_{k=1}^{\infty} f_k \psi_k$ называется **рядом Фурье** функции f по ортонормированной системе $\{\psi_k\}$.

 $f_k = (f, \psi_k)$ - ι коэффициенты ряда Фурье. $\sum_{k=1}^n f_k \psi_k$ - n-ая частичная сумма ряда Фурье. Тождество Бесселя $\min_{c_k} ||f - \sum_{j=1}^n c_j \psi_j||^2 = ||f||^2 - \sum_{k=1}^n f_k^2$. Это справедливо $\forall f \in L$ и для любой ортонормированной системы $\{\psi_k\}$.

 $\forall f \in L$ и для любой ортонормированной системы $\{\psi_k\}$ справедливо неравенство Бесселя: $\sum_{k=1}^{\infty} f_k^{\ 2} \leq ||f||^2$.

Тригонометрический ряд Фурье обычно принято записывать немного в другом виде, а именно:

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx),
a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,
a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k_x dx,
b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin k_x dx.$$
(24)

Замкнутость и полнота ортонормированных систем. Лек.7

Ортонормированная система $\{\psi_k\}$ в псевдоевклидовом пространстве называется замкнутой, если для любого произвольного элеиента этого пространства

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}, \exists c_1, \dots, c_n : ||f - \sum_{j=1}^n c_j \psi_j|| < \varepsilon.$$
 (25)

Ортонормированная система $\{\psi_k\}$ в псевдоевклидовом пространстве называется полной, если из $\forall k \in \mathbb{N}, f \perp \psi_k$ следует $f \equiv 0$. То есть если любой элемент пространства ортогональный ко всем элементам $\{\psi_k\}$ обязательно является нулевым.

Равенство Парсеваля В псевдоевклидовом пространстве для замкнутой

систеиы неравенство Бесселя переходит в тождество, а именно:

$$\sum_{k=1}^{\infty} f_k^2 \le ||f||^2 \Rightarrow \sum_{k=1}^{\infty} f_k^2 = ||f||^2 \tag{26}$$

Теорема Если ортонормированная система $\{\psi_k\}$ в произвольном псевдоевклидовом пространстве \mathcal{L} является замкнутой, то $\forall f \in \mathcal{L}$ его ряд Фурье сходится к f по норме \mathcal{L} , т.е.

$$\lim_{n \to \infty} \left\| f - \sum_{k=1}^{n} f_k \psi_k \right\|_{\mathcal{L}} = 0 \tag{27}$$

в $\mathcal{L}[-\pi,\pi]$ выполнено

$$\left\| f - \sum_{k=1}^{n} f_k \psi_k \right\|_{\mathcal{L}} = \sqrt{\int_{-\pi}^{\pi} \left(f(x) - \sum_{k=1}^{n} f_k \psi_k(x) \right)^2 dx}$$
 (28)

Это сходимость в среднем ряда Фурье этой функции.

Теорема В евклидовом пространстве \mathcal{L} всякая замкнутая ортонормированная система $\{\psi_k\}$ является полной.

Теорема Для полной ортонормированной системы в евклидовом пространстве $\mathcal L$ два различных элемента f и g не могут иметь совпадающих для всех номеров коэффициентов Фурье по этой системе.

2.3 Теорема Фейера. Лек.8

Пусть f - 2π -периодическая функция, для тригонометрического ряда Фурье имеем

$$S_n(x,f) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx)$$
 (29)

Будем называть **чезаровскими средними** для тригонометрического ряда Фурье выражение

$$\sigma_n(x,f) = \frac{S_0(x,f) + S_1(x,f) + \dots + S_{n-1}(x,f)}{n}$$
(30)

Утверждения Справедливы

$$S_n(x,f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) \underbrace{\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}}_{\text{ядро Дирихле}} dt$$

$$\sigma_n(x,f) = \frac{1}{n\pi} \int_{-\pi}^{\pi} f(x+t) \underbrace{\frac{\sin^2 \frac{tn}{2}}{2\sin^2 \frac{t}{2}}}_{\text{ядро Фейера}} dt$$
(31)

Удобнее обозначать ядро Фейера и ядро Дирихле как

$$D_n(t) = \frac{\sin(n + \frac{1}{2})t}{2\sin\frac{t}{2}}$$

$$\Phi_n(t) = \frac{\sin^2\frac{tn}{2}}{2\sin^2\frac{t}{2}}$$
(32)

Теорема Фейера Функция $f(x)\in\mathcal{C}[-\pi,\pi]$ и $f(-\pi)=f(\pi)$ тогда и только тогда, когда $\sigma_n(x,f)\stackrel{[-\pi,\pi]}{\rightrightarrows} f(x), n\to +\infty$

2.4 Замкнутость тригонометрической системы. Следствия из замкнутости. Лек.8-9

Теорема Тригонометрическая система функций¹ замкнута в псевдоевклидовом пространстве² $\mathcal{L}[-\pi,\pi]$, и тем более в евклидовом пространстве $\hat{\mathcal{C}}[-\pi,\pi]$.³ Следствия к теореме

1) Для $\forall f \in L$ неравенство Бесселя для тригонометрической системы функций переходит в равенство Парсеваля.

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} \left(a_k^2 + b_k^2 \right) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \tag{33}$$

- 2) Для $\forall f \in L$ ее тригонометрический ряд Фурье сходится к ней в среднеквадратичном(в среднем).
- 3) Для $\forall f \in L$ ее тригонометрический ряд Фурье можно интегрировать почленно.
- 4) Тригонометрическая система функций является полной в евклидовом пространстве $\mathcal{C}[-\pi,\pi]$, но она не является полной в псевдоевклидовом пространстве $L[-\pi,\pi]$.
- 5) Все коэффициенты Фурье двух различных кусочно-непрерывных на $[-\pi,\pi]$ функций f и g не могут совпадать.

2.5 Теоремы Вейерштрасса о равномерном приближении непрерывной функции. Лек.8

Будем называть **тригонометрическим многочленом** конечную линейную комбинацию sin и cos, т.е.

$$T(x) = a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$
 (34)

¹Ортогональная система, не ортонормированная

 $^{{}^{2}}$ Всякое евклидово пространство является псевдоевклидовым.

 $^{{}^3\}hat{\mathcal{C}}[a,b]$ - пространство кусочно-непрерывных на [a,b] функций, имеющих конечное число разрывов I-ого рода в точках $x_1,x_2,\ldots,x_n\in[a,b].$

Теорема Вейерштрасса Пусть $f(x) \in \mathcal{C}[-\pi,\pi]$ и $f(-\pi) = f(\pi)$. Тогда

$$\forall \varepsilon > 0 \,\exists T(x) : \forall x \in [-\pi, \pi] \Rightarrow |f(x) - T(x)| < \varepsilon \tag{35}$$

Теорема о приближении непрерывной функции алгебраическими многочленами ${\rm Есл}$ и $f(x)\in \mathcal{C}[a,b],$ то

$$\forall \varepsilon > 0 \,\exists P(x) : \forall x \in [a, b] \Rightarrow |f(x) - P(x)| < \varepsilon$$
 (36)

где P(x) - алгебраический многочлен.

2.6 Локальная теорема Фейера. Лек.9

Локальная теорема Фейера Пусть f(x) 2π - периодична и интегрируема по любому конечному отрезку. Пусть также существуют конечные пределы $f(x_0\pm 0)$. Тогда чезаровские средние частичных сумм тригонометрического ряда Фурье этой функции сходятся в этой точке к полусумме односторонних пределов:

$$\sigma_n \underset{n \to \infty}{\longrightarrow} (x_0, f) \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$
(37)

Сходимость тригонометрического ряда Фурье в точке Пусть $f(x) = 2\pi$ - периодична и интегрируема, и пусть её тригонометрический ряд Фурье сходится⁴ в точке x_0 , в которой f непрерывна. Тогда

$$S_n(x_0, f) \xrightarrow{n \to \infty} f(x_0)$$
 (38)

Если функция f имеет в точке x_0 разрыв первого рода, то

$$S_n(x_0, f) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$
(39)

2.7 Простейшие условия равномерной сходимости и почленной дифференцируемости рядов Фурье. Лек.9

Теорема Карлесона Если функция f допускает понимаемый в смысле Лебега интеграл $\int_{-\pi}^{\pi} f^2(x) dx$, то тригонометрический ряд Фурье этой функции сходится к ней почти всюду на отрезке $[-\pi,\pi]$.

Из теоремы Карлесона вытекает, что тригонометрический ряд Фурье любой интегрируемой на $[-\pi,\pi]$ по Риману функции f сходится к ней почти всюду на этом отрезке.

Будем говорить, что функция f имеет на отрезке $[-\pi,\pi]$ кусочно-непрерывную производную, если $\exists f'$ существует во всех внутренних точках этого отрезка за исключением, быть может конечного их числа, в каждой из которых

 $^{^4}$ В Теореме Римана из лек.11 не говорится сходимость в точке, там теорема Римана горовит, от чего зависит сходимость ряда Фурье.

f' имеет конечный правый и левый пределы и, кроме того, существуют пределы: $\lim_{x\to -\pi+0} f'(x)$ и $\lim_{x\to \pi-0} f'(x)$.

Будем говорить, что функция f имеет на $[-\pi,\pi]$ кусочно-непрерывную производную порядка n>1, если функция $f^{(n-1)}$ имеет на этом отрезке кусочно-непрерывную функцию.

Простейшие условия равномерной сходимости Пусть $f \in \mathcal{C}[-\pi,\pi], f(-\pi) = f(\pi)$ и f имеет кусочно-непрерывную производную. Тогда её тригонометрический ряд Фурье сходится к ней равномерно на $[-\pi,\pi]$. Более того, равномерно сходится и ряд, состоящий из модулей:

$$\frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n| |\cos nx| + |b_n| |\sin nx|) \tag{40}$$

Предположим теперь, что выполнены следующие условия

$$(1)f(x)$$
 и $f^{(k)}(x)$ для $k=\overline{1,m}$ непрерывны на $[-\pi,\pi]$.
$$(2)f^{(m+1)}(x)$$
 кусочно-непрерывна на $[-\pi,\pi]$.
$$(3)f(-\pi)=f(\pi),f'(-\pi)=f'(\pi),\ldots,f^{(m)}(-\pi)=f^{(m)}(\pi).$$

Теорема о почленном дифференцировании ряда Фурье Пусть для функции f выполнены условия (41). Тогда ряд Фурье этой функции можно дифференцировать почленно m раз. Причем ряд, полученный m -кратным дифференцированием, сходится равномерно на $[-\pi,\pi]$ к соответствующей производной.

2.8 Уточнённые условия равномерной сходимости ряда Фурье. Лек.10

Пусть функция f непрерывна на отрезке $[-\pi,\pi]$. Назовем модулем непрерывности функции f на $[-\pi,\pi]$ величину

$$\omega(\delta, f) = \sup_{x', x'' \in [-\pi, \pi], |x' - x''| < \delta} |f(x') - f(x'')|$$

$$= \sup_{x, h + x \in [-\pi, \pi], |x' - x''| < \delta} |f(x + h) - f(x)|$$
(42)

Предположим, что кроме того, функция $f-2\pi$ - периодична и интегрируема на отрезке $[-\pi-\delta,\pi+\delta]$ для некоторого $\delta.$ Назовем величину

$$\widehat{\omega}(\delta, f) = \sup_{x, x+h \in [-\pi, \pi], |h| < \delta} \int_{-\pi}^{\pi} |f(x) - f(x+h)| dx \tag{43}$$

интегральным модулем непрерывности.

Утверждение 1. Пусть функция $f-2\pi$ - периодична и интегрируема по

любому конечному отрезку, а g(t) интегрируема по $[-\pi,\pi]$. Тогда тригонометрические коэффициенты Фурье функции $F_x(t)=f(x+t)g(t)$

$$a_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t)g(t)\cos nt dt, \quad b_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t)g(t)\sin nt dt$$
 (44)

стремятся к 0 при $n \to \infty$ равномерно по x на $[-\pi, \pi]$.

Утверждение 2. Пусть функция f 2π - периодична и интегрируема по любому конечному отрезку, а g(t) интегрируема по $[-\pi,\pi]$. Тогда

$$c_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t)g(t) \sin t \left(n + \frac{1}{2}\right) dt \stackrel{[-\pi,\pi]}{\Rightarrow} 0 \text{ при } n \to \infty$$
 (45)

Утверждение 3. Пусть функция $f=2\pi$ - периодична и интегрируема по любому конечному отрезку, а δ - фиксированное число $0<\delta<\pi$. Тогда функциональные последовательности $\widehat{c}_n(x), c_n^+(x), c_n^-(x)$ стремятся к 0 равномерно по x на $[-\pi, \pi]$ при $n \to \infty$

2.9 Условие сходимости тригонометрического ряда Фурье в точке. Сходимость ряда Фурье кусочно-гельдеровой функции. Лек.12

Будем говорить, что функция f удовлетворяет условию Гёльдера с показателем $\alpha(0 < \alpha \leqslant 1)$ в точке x справа, если выполнены два условия:

- 1) $\exists f(x+0) < \infty$,
- 2) $\exists M, \delta > 0 : |f(x+t) f(x+0)| \leqslant M \cdot |t|^{\alpha}$ при $\forall t, 0 < t < \delta$.

Будем говорить, что функция f удовлетворяет условию Гёльдера с по-казателем $\alpha(0<\alpha\leqslant 1)$ в точке x слева, если выполнены два условия:

- $1) \ \exists f(x-0) < \infty,$
- 2) $\exists M, \delta > 0 : |f(x+t) f(x-0)| \leq M \cdot |t|^{\alpha}$ при $\forall t, -\delta < t < 0$.

Теорема о условии сходимости тригонометрического ряда Фурье в точке Пусть функция $f-2\pi$ - периодична, интегрируема по любому конечному отрезку и удовлетворяет условию Гёльдера в точке x_0 с показателем α_1 ($0<\alpha_1\leqslant 1$) справа и с показателем α_2 ($0<\alpha_2\leqslant 1$) слева. Тогда ее тригонометрический ряд Фурье сходится в точке x_0 к числу $\hat{f}(x_0)$, где $\hat{f}(x_0)=\frac{f(x_0-0)+f(x_0+0)}{2}$.

Рассмотрим функцию $f \in \mathcal{C}[-\pi,\pi]$. Будем говорить, что f принадлежит классу Гёльдера с показателем $\alpha(0<\alpha\leqslant 1)$ (и обозначать это как $f\in\mathcal{C}^{\alpha}[-\pi,\pi]$), если $\omega(\delta,f)=\underline{O}(\delta^{\alpha})$, т.е.

$$\exists M > 0, \delta > 0 : \sup_{|x_1 - x_2| < \delta} |f(x_1) - f(x_2)| \leq M\delta^{\alpha}$$
 (46)

Будем называть непрерывную функцию f принадлежащей классу Дини-Липшица 5 на $[-\pi,\pi],$ если

$$\omega(\delta, f) = \overline{O}\left(\frac{1}{\ln\frac{1}{\delta}}\right) \tag{47}$$

т.е. $\lim_{\delta \to 0+0} \omega(\delta, f) \ln \frac{1}{\delta} = 0$

Класс Дини-Липшица шире, чем класс Гёльдера.

Будем называть функцию f кусочно-гёльдеровой на $[-\pi,\pi]$, если $[-\pi,\pi] = \bigcup_{k=1}^n [x_{k-1},x_k]$ и $f \in \mathcal{C}^{\alpha_k}[x_{k-1},x_k]$. Иными словами, на каждом отрезке $[x_{k-1},x_k]$ функция принадлежит классу Гёльдера с показателем α_k .

Утверждение Если f - кусочно-гёльдеровая на \mathbb{R} , то:

- 1) На любом конечном сегменте $S_n(x, f)$ сходится к f в среднем интегральном.
- 2) $\forall x_0 \in \mathbb{R} \Rightarrow S_n(x_0, f) \underset{n \to \infty}{\longrightarrow} \widehat{f}(x_0),$
- 3) На всех отрезках гёльдеровости $S_n(x,f) \stackrel{[x_{k-1},x_k]}{\rightrightarrows} f(x)$.

2.10 Принцип локализации Римана. Лек.11

Теорема Римана Пусть функция $f-2\pi$ - периодична и интегрируема по любому конечному отрезку. Тогда сходимость ее тригонометрического ряда Фурье в произвольной фиксированной точке x зависит только от значения её аргумента в как угодно малой δ - окрестности этой точки, $U_{\delta}(x)$.

2.11 Свойства преобразования Фурье. Лек.13-14

Будем говорить, что функция f принадлежит классу $L_1(\mathbb{R})$, если:

- 1) f интегрируема по Риману по любому конечному отрезку;
- 2) Сходится несобственный интеграл $\int_{\mathbb{R}} \|f(x)\mid dx.$

Основная лемма об образе Фурье Если $f \in L_1(\mathbb{R}),$ то для нее сходится интеграл

$$\widehat{f}(y) = v \cdot p \cdot \int_{-\infty}^{\infty} e^{ixy} f(x) dx \tag{48}$$

называемый образом или преобразованием Фурье функции f. Причем $\widehat{f}(y)$ является непрерывной $\forall y \in \mathbb{R}$ и $\exists \lim_{|y| \to \infty} |\widehat{f}(y)| = 0$.

Теорема Пусть $f \in \mathcal{C}^{\alpha}[-\pi,\pi]$ и $f(-\pi) = f(\pi)$. $S_n(x,f) \stackrel{[-\pi,\pi]}{\rightrightarrows} f(x)$ при $n \to \infty$. **Теорема** Пусть $f \in \mathcal{C}^{\alpha}[a,b]$, где $[a,b] \subset [-\pi,\pi]$. Тогда $S_n(x,f) \stackrel{\rightrightarrows}{\rightrightarrows} f(x)$ при $n \to \infty$ на любом отрезке $[a+\delta,b-\delta]$, где $\delta \in \left[0,\frac{b-a}{2}\right]$.

 $^{^5}$ Теорема Дини-Липшица Пусть $f\in \mathrm{C}[-\pi,\pi], f(-\pi)=f(\pi)$ и f принадлежит классу Дини-Липшица на $[-\pi,\pi]$. Тогда $S_n(x,f)\Rightarrow f(x)$ при $n\to\infty$.

Разложение функции $f(x) = \frac{f(x-0) + f(x+0)}{2}$ в интеграл Фурье:

$$f(x) = \frac{1}{2\pi} v \cdot p \cdot \int_{-\infty}^{+\infty} e^{-iyx} \hat{f}(y) dy \tag{49}$$

восстанавливающее функцию по её образу Фурье, называется **обратным преобразованием Фурье**.

При этом, выражение для образа Фурье

$$\widehat{f}(y) = v \cdot p \cdot \int_{-\infty}^{+\infty} e^{iyx} f(x) dx \tag{50}$$

называется прямым преобразованием Фурье.

2.12 Условия разложимости функции в интеграл Фурье. Лек.13-14

Будем говорить, что функция $f \in L_1(\mathbb{R})$ разложима в интеграл Фурье в точке x, если

$$\exists \lim_{\lambda \to +\infty} \frac{1}{2\pi} \int_{-\lambda}^{\lambda} e^{-ixy} \widehat{f}(y) dy$$

$$= \lim_{\lambda \to +\infty} \frac{1}{2\pi} \int_{-\lambda}^{\lambda} e^{-ixy} \left(\int_{-\infty}^{+\infty} e^{i\xi y} f(\xi) d\xi \right) dy$$

$$= \frac{1}{2\pi} v \cdot p \cdot \int_{-\infty}^{+\infty} e^{-ixy} \widehat{f}(y) dy$$
(51)

Интеграл Фурье - это обратное преобразование Фурье, восстанавливающее функцию f по ее Фурье-образу.

Условия разложимости функции в интеграл Фурье Если $f \in L_1(\mathbb{R})$ и удовлетворяет условию Гёльдера в точке слева с показателем α_1 и справа с показателем α_2 ($\alpha_1, \alpha_2 \in [0, 1]$), то существует предел

$$\lim_{\lambda \to +\infty} \frac{1}{2\pi} \int_{-\lambda}^{\lambda} e^{-ixy} \hat{f}(y) dy \tag{52}$$

который равен $\frac{1}{2}(f(x-0)+f(x+0))$.