FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 6

(S6.1) Let Λ be a normal logic. Prove that for any formulas φ, ψ ,

- (i) $\vdash_{\Lambda} \varphi \to \psi$ implies $\vdash_{\Lambda} \Box \varphi \to \Box \psi$.
- (ii) $\vdash_{\Lambda} \varphi \leftrightarrow \psi$ implies $\vdash_{\Lambda} \Box \varphi \leftrightarrow \Box \psi$.

Proof. (i)

- (1) $\vdash_{\Lambda} \varphi \rightarrow \psi$ hypothesis
- (2) $\vdash_{\Lambda} \Box(\varphi \to \psi)$ generalization: (1)
- $(3) \vdash_{\Lambda} \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$ $(4) \vdash_{\Lambda} \Box \varphi \to \Box \psi$ (K) (MF)(MP): (2), (3).
- (ii) Assume that $\vdash_{\Lambda} \varphi \leftrightarrow \psi$. Then $\vdash_{\Lambda} \varphi \rightarrow \psi$ and $\vdash_{\Lambda} \psi \rightarrow \varphi$. Applying (i) twice, we get that $\vdash_{\Lambda} \Box \varphi \to \Box \psi$ and $\vdash_{\Lambda} \Box \psi \to \Box \varphi$, hence $\vdash_{\Lambda} (\Box \varphi \to \Box \psi) \wedge (\Box \psi \to \Box \varphi)$. Thus, $\vdash_{\Lambda} \Box \varphi \leftrightarrow \Box \psi$.

(S6.2) Prove that for any formulas φ, ψ ,

$$\vdash_{\mathbf{K}} \Box \varphi \lor \Box \psi \to \Box (\varphi \lor \psi).$$

Proof. We use the following notations:

$$\chi_1 := \Box \varphi \to \Box (\varphi \lor \psi), \ \chi_2 := \Box \psi \to \Box (\varphi \lor \psi) \text{ and } \chi_3 := \Box \varphi \lor \Box \psi \to \Box (\varphi \lor \psi).$$

- (1) $\vdash_{\mathbf{K}} \varphi \to \varphi \lor \psi$ tautology
- (S6.1).(i): (1) $(2) \vdash_{\boldsymbol{K}} \chi_1$
- $(3) \vdash_{\mathbf{K}} \psi \to \varphi \lor \psi \qquad \text{tautology}$
- $(4) \vdash_{\mathbf{K}} \chi_2$ (S6.1).(i): (3)
- (5) $\vdash_{\mathbf{K}} \chi_1 \wedge \chi_2$ Proposition 2.56: (2), (4) and the tautology $\sigma \to \sigma$ with $\sigma := \chi_1 \wedge \chi_2$
- (6) $\vdash_{\mathbf{K}} \chi_1 \wedge \chi_2 \to \chi_3$ tautology: $(\sigma_1 \to \sigma_3) \wedge (\sigma_2 \to \sigma_3) \to (\sigma_1 \vee \sigma_2 \to \sigma_3)$, with $\sigma_1 := \Box \varphi$, $\sigma_2 := \Box \psi$, $\sigma_3 := \Box (\varphi \vee \psi)$
- (MP): (5), (6). $(7) \vdash_{\boldsymbol{K}} \chi_3$

(S6.3) Let $\Gamma \cup \{\varphi, \psi\}$ be a set of formulas. Prove that

if
$$\Gamma \vdash_{\Lambda} \varphi$$
 and $\Gamma \vdash_{\Lambda} \varphi \to \psi$, then $\Gamma \vdash_{\Lambda} \psi$.

Proof. Since $\Gamma \vdash_{\Lambda} \varphi$, there exist $\theta_1, \ldots, \theta_n \in \Gamma$ $(n \geq 0)$ such that

$$\vdash_{\Lambda} (\theta_1 \land \ldots \land \theta_n) \rightarrow \varphi.$$

Since $\Gamma \vdash_{\Lambda} \varphi \to \psi$, there exist $\chi_1, \ldots, \chi_p \in \Gamma (p \ge 0)$ such that

$$\vdash_{\Lambda} (\chi_1 \land \ldots \land \chi_p) \rightarrow (\varphi \rightarrow \psi).$$

We have the following cases:

- (i) n = p = 0. Then $\vdash_{\Lambda} \varphi$ and $\vdash_{\Lambda} \varphi \to \psi$. Applying (MP), we get that $\vdash_{\Lambda} \psi$. Hence, $\Gamma \vdash_{\Lambda} \psi$.
- (ii) $n \ge 1$ and $p \ge 1$. Let us denote $\theta := \theta_1 \land \ldots \land \theta_n, \ \chi := \chi_1 \land \ldots \land \chi_p$. We have that
 - (1) $\vdash_{\Lambda} \theta \rightarrow \varphi$ hypothesis
 - $(2) \vdash_{\Lambda} \chi \to (\varphi \to \psi)$ $(3) \vdash_{\Lambda} (\chi \to (\varphi \to \psi)) \to (\varphi \to (\chi \to \psi))$ hypothesis
 - tautology
 - (4) $\vdash_{\Lambda} \dot{\varphi} \rightarrow (\chi \rightarrow \psi)$ (MP): (2), (3)
 - (5) $\vdash_{\Lambda} \theta \rightarrow (\chi \rightarrow \psi)$ P. 2.56: (1), (4) and the tautology $(\sigma_1 \to \sigma_2) \land (\sigma_2 \to \sigma_3) \to (\sigma_1 \to \sigma_3)$
 - with $\sigma_1 := \theta$, $\sigma_2 := \varphi$, $\sigma_3 := \chi \to \psi$ (6) $\vdash_{\Lambda} \theta \land \chi \rightarrow \psi$ P. 2.56: (5) and the tautology $(\theta \to (\chi \to \psi)) \to (\theta \land \chi \to \psi).$

We have proved that $\vdash_{\Lambda} (\theta_1 \land \ldots \land \theta_n \land \chi_1 \land \ldots \land \chi_p) \to \psi$. Hence, $\Gamma \vdash_{\Lambda} \psi$.

(iii) n = 0 and $p \ge 1$. Let us denote $\chi := \chi_1 \land \ldots \land \chi_p$.

We have that

- $(1) \vdash_{\Lambda} \varphi$ hypothesis
- hypothesis
- $(2) \vdash_{\Lambda} \chi \to (\varphi \to \psi)$ hypothesis $(3) \vdash_{\Lambda} (\chi \to (\varphi \to \psi)) \to (\varphi \to (\chi \to \psi))$ tautology $(4) \vdash_{\Lambda} \varphi \to (\chi \to \psi)$ (MP): (2) (MP): (2), (3)
- (5) $\vdash_{\Lambda} \chi \to \psi$ (MP): (1), (4).

We have proved that $\vdash_{\Lambda} (\chi_1 \land \ldots \land \chi_p) \to \psi$. Hence, $\Gamma \vdash_{\Lambda} \psi$.

- (iv) $n \ge 1$ and p = 0. Similarly.
- (S6.4) Let Λ be a normal logic. Prove that for any formulas φ, ψ ,
 - (i) $\vdash_{\Lambda} \varphi \to \psi$ implies $\vdash_{\Lambda} \Diamond \varphi \to \Diamond \psi$.

- (ii) $\vdash_{\Lambda} \varphi \leftrightarrow \psi$ implies $\vdash_{\Lambda} \Diamond \varphi \leftrightarrow \Diamond \psi$.
- *Proof.* (i) We use in the sequel the following results which follow from classical propositional reasoning:
 - (*) $(\sigma_1 \to \sigma_2) \to (\neg \sigma_2 \to \neg \sigma_1)$ is a tautology
 - (**) If $\vdash_{\Lambda} \sigma_1 \leftrightarrow \sigma_2$, $\vdash_{\Lambda} \sigma_3 \leftrightarrow \sigma_4$ and $\vdash_{\Lambda} \sigma_2 \rightarrow \sigma_4$, then $\vdash_{\Lambda} \sigma_1 \rightarrow \sigma_3$ (substitution of equivalents).
 - (1) $\vdash_{\Lambda} \varphi \to \psi$ hypothesis
 - (2) $\vdash_{\Lambda} (\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$ (*) with $\sigma_1 := \varphi, \ \sigma_2 := \psi$
 - (3) $\vdash_{\Lambda} \neg \psi \rightarrow \neg \varphi$ (MP): (1), (2)
 - $(4) \vdash_{\Lambda} \Box \neg \psi \to \Box \neg \varphi \tag{S6.1}.(i): (3)$
 - (5) $\vdash_{\Lambda} (\Box \neg \psi \rightarrow \Box \neg \varphi) \rightarrow (\neg \Box \neg \varphi \rightarrow \neg \Box \neg \psi)$ (*) with $\sigma_1 := \Box \neg \psi$, $\sigma_2 := \Box \neg \varphi$
 - (6) $\vdash_{\Lambda} \neg \Box \neg \varphi \rightarrow \neg \Box \neg \psi$ (MP): (4), (5)
 - $(7) \vdash_{\Lambda} \Diamond \varphi \leftrightarrow \neg \Box \neg \varphi \tag{Dual}$
 - $(8) \vdash_{\Lambda} \Diamond \psi \leftrightarrow \neg \Box \neg \psi$ (Dual)
 - (9) $\vdash_{\Lambda} \Diamond \varphi \rightarrow \Diamond \psi$ (**): (7), (8), (6).
- (ii) Assume that $\vdash_{\Lambda} \varphi \leftrightarrow \psi$. Then $\vdash_{\Lambda} \varphi \rightarrow \psi$ and $\vdash_{\Lambda} \psi \rightarrow \varphi$. Applying (i) twice, we get that $\vdash_{\Lambda} \Diamond \varphi \rightarrow \Diamond \psi$ and $\vdash_{\Lambda} \Diamond \psi \rightarrow \Diamond \varphi$, hence $\vdash_{\Lambda} (\Diamond \varphi \rightarrow \Diamond \psi) \wedge (\Diamond \psi \rightarrow \Diamond \varphi)$. Thus, $\vdash_{\Lambda} \Diamond \varphi \leftrightarrow \Diamond \psi$.

(S6.5) Prove that for any formulas φ, ψ ,

- (i) $\vdash_{\mathbf{K}} \varphi \to \psi$ implies $\vdash_{\mathbf{K}} \Box \Diamond \varphi \to \Box \Diamond \psi$.
- (ii) $\vdash_{\mathbf{K}} \Diamond \varphi \lor \Diamond \psi \to \Diamond (\varphi \lor \psi)$.

Proof. (i) We have that

- (1) $\vdash_{\mathbf{K}} \varphi \to \psi$ hypothesis
- (1) $\vdash_{\mathbf{K}} \varphi \to \psi$ hypothesis (2) $\vdash_{\mathbf{K}} \Diamond \varphi \to \Diamond \psi$ (S6.4).(i): (1)
- $(3) \quad \vdash_{\pmb{K}} \Box \Diamond \varphi \rightarrow \Box \Diamond \psi \quad (S6.1).(i) \colon (2).$
- (ii) Replace in the solution of (S6.2) \square with \lozenge and use (S6.4).(i) instead of (S6.1).(i). We give the details in the sequel.

We use the following notations:

$$\chi_1 := \Diamond \varphi \to \Diamond (\varphi \vee \psi), \ \chi_2 := \Diamond \psi \to \Diamond (\varphi \vee \psi) \text{ and } \chi_3 := \Diamond \varphi \vee \Diamond \psi \to \Diamond (\varphi \vee \psi).$$

```
\begin{array}{lll} (1) & \vdash_{\pmb{K}} \varphi \to \varphi \lor \psi & \text{tautology} \\ (2) & \vdash_{\pmb{K}} \chi_1 & (\text{S6.4}).(\text{i}) \colon (1) \\ (3) & \vdash_{\pmb{K}} \psi \to \varphi \lor \psi & \text{tautology} \\ (4) & \vdash_{\pmb{K}} \chi_2 & (\text{S6.4}).(\text{i}) \colon (3) \\ (5) & \vdash_{\pmb{K}} \chi_1 \land \chi_2 & \text{Proposition 2.56: (2), (4) and the tautology } \sigma \to \sigma \\ & & \text{with } \sigma := \chi_1 \land \chi_2 \\ (6) & \vdash_{\pmb{K}} \chi_1 \land \chi_2 \to \chi_3 & \text{tautology: } (\sigma_1 \to \sigma_3) \land (\sigma_2 \to \sigma_3) \to (\sigma_1 \lor \sigma_2 \to \sigma_3), \end{array}
```

with $\sigma_1 := \Diamond \varphi$, $\sigma_2 := \Diamond \psi$, $\sigma_3 := \Diamond (\varphi \vee \psi)$ (7) $\vdash_{\mathbf{K}} \chi_3$ (MP): (5), (6).