P. Maurer ENS Rennes

Leçon 122: Anneaux principaux. Applications.

Devs:

- Théorème des deux carrés
- Critère d'Eisenstein

Références:

- 1. Perrin, Cours d'algèbre
- 2. Gourdon, Algèbre
- 3. Combes, Algèbre et géométrie
- 4. Saux-Picart, Cours de calcul formel

Dans toute la leçon, A désigne un anneau commutatif unitaire.

1 Principalité

1.1 Idéaux et anneaux principaux

Définition 1. On appelle idéal de A un sous-groupe I de (A,+) absorbant pour le produit, c'est-à-dire vérifiant :

$$\forall a \in A \quad \forall b \in I \quad a \times b \in I$$

Définition 2. On dit qu'un idéal I est principal s'il est engendré par un élément $x \in A$, i.e si on a $I = \{ax : a \in A\}$.

Exemple 3. $n\mathbb{Z}$ est un idéal principal de \mathbb{Z} , $(X^2+1)\mathbb{R}[X]$ est un idéal principal de $\mathbb{R}[X]$.

Définition 4. Un anneau A est dit intègre si pour tout $a, b \in A$, ab = 0 implique a = 0 ou b = 0.

Définition 5. Un anneau intègre est dit principal si tous ses idéaux sont principaux.

Exemple 6. \mathbb{Z} et $\mathbb{K}[X]$ sont des anneaux principaux, si \mathbb{K} est un corps commutatif.

Définition 7. Un anneau intègre A est dit noethérien si tout idéal de A est engendré par un nombre fini d'éléments.

Exemple 8. Tout anneau principal est noethérien.

Proposition 9. Un anneau intègre est noethérien si et seulement si toute suite croissante d'idéaux est stationnaire.

1.2 Anneaux euclidiens

Définition 10. Un anneau intègre A est dit euclidien si il existe une application f: $A \setminus \{0\} \to \mathbb{N}$ telle que pour tout $(a,b) \in A \times A \setminus \{0\}$, il existe un couple $(q,r) \in A^2$ vérifiant a = bq + r et (r = 0) ou f(r) < f(b).

Proposition 11. Si A est euclidien, le couple (q,r) obtenu pour tout $(a,b) \in A \times A \setminus \{0\}$ ci-dessus est unique.

Exemple 12. L'anneau \mathbb{Z} muni de l'application f(n) = |n| est euclidien. L'anneau k[X] muni de l'application $f(P) = \deg(P)$ est euclidien.

Proposition 13. Tout anneau euclidien est principal.

Théorème 14. L'anneau A[X] est principal si et seulement si A est un corps. Si A n'est pas un corps, alors A[X] n'est pas principal.

Proposition 15. L'anneau $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ est principal mais non euclidien.

1.3 Entiers de Gauss

Définition 16. On définit l'anneau des entiers de Gauss comme :

$$\mathbb{Z}[i] = \{a+ib \ : \ a,b \in \mathbb{Z}\}$$

On muni cet anneau de la « norme » $N: \mathbb{Z}[i] \to \mathbb{N}$ définie par $N(a+ib) = a^2 + b^2$.

Proposition 17. On a $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}$.

Proposition 18. L'ensemble Σ des sommes de deux carrés est stable par multiplication.

Théorème 19. L'anneau $\mathbb{Z}[i]$ est euclidien relativement à la fonction N, donc principal.

Développement 1 :

Théorème 20. [DEV 1] (Théorème des deux carrés) Soit $p \in \mathbb{N}$ un nombre premier. On a l'équivalence $p \in \Sigma \iff p = 2$ ou $p \equiv 1 \pmod{4}$ Section 2

2 Arithmétique sur un anneau

2.1 Définitions.

Définition 21. On note A^{\times} le groupe des inversibles de A, aussi appelés unités.

Définition 22. Soit $a,b \in A$. On dit que a divise b si il existe $r \in A$ tel que b = ar. Un élément $d \in A$ est appelé diviseur commun de $n_1, \ldots, n_m \in A$ si d divise n_i pour tout i. Un élément $m \in A$ est appelé multiple commun de $n_1, \ldots, n_m \in A$ si n_i divise m pour tout i.

Définition 23. Un élément $p \in A$ est dit irréductible si p n'est ni nul ni inversible et si $p|ab \Longrightarrow p|a$ ou p|b pour tout $a,b \in A$.

Définition 24. On dit que $a, b \in A$ sont associés s'il existe $u \in A^{\times}$ tel que a = ub. On montre que a et b sont associés si et seulement si (a) = (b).

Proposition 25. Si c est irréductible, alors l'idéal (c) est maximal parmi les idéaux principaux de A.

Corollaire 26. Les idéaux maximaux d'un anneau principal sont exactement les idéaux de la forme I = (c) avec $c \in A$ irréductible.

Exemple 27. Soit K un corps et L une extension de K. Soit $\varphi: K[T] \to L$ l'homomorphisme défini par $\varphi_{|K} = \mathrm{id}_K$ et $\varphi(T) = \alpha$.

Si φ est injectif, on dit que α est transcendant sur K. Sinon, on dit que α est algébrique sur K, et l'idéal $I = \operatorname{Ker} \varphi$ étant principal, on a I = (P) avec P irréductible (que l'on peut supposer unitaire). Le polynôme P est, par définition, le polynôme minimal de α sur K

Exemple 28. Les nombres $\sqrt{2}$, i, $\sqrt[3]{2}$ sont algébriques sur \mathbb{Q} , de polynômes minimaux respectifs X^2-2 , X^2+2 et X^3-2 .

2.2 Théorèmes principaux. Aspects algorithmiques.

Théorème 29. (Théorème de Bézout)

Soit A un anneau principal et $a,b \in A$. On note $\operatorname{pgcd}(a,b)$ leur plus grand diviseur commun.

Alors il existe $u, v \in A$ tels que au + bv = pgcd(a, b)

Exemple 30. (Lemme des noyaux)

Soit E un K-espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Soit $P_1, \ldots, P_r \in K[X]$ deux à deux premiers entre eux. Alors $\operatorname{Ker} P_1(f) = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$.

Corollaire 31. Un endomorphisme $f \in \mathcal{L}(E)$ est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples.

Théorème 32. (Algorithme d'Euclide)

Soit a et b deux éléments non nuls d'un anneau euclidien A, soit $(r_i)_i$ la suite d'élements définie par $r_0 = a$, $r_1 = b$, puis, pour $r \ge 2$, $r_i = \operatorname{rem}(r_{i-2}, r_{i-1})$, où $\operatorname{rem}(x, y)$ désigne la fonction qui a(x, y) associe le reste dans la division de x par y dans A.

Alors la suite $(r_i)_i$ est finie : il existe un entier n+1 pour lequel $r_{n+1}=0$ et $\operatorname{pgcd}(a,b)=r_n$.

Théorème 33. (Algorithme d'Euclide étendu)

Si $a, b \in A \setminus \{0\}$, on définit :

$$W_0 = \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix}, W_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, W_i = \begin{pmatrix} r_i \\ u_i \\ v_i \end{pmatrix}$$

Où pour $i \ge 2$, r_i est le reste de la division euclidienne (q_i, r_i) de r_{i-2} par r_{i-1} , u_i et v_i étant définis par $u_i = u_{i-2} - q_i u_{i-1}$ et $v_i = v_{i-2} - q_i v_{i-1}$.

Alors pour tout i, $r_i = au_i + bv_i$: en particulier, $\operatorname{pgcd}(a,b) = au_n + bv_n$, où n est le plus petit indice pour lequel $r_{n+1} = 0$.

Exemple 34. $\operatorname{pgcd}(X^m - 1, X^k - 1) = X^{\operatorname{pgcd}(m,k)} - 1$

Théorème 35. (Théorème chinois)

Soit I et J des idéaux de A tels que I+J=A. L'application φ : $\begin{cases} A/I \cap J \to (A/I) \times (A/J) \\ \hat{x} & \mapsto (\bar{x}, \check{x}) \end{cases}$ est un isomorphisme d'anneau.

Corollaire 36. Soit A un anneau principal, $m \in A$ et $n \in A$ premiers entre eux. Considérons $u \in A$, $v \in A$ tels que $1 = u \, m + v \, n$. L'application ψ : $\begin{cases} A/m \, nA & \to & (A/m \, A) \times (A/n \, A) \\ \hat{x} & \mapsto & (\overline{x}, \check{x}) \end{cases}$ est un isomorphisme d'anneau.

L'isomorphisme réciproque associe à $(\bar{a}, \check{b}) \in (A/mA) \times (A/nA)$ la classe $\hat{x} \in A/mnA$ de x = vna + umb.

Exemple 37. Le système de congruences dans \mathbb{Z} $\begin{cases} x \equiv 2 \pmod{4} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{9} \end{cases}$ a pour solutions $x = x \equiv 1 \pmod{9}$

Factorialité 3

3 Factorialité

Définition 38. Soit A un anneau intègre. On dit que A est factoriel si tout élément $a \in A$ peut s'écrire, de manière unique à permutation de facteurs près, de la forme :

$$a = u p_1^{\alpha_1} \cdots p_\ell^{\alpha_\ell}$$

Où $u \in A^{\times}$ et $p_1, \ldots, p_{\ell} \in A$ sont irréductibles et $\alpha_1, \ldots, \alpha_{\ell} \in \mathbb{N}$.

Exemple 39. Un anneau principal est factoriel.

Les anneaux principaux forment une sous-partie « plus simple » des anneaux factoriels (dans le sens où il est souvent plus facile de montrer qu'un anneau est principal).

Exemple 40. $\mathbb{Z}[i]$ est factoriel. $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel car $3 \times 3 = (2 + i\sqrt{5})(2 - i\sqrt{5})$.

Définition 41. Pour $P \in A[X]$ non nul, on appelle contenu de P, noté c(P) le plus grand diviseur commun de ses coefficients. L'élément c(P) est défini modulo A^{\times} (à un inversible près).

Un polynôme est dit primitif si c(P) = 1.

Lemme 42. (Gauss)

On a c(PQ) = c(P) c(Q) modulo A^{\times} .

Théorème 43. Si A est factoriel, A[X] est factoriel.

Théorème 44. Soit A un anneau factoriel. Alors pour tout $p \in A$ irréductible, l'idéal (p) est premier.

Développement 2 :

Théorème 45. [DEV 2] (Critère d'Eisenstein)

Soit A un anneau factoriel. On note K = Frac(A). Les polynômes de A[X] irréductibles sont :

i. Les constantes $p \in A$ irréductibles dans A

ii. Les polynômes de degré plus grand que 1 primitifs et irréductibles dans K[X]

Soit $P = \sum_{i=1}^{n} a_i X^i \in A[X]$, et p un élément irréductible de A tel que $p \nmid a_n$, $p^2 \nmid a_0$ et $p \mid a_i$ pour tout $i \in [0, n-1]$. Alors P est irréductible dans K[X].

Théorème 46. $\mathbb{Z}[X]$ est factoriel.

tible sur \mathbb{Q} , où p est un nombre premier et μ_p^* désigne l'ensemble des racines primitives $p^{\text{èmes}}$ de l'unité.