Probabilistic Inference for Solving Markov Decision Processes Toussaint, Storkey, ICML '06

Noam Siegel

Computer Science M.Sc. Seminar Ben Gurion University

May 16, 2022

Outline

- Introduction
 - Motivation & Prior work Main contribution
- Research Problem Solving Markov Decision Processes
- Research Plan

Mixture of MDPs and likelihood An EM-algorithm for computing the optimal policy Relation to Policy Iteration

- 4 Experimental results Discrete maze Stochastic optimal control
- 5 Conclusion

Main contribution

- 2 Research Problem
- 3 Research Plan
- 4 Experimental results
- **5** Conclusion

Introduction

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Introduction ••••

Planning in stochastic environments

Inference in Markovian models

Motivatio

Introduction

Planning in stochastic environments

Inference in Markovian models

Prior work

Introduction

- 1 Bui et al. (2002) used inference on Abstract Hidden Markov Models for policy recognition, but not for computing an optimal policy.
- Attias (2003) got close to translating the problem of planning to a problem of inference. However, the total time T had to be fixed and the MAP action sequence that is proposed as a solution is not optimal.
- 3 Verma and Rao (2006) used inference to compute plans, but again T has to be fixed and the plan is not optimal.

Introduction

Contribution

1 Translate the problem of *maximizing the expected future* return exactly into a problem of likelihood maximization in a latent variable model, for arbitrary reward functions and episode lengths.

Introduction

Contribution

- Translate the problem of maximizing the expected future return exactly into a problem of likelihood maximization in a latent variable model, for arbitrary reward functions and episode lengths.
- 2 Demonstrate the approach on *both discrete & continuous* stochastic optimal control problems.

- Introduction
- Research Problem Solving Markov Decision Processes
- 3 Research Plan
- 4 Experimental results
- 5 Conclusion

Examples 1: Discrete maze

Figure 1: Posterior state-visiting-probabilities generated by our Probabilistic Infernce Planner (PIP)

Probabilistic Inference for Solving MDPs

Definition (MDP)

```
state transition probability P(x_{t+1} \mid a_t, x_t)
          reward probability P(r_t \mid a_t, x_t),
                                                         r_t \in \{0, 1\}
           action probability P(a_t \mid x_t; \pi),
                                                         \pi a parameter
```


Definition (MDP)

state transition probability $P(x_{t+1} \mid a_t, x_t)$ reward probability $P(r_t \mid a_t, x_t)$, $r_t \in \{0, 1\}$ action probability $P(a_t \mid x_t; \pi)$, π a parameter

Definition (Policy π)

The action probabilities are parameterized by a policy:

$$P(a_t \mid x_t = i; \pi) = \pi_{ai}$$
 $s.t. \sum_a \pi_{ai} = 1$

Markov Decision Processes

Figure 1. Dynamic Bayesian Network for a MDP. The x states denote the state variables, a the actions and r the rewards.

Definition (MDP)

state transition probability $P(x_{t+1} \mid a_t, x_t)$ reward probability $P(r_t \mid a_t, x_t)$, $r_t \in \{0, 1\}$ action probability $P(a_t \mid x_t; \pi)$, π a parameter

Definition (solving an MDP)

Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = i; \pi\}, \text{ where } \gamma \in [0, 1] \text{ is a discount }$ factor.

Definition (solving an MDP)

Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = i; \pi\}, \text{ where } \gamma \in [0, 1] \text{ is a discount }$ factor.

research problem

The problem is to solve the MDP, i.e. to find a policy that maximizes the expected future return.

- Research Plan Mixture of MDPs and likelihood

An EM-algorithm for computing the optimal policy Relation to Policy Iteration

Mixture of MDPs

Figure 2. Mixture of finite-time MDPs.

Probabilistic Inference for Solving MDPs

Representing the joint distribution $P(\mathcal{X})$

full joint for finite time MDP

$$P(r, x_{0:T}, a_{0:T} \mid T; \pi) =$$

$$P(r \mid a_T, x_T)P(a_0 \mid x_0; \pi)P(x_0) \cdot \prod_{t=1}^{r} P(a_t \mid x_t; \pi)P(x_t \mid a_{t-1}, x_{t-1})$$

Representing the joint distribution $P(\mathcal{X})$

full joint for finite time MDP

$$P(r, x_{0:T}, a_{0:T} \mid T; \pi) =$$

$$P(r \mid a_T, x_T)P(a_0 \mid x_0; \pi)P(x_0) \cdot \prod_{t=1}^{r} P(a_t \mid x_t; \pi)P(x_t \mid a_{t-1}, x_{t-1})$$

full joint for mixture of finite-time MDPs

$$P(r, x_{0:T}, a_{0:T}, T; \pi) = P(r, x_{0:T}, a_{0:T} | T; \pi)P(T)$$

BGU

Representing the joint distribution $P(\mathcal{X})$

full joint for finite time MDP

$$P(r, x_{0:T}, a_{0:T} \mid T; \pi) =$$

$$P(r \mid a_T, x_T)P(a_0 \mid x_0; \pi)P(x_0) \cdot \prod_{t=1}^{r} P(a_t \mid x_t; \pi)P(x_t \mid a_{t-1}, x_{t-1})$$

full joint for mixture of finite-time MDPs

$$P(r, x_{0:T}, a_{0:T}, T; \pi) = P(r, x_{0:T}, a_{0:T} | T; \pi)P(T)$$

prior over the total time

$$P(T) = \gamma^T (1 - \gamma)$$

Defining the likelihood

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Defining the likelihood

Definition (likelihood for a finite-time MDP)

$$L_T^{\pi}(i) = P(r = 1 \mid x_0 = i, T; \pi) = E\{r \mid x_0 = i, T; \pi\}$$

Toussaint & Storkey, 2006

Defining the likelihood

Definition (likelihood for a finite-time MDP)

$$L_T^{\pi}(i) = P(r = 1 \mid x_0 = i, T; \pi) = E\{r \mid x_0 = i, T; \pi\}$$

Definition (likelihood for mixture of MDPs)

$$L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{T} P(T)E\{r \mid x_0 = i, T; \pi\}$$

Definition (likelihood for a finite-time MDP)

$$L_T^{\pi}(i) = P(r = 1 \mid x_0 = i, T; \pi) = E\{r \mid x_0 = i, T; \pi\}$$

Definition (likelihood for mixture of MDPs)

$$L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{T} P(T)E\{r \mid x_0 = i, T; \pi\}$$

Corollary

$$L_T^{\pi}(i) = (1 - \gamma)V^{\pi}(i)$$

Theoretical Guarantee

Reminders

- **1** Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = i; \pi\}.$
- 2 The likelihood for a mixture of MDPs is given by $L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{\tau} P(T)E\{r \mid x_0 = i, T; \pi\}$
- 3 This implies that $L_{\tau}^{\pi}(i) = (1 \gamma)V^{\pi}(i)$

Reminders

- **1** Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = i; \pi\}.$
- The likelihood for a mixture of MDPs is given by $L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{\tau} P(T)E\{r \mid x_0 = i, T; \pi\}$
- 3 This implies that $L_{\tau}^{\pi}(i) = (1 \gamma)V^{\pi}(i)$

Theorem

(proved) Maximizing the likelihood in the mixture of finite-time MDPs is equivalent to solving the MDP.

Toussaint & Storkey, 2006

What are EM algorithms?

A class of algorithms consisting of two modes:

- E-step: estimates missing variables.
- 2 M-step: optimizes parameters of model to best explain the data.

What are EM algorithms?

A class of algorithms consisting of two modes:

- E-step: estimates missing variables.
- 2 M-step: optimizes parameters of model to best explain the data.

What are EM algorithms?

A class of algorithms consisting of two modes:

- E-step: estimates missing variables.
- 2 M-step: optimizes parameters of model to best explain the data.

What are EM algorithms?

A class of algorithms consisting of two modes:

- E-step: estimates missing variables.
- 2 M-step: optimizes parameters of model to best explain the data.

E-step

For a given π , compute posteriors

$$P(x_{1:T}, a_{1:T} \mid x_0 = A, r = 1, T; \pi)$$
 and $P(T \mid x_0 = A, r = 1; \pi)$.

What are EM algorithms?

A class of algorithms consisting of two modes:

- 1 E-step: estimates missing variables.
- 2 M-step: optimizes parameters of model to best explain the data.

E-step

For a given π , compute posteriors

$$P(x_{1:T}, a_{1:T} \mid x_0 = A, r = 1, T; \pi)$$
 and $P(T \mid x_0 = A, r = 1; \pi)$.

M-step

Adapt parameters π to optimize $V^{\pi}(A)$

E-step: forward-backward in all MDPs synchronously

Simplifying notation

- 1 $p(j \mid a, i) = P(x_{t+1} = j \mid a_t = a, x_t = i)$
- 2 $p(j \mid i; \pi) = P(x_{t+1} = j \mid x_t = i; \pi) = \sum_{a} p(j \mid a, i) \pi_{ai}$

Forward Propagation

$$\alpha_0(i) = \delta_{i=A}$$

$$\alpha_t(i) = P(x_t = i \mid x_0 = A; \pi)$$
$$= \sum_i p(i \mid j; \pi) \alpha_{t-1}(j)$$

E-step: forward-backward in all MDPs synchronously

Forward Propagation

$$\alpha_t(i) = P(x_t = i \mid x_0 = A; \pi)$$

$$= \sum_{i} p(i \mid j; \pi) \alpha_{t-1}(j)$$

Backward Propagation (temp.)

$$\widetilde{\beta}_{t}(i) = P(r = 1 \mid x_{t} = i; \pi)$$

$$= \sum_{j} p(j \mid i; \pi) \widetilde{\beta}_{t+1}(j)$$

Where

$$\hat{\beta}(i) = P(r = 1 \mid x_T = i; \pi) = \sum_{a} P(r = 1 \mid a_T = a, x_T = i) \pi_{ai}$$

Toussaint & Storkey, 2006

Probabilistic Inference for Solving MDPs

Backward Propagation (temp.)

$$\beta_{t}(i) = P(r = 1 \mid x_{t} = i; \pi)
= \sum_{j} p(j \mid i; \pi) \beta_{t+1}(j)$$

Where

$$\hat{\beta}(i) = P(r = 1 \mid x_T = i; \pi) = \sum_{a} P(r = 1 \mid a_T = a, x_T = i) \pi_{ai}$$

Backward Propagation (corrected)

$$\beta_{\tau}(i) = P(r = 1 \mid x_{T-\tau} = i; \pi)$$

$$= \sum_{j} p(j \mid i; \pi) \beta_{\tau-1}(j)$$

(□) (□) (□) (□) (□) (□) (□)

Forward Propagation

$$\alpha_t(i) = P(x_t = i \mid x_0 = A; \pi)$$

$$= \sum_{i} p(i \mid j; \pi) \alpha_{t-1}(j)$$

Backward Propagation (corrected)

$$\beta_{\tau}(i) = P(r = 1 \mid x_{T-\tau} = i; \pi)$$

$$= \sum_{i} p(j \mid i; \pi) \beta_{\tau-1}(j)$$

Definition (expected complete log-likelihood)

$$Q(\pi^*, \pi) = \sum_{T} \sum_{X_{0:T}, a_{0:T}} P(X_{0:T}, a_{0:T}, T \mid r = 1; \pi) \log P(r = 1, X_{0:T}, a_{0:T}, T; \pi^*)$$

M-step: the policy update

Definition (expected complete log-likelihood)

$$Q(\pi^*, \pi) = \sum_{T} \sum_{x_{0:T}, a_{0:T}} P(x_{0:T}, a_{0:T}, T \mid r = 1; \pi) \log P(r = 1, x_{0:T}, a_{0:T}, T; \pi^*)$$

Fact

Maximizing $Q(\pi^*, \pi)$ w.r.t. π^* is achieved by setting $\pi_{ai}^* = P(a_t = a \mid x_t = i, r = 1; \pi)$

Definition (expected complete log-likelihood)

$$Q(\pi^*, \pi) = \sum_{T} \sum_{x_{0:T}, a_{0:T}} P(x_{0:T}, a_{0:T}, T \mid r = 1; \pi) \log P(r = 1, x_{0:T}, a_{0:T}, T; \pi^*)$$

Fact

Maximizing $Q(\pi^*, \pi)$ w.r.t. π^* is achieved by setting $\pi_{ai}^* = P(a_t = a \mid x_t = i, r = 1; \pi)$

However

exploiting the structure of the MDP, we can write:

$$P(r = 1 \mid x_0 = i; \pi) = \sum_{aj} P(r = 1 \mid a_t = a, x_t = j; \pi^*) \pi^*_{aj}$$

$$P(x_t = i \mid x_0 = i; \pi^*)$$

M-step: the policy update

However

exploiting the structure of the MDP, we can write:

$$P(r = 1 \mid x_0 = i; \pi) = \sum_{aj} P(r = 1 \mid a_t = a, x_t = j; \pi^*) \pi_{aj}^*$$
$$\cdot P(x_t = j \mid x_0 = i; \pi^*)$$

Thus

Maximizing the action-conditioned likelihood

$$\pi_{ai}^* = \delta_{a=a^*(i)}$$
 $\alpha^*(i) = \underset{a}{\operatorname{arg max}} P(r=1 \mid a_t = a, x_t = i; \pi)$

Question

What is the relation between EM and Policy iteration?

Question

What is the relation between EM and Policy iteration?

E-step: Policy Evaluation

1
$$\beta_{\tau}(i) \propto (V^{\pi}(i))$$
 of the MDP of time $T = \tau$).

Question

What is the relation between EM and Policy iteration?

E-step: Policy Evaluation

- **1** $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- **2** $V^{\pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$.

Toussaint & Storkey, 2006

Question

What is the relation between EM and Policy iteration?

E-step: Policy Evaluation

- **1** $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- 2 $V^{\pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.

Question

What is the relation between EM and Policy iteration?

E-step: Policy Evaluation

- **1** $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- 2 $V^{\pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.
- **4** Additionally, it yields the time, state and action posteriors.

Question

What is the relation between EM and Policy iteration?

E-step: Policy Evaluation

- **1** $\beta_{\tau}(i) \propto (V^{\pi}(i) \text{ of the MDP of time } T = \tau).$
- 2 $V^{\pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T) \beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.
- 4 Additionally, it yields the time, state and action posteriors.

Question

What is the relation between EM and Policy iteration?

E-step: Policy Evaluation

- **1** $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- 2 $V^{\pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.
- 4 Additionally, it yields the time, state and action posteriors.

M-step: Policy Update

1 Maximizing the Q-function w.r.t. the action a and state i.

Thus.

the EM-algorithm using exact inference and belief representation is effectively equivalent to Policy Iteration but computes the necessary quantities in a different way.

Thus,

the EM-algorithm using exact inference and belief representation is effectively equivalent to Policy Iteration but computes the necessary quantities in a different way.

However,

when using approximate inference or belief representations, the EM-algorithm and Policy Iteration are qualitatively *different*.

- 2 Research Problem
- 3 Research Plan
- 4 Experimental results
 Discrete maze
 Stochastic optimal control
- 6 Conclusion

Discrete maze

 (\mathbf{a})

Discrete maze

Experimental results 0000000

Stochastic optimal control - 'walker'

- $P(x' \mid u, x) = \mathcal{N}(x', \phi(u, x), Q + 0 \cdot (|u|/\mu)^2 I)$ is transitions.
- $\alpha_0(x) = \mathcal{N}(x, (0, 0), .01I)$ is start-state.
- $P(r = 1 \mid x) = \mathcal{N}(x, (1, 1), diag(.0001, .1))$ is goal.
- $\phi(u, x) = x + .1u$ is control-law.

4) Q (4

Stochastic optimal control - 'golfer'

- $P(x' | u, x) = \mathcal{N}(x', \phi(u, x), Q + (|u|/1)^2 I)$ is transitions.
- $\alpha_0(x) = \mathcal{N}(x, (0, 0), .011)$ is start-state.
- $P(r = 1 \mid x) = \mathcal{N}(x, (1, 1), diag(.0001, .1))$ is goal.
- \bullet $\phi(u,x)=x+.1u$ is control-law.

Stochastic optimal control - 'phase space'

- $P(x' \mid u, x) = \mathcal{N}(x', \phi(u, x), Q + (|u|/10)^2 I)$ is transitions.
- $\alpha_0(x) = \mathcal{N}(x, (0, 0), .0011)$

is start-state.

• $P(r = 1 \mid x) = \mathcal{N}(x, (1, 1), .001 I)$

is goal.

 \bullet $\phi(x, u) = (x_1 + .1x_2, x_2 + .1u)$

is control-law.

- 6 Conclusion

We present a model that translates the problem of planning into a problem of probabilistic inference.

We present a model that translates the problem of planning into a problem of probabilistic inference.

Main contributions

- we do not have to fix a total time
- likelihood maximization is equivalent to maximization of the expected future return

We present a model that translates the problem of planning into a problem of probabilistic inference.

Main contributions

- we do not have to fix a total time
- likelihood maximization is equivalent to maximization of the expected future return

We can compute posteriors over actions, states, and the total time.

We present a model that translates the problem of planning into a problem of probabilistic inference.

Main contributions

- we do not have to fix a total time
- likelihood maximization is equivalent to maximization of the expected future return

We can compute posteriors over actions, states, and the total time.

The full variety of existing inference techniques can be applied to solving MDPs.

End

Thank You

Conclusion