

單通道 H 橋接式馬達驅動 IC

AM1016A

AM1016A 為高性價比的馬達驅動 IC,應用在智能玩具、機器人等消費性玩具產品,提供單通道 H 橋接式可控制之 DC 馬達驅動。

AM1016A 為微型封裝 SOT23-6, 適合用在各種小型需求的 PCB 應用上。

AM1016A 的低馬達驅動內阻特性,可以應用在連續 0.8A 以下電流的馬達電機上。

AM1016A 具有過熱保護電路(典型值 $\mathsf{TSD}_\mathsf{P} = 150 ^{\circ} \mathsf{C}$)、過熱保護自動回復溫度(典型值 $\mathsf{TSD}_\mathsf{r} = 125 ^{\circ} \mathsf{C}$)。

為了地球之永續發展, AM1016A 為綠色環保(Green) IC, 絕不含任何鉛化物(Pb-Free)與鹵素元素 (Halogen-Free)。

● 應用

- 智能玩具
- 機器人
- 消費性產品

● 特性

- 1) 表面貼裝型封裝 (SOT23-6)
- 2) 低導通內阻
- 3) 低靜態工作電流
- 4) 低待機工作電流
- 5) 過熱保護電路
- 6) 過熱保護自動回復

● 訂購資訊

產品型號	封裝		
AM1016A	SOT23-6		

AMtek semiconductors Aug. 2015 V1.2

絕對最大額定值 (T_A=25℃)

参數	符號	極限值	單位
最大電源輸入電壓	VCC	7.0	V
最大持續輸出電流	locont	0.8 *	А
最大峰值輸出電流	Iomax	2.0	А
工作溫度範圍	T _{opr}	- 20∼+85	$^{\circ}\!\mathbb{C}$
儲存溫度範圍	T _{stg}	-40∼ + 150	$^{\circ}\!\mathbb{C}$

^{*}使用在 PCB 規格為 25mm² FR4 PCB (1 oz.)單面板應用。

● 推薦工作條件 (T_A=25°C)

(設定電源電壓需考慮可行的功耗)

参數	符號	最小	典型	最大	單位
驅動工作電源電壓範圍	VCC	2.0		6.8	V
輸入訊號電壓 IN_A and IN_B	V_{IN_X}	-0.3		Vcc+0.3	V
輸出電流	I _{OUT}	0		0.8 *	Α
邏輯輸入頻率	F _{IN_X}	0.02		65	KHz

^{*}使用在 PCB 規格為 25mm² FR4 PCB (1 oz.)單面板應用。

AMtek semiconductors Aug. 2015 V1.2

● 電子特性參數值 (T_A = 25°C, V_{CC}=5V 除非另有規定)

參數	符號	值		單位	條件		
少数	17) 70/1	最小	典型	最大	辛匹		
電源參數	電源参數						
靜態電流	I _{CC}		65		μΑ	輸入信號 IN_A/B= L/H or H/L or H/H, OUT_A/B 空接	
待機電流	I _{STB}		0.01	1	μΑ	輸入信號 IN_A/B= L/L	
邏輯輸入參數							
輸入高準位電壓	V_{IN_XH}	2.0		V _{CC}	V		
輸入低準位電壓	$V_{IN_{XL}}$	0		0.7	V		
輸入高準位電流	I _{IN_X}		30		μΑ	$V_{CC} = 5 \text{ V}$, $V_{IN} = 3 \text{ V}$	
輸入頻率	F_{IN_X}	0.02		65	KHz		
輸入下拉電阻	R_{IN_X}		100		ΚΩ		
H-bridge FETs 參數	H-bridge FETs 參數						
導通內阻	$R_{ds(on)}$		0.62		Ω	I _{load} = 200mA HS+LS FET 導通內阻總和	
導通內阻	$R_{ds(on)}$		0.68		Ω	I _{load} = 600mA HS+LS FET 導通內阻總和	
過熱溫度保護參數							
過熱關閉保護溫度	TSD _p		150		$^{\circ}\!\mathbb{C}$		
回復工作溫度	TSD _r		125		$^{\circ}\!\mathbb{C}$		

● 功能框圖

● 輸入邏輯說明

功能真值表

IN_A	IN_B	OUT_A	OUT_B	模式
L	L	Z	Z	停止
L	Н	L	Н	正轉
Н	L	Н	L	反轉
Н	Н	L	L	剎車

^{*}當 IN_A = IN_B = L,IC 將進入待機模式(Standby-mode)

● 引腳配置

● 引腳定義

編號	名稱	輸入/出	功能敘述
1	IN_B	1	反轉輸入訊號
2	GND	-	接地端
3	IN_A	I	正轉輸入訊號
4	OUT_A	0	輸出正端
5	VCC	-	電源輸入
6	OUT_B	0	輸出負端

● 應用線路圖

● 應用電路說明

應用電路上的掛載元件,說明如下:

- 一、C1、C2: V_{cc}輸入端電容
 - 1) 吸收馬達向電源釋放的能量,穩定電源電壓,避免 IC 因突波電壓過高而被直接擊穿,且有濾波之功能。
 - 2) 在馬達啟動的瞬間,能釋放電流,幫助馬達迅速啟動。
 - 3) V_{cc} 輸入端電容 C1 的選擇需依照 V_{cc} 的電壓穩定性及馬達負載電流大小去選擇電容,在一般應用下,C1 需要 10μ F 的電容,如果 V_{cc} 的電壓漣波較大或是馬達負載電流較大,則須選擇更大的電容值(當輸入電壓 5V 以上應用時,建議依情況添加至 220μ F)。
 - 4) 在 PCB 配置上 C1、C2 電容需盡量靠近 Vcc (PIN5)。
- 二、C3: 輸出雙端電容; C4: 馬達兩端跨接電容
 - 1) C3 可減少馬達在啟動時的突波電壓與轉動時產生的尖波電壓,建議放置 0.1µF 的電容。如果輸出的電壓漣波較大或是馬達負載電流較大,則須選擇更大的電容值。
 - 2) 在 PCB 配置上 C3 電容需盡量靠近 OUT A&B(PIN 4&PIN 6)。
 - 3) C4 電容可單端額外焊接至馬達外殼。
 - 4) C3、C4 電容為一般應用下必須添加。

工作模式說明

H-Bridge 基本工作模式

a) 正轉模式

正轉模式定義: IN_A=H, IN_B=L, 此時 OUT_A=H, OUT_B=L

b) 反轉模式

反轉模式定義: IN A=L, IN B=H, 此時 OUT A=L, OUT B=H

剎車模式定義: IN_A=IN_B=H, 此時 OUT_A=OUT_B=L

d) 停止模式

停止模式定義:IN_A=IN_B=L,此時 OUT_A=OUT_B=Hi-Z

保護機制說明

1) 過熱保護電路

使用此 IC 時,當 IC 溫度超過 150° C(典型值),此時內置設計的 IC 過熱保護電路會強制關閉所有的 驅動 MOS 晶體,確保客戶產品的安全。當 IC 溫度降至 125°C(典型值)時,IC 即會迅速自動回復且 開始正常運作。

● 熱的資訊

θја	接面(junction)到環境的熱阻抗	227.78 °C/W
Ψjt	接面(junction)到封裝表面的熱特性參數	20.6 °C/W

- ▶ **Oja**是在一個JESD-51中所指定的JEDEC標準1s0p板來模擬所獲得之參數。
- ▶ 上述之**Θja**數值是當IC被安裝於標準的JEDEC板上時,所預估出來的上升溫度多寡。
- ▶ 當IC被安裝於實際的PCB板上時,**@ja**值在JEDEC板上是完全不同於在實際PCB板上的。
- ▶ Ψjt是節錄自JESD-51中所描述之Θja量測所使用的程序來估算IC在一個實際PCB板上之接面溫度的模擬參數。
- ▶ 熱特性參數Ψjt,在JEDEC JESD-51-12中描述它是封裝頂部與接面之溫度差比例,因此它對於一個工程師在實際PCB版環境中來驗證IC溫度,是一個有用的值。
- ▶ 當希臘字母是不被允許時,Ψjt可寫成Psi-jt。
- ▶ 定義:

DEFINITION $\psi_{it} = (T_i - T_i)/P_d$

其中:

Ψjt (Psi-jt) = 晶體接面-封裝上部 °C/W

Tj= 晶體接面溫度. ℃

Tt= 封裝上部中心溫度. ℃

Pd= 功率消耗. Watts

- ▶ 實際上,大部分IC的熱會經由PCB所散去,只有一個非常低的熱流會流經過封裝頂部,因此,**Tj**和 **Tt**之間的溫度差很小,故任何PCB變化所造成的誤差量是很小的。
- ▶ 可表示此常數Ψjt是完全獨立於PCB之變化且當Tt是被正確量測時,可用來預測在各環境中實際 PCB上的Tiff。

● 如何預測在各環境中實際PCB上的Ti值。

步驟 1:使用上述所列出之模擬**Ψit**值。

步驟 2:使用下列方法測量Tt

> 熱電隅法

我們建議使用一個約為40標準尺寸(直徑3.15釐米)的熱電隅,磁珠和熱電隅線應接觸封裝的頂部,並且用少量的導熱環氧樹脂覆蓋。熱電隅線應該為絕熱來預防磁珠由於熱流失到線中所造成的冷卻。預防Tt量測過於低溫是很重要的,因為這也將會導致計算Tj時過於低溫。

> 紅外線光點法

紅外線光點法應該只被用於當使用的設備擁有足夠小之光點面積來獲真正的表面熱中心點。許多所謂"小光點"的設備仍然在封裝表面與設備零距離時,有著測量區域為0~100+釐米的存在。這個光點面積對於許多小包裝來說是過大的且很可能會量測出比熱電隅法更低的溫度。因此,當使用紅外線光點法來測量**Tt**時,光點大小與封裝大小之間的匹配是重要的。

步驟 3: 計算熱消耗如下

 $P \cong (VCC-|Vo_{Hi}-Vo_{Lo}|) \times I_{out} + VCC \times Icc$

步驟 4: 估算Ti值如下

Tj= Ψjt x P+Tt

步驟 5: 利用已知的 Ti 來計算實際 PCB 上的 Oia 值

Oia(actual) = (Ti-Ta)/P

● 根據JEDEC PCB與實際PCB的最大功率消耗(降額曲線)

單位: mm

● 包裝概述--- SOT23-6

SYMBOL	MILLIM	ETERS	INCHES		
STIVIBUL	Min.	Max.	Min.	Max.	
Α		1.35		0.053	
A1	0.04	0.15	0.002	0.006	
A2	1.00	1.20	0.039	0.047	
A3	0.55	0.75	0.022	0.030	
b	0.34	0.43	0.013	0.017	
С	0.15	0.21	0.006	0.008	
D	2.72	3.12	0.107	0.123	
Е	2.60	3.00	0.102	0.118	
E1	1.40	1.80	0.055	0.071	
L	0.3	0.6	0.012	0.024	
Θ	0	8	0	0.315	
е	0.95 BSC		0.037 BSC		
e1	1.90	BSC	0.075 BSC		

● 標記定義

NOTE:

說明一:產品型號 Device 代碼 共 1 碼 + 產品批號 Wafer Lot No 共 2 碼 + 封裝年 Assembly Year 末一碼 共 1 碼 + 封裝週期 Assembly Date Code 共 2 碼。

列如: 產品型號 Device 代碼 **A** // 為 **AM1016** + Wafer lot no 為 WN + 西元年末一碼為 2 (C=2) + 第 51 週所生產,就打 AWNC51 封裝西元年末一碼,代碼如下:

(Year_A=0,B=1,C=2,D=3,E=4,F=5,G=6,H=7,I=8,J=9,例如 201<u>2</u>=C)

說明二:客戶指定區別碼。