AUTO-EVALUACÓN DE LÓGICA (1º-GM/GII)

Semana 35, 2020

(3 puntos) Señalar e indicar la única respuesta correcta de las tres posibles (a), (b) y (c) de cada cuestión del siguiente test en el cuadro correspondiente de la tabla de respuestas.

- 1. La cadena de símbolos $(p \lor q) \to ((\neg p \to q)$ formada a partir del alfabeto $\mathcal{A} = \{p,q\}$
 - (a) Es una proposición bien formulada
 - (b) No es una proposición bien formulada
 - (c) No se puede saber

Solución: (b)

- 2. Sabiendo que $\bar{v}((p \to q) \to p) = 0$. ¿Qué puede asegurarse de v(p)?
 - (a) v(p) = 1
 - (b) v(p) = 0
 - (c) v(p) puede valer 0 ó 1

Solución: (b)

- 3. La proposición $p \land \neg p$ es una
 - (a) tautología
 - (b) contradicción
 - (c) contingencia

Solución: (b)

- 4. La proposición $p \to (q \to p)$ es una
 - (a) contradicción
 - (b) tautología
 - (c) contingencia

Solución: (b)

- 5. La proposición $(q \to r) \to \neg (q \lor r)$ es una
 - (a) contradicción
 - (b) tautología
 - (c) contingencia

- 6. Una forma coclausal de la proposición $\neg((p \to q) \to r)$ es
 - (a) $(\neg p \land \neg r) \lor (q \land \neg r)$
 - (b) $(\neg q \lor q) \land \neg r$
 - (c) $(p \land \neg q) \lor r$

- 7. Sea A una álgebra de Boole. Entonces,
 - (a) Existe $x \in A$ tal que $0 \neq x \neq 1$
 - (b) A puede ser vacía
 - (c) A puede tener infinitos elementos

Solución: (c)

- 8. Sea A un álgebra de Boole y sean $x,y\in A$. Una de las propiedades de absorción asegura que:
 - (a) $x \lor (x \land y) = y$
 - (b) $x \lor (x \land y) = x$
 - (c) $x \land (x \lor y) = (x \land x) \lor (x \land y)$

Solución: (b)

- 9. Sea A un álgebra de Boole y sea $x \in A, x \neq 1$, entonces se cumple:
 - (a) $x \land \neg x = 1$
 - (b) $x \wedge \neg x = 0$
 - (c) $x \land \neg x = \neg(x \land x)$

Solución: (b)

- 10. Sea A un álgebra de Boole y sean $x,y\in A$, tales que $0\neq x\neq 1$, $x\wedge y=0,\, x\vee y=1$, entonces se cumple:
 - (a) y = 0
 - (b) y = 1
 - (c) $y = \neg x$

Solución: (c)

- 11. Sea A un álgebra de Boole libre. Entonces se cumple:
 - (a) El cardinal de A siempre es de la forma $2^{(2^n)}$
 - (b) El cardinal de A siempre es infinito
 - (c) Si el cardinal de A es finito, entonces existe un entero no negativo n tal que el cardinal de A es igual a $2^{(2^n)}$

- 12. Sea A un álgebra de Boole. Entonces se cumple:
 - (a) A es siempre una álgebra de Boole libre
 - (b) El cardinal de A siempre es infinito
 - (c) No se verifican las afirmaciones anteriores

- 13. Sea P una proposición. Entonces,
 - (a) Pes una tautología si y sólo si para toda proposición $Q,\,Q \models P$
 - (b) Pes una tautología si y sólo si para toda proposición $Q,\,P \models Q$
 - (c) Pes una tautología si y sólo si para toda proposición $Q,\,\{P,\neg Q\}$ es contradictorio.

Solución: (a)

- 14. Sea P una tautología y Γ un conjunto de proposiciones. Entonces,
 - (a) Γ es contradictorio si y sólo si $\Gamma \cup \{P\}$ es contradictorio
 - (b) Γ es contradictorio si y sólo si $\Gamma \cup \{\neg P\}$ es contradictorio
 - (c) Γ es contradictorio si y sólo si $\Gamma \models P$

Solución: (a)

- 15. Sean Γ y Σ dos conjuntos de proposiciones y P,Q dos proposiciones. Entonces, si $\Gamma \models P$ y $\Sigma \models Q$ se sigue que
 - (a) $\Gamma \cup \Sigma \models P \vee Q$
 - (b) $\Gamma \cap \Sigma \models P \land Q$
 - (c) $(\Gamma \cap \Sigma) \cup \{\neg P \vee \neg Q\}$ es contradictorio

- 16. El esquema de inferencia: $\frac{P}{\neg \neg P}$
 - (a) es una regla de inferencia
 - (b) es una regla primitiva del sistema deductivo de Fitch
 - (c) es un procedimiento primitivo del sistema deductivo de Fitch Solución: (a)
- 17. El esquema de inferencia: $\frac{P \wedge Q}{P} (\wedge E)$
 - (a) es una regla primitiva del sistema deductivo de Gentzen pero no del de Fitch
 - (b) es una regla primitiva del sistema deductivo de Fitch pero no del de Gentzen
 - (c) es una regla primitiva del sistema deductivo de Gentzen y también del de Fitch

- 18. En una deducción natural de Fitch se han aplicado reglas primitivas y el procedimiento de eliminación de una disyunción (regla de los casos) pero no se han aplicado los demás procedimientos. Entonces,
 - (a) se han introducido un número par de supuestos
 - (b) se han introducido un número impar de supuestos
 - (c) es posible que el número de supuestos haya sido nulo

Solución: (a)

19. El sistema axiomático de Lukasiewicz para el cálculo de proposiciones consta de de los axiomas siguientes:

(L1)
$$P \to (Q \to P)$$

(L2)
$$(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$$

(L3)
$$(\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P)$$

Entonces se cumple:

- (a) sobra el L3
- (b) falta el axioma L4
- (c) efectivamente esos son los axiomas

- 20. El una deducción mediante el sistema de Lukasiewicz en la que no se utilicen reglas derivadas, ademas de los axiomas se puede aplicar:
 - (a) Modus ponens
 - (b) Modus tollens
 - (c) La regla de resolución

Consideremos el conjunto de variables $\{x,y\}$, de constantes $\{a\}$ y de funciones $\{f,g\}$, con aridades $\operatorname{ar}(f)=1$, $\operatorname{ar}(g)=2$.

- 21. La expresión g(g(f(x), a), f(y)) es
 - (a) un término
 - (b) una fórmula atómica
 - (c) una fórmula proposicional

Solución: (a)

- 22. Consideremos el predicado A de aridad 1. La expresión A(g(g(f(x),a),f(y))) es
 - (a) un término
 - (b) una fórmula atómica
 - (c) una fórmula proposicional no atómica

Solución: (b)

- 23. La expresión $\exists x \exists y A(g(g(f(x), a), f(y)))$ es
 - (a) una fórmula que no es proposicional
 - (b) una fórmula atómica
 - (c) una fórmula proposicional no atómica

Solución: (a)

- 24. Si tomamos como dominio de una interpretación I los números enteros, y tomamos $\bar{a}=0, \ \bar{f}(z)=-z, \ \bar{g}(z,z')=z+z'$. Para la valoración $v(x)=1, \ v(y)=-1$, se tiene que
 - (a) $\bar{v}(g(g(f(x), a), f(y))) = -2$
 - (b) $\bar{v}(g(g(f(x), a), f(y))) = 0$
 - (c) $\bar{v}(g(g(f(x), a), f(y)))$ es distinto de los anteriores valores

Solución: (b)

25. Si tomamos como dominio de una interpretación I los números enteros, $\bar{a}=0,\ \bar{f}(z)=-z,\ \bar{g}(z,z')=z+z'$ y $\bar{A}=\{z\in\mathbb{Z}|\exists u\in\mathbb{Z}\ \text{tal que}\ z=u+u\}$. Para la valoración $v(x)=0,\ v(y)=1,$ se tiene que

- (a) $(I, v) \models A(g(g(f(x), a), f(y)))$
- (b) $I \models A(g(g(f(x), a), f(y)))$
- (c) $I \models \exists x \exists y A(g(g(f(x), a), f(y)))$

- 26. La fórmula F = A(g(g(f(x), a), f(y))) es
 - (a) una ley lógica
 - (b) Para toda interpretación y valoración (I, v), se tiene que $(I, v) \not\models F$
 - (c) Existe una interpretación y una valoración (I, v) tal que $(I, v) \models F$ Solución: (c)
- 27. La fórmula $G = \forall x A(x) \lor \forall x \neg A(x)$ verifica:
 - (a) Es una ley lógica
 - (b) Para toda interpretación y valoración (I, v), se tiene que $(I, v) \not\models G$
 - (c) Existe una interpretación Ital que para toda valoración v, se tiene que $(I,v) \models G$

Solución: (c)

- 28. En la fórmula $\exists x R(x,y) \lor \forall y A(y)$ todas las apariciones de la variable y son
 - (a) libres
 - (b) libres y ligadas
 - (c) libres o ligadas

- 29. Considerar la fórmula $F = \exists y A(x, u, y)$ y el término t = f(y, u). Entonces,
 - (a) el término t está libre para la variable x en la fórmula F
 - (b) el término t está libre para la variable u en la fórmula F
 - (c) el término t no está libre para la variable x en la fórmula F Solución: (c)
- 30. Consideremos las fórmulas $F=\forall x(P(x)\to Q(x)),\ G=\exists xQ(x).$ Entonces se verifica:
 - (a) $F \models G$
 - (b) $G \models F$
 - (c) Ninguna las otras dos opciones

AUTO-EVALUACIÓN DE LÓGICA (1º-GM/GII)

Semana 35, 2020

Problemas

- 1.- (2 puntos) Considerar la proposición $P = (p \oplus q) \leftrightarrow r$, y el alfabeto $\mathcal{A} = \{p, q, r\}$.
 - a) Dar la forma normal conjuntiva de P respecto a A.
 - b) Dar la forma normal disyuntiva de P respecto a A.
- c) Encontrar dos proposiciones X,Y tales que X tenga dos modelos, Y tenga dos modelos, $X \wedge P, Y \wedge P, X \wedge Y$ sean contradiciones y $X \vee Y \vee P$ sea una taulotología.

Una solución:

Calculemos la forma normal conjuntiva

$$(p \oplus q) \leftrightarrow r \equiv ((p \oplus q) \to r) \land (r \to (p \oplus q))$$

$$(p \oplus q) \to r \equiv \neg (p \oplus q) \lor r \equiv (p \leftrightarrow q) \lor r \equiv ((\neg p \lor q) \land (p \lor \neg q)) \lor r \equiv (\neg p \lor q \lor r) \land (p \lor \neg q \lor r)$$

$$r \to (p \oplus q) \equiv \neg r \lor ((p \land \neg q) \lor (\neg p \land q)) \equiv \neg r \lor ((p \lor q) \land (\neg q \lor \neg p)) \equiv (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$$

Entonces

$$(p \oplus q) \leftrightarrow r \equiv (p \lor q \lor \neg r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Por lo tanto los contramodelos de P son $\{(0,0,1),(0,1,0),(1,0,0)(1,1,1)\}$

En consecuencia los modelos de P son $\{(1,1,0),(1,0,1),(0,1,1),(0,0,0)\}$ que determinan la forma disyuntiva normal

$$P \equiv (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land \neg r)$$

Basta tomar como modelos de $X \vee Y$ los contramodelos de P para $X \wedge P$, $Y \wedge P$, $X \wedge Y$ sean contradiciones y $X \vee Y \vee P$ sea una taulotología; es decir que $X \vee Y \equiv (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge r)$

Para que X, Y tengan dos modelos y $X \wedge Y$ sean una contradicción tengo esencialmente tres soluciones

$$X_1 = (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge \neg r), \quad Y_1 = (p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge r)$$
 o
$$X_2 = (\neg p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r), \quad Y_2 = (\neg p \wedge q \wedge \neg r) \vee (p \wedge q \wedge r)$$
 o bien

$$X_3 = (\neg p \land \neg q \land r) \lor (p \land q \land r), \quad Y_3 = (\neg p \land q \land \neg r) \lor (p \land \neg q \land \neg r)$$

2.- (2 puntos) Utilizar el método de resolución para probar que el siguiente esquema de inferencia es una regla de inferencia.

$$M(r)$$

$$\forall x (M(x) \to (M(p(x)) \lor M(m(x))))$$

$$\forall x (A(x, p(x)) \land A(x, m(x)))$$

$$\exists x \exists y (A(x, y) \land M(y))$$

Una solución:

En primer lugar busquemos las cláusulas asociadas:

- (1) M(r) ya es una cláusula.
- $(2) \ \forall x (M(x) \rightarrow (M(p(x)) \lor M(m(x)))) \equiv \forall x (\neg M(x) \lor (M(p(x)) \lor M(m(x)))) \equiv \neg M(x) \lor M(p(x)) \lor M(m(x))$
 - $(3) \ \forall x (A(x, p(x)) \land A(x, m(x))) \equiv A(x, p(x)) \land A(x, m(x))$

Negación del objetivo (O):

$$\neg\exists x\exists y(A(x,y)\land M(y))\equiv \forall x\forall y\neg(A(x,y)\land M(y))\equiv \neg A(x,y)\lor \neg M(y)$$

Las cláusulas obtenidas van de la fila 1 a la 5. A continuación se ha incluido una resolución.

- 1. M(r) [cláusula de (1)]
- 2. $\neg M(x) \lor M(p(x)) \lor M(m(x))$ [cláusula de (2)]
- 3. A(x, p(x)) [cláusula de (3)]
- 4. A(x, m(x)) [cláusula de (3)]
- 5. $\neg A(x,y) \vee \neg M(y)$ [negación de (O)].
- 6. $\neg M(p(x)) [3.5(p(x)|y)].$
- 7. $\neg M(m(x)) [4,5(m(x)|y)].$
- 8. $\neg M(x)$ [2,6-7].
- 9. \perp [1, 8 (r|x)]

Nota: En la resoluciones de este tipo hay que tener cuidado y no sustituir constantes por variables.

3.- (2 puntos) Determinar si el siguiente sistema de inferencia es una regla de inferencia y en el caso que sea una regla verificarla por deducción natural mediante el método de Fitch.

$$\begin{array}{c} C \vee A \\ Q \rightarrow \neg P \\ R \rightarrow A \\ A \rightarrow P \\ B \rightarrow Q \\ C \rightarrow R \\ \hline \neg B \end{array}$$

Una solución:

En primer lugar podemos verficar que es una regla por el método inverso. Supongamos que $\neg B=0$. Entonces B=1. Ahora si alguna de las premisas: $Q\to \neg P,\ R\to A,\ A\to P\ B\to Q\ C\to R$ es falsa ya estaría probado. Si suponemos que todas son verdaderas se concluye que $Q=1,\ P=0,\ A=0,\ C=0,\ R=0$. En este caso la primera premisa $C\vee A=0$ es falsa. Por lo tanto, si la conclusión es falsa, alguna de las premisas también lo es. Por lo que se concluye que es una regla.

Incluimos a continuación una deducción natural mediante el método de Fitch.

Construct a proof for the argument: $C \lor A$, $Q \to \neg P$, $R \to A$, $A \to P$, $B \to Q$, $C \to R : \neg B$

© Congratulations! This proof is correct.