19Z601- MACHINE LEARNING

UNIT-3

NEURAL NETWORKS AND DECISION TREES: Feed-forward Networks - Network Training - Delta Rule- Gradient Descent - Error Backpropagation - Regularization in Neural Networks - Generalisation - Decision Tree Learning- Representation - Inductive Bias- Issues (9)

Presented by
Ms.Anisha.C.D
Assistant Professor
CSE

Multi-Layer Perceptron

Working of Multi-Layer Perceptron

Working of Multi-Layer Perceptron

$$net_j = \sum_i w_{ji} x j_i$$

Working of Multi-Layer Perceptron — Case 1 : Output Layer (Unit j is the Output Unit)

Working of Multi-Layer Perceptron – Case 2 : Hidden Layer (unit j is the internal unit)

Terminology: Downstream Neurons

Hidden Layer:

- •Neurons h_1 and h_2 receive inputs from x_1 and x_2
- •So, h₁ and h₂ are the downstream neurons of x₁ and x₂

Output Layer:

- •Neuron y_k receives inputs from h1 and h2
- •So, h₁ and h₂ are the downstream neurons of x₁ and x₂

Working of Multi-Layer Perceptron – Case 2 : Hidden Layer (unit j is the internal unit)

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} o_j (1 - o_j)$$

$$\delta_j = o_j(1 - o_j) \sum_{k \in Downstream(j)} \delta_k \ w_{kj}$$

$$\Delta w_{ji} = \eta \, \delta_j \, x_{ji}$$