IETF Hackathon Application-aware G-SRv6 networking

IETF 110 March 1-5, 2021 Online

Hackathon Plan

- Develop functions of Generalized SRv6 (G-SRv6), based on Linux Kernel.
- Combine G-SRv6 with APN6, to achieve Application-aware G-SRv6 networking.
 - G-SRv6 IETF drafts:

<u>draft-lc-6man-generalized-srh</u> <u>draft-cl-spring-generalized-srv6-np</u> draft-cl-spring-generalized-srv6-for-c

Data plane extension for Generalized Segment Routing Header

Generalized SRv6 Network Programming

<u>draft-cl-spring-generalized-srv6-for-cmpr</u> Generalized SRv6 Network Programming for SRv6 Compression

APN6 IETF drafts:

<u>draft-li-6man-app-aware-ipv6-network</u>

<u>draft-li-apn-framework</u>

<u>draft-peng-apn-scope-gap-analysis</u>

Data plane extension for Application-aware IPv6 Networking (APN6)

Application-aware Networking (APN) Framework

APN Scope and Gap Analysis

Open Communities:

https://github.com/G-SRv6

https://github.com/APN-Community

https://www.ipv6plus.net

G-SRv6 Community

APN6 Community

IPv6+ Community

G-SRv6 Introduction

Problem Statement

Transmission overhead of SRv6 is too high.

G-SRv6

- Reduce 75% size of SID List (transmission overhead).
- No new IPv6 address consumption, no new route creation.
- Fully compatible with SRv6, incremental deployment, deploy on demand.

APN6 Introduction

APN6 makes use of IPv6 Extension Headers

- Convey the application related information, including its SLA requirements, along with the packet to the network.
- Allows the network to quickly adapt and perform the necessary actions for SLA guarantees.

Application-aware G-SRv6 networking

• Enable application-aware fine-grained strict TE, with lower transmission overhead.

IETF Hackathon: G-SRv6 & APN6

5

Implemented Functions

- We've implemented the demo based on *Linux Kernel & Huawei Router*.
- Functions in our demo:
 - G-SRv6:
 - 1. Identify APN6 info, and select the most suitable G-SRv6 TE tunnel for the specific App / flow.
 - 2. Encapsulate G-SRv6 Routing Header (Generalized SRH).
 - 3. Implement COC Flavor for End, End.X behavior.
 - 4. Implement End, End.X, End.DT6 as defined by SRv6 (G-SRv6 is compatible with SRv6).
 - 5. Implement G-SRv6 Local SID Table.
 - APN6:
 - 1. Encapsulate APN6 Options in IPv6 Hop-by-Hop Options Header, with application-specific info.

Demo & Result

- Topology with three layers
 - Three TE paths with 10+ hops (10+ SIDs in the SID List), for Apps with different SLA requirements.
- Apps:
 - 1 File Downloading (Security checking in a SFC)
 - 2 Interactive Control (Live & Short message)
 - (3) HD Video on demand
- G-SRv6's Forwarding Rate is **55%+** higher than SRv6's.
- For 128 bytes payload, Overhead is reduced by 50%+

Scheme	Application Throughput *	Network Throughput *	FCT *	RTT **	Forwarding Rate **	Bandwidth Utilization *
Best Effort (no APN)	0.94Gbps	0.94Gbps	923s	300.114 ms	/	10.28%
APN SRv6	7.48Gbps	9.01Gbps	114s	0.259 ms	400Mpps	83.07%
APN G-SRv6	8.36Gbps	9.01Gbps	102s	0.259 ms	620Mpps	92.78%

What we learned

Feedback to WG:

- G-SRv6 can improve utilization and value of bandwidth significantly.
- G-SRv6 is fully compatible with SRv6, and can apply to more scenarios.
 - e.g. Real-time control, Video on demand, HD Live streams, SFC, etc.
- Combining with APN6, flows of many kinds of Apps can be distinguished fine-grained, the SLA requirements of specific Apps can be guaranteed better.

In the future:

- We can make more proof of concept tests in wider area networks, such as <u>CENI</u>.
- We may share our codes of this demo openly in our <u>Github community</u>.
- Processing delay in our Linux prototype is higher than SRv6 now (~1ms),
 welcome to join us to improve it together!

IETF Hackathon: G-SRv6 & APN6

Thank you:)

Team members:

- Jianwei Mao, Huawei (<u>maojianwei@huawei.com</u>)
- Jiang Liu, BUPT (<u>liujiang@bupt.edu.cn</u>)
- Weihong Wu, BUPT (<u>wwh_bupt@foxmail.com</u>)
- Lin He, Tsinghua (<u>he-l14@mails.tsinghua.edu.cn</u>)
- Cheng Li, Huawei (<u>c.l@huawei.com</u>)
- Shuping Peng, Huawei (<u>pengshuping@huawei.com</u>)

Open Communities:

https://github.com/G-SRv6 https://github.com/APN-Community https://www.ipv6plus.net

G-SRv6 Documents:

draft-lc-6man-generalized-srh
draft-cl-spring-generalized-srv6-np
draft-cl-spring-generalized-srv6-for-cmpr

APN6 Documents:

draft-li-6man-app-aware-ipv6-network
draft-li-apn-framework
draft-peng-apn-scope-gap-analysis