

ART 34 AMDT

-64-

<u>Claims</u>

A compound having the formula

$$\mathbb{A}_{1} \longrightarrow \mathbb{A}_{2} \longrightarrow \mathbb{A}_{3} \longrightarrow \mathbb{A}_{2} \longrightarrow \mathbb{A}_{2}$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n represents an integer being 0, 1 or 2;

m represents 1 and R⁵ is in the para position relative to the carbon atom bearing the phenyl substituent;

R' represents Ct_alkyl preferably methyl;

R² represents hydrogen, phenyl, C₁₋₄alkyl, <u>C₁₋₄alkyloxycarbonyl</u> or C₁₋₄alkyl substituted with phenyl;

R³ represents hydrogen, phenyl, C₁₋₄alkyl, <u>C₁₋₄alkyloxycarbonyl</u> or C₁₋₄alkyl substituted with phenyl; or

R² and R³ taken together with the carbon atom to which they are attached form a C₃₋₈cycloalkyl or Het¹ wherein said C₃₋₈cycloalkyl or Het¹ each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from C₁₋₄alkyloxycarbonyl, or -C₁₋₄alkyl-Ar³;

R4 represents halo or C1-4alkyloxy;

R⁵ represents NR⁶R⁷, -O-(mono- or di(C₁₋₄alkyl)aminosulfonyl), -Het²,

C₁₋₄alkyl substituted with one or where possible more substituent being selected from Her³ or NR⁶R⁷,

C₁₋₄alkyloxy substituted with one or where possible more substituents being selected from amino, Het⁴, or NR⁸R⁹;

R⁶ and R⁷ are each independently selected from hydrogen, C₁₋₄alkyl, C₁₋₄alkyl, Het⁵ or C₁₋₄alkyl substituted with one or where possible more substituents being selected from hydroxy or C₁₋₄alkylsulfonyl;

AFT 34 AMOT

-65-

R⁸ and R⁹ are each independently selected from hydrogen, C_{1.4}alkyl, C_{1.4}alkyloxycarbonyl, Het⁷ or mono- or di(C_{1.4}alkyl)aminosulphonyl;

Het represents piperidinyl or dihydroindenyl;

Het 2 represents morpholinyl;

Her³ represents a heterocycle selected from morpholinyl, pyrrolidinyl, piperidinyl, or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from hydroxy, C₁₋₄alkyl, aminosulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl or C₁₋₄alkyloxy;

Het⁴ represents a heterocycle selected from morpholinyl, piperidinyl, imidazolyl or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, aminosulfonyl or mono- or di(C₁₋₄alkyl)aminosulfonyl or Het⁴ represents a monovalent radical represented by formula (i);

Her⁵ represents a heterocycle selected from pyridinyl or piperidinyl wherein said monocyclic heterocycles each independently may optionally be substituted with mono-'or di(C₁₋₄alkyl)aminosulfonyl;

Het⁷ represents piperidinyl optionally substituted with C₁₋₄alkylphenyl; Ar³represents phenyl] (Basis on page 10 line 31 – page 11 line 36), provided that when R⁵ represents NR⁶R⁷, either R⁶ or R⁷ represents C₁₋₄alkylsulfonyl or C₁₋₄alkylcarbonyl. (Basis in original claim 6).

- A compound according to claim 1 wherein;
 R² and R³ each represent a C₁₋₄alkyl.
- A compound according to claim 1 wherein;
 R² and R³ are each independently selected from hydrogen, C₁₋₄alkyl or C₁₋₄alkyl substituted with phenyl.

ART 34 AMOT

-66-

- 4. A compound according to claim 1 wherein R² and R³ taken together with the carbon atom to which they are attached form a C₃₋₈cycloalkyl, preferably cyclopentyl.
- 5. A compound as claimed in any one of claims 1 to 4 provided that when R⁵ represents a C₁₋₄alkyloxy substituted Het⁴, said Het⁴ being selected from the group consisting of morpholinyl, piperidinyl, piperazinyl and piperazinyl substituted with one C₁₋₄alkyl substituent, preferably methyl, more preferably with the methyl in the para position relative to the carbon atom bearing the R⁵ substituent, or Het⁴ consists of piperazinyl substituted with one mono- or di(C₁₋₄alkyl)aminosulfonyl substituent, preferably dimethylaminosulfonyl, more preferably with the dimethylaminosulfonyl in the para position relative to the carbon atom bearing the R⁵ substituent.
- 6. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective kinase inhibitory amount of a compound as described in any one of the claims 1 to 5.
- 7. A process of preparing a pharmaceutical composition as defined in claim 6, <u>characterized in that</u>, a pharmaceutically acceptable carrier is intimately mixed with an effective kinase inhibitory amount of a compound as described in any one of claims 1 to 5.
- 8. A compound as claimed in any one of claims 1 to 5 for use as a medicine.
- Use of a compound as claimed in any one of claims 1 to 5 in the manufacture of a
 medicament for treating cell proliferative disorders such as atherosclerosis,
 restinosis and cancer.
- 10. A process of preparing a compound as described in claim 1, characterized by
 i) reacting a primary amine of formula (V) with an aldehyde of formula (VI) in a condensation reaction using ethanol as a suitable solvent;

ART 34 AMDT

-67-

e) EtOH

ii) followed by a nitrosative cyclisation of the thus obtained Schiffs bases of formula (II) with NaNO₂ in acetic acid, and refluxing the nitroso intermediates of formula (III) in a suitable solvent such as acetic anhydride or ethanol further comprising dithiothreitol (DTT);

Nano, Acon, Hao b) OTT. COM