VECTOR SEMANTICS AND EMBEDDINGS

Credits

B1: Speech and Language Processing (Third Edition draft – Jan2022)

Daniel Jurafsky, James H. Martin

Assignment

Read:

B1: Chapter 6

Problems:

Context

- Words in similar context tend to have similar meaning
 - Synonyms (Oculist and eye-doctor)
 - Same environment (eye and examined)
- Words => Embeddings (number vectors)
 - Preserve contextual relation
 - Representation learning

Lexical Semantics

Word Representation

- Indexing based representation is insufficient
- Word representation should tell us that
 - Some words have similar meanings (e.g., cat and dog)
 - Some have positive connotation (e.g., happy and great)
 - Some have negative connotation (e.g., sad and painful)
 - Related to the same event (e.g., buy, sell, and pay are related to purchase)
 - Have same gender (e.g., woman and queen)
- It should allow us to draw inferences to address meaning-related tasks like question-answering or dialogue.

Lemmas and Senses

□ Same word, multiple meaning

```
mouse (N)
```

- any of numerous small rodents...
- 2. a hand-operated device that controls a cursor...
- mouse: lemma/citation form; mice: word form (inflicted from mouse)
- Mouse has two word senses (i.e., polysemous and requires word-sense disambiguation)

- Synonymy different word, similar meaning
 - couch/sofa, vomit/throw up, car/automobile
 - Can be mutually substituted without changing the 'truth condition' of a sentence
- Principle of contrast "A difference in linguistic form is always associated with some difference in meaning"
 - H₂O vs. Water mutually substitutable but used in different context

Word Similarity

- Synonyms: Cat and feline
- □ Similar meaning: Cat and dog (both are pets, animal, similar size etc.)
- A formula to compute word similarity can lead to a formula to compute sentence/phrase similarity
- Human judged word similarity datasets
 - □ SimLex-999 dataset (Hill et al., 2015)

Word Relatedness

- Coffee and cup; scalpel and surgeon
 - Don't have similar meanings but co-participate in a common event
 - Belong to the same semantic field
 - Semantic fields of hospitals (surgeon, scalpel, nurse, anesthetic, hospital)
 - Semantic fields of Restaurants (waiter, menu, plate, food, chef)
 - Semantic fields of houses (door, roof, topic models kitchen, family, bed)

Semantic Frames and Roles

- A semantic frame is a set of words that denote perspectives or participants in a particular type of event.
 - E.g., the event "transaction"
 - buy, buyer (the event from the perspective of the buyer)
 - sell (from the perspective of the seller)
 - pay (focusing on the monetary aspect)
- Sam bought the book from Ling
 - Sam: buyer perspective, Ling: seller perspective
 - Can be paraphrased as "Ling sold the book to Sam"

Connotation

- Affective meanings (relating to moods, feelings, and attitudes)
 - fake, knockoff, forgery?
 - copy, replica, reproduction?
- Dimensions of affected meanings
 - Valence: the pleasantness of the stimulus
 - Arousal: the intensity of emotion provoked by the stimulus
 - Dominance: the degree of control exerted by the stimulus

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

Write on desk

- Valence: the pleasantness of the stimulus
- Arousal: the intensity of emotion provoked by the stimulus
- Dominance: the degree of control exerted by the stimulus

Write on desk

Vector Semantics

Collard Greens

- Suppose you don't know the meaning of Ongchoi but you have seen the following
- (1) Ongchoi is delicious sauteed with garlic.
- (2) Ongchoi is superb over rice.
- (3) ...ongchoi leaves with salty sauces...
- You know the meaning of spinach, chard and collard greens and have seen the following:
- (4) ...spinach sauteed with garlic over rice...
- (5) ...chard stems and leaves are delicious...
- (6) ...collard greens and other salty leafy greens

Can we derive the meaning of Ongchoi? How?

Ongchoi has the same context words like spinach, chard and collard greens

Ongchoi:

- Word embeddings
 - Represent word in an n-dimensional space (similar to Valence, Arousal, Dominance)
 - Neighbouring words are related (similar meanings/ related)

Vector Embeddings

- Word vectors based co-occurrence matrix
 - Term-document matrix and the Term-term matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Term-document matrix

- Both terms and documents can be represented as vectors
 - Similar documents have use in information retrieval

Term-term matrix

- Captures if two terms occur in the same context
 - Context can be document/sentence/window
 - E.g., a window of 4 words on either side

is traditionally followed by **cherry** often mixed, such as **strawberry** computer peripherals and personal digital a computer. This includes **information** available on the internet

pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

A sub co-occurrence matrix from Wikipedia corpus (Davies, 2015).

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

- Very sparse matrix
 - □ Limit to most (say 50k) words in a corpus

Cosine Similarity

Cosine Similarity or Dot Product

dot product(
$$\mathbf{v}, \mathbf{w}$$
) = $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + ... + v_N w_N$

- Problem: favors long vectors, i.e., frequent words

$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \cos \theta$$

Solution: normalized dot product
$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \cos \theta$$

$$\operatorname{cosine}(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$
 write on desk

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

$$\cos(\text{cherry, information}) = \frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .018$$

$$\cos(\text{digital, information}) = \frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Dimension 2: 'computer'

TF-IDF

Paradox: both low and high word-frequency are not good

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- We want frequent co-occurrence but not words that too frequent
- □ Two solutions
 - tf-idf: usually used with word to word co-occurrence matrix
 - PPMI: usually used with word to document co-occurrence matrix

Tf-idf

- □ tf: term frequency favors high co-occurrence frequency
- Idf: inverse document frequency penalizes too frequent words /
 favors rare words
- □ Net score: tf*idf

$$tf_{t,d} = count(t,d)$$

□ Normalize high frequency with log and add +1 to avoid log 0

$$tf_{t,d} = log_{10}(count(t,d) + 1)$$

Document frequency vs. Collection frequency

$$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

Where:

- N: total number of documents,
- $\blacksquare df_t$: the number of documents containing term t
- Log normalizes large values

■ Net score

write on desk
$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Original co-occurrence values

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Tf-idf values

Pointwise Mutual Information (PMI)

Pointwise Mutual Information (PMI)

- Used for term-term matrix
- Intuition: how much more the two words co-occur in our corpus than we would have a priori expected them to appear by chance

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$
 Write on desk

- Range of PMI values?
- Negative values tend to be unreliable. (why?)
- Use only positive PMI

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

- □ How to compute P(w, c), P(w), and P(c)?
- $\Box F[W \times C]$ be the co-occurrence matrix
 - $\square W$: #words
 - \square C: #context
 - $\blacksquare f_{ii}$: #times word w_i occurs with context c_i

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \quad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \quad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

Compute PPMI(information,data)

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \quad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \quad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

Write on desk

- PMI is biased towards infrequent events (how?)
- Solution 1:

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}} ; 0 < \alpha \le 1$$

□ Solution 2: Laplace smoothing (how?)

Word2Vec

- Generate short dense embeddings of desired size
 - Previous embeddings were large (#documents, #nodes)
- Short dense embeddings perform better than large sparse embeddings
 - Why?
- word2vec (Mikolov et al. 2013)

- "After them, you threw in slices of dried apple and apricot."
- So far: count how many times "apple" and "apricot" occur together
- Instead: train a classifier on the binary prediction task: "Is word w likely to show up near apricot?"
 - Don't care about this prediction task
 - Instead take the learned weights as embeddings
- Any running text becomes supervised training data
 - Abundantly available, no need for hand-labelled supervised signal

Skip-gram model for Word2Vec

- Treat the target word and a neighboring context word as positive examples.
- 2. Randomly sample other words in the lexicon to get negative samples.
- Use logistic regression to train a classifier to distinguish those two cases.
- 4. Use the learned weights as the embeddings.

... lemon, a [tablespoon of apricot jam, a] pinch ...
c1 c2 w c3 c4

Window size =2

- $\square P(+|w,c)$: probability that c is a true context word
- P(-|w,c) = 1 P(+|w,c) probability that c is not a true context word
- □ If w and c are context words, their embeddings would be similar
 - Use dot product to compute embedding similarity

 $Similarity(w,c) \approx \mathbf{c} \cdot \mathbf{w}$

Dot product does not give a probability value: use sigmoid

$$P(+|w,c) = \sigma(\mathbf{c} \cdot \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{c} \cdot \mathbf{w})}$$
 $P(-|w,c) = 1 - P(+|w,c)$ Write on desk
 $= \sigma(-\mathbf{c} \cdot \mathbf{w}) = \frac{1}{1 + \exp(\mathbf{c} \cdot \mathbf{w})}$

- How to compute the combined probability for all the words in a context window?
 - Assume all context words are independent

$$P(+|w,c_{1:L}) = \prod_{i=1}^{L} \sigma(\mathbf{c_i} \cdot \mathbf{w})$$
 write on desk $\log P(+|w,c_{1:L}) = \sum_{i=1}^{L} \log \sigma(\mathbf{c_i} \cdot \mathbf{w})$

- Initially all embeddings are randomly assigned
- Iteratively shift the embedding of each word w to be more like the embeddings of words that occur nearby in texts, and less like the embeddings of words that don't occur nearby.

```
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 w c3 c4
```

positive examples +

c_{pos} apricot tablespoon apricot of apricot jam apricot a

negative examples -

W	c_{neg}	W	c_{neg}
apricot	aardvark	apricot	seven
apricot	my	apricot	forever
apricot	where	apricot	dear
apricot	coaxial	apricot	if

- $\ \square$ For each positive sample, k>1 negative samples are created
 - Noise sample: chosen randomly from the lexicon
 - As per weighted unigram frequency

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}}$$

 $\alpha = .75$ (say) gives more weightage to rare words

- □ Given
 - Set of +ve and -ve training instances
 - Initial random embeddings
- □ Goal:
 - Maximize the similarity of the target word, context word pairs (w, c_{pos}) drawn from the positive examples
 - \blacksquare Minimize the similarity of the (w, c_{neg}) pairs from the negative examples.

Loss Function

$$L_{CE} = -\log \left[P(+|w, c_{pos}) \prod_{i=1}^{k} P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log \left(1 - P(+|w, c_{neg_i}) \right) \right]$$

$$= -\left[\log \sigma(c_{pos} \cdot w) + \sum_{i=1}^{k} \log \sigma(-c_{neg_i} \cdot w) \right]$$

Summary of Word2vec

- Assign random embeddings to words
 - Separate embeddings for target and context words or use the same embeddings
- $\ \square$ For every training sample set consisting of one +ve sample and k -ve samples
 - $lacksymbol{\square}$ Compute loss function $L_{CE} = \left[\log \sigma(c_{pos} \cdot w) + \sum_{i=1}^k \log \sigma(-c_{neg_i} \cdot w) \right]$

Update embeddings of only words in the sample as per gradient descent

Fasttext (Bojanowski et al., 2017),

- □ Word2vec no good way to deal with unknown sparse words
- \square Solution: store each word as it is + constituent n-grams
 - E.g., "where" is stored as "where", "<wh", "whe", "her", "ere", "re>"
 - "<" and ">" special boundary symbols

Visualizing Embeddings

- List k = 7 most similar words to w (Pennington et al., 2014)
 - E.g., frog: frogs, toad, litoria,
 leptodactylidae, rana, lizard, and
 eleutherodactylus
- Use hierarchical clustering (Rohde et al., 2006).
- □ t-SNE visualization (van der Maaten and Hinton, 2008).
 - \blacksquare Project n=100 dimensions into two

Semantic properties of embeddings

Size of context window

- □ Typically 1-10 words on either side
- Shorter context window: the most similar words (to a target word w) tend to be semantically similar words with the same parts of speech.
 - E.g., NIT Patna=> NIT Agartala, IIT Patna
- Longer context window: the most similar words tend to be topically related but not similar
 - E.g., NIT Patna=> SAC, Sankalp, Ganga ghat

Word Association/Similarity

- Syntagmatic association or First order co-occurrence if they are nearby
 - E.g., wrote is a first order associate of book or poem
- Paradigmatic association if they have similar neighbours
 - E.g., wrote is a second-order associate of words like said or remarked

Analogy/Relational Similarity

- Parallelogram model (Rumelhart and Abrahamson, 1973):- solving simple analogy problems of the form a is to b as a* is to what?
 - E.g., apple:tree::grape:? (Ans: vine)
 - \square (tree apple) = ($\overrightarrow{\text{vine}}$ $\overrightarrow{\text{grape}}$)
- While sparse models achieved success in solving analogy problems, it was much more with word2Vec and GloVe vectors
 - Capturing MALE-FEMALE, CAPITAL-CITY-OF, COMPARATIVE/SUPERLATIVE,

GloVe vector space capturing MALE-FEMALE analogies

GloVe vector space capturing COMPARATIVE/SU PERLATIVE analogies

Embeddings and Historical Semantics

Tracing how word embeddings change over time

Using Word2Vec and t-SNE visualization

Bias and Embeddings

- Embeddings also reproduce the implicit biases and stereotypes that
 were latent in the text
- □ Gender stereotypes Bolukbasi et al. (2016) using Word2vec
 - Closest occupation to 'man' 'computer programmer' + 'woman'?
 'homemaker'
 - 'father' is to 'doctor', 'mother' is to _?
 'nurse'
 - Allocational harm Crawford (2017) and Blodgett et al. (2020)
 - When a system allocates resources (jobs or credit) unfairly to different groups

- □ Caliskan et al. (2017) using GloVe vectors
 - African-American names like 'Leroy' and 'Shaniqua' had a higher GloVe cosine with unpleasant words, while European-American names ('Brad', 'Greg', 'Courtney') had a higher cosine with pleasant words.
 - Male names more with mathematics and female names with the arts
 - Old people names with unpleasant words
- Representational harm (Crawford 2017, Blodgett et al. 2020)
 - Harm caused by a system demeaning or even ignoring some social groups.
- Work on embedding debiasing has been done but with limited success

Feedforward networks for NLP: Classification

Hand-crafted Features

- Word embeddings to sentence embeddings?
 - Mean/ max pooling

Input layer pooled embedding

Hidden layer

Output layer softmax

Language Modelling

Predicting upcoming words from prior word context

Neural Language Model over N-gram Model

- □ Pros
 - Handle much longer sentences
 - Generalize better over contexts of similar words
 - More accurate at word-prediction
- □ Cons
 - Computationally expensive
 - Less interpretable

