数据存储

HDFS特点

HDFS特点

- 海量数据存储
- 数据块
- 校验和
- 回收站
- 序列化
- 联邦
- 元数据保护
- 简单一致性模型
- 类Linux文件权限
- 流式数据访问
- 心跳机制

- 安全模式
- DataNode缓存
- 快照
- 容错性
- 小文件处理
- 压缩性能

安全模式

Namenode启动时经过一个"安全模式"阶段 dfs. safemode. threshold. pct 安全模式阶段不会产生数据写 安全模式阶段Namenode收集各个datanode的报告,当数据块达到最小副本数以上时, 会被认为是"安全"的, 再过若干时间,安全模式结束。达不到比例,hadoop开始 写副本直到写到达到安全比例。

```
[grid@h3 hadoop-0.20.2]$ bin/hadoop dfsadmin -safemode enter
Safe mode is ON
[grid@h3 hadoop-0.20.2]$
[grid@h3 hadoop-0.20.2]$ bin/hadoop dfsadmin -safemode leave
Safe mode is OFF
[grid@h3 hadoop-0.20.2]$
```

DataNode缓存

- 利用DataNode的可用内存集中地缓存、管理数据,并暴露 给外界应用程序使用
- MapReduce、Hive等应用程序也可以申请内存进行缓存, 然后直接从数据节点的内存中读取内容,通过完全避免 磁盘操作极大提高效率。如Hive正在开发的ORC文件实现

快照

- 存储某个时间点的映像,需要时可以使数据重返这个时间 点的状态 。(oracle的flashback功能)
- Hadoop1不支持快照, Hadoop2已经解决。

- 删除的文件不能被存储
 - -垃圾错误且不容易被理解
 - -垃圾只基于删除的CLI工作
- 没有时间点恢复
- 没有定期快照从中恢复
 - -没有管理员/用户快照

Hadoop1

- 文件系统的时间点图像
- 只读
- 写时复制
- 防范用户错误
- 备份
- 实验/测试设置

Hadoop2

周期性快照备份

拍摄快照于

- 每15分钟一次,并保持24小时
- 每1小时一次, 并保持两天
- 每天一次, 并保持14天
- 每周一次,并保持3个月
- 每个月一次,并保持一年

Namenode单点

- 瓶颈问题: Hadoop1所有metadata操作都通 过NN, NN是性能的瓶颈; NN在内存中存储 所有元数据metadata, 单个NN所能存储的 文件块数目受到NN JVM的heap size限制。 假设文件平均大小为40MB,50G的heap能够 存储20亿个对象, 20亿个对象支持4000个 DN即12PB的存储。单个NN内存容量有限. 使得Hadoop集群节点数量被限制在2000个 左右, 能支持的文件系统大小被限制在10-50PB. 最多能支持的文件数量大约为1.5亿 左右。
- 单点故障源(SPOF):单一Jobtracker的设计严重制约了整个Hadoop可扩展性和可靠性NN和Jobtracker是整个系统中明显的单点故障源(SPOF)

Namenode单点

- 性能开销问题: Hadoop1 M/R应用程序需要通过DN来访问HDFS, 涉及到额外的进程切换和网络传输开销; DN的块汇报对NN性能造成严重影响。如集群有1800个DN, 每个DN有3T存储,整个集群大约有1.8P有效存储(1800*3T/3,假设每个数据块有3份),每个DN上有大约50000个左右的block (假设block 大小是64M,有的block并没有达到64M大小),假设DN每小时发送一次块汇报,则NN每两秒会收到一次块汇报,每个块汇报包含50000条数据,处理这些数据无疑会占用相当资源。
- 隔离问题: Hadoop1仅有一个NN,无法隔离各个程序,HDFS上的一个实验程序就很有可能影响整个HDFS上运行的程序。HDFS2引入联邦解决了大部分单个NN HDFS的问题。
- 扩展性问题: Hadoop1无法按业务区分NN, 并对其进行扩展。

Secondary Namenode

- SecondaryNN在检查点定期合并FSimage和 FSEditslog,控制FSEditslog日志文件大小上 限。避免NN启动时启动时间过长,降低NN压力,同时作为主NN的冷备份。
- 每个集群都有一个SecondaryNN,SecondaryNN通常要运行在单独服务器
- SecondaryNN保存最后一次checkpoint结果 ,存储结构和主NN一样,主NN可以随时来读 取。
- Checkpoint配置参数:
- fs.checkpoint.period,默认1小时,指定连续 2次创建Checkpoint的最大时间间隔。
- fs.checkpoint.size,默认64MB,当
 FSEditslog大小到达该设置值,即使创建 Checkpoint的最大时间间隔未到也强制促其 执行创建Checkpoint。

FSImage / FSEditlog

Secondary Namenode

配置文件: masters文件

Page

启动secondaryNameNode

bin/hadoop secondarynamenode -checkpoint bin/hadoop secondarynamenode -checkpoint force checkpoint可以解决重启NameNode时间过长的弊端。 bin/hadoop namenode -importCheckpoint

*** Checkpoint node, Backup Node

BackUp Node RPC调用NameNode的 startCheckPoint,nameNode遍历当前的日 志输出流,并将其重新定位到Edtis.new 上,并创建一个Backup Node的输出流, 用于向其发送日志,Backup Node则会创 建一个Journal spool,用于接收日志 SecondaryNN这个名字给人带来混淆, Hadoop1.0.4开始使用 CheckPointNode。SecondaryNN和CheckPointNode都只提供一个 fsimage更新和检查点备份,并不提供NN服务,当NN宕机的时候就会 引起HDFS集群不可用。 CheckPointNode和SecondaryNN的作用以及配 置完全相同,启动命令不同

hadoop secondarynamenode -checkpoint hdfs namenode - checkpoint

- BackupNode提供一个真正意义上的备用节点,NN所有写操作都会实时将更新Log发送给BackupNode,BackupNode据此更新本机fsimage和edits文件,并在内存中维护和NN一样的Metadata数据。BackupNode具备了热备功能,但没有failover,是阶段性的checkpoint,无法保证完整性。
- Namenode和BackupNode都要配置这些选项:

hdfs-site.xml: dfs.backup.address, dfs.backup.http.address core-site.xml: fs.checkpoint.period, fs.checkpoint.size,

Baksucheekpo nt. dir、fs. checkpoint. edits. dir NameNode的 endCheckpoin方法,NameNode将各份的Edits.net 电 命名为edits,将Fsimage.ckpt重命名为fsimage.重新定向输出流到edits

Backup Node从 NameNode下载最 新的FsImge和Edits 文件 BackupNode将最新 的FsImage和edits文 件会并 Backup将合并后的 元数据保存到磁 盘,并创建新的 Edits. Backup Node根据 需要,通过http上 传合并后的 Fsimage. NameNode接收并 重命名为 Fsimage.ckpt.

Avatarnode, Namenode HA

- Avatarnode由Facebook出品,只是Hot Standby,并没有自动切 换. 当主NN失效的时候,需要管理员确认,然后手动把对外提供 服务的虚拟IP映射到Standby NN。
- 利用共享存储来在两个NN间同步edits信息。转移了单点故障的 位置。Journal node充当共享存储的功能。DN同时向两个NN汇报 块信息。让StandbyNN保持集群最新状态。

进程监视和控制NN进程,防止因 NN FullGC挂起无法发送heart beat

Fencing机制: -共享存储fencing, 确保

- 只有一个NN可以写入edits -客户端fencing, 确保只
- 有一个NN可以响应客户端的请求 - DN fencing, 确保只有
- 一个NN可以向DN下发删除等命令

- HDFS和MapReduce针对大数据文件来设计的,小文件指文件大小小于HDFS上block大小的文件。每一个小文件占用一个Block,每一个block的元数据都存储在namenode的内存,小文件处理上效率低下,十分消耗内存资源。
- namenode内存限制:假设元数据大小约占150byte,如果有1000 0000个小文件,每个文件占用一个Block,namenode需要2G空间。如果存储1亿个文件,则namenode需要20G空间,这样namenode内存容量严重制约了集群的扩展;
- namdeNode性能问题: HDFS最初为流式访问大文件开发,如果访问大量小文件,需要不断从一个DN跳到另一个DN,严重影响性能;
- Slot问题:处理大量小文件速度远远小于处理同等大小的大文件的速度。每一个小文件要占用一个slot,而task启动将耗费大量时间甚至大部分时间都 耗费在启动task和释放task上。

- 1、选择一个容器将这些小文件组织起来统一存储。在原有HDFS基础上添加一个小文件处理模块、当一个文件到达时,判断是否属于小文件、如果是,则交给小文件处理模块处理。处理,否则,交给通用文件处理模块处理。小文件处理模块的设计思想是先将很多小文件合并成一个大文件,然后为这些小文件建立索引,以便进行快速存取和访问。
- 2、Sequence File:提供了二进制键/值对的永久存储的数据结构,由一系列的二进制key/value组成,如果key为小文件名,value为文件内容,则将大批小文件合并成一个大文件。Hadoop提供了SequenceFile,包括Writer,Reader和SequenceFileSorter类进行写,读和排序操作通过SequenceFile类型将小文件包装起来,可以获得更高效的存储和处理。

■ SequenceFile文件最开始是Header部分,包含了record的key-value的数据类型、sync标记的数据类型、有关压力的等符、有关压力的细节、用户自定义员的metadata。

SequenceFile内置的压缩方式有两种:

RecordCompression和 Block Compression。

- 3、使用Hadoop Archive高效地将小 文件放入HDFS块中文件存档,能够 将多个小文件打包成一个HAR文件, 减少namenode内存使用的同时,仍 然允许对文件进行透明的访问。
- 使用HAR时需要注意,第一,对小文 件进行存档后,原文件并不会自动 被删除,需要用户自己删除;第二, 创建HAR文件的过程实际上是在运行 一个mapreduce作业,因而需要有一 个hadoop集群运行此命令。第三, 一旦创建,Archives便不可改变。 要增加或移除里面的文件,必须重 新创建归档文件。第四,要归档的 文件名中不能有空格, 否则会抛出 异常,可以将空格用-替换

HAR File Layout

对某个目录/foo/bar下的所有小文件存档成/outputdir/ zoo.har:

hadoop archive -archiveName zoo.har -p /foo/bar /outputdir

HDFS文件压缩

- zip默认的压缩器。
- bzip可以分片压缩,但是速度不行。影响性能。
- Izop压缩。可分片,分片表示该压缩算法支持切分,可以搜索数据流中的任意位置并进一步往下读数据,压缩解压速度快,压缩算法都要在执行速度和压缩比上做一个权衡,支持分片的索引机制,提高并行化的能力。切分压缩尤其适合MapReduce,Izop使用Izo压缩库来提供服务,与gzip工具相比,它的最大优势就是极快的压缩速度和解压速度(在相同的压缩比例的前提下)。由于分布式计算,所以需要支持对压缩数据进行分片,也就是Hadoop的InputSplit ,这样才能分配给多台机器并行处理。输入文件建议先用Izop压缩,然后用hadoop-Izo*.jar包对Izo文件建立索引,使大压缩包具有可分片的能力。压缩好了put到hdfs里面,put进去以后还没有分片,还要借助于Izo工具建分片索引。Lzo原生并不支持分片,需要增加索引以后才可以分片。
- gzip比zip压缩比大,但是压缩慢,不支持分割机制。以牺牲本地化为代价:一个map任务将处理16 个HDFS块。大都不是map的本地数据。与此同时,因为map任务少,所以作业分割的粒度不够细,从 而导致运行时间变长。

压缩算法	原始文件大小	压缩后文件大小	压缩速度	解压缩速度
gzip	8.3GB	1.8GB	17.5MB/s	58MB/s
bzip2	8.3GB	1.1GB	2.4MB/s	9.5MB/s
LZO	8.3GB	2.9GB	49.3MB/S	74.6MB/s

HDFS文件压缩

```
leon@Ubuntu: time Izop test.data
       0m7.429s
real
     0m5.260s
user
       0m1.100s
SVS
485M test data Izo
leon@Ubuntu: time gzip test.data
       1m9.639s
real
       1m1.615s
user
       0m0.881s
SVS
293M test. data. gz
```

在MapReduce中使用压缩

- 大数据量shuffle阶段费时多,压缩可以减少存储文件所需的存储空间;加速数据在网络和磁盘上的传输。压缩算法都要在执行速度和压缩比上做一个权衡
- 输入的文件的压缩:输入的文件是压缩过的,那么在被MapReduce读取时会被自动解压,根据文件扩展名来决定应该使用哪个压缩解码器
- map作业输出结果的压缩: map作业输出被写入磁盘并通过网络传输到 reducer节点,如果使用LZO之类的快速压缩,能得到更好的性能,因 为传输的数据量大大减少了。
- MapReduce作业的输出的压缩:对于map和reduce的输出也需要压缩,但可以不用重建索引。使用seqencefile (hadoop内建)块级压缩,压缩解压器还是选择Izop(当然也可以选择其他不可分片的压缩器)。sequencefile本身是分块的,sequencefile格式的文件,再配上Izo的压缩格式,就可实现Izo文件方式的splitable。

在MapReduce中使用压缩

- MapReduce作业的输出的压缩: 在作业配置文件中将 mapred. output. compress属性设置为true。将 mapred. output. compression. codec属性设置为使用的压缩编码/解码器的类名。如果为输出使用了一系列文件,可以设置 mapred. output. compression. type属性来控制压缩类型,默认为 RECORD,它压缩单独的记录。将它改为BLOCK,则可以压缩一组记录
- set hive.exec.compress.output=true;
- set mapred. output. compress=true;
- set mapred. output. compression. codec=com. hadoop. compression. Izo. LzoCodec;
- set mapred. output. compression. type=BLOCK;
- set io. seqfile. compressioin. type=BLOCK;

HDFS访问方式

- ➤ HDFS Shell命令
- HDFS Java API
- > HDFS REST API
- ➤ HDFS Fuse: 实现了fuse协议
- > HDFS Viewfs
- > HDFS NFS
- ➤ HDFS lib hdfs: C/C++访问接口
- ➤ HDFS 其他语言编程API
 - ✓ 使用thrift实现
 - ✓ 支持C++、Python、php、C#等语言

HDFS Shell命令—文件操作命令

```
[hadoop@chinahadoop-1 hadoop-2.7.3]$ bin/hdfs dfs
Usage: hadoop fs [generic options]
                                                                  ▶ 将本地文件上传到HDFS
        [-appendToFile <localsrc> ... <dst>]
        [-cat [-ignoreCrc] <src> ...]
        [-checksum <src> ...]
                                                                  ✓ hdfs fs -copyFromLocal /local/data /hdfs/data
        [-chgrp [-R] GROUP PATH...]
        [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
                                                                 ▶ 删除文件/目录
        [-chown [-R] [OWNER][:[GROUP]] PATH...]
        [-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]
        [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
                                                                     hdfs fs -rmr/hdfs/data
        [-count [-q] [-h] <path> ...]
        [-cp [-f] [-p | -p[topax]] <src> ... <dst>]
        [-createSnapshot <snapshotDir> [<snapshotName>]]
                                                                 ▶ 创建目录
        [-deleteSnapshot <snapshotDir> <snapshotName>]
        [-df [-h] [<path> ...]]
        [-du [-s] [-h] <path> ...]
                                                                 ✓ hdfs fs -mkdir/hdfs/data
        [-expunge]
        [-find <path> ... <expression> ...]
        [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
        [-qetfacl [-R] <path>]
        [-qetfattr [-R] {-n name | -d} [-e en] <path>]
        [-getmerge [-nl] <src> <localdst>]
        [-help [cmd ...]]
        [-ls [-d] [-h] [-R] [<path> ...]]
        [-mkdir [-p] <path> ...]
        [-moveFromLocal <localsrc> ... <dst>]
        [-moveToLocal <src> <localdst>]
        [-mv <src> ... <dst>]
        [-put [-f] [-p] [-l] <localsrc> ... <dst>]
        [-renameSnapshot <snapshotDir> <oldName> <newName>]
        [-rm [-f] [-r|-R] [-skipTrash] < src> ...]
        [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
```

HDFS Shell命令—管理命令

```
[hadoop@chinahadoop-1 hadoop-2.7.3] $ bin/hdfs dfsadmin
Usage: hdfs dfsadmin

✓ start-all.sh

Note: Administrative commands can only be run as the HDFS superuser.
        [-report [-live] [-dead] [-decommissioning]]
        [-safemode <enter | leave | get | wait>]

✓ start-dfs.sh.

        [-saveNamespace]
        [-rollEdits]
        [-restoreFailedStorage true|false|check]
                                                                                  ✓ start-yarn.sh
        [-refreshNodes]
        [-setQuota <quota> <dirname>...<dirname>]
        [-clrQuota <dirname>...<dirname>]
                                                                                      hadoop-deamon(s).sh
        [-setSpaceQuota <quota> [-storageType <storagetype>] <dirname>...<dirname>]
        [-clrSpaceQuota [-storageType <storagetype>] <dirname>...<dirname>]
                                                                                      单独启动某个服务
        [-finalizeUpgrade]
        [-rollingUpgrade [<query|prepare|finalize>]]
        [-refreshServiceAcl]
                                                                                      hadoop-deamon.sh start namenode
        [-refreshUserToGroupsMappings]
        [-refreshSuperUserGroupsConfiguration]
        [-refreshCallOueue]
                                                                                      hadoop-deamons.sh start namenode
        [-refresh <host:ipc port> <key> [arg1..argn]
        [-reconfig <datanode|...> <host:ipc_port> <start|status>]
        [-printTopology]
        [-refreshNamenodes datanode host:ipc port]
        [-deleteBlockPool datanode_host:ipc_port blockpoolId [force]]
        [-setBalancerBandwidth <bandwidth in bytes per second>]
        [-fetchImage <local directory>]
        [-allowSnapshot <snapshotDir>]
        [-disallowSnapshot <snapshotDir>]
        [-shutdownDatanode <datanode host:ipc port> [upgrade]]
        [-getDatanodeInfo <datanode_host:ipc_port>]
        [-metasave filename]
        [-triggerBlockReport [-incremental] <datanode host:ipc port>]
        [-help [cmd]]
```

HDFS Shell命令—文件管理命令fsck

- ▶检查hdfs中文件的健康状况
- ▶查找缺失的块以及过少或过多副本的块
- ▶查看一个文件的所有数据块位置
- ▶删除损坏的数据块

```
[hadoop@chinahadoop-1 hadoop-2.7.3]$ bin/hdfs fsck
Usage: hdfs fsck <path> [-list-corruptfileblocks | [-move | -delete | -openforwrite] [-files [-blocks [-locations | -racks]]]] [-includeSnapshots] [-storagepolicies] [-block
Id <blk Id>]
       <path> start checking from this path
       -move move corrupted files to /lost+found
       -delete delete corrupted files
       -files print out files being checked
       -openforwrite print out files opened for write
                               include snapshot data if the given path indicates a snapshottable directory or there are snapshottable directories under it
       -includeSnapshots
       -list-corruptfileblocks print out list of missing blocks and files they belong to
       -blocks print out block report
                      print out locations for every block
       -locations
       -racks print out network topology for data-node locations
       -storagepolicies
                               print out storage policy summary for the blocks
       -blockId
                       print out which file this blockId belongs to, locations (nodes, racks) of this block, and other diagnostics info (under replicated, corrupted or not,
etc)
```

HDFS Shell命令—文件管理命令fsck

d864395.DTSK11

```
[hadoop@chinahadoop-1 hadoop-2.7.3]$ bin/hdfs fsck /home/hadoop/data/input/text/data wide 1.txt -files -blocks -locations
Connecting to namenode via http://chinahadoop-1:50070/fsck?uqi=hadoop&files=1&blocks=1&locations=1&path=%2Fhome%2Fhadoop%Fdata%2Finput%2Ftext%2Fdata_wide_1.txt
FSCK started by hadoop (auth:SIMPLE) from /115.28.132.226 for path /home/hadoop/data/input/text/data wide 1.txt at Sat Dec 03 14:20:24 CST 2016
/home/hadoop/data/input/text/data_wide_1.txt 1738917506 bytes, 13 block(s): OK
0. BP-1191294997-10.144.130.145-1475046603859:blk 1073742376 1552 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.132.226:50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638
DISK], DatanodeInfoWithStorage[115,28,45,102;50010.DS-e12e6f97-705e-4eb8-b0fd-fe2c28dc4cc7.DISK], DatanodeInfoWithStorage[115,28,48,35;50010.DS-566d809e-aafc-4208-97c3-0ed87
d864395,DISK]]
1. BP-1191294997-10.144.130.145-1475046603859:blk_1073742377_1553 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.132.226:50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638,
DISK], DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed87d864395,DISK], DatanodeInfoWithStorage[115.28.45.102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c2
8dc4cc7,DISK]]
2. BP-1191294997-10.144.130.145-1475046603859:blk_1073742378_1554 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed87d864395,DI
SK], DatanodeInfoWithStorage[115,28,132,226:50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638,DISK], DatanodeInfoWithStorage[115,28,45,102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c2
8dc4cc7.DISK11
3. BP-1191294997-10.144.130.145-1475046603859:blk 1073742379 1555 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.45.102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c28dc4cc7,
ISK], DatanodeInfoWithStorage[115.28.132.226:50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638,DISK], DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed87
d864395.DISK11
4. BP-1191294997-10.144.130.145-1475046603859:blk_1073742380_1556 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed87d864395,DI
SK], DatanodeInfoWithStorage[115.28.132.226:50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638,DISK], DatanodeInfoWithStorage[115.28.45.102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c2
8dc4cc7.DISK]]
5. BP-1191294997-10.144.130.145-1475046603859:blk 1073742381 1557 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed87d864395,DI
SK], DatanodeInfoWithStorage[115,28,45,102;50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638,DISK], DatanodeInfoWithStorage[115,28,45,102;50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c2
8dc4cc7.DISK11
6. BP-1191294997-10.144.130.145-1475046603859:blk 1073742382 1558 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.132.226:50010.DS-4433315b-2699-4d9a-acdd-1a69cb394638
DISK], DatanodeInfoWithStorage[115.28.45.102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c28dc4cc7,DISK], DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed8]
d864395,DISK]]
7. BP-1191294997-10.144.130.145-1475046603859:blk 1073742383 1559 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.132.226:50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638
DISK], DatanodeInfoWithStorage[115.28.45.102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c28dc4cc7,DISK], DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed8]
d864395.DISK11
8. BP-1191294997-10.144.130.145-1475046603859:blk 1073742384 1560 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.132.226:50010.DS-4433315b-2699-4d9a-acdd-1a69cb394638
DISK], DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed87d864395,DISK], DatanodeInfoWithStorage[115.28.45.102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c2
8dc4cc7.DISK11
9. BP-1191294997-10.144.130.145-1475046603859:blk_1073742385_1561 len=134217728 repl=3 [DatanodeInfoWithStorage[115.28.132.226:50010,DS-4433315b-2699-4d9a-acdd-1a69cb394638
DISK], DatanodeInfoWithStorage[115.28.45.102:50010,DS-e12e6f97-705e-4eb8-b0fd-fe2c28dc4cc7,DISK], DatanodeInfoWithStorage[115.28.48.35:50010,DS-566d809e-aafc-4208-97c3-0ed87
```

HDFS Shell命令—数据均衡器balancer

- ▶数据块重分布
- √ bin/start-balancer.sh -threshold <percentage of disk capacity>
- percentage of disk capacity
- ✓HDFS达到平衡状态的磁盘使用率偏差值
- ✓ 值越低各节点越平衡,但消耗时间也更长

HDFS Shell命令—设置目录份额

- ▶限制一个目录最多使用磁盘空间
- ✓ bin/hadoop dfsadmin -setSpaceQuota 1t /user/username
- ▶限制一个目录包含的最多子目录和文件数目
- √ bin/hadoop dfsadmin -setQuota 10000 /user/username

HDFS Shell命令—增加/移除节点

- ➤加入新的datanode
- ✓ 步骤1: 将已存在datanode上的安装包(包括配置文件等) 拷贝到新 datanode上;
- ✓ 步骤2: 启动新datanode: sbin/hadoop-deamon.sh start datanode
- ▶移除旧datanode
- ✓ 步骤1:将datanode加入黑名单,并更新黑名单,在
- NameNode上,将datanode的host或者ip加入配置选项
- dfs.hosts.exclude指定的文件中
- ✓ 步骤2: 移除datanode: bin/hadoop dfsadmin -refreshNodes

HDFS Java API介绍

- ➤ Configuration类:该类的对象封装了配置信息,这 些配置信息来自 core-*.xml;
- ➢ FileSystem类:文件系统类,可使用该类的方法对文件/目录进行操作。 一般通过FileSystem的静态方法,get获得一个文件系统对象;
- ➤ FSDataInputStream和FSDataOutputStream类: HDFS中输入输出流。 分别通过FileSystem的open方法和create方法获得。

以上类均来自java包: org.apache.hadoop.fs

HDFS Java程序举例

▶ 将本地文件拷贝到HDFS上;

Configuration config = new Configuration();

FileSystem hdfs = FileSystem.get(config);

Path srcPath = new Path(srcFile);

Path dstPath = new Path(dstFile);

hdfs.copyFromLocalFile(srcPath, dstPath);

➤ 创建HDFS文件;

//byte[] buff – 文件内容

Configuration config = new Configuration();

FileSystem hdfs =
FileSystem.get(config);

Path path = new Path(fileName);

FSDataOutputStream outputStream = hdfs.create(path);

outputStream.write(buff, 0, buff.length);

HDFS 多语言API—借助thrift

hadoopfs.thrift接口定义

```
service ThriftHadoopFileSystem
 // set inactivity timeout period. The period is specified in seconds.
 // if there are no RPC calls to the HadoopThrift server for this much
 // time, then the server kills itself.
  void setInactivityTimeoutPeriod(1:i64 periodInSeconds).
  // close session
 void shutdown(1:i32 status).
  // create a file and open it for writing
  ThriftHandle create(1:Pathname path) throws (1:ThriftIOException ouch),
 // create a file and open it for writing
  ThriftHandle createFile(1:Pathname path, 2:i16 mode,
                          3:bool overwrite, 4:i32 bufferSize,
                          5:i16 block_replication, 6:i64 blocksize)
                          throws (1:ThriftIOException ouch),
 // returns a handle to an existing file for reading
  ThriftHandle open(1:Pathname path) throws (1:ThriftIOException ouch),
 // returns a handle to an existing file for appending to it.
  ThriftHandle append(1:Pathname path) throws (1:ThriftIOException ouch),
 // write a string to the open handle for the file
  bool write(1:ThriftHandle handle, string data) throws (1:ThriftIOException ouch),
 // read some bytes from the open handle for the file
  string read(1:ThriftHandle handle, i64 offset, i32 size) throws (1:ThriftIOException ouch),
  // close file
  bool close(1:ThriftHandle out) throws (1:ThriftIOException ouch).
```

PHP语言访问HDFS

```
$transport = new TSocket(HDFS HOST, HDFS PORT);
$transport->setRecvTimeout(60000);
$transport->setSendTimeout(60000);
$protocol = new TBinaryProtocol($transport);
$client = new ThriftHadoopFileSystemClient($protocol);
logv("connect hdfs");
$transport->open();
logv("testing existent of `%s'", $remote uri);
$remote path = new Pathname(array('pathname' => $remote uri));
$remote file = null;
trv {
        $remote file = $client->listStatus($remote path);
} catch(Exception $e) { }
if (!$remote file)
    loge("could not open `%s'", $remote_uri);
```

Python语言访问HDFS

```
def connect(self):
  try:
    # connect to hdfs thrift server
    self. transport = TSocket. TSocket(self. server name, self. server port)
    self. transport = TTransport. TBufferedTransport(self. transport)
    self.protocol = TBinarvProtocol.TBinarvProtocol(self.transport)
    # Create a client to use the protocol encoder
    self. client = ThriftHadoopFileSystem. Client (self. protocol)
    self. transport. open()
    # tell the HadoopThrift server to die after 60 minutes of inactivity
    self.client.setInactivitvTimeoutPeriod(60*60)
    return True
  except Thrift. TException, tx:
    print "ERROR in connecting to ", self. server name, ":", self. server port
    print '%s' % (tx.message)
                                           def do_create(self, name):
    return False
                                            if name == "":
                                              print " ERROR usage: create <pathname>"
                                               print
                                               return 0
                                             # Create the file, and immediately closes the handle
                                             path = Pathname();
                                             path.pathname = name;
                                             status = self.client.create(path)
                                             self.client.close(status)
                                            return 0
```

viewfs访问HDFS

- 一个集群中需要唯一的命名空间还是多个命名空间,核心问题命名空间中数据的共享和访问的问题。使用全局唯一的命名空间是解决数据共享和访问的一种方法。
- 多命名空间下,可以使用Client Side Mount Table方式做到数据共享和访问。
- 深色三角形代表独立的命名空间,浅色三角形代表从客户角度去访问下方的子命名空间。各个深色的命名空间Mount到浅色的表中,访问不同的挂载点来访问不同的命名空间,如Linux系统中访问不同挂载点一样。
- 将各个命名空间挂载到全局mount table中, 就可以做将数据到全局共享;同样的命名空间挂 载到个人的mount-table中,这就成为应用程序 可见的命名空间视图。

NFS访问HDFS

- NFS允许用户像访问本地文件系统一样访问远程文件系统,而将NFS引入HDFS后,统,而将NFS引入HDFS后,用户可像读写本地文件一样读写HDFS上的文件,大大简化了HDFS使用
- 通过引入一个NFS gateway 服务实现,该服务能将NFS 协议转换为HDFS访问协议
- 用于HDFS文件浏览、文件上 传、下载及大型数据流处理

日志分析系统: 文件存储模块

日志分析系统:文件存储模块注意事项

- ▶数据分区
- ✓ 年/月/日
- ▶数据压缩
 - ✓ 较少存储空间
- ▶数据存储格式选择
- ✓ 原始日志存储格式选择Sequence file (便于 压缩) ,而不是文本格式
- ✓ 原始用户信息和商品信息可采用列式存储格式 (ORC或Parquet) 保存 (Hive—节会详细介绍)

日志分析系统:数据格式选择

日志分析系统:数据格式选择

- ▶文本文件
- ✓ 不便于压缩,选择合适的压缩算法很重要;
- ✓ 不建议将日志直接存成文本格式
- ➤ Sequence File
- ✓ 二进制格式, 便于压缩, 压缩格式作为元信息 存到文件中;
- ✓ 建议采用该格式存储原始日志

SequenceFile File Layout

小文件优化

- ▶合并成大文件
- ✓ Sequence file
- √ Hadoop Archive
- ➤保存到key/value系统中
- ✓ HBase
- √ TFS (Tao Bao FileSystem)

SequenceFile File Layout

压缩与归档

压缩格 式	split	native	正缩率 速度 是否had op自带		II I	linux命令	换成压缩 格式后, 原来的应 用程序是 否要修改		
gzip	否	是	很高	比较快	是,直接 使用	有	和文本处 理一样, 不需要修 改		
lzo	是	是	比较高	很快	否,需要 安装	有	需要建索 引,还需 要指定输 入格式		
snappy	否	是	比较高	很快	否,需要 安装	没有	和文本处 理一样, 不需要修 改		
bzip2	是	否	最高	慢	是,直接 使用	有	和文本处 理一样, 不需要修 改		

- > Flume
- ➤ MapReduce/Hive/Spark

纠删码编码

- ▶通过引入纠删码,节省存储空间(节省一半空间)
- ➤ Hadoop 3.0 (目前为alpha版本) 可用

增大热点文件副本数

- ▶通过程序API修改
 - ✓ FileSystem fs = FileSystem.get(path, conf);
 - √ fs.setReplication(path, (short) 4);
- > 通过配置参数修改
 - √ dfs.replication: 1
- ▶通过命令行
- ✓ 增加文件的副本数 hadoop dfs -setrep -w 4 /path/to/file
- ✓ 递归增加目录下文件的的副本数
- √ hadoop dfs –setrep -R -w 4 /path/to/file

冷热数据

- ▶ "冷热"数据
 - ✓ 冷数据: 过去半年内没访问过的数据
 - ✓ 冷数据可进行特殊处理,包括高压缩,小文件合并等
- ▶找出"冷热"数据
- √ hdfs oiv -i /home/hadoop/data/hdfs/name/current/
 fsimage 000000000001619538 -p XML -o fsimage.xml
 - ✓ 找出上次访问时间为半年之前的文件 <atime>1475047293212</atime>

冷数据处理

- ▶高压缩比算法进行压缩
 - ✓ Gzip或bzip2
- ▶合并小文件
 - ✓ 使用MapReduce实现
- ▶异构存储
 - ✓ http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-hdfs// ArchivalStorage.html

异构层级存储

- ▶ 每个节点是由多种异构存储介质构成的
- property>
 - <name>dfs.datanode.data.dir</name>
 - <value>[disk]/dir0,[disk]/dir1,[ssd]/dir2,[ssd]/dir3</value>

</property>

All disks as a single storage

Collection of Heterogeneous Storage Media

hdfs storagepolicies -setStoragePolicy -path <path> -policy <policy>

Policy ID	Policy Name	Block Placement (n replicas)
15	Lazy_Persist	RAM_DISK: 1, DISK: n-1
12	AII_SSD	SSD: n
10	One_SSD	SSD: 1, DISK: n-1
7	Hot (default)	DISK: n
5	Warm	DISK: 1, ARCHIVE: n-1
2	Cold	ARCHIVE: n

HDFS操作

- Hadoop –help
- hadoop fs –ls /wang 显示wang目录下的所有文件和目录
- hadoop fs -ls -R /wang 显示wang目录下的所有文件和目录加R
- hadoop fs -mkdir -p /a/b/c -p表示创建多级目录
- hadoop fs -put libsvm.jar /wang/
- hadoop fs -get /wang/
- hadoop fs -get /wang/haha
- hadoop fs -rm /wang/haha
- hadoop fs -rmr /wang 删除文件夹
- hadoop fs copyFromLocal /tmp/word.txt /wang 复制本地文件到hdfs
- hadoop fs copyToLocal /wang /tmp/word.txt 复制文件到本地系统
- hadoop fs -cat /wang/haha
- hdfs fsck /wang -files -blocks -locations显示各个文件由那些块组成,如何分布
- hadoop fsck /wang -delete #检查HDFS块状态,删除损坏块
- Hadoop fs -du /wang 显示目录中所有文件的大小
- Hadoop fs -du -s /wang 显示当前目录或者文件夹的大小可加选项 -s
- hadoop fs -mv /in/test2.txt /test2.txt
- hadoop fs -touchz /empty.txt 创建一个0字节的空文件

HDFS操作

- hdfs dfsadmin -safemode get 离开安全模式
- Hdfs dfsadmin -safemode enter 进入安全模式
- hadoop dfsadmin -printTopology
- hadoop jar cascade.jar /wang/train1.txt /output 4
- Start-balancer.sh -threshold XX 数据块重分布,XX为HDFS达到平衡状态磁盘使用率偏差值,值越低各节点越平衡,但消耗时间也更长
- Hadoop dfsadmin –setSpaceQuota 1t /user/限制一个目录最多使用磁盘空间
- Hadoop dfsadmin –setQuota 10000 /user/限制一个目录包含最多子目录和文件数
- 加入新的datanode
- 步骤1: 将已存在datanode上的安装包(包括配置文件等)拷贝到新的datanode上;
- 步骤2: sbin/hadoop-deamon.sh.start.datanode 启动新的datanode
- 移除旧datanode
- 步骤1:将datanode加入黑名单,并更新黑名单,在NameNode上,将datanode的 host,或者ip加入配置选项dfs.hosts.exclude指定的文件中
- 步骤2: bin/hadoop dfsadmin –refreshNodes 移除datanode

HDFS操作

[root@master ~ # hadoop dfsadmin -report DEPRECATED: Use of this script to execute hdfs command is deprecated. Instead use the hdfs command for it.

Configured Capacity: 155312836608 (144.65 GB)
Present Capacity: 133794054144 (124.61 GB)
DFS Remaining: 132795457536 (123.68 GB)
DFS Used: 998596608 (952.34 MB)
DFS Used%: 0.75%
Under replicated blocks: 0

总集群信息

Datanodes available: 3 (3 total, 0 dead)

节点信息

Live datamodes:

Missing blocks: 0

Name: 192.168.70.243:50010 (node3.hadoop)

Hostname: node3.hadoop

Decommission Status : Normal

Blocks with corrupt replicas: 0

Configured Capacity: 51770945536 (48.22 GB)

DFS Used: 332865536 (317.45 MB) Non DFS Used: 5849280512 (5.45 GB)

DFS Remaining: 45588799488 (42.46 GB)

DFS Used%: 0.64%

DFS Remaining%: 88.06%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)

Cache Used%: 100.00% Cache Remaining%: 0.00%

Last contact: Thu Sep 18 16:27:01 CST 2014

节点详细信息

HDFS常用端口

组件	节点	默认端口	配置	用途说明
HDFS	DataNode	50010	dfs.datanode.address	datanode 服务端口,用于数据传输
HDFS	DataNode	50075	dfs.datanode.http.address	http服务的端口
HDFS	DataNode	50475	dfs.datanode.https.address	https服务的端口
HDFS	DataNode	50020	dfs.datanode.ipc.address	ipc服务的端口
HDFS	NameNode	50070	dfs.namenode.http-address	http服务的端口
HDFS	NameNode	50470	dfs.namenode.https-address	https服务的端口
HDFS	NameNode	8020	fs.defaultFS	接收 Client 连接的 RPC 端口,用于获取文件系统 metadata 信息
HDFS	journalnode	8485	dfs.journalnode.rpc-address	RPC服务
HDFS	journalnode	8480	dfs.journalnode.http-address	HTTP服务
HDFS	ZKFC	8019	dfs.ha.zkfc.port	ZooKeeper FailoverController, 用于NN HA

Logged to ex

ووقاعاتي

RUNNING Applications

* Cluster	
About Nodes Node Labels Applications New SAVING SUBMITTED ACCEPTED RUNNING FINESTED FAILED FAILED SCHEDURY	

Apps Submitted Apps Pending			Memory Used	Memory Tota			VCores Used	VCores Tota	I VCores Re		tive Nodes	Decommiss	loned Node	s Los	st Nodes L	Jnhealthy Nodes	Rebooted Nod
30814 0 heduler Metrics	27	230787 308	1.24 TB	4.77 TB	0.8	30	08	1862		49		0		0	<u>0</u>		2
Scheduler Typ	ne.	Schedul	Ing Resource Type					Minimum A	llocation					Ma	sximum Allocatio	0	
pacity Scheduler		[MEMORY]	911122222			<memory:3328< td=""><td>8, vCores:1></td><td></td><td></td><td></td><td><me< td=""><td>emory:102144, v0</td><td>Cores:38></td><td></td><td></td><td></td><td></td></me<></td></memory:3328<>	8, vCores:1>				<me< td=""><td>emory:102144, v0</td><td>Cores:38></td><td></td><td></td><td></td><td></td></me<>	emory:102144, v0	Cores:38>				
how 20 🔻 entries																Search:	
ID	+ User	0 Name 0	Application Type	Queue o	Application Priority 0	StartTime o	FinishTime 0	State 0	FinalStatus 0	Running Containers o	Allocated CPU VCores 0	Allocated Memory MB	% of Queue	% of Cluster	Progress 0	Tracking UI	Blacklis Nodes
lication_1516850907017_231152	sunhulllang	HIVE-7024d22b-d442-4c06-97b5- 0fceddb5040b	TEZ	hue	0	Thu Mar 15 15:33:44	N/A	RUNNING	UNDEFINED	135	135	452608	90.4	9.0		ApplicationMaster	<u>r</u> 0
lication_1516850907017_231151	qlaoxiaolong	HIVE-c9f942af-cb47-460f-bc93- 034649618ed4	TEZ	bd_test	0	+0800 2018 Thu Mar 15 15:32:04	N/A	RUNNING	UNDEFINED	14	14	49920	110.8	1.0		<u>ApplicationMaster</u>	<u>r</u> 0
tation_1516850907017_231101	bd_wh	HIVE-e210e164-1d19-4864-9687- 54cc0e5a3ca4	TEZ	bd_wh	0	+0800 2018 Thu Mar 15 15:26:36	N/A	RUNNING	UNDEFINED	1	1	6656	0.2	0.1		ApplicationMaster	<u>r</u> 0
tation_1516850907017_231086	chenchen	HIVE-d741d5c7-6b04-48fa-b1e0- e0c07c368c30	TEZ	bd_test	0	+0800 2018 Thu Mar 15 15:25:09	N/A	RUNNING	UNDEFINED	14	14	49920	110.8	1.0		<u>ApplicationMaster</u>	<u>r</u> 0
ration_1516850907017_231079	haoshualyu	HIVE-d04f5f5c-e427-4bc0-b7fd-eecf1e8c769f	TEZ	bd_als	0	+0800 2018 Thu Mar 15 15:19:11 +0800 2018	N/A	RUNNING	UNDEFINED	66	66	222976	99.0	4.5		ApplicationMaster	<u>r</u> 0
ation_1516850907017_230974	haoshualyu	HIVE-df1de817-ba26-4f27-a457- 6896eaafa79d	TEZ	bd_als	0	Thu Mar 15 14:12:35	N/A	RUNNING	UNDEFINED	1	1	6656	3.0	0.1		ApplicationMaster	<u>r</u> 0
ation_1516850907017_221915	bd_access	GomeSdkStreaming	SPARK	bd_access	0	+0800 2018 Tue Mar 13 17:49:40 +0800 2018	N/A	RUNNING	UNDEFINED	3	3	23296	3.7	0.5		ApplicationMaster	<u>r</u> 0
ation_1516850907017_221911	bd_access	shuang11_available_aty_spark	SPARK	bd_access	0	Tue Mar 13 17:42:49	N/A	RUNNING	UNDEFINED	4	4	33280	5.3	0.7		<u>ApplicationMaster</u>	<u>r</u> 0
tion_1516850907017_221873	bd_access	GomeSdkCurrent	SPARK	bd_access	0	+0800 2018 Tue Mar 13 17:25:11 +0800 2018	N/A	RUNNING	UNDEFINED	3	3	26624	4.2	0.5		ApplicationMaster	<u>r</u> 0
tion_1516850907017_221836	bd_access	realtime_rebate_spark	SPARK	bd_access	0	Tue Mar 13 17:13:35	N/A	RUNNING	UNDEFINED	5	5	33280	5.3	0.7		ApplicationMaster	<u>r</u> 0
ation_1516850907017_221713	bd_access	realtime_order_rebate_spark	SPARK	bd_access	0	+0800 2018 Tue Mar 13 16:21:40 +0800 2018	N/A	RUNNING	UNDEFINED	3	3	9984	1.6	0.2		<u>ApplicationMaster</u>	<u>r</u> 0
ation_1516850907017_207748	bd_access_wh	AppSessionExtend-2.0.jar	MAPREDUCE	bd_wh	0	+0800 2018 Sat Mar 10 11:07:24 +0800 2018	N/A	RUNNING	UNDEFINED	4	4	23296	0.8	0.5		<u>ApplicationMaster</u>	<u>r</u> 0
ation_1516850907017_68042	bd_access	product_info_realtime_new	SPARK	bd_access	0	Thu Feb 8 17:53:22 +0800 2018	N/A	RUNNING	UNDEFINED	3	3	26624	4.2	0.5		<u>ApplicationMaster</u>	<u>r</u> 0
ation_1516850907017_67793	bd_access	shuang11_available_aty_spark_new	SPARK	bd_access	0	Thu Feb 8 16:31:38 +0800 2018	N/A	RUNNING	UNDEFINED	5	5	43264	6.9	0.9		<u>ApplicationMaster</u>	<u>r</u> 0
ation_1516850907017_67691	bd_access	realtime_available_aty_spark	SPARK	bd_access	0	Thu Feb 8 16:14:49 +0800 2018	N/A	RUNNING	UNDEFINED	4	4	36608	5.8	0.7		<u>ApplicationMaster</u>	<u>r</u> 0
ation_1516850907017_67680	bd_access	user_footprint_smv4	SPARK	bd_access	0	Thu Feb 8 16:11:31 +0800 2018	N/A	RUNNING	UNDEFINED	5	5	19968	3.2	0.4		<u>ApplicationMaster</u>	<u>r</u> 0
cation_1516850907017_67677	bd_access	user_footprint_mobile	SPARK	bd_access	0	Thu Feb 8 16:09:31 +0800 2018	N/A	RUNNING	UNDEFINED	7	7	46592	7.4	0.9		ApplicationMaster	<u>r</u> 0
cation_1516850907017_67676	bd_access	Collect2Mysql	SPARK	bd_access	0	Thu Feb 8 16:09:30 +0800 2018	N/A	RUNNING	UNDEFINED	3	3	16640	2.6	0.3		<u>ApplicationMaster</u>	<u>r</u> 0
ation_1516850907017_67672	bd_access	video_realtime	SPARK	bd_access	0	Thu Feb 8	N/A	RUNNING	UNDEFINED	3	3	13312	2.1	0.3		ApplicationMaster	<u>r</u> 0

No Data Available

No Data Available

No Data Available

No Data Available

谢谢!