

Optimal Transport with Adaptive Regularisation

Hugues Van Assel, Titouan Vayer, Rémi Flamary, Nicolas Courty

Regularising OT with a strictly convex term leads to reduced numerical complexity and more diffuse OT plans. Current formulations of regularised OT are equivalent to imposing a global constraint on the OT plan.

$$\min_{\mathbf{P}\in\Pi(\boldsymbol{a},\boldsymbol{b})} \langle \mathbf{P}, \mathbf{C} \rangle \quad \text{s.t.} \quad \sum_{i} \psi(\mathbf{P}_{i:}) \leq \eta.$$

$$\psi: \mathbb{R}^{N_s} \to \mathbb{R}$$
 is any strictly convex regulariser.
$$\begin{cases} \psi_{\mathrm{KL}}(\mathbf{p}) = \langle \mathbf{p}, \log \mathbf{p} - 1 \rangle & \longrightarrow \mathbf{Entropic} \ \mathrm{OT} \\ \psi_2(\mathbf{p}) = \frac{1}{2} \|\mathbf{p}\|_2^2 & \longrightarrow \mathbf{Quadratic} \ \mathrm{OT} \end{cases}$$

Diffusing mass for **outlier points** is costly, leading to **limited diffusion** for these points **under the global** constraint. To address this issue, we introduce individual constraints for each point.

$$\min_{\mathbf{P}\in\Pi(\boldsymbol{a},\boldsymbol{b})} \langle \mathbf{P},\mathbf{C}\rangle \quad \text{s.t.} \quad \forall i, \ \psi(\mathbf{P}_{i:}) \leq \eta_i \ .$$

Constraints can be applied on sources (as above), targets or both. OTARI problems can be solved using either alternating ψ -Bregman projections (Dykstra algorithm) or dual ascent.

-Application to Domain Adaptation-

Global Constraint (Sinkhorn)

- With traditional regularised OT, the barycentric mapping associated with an outlier is concentrated on the outlier.
- With OTARI, projections concentrate in high-density (thus more faithful) regions.

	OT	EOT	EOTARI-s	EOTARI-t	EOTARI-d
MNIST \rightarrow USPS ($\xi = 30$)	53.1(5.4)	64.2(2.8)	65.0(5.3)	66.4(3.5)	67.4(2.9)
MNIST \rightarrow USPS ($\xi = 300$)	53.1(5.4)	68.8(3.1)	70.8(4.2)	70.2(3.4)	72.6(5.1)
USPS \rightarrow MNIST ($\xi = 30$)	59.1(4.9)	60.8(5.4)	61.6(4.4)	62.6(3.0)	61.0(4.7)
USPS \rightarrow MNIST ($\xi = 300$)	59.1(4.9)	59.8(1.6)	61.0(2.3)	61.6(3.0)	58.8(2.3)
	OT	QOT	QOTARI-s	QOTARI-t	QOTARI-d
$MNIST \rightarrow USPS (\xi = 30)$	OT 53.1(5.4)	QOT 68.3(3.9)	QOTARI-s 68.3(3.6)	QOTARI-t 69.3(4.7)	QOTARI-d 68.1(4.6)
MNIST \rightarrow USPS ($\xi = 30$) MNIST \rightarrow USPS ($\xi = 300$)					
	53.1(5.4)	68.3(3.9)	68.3(3.6)	69.3(4.7)	68.1(4.6)