Department of Probability and Mathematical Statistics

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Daniel Jahn

Gibbs-Delaunay Tessellations

Simulation and estimation

Section 1

Point processes

Poisson point process

We're on $(\mathbb{R}^d, \mathcal{B})$, Euclidean space, λ^d Lebesgue measure. Denote \mathcal{B}_0 the set of bounded Borel sets.

Definition. Poisson point process

Let μ be a locally finite non-atomic measure on \mathbb{R}^d . A point process Φ satisfying

- $\Phi(B) \sim Pois(\mu(B))$ for each $B \in \mathcal{B}_0$,
- $\Phi(B_1), \ldots, \Phi(B_n)$ are independent for each $n \in \mathbb{N}$ and $B_1, \ldots, B_n \in \mathcal{B}_0$ pairwise disjoint.

is called a Poisson point process with the intensity measure μ .

If $\mu=z\lambda^d$ we call the process homogenous and z the intensity. For $\Lambda\in\mathcal{B}_0$, denote the distribution of $\Phi\cap\Lambda$ as π^z_Λ . For the case z=1, use π_Λ .

Poisson point process as a reference measure

- $\Phi: (\Omega, \mathcal{A}, P) \to (\mathcal{F}_{lf}, \mathscr{F})$ where
 - $\mathcal{F}_{lf} = \{ \gamma \subset \mathbb{R}^d | \ \gamma \cap \Lambda \text{ is finite for all } \Lambda \in \mathcal{B}_0 \}$ and
 - F is generated by sets of the form $\{\gamma \in \mathcal{F}_{lf} | N_{\Lambda}(\gamma) = n\}, n \in \mathbb{N}, \Lambda \in \mathcal{B}, \text{ where } N_{\Lambda}(\gamma) = \text{Card}(\gamma \cap \Lambda).$

Poisson point process as a reference measure

- $\Phi: (\Omega, \mathcal{A}, \textit{P}) \rightarrow (\mathcal{F}_{\textit{lf}}, \mathscr{F})$ where
 - $\mathcal{F}_{lf} = \{ \gamma \subset \mathbb{R}^d | \ \gamma \cap \Lambda \text{ is finite for all } \Lambda \in \mathcal{B}_0 \}$ and
 - \mathscr{F} is generated by sets of the form $\{\gamma \in \mathcal{F}_{lf} | N_{\Lambda}(\gamma) = n\}, n \in \mathbb{N}, \Lambda \in \mathcal{B}, \text{ where } N_{\Lambda}(\gamma) = \text{Card}(\gamma \cap \Lambda).$

We can view π_{Λ} as a reference measure on $(\mathcal{F}_{lf}, \mathscr{F}, \pi_{\Lambda})$ and define new processes through that.

Poisson point process with intensity z:

$$\pi^{\mathsf{z}}_{\mathsf{\Lambda}}(\mathsf{d}\gamma) \propto \mathsf{z}^{\mathsf{N}_{\mathsf{\Lambda}}(\gamma)} \pi_{\mathsf{\Lambda}}(\mathsf{d}\gamma).$$

Poisson point process as a reference measure

- $\Phi: (\Omega, \mathcal{A}, \textit{P}) \rightarrow (\mathcal{F}_{\textit{lf}}, \mathscr{F})$ where
 - $\mathcal{F}_{lf} = \{ \gamma \subset \mathbb{R}^d | \ \gamma \cap \Lambda \text{ is finite for all } \Lambda \in \mathcal{B}_0 \}$ and
 - \mathscr{F} is generated by sets of the form $\{\gamma \in \mathcal{F}_{ff} | N_{\Lambda}(\gamma) = n\}, n \in \mathbb{N}, \Lambda \in \mathcal{B}, \text{ where } N_{\Lambda}(\gamma) = \text{Card}(\gamma \cap \Lambda).$

We can view π_{Λ} as a reference measure on $(\mathcal{F}_{lf}, \mathscr{F}, \pi_{\Lambda})$ and define new processes through that.

Poisson point process with intensity z:

$$\pi_{\Lambda}^{z}(d\gamma) \propto z^{N_{\Lambda}(\gamma)}\pi_{\Lambda}(d\gamma).$$

Add a new term to obtain the finite volume Gibbs point process:

$$z^{N_{\Lambda}(\gamma)}e^{-H(\gamma)}\pi_{\Lambda}(d\gamma).$$

Finite volume Gibbs point process

Take $\Lambda \in \mathcal{B}_0$.

Definition. Finite volume Gibbs point process

The finite-volume Gibbs point process on Λ (fGPP) is a point process Γ defined by its density with respect to π_{Λ} :

$$f(\gamma) = \frac{1}{C_{\Lambda}^{z}} z^{N_{\Lambda}(\gamma)} e^{-H(\gamma)} \qquad \gamma \in \mathcal{F}_{lf},$$

where

- \bullet z > 0,
- $H: \mathcal{F}_{lf} \mapsto \mathbb{R} \cup \{+\infty\}$ is a measurable function called the energy function,
- $C_{\Lambda}^z = \int z^{N_{\Lambda}} e^{-H} d\pi_{\Lambda}$ is the normalizing constant.

Denote P_{Λ}^z the distribution of the finite-volume Gibbs point process on Λ , called the finite Gibbs measure.

Energy function H

Requirements and an example

Typically, we require H to satisfy:

Non-degeneracy:

$$H(\emptyset) < +\infty$$
.

• Hereditarity: For any finite point configuration $\gamma \subset \mathbb{R}^d$ and $x \in \gamma$

$$H(\gamma) < +\infty \Rightarrow H(\gamma \setminus \{x\}) < +\infty.$$

 \bullet Stability: There exists a constant A such that for any finite point configuration γ

$$H(\gamma) \geq AN_{\mathbb{R}^d}(\gamma)$$

Typically, we require H to satisfy:

Non-degeneracy:

$$H(\emptyset) < +\infty$$
.

• Hereditarity: For any finite point configuration $\gamma \subset \mathbb{R}^d$ and $x \in \gamma$

$$H(\gamma) < +\infty \Rightarrow H(\gamma \setminus \{x\}) < +\infty.$$

• Stability: There exists a constant A such that for any finite point configuration γ

$$H(\gamma) \geq AN_{\mathbb{R}^d}(\gamma)$$

Example: Strauss interaction: For R > 0,

$$H(\gamma) = \sum_{\{x,y\} \subset \gamma} \mathbf{1}_{[0,R]}(\|x-y\|)$$

Local energy and GNZ equations

For $\gamma \in \mathcal{F}_{lf}$ and $x \in \mathbb{R}^d$, define the local energy of x in γ by

$$h(x,\gamma) = H(\gamma \cup \{x\}) - H(\gamma).$$

Proposition (Georgii, Nguyen, Zessin). GNZ equations

For any positive measurable function $f: \mathbb{R}^d \times \mathcal{F}_{lf} \to \mathbb{R}$,

$$\int \sum_{x \in \gamma} f(x, \gamma \setminus \{x\}) P_{\Lambda}^{z} d(\gamma) = z \int \int_{\Lambda} f(x, \gamma) e^{-h(x, \gamma)} dx P_{\Lambda}^{z} (d\gamma).$$

Section 2

Triangulations

Delaunay triangulation

Through empty sphere property

A d+1-tuplet $T=\{x_1,\ldots,x_{d+1}\}\subset \gamma$ satisfies the empty sphere property if the open circumscribed ball $\mathcal{B}(T)$ does not contain any points from γ .

Definition. Delaunay triangulation in \mathbb{R}^d

A Delaunay triangulation of $\gamma \in \mathcal{F}_{lf}$ is the set $Del(\gamma)$ defined by

 $Del(\gamma) = \{T \subset \gamma : card(T) = d + 1, T \text{ satisfies the empty sphere property } \}.$

Additional assumption on γ (No cospherical points): no d+2 points x_1, \ldots, x_{d+2} are cospherical, i.e. there is no point $x \in \mathbb{R}^d$ such that $d(x, x_1) = \cdots = d(x, x_d + 2)$.

d(x, y) is the Euclidean distance between points x and y.

Delaunay triangulation

Through Voronoi tessellation

For $x \in \gamma$, the Voronoi cell of x in γ is

$$C(x,\gamma) = \{z \in \mathbb{R}^d : \|x - z\| \le \|y - z\| \ \forall y \in \gamma\}.$$

Then the Delaunay triangulation can be defined as

$$Del(\gamma) = \{\{x,y\} \subset \gamma : C(x,\gamma) \cap C(y,\gamma) \neq \emptyset\}.$$

Delaunay triangulation in 2D

Geometric predicates, 2D

In 2D, with
$$p_i = (x_i, y_i)$$

INCIRCLE
$$(p_1, p_2, p_3, p_4) = \begin{vmatrix} x_1 & y_1 & w_1 & 1 \\ x_2 & y_2 & w_2 & 1 \\ x_3 & y_3 & w_3 & 1 \\ x_4 & y_4 & w_4 & 1 \end{vmatrix}$$

where $w_i = x_i^2 + y_i^2, i = 1, ..., 4$ and

ORIENTATION(
$$p_1, p_2, p_3$$
) = $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} > 0$

In 3D, with
$$p_i = (x_i, y_i, z_i)$$

INCIRCLE
$$(p_1, p_2, p_3, p_4, p_5) = \begin{pmatrix} x_1 & y_1 & z_1 & w_1 & 1 \\ x_2 & y_2 & z_2 & w_2 & 1 \\ x_3 & y_3 & z_3 & w_3 & 1 \\ x_4 & y_4 & z_4 & w_4 & 1 \\ x_5 & y_5 & z_5 & w_5 & 1 \end{pmatrix}$$

where $w_i = x_i^2 + y_i^2 + z_i^2$, i = 1, ..., 5 if the following condition is satisfied

ORIENTATION
$$(p_1, p_2, p_3, p_4) = \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix} > 0$$

Laguerre-Delaunay triangulation

Power metric

- Generators are not points, but spheres.
- $\gamma = \{P_1, \dots, P_n\} = \{(p_1, r_{p_1}), \dots, (p_n, r_{p_n})\}$ can be thought of as marked point process.
- Metric is not Euclidean, but power distance.

$$d_p(x, P) = d(x, p)^2 - r_P^2$$

Laguerre-Delaunay triangulation

Inscribed sphere and cospherical spheres

Definition. Inscribed sphere

A sphere $C = (x, \rho)$ is inscribed among d + 1 spheres P_1, \dots, P_{d+1} if

$$\rho^2 = d_p(x, P_1) = d_p(x, P_2) = \dots = d_p(x, P_{d+1})$$

The spheres P_1, \ldots, P_{d+1} are cospherical to the sphere C.

 P_1, \ldots, P_{d+1} are cospherical $\Rightarrow C$ intersects $P_i, i = 1, \ldots, d+1$ at a right angle.

Definition. Empty sphere, empty sphere property

The inscribed sphere is called an empty sphere if no sphere from γ intersects C at an acute angle and if no sphere from γ is contained in C.

Spheres P_1, \ldots, P_{d+1} satisfy the empty sphere property if their inscribed sphere is an empty sphere.

Definition. Laguerre-Delaunay triangulation in \mathbb{R}^d

A Laguerre-Delaunay triangulation of a locally finite set $\gamma = \{(p_1, r_{p_1}), \dots, (p_n, r_{p_n})\}$ is the set $\mathcal{L}Del(\gamma)$ defined by

$$\begin{split} \mathcal{L}\textit{Del}(\gamma) &= \{ \mathcal{T} \subset \gamma : \\ &\text{card}(\mathcal{T}) = \textit{d} + 1, \textit{T} \text{ satisfies the empty sphere property } \}. \end{split}$$

Laguerre-Delaunay triangulation in 3D

Geometric predicates, 3D

$$P_i = (x_i, y_i, z_i, r_i)$$

INCIRCLE(
$$P_1, P_2, P_3, P_4, P_5$$
) =
$$\begin{vmatrix} x_1 & y_1 & z_1 & w_1 & 1 \\ x_2 & y_2 & z_2 & w_2 & 1 \\ x_3 & y_3 & z_3 & w_3 & 1 \\ x_4 & y_4 & z_4 & w_4 & 1 \\ x_5 & y_5 & z_5 & w_5 & 1 \end{vmatrix}$$

where $w_i = x_i^2 + y_i^2 + z_i^2 - r_i^2$, i = 1, ..., 5 if the following condition is satisfied

ORIENTATION(
$$P_1, P_2, P_3, P_4$$
) =
$$\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix} > 0$$

Laguerre-Delaunay triangulation in 3D

Geometric predicates, 3D

$$P_i = (x_i, y_i, z_i, r_i)$$

INCIRCLE(
$$P_1, P_2, P_3, P_4, P_5$$
) =
$$\begin{vmatrix} x_1 & y_1 & z_1 & w_1 & 1 \\ x_2 & y_2 & z_2 & w_2 & 1 \\ x_3 & y_3 & z_3 & w_3 & 1 \\ x_4 & y_4 & z_4 & w_4 & 1 \\ x_5 & y_5 & z_5 & w_5 & 1 \end{vmatrix}$$

where $w_i = x_i^2 + y_i^2 + z_i^2 - r_i^2$, i = 1, ..., 5 if the following condition is satisfied

ORIENTATION(
$$P_1, P_2, P_3, P_4$$
) =
$$\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix} > 0$$

Why? Because both are regular triangulations - convex hulls of lifted sets of points, that is

$$\gamma' = \{(P_i, w_i) : P_i \in \gamma, w_i = x_i^2 + y_i^2 + z_i^2 - r_i^2\}$$

Interlude: CGAL

- Computational Geometry Algorithms Library
- C++ library for geometric computation.
- Has fast implementations of both 3D Delaunay and 3D Laguerre-Delaunay triangulations (called Regular triangulation).
- Offers exact arithmetic for both geometric constructions and geometric predicates.

	Delaunay	Delaunay	Regular	Regular
		Fast location		No hidden points
Construction from 10^2 points	0.00054	0.000576	0.000948	0.000955
Construction from 10^3 points	0.00724	0.00748	0.0114	0.0111
Construction from 10^4 points	0.0785	0.0838	0.122	0.117
Construction from 10^5 points	0.827	0.878	1.25	1.19
Construction from 10^6 points	8.5	9.07	12.6	12.2
Construction from 10^7 points	87.4	92.5	129	125

Section 3

Random triangulations

Poisson-Delaunay triangulation

Definition. Poisson-Delaunay triangulation in \mathbb{R}^d

The Poisson-Delaunay triangulation of the Poisson point process Φ is the set $Del(\Phi)$.

Gibbs-Laguerre-Delaunay triangulation

Definition. Gibbs-Laguerre-Delaunay triangulation in \mathbb{R}^d

The Gibbs-Laguerre-Delaunay triangulation of the finite Gibbs point process Γ is the set $\mathcal{L}Del(\Gamma)$.

Geometric aspects of the triangulation can be used to define *H*. In general, the energy can have the form

$$\textit{H}(\gamma) = \sum_{\textit{T} \in \textit{Del}(\gamma)} \textit{V}_{1}(\textit{T}) + \sum_{\textit{\{\textit{T},\textit{T'}\}} \subset \textit{Del}(\gamma)} \textit{V}_{2}(\textit{T},\textit{T'})$$

to take interaction into account. V_1 and V_2 can be any functions from d-dimensional simplices to $\mathbb{R} \cup \{+\infty\}$.

Section 4

Simulation

Specification of the GLD model

Our model is the GDL triangulation in \mathbb{R}^{3} with the energy function of the form

$$H(\gamma) = \sum_{T \in \mathit{Del}_{\Lambda}(\gamma)} V_1(T),$$

with V_1 defined as

$$V_1(T) = \begin{cases} \infty & \text{if } a(T) \le \epsilon, \\ \infty & \text{if } R(T) \ge \alpha, \\ \theta Sur(T) & \text{otherwise,} \end{cases}$$
 (1)

where

- a(T) is the area of the smallest face of the tetrahedron T.
- R(T) is the circumradius of T.
- *Sur(T)* is the surface area of the tetrahedron.

Futhermore, $W = [0, W_0]$ is the weight proposal interval, where $W_0 > 0$ is the maximum weight.

Simulating a GLD triangulation Through MCMC

- The normalizing constant C_{Λ}^{z} is difficult to obtain.
- To sample from the distribution, we use MCMC methods.
 - Classic Birth-Death-Move Metropolis-Hastings algorithm, invented for this very purpose.

Simulating a GLD triangulation

Through MCMC

- The normalizing constant C_{Λ}^{z} is difficult to obtain.
- To sample from the distribution, we use MCMC methods.
 - Classic Birth-Death-Move Metropolis-Hastings algorithm, invented for this very purpose.

Birth-Death-Move algorithm

Denote Λ the observation window and Δ the simulation window, $\Lambda \subset \Delta$. $\Lambda_W := \Lambda \times [0, W]$

- **1** Start with a permissible initial configuration $\gamma_0 \subset \Delta \times W$.
- ② Denote $n = card(\gamma_0 \cap \Lambda)$.
- In each step, with probability 1/3:
 - **Birth**: Generate a new point $x \in \Lambda_W$ uniformly. Accept with probability $\frac{zf(\gamma_0 \cup \{x\})}{(n+1)f(\gamma_0)}$,
 - **Death**: Choose $x \in \gamma_0$ uniformly. Accept with probability $\frac{nf(\gamma_0 \setminus \{x\})}{zf(\gamma_0)}$,
 - Move: Generate a new point $y \in \Lambda_W$ uniformly and choose $x \in \gamma_0$ uniformly. Accept with probability $\frac{f(\gamma_0 \setminus \{x\} \cup \{y\})}{f(\gamma_0)}$.
- **1** Denote the new configuration γ_1 , set $\gamma_0 \leftarrow \gamma_1$ and go to 2.

Comparison with Poisson-Delaunay

$$\pi_{\Lambda}^{z} \propto z^{N_{\Lambda}} \pi_{\Lambda}$$
 $P_{\Lambda}^{z} \propto z^{N_{\Lambda}} e^{-\theta H} \pi_{\Lambda}$

 $\theta = 0 \Rightarrow$ GPP becomes PPP with intensity *z*.

Comparison with Poisson-Delaunay

$$\pi_{\Lambda}^{z} \propto z^{N_{\Lambda}} \pi_{\Lambda}$$
 $P_{\Lambda}^{z} \propto z^{N_{\Lambda}} e^{-\theta H} \pi_{\Lambda}$

 $\theta = 0 \Rightarrow$ GPP becomes PPP with intensity z.

Realization of a GLD model with parameters $\theta = 0.1, z = 500, \alpha = 0.15, \epsilon = 0, W_0 = 0.001$

Role of the parameter θ

 θ positive

The model prefers configurations with lower energy. θ multiplies the total surface area of all cells, thus with higher θ , the cells are forced to become large.

Realization of two GLD models. Blue: $\theta=0.1$, orange: $\theta=2$. Other parameters are z=500, $\alpha=0.15$, $\epsilon=0$, $W_0=0.001$ for both models.

Role of the parameter θ

 θ negative

The model prefers configurations with lower energy.

- $\theta > 0$. The sum needs to be minimized \Rightarrow fewer larger tetrahedra.
- θ < 0. The sum needs to be maximized \Rightarrow many smaller tetrahedra.

Realization of two GLD models. Blue: $\theta=-2$, orange: $\theta=2$. Other parameters are $z=500, \alpha=0.15, \epsilon=0, W_0=0.001$ for both models.

Section 5

Estimation

We have 4 parameters to estimate

- Hard-core parameters.
 - The minimum face area ϵ ,
 - the maximum circumradius α .
- Smooth parameters.
 - The multiplier of Sur(T), θ ,
 - the intensity of the underlying Poisson point process, z.

This is done through a two-step procedure

- **1** Estimate the hardcore parameters (ϵ, α) directly.
- $\textbf{ Estimate the smooth parameters } (\theta,z) \ \text{by } \ \textbf{Maximum Pseudo-Likelihood} \\ \textbf{ (MPLE) using the estimates } (\hat{\epsilon},\hat{\alpha}).$

[Dereudre, Lavancier (2009)] only proves consistence for a single parameter (although experimentally both work).

Thanks to the fact that the hardcore parameter α satisfies

if
$$\alpha < \alpha'$$
 then $\forall \Lambda$, $H_{\Lambda}^{\epsilon,\alpha,\theta}(\gamma) < \infty \Rightarrow H_{\Lambda}^{\epsilon,\alpha',\theta}(\gamma) < \infty$,

its consistent estimator is

$$\hat{\alpha} = \sup\{\alpha > 0, H_{\Lambda}(\gamma) < \infty\},\$$

which in practice is estimated as

$$\hat{\alpha} = \max\{r(T), T \in Del_{\Lambda}(\gamma)\}.$$

The estimate $\hat{\alpha}$ is then used in the pseudo-likelihood function in the second estimation step.

2. Maximum pseudolikelihood

MPLE depends on GNZ, which works only for hereditary energy functions.

$$H(\gamma) < \infty \Rightarrow H(\gamma \setminus \{x\}) < \infty \quad x \in \gamma$$

2. Maximum pseudolikelihood

MPLE depends on GNZ, which works only for hereditary energy functions.

$$H(\gamma) < \infty \Rightarrow H(\gamma \setminus \{x\}) < \infty \quad x \in \gamma$$

However [Dereudre, Lavancier (2009)] proved that GNZ still holds if we restrict ourselves to removable points.

We say a point $x \in \gamma$ is removable if $H(\gamma \setminus \{x\}) < \infty$. Denote $\mathcal{R}^{\alpha}(\gamma)$ the set of removable points in γ .

2. Maximum pseudolikelihood

The pseudolikelihood function is

$$\mathit{PLL}_{\Lambda_W}(\gamma,z,\alpha,\theta) = \int_{\Lambda_W} z \exp(-h^{\alpha,\theta}(x,\gamma)) dx + \sum_{x \in \mathcal{R}^{\alpha}(\gamma) \cap \Lambda_W} \left(h^{\alpha,\theta}(x,\gamma \setminus \{x\}) - \ln(z)\right),$$

The estimates $\hat{\theta}$ and \hat{z} are obtained through minimizing the PLL_{Λ_W} function.

$$(\hat{z}, \hat{\theta}) = \operatorname{argmin}_{z,\theta} PLL_{\Lambda_W}(\gamma, z, \hat{\alpha}, \theta).$$

2. Maximum pseudolikelihood

The pseudolikelihood function is

$$\mathit{PLL}_{\Lambda_W}(\gamma,z,\alpha,\theta) = \int_{\Lambda_W} z \exp(-h^{\alpha,\theta}(x,\gamma)) dx + \sum_{x \in \mathcal{R}^{\alpha}(\gamma) \cap \Lambda_W} \left(h^{\alpha,\theta}(x,\gamma \setminus \{x\}) - \ln(z)\right),$$

The estimates $\hat{\theta}$ and \hat{z} are obtained through minimizing the PLL_{Λ_W} function.

$$(\hat{z}, \hat{\theta}) = \operatorname{argmin}_{z,\theta} PLL_{\Lambda_W}(\gamma, z, \hat{\alpha}, \theta).$$

Differentiation yields the estimate \hat{z}

$$\hat{z} = \frac{\operatorname{card}(\mathcal{R}^{\alpha}(\gamma) \cap \Lambda_{W})}{\int_{\Lambda_{W}} \exp\left(-h^{\hat{\alpha},\theta}(x,\gamma)\right) dx},$$

The pseudolikelihood function is

$$\mathit{PLL}_{\Lambda_W}(\gamma,z,\alpha,\theta) = \int_{\Lambda_W} z \exp(-h^{\alpha,\theta}(x,\gamma)) dx + \sum_{x \in \mathcal{R}^{\alpha}(\gamma) \cap \Lambda_W} \left(h^{\alpha,\theta}(x,\gamma \setminus \{x\}) - \ln(z)\right),$$

The estimates $\hat{\theta}$ and \hat{z} are obtained through minimizing the PLL_{Λ_W} function.

$$(\hat{z}, \hat{\theta}) = \operatorname{argmin}_{z,\theta} PLL_{\Lambda_W}(\gamma, z, \hat{\alpha}, \theta).$$

Differentiation yields the estimate \hat{z}

$$\hat{z} = \frac{\operatorname{card}(\mathcal{R}^{\alpha}(\gamma) \cap \Lambda_{W})}{\int_{\Lambda_{W}} \exp\left(-h^{\hat{\alpha},\theta}(x,\gamma)\right) dx},$$

and the estimate $\hat{\theta}$ as the solution of

$$z\int_{\Lambda_W}(h^{\hat{\alpha},1}(x,\gamma)\exp\left(-h^{\hat{\alpha},\theta}(x,\gamma)\right))dx=\sum_{x\in\mathcal{R}^{\hat{\alpha}}(\gamma)\cap\Lambda_W}h^{\hat{\alpha},1}(x,\gamma\setminus\{x\}).$$

We obtain the estimate of θ by substituting the expression for \hat{z} into the equation for θ . This leads to the equation

$$\frac{\int_{\Lambda_W} (h^{\hat{\alpha},1}(x,\gamma) \exp\left(-h^{\hat{\alpha},\theta}(x,\gamma)\right)) dx}{\int_{\Lambda_W} \exp\left(-h^{\hat{\alpha},\theta}(x,\gamma)\right) dx} = \frac{\sum_{x \in \mathcal{R}^{\hat{\alpha}}(\gamma) \cap \Lambda_W} h^{\hat{\alpha},1}(x,\gamma \setminus \{x\})}{\operatorname{card}(\mathcal{R}^{\alpha}(\gamma) \cap \Lambda_W)}. \quad (2)$$

After some manipulation, we obtain the equation

$$\int_{\Lambda_W} \exp\left(-\theta h^{\hat{\alpha},1}(x,\gamma)\right) (h^{\hat{\alpha},1}(x,\gamma)-c) dx = 0.$$

where c is the RHS of (2), which is independent of θ .

After $\hat{\theta}$ is estimated, we then obtain the estimate \hat{z} with $\hat{\theta}$ instead of θ .

All integrals are estimated by MC-integration.

Estimation results

For Gibbs-Delaunay

Estimates from 303 simulations of a Gibbs-Delaunay model with $\theta=5, z=500, \alpha=0.15, \epsilon=0.$

Possible future directions

Variational estimator

$$E\left(\sum_{x\in\Gamma}\nabla_x f(x,\Gamma\setminus\{x\})\right) = \theta E\left(\sum_{x\in\Gamma} f(x,\Gamma\setminus\{x\})\nabla_x h(x,\Gamma\setminus\{x\})\right).$$

Possible future directions

Variational estimator

$$E\left(\sum_{x\in\Gamma}\nabla_x f(x,\Gamma\setminus\{x\})\right)=\theta E\left(\sum_{x\in\Gamma}f(x,\Gamma\setminus\{x\})\nabla_x h(x,\Gamma\setminus\{x\})\right).$$

Energy with explicit interaction, e.g.

$$V_2(T, T') = \theta\left(\frac{\max(Vol(T), Vol(T'))}{\min(Vol(T), Vol(T'))} - 1\right)$$

Possible future directions

Variational estimator

$$E\left(\sum_{x\in\Gamma}\nabla_x f(x,\Gamma\setminus\{x\})\right)=\theta E\left(\sum_{x\in\Gamma}f(x,\Gamma\setminus\{x\})\nabla_x h(x,\Gamma\setminus\{x\})\right).$$

Energy with explicit interaction, e.g.

$$V_2(T, T') = \theta\left(\frac{\max(Vol(T), Vol(T'))}{\min(Vol(T), Vol(T'))} - 1\right)$$

• Periodic outside configuration.