RKHS

Mu Niu

December 17, 2014

1 Approximation in Reproducing Kernel Hilbert Spaces

we will derive the expression of the best predictor. A brief introduction can be found in Durrande et al. (2013)

Let \mathcal{H} be a Hilbert space of real valued functions defined over $D \subset \mathbb{R}.\mathcal{H}$ is said to be a RKHS if and only if there exist a function $k(.,.):D\times D\to\mathbb{R}$ such that for all $x\in D$

- $k(x,.) \in \mathcal{H}$
- $\exists f \in \mathcal{H} \ f(x) = \langle f(.), k(x,.) \rangle_{\mathcal{H}}$

The function k satisfying these properties is unique and it is the reproducing kernel of \mathcal{H} . RKHS is completion of

$$\{\sum_{i=1}^{n} a_i k(x_i, .); n \in \mathbb{N}, a_i \in \mathbb{R}, x_i \in D\}$$

$$\tag{1}$$

In other words, the element in RKHS can be represented as linear combination of $k(x_i, .)$, but n need to be ∞ .

we will show how to approximate a function f that is observed in a finite number of points. Let $X = x_1, ..., x_n$ be a set of points where the value $y_i = f(x_i)$ is known and y be the vector of y_i . For a given RKHS \mathcal{H} , the best interpolator m is defined as the interpolator with minimal norm:

$$m = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}}(\|h\|_{\mathcal{H}} \mid h(x_i) = y_i, i \in 1, ..., n)$$
 (2)

It can be shown that m corresponds to the orthogonal projection of f onto \mathcal{H}_x which is the subspace of \mathcal{H} and spanned by $k(x_i, .)$.

$$\mathcal{H}_x = span(k(x_i, .), x_i \in X) \tag{3}$$

 $k(x_i, .)$ corresponds to a basis of \mathcal{H}_x

Example: suppose \mathcal{H}_x have two basis function $k(x_1,.)$ and $k(x_2,.)$, and there is another substance of \mathcal{H} , \mathcal{H}_{ϱ}

$$\{v \in \mathcal{H}_o \ st \ v(x_i) = 0\} \tag{4}$$

g is orthogonal to the element $k(x_i, .) \in \mathcal{H}$. So \mathcal{H}_o is orthogonal to all the basis function $k(x_i, .)$ of \mathcal{H}_x

$$\langle k(x_i,.), v(.) \rangle = 0$$
 (5)

we also have

$$f - m = v \tag{6}$$

combined above two equation we have

$$\langle f(.) - a_1 k(x_1, .) - a_2 k(x_2, .), k(x_i, .) \rangle = 0$$
 (7)

$$\begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) \\ k(x_2, x_1) & k(x_2, x_2) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \end{bmatrix}$$
(8)

and the best predictor m become

$$m = [k(x_1, .) \ k(x_2, .)] \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
$$= k(\bar{x}, .)' K^{-1} y(\bar{x})$$
(9)

 \bar{x} is vector of x_i

In the probabilistic framework, this expression corresponds to the conditional expectation of a centred Gaussian process Z with covariance k knowing the observations. Furthermore, GP provide naturally some prediction variance for the model:

$$m(x) = E[Z(x)|Z(x_i) = y_i] = k(\bar{x}, x)'K^{-1}y(\bar{x})$$

$$v(x) = Var[Z(x)|Z(x_i) = y_i] = k(x, x) - k(\bar{x}, x)'K^{-1}k(\bar{x}, x)$$
(10)

The squared norm $||m||^2_{\mathcal{H}_x}$ is the inner produce $< m, m > = < \sum a_i k(x_i, .), \sum a_j k(., x_j) > = \bar{a}' k(x, x) \bar{a}$

 b_j in equation 6 of Heinonen and d'Alché Buc (2014) is actually the product of the inverse of the gram matrix and measurements $K^{-1}y$

1.1 Representer theorem

Theorem. Let \mathcal{X} be a nonempty set and k a positive-definite real-valued kernel on $\mathcal{X} \times \mathcal{X}$ with corresponding reproducing kernel Hilbert space H_k . Given a training sample $(z_1, y_1), ..., (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$, a strictly monotonically increasing real-valued function $g: [0, +\infty) \to \mathbb{R}$, and an arbitrary empirical risk function $E: (\mathcal{X} \times \mathbb{R}^2)^n \to \mathbb{R} \cup \infty$, then for any $f_m \in H_k$ satisfying

$$f_m = \underset{f \in \mathcal{H}_k}{\operatorname{arg\,min}} \{ E((x_1, y_1, f(x_1)), ..., (x_n, y_n, f(x_n))) + g(||f||) \}$$

 f_m admits a representation of the form:

$$f_m = \sum_{i=1}^n a_k(., x_i), a_i \in \mathbb{R}$$

$$\tag{11}$$

In other words, if we have a function satisfy equation above (f_m) this function must lie in the subspace with basis $k(x_i, .)$ in H_k

If we define $\varphi(x) = k(.,x)$ Given any $x_1,...,x_n$. we can use orthogonal projection to decompose any $f \in H_k$ into a sum of two function, one lying in $span\{\varphi(x_1),...,\varphi(x_n)\}$ and the other lying in the orthogonal complement:

$$f = \sum_{i=1}^{n} a_i \varphi(x_i) + v, \quad \langle v, \varphi(x_i) \rangle = 0$$
 (12)

for all i Using orthogonal decomposition and reproducing property together,

$$f(x_j) = \langle \sum a_i \varphi(x_i) + v, \varphi(x_j) \rangle = \sum_{i=1}^n a_i \langle \varphi(x_i), \varphi(x_j) \rangle$$
 (13)

so $f(x_j)$ is independent of v. Consequently, the value of E is independent of v. The second term the regularization term,

$$g(\|f\|) = g(\|\sum a_i \varphi(x_i) + v\|) = g(\sqrt{\|\sum a_i \varphi(x_i)\|^2 + \|v\|^2})$$

$$\geq g(\|\sum a_i \varphi(x_i)\|)$$
(14)

Therefore setting v = 0 does not affect the first term of (*), while it strictly decreasing the second term. Consequently, any minimizer f_m in (*) must have v = 0, i.e., it must be of the form

$$f_m(.) = \sum a_i \varphi(x_i) = \sum a_i k(., x_i)$$
(15)

[not relevent to proof Riesz representation theorem: If we define H a Hilbert space and H^* is its dual space. if f is a element in H, function $\phi_f(.)$ is defind as a map $\phi_f: H \to \mathbb{R}$, for g in H we have $\phi_f(g) = \langle g, f \rangle$ where $\langle ., . \rangle$ is inner product. And $\phi_f(.)$ is one element in H^*

Theorem. The mapping $\psi: H \to H^*$ defined by $\psi(f) = \phi_f(.)$ is isometric isomorphism: ψ is bijective. and $||f|| = ||\psi(f)|| = ||\phi_f(.)|| = ||<.,f>||$ and

References

Durrande, N., Hensman, J., Rattray, M., and Lawrence, N. D. (2013). Gaussian process models for periodicity detection. arXiv preprint arXiv:1303.7090.

Heinonen, M. and d'Alché Buc, F. (2014). Learning nonparametric differential equations with operator-valued kernels and gradient matching. arXiv preprint arXiv:1411.5172.