Algorytmy i struktury danych

mgr Martyna Kobielnik, dr inż. Dawid Połap, dr hab. inż. Marcin Woźniak, Prof. PŚ

2019-2020

Zadania laboratoryjne dla kierunku INFORMATYKA st. I.

• Na lab. komputerowych student/-ka implementuje zadania z każdego działu TYLKO w jednym wybranym języku programowania C# lub Python, inne języki programowania nie będą podlegały zaliczeniom z przedmiotu. Jeśli student/-ka wybierze np. język Python to wszystkie zadania oddaje w tym języku, nie są dozwolone inne języki programowania ani mieszanie języków programowania.

I - Algorytmy podstawowe

Zaimplementuj następujące algorytmy

- 1. Wyszukiwania największej liczby w danym zbiorze,
- 2. Konwersja odwrotnej notacji polskiej (w obie strony).

II - Algorytmy obsługi masowej

Zaimplementuj następujące algorytmy zakładając, że dane przechowujemy w tablicach:

- 1. kolejka,
- 2. kolejka z priorytetem,
- 3. stos.
- 4. lista jednokierunkowa,
- 5. lista dwukierunkowa,
- 6. lista cykliczna,
- 7. lista z wartownikiem (flaga).

III - Algorytmy grafowe

Zaimplementuj następujące algorytmy grafowe

- 1. Dijkstry,
- 2. Floyda,
- 3. BFS,
- 4. DFS.

IV - Algorytmy wyszukiwania wzorca

Zaimplementuj algorytmy przetwarzania tekstu:

- 1. Knuth-Morris-Pratt,
- 2. Boyer-Moore,
- 3. Karpa-Rabina.

V - Algorytmy kodowania

Zaimplementuj algorytmy kodowania tekstu:

- 1. Cezafra z dowolnym przesunięciem,
- 2. Huffmana,
- 3. Shannona-Fano.

VI - Algorytmy sortowania

Zaimplementuj następujące algorytmy sortowania zakładając, że dane przechowujemy w tablicach:

- 1. bąbelkowe (bubblesort),
- 2. szybkie (quicksort),
- 3. stogowe (heapsort),
- 4. Shella,
- 5. przez zliczanie (countingsort),
- 6. przez scalanie (mergesort).

Wyniki sortowania (pod względem czasowym) przetestuj dla małych/średnich (10 - 1000 elementów) i dużych (100000 - 1000000 elementów) zbiorów oraz przeprowadź analizę statystyczną uzyskanych wyników.

Tablica 1: Funkcje testowe z przykładowymi współczynnikami.

Funkcja	$f(\overline{x})$	Przedział	$f_{min}(\overline{x})$	Rozwiązanie \overline{x}
Rastragin	$10n + \sum_{i=1}^{n} [x_i^2 - 10\cos(2\pi x_i)]$	$\langle -10, 10 \rangle$	0	(0,,0)
Rosenbrock	$\sum_{i=1}^{n-1} \left(100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right)$	$\langle -100, 100 \rangle$	0	$(1,\ldots,1)$
Hyper–Ellipsoid	$\sum_{i=1}^{n} \sum_{j=1}^{i} x_j^2$	$\langle -100, 100 \rangle$	0	$(0,\ldots,0)$
Shubert	$\prod_{j=1}^{i=1} \prod_{j=1}^{j=1} \left(\sum_{i=1}^{5} i \cos((i+1)x_j) \right)$	$\langle -10, 10 \rangle$	-186.7	(0,,0)
Sphere	$\sum_{i=1}^{n} x_i^2$	$\langle -10, 10 \rangle$	0	(0,,0)
Sum squares	$\sum_{i=1}^{n} ix_i^2$	$\langle -10, 10 \rangle$	0	(0,,0)
Styblinski-Tang	$\frac{1}{2} \sum_{i=1}^{n} \left(x_i^4 - 16x_i^2 + 5x_i \right)$	$\langle -10, 10 \rangle$	-39.2n	$(-2.9,\ldots,-2.9)$
Weierstrass	$\sum_{i=1}^{n} ([x_i + 0.5])^2$	$\langle -30, 30 \rangle$	0	$\left \left(-\frac{1}{2}, \dots, -\frac{1}{2} \right) \right $

VII - Algorytmy heurystyczne

Zaimplementuj algorytmy optymalizacji:

- 1. wyżarzania (annealing),
- 2. genetyczny (genetic algorithm),
- 3. różnicowy (differential evolution),
- 4. kukułki (cuckoo search),
- 5. nietoperza (bat algorithm),
- 6. świetlika (firefly algorithm),
- 7. pszczeli (bee algorithm),
- 8. mrówkowy (ant algorithm),
- 9. roju cząstek (particle swarm algorithm)

do poszukiwania minimum/maksimum globalnego 2 wybranych funkcji n-wymiarowych podanych w Tab. 1.