AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer and Systems Engineering Department
Third Year Computer Engineering Students

2 nd Semester, 2016-2017 Course Code: CSE323	Time : 3.00 I	Hrs	
Programming and Data Structures			
ne exam consists of six Questions in Three Pages. Total Mari	ks: 110 Marks	1/	
Question 1 [18 Marks]			
a) The depth of a max heap of 23 nodes is and in inserting a new node it needs big O of	the worst case w	hen	
b) Hashing is used mainly to access 6, 100 number of element	S.		
c) A binary search tree with n nodes, divide the space into d) For sparse graphs, the linked-list implementation of a grap	regions.	than	
matrix representation. e) A complete directed graph with 8 vertices has 66 f) Two different binary search trees (with the same elements but have the same 300 traverse)			
g) An algorithm that finds the sum of all terminal nodes is (inord h) (Close/Open/direct mapping) hashing is the most suitable for i) A priority queue can be developed using (single linked list/arr	memory.	der).	
Question 2 [18 Marks]	and the second of the		
State whether each of the following statements is true or falso	e and correct the	<u>,</u>	
false ones a) In a max heap, the value of the left child of a node is always le			
right child. The running time of finding the maximum element in a max is $O(logN)$ where N is the number of elements in the heap.			
c) The smallest value in a binary search tree (BST) is always st			
d) An O(N logN) algorithm is slower than an O(N * N) algorithm a) A close hashing of expected key range of 1000 and expected n	of 200 can effective	ely	
use a bucket size B of 1000. To delete a dynamically allocated tree, the best traversal metho			

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

COMPUTER AND SYSTEMS ENGINEERING, 3rd Year Computer Engineering Students

Course Code: CSE323

Programming and Data Structures

The exam consists of six Questions in three Pages

Semester 2016-2017

2/3

3 00 Hrs

Question 3 [18 Marks]

Given the following expression tree

a) Evaluate the expression

12 Marks

b) Find the inorder and post order traverse of the tree

14 Marksl

c) Write down a C++ class for this tree node

[4 Marks]

d) Write down code for method preorder traverse that prints the postfix of th given expressing represented by the tree

e) Write down a C+- member function of class Tree to count the number of terminal (went all 14 Marks nodes in the tree

Question 4 [18 Marks]

Give the following heap

a) Find the array representation of the given heap

b) What is the right child of the node with index 3

c) Insert a new node of value 21 and show how the new heap will look like [5 Marks]

d) Remove the node with value 100 from the heap and show the new heap after arrangement Squrring from original

e) What is the big O of a function called *Peek_Maximum* (that finds the maximum 12 Marks value in the heap)

AIN SHAMS UNIVERSITY, FACULTY OF ENGINEERING

COMPUTER AND SYSTEMS ENGINEERING, 3rd Year Computer Engineering Students

2º0 Semester 2016-20	Course Code: CSE323	fanc 3 00 Hrs
	Programming and Data Structures	
The exam consists of six Questio		3/3

Question 5 [20 Marks]

Given the following undirected graph about social networks

- a) Represent this graph using matrix or linked list [4 Marks] and justify your choice [2 Marks]
- b) Using Prim algorithm, show step by step how to find Minimum spanning tree starting from node Claire [6 Marks] and find its cost [2 Marks]
- c) Using Dijkstra algorithm, find the shortest path and its cost starting from node *Dennis* and ending at node *Alice* [6 Marks]

Question 6 [18 Marks]

Following is an example of open hashing with hash function H(K) = k % 7

a) Compute the average access to each of the given 11 values

[4 Marks]

b) Add the following six elements with the given order 8, 10. 9, 18. 29, 27

[4 Marks]

- c) Is the hash function H(k) = (k*k) % 7 better than k % 7 [2 Marks]. provide reasons or analysis [3 Marks]
- d) Create a close-hashing table with bucket size of 20 and add the above 11 elements in it in an ascending order and compute the number of collisions [5 Marks]