PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06-116686

(43) Date of publication of application: 26.04.1994

(51)Int.Cl.

C22C 38/00

B01J 23/86

C22C 38/28

// C21D 8/02

(21)Application number : **04–267642**

(71)Applicant: KAWASAKI STEEL CORP

(22)Date of filing:

06.10.1992

(72)Inventor: SHIMIZU HIROSHI

KONO MASAAKI

(54) FE-CR-AL ALLOY EXCELLENT IN OXIDATION RESISTANCE AND FOIL THEREOF (57)Abstract:

PURPOSE: To make the oxidation resistance of an Fe-Cr-Al alloy at a high temp. excellent by specifying its compsn.

CONSTITUTION: The compsn. of the Fe-Cr-Al alloy is formed of a one contg., by weigh, ≤0.05% C, ≤0.02% N, ≤1.0% Si, $\leq 1.5\%$ Mn, $\leq 0.01\%$ S, total $\leq 0.05\%$ Ti and Nb, $\leq 0.01\%$ Ce, 10 to 28% Cr, 1 to 6% Al and 0.0003 to 0.3% Ca and furthermore contg. 0.01 to 0.20% La and 0.01 to 1.0% Zr so as to satisfy the inequality (A): 0.1≤[Zr wt.%]/[La wt.%]≤20, and the balance Fe with inevitable impurities. In this way, the Fe-Cr-Al alloy excellent in oxidation resistance at a high temp. and foil thereof can be obtd.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出類公開番号

特開平6-116686

(43)公開日 平成6年(1994)4月26日

(51)Int.CL ⁵ C 2 2 C 38/00 B 0 1 J 23/86 C 2 2 C 38/28 # C 2 1 D 8/02	發別記号 302 Z A D	庁内整理番号 8017—4G 7412—4K	FI	技術表示首所
			9	審査請求 未請求 請求項の数5(全 8 頁)
(21)出頗各号	特類平4-267642 平成4年(1992)10月]6日	(71)出題人	川崎製鉄株式会社 兵庫県神戸市中央区北本町通1丁目1番28
			(72)発明者	号 清水 克 千葉県千葉市中央区川崎町1番池 川崎饗 鉄株式会社技術研究本部内
			(72)発明者	河 野 雅 昭 千葉県千葉市中央区川崎町 1 番地 川崎製 鉄株式会社技術研究本部内
			(74)代理人	弁理士 渡辺 望稔 (外1名)

(54)【発明の名称】 耐酸化性に優れたFe-Cr-Al系合金およびその箔

(57)【要約】

【目的】高温での耐酸化性に優れたFe-Cr-A!系合金およびその箔の提供。

【精成】C:0.05重量%以下、N:0.02重量%以下、S:1.0重量%以下、Mn:1.5重量%以下、S:0.01重量%以下、T1、Nb:合計で0.05重量%以下、Ce:0.01重量%以下、Cr:10~28重置%A!:1~6重量%、Ca:0.0003~0.03重量%を含有し、さらにしまおよびZrがLa:0.01~0.20重量%、Zr:0.01~1.0重量%

○. 1≦[2r重置%] / [La重量%] ≦20 · · · · · · · · · · · (A) で、かつ(A) 式を満足し、残部Feおよび不可選的不純物よりなる。耐酸化性に優れたFe-Cr-A1系合金。さらに、合金は下記の(1) ~ (3) の少なくとも1種を含有する。(1) V、To、Hfの少なくとも1種を合計で1.0重置%以下、(2) Yを0.5重置%以下、(3) Mgを0.0005~0.03重量%。さらに、上記合金の0.2mm以下の厚さの箱を提供する。

特闘平6-116686 2

【特許請求の範囲】

【請求項1】C:0.05重置%以下。 N: 0.02重量%以下。

1

Si:1.0重量%以下。 Mn: 1. 5重量%以 下.

S:0.01重量%以下。 T 1、N b:台計で0. *

> 1 ≤ (2 r 重量%) / (L a 重量%) ≤ 2 0 ----- (A)

(2)

で、かつ(A)式を満足し、残部Feおよび不可遇的不 絶物よりなる。耐酸化性に優れたFe-Cr-Al系合

【請求項2】 V、Taおよび目 『のうちの』 種または2 種以上を台計で 1. ()重量%以下含有する請求項 1 に記 戴のFe-Cr-A!系合金。

【請求項3】Y:0.5重量%以下を含有する請求項1 または2に記載のFe-Cr-A!系合金。

【請求項4】Mgを0.0005~0.03重量%含有 する請求項1~3のいずれかに記載のFe-Cr-A! 孫合金。

【請求項5】請求項1~4のいずれかに記載のFe-C r-A!系合金を圧延により作製した0.2 mm以下の 20

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、緋ガスコンバーターな どの触媒担体用金属材料を代表とする耐酸化性合金鋼お よびその箔に係る。

[0002]

【従来の技術】排ガス浄化触媒コンバーターは、燃料と 空気を混合し燃焼させた時に生成するNO、,HC.C 触媒反応は発熱反応であるためコンバーターの温度は上 昇する。また最近では、触媒反応の効率向上のためコン バーターを燃焼環境に近い位置に設置し高温の排ガス中 で触媒反応を起とさせる例が多く見られ、高温環境にさ ちされるばかりでなく、急加熱と急冷却が繰り返される ため非常に大きい熱衝撃を受ける。

【0003】このような非常に厳しい条件下で使用され る触媒コンバーター用材料としては、セラミックスが熱 衝撃に弱く使用に耐えないため、耐酸化性に優れるFe -Cr-A!合金などの金属材料が使用される。

【0004】Fe-Cr-A! 台金としては特開昭48 -41918号、特開昭58-177437号、特公平 2-58340号、特公昭62-14626号、特開昭 63-218253号、特開昭63-248447号、※

1 ≤ (2 r 重量%) / (L a 重量%) ≤ 2 0

で、かつ(A)式を満足し、残部Feおよび不可遇的不 絶物よりなる。耐酸化性に優れたFe-Cr-Al系合 金が提供される。

【0008】本発明の台金は、上記成分に加えて、A1 Nの形成の阻止および耐酸化性向上の目的でV. Ta お 50 てもよい。

* 05重置%以下。

Ce: 0.01重置%以下。 Cr: 10~28重置% A1:1~6重量%、 Ca: 0. 0003~ 0. 03重置%を含有し、さらにLaおよび2rが La:0.01~0.20重置%、 Zr:0.01~ 1. () 重置%

※特開昭64-11946号、特開昭64-30653 号、特開平1-115455号、特開平2-30360 10 5号、特関平3-36241号等が開示されている。し かし、これらに示されている材料には以下の問題があ る。特別昭48-41918号、特開昭58-1774 37号および特公平2-58340号では十分な耐酸化 性が得られない。特別昭63-218253号、特別昭 63-248447号、特開平2-303605号、特 公昭62-14626号、特開昭64-30653号お よび特闘平1-115455号は、REMとしてCeを 含有したミッシュメタルを主に添加しており、これらの 材料は耐酸化性が十分でない。

- 【0005】従って、これらの材料を板厚0.2mm以 下の箔として触媒コンバーター用メタルハニカム村とし て使用した場合には、耐酸化性が不十分であるため短時 間で異常酸化を生じてメタルハニカムは破損してしま う。・

[0006]

【発明が解決しようとする課題】以上のように、従来の Fe-Cr-Al合金では高温下で、しかも0.2mm 以下の合金箔として使用される触媒コンバーター用の材 料としては耐酸化性が不充分であり、材料全体が酸化物 Oなどの有害ガスを無害化するために使用される。この 30 に変化する、いわゆる異常酸化を起こすなど使用に耐え ないのが実情である。本発明は、上述した従来技術の欠 点を解消した高温での耐酸化性に優れたFe-Cr-A 1系合金および板厚がO. 2mm以下とした合金箔を提 供することを目的としている。

[0007]

【課題を解決されるための手段】すなわち、本発明によ れば、C:0.05重置%以下、 N:0.02重置 %以下、S::1.0重量%以下、 Mn:1.5重 置%以下、S:0.01重量%以下。 Ti. Nb: 40 合計で(), ()5重量%以下, Се; (), ()1重量%以 下. C::10~28重量%A!:1~6重量%、

Ca:0.0003~0.03重置%を含有し、 さらにLaおよび2gがLa:0.01~0.20重置 %. 2 r:0.01~1.0重置%

······ (A)

よびHfのうち1種または2種以上を合計で1.0重置 %以下含有させてもよい。

【0009】また本発明の合金は、上記成分に加えて前 酸化性向上の目的でさらにYを0.5重置%以下含有し

11/2/2009 12:15 PM

特闘平6-116686

(3)

【①①10】さらに本発明の合金は、上記成分に加えて 耐酸化性向上の目的でMgを0.0005~0.03重 置%含有させてもよい。

3

【0011】さらに、上記の合金を0.2mm以下の箔 とすることにより優れた耐酸化性の効果はより顕著に発 招される。

[0012]

【作用】以下に本発明をさらに詳細に説明する。まず、 本発明で非常に重要な要件である、耐酸化性を向上させ の含有、さらに耐酸化性を劣化されるTi, Nb. Ce の含有について述べる。

【0013】はじめに本発明者らは、1200°Cでの高 湿におけるFe-Cr-A1系合金箔の耐酸化性につい て元素の影響を調査した。その結果 しaと2gの複合 含有が、従来より明らかにされている希土領元素である ランタノイド、Y,Hfなどの元素の単独の含有では笑 現不可能な耐酸化性改善効果を有することが明らかとな った。

【0014】図1は、重量比にして0.005%C。 0. 15%Si, 0. 2%Mn, 20%Cr, 5%A 1. 0. 002%N, Ti, Nb台計で0. 01%糸 満、Ce()、()()5%未満で残部Feおよび不可遇的不 純物より成る合金を基本組成とし、さらに、2 r を単独 で0.072%含有する合金、Laを単独で0.091 %含有する合金、La:0.091%と2r:0.07 5%を複合含有する合金. La: (). ()89%、Zr: ① 076%、Ca:0.0042%を複合含有する台 金の、板厚50μmの箱に対しての1200℃、大気中 での酸化時間に対する重量変化を示したものである。ま*30

1 ≤ (Zr重量%) / (La重量%) ≤20

【()()16】本発明では、耐酸化性に関して(A)式が 最も重量な関係である。すなわち、Lak2gを含有し たFe-Cr-A!系合金において(A)式を満足する ことが高温における耐酸化性を改善する画期的な方法で ある。

【1) () 1 7 】 Laと2 rは、(A) 式を満足しても含有 置が少なすぎると十分な効果が発担されない。そのため にはLa, 2rともに(). ()1重置%以上の含有が必要 である。また、Laと2rは0.01重置%以上の含有 40 質で(A)式を満足させればその効果が十分発揮させる ことができるが、Laは固溶版が小さく、それを越えて 含有させると金属しaが位界に析出するため、含有量に 見合った耐酸化性が得られなくなるほか、熱間および冷 間での加工性が著しく劣化させるので、含有量の上限を 0.20重置%に限定する必要がある。また、21は、 過剰に含有させるとFe。2mやFe,2mなどの金属 間化合物を形成するため、逆に耐酸化性が劣化したり熱 間および冷間での加工性を逸するので、含有量の上限を 1. () 重置%に限定する必要がある。

*た、図中には、実施例の項で定義される耐酸化寿命比の 値も合せて示した。図1より、La単独含有、2ょ単独 含有のそれぞれが短時間で異常酸化により重量増加を起 こしているのに対し、Laと2gの複合含有ではそれぞ れの単独含有での寿命の和に対して2倍以上の寿命を有 することがわかる。これは、単にLaと2!を複合含有 させたとしても双方の耐酸化性改善効果の和になるとす る従来の考え方を逸脱する新たな発見がある。

【0015】本発明者らは、Laと2mの復合含有につ る(A)式で表されるLaと2gの複合含有およびCa 10 いてさらに詳細な調査を行なった結果.Laと2gの複 台含有の効果を十分に発揮させるためには含有量を制限 する必要があることがわかった。これは図!からも推察 されるように、La. 2 rの一方の含有量に対し他方の 含有量が極端に少なくなると単独含有の場合と同様の耐 酸化性しか得られないため、LaとZェの含有量の比は 一定の範囲内にある必要がある。図2は、重量比にし τ. 0. 005%C, 0. 15%Si, 0. 2%Mn, 20%Cr, 5%Al, 0. 002%N, 0. 001~ 0.004%Ca、Ti、Nb台計でり、01%未満。 20 Ce: (), ())5%未満で、さらにしa: (), ()1~ 0.2%, 2r0.01~1.0%を含有し残部Feお よび不可避的不純物よりなる台金の、板厚5 () μ mの箔 の耐酸化寿命比 (後述する実施例で定義される) に及ぼ するr含有量とLa含有量の比(〔2r含有量〕/〔L a含有量】の値)の影響を、La:0.01~0.2重 置%、2:10.01~1.0重置%の範囲で調査した 結果である。図2に示すように、Laと2rの含有量の 間に(A)式の関係がある時に優れた耐酸化性が得られ るととが判明した。

..... (A)

【0018】さらに本発明者らは、Laと2rの複合添 加の効果と第3元素の共存の影響を調査した。その結 具、Caの添加が効果があること、Ti, Nb. Ceが きわめて有害であることが判明した。図1より、しa, 2 r 複合添加鋼に対しさらにCaを0.0042%含有 させることにより耐酸化寿命はさらに延び、耐酸化寿命 比にして3.6となっており、Ca添加によって、寿命 が1.6倍延びたことが分かる。Caの共存によるL a、Zr複合添加効果の向上機構については明らかでな いが、耐酸化性に対してきわめて有害であるSを無害化 するためと推察される。従って、Caを有効にはたらか せるためには有害元素Sを低い値に抑えることが望まし い。具体的には、Sを()、()1重置%以下に抑えた上に S固定のためCaを最低限り、0003重置%以上含有 させる必要がある。願わくば、Caの含有量は重量%に してSの1.5倍以上が理想的である。しかし、0.0 3重量%を超えて含有させると、デンドライト粒間に偏 析して粒界強度を低下させ、熱間加工性を著しく劣化さ 50 せるため上限を0.03重量%ととし、範囲を0.00

特闘平6-116686

(4)

03~0.03重量%に限定した。

【0019】また、機構については明らかでないがT 1、Nb, CeはLa, Zr複合添加効果を減少させて しまう。従って、これらの元素をLa、2:複合添加の 効果が損なわれない程度に低く抑える必要がある。具体 的には、T」とNbは合計で()。()5重置%以下、類わ くばり、03重量%以下、0eは0.01重置%以下に 抑える必要がある。

5

【0020】以下に、その他の台金元素の作用および数 値限定理由について説明する。

Cr:Crは、A!の耐酸化性を向上させる効果を助け る役割を持つばかりでなく〇十日体が耐酸化性を向上さ せる効果を有する元素であり、それらの効果を十分発揮 させるために10重置%以上の含有が必要である。Сг の耐酸化性向上効果は、含有量の増加に伴って増加し、 特に18重置%以上含有することで優れた耐酸化性が得 られるが、28重置%を越えて含有させると、靱性およ び延性が低下し製造性を返するので範囲を10~28重 置%に限定した。

必要不可欠な元素であり、含有量の増加に伴って高温で かつ長時間の使用に耐え得る材料となる。その効果を十 分発揮させるためには、最低でも1重量%以上の含有が 必要である。しかし、10重量%を越えて含有させる と、合金銅の靭性が著しく低くなり冷間圧延で割れを生 じるため上限を10重置%とし、範囲を1~10重置% とした。

【0022】CおよびN:CおよびNは、フェライト系 ステンレス銅においては共に固密限が小さく、主として 炭化物、窒化物として析出し耐食性を劣化させるほか、 銅板の靭性および延性を著しく低下させる。特にNはA ! と窒化物を形成し有効A 1 (固溶A 1)を減少させる ばかりでなく。巨大な窒化物が箔製造時の欠陥の原因と なり歩止りを著しく劣化させるので、できるだけ少ない 方が望ましいが、工業的、経済的な溶製技術を考慮して 上限をC: ()、() 5 重置%、N: ()、() 2 重置%とし

【0023】Si, Mn:SiとMnは、A!脱酸の予 値脱酸材として添加された場合合金中に残存することが あるが、SLは酸化スケールの耐はくり性を低下させ、 またMnは耐酸化性および耐食性を劣化させるのでとも に少ない方がよいが工業的および経済的な密製造技術を 考慮して、Siは1.0重量%以下、Mnは1.5重量 %以下に限定した。

【0024】V、Ta,Hf:これらの元素は、AIN を形成してAIを消耗し耐酸化性を劣化させるNを無害 化する効果を有するが、過剰に含有させると、これら元 素の固溶置が増大し逆に耐酸化性を劣化させたり熱間お よび冷間での加工性を低下させるので上限を含有量の台 計で1.0重量%とした。

【0025】Y:Yは、Fe-Cr-A!台金に高温で 生成する酸化皮膜の密着性を向上させることを通じて耐 酸化性を向上させる効果を有する。これらの元素はその 効果のために多い方が望ましいが、Fe-Cr-A!合 金に対する固溶限が小さい上に固溶限を越えて含有させ ると、粒界に折出して加工性を劣化させるため、上限を 0.50重置%とした。

【0026】Mg:Mgは、0、0005重置%以上含 有した場合には非常に緻密なA!、O、スケールを生成 10 させ耐酸化性を向上させる元素であるが、(). ()3重量 %を超えて含有すると熱延性等の製造性が著しく低下す るためにその上限を(). ()3重置%とした。

【0027】本発明台金額は、通常の転炉法により密製 され溶融状態で成分調整を行い、鋼塊あるいはスラブに 鋳込まれ、500~1300℃の温度範圍内で圧下率5 0%以上の熱間圧延を行った後で焼鈍を行い、さらに冷 間圧延と焼鈍を繰り返し行って、必要な厚さのコイルあ るいは切板として製造される。

【0028】圧延された材料は、圧延ままの状態で使用 【0 0 2 1 】 A 1 : A 1 は、荷融化性を維持するために 20 することができるが、焼辣された最終製品を製造する場 台には、低酸素分圧の不活性ガス雰囲気下あるいは還元 ガス雰囲気下で光輝焼鈍(Bright annealing, BA)を 行う。この理由は、酸化性ガス雰囲気下で焼鈍を行う と、合金中のAIが優先的に酸化されAI。O。スケー ルを形成して合金中のAlを消費し、かつAl2O。ス ケールがハニカムの加工性を逃するためである。

> 【0029】上記台金は、特に板圧0.2mm以下とし た場合に従来村に比較し優れた耐酸化性が得られ排ガス コンバータ用のメタルハニカムとして最適な材料とな 30 る。

[0030]

【実施例】つぎに実施例に基づいて、本発明を具体的に 説明する。

(実施例) 表1 および表2に示す組成の合金を溶製し、 還元ガス雰囲気で光輝焼鈍し、圧延して箔とし、供試材 を得た。表しに示すのは本発明合金であり、表2に示す のは比較合金である。以上の供試材について以下の試験 を行なった。供試材の耐酸化寿命の評価は、Laと2r の複合含有による相乗効果およびCa添加の効果によっ 40 て寿命が延びたことを確認する観点と、T., Nb, C eがLa, 2r複合添加の効果を劣化させる観点から、 La、2r, Ca, Ti, Nb, Ce以外の成分を同一 とし、Laまたは2;を単独含有した比較材を製造して 耐酸化寿命を測定し、その寿命の和に対してLa.2 r、Ca複合含有でさらに必要に応じてTi, Nb, C eを含有させた材料の寿命が何倍になっているかを耐酸 化寿命比として評価した。とこで、耐酸化寿命とは、各 供試材の板厚5 0 µ mのB A 箱を 1 2 0 0 ℃、大気関放 下で酸化時間と重置変化の関係を求め、重置変化が2. 50 ()mg/cm となった時点の総酸化時間で定義した。表3 お

11/2/2009 12:18 PM

(5)

特関平6-116686

#2) CeのTra0. 005米積を示す。

ォーンTi,NbのTrはり.01%未満を示す。

よび表4にそれぞれ本発明合金と比較合金の耐酸化寿命 * 【0031】 比ねよび債者欄に製造性を示した。 * 【表1】

- 1										$\overline{}$					$\overline{}$	
(東西水)	Zr/18	1.8	O. 18	6 21	0.85	98 O	4.2	រេប	0.61	871	87	ಶರ	67	1.7	82 O	0.61
•	Ce*2	Τr	Tr	J L	T r	Ţŗ	Ţr	0.808	Тr	1 L	Τr	Tr	Τr	Ťr	Ţŗ	7.
	Ti.Nb"	Tr	Tr	Tr	Tr	Tr	Ti :0.04 No:0.01	Tr	Τr	Tr	Τr	Tr	Tr	Τr	Tr	Tr
	Mg										0.0082		d. 0026	0.0011		0.023
	Ÿ									a.3		Q. (6.07	0.CG	D. (T
	V. Ta. Hf								4:0, 12 (8:0, 08			V:0.05 Hf:0.18	Hf:0.12	V:0.12 Ta:0.18 Hf:0.20	18:0. 11	
	a Ç	O 3033	T100 T	Q 0041	O 0042	3200 V	2300 T	0.0033	0, 0021	0.004	0.0016	0. 0067	8200 O	9400 V	0.0155	0.0067
(本語明合金)	2 r	0.960	0.030	0.71	G. 076	0,040	0.33	0.016	0.054	0:00	0.35	0. ගියි	0. i7	SS O	O. 06	0.054
1 (4)	La	0.053	0.17	0.03	0.089	a 11	0. CTB	0.075	0.039	0.051	0.12	0.025	0.087	Q 18	0.11	0.038
- 36	Z	0,0025	ũ. 0018	0.0020	a. 6020	a. 0026	a 0043	0.0024	a. 0068	a.0018	r 3054	D: 9042	0, 0036	0.0050	0.0012	0.0065
	λI	26	2.5	3.1	<u>ي</u> ا	5.2	22	3.0	2.5	5.0	5.0	2.5	5.0	2. 6	5.5	8.8
	10	121	8.8	8.21	8778	93%	1 শ্ব	20.2	18.6	90°O	8.3	13. 1	1 'Œ	26.2	23.3	18.1
	S	305 v	a. co1	200 r	0.901	0,001	169 Y	0,00	0.601	a. 601	[c. col	D. CO¢	100.00	0°-00	0. GGZ	0. i04
	ď	0.028	92D-16	0.025	OED)*(82D*0	1830 °G	0.028	0.023	0.0S	230 10	D. CCC	920.0	0.027	0.033	0.038
	Mn	0.11	9.15	0.50	0.11	0.11	9. OR	0. 11	0.08	0. 10	0.08	ជ ប	90·0	0.11	0.03	1.20
	Si	J. 18	6.76	0.12	0.15	0.17	0.12	01.D	0.11	0.11	0.12	0. 12	0.11	0.10	9.0	0.11
	၁	0.009	0.00S	£003	900 Y	900 0	960 V	0. DOH	0,005	0.005	0.008	O 007	309 B	900 V	905 B	90370
:	No.	-	83	က	-	ຣ	9	~	ω	6	10	1.1	12	13	1.4	15

[0032] [表2]

			9						(6)								特 10	関平6-116686
(重量%)	21/12	9		क्ष] ::	1.5	Q. 74	ગ	0.84		/	1.2	12	0.57	0.17	1.6	17.9	
(9	Ce.	ئے	Tr	Tr	T.	Tr	180 0	Тг	ιL	889	21 0	250 0	Tr	Тr	Tr	Tr	ŢĽ	
	Ti.Nb•	Ţŗ	T.	Tr	Tr	Ti:0.06	Tr	Tr	Nb:0.08	Tr	Tr	Tr	Ti:0.08	Ti:0.38	Tr	Tr	Tr	
	M£								a 5011				a 0512				0.00(1	
	¥							a i2				វេ ប						
	V. Ta. HT							Y:0.10 Ta:0.11 Hf:0.26					ilf:a 15				Ta: 9, 0G	经亦可。
	Ca	a consta	a, 00sto	0.6650		U. COATS	0.0026	0.0022	9,0068	9200'6			0.0033	0.0018	0.0026	0.081	0.0016	005 8米雄农市4。
(比較合金)	12	0.072		0.56	980-0	0.12	0.085	0.078	0.088			0.CE}	0.088	0.051	0.081	0.088	1.2	60.00
2 (H	La		0.031	0.013	D. COT	a. 078	0.088		0.009	0.048	0,035	0.02	0.021	0.039	<u>0.46</u>	0.042	£30 '0	ØT r b
米	Z.	0.0081	0.000	0.6017	0.0024	0.6028	0.0027	0. W.C	0.00M	0 0028	0.0041	0.0028	0 6431	0.0058	0 (BB	0.0027	0.0036	*2) CeoTrto.
	٨1	6.2	5 .0	5.1	5.1	5.0	5.2	49	5.1	5.2	5.1	5.0	5.5	2.9	5.1	5.0	5.0	*
	Сr	1.02	20.0	20.2	1.03	8.02	19.9	20.2	20.0	2A. i	20.0	20. I	20. 0	18. B	M 2	20.1	20.2	\$
	S	O 001	0 001	a 002	0.001	0.001	0.001	a 003	0.002	Q 001	Q. (201	a 000	0 002	0 ®i	£.001	a 002	9.001	0.2%未备を示す。
	d	0.626	C. 027	0.024	O. 026	0.022	0.025	0.030	0.022	0.025	0.021	0.025	0.022	0.081	0.028	0.022	0.020	
	Mn	ali	0 OS	0.01	a 21	81.0	य १६	a 33	α0.	0.10	alı	a 13	am	a 15	a 11	0.20	a 17	T 13 (
	S J	0.17	0.12	0. !4	6.17	0.18	6.12	0.28	9. 12	8,25	9.18	a. 17	0.18	0.76	0.14	0.11	0.13	45.01
	ပ	C. 005	0.00	0.007	0.004	0.606	0.007	0.006	0.000	0.005	0.008	0.067	0.006	0.008	0.637	0.066	0.097	*1) Ti. Ndøtt320.
ĺ	జై	-	۵4	ೲ	Ŧ	ß	80	7	∞	6	1.6	-	12	1.3	1	1.5	1 &	₩ *

[0033]

(7)

特開平6-116686

12

<u>11</u>

No.

1

2

3

4

5

6

7

8

9

10

13

14 16

没 3 本発明合金

耐酸化寿命比

3.6

3.8

3. 5

3. 9

3. 2

3. 8

3. 4

3. 2

3. 3 3. 6

3. 3

3. 5 3. 8

3. 7

3.6

()

表4 比較合金

No.	耐酸化势命比	僻 考
1	1. 0	
2	1. 0	
3	1. 3	
4	2. 8	
5	2. 2	
6	2. 5	
7	1. 0	
8	2. 2	4
9	0.7	
10	0.5	
11	1. 2	
12	2. 2	
13	1. 6	
14	l ——	圧延不可能
15	l ——	圧延不可能
16		胚处不可能
1.0		

[0034]

【発明の効果】本発明は、Fe-Cr-A!系合金のLaとZr含有量の比を限定することにより、従来考えられていたLaあるいはZrの単独含有の耐酸化寿命の単純な和ではなく、それぞれの寿命の和以上の耐酸化寿命を実現させるとともにLa、Zr複合添加の効果を両上させるCaを適量含有させ、その効果を減少させるTr.Nb,Ceを限定することにより高温での耐酸化性を飛躍的に向上させたFe-Cr-Al系合金およびその合金箔を提供する。本発明は、自動車をなどの触媒コンパーター用材料をはじめとした、耐熱用材料として最適な合金である。

【図面の簡単な説明】

【図1】 重量比にして、0.005%C, 0.15% Si.0.2%Mn, 20%Cr, 5%Al, 0.00* *2%N, Ti. Nbの台計で0.01未満, Ce0.0 05%未満で、腰部Feおよび不可適的不純物より成り 台金を基本組成とし、2r単独含有、La 単独含有、L aとZrの複合含有、La、2r, Caの複合含有の4 種の合金の板厚50μmの着の酸化時間に対する重置変 化を示す図である。

【図2】 重量比にして、0.005%C, 0.15% Si、0.2%Mn, 20%Cr, 5%Al, 0.00 30 2%N, 0.001~0.004%Ca, Ti、Nb台計で0.01%未満, Ce0.005%未満で、さちにしa:0.01~0.2%、Zr0.01~1.0%を含有し、残部Feもよび不可避的不純物より成る合金の板厚50μmの器の耐酸化寿命比と〔Zr重置%〕/〔La重置%〕の値の関係を示す図である。

(8)

特闘平6-116686

