1) a)
$$A = \begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix}$$
 $B = \begin{bmatrix} 3 & 3 \\ 5 & 1 \end{bmatrix}$ $C = \begin{bmatrix} -6 & 0 \\ 3 & 2 \end{bmatrix}$

$$A \times B = \begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 8 & 3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} -36 & 10 \\ -5 & -1 \end{bmatrix}$$

$$A \times B \times C = \begin{bmatrix} 36 & 10 \\ -5 & -1 \end{bmatrix} \begin{bmatrix} -6 & 0 \\ 3 & .2 \end{bmatrix} = \begin{bmatrix} -186 & 20 \\ 27 & -2 \end{bmatrix}$$
b) $C \times A \times B$

$$= \begin{bmatrix} -6 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 36 & 10 \\ -5 & -1 \end{bmatrix} = \begin{bmatrix} -216 & -60 \\ 98 & 28 \end{bmatrix}$$
2) a) $E = \begin{bmatrix} -1 & 0 & 2 & 1 & 4 \\ -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 2 \end{bmatrix} \times \begin{bmatrix} 21 & 21 \\ 22 & 23 \\ 24 & 24 \end{bmatrix}$

JAY TANDIA

$$E: R_{2} \rightarrow R_{2} - R_{1} \qquad E = \begin{bmatrix} -1 & 0 & 2 & 1 & 4 \\ 0 & 1 & -2 & 0 & 4 \\ 0 & 1 & 1 & 0 & 2 \end{bmatrix}$$

$$E: R_{2} \rightarrow R_{2} - R_{1} \qquad E = \begin{bmatrix} -1 & 0 & 2 & 1 & 4 \\ 0 & 1 & -2 & 0 & -4 \\ 0 & 1 & 0 & 2 \\ \end{bmatrix}$$

$$E: R_{3} \rightarrow R_{3} - R_{2} \qquad E = \begin{bmatrix} -1 & 0 & 2 & 1 & 4 \\ 0 & 1 & -2 & 0 & -4 \\ 0 & 0 & 3 & 0 & 6 \end{bmatrix}$$

$$E: R_3 \to R_3 - R_2$$

$$E = \begin{bmatrix} -1 & 0 & 2 & 1 & 4 \\ 0 & 1 & -2 & 0 & -4 \\ 0 & 0 & 3 & 0 & 6 \end{bmatrix}$$

$$R_3 \to R_3/3 \qquad E = \begin{bmatrix} -1 & 0 & 2 & 1 & 4 \\ 0 & 1 & -2 & 0 & -4 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

$$R_{1} \rightarrow R_{1} - 2R_{3}$$

$$E = \begin{bmatrix} -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 & -4 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2} + 2R_{3}$$

$$E = \begin{bmatrix} -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

$$Cq^{2} - \alpha_{1} + \alpha_{2} = 0$$

$$\alpha_{1} = 2\alpha_{4}$$

$$\alpha_{3} = -2\alpha_{5}$$

$$2\alpha_{5} + \alpha_{3} = 0$$

$$2\alpha_{7} + \alpha_{3} = 0$$

$$2\alpha_{7} + \alpha_{3} = 0$$

$$2\alpha_{7} + \alpha_{7} = 0$$

$$\alpha_{1} = 2\alpha_{4}$$

$$\alpha_{3} = -2\alpha_{5}$$

$$\alpha_{1} = \alpha_{2}$$

$$\alpha_{2} = -2\alpha_{5}$$

$$\alpha_{3} = -2\alpha_{5}$$

$$\alpha_{4} = -2\alpha_{5}$$

$$\alpha_{1} = -2\alpha_{5}$$

$$\alpha_{3} = -2\alpha_{5}$$

$$\alpha_{1} = -2\alpha_{5}$$

$$\alpha_{2} = -2\alpha_{5}$$

$$\alpha_{3} = -2\alpha_{5}$$

$$\alpha_{4} = -2\alpha_{5}$$

$$\alpha_{5} = -2\alpha_{5}$$

$$\alpha_{7} = -2\alpha_{5}$$

$$\alpha_{1} = -2\alpha_{5}$$

$$\alpha_{1} = -2\alpha_{5}$$

$$\alpha_{2} = -2\alpha_{5}$$

$$\alpha_{3} = -2\alpha_{5}$$

$$\alpha_{4} = -2\alpha_{5}$$

$$\alpha_{5} = -2\alpha_{5}$$

$$\alpha_{7} =$$

2 2 A-1 . B

+3 (1×1-4(-5))

2 10 + 63

2 (4+1) + 3(1+20)

= 2 (4(1) - (-1)(1)) - 0 (1×1 -(-1)(-1))

ATXR =
$$\frac{1}{73}$$
 [$\frac{1}{4}$ [$\frac{1}{7}$ [$\frac{3}{4}$] $\frac{-12}{4}$] $\frac{4}{17}$ [$\frac{1}{5}$] $\frac{1}{73}$ [$\frac{1}{6}$] $\frac{1}{73}$ [$\frac{1}{73}$] $\frac{1}{73}$ [$\frac{3}{6}$] $\frac{3}{6}$] $\frac{1}{73}$ [$\frac{1}{73}$] $\frac{1}{73}$ [$\frac{21}{73}$] $\frac{1}{73}$ [$\frac{21}{73}$] $\frac{1}{73}$ [$\frac{21}{73}$] $\frac{1}{73}$ [$\frac{21}{73}$] $\frac{1}{73}$ [$\frac{3}{6}$] $\frac{1}{73}$ [$\frac{3}{6}$] $\frac{1}{73}$ [$\frac{3}{6}$] $\frac{1}{73}$ [$\frac{3}{6}$] $\frac{3}{6}$] $\frac{4}{15}$ [$\frac{3}{6}$] $\frac{4}{15}$ [$\frac{3}{6}$] $\frac{3}{6}$] $\frac{4}{15}$ [$\frac{3}{6}$] $\frac{4}{15}$ [$\frac{3}{6}$] $\frac{3}{6}$] $\frac{4}{15}$ [$\frac{3}{6}$] $\frac{3}{6}$] $\frac{4}{15}$ [$\frac{3}{6}$] \frac

b) D is nonisjugular ar det (D) 70 and its invente

can be calculated

 $\begin{bmatrix} 4 - (-1) & -(1-5) & (1-(-20))^{2} \\ -(0-3) & 2-(-15) & -(2-0) \\ (0-12) & -(-2-3) & (8-0) \end{bmatrix}$

A-1 = Adj A × 1 det(A)

cofactos motiva:

 $\begin{bmatrix} 5 & 4 & 21 \\ 3 & 17 & -2 \\ -12 & 5 & 8 \end{bmatrix}$

 $F = \begin{bmatrix} -3 & -2 & 1 & 3 & 1 \\ 2 & 4 & 1 & -2 \\ -1 & 2 & 2 & 1 \\ -1 & 4 & -3 & 1 \end{bmatrix}$

0 1 0 0

sof(F) =

8) Eigenvalues and Eigenvectors

a) Eigenvector is a non-zero motion vertor of that, when multiplied by a matrix, eventh in a scaled verify of the eigenvector of. The scaling factor is
$$\lambda$$
 (eigen value)

b) $G = \begin{bmatrix} 3 & 6 \\ 2 & 2 \end{bmatrix}$

det $(G - \lambda I) \neq 0$
 $G - \lambda I = \begin{bmatrix} 3 & 6 \\ 2 & 2 \end{bmatrix}$

$$\begin{bmatrix} 3 - \lambda & 6 \\ 2 & 2 \end{bmatrix} = 0$$

$$(3-\lambda)(2-\lambda) = 12$$

$$\lambda^2 - 5\lambda - 6 = 0$$

$$(\lambda - 6)(\lambda + 1) = 0$$

$$\lambda = 6, -1$$

$$\text{Eigenvalue}(L) = \begin{bmatrix} 6 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\text{For } \lambda = 6$$

$$(G - 6I) \approx 0$$

$$\begin{bmatrix} -3 & 6 \\ 2 & -4 \end{bmatrix} \approx 0$$

$$\begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix} = 0$$

$$\begin{cases} x_1 = 2x_2 \\ 1 \end{bmatrix}$$

for J=-1 $\begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \Rightarrow x_2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

Eigenvertog
$$\rightarrow \begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix}$$

Nogmolierd $\overrightarrow{y}_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.8944 \\ 0.4472 \end{bmatrix}$
 $\overrightarrow{y}_{2} = \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0.8321 \\ 0.5547 \end{bmatrix}$

$$\sqrt{1} = \begin{bmatrix} 0.8944 & -0.8321 \\ 0.4472 & 0.57471 \end{bmatrix}$$

Part - II 1) pyrauste to Succinyl-CoA, a EC 6.4.1.1 pyrwate -> oraloautate ATP + forgrevate + 4003 - ADD + phosphote + onaloquetate. B €C 1.1-1.37 -> (s) - Malate onaloautate (Oraloquetate + NaDPH + HO -> (5)-Malate + NaD® @ EC 4.2.1.2 Funciate (9) - Malate @ ec 113:511 Suinet a Furniste Puneste + quind -- succente + quinone EC 6,2.1,5 Surenyl-lon & Succeste ATP + Swinste + GA -> ADP + phrophets + Swing1-Cox 2) web: pyrunote 6-4-1.1 oraboautste (1.1.3.7 > (S)-Malate Suring - COA 26-2.1.5 Surinte (1.8.5.1) Fumeret

3) S-Madrix

Metabolite	R. (a)	R(6)	R(c)	R(d)	R(e)
ATP	-	03	· O , , ,		-1
ADP	+1	6	0		+1
phorphate	· · · · · · · · · · · · · · · · · · ·	0	0	0	41
403	-1		0		
pyrmeate	— \	0	, A. J.		
Oxaloautate	+1	-1	17.00	0	
(s) - Melate	0	+.1	- 6		
MAD+	O	+1,		0,	0
MADH		7	0		0
HT		- .		0	0
Fumerate	0	0	+1.	-1	
H20		Ó	1410	0	0
Suivoté	6	<i>O</i>	1. O 1.	+1	-1
Quiusne	0		0	+1	O
quind		O	0		, <u>,</u>
COA	O	0	10 y		-1
Queing - Cop	, 0	0	. 0	0	41

5) on doing EXS as E17x6 & S17x5 to mole Exs feasible Let & take ETXS [6×17 * 17×5 = 6×5] ondoing ETXS me have Esous 5 columns

ETXS régnifies in Ron 1 H'is unbalanced on product side (one more H+ entra)

ATP + pyrundt + Hlog -> APP + phorphote + oxalandate

adding one Ht in reactaint will under it balanced.

Radamed Run (a) Ec ; 6.4.1.1 ATP + pyrulete + HOST + H+ + ADP + phosphate + oxaloantale 9) ec # 6.2.1.5 6. ligaces 6.2 formig carbon sulfug bonds 6.2.1 Acid - thiol ligales (GDP - forming) 6.2.1.5 Summet - COA ligare (ADP formig) 8) other pathway (in S. cerenieine) which the reaction Represental by EC- 6-2.1.5 participate in one,

8) other pathway (in S. cereviers) which the exception of the expresental by EC-6-2.1.1 participate in one of TCA cycle (atrate cycle)

o proparate metabolism
o proparate pathways

Gene emoding EC 6.2.1.5 -> YGR2446 NCBI gene Id -> 853159 NCBI pertein Id -> NP-011760 Unspeat; 953312