LABORATORUL 9

Rezolvarile exercitiilor 1.0.2, 1.0.3, 1.0.4

Exercitiul 1.0.2. In acest exercitiul se foloseste rezultatul prezentat in curs (Cursul din data de 27.04., exemplul 1.2.2 de la pag. 3)

Exemple

1.2.2. Pentru orice $\alpha \in FORM, \vdash (\alpha \to \alpha)$.

Intr-adevăr, următoarea secvență de formule este o demonstrație formală pentru $(\alpha \to \alpha)$,

$$\beta_{1} = (\alpha \to (\alpha \to \alpha)) = \overline{\alpha_{1}} \{\alpha \mid a, \alpha \mid b\}$$

$$\beta_{2} = ((\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha)) = \overline{\alpha_{2}} \{\alpha \mid a, \alpha \mid b\}$$

$$\beta_{3} = (\alpha \to \alpha), \frac{\beta_{1}, \beta_{2}}{\beta_{3}} MP$$

In care am facut substitutia $\alpha = (a \wedge b)$.

Exercitiul 1.0.3. Aici se foloseste Regula silogismului (RS-cursul din data de 4.05) in care se aplica substitutiile $\alpha = x \lor y$, $\beta = \neg z \to t$, $\gamma = \neg x \land p$, iar $\neg z \to t = \neg (z \land t)$.

5.1 1.4.1. Schema silogismului (RS)

Pentru orice

$$\alpha, \beta, \gamma \in FORM, \{(\alpha \to \beta), (\beta \to \gamma)\} \vdash (\alpha \to \gamma).$$
 Decarece

$$\vdash \overline{\alpha_3} \{ \alpha \mid a, \ \beta \mid b, \ \gamma \mid c \} = ((\alpha \to \beta) \to ((\beta \to \gamma) \to (\beta \to \gamma)))$$

utilizând corolarul teoremei deducției, obținem

$$\{(\alpha \to \beta), (\beta \to \gamma)\} \vdash (\alpha \to \gamma).$$

Schema (regula) silogismului este reprezentată convențional

$$\frac{(\alpha \to \beta), (\beta \to \gamma)}{(\alpha \to \gamma)} RS.$$

Exercitiul 1.0.4. Se foloseste regula din aplicatia urmatoare, in care se foloseste substitutia $a = a \rightarrow b$, si b = c.

c) Să se arate că $a, \neg a \vdash b$.

<i>1.</i> ¬ <i>a</i>	$ipotezreve{a}$
2. $(\neg a) \to ((\neg b) \to (\neg a))$	A1
$3. (\neg b) \rightarrow (\neg a)$	1, 2 MP
4. a	$ipotezreve{a}$
5. $a \to ((\neg b) \to a)$	A1
$6. \ (\neg b) \rightarrow a$	4, 5 MP
7. $((\neg b) \to (\neg a)) \to (((\neg b) \to a) \to b)$	A3
8. $((\neg b) \to a) \to b$	3, 7 MP
9. b	6, 8 MP