import pandas as pd
from sklearn.preprocessing import OneHotEncoder

column_names = ['sepal.length', 'sepal.width', 'petal.length', 'petal.width', 'Species']
df = pd.read_csv('Iris.csv', header=None, names=column_names)
df

→		sepal.length	sepal.width	petal.length	petal.width	Species	
	0	5.1	3.5	1.4	0.2	Iris-setosa	ılı
	1	4.9	3.0	1.4	0.2	Iris-setosa	+//
	2	4.7	3.2	1.3	0.2	Iris-setosa	_
	3	4.6	3.1	1.5	0.2	Iris-setosa	
	4	5.0	3.6	1.4	0.2	Iris-setosa	
			•••				
	145	6.7	3.0	5.2	2.3	Iris-virginica	
	146	6.3	2.5	5.0	1.9	Iris-virginica	
	147	6.5	3.0	5.2	2.0	Iris-virginica	
	148	6.2	3.4	5.4	2.3	Iris-virginica	
	149	5.9	3.0	5.1	1.8	Iris-virginica	

150 rows × 5 columns

Next steps: (Generate code with df

View recommended plots

New interactive sheet

```
df_encoded = pd.get_dummies(df, columns=['Species'])
```

print("\nOne-Hot Encoded Dataset:\n", df_encoded.head())

 $\overline{\mathbf{T}}$

One-Hot Encoded Dataset:

	sepal.length	sepal.width	petal.length	petal.width	Species_Iris-setosa	\
0	5.1	3.5	1.4	0.2	True	
1	4.9	3.0	1.4	0.2	True	
2	4.7	3.2	1.3	0.2	True	
3	4.6	3.1	1.5	0.2	True	
4	5.0	3.6	1.4	0.2	True	

	Shecres Tilts-hellsrootol.	shecres_i.is-Ail.dilica
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False

2. Perform the One Hot encoding, by considering Species as target variable.

```
# Initialize OneHotEncoder with correct parameter
encoder = OneHotEncoder(sparse_output=False) # Use 'sparse_output' instead of 'sparse'
encoded_species = encoder.fit_transform(df[['Species']])
# Convert encoded data into a DataFrame
encoded_df = pd.DataFrame(encoded_species, columns=encoder.get_feature_names_out(['Specie
# Concatenate with original dataset (excluding original Species column)
df_final = pd.concat([df.drop(columns=['Species']), encoded_df], axis=1)
print("\nOne-Hot Encoded DataFrame:\n", df_final.head())
\rightarrow
     One-Hot Encoded DataFrame:
         sepal.length sepal.width petal.length petal.width Species_Iris-setosa
     0
                 5.1
                              3.5
                                            1.4
                                                          0.2
                                                                               1.0
     1
                 4.9
                              3.0
                                            1.4
                                                          0.2
                                                                               1.0
     2
                 4.7
                              3.2
                                            1.3
                                                          0.2
                                                                               1.0
     3
                 4.6
                                            1.5
                                                          0.2
                                                                               1.0
                              3.1
                 5.0
                              3.6
                                            1.4
                                                          0.2
                                                                               1.0
        Species_Iris-versicolor Species_Iris-virginica
     0
                            0.0
     1
                                                    0.0
                            0.0
     2
                            0.0
                                                     0.0
     3
                            0.0
                                                     0.0
     4
                            0.0
                                                     0.0
```

What is One-Hot Encoding?

One-hot encoding is a technique used to convert categorical data into a numerical format for machine learning models. It transforms categorical values into separate binary columns, preventing models from mistakenly assigning numerical meaning to categories.

How It Works

Instead of assigning a single numerical label (as in label encoding), one-hot encoding creates new columns, each representing a unique category. The presence of a category is indicated by 1, while the absence is 0.

Using one-hot encoding, this would be transformed into: | Color | Red | Blue | Green |

| Red | 1 | 0 | 0 |

| Blue | 0 | 1 | 0 |

| Green | 0 | 0 | 1 | | Red | 1 | 0 | 0 | | Green | 0 | 0 | 1 |

Why Use One-Hot Encoding?

- Avoids Ordinal Assumptions: Unlike label encoding, it prevents unintended ranking relationships (e.g., Red ≠ 0, Blue ≠ 1, Green ≠ 2).
- Compatible with ML Models: Some models, like linear regression, perform better when categorical values are one-hot encoded.