

República de Moçambique

Ministério da Educação e Cultura Conselho Nacional de Exames, Certificação e equivalências

ESG/2014 Exame Física Extraordinário 10ª Classe 90 Minutos

Esta exame contém 7 perguntas. Leia-as com atenção e responda na sua folha de exame. Na margem direita está indicada, entre parênteses, a cotação de cada pergunta em valores.

Cotação

- 1. Transcreva para a sua folha de exame a afirmação que melhor completa a frase:
 - A dinâmica é a parte da mecânica que estuda as(os)...

(1,0)

(1,0)

- A condições de equilíbrio dinâmico de uma partícula em movimento.
- **B** condições de equilíbrio de uma partícula ou de um corpo rígido.
- C movimentos dos corpos relacionando-os com as causas que os produzem.
- **D** movimentos dos corpos sem se preocupar com as causas que os produzem.
- 2. A tabela corresponde ao movimento de um ponto material que se move ao longo de uma trajectória rectilínea.

$\iota(s)$	U	1		3	4	
v(m/s)	0	25	50	75	100	(0,5)

- a) Construa o gráfico da velocidade em
- b) função do tempo para este movimento.
- c) Determine a aceleração do movimento.
- d) Calcule o espaço percorrido pelo ponto material ao fim de 4s.
- 3. A densidade absoluta do mercúrio é de 13,6 g/cm³. Qual é o volume ocupado por essa substância?
- 4. No circuito eléctrico representado na figura 1, determine a:
 - a) resistência equivalente.
 - b) diferença de potencial nos extremos do resistor R₁.
 - c) intensidade da corrente no resistor $R_2 = 60\Omega$.

- 5. Na figura 2, o gráfico representa a variação da tensão aplicada nos extremos de um resistor, em função da intensidade de corrente que o percorre.
 - a) Qual é a potência dissipada no resistor quando nos seus extremos se estabelece uma ddp de 1 volt?
 - b) Qual é, em Joules, a energia que se dissipa neste condutor durante 0,10 minutos quando a corrente que o percorre é I₂?

6. Transcreva para a folha de exame a alternativa que melhor completa a frase.

Por convenção, as linhas de força do campo magnético originado por um íman em forma de barra, orientam-se exteriormente do (da)... (1,0)

- A polo norte ao polo sul.
- **B** polo sul ao polo norte.
- C zona neutra ao polo N.
- **D** zona neutra ao polo S.
- 7. A figura 3 mostra uma onda transversal que se propaga numa corda, com frequência de 60 Hz. Determine a(o):

- b) comprimento de onda.
- c) velocidade de propagação da onda.

2014/10^a Classe / Guia de Correcção / Exame Exraodinário de Física

Perg.	Resolução	Cotação	
		Parc.	Tot.
1.	C movimentos dos corpos relacionando-os com as causas que os produzem.	1,0	<u>1,0</u>
2.	a) V(m/s) 100 75 50 25 0 1 2 3 4 t(s)	0,5	
	b) $\frac{\text{Dados}}{\text{v}_1=25\text{m/s}}$ $\text{v}_2=50\text{ m/s}$ $\text{t}_1=1\text{s}$ $\text{t}_2=2$ a ? $a = \frac{\Delta v}{\Delta t} = \frac{50-25}{2-1} = \frac{25}{1} = 25\text{m/s}^2$		
	c) $\frac{\text{Dados}}{\text{a=2m/s}^2}$ t = 4s s ? $s = \frac{1}{2}at^2 = \frac{1}{2}25.4^2 = \frac{25}{2}.16 = 25.8 = 200m$	1,0	
3.	$ \begin{array}{ccc} & & & & & & & & & & \\ & & & & & & \\ & & & & $	1,5 4x0,5	<u>3,0</u> <u>2,0</u>
4.	a) $\frac{\text{Dados}}{\text{R}_1 = 10\Omega}$ $R_T = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3} = 10 + \frac{60 \cdot 30}{60 + 30} = 30\Omega$ $R_2 = 60\Omega$ (1,0) (0,5) $R_3 = 30\Omega$ R_T ?	2,0	
	b) $\frac{\text{Dados}}{\text{I}_{\text{T}} = 3\text{A}}$ $U_i = R_1 . I_T = 10.3 = 30V$ $R_1 = 10\Omega$ $(0,5)$ $(0,5)$	1,0	
	c) $\frac{\text{Dados}}{I_{\text{T}} = 3A}$ $R_{//} = 6\Omega$ I_{R2} ? $V_{//} = R_{//}.I_{\text{T}} \qquad I_{R_2} = \frac{V_{//}}{R_2} = \frac{R_{//}.I_{\text{T}}}{R_2} = \frac{20.3}{60} = 1A$ (0,5) (0,5)	1,5	<u>4,5</u>

2014/10^a Classe / Guia de Correcção / Exame Exraodinário de Física

Perg.	Resolução		Cotação	
		Parc.	Tot.	
5.		1,5		
	$ \frac{\text{Dados}}{\text{U}_2=3\text{V}} $ $ \Delta t=0,10\text{min=6s} $ $ I_2 ? $ $ W? $ $ R = \frac{U_1}{I_1} = \frac{U_2}{I_2} \Rightarrow I_2 = \frac{U_2I_1}{U_1} = \frac{3.2}{1} = 6A $ $ (0,5) \qquad (0,5) \qquad (0,5) $ $ W = V.i.\Delta t = 3x6x6 = 108J $ $ (0,5) \qquad (0,5) \qquad (0,5) $	3,0	<u>4,5</u>	
6.	A polo norte ao polo sul.	1,0	1,0	
7.	a) $A = 0.1m$ (0,5) $1,5\lambda = 0,6 \Rightarrow \lambda = \frac{0,6}{1,5} = 0,4m$ b) $(0,5)$ $(0,5)$ $(0,5)$	0,5		
	c) $\frac{\text{Dados}}{\lambda = 0.4 \text{m}}$ $f = 60 \text{Hz}$ $v = \lambda . f = 0.4 \times 60 = 24 \text{m/s}$ V = ? (1,0) (0,5) (0,5)	2,0	4,0	