MATH 218 Final Project

Predicting Housing Prices in Ames, Iowa

Team Haydoja

Data Description

- Ames Housing Data publicly available on Kaggle
 - https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data
- 1460 observations, 79 variables
 - Combination of continuous, categorical, and discrete features
- Example features:
 - <u>Neighborhood</u>: Physical locations within Ames city limits
 - SalePrice: Price of house
 - o <u>LotArea</u>: Lot size in square feet
 - o <u>YearBuilt</u>: Original construction date
 - <u>FullBath</u>: Number of full bathrooms above ground
 - OverallCond: Rates the overall condition of the house

Feature Derivation / Data Cleaning

- Picked 23 variables from the 79 to focus on for the sake of simplicity
- Added log transformation to 'SalePrice' to account for right-skew
- Scaled numeric features using scale()
- Added binary feature 'Sold_08' to account for houses sold during housing market crash

Research Question 1: Which statistical learning method most accurately predicts housing prices?

Methodology

- Models:
 - Simple Linear Regression
 - K-fold CV Linear Regression
 - Ridge Regression
 - Lasso Regression
 - XGBoost
- 80:20 train/test split
- Assessed model by measuring the RMSE on the test set

Statistical Method	RMSE Error
Simple Linear Regression	\$17,498.74
K-fold CV	\$17,950.85
Ridge Regression	\$16,196.87
Lasso Regression	\$17,882.54
XGBoost	\$18,810.44

XGBoost: General Architecture

Research Question 2: Which statistical learning method most accurately classifies houses by neighborhood?

Methodology

- Models:
 - Naive Bayes
 - Decision Tree
- 80:20 train/test split
- Assessed model by measuring test set misclassification rate

Statistical Method	Misclass. Error
Naive Bayes	~ 0.56
Decision Tree	~ 0.45

Limitations

- Limited number of observations
- Challenging to select which of the 79 available features were the most important
- RMSE changes significantly based on how we split the data (exception: k-fold CV)
- Interpreting coefficients with categorical data