Fiche méthode: Fonction exponentielle

I. Propriétés algébriques

Application 1 : Propriétés algébriques

Simplifier les expressions suivantes, pour tout réel x:

$$A = e^{x+2}e^{-x+2}$$

$$A = e^{x+2-x+2}$$

$$A = e^4$$

$$B = \frac{e^{-2x+1}}{e^{-x+1}}$$

$$B = e^{(-2x+1)-(-x+1)}$$

$$B = e^{-2x+1+x-1}$$

$$B = e^{-x}$$

$$C = \frac{e^{x} - 1}{e^{x} + 1} + \frac{e^{-x} - 1}{e^{-x} + 1}$$

$$C = \frac{(e^{x} - 1)(e^{-x} + 1) + (e^{-x} - 1)(e^{x} + 1)}{(e^{x} + 1)(e^{-x} + 1)}$$

$$C = \frac{e^{0} + e^{x} - e^{-x} - 1 + e^{0} + e^{-x} - e^{x} - 1}{(e^{x} + 1)(e^{-x} + 1)}$$

$$C = 0$$

Propriétés algébriques

Soient a et b deux réels. Soit n un entier. alors :

1)
$$e^0 = 1$$

2)
$$e^1 = e^1$$

3)
$$e^{a+b} = e^a e^b$$

4)
$$e^{-a} = \frac{1}{a^a}$$

5)
$$e^{a-b} = \frac{e^a}{a^a}$$

6)
$$(e^a)^n = e^{na}$$

Remarque:

 $e \approx 2.718281828$. C'est un nombre irrationnel.

Fonction exponentielle:

La fonction exponentielle est définie sur \mathbb{R} par :

$$f(x) = e^x$$

II. Développement et identitsé remarquables

Application 2 : Développement et identités remarquables

t désigne un nombre réel. Développer et réduire chaque expression.

1.
$$A = e^{2t}(e^t - e^{-2t})$$

 $A = e^{2t}e^t - e^{2t}e^{-2t}$
 $A = e^{3t} - 1$

I.
$$B = 3e^{t}(e^{t} - e^{-t}) - 5e^{2t}$$

$$B = 3(e^{t})^{2} - 3e^{t}e^{-t} - 5e^{2t}$$

$$B = 3e^{2t} - 3 - 5e^{2t}$$

$$B = -2e^{2t} - 3$$

7.
$$C = (e^{t} - 1)^{2}$$

$$C = (e^{t})^{2} - 2e^{t} + 1$$

$$C = e^{2t} - 2e^{t} + 1$$

$$B = -2e^{2t} - 3$$

$$D = (e^{3t} - 5)(e^{3t} + 5)$$

$$D = (e^{3t})^2 - 5^2$$

$$D = e^{6t} - 25$$

III. Signe

Signe:

La fonction exponentielle est strictement positive sur \mathbb{R} .

Ainsi pour tout réel x on a $e^x > 0$.

Application 3: Signe

Déterminer le signe des expressions données sur \mathbb{R} .

$$A(x) = 5e^{x} - xe^{x}$$

$$A(x) = e^{x}(5 - x)$$
Comme pour tout réel $x, e^{x} > 0$ alors $A(x)$ est du signe de $5 - x$.

Signe de m = -1 < 0 à droite du « zéro ».

$$D(x) = xe^{-x} - x^2e^{-x}$$

$$D(x) = e^{-x}(x - x^2)$$
Comme pour tout réel $x, e^{-x} > 0$ alors $D(x)$ est du signe de $x - x^2$.
$$x - x^2 = 0$$

$$x(1 - x) = 0$$

$$x = 0 \text{ ou } 1 - x = 0$$

$$x = 0 \text{ ou } x = 1$$
Signe de $a = -1 < 0$ à l'extérieur des racines.

Variations et tangentes

Application 4 : Equation de tangente :

1. Déterminer l'équation de la tangente à la courbe représentative de la fonction exponentielle au point d'abscisse 0.

$$f(0) = e^0 = 1$$
 et $f'(0) = e^0 = 1$

Equation de la tangente T_0 à C_a au point A(0:1):

$$y = f'(0)(x - 0) + f(0)$$

$$y = e'(0)(x - 0) + e^0$$

$$y = 1 \times x + 1$$

y = x + 1

2. Déterminer l'équation de la tangente à la courbe **Courbe :** représentative de la fonction exponentielle au point d'abscisse 1.

$$f(1) = e \text{ et } f'(1) = e$$

Equation de la tangente T_1 à C_e au point B(1;e):

$$y = f'(1)(x - 1) + f(1)$$

$$y = e \times (x - 1) + e$$

$$y = ex$$

Variations:

La fonction exponentielle est strictement croissante sur R.

Equation et inéquation

Equation et inéquation

- 1) Pour tous réels a et b, $e^a = e^b \Leftrightarrow a = b$
- 2) Pour tous réels a et b, $e^a \le e^b \Leftrightarrow a \le b$

Application 5: Equations

Résoudre dans \mathbb{R} les équations suivantes :

a)
$$e^{x+1} - e^{2x+5} = 0$$
 b) $e^{3-x} = 1$

$$e^{x+1} - e^{2x+3} = 0$$
 b) $e^{3-x} = 1$

$$e^{x+1} = e^{2x+5}$$
 $e^{3-x} = e^0$
 $x + 1 = 2x + 5$ $3 - x = 0$
 $x - 2x = 5 - 1$ $x = 3$
 $-x = 4$ $x = -4$
 $S = \{-4\}$

c)
$$(e^x + 5)(e^x - 1) = 0$$

$$e^{x} + 5 = 0 \text{ ou}$$

$$e^{x} - 1 = 0$$

Application 6: Inéquations

Résoudre dans \mathbb{R} les inéquations suivantes :

a)
$$e^{2x-1} \ge e^{x+7}$$

b)
$$e^{3x+4} \le e^{5x-6}$$

$$2x - 1 \ge x + 7$$

$$2x - x \ge 7 + 1$$

$$x \ge 8$$

$$S = [8; +\infty[$$

$$x \ge \frac{-10}{-2} \text{ car } -2 < 0$$

$$x \ge 5$$

$$S = [5; +\infty[$$

c)
$$e^{2x} + 2 \le 0$$
 d) $e^x - 1 \le 0$

$$\begin{vmatrix} e^{2x} \le -2 \\ \text{Impossible} \\ S = \emptyset \end{vmatrix} \qquad \begin{aligned} e^x \le 1 \\ e^x \le e^0 \\ x \le 0 \\ S =] - \infty; 0] \end{aligned}$$

Dérivées et exponentielle

Dérivée :

Soit f la fonction exponentielle, f est dérivable sur \mathbb{R} et pour tout réel x :

$$f'(x) = e^x = f(x)$$

$$f'(x) = e^x = f(x)$$

La fonction exponentielle est égale à sa dérivée.

Application 7 : Dérivées

Déterminer les dérivées des fonctions suivantes sur R :

a)
$$f(x) = 5x^3 - 9e^x$$

 $f'(x) = 15x^2 - 9e^x$

b)
$$g(x) = e - e^x$$

$$g'(x) = -e^x$$

Produit:

c)
$$h(x) = (2x - 7)e^x = u(x)v(x)$$
 avec :

$$u(x) = 2x - 7$$

$$u'(x) = 2$$

$$v(x) = e^x$$
$$v'(x) = e^x$$

$$h'(x) = u'(x)v(x) + v'(x)u(x)$$

$$h'(x) = 2e^x + e^x(2x - 7)$$

$$h'(x) = 2e^x + e^x (2x - 7)$$

 $h'(x) = 2e^x + 2xe^x - 7e^x$

$$h'(x) = 2xe^x - 5e^x$$

$$h'(x) = e^x(2x - 5)$$

Application 8 : Dérivée et composée

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{5x+1}$. Déterminer f'(x).

1ère méthode :

$$a = 5$$

$$f'(x) = ae^{ax+b}$$

$$f'(x) = 5e^{5x+1}$$

2ème méthode:

$$f(x) = e^{u(x)}$$
 avec :

$$e^{u(x)}$$
 avec : $u(x) = 5x + 1$
 $u'(x) = 5$

$$f'(x) = u'(x)e^{u(x)}$$

$$f'(x) = 5e^{5x+1}$$

Quotient:

d)
$$k(t) = \frac{1+e^t}{e^t} = \frac{u(t)}{v(t)}$$
 avec

$$u(t) = 1 + e^t$$
$$u'(t) = e^t$$

$$v(t) = e^t$$
$$v'(t) = e^t$$

$$k'(t) = \frac{u'(t)v(t) - v'(t)u(t)}{v^2(t)}$$

$$\alpha'(t) = \frac{e^t e^t - e^t (1 + e^t)}{(e^t)^2}$$

$$k'(t) = \frac{e^t e^t - e^t - e^t e^t}{(-t)^2}$$

$$k'(t) = \frac{-e^t}{(e^t)^2}$$

Composée (affine):

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{ax+b}$ avec a et b deux réels.

f est dérivable sur un intervalle \mathbb{R} et pour tout réel x on a :

$$f'(x) = ae^{ax+b}$$

Composée (générale):

Soit u une fonction définie et dérivable sur un

Alors la fonction $f: x \mapsto e^{u(x)}$ est dérivable sur Iet pour tout $x \in I$:

$$f'(x) = u'(x)e^{u(x)}$$

VII. Fonctions $t \mapsto e^{kt}$ et $t \mapsto e^{-kt}$

Application 9 : Fonctions $t \mapsto e^{kt}$ et $t \mapsto e^{-kt}$

On considère les fonctions f et g définies sur \mathbb{R} par :

$$f(x) = e^{0.8x}$$
 et $g(x) = e^{-1.5x}$.

On a représenté ci-contre ces deux fonctions. Associer à chaque fonction sa courbe représentative.

$$0.8 > 0$$
 ainsi la fonction f est croissante : C_1 .
 $-1.5 < 0$ ainsi la fonction g est décroissante : C_2 .

VIII. Etude de fonctions

Application 10: Avec un produit et fonction affine

f est la fonction définie sur [-3:1] par :

$$f(x) = (5 - 4x)e^x$$

Dresser le tableau de variations de f.

Pour tout réel
$$x$$
, $f(x) = u(x)v(x)$ avec :

$$u(x) = 5 - 4x \qquad \qquad v(x) = e^x$$

$$u'(x) = -4 \qquad \qquad v'(x) = e^x$$

$$f'(x) = u'(x)v(x) + v'(x)u(x)$$

$$f'(x) = -4\mathbf{e}^x + \mathbf{e}^x(5 - 4x)$$

$$f'(x) = e^x(-4 + 5 - 4x)$$

$$f'(x) = e^x(-4x+1)$$

Comme pour tout réel appartenant à [-3;1] $e^x > 0$ ainsi f'(x) est du signe de -4x + 1

On résout

$$-4x + 1 = 0$$
$$x = \frac{1}{4}$$

1	$\frac{1}{4}$	-3	\boldsymbol{x}
-	0 -	12	f'(x)
311	·4 · e =	10.1953	f(x)
	.4 6.	$17 \cdot e^{-3}$	1(4)

Application 12 : Produit et fonction trinôme

f est la fonction définie sur \mathbb{R} par :

$$f(x) = (x^2 - 4)e^x$$

Dresser le tableau de variations de f.

Pour tout réel
$$x$$
, $f(x) = u(x)v(x)$ avec :

$$u(x) = x^2 - 4$$

$$v(x) = e^x$$

$$u'(x) = 2x$$

$$v'(x) = e^x$$

$$f'(x) = u'(x)v(x) + v'(x)u(x)$$

$$f'(x) = 2xe^x + e^x(x^2 - 4)$$

$$f'(x) = e^x(2x + x^2 - 4)$$

$$f'(x) = e^x(x^2 + 2x - 4)$$

Comme pour tout réel
$$e^x > 0$$
 ainsi $f'(x)$ est du

signe de $x^2 + 2x - 4$

$$a = 1$$
; $b = 2$ et $c = -4$

$$\Delta = b^2 - 4ac$$

$$= 2^2 - 4 \times 1 \times -4$$

$$= 20 > 0$$

Ft
$$\sqrt{\Lambda} = 2\sqrt{5}$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$r = \frac{-2 - 2\sqrt{5}}{1 - 2\sqrt{5}}$$

$$x_2 = \frac{-2 + 2\sqrt{5}}{2}$$

Application 11 : Avec une composée

a est la fonction définie sur \mathbb{R} par :

$$g(x) = 5e^{-4.5x} + 6$$

Démontrer que la fonction g est décroissante sur \mathbb{R} .

Pour tout réel
$$x$$
, $g(x) = 5e^{u(x)} + 6$ avec :

$$u(x) = -4.5x$$

$$u'(x) = -4.5$$

$$a'(x) = 5u'(x)e^{u(x)} + 0$$

$$g'(x) = 5 \times -4.5e^{-4.5x}$$

$$g'(x) = -22,5e^{-4,5x}$$

Comme pour tout réel, $e^{-4.5x} > 0$ ainsi g'(x) est du signe de -22,5 < 0 ainsi la fonction g est strictement décroissante sur R.

Application 13 : Quotient et fonction trinôme

q est la fonction définie sur \mathbb{R} par :

$$g(x) = \frac{x^2 + 2x}{e^x}$$

Dresser le tableau de variations de g.

Pour tout réel
$$x$$
, $g(x) = \frac{u(x)}{v(x)}$ avec :

$$u(x) = x^2 + 2x \qquad v(x) = e^x$$

$$u'(x) = 2x + 2 \qquad \qquad v'(x) = e^x$$

$$g'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^2(x)}$$

$$g'(x) = \frac{v^{2}(x)}{(2x+2)e^{x} - e^{x}(x^{2} + 2x)}$$

$$g'(x) = \frac{e^x (2x + 2 - (x^2 + 2x))}{(e^x)^2}$$

$$e^{x}(2x+2-x^2-2x)$$

$$a'(x) = \frac{e^{x}(2-x^2)}{2}$$

Comme pour tout réel, $e^x > 0$ et $e^{2x} > 0$ ainsi a'(x) est du signe de $2-x^2$.

On résout
$$2 - x^2 = 0$$

$$x^2 = 2$$

$$x = -\sqrt{2}$$
 ou $x = \sqrt{2}$

