

ALGORITMOS EM GRAFOS

Bacharelado em Sistemas da Informação Prof. Marco André Abud Kappel

Aula 2 – Representações de grafos

Matriz de Adjacências

- Supondo que os vértices são enumerados, um grafo pode ser representado por sua matriz de adjacência A.
- Seja um grafo G=(V,E) e uma matriz $A_{nxn} = [a_{ij}]$, onde n é o número de nós do grafo:
 - \rightarrow A(i, j) = 1, se (i, j) \in E
 - \rightarrow A(i, j) = 0, caso contrário
- Informa se existe um caminho de comprimento 1 entre dois nós.

Matriz de Adjacências

Matriz de Adjacências

– Exemplos:

Nós

Matriz de Adjacências

– Exemplos:

Número de arestas entre estes nós

Nós

Matriz de Adjacências

Matriz de Adjacências

	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Matriz de Adjacências

	0	1	2	3	4	5
0	0	0	0	0	1	0
1	0	1	1	1	1	0
2	0	1	0	1	0	0
3	0	1	1	0	0	0
4	1	1	0	0	0	0
5	0	0	0	0	0	0

Matriz de Adjacências

	0	1	2	3
0	0	0	1	0
1	0	1	1	1
2	1	1	0	1
3	0	1	1	0

Matriz de Adjacências

	0	1	2	3
0	0	0	1	0
1	0	1	1	1
2	1	1	0	1
3	0	1	1	0

Matriz de Adjacências

Características em grafos simples não-direcionados:

	0	1	2	3	4
0	0	1	0	0	1
1	1	0	1	0	1
2	0	1	0	1	0
3	0	0	1	0	1
4	1	1	0	1	0

Matriz de Adjacências

Características em grafos simples não-direcionados:

	_					
	0	1	2	3	4	
0	0	7	0	0	1	
1	1	0	7	0	1	
2	0	1	0	7/	0	
3	0	0	1	0	7	
4	1	1	0	1	0	>

- Se não tem laços, a diagonal é **nula**.

Matriz de Adjacências

Características em grafos simples não-direcionados:

	0	1	2	3	4
0	6	1	0	0	1
1	1	0	1	0	1
2	0	1	0	1	0
3	0	0	1	0	1
4	1	1	0	1	0

- Se o grafo não é direcionado, a matriz é **simétrica**.

Matriz de Adjacências

Características em grafos simples não-direcionados:

	0	1	2	3	4
0	0	1	0	0	1
1	1	0	1	0	1
2	0	1	0	1	0
3	0	0	1	0	1
4	1	1	0	1	0

Matriz de Adjacências

Características em grafos sin Grau do nó 1 onados

	0	1	2	3	4
0	0	1	0	0	1
1	1	0	1	0	1
2	0	1	0	1	0
3	0	0	1	0	1
4	1	1	0	1	0

1+0+1+0+1 = 3

1+0+1+0+1 = 3 **Grau** do **nó 1**

Matriz de Adjacências

	0	1	2	3	4
0					
1					
2					
3					
4					

Matriz de Adjacências

	0	1	2	3	4
0	0	1	1	1	1
1	1	0	1	1	1
2	1	1	0	1	1
3	1	1	1	0	1
4	1	1	1	1	0

- Matriz de Adjacências em grafos direcionados
 - Segue o mesmo princípio, mas considerando as direções das arestas:

- Matriz de Adjacências em grafos direcionados
 - Segue o mesmo princípio, mas considerando as direções das arestas:

	0	1	2	3
0				
1				
2				
3				

Matriz de Adjacências em grafos direcionados

Segue o mesmo princípio, mas considerando as direções das arestas:

	0	1	2	3
0	0	0	0	0
1	0	1	1	1
2	1	0	0	0
3	0	0	1	0

- Matriz de Adjacências em grafos direcionados
 - Segue o mesmo princípio, mas considerando as direções das arestas:

	0	1	2	3
0	0	0	0	0
1	0	1	1	1
2	1	0	0	0
3	0	0	1	0

- Matriz de Adjacências em grafos direcionados
 - Segue o mesmo princípio, mas considerando as direções das arestas:

	0	1	2	3	
0	0	0	0	0	0+1+1+1 = 3
1	0	1	1	1	Grau de saída do nó 1
2	1	0	0	0	40 110 1
3	0	0	1	0	

- Matriz de Adjacências em grafos direcionados
 - Segue o mesmo princípio, mas considerando as direções das arestas:

	0	1	2	3	_
0	0	0	0	0	0+1+1+1 = 3
1	0	1	1	1	Grau de saída do nó 1
2	1	0	0	0	do 11 0 1
3	0	0	1	0	
	-				

- Matriz de Adjacências em grafos direcionados
 - Segue o mesmo princípio, mas considerando as direções das arestas:

do **nó 1**

- Matriz de Adjacências em grafos direcionados
 - Segue o mesmo princípio, mas considerando as direções das arestas:

	0	1	2	3	
0	0	0	0	0	
1	0	1	1	1	
2	1	0	0	0	
3	0	0	1	0	

Indica que existe um caminho de comprimento 1 com origem no nó 3 e destino no nó 2.

- Matriz de Adjacências em grafos direcionados
 - Exemplo:

- Matriz de Adjacências em grafos direcionados
 - Exemplo:

	0	1	2	3	4
0					
1					
2					
3					
4					

Matriz de Adjacências em grafos direcionados

	0	1	2	3	4
0	0	0	0	0	1
1	0	0	1	1	0
2	0	0	1	0	0
3	0	0	1	0	0
4	0	1	0	0	0

Matriz de Adjacências em grafos direcionados

- Sabemos que a matriz de adjacência indica se existe um caminho de comprimento 1 entre dois nós.
- Como saber se existe um caminho de comprimento 2?

	0	1	2	3
0	0	1	1	0
1	0	0	0	0
2	0	0	1	0
3	1	1	1	0

Matriz de Adjacências em grafos direcionados

booleano

Solução: realizar o produto booleano entre a matriz e ela mesma.

 $-A \times A = A^{(2)} \rightarrow$ Matriz indica se existe um caminho de **comprimento 2** entre dois nós.

Matriz de Adjacências em grafos direcionados

— A x A = A⁽²⁾ → Matriz indica se existe um caminho de comprimento 2 entre dois nós.

– Lembrando:

X	Υ	X && Y
0	0	0
0	1	0
1	0	0
1	1	1

Х	Υ	X Y
0	0	0
0	1	1
1	0	1
1	1	1

A x A = A⁽²⁾ =
$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} x \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Matriz de Adjacências em grafos direcionados

$$A \times A = A^{(2)} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Matriz de Adjacências em grafos direcionados

$$A \times A = A^{(2)} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{split} A_{(4,2)}^{(2)} &= \left(A_{(4,1)} \&\& A_{(1,1)}\right) || \left(A_{(4,2)} \&\& A_{(2,2)}\right) || \left(A_{(4,3)} \&\& A_{(3,2)}\right) || \left(A_{(4,4)} \&\& A_{(4,2)}\right) \\ A_{(4,2)}^{(2)} &= \left(1 \&\& 1\right) || \left(1 \&\& 0\right) || \left(1 \&\& 0\right) || \left(0 \&\& 1\right) \\ A_{(4,2)}^{(2)} &= 1 || 0 || 0 || 0 \\ A_{(4,2)}^{(2)} &= 1 \end{split}$$

Matriz de Adjacências em grafos direcionados

– Verificando:

Matriz A⁽²⁾:

	0	1	2	3
0	0	0	1	0
1	0	0	0	0
2	0	0	1	0
3	0	1	1	0

- Matriz de Adjacências em grafos direcionados
 - Verificando:

Matriz A⁽²⁾:

	0	1	2	3
0	0	0	1	0
1	0	0	0	0
2	0	0	1	0
3	0	1	1	0

Existe caminho de comprimento 2 do nó 0 para o nó 1?

- Matriz de Adjacências em grafos direcionados
 - Verificando:

Matriz A⁽²⁾:

	0	1	2	3
0	0	0	1	0
1	0	0	0	0
2	0	0	1	0
3	0	1	1	0

Existe caminho de comprimento 2 do nó 0 para o nó 1? Não!

Matriz de Adjacências em grafos direcionados

– Verificando:

Matriz A⁽²⁾:

	0	1	2	3
0	0	0	1	0
1	0	0	0	0
2	0	0	1	0
3	0	1	1	0

- Existe caminho de comprimento 2 do nó 0 para o nó 1? Não!
- Existe caminho de comprimento 2 do nó 3 ao nó 2?

Matriz de Adjacências em grafos direcionados

– Verificando:

Matriz A⁽²⁾:

	0	1	2	3
0	0	0	1	0
1	0	0	0	0
2	0	0	1	0
3	0	1	1	0

- Existe caminho de comprimento 2 do nó 0 para o nó 1? Não!
- Existe caminho de comprimento 2 do nó 3 ao nó 2? Sim!

Obs: Como verificar se existe caminho de **comprimento 3**?

Matriz de Adjacências em grafos direcionados

– Verificando:

Matriz A⁽²⁾:

	0	1	2	3
0	0	0	1	0
1	0	0	0	0
2	0	0	1	0
3	0	1	1	0

- Existe caminho de comprimento 2 do nó 0 para o nó 1? Não!
- Existe caminho de comprimento 2 do nó 3 ao nó 2? Sim!

Obs: Para verificar se existe caminho de comprimento 3, basta calcular A⁽³⁾, e assim por diante.

- Matriz de Adjacências em grafos ponderados
 - Quando o grafo é ponderado, a representação só fica completa quando também se indica a sua matriz de pesos.
 - A matriz de pesos é construída de maneira semelhante à matriz de adjacência, mas colocando os pesos nos locais de arestas.
 - Se **não existem arestas** ligando os nós, o peso que é colocado na posição correspondente é igual a **infinito** (∞) .

• Matriz de Adjacências em grafos ponderados

- Exemplo:

Matriz de pesos:

	0	1	2	3
0				
1				
2				
3				

• Matriz de Adjacências em grafos ponderados

– Exemplo:

Matriz de pesos:

	0	1	2	3
0	8	3	8	1
1	3	8	3	1
2	8	3	8	2
3	1	1	2	8

Matriz de Incidências

- Representa um grafo através de uma matriz bidimensional, onde uma das dimensões são vértices e a outra dimensão são arestas.
- Seja um grafo G=(V,E) e uma matriz $B_{|V|x|E|} = [b_{ij}]$, onde n é o número de nós do grafo:
 - \triangleright B(i, j) = 1, se v_i pertence a e_i
 - \triangleright B(i, j) = 0, caso contrário

Obs: Um laço é representado pelo valor 2.

Matriz de Incidências

Matriz de Incidências

Matriz de Incidências

– Exemplo:

Arestas

- Matriz de Incidências em grafos direcionados
 - Se G é um **grafo direcionado**, então b_{ij} = +1 se a aresta **chega** em v_i e b_{ij} = -1, caso a aresta **parta** de v_i .
 - Exemplo:

Obs: Um laço é representado pelo valor 1 ou -1.

- Matriz de Incidências em grafos direcionados
 - Se G é um **grafo direcionado**, então b_{ij} = +1 se a aresta **chega** em v_i e b_{ij} = -1, caso a aresta **parta** de v_i .
 - Exemplo:

	а	b	С	d	е	f	g	h
0								
1								
2								
3								
4								

- Matriz de Incidências em grafos direcionados
 - Se G é um **grafo direcionado**, então b_{ij} = +1 se a aresta **chega** em v_i e b_{ij} = -1, caso a aresta **parta** de v_i .
 - Exemplo:

	а	b	С	d	е	f	g	h
	+1							
1	-1	+1	-1	+1	-1	0	0	0
2	0	0	0	0	+1	-1	0	0
3	0	0	0	0	0	+1	-1	-1
4	0	0	+1	-1	0	0	0	+1

- Para cada nó é criada uma lista encadeada com todos os nós adjacentes.
- Em geral é a mais usada em grafos esparsos, por ser mais eficiente.
- A única forma de descobrir as adjacências é percorrendo todos os elementos da lista.
- Em grafos direcionados, considerar os sentidos das setas.

- Lista de adjacências
 - Exemplo:

• Lista de adjacências

• Lista de adjacências

• Lista de adjacências

• Lista de adjacências

• Lista de adjacências

- Lista de adjacências
 - Exemplo:

• Lista de adjacências

• Lista de adjacências

- Exemplo:

Matriz de adjacências

• Lista de adjacências

– Exemplo:

1 2

0

4

Matriz de adjacências

	0	1	2	3	4
0					
1					
2					
3					
4					

• Lista de adjacências

– Exemplo:

1 2

0

4

Matriz de adjacências

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0

• Lista de adjacências

- Exemplo:

 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

0

4

Matriz de adjacências

	0	1	2	3	4
	U			<u> </u>	'
0	0	0	0	0	0
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0

• Implementação de grafos

Matriz de adjacência:

	0	1	2	3
0	0	1	0	0
1	0	0	0	0
2	0	0	0	1
3	1	1	0	0

• Implementação de grafos

Matriz de adjacência:

	0	1	2	3
0	0	1	0	0
1	0	0	0	0
2	0	0	0	1
3	1	1	0	0


```
// Matriz de Adiacências
int G[MAX_NOS][MAX_NOS];

inicializaGrafo(G);

// Marcando adiacências
G[0][1] = 1;
G[2][3] = 1;
G[3][1] = 1;
G[3][0] = 1;
imprimeMatriz(G);
```

• Implementação de grafos

• Implementação de grafos

```
typedef struct NODE{
   int x;
   struct NODE *next;
} NODE;

typedef NODE* LISTNODEPTR;
```

```
Grafo é um vetor de listas encadeadas
LISTNODEPTR G[MAX NOS];
inicializaGrafo(G);
  Colocando adiacências
G[0] = criaNo(1);
G[2] = criaNo(3);
G[3] = criaNo(1);
insereNoFim(G[3], 0);
  Imprimindo grafo
imprimeGrafo(G);
   Libera a memória
liberaGrafo(G);
```

Percursos em grafos

Percursos em grafos

Definição

- Algoritmos de percurso (ou busca) em grafos tem o objetivo de percorrer e explorar todos os nós acessíveis do grafo, partindo de um nó inicial.
- Cada vértice examinado deve ser marcado como visitado.
- Inicialmente todos estão como não visitados.
- Existem dois algoritmos principais de percurso:
- Em profundidade (depth-first search)
- > Em largura (breadth-first search)

Busca em profundidade

 O algoritmo é base para a resolução de muitos problemas, como a ordenação topológica, identificação de componentes fortemente conectados, labirintos e quebra-cabeças.

Busca em profundidade

- Passo-a-passo:
- Escolha um vértice inicial v não visitado.
- Visite e marque todos os vértices acessíveis a partir de v, que ainda não estejam marcados, percorrendo um caminho único o mais profundo possível.
- 3. Quando o último nó do caminho não tiver mais sucessores não visitados, visitar os caminhos laterais não visitados.

Convenção: Sempre que se esgotarem os caminhos laterais, o próximo vértice a ser visitado será o de **menor índice**.

- Busca em profundidade
 - Exemplo:

• Busca em profundidade

Nó inicial: 0

Marcado como visitado

– Exemplo:

Ordem da busca em profundidade: 0

• Busca em profundidade

Nó inicial: 0

– Exemplo:

Ordem da busca em profundidade: 0, 1

• Busca em profundidade

Nó inicial: 0

– Exemplo:

Ordem da busca em profundidade: 0, 1, 3

• Busca em profundidade

Nó inicial: 0

– Exemplo:

Busca em profundidade

Nó inicial: 0

– Exemplo:

Terminou de visitar todos os nós acessíveis por 2.

• Busca em profundidade

Nó inicial: 0

– Exemplo:

• Busca em profundidade

Nó inicial: 0

– Exemplo:

• Busca em profundidade

Nó inicial: 0

- Exemplo:

• Busca em profundidade

Nó inicial: 0

- Exemplo:

Busca em profundidade

Nó inicial: 0

- Exemplo:

Busca em profundidade

Nó inicial: 0

- Exemplo:

Busca em profundidade

Nó inicial: 0

- Exemplo:

- Busca em profundidade
 - Exercício:

• Busca em profundidade

– Exercício:

Ordem da busca em profundidade: 0, 1, 4, 7, 6, 8, 5, 2, 3

- Busca em profundidade
 - Exercício:

Busca em profundidade

– Exercício:

Ordem da busca em profundidade: 0, 1, 2, 5, 4, 6, 3, 7, 8

- O percurso visita todos os nós a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k+1.
- A lista de vértices obedece a política FIFO (First-In-First-Out).
- Assim, é utilizada uma estrutura de dados auxiliar:

- O percurso visita todos os nós a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k+1.
- A lista de vértices obedece a política FIFO (First-In-First-Out).
- Assim, é utilizada uma estrutura de dados auxiliar: uma fila.

- O percurso visita todos os nós a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k+1.
- A lista de vértices obedece a política FIFO (First-In-First-Out).
- Assim, é utilizada uma estrutura de dados auxiliar: uma fila.

- O percurso visita todos os nós a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k+1.
- A lista de vértices obedece a política FIFO (First-In-First-Out).
- Assim, é utilizada uma estrutura de dados auxiliar: uma fila.

- O percurso visita todos os nós a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k+1.
- A lista de vértices obedece a política FIFO (First-In-First-Out).
- Assim, é utilizada uma estrutura de dados auxiliar: uma fila.

- O percurso visita todos os nós a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k+1.
- A lista de vértices obedece a política FIFO (First-In-First-Out).
- Assim, é utilizada uma estrutura de dados auxiliar: uma fila.

Busca em largura

- Passo-a-passo:
- 1. Escolha um vértice inicial v **não visitado** e o insira em uma fila.
- 2. Pegue um elemento da **fila**, marque como **visitado** e acrescente seus **adjacentes** na fila.
- 3. Enquanto a fila **não está vazia**, volte ao passo 2.

Convenção: Por convenção, a ordem de se adicionar os nós adjacentes na fila será **crescente** em relação aos índices.

Busca em largura

Nó inicial: 3

– Exemplo:

Busca em largura

Nó inicial: 3

Marcado como visitado

– Exemplo:

Ordem da busca em largura:

Busca em largura

– Exemplo:

Ordem da busca em largura:

Busca em largura

– Exemplo:

Busca em largura

– Exemplo:

Busca em largura

– Exemplo:

Ordem da busca em largura: 3, 0, 2

Busca em largura

– Exemplo:

Ordem da busca em largura: 3, 0, 2, 1

Busca em largura

– Exemplo:

Busca em largura

– Exemplo:

• Busca em largura

– Exemplo:

Fila

Ordem da busca em largura: 3, 0, 2, 1, 4, 5

Busca em largura

– Exercício:

Busca em largura

– Exercício:

Busca em largura

– Exercício:

Busca em largura

– Exercício:

Ordem da busca em largura: 0, 1, 3, 4, 2, 6, 5, 7, 8

FIM