FMI, Info, Anul I

Logică matematică și computațională

1	ſΩ	dal	Examen
11	/ 1 ()	uei	Taanten

Nume:	
Prenume:	
Grupa:	

Indicaţii:

• În cazul exercițiilor cu forma normală prenex și forma normală Skolem, ipoteza este următoarea:

Fie \mathcal{L} un limbaj de ordinul întâi care conține:

- două simboluri de relații unare S, T și un simbol de relație binară R;
- un simbol de operație unară f și un simbol de operație binară g;
- trei simboluri de constante a, b, c.

Partea I. Probleme cu rezolvare clasică

(P1) [1 punct] Fie următoarea formulă în \mathcal{L} :

$$\chi := \exists u R(x,u) \wedge \exists u T(u) \rightarrow \neg \exists y S(y) \vee \exists z \neg T(z)$$

Găsiți o formă normală prenex pentru $\chi.$

Demonstrație: Avem:

$$\chi \quad \exists u R(x,u) \land \exists w T(w) \rightarrow \forall y \neg S(y) \lor \exists z \neg T(z)$$

$$\exists u (R(x,u) \land \exists w T(w)) \rightarrow \forall y \neg S(y) \lor \exists z \neg T(z)$$

$$\exists u \exists w (R(x,u) \land T(w)) \rightarrow \forall y \neg S(y) \lor \exists z \neg T(z)$$

$$\exists u \exists w (R(x,u) \land T(w)) \rightarrow \forall y (\neg S(y) \lor \exists z \neg T(z))$$

$$\exists u \exists w (R(x,u) \land T(w)) \rightarrow \forall y \exists z (\neg S(y) \lor \neg T(z))$$

$$\exists u \exists w (R(x,u) \land T(w)) \rightarrow \forall y \exists z (\neg S(y) \lor \neg T(z))$$

$$\exists u \forall w (R(x,u) \land T(w) \rightarrow \forall y \exists z (\neg S(y) \lor \neg T(z)))$$

$$\exists u \forall w \forall w \forall y (R(x,u) \land T(w) \rightarrow \exists z (\neg S(y) \lor \neg T(z)))$$

$$\exists u \forall w \forall w \forall y \exists z (R(x,u) \land T(w) \rightarrow \neg S(y) \lor \neg T(z)).$$

(P2) [2 puncte] Să se ofere un exemplu justificat de mulţime infinită de formule din logica propoziţională a cărei mulţime de modele să fie infinită şi nenumărabilă.

Demonstrație: Luăm mulțimea $\Gamma = \{v_{2k} \mid k \in \mathbb{N}\}$. Clar, Γ este infinită, iar o evaluare

 $e: V \to \{0, 1\}$ este model pentru Γ dacă și numai dacă ia valoarea 1 pentru toate variabilele de indice par, rămânând "spațiu de manevră" pe variabilele de indice impar. Definim funcția $g: \mathcal{P}(\mathbb{N}) \to Mod(\Gamma)$ astfel: pentru orice $A \subseteq \mathbb{N}$ și orice $n \in \mathbb{N}$,

$$g(A)(v_n) := \begin{cases} 1, & \text{dacă } n \text{ este par;} \\ 1, & \text{dacă } n \text{ este impar și } \frac{n-1}{2} \in A; \\ 0, & \text{dacă } n \text{ este impar și } \frac{n-1}{2} \not\in A. \end{cases}$$

Vom demonstra în continuare că g este bijectivă. Atunci va rezulta, având în vedere că $\mathcal{P}(\mathbb{N})$ este o mulțime infinită și nenumărabilă, că și $Mod(\Gamma)$ este infinită și nenumărabilă.

Ca să demonstrăm că g este injectivă, luăm $A, B \in \mathcal{P}(\mathbb{N})$ cu $A \neq B$ şi vrem să arătăm că $g(A) \neq g(B)$. Dat fiind că $A \neq B$, există m cu $m \in A \setminus B$ sau $m \in B \setminus A$. Fără a restrânge generalitatea, presupunem $m \in A \setminus B$. Notăm n := 2m + 1. Atunci n este impar şi $\frac{n-1}{2} = m$. Cum $\frac{n-1}{2} \in A$, avem că $g(A)(v_n) = 1$, iar cum $\frac{n-1}{2} \notin B$, avem $g(B)(v_n) = 0$. Aşadar, $g(A) \neq g(B)$.

Ca să demonstrăm că g este surjectivă, luăm $e \in Mod(\Gamma)$ și vrem să găsim $A \in \mathcal{P}(N)$ astfel încât g(A) = e. Alegem

$$A := \{ m \in \mathbb{N} \mid e(v_{2m+1}) = 1 \}.$$

Atunci rămâne de arătat că pentru orice $n \in \mathbb{N}$, $g(A)(v_n) = e(v_n)$.

Fie $n \in \mathbb{N}$. Dacă n este par, $v_n \in \Gamma$, iar cum $e \models \Gamma$, $e(v_n) = 1$. Din definiția lui g, $g(A)(v_n) = 1$, deci $g(A)(v_n) = e(v_n)$. Dacă n este impar, atunci există m cu n = 2m + 1 și deci $m = \frac{n-1}{2}$. Din definiția lui g, avem că $g(A)(v_n) = 1$ este echivalent cu $m \in A$, ceea ce este, mai departe, echivalent, din definiția lui A, cu faptul că $e(v_n) = 1$. Așadar, și în acest caz, $g(A)(v_n) = e(v_n)$.

(P3) [1 punct] Să se definească, folosind Principiul recursiei pe formule, funcția Mod ce asociază fiecărei formule din logica propozițională mulțimea modelelor sale.

Demonstrație: Se observă că $Mod: Form \to \mathcal{P}(\{0,1\}^V)$ satisface următoarele condiții:

- (R0) $Mod(v) = \{e: V \to \{0,1\} \mid e(v) = 1\}$
- $(R1) \quad Mod(\neg \varphi) \qquad = \quad \{0,1\}^V \setminus Mod(\varphi)$
- (R2) $Mod(\varphi \to \psi) = (\{0,1\}^V \setminus Mod(\varphi)) \cup Mod(\psi).$

Aplicăm Principiul recursiei pe formule pentru $A = \mathcal{P}(\{0,1\}^V)$ și pentru

$$G_0: V \to A,$$
 $G_0(v) = \{e: V \to \{0,1\} \mid e(v) = 1\}$
 $G_{\neg}: A \to A,$ $G_{\neg}(X) = \{0,1\}^V \setminus X$ pentru orice $X \subseteq \{0,1\}^V$
 $G_{\rightarrow}: A \times A \to A,$ $G_{\rightarrow}(X,Y) = (\{0,1\}^V \setminus X) \cup Y$ pentru orice $X, Y \subseteq \{0,1\}^V$
pentru a concluziona că Mod este unica funcție care satisface (R0), (R1) și (R2).

(P4) [1,5 puncte] Fie φ , ψ formule în logica propozițională. Să se arate:

$$\vdash (\varphi \land \neg \varphi) \rightarrow \psi.$$

Demonstrație:

(P5) [2 puncte]

(i) Să se dea exemplu de mulțime de $\mathcal{L}_{=}$ -enunțuri Γ ce are proprietatea că pentru orice $\mathcal{L}_{=}$ -structură $\mathcal{A} = (A)$ (unde A este o mulțime nevidă), avem:

 $\mathcal{A} \models \Gamma$ dacă și numai dacă A are un număr par de elemente.

(ii) Să se dea exemplu de \mathcal{L}_{Graf} -enunț φ astfel încât pentru orice graf \mathcal{G} ,

 $\mathcal{G} \vDash \varphi$ dacă și numai dacă fiecare nod al lui \mathcal{G} are grad 2.

Demonstrație:

(i) Considerăm următoarea mulțimea de enunțuri

$$\Gamma = \left\{ \bigvee_{k \le l} \exists^{-2k} \lor \exists^{\geq 2(l+1)} \mid l \in \mathbb{N}^* \right\}.$$

" \Leftarrow " Fie $\mathcal{A} = (A)$ o $\mathcal{L}_{=}$ -structură astfel încât A are un număr par de elemente, deci |A|=2npentru un $n\geq 1.$ Considerăm $l\in \mathbb{N}^*$ arbitrar. Vrem să arătăm că

$$\mathcal{A} \vDash \bigvee_{k \le l} \exists^{-2k} \lor \exists^{\ge 2(l+1)},$$

deci că fie există $k \leq l$ cu $\mathcal{A} \models \exists^{=2k}$ (adică |A| = 2k), fie $\mathcal{A} \models \exists^{\geq 2(l+1)}$ (adică $|A| \geq 2(l+1)$). Dacă $n \leq l$, ne aflăm în primul caz (luând k := n); dacă n > l, ne aflăm în al doilea caz.

"⇒" Fie $\mathcal{A} = (A)$ o $\mathcal{L}_{=}$ -structură astfel încât $\mathcal{A} \models \Gamma$. Presupunem prin reducere la absurd că A are un număr impar de elemente, deci că |A| = 2n - 1 pentru un $n \in \mathbb{N}^*$. Cum $\mathcal{A} \models \Gamma$, luând l := n obținem că

$$\mathcal{A} \vDash \bigvee_{k \le n} \exists^{=2k} \lor \exists^{\geq 2(n+1)},$$

deci (ca mai sus), ori există $k \le n$ astfel încât |A| = 2k, fie $|A| \ge 2(n+1) = 2n + 2$. Deoarece |A| = 2n - 1, am ajuns la o contradicție.

(ii) Luăm

$$\varphi := \forall v_1 \exists v_2 \exists v_3 (\neg(v_2 = v_3) \land \forall v_4 (\dot{E}(v_1, v_4) \leftrightarrow v_4 = v_2 \lor v_4 = v_3).$$

(P6) [1,5 puncte] Fie B o mulțime și $f: \mathbb{N} \to B$ o funcție surjectivă. Arătați că B este cel mult numărabilă.

Demonstrație: Cum f este surjectivă, pentru fiecare $b \in B$ putem fixa un $n_b \in \mathbb{N}$ astfel

încât $f(n_b) = b$. Definim funcția $g: B \to \mathbb{N}$, pentru orice $b \in B$, prin $g(b) := n_b$.

Demonstrăm că g este injectivă. Fie b, b' cu g(b) = g(b'). Atunci $n_b = n_{b'}$ și deci $f(n_b) = f(n_{b'})$. Dar cum $f(n_b) = b$ și $f(n_{b'}) = b'$, avem că b = b'.

Aplicând (S2.4), obținem că
$$B$$
 este cel mult numărabilă. \square

Partea II. Probleme de tip grilă

(P7) [2 răspunsuri corecte] Fie următoarea formulă în limbajul logicii propoziționale:

$$\theta := (v_2 \leftrightarrow v_4) \to \neg (v_2 \land \neg v_4)$$

Care dintre următoarele afirmații sunt adevărate?

 \boxtimes A: $e^+(\theta) = e^+((v_2 \wedge v_4) \to v_4)$ pentru orice evaluare e.

 \boxtimes B: $e^+(\theta) = e^+((v_2 \land \neg v_2) \rightarrow (v_2 \land \neg v_2))$ pentru orice evaluare e.

 \square C: $e^+(\theta) = e^+(v_2 \to (v_2 \land v_4))$ pentru orice evaluare e.

 \square D: $e^+(\theta) = e^+(v_2 \wedge \neg v_2)$ pentru orice evaluare e.

 \square E: $e^+(\theta) = e^+((v_2 \leftrightarrow v_4) \to (\neg v_2 \land v_4))$ pentru orice evaluare e.

Demonstrație: Aplicând de Morgan și eliminarea dublei negații, avem că $\theta \sim (v_2 \leftrightarrow$

 v_4) $\rightarrow (\neg v_2 \lor v_4) \sim (v_2 \leftrightarrow v_4) \rightarrow (v_2 \rightarrow v_4)$, ceea ce este clar o tautologie. Aşadar, pentru orice e, avem că $e^+(\theta) = 1$.

Clar, formulele de la A și B sunt tot tautologii, deci echivalente cu θ , iar cea de la D este contradictorie.

Dacă luăm e astfel încât $e(v_2)=1$ și $e(v_4)=0$, avem $e^+(v_2\to (v_2\wedge v_4))=0$, deci formula de la C nu este tautologie, iar dacă luăm e astfel încât $e(v_2) = e(v_4) = 1$, avem $e^+((v_2 \leftrightarrow v_3))$ $v_4 \rightarrow (\neg v_2 \wedge v_4) = 0$, deci nici formula de la E nu este tautologie.

Aşadar, singurele formule care sunt tautologii şi deci echivalente cu θ sunt cele de la A şi B.

(P8) [1 răspuns corect] Fie următoarea mulțime de clauze:

$$\mathcal{S} = \{ \{\neg v_1, \neg v_2, \neg v_4\}, \{\neg v_2, \neg v_3\}, \{v_1, \neg v_3\}, \{v_1, v_4\}, \{v_3\} \}$$

Aplicând algoritmul Davis-Putnam pentru intrarea S şi alegând succesiv $x_1 := v_1, x_2 := v_3$ $x_3 := v_2$ obtinem:

- \square A: $S_4 = \{\{v_2, \neg v_4\}\}.$
- \square B: $\mathcal{S}_4 = {\square}$.
- \boxtimes C: $\mathcal{T}_3^1 = \emptyset$.
- $\Box \text{ D: } \mathcal{S}_4 = \{ \{ \neg v_2, \neg v_4 \} \}.$ \(\sigma \text{ E: } \mathcal{T}_3^0 = \{ \{v_4, \end{v}_2, \end{v}_4 \}, \{ \end{v}_2 \}, \{ \end{v}_2, \end{v}_4 \}.

Demonstrație: Aplicând algoritmul Davis-Putnam pentru intrarea \mathcal{S} și alegând succesiv

 $x_1 := v_1, x_2 := v_3, x_3 := v_2$ obtinem:

$$i := 1$$

$$S_1 := S$$

$$P1.1.$$

$$T_1^1 := \{\{v_1, \neg v_3\}, \{v_1, v_4\}\}$$

$$T_1^0 := \{\{\neg v_1, \neg v_2, \neg v_4\}\}$$

$$P1.2.$$

$$U_1 := \{\{\neg v_3, \neg v_2, \neg v_4\}, \{v_4, \neg v_2, \neg v_4\}\}$$

$$P1.3.$$

$$S_2 := \{\{\neg v_2, \neg v_3\}, \{v_3\}, \{\neg v_3, \neg v_2, \neg v_4\}\}$$

$$P1.4.$$

$$i := 2; \text{ goto } P2.1$$

$$P2.1.$$

$$x_2 := v_3$$

$$T_2^1 := \{\{v_3\}\}$$

$$T_2^0 := \{\{\neg v_2, \neg v_3\}, \{\neg v_3, \neg v_2, \neg v_4\}\}$$

$$P2.2.$$

$$U_2 := \{\{\neg v_2\}, \{\neg v_2, \neg v_4\}\}$$

$$P2.3.$$

$$S_3 := \{\{\neg v_2\}, \{\neg v_2, \neg v_4\}\}$$

$$P2.4.$$

$$i := 3; \text{ goto } P3.1$$

$$P3.1.$$

$$x_3 := v_2$$

$$T_3^1 := \emptyset$$

$$T_0^0 := \{\{\neg v_2\}, \{\neg v_2, \neg v_4\}\}$$

$$P3.2.$$

$$U_3 := \emptyset$$

$$P3.3.$$

$$S_4 := \emptyset$$

$$P3.4.$$

$$S_6 \text{ este satisfiabilă.}$$

Se observă că doar C este adevărată.

(P9) [2 răspunsuri corecte] Fie $\mathcal{L}_{ar} = (\dot{\mathbf{c}}, \dot{+}, \dot{\mathbf{x}}, \dot{\mathbf{S}}, \dot{\mathbf{0}}), \mathcal{L}_{ar}$ -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, \mathbf{0})$ şi $e: V \to \mathbb{N}$ o evaluare arbitrară. Considerăm formulele:

$$\varphi := \dot{x} \dot{\dot{z}}$$
 si $\psi := \dot{x} \dot{\dot{z}}$, unde $\dot{\dot{z}} := \dot{\dot{S}} \dot{\dot{S}} \dot{\dot{0}}$, $\dot{\dot{4}} := \dot{\dot{S}} \dot{\dot{S}} \dot{\dot{2}}$.

Care dintre următoarele afirmații sunt adevărate?

- \square A: $\mathcal{N} \vDash (\forall x(\varphi \land \psi))[e]$.
- \boxtimes B: $\mathcal{N} \vDash (\forall x \varphi \rightarrow \forall x \psi)[e]$.
- \square C: $\mathcal{N} \vDash (\forall x \varphi)[e]$.
- \square D: $\mathcal{N} \vDash (\exists x (\varphi \land \neg \psi))[e]$.
- $\boxtimes E: \mathcal{N} \vDash (\varphi \lor \psi)[e_{x \leftarrow 3}].$

Demonstrație: Avem că:

- (i) $\mathcal{N} \vDash (\forall x (\varphi \land \psi))[e] \iff \text{pentru orice } a \in \mathbb{N}, \ a < 2 \text{ şi } a < 4 \text{ (fals, iau } a := 3).$
- (ii) $\mathcal{N} \vDash (\forall x \varphi \to \forall x \psi)[e] \iff$ (nu este adevărat că pentru orice $a \in \mathbb{N}$, a < 2) sau pentru orice $a \in \mathbb{N}$, a < 4 (adevărat, dat fiind că afirmația din paranteză este adevărată).
- (iii) $\mathcal{N} \models (\forall x \varphi)[e] \iff \text{pentru orice } a \in \mathbb{N}, \ a < 2 \text{ (fals, iau } a := 3).$
- (iv) $\mathcal{N} \models (\exists x (\varphi \land \neg \psi))[e] \iff \text{există } a \in \mathbb{N} \text{ cu } a < 2 \text{ și } a \geq 4 \text{ (fals)}.$
- (v) $\mathcal{N} \vDash (\varphi \lor \psi)[e_{x \leftarrow 3}] \iff 3 < 2 \text{ sau } 3 < 4 \text{ (adevărat, dat fiind că } 3 < 4).$

(P10) [1 răspuns corect] Fie următoarea formulă:

$$\psi := (\neg v_1 \to v_2) \leftrightarrow (v_3 \lor v_1)$$

Care dintre următoarele afirmații este adevărată?

- \square A: $(v_1 \land \neg v_2 \land \neg v_3) \lor (v_1 \land v_2 \land \neg v_3)$ este FNC a lui ψ .
- \square B: $(\neg v_1 \lor \neg v_2 \lor \neg v_3) \land (v_1 \lor v_2 \lor v_3)$ este FNC a lui ψ .
- \boxtimes C: $(v_1 \lor \neg v_2 \lor v_3) \land (v_1 \lor v_2 \lor \neg v_3)$ este FNC a lui ψ .
- \square D: $(v_1 \vee \neg v_2 \vee v_3) \wedge (\neg v_1 \vee v_2 \vee v_3)$ este FNC a lui ψ .
- \square E: $(\neg v_1 \lor \neg v_2 \lor \neg v_3) \land (\neg v_1 \lor v_2 \lor v_3)$ este FNC a lui ψ .

Demonstrație: Alcătuim tabelul de valori al funcției asociate $F_{\psi}: \{0,1\}^3 \to \{0,1\}$:

x_1	x_2	x_3	$\neg x_1 \rightarrow x_2$	$x_1 \vee x_3$	$F_{\psi}(x_1, x_2, x_3) = (\neg x_1 \to x_2) \leftrightarrow (x_1 \lor x_3)(x_0, x_1, x_2)$
1	1	1	1	1	1
1	1	0	1	1	1
1	0	1	1	1	1
1	0	0	1	1	1
0	1	1	1	1	1
0	1	0	1	0	0
0	0	1	0	1	0
0	0	0	0	0	1

Obţinem, aşadar, uitându-ne pe liniile cu 0 de pe coloana valorilor lui F_{ψ} şi aplicând raţionamentul din demonstraţiile Teoremelor 2.76 şi 2.77, obţinem că o formă normală conjunctivă a lui ψ este:

$$(v_1 \vee \neg v_2 \vee v_3) \wedge (v_1 \vee v_2 \vee \neg v_3),$$

adică formula de la punctul C.

Formula de la punctul A nu este în FNC, iar cele de la punctele B, D, E sunt formule în FNC corespunzătoare unor funcții de trei variabile diferite de F_{ψ} , și ca urmare, din Propoziția 2.73.(ii).(b), nu pot fi echivalente semantic cu ψ .

(P11) [2 răspunsuri corecte] Fie următoarea mulțime de clauze:

$$S = \{\{v_1, v_2, \neg v_4\}, \{\neg v_2, \neg v_3\}, \{\neg v_1, \neg v_3\}, \{v_1, v_4\}, \{v_3\}\}$$

Care dintre următoarele afirmații sunt adevărate?

- \boxtimes A: \mathcal{S} este nesatisfiabilă.
- \square B: ${\mathcal S}$ nu este nici nesatisfiabilă, nici satisfiabilă.
- \boxtimes C: $\{v_4 \to (v_1 \lor v_2), v_2 \to \neg v_3, v_1 \lor v_4, v_3\} \vDash v_1 \land v_3$.
- \square D: \mathcal{S} este satisfiabilă.
- \square E: $\{v_4 \rightarrow (v_1 \lor v_2), v_2 \rightarrow \neg v_3, v_1 \lor v_4, v_3\} \vDash \neg v_1 \lor \neg v_3$.

Demonstrație: Presupunem că e este un model pentru S. Atunci $e(v_3) = 1$, iar din

faptul că e satisface clauza $\{\neg v_1, \neg v_3\}$, avem că $e(v_1) = 0$. Folosind mai departe faptul că e satisface clauzele $\{v_1, v_4\}$ şi $\{\{v_1, v_2, \neg v_4\}$, obținem pe rând că $e(v_4) = 1$ şi $e(v_2) = 1$. Atunci, cum $e(v_2) = e(v_3) = 1$, e nu are cum să fie model pentru clauza $\{\neg v_2, \neg v_3\}$, contradicție. Obținem, așadar, că \mathcal{S} este nesatisfiabilă şi deci că A este adevărată, iar B şi D sunt false (B era oricum contradictorie).

Aplicând Propoziția 2.31.(i), afirmația de la C este echivalentă cu faptul că mulțimea de formule

$$\{v_4 \to (v_1 \lor v_2), v_2 \to \neg v_3, v_1 \lor v_4, v_3, \neg (v_1 \land v_3)\}$$

este nesatisfiabilă și, mai departe, din Propoziția 2.32.(i), cu faptul că formula

$$(v_4 \rightarrow (v_1 \lor v_2)) \land (v_2 \rightarrow \neg v_3) \land (v_1 \lor v_4) \land v_3 \land \neg (v_1 \land v_3)$$

este nesatisfiabilă. Aplicând transformări sintactice, obținem că formula de mai sus este echivalentă cu

$$(\neg v_4 \lor v_1 \lor v_2) \land (\neg v_2 \lor \neg v_3) \land (v_1 \lor v_4) \land v_3 \land (\neg v_1 \lor \neg v_3),$$

o formulă în FNC ce are ca formă clauzală pe S. Cum S este nesatisfiabilă, obținem din aplicarea Propoziției 2.86 că și formula anterioară este nesatisfiabilă, așadar afirmația de la C este adevărată.

Fie e astfel încât $e(v_1) = e(v_3) = 1$ şi $e(v_2) = 0$. Atunci se verifică uşor că e satisface toate formulele din mulțimea $\{v_4 \to (v_1 \lor v_2), v_2 \to \neg v_3, v_1 \lor v_4, v_3\}$ şi că $e \not\vDash \neg v_1 \lor \neg v_3$. Aşadar, afirmația de la punctul E este falsă.

(P12) [1 răspuns corect] Fie următoarea formulă:

$$\varphi := \neg (v_1 \wedge v_2) \to (\neg v_3 \wedge v_2)$$

Care dintre următoarele afirmații este adevărată?

 \square A: $v_1 \lor v_2 \lor \neg v_3 \lor v_2$ este FNC și FND a lui φ .

□ B: $v_1 \lor v_2 \lor (\neg v_3 \land v_2)$ este FND a lui φ .
□ C: $(v_1 \land \neg v_3) \lor (\neg v_3 \land v_2) \lor (v_1 \land v_2)$ este FND a lui φ .
□ D: $(v_1 \land v_2) \lor \neg v_3 \lor v_2$ este FND a lui φ .
⊠ E: $(v_1 \land v_2) \lor (\neg v_3 \land v_2)$ este FND a lui φ . **Demonstrație:** Se observă că $\varphi \sim \neg \neg (v_1 \land v_2) \lor (\neg v_3 \land v_2) \sim (v_1 \land v_2) \lor (\neg v_3 \land v_2)$, care este o formulă în FND echivalentă cu φ ce se găsește la punctul E.

Dacă luăm e astfel încât $e(v_1) = 1$, $e(v_2) = 0$ și $e(v_3) = 0$, avem că $e^+(\varphi) = 0$, dar e satisface toate formulele de la punctele A, B, C și D, așadar afirmațiile corespunzătoare sunt false.

(P13) [2 răspunsuri corecte] Fie \mathcal{L} un limbaj de ordinul I. Care dintre următoarele afirmații sunt adevărate pentru orice formule φ , ψ ale lui \mathcal{L} ?
□ A: $\forall x(\varphi \lor \psi) \vDash \forall x\varphi \lor \forall x\psi$, pentru orice variabilă x.
□ B: $\exists x(\varphi \to \psi) \vDash \varphi \to \forall x\psi$, pentru $x \notin FV(\varphi)$.
⊠ C: $\forall x(\varphi \lor \psi) \vDash \exists x\varphi \lor \exists x\psi$, pentru orice variabilă x.
□ D: $\forall x(\varphi \land \psi) \vDash \varphi \lor \forall x\psi$, pentru $x \notin FV(\varphi)$.

Demonstrație: Vom demonstra că afirmațiile de la C și E sunt adevărate. Fie \mathcal{A} o structură și e o evaluare.

Pentru C, presupunem că $\mathcal{A} \vDash \forall x(\varphi \lor \psi)[e]$, deci pentru orice $a \in A$, avem $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$ sau $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$. Dat fiind că $e_{x \leftarrow e(x)} = e$, avem în particular că $\mathcal{A} \vDash \varphi[e]$ sau $\mathcal{A} \vDash \psi[e]$. Fără a restrânge generalitatea, presupunem $\mathcal{A} \vDash \varphi[e]$. Atunci avem că există a astfel încât $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$ (din nou, luând a := e(x), şi deci $\mathcal{A} \vDash (\exists x \varphi)[e]$. De aici scoatem $\mathcal{A} \vDash (\exists x \varphi \lor \exists x \psi)[e]$. Pentru E, presupunem că $\mathcal{A} \vDash \forall x (\varphi \land \psi)[e]$. Din S11.3.(1), avem că $\mathcal{A} \vDash (\varphi \land \forall x \psi)[e]$, deci $\mathcal{A} \vDash \varphi[e]$ şi apoi $\mathcal{A} \vDash (\varphi \lor \forall x \psi)[e]$.

A este fals din S11.2.(i).

Pentru B şi D, o să folosim \mathcal{L}_{ar} şi \mathcal{N} . Fie $e: V \to \mathbb{N}$ o evaluare arbitrară.

Pentru B, luăm φ să fie 0 = 0, iar ψ să fie x < S0. Atunci $\mathcal{N} \vDash \exists x (\varphi \to \psi)[e]$ dar $\mathcal{N} \nvDash (\varphi \to \forall x \psi)[e]$. Aşadar, $\exists x (\varphi \to \psi) \nvDash (\varphi \to \forall x \psi)$, și deci $\exists x (\varphi \to \psi) \nvDash (\varphi \to \forall x \psi)$.

Pentru D, luăm φ să fie $\dot{0} = \dot{0}$, iar ψ să fie $\dot{x} < \dot{0}$. Atunci $\mathcal{N} \models (\varphi \lor \forall x \psi)[e] \operatorname{dar} \mathcal{N} \not\models \forall x (\varphi \land \psi)[e]$. Aşadar, $\varphi \lor \forall x \psi \not\models \forall x (\varphi \land \psi)$, şi deci $\forall x (\varphi \land \psi) \not\models \varphi \lor \forall x \psi$.

(P14) [2 răspunsuri corecte] Fie următorul enunț în \mathcal{L} :

 \boxtimes E: $\forall x(\varphi \land \psi) \vDash \varphi \lor \forall x\psi$, pentru $x \notin FV(\varphi)$.

$$\psi := \forall x \exists u \forall y \exists v \left(\left(S(u) \to R(v,y) \right) \vee \left(S(v) \to T(x) \right) \right)$$

Care dintre următoarele formule sunt forme normale Skolem pentru ψ ?

 \boxtimes A: $\forall x \forall y ((S(n(x)) \to R(h(x,y),y)) \lor (S(h(x,y)) \to T(x)))$, unde n este simbol nou de operație unară, iar h este simbol nou de operație binară.

 \square B: $\forall x \forall y ((S(n(x)) \rightarrow R(h(x,y),y)) \lor (S(n(x)) \rightarrow T(x)))$, unde n este simbol nou de operație unară, iar h este simbol nou de operație binară.

 \square C: $\forall x \forall y ((S(n(x,y)) \to R(h(x,y),y)) \lor (S(h(x,y)) \to T(x)))$, unde n şi h sunt simboluri noi de operații binare. \boxtimes D: $\forall x \forall y ((S(h(x)) \to R(n(x,y),y)) \lor (S(n(x,y)) \to T(x)))$, unde h este simbol nou de operație unară, iar n este simbol nou de operație binară. \square E: $\forall x \forall y ((S(h(x)) \rightarrow R(n(x,y))) \lor (S(n(x,y)) \rightarrow T(x)))$, unde h este simbol nou de operație unară, iar n este simbol nou de operație binară. Demonstraţie: După cum se vede, cuantificatorul $\exists u$ se află în domeniul de vizibilitate al lui $\forall x$, iar $\exists v$ se află în domeniile lui $\forall x$ și $\forall y$, drept care funcțiile Skolem asociate cu u și v trebuie să depindă de x, respectiv de x şi y, fapt respectat doar de formulele de la A şi D. (P15) [1 răspuns corect] Considerăm următoarea formulă în limbajul logicii propoziționale: $\psi := (v_1 \rightarrow (v_2 \rightarrow v_3)) \rightarrow (v_3 \lor \neg v_2 \lor \neg v_1)$ Care dintre următoarele afirmații este adevărată (pentru orice evaluare e)? \square A: Dacă $e(v_2) = 1$ şi $e^+(\neg v_3) = 1$, atunci $e^+(v_3 \lor \neg v_2 \lor \neg v_1) = 0$. \square B: Dacă $e^+(v_1 \to (v_2 \to v_3)) = 1$, atunci $e(v_1) = e(v_2) = 0$ și $e(v_3) = 1$. \square C: Dacă $e(v_1) = e(v_2) = 1$, atunci $e^+(\psi) = 0$. \boxtimes D: Dacă $e^+(v_3 \vee \neg v_2 \vee \neg v_1) = 0$, atunci $e(v_2) = 1$ și $e(v_3) = 0$. \square E: $e^+(\psi) = 1$ numai dacă $e(v_1) = e(v_3) = 1$ și $e(v_2) = 0$. Presupunem că $e^+(v_3 \vee \neg v_2 \vee \neg v_1) = 0$. Atunci $e^+(v_3) = 0$ și $e^+(\neg v_2) = 0$, Demonstrație: de unde scoatem $e(v_2) = 1$ și $e(v_3) = 0$. Așadar D este corectă. Dacă luăm o evaluare e astfel încât $e(v_1) = 1$, $e(v_2) = 1$ și $e(v_3) = 0$, ea ne furnizează contraexemplu pentru afirmațiile A, C, E. Dacă luăm o evaluare e astfel încât $e(v_1) = 0$, $e(v_2) = 1$ și $e(v_3) = 1$, ea ne furnizează contraexemplu pentru afirmația B. (P16) [2 răspunsuri corecte] Fie următoarea mulțime de clauze: $S = \{C_1 = \{v_1, v_2, \neg v_4\}, C_2 = \{\neg v_2, \neg v_3\}, C_3 = \{\neg v_1, \neg v_3\}, C_4 = \{v_1, v_4\}, C_5 = \{v_3\}\}$ Care dintre următoarele sunt derivări corecte prin rezoluție? \boxtimes A: $C_6 = {\neg v_3, v_4}$ (rezolvent al C_3, C_4) și $C_7 = {v_1, v_2, \neg v_3}$ (rezolvent al C_1, C_6). \boxtimes B: $C_6 = \{v_1, v_2\}$ (rezolvent al C_1, C_4) și $C_7 = \{v_1, \neg v_3\}$ (rezolvent al C_2, C_6). \square C: $C_6 = {\neg v_2, \neg v_1}$ (rezolvent al C_2, C_3). $\square \text{ D: } C_6 = \{v_1, \neg v_4, \neg v_3\} \text{ (rezolvent al } C_1, C_2) \text{ și } C_7 = \{v_1, \neg v_4, v_3\} \text{ (rezolvent al } C_3, C_5).$ \square E: $C_6 = \{ \neg v_2, \neg v_1 \}$ (rezolvent al C_2, C_3) și $C_7 = \{ \neg v_1, \neg v_3 \}$ (rezolvent al C_2, C_6). Demonstrație: Variante corecte: A, B.