

Enhanced Memory Properties in MIS TD by Forming Trench Structure at the Gate Edge

Presenter: Jian-Yu Lin¹

Jian-Yu Lin^{1*}, Jenn-Gwo Hwu^{1, 2}

- 1. Graduate Institute of Electronics Engineering,
- 2. Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Outline

- Introduction
 - ➤ Metal-Insulator-Semiconductor (MIS) Tunnel Diode (TD)
 - ➤ Memory Properties of MIS-TD
- Device Structure and Fabrication
- Results and Discussion
- Conclusion

Outline

- Introduction
 - ➤ Metal-Insulator-Semiconductor (MIS) Tunnel Diode (TD)
 - ➤ Memory Properties of MIS-TD
- Device Structure and Fabrication
- Results and Discussion
- Conclusion

What is MIS Tunnel Diode?

What is MIS Tunnel Diode?

MIS Tunnel Diode (Reverse Bias)

Saturation current mainly flow through gate edge.

Memory Properties of MIS-TD

- ♦ In previous work:
- Apply negative and positive stress to MIS-TD.
- Lower and higher current was measured.
- >2-state current phenomenon.

Potential for memory device use.

Reference: Tzu-Yu Chen *et al.*, "Effect of Electrons Trapping/De-Trapping at Si-SiO2 Interface on Two-State Current in MOS(p) Structure with Ultra-Thin SiO2 by Anodization," *ECS Journal of Solid State Science and Technology*, 2 (9) Q159-Q164, 2013. DOI: 10.1149/2.025309jss

In this work...

◆ New structure of MIS-TD is proposed.

better memory properties.

In this work...

- Trench MIS TDs have better memory properties.
- more obvious 2-state current.
- > 10 times larger current window.

Current Window (CW)=
read current (after "Set", open)read current (after "Reset", solid)

Outline

- Introduction
 - ➤ Metal-Insulator-Semiconductor (MIS) Tunnel Diode (TD)
 - ➤ Memory Properties of MIS-TD
- Device Structure and Fabrication
- Results and Discussion
- Conclusion

Top view

Cross section

Planar MIS

Trench MIS

Effective oxide thickness (EOT)=2.5 nm

Radio Corporation of America (RCA) clean

Si (p)

p-type (100)-oriented silicon wafers with a resistivity of 1–10 Ω·cm

SiO₂

Si (p)

Radio Corporation of America (RCA) clean

Grow SiO₂ by anodic oxidation

SiO₂

Si (p)

Radio Corporation of America (RCA) clean

Grow SiO₂ by anodic oxidation

Rapid thermal annealing (RTA) in N_2 ambient @ 950 $^{\circ}$ C for 15 s.

Al
SiO₂
Si (p)

Radio Corporation of America (RCA) clean

Grow SiO₂ by anodic oxidation

Rapid thermal annealing (RTA) in N_2 ambient @ 950 $^{\circ}$ C for 15 s.

Deposit 200 nm Al by thermal evaporation

Al
SiO₂
Si (p)

Circle structure patterned by photolithography

Etch Si substrate by reactive ion etch (RIE)

Al₂O₃ layer: protect Si substrate from being exposed to air.

Etch Si substrate by reactive ion etch (RIE)

Form a layer of Al_2O_3 : (1) thermal evaporate Al. (2) dip into nitric acid (HNO₃) to oxidize Al.

Al₂O₃ layer: protect Si substrate from being exposed to air.

Circle structure patterned by photolithography

Etch Si substrate by reactive ion etch (RIE)

Form a layer of Al_2O_3 : (1) thermal evaporate Al. (2) dip into nitric acid (HNO₃) to oxidize Al.

Lift-off PR

Al₂O₃ layer: protect Si substrate from being exposed to air.

Circle structure patterned by photolithography

Etch Si substrate by reactive ion etch (RIE)

Form a layer of Al_2O_3 : (1) thermal evaporate Al. (2) dip into nitric acid (HNO₃) to oxidize Al.

Lift-off PR

removed backside native oxide by buffer oxide etchant (BOE)

200nm Al formed as back electrode by thermal evaporation

Outline

- Introduction
 - ➤ Metal-Insulator-Semiconductor (MIS) Tunnel Diode (TD)
 - ➤ Memory Properties of MIS-TD
- Device Structure and Fabrication
- Results and Discussion
- Conclusion

I-V Curves: After Reset Stress

- 1. Apply -1.5V for 120s and then -1.75V for 20s to gate as "Reset" stress.
- 2. Measure I-V from -0.5V~0.5V (solid symbol).

I-V Curves: After Set Stress

- 3. Apply <u>+1V for 20s</u> to gate as "Set" stress.
- Measure I-V from +0.5V~-0.5V (open symbol).

I-V Curves: 2-state Current

Trench MIS has a more obvious2- state current phenomenon.

Memory Endurance Measurement

1st Endurance

- 1. reset ("0"): -1.75V, 20s \rightarrow read @ 0.2V
- 2. set ("3"): +1V, 10s \rightarrow read @ 0.2V
- 3. repeat 1.~2. for 50 cycles.

$\begin{array}{c} 2^{nd} \\ Endurance \end{array}$

- 1. reset ("0"): -1.75V, 20s \rightarrow read @ 0.2V
- 2. set ("2"): +1V, 1s \rightarrow read @ 0.2V
- 3. repeat 1.~2. for 50 cycles.

3rd Endurance

- 1. reset ("0"): -1.75V, 20s \rightarrow read @ 0.2V
- 2. set ("1"): +0.5V, 0.1s \rightarrow read @ 0.2V
- 3. repeat 1.~2. for 50 cycles.

- ◆3 endurance measurements with different "set stress".
- >same reset stress.
- read @V_G=0.2V
- each 50 cycles.

Memory Endurance Results

- ◆ Reset (solid), Set (open).
- ◆ Trench MIS:
 - > stabler multi-level memory function.
 - > larger current window.

Current Window=
read current (after "Set", open)read current (after "Reset", solid)

Electron Traps Mechanism: Reset

Electron Traps Mechanism: Set

- ◆Trench structure offers extra electron traps.
- Better memory properties.

Outline

- Introduction
 - ➤ Metal-Insulator-Semiconductor (MIS) Tunnel Diode (TD)
 - ➤ Memory Properties of MIS-TD
- Device Structure and Fabrication
- Results and Discussion
- Conclusion

Conclusion

♦ In this work, a new structure of MIS TD, trench MIS TD, is proposed.

◆Trench MIS TDs have better memory properties than planar MIS TD.

- Electron trap mechanism: more electron traps offered by trench structure.
- However, we still need more study to verify this mechanism.

Thank you for listening!

Q&A

Anodic Oxidation (ANO)

- Can be performed in room temperature, then RTA.
- Uniform oxide layer.

Functions of Al₂O₃ Layer

- Functions of this layer:
 - protect Si substrate from moisture and air.
 - 2 provide electron traps in Al₂O₃/Si interface.

Uniformity of Al₂O₃ layer

- Evaporated Al oxidized by nitric acid.
- \bullet The Al₂O₃ layer is non-uniform:
 - > may influence the moisture and air protection.

- a) Al_2O_3 sidewall: by sputter Al target in Ar/O_2 ambient.
- b) SiO₂ sidewall: by anodic oxidation.

Quality of Al₂O₃ Layer

Purpose of this layer: protect Si substrate from moisture and air.

- > Current window easily degrades.
- might because the instability of native oxide.

- > Current window is more stable.
- \triangleright Acceptable quality of Al₂O₃ Layer.
- > but can be improved.

Further Verification of the Mechanism

- ◆Trench structure offers electron traps at gate edge
- ➤ More edge (by different mask pattern design).
- > Better current window.

Improvement of Stress Time

- ◆Currently, the "Reset" and "Set" stress time is still too long (>1s)
- ◆ Possible ways to improve:
 - ① increase the edge of the pattern under the same footprint.
 - ② increase the depth of the trench structure.
 - \because more edge or more trench \rightarrow more electron traps.

