

Chamber-by-chamber alignments in 1_5_4

Jim Pivarski, Alexei Safonov

Texas A&M University

10 September, 2007

Preparing event samples

paring event sample

- ▶ I never heard back about the official $1_5_4 \rightarrow AlCaRecoMu$, so I filtered them myself
- /castor/cern.ch/user/p/pivarski/AlCaRecoMu/ideal
 35 good, 13 bad
- /castor/cern.ch/user/p/pivarski/AlCaRecoMu/miscal 26 good, 13 bad

(that's an inefficiency)

- This project used the good ideal sample to search for optimum sets of alignment parameters
- ▶ Unknown number of events/tracks/hits, but very likely overkill
- ▶ Starting point is *after* disk-by-disk alignments

Theory: x, y, ϕ_z are 1st-order; ϕ_x, ϕ_y are 2nd-order to y, x; and z...

x: offset in r_x

y: offset in r_v

z: sensitive only through angled tracks

 ϕ_{x} : r_{y} linear in y

(slope $\propto 1 - \cos \phi_x$)

 ϕ_{v} : r_{x} linear in x

(slope $\propto 1 - \cos \phi_v$)

 ϕ_z : r_x linear in yand r_v linear in x(slope $\propto \sin \phi_z$)

z is important! (slide 1 of 2)

Barrel stations 1-3: z is fixed (and misaligned)

All plots are aligned positions minus correct positions (MC)

z is important! (slide 2 of 2)

Barrel stations 1–3: z is allowed to float in alignment

All plots are aligned positions minus correct positions (MC)

Why is that?

(Also, chambers are not 2-D surfaces but 6–12 layers thick. However, the above is a more important part of the explanation.)

Important distinction among barrel chambers

- ► Stations 1–3: full *x-y* measurement (stereo superlayers)
- ► Station 4: *x* only (purely one-dimensional!)

Barrel station 4 (outermost chambers)

Super-precise x and ϕ_z (better intrinsic resolution???) y, ϕ_x are off-limits (cause divergences through numerical error)

what about z? hmmm...I didn't try that...

Barrel alignment results

Stations 1-3

X	67 μ m	1.05 mrad	ϕ
У	384 μ m	0.56 mrad	ϕ
Z	1.15 mm	0.095 mrad	ϕ_{z}

...and very Gaussian!!! Few outliers (see p. ??)!

Station 4

X	28 μ m		
		0.57 mrad	$\phi_{m{y}}$
		0.004 mrad	ϕ_{z}

If ϕ_v is fixed, $x \to 12 \ \mu m$ (unnecessary ultraprecision)

Full evolution of endcap: $xy...\phi_z$ (2/5)

Full evolution of endcap: $xy..\phi_y\phi_z$ (3/5)

Full evolution of endcap: $xy.\phi_x\phi_y\phi_z$ (4/5)

Full evolution of endcap: $xyz\phi_x\phi_y\phi_z$ (5/5)

Wow! What's going on?

Allowing z to float helps y enormously, though there's a strange asymmetric secondary distribution.

I asked our spiffy analysis tool which chambers have $y_{\text{misalign}} > 2 \text{ mm}$

They're (almost) all in ME1/1!

Is ME1/1 one-dimensional? NO. (I didn't think so.)

17/22

The y residual distributions are a *little* asymmetric. . .

The x residual distributions, for completeness

Endcap without ME1/1: $xyz.\phi_y\phi_z$

Endcap without ME1/1: $xyz\phi_x\phi_y\phi_z$

Resolution is nearly Gaussian— the long tails are gone

resolution is hearly Gaussian— the long talls are gone

	fitted core	standard deviation		
X	$19~\mu { m m}$	32 μ m		
У	240 μ m	596 μ m		
Z	3.0 mm	3.7 mm		
ϕ_{x}	4.1 mrad	3.7 mrad		
$\phi_{m{y}}$	0.16 mrad	0.28 mrad		
ϕ_z	0.03 mrad	0.05 mrad		

After alignment ϕ_X is worse than before. However, excluding ϕ_X from the fit broadens y resolution to 240 μ m core, 596 μ m stdev. Tie breaker: momentum resolution. Coming soon.

And these include internal layer-by-layer misalignments (100's of μ m, as measured by Karoly)!

Summary, conclusions, and questions

- With high-statistics, no miscalibration, no tracker misalignment: we see beautiful resolution in all but ME1/1
- Presumably we can get ME1/1 right by applying some physical insight (worked for MB4), but I think I'm lacking knowledge of the system

Summary, conclusions, and questions

- With high-statistics, no miscalibration, no tracker misalignment: we see beautiful resolution in all but ME1/1
- Presumably we can get ME1/1 right by applying some physical insight (worked for MB4), but I think I'm lacking knowledge of the system
- ► For instance, "ME1/1" and "ME1/4" (in software) describe two parts of some kind of "double-chamber" system. How does that work exactly?
- ➤ Alignment software allows "ME1/1" and "ME1/4" to float independently, which is probably wrong. Is it disastrously wrong?

Summary, conclusions, and questions

- With high-statistics, no miscalibration, no tracker misalignment: we see beautiful resolution in all but ME1/1
- ▶ Presumably we can get ME1/1 right by applying some physical insight (worked for MB4), but I think I'm lacking knowledge of the system
- ► For instance, "ME1/1" and "ME1/4" (in software) describe two parts of some kind of "double-chamber" system. How does that work exactly?
- ▶ Alignment software allows "ME1/1" and "ME1/4" to float independently, which is probably wrong. Is it disastrously wrong?
- ▶ ME1/1 y distribution has the same asymmetry as the rest of the endcap did when z was misaligned and not allowed to float...