Definições e Teoremas

Lembrando: Uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ fica inteiramente determinada por uma matriz $A = [a_{ij}] \in M(m \times n)$. Os vetores coluna dessa matriz são as imagens $A \cdot e_j$ dos vetores da base canônica. Definimos A como matriz de transformação. Assim, $A \cdot e_j = \sum_{i=1}^m a_{ij} e_i (j = 1, ..., n)$, onde $e_i \in \mathbb{R}^m$.

Simetrias: Matrizes de tranformação referentes à simetria em relação aos eixos x e y, e em relação à origem, respectivamente:

$$S_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} S_y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} S_o = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Dilatações: Basta multiplicar uma coluna que se quer dilatar por r. Podemos chamar r de coeficiente de dilatação.

Rotação: Para montar essa matriz, basta conhecer a transformação dos vetores (1,0) e (0,1).

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

A rotação tem algumas propriedades:

- $\bullet \ R_{\theta}^{-1} = R_{-\theta}$
- $R_{\alpha}R_{\beta} = R_{\alpha+\beta}$
- $\bullet \ (R_{\theta})^n = R_{n\theta}$

Projeções: Podemos considerar a transformação que projeta os vetores sobre a reta y = ax.

$$P = \frac{1}{1+a^2} \left[\begin{array}{cc} 1 & a \\ a & a^2 \end{array} \right]$$

Se quisermos que a projeção sobre um eixo e paralelo a uma reta, temos que

$$P_p = \left[\begin{array}{cc} 1 & -\frac{1}{a} \\ 0 & 0 \end{array} \right]$$

Núcleo de A: $N(A) = \{v \in E | Av = 0\}$. É o espaço anulado da matriz A.

Imagem ed A: $Im(A) = \{Av | v \in E\} \implies \exists v \in E; Av = w \implies w \in Im(A)$. Notemos que $posto(A) = dim\ Im(A) = dim\ col(A)$. Isto ocorre, pois $w \in Im(A)$ é combinação linear das colunas da matriz A.

Transformação Injetiva: $A: E \to F$ é injetiva se $\forall v, v', v \neq v' \implies Av \neq Av'$. Uma transformação é injetiva se, e só se, transformação é injetiva se, e só se, transformação é injetiva se, e só se, seu núcleo possui

apenas o vetor nulo.

Transformação Sobrejetiva: Ocorre quando Im(A) = F, onde F é o espaço vetorial contradomínio.

Teorema do Núcleo e da Imagem: Como $dim\ Im(A) = posto(A)$, podemos usar no teorema do posto. Podemos alterar n para $dim\ E$, sendo E o domínio da transformação. Laplace: Escolhe-se uma linha uma coluna e para cada elemento, calcula-se o seu cofator. $A_{ij} = (-1)^{i+j}D_{ij}$. Propriedades Importantes: $det(A) = det(A^T)$; trocar duas linhas ou colunas inverte o sinal do determinante; duas linhas proporcionais indica determinante 0; multiplicar uma linha por α implicará multiplicar o determinante pelo mesmo fator; determinante do produto de matrizes é o produto dos determinantes; o determinante de uma matriz com a operação de somar com múltiplo de outra linha é idêntico; determinante da inversa é o inverso do determinante

Lembretes para exercícios:

- 1. Para calcular uma matriz de tranformação, precisamos apenas saber a transformação linear de uma base do domínio. Com essa transformação, precisamos obter a transformação da base canônica, para que a matriz seja constrída nessa base. Essa matriz de tranformação também pode ser obtida por $T = AP^{-1}$, onde P tem como colunas os vetores da base, e A os vetores da base após a transformação.
- 2. Para mostrar injetividade, podemos usar a contrapositiva da definição.
- 3. Você sabe encontrar uma base para o núcleo e uma base para a imagem de uma transformação? A base da imagem é basicamente a base para o espaço coluna (consegue enxergar o porquê? Tente representar um vetor da imagem como combinação linear das colunas. E a base para o núcleo?

Exercícios:

- 1. Reflexão em torno de uma reta: Seja $S : \mathbb{R}^2 \to \mathbb{R}^2$ a transformação que reflete um veotr em torno da reta y = ax. Assim, a reta é a bissetriz do ângulo entre v e Sv e é perpendicular à reta que liga v a Sv.
 - **Solução:** Seja P a matriz de projeção. Projetamos ortogonalmente v sobre a reta y=ax. Assim, teremos que $v+Sv=2Pv \implies I+S=2P \implies S=2P-I$. Outra forma é fazer as tranformações dos vetores da base canônica.
- 2. Considere 5 lâmpadas, cada uma com um botão. Cada botão muda o estado da lâmpada e das vizinhas. Todas estão apagadas. Como deixar a primeira, terceira e quinta acesas.
- 3. Encontre os números a, b, c, d de modo que o operador $A : \mathbb{R}^2 \to \mathbb{R}^2$, dado por A(x, y) = (ax + by, cx + dy) tenha como núcleo a reta y = 3x.

Monitorias 10 e 11

- 4. A transformação $A:\mathbb{R}\to\mathbb{R}^n; A(x)=(x,2x,...,nx)$ é uma transformação injetiva? E B(x,y)=(x+2y,x+y,x-y)?
- 5. Considere uma transformação $A:E\to F$ na base canônica. Considere V uma base de vetores de E. Determine a matriz de transformação A' nessa base. Ou seja, se $Av=w\to A'v_V=w_V$.
- 6. Ache uma transformação $A: \mathbb{R}^2 \to \mathbb{R}^2$ tal que a imagem e o núcleo sejam o eixo x.