Topological applications in MHD

Akhmet'ev P.M.

MIEM HSE 13 April 2020

Солнечный телескоп, Крым Научный

Sun Coronal loops

Hopf field

Расслоение Хопфа

Конфигурация магнитных линий с минимальной магнитной энергией при ненулевой магнитной спиральности.

A helical wave

Carl Friedrich Gauß 30.04.1777-23.02.1855

Gauss integral and Arnold asymptotic linking number I

Let us recall definition of asymptotic linking number of a pair of trajectories [V.I. Arnold (1974)]. Let ${\bf B}$ a divergent-free (magnetic) field in 3D domain $\Omega \subset \mathbb{R}^3$. We assume that ${\bf B}$ is tangent to the boundary $\partial \Omega$ and has no zeros. Denote by $g^t:\Omega \to \Omega$ the phase flow of ${\bf B}$. Take two pints $x_1,x_2\in\Omega$.

Definition

The asymptotic linking number of the pair of trajectories $g^t(x_1)$, $g^t(x_2)$ is denoted by the limit

$$\lambda_{\mathbf{B}}(x_1, x_2) = \lim_{T \to +\infty} \frac{lk_{\mathbf{B}}(x_1, x_2; T)}{T^2},$$
 (1)

where $lk_B(x_1, x_2; T)$ is the linking number of the Gauss integral of the two segments $\gamma_1 = g^{t_1}(x_1)$; $t_1 \in [0, T]$, $\gamma_2 = g^{t_2}(x_2)$; $t_2 \in [0, T]$.

George David Birkhoff 21.03.1884-12.11.1944

Gauss integral and Arnold asymptotic linking number II

$$rac{1}{4\pi}\int_0^T\int_0^Trac{(\dot{\gamma}_1,\dot{\gamma}_2,\gamma_1-\gamma_2)}{||\gamma_2-\gamma_1||^2}dt_1dt_2= \ \int_0^T\int_0^TG(x_1(t_1),x_2(t_2))dt_1dt_2,$$

$$\dot{\gamma}_i(t_i) = \mathbf{B}(g^{t_i}(x_i)), \ i = 1, 2.$$

In the right side of the formula by G is denoted the kernel of the left-side integral, which is called the Gauss integral. The denotation $G(x_1, x_2) = G(\mathbf{B}(x_1), \mathbf{A}(x_2; x_1))$, where $\mathbf{A}(x; y)$ is the Biot-Savart potential.

3-component Hopf Link

Vladimir Arnold 12.06.1937-03.06.2010

Неравенство Арнольда (1974)

$$U_{(2)}(\mathbf{B}) \geq C|\chi_{\mathbf{B}}|, \quad U_{(2)}(\mathbf{B}) = \int (\mathbf{B}, \mathbf{B}) \ d\Omega,$$

где (.,.) обозначает скалярное произведение,

$$\chi_{\mathbf{B}} = \iint_{\Omega} (\mathbf{A}, \mathbf{B}) d^3 x.$$

магнитная спиральность (интеграл Гаусса), C некоторая положительная константа, которая зависит лишь от форма и объема области Ω , но не зависит от \mathbf{B} .

Неравенство оценивает магнитную энергию (в левой части неравенства) через абсолютное значение магнитной спиральности (в правой части неравенства), которая является инвариантом группы несжимаемых преобразований области Ω .

Магнитная спиральность

Магнитная спиральность определена формулой:

$$\chi_{\mathbf{B}} = \sum_{i,j} \Phi_i \Phi_j n(L_j, L_i),$$

Magnetic lines

Borromeo rings

Modular group

Modular flow by E.Ghys, J.Leys

A collection of knots in the modular flow by E.Ghys

An application: Coronal loops over the limb of the sun

Спасибо за внимание!

