第I部

BdG モデルハミルトニアンについて

1 定義

BdG モデルハミルトニアン \mathcal{H} は以下のように表される。

$$\mathcal{H} = \int \vec{\Psi}^{\dagger} \tilde{H} \vec{\Psi} dr \tag{1}$$

$$\int dr = \int dx dy \tag{2}$$

$$\vec{\Psi} = \begin{bmatrix} \Psi_{\uparrow} \\ \Psi_{\downarrow} \\ \Psi_{\uparrow}^{\dagger} \\ \Psi_{\downarrow}^{\dagger} \end{bmatrix} \tag{3}$$

$$\tilde{H} = \begin{bmatrix} \hat{h}(r) & \hat{\Delta}(r) \\ -\hat{\Delta}^*(r) & -\hat{h}^*(r) \end{bmatrix} \tag{4}$$

$$\hat{h} = \left[-\frac{\hbar^2}{2m} \nabla^2 - \mu_F \right] \hat{\sigma}_0 \tag{5}$$

$$(\hat{\sigma}_0: 単位行列) \tag{6}$$

$$\hat{\Delta}(r) = \begin{cases} \Delta_0 \left(i\hat{\sigma}_2 \right) & \text{s-wave} \\ \Delta_0 \frac{i\partial x}{k_F} \hat{\sigma}_1 & p_x\text{-wave} \\ \Delta_0 \frac{1}{k_f} \left(\hat{\sigma}_1 + i\hat{\sigma}_2 \right) & p_x + ip_y \end{cases}$$
 (7)

$$\vec{\Psi} = \frac{1}{\sqrt{L_y}} \sum_{k_y} \vec{\Psi}_{k_y}(x) e^{ik_y y} \tag{8}$$

図1 考える系

2 問題

2.1 ハミルトニアン ${\cal H}$ をフーリエ変換せよ

式(1)に式(8)を代入して計算していく。

$$\mathcal{H} = \int \int \left(\frac{1}{\sqrt{L_y}} \sum_{k_y} \vec{\Psi}_{k_y}^{\dagger}(x) e^{-ik_y y} \right) \tilde{H} \left(\frac{1}{\sqrt{L_y}} \sum_{k_y'} \vec{\Psi}_{k_y'}(x) e^{ik_y' y} \right) dx dy \tag{9}$$

ここで

$$\hat{\sigma}_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \hat{\sigma}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \hat{\sigma}_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \hat{\sigma}_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$(10)$$

より、ハミルトニアン Hは、

$$\mathcal{H} = \begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 - \mu_F & 0 & 0 & \Delta_0 \\ 0 & -\frac{\hbar^2}{2m} \nabla^2 - \mu_F & -\Delta_0 & 0 \\ 0 & -\Delta_0^* & \frac{\hbar^2}{2m} \nabla^2 + \mu_F & 0 \\ \Delta_0^* & 0 & 0 & \frac{\hbar^2}{2m} \nabla^2 + \mu_F \end{bmatrix}$$
(11)

これを、式 (9) に代入して計算していく。 このとき、

$$\vec{\Psi}_{k_y}^{\dagger}(x)e^{-ik_yy}\tilde{H}\vec{\Psi}_{k_y'}(x)e^{ik_y'y} = e^{-ik_yy}\left[\Psi_{\uparrow}^*\left(-\frac{\hbar^2}{2m}\nabla^2 - \mu_F\right) + \Psi_{\downarrow}^*\Delta_0^*\right]\Psi_{\uparrow}e^{ik_y'y} \\
+e^{-ik_yy}\left[\Psi_{\downarrow}^*\left(-\frac{\hbar^2}{2m}\nabla^2 - \mu_F\right) - \Psi_{\uparrow}^*\Delta_0^*\right]\Psi_{\downarrow}e^{ik_y'y} \\
+e^{-ik_yy}\left[-\Psi_{\downarrow}^*\Delta_0 + \Psi_{\uparrow}^*\left(\frac{\hbar^2}{2m}\nabla^2 + \mu_F\right)\right]\Psi_{\uparrow}e^{ik_y'y} \\
+e^{-ik_yy}\left[\Psi_{\uparrow}^*\Delta_0 + \Psi_{\downarrow}^*\left(\frac{\hbar^2}{2m}\nabla^2 + \mu_F\right)\right]\Psi_{\downarrow}e^{ik_y'y} \tag{12}$$

よって、式(9)は、

$$\mathcal{H} = \frac{1}{L_y} \int dx \sum_{k_y} \left[\Psi_{\uparrow}^* \left(-\frac{\hbar^2 k_y^2}{2m} - \mu_F \right) \Psi_{\uparrow} + \Psi_{\uparrow}^* \left(\frac{\partial^2}{\partial x^2} \right) \Psi_{\uparrow} + \Psi_{\downarrow}^* \Delta_0^* \Psi_{\uparrow} \right.$$

$$\left. + \Psi_{\downarrow}^* \left(-\frac{\hbar^2 k_y^2}{2m} - \mu_F \right) \Psi_{\downarrow} + \Psi_{\downarrow}^* \left(\frac{\partial^2}{\partial x^2} \right) \Psi_{\downarrow} - \Psi_{\uparrow}^* \Delta_0^* \Psi_{\downarrow} \cdots \right]$$

$$(13)$$

2.2 差分近似をしよう

刻み幅を1として、差分近似をする。微小変化 h 周りにマクローリン展開を行うと、

$$\Psi\left(x+h\right) = \Psi\left(x\right) + h\frac{\partial}{\partial x}\Psi\left(x\right) + \frac{h^{2}}{2!}\frac{\partial^{2}}{\partial x^{2}}\Psi\left(x\right) \tag{14}$$

$$\Psi(x-h) = \Psi(x) - h\frac{\partial}{\partial x}\Psi(x) + \frac{h^2}{2!}\frac{\partial^2}{\partial x^2}\Psi(x)$$
(15)

よって、差分近似は式 (14), 式 (15) の方程式で求めることができ、刻み幅 h=1 とすると、

$$\frac{\partial}{\partial x}\Psi(x) = \frac{\Psi(x+1) - \Psi(x-1)}{2} \tag{16}$$

$$\frac{\partial^{2}}{\partial x^{2}}\Psi\left(x\right) = \Psi\left(x+1\right) - 2\Psi\left(x\right) + \Psi\left(x-1\right) \tag{17}$$

2.3 ×を離散化せよ

式(17)を式(13)に代入して、行列で表す。このとき、離散化した波動関数を以下の式に定義する。

$$\vec{\Psi} = \begin{bmatrix} \Psi_{1\uparrow} \\ \Psi_{1\downarrow} \\ \Psi_{1\uparrow}^{\dagger} \\ \Psi_{1\downarrow}^{\dagger} \\ \Psi_{2\uparrow} \\ \vdots \end{bmatrix}, \Psi_{n\pm1\uparrow} = \Psi_{n\uparrow} \left(x \pm 1 \right)$$

$$(18)$$