Correction for multiple comparisons

Cyril Pernet, PhD
SBIRC/SINAPSE – University of Edinburgh

Overview

- Multiple comparisons correction procedures
- Levels of inferences (set, cluster, voxel)
- Circularity issues

Multiple comparison correction

Avoiding false positives

- 4-Dimensional Data
 - 1,000 multivariate observations, each with > 100,000 elements
 - 100,000 time series, each with 1,000 observations
- Massively Univariate Approach
 - 100,000 hypothesis tests
- Massive MCP!

- Typical brain ~ 130000 voxels
- \blacksquare @ p = .05, it is expected = 6500 false positives!
- a a more conservative value like p = .001 we still expect 130 false positives.
- Using extend threshold k without correction is not enough as it, by chance, can cluster as well.

- Bennet et al., 2009
- <u>Task</u>: take a decision about emotions on pictures
- <u>Design</u>: blocks of 12 sec activation/rest
- <u>Analysis</u>: standard data processing with SPM
- <u>Subject</u>: a dead salmon!

A t-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.

■ The cluster was 81mm³! — after multiple comparison corrections all false activations were removed.

Solutions for MCP

- Height Threshold
- > Familywise Error Rate (FWER)
 - Chance of any false positives; Controlled by Bonferroni & Random Field Methods
- > False Discovery Rate (FDR)
 - Proportion of false positives among rejected tests
- Bayes Statistics

From single univariate to massive univariate

Univariate stat	Functional neuroimaging
1 observed data	Many voxels
1 statistical value	Family of statistical values
Type 1 error rate (chance to be wrong rejecting H0)	Family-wise error rate
Null hypothesis	Family-wise null hypothesis

Height Threshold

■ Choose locations where a test statistic Z (T, F, ...) is large to threshold the image of Z at a height z

■ The problem is how to choose this threshold z to exclude false positives with a high probability (e.g.

0.95)?

To control for family wise error on must take into account the nb of tests

Bonferroni

- 10000 Z-scores; alpha = 5%
- alpha corrected = .000005; z-score = 4.42

Bonferroni

- 10000 Z-scores; alpha = 5%
- 2D homogeneous smoothing 100 independent observations
- \blacksquare alpha corrected = .0005; z-score = 3.29

Solutions for MCP

- An important feature of neuroimaging data is that we have a family of stat values that has topological features (Bonferroni for instance consider tests as independent)
- Why considering data as a smooth lattice? (Chumbley et al., 2009 NeuroImage 44)
- > fMRI/PET are projection methods of data points onto the whole space – MEEG forms continuous functions in time and are smooth by the scalp (space)
- Neural activity propagate locally through intrinsic/lateral connections and is distributed via extrinsic connections / Hemodynamic correlates are initiated by diffusing signals (e.g. NO)

- 10000 Z-scores; alpha = 5%
- Gaussian kernel smoothing –
- How many independent observations?

- RFT relies on theoretical results for smooth statistical maps (hence the need for smoothing), allowing to find a threshold in a set of data where it's not easy to find the number of independent variables. Uses the expected Euler characteristic (EC density)
- 1 Estimation of the smoothness = number of resel (resolution element) = f(nb voxels, FWHM)
- 2 expected Euler characteristic = number of clusters above the threshold
- 3 Calculation of the threshold

■ The Euler characteristic can be seen as the number of blobs in an image after thresholding (p value that you select in SPM)

■ At high threshold, EC = 0 or 1 per resel: $E[EC] \approx$

pFWE

E[EC] = R · $(4 \log_e 2) \cdot (2\pi)^{-2/3} \cdot Z_t \cdot e^{-1/2} Z_t^2$ for a 2D image, more complicated in 3D

■ For 100 resels, the equation gives E[EC] = 0.049 for a threshold Z of 3.8, i.e. the probability of getting one or more blobs where Z is greater than 3.8 is 0.049

0.	number of resels	Bonfe	RFT		
α	in the image	threshold	score Z	score Z	
0.05	100	0.05 100	3.3		
	100			3.8	

■ If the resel size is much larger than the voxel size then E[EC] only depends on the nb of resels otherwise it also depends on the volume, surface and diameter of the search area (i.e. shape and volume matter)

False discovery Rate

- Whereas family wise approach corrects for any false positive, the FDR approach aim at correcting among positive results only.
- 1. Run an analysis with alpha = x%
- 2. Sort the resulting positive data
- 3. Threshold to remove the false positives

False discovery Rate

Signal+Noise

FEW correction

FDR correction

False discovery Rate

takes the spatial structure into account

Under H0 the nb of voxels per cluster is known → uncorrected p value for clusters → apply FDR on the clusters (volume-wise correction)

Assumes that the volume of each cluster is independent of the number of clusters

Voxel, cluster and set

- 3 levels of inference can be considered:
- Voxel level (prob associated at each voxel)
- Cluster level (prob associated to a set of voxels)
- Set level (prob associated to a set of clusters)
- The 3 levels are nested and based on a single probability of obtaining c or more clusters (set level) with k or more voxels (cluster level) above a threshold u (voxel level): $P_w(u,k,c)$

■ <u>Set level</u>: we can reject H0 for an omnibus test, i.e. there are some significant clusters of activation in the brain.

Cluster level: we can reject H0 for an area of a size k, i.e. a cluster of 'activated' voxels is likely to be true for a given spatial extend.

□ <u>Voxel level</u>: we can reject H0 at each voxel, i.e. a voxel is 'activated' if exceeding a given threshold

- Each level of inference is valid, but the inferences are different e.g. a set might be enough to check that subjects activated regions selected a priori for a connectivity analysis clusters might be good enough if hypotheses are about the use of different brain areas between groups
- Both voxel and cluster levels need to address the multiple comparison problem. If the activated region is predicted in advance, the use of corrected p values is unnecessary and inappropriately conservative a correction for the number of predicted regions (Bonferroni) is enough

set-leve	set-level cluster-level			peak-level				mm mm mm					
D	C	D FWE-com	Q FDR-com	κ _E	Duncom	D FWE-com	q FDR-corr	7	(Z _≡)	Duncorr	111111	11011 11	
0.000	22	0.000	0.000	317	0.000	0.000	0.000	8.66	Inf	0.000	43	-30	-32
						0.000	0.000	7.48	7.16	0.000	51	-21	-13
						0.000	0.000	7.37	7.06	0.000	40	-10	-14
		0.103	0.048	22	0.017	0.000	0.000	6.75	6.51	0.000	-16	91	-22
						0.525	0.178	3.88	3.83	0.000	-1	96	-17
		0.005	0.003	52	0.001	0.000	0.000	6.71	6.47	0.000	-13	-51	-11
		0.008	0.004	47	0.001	0.000	0.000	6.37	6.17	0.000	13	-47	-11
		0.000	0.000	95	0.000	0.000	0.000	6.22	6.03	0.000		-20	-9
						0.022	0.010	4.83	4.73	0.000	-39	-9	-14
		0.001	0.001	72	0.000	0.000	0.000	6.18	5.99	0.000	-42	-32	-58
						0.042	0.017	4.68	4.59	0.000		-40	-62
						0.125	0.039	4.38	4.31	0.000	-12	-36	-62
		0.000	0.000	191	0.000	0.001	0.001	5.58	5.44	0.000	6	-23	7
						0.001	0.001	5.40	5.27	0.000		-15	17
						0.022	0.010	4.83	4.74	0.000	9	-33	18
		0.000	0.000	91	0.000	0.005	0.004	5.14	5.03	0.000	-46	93	-7
						0.017	0.009	4.89	4.80	0.000	-35	93	-2
						0.045	0.017	4.66	4.57	0.000	2	109	7
		0.435	0.182	10	0.091	0.006	0.004	5.09	4.99	0.000	-46		-39
		0.130	0.054	20	0.022	0.050	0.017	4.63	4.55	0.000	33		
		0.147	0.056	19	0.025	0.421	0.147	3.97	3.92	0.000	43	70	0
				225	2000000	0.453	0.151	3.94	3.89	0.000	47	67	11
		0.549	0.215	8	0.127	0.457	0.151	3.94	3.89	0.000	28	-1	_1
		0.489	0.196	9	0.107	0.628	0.228	3.79	3.74	0.000	-39	68	-35
		4	K	E1 108			4			A			
					ws 3 'bcal m	axima more t	an 8.0mm	apart		<u> </u>			_
		T = 3.12, p					of freedom						
		$c \cdot k = 0 \text{ voxel}$			18)					3.5 3.5 2 5 {	voxels)		
xpected	d voxel:	per cluster,	<k> = 3.583</k>				1429734 =						
		r of clusters, DRp: 4.334,			252	Voxel diz <i>Page</i>	e: 3.8 3.7 5	5.0 mm m	m mm; (re	esel = 30. 3 6 :	voxels))	

RFT

Using p=.001 this creates an excursion set
Prob clusters of that size
Prob peack that height

→ after FDR correction

Uncorrected (bad)

Circularity issues in fMRI

Definition

- Refers to the problem of selecting data for analysis
- How data (areas usually) are selected, analysed and sorted is key to avoid circularity
- Put forward by Vul et al. 2009, Perspectives on Psychological Science. 4
- Better explained in Kriegeskorte et al., 2009 *Nat.*Neuroscience 12

Circularity

- Double dipping pblm: "data are first analyzed to select a subset and then the subset is reanalyzed to obtain the results. In this context, assumptions and hypotheses determine the selection criterion and selection can, in turn, distort the results."
- Take a gp of subjects and measures RTs, then take 2 subgroups from the same subjects and re-do some analysis?? → increases the diff.
- Take fMRI data and get activated areas, extract ROI and re-do some analyses??

Circularity

■ Selection and tests must be independent — non independence create spurious effects

Circularity

- Independence of the selection and tests
- 1. Anatomic ROI, analysis of fMRI
- SPM, minimal requirement is orthogonality of the contrasts (e.g. find regions using A+B>0 C=[1 1] and test A vs B C=[1 -1]) but if N_A and N_B are different there is still a bias when testing A-B (across subjects independence is ensured by $C_{selection}^{T}(X^TX)^{-1}C_{test}$)
- 3. Select using a subset of data, test with another one

Enough for today ©

Thanks for your attention