

Mathematik 1 Mitschrift

Frederik Sicking

Modul: Mathematik 1
Prof. Dr. Gernot Bauer

Wintersemester 2022 / 2023 Stand: Freitag, 28.10.2022

Frederik Sicking

frederik.sicking@fh-muenster.de

Inhaltsverzeichnis

1	Grundlagen		1
	1.1 Aussage	logik	1
	1.1.1 Aus	sagen	1
	1.1.2 Verl	knüpfung von Aussagen	2
	1.1.2.1	Die "und"-Verknüpfung (Konjugation)	2
	1.1.2.2	Die "oder"-Verknüpfung (Alternative, Disjunktion)	3
	1.1.2.3	Die Negation ("nicht")	4
	1.1.2.4	Die "wenn-dann"-Verknüpfung (Implikation, Schlussfolgerung)	4
	1.1.2.5	Der Indirekte Beweis (Beweis durch Wiederspruch, Reductio ad	
		absurdum)	5
	1.2 Mengen,	, Relationen und Abbildungen	5
	1.2.1 Mer	ngenlehre	5
	1.2.1.1	Sprechweisen und Notationen	5
	1.2.1.2	Mengenoperationen	8
	1.2.1.3	Quantoren	10
	1.2.1.4	Unendliche Vereinigung, unendlicher Durchschnitt	10

1 Grundlagen

1.1 Aussagelogik

Im Unterschied zur Umgangssprache benutzt die Mathematik eine sehr präzise Sprechweise, die wir hier einführen wollen.

1.1.1 Aussagen

Sachverhalte der Realität werden in Form von Aussagen erfasst.

Definition 1.1: Aussage

Unter einer <u>Aussage</u> versteht man ein sinnvolles sprachliches Gebilde, das entweder wahr oder falsch sein kann.

Beispiele:

sispiei	.	ist Aussage
1)	5 ist kleiner als 3.	ja
2)	Kiew ist die Hauptstadt der Ukraine.	ja
3)	Das Studium der Mathematik ist schwierig.	ja
4)	Nach dem Essen Zähne putzen!	nein
5)	Nachts ist es kälter als draußen.	nein

Die Werte $\underline{\text{wahr}}$ und $\underline{\text{falsch}}$ heißen Warheitswerte. Jede Aussage hat genau einen dieser beiden Warheitswerte. Das heißt aber nicht, dass der Warheitswert auch bekannt ist.

Beispiele: Fortsetzung

		ist Aussage
6)	Der Sommer 2023 wird erneut der heißeste in Europa seit	ja
	Beginn der Aufzeichnungen.	
7)	Jede gerade Zahl größer 2 ist Summe zweier Primzahlen.	ja
	(Goldbachsche Vermutung)	

Bemerkung:

Eine Aussage, die einen mathematischen Sachverhalt beschreibt und wahr ist, wird als Satz bezeichnet.

1.1.2 Verknüpfung von Aussagen

Im folgenden Stehen lateinische Großbuchstaben A,B,C,\ldots als Platzhalter (Variablen) für Aussagen.

1.1.2.1 Die "und"-Verknüpfung (Konjugation)

Eine zusammengesetzte Aussage der Form

$$A \text{ und } B$$
 (Kurzbezeichnung: $A \wedge B$)

ist wahr, wenn beide Aussagen wahr sind. Andernfalls ist sie falsch.

Der Warheitswert der zusammengesetzten Aussage in Abhängigkeit von A und B kann durch folgende <u>Verknüpfungstabelle</u> (oder <u>Wahrheitstafel</u>) ausgedrückt werden. (w für wahr, f für falsch)

A	B	$A \wedge B$
W	W	W
W	f	f
f	W	f
f	f	f

Beispiel: "und"

$$A: 7$$
 ist ungerade. (wahr)

$$B:17<4$$
 (falsch)

$$C$$
: Für alle reellen Zahlen x gilt: $x^2 \ge 0$ (wahr)

Die Aussage "7 ist ungerade und 17 < 4" $(A \wedge B)$ ist falsch. Die Aussage $A \wedge C$ ist wahr.

1.1.2.2 Die "oder"-Verknüpfung (Alternative, Disjunktion)

Eine zusammengesetzte Aussage der Form

A oder B (Kurzbezeichnung:
$$A \lor B$$
)

ist wahr, wenn mindestens eine der beiden Aussagen wahr ist. Sind beide Aussagen falsch, dann ist auch die zusammengesetzte Aussage $A \vee B$ falsch. Wahrheitstafel:

A	B	$A \lor B$
W	W	W
W	f	W
f	W	W
f	f	f

Beispiel: "oder"

A: Allerheiligen ist am 1.11. (wahr)

B: Die Erde ist eine Scheibe. (falsch)

C: Heute ist Montag. (wahr/falsch je nach Wochentag)

Die Aussage "Allerheiligen ist am 1.11. oder die Erde ist eine Scheibe" $(A \vee B)$ ist wahr, die Aussage $A \vee C$ ist ebenfalls immer wahr. $B \vee C$ ist dagegen nur an einem Montag wahr, sonst falsch.

Bemerkung:

Im Alltagssprachgebrauch trifft man häufig auf die Verknüpfung von Aussagen mit "und/oder", etwa "Ich komme heute und/oder morgen". Mathematisch ist das nicht sinnvoll, ein einfaches "oder" drückt den Sachverhalt bereits treffend aus.

1.1.2.3 Die Negation ("nicht")

Eine Aussage der Form

nicht
$$A$$
 (Kurzbezeichnung: $\neg A$)

ist wahr, wenn A falsch ist. Sie ist falsch, wenn A wahr ist. Die Aussage $\neg A$ heißt die Negation von A. Wahrheitstafel:

$$\begin{array}{c|c} A & \neg A \\ \hline w & f \\ f & w \end{array}$$

Die Negation (oder Verneinung) kehrt den Warheitswert einer Aussage um.

1.1.2.4 Die "wenn-dann"-Verknüpfung (Implikation, Schlussfolgerung)

Eine zusammengesetzte Aussage der Form

A impliziert
$$B$$
 (Kurzbezeichnung: $A \Longrightarrow B$)

ist falsch, falls A wahr und B falsch ist. Andernfalls ist sie wahr.

Hier fehlt der Abschnitt der Vorlesung vom 14.10.

1.1.2.5 Der Indirekte Beweis (Beweis durch Wiederspruch, Reductio ad absurdum)

Häufig ist es leichter, statt der Schlussfolgerung $A \implies B$ die Schlussfolgerung $\neg B \implies \neg A$ zu zeigen.

Nach der Kontraposition der Implikation (vgl. Übung 7 e)) sind beide Schlussfolgerungen gleichbedeutend.

Man leitet also ausgehend von der Annahme $\neg B$ einen Wiederspruch zu A ab.

Beispiel:

Zu zeigen:

Ein Dreieck, bei dem ein Innenwinkel 91° beträgt, ist nicht rechtwinklig. $\}B$

Beweis (durch Wiederspruch):

Folglich hat das Dreieck einen Innenwinkel, der 90° beträgt, und einen Innenwinkel, der 91° beträgt. Demnach ist die Summe der Innenwinkel $\Rightarrow \neg A$ des Dreiecks größer 180°.

Das ist ein Wiederspruch dazu, dass die Summe der Innenwinkel eines Dreiecks 180° beträgt. Somit ist die obige Annahme ($\neg B$) falsch und die ursprüngliche Behauptung (B) bewiesen.

1.2 Mengen, Relationen und Abbildungen

Zu den wichtigsten Grundpfeilern der Mathematik gehört der Mengenbegriff.

1.2.1 Mengenlehre

Definition 1.2: Menge (Cantor, 1895)

Eine <u>Menge</u> ist eine beliebige Zusammenfassung von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen.

1.2.1.1 Sprechweisen und Notationen

lst das Objekt x ein beziehungsweise kein Element von M, so schreibt man

$$x \in M$$
 bzw. $x \notin M$

Zwei Mengen M und N heißen gleich, wenn sie genau die selben Elemente enthalten.

$$x \in M \iff x \in N$$

Man schreibt dann M=N. Sind M und N nicht gleich, schreibt man $M\neq N$.

Bei der <u>aufzählenden Schreibweise</u> zur Kennzeichnung von Mengen, zum Beispiel

$$M = \{a, e, i, o, u\}$$

$$B = \{-3, -2, -1, 0, 1, 2, 3, \dots\}$$

$$Y = \{-2, 5\}$$

spielt die Reihenfolge keine Rolle.

Die <u>Beschreibende Schreibweise</u> hat die allgemeine Struktur

$$X = \{x \qquad \mid x \text{ hat die Eigenschaft } E\} \text{ oder }$$

$$X = \{x \in G \mid x \text{ hat die Eigenschaft } E\},$$

z.B.
$$M=\{x \mid x \text{ ist Vokal im deutschen Alphabet}\},$$

$$B=\{x \mid x \text{ ist eine ganze Zahl und } x>-4\},$$

$$Y=\{x\in B\mid x \text{ ist L\"osung von } (x+4)(x+2)(x-5)=0\}$$

Dabei wir der senkrechte Strich (\mid) als "mit der Eigenschaft" gelesen, und G bezeichnet eine Grundmenge, der die Elemente x entstammen sollen.

Eine Menge, die kein Element besitzt, heißt leere Menge, und wird mit \emptyset oder $\{\ \}$ bezeichnet.

In Vorgiff auf Kapitel 2 nennen wir hier einige Wichtige Zahlenmengen:

$$\begin{array}{ll} \mathbb{R} & \text{die Menge der } \underline{\text{reellen Zahlen}} \\ \mathbb{N} = \{1,2,3,\dots\} & \text{die Menge der } \underline{\text{natürlichen Zahlen}} \\ \mathbb{Z} = \{\dots,-3,-2,-1,0,1,2,3,4,\dots\} \\ &= \{x \in \mathbb{R} \mid x \in \mathbb{N} \lor x = 0 \lor -x \in \mathbb{N}\} \text{ die Menge der } \underline{\text{ganzen Zahlen}} \\ \mathbb{Q} = \{x \in \mathbb{R} \mid x = \frac{n}{p} \text{ mit } n \in \mathbb{Z}, p \in \mathbb{N}\} \text{ die Menge der } \underline{\text{rationalen Zahlen}} \end{array}$$

Eine Menge M heißt <u>Teilmenge</u> der Menge N, in Zeichen $M \subset N$, wenn jedes Element von M auch Element von N ist.

$$x \in M \implies x \in N$$

Wir sagen dann auch: M ist in N enthalten, oder N ist Obermenge von M.

lst M nicht Teilmenge von N, so schreibt man $M \not\subset N$.

Bemerkungen:

1) Mengen sind selbst wieder Objekte, das heißt sie können auch wieder zu Mengen zusammengefasst werden, zum Beispiel:

$$M = {\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}}, \quad N = {\emptyset, 1, \{1\}}$$

M hat 4 Elemente, N hat 3 Elemente.

Einelementige Mengen der Form $\{m\}$ und ihr Element m sind unterschiedliche Objekte.

2) Beziehungen zwischen Mengen wie zum Beispiel $M \subset N$ lassen sich auch durch Verknüpfungen von Aussagen über Elementzugehörigkeiten ausdrücken:

$$M \subset N \iff (\underbrace{x \in M}_{A} \implies \underbrace{x \in N}_{B}) \circledast$$

M=N gilt genau dann, wenn $M\subset N$ und $N\subset M$ denn:

$$\begin{array}{ccc} M\subset N\wedge N\subset M & \stackrel{\circledast}{\Longleftrightarrow} & (A\Longrightarrow B)\wedge (B\Longrightarrow A) \\ & \text{Tautologie} & & & \\ & \Longleftrightarrow & (A\Longleftrightarrow B) \\ & \text{Def. } A,B & & \\ & \Longleftrightarrow & (x\in M\Longleftrightarrow x\in N) \\ & \Longleftrightarrow & M=N \end{array}$$

3) Für alle Mengen M gilt $M \subset M$ und $\emptyset \subset M$.

1.2.1.2 Mengenoperationen

Der <u>Durchschnitt</u> zweier Mengen M und N (Kurzbezeichnung: $M \cap N$) ist die Menge der Elemente, die sowohl in M als auch in N enthalten sind.

$$M \cap N = \{x \mid x \in M \land x \in N\}$$

M und N heißen disjunkt, wenn ihr Durchschnitt leer ist, das heißt wenn $M \cap N = \emptyset$.

Die <u>Vereinigung</u> zweier Mengen M und N (Kurzbezeichnung: $M \cup N$) ist die Menge der Elemente, die in M oder in N enthalten sind.

$$M \cup N = \{x \mid x \in M \lor x \in N\}$$

Die <u>Differenzmenge</u> zweier Mengen M und N (Kurzbezeichnung: $M \setminus N$) ist die Menge der Elemente die in M, aber nicht in N enthalten sind.

$$M \backslash N = \{ x \mid x \in M \land x \notin N \}$$

Ist im Umgang mit Mengen eine bestimmte Grundmenge G vereinbart (bei Zahlen zum Beispiel häufig $\mathbb R$), so wird die Differenzmenge immer im Bezug auf diese Grundmenge gebildet, ohne dass sie explizit erwähnt wird. Statt $G\backslash N$ schreibt man dann \overline{N} und nennt \overline{N} das \underline{N} komplement von N.

Beispiele:

$$M = \{\triangle, \bigcirc, \square\}, N = \{\blacksquare, \bigcirc, \square\}$$

$$M \cap N = \{\square, \bigcirc\}$$

$$M \cup N = \{\triangle, \bigcirc, \square, \blacksquare\}$$

$$M \backslash N = \{\triangle\}$$

Bemerkung:

Für die Mengenoperationen gelten Rechenregeln (vgl. Übung 1.13).

1.2.1.3 Quantoren

<u>Quantoren</u> stellen ein Bindeglied zwischen Aussagelogik und Mengenlehre dar. An Stelle der Aussage

Es gibt ein Element x in der Menge M mit der Eigenschaft E.

schreibt man kurz

$$\exists x \in M \quad E$$

Das Zeichen ∃ heißt Existenzquantor.

An Stelle der Aussage

Für alle x in der Menge M gilt die Eigenschaft E.

schreibt man kurz

$$\forall x \in M \quad E$$

Das Zeichen ∀ heißt <u>Allquantor</u>.

Beispiele:

Die Aussage $\exists n \in \mathbb{N}$ n < 0 ist falsch, denn natürliche Zahlen sind nicht negativ.

Die Aussage $\forall x \in \mathbb{Z}$ x ist durch 7 teilbar ist falsch, denn $8 \in \mathbb{Z}$ und 8 ist nicht durch 7 teilbar.

1.2.1.4 Unendliche Vereinigung, unendlicher Durchschnitt

Sei I eine Menge, die wir als Menge der $\underline{\operatorname{Indizes}}$ bezeichnen (jedes Element von I ist ein $\underline{\operatorname{Index}}$). Für jedes $i \in I$ sei eine Menge M_i gegeben. Die Menge $\bigcup_{i \in I} M_i$, definiert durch

$$\bigcup_{i \in I} M_i := \{ x \mid \exists \ i \in I \quad x \in M_i \}$$

heißt unendliche Vereinigung der Mengen M_i .

Die Menge $\bigcap_{i \in I} M_i$, definiert durch

$$\bigcap_{i \in I} M_i := \{ x \mid \forall \ i \in I \quad x \in M_i \}$$

heißt <u>unendlicher Durchschnitt</u> der Mengen M_i .

Beispiele:

1)
$$I=\mathbb{N},\, M_i=\{x\in\mathbb{R}\mid 0< x<\frac{1}{i}\}.$$
 Dann ist $\bigcap_{i\in I}M_i=\emptyset$
2) $I=\mathbb{N},\, M_i=\{-i,i\}.$ Dann ist $\bigcup_{i\in I}M_i=\mathbb{Z}\backslash\{0\}$

2)
$$I=\mathbb{N}$$
, $M_i=\{-i,i\}.$ Dann ist $igcup_{i\in I}M_i=\mathbb{Z}ackslash\{0\}$

3)
$$I = \{\triangle, \bigcirc, \square\}, M_{\triangle} = \{3\}, M_{\bigcirc} = \{0\}, M_{\square} = \{4\}.$$

$$\bigcup_{i \in I} M_i = \{3, 0, 4\}, \bigcap_{i \in I} M_i = \emptyset$$

Definition 1.3: Kartesisches Produkt

Sind M und N Mengen, so heißt die Menge $M \times N$, definiert durch

$$M \times N := \{(x, y) \mid x \in M, y \in N\}$$

also die Menge aller geordneten Paare (x,y) mit $x \in M$ und $y \in N$, das <u>kartesische Produkt</u> von M und N.

Bemerkungen und Beispiele:

- 1) Geordnet heißt, dass etwa (1,4) und (4,1) verschiedene Elemente von $\mathbb{N} \times \mathbb{N}$ sind.
- 2) Das kartesische Produkt ist nicht kommutativ. Beispiel: $M = \{1, 2\}, N = \{a, b, c\}$. Dann gilt $M \times N = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\},\$ $N \times M = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\},\$ das heißt $M \times N \neq N \times M$.
- 3) Für k Mengen ($k \in \mathbb{N}$, $k \geq 2$) M_1, M_2, \ldots, M_k kann man analog das k-fache kartesiche Produkt $M_1 \times M_2 \times \cdots \times M_k = \{(x_1, x_2, \dots, x_k) \mid x_i \in M_i\}$ bilden. Die Elemente dieses Produktes heißen geordnete k-Tupel . Sind alle Mengen M_i gleich, $M_1=M_2=\cdots=M_k=M$, so schreibt man $\underbrace{M\times M\times \cdots \times M}_{k \text{ mal}}=M^k$.

4) $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$ ist die Menge der kartesischen koordinaten in zwei Dimensionen. Die Elemente von \mathbb{R}^2 können als Punkte im kartesischen Koordinatenssystem in der Ebene aufgefasst werden.

