AUTOMAT DE SALATA

Universitatea Politehnica din Bucuresti Facultatea de Automatica si Calculatoare 2019-2020

CUPRINS

-upmis2	,
Tema proiectului3	
Mod de implementare3	
Schema bloc3	
Functionalitatea automatului3	İ
Organigrama5	j
Spatiul starilor6	
Tabelul tranzitiilor6	į)
Diagramele de stare urmatoare si ecuatiile rezultate7	7
Diagramele Karnaugh pentru intrarile CBB-urilor si ecuatiile rezultate8	3
Diagramele Karnaugh pentru iesiri1	10
Implementarea circuitului	12

Tema proiectului

Proiectul consta in implementarea unui automat de salata, ce dispune de urmatoarele functii: alegerea intre pui si ton, alegerea unui tip de sos: de maioneza sau de mustar, posibilitatea adaugarii de crutoane, respectiv alegera intre salata verde sau rucola.

Mod de implementare

Automatul dispune de o serie de butoane: unul de start, cate unul pentru pui sau ton, cate unul pentru fiecare tip de sos, unul pentru crutoane si alte doua pentru salata verde si rucola.

Schema bloc

Functionarea automatului

Clientul apasa mai intai butonul START si apoi o serie de alte butoane pentru a-si face salata. Intai apasa unul dintre cele doua butoane pentru a-si alege tipul de carne: pui sau ton. Pe urma, tot prin intermediul butoanelor, isi alege sosul: de maioneza sau de mustar. Apoi are un buton pentru crutoane, pe care il apasa numai daca doreste; pe urma are de ales intre salata verde sau rucola, pentreu fiecare existand cate un buton.

Variabilele alese:

X0 – este 1 cand este apasat butonul START

X1 – este 1 cand clientul doreste pui si 0 cand doreste ton

 $\rm X2-este\ 1$ cand acesta doreste sos de maioneza si 0 cand doreste sos de mustar

X3 – este 0 cand clientul doreste crutoane si 1 cand nu doreste

X4 – este 0 cand acesta doreste rucola si 1 cand doreste salata verde

Iesiri:

C1 – se pune ton

C2 – se pune pui

C3 – se adauga sos de mustar

C4 – se adauga sos de maioneza

C5 – se adauga crutoane

C6 – se adauga rucola

C7 – se adauga salata verde

C8 – se da salata clientului

<u>Organigrama</u>

Spatiul starilor

Q1Q0	00	01	11	10
Q3Q2				
00	S0	S 8	S13	S 9
01	S1	S10	S12	S 3
11	X	S11	S14	S2
10	S5	S7	S4	S6

Tabelul tranzitiilor

	Q_3^t	Q_2^t	Q_1^t	Q_0^t	Q_3^{t+1}	Q_2^{t+1}	Q_1^{t+1}	Q_0^{t+1}	Iesiri
S0	0	0	0	0	0	X0	0	0	0
S 8	0	0	0	1	0	1	0	1	C5
S 9	0	0	1	0	0	1	0	1	0
S13	0	0	1	1	1	1	1	1	C8
S 1	0	1	0	0	X1	1	1	0	0
S10	0	1	0	1	!X4	1	X4	1	0
S 3	0	1	1	0	1	0	1	1	C1
S12	0	1	1	1	0	0	1	1	C7
S5	1	0	0	0	1	0	0	1	C4
S 7	1	0	0	1	0	0	X3	!X3	0
S 6	1	0	1	0	1	0	0	1	C3
S4	1	0	1	1	1	0	!X2	0	0
	1	1	0	0					
S 11	1	1	0	1	0	0	1	1	C6
S2	1	1	1	0	1	0	1	1	C2
S14	1	1	1	1	0	0	0	0	0

Diagramele de stare urmatoare si ecuatiile rezultate

Q_3^{t+1}				
Q1Q0	00	01	11	10
Q3Q2				
00	0	0	1)	0
01	X1	(!X4)	0	1
11	->	0	$0 \langle$	
10	1)	0	/1	T

 Q_1^{t+1}

Q 2				
Q1Q0 Q3Q2	00	01	11	10
Q3Q2				
00	X0 /	1	1	1
01	$1 \setminus$	1	0	0
11		0	0	0
10	0	0	0	0
Q_0^t	+1			

 O_2^{t+1}

Q1Q0	00	01	11	10
Q3Q2				
00	0	0 (1	0
01	1	X4 \	1 /	1
11		1	0	1
10	1	!X3	0 /	1

		Т	Т	
Q1Q0	00	01	11	10
Q3Q2				/
00	0	/1	1	1
01	0	1	1	1/
11		1	0	1
10	1	!X,3	0 /	1
	$\overline{}$		•	

$$\begin{split} Q_3^{t+1} = &!X4!Q_3Q_2!Q_1Q_0 + X1!Q_0Q_2 + Q_3!Q_0 + !Q_2Q_1Q_0 + Q_2Q_1!Q_0 \\ Q_2^{t+1} = &X0!Q_3!Q_2 + Q_2!Q_1!Q_0 + !Q_3!Q_1Q_0 + Q_1!Q_3!Q_2 \\ Q_1^{t+1} = &X4!Q_3Q_2 + !X3Q_3!Q_1 + !Q_0Q_3 + !Q_0!Q_2 + !Q_3Q_1Q_0 \\ Q_0^{t+1} = &!X3!Q_1Q_3 + !Q_0Q_3 + Q_3Q_2!Q_1 + Q_0!Q_3 + !Q_3Q_1 \end{split}$$

Diagramele Karnaugh pentru intrarile CBB-urilor si ecuatiile rezultate

J3

Q1Q0	00	01	11	10
Q3Q2				
00	0	0	1	0
01	X1	!X4	0	1
11	/\			
10			/\	<u> </u>

K3

Q1Q0 Q3Q2	00	01	11	10
Q3Q2				
00				
01		/		
11		1	1	0
10	0	1	Ø	0

$$J3 = X1Q_2!Q_0 + !X4Q_2!Q_1Q_0 + Q_1Q_0!Q_2 + Q_1!Q_0Q_2$$

10

$$K3=!Q_1Q_0+Q_0Q_2$$

J2

Q1Q0	00	01	11
Q3Q2			

(- (-				
00	$\propto 0$	1	1	\bigcap
01				
11				
10	S	0	0	0

K2

Q1Q0 Q3Q2	00	01	11	10
Q3Q2				
00				
01	0	0	1	\bigcirc
11		1	1	1
10			$\left(\left \cdot \right \right)$	

Implementarea MUX-urilor pentru CBB tip JK corespunzator lui Q2:

MUX 4:1 cu variabilele de selectie Q3 si Q2:

Q_1Q_0	00	01	11	10
	X0	1	1	1

Q_1Q_0	00	01	11	10

 $X0!Q_1!Q_0 \!\!+\!\! Q_0 \!\!+\!\! Q_1!Q_0$

1

Q_1Q_0	00	01	11	10

Q_1Q_0	00	01	11	10
	0	0	0	0

1

0

MUX 8:1 cu variabilele de selectie Q3,Q2 si Q0:

Q1	0	1

Q1	0	1
1		

Q1	0	1
	0	1

Q1	0	1
	0	1

Q1

Q1

Q1	0	1
1		

Q1	0	1
1		

Q1 0 1 ---- 1

Q1	0	1
	1	1

1

Implementarea MUX-ului 2:1 pentru CBB tip D corespunzator lui Q1, cu variabila de selectie:

Q1Q0	00	01	11	10
Q3				
0	0	0	1	0
1	1	!X3	0	1

$$!X3Q_{3}!Q_{1} + Q_{3}!Q_{0} + !Q_{3}Q_{1}Q_{0} \\$$

Q1Q0	00	01	11	10
Q3				
0	1	X4	1	1
1		1	0	1

$$X4!Q_3+!Q_0+Q_3!Q_1+!Q_3Q_1$$

Diagramele Karnaugh pentru iesiri

	00	01	11	10
Q3Q2				
00	0	0	0	0
01	0	0	0	1
11		0	0	0
10	0	0	0	0

$$C1=Q_1!Q_0!Q_3Q_2$$

Q1Q0	00	01	11	10
Q3Q2				
00	0	0	0	0
01	0	0	0	0
11		0	0	1
10	0	0	0	0

$$C2 = Q_2Q_3!Q_0$$

Q1Q0	00	01	11	10
Q1Q0 Q3Q2				
00	0	0	0	0
01	0	0	0	0
11		0	0	0
10	0	0	0	1

$$C3=Q_1!Q_0Q_3!Q_2$$

$$C4 = !Q_1Q_3!Q_0$$

Q1Q0	00	01	11	10
Q3Q2				
00	0	1	0	0
01	0	0	0	0
11		0	0	0
10	0	0	0	0

Q1Q0 Q3Q2	00	01	11	10
Q3Q2				
00	0	0	0	0
01	0	0	0	0
11		1	0	0
10	0	0	0	0

 $C5=!Q_1Q_0!Q_3!Q_2$

 $C6=!Q_1Q_2Q_3$

Q1Q0	00	01	11	10
Q1Q0 Q3Q2				
00	0	0	0	0
01	0	0	1	0
11		0	0	0
10	0	0	0	0

 $C7 = Q_1Q_0!Q_3Q_2$

 $C8 = Q_1Q_0!Q_3!Q_2$

Implementarea circuitului

