Управление памятью

Евгений Иванович Клименков

osisp2019@gmail.com

Белорусский Государственный Университет Информатики и Радиоэлектроники

2019

C style

- void* malloc (size t size);
- void* calloc (size_t num, size_t size);
- void* realloc (void* ptr, size t size);
- void free (void* ptr);

C++ style

- operator new;
- operator delete;

Performance Metrics

- Performance
 - CPU overhead
 - Memory overhead
- Scalability
- Memory Fragmentation
 - Internal Fragmentation
 - External Fragmentation
 - Memory Blowup
- Energy Consumption

Internal Fragmentation

NOTE: 1k memory is wasted due to partitioning

External Fragmentation

 Occurs when there is enough aggregate heap memory, but no single free block is large enough

- Depends on the pattern of future requests
 - Thus, difficult to measure

Blowup

A special case of fragmentation:

max allocated

max allocated by ideal uniprocessor allocator

- Unbounded, or grows linearly with # of CPUs
- Caused by parallel allocator not using freed memory to satisfy future allocation requests

2019 БГУИР 7 / 31

- Bitmap-based
- List-based
- Tree-based
- Custom

Основные особенности:

- Динамическая память и память необходимая для управления выделением разделены
- Линейная сложность выделения/освобождения
- Выделение на базе блоков
- Куча иммеет фиксированный размер
- Практически не требует взаимодействия с ОС
- Простая реализация
- Операции выделения и освобождения памяти являются дорогими

Основные особенности:

- Динамическая память используется как для обслуживания пользовательских запросов так и для внутренних нужд
- константная сложность выделения/освобождения
- Выделение на базе байтов
- Размер кучи может динамически меняться во время выполнения
- Активно взаимодействует с ОС
- Простая реализация
- Операции выделения и освобождения памяти являются дешевыми

 Е. И. Клименков
 2019
 БГУИР
 12 / 31

Tree-based Allocators

Е. И. Клименков 2019 БГУИР 13 / 31

Основные особенности:

- Динамическая память используется как для обслуживания пользовательских запросов так и для внутренних нужд
- Логарифмическая сложность выделения/освобождения
- Выделение на базе байтов
- Размер кучи может динамически меняться во время выполнения
- Активно взаимодействует с ОС
- Простая реализация
- Операции выделения и освобождения памяти являются дешевыми
- Применение политик выделения памяти является дешевым

14 / 31 Е. И. Клименков 2019 БГУИР

- First Fit
- Best Fit
- Worst Fit

Slab Allocator

Slab Allocator

Slab with Internal Descriptors

Slab with External Descriptors

SLAB per frame freelist management

Page Frame Content:

19 / 31 Е. И. Клименков 2019 БГУИР

Low-level memory allocator (Linux)

High overview of Virtual Memory subsystem (Linux)

1. Serial Single Heap

FixedList 1

FixedList 2

FixedList 3

FreeList

2. Concurrent Single Heap

FixedList 1

FixedList 2

FixedList 3

FreeList

3. Pure Private Heaps and4. Private Heap with Ownership

FixedList 1	FixedList 1	FixedList 1
FixedList 2	FixedList 2	FixedList 2
FixedList 3	FixedList 3	FixedList 3
FreeList	FreeList	FreeList
Per-Thread	Per-Thread	Per-Thread
Heap 1	Heap 2	Heap 3

5. Private Heaps with Threshold

FixedList 1

FixedList 2

FixedList 3

FreeList

Per-Thread Heap 1 FixedList 1

FixedList 2

FixedList 3

FreeList

Per-Thread Heap 2 FixedList 1

FixedList 2

FixedList 3

FreeList

Per-Thread Heap 3

Global Shared Heap or Shared Heap Hierarchy

Оптимальность по Парето

