

(Rabanal, Rodríguez & Rubio 2007)

https://ieeexplore.ieee.org/document/4666848

Member

- 1.นายพงศ์พิพัฒน์ ขุนชิต 6410110337
- 2.นายภานุพงษ์ ลิม 6410110701
- 3.นายอนุวัฒน์ ขาวแก้ว 6410110738

River Formation Dynamics

• ใช้แนวคิดการไหลของน้ำและการกัดเซาะตะกอนใน ธรรมชาติเพื่อค้นหาเส้นทางที่มีประสิทธิภาพที่สุดในการแก้ ปัญหา Dynamic TSP โดยปรับเส้นทางตามเงื่อนไขที่ เปลี่ยนแปลงไป

ขั้นตอนการทำงาน

1. การกำหนดพื้นที่เริ่มต้น
สร้างกราฟหรือเครือข่ายที่ประกอบด้วยจุด
(nodes) และเส้นเชื่อมโยง (edges) แต่ละจุดแทน
ตำแหน่งหรือสถานะในปัญหา ส่วนเส้นเชื่อมโยงจะแทน
ความเป็นไปได้ในการย้ายจากจุดหนึ่งไปยังอีกจุดหนึ่ง

ขั้นตอนการทำงาน

2. การจำลองหยดน้ำ หยดน้ำจำลองจะถูกวางไว้ที่จุดเริ่มต้น (source node) ของกราฟ โดยแต่ละหยดจะพยายามหาทางไป ยังจุดปลาย (destination node) ผ่านเส้นทางต่าง ๆ ในกราฟ

000

ขั้นตอนการทำงาน

3. การตัดสินใจเลือกเส้นทาง หยดน้ำจะเลือกเส้นทางที่จะเดินทางไปต่อ โดยพิจารณาจากความน่าจะเป็น ซึ่งขึ้นอยู่กับน้ำ หนักของเส้นเชื่อมโยง (เช่น ระยะทาง, ต้นทุน, หรือเวลาที่ใช้) เส้นทางที่มีน้ำหนักน้อยกว่าจะมี โอกาสถูกเลือกมากกว่า

000

ขั้นตอนการทำงาน

4. กระบวนการสะสมและกัดเซาะ

เมื่อหยดน้ำเดินทางผ่านเส้นทางหนึ่งๆ น้ำหนักของเส้น ทางนั้นจะถูกปรับเปลี่ยนไป หากเส้นทางนั้นถูกใช้บ่อย น้ำหนักจะ ลดลง (เหมือนกับการกัดเซาะดิน) ทำให้มีแนวโน้มที่จะถูกเลือกใน รอบต่อไปมากขึ้น ในขณะที่เส้นทางที่ไม่ถูกใช้บ่อยจะถูกเพิ่มน้ำ หนักเพื่อสะท้อนถึงความต้านทานมากขึ้น

ขั้นตอนการทำงาน

5. การทำซ้ำกระบวนการ กระบวนการทั้งหมดนี้จะทำซ้ำหลาย ๆ รอบ โดยในแต่ละรอบ หยดน้ำจะทำการปรับเปลี่ยนเส้นทาง ตามข้อมูลที่ได้จากการสะสมและการกัดเซาะ เส้นทาง ที่มีน้ำหนักน้อยที่สุดหรือเส้นทางที่มีการใช้งานมาก ที่สุดจะถูกระบุว่าเป็นทางเลือกที่ดีที่สุด

ข้อดี

- 1.สามารถปรับตัวได้ดีกับปัญหาที่มี การเปลี่ยนแปลงแบบไดนามิก
- 2. มีความสามารถในการหาวิธีแก้ ปัญหาที่เหมาะสมในเวลาที่น้อยลง เมื่อเทียบกับอัลกอริธึมอื่น ๆ
- 3.สามารถใช้ได้กับปัญหาการเพิ่ม ประสิทธิภาพหลายประเภท ไม่ เฉพาะกับ TSP เท่านั้น

ข้อจำกัด

- 1.ประสิทธิภาพของอัลกอริธึมขึ้นอยู่ กับค่าพารามิเตอร์ที่เลือกใช้
- 2. ต้องมีการปรับแต่งเพิ่มเติมใน กรณีที่ปัญหามีความซับซ้อนสูง มากหรือมีข้อกำหนดเฉพาะตัว

การนำไปประยุกต์ใช้ในการแก้ปัญหา TSP

- Initialization: กำหนดเส้นทางเริ่มต้นให้หยดน้ำทุกหยดใน กราฟที่ครอบคลุมทุกจุด
- Erosion and Path Update: หยดน้ำเลือกเส้นทางที่ ต้นทุนน้อยที่สุดและปรับปรุงเส้นทางผ่านการกัดเซาะตาม การใช้งาน
- Dynamic Adaptation: อัลกอริธึมปรับตัวสร้างเส้นทาง ใหม่ตามการเปลี่ยนแปลงของพารามิเตอร์

Thank You