See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231538324

PpT Behavior of a Lean Synthetic Natural Gas Mixture Using Magnetic Suspension Densimeters and an Isochoric Apparatus: Part I

ARTICLE in JOURNAL OF CHEMICAL & ENGINEERING DATA · JANUARY 2011

Impact Factor: 2.04 · DOI: 10.1021/je100676j

CITATIONS

11

READS

27

5 AUTHORS, INCLUDING:

Mert Atilhan

Qatar University

101 PUBLICATIONS 962 CITATIONS

SEE PROFILE

Diego Cristancho

Dow Chemical Company

35 PUBLICATIONS 212 CITATIONS

SEE PROFILE

Santiago Aparicio

Universidad de Burgos

120 PUBLICATIONS 1,479 CITATIONS

SEE PROFILE

Kenneth R. Hall

Texas A&M University

252 PUBLICATIONS 4,040 CITATIONS

SEE PROFILE

$P\rho T$ Behavior of a Lean Synthetic Natural Gas Mixture Using Magnetic Suspension Densimeters and an Isochoric Apparatus: Part I

M. Atilhan,*,† S. Aparicio,‡ S. Ejaz,§ D. Cristancho,§ and K. R. Hall§

Chemical Engineering Department, Qatar University, Qatar, Chemistry Department, University of Burgos, Spain, and Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States

Work shown in this paper reports measurements of fluid behavior and its dependence upon concentration in natural gas-like mixtures. These systematic experiments covering phase equilibrium and densities of selected mixtures use a state-of-the art apparatus. This work presents phase envelopes and density data for a synthetic natural gas-like mixture measured with an isochoric apparatus and a magnetic suspension densimeter. The isochoric apparatus permits precise, fast measurements using an automated procedure over wide ranges of pressure and temperature encompassing the cricondentherm and the cricondenbar. A comparison of the measured phase envelopes to predictions from cubic and molecular-based equation of states (EOS's) indicate serious deviations in both cricondentherm and cricondenbar regions. Although most design software use these models, the results obtained here indicate the EOS predictions are unacceptable. Current density measurements deviate from both the AGA8-DC92 and the GERG-2004 models.

Background

Natural gas is the most environmentally friendly fossil fuel because it burns cleaner and more efficiently than coal or oil. Proven reserves of natural gas have increased yearly, and development of new technologies together with the current high prices of oil allows the exploration and recovery of nonconventional reservoirs whose compositions and characteristics are unusual. Some of these sources provide gas that contains a significant fraction of heavy hydrocarbons. Most equations of state (EOS's) that purport to describe natural gas cannot match the phase envelopes for pressures above that of the cricondentherm nor can they match the high pressure density data.

Natural gas compositions depend upon the age and conditions of the reservoir⁴ and range from methane to long chain n-alkanes that strongly affect phase behavior, to quadrupolar molecules such as carbon dioxide, and molecules that can autoassociate through hydrogen bonding like hydrogen sulfide and water. These multicomponent mixtures contain complex intermolecular forces and related effects that make a theoretical description of the systems difficult. The prediction of phase equilibria commonly uses EOS's, but the marginal accuracy of these models⁵ renders experimental measurements necessary to determine system properties. It is impossible to measure all of the properties for all possible mixtures over the temperature and pressure ranges required. The measurement of the required volumetric properties and vapor-liquid equilibrium in multicomponent mixtures requires high-pressure and wide temperature ranges for deep reservoir gas simulations. Measurements require experimental skill and state-of-the-art equipment and have financial and time constraints. 6,7 Considering the importance of experimental measurements and their difficulty, it is necessary to develop a systematic strategy from which to infer the effects of different mixture components and concentrations upon thermodynamic properties.

Accurate knowledge of phase envelopes is relevant for production, storage, processing, and transportation of natural gases. Inaccurate dew point predictions may cause contractual disputes between the gas producers and the purchasers. Different experimental designs have appeared for measurements of phase envelopes such as a visual equilibrium cell, microwave equipment, and surface acoustic techniques, 10–17 but the isochoric method is interesting because of its accuracy and ease of automation. Interesting because of its accuracy and ease of automation of points on the phase envelope and, when combined with density data obtained with a densimeter, produces density data along the isochores.

Knowledge of the pressure–density–temperature $(p-\rho-T)$ behavior of natural gas at reservoir and pipeline conditions is necessary for several practical applications, the most important of which is the metering of custody transfer of natural gas.²⁰ Simple models predict densities of natural gas in the custody transfer region within \pm 1 % relative deviation with respect to reliable experimental data, which is not sufficient for custody transfer. ^{21,22} A modified version of the Redlich–Kwong (RK) EOS, 23,24 the Hall-Yarborough 25 correlation, and the models by Dranchuk et al.²⁶ and Dranchuk et al.²⁷ are other suggested EOS's. The gas industry uses cubic EOS's to predict phase envelopes since their ease of use and wide availability in commercial packages provide quick solutions and they do not require high computational requirements.^{28,29} However, although these models are useful for some applications, ²⁸ the uncertainty of their predictions⁵ requires oversizing many industrial designs. Molecular-based EOS's have stronger theoretical foundations than cubic equations; however, practical use of these EOS's is limited by their complexity and computational speed.³⁰

AGA8-DC92 (American Gas Association, Report No. 8, Washington, DC, 1992)³¹ is the U.S. reference equation adopted by the American Gas Association for natural gas density predictions. Its validity is limited to well-known pressure,

^{*} Corresponding author. E-mail: mert.atilhan@qu.edu.qa.

[†] Qatar University.

^{*} University of Burgos.

[§] Texas A&M University.

Table 1. Mixture Mole Fractions

component	mole fraction			
methane	0.89982			
ethane	0.03009			
propane	0.01506			
2-methylpropane	0.00752			
butane	0.00753			
2-methylbutane	0.00300			
pentane	0.00300			
nitrogen	0.01697			
carbon dioxide	0.01701			

temperature, and composition ranges, and it is not applicable for phase equilibrium calculations or for liquid properties. 32,33 Current work calls into question the uncertainty bands proposed for AGA8-DC92.

This work contains the first results of a research project covering $p-\rho-T$ and phase behavior of multicomponent mixtures. The same mixtures were measured with a two-sinker densimeter at National Institute of Standards and Technology (NIST) at Boulder, and these data will be reported by McLinden in a future communication.³⁴

Experimental Section

Materials. Accurate Gas, Inc. prepared the synthetic mixture used in this work, and its composition appears in Table 1. The gravimetrically prepared mixture has mass traceability to NIST. The overall uncertainty of the mixture has been estimated with 1σ as 0.12 % in molar weight (or 0.0222 kg·kmol⁻¹).

Isochoric Apparatus. Figures 1 and 2 are schematic diagrams of the overall isochoric apparatus and the measuring cell. Details of the isochoric apparatus appear in a previous work.⁸ The isochoric apparatus operates between (100 and 500) K at pressures (up to 35 MPa) in a simple, automated manner. The technique for determining phase envelopes utilizes the change of the slope of an isochor as it crosses the phase boundary. A new technique developed by Pedro et al. is used to calculate exact points on the phase boundary.35 Collinearity of the isochores was originally discovered by Doiron et al. 36 in 1976. Several methods for the detection of the phase boundary use a change of slope method, and the method we used in this paper for phase change detection uses the change of slope of isochors especially to detect the lower dew point curve. At higher densities approaching the cricondentherm, the method fails. Moreover, it also fails in the zero density limit; however, it still can be used again at high densities as well above the cricondentherm density. It is thermodynamically impossible for measured data to ever have an isochoric slope greater on the single-phase side of a lower dew-point envelope rather than on the two-phase side. 37,38 For our measurements of phase boundary points, we used the above techniques. We fitted the single phase isochoric data on one single equation, and at the vicinity of the phase envelope we kept on adding isochoric data point on the fitted equation and observed the isochoric slope jump at each case. Given the technique description, with this technique we are able to limit the uncertainty of the phase envelope measurements to $5 \cdot 10^{-4} p$ in pressure and 5 mK in temperature.

The volume of the isochoric cell is approximately 70 cm³. Since the apparatus cell volume changes slightly with pressure and temperature, experimental runs are actually isomoles instead of isochores, and the data require a cell distortion correction to adjust the results to isochores:

$$\frac{V(T,P)}{V(T_0,P_0)} = 1 + \gamma(P-P_0) + \beta(T-T_0)$$
 (1)

in which T_0 and P_0 are the reference temperature and pressure points on an isochore line that are measured accurately³⁹ and cross-checked from Roark's Formulas for Stress and Strain book⁴⁰ for accurate values as $\gamma = 2.53 \cdot 10^{-5} \text{ MPa}^{-1}$ and $\beta =$ 4.86 • 10⁻⁵ K⁻¹ for stainless steel. Circulating baths and surrounding heaters control the cell temperature, and the system

Figure 1. Block diagram of the isochoric apparatus.

Figure 2. Schematic of the isochoric cell (liquid nitrogen and circulating bath tubes go in both isothermal shields).

uses isolating vacuum and radiation shields surrounding the cell to reduce energy transmission and to ensure temperature stability of the measurements within the cell as \pm 5 mK measured via a platinum resistance thermometer. A quartz pressure transducer from Paroscientific Inc. measures pressure within the cell with a manufacturer specified relative uncertainty of \pm 0.01 % of full scale or $1 \cdot 10^{-4}$ p. The transducer temperature is constant at 343.15 K during measurements, well above the mixture cricondentherm. A fully automated program that allows rapid collection of data controls the apparatus. The calibration of the pressure transducer was conducted also at the same temperature previously.

Magnetic Suspension Densimeter. Figure 3 shows the schematic diagram of the densimeter apparatus. This instrument use the hydrostatic buoyancy force technique based upon Archimedes' Principle. Archimedes' Principle states that "A solid body immersed in a fluid displaces a volume of fluid the weight of which equals the buoyancy force exerted by the fluid on the body." This observation relates the buoyancy force to the fluid density. Classical hydrostatic buoyancy densimeters suspend a sinker, usually a sphere or cylinder, from a commercial digital balance using a thin wire. The pressure and temperature of the fluid remain constant in the cell. The weight of the submerged sinker is measured, and the density of the fluid is:

$$\rho = \frac{m_{\rm v} - m_{\rm a}}{V_{\rm s}(T, P)} \tag{2}$$

In eq 2, m_v is the "true" mass of the sinker in vacuum, m_a is the "apparent" mass of the sinker in the fluid, and V_s is the calibrated volume of the sinker, which is a function of temperature and pressure. In such densimeters, several corrections are necessary to reduce the effect of surface tension between the sample liquid and the immersed part of the wire and the effect of the buoyant force of air on the masses of the analytical balance. Zero shift of balance readings, buoyancy forces on auxiliary devices, adsorption effects, and surface tension may reduce the accuracy of such measurements. To overcome limitations in achievable accuracy, the need for frequent calibration of the apparatus with reference fluids, complexity of operation, and limitations on temperature and pressure, Kleinrahm and Wagner⁴¹ introduced a magnetic-suspension device (MSD) which was initially developed by Beams and Clarke. 42 The novelty of the magnetic-

Figure 3. Schematic of high-pressure density cell.

suspension coupling was that it used nonphysical-contact force transmission between the sinker in the pressurized cell and the weighing balance in the atmosphere. This arrangement allowed a cell design that covered a very wide temperature and pressure range.43

In a single-sinker MSD, the apparent mass of the sinker is measured while being levitated via a suspension coupling in the pressure vessel at a fixed temperature and pressure. Rubotherm Präzisionsmesstechnik manufactured the compact, single-sinker densimeter used in this work. The apparatus has an uncertainty specification from the manufacturer of 0.005 kg⋅m⁻³ for densities in the range (0 to 2000) kg⋅m⁻³ over a temperature range of (193.15 to 523.15) K and a pressure range (up to 200) MPa with a maximum pressure of 130 MPa at 523.15 K. The sinker used for measurements in this work is a titanium cylinder having a volume of 6.74083 ± 0.0034 cm³ with a 1σ uncertainty of \pm 0.05 % in volume and a mass of 30.39157 g, both measured at 293.15 K and 1 bar by the manufacturer. Temperature control utilized a proportional—integral derivative (PID) mechanism remotely controlled by Lab-VIEW8.0, and temperature measurements have an uncertainty of 5.7 mK. A coupling and decoupling device couples the sinker magnetically to a commercial analytical balance (Mettler AT 261) with a measuring range of (0 to 62) g with an uncertainty of 0.03 mg.

Since the weighing balance deviates slightly from its ideal operation curve, one must compensate for the nonlinearity of the weighing balance by introducing an external weight compensation system. The balance operates near its zero point to improve the accuracy of the measurement by using two external compensation weights made from titanium and tantalum.44 Based upon the measurement using the two external weights, eq 2 becomes:

$$\rho = \frac{(m_{\rm v} + m_{\rm Ti} - m_{\rm Ta}) - (m_{\rm a} + m_{\rm Ti} - m_{\rm Ta})}{V_{\rm s}(T, P)}$$
(3)

where Ta and Ti are the external Tantalum and Titanium weights. Ta and Ti weights are used to reduce the errors of the balance caused by changes in the characteristic line of the digital balance. 45 Moreover, these Ta and Ti external weights are also used to correct for the effects of air buoyancy on the digital balance.

Table 2. Experimental Pressure and Temperature Points Collected along Isochores

K MPa kg·m³ kg·m³ K MPa kg·m³ kg·m³ K MPa kg·m³	Isochore 1			Isochore 2				Isochore 3				
Reserve			ρ	ρ			ρ	ρ			ρ	ρ
343.15 21.053 155.22 155.06 343.15 17.504 30.46 30.35 30.41 343.15 13.166 112.95 112.85 333.15 16.46 12.95 12.85 333.15 16.46 130.55 130.46 33.15 14.48 113.07 112.99 12.35 333.15 16.46 12.95 13.35 13.15 14.86 113.07 112.99 12.35 13.15 14.86 115.57 13.35 13.15 14.86 13.15 13.05 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.35 13.15 14.96 13.15 13.15 14.96 13.15 13.15 14.96 13.15 13.15 13.15 14.96 13.15 13.15 13.15 14.96 13.15 13.15 13.15 13.15 14.96 13.15	T	P	AGA8	GERG	T	P	AGA8	GERG	T	P	AGA8	GERG
333.15 19.91 155.39 155.2 333.15 16.61 330.55 130.41 333.15 14.438 113.07 112.99 232.15 15.768 155.6 155.38 322.15 15.715 130.68 130.51 232.15 13.15 17.62 155.84 155.57 313.15 14.82 130.85 130.65 313.15 12.900 113.38 113.13 113.01 130.01 130.15 130.25 130.90 133.31 13.18 130.25 130.15 130.25 130.15 130.25 130.85 130.15 12.290 113.48 113.42 130.15 130.25 13	K	MPa	kg·m ⁻³	kg·m ⁻³	K	MPa	kg⋅m ⁻³	kg·m ⁻³	K	MPa	kg⋅m ⁻³	kg·m ⁻³
13215 18,768 155.6 155.8 323.15 15.715 130.68 130.15 223.15 13.705 131.9 113.07									343.15			112.85
131.5 17.62 155.84 155.57 313.15 14.82 319.85 130.65 313.15 12.969 113.48 113.25 293.15 15.299 15.30 15.229 13.48 113.25 293.15 15.299 15.30 15.229 13.48 113.25 293.15 11.48 113.69 113.45 13.25 13.15 13.25 13.15 13.25 13.15 13.25 13.15 13.25 13.15 13.25 13.15 13.25 13.15 13.25 13.15 13.25 13.15 13.25 13.15 13.25												112.96
930.15 16.463 156.07 155.74 303.15 13.925 131.09 130.85 303.15 12.229 113.48 113.22 233.15 14.445 156.78 156.25 283.15 12.115 131.61 313.12 233.15 10.749 114.02 113.77 127.815 13.562 157.78 157.45 15			155.0 155.84									113.07
293.15 15.299 156.32 159.9 293.15 13.021 131.32 131.01 293.15 11.488 113.69 113.47 127.15 13.562 157 156.4 278.15 11.665 131.88 131.42 278.15 10.375 114.18 113.67 13.27 13.27 13.28 13.55 13.562 157 156.4 278.15 11.665 131.88 131.42 278.15 10.375 114.18 113.65 13.27 13.27 13.28 13.27 13.28 13.27 13.28 13.27 13.28 13.27 13.28 13.27 13.28 13.27 13.28 13.2			156.07						303.15			113.10
283.15 14.145 156.78 156.25 283.15 12.115 131.63 131.23 283.15 10.749 114.02 113.77 273.15 12.984 157.32 156.65 273.15 11.165 131.88 131.42 273.15 10.007 114.6 114.02 273.15 12.984 157.32 156.65 273.15 11.165 131.88 131.42 273.15 10.007 114.6 114.02 273.15 12.984 157.32 156.65 273.15 11.034 132.3 132.14 271.15 9.007 114.6 114.02 269.15 12.523 157.65 150.9 269.15 10.884 132.44 131.85 269.15 9.711 114.69 114.25 267.15 12.066 158.08 157.25 265.15 10.498 132.83 132.17 265.15 9.418 115.02 114.5 268.15 11.046 138.21 157.75 262.15 10.23 133.05 132.34 261.15 9.125 115.21 114.66 261.15 11.605 138.51 157.75 262.15 10.23 133.05 132.34 261.15 9.125 115.21 114.66 252.15 10.912 159.26 138.19 257.15 9.418 13.02 143.5 253.15 10.912 159.26 138.19 257.15 9.239 134.52 233.52 233.15 8.551 116.62 115.86 253.15 10.681 159.55 158.43 255.15 9.419 142.1 133.27 254.15 8.617 116.30 115.6 253.15 10.681 159.55 158.43 255.15 9.419 142.1 133.27 254.15 8.617 116.30 115.6 253.15 10.681 159.55 158.43 255.15 9.419 142.1 133.27 254.15 8.617 116.30 115.6 253.15 10.451 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.551 116.62 115.86 253.15 10.451 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.551 116.62 115.86 253.15 10.451 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.551 116.62 115.86 253.15 10.451 10.451 10.808 12.690 12.254 12.255 12.255 12.255 12.255 12.255 12.255 12.255 12.255 12.		15.299	156.32				131.32	131.01	293.15			113.45
273.15 12.984 157.32 156.65 273.15 11.215 132.18 131.65 273.15 10.007 114.46 114.07 269.15 12.574 157.49 156.78 271.15 11.014 132.3 131.74 271.15 9.816 114.6 114.07 269.15 12.523 157.65 150.9 269.15 10.884 132.44 131.85 269.15 9.711 114.60 114.27 260.15 12.066 158.08 157.25 265.15 10.498 132.83 132.17 265.15 9.418 115.02 114.5 263.15 12.066 158.08 157.25 263.15 10.32 133.05 132.34 263.15 9.418 115.02 114.5 263.15 11.842 158.39 157.52 263.15 10.32 133.05 132.34 263.15 9.125 115.21 114.5 263.15 11.842 158.39 157.52 263.15 10.23 133.05 132.34 263.15 9.125 115.21 114.5 263.15 11.474 158.78 157.75 262.15 10.233 133.2 132.47 261.15 9.125 115.21 114.5 263.15 11.433 158.90 157.98 291.15 9.058 133.48 132.64 257.15 8.829 115.8 115.25 255.15 10.912 159.28 158.13 257.15 9.479 133.68 132.83 22.51 2		14.145	156.78	156.25	283.15	12.115	131.63	131.23	283.15	10.749	114.02	113.71
271.15 12.754 157.49 156.78 271.15 11.034 132.3 131.74 271.15 9.861 114.6 114.17 267.15 12.294 157.85 156.0 269.15 10.677 132.64 132.02 267.15 9.563 114.83 114.3 263.15 11.842 158.39 157.52 263.15 10.477 132.64 132.02 267.15 9.563 14.83 114.3 263.15 11.842 158.39 157.52 263.15 10.32 133.05 132.34 263.15 9.272 115.21 114.6 263.15 11.842 158.39 157.52 263.15 10.32 133.05 132.34 263.15 9.272 115.21 114.6 263.15 11.842 158.39 157.88 261.15 10.32 133.32 132.47 261.15 9.125 115.21 114.6 259.15 11.1374 158.74 157.78 261.15 10.147 133.37 132.62 259.15 8.976 115.57 114.92 255.15 10.012 159.26 158.19 257.15 9.779 133.68 132.84 256.15 8.757 115.94 115.22 255.15 10.012 159.26 158.19 237.15 9.779 133.68 132.84 256.15 8.757 116.62 115.80 251.15 10.451 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.71 116.62 115.80 252.15 10.1681 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.51 116.62 115.80 252.15 10.1681 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.51 116.62 115.80 252.15 10.1681 159.89 138.71 251.15 9.239 134.52 133.52 253.15 8.51 116.62 115.80 252.15 10.1681 159.89 138.71 251.15 9.239 134.52 133.52 253.15 8.51 116.62 115.80 252.15 10.1681 159.89 138.71 251.15 9.239 134.52 133.52 253.15 8.51 10.62 115.80 252.15 10.1681 159.89 138.71 251.15 9.239 134.52 133.52 253.15 8.51 10.62 115.80 252.15 10.1681		13.562	157			11.665	131.88	131.42	278.15			113.82
269.15 12.523 157.65 156.9 269.15 10.854 132.44 131.85 269.15 9.711 114.69 114.25 265.15 12.024 157.85 157.05 265.15 10.478 132.83 132.17 265.15 9.418 115.02 114.5 265.15 11.842 158.39 157.25 265.15 10.498 132.83 132.17 265.15 9.418 115.02 114.5 261.15 11.605 158.51 157.59 262.15 10.323 133.05 132.44 263.15 9.272 115.21 114.66 261.15 11.605 158.51 157.59 262.15 10.233 133.27 132.47 261.15 9.125 115.4 257.15 11.143 158.79 157.98 259.15 9.958 133.43 132.64 259.15 8.899 115.87 114.92 257.15 11.143 158.99 157.98 259.15 9.958 133.43 132.64 256.15 8.899 115.87 115.92 255.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6 252.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6 252.15 10.681 159.89 158.71 251.15 9.299 134.22 133.25 253.15 8.617 116.33 115.6 252.15 10.688 90.104 90.053 333.15 9.592 72.748 72.697 333.15 74.33 55.075 55.07 233.15 11.678 90.147 90.073 333.15 9.592 72.748 72.697 333.15 74.33 55.075 55.07 233.15 11.688 90.104 90.22 331.15 8.76 72.909 72.254 343.15 7.755 55.076 55.03 233.15 10.033 90.412 90.288 90.393 293.15 7.917 73.082 72.277 293.15 6.299 55.223 55.14 293.15 9.481 90.548 90.993 293.15 7.917 73.082 72.977 293.15 6.299 55.223 55.12 273.15 8.892 90.788 0.0589 283.15 7.917 73.082 72.977 293.15 6.299 55.23 55.12 273.15 8.892 90.788 0.0589 283.15 7.917 73.082 72.977 293.15 6.299 55.23 55.12 273.15 8.893 93.813 93.815 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 93.815 93.91 9			157.32			11.215	132.18		273.15			114.05
267.15 12.294 157.85 157.06 267.15 10.677 132.64 132.02 267.15 9.563 114.83 114.32 263.15 11.842 158.39 157.52 263.15 10.32 133.05 132.34 263.15 9.272 115.21 114.65 263.15 11.842 158.39 157.52 263.15 10.32 133.05 132.34 263.15 9.272 115.21 114.65 269.15 11.605 158.51 157.59 262.15 10.32 133.32 132.47 261.15 9.272 115.21 114.65 259.15 11.374 158.74 157.78 261.15 10.147 133.37 132.62 259.15 8.76 115.57 114.92 257.15 11.143 158.99 157.98 259.15 9.799 133.68 132.84 256.15 8.757 115.94 115.22 255.15 10.912 159.26 158.19 257.15 9.779 133.68 132.84 256.15 8.757 115.94 115.22 255.15 10.618 159.59 158.49 257.15 9.779 133.68 132.84 256.15 8.757 115.94 115.22 251.15 10.618 159.59 158.71 251.15 9.239 134.52 133.52 253.15 8.617 116.33 115.6 251.15 10.451 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.617 116.33 115.6 333.15 11.678 90.147 90.053 343.15 9.597 72.748 72.699 72.654 343.15 7.735 55.076 55.06 333.15 10.583 90.104 90.023 333.15 9.597 72.748 72.699 72.839 313.15 7.433 55.075 55.03 313.15 10.583 90.048 90.102 313.15 8.76 72.2099 72.2839 313.15 6.831 55.119 55.03 313.15 10.583 90.048 90.102 313.15 8.76 72.2099 72.2839 313.15 6.831 55.119 55.03 313.15 10.383 90.142 90.283 303.15 8.387 72.797 72.852 72.766 323.15 7.131 55.083 55.076 313.15 9.481 9.09.283 9.03.89 9.03.89 29.315 7.717 73.082 72.977 29.115 6.299 55.223 55.12 273.15 8.666 90.924 90.088 90.383 29.315 7.717 73.082 72.977 29.115 6.299 55.23 55.12 273.15 8.666 90.924 90.288 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889 90.889			157.49						2/1.15			114.17
265.15 12.066 158.08 157.25 265.15 10.498 132.83 132.17 265.15 9.418 115.02 114.5 261.15 11.642 158.39 157.52 263.15 10.32 133.05 132.47 261.15 9.125 115.4 114.82 261.15 11.605 158.51 157.59 262.15 10.233 133.2 132.47 261.15 9.125 115.4 114.82 257.15 11.143 158.99 157.98 259.15 9.958 133.43 132.64 257.15 8.299 15.8 115.22 257.15 11.143 158.99 157.98 259.15 9.958 133.43 132.64 257.15 8.299 15.8 115.22 255.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.62 251.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.62 251.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.63 252.15 11.128 90.188 90.102 333.15 9.592 72.748 72.697 333.15 74.33 55.075 55.03 233.15 11.678 90.147 90.073 333.15 9.592 72.748 72.697 333.15 74.33 55.075 55.03 233.15 10.583 90.304 90.202 331.15 8.76 72.900 72.839 331.15 6.831 55.11 293.15 10.33 90.12 90.288 90.132 30.315 8.78 72.900 72.839 331.15 6.831 55.11 293.15 9.481 90.548 90.933 293.15 7.917 73.082 72.977 293.15 6.299 55.223 55.12 278.15 8.656 90.924 90.697 278.15 7.749 73.38 73.182 278.15 5.765 55.349 271.15 8.272 91.198 90.923 271.15 6.991 73.512 73.336 73.182 278.15 5.625 55.448 55.39 260.15 7.781 91.714 91.388 262.15 6.690 73.512 73.386 273.15 5.625 55.48 55.29 261.15 7.781 91.714 91.388 262.15 6.692 73.847 22.595 261.15 7.781 91.714 91.388 262.15 6.692 73.847 22.596 261.15 7.781 91.714 91.388 262.15 6.620 73.922 73.869 22.516 5.297 55.505 55.75 261.15 7.781 91.714 91.388 33.15 3.329 22.546 22.536 22.516 22.596 22.485 261.15 7.781 93.897 38.897 23.815			157.05	150.9				131.63	269.13			114.23
263.15 11.842 158.39 157.52 263.15 10.32 133.05 132.34 263.15 9.72 115.21 114.66 261.15 11.605 158.51 157.59 262.15 10.233 133.2 132.47 261.15 9.725 115.4 1148.2 259.15 11.374 158.74 158.74 158.78 261.15 10.147 133.37 132.62 259.15 8.976 115.57 114.9 255.15 10.912 159.26 158.19 257.15 9.779 133.68 132.84 256.15 8.757 115.94 115.26 255.15 10.912 159.26 158.19 257.15 9.779 133.68 132.84 256.15 8.757 115.94 115.26 255.15 10.681 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.617 116.33 115.6 251.15 10.451 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.51 116.62 115.8 253.15 10.451 159.89 10.83 33.31 10.008 72.699 72.654 343.15 7.735 55.076 333.15 11.678 90.147 90.053 343.15 9.929 72.748 72.697 333.15 7.433 550.75 55.07 333.15 11.678 90.147 90.073 333.15 9.592 72.748 72.697 333.15 74.33 550.75 55.00 333.15 10.033 90.342 90.288 303.15 8.737 77.2825 72.766 322.15 7.131 55.083 550.0 313.15 10.583 90.394 90.202 323.15 9.177 72.825 72.766 322.15 7.131 55.083 550.0 313.15 10.583 90.394 90.202 313.15 8.737 73.48 73.17 233.15 6.831 55.10 329.15 9.481 90.548 90.399 22.83.15 7.947 73.082 72.977 23.15 6.299 552.23 55.16 55.10 257.15 8.666 90.024 90.088 90.892 283.15 7.347 73.348 73.117 233.15 6.299 552.23 55.16 55.10 257.15 8.666 90.024 90.0843 273.15 7.385 73.38 73.182 278.15 5.665 55.44 257.15 8.666 90.924 90.097 28.15 6.699 73.349 73.44 209.15 5.00 5.45 55.20			158.08	157.25					265.15			114.54
261.15 11.605 158.51 157.59 262.15 10.233 133.2 132.47 261.15 9.125 115.4 114.87 257.15 11.374 158.74 157.78 261.15 10.147 133.37 132.62 259.15 8.976 115.57 114.92 257.15 11.143 158.99 157.98 259.15 9.958 133.38 132.64 257.15 8.829 115.8 115.12 257.15 10.912 159.26 158.19 257.15 9.759 133.36 133.48 132.64 257.15 8.829 115.8 115.12 253.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6 251.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6 251.15 10.611 159.89 158.71 251.15 9.239 134.52 133.52 253.15 8.651 116.62 158.64 257.15 11.168 90.147 90.073 333.15 10.008 72.699 72.654 343.15 7.7433 550.75 550.0 333.15 11.128 90.188 90.102 323.15 9.177 72.825 72.766 333.15 7.433 550.75 550.0 333.15 10.033 90.4412 90.228 30.31.5 8.76 72.909 72.839 313.15 6.831 55.19 550.73 303.15 10.033 90.4412 90.228 30.31.5 8.76 72.909 72.848 90.39 90.72 313.15 90.39 90.72 90.788 90.589 283.15 7.917 70.302 72.977 293.15 6.239 552.23 551.61 283.15 8.932 90.788 90.589 283.15 7.497 73.248 73.31 2278.15 5.025 55.02 273.15 8.381 91.102 90.843 77.315 70.75 73.455 73.288 73.31 5.025 55.02 55.408 553.3 271.15 8.8381 91.102 90.843 273.15 70.75 73.455 73.288 73.36 273.15 5.025 55.408 55.33 267.15 7.89 91.829 90.788 90.899 283.15 7.785 73.455 73.288 273.15 5.025 55.408 55.33 267.15 7.947 91.559 91.232 260.15 6.090 73.599 73.444 269.15 5.505 55.46 55.34 260.15 7.947 91.559 91.232 260.15 6.090 73.898 73.838 73.62 263.15 5.265 55.46 55.45 263.15 7.776 91.775 91.499 90.23 271.15 6.825 73.665 73.069 73.348 73.62 263.15 5.266 55.55 55.46 55.55 263.15 5.385 5.565 55.46 55.55 263.15 5.776 5.388 33.315 5.779 79.37 30.388 73.993 73.765 261.15 5.267 5.565 55.45 55.57 55.46 263.15 7.797 91.359 91.202 260.15 6.000 73.898 73.899 73.444 269.15 5.267 5.565 55.45 55.57 55.46 263.15 7.797 91.359 91.202 260.15 6.000 73.899 73.499 7			158.39						263.15			114.66
257.15 11.143 158.99 157.98 259.15 9.958 133.43 132.64 257.15 8.829 115.8 115.12 253.15 10.102 159.26 158.19 257.15 9.779 133.68 132.84 256.15 8.675 115.62 253.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6 251.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6 251.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6 251.15 10.681 159.55 158.43 253.15 9.419 134.52 133.52 253.15 8.617 116.33 115.6 251.15 11.68 90.147 90.073 333.15 10.008 72.699 72.654 333.15 7.433 550.75 550.0 333.15 11.128 90.188 90.102 323.15 9.177 72.825 72.766 333.15 7.433 550.75 550.0 333.15 10.0583 90.049 90.020 313.15 8.76 72.099 72.839 313.15 6.831 55.19 550.73 303.15 10.033 90.412 90.288 303.15 8.76 72.099 72.839 313.15 6.831 55.119 550.73 303.15 10.033 90.412 90.288 303.15 8.76 72.099 72.839 303.15 6.33 55.161 55.12 233.15 9.177 73.082 72.77 293.15 6.299 552.23 552.12 233.15 9.177 73.248 73.17 283.15 5.929 553.21 552.2 273.15 8.8381 91.102 90.843 273.15 7.075 73.485 73.38 73.117 283.15 5.929 553.21 552.2 273.15 8.381 91.102 90.843 273.15 7.075 73.455 73.288 273.15 5.025 55.408 553.3 271.15 8.8381 91.102 90.843 273.15 7.075 73.455 73.288 273.15 5.025 55.408 553.3 260.15 8.163 91.3 91.099 20.201 70.000 73.999 73.414 269.15 5.505 5.545 55.42 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.24 55.25 55.24 55.25		11.605	158.51	157.59	262.15	10.233	133.2	132.47	261.15	9.125	115.4	114.82
255.15 10.912 159.26 158.19 257.15 9.779 133.68 132.84 256.15 8.757 115.94 115.26			158.74					132.62	259.15	8.976		114.95
253.15 10.681 159.55 158.43 253.15 9.419 134.21 133.27 254.15 8.617 116.33 115.6			158.99					132.64	257.15			115.13
Sochore Soch					257.15			132.84	256.15			115.26
Isochore								133.27				
343.15 12.227 90.119 90.053 343.15 10.008 72.699 72.644 343.15 7.735 55.076 55.076 55.033.15 11.678 90.147 90.073 333.15 9.592 72.748 72.697 333.15 7.433 55.075 55.033.15 7.131 55.083 55.083 55.015 11.128 90.188 90.102 323.15 8.736 72.909 72.839 313.15 6.531 55.083 55.083 35.0315 10.033 90.412 90.288 303.15 8.338 72.974 72.889 313.15 6.531 55.119 55.073 55.023 55.119 55.075 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.227 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.215 55.029 55.0	231.13			136.71	231.13			133.32	233.13			113.60
333.15 11.678 90.147 90.073 333.15 9.592 72.748 72.697 333.15 7.433 55.075 55.04 333.15 11.28 90.188 90.102 323.15 91.77 72.825 72.766 323.15 7.131 55.083 55.04 333.15 10.583 90.304 90.202 313.15 8.76 72.909 72.889 313.15 6.831 55.119 55.07 303.15 10.033 90.412 90.288 303.15 8.338 72.909 72.889 303.15 6.53 55.161 55.11 303.15 10.033 90.412 90.288 303.15 8.338 72.974 72.889 303.15 6.229 55.223 551.16 283.15 8.932 90.788 90.589 283.15 7.497 73.082 72.977 293.15 6.229 55.223 551.12 283.15 8.932 90.788 90.589 283.15 7.497 73.248 73.117 283.15 5.929 55.321 552.273.15 8.381 91.102 90.843 273.15 7.075 73.455 73.288 273.15 5.625 55.408 55.27 273.15 8.381 91.102 90.843 273.15 7.075 73.455 73.288 273.15 5.625 55.408 55.31 269.15 8.163 91.3 91.009 269.15 6.909 73.512 73.336 271.15 5.505 55.44 55.34 269.15 8.163 91.3 91.009 269.15 6.909 73.512 73.346 267.15 5.445 55.509 55.44 261.15 7.947 91.559 91.232 265.15 6.742 73.749 73.543 265.15 5.385 55.546 55.45 264.15 7.89 91.582 91.247 264.15 6.77 73.786 73.757 264.15 5.365 55.546 262.15 7.781 91.774 91.358 262.15 6.629 73.838 73.622 263.15 5.365 55.546 262.15 7.781 91.774 91.358 262.15 6.629 73.838 73.622 263.15 5.356 55.555 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.297 55.634 55.55 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.297 55.634 55.55 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.239 55.705 55.55 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.239 55.705 55.55 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.225 22.506 273.1	242.15			00.052	242.15			72.654	242.15	Isoc		55.040
323.15										7.735		
313.15										7.433 7.131		
303.15 10.033 90.412 90.288 303.15 8.338 72.974 72.889 303.15 6.53 55.161 55.179 55.23 55.161 55.179 55.23 55.161 55.179 55.23 55.161 55.179 55.23 55.161 55.179 55.23 55.23 55.161 55.279 55.23 55.23 55.161 55.279 55.23 55.24 55.23 55.24 55.23 55.24 55.23 55.24 55.23 55.40 55.24 55.25 55.25 55.25 55.25 55.25 55.25 55.25 55.25 55.25												55.076
293.15 9.481 90.548 90.393 293.15 7.917 73.082 72.977 293.15 6.229 55.223 55.16 283.15 8.932 90.788 90.589 9.283.15 7.497 73.248 73.117 283.15 5.929 55.321 55.22 278.15 8.656 90.924 90.697 278.15 7.285 73.33 73.182 278.15 5.76 55.349 55.26 273.15 8.381 91.102 90.843 273.15 7.075 73.455 73.288 273.15 5.625 55.408 55.31 271.15 8.272 91.198 90.923 271.15 6.991 73.512 73.336 271.15 5.565 55.44 55.34 269.15 8.163 91.3 91.009 269.15 6.909 73.599 73.414 269.15 5.565 55.44 55.34 269.15 8.163 91.3 91.009 269.15 6.825 73.665 73.444 269.15 5.505 55.473 55.36 267.15 8.055 91.425 91.117 267.15 6.825 73.665 73.449 267.15 5.445 55.50 55.47 266.15 7.947 91.559 91.232 265.15 6.742 73.749 73.543 265.15 5.385 55.546 55.45 264.15 7.89 91.582 91.247 264.15 6.7 73.786 73.575 264.15 5.356 55.579 55.44 262.15 7.81 91.714 91.358 262.15 6.629 73.838 73.622 263.15 5.326 55.5 55.40 262.15 7.781 91.717 91.409 261.15 6.58 73.993 73.765 261.15 5.326 55.65 55.45 269.15 7.629 92.122 91.731 283.15 5.382 38.854 38.839 343.15 3.329 22.564 22.559 283.15 5.383 38.851 38.834 33.315 3.217 22.553 22.547 333.15 5.177 38.844 38.839 343.15 3.217 22.553 22.547 333.15 5.383 38.851 38.843 33.315 3.217 22.553 22.554 293.15 4.571 38.884 38.891 38.881 33.15 2.992 22.554 22.559 278.15 4.464 38.927 38.879 273.15 2.546 22.559 22.542 22.516 278.15 4.464 38.927 38.879 273.15 2.546 22.516 22.505 22.485 266.15 3.939 38.961 38.991 38.881 22.501 22.500 22.485 266.15 3.939 38.963 38.904 38.899 261.15 2.477 22.5 22.500 22.485 266.15 3.939 38.963 38.904 26.15 2.477 22.5 22.500 22.485 266.15 3.939 38.963 38.904 38.891 26.15 2.477 22.500 22.485 266.15 3.939 38.963 38.904 26.15 2.441 22.501 22.481 266.15 3.998 38.997 38.992 26.15 2.421 22.501 22.488 266.15 3.998 38.997 38.992 26.15 2.421 22.500 22.488 266.15 3.998 38.997 38.992 26.15 2.421 22.501 22.488 266.15 3.998 38.997 38.992 26.15 2.421 22.500 22.488 266.15 3.998 38.997 38.992 26.15 2.421 22.501 22.488 266.15 3.998 38.997 38.991 26.15 2.421 22.501 22.488 266.15 3.998 38.997 38.992 26.15 2.422.500 22.488 266.15 3.998 3						8.338		72.889		6.53		55.11
278.15						7.917		72.977	293.15	6.229	55.223	55.16
273.15 8.381 91.102 90.843 273.15 7.075 73.455 73.288 273.15 5.625 55.408 55.31 271.15 8.272 91.198 90.923 271.15 6.991 73.512 73.336 271.15 5.665 55.44 55.32 269.15 8.163 91.3 91.009 269.15 6.999 73.599 73.414 269.15 5.505 55.473 55.34 267.15 8.055 91.425 91.117 267.15 6.825 73.665 73.469 267.15 5.445 55.509 55.4 266.15 7.947 91.559 91.232 265.15 6.742 73.749 73.543 265.15 5.385 55.546 55.42 264.15 7.89 91.582 91.247 264.15 6.7 73.786 73.575 264.15 5.356 55.579 55.46 263.15 7.835 91.639 91.294 263.15 6.659 73.838 73.622 263.15 5.326 55.6 55.5 5.48 262.15 7.781 91.714 91.358 262.15 6.62 73.922 73.699 262.15 5.207 55.634 55.51 261.15 7.726 91.775 91.409 261.15 6.58 73.993 73.765 261.15 5.267 55.634 55.51 261.15 7.726 91.775 91.409 261.15 6.541 74.082 73.847 260.15 5.207 55.634 55.51 261.15 7.7581 92.312 91.909						7.497				5.929		55.244
271.15 8.272 91.198 90.923 271.15 6.991 73.512 73.336 271.15 5.565 55.44 553.26915 8.163 91.3 91.009 269.15 6.909 73.599 73.414 269.15 5.505 55.473 55.36 267.15 8.055 91.425 91.117 267.15 6.825 73.665 73.469 267.15 5.445 55.509 55.4 265.15 7.947 91.559 91.232 265.15 6.742 73.749 73.543 265.15 5.385 55.546 55.42 264.15 7.89 91.582 91.247 264.15 6.7 73.786 73.785 264.15 5.385 55.546 55.42 263.15 7.835 91.639 91.294 263.15 6.659 73.838 73.652 263.15 5.326 55.6 55.48 262.15 7.781 91.714 91.358 262.15 6.659 73.838 73.622 263.15 5.297 55.634 55.51 260.15 7.767 91.937 91.559 260.15 6.58 73.993 73.765 261.15 5.267 55.636 55.57 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.239 55.705 55.51 259.15 7.629 92.122 91.731 258.15 7.581 92.312 91.909 180chore 7 180chore 8 180chore 7 180chore 8 180chore 8 180chore 7 180chore 8 180chore 8 180chore 7 180chore 8 180chore 9 180chore 9 180chore 9 180chore 8 180chore 9 180chore 8 180chore 9 180chore												
269.15 8.163 91.3 91.009 269.15 6.909 73.599 73.414 269.15 5.505 55.473 55.36 267.15 8.055 91.425 91.117 267.15 6.825 73.665 73.469 267.15 5.445 55.509 55.4 265.15 7.947 91.559 91.232 265.15 6.742 73.749 73.543 265.15 5.385 55.546 55.42 264.15 7.89 91.582 91.247 264.15 6.7 73.786 73.575 264.15 5.385 55.546 55.42 264.15 7.835 91.639 91.294 263.15 6.659 73.838 73.622 263.15 5.326 55.579 55.44 263.15 7.835 91.639 91.294 263.15 6.659 73.838 73.622 263.15 5.326 55.6 55.47 262.15 7.781 91.714 91.358 262.15 6.652 73.922 73.699 262.15 5.297 55.634 55.51 261.15 7.726 91.775 91.409 261.15 6.58 73.993 73.765 261.15 5.267 55.656 55.52 260.15 7.677 91.937 91.559 92.00.15 6.541 74.082 73.847 260.15 5.239 55.705 55.57 259.15 7.629 92.122 91.731 258.15 7.581 92.312 91.909 260.15 5.582 38.854 38.839 343.15 3.290 22.564 22.559 333.15 5.38 38.851 38.834 333.15 3.217 22.553 22.547 323.15 5.177 38.844 38.834 333.15 3.217 22.553 22.547 323.15 5.177 38.844 38.817 303.15 2.881 22.523 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.516 303.15 4.711 38.894 38.89 38.85 38.851 38.864 283.15 2.6658 22.52 22.506 22.485 269.15 4.042 38.931 38.881 271.15 2.566 22.509 22.494 273.15 4.043 38.904 38.864 283.15 2.6658 22.50 22.485 269.15 4.083 38.904 38.864 283.15 2.568 22.50 22.485 269.15 4.083 38.904 38.881 271.15 2.522 22.506 22.485 269.15 4.083 38.904 38.899 267.15 2.477 22.5 22.482 265.15 3.982 38.97 38.919 263.15 2.447 22.501 22.481 22.501 22.481 22.501 3.993 38.963 38.904 262.15 2.447 22.501 22.481 22.501 22.481 22.501 22.481 22.501 3.993 38.963 38.904 262.15 2.441 22.501 22.481 22.501 22.481 22.501 22.481 22.501 22.481 22.501 22.481 22.501 22.481 22.501 22.481 22.501 22.489 22.489 22.477 22.5 22.489 22.499 22.449 22												
267.15										5.505		55.369
265.15							73.665					
263.15 7.835 91.639 91.294 263.15 6.659 73.838 73.622 263.15 5.326 55.6 55.48 262.15 7.781 91.714 91.358 262.15 6.62 73.922 73.699 262.15 5.297 55.634 55.51 261.15 7.726 91.775 91.409 261.15 6.58 73.993 73.765 261.15 5.267 55.656 55.52 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.239 55.705 55.57 259.15 7.629 92.122 91.731 258.15 7.581 92.312 91.909 Isochore 7		7.947		91.232				73.543		5.385		55.433
262.15 7.781 91.714 91.358 262.15 6.62 73.922 73.699 262.15 5.297 55.634 55.51 261.15 7.726 91.775 91.499 261.15 6.58 73.993 73.765 261.15 5.267 55.656 55.52 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.239 55.705 55.53 259.15 7.629 92.122 91.731 258.15 7.581 92.312 91.909										5.356		55.463
261.15 7.726 91.775 91.409 261.15 6.58 73.993 73.765 261.15 5.267 55.656 55.52 260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.239 55.705 55.57 258.15 7.629 92.122 91.731 258.15 7.581 92.312 91.909 Isochore 7							73.838			5.326		55.481
260.15 7.677 91.937 91.559 260.15 6.541 74.082 73.847 260.15 5.239 55.705 55.57 259.15 7.629 92.122 91.731 258.15 7.581 92.312 91.909 Isochore 8 343.15 5.582 38.854 38.839 343.15 3.329 22.564 22.559 333.15 5.38 38.851 38.834 333.15 3.217 22.553 22.547 323.15 5.177 38.844 38.824 323.15 3.105 22.542 22.535 313.15 4.973 38.833 38.81 313.15 2.992 22.524 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.514 293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 283.15 4.666 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522 22.506 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.912 263.15 2.444 22.507 22.488 265.15 3.993 38.963 38.904 262.15 2.444 22.507 22.488 262.15 3.993 38.963 38.901 261.15 2.41 22.504 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.488 260.15 3.896 38.947 38.891 263.15 2.433 22.509 22.489 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.891 263.15 2.433 22.509 22.489 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.897 260.15 2.399 22.506 22.488 260.15 3.896 38.947 38.891 263.15 2.433 22.509 22.489 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.481 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469						6.62	73.922			5.297		55.513
259.15												
Isochore 7 Isochore 8 343.15 5.582 38.854 38.839 343.15 3.329 22.564 22.559 333.15 5.38 38.851 38.834 333.15 3.217 22.553 22.547 323.15 5.177 38.844 38.824 323.15 3.105 22.542 22.535 313.15 4.973 38.833 38.81 313.15 2.992 22.524 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.514 293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 283.15 4.368 38.904 38.864 283.15 2.669 22.502 22.506 278.15 4.266 38.914 38.87 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522.002 22.485 269.15 4.083					200.13	0.541	74.002	73.047	200.13	3.237	33.703	33.317
Isochore 8 343.15 5.582 38.854 38.839 343.15 3.329 22.564 22.559 333.15 5.38 38.851 38.834 333.15 3.217 22.553 22.547 323.15 5.177 38.844 38.824 323.15 3.105 22.542 22.535 313.15 4.973 38.833 38.81 313.15 2.992 22.524 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.514 293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 22.315 4.368 38.904 38.864 283.15 2.658 22.52 22.506 22.494 273.15 4.164 38.927 38.879 273.15 2.501 22.509 22.494 273.15 4.164 38.927 38.881 271.15 2.522 22.506 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.485 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.447 22.50 22.488 263.15 3.961 38.977 38.919 263.15 2.441 22.507 22.488 263.15 3.961 38.961 38.901 261.15 2.441 22.507 22.488 260.15 3.918 38.961 38.901 261.15 2.441 22.507 22.488 260.15 3.918 38.961 38.901 261.15 2.441 22.504 22.485 22.485 22.482 22.501 22.485 22.501 22.485 22.501 22.488 22.477 22.501 22.485 22.501 22.485 22.501 22.485 22.501 22.485 22.501 22.485 22.501 22.485 22.501 22.485 22.501 22.485 22.												
343.15 5.582 38.854 38.839 343.15 3.329 22.564 22.559 333.15 5.38 38.851 38.834 333.15 3.217 22.553 22.547 323.15 5.177 38.844 38.824 323.15 3.105 22.524 22.535 313.15 4.973 38.833 38.81 313.15 2.992 22.524 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.514 293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 283.15 4.368 38.904 38.864 283.15 2.658 22.52 22.506 278.15 4.266 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.881 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.999 267.1		Isoc	chore 7			Isoc	hore 8					
333.15 5.38 38.851 38.834 333.15 3.217 22.553 22.547 323.15 5.177 38.844 38.824 323.15 3.105 22.542 22.535 313.15 4.973 38.833 38.81 313.15 2.992 22.524 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.514 293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 283.15 4.368 38.904 38.864 283.15 2.658 22.52 22.506 278.15 4.266 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.891 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.477 22.5<	343.15			38.839	343.15			22.559				
313.15 4.973 38.833 38.81 313.15 2.992 22.524 22.516 303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.514 293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 283.15 4.368 38.904 38.864 283.15 2.658 22.52 22.506 278.15 4.266 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522 22.506 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.977 38.919 263.15 2.433 22.507 22.488 263.15 3.939 38.963 38.901 261.												
303.15 4.771 38.844 38.817 303.15 2.881 22.523 22.514 293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 283.15 4.368 38.904 38.864 283.15 2.658 22.52 22.506 278.15 4.266 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 263.15 3.981 38.977 38.919 263.15 2.433 22.509 22.488 261.15 3.918 38.961 38.901 261.15												
293.15 4.571 38.882 38.85 293.15 2.769 22.516 22.505 283.15 4.368 38.904 38.864 283.15 2.658 22.52 22.506 278.15 4.266 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15												
283.15 4.368 38.904 38.864 283.15 2.658 22.52 22.506 278.15 4.266 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.485 260.15 3.896 38.947 38.887 260.15												
278.15 4.266 38.914 38.87 278.15 2.601 22.509 22.494 273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.961 38.977 38.919 263.15 2.433 22.509 22.489 262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.399 22.506 22.485 260.15 3.896 38.947 38.887 260.												
273.15 4.164 38.927 38.879 273.15 2.546 22.518 22.501 271.15 4.123 38.931 38.881 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.961 38.977 38.919 263.15 2.433 22.509 22.489 262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.387 22.498 22.477 259.15 2.387 22.498 22.477												
271.15 4.123 38.931 38.881 271.15 2.522 22.502 22.485 269.15 4.083 38.947 38.895 269.15 2.5 22.506 22.488 267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.961 38.977 38.919 263.15 2.433 22.509 22.489 262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 260.15 2.387 22.498 22.477 22.469												
267.15 4.042 38.952 38.899 267.15 2.477 22.5 22.482 265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.961 38.977 38.919 263.15 2.433 22.509 22.489 262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469	271.15	4.123	38.931	38.881	271.15	2.522	22.502	22.485				
265.15 4.002 38.97 38.914 265.15 2.455 22.505 22.486 264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.961 38.977 38.919 263.15 2.433 22.509 22.489 262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469												
264.15 3.982 38.979 38.922 264.15 2.444 22.507 22.488 263.15 3.961 38.977 38.919 263.15 2.433 22.509 22.489 262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469												
263.15 3.961 38.977 38.919 263.15 2.433 22.509 22.489 262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469												
262.15 3.939 38.963 38.904 262.15 2.421 22.501 22.481 261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469												
261.15 3.918 38.961 38.901 261.15 2.41 22.504 22.483 260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469												
260.15 3.896 38.947 38.887 260.15 2.399 22.506 22.485 259.15 2.387 22.498 22.477 258.15 2.375 22.49 22.469												
258.15 2.375 22.49 22.469					260.15							
257.15 2.362 22.472 22.45												
					257.15	2.362	22.472	22.45				

Isochoric Apparatus Results

The experimental pressure versus temperature data collected along isochores for the mixture appear in Table 2. The experimental phase envelope data for the mixture studied

in this work appears in Table 3 and Figure 4. Below $T/T_{\rm cricondentherm}=0.85$, $(\Delta T)/T$ is about constant at 0.1 % or less; however, above 0.85 it grows to about 2 % very near to $T_{\rm cricondentherm}$ (see Figure 5 in ref 35). $\Delta P/P$ is about 0.025

Table 3. Experimental Phase Envelope Data for the Mixture

T/K	P/MPa
230.960	8.718
240.170	9.084
249.100	9.154
255.610	8.715
261.370	7.737
263.730	6.682
264.420	5.363
263.690	3.973
259.890	2.396

% below $P/P_{\text{cricondentherm}} = 0.85$ and grows to about 0.23 % as P approaches $P_{\text{cricondentherm}}$ as shown in Figure 6 of ref 35.

Although the relationship between the compositions of natural gases and their phase envelopes is not well-known, Voulgaris has proposed that higher concentrations of methane, ethane, and CO₂ also increase the solubility of heavy hydrocarbons in the vapor phase. 46 On the contrary, nitrogen decreases the mole fraction of heavy hydrocarbons in the vapor phase. Experimental measurements confirm these general trends and show that the solubility of methane and CO_2 in heavy hydrocarbons is higher (7 and 17 times, respectively) than that for N_2 . ^{47,48} A slight increase of concentration for heavy hydrocarbons moves the dew point curve toward higher values of temperature and pressure.

Figure 4. Measured isochores and experimental phase envelope points for the studied sample (●, experimental phase equilibrium point; ◆, estimated critical point for the mixture calculated by PR EOS 208.68 K and 6.46 MPa; \diamondsuit , \square , \triangle , \times , \blacklozenge , \bigcirc , +, and \blacktriangle are isochoric experiment points).

Phase envelope calculations performed using various EOS's have significant deviations from the data. EOS calculations for the current mixture appear in Figure 5a-c. Lean mixtures whose structures and properties are apparently simple, such as those reported in this work, can have complex molecular-level effects manifested by the sensitivity of mixture phase envelopes to small variations in concentrations. Cubic EOS fits to the experimental isochoric data use twoparameter versions: Soave-Redlich-Kwong (SRK), 49 Twu-Redlich—Kwong (TRK), ⁵⁰ Peng—Robinson (PR), ⁵¹ and Twu—Peng—Robinson (TPR), ⁵² as well as three-parameter versions suggested by: Patel—Teja (PT), ⁵³ Patel—Teja—Valder-rama (PTV), ⁵⁴ Schmidt—Wenzel (SW), ⁵⁵ Guo—Du (GD), ⁵⁶ and Mohsen-Nia et al. (MMM).⁵⁷ Molecular-based EOS's using Wertheim perturbation theory⁵⁸ have gained acceptance in academia as the statistical associating fluid theory (SAFT). Since the original SAFT model, ⁵⁹ several modifications have appeared,60 one of the most widely accepted being that of Huang and Radosz, 61,62 and one of the most recent being perturbed-chain SAFT (PC-SAFT). 63 Both of these equations have shown promise in industrial applications, ^{60,63} and this work also uses them for phase envelope predictions. Another molecular-based EOS suggested by Muller et al. 54,58 is the BACKONE EOS. The application of any EOS to multicomponent mixtures requires mixing rules. All extensions of practical EOS to mixtures currently lack exact statistical mechanical guidance.⁶⁴ This paper uses the one-fluid mixing rule proposed by van der Waals for cubic EOS and the Berthelot-Lorentz combining rules for a molecular-based EOS in phase envelope calculations. 4,63 Binary interaction parameters required for the calculations come from the literature: Danesh, 4,65 Knapp, 65 or the original EOS references. If none are available, the value is zero.

Magnetic Suspension Densitometer Results

Experimental density results from the single-sinker MSD appear in Table 4. Relative density deviations with respect to AGA8-DC92 EOS and GERG EOS are given in Figures 6 and 7, respectively, in the log-linear scale. 66 Density deviations compared to EOS predictions from AGA8-DC92 indicate that at low temperature and at low pressure the deviations from AGA8-DC92 are greater than those assigned to region 1, which is reported in the original AGA report in 1992 as a lowest uncertainty region. It is clear from these

Figure 5. (a) Experimental and predicted phase envelopes of the mixture studied by a biparametric cubic EOS: ●, this work; ♦, SRK; □, TRK; △, PR; ▽, TPR. (b) Experimental and predicted phase envelopes of the mixture studied by a triparametric cubic EOS: ●, this work; ⋄, PT; □, PTV; △, SW; ×, GD; +, MMM. (c) Experimental and predicted phase envelopes of the mixture studied by a molecular based EOS: ●, this work; ⋄, SAFT; □, PC-SAFT; △, BACKONE.

Table 4. Density Measurements from Single-Sinker Densimeter with a Comparison to the GERG-2004 and AGA8 Models

	-	density	calculated density						
		exp.	RefProp 8.0 ^a	$[(\rho_{\rm exp}-\rho_{\rm theo})/\rho_{\rm theo}]\cdot 100$	GERG04	$[(\rho_{\rm exp}-\rho_{\rm theo})/\rho_{\rm theo}]\cdot 100$	AGA8	$[(\rho_{\rm exp}-\rho_{\rm theo})/\rho_{\rm theo}]\cdot 100$	
T/K	P/MPa	kg⋅m ⁻³	kg⋅m ⁻³	%	kg·m ⁻³	%	kg⋅m ⁻³	%	
250.076	12.023	190.110	191.030	0.484	190.995	0.465	192.411	1.210	
250.019	14.014	219.762	220.304	0.247	220.323	0.255	222.032	1.033	
249.999	16.024	242.106	242.203	0.040	242.208	0.042	244.129	0.835	
249.968	17.998	259.073	258.813	-0.100	258.775	-0.115	260.859	0.690	
249.942	20.033	273.069	272.538	-0.195	272.472	-0.219	274.679	0.590	
249.894	21.996	284.284	283.577	-0.248	283.503	-0.274	285.793	0.531	
249.978	24.012	293.915	293.063	-0.290	292.991	-0.314	295.327	0.480	
250.051	26.003	302.193	301.250	-0.312	301.186	-0.333	303.541	0.446	
250.090	27.494	307.793	306.794	-0.324	306.737	-0.343	309.096	0.423	
249.986	14.995	231.398	231.827	0.185	231.848	0.195	233.669	0.982	
250.033	29.999	316.320	315.337	-0.311	315.294	-0.325	317.641	0.417	
250.055	49.993	361.260	360.212	-0.290	360.256	-0.278	362.149	0.246	
249.991	68.972	387.532	386.542	-0.255	386.629	-0.233	388.050	0.134	
249.997	100.218	417.529	416.623	-0.217	416.737	-0.190	417.550	0.005	
249.969	149.856	450.256	449.539	-0.159	449.633	-0.138	449.760	-0.110	
349.963	9.975	70.094	70.255	0.229	70.250	0.222	70.290	0.279	
349.984	11.967	85.109	85.274	0.193	85.266	0.184	85.322	0.250	
350.000	13.958	100.016	100.212	0.196	100.200	0.184	100.275	0.259	
349.992	15.985	114.995	115.147	0.133	115.132	0.119	115.226	0.202	
350.000	17.955	129.035	129.195	0.124	129.178	0.110	129.291	0.198	
350.018	19.959	142.743	142.853	0.077	142.834	0.064	142.965	0.156	
349.982	21.940	155.617	155.678	0.039	155.658	0.026	155.807	0.122	
349.996	23.914	167.667	167.661	-0.004	167.641	-0.016	167.810	0.085	
349.993	25.879	178.859	178.839	-0.011	178.819	-0.023	179.014	0.087	
349.996	27.959	189.911	189.857	-0.028	189.836	-0.039	190.067	0.082	
349.992	29.877	199.491	199.321	-0.085	199.300	-0.096	199.571	0.040	
349.983	9.998	70.244	70.422	0.254	70.418	0.248	70.458	0.304	
350.020	29.988	199.950	199.829	-0.060	199.808	-0.071	200.081	0.066	
350.030	49.989	269.799	269.336	-0.172	269.323	-0.176	269.968	0.063	
349.992	68.941	309.320	308.773	-0.177	308.790	-0.171	309.555	0.076	
350.028	99.948	351.590	350.982	-0.173	351.015	-0.163	351.844	0.072	
350.012	149.913	395.369	394.763	-0.153	394.732	-0.161	395.641	0.069	
450.006	10.054	50.657	50.691	0.068	50.693	0.071	50.711	0.107	
450.034	11.969	60.380	60.318	-0.102	60.319	-0.100	60.344	-0.059	
450.001	13.976	70.404	70.317	-0.124	70.316	-0.125	70.348	-0.079	
450.018	15.961	80.164	80.052	-0.141	80.048	-0.145	80.090	-0.093	
450.016	17.971	89.876	89.734	-0.158	89.727	-0.165	89.779	-0.108	
449.923	19.975	99.375	99.192	-0.184	99.182	-0.195	99.243	-0.133	
449.939	21.977	108.611	108.377	-0.215	108.363	-0.228	108.433	-0.163	
449.919	23.985	117.585	117.333	-0.214	117.315	-0.229	117.393	-0.163	
449.999	25.976	126.186	125.898	-0.228	125.877	-0.245	125.961	-0.179	
449.986	27.979	134.578	134.262	-0.235	134.239	-0.252	134.326	-0.187	
449.938	29.978	142.607	142.328	-0.196	142.303	-0.213	142.393	-0.150	
449.986	9.994	50.300	50.392	0.182	50.394	0.185	50.412	0.221	
450.000	29.976	142.303	142.297	-0.004	142.272	-0.022	142.362	0.042	
449.998	49.981	207.882	207.727	-0.075	207.692	-0.092	207.871	-0.005	
450.000	68.945	250.899	250.675	-0.089	250.634	-0.105	251.015	0.046	
449.989	99.967	299.379	299.074	-0.102	299.025	-0.118	299.581	0.068	
450.000	149.899	350.038	349.717	-0.092	349.589	-0.128	350.212	0.050	

^a Calculations made by using neither AGA8 nor GERG-2004 model mixture properties in RefProp 8.0 (options > Preferences>--); user let RefProp 8.0 to calculate the corresponding mixture properties.

results that predictions from AGA8-DC92 and experimental results show deviations at low pressures and low temperatures for the mixture. A closer inspection of samples used for AGA8-DC92 development shows that, except for one mixture, the mole fraction of C₆₊ components does not exceed 0.12 mol %.67 Among the pure components, AGA8-DC92 development includes mainly methane, ethane, nitrogen, and carbon dioxide. Thus, for any natural gas samples or mixtures with C₆₊ higher than the normal or expanded range, the application of AGA8-DC92 is an extrapolation and the accuracy compared to the normal range is questionable. This work also indicates that AGA8-DC92 fails to predict the density of a simple lean mixture at common operating conditions. It appears that a systematic experimental study is necessary to provide information for developing an EOS for mixtures that include pentanes and C_{6+} fractions.

The total uncertainty of the measurements comes from the uncertainties in pressure and temperature measurements and compositions. The error in density caused by pressure, temperature, and composition is:

$$\Delta \rho = \left\{ \left[\left(\frac{\partial \rho}{\partial P} \right)_{T,x} \Delta P \right]^2 + \left[\left(\frac{\partial \rho}{\partial T} \right)_{P,x} \Delta T \right]^2 + \sum_{i=1}^c \left[\left(\frac{\partial \rho}{\partial x_i} \right)_{P,T,x_{i \neq j}} \Delta x_i \right]^2 \right\}^{1/2}$$
(4)

Uncertainties caused by mixture impurities, temperature, and pressure measurements of the measurements are calculated with a 1σ uncertainty of 0.13 %. According to our investiga-

Figure 6. Relative deviations of density data from single-sinker and twosinker densimeters with respect to the AGA8 equation on a log-linear scale (symbols: △, single-sinker data at 250 K; □, single-sinker data at 350 K; O, single-sinker data at 450 K; ▲, two-single-sinker data at 250 K; ■, twosingle-sinker data at 350 K; ●, two-single-sinker data at 450 K); from left to right: solid line box is AGA uncertainty region 1; long dashed line is AGA uncertainty region 2; fine dashed line is AGA uncertainty region 3.

Figure 7. Relative deviations of density data from single-sinker and twosinker densimeters with respect to the GERG equation in a log-linear scale (symbols: △, single-sinker data at 250 K; □, single-sinker data at 350 K; O, single-sinker data at 450 K); fine dashed line is the GERG uncertainty region, between (265 to 335) K, and at pressures up to 12 MPa it is \pm 0.1 %

tion, we figured that the effect of temperature, pressure, and the other source of impurities and other uncertainties such as effects of dead volumes near the valves and pressure transducer, buoyancy effect on the external weights in weight changing device, and the volume of the titanium sinker do not dominate the total uncertainty of the measurements. Obviously, the quality of the temperature and pressure sensing equipment used and the frequent calibration of these sensors minimized the total uncertainty effect of both temperature and pressure on density measurements. Moreover, sinker volume calibration has been conducted in NIST, Boulder Laboratories, and we minimized the effect of such uncertainty in our measurements as well. The majority of this uncertainty comes from purity of the pure components that are used during preparing the mixture. We measured the relevant pure components such as nitrogen, 68 carbon dioxide, 69 methane, 70 and ethane⁷¹ prior to mixture measurements, and we performed a measurement performance check with pure components against the well-established related pure component reference EOS. For all of the measured pure components, an experimental uncertainty of $\pm 3 \cdot 10^{-4} \text{ kg} \cdot \text{m}^{-3}$ in density is achieved for pressures greater than 7 MPa, and an experimental uncertainty of $\pm 5 \cdot 10^{-4} \text{ kg} \cdot \text{m}^{-3}$ in density is achieved for pressures between (5 and 7) MPa.

The MSD yields data with less than 0.03 % relative uncertainty in density over the pressure range of (10 to 200) MPa for nitrogen and carbon dioxide with respect to density measurements and less than 0.05 % relative uncertainty over the same pressure range for methane and ethane with respect to density measurements.

Predictions of pure components via the reference EOS showed better predictive capabilities than reported values in literature as for nitrogen,⁷² carbon dioxide,⁷³ methane,⁷⁴ and ethane.⁷⁵ The reference EOS for nitrogen⁷² has a relative uncertainty with respect to density of 0.02 % over the pressures up to 30 MPa, and at higher pressures the density predictions via a reference EOS agree with the experimental data reported as the 0.05 % deviation band with respect to density. The reference EOS for carbon dioxide⁷³ has a relative uncertainty of \pm (0.03 to 0.05) % with respect to densities below 30 MPa, and at higher pressures, EOS predictions are in agreement with the experimental data with a maximum relative deviation of 0.1 % on density. For methane, reference EOS⁷⁴ showed a 0.03 % relative accuracy in density predictions up to 12 MPa and 0.07 % relative accuracy in density predictions up to 50 MPa with respect to experimental data. For ethane, a relative uncertainty of (0.02) to 0.03) % in density up to 30 MPa via a reference EOS⁷⁵ was observed.

Conclusions

In this work new and accurate experimental data have been measured for the phase envelopes and the density of a synthetic, light natural gas-like mixture. The effects of mixture composition on phase envelopes reveal that a small fractional increase in the components such as ethane, propane, butane, and pentane produces a remarkable change in the cricondentherm region and near the cricondenbar. N₂ has a smaller effect, but as it increases it moves the cricondentherm toward lower temperatures. Phase envelope predictions by nine cubic and three molecular-based EOS's compared to the data indicate that only SAFT produces reasonable predictions as shown in Figure 6. In particular, SRK, PR, and PT perform poorly for the system studied. Phase envelope predictions from the PR EOS have large deviations with respect to experimental data in both the cricondentherm and the cricondenbar regions. As the long-chain hydrocarbon concentration increases, the PR tends to under-predict the cricondentherm and cricondenbar regions.

The AGA8-DC92 EOS is known to be a very accurate standard for the calculation of the thermodynamic properties of natural gases at typical pipeline conditions, that is, for temperatures of (270 to 330) K at pressures up to 12 MPa. It is believed that the AGA8-DC92 equation shows significant shortcomings regarding, for example, the range of validity, the uncertainty in the description of natural gases at temperatures below 290 K, and mixtures of unusual composition. In our previous work, we showed the performance of AGA8-DC92 EOS for a mixture that includes unusual compositions such as heavy components of nonane, decane, and some other aromatics.⁷⁶ In this work, we compared the density prediction performance of both EOS's for a typical lean natural gas mixture that does not include hexane and heavier components. We have show that GERG EOS shows a little better predicting performance when compared with the AGA8-DC92 EOS within the proposed predicting ranges for both EOS. However, the difference between both EOS's is not dramatic, and for GERG EOS to substitute AGA8-DC92 EOS and become a new industry standard for natural gas density calculations, more experimental work is required, especially at higher pressures and temperatures.

Literature Cited

- International Energy Outlook Report, DOE/EIA-0484; U.S. Department of Energy: Washington, DC, 2007.
- (2) Worldwide Look at Reserves and Production. Oil Gas J. 2005, 103, 24–25.
- (3) Atilhan, M. High Accuracy P-ρ-T Measurements Up To 200 MPa Between 200 and 500 K Using a Compact Single Sinker Magnetic Suspension Densitometer For Pure And Natural Gas Like Mixtures. Ph.D. Dissertation, Texas A&M University, College Station, TX, 2007.
- (4) Danesh, A. PVT and phase behavior of petroleum reservoir fluids; Elsevier: Amsterdam, 1998.
- (5) Nasrifar, K.; Bolland, O. Predicting Natural Gas Dew Points from 15 Equations of State. Energy Fuels 2005, 19, 561–572.
- (6) Raal, J. D. Phase Equilibria: Measurement and Computation; Taylor and Francis: London, 1998.
- (7) Moser, B.; Kistenmacher, H. An analysis of the industrial use of a phase equilibria prediction model based on thermodynamic perturbation theory. *Fluid Phase Equilib.* 1987, 34, 189–201.
- (8) Zhou, J. J.; Patil, P.; Ejaz, S.; Atilhan, M.; Holste, J. C.; Hall, K. R. (p, V-m, T) and phase equilibrium measurements for a natural gaslike mixture using an automated isochoric apparatus. J. Chem. Thermodyn. 2006, 38, 1489–1494.
- (9) Starling, K. E.; Luongo, J. F.; Hubbard, R. A.; Lilly, L. L. Inconsistencies in dew points from different algorithm types possible causes and solutions. *Fluid Phase Equilib.* 2001, 183, 209–216.
- (10) Avila, S.; Blanco, S. T.; Valeresco, I.; Rauzy, E.; Otn, S. Thermodynamic Properties of Synthetic Natural Gases. 1. Dew-Point Curves of Synthetic Natural Gases and Their Mixtures with Water and Methanol. Measurement and Correlation. *Ind. Eng. Chem. Res.* 2002, 41, 3714–3721.
- (11) Jarne, C.; Avila, S.; Blanco, S. T.; Rauzy, E.; Otín, S.; Velasco, I. Thermodynamic Properties of Synthetic Natural Gases. 5. Dew Point Curves of Synthetic Natural Gases and Their Mixtures with Water and with Water and Methanol: Measurement and Correlation. *Ind. Eng. Chem. Res.* 2004, 43, 209–217.
- (12) Fall, J. L.; Luks, K. D. Liquid-liquid-vapor phase equilibria behavior of certain binary carbon dioxide + n-alkylbenzene mixtures. Fluid Phase Equilib. 1986, 28, 87–96.
- (13) Frørup, M. D.; Jepsen, J. r. T.; Fredenslund, A.; Rasmussen, P. High pressure dew and bubble points from microwave measurements. *Fluid Phase Equilib.* 1989, 52, 229–235.
- (14) Daridon, J. L.; Lagrabette, A.; Lagourette, B. Speed of sound, density, and compressibilities of heavy synthetic cuts from ultrasonic measurements under pressure. J. Chem. Thermodyn. 1998, 30, 607–623.
- (15) May, E. F.; Edwards, J. T.; Mann, G. A.; Miller, C. R. Development of an automated phase behaviour measurement system for lean hydrocarbon fluid mixtures, using re-entrant rf/microwave resonant cavities; Elsevier: Amsterdam, Netherlands, 2001; p 406.
- (16) May, E. F.; Miller, R. C.; Shan, Z. Densities and Dew Points of Vapor Mixtures of Methane + Propane and Methane + Propane + Hexane Using a Dual-Sinker Densimeter. J. Chem. Eng. Data 2001, 46, 1160– 1166.
- (17) Lŏpez, E. R.; Daridon, J. L.; Baylaucq, A.; Ferńandez, J. Thermophysical Properties of Two Poly(alkylene glycol) Derivative Lubricants from High Pressure Acoustic Measurements. J. Chem. Eng. Data 2003, 48, 1208–1213.
- (18) Eubank, P. T.; Kreglewski, A.; Hall, K. R.; Holste, J. C.; Mansoorian, H. Density of an equimolar mixture of ethane and methyl chloride. *AlChE J.* 1985, 31, 849–856.

- (19) Duerte-Garza, H. A.; Holste, J. C.; Hall, K. R.; Marsh, K. N.; Gammon, B. E. Isochoric pVT and Phase Equilibrium Measurements for Carbon Dioxide + Nitrogen. J. Chem. Eng. Data 1995, 40, 704–711.
- (20) Atilhan, M. A New Cubic Equation of State; Texas A&M University: College Station, TX, 2004.
- (21) Botros, K. K. Performance of five equations of state for the prediction of VLE and densities of natural gas mixtures in the dense phase region. *Chem. Eng. Commun.* **2002**, *189*, 151–172.
- (22) Gharbi, R.; Elsharkawy, A. M. Predicting the Bubble-Point Pressure and Formation-Volume-Factor of Worldwide Crude Oil Systems. *Pet. Sci. Technol.* 2003, 21, 53–79.
- (23) Robinson, R. L.; Jacoby, R. H. Correlation of compressibility factors for gas containing nonhydrocarbons. *Proc.*, *Annu. Conv. Nat. Gas Process. Assoc.*, *Tech. Pap.* 1965, 44, 18–22.
- (24) Robinson, R. L.; Jacoby, R. H. Better compressibility factors. Hydrocarbon Process. Pet. Refin. 1965, 44, 141–5.
- (25) Yarborough, L.; Hall, K. R. How to solve equation of state for Z-factors. Oil Gas J. 1974, 72, 86.
- (26) Dranchuk, P. M.; Purvis, R. A.; Robinson, D. B. Computer Calculations of Natural Gas Compressibility Factors Using the Standing and Katz Correlation; Institute of Petroleum Technical Series No. IP 74-008; Institute of Petroleum: London, 1974.
- (27) Dranchuk, P. M.; Abou-Kassem, J. H. Calculation of Z Factors for Natural Gas Using Equations of State. J. Can. Pet. Technol. 1975, 14, 34.
- (28) Valderrama, J. O. The State of the Cubic Equations of State. Ind. Eng. Chem. Res. 2003, 42, 1603–1618.
- (29) Twu, C. H.; Sim, W. D.; Tassone, V. CEP Mag. 2002, 58-65.
- (30) Aparicio-Martinez, S.; Hall, K. R. Thermodynamic Properties of Light Synthetic Natural Gas Mixtures Using the RK-PR Cubic Equation of State. *Ind. Eng. Chem. Res.* 2006, 3684–3692.
- (31) Starling, K. E.; Savidge, J. L. Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases; American Gas Association: Arlington, VA, 1992.
- (32) Span, R. Multiparameter Equations of State; Springer: Berlin, 2000.
- (33) Jaeschke, M.; Humphreys, A. E. The GERG Databank of High Accuracy Compressibility Factor Measurements. Groupe European de Recherches Gazieres Technical Monograph 4 (1990), Reprinted from Fortschritt-Berichte VDI, Reihe 6 No. 251; VDI-Verlag: Dusseldorf. 1990.
- (34) McLinden, M. O. *P-ρ-T* behavior of four synthetic natural gas mixtures from (250 to 450) K with pressures up to 37 MPa, unpublished work; NIST: Boulder, CO, 2010.
- (35) Acosta-Perez, P. L.; Cristancho, D. E.; Mantilla, I. D.; Hall, K. R.; Iglesias-Silva, G. A. Method and uncertainties to determine phase boundaries from isochoric data. *Fluid Phase Equilib.* **2009**, *283*, 17–21
- (36) Doiron, T.; Behringer, R. P.; Meyer, H. Equation of state of He³/He⁴ mixture near its liquid-vapor critical point. *J. Low Temp. Phys.* 1976, 24, 345–363.
- (37) Eubank, P. T.; Barrufet, M. A. General conditions of collonearity at the phase boundaries of fluid mixtures. AIChE J. 1987, 33, 182–1887.
- (38) Eubank, P. T.; Joffrion, L. L.; Patel, M. R.; Warowny, W. Experimental densities and virial coefficients for steam from 348 to 498 K with correction for adsorption effects. J. Chem. Thermodyn. 1988, 20, 1009– 1034.
- (39) Stouffer, C. E.; Kellerman, S. J.; Hall, K. R.; Holste, J. C.; Gammon, B. E.; Marsh, K. N. Densities of Carbon Dioxide + Hydrogen Sulfide Mixtures from 220 to 450 K at Pressures up to 25 MPa. J. Chem. Eng. Data 2001, 46, 1309–1318.
- (40) Young, W. C.; Budynas, R. G. Roark's Formulas for Stress and Strain, 7th ed.; McGraw-Hill: New York, 2002.
- (41) Kleinrahm, R.; Wagner, W. Development and Construction of a Density Measurement Apparatus for Measurement of Boiling and Dew Densities of Pure Fluids over the Complete Phase Boundary Curve. *Prog. Rep. VDI J.* **1984**, *3*, 92.
- (42) Beams, J. W.; Clarke, A. M. Magnetic Suspension Balance Method for Determining Densities and Partial Specific Volumes. *Rev. Sci. Instrum.* **1962**, *33*, 750–753.
- (43) Lösch, H. W. Development and Design of New Magnetic Suspension Balances for Non-Contact Measurements of Vertical Forces; Report 3; VDI Verlag: Dusseldorf, 1987.
- (44) Klimeck, J.; Kleinrahm, R.; Wagner, W. An accurate single-sinker densimeter and measurements of the (p, ρ, T) relation of argon and nitrogen in the temperature range from (235 to 520) K at pressures up to 30 MPa. J. Chem. Thermodyn. 1998, 30, 1571–1588.
- (45) Wagner, W.; Kleinrahm, R. Densimeters for very accurate density measurements of fluids over large ranges of temperature, pressure, and density. *Metrologia* 2004, 41, S24–S39.
- (46) Voulgaris, M. E. Prediction and verification of hydrocarbon liquid drop out of lean natural gas. Thesis, Delft University of Technology, Delft, Netherlands, 1995.

- (47) Ashcroft, S.; Isa, M. B. Effect of Dissolved Gases on the Densities of Hydrocarbons. J. Chem. Eng. Data 1997, 1244-1248.
- Schouten, J. A.; Rosmalen, R. J. v.; Michels, J. P. J. Condensation in gas transmission pipelines. Int. J. Hydrogen Energy 2005, 30, 661-
- (49) Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27, 1197-1203.
- (50) Twu, D. B.; Cunningham, J. R.; Coon, J. E. A Cubic Equation of State with a New Alpha Function and a New Mixing Rule. Fluid Phase Equilib. 1991, 69, 33-50.
- (51) Peng, D. Y.; Robinson, D. B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59-64
- (52) Twu, C. H.; Coon, J. E.; Cunningham, J. R. A new generalized alpha function for a cubic equation of state. Part 2. Redlich-Kwong equation. Fluid Phase Equilib. 1995, 105, 61-69.
- (53) Patel, N. C.; Teja, A. S. A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 1982, 37, 463-473.
- (54) Valderrama, J. O. A Generalized Patel-Teja Equation of State for Polar and Nonpolar Fluids and Their Mixtures. J. Chem. Eng. Jpn. 1990, 1990, 87-91.
- (55) Schmidt, G.; Wenzel, H. A. A modified van der Waals type equation of state. Chem. Eng. Sci. 1980, 35, 1503-1512.
- (56) Guo, T. M.; Du, L. A three-parameter cubic equation of state for reservoir fluids. Fluid Phase Equilib. 1989, 52, 47-57.
- Mohsen-Nia, M.; Modarress, H.; Mansoori, G. A. A cubic hard-core equation of state. Fluid Phase Equilibr. 2003, 206, 27-39.
- (58) Wertheim, M. S. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 1984, 35, 19-34.
- (59) Chapman, W. G.; Gubbins, K. E.; Jackson, G.; Radosz, M. New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 1990, 29, 1709-1721.
- (60) Muller, E. A.; Gubbins, K. E. Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches. Ind. Eng. Chem. Res. 2001, 40, 2193-2211.
- (61) Huang, S. H.; Radosz, M. Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 1990, 29, 2284-2294.
- (62) Huang, S. H.; Radosz, M. Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. Ind. Eng. Chem. Res. 1991, 30, 1994-2005.
- Tumakaka, F.; Gross, J.; Sadowski, G. Thermodynamic modeling of complex systems using PC-SAFT. Fluid Phase Equilib. 2005, 228, 89-98.
- (64) Orbey, H.; Sandler, S. L. Modeling Vapor-Liquid Equilibria; Cambridge University Press: Cambridge, 1998.
- (65) Knapp, H. Vapor-liquid equilibria for mixtures of low-boiling substances; Scholium Intl: New York, 1982.

- (66) Holste, J. C.; Hall, K. R.; Iglesias-Silva, G. A. Log-linear plots for data representation. AIChE J. 1996, 42, 296-297.
- Savidge, J. L.; Beyerlein, S. W.; Lemmon, E. W. Technical Reference Document for the 2nd ed. of AGA Report No. 8, topical report No. GRI-93/0181; Gas Research Institute: Des Plaines, IL, 1995
- (68) Mantilla, I. D.; Cristancho, D. E.; Ejaz, S.; Hall, K. R.; Atilhan, M.; Iglesias-Silva, G. A. New PoT Data for Nitrogen at Temperatures from (265 to 400) K at Pressures up to 150 MPa. J. Chem. Eng. Data 2010, 55, 4227-4230.
- (69) Mantilla, I. D.; Cristancho, D. E.; Ejaz, S.; Hall, K. R.; Atilhan, M.; Iglesias-Silva, G. A. P-ρ-T Data for Carbon Dioxide from (310 to 450) K up to 160 MPa. J. Chem. Eng. Data 2010, 55, 4611-4613.
- (70) Cristancho, D. E.; Mantilla, I. D.; Ejaz, S.; Hall, K. R.; Atilhan, M.; Iglesia-Silva, G. A. Accurate $P \rho T$ Data for Methane from (300 to 450) K up to 180 MPa. J. Chem. Eng. Data 2009, 55, 826-829.
- (71) Cristancho, D. E.; Mantilla, I. D.; Ejaz, S.; Hall, K. R.; Atilhan, M.; Iglesias-Silva, G. A. Accurate $P \rho T$ Data for Ethane from (298 to 450) K up to 200 MPa. J. Chem. Eng. Data 2010, 55, 2746-2749.
- (72) Span, R.; Lemmon, E. W.; Jacobsen, R. T.; Wagner, W.; Yokozeki, A. A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. J. Phys. Chem. Ref. Data 2000, 29, 1361-1433.
- (73) Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509-1596
- (74) Setzmann, U.; Wagner, W. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa. J. Phys. Chem. Ref. Data 1991, 20, 1061-1151.
- (75) Bücker, D.; Wagner, W. A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data 2006, 35, 205-266.
- (76) Atilhan, M.; Ejaz, S.; Zhou, J.; Cristancho, D.; Mantilla, I.; Holste, J.; Hall, K. R. Characterization of Deepwater Natural Gas Samples. Part 1: 78% Methane Mixture with Heavy Components. J. Chem. Eng. Data 2010, 55, 4907-4911.

Received for review June 22, 2010. Accepted December 3, 2010. The Texas Engineering Experiment Station and Texas A&M University have provided financial support for which the authors are grateful. S.A. additionally acknowledges the USA-Spain Fulbright Commission and Ministerio de Educación Ciencia (Spain).

JE100676J