Instituto Superior de Engenharia de Lisboa Licenciatura em Engenharia Informática e Multimédia

Processamento Digital de Sinais

Exame, 2^a Chamada – 19 de Julho de 2016

Duração: 2 horas

1. Considere o sinal contínuo e periódico x(t), com uma frequência fundamental de $f_0=5$ Hz, cujos coeficientes da série de Fourier são dados por:

$$X_k = \begin{cases} 1 & , & k = 0 \\ +1/j & , & k = -1 \\ -1/j & , & k = 1 \\ 1/2 & , & k = \pm 2 \end{cases}$$

- (a) $\{2.0 \text{ v}\}$ Determine a expressão analítica de x(t), agregando ao máximo todos os termos em funções sinusoidais.
- (b) $\{1.5 \text{ v}\}$ Utilizando o teorema de Parseval, calcule a potência de x(t).
- (c) $\{1.0 \text{ v}\}\ \text{Qual}$ é a expressão analítica do sinal discreto, x[n], que se obtém quando x(t) é amostrado com $F_s=20 \text{Hz}$. Qual o período fundamental de x[n]?
- (d) Considere o sinal z(t) = x(t) y(t) onde $y(t) = 2 \cos(2\pi 15t)$
 - i. $\{1.0 \text{ v}\}\ z(t)$ é periódico? Caso seja, qual o seu período fundamental?
 - ii. $\{1.5 \text{ v}\}$ Represente graficamente o espectro de amplitude, |Z(f)| e de fase $\angle Z(f)$ do sinal z(t).
 - iii. $\{1.0 \text{ v}\}$ Suponha que pretende amostrar z(t). Qual é a menor frequência de amostragem que é necessária para digitalizar o sinal z(t)?
- 2. Considere dois sistemas com as seguintes funções de transferência:

$$H_1(z) = 1 - 4z^{-2}$$

 $H_2(z) = \frac{1}{(1 - 0.8z^{-1})(1 + 2z^{-1})}$

- (a) {1.5 v} Caracterize os dois sistemas em termos do tipo de filtro (FIR/IIR) e em termos de estabilidade. Faça o mesmo para o sistema obtido com estes dois sistemas colocados em paralelo.
- (b) Considere que $H_{\rm S}(z)$ é o sistema resultante da associação em série dos dois sistemas $H_1(z)$ e $H_2(z)$.
 - i. $\{1.5 \text{ v}\}$ Determine a função de transferência $H_{\rm S}(z)$ e caracterize o sistema em termos do tipo de filtro (FIR/IIR) e se o filtro é estável.
 - ii. $\{1.5 \text{ v}\}$ Determine a equação às diferenças de $H_{\rm S}(z)$, e desenhe o diagrama de blocos.
 - iii. $\{1.5 \text{ v}\}$ Determine a resposta impulsional de $H_{\rm S}(z)$.

3. Considere o sistema discreto S_1 , cuja resposta em frequência está representada na figura (assuma fase nula) e o sistema S_2 com resposta em frequência dada por $\begin{bmatrix} 3\pi \end{bmatrix}$ 1 $\begin{bmatrix} 9\pi \end{bmatrix}$

- (a) $\{1.0 \text{ v}\}$ Esboce a resposta em frequência $H_2(\Omega)$.
- (b) $\{1.5 \text{ v}\}$ Qual o sinal à saída de S_2 quando à sua entrada está x[n]?

- 4. Considere o sinal contínuo e periódico, x(t) de período $T_0 = 6$ segundos, do qual se representa um troço na figura.
 - (a) $\{1.5 \text{ v}\}$ Determine a série de Fourier de x(t).
 - (b) $\{2.0 \text{ v}\}\ \text{Seja } y(t) = -x(t-2) + 2.$ Represente graficamente y(t). Calcule Y_k .

