Krmer-Grestモデル(N=40)と Rouseモデルの比較

Kremer-Grest model (NVT)

$$T=1.0$$
 $\Gamma=0.5$

LJ cut-off
$$r_c = 2^{1/6}$$

$$N = 40$$
 (< $N_e \approx 70$ 程度??)

250 本

$$\rho = 0.85$$
 (モノマー密度)

分子鎖密度

$$v \equiv \frac{\rho}{N}$$

mean-square end-to-end distance

$$\langle \mathbf{R}^2 \rangle \approx 63.3$$

$$\langle \mathbf{R}^2 \rangle \approx 63.3 \qquad \sqrt{\langle \mathbf{R}^2 \rangle} \approx 7.96$$

線形粘弾性

動的粘弹性 $G'(\omega) = i\omega \int_{0}^{\infty} G(t)e^{-i\omega t}dt$

法線応力差係数の予測

Steady state

$$\Psi_1(\dot{\gamma}) \equiv \frac{N_1(\dot{\gamma})}{\dot{\gamma}^2}$$

 $N_{_{
m I}}(\dot{\gamma})$ = 定常状態での第1法線応力差

 $\dot{\gamma} \rightarrow 0$ での値は線形粘弾性から厳密に予測可能

$$\Psi_1(\dot{\gamma}=0)=2A_G$$

$$A_G \equiv \lim_{\omega \to 0} \frac{G'(\omega)}{\omega^2} = \int_0^\infty tG(t) dt$$

Start-up flow

$$\Psi_1^+(t,\dot{\gamma}) \equiv \frac{N_1(t,\dot{\gamma})}{\dot{\gamma}^2}$$
 $N_1(t,\dot{\gamma}) =$ ずり速度 $\dot{\gamma}$ で流動開始後、時間 t 経過時の N_1

$$\Psi_1^+(t,0) = 2\int_0^t t' G(t') dt'$$
 Rouseモデルなどで成り立つ (Rouseモデルでは $N_2 = 0$)

