

IN THE CLAIMS

Please amend the claims as indicated below. A redlined version of the amended paragraphs is attached to this response as Appendix A.

Please replace the claims identified below with the following amended claims:

Please cancel Claim 1.

Please add the following new claims:

2. An apparatus for providing an auxiliary pilot comprising:

2 a first source configured to provide pilot data;
a second source configured to provide a pilot Walsh sequence, the pilot Walsh
4 sequence comprising a concatenated sequence of a basic Walsh sequence and a
complementary sequence of the basic Walsh sequence; and
6 a processing element configured to cover the pilot data with the pilot Walsh
sequence and communicatively coupled to said first source and said second source.

3. The apparatus as claimed in claim 2 wherein the basic Walsh sequence

2 comprises an all zeros sequence.

4. The apparatus as claimed in claim 2 wherein the basic Walsh sequence

2 is 64 chips in length.

5. The apparatus as claimed in claim 2 wherein the pilot Walsh sequence is

2 128 chips in length.

6. The apparatus as claimed in claim 2 wherein the pilot Walsh sequence is
2 256 chips in length.

7. The apparatus as claimed in claim 2 wherein the pilot Walsh sequence is
2 64 times K chips in length, where K is a number of pilot Walsh sequences available.

8. The apparatus as claimed in claim 2 wherein the pilot Walsh sequence
2 comprises a K-bit sequence of a Walsh code mapping and wherein each bit of the K-
bit sequence is substituted with a basic Walsh sequence or a complementary
4 sequence depending on a value of the bit.

9. The apparatus as claimed in claim 8 wherein the complementary
2 sequence is derived by inverting each bit within the basic Walsh sequence.

10. The apparatus as claimed in claim 8 wherein the complementary
2 sequence is a second basic Walsh sequence.

11. The apparatus as claimed in claim 2 further comprising a gain element
2 configured to adjust gain of the auxiliary pilot based on gain of a particularized
transmission wherein the auxiliary pilot is transmitted and communicatively coupled to
4 said processing element.

12. The apparatus as claimed in claim 2 wherein a length of the pilot Walsh
2 sequence is minimal based on a number of required pilot channels.

13. The apparatus as claimed in claim 2 wherein one auxiliary pilot is
2 provided for each particularized transmission.

14. The apparatus as claimed in claim 2 wherein the pilot data for all
2 auxiliary pilots is identical.

15. The apparatus as claimed in claim 2 wherein the pilot data for all
2 auxiliary pilots comprises an all ones sequence.

16. The apparatus as claimed in claim 2 wherein the pilot data for all
2 auxiliary pilots comprises an all zeros sequence.

17. An apparatus for receiving an auxiliary pilot, comprising:
2 a processing element configured to accept a pilot signal to provide pilot data;
4 a first accumulator configured to accumulate the pilot data over a length of a
basic Walsh sequence to provide I and Q pilot values and communicatively coupled to
said processing element; and
6 a second accumulator configured to accumulate the I and Q pilot values for a
current interval and previous intervals in accordance with a pilot hypothesis and to
8 provide a recovered pilot, and communicatively coupled to said first accumulator.

18. The apparatus as claimed in claim 17 wherein the length of the basic
2 Walsh sequence is 64 chips.

19. The apparatus as claimed in claim 17 further comprising a comparator
2 configured to compare the recovered pilot against a set of predetermined thresholds
and communicatively coupled to said second accumulator.

20. The apparatus as claimed in claim 17 further comprising:
2 a comparator configured to compare the recovered pilot against a set of
thresholds and communicatively coupled to said second accumulator; and
4 a storage element configured to add to a candidate set stored therein a
particularized transmission corresponding to the recovered pilot if the recovered pilot
6 exceeds an add threshold and communicatively coupled with said second
accumulator.

21. The apparatus as claimed in claim 20 wherein said storage element is
2 further configured to remove from the candidate set stored therein a particularized
transmission corresponding to the recovered pilot if the recovered pilot is below a
4 drop threshold.

22. The apparatus as claimed in claim 20 wherein said storage element is
2 further configured to add to an active set stored therein a particularized transmission
corresponding to the recovered pilot if the recovered pilot exceeds an add threshold.

A
Cont

23. The apparatus as claimed in claim 20 wherein said storage element is
2 further configured to remove from the active set stored therein a particularized
transmission corresponding to the recovered pilot if the recovered pilot is below a
4 drop threshold.

24. An apparatus for providing particularized transmissions, comprising:
2 a first processing element configured to cover a traffic channel of each of the
particularized transmissions with a Walsh sequence, wherein each traffic channel is
4 covered with a different Walsh sequence; and
a second processing element configured to cover pilot data for each of the
6 particularized transmissions with pilot Walsh sequences, wherein each pilot is covered
with a different pilot Walsh sequence, the second processing element
8 communicatively coupled to the first processing element.

25. The apparatus as claimed in claim 24 wherein the pilot Walsh
2 sequences are derived from a basic Walsh sequence.

26. The apparatus as claimed in claim 25 wherein the basic Walsh
2 sequence is Walsh sequence zero.

27. An apparatus for providing improved performance in a particularized
2 transmission, comprising:
4 a first processing element configured to cover traffic channel of the
6 particularized transmission with a Walsh sequence orthogonal to Walsh sequences of
8 surrounding transmissions; and
a second processing element configured to cover pilot data of the particularized
transmission with a pilot Walsh sequence orthogonal to pilot Walsh sequences
covering pilot data of the surrounding transmissions and communicatively coupled to
the first processing element.

Alt Cont.

28. The apparatus as claimed in claim 27 wherein the pilot Walsh sequence
2 is derived from a basic Walsh sequence.

29. The apparatus as claimed in claim 28 wherein the basic Walsh
2 sequence is Walsh sequence zero.
