King Saud University Software Engineering Department SWE485 Selected Topics in Software Engineering

Advertisement - Click on Ad Project Phase #1

Section No. 60121 - Group No. 6

#	Name	ID
1	Noura AlKhorayef	441201063
2	Shoug AlShaybani	441200872
3	Fay AlShalwi	441200559
4	Shahad AlShaikh	441201213

Table of Contents

1.	INTRODUCTION	3
2.	MACHINE LEARNING TASKS	3
_		_
3.	DATA SOURCE	3
4.	DATA EXPLORATION	4
5.	DATA VISUALIZING	7
	DATA PREPROCESSING	
0.	DATA PREPROCESSING	1 1
7.	REFERENCES	13

1. INTRODUCTION

Our dataset indicates whether or not a particular internet user clicked on an advertisement. We chose this dataset because we are interested in knowing what kinds of advertisements are more likely to get clicked on and by which ages and in which countries. As this also will help the advertising companies know how to distribute their ads to acquire the highest benefits possible. Each observation includes the following attributes:

'Daily Time Spent on Site': consumer time on site in minutes

'Age': customer age in years

'Area Income': Avg. Income of geographical area of consumer

'Daily Internet Usage': Avg. minutes a day consumer is on the internet

'Ad Topic Line': Headline of the advertisement

'City': City of consumer

'Male': Whether or not consumer was male

'Country': Country of consumer

'Timestamp': Time at which consumer clicked on Ad or closed window

'Clicked on Ad': 0 or 1 indicated clicking on Ad

2. MACHINE LEARNING TASKS

Our problem will be classification on A fake advertising data set indicating whether a user clicked on ad or not. So, data will be classified into 2 categories. 0=no, 1=yes

3. DATA SOURCE

The dataset is called the Advertisement - Click on Ad dataset which we got from kaggle.com website. Kaggle is an online community platform for data scientists and machine learning enthusiasts. Kaggle allows users to collaborate with other users, find and publish datasets, use GPU integrated notebooks, and compete with other data scientists to solve data science challenges. Something great about Kaggle is you can get any dataset you like by simply downloading it.

URL: https://www.kaggle.com/datasets/gabrielsantello/advertisement-click-on-ad?resource=download

4. DATA EXPLORATION

It consists of exactly 1000 observations that each consist of 10 variables (Daily Time Spent on Site, age, Area income, Daily Internet Usage, Ad Topic Line, City, Male, Country, Timestamp, Clicked on Ad)

```
In [4]: #number of observations
len(df)
Out[4]: 1000
In [5]: #number of variables
df.shape[1]
Out[5]: 10
```

Figure 1: number of observations and variables

here is the table that shows each variable and its type:

Variable type				
float64				
int64				
float64				
float64				
object				
object				
int64				
object				
object				
int64				

Table 1

we got the variable names and types by computing this line of code:

7]: df.dtypes		
7]: Daily Time Spent on Site	float64	
Age	int64	
Area Income	float64	
Daily Internet Usage	float64	
Ad Topic Line	object	
City	object	
Male	int64	
Country	object	
Timestamp	object	
Clicked on Ad	int64	
dtype: object		

Figure 2: variables type

The first 10 records of our dataset:

r 4 1 •												
ut[4]:		Daily Time Spent or Site		Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
	0	68.95	5	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0
	1	80.23	3	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0
	2	69.47	7	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	0
	3	74.15	5	29	54806.18	245.89	Triple-buffered reciprocal time- frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0
	4	68.37	7	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0
	5	59.99	9	23	59761.56	226.74	Sharable client-driven software	Jamieberg	1	Norway	2016-05-19 14:30:17	0
	6	88.9	1	33	53852.85	208.36	Enhanced dedicated support	Brandonstad	0	Myanmar	2016-01-28 20:59:32	0
	7	66.00	0	48	24593.33	131.76	Reactive local challenge	Port Jefferybury	1	Australia	2016-03-07 01:40:15	1
	8	74.50	3	30	68862.00	221.51	Configurable coherent function	West Colin	1	Grenada	2016-04-18 09:33:42	0
	9	69.88	В	20	55642.32	183.82	Mandatory homogeneous architecture	Ramirezton	1	Ghana	2016-07-11 01:42:51	0

Figure 3: first 10 record in the dataset

Some statistical summaries about the dataset:

Figure 4: statistical summaries

Our dataset doesn't contain any missing values as shown below:

```
In [6]: df.isnull().sum()
Out[6]: Daily Time Spent on Site
                                     0
        Age
                                      0
        Area Income
                                      0
        Daily Internet Usage
                                      0
        Ad Topic Line
                                      0
        City
                                      0
        Male
                                      0
        Country
                                      0
        Timestamp
                                     0
        Clicked on Ad
        dtype: int64
```

Figure 5: number of missing values

The variance of columns that contains numeric values:

Figure 6: calculation of the variance

5. DATA VISUALIZING

Figure 7: distribution of variable "Daily Time Spent on Site"

```
In [9]: df.hist(column='Age')
Out[9]: array([[<AxesSubplot:title={'center':'Age'}>]], dtype=object)
```


Figure 8: distribution of variable "Age"

```
In [10]: df.hist(column='Area Income')
Out[10]: array([[<AxesSubplot:title={'center':'Area Income'}>]], dtype=object)
```


Figure 9: distribution of variable "Area Income"

Figure 10: distribution of variable "Daily Internet Usage"

```
In [12]: df.hist(column='Male')
```

Out[12]: array([[<AxesSubplot:title={'center':'Male'}>]], dtype=object)

Figure 11: distribution of variable "Male"

In [13]: df.hist(column='Clicked on Ad')

Out[13]: array([[<AxesSubplot:title={'center':'Clicked on Ad'}>]], dtype=object)

Figure 12: distribution of variable "Clicked on Ad"

Figure 13: joint plot

-200

ò

6. DATA PREPROCESSING

Data preprocessing is important as it prepares the data and enhances the possible results.

```
Pre-Processing: DATA CLEANING Handling of Missing Data

# Any missing values?

df.isnull().values.any()

# Total missing values for each feature

df.isnull().sum()

# max occurence

frqMale = df['Male'].value_counts()

# Replace missing values with the value which has max occurence

df['Male'].fillna(frqMale, inplace=True)

df['Country'].fillna("Not given", inplace=True)

df['City'].fillna("Not given", inplace=True)

# second option is to drop these values --- lacking certain attributes of interest

df['Clicked on Ad'].dropna()

# Fill average values in place for nan, fill with mean

df['Daily Internet Usage'].fillna(df['Daily Internet Usage'].mean(), inplace=True)

df['Age'].fillna(df['Age'].mean(), inplace=True)

df['Area Income'].fillna(df['Area Income'].mean(), inplace=True)
```

Figure 14: Handling of missing data

```
# change the value to the correct one df['Male'].replace(['no','yes'],[0,1],inplace=True)

v 0.0s
```

Figure 15: Data transformation for gender (Male) column

Data discretization is a part of data reduction, replacing numerical attributes with nominal ones. We choose internet usage column and put them into 3 buckets with labels (Below Average, Average, Above Average)

Figure 16: Data Discretization for Daily internet usage column

Export Pandas DataFrame after pre-processing to a CSV File named "pre_advertisment"

Figure 17: Save the dataframe

7. REFERENCES

- 1. How to plot a histogram in Python. Available at: https://www.nbshare.io/notebook/204214467/How-to-Plot-a-Histogram-in-Python/
- 2. Joint plot in python javatpoint (no date) www.javatpoint.com. Available at: https://www.javatpoint.com/joint-plot-in-python