Lecture 15

niceguy

November 16, 2022

1 Euler's Method

If we partition $[t_0, T]$ such that the distance between adjacent points are constant, we can let that distance be $h = t_{n+1} - t_n$, and approximations are given by

$$y_{n+1} = y_n + h f(t_n, y_n)$$

1.1 Euler's Method as an Integral Approximation

$$y'(t) = f(y,t)$$

$$\int_{t_n}^{t_{n+1}} y'(t)dt = \int_{t_n}^{t_{n+1}} f(y,t)dt$$

$$y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(y,t)dt$$

$$y(t_{n+1}) \approx y(t_n) + hf(y_n, t_n)$$

where we use the approximation

$$f(y,t) \approx f(y_n,t_n)$$

in the range $[t_n, t_{n+1}]$. More formally, we define

$$y_{n+1} = y_n + hf(y_n, t_n)$$

and use the approximation

$$y(t_{n+1}) \approx y_{n+1}$$

1.2 Euler's Method as a Taylor Approximation

Assuing y has a Taylor series, we can approximate y using its first order Taylor polynomial

$$y(t) \approx y(t_n) + y'(t_n)(t - t_n)$$

which is equivelant to Euler's Method.

1.3 Improving Euler's method

If we treat it as a forward difference quotient, this can be improved by taking a better approximation of the derivative, which gives us the **Runge-Kutta** method.

If we treat it as an integral approximation, we can use better integral approximations, which gives us the **Improved Euler Method**.

If we treat it as a Taylor Polynomial, we can improve it by taking more terms, which gives us the **Power Series Solution**.

2 Sources of Errors

2.1 Global Truncation Error

$$E_n = y(t_n) - y_n$$

The error stacks, as we use y_n and not $y(t_n)$ for our next approximation.

2.2 Local Truncation Error

When calculating e_{n+1} , we use $y(t_n)$ instead of y_n to calculate the error. This is the error due to linear approximation.

2.3 Error Bounding

Taylor's Remainder Theorem is

$$y(t) = y(t_n) + y'(t_n)(t - t_n) + \frac{y''(\xi)}{2}(t - t_n)^2$$

where $t \in [t_n, t_n + h]$. To calculate for e_{n+1} , we substitute $t = t_{n+1}$ to get

$$y(t_{n+1}) = y(t_n) + y'(t_n)(t_{n+1} - t_n) + \frac{y''(\xi)}{2}(t_{n+1} - t_n)^2$$

$$y(t_{n+1}) = y_{t_{n+1}} + \frac{y''(\xi)}{2}h^2$$

$$|e_{n+1}| = \frac{y''(\xi)}{2}h^2$$

$$= \frac{M}{2}h^2$$

where M is chosen such that

$$|y''(t)| \le M \forall t \in [t_n, t_{n+1}]$$

$$y' = f(t, y)$$

$$y'' = f_t(t, y(t)) + f_y(t, y(t)) \times y'(t)$$

$$= f_t(t, y) + f_y(t, y) f(t, y)$$

What remains is to bound this expression.

Our assumptions are that y is twice continuously differentiable, and f_t , f_y , f are continuous functions.

Even if we don't have access to the solution, a bound may still be obtained.

Example 2.1.

$$y'(t) = \arctan(y) + e^{-t}, y(0) = 1$$

for $t \in [0, 4]$. Then

$$f = \arctan(y) + e^{-t}$$
$$f_t = -e^{-t}$$
$$f_y = \frac{1}{1 + u^2}$$

As the arctan function is bounded, and e^{-t} is obviously bounded in the region, f is bounded, f_t is bounded, and f_y is bounded (it is always smaller than or equal to 1). Therefore \exists an upper bound M.