Warm Up:

\

Graph each of the following, finding all relevant information, including eccentricity for ellipses.

1.
$$x = \frac{1}{8}(y-2)^2 - 4$$
 Parabola C

2.
$$\frac{(x-2)^2}{6\pi^3} + \frac{(y+1)^2}{2\pi^3} = 1$$
 Ellipse

Standard 1: Create a Mathematical Representation

- To sketch the graphs of parabolas, circles, ellipses, hyperbolas, and semi-conics.
- To locate foci, directrix, asymptotes, and/or find the eccentricity of conics.
- To write equations of conic sections or semi-sections of conics.

GEOMETRIC DEFINITION OF A HYPERBOLA

A **hyperbola** is the set of all points in the plane, the difference of whose distances from two fixed points F_1 and F_2 is a constant. (See Figure 1.) These two fixed points are the **foci** of the hyperbola.

ded = constant #
for all points on
the hyperbola

Remember: For an Ellipse, d,+d2=constant

Graphing form of a hyperbola:

$$x^{e}y = \frac{b}{a}x$$

$$\frac{(y-k)^{2}}{a^{2}} - \frac{(x-h)^{2}}{b^{2}} = 1$$

a = distance from center to vertex

c = distance from center

The Hyperbola

$$a^2 + b^2 = c^2$$

Transverse Axis: Horizontal	Transverse Axis: Vertical
x ² is positive, $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	opens up and $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Center: (h, k)	Center: (h, k)
Foci: $(h+c,k)$, $(h-c,k)$	Foci: $(h, k+c)$, $(h, k-c)$
Vertices: $(h+a,k)$, $(h-a,k)$	Vertices: $(h, k+a)$, $(h, k-a)$
Asymptotes: $y = \pm \frac{b}{a}(x-h) + k$	Asymptotes: $y = \pm \frac{a}{b}(x - h) + k$
eccentricity: $e = \frac{c}{a}$	explain eccentricity: $e = \frac{c}{a}$

Ex. 1: Graph
$$\frac{(x-4)^2}{25} - \frac{(y+2)^2}{9} = 1$$

Vertices:
$$(-1, -2)(9, -2)$$

Foci:
$$(4 \pm \sqrt{34}, -2)$$
 $C^2 = a^2 + b^2$ $C^2 = 25 + 9$

Asymptotes:
$$y = \frac{+3}{5}(x-4)-2^{C} = \sqrt{34}$$

Eccentricity:
$$c = \frac{c}{a} = \frac{\sqrt{34}}{5}$$

Ex. 2: Graph.
$$9y^2 - x^2 + 2x + 54y + 71 = 0$$

$$9y^2 + 54y - x^2 + 2x = -71$$

$$9(y^2 + 6y + 9) - (x^2 - 2x + 1) = -71 + 81 - 1$$

$$9(y+3)^2 - (x-1)^2 = 9$$

$$(y+3)^2 - \frac{(x-1)^2}{9} = 1$$

Center: $(1-3)$

$$C^2 = a^2 + b^2$$

Asymptotes:
$$y = \pm \frac{1}{3}(X-1)-3^{C} = \sqrt{10}$$

Eccentricity:
$$C = \frac{C}{a} = \sqrt{10}$$

Ex. 3: Write the equation of the hyperbola with Foci $(0,\pm 3)$ and asymptotes $y = \pm \frac{1}{2}x$.

$$\frac{(y-0)^{2} - (x-0)^{2}}{6^{2}} = \frac{5y^{2}}{9} - \frac{5x^{2}}{36} = 1$$

$$C^{2} = a^{2} + b^{2}$$

$$9 = a^{2} + (2a)^{2}$$

$$9 = a^{2} + 4a^{2}$$

$$9 = 5a^{2}$$

$$9 = a^{2}$$

$$9 = a^{$$

Day 2 Exit Slip

Quick Formative S1. S3

- 1. Given: $36x^2 4y^2 36x 8y = 31$
 - A. What type of conic? How do you know? Hyper bola because signs different on x and y.

 B. Now, graph the conic section. Find and label all appropriate key features.

- 2. Given: $x^2 + 4y^2 = 4x + 12$
 - A. What type of conic? How do you know?
 - B. Now, graph the conic section. Find and label all appropriate key features.

$$x^{2}-4x + 4y^{2} = 12 + 4$$

$$(x-2)^{2} + 4y^{2} = 1b$$

$$16$$

$$(x-2)^{2} + 4y^{2} = 1b$$

$$1b$$

$$(x-2)^{2} + 4y^{2} = 1$$

$$b=2$$

Vertices: (-2,0)(6,0)(2,2)(2,-2)

foci:
$$(2 \pm 2\sqrt{3}, 0)$$
 $c^2 = \alpha^2 - b^2$

$$C^{2} = 12$$

 $C = 2\sqrt{3}$

