Let $E(x): P \to C$ be some black-box encryption function that is homomorphic on a plaintext ring $(P,+,\cdot)$ to a cyphertext ring $(C,+,\cdot)$. Define some operator λ bijective on some K, a subset of C, to the same subset. Then $\lambda \circ E^{-1}$ is bijective on $E^{-1}(K) \to E^{-1}(K)$ because E(x) is a homomorphism. So if you can find some $\lambda_2: Q \to Q$ for some $Q \subseteq P$ that maps a plaintext cookie into an authenticated plaintext cookie, then $\lambda_2 \circ E$ maps a cyphertext cookie in K to an authenticated cyphertext cookie.

So if we let $\lambda_{k,l}: C^{95} \to C^{95}$ (95-bit ciphertext, because the encrypted cookie is 95 bits) be an operator flipping k bits starting at the l-th position, we can iterate over every possible k,l to find a $\lambda_{k,l}$ that works. An arbitrary bitflip is trivially bijective on C^{95} . To test a $\lambda_{k,m}$, we can send a request to the site with a cookie set to $\lambda_{k,m}$ (original cookie). If we get a 500 Internal Server Error, then the plaintext cookie is invalid. Eventually, we find $\lambda_{1,79}$ is the appropriate linear operator, and requesting the server with $\lambda_{1,79}$ (original cookie), we get the flag.