Image Classification pipeline

Image Classification: A core task in Computer Vision

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

→ cat

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Challenges: Viewpoint variation

Challenges: Illumination

Challenges: Deformation

Challenges: Occlusion

Challenges: Background Clutter

Challenges: Intraclass variation

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

First classifier: Nearest Neighbor

```
def train(images, labels):
                                            Memorize all
  # Machine learning!
                                            data and labels
  return model
def predict(model, test_images):
                                            Predict the label
 # Use model to predict labels
                                            of the most similar
  return test_labels
                                            training image
```

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Test images and nearest neighbors

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

	•	
toot	image	
1651	IIIIaue	
1001	IIIIAAA	,

5 0	00	40	40
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.vtr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.vtr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Memorize training data

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
```

```
Nearest Neighbor classifier
```

For each test image:
Find closest train image
Predict label of nearest image

```
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.vtr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Q: With N examples, how fast are training and prediction?

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

What does this look like?

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

What does this look like?

What does this look like?

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

$$K = 1$$

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Very problem-dependent.

Must try them all out and see what works best.

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset **Idea #2**: Split data into **train** and **test**, choose **BAD**: No idea how algorithm hyperparameters that work best on test data will perform on new data train test Idea #3: Split data into train, val, and test; choose

hyperparameters on val and evaluate on test

Better!

train	validation	test
-------	------------	------

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 1 Points = 4

Dimensions = 2Points = 4^2

Dimensions = 3Points = 4^3

K-Nearest Neighbors: Summary

In **Image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the **validation set**; only run on the test set once at the very end!

Linear Classification

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

What is this thing doing?

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Hard cases for a linear classifier

Class 1:

pixels coord > 0 odd

Class 2

pixels coord > 0 even

Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

Class 1:

Three modes

Class 2:

Everything else

So far: Defined a (linear) score function f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Thank you