APPLICATION OF OPENFOAM FOR THE SET UP OF THE INJECTION MOLDING PROCESS

József Nagy

Institute for Polymer Injection Moulding and Process Automation, Johannes Kepler University Linz

oimou, 18.05.2018

Introduction

- Polymer injection molding
 - communication, medicine, automotive, packaging
 - high pressure, high viscosity, high clamping forces
 - difficult experiments, location of measurement point

Simulation

- J. Nagy et al.: Polymer injection molding simulations in OpenFOAM[®], PFAU 9, Linz, Austria, 03.11.2014
- J. Nagy et al.: Fluid dynamic and thermal modeling of the injection molding process in OpenFOAM[®], OFW11, Guimaraes, Portugal, 29.06.2016
- J. Nagy et al.: Modeling and optimization of the injection molding process with OpenFOAM[®], 4th Annual OF User Conference, Cologne, Germany, 11.10.2016
- J.Nagy et al.: Runtime optimization in injection molding simulations with adaptive and selective grid refinement, OF12, Exeter, GB, 25.07.2017
- J. Nagy et al.: Selective, adaptive & manual (SAM) mesh ref. in injection molding simulation in OpenFOAM, 5th OF User Conference, Wiesbaden, Germany, 17.10.2017
- Application of simulations

Process

- 1. Plastification
- 2. Filling
- 3. Packing
- 4. Cooling
- 5. Part ejection

Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Navier-Stokes equations

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot \tau + \rho g + \mathbf{F}_{\sigma}$$

Energy equation

$$\frac{\partial \rho T}{\partial t} + \nabla \cdot (\rho \mathbf{u} T) = \Delta \left(\overline{k} T \right) + \tau : \nabla \mathbf{u} \cdot \left(\frac{\alpha}{c_{v_1}} \right) + \left[\nabla \cdot (p \mathbf{u}) \right] \left(\frac{\alpha}{c_{v_1}} + \frac{(1 - \alpha)}{c_{v_2}} \right)$$

Temperature gradient

$$\nabla T = \frac{-HTC \left(T_{melt} - T_{wall}\right)}{\widetilde{k}}$$

Volume-of-Fluid method

$$\rho = \alpha \rho_l + (1 - \alpha) \rho_g$$

$$\frac{\alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{u}) + \nabla \cdot [\alpha (1 - \alpha) \mathbf{u}_r] = S_p + S_u$$

Cross WLF model

$$\nu(\dot{\gamma}, T, p) = \frac{\nu_0(T, p)}{1 + \left(\frac{\nu_0(T, p)\dot{\gamma}}{D_4}\right)^{1-n}}$$

$$\nu_0(T,p) = D_1 \cdot exp\left(\frac{(-A_1) \cdot (T - D_2 - D_3 \cdot p)}{A_2 + T - D_2 - D_3 \cdot p}\right)$$

Tait model

$$\begin{aligned} v(p,T) &= \left\{ v_s(T) \cdot \left[1 - C \cdot ln \left(1 + \frac{p}{B_s(T)} \right) \right] + W_s(T) \right\} \\ v_s(T) &= b_{1s} + b_{2s} \cdot (T - b_5) \\ B_s(T) &= b_{3s} \cdot e^{-b_{4s} \cdot (T - b_5)} \\ W_s(T) &= b_7 \cdot e^{b_8 \cdot (T - b_5) - b_9 \cdot p} \end{aligned}$$

$$T \geq T_{trans}$$

$$v(p,T) &= \left\{ v_m(T) \cdot \left[1 - C \cdot ln \left(1 + \frac{p}{B_s(T)} \right) \right] \right\}$$

$$v_s(T) &= b_{1m} + b_{2m} \cdot (T - b_5) \\ B_m(T) &= b_{3m} \cdot e^{-b_{4m} \cdot (T - b_5)} \\ T_{trans} &= b_5 + b_6 \cdot p \\ C &= 0.0894 \end{aligned}$$

Phases

phase	velocity	pressure
filling	time dep. profile	zeroGradient
packing	zeroGradient	time dep. profile
cooling	zeroGradient	1 bar

Filling - Endplate

Filling phase - injection pressure

Filling phase - injection pressure

	p _{switch} [bar]		t _{switch} [s]	$\triangle t_{switch}$ [%]
experiment	238	-	0.465	-
fine sim.	233	-2.1	0.468	0.6
dyn. sim.	248	4.2	0.461	-0.8

Packing phase - freezing time

	t _{freeze} [s]
experiment	~7
fine sim.	7.05
dyn. sim.	6.98

Process set up

- Definition of important parameters
- Filling time safety (switch over from velocity to pressure)
- Pressure safety
 - maximum
 - cavity
- Packing time energy consumption
- New development mold
 - installation of 14 pressure sensors
 - perfect opportunity to apply the simulation

Geometry

Pressure sensors

Pressure sensors

Process set up

- Definition of important parameters
- Filling time safety (switch over from velocity to pressure)
- Pressure safety
 - maximum
 - cavity
- Packing time energy consumption
- New development tool
 - installation of 14 pressure sensors
 - perfect opportunity to apply the simulation

maximum pressure of 226 bar Simulation & experiment experiment - PFx0 simulation - PFx0 -----240 experiment - PFx1 simulation - PFx1 -----220 experiment - PFx2 simulation - PFx2 -----200 experiment - PFx3 simulation - PFx3 -----180 160 filling time of 0.93s pressure [bar] 140 120 100 cavity pressure between ~50 and 75 bar 80 60 40 20 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.7 0.75 0.8 0.85 0.9 0.95 0.35 0.45 0.55 0.6 0.65 p_{switch} [bar] $\triangle p_{switch}$ [%] p_{cav} [bar] $\triangle p_{cav}$ [%] $t_{\text{switch}}[s] \triangle t_{\text{switch}}[\%]$ 226 50-75 0.93 exp. sim. 246 < 9 60-80 < 5 0.92 -1.1

Packing phase - freezing time

t = 7s

Y X

t = 8s

	t _{freeze} [s]
experiment	~7-8
simulation	7.35

Conclusion

- Simulation of injection molding process
- Good agreement (<5-10%)
- Set up of process possible
- Run time between 30s and 6h
- Runtime here ~2.5 min
- Experimental process set up ~0.5-1h
- Simulation in OpenFOAM is a good alternative
- Next steps:
 - Further analysis of different (curved) geometries
 - Further analysis of different materials (PE, PA, PC etc.)
 - Shrinkage

