Sylow 定理及其应用

戚天成◎

复旦大学 数学科学学院

2023 年 10 月 30 日

这份笔记的目的是记录 Sylow 定理的证明以及相关应用, 该定理以 P. L. Sylow(挪威, 1832-1918) 命名, 是由 Sylow 于 1872 年发表的. 首先让我们回顾一个 *p*-群作用在有限集上的特性.

Lemma 1. 设群 G 是 p-群, $|G| = p^n, n > 0$, 作用在有限集 |X| 上, 记它的不动点集为 $X_0 = \{x \in X | gx = x, \forall g \in G\}$, 那么 $|X_0| \equiv |X| \pmod{p}$. 特别地, 若考虑 p-群在自身上的共轭作用, 立即得到 p-群的中心非平凡. *Proof.* 记 $x \in X$ 所在的轨道为 \mathcal{O}_x , 那么

$$|X| = \sum_{|\mathscr{O}_x|=1} |\mathscr{O}_x| + \sum_{|\mathscr{O}_x|>1} |\mathscr{O}_x|.$$

因为每个轨道的长度 $|\mathcal{O}_x|$ 都整除 $|G|=p^n$, 所以当 $|\mathcal{O}_x|\geq 2$ 时 p 整除 $|\mathcal{O}_x|$. 于是由 X_0 即所有长度为 1 的轨道之并知 $|X_0|\equiv |X|\pmod{p}$.

上述引理表明 p-群作用在一个有限集上,不动点集元素个数与整个集合元素个数模 p 同余. 下面我们使用上述事实证明 Cauchy 定理, 我们将利用 Cauchy 定理及其后面的引理证明 Sylow 定理.

Cauchy's Theorem. 给定素数 p 以及有限群 G, 若素数 p 整除 |G|, 那么 G 存在 p 阶元.

Proof. 作 $S = \{(a_1, a_2, ..., a_p) \in G^p | a_1 a_2 \cdots a_p = 1_G\}$, 那么 $|S| = |G|^{p-1}$, 且 S_p 中轮换 $\sigma = (123 \cdots p)$ 生成 的子群 $\langle \sigma \rangle$ 是 p 阶群且在 S 上有个天然群作用 $\langle \sigma \rangle \times S \to S, (\tau, (a_1, a_2, ..., a_p)) \mapsto (a_{\tau(1)}, a_{\tau(2)}, ..., a_{\tau(p)})$, 易见该群作用的不动点集 $S_0 = \{(x, x, ..., x) \in G^p | x^p = 1_G, x \in G\}$ 且是非空的,因为 $(1_G, 1_G, ..., 1_G) \in S_0$. 注意到 $|S_0| \equiv |S| \pmod{p}$, 所以由 p 整除 |S| 可得 p 整除 $|S_0|$. 故 $|S_0| \geq p$, 特别地,取 $a \neq 1_G \in G$ 使得 $(a, a, ..., a) \in S_0$, 则 a 的阶为 p.

Lemma 2. 给定素数 p, 设有限群 G 的子群 H 是 p-群, 那么 $[N_G(H):H] \equiv [G:H] \pmod{p}$.

Proof. 记 *X* 是全体 *H* 在 *G* 中的左陪集构成的集合, 那么 |X| = [G:H]. 将 *H* 通过左乘作用在 *X* 上, 那么 $gH \in X$ 在不动点集 X_0 中的充要条件是 $hgH = gH, \forall h \in H$, 因为 *G* 是有限群, 所以这等价于 $g \in N_G(H)$. 于是 $|X_0| = [N_G(H):H]$. 由 *H* 是 *p*-群可得 $[N_G(H):H] = |X_0| \equiv |X| = [G:H] \pmod{p}$. □

若有限群 G 的阶为 p^rm , p 是素数, r, m 是正整数且 p 不整除 m, 则称阶为 p^r 的子群 H 的 G 的一个 **Sylow** p-子群. 我们把有限群 G 的全体 Sylow p-子群子群构成的集合记作 $\mathrm{Syl}_n(G)$.

Sylow's Theorem. 设 G 是有限群, p 是素数, 设在正整数 n, m 使得 $|G| = p^n m$, 其中 p 不整除 m, 则有:

- (1) 任给自然数 $0 \le i \le n$, G 存在 p^i 阶子群, 特别地, Sylow p-子群存在, 即 $\mathrm{Syl}_n(G) \ne \varnothing$.
- (2) 任给 G 的一个 Sylow p-子群 P 以及 p-子群 H, 存在 $g \in G$ 使得 $H \subseteq gPg^{-1}$. 特别地, 任意两个 Sylow p-子群在群 G 中共轭.
- (3) 记 $n_p = |\text{Syl}_p(G)|$ 为 Sylow p-子群的个数, 则 $n_p \equiv 1 \pmod{p}$ 且 $n_p | m$.
- Proof. (1) 当 i=0 时结论明显成立. 当 i=1 时由 Cauchy 定理保证了存在 p 阶元,该元素生成的循环群就是 G 的一个 p 阶子群. 假设 G 存在 p^i 阶子群 H_i ,这里 $1 \le i \le n-1$,我们说明 G 存在 p^{i+1} 阶子群 H_{i+1} .因为 H^i 是 p-群,所以 $[N_G(H_i):H_i]=[G:H_i] \pmod{p}$,而 $|H_i|=p^i,i \le n-1$ 表明 p 整除 $[G:H_i]$,所以 p 整除 $[N_G(H_i):H_i]$.因此由 Cauchy 定理,商群 $N_G(H_i)/H_i$ 有 p 阶元,进而有 p 阶子群 K,由子群对应定理知存在 $N_G(H_i)$ 的子群 H_{i+1} 使得 $K=H_{i+1}/H_i$,故 H_{i+1} 是 G 的 p^{i+1} 阶子群. 于是结合 i=1 的情形可知 (1) 成立.
- (2) 由 (1) 知确实存在 Sylow p-子群 P. 记 S 是全体 P 关于 G 的左陪集构成的集合, 那么 p-群 H 可通过 左乘作用在 S 上, 不动点集 S_0 为 $S_0 = \{gP \in S | g^{-1}Hg \subseteq P\}$. 由 |S| = m 不被 p 整除以及 $|S| \equiv |S_0| \pmod{p}$ 可知 S_0 非空, 所以存在 $g \in G$ 使得 $g^{-1}Hg \subseteq P$, 即 $H \subseteq gPg^{-1}$, 故 (2) 成立.
- (3) 将群 G 共轭作用在 $\mathrm{Syl}_p(G)$ 上, 由 (2) 知该群作用是传递的, 所以 n_p 作为轨道长度整除 |G|. 更进一步, 对每个 Sylow p-子群 P, 其稳定化子即 $N_G(P)\supseteq P$, 故

$$n_p = \frac{|G|}{|N_P(G)|} \mid m.$$

下面固定一个 Sylow p-子群 P, 将其共轭作用在 $\mathrm{Syl}_p(G)$ 上,我们断言 $|(\mathrm{Syl}_p(G))_0|=1$,一旦证明该断言,则 $n_p\equiv 1 \pmod{p}$ 成立. 易见 $P\in (\mathrm{Syl}_p(G))_0$,对任给 $Q\in (\mathrm{Syl}_p(G))_0$,有 $P\subseteq N_G(Q)$. 因此 Q, P 都是正规化子 $N_G(Q)$ 的两个 Sylow p-子群 P, 由(2)知它们在 $N_G(Q)$ 中共轭,故 P=Q. 这就证明了断言.

Remark 3. 如果 G 的 Sylow p-子群只有一个, 那么它必定是 G 的正规子群.

在给出 Sylow 定理的应用前我们引入一个基本的观察.

Lemma 4. 若有限群 G 的阶为 2m, 其中 m 是奇数, 则 G 存在指数为 2 的子群.

Proof. 将群 G 左乘作用在 G 上可得群同态 $\rho: G \to S(G), g \mapsto \rho_g$. 易见对每个 $g \neq 1_G$, 有 $\rho_g(c) \neq c$, $\forall c \in G$. 设 $f: G = \{g_1, g_2, ..., g_{2m}\} \to \{1, 2, ..., 2m\}, g_k \mapsto k$ 为双射,则 $\gamma: S(G) \to S_{2m}, \sigma \mapsto f\sigma f^{-1}$ 是群同构,所以 $\psi = \gamma \rho: G \to S_{2m}$ 是单群同态. 由 Cauchy 定理,G 中有 2 阶元 a,那么 $\psi(a)$ 是 S_{2m} 中 2 阶元,故是一些不相交对换的乘积. 因为 ρ_a 改变 G 中任何元素,所以 $\psi(a)$ 改变集合 $\{1, 2, ..., 2m\}$ 中任何元素,因此它是 m 个不相交对换的乘积,是奇置换. 从而 $A_{2m} \text{Im} \psi = S_{2m}$,进而知 $A_{2m} \cap \text{Im} \psi$ 是 $\text{Im} \psi$ 指数为 2 的子群,因此由 ψ 是单群同态易知 G 有指数为 2 的子群.

Application 5. 给定有限群 G, 设 p, q 是素数.

- (1)(阶为两素数乘积的群不是单群) 如果 |G| = pq, 那么 G 不是单群.
- (2)(阶为一素数平方与素数乘积的群不是单群) 如果 $|G| = p^2 q$, 那么 G 不是单群. 特别地, 阶为

的群不是单群.

Proof. (1) 当 p=q 时, G 是交换群, 由 Cauchy 定理知 G 有 p 阶子群, 是非平凡正规子群, 所以 G 不是单群. 当 p>q 时, 由 Sylow 第三定理, Sylow p-子群的个数 n_p 满足 $n_p|q$ 且 $n_p\equiv 1 \pmod{p}$. 因此 $n_p=1$, 即 G 有 唯一的 Sylow p-子群, 它是 G 的非平凡正规子群, 故 G 不是单群. 当 p<q 时, 同理可知 G 有唯一的 Sylow q-子群, 它是 G 的非平凡正规子群, 故 G 不是单群. 于是 (1) 得证.

(2) 若 p=q, 那么 $|G|=p^3$. 如果 G 是交换群, 那么由 Cauchy 定理可知 G 有 p 阶非平凡正规子群. 如果 G 不是交换群, 因为 p-群的中心非平凡, 所以 Z(G) 是 G 的非平凡正规子群, 于是 G 不是单群. 下设 $p\neq q$, 如果 p>q, 那么 Sylow p-子群的个数 n_p 满足 $n_p|q$ 且 $n_p\equiv 1 \pmod{p}$, 这迫使 $n_p=1$, 即 G 有唯一的 Sylow p-子群, 它是 G 的非平凡正规子群, 故 G 不是单群. 最后我们讨论 p<q 的情形.

首先 G 的 Sylow q-子群个数 n_q 满足 $n_q|p^2$ 且 $n_q\equiv 1 \pmod q$. 那么 n_q 只可能是 1 或 p^2 . 如果 $n_q=1$, 那么 G 唯一的 Sylow q-子群给出了 G 的一个非平凡正规子群, 故 G 不是单群. 下面考虑 $n_q=p^2$ 的情形, 我们断言 G 有唯一的 Sylow p-子群. 因为任意两个 Sylow q-子群的交只可能是 $\{1_G\}$, 所以全体 Sylow q-子群之并所得集合 A 有 $p^2(q-1)+1$ 个元素. 任取 G 的一个 Sylow p-子群 P, 它与任何 Sylow q-子群的交也是 $\{1_G\}$, 所以 $P\subseteq (G-A)\cup\{1_G\}$. 注意到 $(G-A)\cup\{1_G\}$ 恰好 p^2 个元素, 所以 $P=(G-A)\cup\{1_G\}$, 这说明 G 有唯一的 Sylow p-子群, 断言得证. 由此该 Sylow p-子群是 G 的一个非平凡正规子群, 故 G 不是单群.

Application 6. 设有限群 G 阶为 24, 则 G 不是单群.

Proof. 由 Sylow 第三定理, 全体 Slyow 2-子群构成的集合 $\mathrm{Syl}_2(G)$ 元素个数 $n_2=1$ 或 3. 如果 $n_2=1$, 那么 G 有唯一的 Slyow 2-子群, 不是单群. 下设 $n_2=3$, 将 G 共轭作用到 $\mathrm{Syl}_2(G)$ 上, 该群作用是传递的, 并诱导群同态 $\rho:G\to\mathrm{Sym}(\mathrm{Syl}_2(G))$, 易见 $\mathrm{Im}\rho$ 至少有两个元素, 这表明 $\mathrm{Ker}\rho$ 是 G 的真子群. 再由 $G/\mathrm{Ker}\rho\cong\mathrm{Im}\rho$ 可得 $|\mathrm{Ker}\rho|\geq 4$, 所以 $\mathrm{Ker}\rho$ 是 G 的一个非平凡正规子群.

Application 7. 60 阶非交换单群总同构于 A_5 .

Proof. 设 G 是 60 阶非交换单群,则 G 的 Sylow 2-子群个数 $n_2|15$ 且 n_2 是奇数,于是知 $n_2=1,3,5,15$.由于 G 是单群,所以 $n_2\neq 1$. 假设 $n_2=3$,则将 G 共轭作用到 $\mathrm{Syl}_2(G)$ 上,那么该作用导出群同态 $\varphi:G\to\mathrm{Sym}(\mathrm{Syl}_2(G))$. 因为该群作用是传递的,所以 $\mathrm{Ker}\varphi$ 是 G 的真子群,由 $G/\mathrm{Ker}\varphi\cong\mathrm{Im}\varphi$ 易得 $\mathrm{Ker}\varphi$ 至少有 10个元素,所以 $\mathrm{Ker}\varphi$ 是 G 的一个非平凡正规子群,矛盾. 故 $n_2\neq 3$. 最后讨论 $n_2=5$ 与 $n_2=15$ 的情形.

我们用反证法说明 $n_2 \neq 15$. 如果 $n_2 = 15$, 那么 G 存在两个 Sylow 2-子群的交不是平凡的, 因为如果 G 的任意两个 Sylow 2-子群交是平凡的, 注意到 G 的 Sylow 5-子群有 G 个且 Sylow 5-子群与 Sylow 2-子群一共 含有 G(5-1)+15(4-1)+1=24+45+1=70 个元素, 这与 G 仅含有 G 个元素矛盾. 设 G 不是 G 的 Sylow 2-子群满足 G 不是 G 的 Sylow 2-子群满足 G 不是 G 的 G 的 G 不是 G 的 G

有 $|N_{A_5}(H)| = 4 = |H|$, 所以 $N_{A_5}(H) = H$. 取 $H = \{(1), (12)(34), (14)(23), (13)(24)\}$ 是 A_5 的一个 Sylow 2-子群, 那么 $(123) \in N_{A_5}(H) - H$, 这与 $N_{A_5}(H) = H$ 矛盾.

根据前面的讨论知 $n_2=5$,将群 G 共轭作用在 $\mathrm{Syl}_2(G)$ 上,由 G 是单群可导出单群同态 $\rho:G\to S_5$,于 是知 G 同构于 S_5 的一个指数为 2 的子群,即 A_5 ,故 $G\cong A_5$.

Application 8. 180 阶群不可能是单群.