Exercício 01

Renan Salles de Freitas CPE 723 - Otimização Natural

12 de março de 2018

Exercício 1.a.

$$\int xe^{-x}dx = \int -xd(e^{-x}) = -xe^{-x} + \int e^{-x}dx$$
$$\int xe^{-x}dx = -xe^{-x} - e^{-x} = -e^{-x}(x+1)$$
$$\int_0^1 xe^{-x}dx = \frac{e-2}{e} = 0.26424$$

Exercício 1.b. Segue o código fonte do exercício, em Matlab:

```
% Exercicio 1.1.b
  x = rand(10,1);
    = sum(x.*exp(-x))/length(x);
  x = [0.5228;
5
         0.0987;
6
         0.5349;
7
         0.9142;
         0.4430;
         0.3181;
10
         0.1843;
11
         0.8165;
12
         0.6085;
13
         0.7067];
14
15
  s = 0.2789;
```

Exercício 1.c. Queremos encontrar $I = \int_0^1 x e^{-x} dx$. Podemos reescrever a integral como valor esperado $I = \mathbb{E}[f(X)]$, onde f é alguma função real e X é uma variável aleatória cuja distribuição de probabilidade é definida por alguma função de densidade de probabilidade.

Temos que $X \sim \phi(x) = \lambda e^{-\lambda x}$. Devemos normalizar a função de densidade de probabilidade para o intervalo (0,1), logo:

$$\phi(x) = \frac{\lambda e^{-\lambda x}}{\int_0^1 \lambda e^{-\lambda x} dx}$$
$$\phi(x) = \frac{\lambda e^{-\lambda x}}{1 - e^{-\lambda}}$$

Temos ainda que:

$$\mathbb{E}[f(X)] = \int_0^1 f(t)\phi(t)dt$$

$$\mathbb{E}[f(X)] = \int_0^1 f(t)\frac{\lambda e^{-\lambda x}}{1 - e^{-\lambda}}dt$$

Para chegarmos em I, escolhemos $\lambda = 1$ e f(x):

$$f(t) = (1 - e^{-1})t$$

E assim temos:

$$I = \int_0^1 t e^{-t} dt$$

A integração pelo método de Monte Carlo diz que se X_1, \ldots, X_N são amostras independentes da distribuição exponencial $X \sim \phi(x) = e^{-x}$, então:

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{i=1}^{N} f(X_i) = \mathbb{E}[f(X)]$$

$$I = \sum_{i=1}^{N} X_i$$

Utilizando o programa escrito em MatLab, abaixo:

Obtivemos I = 0.2687 para 10 amostras.

Exercício 2. Considere:

$$f(x,y) = \begin{cases} 1 & x^2 + y^2 \le 1\\ 0 & x^2 + y^2 \ge 1 \end{cases}$$

E considere o domínio $D = [-1,1] \times [-1,1]$. Temos que:

$$\int_{D} f(x, y) dx dy = \pi$$

Podemos estimar o valor de π pelo método de integração de Monte Carlo, escolhendo N números de maneira aleatória em D:

$$\pi \approx \frac{4}{N} \sum_{i=1}^{N} f(x_i, y_i)$$

Usando N=20, obtivemos como resultado $\pi=2.8$. Usando N=1.000.000, obtivemos $\pi=3.1411$. O resultado se aproxima cada vez mais de π quanto maior for o valor de N. Esse resultado é provado pela lei dos grandes números: quanto mais tentativas são realizadas, mais a probabilidade da média aritmética dos resultados observados irá se aproximar da probabilidade real.

Exercício 3.a. Segue o código fonte do exercício, em Matlab:

```
% Exercicio 03
2
  clear all
3
  clc
4
5
  x0 = 2;
  number_of_iteration = 100000;
  epsilon = 0.1;
8
  x = zeros(number_of_iteration, 1);
  x(1) = x0;
11
12
13 \mid J = 0(n) \ n.^2;
```

```
14
   T = 0.1;
15
   B = @(n) exp(-n/T);
16
17
   counter = 1;
18
   while counter < number_of_iteration</pre>
19
       r = 2 * rand - 1;
20
       xk = x(counter) + epsilon * r;
21
       dJ = J(xk) - J(x(counter));
22
       counter = counter + 1;
23
       if dJ < 0
24
25
            x(counter) = xk;
       else
26
            a = rand;
27
            if B(dJ) > a
28
                 x(counter) = xk;
^{29}
            else
30
                 x(counter) = x(counter - 1);
31
            end
32
       end
33
   end
34
```


Exercício 3.b. Resolução de dez iterações do algoritmo:

$$x_0 = 2$$

$$r = -0.9091$$

$$x_1 = x_0 + 0.1 * (-0.9091) = 1.9091$$

$$\Delta J = x_1^2 - x_0^2 = -0.3554 < 0$$

$$x_1 = 1.9091$$
(1)

$$x_{1} = 1.9091$$

$$r = -0.3739$$

$$x_{2} = x_{1} + 0.1 * (-0.9975) = 1.8717$$

$$\Delta J = x_{2}^{2} - x_{1}^{2} = -0.1414 < 0$$

$$x_{2} = 1.8717$$
(2)

X_k	\mathbf{r}	\hat{X}	ΔJ	$e^{-\frac{\Delta J}{T}}$	a	X_{k+1}
2	-0.9091	1.9091	-0.3554	-	-	1.9091
1.9091	-0.3739	1.8717	-0.1414	-	-	1.8717
1.8717	0.8264	1.9543	0.3162	0.0424	0.5054	1.8717
1.8717	0.8098	1.9527	0.3097	0.0452	0.1342	1.8717
1.8717	-0.3808	1.8336	-0.1411	-	-	1.8336
1.8336	-0.4297	1.7906	-0.1557	-	-	1.7906
1.7906	0.2195	1.8126	0.0791	0.4535	0.4008	1.8126
1.8126	0.2301	1.8356	0.0839	0.4320	0.9469	1.8126
1.8126	0.6654	1.8791	0.2456	0.0857	0.4103	1.8126
1.8126	0.0788	1.8205	0.0286	0.7509	0.0656	1.8205

Exercício 4. A função custo (J) pode ser vista na figura 1. Segue o código fonte do exercício, em Matlab:

```
% Exercicio 04.b
1
2
  clear all
3
  clc
4
  x0 = 0;
6
7
  number_of_iteration = 100;
  number_of_temperature_iteration = 8;
8
  epsilon = 0.1;
  T0 = 1;
10
  T = TO;
11
12
   x = zeros(number_of_iteration * number_of_temperature_iteration, 1);
13
   x(1) = x0;
14
15
   J = @(n) -n + 100 * (n - 0.2).^2 .* (n - 0.8).^2;
16
17
   B = 0(n,t) \exp(-n/t);
18
19
   counter = 1;
20
   counter_temperatures = 1;
21
   Jmin = J(x(counter));
^{22}
  xmin = x(counter);
23
   while counter_temperatures <= number_of_temperature_iteration</pre>
24
       while counter < number_of_iteration * counter_temperatures</pre>
25
            r = randn;
26
            xk = x(counter) + epsilon * r;
27
            Jxk = J(xk);
^{28}
            dJ = Jxk - J(x(counter));
29
30
            counter = counter + 1;
            if dJ < 0
31
                x(counter) = xk;
32
            else
33
                a = rand;
34
                if B(dJ,T) > a
35
                     x(counter) = xk;
36
                else
37
                     x(counter) = x(counter - 1);
38
                end
39
            end
40
            if Jxk < Jmin</pre>
41
                Jmin = Jxk;
42
                xmin = xk;
43
            end
44
       end
45
       counter_temperatures = counter_temperatures + 1;
46
       T = T0 / log2(counter_temperatures + 1);
47
```


Figura 1: Gráfico da função J

Obtivemos $x_{\min}=0.8135$ e $J(x_{\min})=-0.8066$. Calculando as primeiras iterações para T=1 e $x_0=0$

X_k	\mathbf{r}	\hat{X}	ΔJ	$e^{-\frac{\Delta J}{T}}$	\mathbf{a}	X_{k+1}
0	-0.6576	-0.0658	2.7998	0.0608	0.1627	0
0	-0.7593	-0.0759	3.3574	0.0348	0.6375	0
0	0.8124	0.0812	-1.9126	-	-	0.0812
0.0812	0.0695	0.0882	-0.1023	-	_	0.0882
0.0882	-1.8337	-0.0952	6.5316	0.0015	0.8828	0.0882
0.0882	1.8274	0.2709	-0.6752	-	=	0.2709
0.2709	0.6541	0.3363	0.1934	0.8242	0.2174	0.3363
0.3363	-1.5448	0.1818	-0.2324	-	_	0.1818
0.1818	-0.3751	0.1443	0.1583	0.8536	0.7199	0.1443
0.1443	0.2077	0.1651	-0.1050	-	_	0.1651

Vale observar como o algoritmo oscila no mínimo local, mas pode alcançar o mínimo global, como na iteração $8.\,$

Exercício 5. A função que queremos minimizar é a Rosenbrock function, descrita com:

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

O mínimo da função se encontra em (x,y) = (1,1) e f(x,y) = 0. Modificamos o algoritmo SA para vetores de duas dimensões, como pode ser visto abaixo:

```
% Exercicio 05
2
  clear all
3
  clc
4
  x0 = [0, 0];
   number_of_iteration = 100;
  number_of_temperature_iteration = 10;
   epsilon = 0.1;
9
  T0 = 1;
10
   T = TO;
11
12
   x = zeros(number_of_iteration * number_of_temperature_iteration, 2);
13
   x(1,:) = x0;
14
15
   J = Q(n) (1 - n(:,1)).^2 + 100 * (n(:,2) - n(:,1).^2).^2;
16
17
   B = 0(n,t) \exp(-n/t);
18
19
20
   counter = 1;
   counter_temperatures = 1;
21
   Jmin = J(x(counter,:));
^{22}
   xmin = x(counter,:);
23
   while counter_temperatures <= number_of_temperature_iteration</pre>
^{24}
       while counter < number_of_iteration * counter_temperatures</pre>
25
            r = 2 * rand(1,2) - 1;
26
            xk = x(counter,:) + epsilon * r;
27
            Jxk = J(xk);
28
            dJ = Jxk - J(x(counter,:));
29
            counter = counter + 1;
30
            if dJ < 0
31
                x(counter,:) = xk;
32
            else
33
                a = rand;
34
                if B(dJ,T) > a
35
                     x(counter,:) = xk;
36
                else
37
                     x(counter,:) = x(counter - 1,:);
38
                end
39
            end
40
            if Jxk < Jmin
41
                Jmin = Jxk;
42
```

```
xmin = xk;
end
end
counter_temperatures = counter_temperatures + 1;
T = T0 / log2(counter_temperatures + 1);
end
```


Obtivemos $x_{\min} = (1.0168, 1.0311)$ e $J(x_{\min}) = 0.001$.