総論

1. 解剖学と生理学(2)

	人体を構成する各器官(心臓や肝臓など)の形、構造を学ぶ。
4-1-1-24	・系統解剖学 生命活動を営むための各器官系を系統に分けて学ぶ解剖学
解剖学	・局所解剖学 器官系とそれらの構造を局所的に学ぶ解剖学
	・解剖組織学 顕微鏡で組織の構造を学ぶ
生理学	人の生命活動(代謝、運動、消化、吸収、排泄、睡眠など)の働きを知る。
	それには細胞、組織、器官の構造と機能を知ることが必要である。

1) 人体の基礎的機能

植物機能(自律神経)	生命維持に必要な機能:摂食、吸収、呼吸、循環、排泄の調節
動物機能(中枢神経)	人間の活動と機能:運動、会話、学習、記憶

2) 内部環境の恒常性

中郊 严护	生命活動維持のために 体液量、血漿浸透圧、酸塩基平衡、血糖値、血圧、
内部環境	体温などを安定的に保つ仕組みある。(自律神経と内分泌によって調節される)
の恒常性	外部環境が変化しても、内部環境は常に一定で ホメオスタシスとよぶ。

2. 人体各部の名称(3)

頭	頭部(頭蓋腔 、脳)、鼻腔、口腔(歯、舌など)
頸	頸部 (頸椎、頸髄、気管、食道、血管など)
体幹	胸部(胸腔 :肺)心臓、血管
(胸、腹、背、腰)	腹部(腹腔 :消化管、肝臓、腎臓、血管など)
	後部(背、肩、腰、殿)(骨盤腔:子宮、膀胱、直腸)
体肢	上肢(上腕、肘、前腕) 手掌、手背
	下肢(大腿、膝、下腿)足底、足背

1) 人体の体表区分用語(4、5、6(図))

頭 部	前頭部、頭頂部、眼窩部、鼻、口、頬、側頭、耳、後頭				
頸部	前頸部、胸鎖乳突筋部、側頸部、後頸部(項:うなじ)				
胸部	鎖骨部、胸骨部、 剣状突起 、胸筋部、側胸部、 腋窩 (腋の下)				
上腹部	上胃 (腹) 部 (心窩部 :みぞおち)、 下肋部 (季肋部:脇腹のこと)				
腹部	臍部 、側腹部				
下腹部	鼡径部(左右の下腹部)、恥骨部				
上 肢	上腕 部、上腕後部、肘頭部、 肘窩部、前腕 部、手掌、手背				

2) 人体の方向(9(図))

上下・前後 頭部側(上)、足側(下)、胸部側(前)、背部(後) 内側・外側 正中面に近い側(内側)、正中面に遠い側(外側) 近位・遠位 体幹に近い側(近位)、体幹から遠い側(遠位)

3) 人体の基準面

基準面	(8, 9(図))
正中面	身体を左右に分ける身体の中心面
矢状面	正中面に平行する左右を分ける面(正中面の外側面)
前頭面	身体を前後に分け、正中線と直角に交わる面
水平面	身体を上下に分け、地面と平行する面

4) 人体の基準線

基準線 (7図)A 正中線前正中線(胸骨中央線)B 胸骨線胸骨外縁線(胸骨に接する線)C 胸骨旁線胸骨線と鎖骨中線の間D 乳頭線鎖骨中央(乳頭)線E 腋窩線腋窩線

1 人体の構成

- 1. 細 胞(10)
- 1) 人体の細胞と染色体数

从 如此	ヒトは約 200 種 60 兆個の細胞(真核細胞:核膜がある) で構成される
体細胞 	人体を構成する細胞の染色体数は46本である。
生殖細胞	精子や卵子は減数分裂によって染色体数は体細胞の半分の23本となる。
	受精卵になって体細胞と同じ染色体数46本となる。

2) 細胞の大きさと単位(11図) 1 μm:(1ミクロン(マイクロメータ)は1/1000mm)

赤血球 7.7μ m 白血球 $10\sim30 \mu$ m 卵細胞 200μ m 神経細胞軸索 1 m と多様で鶏卵も 1 つの細胞である

- 2. 細胞の構造と働き(11)
- 1)細胞膜と機能

① リン脂質の2重層 親水部(リン酸・グリセリド)、疎水部(脂肪酸)からなる。

② 選択的な物質の輸送 輸送タンパク(イオンポンプ、イオンチャネル)

③ 外部情報の細胞内への伝達 細胞膜は受容体を持つ(膜にある糖タンパク)

④ 膜抗原 血液型抗原、主要組織適合抗原(MHC・HLA)

2) 細胞膜輸送タンパクの種類

・Na ポンプ 濃度勾配に逆行する輸送のために ATP が利用される。細胞内から

Na イオンを細胞外に、細胞外の K を細胞内に輸送する。

・共輸送 グルコースやアミノ酸の輸送は Na が細胞内に入る時に共輸送される。

Na は細胞外に多いので、細胞内との濃度差が利用される。

・Na チャネル 電解質イオンはイオンチャネルが開口して輸送される。その他に多くの イオンチャネルがある。

・受容体 細胞膜受容体と細胞内受容体がある。細胞外からの刺激を細胞内に伝える。

3) 細胞の構造

① 細胞の毛 細胞に生える毛の種類

微絨毛(刷子縁) 吸収作用(吸収上皮)

線 毛 物質輸送(卵管、気管の上皮)

鞭 毛 精子

② 開口分泌 分泌顆粒として細胞外へ分泌

③ 飲、貪食作用 小分子の取り込み

④ 細菌異物分解 リソソームの分解消化

⑤ **蛋白合成** リボゾームによる合成

⑥ 分泌顆粒形成 ゴルジによる濃縮、加工

⑦ 遺伝情報 DNA

⑧ 細胞膜結合 細胞同士の結合タンパク

⑨ 形態維持 細胞骨格 (細胞の形態維持)

⑩ ATP 合成 ミトコンドリア

4) 細胞内小器官(12(図))

ゴルジ装置	配送センター	合成タンパクの濃縮加工、配送(酵素、分泌タンパク)	
リソソーム	ゴミ処理工場	加水分解酵素により貪食した異物を分解消化。	
粗面小胞体 リボソーム(r-RNA)が付着し、タンパクを合成		リボソーム (r-RNA)が付着し、タンパクを合成	
小胞体	滑面小胞体	リボゾームが付着しない	
		脂質合成、 Ca イオンの貯蔵と放出、薬物などの解毒作用	
リボゾーム	タンパク工場	遺伝情報に従ってアミノ酸から、 タンパクを合成	
ミトコンドリア	発電所	細胞エネルギーの ATP(アデノシン三リン酸) 生成	

ATP の生成(細胞エネルギーの生成)

- 1)解糖系 酸素を使わない細胞質のATPの生成((短距離走の無酸素運動)
- 2) 好気的解糖 酸素を使って**ミトコンドリア**で ATP 合成(TCA 回路(クエン酸回路))

ミトコンドリアは酸素(マラソンの有酸素運動)と グルコースを使って、多量の ATP (30 数分子) と水、CO2 を生成する。ATP は ADP とリン酸 に分解される時に膨大なエネルギーが発生し、 細胞活動はこれを利用している。酸素が利用で きないと代謝の過程で**乳酸(筋疲労物質)**が 発生する。

ミトコンドリアは真核細胞(核を有する細胞)

に寄生した古細菌(リケッチアやシアノバクテリアなど)などといわれている。

5)細胞分裂(13(図))

体細胞分裂 体細胞分裂は同じ遺伝情報を持つ細胞(46本)が2個作られる分裂 精子や卵子の生殖細胞の分裂で染色体数が半分(23本)になる。 減数分裂

(1) 細胞分裂 体細胞の細胞分裂

(2) 細胞分裂と染色体数 元の細胞と同じ染色体を持つ細胞 が2個つくられる。 体細胞分裂 2n 半減した染色体数を持つ細胞が 4 個 つくられる。(精子の場合) 2n 4n 2n 細胞分裂 複製 n 生殖細胞(減数分裂) 2回目:細胞分裂 2n 1回目:細胞分裂 複製 遺伝子組み換え 2n **卵細胞**は分裂の過程で最後に1個となり、増殖しない

6) 細胞の再生

再生しない細胞 心筋細胞、神経細胞、卵細胞、骨格筋細胞(再生能弱い) 再生盛んな細胞 皮膚、腸管上皮、精子、造血細胞 必要な時に再生 刺激を受けると盛んに再生。肝細胞、末梢神経線維 7) 細胞核

(1) 核の数

8)染色体 人の染色体数は23対(46本)

	常染色体	性染1	色体	合 計
体細胞	22対(44本)	1 対 X·X(女)	1 対 X•Y(男)	46本
生殖細胞(精子)	11対(22本)	1本の X ま	たは 1本のY	23本
(卵子)	11対(22本)	1本 X のみ	なし	23本

(1) 性の決定と染色体数異常

- 9) 遺伝情報 染色体中の DNA はヒトの形質を決定する遺伝子(ゲノム)を持つ。
- (1) 遺伝子とは タンパク質合成に必要なアミノ酸の配列を決定し、DNA 上に記録され いる。人のゲノムは 30 億からなるが遺伝子は約 25000 である。

(2) 核酸の種類

- DNA デオキシリボ核酸と呼ばれ、2 重のラセン構造からなる。4 種の塩基 (A—T・G-C) とデオキシリボースの五炭糖、リン酸からなる。 DNA は核内に常に存在する。
- RNA **リボ核酸**は 1 本鎖で、リボース、リン酸、塩基から構成される。
 <u>3 種類の RNA(m-RNA、t-RNA、r-RNA)</u>がある。RNA の塩基は
 T (チミン) がなく、代わりに **U (ウラシル)** となる。塩基の組み合
 わせは (A-**U**・G-C) からなる。**RNA** は必要に応じて合成される。

10) タンパク合成の過程

転写 DNA の遺伝情報 (原本) を m-RNA によりコピーすること。(コピー機)

翻訳 遺伝情報に従ってアミノ酸の順番を r-RNA で並べてタンパクを合成すること

① 転写の過程

- a. 細胞分裂に先立ち DNA の二重ラセンがほどけ1本鎖となる。
- b. この1本の DNA の塩基($A = T \cdot G = C$)に m-RNA の塩基($U \cdot A \cdot C \cdot G$)が相 補的に結合し、塩基配列がコピーされる。m-RNA は核内で合成され、細胞質に出る。

② 翻訳の過程

- a. DNA 上の1つのアミノ酸情報は3つの塩基の組み合わせで決定される(コドン)。
- b. **m-RNA** はこの情報を転写し、**t-RNA** はコドンに適合する 1 個のアミノ酸を運んでくる。**20 種類のアミノ酸**は **20** 種の **t -RNA** によって運ばれる。
- c. タンパク合成は **DNA** のアミノ酸配列に従って **r-RNA** が順番通りに結合する。

7. 生体の主要元素から見た化学組成(19)

- a. 人体の成分 酸素 (65%)、炭素 (19%)、水素 (10%)、窒素 (3%)
- b. 有機物 糖 質 (0.5%) 単糖、二糖、多糖類 脂 質 (13.5%) 中性脂肪、リン脂質、ステロイド、脂溶性ビタミン タンパク質 (16%) 細胞内タンパク、膜受容体、酵素、ペプチドホルモン
- c. 無機物 水、電解質イオン

1) 電解質とは 水に溶けるとイオンになる物質

陽イオン Na^+ ナトリウム、 Ca^{++} カルシウム、 Mg^{++} マグネシウムなど 陰イオン Cl^- 塩素イオン、 HCO_3^- 重炭酸イオン、 HPO_4^{--} リン酸イオンなど

2) 細胞の中と細胞の外(間質)のイオンの分布

細胞内に多いイオン	K+カリウム 、HPO ₄ リン酸イオン、Mg ⁺⁺ マグネシウム		
細胞外に多いイオン	Na⁺ナトリウム 、Cl ⁻ 塩素イオン、HCO ₃ ⁻ 重炭酸イオン		
Na、Kの働き	Na イオンの働き 興奮性細胞、体液の浸透圧を決定する		
Na、K V/割さ	K イオンの働き 興奮性細胞、筋の収縮に作用する。		

3)酸と塩基

- a. 酸とは 水に溶けて H^+ 水素イオンを出す物質。 H^+ の濃度が酸性度を決定する。
 - ① 強 酸 完全に解離して H^+ になるもの(**胃液:塩酸** HCl、硫酸 H_2SO_4 など)
 - ② 弱 酸 完全には解離しないもの(酢酸 CH₃COOH)、炭酸 H₂CO₃)
- b. **塩基(アルカリ)とは** 塩基は H^+ と結合する物質で生体では重炭酸 HCO_3 などがある。
- c. pH とは H^+ の増減により酸性度を測定する単位($pH1.0 \sim 14$ の範囲)

1	中	性	(pH7.0)	生体では H^+ と HCO_3^- の割合が同じ場合
2	酸	性	(pH7.0以下で pH1.0 の範囲)	酸性物質 H+が多いと pH は低くなる。
3	塩基	生性	(pH7.0 以上で pH14.0 の範囲)	HCO₃⁻が H⁺より多いと pH は高くなる。

4) 人体の酸性物質とアルカリ物質

	胃や十二指腸以外の粘液細胞 (杯細胞を含む)
	・唾液腺の粘液
	・気管や気管支腺の粘液
酸性物質	• 胃液
	・腸管の粘液
	• 子宮頸管粘液
	・CO ₂ や H+イオンなどの酸性物質
	胃の粘液細胞、十二指腸粘液細胞など
アルカリ物質	・胃副細胞粘液、噴門腺や幽門腺(中性~アルカリ性)
	・十二指腸腺粘液(アルカリ粘液)

8. 組 織(14)

1)組織の成り立ち (器官は次の4つの組織から成り立っている)

組織の種類	存在場所	発生由来
1) 上皮組織	体表、管腔の内面、腹腔臓器の表面を覆う。	外、中、内胚葉
2) 支持組織	身体を支持する、組織同士を結合	中胚葉
3) 筋組織	身体の運動、消化管の運動、心臓ポンプ中胚葉	
4) 神経組織	電気的な調節、命令を伝える。感知する。	外胚葉

(1) 上皮組織 (15図) 上皮組織は外界に通じる!中皮や内皮は外界と通じていない!

1	単層扁平上皮	肺胞 I 型上皮・腹膜 中皮・ 胸膜 中皮・血管 内皮	
2	重層扁平上皮	皮膚(角化)・口腔・舌、 食道(角化なし)・ 膣(角化なし)	
3	単層立方上皮	甲状腺濾胞上皮・ 尿細管 上皮・細い導管	
4	単層円柱上皮	消化管上皮・ 太い導管	
5	線毛(円柱)上皮	鼻腔・気管・気管支上皮・卵管上皮	
6	移行上皮	膀胱上皮-尿管上皮-腎盂上皮	

腺組織(上皮細胞が分泌機能をもつようになった細胞集団)(16(図))

		分泌物を 導管 に分泌する腺組織
	外分泌組織	腺房で分泌物が生成され、導管によって分泌される
腺組織		唾液腺、胃腺、膵臓、肝臓、気管腺、前立腺など
導管が無く、分泌物を 血中 に		導管が無く、分泌物を 血中 に分泌(ホルモンという)
	内分泌組織	下垂体、甲状腺、副腎、膵ランゲルハンス島、卵巣
		精巣、副甲状腺、松果体など

(2) 支持組織(17、18、19**(図)**)

		膠原線維	粘膜下組織、 腱 (筋と骨)や 靭帯 (骨と骨)
	線維	弾性線維(ゴム)	大動脈、黄色靭帯、 喉頭蓋、耳介
		細網線維(ネット)	肝臓、脾臓、骨髄、リンパ節、扁桃
結合組織		線維芽細胞	結合組織の線維を形成、(線維化、瘢痕)
	細胞	脂肪細胞	中性脂肪を蓄える。
		色素細胞	メラニン細胞 (皮膚基底層)
		白血球	顆粒球、リンパ球、組織球、肥満細胞
骨	骨膜・緻密質・海綿質・骨粱・骨髄(赤色髄と 黄色髄)		綿質・ 骨粱・骨髄(赤色髄 と 黄色髄)
		硝子軟骨	肋軟骨、関節軟骨、気管軟骨、鼻軟骨
軟骨		弹性軟骨	喉頭蓋、耳介、外耳道
		線維軟骨	椎間円板、恥骨結合
血液・リンパ	4	血球(血液細胞)と血小板・血漿、リンパ液	

(3) 筋組織 (20 (図))

横紋筋	1) 骨格筋	随意筋	運動神経支配
	2) 心筋	不随意筋	自律神経支配と刺激伝導系の調節
平滑筋	平滑筋	不随意筋	自律神経支配

筋の分布

骨格筋の分布	手足の骨格筋、頸部の筋、舌、食道上部、肋間筋、横隔膜など
心筋の分布	心房筋、心室筋、刺激伝導系の特殊心筋
平滑筋の分布	血管、気管、気管支、尿管、卵管、子宮、膀胱、消化管の筋

(4) 神経組織(21図)

		灰白質(皮質)	神経細胞層 各種の中枢がある	
		白 質 (髄質)	神経線維層 遠心性、求心性の神経線維	
	-	a.神経細胞	樹状突起 刺激を受ける(求心性) シナプス	
中枢神経	脳	(ニューロン)	軸 索 刺激を伝える(遠心性) を形成	
		b. 神経膠細胞	①星状膠細胞 血液脳関門	
		(グリア細胞)	②希突起膠細胞 神経線維を包む 髄鞘 を形成	
			③小膠細胞 食作用(中胚葉由来)	
	脊 髄	灰白質 (髄質)	前角、後角、側角の神経細胞集団	
		白 質 (皮質)	神経線維の通り道	
	脳神経(12) 体性神経 嗅、視、動、消		対)	
			骨、三、外、顔、内(聴)、舌咽、迷、副、舌下神経	
末梢神経		脊髓神経 (31 対) 運動神経、知覚神経		
	自律神経	交感神経 (胸髄と腰髄)/胸腰系	
			脳幹と仙髄)/脳仙系	

大脳の灰白質(神経細胞が集まる)と 白質(神経線維の集まり)

脊髄の灰白質は大脳と逆転し、髄質 が灰白質となり、**皮質が白質となる**。

3章 器官

1)器官の構成

組織が集まって器官を構成し特有な機能を持った器官が集まって、一定の機能を持つ器官系がつくられる。器官系には**骨格器系、筋肉系、神経系、感覚器系**、循環器系、消化器系、呼吸器系、泌尿器系、内分泌系、**生殖器系**などが構成される。

2)器官の種類 (23)

体 腔 頭蓋腔、脊柱管、鼻腔、口腔、胸腔、心囊腔、腹腔、骨盤腔

中空器官 管状器官で消化管、気道、尿管、膀胱、卵管、子宮がある。

中空器官は内側から粘膜、筋層、漿膜が区別される。

実質器官 内腔を欠き、組織が充実した器官で実質と間質からなる。肝臓、膵臓、腎臓

3) 生体にある膜(25(図))

漿 膜 胸膜(胸腔と肺表面)・腹膜(腹腔と腹腔臓器表面)・心膜(心囊内面、心臓表面)などにある**漿液を分泌**する **中皮細胞**からなる。漿膜は表面

の中皮細胞、その下の基底膜、疎性結合組織を含む。

粘 膜 外界につながる中腔器官内面を被う上皮で**粘液を分泌**する細胞。

滑 膜 関節内腔をおおう膜で**滑液を分泌。**

髄 膜 中枢神経(脳と脊髄を守る膜)、**硬膜、クモ膜、軟膜の3膜**からなる。

内 膜 血管などの内腔表面を被う**内皮細胞**は単層扁平上皮細胞である。

間 膜 │ 臓器を後腹壁に固定するための漿膜の二重膜(腸間膜など)

腔と膜

