Zadanie 8. 2019.

- 1. Premeňte na obyčajné zlomky: $8, \overline{4}$; $2,60\overline{42}$; $3,\overline{012}$; $10,2\overline{94}$, $5,0\overline{15}$.
- 2. Určte súčet nekonečného geometrického radu a potom vyriešte rovnicu:

$$(x + 3x^2) + (x^3 + 3x^4) + (x^5 + 3x^6) \dots = \frac{5}{3}$$
.

- 3. Vyjadrite:
 - a) $(7165)_8$ v 16-kovej sústave
 - b) $(E7E1)_{16}$ v 8 -kovej sústave
 - c) (11001110101,01011)₂ v šestnástkovej sústave.
 - d) $(2731)_8$ v 16-kovej sústave
 - e) $(A7AB)_{16}$ v 10 -kovej sústave
 - f) $(1101100101,1001)_2$ v osmičkovej sústave.
- 4. Vyjadrite: $(3587,25)_{10}$ v trojkovej sústave.
- 5. Určte prvý člen geometrickej postupnosti, ak súčet nekonečného radu z nej vytvoreného je 5 a súčet prvých štyroch členov sa rovná $\frac{75}{16}$.
- 6. Súčet nekonečného geometrického radu sa rovná 9 a súčet druhých mocnín jeho členov sa rovná $\frac{81}{2}$. Určte tento geometrický rad.
- 7. Ak uložíme do banky 1500€, koľko peňazí budeme mať pri 2% jednoduchom úrokovaní (zloženom) po 20-tich rokoch?
- 8. Ak uložíme do banky 1500€, koľko peňazí budeme mať pri 2% úrokovaní (zloženom) po 20-tich rokoch?
- 9. Ak uložíme začiatkom každého roka do banky 1500€, koľko peňazí budeme mať pri 2% úrokovaní (zloženom) po 20-tich rokoch?

Poznámka.

Pri zloženom p% úrokovaní sa nasledujúci rok pripíše k sume p% z istiny, ktorá bola v banke začiatkom predchádzajúceho roka, teda po k- rokoch je v banke spolu $\left(1+\frac{p}{100}\right)^k z$, kde z je istina.

Pri jednoduchom zloženom p% úrokovaní sa po k- rokoch pripíše k istine suma $\frac{p}{100}kz$, teda spolu je to $z + \frac{p}{100}kz$. Úrok sa počíta jednoducho iba z vloženej časti.