Storypoint Problem Exploration - jirasoftware

September 4, 2024

1 Storypoint Prediction: Problem Exploration

1.1 Problem Statement

In modern agile development settings, software is developed through repeated cycles (iterative) and in smaller parts at a time (incremental), allowing for adaptation to changing requirements at any point during a project's life. A project has a number of iterations (e.g. sprints in Scrum). Each iteration requires the completion of a number of user stories, which are a common way for agile teams to express user requirements.

There is thus a need to focus on estimating the effort of completing a single user story at a time rather than the entire project. In fact, it has now become a common practice for agile teams to go through each user story and estimate its "size". Story points are commonly used as a unit of measure for specifying the overall size of a user story.

1.2 Problem Formulation

Input: A string of length N that contains a story's name and description $C = \{c_1, c_2, c_3, ..., c_n\}$. For each story, a set of text embeddings that contains features $E = \{e_1, e_2, e_3, ..., e_m\}$ extracted from C has been provided.

Output: A natural number P associated with the story point of that user story

1.3 Dataset Information

Text Embeddings: Text embeddings are a way to convert words or phrases from text into a list of numbers, where each number captures a part of the text's meaning. The dataset has been preprocessed and converted into two kinds of text embeddings. You can choose to work with either of them or both: - Doc2Vec: Input strings are transformed into fixed-length vectors of size 128. These vectors capture the semantic meaning of words and their relationships within a document. - Look-upTable: Input strings are transformed into fixed-length vectors of size 2264. These vectors are obtained via transforming each word in the input strings into an identifier number, then padded to the length of the longest sample.

Dataset Structure & Format: Storypoint Estimation Dataset is stored in 3 folders labeled raw data, look-up, and doc2vec. Within each folder are 3 CSV files for training, testing, validation. Each csv file has the following columns: - issuekey: The unique identifier for a story. - storypoint: The correct number of storypoint. - An embedding column (embedding or doc2vec) contains text embedding vectors. The raw data csv will not have this and instead contain two columns with story name and description.

1.4 Exploration

1.4.1 Raw data exploration

```
[]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.feature_extraction.text import CountVectorizer
```

Output exploration

Check the shape of the dataset (286, 4)

```
[]: all_data.drop(['issuekey'], axis=1, inplace=True) all_data.head()
```

```
[]: title \
0 generic webwork aliases may clash plugins
1 generic webwork aliases may clash plugins
2 add text agile gadget invalid project message
3 add text agile gadget invalid project message
4 greenhopper ranking field displayed correctly ...
```

description storypoint

web work actions commands generic aliases upda...

web work actions commands generic aliases upda...

error invalid project add details project conf...

error invalid project add details project conf...

using greenhopper ranking field conjunction ji...

20

First, let take a look at the distribution of the story point:

Interpretation of Skewness Values:

- **Skewness** > **0**: Right-skewed distribution.
- **Skewness** < **0**: Left-skewed distribution.

• **Skewness** = **0**: Symmetrical distribution (like a normal distribution).

Interpretaion of kurtosis: - **Leptokurtic** (**Kurtosis** > **3**): The distribution has heavier tails and a sharper peak than the normal distribution. Data points are more likely to produce extreme values. The distribution has a higher peak and fatter tails. - **Platykurtic** (**Kurtosis** < **3**): The distribution has lighter tails and a flatter peak than the normal distribution. Data are fewer extreme values compared to a normal distribution. - **Mesokurtic** (**Kurtosis 3**): The distribution has a similar kurtosis to the normal distribution, indicating a moderate level of outliers.

```
[]: # Draw a histogram of the story points
plt.figure(figsize=(12, 4))
plt.xticks(np.arange(0, max(all_data['storypoint']) + 1, 5))
sns.histplot(all_data['storypoint'], bins=100, kde=True)

print('Skewness:', all_data['storypoint'].skew())
print('Kurtosis:', all_data['storypoint'].kurt())
```

Skewness: 2.1840775681588993 Kurtosis: 5.952213192506422

[]:		Counts	Percentage (%)
	storypoint		
	5	80	27.972028
	3	65	22.727273
	2	60	20.979021
	8	35	12.237762
	1	26	9.090909

13	13	4.545455
20	6	2.097902
4	1	0.349650

At the first sight, this data is bad. Then take a look at the statistic values, this data is even worse. Its distribution of the label is **right-skewed** and **leptokurtis**. This means if we use this to train model, the right side of the data can be the outliers and make the models become unsuable.

I will try 2 solutions: - Use log-scale on the label - Remove all the examples with label greater than a threshold (20, 30 or 40)

The first solution: logarithm magic

```
[]: sns.histplot(np.log(all_data['storypoint']), bins=20, kde=True)
```

[]: <Axes: xlabel='storypoint', ylabel='Count'>


```
[]: print('Skewness:', np.log(all_data['storypoint']).skew())
print('Kurtosis:', np.log(all_data['storypoint']).kurt())
```

Skewness: 0.10703158377434131 Kurtosis: -0.19017406804855108

The second solution: Dismantle and Cleave

Fitered percentage: 2.0 %

Input exploration The input of this problem is 2 texts: title and description. First we will find some statistics:

Title analysis:

- Mean length: 9

- Min length: 2

- Max length: 16

Description analysis:

Mean length: 45Min length: 0Max length: 328

Plot the histogram of the title length and KDE of the description length (exclude 0):

```
plt.figure(figsize=(12, 8))

plt.subplot(2, 1, 1)
plt.xticks(np.arange(0, max(title_lengths) + 1, 1))
plt.xlabel('Title Length')
sns.histplot(title_lengths, bins=max(title_lengths))

plt.subplot(2, 1, 2)
plt.xlabel('Description Length')
plt.xscale('log')
sns.kdeplot(description_lengths[description_lengths > 0])
```

[]: <Axes: xlabel='Description Length', ylabel='Density'>

I think we should check the correlation between title length and description length:

```
[]: plt.figure(figsize=(12, 4))
```

```
plt.subplot(1, 2, 1)
plt.xticks(np.arange(0, max(all_data['title'].apply(lambda x: len(x.split('__
 \hookrightarrow')))) + 1, 5))
sns.regplot(x=all_data['title'].apply(lambda x : len(x.split(' '))),
             y=all_data['storypoint'],
            line kws={'color': 'red'})
plt.subplot(1, 2, 2)
sns.regplot(x=all_data['description'].apply(lambda x : len(x.split(' ')) if
 \hookrightarrowtype(x) != float else 0),
             y=all_data['storypoint'],
            line_kws={'color': 'red'})
```

[]: <Axes: xlabel='description', ylabel='storypoint'>

We can see slight correlation between title, description with storypoint.

Let dive deeper in the input:

Title analysis:

617

```
[ ]: count_vectorizer = CountVectorizer()
     count_vectorizer.fit(all_data['title'])
     dictionary = pd.DataFrame(list(count_vectorizer.vocabulary_.items()),__

¬columns=['word', 'frequency'])
     dictionary.sort_values(by='frequency', ascending=False, inplace=True)
     print(dictionary.shape)
     dictionary.head(10)
    (637, 2)
[]:
```

frequency

636

word

yet

```
222
                                        635
                            yes
409
                                        634
                            xml
338
                            xhr
                                        633
613
                         write
                                        632
630
                                        631
                          wrap
29
                         would
                                        630
603
                         works
                                        629
67
     workloghistorycacheimpl
                                        628
480
                       working
                                        627
```

Description analysis:

(2208, 2)

```
[]:
                     frequency
               word
                           2207
     1544
            zoomed
     2005
                           2206
              zones
     2072
               zone
                           2205
     149
               zero
                           2204
     963
                           2203
              youre
     1266
                           2202
              youll
     277
                yet
                           2201
     1035
                           2200
                yes
     353
            yellow
                           2199
     1993
                           2198
              years
     1692
              yaxis
                           2197
     2118
           xsssafe
                           2196
     1087
                           2195
                XSS
     1224
               xsrf
                           2194
     39
                           2193
                xml
     907
                xhr
                           2192
     1252
               xbox
                           2191
     1797
                           2190
              wrong
     1580
           writing
                           2189
     814
              write
                           2188
```

Yet I don't find any thing special about the words in input except so many things are bad.

1.4.2 Solving strategies

My first intuitation in this problem is that the hard part is not on the algorithm we use, it is on the **embedding** part. Therefore, in case the given embedded datasets work not properly, I will use a better embedding method which is **Bidirectional Encoder Representations from Transformers (BERT)**. Also, I will try an old way to embedding the text too: **Bag of words**.

In conclusion, I will have 4 ways to embed the text: - doc2vec (already available) - Look up (already available) - Bag Of Words - BERT

About algorithm, I will try all the regression algorithm that may give a good result:

- Ridge Regressor
- Support Vector Regressor
- Random Forest Regressor
- Gradient Boosting
- XGBoost
- Lightgbm
- Blended

Maybe, we can change the problem to the classification problem with 100 labels (desparation confirmed). In the classification problem, I will use: - Support Vector Classifier - Softmax Regression (Multinomial Logistic Regression) - Random Forest - Adaboost - XGBoost

Thanks to the libaries, the implementation of all the algorithm shrinks to its minimum form.

At last, there is still a situation that all of mentioned model don't give a good result. This gamble is thrilling (hopeless).

"But would you lose?"

Nah, I'd win.