

Regresión: Decision Tree y SSE

Minería de Datos Zavala Roman Irvin Eduardo 1270771

SSE (Sum of Squared Errors)

Este índice representa la diferencia entre los valores reales y los valores predecidos, donde el mejor valor es 0. Si el error es menor significa que el modelo representa de manera precisa el comportamiento del fenómeno observado.

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SSE (Sum of Squared Errors)

SSE (Sum of Squared Errors)

El SSE no existe en sklearn pero es fácil calcularlo con numpy.

$$sse = np.sum((y_test - y_pred)**2)$$

O se podría hacer un for sumando el cuadrado de las diferencias.

Observaciones

- El cuadrado hace que las diferencias que den negativo se hacen positivas.
- Al no tener un rango, SSE puede variar el valor "normal" respecto a dataset.
- Si el modelo se aleja bastante del fenómeno, gracias al cuadrado se nota bastante la diferencia
- Por sí solo no dice mucho
- Se suele calcular para calcular R2 que si tiene un rango delimitado.

Decision Tree Regressor (sklearn.tree.DecisionTreeRegressor)

Simplemente es una adaptación del clasificador por árboles a datos continuos. La función tiene los mismos parámetros que el clasificador.

Decision Tree Regression:

Decision Tree Classifications:

Decision Tree Regressor

Clasificación

Regresión

Decision Tree Regressor (Código)

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
import pandas as pd
dataset = pd.read_csv("dataset.csv", on_bad_lines='skip')
labels = dataset.columns
X = dataset.loc[:, labels[:-1]].values
y = dataset.loc[:, labels[-1]].values
X_train,X_test,y_train,y_test = train_test_split(X, y, train_size0.6)
model = DecisionTreeRegressor()
y_pred = model.fit(X_train, y_train).predict(X_test)
```

Decision Tree Regressor

Decision Tree Regressor (Observaciones)

- Las mismas ventajas que en clasificación
- Soporta multi-output
- Datos faltantes no afecta el árbol
- El entrenamiento puede ser tardado
- No se recomienda con valores continuos por la forma recursiva en la que se crea el árbol, haciendo overfitting

Datasets utilizados

- China (1 entrada | 1 salida)
 Relaciona años y un valor monetario
- Energy Eficciency (8 entradas | 2 salidas)
 Busca estudiar la eficiencia energética de construcciones
- scm20d(61 entradas | 16 salidas)
 - Supply Chain Management, muy complicado pero se puede consultar:
 - https://www.openml.org/search?type=data&sort=runs&id=41404

Metodos utilizados

Regresión:

- Lineal
- DecisionTree
- KNeighbors

Métricas: R, R², SSE, MAE, MSE, RMSE

Split methods: Holdout, random subsampling y kfold

Objeto creado

```
class regressor():
    """
    Clase para hacer regresiones
    Soporta los splitters: [holdout,random_subsampling,kfold]
    Soporta los regresores: [linear, decisiontree, kneighbors]
    regressor(self, X, y, split_method: str, regressor: str, k=None, train_size=None)
    Se tienen los metodos:
        regression: Hace el fit y predict
            getMetrics: Retorna r,r2,sse,mae,mse,rmse
    """
```

```
dataset = pd.read csv('scm20d.csv", on bad lines='skip') #2 output dataset
labels = dataset.columns
X = dataset.loc[:, labels[:-16]].values
v = dataset.loc[:, labels F16:]].values
best row = [0,0,0,0,0,0]
best combination = ['split', 'regressor']
for regression method in regression methods:
    i = 0
    table = []
    head table = ["SPLIT METHOD", "r", "r2", "sse", "mae", "mse", "rmse"]
    table.append(head table)
    for split method in split methods:
        if(i == 0):
            rObj = regressor(X, y, split method, regression method 5, 0.6)
        if(i == 1):
            rObj = regressor(X,y,split method,regression method,30, 0)
        if(i == 2):
            rObj = regressor(X,y,split method,regression method,5, 0)
        if(i == 3):
            rObj = regressor(X,y,split method,regression method,10, 0)
        i +=1
        rObj.regression()
        r, r2, sse, mae, mse, rmse = rObj.getMetrics()
        row = [split method,float("{:.3f}".format(r)),
               float("{:.3f}".format(r2)), float("{:.3f}".format(sse)),
               float("\{:.3f\}".format(mae)), float("\{:.3f\}".format(mse)), float("\{:.3f\}".format(rmse))
        from statistics import mean
        import warnings
        warnings.filterwarnings(ignore')
        if(split method == 'holdout'):
            best row = row
        elif(mean([row[1],row[2]]) > mean([best row[1],best row[2]])and
             mean([row \beta], row [4], row [5], row [6]]) < mean([best row \beta], best row [4], best row [5], best row [6]])):
            best row = row
            best combination = [split method, regression method]
        table.append(row)
    print("
                                            ".format(regression method))
    print(tabulate(table, headers=firstrow', tablefmt='fancy grid'))
print(best combination)
```

Dataset 1 salida

linear										
SPLIT METHOD	r	r2	sse	mae	mse	rmse				
holdout	1	0.437	6.07269e+25	1.34583e+12	2.76032e+24	1.66142e+12				
random_subsampling	1	-9.153	1.99885e+25	1.35936e+12	3.33141e+24	1.70011e+12				
kfold	1	-0.121	3.72116e+25	1.39914e+12	3.38287e+24	1.79232e+12				
kfold	1	-128.26	1.82102e+25	1.40222e+12	3.44207e+24	1.70217e+12				
decis	decisiontree									
SPLIT METHOD	r	r r2	sse	sse mae		rmse				
holdout	0.72	0.956	6.96766e+24	3.07564e+11	3.16712e+23	5.62771e+11				
random_subsampling	0.863	3 0.959	7.03012e+23	1.6e+11	1.17169e+23	2.80282e+11				
kfold	0.827	7 0.952	2.48363e+24	2.24151e+11	2.25784e+23	4.01878e+11				
kfold	0.851	0.956	8.37061e+23	1.95682e+11	1.56464e+23	3.15644e+11				
kneig	hbors_		*	×1111111111111111111111111111111111111						
SPLIT METHOD	ŗ	r r2	sse	mae	mse	rmse				
holdout	0.753	3 0.918	9.45837e+24	1.98103e+11	4.29926e+23	6.55687e+11				
random_subsampling	0.85	0.904	3.61907e+24	3.09972e+11	6.03178e+23	5.78165e+11				
kfold	0.805	5 0.953	4.23738e+24	1.96449e+11	3.85217e+23	4.74558e+11				
kfold	0.866	6 0.963	2.8456e+24	2.10321e+11	4.80832e+23	3.57784e+11				

Dataset 1 salida: Mejor combinación

['kfold', 'kneighbors']

kneighbors								
SPLIT METHOD	ŗ	r2	sse	mae	mse	rmse		
holdout	0.753	0.918	9.45837e+24	1.98103e+11	4.29926e+23	6.55687e+11		
random_subsampling	0.85	0.904	3.61907e+24	3.09972e+11	6.03178e+23	5.78165e+11		
kfold	0.805	0.953	4.23738e+24	1.96449e+11	3.85217e+23	4.74558e+11		
kfold	0.866	0.963	2.8456e+24	2.10321e+11	4.80832e+23	3.57784e+11		

Dataset 2 salidas

linear										
SPLIT METHOD	r	r2	sse	mae	mse	rmse				
holdout	0.105	0.895	6099.49	4.41	19.804	4.45				
random_subsampling	0.099	0.897	1495.71	4.421	19.425	4.391				
kfold	0.098	0.898	2952.98	4.368	19.23	4.38				
kfold	0.096	0.897	1478.46	4.382	19.25	4.383				
decis	decisiontree									
SPLIT METHOD	r	r2	sse	mae	mse	rmse				
holdout	0.115	0.961	2212.51	1.784	7.183	2.68				
random_subsampling	0.097	0.968	444.247	1.586	5.769	2.373				
kfold	0.092	0.974	738.482	1.47	4.808	2.181				
kfold	0.093	0.969	429.054	1.54	5.584	2.353				
kneig	nbors									
SPLIT METHOD	r	r2	sse	mae	mse	rmse				
holdout	0.066	0.938	3609.67	3.541	11.72	3.423				
random_subsampling	0.076	0.961	583.619	2.805	7.579	2.733				
kfold	0.069	0.956	1306.11	2.988	8.505	2.914				
kfold	0.069	0.959	596.492	2.817	7.772	2.778				

Dataset 2 salidas: Mejor combinación

['random_subsampling', 'kneighbors']

kneighbors								
SPLIT METHOD	r	r2	sse	mae	mse	rmse		
holdout	0.066	0.938	3609.67	3.541	11.72	3.423		
random_subsampling	0.076	0.961	583.619	2.805	7.579	2.733		
kfold	0.069	0.956	1306.11	2.988	8.505	2.914		
kfold	0.069	0.959	596.492	2.817	7.772	2.778		

Dataset 16 salidas

linear									
SPLIT METHOD	г	r2	sse	mae	mse	rmse			
holdout	0.29	0.586	1.674e+09	2020.91	466685	683.144			
random_subsampling	0.3	0.586	4.23947e+08	2028.78	472627	687.348			
kfold	0.297	0.585	8.44496e+08	2024.32	470942	686.079			
kfold	0.297	0.585	4.21977e+08	2023.77	470637	685.964			
decis	iontree_								
SPLIT METHOD	r	r2	sse	mae	mse	rmse			
holdout	0.217	0.61	1.60106e+09	1557.28	446351	668.095			
random_subsampling	0.228	0.693	3.09842e+08	1342.19	345420	587.591			
kfold	0.228	0.68	6.49951e+08	1390.07	362455	602.006			
kfold	0.229	0.693	3.1111e+08	1347.29	346988	589.013			
kneigh	ibors_		-						
SPLIT METHOD	г	r2	sse	mae	mse	rmse			
holdout	0.243	0.833	6.77737e+08	1057.91	188943	434.675			
random_subsampling	0.244	0.867	1.35113e+08	901.095	150627	387.721			
kfold	0.243	0.858	2.85686e+08	936.059	159316	399.133			
kfold	0.242	0.869	1.32809e+08	895.141	148126	384.147			

Dataset 16 salidas: Mejor combinación

['random_subsampling', 'kneighbors']

kneighbors									
SPLIT METHOD	r	r2	sse	mae	mse	rmse			
holdout	0.243	0.833	6.77737e+08	1057.91	188943	434.675			
random_subsampling	0.244	0.867	1.35113e+08	901.095	150627	387.721			
kfold	0.243	0.858	2.85686e+08	936.059	159316	399.133			
kfold	0.242	0.869	1.32809e+08	895.141	148126	384.147			

Referencias

- *Error sum of squares*. (s/f). Stanford.edu.
 - https://hlab.stanford.edu/brian/error_sum_of_squares.html
- Girgin, S. (2019). Decision tree regression in 6 steps with python. PursuitData.
 - https://medium.com/pursuitnotes/decision-tree-regression-in-6-steps-with-python-1a1c5aa 2ee16
- *Sklearn.tree.decisionTreeRegressor.* (s/f). Scikit-Learn.
 - https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
- Valchanov, I. (2018). Sum of squares total, sum of squares regression and sum of squares error. 365 Data Science.
 - https://365datascience.com/tutorials/statistics-tutorials/sum-squares/
- Zach. (2021). A gentle guide to sum of squares: SST, SSR, SSE. Statology.
 - https://www.statology.org/sst-ssr-sse/