1 Setups

1.1 Data Camp

I completed the course by taking the quiz.

Figure 1: Quiz in datacamp

1.2 R

As shown in Figure 2

Figure 2: Settings and the libraries

1.3 Debugger

See figure 3

Figure 3: Screenshot of using debugger on a simple function

1.4 GitHub Setting

I created a repository for the whole lecture instead. See figure 4

Figure 4: Github page, with the hello world files pushed on it

2 NBER Working Paper

2.1 List paper on NBER

The second paper on the list is

KFstar and Portfolio Inflows: A Focus on Latin America by Burger, John D and Warnock, Francis E and Warnock, Veronica Cacdac

2.2 Download a Paper

As in figure 5, I downloaded the paper.

Figure 5: Screenshoe - paper downloaded

3 SRDA

3.1 SRDA Account

The account info is shown in figure 6

4 Roy Model

4.1 Theoretical Results

4.1.1 Derivation

We first start from considering the probability of migration. One migrates under the condition

$$w_{1i} > w_{0i} + C \tag{1}$$

Figure 6: Account info of SRDA

Where $w_{0i} = \mu_{0i} + \epsilon_0$ and $w_{1i} = \mu_{1i} + \epsilon_1$, and the error terms together follow a joint-normal distribution

$$\begin{pmatrix} \epsilon_0 \\ \epsilon_1 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_0^2, \sigma_{01} \\ \sigma_{01}, \sigma_1^2 \end{pmatrix} \right) \tag{2}$$

The probability of migration is then, according to Eq. (2)

$$P(w_{1i} > w_{0i} + C) = P(v_i > \mu_0 - \mu_1 + C)$$
$$= 1 - \Phi(\frac{\mu_0 - \mu_1 + C}{\sigma_{\nu}})$$
$$= 1 - \Phi(z)$$

The expected wage of an imigrant is then Note: Subscripts i are neglected for simplicity

$$\mathbb{E}(w_0 \mid I) = \mathbb{E}(w_0 \mid v > \mu_0 - \mu_1 + C)$$

$$= \mu_0 + \mathbb{E}(\epsilon_0 \mid v > \mu_0 - \mu_1 + C)$$

$$= \mu_0 + \mathbb{E}\left(\epsilon_0 \mid \frac{\nu}{\sigma_\nu} > \frac{\mu_0 - \mu_1 + C}{\sigma_\nu}\right)$$

A linear combination of random variables following normal distribution also follows a normal distribution. Therefore $\mathbb{E}\left(\epsilon_0 \mid \frac{\nu}{\sigma_{\nu}}\right)$ is just a conditional expectation of a bivariate normal distribution consisting ϵ and ν/σ_{ν} .

Since for a bivariate normal distribution, we have

$$\mathbb{E}[X \mid Y = y] = \mu_x + \rho_{xy} \frac{\sigma_x}{\sigma_y} (y - \mu_y)$$
 (3)

Substituding $X = \epsilon_0$ and $Y = \nu$ into Eq. (3), we get

$$\mathbb{E}(\epsilon_0 \mid \nu) = \rho_{0\nu} \frac{\sigma_0}{\sigma_\nu} \nu \tag{4}$$

and hence

$$\mathbb{E}(\epsilon_0 \mid \frac{\nu}{\sigma_{\nu}}) = \left(\rho_{0\nu} \frac{1}{\sigma_{\nu}}\right) \frac{\sigma_0}{\sigma_{\nu} \frac{1}{\sigma^2}} \frac{\nu}{\sigma_{\nu}} = \frac{\rho_{0\nu} \sigma_0}{\sigma_{\nu}} \nu$$

Therefore

$$\mathbb{E}(w_0 \mid I) = \mu_0 + \mathbb{E}\left(\epsilon_0 \mid \frac{\nu}{\sigma_\nu} > \frac{\mu_0 - \mu_1 + C}{\sigma_\nu}\right)$$

$$= \mu_0 + \rho_{0\nu}\sigma_0 \mathbb{E}\left(\frac{\nu}{\sigma_\nu} \mid \frac{\nu}{\sigma_\nu} > \frac{\mu_0 - \mu_1 + C}{\sigma_\nu}\right)$$
(5)

Realize that the last expectation Eq. (5) is the expected value of a truncated normal distribution, which can rewrite it as

$$\mathbb{E}(w_0 \mid I) = \mu_0 + \rho_{0\nu}\sigma_0 \frac{\phi(z)}{1 - \Phi(z)}$$
 (6)

Since the correlation coefficient can be negative, we know nothing about this result Let us preced and solve for $\rho_{0\nu}$ further for better insight.

$$\rho_{0v} = \frac{\sigma_{0\nu}}{\sigma_0 \sigma_{\nu}}$$

$$\sigma_{0\nu} = cov(\epsilon_0, \nu) = \mathbb{E}(\epsilon_0(\epsilon_1 - \epsilon_0)) = \sigma_{01} - \sigma_0^2$$
(7)

Substitude the result from Eq. Eq. (7) and $\rho_{01} = \sigma_{01}/\sigma_0\sigma_1$, Eq. (6) now becomes

$$\mathbb{E}(w_0 \mid I) = \mu_0 + \frac{\sigma_{01} - \sigma_0^2}{\sigma_\nu} \frac{\phi(z)}{1 - \Phi(z)} = \mu_0 + \frac{\sigma_0 \sigma_1}{\sigma_\nu} \left(\rho - \frac{\sigma_0}{\sigma_1}\right) \frac{\phi(z)}{1 - \Phi(z)}$$
(8)

Similarly, for $\mathbb{E}(w_1 \mid I)$, we have

$$\mathbb{E}(w_1 \mid I) = \mathbb{E}(w_1 \mid v > \mu_0 - \mu_1 + C)$$

$$= \mu_1 + \mathbb{E}(\epsilon_1 \mid v > \mu_0 - \mu_1 + C)$$

$$= \mu_1 + \mathbb{E}\left(\epsilon_1 \mid \frac{\nu}{\sigma_{\nu}} > \frac{\mu_0 - \mu_1 + C}{\sigma_{\nu}}\right)$$

Substituding 1 for 0 in Eq. (4), we get

$$\mathbb{E}(\epsilon_1 \mid \frac{\nu}{\sigma_{\nu}}) = \frac{\rho_{1\nu}\sigma_1}{\sigma_{\nu}}\nu\tag{9}$$

Eq. (7) now becomes

$$\sigma_{1\nu} = cov(\epsilon, \nu) = \mathbb{E}(\epsilon_1(\epsilon_1 - \epsilon_0)) = \sigma_1^2 - \sigma_{01}$$
 (10)

Hence together we get

$$\mathbb{E}(w_1 \mid I) = \mu_1 + \rho_{1\nu}\sigma_1 \frac{\phi(z)}{1 - \Phi(z)} = \mu_1 + \frac{\sigma_0\sigma_1}{\sigma_\nu} \left(\frac{\sigma_1}{\sigma_0} - \rho\right) \frac{\phi(z)}{1 - \Phi(z)}$$
(11)

4.1.2 $Q_0 > 0$ and $Q_1 < 0$?

According to Eq. (8) and Eq. (11), this would imply that

$$\begin{cases} \rho > \frac{\sigma_0}{\sigma_1} \\ \rho > \frac{\sigma_0}{\sigma_1} \end{cases}$$

But either will exceed 1, making it mathematically imposible to happen since correlation coefficient must be bounded under 1.

Intuitively, it means that people migrate to a place where expectation wage is lower than that in local. which is weird and irrational.

5 Simulation

5.1 Simulation

5.1.1 The code

```
1 library(MASS)
2 library(data.table)
3 library(dplyr)
4 library(xtable)
5 setwd("~/111-1/Labor Economic/HW1/src")
      ## Parameters settings
8 N = 1e7
9 \text{ mu0} = 10
10 \text{ mu1} = 15
11 \text{ sigma0} = 3
12 \text{ sigma1} = 4.5
13 \text{ sigma}_01 = 2
sigma_matrix = matrix(c(sigma0^2, sigma_01,
                            sigma_01, sigma1^2),
16
                          ncol=2)
17 C = 3
18
      ## Creating error terms, saving to data.table
20 wage = data.table(
    mvrnorm(n=N,mu=c(0, 0),Sigma=sigma_matrix)
22 )
  ## Rename
24
setnames(wage, "V1", "e0")
setnames(wage, "V2", "e1")
      ## Creating variables
28
29 wage[, W0 := e0 + mu0]
30 wage[, W1 := e1 + mu1]
31 wage[, Nu := e1 - e0]
32 \text{ wage}[, I := W1 > W0 + C]
      ## Calculating the empirical conditional mean
E_w0_I = wage[I==T, mean(W0)]
E_w1_I = wage[I==T, mean(W1)]
      ## Calculate the theoretical value
38
40 ## Calculate rho_nu
rho = sigma_01/(sigma0 * sigma1)
sigma_nu = sqrt(sigma0^2 + sigma1^2 - 2 * sigma_01)
43
44 ## calculate z
z = (mu0 - mu1 + C)/sigma_nu
```

```
46 IMR = \frac{dnorm(z)}{(1-pnorm(z))}
_{\rm 48} ## According to formula
49 calc_Q0 = mu0 + (sigma0 * sigma1)/sigma_nu * (rho - sigma0/
     sigma1) * IMR
50 calc_Q1 = mu1 + (sigma0 * sigma1)/sigma_nu * (sigma1/sigma0 -
      rho) * IMR
52 ## Compare
result = data.frame("Wage in source" = c(E_w0_I, calc_Q0), "
     Wage in host" = c(E_w1_I, calc_Q1))
rownames(result) = c("Simulation", "Theoretical")
55
56 print(
    xtable(result, caption = "Simulation result versus the
     theoretical result"),
         floating = TRUE, latex.environments = "center",
  file="roy_sim.tex")
```

5.1.2 Simulation Result

	Wage.in.source	Wage.in.host
1	9.22	17.05
2	9.22	17.04

Table 1: Simulation result versus the theoretical result