Length of largest sorted component reversed horizontally in a matrix

DAA ASSIGNMENT-2, GROUP 6

Hritik Sharma IIT2019020 Biswajeet Das IIT2019019 Shreyansh Patidar IIT2019018

Abstract—This Paper contains the algorithm to create a matrix of size 50×50 of numbers ranging from 0 to 9 and to find the length of the largest sorted component reversed horizontally. Two approaches have been taken and we will see the difference in complexity between both.

I. INTRODUCTION

Let's first formally define what *Subsequence* and sorting are.

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to arrange data in a particular order. Most common orders are in numerical or lexicographical order. A subsequence is a sequence contained in or forming part of another sequence.

II. ALGORITHMIC DESIGN

A. Approach 1

- 1. Assign values to a 2 D array of desired length using random function (n=50 in problem),
 - 2. Iterate over a loop through the entire 2D array row wise.
- 3. In each row , use a *dynamic_programming_approach* to obtain its largest sorted sequence length.
- 4. Compute optimized LIS values in bottom up manner for each row.
- 5. For each row , store the value of its longest sorted sequence in an array row_wise_max[n].
- 6. Print the maximum of all numbers in row_wise_max[n] array.

B. Approach 2

- 1. Traverse 2D array row-wise.
- 2. Make a new arr[] array and assign value a[0][n-1] to arr[0] for each row i. Now using pointer to arr[] elements iterate remaining array a[0][j] row wise , if the next element in a[0][j] is greater than the last element of arr[] then insert this element into arr[] else replace this element in place of element in a[0][j] which is just greater than or equal to that element.
- 3. Insertion here will be based on *binary_search* technique(divide and conquer) and simple comparison.
- 4. Store the length of the longest sorted sequence of each row in the row_wise_max[] array.
- 5. For each row, store the value of its longest sorted sequence in an array row_wise_max[n].

6. The maximum of all elements in the row_wise_max[] array would be the answer.

```
Algorithm 1: Longest Sorted Subsequence Horizontally
```

```
Input: Array of size nxn
 Output: Length Of LIS
1 Function LISequence (A, nxn):
     array a , LIS
3
     for i \leftarrow 0 to n-1 do
         LIS[n] = 1
4
         for j \leftarrow n-2 to 0 do
5
            for k \leftarrow n-1 to j do
6
                if (a[i][j] > a[i][k] \&\& LIS[j] <
7
                 LIS[k]+1) then
                    LIS[j]=LIS[k]+1;
            Row_wise_max[i] = maximum(LIS[n]);
     Ans = maximum(row_wise_max[n]);
```

Algorithm 2: Longest Sorted Subsequence Horizontally

```
Input: Array of size nxn
  Output: Length Of Longest Sorted Sequence
1 Function DynamicProgramming (a[][],n):
      for i \leftarrow 0 to n-1 do
2
          pntr=0,arr[0] = a[i][n-1];
3
 4
          for j \leftarrow n-2 to 0 do
             if a[i][j] >= arr[pntr] then
                 arr[++pntr]=a[i][j];
 6
 7
                 Index = search(arr,0,pntr,a[i][j]);
 8
                 arr[index] = a[i][j];
          Row_wise_max[i] = pntr + 1;
10
      Ans = maximum(row_wise_max[n]);
```

III. ALGORITHM ANALYSIS

A. Approach 1

For each row, the DP approach for LIS takes time $\propto n^2$. for each row, we need extra time $\propto n^2$ to calculate the maximum element in LIS.

Here the maximum value of n = 100. So the time complexity will be

$$O\left(n\left(n+2\cdot n\cdot \frac{n+1}{2}+n\right)\right) = O(3n^2+n^3)$$

when n = 0, = O(0) = 0ms

 t_{worst} : when n = 100, $t_{worst} = O(2.03 \cdot (10^6))$

B. Approach 2

Here, traversing over each row with size n will take time $\propto n$. Finding pos for each element will take maximum $\log(n)$ time. And insertion operation will take time n. So, the time complexity will be $O(n^2 \log(n))$

$$t_{best}$$
: when $n = 0, = O(0) = 0ms$

 t_{worst} : when n = 100, $t_{\text{worst}} = O(2 \cdot 10^4)$

IV. EXPERIMENTAL STUDY

V. CONCLUSION

Above two methods have different time complexities and meet to fulfill the problem statement. The order in which they are good can be listed as:

I. Approach 2

II. Approach 1

Based on the time complexities.

VI. REFERENCES

1).https//en.wikipedia.org/wiki/Sequence

2).https://www.geeksforgeeks.org/longest-increasing-subsequence-dp-3/

3).https://www2.cs.duke.edu/courses/spring18/compsci330/Notes/dynamic.