二 线性规划与目标规划

第1章 线性规划与单纯形法

第2章 对偶理论与灵敏度分析

第3章 运输问题

第4章 目标规划

第2章 对偶理论和灵敏度分析

第1节 单纯形法的矩阵描述

第2节 改进单纯形法

第3节 对偶问题的提出

第4节 线性规划的对偶理论

第5节 对偶问题的经济解释——影子价格

第6节 对偶单纯形法

第7节 灵敏度分析

第8节*参数线性规划

将该线性规划问题的约束条件加入松弛变量后,得到标准型:

$$\max_{z=CX+0X_s} 2 CX + 0X_s$$

$$AX + IX_s = b$$

$$X, X_s \ge 0$$

其中I是m×m单位矩阵。

若以 X_s 为基变量,并标记成 X_{B_s} 可将系数矩阵(A,I)分为(B,N)两块。B是基变量的系数矩阵,N是非基变量的系数矩阵。并同时将决策变量也分为两部分:

$$X = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$

相应地可将目标函数系数C分为两部分: C_B 和 C_N ,分别对应于基变量 X_R 和非基变量 X_N ,并且记作

$$C = (C_B, C_N)$$

若经过迭代运算后,可表示为:

基变量

$$X_B = \begin{pmatrix} X_{B_1} \\ X_{S_1} \end{pmatrix}$$
可包含原基变量和松弛变量

非基变量:
$$X_N = \begin{pmatrix} X_{N_1} \\ X_{S_2} \end{pmatrix}$$
;

相应有

系数矩阵
$$A = \begin{pmatrix} B \\ N \end{pmatrix}$$
;其中 $N = \begin{pmatrix} N_1 \\ S_2 \end{pmatrix}$;
松弛变量: $X_S = \begin{pmatrix} X_{S_1} \\ X_{S_2} \end{pmatrix} \rightarrow \begin{array}{c}$ 基变量
非基变量

线性规划问题可表示为:

目标函数
$$\max z = C_B X_B + C_N X_N$$

 $= C_B X_B + C_{N_1} X_{N_1} + C_{S_2} X_{S_2}$ (2-1)
约束条件 $BX_B + NX_N = BX_B + N_1 X_{N_1} + S_2 X_{S_2}$
 $= b$ (2-2)
非负条件 $X_B, X_N \ge 0$ (3-2)

将(2-2)式移项及整理后得到:

$$BX_{B} = b - N_{1} X_{N_{1}} - S_{2} X_{S_{2}};$$
 $X_{B} = B^{-1}b - B^{-1}N_{1}X_{N_{1}} - B^{-1}S_{2}X_{S_{2}};$
目标函数:
$$z = C_{B}B^{-1}b + (C_{N_{1}} - C_{B}B^{-1}N_{1})X_{N_{1}} + (C_{S_{2}} - C_{B}B^{-1}I)X_{S}$$

令非基变量=0,由上式得到:

基可行解
$$X^{(1)} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
; 目标函数的值 $z = C_B B^{-1}b$

(1) 非基变量的系数表示为:

$$(C_{N_1} - C_B B^{-1} N_1)$$

对应已用的检验数符号
 $c_j - z_j (j = 1, 2, \dots, n)$
检验数也可表示为:
 $C - C_B B^{-1} A = C_B B^{-1}$

(2) θ 规则表示为:

(3) 单纯形表与矩阵表示的关系

$$\begin{bmatrix} 0 & 1 & B^{-1}N_{1} & B^{-1} \\ 1 & 0 & C_{N} - C_{B}B^{-1}N_{1} & -C_{B}B^{-1} \end{bmatrix} \begin{bmatrix} -z \\ X_{B} \\ X_{N_{1}} \\ X_{N_{2}} \end{bmatrix}$$

$$= \begin{bmatrix} B^{-1}b \\ -C_{B}B^{-1}b \end{bmatrix} \qquad (2-7)$$

单纯形表中的数据

	基变量 ←	非基变量	-	等式右边
	X_{B}	X_{N}	X_{s}	RHS
系数矩阵	$B^{-1}B=1$	$B^{-1}N_1$	B^{-1}	$B^{-1}b$
检验数	0	$C_{N_1} - C_B B^{-1} N_1$	$-C_BB^{-1}$	$-C_BB^{-1}b$

小结

- 1) 掌握矩阵的运算;
- 2) 理解基矩阵的作用;
- 3) 了解矩阵运算与单纯表的关系。

单纯形法的矩阵描述

记线性规划问题为
$$A = (a_{ij})_{m \times n} = (BN)$$

$$Max = CX$$

$$\begin{cases} AX = b \\ X \ge 0 \end{cases}$$
其中, $C = (C_1, \dots, C_m, C_{m+1}, \dots, C_n)$

$$= (C_B C_N)$$

$$X = (X_1, \dots, X_m, X_{m+1}, \dots, X_n)$$

$$= (X_B X_N)$$
则上式变为
$$Max = C_B X_B + C_N X_N$$

$$\begin{cases} AX = (BN) \begin{pmatrix} X_B \\ X_N \end{pmatrix} = BX_B + NX_N = b \\ X > 0 \end{cases}$$
B为可行基

从
$$BX_{R} + NX_{N} = b$$
解出

$$X_{B} = B^{-1}(b - NX_{N}) = B^{-1}b - B^{-1}NX_{N}$$

相应于B的基本可行解自然是

$$X_{B} = B^{-1}b$$
, $X_{N} = 0$

$$Z = C_B B^{-1} b$$

为判断
$$X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
是否为最优解,将其代入 Z 值

$$\mathbb{E}Z = CX = \left(C_B C_N \begin{pmatrix} X_B \\ X_N \end{pmatrix} = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

其中 $C_N - C_R B^{-1} N$ 为非基变量的检验数

当所有检验数都小于等于0时,此解为最优解, 当所有检验数大于0时,可继续求解。具体过程见下表:

$C_i \rightarrow$	C
基 b	X^{T}
\overline{b}	A
$\overline{C_j - Z_j}$	$C-C_{B}A$
$\overline{B_{_{2}}^{\text{-1}}b}$	$B_{_{2}}^{-1}A$
$C_j - Z_j$	$C - C_{B_2} B_2^{-1} A$
$B^{-1}b$	$B^{-1}b$
$C_j - Z_j$	$C-C_BB^{-1}A$

单纯形法算例

	$c_j \rightarrow$	2	3	О	O	О
	c_i 基 b_i	$oldsymbol{x}_1$	x_2	x_3	x_4	x_5
	$0 x_3 8$	1	2	1	0	$0 \downarrow 1$
	0 x_4 16	4	0	0	1	$_{0} \leftarrow B_{0}$
	0 x_5 12	0	(4)	0	0	
	$oldsymbol{\sigma}_{j}$	2	3	0	0	0
	$0 x_3 2$	(1)	0	1	0	-1/2
	0 x_4 16	4	0	0	1	$_{0}$ $\stackrel{\square}{\sqsubseteq}$ B_{1}
	$3 x_2 3$	0	1	0	0	1/4
	$\sigma_{_{j}}$	2	0	0	0	-3/4
	$\frac{1}{2}$ x_1 2	1	0	1	0	$-1/2$ $\mathbf{D}-1$
	0 x_4 16	0	0	-4	1	(2) \mathbf{D}_2
	$3 x_2 3$	0	1	0	0	1/4
	$\sigma_{\scriptscriptstyle j}$	0	0	-2	0	1/4
	$2 x_1 4$	1	0	0	1/4	0
	$0 x_5 4$	0	0	2	1/2	$_{1} \stackrel{\longleftarrow}{=} B_{3}^{-1}$
	$3 x_2 2$	0	1	1/2	-1/8	
2021	/10/31 σ_j	0	0	-3/2	-1/8	0 17

大M法算例

,	C_j -	→	3 -	—1 –	-1 O) (O - A	1 -	— M
	c_i 基	b_i	x_1	x_2	x_3	x_4	x_5	x_6	x_7
	$\overline{0}$ x_4	11	1	-2	1	1	0	0	0
	$-\mathbf{M}$ x_0	3	-4	1	2	0	-1	1	\sim B ₀
	$-\mathbf{M}$ x	, 1	-2	0	(1)	0	0	0	70
	σ	j	3-6M	-1+M	-1+3M	0	-M	0	0
	0 x	4 10	3	-2	0	1	0	0	[1]
	$-\mathbf{M}$ x	6 1	0	(1)	0	0	-1	1	-2, p -1
	-1 x	1	-2	0	1	0	0	0	\sim $^{\mathrm{D}_1}$
	σ	j	1	-1+M	0	0	-M	0	1-3M
-	$0 x_4$	12	3	0	0	1	2	2	-5
	$-1 x_2$. 1	0	1	0	0	-1	1	$-2 \square B_{-1}$
_	$-1 x_3$	1	-2	0	1	0	0	0	17 2
•	σ	j	1	0	0	0	-1	1-M	-1-M
-	$3 x_1$	4	1	0	0	1/3	-2/3	2/3	-5/3
	$-1 x_2$	2 1	0	1	0	0	-1	1	$\frac{2}{73}B_3^{-1}$
	-1 x_3	, 9	0	0	1	2/3	-4/3	4/3	-7/3 D 3
2021/1	0/31	j	0	0	0	-1/3	-1/3	1/3-M	2/3-M ₁ 8

B-I的构造方法

首先构造一个矩阵H,构造的方法是在一个 $m \times m$ 的单位矩阵中抽掉第l列

换上另一列
$$\begin{bmatrix} -a_{1k}/a_{lk} \\ \vdots \\ 1/a_{lk} \\ \vdots \\ -a_{mk}/a_{lk} \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & \cdots & -a_{1k}/a_{lk} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1/a_{lk} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & -a_{mk}/a_{lk} & \cdots & 1 \end{bmatrix}$$

将H左乘迭代前的逆矩阵 B_{old}^{-1} ,就可以得到 迭代后的基的逆矩阵 B_{new}^{-1}

例用单纯形法的矩阵算法求解

$$\max z = 4x_1 + 2x_2$$

$$\begin{cases} -x_1 + 2x_2 \le 6 \\ x_1 + x_2 \le 9 \\ 3x_1 - x_2 \le 15 \\ x_1, x_2 \ge 0 \end{cases}$$

将其化为标准形式

$$\max z = 4x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5$$

$$\begin{cases}
-x_1 + 2x_2 + x_3 = 6 \\
x_1 + x_2 + x_4 = 9 \\
3x_1 - x_2 + x_5 = 15 \\
x_1 \cdots x_5 \ge 0
\end{cases}$$

其中:
$$c = (c_N, c_B) = (4,2,0,0,0)$$

$$A = \begin{bmatrix} -1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 3 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} -1 & 2 \\ 1 & 1 \\ 3 & -1 \end{bmatrix}$$

$$b = \begin{bmatrix} 6 \\ 9 \\ 15 \end{bmatrix}$$

求解过程

(1)确定初始解

$$\sigma_{N} = (4,2)$$
, $\max \sigma_{N} = \sigma_{1} = 4, x_{1}$ 为换入变量 $\theta = \min\{-, 9/1, 15/3\} = 15/3, x_{5}$ 为换出变量 (2)第一次迭代,新的基变量为 (x_{3}, x_{4}, x_{1})

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix}$$

$$X_{B} = \begin{bmatrix} x_{3} \\ x_{4} \\ x_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 6 \\ 9 \\ 15 \end{bmatrix} = \begin{bmatrix} 11 \\ 4 \\ 5 \end{bmatrix}$$

$$C_B = \begin{pmatrix} 0, & 0, & 4 \end{pmatrix}$$

$$\sigma_{N} = C_{N} - C_{B}B^{-1}P_{N} = (2, 0) - (0, 0, 4) \begin{bmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 0 \\ -1 & 1 \end{bmatrix}$$

$$=(10/3, -4/3)$$

 $\max \sigma_{N} = \sigma_{2} = 10/3, x_{2}$ 为换入变量,

$$\mathbf{P}_{2}' = \begin{bmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 4/3 \\ -1/3 \end{bmatrix}$$

2021/10/31 $\theta = \min\{33/3, 3, -\} = 3, x_4$ 为换出变量

(3)第二次迭代,新的基变量为 (x_3, x_2, x_1)

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & -5/4 & 0 \\ 0 & 4/3 & 0 \\ 0 & 1/4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix} = \begin{bmatrix} 1 & -5/4 & 3/4 \\ 0 & 4/3 & -1/4 \\ 0 & 1/4 & 1/4 \end{bmatrix}$$

$$\mathbf{X}_{\mathrm{B}} = \begin{bmatrix} x_3 \\ x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 & -5/4 & 3/4 \\ 0 & 4/3 & -1/4 \\ 0 & 1/4 & 1/4 \end{bmatrix} \begin{bmatrix} 6 \\ 9 \\ 15 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix}$$

$$C_B = \begin{pmatrix} 0, & 2, & 4 \end{pmatrix}$$

$$\sigma_{\rm N} = C_N - C_B B^{-1} P_N = -(0, 2, 4) \begin{bmatrix} -5/4 & 3/4 \\ 4/3 & -1/4 \\ 1/4 & 1/4 \end{bmatrix} = (-10/4, -1/2)$$

因全部检验数 < 0, 故本次迭代中的解为

$$(x_0 x_1/10 x_3, x_3, x_4, x_5) = (6, 3, 6, 0, 0)$$
即为问题的最优解。

填空

	cj		2	-1	1	0	0	0
			x1	x2	х3	x4	x5	x6
0	x4	60	3	1	1	1	0	0
0	x5	10	1	-1	2	0	1	0
0	x6	20	1	1	-1	0	0	1
Сj	- zj		2	-1	1	0	0	0
	i		İ					
0	x4					1	-1	-2
2	x 1					0	1/2	1/2
-1	x2					0	-1/2	1/2
сj.	- zj							

填空

	cj		3	5	4	0	0	0
			x1	x2	х3	x4	x5	x6
5	x2	8/3	2/3	1	0	1/3	0	0
0	x5	14/3	-4/3	0	5	-2/3	1	0
0	x6	29/3	-5/3	0	4	-2/3	0	1
	cj- zj		-1/3	0	4	-5/3	0	0
	! !		ł					
5	x2	2				15/41	8/41	-10/41
4	x3	3				-6/41	5/41	4/41
3	x1					-2/41	-12/41	15/41
	cj- zj							