考试类别[学生填写](□正考 □补考 □重修 □补修 □缓考 □其它)

《高等数学 A2》试卷 (A 卷)

(电气、计算机、软件、建环各专业17级适用) (注意: 所有答案必须写在答题卡上, 在试卷上作答无效)

一、单项选择题(6小题,每小题3分,共18分)

- 31. 已知 $y_1 = \cos wx$ 及 $y_2 = \sin wx$ 都是微分方程 $y'' + w^2y = 0$ 的解,则该方程的通解
 - (A) $y = Cx \tan wx$;
- (B) $y = C_1 \cos wx + C_2 \sin wx$;
- (C) $y = C_1 \cot wx + C_2 \tan wx$;
- (D) $y = C_1(\cos wx + \sin wx) + C_2$.
- 2. 改换二次积分的积分次序: $\int_0^a dx \int_0^x f(x,y) dy = \dots$ ()
 - (A) $\int_0^a dy \int_0^y f(x, y) dx$;
- (B) $\int_0^a dx \int_0^a f(x, y) dy$;
- (C) $\int_0^a dy \int_v^a f(x, y) dx$; (D) $\int_0^a dy \int_0^a f(x, y) dx$.
- - (A) $(y+\frac{1}{y})dx + x(1-\frac{1}{y^2})dy$; (B) $(y+\frac{1}{y})dx + x(1+\frac{1}{y^2})dy$;
- - (C) $(y^2 + \frac{1}{y}) dx + x(1 \frac{1}{y^2}) dy$; (D) $(y \frac{1}{y}) dx + x(1 + \frac{1}{y^2}) dy$.
- - (A) |q| > 1;
- (B) q = 1; (C) q = -1; (D) |q| < 1.

- 5. 设 L 是抛物线 $y = x^2$ 上从 (0,0) 到 (1,1) 的一段弧,则 $\int_{C} \sqrt{y} \, ds = -----$ ()
 - (A) $\int_{0}^{1} \sqrt{1+4x^2} \, dx$;
- (B) $\int_{0}^{1} \sqrt{y} \sqrt{1+y} \, dy$;
- (C) $\int_0^1 x \sqrt{1 + 4x^2} \, dx$;
 - (D) $\int_0^1 \sqrt{y} \sqrt{1 + \frac{1}{y}} \, dy$.
- 6. 函数 $f(x) = \frac{1}{1-x}$ 展开为 x 的幂级数,正确的是------()

 - (A) $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, x \in (-1,1);$ (B) $\frac{1}{1-x} = \sum_{n=0}^{\infty} (-1)^n x^n, x \in (-1,1);$

 - (C) $\frac{1}{1-x} = \sum_{n=1}^{\infty} x^n, x \in (-1,1);$ (D) $\frac{1}{1-x} = \sum_{n=1}^{\infty} (-1)^n x^n, x \in (-1,1).$

二、填空题(6小题,每小题3分,共18分)

- 7. 微分方程 y'' = x 的通解 y =
- 8. 设函数 $z = x^2 \sin 2y$,则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$.
- 9. 设闭区域 Ω 为 $-a \le x \le a$, $-b \le y \le b$, $-c \le z \le c$, 则 $\iiint 1 dv = \underline{\qquad}$
- 11. 以 2π 为周期的函数 f(x) 的傅里叶级数展开式为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, 则系数 b_n 的表达式为__
- 12. 设 f 是 圆 域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 上 的 连 续 函 数 , 将 二 重 积 分 $I = \iint f(\sqrt{x^2 + y^2}) dx dy$ 化为极坐标系下的二次积分的结果是

三、解答题(7小题,每小题6分,共42分)

13. 求微分方程 $y'' + 3y' + 2y = 6e^x$ 通解.

- 14. 求曲线 $x = 2\sin t$, $y = 4\cos t$, z = t 在点 $(2,0,\frac{\pi}{2})$ 处的法平面方程.
- 15. 设 z = z(x, y) 由方程 $x^2 + y^2 + z^2 = 4z$ 确定,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
- 16. 计算 $\iint_D xy d\sigma$, 其中 D 是由直线 y=1、 x=2 及 y=x 所围成的闭区域.
- 17. 求函数 z = xy 在点 (1,2) 处沿方向 l = (1,1) 的方向导数.
- 18. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{2^n \cdot n}$ 的收敛域.
- 19. 求 $\oint_{\Sigma} (y^2 + z) dy dz + z^3 dx dy$, 其中 Σ 是曲面 $z = x^2 + y^2$ 与平面z = 2所围成的整个立体表面的外侧.

四、分析题(本题7分)

20. 根据 a 的不同取值, 讨论级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot a^n}$ (a > 0) 的敛散性.

五、应用题(本题7分)

21. 利用拉格朗日乘数法, 求函数 $f(x,y,z) = \ln x + \ln y + 3\ln z$ 在条件 $x^2 + y^2 + z^2 = 5$ (x > 0, y > 0, z > 0) 下的极大值.

六、证明题(本题8分)

22. 证明曲线积分 $\int_L (1+4xy^3) dx + (6x^2y^2 - 5y^4) dy$ 与积分路径 L 无关,并求 $I = \int_{(0,0)}^{(1,1)} (1+4xy^3) dx + (6x^2y^2 - 5y^4) dy$ 的值.