COURS 3 - Enrichir sa base suite Système d'Information Géographique

Arlette Antoni

Université de Bretagne Sud Université Bretagne Pays de Loire

Année Universitaire 2021 -2022

De façon externe

Importation de fichiers sans objet

Jointure

Il faut donc associer une géométrie (une couche "porteuse") aux attributs

- une clé commune aux 2 couches
- les attributs s'ajoutent à la fin
- on peut choisir quels attributs constitueront la base finale
- on peut retirer le nom de la couche de chaque nom d'attribut ajouté

Jointure

- Le menu pour la jointure est un sous menu de celui des propriétés de la couche
- Les icônes + et permettent d'ajouter (ou retirer) une jointure
- la couche est jointe temporairement
- Il faudra donc sauvegarder pour conserver l'ensemble des attributs

Ajouter une image ou raster

Géo-référencer ou flux

Qgis étant un logiciel libre s'appuie sur la coopération :

- création d'extensions par des équipes
- menu "extension"
- dans la fenêtre choisir l'extension à installer
- le menu est placé dans le menu principal adéquat
- le menu traitement permet d'accéder à de nombreuses extensions

Géo-référencement

ou Calage raster

- Géo-référencer : situer sur l'écorce terrestre
- avoir une couche déjà géo-référencée.
- outils qui ont largement évolués
- ajouter l'image en couche raster
- extension "GDAL georeferenceur"

Georeferencement

ou Calage raster

On cale un raster par rapport à une couche, il faut donc avoir

- la même projection
- des points, dits repères, communs au 2 couches
- une fonction de distorsion d'image
- une vision des erreurs

Rappel : un raster n' a pas de données attributaires

GDAL

Geospatial Data Abstraction Library

Librairie (extension, bibliothèque) pilier des SIG

- permet de passer des versions propriétaires aux versions libres
- intègre les normes OGC
- traite vecteur et raster

GDAL

Mise en pratique

Sous menu de raster, ouverture d'une fenêtre de dialogue

- charger l'image par le menu à gauche
- NE PAS lancer le géoréferenceur (2nd icône)
- préciser la projection
- préciser la transformation et le type de ré-échantillonnage afin de minimiser les erreurs
- créer les points un à un (recliquer à chaque création)
 le positionner sur l'image puis depuis le canavas de carte
 le positionner sur la couche
 attention à ne pas l'écraser sans cliquer sur création
- sauver vos points repères
- Lancer le géoréferenceur (2nd icône)

Transformation

Translation, rotation, mise à échelle

- une rotation : orienter le raster avec le nord en haut de ton écran,
- une homothétie : faire que 100m de long sur le raster fassent 100 de long dans la couche géo référencée,
- une translation : déplacer le raster de manière à ce qu'elle se cale avec des repères connus (traces GPS, points géodésiques, etc.)

Déformation locale

La plus utilisée est la polynomiale de second ordre.

ré-échantillonnage

Méthodes de ré-échantillonnage

- plus proche voisin : la plus simple -
- interpolation bilinéaire : moyenne pondérée par la distance des 4 pixels de l'image originale les plus proches du nouveau pixel.
- convolution cubique :
 moyenne pondérée par la distance des 16 pixels environnants.

OSM

OSM contient beaucoup de renseignements organisés en thématique, sous thématique..

Beaucoup ne sont pas remplis

Il vaut mieux se donner une petite zone spatiale à charger.

On distingue 2 entrées possibles

- Toutes les couches OSM sur une zone spatiale par l'extension QuickMapservices
- Une couche par thématique -par l'extension Quick OSM

Google Map

Plus complet et dynamique que OSM La couche google Map est hébergé sur le serveur Google.

- elle renvoie un onglet à l'utilisateur
- Techniquement c'est "TMS" Tile Map Service
- On doit trouver le TMS utilisé par Google Map

Google Map

voici les différents URL (NextGIS)

Google Maps:

https://mt1.google.comvtlyrs=rx=xy=yz=z

Google Satellite:

http://www.google.cn/maps/vt?lyrs=s@189gl=cnx=xy=yz=z

Google Satellite Hybrid:

https://mt1.google.com/vt/lyrs=yx=xy=yz=z

Google Terrain:

https://mt1.google.com/vt/lyrs=tx=xy=yz=z

Google Roads:

https://mt1.google.com/vt/lyrs=hx=xy=yz=z

Google Map

Installation Qgis

- sur l'explorateur Qgis : onglet XYZ Tile
- nouvelle connexion
- lui donner un nom puis une adresse URL (voir avant)
- preciser "ajouter ..;"
- temporaire

Extensions spatiales

- Qgis est basé sur PostGis
- PostGis est une cartouche spatiale de PostgreSQL

Extensions spatiale

- On peut aussi intégrer Spatialite (SQlite) moins lourd et donc moins complet
- Les opérateurs spatiaux sous PostGis sont précédés de *ST_ST_area*(*A.geometry*) ou *ST_Contains*(*A.geometry*, *B.geometry*)) pour 2 couches A et B.

L'indexation est une des trois fonctionnalités clés d'une base de données spatiales. Elle sert à

- optimiser les requêtes basées sur des positions ou des distances.
- indicer les données vectorielles on utilise les arbres ou les graphes
- de type arbre dans laquelle chaque nœud a quatre fils. Les quadtrees sont le plus souvent utilisés pour partitionner un espace bidimensionnel en le subdivisant récursivement en quatre nœuds.

Arbre

Un découpage complet de l'espace

Evolution: QuadTree

Découpage autour des objets

Evolution: Rtree

Indexation

Optimisation

- Utilisation des rectangles d'encombrement ou emprise d'un objet (Bounding Box)
- Exécution des fonctions appliquées à la géométrie exacte que sur un sous ensemble d'objets

Construction

- Au sommet un rectangle englobant tous les objets
- Partitionnement en sous rectangles
- une feuille est un rectangle qui ne contient qu'un objet
- on remonte en regroupant les rectangles proches
- tout objet est indexé par son emprise et le niveau dans l'arbre
- une requête qui n'intersecte pas un rectangle n'intersectera pas les objets à l'intérieur

Efficacité

- la difficulté est de construire un arbre efficace
- équilibré
- sans trop d'espace libre

PostGIS gère la création d'un index index GiST (Generalized Search Tree)

Optimisation |

Un ordre SQL de type EXPLAIN ANALYZE suivi de la requête permet de récupérer la stratégie retenue par l'optimiseur.

Ex : explain analyse select * from A

Requêtes spatiales

Types

On distingue 3 types de requêtes correspondant à 3 types de résultat

- Requêtes de Test : Vrai Faux
- Requêtes de distance : retourne la valeur de la distance dépend de l'environnement choisi (unités, projection)
- Requêtes d'action : donne une géométrie.

Requêtage

- Effectuer des requêtes spatiales à l'aide d'opérateurs géographiques normalisés.
- les normes OGC
- des prédicats topologiques, à l'aide du langage SQL.
- entre objets ponctuels, linéaires et surfaciques.

Dimension

- Point : dimension 0
- Ligne: dimension 1 composé de segments linéaires les segments ne se recoupent pas 2 extrémités non confondues
 - Polygone : dimension 2 surface plane topologiquement fermée une limite extérieure et 0 ou plusieurs limites intérieures (trous) les "trous" ne se chevauchent pas

Topologie

Intérieur

Objet géométrique à l'exception de sa limite

Limite

Ensemble objets géométriques de dimension inférieure d'une unité à celle de l'objet.

Extérieur

Ensemble des points de l'espace qui ne sont pas à l'intérieur de l'objet ou sur sa limite

Topologie

Intersections

Dimensions des intersections entre "zones"

- $-1 = \emptyset$ (n'existe pas)
- 0 = point
- 1 = polyligne
- 2 = surface

Ainsi intersection entre une ligne et un polygone est une ligne : on lui attribut la dimension 1

Matrice des intersections

- matrice (3,3) calculant la dimension maximale des 9 intersections 2 à 2 des intérieurs, limites et extérieurs des 2 objets.
- on note I(A) intérieur d'un objet A
- L(A) sa limite
- E(A) son extérieur

Matrice des intersections

DE-9IM ou matrice de Clementini

Démarche datant de 1993.

A vers B	Interieur B	Limite B	Exterieur B
Interieur A	$\dim(I(A)\cap \mathit{I}(B))$	$\dim(I(A)\cap L(B))$	$\dim(I(A)\cap E(B))$
Limite A	$\dim(L(A)\cap \mathit{I}(B))$	$\dim(L(A)\cap L(B))$	$\dim(L(A)\cap E(B))$
Exterieur A	$\dim(E(A)\cap I(B))$	$\dim(E(A) \cap L(B))$	$\dim(E(A) \cap E(B))$

Exemple de relations

Point et Polygone

"Le point A est à l'intérieur du polygone B" se traduit par la matrice :

A vers B	Interieur B	Limite B	Exterieur B
Interieur A	1	0	-1
Limite A	-1	-1	-1
Exterieur A	2	1	2

Exemple de relations

Ligne Polygone

Une ligne A dont un segment se termine dans un polygone B se traduit par :

A vers B	Interieur B	Limite B	Exterieur B
Interieur A	1	0	1
Limite A	0	-1	0
Exterieur A	2	1	2

Exemple de relations

Polygone Polygone

Un polygone A qui chevauche un polygone B se traduit par :

A vers B	Interieur B	Limite B	Exterieur B
Interieur A	2	1	2
Limite A	1	0	1
Exterieur A	2	1	2

Il y a en tout 98 relations possibles!

Prédicats

Opérateurs topologiques

Basé sur les mêmes matrices mais ils contiennent

- Valeur F : correspondant à -1
- 0,1,2 si constant
- Valeur T : la relation existe
- valeur joker : la relation est indéterminée

On obtient alors des fonctions bouléennes :

- Intersects,
- Within,
- Contains,
- Overlaps

Ils permettent de tester une relation et répondent Vrai ou Faux.

Prédicats topologiques OGC

- 8 prédicats norme OGC
- Equals, Disjoint, Touches, Crosses, Within, Contains, Overlaps, intersects
- 2 prédicats hors normes dans Oracle spatial, JTS, GEOS, PostGis
 - Covers
 - CoveredBy
- 1 prédicat général (cf PostGis) permet de définir sa propre relation

Topologie

Prédicat	Types d'objets (P point, L polyligne, S polygone)	Conditions	
Equals	Tous	A Equals B si les objets sont géométriquement identiques : relation topologique (le nombre de sommets des 2 objets peut être différent)	
Disjoint	Tous	A Disjoint B si les objets n'ont aucun point commun (intérieur et limite). (Inverse de Intersects)	
Touches	S/S, L/S, L/L, P/S, P/L	A Touches B si les limites des objets ont au moins un point commun et si les intérieurs n'ont pas de point commun (non applicable à P/P)	
Crosses	P/S, P/L, L/S, L/L	A Crosses B si les intérieurs ont au moins un point commun mais pas tous et si la dimension de l'intersection des intérieurs est inférieure à la dimension maximale des objets A et B (non applicable à P/P, S/S)	
Within	Tous	A Within B si tout point de A est un point de B et si les intérieurs ont au moins un point commun (aucun point de A n'est à l'extérieur de B). (Inverse de Contains)	
Contains	Tous	A Contains B si tout point de B est un point de A et si les intérieurs ont au moins un point commun (aucun point de B n'est à l'extérieur de A). (Inverse de Within)	
Overlaps	S/S, L/L, P/P	A Overlaps B si à la fois: - A et B ont la même dimension (non applicable à P/L, P/S, L/S) - A et B ont des points en commun, mais pas tous - L'intersection des intérieurs de A et de B a la même dimension que A et B	
Intersects	Tous	A Intersects B si A et B ont au moins un point commun (intérieur ou limite) (Inverse de Disjoint)	
Covers (*)	Tous	A Covers B si aucun point de B n'est à l'extérieur de A (tout point de B est un point de A) (à comparer à Contains)	
CoveredBy (*)	Tous	A CoveredBy B si aucun point de A n'est à l'extérieur de B (tout point de A est un point de B) (à comparer à Within)	
Relate (A,B, DE- 9IM Pattern Matrix)	Tous	Exprime la relation spatiale de A et de B à l'aide de la matrice modèle DE-9IM Permet la généralisation des prédicats spatiaux aux 98 relations topologiques EX: Relate (A, B, « OF1FF0102 ») <=> A Intersects B	

Exemple d'opérateurs

Disjoint

2 objets sont disjoints si ils n'ont aucun point commun

Ce qui se traduit par

A vers B	Interieur B	Limite B	Exterieur B
Interieur A	-1	-1	*
Limite A	-1	-1	*
Exterieur A	*	*	*

Seules les valeurs -1 construisent l'opérateur, le reste peut prendre -1, 0, 1 ou 2==> on met donc joker (*)

Sélections spatiales

Par menu

- sous menu vecteur outil de recherche -sélection par localisation
- les 2 couches n'ont pas des rôles interchangeables
- spécifier en premier la couche dont on veut les objets les objets A qui contiennent les objets B -> A
 les objets B contenus dans les objets A -> B

Jointures spatiales

Par menu

- le menu jointure des attributs : propriétes
- Le menu jointure des objets sous menu vecteur - gestion BD - jointure par localisation
- pièges à éviter

Créer une entité distincte pour chaque entité localisée (correspondance multiple)

Prendre uniquement les attributs de la première entité localisée (correspondance unique)

Supprimer les enregistrements qui ne peuvent être joints

Requêtes spatiales

Par instruction

- Sous Qgis prendre le menu Base de donnes puis gestionnaire de base de données (2 fois)
- choisir dans la fenêtre "virtuals layers"
- Un sous menu permet d'accéder à la fenêtre SQL
 (il y a maintenant une fenêtre d'aide pour écrire les requêtes)

Requêtes spatiales

Syntaxe

Vous savez écrire une requête SQL

- select A.* from tableA as A
- select A.V1, A.V2 from tableA as A

où tableA est une table et V1 V2 2 champs de cette table Cette requête ne concerne pas les géométries

Requêtes spatiales

Syntaxe

Concernant une geometrie

- select A.*, A.geometry from tableA as A
- select A.V1, ST _ area(A.geometry)=Aire from tableA as A