Exercices d'Algèbre et d'Arithmétique

Yann Rotella

11 août 2023

1 TD 1 - Algèbre générale

Exercice 1. Fonctions et lois (*).

Une loi sur un ensemble E est vue comme une fonction de $E \times E$ dans E.

- (1) Comme une loi est une fonction, rappelez les notions d'injectivité, surjectivité et bijectivité des fonctions.
- (2) Dans quel cas (sur E) pouvons-nous avoir une loi bijective et dans quel cas c'est impossible?
- (3) Cominatoire facile : il y a combien de lois différentes sur E quand $|E| = n \in \mathbb{N}$? On pourra réfléchir à cette question en y ajoutant l'existence d'un neutre et/ou la commutativité.

Exercice 2. Inversibilité et composition (*).

Si x et y sont inversibles, montrez que $x \circ y$ l'est aussi et donner l'expression.

Exercice 3. Équations dans un groupe (*).

Montrer que si a et b sont deux éléments d'un groupe quelconque (G, \circ) , les équations $a \circ x = b$ et $x \circ a = b$ admettent une solution unique.

Exercice 4. L'inversibilité est à droite et à gauche (*).

Soit E un ensemble muni d'une loi de composition, associative, avec élément neutre et telle que tout élément possède un inverse à gauche. Montrer que tout élément possède un inverse à droite qui coïncide avec son inverse à gauche. Qu'en déduisez vous.

Exercice 5. Le binaire est abélien? (*).

Soit G un groupe tel que $g^2 = e$ pour tout $g \in G$. Montrer que G est abélien.

Exercice 6. Caractérisation des sous-groupes (**).

Soit (G, *) un groupe et H une partie de G. Montrer que H est un sous-groupe de (G, *) si et seulement si H est non vide et $\forall (x, y) \in H^2, x * y^{-1} \in H$ où y^{-1} est l'inverse de y.

Exercice 7. Intersection de sous-groupes (**).

Soit (G, *) un groupe quelconque. Montrer qu'une intersection quelconque de sous-groupes de G est encore un sous-groupe de G.

Exercice 8. Union de sous-groupes (**).

Soit (G,*) un groupe quelconque. Montrer qu'une union de sous-groupes de $G, H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 9. Définition des puissances (*).

Définir proprement les puissances entières (notation multiplicative) d'éléments d'un groupe.

Exercice 10. Exemples de groupes (*).

On définit pour (x, y) et (x', y') dans $\mathbb{R}^* \times \mathbb{R}$ l'opération * définie par

$$(x,y)*(x',y') = (xx',xy'+y)$$

— Montrer que l'ensemble $\mathbb{R}^* \times \mathbb{R}$ muni de la loi * est un groupe.

— Donner une formule simple pour $(x,y)^n$ pour tout $(x,y) \in \mathbb{R}^* \times \mathbb{R}$ et tout entier naturel n.

Exercice 11. Exemples de groupes (*).

Les ensembles suivants munis des lois considérées sont-ils des groupes?

- 1. G est l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} définies par $x\mapsto ax+b$ avec $a\in\mathbb{R}^*$ et $b\in\mathbb{R}$, muni de la loi de composition.
- 2. G est l'ensemble des fonctions croissantes de \mathbb{R} dans \mathbb{R} muni de l'addition.
- 3. $G = \{f_1, f_2, f_3, f_4\}$ où

$$f_1(x) = x, f_2(x) = -x, f_3(x) = \frac{1}{x}, f_4(x) = -\frac{1}{x}$$

muni de la composition.

Exercice 12. Exemples de sous-groupes (*).

Dans chaque exemple suivant, on vous donne un groupe G. Dire à chaque fois si H est un sous-groupe ou non.

- $G = (\mathbb{Z}, +)$ et $H = \{\text{nombres pairs}\}.$
- $G = (\mathbb{Z}, +)$ et $H = \{\text{nombres impairs}\}.$
- $-G = (\mathbb{R}, +) \text{ et } H = [-1, +\infty[.$
- $-G = (\mathbb{R}^*, \times) \text{ et } H = \mathbb{Q}^*.$
- $G = (\{\text{bijections de } E \text{ dans } E\}, \circ)$ et $H = \{f \in G, f(x) = x\}$ où E est un ensemble et $x \in E$.
- $G = (\{\text{bijections de } E \text{ dans } E\}, \circ)$ et $H = \{f \in G, f(x) = y\}$ où E est un ensemble et $x, y \in E$ avec $x \neq y$.

Exercice 13. Sous-groupe engendré par le complémentaire (**).

Soit H un sous-groupe strict d'un groupe (G, \cdot) . Montrer que le sous-groupe engendré par le complémentaire $(K = \{x \in G, x \notin H\})$ de H est l'ensemble G tout entier.

Exercice 14. Groupe des éléments inversibles (*).

Montrer la proposition 2.

Exercice 15. Théorème de Lagrange (***).

Montrer le théorème de Lagrange.

Pour aller plus loin

Exercice 16. Somme d'éléments nilpotents (**).

Soit $(A, +\times)$ un anneau non-nul. Soient a, b deux éléments nilpotents de A. On suppose que a et b commutent. Montrez que a+b est nilpotent.

Exercice 17. Inverse de 1-x (**).

Soit x un élément nilpotent. Montrez que 1-x est inversible.

Exercice 18. Sous-groupe engendré, ordre d'un élément, groupe cyclique (***). Soit (G, *) un groupe. On considère $(a) = \{a^m, m \in \mathbb{Z}\}.$

- Montrer que (a) est un sous-groupe de G.
- Si (a) est fini, sa cardinalité donne l'ordre de a qui est l'ordre du groupe engendré par a. De plus, quand un groupe fini est engendré par un seul élément on parle de groupe cyclique. Dans ce cas, montrez que $b=a^k$ est un générateur de G si et seulement si k et n sont premiers entre eux. Que pouvez-vous en déduire?

Exercice 19. Sous groupe cyclique (**).

Soit G un groupe cyclique et soit H un sous-groupe de G. Montrer que H est cyclique.

Exercice 20. L'anneau des matrices.

Justifiez les propriétés de l'anneau des matrices carrées de taille 2 en utilisant les applications linéaires.

2 TD 2 - Arithmétique

Exercice 21. Sous-anneau (*). 1. Donner la définition d'un sous-anneau.

2. Les $n\mathbb{Z}$ sont-ils des sous-anneaux?

Exercice 22. Propriétés du pgcd (**).

Montrer les propriétés du pgcd comme plus grand commun diviseur que vous connaissez.

Exercice 23. Algorithme d'Euclide (**).

Donner la description de l'algorithme d'Euclide, et prouver sa terminaison et son exactitude.

Exercice 24. Équations de Bézout (*).

Résoudre les équations suivantes

- 1. 4x + 6y = 2
- 2. 4x + 12y = 2
- 3. 221x + 247y = 15
- 4. 162x + 207y = 27

Exercice 25. Théorème des restes chinois (***).

Le but est de montrer le théorème des restes chinois vu en cours.

- 1. Montrer l'existence d'un tel x.
- 2. Montrer l'unicité
- 3. Généraliser à deux nombres non-premiers entre eux.
- 4. Montrer comment faire pour plus de deux équations.

Exercice 26. Restes chinois.

Résoudre les systèmes d'équations suivants.

1.
$$\begin{cases} x = 11 & \text{mod } 17 \\ x = 5 & \text{mod } 6 \end{cases}$$
2.
$$\begin{cases} x = 7 & \text{mod } 8 \\ x = 5 & \text{mod } 9 \\ x = 6 & \text{mod } 14 \end{cases}$$
3.
$$\begin{cases} x = 2 & \text{mod } 8 \\ x = 7 & \text{mod } 9 \\ x = 8 & \text{mod } 14 \end{cases}$$

Exercice 27. Théorème fondamental de l'arithmétique (***). 1. Montrer que tout entier naturel $n \geq 2$ est divisible par au moins un nombre premier.

- 2. Montrer le théorème "décomposition en produit de facteurs premiers".
- 3. Montrer que l'ensemble des nombres premiers est infini.

Exercice 28. Calcul de l'indicatrice d'Euler (***). 1. Quelle est la complexité de l'algorithme naif qui calcule l'indicatrice d'Euler à partir de la définition?

- 2. Montrez le théorème 7.
- 3. Donner la valeur de l'indicatrice d'Euler pour n'importe quel entier n
- 4. Montrez dans quel cas $\mathbb{Z}/n\mathbb{Z}$ est un corps.

Exercice 29. Utilisation du théorème fondamental (**). 1. Cominatoire (quand vous aurez fait le cours) : comptez le nombre distincts de diviseurs d'un entier n quelconque en utilisant cette expression.

2. Donner une expression du pgcd de deux entiers en utilisant cette expression.

Exercice 30. Théorème de Fermat général (***). 1. Montrer le théorème 8.

- 2. Énoncez le petit théorème de Fermat.
- 3. Autre preuve du théorème de Fermat?

Exercice 31. Nombres de Fermat (*).

Soit q un entier impair. Démontrer que pour tout $x \in \mathbb{R}$,

$$x^{q} + 1 = (x+1)(x^{q-1} - x^{q-2} + \dots + 1).$$

Soit $m \in \mathbb{N}^*$ tel que 2^m+1 soit premier. Montrer que $m=2^n$ où n est un entier.

Exercice 32. Nombre premier dans un intervalle (**).

Soit $n \in \mathbb{N}$ vérifiant $10 \le n \le 210$. Démontrer que n est premier si et seulement si il existe un entier a relatif tel que an = 1[210].

Exercice 33. Divisibilité et carré (*).

Soit $(a, b \in \mathbb{N}^*$ tels que a^2 divise b^2 . Montrer que a divise b.

Exercice 34. Puissances (*). 1. Montrer qu'un entier qui est un carré et un cube est aussi un entier à la puissance 6 d'un autre entier.

2. Soient a, b, p, q, n des entiers naturels avec p et q premiers entre eux et $n = a^p = b^q$. Montrer qu'il existe un entier naturel c tel que $n = c^p q$.

Exercice 35. Division euclidienne (*). 1. Donner les entiers a et b avec a < 4000 telle que la division euclidienne de a par b donne un quotient de 82 et un reste de 47.

2. Déterminer le quotient et le reste de la division euclidienne de $2^{2013} + 562$ par 4.

Exercice 36. Identité remarquable (*).

Montrer que

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}$$
.

En déduire que 23 divise $3^{3n} - 2^{3n}$.

Exercice 37. Coefficients de Bézout (***). 1. Expliquer comment transformer euclide en euclide étendu pour trouver les coefficients de Bézout.

- 2. Notez que les couples (u, v) ne sont pas uniques. Comment pouvez-vous engendrer plusieurs couples à partir d'une solution donnée?
- 3. Donner une méthode itérative et récursive de la recherche des coefficients de Bézout.