Chapitre 14

Intégration sur un intervalle quelconque II. Les grands théorèmes

1. Convergence des intégrales d'une suite de fonctions

1.1. Sur un segment (rappel)

<u>Théorème</u>: sur un segment, la convergence uniforme convient

Soit
$$(f_n)_{n\in\mathbb{N}}\in\mathcal{C}([a,b],\mathbb{K})^{\mathbb{N}}$$
.

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [a,b], alors

$$\square f \in \mathcal{C}([a,b],\mathbb{K})$$

- lacksquare la suite des intégrales $\left(\int_a^b f_{\scriptscriptstyle n}(t)dt\right)_{\!n\in\mathbb{N}}$ converge vers $\int_a^b f(t)dt$.
- Théorème vu au Chapitre 8 § 1.3.c
- 🖨 La convergence uniforme ne sert à rien sur un intervalle quelconque.

$$\Rightarrow \text{ Contre-exemple :} \qquad \boxed{\mathbf{1}}.$$

$$f_n = \frac{1}{n} \chi_{[0,n]} \quad \| f_n \|_{\infty} = \frac{1}{n} \quad f_n \xrightarrow[c.u.]{} 0 \qquad \int_{\mathbb{T}} f_n = 1$$

• \bigcirc Heureusement, on a mieux!

1.2. Sur un intervalle : le théorème de convergence dominée

Théorème 1 de convergence dominée

Soient
$$(f_n)_{n\in\mathbb{N}}\in\mathcal{CM}(I,\mathbb{K})^{\mathbb{N}}$$
 et $f\in\mathcal{CM}(I,\mathbb{K})$ (CM).

Si * la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f (\mathbf{C} \mathbf{S})

* il existe $\varphi \in \mathcal{L}^1(I,\mathbb{R}_+)$ telle que $\forall n \in \mathbb{N}$: $|f_n| \leqslant \varphi$ (D)

Alors:

□ la suite des intégrales $\left(\int_I f_n\right)_{n\in\mathbb{N}}$ converge vers $\int_I f$ i.e. $\cdot \left[\lim_{n\to+\infty}\int_{n\to+\infty} f_n\right] = \left[\int_I f\right]$

2

- Démonstration admise 🙂
- $\bullet\,$ On peut néanmoins facilement démontrer le point 1

1.3. Exemples

a) <u>Exemple 1</u> : Intégrales de Wallis

 $\lim_{n o +\infty} \int_0^{ au\!\!/2} \sin^n(t) dt$

☆ domination par une constante

- $\lim_{n\to+\infty}\int_0^{\pi/2}e^{-x^n}dx$
- b) Exemple 2 : Un cas de " convergence monotone "
- $n \to +\infty$ $\int_0^{\infty} \int_0^{\infty} dt$

 * domination par f_1

- $\lim_{n\to+\infty} \int_{-\infty}^{\infty} \left(1-\frac{x^2}{n^2}\right)^{n^2} dx$
- c) Exemple 3: Vers la loi normale de Gauss...
 - ☆ domination par la fonction limite

d) Exemple: un cas particulier, T.C.D. sur un segment

Corollaire Soient $(f_n)_{n\in\mathbb{N}} \in \mathcal{CM}([a,b],\mathbb{K})^{\mathbb{N}}$ et $f \in \mathcal{CM}([a,b],\mathbb{K})$ (CM).

Si * la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [a,b] vers f (CS)

* il existe $k \in \mathbb{R}_+$ tel que $\forall n \in \mathbb{N} : |f_n| \leqslant k$ (UB)

Alors la suite des intégrales $\left(\int_a^b f_n(t)dt\right)_{n\in\mathbb{N}}$ converge vers $\int_a^b f(t)dt$.

- Démonstration 4
- Bien noter qu'on attend que les fonctions soient Uniformément Bornées, c'est-à-dire bornées par une constante commune.
- Ce corollaire est intéressant à titre d'exercice, mais au concours, il vaut mieux appliquer le T.C.D. original.
- Exemple: c'est ce qu'on a fait dans l'exemple 1 (Wallis)
- e) <u>Une extension</u>: passage du discret au continu

• Ainsi avec les mêmes hypothèses (\mathcal{CM} et domination) :

si $\forall t \in I : \lim_{x \to +\infty} f(x,t) = h(t)$, alors $\lim_{x \to +\infty} \int_I f(x,t) dt = \int_I h(t) dt$

2. Intégration terme à terme d'une série de fonctions

2.1. Deux situations intéressantes

a) Sur un segment : encore la convergence uniforme (rappel)

 $\begin{array}{l} \underline{\text{Th\'eor\`eme}}: \text{sur un segment, la convergence uniforme convient} \\ \text{Soit } (f_n)_{n\in\mathbb{N}} \in \mathcal{C}([a,b],\mathbb{K})^{\mathbb{N}} \,. \\ \\ \text{Si la s\'erie de fonctions } \sum f_n \text{ converge uniform\'ement sur } [a,b] \text{ (de somme } S) \\ \\ \text{alors } S \in \mathcal{C}([a,b],\mathbb{K}) \text{ et } \sum \int_a^b f_n(t)dt \text{ converge et a pour somme } \int_a^b S(t)dt \,. \end{array}$

- \bigcirc On peut notamment l'utiliser pour les séries entières si $[a,b]\subset]-R,R[$
- b) Une application intéressante du théorème de convergence dominée

 $\begin{array}{c} \underline{\text{Proposition}}: \mathbf{cas} \ \mathbf{où} \ \mathbf{le} \ \mathbf{terme} \ \mathbf{g\acute{e}n\acute{e}ral} \ \mathbf{est} \ \mathbf{\grave{a}} \ \mathbf{valeurs} \ \mathbf{dans} \ \mathbb{R}_{+} \\ \\ \text{Soit} \ (f_{n})_{n \in \mathbb{N}} \in \mathcal{CM}(I, \mathbb{R}_{+})^{\mathbb{N}} \ . \\ \\ \text{Si la s\'erie de fonctions} \ \sum f_{n} \ \text{converge simplement sur} \ I \ , \ \mathbf{a} \ \text{pour somme} \ S \\ \\ \mathbf{et} \ \mathbf{si} \ S \in \mathcal{L}^{1}(I, \mathbb{R}) \ , \\ \\ \text{alors la s\'erie} \ \sum \int_{I} f_{n}(t) dt \ \text{converge et a pour somme} \ \int_{I} S(t) dt \ . \end{array}$

- Démonstration **5**
- Même remarque qu'en § 1.3.d : revenir dans les concours au T.C.D.

2.2. <u>Le théorème fondamental</u>

 $\frac{\text{Th\'eor\`eme 2}}{\text{Soit } (f_n)_{n\in\mathbb{N}}}: \textbf{int\'egration terme \'a terme d'une s\'erie de fonctions}$

Si * la série de fonctions $\sum f_n$ converge simplement sur I et a pour somme une fonction $S \in \mathcal{CM}(I,\mathbb{K})$,

* la série des intégrales $\sum \int_I |f_n|$ converge alors $S \in \mathcal{L}^1(I,\mathbb{R})$ et la série $\sum \int_I f_n$ converge et a pour somme $\int_I S$

- Démonstration admise \odot
- Exemple $\boxed{\bf 6}$: étude de l'intégrabilité de la fonction $x \to \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{\sqrt{1+n^2}}$ sur]-1,1[

3. Intégrales à paramètre

3.1. Continuité

- a) Introduction sous forme de question : que vaut $\lim_{x\to 0} \int_0^{\pi} \frac{\sin^2(t)}{x+\sin(t)} dt$?
 - En particulier peut-on échanger les symboles $\lim_{x\to 0}$ et \int_0^{π} ?
 - Prérequis : notations f(x,.) et f(.,t)

b) Le théorème

<u>Théorème 3</u>: "continuité sous le signe intégrale"

Soit
$$f: \begin{cases} A \times I \to \mathbb{K} \\ (x,t) \to f(x,t) \end{cases}$$
 où $\begin{vmatrix} A \subset F \text{ avec } F \text{ e.v.n. de dimension finie} \\ I \text{ est un intervalle de } \mathbb{R} \end{vmatrix}$

Si
$$\odot$$
 f est continue par rapport à la première variable (C1)

i.e.
$$\forall t \in I : f(.,t) \in \mathcal{C}(A,\mathbb{K})$$

$$\ \ \,$$
 $\ \,$ $\$

i.e.
$$\forall x \in A : f(x,.) \in \mathcal{CM}(I,\mathbb{K})$$

alors la fonction $g: x \to \int_I f(x,t)dt$ est définie et continue sur A.

- Démonstration dure 7. (on utilise le T.C.D.)
- Attention : ③ s'écrit dans la pratique :

$$\exists \varphi \in \mathcal{L}^{1}(I, \mathbb{R}_{+}) / \forall x \in A, \forall t \in I : |f(x,t)| \leqslant \varphi(t)$$

c) Exemples

• Exemple 1: 8.

pourquoi
$$\lim_{x \to 0} \int_0^{\pi} \frac{\sin^2(t)}{x + \sin(t)} dt = \int_0^{\pi} \sin(t) dt = 2$$
?

$$f \in \mathcal{L}^1(\mathbb{R},\mathbb{C}) \qquad \Rightarrow \quad f: x o \int_{-\infty}^{+\infty} f(t) e^{-ixt} dt \qquad \Rightarrow \quad f \in \mathcal{C}(\mathbb{R},\mathbb{C})$$

$$f\in \mathcal{L}^{\,1}(\mathbb{R}_{_{+}},\mathbb{R}) \qquad \Rightarrow \quad Lf:x
ightarrow \int_{0}^{+\infty}f(t)e^{-xt}dt \qquad \Rightarrow \; Lf\in \mathcal{C}(\mathbb{R}_{_{+}},\mathbb{R})$$

• Exemple 4 : un corollaire particulièrement simple

 $\underline{\text{Corollaire}}: \text{Soit } f \in \mathcal{C}([a,b] \times [c,d], \mathbb{K}).$

Alors la fonction $F: x \to \int_c^d f(x,t) dt$ est définie et continue sur [a,b].

- Démonstration
- 1. Utiliser la propriété suivante : 🗵
- Si $f \in \mathcal{C}([a,b] \times [c,d], \mathbb{K})$ alors f(x,.) et f(.,t) sont continues

d) Prolongement important

 \odot si A = J, intervalle de \mathbb{R} (ce qui est le plus souvent le cas) : il suffit que l'hypothèse de domination(\mathbf{D}) soit satisfaite **sur tout segment** inclus dans J; ③ est ainsi plus facile à réaliser et s'écrit alors :

e) Restriction et nouveau prolongement

• Avec les hypothèses $\mathbb O$ et $\mathbb O$ et si $a \in A$ est tel que

$$\exists V \in \mathcal{V}(a)/ \ \forall \ x \in V, \ \forall \ t \in I: \ |f(x,t)| \leqslant \varphi(t)$$

alors g sera continue en a.

• Avec les hypothèses $\mathbb O$ et $\mathbb O$ et si $a\in \overline A$ (par ex . $a=+\infty$) est tel que

$$\exists V \in \mathcal{V}(a) / \ \forall \ x \in V, \ \forall \ t \in I : \ |f(x,t)| \leq \varphi(t)$$

alors
$$\lim_{x \to a} \int_{I} f(x,t)dt = \int_{I} h(t)dt$$

• Remarque: on retrouve le prolongement du T.C.D. vu en 1.3.e.

3.2. Dérivabilité

- a) Prérequis (sera repris en Chapitre 16):
 - Sous réserve d'existence : Pour $f: \mathbb{R}^2 \to \mathbb{K}$, $\frac{\partial f}{\partial x}(x,t) = f(.,t)'(x)$.
 - Pratiquement:

On considère t comme un paramètre et on dérive par rapport à x

- Exemples : **12**
- b) Le théorème pour la classe \mathcal{C}^{1}

 $\underline{\text{Th\'eor\`eme 4}}: \text{"d\'erivabilit\'e sous le signe int\'egrale"}$

Soit
$$f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \to f(x,t) \end{cases}$$
 où J et I sont des intervalles de \mathbb{R} .

Si
$$\mathfrak{O} \ \forall x \in J : f(x,.) \in \mathcal{L}^{1}(I,\mathbb{K})$$

$$@\ f\ {\rm admet\ sur}\ J\times I\ {\rm une\ d\acute{e}riv\acute{e}e}\ {\rm partielle}\ \frac{\partial f}{\partial x}\ {\rm qui\ v\acute{e}rifie\ les\ hypoth\`eses}$$

(C1), (CM2) et (D) du théorème de continuité sous le signe intégrale.

alors la fonction
$$g: x \to \int_I f(x,t)dt$$
 est de classe \mathcal{C}^1 sur J et vérifie :

$$\forall x \in J : g'(x) = \int_{J} \frac{\partial f}{\partial x}(x,t)dt$$
.

- Démonstration dure 13. (on utilise encore le T.C.D.)
- c) Prolongement intéressant (ici encore) :
- \odot si A=J, intervalle de $\mathbb R$, il suffit que l'hypothèse de domination soit satisfaite sur tout segment inclus dans J; $\mathbb Q(\mathbb D)$ s'écrit alors :

d) $\underline{\text{Exemple}}$: encore la loi normale de Gauss

lacktriangledown Démonstration de $\left[\int_0^{+\infty} e^{-u^2} du\right] = \frac{\sqrt{\pi}}{2}$

Classe C^k d'une intégrale à paramètre 3.3.

- a) Prérequis (sera repris en Chapitre 16):
 - Sous réserve d'existence : Pour $f: \mathbb{R}^2 \to \mathbb{K}$, $\frac{\partial^i f}{\partial x^i}(x,t) = f(.,t)^{(i)}(x)$.
 - Pratiquement:

On considère t comme un paramètre et on dérive i fois par rapport à x

b) Le théorème

Théorème 4-bis : "dérivabilité k fois le signe intégrale"

Soient $f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \to f(x,t) \end{cases}$ où J et I sont des intervalles de \mathbb{R} et $k \geqslant 2$

Si f admet sur $J \times I$ une dérivée partielle $\frac{\partial^k f}{\partial x^k}$ de manière que :

② $\frac{\partial^k f}{\partial x^k}$ vérifie les hypothèses (C1), (CM2) et (D)* du théorème de continuité sous le signe intégrale.

alors la fonction $g: x \to \int_{\mathcal{A}} f(x,t)dt$ est de classe \mathcal{C}^k sur J et vérifie :

$$\forall x \in J : g^{(k)}(x) = \int_{I} \frac{\partial^{k} f}{\partial x^{k}}(x,t) dt$$
.

- Démonstration en exercice : réitération du théorème précédent ...
- Le théorème 4 est alors un cas particulier de ce théorème...
- * ici encore il suffit que l'hypothèse de domination soit satisfaite sur tout segment inclus dans J

Exemple : un prolongement de la factorielle, la fonction Γ 3.4.

15

Définition

$$orall x \in \mathbb{R}_+^* : \left[\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt \, \right]$$

Propriétés

$$\forall x \in \mathbb{R}_{+}^{*} : \Gamma \in \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*}, \mathbb{R})$$

$$\forall x \in \mathbb{R}_{+}^{*} : \Gamma(x+1) = x \times \Gamma(x)$$

$$\forall x \in \mathbb{R}^*_+ : \Gamma(x+1) = x \times \Gamma(x)$$

$$\forall n \in \mathbb{N} : \boxed{n! = \Gamma(n+1)}$$

$$\Gamma(x) \sim \frac{1}{x}$$

