SPM.mat と xSPM の探検

筑波大学医学医療系精神医学 根本清貴

この時間の作業ディレクトリ

- nisg-201912/ex2 がこの時間のディレクトリです
- Matlabでまず、ここに移動してください

チートシート

- ex2_talk.m にこのスライドにある全てのコマンドが 記載されています
- タイプがつらくなった時などにどうぞ
 - >> edit ex2_talk.m

• 「実行して次に進む」が便利

SPM.mat と xSPM

SPM.mat

- 自分が行った統計解析に関する様々な情報 が構造体としておさめられている
- 自動で保存されるためいつでも呼び出し可

xSPM

- 自分が行った統計解析の結果の情報がおさ められている
- SPMを閉じると消えてしまう

SPM.mat と xSPM の場所

- SPM.matは、SPMでモデルを作成する際に設定したディレクトリに生成される
- xSPMは、SPMで結果を出した際に、統計に用いた SPM.matと同じディレクトリに生成される
- xSPMは構造体なので、名前をつけて保存できる
- 保存するファイル名に統計閾値を入れるのもひとつ
 - 例
 - >> save('xSPM_FWE05ext100.mat','xSPM')

健常者と統合失調症の群間比較

- ・健常者71名と統合失調症患者71名の群間比較
- クラスターレベルでの多重比較補正の結果を表示
 - p < 0.001, extent threshold 1490
- Matlabから以下を実行(SPMは起動しない)
 - >> clear all
 - >> cwd = pwd;
 - >> ex2

cwd = pwd

- pwd はMatlabのコマンドで「現在のディレクトリ」の 意味
- 今、pwd の結果を、cwd という変数に代入している
- cwdは、current working directory の略で、「今回 の作業ディレクトリ」のような意味
- 主に作業しているところにすぐに戻ってこれるように このような設定をしておくと、後で簡単に戻ってこれ る

健常者と統合失調症の群間比較

Control > Schizophrenia

Statistics: p-values adjusted for search volume

set-level	cluste	r-level		peak-level				mm mm mm		
рс	p _{FWE-corrFDR-}	corr k _E p _{uncorr}	$p_{\text{FWE-corr}}q_{\text{FDR-corr}}T$			(Z_{\equiv}) p_{uncorr}				
0.0005	0.000 0.000		0.000 0.001 0.027	0.002 0.009 0.092	6.19 5.73 4.79	5.80 5.41 4.60	0.000 0.000 0.000	34 44 36	21 -29 18 -15 -9 -35	
	0.000 0.000	84860.000	0.001 0.006 0.021	0.009 0.040 0.092	5.63 5.19 4.86	5.33 4.95 4.66	0.000 0.000 0.000	-4 -26 -44	-7 -0 5 -23 14 -12	
	0.000 0.000	7347 0.000	0.015 0.024 0.052	0.083 0.092 0.144	4.94 4.82 4.61	4.73 4.63 4.43	0.000 0.000 0.000	-8 0 -4	32 30 38 25 48 19	
	0.011 0.026	1642 0.003	0.117 0.117 0.127	0.215 0.215 0.215	4.36 4.36 4.34	4.22 4.21 4.19	0.000 0.000 0.000	39 39 40	38 -8 51 -0 36 1	
	0.016 0.030	14900.004	0.124 0.275 0.696	0.215 0.348 0.502	4.34 4.07 3.64	4.20 3.95 3.55	0.000 0.000 0.000	-39 -28 -30	39 -3 56 9 47 4	

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 3.15, p = 0.001 (0.986) egrees of freedom = [1.0, 137.0] Extent threshold: k = 1490 voxels, p = 0.004 (0.0986) egrees of freedom = [1.0, 137.0] (0.986) egrees of freedom

こんな経験ありませんか?

- 座標の領域名を求めるの、地味に大変…
- 結果を見ると、自分が考えている領域が入っている はずなのに、それがない…
- もっとたくさん座標があるはずだから、それを全部 見たい…

こういうときに、xSPMが役立つ

SPM.matの中身

•MatlabでSPM.matの中身を見てみる

```
>> SPM %必ず大文字 小文字だとspm12が起動する
 xY: [1×1 struct]
 nscan: 142
 xX: [1×1 struct]
 xC: [1×3 struct]
 xGX: [1×1 struct]
 xM: [1×1 struct]
 xsDes: [1×1 struct]
 … 以下略
```

SPM.mat の要素の確認

• 使用した画像ファイル一覧

>> SPM.xY.P

- Design matrix
 - >> SPM.xX.X

xSPM

```
XYZ: [3×24248 double]
>> xSPM
                                                  XYZmm: [3×24248 double]
xSPM =
                                                  S: 410933
  フィールドをもつ struct:
                                                  R: [-2 -5.7408 392.8758 270.8770]
swd: 'img_data/nisg-201912/ex2/two-
samplet'
                                                  FWHM: [11.2830 10.9299 10.8756]
title: 'Control > Schizophrenia'
                                                  M: [4×4 double]
Z: [1×24248 double]
                                                  iM: [4×4 double]
n: 1
                                                  DIM: [3×1 double]
STAT: 'T'
                                                  VOX: [1.5000 1.5000 1.5000]
df: [1.0000 137.0000]
                                                  Vspm: [1×1 struct]
STATstr: 'T_{137}'
                                                  thresDesc: 'p<0.001 (unc.)'
Ic: 1
                                                  VRpv: [1×1 struct]
Im: []
                                                  units: {'mm' 'mm'
                                                                       'mm'}
pm: []
                                                  Pp: [1×115 double]
Ex: []
                                                  Pc: [1×39 double]
u: 3.1508
                                                  uc: [4.6166 5.1898 1490 1490]
k: 1490
```

xSPM.Z

- 現在有意になったすべてのボクセルの統計値がお さめられている
- Zとあるが、この値は、xSPM.STATで示されている ものの統計値
 - 現在の xSPM.STAT='T' であるからT値
- Z: [1×24248 double]
 - 1行24248列で入っている

24248はどこから?

• 有意なボクセル数の合計

ans =

24248

Statistics: p-values adjusted for search

set-level		cluster-	рe				
р с	P _{FWE-ce}	g or FDR-co	orr K _E	p _{uncorr}	p _{FWE-c}	g orr FDR-cc	
0.0005	0.000	0.000	5283	0.000	0.000	0.002	
	0 000	0 000	8486		0.001	0.009	
	0.000	0.000	8486	0.000	0.001	0.009 0.040	
					0.021	0.092	
	0.000	0.000	7347	0.000	0.015 0.024	0.083 0.092	
					0.052	0.144	
	0.011	0.026	1642	0.003	0.117 0.117	0.215 0.215	
					0.127	0.215	
	0.016	0.030	1490	0.004	0.124	0.215	
					0.275	0.348	

table shows 3 local maxima more than 8

Height threshold: T = 3.15, p = 0.001 (0.986) egrees of fre Extent threshold: k = 1490 voxels, p = 0.004 (0.0016) 16.9 Expected voxels per cluster, <k> = 150.778 Volume: 1386 Expected number of clusters, <c> = 0.02 Voxel size: 1.5 FWEp: 4.617, FDRp: 5.190, FWEc: 1490, FDRc: 1490

xSPM.Zの101~105列

```
>> t = xSPM.Z(:,101:105)
t =
3.3274 3.2489 3.2935 3.4063 3.4368
```

これがあるボクセルはどこ? → xSPM.XYZ に入っている

xSPM.XYZ の101~105列

```
>> XYZ = xSPM.XYZ(:,101:105)
XYZ =
          81
    80
                 78
                       79
                             80
    85
       85
                 86
                       86
                             86
    18
          18
                 18
                       18
                             18
```

- ベクトルは縦ベクトルの集まりであることに注意 [80 85 18] [81 85 18] [78 86 18] ...
- このボクセルのMNI座標は? → xSPM.XYZmm

xSPM.XYZmm の101~105列

```
>> XYZmm = xSPM.XYZmm(:,101:105)

XYZmm =

-28.5   -30.0   -25.5   -27.0   -28.5

0.0    0.0    1.5    1.5    1.5

-46.5   -46.5   -46.5   -46.5   -46.5
```

ベクトルは縦ベクトルの集まりであることに注意
 [-28.5 0.0 -46.5] [-30.0 0.0 -46.5] [-25.5 1.5 -46.5] ...

今得られた3つの関係

>> [XYZ' XYZmm' t'] %行列の転置

Voxel			MN	Т		
80	85	18	-28.5	0.0	-46.5	3.33
81	85	18	-30.0	0.0	-46.5	3.25
78	86	18	-25.5	1.5	-46.5	3.29
79	86	18	-27.0	1.5	-46.5	3.41
80	86	18	-28.5	1.5	-46.5	3.44

SPMで見るこれらの関係

```
>> spm_image('Display','spmT_0001.nii')
```

• vxに 80 85 18 と入力して、Enter

Crosshair Position Origin								
mm:	-28.5 0.0 -46.5							
vx:	<u></u> 80.0 85.0 18.0							
Intensity: 3.32738								

Voxel			MN	Т		
80	85	18	-28.5	0.0	-46.5	3.33

座標のインデックスを確認

- 特定の座標のt値を求めたい
- このような時は、座標のインデックスが有用
- 書式

[xyz i]=spm_XYZreg('NearestXYZ',[知りたい 座標],xSPM.XYZmm)

- 座標は縦ベクトルであることに注意
- SPMではMNI座標は小数点で入っている
 - 'NearestXYZ'の機能により、整数で入れると、それに一番近い座標を探してそのインデックスを返す

特定の座標のインデックスを確認

• [-29 0 -47] のt値を求めたい >> [xyz i] = spm_XYZreg('NearestXYZ', [-29; 0; -47],xSPM.XYZmm) xyz =-28.50000.0000 -46.5000**101** %インデックスが101とわかる

インデックスを使って値を求める

[-29 0 -47] のt値を求めたい(続き)>> tvalue=xSPM.Z(:,i) % i=101tvalue =

3.3274

SPMに搭載されているアトラス

- SPMには様々なアトラスが搭載可能な状態となっている
- 現在搭載されているアトラスは、以下で確認できる

```
>> L = spm_atlas('list')
L =
    file:
    'spm12/tpm/labels_Neuromorphometrics.xml'
    name: 'Neuromorphometrics'
```

現在は、このNeuromorphometricsアトラスのみ利用できる

アトラスの場所

- SPMでは、'tpm' の下にアトラスがある
- spm('dir') がSPMのディレクトリなので、cd(spm('dir')) でSPMのディレクトリに移動できる
 - >> cd(spm('dir'))
 - >> cd tpm
 - >> spm_image %引数がないとファイル選択GUIが出るので、 そのまま labels_Neuromorphometrics.nii を選択
 - >> cd(cwd)%最初に設定したディレクトリに戻る

cd の2つの使い方

- Matlabでは cd は2つの使い方がある
- ディレクトリを直接指定する時
 - シェルと同様 cd /path/to/dir
- ディレクトリのパスが変数に入っている時
 - cd(変数)とする
 cwd = '/path/to/dir'
 cd(cwd)

labels_Neuromorphometrics

- Interpolationを"NN" (Nearest Neighbor) に変更
- アトラスは、すべて整数で値が 入っている
- Nearest Neighborでないと、 小数が出てきてしまう

アトラスの「ラベル label」

*このラベルの領域名は、

spm_atlas('select','neuromorphometrics',174) で求められる

spm_atlasを使った領域名の同定

- spm_atlas('query',アトラス名,[座標の縦 ベクトル])
- spm_atlas の後の第1引数に 'query' をつけることで、領域名を調べることができる (query: 問い合わせ)
- アトラス名は、現在は 'Neuromorphometrics' 一択
 - 最初のNは大文字でも小文字でもOKなので、本 スライドでは小文字で統一

特定の座標の領域名を求める

• [-29 0 -47]の領域名を求める

```
• >>
 spm_atlas('query','neuromorphom
 etrics',[-29; 0; -47])
 ans =
     'Left ITG inferior temporal
 gyrus'
```

複数の座標の領域名を求める

- ちょっと工夫をすると、複数の座標の領域名を一気に求めることもできる
- XYZmm に入っている5つの座標の領域名を求めたい
- そのために必要なコマンド
 - size
 - for

size

• 行列の大きさを表示するコマンド

```
>> size(XYZmm)
ans =
```

- 3 5
- 3行5列であることがわかる
- 行数だけ抜き出したかったら size(XYZmm,1)
- 列数だけ抜き出したかったら size(XYZmm,2)

for

- 繰り返しのコマンド
- Matlabでは繰り返しの回数を最初に指定する

for i=1:繰り返し回数 %**i**でなくてもよい 繰り返す内容

end

複数の座標から領域名を求める

```
>> for j=1:size(XYZmm,2) %mniの列数だけ処理
spm_atlas('query','neuromorphometrics',XYZmm(:,j))
end
```

- 行列XYZmmの列数を求めなさい(今の場合は5)
- jを1から5まで1ずつ増やしながら、以下を実行しなさい
 spm_atlas('query','neuromorphometrics',XYZmm(:,1))
 spm_atlas('query','neuromorphometrics',XYZmm(:,2))
 spm_atlas('query','neuromorphometrics',XYZmm(:,3))
 spm_atlas('query','neuromorphometrics',XYZmm(:,4))
 spm_atlas('query','neuromorphometrics',XYZmm(:,5))

セル配列

- 今出された結果を変数に格納できたら使いやすい
- Matlabは文字列に関しては、通常、行列に入れるときに同じ文字数でないと入れられない
- •「セル配列」を使うと文字数が異なっても入れられる
- セル配列は {} でくくることで作成できる

複数の座標から領域名を求めてセル配列に格納する

```
>> region={}; %空のセル配列を作成
>> for j=1:size(XYZmm,2) %列数だけ処理
region{j,1}=spm_atlas('query','neuromorp hometrics',XYZmm(:,j));
end
>> region %領域が格納されたことがわかる
```

ゆっくり理解

- region{j,1}=spm_atlas('query','neur omorphometrics',XYZmm(:,j));
- この意味は、「regionというセル配列の、j行 1列に、変数XYZmmの第j列の領域名を代入する」ということ

SPMの結果に表示されている 座標から領域名を求める

- SPMの結果で表示される座標は、TabDat.dat という構造体の12列目のセル配列に入っている
- 以下で取り出すことができる

```
>> XYZmm = cell2mat(TabDat.dat(:,12)')
```

• 先程のものを組み合わせれば、領域名を求められる

```
>> region={};
>> for j=1:size(XYZmm,2)
region{j,1}=spm_atlas('query','neuromorphometrics',XYZmm
(:,j));
end
>> region
```

セル配列をcsv形式で書き出す

• セル配列は table を経由して csv形式として書き出 せる

```
>> T = cell2table(region)
```

>> writetable(T,'region.csv')

現在作業しているディレクトリに書き出されることに 注意

TabDat.dat についてもう少し

TabDat.dat に、SPMの結果のテーブルの実際の値がそのままおさめられている

Statistics: p-values adjusted for search volume

set-le	vel	с	luster-le	vel		peak-level					mm mm mm		
р	С	p _{FWE-corr}	q _{FDR-corr}	k_{E}	p _{uncorr}	p _{FWE-corr}	q _{FDR-co}	rr T	(Z ₌)	puncorr			
0.000	5	0.000	0.000	5283	0.000	0.000	0.002	6.19	5.80	0.000	34	21	-29
						0.001	0.009	5.73	5.41	0.000	44	18	-15
						0.027	0.092	4.79	4.60	0.000	36	-9	-35
		0.000	0.000	8486	0.000	0.001	0.009	5.63	5.33	0.000	-4	-7	-0
						0.006	0.040	5.19	4.95	0.000	-26	5	-23
						0.021	0.092	4.86	4.66	0.000	-44	14	-12
		0.000	0.000	7347	0.000	0.015	0.083	4.94	4.73	0.000	-8	32	30
						0.024	0.092	4.82	4.63	0.000	0	38	25
						0.052	0.144	4.61	4.43	0.000	-4	48	19
		0.011	0.026	1642	0.003	0.117	0.215	4.36	4.22	0.000	39	38	-8
						0.117	0.215	4.36	4.21	0.000	39	51	-0
						0.127	0.215	4.34	4.19	0.000	40	36	1
		0.016	0.030	1490	0.004	0.124	0.215	4.34	4.20	0.000	-39	39	-3
						0.275	0.348	4.07	3.95	0.000	-28	56	9
						0.696	0.502	3.64	3.55	0.000	-30	47	4

TabDat

• TabDatが、SPMの結果のテーブル全体をおさめた構造体

>> TabDat TabDat = フィールドをもつ struct: tit: 'p-values adjusted for search volume' hdr: {3×12 cell} fmt: {1×12 cell} str: 'table shows 3 local maxima more than 8.0mm apart' ftr: {9×2 cell} dat: {15×12 cell}

おみやげスクリプト

- get_spm_names.m
 - SPMの結果に表示されている座標の領域名と座標をCSVに書き出す
- get_spm_all_names.m
 - 統計解析で有意になったすべてのボクセルについて以下をCSVに書き出す
 - クラスタ番号、座標、領域名、T値
- batchディレクトリをMatlabのパスに通す(既にパスが通っているディレクトリにスクリプトをコピーしても可)
- SPMの解析をした後、SPMを閉じる前にMATLABのコマンドウィンドウからスクリプトを呼び出すことで実行
- スクリプトが実行されたディレクトリ内に、"region_names_実行した 日付.csv" "region_all_names_実行した日付.csv"のファイル 名で保存される

おみやげスクリプトの実行

- >> pwd % nisg-201912/ex2 であることを確認
- >> addpath ../batch %nisg-201912/batch をパスに追加
- >> get_spm_names
 %region_names_日付.csv が生成
- >> get_spm_all_names
 %region_all_names_日付.csv が生成
- エクスプローラー (Win) や Finder (Mac) でCSVを確認

リソース

- SPM.matの詳しい情報
 - SPM data structures
 - http://people.duke.edu/~njs28/spmdatastructure.htm
- xSPMについての情報
 - Matlab内から
 - >> help spm_getSPM

Questions?