Elliptic Curve Cryptography

an introduction which is entirely too short

by Giacomo Fenzi (ETH Zurich) on 6 January 2022

'It is possible to write endlessly on elliptic curves.

(This is not a threat.)' Serge Lang

```
'It is possible to write endlessly on elliptic curves.

(This is not a threat.)' Serge Lang
```

* Elliptic curves are everywhere in cryptography

'It is possible to write endlessly on elliptic curves.

(This is not a threat.)' Serge Lang

- * Elliptic curves are everywhere in cryptography
- * Power $\approx 70\%$ of TLS Exchanges

'It is possible to write endlessly on elliptic curves.

(This is not a threat.)' Serge Lang

- * Elliptic curves are everywhere in cryptography
- * Power $\approx 70\%$ of TLS Exchanges
- * Coolest post quantum cryptography proposal

'It is possible to write endlessly on elliptic curves. (This is not a threat.)' Serge Lang

- Elliptic curves are everywhere in cryptography
- Power $\approx 70\%$ of TLS Exchanges
- Coolest post quantum cryptography proposal
- Fascinating mathematically

* Historical Notes

- * Historical Notes
- Mathematical Background

- * Historical Notes
- * Mathematical Background
- * Addition on Elliptic Curves

- * Historical Notes
- * Mathematical Background
- * Addition on Elliptic Curves
- * Discrete Logarithm and Diffie Hellman

- * Historical Notes
- * Mathematical Background
- * Addition on Elliptic Curves
- * Discrete Logarithm and Diffie Hellman
- Pairings

- * Historical Notes
- * Mathematical Background
- * Addition on Elliptic Curves
- * Discrete Logarithm and Diffie Hellman
- * Pairings
- * Isogenies

•000

» Diophantine Equations

Historically originated in the context of solving Diophantine equations such as

$$X^n + Y^n = Z^n, X, Y, Z \in \mathbb{Z}$$

0000

» Diophantine Equations

Historically originated in the context of solving Diophantine equations such as

$$X^n + Y^n = Z^n, X, Y, Z \in \mathbb{Z}$$

or equivalently

$$x^n + y^n = 1, \ x, y \in \mathbb{Q}$$

0000

» Diophantine Equations

Historically originated in the context of solving Diophantine equations such as

$$X^n + Y^n = Z^n, X, Y, Z \in \mathbb{Z}$$

or equivalently

$$x^n + y^n = 1, \ x, y \in \mathbb{Q}$$

Often very hard, and in general undecidable! Let us see what we can do...

» One variable

$$a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a = 0$$

» One variable

$$a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a = 0$$

Quite easy! We can show that:

Theorem

0000

Let $\frac{p}{q} \in \mathbb{Q}$ be a solution of the above equation. Then q divides a_n and p divides a_0 .

» One variable

$$a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a = 0$$

Quite easy! We can show that:

Theorem

0000

Let $\frac{p}{q} \in \mathbb{Q}$ be a solution of the above equation. Then q divides a_n and p divides a_0 .

Check the finite list of candidates.

Alternatively, solve numerically and find candidate of form $\frac{b}{a_n}$

» Linear and Quadratic

$$ax + by = c$$

» Linear and Quadratic

$$ax + by = c$$

0000

Has infinitely many rational solution. If gcd(a, b) does not divide c, then no integers solutions. Else, infinitely many.

» Linear and Quadratic

$$ax + by = c$$

Theorem

0000

Has infinitely many rational solution. If $\gcd(a,b)$ does not divide c, then no integers solutions. Else, infinitely many.

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

Linear and Quadratic

$$ax + by = c$$

0000

Has infinitely many rational solution. If gcd(a, b) does not divide c, then no integers solutions. Else, infinitely many.

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

These are rational points on a conic.

- Given a rational point, all of them can be found geometrically
- Hasse principle allows us to test if a rational point exists

0000

What about:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$
?

0000

What about:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$
?

This is the general form of an elliptic curve!

What about:

000

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$
?

This is the general form of an elliptic curve! We have that

Theorem (Mordell)

If the curve is non singular, and it has a rational point then the group of rational points is finitely generated

What about:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$
?

This is the general form of an elliptic curve! We have that

Theorem (Mordell)

If the curve is non singular, and it has a rational point then the group of rational points is finitely generated

But no equivalent of Hasse principle!

What about:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + qy^2 + hx + iy + j = 0$$
?

This is the general form of an elliptic curve! We have that

Theorem (Mordell)

If the curve is non singular, and it has a rational point then the group of rational points is finitely generated

But no equivalent of Hasse principle!

Elliptic Curves \neq Ellipse

» Fields

Definition

A field K is set together with two operations $+,\cdot$ such that

- st K is an abelian group under + with identity 0
- * $K-\{0\}$ is an abelian group under multiplication with identity 1.
- * For every $a,b,c\in K$ we have that a(b+c)=ab+ac
- $* 0 \neq 1$

» Fields

Definition

A field K is set together with two operations $+,\cdot$ such that

- * K is an abelian group under + with identity 0
- * $K \{0\}$ is an abelian group under multiplication with identity 1.
- \ast For every $a,b,c\in K$ we have that a(b+c)=ab+ac
- $* 0 \neq 1$

Informally, we can add, subtract, multiply and divide non zero elements.

» Finite Fields

We are mostly interested in finite fields.:

Theorem

For every prime p, and every $n \in \mathbb{Z}^+$ there is an unique field of size p^n , which we denote by either $\mathbb{GF}(p^n)$ or \mathbb{F}_{p^n}

» Finite Fields

We are mostly interested in finite fields.:

Theorem

For every prime p, and every $n \in \mathbb{Z}^+$ there is an unique field of size p^n , which we denote by either $\mathbb{GF}(p^n)$ or \mathbb{F}_{p^n}

If n=1, then $\mathbb{F}_p=\mathbb{Z}_p$, if not we can write them as

$$\mathbb{F}_{p^n} = \frac{\mathbb{F}_p[X]}{(f(x))}$$

where f(x) is an irreducible polynomial of degree n.

» Characteristic

For any field, $\operatorname{char}(\mathbb{F})$ is the least integer ℓ such that

$$\underbrace{1+\ldots 1}_{\ell \text{ times}} = 0,$$

or ∞ if no such integer exists. We have that $\operatorname{char}(\mathbb{F}_{p^n})=p$.

Let k, K be two fields. If there is an homomorphism $k \to K$, we can identify k with a subfield of K. In that case, K is a **field extension** of k which we denote by $k \subseteq K$.

» Field Extensions

Let k, K be two fields. If there is an homomorphism $k \to K$, we can identify k with a subfield of K. In that case, K is a **field extension** of k which we denote by $k \subseteq K$.

Given any field K we can construct the algebraic closure \overline{K} which is the smallest algebraically closed extension containing K. Some examples:

$$* \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

$$* \ \mathbb{F}_p \subseteq \mathbb{F}_{p^2} \subseteq \mathbb{F}_{p^3} \cdots \subseteq \overline{\mathbb{F}}_p$$

» Weierstrass Form

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j = 0$$

4-Much easier to manage!

» Weierstrass Form

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j = 0$$

$$\downarrow$$

$$y^{2} + axy + by = x^{3} + cx^{2} + dx + e$$

4-Much easier to manage!

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j = 0$$

$$\downarrow$$

$$y^{2} + axy + by = x^{3} + cx^{2} + dx + e$$

$$\downarrow \operatorname{char}(K) \neq 2, 3$$

$$y^{2} = x^{3} + ax + b$$

Elliptic Curves

4-Much easier to manage!

» Elliptic Curves

Definition

Let k be a field. An elliptic curve E over k (denoted by E/k) is given by

$$E: y^2 = x^3 + ax + b$$

for $a, b \in k$.

» Elliptic Curves

Definition

Let k be a field. An elliptic curve E over k (denoted by E/k) is given by

$$E: y^2 = x^3 + ax + b$$

for $a, b \in k$. For any extension $k \subseteq K$ we define

$$E(K) = \left\{ (x, y) \in K \times K \mid y^2 = x^3 + ax + b \right\} \cup \{\infty\}$$

» Elliptic Curves

Definition

Let k be a field. An elliptic curve E over k (denoted by E/k) is given by

$$E: y^2 = x^3 + ax + b$$

for $a, b \in k$. For any extension $k \subseteq K$ we define

$$E(K) = \left\{ (x,y) \in K \times K \mid y^2 = x^3 + ax + b \right\} \cup \left\{ \infty \right\}$$

Mathematicians are often interested with $E(\mathbb{Q}) \subseteq E(\mathbb{R}) \subseteq E(\mathbb{C})$ but we mostly consider the finite case.

» Elliptic curves

$$y^2 = x^3 - 2x + 1 \text{ over } \mathbb{R}$$

» Elliptic curves

$$y^2 = x^3 - 2x + 1 \text{ over } \mathbb{R}$$

$$y^2 = x^3 - 2x + 1$$
 over \mathbb{Z}_{89}

» Some elliptic curves

More elliptic curves

$$y^2 = x^3 + -3x + 3$$
 $y^2 = x^3 + x$ $y^2 = x^3 - x$

$$u^2 - x^3 \perp x$$

$$u^2 = x^3 - x$$

$$y^2 = x^3 - x$$

$$y^2 = x^3 + x^2$$

» Discriminant

Definition

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve.

The **discriminant** of E is

$$\Delta = -16(4a^3 + 27b^2)$$

A curve is **singular** if $\Delta = 0$.

» Discriminant

Definition

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve.

The **discriminant** of E is

$$\Delta = -16(4a^3 + 27b^2)$$

A curve is **singular** if $\Delta = 0$.

Alternatively, let $E: y^2 = f(x)$, and let x_1, x_2, x_3 be the roots of f.

$$\Delta = (x_1 - x_2)^2 (x_2 - x_3)^2 (x_3 - x_1)^2$$

i.e. $\Delta = 0 \iff f$ has a repeated root.

» Discriminant

Definition

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve.

The **discriminant** of E is

$$\Delta = -16(4a^3 + 27b^2)$$

A curve is **singular** if $\Delta = 0$.

Alternatively, let $E: y^2 = f(x)$, and let x_1, x_2, x_3 be the roots of f.

$$\Delta = (x_1 - x_2)^2 (x_2 - x_3)^2 (x_3 - x_1)^2$$

i.e. $\Delta = 0 \iff f$ has a repeated root.

From now on, all curves are assumed non singular.

» j-invariant

Definition

The j-invariant of E is

$$j(E) = -1728 \frac{(4A)^3}{\Delta}$$

\rightarrow *j*-invariant

Definition

The j-invariant of E is

$$j(E) = -1728 \frac{(4A)^3}{\Delta}$$

In fact, an isomorphism from a curve in short Weierstrass form must necessarily be:

$$(x,y) \mapsto (u^2x, u^3y)$$

 $\text{ for } u \in \overline{K}^*$

\rightarrow *j*-invariant

Definition

The j-invariant of E is

$$j(E) = -1728 \frac{(4A)^3}{\Delta}$$

In fact, an isomorphism from a curve in short Weierstrass form must necessarily be:

$$(x,y) \mapsto (u^2x, u^3y)$$

for $u \in \overline{K}^*$ and this yields:

Theorem

Let E, E' be two elliptic curves over K. Then $E \cong E'$ over \overline{K} if and only if j(E) = j(E').

» The Group Law

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Let $P_i = (x_i, y_i) \in E(K)$.

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Let $P_i = (x_i, y_i) \in E(K)$. Define

$$-P_0 = (x_0, -y_0)$$

Let $E:y^2=x^3+ax+b$ be an elliptic curve. Let $P_i=(x_i,y_i)\in E(K).$ Define

$$-P_0 = (x_0, -y_0)$$

Now, for $P_1 + P_2$:

Let $E:y^2=x^3+ax+b$ be an elliptic curve. Let $P_i=(x_i,y_i)\in E(K).$ Define

$$-P_0 = (x_0, -y_0)$$

Now, for $P_1 + P_2$:

* If $x_1 = x_2$ and $y_1 = -y_2$, then $P_1 + P_2 = \infty$

Let $E:y^2=x^3+ax+b$ be an elliptic curve. Let $P_i=(x_i,y_i)\in E(K).$ Define

$$-P_0 = (x_0, -y_0)$$

Now, for $P_1 + P_2$:

- * If $x_1 = x_2$ and $y_1 = -y_2$, then $P_1 + P_2 = \infty$
- * If $P_1 = \infty$ then $P_1 + P_2 = P_2$, and viceversa.

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Let $P_i = (x_i, y_i) \in E(K)$. Define

$$-P_0 = (x_0, -y_0)$$

Now, for $P_1 + P_2$:

- * If $x_1 = x_2$ and $y_1 = -y_2$, then $P_1 + P_2 = \infty$
- * If $P_1 = \infty$ then $P_1 + P_2 = P_2$, and viceversa.
- * Let $x_3 = \lambda^2 x_1 x_2$, $y_3 = \lambda(x_1 x_3) y_1$ where λ is:

$$\lambda = \begin{cases} \frac{y_2-y_1}{x_2-x_1}, \ x_1 \neq x_2\\ \frac{3x_1^2+a}{2y_1}, \ \text{otherwise} \end{cases}$$

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Let $P_i = (x_i, y_i) \in E(K)$. Define

$$-P_0 = (x_0, -y_0)$$

Elliptic Curves

Now, for $P_1 + P_2$:

- * If $x_1 = x_2$ and $y_1 = -y_2$, then $P_1 + P_2 = \infty$
- * If $P_1 = \infty$ then $P_1 + P_2 = P_2$, and viceversa.
- * Let $x_3 = \lambda^2 x_1 x_2$, $y_3 = \lambda(x_1 x_3) y_1$ where λ is:

$$\lambda = \begin{cases} \frac{y_2-y_1}{x_2-x_1}, \ x_1 \neq x_2\\ \frac{3x_1^2+a}{2y_1}, \ \text{otherwise} \end{cases}$$

This makes E into an abelian group with identity ∞

Scalar multiplication

For $n > 0, P \in E$ we write $[n]P = \underbrace{P + \cdots + P}$. We then extend n times the notation by letting $[0]P = \infty$ and [-n]P = [n](-P).

Elliptic Curves 00000000000

For $n > 0, P \in E$ we write $[n]P = \underbrace{P + \dots + P}$. We then extend n times

Elliptic Curves

the notation by letting $[0]P = \infty$ and [-n]P = [n](-P).

We can compute [n]P in $\Theta(\log n)$ group operations using double and add.

For $n > 0, P \in E$ we write $[n]P = \underbrace{P + \dots + P}_{n \text{ times}}$. We then extend

the notation by letting $[0]P = \infty$ and [-n]P = [n](-P).

We can compute [n]P in $\Theta(\log n)$ group operations using double and add.

For $m \in \mathbb{Z}$ we define a map $[m]: E \to E$ accordingly, and write:

$$E[m] := \ker[m]$$

to be the m-torsion subgroup of E.

» Number of Points on a curve

Heuristically, we expect $\approx q+1$ points

» Number of Points on a curve

Heuristically, we expect $\approx q+1$ points

Let E be an elliptic curve defined over \mathbb{F}_a .

$$|\#E(\mathbb{F}_q) - q - 1| \le 2\sqrt{q}$$

» Number of Points on a curve

Heuristically, we expect $\approx q+1$ points

Let E be an elliptic curve defined over \mathbb{F}_q .

$$|\#E(\mathbb{F}_q) - q - 1| \le 2\sqrt{q}$$

Exact value can be efficiently found using Schoof's algorithm in $O((\log q)^8).$

Conclusion

Resource 0 00000

» Discrete Logarithm

Cryptography relies on hardness assumptions.

» Discrete Logarithm

Cryptography relies on hardness assumptions.

Definition

Let $\mathrm{Gen}(1^\lambda)$ be a p.p.t. algorithm that returns a group description $\mathbb{G}=(+,P,q)$, where $\mathbb{G}=\langle P\rangle$ and $q=\#\mathbb{G}$. For an attacker \mathcal{A} , define

$$\mathsf{Adv}^{\mathrm{dlp}}_{\mathcal{A}}(\lambda) = \Pr \left[\mathcal{A} \left(1^{\lambda}, \mathbb{G}, [k]P \right) = k \, \middle| \, \begin{array}{c} \mathbb{G} \leftarrow \$ \, \mathrm{Gen}(1^{\lambda}) \\ k \leftarrow \$ \, \mathbb{Z}_q \end{array} \right]$$

We say that the **discrete logarithm assumption** hold with respect to Gen if, for every p.p.t. attacker \mathcal{A} , $\mathsf{Adv}^{\mathrm{dlp}}_{\mathcal{A}}(\cdot)$ is negligible.

Related Assumptions

In practice, we make stronger assumptions, such as Computational Diffie Hellman and Decisional Diffie Hellman.

000000

Related Assumptions

In practice, we make stronger assumptions, such as Computational Diffie Hellman and Decisional Diffie Hellman.

* CHD: From [x]P, [y]P compute [xy]P

» Related Assumptions

In practice, we make stronger assumptions, such as Computational Diffie Hellman and Decisional Diffie Hellman.

- * CHD: From [x]P, [y]P compute [xy]P
- * DDH: Distinguish (P,[x]P,[y]P,[xy]P) from (P,[x]P,[y]P,[z]P)

0000000

Related Assumptions

In practice, we make stronger assumptions, such as Computational Diffie Hellman and Decisional Diffie Hellman.

- * CHD: From [x]P, [y]P compute [xy]P
- DDH: Distinguish (P, [x]P, [y]P, [xy]P) from (P, [x]P, [y]P, [z]P)

Pairings make DDH easy on elliptic curves!

» Related Assumptions

In practice, we make stronger assumptions, such as Computational Diffie Hellman and Decisional Diffie Hellman.

- * CHD: From [x]P, [y]P compute [xy]P
- * DDH: Distinguish (P,[x]P,[y]P,[xy]P) from (P,[x]P,[y]P,[z]P)

Pairings make DDH easy on elliptic curves!

$$DDH \leq_R CDH \leq_R DLP$$

In practice, we make stronger assumptions, such as Computational Diffie Hellman and Decisional Diffie Hellman.

Elliptic Curves

- * CHD: From [x]P, [y]P compute [xy]P
- * DDH: Distinguish (P,[x]P,[y]P,[xy]P) from (P,[x]P,[y]P,[z]P)

Pairings make DDH easy on elliptic curves!

$$DDH \leq_R CDH \leq_R DLP$$

Representation matters! $\mathbb{Z}_{p-1} \cong \mathbb{Z}_p^*$ as groups but the discrete logarithm is trivial in the former, assumed hard in the latter.

» Why elliptic curves?

Assum	ption	Group	Best Algorithm	\approx Complexity
RS	Д	\mathbb{Z}_N	Number Field Sieve	$\exp(c^3\sqrt{\log N})$
DL	Р	\mathbb{F}_p^*	Number Field Sieve	$\exp(c^3\sqrt{\log p})$
DL	Р	$E(\mathbb{F}_p)$	Pollard Rho	\sqrt{p}

Elliptic Curves

» Why elliptic curves?

Assumption	Group	Best Algorithm	\approx Complexity
RSA	\mathbb{Z}_N	Number Field Sieve	$\exp(c^3\sqrt{\log N})$
DLP	\mathbb{F}_p^*	Number Field Sieve	$\exp(c^3\sqrt{\log p})$
DLP	$E(\hat{\mathbb{F}}_p)$	Pollard Rho	\sqrt{p}

Best known attacks against ECC are generic attacks

» Why elliptic curves?

Assumption	Group	Best Algorithm	\approx Complexity
RSA	\mathbb{Z}_N	Number Field Sieve	$\exp(c^3\sqrt{\log N})$
DLP	\mathbb{F}_p^*	Number Field Sieve	$\exp(c^3\sqrt{\log p})$
DLP	$E(\mathbb{F}_p)$	Pollard Rho	\sqrt{p}

Best known attacks against ECC are generic attacks

- * Shorter keysizes (≈ 256 vs 3072 bits)
- * Faster computation

» EC Diffie Hellman Key Exchange

Let E be an elliptic curve over \mathbb{F}_q . Let p be a large prime dividing $\#E(\mathbb{F}_q)$ and P a point of order p.

» EC Diffie Hellman Key Exchange

Let E be an elliptic curve over \mathbb{F}_q . Let p be a large prime dividing $\#E(\mathbb{F}_q)$ and P a point of order p.

Diffie Hellman

Alice	Bob	
$x \leftarrow \$ \mathbb{Z}_q$	$y \leftarrow \mathbb{Z}_q$	
$Q_A = [x]P$	$Q_B = [y]P$	
$\frac{Q}{}$	\xrightarrow{A}	
$\stackrel{Q_B}{\leftarrow}$		
$K = [x]Q_B$	$K = [y]Q_A$	

EC Diffie Hellman Key Exchange

Let E be an elliptic curve over \mathbb{F}_q . Let p be a large prime dividing $\#E(\mathbb{F}_q)$ and P a point of order p.

Diffie Hellman

Alice	Bob	
$x \leftarrow \$ \mathbb{Z}_q$	$y \leftarrow \$ \mathbb{Z}_q$	
$Q_A = [x]P$	$Q_B = [y]P$	
$\xrightarrow{Q_A}$		
$\stackrel{Q_B}{\longleftarrow}$		
$K = [x]Q_B$	$K = [y]Q_A$	

Correctness follows since:

$$K = [x]Q_B = [x][y]P = [xy]P = [y][x]P = [y]Q_A = K$$

DLP is not equally hard on every curve!

* Singular curves over \mathbb{F}_p . Equivalent to DLP in \mathbb{F}_p^* or \mathbb{F}_p^+

0000000

DLP is not equally hard on every curve!

Singular curves over \mathbb{F}_p . Equivalent to DLP in \mathbb{F}_p^* or \mathbb{F}_p^+

0000000

Curves and subgroups with small embedding degree. E.g. supersingular and anomalous curves

Easy Elliptic Curves

DLP is not equally hard on every curve!

- Singular curves over \mathbb{F}_p . Equivalent to DLP in \mathbb{F}_p^* or \mathbb{F}_p^+
- Curves and subgroups with small embedding degree. E.g. supersingular and anomalous curves
- * Curves that admit pairings to small finite fields.

0000000

DLP is not equally hard on every curve!

- * Singular curves over \mathbb{F}_p . Equivalent to DLP in \mathbb{F}_p^* or \mathbb{F}_p^+
- * Curves and subgroups with small embedding degree. E.g. supersingular and anomalous curves
- * Curves that admit pairings to small finite fields.
- * Curves defined over \mathbb{F}_{p^k} for k with small factors. GHS Method, Diem's Analysis.

Collision search for $f: S \to S$. Let $x_0 \in S$, $x_n = f(x_{n-1})$.

Collision search for $f:S\to S$. Let $x_0\in S$, $x_n=f(x_{n-1})$. Expected $\sqrt{\pi\#S/2}$ calls to f, constant memory.

Collision search for $f: S \to S$. Let $x_0 \in S$, $x_n = f(x_{n-1})$. Expected $\sqrt{\pi \# S/2}$ calls to f, constant memory.

0000000

Let G be a group of order N. We want to find k s.t. [k]P = Q.

Let G be a group of order N. We want to find k s.t. [k]P = Q. Split $G = A \sqcup B \sqcup C$ with $\#A \approx \#B \approx \#C$.

000000

Let G be a group of order N. We want to find k s.t. [k]P=Q. Split $G=A\sqcup B\sqcup C$ with $\#A\approx \#B\approx \#C$. Define

$$f(X) = \begin{cases} P + X, & X \in A \\ [2]X, & X \in B \\ Q + X, & X \in C \end{cases}$$

Let G be a group of order N. We want to find k s.t. [k]P = Q. Split $G = A \sqcup B \sqcup C$ with $\#A \approx \#B \approx \#C$. Define

$$f(X) = \begin{cases} P + X, & X \in A \\ [2]X, & X \in B \\ Q + X, & X \in C \end{cases}$$

Let $X_0 = \infty$, then $X_i = [\alpha_i]P + [\beta_i]Q$ and we can track α_i, β_i . A collision $X_i = X_{i+\ell}$ with $gcd(\beta_{i+\ell} - \beta_i, N) = 1$ allows us to solve the DLP with

$$k \equiv \frac{\alpha_j - \alpha_{j+\ell}}{\beta_{j+\ell} - \beta_j} \pmod{N}$$

Let \mathbb{G}, \mathbb{G}_T be two groups. A **pairing** is a map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ that is:

Definition

Let \mathbb{G}, \mathbb{G}_T be two groups. A **pairing** is a map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ that is:

* Non degenerate:

$$e(S,T) = 1 \ \forall S \in \mathbb{G} \implies T = 0_{\mathbb{G}}$$

Definition

Let \mathbb{G}, \mathbb{G}_T be two groups. A **pairing** is a map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ that is:

* Non degenerate:

$$e(S,T) = 1 \ \forall S \in \mathbb{G} \implies T = 0_{\mathbb{G}}$$

* Bilinear:

$$e(S_1 + S_2, T) = e(S_1, T)e(S_2, T)$$

$$e(S, T_1 + T_2) = e(S, T_1)e(S_2, T_2)$$

Definition

Let \mathbb{G}, \mathbb{G}_T be two groups. A **pairing** is a map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ that is:

* Non degenerate:

$$e(S,T) = 1 \ \forall S \in \mathbb{G} \implies T = 0_{\mathbb{G}}$$

* Bilinear:

$$e(S_1 + S_2, T) = e(S_1, T)e(S_2, T)$$

$$e(S, T_1 + T_2) = e(S, T_1)e(S_2, T_2)$$

* Alternating:

$$e(T,T)=1$$

» Weil Pairing

Every elliptic curve E over K admits an efficiently computable pairing

$$e_m: E[m] \times E[m] \to \mu_m$$

where μ_m is the group of m-th root of unity.

» Weil Pairing

Every elliptic curve ${\cal E}$ over ${\cal K}$ admits an efficiently computable pairing

$$e_m: E[m] \times E[m] \to \mu_m$$

where μ_m is the group of m-th root of unity. It is degenerate on cyclic subgroups of E[m], so use modified Weil pairing

$$\langle \cdot, \cdot \rangle : E[m] \times E[m] \to \mu_m$$

 $\langle P, Q \rangle = e_m(S, \phi(Q))$

For $\phi: E \to E$ a distorsion map

» BLS Signatures

Let \mathbb{G} , \mathbb{G}_T be cyclic groups of prime order p. Let P be a generator of \mathbb{G} , and e a non degenerate pairing. Also, let $H:\{0,1\}^*\to\mathbb{G}$

BLS Signatures

Let \mathbb{G}, \mathbb{G}_T be cyclic groups of prime order p. Let P be a generator of \mathbb{G} , and e a non degenerate pairing. Also, let $H: \{0,1\}^* \to \mathbb{G}$

$$\frac{\operatorname{Gen}(1^{\lambda})}{x \leftarrow \$ \mathbb{Z}_p}$$

$$pk \coloneqq [x]P$$

$$sk \coloneqq x$$

$$\mathbf{return} \ (pk, sk)$$

BLS Signatures

Let \mathbb{G}, \mathbb{G}_T be cyclic groups of prime order p. Let P be a generator of \mathbb{G} , and e a non degenerate pairing. Also, let $H: \{0,1\}^* \to \mathbb{G}$

Elliptic Curves

$$\frac{\mathrm{Gen}(1^{\lambda})}{x \leftarrow \$ \mathbb{Z}_p} \frac{\mathrm{Sign}(sk, m)}{Q \leftarrow H(m)}$$

$$pk \coloneqq [x]P \qquad \sigma \leftarrow [x]Q$$

$$sk \coloneqq x \qquad \mathbf{return} \ \sigma$$

$$\mathbf{return} \ (pk, sk)$$

BLS Signatures

Let \mathbb{G}, \mathbb{G}_T be cyclic groups of prime order p. Let P be a generator of \mathbb{G} , and e a non degenerate pairing. Also, let $H:\{0,1\}^*\to\mathbb{G}$

Elliptic Curves

$$\frac{\operatorname{Gen}(1^{\lambda})}{x \leftarrow \$ \mathbb{Z}_{p}} \frac{\operatorname{Sign}(sk, m)}{Q \leftarrow H(m)}$$

$$pk \coloneqq [x]P \qquad \sigma \leftarrow [x]Q$$

$$sk \coloneqq x \qquad \mathbf{return} \ \sigma$$

$$\mathbf{return} \ (pk, sk)$$

$$\frac{\operatorname{Verify}(pk, m, \sigma)}{\operatorname{return} \ e(\sigma, P) =_{?} e(H(m), [x]P)}$$

» BLS Signatures

Let \mathbb{G} , \mathbb{G}_T be cyclic groups of prime order p. Let P be a generator of \mathbb{G} , and e a non degenerate pairing. Also, let $H: \{0,1\}^* \to \mathbb{G}$

$$\frac{\operatorname{Gen}(1^{\lambda})}{x \leftarrow \$ \mathbb{Z}_{p}} \frac{\operatorname{Sign}(sk, m)}{Q \leftarrow H(m)}$$

$$pk \coloneqq [x]P \qquad \sigma \leftarrow [x]Q$$

$$sk \coloneqq x \qquad \mathbf{return} \ \sigma$$

$$\mathbf{return} \ (pk, sk)$$

$$\operatorname{Verify}(pk, m, \sigma)$$

$$\mathbf{return} \ e(\sigma, P) =_{?} e(H(m), [x]P)$$

Correctness by:

$$e(\sigma, P) = e([x]Q, P) = e(Q, P)^x = e(Q, [x]P) = e(H(m), [x]P)$$

» Post Quantum

* Discrete logarithms, RSA, and pairings broken by Shor's algorithm

» Post Quantum

- * Discrete logarithms, RSA, and pairings broken by Shor's algorithm
- * Can we recover?

» Post Quantum

- * Discrete logarithms, RSA, and pairings broken by Shor's algorithm
- * Can we recover?
- * Yes, lattices, codes, multinear maps...

* Discrete logarithms, RSA, and pairings broken by Shor's algorithm

•00000000000000000

- * Can we recover?
- * Yes, lattices, codes, multinear maps...
- Isogenies!

» Isogenies

"Nice maps" between elliptic curves.

» Isogenies

"Nice maps" between elliptic curves.

Definition

Let E_1, E_2 be elliptic curves. An **isogeny** is a morphism

$$\phi: E_1 \to E_2$$

with $\phi(\infty) = \infty$. If $\phi(E_1) \neq {\infty}$, E_1 is **isogenous** to E_2 .

000000000000000000

» Isogenies

"Nice maps" between elliptic curves.

Definition

Let E_1, E_2 be elliptic curves. An **isogeny** is a morphism

$$\phi: E_1 \to E_2$$

with $\phi(\infty) = \infty$. If $\phi(E_1) \neq {\infty}$, E_1 is **isogenous** to E_2 .

For example, the curves $y^2=x^3+x$ and $y^2=x^3-3x+3$ are isogenous over \mathbb{F}_{71} via the isogeny

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, y \cdot \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3}\right)$$

Properties of isogenies

* Each isogeny is also a group homomorphism

Properties of isogenies

Each isogeny is also a group homomorphism

00000000000000000

* The map $[m]: E \to E$ is an isogeny

* Each isogeny is also a group homomorphism

- * The map $[m]:E \to E$ is an isogeny
- * You can compose isogenies

- * Each isogeny is also a group homomorphism
- * The map $[m]: E \to E$ is an isogeny
- * You can compose isogenies
- * Each isogeny has a degree, and it is multiplicative $\deg(\phi \circ \psi) = \deg(\phi) \deg(\psi)$

Properties of isogenies

- Each isogeny is also a group homomorphism
- The map $[m]: E \to E$ is an isogeny
- * You can compose isogenies
- * Each isogeny has a degree, and it is multiplicative $deg(\phi \circ \psi) = deg(\phi) deg(\psi)$
- * Each isogeny $\phi: E_1 \to E_2$ has a unique dual $\hat{\phi}: E_2 \to E_1$ such that

$$\phi \circ \hat{\phi} = [\deg(\phi)]$$

Properties of isogenies

- Each isogeny is also a group homomorphism
- * The map $[m]: E \to E$ is an isogeny
- * You can compose isogenies
- * Each isogeny has a degree, and it is multiplicative $deg(\phi \circ \psi) = deg(\phi) deg(\psi)$
- * Each isogeny $\phi: E_1 \to E_2$ has a unique dual $\hat{\phi}: E_2 \to E_1$ such that

$$\phi \circ \hat{\phi} = [\deg(\phi)]$$

* An isogeny between two Weierstrass curves has the form

$$(x,y) \mapsto \left(\frac{f}{h^2}(x), y \cdot \frac{g}{h^3}(x)\right)$$

Separable and Inseparable Isogenies

Elliptic Curves

0000000000000000000000

Let $E/k: y^2 = x^3 + ax + b$, with char(k) = p. Define $E^{(p^r)}: u^2 = x^3 + a^{p^r}x + b^{p^r}$. The map:

$$\pi: E \to E^{(p^r)}, (x, y) \mapsto \left(x^{p^r}, y^{p^r}\right)$$

is the (p^r) -Frobenius isogeny.

Separable and Inseparable Isogenies

0000000000000000000000

Let $E/k: y^2 = x^3 + ax + b$, with char(k) = p. Define $E^{(p^r)}: u^2 = x^3 + a^{p^r}x + b^{p^r}$. The map:

$$\pi: E \to E^{(p^r)}, (x, y) \mapsto \left(x^{p^r}, y^{p^r}\right)$$

is the (p^r) -Frobenius isogeny. Note if $k = \mathbb{F}_{p^r}$ then $E^{(p^r)} = E$

» Separable and Inseparable Isogenies

Definition

Let $E/k: y^2 = x^3 + ax + b$, with char(k) = p. Define $E^{(p^r)}: y^2 = x^3 + a^{p^r}x + b^{p^r}$. The map:

$$\pi: E \to E^{(p^r)}, (x, y) \mapsto \left(x^{p^r}, y^{p^r}\right)$$

is the $(p^r)\text{-}\mathbf{Frobenius}$ isogeny. Note if $k=\mathbb{F}_{p^r}$ then $E^{(p^r)}=E$

If an isogeny factors trough a Frobenius isogeny it is inseparable. If it is a Frobenius followed by an isomorphisms, it is purely inseparable.

Definition

Let $E/k: y^2 = x^3 + ax + b$, with $\operatorname{char}(k) = p$. Define $E^{(p^r)}: y^2 = x^3 + a^{p^r}x + b^{p^r}$. The map:

$$\pi: E \to E^{(p^r)}, (x, y) \mapsto \left(x^{p^r}, y^{p^r}\right)$$

is the $(p^r)\text{-}\mathbf{Frobenius}$ isogeny. Note if $k=\mathbb{F}_{p^r}$ then $E^{(p^r)}=E$

If an isogeny factors trough a Frobenius isogeny it is inseparable. If it is a Frobenius followed by an isomorphisms, it is purely inseparable. We are mostly concerned with the separable case.

» Kernel and Velu

There is a one to one correspondence between finite subgroups of elliptic curves and separable isogenies from that curve, up to post-compostion with isomorphisms

» Kernel and Velu

There is a one to one correspondence between finite subgroups of elliptic curves and separable isogenies from that curve, up to post-compostion with isomorphisms

kernels ←→ isogenies

» Kernel and Velu

Theorem

There is a one to one correspondence between finite subgroups of elliptic curves and separable isogenies from that curve, up to post-compostion with isomorphisms

 $kernels \longleftrightarrow isogenies$

Let E/k, with k a finite field. For any subgroup $H \leq E$ we can find an isogeny with kernel H in $\Theta(\#H)$ using Velu's formulas. We denote the target of that isogeny by E/H

Computing large degree isogenies

* Velu's formula are too slow for large degree

4- Take $H \cong \mathbb{Z}_{\ell^k}$. Set $\ker \psi_i = [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(H)$. Then $\deg(\psi_i) = \ell$ and

$$E \xrightarrow{\psi_1} E_1 \xrightarrow{\psi_2} \cdots \xrightarrow{\psi_{k-1}} E_{k-1} \xrightarrow{\psi_k} E/H$$

Computing large degree isogenies

- Velu's formula are too slow for large degree
- Decompose ℓ^k isogenies in k ℓ -isogenies

4- Take $H \cong \mathbb{Z}_{\ell^k}$. Set $\ker \psi_i = [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(H)$. Then $\deg(\psi_i) = \ell$ and

Computing large degree isogenies

- Velu's formula are too slow for large degree
- Decompose ℓ^k isogenies in k ℓ -isogenies
- * Speedup from $\Theta(\ell^k)$ to $\Theta(k^2\ell)$

4- Take $H \cong \mathbb{Z}_{\ell^k}$. Set $\ker \psi_i = [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(H)$. Then $\deg(\psi_i) = \ell$ and

» Supersingular Curves

Definition

A curve E defined over K with $\mathrm{char}(K)=p$ is supersingular if [p] is purely inseparable and $j(E)\in\mathbb{F}_{p^2}.$ A curve that is not supersingular is ordinary

Definition

A curve E defined over K with $\mathrm{char}(K)=p$ is supersingular if [p] is purely inseparable and $j(E)\in\mathbb{F}_{p^2}$. A curve that is not supersingular is ordinary

000000 0000000000000

* Something something order in a quaternion algebra?

Definition

A curve E defined over K with $\mathrm{char}(K)=p$ is supersingular if [p] is purely inseparable and $j(E)\in\mathbb{F}_{p^2}$. A curve that is not supersingular is ordinary

Elliptic Curves

- * Something something order in a quaternion algebra?
- * There are $\approx \lfloor \frac{p}{12} \rfloor$ supersingular curves over \mathbb{F}_{p^n} .

» Supersingular Curves

Definition

A curve E defined over K with $\mathrm{char}(K)=p$ is supersingular if [p] is purely inseparable and $j(E)\in\mathbb{F}_{p^2}$. A curve that is not supersingular is ordinary

Elliptic Curves

- * Something something order in a quaternion algebra?
- * There are $pprox \lfloor rac{p}{12} \rfloor$ supersingular curves over \mathbb{F}_{p^n} .
- * A supersingular curve has p+1 points.

Definition

A curve E defined over K with $\mathrm{char}(K)=p$ is supersingular if [p] is purely inseparable and $j(E)\in\mathbb{F}_{p^2}$. A curve that is not supersingular is ordinary

Elliptic Curves

- * Something something order in a quaternion algebra?
- * There are $pprox \lfloor \frac{p}{12} \rfloor$ supersingular curves over \mathbb{F}_{p^n} .
- * A supersingular curve has p+1 points.
- * Insecure for DLP

Definition

A curve E defined over K with $\mathrm{char}(K)=p$ is supersingular if [p] is purely inseparable and $j(E)\in\mathbb{F}_{p^2}$. A curve that is not supersingular is ordinary

Elliptic Curves

- * Something something order in a quaternion algebra?
- * There are $\approx \lfloor \frac{p}{12} \rfloor$ supersingular curves over \mathbb{F}_{p^n} .
- * A supersingular curve has p+1 points.
- * Insecure for DLP
- * Secure for CSSI (later)!

Isogeny Problems

It is easy to find out if two curves are isogenous

Elliptic Curves

» Isogeny Problems

It is easy to find out if two curves are isogenous

Theorem

Two curves E_1, E_2 over a finite field k are isogenous over k if and only if $\#E_1(k) = \#E_2(k)$.

Elliptic Curves

Isogeny Problems

It is easy to find out if two curves are isogenous

Two curves E_1, E_2 over a finite field k are isogenous over k if and only if $\#E_1(k) = \#E_2(k)$.

Elliptic Curves

0000000000000000000

Finding the isogeny is dramatically harder:

It is easy to find out if two curves are isogenous

Theorem

Two curves E_1, E_2 over a finite field k are isogenous over k if and only if $\#E_1(k) = \#E_2(k)$.

Finding the isogeny is dramatically harder:

Definition

The computational supersingular isogeny problem is as follows: Given two supersingular elliptic curves E,E^\prime , find an isogeny between them.

Look something like this! We focus on the second

Let p, ℓ be a primes.

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_p$

000000000000000000

4- Both up to isomorphisms (i.e. vertices are *j*-invariants)

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_p$

- Edges: Separable isogenies from $E \to E'$
- 4- Both up to isomorphisms (i.e. vertices are *j*-invariants)

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_p$

- Edges: Separable isogenies from $E \to E'$
- 4- Both up to isomorphisms (i.e. vertices are *j*-invariants)

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_p$

- Edges: Separable isogenies from $E \to E'$
- 4- Both up to isomorphisms (i.e. vertices are j-invariants)
 - * We can represent vertices as elements of \mathbb{F}_{p^2}

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_p$

- Edges: Separable isogenies from $E \to E'$
- 4- Both up to isomorphisms (i.e. vertices are j-invariants)
 - * We can represent vertices as elements of \mathbb{F}_{n^2}
 - Graph is directed

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_p$

- Edges: Separable isogenies from $E \to E'$
- 4- Both up to isomorphisms (i.e. vertices are j-invariants)
 - * We can represent vertices as elements of \mathbb{F}_{n^2}
 - * Graph is directed
 - Graph has good mixing properties

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_p$

- Edges: Separable isogenies from $E \to E'$
- 4- Both up to isomorphisms (i.e. vertices are j-invariants)
 - * We can represent vertices as elements of \mathbb{F}_{n^2}
 - Graph is directed
 - * Graph has good mixing properties
 - Can walk in the graph with Velu's method

Let p, ℓ be a primes.

The ℓ -supersingular isogeny graph has as:

* Vertices: Supersingular Elliptic curves over $\overline{\mathbb{F}}_n$

- Edges: Separable isogenies from $E \to E'$
- 4- Both up to isomorphisms (i.e. vertices are j-invariants)
 - * We can represent vertices as elements of \mathbb{F}_{n^2}
 - Graph is directed
 - Graph has good mixing properties
 - Can walk in the graph with Velu's method
 - Most vertices have degree $\ell+1$

» SIDH $(p = 2^4 3^3 - 1)$

Alice's pk

» SIDH $(p = 2^4 3^3 - 1)$

Bob's pk

0000000000000000000

» SIDH $(p = 2^4 3^3 - 1)$

Alice's pk

» SIDH $(p = 2^4 3^3 - 1)$

Alice's pk

Picture to keep in mind:

Details will follow

Parties select $p = 2^{e_A}3^{e_B} - 1$ prime,

Parties select $p=2^{e_A}3^{e_B}-1$ prime, a supersingular starting curve $E/\overline{\mathbb{F}}_{p^2}$,

Parties select $p=2^{e_A}3^{e_B}-1$ prime, a supersingular starting curve $E/\overline{\mathbb{F}}_{p^2}$, four points P_A,P_B,Q_A,Q_B s.t. $\langle P_A,Q_A\rangle=E[2^{e_A}],\langle P_B,Q_B\rangle=E[3^{e_B}].$

* Alice, Bob sample $n_A \leftarrow \$ \mathbb{Z}_{2^{e_A}}, n_B \leftarrow \$ \mathbb{Z}_{3^{e_B}}$, and compute $S_X = P_X + [n_X]Q_X$

Parties select $p=2^{e_A}3^{e_B}-1$ prime, a supersingular starting curve $E/\overline{\mathbb{F}}_{p^2}$, four points P_A,P_B,Q_A,Q_B s.t.

$$\langle P_A, Q_A \rangle = E[2^{e_A}], \langle P_B, Q_B \rangle = E[3^{e_B}].$$

- * Alice, Bob sample $n_A \leftarrow \mathbb{Z}_{2^{e_A}}, n_B \leftarrow \mathbb{Z}_{3^{e_B}}$, and compute $S_X = P_X + [n_X]Q_X$
- * Alice computes the 2^{e_A} isogeny $\phi_A: E \to E/\langle S_A \rangle = E_A$

Parties select $p = 2^{e_A}3^{e_B} - 1$ prime, a supersingular starting curve E/\mathbb{F}_{n^2} , four points P_A, P_B, Q_A, Q_B s.t.

Elliptic Curves

- $\langle P_A, Q_A \rangle = E[2^{e_A}], \langle P_B, Q_B \rangle = E[3^{e_B}].$
 - * Alice, Bob sample $n_A \leftarrow \mathbb{Z}_{2^e A}$, $n_B \leftarrow \mathbb{Z}_{3^e B}$, and compute $S_X = P_X + [n_X]Q_X$
 - * Alice computes the 2^{e_A} isogeny $\phi_A: E \to E/\langle S_A \rangle = E_A$
 - * Bob computes the 3^{e_B} isogeny $\phi_B: E \to E/\langle S_B \rangle = E_B$

SIDH

Parties select $p = 2^{e_A}3^{e_B} - 1$ prime, a supersingular starting curve E/\mathbb{F}_{n^2} , four points P_A, P_B, Q_A, Q_B s.t.

Elliptic Curves

$$\langle P_A, Q_A \rangle = E[2^{e_A}], \langle P_B, Q_B \rangle = E[3^{e_B}].$$

- * Alice, Bob sample $n_A \leftarrow \mathbb{Z}_{2^e A}$, $n_B \leftarrow \mathbb{Z}_{3^e B}$, and compute $S_X = P_X + [n_X]Q_X$
- * Alice computes the 2^{e_A} isogeny $\phi_A: E \to E/\langle S_A \rangle = E_A$
- * Bob computes the 3^{e_B} isogeny $\phi_B: E \to E/\langle S_B \rangle = E_B$
- * The public keys are $\operatorname{pk}_{X} = (E_{X}, P'_{Y} = \phi_{X}(P_{X}), Q'_{X} = \phi_{X}(Q_{X}))$

Parties select $p=2^{e_A}3^{e_B}-1$ prime, a supersingular starting curve $E/\overline{\mathbb{F}}_{p^2}$, four points P_A,P_B,Q_A,Q_B s.t. $\langle P_A,Q_A\rangle=E[2^{e_A}],\langle P_B,Q_B\rangle=E[3^{e_B}].$

- * Alice, Bob sample $n_A \leftarrow \mathbb{Z}_{2^{e_A}}, n_B \leftarrow \mathbb{Z}_{3^{e_B}}$, and compute $S_X = P_X + [n_X]Q_X$
- * Alice computes the 2^{e_A} isogeny $\phi_A: E \to E/\langle S_A \rangle = E_A$
- * Bob computes the 3^{e_B} isogeny $\phi_B: E \to E/\langle S_B \rangle = E_B$
- * The public keys are $\operatorname{pk}_X = (E_X, P_Y' = \phi_X(P_X), Q_X' = \phi_X(Q_X))$
- * Alice computes $S_A'=P_B'+[n_A]Q_B'$, and an isogeny $\phi_A':E_B\to E/\langle S_A'\rangle=E_{AB}$

Parties select $p=2^{e_A}3^{e_B}-1$ prime, a supersingular starting curve $E/\overline{\mathbb{F}}_{p^2}$, four points P_A,P_B,Q_A,Q_B s.t. $\langle P_A,Q_A\rangle=E[2^{e_A}],\langle P_B,Q_B\rangle=E[3^{e_B}].$

- * Alice, Bob sample $n_A \leftarrow \mathbb{Z}_{2^{e_A}}, n_B \leftarrow \mathbb{Z}_{3^{e_B}}$, and compute $S_X = P_X + [n_X]Q_X$
- * Alice computes the 2^{e_A} isogeny $\phi_A:E\to E/\langle S_A\rangle=E_A$
- * Bob computes the 3^{e_B} isogeny $\phi_B: E \to E/\langle S_B \rangle = E_B$
- * The public keys are $\operatorname{pk}_X = (E_X, P_X' = \phi_X(P_X), Q_X' = \phi_X(Q_X))$
- * Alice computes $S_A' = P_B' + [n_A]Q_B'$, and an isogeny $\phi_A': E_B \to E/\langle S_A' \rangle = E_{AB}$
- * Bob computes $S_B' = P_A' + [n_B]Q_A'$, and an isogeny $\phi_B' : E_A \to E/\langle S_B' \rangle = E_{BA}$

SIDH

Parties select $p = 2^{e_A}3^{e_B} - 1$ prime, a supersingular starting curve E/\mathbb{F}_{n^2} , four points P_A, P_B, Q_A, Q_B s.t.

Elliptic Curves

$$\langle P_A, Q_A \rangle = E[2^{e_A}], \langle P_B, Q_B \rangle = E[3^{e_B}].$$

- * Alice, Bob sample $n_A \leftarrow \mathbb{Z}_{2^e A}$, $n_B \leftarrow \mathbb{Z}_{3^e B}$, and compute $S_X = P_X + [n_X]Q_X$
- * Alice computes the 2^{e_A} isogeny $\phi_A: E \to E/\langle S_A \rangle = E_A$
- * Bob computes the 3^{e_B} isogeny $\phi_B: E \to E/\langle S_B \rangle = E_B$
- * The public keys are

$$\operatorname{pk}_X = (E_X, P_X' = \phi_X(P_X), Q_X' = \phi_X(Q_X))$$

- * Alice computes $S'_A = P'_B + [n_A]Q'_B$, and an isogeny $\phi'_A: E_B \to E/\langle S'_A \rangle = E_{AB}$
- * Bob computes $S'_{B} = P'_{A} + [n_{B}]Q'_{A}$, and an isogeny $\phi_B': E_A \to E/\langle S_B' \rangle = E_{BA}$
- * The final secret is $j(E_{AB}) = j(E_{BA})$

» SIDH and SIKE

* SIDH is vulnerable to active attacks

00000000000000000000

SIDH and SIKE

- SIDH is vulnerable to active attacks.
- * SIKE uses the Fujisaki-Okamoto transform to fix this
- SIKE in the Alternate Candidates of Round 3 of the NIST PQC competion

- SIDH is vulnerable to active attacks.
- * SIKE uses the Fujisaki-Okamoto transform to fix this
- SIKE in the Alternate Candidates of Round 3 of the NIST PQC competion

00000000000000000000

- * Very short keys
- * Currently a bit on the slow side

» SIDH and SIKE

- * SIDH is vulnerable to active attacks
- * SIKE uses the Fujisaki-Okamoto transform to fix this
- * SIKE in the Alternate Candidates of Round 3 of the NIST PQC competion
- * Very short keys
- * Currently a bit on the slow side
- * Best known attack is classical

Best attack is on CSSI problem.

Best attack is on CSSI problem. Suppose we want to find an ℓ^a -isogeny between $E_0 \to E_1$, both supersingular over $\overline{\mathbb{F}}_p$.

0000000000000000000

» Security

Best attack is on CSSI problem. Suppose we want to find an ℓ^a -isogeny between $E_0\to E_1$, both supersingular over $\overline{\mathbb{F}}_p$. Let $k\approx a/2$ and

$$S_{i,k} := \left\{ H \le E_i[\ell^k] \mid H \text{ cyclic}, |H| = \ell^k \right\}$$

$$S := (\{0\} \times S_{0,k}) \sqcup (\{1\} \times S_{1,k})$$

$$g : S \to \mathbb{F}_{p^2}, \ (i,H) \mapsto j(E_i/H)$$

Security

Best attack is on CSSI problem. Suppose we want to find an ℓ^a -isogeny between $E_0 \to E_1$, both supersingular over $\overline{\mathbb{F}}_n$. Let $k \approx a/2$ and

$$S_{i,k} := \left\{ H \le E_i[\ell^k] \mid H \text{ cyclic}, |H| = \ell^k \right\}$$

$$S := (\{0\} \times S_{0,k}) \sqcup (\{1\} \times S_{1,k})$$

$$g : S \to \mathbb{F}_{p^2}, \ (i, H) \mapsto j(E_i/H)$$

A collision q(0, H) = q(1, H') will solve CSSI.

Security

Best attack is on CSSI problem. Suppose we want to find an ℓ^a -isogeny between $E_0 \to E_1$, both supersingular over \mathbb{F}_p . Let $k \approx a/2$ and

$$S_{i,k} := \left\{ H \le E_i[\ell^k] \mid H \text{ cyclic}, |H| = \ell^k \right\}$$
$$S := (\{0\} \times S_{0,k}) \sqcup (\{1\} \times S_{1,k})$$
$$g : S \to \mathbb{F}_{p^2}, \ (i,H) \mapsto j(E_i/H)$$

A collision g(0, H) = g(1, H') will solve CSSI. To enable Pollard-Rho style methods, let $h: \mathbb{F}_{n^2} \to S$ be a hash function, and let:

$$f: S \to S, f := h \circ g$$

h maps a set $\approx p/12$ to S which has size $\approx p^{1/4}$ so introduces a lot of collisions.

h maps a set $\approx p/12$ to S which has size $\approx p^{1/4}$ so introduces a lot of collisions. To find a 'golden' one we use the van Oorschot Wiener (vOW) algorithm.

0000000000000000000

h maps a set $\approx p/12$ to S which has size $\approx p^{1/4}$ so introduces a lot of collisions. To find a 'golden' one we use the van Oorschot Wiener (vOW) algorithm. When using m processors and w memory cells, time complexity is

$$\frac{2.5}{m} \sqrt{\#S^3/w} \cdot t = O(p^{3/8})$$

- * Elliptic curves are pretty damn cool
- * We only scratched the surface!

- * Elliptic curves are pretty damn cool
- * We only scratched the surface!
- * ECDH base of most of the web's key exchanges

- * Elliptic curves are pretty damn cool
- * We only scratched the surface!
- * ECDH base of most of the web's key exchanges
- * BLS Pairing based signatures both efficient and secure

- * Elliptic curves are pretty damn cool
- * We only scratched the surface!
- * ECDH base of most of the web's key exchanges
- * BLS Pairing based signatures both efficient and secure
- * SIKE leverages isogenies for post quantum security

» Resources

- 0 J.H. Silverman, J.T. Tate, Rational Points on Elliptic Curves
- 1 .H. Silverman, The Arithmetic of Elliptic Curves¹
- 2 D.A. Cox, Primes of the form $x^2 + ny^2$
- 3,4 L. Panny, notes: [intro] [isogenies problems]
 - 5 C. Costello, Supersingular isogeny key exchange for beginners
 - 6 R. Granger, A. Joux, Computing Discrete Logarithms [5.2, 5.3]
 - 7 P. Aluffi, Algebra: Chapter 0
 - 8 S. Galbraith, Mathematics of Public Key Cryptography

¹The bible

- * Historical Notes follow mostly [0, Introduction]
- * Origin of the name elliptic can be found [here]
- * Fields discussed in [7, III.1.14, VII]
- * Weierstrass form in [1, III.1]
- * Definition of elliptic curve [1, III.2.2, III.3] or [0, 2.2]
- * Elliptic curves diagram from [iacr] and curves from [1, Fig 3.1, 3.2]
- * Discriminant, j-invariant formula from [1, III.1]
- * Discriminant interpretation [0, 2.3]
- * Isomorphism form [1, III.3.1b]
- * Theorem j-invariance [1, III.1.4b]

- * Group Law diagram [0, Fig 1.16]
- * Formulae [1, III.2.3]
- * Scalar multiplication notation [1, III.2]
- * Multiplication isogeny [1, III.4.1]
- * Double and add [1, XI.1]
- * Torsion subgroup [1, III.4]
- * Hasse's theorem [1, V.1.1]
- * Schoof's algorithm [1, XI.3]
- * DLP and related assumption [8. III.13]
- * Partial Equivalence of CHD and DLP in [Maurer] [Fifield]

» Detailed References & Credits

- * Representation example expanded in [6, 5.3.1]
- * Complexity estimates from [0, 4.5] and [1, XI.4]
- * Diffie Hellman from [everywhere?]
- \ast Singular curves are bad [0, 3.15] and [1, III.2.5] and [6, 5.3.3]
- * Small Embedding degree ECDLP [1, XI.6] and [6, 5.2.2]
- * Supersingular curves breaking ECDLP [1, XI.6.4] and [6, 5.2.2]
- * Anomalous curves breaking ECDLP [1, XI.6.5] and [6, 5.2.2] and [6, 5.3.3]
- * Descent methods in [6, 5.2.2]
- * Pollard Rho description [1, XI.5.3-5.4]
- * Pairings adapted from [1, III.8.1]
- * Weil Pairing computation [1, XI.8]
- * Modified Weil Pairing and Distorsion map [1, XI.7]

- * BLS Signatures [1, XI.7.4]
- * Isogeny definition [1, III.4]
- * Isogeny Example from [3, 2.1]
- * Isogeny properties (summary) [3, 2.1]
- * Isogeny and Group Hom. [1, III.4.8]
- * Isogeny composition, degree and multiplicativity [1, III.4]
- * Dual Isogeny [1, III.6]
- * Frobenius isogeny and separability [3, 2.1.2]
- * Kernels and Velu [3, 2.2] and [1, III.4.12]
- * Supersingular curves [1, V.3.1]
- * Number of curves [1, V.4.1c]
- * Points of supersingular curve [3, 1.8]

- Isogenous with same number of points [1, Ex. 5.4]
- Graphs from L. Panny's [lekenpraatje]
- Vertices as elements of \mathbb{F}_{n^2} from [1, V.3.1]
- Good mixing properties from [CGL06]
- SIDH diagrams and description from [5]
- SIKE [sike]
- * vOW function from [4, 3.1] and [ACV+18]
- vOW description [4, 3.2] and [vOW98]

- Attacks on SIDH [torsion] [GPST]
- Mathematics of Isogeny Based Cryptography [deFeo17]
- * vOW attack estimation [vOW98] [ACV+18] [CLN+19] [LWS20]
- * Verifiable Delay Functions from Isogenies and Pairings [dFMPS19]
- Delfs-Galbraith attack [DG16] [SCS21]