Corrigé exercice 74:

$$1. \overrightarrow{n} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

$$2. \overrightarrow{n} \begin{pmatrix} \frac{1}{3} \\ -2 \\ \frac{5}{4} \end{pmatrix}$$

$$3. \overrightarrow{n} \begin{pmatrix} \sqrt{2} \\ -1 \\ -\sqrt{3} \end{pmatrix}$$

Corrigé exercice 75:

Si la droite est orthogonale au plan, alors un vecteur directeur de la droite est colinéaire à un vecteur normal du plan. Un vecteur normal de ce plan est $\overrightarrow{n} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$.

- 1. \overrightarrow{u} $\begin{pmatrix} 1\\1\\3 \end{pmatrix}$ est un vecteur directeur de cette droite. Les vecteurs \overrightarrow{u} $\begin{pmatrix} 1\\1\\3 \end{pmatrix}$ et \overrightarrow{n} $\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$ ne sont pas colinéaires, la droite n'est donc pas orthogonale au plan.
- 2. \overrightarrow{u} $\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$ est un vecteur directeur de cette droite. Les vecteurs \overrightarrow{u} $\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$ et \overrightarrow{n} $\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$ sont égaux et donc colinéaires. La droite est donc orthogonale au plan.
- 3. $\overrightarrow{u} \begin{pmatrix} -1 \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ est un vecteur directeur de cette droite. On a ainsi $\overrightarrow{u} = -\frac{1}{2}\overrightarrow{n}$. Ces vecteurs sont donc colinéaires et la droite est alors orthogonale au plan.