Salary Prediction

In [221]:

```
#Imported all necessary library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [222]:

```
#Read the csv file
salary_pre_data = pd.read_csv('salary.csv')
salary_pre_data.head()
```

Out[222]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Fe
4										•

In [223]:

```
salary_pre_data[salary_pre_data.duplicated()].shape
```

Out[223]:

(24, 15)

Data Cleaning

```
In [224]:
```

```
salary_pre_data.drop_duplicates(keep = 'first',inplace=True)
```

In [225]:

```
salary_pre_data[salary_pre_data.duplicated()].shape
```

Out[225]:

(0, 15)

First study the Dataset then decide/select which feature are useful to train our model or not. Take those feature to train model and drop necessary feature. .

In [226]:

```
salary_pre_data.drop(['fnlwgt','education-num','capital-gain','capital-loss','race','relati
salary_pre_data.head()
```

Out[226]:

	age	workclass	education	marital- status	occupation	sex	hours- per-week	native- country	salary
0	39	State-gov	Bachelors	Never- married	Adm-clerical	Male	40	United- States	<=50K
1	50	Self-emp- not-inc	Bachelors	Married-civ- spouse	Exec- managerial	Male	13	United- States	<=50K
2	38	Private	HS-grad	Divorced	Handlers- cleaners	Male	40	United- States	<=50K
3	53	Private	11th	Married-civ- spouse	Handlers- cleaners	Male	40	United- States	<=50K
4	28	Private	Bachelors	Married-civ- spouse	Prof- specialty	Female	40	Cuba	<=50K

In [227]:

```
salary_pre_data.columns
```

Out[227]:

In [228]:

```
salary_pre_data.rename({'age':'Age', 'workclass':'Employee_Type','education':'Education','m
salary_pre_data.head()
```

Out[228]:

	Age	Employee_Type	Education	Marital_Status	Occupation	Gender	Hours_Per_Week	Nati
0	39	State-gov	Bachelors	Never-married	Adm-clerical	Male	40	U
1	50	Self-emp-not-inc	Bachelors	Married-civ- spouse	Exec- managerial	Male	13	U
2	38	Private	HS-grad	Divorced	Handlers- cleaners	Male	40	U
3	53	Private	11th	Married-civ- spouse	Handlers- cleaners	Male	40	U
4	28	Private	Bachelors	Married-civ- spouse	Prof- specialty	Female	40	

→

In [229]:

salary_pre_data.shape

Out[229]:

(32537, 9)

In [230]:

```
salary_pre_data['Employee_Type'].value_counts()
```

Out[230]:

Private	22673
Self-emp-not-inc	2540
Local-gov	2093
?	1836
State-gov	1298
Self-emp-inc	1116
Federal-gov	960
Without-pay	14
Never-worked	7

Name: Employee_Type, dtype: int64

In [231]:

```
#here we replace the string by unkonwn string
salary_pre_data['Employee_Type'] = salary_pre_data['Employee_Type'].str.replace('?','Privat
```

```
In [232]:
salary_pre_data['Employee_Type'].value_counts()
Out[232]:
 Private
                       24509
 Self-emp-not-inc
                        2540
 Local-gov
                        2093
                        1298
 State-gov
 Self-emp-inc
                        1116
 Federal-gov
                         960
Without-pay
                          14
Never-worked
                           7
Name: Employee_Type, dtype: int64
In [233]:
salary_pre_data['Education'].value_counts()
Out[233]:
HS-grad
                  10494
 Some-college
                   7282
 Bachelors
                   5353
Masters
                   1722
 Assoc-voc
                   1382
                   1175
 11th
 Assoc-acdm
                   1067
 10th
                    933
 7th-8th
                    645
 Prof-school
                    576
 9th
                     514
 12th
                    433
Doctorate
                    413
 5th-6th
                    332
 1st-4th
                    166
 Preschool
                     50
Name: Education, dtype: int64
In [234]:
salary_pre_data['Education'].unique()
Out[234]:
array([' Bachelors', ' HS-grad', ' 11th', ' Masters',
        ' Some-college', ' Assoc-acdm', ' Assoc-voc', ' 7th-8th', ' Doctorate', ' Prof-school', ' 5th-6th', ' 10th', ' 1st-4th',
       ' Preschool', ' 12th'], dtype=object)
In [235]:
#here we make group of education
salary_pre_data['Education'].replace([' 11th',' 9th', ' Some-college','7th-8th', ' 5th-6th
```

```
In [236]:
```

```
#here we make group of education
salary_pre_data['Education'].replace([' Assoc-acdm', ' Assoc-voc',' Prof-school',' Some-col
```

In [237]:

```
salary_pre_data['Education'].unique()
```

Out[237]:

In [238]:

```
salary_pre_data['Marital_Status'].value_counts()
```

Out[238]:

Married-civ-spouse	14970
Never-married	10667
Divorced	4441
Separated	1025
Widowed	993
Married-spouse-absent	418
Married-AF-spouse	23
Name: Marital_Status,	dtype: int64

In [239]:

```
#here we make group of married employee
salary_pre_data['Marital_Status'].replace(['Married-civ-spouse','Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Married-AF-spouse'],'Marr
```

In [240]:

```
#here we make group of single or unmarried employee
salary_pre_data['Marital_Status'].replace(['Never-married','Divorced','Separated','Widowed']
```

In [241]:

```
salary_pre_data['Marital_Status'].value_counts()
```

Out[241]:

other 17544 Married 14993

Name: Marital_Status, dtype: int64

In [242]:

```
salary_pre_data['Occupation'].value_counts()
```

Out[242]:

Prof-specialty 4136 Craft-repair 4094 Exec-managerial 4065 Adm-clerical 3768 Sales 3650 Other-service 3291 Machine-op-inspct 2000 1843 Transport-moving 1597 Handlers-cleaners 1369 Farming-fishing 992 Tech-support 927 Protective-serv 649 147 Priv-house-serv Armed-Forces Name: Occupation, dtype: int64

In [243]:

#here we replace the string by unkonwn string
salary_pre_data['Occupation'] = salary_pre_data['Occupation'].str.replace('?','Prof-special)

In [244]:

```
salary_pre_data['Occupation'].value_counts()
```

Out[244]:

Prof-specialty 5979 4094 Craft-repair Exec-managerial 4065 Adm-clerical 3768 Sales 3650 Other-service 3291 Machine-op-inspct 2000 Transport-moving 1597 Handlers-cleaners 1369 Farming-fishing 992 927 Tech-support Protective-serv 649 147 Priv-house-serv Armed-Forces Name: Occupation, dtype: int64

In [245]:

```
salary_pre_data['Gender'].value_counts()
```

Out[245]:

Male 21775 Female 10762

Name: Gender, dtype: int64

In [246]:

```
salary_pre_data['Hours_Per_Week'].value_counts()
```

Out[246]:

```
40
      15204
50
       2817
45
       1823
60
       1475
35
       1296
82
          1
92
          1
87
          1
          1
74
94
          1
Name: Hours_Per_Week, Length: 94, dtype: int64
```

In [247]:

```
salary_pre_data['Native_Country'].value_counts()
```

Out[247]:

United-States	29153
Mexico	639
?	582
Philippines	198
Germany	137
Canada	121
Puerto-Rico	114
El-Salvador	106
India	100
Cuba	95
England	90
Jamaica	81
South	80
China	75
Italy	73
Dominican-Republic	70
Vietnam	67
Japan	62
Guatemala	62
Poland	60
Columbia	59
Taiwan	51
Haiti	44
Iran	43
Portugal	37
Nicaragua	34
Peru	31
France	29
Greece	29
Ecuador	28
Ireland	24
Hong	20
Cambodia	19
Trinadad&Tobago	19
Laos	18
Thailand	18
Yugoslavia	16
Outlying-US(Guam-USVI-etc)	14
Honduras	13
Hungary	13
Scotland	12
Holand-Netherlands	1
Name: Native_Country, dtype:	int64

In [248]:

```
#here we replace the string by unkonwn string
salary_pre_data['Native_Country'] = salary_pre_data['Native_Country'].str.replace('?','Unit
```

In [249]:

```
salary_pre_data['Native_Country'].value_counts()
```

Out[249]:

United-States	29735
Mexico	639
Philippines	198
Germany	137
Canada	121
Puerto-Rico	114
El-Salvador	106
India	100
Cuba	95
England	90
Jamaica	81
South	80
China	75
Italy	73
Dominican-Republic	70
Vietnam	67
Japan	62
Guatemala	62
Poland	60
Columbia	59
Taiwan	51
Haiti	44
Iran	43
Portugal	37
Nicaragua	34
Peru	31
France	29
Greece	29
Ecuador	28
Ireland	24
Hong	20
Cambodia	19
Trinadad&Tobago	19
Laos	18
Thailand	18
Yugoslavia	16
Outlying-US(Guam-USVI-etc) Honduras	14
	13 13
Hungary Scotland	12
Holand-Netherlands	1
Name: Native_Country, dtype:	_
name. Nacive_country, acype.	111004

In [250]:

```
salary_pre_data['Salary'].value_counts()
```

Out[250]:

<=50K 24698 >50K 7839

Name: Salary, dtype: int64

In [251]:

```
salary_pre_data.head()
```

Out[251]:

	Age	Employee_Type	Education	Marital_Status	Occupation	Gender	Hours_Per_Week	Nati
0	39	State-gov	Bachelors	other	Adm-clerical	Male	40	U
1	50	Self-emp-not-inc	Bachelors	Married	Exec- managerial	Male	13	U
2	38	Private	HS-grad	other	Handlers- cleaners	Male	40	U
3	53	Private	School Education	Married	Handlers- cleaners	Male	40	U
4	28	Private	Bachelors	Married	Prof- specialty	Female	40	
4								•

In [252]:

```
salary_pre_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 32537 entries, 0 to 32560
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	Age	32537 non-null	int64
1	Employee_Type	32537 non-null	object
2	Education	32537 non-null	object
3	Marital_Status	32537 non-null	object
4	Occupation	32537 non-null	object
5	Gender	32537 non-null	object
6	Hours_Per_Week	32537 non-null	int64
7	Native_Country	32537 non-null	object
8	Salary	32537 non-null	object
1.0	(4/2)	·+/7\	

dtypes: int64(2), object(7)
memory usage: 2.5+ MB

In [253]:

salary_pre_data.isnull().sum()

Out[253]:

Age	0
Employee_Type	0
Education	0
Marital_Status	0
Occupation	0
Gender	0
Hours_Per_Week	0
Native_Country	0
Salary	0
dtype: int64	

```
In [254]:
```

```
salary_pre_data.nunique()
Out[254]:
                  73
Age
Employee_Type
Education
                   7
Marital_Status
                   2
Occupation
                  14
Gender
                   2
Hours_Per_Week
                  94
Native_Country
                  41
Salary
                   2
dtype: int64
```

Exploratory Data Analysis

```
In [255]:
```

```
salary_pre_data['Age'].value_counts()
Out[255]:
36
      898
31
      888
34
      886
23
      876
33
      875
83
        6
88
        3
85
        3
86
        1
87
Name: Age, Length: 73, dtype: int64
```

In [256]:

```
plt.figure(figsize=(30,15))
sns.countplot(salary_pre_data['Age'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Age count')
plt.show()
```


In [257]:

salary_pre_data['Employee_Type'].value_counts()

Out[257]:

Private	24509
Self-emp-not-inc	2540
Local-gov	2093
State-gov	1298
Self-emp-inc	1116
Federal-gov	960
Without-pay	14
Never-worked	7

Name: Employee_Type, dtype: int64

In [258]:

```
plt.figure(figsize=(15,6))
sns.countplot(salary_pre_data['Employee_Type'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Employee Types CountWise')
plt.show()
```


In [259]:

salary_pre_data['Education'].value_counts()

Out[259]:

School Education	10885
HS-grad	10494
Bachelors	5353
Higher Education	3025
Masters	1722
School Education	645
Doctorate	413
Name: Education, dtv	pe: inte

In [260]:

```
plt.figure(figsize=(15,6))
sns.countplot(salary_pre_data['Education'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Education count')
plt.show()
```


In [261]:

```
salary_pre_data['Marital_Status'].value_counts()
```

Out[261]:

other 17544 Married 14993

Name: Marital_Status, dtype: int64

In [262]:

```
plt.figure(figsize=(6,6))
sns.countplot(salary_pre_data['Marital_Status'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Marital_Status count')
plt.show()
```


In [263]:

```
salary_pre_data['Occupation'].value_counts()
```

Out[263]:

Prof-specialty 5979 Craft-repair 4094 Exec-managerial 4065 Adm-clerical 3768 Sales 3650 Other-service 3291 Machine-op-inspct 2000 Transport-moving 1597 Handlers-cleaners 1369 Farming-fishing 992 Tech-support 927 Protective-serv 649 Priv-house-serv 147 Armed-Forces 9 Name: Occupation, dtype: int64

In [264]:

```
plt.figure(figsize=(15,6))
sns.countplot(salary_pre_data['Occupation'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Occupation count')
plt.show()
```


In [265]:

```
salary_pre_data['Hours_Per_Week'].value_counts()
Out[265]:
40
      15204
50
       2817
45
       1823
60
       1475
35
       1296
82
          1
92
          1
87
          1
74
          1
94
Name: Hours_Per_Week, Length: 94, dtype: int64
```

In [266]:

```
plt.figure(figsize=(25,15))
sns.countplot(salary_pre_data['Hours_Per_Week'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Hours_Per_Week count')
plt.show()
```


In [267]:

```
salary_pre_data['Gender'].value_counts()
```

Out[267]:

Male 21775 Female 10762

Name: Gender, dtype: int64

In [268]:

```
plt.figure(figsize=(6,6))
sns.countplot(salary_pre_data['Gender'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Gender count')
plt.show()
```


In [269]:

```
salary_pre_data['Native_Country'].value_counts()
```

Out[269]:

United-States	29735
Mexico	639
Philippines	198
Germany	137
Canada	121
Puerto-Rico	114
El-Salvador	106
India	100
Cuba	95
England	90
Jamaica	81
South	80
China	75
Italy	73
Dominican-Republic	70
Vietnam	67
Japan	62
Guatemala	62
Poland	60
Columbia	59
Taiwan	51
Haiti	44
Iran	43
Portugal	37
Nicaragua	34
Peru	31
France	29
Greece	29
Ecuador	28
Ireland	24
Hong	20
Cambodia	19
Trinadad&Tobago	19
Laos	18
Thailand	18
Yugoslavia	16
Outlying-US(Guam-USVI-etc)	14
Honduras	13
Hungary	13
Scotland	12
Holand-Netherlands	1
Name: Native_Country, dtype:	int64
= •••	

localhost:8888/notebooks/5.Machine Learning/My_Pratice/Salary Prediction Classification/Salary_Prediction_Model_Classification.ipynb#

In [270]:

```
plt.figure(figsize=(15,6))
sns.countplot(salary_pre_data['Native_Country'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Native_Country count')
plt.show()
```


In [271]:

#Due to the high values we decide to drop other country if we not drop the column model wil
#salary_pre_data=salary_pre_data[salary_pre_data['Native_Country'] == 'United-States']
salary_pre_data.drop(columns='Native_Country',inplace=True)

In [272]:

salary_pre_data.head()

Out[272]:

	Age	Employee_Type	Education	Marital_Status	Occupation	Gender	Hours_Per_Week	Sala
0	39	State-gov	Bachelors	other	Adm-clerical	Male	40	<=50
1	50	Self-emp-not-inc	Bachelors	Married	Exec- managerial	Male	13	<=51
2	38	Private	HS-grad	other	Handlers- cleaners	Male	40	<=50
3	53	Private	School Education	Married	Handlers- cleaners	Male	40	<=50
4	28	Private	Bachelors	Married	Prof- specialty	Female	40	<=51
4								•

In [274]:

salary_pre_data['Salary'].value_counts()

Out[274]:

<=50K 24698 >50K 7839

Name: Salary, dtype: int64

In [275]:

```
plt.figure(figsize=(6,6))
sns.countplot(salary_pre_data['Salary'],data=salary_pre_data,palette='hls')
plt.xticks(rotation = 90)
plt.title('Salary count')
plt.show()
```


In [279]:

```
sns.pairplot(salary_pre_data)
plt.show()
```


In [280]:

```
from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()
salary_pre_data['Education']=label.fit_transform(salary_pre_data['Education'])
salary_pre_data['Marital_Status']=label.fit_transform(salary_pre_data['Marital_Status'])
salary_pre_data['Occupation']=label.fit_transform(salary_pre_data['Occupation'])
salary_pre_data['Gender']=label.fit_transform(salary_pre_data['Gender'])
salary_pre_data['Salary']=label.fit_transform(salary_pre_data['Salary'])
salary_pre_data['Employee_Type']=label.fit_transform(salary_pre_data['Employee_Type'])
salary_pre_data.head()
```

Out[280]:

	Age	Employee_Type	Education	Marital_Status	Occupation	Gender	Hours_Per_Week	Sala
0	39	6	0	1	0	1	40	
1	50	5	0	0	3	1	13	
2	38	3	2	1	5	1	40	
3	53	3	6	0	5	1	40	
4	28	3	0	0	9	0	40	
4								•

In [290]:

```
#How Salary depent on eduaction
plt.figure(figsize=(15,6))
sns.barplot(x='Education',y='Salary',data=salary_pre_data)
plt.title('Salary vs Eduaction')
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```

No handles with labels found to put in legend.

In [291]:

```
plt.figure(figsize=(15,6))
sns.violinplot(x='Employee_Type',y='Salary',data=salary_pre_data)
plt.title('Salary vs Employee_Type')
plt.xticks(rotation = 90)
plt.show()
```


In [292]:

```
plt.figure(figsize=(15,6))
sns.violinplot(x='Gender',y='Salary',data=salary_pre_data)
plt.title('Salary vs Gender')
plt.xticks(rotation = 90)
plt.show()
```


In [293]:

```
sns.pairplot(salary_pre_data,palette='hls')
plt.show()
```


In [294]:

```
plt.figure(figsize=(15,8))
sns.heatmap(salary_pre_data.corr())
```

Out[294]:

<AxesSubplot:>

In [295]:

```
x = salary_pre_data.iloc[:,:-1].values #independent variable
y = salary_pre_data.iloc[:,-1:].values #dependent variable
```

In [296]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(x)
scaled_data = scaler.transform(x)
```

```
In [297]:
```

```
x = pd.DataFrame(scaled_data,columns=['Age', 'Employee_Type', 'Education', 'Marital_Status'
x
```

Out[297]:

	Age	Employee_Type	Education	Marital_Status	Occupation	Gender	Hours_Per_
0	0.030390	2.623449	-1.488249	0.924443	-1.545209	0.703020	-0.0
1	0.836973	1.720541	-1.488249	-1.081733	-0.790133	0.703020	-2.2
2	-0.042936	-0.085276	-0.604470	0.924443	-0.286749	0.703020	-0.0
3	1.056950	-0.085276	1.163089	-1.081733	-0.286749	0.703020	-0.0
4	-0.776193	-0.085276	-1.488249	-1.081733	0.720018	-1.422436	-0.0
32532	-0.849519	-0.085276	0.721200	-1.081733	1.475094	-1.422436	-0.1
32533	0.103716	-0.085276	-0.604470	-1.081733	-0.035058	0.703020	-0.0
32534	1.423579	-0.085276	-0.604470	0.924443	-1.545209	-1.422436	-0.0
32535	-1.216148	-0.085276	-0.604470	0.924443	-1.545209	0.703020	-1.6
32536	0.983625	0.817632	-0.604470	-1.081733	-0.790133	-1.422436	-0.0

32537 rows × 7 columns

In [298]:

```
#split data into training and test data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.2,random_state=1)
```

Logistic Regression

In [299]:

```
#Here we use logistic Regression Algorithm to trian model
from sklearn.linear_model import LogisticRegression
logi_regg = LogisticRegression()
logi_regg.fit(x_train,y_train)
```

Out[299]:

LogisticRegression()

In [300]:

```
#predict the test data
y_pred_logi = logi_regg.predict(x_test)
```

In [301]:

```
#Here we check the accuracy of model with the help of accuracy score and confusion metrix
from sklearn.metrics import accuracy_score,confusion_matrix
score_logi = accuracy_score(y_test,y_pred_logi)
print('Accuracy of model is : ',score_logi)
error_logi = confusion_matrix(y_test,y_pred_logi)
print("Correct and Incorrect input data :'\n'", error_logi)
```

```
Accuracy of model is : 0.7829043411448329
Correct and Incorrect input data :'
'[[17820 1982]
[ 3669 2559]]
```

In [302]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_logi,c='y',label='logistic Regression')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


K-Nearest Neighbours

In [303]:

```
from sklearn.neighbors import KNeighborsClassifier
list1 = []
list2 = []
for i in range(3,50,2):
    knn=KNeighborsClassifier(n_neighbors=i)
    knn.fit(x_train,y_train)
    from sklearn.metrics import accuracy_score
    y_pred = knn.predict(x_test)
    score = accuracy_score(y_test,y_pred)
    list1.append(score)
    list2.append(i)
print(list1)
print(list2)
#print(i)
```

[0.788897426046869, 0.7996926623127161, 0.8025739531310027, 0.80476373415290 05, 0.8065693430656934, 0.8071840184402612, 0.8071840184402612, 0.8080291970 80292, 0.8067998463311563, 0.8072608528620823, 0.806607760276604, 0.80610833 65347675, 0.806607760276604, 0.8054168267383788, 0.8049558202074529, 0.80345 75489819439, 0.8042258932001537, 0.8045332308874376, 0.8049558202074529, 0.8 034191317710334, 0.8043027276219746, 0.8042643104110642, 0.8044179792547062, 0.8037648866692279]
[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49]

In [304]:

```
df = pd.DataFrame(list1,columns=['score'])
df['k_values'] = list2
df
```

Out[304]:

	score	k_values
0	0.788897	3
1	0.799693	5
2	0.802574	7
3	0.804764	9
4	0.806569	11
5	0.807184	13
6	0.807184	15
7	0.808029	17
8	0.806800	19
9	0.807261	21
10	0.806608	23
11	0.806108	25
12	0.806608	27
13	0.805417	29
14	0.804956	31
15	0.803458	33
16	0.804226	35
17	0.804533	37
18	0.804956	39
19	0.803419	41
20	0.804303	43
21	0.804264	45
22	0.804418	47
23	0.803765	49

In [305]:

```
#here we plot the line graph
sns.lineplot(df.k_values,df.score)
#df.plot(x = 'k_values',y='score',kind='line')
```

Out[305]:

<AxesSubplot:xlabel='k_values', ylabel='score'>

In [306]:

```
#df.plot(x = 'mse',y='k_values',kind='bar')
sns.barplot(df.k_values,df.score)
plt.show()
```



```
In [307]:
```

```
knn = KNeighborsClassifier(n_neighbors=17)
knn.fit(x_train,y_train)
knn
```

Out[307]:

KNeighborsClassifier(n_neighbors=17)

In [308]:

```
y_pred_knn = knn.predict(x_test)
```

In [309]:

```
#Here we check the accuracy of model with the help of accuracy score and confusion metrix
from sklearn.metrics import accuracy_score,confusion_matrix
score_knn = accuracy_score(y_test,y_pred_knn)
print('Accuracy of model is : ',score_knn)
error_knn = confusion_matrix(y_test,y_pred_knn)
print("Correct and Incorrect input data :'\n'", error_knn)
```

```
Accuracy of model is : 0.808029197080292

Correct and Incorrect input data :'

'[[17580 2222]

[ 2775 3453]]
```

In [310]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_knn,c='k',label='KNN Algorithm')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


Support Vector Machine Algorithm

In [311]:

```
from sklearn import svm
#from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
kernel_name = ['linear', 'poly', 'rbf', 'sigmoid'] #{'linear', 'poly', 'rbf', 'sigmoid', 'pr
score_store = []
for i in kernel_name:
    cv_classification = svm.SVC(kernel=i)#SVC = support vector classifier
    cv_classification.fit(x_train,y_train)
    y_pred = cv_classification.predict(x_test)
    score = accuracy_score(y_test,y_pred)
    score_store.append(score)
score_store
```

Out[311]:

```
[0.7872839031886285, 0.8026123703419131, 0.806377257011141, 0.71940069150979 64]
```

In [312]:

```
df1 = pd.DataFrame(score_store,columns=['score'])
df1['kernal'] = kernel_name
df1
```

Out[312]:

	score	kernal
0	0.787284	linear
1	0.802612	poly
2	0.806377	rbf
3	0.719401	sigmoid

In [313]:

```
#here we plot the line graph
sns.lineplot(df1.kernal,df1.score)
#df1.plot(x = 'kernal',y='score',kind='line')
```

Out[313]:

<AxesSubplot:xlabel='kernal', ylabel='score'>

In [319]:

```
#df1.plot(x = 'score',y='k_values',kind='bar')
sns.barplot(df1.kernal,df1.score)
plt.show()
```


In [320]:

```
#Used support vector machine
cv_classification = svm.SVC(kernel='rbf') #SVC = support vector classifier
cv_classification.fit(x_train,y_train)
```

Out[320]:

SVC()

In [321]:

```
y_pred_svm = cv_classification.predict(x_test)
```

In [322]:

```
#Here we check the accuracy of model with the help of accuracy score and confusion metrix
from sklearn.metrics import accuracy_score,confusion_matrix
score_svm = accuracy_score(y_test,y_pred_svm)
print('Accuracy of model is : ',score_svm)
error_svm = confusion_matrix(y_test,y_pred_svm)
print("Correct and Incorrect input data :'\n'", error_svm)
```

```
Accuracy of model is : 0.806377257011141
Correct and Incorrect input data :'
'[[17959 1843]
[ 3197 3031]]
```

In [323]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_svm,c='g',label='Support Vector Machine')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


Decision Tree Classification Algorithm

In [324]:

```
from sklearn.tree import DecisionTreeClassifier
dt_classifier = DecisionTreeClassifier(criterion='entropy') # entropy = information gain
dt_classifier.fit(x_train,y_train)
```

Out[324]:

DecisionTreeClassifier(criterion='entropy')

In [325]:

```
from sklearn import tree
fig = plt.figure(figsize=(15,12))
x=tree.plot_tree(dt_classifier)
```


In [326]:

```
y_pred_dt = dt_classifier.predict(x_test)
```

In [327]:

```
#Here we check the accuracy of model with the help of accuracy score and confusion metrix
from sklearn.metrics import accuracy_score,confusion_matrix
score_dt = accuracy_score(y_test,y_pred_dt)
print('Accuracy of model is : ',score_dt)

error_dt = confusion_matrix(y_test,y_pred_dt)
print("Correct and Incorrect input data :'\n'", error_dt)
```

In [328]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_dt,c='c',label='Decision Tree Classification')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


Navie Bayer Classification Algorithm

```
In [329]:
```

```
from sklearn.naive_bayes import GaussianNB
NBCA = GaussianNB()
NBCA.fit(x_train,y_train)
```

Out[329]:

GaussianNB()

In [330]:

```
y_pred_nb = NBCA.predict(x_test)
```

In [331]:

```
#Here we check the accuracy of model with the help of accuracy score and confusion metrix
from sklearn.metrics import accuracy_score,confusion_matrix
score_nb = accuracy_score(y_test,y_pred_nb)
print('Accuracy of model is : ',score_nb)

error_nb = confusion_matrix(y_test,y_pred_nb)
print("Correct and Incorrect input data :'\n'", error_nb)
```

```
Accuracy of model is : 0.7595850941221667
Correct and Incorrect input data :'
'[[15343 4459]
[ 1799 4429]]
```

In [332]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_nb,c='r',label='Navie Bayer Classification')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


Random Forest Classification Algorithm

In [333]:

```
from sklearn.ensemble import RandomForestClassifier
RFAClass = RandomForestClassifier(n_estimators=50) #n_estimators less error maximum and mor
RFAClass.fit(x_train,y_train)
RFAClass.fit(x_train,y_train)
```

Out[333]:

RandomForestClassifier(n estimators=50)

In [334]:

```
y_pred_rf = RFAClass.predict(x_test)
```

In [335]:

In [336]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_rf,c='b',label='Random Forest Classification')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


XGBOOST Classifier

In [338]:

```
from xgboost import XGBClassifier
xgb = XGBClassifier() #n_estimators less error maximum and more error less
xgb.fit(x_train,y_train)
xgb.fit(x_train,y_train)
```

Out[338]:

In [339]:

```
y_pred_xgb = xgb.predict(x_test)
```

In [340]:

```
#Here we check the accuracy of model with the help of accuracy score and confusion metrix
from sklearn.metrics import accuracy_score,confusion_matrix
score_xgb= accuracy_score(y_test,y_pred_xgb)
print('Accuracy of model is : ',score_xgb)
error_xgb= confusion_matrix(y_test,y_pred_xgb)
print("Correct and Incorrect input data :'\n'", error_xgb)
```

```
Accuracy of model is : 0.8230503265462927
Correct and Incorrect input data :'
'[[17718 2084]
[ 2522 3706]]
```

In [341]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_xgb,c='m',label='XGBoost Classification')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


All Classification Type algorithm result

In [342]:

```
#Here we check the accuracy of model with the help of accuracy score and confusion metrix
print('Logistic Regression')
print('Accuracy of model is : ',score_logi)
print("Correct and Incorrect input data :'\n'", error_logi)
print('\n KNN Classification')
print('Accuracy of model is : ',score_knn)
print("Correct and Incorrect input data :'\n'", error knn)
print('\n Support Vector Machine classification Algorithm')
print('Accuracy of model is : ',score_svm)
print("Correct and Incorrect input data :'\n'", error_svm)
print('\n Decision Tree Classification Algorithm')
print('Accuracy of model is : ',score_dt)
print("Correct and Incorrect input data :'\n'", error_dt)
print('\n Navie Bayes Classification Algorithms')
print('Accuracy of model is : ',score_nb)
print("Correct and Incorrect input data :'\n'", error_nb)
print('\n Random Forest classification Algorithm')
print('Accuracy of model is : ',score_rf)
print("Correct and Incorrect input data :'\n'", error_rf)
print('\n XGBoost Classification')
print('Accuracy of model is : ',score_xgb)
print("Correct and Incorrect input data :'\n'", error xgb)
  [[±0/50 500+]
 [ 2897 3331]]
Navie Bayes Classification Algorithms
Accuracy of model is : 0.7595850941221667
Correct and Incorrect input data: '
' [[15343 4459]
 [ 1799 4429]]
 Random Forest classification Algorithm
Accuracy of model is: 0.8066845946984249
Correct and Incorrect input data: '
' [[17554 2248]
 [ 2784 3444]]
XGBoost Classification
Accuracy of model is : 0.8230503265462927
Correct and Incorrect input data: '
' [[17718 2084]
 [ 2522 3706]]
```

In [343]:

```
Algorithm = ['Logistic Regression','K-NN','Support VM','Decision Tree','Navie Bayer','Rando score = [score_logi,score_knn,score_svm,score_dt,score_nb,score_rf,score_xgb] df_plot = pd.DataFrame(Algorithm,columns=['Algorithm_Name']) df_plot['Accuracy_Score']=score df_plot
```

Out[343]:

Algorithm_Name Accuracy_Score

0	Logistic Regression	0.782904
1	K-NN	0.808029
2	Support VM	0.806377
3	Decision Tree	0.770995
4	Navie Bayer	0.759585
5	Random Forest	0.806685
6	XGBoost Classifier	0.823050

In [344]:

```
plt.figure(figsize=(12,8))
sns.barplot(df_plot.Algorithm_Name,df_plot.Accuracy_Score)
plt.xlabel('Algorithm Names')
plt.ylabel('Accuracy score')
plt.title('Accuracy Score of All Classification Algorithm')
plt.legend()
plt.show()
```

No handles with labels found to put in legend.

conclusion:

- see above plot XGBoost Classifier gives more accuracy to our model
- for salary prediction XGBoost Classifier Algorithm is Efficient.
- XGBoost Classifier Accuracy is 82.30%

In [345]:

```
#visulation of the Acutal Target and Predicated target
plt.figure(figsize=(10,8))
plt.scatter(y_test,y_pred_logi,c='y',label='logistic Regression')
plt.scatter(y_test,y_pred_knn,c='k',label='KNN Algorithm')
plt.scatter(y_test,y_pred_svm,c='g',label='Support Vector Machine')
plt.scatter(y_test,y_pred_dt,c='c',label='Decision Tree Classification')
plt.scatter(y_test,y_pred_nb,c='r',label='Navie Bayer Classification')
plt.scatter(y_test,y_pred_rf,c='b',label='Random Forest Classification')
plt.scatter(y_test,y_pred_xgb,c='m',label='XGBoost Classification')
plt.xlabel('Actual Target')
plt.ylabel('Predicated Target')
plt.title('Actual Target Vs Predicated Target')
plt.legend()
plt.show()
```


In []:			