Algorithmique et Complexité Arbres et graphes TD8 Fermeture transitive et symétrique

LAURIER Alexis

Exercice 1:

1°) Construire la fermeture transitive de ce graphe « à la main »

2°) Construire la fermeture transitive de ce graphe « à la main »

3°) Construire la fermeture symétrique de ce graphe « à la main »

Exercice 2:

1°) On dispose d'un graphe suivant :

Calculer sa matrice d'adjacence

0	1	0	0
1	1	1	1
0	1	0	1
0	1	1	0

 2°) Calculer la matrice d'adjacence de la fermeture transitive de ce graphe $M^2 =$

• • •				
	1	1	1	1
	1	4	2	2
	1	2	2	1
	1	2	1	2

Pas utile de la calculer, M^2 a déjà tous ces éléments avec une valeur non nulle M^3

1	4	2	2
4	9	6	6
2	6	3	4
2	6	4	3

Donc la matrice d'adjacence de la fermeture transitive de ce graphe est

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

3°) Représenter le graphe représenté par cette matrice précédemment calculée On peut faire le choix de représenter les boucles sur les sommets eux-mêmes ou non – Cela comporte peu d'intérêt

4°) Calculer la matrice d'adjacence de la fermeture symétrique de ce graphe

La matrice d'adjacence de ce graphe est

<u> </u>				
0	1	0	0	
0	0	1	1	
0	0	0	1	
0	0	0	0	

La transposée de cette matrice est

0	0	0	0	
1	0	0	0	
0	1	0	0	
0	1	1	0	

La somme logique de ces 2 matrice est donc :

0	1	0	0
1	0	1	1
0	1	0	1
0	1	1	0

5°) Représenter le graphe représenté par cette matrice précédemment calculée

Exercice 3:

- 1°) Implémenter une méthode permettant de calculer la matrice d'adjacence de la fermeture symétrique d'un graphe à partir de sa matrice d'adjacence #projet
- 2°) Implémenter une méthode permettant de calculer la matrice d'adjacence d'un graphe