Seminar 7

In this seminar you will study:

- The Intermediate Value Theorem
- Numerical methods for finding the root of an equation
- Fixed Point Iteration method
 - Bisection method

Intermediate Value Theorem

If two numbers a and b can be found such that

- (i) a < b, and
- (ii) f(a) and f(b) have **different** signs,

then, f(x) = 0 has <u>at least one</u> root in (a, b), provided that f(x) is continuous in the interval [a, b].

Intermediate Value Theorem (IVT)

Example: Show that $f(x) = 2x^3 - 5x^2 - 14x + 12 = 0$ has a root in (0,1).

Solution:

From the given interval a=0 and b=1

Here
$$f(a) = f(0) = 12 > 0$$

and
$$f(b) = f(1) = 2 - 5 - 14 + 12 = -5$$
 < 0

$$\therefore f(0) \cdot f(1) < 0$$

Thus, by the IVT f(x) = 0 has a root in (0,1).

Note: in the exams, write the above steps when verifying the existence of roots in a given interval

CELEN036:: Foundation Algebra for Physical Sciences & Engineering

Notes on Calculator Use

Setting the calculator to **RADIAN** mode.

To obtain the root correct to n decimal places (d.p.)

Shift Mode 6 n

n is the number of decimal places required

CELEN036 :: Foundation Algebra for Physical Sciences & Engineering

(Fixed-Point) Iteration Method

Example: Verify that $f(x) = x^2 + 4x - \sin x - 2 = 0$ has a root in (0,1).

Show that f(x) = 0 can be rearranged to give the iterative formula

$$x_{n+1} = \frac{\sin x_n + 2 - x_n^2}{4}.$$

Apply the Iteration method to find the root correct to 5 d. p.

Solution:

Step 1: Set calculator to RADIAN mode:

Shift Mode 4

Step 2: Fix calculator to 5 d.p.:

Shift Mode 6 5

(Fixed-Point) Iteration Method

Solution:

Step 3: Apply the Intermediate Value Theorem:

$$f(0) = (0)^{2} + 4(0) - \sin(0) - 2 = -2 < 0$$

$$f(1) = (1)^{2} + 4(1) - \sin(1) - 2 = 3 - \sin(1) > 0$$

$$\Rightarrow f(0) \cdot f(1) < 0$$

$$\Rightarrow f(x) = 0 \text{ has a root in } (0, 1).$$

Step 4: Derive the iterative formula

$$x^{2} + 4x - \sin x - 2 = 0$$

$$\Rightarrow 4x = \sin x + 2 - x^{2}$$

$$\Rightarrow x = \frac{\sin x + 2 - x^{2}}{4}$$

$$\Rightarrow x_{n+1} = \frac{\sin x_{n} + 2 - x_{n}^{2}}{4}$$

(Fixed-Point) Iteration Method

Solution:

Step 5: Set up Iterative formula on calculator

$$x_{n+1} = \frac{\sin x_n + 2 - x_n^2}{4}$$

On calculator:

Start with:
$$x_0 = \frac{0+1}{2} = 0.5$$

Enter
$$0.5$$
 and press $"="$

Enter the iterative formula obtained in Step 4 (replace x_n with Ans)

Enter the iterative formula:
$$\left(\sin(\mathsf{Ans}) + 2 - \mathsf{Ans}^2\right) \div 4$$

(Fixed-Point) Iteration Method

Solution:

Step 6: Write down succesive approximations

n	x_n				
0	0.50000				
1	0.55736				
2	0.55457				
3	0.55476				
4	0.55475				
5	0.55475				

Note: All approximations and the final result must be given with the required d.p.

Note: The desired root is obtained when succesive approximations are equal

 \Rightarrow The desired root is 0.55475

CELEN036 :: Foundation Algebra for Physical Sciences & Engineering

(Fixed-Point) Iteration method

IMPORTANT NOTES:

- Make sure you tabulate the obtained approximations.
- Make sure you write the result from all iterations in the required d.p.
- The desired root is obtained when

$$x_{n+1} = x_n$$

Watch the Video on Calculator use for Numerical Method on Moodle

(Fixed-Point) Iteration method

(Fixed-Point) Iteration method

CELEN036 :: Foundation Algebra for Physical Sciences & Engineering

Bisection Method

Example: Show that $f(x) = 2x^3 - 5x^2 - 14x + 12 = 0$ has a root in (0,1).

Use Bisection method to numerically find the root correct to 2 d. p.

Show the steps of calculation for finding $x_0, x_1, x_2, \text{ and } x_3$.

Solution:

Step 1: Fix calculator to 2 d.p.

Shift Mode 6 2

Step 2: Use the IVT to find the zeroth approximation of the root

Let
$$a=0$$
 and $b=1$

Since
$$f(0) > 0$$
 and $f(1) < 0$,

$$\therefore$$
 root lies between $a = 0$ and $b = 1$

$$\therefore$$
 zeroth approximation $x_0 = \mathbf{c} = \frac{a+b}{2} = \frac{0+1}{2}$

$$= 0.50$$

then,
$$f(c) = 2(0.50)^3 - 5(0.50)^2 - 14(0.50) + 12 > 0$$

Bisection Method

Solution:

Step 3: Obtain successive approximations of the root

Then, proceed by entering values in the Table; continue until a root of desired accuracy is obtained.

Bisection Method:

Solution:

Step 4: Use of table to find the root

1	•	• 1
only	signs	required

n	а	b	$c = \frac{a+b}{2}$	f(a)	f(b)	f(c)	Decision: Replace by c
0	0.00	1.00	$x_0 = 0.50$	> 0	< 0	> 0	a by c
1	0.50	1.00	$x_1 = 0.75$	> 0	< 0	< 0	b by c
2	0.50	0.75	$x_2 = 0.63$	> 0	< 0	> 0	a by c
3	0.63	0.75	$x_3 = 0.69$	> 0	< 0	> 0	a by c

THANKS FOR YOUR ATTENTION