东南大学学生会 Students' Union of Southeast University

高等数学(B)06-07-3期中试卷参考答案及评分标准

一. 填空题(本题共5小题,每小题4分,满分20分)

1.
$$\frac{9}{2}\sqrt{3}$$
; 2. $R = 2$; 3. $5x^2 - 2y + 5z^2 = 4$; 4. $\lambda = 3$; 5. $\left[-\frac{1}{3}, \frac{1}{3}\right]$.

二. 单项选择题(本题共4小题,每小题4分,满分16分)

- 6. [C] 7. [B] 8. [C] 9. [C]

三. 计算下列各题(本题共5小题,每小题8分,满分40分)

10. 解 *L* 的方向向量**a** = $\{2,5,6\}$, **(2分)** Π 的法向量**n** = $\{7,8,9\}$, 所求直线的方向向

$$\mathbf{a} \times \mathbf{n} = \{-3, 24, -19\}$$
, (4分) 所求直线的方程: $\frac{x+1}{-3} = \frac{y-2}{24} = \frac{z-3}{-19}$ (2分)

11. 解 设
$$\Pi$$
的方程: $Ax + By + Cz = 0$,(2分) 由题设条件得 $\begin{cases} 6A - 3B + 2C = 0 \\ 4A - B + 2C = 0 \end{cases}$, (3分)

解得 A = B, $C = -\frac{3}{2}B$,取 B = 2 (2分) 得 Π 的方程: 2x + 2y - 3z = 0 (1分)

12. **A**
$$\frac{\mathrm{d}\varphi}{\mathrm{d}x} = f_1 + f_2 \cdot (g_1 + 2xg_2)$$
 (3 **47**)

$$\frac{\mathrm{d}^2\varphi}{\mathrm{d}x^2} = f_{11} + 2f_{12} \cdot (g_1 + 2xg_2) + f_{22} \cdot (g_1 + 2xg_2)^2 + f_2 \cdot (g_{11} + 4xg_{12} + 4x^2g_{22} + 2g_2)$$
(5 分)

13. 解
$$f(x) = \frac{1}{x} + \frac{2}{x-2} = \frac{1}{1+(x-1)} - \frac{2}{1-(x-1)}$$
 (3 分) $= \sum_{n=0}^{\infty} ((-1)^n - 2)(x-1)^n$ (4 分)

 $x \in (0,2)$ (1分)

14. 解 记
$$u_n(x) = \frac{1}{1+x^{2n}}$$
,当 $|x| \le 1$ 时, $\lim_{n \to \infty} u_n(x) \ne 0$,级数 $\sum_{n=1}^{\infty} \frac{1}{1+x^{2n}}$ 发散;(3 分)

当
$$|x|>1$$
时, $u_n(x)=\frac{1}{1+x^{2n}}\leq \left(\frac{1}{x}\right)^{2n}$,而级数 $\sum_{n=1}^{\infty}\left(\frac{1}{x^2}\right)^n$ 收敛,由比较判别法得知级数

$$\sum_{1+r^{2n}}^{\infty}$$
 收敛. (4分) 收敛域为($-\infty$, -1) \bigcup (1, $+\infty$) (1分)

东南大学学生会 Students' Union of Southeast University

四(15). (本题满分8分)

解 首先对 f(x) 在 $-\pi \le x < 0$ 上作奇延拓, 再以 2π 为周期作周期延拓, 得

$$a_n = 0 \ (n = 0, 1, 2, \cdots), \quad (2 \ \beta) \quad b_n = \frac{2}{\pi} \int_0^{\pi} \frac{\pi - x}{2} \sin nx dx = \frac{1}{n} \ (n = 1, 2, \cdots), \quad (3 \ \beta)$$

$$f(x) = \frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{1}{n} \sin nx \quad (0 < x \le \pi)$$
 (3 $\frac{4}{2}$)

五(16). (本题满分8分)

解 设
$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$$
,其收敛域为[-1,1],(2分) $S''(x) = 2\sum_{n=1}^{\infty} (-x^2)^{n-1} = \frac{2}{1+x^2}$,

$$x \in (-1,1)$$
, (2 分) $S'(0) = S(0) = 0$, $S'(x) = 2\arctan x$, $S(x) = 2x\arctan x - \ln(1+x^2)$

(3 分)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} \left(\frac{1}{3}\right)^n = S\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{3\sqrt{3}} - \ln\frac{4}{3}$$
 (1 分)

六(17). (本题满分8分)

解
$$u_n = \sqrt[n]{a} - \sqrt{1 + \frac{1}{n}} = e^{\frac{\ln a}{n}} - \left(1 + \frac{1}{n}\right)^{\frac{1}{2}} = \left(\ln a - \frac{1}{2}\right) \frac{1}{n} + \left(\frac{1}{2}\ln^2 a + \frac{1}{8}\right) \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$
 (3 分)

(1) 当此
$$a-\frac{1}{2}$$
 段 时,即 $a \neq \sqrt{e}$, $\sqrt[n]{a}-\sqrt{1+\frac{1}{n}}$ $\Box \left(\ln a-\frac{1}{2}\right)\frac{1}{n} \quad (n\to\infty)$,当此 $a-\frac{1}{2}$ Θ

时,为正项级数,当 $\ln a - \frac{1}{2} < 0$ 时,为负项级数,由 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,得级数 $\sum_{n=1}^{\infty} \left(\sqrt[n]{a} - \sqrt{1 + \frac{1}{n}} \right)$

发散; (3 **分**)

由
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 收敛,得级数 $\sum_{n=1}^{\infty} \left(\sqrt[n]{a} - \sqrt{1 + \frac{1}{n}} \right)$ 收敛。(2 分)