

计算机网络与通信技术

知识点: 以太网的扩展

北京交通大学 王保华

主要内容

- 扩展的目的
- 扩展设备的协议层
- 物理层扩展
- 数据链路层扩展
- 交换表自学习功能

扩展的目的

扩展的目的

扩展的目的

- 扩大网络的覆盖范围
- 在网络层仍然是一个网络

主要内容

- 扩展的目的
- 扩展设备的协议层
- 物理层扩展
- 数据链路层扩展
- 交换表自学习功能

扩展设备的协议层次

以太网的扩展

主要内容

- 扩展的目的
- 扩展设备的协议层
- 物理层扩展
- 数据链路层扩展
- 交换表自学习功能

物理层扩展

应用层 运输层 网络层 数据链路层 物理层

集线器 (Hub)

物理层扩展

应用层 运输层 网络层 数据链路层 物理层

物理层扩展

应用层 运输层 网络层 数据链路层 物理层

- 1. 广播信道
- 2. CSMA/CD协议

主要内容

- 扩展的目的
- 扩展设备的协议层
- 物理层扩展
- 数据链路层扩展
- 交换表自学习功能

数据链路层扩展

特点

- 1. 没有广播碰撞
- 2. 无需CSMA/CD协议

它根据 MAC 帧的目的地址 对收到的帧进行转发和过滤

数据链路层扩展

名称

- 1. 交换式集线器(switching Hub)
- 2. 网桥
- 3. 第二层交换机(L2 switch)
- 4. 以太网交换机(switch)

数据链路层扩展

共化

- 1. 多端口
- 2. 全双工
- 3. 并行工作
- 4. 存储转发
- 5. 专用交换芯片
- 6. 无差错检验
- 7. 交换表自学习

数据链路层扩展

共化

- 1. 多端口
- 2. 全双工
- 3. 并行工作
- 4. 存储转发
- 5. 专用交换芯片
- 6. 无差错检验
- 7. 交换表自学习

主要内容

- 扩展的目的
- 扩展设备的协议层
- 物理层扩展
- 数据链路层扩展
- 交换表自学习功能

- 1. 开始时,交换表是空的
- 2. A向B发送一个MAC帧
 - ▶ 广播、登记

- 1. 开始时,交换表是空的
- 2. A向B发送一个MAC帧
 - ▶ 广播、登记

- 1. 开始时,交换表是空的
- 2. A向B发送一个MAC帧
 - ▶ 广播、登记
- 3. B向A发送一个MAC帧
 - ▶ 转发、登记

- 1. 开始时,交换表是空的
- 2. A向B发送一个MAC帧
 - ▶ 广播、登记
- 3. B向A发送一个MAC帧
 - ▶ 转发、登记

- 1. 开始时,交换表是空的
- 2. A向B发送一个MAC帧
 - ▶ 广播、登记
- 3. B向A发送一个MAC帧
 - ▶ 转发、登记
- 4. C向A发送一个MAC帧
 - ▶ 转发、登记

- 1. 开始时,交换表是空的
- 2. A向B发送一个MAC帧
 - ▶ 广播、登记
- 3. B向A发送一个MAC帧
 - ▶ 转发、登记
- 4. C向A发送一个MAC帧
 - ▶ 转发、登记
- 5. D向B发送一个MAC帧
 - ▶ 转发、登记

- 1. 开始时,交换表是空的
- 2. A向B发送一个MAC帧
 - ▶ 广播、登记
- 3. B向A发送一个MAC帧
 - ▶ 转发、登记
- 4. C向A发送一个MAC帧
 - ▶ 转发、登记
- 5. D向B发送一个MAC帧
 - ▶ 转发、登记
- 6. D向A发送一个MAC帧
 - ▶ 转发

交换表自学习功能

总结:

- 1. 交换表中没有目的地址,则广播
- 2. 交换表中没有源地址,则登记
- 3. 交换表中有目的地址,则转发

交换表自学习功能

防止无限循环兜圈子

IEEE 802.1D: 生成树协议STP

本节总结

- 扩展的目的
 - ▶ 扩大覆盖范围
- 扩展设备的协议层
 - ▶ 物理层和数据链路层
- 物理层扩展
 - ▶ 集线器(Hub)
- 数据链路层扩展
 - ▶ 交换机 (Switch)
- 交换表自学习功能
 - ▶ 登记、广播、转发