Chapitre 32

Espaces préhilbertiens réels

1 Produit scalaire

On fixe dans ce \S un \mathbb{R} -espace vectoriel E.

1.1 Produit scalaire et inégalité de Cauchy-Schwarz

Définition 1.1 (Produit scalaire, espaces préhilbertiens réels, espaces euclidiens)

- 1. Un produit scalaire sur E est une application $\langle ., . \rangle : E \times E \longrightarrow \mathbb{R}$
 - (a) bilinéaire, i.e. pour tous $x, y, z \in E$ et $\lambda \in \mathbb{R}$, on a

$$< x+y, z > = < x, z > + < y, z >,$$
 $< x, y+z > = < x, y > + < x, z >,$ $< \lambda x, y > = < x, \lambda y > = \lambda < x, y >$

Autrement dit, les applications $<\cdot,y>:x\longmapsto < x,y>$ (à y fixé) et $< x,\cdot>:y\longmapsto < x,y>$ (à x fixé) sont linéaires.

- (b) **symétrique**, *i.e.* pour tous $x, y \in E$, $\langle x, y \rangle = \langle y, x \rangle$.
- (c) **définie positive**, *i.e.* pour tout $x \in E$, $\langle x, x \rangle \ge 0$ et $(\langle x, x \rangle = 0 \Longrightarrow x = 0)$.
- 2. Un espace préhilbertien réel est un R-espace vectoriel muni d'un produit scalaire.
- 3. Un espace vectoriel euclidien est un \mathbb{R} -espace vectoriel de dimension finie muni d'un produit scalaire.

Remarque.

Comme l'application est symétrique, la linéarité soit à gauche, soit à droite, suffit à prouver la bilinéarité.

Définition 1.2 (Norme euclidienne)

Soit E un espace préhilbertien réel, $\langle \cdot, \cdot \rangle$ son produit scalaire, et $x \in E$. La norme euclidienne de x est le réel positif $||x|| = \sqrt{\langle x, x \rangle}$.

Remarque.

Ce réel est bien défini puisque $\langle x, x \rangle \ge 0$.

Proposition 1.3

Soit $\langle ., . \rangle$ un produit scalaire sur E, et $x \in E$.

- 1. $\langle x, 0 \rangle = \langle 0, x \rangle = 0$.
- 2. Si $x \neq 0$, alors $\langle x, x \rangle > 0$.

Remarque.

Un sous-espace vectoriel d'un espace préhilbertien réel est un espace préhilbertien réel pour le produit scalaire induit.

Dans toute la suite de ce \S , on fixe un produit scalaire $\langle \cdot , \cdot \rangle$ sur E (qui n'est pas nécessairement de dimension finie).

Remarque.

On rappelle que deux vecteurs x et y d'un espace vectoriel E sont proportionnels si et seulement si

$$(x = 0 \text{ ou } \exists \lambda \in K, y = \lambda x)$$
 ou de façon équivalente $(\exists \lambda \in K, x = \lambda y \text{ ou } y = \lambda x)$.

Attention à ne pas oublier le "ou" dans l'une ou l'autre des définitions. En effet, si x=0 et $y\neq 0$, alors x et y sont proportionnels, pourtant il n'existe pas de $\lambda\in\mathbb{R}$ tel que $y=\lambda x$.

Évidemment, "proportionnels" et "liés" sont des termes équivalents pour deux vecteurs.

Proposition 1.4 (Inégalité de Cauchy-Schwarz)

Pour tous $x, y \in E$, on a

$$|\langle x, y \rangle| \leqslant ||x||.||y||,$$

avec égalité si et seulement si x et y sont proportionnels (où $||x|| = \sqrt{\langle x, x \rangle}$).

Méthode 1.5

Lorsqu'on doit démontrer une inégalité dans un espace préhilbertien, il faut toujours essayer Cauchy-Schwarz.

1.2 Norme euclidienne

Définition 1.6 (Norme)

1. Une norme sur E est une application $\|\cdot\|: E \longrightarrow \mathbb{R}_+$ définie positive telle que

$$\forall \, x,y \in E, \quad \|x+y\| \leqslant \|x\| + \|y\| \, \text{(Inégalité triangulaire)}, \\ \forall \, x \in E, \, \forall \, \lambda \in \mathbb{R}, \quad \|\lambda x\| = |\lambda| \|x\|.$$

- 2. Un espace vectoriel normé est un espace vectoriel pour lequel il existe une norme.
- 3. Un vecteur unitaire est un vecteur de norme 1.

Remarque.

Dans cette définition, $\|\cdot\|$ n'est pas nécessairement la norme euclidienne définie au début du chapitre.

Proposition 1.7

Soit E un espace préhilbertien réel. L'application

$$\|\cdot\|: E \longrightarrow \mathbb{R}_+$$

$$x \longmapsto \sqrt{\langle x, x \rangle}$$

est une norme sur E. C'est la norme euclidienne associée au produit scalaire $\langle ., . \rangle$.

Proposition 1.8

Soit $\|\cdot\|$ une norme sur E, et $x \in E$, $x \neq 0$. Alors $\|x\| > 0$.

Méthode 1.9

Il faut savoir développer le carré de la norme euclidienne d'une somme. Si \langle , \rangle est un produit scalaire sur E et $\| \cdot \|$ sa norme associée, $x,y \in E$ et $\lambda,\mu \in \mathbb{R}$, on a

 $\|\lambda x + \mu y\|^2 = \langle \lambda x + \mu y , \lambda x + \mu y \rangle = \lambda^2 \langle x , x \rangle + 2\lambda \mu \langle x , y \rangle + \mu^2 \langle y , y \rangle = \lambda^2 \|x\|^2 + 2\lambda \mu \langle x , y \rangle + \mu^2 \|y\|^2,$ par bilinéarité et symétrie du produit scalaire.

Proposition 1.10 (Inégalité triangulaire)

Pour tous $x, y \in E$, on a

$$||x + y|| \le ||x|| + ||y||,$$

avec égalité si et seulement s'il existe $t \in \mathbb{R}_+$ tel que

$$y = tx$$
 ou $x = ty$,

où $\|\cdot\|$ désigne la norme euclidienne.

Proposition 1.11 (Identités du parallèlogramme et de polarisation)

Pour tous $x, y \in E$, on a

1.
$$||x+y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$
.

2.
$$||x - y||^2 = ||x||^2 + ||y||^2 - 2\langle x, y \rangle$$
.

3.
$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
 (identité du parallèlogramme).

4.
$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right) = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right)$$
 (identités de polarisation).

Remarque.

La quatrième relation est très importante. Elle permet de connaître entièrement le produit scalaire dès qu'on connaît la norme.

2 Orthogonalité

Dans ce paragraphe, E est un espace vectoriel préhilbertien réel muni d'un produit scalaire $\langle ., . \rangle$.

2.1 Orthogonal d'un ensemble

${\bf D\'efinition~2.1~(Vecteurs~orthogonaux,~orthogonal~d'un~ensemble)}$

- 1. Deux vecteurs x et y sont orthogonaux si $\langle x, y \rangle = 0$.
- 2. Soit X un sous-ensemble non vide de E. L'orthogonal de X est le sous-ensemble de E

$$X^{\perp} = \{ y \in E, \quad \forall \ x \in X, \quad \langle x \ , y \rangle = 0 \}.$$

Proposition 2.2

On a
$$\{0\}^{\perp} = E$$
 et $E^{\perp} = \{0\}$.

Proposition 2.3 (Opérations avec l'orthogonal d'un ensemble)

Soient A et B deux sous-ensembles non vides de E.

- 1. $0 \in A^{\perp}$.
- 2. A^{\perp} est un sous-espace vectoriel de E.
- 3. $A \cap A^{\perp} \subset \{0\}$.
- 4. Si $A \subset B$, alors $B^{\perp} \subset A^{\perp}$.
- 5. $A \subset (A^{\perp})^{\perp}$.
- 6. $A \subset B^{\perp} \iff B \subset A^{\perp}$
- 7. $A^{\perp} = (\operatorname{vect}(A))^{\perp}$.

Proposition 2.4

Soient F, G des sous-espaces vectoriels de E. Alors

- $1. \quad F \cap F^{\perp} = \{0\}.$
- 2. Si $F \subset G$, alors $G^{\perp} \subset F^{\perp}$.
- 3. $F \subset (F^{\perp})^{\perp}$
- $4. \quad F \subset G^{\perp} \iff G \subset F^{\perp}.$

Remarques.

1. Si F est un sous-espace vectoriel de E, le point 1 prouve que F et F^{\perp} sont en somme directe. Par contre, ils ne sont pas nécessairement supplémentaires. Par exemple si $E = \mathbb{R}[X], \langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)\mathrm{d}t$ (prouvez que c'est un produit scalaire!! C'est un bon petit exo.), et $F = \{P \in E \mid_{:} X|P\}$,

alors $F^{\perp} = \{0\}$. Vous verrez en spé que si F est un sous-espace vectoriel *complet* de E, alors F et F^{\perp} sont supplémentaires.

- 2. De même, on n'a pas nécessairement $F = (F^{\perp})^{\perp}$. L'exemple précédent montre que $(F^{\perp})^{\perp} = E \neq F$.
- 3. Voici un autre exemple : $E = \mathcal{C}([-1,1]), \langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$ et $F = \{f \in E, f_{|[0,1]} = 0\}$. Alors $F^{\perp} = \{f \in E, f_{|[-1,0]} = 0\}$, et $F = (F^{\perp})^{\perp}$. Mais $E \neq F \oplus F^{\perp}$ car $F \oplus F^{\perp} = \{f \in E, f(0) = 0\}$.

Méthode 2.5 (Montrer qu'un vecteur est orthogonal à un sous-espace vectoriel)

Pour montrer qu'un vecteur est orthogonal à un sous-espace vectoriel, il suffit de démontrer qu'il est orthogonal à une base de ce sous-espace vectoriel .

Définition 2.6 (Sous-espaces vectoriels orthogonaux)

Deux sous-espaces vectoriels F et G de E sont orthogonaux si

$$\forall x \in F, \quad \forall y \in G, \quad \langle x, y \rangle = 0.$$

Autrement dit, F et G sont orthogonaux si et seulement si $F \subset G^{\perp}$ ou encore si et seulement si $G \subset F^{\perp}$. On note $F \perp G$.

Définition 2.7

Soit F un sous-espace vectoriel de E tel que $E=F\oplus F^{\perp}$. Alors F^{\perp} est le supplémentaire orthogonal de F.

Remarque.

Attention, ce n'est pas toujours le cas, voir les exemples précédents.

2.2 Familles orthogonales

Définition 2.8 (Familles orthogonales - orthonormales)

Soit $n \in \mathbb{N}^*$ et $X = (x_i)_{i \in I}$ une famille de vecteurs de E.

1. La famille X est orthogonale si

$$\forall i, j \in I, i \neq j, \langle x_i, x_j \rangle = 0.$$

autrement dit si les vecteurs sont orthogonaux deux à deux.

2. La famille X est orthonormale si elle est orthogonale et si tous les vecteurs sont de norme 1, i.e.

$$\forall i, j \in I, \langle x_i, x_j \rangle = \delta_{ij}.$$

Proposition 2.9 (Théorème de Pythagore)

1. Soient $x, y \in E$. Alors $||x + y||^2 = ||x||^2 + ||y||^2 \iff x \perp y$.

2. Soit
$$n \in \mathbb{N}^*$$
 et $X = (x_1, \dots, x_n)$ une famille orthogonale de vecteurs de E . On a $\left\| \sum_{i=1}^n x_i \right\|^2 = \sum_{i=1}^n \|x_i\|^2$.

Remarques.

- 1. Notez dans la démonstration comment on utilise la bilinéarité pour développer le produit scalaire. Si vous ne voyez pas bien, essayez $\langle x_1 + x_2 , x_1 + x_2 \rangle$.
- 2. La réciproque au théorème de pythagore est fausse si $n \ge 3$. Par exemple dans \mathbb{R}^2 , l'égalité du théorème signifie que

$$\langle x, y \rangle + \langle y, z \rangle + \langle z, x \rangle = 0.$$

En prenant par exemple $x=(1,0),\,y=(1,1),\,z=(1,-3),$ on a l'égalité, mais la famille n'est pas orthogonale.

Proposition 2.10

Une famille orthogonale de vecteurs tous non nul est libre. En particulier, une famille orthonormale est libre.

3 Supplémentaire orthogonal d'un sous-espace vectoriel de dimension finie

Proposition 3.1

Soit $x \in E$ non nul. Alors $E = x^{\perp} \oplus \mathbb{R}x$.

Théorème 3.2

Tout espace vectoriel euclidien admet une base orthonormale.

Corollaire 3.3

Soit F un sous-espace vectoriel de dimension finie de E. Alors F admet une base orthonormale.

Théorème 3.4 (Supplémentaire orthogonal d'un sous-espace vectoriel de dimension finie)

Soit F un sous-espace vectoriel **de dimension finie** de E. Alors $E = F \oplus F^{\perp}$.

Méthode 3.5

Cette démonstration illustre une technique générale à connaître. Lorsqu'on a une combinaison linéaire $\sum_{k=1}^{n} \lambda_i x_i = 0$, faire un produit scalaire de cette relation avec un vecteur y "bien choisi" peut donner des informations intéressantes (par exemple un y dans un orthogonal..).

Notez aussi l'utilisation de la bilinéarité dans ces démonstrations. Cela dit être absolument maîtrisé!

Corollaire 3.6

Soit F un sous-espace vectoriel **de dimension finie** de E. Alors $F = (F^{\perp})^{\perp}$.

4 Espaces vectoriels euclidiens

Dans ce paragraphe, E est un espace vectoriel euclidien : il est donc de dimension finie, et on note $n \in \mathbb{N}^*$ sa dimension.

Définition 4.1 (Espaces euclidiens)

Un espace vectoriel euclidien est un espace préhilbertien réel de dimension finie.

Dans toute la suite, on fixe un espace vectoriel euclidien E.

Théorème 4.2 (Existence d'une base orthonormale dans le cas euclidien)

- 1. Tout espace vectoriel euclidien admet une base orthonormale (donc en particulier une base orthogonale).
- 2. Toute famille orthogonale de vecteurs non nuls d'un espace vectoriel euclidien peut être complétée en une base orthogonale.

Théorème 4.3 (Supplémentaire orthogonal)

Soit F un sous-espace vectoriel de E. Alors

- 1. $E = F \oplus F^{\perp}$
- $2. \quad F = (F^{\perp})^{\perp}$

Méthode 4.4 (Procédé d'orthonormalisation de Schmidt)

Soit (e_1, \ldots, e_n) une base de E. Il existe une base orthonormale (u_1, \ldots, u_n) de E telle que

$$\forall p = 1, \dots, n, \text{ vect}(u_1, \dots, u_p) = \text{vect}(e_1, \dots, e_p).$$

- 1. On construit la famille $(u_p)_{1 \le p \le n}$ par récurrence sur p.
- 2. On définit u_1 par $u_1 = \frac{e_1}{\|e_1\|}$.
- 3. Supposons alors u_1, \ldots, u_p construits pour un p < n. Soit u'_{p+1} le vecteur défini par

$$u'_{p+1} = e_{p+1} - \sum_{i=1}^{p} a_i u_i,$$

où $a_i = \langle e_{p+1}, u_i \rangle, i = 1, \dots, p$. On a alors pour $i = 1, \dots, p$,

$$\left\langle u_{p+1}', u_i \right\rangle = \left\langle e_{p+1}, u_i \right\rangle - \sum_{k=1}^p a_k \left\langle u_k, u_i \right\rangle = \left\langle e_{p+1}, u_i \right\rangle - a_i \left\langle u_i, u_i \right\rangle = \left\langle e_{p+1}, u_i \right\rangle - a_i = 0$$

donc la famille $\{u_1, \ldots, u_p, u'_{p+1}\}$ est orthogonale et on pose $u_{p+1} = \frac{u'_{p+1}}{\|u'_{p+1}\|}$.

Remarques.

- 1. On verra que u'_{p+1} est la projection orthogonale de e_{p+1} sur $\left(\operatorname{vect}(e_1,\ldots,e_p)\right)^{\perp}$, cf. la proposition 5.5.
- 2. Comme

$$\operatorname{vect}(u_1,\ldots,u_p) = \operatorname{vect}(e_1,\ldots,e_p)$$

par hypothèse, la définition de u'_{p+1} prouve que ce vecteur est combinaison linéaire de e_1, \ldots, e_{p+1} , donc

$$\operatorname{vect}(u_1, \dots, u_p, u'_{p+1}) \subset \operatorname{vect}(e_1, \dots, e_{p+1}).$$

De même, comme

$$e_{p+1} = u'_{p+1} + \sum_{i=1}^{p} a_i u_i,$$

on a également l'inclusion dans l'autre sens, donc l'égalité

$$\operatorname{vect}(u_1, \dots, u_p, u'_{p+1}) = \operatorname{vect}(e_1, \dots, e_{p+1}).$$

Ceci prouve en particulier que $u'_{p+1} \neq 0$.

Proposition 4.5 (Composantes dans une base orthonormale)

Soit $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ une base orthonormale de E, et $x, y \in E$, et

$$X = \mathcal{M}at_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \mathcal{M}at_{\mathcal{B}}(y) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Alors

1. Les composantes de x dans la base \mathcal{B} sont

$$\mathcal{M}at_{\mathcal{B}}(x) = \begin{pmatrix} \langle x, e_1 \rangle \\ \vdots \\ \langle x, e_n \rangle \end{pmatrix},$$

i.e. $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$, ou encore $x_i = \langle x, e_i \rangle$ pour tout $i = 1, \dots, n$.

2.
$$\langle x, y \rangle = {}^{t}XY = \sum_{i=1}^{n} x_i y_i$$
.

3.
$$||x||^2 = {}^t XX = \sum_{i=1}^n x_i^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$$
.

Méthode 4.6

Dans le cas d'une base orthogonale (e_1, \ldots, e_n) seulement, le résultat tombe en défaut. On pourra cependant utiliser le fait que la base $(e_i/\|e_i\|)_{1 \le i \le n}$ est orthonormale. On aura donc pour

$$x = \sum_{k=1}^{n} x_k e_k, \qquad \sum_{k=1}^{n} y_k e_k,$$

en réécrivant :

$$x = \sum_{k=1}^{n} \|e_k\| x_k \frac{e_k}{\|e_k\|}, \qquad y = \sum_{k=1}^{n} \|e_k\| y_k \frac{e_k}{\|e_k\|},$$

et donc

$$\langle x, y \rangle = \sum_{k=1}^{n} \|e_k\|^2 x_k y_k, \qquad \|x\|^2 = \sum_{k=1}^{n} \|e_k\|^2 x_k^2.$$

5 Projections et symétries orthogonales, distance

Dans tout ce paragraphe, E est un espace vectoriel préhilbertien réel, et F un sous-espace vectoriel de E de dimension finie p. On rappelle que $E = F \oplus F^{\perp}$, que $F = (F^{\perp})^{\perp}$ et que $E = F^{\perp} \oplus (F^{\perp})^{\perp}$. En particulier, tous les résultats qui suivent sont valables si E est euclidien.

5.1 Projections et symétries orthogonales

Définition 5.1 (Projections et symétries orthogonales)

- 1. La projection orthogonale sur F est la projection sur F parallèlement à F^{\perp} .
- 2. La symétrie orthogonale par rapport à F est la symétrie par rapport à F parallèlement à F^{\perp} .
- 3. Une réflexion est une symétrie orthogonale par rapport à un hyperplan.

Proposition 5.2

Avec les notations précédentes, on a

$$\ker(p) = F^{\perp}, \quad \operatorname{Im}(p) = F = \{x \in E, \ p(x) = x\} = \operatorname{Ker}(p - \operatorname{id}) = \operatorname{Ker}(p)^{\perp},$$

et aussi

$$F = \operatorname{Ker}(s - \operatorname{id}), \qquad F^{\perp} = \operatorname{Ker}(s + \operatorname{id}) = \operatorname{Ker}(s - \operatorname{id})^{\perp},$$

et si $x \in E$, alors $x - p(x) \in F^{\perp}$.

Proposition 5.3

Soit $p \in \mathcal{L}(E)$ et $s = 2p - \mathrm{id}_E$. Alors p est une projection orthogonale si et seulement si s est une symétrie orthogonale.

Proposition 5.4

Soit p la projection orthogonale sur F. Alors l'endomorphisme de E id $_E - p$ (qui à x associe x - p(x)) est la projection orthogonale sur F^{\perp} . En particulier

$$\forall x \in E, \ x - p(x) \in F^{\perp},$$

ou encore

$$\forall x \in E, \ \forall y \in F, \ \langle x, y \rangle = \langle p(x), y \rangle.$$

Proposition 5.5 (Expression d'une projection orthogonale dans une base orthonormale)

Soient p la projection orthogonale sur F et $(e_i)_{1 \leqslant i \leqslant p}$ une base orthonormale de F. Alors, pour tout $x \in E$, on a

$$p(x) = \sum_{i=1}^{p} \langle x, e_i \rangle e_i.$$

Méthode 5.6 (Déterminez l'expression analytique d'une projection orthogonale)

On donne un espace vectoriel euclidien E, et un sous-espace vectoriel F. On veut déterminer p(x), où p est la projection orthogonale sur F, et $x \in E$. Pour cela, on résout le système $y \in F$ et $x - y \in F^{\perp}$ d'inconnue y. L'unique solution y est p(x). En général, le plus simple est de travailler avec un système d'équation de F et une base de F, cf les exemples.

Cas particulier : si E est muni d'une base orthonormale \mathcal{B} , déterminer l'expression analytique de p dans \mathcal{B} signifie déterminer les composantes de p(x) dans \mathcal{B} , en fonction de celles de x, et cela pour tout $x \in E$.

Appliquons cette méthode à l'exemple suivant : un espace euclidien E de dimension 4, muni d'une base orthonormale $B = (e_1, e_2, e_3, e_4)$ $F = \text{vect}(e_1, e_3 + e_2)$. Déterminez l'expression analytique de la projection orthogonale p sur F, et de la symétrie orthogonale s par rapport à s.

Soit $u \in E$ et (x, y, z, t) ses composantes dans B, i.e. $u = xe_1 + ye_2 + ze_3 + te_4$. Déterminons les composantes (x', y', z', t') de p(u) dans la base B. Soit $v \in F$. Alors il existe $a, b \in \mathbb{R}$ tels que $v = ae_1 + b(e_2 + e_3)$. On a alors

$$u - v = (x - a)e_1 + (y - b)e_2 + (z - b)e_3 + te_4,$$

et donc:

$$v = p(u) \iff u - v \in F^{\perp}$$

$$\stackrel{\text{base de } F}{\iff} \langle u - v, e_1 \rangle = \langle u - v, e_2 + e_3 \rangle = 0$$

$$\stackrel{B\text{bon}}{\iff} x - a = y - b + z - b = 0$$

$$\stackrel{\text{inconnues } a, b}{\iff} \begin{cases} a = x \\ b = \frac{y+z}{2} \end{cases}$$

et donc $p(u)=xe_1+\frac{y+z}{2}e_2+\frac{y+z}{2}e_3$, et l'expression analytique de p est

$$\begin{cases} x' = x \\ y' = \frac{y}{2} + \frac{z}{2} \\ z' = \frac{y}{2} + \frac{z}{2} \\ t' = 0 \end{cases}$$

Pour obtenir celle de s, on écrit simplement que s(x) = 2p(x) - x, donc l'expression analytique de s est et donc $p(u) = xe_1 + \frac{y+z}{2}e_2 + \frac{y+z}{2}e_3$, et l'expression analytique de p est

$$\begin{cases} x' = x \\ y' = z \\ z' = y \\ t' = -t \end{cases}$$

Proposition 5.7 (Projection et symétrie orthogonale sur une droite)

Soit $x_0 \in E$ un vecteur non nul, p la projection orthogonale sur $\text{vect}(x_0)$ et s la symétrie othogonale par rapport à $\text{vect}(x_0)$. Pour tout $x \in E$, on a :

1.
$$p(x) = \frac{\langle x, x_0 \rangle}{\|x_0\|^2} x_0$$
.

2.
$$s(x) = 2 \frac{\langle x, x_0 \rangle}{\|x_0\|^2} x_0 - x$$
.

6 Distance à un sous-espace vectoriel

Définition 6.1 (Distance, distance à un sous-espace vectoriel)

Soient $x, y \in E$.

- 1. La distance de x à y est le réel d(x, y) = ||x y||.
- 2. La distance de x au sous-espace vectoriel F est le réel

$$d(x, F) = \inf_{z \in F} d(x, z) = \inf_{z \in F} ||x - z||.$$

Remarque.

La distance de x à F est bien définie. En effet, l'ensemble

$$A = \{ \|x - z\|, \ z \in F \}$$

est non vide puisque $0 \in F$ donc $||x|| \in A$. De plus, $A \subset \mathbb{R}^+$, donc A est un sous-ensemble non vide de \mathbb{R} minoré : il admet une borne inférieure.

Proposition 6.2 (Expression de la distance à un sous-espace vectoriel)

Soit F un sous-espace vectoriel de E et p la projection orthogonale sur F. Soit $x \in E$. Alors

$$d(x, F) = ||x - p(x)||,$$

et pour tout $y \in F$, si $y \neq p(x)$, on a

$$||x - y|| = d(x, y) > d(x, F).$$

