Lista número 1

1) O que é eficiência assintótica?

Quando observamos tamanhos de entrada grandes o suficiente para tornar relevante apenas a ordem de crescimento do tempo de execução, estamos estudando a eficiência assintótica dos algoritmos. Ou seja, estamos preocupados com a maneira como o tempo de execução de um algoritmo aumenta com o tamanho da entrada no limite, a medida que o tamanho da entrada aumenta indefinidamente (sem limitação). Em geral, um algoritmo que é assintoticamente mais eficiente será a melhor escolha para todas as entradas, exceto as muito pequenas.

2) Descreva as notações O, Ω, Θ

A notação Θ limita uma função ao intervalo entre fatores constantes. Escrevemos $f(n) = \Theta(g(n))$ se existem constantes positivas n_0 , c, e c, tais que, a direita de n_0 , o valor de f(n) sempre reside entre $c_1g(n)$ e $c_2g(n)$ inclusive.

A notação \mathbf{O} dá um limite superior para uma função dentro de um fator constante. Escrevemos f(n) = O(g(n)) se existem constantes positivas n_o e c tais que, a direita de n_o , o valor de f(n) sempre reside em ou abaixo de cg(n)

A notação Ω dá um limite inferior para uma função dentro de um fator constante. Escrevemos $f(n) = \Omega$ (g(n)) se existem constantes positivas n_0 e c tais que, à direita de n_0 , o valor de f(n) sempre reside em ou acima de cg(n)

3) Seja O(n ^e) = X, onde X representa o conjunto de funções que satisfaz a notação \mathbf{O} para a função n^e . O conjunto $\{n^2, n\log n^2, n^{\frac{\pi}{2}}\log n^2, \frac{1}{n^e}\} \subset X$? onde \mathbf{e} é a constante de Euler. Essa afirmação é verdadeira ou falsa? Justifique!

Resposta:

A afirmação é verdadeira.

O conjunto X possui funções que têm uma taxa de crescimento no máximo da ordem de n^e . Ao examinarmos cada elemento desse conjunto, temos:

$$\begin{array}{rcl} n^2 & \in & X \\ n \log n^2 & \in & X \\ n^{\frac{\pi}{2}} \log n^2 \approx n^{1,67} \log n^2 & \in & X \\ \frac{1}{n^e} & \in & X \end{array}$$

4) Esse algoritmo procura o maior valor presente em um array "A" com n elementos e o armazena na variável M.

Faça a contagem das instruções e monte a a f(n) para o pior caso.

5) O que significa um algoritmo ser O(2) ou O(5)?

Resposta:

Significa que independentemente do tamanho da entrada n, o tempo de execução do algoritmo será constante. Observe que se f(n) = O(k) para uma função constante k, temos que:

$$f(n) \le c \cdot k$$
.

Se a constante k é 1 ou 2 ou 5 isso é indiferente pois a função f(n) sempre será limitada por uma constante c vezes uma outra constante k.

6) Usando a definição formal de Θ prove que $6n^3 \neq \Theta(n^2)$.

Resposta:

Suponha que não, ou seja, suponha que $6n^3 = \Theta(n^2)$. Assim, pela definição formal da notação Θ , existem constantes positivas c_1, c_2 e n_0 tais que

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

para todo $n \ge n_0$. Neste caso, temos que $f(n) = 6n^3$, $g(n) = n^2$ e

$$c_1 n^2 \le 6n^3 \le c_2 n^2$$
.

Ao dividirmos cada termo dessa inequação por n^2 , temos:

$$c_1 \leq 6n \leq c_2$$
.

Não existem constantes positivas $c_2 > 0$ e n_0 tais que $6n \le c_2$ para todo $n \ge n_0$. Assim, a suposição original que é verdadeira, ou seja, $6n^3 \ne \Theta(n^2)$.

- 7) Mostre que:
 - a) $2n + 10 \notin O(n)$

Resposta Se escolhermos c=3 e n_0 =10 Teremos $0 \le 30 \le 30$

b) $1/2n (n+1) \notin O(n^2)$

Se escolhermos c=1 n=1

Termos
$$\frac{1}{2}$$
* $1(1+1) \le 1.1^2$

c) $n + \sqrt{n} \in O(n)$;

Se escolhermos
$$c=2$$
 $n_o=1$
Teremos $0 \le 1 + \sqrt{1} \le 2 \times 1$

d) n/1000 não é O(1)

Não é, pois O(1) Não importa o tamanho da entrada, a complexidade permanece a mesma

- 8) Considere as seguintes funções e coloque as funções em ordem de crescimento assintótico.
 - a. log n
 - b. 2ⁿ
 - c. n²
 - d. n * log n
 - $e. n^3$
 - f 1
 - g n

As principais classes são: $1 < log n < n < n^* log < n^2 < n^3 < ... 2^n$

```
9) Dada a função n^2 + 1. Demonstre que f(n) \in O(n^2)
 0 \le n^2 + 1 \le c * n^2, \forall n \ge n0
```

Se escolhermos c=2 e $n_0=1$, temos:

 $0 \le 2 \le 2$

```
10) Dada a função n^2 + 1. Demonstre que f(n) \in \Omega(n2)
 0 \le c * n^2 \le n^2 + 1, \forall n \ge n_0
 Se escolhermos c=1 e n_0, temos:
 1 \le 2
```

Não é difícil perceber que essa inequação é verdadeira para todo n_0 maior do que 1.

11)

Podemos definir o seguinte algoritmo para calcular a ordem de complexidade de algoritmos não recursivos:

- Escolher o parâmetro que indica o tamanho da entrada.
- Identificar a operação básica (comparação, atribuição)
- Estabeleça uma soma que indique quantas vezes sua operação básica foi executada.
- Utilize regras para manipulação de soma e formulas definindo uma função de complexidade.
- Encontre a ordem de complexidade.
- a. Baseando-se no algoritmo acima determine a ordem de complexidade do seguinte algoritmo:

```
MaxMin(vetor v)

max=v[1];
min=v[1];
para i=2 até n faça

se v[1]> max então max=v[1]; fimse
se v[1]< min então min=v[1]; fimse
fimpara;
fim.
```

b. Podemos dizer que o algoritmo de acima é O (n²). Justifique.