

Ministério da Educação UNIVERSIDADE DE BRASÍLIA Instituto de Ciências Exatas Dep. Ciências da Computação

Disciplina: CIC 116394 – Organização e Arquitetura de Computadores – Turma A

2008/1

Prof.: Marcus Vinicius Lamar

Nome:	Matrícula:	

Prova 1

1) (4.0) Hoje em dia, a linha que separa o software do hardware é extremamente tênue. Considerando que a instrução div do MIPS não tivesse sido implementada em hardware.

a)(2.0) Escreva a implementação de uma pseudo-instrução que a realize:

div \$t0, \$t1, \$t2, \$t3

\$t0 = \$t2/\$t3 \$t1=\$t2%\$t3

Obs.: Considere \$t2 e \$t3 > 0

li \$t2, 255 li \$t3, 19 div \$t0,\$t1,\$t2, \$t3 div \$t4,\$t5,\$t2,\$t1

b)(1.0) Em um microprocessador uniciclo (cada instrução é executada em 1 ciclo) de 200MHz de freqüência de clock, qual o tempo estimado para a execução do trecho de código ao lado:

c)(1.0) Considerando que uma implementação em hardware necessite 33 ciclos de clock para realizar a operação div de dois números quaisquer. Qual o fator de desempenho obtido na execução do trecho ao lado entre as duas implementações?

2) (6.0) Dado o mapa da memória de programa abaixo. Realize o trabalho de engenharia reversa de forma a:

a) (3.0) Traduzir o código em linguagem de máquina para Assembly MIPS;

b) (2.0) Traduzir o código Assembly para uma linguagem de alto nível (C ou Java);

c) (1.0) Entenda o algoritmo e responda: O que representa o valor apresentado na tela?

	Endereço	Conteúdo	Assembly MIPS	
	0x00400000	001000 00000 00010 00000000000000101 المراد	addi \$ Va, \$tero, 5	
	0x00400004	000000 00000 00000 00000 001100 0,1	SYSCALL	
	0x00400008	000000 00000 00010 00100 00000 100001 a 1	add 4 998, \$2510, 9V2	
	0x0040000c	000011 00000100000000000000001001 0,3	AGL 100009h	>400024h
>	0x00400010	000000 00000 00010 00100 00000 100001 0,1	addu \$ a 0, \$ 200, \$ V 2	
	0x00400014	001000 00000 00010 00000000000000001 2,1	addi \$ V&, \$ 7 ERD, 1	
	0x00400018	000000 00000 00000 00000 00000 001100 0 1	SYSCALL	
	0x0040001c	001000 00000 00010 0000000000001010 0,1	addi \$ VD, \$ZENO, 10	
	0x00400020	000000 00000 00000 00000 001100 O, A	GYSCALL	
	0x00400024	000000 00000 00000 01000 00000 100001 0.1	add u \$10, 9 20, 920	R-J
	0x00400028	001000 00000 01100 00000000000000001	addi \$14,\$3500,1	
	0x0040002c	000000 00100 01100 01001 00000 100010 0,1	Sub \$11, \$ax, \$14	
	0x00400030	000100 01001 01100 00000000000000110 07	beg \$11, \$14, 6	TAM
	0x00400034	000000 00100 01001 00000 00000 011010 0	Div gab, \$11	
	0x00400038	000000 00000 00000 01010 00000 010000 0	MFH; Gt2	
	0x0040003c	000101 01010 00000 00000000000000001 2,3	me \$12,\$850,1	
	0x00400040	000000 01000 01100 01000 00000 100000 à 1	add 910, \$18, 514	
	0x00400044	000000 01001 01100 01001 00000 100010 8,1	SUB \$11, \$71, 874	4
	0x00400048	000010 00000100000000000000001100 D.3	\$ 10000 Ch	7 4000304-
	0x0040004c	000000 00000 01000 00010 00000 100001 0 1	addu \$12, 93500, 888	4
	0x00400050	000000 11111 00000 00000 00000 001000 0	1rgva	

3) (1.0) Escreva a equação que define o fator de desempenho de um sistema computacional em relação a outro, explicando seus componentes.

BOA SORTE!