電工實驗(二) 實驗報告

實驗單元(8) 運算放大器電路(一) (實作電路 081)

班別:電2B

組別:22

姓名:李宜恩

學號:00853216

★各項實驗紀錄(藍色字體)、撰寫實驗波形分析與實驗數據分析(藍色字體)、 撰寫實驗問題與討論(藍色字體)、撰寫實驗結論(藍色字體)、按時繳交實驗報 告(遲交扣分),非(藍色字體)扣分。

◎總分=100分。

一、實驗儀器設備(請自行寫出所使用的儀器設備,沒寫扣分)

項次	儀器名稱	儀器廠牌及型號	數量	實驗桌別
1	示波器	FG 720F-MO	1台	22
2	萬用電表		1台	22
3	訊號產生器	MSO 2024B	1台	22
4	電源供應器		1台	22

- 二、實驗目的(請自行寫出,沒寫扣分)
- 1.了解運算放大器的基本特性、電路原理與應用。
- 2.了解運算放大器 Data Sheet 的內容與應用。
- 3.了解運算放大器電壓放大、直流偏移量及加法器等電路的應用。
- 三、請簡介實驗項目(請自行寫出,沒寫扣分)
- a.輸入阻抗的特性。
- b.直流補偏電壓的特性與補偏電路補償方法。
- c. 閉迴路增益特性,其中包含-輸入與輸出波形關係、相位關係與頻率關係。
- d.基本電路:反相放大器、非反相放大器、反相加法器電路及非反相加法器電路。 四、實驗實作注意事項
- 1.依實驗要求,先要設計電阻值,實驗模擬,然後接線。
- 2.實驗測試項目:[壹]~[貳],完成實驗(每位同學)。
- 3.實驗測試項目:[叁]~[肆],進階版本(依個人學習情況來完成)。
- 4.電源供應器電路設定為串接模式,連線為±15V使用。在前面板的 TRACKING 選擇按鍵設定在 SERIES(只按下左邊按鍵),接在 IC 的接腳 7 及接腳 4。
- 5.本學期實作電路時運算放大器(OPAMP)接腳(1,5)都要接上 VR 10KΩ 可變電阻, VR 中間接腳接負電壓,使用於調整直流偏移量。

圖(二十六):正負電壓串聯追踪操作模示

五、請參閱實驗講義中重要測試表格。(請自行寫出,沒寫扣分)

表(三):各組電壓增益實驗設計要求

組別	反相放大器電壓增益	非反相放大器電壓增益 (加分題)
NO.01~NO.04	-7	7
NO.05~NO.08	-9	9
NO.09~NO.14	-11	11
NO.15~NO.20	-13	13
NO.21~NO.26	-15	15
NO.27~NO.32	-17	17

六、實驗測試項目與實驗記錄:請參閱實驗講義詳細實驗步驟。

- (一)、反相放大器電路輸入阻抗測量(刪除)
- (二)、實驗電路設計與元件計算(見電路模擬報告)
- 1.實驗整體實作電路圖

圖(8-2-1):實驗整體實作電路圖

2.反相電壓放大器電路:實驗設計與計算。

圖(8-2-2): 反相電壓放大器電路(模擬電路時 pin1,pin5 不接線)

※注意:模擬電路時 uA741 腳位[1,5]不用接上可變電阻,如圖(8-2-2)所示,實作電路時,則需要接上 VR $10 \mathrm{K}\Omega$ 。 3.附上自行設計之實驗整體實作電路圖 (列入檢查項目中)

圖(8-2-3):實驗整體實作電路圖(增加電阻計算值)

(三)、運算放大器電路輸出直流位準偏移量歸零調整

1.直流位準偏移量(理論值),計算出 E_{01} 值。[7]

2.參閱圖(8-2-3)自行設計之實驗整體實作電路圖,IC 要接電源接上 DC±15V。

<u>節點[V1]接地 = 0</u>,節點[V1]直接接地=輸入 0V。

- 3.示波器設定:輸入通道採用直流耦合,適當調整示波器的垂直刻度(要觀測 mV), 使用電壓測量功能鍵,測量 Vmax。
- 4.直流位準偏移量之調整(1):
- ①.調整可變電阻 R5,觀測節點[VO11]直流電壓變化情形,是 へ 否□為 mV 值, 其電壓範圍是 、 否□由[1.312mV~-12.77mV]的變化情形。
- ②.測量節點[VO11]電壓,記錄最低及最高電壓變化範圍值,見表格(8-2)內容,並同時擷取節點[VO11]波形。
- ◎擷取節點[VO11]波形(最高電壓)。

MSO2024B - 下午 04:53:54 2020/5/29

◎擷取節點[VO11]波形(最低電壓)。

MSO2024B - 下午 04:53:20 2020/5/29

- ③.歸零調整:調整可變電阻 R5,然後將節點[VO11]的電壓調整到節點 [VO11]≅0V,歸零調整後,再次擷取輸出節點[VO11]波形。
- ◎擷取節點[VO11]波形。

MSO2024B - 下午 04:47:53 2020/5/29

5.直流位準偏移量之調整(2):

- ①.調整可變電阻 R9,觀測節點[VO22]直流電壓變化情形,是 、否□為 mV 值,其電壓範圍是 、否□由[1.312mV~-124.1mV]的變化情形。
- ②.測量節點[VO22]電壓,記錄最低及最高電壓變化範圍值,見表格(8-2)內容,並同時擷取節點[VO22]波形。
- ◎擷取節點[VO22]波形(最高電壓)。

MSO2024B - 下午 04:53:54 2020/5/29

◎擷取節點[VO22]波形(最低電壓)。

MSO2024B - 下午 04:57:33 2020/5/29

- ③.歸零調整:調整可變電阻 R9,然後將節點[VO22]的電壓調整到節點 [VO22]≅0V,歸零調整後,再次擷取輸出節點[VO22]波形。
- ◎擷取節點[VO22]波形。

MSO2024B - 下午 04:59:23 2020/5/29

6.直流位準偏移量之調整(3):

- ①.調整可變電阻 R14,觀測節點[VO55]直流電壓變化情形,是 、否 □為 mV 值,其電壓範圍是 、否 □由[3.617mV~-20.27mV]的變化情形。
- ②.測量節點[VO55]電壓,記錄最低及最高電壓變化範圍值,見表格(8-2)內容,並同時擷取節點[VO55]波形。
- ◎擷取節點[VO55]波形(最高電壓)。

MSO2024B - 下午 05:00:13 2020/5/29

◎擷取節點[VO55]波形(最低電壓)。

MSO2024B - 下午 05:00:47 2020/5/29

- ③.歸零調整:調整可變電阻 R14,然後將節點[VO55]的電壓調整到節點 [VO55]≅0V,歸零調整後,再次擷取輸出節點[VO55]波形。
- ◎擷取節點[VO55]波形。

MSO2024B - 下午 05:01:32 2020/5/29

測量上述數據後,可以了解直流偏壓對於放大器的影響(輸出直流電壓的漂 移現象)及如何以何種方法來減少運算放大器的誤差。

表(8-2):輸出直流位準偏移量之測試

調整可變電阻	測試節點	記錄電壓變化範圍 (最小值~最大值)
R5	節點[VO11]	$1.312 \text{mV} \sim -12.77 \text{mV}$
R9	節點[VO22]	1.312mV∼-124.1mV
R14	節點[VO55]	3.617mV∼-20.27mV

(四)、輸入正弦波訊號測試電壓增益測量

- ◎擷取下列各波形。
- 1.輸入振幅: V1 = 0.1(Vp p) (由示波器測量值,以下皆同[Vp-p])。
- 2.輸入頻率=100Hz。
- ①. 測試節點[V1, VO22]: V1= <u>200m</u> Vp-p, VO22= <u>2.64</u> Vp-p,

電壓增益=___13.2___。測量相位差=___-176.9_____度。

◎擷取波形:測試節點[V1, VO22]。

MSO2024B - 下午 03:38:57 2020/5/29

3.輸入頻率=1KHz。

①. 測試節點[V1, VO22]: V1= <u>200m</u> Vp-p, VO22= <u>2.56</u> Vp-p,

◎擷取波形:測試節點[V1, VO22]。

MSO2024B - 下午 03:40:01 2020/5/29

4. 輸入頻率=10KHz。

◎擷取波形:測試節點[V1, VO22]。

MSO2024B - 下午 03:41:42 2020/5/29

5. 輸入頻率=100KHz。

◎擷取波形:測試節點[V1, VO22]。

MSO2024B - 下午 03:42:30 2020/5/29

6. 輸入頻率=1MHz。

①. 測試節點[V1, VO22]: V1= <u>196m</u> Vp-p, VO22= <u>116m</u> Vp-p,

電壓增益=0.59。測量相位差=2.535 度。

◎擷取波形:測試節點[V1, VO22]。

MSO2024B - 下午 03:47:04 2020/5/29

7.請簡略說明,上述輸入頻率值與電壓增益值的波形關係。

表(8-4):節點[VO22]的電壓增益、相位差與頻率關係

測試頻率值	VO22 節點 電壓增益 (計算值)	VO22 節點 電壓增益 (模擬值)	VO22 節點 電壓增益 (實測值)	測量相位差(度)
100Hz	-14.972	-14.98	13.2	-176.9
1KHz	-14.708	-14.98	12.8	-177.9

測試頻率值	VO22 節點 電壓增益 (計算值)	VO22 節點 電壓增益 (模擬值)	VO22 節點 電壓增益 (實測值)	測量相位差(度)
10KHz	-14.99	-14.816	12.69	-166.6
100KHz	-5	-5.64	7.08	-107.7
1MHz	-0.8825	-0.55	0.59	2.535

(五)、非反相電壓和放大器電路(U5):輸入正弦波訊號測試

- 1.訊號產生器設定輸入波形: V1 = 0.1(Vp p),輸入頻率=依各組頻率值。
- 2.測量下列各節點波形, 擷取其波形, 使用示波器量測功能鍵, 測量輸入、輸出 峰-峰值及波形頻率值, 並說明其波形的關係。

3. 撷取下列波形:

(1).測試節點[V1, VO22]: 測量電壓峰-峰值(Vp-p)。

 $V1 = 208m \quad Vp-p \cdot VO22 = 2.80 \quad Vp-p \circ$

◎擷取波形:測試節點[V1, VO22]。

MSO2024B - 下午 03:52:14 2020/5/29

(2).測試節點[VO55]: 測量電壓峰-峰值(Vp-p)。

VO55= <u>2.64</u> Vp-p •

◎擷取波形:測試節點[V1, VO55]。

MSO2024B - 下午 03:52:54 2020/5/29

4.寫出電壓和關係式:

 $V_0 = A_v(V_+ - V_-) \circ$

5.請簡略說明,上述輸入波形與輸出波形的電壓關係。

頻率越高,電壓增益越低。

七、實驗問題與討論

1. 參閱實驗設計值、測量值,請分析實驗數據與實驗波形,試列出你所了解那 些運算放大器電路的理想特性與實際電路特性。

理想特性:無限大的輸入阻抗、趨近於零的輸出阻抗、無限大的開迴路增益、無限大的共模拒斥比、無限大的頻寬(BW)

八、實驗結論與實驗心得

設次實作運算放大器電路,也設計了老師要求之增益,更應證了課本上的理論。

九、實驗綜合評論

- 1.實驗測試說明、實驗補充資料及老師上課原理說明,是否有需要改善之處。否
- 2.實驗模擬項目內容,是否有助於個人對實驗電路測試內容的了解。是
- 3.實驗測量結果,是否合乎實驗目標及個人的是否清楚瞭解其電路特性。是
- 4.就實驗內容的安排,是否合乎相關課程進度。是
- 5.就個人實驗進度安排及最後結果,自己的評等是幾分。100分
- 6.在實驗項目中,最容易的項目有那些,最艱難的項目包含那些項目,並回憶一

下,您在此實驗中學到了那些知識與常識。

實驗筆記較為簡單,而實作與模擬因為元件較多,比較具困難。

十、附上實驗進度紀錄單(照片檔)

電工實驗進度記錄單
②上課班別:□2A、□2B、□3A、□3B 組別: □2 姓名: 本宜是 □上述及 た列湾 第 和 左 第 任 □
②上課班別: □2A、 □2B、 □3A、 □3B 組別: □ □ 型名· □ □ 上述及左列沒寫和 5 分。
受しています。
國附上實驗進度紀錄 1.實驗進度記錄:應確實記錄,實驗電路檢查時,會查驗、檢視實驗數據。
①.工作日期: 109年 5月 > 2日 工作時到: 3 小時 的路線時段、□:開放時段。
■實驗進度說明: SIM 08 / W数限 50 B
②.工作日期: 109年 > 月 > 月 > 1、工作時數: 4 小師 15.上記憶報、□:開放時段。
■實驗進度說明: ELAB o81
③. 工作日期:年月日、工作時數:小時、□:上禄時段、□:開放時段。
■實驗進度說明: · · · · · · · · · · · · · · · · · · ·
④. 工作日期:
■實驗進度說明:
⑤. 工作日期:
■實驗進度說明:
⑥. 工作日期:
■實驗進度說明:
2.依上課說明填寫實驗注意事項,沒寫或內容不完整,扣□5分或□10分。
NNO RINI -D +15 - 医 B D NF 正
直流 偏 丧 , 厘楼 拌 稗
.1.

電工實驗進度記錄單

一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
◎上課班別:□2A、□2B、□3A、□3B 組別: □2 姓名: 本宜是
◎實驗單元(8):
图附上實驗進度紀錄
1. 實驗進度記錄:應確實記錄,實驗電路檢查時,會查驗、檢視實驗數據。
①. 工作日期: 107年 5月 > 2日 工作時段: 3 小時 图图練時段、□:開放時段。
■實驗進度說明: SIM 08
②.工作日期: 109 年 5 月 为 日、工作時數: 4 小時 7: 上次時段、□:開放時段。
国實驗進度說明: ELAB 081
③. 工作日期:年月日、工作時數: ↓ 小時、□:上課時段、□:開放時段。
■實驗進度說明:
①. 工作日期:年月日、工作時數: 持 :上課時段、□:開放時段。
■實驗進度說明:
⑤. 工作日期:年月日、工作時數:小時、□:上課時段、□:開放時段。
O. 17 1 30
■實驗進度說明:
O. 14 1 M 1
■實驗進度說明:
2.依上課說明填寫實驗注意事項,沒寫或內容不完整,扣□5分或□10分。
_ 重源
11 100 D 1000 1000
1 Kioke 3
LIN2 6 HM1 -12 +12
· □ = 電告以从F 正图 極 性
-151 三橙梅 Pm B Rus 不挠
-32

3.記錄實驗問題之解決策略,包括一問題之描述、分析造成問題的原因及提出解決問題的方法。 依實驗過程,請記錄之。沒寫的或內容簡略者,扣□5分或□10分。

直流偏要 压接焊槽

十一、附上麵包板電路組裝圖檔(照片檔)

