安徽大学 2022-2023 学年第 2 学期

《半导体器件物理》期末考试试卷

(闭卷 时间 120 分钟)

四

五.

七

六

总分

考场登记表序号_____

题号

	得分											
	阅卷人											
									·			
								- 4			_	
- 、	选择题: 符合题目		小题,每点	小 题 5 分,	共 40 分	。在每小局]个选	项中,	只有	一项	〕是
1.	以下关于	外加电场的	的 pn 结说	法正确的是	륃						()
	A. 由于内建电场,连接 n 区与 p 区可以得到连续电流											
	B. 平衡态下 pn 结的 n 区费米能级高于 p 区费米能级											
	C. 平衡态下 pn 结的 n 区费米能级等于 p 区费米能级											
	D. 平衡态下 pn 结的 n 区费米能级低于 p 区费米能级											
2.	pn 结的势	9全电容来	自								()
	A. 交流(扁压下的多	子漂移		В	. 交流偏归	下的耗尽	区宽	度变化			
	C. 交流(C. 交流偏压下的多子扩散				D. 直流偏压下的少子扩散						
3.	pn 结的位	犬安关系中	的 I_s 的主	要来源是							()
	A. 多子拉	广散	B. 少	·子漂移	C	. 多子漂移	7	D.	少子护	广散		
4.	二极管正	向电流符合	合公式 I $∝$	$T^2 e^{-\frac{E_g}{kT}}$							()
	A.				В							
	C. I _s 随	着温度的升	高而变小		D							
5.	金半接触	时,金属的	的功函数大	于半导体的	的功函数,	下面说法	正确的是				()
	A. 电子丛	人半导体流	[向金属,]	形成正的空	区间电荷区							
	B. 电子丛	人金属流向]半导体, ヲ	形成负的空	区间电荷区							
	C. 空穴/	人半导体流	向金属,是	形成负的空	区间电荷区							
	D. 空穴丛	人金属流向]半导体, ヲ	形成正的空	区间电荷区							
6.	金半接触	时,哪种打	妾触具有整	流特性							()
	A. 欧姆拉	妾触	В. 肖	特基接触	\mathbf{C}	. 中性接触	Į.	D.	任意技	妾触		

对于双极型晶体管,下	面说法正确的是			()				
A. 基区宽度大,掺杂浓	校度高	B. 发射区掺杂浓度大于集电区掺杂浓度							
C. 基区掺杂浓度大于复	集电区掺杂浓度	D. 集电结面积大于发							
下列哪个不属于双极型	晶体管的非理想效应			()				
A. 基区宽度调制效应		B. 大注入效应							
C. 基区均匀掺杂效应		D. 发射区电流集边效应							
工作于放大区的双极型	晶体管,当 I_B 从 $10\mu A$	增加到 $20\mu A$ 时, I_C	从 1mA 增加至	$\parallel 3mA$	l, 求				
eta				()				
A. 50	B. 100	C. 200	D. 300						
双极型晶体管截至区的偏置条件是									
A. $V_{BE} < 0$, $V_{CB} > 0$		B. $V_{BE} > 0$, $V_{CB} >$	0						
C. $V_{BE} < 0$, $V_{CB} < 0$		D. $V_{BE} > 0$, $V_{CB} <$	0						
固定栅氧化层电荷增大	对 n 型衬底 MOS 电容-	-电压特性曲线影响正确	角的是	()				
A. 向右平移	B. 向左平移	C. 变平滑	D. 无影响						
记漏了									
记漏了									
亚阈值电流的产生条件				()				
A. $V_{GS} \leqslant V_T$	B. $V_{GS} \geqslant V_T$	C. $V_{DS} < V_T$	D. $V_{DS} > V$	V_{DS} –	V_T				
负电阻特性与哪种击穿	最相关			()				
A. 氧化层击穿	B. 雪崩击穿	C. 准雪崩击穿	D. 源漏穿证	重击穿					
简答题:本题共 6 小题	5 5, 共 70 分。解答应写	出文字说明、证明过程	國者演算步骤。	0					
(12分)翻译题									
(1) Emitter Injection Efficiency									
(2) Forward Active									
(3) Current Crowding									
(4) Subthreshold									
(5) Channel conductance									
(6) Field Effect									
(6分)什么是恒定电场	等比例缩小效应								
(6分)解释什么是厄利效应									
(6分)简述什么是平带电压? MOS 结构中平带电压不等于零的原因是什么?									
(9 分)分别绘出均匀掺 计每条线加标注	涂杂的 npn 双极型晶体管	曾在饱和,正向有源和	截止区的少子沟	攻度分 る	布图				
	A. 基区宽度大,掺杂浓度大于约下列哪个不属于双极型A. 基区均匀掺杂效应 C. 基区均匀掺杂效应 工作于放大区的双极型 β A. 50 双极型晶体管截至区的 A. $V_{BE} < 0$, $V_{CB} < 0$ 固定栅氧平移记漏了 亚阈值电流的产生条件 A. $V_{GS} \le V_T$ 负电阻特性与穿 A. 氧化层击穿 简答题: 本题共6 小匙 (12 分)翻译题 (1) Emitter Injection (2) Forward Active (3) Current Crowding (4) Subthreshold (5) Channel conductation (6) Field Effect (6 分) 所以 分别会出均匀,	C. 基区均匀掺杂效应 工作于放大区的双极型晶体管,当 I_B 从 $10\mu A$ β A. 50 B. 100 双极型晶体管截至区的偏置条件是 A. $V_{BE} < 0$, $V_{CB} > 0$ C. $V_{BE} < 0$, $V_{CB} < 0$ 固定栅氧化层电荷增大对 n 型衬底 MOS 电容 A. 向右平移 B. 向左平移记漏了证漏了亚阈值电流的产生条件 A. $V_{GS} \le V_T$ B. $V_{GS} \ge V_T$ 负电阻特性与哪种击穿最相关 A. 氧化层击穿 B. 雪崩击穿 简答题:本题共 6 小题,共 70 分。解答应写(12 分)翻译题(1) Emitter Injection Efficiency(2) Forward Active(3) Current Crowding(4) Subthreshold(5) Channel conductance(6) Field Effect(6 分)什么是恒定电场等比例缩小效应(6 分)解释什么是厄利效应(6 分)简述什么是平带电压?MOS 结构中平均(9 分)分别绘出均匀掺杂的 100	A. 基区宽度大、掺杂浓度高	A. 基区宽度大,掺杂浓度高	 A. 基区				

21. (7 分) 对于 P 型衬底 MOS, 画出半导体表面处于积累状态时, 衬底半导体的能带图以及画出

该 MOS 结构的电荷分布块图

三、计算题:本题共3小题,共24分。

- 22. 一个硅基 $n^+ p n$ 晶体管的发射区和集电区两侧的掺杂是突变的。其发射区,基区,集电区的杂质分别为 $10^19.3 \times 10^16.5 \times 10^15$
 - (1) 设基区宽度为 0.5 µm, 求集电结穿通电压 (忽略内建电势差)
 - (2) 若截至频率主要受少子穿过基区的渡越时间限制,求零偏压下共基极共发射极的电流截至频率, $e=1.6\times 10^{-19}C$, $\varepsilon_s=11.9\times 8.85\times 10^{-14}F/cm$,共基极电流增益 $\alpha=0.99$,300k下电子扩散系数 $D_n=35cm/s$
- 23. 一个 NMOS 晶体管工作在饱和区, $L=1\mu m$, $W=10\mu m$, $W=10\mu m, \mu_n=800cm^2/v\cdot s$, $C_{ox}=10^{-8}F/cm^2$, $V_t=0.5V$, $V_{DS}=0.5V$, $V_{GS}=1.5V$, $v_{sat}=5\times 10^6$
 - (1) 计算速度饱和时的 I_D
 - (2) 计算速度饱和时的 $g_m(sat)$ 和截至频率 f_T
- 24. ${\rm PMOS}, N_a = 10^{16} cm^{-3}, t_{ox} = 10nm, Q_{ss}' = 7 \times 10^{10} cm^{-2}, p^+$ 多晶硅与半导体功函数差 $\Phi_{ms} = 0.2V$
 - (1) 求阈值电压

$$(2) \quad k_n' = 0.2 mA/V \,, \quad \frac{W}{L} = 10, \\ V_{GS} = 2V \,, \\ V_{SB} = 0, \\ V_{DS} = 4V \,, \quad \vec{\mathbb{R}} \,\, I_D = 10 \,. \\ I_D = 10 \,$$