SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS HSC ASSESSMENT TASK 3 JUNE 2011

Tr:	4 71		
ııme	AII	owed:	

70 minutes

Instructions:

- Write using blue or black pen.
- Approved calculators may be used.
- Attempt all questions.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new side of a page.
- A table of standard integrals is supplied.

Name:		 	
		•	
Teachers Name	 	 	

Q1	Q2	Q3	Q4	Q5	Total
/12	/12	/12	/12	/12	/60

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0 \quad \text{if} \quad n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = -\frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x, x > 0$

Question 1 (12 marks)

a)	Express 2.37 radians in degrees and minutes (correct to nearest minute)	1 mark
b)	Find the exact value of $\sin \frac{2\pi}{3}$	2 marks
c)	Evaluate $2\cos\frac{\pi}{5}$ correct to three significant figures	2 marks
d)	Express 135° in radians, in terms of π .	1 mark
e)	Evaluate $\int_0^{\frac{\pi}{12}} sec^2 3x dx$	2 marks
f)	Differentiate $cos(3x - 1)$	1 mark
g)	Differentiate $2x^{-3}$	1 mark
h)	Find the primitive of $\sqrt[3]{x^4}$? (Answer in index form)	2 marks

Question 2 (12 marks):

(a) Differentiate $y = 3 \tan x$

1 mark

- (b) For the curve $y = \cos 4x$
 - (i) find the amplitude,

1 mark

(ii) find the period,

1 mark

(iii) sketch the curve for $0 \le x \le \pi$, showing clearly the

positions of any intercepts and turning points.

2 marks

(c) Find the following integrals:

$$(i) \qquad \int (x^3 - 4x^2 + 3) \, dx$$

1 mark

(ii)
$$\int \frac{3x^5 + 4x^3 - 2}{2x^3} dx$$

2 marks

- d) Below is the graph of $y = 3 \frac{x}{2}$ and $y = \frac{1}{2}x^2 2x + 1$
 - (i) Find the points of intersection of the two functions.

2 marks

(ii) Find the area between the curves.

2 marks

Question 3 (12 marks)

- (a) Solve for the domain $0 \le x \le 2\pi$, giving exact answers:
 - i. $\sin x = -\frac{\sqrt{3}}{2}$

2 marks

ii. $\tan 2x = 1$

3 marks

(b) A circle with a centre O has a radius of 5 cm. A sector subtends an angle of $\frac{3\pi}{4}$ at the centre of the circle

i. What is the length of the arc of this sector? (give the exact answer)

2 marks

ii. What is the area of the sector? (Answer in exact form)

2 marks

iii. A chord is drawn from A to B. Show that the area of the minor segment that is formed is

$$\frac{25 (3\pi - 2\sqrt{2})}{8} cm^2$$

3 marks

Question 4 (12 marks)

a) Consider the following diagram and question:

Given that the area shaded A is 6 units², area B is 2 units² and area C is 3 units², find $\int_0^3 f(x)dx$.

Maryanne's solution was:

$$\int_0^3 f(x)dx = 6 + 2 + 3$$
 (line 1)
= 11 units² (line 2)

i. Maryanne's solution has one error in EACH of her lines of working. Clearly *explain* (in words) what were her errors

2 marks

ii. Write the correct solution

1 mark

(b) Write an equation for this trigonometric function.

1 mark

(c) Find the area in the first quadrant enclosed by the curve $y = x^2$, the y-axis and the line y = 4

2 marks

(d) Five values of the function f(t) are shown in the table.

t	3	4	5	6	7
f(t)	11.2	9.8	12.7	13.4	20.5

3 marks

Use Simpson's rule with the five values given in the table to estimate $\int_3^7 f(t)dt$

(e) The gradient of a curve is given by $\frac{dy}{dx} = 1 - 6 \sin 3x$. The curve passes through the point (0,7). What is the equation of the curve?

3 marks

Question 5

(12 marks)

a) Differentiate $y = x^2 tan 5x$

2 marks

b) Evaluate $\int_0^2 (2x+1)^4 dx$

2 marks

c) Find the equation (in exact form) of the normal to the curve

2 marks

 $y = 3\cos x$ at the point $\left(\frac{\pi}{3}, 1\frac{1}{2}\right)$

d) Below is the graph of $y = \sin x$ and $y = 1 - \cos x$ over the domain $0 \le x \le 2\pi$

- (i) Write the values of x for which $\sin x = 1 \cos x$ in the domain $0 \le x \le \pi$ 2 marks
- (ii) Evaluate the integral $\int_0^{\pi} (1 \cos x \sin x) dx$ 2 marks
- (iii) Calculate the area between $y = \sin x$ and $y = 1 \cos x$ over the domain $0 \le x \le \pi$ 2 marks

END OF TEST

who who	1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{$	house evaluated that part of the integral from x=1 to x=2 as a hegative as it is below the x axis.	oa while the
	7=0+2+1C. k=5 y=x+2cos3x+5	(e) dy = 1-6 sin 3x (07)	= 49,97	1(4)+16)+1(1)+4/6) +(4×9-8)+ 7+205+(4×134)
y = 2x - 21 + 3 313 - 215 + 3	$y' = -3 \sin x at x = \frac{\pi}{3}$ $y' = -3 \sin \pi x at x = \frac{\pi}{3}$ $y' = -3 \sin \pi x at x = \frac{\pi}{3}$ $y' = -3 \sin \pi x at x = \frac{\pi}{3}$ $y' = -3 \sin \pi x at x = \frac{\pi}{3}$ $y' = -3 \sin \pi x at x = \frac{\pi}{3}$ $y' = -3 \sin \pi x at x = \frac{\pi}{3}$	(a) $y = 3 \cos x$	$(b) \int_{0}^{2} (2x+1)^{4} dx$ $= \int_{0}^{2} (2x+1)^{5} \int_{0}^{2} dx$ $= \int_{0}^{2} (5^{5}) - 1$	(a) y= x² tan 5x y'= uv' + vu' y'= uv' + vu'
$= (-\frac{\pi}{2}+1) - (-1) + (\pi - 1) - (\frac{\pi}{2}-1)$ $= -\frac{\pi}{2}+1 + 1 + \pi - 1 - \frac{\pi}{2}+1$ $= 2 \sqrt{2}$	= $(co)(5) - \frac{\pi}{2} + \sin(72) + (-coso-0+sing)$ + $(\pi - \sin(\pi + cost) - (5 - cos)$ = $(o - 52 + 1) - (-1 - o + o)$ + $(\pi - o)(\pi + cos)$	$\frac{(ii)}{b} \frac{\sin x - (1-\cos x) + (1-\cos x - \sin x)}{\sqrt{2}}$ $= \frac{\cos x - x + \sin x}{2} + \frac{\pi}{2}$ $= \frac{x - \sin x + \cos x}{\sqrt{2}}$	1 (0-51)	$\frac{(a)(u)^{\frac{1}{12}}}{(iu)} \int_{0}^{\pi} (1-\omega x - \sin x) dx$ $= \left[x - \sin x + \cos x\right]_{0}^{\pi}$

`.

•