SURF-Face: Face Recognition Under Viewpoint Consistency Constraints

Philippe Dreuw, Pascal Steingrube, Harald Hanselmann and Hermann Ney

Human Language Technology and Pattern Recognition, RWTH Aachen University, Aachen, Germany

Introduction

- Most face recognition approaches are sensitive to registration errors
 rely on a very good initial alignment and illumination
- rely on a very good initial alignm
- We propose/analyze:
 - grid-based and dense extraction of local features
 - ▶ block-based matching accounting for different viewpoints and registration errors

Feature Extraction Orig. IP Grid Interest point based feature extraction SIFT or SURF interest point detector leads to a very sparse description Grid-based feature extraction overlaid regular grid leads to a dense description images/viol

Feature Description

- ► Scale Invariant Feature Transform (SIFT)
- ▶ 128-dimensional descriptor, histogram of gradients, scale invariant
- Speeded Up Robust Features (SURF)
- ▶ 64-dimensional descriptor, histogram of gradients, scale invariant
- ► face recognition: invariance w.r.t. rotation is often not necessary
 - ▶ rotation dependent upright-versions U-SIFT, U-SURF-64, U-SURF-128

Feature Matching

- Recognition by Matching
- nearest neighbor matching strategy
- be descriptor vectors extracted at keypoints in a test image X are compared to all descriptor vectors extracted at keypoints from the reference images $Y_n, n = 1, \dots, N$ by the Euclidean distance
- ▶ decision rule:

$$\mathbf{X} \rightarrow \mathbf{r}(\mathbf{X}) = \arg\max_{\mathbf{c}} \left\{ \max_{\mathbf{n}} \left\{ \sum_{\mathbf{x}_i \in \mathbf{X}} \delta(\mathbf{x}_i, \mathbf{Y}_{\mathbf{n}, \mathbf{c}}) \right\} \right\}$$

- \triangleright additionally, a ratio constraint is applied in $\delta(x_i, Y_{n,c})$
- Viewpoint Matching Constraints
- ▶ maximum matching: unconstrained
- grid-based matching: absolute box constraints
- ▶ grid-based best matching: absolute box constraints, overlapping
- Postprocessing
 - ▶ RANSAC-based outlier removal
 - ▶ RANSAC-based system combination

Matching Examples for the AR-Face and CMU-PIE Database

Feature	Maximum	Grid	Grid-Best	Maximum	Grid	Grid-Best	Feature
SIFT							SURF
U-SIFT							U-SURF

- ► Matching results for the AR-Face (left) and the CMU-PIE database (right)
- maximum matching show false classification examples
- ▶ grid matchings show correct classification examples
- ▶ upright descriptor versions reduce the number of false matches

Databases

- ► AR-Face
 - variations in illumination
 - > many different facial expressions
- ► CMU-PIE
 - ▶ variations in illumination (frontal images from the illumination subset)

Results: Manually Aligned Faces

AR-Face: 110 classes, 770 train, 770 test

Descriptor	Extraction	# Features	Error Rates [%]		
			Maximum	Grid	Grid-Best
SURF-64	IPs	$64 \times 5.6 \text{ (avg.)}$	80.64	84.15	84.15
SIFT	IPs	$128 \times 633.78 \text{ (avg.)}$	1.03	95.84	95.84
SURF-64	64x64-2 grid	64×1024	0.90	0.51	0.90
SURF-128	64x64-2 grid	128×1024	0.90	0.51	0.38
SIFT	64x64-2 grid	128×1024	11.03	0.90	0.64
U-SURF-64	64x64-2 grid	64×1024	0.90	1.03	0.64
U-SURF-128	64x64-2 grid	128×1024	1.55	1.29	1.03
U-SIFT	64x64-2 grid	128 × 1024	0.25	0.25	0.25

► CMU-PIE: 68 classes, 68 train ("one-shot" training), 1360 test

Descriptor	Extraction	# Features	Error Rates [%]			
			Maximum	Grid	Grid-Best	
SURF-64	IPs	$64 \times 6.80 \text{ (avg.)}$	93.95	95.21	95.21	
SIFT	IPs	$128 \times 723.17 \text{ (avg.)}$	43.47	99.33	99.33	
SURF-64	64x64-2 grid	64×1024	13.41	4.12	7.82	
SURF-128	64x64-2 grid	128×1024	12.45	3.68	3.24	
SIFT	64x64-2 grid	128×1024	27.92	7.00	9.80	
U-SURF-64	64x64-2 grid	64×1024	3.83	0.51	0.66	
U-SURF-128	64x64-2 grid	128×1024	5.67	0.95	0.88	
U-SIFT	64x64-2 grid	128×1024	16.28	1.40	6.41	

Results: Unaligned Faces

► Automatically aligned by Viola & Jones

, ,	•	
Descriptor	ates [%]	
	AR-Face	CMU-PIE
SURF-64	5.97	15.32
SURF-128	5.71	11.42
SIFT	5.45	8.32
U-SURF-64	5.32	5.52
U-SURF-128	5.71	4.86
U-SIFT	4.15	8.99

- ► Manually aligned faces
- Unaligned faces

Results: Partially Occluded Faces

► AR-Face: 110 classes, 110 train ("one-shot" training), 550 test

Descriptor	Error Rates [%]						
	AR1scarf	AR1sun	ARneutral	AR2scarf	AR2sun	Avg.	
SURF-64	2.72	30.00	0.00	4.54	47.27	16.90	
SURF-128	1.81	23.63	0.00	3.63	40.90	13.99	
SIFT	1.81	24.54	0.00	2.72	44.54	14.72	
U-SURF-64	4.54	23.63	0.00	4.54	47.27	15.99	
U-SURF-128	1.81	20.00	0.00	3.63	41.81	13.45	
U-SIFT	1.81	20.90	0.00	1.81	38.18	12.54	
U-SURF-128+R	1.81	19.09	0.00	3.63	43.63	13.63	
U-SIFT+R	2.72	14.54	0.00	0.90	35.45	10.72	
U-SURF-128+U-SIFT+F	R 0.90	16.36	0.00	2.72	32.72	10.54	

Conclusions

- ► Grid-based local feature extraction instead of interest points
- ► Local descriptors:
- upright descriptor versions achieved better results
- D SURF-128 better than SURF-64
- ➤ System robustness: manually aligned/unaligned/partially occluded faces
- ► SURF more robust to illumination
- ▶ SIFT more robust to changes in viewing conditions
- ► RANSAC-based system combination and outlier removal