Isomorphisms!

(but first, homomorphisms!)

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

10 Mar 2025

Goals for today:

- 1. We have sure said the word "isomorphic" a lot
- 2. Let's figure out what that actually means
- 3. Lots of examples
- 4. Some problems to play with

Definition and notation time!

Functions!

Nothing on this slide is specific to abstract algebra.

Extremely technical definition

Let A, B be two sets. A function f is a subset of the Cartesian product $A \times B$ such that:

• for all $a \in A$, there exists $b \in B$ such that $(a, b) \in f$

(existence of images)

 \blacksquare if $(a, b) \in f$ and $(a, b') \in f$, then b = b'

(uniqueness of images)

This definition sucks and I hate it.

Less technical but more useful definition

Let A, B be two sets. A function f is a map from A to B such that:

• for all $a \in A$, there exists $b \in B$ such that f(a) = b

(existence of images)

• if f(a) = b and f(a) = b', then b = b'

(uniqueness of images)

(Just don't ask me to formally explain what a "map" is.)

Moral definition

- \blacksquare f sends elements of A (inputs) to elements of B (outputs) (existence of images)
- and it does so reproducibly: the same input always gets sent to the same output. (uniqueness of images)

Notation and vocabulary!

Again, nothing on this slide is specific to abstract algebra.

Notation

- To say f is a function from A to B, we write $f: A \to B$ or $A \xrightarrow{f} B$
 - (We are specifying the *sets* that *f* plays with)
- To denote that f(a) = b, we also write $f: a \mapsto b$
 - \blacksquare or maybe even $a \mapsto b$ if it's clear what function we're talking about
 - (We are specifying the *elements* that *f* plays with)

Definitions

Let $f: A \rightarrow B$.

- \blacksquare The set A is called the domain of f.
- \blacksquare The set B is called the codomain of f.
- The image (or range) of f is the set of all actual outputs:

$$Im(f) := \{ b \in B \mid f(a) = b \text{ for some } a \in A \}.$$

"Isomorphic"

We can finally say what it means for two groups to be "isomorphic"!

Definition

Let G, H be groups. G is isomorphic to H ($G \cong H$) if there exists an isomorphism $\phi: G \to H$.

Okay, smartass, what's an isomorphism?

Let G, H be groups. An isomorphism $\phi: G \to H$ is a bijective homomorphism.

lstg if you don't tell me right now what a homomorphism is -

A homomorphism is a structure-preserving function between groups.

Homomorphisms!

Homomorphisms are structure-preserving functions

Since groups aren't just sets, they deserve maps that aren't just functions.

Formal definition

Let (G,\cdot) and (H,\star) be two groups. A homomorphism is a function $\phi:G\to H$ that respects the operations:

$$\phi(g_1\cdot g_2)=\phi(g_1)\star\phi(g_2)$$

Hey, c'mere

- \blacksquare Circle everything in that definition that is an element of G.
- \blacksquare Box everything in that definition that is an element of H.

An example homomorphism

Here is D_3 but I'm highlighting a subgroup $\mathbb{Z}_3 \leq D_3$:

When we say $\mathbb{Z}_3 \leq D_3$, we really mean that the structure of \mathbb{Z}_3 appears in D_3 .

This can be formalized by a homomorphism $\phi \colon \mathbb{Z}_3 \to D_3$, defined by $\phi \colon n \mapsto r^n$.

Let's check that ϕ meets the definition of being a homomorphism, $\phi(g_1 \cdot g_2) = \phi(g_1) \star \phi(g_2)$:

$$\phi(n_1 + n_2) = r^{n_1 + n_2} = r^{n_1} \cdot r^{n_2} = \phi(n_1) \cdot r^{n_2} = \phi(n_1) \cdot \phi(n_2)$$

The end!