Midterm Exam

Instructions: To solve these problems, you are allowed to consult your class textbook (*The Design of Approximation Algorithms* by Williamson and Shmoys) and notes, but no other sources. *This exam is individual work; you should not talk about it with anyone except the course instructor.* Please write clearly and concisely.

(1) [10 points] You are a crafty spy in charge of a spy agency, and are choosing a team for a long-term mission. You are given a universe set U of the spies that you can choose for your mission, with |U| = n. You are also given a set of m tasks that your spies will have to perform on your mission. Each task i can only be performed by either set $S_i \subseteq U$, or a set $T_i \subseteq U$. Therefore, for every $i = 1 \dots m$ you must choose either S_i or T_i to include in your team. Your goal is to minimize the total size of your team, i.e., the union of all the sets chosen.

Give a poly-time 2-approximation algorithm for this problem. Hint: Use LP-rounding.

(2) [10 points] Consider the following problem.

DOMINATING SET: We are given an undirected graph G = (V, E), as well as weights w(v) for each $v \in V$. For each vertex $v \in V$, define $N(v) = \{w \in V | (v, w) \in E\} \cup \{v\}$. In other words, N(v) is the set of all neighbors of v, plus the node v itself. A dominating set $C \subseteq V$ is a set of vertices such that for every vertex $v \in V$, either a neighbor of v is in C, or v itself is in C. The goal is to find a minimum-weight dominating set.

- (a) Give an LP-relaxation and its dual for the DOMINATING SET problem. Your primal linear program should have a variable x_v for every $v \in V$; those are the only variables you should need for that LP.
- (b) Let Δ be the maximum degree of G (assume $\Delta \geq 1$). Give a primal-dual approximation algorithm for DOMINATING SET with an approximation ratio of Δ .

 Hint: This algorithm should add only a single new node to C in every iteration. Begin by forming a $(\Delta + 1)$ -approximation algorithm, and then improve it to a Δ -approximation.