ABSTRACT

As conventional communication techniques are reaching its limit in terms of bandwidth, there is a need to explore ways which can overcome the limitations of the current communication techniques. In most cases, the limiting factor for high data rates tends to be the bandwidth of the system. Significant research efforts have been made towards eliminating this drawback of traditional systems while not causing any degradation in the quality of service. This has led to exploring the unused regions of the electromagnetic spectrum to make the switch from RF spectrum and its limited bandwidth. Visible light as a medium of communication is an ideal candidate due to its seemingly infinite bandwidth. Such a method of communication where visible light itself is a medium for data transfer is called Visible Light Communication (VLC). Our research demonstrates the same.

LIST OF FIGURES

Sl	Figure Name	Page. no.
1	1.1 Representation of a VLC system	2
2	3.1 Block diagram for transmitter	8
3	3.2 LTspice simulation of MOSFET driver circuit	11
4	3.4 Block diagram of Receiver	12
5	3.5 Simulation of the frontend processing circuit	13
6	3.6 Frontend signal processing circuit for receiver	14
7	5.1 Simulation results of frontend circuitry	17
8	5.2 Output waveform of frontend circuit	18
9	5.3 Output of project first phase	12
10	5.4 32x32 Image to be transmitted	20
11	5.5 Matrix of 32x32 image to be transmitted	20
12	5.6 Matrix of 32x32 image to be received	21
13	5.7 Reconstructed 32x32 image	21
14	5.8 Matrix of 64x64 image transfer	22
15	8.1 Illustration representing application of VLC in different scenarios	26

LIST OF ACRONYMS

- VLC Visible Light Communication
- TIA Transimpedance Amplifier
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- LED Light Emitting Diode
- PWM Pulse Width Modulation
- BW Bandwidth
- RF Radio Frequency
- IDE Integrated Development Environment
- OpenCV Open Source Computer Vision
- API Application Program Interface
- ADC Analog to Digital Converter
- BJT Bipolar Junction Transistor
- UART Universal Asynchronous Receiver Transmitter
- OOK ON OFF Keying
- OFDM Orthogonal Frequency Division Multiplexing
- MIMO Multiple Input Multiple Output