CSCE 312 Lab 3

Kevin Lei

February 25, 2024

Problem 1

Here we implement a D flip-flop from scratch using only NAND gates. The D flip-flop uses two D latches, which are implemented as follows:

Figure 1: D Flip-Flop

The D latches are implemented as follows:

Figure 2: D Latch

The NOR, NOT, and AND gates are implemented as follows:

Figure 4: NOT Gate

Figure 5: NOR Gate

Problem 2

Part A

Electromechanical switches can be described by their number of poles and throws. A pole is a common connection in a switch, and a throw is the number of positions the pole can connect to. Therefore, a single-pole, single-throw (SPST) switch has one pole and one throw, which means it is just a simple on-off switch that connects or disconnects a single circuit. The term NO means normally open, and it is used to describe the throw of a switch when it is not actuated (open means that the circuit is not connected).

Part B

L=0 b L=1	A:00	Ъ	S,	5,	n,	n,	l	
A 26' B	C (()	0	0	D	0	٥	0	l= S, ⊕ So
b' (=0 b'	0:11	١	0	0	0	(٥	N= P'S, S+ P, S' + P2' 20, + P2' 2
		0	0	(1	٥	١	= P, (2', 20 + 2' 2, 2,) + P 2'(2°, + 2°)
6 P 6'		(O	ſ	O	l	١	= b' (s, &s.) + bs,
		D	1	D	1	0	(N. = P
		ţ	1	б	l	((
		D	1	1	O	0	D	
		(1	1	1	(٥	

Figure 6: FSM, Truth Table, and boolean expressions for the circuit

Part C

Figure 7: Overall circuit with 74xx series equivalents