# Let's understand the pseudo code

Input: training set  $\{(x_i, y_i)\}_{i=1}^n$ , a differentiable loss function L(y, F(x)), number of iterations M.

#### Algorithm:

1. Initialize model with a constant value:

$$F_0(x) = rg \min_{\gamma} \sum_{i=1}^n L(y_i, \gamma).$$

- 2. For m = 1 to M:
  - 1. Compute so-called pseudo-residuals:

$$r_{im} = -igg[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}igg]_{F(x) = F_{m-1}(x)} \quad ext{for } i = 1, \dots, n.$$

- 2. Fit a base learner (or weak learner, e.g. tree) closed under scaling  $h_m(x)$  to pseudo-residuals, i.e. train it using the training set  $\{(x_i,r_{im})\}_{i=1}^n$
- 3. Compute multiplier  $\gamma_m$  by solving the following one-dimensional optimization problem:

$$\gamma_m = rg \min_{\gamma} \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)
ight).$$

4. Update the model:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

3. Output  $F_M(x)$ .



## Let's look into **inputs** first

We have been provided with

Training Data ( Dtrain )

Differentiable loss function ( L ( y , F(x) ) )

Number of models (trees)



## STEP 1

# Algorithms:

- Initialize model with a constant value:

$$F_0(x) = \mathop{argmin}\limits_{\scriptscriptstyle{\mathsf{Y}}} \; \sum_{i=1}^n L(y_i, {}^{\scriptscriptstyle{\mathsf{Y}}})$$

We start by creating **STAGE 0** model i.e mean model.

- But that's not written in STEP - 1.



#### What does STEP 1 mean?

-For a given loss  $L(y^i, \gamma)$ ,

 $find \ \gamma \ which \ minimizes \ the \ loss \ L(y^i, \gamma)$ 



# Which value of $\gamma$ minimizes square loss?

To find minima, we take derivative of loss function

$$F_0(x) = argmin \ \sum_{i=1}^n L(y_i, oldsymbol{\gamma}) \ F_0(x) = argmin \ \sum_{i=1}^n (y_i - oldsymbol{\gamma})^2 \ rac{\partial L}{\partial^{oldsymbol{\gamma}}} = \sum_{i=1}^n -2(y_i - oldsymbol{\gamma})^2$$

To find minima, equate it to 0

$$rac{\partial L}{\partial^{\mathsf{Y}}} = \sum_{i=1}^{n} - \cancel{2}(y_i - {}^{\mathsf{Y}})$$

$$rac{\partial L}{\partial^{\mathsf{Y}}} = \sum_{i=1}^n (y_i - {}^{\mathsf{Y}}\,) = 0$$

Taking,  $\gamma$  out of summation,

$$rac{\partial L}{\partial^{\mathsf{Y}}} = \sum_{i=1}^n y_i - n^{\mathsf{Y}} \, = 0$$

$$rac{\partial L}{\partial^{\mathsf{Y}}} = \sum_{i=1}^n y_i = n^{\mathsf{Y}}$$



## **Notice That:**

- $\gamma$  Which minimizes square loss is nothing but mean value
- The complex equation is simply telling us to create mean model

Ao (2) + V, A, (2)

# After finding value of Mo (Stage 0)

- We need to find  $h_1(x)\ ,\ h_2(x)\ .....\ h_m(x)$ 

- As well as weights  $\;\gamma_1\;,\;\gamma_2\;,\;\gamma_3\;,\;\dots\dots\gamma_m\;$ 



## STEP 2

# Create M models (Stage 1 to Stage M)

2. For m = 1 to M:

1. Compute so-called pseudo-residuals:

$$r_{im} = -igg[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}igg]_{F(x) = F_{m-1}(x)} \quad ext{for } i = 1, \dots, n.$$

2. Fit a base learner (or weak learner, e.g. tree) closed under scaling  $h_m(x)$  to pseudo-residuals, i.e. train it using the training set  $\{(x_i, r_{im})\}_{i=1}^n$ 

.

3. Compute multiplier  $\gamma_m$  by solving the following one-dimensional optimization problem:

$$\gamma_m = rg \min_{\gamma} \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)
ight).$$

4. Update the model:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

### **STEP 2.1**

#### In order to train new model

- We calculate residual of previous model



1. Compute so-called pseudo-residuals:

$$r_{im} = -igg[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}igg]_{F(x) = F_{m-1}(x)} \quad ext{for } i = 1, \dots, n.$$



Pseudo residual

Previous stage model

# For m = 1

$$F(x)=F_{\scriptscriptstyle 1-1}\left(x
ight)=F_0(x)$$

- 'i'represents datapoint
- M represents iteration

Here , we are calculating pseudo residual  $\dfrac{\partial L}{\partial F(x)}$  of previous stage model

- Residual of each point  $\,(\gamma_{im})\,$  is calculated.



## **STEP 2.2**



## After finding residual,

- We fit the model using  $(x_i, r_{im})$  Features

2. Fit a base learner (or weak learner, e.g. tree) closed under scaling  $h_m(x)$  to pseudo-residuals, i.e. train it using the training set  $\{(x_i,r_{im})\}_{i=1}^n$ 





Residual

# After learning h1 (x) - We need to find $\gamma$

## **STEP 2.3**

3. Compute multiplier  $\gamma_m$  by solving the following one-dimensional optimization problem:

$$\gamma_m = rg \min_{\gamma} \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)
ight).$$



# In simple terms, this equation is saying;

- To find  $\gamma$  which minimizes given loss



To find 
$$\hat{y}=F_{m-1}(x^i)+\gamma h_m(x^i)$$
 . For  $m=1$ ,  $\hat{y}=F_{1-1}(x^i)+\gamma_1 h_1(x^i)$  . Stage 0 model (mean model) . Calculated is step 2.2

To find  $\gamma$  which minimizes given loss

Take derivative of loss w.r.t  $~\gamma~$  & equate it to 0



Only variable here is  $\longrightarrow \gamma$ 

(Rest everything is constant - already calculated )

= 0

## **STEP 2.4**

# After finding $h_1(x)$ and $\gamma_1$

- We need to make final prediction

(i.e combine previous model with current model predictions)

4. Update the model:  $F_{-}(x) = F_{-}(x)$ 

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

For 
$$m=1$$

$$=F_0(x)+\gamma_1h_1(x)$$
 calculated in Step - 1 calculated in Step - 2.2

We keep doing sub-steps for M iteration i.e finding 
$$-iggl[-h_1(x)\ ,h_2(x)\ ,h_3(x)\ \dots h_m(x)\ ] - \gamma_1\ ,\gamma_2\ ,\gamma_3\ \dots \gamma_m$$

Finally, we use these to make final model  $F_{\mu}(x)$ 

3. Output  $F_M(x)$ .

$$F_m(x)=h_0(x)+\gamma_1h_1(x)+\gamma_2h_2(x)+\ldots+\gamma_mh_m(x)$$

# **Hyperparameter: # of base learners (M)**





As M increases, model will overfit.

#### WHY?

Because as base learners
 increase more likely training
 error will tend to 0

As M decreases, model will underfit.

#### WHY?

- Say M = 1, Stage 0 & Stage 1model.
- Prediction will be close to mean
   model Underfit

# Hyperparameter

## Depth

- As depth increases
- Model will overfit

## Why?

- Increase in depth -> Variance Increase
- → Model will overfit quickly



Final Model equation is : 
$$F_m(x) = h_0(x) + \sum_{m=1}^M \gamma_m.\,h_m(x)$$

To regularize, we add an regularization term i.e learning rate

$$F_m(x) = h_0(x) + rac{
u}{
u} \sum_{m=1}^M \gamma_m.\, h_m(x)$$

Learning Rate

 $Range: o \leq \nu \leq 1$ 

#### Notes:

- Adding learning rate is reducing the impact of Mth .

Hence, reducing overfit.

# **Stochastic Gradient Boosting**



How to reduce variance? - Randomization

Row sampling + column sampling

- Can use the some concept of randomization ( as used in RF ) to reduce variance

• This variation of GBDT is called 'Stochastic Gradient Boosting'



- skLearn provides ability of row samping
  - Using **subsample** hyperparameter
  - And column sampling using **max\_features** hyperparameter





# **Does outlier impact GBDT?**

- As each model is fit on residual of previous model
- Outliers will have high residual

This causes GBDT to focus its attention on reducing these residual for outlier points.

## How to tackle this issue of **OUTLIER**?

 We can resolve this issue by changing loss function

# When we use squared loss;

 The value of loss increases drastically if error value is large



$$e^{(i)} = \overset{ op}{y^{(i)}} - \hat{y}^{(i)}$$

# Bol9'K: B: 15 am

# Instead of using squared loss,

- We can use **huber loss** 

#### **Notice:**

- Both squared loss & hyper loss have same values
- As value of residual increases
   Huber loss doesn't explode like
   squared loss



# **Summary of Pre-processing**

- Chunking of **DATA**
- Data recorded at every 0.1 ms Very small info





Take 10 continues interval

replace it with mean/ median/ max



- Target variable encoding
- Classes = 20 Multiclass classification
  - Use label encoder



- Handling Noise ( noise due to equipment calibration etc. )
- Using moving average ( take average for an interval )



# **Feature extraction**

- Rectification ( domain specific )

Converts signal to positive value





Half - wave Rectification



Full - wave Rectification

Using full wave rectification to avoid data loss.