Cours d'électronique spécialisée : Étages de sortie et amplificateurs de puissance

A. Arciniegas V. Gauthier

IUT Ceray-Pontoise, Dep GEII, site de Neuville

Plan du cours

- Avant propos
- 2 Amplificateur classe A
- Amplificateur classe B
- Amplificateur classe AB
- 6 Amplificateur classe C
- Synthèse globale

Avant propos

Il existe plusieurs possibilités pour décrire les amplificateurs :

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

 Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C : le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C: le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).</p>

Types de liaison

Directe

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C: le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).

Types de liaison

- Directe
- Par condensateur

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C: le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).

Types de liaison

- Directe
- Par condensateur
- Par transformateur (couplage magnétique)

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C: le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).

Types de liaison

- Directe
- Par condensateur
- Par transformateur (couplage magnétique)

Gamme de fréquences

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C: le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).</p>

Types de liaison

- Directe
- Par condensateur
- Par transformateur (couplage magnétique)

Gamme de fréquences

Amplificateur large bande dans l'audible (20 Hz à 20 kHz)

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C: le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).

Types de liaison

- Directe
- Par condensateur
- Par transformateur (couplage magnétique)

Gamme de fréquences

- Amplificateur large bande dans l'audible (20 Hz à 20 kHz)
- Amplificateur bande étroite (accordable) dans les radiofréquences (RF, 20 kHz à 3 GHz)

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C: le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).

Types de liaison

- Directe
- Par condensateur
- Par transformateur (couplage magnétique)

Gamme de fréquences

- Amplificateur large bande dans l'audible (20 Hz à 20 kHz)
- Amplificateur bande étroite (accordable) dans les radiofréquences (RF, 20 kHz à 3 GHz)

Niveaux de signaux

Petit signal (pre-ampli, multi-étages)

Il existe plusieurs possibilités pour décrire les amplificateurs :

Classes de fonctionnement

- Classe A: le transistor opère toujours dans la zone active et le courant de collecteur est débité pendant toute la période (360°).
- Classe B: le courant collecteur n'est débité que pendant la moitié de la période (180°).
- Classe C : le courant collecteur est débité pendant une durée inférieure à la mi-période (<180°).

Types de liaison

- Directe
- Par condensateur
- Par transformateur (couplage magnétique)

Gamme de fréquences

- Amplificateur large bande dans l'audible (20 Hz à 20 kHz)
- Amplificateur bande étroite (accordable) dans les radiofréquences (RF, 20 kHz à 3 GHz)

Niveaux de signaux

- Petit signal (pre-ampli, multi-étages)
- Grand signal (ampli de puissance)

• Chaque amplificateur possède deux circuits équivalents : DC et AC.

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.
- En petit signal, la position du point de repos Q n'est pas critique.

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.
- En petit signal, la position du point de repos Q n'est pas critique.
- En grand signal, le point Q doit être placé au milieu de la droite de charge AC pour obtenir la plus grande amplitude maximale à la sortie.

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.
- En petit signal, la position du point de repos Q n'est pas critique.
- En grand signal, le point Q doit être placé au milieu de la droite de charge AC pour obtenir la plus grande amplitude maximale à la sortie.

Droite de charge DC (cas de la PDDT)

- Saturation : $I_{C(sat)} = \frac{V_{CC}}{R_C + R_F}$, quand $V_{CE} = 0$
- Blocage: $V_{CE(blo)} = V_{CC}$, quand $I_C = 0$

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.
- En petit signal, la position du point de repos Q n'est pas critique.
- En grand signal, le point Q doit être placé au milieu de la droite de charge AC pour obtenir la plus grande amplitude maximale à la sortie.

Droite de charge DC (cas de la PDDT)

- Saturation : $I_{C(sat)} = \frac{V_{CC}}{R_C + R_F}$, quand $V_{CE} = 0$
- Blocage : $V_{CE(blo)} = V_{CC}$, quand $I_C = 0$

Droite de charge AC (cas de la PDDT)

- \bullet Saturation : $\mathit{i}_{\mathit{C(Sat)}} = \mathit{I}_{\mathit{CQ}} + \frac{\mathit{V}_{\mathit{CEQ}}}{\mathit{r}_{\mathit{C}}}$, quand $\mathit{V}_{\mathit{CE}} = 0$
- Blocage : $v_{CE(blo)} = V_{CEQ} + I_{CQ}r_c$, quand $I_C = 0$

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.
- En petit signal, la position du point de repos Q n'est pas critique.
- En grand signal, le point Q doit être placé au milieu de la droite de charge AC pour obtenir la plus grande amplitude maximale à la sortie.

Droite de charge DC (cas de la PDDT)

- Saturation : $I_{C(sat)} = \frac{V_{CC}}{R_C + R_E}$, quand $V_{CE} = 0$
- Blocage : $V_{CE(blo)} = V_{CC}$, quand $I_C = 0$

Droite de charge AC (cas de la PDDT)

- \bullet Saturation : $\mathit{i}_{\mathit{C(Sat)}} = \mathit{I}_{\mathit{CQ}} + \frac{\mathit{V}_{\mathit{CEQ}}}{\mathit{r}_{\mathit{C}}}$, quand $\mathit{V}_{\mathit{CE}} = 0$
- Blocage : $v_{CE(blo)} = V_{CEQ} + I_{CQ}r_c$, quand $I_C = 0$

Fonctionnement

• La valeur crête à crête maximale MPP $< V_{CC}$ et MPP $= 2*min(I_{CQ}r_c,V_{CEQ})$ pour un point Q quelconque.

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.
- En petit signal, la position du point de repos Q n'est pas critique.
- En grand signal, le point Q doit être placé au milieu de la droite de charge AC pour obtenir la plus grande amplitude maximale à la sortie.

Droite de charge DC (cas de la PDDT)

- Saturation : $I_{C(sat)} = \frac{V_{CC}}{R_C + R_F}$, quand $V_{CE} = 0$
- Blocage: $V_{CE(blo)} = V_{CC}$, quand $I_C = 0$

Droite de charge AC (cas de la PDDT)

- \bullet Saturation : $\mathit{I}_{\mathit{C(Sat)}} = \mathit{I}_{\mathit{CQ}} + \frac{\mathit{V}_{\mathit{CEQ}}}{\mathit{I}_{\mathit{C}}}$, quand $\mathit{V}_{\mathit{CE}} = 0$
- Blocage : $v_{CE(blo)} = V_{CEQ} + I_{CQ}r_{c}$, quand $I_{C} = 0$

Fonctionnement

- La valeur crête à crête maximale MPP $< V_{CC}$ et MPP $= 2*min(I_{CQ}I_C,V_{CEQ})$ pour un point Q quelconque.
- Le point Q doit être situé au milieu de la droite de charge AC pour éviter l'écretage.

- Chaque amplificateur possède deux circuits équivalents : DC et AC.
- Il dispose donc de deux droites de charge : DC et AC.
- En petit signal, la position du point de repos Q n'est pas critique.
- En grand signal, le point Q doit être placé au milieu de la droite de charge AC pour obtenir la plus grande amplitude maximale à la sortie.

Droite de charge DC (cas de la PDDT)

- Saturation : $I_{C(sat)} = \frac{V_{CC}}{R_C + R_E}$, quand $V_{CE} = 0$
- Blocage : $V_{CE(blo)} = V_{CC}$, quand $I_C = 0$

Droite de charge AC (cas de la PDDT)

- \bullet Saturation : $\mathit{I}_{\mathit{C(Sat)}} = \mathit{I}_{\mathit{CQ}} + \frac{\mathit{V}_{\mathit{CEQ}}}{\mathit{I}_{\mathit{C}}}$, quand $\mathit{V}_{\mathit{CE}} = 0$
- Blocage : $v_{CE(blo)} = V_{CEQ} + I_{CQ}r_{c}$, quand $I_{C} = 0$

Fonctionnement

- La valeur crête à crête maximale MPP $< V_{CC}$ et MPP $= 2*min(I_{CQ}I_C,V_{CEQ})$ pour un point Q auelconque.
- Le point Q doit être situé au milieu de la droite de charge AC pour éviter l'écretage.
- Dans ce cas, $I_{CQ}r_c = V_{CEQ}$ et donc $MPP = 2 * I_{CQ}r_c = 2 * V_{CEQ}$

Amplificateur classe A

Rappel

- Gain en puissance : $A_p = \frac{p_{out}}{p_{in}}$
- Puissance de sortie : $p_{out} = \frac{v_{off}^2}{R_L^2}$, avec $v_{pp} = 2\sqrt{2}v_{off}$

Rappel

- Gain en puissance : $A_p = \frac{p_{out}}{p_{in}}$
- Puissance de sortie : $p_{out} = \frac{v_{off}^2}{R_I}$, avec $v_{pp} = 2\sqrt{2}v_{eff}$

Amplificateur classe A (d'après A. Malvino).

Rappel

- Gain en puissance : $A_p = \frac{p_{out}}{p_{in}}$
- Puissance de sortie : $p_{out} = \frac{v_{\rm eff}^2}{R_L}$, avec $v_{\rm pp} = 2\sqrt{2}v_{\rm eff}$

Amplificateur classe A (d'après A. Malvino).

Caractéristiques

 $\bullet \ \ \text{Puissance de sortie}: p_{out} = \frac{v_{pp}^2}{8R_L} \text{, avec } v_{pp} = \textit{MPP}$

Rappel

- Gain en puissance : $A_p = \frac{p_{out}}{p_{in}}$
- Puissance de sortie : $p_{out} = \frac{v_{off}^2}{R_l}$, avec $v_{pp} = 2\sqrt{2}v_{eff}$

Amplificateur classe A (d'après A. Malvino).

- $\bullet \ \ \text{Puissance de sortie} : p_{out} = \frac{v_{DD}^2}{8R_l} \text{, avec } v_{DD} = \textit{MPP}$
- Puissance dissipée par les transistors : $P_{DQ} = V_{CEQ}I_{CQ}$

Rappel

- Gain en puissance : $A_p = \frac{p_{out}}{p_{in}}$
- Puissance de sortie : $p_{out} = \frac{v_{off}^2}{R_l}$, avec $v_{pp} = 2\sqrt{2}v_{eff}$

Amplificateur classe A (d'après A. Malvino).

- $\bullet \ \ \text{Puissance de sortie}: p_{out} = \frac{v_{DD}^2}{8R_I} \text{, avec } v_{DD} = \textit{MPP}$
- Puissance dissipée par les transistors : $P_{DQ} = V_{CEQ}I_{CQ}$
- Puissance fournie : $P_{DC} = 2V_{CC}I_{DC}$, avec alimentation symétrique

Rappel

- Gain en puissance : $A_p = \frac{p_{out}}{p_{in}}$
- Puissance de sortie : $p_{out} = \frac{v_{off}^2}{R_l}$, avec $v_{pp} = 2\sqrt{2}v_{eff}$

Amplificateur classe A (d'après A. Malvino).

- Puissance de sortie : $p_{OUt} = \frac{v_{DP}^2}{8R_l}$, avec $v_{DP} = MPP$
- Puissance dissipée par les transistors : $P_{DQ} = V_{CEQ}I_{CQ}$
- Puissance fournie : $P_{DC} = 2V_{CC}I_{DC}$, avec alimentation symétrique
- Rendement maximal : $\eta = \frac{P_{OUt}}{P_{DC}} \cdot 100\% = 25\%$, avec $\frac{MPP}{2} = V_{CC} = I_{DC}R_L$

Amplificateur classe B

Application avec amplificateur classe B (d'après A. Malvino).

Circuit *push-pull* à émetteurs-suiveurs (d'après A. Malvino).

Application avec amplificateur classe B (d'après A. Malvino).

Circuit *push-pull* à émetteurs-suiveurs (d'après A. Malvino).

Caractéristiques

Configuration push-pull: BJT Complémentaire

Application avec amplificateur classe B (d'après A. Malvino).

Circuit *push-pull* à émetteurs-suiveurs (d'après A. Malvino).

- Configuration push-pull: BJT Complémentaire
- Puissance de sortie : $p_{out} = \frac{v_{DD}^2}{8R_L}$, avec $v_{DD} = MPP$

Application avec amplificateur classe B (d'après A. Malvino).

Circuit *push-pull* à émetteurs-suiveurs (d'après A. Malvino).

- Configuration push-pull: BJT Complémentaire
- Puissance de sortie : $p_{out} = \frac{v_{DD}^2}{8R_L}$, avec $v_{DD} = MPP$
- Puissance fournie : $P_{DC} = 2V_{CC}I_{DC}$, avec $I_{DC} = \frac{1}{\pi} \frac{MPP}{2R_L}$

Application avec amplificateur classe B (d'après A. Malvino).

Circuit *push-pull* à émetteurs-suiveurs (d'après A. Malvino).

- Onfiguration push-pull: BJT Complémentaire
- Puissance de sortie : $p_{OUf} = \frac{v_{DD}^2}{8R_L^2}$, avec $v_{DD} = MPP$
- Puissance fournie : $P_{DC} = 2V_{CC}I_{DC}$, avec $I_{DC} = \frac{1}{\pi}\frac{MPP}{2R_L}$
- Rendement maximal : $\eta = \frac{P_{OUT}}{P_{DC}} \cdot 100\% = \frac{\frac{MPP^2}{8R_1}}{\frac{2}{2}\frac{MPP}{2R_1}V_{CC}} \cdot 100\% = \frac{\pi}{4} \cdot 100\% \approx 79\%$, avec $\frac{MPP}{2} = V_{CC}$.

Application avec amplificateur classe B (d'après A. Malvino).

Circuit *push-pull* à émetteurs-suiveurs (d'après A. Malvino).

- Configuration push-pull: BJT Complémentaire
- Puissance de sortie : $p_{out} = \frac{v_{DD}^2}{8R_l}$, avec $v_{DD} = MPP$
- Puissance fournie : $P_{DC} = 2V_{CC}I_{DC}$, avec $I_{DC} = \frac{1}{\pi}\frac{MPP}{2R_L}$
- Rendement maximal : $\eta = \frac{P_{OU}^{*}}{P_{DC}} \cdot 100\% = \frac{\frac{MPP^{2}}{8R_{c}^{2}}}{\frac{2}{2}\frac{MPP}{R_{c}^{2}}V_{CC}} \cdot 100\% = \frac{\pi}{4} \cdot 100\% \approx 79\%$, avec $\frac{MPP}{2} = V_{CC}$.
- Puissance maximale dissipée par les transistors : $P_{DQ} = \frac{V_{CC}^2}{\pi^2 R_L}$, avec $\eta = 50\%$ (non démontré)

Problème de distorsion de croisement

Distorsion de croisement (d'après A. Malvino).

Amplificateur classe AB

Polarisation par diviseur de tension (d'après A. Malvino).

Polarisation par diviseur de tension (d'après A. Malvino).

- $I_N = I_P = I_Q = I_S e^{V_{BE}/V_T}$
- Problème d'**emballement thermique**.

Polarisation par diviseur de tension (d'après A. Malvino).

$$I_N = I_P = I_Q = I_S e^{V_{BE}/V_T}$$

• Problème d'emballement thermique.

Polarisation par diodes (d'après A. Malvino).

Polarisation par diviseur de tension (d'après A. Malvino).

$$I_N = I_P = I_Q = I_S e^{V_{BE}/V_T}$$

• Problème d'emballement thermique.

Polarisation par diodes (d'après A. Malvino).

Solution par diodes de compensation.

Polarisation par diviseur de tension (d'après A. Malvino).

- Problème d'emballement thermique.

Polarisation par diodes (d'après A. Malvino).

- $I_Q = \frac{V_{CC} 2V_{BE}}{2R}$
- Solution par diodes de compensation.

Caractéristiques

Similaires à la classe B.

Polarisation par diviseur de tension (d'après A. Malvino).

- $I_N = I_P = I_Q = I_S e^{V_{BE}/V_T}$
- Problème d'emballement thermique.

Polarisation par diodes (d'après A. Malvino).

- Solution par diodes de compensation.

- Similaires à la classe B.
- $\bullet~$ Correction de la distorsion de croisement si 1% < $\frac{I_{CQ}}{I_{C(sat)}} < 5\%$

Polarisation par diviseur de tension (d'après A. Malvino).

- $I_N = I_P = I_Q = I_S e^{V_{BE}/V_T}$
- Problème d'emballement thermique.

Polarisation par diodes (d'après A. Malvino).

- $\bullet \ I_{Q} = \frac{V_{CC} 2V_{BE}}{2R}$
- Solution par diodes de compensation.

- Similaires à la classe B.
- \bullet Correction de la distorsion de croisement si 1% $<\frac{\textit{I}_{CQ}}{\textit{I}_{C(sat)}}<5\%$

Amplificateur classe C

Amplificateur classe C (d'après A. Malvino).

Amplificateur classe C (d'après A. Malvino).

Caractéristiques

O Amplificateur RF optimal à $f_r = \frac{1}{2\pi\sqrt{LC}}$

Amplificateur classe C (d'après A. Malvino).

- **o** Amplificateur RF optimal à $f_r = \frac{1}{2\pi\sqrt{LC}}$
- Bande passante

Amplificateur classe C (d'après A. Malvino).

- **o** Amplificateur RF optimal à $f_r = \frac{1}{2\pi\sqrt{LC}}$
- Bande passante
- O Circuit équivalent DC non-polarisé

Amplificateur classe C (d'après A. Malvino).

- **a** Amplificateur RF optimal à $f_{\rm r}=\frac{1}{2\pi\sqrt{LC}}$
- Bande passante
- O Circuit équivalent DC non-polarisé

Amplificateur classe C (d'après A. Malvino).

- **1** Amplificateur RF optimal à $f_{\rm r}=rac{1}{2\pi\sqrt{LC}}$
- Bande passante
- O Circuit équivalent DC non-polarisé
- Circuit équivalent AC

Synthèse globale

Synthèse étages de sortie (d'après A. Malvino).