Line Integrals

In this section we define an integral that is similar to a single integral except that instead of integrating over an interval [a, b], we integrate over a curve C.

Such integrals are called *line integrals*, although "curve integrals" would be better terminology.

They were invented in the early 19th century to solve problems involving fluid flow, forces, electricity, and magnetism.

3

5

Line Integrals

We start with a plane curve C given by the parametric equations

1
$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

or, equivalently, by the vector equation $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j}$, and we assume that C is a smooth curve. [This means that \mathbf{r}' is continuous and $\mathbf{r}'(t) \neq \mathbf{0}$.]

.

Line Integrals

If we divide the parameter interval [a, b] into n subintervals $[t_{i-1}, t_i]$ of equal width and we let $x_i = x(t_i)$, and $y_i = y(t_i)$, then the corresponding points $P_i(x_i, y_i)$ divide C into n subarcs with lengths $\Delta s_1, \Delta s_2, \ldots, \Delta s_n$. (See Figure 1.)

Line Integrals

We choose any point $P_i^*(x_i^*, y_i^*)$ in the ith subarc. (This corresponds to a point t_i^* in $[t_{i-1}, t_i]$.)

Now if f is any function of two variables whose domain includes the curve C, we evaluate f at the point (x_i^*, y_i^*) , multiply by the length Δs_i of the subarc, and form the sum

$$\sum_{i=1}^n f(x_i^*, y_i^*) \, \Delta s_i$$

which is similar to a Riemann sum.

6

Line Integrals

Then we take the limit of these sums and make the following definition by analogy with a single integral.

 $\fbox{\fill}{\fill$

$$\int_C f(x, y) ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

if this limit exists

We have found that the length of C is

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Line Integrals

A similar type of argument can be used to show that if f is a continuous function, then the limit in Definition 2 always exists and the following formula can be used to evaluate the line integral:

$$\int_C f(x, y) \, ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as *t* increases from *a* to *b*.

7

Line Integrals

If s(t) is the length of C between $\mathbf{r}(a)$ and $\mathbf{r}(t)$, then

$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

So the way to remember Formula 3 is to express everything in terms of the parameter t: Use the parametric equations to express x and y in terms of t and write ds as

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

9

Line Integrals

In the special case where C is the line segment that joins (a, 0) to (b, 0), using x as the parameter, we can write the parametric equations of C as follows: x = x, y = 0, $a \le x \le b$.

Formula 3 then becomes

$$\int_C f(x, y) \, ds = \int_a^b f(x, 0) \, dx$$

and so the line integral reduces to an ordinary single integral in this case.

10

Line Integrals

Just as for an ordinary single integral, we can interpret the line integral of a *positive* function as an area.

In fact, if $f(x, y) \ge 0$, $\int_C f(x, y) ds$ represents the area of one side of the "fence" or "curtain" in Figure 2, whose base is C and whose height above the point (x, y) is f(x, y).

Example 1

Evaluate $\int_C (2 + x^2 y) ds$, where *C* is the upper half of the unit circle $x^2 + y^2 = 1$.

Solution:

In order to use Formula 3, we first need parametric equations to represent *C*.

Recall that the unit circle can be parametrized by means of the equations

$$x = \cos t$$
 $y = \sin t$

and the upper half of the circle is described by the parameter interval $0 \le t \le \pi$. (See Figure 3.)

12

Example 1 - Solution

cont'c

11

Therefore Formula 3 gives

$$\int_{C} (2 + x^{2}y) ds = \int_{0}^{\pi} (2 + \cos^{2}t \sin t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$= \int_{0}^{\pi} (2 + \cos^{2}t \sin t) \sqrt{\sin^{2}t + \cos^{2}t} dt$$

$$= \int_{0}^{\pi} (2 + \cos^{2}t \sin t) dt$$

$$= \left[2t - \frac{\cos^{3}t}{3} \right]_{0}^{\pi}$$

$$= 2\pi + \frac{2}{3}$$

Line Integrals

Suppose now that C is a **piecewise-smooth curve**; that is, C is a union of a finite number of smooth curves C_1, C_2, \ldots, C_n , where, as illustrated in Figure 4, the initial point of C_{i+1} is the terminal point of C_i .

Figure 4

14

Line Integrals

Then we define the integral of f along C as the sum of the integrals of f along each of the smooth pieces of C:

$$\int_{C} f(x, y) \, ds = \int_{C_{1}} f(x, y) \, ds + \int_{C_{2}} f(x, y) \, ds + \dots + \int_{C_{n}} f(x, y) \, ds$$

Line Integrals

Any physical interpretation of a line integral $\int_C f(x, y) ds$ depends on the physical interpretation of the function f.

Suppose that $\rho(x, y)$ represents the linear density at a point (x, y) of a thin wire shaped like a curve C.

Then the mass of the part of the wire from P_{i-1} to P_i in Figure 1 is approximately $\rho(x_i^*, y_i^*) \Delta s_i$ and so the total mass of the wire is approximately $\sum \rho(x_i^*, y_i^*) \Delta s_i$.

15

Line Integrals

By taking more and more points on the curve, we obtain the **mass** *m* of the wire as the limiting value of these approximations:

$$m = \lim_{n \to \infty} \sum_{i=1}^{n} \rho(x_i^*, y_i^*) \, \Delta s_i = \int_{\mathcal{C}} \rho(x, y) \, ds$$

[For example, if $f(x, y) = 2 + x^2y$ represents the density of a semicircular wire, then the integral in Example 1 would represent the mass of the wire.]

17