Project Title:

Advanced Analytics: Sales Forecasting & KPI Anomaly Detection

Objective:

analyze multi-source sales data, generate To visual insights, forecast future sales trends, and detect anomalies in KPIs using data analytics and visualization techniques.

1. Introduction

This project focuses on analyzing Flipkart's sales data to derive business insights through data cleaning, visualization, forecasting, and anomaly detection.

The objective is to build a reliable analytical pipeline to assist in sales trend analysis and future prediction.

Objective

- Forecast future sales using time series analysis
- Detect unusual KPI fluctuations (anomalies)
- Generate visual insights for decision-making

Tools & Technologies

Category Tools / Libraries Used

Programming Python

Data Handling Pandas, NumPy

Visualization Matplotlib, Seaborn

Forecasting Prophet

Anomaly Detection Z-score Method

Environment Jupyter Notebook / VS Code / CMD

Output Formats CSV, PNG

Dataset Description

File: sales_history.csv

Rows: 505 Columns:

Column Name

date Date of sale region Sales region

product Product category

unit_price Price per unit

Description

4. Methodology / Steps

Step 1: Data Cleaning

- File: data cleaning.py
- Operations:
 - o Handled missing values (if any)
 - o Added computed column total sales
 - o Saved output as sales_history_clean.csv

```
import pandas as pd

data = pd.read_csv('sales_history.csv')

data['total_sales'] = data['units_sold'] * data['unit_price']

print(data.head())

data.to_csv('sales_history_clean.csv', index=False)
```

Sample Output:

date region product units_sold unit_price total_sales

0 01-01-2022 North	Α	86	98	8428
1 01-01-2022 North	В	99	106	10494
2 01-01-2022 North	C	127	113	14351
3 01-01-2022 South	Α	94	97	9118
4 01-01-2022 South	В	118	103	12154

Step 2: Data Visualization

• File: data visualization.py

- Charts generated:
 - Total Sales Over Time
 - Sales by Region
 - Sales by Product
- Saved as PNG images

```
import pandas as pd
 import matplotlib.pyplot as plt
data = pd.read_csv('sales_history_clean.csv')
data['date'] = pd.to_datetime(data['date'])
plt.figure(figsize=(10,5))
data.groupby('date')['total_sales'].sum().plot(kind='line', marker='o')
 plt.title('Total Sales Over Time')
plt.xlabel('Date')
plt.ylabel('Total Sales')
plt.grid(True)
plt.savefig('total_sales_over_time.png')
plt.close()
plt.figure(figsize=(8,5))
data.groupby('region')['total_sales'].sum().sort_values(ascending=False
 ).plot(kind='bar', color='skyblue')
plt.title('Sales by Region')
plt.xlabel('Region')
plt.ylabel('Total Sales')
plt.savefig('sales_by_region.png')
plt.close()
plt.figure(figsize=(8,5))
data.groupby('product')['total_sales'].sum().sort_values(ascending=Fals
 e).plot(kind='bar', color='orange')
plt.title('Sales by Product')
plt.xlabel('Product')
plt.ylabel('Total Sales')
plt.savefig('sales_by_product.png')
plt.close()
 print("Charts created successfully! Check PNG files in the same
 folder.")
```

OUTPUT:

Total Sales Over Time

Sales by Product

Sales by Region

Step 3: Forecasting and Anomaly Detection

- File: step3 analysis.py
- Forecasted sales for next 90 days using Prophet
- Identified anomalies using Z-score
- Generated:
 - o sales forecast.png
 - o daily sales anomalies.csv

sales_anamoly_detect.py

```
import pandas as pd
import numpy as np
data = pd.read_csv('sales_history_clean.csv')
data['date'] = pd.to_datetime(data['date'])
daily_sales = data.groupby('date')['total_sales'].sum().reset_index()

mean_sales = daily_sales['total_sales'].mean()
std_sales = daily_sales['total_sales'].std()

daily_sales['z_score'] = (daily_sales['total_sales'] - mean_sales) /
std_sales

daily_sales['anomaly'] = daily_sales['z_score'].apply(lambda x: 'Yes'
if abs(x) > 2 else 'No')
```

```
    anomalies = daily_sales[daily_sales['anomaly'] == 'Yes']
    print("Anomalies detected:")
    print(anomalies)
    daily_sales.to_csv('daily_sales_anomalies.csv', index=False)
    print("Daily sales with anomalies saved as 'daily_sales_anomalies.csv'")
```

sales_forecasting.py

```
import pandas as pd
from prophet import Prophet
import matplotlib.pyplot as plt
# 1 Load cleaned data
data = pd.read csv('sales history clean.csv')
data['date'] = pd.to_datetime(data['date'])
# 2 Prepare data for Prophet
df = data.groupby('date')['total_sales'].sum().reset_index()
df = df.rename(columns={'date':'ds', 'total_sales':'y'}) # Prophet needs ds &
# B Create and fit model
model = Prophet()
model.fit(df)
# 4 Forecast next 90 days (approx 3 months)
future = model.make future dataframe(periods=90)
forecast = model.predict(future)
# 5 Plot forecast
fig1 = model.plot(forecast)
plt.title("Sales Forecast (Next 3 Months)")
plt.savefig('sales_forecast.png')
plt.close()
print("Forecast created! Check 'sales_forecast.png'.")
```

OUTPUT:

daily_sales_anomalies.csv

ds,y,z_score,anomaly 2022-01-01,294517,4.119497481598486,Yes 2022-01-03,170816,0.3025293099214597,No 2022-01-04,170989,0.30786746800991593,No 2022-01-05,284200,3.8011519498146535,Yes 2022-01-06,142254,-0.5787913335611251,No 2022-01-07,140008,-0.6480948194956495,No 2022-01-08,145977,-0.4639129372413414,No 2022-01-09,149074,-0.368350650536434,No 2022-01-10,149720,-0.348417412818846,No 2022-01-11,168855,0.2420198994505771,No 2022-01-12,168605,0.2343057981666808,No 2023-01-01,147284,-0.4235836157291315,No 2023-01-02,144329,-0.5147642929047859,No 2023-01-03,171192,0.31413131825243973,No 2023-01-04,172775,0.36297700758207113,No 2023-01-05,145086,-0.4914059942171478,No 2023-01-06,137649,-0.720885079210495,No 2023-01-07,138861,-0.6834871161861658,No 2023-01-08,144023,-0.5242063528762749,No 2023-01-09,145587,-0.4759469352442196,No 2023-01-10,147413,-0.419603139466641,No 2023-01-11,164589,0.11038647514217056,No 2023-01-12,172400,0.3514058556562267,No 2024-01-01,145802,-0.4693128081400688,No 2024-01-02,147180,-0.4267926818632324,No 2024-01-03,173538,0.38652044470052266,No 2024-01-04,167810,0.20977495608389055,No 2024-01-05,149628,-0.3512562020913198,No 2024-01-06,138886,-0.6827157060577761,No 2024-01-07,140925,-0.6197994959863179,No 2024-01-08,146153,-0.4584822099374784,No 2024-01-09,144611,-0.5060627866565508,No 2024-01-10,143227,-0.5487680513642007,No 2024-01-11,170512,0.29314896276024177,No 2024-01-12,173975,0.4000046937447734,No 2025-01-01,148279,-0.3928814926192242,No 2025-01-02,145646,-0.4741264073412201,No 2025-01-03,169443,0.2601634656703012,No 2025-01-04,171928,0.3368416324322304,No 2025-01-05,146717,-0.4410791974410083,No

o sales_forecast.png

Results

- Forecast chart indicates an upward/downward sales trend.
- Anomalies detected show unexpected spikes/drops.
- Regional and product-based sales visualizations highlight performance variations.

Conclusion

The project successfully demonstrated:

- Data pipeline creation (cleaning, analysis, visualization)
- Forecasting future sales patterns
- Detecting KPI anomalies
 This analytical framework can help Flipkart make data-driven decisions for inventory management, regional strategy, and sales optimization.

Future Scope

- Integration with live dashboards (Power BI / Streamlit)
- Real-time data ingestion from APIs
- Advanced ML models for multi-factor forecasting