Determining Word–Emotion Associations from Tweets by Multi-Label Classification

2016 IEEE/WIC/ACM International Conference on Web Intelligence Omaha, Nebraska, USA

Felipe Bravo-Marquez¹, Saif M. Mohammad², Eibe Frank¹, and Bernhard Pfahringer¹

¹University of Waikato, Computer Science Department Hamilton, New Zealand ²National Research Council Canada Ottawa, ON, Canada

October 15, 2016

#Emotional Tweets

- Posts in Twitter or tweets are provided freely and voluntarily by users.
 - Hey @Apple, pretty much all your products are amazing. You blow minds every time you launch a new gizmo. That said, your hold music is crap.
 - #windows sucks... I want #imac so bad!!! why is it so damn expensive :(@apple please give me free imac and I will love you :D
- Analysing the emotions behind those messages has important applications in product marketing, politics, and even for stock market analysis [Bollen et al., 2011].

The NRC Emotion Lexicon

- A well known lexical resource for automatically analysing emotions from textual data is the NRC word-emotion association lexicon (NRC-10) [Mohammad and Turney, 2013]
- It contains more than 14,000 English words manually annotated according to ten non-exclusive emotional and polarity categories.
- Examples: achieved is mapped to anticipation, joy, and trust, and exile is mapped into anger, fear, and sadness.

- NRC-10 does not cover informal expressions used in Twitter.
- It suffers from limitations for analysing emotions from tweets.

Proposal

Word-level features

Attributes based on averaging tweet-level features:

- 1. Word unigrams (UNI): based on an unigram frequency count.
- Brown clusters (BWN): in which the tweet is tagged according to low-dimensional Brown clusters of words.
- POS n-grams (POS): in which the frequency of each POS unigram and bigram is counted.
- Distant Polarity (DP): in which a logistic regression model is trained from a corpus of tweets with positive:) and negative: (emoticons and applied to the tweet.

Attributes based on dense Embeddings:

 Word2Vec Embeddings (W2V): skip-gram embeddings trained from a corpus of tweets.

Multi-Label Classification Models

- Binary Relevance (BR): in which one separated binary classifier is trained per label.
- Classifier Chains (CC) [Read et al., 2011]: in which the predictions for each binary classifier are cascaded as additional features along a random permutation of labels.
- Bayesian Classifier Chains (BCC) [Zaragoza et al., 2011]: in which a Bayesian network that represents dependency relations between the labels is learned and used to build a classifier chain.

Intrinsic Evaluation

- We compare the micro-averaged F1 for the ten affective categories on the labelled words using 10-fold cross-validation.
- We use logistic regression as the base learner in the different models.
- We compare different combinations of features and classifiers.

Classifier	BR	CC	BCC	
UNI (Baseline)	0.389 ± 0.03	0.371 ± 0.03	0.378 ± 0.03	
UNI-BWN	$0.410 \pm 0.03 +$	$0.400 \pm 0.03 +$	$0.407 \pm 0.03 +$	
UNI-BWN-POS	$0.411 \pm 0.03 +$	$0.405 \pm 0.02 +$	$0.407 \pm 0.03 +$	
UNI-BWN-POS-DP	$0.433 \pm 0.03 +$	$0.427 \pm 0.03 +$	$0.432 \pm 0.03 +$	
UNI-BWN-POS-DP-W2V	$0.477 \pm 0.03 +$	$0.474 \pm 0.03 +$	$0.478 \pm 0.03 +$	
W2V	$0.473 \pm 0.03 +$	$0.469 \pm 0.03 +$	$0.472 \pm 0.03 +$	
W2V-BWN	$0.468 \pm 0.03 +$	$0.469 \pm 0.03 +$	$0.47 \pm 0.03 +$	
W2V-BWN-POS	$0.465 \pm 0.03 +$	$0.466 \pm 0.03 +$	$0.466 \pm 0.02 +$	
W2V-BWN-POS-DP	$0.474 \pm 0.03 +$	$0.473 \pm 0.03 +$	$0.475 \pm 0.03 +$	
W2V-DP	0.479 ± 0.03 +	0.476 ± 0.03 +	$0.479 \pm 0.03 +$	

- W2V-embeddings produce the strongest features!
- There are **no clear differences** between multi-label models!

Expanded Lexicon

spaz no-show shite dismisses >-/ f*cking killn slapped s**t psychotic nazi siga & killings nem ik seja & jic g tukin laggy irks **je g worryin , whate murders

anger

joy

ite #fishing onngg underway 70th thank profit carling a starshine calonngg to underway 70th carling a starshine on the start of the sta

anticipation

suckss missin bitter ginores missin bitter to the first withdrawls sleepless cryin heads ober sucky ginores sucky sucks sucky sucks sucky sucks sucky sucks sucky sucks sucky sucks sucks

sadness

humiliated racists relle arrgh rapists hick what genocide ick liars raggedy b***h sena hmph \(\begin{array}{c} \precede{\text{pt}} \\ \text{liars raggedy} \\ \text{pt} \\ \text{sena hmph} \(\begin{array}{c} \precede{\text{pt}} \\ \text{pt} \\ \text{pt} \\ \text{lalentless } \\ \precede{\text{pt}} \\ \text{pt} \\ \text{lier sodding cheating fkn cheater} \\ \text{wacka wtf} \end{array}

disgust

whooo #doodlejump duper #couponcabin moorning j—e—t—s⁷-cth grinch noobie pressie pressie boffer.co.uk bluegreen histatsx o with the proposition of the proposition

surprise

#Sog psycho faked
#cotto #amnesty psoch executions flus #hcrmovies #dvd mutated prox hitler # deaths 13th botnet forlying robbers #child

fear

servants worthwhile ca—
the meister clement ca—
locum #happybirthday ½I

y) ny— gs ys hubbard a game y

trust

Extrinsic Evaluation

- We conduct an extrinsic evaluation by studying the usefulness of the expanded lexicons for classifying Twitter messages annotated with emotional hashtags.
- We compare a logistic regression that uses NRC-10 alone with another one using NRC-10 and the expanded lexicon.

Lexicon		Kappa			AUC	
NRC-10 (alone)		0.0769			0.633	
NRC-10+Expanded	BR	CC	BCC	BR	CC	BCC
UNI	0.1912	0.2006	0.1977	0.711	0.714	0.713
UNI-BWN	0.174	0.1783	0.176	0.708	0.712	0.711
UNI-BWN-POS	0.1753	0.1767	0.1776	0.708	0.711	0.710
UNI-BWN-POS-DP	0.1803	0.1829	0.1835	0.713	0.715	0.714
UNI-BWN-POS-DP-W2V	0.1871	0.1966	0.1832	0.712	0.714	0.713
W2V	0.2234	0.2256	0.2256	0.720	0.723	0.723
W2V-BWN	0.1988	0.2007	0.1974	0.713	0.715	0.715
W2V-BWN-POS	0.195	0.2012	0.1956	0.710	0.713	0.712
W2V-BWN-POS-DP	0.1994	0.2041	0.1992	0.714	0.715	0.715
W2V-DP	0.2228	0.2234	0.2263	0.722	0.723	0.723

- All the expanded lexicons are **substantially better** than using NRC-10 alone.
- Lexicons created with CC and BCC are slightly better than the ones created using BR in most cases.

Conclusions

- The results obtained indicate that low-dimensional word-embeddings are better than distributional word-level features obtained by averaging tweet-level features.
- This is aligned with recent findings in NLP showing that representations learned from unlabelled data using neural networks outperform representations obtained from hand-crafted features.
- This method could be used for creating domain specific emotion lexicons for elections or sport competitions.

Questions?

Thanks for your Attention!

Acknowledgments

- University of Waikato Doctoral Scholarship
- Machine Learning Group at the University of Waikato

References I

Bollen, J., Mao, H., and Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1):1–8.

Mohammad, S. and Turney, P. D. (2013). Crowdsourcing a word-emotion association lexicon. Computational Intelligence, 29(3):436–465.

Mohammad, S. M. and Kiritchenko, S. (2015). Using hashtags to capture fine emotion categories from tweets. *Computational Intelligence*, 31(2):301–326.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier chains for multi-label classification. *Machine learning*, 85(3):333–359.

Zaragoza, J. H., Sucar, L. E., Morales, E. F., Bielza, C., and Larrañaga, P. (2011). Bayesian chain classifiers for multidimensional classification. In *IJCAI 2011, Proceedings of the 22nd International Joint Conference on*

In IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2192–2197. AAAI Press.