Practicum 1 – group A

Enzymatic activity of nitrophenyl-phosphatase

Quantitative cell analysis & tissue engineering

Team: Céline Duchaine

Leen van Kerckhoven

Lucas Comyn Vincent Belpaire

Date: October 5, 2022

Faculty of engineering and architecture

I Standard curve for nitrophenol

1. Make a plot of the absorbance versus concentration and calculate the trendline. (E = bx + a with x = nitrophenol concentration) And calculate the concentration of P01.

The estimated concentration of PO1 is 0.01743 mM. (We made the mean of all of the results to estimate it's concentration.)

II Enzymatic activity as a function of substrate concentration

- 1. Plot the enzymatic activity (as absorbance after 30 minutes (Y-axis)) against the substrate concentration (X-axis) and display R^2 .
- **2.** Lineweaver-Burk plot: $\frac{1}{v}$ (Y-axis) against $\frac{1}{[S]}$ (X-axis) and display R^2 . Formula of Michaëlis Menten:

$$v = V_{\text{max}} \frac{[S]}{K_m + [S]}$$

$$\frac{1}{v} = \frac{1}{V_{\text{max}}} \left(\frac{K_m}{[S]} + 1 \right)$$

3. Eadie-Hofstee plot: $\frac{v}{[S]}$ (X-axis) against v (Y-axis) and display R^2 .

$$v = -K_m \frac{v}{[S]} + V_{\text{max}}$$

4. Hanes-Woolf plot: $\frac{[S]}{v}$ (Y-axis) against [S] (X-axis) and display \mathbb{R}^2 .

$$\frac{[S]}{v} = \frac{[S]}{V_{\text{max}}} + \frac{K_m}{V_{\text{max}}}$$

5. Calculate K_m -value (molarity of substrate in incubation mixture) and V_{max} (formed nitrophenol (mg) per 30 minutes) for every plot. Do you observe differences? Why?

Answer

III Enzymatic activity in the presence of an inhibitor

1. Plot the enzymatic activity (as absorbance after 30 minutes (Y-axis)) against the substrate concentration (X-axis). Add a trendline and \mathbb{R}^2

2. Lineweaver-Burk plot: $\frac{1}{v}$ (Y-axis) against $\frac{1}{[S]}$ (X-axis).

- **3.** Eadie-Hofstee plot: $\frac{v}{[S]}$ (X-axis) against v (Y-axis).
- **4.** Hanes-Woolf plot: $\frac{[S]}{v}$ (Y-axis) against [S] (X-axis).
- **5.** Calculate K_m -value (molarity of substrate in incubation mixture) and V_{max} (formed nitrophenol (mg) per 30 minutes) for every plot.

Answer

6. Is the inhibitor competitive or non-competitive? Motivate your answer.

Answer