MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelo de regressão múltipla Exercícios parte 2

O QUE VOU ESTUDAR HOJE?

Exercício

Modelo de primeira ordem com interação

Intervalos de confiança e previsão

Um experimento realizado para investigar o efeito do número de mols de cobalto (x_1) e a temperatura de calcificação (x_2) na área de superfície de um catalisador de hidróxido ferro-cobalto (y) gerou os dados a seguir ("Structural changes and surface properties of CoxFe3 _ xO4 Spinels", J. of Che-mical Tech. and Biotech., 1994: 161-170).

x_1	.6	.6	.6	.6	.6	1.0	1.0
x_2	200	250	400	500	600	200	250
y	90.6	82.7	58.7	43.2	25.0	127.1	112.3
x_1	1.0	1.0	1.0	2.6	2.6	2.6	2.6
x_2	400	5 00	600	200	250	400	500
y	19.6	17.8	9.1	53.1	52.0	43.4	42.4
x_1	2.6	2.8	2.8	2.8	2.8	2.8	
x_2	600	200	250	400	500	600	
y	31.6	40.9	37 .9	27.5	27.3	19.0	

- a) Realize o processo de regressão no python aplicando um modelo com preditores de primeira ordem com interação.
- b) Calcule uma previsão para o valor da área de superfície em relação a um teor de cobalto de 2,6, com temperatura de 250, e calcule o valor do resíduo correspondente.
- c) Visto que β_1 = -46,0, é apropriado concluir que, se o volume de cobalto sofrer um aumento de 1 unidade, mantendo-se fixos os valores dos outros preditores, é possível esperar que a área de superfície diminua em torno de 46 unidades? Explique seu raciocínio.
- d) Parece haver uma relação linear útil entre y e os preditores?
- e) O desvio padrão estimado de $s_{\hat{Y}}$ quando o número de mols é 2,0 e a temperatura de calcificação é 500 é $s_{\hat{Y}}$ = 4,69. Calcule um intervalo de confiança de 95% para o valor médio da área de superfície sob essas circunstâncias.

a) Realize o processo de regressão no python aplicando um modelo com preditores de primeira ordem com interação.

O modelo com preditores de primeira ordem com interação:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

x₁ = o efeito do número de mols de cobalto

 x_2 = temperatura de calcificação

$$\mathbf{x}_3 = \mathbf{x}_1 \ \mathbf{x}_2$$

y = área de superfície de um catalisador de hidróxido ferro-cobalto

a) Realize o processo de regressão no python aplicando um modelo com preditores de primeira ordem com interação.

Definir e condicionar os dados

		x1	x2	xЗ	у
•	0	0.6	200	120.0	90.6
•	1	0.6	250	150.0	82.7
:	2	0.6	400	240.0	58.7
	3	0.6	500	300.0	43.2
4	4	0.6	600	360.0	25.0
!	5	1.0	200	200.0	127.1
	6	1.0	250	250.0	112.3
i	7	1.0	400	400.0	19.6

a) Realize o processo de regressão no python aplicando um modelo com preditores de primeira ordem com interação.

Realizar a regressão

```
1 regmul - smf.ols('y \sim x1 + x2 + x3', data - df)
 2 res - regmul.fit()
 3 print(res.summary())
                            OLS Regression Results
Dep. Variable:
                                        R-squared:
                                                                          0.780
Model:
                                        Adj. R-squared:
                                                                          0.739
                        Least Squares F-statistic:
Method:
                                                                          18.92
                     Fri, 01 Apr 2022 Prob (F-statistic):
Date:
                                                                       1.64e-05
Time:
                             04:34:06
                                       Log-Likelihood:
                                                                        -82.063
No. Observations:
                                        AIC:
                                                                          172.1
Df Residuals:
                                        BIC:
                                                                          176.1
Df Model:
                         std err
                                                  P>|t|
                                                              [0.025
                                                                          0.9751
             185.4857
Intercept
                          21.197
                                      8.750
                                                  0.000
                                                            140.549
                                                                        230.422
                                                            -68.466
             -45.9695
                                      -4.332
                                                                        -23.473
                          10.612
                                                  0.001
              -0.3015
                                                             -0.409
                                                                          -0.194
                           0.051
                                      -5.942
                                                  0.000
                                                              0.035
```

a) Realize o processo de regressão no python aplicando um modelo com preditores de primeira ordem com interação.

Realizar a regressão

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

$$y = 185,4857 - 45,9695x_1 - 0.3015x_2 + 0,0888x_1x_2 + \varepsilon$$

b) Calcule uma previsão para o valor da área de superfície em relação a um teor de cobalto de 2,6, temperatura de 250, e calcule o valor do resíduo correspondente.

Calcule uma previsão para o valor da área de superfície $\rightarrow y=? \rightarrow \mu_{y \cdot x_{\bar{l}}^* \cdot x_2^* \cdot x_3^*}$ em relação a um teor de cobalto de 2,6 \rightarrow x₁ = 2,6 e a temperatura de 250 \rightarrow x₂= 250 e calcule o valor do resíduo correspondente \rightarrow e

Valor esperado:
$$\mu_{y \cdot x_{\bar{l}}^* \cdot x_2^* \cdot x_3^*} = \mu_{y \cdot 2, 6 \cdot 250 \cdot 650}$$
? $\widehat{y} = 185, 4857 - 45, 9695(2, 6) - 0.3015(250) + 0,0888(2, 6)(250)$ Ou $\widehat{y} = 185, 4857 - 45, 9695(2, 6) - 0.3015(250) + 0,0888(650)$ $\mu_{y \cdot 2, 6 \cdot 250 \cdot 650} = 48,31$

b) Calcule uma previsão para o valor da área de superfície em relação a um teor de cobalto de 2,6, temperatura de 250, e calcule o valor do resíduo correspondente.

e calcule o valor do resíduo correspondente -> e

$$\mu_{y \cdot 2, 6 \cdot 250 \cdot 650} = 48,31$$
 $e = y - \widehat{y}$
 $e = 52 - 48,31$
 $e = 3,69$

b) Calcule uma previsão para o valor da área de superfície em relação a um teor de cobalto de 2,6, temperatura de 250, e calcule o valor do resíduo correspondente.

Todos os resíduos

```
1 resi=res.resid
2 df1 = pd.DataFrame(list(zip(lstx1, lstx2, lstx3, lsty, resi)),
                columns =["x1","x2","x3","y","e"])
4 auxi2=df1.iloc[10:15,:]
5 auxi2.head()
  2.6 200
             520.0 53.1
                          1.258726
  2.6 250
             650.0 52.0
                          3.689690
   2.6 400 1040.0 43.4
                         5.682581
   2.6 500 1300.0 42.4 11.744508
            1560.0 31.6
```

c) Visto que β_1 = -46,0, é apropriado concluir que, se o teor de cobalto sofrer um aumento de 1 unidade, mantendo-se fixos os valores dos outros preditores, é possível esperar que a área de superfície diminua em torno de 46 unidades? Explique seu raciocínio.

O modelo com preditores de primeira ordem com interação:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$
$$y = 185,4857 - 45,9695 x_1 - 0.3015 x_2 + 0,0888 x_1 x_2$$

 x_1 = o efeito do número de mols de cobalto

 x_2 = temperatura de calcificação

$$\mathbf{x}_3 = \mathbf{x}_1 \ \mathbf{x}_2$$

y = área de superfície de um catalisador de hidróxido ferro-cobalto Não é correto porque não se pode incrementar o cobalto mantendo x_3 fixo

d) Há uma relação linear útil entre y e os preditores?

Teste de utilidade do modelo:

- Hipótese nula H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$
- Hipótese alternativa H_a pelo menos um $\beta_i \neq 0$ $y = 185,4857 45,9695x_1 0.3015x_2 + 0,0888x_1x_2$

Usar F

```
0.780
Dep. Variable:
                                      R-squared:
Model:
                                      Adj. R-squared:
                                                                      0.739
                                OLS
                 Least Squares F-statistic:
Method:
                                                                      18.92
             Fri, 01 Apr 2022 Prob (F-statistic):
                                                                   1.64e-05
Date:
Time:
                           04:35:44
                                      Log-Likelihood:
                                                                    -82.063
No. Observations:
                                 20 ATC:
                                                                     172.1
                                                     n=20.
Df Residuals:
                                                                      176.1
                                                     k=3.
Df Model:
                                                     R^2 = 0.78
Covariance Type:
```

F=res.fvalue

```
k=res.df_model # grau do modelo
n=res.nobs # num. amostras
```

d) Há uma relação linear útil entre y e os preditores?

$$f = \frac{R^2/k}{(1-R^2)/[n-(k+1)]}$$

n=20, k=3 e R²=0,78

$$f = \frac{0,78/3}{(1-0,78)/[20-(3+1)]}$$

$$f = 18,90$$

- $F_{k,n-(k+1)} \to F_{3,16}$
- Analisar se $f \ge F_{crit}$ rejeitar H_0
- f=18,90 e $F_{crit} = 3,24$
- 18,90 \geq 3,24SIM, portanto rejeitar a hipótese nula H_0 isto é, que existe relação entre y e pelo menos um dos parâmetros ($\beta_i \neq 0$).

```
R-squared: 0.780
Adj. R-squared: 0.739
F-statistic: 18.92
Prob (F-statistic): 1.64e-05
```

```
1 #@title Resposta c)
2 import scipy.stats
3 F=res.fvalue
4 k=res.df_model # grau do modelo
5 n=res.nobs # num. amostras
6 dfn=k
7 dfd=n-(k+1)
8 alpha = 0.05 #nível de confiança.
9 F_critico=scipy.stats.f.ppf(1-alpha, dfn, dfd)
10 print("F_crit=",F_critico) #tabela F-dist
```

F_crit= 3.238871517453585

e) O desvio padrão estimado de $s_{\widehat{Y}}$ quando o número de mols é 2,0 e a temperatura de calcificação é 500 é $s_{\widehat{Y}}$ = 4,69. Calcule um intervalo de confiança de 95% para o valor médio da área de superfície sob essas circunstâncias.

```
Valor da área de superfície \rightarrow y=? \rightarrow \mu_{y \cdot x_{\overline{l}}^* \cdot x_2^* \cdot x_3^*}
Um teor de cobalto de 2,0 \rightarrow x_1 = 2,0
e a temperatura de calcificação de 500 \rightarrow x_2 = 500
```

Valor esperado:
$$\mu_{y\cdot x_{ar{l}}^*\cdot x_2^*\cdot x_3^*}=\mu_{y\cdot 2\cdot 500\cdot 1000}$$
?
$$\widehat{y}=185,4857-45,9695(2)-0.3015(500)+0,0888(2)(500)$$

$$\mu_{y\cdot 2\cdot 500\cdot 1000}=31,5967$$

e) O desvio padrão estimado de $s_{\widehat{Y}}$ quando o número de mols é 2,0 e a temperatura de calcificação é 500 é $s_{\widehat{Y}}$ = 4,69. Calcule um intervalo de confiança de 95% para o valor médio da área de superfície sob essas circunstâncias.

```
Valor da área de superfície \rightarrow y=? \rightarrow \mu_{y \cdot x_{\overline{l}}^* \cdot x_2^* \cdot x_3^*}
Um teor de cobalto de 2,0 \rightarrow x_1 = 2,0
e a temperatura de calcificação de 500 \rightarrow x_2 = 500
```

Valor esperado:
$$\mu_{y\cdot x_{ar{l}}^*\cdot x_2^*\cdot x_3^*}=\mu_{y\cdot 2\cdot 500\cdot 1000}$$
?
$$\widehat{y}=185,4857-45,9695(2)-0.3015(500)+0,0888(2)(500)$$

$$\mu_{y\cdot 2\cdot 500\cdot 1000}=31,5967$$

e) O desvio padrão estimado de $s_{\widehat{Y}}$ quando o número de mols é 2,0 e a temperatura de calcificação é 500 é $s_{\widehat{Y}}$ = 4,69. Calcule um intervalo de confiança de 95% para o valor médio da área de superfície sob essas circunstâncias.

```
\begin{split} \mu_{y\cdot 2\cdot 500\cdot 1000} = &31,5967 \ e \ s_{\widehat{Y}} = 4,69. \\ \text{IC: } \widehat{y} \pm t_{\frac{\alpha}{2},(n-(k+1))}^{\alpha} s_{\widehat{y}} \ \text{onde} \\ t_{\frac{\alpha}{2},(n-(k+1))} = &t_{0,025,(20-(3+1))} = 2,120 \\ &31,5967 \ \pm 2,120(4,69) \\ 21,6539 < &\mu_{y\cdot 2\cdot 500\cdot 1000} < 41,5395 \end{split}
```

```
1 #@title Resposta e)
2 #usar a tabela tstudent pata t
3 from scipy.stats import t
4 alpha = 0.05 # significia = 5%
5 df = n-(k+1) # graus de liberdade
6 v = t.ppf(1 - alpha/2, df)
7 tt-v
8 print(f't_crit=: {v}')
t_crit=: 2.1199052992210112
```

MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelo de regressão múltipla Exercícios parte 2