TD: Théorie des ensembles inspiré de Marc Chevalier

Exercice 1:

Soient A et B deux ensembles. On a défini la différence symétrique de A et B comme :

$$A\Delta B \stackrel{\text{def}}{=} (A \cup B) \setminus (A \cap B)$$

Montrer qu'une expression alternative est :

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Solution: Comme toujours, pour montrer que deux ensembles sont égaux, il faut montrer l'inclusion mutuelle. Posons $E_1 \stackrel{\text{def}}{=} (A \cup B) \setminus (A \cap B)$ et $E_2 \stackrel{\text{def}}{=} (A \setminus B) \cup (B \setminus A)$. — (\subseteq) Montrons $E_1 \subseteq E_2$. Soit $x \in E_1$, montrons que $x \in E_2$. On distingue

- deux cas:
 - cas $x \in A$: Dans ce cas x n'est pas dans B, sinon il serait dans $A \cap B$ ce qui violerait sa définition. x est dans A mais pas dans B, il est donc dans $A \setminus B$. Or $(A \setminus B) \subseteq E_2$. Donc $x \in E_2$.
 - cas $x \in B$: Ce cas est le parfait symétrique du précédent : x ne peut pas être dans A, sinon il serait dans $A \cap B$ ce qui est exclu par sa définition. Il est dans B mais pas dans A, c'est donc un élément de $B \setminus A$, donc a fortiori de E_2 .
- (\supseteq) Montrons $E_2 \subseteq E_1$. Soit $x \in E_2$, montrons que $x \in E_1$. On distingue deux cas:
 - cas $x \in A \setminus B$: alors x appartient à A, ce qui suffit pour montrer qu'il est dans $A \cup B$; et par ailleurs $x \notin B$, ce qui suffit pour montrer qu'il n'est pas dans $A \cap B$. Ainsi, x est dans $A \cup B$ mais pas $A \cap B$: il est donc dans $(A \cup B) \setminus (A \cap B)$, c'est-à-dire E_1 .
 - cas $x \in B \setminus A$: ce cas est le parfait symétrique du précédent (on échange A et B), je ne détaille donc pas.

On a montré que $E_1 \subseteq E_2$ et $E_2 \subseteq E_1$, on peut donc en déduire : $E_1 = E_2$.

Exercice 2:

Soient A et B deux ensembles tels que $A \subseteq B$.

(a) Quels sont les ensembles X tels que $A \cup X = B \cap X$?

Solution: On a une double inclusion : $A \cup X \subseteq B \cap X$ et $A \cup X \supseteq B \cap X$.

En utilisant la première tout élément de A et de X doit être dans B et X. C'est à dire $X \subseteq B$. On trouve aussi que $A \subseteq X$. La dernière inclusion $X \subseteq X$ ne nous apprend rien.

L'autre inclusion ne nous apprend rien : il faut que les éléments qui sont dans B et X soient dans A ou X. Ceci est toujours vrai car tous les éléments de X sont dans X.

On trouve qu'une condition nécessaire est $A \subseteq X \subseteq B$.

Montrons que cette condition est suffisante. On suppose $A \subseteq X \subseteq B$. Et on montre les deux inclusions.

- (\subseteq) $A \subseteq X$ et $X \subseteq B$. Donc $A \cup X \subseteq B$ et $A \cup X \subseteq X$. Donc $A \cup X \subseteq B \cap X$.
- (\supseteq) On a $A \cup X \supseteq X \supseteq B \cap X$. Donc cette inclusion est toujours vraie.

Une condition nécessaire et suffisante sur X est $A \subseteq X \subseteq B$.

(b) Quels sont les ensembles X tels que $A \cup X = B \setminus X$?

Solution: On doit en particulier alors $A \cup X \subseteq B \setminus X$. Donc si X a un élément a, on a $a \in X$ donc $a \in A \cup X$, mais $a \notin B \setminus X$. Ainsi, le seul ensemble candidat est \varnothing . L'équation se réduit alors en A = B. Ce qui donne une condition triviale sur l'existence d'une solution : si A = B, alors $X = \varnothing$; sinon, il n'y a pas de solution.

Exercice 3:

Supposons que H l'ensemble de tous les ensembles existe. Nous définissons l'ensemble F suivant :

$$F := \{ E \in H \mid E \not\in E \}$$

(a) Montrer que $F \in F \Rightarrow F \notin F$.

Solution: On suppose que $F \in F$. On a alors $F \notin F$ par définition de F.

(b) Montrer que $F \notin F \Rightarrow F \in F$.

Solution: On suppose $F \notin F$. On a alors $F \in F$ car dans le cas contraire, on devrait alors $F \in F$, ce qui contredit l'hypothèse.

(c) Qu'en concluez-vous?

Solution: L'hypothèse de départ (H existe) ne peut pas être vraie. Il n'y a donc pas d'ensemble de tous les ensembles. C'est le paradoxe de RUSSELL.

Exercice 4:

Soient E un ensemble et $P(x \in E)$ un prédicat portant sur un élément $x \in E$ de l'ensemble E. Parmi les assertions suivantes, laquelle/lesquelles est/sont toujours vraie/vraies :

(a) $[\forall x \in E, (P(x) \land P(x))] \Rightarrow [\forall x \in E, (P(x) \lor P(x))]$

Solution: On suppose $\forall x \in E, (P(x) \land P(x))$. On veut montrer $\forall x \in E, (P(x) \lor P(x))$. Soit $x \in E$. On a $P(x) \land P(x)$. Donc P(x). Donc $P(x) \lor P(x)$. Donc la proposition est correcte.

(b) $[\exists x \in E : P(x)] \Rightarrow [\exists x \in E : P(x) \land P(x)].$

Solution: On suppose que $\exists x \in E : P(x)$. Soit y tel que P(y). On a alors $P(y) \land P(y)$. Ce y est donc un témoin de $\exists x \in E : P(y) \land P(y)$. La proposition est vraie.