Name:	Signature:
P525/1	
CHEMISTRY	
Paper 1	
Jun./Jul. 2024	5.5
$2\frac{3}{4}$ hours.	

THE CHEMISTRY DEPARTMENT

NGS

MID TERM TWO 2024

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS:

Attempt all questions in this paper.

All answers must be written in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers, with equations where applicable.

Where necessary, use the following;

Molar gas constant, $R=8.31 \text{ JK}^{-1}\text{mol}^{-1}$.

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273K.

Standard pressure = 101325Nm⁻²

	For Teachers' Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

Answer all questions in this paper the electronic configurations of each of the following

elei	write the electronic nents and ions; oxygen	configuration	ons ot	eacn		Tollowing 1 ½ marks)
•••••	magnesium		•••••	••••••	•••••	••••••
•••••	chlorine		••••••	••••••	••••••	
		•••••				•••••
•••••	chromium		••••••	•••••		
•••••	copper		•••••	•••••	•••••	
	tin					
•••••			•••••	•••••		•••••
(viii)	calcium ion(Ca^{2+})		•••••	•••••	•••••	
(ix)	sulphide ion(S^{2-})		••••••	•••••	•••••	•••••
	State what is meant mple in each case.	by each of	the fo	llowing	terms.	Give one
(i) 	Aliphatic compound	d 	•••••		(1	½ marks)
	mnla		•••••			
CXC	ımple	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

(ii) 	Unsaturated hydrocarbon	(1 ½ marks)
	ple	
•	Functional group	(1 ½ marks)
	ple	
	Homologous series	(1 ½ marks)
	ple	
	r each of the following compounds, name	

homologous series to wh	$(4\frac{1}{2} \text{ marks})$	
Compound	Functional group	Homologous series
$CH_3C = CH_2$ CH_3		
СООН		
CH_3CCH_3		
0		

				••••••						standard (01 mark)
(b)	(i V) Ident olumetr	ify any	two (commonl	ly kno	pwn pr	imary st	andards u	sed in (02 marks)
 (ii) V reas	Wit	h refe	rence to	any tas o	of the	two c	ompou y star	unds in (t	o)(i) above	e, state two (02 marks)
	 S (i)	ulphuri	c acid i	s not	t a primo	ary s	tandaı	rd but a	secondar	y standard. a primary (01 mark)
(i	i)	and col	d has a	den ted c	sity of acid requ	1.84	cm ⁻³ .	Calculat	e the vol	of the acid ume of the 2M solution 3 ½ marks)

	e what is meant by the t		
(i)	Atomic radius		(01 mark)
(ii)	First ionization energy		(01 mark)
(b) Briefly	explain how atomic radiu	s affects ionizatior	n energy (02 marks)
•••••			
(c) The tal	ole below shows the vario	ation in atomic and	

Element	Be	Мд	Ca	Sr	Ва
Atomic radius(nm)	0.089	0.136	0.174	0.191	0.198
Ionic radius(nm)	0.031	0.065	0.0991	0.113	0.135

	(i)	State and explain the trend in atomic radius of the elements.
		(04 marks)
•••	•••••	
•••		
•••	•••••	
•••		
• • •	•••••	
	(ii)	Explain why the ionic radius is smaller than the atomic radius
		of the corresponding neutral atom for each element.
		(03 marks)
•••		
•••		
•••	•••••	
•••	•••••	
• • • •		
_		
		What is meant by the term structural isomerism? (01 mark)
•••	•••••	
•••		
•••		
) In each of the following cases, define the given type of isomerism
		d write two structural formulae of any two isomers of the given
	rno	olecular formula(e).

(i) chain isomerism	(01 mark)
Two chain isomers of C_6H_{14}	(02 marks)
(ii) positional isomerism	(01 mark)
Two positional isomers of C_3H_8O	(02 marks)
(iii) functional group isomerism	(01 mark)
Two functional group isomers of $\mathcal{C}_2\mathcal{H}_6\mathcal{O}$	(02 marks)

6.	(a) S	itate;	
••••	(i) 	what is meant by the term ideal gas .	(1 ½ marks)
••••	(ii) 	Graham's law of gaseous diffusion.	
••••	(iii)	Dalton's law of partial pressures.	
	(b)	(i) Explain why a mixture of ammonia and hydroge not hold for Dalton's law of partial pressures.	n chloride does (01 mark)
	(ii)	The time taken for 1.76cm ³ of oxygen to dif porous partition is 103 seconds. Another gas under the same conditions of temperature diffuses through the partition at a rate of seconds. Determine the molecular formul	fuse through a seous alkyne Z and pressure 1.3cm³ in 101
	••••••		
••••	•••••		••••

 7. (a) The first ionization energies of magnesium and and 578 kJmol⁻¹. Write equation to show: (i) first ionization energy of magnesium. 							
(ii) second ionization energy of aluminium.							
first	ioniza	tion e	nergie	s of e	lement	 s in	
Na	Mg	Al	Si	Р	S	Cl	A
496	738	578	786	1012	1000	1251	15
end in	ionisc	ation e	energy				
	n to so of monocomments of mon	n to show: of magnesi gy of alumin First ioniza Na Mg 496 738	n to show: of magnesium. gy of aluminium. First ionization e Na Mg Al 496 738 578	n to show: of magnesium. gy of aluminium. First ionization energie Na Mg Al Si 496 738 578 786	n to show: of magnesium. gy of aluminium. First ionization energies of e Na Mg Al Si P 496 738 578 786 1012 and in ionisation energy of the	n to show: of magnesium. (01 magnesium) gy of aluminium. (01 magnesium) First ionization energies of elements Na Mg Al Si P S 496 738 578 786 1012 1000 and in ionisation energy of the elements	n to show: of magnesium. (01 mark) gy of aluminium. (01 mark) First ionization energies of elements in Na Mg Al Si P S Cl

	(i)	the firs	st ionizatio	on energy	of argon is	-	gh. (02 marks)
(ii)	first ion	ization ene	rgy of alu	minium is	less than ·		magnesium. (03 marks)
(iii) 	first ion	ization enei	rgy of pho	sphorus i	s higher th		of sulphur. (03 marks)

read	te what is meant by each of the force of the force of the force of the ctions. In each case write an equation to Nucleophilic substitution reaction.	<u> </u>
Equ	ation	(01 mark)
(b)	Addition reaction.	(01 mark)
Equ	ation	(01 mark)
(c)	Elimination reaction.	(01 mark)
Equ	ation	(01 mark)

	Alkane	IUPAC name
	CH ₃ CHCH ₂ CH ₃	
	ĊH ₃	
	CH_2CH_3	
	CH_3 $CHCH_2$ $CHCH_3$ CH_3 CH_2 CH_3	
	(b) Write the structural formulae of	each of the following alkanes.
		(02 marks)
	IUPAC name	Structural formula
	2,5-Dimethylhexane	
	2,3-dimethylbutane	
10	O.When 142cm ³ of a hydrocarbon Y , with excess oxygen and cooled to reresidual gas was 694cm ³ . On treat hydroxide solution, the volume decr	oom temperature, the volume of the ment with concentrated potassium
	(i) Write general equation for	combustion of Y . (01 mark)
•••	(ii) Determine the molecular fo	ormula of Y . (03 marks)
•••		
•••		

9. (a) State the IUPAC names of each of the following alkanes.(03 marks)

(iii) Write the structural formula and IUPAC names of all possible isomers of Y . (02 marks)
11. Real gases liquefy when subjected to certain conditions of temperature and pressure. (a) Briefly explain how liquefaction of a gas can be affected by; (i) Pressure. (01 mark)
(i) Temperature (01 mark)

(b) The curves below show the deviation of some gases from ideal

(i) Explain why hydrogen shows a small deviation from ideal behaviour compared to other gases. (1 $\frac{1}{2}$ marks)

(ii) Compare the deviation of oxygen and carbon dioxide from ideal gas behavior. (02 marks)

.....

12. The table below shows the first **eight** successive ionization energies of element X.

Electron removed	1	2	3	4	5	6	7	8
Ionization energy(kJmol ⁻¹)	496	4563	6913	9544	13352	16611	20115	24491

(a) Explain the trend in successive ionisation energies of the element X.

(3 \frac{1}{2} marks)

•••••	•••••		
•••••	••••••		
•••••			
•••••	•••••		
••••••	••••••		
(b)Dedi	uce the: (i)	group in the Periodic Table to which $oldsymbol{\mathcal{X}}$ bel	ongs. (01 mark)
	(ii)	formula of the phosphate formed by X .	(01 mark)
the i	rest bein	compound Q contains 66.7% carbon, 11.1% ag oxygen. If the vapour density of Q is 36. rmula of Q .	

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H								ł.								1.0 H 1	4.0 Ho 2
5.9 Li 3	9.0 Be 4								٠			10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ai 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25			58.7 Ni 28	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31	72.6 Ge 32	74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Ki 36
85.5 Rb 37	-	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44		106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	Bi	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89															
			139 La 57	-	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	100000000000000000000000000000000000000	5715-500		- 1557.0.170	77 (23 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -	167 Er 68	169 Tm 69		175 Li 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99		256 Md 101	254 No 102	260 Lv 103