## UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: CIRCUITOS DIGITAIS



Avaliação de NP1

| Aluno:                                                                                                                                                                         | Data:                             |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|
| 1. Preencha dentro dos parênteses com Verdadeiro (V) ou Falso (F). (1 PONTO)                                                                                                   |                                   |                               |
| ( ) A Digitalização de sinais analo<br>Decodificação.                                                                                                                          | ógicos é obtida com três process  | os: Amostragem, Quantização e |
| ( ) Valores digitais são contínuos no tempo e amplitude, definidos somente p/<br>determinados instantes de tempo e o conjunto de valores possíveis são finitos.                |                                   |                               |
| ( ) Um sinal digital possui melhor resolução do que um sinal analógico.                                                                                                        |                                   |                               |
| ( ) Valores analógicos são discretos no tempo e na amplitude, definidos em qualquer instante de tempo e pode assumir um quantidade infinita de valores.                        |                                   |                               |
| ( ) Valores digitais são discretos (descontínuos) no tempo e amplitude, definidos somente p/<br>determinados instantes de tempo e o conjunto de valores possíveis são finitos. |                                   |                               |
| uotominadoo inotantoo do tol                                                                                                                                                   | mpo o o donjunito do valordo pool | sivole dae illinee.           |
|                                                                                                                                                                                |                                   |                               |
| 2. Realize as operações em suas próprias bases (1 PONTO):                                                                                                                      |                                   |                               |
| a) 417 <sub>8 *</sub> 31 <sub>8</sub>                                                                                                                                          | b) BF19A16 - AE0B16               | c) 111101112 -11001102        |
| d) 345716 /616                                                                                                                                                                 | e) 111101112 +11001102            |                               |
|                                                                                                                                                                                |                                   |                               |
| 3. Converta os valores para as bases indicadas (1 PONTO):                                                                                                                      |                                   |                               |
| a) 1001,1101 <sub>2</sub> →?(16)                                                                                                                                               | b) 3,416 →?(2)                    | c) 101,1 →?(16)               |
| d) 567 <sub>10</sub> →?(5)                                                                                                                                                     | e) 101,610 →?(2)                  |                               |
|                                                                                                                                                                                |                                   |                               |
|                                                                                                                                                                                |                                   |                               |

## 4. Simplificar as expressões abaixo utilizando as propriedades e identidades algébricas (1 PONTO):

- a) (not(A) xor (not(C)) and (A and not(B))
- b) (A and B and C) or (not(B) and C) or (not(A) xor B)

- 5. Considere um robô cuja plataforma possui um sistema de parachoques com 4 sensores distribuídos conforme a figura abaixo (vista superior do robô). Projete um circuito combinacional que gere um código para os motores a fim de que o robô se desvie toda vez que se chocar com um obstáculo. O controle deverá obedecer a seguinte regra (4 PONTOS):
  - · Se apenas o sensor F ou os 3 sensores frontais forem pressionados, o robô deverá andar para trás;
  - · Se apenas F e D forem pressionados, giro para a esquerda;
  - · Se apenas F e E forem pressionados, giro para a direita;
  - · Se apenas D ou E for pressionado, giro para trás;
  - · Se apenas A for pressionado, o movimento é encerrado;
  - · Caso nenhum sensor seja pressionado e para as demais combinações (consideradas inválidas), o movimento é para frente.

Sabendo que em cada roda existe um motor (motor direito MD e motor esquerdo ME), construa a tabela verdade e encontre as menores expressões booleanas para o circuito combinacional do seu projeto. Não se esqueça de montar o diagrama de portas lógicas correspondente.

