Угол между прямой и плоскостью

Угол между прямой и плоскостью

Понятие угла между прямой и плоскостью можно ввести для любого взаимного расположения прямой и плоскости.

- Если прямая l перпендикулярна плоскости π , то угол между l и π считается равным 90°.
- Если прямая l параллельна плоскости π или лежит в этой плоскости, то угол между l и π считается равным нулю.
- Если прямая l является наклонной к плоскости π , то угол между l и π это угол φ между прямой l и её проекцией p на плоскость π (рис. 1).

Рис. 1. Угол между прямой и плоскостью

Итак, запомним определение для этого нетривиального случая: если прямая является наклонной, то угол между прямой и плоскостью есть угол между этой прямой и её проекцией на данную плоскость.

Примеры решения задач

Разберём три задачи, расположенные по возрастанию сложности. Третья задача — уровень C2 на $E\Gamma \ni$ по математике.

Задача 1. В правильном тетраэдре найдите угол между боковым ребром и плоскостью основания.

Решение. Пусть ABCD — правильный тетраэдр с ребром a (рис. 2). Найдём угол между AD и плоскостью ABC.

Проведём высоту DH. Проекцией прямой AD на плоскость ABC служит прямая AH. Поэтому искомый угол φ есть угол между прямыми AD и AH.

Отрезок AH есть радиус окружности, описанной вокруг треугольника ABC:

$$AH = \frac{a}{\sqrt{3}}$$
.

Теперь из прямоугольного треугольника ADH:

$$\cos \varphi = \frac{AH}{AD} = \frac{1}{\sqrt{3}}.$$

Omeem: $\arccos \frac{1}{\sqrt{3}}$.

Рис. 2. К задаче 1

Задача 2. В правильной треугольной призме $ABCA_1B_1C_1$ боковое ребро равно стороне основания. Найдите угол между прямой AA_1 и плоскостью ABC_1 .

Решение. Угол между прямой и плоскостью не изменится при параллельном сдвиге прямой. Поскольку CC_1 параллельна AA_1 , искомый угол φ есть угол между прямой CC_1 и плоскостью ABC_1 (рис. 3).

Рис. 3. К задаче 2

Пусть M — середина AB. Проведём высоту CH в треугольнике CC_1M . Покажем, что CH — перпендикуляр к плоскости ABC_1 . Для этого нужно предъявить две пересекающиеся прямые этой плоскости, перпендикулярные CH.

Первая прямая очевидна — это C_1M . В самом деле, $CH \perp C_1M$ по построению.

Вторая прямая — это AB. Действительно, проекцией наклонной CH на плоскость ABC служит прямая CM; при этом $AB \perp CM$. Из теоремы о трёх перпендикулярах следует тогда, что $AB \perp CH$.

Итак, $CH \perp ABC_1$. Стало быть, угол между CC_1 и ABC_1 есть $\varphi = \angle CC_1H$. Величину CH найдём из соотношения

$$C_1M \cdot CH = CC_1 \cdot CM$$

(обе части этого соотношения равны удвоенной площади треугольника CC_1M). Имеем:

$$CM = \frac{a\sqrt{3}}{2}$$
, $C_1M = \sqrt{CC_1^2 + CM^2} = \sqrt{a^2 + \frac{3a^2}{4}} = \frac{a\sqrt{7}}{2}$.

Тогда

$$\frac{a\sqrt{7}}{2}\cdot CH = a\cdot \frac{a\sqrt{3}}{2}\,,$$

откуда

$$CH = a\sqrt{\frac{3}{7}}.$$

Остаётся найти угол φ :

$$\sin \varphi = \frac{CH}{CC_1} = \sqrt{\frac{3}{7}}.$$

Omeem: $\arcsin\sqrt{\frac{3}{7}}$.

Задача 3. На ребре A_1B_1 куба $ABCDA_1B_1C_1D_1$ взята точка K так, что $A_1K:KB_1=3:1$. Найдите угол между прямой AK и плоскостью BC_1D_1 .

Решение. Сделав чертёж (рис. 4, слева), мы понимаем, что нужны дополнительные построения.

Рис. 4. К задаче 3

Во-первых, заметим, что прямая AB лежит в плоскости BC_1D_1 (поскольку $AB \parallel C_1D_1$). Во-вторых, проведём B_1M параллельно AK (рис. 4, справа). Проведём также B_1C , и пусть N есть точка пересечения B_1C и BC_1 .

Покажем, что прямая B_1C перпендикулярна плоскости BC_1D_1 . В самом деле:

- 1) $B_1C \perp BC_1$ (как диагонали квадрата);
- 2) $B_1C \perp AB$ по теореме о трёх перпендикулярах (ведь AB перпендикулярна прямой BC проекции наклонной B_1C на плоскость ABC).

Таким образом, B_1C перпендикулярна двум пересекающимся прямым плоскости BC_1D_1 ; следовательно, $B_1C \perp BC_1D_1$. Поэтому проекцией прямой MB_1 на плоскость BC_1D_1 служит прямая MN, и, стало быть, искомый угол есть $\varphi = \angle B_1MN$.

Пусть ребро куба равно 4x. Тогда $MB = A_1K = 3x$. Из треугольника MBB_1 имеем:

$$B_1 M = \sqrt{(3x)^2 + (4x)^2} = 5x.$$

Далее,

$$B_1 N = \frac{1}{2} B_1 C = \frac{1}{2} \cdot 4x\sqrt{2} = 2x\sqrt{2}.$$

Отсюда находим:

$$\sin \varphi = \frac{B_1 N}{B_1 M} = \frac{2\sqrt{2}}{5} \,.$$

Omeem: $\arcsin \frac{2\sqrt{2}}{5}$.