Simple and Multiple OLS Regression

Introduction to Econometrics, Fall 2017

Zhaopeng Qu

Nanjing University

10/16/2017

- Review the last lecture
- 2 OLS with One Regressor: Estimation
- 3 OLS with Multiple Regressor: Estimation
- Partitioned regression

CEF(conditional expectation function)

- CEF is a natural summary of the relationship between Y and X. If we can know CEF, then we can describe the relationship of Y and X.
- Regression estimates provides a valuable baseline for almost all empirical research because Regression is tightly linked to CEF
- if CEF is linear, then OLS regression is it.
- if CEF is nonlinear, then OLS regression provides a best linear approximation to it under MMSE condition.

OLS with One Regressor: Estimation

The OLS estimators

• Question of interest: What is the effect of a change in X_i (Class Size) on Y_i (Test Score)

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Last week we derived the OLS estimators of β_0 and β_1 :

$$\hat{\beta_0} = \bar{Y} - \hat{\beta}_1 \bar{X}$$

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})(X_i - \bar{X})}$$

Least Squares Assumptions

- Assumption 1
- Assumption 2
- Assumption 3

if the 3 least squares assumptions hold the OLS estimators

- unbiased
- consistent
- normal sampling distribution

Properties of the OLS estimator: unbiasedness

• take expectation to β_0 :

$$E[\hat{\beta}_0] = \bar{Y} - E[\hat{\beta}_1]\bar{X}$$

- if β_1 is unbiased, then β_0 is also unbiased.
- Remind we have

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$
$$\overline{Y} = \beta_0 + \beta_1 \overline{X} + \overline{u}$$

• So take expectation to β_1 :

$$E[\hat{\beta}_1] = E\left[\frac{\sum (X_i - \bar{X})/(Y_i - \bar{Y})}{\sum (X_i - \bar{X})(X_i - \bar{X})}\right]$$

Properties of the OLS estimator: unbiasedness

Continued

$$E[\hat{\beta}_1] = E\left[\frac{\sum (X_i - X)(\beta_0 + \beta_1 X_i + u_i - (\beta_0 + \beta_1 \overline{X} + \overline{u}))}{\sum (X_i - \overline{X})(X_i - \overline{X})}\right]$$

$$= E\left[\frac{\sum (X_i - \overline{X})(\beta_1 (X_i - \overline{X}) + (u_i - \overline{u}))}{\sum (X_i - \overline{X})(X_i - \overline{X})}\right]$$

$$= \beta_1 + E\left[\frac{\sum (X_i - \overline{X})(u_i - \overline{u})}{\sum (X_i - \overline{X})(X_i - \overline{X})}\right]$$

• Because $\sum \overline{u} = 0$ and $\sum \overline{u} X_i = 0$, so

$$= \beta_1 + E\left[\frac{\sum (X_i - \overline{X})u_i}{\sum (X_i - \overline{X})(X_i - \overline{X})}\right]$$

Properties of the OLS estimator: unbiasedness

Continued

$$= \beta_1 + E\left[\frac{\sum (X_i - \overline{X})u_i}{\sum (X_i - \overline{X})(X_i - \overline{X})}\right]$$

• then then we could obtain

$$E[\hat{\beta}_1] = \beta_1 \ if \ E[u_i|X_i] = 0$$

• thus both β_0 and β_1 are **unbiased** on the condition of **Assumption 1**.

Properties of the OLS estimator: Consistency

• Notation: $\hat{\beta}_1 \stackrel{p}{\longrightarrow} \beta_1$ or $plim\hat{\beta}_1 = \beta_1$, so

$$plim\hat{\beta}_1 = plim \left[\frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})(X_i - \bar{X})} \right]$$

$$plim\hat{\beta}_1 = plim\left[\frac{\frac{1}{n-1}\sum(X_i - \bar{X})(Y_i - \bar{Y})}{\frac{1}{n-1}\sum(X_i - \bar{X})(X_i - \bar{X})}\right] = plim\left(\frac{s_{xy}}{s_x^2}\right)$$

where s_{xy} and s_x^2 are sample covariance and sample variance.

Properties of the OLS estimator: Consistency

• Continuous Mapping Theorem: For every continuous function g(t) and random variable X:

$$plim(g(X)) = g(plim(X))$$

Example:

$$plim(X + Y) = plim(X) + plim(Y)$$
$$plim(\frac{X}{Y}) = \frac{plim(X)}{plim(Y)} \ if \ plim(Y) \neq 0$$

Base on L.L.N(law of large numbers) and random sample(i.i.d)

$$s_X^2 \xrightarrow{p} = \sigma_X^2 = Var(X)$$

 $s_{xy} \xrightarrow{p} \sigma_{XY} = Cov(X, Y)$

ullet then we obtain OLS estimator when $n\longrightarrow\infty$

$$plim \hat{\beta_1} = plim \bigg(\frac{s_{xy}}{s_x^2}\bigg) = \frac{Cov(X_i,Y_i)}{Var X_i}$$

Properties of the OLS estimator: Consistency

$$\begin{aligned} plim \hat{\beta}_1 &= \frac{Cov(X_i, Y_i)}{Var X_i} \\ &= \frac{Cov(X_i, (\beta_0 + \beta_1 X_i + u_i))}{Var X_i} \\ &= \frac{Cov(X_i, \beta_0) + \beta_1 Cov(X_i, X_i) + Cov(X_i, u_i)}{Var X_i} \\ &= \beta_1 + \frac{Cov(X_i, u_i)}{Var X_i} \end{aligned}$$

• then then we could obtain

$$plim\hat{\beta}_1 = \beta_1 \ if \ E[u_i|X_i] = 0$$

• both $\hat{\beta_0}$ and $\hat{\beta_1}$ are **Consistent** on the condition of **Assumption 1**.

Unbiasedness vs Consistency

- Unbiasedness & Consistency both rely on $E[u_i|X_i]=0$
- Unbiasedness implies that $E[\hat{\beta}_1] = \beta_1$ for a certain sample size n.("small sample")
- Consistency implies that the distribution of $\hat{\beta}_1$ becomes more and more tightly distributed around β_1 if the sample size n becomes larger and larger. ("large sample"")

Sampling Distribution of \hat{eta}_0 and \hat{eta}_1

- \bullet Recall: Sampling Distribution of \overline{Y}
- Because Y1,...,Yn are i.i.d., then we have

$$E(\overline{Y}) = \mu_Y$$

 Based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution, thus

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• the OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ could have similar sample distributions when three least squares assumptions hold.

Sampling Distribution of \hat{eta}_0 and \hat{eta}_1

Unbiasedness of the OLS estimators implies that

$$E[\hat{\beta}_1] = \beta_1 \text{ and } E[\hat{\beta}_0] = \beta_0$$

• Based on the Central Limit theorem(C.L.T), the sample distribution of β in a large sample can approximates to a normal distribution, thus

$$\hat{\beta}_0 \sim N(\beta_0, \sigma_{\hat{\beta}_0}^2)$$

$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2)$$

Sampling Distribution of \hat{eta}_0 and \hat{eta}_1 in large-sample

where it can be shown that

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2})$$
$$\sigma_{\hat{\beta}_0}^2 = \frac{1}{n} \frac{Var(H_i u_i)}{(E[H_i^2])^2})$$

where

$$H_i = 1 - \left(\frac{\mu_x}{E[X_i^2]}\right) X_i$$

• If $Var(X_i)$ is *small*, it is difficult to obtain an accurate estimate of the effect of X on Y which implies that $Var(\hat{\beta_1})$ is *large*.

Variation of X

• When more **variation** in X, then there is more information in the data that you can use to fit the regression line.

Summary

Under 3 least squares assumptions, the OLS estimators will be

- unbiased
- consistent
- normal sampling distribution
- more variation in X, more accurate estimation

RCT and Simple Regression

- Regression is a way to control observable confounding factors, Which assume the source of selection bias is only from the difference in observed characteristics.
- In a simple regression model, OLS estimators are just a generalizing continuous version of RCT when least squares assumptions are hold.
- But in contrast to RCT, in observational studies, researchers cannot control the assignment of treatment into a treatment group versus a control group.
- To make two groups comparable, we need to keep treatment and control group "other thing equal"in observed characteristics and unobserved characteristics.

Violation of the first Least Squares Assumption

• recall simple OLS regression equation

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- u_i contains all other factors(variables) which potentially affect Y_i .
- Assumption 1 states that they are unrelated to X_i in the sense that, given a value of X_i , the mean of these other factors equals zero.
- But what if they(or at least one) are correlated with X_i ?

Example: Class Size and Test Score

- one of other factors is the share of immigrants in the class(school,district)
- Suppose that
- small classes have few immigrants(few English learners)
- 2 large classes have many immigrants(many English learners)
 - In this case, class size are correlated with test scores for a fact that class size may be related to percentage of English learners and students who are still learning English likely have lower test scores.
- Which implies that percentage of English learners is contained in u_i , in turn that Assumption 1 is violated.

Scatter plot english learners and STR

Scatter plot english learners and testscr

Omitted Variable Bias(OVB):

- As before, X_i and Y_i represent STR and Test Score.
- \bullet Besides, W_i is the share of English learners which we will omit in the regression Thus
- True model:

$$Y_i = \beta_0 + \beta_1 X_i + \gamma W_i + u_i$$

where $E(u_i|X_i,W_i)=0$ and

ullet But we can't observe W_i , so we just run the following model

$$Y_i = \beta_0 + \beta_1 X_i + v_i$$

where $v_i = \gamma W_i + u_i$

Omitted Variable Bias(OVB): violation of consistency

we have

$$plim\hat{\beta}_{1} = \frac{Cov(X_{i}, Y_{i})}{VarX_{i}}$$

$$= \frac{Cov(X_{i}, (\beta_{0} + \beta_{1}X_{i} + v_{i}))}{VarX_{i}}$$

$$= \frac{Cov(X_{i}, (\beta_{0} + \beta_{1}X_{i} + \gamma W_{i} + u_{i}))}{VarX_{i}}$$

$$= \frac{Cov(X_{i}, \beta_{0}) + \beta_{1}Cov(X_{i}, X_{i}) + \gamma Cov(X_{i}, W_{i}) + Cov(X_{i}, u_{i})}{VarX_{i}}$$

$$= \beta_{1} + \gamma \frac{Cov(X_{i}, W_{i})}{VarX_{i}}$$

Omitted Variable Bias(OVB): violation of consistency

we have

$$plim\hat{\beta}_1 = \beta_1 + \gamma \frac{Cov(X_i, W_i)}{VarX_i}$$

- $\hat{\beta}_1$ is still consistent
- if W_i is unrelated to X, thus $Cov(X_i, W_i) = 0$
- if W_i has no effect on Y_i , thus $\gamma = 0$
- if both two conditions above hold *simultaneously*, then $\hat{\beta}_1$ is **inconsistent**.

Omitted Variable Bias(OVB): violation of unbiasedness

we have

$$E[\hat{\beta}_1] = E\left[\frac{\sum (X_i - \bar{X})(\beta_0 + \beta_1 X_i + \gamma W_i + u_i - (\beta_0 + \beta_1 \overline{X} + \gamma \overline{W} + \overline{u})}{\sum (X_i - \bar{X})(X_i - \bar{X})}\right]$$

- \bullet Skip Several steps in algebra which is very similar to procedures for proof unbiasedness of β
- At last, we get (Please prove it by yourself)

$$E[\hat{\beta}_1] = \beta_1 + \gamma E\left[\frac{\sum (X_i - \bar{X})(W_i - \bar{W})}{\sum (X_i - \bar{X})(X_i - \bar{X})}\right]$$

- ullet If W_i is unrelated to X_i ,then $E[\hat{eta_1}]=eta_1$
- If W_i is no determinant of Y_i , then it implies also that $E[\hat{\beta}_1] = \beta_1$.
- if both two conditions above are violated *simultaneously*, then $\hat{\beta}_1$ is **biased**.

Omitted Variable Bias(OVB):Directions

ullet Summary of bias when w_i is omitted in estimating equation

	$Cov(X_i, W_i) > 0$	$Cov(X_i, W_i) < 0$
$\gamma > 0$	Positive bias	Negative bias

 $\gamma < 0$ | Negative bias | Positive bias |

Omiited Variable Bias: Examples

Question: If we omit following variables, then what are the directions of these biases? and why?

- Time of day of the test
- Parking lot space per pupil
- Percentage of English learners
- Teachers' Salary
- Family income

Multiple regression model with k regressors

• multiple regression model is

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i, i = 1, \dots, n$$

where

- \bullet Y_i is the dependent variable
- $X_1, X_2, ... X_k$ are the independent variables
- $\beta_i, j = 1...k$ are slope coefficients on X_i corresponding.
- ullet eta_0 is the estimate *intercept*, the value of Y when all $X_j=0, j=1...k$
- u_i is the regression error term.

Interpretation of coefficients

• β_j is partial (marginal) effect of X_j on Y.

$$\beta_j = \frac{\partial Y_i}{\partial X_{j,i}}$$

• β_j is also partial (marginal) effect of $E[Y_i|X_1..X_k]$.

$$\beta_j = \frac{\partial E[Y_i|X_1, ..., X_k]}{\partial X_{j,i}}$$

• it does mean "other things equal", thus the concept of ceteris paribus

Multiple regression model with k regressors

- Generally, we would like to pay more attention to only one independent variable(thus we would like to call it treatment variable), though there could be many independent variables.
- Other variables in the right hand of equation, we call them *control* variables, which we would like to explicitly hold fixed when studying the effect of X_1 on Y.
- More specifically, regression model turns into

$$Y_i = \beta_0 + \beta_1 D_i + \gamma_2 C_{2,i} + \dots + \gamma_k C_{k,i} + u_i, i = 1, \dots, n$$

transform it into

$$Y_i = \beta_0 + \beta_1 D_i + C_{2...k,i} \gamma'_{2...k} + u_i, i = 1, ..., n$$

OLS Estimation in Multiple Regressors

 As in simple OLS, the estimator multiple Regression is just a minimize the following question

$$argmin \sum (Y_i - b_0 - b_1 X_{1,i} - \dots - b_k X_{k,i})^2$$

First order conditions:

$$\begin{split} \sum \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_k X_{k,i}\right) &= 0 \\ \sum \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_k X_{k,i}\right) x_{1,i} &= 0 \\ &\vdots &= \vdots \\ \sum \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_k X_{k,i}\right) x_{k,i} &= 0 \end{split}$$

OLS Estimation in Multiple Regressors

Since the fitted residuals are

$$\hat{u}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_k X_{k,i}$$

• the normal equations can be written as

$$\sum \hat{u_i} = 0$$

$$\sum \hat{u_i} x_{1,i} = 0$$

$$\vdots = \vdots$$

$$\sum \hat{u_i} x_{k,i} = 0$$

Measures of Fit in Multiple Regression

- SER(Standard Error of the Regression) is an estimator of the standard deviation of the u_i , which are measures of the spread of the Y's around the regression line.
- Because the regression errors are unobserved, the SER is computed using their sample counterparts, the OLS residuals $\hat{u_i}$

$$SER = s_{\hat{u}} = \sqrt{s_{\hat{u}}^2}$$

where
$$s_{\hat{u}}^2 = \frac{1}{n-k-1} \sum \hat{u_i^2} = \frac{SSR}{n-k-1}$$

• STATA computes the SER but calls it the RMSE.

Measures of Fit in Multiple Regression

- Actual = Predicted+residual: $Y_i = \hat{Y}_i + \hat{u}_i$
- The regression \mathbb{R}^2 is the fraction of the sample variance of Y_i explained by (or predicted by) the regressors.

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS}$$

ullet R^2 always increases when you add another regressor. Because in general the SSR will decrease.

Measures of Fit: The Adjusted R^2

• the adjusted \mathbb{R}^2 , is a modified version of the \mathbb{R}^2 that does not necessarily increase when a new regressor is added.

$$\overline{R^2} = 1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS} = 1 - \frac{s_{\hat{u}}^2}{s_Y^2}$$

- \bullet because $\frac{n-1}{n-k-1}$ is always greater than 1, so $\overline{R^2} < R^2$
- ullet adding a regressor has two opposite effects on the $\overline{R^2}.$
- ullet $\overline{R^2}$ can be negative.
- **Remind**: neither R^2 nor $\overline{R^2}$ is not the golden criterion for good or bad OLS estimation.

Multiple regression model with k regressors

• Assumption 1: The conditional distribution of u_i given $X_{1i},...,X_{ki}$ has mean zero,thus

$$E[u_i|X_{1i},...,X_{ki}]=0$$

- Assumption 2: $(Y_i, X_{1i}, ..., X_{ki})$ are i.i.d.
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.

Perfect multicollinearity

Perfect multicollinearity arises when one of the regressors is a perfect linear combination of the other regressors.

- Binary variables are sometimes referred to as dummy variables
- If you include a full set of binary variables (a complete and mutually exclusive categorization) and an intercept in the regression, you will have perfect multicollinearity.
- eg. female and male = 1-female
- eg. West, Central and East China
- This is called the dummy variable trap.
- Solutions to the dummy variable trap: Omit one of the groups or the intercept

Perfect multicollinearity

• regress Testscore on Class size and the percentage of English learners

```
##
## Call:
## lm(formula = testscr ~ str + el pct, data = ca)
##
## Residuals:
##
      Min 1Q Median 3Q
                                   Max
## -48.845 -10.240 -0.308 9.815 43.461
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
## str
      -1.10130 0.38028 -2.896 0.00398 **
## el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0 001 '**'
                                0.01 '*' 0.05 '.'
```

Perfect multicollinearity

• add a new variable nel=1-el_pct into the regression

```
##
## Call:
## lm(formula = testscr ~ str + nel_pct + el_pct, data = ca)
##
## Residuals:
##
     Min 1Q Median 3Q Max
## -48.845 -10.240 -0.308 9.815 43.461
##
## Coefficients: (1 not defined because of singularities)
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
     -1.10130 0.38028 -2.896 0.00398 **
## str
## nel_pct 0.64978 0.03934 16.516 < 2e-16 ***
## el_pct
                   NA
                             NA
                                    NA
                                            NA
```

Multicollinearity

Multicollinearity means that two or more regressors are highly correlated, but one regressor is NOT a perfect linear function of one or more of the other regressors.

- multicollinearity is not a violation of the least squares assumptions.
- It does not impose theoretical problem for the calculation of OLS estimators.
- If two regressors are highly correlated the the coefficient on at least one of the regressors is imprecisely estimated (high variance).
- to what extent two correlated variables can be seen as "highly correlated"?
- rule of thumb: correlation coefficient is over 0.8.

Venn Diagrams for Multiple Regression Model

1) In a simple model (y on X), OLS uses Blue + Red to estimate β . 2) When y is regressed on X and W: OIS throws away the red area and just uses blue to estimate β . 3) Idea: red area is contaminated(we do not know if the movements in y are due to X or to W).

Venn Diagrams for Multicollinearity

- we

use less information (compare the blue and green areas in both figures), the estimation is less precise.

Multiple regression model: class size example

```
##
##
                               Dependent variable:
##
##
                                     testscr
##
                       (1)
                                        (2)
                                                        (3)
## str
              -2.280 (0.480) -1.101 (0.380) -0.069 (0.277)
                               -0.650 (0.039) -0.488 (0.029)
## el pct
## avginc
                                                 1.495 (0.075)
## Constant 698.933 (9.467) 686.032 (7.411) 640.315 (5.775)
## Observations
                     420
                                       420
                                                        420
                    0.051
                                      0.426
                                                       0.707
## R2
## Adjusted R2
                     0.049
                                      0.424
                                                       0.705
```

47 / 64

Properties OLS estimators in multiple regression model

If the four least squares assumptions in the multiple regression model hold:

- The OLS estimators $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_k$ are unbiased.
- The OLS estimators $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_k$ are consistent.
- The OLS estimators $\hat{\beta_0}, \hat{\beta_1}...\hat{\beta_k}$ are normally distributed in large samples.
- the formal proof need use the knowledge of linear algebra and matrix. We will prove them in a simple case.

Partitioned regression: OLS estimator in multiple regression

- A useful representation of $\hat{\beta}_j$ could be obtained by the *partitioned* regression. Suppose we want to obtain an expression for $\hat{\beta}_1$.
- Regress $X_{1,i}$ on other regressors

$$X_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \ldots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i}$$

where $\tilde{X}_{1,i}$ is the fitted OLS residual(just a variation of u_i)

• Then we could prove that

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

Proof of Partitioned regression result(1)

- we know $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 X_{2,i} + ... + \hat{\beta}_k X_{k,i} + \hat{u}_i$ where $\sum \hat{u}_i = \sum \hat{u}_i X_{ji} = 0, j = 1, 2, ..., k$
- Now

$$\begin{split} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} &= \frac{\sum \tilde{X}_{1,i} (\hat{\beta}_{0} + \hat{\beta}_{1} X_{1,i} + \hat{\beta}_{2} X_{2,i} + \ldots + \hat{\beta}_{k} X_{k,i} + \hat{u}_{i})}{\sum \tilde{X}_{1,i}^{2}} \\ &= \hat{\beta}_{0} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \hat{\beta}_{1} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \ldots \\ &+ \hat{\beta}_{k} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{u}_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} \end{split}$$

Proof of Partitioned regression result(2)

ullet $ilde{X}_{1,i}$ is the fitted OLS residual for the regression

$$X_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \dots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i}$$

• so it is a variation of u_i , then we have

$$\sum_{i=1}^{n} \tilde{X}_{1,i} = 0 \text{ and } \sum_{i=1}^{n} \tilde{X}_{1,i} X_{j,i} = 0, j = 2, 3, ..., k$$

Proof of Partitioned regression result(3)

We also have

$$\begin{split} &\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i} \\ &= \sum_{i=1}^{n} \tilde{X}_{1,i} (\hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \ldots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i}) \\ &= \hat{\gamma}_0 \cdot 0 + \hat{\gamma}_2 \cdot 0 + \ldots + \hat{\gamma}_k \cdot 0 + \sum \tilde{X}_{1,i}^2 \\ &= \sum \tilde{X}_{1,i}^2 \end{split}$$

Proof of Partitioned regression result(4)

ullet Recall: \hat{u}_i are the fitted residuals from the regression of Y against all X, then

$$\sum_{i=1}^{n} \hat{u}_i = \sum_{i=1}^{n} \hat{u}_i X_{j,i} = 0, j = 1, 2, 3, ..., k$$

Proof of Partitioned regression result(5)

 \bullet Recall: \hat{u}_i are the fitted residuals from the regression of Y against all X, then

$$\sum_{i=1}^{n} \hat{u}_i = \sum_{i=1}^{n} \hat{u}_i X_{j,i} = 0, j = 1, 2, 3, ..., k$$

We also have

$$\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{u}_{i}$$

$$= \sum_{i=1}^{n} (X_{1,i} - \hat{\gamma}_{0} - \hat{\gamma}_{2} X_{2,i} - \dots - \hat{\gamma}_{k} X_{k,i}) \hat{u}_{i}$$

$$= 0 - \hat{\gamma}_{0} \cdot 0 - \hat{\gamma}_{2} \cdot 0 - \dots - \hat{\gamma}_{k} \cdot 0$$

$$= 0$$

wrap up so far

- OLS Regression
- ullet and $ilde{X}_{1,i}$ is the fitted OLS residual for the regression

$$X_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \ldots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i}$$

we obtained

$$\sum_{i=1}^{n} \tilde{X}_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i} X_{j,i} = 0 , j = 2, 3, ..., k$$

$$\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i}^{2}$$

$$\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{u}_{i} = 0$$

Proof of Partitioned regression result(6)

we have shown that

$$\begin{split} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} &= \hat{\beta}_{0} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \hat{\beta}_{1} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \dots \\ &+ \hat{\beta}_{k} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{u}_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} \end{split}$$

then

$$\frac{\sum_{i=1}^{n} \tilde{X}_{1,i} Y_i}{\sum_{i=1}^{n} \tilde{X}_{1,i}^2} = \hat{\beta}_1$$

• Identical argument works for j = 2, 3, ..., k, thus

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \tilde{X}_{j,i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j,i}^{2}}$$

The intuition of Partitioned regression: "Partialling Out"

- First, we regress X_j against the rest of the regressors (and a constant) and keep \tilde{X}_j which is the "part" of X_j that is **uncorrelated**
- \bullet Then, to obtain $\hat{\beta}_j$, we regress Y against \tilde{X}_j which is "clean" from correlation with other regressors.
- $\hat{\beta}_j$ measures the effect of X_1 after the effects of $X_2,...,X_k$ have been partialled out or netted out.

Example: Test scores and Student Teacher Ratios

```
tilde.str <- residuals(lm(str ~ el_pct+avginc, data=ca))</pre>
mean(tilde.str) # should be zero
## [1] 1.305121e-17
sum(tilde.str)
## [1] 5.412337e-15
cov(tilde.str,ca$avginc)# should be zero too
```

Example: Test scores and Student Teacher Ratios(2)

```
tilde.str_str <- tilde.str*ca$str
tilde.strstr <- tilde.str^2
sum(tilde.str_str)</pre>
```

```
## [1] 1396.348
```

```
sum(tilde.strstr) # should be equal the result above.
```

```
## [1] 1396.348
```

Example: Test scores and Student Teacher Ratios(3)

```
sum(tilde.str*ca$testscr)/sum(tilde.str^2)
## [1] -0.06877552
summary(lm(ca$testscr~tilde.str))
##
## Call:
## lm(formula = ca$testscr ~ tilde.str)
##
## Residuals:
##
      Min 1Q Median 3Q
                                     Max
## -48.50 -14.16 0.39 12.57 52.57
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
   (Intercent) 65/ 15655
                              0 93080 702 790 <20-16
Zhaopeng Qu (Nanjing University)
                       Simple and Multiple OLS Regression
                                                              61 / 64
```

10/16/2017

Proof that OLS is unbiased(1)

Use partitioned regression formula

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

Substitute

$$\begin{split} Y_i &= \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + u_i, i = 1, \ldots, n, \text{then} \\ \hat{\beta}_1 &= \frac{\sum \tilde{X}_{1,i} (\beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + u_i)}{\sum \tilde{X}_{1,i}^2} \\ &= \beta_0 \frac{\sum_{i=1}^n \tilde{X}_{1,i}}{\sum_{i=1}^n \tilde{X}_{1,i}^2} + \beta_1 \frac{\sum_{i=1}^n \tilde{X}_{1,i} X_{1,i}}{\sum_{i=1}^n \tilde{X}_{1,i}^2} + \ldots \\ &+ \beta_k \frac{\sum_{i=1}^n \tilde{X}_{1,i} X_{k,i}}{\sum_{i=1}^n \tilde{X}_{1,i}^2} + \frac{\sum_{i=1}^n \tilde{X}_{1,i} u_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2} \end{split}$$

Proof that OLS is unbiased(2)

Because

$$\sum_{i=1}^{n} \tilde{X}_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i} X_{j,i} = 0, j = 2, 3, ..., k$$

$$\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i}^{2}$$

Therefore

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n \tilde{X}_{1,i} u_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

Proof that OLS is unbiased(3)

we have that

$$\hat{\beta}_1 = \beta_1 + \frac{\sum \tilde{X}_{1,i} u_i}{\sum \tilde{X}_{1,i}^2}$$

ullet Take expectations of \hat{eta}_1 and based on **Assumption 1** again

$$\begin{split} E[\hat{\beta}_1] &= E\bigg[E[\hat{\beta}_1|X]\bigg] \\ &= \beta_1 + 0 \end{split}$$

• Identical argument works for j = 2, 3, ..., k