Quantitative methods Lesson 10

Daróczi Gergely

Corvinus University of Budapest, Hungary

2011 April 19

Outline

- Repeating
- 2 Example
- Theoretical background
- Theoretical background
- 5 Exercises
- 6 Limitations of the correlation coefficient

We have measured 10-10 students in two classrooms.

Which class has higher students based on this small sample? Think about averages as good estimates of populatioin parameters!

Repeating

Averages

Big shoes and smart kids (example)

We made a small research on the age and shoe size of some students in an elementary shool, where we also conducted a math exam. See detailed results below:

	Shoe size	Math result	Age
1	29.75	26.67	3
2	29.75	33.33	7
3	29.75	41.67	5
4	31.50	35.00	8
5	31.50	46.67	10
6	31.50	63.33	11
7	31.50	70.00	12
8	33.25	30.00	7.
9	33.25	38.33	7
10	33.25	56.67	12
11	35.00	26.67	6
12	35.00	40.00	8
13	35.00	43.33	6
14	35.00	46.67	10
15	35.00	53.33	11
16	38.50	55.00	9
17	40.25	45.00	9
18	42.00	58.33	9
19	42.00	76.67	16
20	42.00	77.50	18
21	42.00	100.00	19
22	43.75	70.83	14

Big shoes and smart kids (example)

4/19/2011

Big shoes and smart kids (example)

Partial correlation:

$$r_{math, size \cdot age} = 0.11$$

$$r_{math,age \cdot size} = 0.87$$

$$r_{size,age\cdot math} = 0.22$$

Theoretical background

Covariation

For *x* and *y* variables the joint variablity could be computed by :

$$COV(xy) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

$$remember : \sigma = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}}$$

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

Daróczi Gergely (BCE)

Theoretical background

Covariation

Henderson & Velleman (1981): Building multiple regression models interactively

Theoretical background

Correlation

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
1.0 0.8 0.4 0.0 -0.4 -0.8 -1.0
1.0 1.0 1.0 -1.0 -1.0 -1.0

Partial correlation

$$\hat{r}_{XY \cdot \mathbf{Z}} = \frac{N \sum_{i=1}^{N} r_{X,i} r_{Y,i} - \sum_{i=1}^{N} r_{X,i} \sum_{i=1}^{N} r_{Y,i}}{\sqrt{N \sum_{i=1}^{N} r_{X,i}^{2} - \left(\sum_{i=1}^{N} r_{X,i}\right)^{2}} \sqrt{N \sum_{i=1}^{N} r_{Y,i}^{2} - \left(\sum_{i=1}^{N} r_{Y,i}\right)^{2}}}$$

so for three variables:

$$\hat{r}_{XY \cdot \mathbf{Z}} = \frac{r_{XY} - r_{X\mathbf{Z}}r_{Y\mathbf{Z}}}{\sqrt{\left(1 - r_{X\mathbf{Z}}^2\right)\left(1 - r_{Y\mathbf{Z}}^2\right)}}$$

- What is correlation and partial correlation?
- Building upon your findings, compute the possible pairs of correlation coefficients on the below dataset!
- Also look for partial correlation and comment on your results!

Grade (mean)	Scholarship (in HUF)	Money spent on books (in HUF)
3.05	22000	3500
3.2	25000	3000
3.35	27000	2800
3.35	24000	3700
3.45	25000	2200
3.55	28000	3200
3.7	28000	3700
45	30000	4100
3.8	27000	4000
3.8	29000	3800

Solution

- Correlation and causality
- Lazarsfeld paradigm
- Correlation and linearity

Correlation does not imply causation!

Source: http://xkcd.com/552

Correlation does not imply causation! - Theoretical background

Aristotle: logic, syllogism – if $(A \rightarrow B)\&(B \rightarrow C) \Rightarrow A \rightarrow C$

David Hume: scepticism

- "only correlation can actually be perceived [not causality]"
- see: our belief that the sun will rise tomorrow
- see: "If I see a billiard ball moving towards another, on a smooth table, I can easily conceive to stop upon contact."

Popper: falsification

Pearl, J. - *Causality: Models, Reasoning, and Inference*, Cambridge University Press, 2000

Lazarsfeld paradigm

Stouffer: The American Soldier

Soldiers in branches with higher promotion rates are happier than soldiers in branches with lower rates of promotion.

Lazarsfeld paradigm

Stouffer: The American Soldier

*H*₀: Soldiers in branches with higher promotion rates are happier than soldiers in branches with lower rates of promotion. **BUT:**

"Soldiers in branches with higher promotion rates were more pessimistic about their own chances of being promoted than soldiers in branches with lower rates of promotion."

Keywords: reference group, relative deprivation

Correlation and linearity - Variations of the Same Theme

Source: Anscombe, F. J. (1973) Graphs in statistical analysis. American Statistician, 27, 17-21,

Daróczi Gergely (BCE) Quantitative methods, 10/14 4/19/2011

18 / 22

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).

- mpg: Miles/(US) gallon
- cyl: Number of cylinders
- disp: Displacement (cu.in.)
- hp: Gross horsepower
- drat: Rear axle ratio
- wt: Weight (lb/1000)
- qsec: 1/4 mile time
- vs: V/S
- am: Transmission (0 = automatic, 1 = manual)
- gear: Number of forward gears
- carb: Number of carburetors

Source: Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391-411.

Edgar Anderson's Iris Data

Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.

Edgar Anderson's Iris Data

Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.

It was a pleasure!

Daróczi Gergely daroczi.gergely@btk.ppke.hu