PS Analysis 3 WS 2024/25

Übungszettel 9 (CA)

Karin Schnass ankreuzbar bis 3.12., 8:00

1. Zeige mit Hilfe von Substitution und partieller Integration, dass der folgende Grenzwert existiert, und berechne ihn,

$$\lim_{R \to \infty} \int_0^R \cos(t^2) \, \mathrm{d}t.$$

Hinweis: Verwende eine ähnlichen Strategie wie in Beispiel 4 des letzten Blatts, mit dem Rand des Achtelkreissektors mit Eckpunkten $0, R, R \cdot e^{i\pi/4}$ als Integrationskurve und Hilfsfunktion $f(z) = e^{iz^2}$. Zur Erinnerung $\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$.

- 2. Beweise Korollar 2.30.
- 3. Beweise den Satz von Morera (2.31). Zeige außerdem, dass die Bedingung nicht notwendig ist, dh. es existiert eine nichtleere offene Menge $U \subseteq \mathbb{C}$, eine holomorphe Funktion $f: U \to \mathbb{C}$, sowie eine geschlossene glatte Kurve $\gamma: [a,b] \to U$ mit $\int_{\gamma} f(z) \, \mathrm{d}z \neq 0$.
- 4. Es sei f eine ganze, nicht konstante Funktion. Zeige, dass das Bild $f(\mathbb{C})$ dicht in \mathbb{C} ist. Hinweis: Strategie wie im Fundamentalsatz der Algebra.
- 5. Es sei $\mathbb{H}_1 = \{z : \text{Re}(z) > 1\}$. Zeige, dass die Riemann'sche Zeta-Funktion auf \mathbb{H}_1 holomorph ist, wobei

$$\zeta(z) := \sum_{n=1}^{\infty} \frac{1}{n^z}.$$