

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
15. September 2005 (15.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/085836 A1

(51) Internationale Patentklassifikation⁷: **G01N 33/00**

FORSCHUNG E.V. [DE/DE]; Hansastrasse 27c, 80686 München (DE).

(21) Internationales Aktenzeichen: PCT/EP2005/001099

(72) Erfinder; und

(22) Internationales Anmeldedatum:
31. Januar 2005 (31.01.2005)

(75) Erfinder/Anmelder (nur für US): **WANNER, Thomas** [DE/DE]; Bgm.-Götz-Strasse 8, 86529 Schwabenhausen (DE). **RODLER, Norbert** [DE/DE]; Erlenstr. 3, 85406 Zolling (DE). **RIEBLINGER, Klaus** [DE/DE]; Heilmaierstr. 9, 85406 Zolling (DE). **HUBENSTEINER, Thomas** [DE/DE]; Vöttinger Str. 61A, 85354 Freising (DE).

(25) Einreichungssprache: Deutsch

(74) Anwalt: **PFENNING MEINING & PARTNER GBR**; Joachimstaler Str. 10-12, 10719 Berlin (DE).

(26) Veröffentlichungssprache: Deutsch

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD AND DEVICE FOR CHARACTERIZING OSI MATERIALS

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR CHARAKTERISIERUNG VON OSI-MATERIAL

(57) Abstract: The invention relates to a method and device for characterizing OSI materials wherein the material is arranged in a measuring cell and is exposed to a gas mixture containing oxygen. A defined part of the volume of the gas mixture is measured with regard to the concentration of oxygen in a measuring circuit after a specific time or at specific intervals of time, said concentration and time component characterizing the OSI material. The OSI material in the measuring cell is exposed to a gas mixture which is circulated in a closed reaction circuit and the defined volume part is conducted to the measuring circuit containing the gas in order to measure the concentration of oxygen.

[Fortsetzung auf der nächsten Seite]

WO 2005/085836 A1

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) **Bestimmungsstaaten** (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL,

PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) **Zusammenfassung:** Es wird ein Verfahren und eine Vorrichtung zur Charakterisierung von OSI-Materialien vorgeschlagen, bei dem das Material in eine Messzelle eingebracht wird und einem Sauerstoff enthaltenden Gasgemisch ausgesetzt wird. Nach einer bestimmten Zeit oder in bestimmten Zeitintervallen wird ein definierter Volumenteil des Gasgemisches hinsichtlich seiner Sauerstoffkonzentration in einem Messkreis gemessen, die zusammen mit der Zeitkomponente eine Charakterisierung für das OSI-Material darstellt. Das OSI-Material in der Messzelle wird dem in einem geschlossenen Reaktionskreislauf umgewälzten Gasgemisch ausgesetzt und der definierte Volumenteil wird in den Gas enthaltenden Messkreislauf zur Messung der Sauerstoffkonzentration überführt.

Verfahren und Vorrichtung zur Charakterisierung von
OSI-Material

5 Die Erfindung betrifft ein Verfahren zur Charakteri-
sierung von OSI-Material nach dem Oberbegriff des
Hauptanspruchs und eine entsprechende Vorrichtung
nach dem Oberbegriff des Nebenanspruchs.

10 Es sind verschiedene analytische Geräte bzw. Verfah-
ren zur Charakterisierung von unter dem Begriff OSI-
Materialien fallenden O₂-Scavenger bekannt. In der
Gas-Chromatographie wird beispielsweise eine bestim-
mte Menge eines O₂-Scavengers einem Gasgemisch ausge-
setzt, das Sauerstoff enthält. Nach einer gewissen
15 Zeit, in der der O₂-Scavenger Sauerstoff aus dem Gas-
gemisch abbaut, wird eine bestimmte Menge des vorhan-
denen Gasgemischs einer Messeinrichtung zugeführt, in
der das zu analysierende Gas über eine Trennsäule vom
Gasgemisch separiert und über einen Detektor, z.B.
20 einem Helium Pulsed-Discharged-Detektor quantifiziert

wird.

Weiterhin sind beispielsweise elektrochemische Verfahren, wie z.B. O₂-sensitive Elektroden, die über eine elektrochemische Reaktion die Sauerstoffänderung in einem Kompartiment detektieren. Auch gibt es Druckmessverfahren, bei denen über einen Drucksensor die Druckänderung in einem starren Kompartiment detektiert wird. Dabei ist die Druckänderung direkt proportional zur durch den O₂-Scavenger hervorgerufenen Sauerstoffänderung. Außerdem ist die Fluoreszenz-Messtechnik anwendbar, bei der die Fluoreszenzlösung eines aktiv angeregten O₂-sensitiven Farbstoffs detektiert wird. Die Fluoreszenzlösung ist indirekt proportional zur Sauerstoffkonzentration.

Zur Charakterisierung von O₂-Indikatoren, die ebenfalls ein OSI-Material darstellen, gibt es derzeit keine spezielle Messtechnik.

O₂-Scavenger sind Stoffe, die Sauerstoff absorbieren und/oder adsorbieren. Die derzeit am Markt etablierten Systeme lassen sich primär nach dem O₂-Scavenger-Substrat und nach ihrem Initialisierungsmechanismus klassifizieren. Bei der Klassifizierung durch das O₂-Scavenger-Substrat wird unterschieden nach anorganischen O₂-Scavenger, z.B. eisenbasierte oder sulfitbasierte Systeme, nach niedermolekularen organischen O₂-Scavenger, z.B. ascorbatbasierte Systeme und nach hochmolekularen organischen O₂-Scavengern (z.B. polyolefinbasierte oder polyamidbasierte Systeme). Die O₂-Scavenger werden entweder UV-initialisiert oder Feuchte-initialisiert. Das bedeutet, dass die O₂-Scavengerfunktion erst nach einer Exposition mit UV-Licht bzw. Feuchte vorhanden ist.

Indikatorsysteme im Allgemeinen lassen sich in Zeit-Temperatur-Indikator- (Time-Temperature-Indicator (TTI)), "Gas/Leakage-Indicator"- und "Freshness-Indicator"-Systeme einteilen. Zeit-Temperatur-
5 Indikatoren integrieren die Zeit-Temperaturgeschichte eines Produktes und machen somit eine direkte Aussage über dessen Lagerbedingungen. Die Indikatorwirkung wird durch eine chemische Reaktion oder durch gegenläufige Diffusion zweier Farbstoffe bewirkt.

10 "Gas/Leakage-Indikatoren" detektieren die Gaskonzentration, z.B. O₂, CO₂ oder H₂O im Verpackungsraum eines Produktes. Sie machen somit eine indirekte Aussage über die Qualität des Produktes. Die Indikatorwirkung wird durch eine chemische Reaktion mit dem entsprechenden Gas als Reaktand hervorgerufen. "Freshness-
15 Indikatoren" detektieren die Stoffwechselprodukte von Mikroorganismen und machen somit eine direkte Aussage über die Qualität des Produktes. Die Indikatorwirkung wird durch eine chemische Reaktion der Stoffwechselprodukte hervorgerufen. Alle genannten Indikatorsysteme geben ihre Indikatorwirkung durch einen sichtbaren Farbumschlag wieder.
20

25 OSI-Materialien, nämlich O₂-Scavenger, O₂-Indikatoren oder O₂-Scavenger/O₂-IndikatorSysteme finden in der Lebensmittelindustrie, der pharmazeutischen Industrie, der Elektronikindustrie, der chemischen Industrie und anderen Anwendung. Um diese OSI-Materialien in ihrer Menge, ihrer Wirkung und anderen Parametern
30 an die Anforderungen der entsprechenden Zielsetzungen anpassen zu können, ist es notwendig, das jeweilige OSI-Material zu charakterisieren, wobei die Grundlage der Charakterisierung die Sauerstoffkonzentration in Bezug auf eine Zeitkomponente ist.

35 Der Erfindung liegt daher die Aufgabe zugrunde ein

Verfahren und eine Vorrichtung zur Charakterisierung von OSI-Materialien zu schaffen, mit denen in relativ einfacher Weise und mit großer Empfindlichkeit OSI-Materialien, einschließlich O₂-Indikatoren charakterisiert werden können.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Hauptanspruchs sowie des Nebenan- spruchs in Verbindung mit deren Oberbegriffen gelöst.

Dadurch, dass das OSI-Material in einer Messzelle aufgenommen ist, die in einem geschlossenen Reaktionskreislauf einem Sauerstoff enthaltenden Gasgemisch ausgesetzt wird und ein definierter Volumenteil in einem Gas enthaltenden Messkreislauf zur Messung der Sauerstoffkonzentration überführt wird, kann die Sauerstoffkonzentration in empfindlicher Weise gemessen werden. Durch den geschlossenen Reaktionskreislauf können sehr geringe Konzentrationen wirksam erfasst werden. Die entsprechende Vorrichtung ist einfach aufgebaut und gut zu handhaben.

Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen möglich.

Besonders vorteilhaft ist, dass dem geschlossenen Reaktionskreislauf über eine externe Befeuchtungseinheit Feuchte zugeführt werden kann, durch die der O₂-Scavenger initialisiert werden kann. Dadurch kann eine Charakterisierung des O₂-Scavengers bei jeder beliebigen relativen Feuchte durchgeführt werden.

Durch Vorsehen einer für vorgegebene Wellenlängenbereiche, z.B. UV/VIS oder sichtbares Licht durchlässige Messzelle kann der in der Messzelle enthaltende

O₂-Scavenger mit UV-Strahlung beaufschlagt werden und dadurch initialisiert werden.

Bei Vorsehen eines O₂-Indikators und/oder eines O₂-Scavenger/O₂-Indikatorsystems kann dessen Farbe bzw. Farbänderung gemessen werden, die zur Charakterisierung des O₂-Indikators bzw. des Systems verwendet werden.

Dadurch, dass die Bauteile des Reaktionskreislaufs und besonders des Messkreislaufs gekapselt sind, sind sehr geringe Leckraten zu verzeichnen, wodurch sehr geringe Konzentrationen, z.B. zwischen 20 und 0% Sauerstoff gemessen werden können.

Durch Einbringen von kompletten Verpackungen und Getränkeflaschen, die OSI-Materialien enthalten, können diese komplett charakterisiert werden. In vorteilhafter Weise ist der Messkreislauf gleichfalls ein geschlossener Kreislauf und Reaktionskreislauf und Messkreislauf über eine in den jeweiligen Kreislauf schaltbare Probeschleife miteinander verbunden. Dadurch kann in einfacher Weise ein definierter Volumenanteil vom Reaktionskreislauf in den Messkreislauf überführt werden.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1 die schematische Darstellung der erfindungsgemäßen Vorrichtung in einem ersten Verfahrenszustand,

Fig. 2 die Vorrichtung entsprechend Fig. 1 in einem zweiten Verfahrenszustand,

Fig. 3 die Vorrichtung entsprechend Fig. 1 und Fig. 2 in einem dritten Verfahrenszustand, und

5 Fig. 4 eine Kennlinie der Sauerstoffaufnahme eines O₂-Scavengers in Abhängigkeit von der Zeit, die zur Charakterisierung des Materials dient.

10 Die erfindungsgemäße Vorrichtung zur Charakterisierung von OSI-Materialien ist in den Fign. 1 bis 3 schematisch dargestellt, wobei die unterschiedlichen Figuren unterschiedliche Verfahrensfließzustände repräsentieren. Die Vorrichtung besteht aus einem Reaktionskreis 1 und einem Messkreis 2. Ein erster Umschaltzweig 3 und ein zweiter Umschaltzweig, der als Probeschleife 4 bezeichnet wird, ist jeweils zwischen dem Reaktionskreis 1 und dem Messkreis 2 umschaltbar.

20 Der Reaktionskreislauf 1 bildet einen geschlossenen Reaktionskreislauf und setzt sich aus einer Pumpe 5, einer transparenten bzw. für ausgewählte Wellenlängenbereiche durchlässige Messzelle 6 der Probeschleife 4 bzw. dem Umschaltkreis 3, einem 6-Wegeventil 7, das als simuliertes 6-Wegeventil dargestellt ist (Ersatzschaltbild aus zwei 4-Wegeventilen und Umschaltzweig) und zwischen der Probeschleife 4 und dem Umschaltzweig 3 umschaltet, und einem 4-Wegeventil zusammen.

25 30 Der Messkreis 2 ist im dargestellten Ausführungsbeispiel gleichfalls als geschlossener Kreislauf ausgebildet, in anderen Ausführungsformen ist es denkbar, dass der Messkreis ein offener Kreis oder Zweig ist. Der Messkreis weist ein 4-Wegeventil 9 zur Abfuhr, Zufuhr und zum Durchschalten eines Gasstroms, eine

Pumpe 10, eine sauerstoffsensitive Sensoranordnung 11, die beispielsweise einen Mocon-Sensor oder einen Coulox-Sensor aufweisen kann, die auf einem elektro-chemischen Prinzip beruhen (der Mocon-Sensor baut beim Kontakt mit Sauerstoff durch elektrochemische Vorgänge eine Potentialdifferenz auf, wobei diese physikalische Größe mit der Sauerstoffkonzentration korreliert wird), eine Auswerteeinheit 12, die mit der Sensoranordnung 11 in Verbindung steht und z.B. 5 einen Integrator enthalten kann, und eine Befeuchtungseinheit 13 auf. Wie schon oben erwähnt, ist das 10 6-Wegeventil 7, das zwischen Probeschleife 4 und Umschaltzweig 3 umschaltbar ist, auch Bestandteil des Messkreises 2.

15 Das 4-Wegeventil 8 des Reaktionskreises 1 dient gleichfalls zur Zufuhr, Abfuhr und Durchschalten eines Gasstroms, wobei eine Zuführleitung 14 mit einer externen Befeuchtungseinheit 15 verbunden ist.

20 Die dargestellte Vorrichtung bzw. das analytische Gerät ermöglicht eine Charakterisierung von reinen OSI-Materialien (z.B. Substanzen in Pulverform), aber auch von OSI-Materialien, die in unterschiedliche 25 Matrizes, z.B. Polymere, eingearbeitet sind. Die Ausbildung der Matrizes kann in Form der eigentlichen Verpackungen (z.B. Folien in Mono- oder Multilayer-Aufbauten) und Getränkeflaschen realisiert sein.

30 Das zu charakterisierende OSI-Material, das in dem im Folgenden beschriebenen Beispiel ein O₂-Scavenger sein soll, wird in die Messzelle 6 eingebracht. Anschließend wird der gesamte Reaktionskreis mit einem O₂/N₂-Gasstrom, der beispielsweise 20% Sauerstoff und 35 80% Stickstoff enthalten kann und der über das 4-Wegeventil 8 zugeführt wird, gespült. Dies bedeutet,

dass der zugeführte definierte Gasstrom, von der Pumpe 5 gefördert, durch die Messzelle 6 die Probeschleife 4, die über das 6-Wegeventil in den Reaktionskreislauf geschaltet ist, hindurchströmt und über das 4-Wegeventil 8 abgeführt wird, bis der gesamte Reaktionskreislauf neben dem definierten Gasstrom kein Fremdgas mehr enthält. Dies in Fig. 1 dargestellt, wobei die "hellen" Pfeile das abzuführende Fremdgas darstellen. Gegebenenfalls kann bei ausgeschalteter Pumpe der definierte Gasstrom durch den Überdruck der Gasflasche zugeführt werden, wobei die Durchflussgeschwindigkeit durch einen Durchflusssensor eingestellt wird.

Wenn es sich bei dem in der Messzelle 6 aufgenommenen O₂-Scavenger um einen Feuchte-initialisierenden O₂-Scavenger handelt, so wird der über das 4-Wegeventil 8 zugeführte definierte Gasstrom vorher durch die externe Befeuchtungseinheit 15 geleitet und mit der nötigen relativen Feuchte beaufschlagt, um den in der Messzelle 6 enthaltenen O₂-Scavenger zu initialisieren.

Im Fall eines UV-initialisierenden O₂-Scavengers muss die Messzelle 6 zumindest für die UV-Strahlung durchlässig sein, und ihr ist eine nicht dargestellte UV-Strahlungsquelle zugeordnet, die den Scavenger bestrahlt und somit initialisiert.

Nachdem der Reaktionskreis 1 ausreichend gespült wurde, wird das 4-Wegeventil 8 umgeschaltet und die zu diesem Zeitpunkt eingebrachte Gasmenge wird mit Hilfe der Pumpe 5 im Reaktionskreislauf umgewälzt. Dies ist in Fig. 2 zu erkennen.

Dem Messkreis 2 wird über das 4-Wegeventil 9 ein

Stickstoff-Gasstrom, vorzugsweise 100% Stickstoff, zugeführt und durch die Pumpe 10 weitergeleitet, wo bei das 6-Wegeventil 7 den Umschaltzweig 3 in den Messkreis 2 schaltet. Fremdgas wird aus dem Messkreis 2 über das 4-Wegeventil 9 herausgeführt, wie durch die weißen Pfeile angedeutet wird. Wenn das Fremdgas vollständig abgeführt ist, wird das 4-Wegeventil 9 umgeschaltet, derart, dass die eingebrachte Gasmenge mit Hilfe der Pumpe 10 im Messkreislauf umgewälzt wird. Dies ist in Fig. 2 dargestellt. Die Befeuchtungseinheit 13 hat ausschließlich die Aufgabe, den sauerstoffsensitiven Sensor der Sensoranordnung 11 zu befeuchten.

Aufgrund der O₂-Sorption des in der Messzelle 6 aufgenommenen O₂-Scavenger-Materials ändert sich im Reaktionskreis der Sauerstoffgehalt des umgewälzten Gases. Zur Bestimmung der Sauerstoff-Konzentration wird in bestimmten Zeitabständen, z.B. in Intervallen von 24 Stunden, die Probeschleife 4 über das 6-Wegeventil 7 vom Reaktionskreis 1 in den Messkreis geschaltet. Dies ist in Fig. 3 dargestellt. Durch das Umschalten des 6-Wegeventils wird ein definierter Volumenteil vom Reaktionskreislauf 1 in den Messkreislauf 2 überführt und der in dem definierten Volumenteil enthaltene Sauerstoff wird mit Hilfe der Sensoranordnung 11 detektiert. Die Auswerteeinheit 12, die einen Integrator enthält, bestimmt dann die Sauerstoff-Konzentration des Reaktionskreises unter Heranziehung der im Reaktionskreis 1 und im Messkreis 2 enthaltenen Gasmengen. Der aliquote Volumenteil, der vom Reaktionskreis 1 in den Messkreis 2 überführt wird, führt bei dem Sensor 11 zu einem Signal (Flächensignal). Dies entspricht einer gewissen Sauerstoffkonzentration im Reaktionskreis. Dies bedeutet, dass jedem Sensorsignal eine bestimmte Sauerstoffkonzentra-

tion im Kreislauf zugeordnet ist.

Die Charakterisierung des Materials des in diesem Ausführungsbeispiel verwendeten O₂-Scavengers basiert auf der Ermittlung der Kapazität und der Kinetik. Das bedeutet, dass die Auswerteeinheit beispielsweise unter Heranziehung der Menge des in der Messzelle 6 aufgenommenen O₂-Scavengers dessen Sauerstoffaufnahme über die Zeit bestimmt. Eine solche Kennlinie ist in Fig. 4 dargestellt, bei der die Ordinate den Sauerstoffabnahmen bezogen auf die Masse des Scavengers zeigt, und die Abszisse die Zeit in Tagen darstellt. Als Kapazität wird üblicherweise der am Ende der Messreihe vorhandene bezogene Sauerstoff-Abbauwert bezeichnet und die Kinetik wird vereinfacht durch die Steigung der Kennlinie ausgedrückt.

Für die Charakterisierung eines O₂-Indikators wird in entsprechender Weise vorgegangen. Der O₂-Indikator wird in die Messzelle 6 eingebracht und jeweils der gesamte Reaktionskreislauf über das 4-Wegeventil 8 mit einem definierten O₂/N₂-Gasstrom gespült. Je nach Art der Initialisierung wird entweder der Indikator über den mit Feuchte beaufschlagten Gasstrom oder über eine UV-Strahlung über die UV durchlässige Messzelle 6 initialisiert. Im Anschluss daran wird die eingebrachte Gasmenge mit Hilfe der Pumpe 5 im Reaktionskreislauf 1 umgewälzt.

Der Messkreislauf 2 wird, wie oben beschrieben, über das 4-Wegeventil 9 mit einem N₂-Gasstrom gespült. Im Anschluss wird die eingebrachte Gasmenge mit Hilfe der Pumpe 10 im Messkreislauf umgewälzt (siehe Fig. 2). Zur Bestimmung der Sauerstoffkonzentration im Reaktionskreislauf 1 wird in bestimmten Zeitintervallen, z.B. 24 Stunden, die Probeschleife 4 über das 6-

Wegeventil 7 vom Reaktionskreis 1 in den Messkreis 2 geschaltet (Fig. 3). Durch diese Überführung eines aliquoten bzw. definierten Volumenteils vom Reaktionskreis 1 in den Messkreis 2 wird die jeweilige, zu 5 dem Zeitpunkt vorhandene O₂-Konzentration des Reaktionskreislaufs mit Hilfe des sauerstoffsensitiven Sensors 11 und der Auswerteeinheit 12 detektiert und bestimmt.

10 Zu den Zeitpunkten, in denen der Sauerstoffgehalt gemessen wird, wird die Farbe bzw. die Farbänderung des O₂-Indikatormaterials in der Messzelle festgestellt bzw. gemessen. Beispielsweise kann der Messzelle ein Farbmessgerät oder ein Fotometer oder dergleichen zugeordnet werden, das auf die transparente Messzelle 15 aufgesetzt wird. Eine weitere Möglichkeit ist ein Farbabgleich mit einer Farbskala.

20 Für eine Charakterisierung des O₂-Indikators wird die Farbänderung des Indikators über die Sauerstoffkonzentrations-Zeitspanne bzw. Sauerstoff(Konzentrations)-Schwellenwert verwendet. Dazu ermittelt die Auswerteeinheit das Integral der O₂-Konzentration über die Zeit. Der Indikator ändert beispielsweise seine 25 Farbe von farblos nach grün, wenn er eine gewisse Menge Sauerstoff erfasst hat (z.B. 0,5 Std. 21% O₂ oder 1 Std. 10% O₂).

30 Selbstverständlich kann in entsprechender Weise eine Charakterisierung eines O₂-Scavenger/Indikatoriumsystems vorgenommen werden, wobei Scavenger und Indikator gemischt oder getrennt in die Messzelle 6 eingelassen werden können. Zusätzlich zu den schon angegebenen 35 Charakterisierungsgrößen besteht die Möglichkeit, eine Farbänderung des O₂-Indikators in Abhängigkeit zur Restkapazität des O₂-Scavengers zu ermitteln.

Der O_2 -Scavenger sorbiert Sauerstoff. Seine absolute Kapazität beträgt $60 \text{ cm}^3/\text{g}_{\text{scav}}$. (siehe Fig. 4). Bei einer erreichten Kapazität von beispielsweise $45 \text{ cm}^3/\text{g}_{\text{scav}}$. ändert der Indikator seine Farbe von farblos nach grün und signalisiert dem Anwender, dass der O_2 -Scavenger noch eine Restkapazität von $15 \text{ cm}^3/\text{g}_{\text{scav}}$. besitzt.

Bei der Charakterisierung von Lebensmittelverpackungen bzw. Getränkeflaschen, die meist aus mehreren polymeren Schichten (Multilayer-Aufbau) bestehen und eine der Schichten das OSI-Material beinhaltet, kann die Verpackung den Platz der Messzelle einnehmen (Verpackung ist ein geschlossenes Kompartiment). Dies bedeutet, dass von der Messzelle der Deckel entfernt wird und die Verpackung mit den Zu- und Abströmöffnungen der Messzelle über Leitungen verbunden wird. In diesem Fall ist also die Verpackung die Messzelle. Diese Charakterisierung ist besonders realistisch, da der von der Umgebung in die Verpackung eintretende Sauerstoff ebenfalls detektiert wird.

Mit Vorrichtung kann auch der Triggermechanismus von OSi-Materialien bestimmt werden. Dies betrifft ein kombiniertes O_2 -Scavenger/Indikator-System (OSi), ein O_2 -Scavengersystem (OS) und ein O_2 -Indikatorsystem (OI). Bei einem feuchtegetriggerten System wird über die Befeuchtungseinheit sukzessive die relative Feuchte in dem Gasstrom erhöht. Hierdurch wird diejenige relative Feuchte, ab welcher das System aktiviert wird, ermittelt. Bei einem OS- bzw. OSi-System zeigt sich die Aktivierung durch die Abnahme der O_2 -Konzentration. Bei einem OI- bzw. OSi-System zeigt sich die Aktivierung durch die Farbänderung des Systems. Bei einem UV-getriggerten System wird die In-

tensität der Strahlung bzw. der Wellenlängenbereich sukzessive erhöht. Die weitere Vorgehensweise ist mit dem feuchtegetriggerten System identisch.

Patentansprüche

1. Verfahren zur Charakterisierung von OSI-Materialien, bei dem das Material in eine Messzelle eingebracht wird und einem Sauerstoff enthaltenden Gasgemisch ausgesetzt wird und nach einer bestimmten Zeit oder in bestimmten Zeitintervallen ein definierter Volumenteil des Gasgemischs hinsichtlich seiner Sauerstoffkonzentration in einem Messkreis gemessen wird, die zusammen mit der Zeitkomponente eine Charakterisierung für das OSI-Material darstellt,
dadurch gekennzeichnet, dass das OSI-Material in der Messzelle dem in einem geschlossenen Reaktionskreislauf umgewälzten Gasgemisch ausgesetzt wird und der definierte Volumenteil in einen Gas enthaltenden Messkreislauf zur Messung der Sauerstoffkonzentration überführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als OSI-Materialien O₂-Scavenger und/oder O₂-Indikatoren verwendet werden.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass zur Charakterisierung des Materials in der Messzelle, insbesondere eines O₂-Scavengers der Sauerstoffabbau im Gasstrom in Abhängigkeit von der Masse des Materials als Kapazitätsgröße und/oder die zeitliche Änderung des Sauerstoffabbaus als kinetische Größe gemessen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur Charakterisierung des Materials in der Messzelle, insbesondere ei-

nes O₂-Indikators, die Farbe und/oder eine Farbänderung des Materials in Abhängigkeit von der Sauerstoffkonzentration gemessen wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Farbe und/oder die Farbänderung und/oder die Farbänderung in Abhängigkeit von dem Integral der Sauerstoffkonzentration x Zeit gemessen wird.
10. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass bei O₂-Scavenger/O₂-Indikatorssystemen die Farbänderung des O₂-Indikators in Abhängigkeit zur Restkapazität des O₂-Scavengers bestimmt wird.
15. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zur Initialisierung des OSI-Materials der Gasstrom in den Reaktionskreislauf mit Feuchte beaufschlagt wird.
20. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zur Initialisierung des OSI-Materials dieses in der Messzelle mit UV-Strahlung beaufschlagt wird.
25. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Initialisierungspunkt bzw. -bereich des OSI-Materials abhängig von der relativen Feuchte oder der Intensität und/oder des Wellenlängenbereichs der Strahlung bestimmt wird.
30. Vorrichtung zur Charakterisierung von OSI-Materialien mit einem geschlossenen Reaktionskreis und einem Messkreis, wobei der Reaktionskreis (1) eine Vorrichtung zur Zufuhr eines Sauerstoff enthaltenden Gasstroms, eine Pumpe (5)

zur Förderung des Gasstroms, und eine Messzelle
5 (6) zur Aufnahme des OSI-Materials aufweist, und
der Messkreis (2) eine Sensoranordnung (11) zur
Erfassung von Sauerstoff und eine Auswerteein-
heit (12) umfasst, wobei ein Teil des im Reakti-
onskreis umgewälzten Gasstroms mit definiertem
Volumen in den Messkreis überführbar ist.

11. Vorrichtung nach Anspruch 10, dadurch gekenn-
zeichnet, dass der Messkreis ein geschlossener
10 Messkreis ist und eine Vorrichtung (9) zur Zu-
fuhr eines Gasstroms, eine Pumpe (10) zur Förde-
rung des Gasstroms umfasst, wobei ein Teil (4)
des Reaktionskreises (1) mit dem definierten Vo-
lumen über Ventile (7) in den Messkreis (2) um-
schaltbar ist.
12. Vorrichtung nach Anspruch 10 oder Anspruch 11,
dadurch gekennzeichnet, dass der Messkreis (2)
einen Umschaltzweig (3) aufweist, der über die
20 Ventile (7) in dem Reaktionskreis (1) schaltbar
ist, wenn der Teil des Reaktionskreises (1) mit
definiertem Volumen in den Messkreislauf ge-
schaltet wird.
13. Vorrichtung nach Anspruch 10, dadurch gekenn-
zeichnet, dass die Sensoranordnung (11) mindes-
25 tens einen sauerstoffsensitiven Sensor und die
Auswerteeinheit (12) einen Integrator enthält.
14. Vorrichtung nach einem der Ansprüche 10 bis 13,
dadurch gekennzeichnet, dass die Vorrichtung (8)
zur Zufuhr des Sauerstoff enthaltenden Gasstroms
30 in dem Reaktionskreis (1) mit einer Befeucht-
tungseinheit (15) verbunden ist, die den Gas-
strom mit einer für die Initialisierung des Ma-

terials in der Messzelle (6) notwendigen Befeuchtung beaufschlagt.

15. Vorrichtung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass die Messzelle (6) für vorgebbare Wellenlängenbereiche durchlässig ist.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Messzelle (6) eine UV-Strahlungsquelle zugeordnet ist, die das Material zu dessen Initialisierung bestrahlt.
17. Vorrichtung nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass der Messzelle eine Vorrichtung zur Messung der Farbe und/oder der Farbänderung des Materials zugeordnet ist.
18. Vorrichtung nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, dass der Reaktionskreis eine dem definierten Volumenteil beinhaltende Probeschleife (4) aufweist, die über Mehrwegventile (7) in den Messkreis (2) schaltbar ist.
20. 19. Vorrichtung nach einem der Ansprüche 10 bis 18, dadurch gekennzeichnet, dass die Bauteile des Reaktionskreises (1) und des Messkreises (2) gekapselt sind.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/001099

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01N33/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, FSTA, MEDLINE, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	RIEBLINGER K: "Qualitätsvorteile. Sauerstoffzehrende Verpackungen gegen unerwünschte Oxidationsreaktionen" LEBENSMITTELTECHNIK, vol. 35, no. 5, 2003, pages 66-67, XP009050469 ISSN: 0047-4290 abstract; figures 2,4,5 page 66, column 4, lines 15-21 page 67, column 1, lines 1-3 page 67, column 1, lines 27-37 page 67, column 2, lines 8-11 page 67, column 3, lines 1,2 page 67, column 4, lines 15-17	1-3,7,8, 10, 13-16,19
Y	----- -/-	4-6,9, 11,12, 17,18

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

13 July 2005

Date of mailing of the international search report

27/07/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hanisch, C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/001099

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2003/082321 A1 (KENNEDY THOMAS D ET AL) 1 May 2003 (2003-05-01) abstract; figures 1-3,15-17 paragraphs '0010!, '0095!, '0096! -----	1-3,6, 10,17
Y	US 5 358 876 A (INOUE ET AL) 25 October 1994 (1994-10-25) abstract; tables 3,6 column 3, lines 35-38 column 7, lines 42-48 column 10, line 60 - column 11, line 2 column 14, lines 24-27 -----	4-6,9,17
Y	US 6 455 620 B1 (CYR MICHAEL JOHN ET AL) 24 September 2002 (2002-09-24) column 12, lines 31-36 -----	11,12,18
Y	US 4 947 339 A (CZEKAJEWSKI ET AL) 7 August 1990 (1990-08-07) abstract; figure 1 -----	11,12,18
A	DE 195 28 400 C1 (FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.,) 24 October 1996 (1996-10-24) abstract; claims 4,13 column 2, line 65 - column 3, line 4 -----	1-19

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/EP2005/001099

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 2003082321	A1	01-05-2003		CA 2449786 A1 EP 1393064 A1 JP 2004535571 T MX PA03011228 A NZ 529825 A WO 02099416 A1 US 2004086749 A1		12-12-2002 03-03-2004 25-11-2004 26-02-2004 19-12-2003 12-12-2002 06-05-2004
US 5358876	A	25-10-1994		DE 69222376 D1 DE 69222376 T2 EP 0524021 A2 JP 3230608 B2 JP 5209871 A KR 217009 B1		30-10-1997 19-02-1998 20-01-1993 19-11-2001 20-08-1993 01-09-1999
US 6455620	B1	24-09-2002		AU 776210 B2 AU 6530400 A BR 0013129 A EP 1212372 A1 MX PA02001408 A WO 0110947 A1		02-09-2004 05-03-2001 23-04-2002 12-06-2002 30-07-2002 15-02-2001
US 4947339	A	07-08-1990		DE 68918675 D1 DE 68918675 T2 EP 0372429 A2 JP 2117492 C JP 3115840 A JP 8012193 B		10-11-1994 18-05-1995 13-06-1990 06-12-1996 16-05-1991 07-02-1996
DE 19528400	C1	24-10-1996		NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2005/001099

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G01N33/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 7 G01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, FSTA, MEDLINE, BIOSIS, EMBASE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	RIEBLINGER K: "Qualitätsvorteile. Sauerstoffzehrende Verpackungen gegen unerwünschte Oxidationsreaktionen" LEBENSMITTELTECHNIK, Bd. 35, Nr. 5, 2003, Seiten 66-67, XP009050469 ISSN: 0047-4290 Zusammenfassung; Abbildungen 2,4,5 Seite 66, Spalte 4, Zeilen 15-21 Seite 67, Spalte 1, Zeilen 1-3 Seite 67, Spalte 1, Zeilen 27-37 Seite 67, Spalte 2, Zeilen 8-11 Seite 67, Spalte 3, Zeilen 1,2 Seite 67, Spalte 4, Zeilen 15-17	1-3,7,8, 10, 13-16,19
Y	----- -----	4-6,9, 11,12, 17,18

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

13. Juli 2005

27/07/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Hanisch, C

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/001099

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 2003/082321 A1 (KENNEDY THOMAS D ET AL) 1. Mai 2003 (2003-05-01) Zusammenfassung; Abbildungen 1-3,15-17 Absätze '0010!, '0095!, '0096! -----	1-3,6, 10,17
Y	US 5 358 876 A (INOUE ET AL) 25. Oktober 1994 (1994-10-25) Zusammenfassung; Tabellen 3,6 Spalte 3, Zeilen 35-38 Spalte 7, Zeilen 42-48 Spalte 10, Zeile 60 – Spalte 11, Zeile 2 Spalte 14, Zeilen 24-27 -----	4-6,9,17
Y	US 6 455 620 B1 (CYR MICHAEL JOHN ET AL) 24. September 2002 (2002-09-24) Spalte 12, Zeilen 31-36 -----	11,12,18
Y	US 4 947 339 A (CZEKAJEWSKI ET AL) 7. August 1990 (1990-08-07) Zusammenfassung; Abbildung 1 -----	11,12,18
A	DE 195 28 400 C1 (FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.,) 24. Oktober 1996 (1996-10-24) Zusammenfassung; Ansprüche 4,13 Spalte 2, Zeile 65 – Spalte 3, Zeile 4 -----	1-19

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

 Internationales Aktenzeichen
PCT/EP2005/001099

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 2003082321	A1	01-05-2003	CA EP JP MX NZ WO US	2449786 A1 1393064 A1 2004535571 T PA03011228 A 529825 A 02099416 A1 2004086749 A1		12-12-2002 03-03-2004 25-11-2004 26-02-2004 19-12-2003 12-12-2002 06-05-2004
US 5358876	A	25-10-1994	DE DE EP JP JP KR	69222376 D1 69222376 T2 0524021 A2 3230608 B2 5209871 A 217009 B1		30-10-1997 19-02-1998 20-01-1993 19-11-2001 20-08-1993 01-09-1999
US 6455620	B1	24-09-2002	AU AU BR EP MX WO	776210 B2 6530400 A 0013129 A 1212372 A1 PA02001408 A 0110947 A1		02-09-2004 05-03-2001 23-04-2002 12-06-2002 30-07-2002 15-02-2001
US 4947339	A	07-08-1990	DE DE EP JP JP JP	68918675 D1 68918675 T2 0372429 A2 2117492 C 3115840 A 8012193 B		10-11-1994 18-05-1995 13-06-1990 06-12-1996 16-05-1991 07-02-1996
DE 19528400	C1	24-10-1996	KEINE			