Problem 1.

Consider two different machines, with two different instruction sets, both of which have a clock rate of 200 MHz. The following measurements are recorded on the two machines running a given set of benchmark programs:

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Machine A		
Arithmetic and logic	8	1
Load and store	4	3
Branch	2	4
Others	4	3
Machine B		
Arithmetic and logic	10	1
Load and store	8	2
Branch	2	4
Others	4	3

- a. Determine the effective CPI, MIPS rate, and execution time for each machine.
- b. Comment on

the results. Answer:

a.

$$CPI_{A} = \frac{\sum CPI_{i} \times I_{i}}{I_{c}} = \frac{(8 \times 1 + 4 \times 3 + 2 \times 4 + 4 \times 3) \times 10^{6}}{(8 + 4 + 2 + 4) \times 10^{6}} \approx 2.22$$

$$MIPS_{A} = \frac{f}{CPI_{A} \times 10^{6}} = \frac{200 \times 10^{6}}{2.22 \times 10^{6}} = 90$$

$$CPU_{A} = \frac{I_{c} \times CPI_{A}}{f} = \frac{18 \times 10^{6} \times 2.2}{200 \times 10^{6}} = 0.2 \text{ s}$$

$$CPI_{B} = \frac{\sum CPI_{i} \times I_{i}}{I_{c}} = \frac{(10 \times 1 + 8 \times 2 + 2 \times 4 + 4 \times 3) \times 10^{6}}{(10 + 8 + 2 + 4) \times 10^{6}} \approx 1.92$$

$$MIPS_{B} = \frac{f}{CPI_{B} \times 10^{6}} = \frac{200 \times 10^{6}}{1.92 \times 10^{6}} = 104$$

$$CPU_{B} = \frac{I_{c} \times CPI_{B}}{f} = \frac{24 \times 10^{6} \times 1.92}{200 \times 10^{6}} = 0.23 \text{ s}$$

b. Even though, machine B has a higher MIPS than machine A, it needs a longer CPU time to execute the similar set of benchmark programs (instructions).

Problem 2.

A program is run on a 40 MHz processor. The object code consists of 100000 instructions, with the following instruction mix and clock cycle count.

Instruction type	Instruction count	Clock cycle count
Integer arithmetic	45000	1
Data transfer	32000	2
Floating point	15000	2
Control transfer	8000	2

Determine the effective CPI, MIPS and execution time of the program.

 $CPI = \sum (Instruction count*Cycle per instruction)/The number of instructions the program contains$

$$=(45000*1+32000*2+15000*2+8000*2)/100000$$

CPI=1.55

#

MIPS = $f/CPI*10^6$

 $= (40*10^6)/(1.55*10^6)$

=25.8

Program execution time, T=I_c * CPI * t

= 100000*1.55*1/f

 $=(100000*1.55)/40*10^6$

=3.875 ms

Problem 3.

When a CPU operates at a clock frequency of 500MHz, requires an average of 5 CPI for executing one instruction, what is the performance (in MIPS) of the CPU?

- **Average executing time of one instruction:
- = CPI * Clock time
- = 5 clocks/instruction * (1sec/500 000 000 clocks)
- =5/500000000
- =0.00000001 seconds/instruction.
- **Number of instructions that can be executed in 1 sec =
- = 1 second /Average execution time of one instruction
- = 1/0.00000001 second
- =100 000 000 instruction
- =100 MIPS

[1 clock eycle means the time it takes to turn a transistor OFF and back ON again]

Problem 4.

When the instruction mix of a CPU in the values that are shown in the table below:

- 1. What is the average executing time of one instruction?
- 2. What is the performance of CPU?

Instruction type	Instruction execution time	Occurrence rate
Register to register operation	0.3 microsecond	30%
Register to /from	0.5 microsecond	50%

500 000 000 clocks in 1 sec

So, 1 clock = 1/500 000 000 sec.

memory operation		
Unconditional branch	0.2 microsecond	20%

Average execution time of one instruction

- $=\sum$ (instruction execution time * Occurrence rate)
- =0.3*0.30 + 0.5*0.5 + 0.2*0.2
- = 0.38 microsecond

CPU performance = 1/Average instruction execution time

- =1/0.38
- =100/38
- =2.6315 MIPS