Sodium Exosphere of Mercury

From ground-based to space observations - a unique view.

Fatima Kahil & Nelly Mouawad

MFARIM III

September 4, 2014

Motivation

- High resolution spectroscopic data were taken around MESSENGER (MErcury Surface, Space ENvironement, GEochemistry, and Ranging) third flyby.
- Develop routines to reduce the spectroscopic data.
- Mapping sodium distibutions over for North-South and Terminator-limb directions.
- Study the time variability of sodium atoms over Mercury's surface.
- Study the asymmetries in sodium distribution over the planet.
- Compare groud-based data with space data.

Outline

- Introduction
- Observations
- Oata reduction
- Results
- 5 Future research

Introduction

- Mercury has a *surface-bounded exosphere*: mean distance for collision is larger than the atmospheric thickness ($P_{merc} = 10^{-12} P_{Earth}$).
- Very dynamic system: interaction between the surface and the surrounding space environment.
- Stuying the exosphere ⇒ composition of the surface ⇒ Evolution of Mercury.

Figure: Sources, sinks and interactions of the surface with the space environment (Domingue et al.(2007)).

(NDU)

Introduction

Why Sodium?

- High cross section for resonance scattering.
- Strong emission lines in the visible.

(NDU)

Figure: Energy level schematic for atomic sodium(Brown and Yung, 1976).

Observations

- Observations conducted with the 2.7 m telescope at the McDonald Observatory and a Cross Dispersed Echelle Spectrograph.
- Three days of observations: September 28, 29 and 30, 2009.

Figure: Slit orientation on the days of observations.

(NDU)

Data reduction

- Data reduction are written with IRAF CL scripts and Python programing language.
- Standard corrections: bias removal, comsic ray correction, flatfielding.

Figure: The different spectral features of the flatfielded images

Data reduction - Sky Subtraction

 Trim the sky from the end of the slit, and subtract it from the original spectrum

Data reduction - Illumination correction

• Correction of the flatfield to account for the bad slit illumination.

• Subtract the solar Fraunhofer line and extract the integrated line fluxes from the sodium lines in all the pixels along the slit.

Data reduction - Sodium Line Extraction

10 / 25

Data reduction - Sodium Line Extraction

- The intensities were obtained in ADU units.
- No standard stars!
- The surface of the planet can be used as a standard calibration source:
- Calibration factor is needed:

$$calfac = \frac{Theoretical\ continuum\ flux_{max}}{Observed\ continuum\ flux_{max}} \tag{1}$$

SEEING!!!

 Hapke reflectance model is convolved with gaussians of different widths.

- Convolved profiles are compared to the observed ones.
- Seeing estimated from the best fit.

$$calfac = 4\pi \frac{\mu \times F_{1AU} \times dispersion}{R^2} \times \frac{1}{Cont_{max}} \quad [kR.counts^{-1}] \quad (2)$$

$$I(Na)_{kR} = calfac \ I(Na)_{ADU} \tag{3}$$

1 Rayleigh =
$$\frac{10^6}{4\pi}$$
 photons cm⁻² s⁻¹ sr⁻¹ (4)

- Potter and Morgan, 1990
- Sprague. 1992
- Sprague et al. 1990, 1997
- Leblanc and Johnson(2003)

- Potter and Morgan, 1990
- Sprague. 1992
- Sprague et al. 1990, 1997
- Leblanc and Johnson(2003)
 - \Rightarrow Sputtering by solar wind particles yields the high altitude excesses!

Figure: Altitude profiles from MESSENGER observations (vervack et al.(2009)); Generated sodium emission map.

Seeing contribution?

- Seeing contribution?
- Geometry of observations?

Future research

- Develop models (for both space and ground-based data) to better understand the processes responsible for the observed distribution.
- Doppler shift measurements and upper limits on flow velocity of sodium atoms to explain the UVVS data.

