Calculating a Fixed Distance

By Benjamin Gallai and Khizer Shahid

1 Problem Statement

A particle \mathcal{P} is initially 1 unit away from \mathcal{X} its destination. On its path to \mathcal{X} , \mathcal{P} has a velocity of d+1 units per second, where d is its distance to \mathcal{X} . How long will it take for \mathcal{P} to reach \mathcal{X} ?

2 Solution

First, we will partition the interval of length 1 into n equally sized interval. We will assume that \mathcal{P} changes its velocity at the endpoints. Then, we may take the limit of our result as $n \to \infty$. This will allow us to simplify the problem.

Let d_i be the distance traveled by \mathcal{P} during the *i*th interval, v_i be its velocity at the beginning of this interval, and t_i be the amount of time it spends in the interval. Additionally, let $T_n = t_1 + t_2 + t_3 + \cdots + t_n$ be the total amount of time that it takes \mathcal{P} to reach \mathcal{X} in a configuration with n subintervals. As we add more subintervals, the velocity will become closer to changing continuously. Hence, the total amount of time \mathcal{P} takes is $T = \lim_{n \to \infty} T_n$.

Now, we must compute T_n in terms of n. First, we have $T_n = \sum_{k=1}^n t_k$. From d = rt, we may conclude that $t_k = \frac{d_k}{v_k}$. Additionally, $d_k = \frac{1}{n}$ for all k and $v_k = 2 - \frac{k-1}{n}$ since at the kth

interval it has travelled k-1 subintervals of length $\frac{1}{n}$. Hence,

$$t_k = \frac{\frac{1}{n}}{2 - \frac{k-1}{n}} = \frac{1}{2n - k + 1} \Rightarrow T_n = \sum_{k=1}^n \frac{1}{2n - k + 1} = \frac{1}{2n} + \frac{1}{2n - 1} + \frac{1}{2n - 2} + \dots + \frac{1}{n + 2} + \frac{1}{n + 1}.$$

We may further rewrite this as

$$\frac{1}{2n} + \dots + \frac{1}{n+1} = \left(\frac{1}{2n} + \frac{1}{2n-1} + \dots + \frac{1}{2} + \frac{1}{1}\right) - \left(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + \frac{1}{1}\right)$$

$$= \left[\left(\frac{1}{2n} + \frac{1}{2n-1}\right) + \left(\frac{1}{2n-2} + \frac{1}{2n-3}\right) + \dots + \left(\frac{1}{2} + \frac{1}{1}\right)\right] - \sum_{i=1}^{n} \frac{1}{i}$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2i} + \frac{1}{2i-1}\right) - \sum_{i=1}^{n} \frac{1}{i}$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2i} + \frac{1}{2i-1} - \frac{1}{i}\right)$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2i-1} - \frac{1}{2i}\right)$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n-3} - \frac{1}{2n-2}\right) + \left(\frac{1}{2n-1} - \frac{1}{2n}\right)$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n-2} + \frac{1}{2n-1} - \frac{1}{2n}.$$

Hence, $T = \lim_{n \to \infty} T_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \cdots$. However, this is not a closed form. To find the closed form, we turn to calculus.

Let the total distance \mathcal{P} has traveled at time t be x(t) and its velocity be v(t). By the problem statement, v(t) = (1 - x(t)) + 1 = 2 - x(t). Since x(t) is \mathcal{P} 's position and the rate of change of position is velocity, we have v(t) = x'(t). Now, we can simply solve for x(t), the position function, by solving the differential equation $\frac{dx}{dt} = 2 - x$. However, we will take a different approach.

Differentiating both sides of v(t) = 2 - x(t) with respect to t, we get a(t) = -v(t), where a(t) is the acceleration of \mathcal{P} at time t. Additionally, we have that a(t) = v'(t). Plugging this back into a(t) = -v(t), we have v'(t) = -v(t). Now, we have the differential equation

 $\frac{dv}{dt} = -v$. Separating the variables and integrating both sides, we have

$$\int \frac{dv}{v} = -\int dt$$

$$\Rightarrow \ln|v| = \ln v(t) = -t + C$$

$$\Rightarrow v(t) = e^{-t+C} = Ae^{-t}$$

for some $A \in \mathbb{R}^+$. Note that we can remove the absolute values since $v(t) \geq 1 > 0$. We can solve for A by plugging in t = 0. Since at time t = 0, \mathcal{P} is 1 unit away from \mathcal{X} , its velocity is 2 units per second: v(0) = A = 2. Hence, $v(t) = 2e^{-t}$. Let \mathcal{P} reach \mathcal{X} after k seconds. We know that $v(k) = 2e^{-k} = 1$. Hence, we can solve for k:

$$2e^{-k} = 1 \Rightarrow e^{-k} = \frac{1}{2} \Rightarrow -k = \ln \frac{1}{2} \Rightarrow k = \ln 2.$$

Hence, \mathcal{P} will reach \mathcal{X} in $\ln 2$ seconds.

Since, our answers to the problems must be the same, we have

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \dots = \ln 2$$

3 Generalization

Now, instead of \mathcal{P} starting 1 unit away from \mathcal{X} , let it be d units away.

From the problem statement we have v(t) = (d-x(t))+1 = d+1-x(t), Taking derivative with respect to t, we have a(t) = -v(t). This is the exact same equation we solved earlier. We found that $v(t) = Ae^{-t}$ for some $A \in \mathbb{R}$. We can analyze what happens at t = 0: $x(0) = d \Rightarrow v(0) = A = d + 1$. Hence, $v(t) = (d+1)e^{-t}$. Solving the equation v(t) = 1, we have $t = \ln(d+1)$. Hence, \mathcal{P} will reach \mathcal{X} in $\ln(d+1)$ seconds. Plugging in d = 1 from the initial problem agrees with our previous result.