Rolling Contact Bearings

• Rolling contact bearings: Load is transferred through elements in rolling contact.

Also called anti-friction bearing due to its low friction characteristics.

Advantage: Lower price, low maintenance, ease of operation

Application: Extensively used

Ball bearings
Source: RAS Bearings and Industrial Components

Types of Rolling Contact Bearings

Rolling bearings Types:

• <u>Ball Bearings:</u> Rolling elements are spherical balls

Roller Bearings: Rolling elements are rollers (cylindrical or straight, tapered, spherical)

Ball bearing
Source: indiantradebird.com

Straight roller globalcpec.com

Tapered roller bearing Source: globalcpec.com

Spherical roller bearing Source: SKF

Ball Bearings:

• <u>Straight Roller Bearings</u>:

Can take radial and axial thrust load Larger load capacity than ball bearings Zero misalignment required Can not take axial thrust

Types of Rolling Contact Bearings

Ball bearing indiantradebird.com

Straight roller globalcpec.com

Tapered roller bearing Source: globalcpec.com

Spherical roller bearing Source: SKF

• Ball Bearings:

Lower load capacity, Can take radial and axial thrust load

Straight Roller Bearings:

Larger load capacity than ball bearings, Zero misalignment required

Can not take axial thrust

• <u>Tapered Roller Bearings</u>:

High load capacity, Some misalignment permitted, Load: Radial, axial thrust and combined radial and thrust

• Spherical Roller Bearings:

Heavy load capacity, Large misalignment permitted, Increases contact area with increased load

Types of Rolling Contact Bearings

Types of Ball Bearings:

(a) straight roller; (b) spherical roller, thrust; (c) tapered roller, thrust; (d) needle; (e) tapered roller; (f) steep-angle tapered roller. (Courtesy of The Timken Company.)

Bearing Components

Bearing Assembly

Bearing Assembly

Source: Aggregates and Mining Today

Bearing Life

Load on Bearings: Fluctuating contact stress (on ball or roller, and the races)

<u>Failure Scenario</u>: Fatigue (for proper lubrication, mounting, sealing, temperature and Dust control)

• Measure of Life:

- (1) Number of revolutions of inner ring with outer fixed before fatigue.
- (2) Hours of operation at constant angular speed before fatigue

• Fatigue Criterion:

Pitting or spalling of an area 0.01 square inch (6.5 sq. mm)

Life - L (in revolutions)

Radial Load - F (in kN)

$$FL^{1/a}$$
 = constant

$$a = \begin{cases} 3 & \text{for ball bearings} \\ 10/3 & \text{for roller bearings} \end{cases}$$

log F

Bearing Selection

• Rated Load and Life: Provided in Manufacturer's Catalog. Compare with desired load and life

Rated Life - L_R (in revolutions); Rated Load - F_R (in kN)

Desired Life - L_D (in revolutions); Desired Load - F_D (in kN)

From: $FL^{1/a} = \text{constant}$

$$F_R L_R^{1/a} = F_D L_D^{1/a}$$
 or $F_R = F_D \left(\frac{L_D}{L_R}\right)^{1/a} = F_D \left(\frac{\mathcal{L}_D n_D}{\mathcal{L}_R n_R}\right)^{1/a}$

 $\mathcal{L}_D / \mathcal{L}_R :=$ Desired and rated life in hours (measure 2)

 $n_D / n_R :=$ Corresponding speed in rpm $(L_{D/R} = \mathcal{L}_{D/R} (60 \cdot n_{D/R})$

- From Catalog select a bearing with rating F_R or higher.
- This is for constant reliability *R*
- For 90 % reliability (R=0.9): (F_{R_i}, L_R) are called (C_{10_i}, L_{10_i})

Bearing Selection

• For different reliability

•At constant load reliability follows Weibull distribution (line AB)

• From Catalog select a bearing with rating C_{10} or higher.