Color – an enormously complex topic.

Kosslyn (2006) Graph Design for the Eye and Mind

Murrell (2011) R Graphics, 2/e

Few (2012) Show Me the Numbers

The eye collects, the nerves transmit, and perception occurs in the brain.

Perception happens in your brain.

Perception happens in your brain.

Perception happens in your brain.

Respect compatibility and conventions of color.

Respect compatibility and conventions of color.

...but be aware of differences between cultures or subcultures.

For example, green means:

- "safe" for process engineers
- "infected" for health workers
- "profitable" for finance managers

Test your color choices with people who represent your audience.

In the US, the concepts most often associated with red and blue are...

trust
security
high quality
high technology
reliability/dependability

speed
cheap/inexpensive
fear/terror
fun

A "light" palette allows us to easily distinguish bars...

... but a light palette does not help us distinguish small objects such as data points.

Use a medium palette for small data-encoding objects such as points and lines.

Medium	R	G	В
	77	77	77
	93	165	218
	250	164	58
	96	189	104
	241	124	176
	178	145	47
	178	118	178
	222	207	63
	241	88	84

Use a dark palette to highlight a particular item.

Dark & Bright	R	G	В
	0	0	0
	38	93	171
	223	92	36
	5	151	72
	229	18	111
	157	114	42
	123	58	150
	199	180	46
	203	32	39

Perception – variation in discriminating color.

Perception – variation in discriminating color.

"normal" color vision green-blindness (deuteranopia) **Color vision deficiency affects** the ability of your audience to discriminate by color.

blue-blindness (tritanopia)

red-blindness (protanopia)

Selecting color palettes – use the Color Brewer website.

Color Brewer

diverging palette sequential palette color-vision-deficient safe color IDs

Diverging palettes

Palette names

BrBG PiYG
PRGn PuOr
RdBu RdGy
RdYlBu RdYlGn
Spectral

link to Color Brewer website

Sequential palettes in RColorBrewer

link to Color Brewer website

Qualitative palettes

Palette names

Accent Dark2
Paired Pastel1
Pastel2 Set1
Set2 Set3

link to Color Brewer website

Selecting a divergent color series from the Color Brewer website.

The border around the bars are the same hues except for the central gray border.

The RColorBrewer package codes the colors for you.

```
library(RColorBrewer)

palette <- brewer.pal(5, "BrBG")

vector of</pre>
```

Creates a vector of color codes

Number of colors

The RColorBrewer palette name

```
Producing a vector of
hex color codes
```

 $my_fill = c($

```
library(RColorBrewer)
                           palette <- brewer.pal(5, "BrBG")</pre>
                           darkBr <- palette[1]</pre>
                           lightBr <- palette[2]</pre>
                           neutral <- palette[3]</pre>
                           lightBG <- palette[4]</pre>
                           darkBG <- palette[5]</pre>
darkBr, lightBr, neutral, lightBG, darkBG )
```


Number of data classes: 5

Nature of your data:
sequential diverging qualitative

Pick a color scheme:

Nature of your data: sequentialdivergingqualitative Pick a color scheme: Only show: colorblind safe

photocopy safe

Number of data classes: 5 ▼

I've extracted some of the RColorBrewer palette in graphclassmate

```
library(graphclassmate)
color = rcb("dark_BG")
```

rcb() produces a hex color code from RColorBrewer

graphclassmate color name in quotes

form: "level hue"

4 levels: dark, mid, light, pale

5 hues: Br, BG, PR, Gn, Gray