EECS 336: Introduction to Algorithms P vs. NP (cont.)

Lecture 16

INDEP-SET, CIRCUIT-SAT

Reading: 8.1-8.4

Last time:

• \mathcal{NP} -completeness

• "notorious problem" NP.

• redutions from 3-SAT.

Today:

• INDEP-SET $\leq_{\mathcal{P}} 3$ -SAT

• NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT $\leq_{\mathcal{P}}$ 3-SAT

Problem 1: Independent Set (INDEP-SET)

input: G = (V, E)

output: $S \subset V$

• satisfying $\forall v \in S, (u, v) \notin E$

 \bullet maximizing |S|

Problem 4: 3-SAT

input: boolean formula $f(\mathbf{z})$

- in conjunctive normal form (CNF)
- three literals per or-clause
- or-clauses anded together.

output:

- "Yes" if assignment **z** with $f(\mathbf{z}) =$ T exists
- "No" otherwise.

Independent Set

Recall: INDEP-SET (decision problem)

input: G = (V, E), k

output: $S \subset V$

• satisfying $\forall v \in S, (u, v) \notin E$

• $|S| \ge k$

Lemma: INDEP-SET is \mathcal{NP} -hard.

Proof: (reduction from 3-SAT)

Step 1: convert 3-SAT instance f into INDEP-SET instance (G, k_i) teral j in clause i

- vertices v_{ij} correspond to literals l_{ij}
- edges for:
 - clause (in triangle)
 "at most one vertex selected per clause"
 - conflicted literals.
 "vertices for conflicting literals cannot be selected"
- "vertex v_{ij} is selected" \Rightarrow "literal l_{ij} is true".
- "indep set of size $m \Leftrightarrow$ "satisfying assignment"

Example: $f(z_1, z_2, z_3, z_4) = (z_1 \lor z_2 \lor z_3) \land (\bar{z}_2 \lor \bar{z}_3 \lor \bar{z}_4) \land (\bar{z}_1 \lor \bar{z}_2 \lor z_4)$

Step 2: construction is polynomial time. one vertex per literal.

Step 3: show construction correct.

- (a) if f is satisfiable then G has indep. set size > m.
 - f is sat
 - \Rightarrow exists **z** so each clause is true.
 - let S' be nodes in G corresponding to true literals.
 - if more than one node in S' in same triangle drop all but one.

$$\Rightarrow S$$
.

- |S| = m.
- for all $u, v \in S$,
 - u & v not in same triangle.
 - l_u and l_v both true
 - \Rightarrow must not conflict
 - \Rightarrow no (l_u, l_v) edge in G.
 - so S is independent.
- (b) if G has indep. set S size $\geq m$ then f is satisfiable.
 - (a) construct assignment \mathbf{z} from SFor each z_r

• if nodes in S are labeled by z_r (but not \bar{z}_r)

$$\Rightarrow \text{ set } z_r = 1$$

• if nodes in S are labeled by \bar{z}_r (but not z_r)

$$\Rightarrow \text{ set } z_r = 0$$

• if no $v \in S$ is labeled z_r or \bar{z}_r

$$\Rightarrow$$
 set $z_r = 1$ (or 0, doesn't matter)

Note: no two nodes $u, v \in S$ labeled by both z_r or \bar{z}_r , if so, there is (u, v) edge so S would not be independent.

- (b) $f(\mathbf{z}) = T$:
 - S has $|S| \ge m$
 - can have at most one node from each triangle
 - \Rightarrow have exactly one from each triangle
 - $\Rightarrow |S| = m$
 - $v \in S$ means literal l_v is true.
 - \Rightarrow one true literal per clause
 - $\Rightarrow f(\mathbf{z}) = T.$

QED

Circuit Satisfiability

Example:

Problem 4: CIRCUIT-SAT

input: boolean circuit $Q(\mathbf{z})$

- directed acyclic graph G = (V, E)
- internal nodes labeled by logical gates:

• leaves labeled by variables or constants

$$T, F, z_1, \ldots, z_n$$
.

 \bullet root r is output of circuit

output:

- "Yes" if exists \mathbf{z} with $Q(\mathbf{z}) = T$
- "No" otherwise.

Lemma: CIRCUIT-SAT is \mathcal{NP} -hard.

Proof: (reduce from NP)

- goal: convert NP instance (VP, p, x) to CIRCUIT-SAT instance Q
- $VP(\cdot, \cdot)$ polynomial time

- \Rightarrow computer can run it in poly steps.
- each step of computer is circuit.
- output of one step is input to next step
- unroll p(|x|) steps of computation
 - $\Rightarrow \exists \text{ poly-size circuit } Q'(\mathbf{x}, \mathbf{c}) = VP(x, c)$
- hardcode **x**: $Q(\mathbf{c}) = Q'(\mathbf{x}, \mathbf{c})$
- Conclusion: Q is sat iff exists c with VP(x,c) = "verified".

QED

3-SAT

Problem 4: 3-SAT

input: boolean formula $f(\mathbf{z})$

- in conjunctive normal form (CNF)
- three literals per or-clause
- or-clauses anded together.

output:

- "Yes" if assignment \mathbf{z} with $f(\mathbf{z}) = T$ exists
- "No" otherwise.

Problem 5: LE3-SAT

"like 3-SAT but $\underline{\text{at most}}$ 3 literals per orclause"

Note: $\leq_{\mathcal{P}}$ is transitive: if $Y \leq_{\mathcal{P}} X$ and $X \leq_{\mathcal{P}} Z$ then $Y \leq_{\mathcal{P}} Z$.

Recall: NP $\leq_{\mathcal{P}}$ CIRCUIT-SAT

Plan: CIRCUIT-SAT $\leq_{\mathcal{P}}$ LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

Lemma: LE3-SAT $\leq_{\mathcal{P}}$ 3-SAT

Step 1: convert LE3-SAT instance f' into 3-SAT instance f

- $f \leftarrow f'$
- add variables w_1, w_2
- add w_i to 1- and 2-clauses

$$(l_1) \Rightarrow (l_1 \vee w_1 \vee w_2).$$

$$(l_1 \vee l_2) \Rightarrow (l_1 \vee l_2 \vee w_1).$$

• ensure $w_i = 0$ add variables y_1, y_1 and clauses:

$$(\bar{w}_i \vee y_1 \vee y_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee y_2)$$

$$(\bar{w}_i \vee y_1 \vee \bar{y}_2)$$

$$(\bar{w}_i \vee \bar{y}_1 \vee \bar{y}_2)$$

Step 2: construction is polynomial time.

Step 3: f is sat iff f' is sat.

• given satisfying assignment $(\bar{z}, w_1, w_2, y_1, y_2)$ to f,

$$\Rightarrow w_i = F$$
 by construction.

$$\Rightarrow f(\bar{z}, F, F, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow} f(\bar{z})$$

$$\Rightarrow f \text{ is sat.}$$

- given satisfying assignment \bar{z} to f',
 - $f(\bar{z}, w_1, w_2, y_1, y_2) \stackrel{\text{simplify}}{\Longrightarrow}$ "clauses with only w_i and y_i "
 - set $w_i = F$ and $y_i = F$ (or anything) to satisfy. **QED**

Example:

Proof: (reduce from CIRCUIT-SAT)

Step 1: convert CIRCUIT-SAT instance Q into 3-SAT instance f

- variables x_v for each vertex of Q.
- encode gates
 - **not**: if v not gate with input from u

need $x_v = \bar{x}_u$

$$\begin{array}{c|cccc}
x_v \setminus x_u & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

 \Rightarrow add clauses $(x_v \lor x_u) \land (\bar{x}_v \lor \bar{x}_u)$

• or: if v is or gate from u to wneed $x_v = x_u \wedge x_w$

$x_v \setminus x_u x_w$	00	01	11	10
0	1	0	0	0
1	0	1	1	1

- $\Rightarrow \text{ add clauses } (\bar{x}_v \vee x_u \vee x_w) \wedge (x_v \vee \bar{x}_u) \wedge (x_v \vee \bar{x}_w)$
- and: if v is and gate from u to w
 - \Rightarrow add clauses $(x_v \vee \bar{x}_u \bar{x}_w) \wedge (\bar{x}_v \vee x_u) \wedge (\bar{x}_v \vee x_w)$.
- 0: if v is 0 leaf.

need
$$x_v = 0$$

 \Rightarrow add clause (\bar{x}_v)

need
$$x_v = 1$$

• 1: if v is 1 leaf.

 \Rightarrow add clause (x_v)

• literal: if v is literal z_i

 \Rightarrow do nothing

• root: if v is root

need $x_v = 1$

 \Rightarrow add clause (x_v) .

Step 2: construction is polynomial time.

• at most 3 clauses in f per node in Q.

Step 3: construction is correct (i.e., Q is sat iff f is sat.)

- f constrains variables v_i to "proper circuit outcomes".
- if exists **z** s.t. $f(\mathbf{z})$ is T,

then can read \mathbf{x} from \mathbf{z} and \mathbf{z} encodes proper circuit outcome to make Q output T for this \mathbf{x} .

ullet if Q outputs T for some ${f x}$

then can map \mathbf{x} and values at nodes to variables \mathbf{z} such that $f(\mathbf{z})$ is true.

QED

Lemma: 3-SAT is in NP

Proof: Certificate is assignment **z**.

Theorem: 3-SAT is NP-complete.

Proof: from lemmas.

Note: 2 steps to NP-completeness

- 1. $X \in \mathcal{NP}$
- 2. X is \mathcal{NP} -hard (via reduction)

3 steps to reduction

- 1. construction
- 2. runtime of construction
- 3. correctness of construction (iff)