Yarim additiv funksionallar

X kompaktli Hausdorf fazosi boʻlsin. C(X) orqali barcha uzluksiz $\varphi\colon X\to\mathbb{R}$ funksiyalarning nuqtali amallar va sup-normaga nisbatan Banax algebrasini belgilaylik. Norma

$$\|\varphi\| = \sup\{|\varphi(X)| : x \in X\},$$

tenglik orqali aniqlanadi. Har bir $c \in \mathbb{R}$ uchun $c_X(x) = c$, $x \in X$ tenglik bilan aniqlangan doimiy funksiyani c_X bilan belgilaymiz. φ , $\psi \in C(X)$ boʻlsin. U holda $\varphi \leq \psi$ tengsizlik barcha $x \in X$ uchun $\varphi(x) \leq \psi(x)$ ekanligini bildiradi.

1.1-Ta'rif. μ : $C(X) \to \mathbb{R}$ funksional:

- 1. agar barcha $c \in \mathbb{R}$ va $\varphi \in C(X)$ lar uchun $\mu(\varphi + c_X) = \mu(\varphi) + c$ tenglik bajarilsa, *kuchsiz additiv* deyiladi;
- 2. agar $\varphi \leq \psi$ boʻladigan har qanday φ , $\psi \in C(X)$ funksiyalar juftligi uchun $\mu(\varphi) \leq \mu(\psi)$ boʻlsa, *tartibni saqlaydi* deyiladi;
 - 3. agar $\mu(1_X) = 1$ bo'lsa, *normalangan* deyiladi;
- 4. agar barcha $\varphi \in C(X)$, $t \in \mathbb{R}_+ = [0, +\infty)$ uchun $\mu(t\varphi) = t\mu(\varphi)$ boʻlsa, *musbat bir jinsli* deyiladi;
- 5. agar barcha φ , $\psi \in C(X)$ funksiyalar uchun $\mu(\varphi + \psi) \leq \mu(\varphi) + \mu(\psi)$ boʻlsa, *yarim additiv* deyiladi.
- X kompaktli Hausdorf fazosi uchun yuqorida koʻrsatilgan beshta shartni qanoatlantiruvchi barcha $\nu \colon C(X) \to \mathbb{R}$ funksionallar toʻplamini OS(X) bilan belgilaymiz. Qisqalik uchun bunday funksionallarni yarim additiv funksionallar deb yuritamiz.