FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

a 2012-es Nat-ra épülő vizsgakövetelmények szerint

2022. május 17. 8:00

Időtartam: 120 perc

Pótlapok száma		
Tisztázati		
Piszkozati		

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika
középszint

Név: osztály:.....

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

A feladatlapban nem jelölt források a javítási-értékelési útmutatóban szerepelnek.

Fizika
középszint

Név: osztály:.....

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.)

1. Egy egyenes út mentén sebességmérő berendezés áll, és egy autó sebességét méri. A mérési adatokat grafikonon is megjeleníti. A mérést abban a pillanatban kezdi, amikor az autó elhaladt a berendezés mellett. A grafikonon melyik pont tartozik ahhoz a pillanathoz, amikor az autó a legtávolabb volt a mérőberendezéstől?

- A) Az A pont.
- **B)** A B pont.
- **C)** A C pont.
- **D)** A D pont.

2 pont

- 2. Az épületek téli fűtése során milyen módon történhet energiaveszteség?
 - A) Hőáramlással.
 - B) Hővezetéssel.
 - C) Hősugárzással
 - D) Mindhárom módon történhet.

- 3. Az atommagon belüli szomszédos protonok között többféle erő hat. Melyik erő a legkisebb az alábbiak közül?
 - A) A gravitációs erő.
 - B) Az elektromos erő.
 - C) A magerő.

Fizika
középszin

4. Puszta kezünkkel általában nem tudjuk összeroppantani egy dió kemény héját, a képen látható diótörő segítségével viszont igen. Mi lehet ennek az oka?

- **A)** Mert így a dióra ható forgatónyomaték többszöröse annak a forgatónyomatéknak, amit a kezünk a diótörő nyelére kifejt.
- **B)** Mert így a dióra ható erő többszöröse annak az erőnek, amit a kezünk a diótörő nyelére kifejt.
- C) Mert a diótörő és a dió héja közti súrlódás nagyobb, mint a dió és a kezünk bőre közti súrlódás.

5. Két különböző fajta, de azonos tömegű anyagot melegítünk egy ismert teljesítményű energiaforrással. Az anyagok hőmérsékletének változását mutatja a grafikon a melegítés során közölt hő függvényében. Melyik anyagnak nagyobb a fajhője?

- A) Az 1-es anyagnak nagyobb a fajhője.
- **B)** Az 2-es anyagnak nagyobb a fajhője.
- C) Az adatok alapján nem eldönthető, melyiknek nagyobb a fajhője.
- **D)** A két fajhő azonos, mert a tömegek azonosak.

- 6. Két esetet vizsgálunk: az egyikben egy adott távolságra van két elektron, a másikban az előzővel megegyező távolságra van egy elektron és egy proton. Melyik esetben lesz nagyobb a két részecske között fellépő Coulomb-erő abszolút értéke?
 - A) A két elektron esetében.
 - **B)** Az elektron és proton esetében.
 - C) A két esetben a Coulomb-erő abszolút értéke azonos.

7. Egy erősen rövidlátó ember a szemétől két méterre lévő tárgyat már nem látja jól. Egy kis síktükröt tart maga elé kb. egy méterre úgy, hogy abban a tárgyat megpillanthatja, amint a b) ábrán látszik. b) Élesebben látja-e így a tárgyat? Melvik állítás igaz?

- A) Igen, mert a tükör, amit néz, csak körülbelül egy méterre van tőle.
- B) Nem, mert a tükörkép látszólagos távolsága több, mint 2 méter.
- C) Attól függ, hogy a tárgy magassága a tükör szélességénél nagyobb vagy kisebb.

8. Teljes holdfogyatkozáskor az addig fényesen világító Hold rövid időre elsötétül. Hogyan helyezkedik el ekkor a Nap, a Föld és a Hold egymáshoz képest?

- A) Ahogy az 1. ábrán látszik.
- **B)** Ahogy a 2. ábrán látszik.
- C) Ahogy a 3. ábrán látszik.

9. Egy nyílvesszőt ferdén felfelé lövünk ki. Mekkora a gyorsulása pályája tetőpontján? (A légellenállás elhanyagolható.)

- **A)** A gyorsulása 0 m/s²
- B) A gyorsulása g.
- C) A sebességétől függ.

2 pont

2212 írásbeli vizsga 5 / 16 2022. május 17.

Fizi köz	ika épszint	Név:	osztály:
	Az ák függő	orán egy ciklotron látható. A mágneses indukció őlegesen felfelé mutat. Milyen töltésű részecskét sítanak éppen, ha az a szaggatott vonal mentén	ekvenciájú váltakozóáram D
	A) B) C) D)	Pozitívat. Negatívat. Semlegeset. Semlegeset biztosan nem, de pozitívat és negatívat is gyorsítha	tnak.
11.	végre limon árnyo pohá ugyan látun	g, csapadékmentes nyári napokon egy kísérletet hajtunk e kétszer, kedden és szerdán. Mindkétszer egy pohár hideg nádét veszünk ki a hűtőszekrényből, és a teraszon az ékban lévő asztalra állítjuk. Kedden a levegő 30 °C-os és a ron hamar nagy vízcseppek jelennek meg. Szerdán ncsak 30 °C van, de a poháron pár perc elteltével sem k vízcseppeket. Melyik, a levegőre vonatkozó állítás varázza a különbséget?	
	A) B) C)	Kedden magasabb volt a levegő páratartalma. Kedden nagyobb volt a szélsebesség. Kedden nagyobb volt a légnyomás.	
			2 pont
12.	rezgő	rugóra függesztett kis test függőleges egyenes mentén ómozgást. Mozgása során melyik pillanatban a legnagyobb anikai energiája (a mozgási, helyzeti és rugóenergia összege)	a rendszer összes
	A)	Amikor a test a felső holtponton van.	

- B) Amikor a test az alsó holtponton van.
- Amikor a test az egyensúlyi helyzeten halad át. **C**)
- Egyforma lesz a mechanikai energiák összege mindhárom esetben.

2 pont	

Fizika
középszint

Név:	osztály:

- 13. Egy laboráns előkészített egy radioaktív mintát az aktivitásának megmérésére. A kutatók 13:00 órakor megkezdték a mérést. 13 óra 20 perckor a minta aktivitását 5000 Bq-nek mérték. A minta felezési ideje 40 perc. Mekkora volt a minta aktivitása 13:00 órakor?
 - A) A minta aktivitása kevesebb, mint 7500 Bq volt.
 - **B)** A minta aktivitása körülbelül 7500 Bq volt.
 - C) A minta aktivitása több, mint 7500 Bq volt.

14. A mellékelt ábrán egy műanyagból készült alakzatot láthatunk. Az egyik fele pozitív elektromos töltéssel rendelkezik, a másik fele negatív töltéssel. Az alakzatot egy tűs állványon kiegyensúlyozzuk, így könnyen elfordulhat. Mi történik, amikor elengedjük?

- **A)** A tárgy elfordul úgy, hogy a pozitív töltéssel rendelkező csúcs észak felé mutasson.
- **B)** A tárgy elfordul úgy, hogy a pozitív töltéssel rendelkező csúcs dél felé mutasson.
- C) A tárgy elfordul úgy, hogy a hosszanti tengely az Egyenlítővel lesz párhuzamos.
- **D)** A tárgy elhelyezkedését az égtájak nem befolyásolják.

2 pont

15. Egy zárt doboz egyik oldalán kicsiny lyuk van, amelyet egy polárszűrő fed be. A lyukra napfény esik. Milyen fény hatol a polárszűrőn keresztül a dobozba?

- A) Nem polarizált fény, hiszen a polarizált fényt a polárszűrő nem engedi át.
- B) Polarizált fény, hiszen a polárszűrő csak polarizált fényt enged át.
- C) Nem lép fény a dobozba, mert a polárszűrő csak polarizált fényt enged át, de a nap fénye nem polarizált.

Fizi köze	ka épszint	Név:	osztály:
16.		egyenletes körmozgást végző test kerületi sebességének nagy t-e különböző a rájuk ható eredő erők nagysága?	rsága megegyezik.
	A)	Nem, mert ha a kerületi sebességük azonos, akkor a perióduside azonos.	jük is
	B)	Igen, de csak akkor, ha a tömegük különböző.	
	Ć)	Igen, de csak akkor, ha a pályájuk sugara különböző.	
	D)	Igen, ha a tömegük, a pályájuk sugara, vagy mindkettő különböz	ző.
			2 pont
17.	másil	újratölthető ceruzaelemen a következő adatokat látjuk: 1,2 V kon pedig a következőket: 1,2 V, 2600 mAh. Mi a különbség a ennapi használatban?	-
	A) B)	Nincs különbség, hiszen mindkét elem 1,2 V feszültségű. Az első elemet hosszabb idő alatt lehet feltölteni (1800 mA áran mint a másodikat (2600 mA áranmal).	nmal),
	C) D)	A másodikat többször lehet újratölteni (2600-szor), mint az esőt szor).	
			2 pont
18.	Mit é	rtünk Brown-mozgás alatt?	
	A)	A folyadékokban és gázokban lebegő részecskék állandó, véletle mozgását.	enszerű
	B)	Az atomokban az elektronok állandó hullámmozgását.	
	C)	Az atommagban a nukleonok állandó, véletlenszerű mozgását.	
			2 pont
19.	Hogy elsüll	an változik a medence vízszintje, ha a felszínén úszó üres yed?	alumíniumcsónak
	A)	A vízszint csökken.	
	B)	A vízszint nő.	
	C)	A vízszint nem változik.	
			2 pont

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy 60 kg tömegű sífutó 0 °C hőmérsékletű havon, vízszintes, egyenes pályán síel. A hó és a sítalp közötti súrlódási együttható 0,15. Tegyük föl, hogy a súrlódás által keltett hő fele fordítódik a sítalp alatti hó megolvasztására.

Legfeljebb milyen messzire jutott a síelő, ha útja során 1 kg havat olvasztott meg?

$$g = 9.8 \frac{\text{m}}{\text{s}^2}, \ \text{L}_{\text{jég}} = 334 \ \frac{kJ}{kg}$$

Összesen

Fizika középszint	Név:	osztály:
102 - po21110		

2. Lézeres fúzió

Kutatók rekordméretű energiakitörést értek el a fúzió létrehozásának nem szokványos módszerével. Ahelyett, hogy a máshol bevett, zárt tárolót használták volna, a világ legnagyobb lézersugaraival lőttek egy kis hidrogéngömböcskére (pelletre). A mindössze borsó méretű hidrogénpelletre 192 óriás lézert irányítottak az észak-kaliforniai Lawrence Livermore Nemzeti Laboratórium (LLNL) kutatói, ezáltal 1,3 megajoule energia szabadult fel a fúziós reakcióban száz másodperc billiomod része (10-10 s) alatt. Ez hozzávetőleg 7 százalékát teszi ki annak a teljesítménynek, amely a Nap sugárzása révén éri a Föld teljes felületét. Még fontosabb információ, hogy a felszabaduló energia mintegy 70 százaléka annak az energiának, amit a gömböcske a lézerekből elnyelt. A fúziós kutatások célja ugyanis energiatöbblet létrehozása, azaz annak elérése, hogy a pellet a fúzió során az elnyelt energiánál több energiát bocsásson ki.

(a https://qubit.hu/2021/08/23 alapján)

Válaszoljon az alábbi kérdésekre!

- a) Milyen atommagfizikai folyamatot tanulmányoztak a fent leírt kísérletben?
- b) Elmondhatjuk-e, hogy a kísérlet összességében energetikailag nyereséges volt? Válaszát indokolja!
- c) Mennyiben azonos a tanulmányozott folyamat és a Nap energiatermelése?
- d) Mekkora a kísérletben észlelt teljesítmény, és mekkora a Földre érkező napsugárzás teljesítménye?

a)	b)	c)	d)	Összesen
4 pont	3 pont	2 pont	6 pont	15 pont

2212 írásbeli vizsga 11 / 16 2022. május 17.

Név:	ogztólyv
INGV	USZtary

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A A mellékelt fényképen egy kosárlabdát dobó robot látható és a sorozatfelvétel az általa eldobott labda pályáját is mutatja 0,08 másodperces lépésekben. A labda pályájának koordinátáit az alábbi táblázat tartalmazza, a kezdőpontot térben és időben az eldobás helyének és pillanatának választottuk, a labdát a kosárba érkezéséig követtük.

t(s)	0	0,08	0,16	0,24	0,32	0,40	0,48	0,56	0,64	0,72	0,80	0,88
x (m)	0	0,38	0,79	1,18	1,59	2,05	2,47	2,85	3,27	3,69	4,03	4,45
y (m)	0	0,45	0,81	1,08	1,37	1,62	1,71	1,75	1,76	1,75	1,71	1,58

- a) Ábrázolja a labda mozgásának x és y koordinátáit külön-külön az idő függvényében!
- b) Határozza meg a labda vízszintes sebességkomponensének nagyságát!
- c) A mozgás során mikor ért a labda a pálya legmagasabb pontjára?
- d) Milyen messze van az eldobás helyétől a gyűrű? (Azaz mekkora a labda elmozdulása az eldobás pillanatától a kosárba érkezésig?)

a)	b)	c)	d)	Összesen
10 pont	4 pont	2 pont	4 pont	20 pont

3/B Egy légritkított csőben nagy feszültség segítségével elektronokat gyorsítunk, amelyek a cső végén lévő ernyőre érkeznek az ábrán látható módon. Ha a cső köré nagy méretű patkómágnest helyezünk, akkor az elektronok eltérülnek, és a középponthoz képest y távolsággal lejjebb érnek az ernyőre, közvetlenül a középpont alatt. Az ernyő anyaga a becsapódó elektronok hatására világít, így látszik, mennyire térültek el az elektronok az egyenes iránytól. A mágnespatkó pólusai között a mágneses mező jó közelítéssel homogén.

(A gravitációs tér hatása elhanyagolható.)

- a) Magyarázza el, hogy miért térülnek el az elektronok a mágnes hatására!
- b) Milyen pályán mozognak az elektronok a mágneses mező homogénnek tekinthető részén, és milyenen a mágneses mezőt elhagyva?
- c) Határozza meg, hogy az ábrán látható mágnesnek melyik az északi pólusa!
- d) Hogyan változik a mágneses mezőn áthaladó elektronok sebessége?
- e) Hogyan változna az eltérítés y távolsága, ha erősebb mágnest használnánk? Válaszát indokolja!
- f) Hogyan változna az eltérítés y távolsága, ha a gyorsítófeszültséget növelnénk? Válaszát indokolja!

a)	b)	c)	d)	e)	f)	Összesen
2 pont	4 pont	2 pont	4 pont	4 pont	4 pont	20 pont

Fizika középszint	Név:	osztály:

	pontszám	
	maximális	elért
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	

dátum	javító tanár

	•	ma egész kerekítve
	elért	programba beírt
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		

dátum	dátum		
javító tanár	jegyző		