LIGHT SLOTTED OPTO COUPLER MODULE - HR0037

Specifications	
Function	Slotted Opto Coupler
Model	KY-010
Chip type	EE-SX1103
Operating Voltage	3.3 to 5V
Dimensions	19 x 15 mm

KY-010 Light barrier-module

KY-010 Light barrier-module

Contents	
1 Picture	1
2 Technical data / Short description	1
3 Pinout	2
4 Code example Arduino	2
5 Code example Raspberry Pi	

Picture

Export: 16.06.2017

Technical data / Short description

The connection between both input pins will be interrupted if the optical barrier is beeing interrupted.

Pinout

Code example Arduino

In this program, a LED will flash up, if a signal was detected at the sensor. You can also use the modules KY-011, KY-016 or KY-029 as LEDs.

```
int Led = 13 ;// Declaration of the LED-output pin
int Sensor = 10; // Declaration of the Sensor-input pin
int val; // Temporary variable

void setup ()
{
    pinMode (Led, OUTPUT) ; // Initialization output pin
    pinMode (Sensor, INPUT) ; // Initialization sensorpin
}

void loop ()
{
    val = digitalRead (Sensor) ; // The current signal at the sensor will be read.

    if (val == HIGH) //The led will flash up, if a signal was detected.
    {
        digitalWrite (Led, HIGH);
    }
    else
    {
        digitalWrite (Led, LOW);
    }
}
```

Connections Arduino:

Export: 16.06.2017

```
 \begin{array}{lll} \text{LED} + & = & [\text{Pin } 13] \\ \text{LED} - & = & [\text{Pin } GND] \\ \text{Sensor Signal} & = & [\text{Pin } 10] \\ \text{Sensor} + V & = & [\text{Pin } 5V] \\ \text{Sensor} - & = & [\text{Pin } GND] \\ \end{array}
```


KY-010 Light barrier-module

Example program download

SensorTest_Arduino_inverted

Code example Raspberry Pi

```
# Needed modules will be imported and configured
import RPi.GPIO as GPIO
import time
GPI0.setmode(GPI0.BCM)
# The input pin which is connected with the sensor.
GPIO PIN = 24
GPIO.setup(GPIO_PIN, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
print "Sensor-Test [press ctrl+c to end the test]"
# This outputFunction will be started at signal detection
def outputFunction(null):
        print("Signal detected")
# The outputFunction will be started at the moment of a signal detection (raising edge).
GPIO.add_event_detect(GPIO_PIN, GPIO.RISING, callback=outputFunction, bouncetime=100)
# Main program loop
try:
        while True:
                time.sleep(1)
# Scavenging work after the end of the program
except KeyboardInterrupt:
        GPIO.cleanup()
```

Connections Raspberry Pi:

```
Signal = GPIO24 [Pin 18]
+V = 3,3V [Pin 1]
GND = GND [Pin 6]
```

Example program download

SensorTest_RPi_inverted

Export: 16.06.2017

To start, enter the command:

```
sudo python SensorTest_RPi_inverted.py
```


Photomicrosensor (Transmissive) **EE-SX1103**

Be sure to read Precautions on page 25.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Terminal No.	Name	
Α	Anode	
K	Cathode	
С	Collector	
E	Emitter	

Unless otherwise specified, the tolerances are ± 0.2 mm.

■ Features

- Ultra-compact with a sensor width of 5 mm and a slot width of 2 mm.
- PCB mounting type.
- High resolution with a 0.4-mm-wide aperture.

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse forward cur- rent	I _{FP}	
	Reverse voltage	V_R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter–Collector voltage	V _{ECO}	4.5 V
	Collector current	I _C	30 mA
	Collector dissipa- tion	P _C	80 mW (see note 1)
Ambient tem-	Operating	Topr	–25°C to 85°C
perature	Storage	Tstg	–30°C to 100°C
Soldering temperature		Tsol	260°C (see note 2)

- Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25 $^{\circ}\text{C}.$
 - 2. Complete soldering within 3 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V_{F}	1.3 V typ., 1.6 V max.	I _F = 50 mA
	Reverse current	I _R	10 μA max.	V _R = 5 V
	Peak emission wavelength	λ_{P}	950 nm typ.	I _F = 50 mA
Detector	Light current	IL	0.5 mA min.	I _F = 20 mA, V _{CE} = 5 V
	Dark current	I_D	500 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}		
	Collector–Emitter saturated voltage	V _{CE} (sat)	0.4 V max.	$I_F = 20 \text{ mA}, I_L = 0.3 \text{ mA}$
	Peak spectral sensitivity wave- length	λ_{P}	800 nm typ.	V _{CE} = 5 V
Rising time		tr	10 μs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_F = 20 mA
Falling time		tf	10 μs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_F = 20 mA

■ Engineering Data

Forward Current vs. Forward Voltage Characteristics (Typical)

Light Current vs. Forward Current Characteristics (Typical)

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time vs. Light Current Characteristics (Typical)

Sensing Position Characteristics (Typical)

Sensing Position Characteristics (Typical)

Response Time Measurement Circuit

Input o

