

9/

RADC-TR-77-150 Final Technical Report May 1977

RANDOM ACCESS MEMORY FAULT LOCATION CAPABILITY OF THE ALGORITHM TEST SEQUENCE

Syracuse University

DE FILE COPY

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public including foreign nations.

This report has been reviewed and is approved for publication.

APPROVED:

Otting Coppela

ANTHONY COPPOLA Project Engineer

APPROVED:

JOSEPH J. NARESKY

Chief, Reliability & Compatibility Division

FOR THE COMMANDER: John P. Kuss

JOHN P. HUSS

Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

(4) TR-76-10

19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
RADC TR-77-150	NO. 3. RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED
RANDOM ACCESS MEMORY FAULT LOCATION CAPABILITY OF THE ALGORITHM TEST SEQUENCE.	Jun Oct 176,
La grand of the state of the st	6. PERFORMING ORG. REPORT NUMBER
Knaizuk, Jr. C. R. P. Hartmann	5 F30602-71-C-0312
PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse University Department of Industrial Engineering	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Syracuse NY 13210	45400526
Rome Air Development Center (RBRT) Griffiss AFB NY 13441	May 177
GITTISS AFD NI 13441	13. NUMBER OF PAGES 417.
Same (6)4540	UNCLASSIFIED
The second secon	
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlim	
Approved for public release; distribution unlim	nited.
Approved for public release; distribution unlim 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different Same	nited.
7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Anthony Coppola (RBRT) 9. KEY WORDS (Continue on reverse side if necessary and identity by block number Reliability Random/ Access Memory Fault Location	nt from Report)
Approved for public release; distribution unlim Distribution Statement (of the obstract entered in Block 20, if difference in Same Same Supplementary notes RADC Project Engineer: Anthony Coppola (RBRT) RET WORDS (Continue on reverse side if necessary and identify by block number Reliability Random/ Access Memory Fault Location Testing	nt from Report)
Approved for public release; distribution unlim Distribution Statement (of the obstract entered in Block 20, if difference and same Same Supplementary notes RADC Project Engineer: Anthony Coppola (RBRT) RET WORDS (Continue on reverse side if necessary and identify by block number Reliability Random/ Access Memory Fault Location	mber) Lee (ATS) designed to provide an aults in a random access memory.
Approved for public release; distribution unlim DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if difference in Same Same Supplementary notes RADC Project Engineer: Anthony Coppola (RBRT) KEY WORDS (Continue on reverse side if necessary and identify by block number in Reliability Random/ Access Memory Fault Location Testing BSTRACT (Continue on reverse side if necessary and identify by block number in the second i	mber) Lee (ATS) designed to provide an aults in a random access memory.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

4 \$ 9 184 V

	(When Deta Entered)
00	

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

EVALUATION

The algorithm investigated in this volume will be of immediate use in memory testing, particularly as a preliminary test to verify the existence of each bit in a memory prior to testing for pattern sensitivities. It should be pointed out that the assumption of noncreative decoders may not be reasonable without an additional set of output test points, since while inverted inputs are not used, the example given immediately provides all inverted outputs, and if one of the inverters fails, the decoder will become creative.

anthony coppola

Project Engineer

I. INTRODUCTION

This paper is a continuation of the analysis of an optimal test sequence for detecting stuck-at (s-a) faults in a Random Access Memory (RAM). The past two papers (1), (2) on the Algorithm Test Sequence (ATS) have investigated the ability of the ATS to detect s-a faults. The first paper (1) deals with any single s-a-0 or s-a-1 fault while the second paper (2) shows the ability of the ATS to detect any combination of multiple s-a-0 and s-a-1 faults in a RAM. In this paper we will analyze the capability of the ATS to diagnose (locate) any single s-a fault.

Each subsystem of a RAM will be analyzed and to provide insight a computer program to simulate a 32 x 1 bit RAM with induced errors will be tested by another computer program.

For completness we will again present the ATS.

II. ATS - An Optimal RAM Test Algorithm

In order to obtain greater diagnostic capability from the ATS the sequence of operations in the last steps have been permutated. The new sequence is given below and then summarized in Figure 1.

Before stating the algorithm let us introduce some notations.

Let
$$A_{\mu}$$
 be the memory address μ , $0 < \mu < 2^n$.

Let:

$$\pi_0 = [A_{\mu} \mid \mu = 0 \pmod{3}]$$
 $\pi_1 = [A_{\mu} \mid \mu = 1 \pmod{3}]$
 $\pi_2 = [A_{\mu} \mid \mu = 2 \pmod{3}]$

Algorithm:

Step 1 Write the all-0 word, W_0 , at all locations $A_j \in \pi_1$ and $A_k \in \pi_2$

Step 2 Write the all-1 word, W_1 , at all locations $A_1 \in \pi_0$

Step 3 Read all locations $A_j \in \pi_1$ If output $\begin{cases} = W_0; \text{ no fault indicated} \\ \neq W_0; \text{ RAM fault indicated} \end{cases}$

Step 4 Write the all-1 word, W_1 , at all locations $A_j \in \pi$

- Step 5 Read all locations $A_k \in \pi_2$ If output $\begin{cases} = W_0; \text{ no fault indicated} \\ \neq W_0; \text{ RAM fault indicated} \end{cases}$
- Step 6 Read all locations $A_i \in \pi_0$ If output $\begin{cases} = W_1; \text{ no fault indicated} \\ \neq W_1; \text{ RAM fault indicated} \end{cases}$
- Step 7 Write the all 0 word, W_0 , at all locations ${\bf A_i} \ {\bf \epsilon} \ {\bf \pi}_0$
- Step 8 Write the all 1 word, W_1 , at all locations $\frac{A_k}{k} \in \pi_2$
- Step 9 Read the all 0 word, W_0 , at all locations $A_i \in \pi_0$

If output $\begin{cases} = W_0; \text{ no fault indicated} \\ \neq W_0; \text{ RAM fault indicated} \end{cases}$

Step 10 Read the all 1 word, W1, at all locations

Step 11 Read the all 1 word, W1 at all locations

If output $\begin{cases} = W_1; \text{ no fault indicated} \\ \neq W_1; \text{ RAM fault indicated} \end{cases}$

END.

The above sequence requires a total of 4 x 2 memory accesses.

Memory Array	18.52	2022		•	ATS Step	Step					
ddresses	1	2	3	4 1945 Y C	S	9	7	&	6	10	п
inel SAS	15 26 B	Wr W		ndel sola	lias) og	Rd W ₁	Wr Wo		Rd W ₀	orașe na Fair asi	77.00
	Wr W ₀	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rd W _O Wr W ₁	Wr W ₁	1 N W	ubawa di J	Ŧ		5200 0 5		Rd W
1 2	Wr W ₀	output			Rd W ₀			Wr W ₁		Rd W ₁	of Ita

Where Wr = Write; Rd = Read

Figure 1: ATS

VI. Decoder Single Stuck-At Faults

Again we will use an APL program to simulate the behavior of single stuck-at faults in the Decoder. The test results for faults on the Decoder inputs are not shown here since they are indistinguishable from the faults in the MAR as given in Table 1. The faults within the decoder are simulated by the APL program AUTODEC and the results are tabulated in Tables 2, 3 and 4. The results for a s-a-1 output on any single AND gate in a non-creative Decoder (1) were the same. That is, if the output of an AND gate is s-a-1 then the ATS will give the same results no matter what AND gate is stuck. The results of this type of s-a-1 fault is shown in Table 2.

Fault	Lignor Iva	qu La	ATS	20 10	(MAX) version
rault	Step	3	Step	5	Step 9
Any Decoder			100		X MASIN THE
	П	1	D 46034 1	π2	"о
AND Gate Output s-a-1	the fant.		0.00		of from spirit

Table 2: ATS Output for Decoder Faults

III. MDR Single Stuck-At Fault

If the MDR contains any stuck-at bit then this bit position will remain stuck for all memory locations accessed by the ATS. This would signify that the MDR is at fault and the stuck-at bit is readily found. Note that the stuck-at bit in the MDR is found after the second wrong reading from the RAM due to our single fault assumption.

IV. Memory Array Single Stuck-At Fault

For a single stuck-at bit in a memory array word whose size is greater than one bit, diagnosis by the ATS is obtained when the erroneous word is read after or before a correct reading is obtained from the RAM.

For memory arrays with only one bit words the diagnosis for a single stuck-at fault in a word is not separated from a Memory Address Register (MAR) or a Decoder fault until the first five steps of the ATS are finished.

If any one memory array word reads wrong within the first five steps or at any point after the first five steps of the ATS, the memory array word is at fault. Otherwise the fault is in the MAR or the Decoder.

V. MAR Single Stuck-At Faults

In order to show the effects of single faults within the MAR (and Decoder) a 32 x 1 bit RAM was simulated with an APL program.

Another APL program was used to simulate all single s-a MAR faults.

These programs may be found in the Appendix of this report. The output of the ATS program for the simulated faults has been reduced to the tables that will be found in what follows.

Table 1 shows the results of the computer output for single s-a faults in a five bit MAR.

As seen from Table 1 the output of the ATS is capable of locating which bit is stuck but unable to determine if the bit is s-a-0 or s-a-1.

The only problem which exists is the inability of the ATS to distinguish between a MAR fault and a fault on the input lines of the Decoder (1), (2).

HAR				12	ATS Dete	Detected Failures	Failt	ıres				
Stuck-At Fault	Step		3	Step	. 5	Step	6.1 59	6	S	Step	п	
x s-a-0	1	7	13	(s. 47)	T,	3	6	15	1 ⁻¹ 197	7	13	
or s-a-1	19 25		31			21		27	19	25	31.	
x ₁ s-a-0	-	4	13	Eq. are	# 1 EM	0	6	12	П	4	13	
s-a-1	16	22	28	'aita	•	21		24	16	16 25	28	
x ₂ s-a-0 or	4	7	13	83.1	-	9	12	15	7	7	13	
s-a-1	22	28	31	gjalz	7	21		30	22	28	31	
x ₃ s-a-0	1	4	7	a da	odi ç	0	6	9	1	4	7	
s-a-1	16	19	22	नीव व	, Ale	18		21	16	16 19	22	
x4 s-a-0	16	13	22		П,	18	21	24	16	19	22	
s-a-1	25 28		31		8723 61 g	27	dani	30	25	28	31	
							-					ļ

Table 1: ATS Output for MAR Faults

Therefore we cannot locate a s-a-l fault on the output of an AND gate within the Decoder.

Table 3 presents the results for a s-a-1 fault on a single input to an AND gate. Choosing a s-a-0 on any input or output of an AND gate yields Table 4. Here we have assumed that W_0 is read by the MDR when no line is accessed.

3 Step 5 25 28 31 16 19 22 22 28 31 16 25 28 19 25 31 2 11 14 23 26 2 11 17 23 29 2 11 14 23 26 2 11 17 23 29 2 11 17 23 29 2 11 17 23 29 5 11 17 23 29 5 8 17 20 29 5 8 17 20 29 5 8 17 20 29					eri.	
inne s-a-1 % Step 3 Step 5 iq xq 16 19 22 25 28 31 5 5 iq xq 1 4 7 16 19 22 3 iq xq 4 7 13 22 28 31 5 iq xq 1 4 13 16 25 28 5 iq xq 1 7 13 19 25 31 2 11 14 23 26 iq xq 7 19 31 2 11 14 23 26 iq xq 7 19 31 2 11 14 23 26 iq xq 7 19 31 2 11 14 23 26 iq xq 7 19 31 2 11 14 23 26 iq xq 7 19 31 2 11 14 23 26 iq xq 1 13 25 5 11 17 23 29 iq xq 1 13 25 5 8 17 20 29 iq xq 1 13 25 5 8 17 20 29 iq xq 1 13 25 5 8 17 20 29 iq xq 1 13 25 5 8 17 20 29 iq xq 1 13 25 5 8 17 20 29 iq xq	Decoder	Input			Failure	
\$4 \$\bar{x}_4\$ 16 19 22 25 28 31 \$3 \$\bar{x}_3\$ 1 4 7 16 19 22 \$2 \$\bar{x}_2\$ 4 7 13 22 28 31 \$2 \$\bar{x}_2\$ 4 7 13 12 28 31 \$1 \$\bar{x}_1\$ 1 4 13 16 25 28 \$2 \$\bar{x}_2\$ 1 7 13 19 25 31 \$2 \$\bar{x}_2\$ 1 7 13 19 25 31 \$2 \$\bar{x}_1\$ 1 13 25 5 11 17 23 29 \$2 \$\bar{x}_1\$ 4 16 28 2 8 14 20 26 \$2 \$\bar{x}_1\$ 4 16 28 2 8 17 20 29 \$2 \$\bar{x}_1\$ 1 13 25 5 11 17 23 29 \$2 \$\bar{x}_1\$ 1 13 25 5 8 17 20 29 \$2 \$\bar{x}_1\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$2 \$\bar{x}_1\$ \$\bar{x}_1\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$2 \$\bar{x}_1\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$2 \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2\$ \$\bar{x}_2	Gate	line s-a-1	*			
\bar{x}_4 16 19 22 25 28 31 \bar{x}_3 1 4 7 16 19 22 \bar{x}_2 4 7 13 22 28 31 \bar{x}_1 1 4 13 16 25 28 \bar{x}_0 1 7 13 19 25 31 x_0 1 7 13 19 25 31 \bar{x}_0 1 7 13 19 25 31 \bar{x}_1 1 13 25 5 11 17 23 29 x_1 4 16 28 2 8 14 20 26 x_0 1 13 25 5 8 17 20 29 \bar{x}_1 1 13 25 5 11 17 23 29 \bar{x}_0 1 13 25 5 8 17 20 29 \bar{x}_0 1 13 25 5 8 17 20 29					Step 9	Step 11
\vec{x}_3 1 4 7 16 19 22 \vec{x}_2 4 7 13 22 28 31 \vec{x}_1 1 4 13 16 25 28 \vec{x}_0 1 7 13 19 25 31 \vec{x}_0 1 7 19 31 2 11 14 23 26 \vec{x}_1 1 13 25 5 11 17 23 29 \vec{x}_1 4 16 28 2 8 14 20 26 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_1 1 13 25 5 11 17 23 29 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29	x ₄	x ₄	16 19 22 25 28 31		18 21 24 27 30	
\vec{x}_2 4 7 13 22 28 31 \vec{x}_0 1 4 13 16 25 28 \vec{x}_0 1 7 13 19 25 31 \mathbf{x}_0 1 7 19 31 2 11 14 23 26 \vec{x}_0 7 19 31 2 11 14 23 26 \mathbf{x}_1 4 16 28 2 8 14 20 26 \mathbf{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29	x ₃	x ₃	4 7		0 3 6 18 21	1 4 7 16 19 22
\vec{x}_1 1 4 13 16 25 28 \vec{x}_0 1 7 13 19 25 31 x_0 7 19 31 2 11 14 23 26 \vec{x}_1 1 13 25 5 11 17 23 29 \vec{x}_1 4 16 28 2 8 14 20 26 x_0 1 13 25 5 8 17 20 29 \vec{x}_1 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29	x ₂	$\bar{\mathbf{x}}_2$			6 12 15 21 30	
$\ddot{\mathbf{x}_0}$ 1 7 13 19 25 31 \mathbf{x}_0 7 19 31 2 11 14 23 26 $\ddot{\mathbf{x}_0}$ 7 19 31 2 11 14 23 26 $\ddot{\mathbf{x}_0}$ 7 19 31 2 11 14 23 26 \mathbf{x}_1 4 16 28 2 8 14 20 26 \mathbf{x}_0 1 13 25 5 8 17 20 29 $\ddot{\mathbf{x}_0}$ 1 13 25 5 8 17 20 29 $\ddot{\mathbf{x}_0}$ 1 13 25 5 8 17 20 29 $\ddot{\mathbf{x}_0}$ 1 13 25 5 8 17 20 29	$\bar{\mathbf{x_1}}$	$\ddot{\mathbf{x_1}}$			0 9 12 21 24	1 4 13 16 25 28
$\mathbf{x_0}$ $7 \ 19 \ 31$ $2 \ 11 \ 14 \ 23 \ 26$ $\ddot{\mathbf{x_0}}$ $7 \ 19 \ 31$ $2 \ 11 \ 17 \ 23 \ 29$ $\mathbf{x_1}$ $4 \ 16 \ 28$ $2 \ 11 \ 14 \ 23 \ 26$ $\mathbf{x_0}$ $1 \ 13 \ 25$ $5 \ 11 \ 17 \ 20 \ 29$ $\ddot{\mathbf{x_0}}$ $1 \ 13 \ 25$ $5 \ 11 \ 17 \ 20 \ 29$ $\ddot{\mathbf{x_0}}$ $1 \ 13 \ 25$ $5 \ 11 \ 17 \ 20 \ 29$ $\ddot{\mathbf{x_0}}$ $1 \ 13 \ 25$ $5 \ 8 \ 17 \ 20 \ 29$	× ₀	x ₀			3 9 15 21 27	
\vec{x}_0 113 25 5 11 17 23 29 \vec{x}_0 7 19 31 2 11 14 23 26 x_1 4 16 28 2 8 14 20 26 x_0 1 13 25 5 8 17 20 29 \vec{x}_1 1 13 25 5 11 17 23 29 \vec{x}_0 1 13 25 5 8 17 20 29 \vec{x}_0 1 13 25 5 8 17 20 29	x1 x0	× ₀	7 19 31	2 11 14 23 26	3 15 27	7 19 31
\vec{x}_0 7 19 31 2 11 14 23 26 x_1 4 16 28 2 8 14 20 26 x_0 1 13 25 5 8 17 20 29 \vec{x}_1 1 13 25 5 11 17 23 29 \vec{x}_0 1 13 25 5 11 17 23 29 \vec{x}_0 1 13 25 5 8 17 20 29		x 1	1 13 25	11	9 21	
$\mathbf{x_1}$ $4 \cdot 16 \cdot 28$ $2 \cdot 8 \cdot 14 \cdot 20 \cdot 26$ $\mathbf{x_0}$ $1 \cdot 13 \cdot 25$ $5 \cdot 8 \cdot 17 \cdot 20 \cdot 29$ $\mathbf{\bar{x_0}}$ $1 \cdot 13 \cdot 25$ $5 \cdot 11 \cdot 17 \cdot 23 \cdot 29$ $\mathbf{\bar{x_0}}$ $1 \cdot 13 \cdot 25$ $5 \cdot 8 \cdot 17 \cdot 20 \cdot 29$	x ₁ x̄ ₀	x ₀	7 19 31	Π	3 15 27	
\mathbf{x}_0 1 13 25 5 8 17 20 29 $\mathbf{\hat{x}}_1$ 1 13 25 5 11 17 23 29 $\mathbf{\hat{x}}_0$ 1 13 25 5 8 17 20 29 $-$ 1 13 25 5 8 17 20 29		* 1	4 16 28	8	0 12 24	
\vec{x}_1 1 13 25 5 11 17 23 29 \vec{x}_0 1 13 25 5 8 17 20 29	x ₁ x ₀	× ₀	13	8 17	9 21	1 13 25
x ₀ 1 13 25 5 8 17 20 29		x ₁	1 13 25	5 11 17 23 29	9 21	1 13 25
	x, x ₀	ı×.	1 13 25	8 17	9 21	
2 8 14 20 26		x ₁	4 16 28	2 8 14 20 26	0 12 24	4 16 18

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input		ATS Detected	Detected Failure	
Gate	line s-a-l	Step 3	Step 5	Step 9	Step 11
x ₂ x ₁ x ₀	x1 x0	4 7 13 22 28 31	5 14 20 23 29	6 12 15 21 30	
x2 x1 x0	x ₁ x ₀	=		=	
x ₂ x ₁ x ₀	x ₁ x ₀		•	:	
x2 x1 x0	$\bar{x}_1 \bar{x}_0$		II	•	
x2 x1 x0	0x 1x	1 10 16 19 25	2 8 11 17.26	0 3 9 18 24 27	
$\bar{x}_2 \cdot x_1 \ \bar{x}_0$	x1 x0	=	=	=	
x2 x1 x0	x ₁ x ₀	22.83 14.33	0% 3 4 at 73	200 - 12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
$\ddot{x}_1 \ddot{x}_2 \ddot{x}_0$	0 <u>x</u> 1 <u>x</u>	•	•		
x2 x1 x0	x2	7 31	11 13	15	7 31
$\mathbf{x}_2 \mathbf{x}_1 \mathbf{\bar{x}}_0$	x ₂	22	2 14 26	6 30	22
$\mathbf{x}_2 \ \bar{\mathbf{x}}_1 \ \mathbf{x}_0$	x2	13	5 17 29	21	13
$x_2 \bar{x}_1 \bar{x}_0$	x ₂	4 28	8 20	12	4 28
x ₂ x ₁ x ₀	× ₂	7 31	11 13	15	

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input		ATS Detected Failure	Failure	
	. Y	Step 3	Step 5	Step 9	Step 11
x2 x1 x0		22	2 14 26	6 30	
*2 *1 *0	x ₂	13	5 17 29	21	78. 7
$\bar{\mathbf{x}}_2 \ \bar{\mathbf{x}}_1 \ \bar{\mathbf{x}}_0$	x ₂	4 28	8 20	12	
x3 x2 x1 x6	x ₂ x ₁ x ₀	10 13 25 28 31	8 11 14 26 29	9 12 15 24 27 30	
x3 x2 x1 x0	x2 x1 x0				
x3.x2 x1 x0	x2 x1 x0	0.000	10 A	=	
*3 *2 *1 *0	*2 *1 *0			.	
x3 x2 x1 x0	x ₂ x ₁ x ₀		=	=	
x3 x2 x1 x0	x ₂ x ₁ x ₀		=		
$\mathbf{x}_3 \bar{\mathbf{x}}_2 \bar{\mathbf{x}}_1 \mathbf{x}_0$	x ₂ x ₁ x ₀			п	
$x_3 \bar{x}_2 \bar{x}_1 \bar{x}_0$	$\bar{\mathbf{x}}_2 \bar{\mathbf{x}}_1 \bar{\mathbf{x}}_0$	6		п	
x3 x2 x1 x0	x ₂ x ₁ x ₀	1 4 7 16 19 22	2 15 17 20 23	0 3 6 18 21	
$\bar{x}_3 x_2 x_1 \bar{x}_0$	$\begin{bmatrix} \mathbf{x}_2 & \mathbf{x}_1 & \bar{\mathbf{x}}_0 \end{bmatrix}$				

Decoder	Input		ATS Detected Failure	Failure	
Gate	11ne s-a-1	Step 3	s daas	Step 9	Step 11
x3 x2 x1 x0	x ₂ x ₁ x ₀	1 4 7 16 19 22	2 15 17 20 23	0 3 6 18 21	
x3 x2 x1 x0	x ₂ x ₁ x ₀		=		
x3 x2 x1 x0	x ₂ x ₁ x ₀	•	u		
x3 x2 x1 x0	x2 x1 x0		ÀS .		
x3 x2 x1 x0	x ₂ x ₁ x ₀				
x3 x2 x1 x0	$\ddot{\mathbf{x}}_2 \ddot{\mathbf{x}}_1 \ddot{\mathbf{x}}_0$			н	
*3 *2 *1 *0	x 3	7	23		
x ₃ x ₂ x ₁ x̄ ₀	×3	22	71	9	
*3 *2 *1 *0	x ₃		5 29	21	
$\mathbf{x}_3 \mathbf{x}_2 \hat{\mathbf{x}}_1 \hat{\mathbf{x}}_0$	× ₃	7	50		
x3 x2 x1 x0	x ₃	19	π	3	
x3 x2 x1 x0	x ₃		2 26	18	
x3 x2 x x0	×3	1	71		

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input		ATS Detected	Detected Failure	
Gate	line s-a-l	Step 3	Step 5	Step 9	Step 11
x3 x2 x1 x0	£x	16	∞	0	
x3 x2 x1 x0	£x.	1	23		1
x3 x2 x1 x0	£x	22	14	9	22
x3 x2 x1 x0	£3		5 29	21	
x3 x2 x1 x0	Ę×	4	20		7
x3 x2 x1 x0	£3	19	111	г	19
x3 x2 x1 x0	ĸ3		2 26	18	
x3 x2 x1 x0	ī,	1	11		1
$\bar{\mathbf{x}}_3$ $\bar{\mathbf{x}}_2$ $\bar{\mathbf{x}}_1$ $\bar{\mathbf{x}}_0$	£3	16	8	0	16
x4 x3 x2 x1 x0	x2 x2 x0	16 19 22 25 28 31	17 20 23 26 29	18 21 24 27 30	
x4 x3 x2 x1 x0	x3 x2 x1 x0	picate y	150 m	. 9558	The second secon
x4 x3 x2 x1 x0	x3 x2 x1 x0			п	
x4 x3 x2 x1 x0					

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input		ATS Detect	Detected Failure	
Gate	line s-s-1	Step 3	Step 5	Step 9	Step 11
x4 x3 x2 x1 x0	x3 x2 x1 x0	16 19 22 25 28 31	17 20 23 26 29	18 21 24 27 30	
x4 x3 x2 x1 x0	x3 x2 x1 x0				
x4 x3 x2 x1 x0	x3 x2 x1 x0	The second secon		•	
x4 x3 x2 x1 x0	x3 x2 x1 x0			•	
x4 x3 x2 x1 x0	x ₃ x ₂ x ₁				
x4 x3 x2 x1 x0	x3 x2 x1 x0			•	
x4 x3 x2 x1 x0					
x4 x3 x2 x1 x0	x3 x2 x1 x0	•	H		
x4 x3 x2 x1 x0	x ₃ x ₂ x	a .		•	
x4 x3 x2 x1 x0	x3 x2 x1 x0	n (1)			
x4 x3 x2 x1 x0	$\bar{x}_3 \bar{x}_2 \bar{x}_1$	3	9840		
x4 x3 x2 x1 x0	\bar{x}_3 \bar{x}_2 \bar{x}_1 \bar{x}_0		=	=	
x' x' x' x' x'	x, x, x, x	1 4 7 10 13	2 5 8 11 14	0 3 6 9 12 15	

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input	1 1 1 1 1 1 1 1 1 1	ATS Detected	Detected Failure	
Gate	line s-a-l	Step 3	Step 5	Step 9	Step 11
x4 x3 x2 x1 x0	x3 x2 x1 x0	ET 01 4 7 T	2 5 8 11 14	0 3 6 9 12 15	
x4 x3 x2 x1 x0	x3 x2 x1 x0	-			
x4 x3 x2 x1 x0	$x_3 x_2 \bar{x}_1 \bar{x}_0$	•	:		
x4 x3 x2 x1 x0	x ₃ x ₂ x ₁ x ₀		•		
x4 x3 x2 x1 x0	x3 x2 x1 x0	H manage			
x4 x3 x2 x1 x0	x3 x2 x1 x0	•	and the second s		
x4 x3 x2 x1 x0	$\mathbf{x}_3 \tilde{\mathbf{x}}_2 \tilde{\mathbf{x}}_1 \tilde{\mathbf{x}}_0$			•	
x4 x3 x2 x1 x0	x3 x2 x1 x0		=	п	
x4 x3 x2 x1 x0	x3 x2 x1 x0				
x4 x3 x2 x1 x0	x3 x2 x1 x0				
$\bar{\mathbf{x}}_4$ $\bar{\mathbf{x}}_3$ \mathbf{x}_2 $\bar{\mathbf{x}}_1$ $\bar{\mathbf{x}}_0$	$\bar{x}_3 x_2 \bar{x}_1 \bar{x}_0$	•			
x4 x3 x2 x1 x0	x3 x2 x1 x0	н		=	
x4 x3 x2 x1 x0	x, x, x, x				

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input		ATS Detecte	Detected Failure	
Gate	line s-a-l	Step 3	Step 5	Step 9	Step 11
x4 x3 x2 x1 x0	$\bar{\mathbf{x}}_3 \bar{\mathbf{x}}_2 \bar{\mathbf{x}}_1 \mathbf{x}_0$	1 4 7 10 13	2 5 8 11 14	0 3 6 9 12 15	
$\bar{\mathbf{x}}_4$ $\bar{\mathbf{x}}_3$ $\bar{\mathbf{x}}_2$ $\bar{\mathbf{x}}_1$ $\bar{\mathbf{x}}_0$	x3 x2 x1	10 mention of the contract of	=	-	
x4 x3 x2 x1 x0	ħχ	31			31
x4 x3 x2 x1 x0	⁹ x		14	30	
x4 x3 x2 x1 x0	⁷ x		29		
x4 x3 x2 x1 x0	ħχ	28			28
x4 x3 x2 x1 x0	⁷ x		11	27	
x4 x3 x2 x1 x0	7x		26		
x4 x3 x2 x1 x0	⁴ x	25			25
x4 x3 x2 x1 x0	7x		80	24	
x4 x3 x2 x1 x0	⁷ x	00.0	23		
x4 x3 x2 x1 x0	7×	22			22
x4 x3 x2 x1 x0	⁷ x		5	21	

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input		ATS Detecte	Detected Failure	
Gate	line s-a-l	Step 3	Step 5	Step 9	Step 11
x4 x3 x2 x1 x0	* 4		20		
x4 x3 x2 x1 x0	ħ _X	19			19
x4 x3 x2 x1 x0	×		2	18	
x x x x x x	×		17		
x_4 \tilde{x}_3 \tilde{x}_2 \tilde{x}_1 \tilde{x}_0	χ ^d	16			16
x4 x3 x2 x1 x0	x ₄	31			
x4 x3 x2 x1 x0	, x		14	30	
x4 x3 x2 x1 x0	,x		29		
x4 x3 x2 x1 x0	, x	28			
x4 x3 x2 x1 x0	×	T & 1 70 13	111	27	
x4 x3 x2 x1 x0	x ₄	8,640	26	1000	25.65
x4 x3 x2 x1 x0	x ₄	25			
$\bar{\mathbf{x}}_4$ \mathbf{x}_3 $\bar{\mathbf{x}}_2$ $\bar{\mathbf{x}}_1$ $\bar{\mathbf{x}}_0$, x		8	24	

TABLE 3: ATS Output for s-a-1 Decoder Faults (con't)

Decoder	Input		ATS Detected	Detected Failure	
Gate	line s-a-l	Step 3	Step 5	Step 9	Step 11
x4 x3 x2 x1 x0	, A		23		
x4 x3 x2 x1 x0	ıx 7	22	2		
x4 x3 x2 x1 x0	, x		5	21	
x4 x3 x2 x1 x0			20		
x4 x3 x2 x1 x0	ı X	19			
x4 x3 x2 x1 x0		08 12 S 10 TE	2	18	
$\tilde{\mathbf{x}}_4$ $\tilde{\mathbf{x}}_3$ $\tilde{\mathbf{x}}_2$ $\tilde{\mathbf{x}}_1$ \mathbf{x}_0	× ₄		17		
x4 x3 x2 x1 x0	x ₄	16	1 1 10 10 10 10		
		08 77 6 2 5			
		1 0 0 S S N	OL SERVICE		
		d de la companya de l	5.48		
Discontinue		17.6 EZA	s and find he o		

Decoder		ATS Detected	Detected Failures	
Gate s-a-0	Step 6	Step 10	Step 11	
× 4	0 3 6 9 12 15	2 5 8 11 14	1 4 7 10 13	
×3	0 3 6 18 21	2 5 17 20 23	1 4 7 16 19 22	
x ₂	0 3 9 18 24 27	2 8 11 17 26	1 10 16 25 28	
ř ₁	0 9 12 21 24	5 8 17 20 29	1 4 13 16 25 28	
x ₀	0 6 12 18 24 30	2 8 14 20 26	4 10 16 22 28	
x1 x0	3 15 27	11 23	7 9 31	
$\mathbf{x_1} \mathbf{\bar{x}_0}$	6 18 30	2 14 26	10 32	
$\bar{\mathbf{x}}_1$ \mathbf{x}_0	9 21	5 17 29	1 13 25	
$\tilde{\mathbf{x}}_1 \tilde{\mathbf{x}}_0$	0 12 24	8 20	4 16 28	
x ₂ x ₁ x ₀	15	23	7 31	
$x_2 x_1 \bar{x}_0$	6 30	14	22	
x ₂ x ₁ x ₀	21	5 29	13 Supplemental transfer	
$x_2 \bar{x}_1 \bar{x}_0$	12	20	4 28	

TABLE 4: ATS Output for s-a-0 Decoder Faults (con't)

Decoder		ATS Detected	Detected Failures	
Gate s-a-0	Step 6	Step 10	Step 11	
x ₂ x ₁ x ₀	3 27	11	19	
$\bar{x}_2 x_1 \bar{x}_0$	18	2 26	10	
$\bar{\mathbf{x}}_2$ $\bar{\mathbf{x}}_1$ \mathbf{x}_0	6	17	1 25	
\vec{x}_2 \vec{x}_1 \vec{x}_0	0 24	80	16	
x, x, x, x ₀	15		31	
$x_3 x_2 x_1 \bar{x}_0$	30	14		
x_3 x_2 \bar{x}_1 x_0		29	13	
x_3 x_2 \bar{x}_1 \bar{x}_0	12		28	
x ₃ x ₂ x ₁ x ₀	27	11		
$x_3 \bar{x}_2 x_1 \bar{x}_0$		26	10	
$x_3 \bar{x}_2 \bar{x}_1 x_0$	6	8115	25	
$x_3 \bar{x}_2 \bar{x}_1 \bar{x}_0$	24	8	The second second second	
*3 *2 *1 *0		23	7	

TABLE 4: ATS Output for s-a-0 Decoder Faults (con't)

Decoder		ATS Detect	Detected Failures	
Gate s-a-0	Step 6		Step 11	
x ₃ x ₂ x ₁ x ₀				
x3 x2 x1 x0	21	\$		
x3 x2 x1 x0		20	4	
x3 x2 x1 x0	3	(A)	19	
x3 x2 x1 x0	18	7		
x3 x2 x1 x0		17	-	
\bar{x}_3 \bar{x}_2 \bar{x}_1 \bar{x}_0	0	16		
x4 x3 x2 x1 x0			31	
x4 x3 x2 x1 x0	30			
x4 x3 x2 x1 x0		29	100	
x4 x3 x2 x1 x0		3/182		
x4 x3 x2 x1 x0	27			
x4 x3 x2 x1 x0		26		

TABLE 4: ATS Output for s-a-0 Decoder Faults (con't)

Decoder		ATS Detected	Detected Fallures
Gate s-a-0	Step 6	Step 10	Step 11
x x x x x x x			25
x, x, x, x, x, x	24		
x4 x3 x2 x1 x0		23	
x4 x3 x2 x1 x0			22
x4 x3 x2 x1 x0	21		
$\mathbf{x}_4 \mathbf{\bar{x}}_3 \mathbf{x}_2 \mathbf{\bar{x}}_1 \mathbf{\bar{x}}_0$		20	
x4 x3 x2 x1 x0			19
x4 x3 x2 x1 x0	18		
x4 x3 x2 x1 x0		17	
$\mathbf{x}_4 \ \overline{\mathbf{x}}_3 \ \overline{\mathbf{x}}_2 \ \overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_0$			16
x4 x3 x2 x1 x0	15		
x4 x3 x2 x1 x0		14	
x4 x3 x2 x1 x0		91.90 300,000	13

TABLE 4: ATS Output for s-a-0 Decoder Faults (con't)

Sate Step 6 s-a-0 Step 6 x̄q x³ x² x¹ x₀ 12 11 x̄q x³ x² x¹ x₀ 12 11 x̄q x³ x² x¹ x₀ 9 8 x̄q x³ x² x¹ x₀ 6 5 x̄q x³ x² x¹ x₀ 5 x̄q x³ x² x¹ x₀ 3 2 x̄q x³ x² x¹ x₀ 2 x̄q x³ x² x¹ x₀ 2 x̄q x³ x²	ATS Detected Failures	
9 9 9	9	
6 9 6		
6 9 6	π	
6 9 6	10	
9 8		
9 6	∞	
9 6	1	
8		
6	2	
6	4	
0		
	2	
	1	
	CENTRAL PROPERTY OF THE PROPER	

TABLE 4: ATS Output for s-a-0 Decoder Faults

From the above tables we can first conclude that any s-a-O fault within the Decoder is locatable except if the output of a Decoder AND gate on the last level (that is, a gate that chooses a Memory Array word line) is s-a-O then this fault is indistinguishable from a 1-bit Memory Array word that is s-a-O. Next we see that s-a-I faults on the input of Decoder AND gates are diagnosible to a particular gate level within the decoder. In some cases we may be able to find the erroneous gate.

VII CONCLUSION

We see that the ATS can locate certain faults within the RAM.

Certain indistinguishable faults can not be possibly distinguished unless the RAM has added circuitry just for this purpose. This is true for the MAR vs Decoder input faults and Decoder Memory Array word select line output vs 1-bit Memory Array Word. The other faults that are indistinguishable in the Decoder could be found if we expanded the ATS, but then we would not have an optimal test sequence for detecting RAM faults. The best method for alleviating the problem of indistinguishable faults is by adding some self-checking circuitry to the RAM.

APPENDIX

The following is a listing of APL computer programs used to simulate a 32 x 1 bit RAM. After the listing of some programs a partial output is shown in order to give the reader a better understanding of how the program operates.

APL Programs

1. MEMORY

Simulate a 32 x 1 bit RAM

2. ATS

Simulates the ATS on above 32 x 1 bit RAM

3. OUT

Used by and ArS to list detected faults

4. PRINT

Used by AUTODEC to indicate induced fault

5. AUTODEC

Generates the tests for all single stuck-at faults of a specific type in the Decoder of the 32 x 1 bit RAM

6. CLEAR ERRORS

Clears all previous errors induced into the 32 x 1 bit RAM

7. AUTOMAR

Generates and tests for all single stuck-at faults induced into the MAR of the 32 x 1 bit RAM

8. SETERROR

May be used to place any specific errors into the 32 x 1 bit RAM.

DWENDEL [0]A WEMORY ADDRESS [1] A THIS PROGRAM WILL SIMULATE A 32x1 BIT RANDOM ACCESS M EMORY. A ROME IS A GLOBAL VARIABLE THAT IS USED TO INDICATE IF [2] A READ OR WRITE OPERATION IS TO BE PERFORMED. A ROWR+1 IS A READ ; ROWR+0 IS A WRITE. [3] A IN IS A GLOBAL VARIABLE WHICH REPRESENTS THE INPUT TO [4] THE MDR (OR THE REQUIRED OUTPUT), EITHTER 1 OR 0. OUTPUT+STKINX+NUMACS+FO [5] SAD+ PADDRESS [6] [7] K+0 [8] LOOP: +OX (SAD (K+K+1 [9] MAR+ 2 2 2 2 2 TADDRESS[K] MAR+(MARVMAE[;1]) AMAE[;2] [10] A MAE REPRESENTS THE FALUTS PLACED INTO THE MAR. [11] A DEE REPRESENTS THE FAULTS PLACED INTO THE DECODER, [12] TM1+(("MAR) VV/DEE[15; 1 2 3]) ADEE[15;4]

a 1 2 3 4 5 6 7 8 9 10 [13] [14] ×4 ×4 ×3 ×3 ×2 ×2 ×1 ×1 ×0 ×0 [153 A THE ABOVE TWO LINES REPRESENT THE VECTOR D WHICH IS D [16] EFINED NEXT. D+((10f 1 0)\MAR)v(10f 0 1)\TM1 [17] A TM2 REPRESENTS INPUTS TO THE FIRST LEVEL OF THE DECOD [18] ER WITH OUT FAULTS. [19] TM2+ 4 2 PD[7 9 7 10 8 9 8 10] A DIZ REPRESENTS THE INPUTS TO THE FIRST LEVEL OF THE D [20] ECODER WITH FAULTS. DI2+TM2vDEE[I+5+14; 1 2] [21] A D2 REPRESENTS THE OUTPUT OF THE FIRST LEVEL OF THE DE [22] CODER WITH FALUTS. [23] D2+((,DEE[1;3]) VA/D12) A, DEE[1;4] THE SECTION OF THE ABOVE EXPRESSI [24] ON (INDICATED BY THE UNDERLINE) REFRESENTS THE DUTPUT OF THE FIRST LEVEL, EG, (X1 [25] AXO) (X1AXO) (X1AXO) (X1AXO) A THE REPRESENTATHE INPUTS TO THE SECOND LEVEL OF THE D [26] ECODER, TM3+ 8 2 f((16f 0 1)\D2,D2)v(8fD[5],0),8fD[6],0 [27] DI3+TM3 VDEE[1+9+181 1 2] [28] D3+((,DEE[1;3]) VA/DI3) A, DEE[1;4] [29] TM4+ 16 2 f((32f 0 1)\P3,P3)v(16fP[3],0),16fP[[30] 43,0 F313 DI4+TM4vDEE[I+17+116; 1 2] D4+((,DEE[1;3]) v/DI4) A, DEE[1;4] [32] TM5+ 32 2 f((64f 0 1)\(D4,D4))\(32fD[1],0),32fD[[33] DIS+TM5 VDEE[1+33+132; 1 2] [34] D5+((,DEE[1;3]) v/DI5) A,DEE[1;4] [35] [36] INX+D5/D5x132 [37] 4CPENX 10=+/D5 +RADX | EDWE=1 [38] WEW[INX]+IH [39] MEM+(MEE[\$1]VMEM)AMEE[\$2] [40] [41J [42] RAD! DUTPUT+OUTPUT, V/MEM[INX] [43] NUMACS+NUMACS, (0=FINX)+(0#FINX)XINX [44] STKINX+STKINX, INX [45] +LOOP [46] OPEN; OUTPUT+OUTPUT, O

[47] NUMACS+HUMACS,0

[48] +LOOP

	VATS [D]V		
and the same of the same of	ATS CONTRACTOR OF THE CONTRACT		
[1]	ATHIS PROGRAM REPRESENTS AN OPTIMAL	ALGORITHM F	OR TESTI
	NG RANDOM ACCESS MEMORIES.		
[2]	PIO+(32f 1 0 0)/IX+-1+132		
[3]	PI1+(32f 0 1 0)/IX		
[4]	PI2+(32f 0 0 1)/IX		
[5]	A	SIEP	1
[6]	BPWB+IN+O		
[7]	MEMORY PI1		
[8]	MEMORY PI2		
[9]		STEP	2
[10]	IM+1		
[11]	MEMORY PIO		
[12]	1	STEP	3
[13]	IH+0	981 4-994 36	
[14]	HEREN NEW YORK NEW Y		
[15]	BDWR+1 MEMORY PI1		
[16]	3 QUI FI1		
	9 ===1	STEP	
[17]		STEC	4
[18]	IN-1		
[19]	BDWE+0		
[20]	MEMORY PI1	ATTENDED TO SERVICE	
[21]	1	SIEP	5
[22]	IN+O		
[23]	RPWR+1		
[24]	MEMORY PI2		
[25]	5 QUI PI2		
[26]	A	SIEP	6
[27]	IN-1		
[28]	MEMORY PIO		
[29]	6 PUI PIO		
[30]	16.4.13	SIEP	7
[31]	IN-EDWE-0		
[32]	MEMORY FIO		
[33]	MEMORY FIO	STEP	8
[34]	IN+1		
[35]	MEMORY PI2		
[36]	n	STEP	0
[37]	IN+O	Experience and	TAR ENTY
[38]			
	RDMR+1 MEMORY PIO		
[39]			
[40]	9 DAI LIO		
[41]			
[42]	IN-1	Service Constitution (see	
[43]	MEMORY PI2		
[44]	25 NOTE - 1887	GER CATALOGUE	
[45]		SIEC	11
[46]	MEMORY PI1		
[47]	11 QUI PI1		
The second second second			

```
▼QUI [0]▼
▼ STEP QUI PI

[1] ATHIS PROGRAM IS TO BE USED WITH THE 'ATS' PROGRAM TO 0

UTPUT THE DETECTED FAILURES;

[2] +0x\1)+/TEM+1M≠0UTPUT

[3] INX+TEM/TEMX\PPI

[4] 'STEP ';STEP

[5] 'THE FOLLOWING LOCATIONS READ THE ALL '; "IN; ' WORD INST

EAD OF THE ALL '; IN; ' WORD;'

[6] PI[INX]
```

```
PRINT [0]7
   FRINT CHOICE
     A THIS PROGRAM WILL OUTPUT THE INDUCED ERRORS PLACED IN
[13
     TO THE DECODER.
[2]
     +(CHOICE-1) $511,511,571,572
    $T1:IM2+GE;(-4 -3 -2 -1 +5x(,IM1)/(,IM1)x165)]
[3]
     ×1+("' '=,IM2)/,IM2
[4]
[5]
     +(CHOICE-1) OPR1, PR2, PR3
[6]
    PR1: X2+(~' '=, IM2[; 1 2])/, IM2[; 1 2]
    END12; THE '; X2; INPUT TO GATE '; X1; IS STUCK-AT-
[7]
     ONE . '
[8]
     +0
[9] PR2; ×2+(~' '=, IM2[; 3 4])/, IM2[; 3 4]
     PR3: THE OUTPUTOF GATE ';X1;' IS STUCK-AT-ONE,'
[10]
[11] PR3:
[12] +0
[13] $T2:IM2+G[;(-4 -3 -2 -1 +5x(~,IM1)/(~,IM1)x165)]
[14] ×1+(~' '=,IM2)/,IM2
          THE OUTPUT OF GATE ';X1;' IS STUCK-AT-ZERO.'
[15]
```

VAUTODEC [[]] AUTODEC CHOOSE ATHIS PROGRAM WILL AUTOMATICLY GENERATE ALL SINGLE FAIL [1] URES IN THE DECODER OF A 32x1BIT RAM. [2] ACHOOSE=1 WILL PLACE THE INPUT ON ONE SIDE OF ALL 'AND' GATES TO STUCK-AT-ONE. [3] ACHOOSE=2 WILL PLACE THE INPUT ON THE OTHER SIDE OF ALL 'AND' GATES TO STUCK-AT-ONE. ACHOOSE=3 WILL PLACE THE OUTPUT OF ALL 'AND' GATES TO S [4] TUCK-AT-ONE. [5] ACHOOSE=4 WILL PLACE THE OUTPUT OF ALL 'AND' GATES TO S TUCK-AT-ZERO. ATHE OUTPUT OF THIS PROGRAM WILL SHOW THE OUTPUT OF THE [6] ATS FOR THE DETECTED FAILURES. [7] [8] +ZEROX 14=CHOOSE [9] IM1+ 65 1 r1,64r0 [10] LOOP : PRINT CHOOSE [11] DEE[;CHOOSE]+IH1 ATS [12] +0×11= 1 1 +IM1+-10IM1 [13] [14] +LOOP [15] ZERO; IH1+ 65 1 r0,64r1 [16] LOOP2: PRINT CHOOSE [17] DEE[;4]+IH1 [18] [19] +0x10= 1 1 +IM1+-10IM1

PCLEARERRORS [0]7

- V CLEARERRORS ATHIS PROGRAM WILL CLEAR ALL ERRORS PREVIOUSLY SET IN ALL SUBSYSTEMS OF THE 32×1 DIT RAM, [13
- HEE+4 2 32 /(32/0),32/1 [2]
- [3] MEM+3210

[20] +LOOP2

- MAE+4 2 5 f(5f0),5f1 [43
- DEE+4 4 65 r(195r0),65r1 [5]

THE OUTFUT OF GATE X4 IS STUCK-AT-ZERO.

STEP 6
THE FOLLOWING LOCATIONS READ THE ALL 0 WORD INSTEAD OF THE ALL
1 WORD:

0 3 6 9 12 15

STEP 10

THE FOLLOWING LOCATIONS READ THE ALL O WORD INSTEAD OF THE ALL 1 WORD:

2 5 8 11 14

STEP 11

THE FOLLOWING LOCATIONS READ THE ALL 0 WORD INSTEAD OF THE ALL 1 WORD;

1 4 7 10 13 THE OUTPUT OF GATE X3 IS STUCK-AT-ZERO.

STEP 6
THE FOLLOWING LOCATIONS READ THE ALL () WORD INSTEAD OF THE ALL
1 WORD:

0 3 6 18 21

STEP 10

THE FOLLOWING LOCATIONS READ THE ALL O WORD INSTEAD OF THE ALL 1 WORD:

2 5 17 20 23

STEP 11

THE FOLLOWING LOCATIONS READ THE ALL 0 WORD INSTEAD OF THE ALL 1 WORD;

1 4 7 16 19 22 THE OUTPUT OF GATE X2 IS STUCK-AT-ZERO.

```
VED] RAMOTUAY
    A THIS PROGRAM WILL SIMULATE ALL SINGLE STUCK-AT FAULTS
[1]
     IN THE MAR.
[2]
    CLEARERRORS
    O+AMI+AML
[3]
    KMA+W+1
[4]
   LP: +RESX 152 JMA+ JMA+1
[5]
    JMA+1
[6]
   RES: +SETX 152 IMA+ IMA+1
[7]
[8]
    M+0
[9]
    KMA+2
[10] SET: ''
    I MAR RIT ISSI/JMAVO): IS S_A_ISW
[11]
             MAR BIT '$5|(JMAX9);' IS 5-A-';W
[12]
    MAE+ 5 2 F 0 1
[13]
   MAE[JMA; KMA]+W
[14]
[15]
[16] +LPX110>IMA
```

VSETERROR [[]]V O SETERROR A THIS PROGRAM IS USED TO SET THE 'STUCK-AT' ERRORS IN [1] THE 32x1 BIT MEMORY DESCRIBED IN THE PROGRAM 'MEMORY'. . TO EXIT ENTER : EXIT . [2] [3] STA: ' ENTER THE MEMORY SUBSYSTEM THAT YOU WISH TO INTR ODUCE THE ERROR INTO. 'THAT IS! MAR ; DEC ; MEM .' [4] TO CHOOSE ANOTHER SUBSYSTEM ENTER: START [5] [6] +Oxia/'EXI'=BCH+3pD,'EXI' [7] +DECX (A/ 'DEC '=BCH [83 +MEMX IA/ 'MEM '=BCH MAR: 'INDICATE WHICH MAR BITS ARE FAULTY BY SIGNIFING A N [9] UMERIC O FOR A 5-A-O AND A NUMERIC 1 FOR A 5-A-1' 'UNDER THE APPROPRIATE BIT POSITION.' [10] ' ×4 | ×3 | ×2 | ×1 | ×0 |' [11] TEM+ 5 5 F0,25F' [12] [13] MAE[; 1]+v/'1'=TEM [14] MAE[; 2]+~ / ' 0' = TEM [15] +STA [16] DEC: 'INDICATE A S-A-O BY PLACING AT LEAST ONE NUMERIC O BELOW THE INDICATED GATE INPUTS. 'IN ORDER TO INDICATE A S-A-1 ON A GATE OUTPUT, FLACE TW [17] O NUMERIC 1''S UNDER THE SPECIFIED GATE, ' 'IF JUST A SINGLE S-A-1 ON A GATE IS REQUIRED, PLACE A [18] NUMERIC 1 UNDER THE SPECIFIC GATE INPUT. 'TO EXIT ENTER: EXIT ' [19] 'TO RETURN TO THE START OF THIS PROGRAM ENTER! START ' [20] 1'),[13 1 25 f' M41 M31 [21] GA+ (4 25 F' 21 K11 K01 GB+(3007' XOI XOI'), 'X1 |X1 [22] IXI IX1 1',(280f' ×11 ×11 ×11 ×11') GC+ (20F' 1'), (40r(20r'×2 1'), 20r'×2 1'), ([23] 240f (20f' ×21'),20f' ×21') [24] GD+ (60P' 1'),(80f(40f'×3 1'),40f'×3 160r(40r' ×31'),40r' ×31') GE+(140F' 1'),160f(80f'×4 [25] 1'),80f'X4 [26] G+GA, 8 5 300 PGB, GC, GD, GE GA+GB+GC+GD+GE+PO [27] THE FIRST SET OF GATE ARE; [28] 5 120 AG [29] TEM+120F0,120F' ' [30] [31] 5 -120 + 5 240 +G TEM+TEM, 120F0, 120F' [32] 5 -85 AG [33] TEM+ 65 5 FTEM, 85F0, 85F' ' [34] DEE[;4]+ 65 1 PAV/'0'=TEM C351 DEE[;3]+(65 1 PDEE[;4])ATM1+ 65 1 P2=+/'1'=TEM [36] DEE[; 1]+("TM1) 4 65 1 F V / '1' = TEM[; 1 2] [37] DEE[;2]+(~TM1) ^ 65 1 FV/'1'=TEM[; 3 4] [38] 4STA [39] [40] MEM; 'INDICATE WHICH STORAGE WORDS ARE FAULTY BY SIGNIFIN G A NUMERIC O FOR A S-A-O AND A NUMERIC 1' 'FOR A S-A-1 UNDER THE APPROPRIATE STORAGE ADDRESS.' [41] ' 01 11 21 31 41 51 61 71 81 91101111121131141151161171 [42] 18|19|20|21|22|23|24|25|26|27|28|29|30|31| [43] TEM+ 32 3 P0,96P' MEE[|2]+ 32 1 FWV/'0'=TEM [44] [45] MEE[1]+ 32 1 PV/'1'=TEM [46]

SETERROR TO EXIT ENTER ; EXIT .

ENTER THE MEMORY SUBSYSTEM THAT YOU WISH TO INTRODUCE THE ERROR INTO.

TO CHOOSE ANOTHER SUBSYSTEM ENTER; START THAT IS! MAR \$ DEC ; MEM .

INDICATE WHICH MAR BITS ARE FAULTY BY SIGNIFING A NUMERIC O FOR A S-A-O AND A NUMERIC 1 FOR A S-A-1 UNDER THE APPROPRIATE BIT POSITION.

x4 | x3 | x2 | x1 | x0 |

ENTER THE MEMORY SUBSYSTEM THAT YOU WISH TO INTRODUCE THE ERROR INTO.

TO CHOOSE ANOTHER SUBSYSTEM ENTER; START THAT IS: MAR ; DEC ; MEM .

IN ORDER TO INDICATE A S-A-1 ON A GATE OUTPUT, PLACE TWO NUMERIC 1'S UNDER THE SPECIFIED GATE. IF JUST A SINGLE S-A-1 ON A GATE IS REQUIRED, PLACE A NUMERIC 1 UNDER THE SPECIFIC GATE INPUT INDICATE A S-A-0 BY PLACING AT LEAST ONE NUMERIC O BELOW THE INDICATED GATE INPUTS.

TO RETURN TO THE START OF THIS PROGRAM ENTER; START THE FIRST SET OF GATE ARE;

-	- £x	X2	×1.	-ox		-	EX	×21	×1.	-ox	
-	x3 Ex	X2	×1.	-0x		x - x	×3	×21	-1×	10x	
-	× - 8	x2	×11	10×		* - *	-Ex	XZ	×1	10x	
-	×3 Ex	x2-	×11	10X		4 1×4	EX.	×2	- IX	TOX	
-	X Ex	×2	×11	-0×		X4 IX4	EXI	×21	- XI	-Ox	
-	×3 -×	×2-	×11	-0×		× +:	EX.	×2-	-1×	NO.	
-	~ £x	×21	XII	-0×	0	x - 4;	EXI	×2	×	-0×	
-	-	1 23	11×	10×		× - 4	Ex	×21	- IX	OX	-
-	-	25	XI	-Ox	11	×- 43	Ex	X2	- 1×	10×	
-	-	22 12	XI	-0×		× +3	-Ex	X21	-T×	OXI	
-	1500	52 -2	XII	-0×		1×4 ->	×3	X2-	-1×	-0×	
-	1 9 1	42 -		- OX		- 43	×3	×27	X1	-0×	
-	-	2 2	×1	-Ox		- +	×3	×2	×	. 0×	
-	-	42	×11	OX		- +>	×3	×21	-1×	-OX	0
-	-	K2 -	×11	-0×	•	- *	- Ex	×21	-1×	ōx	
-	-	-	1 15	- OX		2	1 23	X2	- IX	10×	
-	-	-	×1 12	Ox	11	-	53 13		- IX		
-	-	-	- Tx	10x	-	-	EX.		×		
-	-	-	×1 -	ōx	-	- 10,	- EX		×		
-	-	-	-	- OX		-	- EX		- IX		
	- 17	-	-	IX	•	-	X3 1		×11		
		-		X21		-	EX.		-1×		
			-	×3-	•	•	1×3		×		
			-	*XI		-	×3	XZ	×1.	OX	
			94								

ENTER THE MEMORY SUBSYSTEM THAT YOU WISH TO INTRODUCE THE ERROR INTO.

THAT IS: MAR ; DEC ; MEM .

TO CHOOSE ANOTHER SUBSYSTEM ENTER; START

FOR A S-A-1 UNDER THE APPROPRIATE STORAGE ADDRESS.

Of 11 21 31 41 51 61 71 81 91101111121131141151151171181191201211221231241251261271281291301311 INDICATE WHICH STORAGE WORDS ARE FAULTY BY SIGNIFING A NUMBRIC () FOR A S-A-0 AND A NUMBRIC 1

ENTER THE MEMORY SUBSYSTEM THAT YOU WISH TO INTRODUCE THE ERROR INTO. THAT IS; MAR ; DEC ; MEM , TO CHOOSE ANOTHER SUBSYSTEM ENTER; START ,

References

- (1) Knaizuk, John Jr., Hartmann, C.R.P., "An Algorithm For Testing Random Access Memories", TR 74-14, Department of Industrial Engineering and Operations Research, Syracuse University.
- (2) Knaizuk, John Jr., Hartmann, C.R.P., "An Optimal Algorithm for Testing Random Access Memories", TR 75-16, Department of Industrial Engineering and Operations Research, Syracuse University.

METRIC SYSTEM

BASE UNITS					

Quantity	Unit	SI Symbol	Formu
length	metre	m	
mass	kilogram	kg	
time	second	S The state of	
electric current	ampere	A	
hermodynamic temperature	kelvin	K	
mount of substance	mole	mol	the bulleting at the con-
uminous intensity	candela	cd	
SUPPLEMENTARY UNITS:			
plane angle	radian	red	
olid angle	steradian	18	
DERIVED UNITS:			
Acceleration	metre per second squared		m/s
ctivity (of a radioactive source)	disintegration per second		(disintegration)/s
ngular acceleration	radian per second squared		rad/s
ngular velocity	radian per second	Michigan Page 1 and C	rad/s
rea	square metre		m
ensity	kilogram per cubic metre		kg/m
lectric capacitance	fared	F	A-s/V
lectrical conductance	siemens	S	AN
lectric field strength	volt per metre		V/m
lectric inductance	henry	Н	V-s/A
lectric potential difference	volt	V	W/A
lectric resistance	ohm		V/A
lectromotive force	volt	V	W/A
nergy	joule		N-m
ntropy	joule per kelvin		I/K
orce	newton	N	kg·m/s
requency	hertz	Hz	(cycle)/s
luminance	lux	lx	lm/m
ıminance	candela per square metre		cd/m
uminous flux	lumen	lm	cd-sr
nagnetic field strength	ampere per metre		A/m
nagnetic flux	weber	Wb	V-s
nagnetic flux density	tesla	T	Wb/m
nagnetomotive force	ampere	٨	
ower	watt	W	1/s
ressure	pascal	Pa	N/m
uantity of electricity	coulomb	C	A-s
uantity of heat	joule	j	N-m
ediant intensity	watt per steradian		W/sr
pecific heat	joule per kilogram-kelvin		J/kg·K
Iress	pascal	Pa	N/m
hermal conductivity	watt per metre-kelvin		W/m·K
elocity	metre per second	***	m/s
iscosity, dynamic	pescal-second		Pa-s
iscosity, kinematic	square metre per second		m/s
oltage	volt	V	W/A
olume	cubic metre		m
vavenumber	reciprocal metre		(wave)/m
vork	joule	Ï	N·m
SI PREFIXES:	joure		(4-111)

SI PREFIXES:

Multiplication Factors	Prefix	SI Symbol
1 000 000 000 000 = 1012	tera	7
1 000 000 000 = 10*	gige	G
1 000 000 = 106	mega	M
1 000 = 103	kilo	
100 = 102	hecto*	b
10 = 101	deka*	da
0.1 = 10-1	deci*	d
$0.01 = 10^{-2}$	centi*	C
0.001 = 10-3	milli	m
0.000 001 = 10-4	micro	μ
0.000 000 001 = 10-4	nano	
0.000 000 000 001 = 10-12	pico	
0.000 000 000 000 001 = 10-11	femto	
0.000 000 000 000 000 001 = 10-14	atto	

^{*} To be avoided where possible.