Chapter 1 Preliminary: Baby Set Theory

Jingrui SUN

Email: sunjr@sustech.edu.cn

Southern University of Science and Technology

September 8, 2024

Outline I

- Part I: Sets Operations
 - 1.1 Basic concepts
 - 1.2 Subsets of a set
 - 1.3 Operations of sets

- Part II: Cardinal Numbers of Sets
 - 2.1 Cartesian product
 - 2.2 Cardinal number of sets

Outline

- Part I: Sets Operations
- Part II: Cardinal Numbers of Sets

September 8, 2024

1. Definition: A set is any collection of objects.

"object" ⇒ "element"

- 2. Notations and representations:
- (1) "Listing": $\{a, b, c\}$, say, denoted by $A = \{a, b, c\}$. Also, $\{0, 1, 2, 3, \ldots\}$, etc.
- (2) "Function form": $\{x : x^2 = 1\}$ or $\{x \mid x^2 = 1\}$.
- (3) "Venn diagram": \bigcirc

- 3. Some special notations:
- (1) " \in " means "belongs to" : "1 is an element of a set B" is usually denoted by $1 \in B$.
 - "∉" means "does not belong to".
 - Hence if $A = \{a, b, c\}$, then $a \in A, b \in A, c \in A$, but $d \notin A$.
 - Note that we view $\{1,2,1,3\}$ and $\{1,2,3\}$, for example, as the same set.
- (2) " \forall " means "for every" or "for all".
- (3) "∃" means "there exists".

- 4. Some special sets:
- (1) Empty set, denoted by \emptyset : No element!
- (2) Singleton, $\{1\}$, say: Only one element and this element is "1".
- (3) Universal set, denoted by Ω : The totality of objects <u>under</u> consideration.
- 5. Set of sets:

A set is <u>any</u> collection of objects and so an element of a set can be a set itself.

For example, if $A = \{1, -1\}$ and $B = \{a, b, c\}$, then

$$D = \{A, B, \emptyset, 5, cats, dogs\}$$

is a set.

So, $\{a, \{a, b\}\}$ is a set of two elements (Not 3 and these two elements are $\{a\}$ and $\{a, \overline{b\}}$).

Also, $E = \{a, b, c, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ is a set of $\underline{7}$ elements.

Note also that \emptyset and $\{\emptyset\}$ have different meanings:

 \emptyset is the empty set: No element.

 $\{\emptyset\}$ is a singleton, with only <u>one element</u> and <u>this element</u> is \emptyset .

1.2 Subsets of a set

1. Definition: If any element of a set A is also an element of a set B, then we say A is a subset of B.

We also say that A is contained in B or B contains A.

We use the notation $A \subseteq B$ or $B \supseteq A$ to indicate that B contains A:

$$\forall x \in A \quad \Rightarrow \quad x \in B \tag{1.1}$$

1.2 Subsets of a set

2. Equality of sets:

If $A \subseteq B$ and $B \subseteq A$, we say A and B are equal and denote it by A = B, i.e., "A = B" means

$$\forall x \in A \quad \Rightarrow \quad x \in B, \tag{1.2}$$

and

$$\forall x \in B \quad \Rightarrow \quad x \in A. \tag{1.3}$$

Note that, essentially, (1.2) and (1.3) are the only way to show the two sets are equal.

September 8, 2024

1.2 Subsets of a set

- 3. Simple facts:
- (1) \forall set A, $A \subseteq A$;
- (2) \forall set A, $\emptyset \subseteq A$ (convention);
- (3) \forall set A, $A \subseteq \Omega$ (under the consideration).
- 4. Proper subset:

If $A \subseteq B$ and $A \neq B$, we say that A is a proper subset of B. In other words, A is a proper subset of B means:

 $\forall x \in A \Rightarrow x \in B$ and $\exists y \in B$ such that $y \notin A$.

- 1. Union (\cup) :
- (1) Definition:

$$A \cup B = \{x : x \in A \text{ or } x \in B\},\$$

i.e. the set of elements that belong to either A or B.

(2) Diagram:

 $A \cup B$ is the shaded region.

(3) Three possible cases:

In the last case $A \subseteq B$ and so $A \cup B = B$.

(4) Union of finitely many, or even infinitely many of sets: For example, we may define the union of three sets:

$$A \cup B \cup C = \{x : x \in A \text{ or } x \in B \text{ or } x \in C\}$$

(5) Laws:

$$A \cup B = B \cup A$$
 (Commutative law)
 $(A \cup B) \cup C = A \cup (B \cup C)$ (Associative law)
 $A \cup A = A$ (Absorbing law)
 $A \cup \emptyset = A$ ($\because \emptyset \subseteq A$)
 $A \cup \Omega = \Omega$ ($\because A \subseteq \Omega$)

These laws can be easily proved.

- 2. Intersection (\cap) :
- (1) Definition:

$$A \cap B = \{x : x \in A \text{ and } x \in B\},\$$

i.e. the set of elements that belong to both A and B.

(2) Diagram:

 $A \cap B$ is the shaded region.

(3) Three possible cases:

In the second case $A \cap B = \emptyset$.

In the third case $A \subset B$ and thus $A \cap B = A$.

(4) Intersection of finitely many, or even infinitely many of sets: For example, we may define the intersection of three sets:

$$A \cap B \cap C = \{x : x \in A \text{ and } x \in B \text{ and } x \in C\}$$

 $A \cap B \cap C$ is the shaded region.

Questions: What are $A \cap B$, $B \cap C$, and $A \cap C$?

(5) Laws:

$$A \cap B = B \cap A$$
 (Commutative law)
 $(A \cap B) \cap C = A \cap (B \cap C)$ (Associative law)
 $A \cap A = A$ (Absorbing law)
 $A \cap \emptyset = \emptyset$ (: $\emptyset \subseteq A$)
 $A \cap \Omega = A$ (: $A \subseteq \Omega$)

These laws can be also easily proved.

(5) Distribution Laws:

For the operations of union <u>and</u> intersection, we have:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \tag{1.4}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \tag{1.5}$$

Try to prove (1.4) and (1.5) yourself !!!

- 3. Difference (\) (or just -):
- (1) Definition:

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\},\$$

i.e. the set of elements that belong to A but do not belong to B.

(2) Diagram:

 $A \setminus B$ is the shaded region.

(3) Four possible cases:

- 4. Complement (A^c) :
 - (1) Definition: The difference of the universal set Ω and A is called the complement of A and denoted by A^c , i.e.

$$A^c = \{x : x \notin A\}$$

Note: universal set must be specified before talking the complement.

$$A^c = \Omega \setminus A = \{x : x \in \Omega \text{ and } x \notin A\} = \{x : x \notin A\}$$

since $x \in \Omega$ is always true.

(2) Diagram:

 A^c is the shaded region.

(2) Laws:

$$(A^c)^c = A, \qquad (A^c)^c = \{x : x \notin A^c\} = \{x : x \in A\},$$

$$\emptyset^c = \Omega, \qquad \emptyset^c = \{x : x \notin \emptyset\} = \Omega,$$

$$\Omega^c = \emptyset, \qquad \Omega^c = \{x : x \notin \Omega\} = \emptyset.$$

(3) De Morgan's Laws: (Important !!!)

$$(A \cup B)^c = A^c \cap B^c, \tag{1.6}$$

$$(A \cap B)^c = A^c \cup B^c. \tag{1.7}$$

See the following diagrams: (Continued on the next slide)

Try to prove (1.6) and (1.7) yourself.

September 8, 2024

- 5. Operations of a family of sets
- (1) Union: For the union of finitely many sets, we usually write it as

$$A_1 \cup A_2 \cup A_3 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$$
.

Suppose we have <u>a sequence of sets</u> $A_1, A_2, A_3, A_4, \cdots$. Then the union of this sequence of sets is defined as the elements that belong to <u>at least one</u> of A_k , $(k = 1, 2, 3, \cdots)$ and denoted as $\bigcup_{k=1}^{\infty} A_k$, i.e.,

$$\bigcup_{k=1}^{\infty} A_k = A_1 \cup A_2 \cup A_3 \cup \cdots = \{x : \exists k \text{ such that } x \in A_k\}.$$

Similarly we may define the union of any family of sets as

$$\cup_{i\in\mathcal{I}} A_i = \{x : \exists i \in \mathcal{I} \text{ such that } x \in A_i\}.$$

Operations of a family of sets

(2) Intersection:

Similarly, suppose we have a sequence of sets $A_1, A_2, A_3, A_4, \cdots$, then the intersection of this sequence of sets is defined as the elements that belong to <u>each</u> of $A_k, (k=1,2,3,\cdots)$ and denoted as

$$\bigcap_{k=1}^{\infty} A_k = A_1 \cap A_2 \cap A_3 \cap \cdots = \{x : x \in A_k, \forall k\}.$$

Operations of a family of sets

(3) De Morgan's Laws:

$$\left(\bigcap_{k=1}^{\infty} A_k\right)^c = \bigcup_{k=1}^{\infty} A_k^c, \quad \left(\bigcup_{k=1}^{\infty} A_k\right)^c = \bigcap_{k=1}^{\infty} A_k^c, \quad (1.8)$$

$$\left(\bigcap_{k\in\mathcal{I}}A_k\right)^c = \bigcup_{k\in\mathcal{I}}A_k^c, \quad \left(\bigcup_{k\in\mathcal{I}}A_k\right)^c = \bigcap_{k\in\mathcal{I}}A_k^c, \quad (1.9)$$

where \mathcal{I} is any index set. Try to prove (1.8)–(1.9) yourself.

Outline

- Part I: Sets Operations
- Part II: Cardinal Numbers of Sets

- 1. Ordered Pairs: A pair is called ordered if (a, b) = (c, d) implies a = c and b = d. In other words, usually, $(a, b) \neq (b, a)$.
- 2. Cartesian Product: Suppose A and B are two sets. Then the Cartesian product of A and B, denoted by $A \times B$, is defined to be the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$, i.e.,

$$A\times B=\{(a,b):a\in A,b\in B\}.$$

Note that, usually, $A \times B \neq B \times A$.

3. Example:

$$A = \{1, 2\}$$
 and $B = \{2, 3, 4\}$,

then

$$A \times B = \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)\},$$

$$B \times A = \{(2,1), (2,2), (3,1), (3,2), (4,1), (4,2)\}.$$

4. General cases:

Ordered triple (a, b, c);

Ordered *n*-tuple (a_1, a_2, \cdots, a_n) ;

Suppose A_1, A_2, \dots, A_n are sets, then the Cartesian product of A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times A_3 \times \dots \times A_n$, is the set of all ordered *n*-tuple, (a_1, a_2, \dots, a_n) where $a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n$, i.e.,

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) : a_1 \in A_1, \cdots, a_n \in A_n\}.$$

If all the A_i are the same, then we write it as A^n , i.e.,

$$A^n = A \times A \times \cdots \times A$$
.

5. More examples: $\mathbb{R} = (-\infty, +\infty)$,

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(a, b) : a \in \mathbb{R} \text{ and } b \in \mathbb{R}\}.$$

Also, \mathbb{R}^3 , \mathbb{R}^n , etc.

2.2 Cardinal number of sets

1. Basic Questions

(1) Problems: To discuss the "size" or "number" of sets. Try to answer the following questions: For two sets A and B,

"Do A and B have the same size?"

"Does A have more elements than B?"

In particular, answer the above questions for infinite sets.

For example, let $N = \{1, 2, 3, \dots\}$ and $E = \{2, 4, 6, \dots\}$, more elements in N? (E is a proper subset of N)

The problem is: how to compare?

(2) Idea: From finite case to infinite case:

One-to-One correspondence between the elements.

September 8, 2024

2.2 Cardinal number of sets

(3) Definition: Two sets A and B are said to have the same <u>cardinal</u> number iff there exists a bijection between A and B.

The cardinal number of A is denoted by Card(A).

So, Card(A) = Card(B) iff \exists a bijection between the elements of A and B.

We say $Card(A) \leq Card(B)$ iff there exists a bijection between A and a subset of B.

Furthermore,

$$Card(A) < Card(B) \iff Card(A) \leq Card(B) \text{ and } Card(A) \neq Card(B)$$

September 8, 2024

- (4) More Questions:
 - Does any infinite set have a cardinal number?
- (ii) If "Yes", then comparable for any two sets? i.e., Does the following statement always hold true?
 - "For any two sets A and B, either Card(A) < Card(B) or Card(B) < Card(A)".
- (iii) If again "Yes" (in fact, this is equivalent to the so called "Axiom of Choice", then does there exist a "smallest infinity"? If "Yes", which one? \aleph_0 say.

September 8, 2024

- (iv) If "Yes" again, then does there exists a set A such that $Card(A) > \aleph_0$?

 If yes, which one?
- (v) "Largest infinity" ?
 If No, "continued"? In particular, "the second smallest set"?
- For Question (i) and (ii), we shall say "Yes", but · · ·

For the answers for other questions, see below.

2. Countable sets:

(1) A set B is called <u>countable</u> if the Card(B) is the same as the cardinal number of the natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$.

In other words, B is countable iff there exists a bijection between the elements of B and $\mathbb{N} = \{1, 2, 3, \dots\}$.

The cardinal number of a countable set is denoted by \aleph_0 .

(2) Properties:

Theorem 1.5.1. A set B is countable iff all the elements of B can be written as a sequence, i.e., $B = \{x_1, x_2, x_3, \dots\}$.

Proof. By definition (\exists a bijection between B and \mathbb{N}).

Theorem 1.5.2. If both *A* and *B* are countable, then so is $A \cup B$.

Moreover, if A_1, A_2, \dots, A_n are all countable, then so is $\bigcup_{i=1}^n A_i$.

Even more, if A_1, A_2, A_3, \cdots are all countable, then so is $\bigcup_{k=1}^{\infty} A_k$.

Proof. Just need to prove the last statement, since the former two are more easy. By Theorem 1.5.1, all the elements of A_1, A_2, A_3, \cdots can be written as sequences:

$$A_1: \{a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, \cdots \}$$

 $A_2: \{a_{21}, a_{22}, a_{23}, a_{24}, a_{25}, \cdots \}$
 $A_3: \{a_{31}, a_{32}, a_{33}, a_{34}, a_{35}, \cdots \}$
.....

Now all the elements of $\bigcup_{k=1}^{\infty} A_k$ can be written as a sequence as well, for example,

$$\{a_{11}, \underbrace{a_{12}, a_{21}}, \underbrace{a_{13}, a_{22}, a_{31}}, \cdots \}$$

(diagonal elements).

September 8, 2024

Theorem 1.5.3. (the "smallest infinite set") Any infinite set contains a countable subset.

Proof. $A \neq \emptyset$. So we can choose $a_1 \in A_1$.

A infinite set, so $A \setminus \{a_1\} \neq \emptyset$ and we can choose $a_2 \in A \setminus \{a_1\}$.

In general, after choosing a_1, a_2, \dots, a_n , then

$$A \setminus \{a_1, a_2, \cdots, a_n\} \neq \emptyset$$

(otherwise A is a finite set), we can therefore choose

$$a_{n+1} \in A \setminus \{a_1, a_2, \cdots, a_n\}.$$

So we can extract a sequence from A.

The meaning of Theorem 1.5.3:

For any infinite set A, A has a subset which is countable and thus there exist a bijection between the countable set and a subset of A

$$\implies Card(A) \ge \aleph_0$$

i.e., \aleph_0 is the smallest cardinal number among the infinite sets.

September 8, 2024

Theorem 1.5.4. If A_1, A_2, \dots, A_n are all countable sets, then so is the Cartesian product $A_1 \times A_2 \times \dots \times A_n$. In particular, if A is countable, then so is A^n .

Proof. Similar to the proof of Theorem 1.5.2.

Warning: In Theorem 1.5.2, we have shown that if A_1, A_2, A_3, \cdots is a sequence of countable sets, then so is $\bigcup_{k=1}^{\infty} A_k$. However, we can not say, $A_1 \times A_2 \times A_3 \times \cdots$ is also countable, see later.

(3) Examples of countable sets:

$$\mathbb{N} = \{1, 2, 3, 4, 5, \cdots\}, \qquad E = \{2, 4, 6, 8, \cdots\}$$

Direct proof: $n \leftrightarrow 2n$. Same "size"? !! Astonishing?

More "sparse" examples:

$$F = \{10, 100, 1000, 10000, \dots\}.$$

Even

$$G = \{10, 10^{10}, 10^{10^{10}}, 10^{10^{10^{10}}}, \cdots\}.$$

Can you image how sparse the G is? But any way, G is countable.

On the other hand, more "dense" examples?

Theorem 1.5.5. The set of all rational number is countable.

Proof. Just consider the positive (>0) rational numbers (Why? See Theorem 1.5.2).

Note that each positive rational number, r say, can be written as $\frac{m}{n}$, where both m and n are positive integers. Hence, all the positive rational numbers can be listed as follows

$$\frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \frac{4}{1}, \frac{5}{1}, \dots$$

$$\frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}, \frac{5}{2}, \dots$$

$$\frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \frac{5}{3}, \dots$$

- How about the set of all irrational numbers?
- Interesting question! See later.
- If it were, then all real numbers $\mathbb{R} = (-\infty, +\infty)$ would be also countable (by Theorem 1.5.2).
- Before considering irrational numbers, let us first give another more "dense" example.

Theorem 1.5.6. The set of all algebraic numbers is countable.

Note: An <u>algebraic number</u> is a real number that is the root of some polynomial with integer coefficients.

Any rational number must be an algebraic number $(r = \frac{m}{n})$ is the root of nx - m = 0.

Many irrational numbers are also algebraic number. For example, $\sqrt{2}$ is the root of $x^2-2=0$. In fact, most of irrational numbers you know are algebraic numbers.

Now, does there exist a non-algebraic (transcendental) number??

Prove Theorem 1.5.6 by yourself.

3. Cardinal Number c:

Question: Does there exist any set A such that $Card(A) > \aleph_0$??

- (1) Definition: The cardinal number of the set [0,1] is denoted by c. $[0,1] = \{x : 0 \le x \le 1\}$ is, of course, infinite and thus $c \ge \aleph_0$.
- (2) The question is whether $c = \aleph_0$ or not !! **Theorem 1.5.7.** The set [0,1] is not countable. Hence $c > \aleph_0$.

Proof. Recall each real number in [0,1] can be written as the form of $0.b_1b_2b_3\cdots$, where each b_i is a positive integer of $\{0,1,2,\cdots,9\}$.

Now, suppose [0,1] is countable, then it can be written as a sequence (see Theorem 1.5.1) $\{x_1,x_2,x_3,\cdots\}$ say. Assume

$$x_{1} = 0.a_{11}a_{12}a_{13}a_{14} \cdots a_{1n} \cdots$$

$$x_{2} = 0.a_{21}a_{22}a_{23}a_{24} \cdots a_{2n} \cdots$$

$$x_{3} = 0.a_{31}a_{32}a_{33}a_{34} \cdots a_{3n} \cdots$$

$$\cdots \cdots \cdots$$

$$x_{n} = 0.a_{n1}a_{n2}a_{n3}a_{n4} \cdots a_{nn} \cdots$$

$$(2.1)$$

(remember all of the numbers in [0,1] have been listed in the above), where a_{ij} are all one of the numbers $\{0,1,2,3,4,5,6,7,8,9\}$.

Now we define a number, x^* , say, as

$$x^* = 0.a_{*1}a_{*2}a_{*3}\cdots a_{*n}\cdots,$$

where $a_{*1} \neq a_{11}, a_{*2} \neq a_{22}, ..., a_{*n} \neq a_{nn}, \cdots$ and all $a_{*k}, k \geq 1$, take value in $\{0, 1, 2, \cdots, 9\}$.

Surely $x^* \in [0,1]$, but x^* is not be listed in (2.1) (since it equals neither of the x_n). This is a contradiction.

September 8, 2024

(3) Properties:

(i)
$$\forall i = 1, 2, \dots, n$$
, $Card(A_i) = c \Rightarrow Card(\bigcup_{i=1}^n A_i) = c$.

(ii)
$$\forall i = 1, 2, \dots$$
, $Card(A_i) = c \Rightarrow Card(\bigcup_{i=1}^{\infty} A_i) = c$.

(iii)
$$\forall i = 1, 2, \dots, n$$
, $Card(A_i) = c$
 $\Rightarrow Card(A_1 \times A_2 \times A_3 \times \dots \times A_n) = c$.

In particular,
$$Card(A) = c \Rightarrow Card(A^n) = c$$
.

All these properties can be easily proven. But we shall omit the proofs here.

(4) Examples:

The following sets all have the cardinal number c:

$$[0,1]; (0,1); \mathbb{R} = (-\infty, +\infty); \mathbb{R}_+ = [0,\infty); \mathbb{R}^n$$

Conclusion: The cardinal number of the set of irrational numbers is *c*.

The proof is given at the end of slides.

Conclusion: The cardinal number of the set of transcendental numbers is c.

Easily to be proved.

4. Maximal Cardinal Number? No!!

Can easily prove that: There is no maximal cardinal number.

But we shall ignore the proof here, since it involves introducing a concept of the so-called "power set".

- 5. Continuum Hypothesis:
 - (1) Question: Does there exist a cardinal number κ , say, such that

$$\aleph_0 < \kappa < c$$
 ??

This is the famous Continuum Hypothesis (C.H).

(C.H. states: No such kind of κ .)

(2) Historical Notes:

George Cantor (1845-1918)
Between 1874-1897: Cantor published many papers on set theory.

Cantor <u>conjectured</u> that the continuum hypothesis <u>is true</u>.

David Hilbert later published a proof. But, unfortunately, the proof is incorrect – recognised by himself.

In 1939, Gödel <u>proved</u> that C.H. <u>could not be disproved</u> on the basis of our axioms for set theory.

In 1963, Paul Cohen <u>proved</u> that C.H. <u>could not be proved</u> on the basis of our axioms for set theory.

6. Remark on the term "countable"

- 7. Some Remarks for thinking:
- (1) True for the following statement? Why?

"If there exists a bijection between the set A and a subset of B, then

even a proper subset of the set B."

- (2) Meaning of the "there exists a bijection"
 Does it mean: "we can find the exact form"?
- (3) Is the following set countable? "The set of all the sequences with 0 and 1 values only" Not countable! Think why? (Binary digit · · ·).

Theorem. The cardinal number of the set of irrational numbers is *c*.

Proof. Denote by $\mathbb R$ and $\mathbb Q$ the set of real numbers and rational numbers respectively. Define $f:\mathbb R\to\mathbb R$ by

$$f(x) = \begin{cases} x, & \text{if } x \in \mathbb{R} \setminus (\mathbb{Q} \cup (\mathbb{Q} + \sqrt{2})), \\ g(x), & \text{if } x \in \mathbb{Q} \cup (\mathbb{Q} + \sqrt{2}), \end{cases}$$

where $g: \mathbb{Q} \cup (\mathbb{Q} + \sqrt{2}) \to \mathbb{Q} + \sqrt{2}$ is a bijection. (Such a g exists since both the domain and the range of g are countable.)

The range of f is

$$\left(\mathbb{R}\setminus\left[\mathbb{Q}\cup(\mathbb{Q}+\sqrt{2})\right]\right)\bigcup\left[\mathbb{Q}+\sqrt{2}\right]=\mathbb{R}\setminus\mathbb{Q},$$

which means the map f is surjective.

Try to prove that f is injective by yourself.

Therefore the map f is bijective $\Rightarrow Card(\mathbb{R} \setminus \mathbb{Q}) = Card(\mathbb{R}) = c$.

