Марковские цепи. Случайные блуждания

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 19.03.2024

Необходимые определения

Определение: Обозначим |M|=m. Стохастическая матрица $P_n=P_n[m,m]$ такая, что $P_{i,j}=Pr\{\xi_{n+1}=j\mid \xi_n=i\}$, называется **матрицей переходных вероятностей** в момент времени n.

Определение: Марковская цепь называется **однородной**, если матрица переходных вероятностей не зависит от номера шага: $P_{n_{ij}} = P_{ij}$.

Определение: Набор вероятностей $Pr\{\xi_0=i\}, i\in M$, где $\sum_{i\in M} Pr\{\xi_0=i\}=1$, называется начальным распределением марковской цепи.

Замечание: Далее работаем с однородными марковскими цепями.

2/16

Свойства марковских цепей

Рассмотрим
$$P\{\xi_0=i,\xi_n=j\}=\sum_{i_1,...,i_{n-1}}P\{\xi_0=i,\xi_1=i_1,...,\xi_n=j\}=\sum_{i_1,...,i_{n-1}}\lambda_iP_{i,i_1}...P_{i_{n-1},j}P_{ij}=\lambda_i(P^n)_{ij}$$

$$P\{\xi_n = j \mid \xi_0 = i\} = \frac{P\{\xi_0 = i, \xi_n = j\}}{P\{\xi_0 = i\}} = \frac{\lambda_i(P^n)_{ij}}{\lambda_i} = (P^n)_{ij}$$

Значит, элемент $(P^n)_{ij}$ матрицы P^n дает вероятность перехода за n шагов из состояния i в состояние j.

$$P\{\xi_{m+n} = j \mid \xi_m = i\} = (P^n)_{ij}$$

Классификация состояний марковских цепей

Достижимые и сообщающиеся

Определение: состояние j достижимо из состояния i, если $\exists n \in \mathbb{Z}_+ : (P^n)_{ij} > 0$ Достижимость j из i обозначается $i \to j$.

Отношение достижимости рефлексивно: $P_{ii}^0 = E_{ii} = 1 > 0$; Отношение достижимости транзитивно: $i \to j, j \to k \Rightarrow \exists \ m, n \in N_0$: $P_{ij}^m > 0, P_{jk}^n > 0 \Rightarrow P_{ik}^{n+m} = \sum_{i} P_{il}^m P_{lk}^n \geq P_{ij}^m P_{jk}^n > 0$.

Определение: состояния i и j, достижимые из друг друга, называют сообщающимися или взаимно достижимыми. Обозначение: $i \leftrightarrow j$.

Определение: Отношение взаимной достижимости является отношение эквивалентности (т.к. ещё симметрично), поэтому состояния, сообщающиеся друг с другом, объединяются в классы эквивалентности. Такие классы эквивалентности называют **неразложимыми** классами.

Определение: Макровская цепь неприводима, если введёная эквивалентность порождает только один класс эквивалентности.

Определение: Если в марковской цепи есть только один неразложимый класс, то такая цепь называется **неразложимой** или **неприводимой**.

Пример разложимой марковской цепи

	1	2	3	4
1	0.3	0.7	0	0
2	0.4	0	0.6	0
3	0	0	0.5	0.5
4	0	0	1	0

Пример разложимой цепи: два классы эквивалентности – (1,2),(3,4); из состояний 3 и 4 нельзя попасть в состояния 1 и 2.

Пример неразложимой марковской цепи

	1	2	3	4
1	0.3	0.7	0	0
2	0.4	0	0.6	0
3	0	0	0.5	0.5
4	0.2	0	0.8	0

Пример неразложимой цепи: из каждого состояния можно добраться до любого другого.

Замечание: существует частичный порядок компонент сильной связности, задаваемый отношением достижимости. Максимальные элементы в таком частичном порядке называются эргодическими классами.

7/16

Поглощающие состояния

Определение: Если некоторый эргодический класс состоит из одной вершины i, то это состояние называют **поглощающим** (означает, что $P_{ii}=1$). Определение: Если в марковской цепи существует поглощающее состояние, и из любого состояния достижимо какое-то поглощающее состояние, то такая цепь называется **поглощающей**.

	1	2	3	4
1	0	0.4	0.6	0
2	0	1	0	0
3	0.2	0	0	0.8
4	0	0	1	0

Неразложимые классы — (1,3,4),(2); эргодический классы — (2) (это минимальный элемент в графе взаимной достижимости). Состояние 2 является поглощающим. Марковская цепь поглощающая.

Пример не поглощающей марковской цепи

	1	2	3	4
1	0	0.4	0.6	0
2	0	1	0	0
3	0	0	0	1
4	0	0	1	0

Пример поглощающего состояния: в этой марковской цепи неразложимые классы — (1),(2),(3,4); эргодические классы — (2),(3,4) (это два минимальных элемента в графе взаимной достижимости). Состояние 2 является поглощающим. Марковская цепь не поглощающая (в состояние 2 не добраться из состояний 3 и 4).

Возвратные и невозвратные состояния

Определение: Состояния в эргодическом классе называются возвратными (эргодическими, существенными, повторяющимися). То есть, состояние i возвратное, если для любого состояния j, достижимого из i, верно, что i достижимо из j; Или, состояние i возвратное, если вероятность вернуться в исходное состояние после некоторого конечного числа шагов $Pr\{\xi_n=i$ для \inf числа $n\}=1$.

Или: $\sum_{n=1}^{\infty} f_{ii}^n = +\infty$, где $f_{ii}^n = Pr\{\xi_n = i, \xi_{\nu} \neq i, \ \nu \in \overline{1:n-1} \mid \xi_0 = i\}$ (с точки зрения путей в графе: для любого j такого, что $i \to j$, верно $j \to i$).

Определение: Остальные не эргодические классы называются **невозвратными**, а состояния в них – **невозвратные** (несущественные, переходные, англ. transient state). Другими словами, i невозвратное, если существует достижимое из i состояние j: состояние i недостижимо из j; $Pr\{\xi_n=i$ для \inf числа $n\}=0$.

Или $\sum_{n=1}^\infty f_{ii}^n < +\infty$ (с точки зрения путей в графе: существует j такой, что $i \to j$, но $j \nrightarrow i$).

Зачем нужно? Изучить предельное поведение марковской цепи!

Пример: возвратные и невозвратные состояния

	1	2	3	4	5
1	0	0.5	0	0.5	0
2	0	0	1	0	0
3	1	0	0	0	0
4	0	0	0	0	1
5	0	0	0	1	0

Пример возвратного и невозвратного состояний. Неразложимые классы — (1,2,3),(4,5); эргодический класс — (4,5). По определению возвратными здесь будут состояния 4 и 5. И действительно: с вероятностью 1 вернемся, например, из 4 в 4 через два шага). Состояния 1,2 и 3 — невозвратны (из них можно добраться до 4 и уже не вернуться обратно).

Периодические состояния

Для состояния $i\in S$ рассмотрим множество $p_i=\{n\in\mathbb{N}: P_{ii}^n>0\}$ Определение: **периодом** d(i) состояния i называется НОД всех элементов p_i .

Определение: Если d(i)>1, то состояние i называют **периодическим** (англ. periodic). Если d(i)=1, то состояние i называют **непериодическим** (англ. aperiodic).

Лемма: периоды сообщающихся состояний равны.

Док-во: Пусть
$$i,j\in S, i\leftrightarrow j\exists m,n\in\mathbb{N}:\ P_{ij}^m>0, P_{ji}^n>0.$$
 $\forall d$ — делитель $p_i, \forall k\in p_j\ P_{jj}^k>0$

$$P_{ii}^{m+k+n} \ge P_{ij}^m P_{jj}^k P_{ji}^n > 0 \Rightarrow (m+k+n) \in p_i \Rightarrow (m+k+n) \stackrel{\cdot}{\cdot} d$$

При этом,
$$P_{ii}^{m+n} \ge P_{ij}^m P_{ji}^n > 0 \Rightarrow (m+n) \in p_i \Rightarrow (m+n) \stackrel{.}{:} d$$

Значит $k:d\Rightarrow$ любой элемент p_j делится на любой делитель $p_i\Rightarrow d(j)=\gcd(p_j)\geq\gcd(p_i)=d(i)$ Аналогично $d(i)\geq d(j)\Rightarrow d(i)=d(j)$.

Стационарное распределение

Пусть G и g – две формы одного гена. Любой организм содержит два таких гена $GG,\ gg$ и Gg (совпадает с gG). Каждый потомок получает по одному гену от каждого из родителей равновероятно. Матрица переходных состояний:

	gg	Gg	GG
gg	$\frac{1}{2}$	$\frac{1}{2}$	0
Gg	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$
GG	0	$\frac{1}{2}$	$\frac{1}{2}$

Пусть исходный организм мог с равной вероятностью иметь любой набор генов. Тогда распределение исходного состояния $\mu=(\frac{1}{3},\frac{1}{3},\frac{1}{3}).$ Заметим, что $\mu P=(\frac{1}{4},\frac{1}{2},\frac{1}{4})$ \equiv a, $\mu P^2=a$ и $\mu P^k=a$.

Определение: Если существует $\lim_{t\to +\infty} \mu P^t = \pi$, то π называют **стационарным** распределением Марковской цепи.

Замечание:
$$\pi = \lim_{t \to +\infty} \mu \cdot P^{t-1} \cdot P = \pi \cdot P$$

 π – собственный вектор оператора умножения на P

Эргодические марковские цепи

Определение: Если матрица переходных состояний марковской цепи такова, что $\exists n: \ \forall i,j \in M \ P_{ij}^n > 0$, то эта цепь называется **регулярной**.

Определение: Если все состояния в марковской цепи

- возвратны;
- непериодичны;
- сообщающиеся,

то цепь называется эргодической.

	1	2		
1	1	0		
2	0	1		
(a)				

	1	2		
1	0	1		
2	1	0		
(b)				

	1	2		
1	0	1		
2	0	1		
(c)				

	1	2		
1	0.3	0.7		
2	0.8	0.2		
(d)				

Теорема (без док-ва): если марковская цепь эргодическая, то у неё существует единственное стационарное распределение.

Случайные блуждания

Определение: пусть $\{X_i\}_{i=1}^n$ – последовательность н.с.в. из \mathbb{R}^d и одинаковыми распределениями. Тогда случайный процесс $Y_n = Y_0 + \sum_{i=1}^n X_i$ называется случайным блужданием из \mathbb{R}^d .

Одномерное дискретное случайное блуждание является цепью Маркова с $\xi_i \in \mathbb{Z}, \ i \in \overline{0:n}$, чьё начальное распределение задаётся функцией вероятности ξ_0 , а матрица имеет вид

$$P = \begin{pmatrix} \ddots & \ddots & \ddots & 0 & 0 & 0 & 0 \\ 0 & q_{-1} & 0 & p_{-1} & 0 & 0 & 0 \\ 0 & 0 & q_0 & 0 & p_0 & 0 & 0 \\ 0 & 0 & 0 & q_1 & 0 & p_1 & 0 \\ 0 & 0 & 0 & 0 & \ddots & \ddots & \ddots \end{pmatrix}$$

- $P\{\xi_{n+1} = i+1 \mid \xi_n = i\} \equiv P_{i,i+1} = p_i$
- $P\{\xi_{n+1} = i 1 \mid \xi_n = i\} \equiv P_{ii-1} = q_i = 1 p_i$
- $P\{\xi_{n+1} = j \mid \xi_n = i\} \equiv P_{ii} = 0, \ |i j| \neq 1$

Пример: одномерное случайное блуждание

Рассмотрим одномерное случайное блуждание: $X_0=0$, с вероятностью p идем вправо: $Pr\{\xi_i=1\}=p$, с вероятностью q=1-p идем налево: $Pr\{\xi_i=-1\}=q$. Теорема: такое случайное блуждание возвратно $\Leftrightarrow p=q=\frac{1}{2}$.

Док-во: Состояние
$$0$$
 возвратно $\Leftrightarrow \sum_{n=1}^{\infty} P_{00}^n = \sum_{n=1}^{\infty} P_{00}^{2n} = +\infty.$

$$\sum_{n=1}^{\infty}P_{00}^{2n}=\sum_{n=1}^{\infty}C_{2n}^{n}p^{n}(1-p)^{n}.$$
 Формула Стирлинга: $n!\sim\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}.$

Если
$$p \neq \frac{1}{2}$$
: $C_{2n}^n p^n (1-p)^n \sim \frac{4^n}{\sqrt{\pi n}} p^n (1-p)^n = \frac{(4p(1-p))^n}{\sqrt{\pi n}} < (4p(1-p))^n$ – сходится. Если $p = \frac{1}{2}$: $C_{2n}^n p^n (1-p)^n \sim \frac{4^n}{\sqrt{\pi n}} \geqslant \frac{1}{2n}$ – расходится.

Интуитивно: если p>q, то есть ненулевая вероятность, что блуждание уже не вернется в X_0 и уйдет на $+\infty$.