CSE320 Fall 2014 Homework#1

Quiz in Lecture on Sept 9th

Problem 1: Use DeMorgan's Law to write an expression for F' where

- a) F(x,y,z) = x(y' + z)
- b) F(x,y,z) = xy + x'z + yz'
- c) F(w,x,y,z) = xyz'(y'z+x)' + (w'yz + x')

Problem 2: Functions F, G, and H are defined in the following way:

$$F = A'C' + A'B'C$$

$$G = A'B' + A'C'$$

$$H = A'B'C' + A'C' + B'C$$

Which of the functions are equivalent?

Problem 3: For each of the following functions:

$$J = ((A' + B)' + C')' + DC' + AB'$$
$$K = x(y + w'z) + (w' + x' + z')'$$

- a) Create the truth table for each expression.
- b) Name the minterms (Σ m(?)) and maxterms (Π M(?)) for each expression.
- c) Simplify each expression using boolean logic.
- d) Draw a 2-level gate network (AND-OR or OR-AND) for the expression in c), whichever form uses the fewest gates. DO NOT SIMPLIFY the expression first.
- e) How many literals in each expression from (c)? How many terms in the expression from (c)?
- f) Draw 2-level gate networks for the simplified expressions in NAND-NAND or NOR-NOR form.
- g) Write the Boolean expressions for the complement of each expression (eg. J') in product of sums form. DO NOT SIMPLIFY.

Problem 4: For each of the following functions:

x	y	z	$\mid P \mid$	Q
0	0	0	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

- a) Name the minterms (m(?)) and maxterms (M(?)) for P and Q.
- b) Draw a 2-level gate network (AND-OR or OR-AND). Do NOT simplify the expression first.
- c) Write the minterm and maxterm expression in boolean logic.
- d) Simplify each expression from (c) using boolean logic.
- e) Draw 2-level gate networks for the simplified expressions in NAND-NAND or NOR-NOR form.
- f) Write the Boolean expressions for the complement of each P and Q (ie. P' and Q') in product of sums form. DO NOT SIMPLIFY.

Problem 5: For the following diagrams, give boolean expressions. Simplify and redraw the system with fewer gates.

Problem 6: Convert the following truth table to a Boolean Expression and simplify the expression as much as possible using the Boolean Identities.

x	y	z	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Problem 7: Using the postulates of Boolean algebra, prove the following formulae:

- a) x'y'z' + x'y'z + x'yz + xy'z + xyz = x'y' + z
- b) ABC' + A'C'D + AB'C' + BC'D + A'D = AC' + A'D
- c) wxy + w'xy + x'(zw + zy') + z(x'w' + y'x) = xy + z