Network Flows

RAMESH K. JALLU

LEC-06

DT. 03/02//22

Motivation

- We often use graphs to model *transportation* (or *flow*) *networks* networks whose edges carry some sort of traffic (flow) and whose nodes act as "switches" passing traffic between different edges
- We can interpret a directed graph as a *flow network* and use it to answer questions about material flows
- A computer network in which the edges are links that can carry packets and the nodes are switches
- A fluid/gas/electrical network in which edges are pipes/wires that carry liquid/gas/electricity, and the nodes are junctures where pipes/wires are plugged/joined together

Basic terminology

- Network models of this type have several ingredients:
 - 1. Capacities on the edges, indicating how much they can carry
 - 2. Traffic/flow, an abstract entity which is transmitted across the edges
 - 3. Source nodes in the graph, which generate traffic/flow
 - 4. Sink (or destination) nodes in the graph, which can "absorb" traffic as it arrives
- The source produces the material at some steady rate, and the sink consumes the material at the same rate

• The "flow" of the material at any point in the system is intuitively the rate at which the material moves

Flow network

- A flow network is a directed graph G = (V, E) such that each edge (u, v) is associated with a capacity $c(u, v) \ge 0$ (i.e., a capacity function c is given) and has two distinguished nodes source s and sink t
 - No edge enters the source s and no edge leaves the sink t
- Nodes other than s and t will be called *internal* nodes
- If $(u, v) \notin E$, then c(u, v) = 0, and we disallow self-loops
- We further require that if E contains an edge (u, v), then $(v, u) \notin E$
- The flow is generated at the source node, transmitted across edges, and absorbed at the sink node
- WLG, we assume that each vertex lies on some path from the source to the sink
- The graph is therefore connected and, since each vertex other than s has at least one entering edge, $|E| \ge |V| 1$

Flow

- Let G = (V, E) be a flow network with a capacity function c
- Let s be the source of the network, and let t be the sink
- A *flow* in G is a real-valued function $f: V \times V \to \mathbb{R}$ that satisfies the following two properties:
 - Capacity constraint: For each edge $(u, v) \in E$, we require $0 \le f(u, v) \le c(u, v)$
 - Flow conservation: For all $u \in V$ $\{s, t\}$, we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

• When $(u, v) \notin E$, there can be no flow from u to v, and f(u, v) = 0

Flow value

- We call the non-negative quantity f(u, v) the flow from u to v
- The *value* |f| of a flow f is defined as $|f| = \sum_{v \in V} f(s, v) \sum_{v \in V} f(v, s)$
 - The total flow out of the source minus the flow into the source
- A flow network will not have any edges into the source, and the flow into the source is zero, but it is allowed to have flow going out
 - Therefore, the *value* of a flow f is defined to be the amount of flow generated at the source
- Symmetrically, the sink is allowed to have flow coming in, even though it has no edges leaving it

The maximum-flow problem

- Given: A flow network G with source s and sink t
- **Objective**: Arrange the flow so as to make as efficient use as possible of the available capacity
 - In other words, the goal is to find a flow of maximum possible value

The maximum-flow problem

- Given: A flow network G with source s and sink t
- **Objective**: Arrange the flow so as to make as efficient use as possible of the available capacity
 - In other words, the goal is to find a flow of maximum possible value

Modeling problems with antiparallel edges

- Claim: Splitting an edge in a flow network yields an equivalent network
- More formally, suppose that flow network G contains edge (u, v) and we create a new flow network G' by creating a new vertex x and replacing (u, v) by new edges (u, x) and (x, v) with c(u, x) = c(x, v) = c(u, v). The maximum flow in G' has the same value as a maximum flow in G

Networks with multiple sources and sinks

The Ford-Fulkerson method

- This method was developed by Lester Randolph Ford Jr. and Delbert Ray Fulkerson in 1956
- It is called as a method rather than an algorithm
- The method depends on 3 ideas: residual networks, augmenting paths, and cuts
- The idea behind the algorithm is as follows
 - As long as there is a path from the source to the sink, with available capacity on all edges in the path, we send flow along one of the paths
 - Then we find another path, and so on
 - A path with available capacity is called an *augmenting path*

Ford–Fulkerson algorithm	$O(E f_{max})$
Edmonds–Karp algorithm	$O(VE^2)$
Dinic's algorithm	$O(V^2E)$
MKM (Malhotra, Kumar, Maheshwari) algorithm ^[10]	$O(V^3)$
Dinic's algorithm with dynamic trees	$O(VE \log V)$
General push–relabel algorithm ^[11]	$O(V^2E)$
Push–relabel algorithm with FIFO vertex selection rule ^[11]	$O(V^3)$
Push–relabel algorithm with maximum distance vertex selection rule ^[12]	$O(V^2\sqrt{E})$
Push-relabel algorithm with dynamic trees ^[11]	$O\left(VE\log\frac{V^2}{E}\right)$
KRT (King, Rao, Tarjan)'s algorithm ^[13]	$O\left(VE\log_{\frac{E}{V\log V}}V\right)$
Binary blocking flow algorithm ^[14]	$O\left(E \cdot \min\{V^{2/3}, E^{1/2}\} \cdot \log \frac{V^2}{E} \cdot \log U\right)$
James B Orlin's + KRT (King, Rao, Tarjan)'s algorithm ^[9]	O(VE)

Cont...

- Although each iteration of the Ford-Fulkerson method increases the value of the flow, we shall see that the flow on any particular edge of *G* may increase or decrease
- Decreasing the flow on some edges may be necessary in order to enable an algorithm to send more flow from the source to the sink
- We repeatedly augment the flow until the residual network has no more augmenting paths

```
FORD-FULKERSON-METHOD (G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p in the residual network G_f

3 augment flow f along p
```

4 return f

Residual networks

- Given a flow network G and a flow f, the residual network G_f consists of edges with capacities that represent how we can change the flow on edges of G
- An edge of the flow network can admit an amount of additional flow equal to the edge's capacity minus the flow on that edge
- If that value is positive, we place that edge into G_f with a "residual capacity" of $c_f(u, v) = c(u, v) f(u, v)$
- The only edges of G that are in G_f are those that can admit more flow
- Those edges (u, v) whose flow equals their capacity have $c_f(u, v) = 0$, and they are not in G_f

Cont...

- The residual network G_f may also contain edges that are not in G
- As an algorithm manipulates the flow, with the goal of increasing the total flow, it might need to decrease the flow on a particular edge
- In order to represent a possible decrease of a positive flow f(u, v) on an edge in G, we place an edge (u, v) into G_f with residual capacity $c_f(v, u) = f(u, v)$
 - That is, an edge that can admit flow in the opposite direction to (u, v) at most canceling out the flow on (u, v)
- These reverse edges in the residual network allow an algorithm to send back flow it has already sent along an edge
- Sending flow back along an edge is equivalent to decreasing the flow on the edge

Thank you!