Proof HW

Parker Whaley

February 28, 2016

1 3.6.13

We are asked to consider the set of all sets, F. We then define the \equiv operator to be, for sets A and B, $A \equiv B \Leftrightarrow A \subset B \vee B \subset A$. Is \equiv a equivalence relation on F?

No, I will demonstrate that it is not with a proof by contradiction.

Suppose that the operator \equiv is a equivalence relation.

Consider the sets $A = \{1\}$, $B = \{1,2\}$, $C = \{2\}$. Note that $A \equiv B$ since $A \subseteq B$. Also note that $B \equiv C$ since $C \subseteq B$. Since \equiv is a equivalence relation amongst A, B, and C we can use the transitive property to say that $A \equiv B \land B \equiv C \to A \equiv C$. Note that, since $A \nsubseteq C \land C \nsubseteq A \Rightarrow \neg (A \subseteq C \lor C \subseteq A)$, DeMorgans law, it must be that $A \not\equiv C$. We have thus reached a contradiction, it is not possible for $A \equiv B$ and $A \not\equiv B$ so our initial supposition that \equiv is a equivalence operator must be false.

2 3.6.15

We are asked to consider F, the set of all non empty sets. We define \equiv to be, for sets A and B, $A \equiv B \Leftrightarrow A \cap B$ is a non-empty set. Is \equiv a equivalence relation on F?

No, I will demonstrate that it is not with a proof by contradiction.

Suppose that the operator \equiv is a equivalence relation.

Consider the sets $A = \{1\}$, $B = \{1,2\}$, $C = \{2\}$. Note that $A \equiv B$ since $A \cap B = \{1\}$. Also note that $B \equiv C$ since $C \cap B = \{2\}$. Since Ξ is a equivalence relation amongst A, B, and C we can use the transitive property to say that $A \equiv B \wedge B \equiv C \rightarrow A \equiv C$. Note that, since $A \cap C = \emptyset$ it must be that $A \not\equiv C$.

We have thus reached a contradiction, it is not possible for $A \equiv B$ and $A \not\equiv B$ so our initial supposition that \equiv is a equivalence operator must be false.

$2.1 \quad 3.6.17$

Is \neq an equivalence relation on \mathbb{R} ?

No, I will demonstrate this with a proof by contradiction.

Suppose \neq is a equivalence relation on \mathbb{R} .

Consider a=0. Note that $a \in \mathbb{R}$. Thus since \neq is a equivalence relation and therefore must be reflexive we can say $a \neq a$. However we know 0=0 thus a=a.

We have reached a contradiction it is impossible for $a \neq a$ and a = a. Thus our initial supposition that \neq is a equivalence relation must be false.