

Subject Code: 17208

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 1/12

SUMMER-16 EXAMINATION Model Answer

Applied Chemistry

SUMMER-16 EXAMINATION

Subject Code: 17208 Page No: 2/12

Que. No.	Sub. Que.	Me	odel Answer	Marks	Total Marks
1		Attempt any NINE of the fo	ollowing:		18
	(a)	Name two ores of iron with	their chemical formula.		2
		Name of the o	re Molecular		
		Name of the o	formula	1	
		1.Magnetite	Fe_3O_4	mark	
		2.Haematite	Fe_2O_3		
		3.Limonite	2Fe ₂ O ₃ , 3 H ₂ O	each	
		4.Siderite	FeCO ₃		
		5. Iron pyrite	FeS_2		
	(b)	Write chemical reaction for Chemical reaction for form	or formation of slag in blast furnace. mation of slag:-		2
		$CaO + SiO_2$	→ CaSiO ₃	2	
		Flux Gangue	Slag		
	(c)	Give four purposes of heat	treatment of steel		2
		Purposes of heat treatment	of steel:-		
		1.To change the structure of s	steel,	1/	
		2.To increase surface hardness	SS.	1/2	
		3.To increase resistance to he	eat & corrosion.	mark	
		4.To vary strength & hardness	S.	each	
		5.To make steel easily worka	ble.	Cacii	
		6.To remove the trapped gase	es.		
		7.To improve machinability a			
		8.To alter magnetic properties	es of steel		
	(d)	State the two factors affecti	ng on atmospheric corrosion		2
		Factors affecting on atmosp	oheric corrosion:-	1	
		1) Impurities in the atmosphe	ere		
		2) Moisture in the atmospher	e	mark	
	(e)	Give two functions of pigme Functions of pigments:-	ents	each	2
		1) Provide opacity and colour	r to paint film.		
		2) Give strength to the film.		1	
		3) Give protection to the pain	t film	mark	
		4) Provide resistance to pain	nt film against abrasion, moisture and	each	
		weather.			
		5) To reflect heat and light.			

SUMMER-16 EXAMINATION

Subject Code: 17208 Page No: 3 /12

Que. No.	Sub. Que.		Model Ansv	wer	Marks	Total Marks
1.	(f)	Distingue each).	nish between galvanizing and	d tinning (two points of		2
	(-)	Sr.No.	Galvanizing	Tinning		
		i)	A process of covering iron	A process of covering iron		
			or steel with a thin coat of	or steel with a thin coat of	1	
			Zinc to protect it from	Tin to protect it from	mark	
			corrosion.	corrosion.	each	
		ii)	In galvanising, zinc	Tin protects base metal	Cacii	
			protects the iron as it is	iron from corrosion, as it		
			more electropositive than	is less electropositive than		
			iron.It does not allow iron	iron and higher corrosion		
			to pass into solution.	resistance.		
		iii)	In galvanizing Zn	In tinning tin protects the		
			continues to protect the	iron, till the coating is		
			metal by galvanic cell	perfect. Any break in		
			action, even if coating of	coating causes rapid		
			Zn is broken.	corrosion of iron.		
		iv)	Galvanized containers can	Tin coated containers and		
			not be used for storing acidic food stuff, since Zn	utensils can be used for		
			reacts with food acids	storing any food stuff since Tin is non toxic and		
			forming Zn compounds	protects the metal from		
			which are highly toxic i.e.	corrosion and does not		
			poisonous.	causes food poisoning.		
	(g)	Applica i) It i surfaces. ii) It i like glass iii) I structure iv) In v) In	tions of metal spraying s used to develop metallic coa s, plastic etc. It is used to develop met s. It is used to develop met s. It is used to repair w chemical industry coating of be done by metal spraying.	coating on large and irregular ating on non metallic surfaces allic coating on fabricated from out machine parts.	1 mark each	2

SUMMER-16 EXAMINATION

Sul	SUMMER- 16 EXAMINATION Subject Code: 17208 Page No: 4/12					
Que. No.	Sub. Que.	Model Answer	Marks	Total Marks		
1	(h)	List two causes of formations of boiler scales.		2		
		Causes of formation of boiler scales:-				
		1) Chemical Decomposition-Calcium bicarbonate & Magnesium bicarbonate decomposes at higher temperature to form insoluble carbonates which precipitates to form scale.	1			
		$Ca(HCO_3)_2 \longrightarrow CaCO_3 + H_2O + CO_2 \uparrow$	mark			
		Scale	each			
		2) Decrease in solubility of salts – Some salts present in hard water becomes insoluble at higher temperature e.g. CaSO ₄ , CaSiO ₃ , MgSiO ₃ These salts form hard scale at high temperature.				
	(i)	How can the exhausted permutite or zeolite be regenerated? Exhausted Permutit or Zeolite can be regenerated by using 10 %	1	2		
		brine (NaCl) solution. CaP + 2NaCl → Na ₂ P + CaCl ₂ MgP + 2NaCl → Na ₂ P + MgCl ₂ (Any one reaction-1 mark)	1			
	(j)	Draw the diagram of reverse osmosis cell for desalination of sea water.		2		
		Pressure				
		Inlet	2			
	(k)	List any four constituents of cement. The constituents of paint are:-		2		
		1) Pigments 2) Drying Oil / Medium / Vehicle 3) Thinners 4) Driers 5) Extenders 6) Plasticizers	1/2 mark each			

SUMMER-16 EXAMINATION

Subject Code: 17208 Page No: 5 /12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
1.	(1)	What is slaking of lime. The action of water on quick lime is known as slaking of lime. OR When 3 parts quick lime & one part of water are mixed together to form slaked lime the process is called slaking of lime. OR CaO + H ₂ O	2	2
2	(a)	Attempt any FOUR of the following: Write the chemical reactions in the zone of heat absorption for extraction of iron in blast furnace Chemical reactions in the zone of heat absorption: i) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ ii) $CO_2 + C \rightarrow 2CO$ - 39 Kcal		16 4
		iii) $CO_2 + C \rightarrow 2CO^{-39}$ Real iii) $2CO \rightarrow CO_2 \uparrow + C$ iv) $CaO + SiO_2 \rightarrow CaSiO_3$ (Slag) v) $SO_2 + 2C \rightarrow S + 2CO \uparrow$ vi) $P_2O_5 + 5C \rightarrow 2P + 5CO \uparrow$ vii) $MnO_2 + 2C \rightarrow Mn + 2CO \uparrow$ viii) $SiO_2 + 2C \rightarrow Si + 2CO \uparrow$ (Note: Any four reactions:)	1 mark each	
	b)	With neat and labeled diagram, describe open hearth process for preparation of steel		4
		Charging doors Slag Idle: Oil burner Hearth Tap hole Bath Checker chambers (i.e. regenerators) R1 Valve Hot air and spent gases out to chimney	1	
		Procedure:- 1) The charge consists of pig / cast iron (Cold or molten), scrap iron / steel & haematite (Ore).		
		 2) The process consist of heating the charge on the hearth of furnace by the heat produced by burning fuel in air or by producer gas. 3) During the First Phase of Cycle, Producer gas / air is passed through previously heated regenerator (R₁) while the products of combustion flow through the regenerator. 	1	

SUMMER-16 EXAMINATION

Subject Code: 17208 Page No: 6/12

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		4) The charge is fed through a charging door & heated to 1600 ^o C to		
		1650°C by means of producer gas. Fuel is fired through nozzles.		
		5) The hot gases formed in (R_1) pass over the hearth to its opposite		
		end & metal charge supported on the hearth is openly exposed to		
		the flames & is converted into molten metal. Metal charge is also		
		heated by the radiations from the walls.		
		6) After passing over the hearth, the products of combustion pass		
		through R ₂ (Checker chamber) & heat it.		
		7) After about 25 to 30 minutes the Second Phase Cycle starts &		
		the idle burner fires the fuel.		
		8) Regenerators R_1 , R_2 store & release large quantities of heat		
		which would have escaped to the atmosphere & thus wasted.		
		9) Tap hole in the lowest part of the hearth is always closed with		
		refractory plug until metal is ready to be poured.		
		10) Before tapping the molten metal into the ladle a sample of the		
		same may be tested for its chemical composition. The process		
		requires 8-10 hours		
		Reactions:-		
		a) Oxidation of impurities of Mn, P and Si by haematite.		
		$2Fe_2O_3 + 6Mn \rightarrow 4Fe + 6MnO$	2	
		$5 \text{ Fe}_2\text{O}_3 + 6\text{P} \rightarrow 10\text{Fe} + 3\text{P}_2\text{O}_5$	2	
		$2Fe_2O_3 + 3Si \rightarrow 4Fe + 3SiO_2$		
		b) Formation of slag for the removal of Mn, P & Si.		
		$MnO + SiO_2 \rightarrow MnSiO_3$		
		$P_2O_3 + 3Cao \rightarrow Ca_3 (PO_4)_2$ Slag		
		$SiO_2 + CaO \rightarrow CaSiO_3$		
		c) Finally C & S from gaseous oxides which leave the furnace as		
		five gases		
		$2 \text{ Fe}_2\text{O}_3 + 3\text{C} \rightarrow 4\text{Fe} + 3\text{CO}_2 \uparrow$		
		$2Fe_2O_3 + 3S \rightarrow 4Fe + 3SO_2 \uparrow$		

Page No: 7/12

SUMMER-16 EXAMINATION

Subject Code:17208

Que.	Sub.	Model	Δ ηςτιγονο	Marks	Total
No.	Que.	Model Answers		IVIALKS	Marks
2	(c)	Differentiate between annealing			4
		Annealing 1.It is the process of heating	Normalizing 1.It is the process of heating		
		the steel at a temperature (760-	the steel at a temperature of		
		925°C) and cooling it slowly in	50 °C above the critical		
		the furnace	temperature (725°C) and		
			cooling it freely in air at a rate of 5 °C/Sec.	1	
		2.Due to annealing steel	2. Due to normalizing steel	Mark	
		becomes more soft, pliable,	becomes homogenous & more	each	
		malleable & ductile	soft. The mechanical properties		
			of steel are more improved		
		3. Time required for annealing	than annealing. 3.Time required for		
		is more than normalizing	normalizing is less than		
		8	annealing		
		4.Consumption of fuel or	4.Consumption of fuel or		
		electric power is more.	electric power is less.		
	(d)	Describe mechanism of electroc of hydrogen gas	hemical corrosion by evolution		4
		of flydrogen gas			
		Fe → Fe" + 2e - \	Steel Tank Acidic Water Acidic Water Anode	1	
		Steel tank: - Anode			
		Cu – strip:- Cathode			
		These types of corrosion occur us	-		
		industrial waste, solutions of non Consider a steel tank containing a			
		piece of copper scrap in contact w		1	
		tank in contact with copper acts a	<u>-</u>		
		the evolution of hydrogen gas.			
		Reactions:			
		At Anode: Fe → Fe ⁺⁺ + 2 e ⁻ (Orridotion)		
		Fe + 2 e (Oxidation)		
		These electrons flow through the cathode that is piece of copper me ions to form H ₂ gas At cathode:	metal lattice from anode to the etal where they are accepted by H ⁺	1	
		H^+ ions are eliminated as H_2 gas			
		$2H^+ + 2e^- \longrightarrow H_2 \uparrow (R$	Reduction)		
		Thus, over all reaction is $\mathbf{Fe} + 2\mathbf{H}^+ \longrightarrow \mathbf{Fe}^{++} + 1$		1	
				1	1

SUMMER-16 EXAMINATION

Subject Code: 17208 **Page No: 8/12**

Que. No.	Sub. Que.	Model	Answer	Marks	Total Marks
2	(e)	is more protective. Atmospheric corrosion: - The c	? Name the types of oxide films with examples. Which oxide film corrosion which occurs when metal tmospheric gases like O ₂ , Cl ₂ , Br ₂ ,	1	4
		Type of corrosion which is be conditions is called atmospheric of Types of oxide films:-			
		Type of oxide film Stable porous oxide film Stable nonporous oxide	Sodium, Potassium, Lithium, Calcium, Magnesium. Aluminium, Copper,	2	
		film Volatile oxide film Unstable oxide film More protective oxide films-1.Sta	Chromium etc. Mollybdenum Gold , Silver, Platinum etc.	1	
	(f)		nstable oxide film c protection with neat labeled ations.		4
		Ground Insulat Wet soil Underground pipeline	Sacrificial anode (Al, Mg, Zn or their alloy) Back-fill (Coal + NaCl)	1	
		to the anodic metal by an insula like Zn, Al, Mg etc. acts as ar	tected from corrosion is connected ating wire. The more active metals node and get corroded hence it is the purpose of increasing electrical	2	

SUMMER-16 EXAMINATION

Subject Code: 17208 Page No: 9/12

Que. No.	Sub. Que.		Model Answer	Marks	Total Marks
1101	Que.	Applications: 1. This me buried cables, hot water t 2. Mg or Z	is placed in back fill. (Coal + NaCl) When the med completely it is replaced by fresh piece. ethod is applicable to protect buried pipelines, ank, ship hull etc. In rods are bolted along the sides of ship, hot to boiler to prevent corrosion.	1	William
3		Attempt any FOUR of t	-		16
	(a)	Describe the four types Write one example of ea	of impurities present in natural water . ach .		4
		Types of impurities	Examples		
		Suspended impurities	Decaying plants, plastic,dust,mud,clay		
		Dissolved impurities	Salts like CaSO ₄ , MgSO ₄ , CaCl ₂ ,MgCl ₂ ,	1	
			NaCl, Ca(HCO ₃) ₂ , Mg(HCO ₃) ₂ etc	Mark	
			Gases like O ₂ , CO ₂ , NH ₃ ,H ₂ S etc.	each	
		Colloidal impurities	Fine dust, fine clay particals, organic matter		
		Biological impurities	Aquatic plants & animals, disease causing Bacteria's, germs ,microorganism etc.		
					4
	(b)	List two disadvantages	of each using hard water in paper industry		
		and textile industry.			
			ard water is used in paper manufacturing, then twith the paper material. Hence, paper will not		
		have desired smoothness		2	
		2) Iron & manganese imp	purities in hard water affect whiteness of paper		
		Textile industry- 1) If 1	nard water used in textile industry then large		
		quantity of soap is wasted	d while washing the yarn.		
				2	

SUMMER-16 EXAMINATION

Subject Code: 17208 Page No: 10/12

Que.	Sub.	N. 1.1.A	N. 1	Total
No.	Que.	Model Answer	Marks	Marks
3.		2) At the same time, undesirable precipitate is formed which		
		adheres to the fabrics and the exact shades of color are not obtained.		
		3) Iron & manganese salts may cause stains on fabrics.		
	(c)	Calculate total hardness in ppm when 50ml of water sample requires 6.0ml of 0.02M EDTA solution using EBT as in basic medium We know that,		4
		$1000 \text{ml } 1 \text{M } \text{EDTA} = 1000 \text{ml } 1 \text{M } \text{of } \text{CaCO}_{3}$		
		1000ml 1M EDTA = 100 gm of CaCO ₃ .	1	
		Therefore, to calculate,		
		1000ml 1M EDTA = 100 gm of CaCO ₃ .		
		$6ml\ 0.02M\ EDTA = 100\ x\ 6\ x\ 0.02\ /\ 1000\ x\ 1\ gm\ of\ CaCO_3$	1	
		$= 0.012 \mathrm{gm} \text{ of } \mathrm{CaCO}_{3}$	1	
		50ml water sample contains = 0.012gm of CaCO ₃		
		1000ml water sample contains = $0.012 \times 1000/50$ gm of CaCO ₃	1	
		$= 0.240 \text{ gm of } CaCO_3$		
		To convert gm./lit into mg/lit, we have.		
		$0.240 \times 1000 = 240 \text{ mg/lit of CaCO}_{3.}$		
		$= 240 \text{ ppm of CaCO}_{3.}$	1	
		Therefore the total hardness of water sample = 240ppm.		4
	(d)	Describe ion exchange process of water softening with neat labelled diagram and chemical reactions. Ion exchange process is the process removing minerals salts present in hard water. Working and chemical reactions: It consists of two cylindrical towers. The first tower consists of cations exchanger (RH₂) & another one consists of anion exchanger R'(OH)₂. Hard water is first allowed to pass through a tower containing cation exchanger which removes all the cations like Ca²+, Mg²+ etc. RH₂+ CaCl₂ → RCa + 2HCl RH₂+ MgSO₄ → RMg + H₂SO₄ This acidified water is then passed through tank containing anion exchange resins. Here all the anions are replaced by OH⁻ ions. R'(OH)₂+ 2HCl → R'Cl₂+ 2H₂O R'(OH)₂+ H₂SO₄ → R'(SO₄) + 2H₂O Thus water becomes free from all ions. This water is then passed through a degasifier to remove gases like CO₂.	2	

SUMMER-16 EXAMINATIONS

Subject Code: 17208 Page No: 11/12

Que.	Sub.		3.5.1	Total
No.	Que.	Model answers	Marks	Marks
3.		Water + CO ₂ Cation exchanger exchanger Alkali for regeneration regeneration Washings Degasifier Demineralised water	2	
		(Note:Any one reaction of cation and anion exchanger)		4
	(e)	Describe chlorination process with chemical reaction by using chlorine gas Write its two advantages. I] By using Cl ₂ gas- Cl ₂ reacts with water to produce hypochlorous acid & nascent oxygen. Both are powerful germicides. Thus kills germs & microorganisms. 1) Cl ₂ + H ₂ O HOCl + HCl [Hypochlorous acid] 2) HOCl + [O]	2	
		(Nascent oxygen) 3) Germs + [O] Germs are killed Advantages: I] Chlorine gas can be directly used as a gas or as chlorine water for sterilisation of water. II] Chlorine gas is very effective for sterilisation of domestic water, swimming pools etc.	2	
	f)	Describe setting and hardening of cement. Write chemical reactions taking place in same.		4
		Setting and Hardening of cement: - The setting and hardening of cement is due to hydration and hydrolysis reaction taking place between the different constituents of cement and water. Anhydrous compounds undergo hydration forming insoluble gels and crystalline products. Setting: is defined as stiffening of the original plastic mass due to initial gel formation. Hardening: is the development of strength due to crystallization. Following chemical reaction taking place during setting and hardening.	1	

SUMMER-16 EXAMINATIONS

Subject Code: 17208 Page No: 12/12

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
3.	~	Following chemical reaction taking place during setting and hardening.		
		1] Hydrolysis:		
		$C_3S + (x+1) H_2O \longrightarrow C_2S. xH_2O + C.H_2O.$	1	
		$C_4AF + 7 H_2O \longrightarrow C_3A. 6H_2O + CF.H_2O.$		
		2] Hydration:		
		$C_3S + xH_2O \longrightarrow C_2S .x H_2O + CaO.$		
		$C_3A + 6 H_2O \longrightarrow C_3A.6 H_2O + Heat.$	1	