Digital Signal Processing for Music

Part 1: Organizational

alexander lerch

Georgia Center for Music Tech Technology

organizational links & contact

contact info

- alexander lerch
 - ► email: mailto:alexander.lerch@gatech.edu
 - ► www: www.audiocontentanalysis.org
 - ▶ office: Couch 203
 - ▶ office hours: by appointment: https://go.oncehub.com/alexanderlerch
- teaching assistant
 - ► Karn Watcharasupat: kwatchar3@gatech.edu

classes

- Mon, Wed 3:30–4:45pm in WV175
- additional tutorial group: TBD

class resources

- canvas
 - syllabus, grades, slides: https://canvas.gatech.edu

organizational

contact info

- alexander lerch
 - ► email: mailto:alexander.lerch@gatech.edu
 - ► www: www.audiocontentanalysis.org
 - ▶ office: Couch 203
 - ▶ office hours: by appointment: https://go.oncehub.com/alexanderlerch
- teaching assistant
 - ► Karn Watcharasupat: kwatchar3@gatech.edu

classes

- Mon, Wed 3:30–4:45pm in WV175
- additional tutorial group: TBD
- class resources
 - canvas
 - > syllabus, grades, slides: https://canvas.gatech.edu

organizational

contact info

- alexander lerch
 - ► email: mailto:alexander.lerch@gatech.edu
 - ► www: www.audiocontentanalysis.org
 - ▶ office: Couch 203
 - ▶ office hours: by appointment: https://go.oncehub.com/alexanderlerch
- teaching assistant
 - ► Karn Watcharasupat: kwatchar3@gatech.edu

classes

- Mon, Wed 3:30–4:45pm in WV175
- additional tutorial group: TBD

class resources

- canvas:
 - ► syllabus, grades, slides: https://canvas.gatech.edu

organizational goals & requirements

■ goals

- the ability to comprehend typical representations of digital systems such as block diagrams and difference equations,
- **2** an understanding of typical **transforms in DSP** such as the Fourier transform or the Z-transform,
- an understanding of typical signal processing approaches to audio and music signals,
- 4 the ability to use this understanding to **design audio processing systems** such as audio effects, and
- 5 the ability to **implement such designs** in a programming language such as Matlab.

requirements

- math
 - rudimentary programming skills, familiarity with Matlab

organizational goals & requirements

■ goals

- the ability to comprehend typical representations of digital systems such as block diagrams and difference equations,
- **2** an understanding of typical **transforms in DSP** such as the Fourier transform or the Z-transform,
- an understanding of typical signal processing approaches to audio and music signals,
- 4 the ability to use this understanding to **design audio processing systems** such as audio effects, and
- 5 the ability to **implement such designs** in a programming language such as Matlab.

requirements

- math
- rudimentary programming skills, familiarity with Matlab

organizational

Georgia Center for Music Tech II Technology

_	date	topics	exercise	assignment	notes
-	01/09	introduction, signals, periodicity, random pro-	correlation		
		cesses, pdf, expectation values/moments,			
		correlation			
	01/16	convolution	FIR filter	filter & convolution	
	01/23	Fourier series & Fourier transform	DFT	Fourier analysis	MLK Hldy.
	01/30	Fourier transform, sampling, quantization,	quantization		
		SNR, number formats			
	02/06	oversampling, dither, noise-shaping, non-		dither, ns	
		linear quant.			
	02/13	z-transform, digital audio filters, FIR/IIR,	biquad		midterm I
		FFT filtering			
	02/20	sample rate conversion, real-time systems	resampling		
	02/27	denoising			
	03/06	delay-based FX and reverb	vibrato	mod. fx	guthman?
	03/13	dynamics processing	PPM	limiter	midterm II
	03/20				spring
					break
	03/27	time-segment processing (OLA)	ola		
	04/03	phase-vocoder		phase voc	
	04/10	source coding: LPC, ADPCM			
rt 1: Or	ganizational				4 /

■ roughly based on:

• Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley

additional reading:

- Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
- Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley

additional additional reading:

- Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
- Watkinson, John (2001): The Art of Digital Audio, Focal Press

software:

- Matlab: www.matlab.gatech.edu
- github.com etc

■ roughly based on:

• Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley

additional reading:

- Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
- Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley

additional additional reading:

- Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
- Watkinson, John (2001): The Art of Digital Audio, Focal Press

software:

- Matlab: www.matlab.gatech.edu
- github.com etc

■ roughly based on:

• Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley

additional reading:

- Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
- Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley

additional additional reading:

- Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
- Watkinson, John (2001): The Art of Digital Audio, Focal Press

software:

- Matlab: www.matlab.gatech.edu
- github.com etc

■ roughly based on:

• Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley

additional reading:

- Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
- Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley

additional additional reading:

- Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
- Watkinson, John (2001): The Art of Digital Audio, Focal Press

software:

- Matlab: www.matlab.gatech.edu
- github.com etc

organizational assessment

■ 40%: assignments (equally weighted): projected deadlines see syllabus

- 1 convolution and FIR filters
- 2 Fourier analysis
- 3 Dither & Noise Shaping
- 4 modulated audio effects
- 5 compressor & limiter
- 6 (phase vocoder)
- 10%: mid-term exam I
- 10%: mid-term exam II
- 5%: participation
- **■** 15%: quizzes
 - every week?!
- 20% denoising competition

organizational to do

to do

- 1 install Matlab (Octave/Freemat)
- 2 brush up on your math and Matlab

atlab.gatech.

organizational to do

to do

- 1 install Matlab (Octave/Freemat)
- 2 brush up on your math and Matlab

matlab.gatech.edu

organizational to do

to do

- install Matlab (Octave/Freemat)
- 2 brush up on your math and Matlab

matlab.gatech.edu