Exercice 1 Sélection et Projection

Soit la Table de Données PERSONNE:

Nom	Age	Ville
Marc	22	Paris
Catherine	28	Lyon
Sophie	54	Paris
Claude	13	Montpellier
Serge	40	Lyon

Donnez les résultats des requêtes suivantes, et indiquer leur type (sélection ou projection)

O (Age=32)(PERSONNE)	π (Age, Ville)(PERSONNE)	π Age(σ (Nom=Serge)(PERSONNE)

Union et intersection

Soit la Table de Données ÉTUDIANT:

Nom	Age	Ville
Jean	29	Nice
Paul	32	Lannion
Sophie	54	Paris
Vincent	23	Montpellier
Serge	40	Lyon

Donnez les résultats des requêtes suivantes, et indiquer leur type (sélection ou projection)

PERSONNE UETUDIANT	PERSONNE ∩ ETUDIANT	PERSONNE – ETUDIANT

Produit cartésien et jointure

Soit la Table des Données VEHICULE:

Туре	Age_min
bicyclette	18
Voiture	24
Camion	52
Bus	30

Donnez les résultats des requêtes suivantes, et indiquer leur type (sélection ou projection)

PERSONNE X VEHICULE	$\begin{array}{ccc} R1 = & PERSONNE^{\bowtie} \ (Age^{<=} Age_{min}) VEHICULE \\ R2 = & \pi (Nom) \ (R1) \end{array}$

Exercice 2

On considère le schéma relationnel suivant

DEPT

DN	O DNOM	DIR	VILLE
1	Commercial	30	New York
2	Production	20	Houston
3	Développeme	nt 40	Boston

ЕМР

	ENO	ENOM	PROF	DATEEMB	SAL	COMM	#DNO
	10	Joe	Ingénieur	1.10.93	4000	3000	3
)	20	Jack	Technicien	1.5.88	3000	2000	2
	30	Jim	Vendeur	1.3.80	5000	5000	1
	40	Lucy	Ingénieur	1.3.80	5000	5000	3

1. Calculer $O_{(sal < 5000)}$ (EMP).

	(000)	(000)			

2. Calculer EMPbis = $\rho_{\text{(ENO)/id emp)}}(\pi_{\text{(ENO,COM)}}(\text{EM P}))$

2: Carcarer Eivil eis p (Eivo / ia_cinp) (** (Eivo / Cc	(LIVII)

3. Calculer SalEgalComm= π (ENO,SAL)(EM P) \bowtie SAL=COM M(EMPbis)

- 4. Exprimer par une phrase ce qu'on obtient en évaluant les requêtes précédentes.
- 5. Quelle est l'expression de l'algèbre relationnelle qui permettrait d'obtenir:
 - o le nom et la profession de l'employé de numéro 10.

o la liste des noms des employés qui travaillent à New York.

.....

o le nom du directeur du département "Commercial".

.....

Exercice 3

On considère le schéma relationnel suivant:

PILOTE (Pil_id, Pil_nom, Pil_adresse, Pil_salaire)

AVION (Avi id, Avi nom, Avi capacite, Avi localisation)

VOL (Vol id, #Pil id, #Avi id, Vol ville dep, Vol ville arr, Vol h dep, Vol h arr)

les clés primaires sont soulignées, et les clés étrangères possècent le préfixe #

Exprimez les requêtes suivantes à l'aide des opérateurs de l'algèbre relationnelle permettant de donner:

- 1. La liste des avions dont la capacité est supérieure à 150 passagers.
- 2. Les identificateurs et les noms des avions localisés à Paris ?
- 3. Les noms des pilotes domiciliés à Marrakech dont le salaire est supérieur à 15000.
- 4. Les identificateurs et les noms des avions localisés à Paris ou dont la capacité est inférieure à 200 passagers.
- 5. Les identificateurs des pilotes qui ne sont pas en service.
- 6. les identificateurs des vols effectués au départ de Paris par des pilotes français.
- 7. Les vols effectués par un avion qui n'est pas localisé à Chicago.
- 8. Les pilotes (identificateur et nom) habitant dans la même ville que le pilote Dupont.

Exercice 1 Sélection et Projection

Soit la Table de Données PERSONNE:

Nom	Age	Ville
Marc	22	Paris
Catherine	28	Lyon
Sophie	54	Paris
Claude	13	Montpellier
Serge	40	Lyon

Donnez les résultats des requêtes suivantes, et indiquer leur type (sélection ou projection)

σ (Age=32)(PERSONNE)	π (Age, Ville)(PERSONNE)	π Age(σ (Nom=Serge)(PERSONNE)

Requête ALG REL	Req SQL	Type	Résultat	
O (Age=32) (PERSONNE)	Select * from PERSONNE where Age=32	Sélection	Aucune ligne	
π (Age, Ville)	Select Age, Ville from	Projection	Age	Ville
(PERSONNE)	PERSONNE		22	Paris
			28	Lyon
			54	Paris
			13	Montpellier
			40	Lyon
π Age(O (No	Select Age from PERSONNE	Projection	Age	e
m=Serge)	S	d'une	40	
(PERSONNE)		sélection		

Union et intersection

Soit la Table de Données ÉTUDIANT:

Nom	Age	Ville
Jean	29	Nice
Paul	32	Lannion
Sophie	54	Paris
Vincent	23	Montpellier
Serge	40	Lyon

Donnez les résultats des requêtes suivantes, et indiquer leur type (sélection ou projection)

FPK corrigé TD (Algèbre relationnelle) 2020/2021

PERSONNE UETUDIANT	PERSONNE∩ETUDIANT	PERSONNE – ETUDIANT	
Select * from PERSONNE	Select * from PERSONNE	Select * from PERSONNE	
union	intersect	except	
Select * from Etudiant	Select * from Etudiant	Select * from Etudiant	

Produit cartésien et jointure

Soit la Table des Données VEHICULE:

Type	Age_min
bicyclette	18
Voiture	24
Camion	52
Bus	30

Donnez les résultats des requêtes suivantes, et indiquer leur type (sélection ou projection)

PERSONNE X VEHICULE	PERSONNE™ (Age<= Age_min) VEHICULE	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Exercice 2 On considère le schéma relationnel suivant

DEPT

	DNO	DNOM	DIR	VILLE
г	1	Commercial	30	New York
L	2	Production	20	Houston
	3	Développement	40	Boston

ENO **ENOM** PROF DATEEMB SAL COMM #DNO Ingénieur Joe 1.10.93 4000 3000 3 10 EMP 20 Jack Technicien 1.5.88 3000 2000 2 30 Vendeur 1.3.80 5000 1 Jim 5000 Ingénieur 3 40 Lucy 1.3.80 5000 5000

1. Calculer $\sigma_{(sal < 5000)}$ (EMP).

corrigé	TD (Algèbre relationnelle)	2020/2021	
alculer EMPbis = $\rho_{\text{(ENO/id_emp)}}(\pi$	(ENO, COM) (EMP))		
alculer SalEgalComm=π (ENO,SAL)	(EM P) ⋈ SAL=COM M(EMPbis)		
uelle est l'expression de l'algèbre r	elationnelle qui permettrait d'obtenir:	es.	
la liste des noms des employés qu	te des noms des employés qui travaillent à New York.		
le nom du directeur du départeme	ent "Commercial".		
	xprimer par une phrase ce qu'on obuelle est l'expression de l'algèbre r le nom et la profession de l'emple la liste des noms des employés que le nom du directeur du département	alculer EMPbis = ρ (ENO / id_ emp) (π (ENO , COM) (EM P)) alculer SalEgalComm=π (ENO,SAL)(EM P) ⋈ SAL=COM M(EMPbis) Exprimer par une phrase ce qu'on obtient en évaluant les requêtes précédent uelle est l'expression de l'algèbre relationnelle qui permettrait d'obtenir: le nom et la profession de l'employé de numéro 10. La liste des noms des employés qui travaillent à New York.	

Exercice 3

On considère le schéma relationnel suivant:

PILOTE (Pil_id, Pil_nom, Pil_adresse, Pil_salaire)

AVION (Avi id, Avi nom, Avi capacite, Avi localisation)

VOL (Vol id, #Pil id, #Avi id, Vol ville dep, Vol ville arr, Vol h dep, Vol h arr)

les clés primaires sont soulignées, et les clés étrangères possècent le préfixe #

Exprimez les requêtes suivantes à l'aide des opérateurs de l'algèbre relationnelle permettant de donner:

- 1. La liste des avions dont la capacité est supérieure à 150 passagers.
- 2. Les identificateurs et les noms des avions localisés à Paris?
- 3. Les noms des pilotes domiciliés à Marrakech dont le salaire est supérieur à 15000.
- 4. Les identificateurs et les noms des avions localisés à Paris ou dont la capacité est inférieure à 200 passagers.
- 5. Les identificateurs des pilotes qui ne sont pas en service.
- 6. les identificateurs des vols effectués au départ de Paris par des pilotes français.
- 7. Les vols effectués par un avion qui n'est pas localisé à Chicago.
- 8. Les pilotes (identificateur et nom) habitant dans la même ville que le pilote Dupont.