Algorithmique avancée – Examen Réparti 1 UPMC — Master d'Informatique — Novembre 2015 – durée 2h

Les seuls documents autorisés sont les polys de cours, ainsi que la copie double personnelle.

QCM [7 points] 1

Dans ce QCM, pour chaque question vous devez donner 1 seule réponse et expliquer votre choix par une ligne de texte ou une figure. Le barème sera le suivant : Réponse correcte et correctement argumentée: 1 point. Réponse incorrecte ou correcte mais mal argumentée: 0 point.

Q1. La récurrence T(n) = T(n/3) + O(1) a pour solution

- A) $T(n) = \Theta(n)$
- B) $T(n) = \Theta(n \log n)$
- C) $T(n) = \Theta(\log n)$

Donner un exemple d'algorithme qui a cette complexité.

Q2. Pour un arbre bicolore contenant n clés, l'algorithme permettant de calculer le plus petit élément a une complexité au pire (en nombre de noeuds traversés) en

- A) $\Theta(n)$
- B) $\Theta(\log n)$
- C) $\Theta(1)$

Décrire succintement cet algorithme.

Q3. Dans un arbre binômial

- A) le parcours infixe donne les clés dans l'ordre croissant
- B) le parcours préfixe donne les clés dans l'ordre croissant
- C) chacune des branches est étiquetée de façon croissante

Q4. Une opération de rotation sur un arbre A

- A) conserve la hauteur de A
- B) augmente de 1 a hauteur de A
- C) diminue de 1 a hauteur de A

Q5. Quel type de hachage utiliser si l'on veut éviter les collisions

- A) hachage uniforme
- B) hachage universel
- C) hachage parfait

Q6. Étant donnée une fonction de hachage sur b bits (à valeurs dans $[0, \ldots, 2^b - 1]$), on a k clés à hacher. La probabilité qu'au moins 2 clés aient la même valeur de hachage peut être approximée par

- A) $\exp\left(-\frac{k(k-1)}{2^b}\right)$ B) $\exp\left(-\frac{k(k-1)}{2^b}\right)$ C) $\exp\left(-\frac{k^2}{2}\right)$

Q7. Dans le hachage dynamique, l'index est

- A) un trie binaire
- B) un arbre binaire de recherche
- C) un 2-trie

2 Exercices [13 points]

Exercice 1. Classer les fonctions suivantes selon leur comportement asymptotique suivant une échelle croissante, $f(n) \leq g(n)$ si f(n) = O(g(n)).

$$n \log n$$
 n^{10} $35n^2$ $(\log n)^{100}$ 4^n $n!$ $n^3 2^n$ $n^{1/3}$ $100n$ $n^2/\log n$

Exercice 2. Donner un algorithme en $O(n \log n)$ comparaisons, qui étant donné une suite S de n nombres entiers positifs différents et un nombre donné x, détermine s'il existe deux nombres p_1 et p_2 dans S tels que $p_1 + 2p_2 = x$.

Exercice 3. On considère l'arbre binômial B_k (formé de 2^k nœuds). On numérote ces nœuds en ordre postfixe et chaque numéro (étiquette) est écrit en binaire. Ainsi chaque étiquette (de 0 à $2^k - 1$) est un mot binaire sur k bits.

- 1. Dessiner l'arbre binômial B_3 avec ses nœuds étiquetés en binaire en ordre postfixe.
- 2. Montrer par récurrence que si x est nœud à profondeur i dans B_k , l'étiquette de x possède k-i bits égaux à 1.

Exercice 4. Les algorithmes sur les splay-trees font appel à une rotation "zig-zig" qui fait une double rotation simple. Décrire cette rotation sur une figure, puis donner la spécification et la définition (le code) de cette fonction zig-zig, en utilisant les fonctions primitives sur les arbres binaires.

Exercice 5. On travaille sur un ensemble dynamique \mathcal{M} d'un millier de mots, sur lequel on veut effectuer différents traitements. Selon le traitement voulu, décrire la structure de données la plus appropriée, et l'algorithme de traitement en quelques phrases.

- 1. traitement 1 : étant donnés deux mots w_1 et w_2 de \mathcal{M} (avec $w_1 < w_2$ en ordre lexicographique), lister en ordre lexicographique croissant, tous les mots de l'ensemble \mathcal{M} qui sont situés entre w_1 et w_2 .
- 2. traitement 2 : étant donné un mot w de \mathcal{M} lister en ordre lexicographique croissant tous les mots w_i de l'ensemble \mathcal{M} qui ont w comme préfixe $(w_i = w.v_i)$.

Exercice 6. Une file F est une structure de donnée linéaire sur laquelle on peut faire deux opérations

- ajouter(x,F), qui ajoute un élément à la file,
- supprimer(F), qui supprime de la file l'élément le plus anciennement présent.

On peut implanter une file F à l'aide de deux piles P_1 et P_2 (et les opérations classiques empiler(x,P) et $d\acute{e}piler(P)$), de la façon suivante :

- ajouter(x,F): empiler(x,P₁)
- supprimer(F): si P_2 est vide alors dépiler tous les éléments de P_1 et les empiler au fur et à mesure dans P_2 . Puis (dans tous les cas) dépiler P_2 .
- 1- Montrer que cette implantation est correcte.
- 2- Calculer le coût réel d'un ajout et le coût réel d'une suppression (le coût est mesuré en nombre d'opérations *empiler* et *dépiler* faites sur les piles).
- 3- On va calculer le coût amorti des opérations d'ajout et de suppression sur la file en essayant différentes fonctions de potentiel. Le coût est mesuré en nombre d'opérations *empiler* et *dépiler* faites sur les piles.
 - a) fonction Φ_1 : le potentiel vaut deux fois le nombre d'éléments de la pile P_1 . Montrer que le coût amorti d'un ajout vaut 3 et celui d'une suppression vaut 1. Le potentiel est-il toujours ≥ 0 ?
 - b) fonction Φ_2 : potentiel égal au nombre d'éléments de P_1 moins le nombre d'éléments de P_2 . Montrer que le coût amorti d'un ajout vaut 2 et celui d'une suppression vaut 2. Montrer que le potentiel n'est pas toujours ≥ 0 . La fonction Φ_2 est-elle une fonction de potentiel acceptable?