

Course

CS 419

Instructor Prof Abir De

Aditya Pande

[22m2108 @iitb.ac.in]

Ninad Gandhi

[22m2151 @iitb.ac.in]

</ Problem Statement />

</ MNIST : dataset />

The MNIST (Modified National Institute of Standards and Technology)

</ MNIST : dataset />

The MNIST (Modified National Institute of Standards and Technology)

dataset is a classic benchmark dataset in the field of machine learning and computer vision. It consists of:

- **Data:** 70,000 handwritten digits (60,000 for training and 10,000 for testing).
- Image Size: 28x28 pixels.
- Labels: Each image is labeled with the digit it represents (0-9)

</ MNIST: How does it look />

Normalise the data

-1 to 1

STACK THE ROWS

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight].$$

</ MNIST: How does it look />

</ INTERLUDE : TENSOR />

What?

A torch tensor is a multi-dimensional array used for data and computations in PyTorch

```
import torch
x = torch.tensor([1.0, 2.0, 3.0])
print("Tensor x:", x)
y = x + 2.0 # Addition
z = x * 3.0
print("x + 2:", y)
print("x * 3:", z)
```

</ Neural Network />

</ Neural Network: Prereqs/Neuron />

 Let us take an aside and look at the building blocks of neural networks.
 This is a cool website from Jared Wilber. Website

</ Neural Network: Activations />

$$\sigma(x)=rac{1}{1+e^{-(x)}}$$

ReLU

$$\sigma(x) = max(x,0)$$

Tanh

$$\sigma(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

$\underline{LeakyReLU}$

$$\sigma(x) = max(0.1x, x)$$

Visualization

$$y_i=f(x_i)$$

$$y_i=f(x_i)$$

$$y_i = W_1^T \cdot x_i + b_1$$

$$y_i = f(x_i)$$
 $y_i = W_1^T \cdot x_i + b_1$ $h_1 = \sigma_1(W_1^T \cdot x_i + b_1)$

$$egin{aligned} y_i &= f(x_i) \ & y_i = W_1^T \cdot x_i + b_1 \ & h_1 &= \sigma_1 (W_1^T \cdot x_i + b_1) \ & h_2 &= \sigma_2 (W_2^T \cdot (h_1) + b_2) \end{aligned}$$

$$egin{aligned} y_i &= f(x_i) \ y_i &= W_1^T \cdot x_i + b_1 \ h_1 &= \sigma_1(W_1^T \cdot x_i + b_1) \ h_2 &= \sigma_2(W_2^T \cdot (h_1) + b_2) \ dots \ h_l &= \sigma_l(W_l^T \cdot (h_{l-1}) + b_l) \end{aligned}$$

$$egin{aligned} y_i &= f(x_i) \ y_i &= W_1^T \cdot x_i + b_1 \ h_1 &= \sigma_1(W_1^T \cdot x_i + b_1) \ h_2 &= \sigma_2(W_2^T \cdot (h_1) + b_2) \ &dots \ h_l &= \sigma_l(W_l^T \cdot (h_{l-1}) + b_l) \ logits &= W_{out}^T \cdot (h_l) + b_{out} \end{aligned}$$

</ PROBABILITY : Softmax />

softmax function softmax : $\mathbb{R}^k \to \mathbb{R}^k$ as

$$\operatorname{softmax}(t_1, \dots, t_k) = \begin{bmatrix} \frac{\exp(t_1)}{\sum_{j=1}^k \exp(t_j)} \\ \vdots \\ \frac{\exp(t_k)}{\sum_{j=1}^k \exp(t_j)} \end{bmatrix}.$$

This has the characteristics of a _ _ _

</ PROBABILITY: _ • _ • _ />

- It has all positive values
- It sums up to 1

</ PROBABILITY : MLE />

It can be used as a P.D.F

$$\begin{bmatrix} P(y=1 \mid x; \theta) \\ \vdots \\ P(y=k \mid x; \theta) \end{bmatrix} = \operatorname{softmax}(t_1, \dots, t_k)$$

YOU CAN NOW TAKE ARGMAX

</ PROBABILITY: PDF & MLE/>

$$\begin{bmatrix} P(y=1 \mid x; \theta) \\ \vdots \\ P(y=k \mid x; \theta) \end{bmatrix} = \operatorname{softmax}(t_1, \dots, t_k)$$

BUT WHY DO THAT ?????

</ PROBABILITY : MLE />

MLE: Maximum Likelihood Estimation

</ PART 1: FIN />