弦上驻波实验

杨轶

March 2024

1 数据及处理

1.1 弦线线密度

弦线直径: $d_0 = 1.167 \,\mathrm{mm}$,样品弦直径: $d = 1.165 \,\mathrm{mm}$

样品弦长度: $l_1 = 132.5 \,\mathrm{mm}, \ l_2 = 900.0 \,\mathrm{mm}$

$$l = l_2 - l_1 = 767.5 \,\mathrm{mm} \tag{1}$$

样品弦质量:

$$m = 5.52 \,\mathrm{g} \tag{2}$$

弦线线密度:

$$\mu = \frac{m}{l} = 7.192 \times 10^{-3} \text{kg/m} \tag{3}$$

1.2 共振频率与驻波波腹个数的关系

弦线有效长度 $L=60.0\,\mathrm{cm},$ 重力加速度 $g=9.801\,\mathrm{m/s^2},$ 砝码质量 $M=1.000\,\mathrm{kg},$ 张力 $T=3Mg=29.403\,\mathrm{N}_{\circ}$

表 $1 + f_c$ 为共振频率的理论计算值,有

$$f_c = \frac{n}{2L} \sqrt{\frac{T}{\mu}} \tag{4}$$

 f_e 为共振频率的实验测量值。 v_c 是波速的理论计算值,有

$$v_c = \sqrt{\frac{T}{\mu}} \tag{5}$$

 v_e 为波速的实验测量值,有

$$v_e = f\lambda = f \times \frac{2L}{n} \tag{6}$$

n	$f_c/{ m Hz}$	$f_e/{ m Hz}$	$\left \frac{\Delta f}{f_c}\right /\%$	$v_c/(\mathrm{m/s})$	$v_e/(\mathrm{m/s})$	$\left \frac{\Delta v}{v_c}\right /\%$
1	53.3	54.6	2.4	63.94	65.52	2.47
2	106	109.2	3.0	63.94	65.52	2.47
3	160	168.2	5.1	63.94	67.28	5.22

表 1: 共振频率与驻波波腹个数的关系表

图 1: 共振频率与驻波波腹个数的关系图

1.3 共振频率与弦线张力的关系

弦线有效长度 $L=60.0\,\mathrm{cm}$,波腹数量 n=1,弦线线密度 $\mu=7.192\times 10^{-3}\mathrm{kg/m}$ 。

T/N	$f_c/{ m Hz}$	$f_e/{ m Hz}$	$\left \frac{\Delta f}{f_c}\right /\%$	$\ln T$	$\ln f_e$
9.801	30.8	32.5	5.5	2.2825	3.481
19.602	43.5	46.4	6.7	2.97563	3.837
29.403	53.3	54.9	3.0	3.38110	4.006
39.204	61.5	63.5	3.3	3.66878	4.151
49.005	68.8	71.2	3.5	3.89192	4.265

表 2: 共振频率与弦线张力的关系表

图 $2: \ln f 与 \ln T$ 关系图

对 $\ln T$ 与 $\ln f$ 作最小二乘法线性拟合 $\ln f = a + b \ln T$ 可以得到

$$a = 2.39 \pm 0.03 \tag{7}$$

$$b = 0.481 \pm 0.009 \tag{8}$$

$$r = 0.9994$$
 (9)

对式 4两边取对数有

$$\ln f = \ln \left(\frac{n}{2L\sqrt{\mu}} \right) + \frac{1}{2}lnT = a_1 + b_1 \ln T \tag{10}$$

代入数据有

$$a_1 = 2.28, b_1 = 0.5 (11)$$

1.4 共振频率与弦线有效长度的关系

弦线上张力 $T=29.403\,\mathrm{N}$, 波腹数 n=1, 弦线线密度 $\mu=7.192\times10^{-3}\mathrm{kg/m}$ 。

L/cm	$f_c/{ m Hz}$	$f_e/{ m Hz}$	$\left \frac{\Delta f}{f_c}\right /\%$	$\ln L^*$	$\ln f$
40.0	79.9	82.6	3.4	-0.916	4.414
47.0	68.0	71.8	5.6	-0.755	4.274
54.0	59.2	62.4	5.4	-0.616	4.134
62.0	51.6	52.6	1.9	-0.478	3.963
70.0	45.7	48.0	5.0	-0.357	3.871

表 3: 共振频率与弦线有效长度关系表

 $^{^*}$ L 此处换成国际单位制

图 3: $\ln f$ 与 $\ln L$ 关系图

对 $\ln T$ 与 $\ln f$ 作最小二乘法线性拟合 $\ln f = a + b \ln L$ 可以得到

$$a = 3.506 \pm 0.025 \tag{12}$$

$$b = -1.00 \pm 0.04 \tag{13}$$

$$r = 0.997$$
 (14)

对式 4两边取对数有

$$\ln f = \ln \left(\frac{n}{2} \sqrt{\frac{T}{\mu}} \right) - \ln L = a_2 + b_2 \ln T \tag{15}$$

代入数据有

$$a_2 = 3.465, b_2 = -1 \tag{16}$$

2 分析与讨论

2.1 考虑非小振动情形

考虑弦线上微元 $(x,\xi(x))$ 到 $(x+\mathrm{d} x,\xi(x+\mathrm{d} x))$,弦上张力为 T,弦线线密度为 λ ,列出对弦线振动方向的微分方程

$$\sqrt{1 + (\frac{\partial \xi}{\partial x})^2} dx \lambda \frac{\partial^2 \xi}{\partial t^2} = (\sin \theta_2 - \sin \theta_1) T$$
(17)

其中 $\theta_{1,2}$ 分别为弦线微元两端张力方向与水平夹角,有

$$\sin \theta = \frac{\frac{\partial \xi}{\partial x}}{\sqrt{1 + (\frac{\partial \xi}{\partial x})^2}} \tag{18}$$

将式 18代入 17, 化简得到波动方程

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{T}{\lambda (1 + (\frac{\partial \xi}{\partial x})^2)^2} \frac{\partial^2 \xi}{\partial x^2}$$
 (19)

而小振动近似下的波动方程为

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{T}{\lambda} \frac{\partial^2 \xi}{\partial x^2} \tag{20}$$

有波速为

$$v_0 = \sqrt{\frac{T}{\mu}} \tag{21}$$

而波动方程写成指数形式有

$$\xi = Ae^{i(kx - \omega t)} \tag{22}$$

若依旧认为现在的振动形式认为简谐的,将式22代入式20可得到新的波速

$$v_1 = \frac{1}{1 - k^2 A^2} \sqrt{\frac{T}{\mu}} \tag{23}$$

显然此时得到的波速 v_1 是小于小振动近似下的理论值 v_0 的。 类似地、式 4可修正为

$$f_1 = \frac{n}{2L(1-k^2A^2)}\sqrt{\frac{T}{\mu}} = \frac{f_c}{1-k^2A^2}$$
 (24)

在前面的所有结果中,我们可以很清晰的看到实验得到的 f_e 是大于理论值 f_c 的,同样理论得到的波速 v_c 也是小于 v_e 的。在实验中弦线在共振频率附近的振动振幅已经不再是小振动了,在式24与式 24中计算出的共振频率 f_1 与波速 v_1 都是大于小振动近似下的理论解 f_c 与 v_c 的,故在实验中测得的 f_e 将大于 f_c , v_e 同样大于 v_c 。

若有 $k^2A^2 << 1$, 可以得到 Δf 近似表达式

$$\Delta f = f_e - fc = k^2 A^2 f_c \tag{25}$$

2.2 误差分析

在 1.3中,线性拟合得到的结果虽然有很好的线性性,但考虑拟合不确定度得到的斜率 b 是小于理论值 $b_1=0.5$ 的,但是在 1.4中,线性拟合得到的结果确实很好的,斜率 b 与理论值 b_2 是很一致的。

我认为 1.3中的偏差来源可能会是实际的张力的偏差带来的,有可能是杠杆不水平导致的,但 是我在实验中是调节了水平的,那么也可能是琴码上摩擦等因素带来的实际张力与杠杆计算得到的 张力不符合的情形所导致的。

而 1.3与 1.4中的截距均比理论值偏大,这是可以通过修正的表达式式 24解释的,式 24前的系数 $\frac{1}{1-k^2}$ 4½ 是显然会导致截距偏大的。

	姓名	杨软	学号 230001	11403	星期_	第二	组	页码 1 /
	f_n		f= 7/I	u=	7.1927163	kglm	术	和36直径
	- · f - n 弘祥有意	文长度 上=	60.0 cm	9=9	. 801 m/s2	M=1.	on kg	d=1,165m
		T=	3 Mg = 20	1.403 N	A\$ 100 32	0=132.	Cmm , b	= 600. 2 m
		致论	y直径 do=	1.167 mm		2=22-2	1=767.5mm	100
312 L 312	n	tc/Hz	te/Hz 54.6	10 / No.	Vc/m/s	Ve/m/s	100 /1/	
		53.283	54.6	2.44	63.94	65.52	2.47	
有信款	2.	10/106	109.2	3.02	63.94	65.52	2.47	
	3,	160	168.2	5-12	63.94	67.28	5.22	
				对阿德勒		最外	2 mo.001	
	=. j -T	L=6°.	oca n					
	TIN	tc/H3	Te/Hz	10/1/1/	Velans	Velmis	1 6V /2/	,
	9.80	30.8	32.5	5.52	36.92			
	19.602	43.5	46.4	6.67	52.2	/	6.68	
	29.403	53.3	54.9	3.00	63.94	65-9	3.06	
	39.204	61.5	63.5	3.25	73.83	76.2	3.21	
							3.46	
	49.005	68.8	71.2	3-49	82.54	0 - 1		
	₹. †-L	T= 29.4	103N N=1	µ=7	192×10-31	Kg m		
	L/cm	fc/Hz	Te/Hz	(# 1/º/.	link	Ve/m/	5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2
	40.0	79.9	82.6	3.38	63-94	66.	0	
	47.0	63.0	71.8	5.59	63.94		7	
	54.0	5-9-2	62.4	5.40	63.94	67.		
	62.0	51.6	32.6	1.92	63.94		0	1
	70.0	45.7	48.0	5.43	63.94	67		

图 4: 课上实验记录