Exercice 6. de la série 3

1- Soit la molécule Br-Cl: En calculant les électronégativités de Mulliken., quel est l'atome le plus électronégatif? Cl: EI= 1251 et AE= -348,8 kJ.mol⁻¹; Br: EI=1140 et AE=-367kJ.mol⁻¹ Les différentes formules d'électronégativité selon l'échelle de <u>Mülliken</u> en utilisant les différentes unités de l'énergie sont:

$$\chi_{M} = \frac{EI + |AE|}{2} (eV) \qquad \chi_{M} = \frac{EI + |AE|}{130} (Kcal.mol^{-1}) \qquad \chi_{M} = \frac{EI + |AE|}{543} (KJ.mol^{-1})$$

$$Donc \chi_{Cl} = \frac{EI(Cl) + |AE(Cl)|}{543} = 2,95 \text{ et } \chi_{Br} = \frac{EI(Br) + |AE(Br)|}{543} = 2,77$$

D'après les résultats le Cl est le plus électronégatif.

- **2-** Calculer la différence d'électronégativité de Pauling entre le fluor et le chlore sachant que $D_{F2}=155$ kJ.mol⁻¹, $D_{Cl2}=240$ kJ.mol⁻¹ et $D_{FCl}=249$ kJ.mol⁻¹. Ce résultat est-il en accord avec les valeurs suivantes, dans l'échelle de Pauling : $\chi_F = 3.9$ et $\chi_{Cl} = 3.2$.
 - Les différentes formules de la différence d'électronégativité selon l'échelle de <u>Pauling</u> en utilisant les différentes unités de l'énergie sont:

$$|\chi_{A}-\chi_{B}| = 0.102\sqrt{D(AB)} - \sqrt{D(AA).D(BB)}$$
 (KJ.mol⁻¹)

$$= 0.208\sqrt{D(AB)} - \sqrt{D(AA).D(BB)}$$
 (Kcal.mol⁻¹)

$$= \sqrt{D(AB)} - \sqrt{D(AA).D(BB)}$$
 (eV.at⁻¹)

$$|\chi_{F}-\chi_{Cl}| = |\Delta\chi_{P}| = 0.102\sqrt{D(FCl)} - \sqrt{D(Cl2).D(F2)} = 0.76$$

• Résultat expérimental : $\chi_F - \chi_{Cl} = 0,7$. Les résultats sont en bon accord.

TD 4- Chimie de l'Ingénieur - Radioactivité

Exercice 1.

1. L'Irridium $^{192}_{78}$ Ir est un émetteur de rayonnement gamma et bêta-. Ecrire l'équation de la réaction nucléaire, on appellera X le noyau fils.

$$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}e + R\gamma$$

(lois de conservation de la charge électrique et du nombre de nucléons).

2. Il existe deux isotopes de l'irridium instables : ¹⁹²₇₈Ir de période T₁= 74j; ¹⁹⁴₇₈Ir de période T₂=18 h.

Calculer leur constante radioactive en s⁻¹. En déduire, celui qui sera éliminé le plus rapidement.

- Pour $^{192}_{78}$ Ir: $\lambda = \ln 2 / T = \ln 2 / (74x24x3600) = 1.08 \cdot 10^{-7} \text{ s}^{-1}$
- Pour $^{194}_{78}$ Ir: $\lambda = \ln 2 / T = \ln 2 / 18x3600 = 1.07 \cdot 10^{-5} \text{ s}^{-1}$

L'isotope qui sera éliminé le plus rapidement est $^{194}_{78}$ Ir (car sa constante radioactive est plus grand e ou bien car sa période est plus petite)

Exercice 2.

Lors de la catastrophe de Tchernobyl, du césium 134 et du césium 137 ont été libérés dans l'atmosphère. Z(Cs)=55

1. Le césium 134 est radioactif β

Écrire l'équation bilan de désintégration, en précisant les produits formés.

Conservations des nucléons (somme des nombres de masses), de la charge (somme des numéros atomiques),

$$^{134}_{55}Cs \rightarrow ^{134}_{56}Ba + ^{0}_{-1}e + \gamma$$

- 2. La période du césium 134 est T= 2 ans. En déduire la constante radioactive λ . $\lambda = \ln 2 / T = 0.347 \text{ an}^{-1}$;
- 3. Au bout de combien de temps 99 % du césium 134 libéré auront-ils disparu ? % restant = $N/N_0 = 100-99 = 0.01 = e^{-\lambda_t}$ donc $t = -\ln(N/N_0)/\lambda$. = 13.29 ans

Exercice 3.

Par désintégrations successives de type alpha et bêta-, le noyau de thorium ²³²₉₀Th conduit au noyau stable de plomb ²⁰⁸₈₂Pb.

A partir des variations des nombres de masse et de charge, calculer les nombres respectifs de particules alpha (α) et bêta (β -).

Soit x le nombre de désintégration $\alpha \left({}^4_2He \right)$ et y le nombre de désintégration $\beta^{\text{-}}$

 $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ e). Le bilan de ces désintégration peut donc s'écrire sous la forme (on ne signale pas le rayonnement γ qui ici ne nous intéresse pas) :

$$^{232}_{90}$$
Th $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He + $^{0}_{-1}$ e

Appliquons les lois de conservations à ce bilan de désintégration :

- la loi de conservation de la charge électrique donne l'équation : 90 = 82 + 2 x y (1)
- la loi de conservation du nombre de nucléons donne l'équation : 232 = 208 + 4x + 0 y(2)
- De l'équation (2) on tire 4 x = 232 208 = 24. On en déduit x = 5. $\triangleright y = 4$

Exercice 4.

On considère une masse $\mathbf{m_0}$ de radon à la date t = 0.

Déterminer la masse de radon restant au bout de 1, 2, ..., n périodes. En déduire la masse de radon désintégrée au bout de n périodes.

On a
$$t_1 = t_{1/2}$$
; $t_2 = 2$ $t_{1/2}$; $t_3 = 3$ $t_{1/2}$; $t_4 = 4$ $t_{1/2}$ $t_n = n$ $t_{1/2}$.

- A t_1 il y a désintégration de la ½ des noyaux radioactifs de masse m_0 donc $m_1 = m_0/2$
- A t_2 il y a désintégration de la ½ des noyaux de masse m_1 donc $m_2 = m_1/2 = m_0/4 = m_0/2^2$
- A t_3 il y a désintégration de la ½ des noyaux de masse m_2 donc $m_3 = m_2/2 = m_0/8 = m_0/2^3$
- •
- •
- A t_n il y a désintégration de la ½ des noyaux de masse m_{n-1} donc $m_n = m_{n-1}/2 = m_0/2^n$