MLRF Lecture 04

J. Chazalon, LRDE/EPITA, 2020

IR evaluation

Lecture 04 part 03

How to evaluate a retrieval system?

We need a set of queries for which we know the expected results "Ground truth", aka "targets", "gold standard"...

To compare 2 methods, we need to use the same database and the same queries.

Many measures / indicators.

Core criterion: is a result relevant (binary classification)?

Precision and Recall

Used to measure the balance between

- Returning many results, hence a lot of the relevant results present in the database, but also a lot of noise
- Returning very few results, leading to less noise, but also less relevant results

Precision and Recall

Precision (P) is the fraction of retrieved documents that are relevant

$$Precision = \frac{\#(relevant items retrieved)}{\#(retrieved items)} = P(relevant | retrieved)$$

Recall (R) is the fraction of relevant documents that are retrieved

$$Recall = \frac{\#(relevant items retrieved)}{\#(relevant items)} = P(retrieved|relevant)$$

	Relevant	Nonrelevant
Retrieved	true positives (tp)	false positives (fp)
Not retrieved	false negatives (fn)	true negatives (tn)

P	=	tp/(tp+fp)
R	=	tp/(tp+fn)

F-measure

F measure is the weighted harmonic mean of precision and recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 where $\beta^2 = \frac{1 - \alpha}{\alpha}$

where $\alpha \in [0, 1]$ and thus $\beta^2 \in [0, \infty]$

The default value is $\beta = 1$, leading to:

$$F_{\beta=1} = \frac{2PR}{P+R}$$

How to evaluate a <u>ranked</u> retrieval system?

When results are ordered, more measures are available.

Common useful measures are:

- The precision-recall graph and the mean average precision
- The ROC graph and the area under it (AUC)

Precision-recall graph

Plotting the points

For a given query

For each result

if the result is relevant

set x = #tp / #expected

set y = #tp / #returned

The recall always increases while we scan the result list.

Equal Error Rate and Average Precision

Which one is the best?

Note: the PR graph does not provide a total order ⇒ need more indicators

Mean average precision at k — mAP (@k)

Mean of the average precision of several queries, when considering **k results for each query**

⇒ makes evaluation tractable with very large databases

Computed for each query using the <u>trapezoid technique</u> \rightarrow

General algorithm:

For each query q_i in the test set with expected results e_i :

Retrieve the list **ret**, of **k** best results

Compute the AP ap, given e, and ret,

Compute the mean AP over all ap,

Example: Compute the AP for a given query

For this query and the following results, plot the precision/recall graph and compute the average precision.

Case 1: assume $|\mathbf{e}_i| = 3$

Check the **first** result: It it **relevant**?

Check the **first** result: It it relevant? YES

⇒ Compute current precision:

1 relevant / 1 retrieved = 1

 \Rightarrow Recall = 1 relev. $\frac{1}{2}$ expected = $\frac{1}{3}$

Check the **next** result: It it **relevant**?

Check the **next** result: It it **relevant? NO**

- \Rightarrow P@2 = 1 relevant / 2 retrieved = $\frac{1}{2}$
- ⇒ R@2 is unchanged

Check the **next** result: It it **relevant**?

Check the **next** result: It it **relevant?** YES

- \Rightarrow P@3 = 2 relevant / 3 retrieved = $\frac{2}{3}$
- ⇒ Add a point at next recall value (3/3)

And we keep going...

P@4 = 2/4 = 1/2

R@4 = unchanged

And we keep going...

P@5 = 2/5 = 0.4

R@5 = unchanged

0.9

0.6

0.4 0.3 0.2

And we keep going...

P@6 = 2/6 = 1/3

R@6 = unchanged

And we keep going...

P@7 = 2/7 = 0.285...

R@7 = unchanged

And we keep going...

P@8 = 2/8 = 1/4

R@8 = unchanged

And we keep going...

P@9 = 3/9 = 1/3

R@9 = 3/3 = 1

It does not change the AP here...

P@10 = 3/10

R@10 = 3/3 = 1

And we are done!

A common approximation is to take only the upper envelope of the curve...
But good libraries go for the full, exact computation.

Case 2: what if $|e_i| = 4$?

1. Adjust R values.

Case 2: what if $|e_i| = 4$?

- 1. Adjust R values.
- 2. P values do not change if **k** does not change.

Case 2: what if $|e_i| = 4$?

- Adjust R values.
- P values do not change if k does not change.
- 3. Here, it would imply that we did not get all relevant results (very common in practice) ⇒ we stop the curve before the 1

ROC & others

[next lecture, more useful for classification]

Ground truthing issues

Do we have to annotate all images within a dataset for all our test queries?

No! Use "distractors": samples that you know, for sure, not to be relevant to any query.