Работа 1.2.3 Резонанс токов

Подлесный Артём группа 827

16 декабря 2019 г.

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

Оборудование: генератор синусоидального напряжения, осциллограф, вольтметры, магазин ёмкостей.

Теория

$$I=\frac{E}{R_I}=\frac{E_0cos(\omega t+\varphi_0)}{R_I}=I_0cos(\omega t+\varphi_0) \text{— ток на генераторе.}$$

$$R_S=\frac{U_{RS}}{I}=\frac{U_{RS}}{\omega CU_{CS}}=\frac{1}{\omega C}tg\delta$$

где R_S - эквивалентное последовательное сопротивление (ЭПС). Для используемых емкостей C_n выполнено $tg\delta < 10^{-3}$.

$$R_{\sum} = R + R_L + R_S$$

где R_{\sum} - суммарное активное сопротивление контура. Воспользуемся методом комплексных амплитуд:

$$Z_L = R_L + i\omega L, Z_C = R_S - i\frac{1}{\omega C}, Z = R_{\Sigma} + i(\omega L - d\frac{1}{\omega C}).$$

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно предствить в виде:

$$\begin{split} I_c &= I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \end{split}$$

где $\omega_0=\frac{1}{\sqrt{LC}}$ - собственная частота, $\rho=\sqrt{\frac{L}{C}}$ - реактивное сопротивление контура, $Q=\frac{\rho}{R_{\sum}}$ — добротность контура.

Рассмотрим случай, когда $|\Delta\omega| = |\omega - \omega_0| \ll \omega_0$. Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}$$

Пренебрегая поправками порядка Q^{-2} , получим:

$$I_{c} = QI_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{c}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{c} = \frac{\pi}{2} - \frac{R + R_{L}}{\rho} - arctg(\tau \Delta \omega)$$

$$I_{L} = QI_{0} \frac{\omega_{0}}{\omega} \frac{e^{i\phi_{L}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{L} = -\frac{\pi}{2} + \delta \arctan(\tau \Delta \omega)$$

$$U = Q\rho I_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{U}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{U} = -\frac{\omega}{\omega_{0}} \frac{R + R_{L}}{\rho} + \delta - arctg(\tau \Delta \omega)$$

где $au = rac{2L}{R_{\sum}} = rac{2Q}{\omega_0}$ - время затухания.

При резонансе, т.е. когда $\Delta\omega=0$:

$$I_c(\omega_0) = QI_0, \phi_c(\omega_0) = \frac{\pi}{2} - \frac{R + R_L}{\rho}$$

$$I_L(\omega_0) = QI_0, \phi_L(\omega_0) = -\frac{\pi}{2} + \delta$$

$$U(\omega_0) = Q\rho I_0 = Q^2 R_{\sum} I_0, \phi_U \omega_0 = -\frac{R + R_L}{\rho} + \delta$$

$$\phi'_c(\omega_0) = \phi'_L(\omega_0) = \phi'_U(\omega_0) = -\tau$$

Экспериментальная установка

В работе исследуется следующая схема:

Рис. 1 Установка.

 $R = 3.5 \text{ Om}, R_1 = 1008 \text{ Om}.$

Выполнение эксперимента

Установим такую амплитуду колебаний на генераторе, чтобы на 1 вольтметре было среднеквадратическое значение E. Проведём эксперимент при E=0.2 В и E=0.1 В для 7 различных ёмкостей. Также определим суммарное сопротивление, активное сопротивление катушки, ёмкость катушки, максимальное сопротивление конденсатора. Результаты представлены в таблице.

C , мк Φ									
25.1	33.2	47.3	57.4	67.5	82.7	101.6			

$$L = \frac{1}{C(2\pi f)^2}$$

$$\rho = \frac{1}{2\pi fC}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1$$

$$Q = \frac{UR_1}{E_0} 2\pi fC$$

$$R_{\sum} = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$

Таблица 1: E = 0.2 B

	$E, B \cdot 10^{-3}$	$U, B \cdot 10^{-3}$	f , к Γ ц	L , мк Γ н	ρ , Om	Z_{res} , Om · 10^3	Q	R_L, O_M	R_{\sum} , Om
1	200	1000	32	970	200	5.2	26	3.7	7.4
2	200	810	28	970	170	4.1	24	3.5	7.2
3	200	590	24	970	140	3	21	3.2	6.9
4	200	490	21	960	130	2.5	19	3.1	6.7
5	200	420	20	970	120	2.1	18	3.1	6.7
6	200	350	18	970	110	1.8	16	3	6.6
7	200	290	16	970	97	1.5	15	2.9	6.5

Усреднив полученные значения, получаем, что $L=966\pm 6$ мГн, $R_L=3.20\pm 0.05$ Ом.

Резонансная кривая

Теперь снимем резонансную кривую Для определения точки резонанса проведём параболу по трём верхним точкам. Точку максимума параболы будем считать максимумом нашей кривой.

Таблица 2: E = 0.1 B

	$E, B \cdot 10^{-3}$	$U, B \cdot 10^{-3}$	f , к Γ ц	L , мк Γ н	ρ , Om	Z_{res} , Om · 10^3	Q	R_L , Om	R_{Σ} , Om
1	100	520	32	970	200	5.2	27	3.6	7.4
2	100	410	28	970	170	4.1	24	3.4	7.1
3	100	300	24	960	140	3	21	3.2	6.8
4	100	250	21	960	130	2.5	19	3.1	6.7
5	100	210	20	960	120	2.1	18	3.1	6.7
6	100	180	18	960	110	1.8	16	3	6.6
7	100	140	16	970	97	1.5	15	3	6.5

Рис. 2 Резонансные кривые для 2 режимов.

Рис. 3 Отнормированные резонансные кривые.

Как известно, добротность можно найти графически. На уровне $\frac{1}{\sqrt{2}}$ проведём прямую и определим "ширину"кривой. Для нахождения точки пересечения кривой с "уровнем"применим аппроксимацию прямой по двум близлежащим точкам. Таким образом, по ширине δ , добротность находится так:

$$Q = \frac{1}{\delta}$$

Для наших кривых: $Q_2 \approx 23.6, \, Q_5 \approx 19.1.$

Сдвиг фаз

Перейдём к следующей части эксперимента.

В точке резонанса сдвиг фаз определим, как π . По сути это безразлично, так как все фазы определяются с точностью до π .

Рис. 4 Сдвиг фаз в зависимости от отноромированной частоты.

Также определим добротность графически. Для этого посчитаем точки пересечения с линиями уровней $\frac{3\pi}{4}$ и $\frac{5\pi}{4}$. Для нахождения точки пересечения "уровня"с кривой всё также применяем аппрокси-

Для нахождения точки пересечения "уровня"с кривой всё также применяем аппроксимацию прямой по близлежащим точкам. Считая Q по той же формуле, находим $Q_2\approx 23.8,$ $Q_5\approx 18.0.$

$R_L(f)$

Напоследок заметим, что $R_L(f)$, рассчитанное нами в первой части, не является в самом деле константой. Из-за скин-эффекта при повышении частоты, повышается также и эффективное сопротивление катушки.

Рис. 5 Рост R_L из-за скин-эффекта.

Если это как-то полезно, то при аппроксимации зависимости прямой, в 0 она достигает $2.246 \pm 0.038~\mathrm{Om}$.

0.1 Векторная диаграмма

Теперь построим векторную диаграмму.

 ϕ_C' \vec{I} ϕ_U \vec{U}

Посчитаем ток $I=\frac{E}{R_1}=\frac{0.2\mathrm{B}}{1008\mathrm{Om}}\approx 0.1$ мА. Его вектор равен сумме: $\vec{I}=\vec{I_L}+\vec{I_C}$, причем сам \vec{I} расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\phi_C = \frac{\pi}{2} - \frac{R + R_l}{\rho}, \quad \phi_L = -\frac{\pi}{2} + \delta$$

Здесь $\delta \simeq 10^{-3}$ — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол $\phi_C' = \frac{R+R_L}{\rho} \approx 0,03$.

Аналогичный угол у напряжения $\vec{U}:\phi_U=-\frac{R+R_L}{\rho}$. Т.е. оно незначительно отклоняется от оси абсцисс на отрицательный угол.

Изобразим это на рисунке.

Вывод

Две методики определения добротности дали весьма схожие результаты, что не может не радовать. Мы также убедились, что R_L действительно зависит от частоты. В общем, что просили показать, то показали. А чего не просили — только мельком.