Lecture 6: Subgradient and Subdifferential

Niao He

11th February 2019

Niao He

Subdifferential

Examples
Existence and
Properties
Directional
Derivatives
Descent Directio
Calculus of
Subgradient

Outline

Subgradient and Subdifferential

Definition

Examples

Existence and Properties

Directional Derivatives

Descent Direction

Calculus of Subgradient

Niao He

Subgradient and

Examples
Examples
Existence and
Properties
Directional
Derivatives
Descent Direction
Calculus of
Subgradient

Question

Can you find any affine function that underestimates f(x) and is tight at x = 0? What about when $x \neq 0$?

Figure: Convex Functions

Niao He

Subgradient an

Definition

Existence and Properties Directional Derivatives Descent Direct Calculus of

Subgradient

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex.

Definition. A vector $g \in \mathbb{R}^n$ is a <u>subgradient</u> of f at a point $x_0 \in dom(f)$ if

$$f(x) \geq f(x_0) + g^T(x - x_0), \forall x.$$

Figure: Subgradients

Definition. The set of all subgradient at x_0 is called the <u>subdifferential</u> of f at x_0 denoted as $\partial f(x_0)$.

Niao He

Definition

Subgradients form supporting hyperplanes for the epigraph.

Subgradient and Epigraph

$$g \in \partial f(x_0)$$

$$\Leftrightarrow f(x) - g^T x \ge f(x_0) - g^T x_0, \forall x$$

$$\Leftrightarrow t - g^T x \ge f(x_0) - g^T x_0, \forall (x, t) \in epi(f)$$

$$\Leftrightarrow \begin{bmatrix} -g \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix} \ge \begin{bmatrix} -g \\ 1 \end{bmatrix}^T \begin{bmatrix} x_0 \\ f(x_0) \end{bmatrix}, \forall (x, t) \in epi(f)$$

$$\Leftrightarrow H := \left\{ (x, t) : (-g, 1)^T (x, t) = (-g, 1)^T (x_0, f(x_0)) \right\}$$
is a supporting hyperplane of epi(f) at $(x_0, f(x_0))$

Niao He

Subgradient and Subdifferential

Examples

Example

Properties
Directional
Derivatives

Derivatives
Descent Direct
Calculus of

Examples: Differentiable Functions

Example 1. If f is differentiable at $x \in dom(f)$, then

$$\partial f(x) = \{\nabla f(x)\}.$$

Proof. Let
$$y = x + \epsilon d$$
, $g \in \partial f(x)$, then

$$f(x + \epsilon d) \ge f(x) + \epsilon g^{T} d$$

$$\Rightarrow \frac{f(x + \epsilon d) - f(x)}{\epsilon} \ge g^{T} d, \forall d, \forall \epsilon$$

$$\Rightarrow \nabla f(x)^{T} d \ge g^{T} d, \forall d, \text{ as } \epsilon \to 0$$

$$\Rightarrow g = \nabla f(x).$$

Niao He

Subgradient and Subdifferential

Examples

Existence and Properties Directional Derivatives Descent Direction Calculus of Subgradient

Examples: Simple Functions

Example 2.

(a)
$$f(x) = \frac{1}{2}x^2$$
, $\partial f(x) = x$

(b)
$$f(x) = |x|, \ \partial f(x) = \begin{cases} sgn(x), x \neq 0 \\ [-1, 1], x = 0 \end{cases}$$
.

(c)
$$f(x) = \begin{cases} -\sqrt{x}, x \ge 0 \\ +\infty, o.w. \end{cases}$$
, $\partial f(x) = \begin{cases} -\frac{1}{2\sqrt{x}}, x > 0 \\ \emptyset, x = 0 \end{cases}$

(d)
$$f(x) = \begin{cases} 1, x = 0 \\ 0, x > 0 \\ +\infty, o.w. \end{cases}$$
, $\partial f(x) = \begin{cases} 0, x > 0 \\ \emptyset, x = 0 \end{cases}$.

Niao He

Subgradient and Subdifferential Definition

Existence and Properties Directional

Directional
Derivatives
Descent Directions

Closedness of Subdifferential

Proposition. Let f be convex and $x_0 \in \text{dom}(f)$. Then $\partial f(x_0)$ is convex and closed.

Proof. This is because

$$\partial f(x_0) = \left\{ g \in \mathbb{R}^n : f(x) \ge f(x_0) + g^T(x - x_0), \forall x \right\}$$
$$= \bigcap_x \left\{ g \in \mathbb{R}^n : f(x) \ge f(x_0) + g^T(x - x_0) \right\}$$

is the solution to an infinite system of linear inequalities.

Niao He

Subgradient and Subdifferential Definition Examples Existence and Properties Directional Derivatives Descent Direction

Existence of Subgradient

Theorem. Let f be convex and $x_0 \in \text{rint}(\text{dom}(f))$. Then $\partial f(x_0)$ is nonempty and bounded.

Remark. The reverse is also true. If $\forall x_0 \in \text{dom}(f), \partial f(x_0)$ is non-empty, and dom(f) is convex, then f is convex.

Proof. Let $g \in \partial f(x_0)$ and $x_0 = \lambda x + (1 - \lambda)y$, we have

$$\begin{cases} f(x) \ge f(x_0) + g^T(x - x_0) \\ f(y) \ge f(x_0) + g^T(y - x_0) \end{cases}$$

$$\Rightarrow \lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y)$$

Niao He

Subgradient and Subdifferential Definition Examples Existence and Properties Directional Derivatives

Proof of Existence and Boundedness

▶ (Nonempty) By separation theorem, $\exists \alpha = (s, \beta) \neq 0$,

$$s^T x + \beta t \ge s^T x_0 + \beta f(x_0), \forall (x, t) \in epi(f)$$

We must have $\beta > 0$ (why?). Setting $g = -\beta^{-1}s$,

$$f(x) \geq f(x_0) + g^T(x - x_0), \forall x$$

▶ **(Bounded)** Suppose $\partial f(x_0)$ is unbounded, i.e. $\exists g_k \in \partial f(x_0)$, s.t. $\parallel g_k \parallel_2 \to \infty$, as $k \to \infty$. Let $x_k = x_0 + \delta \frac{g_k}{\lVert g_k \rVert_2} \in \text{dom}(f)$. By convexity,

$$f(x_k) \ge f(x_0) + g_k^T(x_k - x_0) = f(x_0) + \delta \parallel g_k \parallel_2 \to \infty.$$

Contradicts with the continuity of f over int(dom(f)).

Niao He

Subgradient and Subdifferential Definition Examples Existence and Properties Directional Derivatives

Monotonicity

Proposition. The subdifferential of a convex function f is a monotone operator, i.e.,

$$(u-v)^T(x-y) \ge 0, \forall x, y, u \in \partial f(x), v \in \partial f(y).$$

Proof.

By definition, we have

$$\begin{cases} f(y) \ge f(x) + u^{\mathsf{T}}(y - x) \\ f(x) \ge f(y) + v^{\mathsf{T}}(x - y) \end{cases}$$

Combining the two inequalities leads to the monotonicity.

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives

Descent Direct Calculus of Subgradient

Directional Derivative

Definition. The <u>directional derivative</u> of a function f at x along direction d is

$$f'(x;d) = \lim_{\delta \to 0^+} \frac{f(x+\delta d) - f(x)}{\delta}.$$

Remark.

- ▶ If f is differentiable, then $f'(x; d) = \nabla f(x)^T d$.
- $f'(x; d) = \phi'(0^+)$, where $\phi(\alpha) = f(x + \alpha d)$.
- $f'(x; d) = \inf_{t>0} (tf(x+d/t) tf(x))$ is convex in d (why?).
- ▶ f'(x; d) defines a lower bound on f on direction d: $f(x + \alpha d) \ge f(x) + \alpha f'(x; d), \forall \alpha \ge 0$.

Niao He

Descent Direction

Descent Direction

Definition. The direction d is called a descent direction if

▶ If f is differentiable, then $d = -\nabla f(x)$ is a descent direction, except when it is zero.

Q. Is negative subgradient always a descent direction?

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives

Descent Direction

Calculus of Subgradient

Descent Direction

▶ Negative subgradient may not be a descent direction.

Figure: Contours of function $f(x_1, x_2) = |x_1| + 2|x_2|$

- ▶ At x = (1,0), $\partial f(x) = \{(1,a) : a \in [-2,2]\}$.
- ▶ Consider g = (1,0), d = -g is a descent direction.
- ▶ Consider g = (1,2), d = -g is not a descent direction.
- Note: let $g_* = \operatorname{argmin}_{g \in \partial f(x)} \{ \|g\|_2^2 \}$, then $d = -g_*$ is a descent direction if $g_* \neq 0$.

Niao He

Subgradient and Subdifferential

Definition Examples Existence and Properties Directional

Descent Direction

Calculus of Subgradient

Directional Derivative and Subdifferential

Theorem. Let f be convex and $x \in int(dom(f))$, then

$$f'(x;d) = \max_{g \in \partial f(x)} g^{T} d$$

Niao He

Subgradient and Subdifferential

Definition Examples Existence and Properties Directional

Descent Direction

Calculus of Subgradient

Proof

- ► Easy to show $f'(x; d) \ge \max_{g \in \partial f(x)} g^T d$.
- ▶ Suffice to show that $\exists \tilde{g} \in \partial f(x)$, s.t. $f'(x; d) \leq \tilde{g}^T d$.
 - Let \tilde{g} be a subgradient of f'(x; d) at d.
 - For any $v, \lambda \geq 0$:

$$f(x + \alpha v) - f(x) \ge \alpha f'(x; v)$$

$$= f'(x; \alpha v)$$

$$\ge f'(x; d) + \tilde{g}^{T}(\alpha v - d).$$

- ▶ Setting $\alpha = \infty$ implies $f(x + v) f(x) \ge f'(x; v) \ge \tilde{g}^T v$; thus $\tilde{g} \in \partial f(x)$.
- Setting $\alpha = 0$ implies $f'(x; d) \leq \tilde{g}^T d$.

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives
Descent Directi

Descent Dire
Calculus of
Subgradient

Calculus of Subgradients

Assume $x \in \operatorname{int}(\operatorname{dom}(h))$.

▶ Conic combination: Let $h(x) = \beta_1 f_1(x) + \beta_2 f_2(x)$ with $\beta_1, \beta_2 \ge 0$,

$$\partial h(x) = \beta_1 \partial f_1(x) + \beta_2 \partial f_2(x).$$

▶ Affine transformation: Let h(x) = f(Ax + b),

$$\partial h(x) = A^T \partial f(Ax + b).$$

▶ Pointwise maximum: Let $h(x) = \max_{i=1,...,m} f_i(x)$,

$$\partial h(x) = \operatorname{Conv} \{ \partial f_i(x) | f_i(x) = h(x) \}.$$

▶ Pointwise supreme: Let $h(x) = \max_{\alpha \in \mathcal{A}} f_{\alpha}(x)$,

$$\partial h(x) = \operatorname{cl}\left(\operatorname{Conv}\left\{\partial f_{\alpha}(x)|f_{\alpha}(x) = h(x)\right\}\right).$$

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives
Descent Direction

Calculus of Subgradient

Weak Calculus

- Maximization: $f(x) = \max_{y \in Y} \phi(x, y)$, where $\phi(x, y)$ is convex in x for any $y \in Y$.
 - ▶ Find $\hat{y} \in \operatorname{argmax}_{y \in Y} \phi(x, y)$.
 - $g \in \partial \phi(x, \hat{y})$ is a subgradient of f(x).
- Minimization: $f(x) = \min_{y \in Y} \phi(x, y)$, where $\phi(x, y)$ is convex in (x, y) and Y is convex.
 - Find $\hat{y} \in \operatorname{argmin}_{y \in Y} \phi(x, y)$.
 - $g \in \partial \phi(x, \hat{y})$ is a subgradient of f(x).
- ▶ Composition: $f(x) = F(f_1(x), ..., f_m(x))$, where $F(y_1, ..., y_m)$ is non-decreasing and convex.
 - ► Find $(d_1, ..., d_m) \in \partial F(y_1, ..., y_m)|_{y_i = f_i(x), i = 1, ..., m}$.
 - ▶ Find $g_i \in \partial f_i(x)$, i = 1, ..., m
 - $g = \sum_{i=1}^{m} d_i g_i$ is a subgradient of f(x).

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives
Descent Direction
Calculus of
Subgradient

Example: Piecewise Linear Function

Example 3. Consider a single period inventory system. The cost f(x) at inventory level x given demand d is

$$f(x) = h \cdot \max(x - d, 0) + p \cdot \max(d - x, 0).$$

The subgradient of f(x) is

$$\partial f(x) = \begin{cases} h, & x > d \\ [-p, h], & x = d \\ -p, & x < d \end{cases}$$

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives

Calculus of Subgradient Example: ℓ_1 -Norm

Example 5.
$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^d} \{s^T x\}$$

Figure: Subgradient of $f(x) = ||x||_1$ on \mathbb{R}^2

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives

Descent Direct
Calculus of
Subgradient

Example: general norm

Example 6. f(x) = ||x||, here $||\cdot||$ is an arbitrary norm

$$\partial f(x) = \{g : g^T x = ||x|| \text{ and } ||g||_* \le 1\}.$$

- $\|\cdot\|_*$ is the dual norm: $\|y\|_* = \max_{x:\|x\| \le 1} y^T x$.
- ▶ In particular, $\partial f(0) := \{g : ||g||_* \le 1\}.$

Niao He

Subgradient and Subdifferential

Definition
Examples
Existence and
Properties
Directional
Derivatives
Descent Directi

Calculus of Subgradient References

- ▶ Ben-Tal & Nemirovski, Chapter 2.6
- ▶ Bertsekas, Nedich, & Ozdaglar, Chapter 4