Testing Techniques 2019 - 2020Tentamen

January 15, 2020 – 8:30–11:30/12:00 h. – HG00.071 / HG00.622

1 Testing with ioco

Consider the labelled transition systems q_1 , q_2 , q_3 , and q_4 in Fig. 1. These systems model queues with input ?in and output !out.

Figure 1: Four models of queues.

System q_1 represents an unbounded queue; the dotted lines at the bottom of q_1 are meant to indicate that there are infinitely many states, and that there is no bound on the number of ?in actions that can be performed after each other. System q_2 is also an unbounded queue, but it is

a lossy queue: the third input can get lost. Queues q_3 and q_4 are bounded queues with capacity three, the difference being that q_4 explicitly neglects additional inputs.

- a. Which states of q_2 are quiescent? Why?
- b. Which of the systems q_1, q_2, q_3, q_4 are input-enabled? Why?
- c. Consider q_3 as specification, q_4 as implementation, and **ioco** as implementation relation. Is q_4 an **ioco**-correct implementation of q_3 , i.e., does q_4 **ioco** q_3 hold? Explain.
- d. Can an unbounded queue correctly implement a bounded queue specification, i.e., does q_1 ioco q_3 hold? And the lossy queue q_2 : does q_2 ioco q_3 hold?
- e. What can you say about the inverse: can a bounded queue correctly implement an unbounded (lossy) queue specification, i.e., q_4 ioco q_1 or q_4 ioco q_2 ? Explain.
- f. We have that $q_3 \stackrel{\sigma}{\Longrightarrow}$ with $\sigma = ?in \cdot ?in \cdot ?in$. Moreover, $out(q_3 \text{ after } \sigma) = \emptyset$ for this σ . Argue that this holds in general for any system $p \in \mathcal{LTS}(L)$ and any $\sigma \in (L \cup \{\delta\})^*$, i.e.,

$$p \stackrel{\sigma}{\Longrightarrow} \text{ iff } out(p \text{ after } \sigma) = \emptyset$$

Figure 2: Test case t_1 for queue systems.

- g. Fig. 2 gives a test case t_1 . Give the test runs and determine the verdicts of executing the test case t_1 on q_2 .
- h. For which of the specifications q_1 , q_2 , q_3 , or q_4 , is test case t_1 sound with respect to implementation relation **ioco**? Explain.