Warm-Up Problem

• Write a CFG that recognizes $L = \{a^i b^j c^i : i, j \in \mathbb{N}\}.$

SWEITIG

g253wang

g253wang

CS 241 Lecture 10

Context Free Grammars, Ambiguity, Top-Down Parsing With thanks to Brad Lushman, Troy Vasiga, Kevin Lanctot, and Carmen Bruni 253Wang

g253wang g253wang g253wang

Solutions

- For L₁: Arithmetic expressions from Σ without parentheses
 - $S \rightarrow a \mid b \mid c \mid SRS$ $R \rightarrow +\dot{|} - \dot{|} *|/$
 - $S \Rightarrow SRS \Rightarrow aRS \Rightarrow a S \Rightarrow a b$
- Almost for L₂: Arithmetic expressions from Σ with balanced parentheses (incomplete, insufficient!)

SUE/

- $S \rightarrow a \mid b \mid c \mid (SRS)$ $R \rightarrow + |-|*|/$
- $S \Rightarrow (SRS) \Rightarrow (SRb) \Rightarrow (S b) \Rightarrow (a b)$

g253wan

Solutions

53พลเกฎ

- For L₂: Arithmetic expressions from Σ with balanced parentheses
 - $S \rightarrow a \mid b \mid c \mid SRS \mid (S)$ $R \rightarrow + \mid -\mid * \mid /$
 - S \Rightarrow (S) \Rightarrow (SRS) \Rightarrow ((S)RS) \Rightarrow ((a)RS) \Rightarrow ((a)-S) \Rightarrow ((a)-b)

SUTEAK

g253wang g253wang g253wang

Note

SWang

Notice in these two derivations that we had a choice at each step which element of N to replace

- $S \Rightarrow SRS \Rightarrow aRS \Rightarrow a S \Rightarrow a b$
- $S \Rightarrow (S) \Rightarrow (SRS) \Rightarrow (SRb) \Rightarrow (S-b) \Rightarrow (a-b)$
- In the first derivation, we chose to do a left derivation, that is, one that always expands from the left first.
- In the second derivation, we chose to do a right derivation, that is, one that always expands from the right first.

GUE/

Parse Trees

vang g253wang

Note: To every left- (right-) most derivation there exists a unique parse tree (and vice versa).

- Is it possible for multiple leftmost 1253Warn derivations (or multiple rightmost derivations) to describe the same string?
 - Yes! Consider the following two leftmost derivations (on the next slide) for a - b * c.

g253Wang

$S \rightarrow a |b| c |SRS$ $R \rightarrow + |-|*|/$

$$S \Rightarrow SRS \Rightarrow aRS \Rightarrow a-S \Rightarrow a-SRS$$

 $\Rightarrow a-bRS \Rightarrow a-b*S \Rightarrow a-b*c$
 $S \Rightarrow SRS \Rightarrow SRSRS \Rightarrow aRSRS \Rightarrow a-SRS$
 $\Rightarrow a-bRS \Rightarrow a-b*S \Rightarrow a-b*c$

SUBAR

these correspond to different parse trees! Let's draw them.

g253 wang g253 wang g253 wang First Parse Tree

$$S \Rightarrow SRS \Rightarrow aRS \Rightarrow a-S \Rightarrow a-SRS$$

 $\Rightarrow a-bRS \Rightarrow a-b *S \Rightarrow a-b *c$

Second Parse Tree

$$S \Rightarrow SRS \Rightarrow SRSRS \Rightarrow aRSRS \Rightarrow a-SRS$$

 $\Rightarrow a-bRS \Rightarrow a-b *S \Rightarrow a-b *c$

g253wang g253wang g253wang

Ambiguous Grammars

Definition

A grammar for which some word has more than one distinct leftmost derivation/rightmost derivation/parse tree is called **ambiguous**.

This:

SWarrig

$$S \rightarrow a |b| c |SRS$$

 $R \rightarrow + |-|*|/$

was an example of an ambiguous grammar

Sure But...

SWan

• Why do we care about this? Isn't our goal to determine whether or not *w* ∈ L(*G*)?

g253wang g253wang g253wang

- As compiler writers, we care about where the derivation came from: parse trees give meaning to the string with respect to the grammar.
- Let's go back to the parse trees: they don't mean the same thing!

g253wang g253wang g253wang

How can we fix this?

• Use to g dep • Mal

- Use some sort of precedence heuristics to guide the derivation process (very dependent on grammar, very ad hoc).
- Make the grammar unambiguous! This is what we did with our first (incomplete) L_2

SUTEAR

$$S \rightarrow a \mid b \mid c \mid (SRS)$$

 $R \rightarrow + |-|*|/$

Ambiguity

3พลกฎ

- There's a better way to eliminate ambiguity.
- In a parse tree, you evaluate the expression in a depth-first, post-order traversal (Left, Right, Root).
- We also have the other issue that we want to interpret [a - b + c] as [(a - b) + c] and NOT as [a - (b + c)] (that is, we want left associativity).
- We can make a grammar left/right associative by crafting the recursion in the grammar!

j253wang g253wang g253wang

Forcing Right Associative

g253wang g253wang g253wang

Forcing Left Associative

g253wang g253wang g253wang

With the above...

 We can use this to create a grammar that follows BEDMAS/PEMDAS rules more closely by making *, / appear further down the tree (hence evaluated first!):

SUIBARS

```
We can use this follows BEDMAS making *, / apperagonal control of the following the follow
```

 Exercise: Find a derivation of a – b * c and then give the parse tree, and work out evaluating it.

Some Questions

- If *L* is a context-free language, is there always an unambiguous grammar such that L(*G*) = *L*?
- No! First proven in 1961 by Rohit Parikh. Quoth Wikipedia:

An example of an inherently ambiguous language is the union of {a^b^c^d^: n, m > 0} with {a^b^c^d^: n, m > 0}. This set is context-free, since the union of two context-free languages is always context-free. But Hopcroft and Ulman in 1979 give a proof that there is no way to unambiguously parse strings in the (noncontext-free) common subset {a^b^c^d^: n > 0}

Decidability of Ambiguous Grammars

g253wang g253wang g253wang

• Can we write a computer program to recognize whether a grammar is ambiguous?

- No! Most textbooks (see for example Hopcroft, John; Motwani, Rajeev; Ullman, Jeffrey (2001). Introduction to automata theory, languages, and computation Theorem 9.20, pp. 405-406) reduce to the undecidability of Post's Correspondence Problem.
- Original proofs are due to Cantor (1962), Floyd (1962), and Chomsky and Schtzenberger (1963).

- What about an easier problem: given 253Wang two CFGs G_1 and G_2 , determine whether $L(G_1) = L(G_2).$ Maybe even easier: what about
 - determining whether $L(G_1) \cap L(G_2) = \emptyset$?
 - Still undecidable!

What We Can Answer

- Regular languages corresponded to abstract machines, namely DFAs.
- Is there a machine correspondence for CFLs?
- Yes! The correspondence is with a pushdown automaton (PDA). These machines are DFAs/NFAs with stack.
- The breakdown is that CFLs correspond to NPDAs, and NPDAs cannot be converted to DPDAs like NFAs can to DFAs.
- While NPDAs are computable, doing so is awful (inefficient in both time and space).

What We Can Answer

1253Warn

 While NPDAs are computable, doing so is awful (inefficient in both time and space.

g253wang g253wang g253wang

 Instead, use a category of algorithm called *parsers*. Any practical parser can only handle a subset of CFLs (and of CFGs) but can generally do so with reasonable efficiency.

g253wang g253wang g253wang Formally

Given: a CFG $G = (N, \Sigma, P, S)$ and a terminal string $w \in \Sigma^*$ Find: The derivation, that is, the steps such that $S \Rightarrow ... \Rightarrow w$ or prove that $w \notin L(G)$.

SUBMECS

g253Wang

Pragmatically, we care about the parse pragmatically, we care about the parse tree, not the derivation steps per se

How Do We Find This Derivation?

Two broad ideas (which cover all practical parsing algorithms):

- Start with S and then try to get to w, i.e., from the top down: top-down parsing.
- Start with *w* and work our way backwards to S: bottom-up parsing.
- Each option is terrible in its own special way ☺

Top-Down Parsing

1253Warn

 Start with S (the start symbol), and look for a derivation that gets us closer to w. Then, repeat with remaining non-terminals until we're done.

- The main trick is "look for a derivation": we can look at the first few symbols of w, but that won't necessarily match the RHS of a derivation, since there might be more nonterminals.
- Thus, the core problem is to *predict* which derivation is right.

- g253wang
- We present the *LL(1) algorithm*
- In practice, almost no real compilers use LL(1)

Top-Down Parsing Reality

- Most compilers use hand-written parsers (often called "recursive descent parsing" because each non-terminal is a recursive function), and their underlying behavior is basically LL(1)
- LL(1) has limitations which we discuss; hand-written parsers bypass these limitations on an ad hoc basis

Top-Down Parsing Reality

53พลก

- We don't discuss recursive-descent parsing because it's not an algorithm; it's just a bunch of ad hoc programs
- Regardless, when we talk about LL(1), think of how you would implement the main algorithm with functions per nonterminal, instead of a formal algorithm, because this is what you'll find in practice

Top-Down Parsing Reality

g253wang g253wang g253wang

- As said, most real compilers use handwritten parsers, and those hand-written parsers are top-down, but a notinsignificant minority do use formal algorithms
- Those are almost always bottom-up parsers, which is the next module

SWan

253wang g253wang g253wang

First Try (note: broken even with faerie magic!)

```
Top-Down Parsing Algorithm (with faerie magic)
Algorithm
 1: push S
   for each 'a' in input do
      while top of stack is A \in N do
         pop A
         ask a magic faerie to tell you which production A \to \gamma to use
         push the symbols in \gamma (right to left)
      end while
      // TOS is a terminal
      if TOS is not 'a' then
         Reject
      else
11:
        pop 'a'
12:
      end if
13.
14: end for
15: Accept
```