Math 100: Problem Set 3

Owen Jones

10/25/2023

- (Q-1) (a) WTS by induction on the number of the number of steps required by the Euclidean algorithm to produce the greatest common divisor of F_n and F_{n+1} that the $\gcd(F_n,F_{n+1})=F_1=1$. $P(1):F_2=q\cdot F_1+r=F_1+F_0=F_1$, so we compute $\gcd(F_2,F_1)=F_1=1$ in n=1 steps. P(n): Assume we can compute $\gcd(F_{n+1},F_n)=F_1=1$ for some n>0 in n steps. P(n+1): We compute the first step $F_{n+2}=q\cdot F_{n+1}+r$ where q=1 and $r=F_n$ by the definition of the Fibonacci sequence. It follows $\gcd(F_{n+2},F_{n+1})=\gcd(F_{n+1},F_n)$. Since we know we can compute $\gcd(F_{n+1},F_n)=F_1=1$ in n steps, we can compute $\gcd(F_{n+2},F_{n+1})=F_1=1$ in n+1 steps. Hence, by induction, $\gcd(F_{n+1},F_n)=F_1=1$ in n steps for all n.
 - (b) Want to show by induction that T_n and T_{n+k} are relatively prime for all k. $P(1): T_{n+1} = q \cdot T_n + r \text{ where } q = (T_n 1) \text{ and } r = 1. \quad T_n \in \mathbb{N}$ for all n is provable by a simple induction. Thus, $\gcd(T_{n+1}, T_n) = \gcd(T_n, 1) = 1$. $P(k): \text{Assume for some } k \geq 1 \gcd(T_{n+k}, T_n) = \gcd(T_n, 1) = 1.$ $P(k+1): T_{n+k} = q \cdot T_n + 1 \text{ for some } q \text{ by the induction hypothesis. This implies } q(q \cdot T_n + 1) \in \mathbb{N} \text{ It follows } T_{n+k+1} = (T_{n+k} 1)T_{n+k} + 1 = (q \cdot T_n + 1 1)(q \cdot T_n + 1) + 1 = q(q \cdot T_n + 1)T_n + 1.$ Thus, $\gcd(T_{n+k+1}, T_n) = \gcd(T_n, 1) = 1$. Hence, by induction, $\gcd(T_{n+k}, T_n) = \gcd(T_n, 1) = 1$ for all n and k. Setting m = k + n,
- (Q-2) It suffices to show $\gcd(a+b,c+d)=1$. We know this is true iff there exist integers s,t s.t s(a+b)+t(c+d)=1. Using d(a+b)-b(c+d)=ad-bc=1 set s=d,t=-b. Thus, $\gcd(a+b,c+d)=1\Rightarrow \frac{a+b}{c+d}$ is irreducible.

we obtain T_m and T_n are relatively prime.

(Q-3) Let $gcd(a_1, ..., a_m) = s$ and $gcd(b_1, ..., b_n) = t$. Since s and t divide each a_i and b_j respectively, st divides each a_ib_j . Thus, $gcd(a_1b_1, ..., a_mb_n)$ is a multiple of st. Suppose for the sake of contradiction, there exists some prime number p s.t pst divides $gcd(a_1b_1, ..., a_mb_n)$. It follows ps must divide each a_i or pt must divide each b_j . We know this is false because $gcd(a_1, ..., a_m) = s$ and $gcd(b_1, ..., b_n) = t$. It follows there exists some i, j s.t ps does not divide a_i and pt does not divide b_j . Thus, pst cannot divide a_ib_j . Hence, $st = gcd(a_1b_1, ..., a_mb_n)$.

- (Q-4) $100y+x=200x+2y+2\Rightarrow 98y-199x=2$. $98y-199x\equiv -3x \mod (98)\equiv 2 \mod (98) \Rightarrow -3x=-96 \mod (98) \Rightarrow x\equiv 32 \mod (98)$ Thus, $x=32+98k\Rightarrow 98y-199(32+98k)=2\Rightarrow y=65+199k$. We obtain the pair (x,y)=(32+98k,65+199k). Original check is \$32.65
- (Q-5) For the set $\{1,2,\ldots,100\}\mod(10)$ has 10 congruence classes each containing 10 numbers.

mod (12) has 12 congruence classes 8 of which contain 8 numbers and 4 of which contain 9 numbers.

mod (13) has 13 congruence classes 9 of which contain 8 numbers and 4 of which contain 7 numbers.

 $\mod(11)$ has 11 congruence classes 1 of which contains 10 numbers and 10 of which contain 9.

If we consider for example congruence class 1 for $\mod (10)$ we can pick at most 5 numbers from the set $\{1, 11, 21, \ldots, 91\}$ without selecting 2 numbers that differ by 10.

It follows by the pigeonhole principle we can pick at most 50 numbers without selecting 2 that differ by 10, 52 numbers without 2 that differ by 12, 52 numbers without 2 that differ by 13, and 55 without 2 that differ by 11.

(Q-6) We will show by induction on n for that $4^{3n+1} + 2^{3n+1} + 1$ is divisible by 7 for n > 0.

 $P(0): 4^{3 \cdot 0 + 1} + 2^{3 \cdot 0 + 1} + 1 = 7$ which is clearly divisible by 7.

P(n): Assume for some $n \ge 0$ $4^{3n+1} + 2^{3n+1} + 1$ is divisible by 7.

 $P(n+1): 4^{3(n+1)+1} + 2^{3(n+1)+1} + 1$

 $= 64 \cdot 4^{3n+1} + 8 \cdot 2^{3n+1} + 1$

 $=56 \cdot 4^{3n+1} + 8(4^{3n+1} + 2^{3n+1} + 1) - 7$ which is divisible by 7 because 7 divides 56, $4^{3n+1} + 2^{3n+1} + 1$, and 7.

Hence, by induction, 7 divides $4^{3n+1} + 2^{3n+1} + 1$ for all n.

- (Q-7) (a) Because the square of an even number is even, if there exists a perfect square in the sequence $\{11,111,\ldots\}$, it must the square of an odd number. Let x=2k+1 for some integer k. WTS $x^2 \notin \{11,111,\ldots\}$ for all k. $x^2=(2k+1)^2=4(k^2+k)+1\equiv 1 \mod (4)$. WTS each element in the sequence $\{11,111,\ldots\}\equiv 3 \mod (4)$ by induction. $P(1):11=2\cdot 4+3$
 - P(n): Assume for some n in the sequence $\{11,111,\ldots\}$ $s_n\equiv 3 \mod (4)$.

 $P(n+1): s_{n+1} = 10s_n + 1$, so $s_n \equiv 3 \mod (4) \Rightarrow 10s_n \equiv 30 \mod (4) \Rightarrow 10s_n \equiv 2 \mod (4) \Rightarrow s_{n+1} \equiv 3 \mod (4)$.

Thus, by induction, $\{11,111,\ldots\}\equiv 3 \mod (4)$, but since all odd perfect squares are $\equiv 1 \mod (4)$, $\{11,111,\ldots\}$ contains no perfect squares.

(b) Let k and m be integers, so $(2k+1)^2$ and $(2m+1)^2$ are odd squares. Their difference is $(2k+1)^2 - (2m+1)^2 = ((2k+1) - (2m+1))((2k+1)^2 - (2m+1)^2)$ (1) + (2m+1) = 4(k-m)(k+m+1). Either k-m or k+m+1 must be even. If k, m have same parity then k-m is even otherwise k+m+1 is even. Thus, (k-m)(k+m+1) is divisible by 2, so 4(k-m)(k+m+1) is divisible by 8.

- (Q-8) Suppose for the sake of contradiction $\frac{21n-3}{4}$ and $\frac{15n+2}{4}$ are both integers. Thus, $21n-3\equiv 15n+2 \mod (4)\Rightarrow 6n\equiv 5 \mod (4)\Rightarrow 6n\equiv 1 \mod (4)$. This is impossible because 6n must be even, and 4k+1 is clearly odd. Hence, they can't be both integers.
- (Q-9) Let n be arbitary and arrange the first $(2n+1)^2$ prime numbers $p_1, p_2, \ldots, p_{(2n+1)^2-1}, p_{(2n+1)^2}$ in an $2n+1 \times 2n+1$ array we will call $M_{2n+1\times 2n+1}$. Let R_i be the product of the elements of row i and C_i be the product of the elements of column i. Since each R_i and R_j for $i \neq j$ are relatively prime, it follows by the Chinese Remainder Theorem there exists a unique solution a to

$$a \equiv -n \mod (R_1)$$

$$a \equiv -(n-1) \mod (R_2)$$

$$\dots$$

$$a \equiv 0 \mod (R_{n+1})$$

$$\dots$$

$$a \equiv (n-1) \mod (R_{2n})$$

$$a \equiv n \mod (R_{2n+1})$$

and because each C_i and C_j for $i \neq j$ are relatively prime, there exists a unique solution b to

$$b \equiv -n \mod (C_1)$$

$$b \equiv -(n-1) \mod (C_2)$$

$$\cdots$$

$$b \equiv 0 \mod (C_{n+1})$$

$$\cdots$$

$$b \equiv (n-1) \mod (C_{2n})$$

$$b \equiv n \mod (C_{2n+1})$$

Take any point (x,y) in the $2n+1\times 2n+1$ square centered at (a,b). It follows $x\equiv 0 \mod (R_i)$ for some i and $y\equiv 0 \mod (C_j)$ for some j. In other words, x and y are multiples of R_i and C_j respectively. However, R_i and C_j are not relatively prime because they have a common factor of $p_{(2n+1)i+j}$. Thus, $\gcd(x,y)\neq 1$. Since the $2n+1\times 2n+1$ square centered at (a,b) contains every latice point within n of (a,b) and all of them are invisible, we have found a point that is at least n away from any visible lattice point.

(Q-10) Let a be an integer with decimal representation $a=\sum_{i=0}^n 10^i a_i$. Let a^* be the result of moving the initial digit a_n to the end. It follows $a^*=a_n+\sum_{i=0}^{n-1} 10^{i+1}a_i$.

Multiplying a by 10 and adding a_n we obtain $10a + a_n = a_n + \sum_{i=0}^n 10^{i+1} a_i =$

 $10^{n+1}a_n + a^*$. Thus, $a^* = 2a$ iff $8a = a_n(10^{n+1} - 1)$. This is impossible because $a_n = 8$ and $a = 10^{n+1} - 1$ cannot be true simultaneously, and they must both be true for $a^* = 2a$ because $10^{n+1} - 1$ and 8 are relatively prime.