2001-151128/16 B04 D16

HERI- 1999.04.14

HERIKKUSU KENKYUSHO KK

*JP 2000300263-A

1999.04.14 1999-107234(+1999JP-107234) *(2000.10.31)* C12N 15/09, C07K 14/515, 14/71, 16/22, C12N 1/15, C12Q 1/02, 1/68, C12P 21/02, C12N 1/19, 1/21, 5/10 // A61K 38/00, 39/395, 48/00, A61P 9/10, 27/02, 29/00, 35/00

New genes encoding angiopoietin-like proteins 410 and NEW, useful for the prevention and treatment of diseases relating to angiogenesis

C2001-045076

NOVELTY

Angiopoietin-like proteins comprising a fully defined sequence of 493 (S4) or 470 (S8) amino acids as given in the specification, or functional equivalents, are new.

DETAILED DESCRIPTION

An INDEPENDENT CLAIM is also included for proteins encoded by DNAs capable of hybridizing with DNAs comprising a fully defined 1482 base pair sequence as given in the specification.

ACTIVITY

Angiogenesis.

B(4-E2F, 4-E3F, 4-N4A, 14-H1) D(5-H12E, 5-H17A6)

MECHANISM OF ACTION

None given.

USE

Prevention and treatment of diseases relating to angiogenesis.

EXAMPLE

The genes encoding for angiopoietin-like proteins (410 and NEW) were isolated using human embryo derived poly A⁺ RNA as a template with reverse transcription polymerase chain reaction (RT-PCR), and encoded proteins with a fully defined sequence of 493 and 470 amino acids as given in the specification.

TECHNOLOGY FOCUS

Biotechnology - Further details are disclosed in 6 claims. (26pp079DwgNo.0/8)

JP 2000300263-A

2001-151129/16 FUJIREBIO KK B04 D16

FJRE 1999.04.21

*JP 2000300268-A

1999.04.21 1999-113166(+1999JP-113166) *(2000.10.31)* C12N 15/09, C12Q 1/68

Measurement of a nucleic acid, comprises hybridizing the target nucleic acid with a crosslinking probe, extending the probe with labeled nucleotides and detecting the label

C2001-045077

NOVELTY

Measuring a target nucleic acid contained in a sample comprising:

(a) combining the target nucleic acid (I) to a solid phase;

(b) reacting a crosslinking probe (II) with a template nucleic acid (III);

(c) extending (II) in the presence of a labeled nucleotide by using the region of (II) hybridized with (III) as the primer; and

(d) measuring the label combined to the solid phase, is new.

DETAILED DESCRIPTION

Measuring a target nucleic acid contained in a sample comprising:

(a) combining the target nucleic acid (I) to a solid phase;

(b) reacting a crosslinking probe (II) containing a 3' terminal region not hybridizing with (I) and a template nucleic acid (III) containing a region forming a single strand protruding to the extending

B(4-B3B, 4-E1, 11-C8E5, 12-K4F) D(5-H9, 5-H10, 5-H18B) .4

B0132

B0131

direction of the 3' terminal of (II) under hybridizing conditions; (c) extending (II) in the presence of a labeled nucleotide by using the region of (II) hybridized with (III) as the primer; and

(d) measuring the label taken into the newly extended nucleic acid portion combined to the solid phase, is new.

An INDEPENDENT CLAIM is also included for a kit for measuring a target nucleic acid containing at least one (II) and (III).

USÉ

The method is used for the measurement of nucleic acid contained in a trace amount in a sample.

<u>ADVANTAGE</u>

The method can measure nucleic acid in a sample with great sensitivity.

EXAMPLE

No example given. (12pp097DwgNo.0/6)

JP 2000300268-A

2001-151130/16

A96 B07

FUKO- 1999.04.26 *JP 2000300670-A

FUKOKU KK *JP 2000300670-A 1999.04.26 1999-118254(+1999JP-118254) (2000.10.31) A61M 5/315 Gasket for disposable syringe has amorphous carbon film at its sliding surface with cylinder inner wall

C2001-045078

NOVELTY

The gasket (13) made of rubber and resin is mounted at the end of a plunger of a disposable syringe. The gasket moves slidably in the inner wall of a cylinder of the syringe. The amorphous carbon film (13) is provided to the sliding surface of the gasket with the cylinder.

DETAILED DESCRIPTION

An INDEPENDENT CLAIM is also included for manufacturing method of gasket.

<u>USE</u>

For disposable syringe.

ADVANTAGE

Prevents entry of foreign material inside the body of person. Facilitates smooth ejection of medical solution from the cylinder.

A(12-H8, 12-V3D) B(5-C6, 11-C2) .2

B0133

Provides subject sealing to the medical solution.

DESCRIPTION OF DRAWING

The figure shows the sectional drawing of gasket. Gasket 13

(6pp4054DwgNo.2/8)

JP 2000300670-A

THIS PACE BLAMK (USO-10)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-300263 (P2000-300263A)

(43)公開日 平成12年10月31日(2000.10.31)

(51) Int.Cl. ⁷		識別記号	FΙ				テーマコード(参考)
C12N	15/09	ZNA	- C12N	15/00		ZNAA	4 B 0 2 4
C07K	14/515		C07K	14/515			4 B 0 6 3
	14/71			14/71			4B064
	16/22			16/22			4B065
C 1 2 N	1/15	•	C12N .	1/15			4 C 0 8 4
		審査請求	未請求 請求	項の数15	OL	(全 26 頁)	最終頁に続く
(21)出願番号		特願平11-107234	(71)出願人	5970597	742	,	
						ックス研究所	ř
(22)出顧日		平成11年4月14日(1999.4.14)				市矢那1532番	
	•		(72)発明者	松本(发一郎		
				千葉県	沿橋市:	本町4-43-	2 -605
			(72)発明者	瀬藤 :	羊子		
-				千葉県	木更津	市東大田4-	5-13-C-
		•		103			
			(72)発明者	増保 9	安彦		
			-	東京都	小金井	市東町 5 -19	9−15
			(74)代理人	1001029	978		
•		· ·		弁理士	清水	初志 (外	.1名)
		*					最終頁に続く
		•	l				

(54) 【発明の名称】 血管新生に関連するタンパク質「410」および「NEW」、ならびに該タンパク質をコードする 遺伝子

(57)【要約】

【課題】 新規なアンギオポエチン様タンパク質および それらの遺伝子、並びにそれらの製造方法及び用途を提供することを課題とする。

【解決手段】 ヒト胎児由来のcDNAから、既知のアンギオポエチンと相同性を有する新規なタンパク質(410およびNEW)を同定した。これらのタンパク質は血管新生の制御への関与が示唆され、血管新生が関与する疾患に対する新しい予防薬や治療薬の開発に有用である。

【特許請求の範囲】

【請求項1】 配列番号:4または8に記載のアミノ酸配列からなるタンパク質、または該タンパク質中のアミノ酸配列において1若しくは複数のアミノ酸が欠失、付加、挿入および/または他のアミノ酸による置換により修飾されたアミノ酸配列からなり、配列番号:4または8に記載のアミノ酸配列からなるタンパク質と機能的に同等なタンパク質。

1

【請求項2】 配列番号:3または7に記載の塩基配列からなるDNAとハイブリダイズするDNAがコードするタン 10パク質であって、配列番号:4または8に記載のアミノ酸配列からなるタンパク質と機能的に同等なタンパク質。

【請求項3】 請求項1または2に記載のタンパク質をコードするDNA。

【請求項4】 請求項3に記載のDNAを含むベクター。

【請求項5】 請求項4に記載のベクターを保持する形質転換体。

【請求項6】 請求項5に記載の形質転換体を培養する 工程を含む、請求項1または2に記載のタンパク質の製 20 造方法。

【請求項7】 請求項1または2に記載のタンパク質の部分ペプチド。

【請求項8】 請求項1または2に記載のタンパク質に対する抗体。

【請求項9】 配列番号:3または7に記載の塩基配列からなるDNAと特異的にハイブリダイズし、少なくとも15塩基の鎖長を有するDNA。

【請求項10】 請求項1または2に記載のタンパク質に結合する化合物をスクリーニングする方法であって、

- (a)請求項1または2に記載のタンパク質またはその 部分ペプチドに被検試料を接触させる工程、および
- (b) 該タンパク質またはその部分ペプチドに結合する 化合物を選択する工程、を含む方法。

【請求項11】 請求項10に記載の方法により単離されうる、請求項1または2に記載のタンパク質に結合する化合物。

【請求項12】 受容体タンパク質である、請求項11 に記載の化合物。

【請求項13】 請求項1または2に記載のタンパク質 40 の受容体を発現する細胞をスクリーニングする方法であって、(a) 請求項1または2に記載のタンパク質またはその部分ペプチドに被検細胞試料を接触させる工程、および(b) 該タンパク質またはその部分ペプチドに結合する細胞を選択する工程、を含む方法。

【請求項14】 請求項1または2に記載のタンパク質とその受容体との結合を阻害する化合物をスクリーニングする方法であって、(a)被検試料の存在下で、請求項1または2に記載のタンパク質を該タンパク質の受容体または該受容体を発現する細胞に接触させる工程、

(b) 該タンパク質とその受容体または該受容体を発現する細胞との結合活性を検出する工程、および(c)被検試料非存在下において検出した場合と比較して、該結合活性を低下させる化合物を選択する工程、を含む方法。

【請求項15】 請求項14に記載の方法により単離されうる、請求項1または2に記載のタンパク質とその受容体との結合を阻害する化合物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、血管新生に関与するタンパク質と相同性を有する新規なタンパク質および それらの遺伝子、並びにそれらの製造および用途に関する。

[0002]

【従来の技術】血管の形成過程は、胎生初期での"脈管 形成 (vascu logenes is) "と、同後期での"血管新生 (ang io genes is) "の二段階に分類される [W. Risau, Nature, 3 86: 671-674 (1997); D. Hanahan, Science, 277: 48-5 0 (1997)]。両過程ではレセプター型チロシン・キナー ゼ(RTK)の関与が示唆されており、脈管形成では血管 内皮增殖因子(vascular endothelial growth factor; V EGF) とそれに対する特異的な細胞膜上受容体 (VEGF-R 1, VEGF-R2) が重要な役割を果たしている事がノックア ウトマウスの実験より証明されている [F. Shalaby et al., Nature, 376:62-66 (1995)]。一方、血管新生の過 程でもRTKタイプの細胞膜上受容体、"Tie"の関与が想定 されている。TieにはTie-1とTie-2が存在するが、マウ スを用いたノックアウト実験で脈管形成不全による致死 を誘発することから、両分子共に血管造成における必須 の因子であるとされている [T. N. Sato et al., Natur e, 376: 70-74 (1995); M. C. Puri et al., EMBO J., 14: 5884-5891 (1995)]_o

【0003】Tie-2の特異的なリガンドは、アメリカの 研究グループにより遺伝子クローニングがなされ、アン ギオポエチン-1(Angiopoietin-1) [S. Davis et. al., Cell, 87: 1161-1169 (1996)]およびアンギオポエチン-2(Angiopoietin-2) [P. C. Maisonpierre et al., Scie nce, 277: 55-60 (1997)]と名付けられた。アンギオポ エチン-1 (Ang-1) はTie-2結合を介して血管内皮細胞に 働きかけ、VEGFにより構築された幼若血管をより成熟な 血管へと分化誘導する。アンギオポエチン-1の過剰発現 動物を用いた実験では、血管が巨大化し、数が増え、ま た分岐が多くなる事が観察されている [C. Suriet a 1., Science, 282: 468-471 (1998)]。アンギオポエチ ン-2 (Ang-2) はアンギオポエチン-1/Tie-2系での生理 的な阻害物質であると考えられており、アンギオポエチ ン-1と競合的に働き、脈管形成、形態維持を制御してい ると考えられている [P.C. Maisonpierre et al., Sci ence, 277: 55-60 (1997)]。他方、Tie-1に対する特異

50

的なリガンドは未同定である。血管新生に関与する未知 の因子のクローニングが望まれていた。

[0004]

【発明が解決しようとする課題】本発明は、新規なアンギオポエチン様タンパク質およびそれらの遺伝子、並びにそれらの製造方法及び用途を提供することを課題とする。

[0005]

【課題を解決するための手段】本発明者らは、上記課題を解決すべく鋭意研究を行った結果、ヒト胎児由来のポリA+ RNAを用いた逆転写ポリメラーゼ連鎖反応(RT-PC R)により、2つの新規なcDNAを単離することに成功した(この2つのクローンをそれぞれ「410」および「NEW」と命名した)。

【0006】単離したcDNAによりコードされる「410」・ タンパク質および「NEW」タンパク質のアミノ酸配列 は、血管新生に関与するタンパク質であるアンギオポエ チン-1およびアンギオポエチン-2 と相同性を有してい た(図1~4)。特に、ヒトアンギオポエチン-1および -2において生物活性を有していると考えられているC 末端領域のフィブリノーゲンドメインは、「410」タン パク質および「NEW」タンパク質のC末端領域でも保存 されていた(図5~8)。「410」タンパク質および「N EW」タンパク質のフィブリノーゲンドメインのアミノ酸 配列は、ヒトアンギオポエチン-1および -2と40%以上 の同一性を有しており、N末端領域よりも高度に保存さ れていた。また、「410」タンパク質および「NEW」タン パク質のアミノ酸配列には、アンギオポエチン-1および -2で保存されているシステイン残基6部位のうち、5部 位が保存されていた。これらのことから、「410」タン パク質および「NEW」タンパク質は、血管新生に関与す るアンギオポエチンファミリーに属する新規なタンパク 質と考えられる。

【0007】本発明者らは、「410」タンパク質および「NEW」タンパク質とアンギオポエチンとの密接な関係から、これらタンパク質やそれらの遺伝子、さらにはこれらタンパク質の活性を調節する化合物が、血管新生が関与する各種疾患の治療などへ応用しうることを見出した。

【0008】すなわち、本発明は、新規なアンギオポエ 40 チン様タンパク質およびそれらの遺伝子、並びにそれらの製造および用途に関し、より具体的には、(1) 配列番号:4または8に記載のアミノ酸配列からなるタンパク質、または該タンパク質中のアミノ酸配列において1若しくは複数のアミノ酸が欠失、付加、挿入および/または他のアミノ酸による置換により修飾されたアミノ酸配列からなり、配列番号:4または8に記載のアミノ酸配列からなるタンパク質と機能的に同等なタンパク質、(2) 配列番号:3または7に記載の塩基配列からなるDNAとハイブリダイズするDNAがコードするタンパ 50

ク質であって、配列番号: 4または8に記載のアミノ酸 配列からなるタンパク質と機能的に同等なタンパク質、 (1) または(2) に記載のタンパク質をコー ドするDNA、(4) (3)に記載のDNAを含むベクタ 一、(5) (4) に記載のベクターを保持する形質転 (5) に記載の形質転換体を培養する工 換体、(6) 程を含む、(1)または(2)に記載のタンパク質の製 造方法、(7) (1) または(2) に記載のタンパク 質の部分ペプチド、(8) (1) または(2) に記載 のタンパク質に対する抗体、(9) 配列番号:3また は7に記載の塩基配列からなるDNAと特異的にハイブリ ダイズし、少なくとも15塩基の鎖長を有するDNA、 (1) または(2) に記載のタンパク質に結 合する化合物をスクリーニングする方法であって、 (a) (1) または(2) に記載のタンパク質またはそ の部分ペプチドに被検試料を接触させる工程、および (b) 該タンパク質またはその部分ペプチドに結合する 化合物を選択する工程、を含む方法、(11) 0) に記載の方法により単離されうる、(1) または (2) に記載のタンパク質に結合する化合物、(12) 受容体タンパク質である、(11)に記載の化合物、 (1) または(2) に記載のタンパク質の受 容体を発現する細胞をスクリーニングする方法であっ て、(a) (1) または(2) に記載のタンパク質また はその部分ペプチドに被検細胞試料を接触させる工程、 および(b)該タンパク質またはその部分ペプチドに結 合する細胞を選択する工程、を含む方法、(14) (1)または(2)に記載のタンパク質とその受容体と の結合を阻害する化合物をスクリーニングする方法であ って、(a)被検試料の存在下で、(1)または(2) に記載のタンパク質を該タンパク質の受容体または該受 容体を発現する細胞に接触させる工程、(b)該タンパ ク質とその受容体または該受容体を発現する細胞との結 合活性を検出する工程、および(c)被検試料非存在下 において検出した場合と比較して、該結合活性を低下さ せる化合物を選択する工程、を含む方法、(15) (14)に記載の方法により単離されうる、(1)また は(2)に記載のタンパク質とその受容体との結合を阻

[0009]

害する化合物、に関する。

【発明の実施の形態】本発明は、新規なアンギオポエチン様タンパク質「410」および「NEW」に関する。本発明のタンパク質に含まれる「410」タンパク質(配列番号: 4)および「NEW」タンパク質(配列番号: 8)は、ヒト胎児由来のpoly A+ RNAを鋳型としてRT-PCRによりcDNAをスクリーニングすることにより単離された遺伝子がコードする分泌性タンパク質である。「410」タンパク質および「NEW」タンパク質のアミノ酸配列は、血管新生の制御に関与するアンギオポエチン-1およびアンギオポエチン-2と相同性を有していた。この事実はこ

れらタンパク質が、特に血管新生の制御に関与しているタンパク質であることを示唆している。従って、本発明のタンパク質やそれらの遺伝子、また、本発明のタンパク質の活性を調節する化合物は、血管新生が関与する疾患の予防や治療への応用が考えられる。

【0010】血管新生とは、既存血管より新たな血管が 構築される過程であると考えられており、生理的には排 卵、胎盤形成、炎症、創傷治癒などで起きる。しかし、 これら以外にも、血管新生はさまざまな疾患において重 要な役割を果すと考えられる。例えば、狭心症、心筋梗 塞、脳梗塞、下肢の閉塞性動脈硬化症などの虚血性疾患 において、血管新生を誘導し血流を創生することができ れば、これらの疾患の治療を行うことができると考えら れる。また、逆に血管新生を抑制することで治療を行う ことも考えられる。このような対象となる疾患は、癌、 糖尿病性網膜症、リュウマチ性関節炎、アテローム性動 脈硬化症などで、いずれも新生血管の発生と病態の悪性 度には相関性がある。特に癌では、例え生体内で細胞が 悪性化しても血管新生が起こらなければ、癌細胞の増殖 は起こらないと考えられており(こうした癌をdormant tumorと呼ぶ)、血管新生の抑制は、新たな癌治療法と して注目されている。

【0011】本発明のアンギオポエチン様タンパク質 は、その受容体(群)を介して、それら受容体(群)を活性 化または不活化することにより、血管新生の制御に関与 していると考えられるため、上記の疾患に対する治療や 予防に利用することができると考えられる。さらに、後 述するように、本発明のアンギオポエチン様タンパク質 を利用してその受容体(群)を単離したり、本発明のタン パク質に応答性を有する細胞を用いて、バイオアッセイ により本発明のタンパク質やその受容体(群)のアゴニス トやアンタゴニストをスクリーニングすることが可能と なる。本発明のタンパク質の活性を制御するこれら化合 物も、また、血管新生が重要な役割を果たす上記疾患の 治療や予防のために利用できる。すなわち、血管新生を 促進する化合物は、例えば、狭心症、心筋梗塞、脳梗 塞、下肢の閉塞性動脈硬化症などの虚血性疾患に対する 医薬品候補化合物となり、血管新生を抑制する化合物 は、例えば、癌、糖尿病性網膜症、リュウマチ性関節 炎、アテローム性動脈硬化症などに対する医薬品候補化 合物となる。

【0012】本発明のタンパク質は、組み換えタンパク質として、また天然のタンパク質として調製することが可能である。組み換えタンパク質は、例えば、後述するように本発明のタンパク質をコードするDNAを挿入したベクターを適当な宿主細胞に導入し、形質転換体内で発現したタンパク質を精製することにより調製することが可能である。一方、天然のタンパク質は、例えば、後述する本発明のタンパク質に対する抗体を結合したアフィニティーカラムを利用して調製することができる(Curr

ent Protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. Jhon Wily & Sons Section 16. 1-16.19)。アフィニティー精製に用いる抗体は、ポリクローナル抗体であってもモノクローナル抗体であってもよい。また、インビトロトランスレーション(例えば、「On the fidelity of mRNA translation in the nucle ase-treated rabbit reticulocyte lysate system. Dasso,M.C.,Jackson,R.J.(1989) NAR 17:3129-3144」参照)などにより本発明のタンパク質を調製することも可能である。

【0013】また、本発明には、「410」タンパク質ま

たは「NEW」タンパク質と機能的に同等なタンパク質が

含まれる。ここで「機能的に同等」とは、対象となるタ ンパク質が「410」タンパク質または「NEW」タンパク質 と同等の生物学的特性を有していることを意味する。 「410」タンパク質または「NEW」タンパク質が持つ生物 学的特性としては、アンギオポエチンのアミノ酸配列と 有意な相同性を有し(実施例参照)、分泌性タンパク質 として機能するという特性が挙げられる。また、受容体 に結合し、受容体を活性化または不活化するという特性 が挙げられる。さらに、脈管形成および/または血管新 生を制御する特性も考えられる。具体的には血管の形 成、形態維持、新生、および/または消失(regression) を調節する活性が考えられる。このような活性には、血 管内皮細胞(管腔を形成していないang iob lastも含む) や造血細胞の分化、増殖、遊走および/または生存維持 を調節する活性などが含まれる。さらに発生時における 血管内皮細胞の脱落阻止、出血阻止、および/または心 臓の発育を調節する活性なども考えられる。また、プラ スミノーゲンアクチベーターやコラゲナーゼを含むプロ テアーゼ活性の調節、コラーゲンゲル中などにおける血 管様構造の形成の調節、Milesアッセイ等による血管透 過性の調節などの活性も考えられる。

【0014】「410」タンパク質または「NEW」タンパク質と機能的に同等なタンパク質は、当業者であれば、例えば、タンパク質中のアミノ酸配列に変異を導入する方法(例えば、部位特異的変異誘発法(Current Protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. Jhon Wily & Sons Section 8.1-8.5))を利用して調製することができる。また、このようなタンパク質は、自然界におけるアミノ酸の変異により生じることもある。本発明には、このように「410」タンパク質(配列番号:4)または「NEW」タンパク質(配列番号:4)または「NEW」タンパク質(配列番号:8)のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、挿入および/もしくは付加などにより変異したタンパク質であって、これらタンパク質と機能的に同等なタンパク質も含まれる。

【0015】タンパク質におけるアミノ酸の変異数や変異部位は、その機能が保持される限り制限はない。変異数は、典型的には、全アミノ酸の10%以内であり、好ま

しくは全アミノ酸の5%以内であり、さらに好ましくは 全アミノ酸の1%以内である。

【0016】また、「410」タンパク質または「NEW」タ ンパク質と機能的に同等なタンパク質は、当業者に周知 のハイブリダイゼーション技術あるいは遺伝子増幅技術 を利用して単離することも可能である。即ち、当業者で あれば、ハイブリダイゼーション技術 (Current Protoc ols in Molecular Biology edit. Ausubel et al. (198 7) Publish. Jhon Wily & Sons Section 6.3-6.4)を用 いて「410」または「NEW」をコードするDNA配列(それ ぞれ配列番号:3または7)またはその一部をもとにこ れと相同性の高いDNAを単離して、該DNAからこれらタン パク質と機能的に同等なタンパク質を得ることは、通常 行いうることである。このように「410」タンパク質ま たは「NEW」タンパク質をコードするDNAとハイブリダイ ズするDNAにコードされるタンパク質であって、これら タンパク質と機能的に同等なタンパク質もまた本発明の タンパク質に含まれる。

【0017】機能的に同等なタンパク質を単離する生物としては、ヒト以外に、例えばラット、マウス、ウサギ、ニワトリ、ブタ、ウシ等が挙げられるが、これらに制限されない。

【0018】機能的に同等なタンパク質をコードするDNAを単離するためのハイブリダイゼーションのストリンジェンシーは、通常「1xSSC、0.1% SDS、37℃」程度であり、より厳しい条件としては「0.5xSSC、0.1% SDS、42℃」程度であり、さらに厳しい条件としては「0.2xSSC、0.1% SDS、65℃」程度であり、ハイブリダイゼーションの条件が厳しくなるほどプローブ配列と高い相同性を有するDNAの単離を期待しうる。但し、上記SSC、SDSおよび温度の条件の組み合わせは例示であり、当業者であれば、ハイブリダイゼーションのストリンジェンシーを決定する上記若しくは他の要素(例えば、プローブ濃度、プローブの長さ、ハイブリダイゼーション反応時間など)を適宜組み合わせることにより、上記と同様のストリンジェンシーを実現することが可能である。

【0019】このようなハイブリダイゼーション技術を利用して単離されるタンパク質は、通常、「410」タンパク質または「NEW」タンパク質とアミノ酸配列において高い相同性を有する。高い相同性とは、少なくとも40 40 %以上、好ましくは60%以上、さらに好ましくは90%以上の配列の相同性を指す。相同性の特定は、BLAST検索アルゴリズムを用いて決定することができる。

【0020】また、遺伝子増幅技術 (PCR) (Current protocols in Molecular Biology edit. Ausubel et a 1. (1987) Publish. John Wiley & Sons Section 6.1-6.4) を用いて「410」タンパク質または「NEW」タンパク質をコードするDNA配列(それぞれ配列番号:3または7)の一部をもとにプライマーを設計し、これらタンパク質をコードするDNA配列またはその一部と相同性の

高いDNA断片を単離して、これを基にこれらタンパク質 と機能的に同等なタンパク質を得ることも可能である。 【0021】本発明は、また、本発明のタンパク質の部 分ペプチドを含む。この部分ペプチドには、例えば、シ グナルペプチドが除去されたタンパク質が含まれる。ま た、本発明のタンパク質の競合阻害剤として機能する、 受容体との結合能を有するが受容体を活性化する能力の ない部分ペプチドが含まれる。また、抗体調製のための 抗原ペプチドが含まれる。部分ペプチドが本発明のタン パク質に特異的であるためには、少なくとも7アミノ 酸、好ましくは8アミノ酸以上、より好ましくは9アミ ノ酸以上のアミノ酸配列からなる。該部分ペプチドは、 本発明のタンパク質に対する抗体や本発明のタンパク質 の競合阻害剤の調製以外に、例えば、本発明のタンパク 質に結合する受容体のスクリーニングなどに利用し得 る。本発明の部分ペプチドは、例えば、遺伝子工学的手 法、公知のペプチド合成法、あるいは本発明のタンパク 質を適当なペプチダーゼで切断することによって製造す

【0022】また、本発明は、上記本発明のタンパク質をコードするDNAに関する。本発明のDNAとしては、本発明のタンパク質をコードしうるものであれば、その形態に特に制限はなく、cDNAの他、ゲノムDNA、化学合成DNAなども含まれる。また、本発明のタンパク質をコードしうる限り、遺伝暗号の縮重に基づく任意の塩基配列を有するDNAが含まれる。本発明のDNAは、上記のように、「410」タンパク質または「NEW」タンパク質をコードするDNA配列(それぞれ配列番号:3または7)あるいはその一部をプローブとしたハイブリダイゼーション法やこれらDNA配列をもとに合成したプライマーを用いたPCR法等の常法により単離することが可能である。

【0023】また、本発明は、本発明のDNAが挿入され たベクターに関する。本発明のベクターとしては、挿入 したDNAを安定に保持するものであれば特に制限され ず、例えば 宿主に大腸菌を用いるのであれば、クロー ニング用ベクターとしてはpB luescr iptベクター(Strata gene社製)などが好ましい。本発明のタンパク質を生産 する目的においてベクターを用いる場合には、特に発現 ベクターが有用である。発現ベクターとしては、試験管 内、大腸菌内、培養細胞内、生物個体内でタンパク質を 発現するベクターであれば特に制限されないが、例え ば、試験管内発現であればpBESTベクター(プロメガ社 製)、大腸菌であればpETベクター(Invitrogen社 製)、培養細胞であればpME18S-FL3ベクター (GenBank Accession No. AB009864)、生物個体であればpME18Sベ クター (Mo1 Cell Biol. 8:466~472(1988)) などが好 ましい。ベクターへの本発明のDNAの挿入は常法によ り、例えば制限酵素サイトを用いたリガーゼ反応により 行うことができる(Current protocols in Molecular Bi ology edit. Ausubel et al. (1987) Publish. John W iley &Sons. Section $11.4\sim11.11$) o

【0024】また、本発明は、本発明のベクターを保持する形質転換体に関する。本発明のベクターが導入される宿主細胞としては特に制限はなく、目的に応じて種々の宿主細胞が用いられる。タンパク質を高発現させるための真核細胞としては、例えば、COS細胞、CHO細胞などを例示することができる。

【0025】宿主細胞へのベクター導入は、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9. 9)、リポフェクタミン法(GIBCO-BRL社製)、マイクロインジェクション法などの方法で行うことが可能である。

【0026】また、本発明は、本発明のタンパク質をコ ードする配列番号:3または7に記載の塩基配列からな るDNAと特異的にハイブリダイズし、少なくとも15ヌク レオチドの鎖長を有するDNAに関する。ここで「特異的 にハイブリダイズする」とは、通常のハイブリダイゼー ション条件下、好ましくは厳格な条件下で、本発明のタ ンパク質をコードする配列番号:3または7に記載の塩 基配列からなるDNAとハイブリダイズし、他のタンパク 質をコードするDNAとはハイブリダイズしないことを意 味する。このようなDNAは、本発明のDNAを検出、単離す るためのプローブとして、また、本発明のDNAを増幅す るためのプライマーとして利用することが可能である。 プライマーとして用いる場合には、通常、15bp~100b p、好ましくは15bp~35bpの鎖長を有する。また、プロ ーブとして用いる場合には、本発明のDNAの少なくとも 一部若しくは全部の配列を有し、少なくとも15bpの鎖長 30 のDNAが用いられる。

【0027】本発明のDNAは、本発明のタンパク質の異常を検査・診断するために利用できる。例えば、本発明のDNAをプローブやプライマーとして用いたノーザンハイブリダイゼーションやRT-PCRにより、発現異常を検査したり、本発明のDNAをプライマーとして用いたポリメラーゼ連鎖反応(PCR)によりゲノムDNA-PCRやRT-PCRにより本発明のタンパク質をコードするDNAやその発現制御領域を増幅し、RFLP解析、SSCP、シークエンシング等の方法により、配列の異常を検査・診断することができる。

【0028】また、「配列番号:3または7に記載のDN Aと特異的にハイブリダイズし、少なくとも15ヌクレオチドの鎖長を有するDNA」には、本発明のタンパク質の発現を抑制するためのアンチセンスDNAが含まれる。アンチセンスDNAは、アンチセンス効果を引き起こすために、少なくとも15bp以上、好ましくは100bp、さらに好ましくは500bp以上の鎖長を有し、通常、3000bp以内、好ましくは2000bp以内の鎖長を有する。このようなアンチセンスDNAには、本発明のタンパク質の異常(機能異

常や発現異常)などに起因した疾患(特に、血管新生に関連した疾患)の遺伝子治療への応用も考えられる。該アンチセンスDNAは、例えば、本発明のタンパク質をコードするDNA(例えば、配列番号:3または7に記載のDNA)の配列情報を基にホスホロチオネート法(Stein,1988 Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16,3209-21(1988))などにより調製することが可能である。

【0029】本発明のDNAは、遺伝子治療に用いる場合には、例えば、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクターなどのウイルスベクターやリポソームなどの非ウイルスベクターなどを利用して、ex vivo法やinvivo法などにより患者へ投与を行うことができる。

【0030】また、本発明は、本発明のタンパク質に結合する抗体に関する。本発明の抗体の形態には特に制限はなく、ポリクローナル抗体やモノクローナル抗体または抗原結合性を有するそれらの一部も含まれる。また、全てのクラスの抗体が含まれる。さらに、本発明の抗体には、ヒト化抗体などの特殊抗体も含まれる。

【0031】本発明の抗体は、ポリクローナル抗体の場合には、常法に従いアミノ酸配列に相当するオリゴペプチドを合成して家兎に免疫することにより得ることが可能であり(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 11.12~11.13)、一方、モノクローナル抗体の場合には、常法に従い大腸菌で発現し精製したタンパク質を用いてマウスを免疫し、脾臓細胞と骨髄腫細胞を細胞融合させたハイブリドーマ細胞の中から得ることができる(Current protocols in Molecular Biology edit. Ausubelet al. (1987) Publish. John Wiley & Sons. Section 11.4~11.11)。

【0032】本発明のタンパク質に結合する抗体は、本発明のタンパク質の精製に加え、例えば、本発明のタンパク質の発現異常や構造異常の検査・診断に利用することも考えられる。具体的には、例えば組織、血液、または細胞などからタンパク質を抽出し、ウェスタンブロッティング、免疫沈降、ELISA等の方法による本発明のタンパク質の検出を通して、発現や構造の異常の有無を検査・診断することができる。

【0033】また、本発明のタンパク質に結合する抗体を、本発明のタンパク質に関連した疾患の治療などの目的に利用することも考えられる。抗体を患者の治療目的で用いる場合には、ヒト抗体またはヒト化抗体が免疫原性の少ない点で好ましい。ヒト抗体は、免疫系をヒトのものと入れ換えたマウス(例えば、「Functional transplant of megabase human immunog lobulin loci recapitulates human antibody response in mice, Mendez, M.J. et al.(1997) Nat.Genet.15:146-156」参照)に免疫することにより調製することができる。また、ヒト化

抗体は、モノクローナル抗体の超可変領域を用いた遺伝子組み換えによって調製することができる(Methods in Enzymology 203, 99-121(1991))。

【0034】また、本発明は、本発明のタンパク質を利用した、本発明のタンパク質に結合する化合物のスクリーニング方法に関する。このスクリーニング方法は、

(a) 本発明のタンパク質またはその部分ペプチドに被検試料を接触させる工程、(b) 該タンパク質またはその部分ペプチドに結合する化合物を選択する工程を含む。

【0035】具体的な方法としては、例えば、本発明のタンパク質のアフィニティーカラムに被検試料を接触させ精製する方法、twoハイブリッドシステムを利用する方法、ウエストウエスタンブロッティング法、コンビナトリアルケミストリー技術におけるハイスループットスクリーニングによる方法など多くの公知の方法を利用することができる。

【0036】スクリーニングに用いる被検試料としては、これらに制限されないが、例えば、細胞抽出液、遺伝子ライブラリーの発現産物、合成低分子化合物、合成 20ペプチド、天然化合物などが挙げられる。

【0037】このスクリーニング方法によれば、本発明のタンパク質の受容体を単離することが可能である。本発明のタンパク質の受容体を単離するためのスクリーニングを行う場合、被検試料としては、例えば受容体が発現していることが予想される細胞(例えば血管内皮細胞など)の細胞抽出物や、該細胞から調製したRNAを基に作製したcDNA発現ライブラリーを用いることが可能である。アンギオポエチン-1やアンギオポエチン-2は、それらの受容体として受容体型チロシンキナーゼであるTie-302に結合することが知られている。本発明のタンパク質もまた、受容体型チロシンキナーゼに結合し、細胞内へシグナル伝達を行っている可能性が高い。また、このスクリーニング方法によれば、本発明のタンパク質の受容体のアゴニストやアンタゴニストの候補となる化合物を単離することも可能である。

【0038】また、本発明は、本発明のタンパク質の受容体を発現する細胞をスクリーニングする方法に関する。このスクリーニング方法は、(a)本発明のタンパク質またはその部分ペプチドに被検細胞試料を接触させ 40る工程、および(b)該タンパク質またはその部分ペプチドに結合する細胞を選択する工程、を含む。

【0039】このスクリーニングは、例えば、以下のように行うことが可能である。まず、本発明のタンパク質の精製品を取得する。次いで、その精製タンパク質を標識し、各種細胞株または初代培養細胞に対して結合アッセイを行い、これにより受容体を発現している細胞を選定する(本庶・新井・谷口・村松編 新生化学実験講座7 増殖分化因子とその受容体p203-236 (1991) 東京化学同人)。標識としては、125 IなどのRI標識のほか、酵

素 (アルカリホスファターゼ等) 標識も可能である。また、本発明のタンパク質を標識せずに用いて、本発明のタンパク質に対する抗体を標識して用いて検出することも考えられる。

【0040】Ang-1の受容体であるTie-2を発現する細胞は、正常ヒト静脈内皮細胞(HUVEC human umbilical ve in endothelial cell、宝酒造販売)等が知られているので、「410」タンパク質または「NEW」タンパク質の受容体を発現する細胞も血管内皮細胞である可能性が高い。それらの細胞を用いれば、Ang-1やAng-2と受容体との結合活性等の比較を行うことができる。また、HUVECで「410」または「NEW」タンパク質とAng-1やAng-2との結合活性等の比較を行うことは当然可能である。

【0041】上記スクリーニングにより得られた本発明のタンパク質の受容体を発現する細胞は、後述するように該受容体のアゴニストやアンタゴニストのスクリーニングに用いることが可能である。

【0042】上記のスクリーニングにより本発明のタンパク質の受容体や該受容体を発現する細胞が得られれば、本発明のタンパク質とその受容体または該受容体を発現する細胞との結合活性を指標に、該結合を阻害する化合物(例えば、受容体アゴニストやアンタゴニスト)のスクリーニングが可能となる。

【0043】このスクリーニング方法は、(a)被検試料の存在下で、本発明のタンパク質を該タンパク質の受容体または該受容体を発現する細胞に接触させる工程、

(b) 該タンパク質とその受容体または該受容体を発現する細胞との結合活性を検出する工程、および(c)被検試料非存在下において検出した場合と比較して、該結合活性を低下させる化合物を選択する工程、を含む。

【0044】スクリーニングに用いる被検試料としては、例えば、細胞抽出液、遺伝子ライブラリーの発現産物、合成低分子化合物、合成ペプチド、天然化合物などが挙げられるが、これらに制限されない。また、本発明のタンパク質との結合活性を指標とした上記のスクリーニングにより単離された化合物を被検試料として用いることも可能である。

【0045】例えば、アイソトープラベルした「410」 タンパク質または「NEW」タンパク質と被検試料を、これらタンパク質の受容体を発現する細胞に接触させ、これらタンパク質のその受容体への結合活性を検出する。 そして、アイソトープラベルしたこれらタンパク質の細胞当たりの結合活性を低下させる化合物を選択する。

【0046】このスクリーニングにより単離される化合物は、本発明のタンパク質の受容体のアゴニストやアンタゴニストの候補となる。本発明のタンパク質とその受容体との結合活性の低下によるリン酸化などの細胞内シグナルの変化をもとに、得られた化合物が本発明のタンパク質の受容体のアゴニストであるかアンタゴニストであるかを判定することができる。また、得られる化合物

は、生体内において、本発明のタンパク質とこれと相互作用する分子(受容体も含む)との該相互作用を阻害する化合物の候補ともなる。これら化合物は、本発明のタンパク質が関連する疾患(例えば、血管新生に関連する疾患)の予防薬や治療薬への応用が考えられる。

【0047】本発明のスクリーニング方法により単離さ れた化合物を医薬品として用いる場合には、単離された 化合物自体を直接患者に投与する以外に、公知の製剤学 的方法により製剤化して投与を行うことも可能である。 例えば、薬理学上許容される担体もしくは媒体、具体的 には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤な どと適宜組み合わせて製剤化して投与することが考えら れる。患者への投与は、例えば、動脈内注射、静脈内注 射、皮下注射など当業者に公知の方法により行いうる。 投与量は、患者の体重や年齢、投与方法などにより変動 するが、当業者であれば適当な投与量を適宜選択するこ とが可能である。また、該化合物がDNAによりコードさ れうるものであれば、該DNAを遺伝子治療用ベクターに 組込み、遺伝子治療を行うことも考えられる。投与量、 投与方法は、患者の体重や年齢、症状などにより変動す るが、当業者であれば適宜選択することが可能である。 [0048]

【実施例】次に、本発明を実施例によりさらに具体的に 説明するが、本発明は下記実施例に限定されるものでは ない。なお、特に断りがない場合は、公知の方法(Mani atis, T. at al. (1982): "Molecular Cloning - A La boratory Manual" Cold Spring Harbor Laboratory, N Y)に従って実施可能である。

【 0 0 4 9 】 [実施例 1] 新規アンギオポエチン様タン パク質をコードする遺伝子の単離

本発明のアンギオポエチン様タンパク質(410、NEW)を コードする全長cDNAは、ヒト胎児由来のpoly A⁺ RNA(C lontech)を鋳型としてRT-PCRにより取得した。

【0050】新規アンギオポエチン様タンパク質「41

0」の増幅にはforwardプライマーとして5'-ATGAGGCCACT GTGCGTGAC-3'(配列番号:1)、reverseプライマーと して5'-TTAGTGGAAGGTGTTGGGGTTCG-3'(配列番号:2) を用いた。RT-PCRはPyrobest DNApolymerase(宝酒造) を用い94°C(30秒)/60°C(30秒)/72°C(2分)の サイクルを35回繰り返した。その結果、約1.5 kbpのDNA 40 断片が増幅された。この断片をpCR2.1 プラスミド(Inv itrogen) を用いてクローニングした。 得られたクロー ンの塩基配列はダイデオキシターミネーション法により ABI377 DNA Sequencer (Applied Biosystems) を用いて 解析した。明らかになった配列を配列番号:3に示す。 【0051】同配列は1482 baseのオープンリーディン グフレーム(配列番号:3の第1番目から第1482番目) を持っている。オープンリーディングフレームから予測 されるアミノ酸配列(493アミノ酸)を配列番号:4に 示す。

【0052】新規アンギオポエチン様タンパク質「NE W」の増幅にはforwardプライマーとして5'-ATGGGGAAGCC CTGGCTGCGTGCGCTACAG-3'(配列番号:5)、reverseプライマーとして5'-TCACAGCTTCAGGGGCCGAATGAGCATGGC-3'(配列番号:6)を用いた。RT-PCRはPyrobest DNA polymerase(宝酒造)を用いた。RT-PCRはPyrobest DNA polymerase(宝酒造)を用いた。RT-PCRはPyrobest DNA polymerase(宝酒造)を用いた。RT-PCRはPyrobest DNA polymerase(宝酒造)を用いた。第1.5 kbpのDNA断片が増幅された。この断片をPCR2.1 プラスミド(Invitroge n)を用いてクローニングした。得られたクローンの塩基配列はダイデオキシターミネーション法によりABI377 DNA Sequencer (Applied Biosystems)を用いて解析した。明らかになった配列を配列番号:7に示す。

【0053】同配列は1413 baseのオープンリーディングフレーム(配列番号:7の第1番目から第1413番目)を持っている。オープンリーディングフレームから予測されるアミノ酸配列(470アミノ酸)を配列番号:8に示す。

【0054】 [実施例2] 「410」、「NEW」のアミノ酸 配列よりの機能予測

(1) 「410」のアミノ酸配列とヒトアンギオポエチン-1 (Ang1) mRNA complete cds.(U83508, 2149塩基, 498 アミノ酸)およびヒトアンギオポエチン-2 (Ang2) mRNA complete cds.(AF004327, 2269塩基, 496アミノ酸) のアミノ酸配列に対するALIGN (calculates a global alignment of two sequences) [Myers andMiller, CABIOS (1989); FASTA2 (ftp://ftp.virginia.edu/pub/fasta/)と共にプログラムをダウンロード可能] による検索を行った。その結果を図1および2に示した。「410」のアミノ酸配列(上段)が、Human angiopoietin-1 (図1下段)およびHuman angiopoietin-2 (図2下段)のアミノ酸配列と、28.7%および28.2%の相同性を示した。これらのことから「410」が血管新生に関与するアンギオポエチン (Angiopoietin)のファミリーである可能性が高い遺伝子であることが示唆された。

【0055】(2)「NEW」のアミノ酸配列とヒトアンギオポエチン-1 (Ang1) およびヒトアンギオポエチン-2 (Ang2)のアミノ酸配列に対するALIGNによる検索を行った結果を図3および4に示した。「NEW」のアミノ酸配列(上段)が、Human angiopoietin-1 (図3下段)およびHuman angiopoietin-2 (図4下段)のアミノ酸配列と、28.8%および27.2%の相同性を示した。これらのことから「410」が血管新生に関与するアンギオポエチン(Angiopoietin)のファミリーである可能性が高い遺伝子であることが示唆された。

【0056】(3)「410」、「NEW」のアミノ酸配列よりの機能予測

ヒトアンギオポエチン-1およびヒトアンギオポエチン-2 の生物活性は分子内C末端領域に存在するフィブリノーゲンドメインに存在すると考えられている[D.M. Valenz

1., Science, 277:55-60 (1997)]のうち5個が「41 O」、「NEW」でも存在していることを示している。残り のAnglおよびAng2で保存されているシステイン残基3個 のうち2個はCys-X-Cys-X-Cysの2個であった。このこ とより、Ang1およびAng2で保存されているシステイン残 基6部位のうち、「410」、「NEW」では5部位に存在して

└【0058】これらのことから「410」、「NEW」が血管 新生に関与するアンギオポエチン(Angiopoietin)のフ アミリーである可能性が高いタンパク質であることが示 唆された。

[0059]

いることが分かった。

【発明の効果】本発明のタンパク質は、血管新生の制御 に関与していることが示唆されるため、本発明のタンパ ク質やそれらの遺伝子、または本発明のタンパク質や受 容体の活性を制御する化合物は、血管新生が関与する疾 患の新しい予防薬や治療薬の開発への利用が期待され る。

[0060] 【配列表】

uela et al., Proc. Natl. Acad. Sci. USA, 96: 1904-1909 (1999)]。「410」、「NEW」にも同様のフィブリノ ーゲンドメイン (それぞれアミノ酸番号275-460および 257-441) が分子内C末端領域に存在している。この領 域について、ヒトアンギオポエチン-1およびヒトアンギ オポエチン-2のフィブリノーゲンドメイン(それぞれア ミノ酸番号282-468および281-467) のALIGNによる検 索を行った。その結果を図5から8に示した。「41 OI、「NEW」のフィブリノーゲンドメインのアミノ酸配 列は、Human angiopoietin-1およびHuman angiopoietin -2と、いずれも40%以上保存されており、分子内N末領域 よりも特に良く保存されていたことから、アンギオポエ チン同様の生物活性を有する可能性が考えられた。

【0057】さらに、Anglのアミノ酸番号で 41,286, 315, 439, および452であり、Ang2のアミノ酸番号で 4 1,284,313,437,および450であるシステイン残基 が、「410」でもアミノ酸番号で54,278,307,430,お よび443、「NEW」ではアミノ酸番号で37,260,287,41 0. および423で存在していた。この結果は、ヒトAng1お よびAng2、並びにマウスAng1およびAng2で共通に保存さ れているシステイン残基8個 [P.C. Maisonpierre et a

SEQUENCE LISTING

<110> Helix Reseach Institute

<120> "410" and "NEW", proteins related to angiogenesis

<130> H1-104

<140>

<141>

<160> 8

<170> PatentIn Ver. 2.0

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Artificially Synthesized Primer Sequence

<400> 1

atgaggccac tgtgcgtgac

<210> 2

<211> 23

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: Artificially Synthesized Primer Sequence

<400> 2

ttagtggaag gtgttggggt tcg

<210> 3

<211> 1482

and genes encording them.

<210> 1

<211> 20

20

<21	2> D	NA														
	3> H	omo	sap i	ens												
<22	U> 1> C	DC														
	1> C. 2> ((148	2)												
	0> 3	1)	(170	د)												
	agg	cca	ctg	tgc	gtg	aca	tgc	tgg	tgg	ctc	gga	ctg	ctg	gct	acc	48
	Arg						_					-	_	_	_	
1	-			5			-	-	10		,			15		
atg	gga	gct	gtt	gca	ggc	cag	gag	gac	ggt	ttt	gag	ggc	act	gag	gag	96
Met	Gly	A la	Val	Ala	G ly	G ln	G lu	Asp	G ly	Phe	G lu	Gly	Thr	G lu	G lu	
			20					25					30	•		
	tcg											_				144
Gly	Ser	Pro 35	Arg	G IU	Phe	He	1yr 40	Leu	Asn	Arg	lyr	Lys 45	Arg	A la	Gly	
gag	tcc		gac	ลล๑	tøc	acc		acc	ttc	att	oto		റമമ	റമാ	caa	192
	Ser	_	_	_	_								_	_		101
	50		-	•	•	55	•				60				J	
gtc	acg	ggt	gcc	atc	tgc	gtc	aac	tcc	aag	gag	cct	gag	gtg	ctt	ctg	24(
Va 1	Thr	G ly	Ala	Ile	Cys	Va 1	Asn	Ser	Lys	G lu	Pro	G lu	Va 1	Leu	Leu	
65					70					75					80	
	aac	_			_	_				_				-	_	288
6 Iu	Asn	Arg	Val	н 1S 85	Lys	G In	6 lu	Leu		Leu	Leu	Asn	Asn		Leu	
ctc	aag	cag	ааσ		cag	atc	gag.	aca	90 Cta	cad	cau	cta	ata	95	ata	33€
	Lys															330
	•		100					105					110			
gac	ggc	ggc	att	gtg	agc	gag	gtg	aag	ctg	ctg	cgc	aag	gag	agc	cgc	384
Asp	Gly	Gly	I le	Va 1	Ser	G lu	Va 1	Lys	Leu	Leu	Arg	Lys	G lu	Ser	Arg	
		115					120				•	125				
	atg					_	_			_	_		_			432
ASII	Met 130	ASII	Sei	wi B	Val	135	GIII	Leu	Tyr	met	140	Leu	Leu	n is	GIU	
atc	atc	cgc	aag	cgg	gac		gcg	ttg	gag	ctc		cag	ctg	gag	aac	480
	I le				-			-				_	-			
145					150					155					160	
	atc															528
Arg	I le	Leu	Asn		Thr	A la	Asp	Met		G ln	Leu	A la	Ser		Tyr	
				165					170					175		
	gac Asp															576
Lys	nsp	LCu	180	11 13	Lys	1 9 1	GIII	185	Leu	піа	1111	Leu	190	11 12	USII	
caa	tca	gag		atc	gcg	cag	ctt		gag	cac	tgc	cag		gtg	ccc	624
	Ser					_					_	_				
		195					200					205		•		
tcg	gcc	agg	ссс	gtc	ссс	cag	cca	ссс	ссс	gct	gcc	ccg	ссс	cgg	gtc	672
Ser	Ala	Arg	Pro	Va l	Pro		Pro	Pro	Pro	A la		Pro	Pro	Arg	Va l	
	210				.	215					220					700
	Caa						_				_					720

225					230					235					240	
gag	atc	cag	agt	gac	cag	aac	ctg	aag	gtg	ctg	cca	ссс	cct	ctg	ссс	768
G lu	I le	G ln	Ser	Asp	Gln	Asn	Leu	Lys	Va 1	Leu	Pro	Pro	Pro	Leu	Pro	
				245					250					255		
act	atg	ccc	act	ctc	acc	agc'	ctc	сса	tct	tcc	acc	gac	aag	ccg	tcg	816
	_					_					Thr	-				
			260					265				•	270			
aac	cca	taa		gar	tac	cta	caa		ctø	gag	gat	aac		gac	acc	864
-			-	-	-	_	_	_	_		Asp					001
Uly	110	275	, ng	пор	. Cy3	Leu	280	n ia	LCu	o Iu	пор	285	11 10	пор		
	t		too	ota	ata	225			226	200	226		ctc	ata	can	912
_				-	-						aac					312
5er		ı ie	Tyr	Leu	vai		PTO	GIU	ASII	1111	Asn	AI B	Leu	met	GIII	
	290					295					300					000
		-									tgg					960
	Trp	Cys	Asp	GIn		His	Asp	Pro	Gly		Trp	Ihr	Val		•	
305					310					315					320	
_	-	_	-			-					aac					1008
Arg	Arg	Leu	Asp	Gly	Ser	Va l	Asn	Phe	Phe	Arg	Asn	Trp	G lu	Thr	Tyr	
				325					330					335		
aag	caa	ggg	ttt	ggg	aac	att	gat	ggc	gaa	tac	tgg	ctg	ggc	ctg	gag	1056
Lys	Gln	Gly	Phe	Gly	Asn	I le	Asp	Gly	G lu	Tyr	Trp	Leu	G ly	Leu	G lu	
			340					345					350			•
aac	att	tac	tgg	ctg	acg	aac	caa	ggc	aac	tac	aaa	ctc	ctg	gtg	acc	1104
Asn	I le	Tyr	Trp	Leu	Thr	Asn	${\sf G}\ln$	Gly	Asn	Tyr	Lys	Leu	Leu	Val	Thr	
		3 55					360					365				
atg	gag	gac	tgg	tcc	ggc	cgc	aaa	gtc	ttt	gca	gaia	tac	gcc	agt	ttc	1152
Met	G lu	Asp	Trp	Ser	Gly	Arg	Lys	Va 1	Phe	Ala	G lu	Tyr	A la	Ser	Phe	
	370					375					380					
cgc	ctg	gaa	cct	gag	agc	gag	tat	tat	aag	ctg	cgg	ctg	ggg	cgc	tac	1200
											Arg					
385					390		-	-	-	395					400	
cat	ggc	aat	gcg	ggt	gac	tcc	ttt	aca	tgg	cac	aac	ggc	aag	cag	ttc	1248
											Asn					
	,			405	•				410				•	415		
acc	acc	ctg	gac	aga	gat	cat	gat	gtc	tac	aca	gga	aac	tgt	gcc	cac	1296
											Gly					
			420	6				425	,		,		430			•
tac	cag	ลลฮ		ggC	tøø	tee	tat		ecc	tet	gcc	cac	tcc	aac	ctc	1344
											Ala					
1,71	O III	435	019	0.15			440			-,-		445				
220	aaa		taa	tac	cac	aaa		cat	tac	റത്ത	agc		tac	cag	gac	1392
											Ser					
ASII	-		пр	1 9 1	Λ1 B	455	0 Ly	11 13	. y .	Б	460		• 9 •	0 111	пор	
	450		+	a-+	ac.		0.75	aac	aac	to+			cto	aác	222	1440
											tac					1770
-	val	ıyr	ırp	ΑΙа		rne	игg	ыy	o 1y		Tyr	Jer	ren	LyS	19S 480	
465					470					475			.		400	1 400
	_										ttc					1482
val	٧al	Met	Met			rro	ASN	rro			Phe	n 1S				
				485					490							

<21	0> 4														
<21	1> 4	93													
<21	2> P	RT													
<21	3> H	omo .	sap i	ens											
<40	0> 4														
Met	Arg	Pro	Leu	Cys	Va 1	Thr	Cys	Trp	Trp	Leu	G lv	Leu	Leu	A la	A la
1	Ū			5			,	•	10		. ,			15	
	Glv	A la	Va 1		Glv	G In	G lu	Asn		Phe	G lu	C Iv	Thr		C In
	0.2)		20		0.1	0 111	oru	25	0.15	1110	O I G		30	o iu	O Iu
G lv	Ser	Pro		C 111	Pho	I lo	Туг		Acn	Ara	Tu∽	Luc		۸ 1a	C 157
Gly	JCI	35	M g	GIU	1 110	1 10	40	Leu	UOII	vi B	ıyı		AI B	n Ia	Gly
C 1	S		۸	T	C	TL		ть	DL -	T 1 -	W_ 1	45	C 1-	C 1 -	4
Giu		G III	ASP	Lys	cys		Tyr	Int	Pne	He		Pro	G in	G In	Arg
37 - 1	50	C 1		т,	c	55			7	٥.	60	٠.			
	Inr	ыу	Ала	I le		Val	Asn	5er	Lys		Pro	Glu	Val	Leu	
65					70					75	_				80
G lu	Asn	Arg	Val		Lys	G ln	G lu	Leu		Leu	Leu	Asn	Asn	G lu	Leu
				85					90					95	
Leu	Lys	G ln	Lys	Arg	G ln	I le	G lu	Thr	Leu	G ln	G ln	Leu	Va l	G lu	Val
			100					105					110		
Asp	G ly	G ly	I le	Va l	Ser	G lu	Va 1	Lys	Leu	Leu	Arg	Lys	G lu	Ser	Arg
		115					120					125			
Asn	Met	Asn	Ser	Arg	Va 1	Thr	G ln	Leu	Tyr	Met	Gln	Leu	Leu	His	G lu
	130					135					140				
I le	I le	Arg	Lys	Arg	Asp	Asn	Ala	Leu	G lu	Leu	Ser	Gln	Leu	G lu	Asn
145					150					155					160
Arg	I le	Leu	Asn	G ln	Thr	A la	Asp	Met	Leu	G ln	Leu	A la	Ser	Lys	Tyr
				165			_		170					175	•
Lys	Asp	Leu	G lu	His	Lys	Tyr	G ln	His	Leu	A la	Thr	Leu	A la	His	Asn
-	-		180		•	-		185					190		
G ln	Ser	G lu	I le	Ile	A la	G ln	Leu		G lu	His	Cvs	G ln		Va 1	Pro
		195					200				-,-	205	8		
Ser	A la		Pro	Va 1	Pro	G In	Pro	Pro	Pro	A la	A la		Pro	Arg	Va 1
	210	8				215					220				,
Tvr		Pro	Pro	Thr	Tvr		Arg	Ιle	I le	Asn		I la	Sor	Thr	∆en
225	·			••••	230	71.011	5	110	110	235	O III	110	JCI	1111	240
	I le	C In	Ser	Aen		Aen	Leu	Lve	Va 1		Pro	Pro	Dro	Lou	
o iu	110	O III	JCI	245	GIII	ASII	Leu	Lys	250	Leu	110	110	110	255	110
The	Mat	Pro	Thr		Thr	Sar	Lou	Dro		San	ፐኬ∽	Aon	T		S
1111	Mec	110		Leu	1111	Sei	Leu		Ser	ser	IIII.	ASP	-	Pro	ser
C 1	D	т	260	۸	C	T	C1-	265	т.	C 1		C 1	270		Tr.
Gly	Pro		Arg	Asp	cys	Leu	G In	Ala	Leu	6 lu	Asp		H is	Asp	Ihr
	_	275	m.				280					285			
Ser		I le	lyr	Leu	Val		Pro	Glu	Asn	Thr		Arg	Leu	Met	G ln
	290					295					300				
	Тгр	Cys	Asp	G ln	_	H is	Asp	Pro	Gly	-	Trp	Thr	Va 1	I le	G ln
305					310					315					320
Arg	Arg	Leu	Asp	G ly	Ser	Va 1	Asn	Phe	Phe	Arg	Asn	Trp	G lu	Thr	Tyr
				325					330					335	
Lys	G ln	G ly	Phe	Gly	Asn	I le	Asp	Gly	G lu	Tyr	Trp	Leu	G ly	Leu	G lu
			340					345					350		
Asn	Ĭ le	Tyr	Trp	Leu	Thr	Asn	Gln	Gly	Asn	Tyr	Lys	Leu	Leu	Va l	Thr

```
Met Glu Asp Trp Ser Gly Arg Lys Val Phe Ala Glu Tyr Ala Ser Phe
                        375
Arg Leu Glu Pro Glu Ser Glu Tyr Tyr Lys Leu Arg Leu Gly Arg Tyr
                    390
                                        395
His Gly Asn Ala Gly Asp Ser Phe Thr Trp His Asn Gly Lys Gln Phe
                                    410
                405
Thr Thr Leu Asp Arg Asp His Asp Val Tyr Thr Gly Asn Cys Ala His
            420
                                425
Tyr Gln Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu
                            440
Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Arg Tyr Gln Asp
                        455
    450
Gly Val Tyr Trp Ala Glu Phe Arg Gly Gly Ser Tyr Ser Leu Lys Lys
                    470
                                        475
Val Val Met Met Ile Arg Pro Asn Pro Asn Thr Phe His
                                    490
                485
<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Artificially
      Synthesized Primer Sequence
<400> 5
                                                                  30
atggggaagc cctggctgcg tgcgctacag
<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Artificially
      Synthesized Primer Sequence
<400> 6
                                                                  30
tcacagcttc aggggccgaa tgagcatggc
<210> 7
<211> 1413
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1) .. (1413)
<400> 7
atg ggg aag ccc tgg ctg cgt gcg cta cag ctg ctg ctc ctg ctg ggc
Met Gly Lys Pro Trp Leu Arg Ala Leu Gln Leu Leu Leu Leu Gly
                  5
                                     10
gcg tcg tgg gcg cgg gcg gcc ccg cgc tgc acc tac acc ttc gtg
Ala Ser Trp Ala Arg Ala Gly Ala Pro Arg Cys Thr Tyr Thr Phe Val
ctg ccc ccg cag aag ttc acg ggc gct gtg tgc tgg agc ggc ccc gca
```

Leu	Pro	Pro 35	G ln	Lys	Phe	Thr	G ly 40	A la	Va 1	Cys	Trp	Ser 45	Gly	Pro	A la	
tcc	3C0			200	666	ana	•••	000	220	~~~	250		o t o	~~~	~~~	102
			gcg				_	_		_	_		_			192
	50		A la			55					60					
ctg	cgc	atg	cgc	gtc	ggc	cgc	cac	gag	gag	ctg	tta	cgc	gag	ctg	cag	240
Leu	Arg	Met	Arg	Va 1	Gly	Arg	H is	G lu	G lu	Leu	Leu	Arg	G lu	Leu	G ln	
65					70					75					80	
agg	ctg	gcg	gcg	gcc	gac	ggc	gcc	gtg	gcc	ggc	gag	gtg	cgc	gcg	ctg	288
			A la													
				85					90					95		
			agc													336
Arg	Lys	G lu	Ser	Arg	G ly	Leu	Ser	A la	Arg	Leu	Gly	G ln	Leu	Arg	A la	,
			100					105					110			
cag	ctg	cag	cac	gag	gcg	ggg	ccc	ggg	gcg	ggc	ccg	ggg	gcg	gat	ctg	384
G ln	Leu	$G \ln$	His	G lu	A la	Gly	Pro	Gly	A la	Gly	Pro	Gly	Ala	Asp	Leu	
		115					120					125				
ggg	gcg	gag	cct	gcc	gcg	gcg	ctg	gcg	ctg	ctc	ggg	gag	cgc	gtg	ctc	432
			Pro					-	_				_			
,	130					135					140		6			
aac		tcc	gcc	gag	act		cac	oca	acc	acc		ttc	cac	cad	cta	480
			Ala											-	_	100
145	nia	361	ли	o iu	150	GIII	Λ1 B	піа	піа		nı g	rne	11 15	GIII		
										155					160	500
			ttc													528
Asp	vaı	Lys	Phe		G lu	Leu	Ala	Gln		Val	Thr	Gln	Gin		Ser	
				165					170					175		
			cgc													576
Leu	Ile	A la	Arg	Leu	G lu	Arg	Leu	Cys	Pro	G ly	Gly	A la	G ly	G ly	G In	
			180					185					190			
cag	cag	gtc	ctg	ccg	cca	ccc	cca	ctg	gtg	cct	gtg	gtt	ccg	gtc	cgt	624
G ln	Gln	Va 1	Leu	Pro	Pro	Pro	Pro	Leu	Va 1	Pro	Va 1	Val	Pro	Val	Arg	
		195					200					205				
ctt	gtg	ggt	agc	acc	agt	gac	acc	agt	agg	atg	ctg	gac	cca	gcc	cca	672
			Ser													
	210					215			_		220	-				
gag	ccc	cag	aga	gac	cag	acc	cag	aga	cag	cag	gag	ccc	atg	gct	tct	720
			Arg													_
225				F	230					235					240	
	ato	cct	gca	aat		cct	aca	atc	ccc		220	cct	ata	aac		768
			A la													100
110	inc c	110	nıa		11 13	110	n Ia	vai		1111	Lys	110	vaı		110	
				245					250					255		010
			tgt													816
ırp	Gln	Asp	Cys	Ala	Glu	Ala	Arg		Ala	Gly	His	G lu		Ser	Gly	
			260					265					270			
gtg	tat	gaa	ctg	cga	gtg	ggc	cgt	cac	gta	gtg	tca	gta	tgg	tgt	gag	864
Val	Tyr	G lu	Leu	Arg	Va I	Gly	Arg	H is	Val	Val	Ser	Va 1	Trp	Cys	G lu	
		275					280					285				
cag	caa	ctg	gag	ggt	gga	ggc	tgg	act	gtg	atc	cag	cgg	agg	caa	gat	912
G ln	G In	Leu	G lu	Gly	G ly	Gly	Trp	Thr	Va 1	I le	G In	Arg	Arg	G In	Asp	
	290					295					300					

										-						
ggt	tca	gtc	aac	ttc	ttc	act	acc	tgg	cag	cac	tat	aag	gcg	ggc	ttt	960
G ly	Ser	Va 1	Asn	Phe	Phẹ	Thr	Thr	Trp	Gln	II is	Tyr	Lys	A la	Gly	Phe	
305					310					315					320	
ggg	cgg	cca	gac	gga	gaa	tac	tgg	ctg	ggc	ctt	gaa	ссс	gtg	tat	cag	1008
Gly	Arg	Pro	Asp	Gly	Glu	Tyr	Trp	Leu	Gly	Leu	G lu	Pro	Va 1	Tyr	Gln	
-	_			325		_			330					335		
ctg	acc	agc	cgt	ggg.	gac	cat	gag	ctg	ctg	gtt	ctc	ctg	gag	.gac	tgg	1056
														Asp		
			340	J	. •			345					350	-		
ggg	ggc	cgt	gga	gca	cgt	gcc	cac	tat	gat	ggc	ttc	tcc	ctg	gaa	ссс	1104
														G lu		
,		355	,		J		360		•	٠.		365				
gag	agc		cac	tac	CgC	ctg	CEE	ctt	ggc	cag	tac	cat	ggt	gat	gct	1152
	_	_			-	_				_				Asp		
0 10	370	ПОР		-) -	6	375		~~~			380		,			
aaa		tct	ctt	tcc	too		aat	pac	ลลด	ccc		agc	acc	gtg	gat	1200
	-													Val		1200
385	пор	001	Deu	001	390	11 10	11011		2,0	395		001			400	
	aac	cas	asc	tcc		tct	aa t	aac	tat		cta	tac	cap	cgg		1248
-	_	_	•						_	_	_		_	Arg		1710
nı g	пэр	AI B	лэр	405	ı yı	JCI	U.y	11311	410	71 14	LCu	.,.	0 111	415	0.15	
aac	taa	taa	tac		acc	tat	acci	cac		220	ctc	aac	aat	gtg	taa	1296
					-	_	_							Val		1250
Gly	пр	пр	420	11 13	nia		n ia	425	JUL	11311	LCu	11.311	430	•	p	
cac	cac	aac		các	tac	cas	200		tac	റമർ	aat	aat		tac	taa'	1344
						-	_	_						Tyr		
11 15	11 15	435	Gly	1113	1 9 1	AI B	440	AI B	ıyı		лэр	445		Lyi	11 p	
act	asa.		cat	aat	aaa	aca		tet	ctc	ann	220		acc	atg	ctc	1392
	-													Met		1002
A Ia	450	inc	m g	Uly	O Ly	455	1 y 1	001	LCu	···· 5	460	IG	71 10	me c	Dou	
att		ccc	cta	aag	cta						100					1413
			_	Lys	_	cga					٠					1110
465	m g	110	LCu	LyS	470	,										
)> 8				410											-
)> 0 l> 47	70														
	2> PI															
	3> Ho		san i	ane		÷										
)> 8	JIIÇ .	Jap I													
		Ive	Pro	Trn	Leu	Ara	A la	Len	Gln	Leu	Leu	Leu	Leu	Leu	Glv	
1	U I y	Lys	110	5	Deu	6			10	204		204		15	0 - 5	
	Sar	Trn	Δ 1a	-	Δ 1 a	C Iv	A 1a	Pro		Cvs	Thr	Tvr	Thr	Phe	Va 1	
A Ia	Jei	пр	20	m g	n ia	O I y	nia	25	Б	oy s	****	191	30	1		
Lou	Pro	Pro		Lve	Pho	Thr	C lv		Va 1	Cve	Trn	Ser		Pro	Ala	
LCU	110	35	GIII	гуз	1 116		40	1d	, а 1	oys	пр	45	U 19			
San	Th-		۸ 1 -	Th∽	D	C 1		Δ 1 a	Acr	Δ 1 -	Ser		Lou	Ala	Δla	•
SEI	50	viå	n Id	1111	110	55	nıa	1110	11011	1110	60	GIU	Leu	,, 10	1110	
ī au		Ma+	۸	Va 1	<u>C 157</u>		Hie	C 100	C 100	I eu		Ara	G 1s1	Leu	Gln	
	νιβ	MEC	vi 8	val	70	vi B	11 13	o iu	9 14	75	rea	g	o iu	LCU	80	
65					10					, ,					50	

Arg	Leu	A la	Ala	Ala 85	Asp	Gly	A la	Val	A 1a 90	G ly	G lu	Val	Arg	A la 95	Leu
Arg	Lys	G lu	Ser 100	Arg	Gly	Leu	Ser	A la 105	Arg	Leu	G ly	G In	Leu 110	Arg	A la
G ln	Leu	G ln 115	H is	G lu	A la	G ly	Pro 120	G ly	A la	G ly	Pro	G ly 125	A la	Asp	Leu
G ly	A la 130	G lu	Pro	Ala	Ala	A la 135	Leu	Ala	Leu	Leu	G ly 140	G lu	Arg	Val	Leu
Asn 145	A la	Ser	Ala	G lu	A la 150	G ln	Arg	A la	A la	A la 155	Arg	Phe	H is	G ln	Leu 160
Asp	Val	Lys	Phe	Arg 165	G lu	Leu	A la	G ln	Leu 170	Val	Thr	G ln	G ln	Ser 175	Ser
Leu	I le	A la	Arg 180	Leu	G lu	Arg	Leu	Cys 185	Pro	G ly	G ly	Ala	G ly 190	G ly	G ln
G ln	G In	Va 1 195	Leu	Pro	Pro	Pro	Pro 200	Leu	Va 1	Pro	Va 1	Va 1 205	Pro	Val	Arg
Leu	Va 1 210	G ly	Ser	Thr	Ser	Asp 215	Thr	Ser	Arg	Met	Leu 220	Asp	Pro	A la	Pro
G lu 225	Pro	G ln	Arg	Asp	G In 230	Thr	G ln	Arg	G ln	G In 235	G lu	Pro	Met	Ala	Ser 240
Pro	Met	Pro	A la	G ly 245	H is	Pro	Ala	Val	Pro 250	Thr	Lys	Pro	Val	G 1y 255	Pro
Trp	G In	Asp	Cys 260	A la	G lu	A la	Arg	G ln 265	A la	G ly	H is	G lu	G ln 270	Ser	G ly
Val	Tyr	G lu 275	Leu	Arg	Va 1	G ly	Arg 280	H is	Va 1	Val	Ser	Va 1 285	Trp	Cys	G lu
G In	G In 290	Leu	G lu	Gly	Gly	G ly 295	Trp	Thr	Va 1	I le	G 1n 300	Arg	Arg	G ln	Asp
G ly 305	Ser	Va 1	Asn	Phe	Phe 310	Thr	Thr	Тгр	G ln	H is 315	Tyr	Lys	A la	G ly	Phe 320
G ly	Arg	Pro	Asp	G ly 325	G lu	Tyr	Trp	Leu	G ly 330	Leu	G lu	Pro	Val	Tyr 335	G ln
Leu	Thr	Ser	Arg 340	G ly	Asp	H is	G lu	Leu 345	Leu	Val	Leu	Leu	G lu 350	Asp	Trp
G ly	G ly	Arg 355	G ly	Ala	Arg	A la	H is 360	Tyr	Asp	G ly	Phe	Ser 365	Leu	G lu	Pro
G lu	Ser 370	Asp	His	Tyr	Arg	Leu 375	Arg	Leu	G ly	G ln	Tyr 380	His	G ly	Asp	A la
385					Trp 390					395					400
				405	Tyr				410					415	
			420		A la			425					430		
		435			Tyr		440					445		-	
	450				G ly	A la 455	Tyr	Ser	Leu	Arg	Lys 460	A la	A la	Met	Leu
םו ו	Ara	Pro	I Au	Luc	ا ا م										

470

【図面の簡単な説明】

【図1】「410」のアミノ酸配列(493アミノ酸)(上段)とヒトアンギオポエチン-1のアミノ酸配列(下段)とのアラインメントを示す図である。「410」のアミノ酸配列が、ヒトアンギオポエチン-1のアミノ酸配列と、28.7%の相同性を示した。この時のグローバルアラインメントスコア(Global alignment score)は"680"であった。

【図2】「410」のアミノ酸配列(493アミノ酸)(上段)とヒトアンギオポエチン-2のアミノ酸配列(下段)とのアラインメントを示す図である。「410」のアミノ酸配列が、ヒトアンギオポエチン-2のアミノ酸配列と、28.2%の相同性を示した。この時のグローバルアラインメントスコア(Global alignment score)は"662"であった。

【図3】「NEW」のアミノ酸配列(470アミノ酸)(上段)とヒトアンギオポエチン-1のアミノ酸配列(下段)とのアラインメントを示す図である。「NEW」のアミノ酸配列が、ヒトアンギオポエチン-1のアミノ酸配列と、28.8%の相同性を示した。この時のグローバルアラインメントスコア(Global alignment score)は"580"であった。

【図4】「NEW」のアミノ酸配列(470アミノ酸)(上段)とヒトアンギオポエチン-2のアミノ酸配列(下段)とのアラインメントを示す図である。「NEW」のアミノ酸配列が、ヒトアンギオポエチン-2のアミノ酸配列と、27.2%の相同性を示した。この時のグローバルアラインメントスコア(Global alignment score)は"578"であった。

【図5】「410」のフィブリノーゲンドメインのアミノ酸配列(上段)とヒトアンギオポエチン-1のフィブリノーゲンドメインのアミノ酸配列(下段)とのアラインメントを示す図である。「410」のアミノ酸配列が、ヒトアンギオポエチン-1のアミノ酸配列と、41.0%の相同性を示した。この時のグローバルアラインメントスコア(G

【図6】「410」のフィブリノーゲンドメインのアミノ酸配列(上段)とヒトアンギオポエチン-2のフィブリノーゲンドメインのアミノ酸配列(下段)とのアラインメントを示す図である。「410」のアミノ酸配列が、ヒトアンギオポエチン-2のアミノ酸配列と、41.2%の相同性を示した。この時のグローバルアラインメントスコア(Global alignment score)は"536"であった。

lobal alignment score)は"530"であった。

【図7】、「NEW」のフィブリノーゲンドメインのアミノ酸配列(上段)とヒトアンギオポエチン-1のフィブリノーゲンドメインのアミノ酸配列(下段)とのアラインメントを示す図である。「NEW」のアミノ酸配列が、ヒトアンギオポエチン-1のアミノ酸配列と、42.9%の相同性を示した。この時のグローバルアラインメントスコア(Global alignment score)は"531"であった。

【図8】「NEW」のフィブリノーゲンドメインのアミノ酸配列(上段)とヒトアンギオポエチン-2のフィブリノーゲンドメインのアミノ酸配列(下段)とのアラインメントを示す図である。「NEW」のアミノ酸配列が、ヒトアンギオポエチン-2のアミノ酸配列と、41.8%の相同性を示した。この時のグローバルアラインメントスコア(Clobal alignment score)は"507"であった。

[図1]

```
ALIGN calculates a global alignment of two sequences
 version 2.0u Please cite: Myers and Miller, CABIOS (1989)
"410" (493 aa) vs. Human angiopoietin-1 (498 aa)
scoring matrix: BLOSUM50, gap penalties: -12/-2
28.7% identity;
                       Global alignment score: 680
                                                     50
       MRPLCVTCWWLGLLAAMGAVAGQEDGFEGTEEGSPREFIYLNRYKRAGESQDKCTYTFIV
410
                                   . :.: :
Ang1
       MTVFLSFAFLAAILTHIGC-SNQRR----SPENSGR-
                                              --RYNRIQHGQ--CAYTFIL
               10
                         20
                                       30
                                                      40
                          70
410
          -----EVLLENRVHKQELELLNNELL
Ang1
       PEHDGNCRESTTDQYNTNALQRDAPHVEPDFSSQKLQHLEHVMEN--YTQWLQKLENYIV
        50
                 60
                           70
                                              90
                          110
                                    120
       KQ-KRQIETLQQ-----LVEVDGGIVSEVKLLRKESRNMNSRVTQLYMQLLHEIIR
410
       ENMKSEMAQIQQNAVQNHTATMLEIGTSLLSQTA---EQTRKLTDVETQVLNQTSRLEIQ
Ang1
                  120
                            130
                                        140
                                                  150
                                   180
                                             190
410
       KRDNALELSQLENRILNQTADMLQLASKYKDLEHKYQHLATLAHNQSEIIAQLEEHCQRV
       LLENSLSTYKLEKQLLQQTNEILKIHEKNSLLEHKILEMEGKHKEELDTLKEEKENLQGL
Ang1
           170
                     180
                             190
                                        200
                 220
                           230
                                     240
                                              250
410
       PSARP-VPQPPPAAPPRVYQPPTYNRIINQISTNEIQSDQNLKVLPPPLPTMPTLTSLPS
      VTRQTYIIQ---ELEKQLNRATTNNSVLQKQQLELMDTVHNLVNLCTKEGVL-----LKG
Ang1
           230
                                 250
                                          260
                                                    270
                 280
                           290
                                    300
                                              310
       STDKPSGPWRDCLQALEDGHDTSSIYLVKPENTNRLMQVWCDQRHDPGGWTVIQRRLDGS
410
      GKREEEKPFRDCADVYQAGFNKSGIYTIYINNMPEPKKVFCNMDVNGGGWTVIQHREDGS
Ang1
                   290
                            300
                                      310
                                               320
                                                         330
                           350
                                    360
                                              370
       VNFFRNWETYKQGFGNIDGEYWLGLENIYWLTNQGNYKLLVTMEDWSGRKVFAEYASFRL
410
        LDFQRGWKEYKMGFGNPSGEYWLGNEFIFAITSQRQYMLRIELMDWEGNRAYSQYDRFHI
Ang1
         340
                   350
                            360
                                      370
                                               380
                                                         390
                            410
                                      420
                                               430
      EPESEYYKLRLGRYHGNAG--DSFTWHNGKQFTTLDRDHDVYTGNCAHYQKGGWWYNACA
410
      GNEKQNYRLYLKGHTGTAGKQSSLILH-GADFSTKDADNDNCMCKCALMLTGGWWFDACG
Ang1
         400
                   410
                            420
                                       430
                                                440
         450
                   460
                            470
                                      480
410
      HSNLNGVWYRGGHYRSRYQDGVYWAEFRGGSYSLKKVVMMIRPNPNTFH
      PSNLNGMFYTAGQNHGKL-NGIKWHYFKGPSYSLRSTTMMIRPLD---F
Ang1
          460
                    470
                              480
                                        490
```

[図2]

ALIGN calculates a global alignment of two sequences version 2.0u Please cite: Myers and Miller, CABIOS (1989) "410" (493 aa) vs. Human angiopoietin-2 (496 aa) scoring matrix: BLOSUM50, gap penalties: -12/-2 Global alignment score: 662 28.2% identity; MRPLCVTCWWLGL--LAAMGAVAGQEDGFEGTEEGSPREFIYLNRYKRAGESQDKCTYTF WQIVFFTLSCDLVLAAAYNNFRKSMDSIGK-KQYQVQHGSCSYTF Ang2 IVPQQ---RVTGAICV-NSKEPEVLLENRVHKQELELLNN-----ELLK------LLPEMDNCRSSSSPYVSNAVQRDAPLEYDDSVQRLQVLENIMENNTQWLMKLENYIQDNM Ang2 ·80 QKRQIETLQQLVEVDGGIVSEVKL-LRKESRNMNSRVTQLYMQLLHEIIRKR----DNAL KKEMVEIQQNAVQNQTAVMIEIGTNLLNQTAEQTRKLTDVEAQVLNQTTRLELQLLEHSL Ang2 ELSQLENRILNQTADMLQLASKYKDLEHKYQHLATLAHNQSEIIAQLEEHCQRVPSARPV STNKLEKQILDQTSEINKLQDKNSFLEKK---VLAMEDKHII-QL----QSIKEEKDQ Ang2 PQPPPAAPPRVYQPPTYNRIINQISTNEIQSDQN--LKVLPPPLPTMPTLTSL--PSSTD LQVLVSKQNSIIEELEKKIVTATVNNSVLQKQQHDLMETVNNLLTMMSTSNSAKDPTVAK Ang2 KPSGPWRDCLQALEDGHDTSSIYLVKPENTNRLMQVWCDQRHDPGGWTVIQRRLDGSVNF EEQISFRDCAEVFKSGHTTNGIYTLTFPNSTEEIKAYCDMEAGGGGWTIIQRREDGSVDF Ang2 FRNWETYKOGFGNIDGEYWLGLENIYWLTNOGNYKLLVTMEDWSGRKVFAEYASFRLEPE QRTWKEYKVGFGNPSGEYWLGNEFVSQLTNQQRYVLKIHLKDWEGNEAYSLYEHFYLSSE Ang2 SEYYKLRLGRYHGNAGD-SFTWHNGKQFTTLDRDHDVYTGNCAHYQKGGWWYNACAHSNL ELNYRIHLKGLTGTAGKISSISQPGNDFSTKDGDNDKCICKCSQMLTGGWWFDACGPSNL

Ang2

Ang2

NGVWYRGGHYRSRYQDGVYWAEFRGGSYSLKKVVMMIRPNPNTFH

NGMYYPQRQNTNKF-NGIKWYYWKGSGYSLKATTMMIRPAD---F

【図3】

ALIGN calculates a global alignment of two sequences version 2.0u Please cite: Myers and Miller, CABIOS (1989)

"NEW" (470 aa) vs. Human angiopoietin-1 (498 aa)

scoring matrix: BLOSUM50, gap penalties: -12/-2 28.8% identity; Global alignment score: 580

50 60 70 80 90 100

PASTRATPEAANASELAALRMRVGRHEELLRELQRLAAADGAVAGEVRALRKESRGLSAR

---RESTTDQYNTNAL----QRDAPHVEPDFSSQKLQHLEHVMENYTQWLQKLENYIVEN
60 70 80 90 100

Ang1 MKSEMAQIQQNAVQNHTATMLEIGTSLLSQTAEQTRKLTDVETQVLNQTSRLEIQLLENS 110 120 130 140 150 160

170 180 190 200
NEW VKFRELAQLVTQQSSLIAR------LERLCPGGAGGQQQVLPP-----PPLVPVVPVRL

Ang1 LSTYKLEKOLLQQTNEILKIHEKNSLLEHKILEMEGKHKEELDTLKEEKENLQGLV-TRQ 170 180 190 200 210 220

210 220 230 240 250
NEW VGSTSDTSRMLDPAPEPQRDQTQRQQEPMASPMPAGHPAVP—TKP——VG————P

Ang1 TYIIQELEKQLNRATT-NNSVLQKQQLEL---MDTVHNLVNLCTKEGVLLKGGKREEEKP 230 240 250 260 270 280

NEW WQDCAEARQAGHEQSGYYELRVGR--HVVSVWCEQQLEGGGWTVIQRRQDGSVNFFTTWQ

Ang1 FRDCADVYQAGFNKSGIYTIYINNMPEPKKVFCNMDVNGGGWTVIQHREDGSLDFQRGWK
290 300 310 320 330 340

410 420 430 440 440 450 460 470 NEW HHGGHYRSRYQDGVYWAEFRGGAYSLRKAAMLIRPLKL

Ang1 YTAGQNHGKL-NGIKWHYFKGPSYSLRSTTMMIRPLDF 470 480 490

[図4]

ALIGN calculates a global alignment of two sequences version 2.0u Please cite: Myers and Miller, CABIOS (1989)

"NEW" (470 aa) vs. Human angiopoietin-2 (496 aa)

scoring matrix: BLOSUM50, gap penalties: -12/-2 27.2% identity; Global alignment score: 578

10 20 30 40

NEW MGKPWLRALQLLLLGASWAR------AGAPR------CTYTFVLPPQK--FTGAVCW

Ang2 MWQIVFFTLSCDLVLAAAYNNFRKSMDSIGKKQYQVQHGSCSYTFLLPEMDNCRSSSSPY

10 20 30 40 50 60

50 60 70 80 90 100

NEW SGPASTRATPEAANAS--ELAALRMRVGRHEELLRELQRLAAADGAVAGEVRALRKESRG

SGPASTRATPEAANAS--ELAALRMRVGRHEELLRELQRLAAADGAVAGEVRALRKESRG

VSNAVORDARI EYDDSVORI OVI ENIMENNTOWI MKI ENVIO-DNMKKEMVETOONAVON

Ang2 VSNAVQRDAPLEYDDSVQRLQVLENIMENNTQWLMKLENYIQ-DNMKKEMVEIQQNAVQN
70 80 90 100 110

110 120 130 140 150
NEW LSARLGQLRAQLQHEAGPGAGPGADLGAE----PAAALALLGERVLNASAEAQ--RAAA

Ang2 QTAVMIEIGTNLLNQTAEQTRKLTDVEAQVLNQTTRLELQLLEHSLSTNKLEKQILDQTS 120 130 140 150 160 170

160 170 180 190 200 210
NEW RFHQLDVKFRELAQLV-TQQSSLIARLERLCPGGAGGQQQVLPPPPLVPVVPVRLVGSTS

Ang2 EINKLQDKNSFLEKKVLAMEDKHIIQLQSIKEEKDQLQVLVSKQNSIIEELEKKIVTATV
180 190 200 210 220 230

220 230 240 250 260 270
NEW DTSRMLDPAPEPQRDQTQRQQEPMASPMPAGHPAVPTKPVGPWQDCAEARQAGHEQSGVY

Ang2 NNS-VLQKQQHDLMETVNNLLTMMSTSNSAKDPTVAKEEQISFRDCAEVFKSGHTTNGIY 240 250 260 270 280 290

280 290 300 310 320 330
NEW ELRVGRHV--VSVWCEQQLEGGGWTVIQRRQDGSVNFFTTWQHYKAGFGRPDGEYWLGLE

Ang2 TLTFPNSTEEIKAYCDMEAGGGGWTIIQRREDGSVDFQRTWKEYKVGFGNPSGEYWLGNE

340 350 360 370 380 390
NEW PVYQLTSRGDHELLVLLEDWGGRGARAHYDGFSLEPESDHYRLRLGQYHGDAG--DSLSW

Ang2 FVSQLTNQQRYVLKIHLKDWEGNEAYSLYEHFYLSSEELNYRIHLKGLTGTAGKISSISQ 360 370 380 390 400 410

400 410 420 430 440 450 NEW HNDKPFSTVDRDRDSYSGNCALYQRGGWWYHACAHSNLNGVWHHGGHYRSRYQDGVYWAE

Ang2 PGND-FSTKDGDNDKCICKCSQMLTGGWWFDACGPSNLNGMYYPQRQNTNKF-NGIKWYY 420 430 440 450 460 470

【図5】

ALIGN calculates a global alignment of two sequences version 2.0u Please cite: Myers and Miller, CABIOS (1989) fibrinogen domain: "410" (186 aa) vs. Human angiopoietin-1 (187 aa) scoring matrix: BLOSUM50, gap penalties: -12/-2 Global alignment score: 530 41.0% identity; 20 30 40 WRDCLQALEDGHDTSSIYLVKPENTNRLMQVWCDQRHDPGGWTVIQRRLDGSVNFFRNWE 410 FRDCADVYQAGFNKSGIYTIYINNMPEPKKVFCNMDVNGGGWTVIQHREDGSLDFQRGWK Ang1 20 30 40 80 90 100 TYKQGFGNIDGEYWLGLENIYWLTNQGNYKLLVTMEDWSGRKVFAEYASFRLEPESEYYK 410 EYKMGFGNPSGEYWLGNEFIFAITSQRQYMLRIELMDWEGNRAYSQYDRFHIGNEKQNYR Ang1 80 90 100 170 140 150 160 130 LRLGRYHGNAG--DSFTWHNGKQFTTLDRDHDVYTGNCAHYQKGGWWYNACAHSNLNGVW 410 : : .:.: : :.: LYLKGHTGTAGKQSSLILH-GADFSTKDADNDNCMCKCALMLTGGWWFDACGPSNLNGMF Ang1 130 140 150 160 170 180 **YRGGHYRS** 410 YTAGQNHG Ang1

[図6]

ALIGN calculates a global alignment of two sequences version 2.0u Please cite: Myers and Miller, CABIOS (1989)										
fibrinogen domain: "410" (186 aa) vs. Human angiopoietin-2 (187 aa)										
scoring matrix: BLOSUM50, gap penalties: -12/-2 41.2% identity; Global alignment score: 536										
410	10 WRDCLQALEDGHDTS	20 SIYLVKPENTN	30 IRLMQVWCD	40 QRHDPGGWTV	50 IQRRLDGSVN	60 FFRNWE				
Ang2	FRDCAEVFKSGHTTN	GIYTLTFPNST 20	EEIKAYCD 30	MEAGGGGWTI 40	IQRREDGSVD 50	: :.:. FQRTWK 60				
410	70 TYKQGFGNIDGEYWL	80 GLENIYWLTNO	90 GNYKLLVT	100 MEDWSGRKVF	110 AEYASFRLEP	120 ESEYYK				
Ang2	EYKVGFGNPSGEYWL	: : . :::: GNEFVSQLTNO 80	: : XQRYVLKIH 90	LKDWEGNEAY 100	. : : : SLYEHFYLSS 110	: :. EELNYR 120				
410	130 LRLGRYHGNAGD-SF	140. TWHNGKQFTTL	150 DRDHDVYT	160 GNCAHYQKGG	170 WWYNACAHSN	LNGVWY				
Ang2	IHLKGLTGTAGKISS 130	ISQPGNDFSTK 140	DGDNDKCI 150	CKCSOMLTGG 160	WWFDACGPSN 170	LNGMYY 180				
410	80 RGGHYRS									
Ang2	PQRQNTN									

【図7】

ALIGN calculates a global alignment of two sequences version 2.0u Please cite: Myers and Miller, CABIOS (1989) fibrinogen domain: "NEW" (185 aa) vs. Human angiopoietin-1 (187 aa) scoring matrix: BLOSUM50, gap penalties: -12/-2 42.9% identity; Global alignment score: 531 30 40 WQDCAEARQAGHEQSGVYELRVGR--HVVSVWCEQQLEGGGWTVIQRRQDGSVNFFTTWQ NEW Ang1 FRDCADYYQAGFNKSGIYTIYINNMPEPKKVFCNMDVNGGGWTVIQHREDGSLDFQRGWK 10 20 30 40 80 90 100 110 NEW HYKAGFGRPDGEYWLGLEPVYQLTSRGDHELLVLLEDWGGRGARAHYDGFSLEPESDHYR EYKMGFGNPSGEYWLGNEFIFAITSQRQYMLRIELMDWEGNRAYSQYDRFHIGNEKQNYR Ang1 70 80 90 100 110 120 130 150 140 160 LRLGQYHGDAG--DSLSWHNDKPFSTVDRDRDSYSGNCALYQRGGWWYHACAHSNLNGVW NEW LYLKGHTGTAGKQSSLILHG-ADFSTKDADNDNCMCKCALMLTGGWWFDACGPSNLNGMF Ang1 140 150 160 170 180 NEW HHGGHYRSR Ang1 YTAGQNHG-180

[図8]

```
ALIGN calculates a global alignment of two sequences
 version 2.0u Please cite: Myers and Miller, CABIOS (1989)
fibringen domain:
  "NEW" (185 aa) vs. Human angiopoietin-2 (187 aa)
scoring matrix: BLOSUM50, gap penalties: -12/-2
41.8% identity;
                     Global alignment score: 507
NEW
      WQDCAEARQAGHEQSGVYELRVGRHV--VSVWCEQQLEGGGWTVIQRRQDGSVNFFTTWQ
                                        ......
      {\tt FRDCAEVFKSGHTINGIYTLTFPNSTEEIKAYCDMEAGGGGWTIIQRREDGSVDFQRTWK}
Ang2
             10
                      20
                               30
                                                          60
            70
                                 90
                                         100
      HYKAGFGRPDGEYWLGLEPVYQLTSRGDHELLVLLEDWGGRGARAHYDGFSLEPESDHYR
NEW
       EYKVGFGNPSGEYWLGNEFVSQLTNQQRYVLKIHLKDWEGNEAYSLYEHFYLSSEELNYR
Ang2
                      80
                               90
                                       100
     120
               130
                         140
                                  150
                                           160
NEW
      LRLGQYHGDAG--DSLSWHNDKPFSTVDRDRDSYSGNCALYQRGGWWYHACAHSNLNGVW
                                      IHLKGLTGTAGKISSISQPGND-FSTKDGDNDKCICKCSQMLTGGWWFDACGPSNLNGMY
Ang2
            130
                   ` 140
                               150
                                        160
                                                 170
      180
      HHGGHYRSR
NEW
      YPQ-RQNTN
Ang2
    180
```

フロントページの続き

(51) Int .C1.7		識別記号	FΙ		テーマコート。	(参考)
C 1 2 N	1/19		C 1 2 N	1/19	4 C O	8 5
	1/21			1/21	4 H O	4 5
	5/10		C 1 2 P	21/02	С	•
C 1 2 P	21/02		C 1 2 Q	1/02		
C 1 2 Q	1/02			1/68	Α	
	1/68		A 6 1 K	31/00	609F	
// A61P	9/10				627A	
	27/02				6 2 9 A	
•	29/00				6 3 5	
	35/00			39/395	D	
A 6 1 K	38/00				N	
	39/395			48/00		
•			C 1 2 N	5/00	Α	
	48/00		A 6 1 K	37/02		

(72) 発明者 太田 紀夫 神奈川県藤沢市辻堂新町 1 – 2 – 8 – 701 F ターム(参考) 4B024 BA21 BA80 CA04 CA20 DA01 DA02 DA05 DA11 EA04 GA11 4B063 QA01 QA05 QQ08 QR32 QR35

> QR40 QR48 QR55 QR62 QS34 4B064 AG01 AG02 CA01 CA19 CC01 CC24 DA01 DA13

4B065 AA01X AA57X AA88X AA90X AA93Y AB01 AC14 BA02 CA24 CA44 CA46

4C084 AA06 AA07 AA13 AA17 BA01 BA22 BA44 DA39 DB57 ZA262 ZA362

4C085 AA13 AA14 BB07 DD63 DD88 4H045 AA10 AA11 AA20 AA30 CA40 DA01 DA75 EA20 EA50 FA74