Отчет о выполнении работы №2.1.1.

Воейко Андрей Александрович, Б01-109 Долгопрудный, 2022

1 Аннотация

В работе измеряется повышение температуры воздуха в зависимоти от мощности подводимого тепла и расхода при стационарном течении через трубу. После исключения тепловых потерь по результатам измерений определяется теплоемкость воздуха при постоянном давлении.

2 Теоретические сведения

Уравнение теплоемкости тела для какого-то процесса имеет вид:

$$C = \frac{\delta Q}{dT},\tag{1}$$

где C — теплоемкость тела, δQ — количество теплоты, полученное телом, dT — изменение температуры тела. В нашем же случае в качестве тела выступает воздух, а нагрев недостаточен для того, чтобы привести к значительному увеличению давления. Следовательно, в опыте измеряется теплоемкость воздуха при постоянном давлении.

Удельная же теплоемкость определятеся по следующей формуле:

$$c_p = \frac{N - N_{\text{пот}}}{q\Delta T},\tag{2}$$

где c_p — удельная теплоемкость воздуха при постоянном давлении, N и $N_{\text{пот}}$ — мощности нагрева и потерь соответственно, q — массовый расход воздуха, а ΔT — изменение температуры воздуха до и после нагрева. Изменение температуры найдем по формуле:

$$\varepsilon = \beta \Delta T \quad \Rightarrow \quad \Delta T = \frac{\varepsilon}{\beta},$$
 (3)

где ε — Э. Д. С., образовавшаяся на концах термопары, а $\beta=40,7~\frac{\text{мкB}}{^{\circ}C}$ — чувствительность термопары при рабочем диапазоне температур (20 — 30 $^{\circ}C$).

Расход воздуха найдем по формуле:

$$q = \rho \frac{\Delta V}{\Delta t},\tag{4}$$

где Δt — время, за которое некоторый объем ΔV прошел через нагреватель, а ρ — плотность воздуха, которую можно получить путем сложения плотности сухого воздуха $\rho_0 = \frac{\mu P}{RT}$, где P — атмосферное давление, T — температура воздуха, $\mu = 29, 0 \frac{\Gamma}{\text{моль}}$ — средняя молярная масса сухого воздуха; и абсолютной влажности воды $\rho_{\text{в}} = \phi \rho_{\text{max}}$, где ϕ — относительная влажность, ρ_{max} — максимальная влажность воздуха при данной температуре воздуха: $\rho = \rho_0 + \rho_{\text{в}}$.

Предполагая, что в условиях, когда $\Delta T << T$, зависимость мощности

потерь $N_{\text{пот}}$ от изменения температуры ΔT можно считать линейной, получаем:

$$N_{\text{пот}} = \alpha \Delta T, \tag{5}$$

где α — некоторая константа.

Поскольку вся электрическая мощность нагревателя расходуется на нагрев проходящего воздуха и на потери, справедливо следующее уравнение:

$$N = c_p q \Delta T + N_{\text{not}} = (c_p q + \alpha) \Delta T \tag{6}$$

Отсюда можно получить c_p :

$$c_p = \frac{N/\Delta T - \alpha}{q} \tag{7}$$

3 Оборудование и экспериментальные погрешности

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр; вольтметр; термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

Амперметр $\Delta_A =$

Вольтметр $\Delta_U =$

Микровольтметр $\Delta_M =$

Газовый счётчик $\Delta_V =$

Термометр $\Delta_T = 0, 2 \, {}^{\circ}C = 0, 2 \, \mathrm{K}$

4 Результаты измерений и и обработка данных

4.1 Измерение температуры, давления и влажности

Измерим температуру воздуха и его влажность, используя термометры психрометра.

$$T = 24, 2 \, {}^{\circ}C \pm 0, 2 \, {}^{\circ}C = 297, 2 \, \mathrm{K} \pm 0, 2 \, \mathrm{K}$$

$$\phi = 48\% \pm 2\%$$

Измерим давление при помощи цифрового барометра.

$$P_a = 734,6$$
 мм рт. ст. $\pm 0,1$ мм рт. ст. $= 9,77 \cdot 10^4 \ \Pi a \pm 0,01 \cdot 10^4 \ \Pi a$

Найдем плотность воздуха в комнате.

$$\begin{split} &\rho_0 = \frac{\mu P_a}{RT} = \frac{29 \cdot 9,77 \cdot 10^4}{8,31 \cdot 297,2} = 1,15 \cdot 10^3 \ \tfrac{\Gamma}{\text{M}^3} = 1,15 \tfrac{\text{K}\Gamma}{\text{M}^3} \\ &\Delta \rho_0 = \frac{\mu}{R} \cdot \frac{P_a \Delta T + T \Delta P_a}{T^2} = \frac{29}{8,31} \cdot \tfrac{9,77 \cdot 10^4 \cdot 0,2 + 297,2 \cdot 0,01 \cdot 10^4}{297,2^2} = 2 \ \tfrac{\Gamma}{\text{M}^3} \\ &\rho_{\text{B}} = \phi \rho_{\text{max}} = 0,48 \cdot 20,57 = 9,87 \ \tfrac{\Gamma}{\text{M}^3} = 0,01 \ \tfrac{\text{K}\Gamma}{\text{M}^3} \\ &\Delta \rho_{\text{B}} = \rho_{\text{max}} \Delta \phi = 0,02 \cdot 20,57 = 0,4 \tfrac{\Gamma}{\text{M}^3} \\ &\rho = \rho_0 + \rho_{\text{B}} = 1,15 + 0,01 = 1,16 \ \tfrac{\text{K}\Gamma}{\text{M}^3} \\ &\Delta \rho = \Delta \rho_0 + \Delta \rho_{\text{B}} = 2,4 \tfrac{\Gamma}{1,3} \end{split}$$

Погрешность вычисления плотности воздуха оказалась незначительной по сравнению с интересующим нас порядком величины, поэтому в дальнейших расчетах учитываться не будет.

4.2 Первая серия измерений, с максимальным расходом воздуха

4.2.1 Измерение расхода воздуха

Измерения расхода произведем путем измерения времени, за которое через счетчик пройдет 5 л воздуха.

За погрешность измерения времени будем считать среднюю скорость реакции человека -0.3 с.

Погрешностью измерения объема будем считать 0,1 л — цену деления счетчика.

Результаты занесем в таблицу 1.1.

В нее же занесем расход воздуха, вычесленный по формуле (1), и с погрешностью, вычесленной по следующей формуле: $\Delta q = \rho \frac{V\Delta t + t\Delta V}{t^2}$.

Nº	Время, с	$Pасход, \frac{\kappa \Gamma}{c}$
1	$24,7 \pm 0,3$	
2	$25, 3 \pm 0, 3$	
3	$25, 1 \pm 0, 3$	
4	$25, 1 \pm 0, 3$	
5	$25, 1 \pm 0, 3$	