B. Interesting Array

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers l_i, r_i, q_i $(1 \le l_i \le r_i \le n)$ meaning that value $a[l_i] \& a[l_i+1] \& \ldots \& a[r_i]$ should be equal to q_i .

Your task is to find any *interesting* array of *n* elements or state that such array doesn't exist.

Expression x & y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal — as "and".

Input

The first line contains two integers n, m ($1 \le n \le 10^5$, $1 \le m \le 10^5$) — the number of elements in the array and the number of limits.

Each of the next m lines contains three integers l_i , r_i , q_i ($1 \le l_i \le r_i \le n$, $0 \le q_i \le 2^{30}$) describing the i-th limit.

Output

If the *interesting* array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] ($0 \le a[i] \le 2^{30}$) decribing the *interesting* array. If there are multiple answers, print any of them.

If the interesting array doesn't exist, print "NO" (without the quotes) in the single line.

Examples

input	
3 1 1 3 3	
output	

input	
3 2	
1 3 3	
1 3 2	
output	
NO	