

Description

Image

Caption

PHB containers. © Kumar and Minocha, Trangenic Plant Research, Harwood Publishers

The material

Polyhydroxyalkanoates (PHAs) are linear polyesters produced in nature by bacterial fermentation of sugar or lipids derived from soybean oil, corn oil or palm oil. They are fully biodegradable. More than 100 different monomers can be combined within this family to give materials with a wide range of properties, from stiff and brittle thermoplastics to flexible elastomers. The most common type of PHAs is PHB (poly-3-hydroxybutyrate) with properties similar to those of PP, though it is stiffer and more brittle. A copolymer of PHB, polyhydroxybutyrate-valerate (PBV) is less stiff and tougher. It is used as a packaging material. The data below are for PHB.

Composition (summary)

(CH(CH3)-CH2-CO-O)n

General	

Density	76.8	-	78	lb/ft^3
Price	* 2.72	-	3.18	USD/lb
Date first used	1982			
Mechanical properties				
Young's modulus	0.116	-	0.58	10^6 psi
Shear modulus	* 0.319	-	0.363	10^6 psi
Bulk modulus	* 0.841	-	0.986	10^6 psi
Poisson's ratio	* 0.38	-	0.4	
Yield strength (elastic limit)	5.08	-	5.8	ksi
Tensile strength	5.08	-	5.8	ksi
Compressive strength	* 5.8	-	6.53	ksi
Elongation	6	-	25	% strain
Hardness - Vickers	* 11	-	13	HV
Fatigue strength at 10^7 cycles	* 1.74	-	2.47	ksi
Fracture toughness	* 0.637	-	1.09	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 0.03	-	0.15	
Thormal proportios				
Thermal properties	239		347	°F
Melting point		-		°F
Glass temperature	39.2			-
Maximum service temperature	* 140	-		°F
Minimum service temperature	* -94	-	-76	°F
Thermal conductor or insulator?	Good in	sulat	or	

Polyhydroxyalkanoates (PHA, PHB)

- 5

3

Thermal conductivity	* 0.0751	-	0.133	BTU.ft/h.ft^2.F
Specific heat capacity	* 0.334	-	0.382	BTU/lb.°F
Thermal expansion coefficient	* 100	-	133	µstrain/°F

Electrical properties

Electrical conductor or insulator?	Good ins				
Electrical resistivity	* 1e16	-	1e18	µohm.cm	
Dielectric constant (relative permittivity)	* 3	-	5		
Dissipation factor (dielectric loss tangent)	* 0.05	-	0.15		
Dielectric strength (dielectric breakdown)	* 305	-	406	V/mil	

Optical properties

Machinability

Weldability

Transparency	Transparent
Processability Moldability	4 - 5

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Unacceptable
Soils, alkaline (clay)	Unacceptable
Wine	Excellent

Durability: acids

Acetic acid (10%)	Unacceptable
Acetic acid (glacial)	Unacceptable
Citric acid (10%)	Excellent
Hydrochloric acid (10%)	Excellent
Hydrochloric acid (36%)	Unacceptable
Hydrofluoric acid (40%)	Unacceptable
Nitric acid (10%)	Unacceptable
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Acceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Unacceptable
Sodium hydroxide (60%)	Unacceptable

Durability: fuels, oils and solvents

Amyl acetate Benzene Carbon tetrachloride Chloroform Crude oil Diesel oil Lubricating oil Paraffin oil (kerosene) Petrol (gasoline) Silicone fluids	Unacceptable Excellent Excellent Unacceptable Unacceptable Limited use Limited use Acceptable Acceptable
Silicone fluids	Excellent

Polyhydroxyalkanoates (PHA, PHB)

Toluene Unacceptable
Turpentine Excellent
Vegetable oils (general) Acceptable
White spirit Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde Unacceptable
Acetone Unacceptable
Ethyl alcohol (ethanol) Limited use
Ethylene glycol Limited use
Formaldehyde (40%) Unacceptable
Glycerol Limited use
Methyl alcohol (methanol) Unacceptable

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

O2 (oxygen gas)

Sulfur dioxide (gas)

Unacceptable
Unacceptable
Unacceptable

Durability: built environments

Industrial atmosphereAcceptableRural atmosphereAcceptableMarine atmosphereAcceptableUV radiation (sunlight)Good

Durability: flammability

Flammability Highly flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Tolerance up to 150 C (302 F)

Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable
Unacceptable

Primary material production: energy, CO2 and water

Embodied energy, primary production	" 8.8 e 3	-	9.7363	kcai/ib
CO2 footprint, primary production	* 4.14	-	4.58	lb/lb
Water usage	* 12	-	35.9	gal(US)/lb

Material processing: energy

Polymer extrusion energy	* 623	-	688	kcal/lb
Polymer molding energy	* 1.8e3	-	1.99e3	kcal/lb
Coarse machining energy (per unit wt removed)	* 86.7	-	95.8	kcal/lb
Fine machining energy (per unit wt removed)	* 404	-	446	kcal/lb
Grinding energy (per unit wt removed)	* 756	-	835	kcal/lb

Material processing: CO2 footprint

Polymer extrusion CO2	* 0.431	-	0.476	lb/lb
Polymer molding CO2	* 1.25	-	1.38	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.06	-	0.0663	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.279	-	0.309	lb/lb
Grinding CO2 (per unit wt removed)	* 0.523	-	0.578	lb/lb

0.70-0

Material recycling: energy, CO2 and recycle fraction

Recycle	✓			
Embodied energy, recycling	* 3.99e3	-	4.41e3	kcal/lb
CO2 footprint, recycling	* 2.89	-	3.2	lb/lb
Recycle fraction in current supply	0.5	-	1	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 2.48e3	-	2.61e3	kcal/lb
Combustion CO2	* 2	-	2.1	lb/lb
Landfill	✓			
Biodegrade	✓			
Toxicity rating	Non-toxic			
A renewable resource?	✓			

Environmental notes

PHAs are bio-polyesters made from renewable resources and are biodegradable -- both excellent eco-qualifications. If combusted, the CO2 footprint rises to 3.6 kg/kg. Embodied energy and CO2 footprint are from Doi, Y. (2007) Riken Institute, Japan.

Recycle mark

Supporting information

Design guidelines

The physical properties of PHA biopolymers resemble those of synthetic plastics. Their biodegradability makes them an attractive alternative, meeting the growing problems of pollution by plastic waste. The drawback of PHAs is their high costs, making them substantially more expensive than synthetic plastic.

PHB is insoluble in water, and has good oxygen permeability and UV resistance. It is soluble in chloroform and other chlorinated hydrocarbons, which can be used to bond it. It is non-toxic and biocompatible. It can blow-molded, injection molded or extruded.

Technical notes

Polyhydroxyalkanoates (PHAs) are a family of polyesters produced in bacteria as a carbon and energy reserve. Bacterial PHAs are classified into two groups according to the number of carbon atoms in the monomer units: short-chain-length (SCL) PHAs consist of 3-5 carbon chains, and medium-chain-length (MCL) PHAs consist of 6-14 carbon chains. The physical properties of PHAs are dependent upon their monomer units. The most commonly used PHA is Poly-3-hydroxybutyrate (PHB).

Typical uses

Packaging, containers, bottles

Tradenames

Biopol, Biomer

Further reading

- 1. Biopol http://members.rediff.com/jogsn/BP6.htm
- 2. Biomer http://www.biomer.de/MechDatE.html#mechanical
- 3. Price, Embodied energy and CO2 footprint are from Doi, Y. (2007) Riken Institute, Japan.

Links

Reference

ProcessUniverse

