Topologie (Bachelor)

zur Vorlesung im WiSe24/25

1. November 2024

Inhaltsverzeichnis

1	Mengentheoretische Topologie	2
	1.1 Metrische Räume	2
	1.2 Topologische Räume	4
	1.3 Basen, Subbasen und Umgebungsbasen	6
	1.4 Vergleich von Topologien	7
	1.5 Unterräume	8
	1.6 Trennungsaxiome	9
	1.7 Initialtopologie und Produkte	11
2	Algebraische Topologie 2.1	14 14

Konventionen

• TBD

Dies ist ein inoffizielles Skript zur Vorlesung Topologie im Wintersemester 24/25. Fehler und Verbesserungsvorschläge immer gerne an rasmus.raschke@uni-hamburg.de.

1 Mengentheoretische Topologie

1.1 Metrische Räume

Definition 1.1.1. Metrischer Raum

Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge X und einer Abstandsfunktion

$$d: X \times X \to \mathbb{R},\tag{1.1.1}$$

genannt Metrik, die die folgenden Axiome erfüllt:

- (M1) Positivität: $\forall x, y \in X : d(x, y) > 0$
- (M2) Symmetrie: $\forall x, y \in X : d(x, y) = d(y, x)$
- (M3) Dreiecksungleichung: $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$

Beispiele. 1. Im \mathbb{R}^n ist die **Standardmetrik** oder **euklidische Metrik** für $x, y \in \mathbb{R}$ gegeben durch

$$d_2(x,y) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$
(1.1.2)

2. Auf (\mathbb{R}^n, d_n) ist eine Metrik durch

$$d_n(x,y) := \sum_{i=1}^n |x_i - y_i|$$
(1.1.3)

gegeben.

3. Die **Maximumsnorm** $(\mathbb{R}^n, d_{\infty})$ ist gegeben durch

$$d_{\infty}(x,y) = \max_{i \in \{1,\dots,n\}} |x_i - y_i|. \tag{1.1.4}$$

4. Eine weitere Metrik auf \mathbb{R}^n ist gegeben durch

$$d_{\sqrt{.}}(x,y) = \sqrt{d_2(x,y)}.$$
 (1.1.5)

Diese Metrik kommt nicht von einer Norm.

5. Die diskrete Metrik auf einer beliebigen Menge X ist gegeben durch

$$d(x,y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$
 (1.1.6)

6. Auf $X = \mathcal{C}([0,1],\mathbb{R})$ ist für $f,g \in X$ durch das Integral eine Metrik

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx \tag{1.1.7}$$

definiert.

Bemerkungen. 1. Wenn (X, d) ein metrischer Raum ist, so ist $Y \subseteq X$ als $(Y, d|_{Y \times Y})$ auch ein metrischer Raum.

- 2. Wenn (X_1, d_1) und (X_2, d_2) metrische Räume sind, so ist $(X_1 \times X_2, d_1 \times d_2)$ wieder ein metrischer Raum.
- 3. Vorsicht: Für eine Familie $(X_i, d_i)_{i \in I}$ ist der Sachverhalt komplizierter.

Definition 1.1.2. ϵ -Ball

Sei (X,d) ein metrischer Raum, $x \in X$ und $\epsilon > 0$. Dann ist der ϵ -Ball mit x im Zentrum definiert als

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \}. \tag{1.1.8}$$

Definition 1.1.3. Umgebung

Sei (X, d) ein metrischer Raum. Eine Menge $U \subseteq X$ heißt **Umgebung** von $x \in X$, falls ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subseteq U$ existiert.

Definition 1.1.4. Offen und Abgeschlossen

Sei (X, d) ein metrischer Raum. Eine Teilmenge $O \subseteq X$ heißt **offen**, falls für alle $x \in O$ ein $\epsilon > 0$ existiert, sodass $B_{\epsilon}(x) \subseteq O$ gilt. O ist also eine Umgebung all seiner Elemente.

Eine Menge $A \subseteq X$ heißt **abgeschlossen**, falls $X \setminus A$ offen ist.

Bemerkungen. 1. Sei $\epsilon > 0$ und (X, d) ein metrischer Raum. Dann ist $B_{\epsilon}(x) \subseteq X$ offen und eine Umgebung von x.

2. ÜA: Sei (X, d) ein metrischer Raum und $x \in X$. Dann ist $\{x\}$ abgeschlossen.

Satz 1.1.5. Umgebungseigenschaften metrischer Räume

Sei (X, d) ein metrischer Raum. Dann gilt:

- (U1) Jede Umgebung von $x \in X$ enthält x und X ist eine Umgebung von x.
- (U2) Ist $U \subseteq X$ eine Umgebung von X und $U \subseteq V \subseteq X$, so ist V auch eine Umgebung von x.
- (U3) Wenn U_1 und U_2 Umgebungen von x sind, so auch $U_1 \cap U_2$.
- (U4) Ist $U \subseteq X$ eine Umgebung von x, so existiert eine weitere Teilmenge $V \subseteq X$, sodass U eine Umgebung von allen $y \in V$ ist.

Beweis.

- 1. Trivial.
- 2. Trivial.
- 3. Nach Voraussetzung existiert für $x \in U_1 \cap U_2$ ein $\epsilon_1 > 0$, sodass $B_{\epsilon_1}(x) \subseteq U_1$ und ein $\epsilon_2 > 0$, sodass $B_{\epsilon_2}(x) \subseteq U_2$. Definiere $\epsilon := \min(\epsilon_1, \epsilon_2)$. Dann gilt $B_{\epsilon}(X) \subseteq U_1$ und $B_{\epsilon}(x) \subseteq U_2$, also $B_{\epsilon}(x) \subseteq U_1 \cap U_2$.
- 4. Nach Voraussetzung existiert ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subseteq U$. Dann ist die Behauptung durch $V := B_{\epsilon}(x)$ erfüllt.

Satz 1.1.6. Eigenschaften offener Mengen

Sei (X, d) ein metrischer Raum. Dann gilt:

- 1. \emptyset und X sind offen.
- 2. Sind $O_1, O_2 \subseteq X$ offen, so auch $O_1 \cap O_2$.
- 3. Ist $(O_i)_{i \in I}$ eine Familie offener Teilmengen $O_i \subseteq X$, so ist $\cup_i O_i$ auch offen.

Beweis.

- 1. Trivial.
- 2. Mit $min(\epsilon_1, \epsilon_2)$ analog zum obigen Beweis.
- 3. Sei $x \in \bigcup_i O_i$. Dann existiert ein $i \in I$ mit $x \in O_i$, sodass ein $\epsilon > 0$ existiert mit $B_{\epsilon}(x) \subseteq O_i \subseteq \bigcup_i O_i$.

Satz 1.1.7. Eigenschaften abgeschlossener Mengen

Sei (X, d) ein metrischer Raum. Dann gilt:

- (A1) \emptyset und X sind abgeschlossen.
- (A2) Wenn $A_1, A_2 \subseteq X$ abgeschlossene Teilmengen sind, so ist auch $A_1 \cup A_2$ abgeschlossen.
- (A3) Seien $(A_i)_{i \in I}$ abgeschlossene Teilmengen von X. Dann ist $\cup_i A_i$ wieder abgeschlossen.

Beweis.

- 1. Da $\emptyset = X \setminus X$ und $X = X \setminus \emptyset$ gilt, sind X und \emptyset gemäß Satz 1.1.6 offen.
- 2. Sei $A_1 = X \backslash O_1$ und $A_2 = X \backslash O_2$ mit $O_1, O_2 \subseteq X$ offen. Gemäß Satz 1.1.6 (2.) folgt

$$X \setminus (A_1 \cup A_2) = (X \setminus A_1) \cap (X \setminus A_2) = O_1 \cap O_2, \tag{1.1.9}$$

wobei $O_1 \cap O_2$ wieder offen ist.

3. Wir betrachten offene Teilmengen $O_i := X \backslash A_i.$ Gemäß Satz 1.1.6 ist

$$X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i = \bigcup_{i \in I} O_i$$
(1.1.10)

offen.

Definition 1.1.8. stetige Abbildung

Seien (X, d) und (Y, d') metrische Räume und $f: X \to Y$. Dann heißt f stetig in $x_0 \in X$, wenn für alle $\epsilon > 0$ ein $\delta > 0$ existiert, sodass

$$d(x_0, x) < \delta \Rightarrow d'(f(x_0), f(x)) < \epsilon \tag{1.1.11}$$

gilt. f heißt **stetig**, falls dies für alle $x_0 \in X$ erfüllt ist.

Satz 1.1.9. Äquivalente Formulierung der Stetigkeit

Seien (X,d) und (Y,d') metrische Räume und $f:X\to Y.$ Dann sind äquivalent:

- 1. f ist stetig.
- 2. V ist Umgebung von $f(x) \Rightarrow f^{-1}(V)$ ist eine Umgebung von x.
- 3. $O \in Y$ ist offen $\Rightarrow f^{-1}(O)$ ist offen in X.

4. $A \in Y$ ist abgeschlossen $\Rightarrow f^{-1}(A)$ ist abgeschlossen in X.

Beweis. (1. \Rightarrow 2.): Sei V eine Umgebung von f(x). Per Definition existiert ein $\epsilon > 0$, sodass $f(x) \in B_{\epsilon}(f(x)) \subseteq V$ gilt. Gemäß Annahme existiert ein $\delta > 0$ mit $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$. Daraus folgt, dass

$$B_{\delta}(x) \subseteq f^{-1}f(B_{\delta}(x)) \subseteq f^{-1}(B_{\epsilon}(f(x))) \subseteq f^{-1}(V). \tag{1.1.12}$$

Also ist $f^{-1}(V)$ eine Umgebung von x.

 $(2. \Rightarrow 3.)$: O ist Umgebung all seiner Elemente.

 $(3. \Rightarrow 4.)$: $Y \setminus A$ ist offen in Y, d.h. $f^{-1}(Y \setminus A) = f^{-1}(Y) \setminus f^{-1}(A) = X \setminus f^{-1}(A)$ ist offen in X. Also ist $f^{-1}(A)$ abgeschlossen.

 $(4. \Rightarrow 1.)$: $Y \setminus B_{\epsilon}(f(x))$ ist abgeschlossen impliziert, dass $f^{-1}(Y \setminus B_{\epsilon}(f(x)))$ auch abgeschlossen ist. Damit folgt, dass $X \setminus f^{-1}(B_{\epsilon}(f(x)))$ abgeschlossen und damit $f^{-1}(B_{\epsilon}(f(x)))$ offen ist. Für $x \in f^{-1}(B_{\epsilon}(f(x)))$ existiert ein $\delta > 0$ mit $B_{\delta}(x) \subseteq f^{-1}(B_{\epsilon}(f(x)))$, also auch $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$.

Definition 1.1.10. Äquivalenz von Metriken

Seien d_1 und d_2 Metriken auf einer Menge X.

1. Gibt es $\alpha, \beta > 0$ mit

$$\alpha d_1(x, y) \le d_2(x, y) \le \beta d_1(x, y)$$
 (1.1.13)

für alle $x, y \in X$, so heißen d_1 und d_2 stark äquivalent.

- 2. d_1 und d_2 heißen **äquivalent**, falls es für jedes $x \in X$ und alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodass
 - (i) $d_1(x,y) < \delta \Rightarrow d_2(x,y) < \epsilon$
 - (ii) $d_2(x,y) < \delta \Rightarrow d_1(x,y) < \epsilon$

gilt.

Bemerkungen. 1. Genau dann, wenn d_1 und d_2 äquivalente Metriken sind, sind $\mathrm{id}_X:(X,d_1)\to (X,d_2)$ und $id_X:(X,d_2)\to (X,d_1)$ stetig.

- 2. d_1 und d_2 stark äquivalent impliziert, dass id $_X$ gleichmäßig stetig ist.
- 3. Äquivalente Metriken ergeben die gleichen offenen (und abgeschlossenen) Mengen.

Beispiele. 1. Die d_1 -, d_2 - und d_{∞} -Metrik auf dem \mathbb{R}^n sind stark äquivalent.

- 2. Sei $d_0(x,y) = |x^3 y^3|$ und $d_2(x,y)$ die euklidische Metrik. Die Identität $\mathrm{id}_{\mathbb{R}}(\mathbb{R},d_2) \to (\mathbb{R},d_0)$ ist stetig, aber nicht gleichmäßig stetig.
- 3. Sei X eine beliebige Menge mit einer beliebigen Metrik d. Dann ist d äquivalent zu

$$d'(x,y) := \frac{d(x,y)}{1+d(x,y)} < 1 \tag{1.1.14}$$

für alle $x, y \in X$. Also ist jede Metrik äquivalent zu einer beschränkten Metrik.

1.2 Topologische Räume

Der Begriff des topologischen Raums wird durch Abstraktion der Eigenschaften offener Mengen und stetiger Abbildungen in metrischen Räumen konstruiert.

Definition 1.2.1. Topologischer Raum

Ein **topologischer Raum** ist ein Paar (X, \mathcal{T}) , bestehend aus einer Menge X und einer Familie \mathcal{T} von Teilmengen von X, sodass folgende Axiome erfüllt sind:

- (O1) $\emptyset, X \in \mathcal{T}$
- (O2) $O_1, O_2 \in \mathcal{T} \Rightarrow O_1 \cap O_2 \in \mathcal{T}$
- (O3) Für eine Familie $(O_i)_{i \in I}$ mit $O_i \in \mathcal{T}$ für alle $i \in I$ folgt $\bigcup_{i \in I} O_i \in \mathcal{T}$.

 \mathcal{T} heißt **Topologie** auf X und alle $O \in \mathcal{T}$ heißen **offene Mengen**.

Bemerkung. Äquivalent dazu ist: Eine Topologie $\mathcal{T} \subseteq \mathcal{P}(X)$ ist abgeschlossen unter endlichen Schnitten und beliebigen Vereinigungen.

Beispiele. 1. Metrische Räume (X, d) sind auch topologische Räume mit offenen Mengen gegeben durch d.

- 2. Auf einer beliebigen Menge X kann die **diskrete Topologie** $\mathcal{T} := \mathcal{P}(X)$ definiert werden, in der alle Teilmengen von X offen sind.
- 3. Auch kann auf beliebigem X die **indiskrete Topologie** oder **Klumpentopologie** durch $\mathcal{T} := \{\emptyset, X\}$ definiert werden.
- 4. Auf beliebigem X existiert die koendliche Topologie: $O \subseteq X$ ist offen genau dann, wenn $X \setminus O$ endlich ist

Definition 1.2.2. Topologische Grundbegriffe

Sei (X, \mathcal{T}) ein topologischer Raum.

- 1. $A \subseteq X$ heißt **abgeschlossen**, falls $X \setminus A \in \mathcal{T}$.
- 2. Sei $x \in U \subseteq X$. Dann heißt U Umgebung von x, falls ein $O \in \mathcal{T}$ existiert, sodass $x \in O \subseteq U$ gilt.
- 3. Die Menge aller Umgebungen von X wird mit $\mathfrak{U}(x)$ bezeichnet und heißt **Umgebungssystem von** x.
- 4. Ein Punkt $x \in X$ heißt **Berührpunkt** von $B \subseteq X$, falls für alle $U \in \mathfrak{U}(x)$ gilt: $U \cap B \neq \emptyset$.
- 5. Die abgeschlossene Hülle von $B \subseteq X$ ist definiert als

$$\overline{B} := \bigcap_{B \subseteq C, C \text{ abg.}} C. \tag{1.2.1}$$

- 6. Ein Punkt $x \in X$ heißt **innerer Punkt** von $B \subseteq X$, falls es ein $U \in \mathfrak{U}(x)$ gibt, sodass $x \in U \subseteq B$ gilt.
- 7. Für $B \subseteq X$ ist

$$\mathring{B} := \bigcup_{O \subseteq B, O \text{ offen}} O \tag{1.2.2}$$

der **offene Kern** von B.

8. Der Rand von $A \subseteq X$ ist definiert als

$$\partial A := \{ x \in X | \forall U \in \mathfrak{U}(x) : U \cap A \neq \emptyset \neq U \cap (X \setminus A) \}. \tag{1.2.3}$$

Satz 1.2.3. Eigenschaften bestimmter Mengen

Sei (X, \mathcal{T}) ein top. Raum. Dann gilt:

- 1. Die abgeschlossenen Mengen von X erfüllen (A1)-(A3).
- 2. Die Umgebungen erfüllen (U1)-(U4).

Bemerkung. Eine Topologie kann äquivalent durch die Auflistung abgeschlossener Mengen definiert werden, wenn diese (A1)-(A3) erfüllen.

Definition 1.2.4. Stetigkeit in top. Räumen

Seien (X, \mathcal{T}) und (Y, \mathcal{T}') top. Räume und $f: X \to Y$.

- (i) f heißt stetig in $x \in X$, wenn für alle $U \in \mathfrak{U}(f(x))$ auch $f^{-1}(U) \in \mathfrak{U}(x)$ gilt.
- (ii) f heißt **stetig**, falls für alle $O \in \mathcal{T}'$ gilt, dass $f^{-1}(O) \in \mathcal{T}$.

Satz 1.2.5. Eigenschaften von Abschluss und Innerem

Sei (X, \mathcal{T}) ein top. Raum mit $A \in \mathcal{T}$. Dann gilt

- 1. (a) \overline{A} ist abgeschlossen und $A \subseteq \overline{A}$.
 - (b) $A = \overline{A}$ gilt genau dann, wenn A abgeschlossen ist.
 - (c) \overline{A} besteht aus der Menge der Berührpunkte von A.
- 2. (a) \mathring{B} ist offen und $\mathring{B} \subseteq B$.
 - (b) $B = \mathring{B}$ genau dann, wenn B offen ist.
 - (c) \mathring{B} besteht aus der Menge der inneren Punkte von B.

Beweis. (a) und (b) sind jeweils trivial. Wir beweisen 1(c). Angenommen, $x \in \overline{A}$ aber ist kein Berührpunkt von A. Dann existiert ein $U \in \mathfrak{U}(x)$, sodass $U \cap A = \emptyset$ gilt. Daraus folgt, dass $A \subseteq X \setminus U$ gilt, woraus $A \subseteq X \setminus O$ abgeschlossen folgt. Weiterhin existiert ein $O \in \mathcal{T}$ mit $x \in O \subseteq U$, also $X \setminus U \subseteq X \setminus O$. Dann ist aber $\overline{A} \subseteq X \setminus O$, also $x \notin \overline{A}$. Jetzt nehmen an, dass x Berührpunkt ist, aber $x \notin \overline{A}$. Also folgt aus $x \in X \setminus \overline{A}$ offen, dass $V := X \setminus \overline{A} \in \mathfrak{U}(x)$, aber $V \cap A = \emptyset$, also ist x kein Berührpunkt im Widerspruch zur Annahme.

Bemerkung. Folgendes gilt allgemein:

- Ist $A \subseteq B$, so auch $\mathring{A} \subseteq \mathring{B}$ und $\overline{A} \subseteq \overline{B}$.
- $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- $A \cap B = \mathring{A} \cap \mathring{B}$

Definition 1.2.6. Dichheit

Sei (X, \mathcal{T}) ein top. Raum. $A \subseteq X$ heißt dicht, falls $\overline{A} = X$. $A \subseteq X$ heißt hingegen nirgends dicht, falls $\mathring{\overline{A}} = \emptyset$.

Beispiele. 1. $\mathbb{Q} \subseteq \mathbb{R}$ ist dicht.

2. $[a,b] \subseteq \mathbb{R} \subseteq \mathbb{R}^2$ liegt nirgends dicht in \mathbb{R}^2 .

Definition 1.2.7. Konvergenz in top. Räumen

Sei (X, \mathcal{T}) ein top. Raum. Eine Folge $(x_i)_{i \in N}$ mit $x_i \in X$ konvergiert gegen $x \in X$, falls gilt: Für alle $U \in \mathfrak{U}(x)$ existiert ein $N \in \mathbb{N}$, sodass $x_n \in U$ für alle $n \geq N$ gilt.

Das heißt, fast alle x_n müssen in U liegen. Allgemein liefert dies deutlich pathologischere Beispiele als Konvergenz in metrischen Räumen.

Beispiel. Betrachte $(X, \{\emptyset, X\})$ mit $|X| \ge 2$. Dann liegt nur U = X in $\mathfrak{U}(x)$, also konvergiert jede Folge gegen jedes $y \in X$.

1.3 Basen, Subbasen und Umgebungsbasen

Unser Ziel ist jetzt, auch nicht-endliche Topologien angeben zu können.

Definition 1.3.1. Basis und Subbasis

Sei (X, \mathcal{T}) ein top. Raum.

(a) Eine Familie \mathcal{B} heißt **Basis** der Topologie \mathcal{T} , falls alle $O \in \mathcal{T}$ als Vereinigung von $B_i \in \mathcal{B}$ geschrieben werden können:

$$\forall O \in \mathcal{T} : O = \bigcup_{j \in J} B_j. \tag{1.3.1}$$

(b) Eine Familie $S \subseteq \mathcal{T}$ heißt **Subbasis** der Topologie \mathcal{T} , falls jedes $O \in \mathcal{T}$ eine beliebige Vereinigung endlicher Schnitte von $S_i \in \mathcal{S}$ ist.

Beispiele. 1. Sei (X, d) ein metrischer Raum. Dann ist

$$\mathcal{B} = \{ B_{\epsilon}(x) \mid x \in X, \epsilon > 0 \} \tag{1.3.2}$$

eine Basis für X.

- 2. Die diskrete Topologie $(X, \mathcal{P}(X))$ hat $\mathcal{B} = \{\{x\} | x \in X\}$ als Basis.
- 3. Die indiskrete Topologie $(X, \{X, \emptyset\})$ hat als Basis $\mathcal{B} = \{X\}$.
- 4. Jedes System beliebiger Teilmengen von X gibt eine Subbasis einer Topologie. Sei z.B. $\mathcal{S} := \{S\}_{i \in i}$ gewünscht. Dann konstruieren wir

$$\mathcal{B} = \{ S_{i_1} \cap \dots \cap S_{i_n} | n \in \mathbb{N}, S_{i_k} \in \mathcal{S} \}$$

$$(1.3.3)$$

als Basis und definieren eine Topologie

$$\mathcal{T} = \left\{ \bigcup_{j \in J} (S_{i_1} \cap \dots \cap S_{i_n})_j \right\}. \tag{1.3.4}$$

Das Gute an (Sub-)Basen ist, dass sie uns Arbeit ersparen:

Satz 1.3.2. Stetigkeit durch Basen

Eine Abbildung $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ zwischen top. Räumen ist stetig, falls:

- (a) Ist \mathcal{B}' eine Basis von \mathcal{T}' , so ist $f^{-1}(B_i') \in \mathcal{T}$ für alle $B_i' \in \mathcal{B}'$.
- (b) Ist \mathcal{S}' eine Subbasis von \mathcal{T}' ; so ist $f^{-1}(S_i') \in \mathcal{T}$ für alle $S_i' \in \mathcal{S}'$.

Beweis. Folgt aus dem Verhalten von Urbildern bzgl. \cup und \cap .

Definition 1.3.3. Umgebungsbasis

Ein Mengensystem $\mathfrak{B}(x) \subseteq \mathfrak{U}(x)$ heißt **Umgebungsbasis** von x, falls für alle $U \in \mathfrak{U}(x)$ ein $B \in \mathfrak{B}(x)$ existiert, sodass $B \subseteq U$ gilt.

Beispiel. Sei (X,d) ein metrischer Raum mit $x \in X$. Dann ist $\mathfrak{B}(x) = \{B_{\frac{1}{x}}(x)\}$ eine Umgebungsbasis von x.

Satz 1.3.4. Stetigkeit durch Umgebungsbasen

Eine Abbildung $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ zwischen top. Räumen ist stetig, falls gilt: Ist für $f(x)\in Y$ $\mathfrak{B}(f(x))$ eine Umgebungsbasis von f(x), so ist $f^{-1}(B)\in \mathfrak{U}(x)$ für alle $B\in \mathfrak{B}(f(x))$.

Definition 1.3.5. Abzählbarkeitsaxiome

Sei (X, \mathcal{T}) ein top. Raum. Die Abzählbarkeitsaxiome für X sind gegeben durch:

- (AZ1) Jedes $x \in X$ besitzt eine abzählbare Umgebungsbasis.
- (AZ2) \mathcal{T} besitzt eine abzählbare Basis.

Beispiele. 1. Sei (X, d) ein metrischer Raum mit $x \in X$. Die Umgebungsbasis $\mathfrak{B}(x) = \{B_{\frac{1}{n}}(x) | n \in \mathbb{N}\}$ ist abzählbar, also erfüllt X (AZ1).

2. Betrachte (\mathbb{R}^n, d) mit $d \in \{d_1, d_2, d_\infty\}$. Dann erfüllt \mathbb{R}^n (AZ2) mit $\mathfrak{B} = \{B_{\perp}(x) | m \in \mathbb{N}, x \in \mathbb{Q}^n\}$.

Bemerkungen. 1. Es gilt (AZ2) \Rightarrow (AZ1): Ist $\mathcal{B} = \{B_i\}_{i \in \mathbb{N}}$ eine abzählbare Basis von \mathcal{T} , so ist

$$\mathfrak{B}(x) := \{ B \in \mathcal{B} | x \in B \} \tag{1.3.5}$$

eine abzählbare Umgebungsbasis.

2. Es gilt (AZ1) \Rightarrow (AZ2): Ist z.B. X überabzählbar mit der diskreten Topologie $(X, \mathcal{P}(X))$. Dann ist für alle $x \in X$ $\{x\}$ eine Umgebungsbasis, aber nicht abzählbar.

Satz 1.3.6. Topologisches Folgenkriterium

Sei (X, \mathcal{T}) ein top. Raum, der (AZ1) erfüllt. Dann gilt:

- (a) $x \in \overline{A}$ für $A \subseteq X$ genau dann, wenn eine Folge (a_n) in A existiert, die gegen x konvergiert.
- (b) $f: X \to Y$ ist stetig in $x \in X$ genau dann, wenn aus $x_n \to x$ auch $f(x_n) \to f(x)$ folgt.

Beweis.

- (a) (⇐) gilt immer, der Beweis funktioniert wie in Analysis.
 - (⇒): Sei $x \in \overline{A}$ und $\{U_i\}_{i \in \mathbb{N}}$ eine abzählbare Umgebungsbasis von x. Wir definieren iterativ $V_1 := U_1, V_n := V_{n-1} \cap U_n$. Es gilt $V_i \subseteq \mathfrak{U}(x)$ für alle i. Also ist $V_i \cap A \neq \emptyset$ für alle i. Wir wählen jeweils ein $a_i \in V_i \cap A$ und behaupten $a_n \to x$. Ist $W \in \mathfrak{U}(x)$ beliebig, so existiert ein i, sodass $U_i \in W$. Also ist $V_i \subseteq U_i \subseteq W$ und $V_i \in W$ für alle $i \geq i$. Damit folgt $i \in W$ für alle $i \geq i$, also $i \in W$.
- (b) (\Leftarrow) funktioniert auch wie in Analysis. (\Rightarrow): $B \subseteq Y$ sei abgeschlossen in Y. Wähle $x \in \overline{f^{-1}(B)}$. Ziel ist, zu zeigen, dass aus $x \in f^{-1}(B)$ folgt, dass $f^{-1}(B) = \overline{f^{-1}(B)}$ gilt, und daraus wiederum $f^{-1}(B)$ abgeschlossen folgt.
 - Aus (a) folgt, dass eine Folge $(x_n)_{n\in\mathbb{N}}$ in $f^{-1}(B)$ mit $x_n\to x$ existiert. dann ist $f(x_n)\to f(x)$, aber $f(x_n)\in B$ für alle n. Damit gilt $f(x)\in B=\overline{B}$, also auch $x\in f^{-1}(B)$.

Satz 1.3.7. Vorstufe des Urysohnschen Einbettungssatzes

Sei (X, \mathcal{T}) ein top. Raum, der (AZ2) erfüllt. Dann gibt es eine abzählbare, dichte Teilmenge in X.

Beweis. $(\mathcal{B}_n)_{n\in\mathbb{N}}$ seinen die Basismengen von \mathcal{T} . Wähle jeweils ein $P_n\in\mathcal{B}_n$. Wir behaupten, dass $P:=\{P_n|n\in\mathbb{N}\}$ dicht für alle n ist. Sei dafür x beliebig. Für alle $U\in\mathfrak{U}(x)$ existiert ein $B_i\in\mathcal{B}_i$, sodass $x\in B_i\subseteq U$ gilt. Für alle $x\in X$ existiert also ein i, sodass $B_i\subseteq U$, also $P_i\subseteq U$ und $P\cap U\neq\emptyset$.

1.4 Vergleich von Topologien

Definition 1.4.1. feiner und gröber

Seien \mathcal{T}_1 und \mathcal{T}_2 Topologien auf X. Dann heißt \mathcal{T}_1 feiner als \mathcal{T}_2 und \mathcal{T}_2 gröber als \mathcal{T}_1 , wenn $\mathcal{T}_2 \subseteq \mathcal{T}_1$ gilt, also jedes $O \in \mathcal{T}_2$ auch in \mathcal{T}_1 enthalten ist.

Bemerkungen. 1. \mathcal{T}_1 feiner als \mathcal{T}_2 gilt genau dann, wenn

$$id_X: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2) \tag{1.4.1}$$

stetig ist.

- 2. Allgemein haben es Abbildungen aus (X, \mathcal{T}_1) leichter, stetig zu sein, als Abbildungen aus (X, \mathcal{T}_2) , da für $f: X \to Y$ stetig gelten muss, dass $f^{-1}(O') \in \mathcal{T}_1 \supseteq \mathcal{T}_2$.
- 3. Für Abbildungen nach X ist es genau umgekehrt.
- 4. Es gibt weniger konvergente Folgen in (X, \mathcal{T}_1) als in (X, \mathcal{T}_2) .
- 5. Die indiskrete Topologie ist die feinste Topologie auf X, die diskrete Topologie die gröbste.
- 6. Topologien auf X bilden eine partiell geordnete Menge.

Definition 1.4.2. Homöomorphismus

Sei $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ eine Abbildung zwischen topologischen Räumen. Dann heißt f Homöomorphismus, falls f stetig und bijektiv mit stetiger Umkehrabbildung ist.

Existiert ein Homöomorphismus zwischen X und Y, so heißen die Räume homöomorph, in Zeichen $X \cong Y$.

Beispiele. 1. Die Abbildung

$$f: [0,1) \to \mathbb{S}^1 = \{ x \in \mathbb{R}^2 | ||x|| = 1 \} \subseteq \mathbb{R}^2$$
 (1.4.2)

$$t \mapsto \exp(2\pi i t) \tag{1.4.3}$$

ist stetig und bijektiv, aber f^{-1} ist nicht stetig.

2. Wir betrachten die abgeschlossene Kreisscheibe

$$\mathbb{D}^2 := \{ x \in \mathbb{R}^2 | ||x|| \le 1 \} \tag{1.4.4}$$

ist homö
omorph zum Quadrat $[-1,1] \times [-1,1]$. Beispielsweise kann $f:[-1,1]^2 \to \mathbb{D}^2$ durch Reskalieren und $g:\mathbb{D}^2 \to [-1,1]$ durch Aufblasen erreicht werden.

3. Es existiert ein Homöomorphismus

$$f: (-1,1) \subseteq \mathbb{R} \to \mathbb{R} \tag{1.4.5}$$

$$x \mapsto \frac{x}{1 - |x|}.\tag{1.4.6}$$

Dieser lässt sich auf (a, b) verallgemeinern, solange a < b gilt.

4. Die stereographische Projektion ist ein Homöomorphismus

$$\varphi: \mathbb{S}^2 = \{x \in \mathbb{R}^3 \mid ||x|| = 1\} \setminus \{0, 0, 1\} \to \mathbb{C},$$
 (1.4.7)

gegeben durch $\varphi(x_1, x_2, x_3) = \left(\frac{x_1}{1-x_3}, \frac{x_2}{1-x_3}\right)$.

Definition 1.4.3. Abgeschlossene und offene Abbildungen

Eine stetige Abbildung $f:X\to Y$ heißt

- 1. **abgeschlossen**, falls für abgeschlossenes $A \subseteq X$ auch $f(A) \subseteq Y$ abgeschlossen ist.
- 2. **offen**, falls für offenes $O \subseteq X$ auch $f(O) \subseteq Y$ offen ist.

Satz 1.4.4. Homöomorphismen sind stetig, bijektiv und offen

Sei $f: X \to Y$ stetig, bijektiv und offen (oder abgeschlossen). Dann ist f ein Homöomorphismus.

Beweis. Sei $O' \subseteq Y$ offen und

$$f^{-1}: Y \to X \tag{1.4.8}$$

die Umkehrabbildung. Dann ist $(f^{-1})^{-1}(O) = f(O)$ offen.

1.5 Unterräume

Definition 1.5.1. Unterraumtopologie

Sei (X, \mathcal{T}) ein top. Raum und $Y \subseteq X$. Dann ist die **Unterraumtopologie** gegeben durch

$$\mathcal{T}_{X|Y} := \{ O \cap Y | O \in \mathcal{T} \}. \tag{1.5.1}$$

Bemerkung. Das bedeutet, dass $B \subseteq Y$ genau dann offen ist, wenn ein $O \in \mathcal{T}$ existiert, sodass $B = O \cap Y$ gilt. Außerdem ist $A \subseteq Y$ genau dann abgeschlossen, wenn ein abgeschlossenes $A' \subseteq X$ mit $A = A' \cap Y$ existiert.

Satz 1.5.2. Stetigkeit und Inklusion

Seien (X, \mathcal{T}) und (Z, \mathcal{T}') top. Räume mit $Y \subseteq X$.

(a) Die Inklusionsabbildung

$$\iota: Y \mapsto X
 y \mapsto \iota(y) := y$$
(1.5.2)

ist stetig.

(b) Eine Abbildung $f: Z \to Y$ ist genau dann stetig, wenn $\iota \circ f$ stetig ist.

Dieser Sachverhalt wird durch folgendes kommutierendes Diagramm ausgedrückt:

Beweis.

- (a) Sei $O \subseteq X$ offen, dann ist $\iota^{-1}(O) = O \cap Y$ offen nach Definition von $\mathcal{T}_{X|Y}$.
- (b) (\Rightarrow): Seien f und ι stetig. Dann ist die Verkettung $\iota \circ f$ auch stetig. (\Leftarrow): Sei $B \subseteq Y$ offen, dann ist zu zeigen, dass $f^{-1}(B)$ auch offen ist. Es gilt $B \in \mathcal{T}_{X|Y}$ genau dann, wenn ein $O \subseteq \mathcal{T}$ mit $B = O \cap Y$ existiert. Daraus folgt

$$f^{-1}(B) = f^{-1}(O \cap Y) = f^{-1}(\iota^{-1}(O)) = (\iota \circ f)^{-1}(O), \tag{1.5.3}$$

was offen nach Annahme ist.

Bemerkung. Sei (X, \mathcal{T}) ein top. Raum mit $Z \subseteq Y \subseteq X$. Dann gilt $\mathcal{T}_{X|Z} = \mathcal{T}_{(X|Y)|Z}$.

Definition 1.5.3. Einbettung

Seien (X', \mathcal{T}') und (X, \mathcal{T}) top. Räume. Eine Abbildung $f: X' \to X$ heißt **Einbettung**, falls f ein Homöomorphismus auf $\operatorname{im}(f) = f(X')$ ist. Dabei trägt $f(X') \subseteq X$ die Unterraumtopologie.

Beispiele. 1. Die Funktion

$$f: [0,1) \to \mathbb{R}^2$$

$$t \mapsto \exp(2\pi i t) \tag{1.5.4}$$

ist keine Einbettung, weil $f:[0,1)\to f([0,1))=\mathbb{S}^1$ kein Homöomorphismus ist.

2. Sei $\phi : \mathbb{R} \to \mathbb{R}$ eine beliebige, stetige Funktion. Dann ist der **Graph** von ϕ , gegeben durch

$$\Gamma_{\phi}: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$

$$t \mapsto (t, \phi(t))$$
(1.5.5)

eine Einbettung.

3. Einbettungen $\mathbb{S}^1 \to \mathbb{R}^3$ heißen **Knoten**.

Ist $f: X \to W$ stetig und $Y \subseteq X$ ein Unterraum mit der Topologie $\mathcal{T}_{X|Y}$, dann ist $f|_Y = f \circ \iota$ stetig. Die Umkehrung gilt jedoch nicht! Ist z.B.

$$f: \mathbb{R} \to [0, 1]$$

$$t \mapsto f(t) := \begin{cases} 1, \ t \in \mathbb{R} \setminus \mathbb{Q} \\ 0, \ t \in \mathbb{Q}, \end{cases}$$

$$(1.5.6)$$

so ist $f|_{\mathbb{Q}}$ konstant, also auch stetig, aber f nicht.

1.6 Trennungsaxiome

Definition 1.6.1. Trennungsaxiome

Die Trennungsaxiome für topologische Räume (X, \mathcal{T}) sind gegeben durch:

- (T1) Für alle $x, y \in X$, $x \neq y$ existieren Umgebungen $U \subseteq \mathfrak{U}(x)$ und $V \subseteq \mathfrak{U}(y)$ mit $x \neq V$ und $y \neq U$.
- (T2) Für alle $x, y \in X$ mit $x \neq y$ existieren Umgebungen $U \subseteq \mathfrak{U}(x)$ und $V \subseteq \mathfrak{U}(y)$ mit $U \cap V = \emptyset$.
- (T3) Für $x \in X$ und abgeschlossenes $x \notin A \subseteq X$ existieren Umgebungen $U \in \mathfrak{U}(x)$ und $V \in \mathfrak{U}(A)$, sodass $U \cap V = \emptyset$.
- (T4) Für abgeschlossene $A, B \subseteq X$ mit $A \cap B = \emptyset$ existieren Umgebungen $U \in \mathfrak{U}(A)$ und $V \in \mathfrak{U}(B)$, sodass $U \cap V = \emptyset$.
- (T2) heißt auch **Hausdorffeigenschaft**. Räume, die (T2) erfüllen, heißen **Hausdorffräume**.

Definition 1.6.2. Reguläre und normale Räume

Sei (X, \mathcal{T}) ein top. Raum.

- (a) Erfüllt X (T2) und (T3), so heißt X regulär.
- (b) Erfüllt X (T2) und (T4), so heißt X normal.

Bemerkungen. 1. Ist ein Raum hausdorffsch, so sind Grenzwerte eindeutig. Also ist z.B. $(X, \{\emptyset, X\})$ ist für $|X| \ge 2$ nicht hausdorffsch.

2. Es gilt $(T2) \Rightarrow (T1)$.

3. Jedoch gilt

$$(T4) \neq (T3) \neq (T2), \tag{1.6.1}$$

betrachte dafür z.B. den obigen nicht-Hausdorffraum. Dieser erfüllt (T3), da es keine abgeschlossenen $A \subseteq X$ mit $x \notin A$ gibt. Auch (T4) ist erfüllt.

4. (ÜA): Genau dann, wenn X (T1) erfüllt, ist $\{x\}$ abgeschlossen für alle $x \in X$.

Satz 1.6.3. Normalität impliziert Regularität

Sei (X, \mathcal{T}) ein normaler top. Raum. Dann ist X auch regulär.

Beweis. X erfüllt (T2) und (T4), und (T2) impliziert (T1). Alos ist $\{x\}$ abgeschlossen. Ist $A \subseteq X$ abgeschlossen und $x \notin A$, so sind $\{x\}$ und A disjunkte und abgeschlossene Teilmengen. Also existieren Umgebungen $U \in \mathfrak{U}(\{x\}) = \mathfrak{U}(x)$ und $V \in \mathfrak{U}(A)$ mit $U \cap V = \emptyset$.

Satz 1.6.4. Hausdorffeigenschaft entspricht abgeschlossener Diagonale

Sei (X, \mathcal{T}) ein top. Raum und $\Delta := \{(x, x) | x \in X\} \subseteq X \times X$ die **Diagonale** mit der Topologie $\mathcal{T}_{X \times X} := \{O_1 \times O_2 | O_i \in \mathcal{T}\}$. X ist genau dann hausdorffsch, falls $\Delta \subseteq X \times X$ abgeschlossen ist.

Beweis. Seien $x, y \in X$ mit $x \neq y$. Das ist äquivalent zu $(x, y) \in (X \times X) \setminus \Delta$. Wir zeigen, dass die Hausdorffeigenschaft äquivalent dazu ist, dass das Komplement $(X \times X) \setminus \Delta$ offen ist. Äquivalent zu Δ abgeschlossen ist $(X \times X) \setminus \Delta$ offen. Das gilt genau dann, wenn für alle $(x, y) \in (X \times X) \setminus \Delta$ ein offenes $O \in X \times X$ existiert mit $(x, y) \in O$. O.B.d.A. sei $O = O_1 \times O_2$, also $x \in O_1$ und $y \in O_2$ mit $O_1 \cap O_2 \neq \emptyset$. Das gilt genau dann, wenn X hausdorffsch ist.

Satz 1.6.5. (T3) und (T4) über Umgebungsbasen

Sei (X, \mathcal{T}) ein top. Raum.

- (a) X erfüllt (T3) genau dann, wenn für alle $x \in X$ die abgeschlossenen Umgebungen von x eine Umgebungsbasis sind, also für alle $U \in \mathfrak{U}(x)$ ein abgeschlossenes $B \in \mathfrak{U}(x) \subseteq X$ existiert.
- (b) X erfüllt genau dann (T4), wenn für alle abgeschlossenen $A \subseteq X$ gilt, dass die abgeschlossenen Umgebungen von A eine Umgebungsbasis von A bilden, also für alle $U \in \mathfrak{U}(A)$ ein abgeschlossenes $B \subseteq \mathfrak{U}(A)$ existiert, sodass $A \subseteq B \subseteq C$ gilt.

Bemerkung. Sei (X, \mathcal{T}) ein (T4)-Raum und $A \subseteq X$ abgeschlossen. Dann existiert für alle $W \in \mathfrak{U}(A)$ ein offenes $U \in \mathfrak{U}(A)$, sodass $A \subseteq U \subseteq \overline{U} \subseteq \overline{B} = B$.

Beweis. Die Rückrichtung ist eine ÜA, wir zeigen die Hinrichtung:

- (a) (T3) gelte. Seien $x \in X$ und $W \in \mathfrak{U}(x)$ gegeben. Daraus folgt, dass ein $O \in \mathcal{T}$ mit $x \in O \subseteq W$ existiert. $X \setminus O$ ist abgeschlossen und $x \notin X \setminus O$. Mit (T3) folgt dann, dass $U \in \mathfrak{U}(x)$ und $V \in \mathfrak{U}(X \setminus O)$ mit $U \cap V = \emptyset$ existieren. Aus $V \in \mathfrak{U}(X \setminus O)$ folgt, dass ein $O' \in \mathcal{T}$ mit $(X \setminus O) \subseteq O' \subseteq V$ existiert. Wir behaupten, dass $X \setminus O' =: B$ die gewünschten Eigenschaften hat.
 - (i) $x \in X \setminus O'$: Wir haben $x \in U$ mit $U \cap V = \emptyset$, also ist $x \in X \setminus V \subseteq X \setminus O'$.
 - (ii) Es gilt $U \subseteq (X \setminus V) \subseteq (X \setminus O')$ mit $U \in \mathfrak{U}(x)$. Obermengen von Umgebungen sind selbst wieder Umgebungen.
 - (iii) $X \setminus O' \subseteq X \setminus (X \setminus O) = O \subseteq W$.
- (b) Analog zu (a), wir ersetzen x durch A.

Satz 1.6.6. Vererbung der Trennungsaxiome auf Unterräume

Sei (X, \mathcal{T}) ein top. Raum.

- (a) Ist X hausdorffsch (oder regulär) und $Y \subseteq X$, so ist $(Y, \mathcal{T}_{X|Y})$ ebenfalls hausdorffsch (oder regulär).
- (b) Ist X normal und $Y \subseteq X$ abgeschlossen, so ist auch $(Y, \mathcal{T}_{X|Y})$ normal.

Bemerkung. Wo liegt das Problem bei (b)? Seien $A, B \subseteq Y$ mit $A \cap B = \emptyset$. Dann ist $A = A' \cap Y$ und $B = B' \cap Y$. Ist $Y \subseteq X$ nicht abgeschlossen, so müssen A und B in X nicht abgeschlossen sind.

Beweis

- (a) Wir zeigen zuerst hausdorffsch. Seien $x_1, x_2 \in Y$ mit $x_1 \neq x_2$. Dann ist Nun noch Regularität. Sei $x \in Y$ und $A' \subseteq Y$ abgeschlossen mit $x \neq A'$. Dann existiert ein abgeschlossenes A in X mit $A' = A \cap Y$. Aus A abgeschlossen und $x \in X$ folgt, dass $x \neq A$ ist. Da X regulär ist, existieren $U \in \mathfrak{U}^X(x)$ und $V \in \mathfrak{U}^X(A)$ mit $U \cap V = \emptyset$. Setze $U' := U \cap Y$ und $V' = V \cap Y$. Dann ist $U' \in \mathfrak{U}^Y(x)$ und $V' \in \mathfrak{U}^Y(A')$ mit $U' \cap V' = \emptyset$.
- (b) Sei $Y \subseteq X$ abgeschlossen und $A', B' \subseteq Y$ abgeschlossen mit $A' \cap B' = \emptyset$. Da X normal ist, existieren abgeschlossen en $A, B \subseteq X$ mit $A' = A \cap Y$ und $B' = B \cap Y$. Da Y abgeschlossen ist, sind A' und B' auch abgeschlossen in

X. Wegen (T3) sind A' und B' trennbar mit $U \in \mathfrak{U}^X(A')$ und $V \in \mathfrak{U}^X(B')$, sodass $U \cap V = \emptyset$. Dann sind die Mengen trennbar in Y mit $U \cap Y$ und $V \cap Y$.

Theorem 1.6.7. Fortsetzungssatz von Tietze

Sei X normal und $A \subseteq X$ abgeschlossen. Betrachte eine streng monotone Funktion

$$f: A \to \mathbb{R}.$$
 (1.6.2)

Dann existiert eine stetige Fortsetzung

$$F: X \to \mathbb{R} \tag{1.6.3}$$

mit $F|_A = f$.

Dieses Theorem wollen wir nicht beweisen.

Bemerkung. Der Fortsetzungssatz kann verstärkt werden: Ist f nicht konstant, so gilt sup $F = \sup f$ und inf $F = \inf f$ mit inf $f < F(x) < \sup f$ für alle $x \notin A$.

Theorem 1.6.8. Lemma von Urysohn

Sei (X, \mathcal{T}) ein top. Raum. Dann sind folgende Aussagen äquivalent:

- (a) X erfüllt (T4).
- (b) Für alle abgeschlossenen Teilmengen $A \subseteq X$ und alle offenen Teilmengen U mit $A \subseteq U \subseteq X$ gilt: Es existiert eine **Urysohn-Funktion**:

$$f: X \to [0, 1] \subseteq \mathbb{R}$$

$$x \mapsto f(x) := \begin{cases} 0 & \text{für } x \in A \\ 1 & \text{für } x \in X \setminus U, \end{cases}$$

$$(1.6.4)$$

die stetig auf $U \setminus A$ ist.

Beweis.

- 1. (b \Rightarrow a): Sei f eine Urysohn-Funktion und $A, B \subseteq X$ abgeschlossen. Dann ist $U := X \setminus B$ offen und $A \subseteq U \subseteq X$. dann trennen $U_1 := f^{-1}[0, \frac{1}{2})$ und $U_2 := f^{-1}(\frac{1}{2}, 1]$ die Mengen A und B.
- 2. (a \Rightarrow b): Dies beweisen wir konstruktiv. Sei $A \subseteq U \subseteq X$ gegeben, A abgeschlossen, U offen, und X erfülle (T4). Setze $U_0 := A$ und $U_1 := U$. Gemäß Satz 1.6.5 existiert offenes $U_{\frac{1}{2}}$ mit $A = U_0 \subseteq U_{\frac{1}{2}} \subseteq \overline{U}_{\frac{1}{2}} \subseteq U_1 = U$. Nun konstruieren wir eine 2-adische Schachtelung: Der nächste Schritt ist

$$A = U_0 \subseteq U_{\frac{1}{4}} \subseteq \overline{U}_{\frac{1}{4}} \subseteq U_{\frac{1}{2}} \subseteq \overline{U}_{\frac{1}{2}} \subseteq U_{\frac{3}{4}} \subseteq \overline{U}_{\frac{3}{4}} \subseteq U_1 = U.$$

$$(1.6.5)$$

Der n+1-te Schritt ist dann gegeben durch

$$A = U_0 \subseteq \dots \subseteq U_{\frac{2k-1}{2^{n+1}}} \subseteq \overline{U}_{\frac{2k-1}{2^{n+1}}} \subseteq U_{\frac{k}{2^n}} \subseteq \overline{U}_{\frac{k}{2^n}} \subseteq U_{\frac{k+1}{2^n}} \subseteq \dots \subseteq U_1 = U.$$
 (1.6.6)

Wir setzen $D:=\left\{\frac{i}{2^n}|n,i\in\mathbb{N},0\leq i\leq 2^n\right\}$. Sei $r,s\in D$ mit r< s, also $\overline{U}_r\subseteq U_s$. Für $t\in[0,1]$ sei $U_t:=\bigcup_{r\leq t,r\in D}U_r$. Dann erhalten wir eine Urysohn-Funktion durch

$$f(x) := \begin{cases} \inf_{x \in U_t} \{0 \le t \le 1\} & \text{ für } x \in U \\ 1 & \text{ für } x \notin U \end{cases}$$
 (1.6.7)

gegeben. Für $x \in A = U_0$ ist f(x) = 0. Ist f(x) < t, so existiert $r \in D$ mit r < t, sodass $x \in U_r$. Ist f(x) > t, existiert $r' \in D$ mit r' > t und $x \notin \overline{U}_r$. Also sind

$$f^{-1}([0,t)) = \bigcup_{r \in D, r < t} U_r \tag{1.6.8}$$

und

$$f^{-1}((t,1]) = \bigcup_{r' \in D, r' > t} (X \setminus \overline{U}_{r'})$$

$$\tag{1.6.9}$$

offen. Damit ist

$$test$$
 (1.6.10)

eine Subbasis von $[0,1] \subseteq \mathbb{R}$.

1.7 Initialtopologie und Produkte

Wir wollen die Unterraumtopologie verallgemeinern:

Definition 1.7.1. Initialtopologie

Gegeben sei eine Menge X mit einer Familie topologischer Räume $(X_i, \mathcal{T}_i)_{i \in I}$ und Abbildungen $f_i : X \to X_i$ für alle $i \in I$. Eine Topologie \mathcal{T} auf X heißt **Initialtopologie**, falls folgendes gilt:

11

Ist Y ein beliebiger top. Raum und $g:Y\to (X,\mathcal{T})$ eine Abbildung. Dann ist g stetig genau dann, wenn $f_i\circ g$ stetig für alle $i \in I$ ist. Dies ist äquivalent zu folgendem kommutierenden Diagramm:

$$Y \xrightarrow{g} X$$

$$\downarrow_{f_i \circ g} \downarrow_{f_i} X_i$$

Satz 1.7.2. Eindeutigkeit und Feinheit der Initialtopologie

Sei X und $(f_i: X \to X_i)_{i \in I}$ gegeben.

- 1. Dann gibt es auf X genau eine Initialtopologie bezüglich der $(f_i)_{i \in I}$.
- 2. Die Initialtopologie ist die gröbste Topologie auf X, sodass alle $(f_i)_{i\in I}$ stetig sind.
- 3. Eine Subbasis ist $S := \bigcup_{i \in I} \{f_i^{-1}(O_i) | O_i \in \mathcal{T}_i\}.$

Beweis.

• f_i ist stetig, falls die Initaltopologie \mathcal{T} auf X existiert. Betrachte folgendes kommutierendes Diagramm:

$$(X, \mathcal{T}) \xrightarrow{g = \mathrm{id}_X} (X, \mathcal{T})$$

$$\downarrow_{f_i} \qquad \downarrow_{f_i} \qquad (X_i, \mathcal{T}_i)$$

Die Abbildung $id_X : (X, \mathcal{T}) \to (X, \mathcal{T})$ ist immer stetig. Dann folgt, dass alle f_i stetig sind, denn $f_i = f_i \circ id_X$.

• Eindeutigkeit: Angenommen, es gibt zwei \mathcal{T}_1 und \mathcal{T}_2 auf X. Betrachte

$$(X, \mathcal{T}_1) \xrightarrow{\operatorname{id}_X} (X, \mathcal{T}_2)$$

$$\downarrow^{f_i}$$

$$X_i.$$

also ist $\mathcal{T}_1 = \mathcal{T}_2$.

• Subbasis: Da f_i stetig ist, muss $f^{-1}(O_i)$ offen sein in (X, \mathcal{T}) mit der Initialtopologie \mathcal{T} . Also ist $\mathcal{S} \subseteq \mathcal{T}$. \mathcal{T} war die gröbste Topologie, also $\langle \mathcal{S} \rangle = \mathcal{T}$. Zu zeigen ist nun, dass (X, \mathcal{T}) mit $\mathcal{T} = \langle \mathcal{S} \rangle$ die universelle Eigenschaft erfüllt, also

$$Y \xrightarrow{g} (X, \mathcal{T})$$

$$\downarrow_{f_i \circ g} \downarrow_{X_i} f_i$$

$$X_i$$

ist genau dann stetig, wenn $f_i \circ g$ stetig für alle $i \in I$ ist.

- Klar ist, dass aus der Stetigkeit von g folgt, dass $f_i \circ g$ stetig ist, weil alle f_i stetig sind.
- Wir nehmen an, dass $f_i \circ g$ stetig ist für alle $i \in I$. g ist stetig genau dann, wenn $g^{-1}(O)$ offen in Y für alle $O \in \mathcal{S}$ ist. Es genügt $O = f_i^{-1}(O_i)$ für beliebiges $i \in I$ zu zeigen. Es gilt:

$$g^{-1}(f_i^{-1}(O_i)) = (g^{-1} \circ f_i^{-1})(O_i) = \underbrace{(f_i \circ g)^{-1}}_{\text{stetig}} \underbrace{(O_i)}_{\in \mathcal{T}_i}$$
(1.7.1)

ist offen.

Wir wollen nun Produkte von Mengen betrachten. Sei $(X_i)_{i\in I}$ eine Familie von Mengen. Betrachte das kartesische Produkt

$$X = \prod_{i \in I} X_i$$
 der Mengen X_i . Sei $x = (x_i)_{i \in I}$ mit $x_i \in X_i$. Dann betrachten wir die **Projektionsabbildung**

$$\pi_j: X \to X_j (x_i)_{i \in I} \mapsto x_j$$
 (1.7.3)

 $X = \prod X_i$ hat die universelle Eigenschaft: Die Abbildung $g: Z \to \prod X_i$ ist bijektiv mit Umkehrung $g_i: Z \to X_i$ für alle $i \in I$. Man setzt dafür $g_i \mapsto g(z) = (g_i(z))_{i \in I}$. Ziel ist, eine Topologie auf $X = \prod X_i$ zu definieren, falls alle X_i top. Räume sind.

Definition 1.7.3. Produkte

Sei $(X_i, \mathcal{T}_i)_{i \in I}$ eine Familie topologischer Räume und $\prod_{i \in I} X_i =: X$ ihr Produkt (als Mengen). Dann heißt die Initialtopologie bezüglich der Projektion

$$\left(\pi_i: \prod_{j\in I} X_j \to X_i\right)_{i\in I} \tag{1.7.4}$$

Produkttopologie auf X.

Satz 1.7.4. Basis der Produkttopologie

Die Produkttopologie auf $X = \prod_{i \in I} X_i$ hat die Basis

$$\mathcal{B} := \left\{ \prod_{i \in I} O_i | O_i \in \mathcal{T}_i, O_i = X_i \text{ für fast alle } i \in I \right\}.$$
 (1.7.5)

Beweis. Betrachte die Projektion

$$\pi_i: \prod_{i\in I} X_j \to X_i. \tag{1.7.6}$$

Für $O_i \in \mathcal{T}_i$ ist $\pi_i^{-1}(O_i) = \prod_{j \in I} O_j$ mit

$$O_{j} = \begin{cases} O_{i} & \text{für } j = 1\\ X_{j} & \text{für } j \neq i. \end{cases}$$

$$(1.7.7)$$

Endliche Schnitte davon geben die Elemente der Basis und das ist \mathcal{B} .

Satz 1.7.5. Z

jeder Familie stetiger Abbildungen $(f_i: T \to X_i)_{i \in I}$ gibt es genau eine stetige Funtkion $f: T \to \prod X_i$ mit $\pi_i \circ f = f_i$ für alle $i \in I$, also kommutiert das folgende Diagramm:

$$T \xrightarrow{???} \prod_{j \in I} X_j$$

$$\downarrow^{\pi_i}$$

$$X_i$$

Beweis.

- (i) f existiert als Abbildung von Mengen wegen der universellen Eigenschaft des kartesischen Produktes von Mengen.
- (ii) Dieses f ist automatisch stetig wegen der universellen Eigenschaft der Initialtopologie: f_i sind alle stetig, π_i sind stetig.

2 Algebraische Topologie

2.1 ...