1 COMPOSITA 1

1 Composita

Remark 1. Let A, B be sets. Then $A \cap B$ can be expressed using only the operation \subseteq . Notice $A \cap B \subseteq A, B$ and $A \cap B$ is the maximal set with this property:

$$\forall C \text{ such that } C \subseteq A, B \implies C \subseteq A \cap B.$$

Let $H_1, H_2 \leq G$. Then $H_1 \cap H_2 \leq G$ is the *maximal* subgroup contained in both H_1 and H_2 . Hence by the Galois correspondence we have $L^{H_1 \cap H_2}$ is the *minimal* subfield of L containing both L^{H_1} and L^{H_2} .

Definition 1 (Compositum). Let K_1 and K_2 be fields contained in some field L. The *compositum* of K_1 and K_2 in L (or the *composite field*), denoted by K_1K_2 , is the smallest subfield of L containing both K_1 and K_2 .

Lemma 1.1. Let $K, E, F \subseteq L$. Then

- 1. E: K, F: K finite $\implies EF: K$ finite;
- 2. $E: K, F: K \text{ normal} \implies E \cap F: K \text{ normal};$
- 3. E: K, F: K finite and E: K normal $\implies EF: F$ normal;
- 4. E: K, F: K finite and normal $\implies EF: K, E \cap F: K$ normal;
- 5. $E: K, F: K \text{ normal } \Longrightarrow EF: E \cap F \text{ normal.}$

ADD HW PROBLEMS TO ANKI