Содержание

1	Предшествующие задачи	2
	1.1 Задача Штейнера о минимальном дереве	
	1.2 Задача Притяжения — Отталкивания	2
2	Постановка задачи	3
3	Жадные методы решения задачи	4
	3.1 Алгоритм 1: Локальный поиск	4

1 Предшествующие задачи

Решение задачи поиска оптимального размещения позволяет разрешать много прикладных проблем. Наиболее часто они возникают при планировании предприятий, работе с печатными платами, распространения инфраструктуры и других ресурсозатратных проектах.

Рассмотрим некоторую хронологию возникновения задачи о размещении начиная с изложения Пьера де Ферма.

1.1 Задача Штейнера о минимальном дереве

Фундаментальной основой стала проблема, сформулированная П.Фермом:

Для заданных трех точек найти такую четвертую, что если из неё провести три отрезка в данные точки, то сумма этих трех отрезков даст наименьшую величину.

Над получением решения трудились такие ученые как: Э. Торичелли, Б. Кавальери, Т. Симпсон, Ф. Хейнен, Ж. Бертран. В результате было получено геометрическое построение искомой точки, которую в последствии назвали точкой Ферма (иногда так же называют точкой Торричелли).

В 1934 году В. Ярник и О. Кесслер сформулировали обобщение задачи Ферма. Они сменили ограничение в три точки на произвольное конечное число. Поиск единственной точки в таком обобщении не смог получить достаточного внимания поэтому теперь их задача состояла в описании саязанных плоских графов наименьшей длинны, проходящих через данное конечное множество точек плоскости. [1]

Сейчас и задачу П. Ферма и задачу Ярника-Кесслера принято называть проблемой Штейнера.

1.2 Задача Притяжения – Отталкивания

Альтернативное развитие задача П. Ферма получила в обобщении немецкого экономиста Альфреда Вебера, который интерпретировал задачу как перевозку груза и назначил цену за еденицу расстояния для каждой точки, тем самым получив взвещенную задачу.

В свою очередь задача Вебера-Ферма обобщается задачей притяжения - отталкивания, которая допускает отрицательные цены, тем самым делая для некоторых точек большие расстояния предпочтительнее.

Задача получила много вариантов решения для случая из трех точек. Они основываются на методах поиска углов и на их основе построения оптимального решения. Однако для случаев с большей размерностью эти методы бессильны.

Кун и Куэн в 1962 году предложили иттерационный алгоритм для задачи Ферма-Вебера. Он основывался на пошаговой минимизации суммы расстояний

Для задачи притяжения — отталкивания можно обратиться к помощи алгоритма, который предложили Чен, Хансен, Жомар и Туй в 1992.

2 Постановка задачи

Имеется nобъектов и nлокаций для размещения, матрица A с элементами, $a \emptyset ij$ отображающими доход

3 Жадные методы решения задачи

3.1 Алгоритм 1: Локальный поиск

На вход подается: $n, n \times n$ матрицы F, D и перестановка p, pазмером n. Получим: перестановку <math>p - решение, являющееся локальным оптимумом для QAP.

(i) p0 = p и считаем цену C(p0). Установим номер шага i=0, gi=0 - шаговый рост, G(i)=0

Список литературы

[1] Richard Courant, Herbert Robbins и др. What is mathematics? Oxford University Press, 1941.