$\begin{array}{c} \textbf{Practice Midterm Exam (Solutions)} \\ \text{\tiny (9:45 AM - 11:00 AM : 75 Minutes)} \end{array}$

Date: Oct 7, 2021

- This exam will account for 30% of your overall grade.
- There are six (6) questions, worth 75 points in total. Please answer all of them.
- This is a closed book, closed notes exam. No cheat sheets are allowed.
- You are allowed to use scratch papers for your calculations.
- You are not allowed to use your own calculator. A scientific calculator will be available inside the Respondus Lockdown Browser.

GOOD LUCK!

Question	Parts	Points
1. DFA Construction	(i), (ii)	10 + 10 = 20
2. DFA Composition	_	10
3. Regular Expressions	(i), (ii)	5 + 5 = 10
4. NFA to DFA	_	15
5. Non-regularity	_	15
6. Context-free Grammar	_	5
Total		75

QUESTION 1. [20 Points] DFA Construction. Write down a DFA in the 5-tuple form to accept each of the following two regular languages.

Assume that $\Sigma = \{a, b\}.$

Your answers do not need to include DFA diagrams (though you may draw them on your scratch papers if you like).

- (a) [10 Points] $L = \{w | aaba \text{ is a substring of } w\}$
- (b) [10 Points] $L = \{w | w \text{ does not contain } ab\}$

SOLUTION.

(i) 5-tuple, $M = \{Q, Sigma, q, F, delta\}$, where,

```
Set of states, Q = \{ q0, q1, q2, q3, q4 \}
Set of symbols, Sigma = \{ a, b \}
Start state, q = q0
Set of accept states, F = \{ q4 \}
Transition function, delta:
```

 state
 a
 b

 q0
 q1
 q0

 q1
 q2
 q0

 q2
 q2
 q3

 q3
 q4
 q0

q4

q4

q4

(ii) 5-tuple, M = {Q, Sigma, q, F, delta}, where,

```
Set of states, Q = { q0, q1, q2 }
Set of symbols, Sigma = { a, b }
Start state, q = q0
Set of accept states, F = { q0, q2 }
Transition function, delta:
```

 state
 a
 b

 q0
 q1
 q0

 q1
 q1
 q2

 q2
 q2
 q2

QUESTION 2. [10 Points] DFA Composition. Consider the following two DFAs.

Write down a DFA in the 5-tuple form that accepts the language $L_1 \cup L_2$.

Your answer does not need to include the DFA diagram (though you may draw it on your scratch papers if you like).

SOLUTION.

```
5-tuple, M = {Q, Sigma, q, F, delta}, where, 
 Set of states, Q = { (p0, q0), (p0, q1), (p0, q2), (p1, q0), (p1, q1), (p1, q2) } 
 Set of symbols, Sigma = { a, b } 
 Start state, q = (p0, q0) 
 Set of accept states, F = { (p0, q2), (p1, q0), (p1, q1), (p1, q2) }
```

state	a	Ъ
(p0, q0)	(p1, q1)	(p0, q0)
(p0, q1)	(p1, q1)	(p0, q2)
(p0, q2)	(p1, q2)	(p0, q2)
(p1, q0)	(p1, q1)	(p0, q0)
(p1, q1)	(p1, q1)	(p0, q2)
(n1 a2)	$(n1 \ a2)$	(n0 a2)

Transition function, delta:

QUESTION 3. [10 Points] Regular Expressions. Write down regular expressions for the following two languages.

- (a) [5 Points] $L = \{w | n_a(w) = 2 \text{ or } n_b(w) = 2\}, \Sigma = \{a, b, c\}$
- (b) [5 Points] $L = \{w |$ binary number w is not divisible by 8 $\}, \Sigma = \{0, 1\}$

SOLUTION.

In the solutions below the letter 'U' represents the union operation.

(i) Let
$$A = a U c$$

 $B = b U c$

Regular expression = B*aB*aB* U A*bA*bA*

(ii) Let S = Sigma

Regular expression = 1 U 01 U 1S U S*(SS1 U S1S U 1SS)

QUESTION 4. [15 Points] NFA to DFA. Consider the following NFA.

Convert this NFA into a DFA and write it down in the 5-tuple form.

Your answer does not need to include the DFA diagram (though you may draw it on your scratch papers if you like).

SOLUTION.

QUESTION 5. [15 Points] Non-regularity. Use the pumping lemma to prove that the following language is not regular.

$$L = \{w | w = a^m b^n, 0 \le m < n\}, \Sigma = \{a, b\}$$

SOLUTION.

Suppose L is regular. Then it must satisfy the pumping property.

Let s be the number of states in any finite state machine that accepts L.

Let
$$w = a^s b^s + 1 = xyz$$
, where, $x = a^p$, $y = a^q$, and $z = a^r b^s + 1$, such that $|xy| \le s$, $|y| >= 1$, and $p + q + r = s$.

Then $xy^(i)z$ must belong to L for all $i \ge 0$.

Now xyyz =
$$a^p a^q a^q a^r b^s (s + 1)$$

= $a^p + q + r + q b^s (s + 1)$
= $a^s (s + q) b^s (s + 1)$.

But since $|y| = q \ge 1$, we have $s + q \ge s + 1$.

So, $xyyz = a^(s + q) b^(s + 1)$ is not in L, which is a contradiction!

Hence, L is not regular.

Question 6. [5 Points] Context-free Grammar. Write down a context-free grammar to accept the following language:

$$L = \{w | w = a^{n+1}b^{n+2}, n \ge 0\}, \quad \Sigma = \{a, b\}$$

SOLUTION.

S -> aSb

S -> abb