20/6/190 0/2/24

Q1. We already know that finding a collision on H can be done with O(T) by birthday paradox.

(s Select two samples at M => O(n2) hash collision => O(1) HCES = H(6) = H(2) mean (HCE) = H(6) & H(6) = H(2)

So, this probability is $O\left(\frac{1}{111} \times \frac{1}{111}\right) = O\left(\frac{1}{1112}\right)$ (4) Select -three samples at 1M -> OCn3)

=) $\left(\frac{h^3}{|T|^2}\right)$, we want this probability 1. So the bound on $n \rightarrow O(|T|^{\frac{3}{3}})$

 Q_2 a) E,(pk,m) =(E(pk,m),0128)

 $D_{1}(SK, (C_{1},C_{2})) =$ $D_{1}(SK, (C_{1},C_{2})) =$ This is chosen diphertext secure.

Because at this system. Advar [AE]= | Pr[exp(0)=1] - Pr[exp(1)=1] |

is negligible -> back page continue

b) $E_{2}(pk,m) = (C_{1},C_{2})$ for $C_{1},C_{3} \neq E(pk,m)$ $D_{2}(5k,(C_{1},C_{2})) = D(5k,C_{1})$ =) This is not chosen - ciphertext secure. (Attacker use $m_{1}=0^{126}$, $m_{2}=1^{126}$ and

Cuttacker use $m_1=0^{126}$, $m_2=1^{126}$ and can get get (C_1,C_2) , and ask the value of decreption (C_1,E_1,D_1^{128}) and be given in respone m_0 or m_1 .

Then the attacker win (hot secure)

C) $E_3(pk, m) = (E(pk, m), E(pk, 6)^{28})$ $D_3(sk, ((1, (2) = {D(sk, (1) if D(sk, (2) = 0)^{28}})$ =) This is not chosen - chiphertext Secure.

attacker use $m_0 = 0^{128}$ $m_1 = 1^{128}$ and an set (C_1, C_2) . attacker ask the value of decretion (C_1, E_1, C_2)

and be given in respone mo or m, Then the attacker win (not secure)

· Anser is a

3, let's assume A and B want to know S. They have relatively prime h, h2. (The theorem Given $a,b \in \mathbb{Z}$, at least one of them non zero $\exists x \text{ and } b \in \mathbb{Z}$, such that $\gcd(a,b) = ax + bb$) So we can say $ar_1+br_2=1$ there are $\exists a.b \in \mathbb{Z}$, and they can also compute a,b by Extend Euclid Algorithm $5^{a} \cdot 5^{b} = 5^{ar_1} \times 5^{br_2} = 5^{ar_1+br_2} = 5 \mod N$:. A, B can get S. so this system is terribly insecute

4) Summerize situation $pk = (0, 9^{x} = h), 5k = (9, 2c)$ Free(4k, 2r) = 6r m + hr

Enc (sk, m) = G^{r} , $m \times h^{r}$ Dec (pk, (co,c1)) = $\frac{C_{1}}{C_{0}^{x}} = \frac{m \times h^{r}}{G^{rx}} = \frac{m \times h^{r}}{(G^{x})^{r}} = \frac{m \times h^{r}}{h^{r}} = m$

(CS =) Using $(m_1 =)$ can set (C_1, C_2) (G^{r_1}, m_1, h^{r_1}) $(m_3 =)$ can set (C_3, C_4) (G^{r_2}, m_2, h^{r_2})

 $C_1 \times C_3 = 5^{h, + h_2}$ $C_2 \times C_4 = m_1 m_2 h_1^{h, + h_2}$

Enc (sk, m,m,) = (gt, m,m, ht) = (C(C3, C2C4))
So, this is not chosen chipher secure

5) If the value of $(K == W \oplus T)$, then they have same key W T = U P P T = S T T P P T = K D K D T D K D T = K .. WIT = K, so they have the same key But this is not secure, Adversary can intercept (S.U.W.) while Allce and Bob are exchange (5. U.W) And Adversery our compute SAURW = KAY DKA YA YA KAKAYA At the security game, adversary has SEUEW. If get k from challenger and K = (5000) then adversary say b = 0, otherwise say b = 1. This system, adversary win the game except b=1 and uniform random key same with real key So adversary win probability = |- Pr (bse) = 1- (b=1 and match key with red key) = $1 - \frac{1}{2} \times \frac{1}{2^n} = 1 - \frac{1}{2^{n+1}}$ our case is n = 256