Structural change point testing with application to stock returns

Jonathan Bown

Supervised by: Lajos Horváth (Committee Chair), Tom Alberts, Ron Reeder

Department of Mathematics University of Utah

February 26, 2019

Outline

- Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- Applications
- Further Research
- Summary of Results

Main Results

Boundary function for sequential change point detection procedures that generalizes.

Main Results

Boundary function for sequential change point detection procedures that generalizes.

Sequential procedure that uses detector function compared with boundary function to detect change points.

Main Results

Boundary function for sequential change point detection procedures that generalizes.

Sequential procedure that uses detector function compared with boundary function to detect change points.

Fixed sample test statistic that detects changes in the mean.

Predecessors

Structural breaks in time series, Aue, A. and Horvath, L. (2012) Introduce open problem:

$$\tau_n = \inf\{k \geq 1 : |\Gamma_n(k)| \geq g_n(k)\}.$$

4/44

Predecessors

Structural breaks in time series, Aue, A. and Horvath, L. (2012) Introduce open problem:

$$\tau_n = \inf\{k \geq 1 : |\Gamma_n(k)| \geq g_n(k)\}.$$

Sequential testing for the stability of high-frequency portfolio betas, Aue et al. (2012)

4/44

Predecessors

Structural breaks in time series, Aue, A. and Horvath, L. (2012) Introduce open problem:

$$\tau_n = \inf\{k \geq 1 : |\Gamma_n(k)| \geq g_n(k)\}.$$

Sequential testing for the stability of high-frequency portfolio betas, Aue et al. (2012)

Sequential change-point detection in GARCH(p, q) models, Berkes et al. (2004)

- Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- 4 Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- 6 Applications
- Further Research
- Summary of Results

Measurement Error Model

$$X_i = \mu_i + e_i$$

The errors e_i are stationary with $E[e_i] = 0$ for $i \ge 1$.

Measurement Error Model

$$X_i = \mu_i + e_i$$

The errors e_i are stationary with $E[e_i] = 0$ for $i \ge 1$.

We have training sample of size M with $\mu_i = \mu$ for $1 \le i \le M$.

Measurement Error Model

$$X_i = \mu_i + e_i$$

The errors e_i are stationary with $E[e_i] = 0$ for $i \ge 1$.

We have training sample of size M with $\mu_i = \mu$ for $1 \le i \le M$.

The total observations we collect after the training sample is T.

Test Framework

We have the following hypotheses

$$H_0: k^* > T \ (\mu_1 = \mu_2 = \dots = \mu_M = \mu_{M+1} = \dots = \mu_{M+T}),$$

Test Framework

We have the following hypotheses

$$H_0: k^* > T \ (\mu_1 = \mu_2 = \dots = \mu_M = \mu_{M+1} = \dots = \mu_{M+T}),$$

(there is no change in the mean during the observation period). The alternative hypothesis is

$$H_A: k^* < T \quad (\mu_1 = ... = \mu_M = .. = \mu_{M+k^*} \neq \mu_{M+k^*+1} = ... = \mu_{M+T}).$$

Test Framework

We have the following hypotheses

$$H_0: k^* > T \ (\mu_1 = \mu_2 = \dots = \mu_M = \mu_{M+1} = \dots = \mu_{M+T}),$$

(there is no change in the mean during the observation period). The alternative hypothesis is

$$H_A: k^* < T \quad (\mu_1 = ... = \mu_M = .. = \mu_{M+k^*} \neq \mu_{M+k^*+1} = ... = \mu_{M+T}).$$

Model for the means under H_A

$$\mu_{i} = \begin{cases} \mu, & M+1 \le i \le M+k^{*}, \\ \mu+\Delta, & i \ge M+k^{*}+1, \end{cases}$$

where $\Delta \neq 0$ and unknown.

Sequential Quantities

First choose rolling window $h \ll T$, then calculate

$$Z_k = \left| \overline{X}_M - \overline{X}_{k,h} \right|,$$

Sequential Quantities

First choose rolling window $h \ll T$, then calculate

$$Z_k = \left| \overline{X}_M - \overline{X}_{k,h} \right|,$$

where

$$\overline{X}_M = \frac{1}{M} \sum_{i=1}^M X_i, \quad \overline{X}_{k,h} = \frac{1}{h} \sum_{i=M+k}^{M+k+h} X_i.$$

Sequential Quantities

First choose rolling window $h \ll T$, then calculate

$$\textbf{\textit{Z}}_{\textbf{\textit{k}}} = \left| \overline{\textbf{\textit{X}}}_{\textbf{\textit{M}}} - \overline{\textbf{\textit{X}}}_{\textbf{\textit{k}},\textbf{\textit{h}}} \right|,$$

where

$$\overline{X}_M = \frac{1}{M} \sum_{i=1}^M X_i, \quad \overline{X}_{k,h} = \frac{1}{h} \sum_{i=M+k}^{M+k+h} X_i.$$

 Z_k is evaluated for crossing boundary function $g_{\alpha}(h,k)$. The stopping time is defined as

$$\tau_{M} = \min\left\{k < T - h : Z_{k} > g_{\alpha}(h, k), T - h\right\}.$$

Note k < T - h.

Properties of Sequential Procedure

Under H_0 we want

$$\lim_{M\to\infty} P(\tau_M < T - h) = \alpha,$$

i.e. the probability of false alarm is α . We want to have under H_A that

$$\lim_{M\to\infty} P(\tau_M < T-h) = 1.$$

Assumption

There exist partial sums of the stationary random variables $\{e_i, i \ge 1\}$ and Wiener processes $\{W_1(u), u \ge 0\}$ and $\{W_2(u), u \ge 0\}$ such that

Assumption

There exist partial sums of the stationary random variables $\{e_i, i \ge 1\}$ and Wiener processes $\{W_1(u), u \ge 0\}$ and $\{W_2(u), u \ge 0\}$ such that

Assumption

There exist partial sums of the stationary random variables $\{e_i, i \ge 1\}$ and Wiener processes $\{W_1(u), u \ge 0\}$ and $\{W_2(u), u \ge 0\}$ such that

$$\sum_{i=1}^{M} e_i = \sigma W_1(M) + o(M^{\epsilon}) \text{ a.s. for some } 0 < \epsilon < 1/2 \text{ as } M \to \infty,$$

$$\sum_{i=M+1}^{k+M} e_i = \sigma W_2(k) + o(k^{\epsilon}) \text{ a.s. for some } 0 < \epsilon < 1/2, \text{ as } k \to \infty,$$

Assumption

There exist partial sums of the stationary random variables $\{e_i, i \ge 1\}$ and Wiener processes $\{W_1(u), u \ge 0\}$ and $\{W_2(u), u \ge 0\}$ such that

$$\sum_{i=1}^{M} e_i = \sigma W_1(M) + o(M^{\epsilon}) \text{ a.s. for some } 0 < \epsilon < 1/2 \text{ as } M \to \infty,$$

$$\sum_{i=M+1}^{k+M} e_i = \sigma W_2(k) + o(k^{\epsilon}) \text{ a.s. for some } 0 < \epsilon < 1/2, \text{ as } k \to \infty,$$

and

 $\{W_1(s), 0 \le s \le M\}$ and $\{W_2(t), 0 \le t < \infty\}$ are independent.

Approximations

We make use of the Komlós-Major-Tusnády approximation (Csörgő and Révész (1981)) there is a Wiener process $\{W_1(u), u \geq 0\}$ such that

$$\sum_{t=1}^{M} \varepsilon_t - (\operatorname{Var}(\varepsilon_0))^{1/2} W_1(M) = o(M^{1/\nu}) \quad \text{a.s., as } M \to \infty.$$

for some $\nu >$ 2. This requires that $E|\varepsilon_t|^{\nu} < \infty$.

Approximations

We make use of the Komlós-Major-Tusnády approximation (Csörgő and Révész (1981)) there is a Wiener process $\{W_1(u), u \geq 0\}$ such that

$$\sum_{t=1}^{M} \varepsilon_t - (\operatorname{Var}(\varepsilon_0))^{1/2} W_1(M) = o(M^{1/\nu}) \quad \text{a.s., as } M \to \infty.$$

for some $\nu >$ 2. This requires that $E|\varepsilon_t|^{\nu} < \infty$.

Theorem

If W(t) is a Wiener process and $\Gamma(y) = W(y+1) - W(y)$ then

$$\limsup_{y\to\infty}\frac{|\Gamma(y)|}{\sqrt{2\log(y)}}=1 \ a.s.$$

Limit of Sequential Procedure

Theorem

If main assumptions hold, fix an h>0 s.t. $h/M\to 0$ and $h/T\to 0$ as $M,T\to \infty$, and $g_{\alpha}(h,k)$ is defined accordingly, then

Limit of Sequential Procedure

Theorem

If main assumptions hold, fix an h>0 s.t. $h/M\to 0$ and $h/T\to 0$ as $M,T\to \infty$, and $g_{\alpha}(h,k)$ is defined accordingly, then

Limit of Sequential Procedure

Theorem

If main assumptions hold, fix an h > 0 s.t. $h/M \to 0$ and $h/T \to 0$ as $M, T \to \infty$, and $g_{\alpha}(h, k)$ is defined accordingly, then

$$\lim_{M\to\infty} P(\tau_M < T-h) = P\left(\sup_{0< u<\infty} \frac{|W(u+1)-W(u)|}{(u+1)^{\beta}} \le c_{1-\alpha}\right),$$

where $\{W(u), u \ge 0\}$ is a Wiener process.

- Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- 6 Applications
- Further Research
- Summary of Results

Test Statistic

$$\Theta_{M,T} = \max_{1 \leq k \leq T} \left| \overline{X}_M - \frac{1}{h} \sum_{i=k}^{k+h} X_i \right| / g_{\alpha}(h,k).$$

Test Statistic

$$\Theta_{M,T} = \max_{1 \leq k \leq T} \left| \overline{X}_M - \frac{1}{h} \sum_{i=k}^{k+h} X_i \right| / g_{\alpha}(h,k).$$

Theorem

Let X_i , $1 \le i \le M$, be i.i.d. random variables, also fix an h > 0 s.t. $h/M \to 0$ and $h/T \to 0$ as $M, T \to \infty$, and $g_{\alpha}(h, k)$ is defined accordingly, then

$$\Theta_{M,T} \xrightarrow{\mathcal{D}} \sup_{0 < u < \infty} \frac{|W(u+1) - W(u)|}{(u+1)^{\beta}}$$

for $\beta > 1/2$ and W(t) is a Wiener process, or standard Brownian motion.

Equivalence of Tests

Lemma

We assume that assumptions of Theorem 2.2 are satisfied. Then,

$$\mathbf{P}(\tau_{\textit{M}} < \textit{T} - \textit{h}) \xrightarrow{\mathcal{D}} \mathbf{P}\left(\sup_{0 < u < \infty} \frac{|\textit{W}(\textit{u} + 1) - \textit{W}(\textit{u})|}{(\textit{u} + 1)^{\beta}} \geq \textit{c}_{1 - \alpha}\right) = \alpha,$$

where $c_{1-\alpha}$ is the critical value chosen for test of size α .

- Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- 6 Applications
- Further Research
- Summary of Results

Boundary Function Definition

Definition

Let X_i , $0 \le i \le M$ be stationary random variables with mean 0 and unknown long-run variance σ^2 . If main assumptions on partial sums hold, fix an h = h(T) > 0 s.t. $h/M \to 0$ and $h/T \to 0$ as $M, T \to \infty$ then the required boundary function is given by

Boundary Function Definition

Definition

Let X_i , $0 \le i \le M$ be stationary random variables with mean 0 and unknown long-run variance σ^2 . If main assumptions on partial sums hold, fix an h = h(T) > 0 s.t. $h/M \to 0$ and $h/T \to 0$ as $M, T \to \infty$ then the required boundary function is given by

Boundary Function Definition

Definition

Let X_i , $0 \le i \le M$ be stationary random variables with mean 0 and unknown long-run variance σ^2 . If main assumptions on partial sums hold, fix an h = h(T) > 0 s.t. $h/M \to 0$ and $h/T \to 0$ as $M, T \to \infty$ then the required boundary function is given by

$$g(h,k) = \frac{\hat{\sigma}(h+k)^{\beta}}{h^{\beta+1/2}}$$

for $\beta > 1/2$ and $k \in \mathbb{Z}^+$.

Boundary Function Definition

Definition

Let X_i , $0 \le i \le M$ be stationary random variables with mean 0 and unknown long-run variance σ^2 . If main assumptions on partial sums hold, fix an h = h(T) > 0 s.t. $h/M \to 0$ and $h/T \to 0$ as $M, T \to \infty$ then the required boundary function is given by

$$g(h,k) = \frac{\hat{\sigma}(h+k)^{\beta}}{h^{\beta+1/2}}$$

for $\beta > 1/2$ and $k \in \mathbb{Z}^+$.

For i.i.d. random variables, $\hat{\sigma} = \sqrt{S^2}$.

For dependent r.v.s, $\hat{\sigma}$ is estimator of long-run variance.

Boundary Function Implementation

Our final boundary function is implemented as

$$g(h,k) = g(T^{1/2},k) = \frac{\hat{\sigma}(T^{1/2}+k)^{\beta}}{T^{\beta/2+1/4}}.$$

Found more consistent statistical results by using $h = |T^{1/2}|$.

- Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- 4 Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- 6 Applications
- Further Research
- Summary of Results

Simulated Quantities

To obtain critical values for testing, we simulated

$$\Theta(u) = \sup_{0 < t \le u} \frac{|W(t+1) - W(t)|}{(t+1)^{\beta}}.$$

Simulated Quantities

To obtain critical values for testing, we simulated

$$\Theta(u) = \sup_{0 < t \le u} \frac{|W(t+1) - W(t)|}{(t+1)^{\beta}}.$$

Since

$$\sup_{u < t < \infty} \frac{|W(t+1) - W(t)|}{(t+1)^{\beta}} \rightarrow 0 \text{ a.s.},$$

 $\Theta(u)$ will change little after some u.

Upper Quantiles

Table: Asymptotic critical values chosen for Θ with different values of β

Critical Values					
β	<i>c</i> _{90%}	<i>c</i> _{95%}	<i>c</i> _{99%}		
1	1.961971	2.236345	2.725577		
2	1.813968	2.105014	2.625778		
3	1.756301	2.046612	2.586148		
4	1.735013	2.010628	2.568760		

Distribution of $\Theta(u)$

I.I.D. Simulation Example 1

Table: Empirical performance of test size, where $X_i \sim \text{Exp}(\lambda = 2)$

Τ	β	$P(\Theta_{M,T} > c_{.90})$	$P(\Theta_{M,T} > c_{.95})$	$P(\Theta_{M,T} > c_{.99})$
100	1	0.1	0.0688	0.033
	2	0.0774	0.0474	0.0192
	3	0.0612	0.0342	0.0122
	4	0.043	0.0258	0.0088
100	1	0.0854	0.053	0.022
	2	0.0648	0.037	0.013
	3	0.0494	0.026	0.007
	4	0.0346	0.018	0.0046
1000	1	0.1476	0.091	0.0422
	2	0.1276	0.0802	0.0314
	3	0.118	0.0734	0.0274
	4	0.107	0.0646	0.0236
1000	1	0.0896	0.0512	0.0172
	2	0.0812	0.0438	0.014
	3	0.074	0.0388	0.0116
	4	0.0676	0.0358	0.0094
	100	100 1 2 3 4 4 1000 1 2 3 3 4 4 1000 1 2 3 3 4 4 1000 1 2 3 3 4 4 1000 1 2 3 3 3 4 1000 1 2 3 3 3 4 1000 1 2 3 3 3 4 1000 1 2 3 3 3 1000 1 1 1000 1 1 1 1000 1 1 1 1000 1 1 1 1000 1 1 1 1000 1 1 1 1000 1 1 1 1000 1 1 1 1000 1	100 1 0.1 2 0.0774 3 0.0612 4 0.043 100 1 0.0854 2 0.0648 3 0.0494 4 0.0346 1000 1 0.1476 2 0.1276 3 0.118 4 0.107 1000 1 0.0896 2 0.0812 3 0.074	100 1 0.1 0.0688 2 0.0774 0.0474 3 0.0612 0.0342 4 0.043 0.0258 100 1 0.0854 0.053 2 0.0648 0.037 3 0.0494 0.026 4 0.0346 0.018 1000 1 0.1476 0.091 2 0.1276 0.0802 3 0.118 0.0734 4 0.107 0.0646 1000 1 0.0896 0.0512 2 0.0812 0.0438 3 0.074 0.0388

I.I.D. Simulation Example 2

Table: Empirical performance of test size, when $X_i \sim \text{Gamma}(k = 1, \theta = 1)$

М	Τ	β	$P(\Theta_{M,T} > c_{.90})$	$P(\Theta_{M,T} > c_{.95})$	$P(\Theta_{M,T} > c_{.99})$
100	100	1	0.1114	0.074	0.0376
		2	0.081	0.055	0.0248
		3	0.0652	0.0406	0.0142
		4	0.0508	0.0296	0.0082
1000	100	1	0.0758	0.045	0.0176
		2	0.0798	0.0412	0.0136
		3	0.0402	0.0198	0.0046
		4	0.0282	0.0142	0.0022
100	1000	1	0.1466	0.1002	0.016
		2	0.1258	0.0842	0.0378
		3	0.1168	0.0764	0.0318
		4	0.107	0.0718	0.0266
1000	1000	1	0.0908	0.05	0.016
		2	0.0796	0.0442	0.0116
		3	0.073	0.0384	0.0084
		4	0.0658	0.034	0.007

Long-Run Variance

We calculate the long-run variance, $\sigma_{x_t}^2$, by

$$\sigma_{X_t}^2 = \operatorname{Cov}(X_1, X_1) + 2\sum_{j=2}^{\infty} \operatorname{Cov}(X_1, X_j),$$

Long-Run Variance

We calculate the long-run variance, $\sigma_{x_t}^2$, by

$$\sigma_{X_t}^2 = \text{Cov}(X_1, X_1) + 2\sum_{j=2}^{\infty} \text{Cov}(X_1, X_j),$$

For dependent sequences we use the autocovariance function, γ

$$\sigma_{\mathsf{x}_t}^2 = \gamma_0 + 2\sum_{j=2}^{\infty} \gamma_j.$$

These preserve the assumptions we have established on the partial sums, by the Invariance Principle.

Parametric Long-Run Variance

Every stationary process can be represented by Wold decomposition. In Wold form it can be shown that

$$\sigma_{x_t}^2 = \sigma_{\varepsilon}^2 \psi(1)^2$$
.

Lag-Operator Notation

With ARMA(p, q) models we use AR and MA polynomials to approximate the Wold polynomial,

$$\psi(L) = \frac{\theta(L)}{\delta(L)}.$$
 $\theta(L) = 1 + \theta_1 L + ... + \theta_k L^k$

Lag-Operator Notation

With ARMA(p, q) models we use AR and MA polynomials to approximate the Wold polynomial,

$$\psi(L) = \frac{\theta(L)}{\delta(L)}. \quad \theta(L) = 1 + \theta_1 L + \dots + \theta_k L^k$$

For GARCH models we use the form of the unconditional variance, or the ratio of the mean to the ARCH and GARCH component polynomials $\alpha(L)$ and $\beta(L)$ respectively

$$\psi(L)^{2} = \begin{cases} \frac{\omega}{\alpha(L)} & \mathsf{ARCH}(p), \\ \frac{\omega}{\alpha(L) + \beta(L) - 1} & \mathsf{GARCH}(p, q). \end{cases}$$

Parametric Long-Run Variance Example

Take a simple AR(1) model,

$$X_t = \delta_1 X_{t-1} + \varepsilon_t$$
, where $\varepsilon_t \sim N(0, 1)$

Parametric Long-Run Variance Example

Take a simple AR(1) model,

$$X_t = \delta_1 X_{t-1} + \varepsilon_t$$
, where $\varepsilon_t \sim N(0, 1)$

The AR(1) lag polynomial, $\delta(L)=1-\delta_1L$, along with $\sigma_{\varepsilon}^2=1$ give the long-run variance

$$\sigma_{x_t}^2 = \frac{1}{(1 - \delta_1)^2}.$$

Autoregressive Simulation Results

Using the parametric formula for $\sigma_{x_t}^2$, under H_0 we obtained the following simulation results.

Table: Size of the test for AR(1) sequences with $\delta_1 = 0.2$

М	Т	β	$P(\Theta_{M,T} > c_{.90})$	$P(\Theta_{M,T} > c_{.95})$	$P(\Theta_{M,T} > c_{.99})$
100	100	1	0.0588	0.029	0.008
		2	0.0496	0.202	0.0038
1000	100	1	0.0544	0.022	0.002
		2	0.0406	0.0158	0.002
100	1000	1	0.1176	0.057	0.02
		2	0.1062	0.0582	0 .0158
1000	1000	1	0.0734	0.039	0.0075
		2	0.0696	0.0328	0.0054

Non-Parametric Long-Run Variance

For practical applications, we need a non-parametric estimator. We use weights on the estimated acf, $w_{j,M}$, made popular by Newey and West (1987)

$$\hat{\sigma}_{x_t}^2 = \hat{\gamma_0} + 2\sum_{j=1}^{R_M} w_{j,M} \hat{\gamma_j},$$

Non-Parametric Long-Run Variance

For practical applications, we need a non-parametric estimator. We use weights on the estimated acf, $w_{j,M}$, made popular by Newey and West (1987)

$$\hat{\sigma}_{x_t}^2 = \hat{\gamma_0} + 2\sum_{j=1}^{R_M} w_{j,M} \hat{\gamma_j},$$

where $w_{j,M}$ sum to unity and R_M is a truncation lag parameter that satisfies $R_M = O(M^{1/3})$. The argument

$$j/(f(M)+1), \quad f(M)=\left\lfloor 4(M/100)^{2/9} \right\rfloor$$

is passed to the kernel function to derive the weight for index j.

Kernels Used

Kernel Name	Abbreviation	Kernel, $K(z)$, where $0 \le z \le 1$
Bartlett	B.	K(z) = 1 - z
Parzen	P.	$K(z) = \begin{cases} 1 - 6z^2 + 6z^3, & 0 \le z \le 0.5, \\ 2(1-z)^3, & 0.5 < z \le 1, \end{cases}$
Flat-Top	F.T.	$K(z) = \begin{cases} 1, & 0 \le z \le 0.5, \\ 2(1-z), & 0.5 \le z \le 1, \end{cases}$
Quadratic Spectral	Q.S.	$K(z) = \frac{25}{12\pi^2 z^2} \left(\frac{\sin(6\pi z/5)}{6\pi z/5} - \cos(6\pi z) \right)$
Tukey-Hanning	T.H.	$K(z) = \frac{1 + \cos(\pi z)}{2}$

ARMA Simulation Results

Table: Size of the test for ARMA(1,1) sequences with $\delta_1 = 0.2, \theta_1 = 0.3$

Kernel	β	$P(\Theta_{M,T} > c_{.90})$	$P(\Theta_{M,T} > c_{.95})$	$P(\Theta_{M,T} > c_{.99})$
B.	1	0.1096	0.0602	0.0226
	2	0.08	0.0446	0.014
P.	1	0.1362	0.0794	0.0294
	2	0.097	0.0552	0.0192
F.T.	1	0.0736	0.0384	0.0132
	2	0.0542	0.0288	0.0094
Q.S.	1	0.0912	0.0502	0.0182
	2	0.0668	0.0358	0.0116
T.H.	1	0.1036	0.0556	0.021
	2	0.0754	0.0418	0.0134

ARCH/GARCH Simulation Results

Table: Size of the test for ARCH(1) sequences with $\omega = 0.3, \alpha_1 = 0.25$

β	$P(\Theta_{M,T} > c_{.90})$	$P(\Theta_{M,T} > c_{.95})$	$P(\Theta_{M,T} > c_{.99})$
1	0.0832	0.041	0.0134
2	0.0548	0.0258	0.007

Table: Size of the test for GARCH(1,1) sequences with $\omega = 0.3, \alpha_1 = 0.25, \beta_1 = 0.1$

β	$P(\Theta_{M,T} > c_{.90})$	$P(\Theta_{M,T} > c_{.95})$	$P(\Theta_{M,T} > c_{.99})$
1	0.0842	0.0426	0.0138
2	0.0558	0.0272	0.0076

GARCH Simulated Stopping Times

In the simulations, we change parameters of the test examples to evaluate results of sequential test under H_A .

Figure: Simulated stopping time of ARCH(1), GARCH(1,1) processes

- 1 Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- 6 Applications
- Further Research
- Summary of Results

Stock Returns

Need to convert monthly price to log return r_t .

Stock Returns

Need to convert monthly price to log return r_t .

Take ratio of prices at time t, S_t , and time t - 1, S_{t-1} , to get

$$\frac{S_t}{S_{t-1}}$$
.

Stock Returns

Need to convert monthly price to log return r_t .

Take ratio of prices at time t, S_t , and time t - 1, S_{t-1} , to get

$$\frac{S_t}{S_{t-1}}$$
.

Then take log to get return series,

$$r_t = \log\left(\frac{S_t}{S_{t-1}}\right) = \log(S_t) - \log(S_{t-1}).$$

DJIA Test Setup

Figure: Dow-Jones Industrial log monthly stock returns and acf

DJIA Test Results

Figure: Dow-Jones Industrial log monthly stock returns and stop time

Stocks Used

Group Name	Tickers
Loss	AIG, AXP, BAC, C, GE, GS, JPM, ZION
Neutral	AZO, CLX, DLTR, JNJ, WMT
Gain (Bubble)	BTC, CSCO, GPRO, MSFT, N225, QCOM

Other Stop Times

Figure: Stock return stop times

Week Stop TimeMonth Stop Time

- Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- 4 Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- 6 Applications
- Further Research
- Summary of Results

Power function of sequential test.

Power function of sequential test.

How powerful is it for different random variables?

Power function of sequential test.

How powerful is it for different random variables?

Same consistency as α ?

Power function of sequential test.

How powerful is it for different random variables?

Same consistency as α ?

Can we refine the window of data for shorter intervals? Daily Returns?

Power function of sequential test.

How powerful is it for different random variables?

Same consistency as α ?

Can we refine the window of data for shorter intervals? Daily Returns?

Is it possible to implement this in real-time?

Power function of sequential test.

How powerful is it for different random variables?

Same consistency as α ?

Can we refine the window of data for shorter intervals? Daily Returns?

Is it possible to implement this in real-time?

Can we update the training sample if no change is found?

Power function of sequential test.

How powerful is it for different random variables?

Same consistency as α ?

Can we refine the window of data for shorter intervals? Daily Returns?

Is it possible to implement this in real-time?

Can we update the training sample if no change is found?

Develop R package with implementation interface.

- 1 Introduction
- Model and Test Framework
- Fixed Sample Test Statistic
- Boundary Function
- Simulation
 - Fixed Sample
 - Determining σ
 - Non-Parametric Estimate of σ
- 6 Applications
- Further Research
- Summary of Results

Proper boundary function for convergence of the test statistic.

Proper boundary function for convergence of the test statistic.

Scalable hypothesis test for fixed samples with more practical data assumptions.

Proper boundary function for convergence of the test statistic.

Scalable hypothesis test for fixed samples with more practical data assumptions.

Sequential, semi-parametric test for dependent data when parameters are known or unknown.

Proper boundary function for convergence of the test statistic.

Scalable hypothesis test for fixed samples with more practical data assumptions.

Sequential, semi-parametric test for dependent data when parameters are known or unknown.

Long-run variance estimator under mild assumptions.

