

TOYOCOM

Crystal Units, Crystal Filters Crystal Oscillators

1992/1993

CONTENTS

Crystal Units

- Guidance and definitions 2-10
- Ordering formula 11
- Effective fundamental design series for 1st local oscillators in pager 12
- For reference oscillators of frequency synthesizer and for both analog and digital TCXOS 13
- For 2nd local oscillators in VHF/UHF band radio communications 14, 15
- VCXOs in timing recovery and FM modulator 16
- Ultra miniature crystal unit 17
- Effective fundamental design series for 1st local (2nd local) oscillators in VHF/UHF band radio communications 18
- Effective fundamental design series for clock pulse generators/drivers and for gate array 19
- Ultra miniature resistance weld 20
Holder: UM-5, UM-4
- Ultra miniature resistance weld 21
Holder: UM-1 slim, UM-1, UM-2
- Miniature resistance weld 22
Holder: HC-49/U, HC-43/RW
- High stability cold weld 23
Holder: HC-42/U, HC-43/U
- High stability cold weld 24
Holder: HC-36/U, HC-41/U
- Solder seal 25
Holder: HC-6/U, HC-33/U
- Solder seal 26
Holder: HC-6/U, HC-33/U
- Glass seal 27
Holder: MT-N, RMT-N, SMT-N
- Ultra miniature resistance weld with metal jacket 28
Holder: UM-1 with metal jacket

Crystal filters

- Outline of Toyocom crystal filters 30
- Availability of Toyocom crystal filters 31
- Terms and definitions 32
- Test circuit (Block Type) 33
- Test circuit (HCM Resonator Type) 34
- VHF Block type filters 35
- VHF linear phase HCM filters 36
- VHF HCM filters 37, 38
45MHz fundamental mode
45MHz 3rd overtone mode series

- VHF HCM filter 39
Resonator type filters
- Linear phase crystal filters 40
VHF
- Linear phase crystal filters 41
21.4MHz
- Linear phase crystal filters 42
10.7MHz
- HCM filters 43
21.4MHz, 12.5kHz channel spacing
- HCM filters 44
21.4MHz, 20kHz channel spacing
- HCM filters 45
21.4MHz, 25kHz channel spacing
- HCM filters 46
21.4MHz, 50kHz channel spacing
- HCM filters 47
10.7MHz, 12.5kHz
- HCM filters 48
10.7MHz, 20kHz channel spacing
- HCM filters 49
10.7MHz, 25kHz channel spacing
- HCM filters 50
10.7MHz, 50kHz channel spacing
- HCM filters 51
Miniature package UM-5 for Pager System
- PCM pilot filters 52

Crystal Oscillators

- Introduction 54, 55
- Toyocom oscillators line up 56
- Frequency stability vs. volume 57
- PXO TCO-312 series 58
- VCXO TCO-730 series 59
- VCXO TCO-205 series 60
- TCXO with modulation function TCO-919 series 61
- TCXO TCO-512 series 62, 63
- TCXO with voltage control function TCO-519 64, 65
- TCXO TCO-909 series 66, 67
- OCXO TCO-612, TCO-613, TCO-615 series 68, 69
- OCXO TCO-635, TCO-627, TCO-632 series 70, 71
- DTCXO with voltage control function TCO-101 series 72

Introduction

TOYOCOM is the pioneer of the crystal industry in Japan, and has been supplying both domestic and overseas customers with quality crystal products for over half a century. TOYOCOM products have steadily enjoyed a good reputation in the market. In 1960, TOYOCOM was the first in Japan to successfully mass produce synthetic quartz crystals. Since then, TOYOCOM has expanded its crystal products line from materials to components as well as accumulating crystal technology.

Today, TOYOCOM is one of the leading crystal manufacturers in the world and has a broad products line consisting of quartz bars, blanks, optical devices, crystal units, crystal oscillators (TCXO, OCXO), SAW resonators, SAW filter, crystal filters, monolithic crystal filter, crystal clock oscillators and microprocessor crystals which meet the growing demand in the fields of communications, computers and so on.

This catalog lists a variety of crystal units, filters and oscillators for cellular mobile telephone, cordless telephone and VHF/UHF band radio communications. TOYOCOM is proud of its excellent quality, "just-in-time" delivery, competitive price and customer service. You can count on TOYOCOM.

GUIDANCE AND DEFINITIONS

I. General

Since the famous Curie brothers, the great French physicists, discovered in 1880, the phenomenon of piezoelectricity, quartz crystals have played a major role in the area of electronic components.

Crystal units are capable of extremely stable operation. This stability accounts for the ever-widening application of quartz crystals as frequency or time standards for frequency control, and as filter elements.

TOYOCOM is an overall manufacturer of quartz crystal products including as grown quartz bars, lumbered bars, crystal wafers crystal units, crystal filters, crystal oscillators, optical products, and SAW devices. Among this large variety of quartz products, crystal units have a particularly high reputation for their superior electrical capabilities and reliability. TOYOCOM products cover a very wide frequency range from 1 kHz up to 225 MHz to meet the entire demand spectrum.

II. General Outline of Crystal Units

(1) Mode of Vibration and Orientation Angle

Table 1 refers to the mode of vibration of quartz crystals that are in general use and gives their orientation or cut

angle, frequency range, relations between wafer dimension and frequency, and capacitance ratio. Fig.1 represents a model diagram of the orientation angle for the generally used vibration mode, when the primary temperature coefficient for the frequency-temperature characteristics in the ambient temperature range is zero. As shown in Table 1, the mode of vibration is determined by the frequency range that is used, but its vibration can also be predicted, to some extent. Table 1 should be referred to, when it is attempted to predict the mode.

Fig. 1 Orientation angle of a Z-plate quartz crystal

Table 1 Mode of vibration, orientation angle, frequency and capacitance ratio

Mode of vibration		Orientation angle	Frequency range (kHz)	Frequency (kHz)	Capacitance ratio (Approx.)
Tuning fork		+2° X	24 to 50	$770 \times \frac{w}{l^2}$	450
Flexure		XY	1 to 21	$5700 \times \frac{t}{l^2}$	600
		NT	21 to 85	$5000 \times \frac{w}{l^2}$	900
Extensional		+5° X	50 to 200	$2730 \times \frac{1}{l}$	140
		-18.5° X	60 to 650	$2550 \times \frac{1}{l}$	140
Face Shear		DT	84 to 300	$2080 \times \frac{1}{l}$	450
		CT	250 to 1150	$3080 \times \frac{1}{l}$	400
		SL	300 to 1150	$(460 \times \frac{1}{l})$	450
Thickness Shear		AT fundamental	800 to 5000	$1670 \times \frac{1}{t}$	300~450
		AT fundamental	2000 to 30000	$1670 \times \frac{1}{t}$	230
		AT 3rd overtone	30000 to 75000	$5010 \times \frac{1}{t}$	(2500)
		AT 3rd overtone (EFD)	30000 to 100000	$5010 \times \frac{1}{t}$	(2500)
		AT 5th overtone	50000 to 125000	$8350 \times \frac{1}{t}$	(7500)
		AT 7th overtone	100000 to 225000	$11690 \times \frac{1}{t}$	(17000)
		BT fundamental	2000 to 38000	$2560 \times \frac{1}{t}$	650

GUIDANCE AND DEFINITIONS

(2) Orientation Angle vs. Frequency-Temperature Characteristics

The frequency-temperature characteristics of a quartz crystal can be grouped into two types according to the shape of the corresponding curves. One is ternary or third-order, and the other a quadratic or second-order curve. Fig.2 shows an AT cut characteristic representing a third-order curve. AT cut crystal units are most extensively used and are characterized in that they produce small frequency changes in response to temperature changes

in the ambient temperature range. Fig.3 gives the frequency-temperature characteristics for various cuts that are consistent with a second-order curve. Excluding the AT cut, most of the vibration modes have these characteristics. The frequency-temperature characteristics of the vibration modes defined in section (1) need checking to determine whether they comply with the equipment or machine specifications. AT-cuts are recommended unless some special specifications apply.

Fig. 2 AT-cut frequency-temperature characteristics

Fig. 3 Frequency-temperature characteristics

GUIDANCE AND DEFINITIONS

(3) Equivalent Circuits and Constants

Quartz crystal units can be expressed in terms of the equivalent circuits of Fig.4 in the vicinity of the resonance frequencies. These equivalent circuit constants are:

- L₁: motional inductance
- C₁: motional capacitance
- R₁: series resistance
- C₀: shunt capacitance

Fig.5 gives the admittance loci for the quartz crystal unit. As can be seen from this diagram, there is a particular relationship between the equivalent circuit form and the frequency as well as the resistance for each and all circuit conditions. The constants can be expressed by the following equations:

f _s (Series resonance frequency)	$= 1/(2\pi\sqrt{L_1 C_1})$
f _p (Parallel resonance frequency)	$= 1/[2\pi\sqrt{L_1 \cdot C_1 \cdot C_0 / (C_1 + C_0)}]$ $= f_s [1 + 1/(2\gamma)]$
γ (Capacitance ratio)	$= 2\pi \cdot f_s \cdot C_0 / C_1$
Q (Quality factor)	$= 2\pi \cdot f_s \cdot L_1 / R_1$ $= 1/(2\pi \cdot f_s \cdot C_1 \cdot R_1)$
M (Figure of merit)	$= Q/\gamma = 1/2 (2\pi \cdot f_s \cdot C_0 \cdot R_1)$

Fig. 4 Equivalent electrical circuit of quartz crystal unit

Fig. 5 Admittance locus

GUIDANCE AND DEFINITIONS

(4) Frequency-Aging Characteristics

TOYOCOM has established a long tradition and continuity in developing and supplying quartz crystal units with outstanding aging characteristics. Fig.6 shows the

typical frequency-aging characteristics of various crystal units. Fig.7 represents the aging characteristics of high-precision crystal units.

Fig. 6 Frequency Aging Characteristics

Fig. 7 Frequency Aging Characteristics of Reference Oscillator Crystal Units

(5) Measurement System

TOYOCOM has the following measurement systems at its disposal to meet a universal spectrum of user requirements.

1. Crystal Impedance Meter TS-710/TSM
Frequency Range: 2.5 to 1100 kHz (to US military standards)
2. Crystal Impedance Meter TS-330/TSM
Frequency Range: 1.0 to 15 MHz (to US military standards)
3. Crystal Impedance Meter TS-683/TSM
Frequency Range: 10 to 140 MHz (to US military standards)
4. Crystal Impedance Meter AN-15/TSM
Frequency Range: 75 to 200 MHz (to US military standards)

5. π -network method

Frequency Range: 1.0 to 225 MHz (to IEC pub. 444)

The crystal impedance meters listed above use the oscillation method. The advantage of this system is that it provides a simple measurement method, allowing high excitation level measurement over a wide frequency range. Its disadvantage, however, is that it has inferior accuracy. The π -network method, however, has high measurement accuracy and permits measurement at a low excitation level.

At high frequencies exceeding the frequency range, the round-robin technique provides mutual interchangeability within 0.5 ppm using the π -network method.

GUIDANCE AND DEFINITIONS

III. Crystal Oscillator Circuit

To construct oscillator circuits with crystal units, it is necessary to take the following details into consideration.

(1) Example of a Basic Oscillator Circuit (for Fundamental)

Fig.8 shows basic oscillator circuit (for fundamental). If oscillation occurs under normal conditions, the relationship between the reactance X_e of the crystal unit and the reactance $-X$ of the circuit, as well as the relationship between the impedance R_e of the crystal unit and the impedance $-R$ (negative resistance) of the circuit, comply with the following equation.

$$X_e = -X$$

$$R_e = |-R| \dots (1)$$

To ensure stable oscillation, it is necessary that the impedance of the circuit should be $-R > R_e$. When we take the example of Fig.8, we have

$$-R = -gm / (\omega^2 \cdot C_{01} \cdot C_{02}) \dots (2)$$

$$= -1.55 \text{ k}\Omega$$

Where gm is the mutual conductance of oscillation stage transistor, ω is angular frequency of oscillation, and C_v is the trimmer capacitor for frequency adjustment.

(2) Load Capacitance and Frequency

If the series resonance frequency is taken as f_s , the motional capacitance of the crystal unit as C_1 , and shunt capacitance as C_0 , we have the following equation:

$$\frac{\Delta f}{f_s} = \frac{f_L - f_s}{f_s} = \frac{1}{2(C_0/C_1)} \cdot \frac{1}{1 + CL/C_0} \dots (3)$$

If the resonance frequency with the load capacitance is f_L and difference between f_L and f_s is Δf .

In the example of Fig.8, the load capacitance may be considered as being the capacitance of C_{01} , C_{02} , and C_{03} + C_v connected in series if the stray capacitance of transistor and pattern are included. In other words, the load capacitance C_L is

$$C_L = \left(\frac{1}{C_{01}} + \frac{1}{C_{02}} + \frac{1}{C_{03} + C_v} \right)^{-1} \dots (4)$$

Fig. 8 Example of a oscillator circuit with a 10 MHz fundamental

Fig. 9 Characteristics of frequency vs. load capacitance

GUIDANCE AND DEFINITIONS

If we assume that the manufacturing tolerance for a crystal unit is in the order of ± 10 ppm, it will be necessary to have a trimmer C_v to change the frequency to an extent of ± 15 ppm so as to compensate the variation of the circuit elements and the changes due to aging.

If C_1 and C_0 for the crystal unit are given, and if load capacitance changes from C_{L1} to C_{L2} , then the "Pulling range" (P.R.) will be:

$$P.R. = \left| \frac{f_{L1} - f_{L2}}{f_r} \right| = \left| \frac{C_1 C_1 (C_{L2} - C_{L1})}{2(C_0 + C_{L1})(C_0 + C_{L2})} \right| \dots (5)$$

The "Pulling Sensitivity" (S) near C_L is:

$$S = \frac{(\Delta f/f_r)}{C_L} = - \frac{C_1}{2(C_0 + C_L)^2} \dots (6)$$

If C_L in equation (6) is given a small value, the pulling sensitivity will increase. Conversely, however, its stability will decrease. Fig.9 shows the load capacitance characteristics for the resonance frequency at $C_1=16\text{pF}$ and $C_0=3.5\text{pF}$. For this purpose, the results that are calculated with substituting the values $C_L=30\text{pF}$, $C_{L1}=27\text{pF}$, and $C_{L2}=33\text{pF}$ in equation (3), (5), and (6) may be considered as reference data.

It should be considered with due care that if, as shown in equation (7) below, the effective resistance R_L of the crystal unit has a large value, it has difficulty in oscillations.

$$R_L = R_1 \cdot (1 + C_0/C_L)^2 \dots \dots (7)$$

In this equation, R_1 is the equivalent series resistance of the crystal unit.

(3) Overtone Oscillation Circuit (Example)

Fig.10 shows the example of an overtone oscillator circuit. Compared with the fundamental oscillator circuit (Fig.8), it should be noticed that two coils have been added. Let us explain the reason for adding these two coils. First, the coil L_{01} on the emitter side of the transistor consists of C_{02} that is connected in parallel, and a frequency selector circuit. To obtain the desired overtone oscillation, oscillator, a selector circuit is required that suppresses the lower overtones or the fundamental. The condition required for achieving this selectivity, is that the L_{01} and C_{02} parallel resonance frequency f_T ($=1/2\pi\sqrt{L_{01} \cdot C_{02}}$) should be intermediate between the frequency of the order number of the desired overtone and the frequency of the next lower overtone.

Let us now consider the negative resistance referred to above as one of the oscillating conditions. Since the selector coil has been added, equation (2) has changed in the sense that C_{02} has become $C_{02} \cdot 1/\omega^2 \cdot L_{01}$. This gives us:

$$-R = -gm / [\omega^2 \cdot C_{01} \cdot (C_{02} \cdot 1/\omega^2 \cdot L_{01})]$$

Fig. 10 Example of a standard overtone oscillator circuit

If we take the example of Fig.8 in which $-R$ was $-1.55 \text{k}\Omega$ and if we use the same C_{01} and C_{02} , then we will see that if the frequency is 75MHz, for example, the negative resistance is as small as $-R = -27 \Omega$.

GUIDANCE AND DEFINITIONS

Consistently, C_{01} and C_{02} have to be given sufficiently small values for the overtones. The overtone oscillator circuit calls for another area of particular care. This is the frequency pulling range. In equation (4), the motional capacitance C_1 of the crystal unit with the same thickness and the same electrode dimensions is roughly inversely proportional to the square of the overtone order number.

This, consequently, means that the frequency pulling range becomes narrower as a result. If, however, C_{01} and C_{02} assume small values in order to ensure a negative resistance, then this pullability will be made even more difficult. By contrast, however, this increases the frequency stability with respect to external changes (for example: changes associated with the circuit). The coil L_2 is sometimes added to ensure a suitable frequency pulling range. Coil L_2 is generally referred to as an expansion coil. As shown in Fig.11, the amount of frequency change from the series resonance, with the expansion coil and load capacitance parallel-connected to the crystal unit, can be expressed as:

$$\frac{\Delta f}{f_r} = \frac{1}{2(Co/C1)} \cdot \frac{1}{1 + \frac{CL}{Co(1 - \omega^2 LaCL)}} \quad \dots (8)$$

If $La \rightarrow 0$ in equation (8), it should be checked that equation (4) is met. If La is introduced, it should also be checked that the trimming range is increased.

As an example dissociated from the overtone oscillator circuit, Fig.12 shows an example of a pager circuit, a type of circuit that has been increasing particularly in recent years. This type of circuit is particularly designed for applications with a low power supply voltage of 1 to 1.1 V and when a low current consumption is required.

The coil and resistance connected in parallel with the crystal unit respectively, are a Co cancelling coil for the crystal unit and a resistance for avoiding abnormal oscillations. The LC circuit on the collector side of the transistor is a frequency multiplier circuit.

Fig. 11 Equivalent circuit with an added expander coil

Fig. 12 Example of 1st local oscillator for a pager

(4) Prior to Circuit Pattern Design

If a pattern design is required for a crystal oscillator circuit in the high frequency range, it is the essential to consider the following points.

- To minimize the stray capacitance of oscillation loop, the length of the pattern should be designed as short as possible.
- If other components and the wire pattern are crossed in the oscillation loop, it is essential to suppress the stray capacitance increase to the greatest possible extent.

GUIDANCE AND DEFINITIONS

IV. EFD Series Crystal Unit

The EFD series crystal unit is a revolutionary concept in that it is an overtone crystal unit that can be used as a fundamental crystal unit at the same time.

As has been explained in the previous chapter, a normal overtone oscillator circuit is subject to many limiting conditions and problems. With the present crystal unit, these problem areas have been improved to achieve a simple circuit that does not present any danger of abnormal oscillation and that is capable of achieving a low power consumption.

(1) Principle of the EFD Series Crystal Unit

Fig.13 shows the frequency response characteristics of an EFD series crystal unit. Compared with conventional crystal units, it has a large fundamental series resistance which is several times that of the third-overtone mode.

These characteristics have imparted to the vibrator itself a frequency-selecting capability and have done away with the selector coil described in chapter III, in other words, the tuning coil.

The EFD series crystal unit uses a conventional AT cut wafer and differs from conventional vibrators only in terms of the electrode structure, while all other features are exactly identical with the conventional third overtone AT cut crystal unit.

Fig. 13 Typical data of harmonic response on EFD crystal units

(2) Example of a Circuit Used for the EFD Series Crystal Unit

Fig.14 shows an example of the type of circuit used for the EFD crystal. It can be easily recognized that, except for the expansion coil, the circuit is identical to the 10 MHz circuit described in Fig.8.

The expansion coil may also be omitted, if this is specifically requested by the users. It so, it is possible to develop an overtone oscillator that represents a completely coil-less circuit.

Fig.15 is a block diagram for a high-speed CPU clock generator. In this generator, the coil is completely absent.

(3) Particular Features of the EFD Series Crystal Unit

- Parasitic oscillation-free
- Ideal for low power consumption circuit development
- Adjustment-free
- Permits the development of a coil-less circuit
- Ideal for set miniaturization

Fig. 14 Example of 1st local oscillator in the 90 MHz band using EFD series crystal units

Fig. 15 Example of a high-speed CPU clock generator using an EFD series crystal unit

GUIDANCE AND DEFINITIONS

V. Determining Specifications and Submission of Inquiries

TOYOCOM has a long-standing record as an integrated quartz crystal manufacturer and is therefore in a position to offer a wide range of services on the basis of their extensive experience. We have established our own internal specifications to cover reliability aspects over and above the electrical performance features of these products. When addressing inquiries to TOYOCOM, please be sure to state the particular application purpose (for example, pager, portable telephone, etc.) along with the required performance data. This will allow us to supply the product that exactly corresponds to your needs.

(1) Inquiries and Orders

- ① Holder: Select from the TOYOCOM catalogue details the desired dimension sealing or retainer method
- ② Nominal Frequency: Nominal frequency or channel frequency and calculation formula for these
- ③ Mode of oscillation: Cut or mode description and order of overtone
- ④ Frequency tolerance: Manufacturing tolerance at reference temperature ± 5 ppm is possible as an option.
Please state clearly if frequency shift is required
- ⑤ Equivalent resistance: Normally, the maximum value is specified
- ⑥ Load capacitance: Please state the design load capacitance
To enhance the accuracy even further, it is recommended to ask for a round-robin procedure to be applied for sample crystal units
- ⑦ Frequency-temperature characteristics: Specify the temperature range or particular temperature along with the standard temperature/frequency change
Example: ± 5 ppm over -10 to $+60^\circ\text{C}$ (referring to 25°C)
- ⑧ Drive level: Specify the operation level
This level essentially implies the power that is consumed by the crystal unit
- ⑨ Option: TOYOCOM offers the following options in an endeavor to provide crystal unit that are even easier to use

- Suitable for IR reflow process
- Metal jacket (page 28 in this catalogue) for easier surface mounting
- EFD series for circuit simplification and adjustment-free operation (see page 18, 19)
- Insulation pad for resistance-welded holder

⑩ Marking:

TOYOCOM's standard marking will be supplied unless specifically requested otherwise

(2) Ordering Formula

The following page may be used as form for entering the examination results in response to the various items of section (1). Please make a copy for your use. For options and details regarding required markings, please enter where appropriate. A separate column has also been provided for applications. Please enter where appropriate.

Holder _____

Nominal frequency _____ Hz

Mode of vibration _____

Frequency tolerance (at $25 \pm 3^\circ\text{C}$) _____ ppmLoad capacitance (C_L) _____ pFFrequency stability in operating
temperature range (refered to 25°C) _____ ppmOperating temperature range _____ $^\circ\text{C}$ to _____ $^\circ\text{C}$ Resonance resistance (R_r) _____ Ω Motional capacitance (C_1) _____ fFShunt capacitance (C_0) _____ pF

Drive level _____ mW

Other requirements, if any

for 1st local oscillators in pager

HOLDER: UM-5, UM-4, UM-1

Features

- Excellent shock proof
- Excellent frequency aging characteristics
- Small deviation from the specified frequency pulling range
- High frequency reproducibility

FREQUENCY RANGE : 30 to 175MHz

METHOD OF SEALING: Resistance Weld

MODE OF VIBRATION : AT-cut 3rd. 5th
Thickness shear

LOAD CAPACITANCE : (S)

DRIVE LEVEL : $2\mu\text{W}$

Frequency tolerance (at $25\pm3^\circ\text{C}$)

AA	A	B
$\pm 5\text{ppm}$	$\pm 10\text{ppm}$	$\pm 15\text{ppm}$

Aging

AA	A	B
$\pm 1\text{ppm/year}$	$\pm 2\text{ppm/year}$	$\pm 4\text{ppm/year}$

Resonance resistance (R_r)

Frequency	Mode	R_r	
		UM-5 UM-4	UM-1
30 to 90 MHz	3rd	60Ω	45Ω
60 to 150 MHz	5th	90Ω	60Ω

Outline drawing

Size in mm

Frequency stability

(in operating temperature range referring 25°C)

	R	RS	S	T	V	W
	± 3 ppm	± 4 ppm	± 5 ppm	± 7.5 ppm	± 10 ppm	± 15 ppm
EE	0 to 45°C					
E	0 to 50°C					
F	-5 to 55°C					
FG	-10 to 50°C					
G	-10 to 60°C					
H	-15 to 65°C					
J	-20 to 70°C					

Our proposal in multiplication stage

Antenna frequency (MHz)	Crystal frequency (MHz)	Multiplication order
40	40	Direct
150	75	x2
450	75	x2x3
900	75	x2x3x2

UM-5 (Resistance weld)

UM-4 (Resistance weld)

UM-1 (Resistance weld)

mm	inch
0.05	.002
0.2	.008
0.35	.014
2.3	.091
3.1	.122
3.75	.148
4.5	.177
5.8	.228
7.0	.276
7.8	.307
12.7	.500

for reference oscillators of frequency synthesizer and for both analog and digital TCXOs

Holder : HC-43/U, HC-49/U, UM-1, UM-2

Features

- Small deviation from the specified frequency pulling range
- Excellent reproducibility
- Excellent continuity for frequency-temperature characteristics
- Small deviation of inflection temperature

Frequency (MHz)

3.200	3.579545	3.600	3.84	4.096	4.800	5.120
6.400	—	7.200	7.68	8.192	9.600	10.240
12800	14.31818	14.400	15.36	—	—	—

Frequency tolerance (at $25 \pm 3^\circ\text{C}$)

AA	A	B
$\pm 5\text{ppm}$	$\pm 10\text{ppm}$	$\pm 15\text{ppm}$

Aging

AA	A
$\pm 0.5\text{ppm/year}$	$\pm 1\text{ppm/year}$

Resonance resistance (R_r)

Frequency	HC-43/U	HC-49/U	UM-1	UM-2
3.2 to 4 MHz	150Ω max	—	—	—
4 to 5 MHz	70Ω	70Ω	—	—
5 to 7 MHz	60Ω	60Ω	—	—
7 to 10 MHz	30Ω	30Ω	—	—
More than 10 MHz	25Ω	25Ω	30Ω	30Ω

Outline drawing

Size in mm

HC-43/U (Cold weld)

UM-1 (Resistance weld)

Frequency stability

(in operating temperature range referring 25°C)

	R ±3 ppm	S ±5 ppm	T ±7.5 ppm	V ±10 ppm	W ±15 ppm	X ±20 ppm	Y ±30 ppm	Z ±50 ppm
E 0 to 50°C								
F -5 to 55°C								
G -10 to 60°C								
H -15 to 65°C								
I -20 to 70°C								
J -25 to 75°C								
K -30 to 80°C								
L -40 to 90°C								
M -55 to 105°C								

MODE OF VIBRATION : AT-cut, Fundamental

DRIVE LEVEL : 0.1mW max.

LOAD CAPACITANCE (C_L) : (S) or 20pF or 30pF

* For TCXO use, you can specify any preferable 1st-order temperature coefficient at the inflection temperature.

HC-49/U (Resistance weld)

UM-2 (Resistance weld)

mm	inch
0.02	.0008
0.03	.0012
0.05	.002
0.2	.008
0.35	.014
0.4	.016
0.43	.017
0.45	.018
2.3	.091
2.7	.106
3.1	.122
3.5	.138
3.6	.142
3.61	.149
4.65	.183
4.88	.192
5.00	.197
5.8	.228
7.0	.276
7.8	.307
8.0	.315
8.6	.339
9.4	.370
9.5	.374
10.0	.394
10.21	.402
11.05	.435
11.5	.453
12.7	.500
13.46	.531
13.5	.531
20.0	.787

for 2nd local oscillators in VHF/UHF band radio communications

Holder HC-18/U, HC-43/U, HC-49/U

FREQUENCY 10.245MHz, 11.155MHz
APPLICATION 2nd local oscillator in conjunction with 10.7MHz IF

Frequency tolerance (at $25 \pm 3^\circ\text{C}$)

A	B	C	D
$\pm 10\text{ppm}$	$\pm 15\text{ppm}$	$\pm 20\text{ppm}$	$\pm 30\text{ppm}$

MODE OF VIBRATION AT-Cut, Fundamental

Frequency stability
 (in operating temperature range referring 25°C)

	S	T	V	W	X	Y	Z
	± 5 ppm	± 7 ppm	± 10 ppm	± 15 ppm	± 20 ppm	± 30 ppm	± 50 ppm
E 0 to 50°C							
F -5 to 55°C							
G -10 to 60°C							
H -15 to 65°C							
J -20 to 70°C							
K -25 to 75°C							
L -30 to 80°C							
M -40 to 90°C							
N -55 to 105°C							

■ Standard products

DRIVE LEVEL : $0.5 \pm 0.1\text{mW}$
LOAD CAPACITANCE (C_L) : $30 \pm 0.3\text{pF}$
RESONANCE RESISTANCE (R_r) : 40Ω max.
SHUNT CAPACITANCE (C_o) : 5.5pF max.

Holder UM-1, UM-2, UM-5, HC-43/U, HC-18/U, HC-49/U

FREQUENCY 20.945MHz, 21.855MHz
APPLICATION 2nd local oscillator in conjunction with 21.4MHz IF

Frequency tolerance (at $25 \pm 3^\circ\text{C}$)

A	B	C	D
$\pm 10\text{ppm}$	$\pm 15\text{ppm}$	$\pm 20\text{ppm}$	$\pm 30\text{ppm}$

MODE OF VIBRATION AT-Cut, Fundamental

Frequency stability
 (in operating temperature range referring 25°C)

	S	T	V	W	X	Y	Z
	± 5 ppm	± 7 ppm	± 10 ppm	± 15 ppm	± 20 ppm	± 30 ppm	± 50 ppm
E 0 to 50°C							
F -5 to 55°C							
G -10 to 60°C							
H -15 to 65°C							
J -20 to 70°C							
K -25 to 75°C							
L -30 to 80°C							
M -40 to 90°C							
N -55 to 105°C							

■ Standard products

DRIVE LEVEL : $0.5 \pm 0.1\text{mW}$
LOAD CAPACITANCE (C_L) : $30 \pm 0.3\text{pF}$
RESONANCE RESISTANCE (R_r) : 30Ω max.
SHUNT CAPACITANCE (C_o) : 5.5pF max.

Outline drawing

Size in mm

HC-18/U (Solder seal)

HC-43/U (Cold weld)

HC-49/U (Resistance weld)

HC-43/U-1 L=13.5
 HC-43/U-3 L=11.1

mm	inch
0.02	.0008
0.05	.002
0.07	.0068
0.43	.017
0.45	.018
3.81	.150
4.65	.183
4.88	.192
5.0	.200
10.0	.394
10.21	.402
11.05	.435
11.5	.453
12.7	.500
13.46	.530
13.5	.531
15.0	.591
20.0	.787

for 2nd local oscillators in VHF/UHF band radio communications

Holder UM-1, UM-2, UM-5

FREQUENCY : 34.300 MHz, 44.545 MHz, 45.455 MHz,
54.545 MHz, 54.570 MHz, 57.6575 MHz,
59.300 MHz, 69.545 MHz

APPLICATION : 2nd local oscillator in conjunction with
45 MHz, 55 MHz and 70 MHz IF

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

MODE OF VIBRATION AT-Cut 3rd Overtone

Frequency stability

(in operating temperature range referring 25°C)

	S	T	V	W	X	Y	Z
	±5 ppm	±7 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm
E	0 to 50°C						
F	-5 to 55°C						
G	-10 to 60°C						
H	-15 to 65°C						
J	-20 to 70°C						
K	-25 to 75°C						
L	-30 to 80°C						
M	-40 to 90°C						
N	-55 to 105°C						

■ Standard products

DRIVE LEVEL : 0.5±0.1mW

LOAD CAPACITANCE : Series Resonance

RESONANCE RESISTANCE (R_f) : 50Ω max.
(60Ω max. for UM-5)

SHUNT CAPACITANCE (C_o) : 4.5pF max.

Holder UM-1, UM-2, UM-5

FREQUENCY : 79.300 MHz, 81.745 MHz, 89.545 MHz

APPLICATION : 2nd local oscillator in conjunction with
90 MHz IF

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

MODE OF VIBRATION AT-Cut 5th Overtone

Frequency stability

(in operating temperature range referring 25°C)

	S	T	V	W	X	Y	Z
	±5 ppm	±7 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm
E	0 to 50°C						
F	-5 to 55°C						
G	-10 to 60°C						
H	-15 to 65°C						
J	-20 to 70°C						
K	-25 to 75°C						
L	-30 to 80°C						
M	-40 to 90°C						
N	-55 to 105°C						

■ Standard products

DRIVE LEVEL : 0.5±0.1mW

LOAD CAPACITANCE : Series Resonance

RESONANCE RESISTANCE (R_f) : 70Ω max.
(90Ω max. for UM-5)

SHUNT CAPACITANCE (C_o) : 4.5pF max.

Outline drawing

Size in mm

UM-1 (Resistance weld)

UM-2 (Resistance weld)

UM-5 (Resistance weld)

mm	inch
0.03	.0012
0.05	.002
0.2	.008
0.35	.014
0.40	.016
2.3	.091
2.7	.106
3.1	.122
3.5	.138
3.75	.148
6.0	.236
7.0	.276
7.8	.307
8.0	.315
8.6	.339
9.4	.371
9.5	.374
12.7	.500
20.0	.787

VCXOs IN TIMING RECOVERY AND FM MODULATOR

Holder: HC-43/U, HC-49/U, UM-1

Features

- Small deviation from the specified frequency pulling range
- Phase jitter free
- Excellent distortion characteristics
- Wide capture range

FREQUENCY RANGE :

METHOD OF SEALING:

MODE OF VIBRATION : AT-cut Fundamental, 3rd
Thickness shear

LOAD CAPACITANCE : (S), 20pF, 30pF

DRIVE LEVEL : 0.5mW max.

Frequency tolerance (at $25 \pm 3^\circ\text{C}$)

A	B
$\pm 10\text{ppm}$	$\pm 15\text{ppm}$

Aging

A	B
$\pm 1\text{ppm/year}$	$\pm 2\text{ppm/year}$

Resonance resistance (R_r)

Frequency	Mode	R_r	
		HC-43/U HC-49/U	UM-1
3.2 to 4 MHz	Fund	150Ω max	—
4 to 5 MHz	Fund	70Ω	—
5 to 7 MHz	Fund	60Ω	—
7 to 10 MHz	Fund	30Ω	—
10 to 30 MHz	Fund	25Ω	30Ω
30 to 52 MHz	Fund	—	40Ω
30 to 100 MHz	3rd	40Ω	45Ω

Outline drawing

Size in mm

HC-43/U-1 L=13.5
HC-43/U-3 L=11.1

HC-49/U (Resistance weld)

HC-49/U-1 L=13.5
HC-49/U-3 L=11.1

UM-1 (Resistance weld)

mm	inch
0.02	.0008
0.2	.008
0.35	.014
0.43	.017
0.45	.018
2.30	.091
3.10	.122
3.60	.142
3.75	.148
3.81	.150
4.65	.183
4.88	.192
5.00	.200
7.0	.276
7.8	.307
8.0	.315
10.0	.394
10.21	.402
11.05	.435
11.5	.453
12.7	.500
15.0	.591

ULTRA MINIATURE CRYSTAL UNIT

for tone squelch and for time reference of digital pagers

Feature

Ultra miniaturized holder

FREQUENCY : 455 kHz (Holder HC-43/U)

1000 kHz (Holder HC-43/U, UM-1)

1008 kHz (Holder HC-43/U, UM-1)

LOAD CAPACITANCE : (S)

MODE OF VIBRATION : SL-cut

DRIVE LEVEL : 0.5mW

Frequency tolerance

A	B	C
±100ppm	±200ppm	±3000ppm

for (A) and (B) measurement is made at 25°C±3°C, if special condition is not required.

for (C) overall tolerance

Resonance resistance (R_r)

Holder	R_r
HC-43/U	3kΩ max
UM-1	5kΩ

Frequency stability

(in operating temperature range referring 25°C for (A) and (B))

A	B	C
±100ppm(-10 to 50°C)	±300ppm(-10 to 60°C)	±3000ppm(-10 to 60°C)

for (C) overall tolerance

Outline drawing

Size in mm

HC-43/U-1 L=13.5
HC-43/U-3 L=11.1

UM-1 (Resistance weld)

mm	inch
0.005	.0002
0.2	.008
0.35	.014
0.45	.018
2.3	.091
3.1	.122
3.6	.142
3.75	.148
5.0	.197
7.0	.276
7.8	.307
8.0	.315
10.0	.394
11.1	.437
11.5	.453
12.7	.500
13.5	.531
15.0	.591

EFFECTIVE FUNDAMENTAL DESIGN SERIES

for 1st local (2nd local) oscillators in VHF/UHF band radio communications

Effective Fundamental design achieves an efficient AT-cut 3rd overtone mode crystal unit while maximizing suppression of its fundamental mode response to make oscillation circuits coil-less and the same as the fundamental mode

Features

- Adjustment-free — oscillation of the overtone frequency in tuning coil-less circuits
- Excellent shock-proof characteristics with the overtone mode
- Parasitic oscillation-free
- Maintenance-free

Frequency stability

(in operating temperature range referring 25°C)

		R ±3 ppm	RS ±4 ppm	S ±5 ppm	T ±7.5 ppm	V ±10 ppm	W ±15 ppm
EE	0 to 45°C						
E	0 to 50°C						
F	-5 to 55°C						
FG	-10 to 50°C						
G	-10 to 60°C						
H	-15 to 65°C						
J	-20 to 70°C						

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

HOLDER : UM-1, UM-5
 FREQUENCY RANGE : 30MHz to 100MHz
 MODE OF VIBRATION : AT-cut 3rd. Overtone EFD
 LOAD CAPACITANCE : Series Resonance
 DRIVE LEVEL : 2μW, 0.1mW, 0.5mW

Aging

AA	A	B
±1ppm/year	±2ppm/year	±4ppm/year

Resonance resistance (R_r)

Frequency	UM-1	UM-5
30 to 40 MHz	80Ω max	—
40 to 100 MHz	60Ω	70Ω

Outline drawing

Size in mm

UM-1 (Resistance weld)**UM-5 (Resistance weld)**

mm	inch
0.03	.001
0.05	.002
0.2	.008
0.35	.014
0.4	.016
1.6	.063
2.3	.091
2.6	.102
2.7	.106
3.1	.122
3.5	.138
3.75	.148
4.08	.162
5.8	.228
7.0	.276
7.8	.307
8.0	.315
8.6	.339
9.4	.370
9.5	.374
12.7	.500
20.0	.787

EFFECTIVE FUNDAMENTAL DESIGN SERIES

for clock pulse generators/drivers and for gate array

Holder: HC-49/U

Features

- Oscillation in overtone frequency with coil-less circuit and adjustment-free
- Excellent shock-proof with the overtone mode
- Parasitic oscillation-free
- Maintenance-free

FREQUENCY : 32.000 MHz
LOAD CAPACITANCE : (S), 10 pF
MODE OF VIBRATION : AT-cut 3rd Overtone EFD
DRIVE LEVEL : 0.5 ± 0.1 mW
SHUNT CAPACITANCE : 7 pF max.

Resonance resistance (R_r)

70Ω max

Remarks

Other frequencies and specifications are available on request.

Frequency tolerance (at 25±3°C)

±50ppm

Frequency stability

(in operating temperature range referred to 25°C)

±50ppm (-10 to 70°C)

Outline drawing

Size in mm

HC-49/U (Resistance weld)

	mm	inch
0.03	.001	
0.09	.002	
0.2	.008	
0.35	.014	
0.4	.016	
1.6	.063	
2.3	.091	
2.6	.102	
2.7	.106	
3.1	.122	
3.5	.138	
3.75	.148	
4.88	.192	
7.0	.276	
7.8	.307	
8.0	.315	
8.6	.339	
9.4	.370	
9.5	.374	
12.7	.500	
20.0	.787	

ULTRA MINIATURE RESISTANCE WELD Holder: UM-5, UM-4

These crystal units are of ultra-miniaturized metal holder types introducing resistance weld sealing method.

Lead wire type terminals are provided.

This series has following features:

Shock-proof ultra-miniaturized holder

Excellent frequency aging characteristics

High frequency reproducibility

Small deviation from the specified frequency pulling range

FREQUENCY RANGE : 10MHz to 200MHz

METHOD OF SEALING : Resistance Weld

MODE OF VIBRATION : AT-cut

Fundamental, 3rd, 5th, 7th

Thickness-shear

LOAD CAPACITANCE : (S), 20pF, 30pF,

DRIVE LEVEL : 0.5mW, 1mW

Frequency stability

(in operating temperature range referring 25°C)

(Fundamental)	R	S	T	V	W	X	Y	Z
	±3 ppm	±5 ppm	±7.5 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm
E 0 to 50°C								
F -5 to 55°C								
G -10 to 60°C								
H -15 to 65°C								
I -20 to 70°C								
J -25 to 75°C								
K -30 to 80°C								
L -40 to 90°C								
M -55 to 105°C								

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

Aging

AA	A	B
±1ppm/year	±2ppm/year	±4ppm/year

Resonance resistance (R_f)

Frequency	Mode	R_f
10 to 15 MHz	Fund	60Ω max
15 to 20 MHz	Fund	45Ω
20 to 30 MHz	Fund	30Ω
30 to 90 MHz	3rd	60Ω
60 to 150 MHz	5th	90Ω
90 to 200 MHz	7th	180Ω

Outline drawing

Size in mm

UM-5 (Resistance weld)

UM-4 (Resistance weld)

mm	inch
0.05	.002
0.2	.008
0.35	.014
2.3	.091
3.1	.122
7.8	.307
4.5	.177
5.8	.228
7.0	.276
7.8	.307
12.7	.500

ULTRA MINIATURE RESISTANCE WELD

Holder: UM-1 SLIM (Similar to HC-44/U),
UM-1 (Similar to HC-80/U), UM-2

These crystal units are of ultra-miniaturized metal holder types introducing resistance weld sealing method.

Lead wire type terminals are provided.

This series has following features:

Ultra-miniaturized holder

Excellent frequency aging characteristics

High frequency reproducibility

Small deviation from the specified frequency pulling range

FREQUENCY RANGE : 10MHz to 200MHz

METHOD OF SEALING : Resistance Weld

MODE OF VIBRATION : AT-cut

Fundamental, 3rd, 5th, 7th

Thickness-shear

LOAD CAPACITANCE : (S), 20pF, 30pF,

DRIVE LEVEL : 0.5mW, 1mW, 2mW

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

Aging

AA	A	B
±1ppm/year	±2ppm/year	±4ppm/year

Resonance resistance (R_r)

Frequency	Mode	R_r
10 to 15 MHz	Fund	40 Ω max
15 to 30 MHz	Fund	25 Ω
25 to 30 MHz	3rd	50 Ω
30 to 90 MHz	3rd	45 Ω
50 to 150 MHz	5th	60Ω
90 to 200 MHz	7th	(90Ω)

Outline drawing

Size in mm

UM-1 SLIM (Resistance weld)

UM-1 (Resistance weld)

UM-2 (Resistance weld)

MINIATURE RESISTANCE WELD

Holder: HC-49/U, HC-43/RW

These crystal units are of miniaturized metal holder types introducing resistance weld sealing method.

Lead wire type terminals are provided.

This series has following features:

Excellent frequency aging characteristics

High frequency reproducibility

Small deviation from the specified frequency pulling range

FREQUENCY RANGE : 3.2MHz to 200MHz

METHOD OF SEALING : Resistance Weld

MODE OF VIBRATION : AT-cut

Fundamental, 3rd, 5th, 7th

Thickness-shear

LOAD CAPACITANCE : (S), 20pF, 30pF,

DRIVE LEVEL : 0.5mW, 1mW, 2mW

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

Aging

AA	A	B
±1ppm/year	±2ppm/year	±4ppm/year

Resonance resistance (R_r)

Frequency	Mode	R_r
3.2 to 4 MHz	Fund	150Ω max
4 to 5 MHz	Fund	70Ω
5 to 7 MHz	Fund	60Ω
7 to 10 MHz	Fund	30Ω
10 to 30 MHz	Fund	25Ω
20 to 25 MHz	3rd	45Ω
25 to 75 MHz	3rd	40Ω
75 to 90 MHz	3rd	45Ω
50 to 150 MHz	5th	60Ω
90 to 200 MHz	7th	90Ω

Outline drawing

Size in mm

HC-49/U (Resistance weld)

HC-49/U-1 L=13.5
HC-49/U-3 L=11.1

Frequency stability

(in operating temperature range referring 25°C)

(Fundamental)	R	S	T	V	W	X	Y	Z
	±3 ppm	±5 ppm	±7.5 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm
E 0 to 50°C								
F -5 to 55°C								
G -10 to 60°C								
H -15 to 65°C								
I -20 to 70°C								
J -25 to 75°C								
K -30 to 80°C								
L -40 to 90°C								
M -55 to 105°C								

(3rd, 5th, 7th)	R	S	T	V	W	X	Y	Z
	±3 ppm	±5 ppm	±7.5 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm
E 0 to 50°C								
F -5 to 55°C								
G -10 to 60°C								
H -15 to 65°C								
I -20 to 70°C								
J -25 to 75°C								
K -30 to 80°C								
L -40 to 90°C								
M -55 to 105°C								

HC-43/RW (Resistance weld)

HC-43/RW-1 L=13.5
HC-43/RW-3 L=11.1

mm	inch
0.02	.0008
0.05	.002
0.2	.008
0.43	.017
0.50	.020
1.02	.040
3.81	.150
4.65	.183
4.88	.192
6.0	.236
10.21	.402
11.05	.435
12.7	.500
13.46	.530

HIGH STABILITY COLD WELD

Holder : HC-42/U, HC-43/U

These crystal units are of miniaturized metal holder type series introducing cold weld sealing method.

Pin type and lead wire type terminals are available.

This series has following features:

Excellent frequency aging characteristics

High frequency reproducibility

Small deviation from the specified frequency pulling range

FREQUENCY RANGE : 3.2MHz to 200MHz

METHOD OF SEALING : Cold Weld

MODE OF VIBRATION : AT-cut

Fundamental, 3rd, 5th, 7th

Thickness-shear

LOAD CAPACITANCE : (S), 20pF, 30pF,

DRIVE LEVEL : 0.5mW, 1mW, 2mW

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

Aging

A	B
±1ppm/year	±3ppm/year

Resonance resistance (R_r)

Frequency	Mode	R_r
3.2 to 4 MHz	Fund	150Ω max
4 to 5 MHz	Fund	70Ω
5 to 7 MHz	Fund	60Ω
7 to 10 MHz	Fund	30Ω
10 to 30 MHz	Fund	25Ω
20 to 25 MHz	3rd	45Ω
25 to 75 MHz	3rd	40Ω
75 to 90 MHz	3rd	45Ω
50 to 150 MHz	5th	60Ω
90 to 200 MHz	7th	90Ω

Outline drawing

Size in mm

HC-42/U (Cold weld)

HC-42/U-1 L=13.5
HC-42/U-3 L=11.1

HC-43/U (Cold weld)

HC-43/U-1 L=13.5
HC-43/U-3 L=11.1

mm	inch
0.05	.002
0.2	.008
0.45	.018
1.02	.040
3.6	.142
4.88	.192
5.0	.197
6.0	.236
10.0	.394
11.1	.437
11.5	.453
13.5	.531
15.0	.591

HIGH STABILITY COLD WELD

Holder : HC-36/U, HC-47/U

These crystal units are of metal holder type series introducing cold weld sealing method.

Pin type and lead wire type terminals are available.

This series has following features:

Excellent frequency aging characteristics

High frequency reproducibility

Small deviation from the specified frequency pulling range

FREQUENCY RANGE : 2MHz to 15MHz

METHOD OF SEALING : Cold Weld

MODE OF VIBRATION : AT-cut

Fundamental

Thickness-shear

LOAD CAPACITANCE : (S), 20pF, 30pF,

DRIVE LEVEL

0.8 to 3MHz	: 1mW, 2mW, 5mW
3 to 15MHz	: 0.5mW, 1mW, 2mW

Frequency stability

(in operating temperature range referring 25°C)

2 to 3MHz		R	S	T	V	W	X	Y	Z
		±3 ppm	±5 ppm	±7.5 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm
E	0 to 50°C								
F	-5 to 55°C								
G	-10 to 60°C								
H	-15 to 65°C								
I	-20 to 70°C								
J	-25 to 75°C								
K	-30 to 80°C								
L	-40 to 90°C								
M	-55 to 105°C								

3 to 15MHz		R	S	T	V	W	X	Y	Z
		±3 ppm	±5 ppm	±7.5 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm
E	0 to 50°C								
F	-5 to 55°C								
G	-10 to 60°C								
H	-15 to 65°C								
I	-20 to 70°C								
J	-25 to 75°C								
K	-30 to 80°C								
L	-40 to 90°C								
M	-55 to 105°C								

Frequency tolerance (at 25±3°C)

A	B	C	D
±10ppm	±15ppm	±20ppm	±30ppm

Aging

A	B
±1ppm	±3ppm/year

Resonance resistance (R_r)

Frequency	Mode	R _r
2 to 3 MHz	Fund	250Ω max
3 to 5 MHz	Fund	110Ω
5 to 7 MHz	Fund	50Ω
7 to 10 MHz	Fund	25Ω
10 to 15 MHz	Fund	20Ω

Outline drawing

Size in mm

HC-36/U (Cold weld)

HC-47/U (Cold weld)

mm	inch
0.05	.002
0.2	.008
0.25	.010
0.38	.015
0.76	.030
1.27	.050
6.05	.238
7.4	.291
9.0	.354
12.34	.486
17.6	.693
19.3	.760
20.0	.787

SOLDER SEAL

Holder : HC-6/U, HC-33/U

FREQUENCY RANGE : 0.8MHz to 15MHz

METHOD OF SEALING : Soldering Seal

MODE OF VIBRATION : AT-cut

Fundamental

Thickness-shear

LOAD CAPACITANCE : (S), 20pF, 30pF,

DRIVE LEVEL

0.8 to 3MHz : 1mW, 2mW, 5mW

3 to 15MHz : 0.5mW, 1mW, 2mW

Frequency tolerance (at $25 \pm 3^\circ\text{C}$)

A	B	C	D
$\pm 10\text{ppm}$	$\pm 15\text{ppm}$	$\pm 20\text{ppm}$	$\pm 30\text{ppm}$

Aging

A	B
$\pm 4\text{ppm/year}$	$\pm 6\text{ppm/year}$

Resonance resistance (R_r)

Frequency	Mode	R_r
0.8 to 1 MHz	Fund	800Ω max
1 to 1.5 MHz	Fund	600Ω
1.5 to 2 MHz	Fund	400Ω
2 to 3 MHz	Fund	250Ω
3 to 4 MHz	Fund	110Ω
4 to 5 MHz	Fund	70Ω
5 to 7 MHz	Fund	50Ω
7 to 10 MHz	Fund	25Ω
10 to 15 MHz	Fund	20Ω

Outline drawing

Size in mm

HC-6/U (Solder Seal)

Frequency stability

(in operating temperature range referring 25°C)

	0.8 to 3 MHz		R	S	T	V	W	X	Y	Z
	±3 ppm	±5 ppm	±7.5 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm		
E	0 to 50°C									
F	-5 to 55°C									
G	-10 to 60°C									
H	-15 to 65°C									
I	-20 to 70°C									
J	-25 to 75°C									
K	-30 to 80°C									
L	-40 to 90°C									
M	-55 to 105°C									

	3 to 15 MHz		R	S	T	V	W	X	Y	Z
	±3 ppm	±5 ppm	±7.5 ppm	±10 ppm	±15 ppm	±20 ppm	±30 ppm	±50 ppm		
E	0 to 50°C									
F	-5 to 55°C									
G	-10 to 60°C									
H	-15 to 65°C									
I	-20 to 70°C									
J	-25 to 75°C									
K	-30 to 80°C									
L	-40 to 90°C									
M	-55 to 105°C									

HC-33/U (Solder Seal)

mm	inch
0.05	.002
0.2	.008
0.25	.010
0.38	.015
0.76	.030
1.27	.050
6.05	.238
8.94	.357
12.34	.486
18.42	.725
19.23	.757
19.69	.775
38.1	1.106

SOLDER SEAL Holder : HC-6/U, HC-33/U

FREQUENCY RANGE : 180kHz to 750kHz
 METHOD OF SEALING : Solder Seal
 MODE OF VIBRATION : Fundamental
 : 180kHz to 350kHz DT-out
 : 300kHz to 750kHz CT-out
 LOAD CAPACITANCE : (S), 30pF
 DRIVE LEVEL : 0.5mW, 1mW

Frequency tolerance (at $25 \pm 3^\circ\text{C}$)

A	B
$\pm 15\text{ppm}$	$\pm 25\text{ppm}$

Frequency stability(in operating temperature range referring 25°C)

	H	I	J	K	L	M	N	P
	± 50 ppm	± 60 ppm	± 70 ppm	± 100 ppm	± 120 ppm	± 150 ppm	± 170 ppm	± 200 ppm
C 0 to 50°C								
D -5 to 55°C								
E -10 to 60°C								
F -15 to 65°C								
G -20 to 70°C								

Aging

A	B
$\pm 4\text{ppm/year}$	$\pm 6\text{ppm/year}$

Resonance resistance (R_r)

Frequency	R_r
180 to 250 kHz	2 k Ω max
250 to 300 kHz	3.5 k Ω
300 to 350 kHz	1.8 k Ω
350 to 450 kHz	2.1 k Ω
450 to 550 kHz	2.5 k Ω
550 to 600 kHz	3 k Ω
600 to 700 kHz	4 k Ω
700 to 750 kHz	5 k Ω

Outline drawing

Size in mm

HC-6/U (Solder Seal)**HC-33/U (Solder Seal)**

mm	inch
0.05	.002
0.2	.006
0.25	.010
0.38	.015
0.76	.030
1.27	.050
6.05	.238
8.05	.317
8.94	.352
12.34	.486
18.42	.725
19.23	.757
19.69	.775
38.1	1.106

GLASS SEAL Holder : MT-N, RMT-N, SMT-N

These crystal units are encapsulated in the small glass tube.
Lead wire type terminals are provided.

FREQUENCY RANGE : 2kHz to 180kHz

METHOD OF SEALING : Glass Seal

MODE OF VIBRATION : Fundamental

NT-cut, X-cut

LOAD CAPACITANCE : (S), 30pF, 60pF, 100pF,

Frequency tolerance (at 25±3°C)

Frequency	Mode	A	B
2 to 21 kHz	XY	±20 ppm	±30 ppm
21 to 85 kHz	NT	±20 ppm	±30 ppm
50 to 180 kHz	X	±15 ppm	±25 ppm

Drive level

Frequency	Mode	A	B
2 to 21 kHz	XY	0.05 mW	—
21 to 55 kHz	NT	0.05 mW	—
50 to 180 kHz	X	1 mW	0.5 mW

Aging

A	B
±5ppm/year	±7ppm/year

Resonance resistance (R_r)

Frequency	R_r	Frequency	R_r
2 to 2.5 kHz	—	12 to 16 kHz	15kΩ max
2.5 to 3 kHz	—	16 to 21 kHz	10kΩ
3 to 3.5 kHz	85 kΩ max	21 to 25 kHz	15kΩ
3.5 to 4 kHz	75 kΩ	25 to 35 kHz	10kΩ
4 to 6 kHz	60 kΩ	35 to 50 kHz	7kΩ
5 to 6 kHz	45 kΩ	50 to 70 kHz	0.6kΩ
6 to 8 kHz	30 kΩ	70 to 80 kHz	0.8kΩ
8 to 9 kHz	25 kΩ	80 to 100 kHz	0.8kΩ
9 to 12 kHz	20 kΩ	100 to 180 kHz	0.9kΩ

Frequency stability

(in operating temperature range referring 25°C)

	H	I	J	K	L	M	N	P
	±50 ppm	±60 ppm	±70 ppm	±100 ppm	±120 ppm	±150 ppm	±170 ppm	±200 ppm
C	0 to 50°C							
D	-5 to 55°C							
E	-10 to 60°C							
F	-15 to 65°C							
G	-20 to 70°C							

Outline drawing

Size in mm

RMT-N (Glass Seal)

mm	inch
0.4	.016
13.15	.518
14.8	.583
19.5	.768
20.0	.79
30	1.181
40	1.575
90	3.543

SMT-N (Glass Seal)

ULTRA MINIATURE RESISTANCE WELD WITH METAL JACKET

Holder: UM-1 with metal jacket

Feature

- Available to Surface Mount Technology
- Available to IR-reflow process
- All Characteristics are same to UM-1

FREQUENCY RANGE : 10MHz to 200MHz

METHOD OF SEALING: Resistance Weld

MODE OF VIBRATION : AT-cut

Fundamental, 3rd, 5th, 7th

Thickness shear

LOAD CAPACITANCE : (S)20pF, 30pF,

DRIVE LEVEL : 0.5mW, 1mW, 2mW

Frequency tolerance (at $25 \pm 3^\circ\text{C}$)

A	B	C	D
$\pm 10\text{ppm}$	$\pm 15\text{ppm}$	$\pm 20\text{ppm}$	$\pm 30\text{ppm}$

Aging

AA	A	B
$\pm 1\text{ppm/year}$	$\pm 2\text{ppm/year}$	$\pm 4\text{ppm/year}$

Resonance resistance (R_r)

Frequency	Mode	R_r
10 to 15 MHz	Fund	40Ω max
15 to 30 MHz	Fund	25Ω
25 to 30 MHz	3rd	50Ω
30 to 90 MHz	3rd	45Ω
50 to 150 MHz	5th	60Ω
90 to 200 MHz	7th	(90Ω)

Outline drawing

Size in mm

mm	inch
0.1	.004
0.2	.008
0.25	.01
0.35	.014
1.27	.05
1.76	.069
2.22	.087
2.54	.100
3.75	.148
4.5	.177
7.8	.307
12.3	.484

Frequency stability

(in operating temperature range referring 25°C)

(Fundamental)	R	S	T	V	W	X	Y	Z
	± 3 ppm	± 5 ppm	± 7.5 ppm	± 10 ppm	± 15 ppm	± 20 ppm	± 30 ppm	± 50 ppm
E 0 to 50°C								
F -5 to 55°C								
G -10 to 60°C								
H -15 to 65°C								
I -20 to 70°C								
J -25 to 75°C								
K -30 to 80°C								
L -40 to 90°C								
M -55 to 105°C								

(3rd, 5th, 7th)	R	S	T	V	W	X	Y	Z
	± 3 ppm	± 5 ppm	± 7.5 ppm	± 10 ppm	± 15 ppm	± 20 ppm	± 30 ppm	± 50 ppm
E 0 to 50°C								
F -5 to 55°C								
G -10 to 60°C								
H -15 to 65°C								
I -20 to 70°C								
J -25 to 75°C								
K -30 to 80°C								
L -40 to 90°C								
M -55 to 105°C								

*High frequency fundamental crystals in UM-1 are available on request.
Details are listed on page 16.

CRYSTAL FILTERS

1. Outline of TOYOCOM CRYSTAL FILTERS

1. 1 Conventional Crystal Filters

TOYOCOM manufactures crystal filters with frequency ranges of between several kHz and 300 MHz, and bandwidths of between 0.001% and 2%, for a broad range of applications such as:

- Radio communications equipment
- Transmission communications equipment
- Microwave and coaxial cable system equipment
- Satellite communications equipment
- Avionics and marine radio equipment
- Measuring equipment
- PCM multiplex system equipment

Of these filters, those which use the AT-cut thickness shear mode crystal resonators, shown in Fig. 1, have been developed in a series of products well known for their advanced design and high quality, and having the features shown in Table 1. Among the features they share in common are the following:

Sharp selectivity: Extremely sharp selectivity has been achieved through attenuation pole design technique. The SSB filter series is a typical example.

Small insertion loss: Small insertion loss has been achieved by using high Q crystal resonators, built with our own high quality synthetic quartz, and low-loss transformers.

Linear phase filter: Linear phase filter has been developed with unique TOYOCOM design, combining the best characteristics of Gaussian type flat group delay and Chebyshev type sharp selectivity. These filters are suitable for the demand for digital mobile communications equipment.

Pilot filter: It is bound for PCM multiplex system. To meet an increasing need in the LAN market, we newly developed a small-sized and high-performance pilot filter for timing recovery.

1. 2 HCM filter (Tandem monolithic crystal filter)

The HCM filter, a TOYOCOM original, has the following

features. A large number of these filters are in use as IF filter for mobile radio communications equipment. We developed the following series and diversified our range to respond to needs for miniaturization, non-adjustment, cost-reduction for the mobile radio communications equipment.

- TQF-880 series: With HCM resonators (45 MHz = fundamental mode, 70 through 95 MHz = 3rd overtone mode), the characteristics of linear phase are obtained with the small packages (T-2: 3.5 cc, S-428: 1.8 cc)
- Fundamental mode 45 MHz series and VHF series: These series have been developed mainly for the UHF cellular system and are very suitable to miniaturize the equipment and eliminate its adjustment.
- Ultra-miniature UM-5 series: This is a fundamental 2-pole HCM filter series specially for VHF low-band paging system and with a low profile type (height = 6 mm) a very high image rejection (60 dB) can be obtainable.

Compact design: The H-type series and UM-1 holder developed by TOYOCOM are recognized as the IEC Standard holders and are suitable to reduction of equipment size.

High reliability: Shock-proof and aging characteristics have been improved through the use of a special resistance welded holder. In particular the UM-1 and VHF series are widely used in paging receivers and UHF band mobile telephone equipment.

Excellent intermodulation characteristics: Abundant design experience and expert manufacturing knowhow of the coupled resonators have achieved excellent intermodulation characteristics.

Various standard products at low cost: TOYOCOM has prepared various kinds of standard HCM filters with the channel spacing between 12.5 kHz and 50 kHz at low cost.

Table 1. Applications of TOYOCOM crystal filters and HCM filters

Series	Type of filter	Frequency range (MHz)	No. of pole	Type of design		Applications			Pilot filter	Others
				Chebyshev	Linear phase	IF filter	Mobile telephone	Cordless telephone		
TQF-800	Crystal filter	10.7 to 90	2 to 8		○	○				○
TQF-880	HCM filter	45, 70 to 95	4		○	○				○
10.7 MHz series	HCM filter	10.7	2 to 10	○						○
21.4 MHz series	HCM filter	21.4	2 to 10	○						○
45 MHz series	HCM filter	45 (Fund.)	2 to 8	○		○				○
		45 (3rd)	2 to 4	○		○	○	○		○
VHF element series	HCM filter	50 to 90	2 to 4	○		○	○	○		○
TQF-600	HCM filter	70 to 100	4	○		○				○
UM-5 series	HCM filter	21.4 to 50	2	○					○	
TQF-491	Crystal filter	30 to 150	2	○						○

CRYSTAL FILTERS

Fig. 1 Availability of TOYOCOM crystal filters (thickness shear mode)

CRYSTAL FILTERS

Terms and definitions

Term	Reference symbol	
Center frequency	f_0 (MHz) or (kHz)	A frequency given in the specification, to which other frequencies may be referred.
Passband	B_1 (kHz) A_1 (dB)	A band of frequencies B_1 in which the attenuation is equal to or less than a specified value A_1 .
Stopband	B_2 (kHz) A_2 (dB) and B_3 (kHz) A_3 (dB)	Bands of frequencies B_2 and B_3 in which the attenuations are equal to or greater than specified values A_2 and A_3 respectively.
Insertion loss	L (dB)	The logarithmic ratio of the power delivered to the load impedance before insertion of the filter to the power delivered to the load impedance after insertion of the filter.
(Passband) Ripple	R (dB)	The difference between the maximum and minimum attenuations within a passband.
Guaranteed attenuation	A_3 (dB)	The maximal guaranteed attenuation at the specified frequency range.
Spurious response	A_4 (dB)	Minimum attenuation caused by extraordinary response in the stopband. Spurious response usually appears at a higher frequency than the center frequency.
Group delay distortion	Δt (μ sec)	The difference between the maximum and minimum group delay within a passband B_1 unless otherwise specified.
Terminating impedance	Z_t $R_t//C_t$ (Ω // pF)	Either of the impedances presented to the filter by the source or by the load, and described the resistive portion (R_t) and the parallel capacitive portion (C_t) including stray capacitance.

CRYSTAL FILTERS

Test circuit (Block Type)

Fig. 2 Attenuation measurement

Fig. 3 Group delay measurement

or IM = B (dB) at Input level of point A (Pin)

$$I_p = Pin + \frac{1}{2} B \quad (\text{dBm})$$

Note: I_p : Intercept point

Fig. 4 Intermodulation measurement

HCM RESONATORS

Test circuit (HCM Resonator Type)

2-pole HCM filter

4-pole HCM filter

2-pole HCM filter

4-pole HCM filter

Terminating impedance: $Z_t = R_t (\Omega) // C_t \pm \alpha (\text{pF})$

Coupling impedance: $Z_c = C_c \pm \alpha (\text{pF})$

$$L_t, L_c \gg \frac{R_t}{Q\omega_0} \quad Q: \text{unloaded Q of coil}$$

$$L_t, L_c \geq \frac{R_t}{10\omega_0} \quad \omega_0: 2\pi f_0 \\ C't = \frac{1}{W_0^2 L_t} + C_t, \quad C'c = \frac{1}{W_0^2 L_c} + C_c$$

Type	Center frequency (MHz)	No. of pole	Passband		Stopband				Max. loss (dB)	Group delay distortion (μs)	Terminating impedance Zt (Ω)	* Intermodulation test parameters		Case	
			(dB)	(kHz)	(dB)	(kHz)	(dB)	(kHz)				Input level (dBm)	ΔF (kHz)		
TQF-600A	70 to 100	4	3	±15	20	±60	75	–910	6	10	±10	50	–15	60	**S-428
TQF-603A	70 to 100	4	3	±15	20	±60	75	–910	6	10	±10	50	–15	60	T-2
TQF-600B	70 to 100	4	3	±12	20	±50	75	–910	6	12	±8	50	–15	50	**S-428
TQF-603B	70 to 100	4	3	±12	20	±50	75	–910	6	12	±8	50	–15	50	T-2
TQF-600C	70 to 100	4	3	±10	20	±25	75	–910	6	15	±6	50	–20	25	**S-428
TQF-603C	70 to 100	4	3	±10	20	±25	75	–910	6	15	±6	50	–20	25	T-2
TQF-600D	70 to 100	4	3	±7.5	30	±25	75	–910	6	—	—	50	–20	25	**S-428
TQF-603D	70 to 100	4	3	±7.5	30	±25	75	–910	6	—	—	50	–20	25	T-2

*3rd order IM products (fo) –95 dBm max.

**Non-washable

Operating temperature range: –30°C to +80°C

Electrical data

TQF-600A ATT (dB) fo = 80 MHz

TQF-600B ATT (dB) fo = 90 MHz

TQF-603C ATT (dB) fo = 90 MHz

Outline drawing

S-428

T-2

HCM FILTERS

VHF LINEAR PHASE HCM FILTERS

Type	Center frequency (MHz)	No. of pole	Passband		Stopband			Max. loss (dB)	Group delay distortion (μs)	Terminating impedance Zt (Ω)	Case
			(dB)	(kHz)	(dB)	(kHz)	(dB)				
TQF-880A	70 to 95	4	3	±4.5	15	±12.5	75	-910	5	10	50
TQF-881A	70 to 95	4	3	±4.5	15	±12.5	75	-910	5	10	*S-428
TQF-880B	45	4	3	±4.5	15	±12.5	75	-910	5	10	T-2
TQF-881B	45	4	3	±4.5	15	±12.5	75	-910	5	10	*S-428
TQF-880C	45	4	3	±7.5	20	±25	75	-910	4	7	50
TQF-881C	45	4	3	±7.5	20	±25	75	-910	4	7	50
TQF-880D	45	4	3	±10	15	±25	75	-910	4	5	50
TQF-881D	45	4	3	±10	15	±25	75	-910	4	5	*S-428

*Non-washable

Operating temperature range: -20° C to +70° C

Electrical data

TQF-880A fo = 90 MHz

TQF-881C fo = 45 MHz

TQF-881D fo = 45 MHz

Outline drawing

S-428

T-2

Type	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation (dB)	Terminating impedance Zt (Ω /pF)	Coupling impedance Zc (pF)	Case
		(dB)	(kHz)	(dB)	(kHz)						
45E1FF	2	3	±3.75	10	±12.5	1.0	2.0	65	-910	200//4	— UM-1
45E2FF	4	3	±3.75	30	±12.5	1.0	4.0	90	±910	350//6.5	18 (UM-1) x 2
45E3FF	6	3	±3.75	50	±12.5	2.0	6.0	80	±910	350//5	— H-1
45E4FF	8	3	±3.75	70	±12.5	2.0	7.0	80	±910	350//5	— H-1
45E1BF	2	3	±7.5	15	±25	1.0	2.0	65	-910	650//3	— UM-1
45E2BF	4	3	±7.5	30	±25	1.0	3.0	90	±910	650//3	9 (UM-1) x 2
45E3BF	6	3	±7.5	60	±25	2.0	5.0	80	±910	650//1.5	— H-1
45E4BF	8	3	±7.5	80	±25	2.0	6.0	80	±910	650//1.5	— H-1
45E1AF	2	3	±15	10	±50	1.0	2.0	65	-910	1100//−0.9	— UM-1
45E2AF	4	3	±15	30	±50	1.0	3.0	80	±910	1200//0.7	3.5 (UM-1) x 2

Operating temperature range: -30°C to +80°C

Electrical data

45E1BF ATT (dB) fo = 45.0 MHz

45E2FF ATT (dB) fo = 45.0

45E4BF ATT (dB) fo = 45.0

Outline drawing

UM-1
(resistance weld)

H-1

	L	W	H	A	B	D ϕ
H-1	11.0	8.5	11.5	7.4	2.0	0.3

(in mm)

	L	W	H	A	B	D ϕ
H-1	433	335	452	291	.078	.012

(in inch)

Crystal Filters

HCM FILTERS

VHF 45MHz 3rd OVERTONE Mode Series
12.5KHz, 25KHz CHANNEL SPACING

TOYOCOM

Type	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation (dB)	Terminating impedance Z_t (Ω/pF)	Coupling impedance Z_c (Ω/pF)	Case
		(dB)	(kHz)	(dB)	(kHz)						
45E1F	2	3	± 3.75	10	± 12.5	1.0	2.0	35 ± 910	2.0K// -0.4	—	UM-1
45E2F2	4	3	± 3.75	30	± 12.5	1.0	4.0	75 ± 910	3.0K// -0.3	-0.1	(UM-1) x 2
45E2FU	4	3	± 3.75	30	± 12.5	1.0	5.0	75 ± 910	50	—	*S-428
45E2FT	4	3	± 3.75	30	± 12.5	1.0	5.0	75 ± 910	50	—	T-2
45E1B	2	3	± 7.5	15	± 25	1.0	2.0	35 ± 910	4.0K// -0.7	—	UM-1
45E2B2	4	3	± 7.5	30	± 25	1.0	3.0	75 ± 910	4.0K// -0.8	-1.0	(UM-1) x 2
45E2BU	4	3	± 7.5	30	± 25	1.0	4.0	75 ± 910	50	—	*S-428
45E2BT	4	3	± 7.5	30	± 25	1.0	4.0	75 ± 910	50	—	T-2

*Non-washable

Operating temperature range: -30°C to $+80^\circ\text{C}$

Electrical data

45E2F2 ATT (dB) $f_0 = 45.0 \text{ MHz}$

45E2FU ATT (dB) $f_0 = 45.0 \text{ MHz}$

45E2BT ATT (dB) $f_0 = 45.0 \text{ MHz}$

Outline drawing

S-428

T-2

HCM FILTERS

Resonator type filters

Type	Center frequency (MHz)	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation (kHz)	Terminating impedance Zt (Ω/pF)	Coupling impedance Zc (pF)	Case	
			(dB)	(kHz)	(dB)	(kHz)							
70E1B	70	2	3	± 7.5	18	± 28	1.0	2.0	35 35	+500 to +1000 -200 to -1000	2.0k//−0.9	—	UM-1
70E1D	70	2	3	± 10.0	15	± 30	1.0	2.0	35 35	+500 to +1000 -200 to -1000	2.5k//−1.0	—	UM-1
70E2B2	70	4	3	± 7.5	30	± 25	1.0	3.0	70 75	+500 to +1000 -200 to -1000	2.0k//−0.4	−0.5	(UM-1) × 2
70E2D2	70	4	3	± 10.0	35	± 40	1.0	3.0	70 75	+500 to +1000 -200 to -1000	2.5k//−0.8	−1.0	(UM-1) × 2
90E1B	90	2	3	± 7.5	18	± 28	1.0	2.0	35 35	+500 to +1000 -200 to -1000	2.0k//−0.1	—	UM-1
90E1D	90	2	3	± 10.0	15	± 30	1.0	2.0	35 35	+500 to +1000 -200 to -1000	2.5k//−0.4	—	UM-1
90E2B2	90	4	3	± 7.5	30	± 25	1.0	3.0	70 75	+500 to +1000 -200 to -1000	2.0k//−0.5	−0.3	(UM-1) × 2
90E2D2	90	4	3	± 10.0	35	± 40	1.0	3.0	70 75	+500 to +1000 -200 to -1000	3.0k//−0.6	−0.8	(UM-1) × 2

Operating temperature: -30°C to $+80^{\circ}\text{C}$

Outline drawing

UM-1
(resistance weld)

LINEAR PHASE CRYSTAL FILTERS

VHF

Type	Center frequency (MHz)	No. of pole	Passband		Stopband		Max. loss (dB)	Group delay distortion (μs)	Terminating impedance Zt (Ω//pF)	Case		
			(dB)	(kHz)	(dB)	(kHz)						
TQF-840A	40 to 90	4	3	±5	40	±35	50	±50	4	5	50	S-411
TQF-840B	50 to 90	4	3	±10	40	±65	50	±90	4	4	50	S-411
TQF-840C	60 to 90	4	3	±15	40	±90	50	±120	6	3	50	S-411
TQF-840D	70 to 90	4	3	±20	40	±120	50	±160	6	2	50	S-411
TQF-850A	50 to 90	6	3	±5	40	±30	60	±45	6	5	50	S-98
TQF-850B	60 to 90	6	3	±10	40	±50	60	±75	6	4	50	S-98
TQF-850C	70 to 90	6	3	±15	40	±70	60	±100	7	3	50	S-98

Operating temperature range: -20 to +70°C

Electrical data

Outline drawing

LINEAR PHASE CRYSTAL FILTERS

21.4 MHz

Type	Center frequency (MHz)	No. of pole	Passband		Stopband		Max. loss (dB)	Group delay distortion (μs)	Terminating impedance Zt (Ω//pF)	Case
			(dB)	(kHz)	(dB)	(kHz)				
TQF-820A	21.4	4	3	±5	—	—	60	±40	4	5
TQF-820B	21.4	4	3	±7.5	—	—	60	±55	4	4
TQF-820C	21.4	4	3	±12	—	—	60	±100	4	3
TQF-821A	21.4	4	3	±15	—	—	60	±120	4	3
TQF-821B	21.4	4	3	±30	20	±90	40	±150	5	2
TQF-822A	21.4	6	3	±5	40	±20	60	±26	4	8
TQF-822B	21.4	6	3	±7.5	40	±28	60	±35	4	5
TQF-822C	21.4	6	3	±12	40	±45	60	±55	5	4
TQF-823A	21.4	6	3	±15	40	±55	60	±70	5	3
TQF-823B	21.4	6	3	±30	40	±120	60	±150	6	2
TQF-824B	21.4	8	3	±6	—	—	85	±25	4	20

Operating temperature range: -20 to +70°C

Electrical data

Outline drawing

S-411

S-98

LINEAR PHASE CRYSTAL FILTERS

10.7 MHz

Type	Center frequency (MHz)	No. of pole	Passband		Stopband		Max. loss (dB)	Group delay distortion (μs)	Terminating impedance Zt (Ω//pF)	Case
			(dB)	(kHz)	(dB)	(kHz)				
TQF-800A	10.7	4	3	±1.5	—	—	60	±12	3	20
TQF-800B	10.7	4	3	±5	—	—	60	±35	3	5
TQF-801A	10.7	4	3	±7.5	—	—	60	±50	3	4
TQF-801B	10.7	4	3	±15	—	—	60	±120	4	3
TQF-801C	10.7	4	3	±30	20	±90	40	±150	5	2
TQF-802A	10.7	6	3	±1.5	40	±7.5	60	±10	4	25
TQF-802B	10.7	6	3	±5	40	±20	60	±25	4	8
TQF-803A	10.7	6	3	±7.5	40	±28	60	±35	4	5
TQF-803B	10.7	6	3	±12	40	±45	60	±55	5	4
TQF-804A	10.7	8	3	±6	—	—	85	±25	6	20

Operating temperature range: -20 to +70°C

Electrical data

TQF-800B

Outline drawing

S-98

TQF-803A

Outline drawing

TQF-804A

S-287

Crystal Filters

TOYOCOM

HCM FILTERS

21.4 MHz
12.5 kHz CHANNEL SPACING

Type	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation (dB)	Terminating impedance Zt ($\Omega//\mu F$)	Operating temperature ($^{\circ}C$)	Case			
		(dB)	(kHz)	(dB)	(kHz)									
21J1F	2	3	± 3.75	20	± 18	—	—	0.5	1.5	35 50	+350 to +1000 -200 to -1000	850//6	-40 to +80	UM-1
21J2F2	4	3	± 3.75	40	± 14	—	—	1.0	2.5	65 80	+350 to +1000 -200 to -1000	850//5 Zc : 16 pF	-40 to +80	(UM-1)x2
21J3F	6	3	± 3.75	45	± 8.75	65	± 12.5	2.0	3.0	65	± 12.5 to ± 300	850//5	-40 to +80	H-1
21J4F	8	3	± 3.75	65	± 9.0	90	± 12.5	2.0	4.0	90	± 12.5 to ± 300	850//5	-40 to +80	H-1
T14F01-J	8	3	± 3.75	70	± 9.0	90	± 12.5	2.0	4.5	90	± 12.5 to ± 300	910//15	-40 to +80	T-1
T24F01-J	8	3	± 3.75	65	± 9.0	90	± 12.5	2.0	4.5	90	± 12.5 to ± 300	470//15	-40 to +80	T-2
21J5F	10	6	± 3.75	75	± 9.0	90	± 10.0	2.0	5.0	90	± 10 to ± 300	850//5	-40 to +80	H-2

Electrical data

Outline drawing

UM-1
(resistance weld)

T-1

T-2

HCM FILTERS

 21.4 MHz
 20 kHz CHANNEL SPACING

Type	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation		Terminating impedance Zt (Ω/pF)	Operating temperature ($^{\circ}\text{C}$)	Case		
		(dB)	(kHz)	(dB)	(kHz)			(dB)	(fo \pm kHz)					
21J1E	2	3	± 6.0	20	± 25	—	—	0.5	1.5	35 50	+350 to +1000 —200 to —1000	1.2k//3	-40 to +80	UM-1
21J2E2	4	3	± 6.0	40	± 20	—	—	1.0	2.0	65 80	+350 to +1000 —200 to —1000	1.2k//2.5 Zc : 10.5 pF	-40 to +80	(UM-1)x2
21J3E	6	3	± 6.0	45	± 14	65	± 20	2.0	2.5	65	± 20 to ± 300	1.2k//2.5	-40 to +80	H-1
21J4E	8	3	± 6.0	65	± 14	90	± 20	2.0	3.0	65	± 20 to ± 300	1.2k//2.5	-40 to +80	H-1
T14E01-J	8	3	± 6.0	70	± 14	90	± 20	2.0	3.5	90	± 20 to ± 300	910//15	-40 to +80	T-1
T24E01-J	8	3	± 6.0	65	± 14	90	± 20	2.0	4.0	90	± 20 to ± 300	470//15	-40 to +80	T-2
21J5E	10	6	± 6.0	75	± 14	90	± 16	2.0	4.0	90	± 16 to ± 300	1.2k//2.5	-40 to +80	H-2

Electrical data

Outline drawing

	L	W	H	A	B	D ϕ
H-1	11.0	8.5	11.5	7.4	2.0	0.3
H-2	13.4	8.5	11.0	9.8	2.0	0.3
H-3	15	12	15	9.0	2.5	0.43
H-4	18.5	12	15	13.4	2.5	0.43
H-5	23	12	15	17.8	2.5	0.43
H-6	28	12	15	22.2	2.5	0.43

(in mm)

	L	W	H	A	B	D ϕ
H-1	.433	.335	.452	.291	.078	.012
H-2	.527	.335	.433	.386	.078	.012
H-3	.590	.472	.590	.354	.098	.017
H-4	.728	.472	.590	.527	.098	.017
H-5	.906	.472	.590	.701	.098	.017
H-6	1.102	.472	.590	.874	.098	.017

(in inch)

Crystal Filters

TOYOCOM

HCM FILTERS

21.4 MHz
25 kHz CHANNEL SPACING

Type	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation (dB) (fo ± kHz)		Terminating impedance Zt (Ω//pF)	Operating temperature (°C)	Case	
		(dB)	(kHz)	(dB)	(kHz)			(dB)	(kHz)				
21J1B	2	3	±7.5	18	±25	—	—	0.5	1.5	35 +350 to +1000 50 -200 to -1000	1.5k//2.5	-40 to +80	UM-1
21J2B2	4	3	±7.5	40	±25	—	—	1.0	2.0	65 +350 to +1000 80 -200 to -1000	1.5k//2.0 Zc : 8 pF	-40 to +80	(UM-1)×2
21J3B	6	3	±7.5	45	±17.5	65	±25	2.0	2.5	65 ±25 to ±300	1.5k//2.0	-40 to +80	H-1
21J4B	8	3	±7.5	65	±17.5	90	±25	2.0	3.0	90 ±25 to ±300	1.5k//2.0	-40 to +80	H-1
T14B01-J	8	3	±7.5	70	±17.5	90	±25	2.0	3.5	90 ±25 to ±300	910//15	-40 to +80	T-1
T24B01-J	8	3	±7.5	65	±17.5	90	±25	2.0	4.0	90 ±25 to ±300	470//15	-40 to +80	T-2
21J5B	10	6	±7.5	75	±16	90	±18	2.0	4.0	90 ±18 to ±300	1.5k//2.0	-40 to +80	H-2

Electrical data

Outline drawing

UM-1
(resistance weld)

(H-1) ~ (H-5)

	L	W	H	A	B	Dφ
H-1	11.0	8.5	11.5	7.4	2.0	0.3
H-2	13.4	8.5	11.0	9.8	2.0	0.3
H-3	15	12	15	9.0	2.5	0.43
H-4	18.5	12	15	13.4	2.5	0.43
H-5	23	12	15	17.8	2.5	0.43
H-6	28	12	15	22.2	2.5	0.43

(in mm)

	L	W	H	A	B	Dφ
H-1	.423	.335	.452	.291	.078	.012
H-2	.527	.335	.433	.386	.078	.012
H-3	.590	.472	.590	.354	.098	.017
H-4	.728	.472	.590	.527	.098	.017
H-5	.906	.472	.590	.701	.098	.017
H-6	1.102	.472	.590	.874	.098	.017

(in inch)

HCM FILTERS

 21.4 MHz
 50 kHz CHANNEL SPACING

Type	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation (dB) (fo ± kHz)		Terminating impedance Zt (Ω//pF)	Operating temperature (°C)	Case	
		(dB)	(kHz)	(dB)	(kHz)			(dB)	(fo ± kHz)				
21J1A	2	3	±15	15	±45	—	—	0.5	1.5	35 +350 to +1000 45 -300 to -1000	1.5k//1.0	-40 to +80	UM-1
21J2A2	4	3	±15	40	±50	—	—	1.0	2.0	65 +350 to +1000 80 -250 to -1000	2.0k//0.5 Zc : 3 pF	-40 to +80	(UM-1)x2
21J3A	6	3	±15	45	±35	65	±50	2.0	2.5	65 ±50 to ±300	2.2k//0.5	-40 to +80	H-1
21J4A	8	3	±15	65	±35	80	±50	2.0	3.0	80 ±50 to ±300	2.2k//0.5	-40 to +80	H-1
T14A01-J	8	3	±15	70	±35	90	±50	2.0	3.5	90 ±50 to ±300	910//15	-40 to +80	T-1
T24A01-J	8	3	±15	65	±35	80	±50	2.0	4.0	80 ±50 to ±300	470//15	-40 to +80	T-2

Electrical data

Outline drawing

T-1

T-2

Crystal Filters

TOYOCOM

HCM FILTERS

10.7 MHz
12.5 kHz CHANNEL SPACING

Type	No. of pole	Passband		Stopband		Max. ripple	Max. loss	Guaranteed attenuation	Termination		Case		
		(dB)	(kHz)	(dB)	(kHz)				(dB)	(fo ± kHz)			
10M1F	2	3	±3.75	20	±18	—	—	0.5	1.5	35 +300 to +1000 50 -200 to -1000	1.8k//5.0	*1 —40 to +80	HC-49/U
10M2F2	4	3	±3.75	40	±14	—	—	1.0	2.5	65 +300 to +1000 80 -200 to -1000	1.8k//4.5 Zc : 12 pF	*1 —40 to +80	(HC-49/U)×2
H33F01	6	3	±3.75	45	±8.75	65	±12.5	2.0	3.5	65 ±12.5 to ±300	1.8k//3.5	*1 —40 to +80	H-3
H44F01	8	3	±3.75	65	±8.75	90	±12.5	2.0	4.0	90 ±12.5 to ±300	1.8k//3.5	*1 —40 to +80	H-4
T14F01-M	8	3	±3.75	70	±8.75	90	±12.5	2.0	4.5	90 ±12.5 to ±300	910//25	— —40 to +80	T-1

*See "matching transformer" on page 48.

Electrical data

Outline drawing

HC-49/U
(resistance weld)

(H-3) and (H-4)

	L	W	H	A	B	D ϕ
H-1	11.0	8.5	11.5	7.4	2.0	0.3
H-2	13.4	8.5	11.0	9.8	2.0	0.3
H-3	15	12	15	9.0	2.5	0.43
H-4	18.5	12	15	13.4	2.5	0.43
H-5	23	12	15	17.8	2.5	0.43
H-6	28	12	15	22.2	2.5	0.43

	L	W	H	A	B	D ϕ
H-1	.433	.335	.452	.291	.078	.012
H-2	.527	.335	.433	.386	.078	.012
H-3	.590	.472	.590	.354	.098	.017
H-4	.728	.472	.590	.527	.098	.017
H-5	.960	.472	.590	.701	.098	.017
H-6	1.102	.472	.590	.874	.098	.017

(in mm)

T-1

HCM FILTERS

10.7 MHz
20 kHz CHANNEL SPACING

Type	No. of pole	Passband		Stopband		Max. ripple	Max. loss	Guaranteed attenuation	Termination		Operating temperature (°C)	Case		
		(dB)	(kHz)	(dB)	(kHz)				Zt (Ω/pF)	Recom-mendable transformer (see below)				
		(dB)	(kHz)	(dB)	(kHz)	(dB)	(dB)	(fo ± kHz)						
10M1E	2	3	±6.0	20	±25	—	—	0.5	1.5	35 +300 to +1000 40 -200 to -1000	2.5k//2.5	*3	-40 to +80	HC-49/U
10M2E2	4	3	±6.0	40	±20	—	—	1.0	2.5	65 +300 to +1000 80 -200 to -1000	1.8k//2.5 Zc : 7 pF	*3	-40 to +80	(HC-49/U)x2
H33E01	6	3	±6.0	45	±14	65	±20	2.0	2.5	65 ±20 to ±300	2.8k//1.0	*3	-40 to +80	H-3
H44E01	8	3	±6.0	65	±14	90	±20	2.0	4.0	90 ±20 to ±300	2.8k//1.0	*3	-40 to +80	H-4
T14E01-M	8	3	±6.0	70	±14	90	±20	2.0	3.5	90 ±20 to ±300	910//25	—	-40 to +80	T-1

Electrical data

Matching transformer

No.	Type	Impedance ratio
*1	009D	1.8 kΩ : 910 Ω
*2	009C	3.4 kΩ : 910 Ω
*3	009B	2.8 kΩ : 910 Ω
*4	10B02	3 kΩ : 200 Ω
*5	10B10	3 kΩ : 1 kΩ
*6	10A02	5 kΩ : 200 Ω
*7	10A10	5 kΩ : 1 kΩ

HCM FILTERS

 10.7 MHz
 25 kHz CHANNEL SPACING

Type	No. of pole	Passband		Stopband		Max. ripple	Max. loss	Guaranteed attenuation	Termination		Operating temperature (°C)	Case	
		(dB)	(kHz)	(dB)	(kHz)				impedance Zt (Ω //pF)	Recommendable transformer (see remark)			
10M1B	2	3	± 7.5	18	± 25	—	—	0.5	1.5	35 +300 to +1000 40 -200 to -1000	3.0k//2.0	*4, *5 -40 to +80	HC-49/U
10M2B	4	3	± 7.5	40	± 25	—	—	1.0	2.5	40 ± 25 to ± 300	3.0k//1.5	*4, *5 -40 to +80	H-3
10M2B2	4	3	± 7.5	40	± 25	—	—	1.0	2.5	65 +300 to +1000 80 -200 to -1000	3.0k//1.5 Zc : 5 pF	*4, *5 -40 to +80	(HC-49/U)x2
10M3B	6	6	± 7.5	60	± 22.5	—	—	2.0	3.0	60 ± 22.5 to ± 300	2.8k//1.0	*3, *4, *5 -40 to +80	H-3
H33B01	6	3	± 7.5	45	± 17.5	65	± 25	2.0	2.5	65 ± 25 to ± 300	3.4k//0.5	*2 -40 to +80	H-3
10M4B	8	6	± 7.5	60	± 15	80	± 20	2.0	3.5	80 ± 20 to ± 300	2.8k//1.0	*3, *4, *5 -40 to +80	H-4
T14B01-M	8	3	± 7.5	70	± 17.5	90	± 25	2.0	3.5	90 ± 25 to ± 300	910//25	— -40 to +80	T-1
10M5B	10	6	± 7.5	75	± 15	90	± 17.5	2.0	4.0	90 ± 17.5 to ± 300	2.8k//1.0	*3, *4, *5 -40 to +80	H-5

Electrical data

Outline drawing

HCM FILTERS

**10.7 MHz
50 kHz CHANNEL SPACING**

Type	No. of pole	Passband		Stopband		Max. ripple	Max. loss	Guaranteed attenuation	Termination		Operating temperature (°C)	Case
		(dB)	(kHz)	(dB)	(kHz)				impedance Zt (Ω/pF)	Recom-		
		(dB)	(kHz)	(dB)	(kHz)				(dB)	mendable transformer (see below)		
10M1A	2	3	±15	15	±50	—	—	0.5	1.5	30 +300 to +1000 40 -300 to -1000	5.0k//0	*6, *7 -40 to +80 HC-49/U
10M2A	4	3	±15	30	±40	—	—	1.0	2.5	30 ±40 to ±300	5.5k//−1.0	*6, *7 -40 to +80 H-3
10M2A2	4	3	±15	30	±40	—	—	1.0	2.5	65 +300 to +1000 80 -250 to -1000	5.5k//−1.0 Zc : 0 pF	*6, *7 -40 to +80 (HC-49/U)×2
10M4A	8	6	±15	60	±30	80	±40	2.0	3.5	80 ±40 to ±300	5.5k//−1.0	*6, *7 -40 to +80 H-4
T14A01-M	8	3	±15	70	±35	90	±50	2.0	3.5	90 ±50 to ±300	910//25	— -40 to +80 T-1

Electrical data

Outline drawing

	L	W	H	A	B	DΦ
H-1	11.0	8.5	11.5	7.4	2.0	0.3
H-2	13.4	8.5	11.0	9.8	2.0	0.3
H-3	15	12	15	9.0	2.5	0.43
H-4	18.5	12	15	13.4	2.5	0.43
H-5	23	12	15	17.8	2.5	0.43
H-6	28	12	15	22.2	2.5	0.43

(in mm)

	L	W	H	A	B	DΦ
H-1	.433	.335	.452	.291	.078	.012
H-2	.527	.335	.433	.386	.078	.012
H-3	.590	.472	.590	.354	.098	.017
H-4	.728	.472	.590	.527	.098	.017
H-5	.906	.472	.590	.701	.098	.017
H-6	1.102	.472	.590	.874	.098	.017

(H-3) ~ (H-5) (in inch)

Matching transformer

No.	Type	Impedance ratio
*1	009D	1.8 kΩ : 910 Ω
*2	009C	3.4 kΩ : 910 Ω
*3	009B	2.8 kΩ : 910 Ω
*4	10B02	3 kΩ : 200 Ω
*5	10B10	3 kΩ : 1 kΩ
*6	10A02	5 kΩ : 200 Ω
*7	10A10	5 kΩ : 1 kΩ

Crystal Filters

TOYOCOM

HCM FILTERS

Miniature Package UM-5 for PAGER SYSTEM

Type	Center frequency (MHz)	No. of pole	Passband		Stopband		Max. ripple (dB)	Max. loss (dB)	Guaranteed attenuation (dB)	Terminating impedance Zt ($\Omega/\mu F$)	Case
			(dB)	(kHz)	(dB)	(kHz)					
21J1D3	21.4	2	3	± 10	13	± 30	1.0	1.5	35 +350 to +1000 60 -300 to -1000	1.8k//1.0	UM-5
21J1B3	21.4	2	3	± 7.5	15	± 25	1.0	1.5		1.5k//2.5	UM-5
21M1B3	21.7	2	3	± 7.5	15	± 25	1.0	1.5		1.5k//2.5	UM-5
TQF-602A	26 to 50	2	3	± 10	10	± 30	1.0	2.0	35 +910 60 -910	1.5k//2.5 ± 2	UM-5

Operating temperature range: $-30^\circ C$ to $+80^\circ C$

Electrical data

21J1D3 ATT (dB) fo = 21.1 MHz

21J1B3 ATT (dB) fo = 21.4 MHz

TQF-602A ATT (dB) fo = 43.0 MHz

Outline drawing

UM-5 (resistance weld)

PCM PILOT FILTERS

Type	TQF-491A		
Center Frequency (fo)	30 to 150 MHz		
No. of Pole	2		
Passband	3 dB: $fo \pm (fo \times 1.5 \times 10^{-4})$ min.		
Stopband	20 dB: $fo \pm (fo \times 1.5 \times 10^{-3})$ max. 40 dB: $fo \pm (fo \times 7.5 \times 10^{-3})$ max.		
Spurious Response	10 dB min.		
Ripple	1 dB max.		
Insertion Loss	4 dB max.		
Terminating Impedance	50Ω		
Phase Variation	(vs. Freq.) (vs. Temp.)	±12 deg. max. ±20 deg. max.	$fo \pm (fo \times 15 \times 10^{-4})$ -10 to +60°C
Temperature Range	-10 to +60°C		
Operating Input Voltage	0.2V max.		
Case	T-2		

Electrical data

TQF-491A ATT (dB) fo = 32,064 MHz

TQF-491A ATT (dB) fo = 111.689 MHz

Outline drawing

T-2

Audio modulation

Crystal Oscillators

INTRODUCTION

TOYOCOM crystal oscillators are manufactured by using TOYOCOM crystal resonator on sophisticated techniques and optimum circuit design which produces high stable frequency and high quality.

Since TOYOCOM crystal oscillators are stringently inspected by a computer controlled inspection system and produced by an amply studied quality control system, they have high reliability.

TOYOCOM crystal oscillators are, therefore, widely used as a precision frequency reference source in communication and electronic equipment around the world. Especially, TOYOCOM has a big market share in the industrial field such as the 900 MHz cellular mobile telephone system in the world.

The abundant TOYOCOM crystal oscillators are classified according to function as shown in the table (on page 56, 57).

Since this table also shows the frequency range that can be manufactured as well as typical application examples, it will help the user with type selection.

1. SPXO (Simple Packaged Crystal Oscillator)

An SPXO has frequency-temperature characteristics obtained by crystal resonator and has no temperature compensation circuit.

TOYOCOM has designed it under the optimum circuit conditions by the circuit simulation analysis so that the best characteristics of the crystal oscillators are obtained.

2. VCXO (Voltage Controlled Crystal Oscillator)

A VCXO is a crystal oscillator of which frequency is controlled by a external control voltage applied to the crystal oscillator. Usually, a variable capacitance component such as a varactor diode is used in the oscillation circuit as the frequency control element are shown in Fig.1.

Fig. 1 Basic AFC input construction of a VCXO

Fig.2 and Fig.3 show the V-F characteristics depending on the AFC (Automatic Frequency Control) input configuration in the VCXO.

In the case of Fig.2 the V-F characteristic shows a positive slope, on the other hand, a negative slope is shown in Fig.3. Either way is applicable to the TOYOCOM's VCXO, basing on customer's specifications.

Fig. 2 VCXO AFC input configuration for the positive slope characteristics

Fig. 3 VCXO AFC input configuration for the negative slope characteristics

Our VCXOs are widely used in communication and electronic equipment as frequency modulators and a part of a phase-locked loop as shown in Fig.4.

TCO-205 is a VCXO having an excellent SSB phase-noise characteristics (for instance, -110dB/Hz at 100Hz offset from carrier frequency) and is applicable to a measurement equipment such as spectrum analyzers and also used in a satellite communication system like VSAT as high purity signal source.

Fig. 4 An application of a VCXO for frequency synthesizer

3. TCXO (Temperature Compensated Crystal Oscillator)

A TCXO is a crystal oscillator with a temperature-sensitive reactance circuit in its oscillation loop to compensate the frequency-temperature characteristics inherent to the crystal resonator.

TOYOCOM TCXOs are classified into a direct compensation type called TCO-900 series and an indirect compensation type called TCO-500 series by the used temperature compensation method.

In the case of TCO-900 series, the temperature compensation circuit is inserted directly into the crystal oscillation loop as shown in Fig.5, so called direct-type TCXO. Since the supply of stable power to the temperature compensation circuit is unnecessary, power consumption and case size of TCO-900 series can be extremely reduced.

Fig. 5 Simplified schematic of the direct type TCXO

Because of these features, TCO-900 series is widely used as a reference oscillator of synthesizers that generate channel frequencies in the worldwide 800 MHz/900 MHz cellular mobile telephone and portable telephone market. In case of TCXO called TCO-500 series, on the other hand, the temperature compensation is performed by the indirect compensation method which means the temperature compensation circuit located outside of the oscillation loop and controls a variable reactance component such as a varactor diode as shown in Fig.6.

Fig. 6 Simplified schematic of the indirect type TCXO

High frequency stability is easily obtained over a wide temperature range with this compensation method, this TCXO is used as a reference source for mobile telephone base stations.

Since the values of the temperature compensation circuit are calculated and selected by CAD (Computer Aided Design) in the production process, excellent frequency stability is guaranteed.

4. DTCXO (Digitally Temperature Compensated Crystal Oscillator)

DTCXO is a TCXO compensated by using digital technology to obtain ultra-high frequency stability. TOYOCOM's DTCXO is constructed as Fig.7 and has the following characteristic features:

Fig. 7 Simplified Block Diagram of the DTCXO

1. High frequency stability ($\pm 0.2\text{ppm}$ max./-10 to $+60^\circ\text{C}$)
2. Low power consumption (15mA max./ +10V operation)
3. Compactness (small size of only 40x40x15h in mm)
4. Non-warm-up (high stability is guaranteed at the start of operation)

Since this DTCXO is compensated individually over the full temperature range and the digital compensation code is prewritten in the PROM, high frequency stability can be obtained at the moment of system power-on.

From above benefits, TOYOCOM's DTCXO is used as the reference oscillator in the base stations for a 900 MHz cellular mobile telephone system and paging system.

5. OCXO (Oven Controlled Crystal Oscillator)

With an OCXO, high frequency stability is obtained by putting the crystal resonator or the crystal oscillator itself in a high precision oven which keeps the ambient temperature constantly. Since the set temperature of the oven is adjusted to the zero temperature coefficient of each crystal oscillator, high stability is obtained.

Because an AGC (Automatic Gain Control) circuit is provided in the oscillation circuit of TCO-613, TCO-615 and TCO-632 series, short-term frequency stability and frequency versus supply voltage characteristics are excellent.

Therefore, these are widely used in satellite navigation system such as NNSS.

The newly developed TCO-635 series are very small and fast warm-up type OCXO (within $\pm 5 \times 10^{-8}$ typ. / 5 minutes at 25°C) and are used as the frequency source of satellite communication system like VSAT.

TOYOCOM OSCILLATORS LINE-UP

TYPE	MODEL	FREQUENCY AVAILABILITY					(MHz) 1000	APPLICATIONS	PAGE
		0.1	1	10	100				
SPXO	TCO-312A			20		200		• Computer • PCM system	58
VCXO	TCO-730C			12	20			• Video camera • Measurement equipment	59
	TCO-205M				60	150		• PCM timing recovery • Microwave system	60
TCXO	TCO-512X			4	25			• Marine radio system • Frequency synthesizer	62
	TCO-519A-L			10	24			• Cellular mobile radio	64
TCXO	TCO-909Z			10	20			• Cellular mobile radio • Portable radio	66
	TCO-919A-R			12	20				61
OCXO	TCO-635A			5	25			• Mobile telephone base station	70
	TCO-612		1		10			• Satellite communication system	68
	TCO-627			4	10			• Satellite navigation system	70
	TCO-632B				10.0 only			• Frequency counter and synthesizer	70
	TCO-613A			5	7			• EPIRB system	68
	TCO-615			5	10				68
DTCXO	TCO-101	0.1	1	10	20			• Mobile telephone base station • Satellite communication system	72

FREQUENCY STABILITY vs. PACKAGE SIZE

Applications

- Computer
- PCM system

Features

- Compact size
- ECL interface available

Model	TCO-312A
Standard frequency	100 MHz
Frequency available range	20 to 200 MHz
Frequency stability	
vs. Temperature	±10 ppm/0 to +60°C
vs. Supply voltage	±1 ppm/+5V ± 5%
Aging	±3 ppm/year
Supply voltage	+5V ± 5%
Supply current	20 mA max.
Output	0.4 to 1.0 Vp-p/110Ω
Operable temperature range	-20 to +75°C

Outline drawing

ECL interface

C_1 , R_1 and R_2 should be determined by customer.

Test circuit

Pin connections

1	NC
12, 17	Common and case
13, 15	Output
24	+VCC

Size in mm
(inch)

VCXO TCO-730 Series

Applications

- Video camera
- PCM system

Features

- Compact size
- 14-pin DIP IC compatible
- TTL compatible output
- Hermetically sealed metal package (washable)

Model	TCO-730C
Standard frequency	14.31818 MHz or 16.384 MHz
Frequency available range	12 to 20 MHz
Frequency stability	
vs. Temperature	±30 ppm/-20 to +70°C
vs. Supply voltage	±1 ppm/+5V ± 5%
Aging	±3 ppm/year
Supply voltage	+5V ± 5%
Supply current	16 mA max.
Output	TTL compatible, Fan-out 2
Operable temperature range	-30 to +75°C
Frequency control range	±50 ppm min.
Frequency control voltage	+2.5V ± 2V

Outline drawing

TCO-730C

Pin connections

1	Control voltage
7	Common and case
8	Output
14	+VCC

Size in mm
(inch)

Test circuit

CL: Total fixture and probe capacitance = 15pF max.

VCXO TCO-205 Series

Applications

- Measurement equipment
- Microwave system

Features

- Compact size
- Low SSB phase noise

Model	TCO-205M
Standard frequency	100 MHz
Frequency available range	60 to 150 MHz
Frequency stability	
vs. Temperature	±10 ppm/0 to +50°C
vs. Supply voltage	±2 ppm/+12V ± 5%
Aging	±5 ppm/year
Supply voltage	+12V ± 5%
Supply current	10 mA max.
Output	0 dBm min. into 50Ω
Operable temperature range	-20 to +70°C
Frequency control range	±20 ppm min.
Frequency control voltage	+3V ± 2V
SSB phase noise	-110 dBc/Hz min. (offset frequency 100 Hz)

Outline drawing

Pin connections

1	Control voltage
2	+VCC
3	Output
4	Common and case

Size in mm
(inch)

TCO-205 100 MHz SSB PHASE NOISE

Test circuit

TCXO with modulation function TCO-919 Series
Applications

- Portable radio
- Cellular mobile radio

Features

- Low power consumption (2 mA max.)
- High frequency stability
- With modulation or voltage control function
- Miniature size (2cc)

Model	TCO-919A	TCO-919R
Standard frequency		12.8 MHz
Frequency stability		
vs. Temperature	±2.5 ppm/-30 to +75°C	
vs. Supply voltage	±0.3 ppm/+5V ± 5%	
Aging	±1 ppm/year	
Supply voltage	+5V ± 5%	
Supply current	2 mA max.	
Output	1 Vp-p min. clipped sinewave (DC-cut)	
Operable temperature range	-35 to +80°C	
Frequency adjustment	±3 ppm min. by internal trimmer	
Audio modulation & Vcont function	Audio modulation Deviation : ±8 ppm min. Distortion : 3% max. Input voltage : 2 Vp-p Modulation range : 1 Hz to 3 kHz Response slope : Negative	Vcont for PLL Frequency control range : ±5 ppm min. Control voltage : +2.5 ± 2V Response slope : Positive

Outline drawing
TCO-919A, R

Pin connections

1	Common and case
2	Output
3	+VCC
4	Control voltage

Test circuit

Crystal Oscillators

TOYOCOM

TCXO TCO-512 Series

Applications

- Marine radio system
- Frequency synthesizer

Features

- Low power consumption
- Hermetically sealed metal case
- Excellent frequency stability

Model	TCO-512X
Standard frequency	6.4 MHz or 10 MHz
Frequency available range	4 to 25 MHz
Frequency stability	
vs. Temperature	±1 ppm/-10 to +60°C
vs. Supply voltage	±0.4 ppm/+10V ± 5%
Aging	±1 ppm/year
Supply voltage	+10V ± 5%
Supply current	10 mA max.
Output	Open collector (pull up resistor; 1.5 kΩ)
Operable temperature range	-20 to +70°C
Frequency adjustment	±3 ppm min. by external potentiometer (2.2 kΩ)

Outline drawing

TCO-512 X

Pin connections (TCO-512X)

1-2-5	Freq. adj.
3	+Vcc
4	Output
5	Common and case

Size in mm
(inch)

Test circuit

TCO-512X

TCXO with voltage control function TCO-519

Applications

- Cellular mobile radio
- Trunked radio system

Features

- Compact size
- Wide temperature range
- Excellent frequency stability

Model	TCO-519A	TCO-519L
Standard frequencies	12.8 MHz or 15.36 MHz	12.8 MHz or 15.36 MHz
Frequency available range	10 to 24 MHz	10 to 24 MHz
Frequency stability		
vs. Temperature	±2 ppm/-30 to +85°C	±1 ppm/-20 to +70°C
vs. Supply voltage	±0.2 ppm/+5V ± 5%	±0.2 ppm/+5V ± 5%
Aging	±1 ppm/year	±1 ppm/year
Supply voltage	+5V ± 5%	+5V ± 5%
Supply current	2 mA max.	2 mA max.
Output	1 Vp-p min. clipped sinewave (DC-cut)	1 Vp-p min. clipped sinewave (DC-cut)
Operable temperature range	-35 to +90°C	-30 to +80°C
Frequency adjustment	±3 ppm min. by internal trimmer	±3 ppm min. by internal trimmer
Frequency control range	±6 ppm min.	—
Frequency control voltage	+2.5V ± 2V (positive slope)	—

Outline drawing

TCO-519A, 519L

**Pin connections
(TCO-519A)**

1	+V _{CC}
2	Output
3	Common and case
4	Control voltage *
5	Common and case

**Pin connections
(TCO-519L)**

1	+V _{CC}
2	Output
3	Common and case
4	Common and case
5	Common and case

Size in mm
(inch)

Test circuit

TCO-519A Frequency stability vs. Temperature**TCO-519 12.8MHz Accelerated aging characteristics**

Crystal Oscillators

TCXO TCO-909 Series

Applications

- Portable radio
- Cellular mobile radio

Features

- Miniature size (2 cc)
- Low power consumption (2 mA max.)
- High frequency stability

Model	TCO-909Z
Standard frequencies	12.8 MHz or 15.36 MHz
Frequency available range	10 to 20 MHz
Frequency stability	
vs. Temperature	±2.5 ppm/-30 to +75°C
vs. Supply voltage	±0.3 ppm/+5V ± 5%
Aging	±1 ppm/year
Supply voltage	+5V ± 5%
Supply current	2mA max.
Output	1 Vp-p min. clipped sinewave (DC-cut)
Operable temperature range	-40 to +85°C
Frequency adjustment	±3 ppm min. by internal trimmer

Outline drawing

TCO-909Z

Pin connections

1	Common and case
2	Output
3	+VCC

Size in mm
(inch)

Test circuit

Frequency stability vs. Temperature

Aging characteristics

Test condition: continuous operation at room temperature

TCO-909 12.8 MHz SSB PHASE NOISE

Crystal Oscillators

TOYOCOM

OCXO TCO-612, TCO-613, TCO-615 Series

Applications

- Mobile telephone base station
- Satellite communication system
- Satellite navigation system
- Frequency counter & synthesizer

Features

- Excellent long and short term stability
- Low SSB phase noise
- Excellent warm-up
- Compact size

Model	TCO-612A	TCO-612B	TCO-612C	TCO-613A	TCO-615A	TCO-615B
Standard frequencies		5 MHz or 10 MHz		5 MHz	5 MHz or 10 MHz	5 MHz
Frequency available range		1 MHz to 10 MHz		5 to 7 MHz	5 to 10 MHz	—
Frequency stability vs. Temperature	$\pm 1 \times 10^{-7}$	$\pm 5 \times 10^{-8}$		$\pm 1 \times 10^{-8}$		$\pm 5 \times 10^{-9}$
	—10 to +60°C			—10 to +60°C		
vs. Supply voltage	$\pm 1 \times 10^{-7}$	$\pm 3 \times 10^{-8}$		$\pm 5 \times 10^{-9}$	$\pm 2 \times 10^{-9}$	$\pm 1 \times 10^{-9}$
	$\pm 10\%$			$\pm 5\%$		
Aging per day	$\pm 5 \times 10^{-8}$	$\pm 2 \times 10^{-8}$	$\pm 5 \times 10^{-9}$	$\pm 2 \times 10^{-9}$	$\pm 2 \times 10^{-9}$	$\pm 5 \times 10^{-10}$
per year	$\pm 2 \times 10^{-7}$	$\pm 1 \times 10^{-7}$	$\pm 8 \times 10^{-8}$	$\pm 5 \times 10^{-8}$	$\pm 5 \times 10^{-8}$	$\pm 2 \times 10^{-8}$
	after 24 hours operation			after 48 hours operation		
Warm-up	$\pm 1 \times 10^{-7}$	$\pm 5 \times 10^{-8}$		$\pm 2 \times 10^{-8}$		$\pm 5 \times 10^{-8}$
	within 10 minutes at 25°C			within 30 minutes at 25°C		
Supply voltage				+12V $\pm 10\%$		
Supply current						
Warm-up		330 mA max.		400 mA max.		500 mA max.
Steady state at 25°C		150 mA max.		200 mA max.		300 mA max.
Output		TTL Compatible, Fan-out 2		2 Vp-p/50Ω Sinewave		TTL Compatible, Fan-out 2
Frequency adjustment		$\pm 5 \times 10^{-7}$ min.		$\pm 2.5 \times 10^{-7}$ min.		$\pm 1 \times 10^{-7}$ min.
Weight		100 grams			200 grams	

Test circuit

TCO-612, 627, 615, 635A1, A2, 632B

CL: Total fixture and probe capacitance = 15pF max.

TCO-613, 635A

TCO-612A, B, C

Pin connections

1	Output
2	+V _{CC}
3	NC
4	NC
5	Common and case

TCO-613A

Pin connections

1-3	NC
4	Output (hot)
5	Output (cold)
6	Common and case
7	+V _{CC}
8	NC

TCO-615A, B

Pin connections

1	Output
2	+V _{CC}
3	NC
4	NC
5	Common and case

Power consumption vs. Ambient temperature

TCO-613A 5 MHz SSB PHASE NOISE

Warm-up characteristics

TCO-615 5 MHz Short-term stability

Crystal Oscillators

TOYOCOM

OCXO TCO-635, TCO-627, TCO-632 Series

Applications

- Mobile telephone base station
- Satellite communication system
- Satellite navigation system
- Frequency counter & synthesizer

Features

- Excellent long and short term stability
- Low SSB phase noise
- Fast warm-up
- Miniature size
- Low profile
- Low power consumption.

Model	TCO-635A	TCO-635A1, 2	TCO-627B	TCO-627F	TCO-632B
Standard frequencies	10 MHz	10 MHz	5 MHz or 10 MHz	6.4 MHz	10 MHz
Frequency available range	—	5 to 25 MHz	4 to 10 MHz	—	—
Frequency stability vs. Temperature	$\pm 1 \times 10^{-7}$ -20 to +70°C	$\pm 5 \times 10^{-8}$ -10 to +60°C	$\pm 3 \times 10^{-8}$ +12V ± 10%	$\pm 5 \times 10^{-8}$ +12V ± 5%	$\pm 3 \times 10^{-8}$ +12V ± 5%
vs. Supply voltage	$\pm 3 \times 10^{-8}$		$\pm 5 \times 10^{-8}$	$\pm 5 \times 10^{-9}$	$\pm 5 \times 10^{-9}$
Aging per day	$\pm 2 \times 10^{-8}$	$\pm 2 \times 10^{-8}$	$\pm 2 \times 10^{-8}$	$\pm 2 \times 10^{-8}$	$\pm 5 \times 10^{-9}$
per year	$\pm 2 \times 10^{-7}$	$\pm 2 \times 10^{-7}$	$\pm 1 \times 10^{-7}$	$\pm 1 \times 10^{-7}$	$\pm 5 \times 10^{-8}$
Warm-up	after 24 hours operation ±5 × 10 ⁻⁸ within 5 minutes at 25°C				±2 × 10 ⁻⁸ within 30 minutes at 25°C
Supply voltage	+12V ± 10%				
Supply current Warm-up	150 mA max.		330 mA max.	550 mA max.	400 mA max.
Steady state at 25°C	70 mA max.		120 mA max.	120 mA max.	150 mA max.
Output	+8 ± 2dB/50Ω Sinewave	TTL Compatible, Fan-out 2			
Frequency adjustment	$\pm 1 \times 10^{-4}$ min.		$\pm 5 \times 10^{-7}$ min.		$\pm 3 \times 10^{-7}$ min.
Weight	30 grams		80 grams		100 grams

Power consumption
vs. Ambient temperature

TCO-635A Warm-up characteristics at 25°C

Outline drawing Size in mm (inch)

TCO-635A, A1

Pin connections

1	NC
2	NC
3	Common and case
4	Output
5	+VCC

TCO-635A2

Pin connections

1	NC
2	NC
3	Common and case
4	Output
5	+VCC

TCO-627B, F

Pin connections

1	NC
2	Output
3	+VCC
4	Common and case
5	+VCC

TCO-632B

Pin connections

1	Common and case
2	Output
3	+VCC
4	Common and case
5	NC

Short-term stability

TCO-635A2 10 MHz SSB PHASE NOISE

TCO-635A 10 MHz Aging characteristic

TOYO COMMUNICATION EQUIPMENT CO., LTD.

20-4, Nishi-Shimbashi 3-chome, Minato-ku, Tokyo 105, Japan

Phone: 03-3459-7310 Telex: 02423115 TOYOCO J Facsimile: 03-3436-1434

TOYOCOM U.S.A., INC.

• Head Office

617 E. Golf Road, Suite 112, Arlington Heights, Illinois 60005, U.S.A.

Phone: 708-593-8780 Facsimile: 708-593-5678

• Los Angeles Office

3200 Bristol Street, Suite 720, Costa Mesa, California 92626, U.S.A.

Phone: 714-668-9081 Facsimile: 714-668-9158

TOYOCOM EUROPE GmbH

• Head Office

Bollenhöhe 5, 4020 Mettmann, F.R. Germany

Phone: 02104-12099 Facsimile: 02104-15546

• South Europe Office

Hohlenstrasse 42, CH-2540 Grenchen, Switzerland

Phone: 065-530538 Facsimile: 065-530489