Homework * 2: Thermodynamics

Gornain Afi 21/481364/TK/ 53170

Problem #1: Gas Expansion

Process A

Prosess B

bas is ideal with n moles and molar specific heat CV in recled container

Al Defermine the value of Pf and Tf in these process!

* Parass A

Process 1 to 2	PV = T
PV = nRT	P2V2 = T2
P = constant	$\frac{\rho_2 V_2}{\rho_3 V_3} = \frac{T_2}{T_3}$
P= nRT	Po 21/0 = Tf
V	Pf GV6 To
Po, = Poz (Isobarik)	Weknow that
	Tf = 2 90
$\frac{\alpha R T_0}{V_0} = \frac{\alpha R T_P}{2V_0}$	2 Po _ 2 To
Vo 2vo	6PF To
Tf = 2 To	Po=6Pf
	Pf = 1 Po
Process 2 to 3	6
The equation 15	From the table, we know
PV = nRT	that PO = NRTO _ NRTF
n R = constant	= n R2T6 = nRT0 2V V0
	27 70

Thus,
$$Pf = \frac{nRT_0}{6V_0}$$

and $Tf = 2T_0$

* Process B

Prosess 1 to 2 (isohoric)

Pv = nRT

 $\frac{P}{T} = \frac{nR}{V} = constant$

 $\frac{P_1}{\overline{1}_1} = \frac{P_2}{\overline{T}_2} \implies \frac{P_0}{\overline{T}_0} = \frac{P_f}{\overline{T}_f}$

We know that Po = nRTo
Vo

nRIO = PA

Qurnain 46 21/481767/TK/53170

		• • •
* Process 2 to 3 (iso fermix)	We know that	$W = -\frac{cv}{2} \left[P_3 V_3 - P_2 V_2 \right]$
PV = NRT = constant	Q = DEth - W	= - CV [Pf 6V0 - Po 2V0]
P2V2 = P3 V3	ar BEth = n C DT	= - CN Nº [Pbt -sbo]
Pf Vr = Po 9V6	and W= - n RDT	reknow that Pf = 1 Po
Pf = 3 Po		1 2 - CV V. [@ 26]
Now subtitute PF = 3 Po into	& Process A	W = CV VO PO R
$\frac{\text{Pf}}{\text{Tf}} = \frac{nR}{V_0}$	G in process 1 to 2	R
Tf Vo	(ilobaric)	
390 = nR	Q1= 0 Eth - W	Q23: DETH - W
ff Vo	DEth = n Cv (Tf-To)	= n Cv To - C <u>V Vo Po</u>
Weknow that Po = nRTo	W = - n R (Tf-To)	= CV (n Po- Volo)
Vo		we know PNo=nPTo
3 DRT 0 = AR	Q= n Cv (Tf-To) + n R (Tf-To)	= CV (n To - nRTo) = 0
Tf Vo Xo	= v (It-10) (cn+b)	A. O. h
Tf = 3To	We know that	Q 23 = 0, hecause advasatic
//	7f = 2 To	has no heat transfer between
Sublitute to Pf - nR	G _{n= Λ} (2 To- To) (Cv+P)	system and onvironment.
Tf Vo	= n To (Cv+R)	So the total heart added into
Pt = nR		the system A is
370 Vo	O in process 2 to 3	Q12 + Q23 = Q12 +0
Pf = hR 3To Vo	(adia batik)	= n To (Cv+R)
	G 23 = DE+h - W	
Thui, Tf = 370	DEth = n CV DT = n Cv To	* Process B
and Pf=nR3ToVo		& in process 1 to 2 (isoharic)
	W= - 1 (P3V3 - P2V2)	Q12 = DE+h - W
1 Defermine the amount of	we know that Laplace constant	A Eth = n Cv DT = n Cv (Tf - 10)
heat Q added into the system	Y = CP = Cv+R	we know that Tf: 3To
during this proses.	W = - 1 (P3V3 - P2V2)	DEth = 2n CvTo
U	τ̈ν.	W=0 because iso boxic has no
	-	Change on System volume.

()	12	=	= 1 Eth - 0	
		-	2n G T.	

Problem * 2: Thermal Equilibrium

Q in process 2 to 3

(2 in proces 2 to ' (iso termic) Ma, Ca, Ta Mb, Cb, Tb specific heat = Ca, Cb.

623 = 1 Eth - W

Because it is isokemic

A Defermine the final

Assume that Ta > Tb;

process, the thermal energy

temperature If of the

16 constant; they DEth=6

two metal blocks!

Q29 = - W

W= \int P dV; P= \frac{nRT}{V}

We know thermodynamic prinsip that Q released = Q accept,

SUNRT AU = NRT SAV

then the equation can be expressed as

Vf= 3Vo
W= nRT J dV = nRT ln 3Vo
Vo V

Grelensed = Gaccept

Q 4 - QB

Ma Ca (Ta-Tf) = Mb Cb (Tf-Tb)

W= nRT |n 3 ; Tf. 3To

Macata-Macatf : McCbTf-MbCbTb

W= 3nRToln3

Macata+MbCbTb = Macatf+MbCbTf

Macata+MbCbTb = Tf (Maca+MbCb)

tf = Macata + Mb CLTh Maca + Mb Ch

So, the Q total in system B is
Q12+Q23=2nCvTo+InRToln 3
= nTo (2Cv+Rln3),

So, the final temperature at equilibrium quilory is equal to

Tf = Ma Ca Ta + Mb CbTb

Ma Ca + Mb Cb

13 Defermine the change in blocks	Now Subtitute to Qa=Qb
temperature DTa = Tf - Ta and	Ma Ca STa = MbCb DTb
ΔTb = Tf - Tb	because Ma > ML, then
We know that If - Ma CaTa + Mb CbTb	CaDTa = CbDTb
Ma Ca + Mb Cb	<u>Ca</u> <u>Cb</u> we cannot compare in this way)
	OTL STA
DTM = Tf -Ta	Now, because 1 DTal > 1 DTbl Hen
= Macata+MacbTb - Macata-MbcbTa	DTa = Qa > (DTb = Qb
MaCu + Mb (b	MaCa
= MZCB (Tb-Ta) = DTa	Maca McCb Ca Cb
Maca + Mb Cb	Maca McCb ca Cb
	we know that Qa = Qb at equillibrium temperature
DTb = Tf-Tb	Ga > OL
= Macata+MbCbTb - Tb	Ca Cb
Maca + Mb Cb	$\frac{1}{2}$ > $\frac{1}{2}$ it means,
= Macata+Mbseth - Macath - Mbset b	ca Cb
Ma Ca + Mb Cb	(b > ca,,
= Maca (Ta_Tb) = DTb	Thus Cb has higher specific heat compare
Maca+Mbcb	to Ca.
[C] Assume Ma = Mb , DTa > 1 DTb	Problem & 3: Maxwell - Boltzmann
Which metal block has higher specific	Distribution
heat?	
	Maxwell-Bultzmann Distribution:
We know that:	Nv(V) = 417 No (m) 3/2 2 - mv2/2687
STa = Mb Cb (Tb-Ta)	
Maca +Mbcb	Al Prove Vrms = 3KBT
DTb = Ma(a(Ta-Tb)	' M
Maca + MLCb	

Nv(V)= 411 No (M) 3/2 2 - mv/2 LBT

We know that

We know that
$$3/2$$
 $N_{\nu}(v) dv = 4 \text{ IT No} \left(\frac{m}{2\pi \text{ FBT}}\right) V_{e}^{2} - mv^{2}/2kRT$

The formula for Vrms in general is

$$V_{ims} = \left(\frac{\overline{Z} \operatorname{ni} V_{i}^{2}}{\overline{Z} \operatorname{ni}}\right)^{1/2}$$

Because it is a continuous function, then we can use calculus for the zigma notation

calcular notation:

$$Vrm_{s}^{2} = \int_{\infty}^{\infty} v^{2} N_{v}(v) dv$$

We know that N = J No (1) dv

$$= \int_{0}^{\infty} \frac{v^{2} N_{V}(v) dv}{N_{0}}$$

$$= \frac{1}{N_{0}} \int_{0}^{\infty} v^{2} 4 \pi N_{0} \left(\frac{m}{m}\right)^{\frac{3}{2}} V^{2} e^{-mv^{2}/2kBT}$$

$$= 4\pi \left(\frac{m}{2\pi k\Omega}\right)^{\frac{3}{2}} \int_{0}^{\infty} v^{4} e^{-mv^{2}/2kBT} dv$$

We know that
$$\int_{0}^{\infty} x^{q} = ax^{s} = \frac{3}{8} \int_{a^{5}}^{17}$$

Subtitute the equation into the integral equation

$$\frac{1}{\sqrt{r_{1}}} = 4\pi \left(\frac{m}{\sqrt{\pi \kappa_{BT}}}\right)^{\frac{1}{2}} \int_{0}^{\infty} \frac{4 - mv^{2}/2\kappa_{BT}}{\sqrt{v}} dv$$

$$= 4\pi \left(\frac{m}{\sqrt{\pi \kappa_{BT}}}\right)^{\frac{3}{2}} \left(\frac{3}{8} \sqrt{\frac{\pi}{(\frac{m}{\sqrt{\kappa_{BT}}})^{5}}}\right)$$

$$= 4\pi \left(\frac{m}{\sqrt{\pi \kappa_{BT}}}\right)^{\frac{3}{2}} \frac{3}{8} \sqrt{\pi} \left(\frac{2\kappa_{BT}}{m}\right)^{5}$$

$$= 4\pi \int_{0}^{\infty} \sqrt{\frac{3}{\sqrt{\kappa_{BT}}}} \sqrt{\frac{2\kappa_{BT}}{m}} \sqrt{\frac{2\kappa_{BT}}{m}} \sqrt{\frac{2\kappa_{BT}}{m}}$$

$$= 4\pi \int_{0}^{\infty} \sqrt{\frac{3}{\sqrt{\kappa_{BT}}}} \sqrt{\frac{2\kappa_{BT}}{m}} \sqrt{\frac{2\kappa_{BT}}{m}} \sqrt{\frac{2\kappa_{BT}}{m}}$$

$$= 4\pi \int_{0}^{\infty} \sqrt{\frac{3}{\sqrt{\kappa_{BT}}}} \sqrt{\frac{2\kappa_{BT}}{m}} \sqrt{\frac{2\kappa_{BT}}{m}} \sqrt{\frac{2\kappa_{BT}}{m}}$$

The formula of Vary in general is expussed as .

We know that
$$N = \int_{V_1}^{V_2} N_V(V) dV$$
; so

$$Vavg = \int_{0}^{\infty} V N_{\nu}(V) dV$$

$$= \frac{1}{N_{0}} \int_{0}^{\infty} V A\Pi N_{0} \left(\frac{m}{2\pi k_{B}T}\right)^{3/2} V^{2} e^{-mV^{2}/2k_{B}T} dV$$

$$= 4\Pi \left(\frac{m}{2\pi k_{B}T}\right)^{\frac{3}{2}} \int_{0}^{\infty} V^{3} e^{-mV^{2}/2k_{B}T} dV$$

We know from the question that:

$$\int_{0}^{\infty} x^{3} e^{-ax^{2}} = \frac{1}{2a^{2}}$$

Where
$$a = \frac{m}{2kBT}$$
; so

Vary =
$$K_{\parallel}^{2} \left(\frac{m}{2\pi k_{BT}}\right)^{\frac{2}{2}} \chi_{\left(\frac{m}{2k_{BT}}\right)^{2}}^{2}$$

$$= 2\pi \frac{M}{M} \sqrt{\frac{2\pi k_B T}{M}} \left(\frac{k_B T}{M}\right)^2$$

Vmp is the maximum number of molecule at speed of V to V+dv.

So, the expression can be expressed as:

$$\frac{d Nv(u)}{dV No} = 4\Pi \left(\frac{m}{2\Pi kBT}\right)^{\frac{3}{2}} V^{2} e^{-mv^{2}/2kBT}$$

$$= 4 \left[\left(\frac{M}{L T + B T} \right)^{\frac{3}{2}} \left(V^{2} e^{-MV^{2}/2 k B T} dv \right) \right]$$

$$= 4 \left[\left(\frac{M}{L T k B T} \right)^{\frac{3}{2}} \left(2Ve^{-MV^{2}/2 k B T} - \frac{MV^{2}/2 k B T}{2Ve^{-MV^{2}/2 k B T}} \right) \right]$$

$$= 4 \left[\left(\frac{M}{2 \pi k B T} \right)^{\frac{3}{2}} - \frac{MV^{2}/2 k B T}{2Ve^{-MV^{2}/2 k B T}} \right]$$

$$= 4 \left[\left(\frac{M}{2 \pi k B T} \right)^{\frac{3}{2}} - \frac{MV^{2}/2 k B T}{2Ve^{-MV^{2}/2 k B T}} \right]$$

The maximum distribution of speed had value of $\frac{d}{dv} \frac{Nv(V)}{N} = 0$ so $\frac{d}{dv} \frac{Nv(V)}{N} = 0$

$$O = 4\pi \left(\frac{m}{2\pi \kappa \beta r}\right)^{\frac{3}{2}} \sqrt{e} \left(\frac{2 - V^{2} m}{\kappa \sigma r}\right)$$

$$\frac{1 - \sqrt{2}m}{kBL} = 0$$

$$\frac{V^2 m}{kBT} = 2 \longrightarrow V^2 = \frac{2 kBT}{m}$$

$$V = \sqrt{\frac{2 \, \text{KGT}}{\text{m}}}$$

Thus, the maximum most possible distribution of speed: