$12n_{0233} \ (K12n_{0233})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2u^{16} - 22u^{14} + \dots + b - 2, -u^{16} + u^{15} + \dots + a - 3u, u^{17} + 2u^{16} + \dots - u - 1 \rangle$$

 $I_2^u = \langle b - u, u^2 + a - 2, u^3 - u^2 - 2u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 20 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 2u^{16} - 22u^{14} + \dots + b - 2, -u^{16} + u^{15} + \dots + a - 3u, u^{17} + 2u^{16} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{16} - u^{15} + \dots - 9u^{2} + 3u \\ -2u^{16} + 22u^{14} + \dots + u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{15} + 10u^{13} + \dots + 3u + 1 \\ -u^{16} + 11u^{14} + \dots + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 4u^{2} + 1 \\ -u^{8} + 4u^{6} - 2u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{16} + u^{15} + \dots - 4u - 1 \\ u^{6} - 4u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-u^{16} + 11u^{14} - 2u^{13} - 49u^{12} + 17u^{11} + 116u^{10} - 50u^9 - 163u^8 + 56u^7 + 146u^6 - 2u^5 - 88u^4 - 47u^3 + 32u^2 + 26u + 7$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 22u^{16} + \dots + 120u + 1$
c_{2}, c_{4}	$u^{17} - 4u^{16} + \dots + 12u - 1$
c_3, c_8	$u^{17} + u^{16} + \dots + 20u - 8$
c_5, c_6, c_7 c_9, c_{10}, c_{11}	$u^{17} + 2u^{16} + \dots - u - 1$
c_{12}	$u^{17} + 18u^{15} + \dots + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} - 50y^{16} + \dots + 11308y - 1$
c_{2}, c_{4}	$y^{17} - 22y^{16} + \dots + 120y - 1$
c_3, c_8	$y^{17} + 21y^{16} + \dots + 656y - 64$
$c_5, c_6, c_7 \\ c_9, c_{10}, c_{11}$	$y^{17} - 24y^{16} + \dots + 3y - 1$
c_{12}	$y^{17} + 36y^{16} + \dots + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.982279 + 0.151832I		
a = 0.168994 - 0.909972I	1.92118 + 2.31259I	9.54984 - 4.08399I
b = -0.73475 + 1.67481I		
u = 0.982279 - 0.151832I		
a = 0.168994 + 0.909972I	1.92118 - 2.31259I	9.54984 + 4.08399I
b = -0.73475 - 1.67481I		
u = -0.865450		
a = 1.36121	0.152271	10.7240
b = 0.158508		
u = 1.134090 + 0.377025I		
a = -0.290069 + 0.747188I	-6.34608 + 5.60143I	7.40158 - 3.76696I
b = 1.58149 - 1.34476I		
u = 1.134090 - 0.377025I		
a = -0.290069 - 0.747188I	-6.34608 - 5.60143I	7.40158 + 3.76696I
b = 1.58149 + 1.34476I		
u = -1.19563		
a = -0.435884	5.72559	17.0640
b = 0.101957		
u = -0.374547 + 0.647974I		
a = -0.529092 - 1.284900I	-11.06150 - 2.09782I	3.78406 + 2.85716I
b = -0.554996 - 0.754476I		
u = -0.374547 - 0.647974I		
a = -0.529092 + 1.284900I	-11.06150 + 2.09782I	3.78406 - 2.85716I
b = -0.554996 + 0.754476I		
u = 0.373542		
a = 0.533717	0.571638	17.3900
b = -0.273837		
u = -0.161903 + 0.300607I		
a = 0.05405 + 2.11440I	-1.59083 - 0.74897I	-0.41320 + 3.78790I
b = 0.442012 + 0.466984I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.161903 - 0.300607I		
a = 0.05405 - 2.11440I	-1.59083 + 0.74897I	-0.41320 - 3.78790I
b = 0.442012 - 0.466984I		
u = 1.70139		
a = 0.253107	9.39467	9.61340
b = -1.16331		
u = -1.72231 + 0.03669I		
a = -0.59162 - 2.45052I	11.62350 - 3.05566I	10.30225 + 2.57182I
b = 0.95501 + 2.99216I		
u = -1.72231 - 0.03669I		
a = -0.59162 + 2.45052I	11.62350 + 3.05566I	10.30225 - 2.57182I
b = 0.95501 - 2.99216I		
u = -1.75947 + 0.10503I		
a = 1.37142 + 1.82000I	3.97600 - 7.68149I	8.50094 + 3.18214I
b = -2.29897 - 2.04908I		
u = -1.75947 - 0.10503I		
a = 1.37142 - 1.82000I	3.97600 + 7.68149I	8.50094 - 3.18214I
b = -2.29897 + 2.04908I		
u = 1.78986		
a = -0.0795251	16.7200	17.9570
b = 0.397105		

II.
$$I_2^u = \langle b - u, u^2 + a - 2, u^3 - u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 2 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + u + 2 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 2 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2 u + 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_8	u^3
c_4	$(u+1)^3$
c_5, c_6, c_7	$u^3 + u^2 - 2u - 1$
$c_9, c_{10}, c_{11} \\ c_{12}$	$u^3 - u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_8	y^3
c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.24698		
a = 0.445042	4.69981	7.80190
b = -1.24698		
u = 0.445042		
a = 1.80194	-0.939962	4.75300
b = 0.445042		
u = 1.80194		
a = -1.24698	15.9794	6.44500
b = 1.80194		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{17}+22u^{16}+\cdots+120u+1)$
c_2	$((u-1)^3)(u^{17} - 4u^{16} + \dots + 12u - 1)$
c_3, c_8	$u^3(u^{17} + u^{16} + \dots + 20u - 8)$
c_4	$((u+1)^3)(u^{17} - 4u^{16} + \dots + 12u - 1)$
c_5, c_6, c_7	$(u^3 + u^2 - 2u - 1)(u^{17} + 2u^{16} + \dots - u - 1)$
c_9, c_{10}, c_{11}	$(u^3 - u^2 - 2u + 1)(u^{17} + 2u^{16} + \dots - u - 1)$
c_{12}	$(u^3 - u^2 - 2u + 1)(u^{17} + 18u^{15} + \dots + u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^{17} - 50y^{16} + \dots + 11308y - 1)$
c_2, c_4	$((y-1)^3)(y^{17}-22y^{16}+\cdots+120y-1)$
c_3,c_8	$y^3(y^{17} + 21y^{16} + \dots + 656y - 64)$
c_5, c_6, c_7 c_9, c_{10}, c_{11}	$(y^3 - 5y^2 + 6y - 1)(y^{17} - 24y^{16} + \dots + 3y - 1)$
c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^{17} + 36y^{16} + \dots + 3y - 1)$