

CMOS028FDSOI Technology

MIM CAPACITOR models

DK1.2_RF_mmW

Comparison with DK1.1_RF_mmW model(s)

Spice Models Benchmark

Please use the bookmark to navigate

General information on models

- Maximum supply voltage is V.
- Validity domain is defined as follows:

Output parameters definitions

- Model(s): cmim16acc_acc
 - ✓ Cj : Junction capacitance at Vj = 0.1V, f = 100e3Hz.
 - ✓ Ij : Junction leakage current at Vj = 0.1V.

dormieub

cmim16acc_acc Electrical characteristics scaling

dormieub

Cj vs Temp @ f=100kHz

cmim16acc_acc, C0 [fF/um2] vs Temp [degC]

f_ext==100e3 and W==141e-6 and relax==0 and Vj==0.1

dormieub

Cj vs f_ext @ Temp=-30

cmim16acc_acc, C / C@f_ext=10kHz vs f_ext [Hz]

W==141e-6 and relax==1 and Vj==0.1 and Temp==-30

Cj vs f_ext @ Temp=-10

cmim16acc_acc, C / C@f_ext=10kHz vs f_ext [Hz]

W==141e-6 and relax==1 and Vj==0.1 and Temp==-10

Cj vs f_ext @ Temp=25

cmim16acc_acc, C / C@f_ext=10kHz vs f_ext [Hz]

W==141e-6 and relax==1 and Vj==0.1 and Temp==25

Cj vs f_ext @ Temp=60

cmim16acc_acc, C / C@f_ext=10kHz vs f_ext [Hz]

W==141e-6 and relax==1 and Vj==0.1 and Temp==60

Cj vs f_ext @ Temp=85

cmim16acc_acc, C / C@f_ext=10kHz vs f_ext [Hz]

W==141e-6 and relax==1 and Vj==0.1 and Temp==85

Cj vs f_ext @ Temp=125

ST Confidential

cmim16acc_acc, C / C@f_ext=10kHz vs f_ext [Hz]

W==141e-6 and relax==1 and Vj==0.1 and Temp==125

Ij vs Vj @ Temp=-30

ST Confidential

cmim16acc_acc, Ij [A] vs Vj [V]

W==141e-6 and relax==0 and Temp==-30

Ij vs Vj @ Temp=-10

cmim16acc_acc, Ij [A] vs Vj [V]

W==141e-6 and relax==0 and Temp==-10

Ij vs Vj @ Temp=25

cmim16acc_acc, Ij [A] vs Vj [V]

W==141e-6 and relax==0 and Temp==25

Ij vs Vj @ Temp=60

cmim16acc_acc, Ij [A] vs Vj [V]

W==141e-6 and relax==0 and Temp==60

Ij vs Vj @ Temp=85

cmim16acc_acc, Ij [A] vs Vj [V]

W==141e-6 and relax==0 and Temp==85

Ij vs Vj @ Temp=125

cmim16acc_acc, Ij [A] vs Vj [V]

W==141e-6 and relax==0 and Temp==125

Cj vs Vj @ Temp=-30

cmim16acc_acc, C / C@Vj=0V vs Vj [V]

f_ext==100e3 and relax==0 and Temp==-30

ST Confidential

Cj vs Vj @ Temp=-10

cmim16acc_acc, C / C@Vj=0V vs Vj [V]

f_ext==100e3 and relax==0 and Temp==-10

ST Confidential

Cj vs Vj @ Temp=25

cmim16acc_acc, C / C@Vj=0V vs Vj [V]

f_ext==100e3 and relax==0 and Temp==25

Cj vs Vj@Temp=60

cmim16acc_acc, C / C@Vj=0V vs Vj [V]

f_ext==100e3 and relax==0 and Temp==60

Cj vs Vj @ Temp=85

dormieub

cmim16acc_acc, C / C@Vj=0V vs Vj [V]

f_ext==100e3 and relax==0 and Temp==85

Cj vs Vj @ Temp=125

cmim16acc_acc, C / C@Vj=0V vs Vj [V]

 $f_{ext}=100e3$ and relax==0 and Temp==125

Annex

ST Confidential

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model cmim16acc_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc runs = 1000
 - \mathbf{x} vsub1 = 0
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - $v_j = 0.1 \text{ V}$
 - **x** $f_{ext} = 100e3 Hz$
 - **✗** sbenchlsf_release = Alpha
 - \times ams_release = 2018.3
 - **✗** model_version = 1.0
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - **✗** vj = -5.0, -4.5, -4.0, -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, -0.4, -0.3, -0.2, -0.1, -0.05, 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0
 - \star f_ext = 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0
 - **x** temp = -30.0, -10.0, 25.0, 60.0, 85.0, 125.0

- ✓ Extra parameters
 - \times cmim16acc_dev = 0
- Model cmim16acc_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times vsub1 = 0
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - $v_j = 0.1 \text{ V}$
 - X f ext = 100e3 Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.0
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \checkmark vj = -5.0, -4.5, -4.0, -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, -0.4, -0.3, -0.2, -0.1, -0.05, 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0
 - **x** f_ext = 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0
 - **x** temp = -30.0, -10.0, 25.0, 60.0, 85.0, 125.0
 - ✓ Extra parameters
 - \mathbf{x} cmim16acc_dev = 0

