QF Group Theory CC2022 By Zaiku Group

Lecture 12

Delivered by Bambordé Baldé

Friday, 11/8/2022

Learning Journey Timeline

quantumformalism.com

August 20, 4pm BST (11am EST)

Live Q&A: Measure Theory & Functional Analysis

Facts about cycles (A)

- It's clear that a 1 cycle (a₁) corresponds to the identity for any a₁.
 This is why in the textbooks 1 cycles are omitted when considering cycle decomposition.
- A 2- cycle (aka transposition) (a_1a_2) corresponds to a unique permutation $\sigma \in S_n$ which switches a_1 and a_2 but leaves all the other elements of $X = \{1, 2, ..., n\}$ unchanged. This means the cycle (a_1a_2) is the same as (a_2a_1) right?
- But k ≥ 3 cycles changing the order of the elements may result in a different cycle! For example, consider the 3 cycles (123) and (132). It's clear that (132) ≠ (123) right?

Curiosity question 1: Is there a way of changing the order of some elements of a k-cycle ($a_1a_2a_3...a_k$) such that the underlying permutation stays the same?

Facts about cycles (B)

Proposition 1.0

Let $(a_1 a_2 a_3 \dots a_k)$ be a k - cycle. Then we have the following identities:

- $(a_1 a_2 a_3 \dots a_k)^{-1} = (a_k a_{k-1} \dots a_k a_1).$

Some remarks:

- The first identity above tells us that we can start a cycle at any point a_i . All we need is to then list the elements in order after that i.e. the next element must be a_{i+1} . Also, once we get to a_k the next one is a_1 and so on.
- The second identity obviously means that the inverse element of a $k-cycle\ (a_1a_2a_3\ldots a_k)$ is the k-cycle with the elements listed in the opposite order i.e $(a_ka_{k-1}\ldots a_ka_1)$.
- Hence, for a 2 cycle (transposition) $(a_1 a_2)$, we have $(a_1, a_2)^{-1} = (a_2, a_1) = (a_1, a_2)!$

Facts about cycles (C)

Proposition 1.1

Let $(a_1 a_2 a_3 ... a_k)$ and $(b_1 b_2 b_3 ... b_j)$ be disjoint i.e. $a_k \neq b_j$ for all k and j. Then $(a_1 a_2 a_3 ... a_k) \circ (b_1 b_2 b_3 ... b_j) = (b_1 b_2 b_3 ... b_j) \circ (a_1 a_2 a_3 ... a_k)$.

Hence, disjoint cycles commute with each other!

Curiosity question 2 (challenge): What if the cycles are non-disjoint? Do they necessarily not commute with each other?

Proposition 1.2

Let $\sigma \in S_n$ be an arbitrary permutation and $(a_1 a_2 a_3 \dots a_k)$ be a k-cycle. Then $\sigma \circ (a_1 a_2 a_3 \dots a_k) \circ \sigma^{-1} = (\sigma(a_1) \sigma(a_2) \sigma(a_3) \dots \sigma(a_k))$.

Curiosity question 3 (challenge): Is $\sigma \circ (a_1 a_2 a_3 \dots a_k) \circ \sigma^{-1}$ again a k - cycle?

Even and Odd Permutations

Theorem 1.0

Let $\sigma \in S_n$ be an arbitrary permutation. Then σ can be written as a product of 2- cycles.

• For example, if we consider a $k-cycle\ (a_1a_2a_3\ldots a_k)$. Then $(a_1a_2a_3\ldots a_k)=(a_1a_n)\circ (a_1a_{n-1})\circ\ldots\circ (a_1a_3)\circ (a_1a_2)$.

Definition 1.0

A permutation $\sigma \in S_n$ is said to be even if it can be written as a product of an even number of 2-cycles and odd if it can be written as a product of an odd number of 2-cycles.

 Hence, once you break down a permutation into a product of 2 – cycle you'll know whether it's odd or even!

Theorem 1.1

Let $\sigma \in S_n$ be a permutation. Then σ is either even or odd, not both!

Theorem 1.2

A k-cycle is an even permutation if k is odd and odd permutation if k is even!

Curiosity questions:

- **1** Is the identity permutation $id \in S_n$ even or odd?
- ② Are 2 cycles even or odd permutations?

The Sign of a Permutation

Definition 1.1

Let $\sigma \in S_n$ be a permutation. The the sign of σ is defined as follows:

$$sign(\sigma) = \left\{egin{array}{ll} +1 & ext{if} & \sigma ext{ is even} \ & & & \ & & \ & -1 & ext{if} & \sigma ext{ is odd} \end{array}
ight.$$

- It's easy to see that $sign: S_n \longrightarrow \{1, -1\}$ is a group homomorphism i.e. $sign(\sigma_1 \circ \sigma_2) = sign(\sigma_1)sign(\sigma_2)$ for all $\sigma_1, \sigma_2 \in S_n$.
- The kernel of this homomorphism $Ker(sign) = \{ \sigma \in S_n \mid sign(\sigma) = 1 \}$ is a nontrivial subgroup of S_n denoted A_n (aka alternating group)!

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup