

015343934

WPI Acc No: 2003-404872/200339

XRAM Acc No: C03-107990

Composition for dyeing keratin-containing fibers, especially human hair, comprises heterocyclic ammonium compound and acidic methylene compound

Patent Assignee: HENKEL KGAA (HENK)

Inventor: GROSS W; HOFFKES H; MOLLER H; MULLER H; OBERKOBUSCH D; HOEFFKES H ; MOELLER H; MUELLER H

Number of Countries: 035 Number of Patents: 004

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
Patent No	Kind	Date	Week			
DE 10148844	A1	20030410	DE 10148844	A	20011004	200339 B
WO 200330847	A1	20030417	WO 2002EP10736	A	20020925	200339
EP 1432388	A1	20040630	EP 2002772344	A	20020925	200443
			WO 2002EP10736	A	20020925	
AU 2002337132	A1	20030422	AU 2002337132	A	20020925	200460
DE 10148844	A1	20030410	200339 B			
WO 200330847	A1	20030417	200339			
EP 1432388	A1	20040630	200443			
AU 2002337132	A1	20030422	200460			

Priority Applications (No Type Date): DE 10148844 A 20011004.

Designated States (National): AU; BR; CA; CN; HU; JP; NO; PL; RU; US; VN

Designated States (Regional): AT; BE; BG; CH; CY; CZ; DE; DK; EE; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; SK; TR; LI

Abstract (Basic): DE 10148844 A1

Abstract (Basic):

NOVELTY - Composition for dyeing keratin-containing fibers, especially human hair, comprises:
(1) at least one heterocyclic quaternary ammonium compound (A); and
(2) an acidic methylene compound (B).

DETAILED DESCRIPTION - Composition for dyeing keratin-containing fibers, especially human hair, comprises:

(i) at least one heterocyclic quaternary ammonium compound (A) of formulae (I) or (II) (with provisos); and
(ii) an acidic methylene compound (B).

R1, R2=hydrogen, halo, hydroxy, 1-4C hydroxyalkyl, 1-6C aminoalkyl, 1-4C dialkylamino(1-4C)alkyl, 1-6C alkyl, 2-6C alkenyl, optionally substituted aryl, sulfonic acid, carboxy, formyl, nitro, cyano, or NR4R5;

R1+R2=a fused 5 or 6-membered aliphatic or aromatic ring which may also be substituted with R6 and R7, each as defined for R1 and R2;

R4, R5=hydrogen, 1-6C alkyl, 2-6C alkenyl, aryl(1-4C)alkyl or 1-4C hydroxyalkyl;

R3=1-4C hydroxyalkyl, 1-6C aminoalkyl, 1-4C dialkylamino(1-4C)alkyl, 1-6C alkyl, 2-6C alkenyl or optionally substituted aryl;

A=chloride, bromide, iodide, hexafluorophosphate, tetrachlorozincate, tetrafluoroborate, trifluoromethanesulfonate or p-toluenesulfonate;

X_1 =halo, 1-4C alkoxy, 1-4C alkylthio, sulfonic acid or p-toluenesulfonyl.

Provided that when Y =optionally substituted vinylene, compounds (II) are included where one of X_1 and $X_2=X_1$ as defined above and the other is hydrogen or groups as defined for R_1 .

Also included are inner salts that lack the anion A.

USE - The compositions are used to dye human hair in bright, deep, optionally fluorescent, shades in yellow, orange, red, violet, black and intermediate colors.

ADVANTAGE - The composition provides a dyeing at least equivalent, as regards color depth, grey covering and fastness, to conventional dyeings, without the absolute requirement for an oxidizing agent.

Compositions without an oxidizing agent have little or no potential for sensitizing the skin.

pp; 24 DwgNo 0/0

Title Terms: COMPOSITION; DYE; KERATIN; CONTAIN; FIBRE; HUMAN; HAIR; COMPRISE; HETEROCYCLE; AMMONIUM; COMPOUND; ACIDIC; METHYLENE; COMPOUND

Derwent Class: B07; D21; E19; E24

International Patent Class (Main): A61K-007/13

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) DE 101 48 844 A 1

(51) Int. Cl.⁷:
A 61 K 7/13

DE 101 48 844 A 1

(21) Aktenzeichen: 101 48 844.0
(22) Anmeldetag: 4. 10. 2001
(43) Offenlegungstag: 10. 4. 2003

(11) Anmelder:
Henkel KGaA, 40589 Düsseldorf, DE

(12) Erfinder:
Groß, Wibke, Dr., 40549 Düsseldorf, DE;
Oberkobusch, Doris, Dr., 40591 Düsseldorf, DE;
Müller, Helmut, 40591 Düsseldorf, DE; Höffkes,
Horst, Dr., 40595 Düsseldorf, DE; Möller, Hinrich,
Dr., 40789 Monheim, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Mittel zum Färben von keratinhaltigen Fasern

(55) Es wird ein Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, beansprucht, das
A: mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

R³ steht für eine C₁-C₄-Hydroxalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe...

worin

R¹ und R² stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C₁-C₄-Hydroxalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfonsäuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe -NR⁴R⁵, wobei R⁴ und R⁵ stehen unabhängig voneinander für ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine Aryl-C₁-C₄-alkylgruppe oder eine C₁-C₄-Hydroxalkylgruppe, wobei R¹ und R² zusammen einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen Ring bilden können, welcher wiederum mit den Resten R⁶ und R⁷ substituiert ist, wobei R⁶ und R⁷ stehen unabhängig voneinander für die Reste, die unter R¹ definiert sind,

DE 101 48 844 A 1

Beschreibung

- [0001] Die Erfindung betrifft ein Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, das kationische heterozyklische Verbindungen und CH-acide Verbindungen enthält, die Verwendung dieser Kombination in Mitteln zum Färben von keratinhaltigen Fasern sowie ein Verfahren zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren.
- [0002] Für das Färben von keratinhaltigen Fasern kommen im Allgemeinen entweder direktziehende Farbstoffe oder Oxidationsfarbstoffe, die durch oxidative Kupplung einer oder mehrerer Entwicklerkomponenten untereinander oder mit einer oder mehreren Kupplerkomponenten entstehen, zur Anwendung. Kuppler- und Entwicklerkomponenten werden auch als Oxidationsfarbstoffvorprodukte bezeichnet.
- [0003] Als Entwicklerkomponenten werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocyclische Hydrazone, 4-Aminopyrazolonderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt.
- [0004] Spezielle Vertreter sind beispielsweise p-Phenyldiamin, p-Toluyldiamin, 2,4,5,6-Tetraaminopyrimidin, p-Aminophenol, N,N-Bis-(2-hydroxyethyl)-p-phenyldiamin, 2-(2,5-Diaminophenyl)-ethanol, 2-(2,5-Diaminophenoxy)-ethanol, 1-Phenyl-3-carboxyamido-4-amino-pyrazol-5-on, 4-Amino-3-methylphenol, 2-Aminomethyl-4-amino-phenol, 2-Hydroxymethyl-4-aminophenol, 2-Hydroxy-4,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6-diaminopyrimidin und 2,5,6-Triamino-4-hydroxypyrimidin.
- [0005] Als Kupplerkomponenten werden in der Regel m-Phenyldiaminderivate, Naphthole, Resorcin und Resorcin-derivate, Pyrazolone, m-Aminophenole und substituierte Pyridinderivate verwendet. Als Kupliersubstanzen eignen sich insbesondere α -Naphthol, 1,5-, 2,7- und 1,7-Dihydroxynaphthalin, 5-Amino-2-methylphenol, m-Aminophenol, Resorcin, Resorcinnomonomethylether, p-Phenyldiamin, 2,4-Diaminophenoxyethanol, 2-Amino-4-(2-hydroxyethylamino)-anisol (Lehmanns Blau), 1-Phenyl-3-methylpyrazol-5-on, 2,4-Dichlor-3-aminophenol, 1,3-Bis-(2,4-diaminophenoxy)-propan, 2-Chlorresorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methylresorcin, 5-Methylresorcin, 3-Amino-6-methoxy-2-methylamino-pyridin und 3,5-Diamino-2,6-dimethoxypyridin.
- [0006] Bezüglich weiterer üblicher Farbstoffkomponenten wird ausdrücklich auf die Reihe "Dermatology", herausgegeben von Ch. Culnan, H. Maibach, Verlag Marcel Dekker Inc., New York, Basel, 1986, Bd. 7, Ch. Zviak, The Science of Hair Care, Kap. 7, Seiten 248-250 (Direktziehende Farbstoffe), und Kap. 8, Seiten 264-267 (Oxidationsfarbstoffe), sowie das "Europäische Inventar der Kosmetikrohstoffe", 1996, herausgegeben von der Europäischen Kommission, erhältlich in Diskettenform vom Bundesverband der deutschen Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemittel e. V., Mannheim, Bezug genommen.
- [0007] Mit Oxidationsfarbstoffen lassen sich zwar intensive Färbungen mit guten Echtheitseigenschaften erzielen, die Entwicklung der Farbe geschieht jedoch im Allgemeinen unter dem Einfluss von Oxidationsmitteln wie z. B. H_2O_2 , was in einigen Fällen Schädigungen der Faser zur Folge haben kann. Des Weiteren können einige Oxidationsfarbstoffvorprodukte bzw. bestimmte Mischungen von Oxidationsfarbstoffvorprodukten bisweilen bei Personen mit empfindlicher Haut sensibilisierend wirken. Direktziehende Farbstoffe werden unter schonenderen Bedingungen appliziert, ihr Nachteil liegt jedoch darin, daß die Färbungen häufig nur über unzureichende Echtheitseigenschaften verfügen.
- [0008] Der Verbraucher verlangt von einem Färbemittel eine lange anhaltende und gleichmäßige Färbung und eine gute physiologische Verträglichkeit. Gerade bei jungen Menschen sind zusätzlich ausgefallene Farbtöne und spezielle Effekte auf dem Haar beliebt. Einen solchen Spezialeffekt bieten beispielsweise fluoreszierende Haarfärbungen.
- [0009] Aufgabe der vorliegenden Erfindung ist es, Färbemittel für Keratinfasern, insbesondere menschliche Haare, bereitzustellen, die eine ausgefallene und/oder eine fluoreszierende Färbung bewirken. Des Weiteren sollen die Färbemittel hinsichtlich der Farbtiefe, der Grauabdeckung und den Echtheitseigenschaften qualitativ den üblichen Oxidationshaar-färbemitteln mindestens gleichwertig sein, ohne jedoch unbedingt Oxidationsmittel wie z. B. H_2O_2 zu benötigen. Darüber hinaus dürfen die Färbemittel kein oder lediglich ein sehr geringes Sensibilisierungspotential aufweisen.
- [0010] Überraschenderweise wurde nun gefunden, daß sich die Kombination aus kationischen heterozyklischen Verbindungen gemäß Formel I bzw. II und CH-aciden Verbindungen auch in Abwesenheit von oxidierenden Agentien hervorragend zum Färben von keratinhaltigen Fasern eignet. Der Einsatz von oxidierenden Agentien soll jedoch nicht prinzipiell ausgeschlossen werden. Es ergeben sich Ausfärbungen mit hervorragender Brillanz und Farbtiefe in vielfältigen Farbnuancen, insbesondere über einen Nuancenbereich von gelb über gelbbraun, orange, braunorange, rot, rotbraun, violettblau bis hin zu blau. Die Färbungen können fluoreszieren, besonders unter der Zuhilfenahme von UV-Licht (Schwarzlicht).
- [0011] Haarfärbemittel mit einer Kombination aus CH-aciden Verbindungen und kationischen heterozyklischen Verbindungen gemäß Formel I bzw. II sind dem Fachmann nicht bekannt.
- [0012] Gegenstand der Erfindung ist ein Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, enthaltend

A. mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

worin

R¹ und R² stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C₁-C₄-Hydroxyalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfonsäuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe -NR⁴R⁵, wobei R⁴ und R⁵ stehen unabhängig voneinander für ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine Aryl-C₁-C₄-alkylgruppe oder eine C₁-C₄-Hydroxyalkylgruppe, wobei R¹ und R² zusammen einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen Ring bilden können, welcher wiederum mit den Resten R⁶ und R⁷ substituiert ist, wobei R⁶ und R⁷ stehen unabhängig voneinander für die Reste, die unter R¹ definiert sind,

R³ steht für eine C₁-C₄-Hydroxyalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine D1(C₁-C₄-hydroxyalkyl)amino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe,

5

A⁻ steht für ein Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluorborat, Trifluormethylsulfonat, Methylsulfonat oder p-Toluolsulfonat,

10

Y steht für ein Sauerstoffatom, ein Schwefelatom, eine Gruppe -N=CH-, eine gegebenenfalls substituierte Methylen- oder eine gegebenenfalls substituierte Vinylengruppe oder eine Gruppe NR⁸, wobei R⁸ für die gleichen Gruppen stehen kann, die unter R⁵ definiert sind,

15

X¹ steht für ein Halogenatom, eine C₁-C₄-Alkoxygruppe, eine C₁-C₄-Alkylmercaptopropgruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe, mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II

20

25

wobei

R¹, R², R³ und A⁻ wie oben definiert sind,
einer der Reste X¹ oder X² steht für ein Halogenatom, eine C₁-C₄-Alkoxygruppe, eine C₁-C₄-Alkylmercaptopropgruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe und der andere für ein Wasserstoffatom oder die Gruppen, die unter R¹ und R² definiert sind,
mitumfaßt sind,

35

sowie entsprechenden inneren Salzen, wobei A⁻ entfällt, und

40

B. mindestens eine CH-acide Verbindung.

[0013] Beispiele für die als Substituenten im Rahmen dieser Anmeldung genannten C₁-C₆-Alkylreste sind die Gruppen Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, tert-Butyl, n-Pentyl, Neopentyl und Hexyl. Ethyl und Methyl sind bevorzugte Alkylreste. Beispiele für bevorzugte C₂-C₆-Alkenylreste sind Vinyl und Allyl. Erfahrungsgemäß bevorzugte C₁-C₄-Alkoxyreste sind beispielsweise eine Methoxy- oder eine Ethoxygruppe. Bevorzugte C₁-C₄-Mercaptopropgruppen sind die Methylmercapto oder die Ethylmercaptogruppe; die Methylmercaptogruppe ist besonders bevorzugt. Weiterhin können als bevorzugte Beispiele für eine C₁-C₆-Hydroxyalkylgruppe eine Hydroxymethyleine 2-Hydroxyethyl-, eine 2-Hydroxypropyl-, eine 3-Hydroxypropyl-, eine 4-Hydroxybutylgruppe, eine 1,2-Dihydroxyethylgruppe und die 2,3-Dihydroxypropylgruppe genannt werden. Eine 2-Hydroxyethylgruppe und eine 2,3-Dihydroxypropylgruppe sind besonders bevorzugt. Bevorzugte Arylgruppen sind Phenyl, Naphthyl und Biphenyl. Beispiele für Halogenatome sind F-, Cl-, oder Br-Atome, wobei Cl-Atome ganz besonders bevorzugt sind. Bevorzugte C₁-C₄-Aminoalkylgruppen sind die Aminomethyl-, die Aminoethyl und die Aminopropylgruppe. Beispiele für bevorzugte C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppen sind 2-(N,N-Dimethylamino)ethyl, 2-(N,N-Diethylamino)ethyl, 3-(N,N-Dimethylamino)propyl und 3-(N,N-Diethylamino)propyl. Beispiele für eine Aryl-C₁-C₄-alkylgruppe sind Benzyl und 2-Phenylethyl. Die weiteren verwendeten Begriffe leiten sich erfahrungsgemäß von den hier gegebenen Definitionen ab.

45

[0014] Die Verbindungen mit den Formeln I und II sind zum großen Teil literaturbekannt, im Handel erhältlich oder nach bekannten Syntheseverfahren herstellbar.

50

[0015] Unter keratinhaltigen Fasern sind Wolle, Pelze, Federn und insbesondere menschliche Haare zu verstehen. Die erfahrungsgemäßen Färbemittel können prinzipiell aber auch zum Färben anderer Naturfasern, wie z. B. Baumwolle, Jute, Sisal, Leinen oder Seide, modifizierter Naturfasern, wie z. B. Regeneratcellulose, Nitro-, Alkyl- oder Hydroxylalkyl- oder Acetylcellulose und synthetischer Fasern, wie z. B. Polyamid-, Polyacrylnitril-, Polyurethan- und Polyesterfasern verwendet werden.

60

[0016] Bevorzugte Verbindungen gemäß Formel I bzw. Formel II sind Substanzen, in denen das Kation ausgewählt ist aus 2-Chlor-1-ethyl-chinolinium, 4-Chlor-1-ethyl-chinolinium, 2-Chlor-1-methyl-pyridinium, 4-Chlor-1-methyl-pyridinium, 3-Ethyl-2-methylmercaptobenzothiazolium, 3-Ethyl-2-methylmercapto-benzoxazolium, 2-Chlor-1,3-diethylbenzimidazolium, 2-Chlor-3-ethyl-benzoxazolium oder 2-Chlor-3-ethyl-benzothiazolium und das Gegenion PC ausgewählt ist aus Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluorborat, Trifluormethylsulfonat, Me-

65

DE 101 48 844 A 1

thylsulfonat oder p-Toluolsulfonat sowie den inneren Salzen 3-Ethyl-benzothiazolium-2-sulfonat, 1-Ethylchinolinium-4-sulfonat und 1-Ethyl-chinolinium-2-sulfonat,

[0017] Besonders bevorzugte Verbindungen gemäß Formel I bzw. II sind 4-Chlor-1-ethylchinolinium-tetrafluoroborat, 3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat und 3-Ethyl-benzothiazolium-2-sulfonat.

5 [0018] Die CH-acide Verbindung ist bevorzugt ausgewählt aus Verbindungen gemäß einer der Formeln C1 bis C22

worin

10 M¹ eine Gruppe -COM³, COOM³, S(O)M³ oder SO₂M³ ist, worin M³ für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe steht, oder eine Gruppe -C(M⁴)=C(C≡N)₂ bedeutet, worin M⁴ für ein Wasserstoffatom, eine C₁-C₄-Alkylgruppe oder eine Arylgruppe steht,

M² die gleiche Bedeutung wie M¹ hat oder eine Cyanogruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl-C₁-C₄-alkylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus ist,

15 Verbindungen mit der Formel C2

worin

25 M⁵ eine Cyanogruppe, eine substituierte oder unsubstituierte Arylgruppe oder eine Aryl-C₁-C₄-alkylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus oder eine Gruppe -COM⁷ oder COOM⁷ ist, wo-
rin M⁷ für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe steht,

30 M⁶ eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe, eine Acetoxygruppe, eine C₃-C₆-Cycloalkylgruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl-C₁-C₄-alkylgruppe, eine substituierte oder unsubstituierte Ami-
noarylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus ist,

30 Verbindungen mit der Formel C3

worin

40 M⁸ eine Cyanogruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl-C₁-C₄-alkylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus oder eine Gruppe -COM¹⁰ oder COOM¹⁰ ist, worin
M¹⁰ für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe steht,

45 M⁹ eine substituierte oder unsubstituierte Arylgruppe oder Aryl-C₁-C₄-alkylgruppe, eine substituierte oder unsubstitu-
ierte Amidoarylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus ist,
Pyrazolderivate (a), die ausgewählt sein können aus den folgenden Formeln C4 und C5

65

worin

M¹¹ und M¹² unabhängig voneinander für eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe, eine Acetoxy-
gruppe, eine C₃-C₆-Cycloalkylgruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl-C₁-C₄-alkylgruppe,

DE 101 48 844 A 1

eine substituierte oder unsubstituierte Aminoarylgruppe, einen substituierter oder unsubstituierter, gesättigten oder ungesättigten Heterozyklus stehen,
 M¹³ ein Wasserstoffatom oder eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe ist,
 b) zwei über M¹¹ oder M¹² gebundene Pyrazolringe mit der Formel C4 oder C5
 Barbitursäurederivate mit der folgenden Formel C6

5

10

15

worin
 M¹⁴ und M¹⁵ stehen unabhängig voneinander für eine C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine C₃-C₆-Cycloalkylgruppe, eine Aryl-C₁-C₄-alkylgruppe, eine substituierte oder unsubstituierte Arylgruppe, oder einen über die Reste M¹⁴ oder M¹⁵ gebundenen Bicyclus,
 X steht für ein Sauerstoff- oder ein Schwefelatom,
 Pyridinderivate mit der Formeln C7a und C7b

20

25

30

worin
 M¹⁶ eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe oder substituierte oder unsubstituierte Arylgruppe ist,
 M¹⁷ ein Wasserstoffatom, eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe ist,
 M¹⁸ ein Wasserstoffatom, eine Cyanogruppe, eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe, eine Gruppe COOM¹⁹, worin M¹⁹ ein Wasserstoffatom oder eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe bedeutet, ist,
 Verbindungen mit der folgenden Formel C8

35

40

45

worin
 A steht für ein Sauerstoffatom, ein Schwefelatom, eine Sulfonylgruppe, eine Sulfonamidgruppe oder eine Gruppe NM^{20a},
 worin M^{20a} ein Wasserstoffatom, eine substituierte oder unsubstituierte C₁-C₆-Alkylengruppe bedeutet,
 M²⁰ und M²¹ stehen unabhängig voneinander für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C₁-C₆-Alkylgruppe, eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C₁-C₄-Acyl, eine Cyanogruppe oder eine Aminogruppe -NM²²M²³, in der M²² und M²³ unabhängig voneinander stehen
 für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe,
 Verbindungen mit den Formeln C9 und C10

50

55

60

worin
 A' steht für ein Sauerstoffatom, ein Schwefelatom oder eine Gruppe NM²⁵, worin M²⁵ ein Wasserstoffatom oder eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe bedeutet,
 M²⁴ steht für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C₁-C₆-Alkyl-,
 eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C₁-C₄-Acyl, eine Cyanogruppe oder eine

65

DE 101 48 844 A 1

Aminogruppe $\text{-NM}^{26}\text{M}^{27}$, in der M^{26} und M^{27} unabhängig voneinander stehen für Wasserstoff und eine $\text{C}_1\text{-C}_6$ -Alkylgruppe
Verbindungen mit der Formel C11

- 15 worin M^{28} ein Wasserstoffatom, eine Hydroxygruppe, eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe oder eine substituierte oder unsubstituierte Aryl- oder C₁-C₆-Alkylarylgruppe ist;
 M^{29} steht für ein Wasserstoffatom oder eine C₁-C₄-Alkylgruppe
Indandionederivate mit der Formel C12

Indandionderivate mit der Formel C12

- 30 worin M^{30} ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Nitro-, eine C₁-C₆-Alkyl-, eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid- oder eine Cyanogruppe ist, Verbindungen mit der Formel C13

Vereinigung mit der Firma C.

worin

Z steht für ein Sauerstoffatom oder eine Gruppe NM^{32} , worin M^{32} ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe bedeutet,

- 45 Z³¹ steht für ein Schwefelatom oder eine Gruppe NM³³, worin M³³ ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe bedeutet,
M³¹ steht für ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe oder eine C₁-C₄-Carboxyalkylgruppe,
Dioxopyrazolverbindungen mit der Formel C14

Dioxopyrazinoverbindungen mit der Formel C₁₁

- 60 worin
 M^{34} und M^{35} stehen unabhängig voneinander für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C_1 - C_6 -Alkyl-, eine C_1 - C_6 -Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C_1 - C_4 -Acyl, eine Cyanogruppe oder eine Aminogruppe $\text{-NM}^{36}\text{M}^{37}$, in der M^{36} und M^{37} unabhängig voneinander stehen für Wasserstoff oder eine C_1 - C_6 -Alkylgruppe,
65 5-Oxoimidazolderivate mit der Formel C15

5

worin
 M^{38} und M^{39} stehen unabhängig voneinander für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C₁-C₆-Alkyl-, eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C₁-C₄-Acyl, eine Cyanogruppe oder eine Aminogruppe -NM⁴¹M⁴², in der M⁴¹ und M⁴² unabhängig voneinander stehen für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe,
 M^{40} steht für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe,
Derivate von Dehydrobutyrolacton mit der Formel C16

10

15

20

25

30

35

worin
 M^{43} und M^{44} unabhängig voneinander stehen für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C₁-C₆-Alkyl-, eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C₁-C₄-Acyl, eine Cyanogruppe oder eine Aminogruppe -NM⁴⁵SM⁴⁶ in der M⁴⁵ und M⁴⁶ unabhängig voneinander stehen für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe

Verbindungen mit der Formel C17

40

45

worin
 D^1 ist ein ankondensierter aromatischer oder heteroaromatischer Ring,
 D^2 ist eine Carbonylgruppe, eine Gruppe C=CD^ID^{II} oder eine Gruppe CD^ID^{II}, in welchen D^I oder D^{II} jeweils ein Substituent mit einer Hammett-Konstante zwischen 0,4 und 2,0 oder beide Substituenten in der Summe eine Hammett-Konstante zwischen 0,4 und 2,0 aufweisen;
 D^3 steht für eine Carbonylgruppe, ein Sauerstoff-, ein Schwefelatom, eine Gruppe NM⁴⁷, wenn D² nicht Sauerstoff ist, oder eine Gruppe C=S, eine Gruppe C=NR⁴⁸ eine Sulfinylgruppe, eine Sulfonylgruppe, wobei R⁴⁷ und R⁴⁸ unabhängig voneinander ein Wasserstoffatom oder einen C₁-C₄-Alkylrest bedeuten,
Hydroxypyrimidinderivate mit der Formel C18

50

55

worin
 M^{49} und M^{50} unabhängig voneinander ein Wasserstoffatom oder eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe sind,
 E^1 für ein Sauerstoff-, ein Schwefelatom oder eine Gruppe NH steht,
 E^2 für eine Gruppe NH oder ein Sauerstoffatom steht,
 E^3 für eine Aminogruppe oder eine Hydroxygruppe steht,
mit der Maßgabe, daß

60

65

- a) wenn E¹ und E² für ein Sauerstoffatom stehen, E³ keine Hydroxygruppe ist, und
- b) wenn E¹ ein Schwefelatom und E² ein Sauerstoffatom ist, E³ keine Hydroxygruppe ist,

quaternierte Stickstoffverbindungen der Formel C19

- 10 worin,
 M^{51} und M^{52} stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C₁-C₄-Hydroxyalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfon-säuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe -
- 15 NM⁵⁴M⁵⁵, wobei M⁵⁴ und M⁵⁵ stehen unabhängig voneinander für ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine Aryl- C₁-C₄-alkylgruppe oder eine C₁-C₄-Hydroxyalkylgruppe, wobei M⁵¹ und M⁵² zusam-men einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen bzw. heteroaromatischen Ring bilden können, welcher wiederum mit den Resten M⁵⁶ und M⁵⁷ substituiert ist, wobei M⁵⁶ und M⁵⁷ stehen unabhängig vonein-ander für die Reste, die unter M⁵¹ definiert sind,
- 20 M⁵³ steht für ein Wasserstoffatom, eine C₁-C₄-Hydroxyalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino- C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebe-nenfalls substituierte Arylgruppe, eine C₁-C₄-Sulfonylalkylgruppe, eine C₁-C₄-Carboxyalkylgruppe oder eine C₂-C₆-Po-lyhydroxyalkylgruppe,
- Y steht für ein Sauerstoffatom, ein Schwefelatom, eine gegebenenfalls substituierte Methylengruppe oder eine Gruppe
- 25 NMW, wobei MW für die gleichen Gruppen stehen kann, die unter M⁵⁵ definiert sind,
- A⁻ steht für ein Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluoroborat, Trifluormethylsulfo-nat, Methylsulfonat oder p-Toluolsulfonat,
- Quoniumverbindungen der Formeln C20 und C21

- 40 wobei
 M^{51} , M^{52} , M^{53} und A^- aus den Gruppen ausgewählt werden, die unter Verbindung C19 definiert sind.
[0019] Unter CH-acide Verbindungen fallen ertindungsgemäß auch Enamine, die aus quaternierten N-Heterocyclen mit einer in Konjugation zum quaternären Stickstoff stehenden CH-aciden Alkylgruppe durch alkalische Behandlung ent-stehen. Als Beispiele für geeignete Enamine können Verbindungen mit der allgemeinen Formel C22 genannt werden,

- 55 worin
 M^{61} steht für einen aromatischen Rest, insbesondere für einen gegebenenfalls mit einer C₁-C₄-Alkyl-, C₁-C₄-Hydroxy-alkyl-, Hydroxy-, Methoxy- oder Halogengruppe substituierten 5-gliedrigen oder 6-gliedrigen Arylrest, vorzugsweise ein Phenylrest, oder einen 5-gliedrigen oder 6-gliedrigen, ankondensierten, aliphatischen oder aromatischen, carbozykli-schen oder heterozyklischen Ring, vorzugsweise einen Phenylrest, einen Chinolin- oder Pyridylrest,
- 60 M^{62} steht für ein Wasserstoffatom, eine lineare oder verzweigte C₁-C₈-Alkyl-, eine lineare oder verzweigte C₁-C₈-Hy-droxylalkyl- oder eine C₁-C₈-Alkoxyalkylgruppe, wobei zwischen den C-Atomen der Alkylkette ein Sauerstoffatom sit-zten kann, und
- 65 M^{63} steht für eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₁-C₆-Alkoxy- C₁-C₆-alkylgruppe, eine C₁-C₆-Al-kylamino- C₁-C₆-alkylgruppe, eine C₁-C₆-Alkymercaptopo-C₁-C₆-alkylgruppe, eine C₁-C₆-Alkoxy- C₁-C₆-alkylen-gruppe, eine C₁-C₆-Alkylamino- C₁-C₆-alkylengruppe, eine C₁-C₆-Alkymercaptopo-C₁-C₆-alkylengruppe, eine geradket-tige oder verzweigte C₁-C₈-Alkylengruppe, oder ein Sauerstoffatom, ein Stickstoffatom oder ein Schwefelatom ist, mit-der Maßgabe, daß die Reste M⁶¹ und M⁶³ gemeinsam mit dem Stickstoffatom und dem Kohlenstoffatom der Enamin-

DE 101 48 844 A 1

grundstruktur eine cyclische Verbindung bilden, wenn M⁶³ gleich einer linearen oder verzweigten C₁-C₈-Alkylengruppe, einer C₁-C₆-Alkoxyalkylengruppe, eine C₁-C₆-Alkylamino-C₁-C₆-alkylengruppe, eine C₁-C₆-Alkylmercapto-C₁-C₆-alkylengruppe, einem Sauerstoffatom, einem Stickstoffatom oder einem Schwefelatom ist, wobei vorzugsweise M⁶³ am aromatischen Rest M⁶¹ mit dem Kohlenstoff verbunden ist, der in ortho-Stellung zum Enamin-substituierten Kohlenstoff steht.

[0020] In einer besonders bevorzugten Ausführungsform sind die CH-aciden Verbindungen ausgewählt aus 1,2,3,3-Tetramethyl-3H-indoliumiodid, 1,2,3,3-Tetramethyl-3H-indolium-p-toluolsulfonat, 1,2,3,3-Tetramethyl-3H-indolium-methansulfonat, 1,3,3-Trimethyl-2-methylenindolin (Fischersche Base), 2,3-Dimethyl-benzothiazoliumiodid, 2,3-Dimethylbenzothiazolium-p-toluolsulfonat, 2,3-Dimethyl-naphtho[1,2-d]thiazolium-p-toluolsulfonat, 3-Ethyl-2-methyl-naphtho[1,2-d]thiazolium-p-toluolsulfonat, Rhodanin, Rhodanin-3-essigsäure, 1,4-Dimethylchinolinium-iodid, 1,2-Dimethylchinolinium-iodid, Barbitursäure, Thiobarbitursäure, 1,3-Dimethylthiobarbitursäure, 1,3-Diethylthiobarbitursäure, 1,3-Diethylbarbitursäure, Oxindol, 3-Indoxylacetat, 2-Cumaranon, 5-Hydroxy-2-cumaranon, 6-Hydroxy-2-cumaranon, 1-Methyl-3-phenyl-pyrazolin-5-on, Indan-1,2-dion, Indan-1,3-dion, Indan-1-on, Benzoylacetonitril, 3-Dicyan-methylenindan-1-on, 1,3-Diiminoisoindolin, 2-Amino-4-imino-1,3-thiazolin-hydrochlorid, 5,5-Dimethylcyclohexan-1,3-dion, 2H-1,4-Benzoxazin-4H-3-on, 3-Ethyl-2-methylbenzoxazoliumiodid, 3-Ethyl-2-methylbenzothiazoliumiodid, 1-Ethyl-4-methylchinoliniumiodid, 1-Ethyl-2-methylchinoliniumiodid, 1,2,3-Trimethylchininoxaliniumiodid, 3-Ethyl-2-methylbenzoxazolium-p-toluolsulfonat, 3-Ethyl-2-methyl-benzothiazolium-p-toluolsulfonat, 1-Ethyl-4-methyl-chinolinium-p-toluolsulfonat, 1-Ethyl-2-methylchinolinium-p-toluolsulfonat, und 1,2,3-Trimethylchininoxalinium-p-toluolsulfonat.

[0021] Färbungen mit noch erhöhter Brillanz und verbesserten Echtheitseigenschaften (Lichtechtheit, Waschechtheit, Reibechtheit) über einen weiten Nuancenbereich werden erzielt, wenn die erfundungsgemäß eingesetzten Verbindungen der Formeln I bzw II gemeinsam mit mindestens einer weiteren Komponente (im folgenden Komponente C genannt), ausgewählt aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden sowie (d) Verbindungen mit primärer oder sekundärer Aminogruppe oder Hydroxygruppe, ausgewählt aus primären oder sekundären aromatischen Aminen, stickstoffhaltigen heterocyclischen Verbindungen und aromatischen Hydroxyverbindungen und deren physiologisch verträglichen Salzen verwendet werden. Dies sind einerseits Verbindungen, die für sich alleine keratinhaltige Fasern nur schwach färben und erst gemeinsam mit den Verbindungen der Formeln I bzw. II brillante Färbungen ergeben.

[0022] Andererseits sind darunter aber auch Verbindungen, die bereits als Oxidationsfarbstoffvorprodukte eingesetzt werden.

[0023] In einer zweiten Ausführungsform ist es daher bevorzugt, dem Färbemittel zusätzlich eine Komponente C, enthaltend mindestens eine Verbindung ausgewählt aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen, zu addieren.

[0024] Bevorzugt enthält die Komponente C mindestens eine Verbindung ausgewählt aus aromatischen oder heteroaromatischen Aldehyden oder Ketonen.

[0025] Bevorzugt eingesetzte aromatische oder heteroaromatische Aldehyde oder Ketone sind ausgewählt aus

- 5-(4-Dimethylaminophenyl)-penta-2,4-dienal, 5-(4-Diethylaminophenyl)-penta-2,4-dienal, 5-(4-Methoxyphenyl)-penta-2,4-dienal, 5-(3,4-Dimethoxyphenyl)-penta-2,4-dienal, 5-(2,4-Dimethoxyphenyl)-penta-2,4-dienal, 5-(4-Piperidinophenyl)-penta-2,4-dienal, 5-(4-Morpholinophenyl)-penta-2,4-dienal, 5-(4-Pyrrolidinophenyl)-penta-2,4-dienal, 6-(4-Dimethylaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Diethylaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Methoxyphenyl)-hexa-3,5-dien-2-on, 6-(3,4-Dimethoxyphenyl)-hexa-3,5-dien-2-on, 6-(2,4-Dimethoxyphenyl)-hexa-3,5-dien-2-on, 6-(4-Piperidinophenyl)-hexa-3,5-dien-2-on, 6-(4-Dimethylaminonaphth-1-yl)-penta-2,4-dienal,
- 2-Nitropiperonal, 5-Nitropiperonal, 6-Nitropiperonal, 5-Hydroxy-2-nitropiperonal, 2-Hydroxy-5-nitropiperonal, 2-Chlor-6-nitropiperonal, 5-Chlor-2-nitropiperonal, 2,6-Dinitropiperonal,
- 2-Nitrobenzaldehyd, 3-Nitrobenzaldehyd, 4-Nitrobenzaldehyd, 4-Methyl-3-nitrobenzaldehyd, 3-Hydroxy-4-nitrobenzaldehyd, 4-Hydroxy-3-nitrobenzaldehyd, 5-Hydroxy-2-nitrobenzaldehyd, 2-Hydroxy-5-nitrobenzaldehyd, 2-Hydroxy-3-nitrobenzaldehyd, 2-Fluor-3-nitrobenzaldehyd, 3-Methoxy-2-nitrobenzaldehyd, 4-Chlor-3-nitrobenzaldehyd, 2-Chlor-6-nitrobenzaldehyd, 5-Chlor-2-nitrobenzaldehyd, 4-Chlor-2-nitrobenzaldehyd, 2,4-Dinitrobenzaldehyd, 2,6-Dinitrobenzaldehyd, 2-Hydroxy-3-methoxy-5-nitrobenzaldehyd, 4,5-Dimethoxy-2-nitrobenzaldehyd, 5-Nitrovanillin, 3,5-Dinitrosalicylaldehyd, 5-Brom-3-nitrosalicylaldehyd, 3-Nitro-4-formylbenzolsulfonäure, 4-Nitro-1-naphthaldehyd, 2-Nitrozimaldehyd, 3-Nitrozimaldehyd, 4-Nitrozimaldehyd,
- Carbazolaldehyde oder Carbazolketone, insbesondere 9-Methyl-3-carbazolaldehyd, 9-Ethyl-3-carbazolaldehyd, 3-Acetylcarbazol, 3,6-Diacetyl-9-ethylcarbazol, 3-Acetyl-9-methylcarbazol, 1,4-Dimethyl-3-carbazolaldehyd, 1,4,9-Trimethyl-3-carbazolaldehyd,
- 4-Trimethylammoniobenzaldehyd-, 4-Benzylidemethylammoniobenzaldehyd-, 4-Trimethylammoniozimtaldehyd-, 4-Trimethylammonionaphthaldehyd-, 2-Methoxy-4-trimethylammoniobenzaldehyd-, N-(4-Acetylphenyl)-trimethylammonium-, 4-(N,N-Diethyl)-N-methylammonio-benzaldehyd-, N-(4-Benzoylphenyl)-trimethylammonium-, N-(4-Benzoylphenyl)-N,Ddiethylmethylammonium-, N-(4-Formylphenyl)-N-methylpyrrolidinium-, N-(4-Formylphenyl)-N-methylpiperidinium-, N-(4-Formylphenyl)-N-methylmorpholinium-, N-(4-Acetylphenyl)-N-methylmorpholinium-, N-(4-Benzoylphenyl)-N-methylmorpholinium-, 3-Formyl-N-ethyl-N-methylcarbazolium-, 3-Formyl-9,9-dimethylcarbazolium-, 1-(4-Acetylphenyl)-3-methylimidazolium-, 1-(4-Acetylphenyl)-3-methyl-2-imidazolium-, 1-(4-Benzoylphenyl)-3-methylimidazolium-, 5-Acetyl-1,3-diethyl-2-methylbenzimidazolium-, 5-Trimethylammonio-1-indanon-Salze, insbesondere die Benzolsulfonate, p-Toluulfonate, Methansulfonate, Etansulfonate, Propansulfonate, Perchlorate, Sulfate, Chloride, Bromide, Iodide, Tetrachlorozinkate, Methylsulfate,

Trifluormethansulfonate, Hexafluorophosphate, Tetrafluoroborate,
 - 4-Formyl-1-methylpyridinium-, 2-Formyl-1-methylpyridinium-, 4-Formyl-1-ethylpyridinium-, 2-Formyl-1-ethylpyridinium-, 4-Formyl-1-benzylpyridinium-, 2-Formyl-1-benzylpyridinium-, 4-Formyl-1,2-dimethylpyridinium-, 4-Formyl-1,3-dimethylpyridinium-, 4-Formyl-1-methylchinolinium-, 2-Formyl-1-methylchinolinium-, 4-Acetyl-1-methylpyridinium-, 2-Acetyl-1-methylpyridinium-, 4-Acetyl-1-methylchinolinium-, 5-Formyl-1-methylchinolinium-, 6-Formyl-1-methylchinolinium-, 7-Formyl-1-methylchinolinium-, 8-Formyl-1-methylchinolinium-, 5-Formyl-1-ethylchinolinium-, 6-Formyl-1-ethylchinolinium-, 7-Formyl-1-ethylchinolinium-, 8-Formyl-1-ethylchinolinium-, 5-Formyl-1-benzylchinolinium-, 6-Formyl-1-benzylchinolinium-, 7-Formyl-1-benzylchinolinium-, 8-Formyl-1-benzylchinolinium-, 5-Formyl-1-allylchinolinium-, 6-Formyl-1-allylchinolinium-, 7-Formyl-1-allylchinolinium- und 8-Formyl-1-allylchinolinium-, 5-Acetyl-1-methylchinolinium-, 6-Acetyl-1-methylchinolinium-, 7-Acetyl-1-methylchinolinium-, 8-Acetyl-1-methylchinolinium, 5-Acetyl-1-ethylchinolinium-, 6-Acetyl-1-ethylchinolinium-, 7-Acetyl-1-ethylchinolinium-8-Acetyl-1-ethylchinolinium, 5-Acetyl-1-benzylchinolinium-, 6-Acetyl-1-benzylchinolinium-, 7-Acetyl-1-benzylchinolinium-, 8-Acetyl-1-benzylchinolinium, 5-Acetyl-1-allylchinolinium-, 9-Formyl-10-methylacridinium-, 4-(2-Formylvinyl)-1-methylpyridinium-, 1,3-Dimethyl-2-(4-formyfphenyl)-benzimidazofinium-, 1,3-Dimethyl-2-(4-formylphenyl)-imidazolinium-, 2-(4-Formylphenyl)-3-methylbenzothiazolum-, 2-(4-Acetylphenyl)-3-methylbenzothiazolum-, 2-(4-Formylphenyl)-3-methylbenzoxazolum-, 2-(5-Formyl-2-furyl)-3-methylbenzothiazolum-, 2-(5-Formyl-2-thienyl)-3-methylbenzothiazolum-, 2-(3-Formylphenyl)-3-methylbenzothiazolum-, 2-(4-Formynaphth-1-yl)-3-methylbenzothiazolum-, 5-Chlor-2-(4-formylphenyl)-3-methylbenzothiazolum-, 2-(4-Formylphenyl)-3,5-dimethylbenzothiazolum-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-4-[2-(4-acetylphenyl)-ethenyl]-pyridinium-, 1-Benzyl-4-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-4-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-4-[2-(4-formylphenyl)-ethenyl]-chinolinium, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(5-formyl-2-furyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(5-formyl-2-thienyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-benzothiazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyl)-ethenyl]-benzimidazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyl)-ethenyl]-imidazolinium-, 1-Methyl-5-oxo-indeno[1,2-b]pyridinium(4-Ethyl-4-azonio-9-fluoren-), 1-Ethyl-5-oxo-indeno[1,2-b]pyridinium(4-Benzyl-4-azonio-9-fluoren-), 2-Methyl-5-oxo-indeno[1,2-c]pyridinium, 2-Methyl-9-oxo-indeno[2,1-c]pyridinium-, 1-Methyl-9-oxo-indeno[2,1-b]pyridinium-salze, insbesondere Benzolsulfonat, p-Toluolsulfonat, Methansulfonat, Perchlorat, Sulfat, Chlorid, Bromid, Iodid, Tetrachlorozinkat, Methylsulfat, Trifluormethansulfonat, Tetrafluoroborat,
 - Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxyzimtaldehyd (Coniferylaldehyd), 2,4-Dihydroxybenzaldehyd, 4-Dimethylaminobenzaldehyd, 4-Diethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Pyrrolidinobenzaldehyd, 4-Morpholinobenzaldehyd, 4-Piperidinobenzaldehyd, 4-Dimethylaminoacetophenon, 4-Hydroxynaphthaldehyd, 4-Dimethylaminonaphthaldehyd, 4-Dimethylaminobenzylidenaceton, 4-Dimethylaminozimtaldehyd, 2-Dimethylaminobenzaldehyd, 2-Chlor-4-dimethylaminobenzaldehyd, 4-Dimethylamino-2-methylbenzaldehyd, trans-4-Diethylaminozimtaldehyd, 4-(Dibutylamino)-benzaldehyd, 4-Diphenylaminobenzaldehyd, 2,3,6,7-Tetrahydro-1H,5H-benzo[ij]chinolizin-9-carboxaldehyd, 4-Dimethylamino-2-methoxybenzaldehyd, 2,3,6,7-Tetrahydro-8-hydroxy-1H,5H-benzo[ij]chinolizin-9-carboxaldehyd, 4-(1-Imidazolyl)-benzaldehyd, 2-Morpholinobenzaldehyd, Indol-3-carboxaldehyd, 1-Methylindol-3-carboxaldehyd, N-Ethylcarbazol-3-carboxaldehyd, 2-Formylmethylen-1,3,3-trimethylindolin (Tribasen Aldehyd)
 - 1,3-Diacetylbenzol, 1,4-Diacetylbenzol, 1,3,5-Triacetylbenzol, 2-Benzoyl-acetophenon, 2-(4-Methoxybenzoyl)-acetophenon, 2-(2-Furoyl)-acetophenon, 2-(2-Pyridoyl)-acetophenon, 2-(3-Pyridoyl)-acetophenon,
 - 1-Phenyl-1,2-propandion, 1-Phenyl-1,2-butandion, 1-Phenyl-3,3-dimethyl-1,2-butandion, Benzil, Anisil, Salicil, 5,5'-Dibromsalicil, 2,2'-Furil, 2,2'-Thienil, 2,2', 4,4'-Pyridil, 6,6'-Dimethyl-4,4'-pyridil, 4-Hydroxy-, 4-Methoxy-, 4-Chlor-, 4-Methyl-, 4-Dimethylamino-, 4,4'-Dihydroxy-, -Dimethyl-, -Brom-, -Dichlor-, -Bisdimethylamino-, 2,4-Dihydroxy-, 3,3'-Dimethoxy, 2'-Chlor-3,4-dimethoxy-, 3,4,5,3',4',5'-Hexamethoxybenzil,
 - Isatinederivate, wie 5-Chlorisatin, 5-Methoxyisatin, 5-Nitroisatin, 6-Nitroisatin, 5-Sulfoisatin, Isatin-5-sulfonsäure, Isatin-4-carbonsäure und Isatin-5-carbonsäure,
 - N-substituierte Isatin-Derivate, wie N-Methylisatin, N-(2-Hydroxyalkyl)-isatin, N-(2-Hydroxypropyl)-isatin, N-(3-Hydroxypropyl)-isatin, N-(2,3-Dihydroxypropyl)-isatin, N-(2-Sulfoethyl)-isatin, (3-Sulfopropyl)-isatin, N-Allylisatin, N-Vinylisatin, N-Benzylisatin, N-(4-Methoxybenzyl)-isatin, N-(4-Carboxybenzyl)-isatin, N-(4-Sulfobenzyl)-isatin, N-(2-Dimethylaminoethyl)-isatin, N-(2-Pyrrolidinoethyl)-isatin, N-(2-Piperidinoethyl)-isatin, (2-Morpholinoethyl)-isatin, N-(2-Furylmethyl)-isatin, N-(Thien-2-ylmethyl)-isatin, N-(Pyrid-2-ylmethyl)-isatin, N-(Pyrid-3-ylmethyl)-isatin, N-(Pyrid-4-ylmethyl)-isatin, N-Allylisatin-5-sulfonsäure, 5-Chlor-N-(2-hydroxyethyl)-isatin, 5-Methyl-N-(2-hydroxyethyl)-isatin, 5,7-Dichlor-N-allylisatin, 5-Nitro-N-allylisatin, N-Hydroxymethylisatin, N-Hydroxymethyl-5-methylisatin, N-Hydroxymethyl-5-chlorisatin, N-Hydroxymethyl-5-nitroisatin, N-Hydroxymethyl-5-bromisatin, N-Hydroxymethyl-5-methoxyisatin, N-Hydroxymethyl-5,7-dichlorisatin, N-Dimethylaminomethylisatin, N-Diethylaminomethylisatin, N-(Bis-(2-hydroxypropyl)-aminomethyl)-isatin, N-(2-Hydroxyethylaminomethyl)-isatin, N-(Bis-(2-hydroxypropyl)-aminomethyl)-isatin, N-Pyrolidinomethylisatin, N-Piperidinomethylisatin, N-Morpholinomethylisatin, N-(1,2,4-Triazolyl)-methylisatin, N-(1-Imidazolyl)-methylisatin, N-Carboxymethylaminomethylisatin, N-(2-Carboxyethylaminomethyl)-isatin, N-(3-Carboxypropylaminomethyl)-isatin, N-(Bis-(2-hydroxyethyl)-aminomethyl)-5-methylisatin, N-Piperidinomethyl-5-chlorisatin, N-(2-Sulfoethylamino)-isatin, sowie die Alkali- und gegebenenfalls Ammoniumsalze der sauren Verbindungen, Chinisatin und deren Derivate, wie N-Methylchinisatin,
 - Acetophenon, Propiophenon, 2-Hydroxyacetophenon, 3-Hydroxyacetophenon, 4-Hydroxyacetophenon, 2-Hydroxypropiophenon, 3-Hydroxypropiophenon, 4-Hydroxypropiophenon, 2-Hydroxybutyrophonen, 3-Hydroxybutyrophonen, 4-Hydroxybutyrophonen, 2,4-Dihydroxyacetophenon, 2,5-Dihydroxyacetophenon, 2,6-Dihydroxyace-

tophenon, 2,3,4-Trihydroxyacetophenon, 3,4,5-Trihydroxyacetophenon, 2,4,6-Trihydroxyacetophenon, 2,4,6-Tri-methoxyacetophenon, 3,4,5-Trimethoxyacetophenon, 3,4, 5-Trimethoxy-acetophenon-diethylketal, 4-Hydroxy-3-methoxy-acetophenon, 3,5-Dimethoxy-4-hydroxy-acetophenon, 4-Amino-acetophenon, 4-Dimethylamino-acetophenon, 4-Morpholino-acetophenon, 4-Piperidinoacetophenon, 4-Imidazolino-acetophenon, 2-Hydroxy-5-brom-acetophenon, 4-Hydroxy-3-nitroacetophenon, Acetophenon-2-carbonsäure, Acetophenon-4-carbonsäure, Benzophenon, 4-Hydroxy-benzophenon, 2-Amino-benzophenon, 4,4'-Dihydroxy-benzophenon, 2,4-Dihydroxy-benzophenon, 2,4,4'-Trihydroxybenzophenon, 2,3,4-Trihydroxybenzophenon, 2-Hydroxy-1-acetonaphthon, 1-Hydroxy-2-acetonaphthon, Chromon, Chromon-2-carbonsäure, Flavon, 3-Hydroxyflavon, 3,5,7-Trihydroxyflavon, 4',5,7-Trihydroxyflavon, 5,6,7-Trihydroxyflavon, Quercetin, Indanon, 9-Fluorenon, 3-Hydroxyfluorenon, Anthron, 1,8-Dihydroxyanthron,
 - heterocyclische Carbonylverbindungen, wie 2-Indolaldehyd, 3-Indolaldehyd, 1-Methylindol-3-aldehyd, 2-Methylindol-3-aldehyd, 1-Acetylindol-3-aldehyd, 3-Acetylindol, 1-Methyl-3-acetylindol, 2-(1,3,3-Trimethyl-2-indolinyliden)-acetaldehyd, 1-Methylpyrrol-2-aldehyd, 1-Methyl-2-acetylpyrrol, 1-Pyridinaldehyd, 2-Pyridinaldehyd, 3-Pyridinaldehyd, 4-Acetylpyridin, 2-Acetylpyridin, 3-Acetylpyridin, Pyridoxal, Chinolin-3-aldehyd, Chinolin-4-aldehyd, Antipyrin-4-aldehyd, Furfural, 5-Nitrofurfural, 2-Thenoyl-trifluor-aceton, Chromon-3-aldehyd, 3-(5-Nitro-2-furyl)-acrolein, 3-(2-Furyl)-acrolein, Imidazol-2-aldehyd,
 - Indanon-Derivate, wie z. B. 1,2-Indandion, 2-Oximo-1-indanon, Indan-1,2,3-trion-2-oxim, 5-Methoxy-indan-1,2,3-trion-2-oxim, 2-Nitro-1,3-indandion

sowie physiologisch verträgliche Salze der voranstehenden Verbindungen.

[0026] Die primären und sekundären aromatischen Amine der Komponente C sind bevorzugt ausgewählt aus N,N-Dimethyl-p-phenylen-diamin, N,N-Diethyl-p-phenylen-diamin, N-(2-Hydroxyethyl)-N-ethyl-p-phenylen-diamin, N,N-Bis-(2-hydroxyethyl)-p-phenylen-diamin, N-(2-Methoxyethyl)-p-phenylen-diamin, 2,3-Dichlor-p-phenylen-diamin, 2,4-Dichlor-p-phenylen-diamin, 2,5-Dichlor-p-phenylen-diamin, 2-Chlor-p-phenylen-diamin, 2,5-Dihydroxy-4-morpholino-anilin, 2-Aminophenol, 3-Aminophenol, 4-Aminophenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, o-Phenylen-diamin, m-Phenylen-diamin, p-Phenylen-diamin, 2,5-Diaminotoluol, 2,5-Diaminoanisol, 2,5-Diaminophenethol, 4-Amino-3-methylphenol, 2-(2,5-Diaminophenyl)-ethanol, 2,4-Diaminophenoxyethanol, 2-(2,5-Diaminophenoxy)-ethanol, 3-Amino-4-(2-hydroxyethylxyloxy)phenol, 3,4-Methylenedioxyanilin, 3-Amino-2,4-dichlorphenol, 4-Methylenaminophenol, 2-Methyl-5-aminophenol, 3-Methyl-4-aminophenol, 2-Methyl-5-(2-hydroxyethylamino)phenol, 3-Amino-2-chlor-6-methylphenol, 2-Methyl-5-amino-4-chlorphenol, 5-(2-Hydroxyethylamino)-4-methoxy-2-methylphenol, 4-Amino-2-hydroxymethylphenol, 2-(Diethylaminomethyl)-4-aminophenol, 4-Amino-1-hydroxy-2-(2-hydroxyethylaminomethyl)-benzol, 1-Hydroxy-2-amino-5-methyl-benzol, 1-Hydroxy-2-amino-6-methyl-benzol, 2-Amino-5-acetamido-phenol, 1,3-Dimethyl-2, 5-diaminobenzol, 5-(3-Hydroxypropylamino)-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, N,N-Dimethyl-3-aminophenol, N-Cyclopentyl-3-aminophenol, 5-Amino-4-fluor-2-methylphenol, 2,4-Diamino-5-fluortoluol, 2,4-Diamino-5-(2-hydroxyethoxy)-toluol, 2,4-Diamino-5-methylphenetol, 3, 5-Diamino-2-methoxy-1-methylbenzol, 2-Amino-4-(2-hydroxyethylamino)-anisol, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol, 1,3-Diamino-2,4-dimethoxybenzol, 3,5-Diamino-2-methoxy-toluol, 2-Aminobenzoësäure, 3-Aminobenzoësäure, 4-Aminobenzoësäure, 2-Aminophenylessigsäure, 3-Aminophenylessigsäure, 4-Aminophenylessigsäure, 2,3-Diaminobenzoësäure, 2,4-Diaminobenzoësäure, 2,5-Diaminobenzoësäure, 3,4-Diaminobenzoësäure, 3,5-Diaminobenzoësäure, 4-Aminosalicylsäure, 5-Aminosalicylsäure, 3-Amino-4-hydroxy-benzoësäure, 4-Amino-3-hydroxy-benzoësäure, 2-Aminobenzolsulfonsäure, 3-Aminobenzolsulfonsäure, 4-Aminobenzolsulfonsäure, 3-Amino-4-hydroxybenzolsulfonsäure, 4-Amino-3-hydroxynaphthalin-1-sulfonsäure, 6-Amino-7-hydroxynaphthalin-2-sulfonsäure, 7-Amino-4-hydroxynaphthalin-2-sulfonsäure, 4-Amino-5-hydroxynaphthalin-2,7-disulfonsäure, 3-Amino-2-naphthoësäure, 3-Aminophthalsäure, 5-Aminoisophtalsäure, 1,3,5-Triaminobenzol, 1,2,4-Triaminobenzol, 1,2,4,5-Tetraaminobenzol, 2,4,5-Triaminophenol, Pentaaminobenzol, Hexaaminobenzol, 2,4,6-Triaminoresorcin, 4,5-Diaminobrenzcatechin, 4,6-Diaminopyrogallol, 1-(2-Hydroxy-5-aminobenzyl)-2-imidazolidinon, 4-Amino-2-((4-[(5-amino-2-hydroxyphenyl)methyl]-piperazinyl)methyl)phenol, 3,5-Diamino-4-hydroxybrenzcatechin, 1,4-Bis-(4-amino-phenyl)-1,4-diazacycloheptan, aromatische Nitrile, wie 2-Amino-4-hydroxybenzonitril, 4-Amino-2-hydroxybenzonitril, 4-Aminobenzenonitril, 2,4-Diaminobenzenonitril, Nitrogruppen-haltige Aminoverbindungen, wie 3-Amino-6-methylamino-2-nitro-pyridin, Pikraminsäure, [8-[(4-Amino-2-nitrophenyl)-azo]-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid, [8-((4-Amino-3-nitrophenyl)-azo)-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid (Basis Brown 17), 1-Hydroxy-2-amino-4,6-dinitrobenzol, 1-Amino-2-nitro-4-[bis-(2-hydroxyethyl)amino]-benzol, 1-Amino-2-[(2-hydroxyethyl)amino]-5-nitrobenzol (HC Yellow Nr. 5), 1-Amino-2-nitro-4-[(2-hydroxyethyl)amino]-benzol (HC Red Nr. 7), 2-Chlor-5-nitro-N-2-hydroxyethyl-1,4-phenylen-diamin, 1-[(2-Hydroxyethyl)amino]-2-nitro-4-amino-benzol (HC Red Nr. 3), 4-Amino-3-nitrophenol, 4-Amino-2-nitrophenol, 6-Nitro-o-toluidin, 1-Amino-3-methyl-4-[(2-hydroxyethyl)amino]-6-nitrobenzol (HC Violet Nr. 1), 1-Amino-2-nitro-4-[(2,3-dihydroxypropyl)amino]-5-chlorbenzol (HC Red Nr. 10), 2-(4-Amino-2-nitroanilino)-benzoësäure, 6-Nitro-2,5-diaminopyridin, 2-Amino-6-chlor-4-nitrophenol, 1-Amino-2-(3-nitrophenylazo)-7-phenylazo-8-naphthol-3, 6-disulfonsäure Dinatriumsalz (Acid blue Nr. 29), 1-Amino-2-(2-hydroxy-4-nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Palatinchrome green), 1-Amino-2-(3-chlor-2-hydroxy-5-nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Gallion), 4-Amino-4'-nitrostilben-2,2'-disulfonsäure Dinatriumsalz, 2,4-Diamino-3',5'-dinitro-2'-hydroxy-5-methyl-azobenzol (Mordant brown 4), 4'-Amino-4-nitrodiphenylamin-2-sulfonsäure, 4'-Amino-3'-nitrobenzophenon-2-carbonsäure, 1-Amino-4-nitro-2-(2-nitrobenzylidenamino)-benzol, 2-[2-(Diethylamino)ethylamino]-5-nitroanilin, 3-Amino-4-hydroxy-5-nitrobenzolsulfonsäure, 3-Amino-3'-nitrobenzyl, 3-Amino-4-nitro-acenaphthen, 2-Amino-1-nitronaphthalin, 5-Amino-6-nitrobenzo-1,3-dioxol, Aniline, insbesondere Nitrogruppen-haltige Aniline, wie 4-Nitroanilin, 2-Nitroanilin, 1,4-Diamino-2-nitrobenzol, 1, 2-Diamino-4-nitrobenzol, 1-Amino-2-methyl-6-nitrobenzol, 4-Nitro-1,3-phenylen-diamin, 2-Nitro-4-amino-1-(2-hydroxyethylamino)-benzol, 2-Nitro-1-amino-4-[bis-(2-hydroxyethyl)-amino]-benzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 1-Amino-5-chlor-4-(2-hydroxyethylamino)-2-nitrobenzol, aromatische Aniline bzw. Phenole mit einem weiteren aromati-

schen Rest, wie sie in der Formel III dargestellt sind.

in der R⁹ für eine Hydroxy- oder eine Aminogruppe, die durch C₁₋₄-Alkyl-, C₁₋₄-Hydroxyalkyl-, C₁₋₄-Alkoxy- oder C₁₋₄-Alkoxy-C₁₋₄-alkylgruppen substituiert sein kann, steht,

15 R¹⁰, R¹¹, R¹², R¹³ und R¹⁴ unabhängig voneinander für ein Wasserstoffatom, eine Hydroxy- oder eine Aminogruppe, die durch C₁₋₄-Alkyl-, C₁₋₄-Hydroxalkyl-, C₁₋₄-Alkoxy-, C₁₋₄-Aminoalkyl- oder C₁₋₄-Alkoxy-C₁₋₄-alkylgruppen substituiert sein kann, stehen, und

P für eine direkte Bindung, eine gesättigte oder ungesättigte, ggf. durch Hydroxygruppen substituierte Kohlenstoffkette mit 1 bis 4 Kohlenstoffatomen, eine Carbonyl-, Sulfonyl- oder Iminogruppe, ein Sauerstoff- oder Schwefelatom, oder eine Gruppe mit der Formel IV

$$-\text{Q}'-(\text{CH}_2-\text{Q}-\text{CH}_2-\text{Q}^{\prime \prime})_0-$$
 (IV)

in der

25 Q eine direkte Bindung, eine CH_2 - oder CHOH -Gruppe bedeutet,
 Q' und Q'' unabhängig voneinander für ein Sauerstoffatom, eine NR^{15} -Gruppe, worin R¹⁵ ein Wasserstoffatom, eine C₁₄-Alkyl- oder eine Hydroxy-C₁₋₄-alkylgruppe, wobei auch beide Gruppen zusammen mit dem Restmolekül einen 5-, 6- oder 7-Ring bilden können, bedeutet, die Gruppe O-(CH_2)_p-NH oder NH-(CH_2)_{p'}-O, worin p und p' 2 oder 3 sind, stehen und

30 o eine Zahl von 1 bis 4 bedeutet, wie beispielsweise 4,4'-Diaminostilben und dessen Hydrochlorid, 4,4'-Diaminostilben-2,2'-disulfonsäure-mono- oder -di-Na-Salz, 4-Amino-4'-dimethylaminostilben und dessen Hydrochlorid, 4,4'-Diaminodiphenylmethan, 4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfoxid, 4,4'-Diaminodiphenylamin, 4,4'-Diaminodiphenylamin-2-sulfonsäure, 4,4'-Diaminodiphenylamin-2,2'-disulfon-4'-Tetrahydro-1,3-thiadiaphan-2,3,4,4'-Tetrahydro-1,3-thiadiaphan-2,3,4,4'-Tetrahydro-1,3-thiadiaphan-

4,4'-Diaminobenzophenon, 4,4'-Diaminodiphenylether, 3,3',4,4'-Tetraaminodiphenyl, 3,3',4,4'-Tetraamino-benzophenone, 1,3-Bis-(2,4-diaminophenoxy)-propan, 1,8-Bis-(2,5-diaminophenoxy)-3,6-dioxaoctan, 1,3-Bis-(4-aminophenylamino)propan, 1,3-Bis-(4-aminophenylamino)-2-propanol, 1,3-Bis-[N-(4-aminophenyl)-2-hydroxyethylamino]-2-propanol, N,N-Bis-[2-(4-aminophenoxy)-ethyl]-methylamin, N-Phenyl-1,4-phenylenediamin und Bis-(5-amino-2-hydroxyphenyl)-methan.

[0027] Die stickstoffhaltigen heterocyclischen Verbindungen der Komponente C sind bevorzugt ausgewählt aus der Gruppe bestehend aus 2-Aminopyridin, 3-Aminopyridin, 4-Aminopyridin, 2-Amino-3-hydroxy-pyridin, 2,6-Diamino-pyridin, 2,5-Diamino-pyridin, 2-(Aminoethylamino)-5-aminopyridin, 2,3-Diamino-pyridin, 2-Dimethylamino-5-amino-pyridin, 2-Methylamino-3-amino-6-methoxy-pyridin, 2,3-Diamino-6-methoxy-pyridin, 2,6-Dimethoxy-3,5-diamino-pyridin, 2,4,5-Triamino-pyridin, 2,6-Dihydroxy-3,4-dimethylpyridin, N-[2-(2,4-Diaminophenyl)aminoethyl]-N-(5-amino-2-pyridyl)-amin, N-[2-(4-Aminophenyl)aminoethyl]-N-(5-amino-2-pyridyl)-amin, 2,4-Dihydroxy-5,6-diamino-pyrimidin, 4,5,6-Triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 2,4,5,6-Tetraaminopyrimidin, 2-Methylamino-4,5,6-triaminopyrimidin, 2,4-Diaminopyrimidin, 4,5-Diaminopyrimidin, 2-Amino-4-methoxy-6-methylpyrimidin, 3,5-Diaminopyrazol, 3,5-Diamino-1,2,4-triazol, 3-Aminopyrazol, 3-Amino-5-hydroxypyrazol, 1-Phenyl-4,5-diaminopyrazol, 1-(2-Hydroxyethyl)-4,5-diaminopyrazol, 1-Phenyl-3-methyl-4,5-diaminopyrazol, 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-on (4-Aminoantipyrin), 1-Phenyl-3-methylpyrazol-5-on, 2-Aminochinolin, 3-Aminochinolin, 8-Aminochinolin, 4-Aminochinaldin, 2-Aminonicotinsäure, 6-Aminonicotinsäure, 5-Aminoisochinolin, 5-Aminoundazol, 6-Aminoindazol, 5-Aminobenzimidazol, 7-Aminobenzimidazol, 5-Aminozothiazol, 7-Aminobenzothiazol, 2,5-Dihydroxy-4-morpholino-anilin sowie Indol- und Indolinderivaten, wie 4-Aminoindol, 5-Aminoindol, 6-Aminoindol, 7-Aminoindol, 5,6-Dihydroxyindolin, 5,6-Dihydroxyindolin und 4-Hydroxyindolin. Weiterhin als heterocyclische Verbindungen können erfundungsgemäß die in der DE-U1-299 08 573 offenbarten Hydroxypyrimidine eingesetzt werden. Die vorgenannten Verbindungen können sowohl in freier Form als auch in Form ihrer physiologisch verträglichen Salze, z. B. als Salze anorganischer Säuren, wie Salz- oder Schwefelsäure, eingesetzt werden.

[0028] Die aromatischen Hydroxyverbindungen der Komponente C sind bevorzugt ausgewählt aus 2-, 4-, 5-Methylresorcin, 2,5-Dimethylresorcin, Resorcin, 3-Methoxyphenol, Brenzkatechin, Hydrochinon, Pyrogallol, Phloroglucin, Hydroxyhydrochinon, 2-, 3-, 4-Methoxy-, 3-Dimethylamino-, 2-(2-Hydroxyethyl)-, 3,4-Methylenedioxypheophenol, 2,4-, 3,4-Dihydroxybenzoësäure, -phenylessigsäure, Gallussäure, 2,4,6-Trihydroxybenzoësäure, -acetophenon, 2-, 4-Chlorresorcin, 1-Naphthol, 1,5-, 2,3-, 2,7-Dihydroxynaphthalin, 6-Dimethylamino-4-hydroxy-2-naphthalinsulfonsäure und 3,6-Dihydroxy-2,7-naphthalinsulfonsäure.

[0029] Als Aminosäuren kommen bevorzugt alle natürlich vorkommenden und synthetischen α -Aminosäuren in Frage, z. B. die durch Hydrolyse aus pflanzlichen oder tierischen Proteinen, z. B. Kollagen, Keratin, Casein, Elastin, Sojaprotein, Weizengluten oder Mandelprotein zugänglichen Aminosäuren. Dabei können sowohl sauer als auch alkalisch reagierende Aminosäuren eingesetzt werden. Bevorzugte Aminosäuren sind Arginin, Histidin, Tyrosin, Phenylalanin, DOPA (Dihydroxyphenylalanin), Ornithin, Prolin, Lysin und Tryptophan. Aber auch andere Aminosäuren, wie z. B.

Aminocapronsäure und β -Alanin, können eingesetzt werden.

[0030] Die Oligopeptide können dabei natürlich vorkommende oder synthetische Oligopeptide, aber auch die in Polypeptid- oder Proteinhydrolysaten enthaltenen Oligopeptide sein, sofern sie über eine für die Anwendung in den erfundungsgemäßen Färbemitteln ausreichende Wasserlöslichkeit verfügen. Als Beispiele sind z. B. Glutathion oder die in den Hydrolysaten von Kollagen, Keratin, Casein, Elastin, Sojaprotein, Weizengluten oder Mandelprotein enthaltenen Oligopeptide zu nennen. Bevorzugt ist dabei die Verwendung gemeinsam mit Verbindungen mit primärer oder sekundärer Aminogruppe oder mit aromatischen Hydroxyverbindungen.

5

[0031] Die Verbindungen der Komponente C werden besonders bevorzugt ausgewählt aus 4-Formyl-1-ethylpyridinium-p-toluolsulfonat, 4-Formyl-1-methylchinolinium-p-toluolsulfonat, 2-Formyl-1-methylchinolinium-p-toluolsulfonat, Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxy-zimtaldehyd, 4-Dimethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Hydroxynaphthaldehyd, Indol-3-carboxaldehyd und Isatin, sowie jeweils aus den vorzugsweise mit anorganischen Säuren gebildeten physiologisch verträglichen Salzen dieser Verbindungen.

10

[0032] Die vorgenannten Verbindungen können sowohl in freier Form als auch in Form ihrer physiologisch verträglichen Salze, insbesondere als Salze anorganischer Säuren, wie Salz- oder Schwefelsäure, eingesetzt werden.

15

[0033] Die Verbindungen mit der Formel I bzw. II sowie die Verbindungen der Komponenten B bzw. C werden vorzugsweise in den erfundungsgemäßen Mitteln jeweils in einer Menge von 0,03 bis 65 mmol, insbesondere von 1 bis 40 mmol, bezogen auf 100 g des gesamten Färbemittels, verwendet. Sie können als direktziehende Färbemittel oder in Gegenwart von üblichen Oxidationsfarbstoffvorprodukten eingesetzt werden.

20

[0034] Unter die voranstehend beschriebene Ausführungsform fällt ebenfalls die Verwendung von solchen Substanzen, die Reaktionsprodukte der kationischen heterozyklischen Verbindungen und der CH-aciden Verbindungen als direktziehende Färbemittel. Derartige Reaktionsprodukte können z. B. durch kurzes Erwärmen der beiden Komponenten in stöchiometrischen Mengen in wässrigem neutralen bis schwach alkalischen Milieu erhalten werden, wobei sie entweder als Feststoff aus der Lösung ausfallen oder durch Eindampfen der Lösung daraus isoliert werden. Die Reaktionsprodukte können auch in Kombination mit anderen Farbstoffen oder Farbstoffvorprodukten eingesetzt werden.

25

[0035] In allen Färbemitteln können auch mehrere verschiedene Verbindungen mit der Formel I bzw. Formel II und verschiedene CH-acide Verbindungen gemeinsam zum Einsatz kommen.

30

[0036] Zur Erlangung weiterer und intensiverer Ausfärbungen können die erfundungsgemäßen Mittel zusätzlich Farbverstärker enthalten. Die Farbverstärker sind vorzugsweise ausgewählt aus der Gruppe bestehend aus Piperidin, Piperidin-2-carbonsäure, Piperidin-3-carbonsäure, Piperidin-4-carbonsäure, Pyridin, 2-Hydroxypyridin, 3-Hydroxypyridin, 4-Hydroxypyridin, Imidazol, 1-Methylimidazol, Histidin, Pyrrolidin, Prolin, Pyrrolidon, Pyrrolidon-5-carbonsäure, Pyrazol, 1,2,4-Triazol, Piperazidin, deren Derivate sowie deren physiologisch verträglichen Salzen.

35

[0037] Die voranstehend genannten Farbverstärker können in einer Menge von jeweils 0,03 bis 65 mmol, insbesondere 1 bis 40 mmol, jeweils bezogen auf 100 g des gesamten Färbemittels, eingesetzt werden.

40

[0038] Auf die Anwesenheit von Oxidationsmitteln, z. B. H_2O_2 , kann dabei verzichtet werden. Es kann jedoch unter Umständen wünschenswert sein, den erfundungsgemäßen Mitteln zur Erzielung der Nuancen, die heller als die zu färbende keratinhaltige Faser sind, Wasserstoffperoxid oder andere Oxidationsmittel zuzusetzen. Oxidationsmittel werden in der Regel in einer Menge von 0,01 bis 6 Gew.-%, bezogen auf die Anwendungslösung, eingesetzt. Ein für menschliches Haar bevorzugtes Oxidationsmittel ist H_2O_2 . Auch Gemische von mehreren Oxidationsmitteln, wie beispielsweise eine Kombination aus Wasserstoffperoxid und Peroxidisulfaten der Alkail- und Erdalkalimetalle oder aus Iodidionenquellen, wie z. B. Alkalimetalliodiden und Wasserstoffperoxid oder den vorgenannten Peroxidisulfaten, können verwendet werden. Das Oxidationsmittel bzw. die Oxidationsmittelkombination können erfundungsgemäß in Verbindung mit Oxidationskatalysatoren in dem Haarfärbemittel zur Anwendung kommen.

45

[0039] Oxidationskatalysatoren sind beispielsweise Metallsalze oder Metalloxide, die einen leichten Wechsel zwischen zwei Oxidationsstufen der Metallionen ermöglichen. Beispiele sind Salze oder Oxide von Eisen, Ruthenium, Mangan und Kupfer.

50

[0040] In einer bevorzugten Ausführungsform enthalten die erfundungsgemäßen Färbemittel zur weiteren Modifizierung der Farbnuancen neben den erfundungsgemäß enthaltenen Verbindungen zusätzlich übliche direktziehende Farbstoffe, z. B. aus der Gruppe der Nitrophenylen diamine, Nitroaminophenole, Anthrachinone oder Indophenole, wie z. B. die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red BN, Basic Red 76, HC Blue 2, Disperse Blue 3, Basic Blue 99, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie 6-Nitro-1,2,3,4-tetrahydrochinoxalin, 4-N-Ethyl-1,4-bis-(2-hydroxyethylamino)-2-nitrobenzolhydrochlorid und 1-Methyl-3-nitro-4-(2-hydroxyethyl)-aminobenzol. Die erfundungsgemäßen Mittel gemäß dieser Ausführungsform enthalten die direktziehenden Farbstoffe bevorzugt in einer Menge von 0,01 bis 20 Gew.-%, bezogen auf das gesamte Färbemittel.

55

[0041] Weiterhin können die erfundungsgemäßen Zubereitungen auch in der Natur vorkommende Farbstoffe, wie sie beispielsweise in Henna rot, Henna neutral, Henna schwarz, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkanawurzel enthalten sind, enthalten.

60

[0042] Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die faktulativ enthaltenen direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfundungsgemäßen Färbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxikologischen, ausgeschlossen werden müssen.

65

[0043] Die erfundungsgemäßen Färbemittel ergeben bereits bei physiologisch verträglichen Temperaturen von unter 45°C intensive Färbungen. Sie eignen sich deshalb besonders zum Färben von menschlichen Haaren. Zur Anwendung auf dem menschlichen Haar können die Färbemittel üblicherweise in einen wasserhaltigen kosmetischen Träger eingearbeitet werden. Geeignete wasserhaltige kosmetische Träger sind z. B. Cremes, Emulsionen, Gele oder auch tensidhaltige schäumende Lösungen wie z. B. Shampoos oder andere Zubereitungen, die für die Anwendung auf den keratinhaltigen Fasern geeignet sind. Falls erforderlich ist es auch möglich, die Färbemittel in wasserfreie Träger einzuarbeiten.

65

DE 101 48 844 A 1

[0044] Weiterhin können die erfindungsgemäßen Färbemittel alle in solchen Zubereitungen bekannten Wirk-, Zusatz- und Hilfsstoffe enthalten. In vielen Fällen enthalten die Färbemittel mindestens ein Tensid, wobei prinzipiell sowohl anionische als auch zwitterionische, ampholytische, nichtionische und kationische Tenside geeignet sind. In vielen Fällen hat es sich aber als vorteilhaft erwiesen, die Tenside aus anionischen, zwitterionischen oder nichtionischen Tensiden auszuwählen.

[0045] Als anionische Tenside eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 10 bis 22 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 oder 3 C-Atomen in der Alkanolgruppe,

- lineare Fettsäuren mit 10 bis 22 C-Atomen (Seifen),
- 15 - Ethercarbonsäuren der Formel R-O-(CH₂-CH₂O)_x-CH₂-COOH, in der R eine lineare Alkylgruppe mit 10 bis 22 C-Atomen und x = 0 oder 1 bis 16 ist,
- Acylsarcoside mit 10 bis 18 C-Atomen in der Acylgruppe,
- Acyltauride mit 10 bis 18 C-Atomen in der Acylgruppe,
- Acylsethionate mit 10 bis 18 C-Atomen in der Acylgruppe,
- 20 - Sulfobersteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobersteinsäuremono-alkylpolyoxyethylster mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
- lineare Alkansulfonate mit 12 bis 18 C-Atomen,
- lineare Alpha-Olefinsulfonate mit 12 bis 18 C-Atomen,
- 25 - Alpha-Sulfofettsäuremethylester von Fettsäuren mit 12 bis 18 C-Atomen,
- Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH₂-CH₂O)_x-SO₃H, in der R eine bevorzugt lineare Alkylgruppe mit 10 bis 18 C-Atomen und x = 0 oder 1 bis 12 ist,
- Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030,
- sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
- Sulfonate ungesättigter Fettsäuren mit 12 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-30 39 26 344,
- Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2 bis 15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen.

[0046] Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül sowie insbesondere Salze von gesättigten und insbesondere ungesättigten C₈-C₂₂-Carbonsäuren, wie Ölsäure, Stearinsäure, Isostearinsäure und Palmitinsäure.

[0047] Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO⁽⁻⁾ oder -SO₃⁽⁻⁾-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammoniumglycinat, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminooethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.

[0048] Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C₈₋₁₈-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO₃H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminooxsigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminooethylaminopropionat und das C₁₂₋₁₈-Acylsarcosin.

[0049] Nichtionische Tenside enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Polyalkylenpolykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise

- 55 - Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
- C₁₂₋₂₂-Fettsäurermono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
- 60 - C₈₋₂₂-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga,
- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
- Anlagerungsprodukte von Ethylenoxid an Sorbitanfettsäureester
- Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide.

65 [0050] Beispiele für die in den erfindungsgemäßen Haarbehandlungsmitteln verwendbaren kationischen Tenside sind insbesondere quartäre Ammoniumverbindungen. Bevorzugt sind Ammoniumhalogenide wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid,

DE 101 48 844 A 1

Lauryldimethylbenzylammoniumchlorid und Tricetylmethylenammoniumchlorid. Weitere erfundungsgemäß verwendbare kationische Tenside stellen die quaternisierten Proteinhydrolysate dar.

[0051] Erfundungsgemäß ebenfalls geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylmodimethicon), Dow Corning 929 Emulsion (enthaltend ein hydroxyl-aminomodifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquatäre Polydimethylsiloxane, Quaternin-80). Alkylamidoamine, insbesondere Fettsäureamidoamine wie das unter der Bezeichnung Tego Amid®S 18 erhältliche Stearylaminodopropyltrimethylamin, zeichnen sich neben einer guten konditionierenden Wirkung speziell durch ihre gute biologische Abbaubarkeit aus.

[0052] Ebenfalls sehr gut biologisch abbaubar sind quaternäre Esterverbindungen, sogenannte "Esterquats", wie die unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyalkyldialkoxyalkylammoniummethosulfate.

[0053] Ein Beispiel für ein als kationisches Tensid einsetzbares quaternäres Zuckerderivat stellt das Handelsprodukt Glucquat®100 dar, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride".

[0054] Bei den als Tenside eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.

[0055] Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homogenverteilung als auch solche mit einer eingeengten Homogenverteilung verwendet werden. Unter "normaler" Homogenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homogenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetallocxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homogenverteilung kann bevorzugt sein.

[0056] Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise

- nichtionische Polymere wie beispielsweise Vinylpyrrolidon/Ninylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere und Polysiloxane,
- kationische Polymere wie quaternisierte Celluloseether, Polysiloxane mit quaternären Gruppen, Dimethyldiallylammoniumchlorid-Polymer, Acrylamid-Dimethyldiallylammoniumchlorid-Copolymere, mit Diethylsulfat quatierte Dimethylaminoethylmethacrylat-Vinylpyrrolidon-Copolymere, Vinylpyrrolidon-Imidazoliniummethochlorid-Copolymere und quaternierter Polyvinylalkohol,
- zwitterionische und amphotere Polymere wie beispielsweise Acrylamidopropyl-trimethylammoniumchlorid/Acrylat-Copolymere und Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere,
- anionische Polymere wie beispielsweise Polyacrylsäuren, vernetzte Polyacrylsäuren, Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und Acrylsäure/Ethylacrylat/N-tert.-Butylacrylamid-Terpolymerie,
- Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johanniskernmehl, Leinsamengummien, Dextrane, CelluloseDerivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
- Strukturanten wie Glucose und Maleinsäure,
- haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
- Proteinhydrolysate, insbesondere Elastin-, Kollagen-, Keratin-, Milcheiweiß-, Sojaprotein- und Weizenproteinhydrolysate, deren Kondensationsprodukte mit Fettsäuren sowie quaternisierte Proteinhydrolysate,
- Parfümöl, Dimethylisosorbid und Cyclodextrine,
- Lösungsmittel wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol,
- Antischuppenwirkstoffe wie Piroctone Olamine und Zink Omadine,
- weitere Substanzen zur Einstellung des pH-Wertes,
- Wirkstoffe wie Panthenol, Pantothensäure, Allantoin, Pyrrolidoncarbonsäuren und deren Salze, Pflanzenextrakte und Vitamine,
- Cholesterin,
- Lichtschutzmittel,
- Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
- Fette und Wachse wie Walrat, Bienenwachs, Montanwachs, Paraffine, Fettalkohole und Fettsäureester,
- Fettsäurealkanolamide,
- Komplexbildner wie EDTA, NTA und Phosphonsäuren,
- Quell- und Penetrationsstoffe wie Glycerin, Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate, Imidazole, Tannine, Pyrrol,
- Trübungsmittel wie Latex,
- Perlglanzmittel wie Ethylenglykolmono- und -distearat,
- Treibmittel wie Propan-Butan-Gemische, N₂O, Dimethylether, CO₂ und Luft sowie
- Antioxidantien.

[0057] Die Bestandteile des wasserhaltigen Trägers werden zur Herstellung der erfindungsgemäßen Färbemittel in für diesen Zweck üblichen Mengen eingesetzt; z. B. werden Emulgiermittel in Konzentrationen von 0,5 bis 30 Gew.-% und Verdickungsmittel in Konzentrationen von 0,1 bis 25 Gew.-% des gesamten Färbemittels eingesetzt.

[0058] Für das Färbeergebnis kann es vorteilhaft sein, den Färbemitteln Ammonium- oder Metallsalze zuzugeben. Geeignete Metallsalze sind z. B. Formiate, Carbonate, Halogenide, Sulfate, Butyrate, Valemate, Capronate, Acetate, Lactate, Glykolate, Tartrate, Citrate, Gluconate, Propionate, Phosphate und Phosphonate von Alkalimetallen, wie Kalium, Natrium oder Lithium, Erdalkalimetallen, wie Magnesium, Calcium, Strontium oder Barium, oder von Aluminium, Mangan, Eisen, Kobalt, Kupfer oder Zink, wobei Natriumacetat, Lithiumbromid, Calciumbromid, Calciumgluconat, Zinkchlorid, Zinksulfat, Magnesiumchlorid, Magnesiumsulfat, Ammoniumcarbonat, -chlorid und -acetat bevorzugt sind. Diese Salze sind vorzugsweise in einer Menge von 0,03 bis 65 mmol, insbesondere von 1 bis 40 mmol bezogen auf 100 g des gesamten Färbemittels, enthalten.

[0059] Der pH-Wert der gebrauchsfertigen Färbezubereitungen liegt üblicherweise zwischen 2 und 11, vorzugsweise zwischen 5 und 10.

[0060] Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung einer Kombination aus

- 15 A. mindestens einer quaternären heterozyklischen Verbindung gemäß Formel I,

20 25 worin R^1 , R^2 , R^3 , X^1 und A^- wie oben definiert sind,
mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II

30 35 40 45 wobei R^1 , R^2 , R^3 , X^1 , X^2 und A^- wie oben definiert sind, mitumfaßt sind,
sowie entsprechenden inneren Salzen, wobei A^- entfällt, und
B. mindestens einer CH-aciden Verbindung,

50 55 60 65 sowie gegebenenfalls
C. mindestens einer Verbindung ausgewählt aus der Gruppe, die gebildet wird aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen

70 als färbende Komponenten in Oxidationshaarfärbemitteln.
[0061] Noch ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, worin ein Färbemittel, enthaltend

- 75 A. mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 890 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850 2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150 3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600 3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750 3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050 4060 4070 4080 4090 4010 4020 4030 4040 4050 4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200 4210 4220 4230 4240 4250 4260 4270 4280 4290 4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350 4360 4370 4380 4390 4310 4320 4330 4340 4350 4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500 4510 4520 4530 4540 4550 4560 4570 4580 4590 4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650 4660 4670 4680 4690 4610 4620 4630 4640 4650 4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800 4810 4820 4830 4840 4850 4860 4870 4880 4890 4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020 5030 5040 5050 5060 5070 5080 5090 5010 5020 5030 5040 5050 5060 5070 5080 5090 5100 5110 5120 5130 5140 5150 5160 5170 5180 5190 5110 5120 5130 5140 5150 5160 5170 5180 5190 5200 5210 5220 5230 5240 5250 5260 5270 5280 5290 5210 5220 5230 5240 5250 5260 5270 5280 5290 5300 5310 5320 5330 5340 5350 5360 5370 5380 5390 5310 5320 5330 5340 5350 5360 5370 5380 5390 5400 5410 5420 5430 5440 5450 5460 5470 5480 5490 5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 5530 5540 5550 5560 5570 5580 5590 5510 5520 5530 5540 5550 5560 5570 5580 5590 5600 5610 5620 5630 5640 5650 5660 5670 5680 5690 5610 5620 5630 5640 5650 5660 5670 5680 5690 5700 5710 5720 5730 5740 5750 5760 5770 5780 5790 5710 5720 5730 5740 5750 5760 5770 5780 5790 5800 5810 5820 5830 5840 5850 5860 5870 5880 5890 5810 5820 5830 5840 5850 5860 5870 5880 5890 5900 5910 5920 5930 5940 5950 5960 5970 5980 5990 5910 5920 5930 5940 5950 5960 5970 5980 5990 6000 6010 6020 6030 6040 6050 6060 6070 6080 6090 6010 6020 6030 6040 6050 6060 6070 6080 6090 6100 6110 6120 6130 6140 6150 6160 6170 6180 6190 6110 6120 6130 6140 6150 6160 6170 6180 6190 6200 6210 6220 6230 6240 6250 6260 6270 6280 6290 6210 6220 6230 6240 6250 6260 6270 6280 6290 6300 6310 6320 6330 6340 6350 6360 6370 6380 6390 6310 6320 6330 6340 6350 6360 6370 6380 6390 6400 6410 6420 6430 6440 6450 6460 6470 6480 6490 6410 6420 6430 6440 6450 6460 6470 6480 6490 6500 6510 6520 6530 6540 6550 6560 6570 6580 6590 6510 6520 6530 6540 6550 6560 6570 6580 6590 6600 6610 6620 6630 6640 6650 6660 6670 6680 6690 6610 6620 6630 6640 6650 6660 6670 6680 6690 6700 6710 6720 6730 6740 6750 6760 6770 6780 6790 6710 6720 6730 6740 6750 6760 6770 6780 6790 6800 6810 6820 6830 6840 6850 6860 6870 6880 6890 6810 6820 6830 6840 6850 6860 6870 6880 6890 6900 6910 6920 6930 6940 6950 6960 6970 6980 6990 6910 6920 6930 6940 6950 6960 6970 6980 6990 7000 7010 7020 7030 7040 7050 7060 7070 7080 7090 7010 7020 7030 7040 7050 7060 7070 7080 7090 7100 7110 7120 7130 7140 7150 7160 7170 7180 7190 7110 7120 7130 7140 7150 7160 7170 7180 7190 7200 7210 7220 7230 7240 7250 7260 7270 7280 7290 7210 7220 7230 7240 7250 7260 7270 7280 7290 7300 7310 7320 7330 7340 7350 7360 7370 7380 7390 7310 7320 7330 7340 7350 7360 7370 7380 7390 7400 7410 7420 7430 7440 7450 7460 7470 7480 7490 7410 7420 7430 7440 7450 7460 7470 7480 7490 7500 7510 7520 7530 7540 7550 7560 7570 7580 7590 7510 7520 7530 7540 7550 7560 7570 7580 7590 7600 7610 7620 7630 7640 7650 7660 7670 7680 7690 7610 7620 7630 7640 7650 7660 7670 7680 7690 7700 7710 7720 7730 7740 7750 7760 7770 7780 7790 7710 7720 7730 7740 7750 7760 7770 7780 7790 7800 7810 7820 7830 7840 7850 7860 7870 7880 7890 7810 7820 7830 7840 7850 7860 7870 7880 7890 7900 7910 7920 7930 7940 7950 7960 7970 7980 7990 7910 7920 7930 7940 7950 7960 7970 7980 7990 8000 8010 8020 8030 8040 8050 8060 8070 8080 8090 8010 8020 8030 8040 8050 8060 8070 8080 8090 8100 8110 8120 8130 8140 8150 8160 8170 8180 8190 8110 8120 8130 8140 8150 8160 8170 8180 8190 8200 8210 8220 8230 8240 8250 8260 8270 8280 8290 8210 8220 8230 8240 8250 8260 8270 8280 8290 8300 8310 8320 8330 8340 8350 8360 8370 8380 8390 8310 8320 8330 8340 8350 8360 8370 8380 8390 8400 8410 8420 8430 8440 8450 8460 8470 8480 8490 8410 8420 8430 8440 8450 8460 8470 8480 8490 8500 8510 8520 8530 8540 8550 8560 8570 8580 8590 8510 8520 8530 8540 8550 8560 8570 8580 8590 8600 8610 8620 8630 8640 8650 8660 8670 8680 8690 8610 8620 8630 8640 8650 8660 8670 8680 8690 8700 8710 8720 8730 8740 8750 8760 8770 8780 8790 8710 8720 8730 8740 8750 8760 8770 8780 8790 8800 8810 8820 8830 8840 8850 8860 8870 8880 8890 8810 8820 8830 8840 8850 8860 8870 8880 8890 8900 8910 8920 8930 8940 8950 8960 8970 8980 8990 8910 8920 8930 8940 8950 8960 8970 8980 8990 9000 9010 9020 9030 9040 9050 9060 9070 9080 9090 9010 9020 9030 9040 9050 9060 9070 9080 9090 9100 9110 9120 9130 9140 9150 9160 9170 9180 9190 9110 9120 9130 9140 9150 9160 9170 9180 9190 9200 9210 9220 9230 9240 9250 9260 9270 9280 9290 9210 9220 9230 9240 9250 9260 9270 9280 9290 9300 9310 9320 9330 9340 9350 9360 9370 9380 9390 9310 9320 9330 9340 9350 9360 9370 9380 9390 9400 9410 9420 9430 9440 9450 9460 9470 9480 9490 9410 9420 9430 9440 9450 9460 9470 9480 9490 9500 9510 9520 9530 9540 9550 9560 9570 9580 9590 9510 9520 9530 9540 9550 9560 9570 9580 9590 9600 9610 9620 9630 9640 9650 9660 9670 9680 9690 9610 9620 9630 9640 9650 9660 9670 9680 9690 9700 9710 9720 9730 9740 9750 9760 9770 9780 9790 9710 9720 9730 9740 9750 9760 9770 9780 9790 9800 9810 9820 9830 9840 9850 9860 9870 9880 9890 9810 9820 9830 9840 9850 9860 9870 9880 9890 9900 9910 9920 9930 9940 9950 9960 9970 9980 9990 9910 9920 9930 9940 9950 9960 9970 9980 9990 10000 10010 10020 10030 10040 10050 10060 10070 10080 10090 10010 10020 10030 10040 10050 10060 10070 10080 10090 10100 10110 10120 10130 10140 10150 10160 10170 10180 10190 10110 10120 10130 10140 10150 10160 10170 10180 10190 10200 10210 10220 10230 10240 10250 10260 10270 10280 10290 10210 10220 10230 10240 10250 10260 10270 10280 10290 10300 10310 10320 10330 10340 10350 10360 10370 10380 10390 10310 10320 10330 10340 10350 10360 10370 10380 10390 10400 10410 10420 10430 10440 10450 10460 10470 10480 10490 10410 10420 10430 10440 10450 10460 10470 10480 10490 10500 10510 10520 10530 10540 10550 10560 10570 10580 10590 10510 10520 10530 10540 10550 10560 10570 10580 10590 10600 10610 10620 10630 10640 10650 10660 10670 10680 10690 10610 10620 10630 10640 10650 10660 10670 10680 10690 10700 10710 10720 10730 10740 10750 10760 10770 10780 10790 10710 10720 10730 10740 10750 10760 10770 10780 10790 10800 10810 10820 10830 10840 10850 10860 10870 10880 10890 10810 10820 10830 10840 10850 10860 10870 10880 10890 10900 10910 10920 10930 10940 10950 10960 10970 10980 10990 10910 10920 10930 10940 10950 10960 10970 10980 10990 11000 11010 11020 11030 11040 11050 11060 11070 11080 11090 11010 11020 11030 11040 11050 11060 11070 11080 11090 11100 11110 11120 11130 11140 11150 11160 11170 11180 11190 11110 11120 11130 11140 11150 11160 11170 11180 11190 11200 11210 11220 11230 11240 11250 11260 11270 11280 11290 11210 11220 11230 11240 11250 11260 11270 11

5

10

15

20

25

30

35

40

wobei R^1 , R^2 , R^3 , X^1 , X^2 und A^- wie oben definiert sind, mitumfaßt sind,
sowie entsprechenden inneren Salzen, wobei A^- entfällt, und
B. mindestens einer CH-aciden Verbindung,

sowie gegebenenfalls

C. mindestens einer Verbindung ausgewählt aus der Gruppe, die gebildet wird aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen

auf die keratinhaltigen Fasern aufgebracht, einige Zeit, üblicherweise ca. 30 Minuten, auf der Faser belassen und anschließend wieder ausgespült oder mit einem Shampoo ausgewaschen wird.

[0062] Die Kombination der Verbindungen gemäß Formel I bzw. II und die Verbindungen der Komponente B bzw. C können entweder gleichzeitig auf das Haar aufgebracht werden oder aber auch nacheinander, d. h. in einem mehrstufigen Verfahren, wobei es unerheblich ist, welche der Komponenten zuerst aufgetragen wird. Die fakultativ enthaltenen Ammonium- oder Metallsalze können dabei den Verbindungen mit der Formel I bzw. II oder den Verbindungen der Komponente B zugesetzt werden. Zwischen dem Auftragen der einzelnen Komponenten in einem mehrstufigen Verfahren können bis zu 30 Minuten Zeitabstand liegen. Auch eine Vorbehandlung der Fasern mit der Salzlösung ist möglich.

[0063] In einer Variante dieser Ausführungsform des erfindungsgemäßen Verfahrens werden die Verbindungen gemäß Formel I bzw. II und die Verbindungen der Komponente B zuerst auf das Haar aufgetragen. Nach einem Zeitraum von bis zu 30 Minuten wird anschließend die Komponente C auf das Haar aufgebracht.

[0064] Die Verbindungen mit der Formel I bzw. II, die Verbindungen mit der Komponente B und die Verbindungen der Komponente C können entweder getrennt oder zusammen gelagert werden, entweder in einer flüssigen bis pastösen Zubereitung (wässrig oderwasserfrei) oder als trockenes Pulver. Werden die Komponenten in einer flüssigen Zubereitung zusammen gelagert, so sollte diese zur Verminderung einer Reaktion der Komponenten weitgehend wasserfrei sein. Bei der getrennten Lagerung werden die reaktiven Komponenten erst unmittelbar vor der Anwendung miteinander innig vermischt. Bei der trockenen Lagerung wird vor der Anwendung üblicherweise eine definierte Menge warmen (30°C bis 80°C) Wassers hinzugefügt und eine homogene Mischung hergestellt.

Beispiele

1. Herstellung der kationischen heterozyklischen Verbindungen (erfindungsgemäß)

45

[0065] 4-Chlor-1-ethylchinolinium-tetrafluoroborat wird gemäß Liebigs Ann. Chem., 1967, 708, 158–209, 3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat wird gemäß Liebigs Ann. Chem., 1971, 752, 182–195 und 3-Ethyl-benzothiazolium-2-sulfonat wird gemäß Chem. Ber., 1968, 101, 1137–1139 und der Patentschrift CH 473121 synthetisiert.

50

2. Herstellung einer Färbelösung

[0066] Es wurde eine Aufschlämmung bzw. Lösung der Komponente B (3 mmol) und 0,41 g Natriumacetat in 30 ml Wasser hergestellt. Unmittelbar vor der Anwendung auf dem Haar werden 3 mmol der Verbindung gemäß Formel I bzw. II zugemischt und der pH-Wert des resultierenden Färbemittels mit 10%-iger wässriger NaOH oder Salzsäure der pH-Wert gemäß Tabelle 1 eingestellt.

55

[0067] In diese Färbemischung wurde bei 30°C 30 Minuten lang eine Strähne Menschenhaar (naturweiß, Firma Kerling) eingebracht. Die Strähne wurde dann 30 Sek. mit lauwarmem Wasser gespült, mit warmer Luft (30°C bis 40°C) getrocknet und anschließend ausgekämmt.

60

[0068] Die jeweiligen Farbnuancen und Fluoreszenzstärke im UV-Licht sind in der nachfolgenden Tabelle 1 wiedergegeben. Die Stärke der Fluoreszenz wird mit folgender Skala bewertet:

- (+) stark
- (o) mittel
- (-) schwach

65

Färbebeispiele

Tabelle 1

	kationische heterozyklische Verbindung gemäß I bzw. II (Menge in Gramm)	Komponente B	pH	Farbe	Fluoreszenz (stärke)
5					
10	4-Chlor-1-ethylchinolinium-tetrafluoroborat	1,2,3,3-Tetramethylindolium-iodid	9	rot	(-)
15	4-Chlor-1-ethylchinolinium-tetrafluoroborat	2-Amino-4-imino-thiazolin-hydrochlorid	9	rot-violett	(-)
20	4-Chlor-1-ethylchinolinium-tetrafluoroborat	1-Ethyl-4-methyl-chinolinium-iodid	9	türkisblau	(-)
25	4-Chlor-1-ethylchinolinium-tetrafluoroborat	1,3-Diethylthiobarbitursäure	9	orange	(-)
30	4-Chlor-1-ethylchinolinium-tetrafluoroborat	Benzoylacetonitril	9	gelb-orange	(-)
35	3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat	1,2,3,3-Tetramethylindolium-iodid	9	gelb	gelb (o)
40	3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat	3-Ethyl-2-methyl-benzothiazolium-iodid	9	hellgelb	hellgelb (+)
45	3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat	1,3-Indandion	9	violett-braun	(-)
50	3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat	2-Amino-4-imino-thiazolin-hydrochlorid	9	orange	orange (+)
55	3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat	1-Ethyl-4-methyl-chinolinium-iodid	9	orangerot	(-)
60	3-Ethyl-2-methyl-benzothiazolium-2-sulfonat	3-Ethyl-2-methyl-benzothiazolium-iodid	6	intensiv gelb	grün gelb (+)
65	3-Ethyl-2-methyl-benzothiazolium-2-sulfonat	3-Ethyl-2-methyl-benzoxazolium-iodid	6	hellgelb	blau (+)
	3-Ethyl-2-methyl-benzothiazolium-2-sulfonat	1,2,3,3-Tetramethyl-indolium-iodid	6	gelb	gelb grün (+)
	3-Ethyl-2-methyl-benzothiazolium-2-sulfonat	1,3-Indandion	6	orange	orange (+)
	2-Chlor-1-ethyl-chinolinium-tetrafluoroborat	1-Ethyl-4-methyl-chinolinium-iodid	6	rot	(-)
	2-Chlor-1-ethyl-chinolinium-tetrafluoroborat	1,2,3,3,-Tetramethyl-indolium-iodid	6	violett	(-)

1. Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, enthaltend

A. mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

5

10

worin

R¹ und R² stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C₁-C₄-Hydroxalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfonsäuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe -NR⁴R⁵, wobei R⁴ und R⁵ stehen unabhängig voneinander für ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine Aryl-C₁-C₄-alkylgruppe oder eine C₁-C₄-Hydroxalkylgruppe, wobei R¹ und R² zusammen einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen Ring bilden können, welcher wiederum mit den Resten R⁶ und R⁷ substituiert ist, wobei R⁶ und R⁷ stehen unabhängig voneinander für die Reste, die unter R¹ definiert sind,

R³ steht für eine C₁-C₄-Hydroxalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine Di(C₁-C₄-hydroxalkyl)amino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe,

A⁻ steht für ein Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluorborat, Trifluormethylsulfonat, Methylsulfonat oder p-Toluolsulfonat,

Y steht für ein Sauerstoffatom, ein Schwefelatom, eine Gruppe -N=CH-, eine gegebenenfalls substituierte Methylen- oder eine gegebenenfalls substituierte Vinylengruppe oder eine Gruppe NR⁸, wobei R⁸ für die gleichen Gruppen stehen kann, die unter R⁵ definiert sind,

X¹ steht für ein Halogenatom, eine C₁-C₄-Alkoxygruppe, eine C₁-C₄-Alkylmercaptogruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe,

mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II

15

20

25

30

35

40

45

50

wobei

R¹, R², R³ und A⁻ wie oben definiert sind,

einer der Reste X¹ oder X² steht für ein Halogenatom, eine C₁-C₄-Alkoxygruppe, eine C₁-C₄-Alkylmercaptogruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe und der andere für ein Wasserstoffatom oder die Gruppen, die unter R¹ und R² definiert sind,

mitumfaßt sind,

sowie entsprechenden inneren Salzen, wobei A⁻ entfällt, und

B. mindestens eine CH-acide Verbindung.

2. Mittel gemäß Anspruch 1, dadurch gekennzeichnet, daß die Verbindungen mit der Formel I bzw. Formel II ausgewählt sind aus Substanzen, in denen das Kation ausgewählt ist aus 2-Chlor-1-ethyl-chinolinium, 4-Chlor-1-ethyl-chinolinium, 2-Chlor-1-methyl-pyridinium, 4-Chlor-1-methyl-pyridinium, 3-Ethyl-2-methylmercaptobenzothiazolum, 3-Ethyl-2-methylmercapto-benzoxazolum, 2-Chlor-1,3-diethylbenzimidazolum, 2-Chlor-3-ethyl-benzoxazolum, 2-Chlor-3-ethyl-benzothiazolum und das Gegenion A⁻ ausgewählt ist aus Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluorborat, Trifluormethylsulfonat, Methylsulfonat oder p-Toluolsulfonat und 3-Ethyl-benzothiazolum-2-sulfonat, 1-Ethyl-chinolinium-4-sulfonat und 1-Ethyl-chinolinium-2-sulfonat.

3. Mittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die CH-acide Verbindung ausgewählt ist aus 1,2,3,3-Tetramethyl-3H-indoliumiodid, 1,2,3,3-Tetramethyl-3H-indolium-p-toluolsulfonat, 1,2,3,3-Tetramethyl-3H-indoliummethansulfonat, 1,3,3-Trimethyl-2-methylenindolin (Fischersche Base), 2,3-Dimethyl-benzothiazolumiodid, 2,3-Dimethyl-benzothiazolum-p-toluolsulfonat, 2,3-Dimethyl-naphtho[1,2-d]thiazolum-p-toluolsulfonat, 3-Ethyl-2-methyl-naphtho[1,2-d]thiazolum-p-toluolsulfonat, Rhodanin, Rhodanin-3-essigsäure, 1,4-Dimethylchinolinium-iodid, 1,2-Dimethylchinolinium-iodid, Barbitursäure, Thiobarbitursäure, 1,3-Dimethylthiobarbitursäure, 1,3-Diethylthiobarbitursäure, 1,3-Diethylbarbitursäure, Oxindol, 3-Indoxylacetat, 2-Cumaranon, 5-Hydroxy-2-cumaranon, 6-Hydroxy-2-cumaranon, 1-Methyl-3-phenyl-pyrazolin-5-on, Indan-1,2-dion, Indan-1,3-dion, Indan-1-on, Benzoylacetonitril, 3-Dicyanmethylenindan-1-on, 1,3-Diiminoisoindolin, 2-Amino-4-imino-1,3-thiazolin-hydrochlorid, 5,5-Dimethylcyclohexan-1,3-dion, 2H-1,4-Benzoxazin-4H-3-on, 3-Ethyl-2-methylbenzoxazo-

55

60

65

liumiodid, 3-Ethyl-2-methyl-benzothiazoliumiodid, 1-Ethyl-4-methylchinoliniumiodid, 1-Ethyl-2-methylchinoliniumiodid, 1,2,3-Trimethylchinoxaliniumiodid, 3-Ethyl-2-methylbenzoxazolium-p-toluolsulfonat, 3-Ethyl-2-methyl-benzothiazolium-p-toluolsulfonat, 1-Ethyl-4-methyl-chinolinium-ptoluolsulfonat, 1-Ethyl-2-methylchinolinium-p-toluolsulfonat, und 1,2,3-Trimethylchinoxalinium-p-toluolsulfonat.
 5. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es zusätzlich eine Komponente C, enthaltend mindestens eine Verbindung ausgewählt aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen, enthält.
 10. Mittel gemäß Anspruch 4, dadurch gekennzeichnet, daß es als Komponente C mindestens eine Verbindung ausgewählt aus aromatischen oder heteroaromatischen Aldehyden oder Ketonen enthält.
 15. Mittel nach einem der Anspruch 5, dadurch gekennzeichnet, daß die in Komponente C enthaltenen aromatischen und/oder heteroaromatischen Aldehyde und/oder Ketone ausgewählt sind aus
 5-(4-Dimethylaminophenyl)-penta-2,4-dienal, 5-(4-Diethylaminophenyl)-penta-2,4-dienal, 5-(4-Methoxyphenyl)-penta-2,4-dienal, 5-(3,4-Dimethoxyphenyl)-penta-2,4-dienal, 5-(2,4-Dimethoxyphenyl)-penta-2,4-dienal, 5-(4-Piperidinophenyl)-penta-2,4-dienal, 5-(4-Morpholinophenyl)-penta-2,4-dienal, 5-(4-Pyrrolidinophenyl)-penta-2,4-dienal, 6-(4-Dimethylaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Diethylaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Methoxyphenyl)-hexa-3,5-dien-2-on, 6-(3,4-Dimethoxyphenyl)-hexa-3,5-dien-2-on, 6-(2,4-Dimethoxyphenyl)-hexa-3,5-dien-2-on, 6-(4-Piperidinophenyl)-hexa-3,5-dien-2-on, 6-(4-Morpholinophenyl)-hexa-3,5-dien-2-on, 6-(4-Pyrrolidinophenyl)-hexa-3,5-dien-2-on, 5-(4-Dimethylaminonaphth-1-yl)-penta-2,4-dienal,
 2-Nitropiperonal, 5-Nitropiperonal, 6-Nitropiperonal, 5-Hydroxy-2-nitropiperonal, 2-Hydroxy-5-nitropiperonal, 2-Chlor-6-nitropiperonal, 5-Chlor-2-nitropiperonal, 2,6-Dinitropiperonal,
 2-Nitrobenzaldehyd, 3-Nitrobenzaldehyd, 4-Nitrobenzaldehyd, 4-Methyl-3-nitrobenzaldehyd, 3-Hydroxy-4-nitrobenzaldehyd, 4-Hydroxy-3-nitrobenzaldehyd, 5-Hydroxy-2-nitrobenzaldehyd, 2-Hydroxy-5-nitrobenzaldehyd, 2-Hydroxy-3-nitrobenzaldehyd, 2-Fluor-3-nitrobenzaldehyd, 3-Methoxy-2-nitrobenzaldehyd, 4-Chlor-3-nitrobenzaldehyd, 2-Chlor-6-nitrobenzaldehyd, 5-Chlor-2-nitrobenzaldehyd, 4-Chlor-2-nitrobenzaldehyd, 2,4-Dinitrobenzaldehyd, 2,6-Dinitrobenzaldehyd, 2-Hydroxy-3-methoxy-5-nitrobenzaldehyd, 4,5-Dimethoxy-2-nitrobenzaldehyd, 5-Nitrovanillin, 3,5-Dinitrosalicylaldehyd, 5-Brom-3-nitrosalicylaldehyd, 3-Nitro-4-formylbenzolsulfonsäure, 4-Nitro-1-naphthaldehyd, 2-Nitrozimaldehyd, 3-Nitrozimaldehyd, 4-Nitrozimaldehyd,
 30. Carbazolaldehyde oder Carbazolketone, insbesondere 9-Methyl-3-carbazolaldehyd, 9-Ethyl-3-carbazolaldehyd, 3-Acetylcarbazol, 3,6-Diacetyl-9-ethylcarbazol, 3-Acetyl-9-methylcarbazol, 1,4-Dimethyl-3-carbazolaldehyd, 1,4,9-Trimethyl-3-carbazolaldehyd,
 4-Trimethylammoniobenzaldehyd-, 4-Benzylidemethylammoniobenzaldehyd-, 4-Trimethylammoniozimtaldehyd-,
 4-Trimethylammonionaphthaldehyd-, 2-Methoxy-4-trimethylammoniobenzaldehyd-, N-(4-Acetylphenyl)-trimethylammonium-, 4-(N,N-Diethyl)-N-methylammonio-benzaldehyd-, N-(4-Benzoylphenyl)-trimethylammonium-, N-(4-Benzoylphenyl)-N,Ndiethylmethylammonium-, N-(4-Formylphenyl)-N-methylpyrrolidinium-, N-(4-Formylphenyl)-N-methylpiperidinium-, N-(4-Formylphenyl)-N-methylmorpholinium-, N-(4-Acetylphenyl)-N-methylmorpholinium-, N-(4-Benzoylphenyl)-N-methylmorpholinium-, 3-Formyl-N-ethyl-N-methylcarbazolum-, 3-Formyl-9,9-dimethylcarbazolum-, 1-(4-Acetylphenyl)-3-methylimidazolum-, 1-(4-Acetylphenyl)-3-methyl-2-imidazolum-, 1-(4-Benzoylphenyl)-3-methylimidazolum-, 5-Acetyl-1,3-diethyl-2-methylbenzimidazolum-, 5-Trimethylammonio-1-indanon-Salze, insbesondere die Benzolsulfonate, p-Toluolfulfonate, Methansulfonate, Ethansulfonate, Propansulfonate, Perchlorate, Sulfate, Chloride, Bromide, Iodide, Tetrachlorozinkate, Methylsulfate, Trifluormethansulfonate, Hexafluorophosphate, Tetrafluoroborate,
 45. 4-Formyl-1-methylpyridinium-, 2-Formyl-1-methylpyridinium-, 4-Formyl-1-ethylpyridinium-, 2-Formyl-1-ethylpyridinium-, 4-Formyl-1-benzylpyridinium-, 2-Formyl-1-benzylpyridinium-, 4-Formyl-1,2-dimethylpyridinium-, 4-Formyl-1,3-dimethylpyridinium-, 4-Formyl-1-methylchinolinium-, 2-Formyl-1-methylchinolinium-, 4-Acetyl-1-methylpyridinium-, 2-Acetyl-1-methylpyridinium-4-Acetyl-1-methylchinolinium-, 5-Formyl-1-methylchinolinium-, 6-Formyl-1-methylchinolinium-, 7-Formyl-1-methylchinolinium-, 8-Formyl-1-methylchinolinium, 5-Formyl-1-ethylchinolinium-, 6-Formyl-1-ethylchinolinium-, 7-Formyl-1-ethylchinolinium-, 8-Formyl-1-benzylchinolinium-, 6-Formyl-1-benzylchinolinium-, 7-Formyl-1-benzylchinolinium-, 8-Formyl-1-benzylchinolinium, 5-Formyl-1-allylchinolinium-, 6-Formyl-1-allylchinolinium-, 7-Formyl-1-allylchinolinium, 5-Formyl-1-allylchinolinium-, 6-Acetyl-1-methylchinolinium-, 7-Acetyl-1-methylchinolinium-, 8-Acetyl-1-methylchinolinium-, 5-Acetyl-1-ethylchinolinium-, 6-Acetyl-1-ethylchinolinium-, 7-Acetyl-1-ethylchinolinium-, 8-Acetyl-1-ethylchinolinium-, 8-Acetyl-1-ethylchinolinium, 5-Acetyl-1-benzylchinolinium-, 6-Acetyl-1-benzylchinolinium-, 7-Acetyl-1-benzylchinolinium-, 8-Acetyl-1-benzylchinolinium-, 5-Acetyl-1-allylchinolinium-, 6-Formyl-1-allylchinolinium, 7-Formyl-1-allylchinolinium, 8-Formyl-1-allylchinolinium, 5-Formyl-1-allylchinolinium-, 6-Acetyl-1-allylchinolinium-, 7-Acetyl-1-allylchinolinium-, 8-Acetyl-1-allylchinolinium, 5-Acetyl-1-allylchinolinium-, 6-Acetyl-1-allylchinolinium-, 7-Acetyl-1-allylchinolinium-, 8-Acetyl-1-allylchinolinium, 9-Formyl-10-methylacridinium-, 4-(2-Formylvinyl)-1-methylpyridinium-, 1,3-Dimethyl-2-(4-formylphenyl)-benzimidazolinium-, 1,3-Dimethyl-2-(4-formylphenyl)-imidazolinium-, 2-(4-Formylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylphenyl)-3-methylbenzoxazolium-, 2-(5-Formyl-2-furyl)-3-methylbenzothiazolium-, 2-(3-Formylphenyl)-3-methylbenzothiazolium-, 2-(4-Formynaphth-1-yl)-3-methylbenzothiazolium-, 5-Chlor-2-(4-formylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylphenyl)-3,5-dimethylbenzothiazolium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium, 1-Methyl-4-[2-(4-acetylphenyl)-ethenyl]-pyridinium-, 1-Benzyl-4-[2-(4-formylphenyl)-ethenyl]-pyridinium, 1-Methyl-4-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-4-[2-(4-formylphenyl)-ethenyl]-chinolinium, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(5-formyl-2-furyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-benzimidazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyl)-ethenyl]-benzimidazolinium-, 1-Methyl-5-oxo-indeno[1,2-

b]pyridinium(4-methyl-4-azonio-9-fluorenon-), 1-Ethyl-5-oxo-indeno[1,2-b]pyridinium(4-Ethyl-4-azonio-9-fluorenon-), 1-Benzyl-5-oxo-indeno[1,2-b]pyridinium(-4-benzyl-4-azonio-9-fluorenon-), 2-Methyl-5-oxo-indeno[1,2-c]pyridinium-, 2-Methyl-9-oxo-indeno[2,1-c]pyridinium-, 1-Methyl-9-oxo-indeno[2,1-b]pyridinium-salze, insbesondere Benzoisulfonat, p-Toluolsulfonat, Methansulfonat, Perchlorat, Sulfat, Chlorid, Bromid, Iodid, Tetrachlorozinkat, Methylsulfat, Trifluormethansulfonat, Tetrafluoroborat,
 5 Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxyizmaldehyd (Coniferylaldehyd), 2,4-Dihydroxybenzaldehyd, 4-Dimethylaminobenzaldehyd, 4-Diethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Pyrroldinobenzaldehyd, 4-Morpholinobenzaldehyd, 4-Piperidinobenzaldehyd, 4-Dimethylaminoacetophenon, 4-Hydroxynaphthaldehyd, 4-Dimethylaminonaphthaldehyd, 4-Dimethylaminobenzylidenaceton, 4-Dimethylaminoizmaldehyd, 2-Dimethylaminobenzaldehyd, 2-Chlor-4-dimethylaminobenzaldehyd, 4-Dimethylamino-2-methylbenzaldehyd, trans-4-Diethylaminoizmaldehyd, 4-(Dibutylamino)-benzaldehyd, 4-Diphenylaminobenzaldehyd, 2,3,6,7-Tetrahydro-1H,5H-benzo[ij]chinolizin-9-carboxaldehyd, 4-Dimethylamino-2-methoxybenzaldehyd, 2,3,6,7-Tetrahydro-8-hydroxy-1H,5Hbenzo[ij]chinolizin-9-carboxaldehyd, 4-(1-Imidazolyl)-benzaldehyd, 2-Morpholinobenzaldehyd, Indol-3-carboxaldehyd, 1-Methylindol-3-carboxaldehyd, N-Ethylcarbazol-3-carboxaldehyd, 2-Formylmethylen-1,3,3-trimethylindolin (Tribasen Aldehyd)
 10 1,3-Diacetylbenzol, 1,4-Diacetylibenzol, 1,3,5-Triacetylbenzol, 2-Benzoylacetophenon, 2-(4-Methoxybenzoyl)-acetophenon, 2-(2-Furoyl)-acetophenon, 2-(2-Pyridoyl)-acetophenon, 2-(3-Pyridoyl)-acetophenon, 1-Phenyl-1,2-propandion, 1-Phenyl-2-butandion, 1-Phenyl-3,3-dimethyl-1,2-butandion, Benzil, Anisil, Salicil, 5,5'-Dibromsalicil, 2,2'-Furil, 2,2'-Thienil, 2,2', 4,4'-Pyridil, 6,6'-Dimethyl-4,4'-pyridil, 4-Hydroxy-, 4-Methoxy-, 4-Chlor-, 4-Methyl-, 4-Dimethylamino-, 4,4'-Dihydroxy-, -Dimethyl-, -Dibrom-, -Dichlor-, -Bisdimethylamino-, 2,4-Dihydroxy-, 3,3'-Dimethoxy-, 2'-Chlor-3,4-dimethoxy-, 3,4,5,3',4',5'-Hexamethoxybenzil, Isatinederivate, wie 5-Chlorisatin, 5-Methoxyisatin, 5-Nitroisatin, 5-Sulfoisatin, Isatin-5-sulfonsäure, Isatin-4-carbonsäure und Isatin-5-carbonsäure,
 15 N-substituierte Isatin-Derivate, wie N-Methylisatin, N-(2-Hydroxyalkyl)-isatin, N-(2-Hydroxypropyl)-isatin, N-(3-Hydroxypropyl)-isatin, N-(2,3-Dihydroxypropyl)-isatin, N-(2-Sulfoethyi)-isatin, (3-Sulfopropyl)-isatin, N-Allylisatin, N-Vinylisatin, N-Benzylisatin, N-(4-Methoxybenzyl)-isatin, N-(4-Carboxybenzyl)-isatin, N-(4-Sulfonylbenzyl)-isatin, N-(2-Dimethylaminoethyl)-isatin, N-(2-Pyrrolidinoethyl)-isatin, N-(2-Piperidinoethyl)-isatin, (2-Morpholinoethyl)-isatin, N-(2-Furylmethyl)-isatin, N-(Thien-2-ylmethyl)-isatin, N-(Pyrid-2-ylmethyl)-isatin, N-(Pyrid-3-ylmethyl)-isatin, N-(Pyrid-4-ylmethyl)-isatin, N-Allylisatin-5-sulfonsäure, 5-Chlor-N-(2-hydroxyethyl)-isatin, 5-Methyl-N-(2-hydroxyethyl)-isatin, 5,7-Dichlor-N-allylisatin, 5-Nitro-N-allylisatin, N-Hydroxymethylisatin, N-Hydroxymethyl-5-methylisatin, N-Hydroxymethyl-5-chlorisatin, N-Hydroxymethyl-5-sulfoisatin, N-Hydroxymethyl-5-carboxyisatin, N-Hydroxymethyl-5-nitroisatin, N-Hydroxymethyl-5-bromisatin, N-Hydroxymethyl-5-methoxyisatin, N-Hydroxymethyl-5, 7-dichlorisatin, N-Dimethylaminomethylisatin, N-Diethylaminomethylisatin, N-(Bis-(2-hydroxyethyl)-aminomethyl)-isatin, N-(2-Hydroxyethylaminomethyl)-isatin, N-(Bis-(2-hydroxypropyl)-aminomethyl)-isatin, N-Pyrrolidinomethylisatin, N-Piperidinomethylisatin, N-Morpholinomethylisatin, N-(1,2,4-Triazolyl)-methylisatin, N-(1-Imidazolyl)-methylisatin, N-Carboxymethylaminomethylisatin, N-(2-Carboxyethylaminomethyl)-isatin, N-(3-Carboxypropylaminomethyl)-isatin, N-(Bis-(2-hydroxyethyl)-aminomethyl)-5-methylisatin, N-Piperidinomethyl-5-chlorisatin, N-(2-Sulfoethylamino)-isatin, sowie die Alkali- und gegebenenfalls Ammoniumsalze der sauren Verbindungen,
 20 Chinisatin und deren Derivate, wie N-Methylchinisatin,
 25 Acetophenon, Propiophenon, 2-Hydroxyacetophenon, 3-Hydroxyacetophenon, 4-Hydroxyacetophenon, 2-Hydroxypropiophenon, 3-Hydroxypropiophenon, 4-Hydroxypropiophenon, 2-Hydroxybutyrophenon, 3-Hydroxybutyrophenon, 4-Hydroxybutyrophenon, 2,4-Dihydroxyacetophenon, 2,5-Dihydroxyacetophenon, 2,6-Dihydroxyacetophenon, 2,3,4-Trihydroxyacetophenon, 3,4,5-Trihydroxyacetophenon, 2,4,6-Trihydroxyacetophenon, 2,4,6-Trime-thoxyacetophenon, 3,4,5-Trimethoxyacetophenon, 3,4,5-Trimethoxy-acetophenon-diethylketal, 4-Hydroxy-3-methoxyacetophenon, 3,5-Dimethoxy-4-hydroxy-acetophenon, 4-Amino-acetophenon, 4-Dimethylamino-acetophenon, 4-Morpholino-acetophenon, 4-Piperidinoacetophenon, 4-Imidazolino-acetophenon, 2-Hydroxy-5-brom-acetophenon, 4-Hydroxy-3-nitroacetophenon, Acetophenon-2-carbonsäure, Acetophenon-4-carbonsäure, Benzophenon, 4-Hydroxy-benzophenon, 2-Amino-benzophenon, 4,4'-Dihydroxy-benzophenon, 2,4-Dihydroxy-benzophenon, 2,4,4'-Trihydroxybenzophenon, 2-Hydroxy-1-acetonaphthon, 1-Hydroxy-2-acetonaphthon, Chromon, Chromon-2-carbonsäure, Flavon, 3-Hydroxyflavon, 3,5,7-Trihydroxyflavon, 4',5,7-Trihydroxyflavon, 5,6,7-Trihydroxyflavon, Quercetin, Indanon, 9-Fluorenon, 3-Hydroxyfluorenon, Anthron, 1,8-Dihydroxyanthron,
 30 heterocyclische Carbonylverbindungen, wie 2-Indolaldehyd, 3-Indolaldehyd, 1-Methylindol-3-aldehyd, 2-Methylindol-3-aldehyd, 1-Acetylindol-3-aldehyd, 3-Acetylindol, 1-Methyl-3-acetylindol, 2-(1,3,3-Trimethyl-2-indolyliden)-acetaldehyd, 1-Methylpyrrol-2-aldehyd, 1-Methyl-2-acetylpyrrol, 1-Pyridinaldehyd, 2-Pyridinaldehyd, 3-Pyridinaldehyd, 4-Acetylpyridin, 2-Acetylpyridin, 3-Acetylpyridin, Pyridoxal, Chinolin-3-aldehyd, Chinolin-4-aldehyd, Antipyrin-4-aldehyd, Furfural, 5-Nitrofurfural, 2-Thenoyl-trifluor-aceton, Chromon-3-aldehyd, 3-(5-Nitro-2-furyl)-acrolein, 3-(2-Furyl)-acrolein, Imidazol-2-aldehyd,
 35 Indanon-Derivate, wie z. B. 1,2-Indandion, 2-Oximo-1-indanon, Indan-1,2,3-trion-2-oxim, 5-Methoxy-indan-1,2,3-trion-2-oxim, 2-Nitro-1,3-indandion
 40 sowie physiologisch verträglichen Salzen der voranstehenden Verbindungen.
 7. Mittel gemäß einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die primären und sekundären aromatischen Amine der Komponente C ausgewählt sind aus N,N-Dimethyl-p-phenylendiamin, N,N-Diethyl-p-phenylen-diamin, N-(2-Hydroxyethyl)-N-ethyl-p-phenylendiamin, N,N-Bis-(2-hydroxyethyl)-p-phenylendiamin, N-(2-Methoxyethyl)-p-phenylendiamin, 2,3-Dichlor-p-phenylendiamin, 2,4-Dichlor-p-phenylendiamin, 2,5-Dichlor-p-phenylendiamin, 2-Chlor-p-phenylendiamin, 2,5-Dihydroxy-4-morpholinoanilin, 2-Aminophenol, 3-Aminophenol, 4-Aminophenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, o-Phenylenediamin, m-Pheny-

lendiamin, p-Phenylendiamin, 2,5-Diaminotoluol, 2,5-Diaminophenol, 2,5-Diaminoanisol, 2,5-Diaminophenethyl, 4-Amino-3-methylphenol, 2-(2,5-Diaminophenyl)-ethanol, 2,4-Diaminophenoxyethanol, 2-(2,5-Diaminophenoxy)-ethanol, 3-Amino-4-(2-hydroxyethoxy)phenol, 3,4-Methylenedioxyphenol, 3,4-Methylenedioxyanilin, 3-Amino-2,4-dichlorphenol, 4-Methylaminophenol, 2-Methyl-5-aminophenol, 3-Methyl-4-aminophenol, 2-Methyl-5-(2-hydroxyethylamino)phenol, 3-Amino-2-chlor-6-methylphenol, 2-Methyl-5-amino-4-chlorphenol, 5-(2-Hydroxyethylamino)-4-methoxy-2-methylphenol, 4-Amino-2-hydroxymethylphenol, 2-(Diethylaminomethyl)-4-aminophenol, 4-Amino-1-hydroxy-2-(2-hydroxyethylaminomethyl)-benzol, 1-Hydroxy-2-amino-5-methyl-benzol, 1-Hydroxy-2-amino-6-methyl-benzol, 2-Amino-5-acetamido-phenol, 1,3-Dimethyl-2,5-diaminobenzol, 5-(3-Hydroxypropylamino)-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, N,N-Dimethyl-3-aminophenol, N-Cyclopentyl-3-aminophenol, 5-Amino-4-fluor-2-methylphenol, 2,4-Diamino-5-fluortoluol, 2,4-Diamino-5-(2-hydroxyethoxy)-toluol, 2,4-Diamino-5-methylphenol, 3,5-Diamino-2-methoxy-1-methylbenzol, 2-Amino-4-(2-hydroxyethylamino)-anisol, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol, 1,3-Diamino-2,4-dimethoxybenzol, 3,5-Diamino-2-methoxy-toluol, 2-Aminobenzoësäure, 3-Aminobenzoësäure, 4-Aminobenzoësäure, 2-Aminophenylessigsäure, 3-Aminophenylessigsäure, 4-Aminophenylessigsäure, 2,3-Diaminobenzoësäure, 2,4-Diaminobenzoësäure, 2,5-Diaminobenzoësäure, 3,4-Diaminobenzoësäure 3,5-Diaminobenzoësäure, 4-Aminosalicylsäure, 5-Aminosalicylsäure, 3-Amino-4-hydroxy-benzoësäure, 4-Amino-3-hydroxy-benzoësäure, 2-Aminobenzolsulfon-säure, 3-Aminobenzolsulfon-säure, 4-Aminobenzolsulfon-säure, 3-Amino-4-hydroxybenzolsulfon-säure, 4-Amino-3-hydroxynaphthalin-1-sulfonsäure, 6-Amino-7-hydroxynaphthalin-2-sulfonsäure, 7-Amino-4-hydroxynaphthalin-2-sulfonsäure, 4-Amino-5-hydroxynaphthalin-2,7-disulfonsäure, 3-Amino-2-naphthoësäure, 3-Aminophthalsäure, 5-Aminoisophtalsäure, 1,3,5-Triaminobenzol, 1,2,4-Triaminobenzol, 1,2,4,5-Tetraaminobenzol, 2,4,5-Triaminophenol, Pentaaminobenzol, Hexaaminobenzol, 2,4,6-Triaminoresorcin, 4,5-Diaminobrenzcatechin, 4,6-Diaminopyrogallol, 1-(2-Hydroxy-5-aminobenzyl)-2-imidazolidinon, 4-Amino-2-((4-[(5-amino-2-hydroxyphenyl)methyl]-piperazinyl)methyl)phenol, 3,5-Diamino-4-hydroxybrenzcatechin, 1,4-Bis-(4-aminophenyl)-1,4-diazacycloheptan, aromatische Nitrite, wie 2-Amino-4-hydroxybenzonitril, 4-Amino-2-hydroxybenzonitril, 4-Aminobenzonitril, 2,4-Diaminobenzonitril, Nitrogruppen-haltige Aminoverbindungen, wie 3-Amino-6-methylamino-2-nitro-pyridin, Pikraminsäure, [8-[(4-Amino-2-nitrophenyl)-azo]-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid, [8-((4-Amino-3-nitrophenyl)-azo)-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid (Basic Brown 17), 1-Hydroxy-2-amino-4,6-dinitrobenzol, 1-Amino-2-nitro-4-[bis-(2-hydroxyethyl)amino]-benzol, 1-Amino-2-[2-hydroxyethyl)amino]-5-nitrobenzol (HC Yellow Nr. 5), 1-Amino-2-nitro-4-[2-hydroxyethyl)amino]-benzol (HC Red Nr. 7), 2-Chlor-5-nitro-N-2-hydroxyethyl-1,4-phenylenediamin, 1-[(2-Hydroxyethyl)amino]-2-nitro-4-amino-benzol (HC Red Nr. 3), 4-Amino-3-nitrophenol, 4-Amino-2-nitrophenol, 6-Nitro-o-toluidin, 1-Amino-3-methyl-4-[(2-hydroxyethyl)amino]-6-nitrobenzol (HC Violet Nr. 1), 1-Amino-2-nitro-4-[(2, 3-dihydroxypropyl)amino]-5-chlorbenzol (HC Red Nr. 10), 2-(4-Amino-2-nitroanilino)-benzoësäure, 6-Nitro-2,5-diaminopyridin, 2-Amino-6-chlor-4-nitrophenol, 1-Amino-2-(3-nitrophenylazo)-7-phenylazo-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Acid blue Nr. 29), 1-Amino-2-(2-hydroxy-4-nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Palatinchrome green), 1-Amino-2-(3-chlor-2-hydroxy-5-nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Gallion), 4-Amino-4'-nitrostilben-2,2'-disulfonsäure Dinatriumsalz, 2,4-Diamino-3',5'-dinitro-2'-hydroxy-5-methyl-azobenzol (Mordant brown 4), 4'-Amino-4-nitrodiphenylamin-2-sulfonsäure, 4'-Amino-3'-nitrobenzophenon-2-carbonsäure, 1-Amino-4-nitro-2-(2-nitrobenzylidenamino)-benzol, 2-[2-(Diethylamino)ethylamino]-5-nitroanilin, 3-Amino-4-hydroxy-5-nitrobenzolsulfon-säure, 3-Amino-3'-nitrobiphenyl, 3-Amino-4-nitro-acenaphthen, 2-Amino-1-nitronaphthalin, 5-Amino-6-nitrobenzo-1,3-dioxol, Aniline, insbesondere Nitrogruppen-haltige Aniline, wie 4-Nitroanilin, 2-Nitroanilin, 1,4-Diamino-2-nitrobenzol, 1,2-Diamino-4-nitrobenzol, 1-Amino-2-methyl-6-nitrobenzol, 4-Nitro-1,3-phenylenediamin, 2-Nitro-4-amino-1-(2-hydroxyethylamino)-benzol, 2-Nitro-1-amino-4-[bis-(2-hydroxyethyl)-amino]-benzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 1-Amino-5-chlor-4-(2-hydroxyethylamino)-2-nitrobenzol, 4,4'-Diaminostilben und dessen Hydrochlorid, 4,4'-Diaminostilben-2,2'-disulfonsäure-monoo- oder -di-Na-Salz, 4-Amino-4'-dimethylaminostilben und dessen Hydrochlorid, 4,4'-Diaminodiphenylmethan, 4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfoxid, 4,4'-Diaminodiphenylamin, 4,4'-Diaminodiphenylamin-2-sulfonsäure, 4,4'-Diaminobenzophenon, 4,4'-Diaminodiphenylether, 3,3',4,4'-Tetraaminodiphenyl, 3,3',4,4'-Tetraaminobenzophenon, 1,3-Bis-(2,4-diaminophenoxy)-propan, 1,8-Bis-(2,5-diaminophenoxy)-3,6-dioxaoctan, 1,3-Bis-(4-aminophenylamino)propan, 1,3-Bis-(4-aminophenylamino)-2-propanol, 1,3-Bis-[N-(4-aminophenyl)-2-hydroxyethylamino]-2-propanol, N,N-Bis-[2-(4-aminophenoxy)-ethyl]-methylamin, N-Phenyl-1,4-phenylenediamin und Bis-(5-amino-2-hydroxyphenyl)-methan.
 8. Mittel gemäß einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die stickstoffhaltigen heterocyclischen Verbindungen der Komponente C ausgewählt sind aus der Gruppe bestehend aus 2-Aminopyridin, 3-Aminopyridin, 4-Aminopyridin, 2-Amino-3-hydroxy-pyridin, 2,6-Diamino-pyridin, 2,5-Diamino-pyridin, 2-(Aminoethyfamino)-5-aminopyridin, 2,3-Diamino-pyridin, 2-Dimethylamino-5-amino-pyridin, 2-Methylamino-3-amino-6-methoxy-pyridin, 2,3-Diamino-6-methoxypyridin, 2,6-Dimethoxy-3,5-diamino-pyridin, 2,4,5-Triamino-pyridin, 2,6-Dihydroxy-3,4-dimethylpyridin, N-[2-(2,4-Diaminophenyl)aminoethyl]-N-(5-amino-2-pyridyl)-amin, N-[2-(4-Aminophenyl)aminoethyl]-N-(5-amino-2-pyridyl)-amin, 2,4-Dihydroxy-5,6-diaminopyrimidin, 4,5,6-Triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 2,4,5,6-Tetraaminopyrimidin, 2-Methylamino-4,5,6-triaminopyrimidin, 2,4-Diaminopyrimidin, 4,5-Diaminopyrimidin, 2-Amino-4-methoxy-6-methylpyrimidin, 3,5-Diaminopyrazol, 3,5-Diamino-1,2,4-triazol, 3-Aminopyrazol, 3-Amino-5-hydroxypyrazol, 1-Phenyl-4,5-diaminopyrazol, 1-(2-Hydroxyethyl)-4,5-diaminopyrazol, 1-Phenyl-3-methyl-4,5-diaminopyrazol, 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-on (4-Aminoantipyrin), 1-Phenyl-3-methylpyrazol-5-on, 2-Aminochinolin, 3-Aminochinolin, 8-Aminochinolin, 4-Aminochinaldin, 2-Aminonicotinsäure, 6-Aminonicotinsäure, 5-Aminoiso-chinolin, 5-Aminoindazol, 6-Aminoindazol, 5-Aminobenzimidazol, 7-Aminobenzimidazol, 5-Aminobenzothiazol, 7-Aminobenzothiazol, 2,5-Dihydroxy-4-morpholino-anilin sowie Indol- und Indolinderivaten, wie 4-Aminoindol, 5-Aminoindol, 6-Aminoindol, 7-Aminoindol, 5,6-Dihydroxyindol, 5,6-Dihydroxyindolin, 4-Hydroxyindolin und

DE 101 48 844 A 1

Hydroxypyrimidin-Derivate und die physiologisch verträglichen Salze der vorgenannten Verbindungen.

9. Mittel gemäß einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die aromatischen Hydroxyverbindungen der Komponente C ausgewählt sind aus 2-, 4-, 5-Methylresorcin, 2,5-Dimethylresorcin, Resorcin, 3-Methoxyphenol, Brenzkatechin, Hydrochinon, Pyrogallol, Phloroglucin, Hydroxyhydrochinon, 2-, 3-, 4-Methoxy-, 3-Dimethylamino-, 2-(2-Hydroxyethyl)-, 3,4-Methylendioxyphenol, 2,4-, 3,4-Dihydroxybenzoësäure, -phenylessigsäure, Gallussäure, 2,4,6-Trihydroxybenzoësäure, -acetophenon, 2-, 4-Chlorresorcin, 1-Naphthol, 1,5-, 2,3-, 2, 7-Dihydroxynaphthalin, 6-Dimethylamino-4-hydroxy-2-naphthalinsulfonsäure und 3,6-Dihydroxy-2,7-naphthalinsulfonsäure. 5

10. Mittel gemäß einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß die Aminosäuren der Komponente C ausgewählt sind aus Arginin, Histidin, Tyrosin, Phenylalanin, DOPA (Dihydroxyphenylalanin), Ornithin, Prolin, Lysin, Tryptophan, 6-Aminocapronsäure und β -Alanin. 10

11. Mittel gemäß einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, daß die Oligopeptide der Komponente C ausgewählt sind aus Glutathion oder den in den Hydrolysaten von Kollagen, Keratin, Casein, Elastin, Sojaprotein, Weizengluten oder Mandelprotein enthaltenen Oligopeptide. 15

12. Mittel gemäß einem der Ansprüche 4 bis 11, dadurch gekennzeichnet, daß die in Komponente C enthaltenen Verbindungen ausgewählt sind aus 4-Formyl-1-ethylpyridinium-p-toluolsulfonat, 4-Formyl-1-methylchinolinium-p-toluolsulfonat, 2-Formyl-1-methylchinolinium-p-toluolsulfonat, Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxy-zimtaldehyd, 4-Dimethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Hydroxynaphthaldehyd, Indol-3-carboxaldehyd und Isatin, sowie jeweils aus den vorzugsweise mit anorganischen Säuren gebildeten physiologisch verträglichen Salzen dieser Verbindungen. 20

13. Mittel gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Verbindungen der Formel I in einer Menge von 0,03 bis 65 mmol, insbesondere von 1 bis 40 mmol, bezogen auf 100 g des gesamten Färbemittels, enthalten sind. 25

14. Mittel nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß es Farbverstärker ausgewählt aus der Gruppe bestehend aus Piperidin, Piperidin-2-carbonsäure, Piperidin-3-carbonsäure, Piperidin-4-carbonsäure, Pyridin, 2-Hydroxypyridin, 3-Hydroxypyridin, 4-Hydroxypyridin, Imidazol, 1-Methylimidazol, Histidin, Pyrrolidin, Prolin, Pyrrolidon, Pyrrolidon-5-carbonsäure, Pyrazol, 1,2,4-Triazol, Piperazidin oder deren beliebigen Gemischen enthält. 30

15. Mittel nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß es direkt ziehende Farbstoffe aus der Gruppe der Nitrophenylen diamine, Nitroaminophenole, Anthrachinone oder Indophenole vorzugsweise in einer Menge von 0,01 bis 20 Gew.-%, bezogen auf das gesamte Färbemittel, enthält. 35

16. Mittel nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß Ammonium- oder Metallsalze ausgewählt aus der Gruppe der Formiate, Carbonate, Halogenide, Sulfate, Butyrate, Valemate, Capronate, Acetate, Lactate, Glykolate, Tartrate, Citrate, Gluconate, Propionate, Phosphate und Phosphonate von Alkalimetallen, wie Kalium, Natrium oder Lithium, Erdalkalimetallen, wie Magnesium, Calcium, Strontium oder Barium, oder von Aluminium, Mangan, Eisen, Kobalt, Kupfer oder Zink, zugegeben werden. 40

17. Mittel nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß es Oxidationsmittel, insbesondere H_2O_2 , in einer Menge von 0,01 bis 6 Gew.-%, bezogen auf die Anwendungslösung, enthält. 45

18. Mittel nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß es anionische, zwitterionische oder nichtionische Tenside enthält. 50

19. Verwendung einer Kombination aus
A. mindestens einer quaternierten heterozyklischen Verbindung gemäß Formel I,

worin R^1 , R^2 , R^3 , X^1 und A^- wie oben definiert sind,

mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II

wobei R^1 , R^2 , R^3 , X^1 , X^2 und A^- wie oben definiert sind,
mitumfaßt sind,

DE 101 48 844 A 1

- sowie entsprechenden inneren Salzen, wobei A^- entfällt, und
B. mindestens einer CH-aciden Verbindung,
sowie gegebenenfalls
5 C. mindestens einer Verbindung ausgewählt aus der Gruppe, die gebildet wird aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden (e) quartären Ammoniumverbindungen und (f) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen
als eine färbende Komponente in Oxidationshaarfärbemitteln.
10 20. Verfahren zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, worin ein Färbemittel gemäß den Ansprüchen 1 bis 18 auf die keratinhaltigen Fasern aufgebracht, einige Zeit, üblicherweise ca. 30 Minuten, auf der Faser belassen und anschließend wieder ausgespült oder mit einem Shampoo ausgewaschen wird.
- 15
- 20
- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60
- 65