For the questions below, assume $F_0 = 0, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$.

1. (3 points) prove that $F_n < 2^n$ by induction on n.

Basis cases:
$$n=0$$
: $\overline{F_0}=0$ $< 2^{\circ}=1$ $n=1$: $\overline{F_1}=1$ $< 2^{\circ}=2$ 0 < 1 \vee 1 < 2 \vee 1 < 2 \vee Inductive Step: $n>0$, $f_k<2^k$ for $0\le k\le n+1$

$$F_{n+1} = F_n + F_{n-1} \left(2^n + 2^{n-1} \left(2^n + 2^n = 2(2^n) = 2^{n+1} \right) \right)$$
by ind. Therefore, $F_{n+1} \left(2^{n+1} \right)$
hyp.

2. (7 points) prove that $\sum_{i=1}^{n} F_i = F_{n+2} - 1$ by induction on n.

Basis Cases:
$$n=1: \sum_{i=1}^{l} F_i = 1$$

$$F_{i+2} - 1 = F_3 - 1 = 2 - 1 = 1$$

$$n=2: \sum_{i=1}^{2} F_i = F_1 + F_2 = 1 + 1 = 2$$

$$F_{2+2} - 1 = F_4 - 1 = 3 - 1 = 2$$

$$2 = 2 \checkmark$$

Inductive Step:
$$\sum_{i=1}^{n+1} F_i = F_{(n+1)+2} - 1 \Rightarrow \sum_{i=1}^{n+1} F_i = F_{n+3} - 1$$

$$\sum_{i=1}^{n+1} F_i = \sum_{i=1}^{n} F_i + F_{n+1}$$

$$= F_{n+2} - 1 + F_{n+1} \quad \text{by ind. hyp.}$$

$$= (F_{n+2} + F_{n+1}) - 1$$

$$= F_{n+3} - 1$$