Dasar-Dasar Citra Digital

Chapter 1

Model Matematis Citra

Model matematis kontinyu :

$$I = f(x,y)$$

 Pada komputer, model diskret array 2D :

$$I = matrix(i,j)$$

 Image digital adalah sebuah image f(x,y),yang telah melalui digitasi baik secara koordinat spasial dan brightness/ gray level

y

Sampling dan Kuantisasi

Continuous image projected onto a sensor array Result of image sampling and quantization

Merepresentasikan Citra Digital

 Hasil sampling dan kuantisasi adalah matriks yang beranggotakan bilangan real

Jumlah bit

 Banyaknya nilai gray level umumnya dinyatakan dengan pangkat 2 dari integer :

$$L = 2^k$$
 dimana $k > 0$

 Jumlah bit yang diperlukan untuk menyimpan image hasil digitasi adalah :

$$b = M \times N \times k$$

Hubungan dasar antar piksel

- Piksel tetangga
- Adjacency
- Connectivity
- Regions
- Boundaries
- Pengukuran jarak

Piksel Tetangga

- Piksel p pada koordinat (x,y) memiliki 4 tetangga secara horizontal dan vertikal
 - \circ (x+1,y), (x-1,y), (x,y+1), dan (x,y-1)
- 4 titik tersebut disebut 4-tetangga $\rightarrow N_4(p)$
- ◆ 4 koordinat secara diagonal → N_D(p)
- 4-tetangga dan diagonal → N₈(p)

Adjacency (kedekatan)

- Diberikan V merupakan himpunan nilai gray-level yang digunakan untuk mendefinisikan adjacency
- Tipe adjacency:
 - 4-adjacency → dua piksel p dan q dari V dikatakan
 4-adjacent jika q berada pada himpunan N₄(p)
 - 8-adjacency → dua piksel p dan q dari V dikatakan
 8-adjacent jika q berada pada himpunan N₈(p)

Path (Digital Path atau curve)

 Path dari piksel p dengan koordinat (x,y) ke piksel q dengan koordinat (s,t) merupakan urutan piksel-piksel berbeda dengan koordinat

$$(x_0,y_0)$$
, (x_1,y_1) , ..., (x_n,y_n)
dimana $(x_0,y_0)=(x,y)$, $(x_n,y_n)=(s,t)$ dan (x_n,y_n) dan (x_n,y_n) adalah adjacent untuk $1 \le i \le n$. n merupakan panjang path.

• Jika $(x_0, y_0) = (x_n, y_n)$ disebut sebagai closed path.

Connected Component and Set

- Misal S subset piksel dalam suatu citra (I)
- Dua piksel p dan q dikatakan terhubung (to be connected) dalam S jika terdapat sebuah path diantara kedua piksel tersebut.
- Untuk setiap piksel p di dalam S, himpunan pikselpiksel yang terhubung dengan piksel p dalam S disebut sebagai connected component dari S.
- Jika kemudian terdapat himpunan connected component, maka himpunan S disebut sebagai connected set.

Region dan Boundary

- Misal R subset piksel dari suatu citra (I)
- R dikatakan sebagai *region* dari suatu citra jika R merupakan **connected set**.
- Boundary (disebut juga border atau contour) dari region R merupakan himpunan piksel dalam region tersebut yang memiliki satu atau lebih tetangga yang tidak anggota dari R.

Pengukuran Jarak

- Misal p, q, dan z masing-masing pada koordinat (x,y), (s,t), dan (v,w)
- D merupakan fungsi jarak atau metric, jika:
 - D(p, q) ≥ 0 (D(p, q)=0 jika dan hanya jika p=q),
 - D(p, q) = D(q, p), dan
 - $\bullet D(p, z) \le D(p, q) + D(q, z).$
- Jarak euclidean antara **p** dan **q**:

$$D_{e(p,q)} = \sqrt{(x-s)^2 + (y-t)^2}$$

Pengukuran Jarak

• Jarak D₄ (city-block distance) antara \mathbf{p} dan \mathbf{q} : $D_{4(p,q)} = |x-s| + |y-t|$

• Piksel dengan $D_4 = 1$ adalah 4-tetangga dari (x,y)

Pengukuran Jarak

- Jarak D₈ (chessboard distance) antara \mathbf{p} dan \mathbf{q} : $D_{8(p,q)} = max(|x-s|,|y-t|)$
- Piksel dengan $D_8 = 1$ adalah 8-tetangga dari (x,y)

```
2 2 2 2 2
2 1 1 1 2
2 1 0 1 2
2 1 1 1 2
2 2 2 2 2
```

Latihan 1

 Diketahui dua subset citra \$1 dan \$2 seperti gambar di bawah ini:

	S_1				S_2				
0	0	0	0	0 7	0	0	1	1;	0
	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0	: 0	_1_	1_	_1_3	0	0	0	0:	0
0	0	1	1	1	0	0	1	1	1

- Jika V={1},
 - Apakah S1 dan S2 connected?
 - Jika connected, 4-adjacent atau 8-adjacent?
 - Gambarkan piksel yang adjacent tersebut!

Jawaban Latihan 1

- o Ya
- 8-adjacent

Latihan 2

• Hitung jarak antara titik **p** dan **q** menggunakan D₈

Jawaban Latihan 2

o jarak dari p ke q adalah 6

Latihan 3

 Diberikan V={0,1}, hitung jarak terpendek menggunakan 4-adj dan 8-adj antara piksel p dan q seperti gambar di bawah ini:

Jika tidak terbentuk path antara kedua piksel tersebut, jelaskan mengapa!

- Ulangi untuk V={1,2}
- ullet Bandingkan dengan menggunakan formula D_4 dan D_8

Jawaban Latihan 3

- V={0,1} untuk 4-adjacent= 0, karena tidak terbentuk path
- V={0,1} untuk 8-adjacent= 4

Jawaban Latihan 3

	3	1	2	1(q)
	2	2	0	2	
	1	2	1	1	
(<i>p</i>)1	0	1	2	

- V={1,2} untuk 4-adjacent= 6
- V={1,2} untuk 8-adjacent= 4

Latihan Implementasi

- Buat program untuk menampilkan citra
- Tampilkan informasi resolusi spasial (M x N)
- Tampilkan informasi tingkat keabuan (L)

Thank You!