Komputasi dan Sains Data

Prediksi Pengambilan Asuransi pada Travel Insurance (k-NN, Decision Tree)

Suri Dian Pratama Gabriella Aileen Mendrofa Nadhilah Farhana

(2006614771) (2106779472) (2106779516)

Latar Belakang

Sebuah perusahaan tour & travel menawarkan paket asuransi perjalanan kepada pelanggannya.

Perusahaan tertarik untuk mengetahui faktor apa saja yang mempengaruhi pembelian paket asuransi.

Selain itu, perusahaan juga perlu mengetahui apakah pelanggan akan tertarik untuk membelinya berdasarkan sejarah basis datanya.

Klasifikasi Pembelian Travel Insurance

Tujuan Klasifikasi

Menentukan **algoritma klasifikasi terbaik** di antara k-NN dan Decision Tree untuk mengelompokkan pelanggan ke dalam 2 kategori:

- -Membeli travel insurance
- -Tidak membeli travel insurance

Variabel Data

- Age
- Employment Type
- GraduateOrNot
- AnnualIncome

- FamilyMembers
- ChronicDiseases
- FrequentFlyer
- EverTravelledAboard

Get the Data

Total pelanggan: 1987

Travel Insurance Prediction

Annual Income

Annual Income tidak berdistribusi normal

Mayoritas pelanggan memiliki annual income pada interval 500.000 sampai 1.500.000

Age

Mayoritas pelanggan memiliki usia pada interval 28 sampai 32 tahun.

Family Members

Family Members

Mayoritas pelanggan memiliki 4 sampai 6 anggota keluarga.

Preprocessing

Drop Kolom Unnamed: 0

Kolom Unnamed: O tidak digunakan dalam proses analisis dan klasifikasi, sehingga dihapus dari data

	Age	EmploymentType	GraduateOrNot	AnnualIncome	FamilyMembers	ChronicDiseases	FrequentFlyer	EverTravelledAbroad	TravelInsurance
1042	31	0	1	500000	2	0	0	0	0
1555	26	0	1	1400000	9	1	0	1	1
634	34	0	0	1300000	4	0	0	0	0
727	34	1	1	1100000	7	1	0	0	1
751	28	0	1	1350000	9	0	0	1	1

Heatmap Missing Value

Tidak terdapat missing value pada setiap variabel

Mengubah Tipe Data

Tipe Data Awal

Variabel	Tipe Data	
Age	Integer	
Annual Income		
Family Members		
Chronic Diseases		
Travel Insurance		
Frequent Flyer	Object	
Ever Travelled Abroad		
Employment Type		
Graduate or Not		

Tipe Data Akhir

Variabel	Tipe Data	
Age	Integer	
Annual Income		
Family Members		
Chronic Diseases		
Travel Insurance		
Frequent Flyer	Catamani	
Ever Travelled Abroad	Category	
Employment Type		
Graduate or Not		

Statistik Deskriptif

Numerik

Variabel	Age	Annual Income	Family Members
mean	29.65	932762.95	4.75
std	2.91	376855.68	1.6
min	25	300000	2
25%	28	600000	4
50%	29	900000	5
75%	32	1250000	6
max	35	1800000	9

Nilai Mean dan Median tidak berbeda jauh → kemungkinan data tidak skewed/tidak ada outlier

Nilai min dan max sesuai (tidak terdapat keanehan) → tidak terdeteksi anomali/noise

Visualisasi Data

Employment Type

Total government sector: 570 Total private sector: 1417

Graduate Or Not

Total graduate: 1692 Total not graduate: 295

Frequent Flyer

Total frequent flyer: 417 Total not frequent flyer: 1570

Ever Travelled Abroad

Total: 1692

Total not graduate: 295

Analisis Korelasi & Pengecekan Distribusi

Matriks Korelasi

Korelasi terbesar dengan TravelInsurance diperoleh antara variabel **EverTravelAbroad** yaitu sebesar **0.43**

Korelasi variabel Age,
GraduateOrNot,
FamilyMembers, dan
ChronicDiseases dengan
Travellnsurance sangat rendah
(nilainya mendekati nol),
sehingga tidak digunakan dalam
proses klasifikasi selanjutnya

Pengecekan Distribusi

Jenis Tes: Henze-Zirkler Multivariate Normality Test

$$Hz = 334.37$$

$$P$$
-Value = 0.0

Normal = False

Data tidak berdistribusi normal. Oleh karena itu dipilih algoritma klasifikasi k-NN dan Decision Tree yang robust terhadap data tidak normal.

Klasifikasi

Klasifikasi Pembelian Travel Insurance

Tujuan Klasifikasi

Menentukan **algoritma klasifikasi terbaik** di antara k-NN dan Decision Tree untuk mengelompokkan pelanggan ke dalam 2 kategori:

- 1. Membeli travel insurance
- 2. Tidak membeli travel insurance

Variabel Klasifikasi

- Employment Type
- AnnualIncome
- FrequentFlyer
- EverTravelledAboard

Algoritma Klasifikasi

01

k-Nearest Neighbor

Data uji diklasifikasikan berdasarkan kelas *k* tetangga terdekatnya

Euclidean Distance

$$d(q, x_i) = \sqrt{\sum_{i=1}^{D} (q - x_i)^2}$$

02

Decision Tree

Diagram alur yang menunjukkan jalur yang jelas menuju keputusan

Gini Index

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

Entropy

$$Entropy(S) = -\sum_{j=1}^{k} p_{j} \log_{2} p_{j}$$

Langkah Kerja

01

Split Data

80% Data Training 20% Data Testing

02

Training & Testing

k-Nearest Neighbor Decision Tree

TP: True Positive FN: False Negative FP: False Positive TN: True Negative 04

Menghitung Akurasi, Sensitivitas, dan Spesifisitas

Kinerja Klasifikasi

k-NN

k = 20

Decision Tree

Indeks Gini dan Entropy:

Maximum depth = 5 Random state = 0 Minimum samples leaf = 10 Minimum split = 10

- Akurasi - **80.15**%

Spesifisitas

100%

Sensitivitas

45%

Penyebab: Ketimpangan data

Data TravelInsurance = 'No'

>

Data TravelInsurance = 'Yes'

Kesimpulan

Berdasarkan hasil klasifikasi data TravelInsurancePrediction.csv, diperoleh sensitivitas untuk ketiga algoritma masih tergolong rendah (45%). Hal ini dapat disebabkan oleh ketimpangan dataset pada kelas target Travel Insurance = 1.

Variabel yang memiliki korelasi positif paling kuat dengan Travel Insurance adalah Ever Travel Abroad, yaitu sebesar 0,43 dan Annual Income sebesar 0,4

Nilai akurasi dengan model klasifikasi k-Nearest Neighbor, decision tree indeks gini, dan decision tree indeks entropy memiliki hasil yang sama yaitu sebesar 80,15%. Sehingga ketiga model tersebut baik untuk klasifikasi pada data ini.

Terima Kasih

Lampiran Kode Program

https://colab.research.google.com/drive/1Wlx7zwZw1yb7ns3wKO3DVA 8N89Z27dTE#scrollTo=nolbKJvtSUAj