假设检验两类错误

- 第一类错误: 以假当真;
- 第二类错误: 以真当假;
- 功效: 以真当真的概率 (越大越好).

		决 策			
		接受H ₀	拒绝H ₀		
真			第一类错误α		
实	H ₀ 成立	正确判断	(False Positive)		
情		第二类错误β	正确判断		
形	H ₀ 不成立	(False Negative)	概率=1-β (功效)		

参数分布族下的两类错误率

零假设 H₀: θ ∈ Θ₀.

- 备择假设 H₁: θ∈ Θ₁.
- 拒绝域W
- 第一类错误率: $\alpha(\theta) = P_{\theta}(X \in W), \theta \in \Theta_0$.
- 第二类错误率: $\beta(\theta) = P_{\theta}(X \notin W), \theta \in \Theta_1$.

参数功效函数定义

• 定义5.1 (功效函数) 对于假设检验问题,

$$H_0: \theta \in \Theta_0 \Leftrightarrow H_1: \theta \in \Theta_1$$

拒绝域为W。则称样本点落入拒绝域的概率为功效函数,即

$$g(\theta) = Pr_{\theta}(X \in W), \theta \in \Theta = \Theta_0 \cup \Theta_1$$

- 功效函数和两类错误
 - 当 $\theta \in \Theta_0$ 时,**g**(θ)=α(θ), 第一类错误率;
 - 当 $\theta \in \Theta_1$ 时, $g(\theta)$ =1- $\beta(\theta)$, 功效;

参数功效函数计算 (I)

• 对于例1. $H_0: p \le 0.05 \Leftrightarrow H_1: p > 0.05$.

• 概率分布:
$$Pr(T=k) = C_N^k p^k (1-p)^{N-k}$$
.

• 拒绝域: {*T* : *T* > *c*}

$$\alpha(p) = \sum_{k=0}^{N} C_N^k p^k (1-p)^{N-k}, \ p \le p_0$$

$$\beta(p) = 1 - \sum_{k=0}^{N} C_N^k p^k (1-p)^{N-k}, \ p > p_0$$

参数功效函数计算(II)

- 对于例2. $H_0: \lambda \leq 1 \Leftrightarrow H_1: \lambda > 1$.
- 概率分布: $Pr(T = k) = \frac{(N\lambda)^k}{k!} \exp\{-N\lambda\}$
- 拒绝域: {x:T>c}
- 第一类错误

$$\alpha(\lambda) = Pr(T \ge c) = \sum_{k=0}^{+\infty} \frac{(N\lambda)^k}{k!} \exp\{-N\lambda\}, \ \lambda \le 1$$

• 第二类错误

$$\beta(\lambda) = Pr(T < c) = \sum_{k=0}^{c-1} \frac{(N\lambda)^k}{k!} \exp\{-N\lambda\}$$

$$= 1 - \sum_{k=0}^{+\infty} \frac{(N\lambda)^k}{k!} \exp\{-N\lambda\}, \quad \lambda > 1$$

例子1的功效函数(I)

• 对例1, 若N=10, 拒绝域为 $\{T > 2\}$.

$$g(p) = \sum_{k=3}^{10} C_{10}^k p^k (1-p)^{10-k}$$
$$= 1 - (1-p)^{10} - 10p(1-p)^9 - 45p^2 (1-p)^8$$

• 计算得到下面的表格

р	G(p)	р	G(p)	р	G(p)	р	G(p)
0.00	0.000	0.25	0.4744	0.50	0.9453	0.75	0.9996
0.05	0.0115	0.30	0.6172	0.55	0.9726	0.80	0.9999
0.10	0.0702	0.35	0.7384	0.60	0.9877	0.85	1.0000
0.15	0.1798	0.40	0.8327	0.65	0.9952	0.90	1.0000
0.20	0.3222	0.45	0.9004	0.70	0.9984	1.00	1.0000