Esercizi di Fisica per seconda esercitazione

Niccolò Puccetti

April 2024

Esercizio 1

Un pistone P può scorrere lungo l'asse x di un cilindro; esso è collegato mediante una biella di lunghezza b a un perno situato sul bordo di un disco di raggio R. Determinare la velocità e l'accelerazione del pistone se il disco ruota con velocità angolare costante ω .

Risposta:

$$v_p = -\omega R \sin(\omega t) - \frac{\omega R^2 \sin(2\omega t)}{2\sqrt{b^2 - R^2 \sin^2(\omega t)}}$$
(1)

$$a_p = -\omega^2 R \cos(\omega t) - \frac{\omega^2 R^2}{4} \frac{4 \cos(\omega t)(b^2 - R^2 \sin^2(\omega t)) + R^2 \sin^2(2\omega t)}{(b^2 - R^2 \sin^2(\omega t))^{3/2}}$$
(2)

Suggerimento: Supporre che all'istante iniziale il punto A abbia coordinate (R,0), ovvero che sia sull'asse x, così si ha che $\theta = \omega t$ e quindi

$$x_A = R\cos(\omega t), \ y_A = R\sin(\omega t)$$
 (3)

A questo punto potete cercare l'espressione di x_p ...

Esercizio 2

Un cannone spara proiettili con velocità iniziale $v=300\,\mathrm{m/s}$ che devono colpire un bersaglio situato su un monte di altezza h=10³m rispetto al cannone; la distanza in linea d'aria tra cannone e bersaglio è di $5\cdot10³\mathrm{m}$. Trovare l'angolo α di alzo.

Risposta $\alpha=28.4^{\circ},\,\alpha=72.5^{\circ}$