

OPEN BOX

Professional Conception of Robotics

✓ Mecânica: Montagens e componentes

✓ Eletrônica: Processadores e sensores

✓ Programação: Softwares, firmwares e API's

Plataforma de Treinamento em Robótica

SoBot Single

Applications

- ✓ Sistemas de controle com inteligência artificial
- ✓ Programação e navegação autônoma com detecção de obstáculos e planejamento de trajetória.

ASSEMBLY

Conceitos Fundamentais

- ✓ Montagem Mecânica: subconjuntos e acessórios
- ✓ Configuração Eletroeletrônica: Processadores e sensores
- ✓ Programação: Desenvolvimento de firmwares e integrações

MONTAGEM MECÂNICA

MONTAGEM MECÂNICA

CONFIGURAÇÃO ELETROELETRÔNICA

SoBot PCI: Eletrônica Embarcada

CONEXÃO REMOTA COM A RASPBERRY

Software VNC Viewer

Raspberry Pi 4B

COMUNICAÇÃO ENTRE A PLACA DE CONTROLE E POTÊNCIA DO SOBOT E A RAPBERRY PI

Terminal de comandos

Visual Studio Code

GUIA DE REFERÊNCIA DOS COMANDOS

Lista de comandos

ITEM	CÓDIGO	DESCRIÇÃO	ITEM	CÓDIGO	DESCRIÇÃO
1	Al	Input Analog	29	ME	Movement Enable
2	AO	Output Analog Pwm	30	MF	Movement Forward
3	AT	Acceleration Time	31	ML	Movement Left
4	BC	Break Command	32	MP	Movement Pause
5	BL	Blue	33	MR	Movement Rigth
6	BZ	Buzzer	34	MS	Movement Status
7	CA	Curve Angle	35	MT	Motor
8	CR	Command Return	36	PG	Proportional Gain
9	D	Distance	37	PS	Pulse Speed
10	DC	Duty-Cycle	38	R	Right
11	DF	Differential Curve	39	RD	Red
12	DI	Input Digital	40	RI	Radius Inner
13	DL	Delay	41	RS	Read Serial
14	DN	Down	42	SA	Sensor Accelerometer
15	DO	Output Digital	43	SC	Serial Communication
16	DT	Deceleration Time	44	SD	Send Serial
17	DW	Distance Wheel	45	SI	Sensor Infrared
18	Е	Enable	46	SL	Sensor Line
19	EL	Elevator	47	SO	Straight On
20	F	Frequency (Hz)	48	SS	Sensor Sonar
21	GR	Green	49	ST	Stop
22	KC	Kill Command	50	TM	Timer
23	L	Left	51	TP	Total Pulses
24	LM	Learn Moviments	52	UP	Up
25	LT	Led Tape	53	٧	Velocity
26	MB	Movement Back	54	WD	Wheel Diameter
27	MC	Movement Continuous	55	WP	Wheel Parameters
28	MD	Movement Differential			

ESTRUTURA DO COMANDO

```
1 # Exemplo de movimentação do SoBot para frente
2 3 serial write(b"MT0 E1") # Habilita os motores
4 5 serial write(b"MT0 D1000 AT5000 DT5000 V10") # Movimenta o SoBot
6 7 serial write(b"MT0 E0") # Desabilita os motores
8 - Parâmetro do comando de configuração e controle
1 - Parâmetro do comando de identificação
1 - Parâmetro do comando de identificação
```


DEMONSTRAÇÃO DO SENSORES SONAR E INFRA VERMELHO DE DISTÂNCIA

	COMANDO	PARÄMETRO	
CÓDIGO	DESCRIÇÃO	VALOR	DESCRIÇÃO
SI	SENSOR INFRARED Comando de identificação utilizado para realizar a leitura do sensor infravermelho de distância.		Sem parâmetro.

1 # Solicitação de status do sensor infravermelho
serial write(b"Sl")

Terminal Serial				
SI 050				
31 030				

Sensores Sonar

	COMANDO	PARÄMETROS			
CÓDIGO	DESCRIÇÃO	VALOR	DESCRIÇÃO		
ss	SENSOR SONAR Comando de identificação utilizado para realizar a leitura dos sensores ultrassônicos de distância.	0	Utilizado para obter a distância medida de todos os sensores sonar ao mesmo tempo		
		1	Utilizado para obter a distância medida do sensor sonar 1		
		2	Utilizado para obter a distância medida do sensor sonar 2		
		3	Utilizado para obter a distância medida do sensor sonar 3		
		4	Utilizado para obter a distância medida do sensor sonar 4		
		5	Utilizado para obter a distância medida do sensor sonar 5		
		6	Utilizado para obter a distância medida do sensor sonar 6		
		7	Utilizado para obter a distância medida do sensor sonar 7		
		8	Utilizado para obter a distância medida do sensor sonar 8		

1 # Solicitação de status de todos os sensores sonar 2 serial write/h"SS0"\

Terminal Serial

SS1 0150 SS2 0210 SS3 0182 SS4 1140 SS5 1352 SS6 2540 SS7 1364 SS8 1193

MANUTENÇÃO BÁSICA

Manutenção Básica

Abertura/Fechamento Tampa Superior:

Considerar os componentes indicados na imagem ao lado. 1- Parafuso Allen Cab. Abaulada M5x10 | 04

Abertura/Fechamento Carenagem Lateral: 1- Parafuso Allen Cab. Abaulada M5x10 2- Porca Sextavada M5 3- Arruelas Lisas M5

| 04 | 04 | 04

Ferramentas necessárias para montagem: A- 1 Chave Allen №3 B- 1 Chave Fixa/Chave Estrela 8mm

MONTAGEM DA PCB SENSORES SEGUIDOR DE FAIXA

PROGRAMA DEMO PARA PCB SENSORES SEGUIDOR DE FAIXA

```
117 lines (100 sloc) | 3.51 KB
 3 Solis Robot - SoBot
    Line_Sensor.py: Programming example for the Solis robot to move following a line.
    Created By : Vinicius M. Kawakami
 10 Company: Solis Tecnologia
 13 from time import sleep
 14 import serial
 18 flag_fw = 0
 19 flag_enable = 1
 20 count_bl = 0
 22 black = 49
 23 white = 48
 25 # Set serial port
 usb = serial.Serial('/dev/ttyACM0', 57600, timeout=0, dsrdtr=False)
 27 usb.flush() # Waits data configuration
 29 usb.write(b"LT E1 RD0 GR50 BL0") # Turn on led tape in green
     usb.write(b"MT0 MC AT100 DT100 V2") # Parameter settings for continuous mode
 33 sleep(1)
 34 usb.write(b"MT0 ME1")
                                     # Enables wheel motors on mode continuous
 35 sleep(1)
     while flag_enable == 1:
                                 # Send command to read line sensor
        usb.write(b"SL")
                                 # Wait to return datas
        data_line = usb.readline() # Read data
        print(data_line)
        # Check if sensor 2 is reading black line or if all sensors are reading black
        if(((data_line[4] == white) and (data_line[10] == black) and (data_line[16] == white)) or
         ((data_line[4] == black) and (data_line[10] == black) and (data_line[16] == black))):
            if(flag_fw == 0):
                flag_fw = 1
                usb.write(b"LT E1 RD0 GR50 BL0")
                usb.write(b"MT0 MF") # Moving to forward
        # Check if sensor 1 and 2 is reading black
        elif((data_line[4] == black) and (data_line[10] == black) and (data_line[16] == white)):
            flag_fw = 0
            count bl = 0
           usb.write(b"LT E1 RD0 GR0 BL50")
```


MONTAGEM DO ELEVADOR COM PALLET NO SOBOT

Ligação Elétrica

Montagem Mecânica

MONTAGEM DO ELEVADOR COM ELETROÍMÃ NO SOBOT

Montagem Mecânica INSTALAÇÃO DO CONJUNTO "MAGNETIC LIFT" Montar componentes na ordem indicada 1- Parafusos Allen Cabeça Abaulada M4x12 | 06 2- Parafusos Allen Cabeça Chata M4x30 | 02 3- Porcas Sextavadas M4 | 08 4- Arruelas Lisas M4 | 06 PASSO2: MONTAR CJ. ELEVADOR PASSO1: MONTAR CJ. MAGNETIC NO CJ. ELEVADOR Ferramentas necessárias para montagem: A- Chave Fixa/Chave Estrela 7mm B- Chave Allen Nº2,5 PASSO3: MONTAR CJ. ELEVADOR COM TAMPO NO ROBÔ IMPORTANTE: REALIZAR CONEXÕES ELÉTRICAS CONFORME ORIENTAÇÃO ESPECÍFICA ANTES DE FECHAR O ROBÔ.

PROGRAMA DEMO DO ELEVADOR COM PALLET E ELETROÍMÃ

Demo Elevador com Pallet

Link: https://github.com/SolisTecnologia/SoBot-Control-Pallet

Demo Elevador com Eletroímã

```
ojetos > Demo > Eletrolmã > 🍦 Controle_Eletroima.py > ...
     import inputs
     import serial
     flag_start = 0
     flag_BT_RZ = 0
     flag_BT_Z = 0
     flag BT A = 0
     flag_BT_X = 0
     # Find the Logitech F710 controller ID connected to the Raspberry Pi
     gamepad = inputs.devices.gamepads[0]
     print(gamepad)
     usb = serial.Serial('/dev/ttyACMO', 57600, timeout=0, dsrdtr=False)
     usb.flush()
     usb.write(b"WP MT1 WD99,84")
     usb.write(b"WP MT2 WD99,54")
     usb.write(b"WP DW264,95")
     # Set the motion proportional gain
     usb.write(b"PG S02,3 CA3,22 DF5,28 RI-6")
     # Configure operating parametres in continuous mode
     usb.write(b"MT0 MC MD0 AT800 DT800 V8")
58
         events = inputs.get_gamepad() # Checks if there was any control event
         for event in events:
61
             # Checks if it is event of type "KEY"
62
63
             if event.ev_type == "Key":
                 print(f"Evento code: {event.code}")
                 print(f"Evento state: {event.state}")
                 # Check if the event code is "BTN_START" in state 1
                 if event.code == "BTN_START" and event.state == 1:
                    print("Botão Start pressionado")
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
                                                                                 Python
pi@raspberrypi:~/Documentos/Projetos $
```


MONTAGEM DO MÓDULO AGRO NO SOBOT

MONTAGEM E DESMONTAGEM DO RESERVATÓRIO AGRO

SoBot Agri-Tech Montagem e Desmontagem para Maleta de Acessórios

MONTAGEM DO MÓDULO AGRO NO SOBOT

Montagem Mecânica

Ligação Elétrica

PROGRAMA DEMO PARA O MODULO AGRO

Agri-Tech.py

Link: https://github.com/SolisTecnologia/SoBot-Agri-Tech

tracker.py

rojetos > Demo > Agri-tech > 🌵 tracker.py > 🚼 EuclideanDistTracker > 😚 update

```
class EuclideanDistTracker:
         def __init__(self):
             # Store the center positions of the objects
             self.center_points = {}
             # Keep the count of the IDs
             # each time a new object id detected, the count will increase by one
11
12
             self.id count = 0
13
         def update(self, objects_rect):
16
            # Objects boxes and ids
            objects_bbs_ids = []
18
19
            # Get center point of new object
20
             for rect in objects_rect:
21
                x, y, w, h = rect
22
                 cx = (x + x + w) // 2
                 cy = (y + y + h) // 2
23
24
                 # Find out if that object was detected already
                 same object detected = False
27
                 for id, pt in self.center_points.items():
                    dist = math.hypot(cx - pt[0], cy - pt[1])
28
29
30
                     if dist < 25:
31
                         self.center_points[id] = (cx, cy)
                         #print(self.center_points)
                        objects_bbs_ids.append([x, y, w, h, id])
                        same_object_detected = True
34
35
                 # New object is detected we assign the ID to that object
38
                 if same_object_detected is False:
39
                     self.center_points[self.id_count] = (cx, cy)
40
                     objects_bbs_ids.append([x, y, w, h, self.id_count])
                     self.id_count += 1
41
             # Clean the dictionary by center points to remove IDS not used anymc
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
pi@raspberrypi:~/Documentos/Projetos $
```


PROJETOS ESPECIAIS / AGROCOMPUTAÇÃO

Crescendo 16% ao ano, este é o setor que mais sofre com falta de profissionais qualificados no país

Em plena expansão, mercado de tecnologia para o campo deve valer mais de US\$8 bi em 2026 – e já tem cinco vagas abertas para cada profissional disponível no mercado; veja como se qualificar

Mercado de agricultura digital deve movimentar mais de US\$ 8 bi até 2026 (Halfpoint Images/Getty

CONTATOS

Solis Tecnologia e Consultoria Empresarial Ltda Avenida Angélica, 2.627 - Térreo - São Paulo - SP

Fone: +55 (11) 4304-0786

Email: contato@solistecnologia.com.br

www.solistecnologia.com.br

Acesse o QR code para maiores informações.

