

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6 «ИССЛЕДОВАНИЕ КЛЮЧЕВОЙ СХЕМЫ НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ»

по курсу «Основы электроники»

Студент: Дубов Андрей Игоревич		
Группа: ИУ7-33Б		
Студент	подпись, дата	_ Дубов А. И.
Преподаватель	подпись, дата	_ Оглоблин Д. И.
Оценка		

Оглавление

Параметры диода	. 3
Ключ на биполярном транзисторе	. 3
Повышение быстродействия ключа на биполярном транзисторе	. 6
Изучение влияния обратных связей в ключевой схеме на биполярном транзисторе	. 8

Параметры диода

В работе используется вариант транзистора №55.

```
.model KT503b NPN(Is=10.07f Xti=3 Eg=1.11 Vaf=60 Bf=166.4 Ise=100.2f
+ Ne=1.452 Ikf=.6117 Nk=.4667 Xtb=1.5 Br=1.7 Isc=47.49f Nc=1.715
+ Ikr=.7018 Rb=6 Rc=1.208 Cjc=23.66p Mjc=.33 Vjc=.75 Fc=.5
+ Cje=30.84p Mje=.33 Vje=.75 Tr=390.4n Tf=10.09n Itf=1 Xtf=2 Vtf=40)
```

Рисунок 1 Параметры транзистора на вкладке Техт программы Місгосар

Ключ на биполярном транзисторе

Определим зависимость сопротивления Rb от степени насыщения S. Исходные данные: $R\kappa = 510$ Om, $E\kappa = 5$ B, Uвх = 5 B. Напряжение Uкэ в режиме насыщения составляет около 0.2 B, поэтому ток коллектора при насыщении Iкнас $= (E\kappa - U$ кэ)/ $R\kappa = 4.8$ B / 510 Om $\sim = 9.4$ мA. Коэффициент усиления $\beta = 134.116$. Uбэ из предыдущей лабораторной 0.6974 B.

Рисунок 2 Схема

Рисунок 3 Генератор

Рисунок 4 Определение коэффициента усиления при заданном значении тока коллектора

Минимальный ток базы, при котором транзистор переходит в насыщение, равен Ібнас = Ікнас/ β = 9.4 мA / 133.611*0.8 \sim = 0.087 мА. Тогда искомая зависимость Rb(S) = (Uвх – Uбэ)/(S*Ібнас) = 4.3 В / (S*0.087мА) = 49425/S Ом. Из этой зависимости Rb(1) = 49425Ом.

Рисунок 5 Выходной импульс, степень насыщения = 1

Рисунок 6 Параметры Stepping

Рисунок 7 Выходной импульс при степенях насыщения 1, 2, 5, 20

В электронике длительности фронта и спада определяют как время изменения сигнала от 0,1 до 0,9 и от 0,9 до 0,1 амплитуды импульса соответственно.

S	t10, нс	t01, нс	tp, нс	Uk, мВ
1	3473	3952	294	200
2	2583	1196	200	119
5	1534	510	89	87
20	673	92	25	54

Tаблица 1 3начения t10, t01, tp, Uк в 3ависимости от степени насыщения S

С диодом Шоттки на графике будем наблюдать значительное уменьшение времени рассасывания.

Рисунок 8 Схема с Шоттки

Рисунок 9 Насыщение 20 с диодом

Повышение быстродействия ключа на биполярном транзисторе

Методом подбора через степпинг найдем сначала нужную емкость конденсатора при сопротивление у насыщения 20, а потом сопротивление.

Рисунок 10 Ёмкость меняется, сопротивление максимальное

Видно, что нам требуется максимальная ёмкость. Сделаем то же, что и в прошлый раз, только зафиксируем емкость и будем менять сопротивление.

Рисунок 11 Ёмкость фиксирована на максимуме, меняется сопротивление

Заметим, что чем больше сопротивление, тем меньше длительность фронтов.

Рисунок 12 Инвертор близкий к идеальному

Заменим транзистор на указанный.

Рисунок 13 График с теми же сопротивлениями

Нетрудно заметить, что этот транзистор намного лучше и имеет более маленькие фронта, чем в моём варианте.

Изучение влияния обратных связей в ключевой схеме на биполярном транзисторе

Рисунок 14 Исходная схема

Рисунок 15 Явно не то что должно быть

Это связано с тем, что математические модели мультивибратора отличаются от реальных необходимостью введения разбаланса в плечах, что бы колебания возникли, в редакторе начальных условий.

Чтобы получить колебания, выполняем следующее. Открываем окно редактирования переменных состояния анализа (Transient/State Variables Editor) и меняем что-нибудь.

Рисунок 16 Поменяли базу на 2 транзисторе

Рисунок 17 График импульсов

По графику с помощью курсоров получаем параметры импульсов транзистора: напряжение для открытого состояния: $U\kappa \sim 700 \text{ MB}$; для закрытого состояния: $U\kappa \sim 12 \text{ B}$; время в открытом состоянии $\sim 464 \text{ мкc}$, в закрытом $\sim 511 \text{ мкc}$.

Рисунок 18 Схема длина увеличена

Рисунок 19 График длина увеличина

Рисунок 20 Схема длина уменьшена

Рисунок 21 График длина уменьшена

Посмотрим что будет при других транисторах

Рисунок 22 Схема с другим транзистором

Рисунок 23 График с другим транзистором

Видно, что длина колебания увеличилась. Делаем вывод, что транзистор влияет на длину колебаний