	Lecture 7: Random Variables
Info	mul Defor of Discrete/Cts RUS
	discrete RV: support RV is finite/cantable ex. X = sum of two dice
	Ex. X = number of customers arriving in shop
2	Continuous RV: support is not cantuble
	Ex time/space
Def	n: Cumulative Distribution Function (CDF)
14	It is a RV then its CDF is a function
	$F: \mathbb{R} \longrightarrow \mathbb{R}$
def	ned for XER
	$F(x) = P(X \le x)$
	2) La number
	prob I'm here
	$\left\{ \left($

Notation!
$$P(X \le x) = P(X \in (-\infty, x])$$
 $= P(X^{-1}((-\infty, x]))$

Ex. Toss a coir 3 times, $X = \#$ heads

 $Y_{10} = Y_{10} = Y_{10}$

$$F(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{2}$$

$$F(1.5) = P(X \le 1.5) = P(X = 1) = \frac{1}{2}$$

$$F(2) = P(X \le 2) = \frac{7}{8}$$

$$F(3) = P(\chi \leq 3) = 1$$

Facts:

(1)
$$0 \le F(x) \le 1$$

Pf. $F(x) = P(----) \in [0,1]$

(2) $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$

(3) F is non-decreasing

If $\chi_1 < \chi_2$ then $F(\chi_1) \le F(\chi_2)$
 $F(\chi_1) = P(\chi = \chi_1)$
 $F(\chi_2) = P(\chi_2)$
 $F(\chi_1) = P(\chi_2)$
 $F(\chi_2) = P(\chi_2)$
 $F(\chi_$

Theorem: Fis the CDF of some RV (2) Fis non-ducreasing 3) Fis right cts Q: 1s this a valid CDF! Check 3 conditions $\lim_{X\to\infty} F(x) = \frac{1}{1+\rho^{-\infty}} = \frac{1}{1+\rho}$ 2) non-decreasing: $\frac{dF}{dx} = \frac{e}{(1+e^{-x})^2} > 0$

B) Right cts: Cts fn => right cts Defn: Identical Distribution We say two RVs X and Y are equal in distribution if YACR we have P(XEA) = P(YEA). We write: X = Y. This doesn't mean that X = Y. (as fins) Ex. 3 coin flips. X = # heads / = # ails

these are differ IRVs

 $\chi(HTT) = 1$, $\chi(HTT) = 2$

Homerel, X = Y.

 $P(\chi=0) = \frac{1}{2} = P(\chi=0)$ P(X=1)=3/8=P(Y=1)

Theoren: X = Y iff Fx = Fy (as fus) Ex Toss a coin (indep) until a H appears. S = { H, TH, TTH, TTTH,} let p be the prob I get a H on any flip. X = # flips until I get a H A E S X(A)

H 1

TH 2

Support A X

TT H 3

TT T H 4 D: What's the CDF? $F(x) = P(\chi \leq \chi)$ we'll look at P(X=X)

Let
$$H_{i} = i^{th}$$
 for is a H_{i} , $T_{i} = H_{i}$

" $X = i'' = T_{1}T_{2}T_{3} \cdots T_{i-1}H_{i}$

So $P(X = i) = P(T_{1}T_{2}T_{3} \cdots T_{i-1}H_{i})$
 $= P(T_{1})P(T_{2})P(T_{3}) \cdots P(T_{i-1})P(H_{i})$
 $= (1-p)(i-p) \cdots (1-p)p$
 $= (1-p)(i-p) \cdots (1-p)p$
 $= (1-p)(i-p) \cdots (1-p)p$
 $= (1-p)(1-p) \cdots (1-p)p$
 $= (1-p)(1-p) \cdots (1-p)p$

So $P(X = X) = P(X = 1) \cdots P(X = 2) \cdots P(X = X)$
 $= \sum_{i=1}^{X} P(X = i) \cdots P(X = X) \cdots P(X = X)$
 $= \sum_{i=1}^{X} (1-p)^{i-1} p \cdots P(X = X)$
 $= \sum_{i=1}^{X} (1-p)^{i-$

 $F(x) = 1 - (1p)^{x}$ for x = 1, 7, 3, ---Defn: Discrete/cts RVs discrete RV is one whose CDF is a step fn. cts RV is one whose CDF is a cts fu,