Лабораторная работа 1. Моделирование изменения денежных средств на вкладе

1. Постановка задачи

Клиент банка открывает вклад, размещая на нем денежные средства при условии начисления i сложных процентов один раз в год. Определить, как будет происходить изменение денежных средств на вкладе по истечении t лет (t=1,2,...) в двух случаях:

- 1. В банке при открытии вклада было размещено z_0 тыс. руб., пополнение счета вкладчиком в дальнейшем не производится.
- 2. После первоначального размещения z_0 тыс. руб. вкладчик ежегодно после начисления процентов вносит дополнительную сумму так, что каждый год он увеличивает дополнительно размещаемую сумму по сравнению с предыдущим годом на величину $0,1\,z_0$.

Решить задачу при следующих исходных данных: $z_0 = 100 + 4p + 3q + 1$, i = p + q + 1, где числа p и q задает преподаватель.

Выполнить расчет изменения денежных средств на вкладе для двух рассмотренных случаев. Выяснить, через сколько лет в первом случае вклад удвоится. Определить, через сколько лет во втором случае вклад увеличится в пять раз. Изменение денежных средств проиллюстрировать таблицей. Построить графики изменения суммы вклада.

В условиях второй схемы формирования денежных средств определить, какую сумму z_0 необходимо разместить на вкладе, чтобы через 5 лет наращенная сумма превысила 10(100+4p+3q+1).

2. Имитационная модель процесса

Пусть y_t — сумма денежных средств на вкладе по истечении t лет $(t=0,1,\,2,\,\ldots)$. При этом при t=0 сумма первоначального вклада y_0 известна и равна z_0 .

Построим модель, описывающую процесс изменения денежных средств для двух рассмотренных случаев.

Случай 1. Обозначим через $r=\frac{i}{100}=0{,}01i$ показатель, описывающий приращение вклада по сравнению с предыдущим годом за счет начисления процентов. Например, при i=10 % наращение за год денежных средств на вкладе составит $r=0{,}01i=0{,}1$ от суммы, которая была на вкладе год назад. Если эта сумма была равна y_{t-1} , то через год сумма на вкладе станет равной

$$y_t = y_{t-1} + r y_{t-1}.$$

Таким образом, получаем, что изменение денежных средств на вкладе описывается разностным уравнением

$$y_t - (1+r)y_{t-1} = 0. (1.1)$$

Будем искать решение уравнения (1.1) в виде:

$$y_t = C\lambda^t; \ y_{t-1} = C\lambda^{t-1}.$$
 (1.2)

Подставляем соотношение (1.2) в (1.1) имеем

$$C\lambda^t - (1+r)C\lambda^{t-1} = 0;$$

$$C\lambda^{t-1}(\lambda-1-r)=0$$
;

 $\lambda = 1 + r$.

С учетом формул (1.2) получаем

$$y_t = C(1+r)^t$$
. (1.3)

При t=0 известно, что $y_0=z_0$. Поэтому имеем из формулы (1.3), что

$$y_0 = C = z_0.$$

В результате получаем

$$y_t = z_0 (1+r)^t$$
, $t = 0,1, 2, ...$ (1.4)

Формула (1.4) задает изменение денежных средств на вкладе в случае начисления так называемых сложных процентов.

Случай 2. Рассмотрим теперь вторую задачу. Пусть z_t — сумма денежных средств ежегодно дополнительно размещаемых на вкладе. Согласно условию имеем

$$z_t - z_{t-1} = 0.1z_0. (1.5)$$

Будем искать решение уравнения (1.5) в виде:

$$z_t = at + b$$
, $z_{t-1} = a(t-1) + b$. (1.6)

Подставляя соотношение (1.6) в уравнение (1.5), имеем

$$at + b - a(t-1) - b = 0.1z_0;$$

 $a = 0.1z_0$;

 $z_t = 0.1z_0t + b.$

Первоначальный вклад при t=0 равен z_0 . Отсюда следует $b=z_0$ и тогда

$$z_t = z_0 (0.1t + 1). (1.7)$$

Согласно постановке задачи по истечению каждого года сумма y_t денежных средств на вкладе увеличивается на величину начисленных процентов ry_{t-1} , а также на величину дополнительной суммы пополнения вклада, изменение которого описывается формулой (1.7). Отсюда следует

$$y_t = y_{t-1} + ry_{t-1} + z_t;$$

$$y_t - (1+r)y_{t-1} = 0.1z_0t + z_0.$$
(1.8)

Решение разностного уравнения (1.8) ищется в виде суммы решения однородного уравнения (1.1) y_t^0 вида (1.3) и любого частного решения \tilde{y}_t неоднородного уравнения (1.8). Частное решение уравнения (1.8) будем искать в виде

$$\tilde{y}_t = At + B \; ; \; \tilde{y}_{t-1} = A(t-1) + B \; .$$
 (1.9)

Подставляя равенства (1.9) в (1.8), получаем

$$At + B - (1+r)(A(t-1)+B) = 0.1z_0t + z_0;$$

$$-rAt + A(1+r) - rB = 0.1z_0t + z_0. (1.10)$$

Приравнивая коэффициенты при t и слагаемых, не содержащих t, в левой и правой частях равенства (1.10), имеем

$$-rA = 0.1z_0$$
; $A = -\frac{z_0}{10r}$;

$$A(1+r)-rB=z_0$$
; $B=-\frac{z_0}{10r^2}(1+11r)$.

С учетом формулы (1.9) получаем

$$\widetilde{y}_t = -\frac{z_0 t}{10r} - \frac{z_0}{10r^2} (1 + 11r). \tag{1.11}$$

Общее решение уравнения (1.8) представимо в виде:

$$y_t = y_t^0 + \widetilde{y}_t = C(1+r)^t - \frac{z_0 t}{10r} - \frac{z_0}{10r^2} (1+11r).$$

Постоянную C находим из условия, что при t=0 значение $y_0=z_0$. В результате получаем

$$C = z_0 + \frac{z_0}{10r^2} (1 + 11r) = \frac{z_0 (1 + r)}{r} + \frac{z_0}{10r^2} (1 + r) = \frac{z_0}{r} (1 + r) \left(1 + \frac{1}{10r} \right).$$

Таким образом, окончательно имеем

$$y_t = \frac{z_0}{r} \left(1 + \frac{1}{10r} \right) (1 + r)^{t+1} - \frac{z_0 t}{10r} - \frac{z_0}{10r^2} (1 + 11r).$$
 (1.12)

Формула (1.12) описывает изменение денежных средств на вкладе по истечении t лет, $t=1,\,2,\,...$

3. Методические рекомендации по выполнению работы

Пусть p=0 и q=0, тогда исходные данные: $z_0=101$, i=1. Показатель, описывающий приращение вклада, равен $r=\frac{i}{100}=0{,}01$. Согласно первому случаю процесс приращения вклада описывается формулой (1.4):

$$y_t = z_0 (1+r)^t = 101 \cdot 1,01^t, t = 0,1, 2,$$

Согласно второму случаю вклад растет согласно формуле (1.12):

$$y_t = \frac{z_0}{r} \left(1 + \frac{1}{10r} \right) (1+r)^{t+1} - \frac{z_0 t}{10r} - \frac{z_0}{10r^2} (1+11r).$$

Для удобства выполнения расчетов отдельно вычислим постоянные величины в формулах (1.4) и (1.12): (1+r); $\frac{1}{r}(1+\frac{1}{10r})$ и $\frac{z_0}{10r^2}(1+11r)$.

Построим расчетную область на листе Excel (рис. 1.1), где соответственно заполним ячейки:

$$B3 \rightarrow 101$$
;

$$B4 \rightarrow 1$$
;

$$E1 \rightarrow =B4/100;$$

$$E2 \rightarrow =1+E1$$
;

E3
$$\rightarrow$$
 =(1+1/(10*E1))/E1;
E4 \rightarrow =B3*(1+11*E1)/(10*E1^2).

	A	В	C	D	Е
1	p=	0		r=	0,01
2	q=	0		1+r=	1,01
3	z0=	101		(1+1/(10r))/r=	1100
4	i=	1		z0(1+11r)/(10rr)=	112110
5					
6	t	yt - 1 случай	yt - 2 случай	z0*2=	202
7	0	101,00	101,00	z0*5=	505
8	1	102,01	213,11		
9	2	103,03	336,44		
10	3	104,06	471,11		
11	4	105,10	617,22		
12	5	106,15	774,89		
13	6	107,21	944,24		
14	7	108,29	1125,38		
15	8	109,37	1318,43		
16	9	110,46	1523,52		
17	10	111,57	1740,75		
18	11	112,68	1970,26		
19	12	113,81	2212,16		
20	13	114,95	2466,59		

Рис. 1.1. Вычисление изменения вклада

Далее построим таблицу для расчета изменения денежных средств по годам. В ячейки A7, A8, A9, ... введем t = 0, 1, 2, ... - здесь будем указывать изменение времени. В столбце В будем считать изменение денежных средств в условиях первого случая, а в столбце С – второго:

 $B7 \rightarrow =B3$;

 $C7 \rightarrow =B3$;

 $B8 \rightarrow = B\$3*CTE\PiEHb(\$E\$2;A8);$

 $C8 \rightarrow = \$B\$3 * \$E\$3 * CTE\PiEHb(\$E\$2; A8+1) - \$B\$3 * A8/(10 * \$E\$1) - \$E\$4.$

Далее, используя маркер автозаполнения, распространим формулы, заданные в ячейках В8 и С8 вниз. Для данных, выражающих изменение вклада, установим формат числовой с двумя знаками после запятой.

Требуется выяснить, через сколько лет в первом случае вклад удвоится. Подсчитаем величину удвоенного вклада: $E6 \rightarrow =2*B3$. Посмотрим в столбце с данными расчета по первому случаю, когда значение $y_t \ge 2z_0$. Этому условию соответствует ячейка B77, в которой значение $y_t = 202,68$ при этом t = 70. Следовательно, через 70 лет вклад, рассчитываемый согласно условиям первого случая удвоится.

Определим, через сколько лет во втором случае вклад увеличится в пять раз. Сначала вычислим значение требуемой суммы вклада в ячейке Е7, а затем,

используя таблицу, найдем нужное значение. Согласно расчетам в ячейке С11 содержится значение 617,22, которое и будет ответом. При этом t=4. Отсюда можно сделать вывод, что рост средств в условиях второго случая производится гораздо быстрее, чем первого.

Построим графики отдельно для иллюстрации изменения вклада в условия первого и второго случаев. Исходными данными для построения первого графика будет диапазон A6:B17 (рис. 1.2). Исходными данными для построения второго графика будет диапазон A6:C17. Однако при настройке области построения исключим B6:B17, так как этот диапазон иллюстрирует первый случай изменения денежных средств (рис. 1.3).

Рис. 1.2. Изменение суммы вклада в условия первого случая

Рис. 1.3. Изменение суммы вклада в условия второго случая

Определим, какую сумму z_0 необходимо разместить на вкладе в условиях второго случая, чтобы через 5 лет наращенная сумма превысила 10(100+4p+3q+1)=1010. Воспользуемся формулой (1.12), откуда выразим z_0 при условии, что t=5, $y_5=1010$:

$$\begin{split} y_t &\leq \frac{z_0}{r} \bigg(1 + \frac{1}{10r} \bigg) (1 + r)^{t+1} - \frac{z_0 t}{10r} - \frac{z_0}{10r^2} \big(1 + 11r \big); \\ z_0 &\geq y_5 \bigg(\frac{1}{r} \bigg(1 + \frac{1}{10r} \bigg) (1 + r)^{5+1} - \frac{5}{10r} - \frac{1}{10r^2} \big(1 + 11r \big) \bigg)^{-1}. \end{split}$$

Выполним расчет (рис. 1.4):

 $H3 \rightarrow =10*(100+4*B1+3*B2+1)$

 $H4 \rightarrow =E3*CTE\PiEHb(E2;H2+1)-H2/(10*E1)-(1+11*E1)/(10*E1^2)$

 $H5 \rightarrow = H3/H4$.

	G	Н		I	J
1	Дополните.				
2	t=	5			
3	yt=	1010			
4	коэффициент	7,672166			
5	начальный вклад	131,64			

Рис. 1.4. Определение начальной суммы вклада

Следовательно, в рассматриваемых условиях начальный вклад должен составлять не менее 131, 64 тыс. руб., чтобы через пять лет сумма была не менее 1010 тыс. руб. на счете.

3. Реализация модели в Excel и оформление отчета

Порядок организации вычислительной области на листе Excel предполагает:

- 1. Согласно варианту задать исходные данные.
- 2. Записать формулы изменения суммы вклада для первого и второго случаев.
- 3. Выполнить расчет изменения денежных средств на вкладе для первого и второго случаев по формулам (1.4) и (1.12) соответственно.
- 4. Определить, через какой период времени сумма вклада превысит удвоенную сумму первоначального вклада для первого и второго случаев.
 - 5. Построить графики изменения суммы вклада для обоих случаев.
- 6. Ответить на вопросы о времени, когда вклад увеличится в два раза при расчете в условиях первого случая и, когда вклад увеличится в пять раз при расчете в условиях второго случая.
- 7. Выполнить расчет первоначальной суммы вклада z_0 , которую необходимо разместить на вкладе, чтобы через 5 лет наращенная сумма превысила 10(100+4p+3q+1) ден. средств.
 - 8. Подготовить отчет.

Отчет оформляется с использованием текстового процессора Microsoft Word и включает:

- 1. Постановку задачи для заданных исходных данных. В этой лабораторной работы описывается два варианта постановки в соответствии с указанными случаями.
- 2. Математическую модель задачи для каждого из рассматриваемых случаев.
 - 3. Решение задачи.
 - 4. Описание ответов на вопросы работы.

5. Приложение в виде книги Excel.