1 Exercise 0.2 Construct an explicit deformation retraction of $\mathbb{R}^n \setminus \{0\}$ onto S^{n-1} .

For $X = \mathbb{R}^n \setminus \{0\}$, define $F: X \times I \to X$ by

$$F(x,t) = (1-t)x + t\frac{x}{\|x\|}.$$

As the composition of continuous real functions, F is continuous, and therefore defines a homotopy between $F_0(x) = x$ (identity) and $F_1(x) = x/\|x\|$ (mapping x to its unit). Since $S^{n-1} \subseteq X$ is simply the set of unit vectors, we know that $x \in S^{n-1}$ if and only if $x = x/\|x\|$. So indeed $F_t|_{S^{n-1}} = \mathrm{id}_{S^{n-1}}$ and $F_1(X) \subseteq S^{n-1}$, hence F describes a deformation retraction of X onto S^{n-1} .

2 Exercise 0.3(c) Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

Proof. Suppose $F: X \times I \to Y$ is a homotopy $f_0 \simeq f_1$ such that $f_1: X \to Y$ is a homotopy equivalence. Let $g: Y \to X$ be a homotopy inverse to f_1 , i.e., $g \circ f_1 \simeq \mathrm{id}_X$ and $f_1 \circ g \simeq \mathrm{id}_Y$.

In other words, we have the following diagrams (not commuting, per se), where homotopies are represented by arrows '⇒' between maps:

Intuitively, we will horizontally compose F with an "identity homotopy" on g to obtain homotopies from $g \circ f_0$ to $g \circ f_1$ and from $f_0 \circ g$ to $f_1 \circ g$.

With F and g continuous, their composition $gF := g \circ F : X \times I \to X$ is continuous and therefore describes a homotopy between $(gF)_0 = g \circ f_0$ and $(gF)_1 = g \circ f_1$. And since homotopy is an equivalence relation, we obtain

$$g \circ f_0 \simeq g \circ f_1 \simeq \mathrm{id}_X$$
.

Similarly, with g and id_I continuous, their product $g \times \mathrm{id}_I : Y \times I \to X \times I$ is continuous. Subsequently, the composition $Fg := F \circ (g \times \mathrm{id}_I) : Y \times I \to Y$ is continuous and therefore describes a homotopy between $(Fg)_0 = f_0 \circ g$ and $(Fg)_1 = f_1 \circ g$, hence

$$f_0 \circ g \simeq f_1 \circ g \simeq \mathrm{id}_Y$$
.

We conclude that g is a homotopy inverse for f_0 , so in fact $f_0: X \to Y$ is a homotopy equivalence.

3 Exercise 0.4

We first make explicit the notion of a "corestriction" in the context of topology.

If $f: X \to Y$ is a map and A is a subspace of X, then the restriction $f|_A: A \to Y$ is simply the composition of the inclusion $A \hookrightarrow X$ and f. In other words, $f|_A$ the unique map which makes the following diagram commute:

Similarly, if $f: X \to Y$ is a map and B is a subspace of Y such that $f(X) \subseteq B$, then the corestriction $f|^B$ is the unique map which makes the following diagram commute:

$$X \xrightarrow{f} Y$$

$$\downarrow \downarrow \downarrow$$

$$\uparrow B$$

Given a map $f: X \to Y$ and subspaces $A \hookrightarrow X$ and $B \hookrightarrow Y$ such that $f(A) \subseteq B$, we write $f|_A^B$ for the twice-restricted map $(f|_A)|_B^B: A \to B$. That is, $f|_A^B$ is the unique map which makes the following diagram commute:

$$X \xrightarrow{f} Y$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$A \xrightarrow{f|_A^B} B$$

A deformation retraction in the weak sense of a space X to a subspace A is a homotopy $f_t: X \to X$ such that $f_0 = \mathrm{id}_X$, $f_1(X) \subseteq A$, and $f_t(A) \subseteq A$ for all t. Show that if X deformation retracts to A in this weak sense, then the inclusion $A \hookrightarrow X$ is a homotopy equivalence.

Proof. Let $F: X \times I \to X$ be a deformation retraction of X to A in the weak sense, i.e., $f_0 = \mathrm{id}_X$, $f_1(X) \subseteq A$, and $f_t(A) \subseteq A$. Denote the inclusion $\iota: A \hookrightarrow X$ and the corestriction $g = f_1|_A : X \to A$; we claim that these maps are homotopy inverses of each other.

By assumption, F gives a homotopy $\mathrm{id}_X \simeq f_1$. And the universal property of the corestriction gives us $f_1 = \iota \circ f_1|^A = \iota \circ g$, hence $\mathrm{id}_X \simeq \iota \circ g$. Since $F(A \times I) \subseteq A$, we may define the restricted map $G = F|_{A \times I}^A : A \times I \to A$. Then

$$g_0 = f_0|_A^A = id_X|_A^A = id_A$$

and

$$g_1 = f_1|_A^A = g|_A = g \circ \iota,$$

hence G describes a homotopy $\mathrm{id}_A \simeq g \circ \iota$, i.e., $\iota : A \hookrightarrow X$ is a homotopy equivalence. \square

4 Exercise 0.5 Show that if a space X deformation retracts to a point $x \in X$, then for each neighborhood U of x in X there exists a neighborhood $V \subseteq U$ of x such that the inclusion $V \hookrightarrow U$ is nullhomotopic.

Proof. Let $F: X \times I \to X$ be a deformation retraction of X to $x \in X$, i.e., $f_0 = \mathrm{id}_X$, $f_1(X) \subseteq \{x\}$, and $f_t(x) = x$. Let $U \subseteq X$ be an open neighborhood of x. As F is continuous, the preimage $F^{-1}(U) \subseteq X \times I$ is an open set containing $\{x\} \times I$. For each $t \in I$, we can choose some open sets $V_t \subseteq X$ and $J_t \subseteq I$ such that

$$(x,t) \subseteq V_t \times J_t \subseteq F^{-1}(U).$$

(This is possible since $X \times I$ has the finite product (box) topology and $F^{-1}(U)$ is a open neighborhood of (x,t).) Then $\{J_t\}_{t\in I}$ is an open cover of the compact space I, so we may choose a finite subcover $\{J_{t_1},\ldots,J_{t_n}\}$. Define $V=V_{t_1}\cap\cdots\cap V_{t_n}$, which is an open neighborhood of x in X. Moreover, we have

$$V \times I = \bigcup_{i=1}^{n} (V \times J_{t_i}) \subseteq \bigcup_{i=1}^{n} (V_{t_i} \times J_{t_i}) \subseteq F^{-1}(U).$$

Therefore, $F(V \times I) \subseteq U$; in particular, $V = f_0(V) \subseteq U$.

We may now define the restricted map $G = F|_{V \times I}^U : V \times I \to U$ (using the notation defined in the proof of Problem 3 to restrict both the domain and codomain). Denoting the inclusion $\iota : V \hookrightarrow U$, this gives us a homotopy between

$$g_0 = f_0|_V^U = \mathrm{id}_X|_V^U = \iota$$

and g_1 . Note that for all $y \in V$, we have

$$g_1(y) = f_1(y) = x.$$

That is, g_1 is a constant map, so indeed ι is nullhomotopic.

5 Exercise 0.6

(a) Let X be the subspace of \mathbb{R}^2 consisting of the horizontal segment $[0,1] \times \{0\}$ together with all the vertical segments $\{r\} \times [0,1-r]$ for r a rational number in [0,1]. Show that X deformation retracts to any point in the segment $[0,1] \times \{0\}$, but not to any other point.

Proof. Assume for contradiction that X does deformation retract to a point $(r_0, y_0) \in X$ with $r_0 \in \mathbb{Q}$ and $y_0 \neq 0$. Since $X \subseteq \mathbb{R}^2$ has the subspace topology and the positive upper half plane $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ is open in \mathbb{R}^2 , then we can intersect H with X to obtain the set

$$U = H \cap X = \{(x, y) \in X : y > 0\},\$$

which is an open neighborhood of (r_0, y_0) in X. By Problem 4, there is a neighborhood $V \subseteq U$ of (r_0, y_0) such that the inclusion $V \hookrightarrow U$ is nullhomotopic, i.e., there is a homotopy $F: V \times I \to U$ such that f_0 is the inclusion $V \hookrightarrow U$ and f_1 is a constant map.

Suppose $a, b \in V$ are any two points. We can fix an argument of F to obtain continuous maps $\alpha, \beta: I \to U$ where $\alpha(t) = F(a,t)$ and $\beta(t) = F(b,t)$ for each $t \in I$. In other words, α and β are paths in U which start at

$$\alpha(0) = f_0(a) = a$$
 and $\beta(0) = f_0(b) = b$

and end at

$$\alpha(1) = f_1(a) = f_1(b) = \beta(1).$$

Following α forwards then β backwards gives us a path from a to b in U. As $a, b \in V$ were arbitrary, this shows that V is path-connected via paths in U.

Note that U is a subspace of $(I \cap \mathbb{Q}) \times I$, so V contains a box $(J \times \mathbb{Q}) \times K$ for some nontrivial open intervals $J, K \subseteq \mathbb{R}$. However, after projecting U onto \mathbb{Q} , we obtain a nonempty interval of \mathbb{Q} which is path connected inside of \mathbb{Q} . Since \mathbb{Q} is totally path-disconnected, so this is a contradiction.

(b) Let Y be the subspace of \mathbb{R}^2 that is the union of an infinite number of copies of X arranged as in the figure below. Show that Y is contractible but does not deformation retract onto any point.

We build a contraction of Y out of two parts. First, take the weak deformation retraction of X onto Z from part (c). Second, take a deformation retraction of Z onto some point $z \in Z$. For each point in Z, we scale the distance to z along Z by (1-t); this is a continuous map $Z \times I \to Z$ fixing z with the map at t=1 constantly mapping to z. We combine these homotopies by adjusting the time interval of the first to fit within [0,1/2] and the second to fit within [1/2,1]. Overall, this gives a contraction of Y to the point z.

No deformation retraction of Y to a point exists for the same reason that no deformation retraction of X exists to a point on an attached interval. That is, such a deformation retraction of Y would induce such a deformation retraction of X.

(c) Let Z be the zigzag subspace of Y homeomorphic to \mathbb{R} indicated by the heavier line. Show there is a deformation retraction in the weak sense of Y onto Z, but no true deformation retraction.

Intuitively, we imagine Z as a piece of string which can be bent, but not stretched or compressed along its length. Each smaller line segment of Y attached to Z is made of the same type of string, with one end tied to Z. We construct a weak deformation retraction of X onto Z where at each time $t \in I$, we pull Z to the right a distance of t units along its length. Any given point in Y moves at a constant speed with respect to t, first moving down its segment onto Z, then following Z to the right for the remainder of the time interval. After Z has been pulled a distance of 1 unit, then the longest segments (which are a length of 1 unit) will have been completely pulled onto Z. Moreover, every point staring in Z remains in Z for the duration of the time interval. Hence, this defines a weak deformation retraction of Y onto Z.

No true deformation retraction of Y onto Z exists for the same reason no true deformation retraction of X onto a point in an attached segment exists. In particular, a true deformation retraction of Y onto Z would induce a true deformation retraction of X onto the lower and left segments.

6 Lecture 3 Given a subspace $A \subseteq X$ with quotient map $q: X \to X/A$ and homotopy $f_t: X \times I \to X$ such that $f_0 = \mathrm{id}_X$ and $f_1(A) = \{a\}$ for some $a \in A$, consider the family of functions \overline{f}_t which make the following diagrams commute:

$$X \xrightarrow{f_t} X \xrightarrow{q} X/A$$

$$\downarrow^q \qquad \qquad \qquad \downarrow^{q}$$

$$X/A$$

Show that each function $\overline{f}_t: X/A \to X/A$ is continuous.

Proof. Let $V \subseteq X/A$ be an open set and consider the preimage $\overline{f}_t^{-1}(V) \subseteq X/A$. By definition of the quotient topology on X/A, we know that a subset of X/A is open if and only if its preimage under q is open in X. We have the preimage

$$q^{-1}(\overline{f}_t^{-1}(V)) = (\overline{f}_t \circ q)^{-1}(V) = (q \circ f_t)^{-1}(V).$$

We know that $q \circ f_t$ is continuous, so this set is open in X. Hence, $\overline{f}_t^{-1}(V)$ is open in X/A and we conclude that \overline{f}_t is continuous.