Harmonic Measure TD5

2025年04月19日 aytony

Exercise 1: Let X be a set and $A \subseteq X$. Two sets $E, F \subseteq X$ are said to be *separated by A* if $E \subseteq A$ and $F \subseteq X \setminus A$, or if $F \subseteq A$ and $E \subseteq X \setminus A$. Let μ be a measure on X.

- 1. Show that A is μ -measurable if and only if for all sets $E, F \subseteq X$ separated by A, we have $\mu(E \cup F) = \mu(E) + \mu(F)$.
- 2. Show that A is μ -measurable if for all sets $E, F \subseteq X$ separated by A and such that $\mu(E)$ and $\mu(F)$ are finite, we have $\mu(E \cup F) \geqslant \mu(E) + \mu(F)$.
- 3. Give an example of a measure μ on X such that all subsets of X are μ -measurable.

Proof:

- 1. $m(E \cup F) = \mu((E \cup F) \cap A) + \mu((E \cup F) \cap A^c) = \mu(E) + \mu(F).$
- 2. Since $\mu(E) + \mu(F) \leq \mu(E \cup F)$ we can confirm.
- 3. $\mu(A) = 0$ for all $A \subset X$.

Exercise 2: Let X be a set. A *premeasure* on X is a function $\tau : \mathscr{C} \to [0, \infty]$ defined on a collection \mathscr{C} of subsets of X, such that $\emptyset \in \mathscr{C}$ and $\tau(\emptyset) = 0$. For any set $A \subseteq X$, define

$$\mu(A) = \inf \Biggl\{ \sum_{i=1}^{\infty} \tau(C_i) \mid C_i \in \mathscr{C}, A \subseteq \bigcup_{i=1}^{\infty} C_i \Biggr\}.$$

- 1. Show that μ is a measure on X.
- 2. Show that any measure ν on X is also a premeasure on X. Show that the measure μ constructed as above from the premeasure ν equals ν .

Proof:

1. Only prove the subadditivity. Set sequence $\{A_i \subset X\}$ and $\varepsilon > 0$. Pick $\{C_{i,j}\}$ such that

$$\sum_{i} \tau \left(C_{i,j} \right) \leqslant \mu(A_i) + \frac{\varepsilon}{2^i}$$

holds for all i. Then

$$\sum_{i,j} \tau(C_{i,j}) \leqslant \sum_{i} \mu(A_i) + \varepsilon, \text{ for all } \varepsilon > 0,$$

hence

$$\sum_{i,j} \tau(C_{i,j}) \leqslant \sum_{i} \mu(A_i).$$

Since

$$\bigcup_i A_i \subset \bigcup_{i,j} C_{i,j}$$

the result follows.

2. Former is trivial, only prove latter.

$$\mu(A)\leqslant\inf\Biggl\{\sum_{i=1}^{\infty}\tau(C_i)\mid C_i\in\mathscr{C}, A\subseteq\bigcup_{i=1}^{\infty}C_i\Biggr\}$$

is trivial according to monotonicity, and other side is also easy to reach, only need to set $\{C_i\} = \{A, \emptyset, \emptyset, \cdots\}$.

Exercise 3: Let $\nu : \mathcal{A} \to [0, \infty]$ be a countably additive set function such that $\nu(\emptyset) = 0$, where \mathcal{A} is a σ -algebra on X.

1. Show that ν is a premeasure on X. Let μ be the measure constructed as in Exercise 2 from the premeasure ν . Show that for any subset A of X, we have:

$$\mu(A) = \inf\{\nu(B) \mid B \in \mathcal{A}, B \supseteq A\}.$$

- 2. Deduce that all sets in \mathcal{A} are μ -measurable and that $\mu(A) = \nu(A)$ for all $A \in \mathcal{A}$.
- 3. Show that μ is a regular measure on X, meaning that for any set $A \subseteq X$, there exists a set $B \in \mathcal{M}_{\mu}$ such that $B \supseteq A$ and $\mu(B) = \mu(A)$.

Proof

- 1. Former is trivial, only prove latter. Apparently, for all $B \in \mathcal{A}$ there exists $\{B_i \in \mathcal{A}\}$ such that $B = \bigcup_i B_i$, and the result follows.
- 2 Omit
- 3. For $A \subset X$, set $\{B_i \in \mathcal{A}\}$ such that $\nu(B_i) \downarrow \mu(A)$, then it is easy to deduce that

$$\mathscr{A}\ni B=\bigcup_i B_i\supset A\quad \text{and}\quad \mu(B)=\mu(A).$$

Exercise 4: Show that if a function $f: \mathbb{R} \to \mathbb{R}$ is monotone, then it is Borel-measurable.

Proof: Only need to prove $\{f > t\}$ is Borel-measurable for $t \in \mathbb{R}$. Set $x = \sup\{x \mid f(x) \leq t\}$, then $\{f > t\}$ is either $[x, \infty)$ or (x, ∞) , which depends on f(x).

Exercise 5: Let μ be a measure on a set X, and $f_n, g_n, f, g \in L^1_\mu$.

- 1. Assume the following three properties:
 - $\mu\text{-almost}$ everywhere, $f_n\to f$ and $g_n\to g$ as $n\to\infty$
 - $|f_n| \leqslant g_n$ for all $n \geqslant 1$
 - $\int_{Y} g_n d\mu \to \int_{Y} g d\mu$ as $n \to \infty$

Show that $\int_X f_n d\mu \to \int_X f d\mu$ as $n \to \infty$.

2. Assume that μ -almost everywhere, $f_n \to f$ as $n \to \infty$. Show that

$$\int_{Y} |f_n - f| \, \mathrm{d}\mu \to 0 \quad \text{as} \ n \to \infty$$

if and only if

$$\int_X |f_n|\,\mathrm{d}\mu \to \int_X |f|\,\mathrm{d}\mu \quad \text{as} \ n\to\infty.$$

Proof:

1.

$$\begin{split} \int_X (g_n+g) \,\mathrm{d}\mu &= \int_X \liminf (g_n+g-|f_n-f|) \,\mathrm{d}\mu \\ &\leqslant \liminf \int_X (g_n+g-|f_n-f|) \,\mathrm{d}\mu \\ &= \int_X (g_n+g) \,\mathrm{d}\mu - \limsup \int_X |f_n-f| \,\mathrm{d}\mu \,. \end{split}$$

 $2. \implies |f_n - f| \geqslant ||f_n| - |f||. \iff Set g_n = |f_n| + |f|$ and use previous result.

Exercise 6: Interpret the monotone convergence theorem, Fatou's lemma, and the dominated convergence theorem in the context of the counting measure on \mathbb{N} , and deduce the corresponding statements about series.

Proof: Monotone convergence theorem: consider $\{a_{i,j} \in \mathbb{R}\}$ such that $\sum_j a_{i,j} < \infty$ for all $i \ge 1$ and $a_{i,j} \le a_{i+1,j}$ for all j, then

$$\sum_j a_{i,j} \uparrow \sum_j \lim_i a_{i,j}.$$

Fatou's lemma and dominated convergence theorem can be similar sentenced.

Exercise 7: Let μ be the Lebesgue measure on X = [0, 1], let ν be the counting measure on X, and let $D = \{(x, x) \mid x \in X\}$ be the diagonal in $X \times X$. Show that the three integrals

$$\int_X \left(\int_X \mathbf{1}_D(x,y) \, \mathrm{d}\nu(y) \right) \mathrm{d}\mu(x), \quad \int_X \left(\int_X \mathbf{1}_D(x,y) \, \mathrm{d}\mu(x) \right) \mathrm{d}\nu(y), \quad \text{and} \quad \int_{X \times X} \mathbf{1}_D \, \mathrm{d}(\mu \times \nu)$$

are all unequal.

Proof:

$$\begin{split} \int_X \left(\int_X \mathbf{1}_D(x,y) \, \mathrm{d}\nu(y) \right) \mathrm{d}\mu(x) &= \int_X 1 \, \mathrm{d}\mu(x) = 1, \\ \int_X \left(\int_X \mathbf{1}_D(x,y) \, \mathrm{d}\mu(x) \right) \mathrm{d}\nu(y) &= \int_X 0 \, \mathrm{d}\nu(y) = 0, \\ \int_{X\times X} \mathbf{1}_D \, \mathrm{d}(\mu\times\nu) &= \infty. \end{split}$$