# **Campus Recruitment Prediction Report**

Name: Eduardo Williams

Student Code: C0896405

**Date:** June 26, 2024

## Contents

| Dataset Selection                             | 3           |
|-----------------------------------------------|-------------|
| Dataset schema                                | 3           |
| Dataset factsheet                             | 4           |
| Data Preprocessing                            | 4           |
| Encoding                                      | 4           |
| StandardScaler                                | 5           |
| Splitting dataset                             | 5           |
| Selecting features                            | 5           |
| Model Selection, Train and Evaluation         | 5           |
| Logistic Regression                           | 6           |
| Support Vector Machine – SVC                  | 6           |
| K-Nearest Neighbors                           | 6           |
| Model Training                                | 6           |
| Grid Search Cross-Validation                  | 6           |
| Voting Classifier                             | 8           |
| Tables                                        |             |
| Table 1 Dataset Schema                        | 4<br>7<br>7 |
| Figures                                       |             |
| Figure 1 Logistic regression confusion matrix | 8           |

### **Dataset Selection**

The placement of students is one of the most important objectives of an educational institution. The model's main goal is to predict whether the student will be recruited in campus placements or not, based on the available factors in the dataset.

### Dataset was gotten from Kaggle:

https://www.kaggle.com/c/ml-with-python-course-project/data

#### Dataset schema

### Dataset had originally the following schema:

| Column name    | Туре    | Observation         |
|----------------|---------|---------------------|
| sl_no          | int64   | anonymous unique id |
| Gender         | int64   | categorical         |
| ssc_p          | float64 | numerical           |
| ssc_b          | object  | categorical         |
| hsc_p          | float64 | numerical           |
| hsc_b          | object  | categorical         |
| hsc_s          | object  | categorical         |
| degree_p       | float64 | numerical           |
| degree_t       | object  | categorical         |
| workex         | object  | categorical         |
| etest_p        | float64 | numerical           |
| specialisation | object  | categorical         |
| mba_p          | float64 | numerical           |
| status         | object  | TARGET              |
| salary         | float64 | numerical           |

Table 1 Dataset Schema

#### Dataset factsheet

| Description       | Value               |
|-------------------|---------------------|
| Rows              | 215                 |
| Columns           | 15                  |
| Target column     | status              |
| Target categories | Placed / Not Placed |

**Table 2** Dataset factsheet

# **Data Preprocessing**

This stage performs the following steps:

- Dealing with null values
  Null vales were found just in Salary column. They were replaced by zeroes.
- Removing duplicate rows
- Dropping useless columns

According to Kaggle **sl\_no** column is an anonymous unique id, therefore it is useless for analysis.

Additionally, Salary column was deleted.

## **Encoding**

Target column (status) was encoded according to Table 3:

| Label      | Value |
|------------|-------|
| Placed     | 1     |
| Not Placed | 0     |

**Table 3** Target encoding

One hot encoding was applied to **hsc\_s** and **degree\_t** categorical columns, since they had more than two possible values.

On the other hand, Label encoding was applied to **workex**, **ssc\_b**, **hsc\_b** and **specialization** categorical columns, since they had just two possible values.

#### StandardScaler

StandardScaler was applied to **ssc\_p**, **hsc\_p**, **degree\_p**, **etest\_p**, **mba\_p**, as they were numerical continuous columns.

### Splitting dataset

The dataset was split into **train** (70%) and **test** (30%) using **random\_state** parameter set to 42.

## Selecting features

RFE technique was used to determine the ten most relevant columns. According to this, those columns were: <code>gender</code>, <code>ssc\_p</code>, <code>hsc\_b</code>, <code>degree\_p</code>, <code>workex</code>, <code>specialisation</code>, <code>mba\_p</code>, <code>hsc\_s\_Arts</code> and <code>degree\_t\_Comm&Mgmt</code>. Therefore, <code>ssc\_b</code>, <code>etest\_p</code>, <code>hsc\_s\_Commerce</code>, <code>hsc\_s\_Science</code>, <code>degree\_t\_Others</code>, <code>degree\_t\_Sci&Tech</code> columns were dropped.

### Model Selection, Train and Evaluation

Since the target column was binary categorical, I considered the following models to approach this problem:

### Logistic Regression

This model was selected since it is highly suitable for binary classification problems.

### Support Vector Machine – SVC

Support Vector Machine has two models SVR and SVC, for regression and classification problems accordingly, so for this problem SVC was used. In addition, this model is suitable for small datasets.

### K-Nearest Neighbors

The KNN was chosen because it is one of the simplest models and has good performance when working with small datasets.

# **Model Training**

**Logistic regression** and **Support Vector Machine** models were fitted with their default parameters. However, **K-Nearest Neighbors** was fitted with **n\_neighbors** parameter set to 5.

Following metrics were generated upon perform predictions: r2\_score, mean\_absolute\_error, mean\_squared\_error, accuracy\_score, confusion\_matrix and classification\_report.

#### **Grid Search Cross-Validation**

After evaluating, Grid search cross-validation was performed with the following hyper-parameters:

### **Logistic regression**

| Hyper-parameter | Values                                 |
|-----------------|----------------------------------------|
| solver          | newton-cg, lbfgs, liblinear, sag, saga |
| penalty         | I1, I2, elasticnet, None               |
| С               | 0.001, 0.01, 0.1, 1, 10, 100           |

**Table 4** Logistic regression hyper-parameters

## **Support Vector Machine**

| Hyper-parameter | Values                       |
|-----------------|------------------------------|
| gamma           | 1, 0.1, 0.01, 0.001, 0.0001  |
| kernel          | rbf                          |
| С               | 0.001, 0.01, 0.1, 1, 10, 100 |

**Table 5** Support Vector Machine hyper-parameters

### **K-Nearest Neighbors**

| Hyper-parameter | Values                                  |
|-----------------|-----------------------------------------|
| n_neighbors     | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
|                 | 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, |
|                 | 24, 25, 26, 27, 28, 29                  |

Table 6 K-Nearest Neighbors hyper-parameters

As a result, Logistic regression was determined as the best model. However, it must be fitted with the following hyper-parameters:

| Hyper-parameter | Value     |
|-----------------|-----------|
| solver          | liblinear |
| penalty         | 12        |
| С               | 1         |

**Table 7** Logistic regression best hyper-parameters

With these hyper-parameters the following confusion matrix was gotten:



Figure 1 Logistic regression confusion matrix

# **Voting Classifier**

Finally, Voting Classifier was performed, however similar accuracy was gotten.