EECS 6895 Project Final Presentation

Stock Performance Prediction and Recommendation with Deep Learning Analysis

Jiaqing Chen (jc5657) Wannuo Sun (ws2591)

TABLE OF CONTENTS

01

Background & Goals

Literature review & Project timeline

03

Frontend Dashboard

02

System Design

Long-term trend prediction Next-day up/down prediction

04

Conclusion

Discussion, future enhancement

Background

Background

- An era of growing economy and financial inflation
- People always eager to earn money from stock
- Widely used big data & Al

- Stock price is influenced by multiple factors
- Stock is usually random walk
- Volume of data is significantly large

GOALS

The goal of our system is to comprehensively analyze stock and predict the stock price from both short-term and longterm view for a certain number of companies. With the help of the cutting-edge deep learning models, it could serve as a tool for investors to make their investment decisions.

Timeline Progress

Milestone 3

Data Collection & Basic model construction

Enlarge dataset & System Scale & Analysis Automation

Literature Survey

Financial analysis

Technical analysis: use pure historical data to predict stock market

Fundamental analysis: combine with financial factors like tweets and news

Time-series Deep Learning model

LSTM: -dependency reflection

-prediction accuracy

-smaller model update cycle

TCN: up-to-date genetic architecture

Sentiment in Behavior Economics

The nature of the market trend is impacted by sentiment analysis in the stock market.

Twitter: rich information about the companies

System Design

Supporting Dataset

Dow Jones Industrial Average (^DJI)

35,273.30 +31.71 (+0.09%)

Yahoo! Finance

Historical stock data (2018-2022): price & volumes

Calculate technical indicators

Twitter:

sntwitter.TwitterSearchScraper API (2018-2022): 60 tweets per day

Extract Sentiment

Methodology - Long-term Trend Prediction

Goal: Predict next 15 day stock price (For a long-term general trend)

Model: LSTM (3-layer with dropout) Predict on: Previous 30-day open price

Roll-over prediction: involve new prediction in next-day prediction

Performance:

Observe Prediction Trend vs. Actual Trend

Methodology - Next-day Up/Down Prediction

Data encoder: history driven + knowledge driven

- **stock price vector:** open, close, ...
- + technical indicators: Exponential Moving Average (EMA), Average Direction
 Index (ADX) ...
- + sentiment factors
 - VADAR model
 - Compound score >= 0.05 --> positive
 - Compound score <= -0.05 --> negative
 - O Positive proportion = #pos / (#pos + #neg)
 - O Negative proportion = #neg / (#pos + #neg)

Methodology - Next-day Up/Down Prediction

Goal: Predict whether the stock will go up or go down in the next day (For a short-term quick judgement)

Model: Self-made ensemble model

Model involvement: traditional machine learning models (ex. SVM), LSTM, TCN model

Voting decision: voted based on models with acc>75%;

Class definition:

 $y_i = \begin{cases} 1, & p_{i+n} \le p_i \times (1+\alpha) \\ 0, & p_{i+n} > p_i \times (1+\alpha) \end{cases}$ Performance: Different storm $p_i = p_i \times (1+\alpha)$ ction power due to stock's predictability

- Accuracy score: ~80% accuracy (at worst >60%)
- **Confusion Matrix**

Methodology - Next-day Up/Down Prediction

Model	Accuracy
KNN	0.7784
SVM	0.8352
Random Forest	0.8466
Logistic Regression	0.8125
Naive Bayes	0.7613
LSTM	0.8182
TCN	0.8636

Collective Prediction

Historical-driven trend prediction

- Period prediction => General trend for a 15-day window
- Investment plan

Up/Down class prediction

- Next-day prediction => Immediate up or down tomorrow
- Investment decision today

Stock	Current Price	Predicted Trend in 15 days	Up/Down in next day
AMZN	2297	22.6787	Up
SONY	84.43000030517578	16.097	Down
INTC	44.4900016784668	4.1981	Down
GOOG	2310.3798828125	4.1624	Up
csco	49.1500015258789	1.0209	Up
IBM	135.47000122070312	0.28200000000000003	Up
AAPL	156.00999450683594	-1.1186	Up
MSFT	274.80499267578125	-1.6162	Up
^GSPC	4128.169921875	-2.1418	Up
FB	207.33999633789062	-4.8091	Down
DELL	46.75	-7.2161	Down
TCEHY	44.400001525878906	-8.289399999999999	Down
HPQ	37.349998474121094	-9.4594	Down

Front-end Dashboard

Current analysis is for 12 technical companies:

Google, Meta, Amazon, Apple, Microsoft, IBM, Dell, Intel, Tencent, Cisco, Sony, HP

Two pages: Overview & Company stock details

Installation: (GitHub will be public soon)

clone https://github.com/amayaqing/stock-prediction-with-deep-learning-analysis.git

\$ python3 app.py

Automatically update to today's prediction when opening the dashboard

Overview

Stock Analysis and Prediction Overview

37.349998474121094

HPQ

Stock An	lalysis and Prediction Overview				
Stock	Current Price	Predicted Trend in 15 days	Up/Down in next	Up/Down in next day	
AMZN	2297	22.6787	Up		
SONY	84.43000030517578	16.097	Down		
INTC	44.4900016784668	4.1981	Down		
GOOG	2310.3798828125	4.1624	Up		
CSCO	49.1500015258789	1.0209	Up		
IBM	135.47000122070312	0.28200000000000003	Up		
AAPL	156.00999450683594	-1.1186	Up		
MSFT	274.80499267578125	-1.6162	Up		
^GSPC	4128.169921875	-2.1418	Up	The V	
FB	207.33999633789062	-4.8091	Down	1Y	
DELL	46.75	-7.2161	Down	5000	
TCEHY	44.400001525878906	-8.28939999999999	Down		

Down

-9.4594

Company Stock Interested

TCEHY

Up/Down Prediction under different models

Model Up/Down prediction Accuracy TCN 0.8060606060606059 Down LSTM 0.8 Up Random Forest 0.8 Down Logistic Regression 0.7939393939393941 Down SVM 0.8060606060606059 Down Naive Bayes 0.7151515151515152 Down KNN

TCEHY

Prediction Price

Company Stock Details

Select the company stock interested

Related Tweets

System is easily scalable!

Six Company stock

["GOOG", "FB", "AMZN", "MSFT", "AAPL", "IBM"]

Twelve company → stocks

["GOOG", "FB", "AMZN", "MSFT",
"AAPL", "IBM", 'DELL', 'SONY', 'INTC',
'TCEHY', 'HPQ', 'CSCO']

Future: More...

This system serves as a start

Conclusion

Conclusion

- Build a system that comprehensively analyze and predict the stock price from both short-term and long-term view
- Historical-driven & Knowledge driven
- Easily scalable system --> serve for future extension

Discussion and Possible Future enhancement

- More twitter could be better
- More twitter involvement if any better way
- More element-driven, ex. company correlation, financial report......

References

- [1] X. Zhou, Z. Pan, G. Hu, S. Tang and C. Zhao, "Stock Market Prediction on High-Frequency Data Using Generative Adversarial Nets," Mathematical Problems in Engineering, pp. 1-11, 2018.
- [2] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient Estimation of Word Representations in Vector Space," ArXiv:1301.3781, 2013.
- [3] J. Pennington, R. Socher and C. D. Manning, "GloVe: Global Vectors for Word Representation," in Empirical Methods in Natural Language Processing (EMNLP), 2014.
- [4] S. Deng, N. Zhang, W. Zhang, J. Chen, J. Z. Pan and H. Chen, "Knowledge-Driven Stock Trend Prediction and Explanation via Temporal Convolutional Network," Companion Proceedings of The 2019 World Wide Web Conference, 2019.
- [5] X . Ding, Y. Zhang, T. Liu and J. Duan, "Deep Learning for Event-Driven Stock Prediction," in Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
- [6] S. Bai, J. Z. Kolter and V. Koltun, "An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling," ArXiv:1803.01271, 2018.
- [7] J. Liu, Z. Lu and W. Du, "Combining Enterprise Knowledge Graph and News Sentiment Analysis for Stock Price Prediction," in Hawaii International Conference on System Sciences, 2019.
- [8] J. Bollen, H. Mao and X. Zeng, "Twitter mood predicts the stock market," Journal of Computational Science, vol. 2, pp. 1-8, 2011.
- [9] W. Xu, W. Liu, C. Xu, J. Bian, J. Yin and T. Liu, "REST: Relational Event-driven Stock Trend Forecasting," ArXiv:2102.07372, 2021.
- [10] T. Lin, T. Guo. and K. Aberer, "Hybrid neural networks for learning the trend in time series." In Proceedings of the twenty-sixth international joint conference on artificial intelligence, no. CONF, pp. 2273-2279. 2017.
- [11] J. Bollen, H. Mao and X. Zeng, "Twitter mood predicts the stock market," Journal of Computational Science, vol. 2, pp. 1-8, 2011.
- [12] A. A. Ariyo, A. Adewumi and C. Ayo, "Stock Price Prediction Using the ARIMA Model," in UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 2014.

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**