Combinatorial Optimization

Dozent: Stephan Held

November 15, 2022

Contents

0	Org	ganization	2
1	Matchings		2
	1.1	Introduction	2
	1.2	Bipartite Matching	4
	1.3	The Tutte Matrix & Randomized Matching	5
	1.4	Tutte's Matching Theorem	6
	1.5	Ear Decompositions of Factor-Critical Graphs	8
	1.6	Edmond's Matching Algorithm	10
		1.6.1 Growing forest - $O(n^3)$	12
	1.7	Gallai-Edmonds Decomposition	15
	1.8	Minimum Weight Perfect Matching	16

0 Organization

- Prerequisites
 - Basic knowledge of graph algorithms
 - Linear Programming (LP Duality)
 - Programming skills in C++

• Exam

- Qualification requires 50% of the points in theoretical & programming exercises
- Oral exam

• Books

- "Combinatorial Optimization", Korte & Vygen
- "Understanding & Using Linear Programming", B. Gärtner, J. Matouset
- Skript (theorems & definitions)
- Further book recommendations are on the website

1 Matchings

1.1 Introduction

Definition 1.1.

- 1. A matching M in a graph G = (V, E) is a set of pairwise disjointed edges, i.e. they don't have a common endpoint.
 - $\nu(G) := \max$ cardinality of a matching in G
- 2. An edge cover C of a graph G = (V, E) is a subset of E s.t. $V = \bigcup_{e \in C} e$. $\zeta(G) := \min$ cardinality of an edge cover in G
- 3. A matching is called *perfect* (or 1-factor) if it is an edge cover
- 4. $v \in V$ with $v \in e \in M$ is called M-covered
- 5. $v \in V$ is called *M-exposed* if it is not *M*-covered

Definition 1.2.

- 1. A stable set (independent set) S is a set of pairwise non-adjacent vertices.
 - $\alpha(G) := \max$ cardinality of a stable set

2. A vertex cover C is a subset of V s.t. $E = \bigcup_{\{x,y\} \in E, x \in G} \{x,y\}$ $\tau(G) := \min$ cardinality of a vertex cover

Lemma 1.3.

1.
$$\alpha(G) + \tau(G) = |V|$$

- 2. $\nu(G) + \zeta(G) = |V|$ if G has no isolated vertices
- 3. $\zeta(G) = \alpha(G)$ if G is bipartite and has no isolated vertices

Problem. Cardinalty Matching Problem

Input: Graph G = (V, E)

Task: Find a maximum cardinality matching

Problem. Maximum Weight Matching Problem (MWMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a matching M maximizing c(M)

Problem. Minimum Weight Perfect Matching (MWPMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a perfect matching of minimum weight or decide that no perfect matching exists in G

Lemma 1.4. The MWMP is equivalent to the MWPMP (i.e. there exists a transformation with linear complexity)

Proof. Given a MWPMP instance (G, c), define c' := K - c $(K := 1 + \sum_{e \in E} |c(e)|)$.

- \Rightarrow Any maximum weight matching is a maximum cardinality matching Given a MVMP instance (G, c), define G' as 2 copies of G where the 2 copies of a vertex are joined by an edge.
- \Rightarrow G' has a perfect matching. Define:

$$c'(e) := \begin{cases} -c(e) & \text{if } e \text{ is in the first copy} \\ 0 & \text{else} \end{cases}$$

A minimum weight perfect matching in G' gives us a maximum weight matching in G.

Definition 1.5. Let G = (V, E) be a graph and $M \subseteq E$ a matching in G. A path P is M-alternating if its edges are alternatingly in and not in M. If both end points of this path are M-exposed, P is an M-augmenting path.

Lemma 1.6. Given a matching M in G and an inclusion-wise maximal M-alternating path P,

$$M\Delta P \coloneqq M \setminus P \cup P \setminus M$$

is a matching. If P is M-augmenting, then $|M\Delta P| = |M| + 1$.

Figure 1: Example of the construction in Theorem 1.8

Theorem 1.7 (Petersen 1891, Berge 1957). Augmenting Path Theorem Given a graph G = (V, E) and a matching M in G:

$$|M| = \nu(G) \Leftrightarrow \not\exists M$$
-augmenting path P in G

Proof.

"⇒": Clear

"\(\phi\)": Assume there exists a matching M' with |M'| > |M|. Let $G' := (V, M\Delta M')$.

 $\Rightarrow |\delta_{G'}(v)| \leq 2 \ \forall v \in V$

 \Rightarrow G' is the union of disjoint circuits and paths

 \Rightarrow all circuits are even and have the same number of edges from M and M'

 $\Rightarrow \exists$ a path P in G' starting and ending with an edge in M'

 $\Rightarrow P$ is an alternating path

1.2 Bipartite Matching

Theorem 1.8 (König 1931). If G is bipartite, then $\nu(G) = \tau(G)$

Proof. Add vertices s and t edges between them to all vertices of the respective partition. Direct all edges from s to t. Then $\nu(G)$ is maximum number of disjoint s-t-paths. Menger \Rightarrow This is equal to the minimum number of vertices that disconnect t from s.

Theorem 1.9 (Hall 1935). Let $G = (A \dot{\cup} B, E)$ be a bipartite graph. Then:

G has a matching covering $A \Leftrightarrow |\Gamma(X)| \geq |X| \quad \forall X \subseteq A$

Corollary 1.10. Marriage Theorem

$$|\Gamma(X)| \ge |X| \ \forall X \subseteq A \ and \ |A| = |B| \Leftrightarrow G \ has \ a \ perfect \ matching$$

Definition 1.12. The MWPMP for bipartite graphs is called *Assignment Problem*.

Theorem 1.13. The Assignment Problem can be solved in time $O(nm + n^2 \log m)$.

Proof. Use the Successive Shortest Paths algorithm in an auxiliary graph. $\hfill\Box$

1.3 The Tutte Matrix & Randomized Matching

Definition 1.14. Let G be a simple, undirected graph. Let G' be an orientation of G and $(X_e)_{e \in E(G)}$. The *Tutte matrix* is defined as

$$T_G(X) := (T_{vw}^*)_{v,w \in V(G)}$$

where

$$t_{vw}^* := \begin{cases} X_{\{v,w\}} & \text{if } (v,w) \in E(G) \\ -X_{\{v,w\}} & \text{if } -(v,w) \in E(G) \\ 0 & \text{else} \end{cases}$$

Remark 1.15. $T_G(X)$ is shew-symmetric (i.e. $T_G(X) = -(T_G(X))^t$). rank $(T_G(X))$ is independent of the orientation of G. det $(T_G(X))$ is a polyomial in X.

Theorem 1.16 (Tutte). A simple graph G has a perfect matching $\Leftrightarrow \det(T_G(X)) \neq 0$

Proof. Let $V(G) = \{v_1, \dots, v_n\}$ and S_n be the permutation group.

$$\det T_G(X) = \sum_{\pi \in S_n} \operatorname{sgn} \pi \cdot \prod_{i=1}^n t_{v_i, v_{\pi(i)}}^*$$

Let $S'_n := \{ \pi \in S_n \mid \prod_{i=1}^n t^*_{v_i, v_{\pi_i}} \neq 0 \}$. Each $\pi \in S_n$ corresponds to a digraph $H_{\pi} := (V(G), \{(v_i, v_{\pi(i)}) \mid i \in [n]^1\})$. We have $|\delta^+(v) = 1 = |\delta^-(v)|| \quad \forall v \in V(H_{\pi}) \Rightarrow H_{\pi}$ is the union of disjoint circuits. If $\pi \in S'_n$, then $H_{\pi} \subset G'$.

If there exists $\pi \in S'_n$ s.t. H_{π} is a collection of even circuits, then this immediately yields a perfect matching in G (using every second edge of each circuit).

Otherwise, $\forall \pi \in S'_n$, H_{π} contains an odd circuit. Let $r(\pi) \in S'_n$ arise from π by reversing edges on the unique odd circuit containing a vertex with minimum index $\Rightarrow r(r(\pi)) = \pi$ and $\operatorname{sgn}(\pi) = \operatorname{sgn}(r(\pi))$. The second part is true since for reversing an odd cycle, we need an even number of swaps. Let $v_{i_1}, \ldots, v_{i_{2k+1}}$ be the "first" odd circuit. Then $r(\pi)$ is attained by 2k swaps: For $j = 1, \ldots, k$ swap $(\pi(i_{2j-1}), \pi(i_{2k}))$ and $(\pi(i_{2j}), \pi(i_{2k+1}))$.

¹This is an abbreviation for $\{1, \ldots, n\}$.

 $\prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = -\prod_{i=1}^n t_{v_i v_{r(\pi(i))}}^*$ since there is an odd number of sign changes to t^* . $\Rightarrow \det(T_G(X)) = 0$. We have shown that if G has no perfect matching, then $\det T_G(X) = 0$.

Assume that G has a perfect matching M. Define π as $\pi(i) = j, \pi(j) = i$ where $\{i, j\} \in M$. $\Rightarrow \prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = \prod_{e \in M} -X_e^2$ cannot be canceled out. In particular, $\det T_G(X) \neq 0$.

Remark 1.17. Picking $X' \in [0,1]^{E(G)}$ at random, we almost surely have (since the zero set of a non-zero polynomial is a set of measure zero):

$$\det T_G(X') \neq 0 \Leftrightarrow G$$
 has a perfect matching

Theorem 1.18 (Lovász 1979). Let G be a simple graph and $X \in [0,1]^{E(G)}$ chosen randomly. Then almost surely $\operatorname{rank}(T_G(X)) = 2\nu(G)$.

1.4 Tutte's Matching Theorem

Let $X \subseteq V(G)$. G - X consists of even and odd (in terms of the number of vertices) connected components. We define $q_G(X)$ to be the number of odd components in G - X.

Definition 1.19. A graph G satisfies the Tutte Condition if $q_G(X) \leq |X|$ for all $X \subseteq V(G)$. $\emptyset \neq X \subseteq V(G)$ is called barrier if $q_G(X) = |X|$.

Proposition 1.20. For any graph G and any $X \subseteq V(G)$:

$$q_G(X) - |X| \equiv |V(G)| \mod 2$$

Definition 1.21. A graph G is factor-critical if G-v has a perfect matching for all $v \in V(G)$. A matching is called near-perfect if it covers |V(G)| - 1 vertices.

Proposition 1.22. If G is factor-critical, then it is connected.

Theorem 1.23 (Tutte 1947). A graph G has a perfect matching \Leftrightarrow Tutte Condition holds (i.e. $q_G(X) \leq |X| \ \forall X \subseteq V(G)$)

Proof.

"⇒": Clear

"\(= \)": We proceed by induction on |V(G)|. The case |V(G)| = 2 is clear.

Generally, if the Tutte Condition holds, then |V(G)| must be even (pick $X = \emptyset$). Proposition $1.20 \Rightarrow q_G(X) - |X|$ is even. Every $x \in V(G)$ induces a barrier $\{x\}$. Let X be a maximum barrier. Then G - X doesn't have any even components (since otherwise a single vertex of such a component could be added to X).

Claim: Each odd component is factor-critical.

Let C be an odd component in G-X, $v \in V(C)$. Assume that C-v does not have a perfect matching. Induction Hypothesis $\Rightarrow C-v$ violates Tutte Condition.

$$\begin{array}{l} \Rightarrow \exists Y \subseteq V(C-v): q_{C-v}(Y) > |Y| \\ \stackrel{1.20}{\Rightarrow} q_{C-v}(Y) \geq |Y| + 2 \\ \text{Observe } X \cap \{v\} = Y \cap \{v\} = X \cap Y = \emptyset: \end{array}$$

$$q_G(X \cup Y \cup \{v\}) = q_G(X) - 1 + q_C(Y \cup \{v\})$$

$$= |X| - 1 + q_{C-v}(Y)$$

$$\ge |X| - 1 + |Y| + 2$$

$$= |X \cup Y| + 1$$

$$= |X \cup Y \cup \{v\}|$$

 $\Rightarrow X \cup Y \cup \{v\}$ is a barrier

 \Rightarrow Claim

Let G' arise from G by contracting each odd component into a single vertex. We have $V(G') = X \dot{\cup} Z$ and G' is bipartite. We have to show that G' has a perfect matching. If not, then $\exists A \subseteq Z : |\Gamma_{G'}(A)| < |A| \Rightarrow q_G(\Gamma_{G'}(A)) \geq |A| > |\Gamma_{G'}(A)|$ which contradicts the Tutte Condition.

Theorem 1.24 (Berge 1958).

$$|V(G)| = 2\nu(G) + \max_{X \subseteq V(G)} (q_G(X) - |X|)$$

Proof. For $X \subseteq V(G)$, any matching has at least $q_G(X) - |X|$ uncovered vertices, so " \geq " holds.

For the other inequality, add $k := \max_{X \subseteq V(G)} (q_G(X) - |X|)$ new vertices and connect them to all existing vertices, yielding a new graph H.

We claim that H has a perfect matching. This then implies:

$$2\nu(G) + k > 2\nu(H) - k = |V(H)| - k = |V(G)|$$

Assume that H does not have a perfect matching. Then by Tutte's Theorem, there exists $Y \subseteq V(H)$ with $q_H(Y) > |Y|$. By 1.20, $k \equiv |V(G)| \mod 2$, therefore |V(H)| is even, so $Y \neq \emptyset$. Y must contain all new vertices, otherwise H - Y would be connected² and $q_H(Y) \leq 1 \leq |Y|$.

$$\Rightarrow q_G(Y \cap |V(G)|) = q_H(Y) > |Y| = |Y \cap V(G)| + k$$

which is a contradiction to the choice of k.

²Note that Y cannot contain all old vertices, since otherwise $q_H(Y) < |Y|$.

1.5 Ear Decompositions of Factor-Critical Graphs

Definition 1.25. Let G be a graph. An ear decomposition of G is a sequence r, P_1, \ldots, P_k with $G = (r, \emptyset) + P_1 + \ldots + P_k$ such that each P_i is either a path with exactly the endpoints located in $\{r\} \cup \bigcup_{j \in [i-1]} V(P_j)$ or a circuit where exactly one of the vertices belongs to $\{r\} \cup \bigcup_{j \in [i-1]} V(P_j)$.

 P_1, \ldots, P_k are called *ears*. If $|V(P_1)| \geq 3$ and P_2, \ldots, P_k are paths we call it a *proper* ear decomposition.

Theorem 1.27 (Whitney 1932). Let G be an undirected graph. Then:

G 2-connected $\Leftrightarrow G$ has a proper ear decomposition

Definition 1.28. An ear decomposition is *odd* if every ear has odd length (in terms of the number of edges).

Theorem 1.29. Let G be an undirected graph. Then

G factor-critical $\Leftrightarrow G$ has an odd ear decomposition

The first vertex r of the ear decomposition can be chosen arbitrarily.

Proof.

- "\(\infty\)": Let G be a graph with an odd ear decomposition r, P_1, \ldots, P_k . P_1 is an odd circuit, so it is factor-critical. We use induction on the number of ears. Let P be the last ear and G' be G before adding P. By the induction hypothesis, G' is factor-critical. Given $v \in V(G)$, we have to show that G v has a perfect matching.
 - Case 1: $v \in V(G')$. Then G' v has a perfect matching. Adding every second edge of P (excluding the endpoints) to it, yields a perfect matching of G v.
 - Case 2: $v \in V(G) \setminus V(G')$. Let x, y be the endpoints of P. Without loss of generality let $P_{[v,x]}$ be even. There exists a perfect matching in G' x. Together with every second edge of $P_{[v,y]}$ and $P_{[v,x]}$ this is a perfect matching in G v.
- " \Rightarrow ": Let $r \in V(G)$ be any vertex. Let M be a perfect matching in G r. Suppose we have an odd ear decomposition for $G' \subseteq G$ with $r \in V(G')$ and $M \cap E(G')$ is a near-perfect matching in G' (i.e. all vertices in G' except for r are matched with other vertices in G').
 - If $G' \neq G$, there is an edge $\{x,y\} \in E(G) \setminus E(G')$ with $x \in V(G')$ (by Proposition 1.22). If $y \in V(G')$, then $\{x,y\}$ can be chosen as the next ear. Otherwise, construct an M-alternating odd ear, starting with $\{x,y\}$. Let N be a matching in G-y. $M\Delta N$ contains a y-r-path P. Let w be the first vertex in $P \cap V(G')$. w is M-exposed in $P_{[y,w]}$, y is

N-exposed in $P_{[y,w]}$. Therefore $P_{[y,w]}$ is even and together with $\{x,y\}$ it forms an M-alternating odd ear.

Inductively, this argument yields an odd ear decomposition.

Definition 1.30. Let G be factor-critical and M a near-perfect matching. An M-alternating ear decomposition is an odd ear decomposition such that each ear is an M-alternating path or circuit C with:

$$|E(C) \cap M| = |E(C) \setminus M| - 1$$

Corollary 1.31. For any factor-critical graph G and any near-perfect matching M in G, there exists in M-alternating ear decomposition of G.

Definition 1.32. Let G be factor-critical, M a near-perfect matching and r, P_1, \ldots, P_k an M-alternating ear decomposition of G. $\mu, \varphi : V(G) \to V(G)$ are associated with the ear decomposition if:

- $\{x,y\} \in M \Rightarrow \mu(x) = y$
- $\{x, y\} \in E(P_i) \setminus M \text{ and } x \notin \{r\} \cup \bigcup_{j \in [i]} V(P_j)$ $\Rightarrow \varphi(x) = y$
- $\mu(r) = \varphi(r) = r$

Proposition 1.33. Let G be a factor-critical graph and μ, φ functions associated with an M-alternating ear decomposition. Then this ear decomposition is unique up to the order of the ears. The Ear-Decomposition-Algorithm correctly determines an explicit list of the ears in linear time.

Proof. Step 3 determines ears uniquely. The algorithm clearly runs in linear time. $\hfill\Box$

Lemma 1.34. Let G be factor-critical and μ, φ associated with an M-alternating ear decomposition. Then the maximal path given by the initial sequence

$$x, \mu(x), \varphi(\mu(x)), \mu(\varphi(\mu(x))), \dots$$
 (1)

defines an M-alternating x-r-path of even length.

Proof. We proceed by induction on the number of ears. Let $x \in V(G) \setminus \{r\}$ and P_i be the ear containing x. A subsequence of (1) is a subpath Q of P_i from x to $y \in \{r\} \cup \bigcup_{j \in [i-1]} V(P_j)$. Q starts with a matching edge and ends with a non-matching edge, so it has even length. If y = r, we are done, otherwise the statement follows from the induction hypothesis.

1.6 Edmond's Matching Algorithm

Definition 1.35. Let G be a graph, M a matching in G. A blossom in G with respect to M is a factor-critical subgraph of B of G such that $|M \cap E(B)| = \frac{|V(B)|-1}{2}$. The vertex $r \in V(B)$ that is exposed by M is called the base of B.

Definition 1.36. Let G be a graph, M a matching in G, B a blossom and Q a M-alternating v-r-path of even length from $v \in V(G)$ that is M-exposed to the base r of B. Additionally, let $E(Q) \cap E(B) = \emptyset$. B + Q is called a M-flower.

Lemma 1.37. Let G be a graph, M a matching in G. Suppose there is a M-flower B+Q. Let G', M' result from G and M by contracting V(B) into a single vertex. Then:

M maximum matching in $G \Leftrightarrow M$ maximum matching in G'

Proof.

"\(\infty\)": Assume that M is not maximum in G. $N := M\Delta E(Q)$ is a matching with |N| = |M|. $\Rightarrow \exists N$ -augmenting path P in G. At least one endpoint x of P is in V(B). If P and B are disjoint, let y be the other endpoint of P. Otherwise, let y be the first vertex on P in B. $P' := P_{[x,y]}$ is an N'-augmenting path in G', so $|N'| = |M'| < \mu(G')$.

"⇒": Assume that M' is not maximum in G', so there exists a matching N' in G' with |N'| > |M'|. Let N_0 arise from N' in G, then N_0 contains ≤ 1 vertex from V(B). Since B is factor-critical, N_0 can be extended by $k := \frac{|V(G)|-1}{2}$ edges to a matching N in G. We have

$$|N| = |N_0| + k = |N'| + k > |M'| + k = |M|$$

so M is not maximum.

Lemma 1.39. Let G be a graph, M a matching in G. $X \subseteq V(G)$ is the set of exposed vertices. We can find a shortest M-alternating X-X-walk of positive length in O(|E(G)|) time.

Proof. Define D := (V(G), A) where:

$$A := \{(u, v) \mid \exists x \in V(G) : \{u, x\} \in E(G), \{x, v\} \in M\}$$

A shortest $X - \Gamma_G(X)$ -path in D corresponds to a shortest X-X-walk in G.

Theorem 1.40. Let $P = v_0, \ldots, v_t$ be a shortest M-alternating X-X-walk in G. Then either

- \bullet P is an M-augmenting path or
- v_0, \ldots, v_j is an M-flower for some $j \leq t$.

Proof. If P is not a path, choose i < j such that $v_i = v_j$ and j minimal. Then v_0, \ldots, v_{j-1} are distinct vertices. If j - i is even, deleting v_{i-1}, \ldots, v_j from P yields a shorter walk, so j - i is odd.

Case 1: j is even. Then i is odd and therefore $v_{i+1} = v_{j-1}$ must be the matching mate of $V_i = v_j$ which contradicts the minimality of j.

Case 2: j is odd. Then i is even, so v_0, \ldots, v_i is an M-alternating path of even length and v_i, \ldots, v_j is an M-alternating odd circuit, i.e. a blossom.

Algorithm 1: Edmond's Augmenting Path Search

```
Input: Graph G, matching M
   Output: An M-augmenting path (if one exists)
1 X := \text{set of exposed vertices}
2 if \exists M-alternating X-X-walk of positive length then
       P = v_0, \dots, v_t := a \text{ shortest such walk}
      if P is a path then
 4
       \mid return P
 5
      else
 6
          Choose j as in Theorem 1.40
 7
          v_0, \ldots, v_i is an M-flower with blossom B
 8
          Recurse on G/B
 9
10
          Augment an M/B-augmenting path in G/B to an
           M-augmenting path P' in G
          return P'
11
12 else
    \not\exists M-augmenting path
```

Theorem 1.41. Given a graph G, a maximum cardinality matching can be found in time $O(n^2m)$ where n := |V(G)|, m := |E(G)|

Proof. Start with $M = \emptyset$ and iteratively find M-augmenting path P, set $M := M\Delta E(P)$. If no such path exists, then M is maximum. P can be

found in time $O(mn)^3$. Since M is maximum after at most $\frac{n}{2}$ augmentation, we have total running time $O(n^2m)$.

1.6.1 Growing forest - $O(n^3)$

Definition 1.42. Let G be a graph, M a matching in G. An alternating forest with respect to M in G is a forest F in G where:

- V(F) contains all M-exposed vertices, each tree of F contains exactly one exposed vertex, its root.
- We call $v \in V(G)$ an outer (inner) vertex if it has even (odd) distance from the root of its component.
- $\forall v \in V(F)$ the unique path from v to the root of its component is M-alternating.
- $v \in V(G) \setminus V(F)$ is called *out-of-forest*.

Clearly, inner vertices always have degree 2 (we always assume that there are no matching edges that can immediately be added to F).

Proposition 1.43. In any alternating forest, the number of outer vertices that are not the root equals the number of inner vertices.

Proof. For all outer vertices, there exists exactly one inner vertex on its path to the root. \Box

Lemma 1.44. Given a graph G, a matching M, an alternating forest F with respect to M in G. Then, either M is a maximum matching or \exists outer vertex $x \in V(F)$, an edge $\{x,y\} \notin E(F)$ such that one of the following holds:

- Grow: $y \notin V(F)$ and therefore $\{y, z\} \in M$ with $z \notin V(F)$. In this case, y, z and $\{x, y\}, \{y, z\}$ can be added to F.
- Augment: y is an outer vertex in a different connected component in F. In this case, M can be augmented along $P(x) \cup \{x,y\} \cup P(y)$ where P(z) denotes the unique path from $z \in V(F)$ to the root of its connected component.
- Shrink: y is an outer vertex in the same component as x. Let r be the first vertex on P(x) that is also on P(y). Then $|\delta_F(r)| \geq 3$, so y is an outer vertex and $|E(F_{[x,r]})|$, $|E(F_{[y,r]})|$ are even. Together with $\{x,y\}$ these paths form a blossom with ≥ 3 vertices.

 $^{^{3}}$ Here, m is the time required for finding a walk and the recursion depth is bounded by n.

Proof. We show that if none of these cases apply, M is maximum. Let X be the set of inner vertices, s := |X| and t be the number of outer vertices. All outer vertices are isolated in G - X, so G - X and $q_G(X) - |X| = t - s$. By Berge's formula (1.24), t - s vertices are exposed by any matching, so M is maximum.

Definition 1.45. Let G be a graph, M a matching in G. A subgraph F of G is a general blossom forest with respect to M if there exists a partition $V(F) = V_1 \dot{\cup} \dots \dot{\cup} V_k$ such that $F_i = F[V_i]$ is a maximal factor-critical subgraph of F with $|M \cap E(F_i)| = \frac{|V_i|-1}{2}$ $(i \in [k])$ and after contracting each V_i , we obtain an M-alternating forest F'. F_i is called an outer (inner) blossom if V_i is an outer (inner) vertex in F'.

A *special blossom forest* is a general blossom forest where each inner blossom is a single vertex.

Store a special blossom forest with 3 functions $\mu, \varphi, \rho : V(G) \to V(G)$:

$$\mu(x) \coloneqq \begin{cases} x & \text{if } x \text{ is exposed in } M \\ y & \text{if } \{x,y\} \in M \end{cases}$$

$$\varphi(x) \coloneqq \begin{cases} x & \text{if } x \text{ is the base of an outer blossom or } x \text{ is out-of-forest} \\ y & \text{if } x \text{ is an inner vertex and } \{x,y\} \in E(F) \setminus M \\ y & \text{if } x \text{ is an outer vertex (i.e. in an outer blossom)} \\ & \text{and } \mu, \varphi \text{ are associated with an } M\text{-alternating} \\ & \text{ear decomposition of } x\text{'s blossom, } \{x,y\} \in E(F) \setminus M \end{cases}$$

$$\rho(x) \coloneqq \begin{cases} x & \text{if } x \text{ is an inner vertex or out-of-forest} \\ y & \text{if } x \text{ is an outer vertex and } y \text{ is the base of the outer blossom containing } x \text{ } (y = x \text{ is possible}). \end{cases}$$

Proposition 1.46. Let F be a special blossom forest with respect to M and μ, φ, ρ as above. Then:

- 1. For all outer vertices x, $P(x) := maximal path given by subsequence of <math>x, \mu(x), \varphi(\mu(x)), \mu(\varphi(\mu(x))), \dots$ is an M-alternating path from x to q where q is the root of the component containing x.
- 2. A vertex x is
 - an outer vertex $\Leftrightarrow \mu(x) = x \lor \varphi(\mu(x)) \neq \mu(x)$
 - an inner vertex $\Leftrightarrow \varphi(\mu(x)) = \mu(x) \land \varphi(x) \neq x$
 - out-of-forest $\Leftrightarrow \mu(x) \neq x \land \varphi(x) = x \land \varphi(\mu(x)) = \mu(x)$

Proof.

- 1. By definition of μ , φ and lemma 1.33 some initial subsequence of P(x) ends at the base r of the blossom containing x. If r=q, we are done. Otherwise $\mu(r)$, $\varphi(\mu(r))$ are next elements in a sequence leading to outer vertex $\varphi(\mu(r))$. This can be iterated.
- 2. Since the conditions are mutually exclusive, it suffices to show one implication for all the statements.
 - If x is outer, it is a root $(\mu(x) = x)$ or P(x) is a path of length at least 2, so $\varphi(\mu(x)) \neq \mu(x)$.
 - If x is inner, then $\mu(x)$ is the base of an outer blossom. Therefore $\varphi(\mu(x)) = \mu(x)$. $P(\mu(x))$ is a path of length at least 2, so $\varphi(x) \neq x$.
 - If x is out-of-forest, then x is covered by M so $\mu(x) \neq x$. By definition of φ , $\varphi(x) = x$. $\mu(x)$ is out-of-forest as well, so $\varphi(\mu(x)) = \mu(x)$.

Lemma 1.47. Following invariants hold:

a) $\{\{x, \mu(x)\} \mid x \in V(G), \mu(x) \neq x\}$ is a matching

 $b) \ \{\{x,\mu(x)\} \mid \underbrace{x \in V(G), \varphi(\mu(x)) = \mu(x) \land \varphi(x) \neq x} \} \cup \{\{x,\varphi(x)\} \mid x \in V(G), \varphi(x) \neq x\} \ forms \ the \ edge \ set \ of \ a \ special \ blossom \ forest.$

c) μ, φ, ρ satisfy the conditions in definition 1.45 (special blossom forest).

Proof. a) holds as μ only changes in *Augment*. b) is correct after initialization and after the reset in the *Augment* step. It is preserved by *Grow* steps.

In a Shrink step, r (the first vertex that the paths from x,y to the root share) is a root or has $|\delta(r)|=3$ (i.e. it is the base of a blossom), so it is an outer vertex. We define a blossom $B:=\{v\in V(G)\mid \varphi(v)\in V(P(x)_{[x,r]})\cup V(P(y)_{[y,r]})\}$. Consider $\{u,v\}\in F$ with $u\in B,v\notin B$. If $\{u,v\}\in M$, we have $u=r,v=\mu(r)$ (since F[B] contains a near-perfect matching). u was an outer vertex before shrinking and F[B] being factor-critical follows from c) and the characterization by ear-decompositions.

For c), it's clear that μ always represents a matching. $\varphi(x) = x$ if x is not an outer vertex. Therefore, $\mu + \varphi$ represent an M-alternating ear decomposition of B. During Shrink, $\varphi(v)$ is not changed if $\varphi(v) = r$. Therefore, the odd ear decomposition for B' := blossom containing r, is the correct starting point. The next ear is $P(x)_{[x,x']} \cup P(y)_{[y,y']} + \{x,y\}$, where x'(y') is the first vertex in B' on $P(x)_{[x,r]}$ ($P(y)_{[y,r]}$).

For each ear Q of a former blossom $B'' \subseteq B$, $Q \setminus (E(P(x)) \cup E(P(y)))$ form a new ear (since it is created by removing an even path). φ , μ represent this ear-decomposition.

Theorem 1.48. Edmond's cardinality matching algorithm correctly determines a maximum matching in $O(n^3)$ time, where n := |V(G)|.

Proof. By lemma 1.47 and proposition 1.46, the algorithm maintains a special blossom forest. Let M, F be the final matching and forest. x an outer vertex implies that $\forall y \in \Gamma(x) : y$ is inner and $\varphi(y) = \varphi(x)$. Define:

B := set of inner verticesB := set of bases of (outer) blossoms

Then every unmatched vertex is in B. Matched vertices in B have matching mates in X and |B| = |X| + |V(G)| - 2|M|. (Outer) blossoms are odd connected components in G - X, so by Berge's theorem (1.24), at least |B| - |X| vertices remain uncovered by any matching, so M is maximum.

We now consider the running time: The status (outer, inner, out-of-forest) for a given vertex can be checked in constant time (proposition 1.46). Therefore, Grow, Augment and Shrink can be implemented in O(n) time. There are at most n calls to Grow and Shrink per augment and at most $\frac{n}{2}$ Augments. This implies the running time $O(n^3)$.

Remark 1.49. The time for Shrink can be reduced to $O(\log n)$ using a binary tree, leading to a running time of $O(nm\log n)$ in total. Tarjan (1974), Gabow & Tarjan (1983) proved a running time of $O(nm\alpha(m,n))$ (where α is the inverse Ackermann function) or O(nm).

Remark 1.50. It's not necessary to reset everything after augmenting. It suffices to reset the 2 trees that were changed by the augmentation. Gabow & Tarjan (1983) showed that it's possible to augment all paths of the same length in O(m) time. There are $2\sqrt{\nu(G)} + 2$ different path lengths, so in total this results in a running time of $O(\sqrt{nm})$.

Remark 1.51 (Skew-symmetric flows). Goldberg & Karzanov (2003) (and Fremuth-Pagen & Jungnickel (2003)) used Generalized Max-Flow to achieve a running time of $O(\sqrt{n}m\frac{\log\frac{m}{n}}{\log n})$.

1.7 Gallai-Edmonds Decomposition

Proposition 1.52. Let G be a graph, $X \subseteq V(G)$ with $|V(G)| - 2\nu(G) = q_G(X) - |X|$. Then any maximum matching of G

- contains a perfect matching in the even components of G-X.
- contains a near-perfect matching in odd components of G-X.

• matches all $x \in X$ to distinct odd components.

Proof. Follows directly from Berge's theorem (1.24).

Theorem 1.53. Let G be a graph and:

$$Y := \{v \in V(G) \mid \exists \text{ maximum matching that exposes } v\}$$

Define $X := \Gamma(Y)$ and $W := V(G) \setminus (X \cup Y)$. Then:

- 1. X attains $\max_{X' \subset V(G)} q_G(X') |X'|$.
- 2. G[Y] is the union of factor-critical subgraphs and G[W] is the union of even connected components.
- 3. Any maximum matching in G
 - contains a perfect matching in G[W].
 - contains a near-perfect matching in each component of G[Y].
 - matches all $x \in X$ to distinct connected components

Y, X, W is called Gallai-Edmonds decomposition of G.

Proof. Consider the matching M and special blossom forest F at the end of the algorithm. Let X' (Y') be the set of inner (outer) vertices and W' the set of out-of-forest vertices.

Claim. X', Y', W' satisfy 1., 2. and 3.

(Proof of theorem 1.48).

Proposition 1.52 implies that any maximum matching covers all vertices in $V(G) \setminus Y'$, so $Y \subseteq Y'$. For the other inclusion, let $v \in Y'$. Then $M\Delta P(v)$ is a maximum matching exposing v, so $v \in Y$ and Y' = Y. By definition, X = X' and W = W'.

Corollary 1.54. A graph G has a perfect matching $\Leftrightarrow \forall U \subseteq V(G), G - U$ has at most |U| factor-critical components.

1.8 Minimum Weight Perfect Matching

We use the following Integer Programming formulation:

$$\min \sum_{e \in E(G)} c_e x_e$$
s.t.
$$\sum_{e \in \delta(v)} x_e = 1 \qquad v \in V(G)$$

$$x_e \in \{0, 1\}$$

and the corresponding relaxation where we only require $x_e \geq 0$. The dual problem of this is:

$$\max \sum_{v \in V(G)} z_v$$
 s.t. $z_v + z_w \le c_e$ $\{v, w\} \in E(G)$

Proposition 1.55 (Hungarian Method). Let G be a graph, $c \in \mathbb{R}^{E(G)}$ and $z \in \mathbb{R}^{V(G)}$ with $z_v + z_w \le c_e$ for all $e = \{v, w\} \in E(G)$. Define:

$$G_z := (V(G), \{e = \{v, w\} \mid z_v + z_w = c_e\})$$

Let M be a matching in G_z , F a maximal alternating forest in G_z with respect to M. Let X/Y be the set of inner/outer vertices. Then:

- 1. If M is a perfect matching in G_z , then it is a minimum-weight perfect matching in G.
- 2. If $\Gamma_G(y) \subseteq X$ for all $y \in Y$, then M is a maximum matching.
- 3. If neither 1. nor 2. hold, define:

$$\epsilon \coloneqq \min\{ \min_{e = \{v, w \in E(G[Y])\}} \frac{c_e - z_v - z_w}{2}, \min_{e \in \delta(Y) \cap \delta(V(F))} c_e - z_v - z_w \}$$

Set $z'_v \coloneqq z_v - \epsilon$ for all $v \in X$, $z'_v \coloneqq z_v + \epsilon$ for all $v \in Y$ and $z'_v \coloneqq z_v$ for all $v \in V(G) \setminus (X \cup Y)$. Then z' is a feasible dual solution and $M \cup E(F) \subseteq E(G_{z'})$. Additionally, $\Gamma_{G_{z'}}(y) \setminus X \neq \emptyset$ for some $y \in Y$.

Proof. 1. Let M' be a minimum-weight perfect matching.

$$\sum_{e \in M'} c_e = \sum_{v \in V(G)} z_v + \sum_{e = \{v, w\} \in M'} (c_e - z_v - z_w)$$

$$\geq \sum_{v \in V(G)} z_v$$

$$= \sum_{v \in V(G)} z_v + \sum_{e = \{v, w\} \in M} (c_e - z_v - z_w)$$

$$= \sum_{e \in M} c_e$$

- 2. Each outer vertex is an odd blossom (singleton) of G x. By Berge (1.24), at least |Y| |X| vertices remain uncovered.
- 3. z' stays feasible by the choice of ϵ . Edges in E(F), M remain tight. By 1. and 2., $\exists y \in Y : \Gamma_{G_{z'}}(y) \setminus X \neq \emptyset$.

Remark 1.56. For bipartite graphs, the adjacency matrix is totally unimodular, so the LP has integral vertices.

We define $\mathcal{A} := \{X \subseteq V(G) \text{ odd}\}$ and add the blossom inequalities

$$\sum_{e \in \delta(X)} x_e \ge 1 \qquad \forall X \in \mathcal{A}$$

to the LP relaxation. The new dual problem is then:

$$\max \sum_{A \in \mathcal{A}} z_A$$
s.t.
$$\sum_{A \in \mathcal{A}, e \in \delta(A)} z_A \le c_e$$

$$z_A \ge 0 \qquad (A \in \mathcal{A}, |A| \ge 3)$$

Edmond's Algorithm starts with an empty matching x=0 and dual feasible solution:

$$z_A \coloneqq \begin{cases} \frac{1}{2} \min\{c(e) \mid e \in \delta(A)\} & |A| = 1\\ 0 & \text{else} \end{cases}$$

We always ensure that z is dual feasible and that (x, z) satisfy complementary slackness:

$$x_e > 0 \Rightarrow \sum_{A \in \mathcal{A}, e \in \delta(A)} z_A = c_e$$
$$z_A > 0, |A| > 1 \Rightarrow \sum_{e \in \delta(A)} x_e = 1$$

Definition 1.57. $c_z(e) := c(e) - \sum_{A \in \mathcal{A}, e \in \delta(A)} z_A$ is the reduced cost of e.

Theorem 1.58. There are at most $\frac{7}{2}|V(G)|^2$ of the repeat-until loop in algorithm 4.

Proof. \mathcal{B} is laminar at any time, i.e. for $X,Y \in \mathcal{B}$ we have $(X \subseteq Y) \vee (Y \subseteq X) \vee (X \cap Y = \emptyset)$. Therefore $|\mathcal{B}| \leq 2 |V(G)|$.

Observation. Any U added to \mathcal{B} during Shrink will not be "unpacked" before the next Augment.

Proof. After *Shrink*, there exists an even length M-augmenting R-U-path. It remains in G_z until the next *Augment* or until U is included in another blossom $U' \supseteq U$ which is not resolved before an *Augment* (inductively). \square

Between 2 augments:

- # $Unpacks \leq |\mathcal{B}|$ at beginning of the sequence
- # Shrinks $\leq |\mathcal{B}|$ at the end of the sequence

Therefore, there are at most 4|V(G)| Unpack and Shrink operations between 2 augments. For each dual change without Unpack, we have: $z_B > 0 \quad \forall B \in \mathcal{B}$, so ϵ is not determined by z_B . Therefore $\exists e = \{X, Y\}$ with $X \notin \mathcal{X}, Y \in \mathcal{Y}$ where $c_z(e)$ becomes 0.

Case 1: $X \notin \mathcal{Y}$. Then $|V(G_z) \setminus (\mathcal{X} \cup \mathcal{Y})|$ decreases.

Case 2: $X \in \mathcal{Y}$. Then $\exists X-Y M$ -alternating walk in the next iteration.

In particular, such a dual change can occur at most |V(G)| times between 2 augmentations.

In total, there are at most $\frac{1}{2}|V(G)|$ Augment steps. Therefore, there are $\frac{1}{2}|V(G)|^2(4+|V(G)|+2|V(G)|)$

Algorithm 2: Minimum-Weight Perfect Matching

Input: Graph G with edge weights $c: E(G) \to \mathbb{R}$

Output: A minimum-weight perfect matching M in (G, c)

Corollary 1.59. A minimum-weight perfect matching can be computed in $O(n^2m)$ time where n := |V(G)| and m = |E(G)|.

Proof. Theorem 1.58 times O(m).

Remark 1.60. To achieve $O(n^3)$ running time, one can modify the algorithm:

- 1. Use a General Blossom Forest to avoid recomputing the R-R-walks from scratch. We then have mappings $\mu_v, \varphi_v^i, \rho_v^i$ for $1 \le i \le k_v$ where k_v is the number of blossoms that contain v.
- 2. Store all vertices in a heap (ordered by their criticality for dual-feasibility) to speed up the computation of ϵ .

Gabow (1990) showed a running time of $O(n(m+n\log n))$. Gabow & Tarjan (1991) showed a running time of $O(m\log(nW)\sqrt{n\alpha(m,n)\log n})$ where $W := \max_{e \in E(G)} |c(e)|$.

Theorem 1.61. Let G be a graph. The set of vectors $x \in \mathbb{R}^{E(G)}$ satisfying

$$x_e \ge 0$$
 $e \in E(G)$
 $x(\delta(v)) = 1$ $v \in V(G)$
 $x(\delta(A)) \ge 1$ $A \subseteq V(G)$ with $|A|$ odd

is the convex hull of all perfect matchings in G. It is called the perfect matching polytope.

Proof. For any objective function $c: E(G) \to \mathbb{R}$, the minimum-weight perfect matching algorithm produces an integral primal and a dual solution that satisfy complementary slackness. In particular, all vertices of the polytope are integral.

Theorem 1.62. Let G be a graph. The set of vectors $x \in \mathbb{R}^{E(G)}$ satisfying

$$x_e \ge 0$$
 $e \in E(G)$
 $x(\delta(v)) \le 1$ $v \in V(G)$
 $x(E(G[A])) \le \frac{|A|-1}{2}$ $A \subseteq V(G)$ with $|A|$ odd

is the convex hull of all matchings in G. It is called the matching polytope.

Proof. Any matching solution x satisfies these conditions. Let x be any solution that satisfies the conditions. We have to show that x is a convex combination of matching solutions. Define H by:

$$\begin{split} V(H) \coloneqq & \{(v,i) \mid v \in V(G), i \in \{1,2\}\} \\ E(H) \coloneqq & \{\{(v,i),(w,i)\} \mid \{v,w\} \in E(G), i \in \{1,2\}\} \\ & \cup \{\{(v,1),(v,2)\} \mid v \in V(G)\} \end{split}$$

We set $y_{\{(v,i),(w,i)\}} := x_{\{v,w\}}$ for all $\{v,w\} \in E(G), i \in \{1,2\}$ and $y_{\{(v,1),(v,2)\}} := 1 - x(\delta(v))$ for all $v \in V(G)$. Then $y \ge 0$ and $y(\delta_H(x)) = 1$ for all $x \in V(H)$.

Claim. y satisfies the inequalities of the perfect matching polytope (in particular the blossom inequalities).

If this is true, by 1.62 y is a convex combination of perfect matchings. $H[\{(v,1) \mid v \in V(G)\}]$ is isomorphic to G, so x is a convex combination of matchings in G.

We now prove the claim: Let $X \subseteq V(G)$ with |X| odd. We have to show that $y(\delta_H(X)) \ge 1$. Define:

$$A := \{ v \in V(G) \mid (v,1) \in X, (v,2) \notin X \}$$

$$B := \{ v \in V(G) \mid (v,1) \in X, (v,2) \in X \}$$

$$C := \{ v \in V(G) \mid (v,1) \notin X, (v,2) \in X \}$$

Define $A_i := A \cap (V(G) \times \{i\})$ and $B_i := B \cap (V(G) \times \{i\})$. $|B_1 \cup B_2|$ is even, so (since |X| is odd) |A| or |C| is odd. Without loss of generality, let |A| be odd.

$$\sum_{e \in \delta_{H}(X)} y_{e} \ge \sum_{v \in A_{1}} \sum_{e \in \delta_{H}(v)} y_{e} - 2 \cdot \sum_{e \in E(H[A_{1}])} y_{e} - \sum_{e \in \delta(A_{1}) \cap \delta(B_{1})} y_{e}$$

$$+ \sum_{e \in \delta(A_{2}) \cap \delta(B_{2})}$$

$$= |A_{1}| - 2 \cdot \sum_{e \in E(G[A])} x_{e}$$

$$\ge |A_{1}| - (|A| - 1)$$

$$= 1$$

Theorem 1.63. The matching polyhedron is TDI (Totally Dual Integral), i.e. for all $c \in \mathbb{Z}^{E(G)}$ for which the dual program of $(\max c^t x s.t...)$ has a finite optimum solution, it has an integral optimum solution.

Proof. The dual is

$$\min \sum_{v \in V(G)} y_v + \sum_{e \in \mathcal{A}, |A| > 1} \frac{|A| - 1}{2} z_A$$

$$s.t. \sum_{v \in e} y_v + \sum_{A \in \mathcal{A}, |A| > 1, e \in E(G[A])} z_A \ge c(e) \qquad e \in E(G)$$

$$y, z > 0$$

Let (G, c) be a counterexample such that $|V(G)| + |E(G)| + \sum_{e \in E(G)} |c(e)|$ is minimum. Then:

- $c(e) \geq 1$ for all $e \in E(G)$, since otherwise e could be deleted.
- G has no isolated vertices.

Claim. In an optimum solution (y, z), y = 0.

Proof. If $y_v > 0$, then $x(\delta(v)) = 1$ for all optimum solutions x. Decreasing c(e) by 1 for all $e \in \delta(v)$ yields a smaller feasible instance (G, c') where the weight of x is decreased by 1 and x remains optimum. By assumption, (G, c') is not a counterexample, so there exists an integral optimum solution (y', z'). Increasing y'_v by one yields some optimum in (G, c) which has optimum integral solution $(y' + \mathbb{1}_v, z')$.

Let (y = 0, z) be a dual optimum solution such that

$$\sum_{A \in \mathcal{A}, |A| > 1} |A|^2 z_A$$

is maximum.

Claim. $\mathcal{F} := \{A : z_A > 0\}$ is laminar.

If not, there exist $X,Y\in\mathcal{F}:\ X\cap Y,X\setminus Y,Y\setminus X\neq\emptyset$. We proceed by "uncrossing". Let $\epsilon:=\{z_X,z_Y\}>0$.

Case 1: $|X \cap Y|$ is odd. Then $|X \cup Y|$ is odd. Define:

$$\begin{split} z_X' &\coloneqq z_X - \epsilon \\ z_y' &\coloneqq z_y - \epsilon \\ z_{X \cap Y}' &\coloneqq z_{X \cap Y} + \epsilon \\ z_{X \cup Y}' &\coloneqq z_{X \cup Y} + \epsilon \\ z_A' &\coloneqq z_A \end{split} \qquad \text{elsewhere}$$

Then (y, z') is a dual optimum solution.