The group G is isomorphic to the group labelled by [8,1] in the Small Groups library. Ordinary character table of $G \cong \mathbb{C}8$:

	1a	8a	4a	8b	2a	8c	4b	8d
χ_1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	-1	1	-1
χ_3	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
χ_4	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
χ_5	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^3$
χ_6	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$
χ_7	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)
χ_8	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)

Trivial source character table of $G \cong C8$ at p = 2:

Normalisers N_i	N_1	N_2	N_3	N_4
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4
Representatives $n_j \in N_i$	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	8	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	4	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1

$$P_1 = Group([()]) \cong 1$$

$$P_2 = Group([(1,5)(2,6)(3,7)(4,8)]) \cong C2$$

$$P_3 = Group([(1,3,5,7)(2,4,6,8)]) \cong C4$$

$$P_4 = Group([(1, 2, 3, 4, 5, 6, 7, 8), (1, 3, 5, 7)(2, 4, 6, 8), (1, 5)(2, 6)(3, 7)(4, 8)]) \cong C8$$

$$N_1 = Group([(1, 2, 3, 4, 5, 6, 7, 8)]) \cong C8$$

$$N_2 = Group([(1, 2, 3, 4, 5, 6, 7, 8)]) \cong C8$$

$$N_3 = Group([(1,3,5,7)(2,4,6,8),(1,5)(2,6)(3,7)(4,8),(1,2,3,4,5,6,7,8)]) \cong C8$$

 $N_4 = Group([(1,2,3,4,5,6,7,8),(1,3,5,7)(2,4,6,8),(1,5)(2,6)(3,7)(4,8)]) \cong C8$