Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 100.4 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 658.56 658.55 Bølgelengde (nm) 658.54 658.53 658.52 658.51 20 80 100 0 40 60 120 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 14.86, tilsynelatende blå størrelseklass $m_B=16.64$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 6.46, tilsynelatende blå størrelseklass $m_B = 9.24$

Stjerna C: Tilsynelatende visuell størrelseklasse m₋V = 14.86, tilsynelatende

blå størrelseklass m_B = 17.64

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 6.46, tilsynelatende blå størrelseklass $m_B = 8.24$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.88 og store halvakse a=59.50 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.88 og store halvakse a=14.12 AU.

Filen 1F.txt

Ved bølgelengden 563.44 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 12.30 Tilsynelatende størrelsklasse m_V 12.20 12.10 12.00 11.90 50 25 75 100 125 150 175 Ó Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 19.00 solmasser, temperatur på 48.70 Kelvin og tetthet 8.76e-21 kg per kubikkmeter

Gass-sky B har masse på 15.60 solmasser, temperatur på 63.40 Kelvin og tetthet 7.38e-21 kg per kubikkmeter

Gass-sky C har masse på 15.60 solmasser, temperatur på 48.00 Kelvin og

tetthet 4.50e-21 kg per kubikkmeter

Gass-sky D har masse på 14.20 solmasser, temperatur på 16.70 Kelvin og tetthet 8.93e-21 kg per kubikkmeter

Gass-sky E har masse på 12.80 solmasser, temperatur på 57.10 Kelvin og tetthet 6.92e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE B) stjernas overflate består hovedsaklig av helium

STJERNE C) stjerna har et degenerert heliumskall

STJERNE D) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE E) stjerna har en degenerert heliumkjerne

Filen 1L.txt

Stjerne A har spektralklasse K2 og visuell tilsynelatende størrelseklasse m_V = 2.72

Stjerne B har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{-}$ V = 9.58

Stjerne C har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 6.04

Stjerne D har spektralklasse F5 og visuell tilsynelatende størrelseklasse m_V = 5.97

Stjerne E har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 3.71

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

Figur 1

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.38200000000000000621725 AU.

Tangensiell hastighet er $64180.240852472081314772~\mathrm{m/s}.$

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.724 AU.

Kometens avstand fra jorda i punkt 2 er r2=7.945 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.683.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9356 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00021 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=310.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9922 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 614.10 nm.

Filen 4A.txt

Stjernas masse er 3.99 solmasser.

Stjernas radius er 0.67 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 -400 200 400 -600 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 12.78 millioner K

Filen 4G.txt

Massen til det sorte hullet er 3.09 solmasser.

r-koordinaten til det innerste romskipet er r $=9.46~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=15.65~\mathrm{km}.$