Celulární modely - představení a příklady

Sociální systémy a jejich simulace Jana Vacková

20.10.2021

1/14

Katedra matematiky FJFI ČVUT v Praze

Náplň dnešní přednášky

- Celulární modely první z nich
- Celulární pravděpodobnostní modely v 1D
 - Updaty a okrajové podmínky
 - TASEP a další příklady

Celulární modely - Game of Life

- Jednotkou celulárních modelů je buňka s konečným počtem stavů
- 1. celulární model: Game of Life (* John Horton Conway)
- John von Neumann
- Pravidla:
 - Každá živá buňka s méně než dvěma živými sousedy zemře.
 - Každá živá buňka se dvěma nebo třemi živými sousedy zůstává žít.
 - Každá živá buňka s více než třemi živými sousedy zemře.
 - Každá mrtvá buňka s právě třemi živými sousedy oživne.
- Bochník, loď, včelín ...

Celulární modely - Game of Life - Příklad

Pravidla:

- Každá živá buňka s méně než dvěma živými sousedy zemře.
- Každá živá buňka se dvěma nebo třemi živými sousedy zůstává žít.
- Každá živá buňka s více než třemi živými sousedy zemře.
- Waždá mrtvá buňka s právě třemi živými sousedy oživne.

4 / 14

Celulární modely - Game of Life - Příklad

- Pravidla:
 - Každá živá buňka s méně než dvěma živými sousedy zemře.
 - Každá živá buňka se dvěma nebo třemi živými sousedy zůstává žít.
 - 3 Každá živá buňka s více než třemi živými sousedy zemře.
 - Maždá mrtvá buňka s právě třemi živými sousedy oživne.
- Stavová množina: $S = \{0, 1\}$
- Mřížka (lattice): L
- **Buňka** $x \in \mathbb{L}$ je ve stavu $s \in S$
- Živá buňka: x = 1, mrtvá buňka: x = 0
- Okolí buňky na pozici (i,j): $N = \{(i + \delta, j + \delta) : \delta \in \{0, \pm 1\}\}$

4 / 14

Celulární modely - Game of Life - Příklad

- Pravidla:
 - Každá živá buňka s méně než dvěma živými sousedy zemře.
 - Každá živá buňka se dvěma nebo třemi živými sousedy zůstává žít.
 - 3 Každá živá buňka s více než třemi živými sousedy zemře.
 - 4 Každá mrtvá buňka s právě třemi živými sousedy oživne.
- Stavová množina: $S = \{0, 1\}$
- Mřížka (lattice): L
- Buňka $x \in \mathbb{L}$ je ve stavu $s \in S$
- Živá buňka: x = 1, mrtvá buňka: x = 0
- Okolí buňky na pozici (i,j): $N = \{(i + \delta, j + \delta) : \delta \in \{0, \pm 1\}\}$

Videa: The Acorn, The Eater, Web: Conway LifeWiki

Celulární modely - Obecná vsuvka - Okolí a stav mřížky

ullet Obecný pojem **okolí buňky** $x \in \mathbb{L}$

$$N_x = \{ y \in \mathbb{L} : \mathsf{dist}(x, y) \le d \}$$

Celulární modely - Obecná vsuvka - Okolí a stav mřížky

ullet Obecný pojem **okolí buňky** $x\in\mathbb{L}$

$$N_x = \{ y \in \mathbb{L} : \mathsf{dist}(x, y) \le d \}$$

- Používané:
 - **Von Neumannovo** okolí: sousedí hranou, $|x_1 y_1| + |x_2 + y_2| \le 1$
 - **Moorovo** okolí: sousedí rohem, $\max\{|x_1-y_1|,|x_2+y_2|\} \le 1$

Celulární modely - Obecná vsuvka - Okolí a stav mřížky

ullet Obecný pojem **okolí buňky** $x\in\mathbb{L}$

$$N_x = \{y \in \mathbb{L} : \mathsf{dist}(x,y) \le d\}$$

- Používané:
 - **Von Neumannovo** okolí: sousedí hranou, $|x_1 y_1| + |x_2 + y_2| \le 1$
 - **Moorovo** okolí: sousedí rohem, max $\{|x_1 y_1|, |x_2 + y_2|\} \le 1$

- Stav buňky $x \in \mathbb{L}$ ozn. jako $\tau(x) \in S$
- Stav celé mřížky $au \in S^{\mathbb{L}}$, kde $S^{\mathbb{L}} := \{f : f : \mathbb{L} \to S\}$

Celulární modely - Rule 184

- ullet 1D mřížka $\mathbb{L}\subset\mathbb{Z}$
- ullet Stavová množina $S=\{0,1\}$

•
$$N_x = (x-1, x, x+1) \in \{0, 1\}^3$$

- Použití: dopravní proud, balistické srážky částic
- Wolfram code
- TASEP s pravděpodobností přeskoku částice rovnou jedné a paralelním updatem

Překladová tabulka:

N_{\times}		nová x
111	\rightarrow	1
110	\rightarrow	0
101	\rightarrow	1
100	\rightarrow	1
011	\rightarrow	1
010	\rightarrow	0
001	\rightarrow	0
000	\rightarrow	0

Celulární modely - Rule 184

- ullet 1D mřížka $\mathbb{L}\subset\mathbb{Z}$
- ullet Stavová množina $S=\{0,1\}$

•
$$N_x = (x-1, x, x+1) \in \{0, 1\}^3$$

- Použití: dopravní proud, balistické srážky částic
- Wolfram code
- TASEP s pravděpodobností přeskoku částice rovnou jedné a paralelním updatem

Překladová tabulka:

N_{\times}		nová x
111	\rightarrow	1
110	\rightarrow	0
101	\rightarrow	1
100	\rightarrow	1
011	\rightarrow	1
010	\rightarrow	0
001	\rightarrow	0
000	\rightarrow	0

$$2^7 + 2^5 + 2^4 + 2^3 = 184$$

6/14

Celulární modely - Pravděpodobnostní

Pravděpodobnost přechodu

$$w(x \rightarrow y | \tau) = P(\text{částice v x přeskočí do y } | \text{systém je ve stavu } \tau)$$

Celulární modely - Pravděpodobnostní

Pravděpodobnost přechodu

$$w(x \rightarrow y | \tau) = P(\text{částice v x přeskočí do y } | \text{systém je ve stavu } \tau)$$

- Update (aktualizace):
 - Plně paralelní = simultánní volba nových pozic částic v mřížce
 - **Sekvenční** = aktualizace mřížky v daném pořadí (dopředný, zpětný)
 - Náhodný = náhodný výběr buňky z mřížky
 - **Spojitý čas** = částice v buňce čeká $\Delta t \sim \textit{Exp}(\lambda)$

7 / 14

Celulární modely - Pravděpodobnostní

Pravděpodobnost přechodu

$$w(x \rightarrow y | \tau) = P(\text{částice v x přeskočí do y } | \text{systém je ve stavu } \tau)$$

- Update (aktualizace):
 - Plně paralelní = simultánní volba nových pozic částic v mřížce
 - **Sekvenční** = aktualizace mřížky v daném pořadí (dopředný, zpětný)
 - Náhodný = náhodný výběr buňky z mřížky
 - **Spojitý čas** = částice v buňce čeká $\Delta t \sim \textit{Exp}(\lambda)$

Okrajové podmínky:

Periodické: kruh

Otevřené: zásobník na vstupu

Segment: úsečka

Nekonečná mřížka: přímka, polopřímka

- Totally Asymmetric Simple Exclusion Process
- Tj. v jedné buňce nesmí být více než jedna částice

- ullet $\mathbb{L}\subset\mathbb{Z}$, $S=\{0,1\}$, počet buněk $|\mathbb{L}|$
- Stav buňky $x \in \mathbb{L}$:

$$\tau(x) = \begin{cases}
0 & \dots & x \text{ je prázdná} \\
1 & \dots & x \text{ je obsazená}
\end{cases}$$

ullet Pravděpodobnost přeskoku p, můžeme tedy psát $10\stackrel{p}{
ightarrow}01$

4 D > 4 D > 4 E > 4 E > E > 9 Q(*

Počáteční stav mřížky:

Počáteční stav mřížky:

Paralelní update:

20.10.2021

9/14

Počáteční stav mřížky:

Paralelní update:

Náhodný update:

Počáteční stav mřížky:

Jana Vacková 01SSI - 5. přednáška 20.10.2021 10 / 14

Počáteční stav mřížky:

Dopředný update:

10 / 14

Počáteční stav mřížky:

Dopředný update:

Zpětný update:

10 / 14

Celulární modely - Pravděpodobnostní - rozšíření TASEPu

• Slow-to-Start: $p_1 > p_2$

$$010 \stackrel{\rho_1}{\rightarrow} 001$$
$$110 \stackrel{\rho_2}{\rightarrow} 101$$

Jana Vacková 01SSI - 5. přednáška 20.10.2021 11 / 14

Celulární modely - Pravděpodobnostní - rozšíření TASEPu

• Slow-to-Start: $p_1 > p_2$

$$010 \stackrel{\rho_1}{\rightarrow} 001$$

 $110 \stackrel{p_2}{\rightarrow} 101$

• Next-Nearest-Neighbour: $p_1 > p_2$

 $100\stackrel{p_1}{\rightarrow}010$

 $101 \stackrel{p_2}{\rightarrow} 011$

Jana Vacková 01SSI - 5. přednáška 20.10.2021 11 / 14

Celulární modely - Pravděpodobnostní - rozšíření TASEPu

• Slow-to-Start: $p_1 > p_2$

$$010 \stackrel{\rho_1}{\rightarrow} 001$$

 $110 \stackrel{p_2}{\rightarrow} 101$

• Next-Nearest-Neighbour: $p_1 > p_2$

$$100 \stackrel{p_1}{\rightarrow} 010$$

 $101 \stackrel{p_2}{\rightarrow} 011$

• KLS (Katz, Lebowitz, Spoku): kombinace předchozích

•
$$p_1 + p_4 = p_2 + p_3$$
, kde $p_1 > p_2 > p_3 > p_4$

 $0100 \stackrel{p_1}{\rightarrow} 0010$

 $0101 \stackrel{p_2}{\rightarrow} 0011$

 $1100 \stackrel{p_3}{\rightarrow} 1010$

 $1101 \stackrel{p_4}{\rightarrow} 1011$

Celulární modely - Pravděpodobnostní - Pro $v_{max} > 1$

Nagel-Schreckenberg (NaSch)

- ullet Pro $v_{max}=1$ jde o paralelní TASEP s p=1-q
- Aktualizační kroky:
 - **1** Zrychlení: $v \rightarrow \min\{v+1, v_{max}\}$
 - **2** Bezkoliznost: $v \rightarrow \min\{v, d\}$
 - **3** Brzdění: $v \to \max\{0, v X_q\}$, kde $X_q \sim Be(q)$
 - **1** Posun o v buněk kupředu: $x \rightarrow x + v$

12 / 14

Celulární modely - Pravděpodobnostní - Pro $v_{max} > 1$

Nagel-Schreckenberg (NaSch)

- ullet Pro $v_{max}=1$ jde o paralelní TASEP s p=1-q
- Aktualizační kroky:
 - **1** Zrychlení: $v \rightarrow \min\{v+1, v_{max}\}$
 - **2** Bezkoliznost: $v \rightarrow \min\{v, d\}$
 - **3** Brzdění: $v \to \max\{0, v X_q\}$, kde $X_q \sim Be(q)$
 - 4 Posun o v buněk kupředu: $x \rightarrow x + v$
- Fukui-Ishibashi (FI): zjednodušený NaSch
 - $v \rightarrow \min\{v_{max}, d\}$
 - $v o \max\{0, v X_q\}$, kde $X_q \sim Be(q)$

Celulární modely - Pravděpodobnostní - VDR

- Velocity Dependent Randomization (VDR)
- Jako možný nultý aktualizační krok pro NaSch a FI

$$q(v) = \left\{ egin{array}{ll} q_0 & \dots & v = 0, \\ q_1 & \dots & v \in \{1, 2, \dots, v_{ extit{max}} - 1\}, \\ q_{ extit{max}} & \dots & v = v_{ extit{max}}, \end{array}
ight.$$

kde $q_0 \geq q_1 \geq q_{max}$

• Pro $q_{max} = 0$ se jedná o tempomatovou limitu

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 Q (*)

Jana Vacková 01SSI - 5. přednáška 20.10.2021 13 / 14

Konec dnešní přednášky. :-)

Jana Vacková 01SSI - 5. přednáška 20.10.2021 14 / 14