Probabilidade

Experimentos repetitivos

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada...

Probabilidade

- Experimento;
- Espaço amostral;
- Ponto amostral;
 - Probabilidade do ponto amostral → frequência de ocorrência do resultado em n experimentos.
- Evento
 - Probabilidade do evento → soma das probabilidades individuais dos elementos que pertencem ao evento;
- Distribuição de probabilidade
 - Uniforme;
 - Não uniforme;

Experimento composto

Experimentos podem consistir de duas ou mais partes;

Aluno:

- Nota;
- Curso;
- Idade;
- ...

Produto de uma loja:

- preço;
- categoria do produto;
- Validade;
- ..

Apesar de composto, eles podem ser considerados como um único experimento

os resultados se tornam mais complexos;

O espaço amostral seria o produto cartesiano das categorias em análise.

Experimentos repetitivos

Repetições → Lidar com o mesmo experimento repetidas vezes.

- Jogadas de moeda;
- Jogadas de dado;
- Compras de carta.

Podem ser classificadas em:

- Independente → que os diferentes experimentos não estão relacionados
 - Exemplo: jogada de uma moeda;
- Dependente → quando a probabilidade dos resultados de um experimento altera com o resultado do experimento anterior.
 - Exemplo: compra de uma carta no monte;

Repetições independentes

1a moeda

2a moeda

Em jogadas de duas moedas...

$$\Omega = \{ \text{caca, caco, coca, coco} \} = \{ \text{ca,co} \}^2$$

$$|\Omega| = 2^2 = 4$$

potência cartesiana

	Cara (½)	Coroa (½)
Cara (½)	(Ca,Ca)1/4	(Ca,Co) ¹ / ₄
Coroa (½)	(Co,Ca) ¹ / ₄	(Co,Co) ¹ / ₄

Jogada de uma moeda possui distribuição uniforme, portanto a jogada de duas moedas implica também que seja uniforme.

$$P(caca) = P(caco) = P(coca) = P(coco) = 1/|\Omega| = \frac{1}{4}$$

Probabilidade de Eventos em repetições independentes

Eventos → Probabilidade de uma coleção de resultados

 $P(E) = P(X \in E) = soma das probabilidades individuais de cada resultado$

Quando a distribuição é uniforme \rightarrow P(E) = | E | / | Ω |

$$\rightarrow |\Omega| = 2^2 = 4$$

P(diferentes resultados) = P({ht,th})
=
$$\mid E \mid / \mid \Omega \mid$$

= 2/4
= $\frac{1}{2}$

P(pelo menos uma cara) = P({ht,th,hh})
=
$$\frac{3}{4}$$

$$\rightarrow |\Omega| = 2^3 = 8$$

P(Alternados) = P(
$$\{hth, tht\}$$
)
= $|E|/|\Omega|$
= $2/8$
= $1/4$

P(número ímpar de cara) = P({htt, tht, tth, hhh})
=
$$4/8$$

= $\frac{1}{2}$

Amostragem

Seleção sequencial de objetos:

- Pacientes;
- Visitantes de um site na web
- Cartas de baralho
- Bola na urna

Dois tipos de amostragem:

Com reposição

- Reuso do elemento selecionado;
- Resultado pode se repetir;
- Os experimentos são normalmente independentes;
- Exemplos: moeda, dado

Sem reposição

- Não há reuso do elemento selecionado;
- O resultado n\u00e3o pode se repetir;
- Experimento dependente;
- Exemplo: Cartas, Pessoas;

Bolas na urna com reposição

2º sorteio é feito com o mesmo conjunto do primeiro sorteio.

2° sorteio

Bolas na urna sem reposição

2º sorteio é feito com conjunto diferente do primeiro sorteio.

2° sorteio

0 0 0 0 1/2

0 (1/2) 0 0 1/2

0 (1/2) 0 1/2 0 0

Comprando cartas

1 2 3 4 5 6

Comprar uma carta

2

Comprar uma 2ª carta

5

2° sorteio

Possíveis resultados:	$\Omega = \{12, 13,$, 21, 23,	, 64, 65 }
	$ \Omega = A_{6.2} = 6$	6!/(6-2)! = 30	Э

Probabilidade: $i = j \rightarrow n$ ão ocorre

$$i \neq j \rightarrow \% . \% = 1/30$$

1° sorteio

	1	2		6
1	0	1/30		1/30
2	1/30	0		1/30
				1/30
6	1/30	1/30	1/30	0

sorteio

Até agora analisamos as probabilidades de cada ponto amostral (resultado) quando a ordem importa.

Quando a ordem importa → tuplas de resultados;

 $(\frac{1}{2})$

2° sorteio

Mas e quando a ordem não importa? Conjunto de resultados

Calcular a probabilidade do **conjunto de resultados** com reposição e sem reposição

Ordem não importa → Com reposição

1

2

3

4

5

6

Escolher duas cartas com reposição.

Quando a ordem importa:

$$\Omega = \{1,2,3,4,5,6\}^2 = \{11, 12, ..., 66\}$$

 $|\Omega| = 6^2 = 36$
 $P(1,1) = P(1,2) = ... = P(6,6) = 1/36$

Quando a ordem **não** importa:

$$P({1,2}) = P(1,2) + P(2,1) = 2/36$$

$$P({1,1}) = P({1,1}) = 1/36$$

Não uniforme!

Checando se a soma das probabilidades é igual a 1:

$$\binom{6}{2}$$
. $\frac{2}{36} + \binom{6}{1}$. $\frac{1}{36} = \frac{5}{6} + \frac{1}{6} = 1$

Ordem não importa → sem reposição

1 2 3 4 5 6

Escolher duas cartas sem reposição.

Quando a ordem importa:

$$i \neq j P(i,j) = \% . \% = 1/30$$

$$i=j P(i,j)=0$$

Quando a ordem **não** importa:

$$P({1,2}) = P(1,2) + P(2,1) = 2/30$$

$$P({1,1}) = 0$$

Uniforme!

Checando se a soma das probabilidades é igual a 1:

$$\binom{6}{2}$$
. $\frac{2}{30} = \frac{6.5.4!}{4!2!}$. $\frac{2}{30} = 1$

Revisão

- Experimento composto → Experimentos repetitivos
- Repetições independentes;
- Repetições dependentes;
- Amostragem com reposição (normalmente independentes);
- Amostragem sem reposição (dependentes);
- Ordem importa (com ou sem reposição);
- Ordem não importa (com ou sem reposição);