MATH3024 Project

Fraser Paterson 22258324

October 22, 2021

Introduction

This is the project for Fraser Paterson. All dynamics were generated via from scipy.integrate.odeint and each call to odeint performed an integral over 10000 time steps.

Questions

Question 1

The system for question 1 is as follows:

$$\dot{x} = \alpha(y - x - f(x))$$
$$\dot{y} = x - y + z$$
$$\dot{x} = -\beta y$$

where

$$f(x) = bx + \frac{1}{2}(a-b)[|x+1| - |x-1|]$$

and
$$\alpha = 10.0, \beta = 14.87, a = -1.27, b = -0.68$$

- 1.a This is as described in my interem report.
- **1.b** For an x to x coupling we take a copy of the entire system and add the difference in the x coordinates, multiplied by the coupling strength: σ , to both x coordinates in each respective system. Let each coordinate dynamics be given by a primed value, hence we have:

$$\dot{x} = \alpha(y - x - f(x)) + \sigma(x' - x)$$

$$\dot{y} = x - y + z$$

$$\dot{x} = -\beta y$$

$$\dot{x}' = \alpha(y' - x' - f(x')) + \sigma(x - x')$$

$$\dot{y}' = x' - y' + z'$$

$$\dot{x}' = -\beta y'$$

where

$$f(x') = bx + \frac{1}{2}(a-b)[|x'+1| - |x'-1|]$$

and the parameters remain as above.

See figures 1, 2 and 3 for plots of each respective coordinate dynamics (uncoupled dynamics).

Figure 1: x - y dynamics

Figure 2: x - z dynamics

Figure 3: y - z dynamics

The uncoupled dynamics in time are as follows:

Figure 4: uncoupled x component dynamics

Figure 5: uncoupled y component dynamics

Figure 6: uncoupled z component dynamics

To analyse the stability of the coupling for any given $\sigma \in [0, 10.0]$ we define the following errors in each respective component of the coupled dynamics:

$$e_x = x - x'$$

$$e_y = y - y'$$
$$e_z = z - z'$$

Substituting in each respective expression for x and x' into these error equations, we have:

$$e_x = \alpha(e_y - e_x - (f(x) - f(x'))) - 2\sigma e_x$$

Note, that by the intermidiate value theorem $f(x) - f(x') = f'(\eta)(x - x')$ we may express the above as:

$$e_x = \alpha(e_y - e_x - f'(\eta)e_x) - 2\sigma e_x$$

Now, $f'(\eta) = a$ or b. Hence let $f'(\eta) = \xi$ and so we have: $e_x = (-\alpha - \alpha \xi - 2\sigma)e_x + \alpha e_y$. Performing a similar set of substitutions for the y and z errors yields the full error dynamics:

$$e_x = (-\alpha - \alpha \xi - 2\sigma)e_x + \alpha e_y$$
$$e_y = e_x - e_y + e_z$$
$$e_z = -\beta e_y$$

Expressing the error dynamics as a matrix equation:

$$\begin{pmatrix} \dot{e_x} \\ \dot{e_y} \\ \dot{e_z} \end{pmatrix} = \begin{pmatrix} -\alpha - \alpha \xi - 2\sigma & \alpha & 0 \\ 1 & -1 & 0 \\ 0 & -\beta & 0 \end{pmatrix} \begin{pmatrix} e_x \\ e_y \\ e_z \end{pmatrix}$$

Now if we numerically calculate each respective component error and plot this against the coupling strength, for $\sigma \in [0, 10.0]$, where we take step sizes of 0.01 for σ we yield the plots shown in figures 4, 5 and 6. Note, there were no further changes to the x component error for $\sigma \in (5, 10]$

Figure 7: x component error dynamics

Figure 8: y component error dynamics

Figure 9: z component error dynamics

Numerically integrating the system of x-x coupled dynamics yields the plots shown in figure 7 to 12. The plots in navy blue correspond to sigma = 2.6 while those in red correspond to sigma = 2.8.

Figure 10: x - y dynamics for x-x coupling

Figure 11: x - z dynamics for x-x coupling

Figure 12: x - z dynamics for x-x coupling

Figure 13: x - y dynamics for x-x coupling

Figure 14: x - z dynamics for x-x coupling

Figure 15: x - z dynamics for x-x coupling

The dynamics in navy correspond to an unstable node; as can be seen if we plot the component dynamics in time for $\sigma=2.6$

Figure 16: x component dynamics through time for x-x coupling

Figure 17: x component error dynamics through time for x-x coupling

Although the x component error dynamics for $\sigma = 2.8$ is not yet 0, we can see that the error in the x component reaches a maximum and then begins to decrease with time:

Figure 18: x component dynamics through time for x-x coupling

Figure 19: x component error dynamics through time for x-x coupling

Indeed by $\sigma = 3.9$ at the latest, the error in the x component becomes negligible over the domain displayed:

Figure 20: x component dynamics through time

Figure 21: x component error dynamics through time

1.c In the case of a y to y and z to z coupling, we perform the same series of operations as in the above x to x coupling, making sure to add the coupling term to the correct dynamical component For the y to y coupling we have:

$$\dot{x} = \alpha(y - x - f(x))$$

$$\dot{y} = x - y + z + \sigma(y - y')$$

$$\dot{x} = -\beta y$$

$$\dot{x}' = \alpha(y' - x' - f(x'))$$

$$\dot{y}' = x' - y' + z' + \sigma(y' - y)$$

$$\dot{x}' = -\beta y'$$

and f(x') is as before.

The error dynamics in the y-y coupled system appeared to converge to 0 for $\sigma \approx 1$:

Figure 22: y component dynamics through time y-y coupling

Figure 23: y component error dynamics through time y-y coupling

Hence the system exhibits stable synchronisation for $\sigma>\approx 1$

Figure 24: x - y dynamics for the y - y coupling

Figure 25: x - z dynamics for the y - y coupling

Figure 26: y - z dynamics for the y - y coupling

The error dynamics in the z-z coupled system converged for all values of $\sigma < 9$ (approx). any small increase in the coupling strength past approximately 9 lead to a dramatic change in the error dynamics. For example, the z-z dynamics for $\sigma = 10.0$ blew up to $-\infty$ while the error for $\sigma = 10.1$ blew up to ∞

Figure 27: z component dynamics through time, z-z coupling

Figure 28: z component error dynamics through time, z-z coupling

Figure 29: z component dynamics through time, z-z coupling

Figure 30: z component error dynamics through time, z-z coupling

Hence the system exhibits stable synchronisation for $\sigma \approx 1$. Indeed we have:

Figure 31: x-y dynamics for the z-z coupling

Figure 32: x-z dynamics for the z-z coupling

Figure 33: y-z dynamics for the z-z coupling

For which the corresponding error dynamics in the z component is:

Figure 34: z component dynamics through time z-z coupling

Figure 35: z component error dynamics through time z-z coupling

Question 2

The maths for question 2 The following is a graph: $\,$

Question 3

Maths for question 3