PROBLEM Z MAKSYMALNA, MOCA PANELI FOTOWOLTAICZNY CH

Nikolay Katrosha Jacek Hejke Yana Negulescu Dawid Rurzyński

WYBIERA UŻYTKOWNIK

- **01** OBSŁUGA MIESIĘCZNA
- **02** TYP PANELI
- O3 INWESTYCJA POCZĄTKOWA
- 04 LOKACJA
- **05** KĄT NACHYLENIA
- 06 POŁOŻENIE

07 CENA KWH

PARAMETRY

WBUDOWANE

- **08** EFEKT TEMPERATUROWY
- 09 ZACHMURZENIE
- 10 OPADY

TYPY PANELI

Model	Cost (\$)	Output (W)	Tariff (\$/kWh) Te	mp. Coefficient (%/°
SunPower X21-345	80.0	500.0	0.18	-0.3
LG NeON R	70.0	510.0	0.16	-0.29
Canadian Solar HiKu	85.0	550.0	0.14	-0.35
REC Alpha Series	80.0	510.0	0.17	-0.32
Trina Solar Tallmax	75.0	500.0	0.15	-0.31

Na początku jest liczona całkowita moc wejściowa, zakładając że wydajność paneli wynosi 100%

$$\mathbf{Total\ power} = \frac{\mathbf{Initial\ investment}}{\mathbf{Cost}} \, \cdot \, \frac{\mathbf{Output}}{1000}$$

DANE

Dane obejmują okres od 1 stycznia 2015 roku do 31 grudnia 2023 roku. Zawierają pomiary wykonywane co godzinę, ale tylko w okresach, gdy świeciło słońce. Zachmurzenie

Opady

Temperatura

Wysokość słońca

Azymut słońca

KĄT NACHYLENIA

Wybiera użytkownik w aplikacji Wartości od 0 do 90

Kosinus kąta padania promieni słonecznych

różnica azymutów = |położenie paneli – azymut słońca|

 $\begin{aligned} \textbf{cosinus} &= \sin(\textbf{wysokość słońca}) \cdot \cos(\textbf{kąt nachylenia}) \\ &+ \cos(\textbf{wysokość słońca}) \cdot \sin(\textbf{kąt nachylenia}) \cdot \cos(\textbf{różnica azymutów}) \end{aligned}$

total power = total power \cdot cosinus

EFEKT TEMPERATUROWY

Jest obliczany jako wpływ temperatury na wydajność panelu w stosunku do optymalnej temperatury 25°C.

$$temp_effect = |25^{\circ} - temperatura| \cdot temp_coef$$

Wspólczynnik temperatury(**temp_coeff**) jest pobierany z tabeli typów panelii.

 $total power = total power - temp_effect$

ZACHMURZENIE

Ten współczynnik efektywności (cloudiness_effect) uwzględnia, że przy pełnym zachmurzeniu (100%) efektywność spada do 1/3 wartości bez zachmurzenia. Oraz Dodaje 2/3 do pozostałej efektywności (w sytuacji braku zachmurzenia, efektywność wynosi 100%).

$$\mathbf{cloudiness_effect} = \left(1 - \frac{\mathbf{zachmurzenie}}{100}\right) \cdot \frac{1}{3} + \frac{2}{3}$$

 $total\ power = total\ power - temp_effect$

OPADY I BRUD

ZAROBKI

Ostatnio przeliczamy skorygowaną moc wyjściową na zarobki, mnożąc przez stawkę taryfową za kilowatogodzinę.

 $zarobki = stawka \cdot total power$

A potem sumujemy szacowane zarobki w czasie i odejmuje początkowy budżet, aby uzyskać bieżący stan finansowy projektu.

 $\mathbf{stan\ finansowy} = \sum (\mathbf{zarobki}) - \mathbf{począkowa\ inwestycja}$