

Cours MALG & MOVEX

Modélisation synchrone

Dominique Méry Telecom Nancy, Université de Lorraine

Année universitaire 2023-2024

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRF
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- **5** Vérification de programmes LUSTRE

Sommaire

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

- LUSTRE est un langage synchrone à flôts de données.
- ► LUSTRE est la base de SCADE un environnement de dévelopement utilisé dans les véhicules de transport (avionique).
- ► LUSTRE a la possibilité d'une représentation graphique (Paul Caspi et Nicolas Halbwachs, 1984)

- LUSTRE est un langage synchrone à flôts de données.
- ► LUSTRE est la base de SCADE un environnement de dévelopement utilisé dans les véhicules de transport (avionique).
- ► LUSTRE a la possibilité d'une représentation graphique (Paul Caspi et Nicolas Halbwachs, 1984)

- ► LUSTRE est un langage synchrone à flôts de données.
- ► LUSTRE est la base de SCADE un environnement de dévelopement utilisé dans les véhicules de transport (avionique).
- ► LUSTRE a la possibilité d'une représentation graphique (Paul Caspi et Nicolas Halbwachs, 1984)

- LUSTRE est un langage synchrone à flôts de données.
- ► LUSTRE est la base de SCADE un environnement de dévelopement utilisé dans les véhicules de transport (avionique).
- ► LUSTRE a la possibilité d'une représentation graphique (Paul Caspi et Nicolas Halbwachs, 1984)

- LUSTRE est un langage synchrone à flôts de données.
- ► LUSTRE est la base de SCADE un environnement de dévelopement utilisé dans les véhicules de transport (avionique).
- LUSTRE a la possibilité d'une représentation graphique.

- LUSTRE est un langage synchrone à flôts de données.
- ► LUSTRE est la base de SCADE un environnement de dévelopement utilisé dans les véhicules de transport (avionique).
- LUSTRE a la possibilité d'une représentation graphique.

Langage à flôt de données

production : Un flôt d'entrées produit un flôt (flux) de sorties :

$$flot \in input^N \to outpout^N$$

 $flot(i_0, i_1, \dots i_n) = (o_0, o_1, \dots o_n)$

réaction :

$$flot \in input \times state \rightarrow output \times state$$

 $flot(in, s_t) = (out, s_{t+1})$

Le code engendré correspond à la fonction de cycle.

Forme générale d'un module LUSTRE

```
node f(x_1:\alpha_1,\ldots,x_n:\alpha_n) returns (y_1:\beta_1,...,y_m:\beta_m) var z_1:\gamma_1,...,z_k:\gamma_k; let z_1=\delta_1;...;z_k=\delta_k; y_1=\epsilon_1;...;y_m=\epsilon_m; assert P_1;\ldots; assert P_l; tel
```

Exemple du nœud Identity

Node Identity

node I(x:int) returns (y:int)let y = xassert x = y; tel

- Copie de la stream x vers la stream y.
- $x = (x_0, x_1, x_2, \dots, x_i, \dots)$
- recopie
- $y = (y_0, y_1, y_2, \dots, y_i, \dots)$

Programmes LUSTRE

- ▶ Un programme LUSTRE est une liste de modules appelés des nœuds.
- ► Tous les nœuds fonctionnent de manière synchrone.
- Les communications sont réalisées via les inputs et les outputs.
- Les équations doivent avoir des solutions et ne sont pas des affectations.

- ► Toutes les variables, constantes et expressions sont des streams.
- Les opérations classiwues sont étendues sur les streams :
 - $x = (0, 1, 2, 3, 4, \ldots)$
 - $y = (1, 2, 3, 4, \ldots)$
 - $x+y = (1, 3, 5, 7, \ldots)$
- ► Chaque stream correspond à une horloge.

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

Exemple de programme LUSTRE (1)

(Sommation)

Listing 5 – sum.lus

```
— the current value of Sum(X) is the sum of all values of X up to now node sum (X: int) returns (S: int); let S = X \implies X + (pre \ S); tel
```

- 0 1 2 3 4 5 ...
- $X = 5, 3, -1, 2, 7, 8, \dots$
- S = 5, 8, 7, 9, 16, 24, ...

Exemple de programme LUSTRE (2)

(Fibonacci)

Listing 6 - fibo.lus

```
- This node produces the Fibonacci series: 1,1,2,3,5,8,13,21,...
```

```
node Fibonacci(_:bool) returns(Fib: int);
let
Fib = 1 -> pre (1 -> Fib + pre Fib);
tel
```

```
Listing 7 — operations.lus

— operations over nodes
node op (X: int;Y:int) returns (S,P,POLY,POLY2:int;TEST:bool);
let

S = X + Y;
P = X*Y;
POLY = X**X + 2*X*Y + Y*Y;
POLY2 = S**S;
TEST = (POLY = POLY2);
check TEST;

tel
```

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

Horloges

- ► Toutes les expressions sont des streams.
- Les opérateurs d'horloge modifient la temporalité des streams et le résultat est stream :
 - pre s pour toute stream s.
 - s1 -> s2 s1 suivi de s2.
 - s1 when s2 échantillonnage
 - current s pour toute stream s.

Sémantique des horloges

- $\blacktriangleright \llbracket \sigma \rrbracket \stackrel{def}{=} (\sigma_0, \sigma_1, \ldots)$
- $ightharpoonup \left[\operatorname{pre}(\sigma) \right] \stackrel{def}{=} (\bot, \sigma_0, \sigma_1, \ldots)$
- $\qquad \qquad \bullet \quad \llbracket \sigma > \tau \rrbracket) \stackrel{def}{=} (\sigma_0, \tau_1, \tau_2, \ldots)$
- ▶ $\llbracket \sigma \text{ when } \varphi \rrbracket \stackrel{def}{=} (\sigma_{t_0}, \tau_{t_1}, \tau_{t_2}, \ldots)$ où la suite des t_i est la suite des instants validant φ dans la suite σ .

```
Listing 8 - clock1.lus

node clock1(b: bool) returns (y: int);
var n: int;
var e: bool;
var f: int;
let
    n = 0 -> pre(n)+1;
    e = true -> not pre(e);
    f = current ( n when e);
    y = current ( n when e) div 2;
tel
```


current n'est pas supporté.

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

Semantical Concepts for Reactive Programming

•	4	4	4	 4	
	х	x_0	x_1	 x_n	
	У	y_0	y_1	 y_n	
	x+y	$x_0 + y_0$	$x_1 + y_1$	 x_n+y_n	

▶ nat = 0 -> (1 + pre nat)

h	true	false	true	true	false
x	x_0	x_1		x_n	
х	x_0	1	x_2	x_3	_
when					
h					

- Un programme LUSTRE s'appelle un nœud ou NODE.
- ▶ Un programme LUSTRE dénote une suite infinie de valeurs comme suit : $(x_0 \ x_1 \ x_2 \ \ldots)$
- Deux opérateurs sur les programmes :
 - pre
 - \longrightarrow
- $\forall n \geq 0.CUP_{n+1} = CUP_n + 1$ s'écrira $CUP = 0 \longrightarrow (1 + \mathbf{pre}(CUP))$
- ightharpoonup et produira la suite $(0\ 1\ 2\ ...)$.
- $ightharpoonup FIB = 0 \longrightarrow 1 \longrightarrow (\mathbf{pre}(FIB) + \mathbf{pre}(\mathbf{pre}(FIB)))$

désigne la suite $(false, x_1 \land \neg x_0, x_2 \land \neg x_1, ...)$

Counter

 $C=0\longrightarrow \mathbf{pre}(C)+1$ renvoie la suite des naturels $C=0\longrightarrow if\ X\ then\ \mathbf{pre}(C)+1\ else\ \mathbf{pre}(C)$ compte le nombre d'occurrences de X qui sont vraies. On ignore la valeur initiale

$$PC = 0 \longrightarrow \mathbf{pre}(C)$$

 $C = if \ X \ then \ PC+1 \ else \ PC$

```
\begin{aligned} nodeCOUNTER(init,incr:int;X,reset:bool)returns(C:int) \\ let \\ PC &= init -> pre \ C \\ C &= if \ reset \ then \ init \\ else \ if \ X \ then \ (PC+incr) \\ elsePC; \\ tel \end{aligned}
```

lacktriangledown odds = COUNTER(0, 2, true, true -> false) définit les entiers impairs.

- Deux opérateurs sur les programmes :
 - pre
 - $\stackrel{-}{\longrightarrow}$

Т

- \triangleright X when B
- ightharpoonup current X
- ► assert
 - assert not (x and y)
 - $assert\ (true->not(x\ and\ pre(x)))$

```
node COUNTER(init,incr:int; X,reset:bool) returns (C:int)
let
   PC=init-> pre C
   C = if reset then init
        else if X then (PC+incr)
        else PC;
tel
```

ightharpoonup odds = COUNTER(0, 2, true, true -> false) définit les entiers impairs.

- Deux opérateurs sur les programmes :
 - pre
 - ____
- $ightharpoonup X \ when \ B$: filtre de X quand la valeur de B est vraie.
- ightharpoonup current X: interpolation de X
- ightharpoonup and, not, or, xor, ... sont des opérateurs booléens sur les streams.
- assert
 - assert not (x and y)
 - $assert\ (true->not(x\ and\ pre(x)))$
- réutilisation de nœuds

```
node FALLING_EDGE(X:bool) returns (Y:bool)
let
    Y= EDGE(not X);
tel
```

- Soit f une fonction du temps à valeurs réelles et on souhaite l'intégrer selon la méthode des trapèzes.
- ▶ Deux valeurs sont reçues par le programme $F_n = f(x_n)$ et $x_{n+1} = x_n + STEP_{n+1}$
- ► Calcul de $Y : Y_{n+1} = Y_n + (F_n + F_{n+1}) \cdot STEPn + 1/2$
- La valeur de Y est une donnée

```
node integration(F,STEP,init:real) returns (Y:real)
let
    Y= init -> pre(Y)+ ((F + pre(F))*STEP)/2.0;
tel
```

Vérification par observateurs

- Description de la propriété à vérifier et les hypothèses de l'environnement
- Un observateur d'une propriété de sûreté est un programme qui utilise comme entrée les entrées-sorties du programme à vérifier et décide en émettant un signal à chaque instant si la propriété est violée ou non

- Transformer un signal en niveau par un swith qui est utilisé comme suit :
 - deux signaux possibles en entrée set et reset
 - une valeur initiale initial
 - toute occurence de set fait passer le niveau à true
 - toute occurence de reset fait passer le niveau à false
 - quand aucun des signaux n'apparaît, le niveau ne change pas
- un signal est modélisé comme un booléen :

```
node SWITCH1(set,reset,initial: bool) returns (level:bool)
let
   level = initial -> if set the true
        else if reset then false
        else pre(level);
```

tel

Problème : ce programme ne modélise pas un switch à un bouton :

```
state = SWITCH1(change,change,true)
```

Programmer un switch à un bouton

- Transformer un signal en niveau par un swith qui est utilisé comme suit:
 - deux signaux possibles en entrée set et reset
 - une valeur initiale initial
 - toute occurence de set fait passer le niveau à true
 - toute occurence de reset fait passer le niveau à false
 - quand aucun des signaux n'apparaît, le niveau ne change pas
- ▶ node SWITCH(set,reset,initial: bool) returns (level:bool) let

```
level = initial -> if set and not pre(level) then true
                   else if reset then false
                   else pre(level);
```

t.el

Vérification :

```
node verification(set,reset,initial: bool) returns (ok:bool)
let
   level = SWITCH(set,reset,initial);
   level1 = SWITCH(set,reset,initial);
   ok = (level = level1);
   assert not(set and reset)
```

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

```
(power2 avec vérification)
                            Listing 9 – power2prop.lus
- power2(_) contains all the square numbers in increasing order
— where 0^2 = 0
- (n+1)^2 = n^2 + 2*n + 1
node power2( - : bool) returns (P: int);
var W: int:
var P2: int:
var PROP: bool:
var N: int:
let
 - all the natural even numbers
 W = 1 - > (pre W) + 2:
 P = 0 \rightarrow (pre P) + (pre W):
 N = 0 \longrightarrow (pre N) + 1;
 P2 = N*N:
  PROP = P2 = P:
  check PROP:
tel
```

Application de la k-induction : kind2 --enable BMC --enable IND

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

Propriétés des programmes LUSTRE

Propriétés des programmes LUSTRE

(--enable BMC --enable IND)

```
Listing 12 – kindsession2/power2.lus
- power2(_) contains all the square numbers in increasing order
\longrightarrow where 0^2 = 0
          (n+1)^2 = n^2 + 2*n + 1
node power2() returns (P: int);
var W: int:
let
 - all the natural even numbers
 W = 1 - > (pre W) + 2;
 P = 0 \longrightarrow (pre P) + (pre W);
tel
```

```
Listing 13 - kindsession2/power2prop.lus
```

```
- power2(_) contains all the square numbers in increasing order
   — where 0^2 = 0
             (n+1)^2 = n^2 + 2*n + 1
   include "power2.lus"
   node power2prop() returns (P: int):
   var P2.PP2.N:int:
   var PROP: bool;
   let
    PP2 = power2();
     N = 0 - > (pre N) + 1;
    P2 = N*N;
     PROP = P2 = PP2;
     check PROP:
   tel
Modélisation synchrone (15 avril 2024) (Dominique Méry)
```

```
Listing 14 — kindsession2/greycounter.lus

node greycounter (reset: bool) returns (out: bool);

var a, b: bool;

let

a = false -> (not reset and not pre b);

b = false -> (not reset and pre a);

out = a and b;

tel
```

```
Listing 15 - kindsession2/intcounter.lus

node intcounter (reset: bool; const max: int) returns (out: bool);

var t: int;

let

t = 0 -> if reset or pre t = max then 0 else pre t + 1;

out = t = 2;

tel
```

(Valid property) Listing 16 – kindsession2/ex1.lus /* include */ include "greycounter.lus" /* include */ include "intcounter.lus" node top (reset: bool) returns (OK, OK2: bool); var b, d: bool; let b = greycounter(reset); d = intcounter(reset, 3); OK = b = d; --- %PROPERTY OK; tel

(Invalid property) Listing 17 – kindsession2/ex2.lus /* include */ include "greycounter.lus" /* include */ include "intcounter.lus" node top (reset: bool) returns (OK, OK2: bool); var b. d: bool: let b = greycounter(reset); d = intcounter(reset, 3); OK = b = d: OK2 = not d;— %PROPERTY OK: --- %PROPERTY OK2: tel

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

Treillis complet

□ Definition

Un treillis complet $(L,\sqsubseteq,\bot,\sqcup,\top,\sqcap)$ est un treillis satisfaisant les propriétés suivantes :

- **1** Pour toute partie A de L, il existe une borne supérieure notée $\sqcup A$.
- **2** Pour toute partie A de L, il existe une borne inférieure notée $\Box A$.
- ▶ Un treillis complet $(L, \sqsubseteq,)$ peut être défini par les éléments suivants $(L, \sqsubseteq, \bot, \sqcup, \top, \sqcap)$
- ▶ Un treillis est une structure munie d'un ordre partiel et telle que deux éléments ont une borne supérieure et une inférieure dans le treillis : $(L,\sqsubseteq,\sqcup,\sqcap)$
 - $a \sqcup b$ existe et est la borne supérieure des deux éléments a et b.
 - $a \sqcap b$ existe et est la borne inférieure des deux éléments a et b.

Représentation par des diagrammes de Hasse

Pour une fonction f définie sur un treillis $(L, \sqsubseteq, \bot, \sqcup, \top, \sqcap)$ et à valeurs dans $(L, \sqsubseteq, \bot, \sqcup, \top, \sqcap)$.

Définition

- ▶ on appelle pré-point-fixe de f, tout élément x de L satisfaisant la propriété $f(x) \sqsubseteq x$
- ▶ on appelle post-point-fixe de f, tout élément x de L satisfaisant $x \sqsubseteq f(x)$.
- ▶ $PostFIX(f) = \{x | x \in L \land x \sqsubseteq f(x)\}$: l'ensemble des post-points-fixes de f.
- ▶ $PreFIX(f) = \{x | x \in L \land f(x) \sqsubseteq x\}$: l'ensemble des pré-points-fixes de f.
- $ightharpoonup FIX(f) = \{x | x \in L \land f(x) = x\}$: l'ensemble des points-fixes de f.

Théorème de Knaster-Tarski (I)

Soit f une fonction monotone croissante sur un treillis complet $(T, \bot, \top, \bigvee, \bigwedge)$. Alors il existe un plus petit point fixe et un plus grand point fixe pour f.

- $ightharpoonup \mu f$ désigne le plus petit point fixe de f.
- ightharpoonup
 u f désigne le plus grand point fixe de f.
- ▶ μf vérifie les propriétés suivantes : $f(\mu f) = \mu f$ et $\forall x \in T. f(x) \sqsubseteq x \Rightarrow \mu f \sqsubseteq x \ (\mu f \text{ est la borne inférieure des prépoints fixes de } f \text{ ou } \bigwedge(Pre(f))).$
- ▶ νf vérifie les propriétés suivantes : $f(\nu f) = \nu f$ et $\forall x \in T.x \sqsubseteq f(x) \Rightarrow x \sqsubseteq \nu f \ (\nu f \text{ est la borne supérieure des postpoints fixes de } f \text{ ou } \bigvee(Post(f))).$

Posons $y = \bigwedge \{x | f(x) \sqsubseteq x\}$ et montrons que y est un point fixe de f et que y est le plus petit point fixe de f.

- - Pour tout x de $\{x|f(x) \sqsubseteq x\}$, $y \sqsubseteq x$
 - $f(y) \sqsubseteq f(x)$ (par monotonie de f).
 - $f(x) \sqsubseteq x$ (par définition de x).
 - $f(y) \sqsubseteq x$ (par déduction).
 - $f(y) \sqsubseteq \bigwedge \{x | f(x) \sqsubseteq x\}$ (par définition de la borne inférieure, f(y) est un minorant).
 - $f(y) \sqsubseteq y$
- $y \sqsubseteq f(y)$
 - $f(y) \sqsubseteq y$ (par le cas 1)
 - $f(f(y)) \sqsubseteq f(y)$ (par monotonie de f)
 - $f(y) \in \{x | f(x) \sqsubseteq x\}$
 - $y \sqsubseteq f(y)$ (par définition de la borne inférieure)
- **3** Conclusion : f(y) = y ou $y \in FIX(f)$.

Preuve

- ightharpoonup f(y) = y et z tel que f(z) = z
 - f(z) = z (par hypothèse sur z)
 - $f(z) \sqsubseteq z$ (par affaiblissement de l'égalité)
 - $z \in \{x | f(x) \subseteq x\}$ (par définition de cet ensemble)
 - $y \sqsubseteq z$ (par construction)
- ightharpoonup y est le plus petit point fixe de f.

Ifp(f) et gfp(f)

- $\blacktriangleright \mu f = lfp(f) = \bigwedge \{x | f(x) \sqsubseteq x\}$
- $\triangleright \ \nu f = gfp(f) = \bigvee \{x | x \sqsubseteq f(x)\}$
- ightharpoonup lfp(f) signifie least fixed-point
- ightharpoonup gfp(f) signifie greatest fixed-point

Positionnement des éléments

- ightharpoonup $op = \sqcup \{x | f(x) \sqsubseteq x\}$
- $\blacktriangleright \ lfp(f) = \mu f = \sqcap \{x | f(x) \sqsubseteq x\}$
- $ightharpoonup \perp = \sqcap \{x | x \sqsubseteq f(x)\}$

 $ightharpoonup x \in pre(f)$ si, et seulement si, $f(x) \le x$ (définition)

- $ightharpoonup x \in pre(f)$ si, et seulement si, $f(x) \le x$ (définition)
- $ightharpoonup orall a\in pre(f).\mu f\leq a$ (application de la définition de la borne inférieure d'un ensemble)

- $ightharpoonup x \in pre(f)$ si, et seulement si, $f(x) \leq x$ (définition)
- ▶ $\forall a \in pre(f).\mu f \leq a$ (application de la définition de la borne inférieure d'un ensemble)
- $\blacktriangleright \ \forall a \in pre(f).f(\mu f) \leq f(a) \leq a$ (croissance de f et propriété de a)

- $ightharpoonup x \in pre(f)$ si, et seulement si, $f(x) \le x$ (définition)
- ▶ $\forall a \in pre(f).\mu f \leq a$ (application de la définition de la borne inférieure d'un ensemble)
- $\blacktriangleright \ \forall a \in pre(f).f(\mu f) \leq f(a) \leq a$ (croissance de f et propriété de a)
- $f(\mu f) \le \mu f$ (application pour $a = \mu f$))

- $ightharpoonup x \in pre(f)$ si, et seulement si, $f(x) \le x$ (définition)
- ▶ $\forall a \in pre(f).\mu f \leq a$ (application de la définition de la borne inférieure d'un ensemble)
- $\blacktriangleright \ \forall a \in pre(f).f(\mu f) \leq f(a) \leq a$ (croissance de f et propriété de a)
- ▶ $f(\mu f) \le \mu f$ (application pour $a = \mu f$))
- ▶ $f(f(\mu f)) \le f(\mu f)$ (croissance de f)

- $ightharpoonup x \in pre(f)$ si, et seulement si, $f(x) \le x$ (définition)
- ▶ $\forall a \in pre(f).\mu f \leq a$ (application de la définition de la borne inférieure d'un ensemble)
- $\blacktriangleright \ \forall a \in pre(f).f(\mu f) \leq f(a) \leq a$ (croissance de f et propriété de a)
- $f(\mu f) \le \mu f$ (application pour $a = \mu f$))
- ▶ $f(f(\mu f)) \le f(\mu f)$ (croissance de f)
- $f(\mu f) \in pre(f)$ (définition des pré-points-fixes)

- $ightharpoonup x \in pre(f)$ si, et seulement si, $f(x) \le x$ (définition)
- ▶ $\forall a \in pre(f).\mu f \leq a$ (application de la définition de la borne inférieure d'un ensemble)
- $ightharpoonup orall a \in pre(f).f(\mu f) \leq f(a) \leq a$ (croissance de f et propriété de a)
- ▶ $f(\mu f) \le \mu f$ (application pour $a = \mu f$))
- ▶ $f(f(\mu f)) \le f(\mu f)$ (croissance de f)
- $f(\mu f) \in pre(f)$ (définition des pré-points-fixes)
- $ightharpoonup \mu f \leq f(\mu f)$ (définition de μf)
- $ightharpoonup \mu f = f(\mu f)$ (définition de μf et propriété précédente)

Version constructive du théorème de Knaster-Tarski

Soit f une fonction monotone croissante sur un treillis complet $(T,\bot,\top,\bigvee,\bigwedge)$. Alors

① La structure formée des points fixes de f sur T, $(fp(f),\sqsubseteq)$ est un treillis complet non-vide.

$$(fp(f) = \{x \in T : f(x) = x\}$$

2 $lfp(f) \stackrel{def}{=} \bigvee_{\alpha} f^{\alpha}$ est le plus petit point fixe de f où :

$$\begin{cases} f^0 & \stackrel{def}{=} & \bot \\ \alpha \text{ ordinal successeur} & f^{\alpha+1} & \stackrel{def}{=} & f(f^{\alpha}) \\ \alpha \text{ ordinal limite} & f^{\alpha} & \stackrel{def}{=} & \bigvee_{\beta < \alpha} f^{\beta} \end{cases}$$

3 $gfp(f)\stackrel{def}{=} \bigwedge_{\alpha} f_{\alpha}$ est le plus grand point fixe de f où

$$\begin{cases} f_0 & \stackrel{def}{=} & \top \\ \alpha \text{ ordinal successeur } f_{\alpha+1} & \stackrel{def}{=} & f(f_\alpha) \\ \alpha \text{ ordinal limite } f_\alpha & \stackrel{def}{=} & \bigwedge_{\beta < \alpha} f_\beta \end{cases}$$

Computing the least fixed-point over a finite lattice

```
INPUT F \in T \longrightarrow T
OUTPUT result = \mu.F
VARIABLES x, y \in T, i \in \mathbb{N}
\ell_0 : \{x, y \in T\}
x := \bot;
u := \bot:
i := 0:
\ell_{11}: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0, k=i} F^k \land i \leq Card(T) \land i = 0\};
WHILE i < Card(T)
   \ell_1: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0, k=i} F^k \land i \leq Card(T)\};
   x := F(x);
   \ell_2: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0, k=i} F^k \land i \leq Card(T)\};
   y := x \sqcup y;
   \ell_3: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0: k=i+1} F^k \land i \leq Card(T)\};
   i := i+1:
  \ell_4: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0, k=i} F^k \land i \leq Card(T) + 1\};
OD:
\ell_5: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i = Card(T)+1\};
result := u:
\ell_6: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0 \cdot k=i} F^k \land i = Card(T) + 1 \land result = y\};
```

Verification in action

- ▶ Identify the safety property *S* to check.
- ▶ Run the algorithm for computing μF .
- ▶ Check that $\mu F \subseteq S$ or $\overline{S} \cap \mu F = \emptyset$.
- ► Check that $BUG \cap \mu F = \emptyset$, when BUG is a set of states that you identify as *bad states*.

Problem

- ▶ The general case is either infinite or large . . . approximations of μF .
- Computing over abstract finite domain
- ▶ How to compute when it is not decidable?
- Develop a framework for defining sound abstractions of software systems under analysis.

Expression du problème à résoudre

- S is the set of states
- $ightharpoonup (\mathcal{P}(S \times S), \subseteq)$ is a complete lattice.
- ▶ $R \subseteq S \times S$ is a binary relation over S simulating the computation or the transition as Next(x, x').
- ▶ $F \in \mathcal{P}(S \times S) \to \mathcal{P}(S \times S)$ is defined by the following expression :
 - $X \subseteq S \times S$
 - $I = \{(s, s) | s \in S\}$
 - $F(X) = I \cup R; X$

Transitive closure of R

- F is a monotonous function.
- ightharpoonup F has a least-fixed point denoted μF .
- $\blacktriangleright \mu F = R^{\star}$
- $\blacktriangleright \forall n \in \mathbb{N} : F^{n+1}(\varnothing) = \bigcup_{i=0}^n$

Checking safety

- $ightharpoonup G \subseteq S$ is the set of Good states.
- ▶ $I \subseteq S$ is the set of initial states.
- $\forall s_0, s \in S : s_0 \in I \land R^*(s_0, s) \Rightarrow s \in G$ (Expression of safety of G)
- $\forall s \in S : (\exists s_0.s_0 \in I \land R^{\star}(s_0,s)) \Rightarrow s \in G$
- $ightharpoonup R^{\star}[I] \subset G$
- $\blacktriangleright \ R^{\star}[I] = \bigcup_{n>0} F^n[I] = \bigcup_{n>0} G^n$
- $ightharpoonup \bigcup_{n>0} G^n \subseteq G$ (Expression de la safety)

Techniques fo checking

 $\bigcup_{n\geq 0}G^n\subseteq G$ is checked using at least two possible techniques :

- Bounded Model Checking
- k-Induction
- **.** . . .

Current Summary

- Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

```
Listing 18 - kindsession2/contract0.lus

node g () returns ();
(**@contract
assume true;
guarantee true;
*)
const n = 7;
var t : int;
let
t = n;
tel;
```

```
(simple contrat)
                  Listing 19 – kindsession2/contract1.lus
contract countSpec(trigger: bool; val: int) returns (count: int; error: bool);
let
 assume val >= 0;
 var initVal: int = val -> pre(initVal);
 var once: bool = trigger or (false -> pre once);
  guarantee count >= 0;
mode still_zero (
   require not once ;
   ensure count = initVal ;
mode gt (
   require not :: still_zero ;
   ensure count > 0;
tel
```

Contrats

assumes

An assumption over a node n is a constraint one must respect in order to use n legally. It cannot depend on outputs of n in the current state, but referring to outputs under a pre is fine.

The idea is that it does not make sense to ask the caller to respect some constraints over the outputs of n, as the caller has no control over them other than the inputs it feeds n with.

The assumption may however depend on previous values of the outputs produced by n. Assumptions are given with the assume keyword, followed by any legal Boolean expression:

guarantees

Unlike assumptions, guarantees do not have any restrictions on the streams they can depend on. They typically mention the outputs in the current state since they express the behavior of the node they specified under the assumptions of this node.

Guarantees are given with the guarantee keyword, followed by any legal Boolean expression:

modes

A mode (R,E) is a set of requires R and a set of ensures E. Modes are named to ease traceability and improve feedback.

```
(mode)
                    Listing 20 – kindsession2/mode.lus
mode <id> (
 [require <expr> ;]*
 [ensure <expr> :1*
```

Current Summary

- 1 Modélisation synchrone (I)
- 2 Exemples de programmes LUSTRE
- 3 Modélisation synchrone (II)
- 4 Le langage LUSTRE
- 5 Vérification de programmes LUSTRE

Sommaire sur la modélisation synchrone

- ► Modèle de calcul simplifié
- Modélisation des systèmes réactifs : systèmes qui réagissent à des stimuli ou des signaux de l'environnement.
- Méthodologie de développement fondée sur le triptyque système,environnement,observation.
- ► Outils pour simuler, vérifier et transformer :
 - Compilateur V6 lv6
 - Kind2