LISTA 03: FIS670 - Métodos Computacionais da Física. (Prof. Leandro Rizzi)

Exercício 1. Considere o circuito elétrico representado pela Figura 1. De acordo com as leis de Kirchhoff é possível definir três laços independentes. Escolhendo o primeiro laço como passando pela fonte e pelas resistências r_1 e r_2 , e o segundo e terceiro laços como, respectivamente, à esquerda e à direita do amperímetro, as equações de voltagem para cada laço são dadas pelo sistema linear:

$$r_s i_1 + r_1 i_2 + r_2 i_3 = \nu_0$$

$$-r_x i_1 + (r_1 + r_x + r_a) i_2 - r_a i_3 = 0$$

$$-r_3 i_1 - r_a i_2 + (r_2 + r_3 + r_a) i_3 = 0$$

as quais podem ser escritas na forma matricial como

$$\mathbf{R} \cdot \mathbf{i} = \mathbf{V}$$
,

onde

$$\mathbf{i} = \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix}$$
 e $\mathbf{V} = \begin{pmatrix} \nu_0 \\ 0 \\ 0 \end{pmatrix}$

Figura 1: Circuito elétrico de uma ponte de Wheatstone. As resistências internas r_s e r_a indicam componentes não ideais.

- a) Escreva a expressão analítica para a matriz R.
- b) Considere o método de decomposição LU (vide páginas 26 à 29 da Ref. [1]) para matrizes $n \times n$, onde a matriz \mathbf{R} é reescrita como a multiplicação das matrizes \mathbf{L} e \mathbf{U} . Escreva as expressões analíticas para matrizes \mathbf{L} e \mathbf{U} , isto é, explicitando como os seus elementos em função das resistências.
- c) Implemente o método de decomposição LU para resolver sistemas lineares definidos por matrizes $n \times n$ e use-o para encontrar numericamente o vetor solução **i** assumindo $\nu_0 = 1.5 \, \text{V}$, $r_1 = r_2 = 100 \, \Omega$, $r_3 = 150 \, \Omega$, $r_x = 120 \, \Omega$, $r_a = 1000 \, \Omega$ e $r_s = 10 \, \Omega$. Qual será a corrente i_a no amperímetro? Indique se a ponte está balanceada.

Exercício 2. A interpolação de um conjunto de n+1 dados experimentais (x_k, y_k) , com $k=0,\ldots,n$, pode ser realizada utilizando um polinômio p(x) de grau n,

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 \quad , \tag{1}$$

impondo que $p(x_k) = y_k \ \forall \ k$. Tais condições podem ser escritas na forma de um sistema linear $\mathbf{x} \cdot \mathbf{a} = \mathbf{y}$, onde

$$\mathbf{x} = \begin{pmatrix} x_0^n & x_0^{n-1} & x_0^{n-2} & \dots & x_0 & 1 \\ x_1^n & x_1^{n-1} & x_1^{n-2} & \dots & x_1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_n^n & x_n^{n-1} & x_n^{n-2} & \dots & x_n & 1 \end{pmatrix} , \qquad \mathbf{a} = \begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_0 \end{pmatrix} \qquad \mathbf{e} \qquad \mathbf{y} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix} .$$

- a) Utilize o método de decomposição LU para encontrar os coeficientes a_k da função polinomial p(x) que interpola os dados experimentais do arquivo planck.dat.
- b) Faça um gráfico com os dados experimentais e inclua também a curva da função polinomial p(x) encontrada no item (a) dentro do intervalo $x \in [0.01, 1.0]$. Verifique (visualmente) se a curva passa pelos pontos experimentais.
- c) Faça um gráfico para comparar o polinômio p(x) encontrado com a função exata para a distribuição de Planck

$$P(x) = \frac{1}{x^5 [e^{\frac{1}{x}} - 1]} \quad .$$

d) Obtenha expressões analíticas para as derivadas p'(x) e P'(x) e faça o gráfico incluindo as duas funções obtidas. Comente sobre quão semelhante são essas duas curvas em termos dos pontos de máximo, mínimo e/ou de inflexão.

Exercício 3. Experimentos relacionados à ressonância (magnética ou mecânica) comumente requerem o ajuste de dados por uma Lorentziana, $P(\omega) = A/[(\omega - \omega_0)^2 + \Gamma]$, que é uma função não linear com 3 parâmetros.

- a) Utilize os dados do arquivo lorentziana.dat para reproduzir o Exemplo 1.3 das páginas 29 à 33 da Ref. [2]. Para isso você deve implementar uma subrotina com o método de Newton generalizado (pág. 16), o qual necessita da matriz jacobiana **J**. Apresente os cálculos para obter os elementos de **J** e os valores de A, ω_0 e Γ encontrados.
- b) Grafique os dados experimentais junto com a curva $P(\omega)$ e também mostre a derivada analítica da curva ajustada.
- c) Comente como você escolheu os valores iniciais para o parâmetros e se essa escolha influi no resultado.

Exercício 4. Um exemplo tradicional na Física para o entendimento de aplicação dos auto-valores e auto-vetores é a determinação dos **modos normais de vibração** de um conjunto de N osciladores de massa m acoplados por molas (com constante elástica k) e presos às extremidades, tal como mostra a Figura ao lado.

Por exemplo, para N=3 osciladores localizados sobre o eixo x, existem 3 graus de liberdade: os deslocamentos $x_1(t), x_2(t)$ e $x_3(t)$ em relação à posição de equilíbrio de cada um dos osciladores; assim teremos 3 modos normais de vibração para esse sistema. Cada modo normal é caracterizado por um auto-valor λ_n (o qual está associado às frequências de oscilação $\omega_n = \sqrt{\lambda_n}$) e um auto-vetor \vec{u}_n , todos determinados pelo problema definido pela relação:

$$\mathbf{H}\vec{u}_n = \lambda_n \vec{u}_n$$

onde **H** é denominada **matriz Hessiana**, que é uma matriz simétrica $N \times N$ cujos elementos são reais. A partir dos auto-valores λ_n e dos auto-vetores $\vec{u}_n = (u_n^1, u_n^2, u_n^3)$, a solução mais geral do sistema, isto é, o vetor de funções $\vec{x}(t)$ que descreve os deslocamentos das massas em função do tempo, pode ser escrito como:

$$\vec{x}(t) = \sum_{n=1}^{N} c_n \vec{u}_n \cos(\omega_n t + \phi_n) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} = \begin{pmatrix} \sum_{n=1}^{N} c_n u_n^1 \cos(\omega_n t + \phi_n) \\ \sum_{n=1}^{N} c_n u_n^2 \cos(\omega_n t + \phi_n) \\ \sum_{n=1}^{N} c_n u_n^3 \cos(\omega_n t + \phi_n) \end{pmatrix} , \qquad (2)$$

onde as constantes c_1 , c_2 , c_3 , ϕ_1 , ϕ_2 e ϕ_3 são determinadas pelas condições iniciais, isto é, pelos deslocamentos $x_1(0)$, $x_2(0)$ e $x_3(0)$ e velocidades $v_1(0)$, $v_2(0)$ e $v_3(0)$ iniciais. Para o caso de N=3 osciladores é possível mostrar que as equações de movimento de Newton (veja págs. 9 e 10 da ref. [3]) podem ser reescritas como:

$$\begin{split} m\frac{d^2x_1(t)}{dt^2} &= -kx_1 - k(x_1 - x_2) \quad , \\ m\frac{d^2x_2(t)}{dt^2} &= -k(x_2 - x_1) - k(x_2 - x_3) \quad , \\ m\frac{d^2x_3(t)}{dt^2} &= -k(x_3 - x_2) - kx_3 \quad . \end{split}$$

Considerando a solução dada pela Eq. 2, é possível mostrar que o auto-valor λ_n do n-ésimo modo de vibração e o seu auto-vetor correspondente \vec{u}_n podem ser determinados através da solução do seguinte problema:

$$(\mathbf{H} - \lambda_n \mathbb{1})\vec{u}_n = 0 \tag{3}$$

onde $\mathbbm{1}$ é a matriz identidade e

$$\mathbf{H} = \begin{pmatrix} 2\omega_0^2 & -\omega_0^2 & 0 \\ -\omega_0^2 & 2\omega_0^2 & -\omega_0^2 \\ 0 & -\omega_0^2 & 2\omega_0^2 \end{pmatrix} , \quad \text{sendo } \omega_0 = \sqrt{\frac{k}{m}} .$$

a) Como o problema de encontrar auto-valores restringe-se à determinar os valores de λ_n (n = 1, 2, 3) que satisfazem a relação det $(\mathbf{H} - \lambda_n \mathbb{1}) = 0$ (pág. 352 de [4]), mostre que as frequências de oscilação dos modos normais são [3]:

$$\omega_1 = \sqrt{\lambda_1} = \omega_0 \sqrt{(2 - \sqrt{2})}$$
, $\omega_2 = \sqrt{\lambda_2} = \omega_0 \sqrt{2}$ e $\omega_3 = \sqrt{\lambda_3} = \omega_0 \sqrt{(2 + \sqrt{2})}$

- b) Utilize o método de Newton-Raphson (vide Lista 02) para encontrar as 3 raízes positivas do polinômio característico $p(\lambda) = \det(\mathbf{H} \lambda_n \mathbb{1})$ assumindo $\omega_0 = 0, 4 \, \mathrm{rad.s}^{-1}$. Compare seus resultados com os valores obtidos no item (a).
- c) Os auto-vetores \vec{u}_n correspondentes aos auto-valores encontrados nos items anteriores podem ser obtidos analiticamente através da Eq. 3 e, de acordo com [3], são:

$$\vec{u}_1 \propto \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$$
 , $\vec{u}_2 \propto \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ e $\vec{u}_3 \propto \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$. (4)

Implemente o **método da potência** (eq. 2.81/pág. 41 de [1]) para encontrar as componentes do auto-vetor relativo ao maior auto-valor considerando um vetor inicial \vec{u}_0 da sua escolha. Compare com os valores esperados acima.

Referências:

- [1] F. J. Vesely. Computational Physics: An Introduction (2nd ed., 2001)
- [2] C. Scherer. Métodos Computacionais da Física (2nd ed.,2010)
- [3] http://www.people.fas.harvard.edu/~djmorin/waves/normalmodes.pdf
- [4] J. D. Faires e R. L. Burden. Numerical Methods (3rd ed.)