## **Discrete Mathematics for Computing**



### **Ch 9.3 Representing Relations**

- Represent Binary Relations
  - Ch 9.1 Ordered Pairs, Table
- Two alternative methods
- zero-one matrices: representation of relations in computer programs
  - pictorial representation: directed graphs



#### **Matrices**

- A matrix is a rectangular array of numbers.
- An m×n ("m by n") matrix has exactly m horizontal rows, and n vertical columns.
- An n×n matrix is called a square matrix, whose order is n.

$$\begin{bmatrix} 2 & 3 \\ 5 & -1 \\ 7 & 0 \end{bmatrix}$$
 a  $3 \times 2$  matrix

#### **Row and Column Order**

 The rows in a matrix are usually indexed 1 to m from top to bottom. The columns are usually indexed 1 to n from left to right. Elements are indexed by row, then column.

$$\mathbf{A} = [a_{i,j}] = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

## **Matrix Equality**

 Two matrices A and B are equal iff they have the same number of rows, the same number of columns, and all corresponding elements are equal.

$$\begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix} \neq \begin{bmatrix} 3 & 2 & 0 \\ -1 & 6 & 0 \end{bmatrix}$$

#### **Matrix Sums**

 The sum A+B of two matrices A, B (which must have the same number of rows, and the same number of columns) is the matrix (also with the same shape) given by adding corresponding elements.

• **A+B** = 
$$\begin{bmatrix} a_{i,j} + b_{i,j} \end{bmatrix}$$
  $\begin{bmatrix} 2 & 6 \\ 0 & -8 \end{bmatrix} + \begin{bmatrix} 9 & 3 \\ -11 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 9 \\ -11 & -5 \end{bmatrix}$ 

#### **Matrix Products**

• For an  $m \times k$  matrix **A** and a  $k \times n$  matrix **B**, the product **AB** is the  $m \times n$  matrix:

$$\mathbf{AB} = \mathbf{C} = [c_{i,j}] \equiv \left[ \sum_{\ell=1}^{k} a_{i,\ell} b_{\ell,j} \right]$$

- i.e., element (i,j) of AB is given by the vector dot product of the <u>ith row of A</u> and the <u>jth column of B</u> (considered as vectors).
- Note: Matrix multiplication is not commutative!

## **Matrix Product Example**

An example matrix multiplication to practice in class:

$$\begin{bmatrix} 0 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 1 & 0 \\ 2 & 0 & -2 & 0 \\ 1 & 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -5 & -1 \\ 3 & -2 & 11 & 3 \end{bmatrix}$$

### **Powers of Matrices**

If **A** is an  $n \times n$  square matrix and  $p \ge 0$ , then:

• 
$$\mathbf{A}^p \equiv \mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}$$
  $(\mathbf{A}^0 \equiv \mathbf{I}_n)$ 

• Example:

$$\begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}^3 = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 3 \\ -3 & -2 \end{bmatrix}$$

#### **Boolean Products**

- Let  $\mathbf{A}=[a_{ij}]$  be an  $m\times k$  zero-one matrix, & let  $\mathbf{B}=[b_{ij}]$  be a  $k\times n$  zero-one matrix,
- The boolean product of A and B is like normal matrix ×, but using ∨ instead + in the row-column "vector dot product."

$$\mathbf{A} \odot \mathbf{B} = \mathbf{C} = [c_{ij}] = \begin{vmatrix} \sum_{\ell=1}^{k} a_{i\ell} \wedge b_{\ell j} \end{vmatrix}$$

# **Arithmetic/Boolean Products**

$$\mathbf{AB} = \mathbf{C} = [c_{i,j}] \equiv \left[ \sum_{\ell=1}^{k} a_{i,\ell} b_{\ell,j} \right]$$

$$\mathbf{A} \odot \mathbf{B} = \mathbf{C} = [c_{ij}] = \left[ \bigvee_{\ell=1}^{k} a_{i\ell} \wedge b_{\ell j} \right]$$

## **Arithmetic/Boolean Products**

An example of Boolean multiplication.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

### **Boolean Powers**

 For a square zero-one matrix A, and any k≥0, the kth Boolean power of A is simply the Boolean product of k copies of A.

• 
$$A^{[k]} \equiv A \odot A \odot ... \odot A$$

#### **Matrix review**

- We will only be dealing with zero-one matrices
  - Each element in the matrix is either a 0 or a 1

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

- These matrices will be used for Boolean operations
  - 1 is true, 0 is false



## **Matrix transposition**

 Given a matrix M, the transposition of M, denoted M<sup>t</sup>, is the matrix obtained by switching the columns and rows of M

$$\mathbf{M} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\mathbf{M}^t = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

In a "square" matrix, the main diagonal stays unchanged

$$\mathbf{M} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

$$\mathbf{M}^{t} = \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix}$$

## **Matrix join**

- A join of two matrices performs a Boolean OR on each relative entry of the matrices
  - Matrices must be the same size
  - Denoted by the or symbol:  $\vee$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \checkmark \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

### **Matrix** meet

- A meet of two matrices performs a Boolean
   AND on each relative entry of the matrices
  - Matrices must be the same size
  - Denoted by the or symbol: ∧

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \land \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

#### **Relation Matrix**

Let R be a relation from A to B

$$A=\{a, b, c\}$$
  
 $B=\{d, e\}$   
 $R=\{(a, d), (b, e), (c, d)\}$ 

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Note that A is represented by the rows and B by the columns in the matrix.

Cell<sub>ij</sub> in the matrix contains a 1 iff  $a_i$  is related to  $b_i$ .



### Relations using matrices

- List the elements of sets A and B in a particular order
  - Order doesn't matter, but we'll generally use ascending order
- Create a matrix

$$\mathbf{M}_R = [m_{ij}]$$

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{if } (a_i, b_j) \notin R \end{cases}$$

## **Relations using matrices**

Consider the relation of who is enrolled in which class

```
– Let A = { Alice, Bob, Claire, Dan }
```

$$-R = \{ (a,b) \mid \text{person } a \text{ is enrolled in course } b \}$$

|        | CS101 | CS201 | CS202 |
|--------|-------|-------|-------|
| Alice  | Х     |       |       |
| Bob    |       | Х     | Х     |
| Claire |       |       |       |
| Dan    |       | X     | X     |

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$



### Relations using matrices

- What is it good for?
  - It is how computers view relations
    - A 2-dimensional array
  - Very easy to view relationship properties
- We will generally consider relations on a single set
  - In other words, the domain and co-domain are the same set
  - And the matrix is square



#### **Relation Matrix**

Which ordered pairs are present in a relation from *A* to *B*?

$$A=\{a, b, c\}$$
 $B=\{d, e, f\}$ 
 $M_R=\begin{bmatrix}0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 0 & 1\end{bmatrix}$ 

$$R = \{(a,e), (b,d), (b,f), (c,f)\}$$

## **Relation Matrices and Properties**

- A relation matrix can be used to determine whether the relation has various properties
  - Reflexive
  - Symmetric
  - Antisymmetric
  - Transitive

## Reflexivity

- Consider a reflexive relation:
  - One which every element is related to itself

$$-$$
 Let A =  $\{1, 2, 3, 4, 5\}$ 

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

If the center (main) diagonal is all 1's, a relation is reflexive



## **Irreflexivity**

- Consider a irreflexive relation:
  - One which every element is not related to itself

$$-$$
 Let A =  $\{1, 2, 3, 4, 5\}$ 

$$\mathbf{M}_{R} = \begin{bmatrix} \mathbf{0} & 1 & 1 & 1 & 1 \\ 0 & \mathbf{0} & 1 & 1 & 1 \\ 0 & 0 & \mathbf{0} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{0} & 1 \\ 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

If the center (main) diagonal is all 0's, a relation is irreflexive



## **Symmetry**

- Consider an symmetric relation R
  - One which if a is related to b then b is related to a for all (a,b)
  - Let A =  $\{1, 2, 3, 4, 5\}$

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

 If, for every value, it is equal to the value in its transposed position, then the relation is symmetric



### **Asymmetry**

- Consider an asymmetric relation:
  - One which if a is related to b then b is not related to a for all (a,b)
  - Let A = { 1, 2, 3, 4, 5 }

$$\mathbf{M}_{R} = \begin{bmatrix} \mathbf{0} & 1 & 1 & 1 & 1 \\ 0 & \mathbf{0} & 1 & 1 & 1 \\ 0 & 0 & \mathbf{0} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{0} & 1 \\ 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

- If, for every value and the value in its transposed position, if they are not both 1, then the relation is asymmetric
- An asymmetric relation must also be irreflexive
- Thus, the main diagonal must be all 0's



### **Antisymmetry**

- Consider an antisymmetric relation:
  - One which if a is related to b then b is *not* related to a unless a=b for all (a,b)
  - Let A = { 1, 2, 3, 4, 5 }

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- If, for every value and the value in its transposed position, if they are not both 1, then the relation is antisymmetric
- The center diagonal can have both 1's and 0's



## **Transitivity**

- Consider a transitive relation:
  - One which if a is related to b and b is related to c then a is related to c for all (a,b), (b,c) and (a,c)
  - Let A = { 1, 2, 3, 4, 5 }

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

If, for every spot (a,b) and (b,c) that each have a 1, there is a 1 at (a,c), then the relation is transitive

## **Representing Relations**

Example: Suppose that the relation R on a set is represented by the matrix

$$M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Is R reflexive, symmetric, and/or antisymmetric?

#### **Solution:**

Since all the diagonal elements of this matrix are equal to 1, R is reflexive

The lower left triangle of the matrix = the upper right triangle  $M_R$  is symmetric, R is symmetric

$$M_{23} = M_{32} = 1$$
, R is not antisymmetric

## **Representing Relations**

- Representing relations using digraphs
- A directed graph, or digraph
  - consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs)
- The vertex 'a' is called the initial vertex of the edge (a, b)
- The vertex 'b' is called the terminal vertex of this edge



## **Representing Relations Using Digraphs**

© The McGraw-Hill Companies, Inc. all rights reserved.



This is a digraph with:

$$V = \{a, b, c, d\}$$

$$E = \{(a, b), (a, d), (b, b),$$

$$(b, d), (c, a), (c, b),$$

$$(d, b)\}$$

Note that edge (b, b) is represented using an arc from vertex b back to itself - loop

• Let R be a relation on set A

$$A=\{a, b, c\}$$
  
 $R=\{(a, b), (a, c), (b, b), (c, a), (c, b)\}.$ 

• Draw the digraph that represents *R* 



© The McGraw-Hill Companies, Inc. all rights reserved.



What are the ordered pairs in the relation *R* represented by the directed graph to the left?

This digraph represents the relation  $R = \{(1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,1)\}$  on the set  $\{1, 2, 3, 4\}$ .

© The McGraw-Hill Companies, Inc. all rights reserved.



What are the ordered pairs in the relation *R* represented by the directed graph to the left?

$$R = \{(1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,3), (4,1), (4,3)\}$$

© The McGraw-Hill Companies, Inc. all rights reserved.



According to the digraph representing *R*:

- is (4,3) an ordered pair in R?
- is (3,4) an ordered pair in R?
- is (3,3) an ordered pair in R?
- (4,3) is an ordered pair in R
- (3,4) is <u>not</u> an ordered pair in R no arrowhead pointing from 3 to 4
- (3,3) is an ordered pair in R loop back to itself



### Representing relations using directed graphs

- A directed graph consists of:
  - A set V of vertices (or nodes)
  - A set E of edges (or arcs)
  - If (a, b) is in the relation, then there is an arrow from a to b
- Will generally use relations on a single set
- Consider our relation  $R = \{ (a,b) \mid a \text{ divides } b \}$
- Old way:







### **Relation Digraphs and Properties**

- A relation digraph can be used to determine whether the relation has various properties
  - Reflexive
  - Symmetric
  - Antisymmetric
  - Transitive

## Reflexivity

- Consider a reflexive relation:
  - One which every element is related to itself
  - Let A = { 1, 2, 3, 4, 5 }



If every node has a loop, a relation is reflexive



## **Irreflexivity**

- Consider a irreflexive relation:
  - One which every element is not related to itself
  - Let A = { 1, 2, 3, 4, 5 }



If every node does not have a loop, a relation is irreflexive

## **Symmetry**

- Consider an symmetric relation R
  - One which if a is related to b then b is related to a for all (a,b)
  - Let A =  $\{1, 2, 3, 4, 5\}$



- If, for every edge, there is an edge in the other direction, then the relation is symmetric
- Loops are allowed, and do not need edges in the "other" direction

## **Asymmetry**

- Consider an asymmetric relation:
  - One which if a is related to b then b is not related to a for all (a,b)
  - Let A = { 1, 2, 3, 4, 5 }



- A digraph is asymmetric if:
- 1. If, for every edge, there is not an edge in the other direction, then the relation is asymmetric
- 2. Loops are *not* allowed in an asymmetric digraph

## **Antisymmetry**

- Consider an antisymmetric relation:
  - One which if a is related to b then b is not related to a unless a=b for all (a,b)

$$-$$
 Let A =  $\{1, 2, 3, 4, 5\}$ 



If, for every edge, there is not an edge in the other direction, then the relation is antisymmetric

 Loops are allowed in the digraph

## **Transitivity**

- Consider an transitive relation:
  - One which if a is related to b and b is related to c then a is related to c for all (a,b), (b,c) and (a,c)
  - Let A = { 1, 2, 3, 4, 5 }



A digraph is transitive if there is a edge from a to c when there is a edge from a to b and from b to c

© The McGraw-Hill Companies, Inc. all rights reserved.



According to the digraph representing *R*:

- is *R* reflexive?
- is *R* symmetric?
- is *R* antisymmetric?
- is *R* transitive?
- R is reflexive there is a loop at every vertex
- R is not symmetric there is an edge from a to b but not from b to a
- $\bullet$  R is not antisymmetric there are edges in both directions connecting b and c
- R is not transitive there is an edge from a to b and an edge from b to c, but not from a to c



© The McGraw-Hill Companies, Inc. all rights reserved.

### According to the digraph representing *S*:

- is S reflexive?
- is *S* symmetric?
- is *S* antisymmetric?
- is S transitive?



(b) Directed graph of S

- S is not reflexive there aren't loops at every vertex
- S is symmetric for every edge from one distinct vertex to another, there is a matching edge in the opposite direction
- S is not antisymmetric there are edges in both directions connecting a and b
- S is not transitive there is an edge from c to a and an edge from a to b, but not from c to b

