

ED

~~A3233-ST25~~
SEQUENCE LISTING

<110> Marcireau, Christophe
Multon, Marie-Christine
Polard-Houset, Valerie

<120> MEKK1-INTERACTING FHA PROTEIN

<130> A3233

<140> 09/744,125
<141> 2001-01-19

<150> PCT/EP99/05142
<151> 1999-07-21

<150> 60/093,590
<151> 1998-07-21

<160> 16

<170> PatentIn version 3.0

<210> 1
<211> 1553
<212> DNA
<213> Homo sapiens

<400> 1
gaattcggca cgaggtgggg tggaaccagg gcgcgtttcg gggagtgaac ctcctccag 60
tgagaaaaag aaggtatcca aagccccag cactcctgtg ccacccagcc cagccccagc 120
ccctggactc accaagcgtg tgaagaagag taaacagcca cttaggtga ccaaggatct 180
ggccgctgg aagcctgcaa atgacctcct gctcataaat gctgtgtgc agaccaacga 240
cctgacctcc gtccacctgg gcgtgaaatt cagctgccgc ttccaccttc gggaggtcca 300
ggagcggtgg tacgcccctgc tctacgatcc tgtcatctcc aagttggcct gtcaggccat 360
gaggcagctg cacccagagg ctattgcagc catccagagc aaggccctgt ttagcaaggc 420
tgaggagcag ctgctgagca aagtggatc gaccagccag cccaccttgg agaccttcca 480
ggacctgctg cacagacacc ctgatgcctt ctacctggcc cgtaccgcga aggccctgca 540
ggcccaactgg cagctcatga agcagtatta cctgctggag gaccagacag tgcagccgct 600
gccccaaaggg gaccaagtgc tgaacttctc tgatgcagag gacctgattt atgacagtaa 660
gctcaaggac atgcgagatg aggtccttgg acatgagctg atggtggctg accggcgcca 720
gaagcgagag attcggcagc tggaacagga actgcataag tggcaggtgc tagtggacag 780
catcacaggg atgagctctc cggacttcga caaccagaca ctggcagtgc tgcggggccg 840
catggtgcgg tacctgatgc gctcgctga gatcaccctg ggcagagcaa ccaaggataa 900

A3233.ST25

ccagatttat	gtggacctgt	ctctggaggg	tccggcctgg	aagatataccc	ggaaacaagg	960
tgtcatcaag	ctgaagaaca	acggtgattt	cttcattgcc	aatgagggtc	gacggccat	1020
ctacatcgat	ggacggccgg	tgctctgtgg	ctccaaatgg	cgcctcagca	acaactctgt	1080
ggtggagatc	gccagcctgc	gattcgtctt	ccttatcaac	caggaccta	ttgcgcctcat	1140
cagggctgag	gctgccaaga	tcacaccaca	gtgaggaatg	gtggcaggac	tcgtgggccc	1200
tctccggcct	gtttccccctg	ccactccagc	ccccttgagc	tgggaactca	ggctcctgga	1260
aaaacctggg	cagtgggagg	ctcagctgctg	ggccatttat	ttgagccctt	gagggaggat	1320
agggctggcc	tttgtgaagc	cagcagaggc	tgagaacctc	aggctccct	agatccagag	1380
ccccctccccca	tcttcctctc	tctaaaaaca	accctacccc	ccattctacc	ccccattgcc	1440
accttcactc	ctgtgtctcc	agctgatttag	cctcagactc	ttcttttatt	gtttttcttt	1500
tgtaaataaa	aagcaccagg	ttccaaagta	aaaaaaaaaa	aaaaaaaaactc	gag	1553

<210> 2
<211> 390
<212> PRT
<213> Homo sapiens

<400> 2

Asn	Ser	Ala	Arg	Gly	Gly	Val	Glu	Pro	Gly	Arg	Cys	Ser	Gly	Ser	Glu
1				5			10						15		
Pro	Ser	Ser	Ser	Glu	Lys	Lys	Val	Ser	Lys	Ala	Pro	Ser	Thr	Pro	
				20			25						30		
Val	Pro	Pro	Ser	Pro	Ala	Pro	Gly	Leu	Thr	Lys	Arg	Val	Lys		
				35			40				45				
Lys	Ser	Lys	Gln	Pro	Leu	Gln	Val	Thr	Lys	Asp	Leu	Gly	Arg	Trp	Lys
				50			55				60				
Pro	Ala	Asn	Asp	Leu	Leu	Ile	Asn	Ala	Val	Leu	Gln	Thr	Asn	Asp	
	65			70				75				80			
Leu	Thr	Ser	Val	His	Leu	Gly	Val	Lys	Phe	Ser	Cys	Arg	Phe	Thr	Leu
				85			90					95			
Arg	Glu	Val	Gln	Glu	Arg	Trp	Tyr	Ala	Leu	Tyr	Asp	Pro	Val	Ile	
	100				105				110						
Ser	Lys	Leu	Ala	Cys	Gln	Ala	Met	Arg	Gln	Leu	His	Pro	Glu	Ala	Ile
	115					120				125					
Ala	Ala	Ile	Gln	Ser	Lys	Ala	Leu	Phe	Ser	Lys	Ala	Glu	Glu	Gln	Leu
	130				135					140					
Leu	Ser	Lys	Val	Gly	Ser	Thr	Ser	Gln	Pro	Thr	Leu	Glu	Thr	Phe	Gln
	145				150				155				160		

A3233.ST25

Asp Leu Leu His Arg His Pro Asp Ala Phe Tyr Leu Ala Arg Thr Ala
165 170 175

Lys Ala Leu Gln Ala His Trp Gln Leu Met Lys Gln Tyr Tyr Leu Leu
180 185 190

Glu Asp Gln Thr Val Gln Pro Leu Pro Lys Gly Asp Gln Val Leu Asn
195 200 205

Phe Ser Asp Ala Glu Asp Leu Ile Asp Asp Ser Lys Leu Lys Asp Met
210 215 220

Arg Asp Glu Val Leu Glu His Glu Leu Met Val Ala Asp Arg Arg Gln
225 230 235 240

Lys Arg Glu Ile Arg Gln Leu Glu Gln Glu Leu His Lys Trp Gln Val
245 250 255

Leu Val Asp Ser Ile Thr Gly Met Ser Ser Pro Asp Phe Asp Asn Gln
260 265 270

Thr Leu Ala Val Leu Arg Gly Arg Met Val Arg Tyr Leu Met Arg Ser
275 280 285

Arg Glu Ile Thr Leu Gly Arg Ala Thr Lys Asp Asn Gln Ile Asp Val
290 295 300

Asp Leu Ser Leu Glu Gly Pro Ala Trp Lys Ile Ser Arg Lys Gln Gly
305 310 315 320

Val Ile Lys Leu Lys Asn Asn Gly Asp Phe Phe Ile Ala Asn Glu Gly
325 330 335

Arg Arg Pro Ile Tyr Ile Asp Gly Arg Pro Val Leu Cys Gly Ser Lys
340 345 350

Trp Arg Leu Ser Asn Asn Ser Val Val Glu Ile Ala Ser Leu Arg Phe
355 360 365

Val Phe Leu Ile Asn Gln Asp Leu Ile Ala Leu Ile Arg Ala Glu Ala
370 375 380

Ala Lys Ile Thr Pro Gln
385 390

<210> 3

<211> 669

<212> DNA

<213> Artificial

<220>

<223> Sequence of the insert of the plasmid pCM524

<400> 3

gaattcggca cgagcattaa acttatacat gtattttagg tttctgctat ggcaggatt 60

ttttgttca aagaacgaat ttctgttaaa taaaagttata gtagctattg taacaaataa 120

A3233.ST25

atcctcaa atgagtgg tttaacatttt ataaaatgaa aaacatagg taccaattag	180
ctgggagctc tcatccaa ggtgattc agttaatccagg tccttcatt ttgtggctcc	240
tctatattca acatataact actgaagtca ttgctgacag cagcatggaa aatcccagta	300
ggaattttt tatggataa ccttggaa ggttattgccaac acttcctcct aaattctatt	360
gttcagaaat cagacacaaa atctcactta agcaaggaag cctgaaaaat gtagtagaac	420
tgtgtgatta ggagaaagta atgggtttgg tgagtagtta ttagtatctc tcacattgg	480
agaaatggct ttttatatgt ttttaagaaa caaatttgt tatcttc tccattggct	540
ccattgcccc agcaaagtag tagaacaaaa ataatatatt taaaattta acattatata	600
ttaatgataa tgcttaaaca gttgtttaa cctgtttcaa aaagaaaaaa aaaaaaaaaa	660
aaactcgag	669

<210> 4

<211> 128

<212> PRT

<213> Artificial

<220>

<223> deduced amino acid sequence of the insert of the plasmid pCM524

<400> 4

Asn	Ser	Ala	Arg	Glu	Arg	Arg	Gln	Arg	Glu	Arg	Arg	Gln	Ser	Asn
1			5				10					15		

Leu	Gln	Glu	Val	Leu	Glu	Arg	Glu	Arg	Arg	Glu	Leu	Glu	Lys	Leu	Tyr
			20			25					30				

Gln	Glu	Arg	Lys	Met	Ile	Glu	Glu	Ser	Leu	Lys	Ile	Lys	Ile	Lys	Lys
			35			40				45					

Glu	Leu	Glu	Met	Glu	Asn	Glu	Leu	Glu	Met	Ser	Asn	Gln	Glu	Ile	Lys
	50				55				60						

Asp	Lys	Ser	Ala	His	Ser	Glu	Asn	Pro	Leu	Glu	Lys	Tyr	Met	Lys	Ile
	65				70				75			80			

Ile	Gln	Gln	Glu	Gln	Asp	Gln	Glu	Ser	Ala	Asp	Lys	Ser	Ser	Lys	Lys
					85				90			95			

Met	Val	Gln	Glu	Gly	Ser	Leu	Val	Asp	Thr	Leu	Gln	Ser	Ser	Asp	Lys
						100		105			110				

Val	Glu	Ser	Leu	Thr	Gly	Phe	Ser	His	Glu	Glu	Leu	Asp	Asp	Ser	Trp
						115		120			125				

<210> 5

<211> 669

<212> DNA

A3233.ST25

<213> Artificial

<220>

<223> Insert of plasmid pCM482

<400> 5

gaattcggca	cgagcattaa	acttatacat	gtatTTtagg	tttctgctat	ggcaggatt	60
ttttgttca	aagaacgaat	ttctgttaaa	taaagtata	gtagctattg	taacaaataa	120
atcctcaaAT	atgagtggTT	taacatttAT	ataaagtGAA	aaacatAGGT	taccaattAG	180
ctgggagCTC	tcatccaAGT	ggtgattcAG	taatccaggC	tccttcatt	ttgtggctCC	240
tctatATTCA	acatataACT	actgaAGTC	ttgctgACAG	cagcatGGGA	aatcccAGTA	300
ggaattttt	tatggataa	ccttggAAgt	attgcccAAC	acttcctcCT	aaatttCTATT	360
gttcagAAAT	cagacacAAA	atctcactTA	agcaAGGAAG	cctgaaaaAT	gtagtagAAC	420
tgtgtgatta	ggagaaaAGTA	atgggttTGG	tgagtacGTA	ttagtatCTC	tcacattGGG	480
agaaatggct	ttttatatgt	tttaagAAA	caaattttGT	tatcttcTc	tccattggct	540
ccattgcccc	agcaaAGTAG	tagaacAAAAA	ataatatATT	ttaaaatttA	acattatATA	600
ttaatgataa	tgcttaaaca	gttgatttTA	cctgtttCAA	aaagaaaaAA	aaaaaaaaAA	660
aaactcgag						669

<210> 6

<211> 50

<212> PRT

<213> Artificial

<220>

<223> Deduced amino acid sequence of insert of plasmid pCM482

<400> 6

Asn	Ser	Ala	Arg	Ala	Leu	Asn	Leu	Tyr	Met	Tyr	Phe	Arg	Phe	Leu	Leu
1						5			10					15	

Trp	Gln	Val	Phe	Phe	Val	Ser	Lys	Asn	Glu	Phe	Leu	Leu	Asn	Lys	Val
								20				25		30	

Ile	Val	Ala	Ile	Val	Thr	Asn	Lys	Ser	Ser	Asn	Met	Ser	Gly	Leu	Thr
								35			40		45		

Phe Ile

50

<210> 7

<211> 1914

<212> DNA

<213> Murinae gen. sp.

<400> 7

A3233.ST25

cgcggagaaa ttgttggatc tggcagtcta ggaatgaatc tcctctcagc ctttaagctc	60
acctggtcag aatccttgga tgagcctgtg ggaccgttcc tcctagcccg gtggtttggaa	120
accagtggct ttgggactgt aagaggatgg acaaagattc tcaggggctg cttagattcat	180
ccctgatggc atcaggcact gccagccgct cagaggatga ggagtcactg gcagggcaga	240
agcgagcctc ctcccaggcc ttgggcacca tccctaaacg gagaagctcc tccaggttca	300
tcaagaggaa gaagttcgat gatgagctgg tggagagcag cctggcaaaa tcttctaccc	360
ggcщаагgg ggccagtggg gtggaaaccag ggcgctgttc ggggagtgaa ccctcctcca	420
gtgagaagaa gaaggtatcc aaagccccca gcactcctgt gccacccagc ccagccccag	480
cccctggact caccaagcgt gtgaagaaga gtaaacagcc acttcaggtg accaaggatc	540
tggccgctg gaagcctgca gatgacctcc tgctcataaa tgctgtgttgcagaccaacg	600
acctgacctc cgtccacctg ggcgtgaaat tcagctgccg ctccaccctt cgggaggtcc	660
aggagcgttg gtacgcccctg ctctacgatc ctgtcatctc caagttggcc tgtcaggcca	720
tgaggcagct gcacccagag gctattgcag ccatccagag caaggccctg tttagcaagg	780
ctgaggagca gctgctgagc aaagtggat cgaccagcca gcccacctt gagaccttcc	840
aggacctgct gcacagacac cctgatgcct tctacctggc ccgtaccgca aaggccctgc	900
aggcccactg gcagctcatg aagcagtatt acctgctggaa ggaccagaca gtgcagccgc	960
tgcccaaagg ggaccaagtg ctgaacttct ctgatgcaga ggacctgatt gatgacagta	1020
agctcaagga catgcgagat gaggtcctgg aacatgagct gatggtggt gaccggcgcc	1080
agaagcgaga gattcggcag ctggAACAGG aactgcataa gtggcaggtg ctgtggaca	1140
gcatcacagg catgagctct ccggacttcg acaaccagac actggcagtg ctgcggggcc	1200
gcatggcgtcg gtacctgatg cgctcgctg agatcaccct gggcagagca accaaggata	1260
accagattga tgtggacctg tctctggagg gtccggctg gaagatatcc cgaaaacaag	1320
gtgtcatcaa gctgaagaac aacggtgatt tcttcattgc caatgagggt cgacggccca	1380
tctacatcga tggacggccg gtgctctgtg gctccaaatg gcgcctcagc aacaactctg	1440
tggcggagat cgccagccctg cgattcgtct tccttatcaa ccaggacctc attgcctca	1500
tcaggcgtga ggctgccaag atcacaccac agtgaggaat ggtggcagga ctcgtggcc	1560
ctctccggcc tggggccctt gccactccag ccccccttggag ctgggaactc aggctcctgg	1620
aaaaacctgg gcagtggag gctcagctgc gggccattga tttgagcctt tgagggagga	1680
tagggctggc ctttgtgaag ccagcagagg ctgagaacct caggctccc tagatccaga	1740
ccccctcccc atcttcctct ctctaaaaac aaccctaccc cccattctac ccccccattgc	1800

A3233.ST25

caccttcact cctgtgtctc cagctgatta gcctcagact cttctttat tgttttctt 1860
 ttgtaaataa aaagcaccag gttccaaagt aaaaaaaaaaaa aaaaaaaaaact cgag 1914

<210> 8
 <211> 462
 <212> PRT
 <213> Murinae gen. sp.

<400> 8

Met Asp Lys Asp Ser Gln Gly Leu Leu Asp Ser Ser Leu Met Ala Ser
 1 5 10 15
 Gly Thr Ala Ser Arg Ser Glu Asp Glu Glu Ser Leu Ala Gly Gln Lys
 20 25 30
 Arg Ala Ser Ser Gln Ala Leu Gly Thr Ile Pro Lys Arg Arg Ser Ser
 35 40 45
 Ser Arg Phe Ile Lys Arg Lys Lys Phe Asp Asp Glu Leu Val Glu Ser
 50 55 60
 Ser Leu Ala Lys Ser Ser Thr Arg Ala Lys Gly Ala Ser Gly Val Glu
 65 70 75 80
 Pro Gly Arg Cys Ser Gly Ser Glu Pro Ser Ser Ser Glu Lys Lys Lys
 85 90 95
 Val Ser Lys Ala Pro Ser Thr Pro Val Pro Pro Ser Pro Ala Pro Ala
 100 105 110
 Pro Gly Leu Thr Lys Arg Val Lys Lys Ser Lys Gln Pro Leu Gln Val
 115 120 125
 Thr Lys Asp Leu Gly Arg Trp Lys Pro Ala Asp Asp Leu Leu Leu Ile
 130 135 140
 Asn Ala Val Leu Gln Thr Asn Asp Leu Thr Ser Val His Leu Gly Val
 145 150 155 160
 Lys Phe Ser Cys Arg Phe Thr Leu Arg Glu Val Gln Glu Arg Trp Tyr
 165 170 175
 Ala Leu Leu Tyr Asp Pro Val Ile Ser Lys Leu Ala Cys Gln Ala Met
 180 185 190
 Arg Gln Leu His Pro Glu Ala Ile Ala Ala Ile Gln Ser Lys Ala Leu
 195 200 205
 Phe Ser Lys Ala Glu Glu Gln Leu Leu Ser Lys Val Gly Ser Thr Ser
 210 215 220
 Gln Pro Thr Leu Glu Thr Phe Gln Asp Leu Leu His Arg His Pro Asp
 225 230 235 240
 Ala Phe Tyr Leu Ala Arg Thr Ala Lys Ala Leu Gln Ala His Trp Gln

A3233.ST25

245

250

255

Leu Met Lys Gln Tyr Tyr Leu Leu Glu Asp Gln Thr Val Gln Pro Leu
 260 265 270

Pro Lys Gly Asp Gln Val Leu Asn Phe Ser Asp Ala Glu Asp Leu Ile
 275 280 285

Asp Asp Ser Lys Leu Lys Asp Met Arg Asp Glu Val Leu Glu His Glu
 290 295 300

Leu Met Val Ala Asp Arg Arg Gln Lys Arg Glu Ile Arg Gln Leu Glu
 305 310 315 320

Gln Glu Leu His Lys Trp Gln Val Leu Val Asp Ser Ile Thr Gly Met
 325 330 335

Ser Ser Pro Asp Phe Asp Asn Gln Thr Leu Ala Val Leu Arg Gly Arg
 340 345 350

Met Val Arg Tyr Leu Met Arg Ser Arg Glu Ile Thr Leu Gly Arg Ala
 355 360 365

Thr Lys Asp Asn Gln Ile Asp Val Asp Leu Ser Leu Glu Gly Pro Ala
 370 375 380

Trp Lys Ile Ser Arg Lys Gln Gly Val Ile Lys Leu Lys Asn Asn Gly
 385 390 395 400

Asp Phe Phe Ile Ala Asn Glu Gly Arg Arg Pro Ile Tyr Ile Asp Gly
 405 410 415

Arg Pro Val Leu Cys Gly Ser Lys Trp Arg Leu Ser Asn Asn Ser Val
 420 425 430

Val Glu Ile Ala Ser Leu Arg Phe Val Phe Leu Ile Asn Gln Asp Leu
 435 440 445

Ile Ala Leu Ile Arg Ala Glu Ala Ala Lys Ile Thr Pro Gln
 450 455 460

<210> 9

<211> 23

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 9

ctattcgatg atgaagatac ccc

23

<210> 10

<211> 18

<212> DNA

<213> Artificial

<220>

A3233.ST25

<223> Primer

<400> 10

cgcggagaaa ttgttggaa

18

<210> 11

<211> 26

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 11

ccgatatacgc acttggtccc ctttgg

26

<210> 12

<211> 56

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 12

agcttccacc atggaggcaga agctgatctc cgaggaggac ctggaattct ctcgag

56

<210> 13

<211> 56

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 13

gatcctcggag agaattccag gtcctcctcg gagatcagct tctgctccat ggtgga

56

<210> 14

<211> 26

<212> DNA

<213> Artificial

<220>

<223> primer

<400> 14

cggatccat ggacaaagat tctcag

26

<210> 15

<211> 53

<212> DNA

<213> Artificial

A3233.ST25

<220>

<223> primer

<400> 15

agcttccacc atgtatccgt atgatgtgcc tgactacgca gaattctctc gag

53

<210> 16

<211> 53

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 16

gatcctcgag agaattctgc gtagtcaggc acatcatacg gatacagggt gga

53