# Running Time and Accuracy Comparison Between Miles, Cplex, Gurobi, and Mosek COMP 400 Report

Xueyang Zhang 260886286

xueyang.zhang@mail.mcgill.ca

### Abstract

There are four software, Miles, Cplex, Gurobi, and Mosek, being able to solve ILS, MILS, BILS. I run a numerical test for them on MATLAB and find that Miles is way much faster than others and is 100% correct. Cplex and Gurobi are a lot slower than Miles, but their answers are accurate as well. Between them two, Cplex is good for difficult problems, and Gurobi is good for easier problems. Mosek is discouraged because it makes mistakes in finding the optimal solution, and is the slowest.

### 1. Introduction

A standard integer least square(ILS) problem is to solve

$$min_{x \in R} ||y - Ax||_2^2$$

For some arbitrary  $y \in \mathbb{R}^n$ ,  $x \in \mathbb{Z}^m$ ,  $A \in \mathbb{R}^{m \times n}$ , and  $B = \mathbb{Z}^n$ . For box constraint integer least square problem (BILS), we change the B to  $\{x \in \mathbb{Z}^n : l \le x \le u\}$ . Another type of problem, standard mixed-integer least squares problem(MILS) is to solve

$$min_{x_1 \in \mathbb{R}^k, x \in \mathbb{Z}^n} ||y - Ax_1 - Bx||_2^2$$

where  $A \in \mathbb{R}^{m \times k}$ ,  $B \in \mathbb{R}^{m \times n}$ , and  $y \in \mathbb{R}^n$ . These are the three problems we are interested in this paper.

ILS problem has huge amount applications in industry, for example, GPS data. However, it is an NP-hard problem: basically, if we believe in exponential time hypothesis (ETH), then the ILS problem is an exponential-time algorithm, so it is exponentially costly as we increase input size; that's why a lot of effort is in to make more efficient algorithm, and this report is to test how efficient each developed softare is and compare them.

### 2. Test Cases

We will test on Miles, Cplex, Gurobi, and Mosek on these three problems on MATLAB. We select n to be 10, 20, 30, and 40. Without losing generality, we make m = n, n = 2k. We generate x by MATLAB command randi([0, 1], n, 1); in other words, we generate an n-by-1 integer matrix from range 0 to 1. We make a standard normally distributed error vector z with  $\sigma = 0.05$  and 0.4, and it is different for each test; we achieve that by generating different x vectors from different random seeds. From z, we construct y by

$$y = Ax + z$$

For BILS, we will test two kings of bounds:  $l_1 = [-1, -1, ..., -1]^T$  and  $u_1 = [1, 1, ..., 1]^T$ , and  $l_{10} = [-10, -10, ..., -10]^T$  and  $u_{10} = [10, 10, ..., 10]^T$ . For simplicity, we will refer to  $l_1$  and  $u_1$  as B1, and refer to  $l_{10}$  and  $u_{10}$  as B10.

### 3. Test method

Miles is already a MATLAB file code, so we convert it by codegen command in MATLAB to make it a C program to run faster and test in MATLAB as mex files. Other three software has MATLAB connector, so we test through this connector in MATLAB. They specify on their official websites that these integer programming problems are time-consuming and sub-optimal solutions are often enough. However, since Miles finds an optimal solution, we need to make that three software get optimal solutions as well for fairness. Cplex and Gurobi allow changing settings to return optimal solution, but Mosek can only increase optimality and cannot give optimal solution. As a result, the result from Mosek may be incorrect, and it indeed is as we can see in the error table in Appendix. Cplex has a direct ILS connector, but Gurobi and Mosek only have generic quadratic integer optimization as follow:

```
 \begin{array}{lll} \text{minimize} & x^TQx+c^Tx+\text{alpha} \\ \text{subject to} & Ax=b & \text{(linear constraints)} \\ & \ell \leq x \leq u & \text{(bound constraints)} \\ & \text{some} \ x_j \ \text{integral} & \text{(integrality constraints)} \\ & x^TQc \ x+q^Tx \leq \text{beta} \ \text{(quadratic constraints)} \\ & \text{some} \ x_i \ \text{in SOS} & \text{(special ordered set constraints)} \\ & & \text{min, max, abs, or, ...} & \text{(general constraints)} \\ \end{array}
```

Figure 1 Gurobi\_problem\_formulation

Mosek has the same functionality but in a different form, so we need to convert our problem to this.

$$||y - Ax||_{2}^{2} = (y^{T} - x^{T}A^{T})(y - Ax)$$

$$= y^{T}y - 2y^{T}Ax + x^{T}A^{T}Ax$$

$$= x^{T}(A^{T}A)x + (-2y^{T}A)x + y^{T}y$$

As a result, we can calculate  $A^TA$ ,  $-2y^TA$ , and  $y^Ty$  and plug these into the parameters to solve the ILS problem. We can see it provides the l and u parameters so we can write those in directly.

For each trial, we not only measure its running time and record it, but see if it is correct. We test Miles first and take that as the correct answer(this correctness is guaranteed). After Cplex, Gurobi, and Mosek return their answer, they will be compared with the correct answer. For real value answers, like in MILS, to check equality is inappropriate because of numerical issues, so we take the difference of the returned answer and the correct answer and calculate the norm of the difference. If the norm is more than 0.1, then they are different answers, otherwise, we count them as correct. In this case, this threshold should be appropriate because the real value vector only depends on the integer value vector returned. If two integer vectors are identical, then they should get at least nearly identical real value vectors because they are calculated in the exact same way. If two integer vectors are different, then they will already be judged to be different from the integer vector. As a result, we can measure the correctness of the answer for three software in the method above.

However, for MILS, because there are 2 vectors to output and the variable **x** in figure 1 only supports vector instead of a matrix, we technically cannot solve MILS by Cplex, Gurobi, and Mosek. However, we observe that in the Miles package, MILS modifies the input and uses the ILS program, so we replace the ILS of Miles with ILS of Cplex, Gurobi, and Mosek so that they can solve MILS as well.

Because of the shortage of time and computation power, we cannot run a full test. We will set a time limit to 5000s, which is already very unreasonably long. Besides, we run a 3-trial on each set up first; if the time on 1 more software all exceeds the time limit, we will only run 20 trials, otherwise 100 trials. You can see a few stars (\*) in the table for each scenario in the Appendix; those setups of parameters are only tested 20 times, and others are tested 100 times.

### 4. Notes on packages

Miles is developed by Prof X.-W. Chang and T. Zhou and available in <a href="www.cs.mcgill.ca/~chang">www.cs.mcgill.ca/~chang</a>. It contains direct functions to solve ILS, MILS, and BILS.

ILOG CPLEX Optimization Studio(Cplex) is developed by IBM and available at <a href="https://www.ibm.com/analytics/cplex-optimizer">https://www.ibm.com/analytics/cplex-optimizer</a>. Only versions before and including 12 have a connector to MATLAB so we installed version 12.10.0. CplexIsqmilp is the MATLAB interface to solve ILS and BILS; it essentially creates a problem object and passes this object to ILOG CPLEX Optimization Studio to solve it.

GUROBI OPTIMIZATION(Gurobi) is developed by Gurobi and available in <a href="https://www.gurobi.com/products/gurobi-optimizer/">https://www.gurobi.com/products/gurobi-optimizer/</a>. It similarly creates a problem object and passes this object to Gorobi Interactive Shell to solve it.

MOSEK is developed by Mosek ApS and available at <a href="https://www.mosek.com/downloads/">https://www.mosek.com/downloads/</a>. It does the same process as Gurobi and Cplex when using it in MATLAB. We will see that it performs very badly in our tests because it is designed for large-scale sparse systems, which is not our case. (recall that we generate A and B by rand and randn command, so they are dense matrices)

### 5. Test Results and discussions

(1) scenario1(ILS), n = 20,  $\sigma = 0.4$ , A = randn(n, n)

| $\sigma$ =0.4, n=20, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.000471 | 0.584472 | 0.053710 | 0.424823 |
| MIN                        | 0.000223 | 0.099851 | 0.022890 | 0.053255 |
| AVG                        | 0.000275 | 0.134309 | 0.037003 | 0.208379 |
| Num. Outliers              | 15       | 11       | 0        | 4        |
| Q1                         | 0.000242 | 0.107434 | 0.033025 | 0.171692 |
| Q2                         | 0.000251 | 0.116590 | 0.035905 | 0.202475 |
| Q3                         | 0.000286 | 0.129689 | 0.041360 | 0.236958 |

Table1: statistics of time for scenario1

| Miles | Cplex | Gurobi | Mosek |
|-------|-------|--------|-------|
| 0%    | 0%    | 0%     | 0%    |

Table2: error rate for scenario1



Figure 2 box plot for senario1



Figure 3 performance profile for senario1

Above are all related statistics for the running time for this scenario. The top-left corner of table 1 is the summary of this scenario, and it will be specified in every table in appendix 1, and this is one of them. Table 2 is from Appendix 2 with some modification: because we measure that there is no error for Miles, Cplex, and Gurobi for any circumstance that we tested, so we only show the nontrivial error rate, so only the error rate for Mosek is shown in the Appendix. For clarity, we show the error rate for all 4 software in a row in the discussion part. Also, there will be two figures for each scenario as well, box plot and performance profile. Box plot gives a direct presentation of the dispersity of data by only showing general statistics of most of the data and directly plot outliers. Meanwhile, the performance profile is a "normalized" data summary: since the same test cases have been run on all four software, some of them are more difficult than others, therefore measuring the speed ratio to the fastest among them makes more sense. Performance is a representation of these speed ratios.

The running time for all software is less than 1 second, so this scenario is easy to compute (or simply refer to easy or difficult later in the paper), and none of them makes a mistake. In terms of average speed, the speed of Miles is 100 times faster than the other 3 software. There are 15 outliers in running time, meaning there is a relatively large fluctuation, but it does not matter much because of its superior speed to others. Gurobi is in second place, and it is 4 times faster than Cplex. Its running times are very concentrated to the median, as we can see there are no outliers in table 1 and boxplot. Cplex is the third fastest in terms of average speed, but as we can see in the performance profile and box plot, there are many outliers to the right whereas most of the running time is relatively concentrated, so Cplex is not very stable in terms of speed in solving a problem like scenario1. Mosek is the slowest, being about 50% slower than Cplex, and its running time varies a lot as we can see from the box plot. Taking into account that Mosek is designed for sparse matrices, this result explains some reason Mosek being the worst. Overall, when solving senario1, the first option is Miles. If it is no handy, you can use Gurobi, Cplex, and Mosek at last.

### (2) scenario2(ILS), n = 40, $\sigma = 0.4$ , A = rand(n, n)

| σ=0.4, n=40, rand (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|-----------------------|----------|------------|-------------|-------------|
| MAX                   | 0.245755 | 295.342904 | 1512.434353 | 5063.346127 |
| MIN                   | 0.055700 | 41.371151  | 387.706056  | 5001.975342 |
| AVG                   | 0.121784 | 132.104977 | 953.280466  | 5025.120338 |
| Num. Outliers         | 2        | 2          | 0           | 0           |
| Q1                    | 0.092615 | 84.325502  | 501.287797  | 5005.354789 |
| Q2                    | 0.119719 | 93.298170  | 967.868239  | 5021.237640 |
| Q3                    | 0.149128 | 194.368711 | 1406.709330 | 5037.967842 |

Table3: statistics of time for scenario2

| Miles | Cplex | Gurobi | Mosek |
|-------|-------|--------|-------|
| 0%    | 0%    | 0%     | 60%   |

Table4: error rate for scenario2





Figure 4 box plot for scenario2

Figure 5 performance profile for scenario2

We can see from table3, that the running time for each software increases, meaning this probably is a more difficult problem than scenario1. Indeed, as we can see through appendix1, as dimension increases, the running time generally increases by several times if other options(like  $\sigma$ , type of A, etc) hold the same, and it is expected because by Exponential Time Hypothesis, running time is exponential in length of problem input. The magnitude of  $\sigma$  is also a crucial factor. Recall that we generate y by y = Ax + z, and each element of z is generated by a standard normal distribution with specified  $\sigma$ . As a result, a smaller sigma means a smaller magnitude of z, so the bond between y and x is tighter, so the search process when solving the problem is easier. That is the reason we normally see an increase in running time when we increase  $\sigma$ . Besides, the type of matrix influences the running time a lot as well. It is hard to exactly explain especially when we do not know the computation method of Cplex, Gurobi, and Mosek, but we can see that the Frobenius norm of randn(n,n) type matrix is larger than that of rand(n,n), so the same amount of change in one element in x is expected to change more on y, so y is more sensitive to a change in x, and this makes search processes easier by eliminating more candidate values to check.

By table4, we know only Mosek makes lots of mistakes. As a result, unless you do not care about accuracy, Mosek already has the worst performance. By table3, we know Miles has a decisive advantage over the other three, having an average running time of only 0.12 seconds and having no outliers. In terms of average running time, it is 1100 times shorter than the second place, Cplex. If you have a problem like scenario2, then use Miles. Although Cplex is slower than Gurobi in scenario1, it is better in scenario2. It needs 132 seconds to solve a problem in scenario2, which is still reasonable. Compare to the scenario1, we see Cplex may have some expensive data structure to make their running time shorter for difficult problems, but the complicated data structure becomes a heavy overhead when the problem is easy. As a result, when solving difficult ILS problems like scenario2, if Miles is not handy, you can use Cplex. Gurobi, meanwhile, becomes slower in this more difficult scenario, being 7 times slower than Cplex. It also has lots of variance in running time as we see in figure 4. Lastly, Mosek, not only making lots of mistakes but all of them exceed the time limit as we can see in the box plot. Note that the time limit is 5000s, and it needs some time to halt the process and return data; this process costs some time especially for a program ran for a long time, so we see that all time in table3 for Mosek is more than 5000s. The actual time it will run does not matter, because 5000 seconds is already unreasonably long so people will consider new methods of solving it. As a result, in a more difficult scenario, the best is Miles, and then Cplex, Gurobi, and Mosek.

(3) scenario3(MILS), n = 20,  $\sigma = 0.05$ , A = rand(n, n)

| $\sigma$ =0.05, n=20, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.002030 | 0.616464 | 0.166520 | 5.273527 |
| MIN                        | 0.000825 | 0.207273 | 0.069284 | 0.929038 |
| AVG                        | 0.001020 | 0.338409 | 0.114903 | 2.582232 |
| Num. Outliers              | 14       | 2        | 0        | 1        |
| Q1                         | 0.000916 | 0.264742 | 0.102142 | 2.014623 |
| Q2                         | 0.000949 | 0.304508 | 0.112251 | 2.552927 |
| Q3                         | 0.001018 | 0.393782 | 0.129246 | 3.031747 |

Table5: statistics of time for scenario3

| Miles | Cplex | Gurobi | Mosek |
|-------|-------|--------|-------|
| 0%    | 0%    | 0%     | 25%   |

Table6: error rate for scenario3





Figure 6 box plot for scenario3

Figure 7 performance profile for scenario3

As we can see in table6, similarly, only Mosek has mistakes, so arguably Mosek is already the worst. This scenario is relatively easy as we can see it has a dimension of only 20, and the average time for all software solving it being short. Miles is still the quickest, having 0.001s on average; it has lots of outliers, so its running time may be unstable, but it does not matter considering it is 100 times faster than the best of the other three, so it is decisively the best. Again, we see Gurobi performs better for simpler problems. It is three times faster than cplex, with little variance in running time as we can see in the box plot and performance profile. Similarly, Cplex is not performing very well for a simple problem and has lots of variances as we can see in Figures 6 and 7. Mosek is the slowest and has a big variance, as usual. It even has a large variance in the speed ratio with "standard time" from Miles, varying from 100 times to 5000. Similarly, for simpler problems, Miles is the best, and then Gurobi, Cplex, and Mosek.

### (4) scenario4(MILS), n = 40, $\sigma = 0.05$ , A = randn(n, n)

| $\sigma$ =0.05, n=40, randn (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|---------------------------------|----------|------------|-------------|-------------|
| MAX                             | 0.516101 | 728.243709 | 5030.737643 | 5011.447547 |
| MIN                             | 0.375896 | 248.242465 | 5018.311371 | 5005.983521 |
| AVG                             | 0.451914 | 409.892016 | 5025.446931 | 5008.857153 |
| Num. Outliers                   | 0        | 1          | 0           | 0           |
| Q1                              | 0.420661 | 319.515819 | 5022.313210 | 5007.930878 |
| Q2                              | 0.451048 | 352.155332 | 5024.803892 | 5008.810561 |
| Q3                              | 0.481932 | 496.253763 | 5029.287487 | 5010.187636 |

Table7: statistics of time for scenario4

|   | Miles | Cplex | Gurobi | Mosek |
|---|-------|-------|--------|-------|
| ( | 0%    | 0%    | 0%     | 5%    |

Table8: error rate for scenario4





Figure 8 performance profile for scenario4

Figure 9 box plot for scenario4

From table8, we see, still, only Mosek makes an error, although it is not much error than itself, but still comparatively unacceptable. It should have been an easy problem as we analyzed in scenario2, that a smaller  $\sigma$  and a randn(n,n) type matrix would make the problem easier, but it is not the case. For Miles, the reason is that it does a transformation of matrix and then solves a standard ILS, so the "good properties" that we analyzed do not work in MILS. As we said in the Test method part, Cplex, Gurobi, and Mosek technically do not have the functionality to solve MILS, and we observe that the main part of Miles is to do a standard ILS, so we do the same thing on three software to make them work for MILS as well, so the same reason applies to three software as well to make this scenario hard. Miles still has the best running time, 0.45 second on average, and 900 times faster than second-place Cplex. As we can see from table7, Q1, Q2, and Q3 of Miles are very close, and there is no outlier, so Miles has a stable run time in scenario4. Still, we see Cplex being second best for difficult problems: it solves the problem still in a reasonable amount of time. It has a relatively large variance as we can see in Q1, Q2, and Q3 in table7, and it has one outlier. However, Gurobi and Mosek both fail to solve scenario4 within the time limit. We can see that Gurobi and Mosek are not good for difficult problems. As a result, when solving scenario4, the first option is still Miles, and then Cplex, Gurobi, and Mosek, because this scenario is difficult.

(5) scenario5(BILS), 
$$n = 30$$
,  $\sigma = 0.4$ ,  $A = rand(n, n)$ ,  $B = 1$ 

| $\sigma$ =0.4, n=30, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|--------------------------------|----------|----------|----------|----------|
| MAX                            | 0.004488 | 0.460267 | 0.799035 | 3.900129 |
| MIN                            | 0.000602 | 0.150377 | 0.107815 | 0.123742 |
| AVG                            | 0.001349 | 0.235663 | 0.369915 | 0.787350 |
| Num. Outliers                  | 11       | 11       | 0        | 6        |
| Q1                             | 0.000831 | 0.199160 | 0.268293 | 0.379753 |
| Q2                             | 0.001110 | 0.220851 | 0.355547 | 0.628807 |
| Q3                             | 0.001591 | 0.251742 | 0.469565 | 0.967842 |

Table9: statistics of time for scenario5

| Miles | Cplex | Gurobi | Mosek |
|-------|-------|--------|-------|
| 0%    | 0%    | 0%     | 14%   |

Table 10: statistics of error for scenario 4





Figure 10 box plot for scenario5

Figure 11 performance profile for scenario5

Conceptually, BILS is very similar to ILS. The only difference is that BILS specifies the range of the solution, but ILS does not. To constrain solution normally makes solving this problem easier. This scenario has bound on x with lower bound =  $[-1, -1, ..., -1]^T$ , and upper bound =  $[1, 1, ..., 1]^T$ . You can compare the time with that with ILS with the same parameter selection and it is indeed the case. Under the same parameter selection, this problem is hard, but not anymore with specifying a range of solution: the maximum time for any software solving this problem is only 3 seconds. We can see through Table10 that only Mosek still makes mistakes, so it is still discouraged to use. Miles is still the quickest with 200 times faster than the second quickest, Cplex. The speed ratio between Cplex and Miles is relatively low, because Cplex is robust in problem specification, meaning it uses the same procedure to solve ILS and BILS, whereas there is a new program solving BILS. As a result, BILS for Miles is not necessarily easy because this new constraint may make the program more complicated, so there is not that much of a difference between the two in this scenario. In contrast, though this problem is easy, Gurobi is slower than Cplex by 50% and has a large variance in run time as we can see in the box plot, but it is still acceptable. As usual, Mosek is the rightmost part of the performance profile and box plot, so it is both slow and unstable in running time, but this time, under this scenario, the difference is smaller. However, it still has errors, so it is still unacceptable.

(6) scenario6(BILS), n = 30,  $\sigma = 0.4$ , A = rand(n, n), B = 10

| $\sigma$ =0.4, n=30, rand, B=10 | Miles    | Cplex     | Gurobi    | Mosek       |
|---------------------------------|----------|-----------|-----------|-------------|
| MAX                             | 2.662336 | 18.644138 | 77.207288 | 1978.809075 |
| MIN                             | 0.021084 | 3.604093  | 12.066648 | 273.597023  |
| AVG                             | 0.133567 | 8.786895  | 38.547147 | 1080.113244 |
| Num. Outliers                   | 2        | 2         | 0         | 0           |
| Q1                              | 0.057762 | 6.118268  | 28.947506 | 653.054608  |
| Q2                              | 0.078205 | 8.484645  | 36.950025 | 929.496845  |
| Q3                              | 0.111072 | 10.545104 | 48.986172 | 1551.102561 |

Table11: statistics of time for scenario6

| Miles | Cplex | Gurobi | Mosek |
|-------|-------|--------|-------|
| 0%    | 0%    | 0%     | 26%   |

Table 12: statistics of error for scenario 6





Figure 12 box plot for scenario6

Figure 13 performance profile for scenario6

This is the exact same scenario as the previous one, except that the bound is bigger to lower bound =  $[-10, -10, ..., -10]^T$ , and upper bound =  $[10, 10, ..., 10]^T$ . As we analyzed previously, the running time of this scenario should be larger than previous scenario, and it is indeed the case. Similarly, in theory, it should be smaller than that of ILS because the range of searching is smaller. Cplex, Gurobi, and Mosek satisfy this, but not for Miles, because it uses two different program to solve this two problems. For Miles, the reason ILS runs faster may be that the ILS program takes advantage of the infinite bound so that it is free to pick any candidate, so this new constraint becomes a issue, not a boost, for solving BILS. However, Miles is still the fastest of all, being 0.13s in average and 65 times faster than second place Cplex, although this ratio is the smallest through out the paper. From this fact, you can see the superiority for Miles to solve these three problems. The running time for Miles has lots of variability, because we can see the average (0.13) is even more than the third quantile (0.11), which means there is some cases that Miles feels difficult. Cplex becomes even more faster than Gurobi compare to the previous scenario, so Cplex is resilient in changing parameters and solves problems relatively fast. Gurobi is not ideal but still acceptable so solve scenario6. Mosek still makes mistakes, unsurprisingly it makes more mistakes than previous easier scenario. What's more, as we can see from performance profile an box plot, it takes way more time than other three softwares as we can see the difference in box and that we cannot clearly see lines for three other software. As a result, Mosek is still discouraged to use, and Miles is the best, followed by Cplex and Gurobi.

### 6. Conclusion

We can see that Miles is the best by any means. Under all scenarios, including those that we did not show in the paper, Miles has a 100% accuracy, and its average speed is at least several tens' times faster than the second place, probably hundreds and thousands of times. It sometimes varies a lot, but it does not matter because of its absolute superiority in speed. Miles designs targeted programs to solve different problems. This could be the reason it is so much faster than others. The other three software run a general big program to take care and satisfy every option possible, so they can solve ILS problems with more constraints, like linear and quadratic constraints as we see in figure 1.

Cplex is generally the second-best in solving the above problems. It has 100% accuracy, and it is relatively good to solve difficult problems by its high robustness. It sometimes varies a lot and runs slower than Gurobi especially when the problem is easy to solve. However, all four software can solve easy problems quickly, probably less than several seconds, so this drawback can sometimes be ignored. Its reasonable run time for difficult problems can be appreciated.

Gurobi has 100% accuracy, and is good for smaller problems, but it struggles in time when dimension increases, and the problem becomes more difficult. Maybe it lacks some optimization for higher dimensions.

Unfortunately, Mosek is inarguably the worst software to solve these three problems. Not only it makes mistakes for about 20% of the problems it solves, but it is slow by several times or even tens of times than the second-worst. As a result, it is not a good choice to solve ILS, MILS, and BILS problems by Mosek.

## 7. Appendix (1) ILS time tables

| $\sigma$ =0.05, n=10, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.000928 | 0.503089 | 0.033432 | 0.184986 |
| MIN                        | 0.000125 | 0.043612 | 0.014710 | 0.024626 |
| AVG                        | 0.000187 | 0.071826 | 0.019005 | 0.038472 |
| Num. Outliers              | 24       | 19       | 7        | 20       |
| Q1                         | 0.000131 | 0.049460 | 0.017124 | 0.028061 |
| Q2                         | 0.000140 | 0.053371 | 0.018153 | 0.030439 |
| Q3                         | 0.000184 | 0.065286 | 0.019269 | 0.035549 |

| $\sigma$ =0.05, n=10, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------|----------|----------|----------|----------|
| MAX                         | 0.000221 | 0.156290 | 0.026742 | 0.044067 |
| MIN                         | 0.000106 | 0.042936 | 0.014040 | 0.024037 |
| AVG                         | 0.000124 | 0.049287 | 0.017421 | 0.028396 |
| Num. Outliers               | 21       | 8        | 7        | 6        |
| Q1                          | 0.000109 | 0.044849 | 0.016330 | 0.027314 |
| Q2                          | 0.000112 | 0.046547 | 0.016965 | 0.028038 |
| Q3                          | 0.000125 | 0.048804 | 0.018062 | 0.028933 |

| $\sigma$ =0.4, n=10, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------|----------|----------|----------|----------|
| MAX                       | 0.000394 | 0.205619 | 0.038543 | 0.209837 |
| MIN                       | 0.000123 | 0.073309 | 0.015812 | 0.034148 |
| AVG                       | 0.000163 | 0.109525 | 0.024554 | 0.096073 |
| Num. Outliers             | 14       | 10       | 3        | 5        |
| Q1                        | 0.000132 | 0.102919 | 0.022454 | 0.076293 |
| Q2                        | 0.000142 | 0.105835 | 0.024250 | 0.092025 |
| Q3                        | 0.000175 | 0.109724 | 0.026501 | 0.109915 |

| $\sigma$ =0.4, n=10, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.000330 | 0.220746 | 0.037044 | 0.082966 |
| MIN                        | 0.000105 | 0.044430 | 0.014431 | 0.026264 |
| AVG                        | 0.000129 | 0.091284 | 0.019149 | 0.044316 |
| Num. Outliers              | 19       | 39       | 6        | 0        |
| Q1                         | 0.000109 | 0.053198 | 0.017407 | 0.033684 |
| Q2                         | 0.000115 | 0.104913 | 0.018573 | 0.043534 |
| Q3                         | 0.000131 | 0.108305 | 0.019907 | 0.051490 |

| $\sigma$ =0.05, n=20, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.792704 | 0.567832 | 0.079137 | 0.323134 |
| MIN                        | 0.000322 | 0.039956 | 0.020051 | 0.042606 |
| AVG                        | 0.008317 | 0.103546 | 0.028317 | 0.148517 |
| Num. Outliers              | 12       | 26       | 6        | 0        |
| Q1                         | 0.000344 | 0.091325 | 0.024973 | 0.059288 |
| Q2                         | 0.000363 | 0.099485 | 0.026831 | 0.178873 |
| Q3                         | 0.000399 | 0.110511 | 0.029035 | 0.200904 |

| $\sigma$ =0.05, n=20, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------|----------|----------|----------|----------|
| MAX                         | 0.000399 | 0.100727 | 0.046181 | 0.072724 |
| MIN                         | 0.000226 | 0.030247 | 0.019280 | 0.039246 |
| AVG                         | 0.000258 | 0.038938 | 0.025369 | 0.044435 |
| Num. Outliers               | 17       | 6        | 2        | 2        |
| Q1                          | 0.000232 | 0.034731 | 0.023532 | 0.042156 |
| Q2                          | 0.000241 | 0.036828 | 0.025435 | 0.043992 |
| Q3                          | 0.000258 | 0.039618 | 0.026812 | 0.045447 |

| $\sigma$ =0.4, n=20, rand | Miles    | Cplex    | Gurobi   | Mosek     |
|---------------------------|----------|----------|----------|-----------|
| MAX                       | 0.001126 | 0.698194 | 0.716195 | 21.689515 |
| MIN                       | 0.000366 | 0.118315 | 0.059471 | 1.237625  |
| AVG                       | 0.000469 | 0.223883 | 0.163236 | 8.023438  |
| Num. Outliers             | 7        | 16       | 5        | 3         |
| Q1                        | 0.000407 | 0.166648 | 0.123035 | 5.452168  |
| Q2                        | 0.000407 | 0.190216 | 0.147045 | 7.864821  |
| Q3                        | 0.000489 | 0.223949 | 0.175972 | 9.977286  |

| $\sigma$ =0.4, n=20, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.000471 | 0.584472 | 0.053710 | 0.424823 |
| MIN                        | 0.000223 | 0.099851 | 0.022890 | 0.053255 |
| AVG                        | 0.000275 | 0.134309 | 0.037003 | 0.208379 |
| Num. Outliers              | 15       | 11       | 0        | 4        |
| Q1                         | 0.000242 | 0.107434 | 0.033025 | 0.171692 |
| Q2                         | 0.000251 | 0.116590 | 0.035905 | 0.202475 |
| Q3                         | 0.000286 | 0.129689 | 0.041360 | 0.236958 |

| $\sigma$ =0.05, n=30, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.001932 | 0.358849 | 0.147173 | 3.871621 |
| MIN                        | 0.000757 | 0.111917 | 0.031492 | 0.121504 |
| AVG                        | 0.000939 | 0.159201 | 0.064077 | 0.750322 |
| Num. Outliers              | 17       | 9        | 3        | 4        |
| Q1                         | 0.000819 | 0.127653 | 0.046855 | 0.531467 |
| Q2                         | 0.000854 | 0.142637 | 0.056555 | 0.681504 |
| Q3                         | 0.000914 | 0.164057 | 0.075767 | 0.813515 |

| $\sigma$ =0.05, n=30, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------|----------|----------|----------|----------|
| MAX                         | 0.001289 | 0.422777 | 0.115965 | 0.542207 |
| MIN                         | 0.000611 | 0.040541 | 0.028125 | 0.065006 |
| AVG                         | 0.000734 | 0.094365 | 0.040386 | 0.193003 |
| Num. Outliers               | 14       | 4        | 6        | 37       |
| Q1                          | 0.000642 | 0.051760 | 0.034305 | 0.078033 |
| Q2                          | 0.000683 | 0.095262 | 0.036990 | 0.086196 |
| Q3                          | 0.000744 | 0.110403 | 0.042174 | 0.354507 |

| $\sigma$ =0.4, n=30, rand (*) | Miles    | Cplex     | Gurobi     | Mosek       |
|-------------------------------|----------|-----------|------------|-------------|
| MAX                           | 0.019092 | 62.911906 | 348.988998 | 5004.592225 |
| MIN                           | 0.002822 | 4.975625  | 24.052834  | 316.7936931 |
| AVG                           | 0.010379 | 33.529773 | 185.603990 | 4928.253426 |
| Num. Outliers                 | 0        | 0         | 0          | 3           |
| Q1                            | 0.006910 | 22.969903 | 129.715620 | 5000.013640 |
| Q2                            | 0.010510 | 29.596569 | 164.233725 | 5000.541972 |
| Q3                            | 0.013320 | 45.710977 | 236.770992 | 5000.627255 |

| $\sigma$ =0.4, n=30, randn | Miles    | Cplex    | Gurobi   | Mosek     |
|----------------------------|----------|----------|----------|-----------|
| MAX                        | 0.003793 | 0.599470 | 1.446578 | 10.898088 |
| MIN                        | 0.000650 | 0.164433 | 0.110619 | 0.783768  |
| AVG                        | 0.000930 | 0.279305 | 0.338099 | 2.813416  |
| Num. Outliers              | 10       | 6        | 5        | 4         |
| Q1                         | 0.000696 | 0.204368 | 0.161011 | 1.368793  |
| Q2                         | 0.000741 | 0.235521 | 0.233891 | 1.944502  |
| Q3                         | 0.000849 | 0.305961 | 0.397220 | 3.470903  |

| $\sigma$ =0.05, n=40, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.002976 | 0.525913 | 0.073278 | 1.130010 |
| MIN                        | 0.000937 | 0.055153 | 0.030632 | 0.113451 |
| AVG                        | 0.001083 | 0.127591 | 0.04081  | 0.339849 |
| Num. Outliers              | 10       | 25       | 5        | 47       |
| Q1                         | 0.000966 | 0.119678 | 0.035723 | 0.143668 |
| Q2                         | 0.001013 | 0.127061 | 0.039090 | 0.175806 |
| Q3                         | 0.001113 | 0.133202 | 0.044012 | 0.523663 |

| $\sigma$ =0.05, n=40, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------|----------|----------|----------|----------|
| MAX                         | 0.001609 | 0.139681 | 0.074032 | 0.213327 |
| MIN                         | 0.000628 | 0.042991 | 0.028628 | 0.101933 |
| AVG                         | 0.000713 | 0.053251 | 0.034992 | 0.120870 |
| Num. Outliers               | 9        | 10       | 6        | 7        |
| Q1                          | 0.000648 | 0.047504 | 0.032075 | 0.113380 |
| Q2                          | 0.000680 | 0.049399 | 0.033646 | 0.117676 |
| Q3                          | 0.000738 | 0.053208 | 0.035435 | 0.122198 |

| σ=0.4, n=40, rand (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|-----------------------|----------|------------|-------------|-------------|
| MAX                   | 0.245755 | 295.342904 | 1512.434353 | 5063.346127 |
| MIN                   | 0.055700 | 41.371151  | 387.706056  | 5001.975342 |
| AVG                   | 0.121784 | 132.104977 | 953.280466  | 5025.120338 |
| Num. Outliers         | 2        | 2          | 0           | 0           |
| Q1                    | 0.092615 | 84.325502  | 501.287797  | 5005.354789 |
| Q2                    | 0.119719 | 93.298170  | 967.868239  | 5021.237640 |
| Q3                    | 0.149128 | 194.368711 | 1406.709330 | 5037.967842 |

| $\sigma$ =0.4, n=40, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.001921 | 0.326567 | 0.373813 | 1.155376 |
| MIN                        | 0.000696 | 0.166552 | 0.062588 | 0.165783 |
| AVG                        | 0.000886 | 0.251574 | 0.162844 | 0.607466 |
| Num. Outliers              | 2        | 5        | 2        | 5        |
| Q1                         | 0.000765 | 0.244752 | 0.116323 | 0.501305 |
| Q2                         | 0.000808 | 0.256133 | 0.149623 | 0.592978 |
| Q3                         | 0.000913 | 0.269272 | 0.198961 | 0.666021 |

### (2) MILS time tables

| $\sigma$ =0.05, n=10, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.001193 | 0.827448 | 0.136895 | 0.236411 |
| MIN                        | 0.000296 | 0.134256 | 0.017539 | 0.048175 |
| AVG                        | 0.000629 | 0.241887 | 0.031190 | 0.109148 |
| Num. Outliers              | 22       | 6        | 11       | 2        |
| Q1                         | 0.000542 | 0.176718 | 0.022960 | 0.083959 |
| Q2                         | 0.000565 | 0.209095 | 0.025984 | 0.104129 |
| Q3                         | 0.000651 | 0.262349 | 0.033388 | 0.126335 |

| $\sigma$ =0.05, n=10, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------|----------|----------|----------|----------|
| MAX                         | 0.001623 | 0.610520 | 0.074238 | 0.221242 |
| MIN                         | 0.000510 | 0.137756 | 0.014317 | 0.035296 |
| AVG                         | 0.000661 | 0.278518 | 0.024391 | 0.076423 |
| Num. Outliers               | 19       | 2        | 6        | 3        |
| Q1                          | 0.000548 | 0.188627 | 0.019842 | 0.055799 |
| Q2                          | 0.000576 | 0.255796 | 0.022540 | 0.068311 |
| Q3                          | 0.000712 | 0.350776 | 0.025923 | 0.092915 |

| $\sigma$ =0.4, n=10, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------|----------|----------|----------|----------|
| MAX                       | 0.001642 | 1.017951 | 0.299200 | 0.301618 |
| MIN                       | 0.000517 | 0.141630 | 0.018915 | 0.043841 |
| AVG                       | 0.000736 | 0.332149 | 0.038818 | 0.133376 |
| Num. Outliers             | 6        | 3        | 6        | 1        |
| Q1                        | 0.000563 | 0.208662 | 0.025566 | 0.097583 |
| Q2                        | 0.000672 | 0.290222 | 0.032259 | 0.129996 |
| Q3                        | 0.000672 | 0.409876 | 0.040758 | 0.163255 |

| $\sigma$ =0.4, n=10, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.002502 | 0.669969 | 0.043189 | 0.147028 |
| MIN                        | 0.000188 | 0.126095 | 0.014140 | 0.028488 |
| AVG                        | 0.000613 | 0.238739 | 0.023874 | 0.071203 |
| Num. Outliers              | 17       | 6        | 3        | 3        |
| Q1                         | 0.000527 | 0.174580 | 0.020100 | 0.052747 |
| Q2                         | 0.000555 | 0.207545 | 0.023072 | 0.068351 |
| Q3                         | 0.000617 | 0.281055 | 0.026716 | 0.082162 |

| $\sigma$ =0.05, n=20, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.002030 | 0.616464 | 0.166520 | 5.273527 |
| MIN                        | 0.000825 | 0.207273 | 0.069284 | 0.929038 |
| AVG                        | 0.001020 | 0.338409 | 0.114903 | 2.582232 |
| Num. Outliers              | 14       | 2        | 0        | 1        |
| Q1                         | 0.000916 | 0.264742 | 0.102142 | 2.014623 |
| Q2                         | 0.000949 | 0.304508 | 0.112251 | 2.552927 |
| Q3                         | 0.001018 | 0.393782 | 0.129246 | 3.031747 |

| $\sigma$ =0.05, n=20, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------|----------|----------|----------|----------|
| MAX                         | 0.002077 | 0.461855 | 0.197817 | 2.122921 |
| MIN                         | 0.000798 | 0.172451 | 0.056588 | 0.541641 |
| AVG                         | 0.001014 | 0.286637 | 0.077607 | 1.013477 |
| Num. Outliers               | 26       | 0        | 6        | 3        |
| Q1                          | 0.000836 | 0.220934 | 0.06853  | 0.846765 |
| Q2                          | 0.000861 | 0.273933 | 0.073311 | 1.015356 |
| Q3                          | 0.001053 | 0.341594 | 0.081312 | 1.143412 |

| $\sigma$ =0.4, n=20, rand | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------|----------|----------|----------|----------|
| MAX                       | 0.002535 | 0.664769 | 0.190719 | 4.061664 |
| MIN                       | 0.000841 | 0.180671 | 0.041741 | 0.336322 |
| AVG                       | 0.001065 | 0.337188 | 0.096834 | 1.765275 |
| Num. Outliers             | 17       | 4        | 2        | 4        |
| Q1                        | 0.000906 | 0.271318 | 0.078813 | 1.182456 |
| Q2                        | 0.000961 | 0.303928 | 0.093681 | 1.661305 |
| Q3                        | 0.001047 | 0.412760 | 0.109579 | 2.055240 |

| $\sigma$ =0.4, n=20, randn | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------|----------|----------|----------|----------|
| MAX                        | 0.001579 | 0.516549 | 0.227465 | 2.202074 |
| MIN                        | 0.000754 | 0.159788 | 0.037290 | 0.289504 |
| AVG                        | 0.000911 | 0.274002 | 0.073436 | 0.921726 |
| Num. Outliers              | 14       | 1        | 5        | 3        |
| Q1                         | 0.000807 | 0.209458 | 0.060054 | 0.648098 |
| Q2                         | 0.000853 | 0.259952 | 0.068820 | 0.842354 |
| Q3                         | 0.000917 | 0.318945 | 0.076693 | 1.088739 |

| $\sigma$ =0.05, n=30, rand | Miles    | Cplex    | Gurobi    | Mosek      |
|----------------------------|----------|----------|-----------|------------|
| MAX                        | 0.005523 | 2.901601 | 25.227480 | 375.842835 |
| MIN                        | 0.002289 | 0.810301 | 9.938927  | 47.173375  |
| AVG                        | 0.003286 | 1.925461 | 16.331425 | 130.352474 |
| Num. Outliers              | 2        | 0        | 0         | 1          |
| Q1                         | 0.002845 | 1.530404 | 13.393229 | 77.406259  |
| Q2                         | 0.002845 | 2.003119 | 16.201483 | 114.517962 |
| Q3                         | 0.003508 | 2.281303 | 18.813914 | 170.727315 |

| $\sigma$ =0.05, n=30, randn | Miles    | Cplex    | Gurobi    | Mosek      |
|-----------------------------|----------|----------|-----------|------------|
| MAX                         | 0.006116 | 3.318812 | 10.984681 | 192.630694 |
| MIN                         | 0.003884 | 2.006763 | 7.330396  | 49.943532  |
| AVG                         | 0.004907 | 2.600960 | 9.140967  | 114.954567 |
| Num. Outliers               | 2        | 1        | 0         | 0          |
| Q1                          | 0.004603 | 2.466759 | 8.640681  | 93.989179  |
| Q2                          | 0.004887 | 2.577473 | 9.074334  | 113.283163 |
| Q3                          | 0.005070 | 2.775028 | 9.614826  | 132.598015 |

| $\sigma$ =0.4, n=30, rand | Miles    | Cplex    | Gurobi    | Mosek      |
|---------------------------|----------|----------|-----------|------------|
| MAX                       | 0.005458 | 3.023398 | 29.469760 | 619.833292 |
| MIN                       | 0.001937 | 0.377212 | 0.423581  | 15.884672  |
| AVG                       | 0.003300 | 1.827074 | 16.447260 | 160.906530 |
| Num. Outliers             | 0        | 0        | 1         | 2          |
| Q1                        | 0.002617 | 1.323778 | 12.886597 | 90.821595  |
| Q2                        | 0.003120 | 1.753353 | 16.116091 | 148.880107 |
| Q3                        | 0.003889 | 2.419575 | 19.618560 | 196.098610 |

| $\sigma$ =0.4, n=30, randn | Miles    | Cplex    | Gurobi    | Mosek      |
|----------------------------|----------|----------|-----------|------------|
| MAX                        | 0.008039 | 3.702028 | 13.964519 | 222.267921 |
| MIN                        | 0.002257 | 0.744942 | 2.691140  | 23.568421  |
| AVG                        | 0.004542 | 2.169681 | 7.794493  | 94.769169  |
| Num. Outliers              | 0        | 0        | 2         | 1          |
| Q1                         | 0.003633 | 1.667701 | 6.673525  | 67.590384  |
| Q2                         | 0.004391 | 2.208108 | 7.788217  | 91.473823  |
| Q3                         | 0.005562 | 2.638735 | 9.249139  | 118.710332 |

| σ=0.05, n=40, rand (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|------------------------|----------|------------|-------------|-------------|
| MAX                    | 5.599239 | 223.820327 | 1952.486820 | 5008.331100 |
| MIN                    | 0.195099 | 46.356740  | 332.650490  | 3433.622872 |
| AVG                    | 1.168566 | 119.870675 | 989.383762  | 4862.402544 |
| Num. Outliers          | 3        | 0          | 1           | 1           |
| Q1                     | 0.328651 | 82.714136  | 521.034085  | 5003.200088 |
| Q2                     | 0.356178 | 108.351000 | 707.983639  | 5004.044636 |
| Q3                     | 0.659639 | 168.005266 | 1621.531700 | 5006.813754 |

| $\sigma$ =0.05, n=40, randn (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|---------------------------------|----------|------------|-------------|-------------|
| MAX                             | 0.516101 | 728.243709 | 5030.737643 | 5011.447547 |
| MIN                             | 0.375896 | 248.242465 | 5018.311371 | 5005.983521 |
| AVG                             | 0.451914 | 409.892016 | 5025.446931 | 5008.857153 |
| Num. Outliers                   | 0        | 1          | 0           | 0           |
| Q1                              | 0.420661 | 319.515819 | 5022.313210 | 5007.930878 |
| Q2                              | 0.451048 | 352.155332 | 5024.803892 | 5008.810561 |
| Q3                              | 0.481932 | 496.253763 | 5029.287487 | 5010.187636 |

| σ=0.4, n=40, rand (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|-----------------------|----------|------------|-------------|-------------|
| MAX                   | 0.616967 | 785.764907 | 5017.306867 | 5010.758456 |
| MIN                   | 0.198668 | 204.099579 | 719.458345  | 5003.809195 |
| AVG                   | 0.387814 | 447.532446 | 2584.644061 | 5007.140669 |
| Num. Outliers         | 0        | 0          | 0           | 0           |
| Q1                    | 0.319231 | 248.642834 | 1776.028370 | 5005.588102 |
| Q2                    | 0.334591 | 342.775219 | 2420.821879 | 5007.346900 |
| Q3                    | 0.483849 | 665.573463 | 3267.933111 | 5008.330272 |

| $\sigma$ =0.4, n=40, randn (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|--------------------------------|----------|------------|-------------|-------------|
| MAX                            | 0.606901 | 785.764907 | 5050.369481 | 5011.523522 |
| MIN                            | 0.341954 | 204.099579 | 5014.940342 | 5006.963722 |
| AVG                            | 0.477724 | 447.532446 | 5030.381311 | 5009.009294 |
| Num. Outliers                  | 0        | 0          | 0           | 0           |
| Q1                             | 0.400778 | 248.642834 | 5019.362704 | 5007.967842 |
| Q2                             | 0.468001 | 342.775219 | 5033.602589 | 5008.777802 |
| Q3                             | 0.566076 | 665.573463 | 5039.046498 | 5009.909406 |

### (3) BILS time table

| $\sigma$ =0.05, n=10, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek     |
|---------------------------------|----------|----------|----------|-----------|
| MAX                             | 0.000823 | 0.244454 | 0.416307 | 0.091778  |
| MIN                             | 0.000142 | 0.053468 | 0.023975 | 0.030027  |
| AVG                             | 0.000179 | 0.084591 | 0.047442 | 00.030027 |
| Num. Outliers                   | 22       | 13       | 8        | 16        |
| Q1                              | 0.000147 | 0.070008 | 0.031470 | 0.033194  |
| Q2                              | 0.000152 | 0.075864 | 0.041979 | 0.034800  |
| Q3                              | 0.000174 | 0.087344 | 0.045712 | 0.038118  |

| $\sigma$ =0.05, n=10, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.000320 | 0.158125 | 0.052067 | 0.059129 |
| MIN                              | 0.000136 | 0.049109 | 0.021628 | 0.030048 |
| AVG                              | 0.000158 | 0.066636 | 0.032014 | 0.035323 |
| Num. Outliers                    | 16       | 4        | 1        | 4        |
| Q1                               | 0.000142 | 0.054687 | 0.025116 | 0.033579 |
| Q2                               | 0.000145 | 0.061333 | 0.029653 | 0.034730 |
| Q3                               | 0.000157 | 0.074345 | 0.039757 | 0.036088 |

| $\sigma$ =0.4, n=10, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|--------------------------------|----------|----------|----------|----------|
| MAX                            | 0.000368 | 0.203298 | 0.094487 | 0.080328 |
| MIN                            | 0.000138 | 0.054826 | 0.022979 | 0.030600 |
| AVG                            | 0.000166 | 0.141676 | 0.046581 | 0.049807 |
| Num. Outliers                  | 14       | 18       | 1        | 0        |
| Q1                             | 0.000148 | 0.136759 | 0.037158 | 0.042743 |
| Q2                             | 0.000153 | 0.152589 | 0.046005 | 0.049615 |
| Q3                             | 0.000160 | 0.164715 | 0.056484 | 0.058005 |

| $\sigma$ =0.4, n=10, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.000638 | 0.691864 | 0.299284 | 0.086116 |
| MIN                             | 0.000136 | 0.053005 | 0.022032 | 0.031089 |
| AVG                             | 0.000176 | 0.118757 | 0.046822 | 0.042009 |
| Num. Outliers                   | 21       | 6        | 5        | 14       |
| Q1                              | 0.000146 | 0.074997 | 0.030598 | 0.034889 |
| Q2                              | 0.000152 | 0.093881 | 0.042679 | 0.037428 |
| Q3                              | 0.000170 | 0.141512 | 0.049926 | 0.045437 |

| $\sigma$ =0.05, n=10, rand, B=10 | Miles    | Cplex    | Gurobi   | Mosek     |
|----------------------------------|----------|----------|----------|-----------|
| MAX                              | 0.000350 | 0.235270 | 0.117280 | 0.125635  |
| MIN                              | 0.000136 | 0.065603 | 0.031078 | 0.030366  |
| AVG                              | 0.000179 | 0.102015 | 0.050794 | 0.050702  |
| Num. Outliers                    | 21       | 28       | 16       | 29.000000 |
| Q1                               | 0.000148 | 0.075140 | 0.039957 | 0.036118  |
| Q2                               | 0.000157 | 0.081921 | 0.043635 | 0.039476  |
| Q3                               | 0.000194 | 0.130113 | 0.051819 | 0.066229  |

| $\sigma$ =0.05, n=10, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------------|----------|----------|----------|----------|
| MAX                               | 0.000260 | 0.081018 | 0.049536 | 0.038075 |
| MIN                               | 0.000136 | 0.066760 | 0.033751 | 0.032482 |
| AVG                               | 0.000152 | 0.073190 | 0.040986 | 0.034782 |
| Num. Outliers                     | 14       | 1        | 2.000000 | 0.000000 |
| Q1                                | 0.000141 | 0.071203 | 0.039484 | 0.033877 |
| Q2                                | 0.000145 | 0.072782 | 0.040656 | 0.034608 |
| Q3                                | 0.000152 | 0.074687 | 0.042816 | 0.035567 |

| $\sigma$ =0.4, n=10, rand, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.000275 | 0.325647 | 0.110597 | 0.188619 |
| MIN                             | 0.000138 | 0.156414 | 0.031408 | 0.046770 |
| AVG                             | 0.000167 | 0.185741 | 0.073447 | 0.109508 |
| Num. Outliers                   | 15       | 7        | 4.000000 | 0.000000 |
| Q1                              | 0.000148 | 0.177223 | 0.066499 | 0.085075 |
| Q2                              | 0.000157 | 0.182830 | 0.072362 | 0.105086 |
| Q3                              | 0.000166 | 0.189223 | 0.084079 | 0.128558 |

| $\sigma$ =0.4, n=10, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.000300 | 0.258421 | 0.084647 | 0.091637 |
| MIN                              | 0.000131 | 0.072546 | 0.032593 | 0.033283 |
| AVG                              | 0.000160 | 0.137938 | 0.048728 | 0.052967 |
| Num. Outliers                    | 18       | 0        | 8.000000 | 0.000000 |
| Q1                               | 0.000141 | 0.087713 | 0.039956 | 0.039525 |
| Q2                               | 0.000147 | 0.158082 | 0.045406 | 0.051676 |
| Q3                               | 0.000158 | 0.174290 | 0.052598 | 0.062728 |

| $\sigma$ =0.05, n=20, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.000630 | 0.226646 | 0.135662 | 0.107607 |
| MIN                             | 0.000293 | 0.051562 | 0.027799 | 0.046702 |
| AVG                             | 0.000345 | 0.093573 | 0.047815 | 0.058326 |
| Num. Outliers                   | 16       | 1        | 3        | 7        |
| Q1                              | 0.000311 | 0.073443 | 0.033186 | 0.053553 |
| Q2                              | 0.000322 | 0.092142 | 0.046217 | 0.056293 |
| Q3                              | 0.000345 | 0.108924 | 0.055088 | 0.060487 |

| $\sigma$ =0.05, n=20, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.000616 | 0.093415 | 0.076135 | 0.069192 |
| MIN                              | 0.000304 | 0.058206 | 0.026046 | 0.048436 |
| AVG                              | 0.000343 | 0.074319 | 0.043052 | 0.056559 |
| Num. Outliers                    | 15       | 1        | 0        | 1        |
| Q1                               | 0.000317 | 0.069532 | 0.032109 | 0.053741 |
| Q2                               | 0.000325 | 0.074217 | 0.041770 | 0.056513 |
| Q3                               | 0.000334 | 0.078100 | 0.053614 | 0.058897 |

| $\sigma$ =0.4, n=20, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|--------------------------------|----------|----------|----------|----------|
| MAX                            | 0.000603 | 1.062884 | 0.196048 | 0.461618 |
| MIN                            | 0.000280 | 0.056679 | 0.033783 | 0.057095 |
| AVG                            | 0.000349 | 0.205997 | 0.089913 | 0.145926 |
| Num. Outliers                  | 13       | 6        | 2        | 4        |
| Q1                             | 0.000313 | 0.178146 | 0.063907 | 0.102418 |
| Q2                             | 0.000331 | 0.192406 | 0.088939 | 0.135589 |
| Q3                             | 0.000356 | 0.207175 | 0.105480 | 0.177822 |

| $\sigma$ =0.4, n=20, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.000713 | 0.381372 | 0.182287 | 0.124072 |
| MIN                             | 0.000299 | 0.064134 | 0.027592 | 0.050557 |
| AVG                             | 0.000380 | 0.094809 | 0.063269 | 0.068008 |
| Num. Outliers                   | 21       | 14       | 7        | 13       |
| Q1                              | 0.000317 | 0.076061 | 0.050622 | 0.058462 |
| Q2                              | 0.000331 | 0.081433 | 0.058552 | 0.062627 |
| Q3                              | 0.000382 | 0.102132 | 0.069146 | 0.068671 |

| $\sigma$ =0.05, n=20, rand, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.000664 | 0.918636 | 0.152481 | 0.499459 |
| MIN                              | 0.000290 | 0.092182 | 0.055290 | 0.070262 |
| AVG                              | 0.000350 | 0.188737 | 0.078298 | 0.190602 |
| Num. Outliers                    | 15       | 25       | 2        | 1        |
| Q1                               | 0.000311 | 0.173456 | 0.068672 | 0.097143 |
| Q2                               | 0.000323 | 0.185734 | 0.075949 | 0.207829 |
| Q3                               | 0.000343 | 0.199710 | 0.084803 | 0.243829 |

| $\sigma$ =0.05, n=20, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------------|----------|----------|----------|----------|
| MAX                               | 0.000649 | 0.174677 | 0.191882 | 0.121830 |
| MIN                               | 0.000304 | 0.073027 | 0.058426 | 0.067313 |
| AVG                               | 0.000336 | 0.095265 | 0.078647 | 0.074623 |
| Num. Outliers                     | 10       | 1        | 3        | 4        |
| Q1                                | 0.000316 | 0.078242 | 0.070914 | 0.071656 |
| Q2                                | 0.000323 | 0.099180 | 0.075356 | 0.073949 |
| Q3                                | 0.000333 | 0.103468 | 0.080780 | 0.076297 |

| $\sigma$ =0.4, n=20, rand, B=10 | Miles    | Cplex    | Gurobi   | Mosek     |
|---------------------------------|----------|----------|----------|-----------|
| MAX                             | 0.003094 | 0.950524 | 1.884412 | 25.233772 |
| MIN                             | 0.000453 | 0.281717 | 0.158411 | 1.752953  |
| AVG                             | 0.001278 | 0.420958 | 0.275809 | 8.076511  |
| Num. Outliers                   | 4        | 7        | 3        | 3         |
| Q1                              | 0.000927 | 0.364753 | 0.222548 | 5.459248  |
| Q2                              | 0.001223 | 0.405807 | 0.253163 | 7.651014  |
| Q3                              | 0.001521 | 0.440676 | 0.296106 | 9.565521  |

| $\sigma$ =0.4, n=20, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.000678 | 0.335181 | 0.630767 | 1.082696 |
| MIN                              | 0.000301 | 0.186676 | 0.071465 | 0.096341 |
| AVG                              | 0.000357 | 0.224234 | 0.138825 | 0.284078 |
| Num. Outliers                    | 11       | 4        | 3        | 6        |
| Q1                               | 0.000327 | 0.207382 | 0.114678 | 0.227896 |
| Q2                               | 0.000338 | 0.220732 | 0.129941 | 0.257148 |
| Q3                               | 0.000359 | 0.233394 | 0.154860 | 0.314165 |

| $\sigma$ =0.05, n=30, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.414825 | 0.588529 | 0.376936 | 0.208997 |
| MIN                             | 0.000562 | 0.061339 | 0.060165 | 0.080845 |
| AVG                             | 0.004861 | 0.134987 | 0.120308 | 0.104636 |
| Num. Outliers                   | 16       | 6        | 4        | 10       |
| Q1                              | 0.000606 | 0.093120 | 0.087453 | 0.090894 |
| Q2                              | 0.000648 | 0.115349 | 0.116687 | 0.098631 |
| Q3                              | 0.000748 | 0.149526 | 0.132195 | 0.106861 |

| σ=0.05, n=30, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|--------------------------|----------|----------|----------|----------|
| MAX                      | 0.001385 | 0.134106 | 0.142457 | 0.162684 |
| MIN                      | 0.000566 | 0.069885 | 0.060640 | 0.079274 |
| AVG                      | 0.000664 | 0.087798 | 0.094777 | 0.096322 |
| Num. Outliers            | 11       | 9        | 10       | 3        |
| Q1                       | 0.000592 | 0.078241 | 0.088328 | 0.089724 |
| Q2                       | 0.000618 | 0.082833 | 0.092794 | 0.094017 |
| Q3                       | 0.000670 | 0.094984 | 0.098379 | 0.098853 |

| $\sigma$ =0.4, n=30, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|--------------------------------|----------|----------|----------|----------|
| MAX                            | 0.004488 | 0.460267 | 0.799035 | 3.900129 |
| MIN                            | 0.000602 | 0.150377 | 0.107815 | 0.123742 |
| AVG                            | 0.001349 | 0.235663 | 0.369915 | 0.787350 |
| Num. Outliers                  | 11       | 11       | 0        | 6        |
| Q1                             | 0.000831 | 0.199160 | 0.268293 | 0.379753 |
| Q2                             | 0.001110 | 0.220851 | 0.355547 | 0.628807 |
| Q3                             | 0.001591 | 0.251742 | 0.469565 | 0.967842 |

| $\sigma$ =0.4, n=30, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.001743 | 0.417077 | 0.261647 | 0.278847 |
| MIN                             | 0.000559 | 0.074858 | 0.083553 | 0.090612 |
| AVG                             | 0.000665 | 0.134967 | 0.115167 | 0.120524 |
| Num. Outliers                   | 10       | 4        | 10       | 10       |
| Q1                              | 0.000595 | 0.088762 | 0.099246 | 0.107857 |
| Q2                              | 0.000613 | 0.114617 | 0.108897 | 0.113057 |
| Q3                              | 0.000651 | 0.167778 | 0.118135 | 0.120542 |

| $\sigma$ =0.05, n=30, rand, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.023204 | 0.734529 | 0.490552 | 1.455291 |
| MIN                              | 0.000585 | 0.222717 | 0.093183 | 0.237371 |
| AVG                              | 0.002140 | 0.313461 | 0.181576 | 0.687109 |
| Num. Outliers                    | 17       | 7        | 5        | 6        |
| Q1                               | 0.000617 | 0.266963 | 0.120076 | 0.569141 |
| Q2                               | 0.000637 | 0.293371 | 0.150800 | 0.645544 |
| Q3                               | 0.000661 | 0.329833 | 0.227895 | 0.789527 |

| $\sigma$ =0.05, n=30, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------------|----------|----------|----------|----------|
| MAX                               | 0.001271 | 0.297613 | 0.284027 | 0.652692 |
| MIN                               | 0.000574 | 0.097564 | 0.068833 | 0.127865 |
| AVG                               | 0.000660 | 0.158609 | 0.107071 | 0.250373 |
| Num. Outliers                     | 9        | 1        | 11       | 32       |
| Q1                                | 0.000598 | 0.122415 | 0.084305 | 0.145610 |
| Q2                                | 0.000619 | 0.147323 | 0.094033 | 0.157586 |
| Q3                                | 0.000666 | 0.191680 | 0.105250 | 0.412409 |

| $\sigma$ =0.4, n=30, rand, B=10 | Miles    | Cplex     | Gurobi    | Mosek       |
|---------------------------------|----------|-----------|-----------|-------------|
| MAX                             | 2.662336 | 18.644138 | 77.207288 | 1978.809075 |
| MIN                             | 0.021084 | 3.604093  | 12.066648 | 273.597023  |
| AVG                             | 0.133567 | 8.786895  | 38.547147 | 1080.113244 |
| Num. Outliers                   | 2        | 2         | 0         | 0           |
| Q1                              | 0.057762 | 6.118268  | 28.947506 | 653.054608  |
| Q2                              | 0.078205 | 8.484645  | 36.950025 | 929.496845  |
| Q3                              | 0.111072 | 10.545104 | 48.986172 | 1551.102561 |

| $\sigma$ =0.4, n=30, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.043837 | 0.714923 | 0.712891 | 6.897621 |
| MIN                              | 0.000633 | 0.114020 | 0.071414 | 0.659534 |
| AVG                              | 0.006364 | 0.282885 | 0.221971 | 2.624047 |
| Num. Outliers                    | 36       | 8        | 10       | 16       |
| Q1                               | 0.000697 | 0.194893 | 0.112548 | 1.325309 |
| Q2                               | 0.000837 | 0.246250 | 0.176170 | 1.893824 |
| Q3                               | 0.006308 | 0.349635 | 0.268969 | 3.597116 |

| $\sigma$ =0.05, n=40, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.003270 | 0.362480 | 0.334886 | 0.256686 |
| MIN                             | 0.001121 | 0.075647 | 0.098395 | 0.117141 |
| AVG                             | 0.001493 | 0.163384 | 0.157794 | 0.159920 |
| Num. Outliers                   | 25       | 3        | 9        | 13       |
| Q1                              | 0.001167 | 0.121074 | 0.138424 | 0.142668 |
| Q2                              | 0.001204 | 0.155268 | 0.151929 | 0.150181 |
| Q3                              | 0.001509 | 0.198396 | 0.162929 | 0.161276 |

| $\sigma$ =0.05, n=40, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.003270 | 0.288779 | 0.194371 | 0.221679 |
| MIN                              | 0.001121 | 0.076501 | 0.090709 | 0.122054 |
| AVG                              | 0.001493 | 0.116599 | 0.138415 | 0.150697 |
| Num. Outliers                    | 25       | 2        | 0        | 1        |
| Q1                               | 0.001167 | 0.087908 | 0.123336 | 0.139885 |
| Q2                               | 0.001204 | 0.107387 | 0.137254 | 0.148232 |
| Q3                               | 0.001509 | 0.133453 | 0.155244 | 0.158325 |

| $\sigma$ =0.4, n=40, rand, B=1 | Miles    | Cplex    | Gurobi   | Mosek     |
|--------------------------------|----------|----------|----------|-----------|
| MAX                            | 0.006636 | 0.614239 | 1.122713 | 17.222088 |
| MIN                            | 0.001170 | 0.176613 | 0.152000 | 0.192544  |
| AVG                            | 0.002321 | 0.314322 | 0.482129 | 2.814194  |
| Num. Outliers                  | 5        | 3        | 1        | 4         |
| Q1                             | 0.001619 | 0.247780 | 0.328809 | 0.937050  |
| Q2                             | 0.002113 | 0.306628 | 0.469429 | 2.056821  |
| Q3                             | 0.002647 | 0.363973 | 0.603301 | 3.634671  |

| $\sigma$ =0.4, n=40, randn, B=1 | Miles    | Cplex    | Gurobi   | Mosek    |
|---------------------------------|----------|----------|----------|----------|
| MAX                             | 0.002234 | 0.321833 | 0.235050 | 0.452954 |
| MIN                             | 0.001078 | 0.081131 | 0.098617 | 0.160211 |
| AVG                             | 0.001285 | 0.159769 | 0.129474 | 0.191218 |
| Num. Outliers                   | 14       | 2        | 5        | 4        |
| Q1                              | 0.001138 | 0.125658 | 0.117408 | 0.177629 |
| Q2                              | 0.001172 | 0.162988 | 0.124762 | 0.185620 |
| Q3                              | 0.001221 | 0.182300 | 0.134785 | 0.195118 |

| $\sigma$ =0.05, n=40, rand, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.005143 | 0.849333 | 0.257596 | 1.294442 |
| MIN                              | 0.001093 | 0.131773 | 0.079877 | 0.233545 |
| AVG                              | 0.001460 | 0.271819 | 0.110333 | 0.521373 |
| Num. Outliers                    | 24       | 11       | 13       | 5        |
| Q1                               | 0.001148 | 0.238450 | 0.090202 | 0.299867 |
| Q2                               | 0.001197 | 0.254626 | 0.097114 | 0.382043 |
| Q3                               | 0.001470 | 0.294626 | 0.108928 | 0.693786 |

| $\sigma$ =0.05, n=40, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|-----------------------------------|----------|----------|----------|----------|
| MAX                               | 0.002474 | 0.159256 | 0.105334 | 0.300861 |
| MIN                               | 0.001113 | 0.106297 | 0.071959 | 0.207965 |
| AVG                               | 0.001339 | 0.117189 | 0.086849 | 0.232465 |
| Num. Outliers                     | 18       | 6        | 0        | 6        |
| Q1                                | 0.001154 | 0.111202 | 0.082021 | 0.222490 |
| Q2                                | 0.001189 | 0.113974 | 0.085902 | 0.229295 |
| Q3                                | 0.001323 | 0.120378 | 0.091503 | 0.238494 |

| σ=0.4, n=40, rand, B=10 (*) | Miles    | Cplex      | Gurobi      | Mosek       |
|-----------------------------|----------|------------|-------------|-------------|
| MAX                         | 1.126402 | 523.907142 | 4131.609260 | 5008.283234 |
| MIN                         | 0.075499 | 39.260990  | 162.742904  | 2107.376079 |
| AVG                         | 0.421278 | 172.632878 | 1252.882469 | 4914.902983 |
| Num. Outliers               | 0        | 2          | 1           | 5           |
| Q1                          | 0.156501 | 71.966388  | 344.225769  | 4617.791916 |
| Q2                          | 0.390491 | 120.663294 | 1119.459183 | 5004.458286 |
| Q3                          | 0.594044 | 169.139358 | 1225.033402 | 5006.017255 |

| $\sigma$ =0.4, n=40, randn, B=10 | Miles    | Cplex    | Gurobi   | Mosek    |
|----------------------------------|----------|----------|----------|----------|
| MAX                              | 0.002669 | 0.666001 | 0.358033 | 1.499021 |
| MIN                              | 0.001099 | 0.293156 | 0.147093 | 0.386709 |
| AVG                              | 0.001764 | 0.432544 | 0.249022 | 0.992804 |
| Num. Outliers                    | 0        | 0        | 0        | 0        |
| Q1                               | 0.001157 | 0.348903 | 0.197209 | 0.753406 |
| Q2                               | 0.001776 | 0.412275 | 0.233002 | 0.979136 |
| Q3                               | 0.002297 | 0.478789 | 0.306926 | 1.240660 |

### (4) Error table for ILS

### All are mosek

| n=10            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 0%   | 0%    |
| $\sigma = 0.4$  | 34%  | 12%   |

| n=20            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 0%   | 0%    |
| $\sigma = 0.4$  | 39%  | 0%    |

| n=30            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 0%   | 0%    |
| $\sigma = 0.4$  | 34%  | 0%    |

| n=40            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 0%   | 0%    |
| $\sigma = 0.4$  | 60%  | 0%    |

### (5) Error table for MILS

### All are mosek

| n=10            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 24%  | 31%   |
| $\sigma = 0.4$  | 21%  | 21%   |

| n=20            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 25%  | 21%   |
| $\sigma = 0.4$  | 18%  | 21%   |

| n=30            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 21%  | 21%   |
| $\sigma = 0.4$  | 13%  | 24%   |

| n=40            | rand | randn |
|-----------------|------|-------|
| $\sigma = 0.05$ | 20%  | 5%    |
| $\sigma = 0.4$  | 90%  | 20%   |

### (6) Error table for BILS

### All are mosek

| n=10 (100)            | rand | randn |
|-----------------------|------|-------|
| $\sigma = 0.05, B=1$  | 0%   | 0%    |
| $\sigma = 0.4, B=1$   | 0%   | 0%    |
| $\sigma = 0.05, B=10$ | 12%  | 0%    |
| $\sigma = 0.4, B=10$  | 25%  | 5%    |

| n=20 (100)            | rand | randn |
|-----------------------|------|-------|
| $\sigma = 0.05, B=1$  | 0%   | 0%    |
| $\sigma = 0.4, B=1$   | 0%   | 0%    |
| $\sigma = 0.05, B=10$ | 10%  | 0%    |
| $\sigma = 0.4, B=10$  | 28%  | 3%    |

| n=30 (100)            | rand | randn |
|-----------------------|------|-------|
| $\sigma = 0.05, B=1$  | 0%   | 0%    |
| $\sigma = 0.4, B=1$   | 14%  | 0%    |
| $\sigma = 0.05, B=10$ | 0%   | 0%    |
| $\sigma = 0.4, B=10$  | 26%  | 0%    |

| n=40 (20)             | rand | randn |
|-----------------------|------|-------|
| $\sigma = 0.05, B=1$  | 0%   | 0%    |
| $\sigma = 0.4, B=1$   | 12%  | 0%    |
| $\sigma = 0.05, B=10$ | 0%   | 0%    |
| $\sigma = 0.4, B=10$  | 10%  | 0%    |

### 8. References

[1]. X.-W. Chang. MILES: MATLAB package for solving mixed integer least squares problems,

School of Computer Science, McGill University. Retrieved from:

http://www.cs.mcgill.ca/~chang/software/MILES.php

[2]. Cplex, I. I. (2009). V12. 1: User's Manual for CPLEX. International Business Machines Corporation, 46(53), 157.

https://www.gurobi.com/documentation/9.1/refman/MATLAB the model argument.html

- [3] LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http://www.gurobi.com
- [4] MOSEK ApS. 2021.The MOSEK optimization toolbox for MATLAB manual. Version 9.2 <a href="https://docs.mosek.com/9.2/toolbox/index.html">https://docs.mosek.com/9.2/toolbox/index.html</a>
- [5] MATLAB. (2020). 9.8.0.1451342 (R2020a) Update 5. Natick, Massachusetts: The MathWorks Inc.