Дескрипционная логика \mathcal{ALC} : терминологическая часть

База знаний (КВ)

ТВох (терминология, схема)

 $Man \equiv Human \sqcap Male$ $HappyFather \equiv Man \sqcap \exists hasChild$

ABox (assertion box, данные)

john: Man (john, mary): hasChild

• • • •

Система анализа

Интерфейс

Синтаксис \mathcal{ALC}

• Язык описания \mathcal{ALC} -концептов (классов)

- имена концептов $\,A_0,\,A_1,\,...\,$
- имена ролей $r_0, r_1, ...$
- концепт Т (часто называют "вещь")
- концепт ⊥ (пустой класс)
- логическая связка □ (пересечение, конъюнкция, "и").
- квантор ∃ (существование).
- квантор \forall (часто называют ограничение значения (value restriction)).
- логическая связка Ц (объединение, дизъюнкция, "или").
- логическая связка ¬ (дополнение, отрицание).

ALC

АСС-концепты определяются индуктивно следующим образом:

- Все имена концептов, \top и \bot являются \mathcal{ALC} -концептами;
- ullet Если C является \mathcal{ALC} -концептом, то и $\neg C$ является \mathcal{ALC} -концептом.
- ullet Если C и D являются \mathcal{ALC} -концептами, а r имя роли, то

$$(C \sqcap D), (C \sqcup D), \exists r.C, \forall r.C$$

являются \mathcal{ALC} -концептами.

АСС импликация концептов имеет вид

$$C \sqsubseteq D$$
,

где C,D являются \mathcal{ALC} -концептами.

- Person □ ∀hasChild.Male (у кого дети мужского пола);
- ∃interested_in.Computer_Science □ ¬∃interested_in.Philosophy (класс объектов интересующихся информатикой, но с интересом в философии);
- Living_being $\sqcap \neg$ Human_being (живые существа не являющиеся людьми);
- Student П¬∃interested_in. Mathematics (студенты, не интересующиеся математикой);
- Student $\sqcap \forall$ drinks.tea (студенты, которые пьют только чай).
- **Person** \sqcap \forall **hasChild.Male** \sqcap \exists **hasChild.** \top (класс объектов, у которых есть ребенок, чьи все дети мужского пола).

Семантика \mathcal{ALC}

Интерпретация определяется также как и для \mathcal{EL}

- ullet Структура $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ в которой
 - $\Delta^{\mathcal{I}}$ носитель (непустое множество)
 - $\cdot^{\mathcal{I}}$ интерпретация, отображающая
 - * имя концепта A в подмножество $A^\mathcal{I} \subset \Delta^\mathcal{I}$
 - $(A^{\mathcal{I}} \subset \Delta^{\mathcal{I}})$
 - * имя роли r в бинарное отношение $r^{\mathcal{I}}$ на $\Delta^{\mathcal{I}}$

 $(r^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}})$

Интерпретация сложных концептов в \mathcal{I} :

$$(C,D-$$
 концепты, а $r-$ имя роли $)$

- $(\top)^{\mathcal{I}} = \Delta^{\mathcal{I}}$ и $(\bot)^{\mathcal{I}} = \emptyset$
- $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ и $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\forall r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid$ для всех $y \in \Delta^{\mathcal{I}} \ \ ((x,y) \in r^{\mathcal{I}} o y \in C^{\mathcal{I}})\}$
- $(\exists r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \text{ существует } y \in \Delta^{\mathcal{I}} \text{ such that } (x,y) \in r^{\mathcal{I}} \text{ и } y \in C^{\mathcal{I}} \}$

Эквивалентные концепты

Для любой интерпретации \mathcal{I} , любых концептов C,D и имени роли r следующее имеет место:

•
$$(\neg \neg C)^{\mathcal{I}} = C^{\mathcal{I}};$$

•
$$(\forall r.C)^{\mathcal{I}} = (\neg \exists r. \neg C)^{\mathcal{I}};$$

•
$$(\neg (C \sqcap D))^{\mathcal{I}} = (\neg C \sqcup \neg D)^{\mathcal{I}};$$

•
$$(\neg(C \sqcup D))^{\mathcal{I}} = (\neg C \sqcap \neg D)^{\mathcal{I}};$$

•
$$(\neg \exists r.C)^{\mathcal{I}} = (\forall r. \neg C)^{\mathcal{I}};$$

•
$$(\neg \forall r.C)^{\mathcal{I}} = (\exists r. \neg C)^{\mathcal{I}};$$

•
$$(C \sqcap \neg C)^{\mathcal{I}} = \bot^{\mathcal{I}} = \emptyset;$$

•
$$(C \sqcup \neg C)^{\mathcal{I}} = \top^{\mathcal{I}} = \Delta^{\mathcal{I}}$$
.

Импликации концептов и ТВох

• Импликация АСС-концептов это выражение

$$C \sqsubseteq D$$
,

где C и D являются \mathcal{ALC} -концептами.

• $\mathcal{ALC} ext{-TBox}$ есть конечное множество импликаций $\mathcal{ALC} ext{-}$ концептов.

Семантика: так же как в \mathcal{EL}

 \mathcal{I} — интерпретация, $C \sqsubseteq D$ — импликация \mathcal{ALC} -концептов и $T - \mathcal{ALC}$ -ТВох.

- ullet $\mathcal{I} \models C \sqsubseteq D$ т. и т.т., когда $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- ullet $\mathcal{I} \models T$ т. и т.т., когда $\mathcal{I} \models E \sqsubseteq F$ для всех $E \sqsubseteq F$ в T.

Логический анализ в \mathcal{ALC} (пока без TBox)

- Поглощение. $C \sqsubseteq D$ следует из пустого ТВох (или C поглощен D) т. и т.т., когда в любой интерпретации $\mathcal I$ мы имеем $C^\mathcal I \subseteq D^\mathcal I$. В таком случае, мы пишем $\emptyset \models C \sqsubseteq D$.
- Реализуемость концепта. Концепт C реализуем т. и т.т., когда существует интерпретаци \mathcal{I} т.ч. $C^{\mathcal{I}} \neq \emptyset$.

 $\emptyset \models C \sqsubseteq D$ т. и т.т., когда $C \sqcap \neg D$ не реализуем. Таким образом, в \mathcal{ALC} поглощение и реализуемость сводятся к друг-другу.

Заметим, что любой \mathcal{EL} -концепт реализуем.

Q: Реализуем ли (∀hasChild.Male) □ (∃hasChild.¬Male)

Попробуем построить реализующую интерпретацию

А: концепт **не реализуем!**

Q: Реализуем ли (∀hasChild.Male) □ (∃hasChild.Male) ?

Попробуем построить реализующую интерпретацию

 $x: (\forall \mathsf{hasChild.Male}) \sqcap (\exists \mathsf{hasChild.Male})$ $x: \forall \mathsf{hasChild.Male}$ $x: \forall \mathsf{hasChild.Male}$ $x: \forall \mathsf{hasChild.Male}$ $x: \exists \mathsf{hasChild.Male}$

А: концепт **реализуем** в интерпретации $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

$$\Delta^{\mathcal{I}} = \{x,y\}$$
, $\mathsf{Male}^{\mathcal{I}} = \{y\}$, $\mathsf{hasChild}^{\mathcal{I}} = \{(x,y)\}$

 $x \in ((\forall \mathsf{hasChild.Male}) \sqcap (\exists \mathsf{hasChild.Male}))^{\mathcal{I}}$

Q: Реализуем ли $\forall R. (\neg C \sqcup D) \sqcap \exists R. (C \sqcap D)$?

(1) $x: \forall R. (\neg C \sqcup D) \sqcap \exists R. (C \sqcap D)$ (2) из (1) $x: \forall R. (\neg C \sqcup D)$ (3) из (1) $x: \exists R. (C \sqcap D)$ (4) из (3) (x,y): R и $y: C \sqcap D$, для какого-то y (5) из (4) y: C (6) из (4) y: D (7) из (2) $y: \neg C \sqcup D$

Недетерминированный выбор:

(8.1) из (7) $y: \neg C$ (8.2) из (7) y: D

А: (8.1) ведет к противоречию, тогда как (8.2) дает реализующую интерпретацию

Табличный метод

Как доказать реализуемость концепта?

Применим табличный метод

(множество правил вывода)

Процедура:

 преобразовать данный концепт в приведенную нормальную форму (Negation Normal Form)

(отрицание только перед именами концептов)

• применять правила вывода в произвольном порядке, пока это возможно

Применение правил

- остановка, если получено противоречие
- остановка, если никакое правило нельзя применить
- концепт реализуем т. и т.т., когда
 законченная таблица без противоречий может быть построена

Приведенная нормальная форма

Концепт находится в приведенной нормальной форме, ПНФ (Negation Normal Form, NNF)

если отрицание входит только перед именами концептов

Каждый \mathcal{ALC} -концепт может быть трансформирован в эквивалентный концепт в при помощи следующих правил:

Преобразуем концепт

$$\neg \exists R. (A \sqcap \neg B) \sqcup \neg \forall R. (\neg A \sqcup \neg B)$$

в ПНФ

$$\neg\exists R.(A\sqcap\neg B) \sqcup \neg\forall R.(\neg A\sqcup\neg B) \equiv$$
 (используя $\neg\exists R.D \equiv \forall R.\neg D$)

 $\forall R. \neg (A\sqcap\neg B) \sqcup \neg\forall R.(\neg A\sqcup\neg B) \equiv$ (используя $\neg (A\sqcap D) \equiv \neg A\sqcup\neg D$)

 $\forall R. (\neg A\sqcup\neg B) \sqcup \neg\forall R.(\neg A\sqcup\neg B) \equiv$ (используя $\neg \neg B \equiv B$)

 $\forall R. (\neg A\sqcup B) \sqcup \neg\forall R.(\neg A\sqcup\neg B) \equiv$ (используя $\neg \forall R.D \equiv \exists R.\neg D$)

 $\forall R. (\neg A\sqcup B) \sqcup \exists R. \neg (\neg A\sqcup\neg B) \equiv$ (используя $\neg (C\sqcup D) \equiv \neg C\sqcap\neg D$)

 $\forall R. (\neg A\sqcup B) \sqcup \exists R. (\neg \neg A\sqcap B) \equiv$ (используя $\neg C \equiv C$)

 $\forall R.(\neg A \sqcup B) \sqcup \exists R.(A \sqcap B)$

Табличное исчисление для проверки реализуемости \mathcal{ALC} -концептов

Узел: выражение вида $x{:}\,C$ или $(x,y){:}\,R$,

где C — концепт в ПНФ а R — имя роли

Таблица: конечное непустое множество узлов S

Правила вывода: S o S', где S' таблица, содержащая S

Полная таблица: S полна если никакое правило не может быть применено к S

 ${f Clash}\colon \ S$ содержит противоречие если

 $\{\; x{:}\, A, \;\; x{:}\,
eg A \;\} \subseteq S$, для какого-то x и имени концепта A

Цель: Начиная с $S_0 = \{x \colon C\}$ и применяя правила вывода построить **полную** и **непротиворечивую** таблицу S_n

- ullet Если это возможно, возможно извлечь интерпретацию, реализующую C
- ullet Иначе C не реализуем

Правила вывода для проверки реализуемости \mathcal{ALC} -концептов (1)

$$S
ightharpoonup \sqcap S \cup \Set{x:C, x:D}$$
 если (а) $x:C\sqcap D \in S$ (b) хотя бы один $x:C$ и $x:D$ не входит в S

$$S
ightharpoonup _\sqcup S \cup \Set{x \colon E}$$
 если (а) $x \colon C \sqcup D \in S$ (b) ни $x \colon C$ ни $x \colon D$ не входят в S (c) $E = C$ или $E = D$ (ветвление!)

NB: Недетерминированно выбираем один из членов и добавляем к таблице.

NB: Если обнаружится противоречие, пробуем другую ветвь

Правила вывода для проверки реализуемости \mathcal{ALC} -концептов (2)

$$S \longrightarrow_{orall} S \cup \Set{y : C}$$
 если (a) $x : orall R.C \in S$ (b) $(x,y) : R \in S$ (c) $y : C
otin S$

NB: Применяется только если y такой что (x,y): $R \in S$ может быть найден

$$S
ightharpoonup \exists S \cup \{\; (x,y) \colon R,\; y \colon C \; \}$$
 если (а) $x \colon \exists R.C \in S$ (b) y новый элемент (c) нет z т.ч. и $(x,z) \colon R$ и $z \colon C$ входят в S

NB: Единственное правило, вводящее новые элементы.

Пусть Woman ≡ Person □ Female , Mother ≡ Parent □ Female ,

и Parent ≡ Person □ ∃hasChild.Person

Поглощает ли концепт Woman концепт Mother ?

Является ли концепт ¬Woman □ Mother реализуемым? (подставим определения)

$$\square_{\mathsf{УСТЬ}}$$
 Woman \equiv Person \square Female , \square Parent \square Female , \square Parent \square Person \square \square Shasetch ли концепт \square Woman \square Mother \square Person \square Mother \square (подставим определения)
$$S_0 = \{ x : (\neg \mathsf{Person} \, \sqcup \, \neg \mathsf{Female}) \, \sqcap \, ((\mathsf{Person} \, \sqcap \, \exists \mathsf{hasChild.Person}) \, \sqcap \, \mathsf{Female}) \, \}$$

$$\mathsf{Mother} \equiv \mathsf{Parent} \sqcap \mathsf{Female}$$

 $Parent \equiv Person \sqcap \exists hasChild.Person$

Поглощает ли концепт | Woman | концепт

Является ли концепт | ¬Woman □ Mother |

реализуемым?

Mother 2

(подставим определения)

$$S_0 = \{ x : (\neg \mathsf{Person} \sqcup \neg \mathsf{Female}) \sqcap \}$$

((Person □ ∃hasChild.Person) □ Female) }

Применим правила

$$x:C\sqcap D \to_\sqcap x:C,\ x:D$$

$$x:C\sqcup D \rightarrow_{\sqcup} x:E$$

$$x:\exists R.C \;
ightarrow_\exists \; (x,y) {:} \, R, \; y {:} \, C$$

Пример (окончание)

Т.о. концепт ¬Woman □ Mother не реализуем и Woman поглощает Мother