Module 6. Bivariate analysis: quantitative—quantitative

Data Science & Al

Sabine De Vreese Stijn Lievens Lieven Smits Bert Van Vreckem 2021–2022

Contents

Data visualization

Linear regression

Covariance

Pearson's correlation coefficient

Coefficient of determination

Learning goals

- Determine the equation of the regression line and plot it;
- ullet Calculate the covariance *Cov*, the correlation coefficient *R* and the coefficient of determination R^2
- Interpret these values using the correct terms;
- Visualization

Bivariate analysis: overview

Independent	Dependent	Test/Metric
Qualitative	Qualitative	χ²-test Cramér's V
Qualitative	Quantitative	two-sample <i>t</i> -test Cohen's <i>d</i>
Quantitative	Quantitative	— Regression, correlation

Data visualization

Data visualization

To visualize quantitative data, we use a scatter plot

- X-axis: independent variable
- Y-axis: dependent variable
- Each point corresponds to an observation

Data visualization

Scatterplot

Source: Horst A., et al. (2020) palmerpenguins: Palmer Archipelago (Antarctica) penguin data, https://allisonhorst.github.io/palmerpenguins/

With **regression** we will try to find a **consistent** and **systematic** relationship between two qualitative variables.

- 1. **Monotonic:** consistent direction of the relationship between the two variables: increasing or decreasing
- 2. **Non-monotonic:** value of dependent variable changes systematically with value of independent variable, but the direction is not consistent

A linear relationship between an independent and dependent variable.

Characteristics:

- Presence: is there a relationship?
- Direction: increasing or decreasing?
- Strength of the relationship: strong, moderate, weak, nonexistent, ...

Example

Santa Claus wants to increase the weight of his reindeer. Is there a relationship between the protein content of the food and the weight gain of the reindeer?

Example

Protein content%	Weight gain (grams)
0	177
10	231
20	249
30	348
40	361
50	384
60	404

Example

Example

x	у	$x - \overline{x}$	y - y	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$
0	177	-30	-130,71	3921,3	900
10	231	-20	-76,71	1534,2	400
20	249	-10	-58,71	587,1	100
30	348	0	40,29	0	0
40	361	10	53,29	532,9	100
50	384	20	76,29	1525,8	400
60	404	30	96,29	2888,7	900
				10990	2800

Tabel: Calculations required to apply the method of least squares.

Equation

The regression line has the following equation:

$$\hat{y} = \beta_1 x + \beta_0$$

with:

$$\beta_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x - \overline{x})^2} = \frac{10990}{2800} = 3.925$$

$$\beta_0 = \overline{y} - \beta_1 \overline{x} = 307.7143 - 3.925 \times 30 = 189.96$$

Note: \hat{y} indicates "an estimation for y"

Example

Covariance

Covariance

Covariance

Covariance is a measure that indicates whether a relationship between two variables is increasing or decreasing.

$$Cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Cov > 0: increasing

Cov ≈ 0: no relationship

Cov < 0: decreasing

Note Covariance of population (denominator *n*)

vs. sample (denominator n-1)

CovarianceFamily size of 15 families compared to the family size of the mother.

Covariance

Covariance for random variables

Pearson's correlation coefficient

Pearson correlation coefficient

Pearson's Correlation Coefficient

Pearson's product-moment correlation coefficient R is a measure for the strength of a linear correlation between x and y

$$R = \frac{Cov(X, Y)}{\sigma_X \sigma_y} \tag{1}$$

$$= \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$
(2)

$$R \in [-1, +1]$$

Correlation coefficient

Some datasets and their R-value

 $Source: Wikipedia\ https://en.wikipedia.org/wiki/Pearson_correlation_coefficient$

Coefficient of determination

Coefficient of determination

Coefficient of determination

The coefficient of determination \mathbb{R}^2 explains the percentage of the variance of the observed values relative to the regression line.

 R^2 : percentage variance observations explained by the regression line 1 - R^2 : percentage variance observations *not* explained by regression

Interpretation of R and R^2 values

<i>R</i>	R^2	Explained variance	Interpretation
< 0.3	< 0.1	< 10%	very weak
0.3 - 0.5	0.1 - 0.25	10 - 25%	weak
0.5 - 0.7	0.25 - 0.5	25 - 50%	moderate
0.7 - 0.85	0.5 - 0.75	50 - 75%	strong
0.85 - 0.95	0.75 - 0.9	75 - 90%	very strong
> 0.95	> 0.9	> 90%	exceptional(!)

Strength of relationship reindeer

$(x-\overline{x})$	$(y-\overline{y})$	$(x-\overline{x})(y-\overline{y})$
-30	-130.714	3921.429
-20	-76.7143	1534.286
-10	-58.7143	587.1429
0	40.28571	0
10	53.28571	532.8571
20	76.28571	1525.714
30	96.28571	2888.571

$$\sum_{i}^{n} (x - \overline{x})(y - \overline{y}) = 10990$$

$$Cov = \frac{10990}{7} = 1570$$

$$\sigma_{x} = 20$$

$$\sigma_{y} = 81.03$$

$$R = \frac{1570}{20 \times 81.03} = 0.96$$

$$R^{2} = 0.93$$
HOGEN

Considerations

- The correlation coefficient only looks at the relationship between two variables. Interactions with other variables are not considered.
- The correlation coefficient explicitly does not assume a causal relationship.
- Pearson's correlation coefficient only expresses linear relationships.

