What range could your causal effect lie between if the instrumental variable assumptions held?

Find out with our bpbounds R package and Shiny app!

bpbounds: R package and web app

Tom Palmer 1, 10

Roland Ramsahai Vanessa Didelez² Nuala Sheehan³

- 3 Department of Health Sciences, University of Leicester

Introduction

- We present our bpbounds R package and Shiny web app for the nonparametric bounds for the average causal effect (ACE) due to Balke and Pearl (Palmer et
- This is an R implementation of our Stata programs (Palmer et al. 2011).
- The package can be installed from CRAN as follows:

install.packages("bpbounds")

• Code development is on the GitHub repository: https://github.com/remlapmot/bpbounds

Methods

- Under the instrumental variable assumptions alone, without additional parametric model assumptions, the ACE is not identified.
- Balke and Pearl (1997) showed it is possible to derive bounds for the ACE.
- The bounds have the following interpretation:

There is some joint distribution of the unobserved confounders and the observed variables that yields a true ACE as small as the lower bound, while another choice produces an ACE as large as the upper bounds (the bounds are tight).

- There are at least two ways to implement the Balke
 - i. using conditional probabilities calculated from contingency tables;
- ii. the polytope method due to Dawid (2003).
- We implemented the polytope method since it is generalisable for identified IV models with

- exposures, outcomes, and instruments with more than 2 categories.
- Currently, we allow for a binary or 3 category instrument, and binary exposure and outcome.

Example Mendelian randomization analysis

- We extract an example from Meleady et al. (2003).
- We have a 3 category instrument and binary exposure and outcome.
- \bullet We use the 677CT polymorphism (rs1801133) in the MTHFR gene, involved in folate metabolism, as an instrumental variable to investigate the causal effect of homocysteine on the risk of cardiovascular
- The code is shown on the right.
- \bullet The ACE lies between a risk difference of -9% to 74% increase in absolute risk.
- Additionally, we see that the monotonicity inequality is not satisfied.

Conclusion

- Use of bounds in instrumental variable analyses is regaining interest (Swanson et al. 2018; Labrecque and Swanson 2018).
- \bullet The empirical experience that the bounds are often wide is not a bad property of the method, it is a property of the typical data: Mendelian randomization data simply often are uninformative in that sense due to weak instrumental variables.
- We recommend using the bounds when the variables are genuinely discrete, but not when the exposure is genuinely continuous (Sheehan and Didelez 2019).
- Our R package and app provide a convenient interface to the bounds.

References

Dawid, A. P. 2003. "Causal Inference Using Influence Diagrams: The Problem of Partial Compliance (with Discussion)." In Highly Structured Stochastic Systems, edited by P. J. Green, N. L. Hjort, and S. Richardson, 45–65. New York: Oxford University Problem.

Palmer, T. M., R. Ramsahai, V. Didelez, and N. A. Sheehan. 2018. bpbounds: R package implementing Balke-Pearl bounds for the average causal effect. https://CRAN.R-project.org/package-bpbounds. Palmer, T. M., R. R. Ramsahai, V. Didelez, and N. A Sheehan. 2011. "Nonparametric Bounds for the Causal Effect in a Binary Instrumental-Variable Model." Stata Journal 11 (3): 345-67. http://www.stata-journal.com/article.html?article-st0232.

Sheehan, Nuala A, and Vanessa Didelez. 2019. "Epidemiology, genetic epidemiology and Mendelian rand than ever to attend to detail." Human Genetics, 1-16. https://doi.org/10.1007/s00439-019-02027-3.

Swanson, Sonja A., Miguel A. Hernán, Matthew Miller, James M. Robins, and Thomas S. Richardson. 2018. "Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments. and Outcomes." Journal of the American Statistical Association 113 (25) 933-47.

Extra Figures & Tables

```
library (bpbounds)
mt3 <- c(.83, .05, .11, .01,
         .88, .06, .05, .01,
p3 <- array(mt3, <u>dim =</u> c(2, 2, 3),
            \underline{\text{dimnames}} = \mathbf{list}(\underline{\mathbf{x}} = \mathbf{c}(0, 1),
                                 y = c(0, 1),
                                  z = c(0, 1, 2))
bpres3 <- bpbounds(as.table(p3))</pre>
## Instrument categories: 3
## Instrumental inequality: TRUE
```


Figure 1: Shiny app https://remlapmot.shinyapps.io/bpbounds

Figure 3: Package website https://remlapmot.github.io/bpbounds/

