Scalability

David Wihl Harvard CS109B, Spring 2018 Feb 28, 2018

Outline

- Why Scalability is Important
- Scale up in-machine scalability
- Scale out "Data Center as Computer"
- Future Directions

Preparation for Deep Learning

Data Size > RAM memory

Compute Requirements > Hours of CPU time

Current methods are sample inefficient

Machine learning vs. human learning

Computer performance may outpace human performance

Interesting Problems in Computer Science

P=NP?

Cryptography / One way functions

Machine Learning, including analysis of large datasets

Non-numeric information: images, music / sounds, text analysis

Global Challenges

Bio / genomics

Environmental, including energy

Scale Up - Performance of a Single Node

Scale Up - Performance of a Single Node

Multi-core Processor

End of Growth of Performance?

40 years of Processor Performance

https://software.intel.com/en-us/blogs/2014/02/19/why-has-cpu-frequency-ceased-to-grow

Amdahl's Law: Limits of Parallelization

$$S_{ ext{latency}}(s) = rac{1}{(1-p) + rac{p}{s}}$$

Example: 30% of execution, p=0.3, executing on two cores s=2

$$=\frac{1}{1-0.3+\frac{0.3}{2}}=1.18.$$

Parallelizable Floating Point Operations

Domain Specific Architectures: Enter the VPU, er GPU

WARNING COLOR

Requires new programming model:

Abstracted by TensorFlow

Even More Specialized - The TPU

"A Deep Neural Network Accelerator for the Datacenter"

Reduce inference phase by 10X vs. GPUs

Run-time vs. Train-time

Systolic Execution - Matrices, not 1D vectors

Low precision: 8 bit FP, good enough for ML

Saved building multiple datacenters!

Cliff Young, BA and PhD from Harvard https://video.seas.harvard.edu/media/CS+Colloquium+Cliff+Young+2017-04-20/1 soxmc716

TPU Limitations

Google Specific Chip

Available to non-Googlers via Google Compute Cloud

Expect to other versions coming from NVidia, Intel, etc.

Google's TPU form makes me FOMO

Scale Out

The Datacenter as a Computer

Datacenter Issues

- Power: internal and external
- Cooling
- Networking, between racks, between datacenters
- Storage fabric
- Security: physical and data
- Server and Failure management

How to Scale Across Many Nodes: Divide & Conquer

Scalable Solutions

Matrix operations, including Machine Learning

Finding Similar Items

Mining data

Link analysis

Clustering Algorithms

Recommendation Systems

Dimensionality Reduction

Issues:

- Amdahl's law still applies
- Copy overhead
 - Networking overhead
- Node failures
- Combine / Reconciliation step
- Synchronization
 - shared resources
 - wait time

$$S_{ ext{latency}}(s) = rac{1}{(1-p) + rac{p}{s}}$$

Machine Learning at Datacenter Scale

https://www.tensorflow.org/extend/architecture See also PyTorch Distributed

Future Directions

Abstract scalability behind services:

- Google BigTable / BigQuery, AutoML
 - Specialized APIs: NLP, Images, Translation
- AWS: S3 storage, Comprehend, DynamoDB

Datacenters have economies of scale and high capital costs

→ Market consolidation (AWS, Google, Microsoft Azure)

Proprietary APIs and services

→ Lock in

Planet Scale

Google worldwide network

https://stackoverflow.com/questions/3907572/where-are-aws-data-center-locations-listed

References

Mining massive datasets: http://www.mmds.org/

http://highscalability.com/all-time-favorites/

http://www.lecloud.net/tagged/scalability

The Datacenter as a Computer book https://research.google.com/pubs/pub41606.html

TPUs https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Quiz Time

