/Users/bps/PycharmProjects/hypothesis_tesing/venv/bin/python /Users/bps/PycharmProjects/hypothesis_tesing/main.py

Welcome to the Hypothesis Testing calculator made by ALIAS GEORGE

Select the Calculator (type the no corresponding eg 1 for one mean Large sample)

- 1. One Mean Large sample
- 2. One Mean Small sample
- 3. Two Mean Large sample
- 4. Two Mean Small sample with both normal and $\sigma 1 = \sigma 1$
- 5. Matched Pair t-Test
- 6. One Variance Test
- 7. Two Variance Test
- 8. One Proportion Test
- 9. Multi Proportion Test
- 10. Two Proportion Difference Test
- 11. R and C Analysis Test
- 12. Goodness Fit Test

12

12. Goodness Fit Test

Select the Calculator

Discrete Distribution

- 1. Goodness Fit for Poisson Test
- 2. Goodness Fit for Binomial Test
- 3. Goodness Fit for Geometric Test
- 4. Goodness Fit for Hyper Geometric Test
- 5. Goodness Fit for Uniform Discrete Test

Continuous Distribution

- 6. Goodness Fit for Normal Test
- 7. Goodness Fit for Log Normal Test
- 8. Goodness Fit for Alpha Test
- 9. Goodness Fit for Beta Test
- 10. Goodness Fit for Gamma Test
- 11. Goodness Fit for Weibull Test
- 12. Goodness Fit for Exponential Test
- 13. Goodness Fit for Uniform Continuous Test
 1

1. Goodness Fit for Poisson Test

Level of significance: 0.05

Enter the λ : 4.6

Enter the no of Categories: 14

```
Does the random variable values is in the order 0,1,3,....,12,13
1. yes
2. no
1
Enter the Observed Frequency for 0 3
Enter the Observed Frequency for 1 15
Enter the Observed Frequency for 2 47
Enter the Observed Frequency for 3 76
Enter the Observed Frequency for 4 68
Enter the Observed Frequency for 5 74
Enter the Observed Frequency for 6 46
Enter the Observed Frequency for 7 39
Enter the Observed Frequency for 8 15
Enter the Observed Frequency for 9 9
Enter the Observed Frequency for 10 5
Enter the Observed Frequency for 11 2
Enter the Observed Frequency for 12 0
Enter the Observed Frequency for 13 1
| X | Observed Frequency | Poisson Probabilities | Expected Frequency |
0.01 4.0
                               0.046
| 1 | 15 |
                                                    18.4
```

2	47	I	0.106	42.4	
3	76	I	0.163	65.2	
4	68	I	0.188	75.2	
5	74	I	0.173	69.1	
6	46	I	0.132	52.8	
7	39	I	0.087	34.8	
8	15	I	0.05	20.0	
9	9	I	0.026	10.4	
10	5	I	0.012	4.8	
11	2	l	0.005	2.0	
12	0	I	0.002	0.8	
13	1		0.001	0.4	

Combined categories (initial, final) [(0, 1), (10, 13)]

_				
	Observed Frequency	Poisson Probabilities 	Expected Frequency	Contribution to χ^2
-	18	0.056	22.4	0.864
	47	0.106	42.4	0.499
	76	0.163	65.2	1.789
	68	0.188	75.2	0.689
	74	0.173	69.1	0.347
	46	0.132	52.8	0.876
	39	0.087	34.8	0.507
	 15	0.05	20.0	1.25

	9	0.026	10.4	0.188	
	8	0.0200000000000000004	8.0	0.0	
+		 	 	 	ㅗ

Null hypothesis: Random variable has a Poison distribution with $\lambda = 4.6$.

Alternative hypothesis: Random variable does not have the Poison distribution with $\lambda = 4.6$.

Calculations

Total Chi_square: 7.009

Decision

The null must be rejected if $\chi^2 > 16.919$

Since χ^2 = 7.009 does not exceed 16.919, the null hypothesis cannot be rejected; we cannot reject that the Poisson distribution with λ = 4.6 provides a good fit at level α = 0.05.

Process finished with exit code 0