CS2100 Computer Organisation

Tutorial #9: Sequential Circuits

(Week 11: 29 March – 2 April 2021)

Answers to Selected Questions

Tutorial Questions

1. A four-state sequential circuit below consists of a **T flip-flop** and a **D flip-flop**. Analyze the circuit.

- (a) Complete the state table and hence draw the state diagram.
- (b) Assuming that the circuit is initially at state 0, what is the final state and the outputs generated after 3 clock cycles?

A state is called a *sink* if once the circuit enters this state, it never moves out of that state.

- (c) How many sinks are there for this circuit?
- (d) Which is likely to be an unused state in this circuit?

Answe (a)					$p = A \cdot B + A \cdot B$ $TA = A \cdot B$ $DB = A' + B$	3'		/p
	Prese	nt state	Output	Flip-flo	p inputs	Next	state	(o)-
	Α	В	р	TA	DB	A +	B+	
	0	0	1	0	1	0	1	
	0	1	0	0	1	0	1	/1
	1	0	0	1	0	0	0	/1

- (b) After 3 clock cycles, the circuit is in state 1, and it generated 100 as output.
- (c) There are 2 sinks: states 1 and 3.
- (d) State 3 is likely to be an unused state.

1

- 2. Given the state transition diagram on the right with states *AB* and input *x*, implement the circuit using *JK* **flip-flop**s and the fewest number of logic gates.
 - Fill in the state table below and draw the circuit. You do not need to follow the simplest SOP expression in your implementation as that might not give you a circuit with the fewest logic gates.

Present state		Input	Next state		Flip-flop A		Flip-flop B	
Α	В	X	A ⁺	B ⁺	JA	KA	JB	KB
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1		•				

State 3 is unused. Can you complete the following state diagram with the unused state?

A circuit is **self-correcting** if for some reason the circuit enters into any unused (invalid) state, it is able to transit to a valid state after a finite number of transitions. Is your circuit self-correcting, and why?

Answers:

Using K-maps to find simplified expressions for flip-flop inputs.

	Present state		Input	Ne sta	ext	Flip-flop		Flip-flop B		d = don't care			
4	Α	В	х	A ⁺	B ⁺	JA	KA	JB	KB				
	0	0	0	0	1	0	d	1	d				
	0	0	1	1	0	1	d	0	d				
	0	1	0	1	0	1	d	d	1				
	0	1	1	0	0	0	d	d	1	JB	_		B
	1	0	0	0	0	d	1	0	d	1	0	d	d
	1	0	1	0	1	d	1	1	d	$A \left\{ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	d	d
	1	1	0	d	d	d	d	d	d	<u> </u>	<u></u>		
	1	1	1	d	d	d	d	d	d		х		
JA	IA B					K A B			КВ	_		<u> </u>	
	0 1 0 1					_	d d	d	Ì	d	d	1	1
	ر ۸	<u> </u>	d d	d		-	1 1	d d		$A \left\{ \begin{array}{c c} d \end{array} \right.$	d	d	d
	$A \left\{ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					$A \left\{ \begin{array}{c c} 1 & 1 & d & d \end{array} \right\}$				<u> </u>	<u></u>		
x						$\stackrel{\checkmark}{x}$							
	$JA = B \cdot x' + B' \cdot x = B \oplus x$				$JB = A' \cdot x' + A \cdot x = A \odot x$								
	<i>KA</i> = 1					<i>KB</i> = 1							

After committing the expressions for the flip-flop inputs, the don't-care values below are replaced with actual values (in parentheses). The state diagram with the unused state 3 is shown below. It is a self-correcting circuit, since there is an arrow out from state 3 to a used state.

Present state		Input	Next state		Flip-f	lop A	Flip-flop B		
Α	В	х	A⁺	B ⁺	JA	KA	JB	KB	
0	0	0	0	1	0	d(1)	1	d(1)	
0	0	1	1	0	1	d(1)	0	d(1)	
0	1	0	1	0	1	d(1)	d(1)	1	
0	1	1	0	0	0	d(1)	d(0)	1	
1	0	0	0	0	d(0)	1	0	d(1)	
1	0	1	0	1	d(1)	1	1	d(1)	
1	1	0	d(0)	d(0)	d(1)	d(1)	d(0)	d(1)	
1	1	1	d(0)	d(0)	d(0)	d(1)	d(1)	d(1)	

4. Pokemone Theme Park offers locker rental to its visitors. Visitors may purchase two types of token: Pokemoney \$1 (P\$1) and Pokemoney \$2 (P\$2). A locker's rental costs P\$3. When a visitor deposits P\$3 into the locker's token slot, its door will open.

Design a sequential circuit with states AB for the locker's door using D flip-flops. The circuit consists of 4 states representing the amount a visitor has deposited: 0, 1, 2 and 3 (or, in binary, AB = 00, 01, 10 and 11). The visitor can deposit only one token at a time. When the circuit reaches the final state 3, it remains in state 3 even if the visitor continues to put tokens into the slot. When the circuit is in state 2 and the visitor deposits a P\$2 token, the circuit goes into state 3.

The partial state diagram is shown below. The inputs x and y represent the P\$1 and P\$2 tokens respectively. The label on each arrow represents xy.

(a) Draw and write the missing arrows and labels.

(b) Write the **simplified SOP expressions** for the flip-flop inputs *DA* and *DB*.

Answers:

(a)

(b)
$$DA = \mathbf{A} + \mathbf{y} + \mathbf{B} \cdot \mathbf{x}$$

$$DB = B \cdot x' + B' \cdot x + A \cdot y + A \cdot x$$
 or $DB = B \cdot x' + B' \cdot x + A \cdot y + A \cdot B$