

a finite integral domain is a field

Canonical name AFiniteIntegralDomainIsAField

Date of creation 2013-03-22 12:50:02 Last modified on 2013-03-22 12:50:02

Owner yark (2760) Last modified by yark (2760)

Numerical id 11

Author yark (2760) Entry type Theorem Classification msc 13G05

 ${\it Related\ topic} \qquad {\it FiniteRingHasNoProperOverrings}$

A finite integral domain is a field.

Proof:

Let R be a finite integral domain. Let a be nonzero element of R.

Define a function $\varphi \colon R \to R$ by $\varphi(r) = ar$.

Suppose $\varphi(r) = \varphi(s)$ for some $r, s \in R$. Then ar = as, which implies a(r-s) = 0. Since $a \neq 0$ and R is a cancellation ring, we have r-s = 0. So r = s, and hence φ is injective.

Since R is finite and φ is injective, by the pigeonhole principle we see that φ is also surjective. Thus there exists some $b \in R$ such that $\varphi(b) = ab = 1_R$, and thus a is a unit.

Thus R is a finite division ring. Since it is commutative, it is also a field.

A more general result is that an Artinian integral domain is a field.