

EQ2330 Image and Video Processing Tutorial #5: Unitary Transforms

Linghui Zhou linghui@kth.se

- Zero Padding (Pad 0s or replicate the boundary pixel values)
- ▶ Wiener Filter Wiener filter: $R_W = \frac{H^*(u,v)}{|H(u,v)|^2 + \frac{|N(u,v)|^2}{|F(u,v)|^2}}$, where where H(u,v) is the degradation filter.

Unitary Transform

Matrix Formulation

- ▶ Image f(x, y) with size $M \times N$.
- ▶ Sort f(x, y) to a column vector **f** with length MN.
- ▶ A linear transformation can be expressed as $\mathbf{c} = \mathbf{Af}$, where \mathbf{A} is a matrix of size $MN \times MN$.

A is unitary iff $\mathbf{A}^{-1} = \mathbf{A}^{*T} = \mathbf{A}^{H}$

- \cdot \triangleright H is hermitian conjugate.
 - ▶ If **A** is real-valued, $\mathbf{A}^{-1} = \mathbf{A}^{T}$. Transform is orthonormal.
 - ► E.g. DCT, KLT, Haar
 - ► Energy conservation: $||\mathbf{c}||_2^2 = \mathbf{c}^H \mathbf{c} = \mathbf{f}^H \mathbf{A}^H \mathbf{A} \mathbf{f} = \mathbf{f}^H \mathbf{f} = ||\mathbf{f}||_2^2$.
 - ▶ Unitary transform can be interpreted as a rotation of the coordinate system.

Karhunen-Loeve Transform

- ▶ Covariance matrix $\mathbf{R} = E[XX^H]$ is Hermitian. Therefore \mathbf{R} can be diagonalized, i.e., $\mathbf{\Phi}^H \mathbf{R} \mathbf{\Phi} = \Lambda$, where Λ is a diagonal matrix with eigenvalues λ_i .
- ▶ Define KL transform as $\mathbf{Y} = \mathbf{\Phi}^H \mathbf{X}$, where columns of $\mathbf{\Phi}$ are eigenvectors ordered according to decreasing eigenvalues.
- ▶ Inverse transform $X = \Phi Y$.
- ► Correlation matrix of \mathbf{Y} : $E[\mathbf{YY}^H] = E[\mathbf{\Phi}^H \mathbf{XX}^H \mathbf{\Phi}] = \mathbf{\Phi}^H E[\mathbf{XX}^H] \mathbf{\Phi} = \mathbf{\Phi}^H \mathbf{R} \mathbf{\Phi} = \Lambda.$
 - KL transform totally decorrelates the signal.
 - KL transform is optimal in energy concentration.

Haar Transform

- ▶ Image **f** with size $N \times N$
- \blacktriangleright Haar transformation matrix **H** with size $N \times N$
- ► Haar transform $T = HFH^T$
- ▶ Inverse transform $\mathbf{F} = \mathbf{H}^T \mathbf{T} \mathbf{H}$
- ▶ E.g. when N = 2, $\mathbf{H}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

1. A transform is separable if the transform can process the image in each dimension, independent of the other dimension, i.e.,

$$g(x, y, u, v) = g_1(x, u)g_2(y, v).$$

Consider the matrices formulation. Let \mathbf{f} and \mathbf{g} denote the input image and the output image. The transformation is separable if the transform process can be written as

$$\mathbf{g} = \mathbf{H}_{y}^{T} \mathbf{f} \mathbf{H}_{x}, \tag{1}$$

where \mathbf{H}_y and \mathbf{H}_x are 1D transform in x and y directions, respectively.

2. The 2D DCT is given by

$$F(u,v) = \sum_{x=0}^{N-1} \sum_{v=0}^{M-1} f(x,y) \alpha_N(u) \alpha_M(v) \cos\left(\frac{(2x+1)u\pi}{2N}\right) \cos\left(\frac{(2y+1)v\pi}{2M}\right),$$

where

$$u \in \{0, 1, ..., N-1\}, \alpha_N(0) = \sqrt{1/N}, \alpha(u > 0) = \sqrt{2/N},$$

 $v \in \{0, 1, ..., M-1\}, \alpha_M(0) = \sqrt{1/M}, \alpha(v > 0) = \sqrt{2/M}$

2.(cont) The 2D DCT is separable as follows

$$F(u,v) = \sum_{x=0}^{N-1} \alpha_N(u) \left(\sum_{y=0}^{M-1} f(x,y) \alpha_M(v) \cos\left(\frac{(2y+1)v\pi}{2N}\right) \right) \cos\left(\frac{(2x+1)u\pi}{2M}\right)$$
$$= \sum_{x=0}^{N-1} \alpha_N(u) F(x,v) \cos\left(\frac{(2x+1)u\pi}{2M}\right)$$

where

$$F(x,v) = \sum_{v=0}^{M-1} f(x,y) \alpha_M(v) \cos\left(\frac{(2x+1)v\pi}{2N}\right).$$

3. The first block $f_1(x, y)$ represent a noisy block (without obvious pattern). We associate $f_1(x, y)$ with F_3 .

The other blocks show large correlation between pixels (with obvious patterns).

- ▶ f_2 and f_4 have constant pixels in the x direction. ⇒ F(u, v) in u direction only has DC component, i.e. F(u > 0, v) = 0.
- ► f_4 have larger pixel value $\implies f_2$ matches F_4 and f_4 matches F_2
- ▶ f_3 has constant pixels in the y direction $\implies F(u, v)$ in v direction only has DC component, i.e. F(u, v > 0) = 0. $\implies f_3$ matches F_2

- 4. They are equal since the transform is unitary.
 - ► Consider the matrix formulation.
 - f and g: the vectorized images
 - A: the DCT transformation matrix $\longrightarrow \mathbf{A}^T \mathbf{A} = \mathbf{A}^T \mathbf{A} = I$.
 - $\sum_{x,y} (f(x,y) g(x,y))^2 = ||\mathbf{f} \mathbf{g}||_2^2 = (\mathbf{f} \mathbf{g})^T (\mathbf{f} \mathbf{g}) = \mathbf{f}^T \mathbf{f} \mathbf{f}^T \mathbf{g} \mathbf{g}^T \mathbf{f} + \mathbf{g}^T \mathbf{f}.$
 - $\sum_{u,v} (F(u,v) G(u,v))^2 = ||\mathbf{F} \mathbf{G}||_2^2 = \mathbf{F}^T \mathbf{F} \mathbf{F}^T \mathbf{G} \mathbf{G}^T \mathbf{F} + \mathbf{G}^T \mathbf{F} = \mathbf{F}^T \mathbf{A}^T \mathbf{A} \mathbf{f} \mathbf{f}^T \mathbf{A}^T \mathbf{A} \mathbf{g} \mathbf{g}^T \mathbf{A}^T \mathbf{A} \mathbf{f} + \mathbf{g}^T \mathbf{A}^T \mathbf{A} \mathbf{f} = \mathbf{f}^T \mathbf{f} \mathbf{f}^T \mathbf{g} \mathbf{g}^T \mathbf{f} + \mathbf{g}^T \mathbf{f}.$

5. Observation: $f_5(x, y) = f_1(x, y) - 10$.

Since the mean shift only affect the DC component, we only have to find the new DC component and keep the rest components the same. That is $F_5(u,v)=F_3(u,v)$ if $(u,v)\neq (0,0)$.

Use the result in problem 4, we have that

$$\sum_{u,v} (F_5(u,v) - F_3(u,v))^2 = (F_5(0,0) - F_3(0,0))^2 = \sum_{x,y} (f_5(x,y) - f_1(x,y))^2$$
= 16 × 10² = 1600.

Therefore, we have that $F_5(0,0) = F_3(0,0) - \sqrt{1600} = 308.75$.

6. The Karhunen-Loeve transform (KLT) is optimal in terms of energy concentration. It is not widely used for image coding as it is image dependent. Note, for the KLT, we require the 2-nd order image statistics (autocorrelation function) for computation.

Exercise #5: Problem 1

Find the KL transform $Y = \Phi^H X$ of covariance matrix $\mathbf{R} = E[XX^T]$. Hint:

1. Find eigenvalues λ_1, λ_2 and corresponding eigenvectors

$$\phi_1 = \left[\begin{array}{c} \phi_{11} \\ \phi_{21} \end{array} \right], \phi_2 = \left[\begin{array}{c} \phi_{12} \\ \phi_{22} \end{array} \right]$$

- 2. Let $\det(\mathbf{R} \lambda \mathbf{I}) = 0$ and find the eigenvalues λ_1, λ_2
- 3. Let $(\mathbf{R} \lambda \mathbf{I}) \begin{bmatrix} \phi_{11} \\ \phi_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to find the eigenvector $\phi_1 = \begin{bmatrix} \phi_{11} \\ \phi_{21} \end{bmatrix}$. And similarly find $\phi_2 = \begin{bmatrix} \phi_{12} \\ \phi_{22} \end{bmatrix}$
- 4. Columns of Φ are ordered according to decreasing eigenvalues.

Exercise #5: Problem 7.9

Hint: Haar transformation of **F** is **HFH**^T, where $\mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

Exercise #5: Exam Problem

Hint: (a) **A** is unitary iff $\mathbf{A}^{-1} = \mathbf{A}^H$

(d) Sum of eigenvalues is the trace, which is the sum of diagonals.

C is Hermitian matrix and can be rewritten as $\mathbf{C} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^H$. Let $\mathbf{\Phi}^H = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Let
$$\mathbf{\Phi}^H = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Exercise #5: Problem 7.1,7.2

Hint: The decoding structure is the "opposite" of the encoding structure.

Exercise #5 Unitary Transform + Multiresolution Processing

1. ETXXT = [4 [2], Find KL transform.

Ans: Let R denote
$$R = E[XXT] = \begin{bmatrix} 4 & fz \\ fz & z \end{bmatrix}$$

Since R is Hermitian, then there exist a unitary matrix $\bar{\mathbb{Q}}$ such that $R = \bar{\mathbb{Q}}\Lambda\bar{\mathbb{Q}}^H$, $(\bar{\mathbb{Q}}^H R\bar{\mathbb{Q}} = \bar{\mathbb{Q}}^H\bar{\mathbb{Q}}\Lambda\bar{\mathbb{Q}}^H\bar{\mathbb{Q}} = \Lambda)$ Then $\bar{\mathbb{Q}}$ is the ket matrix of X and ket transform is $Y = \bar{\mathbb{Q}}^H X$ and inverse transform is $X = \bar{\mathbb{Q}}Y$.

Y is the random vector in the transformed domain, with correlation matrix $E[\Upsilon \Upsilon^H] = E[\Phi^H \times \times^H \Phi] = \Phi^H E[X \times^H] \Phi = \Phi^H E\Phi = \Delta$ (This random sequence has no correlation.)

How we look for eigenvalues and eigen vectors of R L12679) Let $\det \left(\begin{bmatrix} 4 & 12 \\ 12 & 2 - \lambda \end{bmatrix} \right) = 0 \Rightarrow \lambda^2 = 6\lambda + 6 = 0 \Rightarrow \lambda = 53 - 13 \quad (47321)$

when
$$\lambda = 12679$$
, $[4-\lambda 52] = [2.7321 52]$
 $[52 2-\lambda] [52 0]321]$

Let [911] denote the corresponding eigenvector of 12679, then

$$\begin{bmatrix} 2.7321 & \boxed{52} \\ \boxed{52} & 0.7321 \end{bmatrix} \begin{bmatrix} \varphi_{11} \\ \varphi_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

⇒ 2,72/4,1+ Eq2,=0 => \$\phi_1 = -0.5176 \phi_2, 0

combine 0 with the fact that $[\phi_{ij}]$ is orthogonal eigenvector, we have $\phi_{i,1}^2 + \phi_{i,2}^2 = 1$ and therefore $\phi_{i,1} = -2.4597$, $\phi_{2,1} = 2.888$).

when
$$\lambda = 4.7321$$
, $\begin{bmatrix} 4-\lambda & 52 \end{bmatrix} = \begin{bmatrix} -0.7321 & 52 \end{bmatrix}$.

Let $\lceil \phi_{12} \rceil$ denote the corresponding eigenvector of 4.7321, then

$$\begin{bmatrix} -0.7321 & 52 \\ 52 & -2.7321 \end{bmatrix} \begin{bmatrix} 912 \\ 1521 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow -0.7321412+5283=0 \Rightarrow 913=1.9374329 \Rightarrow 912=0.8881$$

$$915+915=1$$

$$92=0.4597$$

Therefore,
$$\Phi = \begin{bmatrix} 0.8881 & -0.4597 \end{bmatrix}$$
 and $\begin{bmatrix} kL - transform \end{bmatrix}$ and $\begin{bmatrix} kL - transform \end{bmatrix}$

Problem 7-9=

(a) Compute the Haar transform of 2×2 Tmage: $F=\begin{bmatrix}3&-1\\b&2\end{bmatrix}$ Ans: The 2×2 Haar transformation matrix is given by as

$$H = \frac{1}{12} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Therefore, the Haar transform of the image F is

$$f = HFH = \frac{1}{5} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ -3 & 0 \end{bmatrix}$$

(b) The inverse transform is $F = H^T \hat{F} H$, where \hat{F} is the Haar transform of F and H^T To the matrix inverse of H. Show that $H_2^{-1} = H_2^T$ and use it to compute the inverse Haar transform of the result in La).

Ans: Let the Towerse Haar transform be $\hat{H} = \frac{1}{5} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Therefore AH=[10],

$$\Rightarrow \frac{1}{2}\begin{bmatrix} a+b & a-b \\ c+d & c-d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \hat{H} = \frac{1}{12}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Therefore ĤĤH

$$= \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 6 & 7 \\ 12 & 4 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 6 & 2 \end{bmatrix} = F$$

Exam March 2019=

Proof:
$$\begin{bmatrix} \cos \theta - 5 \cos \theta \\ 57 \cos \theta \end{bmatrix}$$
 $\begin{bmatrix} \cos \theta \\ 57 \cos \theta \end{bmatrix}$ $\begin{bmatrix} \cos \theta \\ 57 \cos \theta$

It is unitary &

(b) Determine a rotation angle o corresponding to the given Haar transform.

Ans:
$$los0 = \frac{12}{2} = -sm0$$
, $\theta = -\frac{72}{4}$

Ans:
$$(0.50 = \frac{12}{2} = -5 \text{ in } 0, \quad 0 = -\frac{12}{4}$$

(C) $a_{kl} = \int_{N}^{\infty} \int_{N}^{\infty} \left(\frac{(2(b1)+1)(k-4)\pi}{2N} \right) \qquad 2 \le k \le N, \quad |\le l \le N$

Ans: N=2

$$Q_{1} = \frac{1}{12}$$
, $Q_{12} = \frac{1}{12}$
 $Q_{21} = -\frac{1}{12}$, $Q_{22} = -\frac{1}{12}$, $Q_{22} = -\frac{1}{12}$

Find KLT that diagonalizes $C = 4 \begin{bmatrix} 5 & 13 \end{bmatrix}$. Determine rotation angle.

KLT is a transformation that diagonalizes a covariance matrix.

we start by finding the eigenvalues λ_1 and λ_2 .

Use the fact that Tr sc y= 22+21= 3.

One of the eigenvalue is 1 awarding to the hint, the other is 2. How we express the ELT by a rotation matrix and solve trigonometric equations of a single variable. Use the fact that $C = \overline{Q} / \overline{Q}^H$, let $\overline{Q}^H = [S_{\overline{M}} \overline{Q}^H] = [S_{\overline{M}} \overline{Q}^H]$

$$C = \frac{1}{4} \begin{bmatrix} 5 & 13 \\ 13 & 7 \end{bmatrix} = \begin{bmatrix} 1050 & 5700 \\ -5700 & 1050 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1050 & -5700 \\ 5700 & 1050 \end{bmatrix}$$

$$\Rightarrow |\cos\theta| \sqrt{3} = \frac{13}{4}, \quad |\cos\theta| = \frac{13}{4}, \quad |\cos\theta|$$

KLT rotate the space by an arbitrary angle depending on the covariance matrix. Dut rotate the space by a constant angle.

Problem 7.1:

Devoting system for a prediction residual pyramid:

level j-1 approximation

2T upsampling

$$\downarrow$$
 prediction

level j

prediction $\rightarrow \Phi \rightarrow |\text{evel j}|$

residual approximation

Problem 7.2:

lonsider the case with 3 levels, i.e., J=2.

level 2 input image (original image):

Downsampling using 2x2 block neighborhood averaging and obtain level 1 approximation image:

bownsampling level 1 approximation and obtain level 0 approximation image:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & b & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} \begin{bmatrix} 3.5 & 5.5 \\ 11.5 & 13.5 \end{bmatrix} \begin{bmatrix} 8.5 \\ 11.5 & 13.5 \end{bmatrix}$$

Since intepolation fitter is omitted, we consider pixel replication in generation of prediction residual pyramid levels.

upsampling level 1 approximation and subtract it from level 2 image to obtain level 2 prediction residual:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ \end{bmatrix} = \begin{bmatrix} 3.5 & 3.5 & 5.5 & 5.5 \\ 3.5 & 3.5 & 5.5 & 5.5 \\ 13.5 & 13.5 & 13.5 \\ 13.5 &$$

Similarly, we can obtain level 1 prediction residual:

Therefore the prediction residual pyramid is:

$$\begin{bmatrix} -25 & -15 \\ 15 & 25 \end{bmatrix}$$