joan anthony de la cruz rodriguez

pregunta 1

Un laboratorio tiene tres máquinas A_1 , A_2 y A_3 que producen el 30 %, 25 % y 45 % de los productos, respectivamente. La probabilidad de que un producto esté defectuoso es 2 % si es producido por A_1 , 3 % si es producido por A_2 y 1 % si es producido por A_3 . Si un producto es seleccionado al azar y se encuentra que es defectuoso, ¿cuál es la probabilidad de que haya sido producido por A_2 ?

Solución

$$P(A_1) = 0.30$$

$$P(A_2) = 0.25$$

$$P(A_3) = 0.45$$

$$P(D|A_1) = 0.02$$

$$P(D|A_2) = 0.03$$

$$P(D|A_3) = 0.01$$

Queremos encontrar $P(A_2|D)$, que es la probabilidad de que un producto haya sido producido por A_2 dado que es defectuoso.

Calculamos P(D)

La probabilidad de que un producto seleccionado al azar sea defectuoso es:

$$P(D) = P(D|A_1) \cdot P(A_1) + P(D|A_2) \cdot P(A_2) + P(D|A_3) \cdot P(A_3)$$

Sustituyendo los valores:

$$P(D) = (0.02 \cdot 0.30) + (0.03 \cdot 0.25) + (0.01 \cdot 0.45)$$
$$P(D) = 0.006 + 0.0075 + 0.0045 = 0.018$$

Calculamos $P(A_2|D)$

$$P(A_2|D) = \frac{P(D|A_2) \cdot P(A_2)}{P(D)} = \frac{0.03 \cdot 0.25}{0.018}$$
$$P(A_2|D) = \frac{0.0075}{0.018} \approx 0.4167$$

Por lo tanto, la probabilidad de que un producto defectuoso haya sido producido por A_2 es aproximadamente 0.4167, o 41,67%.

1

Una tienda vende tres marcas de computadoras: B_1 , B_2 y B_3 . El 40% de las computadoras vendidas son B_1 , el 35% son B_2 y el 25% son B_3 . Las probabilidades de que una computadora de B_1 , B_2 y B_3 necesite reparaciones en su primer año son 0.02, 0.03 y 0.05, respectivamente. Si una computadora comprada en la tienda necesita reparaciones en su primer año, ¿cuál es la probabilidad de que sea de la marca B_2 ?

Solución

Las probabilidades dadas son:

$$P(B_1) = 0.40$$

$$P(B_2) = 0.35$$

$$P(B_3) = 0.25$$

$$P(R|B_1) = 0.02$$

$$P(R|B_2) = 0.03$$

$$P(R|B_3) = 0.05$$

Queremos encontrar la probabilidad de que una computadora sea de la marca B_2 dado que necesita reparaciones, es decir, $P(B_2|R)$.

Calculamos P(R)

$$P(R) = P(R|B_1) \cdot P(B_1) + P(R|B_2) \cdot P(B_2) + P(R|B_3) \cdot P(B_3)$$

Sustituyendo los valores:

$$P(R) = (0.02 \cdot 0.40) + (0.03 \cdot 0.35) + (0.05 \cdot 0.25)$$

$$P(R) = 0.008 + 0.0105 + 0.0125 = 0.031$$

calculamos $P(B_2|R)$

Aplicamos el teorema de Bayes:

$$P(B_2|R) = \frac{P(R|B_2) \cdot P(B_2)}{P(R)}$$

Sustituyendo los valores:

$$P(B_2|R) = \frac{0.03 \cdot 0.35}{0.031}$$

$$P(B_2|R) = \frac{0,0105}{0.031} \approx 0,3387$$

Por lo tanto, la probabilidad de que una computadora que necesita reparaciones sea de la marca B_2 es aproximadamente 0,3387, o 33,87%.

Una universidad ofrece tres cursos C_1 , C_2 y C_3 . El 50 % de los estudiantes están inscritos en C_1 , el 30 % en C_2 y el 20 % en C_3 . La probabilidad de que un estudiante apruebe C_1 es 0.9, C_2 es 0.85 y C_3 es 0.8. Si un estudiante aprobado es seleccionado al azar, ¿cuál es la probabilidad de que haya aprobado C_3 ?

Solución

Las probabilidades dadas son:

$$P(C_1) = 0.50$$

$$P(C_2) = 0.30$$

$$P(C_3) = 0.20$$

$$P(A \mid C_1) = 0.90$$

$$P(A \mid C_2) = 0.85$$

$$P(A \mid C_3) = 0.80$$

Queremos encontrar la probabilidad de que un estudiante que ha aprobado haya estado inscrito en el curso C_3 , es decir, $P(C_3 \mid A)$.

Calculamos P(A)

$$P(A) = P(A \mid C_1) \cdot P(C_1) + P(A \mid C_2) \cdot P(C_2) + P(A \mid C_3) \cdot P(C_3)$$

Sustituyendo los valores:

$$P(A) = (0.90 \cdot 0.50) + (0.85 \cdot 0.30) + (0.80 \cdot 0.20)$$

$$P(A) = 0.45 + 0.255 + 0.16 = 0.865$$

Calculamos $P(C_3 \mid A)$

Aplicamos el teorema de Bayes:

$$P(C_3 \mid A) = \frac{P(A \mid C_3) \cdot P(C_3)}{P(A)}$$

Sustituyendo los valores:

$$P(C_3 \mid A) = \frac{0.80 \cdot 0.20}{0.865}$$

$$P(C_3 \mid A) = \frac{0.16}{0.865} \approx 0.185$$

Por lo tanto, la probabilidad de que un estudiante que ha aprobado esté inscrito en el curso C_3 es aproximadamente 0.185, o 18.5%.

En una fábrica, tres máquinas M_1 , M_2 y M_3 producen el 25 %, 35 % y 40 % de los productos, respectivamente. Las probabilidades de que un producto sea defectuoso si es producido por M_1 , M_2 y M_3 son 0.01, 0.02 y 0.04, respectivamente. Si se selecciona un producto y se encuentra que es defectuoso, ¿cuál es la probabilidad de que haya sido producido por M_3 ?

Solución

Las probabilidades dadas son:

$$P(M_1) = 0.25$$

$$P(M_2) = 0.35$$

$$P(M_3) = 0.40$$

$$P(D \mid M_1) = 0.01$$

$$P(D \mid M_2) = 0.02$$

$$P(D \mid M_3) = 0.04$$

Queremos encontrar la probabilidad de que un producto defectuoso haya sido producido por M_3 , es decir, $P(M_3 \mid D)$.

Calculamos P(D)

$$P(D) = P(D \mid M_1) \cdot P(M_1) + P(D \mid M_2) \cdot P(M_2) + P(D \mid M_3) \cdot P(M_3)$$

Sustituyendo los valores:

$$P(D) = (0.01 \cdot 0.25) + (0.02 \cdot 0.35) + (0.04 \cdot 0.40)$$

$$P(D) = 0.0025 + 0.007 + 0.016 = 0.0255$$

Calculamos $P(M_3 \mid D)$

Aplicamos el teorema de Bayes:

$$P(M_3 \mid D) = \frac{P(D \mid M_3) \cdot P(M_3)}{P(D)}$$

Sustituyendo los valores:

$$P(M_3 \mid D) = \frac{0.04 \cdot 0.40}{0.0255}$$

$$P(M_3 \mid D) = \frac{0.016}{0.0255} \approx 0.627$$

Por lo tanto, la probabilidad de que un producto defectuoso haya sido producido por M_3 es aproximadamente 0,627, o 62,7%.

En una ciudad, el 60 % de los hogares tienen televisión por cable. De estos, el 70 % tienen acceso a un canal deportivo. De los hogares que no tienen televisión por cable, solo el 20 % tienen acceso a un canal deportivo. Si se selecciona un hogar al azar y se sabe que tiene acceso a un canal deportivo, ¿cuál es la probabilidad de que tenga televisión por cable?

Solución

Las probabilidades dadas son:

$$P(C) = 0.60$$

 $P(C') = 0.40$
 $P(D \mid C) = 0.70$
 $P(D \mid C') = 0.20$

Queremos encontrar la probabilidad de que un hogar que tiene acceso a un canal deportivo también tenga televisión por cable, es decir, $P(C \mid D)$.

Calcular P(D)

$$P(D) = P(D \mid C) \cdot P(C) + P(D \mid C') \cdot P(C')$$

Sustituyendo los valores:

$$P(D) = (0.70 \cdot 0.60) + (0.20 \cdot 0.40)$$

$$P(D) = 0.42 + 0.08 = 0.50$$

Calcular $P(C \mid D)$

Aplicamos el teorema de Bayes:

$$P(C \mid D) = \frac{P(D \mid C) \cdot P(C)}{P(D)}$$

Sustituyendo los valores:

$$P(C \mid D) = \frac{0.70 \cdot 0.60}{0.50}$$

$$P(C \mid D) = \frac{0.42}{0.50} = 0.84$$

Por lo tanto, la probabilidad de que un hogar que tiene acceso a un canal deportivo también tenga televisión por cable es 0.84, o 84%.

En una compañía de seguros, el 30 % de los clientes tienen un seguro de auto, el 50 % tienen un seguro de hogar y el 20 % tienen ambos seguros. Si un cliente tiene un seguro de auto, la probabilidad de que reclame en un año es 0.1, mientras que para un seguro de hogar es 0.05. Si se selecciona un cliente que ha hecho una reclamación, ¿cuál es la probabilidad de que tenga ambos seguros?

Solución

Definamos los siguientes eventos:

- A: El cliente tiene un seguro de auto.
- H: El cliente tiene un seguro de hogar.
- R: El cliente hace una reclamación.

Las probabilidades dadas son:

$$P(A) = 0.30$$

 $P(H) = 0.50$
 $P(A \cap H) = 0.20$
 $P(R \mid A) = 0.10$
 $P(R \mid H) = 0.05$

Queremos encontrar la probabilidad de que un cliente que ha hecho una reclamación tenga ambos seguros, es decir, $P(A \cap H \mid R)$.

Calculamos P(R)

$$P(R) = P(R \mid A \cap H) \cdot P(A \cap H) + P(R \mid A \cap H') \cdot P(A \cap H') + P(R \mid A' \cap H) \cdot P(A' \cap H)$$

Donde:

$$P(R \mid A \cap H) = 1 - (1 - 0.10) \times (1 - 0.05) = 1 - 0.90 \times 0.95 = 0.145$$

 $P(R \mid A \cap H') = 0.10, \quad P(A \cap H') = 0.30 - 0.20 = 0.10$
 $P(R \mid A' \cap H) = 0.05, \quad P(A' \cap H) = 0.50 - 0.20 = 0.30$

$$P(R) = 0.145 \times 0.20 + 0.10 \times 0.10 + 0.05 \times 0.30 = 0.029 + 0.01 + 0.015 = 0.054$$

Calculamos $P(A \cap H \mid R)$

Aplicamos el teorema de Bayes:

$$P(A \cap H \mid R) = \frac{P(R \mid A \cap H) \cdot P(A \cap H)}{P(R)}$$

Sustituyendo los valores:

$$P(A \cap H \mid R) = \frac{0.145 \times 0.20}{0.054} = \frac{0.029}{0.054} \approx 0.537$$

Por lo tanto, la probabilidad de que un cliente que ha hecho una reclamación tenga ambos seguros es aproximadamente 0.537, o 53.7%.

Un hospital tiene tres médicos D_1 , D_2 y D_3 . El médico D_1 atiende al 50 % de los pacientes, D_2 atiende al 30 % y D_3 atiende al 20 %. La probabilidad de que un paciente sea curado es 0.8 si es atendido por D_1 , 0.9 si es atendido por D_2 y 0.95 si es atendido por D_3 . Si un paciente se cura, ¿cuál es la probabilidad de que haya sido atendido por D_2 ?

Solución

Definamos los siguientes eventos:

- D_1 : El paciente es atendido por el médico D_1 .
- D_2 : El paciente es atendido por el médico D_2 .
- D_3 : El paciente es atendido por el médico D_3 .
- C: El paciente se cura.

Las probabilidades dadas son:

$$P(D_1) = 0.50$$

$$P(D_2) = 0.30$$

$$P(D_3) = 0.20$$

$$P(C \mid D_1) = 0.80$$

$$P(C \mid D_2) = 0.90$$

$$P(C \mid D_3) = 0.95$$

Queremos encontrar la probabilidad de que un paciente que se curó haya sido atendido por D_2 , es decir, $P(D_2 \mid C)$.

Calculamos P(C)

$$P(C) = P(C \mid D_1) \cdot P(D_1) + P(C \mid D_2) \cdot P(D_2) + P(C \mid D_3) \cdot P(D_3)$$

Sustituyendo los valores:

$$P(C) = (0.80 \cdot 0.50) + (0.90 \cdot 0.30) + (0.95 \cdot 0.20) = 0.40 + 0.27 + 0.19 = 0.86$$

Calculamod $P(D_2 \mid C)$

Aplicamos el teorema de Bayes:

$$P(D_2 \mid C) = \frac{P(C \mid D_2) \cdot P(D_2)}{P(C)}$$

Sustituyendo los valores:

$$P(D_2 \mid C) = \frac{0.90 \cdot 0.30}{0.86} = \frac{0.27}{0.86} \approx 0.314$$

Por lo tanto, la probabilidad de que un paciente que se curó haya sido atendido por D_2 es aproximadamente 0,314, o 31,4 %.

Un banco tiene tres sucursales S_1 , S_2 y S_3 que procesan el 40%, 35% y 25% de las transacciones, respectivamente. La probabilidad de que una transacción sea incorrecta es 0.005 en S_1 , 0.01 en S_2 y 0.02 en S_3 . Si una transacción incorrecta es seleccionada al azar, ¿cuál es la probabilidad de que haya sido procesada en S_3 ?

Solución

Definamos los siguientes eventos:

- S_1 : La transacción es procesada en la sucursal S_1 .
- S_2 : La transacción es procesada en la sucursal S_2 .
- S_3 : La transacción es procesada en la sucursal S_3 .
- I: La transacción es incorrecta.

Las probabilidades dadas son:

$$P(S_1) = 0.40$$

$$P(S_2) = 0.35$$

$$P(S_3) = 0.25$$

$$P(I \mid S_1) = 0.005$$

$$P(I \mid S_2) = 0.01$$

$$P(I \mid S_3) = 0.02$$

Queremos encontrar la probabilidad de que una transacción incorrecta seleccionada al azar haya sido procesada en S_3 , es decir, $P(S_3 \mid I)$.

Calculamos P(I)

$$P(I) = P(I \mid S_1) \cdot P(S_1) + P(I \mid S_2) \cdot P(S_2) + P(I \mid S_3) \cdot P(S_3)$$

Sustituyendo los valores:

$$P(I) = (0.005 \cdot 0.40) + (0.01 \cdot 0.35) + (0.02 \cdot 0.25) = 0.002 + 0.0035 + 0.005 = 0.0105$$

Calculamos $P(S_3 \mid I)$

Aplicamos el teorema de Bayes:

$$P(S_3 \mid I) = \frac{P(I \mid S_3) \cdot P(S_3)}{P(I)}$$

Sustituyendo los valores:

$$P(S_3 \mid I) = \frac{0.02 \cdot 0.25}{0.0105} = \frac{0.005}{0.0105} \approx 0.476$$

Por lo tanto, la probabilidad de que una transacción incorrecta seleccionada al azar haya sido procesada en S_3 es aproximadamente 0,476, o 47,6 %.

Un aeropuerto tiene tres pistas de aterrizaje P_1 , P_2 y P_3 . La probabilidad de que un avión aterrice en P_1 es 0.4, en P_2 es 0.3 y en P_3 es 0.3. La probabilidad de que un avión aterrice de manera segura es 0.99 en P_1 , 0.98 en P_2 y 0.97 en P_3 . Si se selecciona un aterrizaje seguro, ¿cuál es la probabilidad de que haya sido en P_2 ?

Solución

Definamos los siguientes eventos:

- P_1 : El avión aterriza en la pista P_1 .
- P_2 : El avión aterriza en la pista P_2 .
- P_3 : El avión aterriza en la pista P_3 .
- S: El avión aterriza de manera segura.

Las probabilidades dadas son:

$$P(P_1) = 0.40$$

$$P(P_2) = 0.30$$

$$P(P_3) = 0.30$$

$$P(S \mid P_1) = 0.99$$

$$P(S \mid P_2) = 0.98$$

$$P(S \mid P_3) = 0.97$$

Queremos encontrar la probabilidad de que un aterrizaje seguro seleccionado al azar haya sido en P_2 , es decir, $P(P_2 \mid S)$.

Calculamos P(S)

$$P(S) = P(S \mid P_1) \cdot P(P_1) + P(S \mid P_2) \cdot P(P_2) + P(S \mid P_3) \cdot P(P_3)$$

Sustituyendo los valores:

$$P(S) = (0.99 \cdot 0.40) + (0.98 \cdot 0.30) + (0.97 \cdot 0.30) = 0.396 + 0.294 + 0.291 = 0.981$$

Calculamos $P(P_2 \mid S)$

Aplicamos el teorema de Bayes:

$$P(P_2 \mid S) = \frac{P(S \mid P_2) \cdot P(P_2)}{P(S)}$$

Sustituyendo los valores:

$$P(P_2 \mid S) = \frac{0.98 \cdot 0.30}{0.981} = \frac{0.294}{0.981} \approx 0.2997$$

Por lo tanto, la probabilidad de que un aterrizaje seguro seleccionado al azar haya sido en P_2 es aproximadamente 0,2997, o 29,97%.

Una empresa tiene tres fábricas F_1 , F_2 y F_3 que producen el 20%, 30% y 50% de los productos, respectivamente. Las probabilidades de que un producto sea defectuoso si es producido por F_1 , F_2 y F_3 son 0.03, 0.02 y 0.01, respectivamente. Si se selecciona un producto defectuoso, ¿cuál es la probabilidad de que haya sido producido por F_1 ?

Solución

Definamos los siguientes eventos:

- F_1 : El producto fue producido por la fábrica F_1 .
- F_2 : El producto fue producido por la fábrica F_2 .
- F_3 : El producto fue producido por la fábrica F_3 .
- ullet D: El producto es defectuoso.

Las probabilidades dadas son:

$$P(F_1) = 0.20$$

$$P(F_2) = 0.30$$

$$P(F_3) = 0.50$$

$$P(D \mid F_1) = 0.03$$

$$P(D \mid F_2) = 0.02$$

$$P(D \mid F_3) = 0.01$$

Queremos encontrar la probabilidad de que un producto defectuoso seleccionado al azar haya sido producido por F_1 , es decir, $P(F_1 \mid D)$.

Calculamos P(D)

$$P(D) = P(D \mid F_1) \cdot P(F_1) + P(D \mid F_2) \cdot P(F_2) + P(D \mid F_3) \cdot P(F_3)$$

Sustituyendo los valores:

$$P(D) = (0.03 \cdot 0.20) + (0.02 \cdot 0.30) + (0.01 \cdot 0.50) = 0.006 + 0.006 + 0.005 = 0.017$$

Calculamos $P(F_1 \mid D)$

Aplicamos el teorema de Bayes:

$$P(F_1 \mid D) = \frac{P(D \mid F_1) \cdot P(F_1)}{P(D)}$$

Sustituyendo los valores:

$$P(F_1 \mid D) = \frac{0.03 \cdot 0.20}{0.017} = \frac{0.006}{0.017} \approx 0.353$$

Por lo tanto, la probabilidad de que un producto defectuoso seleccionado al azar haya sido producido por F_1 es aproximadamente 0,353, o 35,3 %.

Una universidad tiene tres departamentos D_1 , D_2 y D_3 . El 30 % de los estudiantes están en D_1 , el 50 % en D_2 y el 20 % en D_3 . La probabilidad de que un estudiante obtenga una beca es 0.1 en D_1 , 0.2 en D_2 y 0.3 en D_3 . Si un estudiante obtiene una beca, se pide calcular la probabilidad de que pertenezca a D_2 .

Solución

- $P(D_1) = 0.3$
- $P(D_2) = 0.5$
- $P(D_3) = 0.2$
- $P(B \mid D_1) = 0.1$
- $P(B \mid D_2) = 0.2$
- $P(B \mid D_3) = 0.3$

Queremos encontrar $P(D_2 \mid B)$, que se calcula utilizando el teorema de Bayes:

$$P(D_2 \mid B) = \frac{P(B \mid D_2) \cdot P(D_2)}{P(B)}$$

Donde P(B) es:

$$P(B) = P(B \mid D_1) \cdot P(D_1) + P(B \mid D_2) \cdot P(D_2) + P(B \mid D_3) \cdot P(D_3)$$

Sustituyendo los valores:

$$P(B) = (0.1 \cdot 0.3) + (0.2 \cdot 0.5) + (0.3 \cdot 0.2) = 0.03 + 0.1 + 0.06 = 0.19$$

Ahora, calculamos $P(D_2 \mid B)$:

$$P(D_2 \mid B) = \frac{0.2 \cdot 0.5}{0.19} = \frac{0.1}{0.19} \approx 0.5263$$

Por lo tanto, la probabilidad de que un estudiante que ha obtenido una beca pertenezca a D_2 es aproximadamente 0,5263, o 52.63 %.

Un supermercado tiene tres cajas registradoras R_1 , R_2 y R_3 que procesan el 30 %, 40 % y 30 % de las compras, respectivamente. La probabilidad de que haya un error en el registro es 0.002 en R_1 , 0.003 en R_2 y 0.005 en R_3 . Se pide calcular la probabilidad de que un error en una transacción haya ocurrido en R_3 , dado que se encontró un error.

Solución

- $P(R_1) = 0.30$
- $P(R_2) = 0.40$
- $P(R_3) = 0.30$
- $P(E \mid R_1) = 0.002$
- $P(E \mid R_2) = 0.003$
- $P(E \mid R_3) = 0.005$

Queremos encontrar $P(R_3 \mid E)$, que se calcula utilizando el teorema de Bayes:

$$P(R_3 \mid E) = \frac{P(E \mid R_3) \cdot P(R_3)}{P(E)}$$

Donde P(E) es:

$$P(E) = P(E \mid R_1) \cdot P(R_1) + P(E \mid R_2) \cdot P(R_2) + P(E \mid R_3) \cdot P(R_3)$$

Sustituyendo los valores:

$$P(E) = (0.002 \cdot 0.30) + (0.003 \cdot 0.40) + (0.005 \cdot 0.30) = 0.0006 + 0.0012 + 0.0015 = 0.0033$$

Ahora, calculamos $P(R_3 \mid E)$:

$$P(R_3 \mid E) = \frac{0,005 \cdot 0,30}{0,0033} = \frac{0,0015}{0,0033} \approx 0,4545$$

Por lo tanto, la probabilidad de que un error en una transacción haya ocurrido en la caja registradora R_3 es aproximadamente 0,4545, o 45.45%.

En una fábrica, tres máquinas M_1 , M_2 y M_3 producen el 20 %, 30 % y 50 % de los productos, respectivamente. La probabilidad de que un producto sea defectuoso es 0.01 si es producido por M_1 , 0.02 si es producido por M_2 y 0.03 si es producido por M_3 . Si se selecciona un producto defectuoso, se pide calcular la probabilidad de que haya sido producido por M_2 .

Solución

- $P(M_1) = 0.20$
- $P(M_2) = 0.30$
- $P(M_3) = 0.50$
- $P(D \mid M_1) = 0.01$
- $P(D \mid M_2) = 0.02$
- $P(D \mid M_3) = 0.03$

Queremos encontrar $P(M_2 \mid D)$, que se calcula utilizando el teorema de Bayes:

$$P(M_2 \mid D) = \frac{P(D \mid M_2) \cdot P(M_2)}{P(D)}$$

Donde P(D) es:

$$P(D) = P(D \mid M_1) \cdot P(M_1) + P(D \mid M_2) \cdot P(M_2) + P(D \mid M_3) \cdot P(M_3)$$

Sustituyendo los valores:

$$P(D) = (0.01 \cdot 0.20) + (0.02 \cdot 0.30) + (0.03 \cdot 0.50) = 0.002 + 0.006 + 0.015 = 0.023$$

Ahora, calculamos $P(M_2 \mid D)$:

$$P(M_2 \mid D) = \frac{0.02 \cdot 0.30}{0.023} = \frac{0.006}{0.023} \approx 0.2609$$

Por lo tanto, la probabilidad de que un producto defectuoso haya sido producido por M_2 es aproximadamente 0,2609, o 26.09%.

Un hospital tiene tres departamentos D_1 , D_2 y D_3 . El 40% de los pacientes son tratados en D_1 , el 35% en D_2 y el 25% en D_3 . La probabilidad de que un paciente se recupere es 0.8 en D_1 , 0.85 en D_2 y 0.9 en D_3 . Se pide calcular la probabilidad de que un paciente que se ha recuperado haya sido tratado en D_3 .

Solución

- $P(D_1) = 0.40$
- $P(D_2) = 0.35$
- $P(D_3) = 0.25$
- $P(R \mid D_1) = 0.80$
- $P(R \mid D_2) = 0.85$
- $P(R \mid D_3) = 0.90$

Queremos encontrar $P(D_3 \mid R)$, que se calcula utilizando el teorema de Bayes:

$$P(D_3 \mid R) = \frac{P(R \mid D_3) \cdot P(D_3)}{P(R)}$$

Donde P(R) es:

$$P(R) = P(R \mid D_1) \cdot P(D_1) + P(R \mid D_2) \cdot P(D_2) + P(R \mid D_3) \cdot P(D_3)$$

Sustituyendo los valores:

$$P(R) = (0.80 \cdot 0.40) + (0.85 \cdot 0.35) + (0.90 \cdot 0.25) = 0.32 + 0.2975 + 0.225 = 0.8445$$

Ahora, calculamos $P(D_3 \mid R)$:

$$P(D_3 \mid R) = \frac{0.90 \cdot 0.25}{0.8445} = \frac{0.225}{0.8445} \approx 0.266$$

Por lo tanto, la probabilidad de que un paciente que se ha recuperado haya sido tratado en D_3 es aproximadamente 0,266, o 26.6 %.

En una ciudad, el 40 % de las personas compran en la tienda T_1 , el 35 % en la tienda T_2 y el 25 % en la tienda T_3 . La probabilidad de que un cliente esté satisfecho es 0.7 en T_1 , 0.8 en T_2 y 0.9 en T_3 . Se pide calcular la probabilidad de que un cliente satisfecho haya comprado en T_2 .

Solución

- $P(T_1) = 0.40$
- $P(T_2) = 0.35$
- $P(T_3) = 0.25$
- $P(S \mid T_1) = 0.70$
- $P(S \mid T_2) = 0.80$
- $P(S \mid T_3) = 0.90$

Queremos encontrar $P(T_2 \mid S)$, que se calcula utilizando el teorema de Bayes:

$$P(T_2 \mid S) = \frac{P(S \mid T_2) \cdot P(T_2)}{P(S)}$$

Donde P(S) es:

$$P(S) = P(S \mid T_1) \cdot P(T_1) + P(S \mid T_2) \cdot P(T_2) + P(S \mid T_3) \cdot P(T_3)$$

Sustituyendo los valores:

$$P(S) = (0.70 \cdot 0.40) + (0.80 \cdot 0.35) + (0.90 \cdot 0.25) = 0.28 + 0.28 + 0.225 = 0.785$$

Ahora, calculamos $P(T_2 \mid S)$:

$$P(T_2 \mid S) = \frac{0.80 \cdot 0.35}{0.785} = \frac{0.28}{0.785} \approx 0.357$$

Por lo tanto, la probabilidad de que un cliente satisfecho haya comprado en T_2 es aproximadamente 0.357, o 35.7%.

Una empresa tiene tres proveedores P_1 , P_2 y P_3 que suministran el 40 %, 35 % y 25 % de las materias primas, respectivamente. La probabilidad de que una materia prima sea defectuosa es 0.005 si es suministrada por P_1 , 0.01 si es suministrada por P_2 y 0.02 si es suministrada por P_3 . Se pide calcular la probabilidad de que una materia prima defectuosa haya sido suministrada por P_3 .

Solución

- $P(P_1) = 0.40$
- $P(P_2) = 0.35$
- $P(P_3) = 0.25$
- $P(D \mid P_1) = 0.005$
- $P(D \mid P_2) = 0.01$
- $P(D \mid P_3) = 0.02$

Queremos encontrar $P(P_3 \mid D)$, que se calcula utilizando el teorema de Bayes:

$$P(P_3 \mid D) = \frac{P(D \mid P_3) \cdot P(P_3)}{P(D)}$$

Donde P(D) es:

$$P(D) = P(D \mid P_1) \cdot P(P_1) + P(D \mid P_2) \cdot P(P_2) + P(D \mid P_3) \cdot P(P_3)$$

Sustituyendo los valores:

$$P(D) = (0.005 \cdot 0.40) + (0.01 \cdot 0.35) + (0.02 \cdot 0.25) = 0.002 + 0.0035 + 0.005 = 0.0105$$

Ahora, calculamos $P(P_3 \mid D)$:

$$P(P_3 \mid D) = \frac{0.02 \cdot 0.25}{0.0105} = \frac{0.005}{0.0105} \approx 0.476$$

Por lo tanto, la probabilidad de que una materia prima defectuosa haya sido suministrada por P_3 es aproximadamente 0,476, o 47.6 %.

En una fábrica, tres máquinas M_1 , M_2 y M_3 producen el 25 %, 35 % y 40 % de los productos, respectivamente. La probabilidad de que un producto sea defectuoso es 0.01 si es producido por M_1 , 0.02 si es producido por M_2 y 0.04 si es producido por M_3 . Se pide calcular la probabilidad de que un producto defectuoso haya sido producido por M_3 .

Solución

- $P(M_1) = 0.25$
- $P(M_2) = 0.35$
- $P(M_3) = 0.40$
- $P(D \mid M_1) = 0.01$
- $P(D \mid M_2) = 0.02$
- $P(D \mid M_3) = 0.04$

Queremos encontrar $P(M_3 \mid D)$, que se calcula utilizando el teorema de Bayes:

$$P(M_3 \mid D) = \frac{P(D \mid M_3) \cdot P(M_3)}{P(D)}$$

Donde P(D) es:

$$P(D) = P(D \mid M_1) \cdot P(M_1) + P(D \mid M_2) \cdot P(M_2) + P(D \mid M_3) \cdot P(M_3)$$

Sustituyendo los valores:

$$P(D) = (0.01 \cdot 0.25) + (0.02 \cdot 0.35) + (0.04 \cdot 0.40) = 0.0025 + 0.007 + 0.016 = 0.0255$$

Ahora, calculamos $P(M_3 \mid D)$:

$$P(M_3 \mid D) = \frac{0.04 \cdot 0.40}{0.0255} = \frac{0.016}{0.0255} \approx 0.627$$

Por lo tanto, la probabilidad de que un producto defectuoso haya sido producido por M_3 es aproximadamente 0,627, o 62.7%.

Un aeropuerto tiene tres pistas de aterrizaje P_1 , P_2 y P_3 . La probabilidad de que un avión aterrice en P_1 es 0.4, en P_2 es 0.3 y en P_3 es 0.3. La probabilidad de que un avión aterrice de manera segura es 0.99 en P_1 , 0.98 en P_2 y 0.97 en P_3 . Se pide calcular la probabilidad de que un aterrizaje seguro haya ocurrido en P_2 .

Solución

- $P(P_1) = 0.4$
- $P(P_2) = 0.3$
- $P(P_3) = 0.3$
- $P(S \mid P_1) = 0.99$
- $P(S \mid P_2) = 0.98$
- $P(S \mid P_3) = 0.97$

Queremos encontrar $P(P_2 \mid S)$, que se calcula utilizando el teorema de Bayes:

$$P(P_2 \mid S) = \frac{P(S \mid P_2) \cdot P(P_2)}{P(S)}$$

Donde P(S) es:

$$P(S) = P(S \mid P_1) \cdot P(P_1) + P(S \mid P_2) \cdot P(P_2) + P(S \mid P_3) \cdot P(P_3)$$

Sustituyendo los valores:

$$P(S) = (0.99 \cdot 0.4) + (0.98 \cdot 0.3) + (0.97 \cdot 0.3) = 0.396 + 0.294 + 0.291 = 0.981$$

Ahora, calculamos $P(P_2 \mid S)$:

$$P(P_2 \mid S) = \frac{0.98 \cdot 0.3}{0.981} = \frac{0.294}{0.981} \approx 0.2997$$

Por lo tanto, la probabilidad de que un aterrizaje seguro haya ocurrido en P_2 es aproximadamente 0,2997, o 29.97%.

Una empresa tiene tres fábricas F_1 , F_2 y F_3 que producen el 20%, 30% y 50% de los productos, respectivamente. Las probabilidades de que un producto sea defectuoso si es producido por F_1 , F_2 y F_3 son 0.03, 0.02 y 0.01, respectivamente. Se pide calcular la probabilidad de que un producto defectuoso haya sido producido por F_1 .

Solución

- $P(F_1) = 0.20$
- $P(F_2) = 0.30$
- $P(F_3) = 0.50$
- $P(D \mid F_1) = 0.03$
- $P(D \mid F_2) = 0.02$
- $P(D \mid F_3) = 0.01$

Queremos encontrar $P(F_1 \mid D)$, que se calcula utilizando el teorema de Bayes:

$$P(F_1 \mid D) = \frac{P(D \mid F_1) \cdot P(F_1)}{P(D)}$$

Donde P(D) es:

$$P(D) = P(D \mid F_1) \cdot P(F_1) + P(D \mid F_2) \cdot P(F_2) + P(D \mid F_3) \cdot P(F_3)$$

Sustituyendo los valores:

$$P(D) = (0.03 \cdot 0.20) + (0.02 \cdot 0.30) + (0.01 \cdot 0.50) = 0.006 + 0.006 + 0.005 = 0.017$$

Ahora, calculamos $P(F_1 \mid D)$:

$$P(F_1 \mid D) = \frac{0.03 \cdot 0.20}{0.017} = \frac{0.006}{0.017} \approx 0.3529$$

Por lo tanto, la probabilidad de que un producto defectuoso haya sido producido por F_1 es aproximadamente 0,3529, o 35.29 %.

Un supermercado tiene tres cajas registradoras R_1 , R_2 y R_3 que procesan el 30 %, 40 % y 30 % de las compras, respectivamente. La probabilidad de que haya un error en el registro es 0.002 en R_1 , 0.003 en R_2 y 0.005 en R_3 . Se pide calcular la probabilidad de que, si se encuentra un error en una transacción, este haya ocurrido en R_3 .

Solución

- $P(R_1) = 0.30$
- $P(R_2) = 0.40$
- $P(R_3) = 0.30$
- $P(E \mid R_1) = 0.002$
- $P(E \mid R_2) = 0.003$
- $P(E \mid R_3) = 0.005$

Queremos encontrar $P(R_3 \mid E)$, que se calcula utilizando el teorema de Bayes:

$$P(R_3 \mid E) = \frac{P(E \mid R_3) \cdot P(R_3)}{P(E)}$$

Donde P(E) es:

$$P(E) = P(E \mid R_1) \cdot P(R_1) + P(E \mid R_2) \cdot P(R_2) + P(E \mid R_3) \cdot P(R_3)$$

Sustituyendo los valores:

$$P(E) = (0.002 \cdot 0.30) + (0.003 \cdot 0.40) + (0.005 \cdot 0.30) = 0.0006 + 0.0012 + 0.0015 = 0.0033$$

Ahora, calculamos $P(R_3 \mid E)$:

$$P(R_3 \mid E) = \frac{0,005 \cdot 0,30}{0,0033} = \frac{0,0015}{0,0033} \approx 0,455$$

Por lo tanto, la probabilidad de que, si se encuentra un error en una transacción, este haya ocurrido en R_3 es aproximadamente 0,455, o 45.5%.