Visualização de Dados Multidimensionais

Parte 2

Relembrando: dados multidimensionais

Representação de dados multidimensionais

- Mapear o espaço nD para o espaço 2D/3D da imagem
- Abordagens diferentes de mapeamento (Keim, 1996)
 - Técnicas iconográficas
 - Baseadas em ícones e glifos
 - Técnicas orientadas a pixel
 - Mapeamento direto para pixels na imagem
 - Técnicas de projeção geométrica
 - Projeção para coordenadas num domínio espacial

Técnicas de projeção geométricas

- Os dados são mapeados para representações visuais, através de algum tipo de projeção geométrica
 - Gráficos 2D tradicionais
 - Matriz de scatter plots
 - Coordenadas paralelas
 - Coordenadas radiais
 - Projeções multidimensionais

Projeções multidimensionais

- Diversas abordagens para redução de dimensionalidade (DR= dimensionality reduction)
- Família de técnicas capazes de produzir gráficos baseados em pontos (scatterplots) que preservam (dis)similaridade entre os elementos
 - O conceito de (dis)similaridade depende do tipo de dados e relações entre as instâncias, desde relações de ordem até distâncias no espaço multidimensional

Projeções multidimensionais

Diferentes classificações, dependendo dos autores ...
 Por exemplo:

Técnicas lineares

 Novas dimensões são calculadas como combinações lineares das dimensões originais respeitando a propriedade
 Seja Φ: D → M , então Φ(au+bv) = aΦ (u) + bΦ(v)

Técnicas não-lineares

 Novas dimensões são calculadas usando diferentes métodos, por exemplo, preservando a similaridade (num sentido mais amplo) existente do espaço original no espaço de dimensão reduzida

Class			Name	Complexity	Local?
			Classical Scaling (Young and Householder, 1938)	$O(n^3)$	
	Metric		ISOMAP (Tenenbaum, 1998)	$O(n^2)$	
Multidimensional Scaling			Sammon's mapping (Sammon, 1969)	$O(n^2)$	
			CCA (Demartines and Herault, 1997)	$O(n^2)$	✓
	Non-M	etric	Kruskal (Kruskal, 1964)	$O(n^2)$	
			Mass-spring model (Eades, 1984)	$O(n^3)$	✓
Force-Directed Placement			Charlmers (Chalmers, 1996)	$O(n^2)$	✓
Force-Directed Flacement	Force-Directed Placement		Hybrid Model (Morrison et al., 2002)	$O(n\sqrt{n})$	✓
			Force Scheme (Tejada et al., 2003)	$O(cn^2)$	✓
	Linear	2do order	PCA (Jolliffe, 2002)	$O((n \times m)^3)$	
			Kernel-PCA (Schlkopf et al., 1999)	$O(n^3)$	
			SVD (Demmel and Y, 1997)	$O(n^3)$	
			Anchored Least Stress (ALS) (Wise, 1999)		
		Higher order	Projection Pursuit (Posse, 1995)	O()	
Dimensionality Reduction			LLE (Roweis and Saul, 2000)	$O(n^2)$	
			Fastmap (Faloutsos and Lin, 1995)	O(n)	
	Non-Linear		LSP (Paulovich et al., 2008)	$O(nk^2+n^2)$	
	THOII-LI	licai	PLMP (Paulovich et al., 2010)	O(n)	
			PLP (Paulovich et al., 2011)	O(n)	✓
			LAMP (Joia et al., 2011a)	O(n)	✓

Table 3.1 Classification of the multidimensional projection techniques. Where n and k represent the total number of instances and the number samples, c is the number of iterations, and m is the dimensionality of the high-dimensional space.

Extraída de Poco-Medina (2013) baseada em Paulovich(2008)

Exemplo de class

Métodos que consideram medidas de distâncias ou dissimilaridades entre os elementos do conjunto e criam uma representação desse conjunto no espaço visual

Class			Name no espaço visual		ocal?	
			Classical S	Scaling (Young and Householder, 1938)	$O(n^3)$	
	Metric		ISOMAP ((Tenenbaum, 1998)	$O(n^2)$	
Multidimensional Scaling			Sammon's	mapping (Sammon, 1969)	$O(n^2)$	
			CCA (Den	nartines and Herault, 1997)	$O(n^2)$	✓
	Non-M	etric	Kruskal (K	Kruskal, 1964)	$O(n^2)$	
			Mass-sprir	ng model (Eades, 1984)	$O(n^3)$	✓
Force-Directed Placement			Charlmers	(Chalmers, 1996)	$O(n^2)$	✓
Force-Directed Flacement			Hybrid Model (Morrison et al., 2002)		$O(n\sqrt{n})$	✓
			Force Scheme (Tejada et al., 2003)		$O(cn^2)$	✓
			PCA (Jolli	ffe, 2002)	$O((n \times m)^3)$	
		2do order	Kernel-PC	A (Schlkopf et al., 1999)	$O(n^3)$	
	Linear	2do order	SVD (Den	nmel and Y, 1997)	$O(n^3)$	
			Anchored	Least Stress (ALS) (Wise, 1999)		
		Higher order	Projection	Pursuit (Posse, 1995)	O ()	
Dimensionality Reduction		'		eis and Saul, 2000)	$O(n^2)$	
			Fastmap (I	Faloutsos and Lin, 1995)	O(n)	
	Non-Li	near	LSP (Paulo	ovich et al., 2008)	$O(nk^2+n^2)$	
	Non-Li	iicai	PLMP (Pa	ulovich <i>et al.</i> , 2010)	O(n)	
			PLP (Paulo	ovich et al., 2011)	O(n)	✓
			LAMP (Jo	ia <i>et al.</i> , 2011a)	O(n)	✓

Table 3.1 Classification of the multidimensional projection techniques. Where n and k represent the total number of instances and the number samples, c is the number of iterations, and m is the dimensionality of the high-dimensional space.

Extraída de Poco-Medina (2013) baseada em Paulovich(2008)

Class			Name	Complexity	Local?
Multidimensional Scaling	Metric		Class Métodos baseados em otimiza funções de stress ou sistemas mola, métodos baseados em	s massa-	√
	Non-M	etric	Kruskal (Kruskal, 1964)	$O(n^2)$	
Force-Directed Placement			Mass-spring model (Eades, 1984) Charlmers (Chalmers, 1996) Hybrid Model (Morrison et al., 2002) Force Scheme (Tejada et al., 2003)	$O(n^3)$ $O(n^2)$ $O(n\sqrt{n})$ $O(cn^2)$	✓ ✓ ✓
	Linear 2do order		PCA (Jolliffe, 2002) Kernel-PCA (Schlkopf et al., 1999) SVD (Demmel and Y, 1997) Anchored Least Stress (ALS) (Wise, 1999)	$ \begin{array}{c c} O((n \times m)^3) \\ O(n^3) \\ O(n^3) \end{array} $	
		Higher order	Projection Pursuit (Posse, 1995)	O ()	
Dimensionality Reduction Non-Linear		near	LLE (Roweis and Saul, 2000) Fastmap (Faloutsos and Lin, 1995) LSP (Paulovich et al., 2008) PLMP (Paulovich et al., 2010) PLP (Paulovich et al., 2011) LAMP (Joia et al., 2011a)	$O(n^2)$ $O(n)$ $O(nk^2+n^2)$ $O(n)$ $O(n)$ $O(n)$	√

Table 3.1 Classification of the multidimensional projection techniques. Where n and k represent the total number of instances and the number samples, c is the number of iterations, and m is the dimensionality of the high-dimensional space.

Extraída de Poco-Medina (2013) baseada em Paulovich(2008)

Class			Name	Complexity	Local?
Multidimensional Scaling	Metric		Classical Scaling (Young and Householder, 1938) ISOMAP (Tenenbaum, 1998) Sammon's mapping (Sammon, 1969) CCA (Demartines and Herault, 1997)	$O(n^3) \ O(n^2) \ O(n^2) \ O(n^2)$	√
	Non-M	etric	Krusi		
Force-Directed Placement	2do order		dos pontos do espaço original Hybrarore representação num espaço de reduzida, transformação que le conta característica(s) dos dados	dos pontos do espaço original em outra representação num espaço de dimensão reduzida, transformação que leva em	
K	Lipear	Higher order	SVD (Demmel and Y, 1997) Anchored Least Stress (ALS) (Wise, 1999) Projection Pursuit (Posse, 1995)	$O(n^3)$ $O()$	
Dimensionality Reduction	Non-Linear		LLE (Roweis and Saul, 2000) Fastmap (Faloutsos and Lin, 1995) LSP (Paulovich et al., 2008) PLMP (Paulovich et al., 2010)	$O(n^2)$ $O(n)$ $O(nk^2 + n^2)$ $O(n)$	
			PLP (Paulovich et al., 2011) LAMP (Joia et al., 2011a)	$egin{aligned} O(n) \ O(n) \end{aligned}$	√ ✓

Table 3.1 Classification of the multidimensional projection techniques. Where n and k represent the total number of instances and the number samples, c is the number of iterations, and m is the dimensionality of the high-dimensional space.

Extraída de Poco-Medina (2013) baseada em Paulovich(2008)

Class			Name		Complexity	Local?
Multidimensional Scaling	Metric		ISOM Samn	Classical Scaling (Young and Householder, 1938) ISOMAP (Tenenbaum, 1998) Sammon's mapping (Sammon, 1969) CCA (Demartines and Herault, 1997)		√
	Non-M	etric	Krusl	Apenas relações lineares são		
Force-Directed Placement			Mass Charl Hybr Force	preservadas, ou seja, considera que os dados tem uma estrutura linear no		
	Linear 2do order		Kerne SVD Anche	(Jolliffe, 2002) el-PCA (Schlkopf <i>et al.</i> , 1999) (Demmel and Y, 1997) ored Least Stress (ALS) (Wise, 1999)	$O((n \times m)^3)$ $O(n^3)$ $O(n^3)$	
Dimensionality Reduction	Non-Linear		LLE ((Roweis and Saul, 2000) (Rap (Faloutsos and Lin, 1995) (Paulovich et al., 2008)	$O(n^2) \ O(n^2) \ O(n) \ O(nk^2+n^2)$	
			LSP (Paulovich et al., 2008) PLMP (Paulovich et al., 2010) PLP (Paulovich et al., 2011) LAMP (Joia et al., 2011a)		O(nk + n) $O(n)$ $O(n)$ $O(n)$	√ ✓

Table 3.1 Classification of the multidimensional projection techniques. Where n and k represent the total number of instances and the number samples, c is the number of iterations, and m is the dimensionality of the high-dimensional space.

Extraída de Poco-Medina (2013) baseada em Paulovich(2008)

Class			Name		Complexity	Local?
Multidimensional Scaling	Metric		Classical Scaling (Young and Householder, 1938) ISOMAP (Tenenbaum, 1998) Sammon's mapping (Sammon, 1969) CCA (Demartines and Herault, 1997)		$O(n^3)$ $O(n^2)$ $O(n^2)$ $O(n^2)$	
	Non-Metric		Krusl	Assume que os dados originai	s não	
Force-Directed Placement	orce-Directed Placement			estão organizados segundo uma estrutura linear (por exemplo, são "manifolds" desconhecidos)		
	Linear 2do order Higher order Non-Linear		Kerne SVD Anche	(Jolliffe, 2002) el-PCA (Schlkopf <i>et al.</i> , 1999) (Demmel and Y, 1997) ored Least Stress (ALS) (Wise, 1999) etion Pursuit (Posse, 1995)	$O((n \times m)^3)$ $O(n^3)$ $O(n^3)$	
Dimensionality Reduction			LLE (Fastm LSP (PLMIPLP ((Roweis and Saul, 2000) (Roweis and Saul, 2000) (Rap (Faloutsos and Lin, 1995) (Paulovich et al., 2008) (Paulovich et al., 2010) (Paulovich et al., 2011) (Paulovich et al., 2011a)	$O(n^2)$ $O(n)$ $O(nk^2+n^2)$ $O(n)$ $O(n)$ $O(n)$	√

Table 3.1 Classification of the multidimensional projection techniques. Where n and k represent the total number of instances and the number samples, c is the number of iterations, and m is the dimensionality of the high-dimensional space.

Extraída de Poco-Medina (2013) baseada em Paulovich(2008)

Methods that are solely based on linear transformations are defined as projection techniques.

Methods that are able to ascertain distance relationships in a non-linear data structure are defined as manifold learning techniques.

Extraída de (Engel, Hüttenberger, Hamann, 2011)

Spectral methods rely on a point-wise distance matrix.

Graph-based methods utilize optimizations of graph theory to learn manifold distances in data space.

Stress-based focuses on the embedding directly, i.e., learning the mapping that minimizes the mapping error in target space by iterative optimizations of the mapping error (stress)

Exemplo de DR

Figure 2 In this example, data sampled from a non-linear three-dimensional manifold (A) are mapped by a projection-based method (B) and by a manifold learning technique (C). In (B), the projection of the data is a linear transformation that optimally captures Euclidean distances. In (C), distance relationships along the manifold are captured by a non-linear mapping of the data. This figure derives from [21].

Exemplo de DR

Dois princípios de Gestalt são usados aqui: proximidade e similaridade. A lei da proximidade diz que pontos que estão próximos são processados em tempo de pré-atenção e, assim, intuitivamente percebemos que deve compartilhar alguma característica. A lei da similaridade diz que pontos representados por marcadores iguais (cor, símbolo) também indicam compartilhamento de alguma característica, ou seja, os elementos pertencem a um mesmo grupo ou classe.

Class			Name	Complexity	Local?
	Metric		Classical Scaling (Young and Householder, 1938)	$O(n^3)$	
			ISOMAP (Tenenbaum, 1998)	$O(n^2)$	
Multidimensional Scaling			Sammon's mapping (Sammon, 1969)	$O(n^2)$	
			CCA (Demartines and Herault, 1997)	$O(n^2)$	✓
	Non-M	etric	Kruskal (Kruskal, 1964)	$O(n^2)$	
			Wass-spring model (Eades, 1984)	$O(n^3)$	✓
Force-Directed Placement			Charlmers (Chalmers, 1996)	$O(n^2)$	✓
Porce-Directed Flacement			Hybrid Model (Morrison et al., 2002)	$O(n\sqrt{n})$	✓
			Force Scheme (Tejada et al., 2003)	$O(cn^2)$	✓
	Linear	2do order	PCA (Jolliffe, 2002)	$O((n \times m)^3)$	
			Kernel-PCA (Schlkopf et al., 1999)	$O(n^3)$	
			SVD (Demmel and Y, 1997)	$O(n^3)$	
			Anchored Least Stress (ALS) (Wise, 1999)		
		Higher order	Projection Pursuit (Posse, 1995)	O()	
Dimensionality Reduction			LLE (Roweis and Saul, 2000)	$O(n^2)$	
			Fastmap (Faloutsos and Lin, 1995)	O(n)	
	Non-Li	noor	LSP (Paulovich et al., 2008)	$O(nk^2+n^2)$	
	Non-Li	ileai	PLMP (Paulovich et al., 2010)	O(n)	
			PLP (Paulovich et al., 2011)	O(n)	✓
			LAMP (Joia et al., 2011a)	O(n)	✓

Table 3.1 Classification of the multidimensional projection techniques. Where n and k represent the total number of instances and the number samples, c is the number of iterations, and m is the dimensionality of the high-dimensional space.

Extraída de Poco-Medina (2013) baseada em Paulovich(2008)

Técnicas lineares: exemplo PCA e MDS

Principal Component Analysis (PCA)

- Pearson (1901): buscava linhas e planos que melhor se adequassem a um conjunto de pontos em um espaço ndimensional. Conceito de Componente Principal (PC)
- Hotelling (1933): buscava encontrar um conjunto menor de variáveis (dimensões) que expressassem as n variáveis originais. Procurou maximizar essas "componentes principais" no sentido da variância das variáveis originais.
- Baseado na identificação das combinações lineares de variáveis que melhor identifiquem a variabilidade dos dados

PCA

- Dado um conjunto de dados representado por uma matriz de m elementos (pontos), cada um com n atributos (dimensões)
 - PCA sumariza esse conjunto como pontos num espaço formado por eixos não-correlacionados (componentes principais) que são combinações lineares das n dimensões originais
- As k primeiras componentes "contém" a maior variação do conjunto de dados

Interpretação geométrica

- Os n eixos (no espaço n-dimensional) são rotacionados rigidamente (transformação linear) para novas orientações (eixos componentes principais) tal que:
 - O eixo principal 1 tem a maior variância, o eixo 2 tem a segunda maior variância, etc.
 - A covariância entre cada par de eixos é zero, ou seja, os componentes principais não são correlacionados

PCA – definições iniciais importantes

• Centróide dos pontos: valor médio de cada atributo

• Variância:
$$s^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{(n-1)}$$

• Covariância:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

https://www.youtube.com/watch?v=F-nfsSq42ow

Váriaveis X₁ e X₂ tem covariância positiva e variância similar

 $V_1 = 6.67$; $V_2 = 6.24$; Cov = 3.42

Dados centralizados (subtraindo o centróide)

Cálculo dos (eixos) Componentes Principais

PC1 tem a maior variância (9.88); PC2 a menor (3.03); covariância = 0

Os eixos PCs são rotações rígidas dos originais

PC 1 é simultaneamente a direção da maior variância e a regressão linear do conjunto de pontos

Cálculo dos Componentes Principais

Generalização de PCA para n dimensões

- O uso de covariância só faz sentido se os atributos tem valores na mesma unidade de medida
- Para permitir atributos com unidades de medidas diferentes, padroniza-se

$$X'_{im} = \frac{\left(X_{im} - \overline{X}_{i}\right)}{\text{SD}_{i}}$$
 desvio padrão da variável i

Covariâncias entre variáveis assim padronizadas são correlações

$$r_{ij} = \frac{C_{ij}}{\sqrt{V_i V_j}}$$
 variâncias dos atributos $i \in j$

Generalização de PCA para n dimensões

	covariância							
4	A	X ₁	X ₂					
	X ₁	6.6707	3.4170					
	X ₂	3.4170	6.2384					

	1	3		
В		X ₁	X ₂	
	X ₁	1.0000	0.5297	
	X ₂	0.5297	1.0000	

correlação

- Calcula-se os autovetores e os autovalores da matriz de correlação (ou de covariância)
 - Autovalores: variâncias em cada eixo coordenado
 - Autovetores: vetor que aplicando-se a matriz como transformação sofre apenas uma escala com fator=autovalor
- Os autovetores com maiores autovalores são os componentes principais

PCA

Conjunto de dados de 270 artigos (de 4 áreas da CC) com titulo, autores, afiliação, resumo e referências.

Multi-Dimensional Scaling

Young & Householder, Psychometrika, 1938

Shepard, Psychometrika, 1962

Kruskal, Psychometrika, 1964

Entrada:

- {**p**_i} N pontos multidimensionais
- $d_{ij} = d(\mathbf{p}_i, \mathbf{p}_j)$ distância (por exemplo, Euclidiana)

Saída:

• {**x**_i} N pontos 2D que melhor preservam "distância":

$$||\mathbf{x}_i - \mathbf{x}_i|| \approx d_{ii}$$

Em linhas gerais:

Minimiza uma função

$$s = \sum \sum (||\mathbf{x}_i - \mathbf{x}_j|| - d_{ij})^2$$

Conjunto de dados de 675 artigos (de 4 áreas da CC) com titulo, autores, afiliação, resumo e referências.

Técnicas não-lineares

t-SNE (van der Maaten e Hinton, 2008)

- Variação da técnica original SNE (Stochastic Neighbor Embedding) proposta por Hinton e Roweis (2002)
- "A way of converting a high-dimensional data set into a matrix of pair-wise similarities for visualizing the resulting similarity data. t-SNE is capable of capturing much of the **local structure** of the high-dimensional data very well, while also revealing **global structure** such as the presence of clusters at several scales."

SNE

- Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional Euclidean distances between data points into conditional probabilities that represent similarities.
- The similarity of data point x_j to datapoint x_i is the conditional probability, $p_j|i$, that x_i would pick x_j as its neighbor if neighbors were picked in proportion to their probability density under a Gaussian centered at x_i .
 - A probabilidade condicional dos pontos no espaço DR deve ser o mais próxima possível da no espaço original
 - Uma função "custo" é otimizada

t-SNE: t-Distributed Stochastic Neighbor Embedding

- Usa uma distribuição t-Student para calcular a similaridade no espaço DR e não uma Gaussiana
- Usa uma função custo diferente a ser otimizada

Comparação t-SNE e ISOMAP

PCA x t-SNE

Political Spectrum of Deputies

Duas execuções de t-SNE

Government Opposition

Uma boa (mas breve) introdução ao assunto

- Ward, Grinstein and Keim. Interactive Data Visualization. Cap. 7
- Artigos selecionados estão no Moodle

