Answers

CHAPTER 1

Section 1.1 Exercises, pp. 9-13

1. A function is a rule that assigns to each value of the independent variable in the domain a unique value of the dependent variable in the range. 3. B 5. The first statement 7. $D = \mathbb{R}, R = [-10, \infty)$ **9.** The independent variable is h; the dependent variable is V; D = [0, 50]. 11. -3; 1/8; 1/(2x) 13. The domain of $f \circ g$ consists of all x in the domain of g such that g(x) is in the domain of f. **15. a.** 4 **b.** 1 **c.** 3 **d.** 3 **e.** 8 **f.** 1 **17.** 15.4 ft/s; radiosonde rises at an average rate of 15.4 ft/s during the first 5 seconds of its flight. **19.** 2; 2; 2; -2 **21.** A is even, B is odd, and C is even. **23.** $D = \{x: x \neq 2\}; R = \{y: y \neq -1\}$ **25.** $D = [-\sqrt{7}, \sqrt{7}];$ $R = [0, \sqrt{7}]$ **27.** $D = \mathbb{R}$ **29.** D = [-3, 3]

At time t = 3, the maximum height is 224 ft.

33. $1/z^3$ **35.** $1/(y^3 - 3)$ **37.** $(u^2 - 4)^3$ **39.** $\frac{x - 3}{10 - 3x}$ **41.** x **43.** $g(x) = x^3 - 5$, $f(x) = x^{10}$ **45.** $g(x) = x^4 + 2$, $f(x) = \sqrt{x}$

47. $|x^2 - 4|$; $D = \mathbb{R}$ **49.** $\frac{1}{|x - 2|}$; $D = \{x: x \neq 2\}$

51. $\frac{1}{x^2-6}$; $D = \{x: x \neq \sqrt{6}, -\sqrt{6}\}$

53. $x^4 - 8x^2 + 12$; $D = \mathbb{R}$ **55.** f(x) = x - 3

57. $f(x) = x^2$ **59.** $f(x) = x^2$ **61. a.** True **b.** False **c.** True

d. False e. False f. True g. True h. False i. True

63. 3 **65.** 2x + h **67.** $-\frac{2}{x(x+h)}$ **69.** x + a + 1 **71.** $x^2 + ax + a^2 - 2$ **73.** $\frac{4(x+a)}{a^2x^2}$ **75. a.** 864 ft/hr;

the hiker's elevation increases at an average rate of 864 ft/hr. **b.** -487 ft/hr; the hiker's elevation decreases at an average rate of 487 ft/hr. **c.** The hiker might have stopped to rest during this interval of time and/or the trail was level during this portion of the hike.

b. $m_{\rm sec} = 112 \, {\rm ft/s}$; the object falls at an average rate of 112 ft/s.

79. y-axis **81.** No symmetry **83.** x-axis, y-axis, origin **85.** Origin **87.** a. 4 b. 1 c. 3 d. -2 e. -1 f. 7

91. The equation $y = 2 - \sqrt{-x^2 + 6x + 16}$ can be rewritten as $(x - 3)^2 + (y - 2)^2 = 5^2$. Because $y \le 2$, the function is the lower half of a circle of radius 5 centered at (3, 2).

$$D = [-2, 8]; R = [-3, 2]$$
 93. $f(x) = 3x - 2$ or $f(x) = -3x + 4$

95.
$$f(x) = x^2 - 6$$
 97. $\frac{1}{\sqrt{x+h} + \sqrt{x}}$; $\frac{1}{\sqrt{x} + \sqrt{a}}$

95.
$$f(x) = x^2 - 6$$
 97. $\frac{1}{\sqrt{x+h} + \sqrt{x}}$; $\frac{1}{\sqrt{x} + \sqrt{a}}$
99. $\frac{3}{\sqrt{x}(x+h) + x\sqrt{x+h}}$; $\frac{3}{x\sqrt{a} + a\sqrt{x}}$ 101. None 103. y-axis

Section 1.2 Exercises, pp. 22-27

1. A formula, a graph, a table, words **3.** $y = -\frac{2}{3}x - 1$ **5.** The set of all real numbers for which the denominator does not equal 0

7. $y = \begin{cases} x+3 & \text{if } x < 0 \\ -\frac{1}{2}x+3 & \text{if } x \ge 0 \end{cases}$ **9.** Shift the graph to the left 2 units.

11. Compress the graph horizontally by a factor of $\frac{1}{3}$.

13. f(x) = |x - 2| + 3; g(x) = -|x + 2| - 1

15. f(x) = 2x + 1

17. f(x) = 3x - 7 **19.** $C_s = 5.71$; 856.5 million

21. d = -3p/50 + 27; D = [0, 450]

23. a. p(t) = 328.3t + 1875 **b.** 4830

25.
$$f(x) = \begin{cases} 3 & \text{if } x \le 3\\ 2x - 3 & \text{if } x > 3 \end{cases}$$

27. $c(t) = \begin{cases} 0.05t & \text{if } 0 \le t \le 60\\ 1.2 + 0.03t & \text{if } 60 < t \le 120 \end{cases}$

29.

33.

35. a.

b. $D = \mathbb{R}$ **c.** One peak near x = 0; one valley near x = 4/3; x-intercept approx. (-1.3, 0), y-intercept (0, 6)

37. a.

b. $D = \{x: x \neq -3\}$ **c.** Undefined at x = -3; a valley near x = -5.2; x-intercepts (and valleys) at (-2, 0) and (2, 0); a peak near x = -0.8; y-intercept $(0, \frac{4}{3})$

39. a.

b. $D = \mathbb{R}$ **c.** One peak at $x = \frac{1}{2}$; x-intercepts (-1,0) and (2,0); y-intercept (0,2) **41. a.** A, D, F, I **b.** E **c.** B, H **d.** I **e.** A

43. a.

b. $\theta = 0$; vision is sharpest when we look straight ahead. **c.** $|\theta| \le 0.19^{\circ}$ (less than $\frac{1}{5}$ of a degree) **45.** S(x) = 2

47.
$$S(x) = \begin{cases} 1 & \text{if } x < 0 \\ -\frac{1}{2} & \text{if } x > 0 \end{cases}$$

47. $S(x) = \begin{cases} 1 & \text{if } x < 0 \\ -\frac{1}{2} & \text{if } x > 0 \end{cases}$ 49. a. 12 b. 36 c. A(x) = 6x 51. a. 12 b. 21 c. $A(x) = \begin{cases} 8x - x^2 & \text{if } 0 \le x \le 3 \\ 2x + 9 & \text{if } x > 3 \end{cases}$

c.
$$A(x) = \begin{cases} 8x - x^2 & \text{if } 0 \le x \le \\ 2x + 9 & \text{if } x > 3 \end{cases}$$

factor of $\frac{1}{2}$, then shift 2 units to the

c. Shift to the right 2 units, vertically stretch by a factor of 3, reflect across the x-axis, and shift up 4 units.

d. Horizontal stretch by a factor of 3, horizontal shift right 2 units, vertical stretch by a factor of 6, and vertical shift up 1 unit.

57. Shift the graph of $y = x^2$ right 2 units and up 1 unit.

59. Stretch the graph of $y = x^2$ vertically by a factor of 3 and reflect across the x-axis.

61. Shift the graph of $y = x^2$ left 3 units and stretch vertically by a factor of 2.

63. Shift the graph of $y = x^2$ to the left $\frac{1}{2}$ unit, stretch vertically by a factor of 4, reflect across the *x*-axis, and then shift up 13 units.

65. (0, 0); (2, 8) **67.** (0, 0); (4, 16)

77. a. 0.9; 90% chance that server will win from deuce given that such servers win 75% of their service points **b.** 0.1; 10% chance that server will win from deuce given that such servers win 25% of their service points **79. a.** f(m) = 350m + 1200 **b.** Buy

81. a.
$$S(x) = x^2 + \frac{500}{x}$$
 b. Approximately 6.3 ft

b. n! c. 10

Section 1.3 Exercises, pp. 35-39

1. $D = \mathbb{R}; R = (0, \infty)$

5. $(-\infty, -1], [-1, 1], [1, \infty)$ **7.** If a function f is not one-to-one, then there are domain values, x_1 and x_2 , such that $x_1 \neq x_2$ but $f(x_1) = f(x_2)$. If f^{-1} exists, then by definition, $f^{-1}(f(x_1)) = x_1$ and $f^{-1}(f(x_2)) = x_2$, so f^{-1} assigns two different range values to the single domain value of $f(x_1)$.

9.
$$f^{-1}(x) = \frac{1}{2}x$$
 11. y

$$y = f^{-1}(x)$$

13. $g_1(x) = x^2 + 1; D = [0, \infty); R = [1, \infty);$ $g_1^{-1}(x) = \sqrt{x - 1}; D = [1, \infty); R = [0, \infty)$

15. The expression $\log_b x$ represents the power to which b must be raised to obtain x. **17.** $D = (0, \infty)$; $R = \mathbb{R}$

19. a. 3 **b.** 4 **c.** -2 **d.** 3 **e.** 1/2 **21.** $(-\infty, \infty)$

23. $(-\infty, 5) \cup (5, \infty)$ **25.** $(-\infty, 0), (0, \infty)$

27. $f^{-1}(x) = -\frac{1}{4}x + 2$

29.
$$f^{-1}(x) = x^2 - 2$$

31.
$$f^{-1}(x) = 2 + \sqrt{x+1}$$

33.
$$f^{-1}(x) = \sqrt{\frac{2}{x} - 1}$$
 35. $f^{-1}(x) = \frac{1}{2} \ln x - 3$
37. $f^{-1}(x) = \frac{e^x - 1}{3}$ **39.** $f^{-1}(x) = -\frac{1}{2} \log_{10} x$

37.
$$f^{-1}(x) = \frac{e^x - 1}{3}$$
 39. $f^{-1}(x) = -\frac{1}{2} \log_{10} x$

41.
$$f^{-1}(x) = \ln\left(\frac{2x}{1-x}\right)$$

43. a.
$$f_1(x) = \sqrt{1 - x^2}$$
; $0 \le x \le 1$

$$f_2(x) = \sqrt{1 - x^2}; -1 \le x \le 0$$

$$f_3(x) = -\sqrt{1 - x^2}; -1 \le x \le 0$$

$$f_4(x) = -\sqrt{1 - x^2}; 0 \le x \le 1$$

$$J_4(x) = \begin{cases} v_1 & x \\ v_2 & x \end{cases}$$

b.
$$f_1^{-1}(x) = \sqrt{1 - x^2}$$
; $0 \le x \le 1$

$$f_2^{-1}(x) = -\sqrt{1 - x^2}; \ 0 \le x \le 1$$

$$f_3^{-1}(x) = -\sqrt{1-x^2}; -1 \le x \le 0$$

$$f_4^{-1}(x) = \sqrt{1 - x^2}; -1 \le x \le 0$$

45.
$$-0.2$$
 47. 1.19 **49.** $-0.09\overline{6}$ **51.** 1000 **53.** 2 **55.** $1/e$

57.
$$\ln 21/\ln 7$$
 59. $\ln 5/(3 \ln 3) + 5/3$ **61.** 451 years

63. 9.53 years **65. a.** No **b.**
$$f^{-1}(h) = 2 - \frac{1}{4}\sqrt{64 - h}$$

c.
$$f^{-1}(h) = 2 + \frac{1}{4}\sqrt{64 - h}$$
 d. 0.542 s **e.** 3.837 s

67.
$$\frac{\ln 15}{\ln 2} \approx 3.9069$$
 69. $\frac{\ln 40}{\ln 4} \approx 2.6610$ **71.** $e^{x \ln 2}$

73. $\log_5 |x| / \log_5 e$ **75.** *e* **77. a.** False **b.** False **c.** False

d. True **e.** False **f.** False **g.** True **79.** A is $y = \log_2 x$; B is $y = \log_4 x$; C is $y = \log_{10} x$.

83. a. Q 1.0 -0.8 0.6

b. Vertical scaling; steady state equals a. **c.** Horizontal scaling; steady state remains constant. d. a

85.
$$f^{-1}(x) = \sqrt{x-5} + 1, x \ge 5$$
 87. $f^{-1}(x) = \sqrt[3]{x-1}, D = \mathbb{R}$

89.
$$f_1^{-1}(x) = \sqrt{2/x - 2}, D_1 = (0, 1]; f_2^{-1}(x) = -\sqrt{2/x - 2},$$

$$D_2 = (0, 1]$$

f is one-to-one on the intervals $(-\infty, -1/\sqrt{2}], [-1/\sqrt{2}, 0],$ $[0, 1/\sqrt{2}]$, and $[1/\sqrt{2}, \infty)$.

b.
$$x = \sqrt{\frac{1 \pm \sqrt{4y+1}}{2}}, -\sqrt{\frac{1 \pm \sqrt{4y+1}}{2}}$$

Section 1.4 Exercises, pp. 48-51

1. $\sin \theta = \frac{\text{opp}}{\text{hyp}}$; $\cos \theta = \frac{\text{adj}}{\text{hyp}}$; $\tan \theta = \frac{\text{opp}}{\text{adj}}$; $\cot \theta = \text{adj/opp}$; $\sec \theta = \text{hyp/adj}$; $\csc \theta = \text{hyp/opp}$ 3. 3 s 5. The radian measure of an angle θ is the length s of an arc on

the unit circle associated with θ . 7. $\sin^2 \theta + \cos^2 \theta = 1$,

$$1 + \cot^2 \theta = \csc^2 \theta, \tan^2 \theta + 1 = \sec^2 \theta$$
 9. $\theta = 3\pi/2$

11. $\{x: x \text{ is an odd multiple of } \pi/2\}$

13. Sine is not one-to-one on its domain. 15. $3\pi/4$

17. Horizontal asymptotes at $y = \pi/2$ and $y = -\pi/2$

19.
$$-1/2$$
 21. 1 **23.** $-1/\sqrt{3}$ **25.** $1/\sqrt{3}$ **27.** 1 **29.** -1

31. Undefined 33.
$$\frac{\sqrt{2+\sqrt{3}}}{2}$$
 or $\frac{\sqrt{6}+\sqrt{2}}{4}$ 35. $\pi/4+n\pi, n=0,\pm 1,\pm 2,\ldots$

37. $\pi/6$, $5\pi/6$, $7\pi/6$, $11\pi/6$

39. $\pi/4 + 2n\pi, 3\pi/4 + 2n\pi, n = 0, \pm 1, \pm 2, \dots$

41. 0, $\pi/2$, π , $3\pi/2$

43. $\pi/12$, $5\pi/12$, $3\pi/4$, $13\pi/12$, $17\pi/12$, $7\pi/4$

45. 0.1007; 1.4701 **47.** 17.3°; 72.7° **49.** $\pi/2$ **51.** $-\pi/6$

53.
$$\pi/3$$
 55. $2\pi/3$ **57.** -1 **59.** $\sin \theta = \frac{12}{13}$; $\tan \theta = \frac{12}{5}$

61.
$$\sqrt{1-x^2}$$
 63. $\frac{\sqrt{4-x^2}}{2}$ **65.** $2x\sqrt{1-x^2}$ **67.** $\sec \theta = \frac{r}{x} = \frac{1}{x/r} = \frac{1}{\cos \theta}$

67.
$$\sec \theta = \frac{r}{x} = \frac{1}{x/r} = \frac{1}{\cos \theta}$$

69. Dividing both sides of $\cos^2 \theta + \sin^2 \theta = 1$ by $\cos^2 \theta$ gives $1 + \tan^2 \theta = \sec^2 \theta$. 71. Because $\cos (\pi/2 - \theta) = \sin \theta$, for all θ , $1/\cos(\pi/2 - \theta) = 1/\sin\theta$, excluding integer multiples of π , and sec $(\pi/2 - \theta) = \csc \theta$.

73. $\cos^{-1} x + \cos^{-1} (-x) = \theta + (\pi - \theta) = \pi$

75.
$$\pi/3$$
 77. $\pi/3$ **79.** $\pi/4$ **81.** $\pi/2-2$

83.
$$\frac{1}{\sqrt{x^2+1}}$$
 85. $1/x$ **87.** $x/\sqrt{x^2+16}$

89.
$$\theta = \sin^{-1}\frac{x}{6} = \tan^{-1}\left(\frac{x}{\sqrt{36-x^2}}\right) = \sec^{-1}\left(\frac{6}{\sqrt{36-x^2}}\right)$$

91. a. False **b.** False **c.** False **d.** False **e.** True **f.** False **g.** True **h.** False **93.** $\sin \theta = \frac{12}{13}; \tan \theta = \frac{12}{5}; \sec \theta = \frac{13}{5};$ $\csc \theta = \frac{13}{12}$; $\cot \theta = \frac{5}{12}$ **95.** $\sin \theta = \frac{12}{13}$; $\cos \theta = \frac{5}{13}$; $\tan \theta = \frac{12}{5}$;

 $\sec \theta = \frac{13}{5}$; $\cot \theta = \frac{5}{12}$ **97.** Amp = 3; period = 6π

99. Amp = 3.6; period = 48 **103.** Area of circle is πr^2 ; $\theta/(2\pi)$ represents the proportion of area swept out by a central angle θ . Therefore, the area of such a sector is $(\theta/2\pi)\pi r^2 = r^2\theta/2$.

105. Stretch the graph of $y = \cos x$ horizontally by a factor of 3, stretch vertically by a factor of 2, and reflect across the x-axis.

107. Stretch the graph of $y = \cos x$ horizontally by a factor of $24/\pi$; then stretch it vertically by a factor of 3.6 and shift it up 2 units.

109. $y = 3 \sin(\pi x/12 - 3\pi/4) + 13$ **111.** About 6 ft **113.** $d(t) = 10 \cos(4\pi t/3)$ **115.** h

Chapter 1 Review Exercises, pp. 51-55

1. a. True b. False c. False d. True e. False f. False **g.** True **3.** f is one-to-one but not g.

5. $D = \{w: w \neq 2\}; R = \{y: y \neq 5\}$

7. $D = (-\infty, -1] \cup [3, \infty); R = [0, \infty)$ 9. Yes; no 11. 8

13. 7 **15.** 8 **17.** -2 **19.** a. 1 b. $\sqrt{x^3}$ c. $\sin^3 \sqrt{x}$

d. \mathbb{R} **e.** [-1, 1] **21.** 2x + h - 2; x + a - 2

23. $3x^2 + 3xh + h^2$; $x^2 + ax + a^2$ **25. a.** $y = \frac{5}{2}x - 8$

b. $y = \frac{3}{4}x + 3$ **c.** $y = \frac{1}{2}x - 2$ **27.** $B = -\frac{1}{500}a + 212$

29. a.

b.

c.

d.

31.

33. a.

b. 2; 14 **c.**
$$A(x) = \begin{cases} x^2/2 & \text{if } 0 \le x \le 4 \\ -x^2/2 + 8x - 16 & \text{if } 4 < x \le 8 \end{cases}$$

35.
$$f(x) = \begin{cases} 4x & \text{if } x < 0 \\ 0 & \text{if } x \ge 0 \end{cases}$$

37.
$$D_f = \mathbb{R}, R_f = \mathbb{R}; D_g = [0, \infty), R_g = [0, \infty)$$

39. Shift $y = x^2$ left 3 units and down 12 units.

41. a. y-axis **b.** y-axis **c.** x-axis, y-axis, origin **43.** x = 2

45. $t = \frac{e^4 - 4}{5}$ **47.** $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ **49.** $\theta = \pm \frac{\pi}{12}, \pm \frac{5\pi}{12}$

55. $f^{-1}(x) = -\frac{1}{4}x + \frac{3}{2}$ **57.** $f^{-1}(x) = 2 + \sqrt{x - 1}$

59. $f^{-1}(x) = -\sqrt{\frac{x-1}{3}}$ **61.** $f^{-1}(x) = \sqrt{\ln x - 1}$

63. $f^{-1}(x) = \frac{4x^2}{(6-x)^2}$, for $0 \le x < 6$

65. a. $f(t) = -2\cos\frac{\pi t}{3}$ **b.** $f(t) = 5\sin\frac{\pi t}{12} + 15$ **67. a.** F **b.** E **c.** D **d.** B **e.** C **f.** A

69. $(7\pi/6, -1/2)$; $(11\pi/6, -1/2)$ **71.** $-\frac{\sqrt{2+\sqrt{2}}}{2}$

73. $\pi/6$ **75.** $-\pi/2$ **77.** x, provided $-1 \le x \le 1$

79. $\cos \theta = \frac{5}{13}$; $\tan \theta = \frac{12}{5}$; $\cot \theta = \frac{5}{12}$; $\sec \theta = \frac{13}{5}$; $\csc \theta = \frac{13}{12}$

81.
$$\frac{\sqrt{16-x^2}}{4}$$
 83. $\pi/2-\theta$ **85.** 0

81.
$$\frac{\sqrt{16 - x^2}}{4}$$
 83. $\pi/2 - \theta$ 85. 0
87. $\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{2 \sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}$

$$= \frac{2 \sin \theta \cos \theta / \cos^2 \theta}{(\cos^2 \theta - \sin^2 \theta) / \cos^2 \theta} = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

 n
 1
 2
 3
 4
 5
 6
 7
 8
 9

 T(n)
 1
 5
 14
 30
 55
 91
 140
 204
 285

b. $D = \{n: n \text{ is a positive integer}\}$ **c.** 14

91.
$$s(t) = 117.5 - 87.5 \sin\left(\frac{\pi}{182.5}(t - 95)\right)$$

$$S(t) = 844.5 + 87.5 \sin\left(\frac{\pi}{182.5} (t - 67)\right)$$

CHAPTER 2

Section 2.1 Exercises, pp. 61-62

1. $\frac{s(b) - s(a)}{b - a}$ **3.** 20 **5. a.** 36 **b.** 44 **c.** 52 **d.** 60

7. 47.84, 47.984, 47.9984; instantaneous velocity appears to be 48

11. The instantaneous velocity at t = a is the slope of the line tangent to the position curve at t = a. 13. a. 48 **b.** 64 **c.** 80 **d.** 16(6-h) **15.** $m_{\text{sec}} = 60$; the slope is the average velocity of the object over the interval [0.5, 2].

19.

17.	Time interval	Average velocity
	[1, 2]	80
	[1, 1.5]	88
	[1, 1.1]	94.4
	[1, 1.01]	95.84
	[1, 1.001]	95.984
	$v_{\rm inst} =$	96

Time interval	Average velocity
[2, 3]	20
[2.9, 3]	5.60
[2.99, 3]	4.16
[2.999, 3]	4.016
[2.9999, 3]	4.002
$v_{\rm inst} = 4$	

21.	Time interval	Average velocity
	[3, 3.5]	-24
	[3, 3.1]	-17.6
	[3, 3.01]	-16.16
	[3, 3.001]	-16.016
	[3, 3.0001]	-16.002
	$v_{\rm inst} =$	-16

23.	Time interval	Average velocity
	[0, 1]	36.372
	[0, 0.5]	67.318
	[0, 0.1]	79.468
	[0, 0.01]	79.995
	[0, 0.001]	80.000
	$v_{\rm inst} =$	80

25.	Interval	Slope of secant line
	[1, 2]	6
	[1.5, 2]	7
	[1.9, 2]	7.8
	[1.99, 2]	7.98
	[1.999, 2]	7.998
	m_{tan}	= 8

27.	Interval	Slope of secant line
	[0, 1]	1.718
	[0, 0.5]	1.297
	[0, 0.1]	1.052
	[0, 0.01]	1.005
	[0, 0.001]	1.001
	m_{tan}	= 1

b. (2, -1)

2.	Interval	Slope of secant line
	[2, 2.5]	0.5
	[2, 2.1]	0.1
	[2, 2.01]	0.01
	[2, 2.001]	0.001
	[2, 2.0001]	0.0001
		$m_{\rm tan} = 0$