Godzina 17. Grupa A

1. Niech $A, B \subseteq U$. Czy następujące zdanie jest prawdziwe? Uzasadnij odpowiedź.

$$[(A \cap B) \cup B^c]^c = B \backslash A$$

2. Sprawdzić, czy następująca relacja jest zwrotna, przeciwzwrotna, symetryczna, antysymetryczna i przechodnia. Na tej podstawie stwierdzić, czy jest relacją równoważności. Jeśli tak, to określić jej klasy równoważności.

$$R \subseteq \mathbb{Z}^2, (n, m) \in R \Leftrightarrow 4|n-m,$$

- 3. Niech $\Sigma = \{a,b\}$ będzie alfabetem. Dla $w_1,w_2 \in \Sigma^*$ powiemy, że $w_1 \preceq$ w_2 , jeśli w Σ^* istnieje słowo w takie, że $w_2 = w_1 w$. Czy \leq jest częściowym porządkiem w zbiorze Σ^* ? Jesli tak to narysuj diagram Hassego dla zbioru słów $\{\lambda, a, b, ab, aab, bbba, abba\}$. Wskaż, o ile istnieją, elementy najmniejszy, najwiekszy, maksymalne, minimalne. Podaj przykład łańcucha.
- 4. Niech $f: R \to R$ i $f(x) = x^2 4x$. Czy f jest różnowartościowa? Czy jest "na"? Uzasadnij odpowiedź.

Znajdź: $f((1,5)), f^{\leftarrow}(f((4,5)))$

5. Sprawdzić, czy jest tautologia:

$$p \to (q \to (p \to (q \land \neg(r \lor p)))),$$

Godzina 17. Grupa B

1. Niech $A,B\subseteq U$. Czy następujące zdanie jest prawdziwe? Uzasadnij odpowiedź. $(A \oplus B = (A \setminus B) \cup (B \setminus A))$ $(A \oplus B)^C = A^C \oplus B^C$

$$(A \oplus B)^C = A^C \oplus B^C$$

2. Sprawdzić, czy następująca relacja jest zwrotna, przeciwzwrotna, symetryczna, antysymetryczna i przechodnia. Na tej podstawie stwierdzić, czy jest relacją równoważności. Jeśli tak, to określić jej klasy równoważności.

$$R \subseteq \mathbb{R}^2, (x, y) \in R \Leftrightarrow x^2 = y^2,$$

- 3. Niech $\Sigma = \{a,b\}$ będzie alfabetem. Dla $w_1,w_2 \in \Sigma^*$ powiemy, że $w_1 \preceq$ $w_2,$ jeśli w Σ^* istnieje słowo wtakie, że $w_2 = ww_1.$ Czy \preceq jest częściowym porządkiem w zbiorze Σ^* ? Jesli tak to narysuj diagram Hassego dla zbioru słów {a, aa, ba, aba, baa, baba, bbaa}. Wskaż, o ile istnieją, elementy najmniejszy, najwiekszy, maksymalne, minimalne. Podaj przykład łańcucha.
- 4. Niech $f: R \to R$ i $f(x) = x^2 4$. Czy f jest różnowartościowa? Czy jest "na"? Uzasadnij odpowiedź.

Znajdź: $f((-3,1)), f^{\leftarrow}(f((1,2)))$

5. Sprawdzić, czy jest tautologią:

$$(q \land (\neg p \rightarrow r)) \rightarrow ((q \land r) \lor (p \land r)),$$

Godzina 19. Grupa A

1. Niech $A, B \subseteq U$. Czy następujące zdanie jest prawdziwe? Uzasadnij odpowiedź.

$$[(A \cup B) \cap B^c]^c = B \backslash A$$

2. Sprawdzić, czy następująca relacja jest zwrotna, przeciwzwrotna, symetryczna, antysymetryczna i przechodnia. Na tej podstawie stwierdzić, czy jest relacją równoważności. Jeśli tak, to określić jej klasy równoważności.

$$R \subseteq \mathbb{Z}^2, (n,m) \in R \Leftrightarrow 7|n-m,$$

- 3. Niech $\Sigma = \{a, b\}$ będzie alfabetem. Niech $\forall w \in \Sigma^* \quad f(w)$ oznacza liczbę wystąpień litery b w słowie w. Dla $w_1, w_2 \in \Sigma^*$ powiemy, że $w_1 \leq w_2$, jeśli $f(w_1) \leq f(w_2)$. Czy \leq jest częściowym porządkiem w zbiorze Σ^* ? Jeśli tak to narysuj diagram Hassego dla zbioru słów {a, aa, ba, aba, baa, baba, bbaa}. Wskaż, o ile istnieją, elementy najmniejszy, najwiekszy, maksymalne, minimalne. Podaj przykład łańcucha.
- 4. Niech $f:[0,4\pi]\to R$ i $f(x)=\cos\frac{x}{2}$. Czy f jest różnowartościowa? Czy jest "na"? Uzasadnij odpowiedź.

Znajdź: $f((0,3\pi)), f^{\leftarrow}(f((2\pi,3\pi)))$

5. Sprawdzić, czy jest tautologia: $((p \rightarrow q) \rightarrow r) \rightarrow ((p \land q) \lor \neg r),$

Godzina 19. Grupa B

1. Niech $A, B \subseteq U$. Czy następujące zdanie jest prawdziwe? Uzasadnij odpowiedź. $(A \oplus B = (A \setminus B) \cup (B \setminus A))$ $(A \oplus B)^C = A \oplus B$

$$(A \oplus B)^{\hat{C}} = A \oplus B$$

2. Sprawdzić, czy następująca relacja jest zwrotna, przeciwzwrotna, symetryczna, antysymetryczna i przechodnia. Na tej podstawie stwierdzić, czy jest relacja równoważności. Jeśli tak, to określić jej klasy równoważności.

$$R \subseteq \mathbb{R}^2, (x, y) \in R \Leftrightarrow x^3 = y^3.$$

- 3. Niech $\Sigma = \{a, b\}$ będzie alfabetem. Niech $\forall w \in \Sigma^* \quad f(w)$ oznacza liczbę wystąpień litery a w słowie w. Dla $w_1, w_2 \in \Sigma^*$ powiemy, że $w_1 \leq w_2$, jeśli $f(w_1) \leq f(w_2)$. Czy \leq jest częściowym porządkiem w zbiorze Σ^* ? Jeśli tak to narysuj diagram Hassego dla zbioru słów {a, aa, ba, aba, baa, baba, bbaa}. Wskaż, o ile istnieją, elementy najmniejszy, najwiekszy, maksymalne, minimalne. Podaj przykład łańcucha.
- 4. Niech $f:[0,\pi]\to R$ i $f(x)=\sin 2x$. Czy f jest różnowartościowa? Czy jest "na"? Uzasadnij odpowiedź.

Znajdź: $f((0, \frac{3}{4}\pi)), f^{\leftarrow}(f((0, \frac{\pi}{8})))$

5. Sprawdzić, czy jest tautologią:

 $((p \lor \neg r) \land q) \rightarrow (\neg (p \land q) \lor r).$