

Ministerul Educației, Cercetării și Tineretului

Olimpiada Națională de Fizică

Hunedoara, 9-15 aprilie 2007 Proba teoretică - barem

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Oricare alta varianta corecta de rezolvare se va puncta in mod cor		
Subject	Parțial	Total
1. A) Total punctaj subiect 1		10
A) Datorită echilibrului termic, putem scrie: $\frac{m_1 v_1^2}{2} = \frac{m_2 v_2^2}{2}$,	0,5	3p.
unde an notat $m_{1,2}$ masele moleculelor de oxigen respectiv heliu și $v_{1,2}^2$ vitezele		
pătratice medii. Deci: $\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}} = \sqrt{\frac{\mu_2}{\mu_1}}$		
Datorită distribuirii uniforme a moleculelor pe 3 direcții, după un interval de timp Δt	0.5	
de la realizarea orificiului moleculele se află într-un cilindru de volum: $v\Delta tS$, unde S reprezintă suprafața orificiului. Notăm $n_{01;02}$ concentrațiile moleculelor de oxigen,		
respectiv heliu.		
Numerele de molecule, din fiecare gaz, care ies în intervalul Δt din incintă sunt: $N_1 = n_{01}v_1S\Delta t$ respectiv $N_2 = n_{02}v_2S\Delta t$	0,5	
Deci: $\frac{N_1}{N_2} = \frac{n_{01}v_1}{n_{02}v_2} = \frac{n_{01}}{n_{02}}\sqrt{\frac{\mu_2}{\mu_1}}$	0,5	
La concentrații egale: $\frac{N_1}{N_2} = \sqrt{\frac{\mu_2}{\mu_1}} = \frac{1}{2\sqrt{2}}$	0,5	
La mase egale: $n_{01}\mu_1 = n_{02}\mu_2$ rezultă: $\frac{N_1}{N_2} = \frac{\mu_2}{\mu_1}\sqrt{\frac{\mu_2}{\mu_1}} = \frac{1}{16\sqrt{2}}$	0.5	
B) $\eta_{1231} = \frac{L_{1231}}{Q_{12} + Q_{23}}$	0,5	3,5 p
$L_{1231} = A_{1231} = A_{V_0123(2V_0)V_0} - A_{V_013(2V_0)V_0}$	0,5	
$L_{V_0123(2V_0)V_0} = 3p_0V_0$		
$L_{V_013(2V_0)V_0} = A_{V_013(2V_0)V_0} = A_{V_01O(2V_0)V_0} + A_{13O1}$		
$A_{13O1} = \frac{\pi p_0 V_0}{4}$	0,5	

$L_{1231} = p_0 V_0 \left(1 - \frac{\pi}{4} \right)$	0,5	
$Q_{12} = \nu C_{\nu} \left(T_2 - T_1 \right) = \nu \frac{3}{2} R \left(T_2 - T_1 \right)$		
$Q_{12} = \frac{3}{2} p_0 V_0$	0,5	
$Q_{23} = \nu C_p \left(T_3 - T_2 \right) = \nu \frac{5}{2} R \left(T_3 - T_2 \right)$		
$Q_{23} = \frac{15}{2} p_0 V_0$	0,5	
$\eta_{1231} = \frac{p_0 V_0 \left(1 - \frac{\pi}{4}\right)}{9 p_0 V_0} = \frac{4 - \pi}{36} \eta_{1231} = 2,38\%$	0,5	
B. b) $\eta_{4564} = \frac{L_{4564}}{Q_{45}}$	0,5	2,5p
$L_{1231} = L_{4564}$		
$\frac{\eta_{4564}}{\eta_{1231}} = \frac{Q_{12} + Q_{23}}{Q_{45}}$	0.5	
$Q_{45} = \Delta U_{45} + L_{45};$	0,5	
$\Delta U_{45} = \nu C_V (T_5 - T_4) = 6 p_0 V_0$		
$L_{45} = A_{O5(3V_0)(2V_0)O} - A_{O54O}$	0,5	
$L_{45} = p_0 V_0 \left(2 - \frac{\pi}{4} \right)$		
$\frac{\eta_{4564}}{\eta_{1231}} = \frac{36}{32 - \pi} = 1.25$	0,5	
Oficiu		1,0

$I_3 = \frac{\left(E_1 - E_2\right)R_2 - E_2R_1}{R_1R_2 + R_2r + R_1r}$		
$I_2 = \frac{E_2}{R_2} + \frac{r}{R_2} \frac{(E_1 - E_2)R_2 - E_2R_1}{R_1R_2 + r(R_1 + R_2)}$.	1,0	
Când $E_1 = 6.1 \text{ V} \Rightarrow \begin{cases} I_3 = 0.0245 A \\ I_2 = 0.5 A \\ I_1 = 0.5245 A \end{cases}$. Când $E_1 = 5.5 \text{V} \Rightarrow \begin{cases} I_3 = -0.122 A \\ I_2 = 0.5 A \\ I_1 = 0.375 A \end{cases}$.	0,5	
Rezultă că, undeva pe parcurs, datorită variației lineare, se inversează sensul curentului prin acumulator care devine, din consumator, sursă.		
b) $I_3' = \frac{\left(\left(6,1-\frac{t}{40}\right)-E_2\right)R_2-E_2R_1}{R_1R_2+R_2r+R_1r}$, $I_3' = \frac{4-t}{163}$, $I_{03} = 0,0245 A$, $I_3 = -0,122 A$	0,5	2
I_3	1,0	
I_{03} 4 8 12 16 20 24 $t(h)$		
Pe ramura AB intensitatea curentului rămâne constantă.	0,5	_
Prin acumulator curentul își schimbă sensul după 4h.	0,5	
2. B. a) $R_{serie} = NR_0$; $R_{paralel} = \frac{R_0}{N}$; se transferă aceeași putere dacă $R_{baterie} = \sqrt{R_{serie}R_{paralel}}$ Deci $R_{baterie} = R_0$	0,5p	3
Pentru a transfera puterea maximă trebuie îndeplinită condiția; $R_{baterie} = R_0$ Schemă posibilă de conectare este;	1p	
2. B b) Pentru acest caz $R'_{baterie} = \frac{NR_0}{m}$ Deci $R'_{baterie} = 0.5\Omega$	0,5p	
Schemă posibilă de conectare este;	1p	

Subject						Parțial	Total	
3. Total punctaj subiect 3							10	
a) Procesul de comprimare poate fi descompus în trei etape:							1	3
Între 1 și 2 întreg sistemul se poate descrie ca un gaz perfect.								
Din starea 2 începe condensarea vaporilor; presiunea rămâne constantă până la condensarea							rea	
tuturor va	tuturor vaporilor (starea 3);							
Din stare	a 3, toți vapor	ii s-au condens	at. Azotul	se comprii	mă izoterm.	. Neglijăm volun	nul	
apei.			<u> </u>	1				
1	2	3	4				1	
p ₁ , 2V	V_0 2p ₁ , V_0	$2p_1, V_0/2$	$4p_1, V$	₀ /4				
† p((atm)				$V_0 = \frac{RT}{}$	$\frac{1}{1} = 61,2 dm^3$	1	
2,0	- 1 ⁴				\boldsymbol{p}_1	,		
	1							
	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	2						
1,0			-					
0,5	- 		1 	-				
		į		i i				
+	V_{0} /4 V_{0} /2	V_{o}		$2V_0$ V				
1 \ T	$2V_0$	2 . D.(II 1 . 2	4207 I				0,5	2
b) $L_{12} =$	$\frac{2\boldsymbol{v}\boldsymbol{R}\boldsymbol{T}_{\!1}\ln\frac{2\boldsymbol{V}_{\!0}}{\boldsymbol{V}_{\!0}}$	$r = 2VRT_1 \ln 2$	= 429 / J				0,5	
	$o_1(V_0-V_0/2)$						0,5	
T _ 1, I	$V_0/2$	2. DT ln 2 -	2140 T T	_ T _ T	+ I = 0	15.15 T	1,0	
$\mathbf{L}_{34} = V\mathbf{I}$	$\mathbf{R} \mathbf{T}_1 \ln \frac{\mathbf{V}_0/2}{\mathbf{V}_0/4} =$	$2V\mathbf{R}\mathbf{I}_1 \text{ in } 2 = 1$	2149 J L	$u = L_{12} + L_{2}$	$\mathbf{L}_{34} = \mathbf{S}_{34}$	343 J .	,	
c) $Q = I$	$L + \Delta U$; ΔU	$+L_{23}=m\lambda$; ($Q = m\lambda + 1$	$\overline{\boldsymbol{L}_{12} + \boldsymbol{L}_{34}}$;	Q = 46940	6 J		2
d)							0,5	2
Starea	Stâ	nga	dr	dreapta		p _{piston}		
	volum	presiune	volum	presiune	V _{total}			
1	V_0	0,5	V_0	0,5	$2oldsymbol{V}_0$	0,5		
2	V_0	0,5	V ₀ /2	1,0	1,5 V ₀	1.0		
3	V ₀ /2	1.0	V ₀ /3	1,5	5,6 V ₀	1,5		
4	0	1,0	V ₀ /3	1,5	V ₀ /3	1,5		
5	0	1,5	V ₀ /4	2,0	V ₀ /4	2,0		
6	0	1,5	V ₀ /3	1,5	V ₀ /3	1,5		

П				1	1		<u> </u>	I
7 0	1,0	V_0	0,5	V_0	0,5			
8 V ₀ /2	1,0	V_0	0,5	1,5 V ₀	0,5			
	$\frac{1,0}{\sqrt{2}}$ $(\sqrt{2}+2)/2$	$V_0/\sqrt{2}$	$\sqrt{2}/4$	$2V_0$	$\sqrt{2}/4$			
Pentru transformat							0,5	
$\frac{RT_1}{p} + \frac{RT_1}{p+0.5} = V$	$V; \boldsymbol{V} = 2\boldsymbol{V}_0 = \frac{2\boldsymbol{R}^T}{0.5}$	$\frac{T_1}{p}$; $\frac{1}{p} + \frac{1}{p}$	$\frac{1}{0,5} = \frac{2}{0,5}$; 2p + 0, 5	=4p(p-1)	+0,5)		
Presiunea compart	imentului din drea	pta va fi:						
$p = \frac{1}{\sqrt{8}} = \frac{\sqrt{2}}{4} = 0,$	35 <i>atm</i>							
Volumul comparti	mentului din dreap	ota la presi	unea p este	$\mathbf{V} = \mathbf{V}_0 \sqrt{2}$	2			
Pentru compartime								
$p_{st} = p + 0, 5 = 0, 8$	$55 atm$; $V_{st} = (2 -$	$\sqrt{2}$ V_0						
$\uparrow p(atm)$							1	
2,05								
	4 3							
1,56								
1,0 1	·		2					
1,0		7		1				
0,5	· 		18					
0,35	 			9				
$V_0/4V$	$V_0/3 - 5/6 V_0 V$	0	$1,5V_{ m o}$	$2V_{\scriptscriptstyle 0}$	\overrightarrow{V}			
Oficiu								1

Subiect propus de:

prof. Seryl TALPALARU – Colegiul Național "Emil Racoviță" - Iași

prof. Stelian URSU – Colegiul Național "Frații Buzești"- Craiova

 $prof.\ dr.\ Constantin\ COREGA-Colegiul\ Național\ ,, Emil\ Racoviță"-Cluj-Napoca$