ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 6 ABGABE: 28.11.2016

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. Sei (X, μ) ein Maßraum mit $\mu(X) < \infty$. Sei $L^{\infty}(X, \mu)$ der Raum der (Äquivalenzklassen modulo f.ü. Gleichheit) wesentlich beschränkter μ -messbarer Funktionen und $L^2(X, \mu)$ der Hilbertraum der (Äquivalenzklassen...) quadratintegrierbaren Funktionen auf (X, μ) . Man zeige:

- (1) $L^{\infty}(X,\mu)$ ist eine Algebra bezüglich punktweiser Multiplikation und eine C^* -Algebra bezüglich $f^*(x) = \overline{f(x)}$.
- (2) $\pi: L^{\infty}(X, \mu) \longrightarrow \mathcal{L}(L^{2}(X, \mu)), f \longmapsto L_{f}$, wobei $L_{f}(\psi) = f\psi$, definiert einen isometrischen *-Morphismus.
- (3) Sei $T \in \pi(L^{\infty}(X,\mu))'$, dann gilt $T(1) \in L^{\infty}(X,\mu)$ und $||T(1)||_{\infty} \leq ||T||$, wobei 1 die konstante Funktion $X \longrightarrow \mathbb{C}$, $x \longmapsto 1$, bezeichnet.
 - (4) $L^{\infty}(X,\mu)$ ist bezüglich π eine von Neumann-Algebra.

Hinweis: Es reicht zu zeigen, dass $\pi(L^{\infty}(X,\mu))' = \pi(L^{\infty}(X,\mu))$. Man zeige dazu

$$T = L_{T(1)}, \quad \forall T \in \pi(L^{\infty}(X, \mu))'.$$

Aufgabe 2. Sei A eine kommutative C^* -Algebra und $\pi: A \longrightarrow \mathcal{L}(\mathcal{H})$ eine irreduzible Darstellung. Man zeige, dass \mathcal{H} eindimensional ist.

Hinweis: Aus Theorem 1.8.2 folgt $\pi(A)' = \mathbb{C} \operatorname{id}_{\mathcal{H}}$. (Es gibt aber auch andere Beweisvarianten.)

Aufgabe 3. Sei ϕ ein reiner Zustand der C^* -Algebra A. Man zeige $A/N_{\phi}=H_{\phi}$. (3 Punkte) Hierbei sind

$$N_{\phi} = \left\{ a \in A \mid \phi(a^*a) = 0 \right\}$$

und H_{ϕ} wie in Konstruktion 1.6.3 im Skript.