Data Organization(Lists and Arrays)

Objectives

- To understand how indexing is used to organize data.
- To understand concepts of single and multi indexing.

Organizing data

- Humans hate disorder.
- We try and organize our lives, our cities, our homes and even sometimes our desks and our bedrooms.
- There are many ways of organizing things, and we naturally organize different things in different ways.
- The organization we use depends on the things we are trying to organize and often more importantly, what we actually wish to do with them once they are organized.
 - Addresses are organized into postal areas so that it is easier for letters to be delivered.
 - A bookshop organizes its novels on the shelves usually alphabetically by author.
- The way we organize the things we must manipulate to achieve a task can make a massive difference to how quickly, easily or successfully the task can be done.

Game of Spit Not So (Berlekamp et al, 1982)

The game is played as follows by two players:

- Write the nine words: SPIT NOT SO FAT FOP AS IF IN PAN on separate pieces of cards.
- The cards are placed face up.
- Each player takes it in turns to take a card.
- To win you must get all the cards that have the same letter.
 - For example if you had picked up the cards SPIT, IF and IN, you would have all the cards containing the letter I so would win.
- If all the cards are taken with no one having all of a particular letter then the game is a draw.

• Play a few games to get then idea, then turn the page to see how a suitable organization will help you play better.

- Before you start to play draw up the following grid, with the words that are on the cards written in the squares shown.
- The position of each word is important.
- They have been organized so that there is a single letter in common in each row, column and diagonal.
- All the F-words run along the bottom, for example.

NOT	IN	PAN
SO	SPIT	AS
FOP	IF	FAT

- Keep this hidden from your opponent otherwise they may see the secret.
- Play the game exactly as before, except, now each time you pick up a card, put a cross in the square that corresponds to that word.
- Put a nought in the squares corresponding to the cards your opponent takes.

• For example, the above game will end with your table looking like the following:

NOT | IN | PAN

NOT	IN	PAN
\mathbf{O}		X
SO	SPIT	AS
O	X	
O FOP	X IF	FAT

Is there a better way to store and access related items?

- How should I store the details of all the student names of my class?
 - If 60 students in a class can I have 60 different variable names?
 - E.g. name1, name2, name3, name60.
 - ✓ Is it organized for efficient access?

- ✓ Is it easy to be remembered?
- ✓ What happens if number of students increase from 60 to 80?

Is there a better way to store and access related items?... Answer

- How should I store the details of all the student names of my class?
 - If 60 students in a class can I have 60 different variable names?
 - E.g. name1, name2, name3, name60.
 - ✓ Is it organized for efficient access? No

- ✓ Is it easy to be remembered? No
- ✓ What happens if number of students increase from 60 to 80?

It becomes even more difficult to be handled and remembered

Lists

- A list is a sequence of items that are arranged in a particular order.
- Eg. list of your all time favorite records
 - 1. Bohemisn Rhspdody Queen
 - 2. Stairway to Heaven Led Zeppelin
 - 3. Your Song Elton John
 - 4. Who made who -AC/DC
 - 5. Sweet Child of Mine Guns 'n Roses
- Any item on the list can be identified by its position in the list.
- We denote the first item in the list as list [first_location] and the second item in the list as list[second_location].

Lists — Storage organization

Data is stored at some location and each location has an address (Figure:

Storage Organization).

Figure : Storage Organization

Figure: List of Five painting records

• Each piece of data is located at an address (Figure: List of Five painting records).

Lists - Indices

• Addresses in lists are numbers (indices) as illustrated in Figure: List indices

First index (at index 8)

1 2 3 4 5 6 7 8 9 Indices

Figure: List indices

Adding Elements to list

• Lists can have new entries added anywhere, including in the middle, and their length can increase as needed.

Original List

- 1. Bohemisn Rhspdody Queen
- 2. Stairway to Heaven Led Zeppelin
- 3. Your Song Elton John
- 4. Who made who -AC/DC
- 5. Sweet Child of Mine Guns'n Roses

List after adding a new element

- 1. Bohemisn Rhspdody Queen
- 2. Every Breath you take Police
- 3. Stairway to Heaven Led Zeppelin
- 4. Your Song Elton John
- 5. Who made who -AC/DC
- 6. Sweet Child of Mine Guns 'n Roses
- 7. The Ghost of Tom Jord Bruce Springsteen

Department of CSE, Coimbatore

Removing Elements from List

Entries can be removed from lists.

Original List

- 1. Bohemisn Rhspdody Queen
- 2. Every Breath you take Police
- 3. Stairway to Heaven Led Zeppelin
- 4. Your Song Elton John
- 5. Who made who -AC/DC
- 6. Sweet Child of Mine Guns 'n Roses
- 7. The Ghost of Tom Jord Bruce Springsteen

List after deletion of two elements

- 1. Bohemisn Rhspdody Queen
- 2. Stairway to Heaven Led Zeppelin
- 3. Your Song Elton John
- 4. Who made who -AC/DC
- 5. Sweet Child of Mine Guns 'n Roses

Real Time Applications of lists

We use lists all the time...

✓ Whenever I go shopping.

✓ The "To-Do" list is one of the most common ways that people use to organize their work or studies.

✓ Many simple children's board games are based on list-like structures.

Arrays

- Array is a fixed sized list comprising of collections of variables, which we call elements.
- An array's elements are numbered using indices (Figure: Organization of array)
- The total number of elements in a given array is called as the length of an array.

Figure: Organization of array

Arrays contd---

- All elements of a given array are of the same type.
- This allows one to represent a group of similar elements as an ordered sequence and work on them as a whole.
- Arrays can be in different dimensions (Figure: A 1-D and 2-D array), but the most used are the one-dimensional and the two-dimensional arrays.
- One-dimensional arrays are also called vectors.

Figure: A 1-D and 2-D array

Array Properties

- Arrays have three important properties.
 - Arrays represent a group of related data.
 - (e.g. -- temperature for the last five days, or stock prices for the last 30 days.)
 - All data within a single array must share the same data type.
 - The size of an array is fixed once it is created.

Declaration/Creation of an Array

- Allocate an array with length of specified elements of mentioned type.
- During the creation/declaration of the array one must set the total number of the elements in the brackets (a non-negative integer number), defining its length.

Eg. number mark[6], string name[5]

- The array cannot change its location nor can it change its length.
- The array cannot expand to fill more nor can it shrink to take up less storage.

Figure: mark[6]

Boundaries of an Array

- Arrays are by default zero-based, which means the enumeration of the elements starts from 0.
- The index of the first element is 0, and that of the second element is 1, and so on.
- In an array of N elements, the last element has the index N-1.

Figure: Boundary of myArray is 5

Array element access

- We access the array elements directly using their indices.
- Each element can be accessed through the name of the array and the element's index (consecutive number) placed in the brackets.
- For Eg. numberArray[2] produces the 3rd element, 6.

Figure: Elements of numberArray

Array element access contd---

- As long as we keep track of the location of the array, we will be able to access every item in the array.
- The location of the array is known as the base address or the anchor, and is the memory address of the first item in the array.
- From a computer's perspective, the name of an array corresponds to the anchor of the array.
 - If the name of the array is known, then the anchor is known and all of the array items can be accessed by their index.
 - Access elements by....(anchor of array A)+(i-1)

✓ Can you show how can the elements (4,1, and 6) be accessed from the array Arr=[1,2,3,4,5,6]?

Answer.....

```
4-----arr[3]
1-----arr[0]
6-----[5]
```


1. Given the array scores,

- ✓ How many elements are there?
- ✓ What is the fifth element in the array?
- ✓ What is the result of mean = (scores[0] + scores[1])/2
- 2. Workout the average of Quiz1 and student0 with the following data?

	Quiz1	Quiz2
Student0	95	85
Student1	89	80

Department of CSE, Coimbatore

Answers

```
How many elements are there? 10

What is the fifth element in the array? 67

What is the result of

mean = (scores[0] + scores[1])/2;
(79+87)/2 = 83
```

Can you workout the average of Quiz1 and student0 with the following data??? 92,90

Real time Applications of arrays

• A row of houses down one side of a street is organized like an array.

• Photo albums are similar to an array. They are "flip albums", with leaves for holding each photo.

• To the array of animals given below show

✓ How to add

✓ How to delete

Answer....

Create an empty location by first performing delete

Insert the new element in the desired location by moving the other elements

• Consider the payroll task, that requires several pieces of information (hours worked, rate of pay, and regular and over time pay) for the employees of an organization.

✓ Can we organize such data as individual arrays, one for each of the piece of information?

✓ Is this an efficient approach?

Answer....

- Consider the payroll task, that requires several pieces of information (hours worked, rate of pay, and regular and over time pay) for the employees of an organization.
- ✓ Can we organize such data as individual arrays, one for each of the piece of information? Yes
- ✓ Is this an efficient approach? No because individual single D Arrays of say... 2 attributes do not capture the relationship between the two attributes... A Multi D array is a better choice

Multi Dimensional Arrays

• Although it is useful to have data in one-dimensional arrays, it is sometimes useful to arrange data into rows and columns (two dimensional arrays), rows columns and ranks (three-dimensional), or even higher dimensionality.

•A particular cell in a five-dimensional array may be accessed as follows: $Arr_name[dim1][dim2][dim3][dim4][dim5].$

Multi Dimensional Arrays contd---

• For eg., if there are eight students and ten questions, and the answers can be stored in a two-dimensional array as given.

Students' Answers to the Questions:

 0 1 2 3 4 5 6 7 8 9

 Student 0
 A B A C C D E E A D

 Student 1
 D B A B C A E E A D

 Student 2
 E D D A C B E E A D

 Student 3
 C B A E D C E E A D

 Student 4
 A B D C C D E E A D

 Student 5
 B B E C C D E E A D

 Student 6
 B B A C C D E E A D

 Student 7
 E B E C C D E E A D

• Similarly, the distances between the cities can be represented using a two-

dimensional array as given.

		I	Distance Table	(in miles)			
	Chicago	Boston	New York	Atlanta	Miami	Dallas	Houston
Chicago	0	983	787	714	1375	967	1087
Boston	983	0	214	1102	1763	1723	1842
New York	787	214	0	888	1549	1548	1627
Atlanta	714	1102	888	0	661	781	810
Miami	1375	1763	1549	661	0	1426	1187
Dallas	967	1723	1548	781	1426	0	239
Houston	1087	1842	1627	810	1187	239	0

Multi Dimensional Arrays contd---

- An array can be declared with multiple dimensions.
 - 2 Dimensional

3 Dimensional

 \bullet Multiple dimensions get difficult to visualize graphically (say, from a dot to a cube within a cube) .

✓ Can you specify the dimension of the array and show how individual elements can be accessed?

- ✓ Can you show the pictorial representation of the memory associated with an array named a containing 10 integers?
- ✓ Can you model an array to store the datebook information (specify the dimension, number of indices, show how to access, modify a particular entry of the datebook)?

Answer....

- A. 2X4 D. 3X3
- B. 2X2 E. 1X3
- C. 4X5 F. 5X3

Model using one 2D array for storing days of a particular month

Locate an entry using 3 dimensions and update

E.g. cal[2015][10][3]

Organizing data

- Humans hate disorder.
- We try and organise our lives, our cities, our homes and even sometimes our desks and our bedrooms.
- There are many ways of organising things, and we naturally organise different things in different ways.
- The organisation we use depends on the things we are trying to organise and often more importantly, what we actually wish to do with them once they are organised.
 - Addresses are organised into postal areas so that it is easier for letters to be delivered.
 - A bookshop organises its novels on the shelves usually alphabetically by author.
- The way we organise the things we must manipulate to achieve a task can make a massive difference to how quickly, easily or successfully the task can be done.

Game of Spit Not So (Berlekamp et al, 1982)

The game is played as follows by two players:

- Write the nine words: SPIT NOT SO FAT FOP AS IF IN PAN on separate pieces of cards.
- The cards are placed face up.
- Each player takes it in turns to take a card.
- To win you must get all the cards that have the same letter.
 - For example if you had picked up the cards SPIT, IF and IN, you would have all the cards containing the letter I so would win.
- If all the cards are taken with no one having all of a particular letter then the game is a draw.

• Play a few games to get then idea, then turn the page to see how a suitable organisation will help you play better.

- Before you start to play draw up the following grid, with the words that are on the cards written in the squares shown.
- The position of each word is important.
- They have been organised so that there is a single letter in common in each row, column and diagonal.
- All the F-words run along the bottom, for example.

NOT	IN	PAN
SO	SPIT	AS
FOP	IF	FAT

- Keep this hidden from your opponent otherwise they may see the secret.
- Play the game exactly as before, except, now each time you pick up a card, put a cross in the square that corresponds to that word.
- Put a nought in the squares corresponding to the cards your opponent takes.

• For example, the above game will end with your table looking like the following:

NOT | IN | PAN

NOT	IN	PAN
\mathbf{O}		X
SO	SPIT	AS
	I	I
O	X	
O FOP	X IF	FAT

What has been described?

- Arrays and their importance.
- Operations on arrays(create, add, delete, locate).
- The properties of arrays.
- Multi-dimensional arrays.

Credits

- Software Solution, Foundation for program design, Lewis and Loftus
- Computing Without Computers, A Gentle Introduction to Computer
 Programming, Data Structures and Algorithms, V ersion 0.15, Paul Curzon
- Google images