ALGORITHMS AND DATA STRUCTURES II

Lecture 2

Heaps,

Heapsort Algorithm,

Priority Queues

1/35

Lecturer: K. Markov

markov@u-aizu.ac.jp

- Binary trees.
 - The depth of a node is its distance from the root.
 - The depth of a tree is the depth of the deepest node.
- o A binary tree of depth n is balanced if all the nodes at depths 0 through n-2 have two children.

- A balanced binary tree is left-justified if:
 - all the leaves are at the same depth, or
 - all the leaves at depth n are to the left of all the nodes at depth n-1.

Left-justified

Not left-justified

- What is a heap?
 - A balanced, left-justified binary tree in which no node has a value greater than the value in its parent.

Heap property.

• A node has the <u>heap property</u> if the value in the <u>node is as large as or larger</u> than the values in its children.

- o "Heapify".
 - Given a node that does not have the heap property, you can give it the heap property by <u>exchanging</u> its value with the value of the larger child.

6/35

Array representation.

• In practice, it is easier and more efficient to implement a heap using an array.

• Relationships between indexes of parents and children

PARENT(i): $\{\text{return } \lfloor i/2 \rfloor \}$

LEFT(i): {return 2i}

RIGHT(i): {return 2i+1}

- Maintaining heap property.
 - Input: array A and index i.
 - Output: sub-tree rooted at *i* with heap property.

```
search the
largesdef MaxHeapify (A, i)
          l = LEFT(i)
num.
          r = RIGHT(i)
          if l \le A. heapsize and A[l] > A[i]:
                                                   // if L child exists and is > A[i]
                largest = l
         else:
                largest = i (i=parent)
          if r \le A. heapsize and A[r] > A[largest]:
                largest = r
          if i \neq largest:
              swap(A[i], A[largest])
                                                    // heapify the subtree
              MaxHeapify (A, largest)
```

8/35

- Constructing a heap.
 - <u>Bottom-up:</u> Put everything in an array and then heapify the trees in a bottom-up way.
 - Given a heap of n nodes, what's the index of the last parent? $(\lfloor n/2 \rfloor)$

```
def HeapBottomUp (A)
  //Constructs a heap from the elements
  //of a given array by the bottom-up algorithm
  //Input: An array A[1..n] of orderable items
  //Output: A heap A[1..n]
  A. heapsize = A. length
  for i = [A. length/2] to 1
    MaxHeapify (A, i)
```


- Time complexity of heap construction.
 - An n node heap has height $h = \lfloor \log n \rfloor$.
 - There are at most $\lceil n/2^{h+1} \rceil$ nodes at any height h.
 - MaxHeapify complexity is $O(\log n) = O(h)$.
 - The time complexity of **HeapBottomUp** is then bounded from above by:

$$\sum_{h=0}^{\lfloor \log n \rfloor} \left[\frac{n}{2^{h+1}} \right] O(h) = O\left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right) = O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right) = O(n)$$

since
$$\sum_{h=0}^{\infty} \frac{h}{2^h} = 2$$

New element insertion.

- Insert element at the last position in heap.
 - Add the node just to the right of the rightmost node in the deepest level
 - If the deepest level is full, start a new level.

- Compare with its parent, and exchange them if it violates the heap property.
- Continue comparing the new element with nodes up the tree until the heap property condition is satisfied.

- Top down heap construction.
 - Start with empty heap.
 - Insert all nodes one at a time.

18/35

- Top down heap construction.
 - Start with empty heap.
 - Insert all nodes one at a time.

- Root deletion.
 - The root of a heap can be deleted and the heap fixed up as follows:
 - Exchange the root with the last leaf.
 - Decrease the heap's size by 1.

- Heapify the smaller tree in exactly the same way we did it in **MaxHeapify**.

• Root deletion.

21/35

- Root deletion.
 - Removing next root.

- Heapsort algorithm.
 - (Heap construction) Build heap for a given array (either bottom-up or top-down).
 - (Maximum deletion) Apply the root-deletion operation n-1 times to the remaining heap until heap contains just one node.

- The "root" is the first element in the array.
- The "rightmost node at the deepest level" is the last element.
- Swap them...

• ...And pretend that the last element in the array no longer exists—that is, the "last index" is 11 (9).

• Reheap the root node (index 0, containing 11).

- ...And again, remove and replace the root node.
- Repeat until the last becomes first, and the array is sorted!

• Animated example.

6 5 3 1 8 7 2 4

Pseudo-code of the Heapsort algorithm.

```
def Heapsort (A)
  //Constructs a heap from the elements
  //Sorts elements of the array.
  //Input: An array A[1..n] of orderable items
  //Output: A sorted A[1..n]
  HeapBottomUp (A)
  for i = A. length to 2: // n-1 times
    swap(A[1], A[i])
    A. heapsize = A. heapsize - 1
    MaxHeapify (A, 1)
```

- Analysis of the Heapsort.
- O Heapsort consists of two parts:
 - Heap construction which has O(n) time complexity.
 - For loop (repeated n-1 times) which has time complexity $O(\log n)$.

Total:

$$O(n) + (n-1)O(\log n) = O(n\log n)$$

- Priority queue is an abstract data type which is like a regular queue or stack data structure, but additionally, each element is associated with a "priority".
 - **stack** elements are pulled in last-in first-out-order (e.g. a stack of papers).
 - queue elements are pulled in first-in first-out-order (e.g. a line in a cafeteria).
 - **priority queue** elements are pulled highest-priority-first (e.g. cutting in line, or VIP service).

- Operations on priority queues.
 - Insert (S, x) insert element x into queue S.
 - *Maximum* (S) return the element of S with the largest key.
 - *Extract-Max* (*S*) removes and returns the element of *S* with the largest key.
 - *Increase-Key* (*S*, *x*, *k*) increases the value of *x*'s key to the new value *k* which should be at least as large as *x*'s current key value.

31/35

- Priority queue is implemented as heap.
- Operations on priority queues.
 - Extract-Max (S) operation:

```
def Extract-Max (A)
  // Input: heap A[1..n]
  // Removes and returns the root element
  max = A[1]
  A[1] = A[A. heapsize]
  A. heapsize = A. heapzise - 1
  MaxHeapify (A, 1)
  return max
```

• Time complexity: $O(\log n)$

- Operations on priority queues.
 - *Increase-Key* (S) operation:

```
def Heap-Increase-Key (A, i, k)

// Input: heap A[1..n], element index i, and its new key k.

// Output: heap A[1..n] conforming to heap property.

A[i] = k

while i > 1 and A[Parent(i)] < A[i]:

swap(A[Parent(i)], A[i])

i = Parent(i)
```

• Time complexity: $O(\log n)$

- Operations on priority queues.
 - *Insert* (S, x) operation:

```
def Max-Heap-Insert (A, k)

// Input: heap A[1..n] and new key k.

// Output: heap A[1..n+1].

A. heapsize = A. heapsize + 1

A[A]. heapsize = -\infty

Heap-Increase-Key (A, A]. heapsize, k)
```

• Time complexity: $O(\log n)$

THAT'S ALL FOR TODAY!

