UCS1524 – Logic Programming

Propositional Logic : Resolution and Semantic Entailment

Session Meta Data

Author	Dr. D. Thenmozhi
Reviewer	
Version Number	1.2
Release Date	16 July 2022

Session Objectives

- Understanding the concept of resolution and semantic entailment in propositional logic (PL)
- Learning correctness and completeness in resolution with respect to PL

Session Outcomes

- At the end of this session, participants will be able to
 - Apply resolution and semantic entailment in PL

Agenda

- Resolution
- Resolvent
- Semantic entailment
- Correctness and completeness

Propositional Resolution

Pivot

 $C \vee p$

 $D \vee \neg p$

CVD

Resolvent

Res($\{C, p\}, \{D, \neg p\}$) = $\{C, D\}$

Given two clauses (C, p) and (D, ¬p) that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D

Resolution Lemma

Let F be a CNF formula.

Let R be a resolvent of two clauses C1 and C2 in F.

Then, $F \cup \{R\}$ is equivalent to F.

•i.e., R is implied by F. Adding it to F does not change the meaning of F

Resolution Theorm

Let F be a set of clauses

 $Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}$

Define Resⁿ recursively as follows:

$$Res^{0}(F) = F$$

$$Res^{n+1}(F) = Res(Res^{n}(F)), \text{ for } n \ge 0$$

$$Res^{*}(F) = \bigcup_{n \ge 0} Res^{n}(F)$$

Theorem: A CNF F is UNAT iff Res*(F) contains an empty clause

Proof System

$$P_1,\ldots,P_n\vdash C$$

An inference rule is a tuple $(P_1, ..., P_n, C)$

- where, P₁, ..., P_n, C are formulas
- P_i are called premises and C is called a conclusion
- intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

- nodes are labeled by formulas
- for each node n, (parents(n), n) is an inference rule in P

Propositional Resolution

Definition:

Consider the two clauses C_1 and C_2 containing the literals L_1 and L_2 respectively, where L_1 and L_2 are complementary. The procedure of resolution proceeds as follows:

- (1) Delete L_1 from C_1 and L_2 from C_2 , yielding the clauses C'_1 and C'_2 ;
- (2) Form the disjunction C' of C'₁ and C'₂;
- (3) Delete (possibly) redundant literals from C', thus obtaining the clause C.

The resulting clause C is called the resolvent of C_1 and C_2 . The clauses C_1 and C_2 are said to be the parent clauses of the resolvent.

Resolution Proof Example

A refutation of $\neg p \lor \neg q \lor r$, $p \lor r$, $q \lor r$, $\neg r$:

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

$$\neg b \land (\neg a \lor b \lor \neg c) \land a \land (\neg a \lor c)$$

$$\frac{\neg a \lor b \lor \neg c \qquad a}{b \lor \neg c \qquad \neg b} \qquad \frac{a \qquad \neg a \lor c}{c}$$

Propositional Resolution

Resolution rule:

- · Resolution refutation:
 - Convert all sentences to CNF
 - Negate the desired conclusion (converted to CNF)
 - Apply resolution rule until either
 - Derive false (a contradiction)
 - Can't apply any more
- Resolution refutation is sound and complete
 - If we derive a contradiction, then the conclusion follows from the axioms
 - If we can't apply any more, then the conclusion cannot be proved from the axioms.

Propositional Resolution - Example

Prove R

1	PvQ
2	$P \rightarrow R$
3	$Q\toR$

Step	Formula	Derivation
. ,	-	
3	3	
÷	3	
3		
2 3	*	
4 9	*	15

Propositional Resolution - Example

Prove R

1	PvQ
2	$P\toR$
3	$Q\toR$

false v R ¬ R v false

false v false

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬ Q v R	Given
4	¬ R	Negated conclusion
5	QvR	1,2
6	¬ P	2,4
7	¬ Q	3,4
8	R	5,7
9		4,8

Exercise

Using resolution show that

$$A \wedge B \wedge C$$

is a consequence of

$$\neg A \lor B$$

$$\neg B \lor C$$

$$A \lor \neg C$$

$$A \lor B \lor C$$

Properties of resolution

- Correctness (or consistency): If the application of the syntactic rules say that the semantic property holds, then this is indeed the case.
- If the empty clause can be derived from F then F is unsatisfiable.
- Completeness: If the semantic property holds, then this can be shown with the help of the syntactic rules.
- If F is unsatisfiable then the empty clause can be derived from F.

Propositional Resolution

Theorem: Propositional resolution is sound and complete for propositional logic

Proof: Follows from Resolution Theorem

A set of clauses F is unsatisfiable iff $\square \in Res^*(F)$

Completeness: F is unsatisfiable $\Rightarrow \Box \in Res^*(F)$

By induction on the number of atomic formulas in F.

Here: Induction step with n+1=4

$$F = \{\{A_1\}, \{\neg A_2, A_4\}, \{\neg A_1, A_2, A_4\}, \{A_3, A_4\}, \{\neg A_1, A_3, \neg A_4\}\}$$

$$F_0 = \{\{A_1\}, \{\neg A_2\}, \{\neg A_1, A_2\}\}$$

F(false/A4):- Remove A4 from a clause if positive and Remove clause if negative

Completeness: F is unsatisfiable $\Rightarrow \Box \in Res^*(F)$

By induction on the number of atomic formulas in F.

Here: Induction step with n+1=4

$$F = \{\{A_1\}, \{\neg A_2, A_4\}, \{\neg A_1, A_2, A_4\}, \{A_3, \neg A_4\}, \{\neg A_1, \neg A_3, \neg A_4\}\}$$

$$F_0 = \{\{A_1\}, \{\neg A_2\}, \{\neg A_1, A_2\}\}\}$$

$$F_1 = \{\{A_1\}, \{A_3\}, \{\neg A_1, \neg A_3\}\}$$

F(true/ A4):- Remove clause if A4 is positive and Remove A4 from a clause if A4 is negative

Semantic Entailment

Let $\Sigma = \{p_1, p_2, ..., p_n\}$ be a set of premises and let α be the conclusion that we want to derive.

 Σ semantically entails α , denoted $\Sigma \models \alpha$, if and only if

- Whenever all the premises in Σ are true, then the conclusion α is true.
- For any truth valuation t, if every premise in Σ is true under t, then the conclusion α is true under t.
- For any truth valuation t, if t satisfies Σ (denoted $\Sigma^t = T$), then t satisfies α ($\alpha^t = T$).
- $(p_1 \wedge p_2 \wedge ... \wedge p_n) \rightarrow \alpha$ is a tautology.

If Σ semantically entails α , then we say that the argument (with the premises in Σ and the conclusion α) is valid.

Semantic Entailment

Let $\Sigma = \{(\neg(p \land q)), (p \to q)\}$, $x = (\neg p)$, and $y = (p \leftrightarrow q)$. Based on the truth table, which of the following statements is true?

- a. $\Sigma \vDash x$ and $\Sigma \vDash y$.
- b. $\Sigma \vDash x$ and $\Sigma \nvDash y$.
- c. $\Sigma \nvDash x$ and $\Sigma \vDash y$.
- d. $\Sigma \nvDash x$ and $\Sigma \nvDash y$.

p	q	$(\neg(p \land q))$	$(p \to q)$	$x = (\neg p)$	$y = (p \leftrightarrow q)$
0	0	1	1	1	1
0	1	1	1	1	0
1	0	1	0	0	0
1	1	0	1	0	1

Equivalence and Entailment

Equivalence can be expressed using the notion of entailment.

Lemma. $\alpha \equiv \beta$ if and only if both $\{\alpha\} \models \beta$ and $\{\beta\} \models \alpha$.

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every model of F and is a model of G

$$F \models G$$

A formula G is derivable from a formula F by a proof system P if there exists a proof whose leaves are labeled by formulas in F and the root is labeled by G

$$F \vdash_P G$$

Soundness and Completeness

A proof system P is sound iff

$$(F \vdash_P G) \implies (F \models G)$$

A proof system P is complete iff

$$(F \models G) \implies (F \vdash_P G)$$

Summary

- Resolution in propositional logic
- Semantics entailment
- Soundness and completeness

Check the last formula is the consequence of the 1st two using resolution

$$P \to Q$$
$$\neg P \to R$$
$$\neg Q \to \neg R$$

Prove that the following formula is unsatisfiable

$$F = \{\{A, B, \neg C\}, \{\neg A\}, \{A, B, C\}, \{A, \neg B\}\}\$$

Prove R using resolution

1	$(P \rightarrow Q) \rightarrow Q$
2	$(P \rightarrow P) \rightarrow R$
3	$(R \rightarrow S) \rightarrow \neg (S \rightarrow Q)$

What is
$$\{(\neg(p \land q)), (p \land q)\} \vDash (p \leftrightarrow q)$$
?

- a. True
- b. False

p	q	$(\neg(p \land q))$	$(p \wedge q)$	$(p \leftrightarrow q)$
0	0	1	0	1
0	1	1	0	0
1	0	1	0	0
1	1	0	1	1

