

PCT

. WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 99/32635
C12N 15/52, 9/00, C07K 16/40, C12N 15/11, 15/81, C12Q 1/25	A1	(43) International Publication Date:	1 July 1999 (01.07.99)

(21) International Application Number: PC

PCT/GB98/03857

(22) International Filing Date:

21 December 1998 (21.12.98)

(30) Priority Data:

9726897.3

20 December 1997 (20.12.97) GF

(71) Applicant (for all designated States except US): ZENECA LIMITED [GB/GB]; 15 Stanhope Gate, London W1Y 6LN (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SCHNELL, Norbert, Friedemann [DE/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). DIXON, Graham, Keith [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). CHAVDA, Suberna [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). THAIN, John, Leslie [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). VINCENT, John, Philip [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).
- (74) Agent: PHILLIPS, Neil, Godfrey, Alasdair; Intellectual Property Dept., Zeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: ACETYL-COA-CARBOXYLASE FROM CANDIDA ALBICANS

(57) Abstract

The Acetyl-COA-carboxylase (ACCase) gene from Candida albicans.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
ВА	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ΙL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	ΥŲ	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	2W	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ACETYL-COA-CARBOXYLASE FROM CANDIDA ALBICANS

The present invention relates to Acetyl-COA-carboxylase (ACCase) genes from Candida Albicans (C. albicans) and methods for its expression. The invention also relates to novel hybrid organisms for use in such expression methods.

C. albicans is an important fungal pathogen and the most prominent target organism for antifungal research. ACCase is an enzyme of fatty acid biosynthesis and essential for fungal growth and viability. Inhibitors of the ACCase enzyme should therefore be potent antifungals. The ACCase proteins in all organisms are homologous to each other but they also differ significantly in the amino acid sequence. Because selectivity problems (for example fungal versus human) it is extremely important to optimise potential inhibitor leads directly against the target enzyme (C. albicans) and not against a homologous but non-identical model protein, for example from Saccharomyces cerevisiae (S. Cerevisiae).

We have now successfully cloned the ACCase gene from C. albicans (hereinafter referred to as the C. Albicans ACC1 gene) and elucidated its full length DNA sequence and corresponding polypeptide sequence, as set out in Figures 4 and 5 of this application respectively. The coding DNA sequence of the C. Albicans ACC1 gene is 6810 nucleotides in length and the corresponding protein sequence is 2270 amino acids in length. As will be explained below there are two forms of the C. Albicans ACC1 gene, the above numbers relate to the longer version, Met1.

Therefore in a first aspect of the present invention we provide a polynucleotide encoding a C.albicans ACCase gene, in particular the (purified) C. albicans ACC1 gene as set out in Figure 5 hereinafter. It will be appreciated that the polynucleotide may comprise any of the degenerate codes for a particular amino acid including the use of rare codons. The polynucleotide is conveniently as set out in Figure 4. It will be apparent from Figure 4 that the gene is characterised by the start codons Met1 and Met2 (as indicated by the first and second underlined atg codons, hereinafter referred to as atg1 and atg2 respectively). Both forms of the gene starting from Met1 and Met2 respectively are comprised in the present invention. The invention further comprises convenient fragments of any one of the above sequences.

Convenient fragments may be defined by restriction endonuclease digests of sequence, suitable fragments include a full length C. Albicans ACC1 gene (starting with Met1 or Met2) flanked by unique StuI (5'-end)-NotI (3'-end) restriction sites as detailed in Figure 6.

We also provide a polynucleotide probe comprising any one of the above sequences or fragments together with a convenient label or marker, preferably a non-radioactive label or marker. Following procedures well known in the art, the probe may be used to identify corresponding nucleic acid sequences. Such sequences may be comprised in libraries, such as cDNA libraries. We also provide RNA transcripts corresponding to any of the above C. Albicans ACC1 sequences or fragments.

- In a further aspect of the invention we provide a C. albicans ACC1 enzyme, especially the ACC1 enzyme having the polypeptide sequence set out in Figure 5, in isolated and purified form. This is conveniently achieved by expression of the coding DNA sequence of the C. Albicans ACC1 gene set out in Figure 4, using methods well known in the art (for example as described in the Maniatis cloning manual Molecular Cloning: A Laboratory Manual, 2nd
- 15 Edition 1989, J. Sambrook, E.F. Fritsch & Maniatis). As indicated for Figure 4 above, the enzyme is characterised by two forms Met1 and Met2. Both form of the enzyme are comprised in the present invention.
 - The C. Albicans ACC1 enzyme of the present invention is useful as a target in biochemical assays. However, to provide sufficient enzyme for a biochemical assay for C.
- 20 Albicans ACC1 (for example, for a high throughput screen for enzyme inhibitors) this has to be purified. Two major constraints impair this purification.
 - 1) any new organism will necessitate deviation from published procedures because it will differ in its lysis and protease activity. C. albicans is known to express and secrete many aspartyl proteases.
- 25 2) The expression of C. Albicans ACC1 is very low and satisfying purification results can only be achieved if the enzyme is overexpressed.

We have now been able to overcome these problems by controlled overexpression of the C. albicans ACC1 in a Saccharomyces strain. This means that subsequent purification of the enzyme may then for example follow published procedures.

Therefore in a further aspect of the present invention we provide a novel expression system for expression of a C. albicans ACC1 gene which system comprises an S. cerevisiae host strain having a C. albicans ACC1 gene inserted in place of the native ACC1 gene from S. Cerevisiae, whereby the C. albicans ACC1 gene is expressed. Preferred S. cerevisiae strains include.JK9-3Daα and its haploid segregants.

The C. albicans ACC1 gene is preferably over-expressed relative to that as may be achieved by a C. albicans wild type strain, ie under the control of its own ACC1 promoter. Whilst we do not wish to be bound by theoretical considerations, we have achieved approximately 14 fold over-expression relative to the wild-type host S. cervisiae strain JK9-3D.

This may be achieved by replacing the C. albicans promoter in the expression construct by a stronger and preferably inducible promoter such as the S. cerevisiae GAL1 promoter.

Controlled overexpression is used to improve expression of a C. albicans polypeptide relative to expression under the control of a C. albicans promoter. In addition using procedures outlined in the accompanying examples we have been able to isolate a fully functional C.

15 albicans ACC1 gene as determined by 100% inhibition by SoraphenA.

The novel expression system is conveniently prepared by transformation of a heterozygous ACC1 deletion strain of a convenient S. cerevisiae host by a convenient plasmid comprising the C. albicans ACC1 gene. Transformation is conveniently effected using methods well known in the art of molecular biology (Ito et al. 1983).

The plasmid comprising the C. albicans ACC1 gene and used to transform a convenient S. cerevisiae host represents a further aspect of the invention. Preferred plasmids for insertion of the C. Albicans ACC1 gene include YEp24, pRS316 and pYES2(Invitrogen).

The heterozygous ACC1 deletion strain of a convenient (diploid) S. cerevisiae host is conveniently achieved by disruption preferably using an antibiotic resistance cassette such as the kanamycin resistance cassette described by Wach et al (Yeast, 1994, 10, 1793-1808).

The expression systems of the invention may be used together with, for example cell growth and enzyme isolation procedures identical to or analogous to those described herein, to provide an acetyl-COA-carboxylase (ACCase) gene from C.albicans in sufficient quantity and with sufficient activity for compound screening purposes.

In a further aspect of the invention we provide the use of an acetyl-COA-carboxylase (ACCase) gene from C.albicans in assays to identify inhibitors of the polypeptide. In particular we provide the their use in pharmaceutical or agrochemical research.

As presented above the C. albicans ACC1 enzyme may be used in biochemical assays to identify agents which modulate the activity of the enzyme. The design and implementation of such assays will be evident to the biochemist of ordinary skill. The enzyme may be used to turn over a convenient substrate whilst incorporating/losing a labelled component to define a test system. Test compounds are then introduced into the test system and measurements made to determine their effect on enzyme activity. Particular assays are those used to identify inhibitors of the enzyme useful as antifungal agents. By way of non-limiting example, the activity of the ACC1 enzyme may be determined by (i) following the incorporation (HCO₃, Acetyl-CoA) or loss (ATP) of a convenient label from the relevant substrate (T.Tanabe et al, Methods in Enzymology, 1981, 71, 5-60; M. Matasuhashi, Methods in Enzymology, 1969, 14, 3-16), (ii) following the release of inorganic phosphate from ATP (P. Lanzetta et al, Anal.

Biochem. 1979, 100, 95-97), or (iii) following the oxidation of NADH in a coupled assay, for

example using either fatty acid synthetase or pyruvate kinase/lactate dehydrogenase enzymes.

Convenient labels include carbon14, tritium, phosphorous32 or 33.

Any convenient test compound(s) or library of test compounds may be used. Particular

test compounds include low molecular weight chemical compounds (molecular weight less than 1500 daltons) suitable as pharmaceutical agents for human, animal or plant use.

The enzyme of the invention, and convenient fragments thereof may be used to raise antibodies. Such antibodies have a number of uses which will be evident to the molecular biologist of ordinary skill. Such uses include (i) monitoring enzyme expression, (ii) the development of assays to measure enzyme activity and precipitation of the enzyme.

In addition we provide antisense polynucleotides specific for all or a part of an ACC1 polynucleotide of the invention.

The invention will now be illustrated but not limited by reference to the following Table, Example, References and Figures wherein:

-5-

<u>Table 1</u> shows the comparative properties of native and recombinant acetyl-CoA carboxylase enzymes

Figure 1 shows partial sequence from the C. albicans genome. Underlined regions 5 were used to derive PCR primers, to generate a C. albicans ACC1 specific probe.

<u>Figure 2</u> shows cloned fragments of the C. albicans ACC1 gene isolated from genomic DNA libraries. Arrows indicate extension of the fragment beyond the region displayed.

Figure 3 shows sequenced XbaI-HinDIII and HinDIII subclones of clone CLS1-b1.

Figure 4 shows the full DNA sequence of the C. albicans ACC1 gene. The atg start codons for Met1 and Met 2 are in lower case and underlined, as is the tag stop codon.

Figure 5 shows the full protein sequence of the C. albicans ACC1 gene. Putative start codons for Met1 and Met2 are shown in bold.

Figure 6 shows the generation of a tailored ACC1 gene (minus promoter) for expression under control of the GAL1 promoter in plasmid pYES2. From the initial ACCase gene (line1) the core SacI-BamHI (line3) is modified by the addition of 3' BamHI-NotI (line2) and 5' StuI-SacI (different fragments for Met1 and -2 lines 5 and 7 respectively) to generate the final "portable" gene flanked by StuI-NotI (lines 6 and 8).

Figure 7 shows the results of the *in-vitro* ACCase enzyme assay set out in the accompanying Example when Soraphen A (a specific inhibitor of the ACCase enzyme) was supplied (X-axis) over the range 0.1nM-100μM in the dose response regimen of the assay.

Example 1

Cloning of the C. albicans ACC1 gene and generation of a heterologous S. cerevisiae expression system:

25

1) Probe generation

We used the polymerase chain reaction (PCR) to generate a DNA probe between and including the underlined regions in Figure 1

2) Identification of clones from a C. albicans genomic library hybridising to the ACCase probe

The PCR product was labelled using an "ECL direct nucleic acid labelling and detection kit" (Amersham) as described by the supplier. The PCR product (probe) was then shown to hybridise to S. cerevisiae (weakly) and C. albicans genomic DNA. in a Southern blot procedure (as described Maniatis, 1989). Two genomic DNA libraries (CLS1 and CLS2) of C. albicans (in the yeast-E. coli shuttle plasmids YEp24 and pRS316 respectively, (as described in Sherlock et al. 1994, source: Prof. John Rosamond, Manchester University) were used to isolate fragments hybridising with the probe which was radiolabelled using "Ready To Go" dCTP labelling beads (Pharmacia, as described by the manufacturer). The colony hybridisation was carried out as described by Maniatis (1989). Hybridising colonies were identified, plasmid DNA isolated, purified (Quiagen maxiprep, as described by the supplier) and sequenced (Applied Biosystems, model 377 sqeuencer) from their junctions with the plasmid. Several fragments carrying partial ACCase gene sequence as well as one full length clone could be identified (Figure 2).

3) Sequencing of the cloned gene, comparison with ACCases from S. cerevisiae, other fungi and higher eukaryotes (plants, mammals, man)

The bulk of the sequence of the C. albicans ACC1 gene was determined (on both strands) using flanking sequence- or insert sequence-specific primers from defined HinDIII and XbaI-HinDIII subfragments (of clone CLS1-b1) cloned into pUC19 (see Figure 4). The promoter and 5' coding region absent from this clone was established from CLS2-d1 and the gene's 3' end from CLS2-13 using insert specific primers. All junctions including the ones between the HinDIII subfragments were verified from the full length clone CLS2-13 (in

25 Yep24. The full length DNA sequence of C. albicans (Ca) ACC1 is shown in Figure 5a and the protein translation in Figure 5b. The two potential start Methionines, Met1 and Met2 are shown in bold

The protein is homologous to ACCases of other fungi (S. cerevisiae, S. pombe and

WO 99/32635

-7-

U maydis) and also to the plant (Brassica napus), mammalian (sheep, chicken and rat) and human enzymes. Of the two potential start codons of C. albicans ACC1, Met 2 seems the more likely one as the sequence between Met1 and Met2 is unrelated to the other ACCases and indeed to any other protein sequence in the EMBL/Genbank database. The high degree of homology between ACCases of different species and the apparent lack of an identifiable fungal subgroup makes it even more important to use the actual target enzyme (here from the pathogen C. albicans) as a screening tool to identify specific inhibitors.

4) Generation of a heterozygous ACC1 deletion strain of S. cerevisiae

As ACCase is an essential enzyme, only one allele of a diploid cell can be deleted without loss of survival. One ACC1 gene of a diploid S. cerevisiae strain (JK9-3Daa, Kunz et al. 1993) was therefore disrupted using the kanamycin resistance cassette as described by Wach et al. using the protocol described therein. Sporulation of the heterozygous diploid (ACC1/acc1::KANMx) yields only two viable spores (which are kanamycin-sensitive)

15 showing the essentiality of the ACC1 gene as well as the characteristic arrest phenotype for the two inviable spores (as published by Haßlacher et al., 1993).

5) Complementation of a S. cerevisiae ACC1 deletion with the cloned Candida gene, Ca ACC1

The heterozygous ACC1/acc1::KANMx strain was transformed with one full length C. albicans gene (CLS2-13 in Yep24). Expression of the gene from this plasmid will be due to functionality of the Candida ACC1 promoter in the heterologous S. cerevisiae system. Complementation of the knockout was demonstrated by sporulating the diploid transformants. In most cases 3-4 viable (haploid) spores were detected. The analysis of tetrads indicated that 25 kanamycin-resistant colonies were only formed if they also contained the complementing CLS2-13 plasmid, as indicated by the presence of the URA3 transformation marker. This clearly shows that the C. albicans gene fully complements the ACCase function in S. cerevisiae. Therefore the strain generated can be used to screen for inhibitors which are specific for the Candida enzyme in the absence of a background of Saccharomyces enzyme.

As demonstrated by its functionality, the heterologous protein folds correctly in the host, S. cerevisiae, where it must also have been correctly biotinylated by the S. cerevisiae machinery (carried out by ACC2, encoding protein-biotin-ligase).

To facilititate purification of C. albicans ACCase, it is beneficial to achieve

5 overexpression of the protein in a suitable host. Therefore the C. albicans promoter was replaced by the stronger and inducible S. cerevisiae GAL1 promoter. As the Candida sequence had revealed two potential start codons (see Figure 4) for the ACC1 reading frame, both versions were placed under GAL1 control. To generate appropriate restriction sites for cloning, the ACC1 gene was modified via PCR at both ends (see Figure 6 above). and cloned into plasmid pYES2 (Invitrogen) as a StuI-NotI fragment into HinDIII (fill-in)-NotI sites of the vector. The identity of the PCR-modified gene-parts with the original ones was confirmed by sequencing. Both constructs (Met1 and Met2) complement the S. cerevisiae ACC1 knockout when the cells are grown on galactose but not on glucose (where the GAL1 promoter is switched off). Growth is very poor if the gene is transcribed initiating at Met1, whereas Met2 restores wild type growth rates in S.cerevisiae.

6) Overexpression of the Ca ACCase to facilitate protein purification and use for screening purposes

20 Materials

Growth Media:-

Sabouraud Dextrose broth

Yeast peptone dextrose broth (YPD)

Yeast peptone galactose broth (YPGal) (i.e. 2% w/v galactose)

25

Growth of cells

Candida albicans B2630 (Janssen Pharmaceutica, Beerse, Belgium) was maintained on Sabouraud dextrose agar slopes at 37 ^OC which were subcultured biweekly. For the growth of liquid cultures for experiments, C. albicans grown on Sabourauds dextrose agar for

48 h at 37°C was used to inoculate 50 ml Sabouraud dextrose broth containing 500μg/l d-biotin. This was incubated for 16 h at 37 °C on a platform shaker (150 rpm). 1.5 ml of this culture was added to each of 24 x2 litre conical flasks, each containing 1 litre of Sabouraud dextrose broth containing 500μg/l d-biotin, giving a final inoculum concentration of

5 approximately 1.5x10⁶ cfu ml⁻¹. The cultures were grown for 9 h, at 37 °C (log phase) with shaking (150 rpm). Cell numbers in liquid culture were determined spectrophotometrically (Philips PU8630 UV/VIS/NIR Spectrophotometer) at 540 nm in a 1 cm path length cuvette. Absorbance was linearly related to cell number up to an OD. of 2.0.

Saccharomyces cerevisiae strains Mey134 and CLS2-13 were maintained on Yeast

10 peptone dextrose (YPD) agar plates at 30 °C, which were subcultured biweekly. For the
growth of liquid cultures for experiments, the S. cerevisiae strains were grown on YPD agar
for 48 h at 30 °C and were then used to inoculate 50 ml YPD broth containing 500μg/l dbiotin, which was incubated at 30°C for 16h on a platform shaker (200 rpm). 2.0 ml of this
culture (approx. 4 x 10⁸ cfu/ml) was added to each of 24 x 2 litre conical flasks, each

15 containing 1 litre of YPD broth containing 500μg/l d-biotin, giving a final inoculum
concentration of approximately 8 x10⁵ cfu/ml. The cultures were grown for 9 h, at 30 °C (log
phase) with shaking (200 rpm). Cell numbers in liquid culture were determined
spectrophotometrically (Philips PU8630 UV/VIS/NIR Spectrophotometer) at 540 nm in a 1
cm path length cuvette.

Saccharomyces cerevisiae strains PNS117a 5C, PNS117b 6A, and PNS 120a 6C were maintained on Yeast peptone galactose (YPGal) agar plates at 30 °C which were subcultured biweekly. For the growth of liquid cultures for experiments, the S. cerevisiae strains were grown on YPGal agar for 48 h at 30 °C and were then used to inoculate 50 ml YPGal broth containing 500μg/l d-biotin and 200μg/ml kanomycin, which were incubated at 30 °C for 30h on a platform shaker (200 rpm). 2.0 ml of this culture (approx. 4 x 108 cfu/ml) was added to each of 24 x2 litre conical flasks, each containing 1 litre of YPGal broth containing 500μg/l d-biotin and 200μg/ml kanomycin, giving a final inoculum concentration of approximately 8

- 10 -

 $x10^5$ cfu/ml. The cultures were grown for approximately 23h at 30 $^{\circ}$ C (log phase) with shaking (200 rpm).

Determination of cell number

5 Cell numbers were determined using a standard viable count agar based plating method, using the appropriate agar media.

Preparation of fungal ACCase enzyme

Cultures of the appropriate yeast strains were grown to the exponential phase of growth (for Saccharomyces and Candida strains respectively). These were then harvested by centrifugation (4400 g, 10min, 4 °C), washed twice in 700ml of 50mM Tris pH7.5 containing 20% w/v gylcerol, resuspending the cell pellet each time. The final washed pellet was fully resuspended into a thick slurry using 10 to 20ml of buffer (50mM Tris pH7.5 containing 1mM EGTA, 1mM EDTA (disodium salt), 1mM DTT, 0.25mM Pefabloc hydrochloride, 1µM Leupeptir, hemisulphate, 1µM Pepstatin A, 0.5µM Trypsin inhibitor and 20% w/v glycerol). The volume of buffer required was dependent on the total packed cell wet weight. (i.e. 1ml buffer added per 6gm of packed wet cell pellet).

The cell paste was homogenised using a pre-cooled Bead-Beater (Biospec Products, Bartlesville, OK 74005) with 4 x 10 second Bursts, allowing 20 second intervals on 20 ice. The preparation was then centrifuged at 31,180g for 30 minutes. After centrifugation the supernatant was immediately decanted into a container, then aliquoted before snap freezing in liquid nitrogen. The preparation was then stored at -80°C and was found to be stable for at least 2 months.

All enzyme preparation steps were carried out at +4°C, unless otherwise stated.

In-vitro ACCase enzyme assay

25

The assay was conducted in 96 well, flat bottomed polystyrene microtitre plates. All test and control samples were tested in duplicate in this assay.

WO 99/32635

100μl of the ACCase enzyme preparation (in 50mM Tris pH7.5 containing 1mM EGTA, 1mM EDTA (disodium salt), 1mM DTT, 0.25mM Pefabloc hydrochloride, 1μM Leupeptin hemisulphate, 1μM Pepstatin A, 0.5μM Trypsin inhibitor, and 20% w/v glycerol) was added to each well of the microtitre plate. Each well contained either a 3μl test sample 5 made up in DMSO or 3μl DMSO alone (NB. Final DMSO concentrations in the assay were 1.48% v/v). The microtitre plates were placed in a water bath maintained at 37°C. 10μl of [14C] NaHCO₃ containing 9.25kBq in 378mM NaHCO₃ was then added to each well. The reaction was initiated by the addition of 100μl of Acetyl Coenzyme A containing assay buffer (50mM Tris pH7.5 containing 4.41mM ATP(disodium salt), 2.1mM Acetyl

10 Coenzyme A, 2.52mM DTT, 10.5mM MgCl₂, and 0.21% w/v Albumin [Bovine, fraction

10 Coenzyme A, 2.52mM DTT, 10.5mM MgCl₂, and 0.21% w/v Albumin [Bovine, fraction V]), (removed from ice 5 minutes before use) to each well. The tubes were incubated at 37°C for 5 minutes. The reaction was then terminated by the addition of 50µl of 6M HCl to each well. In parallel, a pre-stopped assay control was set up which involved adding the 50µl of 6M HCl prior to [¹⁴C] NaHCO₃ and the assay buffer (No further HCl additions were made to these wells after the 5 minute incubation). The DPM values for the pre-stopped assay were subtracted from the normal assay situation.

After the addition of the stop reagent the plates were left open in the water bath for a further 30 minutes to allow the ¹⁴CO₂ to escape. After this time 150µl of each reaction mixture were applied onto individual GF/C glass microfibre filter discs and allowed to dry thoroughly before adding scintillation fluid. Radioactivity in the samples was then determined by scintillation counting (Wallac WinSpectral 1414, Turku, Finland).

IC50's were calculated from the data using non-linear regression techniques available in the ORIGIN software package (Microcal Software Inc., Massachusetts, USA).

Soraphen A which is a specific inhibitor of ACCase was supplied over the range 25 0.1nM-100µM in the dose response regimen of the assay.

- 12 -

Protein determination

The total protein concentration of each ACCase preparation used was determined by the Coomasie Blue method (Pierce, Illinois, USA), (using 1cm path length cuvettes read 595nm (Philips PU8630 UV/VIS/NIR Spectrophotometer).

5

In-vitro antifungal activity

Compounds were tested over a concentration range of 1024 - 0.00098 µg/ml by a broth-dilution method in microtitre plates using doubling dilutions in YPD or YPGal (both containing 500µg/l d-biotin). Stock solutions of inhibitors were prepared at 51.2mg/ml in 10 Dimethyl sulphoxide (DMSO) (final assay concentration of DMSO was 2% v/v). Each Yeast culture was added to the well to give a final 10⁴ cfu/well. The plates were incubated at 30°C for 48h and MIC's determined visually.

Discussion

15 Expression of ACCase, a biotinylated protein, was monitored by a "biotin-avidin affinity western blot" as described by Haßlacher et al., 1993. Expression of the C. albicans ACC1 gene from its own promoter from plasmid Yep24 was comparable to that of the S. cerevisiae gene (no overexpression). Expression under control of the GAL1 promoter however, was considerably higher indicating a drastically increased level of biotinylated and 20 therefore fully functional enzyme. Transcription of the gene was fully induced as the cells had to be grown on galactose to be viable. On glucose the GAL1 promoter is completely off, causing the cells to arrest and eventually die due to insufficient supply of ACCase). The S. cerevisiae strain described in this application is a convenient source of the C. albicans enzyme. The engineered strain possesses no residual background ACCase because the gene 25 coding for the S. cerevisiae enzyme had been removed. Congenic versions of such a strain (genetically identical apart from the ACCase gene carried) expressing different ACCases (e.g. the different human (Abu-Elheiga et al. 1995), mammalian (Lopez-Casillas et al., 1988, Takai et al. 1988, Barber et al., 1995)), plant (Schulte et al., 1994) or other fungal enzymes (Al-Feel et al., 1992, Saito et al., 1996, Bailey et al., 1995)) can be used as tools for

screening. Differences in growth of such strains may be solely dependent on differences in their ACCase activity. Differential growth in the presence of ACCase inhibitors (for example soraphenA or compounds yet to be identified) indicates selectivity of the drug towards one type of the ACCase enzyme.

5

References:

Abu-Elheiga L., Jayakumar A., Baldini A., Chirala S.S., Wakil S.J.; Proc. Natl. Acad. Sci. U.S.A. 92: 4011-4015(1995).

Al-Feel W., Chirala S.S., Wakil S.J.; Proc. Natl. Acad. Sci. U.S.A. 89:4534-4538(1992).

10 Bailey A.M., Keon J.P.R., Owen J., Hargreaves J.A.; Mol. Gen. Genet. 249:191-201(1995).
Barber M.C., Travers M.T.; Gene 154:271-275(1995).

Haßlacher M., Ivessa A. S., Paltauf F., Kohlwein S. D.; J. Biol. Chem. 268:10946-10952 (1988).

Ito, H., Fukuda, Y., Murata, K., Kimura, A.; J. Bacteriol. 153: 163-168 (1983)

15 Kunz. J., Henriquez, R., Schneider, U., Deuter-Reinhard, M., Movva, N.R., Hall, M.N.; Cell 73: 585-596 (1993)

Lopez-Casillas F., Bai D.-H., Luo X., Kong I.-S., Hermodson M.A., Kim K.-H.; Proc. Natl. Acad. Sci. U.S.A. 85:5784-5788(1988).

Maniatis T., Frisch E. F., Sambrook J.; Molecular Cloning, Cold Spring Harbour Laboratory

20 Press (1989)

Saiki R. K., Gelfand D. H., Stoffel S., Sharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A.; Science 239: 487-494 (1988)

Saito A., Kazuta Y., Toh H., Kondo H., Tanabe T.; S. pombe ACC1, Submitted (Dec-1996) to Embl/Genbank/Ddbj Data Banks.

25 Schulte W., Schell J., Toepfer R.; Plant Physiol. 106:793-794(1994).
Sherlock G., Bahman A. M., Mahal A., Shieh J. C., Fewrreira M., Rosamond J.; Mol. Gen.
Genet. 245: 716-723.

Takai T., Yokoyama C., Wada K., Tanabe T.; J. Biol. Chem. 263:2651-2657(1988). Wach A., Brachat A., Poehlmann R., Philippseen P.; Yeast 10: 1793-1808 (1994)

Comparative properties of native and recombinant acetyl-CoA carboxylase enzymes

22	Specific	activity of ACCase preparation (nmoles product/			0.641	3.054	7.025	10.573	0.244	ND	
	IC50 for	Soraphen A (nM) against ACCase	preparations			2.499	17.518	13.083	QN	ND	
•	Liquid MIC	(µg/ml) for Soraphen A		0.003	∞ ·	2	7	4	0.5	0.125	
	Growth	for ACCase preparation (°C)		37	30	30	30	30	30	30	
	Cell doubling	time (minutes)		95	160	163	253	222	303	287	
	Yeast strain			C. albicans B2630	S. cerevisiae Mey 134	S. cerevisiae CLS2-13	S. cerevisiae PNS . 117a 5C	S. cerevisiae PNS 117b 6A	S. cerevisiae PNS 120a 6C	S. cerevisiae PNS 120b 1C	Key :- ND = not determined

Claims:

1. A polynucleotide encoding an Acetyl-COA-carboxylase (ACCase) gene from *Candida albicans*.

5

- 2. A polynucleotide as claimed in claim 1 and as set out in Figure 4 herein.
- 3. A polynucleotide as claimed in claim 2 and characterised by the start codon atg2.
- 10 4. A polynucleotide comprising a restriction fragment of a polynucleotide as claimed in any one of claims 1-3.
 - 5. A polynucleotide probe comprising a polynucleotide as claimed in any one of claims 1-4.

15

- 6. An Acetyl-COA-carboxylase (ACCase) polypeptide from *Candida albicans* in isolated and purified form.
- 7. A polypeptide as claimed in claim 6 and as set out in Figure 5.

20

- 8. A polypeptide as claimed in claim 7 and characterised by Met2.
- 9. A polypeptide as claimed in claim 6 and obtained by expression of a polynucleotide as claimed in any one of claims 1-4.

25

- 10. Antibodies specific for a polypeptide as claimed in any one of claims 6-9.
- 11. An antisense polynucleotide specific for all or a part of a polynucleotide as claimed in any one of claims 1-4.

-16-

- 12. An RNA transcript corresponding to a polynucleotide as claimed in any one of claims 1-4.
- 13. An expression system for expression of an Acetyl-COA-carboxylase (ACCase)
 5 polypeptide from Candida albicans which system comprises an S. cerevisiae host strain having a Candida albicans ACC1 polynucleotide as claimed in any one of claims 1-3, inserted in place of the native ACC1 gene from S. Cerevisiae, whereby the Candida albicans ACC1 polypeptide is expressed.
- 10 14. An expression system as claimed in claim 13 and adapted for controlled overexpression of the Candida albicans polynucleotide relative to expression under the control of a Candida albicans promoter
- 15. An expression system as claimed in claim 14 and used to provide an Acetyl-COA 15 carboxylase (ACCase) gene from *Candida albicans* in sufficient quantity and with sufficient activity for compound screening purposes.
 - 16. Use of an Acetyl-COA-carboxylase (ACCase) polypeptide from *Candida albicans* as claimed in claim 6, in an assay to identify inhibitors of the polypeptide.

20

17. Use as claimed in claim 16 in pharmaceutical research.

1/8

	CONSCIT TONOCOTTIT CACCAMATOCCAMATATORICCAMATICACAMATICA
_	ATGGATAGAAGATTGGTTACCAACTGAGAAATAACCCCACACATTAGAAGAAGAACGGAA
5	ATTCAATTCATGTAAAGAACCACCACTTGGTTTAAAACCTTCACCAGGATCTTCAGAAGT
	AATACGACAAGCAGTACAATGTCCCTTTGGTGTTGGTCTTCTTTGACTAACCAATGAAGT
	TTCTGACTTGAATTCAAAATCAATATCAGTAGTGGTATGAGGATCGGCACCGCACAAAGT
	TCTGATATCTCTGATTCTATGCATTGGTATACCCATAGCAATTTGTAATTGAGCAGCTGG
	TAAATTAACACCTGTCACCATTTCAGTGGTTGGATGTTCAACTTGCAATCTTGGGTTCAA
10	TTCCAAAAAGTAGAATTTATCTTCAGCGTGGGGAGTAAAGGTACTCAACAGTACCAGGGG
	GTTACATAACCAACTTATTTTACCCAATCTGACTGGTGGATTT

2/8

3/8

4/8

FIGURE 4

AATATATTGCTTCCTTTTGATAGGAAGTAACTCCGAGTGTTTGAATTTGATATATGTTATTCATATACGTTCAATGGCTC TCTTCTATGCTTTGTATATCTTTCTTTTGAATAGATACTCATGTAAAGAGATTTGAAACCATATTCTAACCAACAAAAA TATTGTACGGTATAGGTTAGAAAAAAAACTCCGTAAGGTCCGCTTACACGGTTAAAATTGAAAACACGTTAAAAATATATT TGGGTAATGGACTAAGCTATATACAGTACTCAACAAAAATGAAATCAAACACAATGTTCTTTGGGAAATTCATTTCATGC AACTAGGGTGATTCTCTTTCTACTATCCAACAACGATAACCCTGCTTTTGAAAAATCTTTTCTAAATTCAAATTGATATA TTCCCTTTCAGTCTGAGGAACATACTAATTACGAACAACAATTATACATCCAATCTTCATCTAACGAATTGATTATTTAC ATCATTTAAAGTTAAATCTCAATCTGGAATAATAAAAGTATTCAACACTTTTGCTTACAATAGGTATGTTCAAAATCAAT GATTGCTTTCTTCGGCATCAGCTGTTGTGGGAACATCTTGTCGTTAAAGTTTCGGAGTAATATTAGAGTAATGGAACGA 15 CAATAAATGAATAAACACTCAAAAACTACTCACAACAACAACACTTATTTTCACTTGCTTTATTTCTTCGATTTTTTatg AGATGCAAATTATCTCTAATAAAGAATACTAACTCACTTGTACATAGATCGCGTTTCCTAATTACAAAACCACAACTATA TATACCTCATCGTCATTATATCCCATTCAAGAACATATTCAAGTCATTGTTAatgTCAGATCAATCTCCATCTCCTAGTC CTAGCGATTCCCTTAGCTACACTACATTACATGAAAATTTGCCATCTCATTTCTTGGGTGGAAATTCAGTTTTGAATGCT GAACCTTCTAAAGTCAGAGACTTTGTCAGAGCTCATCAAGGTCATACAGTTATTTCGAAAATTTTAATTGCCAACAATGG 20 TATAGCTGCAGTTAAAGAAATCAGATCAGTTAGAAAATGGGCTTATGAAACATTTGGTGACGAAAAAGCCATACAGTTTA CCGTTATGGCCACTCCAGAAGATTTGGAAGCTAATGCCGAATATATTAGAATGGCCGACCAATTCATTGAAGTCCCTGGT GGCACCAATAACAATAACTATGCTAATGTTGATCTCATTGTAGAGATAGCAGAAAGTACAAATGCTCATGCCGTTTTGGGC TGGGTGGGGGCATGCTTCAGAGAATCCTTTGTTACCAGAAAAATTAGCTGCATCTCCCAAAAAAATTATTTTTATTGGTC CTCCTGGTTCAGCTATGAGATCTTTAGGTGACAAGATTTCATCTACTATAGTTGCTCAACATGCTCAAGTACCATGTATT 25 CCATGGTCCGGTACTGGTGTTGATGAAGTGAAAATAGACCCACAAACTAATTTGGTTTCTGTTGCTGATGATATTTATGC ${\tt AAGGTGGTGGTAAAGGTATTAGAAAAGTTGATGATGAAAAACTTCATTACCTTATACAACCAAGCAGCTAATGAA}$ ATACCAGGTTCTCCTATCTTTATTATGAAGTTAGCAGGTGATGCCAGACATTTAGAAGTTCAATTACTAGCAGATCAATA CGGTACTAACATTTCCCTTTTTGGAAGAGATTGTTCCGTACAAAGAAGACACCAAAAGATTATTGAAGAAGCACCAGTCA 30 ccattgccagaaaggaaactttccacgaaatggaaaatgcagcagtcagattgggtaaattagttggttatgtatccgct GGTACTGTTGAGTATCTTTACTCCCACGCTGAAGATAAATTCTACTTTTTGGAATTGAACCCAAGATTGCAAGTTGAACA TCCAACCACTGAAATGGTGACAGGTGTTAATTTACCAGCTGCTCAATTA CAAATTGCTATGGGTATACCAATGCATAGAA TCAGAGATATCAGAACTTTGTACGGTGCCGATCCTCATACCACTACTGATATTGATTTTGAATTCAAGTCAGAAACTTCA TTGGTTAGTCAAAGAAGACCAACACCAAAGGGACATTGTACTGCTTGTCGTATTACTTCTGAAGATCCTGGTGAAGGTTT 35 TAAACCAAGTGGTGGTTCTTTACATGAATTGAATTTCCGTTCTTCTTATTGTGTGGGGTTATTTCTCAGTTGGTAACC AATCTTCTATCCATTCATTTTCGGATTCTCAATTTGGTCATATTTTCGCATTTGGTGAAAACCGTCAAGCTTCAAGAAAA CATATGGTTGTTGCCTTGAAAGAATTGAGTATTAGAGGTGATTTTAGAACTACTGTTGAGTATTTAATCAAATTGTTAGA CAGATCCAATAGTTGCTGTTGTTTGTGGAGCTGTAACCAAAGCACACATCCAGGCTGAGGAAGAAAAAAAGGAATACATC AAGATACAAGTTCACTGCTACTAAATCTTCAGAAGATAAATATACTTTGTTCCTTAATGGTTCTCGTTGTTGTTGTTGGTG GCCACTAGATTATCAGTTGATGGCAAAACTTGTTTATTAGAAGTTGAAAATGATCCAACACAATTAAGAACTCCATCTCC AGGTAAATTGGTCAAGTATTTGGTTGACAGTGGTGAACATGTTGATGCTGGTCAACCATACGCTGAAGTCGAAGTTATGA 45 AAATGTGTATGCCTTTGATTGCTCAAGAAAATGGGGTAGTGCAGTTGATTAAACAACCGGGTTCCACAGTTAATGCTGGT GATATCTTGGCCATTTTGGCATTGGACGATCCATCTAAGGTCAAACATGCTAAACCATTTGAAGGTACTTTACCATCTAT GGGTGAGCCAAATGTTACAGGTACTAAACCAGCACATAAATTCAATCATTGTGCTGGTATTTTGAAAAAACATTTTGGCTG GTTATGATAATCAAGTGATTTTGAATTCTACTTTAAAGAGTCTTGGTGAAGTTTTGAAAGACAATGAATTGCCATACTCT GAATGCCAACAACTTTCAGCTTTACACTCCAGATTGCCACCTAAATTGGATGACGGATTGACTGCATTGGTTGAAAG 50 aactcaaagtagaggtgctgaattccctgctcgtcaaattttaaaactcatcaccaaatcaattgctgaaaatggtaatg ATATGTTAGAAGATGTTGTTGCACCATTGGTTTCTATTGCCACAAGTTACCAGAATGGTTTGGTTGAACACGAATACGAT CTTGAAATTAAGAGATGAAAACAAATCTGATTTGAAAAAAAGTTATTGGTATTGGTTTGTCTCATTCACGTGTTAGTGCCA AGAACAATTTGATTTTAGCTATTTTGGACATTTATGAACCATTGTTGCAATCCAACTCGTCAGTTGCTGCCTCTATCAGA 55 gaagctttaaagaacttgttcattagacctcgtgcttgtgccaaagttgcattaaaggcaagagaaattttaattcaatg TTCTTTACCTTCCATCAAGGAAAGATCCGATCAATTGGAACATATTTTGAGGTCATCTGTTGTTCAAACCTCTTATGGTG **AAATTTTTGCTAAACATAGAGAACCAAATTTGGAAATTATTCGTGAGGTTGTTGATTCCAAACATATTGTTTTTGATGTG** TTGGCACAATTCTTAATCAATCCAGACCCATGGGTTGCCATTGCTGCCGCTGAAGTTTATGTCAGACGTTCATACCGTGC TTATGATTTGGGTAAAATTGAATATCATGTTAATGACAGACTTCCTATTGTTGAATGGAAATTCAAGTTGGCTAATATGG 60 gagccgctggtgtaaacgatgctcaacaggctgctgctgccggtggcgatgattcgacatctatgaaacatgcagcttct GTGTCTGATTTGACCTTTGTTGATTCTAAAACCGAGCATTCCACAAGAACTGGTGTTTTAGCTCCAGCAAGACACTT GGATGATGTTGATGAAACTCTTACAGCTGCATTGGAACAATTCCAACCAGCCGATGCTATTTCATTTAAAGCAAAGGGTG AAACTCCAGAGTTATTAAATGTTTTGAATATTGTCATTACCAGTATTGATGGTTACTCCGATGAAAATGAATACTTGAGC AGAATTAATGAAATCTTGTGCGAATACAAAGAAGAGTTGATTTCTGCTGGTGTTCGTCGTCGTTACATTTGTTTTTGCTCA

5/8

TCAAATTGGTCAATATCCTAAATATTATACTTTTACTGGTCCTGACTATGAAGAAAACAAGGTTATTAGACACATTGAAC ${\tt CATGTATATGATGCAATTGGGAAGAATGCTCCTTCTGATAAAAGATTTTTCACCAGAGGGATTATTAGAACCGGTGTTCT}$ 5 TTATTGACACTTCTAATTCTGATTTAAACCATATTTTCATTAACTTTTCCAATGCTTTCAATGTTCAAGCTTCAGATGTT GAGGCTGCCTTTGGATCATTCTTAGAAAGATTTGGTAGAAGATTATGGAGATTAAGAGTTACTGGTGCTGAAATTAGAAT TGTCTGTACTGATCCTCAAGGTACTTCGTTCCCATTGCGTGCTATCATTAATAATGTTTCTGGTTATGTTGTCAAATCAG AATTGTATTTGGAAGTGAAAAATCCTAAAGGTGAATGGGTTTTCAAATCCATTGGTCATCCTGGTTCCATGCATTTGAGA CCTATCTCAACTCCATATCCAGTTAAAGAATCTTTACAACCAAAACGTTACAAGGCTCACAATATGGGTACCACTTATGT 10 gtatgacttcccagaattgtttcgtcaagcaacaatttcacaatggaaaaaatatggcaaaaaagtaccaaaagatgttt TCGTGTCTTTAGAATTGATCACTGATGAAACTGATTCCTTAATAGCTGTTGAAAGAGATCCGGGTGCTAACAAAATTGGA ${\tt CCACAAGATTGGTTCTTTTGGTCCAGAAGATAATTATTTCAACAAGTGTACTGAATTGGCCAGAAAATTAGGTATTC}$ CAAGAATTTACCTTTCTGCAAATTCAGGTGCTAGAATTGGTGTTGCTGAGGAATTGATTCCATTATACCAAGTTGCCTGG 15 AATGAAGAAGGGTCTCCTGACAAAGGATTCAGATACTTGTACTTGAGTACTGCTGCTAAAGAGTCTTTAGAAAAAGATGG ${\tt TAAAAGTGACAGTGTTGTTACTGAACGTATTGTTGAAAAAGGTGAAGAGCGTCATGTCATTAAAGCTATTATTGGTGCCG}$ AAGATGGCTTAGGGGTTGAATGTCTTAAAGGATCAGGTTTAATTGCTGGTGCCACATCAAGAGCTTACAAGGATATATTT ACCATCACTTTGGTAACTTGTTGGTTTGGTATTGGTGCTTATTTTGGTTAGATTTGGTTAAAGAGCCATTCAAATCGA TGGTCAACCTATTATTTTAACTGGTGCTCCTGCTATCAATAAATTGTTGGGTAGAGAAGTGTATTCTTCCAATCTTCAAT 20 TGGGTGGTACTCAAATCATGTACAATAATGGTGTTTCTCATTTGACAGCTAATGATGATTTGGCTGGGGTTGAAAAAATT ATGGAATGGTTATCATATGTTCCAGCTAAACGTGGTTTACCAGTGCCAATTTTGGAATCAGAAGATTCTTGGGACAGAGA AATCTGGGTTATTTGATAAAGATTCATTCCAAGAAACATTATCTGGTTGGGCTAAAGGTGTTGTTGTTGGTAGAGCACGT TTGGGTGGTATTCCAATTGGTGTTATTGGTGTCGAAACCAGAACAGTGGAAAACTTGATTCCTGCTGATCCAGCAAATCC 25 agactetacagaaagtttgattcaagaagcaggtcaagtgtggtatcctaactctgcttttaagacagcacaagctataa ATGATTTCAACAATGGTGAACAATTGCCATTAATGATTTTAGCAAATTGGAGAGGTTTCTCTGGTGGTCAAAGAGATATG TACAATGAAGTCTTGAAATATGGTTCATTTATTGTTGATGCTTTAGTTGACTTCAAGCAACCTATCTTCACTTACATTCC ACCAAATGGAGAATTGAGAGGTGGCTCTTGGGTTGTTGTTGATCCAACCATCAACTCAGATATGATGGAAATGTATGCCG 30 атдааладаттадатссаасттатдатдаалтдаалдсталдтталатдастсдтсаттатстссадаадаасастсдаа AATAAGCGCCAAATTGTTTGCACGTGAAAAGGCTTTATTACCAATTTATGCTCAAATTTCCGTTCAATTTGCTGACTTGC AAGAGTTGCCAGATTGAAGAGTTGGATGCCAACTGTTGAATACGATGATGACCAAGCTGTCAGTAACTGGATTGAAGAGA 35 ACCATGCCAAATTGCAAAAGAGAGTTAATGAATTGAAACAAGAAGTTTCAAGAACCAAGATTATGAGATTATTAAAAGAG GATCCAAATAGTGCAATTTCTGCAATGAAAGACTATGTTGAAAGATTGTCAAAAGAAGATAAAGAGAAATTCCTCAAGGC ATTGAAG<u>tag</u>AAGTGGTTTCCATTAATTCAACTTTTTAATGACATTGAAAGTAGTAGTAGTTGTTTTTTTAGATTTAA

GTATATTATATTATGTAATAAATTATAGAAAGTAATTATAGTTTTGACGGTTAATTGACGAGAGTGGGAAATTGGCTTTT

TTGTTGCTCGTGTGATGAAACAGTGATTGACACAAAAAAATAGACAATGAAAAC

40

6/8

FIGURE 5

MRCKLSLIKNTNSLVHRSRFLITKPQLYIPHRHYIPFKNIFKSLLMSDQSPSPSPSDSLSYTTLHENLPSHFLGGNSVLN 5 AEPSKVRDFVRAHOGHTVISKILIANNGIAAVKEIRSVRKWAYETFGDEKAIQFTVMATPEDLEANAEYIRMADQFIEVP GGTNNNNYANVDLIVEIAESTNAHAVWAGWGHASENPLLPEKLAASPKKIIFIGPPGSAMRSLGDKISSTIVAQHAQVPC I PWSGTGVDEVKI DPQTNLVSVADDIYAKGCCTSPEDGLEKAKKI GFPVMIKASEGGGGKGIRKVDDEKNFITLYNOAAN EIPGSPIFIMKLAGDARHLEVQLLADQYGTNISLFGRDCSVQRRHQKIIEEAPVTIARKETFHEMENAAVRLGKLVGYVS AGTVEYLYSHAEDKFYFLELNPRLQVEHPTTEMVTGVNLPAAQLQIAMGIPMHRIRDIRTLYGADPHTTTDIDFEFKSET 10 SLVSQRRPTPKGHCTACRITSEDPGEGFKPSGGSLHELNFRSSSNVWGYFSVGNQSSIHSFSDSQFGHIFAFGENRQASR KHMVVALKELSIRGDFRTTVEYLIKLLETPDFEDNTITTGWLDELITKKLTAERPDPIVAVVCGAVTKAHIOAEEEKKEY IQSLEKGQVPHRNLLKTIFPVEFIYEGERYKFTATKSSEDKYTLFLNGSRCVVGARSLSDGGLLCALDGKSHSVYWKEEA SATRLSVDGKTCLLEVENDPTQLRTPSPGKLVKYLVDSGEHVDAGQPYAEVEVMKMCMPLIAQENGVVQLIKQPGSTVNA GDILAILALDDPSKVKHAKPFEGTLPSMGEPNVTGTKPAHKFNHCAGILKNILAGYDNQVILNSTLKSLGEVLKDNELPY 15 SEWQQQISALHSRLPPKLDDGLTALVERTQSRGAEFPARQILKLITKSIAENGNDMLEDVVAPLVSIATSYQNGLVEHEY DYFASLINEYYDVESLFSGENVREDNVILKLRDENKSDLKKVIGIGLSHSRVSAKNNLILAILDIYEPLLQSNSSVAASI REALKNLFIRPRACAKVALKAREILIQCSLPSIKERSDQLEHILRSSVVQTSYGEIFAKHREPNLEIIREVVDSKHIVFD VLAQFLINPDPWVAIAAAEVYVRRSYRAYDLGKIEYHVNDRLPIVEWKFKLANMGAAGVNDAOOAAAAGGDDSTSMKHAA SVSDLTFVVDSKTEHSTRTGVLAPARHLDDVDETLTAALEQFQPADAISFKAKGETPELLNVLNIVITSIDGYSDENEYL 20 SRINEILCEYKEELISAGVRRVTFVFAHQIGQYPKYYTFTGPDYEENKVIRHIEPALAFQLELGRLANFDIKPIFTNNRN IHVYDAIGKNAPSDKRFFTRGIIRTGVLKEDISISEYLIAESNRLMNDILDTLEVIDTSNSDLNHIFINFSNAFNVQASD VEAAFGSFLERFGRRLWRLRVTGAEIRIVCTDPQGTSFPLRAIINNVSGYVVKSELYLEVKNPKGEWVFKSIGHPGSMHL RPISTPYPVKESLQPKRYKAHNMGTTYVYDFPELFRQATISQWKKYGKKVPKDVFVSLELITDETDSLIAVERDPGANKI GMVGFKVTAKTPEYPHGRQLIIVANDITHKIGSFGPEEDNYFNKCTELARKLGIPRIYLSANSGARIGVAEELIPLYQVA 25 wneegspdkgfrylylstaakeslekdgksdsvvterivekgeerhvikaligaedglgveclkgsgliagatsraykdi FTITLVTCRSVGIGAYLVRLGQRAIQIDGQPIILTGAPAINKLLGREVYSSNLQLGGTQIMYNNGVSHLTANDDLAGVEK IMEWLSYVPAKRGLPVPILESEDSWDRDVDYYPPKQEAFDVRWMIQGREVDGEYESGLFDKDSFQETLSGWAKGVVVGRA RLGGIPIGVIGVETRTVENLIPADPANPDSTESLIQEAGQVWYPNSAFKTAQAINDFNNGEQLPLMILANWRGFSGGQRD MYNEVLKYGSFIVDALVDFKQPIFTYIPPNGELRGGSWVVVDPTINSDMMEMYADVDSRAGVLEPEGMVGIKYRRDKLLA 30 tmerldptygemkakindsslspeehskisaklfarekallpiyaqisvqfadlhdrsgrmlakgvirkeikwtdarrff FWRLRRRLNEEYVLRLISEQIKDSSKLERVARLKSWMPTVEYDDDQAVSNWIEENHAKLQKRVNELKQEVSRTKIMRLLK

EDPNSAISAMKDYVERLSKEDKEKFLKALK

-1-

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
 5
         (i) APPLICANT:
              (A) NAME: Zeneca Ltd
              (B) STREET: 15 Stanhope Gate
              (C) CITY: London
10
              (D). STATE: Greater London
              (E) COUNTRY: England
              (F) POSTAL CODE (ZIP): W1Y 6LN
              (G) TELEPHONE: 0171 304 5000
              (H) TELEFAX: 0171 304 5151
15
              (I) TELEX: 0171 834 2042
        (ii) TITLE OF INVENTION: PROCESS
       (iii) NUMBER OF SEQUENCES: 3
20
        (iv) COMPUTER READABLE FORM:
              (A) MEDIUM TYPE: Floppy disk
              (B) COMPUTER: IBM PC compatible
              (C) OPERATING SYSTEM: PC-DOS/MS-DOS
25
              (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
        (vi) PRIOR APPLICATION DATA:
              (A) APPLICATION NUMBER: GB 9726897.3
              (B) FILING DATE: 20-DEC-1997
30
    (2) INFORMATION FOR SEQ ID NO: 1:
         (i) SEQUENCE CHARACTERISTICS:
35
              (A) LENGTH: 523 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
40
        (ii) MOLECULE TYPE: other nucleic acid
```

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

WO 99/32635 PCT/GB98/03857
-2-

	ATGGATAGAA	GATTGGTTAC	CAACTGAGAA	ATAACCCCAC	ACATTAGAAG	AAGAACGGAA	120
	ATTCAATTCA	TGTAAAGAAC	CACCACTTGG	TTTAAAACCT	TCACCAGGAT	CTTCAGAAGT	180
	AATACGACAA	GCAGTACAAT	GTCCCTTTGG	TGTTGGTCTT	CTTTGACTAA	CCAATGAAGT	240
	TTCTGACTTG	AATTCAAAAT	CAATATCAGT	AGTGGTATGA	GGATCGGCAC	CGCACAAAGT	300
5	TCTGATATCT	CTGATTCTAT	GCATTGGTAT	ACCCATAGCA	ATTTGTAATT	GAGCAGCTGG	360
	TAAATTAACA	CCTGTCACCA	TTTCAGTGGT	TGGATGTTCA	ACTTGCAATC	TTGGGTTCAA	420
	TTCCAAAAAG	TAGAATTTAT	CTTCAGCGTG	GGGAGTAAAG	GTACTCAACA	GTACCAGGGG	480
	CTTACATAAC	СУУСТВИТТ	TACCCAATCT	GACTGGTGGA	ጥጥጥ		523

10 (2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8054 base pairs(B) TYPE: nucleic acid

15 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

25	AATATATTGC	TTCCTTTTGA	TAGGAAGTAA	CTCCGAGTGT	TTGAATTTGA	TATATGTTAT	60
	TCATATACGT	TCAATGGCTC	TCTTCTATGC	TTTGTATATA	CTTTCTTTTG	AATAGATACT	120
	CATGTAAAGA	GATTTGAAAC	CATATTCTAA	CCAACAAAAA	TATTGTACGG	TATAGGTTAG	180
	AAAAAAAACT	CCGTAAGGTC	CGCTTACACG	GTTAAATTGA	AAACACGTTA	TTATATAAAA	240
	TGGGTAATGG	ACTAAGCTAT	ATACAGTACT	CAACAAAAAT	GAAATCAAAC	ACAATGTTCT	300
30	TTGGGAAATT	CATTTCATGC	AACTAGGGTG	ATTCTCTTTC	TACTATCCAA	CAACGATAAC	360
	CCTGCTTTTG	AAAAATCTTT	TCTAAATTCA	AATTGATATA	ATTCTTATTT	ATATATTACT	420
	TTCTTTTTCC	CATATAACCC	CATTTTTTT	TTGGAATCAT	ATTTGTTTTT	GATTTTTGCT	480
	TTCCCTTTCA	GTCTGAGGAA	CATACTAATT	ACGAACAACA	ATTATACATC	CAATCTTCAT	540
	CTAACGAATT	GATTATTTAC	ATTTATTAAA	CCCTTGGATA	CAAACTGATT	ACACTTTTTA	600
35	GTTAGTTTGT	TCAATTATAA	GGGTATTATA	CAACAAAGAT	ATCATTTAAA	GTTAAATCTC	660
	AATCTGGAAT	AATAAAAGTA	TTCAACACTT	TTGCTTACAA	TAGGTATGTT	CAAAATCAAT	720
	TGAAGCCATC	GAGATAAGAA	ATTAAGCAAA	AACGTTTACA	ATTGTTGTGT	GTGTGTTGCA	780
	GTGTTTGAAG	AAGCTCGAGT	GATTGCTTTT	CTTCGGCATC	AGCTGTGTTG	GGAACATCTT	840
	GTCGTTAAAG	TTTCGGAGTA	ATATTAGAGT	AATGGAACGA	аааааасааа	ATAAAGTTCT	900
40	GGAACCACAA	AGATTTGAAA	AATTGGGTAG	АААСАААААА	AAGACAAAGC	AGGAACCCAA	960
	CAATAAATGA	ATAAACACTC	AAAAACTACT	CACAACAACA	ACACTTATTT	TCACTTGCTT	1020
	TATTTCTTCG	ATTTTTTATG	AGATGCAAAT	TATCTCTAAT	AAAGAATACT	AACTCACTTG	1080
	TACATAGATC	GCGTTTCCTA	ATTACAAAAC	CACAACTATA	TATACCTCAT	CGTCATTATA	1140
	TCCCATTCAA	GAACATATTC	AAGTCATTGT	TAATGTCAGA	TCAATCTCCA	TCTCCTAGTC	1200
45	CTAGCGATTC	CCTTAGCTAC	ACTACATTAC	ATGAAAATTT	GCCATCTCAT	TTCTTGGGTG	1260
	GAAATTCAGT	TTTGAATGCT	GAACCTTCTA	AAGTCAGAGA	CTTTGTCAGA	GCTCATCAAG	1320
	GTCATACAGT	TATTTCGAAA	ATTTTAATTG	CCAACAATGG	TATAGCTGCA	GTTAAAGAAA	1380

	TCAGATCAGT	TAGAAAATGG	GCTTATGAAA	CATTTGGTGA	CGAAAAAGCC	ATACAGTTTA	1440
	CCGTTATGGC	CACTCCAGAA	GATTTGGAAG	CTAATGCCGA	ATATATTAGA	ATGGCCGACC	1500
	AATTCATTGA	AGTCCCTGGT	GGCACCAATA	ACAATAACTA	TGCTAATGTT	GATCTCATTG	1560
	TAGAGATAGC	AGAAAGTACA	AATGCTCATG	CCGTTTGGGC	TGGGTGGGG	CATGCTTCAG	1620
5	AGAATCCTTT	GTTACCAGAA	AAATTAGCTG	CATCTCCCAA	AAAAATTATT	TTTATTGGTC	1680
	CTCCTGGTTC	AGCTATGAGA	TCTTTAGGTG	ACAAGATTTC	ATCTACTATA	GTTGCTCAAC	1740
	ATGCTCAAGT	ACCATGTATT	CCATGGTCCG	GTACTGGTGT	TGATGAAGTG	AAAATAGACC	1800
	CACAAACTAA	TTTGGTTTCT	GTTGCTGATG	ATATTTATGC	CAAAGGGTGC	TGTACTAGTC	1860
	CAGAAGATGG	TTTAGAAAAA	GCCAAAAAAA	TTGGGTTCCC	AGTTATGATT	AAAGCCTCTG	1920
10	AAGGTGGTGG	TGGTAAAGGT	ATTAGAAAAG	TTGATGATGA	GAAAAACTTC	ATTACCTTAT	1980
	ACAACCAAGC	AGCTAATGAA	ATACCAGGTT	CTCCTATCTT	TATTATGAAG	TTAGCAGGTG	2040
	ATGCCAGACA	TTTAGAAGTT	CAATTACTAG	CAGATCAATA	CGGTACTAAC	ATTTCCCTTT	2100
	TTGGAAGAGA	TTGTTCCGTA	CAAAGAAGAC	ACCAAAAGAT	TATTGAAGAA	GCACCAGTCA	2160
						TTGGGTAAAT	2220
15	TAGTTGGTTA	TGTATCCGCT	GGTACTGTTG	AGTATCTTTA	CTCCCACGCT	GAAGATAAAT	2280
	TCTACTTTTT	GGAATTGAAC	CCAAGATTGC	AAGTTGAACA	TCCAACCACT	GAAATGGTGA	2340
	CAGGTGTTAA	TTTACCAGCT	GCTCAATTAC	AAATTGCTAT	GGGTATACCA	ATGCATAGAA	2400
	TCAGAGATAT	CAGAACTTTG	TACGGTGCCG	ATCCTCATAC	CACTACTGAT	ATTGATTTTG	2460
	AATTCAAGTC	AGAAACTTCA	TTGGTTAGTC	AAAGAAGACC	AACACCAAAG	GGACATTGTA	2520
20	CTGCTTGTCG	TATTACTTCT	GAAGATCCTG	GTGAAGGTTT	TAAACCAAGT	GGTGGTTCTT	2580
	TACATGAATT	GAATTTCCGT	TCTTCTTCTA	ATGTGTGGGG	TTATTTCTCA	GTTGGTAACC	2640
	AATCTTCTAT	CCATTCATTT	TCGGATTCTC	AATTTGGTCA	TATTTTCGCA	TTTGGTGAAA	2700
	ACCGTCAAGC	TTCAAGAAAA	CATATGGTTG	TTGCCTTGAA	AGAATTGAGT	ATTAGAGGTG	2760
	ATTTTAGAAC	TACTGTTGAG	TATTTAATCA	AATTGTTAGA	AACTCCAGAT	TTCGAGGATA	2820
25	ATACCATTAC	AACTGGTTGG	TTGGATGAAT	TAATCACCAA	AAAGTTGACT	GCTGAAAGAC	2880
	CAGATCCAAT	AGTTGCTGTT	GTTTGTGGAG	CTGTAACCAA	AGCACACATC	CAGGCTGAGG	2940
	AAGAGAAAAA	GGAATACATC	CAATCTTTGG	AAAAAGGTCA	AGTTCCTCAC	AGAAACTTAT	3000
	TGAAAACTAT	TTTCCCAGTT	GAGTTTATTT	ATGAAGGTGA	AAGATACAAG	TTCACTGCTA	3060
	CTAAATCTTC	AGAAGATAAA	TATACTTTGT	TCCTTAATGG	TTCTCGTTGT	GTTGTTGGTG	3120
30	CACGTTCATT	GTCCGATGGT	GGTTTATTGT	GTGCATTAGA	TGGGAAATCA	CATTCTGTCT	3180
	ATTGGAAGGA	AGAGGCATCT	GCCACTAGAT	TATCAGTTGA	TGGCAAAACT	TGTTTATTAG	3240
	AAGTTGAAAA	TGATCCAACA	CAATTAAGAA	CTCCATCTCC	AGGTAAATTG	GTCAAGTATT	3300
	TGGTTGACAG	TGGTGAACAT	GTTGATGCTG	GTCAACCATA	CGCTGAAGTC	GAAGTTATGA	3360
	AAATGTGTAT	GCCTTTGATT	GCTCAAGAAA	ATGGGGTAGT	GCAGTTGATT	AAACAACCGG	3420
35	GTTCCACAGT	TAATGCTGGT	GATATCTTGG	CCATTTTGGC	ATTGGACGAT	CCATCTAAGG	3480
	TCAAACATGC	TAAACCATTT	GAAGGTACTT	TACCATCTAT	GGGTGAGCCA	AATGTTACAG	3540
						ATTTTGGCTG	3600
	GTTATGATAA	TCAAGTGATT	TTGAATTCTA	CTTTAAAGAG	TCTTGGTGAA	GTTTTGAAAG	3660
40	ACAATGAATT						3720
40						AGAGGTGCTG	3780
	AATTCCCTGC	TCGTCAAATT	TTAAAACTCA	TCACCAAATC	aattgctgaa	AATGGTAATG	3840
						CAGAATGGTT	3900
	TGGTTGAACA	CGAATACGAT	TACTTTGCAT	CTTTGATTAA	CGAATATTAT	GACGTTGAAA	3960
						AGAGATGAAA	4020
45						GTTAGTGCCA	4080
						TCCAACTCGT	4140
	CAGTTGCTGC	CTCTATCAGA	GAAGCTTTAA	AGAACTTGTT	CATTAGACCT	CGTGCTTGTG	4200

	CCAAAGTTGC	ATTAAAGGCA	AGAGAAATTT	TAATTCAAT	TTCTTTACCT	TCCATCAAGG	4260
						TCTTATGGTG	4320
						GTTGATTCCA	4380
	AACATATTGT	TTTTGATGT	TTGGCACAAT	TCTTAATCAA	TCCAGACCCA	TGGGTTGCCA	4440
5	TTGCTGCCGC	TGAAGTTTAT	GTCAGACGTT	CATACCGTGC	TTATGATTTG	GGTAAAATTG	4500
					ATTCAAGTTG		4560
	GAGCCGCTGG	TGTAAACGAT	GCTCAACAGG	CTGCTGCTGC	CGGTGGCGAT	GATTCGACAT	4620
	CTATGAAACA	TGCAGCTTCT	GTGTCTGATT	TGACCTTTGT	TGTTGATTCT	AAAACCGAGC	4680
	ATTCCACAAG	AACTGGTGTT	TTAGCTCCAG	CAAGACACTT	GGATGATGTT	GATGAAACTC	4740
10	TTACAGCTGC	ATTGGAACAA	TTCCAACCAG	CCGATGCTAT	TTCATTTAAA	GCAAAGGGTG	4800
	AAACTCCAGA	GTTATTAAAT	GTTTTGAATA	TTGTCATTAC	CAGTATTGAT	GGTTACTCCG	4860
	ATGAAAATGA	ATACTTGAGC	AGAATTAATG	AAATCTTGTG	CGAATACAAA	GAAGAGTTGA	4920
	TTTCTGCTGG	TGTTCGTCGT	GTTACATTTG	TTTTTGCTCA	TCAAATTGGT	CAATATCCTA	4980
					GGTTATTAGA		5040
15	CAGCTTTGGC	TTTCCAATTG	GAATTGGGAA	GATTAGCCAA	TTTCGATATC	AAACCAATTT	5100
	TCACTAACAA	CAGAAACATC	CATGTATATG	ATGCAATTGG	GAAGAATGCT	CCTTCTGATA	5160
	AAAGATTTTT	CACCAGAGGG	ATTATTAGAA	CCGGTGTTCT	TAAAGAAGAC	ATTAGCATTA	5220
	GTGAATATTT	GATTGCTGAA	TCCAACAGAT	TAATGAATGA	TATTTTGGAT	ACTTTAGAAG	5280
••					TAACTTTTCC		5340
20					CTTAGAAAGA		5400
	GATTATGGAG	ATTAAGAGTT	ACTGGTGCTG	AAATTAGAAT	TGTCTGTACT	GATCCTCAAG	5460
	GTACTTCGTT	CCCATTGCGT	GCTATCATTA	ATAATGTTTC	TGGTTATGTT	GTCAAATCAG	5520
					TTTCAAATCC		5580
25					AGTTAAAGAA		5640
23					GTATGACTTC		5700
					AAAAGTACCA		5760
					AATAGCTGTT		5820
					TGCTAAAACT		5880
30					CCACAAGATT		5940
50					GGCCAGAAAA TGTTGCTGAG		6000
					CAAAGGATTC		6060 612 0
					TAAAAGTGAC		6180
					TAAAGCTATT		6240
35					AATTGCTGGT		6300
					TAGATCTGTT		6360
					TGGTCAACCT		6420
					GTATTCTTCC		6480
					TTTGACAGCT		6540
40					TCCAGCTAAA		6600
					TGTTGATTAC		6660
					AGAAGTTGAT		6720
					ATCTGGTTGG		6780
					TGTTATTGGT		6840
45					AGACTCTACA		6900
					TAAGACAGCA		6960
					AGCAAATTGG		7020

-5-

	CTGGTGGTCA	AAGAGATATG	TACAATGAAG	TCTTGAAATA	TGGTTCATTT	ATTGTTGATG	7080
	CTTTAGTTGA	CTTCAAGCAA	CCTATCTTCA	CTTACATTCC	ACCAAATGGA	GAATTGAGAG	7140
	GTGGCTCTTG	GGTTGTTGTT	GATCCAACCA	TCAACTCAGA	TATGATGGAA	ATGTATGCCG	7200
	ATGTCGATTC	GAGAGCTGGT	GTTTTGGAAC	CAGAAGGTAT	GGTTGGTATC	AAATACAGAC	7260
5	GTGATAAATT	ATTAGCAACT	ATGGAAAGAT	TAGATCCAAC	TTATGGTGAA	ATGAAAGCTA	7320
	AGTTAAATGA	CTCGTCATTA	TCTCCAGAAG	AACACTCGAA	AATAAGCGCC	AAATTGTTTG	7380
	CACGTGAAAA	GGCTTTATTA	CCAATTTATG	CTCAAATTTC	CGTTCAATTT	GCTGACTTGC	7440
	ACGATAGATC	AGGTCGTATG	TTGGCCAAGG	GAGTTATTAG	AAAGGAAATC	AAATGGACT G	7500
	ATGCTAGACG	TTTCTTCTTC	TGGAGATTGA	GAAGAAGATT	GAACGAGGAA	TATGTTTTGA	7560
10	GATTGATTAG	TGAACAAATT	AAAGATTCTA	GCAAATTGGA	AAGAGTTGCC	AGATTGAAGA	7620
	GTTGGATGCC	AACTGTTGAA	TACGATGATG	ACCAAGCTGT	CAGTAACTGG	ATTGAAGAGA	7680
	ACCATGCCAA	ATTGCAAAAG	AGAGTTAATG	AATTGAAA CA	AGAAGTTTCA	AGAACCAAGA	7740
	TTATGAGATT	attaaaagag	GATCCAAATA	GTGCAATTTC	TGCAATGAAA	GACTATGTTG	7800
	AAAGATTGTC	AAAAGAAGAT	AAAGAGAAAT	TCCTCAAGGC	ATTGAAGTAG	AAGTGGTTTC	7860
15	CATTAATTCA	ACTTTTTAAT	GACATTGAAA	GTAGTAGTAG	TTĢTTGTTTT	TTAGATTTAA	7920
	GTATATTATA	TTATGTAATA	AATTATAGAA	AGTAATTATA	GTTTTGACGG	TTAATTGACG	7980
	AGAGTGGGAA	ATTGGCTTTT	TTGTTGCTCG	TGTGATGAAA	CAGTGATTGA	CACAAAAAAA	8040
	TAGACAATGA	AAAC					8054

20 (2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2270 amino acids

(B) TYPE: amino acid

25 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

				100					105					110		
	Lys	Glu	Ile	Arg	Ser	Val	Arg	Lys	Trp	Ala	Tyr	Glu	Thr	Phe	Gly	Asp
	-		115					120					125			
	Glu	Lys	Ala	Ile	Gln	Phe	Thr	Val	Met	Ala	Thr	Pro	Glu	Asp	Leu	Glu
5 .		130					135					140				
	Ala	Asn	Ala	Glu	Tyr	Ile	Arg	Met	Ala	Asp	Gln	Phe	Ile	Glu	Val	Pro
	145					150					155					160
	Gly	Gly	Thr	Asn	Asn	Asn	Asn	Tyr	Ala	Asn	Val	Asp	Leu	Ile	Val	Glu
	_				165					170					175	
10	Ile	Ala	Glu	Ser	Thr	Asn	Ala	His	Ala	Val	Trp	Ala	Gly	Trp	Gly	His
				180					185					190		
	Ala	Ser	Glu	Asn	Pro	Leu	Leu	Pro	Glu	Lys	Leu	Ala	Ala	Ser	Pro	Lys
			195					200					205			
	Lys	Ile	Ile	Phe	Ile	Gly	Pro	Pro	Gly	Ser	Ala	Met	Arg	Ser	Leu	Gly
15		210					215					220				
	Asp	Lys	Ile	Ser	Ser	Thr	Ile	Val	Ala	Gln	His	Ala	Gln	Val	Pro	Cys
	225					230					235					240
	Ile	Pro	Trp	Ser	Gly	Thr	Gly	Val	Asp	Glu	Val	Lys	Ile	Asp	Pro	Gln
					245					250					255	
20 '	Thr	Asn	Leu	Val	Ser	Val	Ala	Asp	Asp	Ile	Tyr	Ala	Lys	Gly	Cys	Cys
				260					265					270		
	Thr	Ser	Pro	Glu	Asp	Gly	Leu	Glu	Lys	Ala	Lys	Lys	Ile	Gly	Phe	Pro
			275					280					285			
	Val	Met	Ile	Lys	Ala	Ser	Glu	Gly	Gly	Gly	Gly	Lys	Gly	Ile	Arg	Lys
25		290					295					300				
	Val	Asp	Asp	Glu	Lys	Asn	Phe	Ile	Thr	Leu	Tyr	Asn	Gln	Ala	Ala	Asn
	305					310					315					320
	Glu	Ile	Pro	Gly	Ser	Pro	Ile	Phe	Ile	Met	Lys	Leu	Ala	Gly	Asp	Ala
					325					330					335	
30	Arg	His	Leu	Glu	Val	Gln	Leu	Leu	Ala	Asp	Gln	Tyr	Gly	Thr	Asn	Ile
				340					345					350		
	Ser	Leu	Phe	Gly	Arg	Asp	Cys	Ser	Val	Gln	Arg	Arg	His	Gln	Lys	Ile
			355					360					365			
	Ile	Glu	Glu	Ala	Pro	Val	Thr	Ile	Ala	Arg	Lys	Glu	Thr	Phe	His	Glu
35		370					375					380				
	Met	Glu	Asn	Ala	Ala	Val	Arg	Leu	Gly	Lys	Leu	Val	Gly	Tyr	Val	Ser
	385					390					395					400
	Ala	Gly	Thr	Val	Glu	Tyr	Leu	Tyr	Ser	His	Ala	Glu	Asp	Lys	Phe	Tyr
					405					410					415	
40	Phe	Leu	Glu	Leu	Asn	Pro	Arg	Leu	Gln	Val	Glu	His	Pro	Thr	Thr	Glu
				420					425					430		
	Met	Val	Thr	Gly	Val	Asn	Leu	Pro	Ala	Ala	Gln	Leu	Gln	Ile	Ala	Met
			435					440					445			
	Gly	Ile	Pro	Met	His	Arg	Ile	Arg	Asp	Ile	Arg	Thr	Leu	Tyr	Gly	Ala
45		450					455					460				
	Asp	Pro	His	Thr	Thr	Thr	Asp	Ile	Asp	Phe	Glu	Phe	Lys	Ser	Glu	
	465					470					475					480

	Sez	Leu	Val	Ser	Gln 485		Arg	Pro	Thr	Pro	•	Gly	His	Cys	Thr 495	Ala
	Cys	Arg	Ile	Thr			Asp	Pro	Gly			Phe	Lys	Pro		Gly
	_			500)				505	.				510		
5	Gly	Ser	Leu 515		Glu	Leu	Asn	Phe 520		Ser	Ser	Ser	Asn 525		Trp	Gly
	Tyr	Phe			Gly	Asn	Gln			Ile	His	Ser			Asp	Ser
		530					535					540			_	
	Gln	Phe	Gly	His	Ile	Phe	Ala	Phe	Gly	Glu	Asn	Arg	Gln	Ala	Ser	Arg
10	545					550		_			555					560
	Lys	His	Met	Val	Val 565	Ala	Leu	Lys	Glu	570		Ile	Arg	Gly	Asp 575	
	Arg	Thr	Thr	Val 580	Glu	Tyr	Leu	Ile	Lys 585		Leu	Glu	Thr	Pro 590	Asp	Phe
15	Glu	Asp	Asn 595		Ile	Thr	Thr	Gly 600			Asp	Glu	Leu 605		Thr	Lys
	Lys	Leu		Ala	Glu	Arg	Pro		Pro	Ile	Val	Ala		Val	Cvs	Glv
	•	610				•	615	_				620			•	•
	Ala	Val	Thr	Lys	Ala	His	Ile	Gln	Ala	Glu	Glu	Glu	Lys	Lys	Glu	Tyr
20	625					630					635					640
	Ile	Gln	Ser	Leu	Glu 645	Lys	Gly	Gln	Val	Pro 650	His	Arg	Asn	Leu	Leu 655	Lys
	Thr	Ile	Phe	Pro 660	Val	Glu	Phe	Ile	Tyr 665	Glu	Gly	Glu	Arg	Tyr 670	Lys	Phe
25	Thr	Ala	Thr 675	Lys	Ser	Ser	Glu	Asp	Lys	Tyr	Thr	Leu	Phe	Leu	Asn	Gly
	Ser	Arg 690		Val	Val	Gly	Ala 695		Ser	Leu	Ser	Asp		Gly	Leu	Leu
	Cys		Leu	Asp	Gly	Lys		His	Ser	Val	Tyr		Lys	Glu	Glu	Ala
30	705			-	•	710					715	•	•			720
	Ser	Ala	Thr	Arg	Leu 725	Ser	Val	Asp	Gly	Lys 730	Thr	Cys	Leu	Leu	Glu 735	Val
	Glu	Asn	Asp	Pro 740	Thr	Gln	Leu	Arg	Thr 745	Pro	Ser	Pro	Gly	Lys 750	Leu	Val
35	Lys	Tyr	Leu 755		Asp	Ser	Gly	Glu 760		Val	Asp	Ala	Gly 765		Pro	Tyr
	Ala	Glu 770		Glu	Val	Met	Lys 775		Cys	Met	Pro	Leu 780		Ala	Gln	Glu
	Asn	Gly	Val	Val	Gln	Leu		Lys	Gln	Pro	Gly		Thr	Val	Asn	Ala
40	785					790					795					800
	Gly	Asp	Ile	Leu	Ala 805	Ile	Leu	Ala	Leu	Asp 810	Asp	Pro	Ser	Lys	Val 815	Lys
	His	Ala	-	Pro 820	Phe	Glu	Gly	Thr	Leu 825	Pro	Ser	Met	Gly	Glu 830	Pro	Asn
45	Val				Lys	Pro	Ala			Phe	Asn	His	-		Gly	Ile
	Leu			Ile	Leu	Ala	Glv	840 Tyr	Asp	Asn	Gln	Val	845 Ile	Leu	Asn	Ser
		-					-	-	-							

-8-

			50				85					86				
			eu L	ys S	er Le	u Gl	y G1	u Va	ıl Le	u Ly	s As	p As	n Gl	u Le	u Pr	o Tyr
	86					87					87	_				880
_	Se	r G	lu T	rp G	ln Gl	n Gl	n Il	e Se	r Al	a Le	u Hi	s Se	r Ar	g Le	u Pr	o Pro
5					88					89	-				89	
	Ly	s Le	eu As	sp As	sp Gl	y Le	u Th	r Al	a Le	u Va	1 G1	u Ar	g Th	r Gl	n Se	r Arg
				90					90					91		
	Gl	y Al	la G	lu Pr	ne Pr	o Al	a Ar	g Gl	n Il	e Le	u Ly	s Le	u Il	e Th	r Ly	s Ser
10			91					92					92			
10	11	e Al	la Gl	lu As	n Gl	y Ası	n As	p Me	t Le	u Gl	u As	p Va	l Va	l Ala	a Pro	Leu
		93					93					940				
	Va.	l Se	r Il	e Al	a Th	r Se	r Ty	r Glı	n As	n Gl	y Le	u Val	l Gli	Hi:	s Glu	Tyr
	94					950					95.					960
	Ası	э Ту	r Ph	e Al	a Se	r Lei	ı Ile	e Ası	n G1	и Ту	r Ty:	r Asp	Val	. Glı	ı Ser	Leu
15					96					97					975	
	Phe	e Se	r Gl	y Gl	u Ası	ı Val	Arg	g Glu	ı Ası	Ası	ı Va	l Ile	Let	Lys	Leu	Arg
				98					98					990		
	Asp	Gl	u As	n Ly	s Sei	Asp	Lei	Lys	Lys	va.	l Ile	e Gly	Ile	Gly	, Leu	Ser
••			99					100					100			
20	His	Se	r Ar	g Va	l Ser	Ala	Lys	Asn	Asr	ı Leı	ılle	: Leu	Ala	Ile	Leu	Asp
		10					101					102	-			
	Ile	Ty	r Gl	u Pro	Leu	Leu	Gln	Ser	Asr	Ser	Ser	Val	Ala	Ala	Ser	Ile
	102					103					103					1040
	Arg	Glı	a Ala	a Let	ı Lys	Asn	Leu	Phe	Ile	Arg	Pro	Arg	Ala	Cys	Ala	Lys
25					104	_				105					105	
	Val	Ala	a Le	Lys د	Ala	Arg	Glu	Ile	Leu	Ile	Gln	Cys	Ser	Leu	Pro	Ser
				106	-				106					107		
	Ile	Lys	Gli	ı Arç	, Ser	qeA	Gln	Leu	Glu	His	Ile	Leu	Arg	Ser	Ser	Val
••			107					108					108			
30	Val	Glr	Thi	Ser	Tyr	Gly	Glu	Ile	Phe	Ala	Lys	His	Arg	Glu	Pro	Asn
		109					109					1100				
	Leu	Glu	Ile	lle	Arg	Glu	Val	Val	Asp	Ser	Lys	His	Ile	Val	Phe	Asp
	110					1110					111					1120
	Val	Leu	Ala	Gln	Phe	Leu	Ile	Asn	Pro	Asp	Pro	Trp	Val	Ala	Ile	Ala
35					112					113					1135	
	Ala	Ala	Glu	Val	Tyr	Val	Arg	Arg	Ser	Tyr	Arg	Ala	Tyr	Asp	Leu	Gly
				114					114					1150		
	Lys	Ile	Glu	Tyr	His	Val	Asn	Asp	Arg	Leu	Pro	Ile	Val	Glu	Trp	Lys
			115					1160					1165			
10	Phe	Lys	Leu	Ala	Asn	Met	Gly	Ala	Ala	Gly	Val	Asn	Asp	Ala	Gln	Gln
		117					1175					1180				
	Ala	Ala	Ala	Ala	Gly	Gly	Asp	Asp	Ser	Thr	Ser	Met	Lys	His	Ala	Ala
	1185					1190					1195					1200
	Ser	Val	Ser	Asp	Leu	Thr	Phe	Val	Val	Asp	Ser	Lys	Thr	Glu	His	Ser
5					1205					1210					1215	
	Thr	Arg	Thr	Gly	Val	Leu	Ala	Pro	Ala	Arg	His	Leu	Asp	Asp	Val.	Asp
				1220					1225					1230		-

	Gli	Th:	r Le	u Thi	Ala	a Ala	a Le	ı Glı	ı Glı	n Phe	e Glr	Pro	Ala	Ası	Ala	a Ile
			12	35				124	10				124	15		
	Ser	Phe	e Ly:	s Ala	Lys	G13	/ Gl	Th:	Pro	Glu	ı Lev	Leu	Asn	Va]	Let	ı Asn
_		125					12					126				
5	Ile	Val	Ile	e Thr	Ser	Ile	e Ası	Gly	Tyr	Ser	Asp	Glu	Asn	Glu	Ту	Leu
	126					127					127					1280
	Ser	Arg	; Ile	e Asn			Let	Cys	Glu	Туг	Lys	Glu	Glu	Let	Ile	Ser
					128					129					129	
10	Ala	Gly	/ Val			Val	Thr	Phe			Ala	His	Gln		-	Gln
10	_	_		130					130					131		•
	Tyr	Pro		Tyr	Tyr	Thr	Phe			Pro	Asp	Tyr			Asn	Lys
	17-1	- 1-	131		~1.	•	_	132					132			
	vai			His	TTE	GIU			Leu	Ala	Phe			Glu	Leu	Gly
15) ra	133			Dho	7	133		n		_,	1340				_
	134		MIG	Asn	FIIE	135		гĀ2	PIO	iie			Asn	Asn	Arg	
			Val	Tyr	Den			G) v	Tue) on	135		c	N	*	1360
			• • • •	17.	136		116	GLY	цуз	137		PIO	ser	ASP	137	
	Phe	Phe	Thr	Arg			Tle	Ara	Thr			T.e.i	Luc	G3 is		
20				1380				9	138		V 41	Deu	цуз	139		116
	Ser	Ile	Ser	Glu		Leu	Ile	Ala			Asn	Ara	ī.eu			Agn
			139		•			1400					1405			
	Ile	Leu	Asp	Thr	Leu	Glu	Val	Ile	Asp	Thr	Ser	Asn			Leu	Asn
		1416					141		•			1420		•		
25	His	Ile	Phe	Ile	Asn	Phe	Ser	Asn	Ala	Phe	Asn	Val	Gln	Ala	Ser	Asp
	1425					1430					1435					1440
	Val	Glu	Ala	Ala	Phe	Gly	Ser	Phe	Leu	Glu	Arg	Phe	Gly	Arg	Arg	Leu
					1445	5				1450)				145	5
••	Trp	Arg	Leu	Arg	Val	Thr	Gly	Ala	Glu	Ile	Arg	Ile	Val	Cys	Thr	Asp
30				1460					1465					1470		
	Pro	Gln		Thr	Ser	Phe	Pro	Leu	Arg	Ala	Ile	Ile	Asn	Asn	Val	Ser
			1475					1480					1485			
	Gly			Val	Lys				Tyr	Leu	Glu	Val	Lys	Asn	Pro	Lys
35		1490					1495					1500				
33			Trp	Val				Ile	Gly	His			Ser	Met	His	
	1505		* 1_	C		1510		_		_	1515					1520
	Arg	PIO	iie	Ser	rnr 1525		Tyr	Pro				Ser :	Leu			_
	Ara	ጥ የታም	Lue				Ma+	C1		1530					1535	
40	9		Dy3	Ala :	1113	noii .	net		ini 1545		Tyr	vaı :				Pro
	Glu	Leu	Phe	Arg (Sln	בו ב	Th r				Ф	· · · · · ·		1550		*
			1555					116 1560		GIII	IIp.		Lys 1565	ıyı	GIÀ	гàг
	Lvs			Lys i	Asp '	Va 1				Lon	C1			Th.	7	C1
		1570		_,			1575		JG1 .	⊸ eu		1580	.16	AIII .	nap	GIU
45	Thr i			Leu :	Ile i				Ara	Asp			Ala i	Asn	Lve	Tle
	1585					1590					1595	y 1	1			1600
	Gly i	Met	Val	Gly 1			Val	Thr :	Ala :			Pro (Slu !	lvr :		

-10-

					160	05				161	10				16	15
	Gly	/ Arg	g Gl	n Lei	ı Ile	e Ile	e Val	l Ala	a Ası	n Asp	lle	Thi	His	s Ly:	s Ile	e Gly
				162	20				162	25				16	30	
	Sei	Phe	e Gly	y Pro	Glu	ı Glı	a Asp	Asr	ту	Phe	Asn	Lys	Cys	Th	c Glu	ı Leu
5			163	35				164	0				164	15		
	Ala	Arg	Lys	Leu	Gly	, Ile	e Pro	Arg	Ile	туг	Leu	Ser	Ala	a Ası	Sei	Gly
		165	0				165	55				166	0			
	Ala	Arg	, Ile	e Gly	Val	Ala	Glu	Glu	Lev	lle	Pro	Leu	туг	Glr	Val	Ala
	166					167					167					1680
10	Trp	Asn	Glu	Glu	Gly	Ser	Pro	Asp	Lys	Gly	Phe	Arg	Tyr	Leu	Tyr	Leu
					168					169			•		169	
	Ser	Thr	Ala	Ala	Lys	Glu	Ser	Leu	Glu	Lys	Asp	Gly	Lys	Ser	Asp	Ser
				170					170		-	•	•	171		
	Val	Val	Thr	Glu	Arg	Ile	Val	Glu	Lys	Gly	Glu	Glu	Ara	His	Val	Ile
15			171					172		-			172			
	Lys	Ala	Ile	Ile	Gly	Ala	Glu	Asp	Gly	Leu	Gly	Val			Leu	Lvs
		173					173		-		-	174		-,-		-,-
	Gly	Ser	Gly	Leu	Ile	Ala	Gly	Ala	Thr	Ser	Ara			ī.vs	Asp	Ile
	174					175					175		-3-			1760
20	Phe	Thr	Ile	Thr	Leu	Val	Thr	Cys	Arg	Ser	Val		Ile	Glv	Ala	
					176			-	•	177		•			177	_
	Leu	Val	Arg	Leu	Gly	Gln	Arq	Ala	Ile	Gln	Ile	Asp	Gl v	Gln		
				1780					178			•		179		
	Ile	Leu	Thr	Gly	Ala	Pro	Ala	Ile	Asn	Lvs	Leu	Leu	Glv			Val
25			179					1800		-2-			180	_		
	Tyr	Ser	Ser	Asn	Leu	Gln	Leu			Thr	Gln	Ile			Asn	Asn
	-	1810					1819		-			1820		- , -		
	Gly	Val	Ser	His	Leu	Thr	Ala	Asn	Asp	Asp	Leu			Val	Glu	Lvs
	1825					1830			•	•	1835		,			1840
30	Ile	Met	Glu	Trp	Leu	Ser	Tyr	Val	Pro	Ala	Lys		Glv	Leu	Pro	
				_	1845		-			1850					1855	
	Pro	Ile	Leu	Glu	Ser	Glu	Asp	Ser	Trp	Asp	Arg	Asp	Val	Asp		
				1860			-		1865			•		1870	_	-1-
	Pro	Pro	Lys	Gln	Glu	Ala	Phe	Asp	Val	Arg	Trp	Met	Ile			Ara
35			1875					1880		-	•		1885		2	5
	Glu	Val	Asp	Gly	Glu	Tyr	Glu	Ser	Gly	Leu	Phe .				Ser	Phe
		1890					1895		•			1900				
	Gln	Glu	Thr	Leu	Ser	Gly	Trp	Ala	Lys	Glv	Val '			Glv	Ara	Ala
	1905					1910			-		1915			,	5	1920
40	Arg	Leu	Gly	Gly	Ile	Pro	Ile	Gly	Val		Gly	Val	Glu	Thr	Arσ	
					1925			•		1930					1935	
	Val	Glu	Asn	Leu	Ile	Pro	Ala	Asp				Pro	Asp	Ser		
				1940					1945					3er 1950		
	Ser :	Leu	Ile			Ala	Glv				Tyr 1	Pro				Phe
45			1955					1960		P	- ,		1965		a	- 116
	Lys '				Ala	Ile			Phe	Asn	Asn (וים. ו	Pro
		1970			-		1975		•			1980		J-11	u	

	Le	u Mei	t Ile	e Lei	ı Ala	A.SI	1 Trp	Ar	g G1:	y Phe	Se	r Gly	/ Gl	y Glr	ı Arç	Asp
	19					199					199					200
	Me	t Ty	r Asr	ı Glı	ı Val	. Leu	ı Lys	Туз	c Gly	y Ser	Phe	: Ile	val	l Asp	Ala	Leu
					200	15				201	.0				201	.5
5	.Va.	l Asp	Phe	Lys	Gln	Pro	Ile	Phe	Thi	Tyr	Ile	Pro	Pro	Asn	Gly	Glu
				202	20				202	25				203	0	
	Let	ı Arç	Gly	Gly	/ Ser	Trp	Val	Val	. Val	Asp	Pro	Thr	Ile	Asn	Ser	Asp
			203	5				204	0				204	5		
	Met	Met	Glu	Met	Tyr	Ala	Asp	Val	Asp	Ser	Arg	Ala	Gly	Val	Leu	Glu
10		205					205	-				206				
	Pro	Glu	Gly	Met	Val	Gly	Ile	Lys	Tyr	Arg	Arg	Asp	Lys	Leu	Leu	Ala
	206	55				207	0				207	5				208
	Thr	Met	Glu	Arg	Leu	Asp	Pro	Thr	Tyr	Gly	Glu	Met	Lys	Ala	Lys	Leu
					208					209					209	
15	Asn	Asp	Ser	Ser	Leu	Ser	Pro	Glu	Glu	His	Ser	Lys	Ile	Ser	Ala	Lys
				210					210					211		
	Leu	Phe	Ala	Arg	Glu	Lys	Ala	Leu	Leu	Pro	Ile	Tyr	Ala	Gln	Ile	Ser
			211					212					212	-		
20	Val			Ala	Asp	Leu	His	Asp	Arg	Ser	Gly	Arg	Met	Leu	Ala	Lys
20		213					2135					2140				
			Ile	Arg	Lys			Lys	Trp	Thr	Asp	Ala	Arg	Arg	Phe	Phe
	214					2150					215					2160
	Phe	Trp	Arg	Leu			Arg	Leu	Asn	Glu	Glu	Tyr	Val	Leu	Arg	Leu
25		_			2165					2170					2175	
25	Ile	Ser	Glu			Lys	Asp	Ser		Lys	Leu	Glu	Arg	Val	Ala	Arg
	_	_	_	2180					2185					2190		
	Leu	гуs			Met	Pro				Tyr	Asp	Asp	Asp	Gln	Ala	Val
			2195					2200					2205			
30	ser			lle	Glu				Ala	Lys				Arg	Val	Asn
30	C1	2210		-	_,		2215					2220				
			гàг	GIN				Arg	Thr	Lys			Arg	Leu	Leu	Lys
	2225			_		2230 					2235					2240
	GIU	Asp	Pro .				Ile	Ser		Met	Lys	Asp	Tyr			
35	1	C	7		2245			_		2250					2255	
J.J	ren	ser				Lys	Glu :			Leu :	Lys	Ala :				
				2260					2265					2270		

INTERNATIONAL SEARCH REPORT

Interna. Application No

PCT/GB 98/03857 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/52 C12N C12N9/00 C07K16/40 C12N15/11 C12N15/81 C12Q1/25 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. FR 2 727 129 A (RHONE POULENC AGROCHIMIE) X 1-13,16. 24 May 1996 17 see the whole document 14,15 X AL-FEEL W ET AL: "Cloning of the yeast 1-12 FAS3 gene and primary structure of yeast acetyl-CoA carboxylase" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, May 1992, pages 4534-4538, XP002097900 WASHINGTON US see the whole document Y GB 2 137 208 A (COLLABORATIVE RES INC) 14,15 3 October 1984 see the whole document -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 25 March 1999 09/04/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo rd, Fax: (+31-70) 340-3016 Van der Schaal, C

INTERNATIONAL SEARCH REPORT

Interna 1 Application No
PCT/GB 98/03857

		PCT/GB 98/03857							
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT									
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.							
A	HORIKAWA S ET AL: "CELL-FREE TRANSLATION AND REGULATION OF CANDIDA -LIPOLYTICA ACETYL COENZYME A CARBOXYLASE EC-6.4:1.2 MESSENGER RNA." EUR J BIOCHEM, (1980) 104 (1), 191-198. CODEN: EJBCAI. ISSN: 0014-2956., XP002097901	1-12							
	•	·							

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interna J Application No PCT/GB 98/03857

Patent document cited in search report		Publication date		Patent family member(s)	Publication date		
FR 2727129	Α	24-05-1996	NONE		•		
GB 2137208	Α	03-10-1984	US	4661454 A	28-04-1987		
			AT	64416 T	15-06-1991		
			CA	1283373 A	23-04-1991		
			CA	1273883 C	11-09-1990		
			DK	97784 A	29-08-1984		
			EP	0123811 A	07-11-1984		
			JP	60058077 A	04-04-1985		
			US	5139936 A	18-08-1992		