香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九七年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1997

附加數學 試卷二 ADDITIONAL MATHEMATICS PAPER II

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成 閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對, 但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取 此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考 試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上 述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。

After the examinations, marking schemes will be available for reference at the Teachers' Centres.

© 香港考試局 保留版權
Hong Kong Examinations Authority
All Rights Reserved 1997
97-CE-A MATHS II-1

GENERAL INSTRUCTIONS TO MARKERS

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method is specified in the question.
- 2. In the marking scheme, marks are classified as follows:

'M' marks - awarded for knowing a correct method of solution and attempting to apply it;

'A' marks - awarded for the accuracy of the answer;

Marks without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answer should **NOT** be awarded. Unless otherwise specified, no marks in the marking scheme are subdivisible.

- 3. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 4. The symbol (pp-1) should be used to denote marks deducted for poor presentation (p.p.). Note the following points:
 - (a) At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
 - (b) For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
 - (c) In any case, do not deduct any marks for p.p. in those steps where candidates could not score any marks.
 - (d) Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However, the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.
- 5. The symbol (u-1) should be used to denote marks deducted for wrong/no units in the final answers (if applicable). Note the following points:
 - (a) At most deduct 1 mark for wrong/no units for the whole paper.
 - (b) Do not deduct any marks for wrong/no units in case candidate's answer was already wrong.
- 6. Marks entered in the Page Total Box should be the net total score on that page.
- 7. In the Marking Scheme, steps which can be omitted are enclosed by dotted rectangles whereas alternative answers are enclosed by solid rectangles
- 8. Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.
- 9. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.

Solution	Marks	Remarks
$\frac{\sin 3\theta}{\sin \theta} + \frac{\cos 3\theta}{\cos \theta}$ $= \frac{\sin 3\theta \cos \theta + \sin \theta \cos 3\theta}{\sin \theta}$		
$ \sin \theta \cos \theta \\ = \frac{\sin 4\theta}{\sin \theta \cos \theta} $	1A	1
$= \frac{2\sin 2\theta \cos 2\theta}{\sin \theta \cos \theta}$	1 A	For numerator only
$= \frac{4 \sin \theta \cos \theta \cos 2\theta}{\sin \theta \cos \theta} \qquad \boxed{\frac{OR}{\frac{1}{2} \sin 2\theta \cos 2\theta}}$	1A	
$=4\cos 2\theta$	1	
$\frac{\sin 3\theta}{\sin \theta} + \frac{\cos 3\theta}{\cos \theta}$		
$= \frac{3\sin\theta - 4\sin^3\theta}{\sin\theta} + \frac{4\cos^3\theta - 3\cos\theta}{\cos\theta}$	lA+lA	For numerator only
$= 3 - 4\sin^2\theta + 4\cos^2\theta - 3$		
$=4(\cos^2\theta-\sin^2\theta)$	1A	
$=4\cos 2\theta$	1	
	4	
Let $u=x-1$, $du=dx$ $\int x \sqrt{x-1} dx$		
$\int x \sqrt{x-1} \mathrm{d}x$ $= \int (u+1)u^{\frac{1}{2}} \mathrm{d}u$	1A	Omit du (pp–1)
$=\int \left(u^{\frac{3}{2}}+u^{\frac{1}{2}}\right)\mathrm{d}u$	1A	
$= \frac{2}{5}u^{\frac{5}{2}} + \frac{2}{3}u^{\frac{3}{2}} + c$ c is a constant	1A	For primitive function only
$= \frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}} + c$ $OR = \frac{2}{15}(3x+2)(x-1)^{\frac{3}{2}} + c$	1A	no mark if 'c' is omitted
Alternative solution		\dagger
Let $u = \sqrt{x-1}$, $du = \frac{1}{2\sqrt{x-1}} dx$		$\frac{OR}{A} \text{ Let } u^2 = x - 1.$
$\int x\sqrt{x-1}\mathrm{d}x$		
$=\int (u^2+1)u(2udu)$	1A	
$=\int (2u^4+2u^2)\mathrm{d}u$	1A	
$= \frac{2}{5}u^5 + \frac{2}{3}u^3 + c$ c is a constant	1A	
$= \frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}} + c$	1A	
	4	-
7-CE-A MATHS II–3		

1007	HKCE	Δdd	Maths.	IIMS	
177/	LIVCE	Auu.	iviauis.	II IVI.O.	

	Solution		Marks	Remarks
(a)	The coordinates of P are (1A+1A	
(b)	$\frac{1}{-}(\frac{18\lambda+6}{-}+\frac{8\lambda}{-}-6)=6$	$\frac{OR}{2} \frac{1}{2} \begin{vmatrix} 0 & 2 \\ \frac{3}{4\lambda} & \frac{0}{6\lambda + 2} \\ \frac{1+\lambda}{0} & \frac{1+\lambda}{2} \end{vmatrix} = \pm 6$ $\frac{1}{2} (\frac{18\lambda + 6}{1+\lambda} + \frac{8\lambda}{1+\lambda} - 6) = \pm 6$	1M+1A	1M for LHS
	$\lambda = \frac{3}{2}$	$\lambda = \frac{3}{2} \text{ or } -\frac{3}{8} \text{ (rejected)}$ $\lambda = \frac{3}{2}$	1A	A(0,2) C(3,0)
(b)	Alternative solution (1)			
	Area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} 0 & 2 \\ 3 & 6 \\ 4 & 6 \\ 0 & 2 \end{vmatrix}$	= 10		
	Area of $\triangle PAC = \frac{\lambda}{\lambda + 1}$ (A	rea of $\triangle ABC$)	1M	
	$6 = \frac{\lambda}{\lambda + 1}(10)$		1A	i,
	$\lambda = \frac{3}{2}$		1A	
	Alternative solution (2)			
	$AC = \sqrt{(0-3)^2 + (2-0)^2}$	= √13		
	Equation of AC is $\frac{x}{3} + \frac{y}{2}$			
	Distance from P to AC $= \frac{1}{\sqrt{13}} \left 2(\frac{4\lambda}{1+\lambda}) + 3(\frac{6\lambda}{1+\lambda}) \right $			
	$= \frac{20\lambda}{\sqrt{13}(1+\lambda)}$ $\therefore \frac{1}{2} \left(\frac{20\lambda}{\sqrt{13}(1+\lambda)}\right) (\sqrt{13}) = \frac{10\lambda}{1+\lambda} = 6$	e6	IM+1A	1M for LHS
	$1 + \lambda$ $\lambda = \frac{3}{2}$			
L_	2		1A	_ -
			_ 5	-

	•		_	
1997 HKCE	Add.	Math	s. Il	IM.S.

Solution	Marks	Remarks
$6\sin x + 8\cos x$ $= 10(\frac{6}{10}\sin x + \frac{8}{10}\cos x)$ $\approx 10\sin(x + 53.13^{\circ})$ $\boxed{\underline{OR} = 10\sin(x + \alpha) \text{ where } \cos \alpha = \frac{6}{10}}$	1M 1A+1A	$\begin{cases} r\cos\alpha = 6 \\ r\sin\alpha = 8 \end{cases}$ $r = 10, \alpha = 53.13^{\circ}$ Accept $\alpha = 53^{\circ}$
$6\sin x + 8\cos x = 5$ $10\sin(x+\alpha) = 5$ $x+\alpha = 180n^{\circ} + (-1)^{n}30^{\circ}$ $x = 180n^{\circ} + (-1)^{n}30^{\circ} - 53^{\circ}$ correct to the nearest degree	1M _1A _5	For $180n^{\circ} + (-1)^{n}\theta$ $n\pi + (-1)^{n}(\frac{\pi}{6}) - 53^{\circ} \text{ etc.} (u-1)$
$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x + \frac{1}{x^2}$		
$y = \int (6x + \frac{1}{x^2}) \mathrm{d}x$	1M	Withhold this mark if " $y = "$ is omitted Omit 'dx' (pp-1)
$y = 3x^2 - \frac{1}{x} + c$ c is a constant	1A+1A 1M	1A for $3x^2$, 1A for $-\frac{1}{x}$ Withhold 1 mark if c is omitted.
Put $x=1$, $y=0$ $0=3-1+c$ $c=-2$ $\therefore \text{ The equation of the curve is } y=3x^2-\frac{1}{x}-2.$	1A 5	
97-CE-A MATHS II-5		

	Solution	Marks	Remarks
(a)	$\left \frac{m-2}{1+2m} \right = \tan 45^{\circ}$	1A	(pp-1) if absolute sign is omitted
	$\frac{m-2}{1+2m} = \pm 1$		↑ <u>`</u>
	$m = \frac{1}{3}$ or -3	1A+1A	
			m, 459 459 m
	Alternative solution		m ₁ 245 / 15 / m ₂
	$1+m_1$		
	$\frac{1+m_1}{1-m_1}=2$	1A	
	$m_1 = \frac{1}{3}$	1A	
	$m_2 = -3$ (: The 2 lines are perpendicular.)	1A	$OR = \frac{1+2}{m} - m$
			$m_2 = -3$
(b)	2x - 3y + 2 + k(x - y - 1) = 0	!	
	(2+k)x-(3+k)y+(2-k)=0		
	Slope = $\frac{2+k}{3+k}$	1A	
	From (a), $\frac{2+k}{3+k} = \frac{1}{3}$	1M	
	$k=-\frac{3}{2}$		
	2		
	$\therefore \text{ The equation of the line is } 2x - 3y + 2 - \frac{3}{2}(x - y - 1) = 0$		
	x-3y+7=0	1A	
	Alterantive solution		
	$\begin{cases} 2x - 3y + 2 = 0 \end{cases}$		
	$\begin{cases} 2x - 3y + 2 = 0 \\ x - y - 1 = 0 \end{cases}$	1A	
	Solving the two equations, $x=5$, $y=4$.		
	From (a), the equation of the line is		1
	$\frac{y-4}{x-5} = \frac{1}{3}$	1 M	
	x-3y+7=0	1A	
		6	-
			·
		ı	i

	Solution	Marks	Remarks
	For $n=1$, $T_1 = (1+1)(1!) = 2$		
	=1[(1+1)!]		
	$\therefore \text{ The statement is true for } n = 1.$	1	
	Assume $T_1 + T_2 + + T_k = k[(k+1)!]$ for some positive integer k.	1	
	Then $T_1 + T_2 + + T_k + T_{k+1}$		
	$=k[(k+1)!]+[(k+1)^2+1][(k+1)!]$	1	
	$=(k+1)![k+k^2+2k+2]$	1	
	$=(k+1)!(k^2+3k+2)$		
	=(k+1)!(k+1)(k+2)		
	=(k+1)[(k+2)!]	1	
	The statement is also true for $n = k + 1$ if it is true for $n = k$. By the principle of mathematical induction, the statement is true for all positive integers n .	1	
	the statement is true for an positive integers ".	6	
8.	$(1+x)^n (1-2x)^4$		
	= $(1 +_n C_1 x +_n C_2 x^2 +)[1 +_4 C_1 (-2x) +_4 C_2 (-2x)^2 +]$	1A+1A	
	$= (1 +_n C_1 x +_n C_2 x^2 + \dots)(1 - 8x + 24x^2 + \dots)$		
	$= 1 + ({}_{n}C_{1} - 8)x + ({}_{n}C_{2} - 8{}_{n}C_{1} + 24)x^{2} + \dots$	1M+1A	(pp-1) for omitting dots
	$\frac{OR}{2} = 1 + (n-8)x + \left[\frac{n(n-1)}{2} - 8n + 24\right]x^2 + \dots$		
	If the coefficient of $x^2 = 54$,	1	
	$_{n}C_{2}-8_{n}C_{1}+24=54$	1M	
	$\frac{n(n-1)}{2} - 8n + 24 = 54$		
	$n^2 - 17n - 60 = 0$		}
	(n+3)(n-20)=0		
	n = 20 $n = -3$ is rejected	1A	
	Coefficient of $x = {}_{20}C_1 - 8$		
	= 12	1A 7	
97-	CE-A MATHS II–7	I	I

	Solution	Marks	Remarks
(a)	$\sqrt{(x-1)^2 + y^2} = x+1 \frac{OR}{(x-1)^2 + y^2} = (x+1)^2$ $(x^2 - 2x + 1) + y^2 = x^2 + 2x + 1$ $y^2 = 4x$	1A+1A _1	1A for LHS, 1A for RHS (pp-1) if absolute sign is omitted
		_3	
(b)	$y^2 = 4x$ $2y\frac{dy}{dx} = 4$		
			
	At the point $(t^2, 2t)$, $\frac{dy}{dx} = \frac{4}{2(2t)} = \frac{1}{t}$ Equation of tangent is	} M	
	$\frac{y-2t}{x-t^2} = \frac{1}{t}$	J	
	$x - ty + t^2 = 0$	1	
	Alternative solution Using the formula $yy_1 = \frac{1}{2} \cdot 4(x + x_1)$, the equation of the		
	tangent is		
	$y(2t)=2(x+t^2)$ $x-ty+t^2=0$	1A 1	
	Equation of normal	•	.
	$\frac{y-2t}{x-t^2} = -t$		
	$tx+y-2t-t^3=0$	1A 3	
(c)	 (i) Since P and C have common tangent at R, the normal to P at R passes through Q(k, 0). 	1M	(can be omitted)
	$0 = -t(k) + 2t + t^3$ $t^3 = kt - 2t$	1M	
	$t^2 = kt - 2t$ $t^2 = k - 2 \qquad \therefore t \neq 0$	1	
	Alternative solution (1)		
	RQ is perpendicular to the tangent to P at R. Slope of $RQ = \frac{2t}{t^2 - k}$	lM	(can be omitted)
	Slope of tangent to P at $R = \frac{1}{\ell}$		
	$\frac{2t}{t^2 - k} \left(\frac{1}{t}\right) = -1$	1M	
	$t^2 = k - 2$	1	\downarrow
			Acceptance of the second of th
7_CE_A I	MATHS II-8		

•		
Alternative solution (2) Equation of C is $(x-k)^2 + y^2 = (t^2 - k)^2 + 4t^2$ (1)		
Equation of tangent to P at R is $x - ty + t^2 = 0$ (2) Substitute (2) into (1),		
$(ty-t^2-k)^2+y^2=(t^2-k)^2+4t^2$	1M	
$(t^2+1)y^2-2t(t^2+k)y+4t^2(k-1)=0$		
Discriminant $=4t^2(t^2+k)^2-4(t^2+1)4t^2(k-1)=0$	1M	
$t^4 + (4-2k)t^2 + (k-2)^2 = 0$		
$[t^2 - (k-2)]^2 = 0$		
$t^2 = k - 2$	1	
Alternative solution (3) Equation of C is $(x-k)^2 + y^2 = (t^2 - k)^2 + 4t^2$.		
$2(x-k)+2y\frac{\mathrm{d}y}{\mathrm{d}x}=0$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(x-k)}{y}$		
At point R, $\frac{dy}{dx} = -\frac{(t^2 - k)}{2t}$		
Equation of tangent to C at R		
$\frac{y-2t}{x-t^2} = -\frac{(t^2-k)}{2t}$	1M	
$(k-t^2)x-2ty+(t^4+4t^2-t^2k)=0$		
Compare with the equation of tangent to R at R		
$(x-ty+t^2=0)$		
$\frac{k-t^2}{2} = 1$ $OR \frac{t^4 + 4t^2 - t^2k}{2} = t^2$ $t^4 + 2t^2 = t^2k$	1M	
$t^2 = k - 2$ $t^2 = k - 2$	1	
Alternative solution (4) Distance between R and $Q = \sqrt{(t^2 - k)^2 + (2t)^2}$		
Distance from Q to the tangent to P at $R = \left \frac{k + t^2}{\sqrt{1 + t^2}} \right $	1M	
Since the circle touches P at R ,		
$\sqrt{(t^2 - k)^2 + 4t^2} = \left \frac{k + t^2}{\sqrt{1 + t^2}} \right $ $[(t^2 - k)^2 + 4t^2](1 + t^2) = (t^2 + k)^2$ $t^2(t^4 - 2kt^2 + 4t^2 + k^2 - 4k + 4) = 0$ $t^4 + (4 - 2t)t^2 + (k - 2)^2 = 0$ $[t^2 - (k - 2)]^2 = 0$ $t^2 = k - 2$	1M	
$[(t^2 - k)^2 + 4t^2](1 + t^2) = (t^2 + k)^2$		
$t^2(t^4 - 2kt^2 + 4t^2 + k^2 - 4k + 4) = 0$		
$t^4 + (4-2t)t^2 + (k-2)^2 = 0$		
$\left[t^2 - (k-2)\right]^2 = 0$		

只限教師參閱 FOR TEA 997 HKCE Add. Maths. II M.S.	CHERS'	USE ONLY
Solution	Marks	Remarks
(i) (i) P ((0 2) i to 1 2 2 0		
(ii) (1) Put (0, 2) into $x - ty + t^2 = 0$.	1.4	
$0 - 2t + t^2 = 0$	IA IA	
t=2 OR $t=0$ or 2	IA.	
At point S , $t=-2$.	1A	OR The point S is $(4, -4)$.
The equation of the tangent to P at S is		
$x - (-2)y + (-2)^2 = 0$	1M	
x+2y+4=0	1A	
Alternative solution		
\ .	1A+1A	Same as above
	IJ	
t=2	-	•
Equation of tangent to P at R is		OR along of tongent at R 1
x - 2y + 4 = 0	1A	OR slope of tangent at $R = \frac{1}{2}$
By symmetry, slope of tangent to P at $S = -(\text{slope of tangent to } P \text{ at } R)$		
$=-\frac{1}{2}$	1111	
	1M	
$\therefore \text{ Equation of tangent to } P \text{ at } S \text{ is} \\ x + 2y + 4 = 0.$	1A	
(2) $k = t^2 + 2 = 6$	1 M	
Point Q is $(6,0)$.		
radius = $\sqrt{(6-4)^2 + (0-4)^2} = \sqrt{20}$		
	_1A	$x^2 + y^2 - 12x + 16 = 0$
$\therefore \text{ The equation of } C \text{ is } (x-6)^2 + y^2 = 20.$	10	1 + y -12x+10=0
97-CE-A MATHS II–10		

	Solution	Marks	Remarks
` /	2	} IM	·
	$= \frac{\pi}{3}, y = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}.$ e coordinates of A are $(\frac{\pi}{3}, \frac{\sqrt{3}}{2})$.	1	
Put x	mative solution $= \frac{\pi}{3}, \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ $\sin 2(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$	} IM	
: n	ne coordinates of A are $(\frac{\pi}{3}, \frac{\sqrt{3}}{2})$.	1	
(b) Area	$= \int_0^{\pi} \sin 2x - \sin x dx$		
$=\int_0^{\frac{\pi}{2}}$	$\int_{0}^{\frac{\pi}{3}} (\sin 2x - \sin x) dx + \int_{\frac{\pi}{3}}^{\pi} (\sin x - \sin 2x) dx$	1M+1A+1A	1M for Area = $\int_a^b (y_2 - y_1) dx,$
			omit 'dx' (pp-1) 1A for each expression
=[-	$\frac{1}{2}\cos 2x + \cos x \bigg]_0^{\frac{\pi}{3}} + \left[-\cos x + \frac{1}{2}\cos 2x \right]_{\frac{\pi}{3}}^{\frac{\pi}{3}}$	1A	For primitive function, awarded if one of them is correct
Ľ'	$\left[1 + \frac{1}{2} - \left(-\frac{1}{2} + 1\right)\right] + \left[1 + \frac{1}{2} - \left(-\frac{1}{2} - \frac{1}{4}\right)\right]$		
$= \frac{1}{4}$ $= 2\frac{1}{4}$	$+2\frac{1}{4}$	1A	·
Alte	mative solution	:	
A_1 :	a A_1 between $x = 0$ to $\frac{\pi}{3}$ $= \int_0^{\frac{\pi}{3}} (\sin 2x - \sin x) dx \boxed{\frac{OR}{0}} = \left \int_0^{\frac{\pi}{3}} (\sin 2x - \sin x) dx \right $	lM+1A	$1M \text{ for Area} = \int_a^b (y_2 - y_1) dx,$
$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$-\frac{\cos 2x}{2} + \cos x \bigg]_0^{\frac{\pi}{3}}$ $\frac{1}{4} + \frac{1}{2} - (-\frac{1}{2} + 1) \bigg]$	1A	For primitive function
9 7- CE-A MATHS	II-11		

1997 HKCE Add. Maths. II M.S. Solution	Marks	Remarks
Area A_2 between $x = \frac{\pi}{3}$ to π $A_2 = \int_{\frac{\pi}{3}}^{\pi} (\sin x - \sin 2x) dx$ $OR = \int_{\frac{\pi}{3}}^{\pi} (\sin 2x - \sin x) dx$		
	1A	
$= \left[-\cos x + \frac{1}{2}\cos 2x \right]_{\frac{\pi}{3}}^{\pi}$ $= \left[1 + \frac{1}{2} - \left(-\frac{1}{2} - \frac{1}{4} \right) \right]$		
$=2\frac{1}{}$		
	1A	
	5	
(c) Volume $= \pi \int_0^{\frac{\pi}{3}} \sin^2 x dx + \pi \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin^2 2x dx$	1M+1A	$1M \text{ for } V = \pi \int_a^b y^2 \mathrm{d}x$
$= \pi \int_0^{\frac{\pi}{3}} \frac{1}{2} (1 - \cos 2x) dx + \pi \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos 4x) dx$	1M	
$= \frac{\pi}{2} \left[x - \frac{1}{2} \sin 2x \right]_0^{\frac{\pi}{3}} + \frac{\pi}{2} \left[x - \frac{1}{4} \sin 4x \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$	1A	For either of the 2 primitive function
$= \frac{\pi}{2} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} - 0 \right] + \frac{\pi}{2} \left[\frac{\pi}{2} - 0 - \left(\frac{\pi}{3} + \frac{\sqrt{3}}{8} \right) \right]$		
$=(\frac{\pi^2}{6}-\frac{\sqrt{3}\pi}{8})+(\frac{\pi^2}{12}-\frac{\sqrt{3}\pi}{16})$		
$=\frac{\pi}{16}(4\pi-3\sqrt{3})$	1A	
(d)	2A	For the graph
y= sin 2x	2A	For shading the area
Y= sin x		
$\frac{\pi}{2}$	^	
97-CE-A MATHS II–12	4	-
		USF ONLY

		Solution	Marks	Remarks
11.	(a)	$du = -\csc^2\theta d\theta$	1A	
	, ,	$\int \cot^n \theta \csc^2 \theta \mathrm{d}\theta = -\int u^n \mathrm{d}u$	1A	
		$= -\frac{u^{n+1}}{n+1} + c \qquad c \text{ is a constant}$		
		7.1.2		
		$=-\frac{\cot^{n+1}\theta}{n+1}+c$	_1A	no mark if 'c' is omitted
			3	
	(b)	$\int \cot^{n+2}\theta \mathrm{d}\theta = \int \cot^n\theta \cot^2\theta \mathrm{d}\theta$		
		$= \int \cot^n \theta (\csc^2 \theta - 1) d\theta$	2A	
		$= \int \cot^n \theta \csc^2 \theta d\theta - \int \cot^n \theta d\theta$	1M	For separating into 2 terms
		$= -\frac{\cot^{n+1}\theta}{n+1} - \int \cot^n\theta d\theta$	1	
		n+1 J	4	•
		π		
	(c)	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \cot^2 \theta d\theta$		
		T	1.4	O sinite limite (m. 1)
		$= \left[-\cot\theta\right] \frac{\pi}{\frac{3}{4}} - \int \frac{\pi}{\frac{3}{4}} d\theta$	1A	Omitting limits (pp-1)
		$= \left[-\cot\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} - \left[\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$	1A	
		• • •		
		$=1-\frac{\sqrt{3}}{3}-\frac{\pi}{12}$	1	
		Alternative solution		\dagger
		$\int_{0}^{\frac{\pi}{3}} \cot^{2}\theta d\theta = \int_{0}^{\frac{\pi}{3}} (\csc^{2}\theta - 1) d\theta$	1A	
		$\int \frac{\pi}{4}$		
		π π π π π π π π π π π π π π π π π π π	1A	
		$= \left[-\cot\theta - \theta\right] \frac{\pi}{4}$	IA IA	
		$= \left[-\cot\theta - \theta\right] \frac{\pi}{\frac{3}{4}}$ $= 1 - \frac{\sqrt{3}}{3} - \frac{\pi}{12}$	1	
		5 12	3	
				-

	Solution	Marks	Remarks
(d)	$dx = \sec\theta \tan\theta d\theta$	1A	
	$\int_{\sqrt{2}}^{2} \frac{\mathrm{d}x}{x\sqrt{(x^2-1)^5}} = \int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec\theta\tan\theta\mathrm{d}\theta}{\sec\theta\sqrt{(\sec^2\theta-1)^5}}$	1A+1A	1A for integrand, 1A for limits
	$=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\cot^4\theta\mathrm{d}\theta$	1A	
	$= \left[-\frac{\cot^3 \theta}{3} \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} - \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot^2 \theta d\theta$	1M	For using (b)
	$= -\frac{1}{3} \left[\frac{1}{(\sqrt{3})^3} - 1 \right] - (1 - \frac{1}{\sqrt{3}} - \frac{\pi}{12})$		
	$= -\frac{2}{3} + \frac{8\sqrt{3}}{27} + \frac{\pi}{12}$	_1A _6	Omit du , $d\theta$ etc. (pp-1)

Solution	Marks	Remarks
(a) (i) By Cosine Law,		
$(AC)^2 = (AB)^2 + (BC)^2 - 2(AB)(BC)\cos\angle ABC$	l l	
$= (3a)^2 + (2a)^2 - 2(3a)(2a)\cos 120^{\circ}$	1A	
$=19a^2$		
$AC = \sqrt{19} a$	1A	
(ii) $MC = \frac{1}{2}AC = \frac{\sqrt{19}}{2}a$		
$\tan \angle HMC = \frac{HC}{MC}$	1M	
$=\frac{a}{\frac{1}{2}\sqrt{19}a}$		
$\frac{1}{2} \sqrt{15} u$ $\angle HMC \approx 25^{\circ}$	1A	
∴ The angle of elevation is 25° correct to the nearest		
degree.	4	
(b) (i) $(BD)^2 = (3a)^2 + (2a)^2 - 2(3a)(2a)\cos 60^\circ$		
$=7a^2$		
$BD = \sqrt{7} a$	1A	
Consider the area of $\triangle BCD$.		
$\frac{1}{2}(BD)(CE) = \frac{1}{2}(BC)(CD)\sin 60^{\circ}$	IM	
$\frac{1}{2}(\sqrt{7}a)(CE) = \frac{1}{2}(2a)(3a)\frac{\sqrt{3}}{2}$	1M	For substitution
$CE = \frac{3\sqrt{21}}{7}a$	1A	Accept $\frac{3\sqrt{3}}{\sqrt{7}}a$
Alternative solution		1
	1A	
$BD = \sqrt{7}a$ $BD = BC$		
By Sine Law, $\frac{BD}{\sin 60^{\circ}} = \frac{BC}{\sin \angle BDC}$		
$\sin \angle BDC = \frac{(2a)\sin 60^{\circ}}{\sqrt{7} a}$	1M	$\sin \angle DBC = \frac{(3a)\sin 60^{\circ}}{\sqrt{7} a}$ $= \frac{3\sqrt{3}}{2\sqrt{7}}$
√7 a	1	3/2
$=\sqrt{\frac{3}{7}}$		
$CE = CD \sin \angle CDE$	1 M	11 $CE = BC \sin \angle DBC$
$=3a(\sqrt{\frac{3}{7}})$		$=2a(\frac{3\sqrt{3}}{2\sqrt{7}})$
3√21	1A	$=2a(\frac{3\sqrt{3}}{2\sqrt{7}})$ $=\frac{3\sqrt{21}}{7}a$
7 "		$+$ 7
-CE-A MATHS II-15		

1997 HKCE Add. Maths. II M.S.

Solution	Marks	Remarks
(ii) $(HE)^2 = a^2 + (CE)^2$ $= a^2 + (\frac{3\sqrt{3}}{\sqrt{7}}a)^2 = \frac{34}{7}a^2$ $(EB)^2 = (BC)^2 - (CE)^2 = (2a)^2 - (\frac{3\sqrt{3}}{\sqrt{7}}a)^2 = \frac{1}{7}a^2$	1M	•
$(EB)^{2} = (BC)^{2} - (CE)^{2} = (2a)^{2} - (\frac{-\sqrt{2}a}{\sqrt{7}}a)^{2} = \frac{-7}{7}a^{2}$	1141	
$(HE)^{2} + (EB)^{2} = [a^{2} + (CE)^{2}] + [(BC)^{2} - (CE)^{2}] = \frac{34}{7}a^{2} + \frac{1}{7}a^{2}$	1M	
$+[(BC)^{2} - (CE)^{2}] $		
$= (HB)^2$		
:. HE is perpendicular to BD (Converse of Pythagora's Theorem).	1	1
Alternative solution $(HE)^2 = a^2 + (CE)^2$ $= a^2 + (\frac{3\sqrt{3}}{\sqrt{7}}a)^2 = \frac{34}{7}a^2$	1M	
$(DE)^{2} = (CD)^{2} - (CE)^{2} = (3a)^{2} - (\frac{3\sqrt{3}}{\sqrt{7}}a)^{2} = \frac{36}{7}a^{2}$		
$(HE)^{2} + (DE)^{2} = [a^{2} + (CE)^{2}] = \frac{34}{7}a^{2} + \frac{36}{7}a^{2}$ $+[(CD)^{2} - (CE)^{2}] = \frac{34}{7}a^{2} + \frac{36}{7}a^{2}$	1M	
$=a^{2} + (CD)^{2} = a^{2} + (3a)^{2}$ $= (DH)^{2}$		
:. HE is perpendicular to BD (Converse of Pythagora's Theorem).	1	
The angle between the planes <i>HBD</i> and <i>ABCD</i> is $\angle HEC$ tan $\angle HEC = \frac{HC}{EC}$	1M	
$=\frac{a}{3\sqrt{21}a/7}$		
$=\frac{7}{3\sqrt{21}}$		
$\angle HEC \approx 27^{\circ}$ correct to the nearest degree.	1A 9	
(c) Point X lies on AD produced such that $CX \perp AX$.	1A	
$AX = AD + DX$ $= 2a + CD\cos 60^{\circ}$	1 M	
$=2a+\frac{3a}{2}$,
$=\frac{7a}{2}$	1A	X
Alternative solution (1) Point X lies on AD produced such that $CX \perp AX$.	1A	$ \begin{array}{c c} D & 3a \\ \hline \end{array} $
$\cos \angle CAD = \frac{(2a)^2 + (\sqrt{19}a)^2 - (3a)^2}{2(2a)(\sqrt{19}a)}$		A JA B
$= \frac{7}{2\sqrt{19}}$ $AX = AC\cos\angle CAD$	13.6	
$=\sqrt{19}a(\frac{7}{2\sqrt{19}})$	1M	
$=\frac{7a}{2}$	1A	
97-CE-A MATHS II–16		

只限教師參閱

FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
Alternative solution (2)		
Point X lies on AD produced such that $CX \perp AX$.	1A	
102 22		
$AC^2 - AX^2 = DC^2 - DX^2$		
Let $AX = d$.		•
$(\sqrt{19}a)^2 - d^2 = (3a)^2 - (d - 2a)^2$	1M	
$14a^2 = 4ad$		
$d=\frac{7a}{2}$	1A	
	3	
		·
	i	

只限教師參閱

FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
. (a)	$x^2 + y^2 - 6x - 2y + k(2x - 4y + 3) = 0$		
(-)	$x^{2} + y^{2} - (6 - 2k)x - (2 + 4k)y + 3k = 0$	1M	For collecting terms
	The centre is $(3-k, 1+2k)$.	1A	
	Radius = $\sqrt{(3-k)^2 + (1+2k)^2 - 3k}$	IM	$\frac{1}{2}\sqrt{(2k-6)^2+(4k+2)^2-4(3k)}$
	$=\sqrt{5k^2-5k+10}$		
	$=\sqrt{5(k^2-k+2)}$	_1	
		_4	
(b)	Radius = $\sqrt{5(k^2 - k + \frac{1}{4}) - \frac{5}{4} + 10}$		
	$=\sqrt{5(k-\frac{1}{2})^2+\frac{35}{4}}$	IM+1A	
	\therefore Radius of smallest circle in $F = \frac{\sqrt{35}}{2}$.	1A	
	Since AB is a diameter of the smallest circle in F ,		
	$AB = 2 \times \frac{\sqrt{35}}{2} = \sqrt{35}.$	1A	
	Alternative solution (1)		
	Let $r = \sqrt{5k^2 - 5k + 10}$		
			OR differentiating
	$\frac{\mathrm{d}r}{\mathrm{d}k} = \frac{10k - 5}{2\sqrt{5k^2 - 5k + 10}} = \frac{5(2k - 1)}{2\sqrt{5k^2 - 5k + 10}}$	1M	$(5k^2 - 5k + 10)$
	$\frac{\mathrm{d}r}{\mathrm{d}k} = 0$ when $k = \frac{1}{2}$.	1A	
	Since $\frac{dr}{dk} > 0$ when $k > \frac{1}{2}$ and $\frac{dr}{dk} < 0$ when $k < \frac{1}{2}$,		
	$r \text{ is smallest when } k = \frac{1}{2}$		OR using 2nd derivative test
	Smallest radius = $\sqrt{5(\frac{1}{2})^2 - 5(\frac{1}{2}) + 10}$		
	$=\frac{\sqrt{35}}{2}$		
	Since AB is a diameter of the smallest circle in F ,	lA	
	$AB = 2 \times \frac{\sqrt{35}}{2} = \sqrt{35} .$	1A	
	Alternative solution (2) The circle is smallest when the centre lies on AB.		1
	Put $(3-k, 1+2k)$ into $2x-4y+3=0$,	1M	
	2(3-k)-4(1+2k)+3=0	1101	
	$k=\frac{1}{2}$	1A	
	$\therefore \text{ Smallest radius } = \sqrt{5(\frac{1}{2})^2 - 5(\frac{1}{2}) + 10}$		
	$=\frac{\sqrt{35}}{2}$	1A	
	Since AB is a diameter of the smallest circle in F ,		
	$\therefore AB = 2 \times \frac{\sqrt{35}}{2} = \sqrt{35} .$	lA	
			十 ー

1997 HKCE Add. Maths. II M.S.

Solution	Marks	Remarks
Alternative solution (3)	-	\dagger
$\begin{cases} x^2 + y^2 - 6x - 2y = 0 \\ 2x - 4y + 3 = 0 \end{cases}$		
2x-4y+3=0		
$\left(\frac{4y-3}{2}\right)^2 + y^2 - 6\left(\frac{4y-3}{2}\right) - 2y = 0$	1M	
$20y^2 - 80y + 45 = 0$	1A	$OR 4x^2 - 20x - 3 = 0$
$20y^{2} - 80y + 45 = 0$ $y = \frac{4 + \sqrt{7}}{2} \text{ or } \frac{4 - \sqrt{7}}{2}$	***	<u> </u>
i i		
$x = \frac{5 + 2\sqrt{7}}{2} \qquad \frac{5 - 2\sqrt{7}}{2}$		
\therefore The coordinates of A and B are $(\frac{5+2\sqrt{7}}{2}, \frac{4+\sqrt{7}}{2})$ and		
$(\frac{5-2\sqrt{7}}{2},\frac{4-\sqrt{7}}{2})$.	1A	
Length of AB		
$=\sqrt{\left[\left(\frac{5+2\sqrt{7}}{2}\right)-\left(\frac{5-2\sqrt{7}}{2}\right)\right]^2+\left[\left(\frac{4+\sqrt{7}}{2}\right)-\left(\frac{4-\sqrt{7}}{2}\right)\right]^2}$		
$=\sqrt{35}$	1A	
-433		₽ P
	4	
4/2 12 2/2 2/2 0		
(c) (i) Distance = $\frac{4(3-k)+2(1+2k)-9}{\sqrt{4^2+2^2}}$	1 M	Accept omitting absolute sign
$=\frac{\sqrt{5}}{2}$ which is a constant.	1	
The locus of the centres of the circles in F is parallel to		
the line L .	1A	
$ \underline{OR} $ The locus of the centres of the circles in F and the line has no intersection point.		
and the fire has no intersection point.		
Alternative solution		
$M_{AB} = \frac{1}{2}, M_L = -2$		
M_{AB} . $M_L = -1$: AB and L are perpendicular.	1	
As the locus of the centres of circles in F is the		
perpendicular bisector of AB, so the locus of the centre	1	
of circles in F and L are parallel. So the distance from the centre of a circle in F to L is		
always a constant.	1	
The locus of the centres of circles in F and L are parallel.	1A	Ц
(ii) $(\frac{CD}{2})^2 + (\frac{\sqrt{5}}{2})^2 = (\text{radius})^2$	1 M	
2 2		
$(\frac{\sqrt{35}}{2})^2 + (\frac{\sqrt{5}}{2})^2 = (\sqrt{5k^2 - 5k + 10})^2$	1M	
$2 \qquad 2 \qquad 2 \qquad 3k+10$ $5k^2 - 5k = 0$		
$5k^2 - 5k = 0$ $k = 0 \text{ or } 1$	1A	
κ — υ ,υι 1		
The equations of the two circles are		
$x^2 + y^2 - 6x - 2y = 0$	1A	$(x-3)^{2} + (y-1)^{2} = 10$ $(x-2)^{2} + (y-3)^{2} = 10$
and $x^2 + y^2 - 4x - 6y + 3 = 0$.	1A	$(x-2)^2 + (y-3)^2 = 10$
		i '

只限教師參閱

FOR TEACHERS' USE ONLY Provided by dse.life

Solution	Marks	Remarks
Alternative solution		
Distance from centre to $AB = Distance$ from centre to CD	1M	
), _		
$\left \frac{2(3-k)-4(1+2k)+3}{\sqrt{4^2+2^2}} \right = \frac{\sqrt{5}}{2}$	1M	Omit absolute sign (pp-1)
$\frac{5-10k}{\sqrt{20}} = \pm \frac{\sqrt{5}}{2}$	1A	For LHS
$\begin{cases} \sqrt{20} & 2 \\ k = 0 \text{ or } 1 \end{cases}$		
: The equations of the two circles are	1A	
$x^2 + y^2 - 6x - 2y = 0$	1A	
and $x^2 + y^2 - 4x - 6y + 3 = 0$.	IA	<u> </u>
·	8	
*		
	:	
	İ	
		,