Corrigé de la feuille d'exercices 10

Nombres entiers, décimaux, rationnels 1

Exercice 1. Raisonnons par l'absurde.

Supposons que $\sqrt{a} + \sqrt{b} \in \mathbb{Q}$.

Posons $x = \sqrt{a} + \sqrt{b}$. On a donc $x \in \mathbb{Q}$. De plus, Alors $a = (\sqrt{a})^2 = (x - \sqrt{b})^2 = x^2 - 2x\sqrt{b} + b$. Or, $a \neq 0$ et $b \neq 0$ car $\sqrt{a} \neq 0$ et $\sqrt{b} \neq 0$ ($0 \in \mathbb{Q}$) Donc $\sqrt{b} = \frac{x^2 + b - a}{2x} \in \mathbb{Q}$ exclu!

Ainsi, $\sqrt{a} + \sqrt{b} \notin \mathbb{Q}$.

Exercice 2. Raisonnons par l'absurde.

Supposons que $\frac{ax+b}{cx+d} \in \mathbb{Q}$. Posons $q = \frac{ax+b}{cx+d}$. On a $q \in Q$. Ainsi, ax+b=q(cx+d) d'où (a-cq)x=dq-b. Si a=cq alors, dq=b donc ad=cdq et bc=cdq d'où ad=bc ce qui est exclu.

Ainsi, $a \neq cq$. Ainsi, $a - cq \neq 0$. On obtient alors $x = \frac{dq - b}{a - cq}$ avec $a, b, q, c \in \mathbb{Q}$ donc $x \in \mathbb{Q}$. Absurde.

Ainsi, $\frac{ax+b}{cx+d} \notin \mathbb{Q}$.

Borne supérieure

Exercice 3. 1. Notons $A = \{\frac{1}{n}, n \in \mathbb{N}^*\}$.

On a : $\forall n \in \mathbb{N}^*$, $\frac{1}{n} \leq 1$ et $1 \in A$. Donc $\max(A) = \sup A = 1$.

On a : $\forall n \in \mathbb{N}^*$, $\frac{n}{n} \ge 0$ donc 0 minore A.

Soit $m \in \mathbb{R}$ un minorant de A alors on a : $\forall n \in \mathbb{N}^*, \frac{1}{n} \geq m$.

En passant à la limite, on obtient : $0 \ge m$.

Ainsi, 0 est le plus grand des minorants donc $\inf(A) = 0$. 2. Notons $B = \{\frac{n+5}{n+1}, n \in \mathbb{N}\}.$

On a : $\forall n \in \mathbb{N}, \ 1 \le \frac{n+5}{n+1} \le 5$. De plus, $5 \in B$ donc $\max(B) = \sup(B) = 5$.

1 minore B.

Soit m un minorant de B. On a alors : $\forall n \in \mathbb{N}, \frac{n+5}{n+1} \ge m$.

En passant à la limite, on obtient $1 \ge m$.

Donc 1 est le plus grand des minorants.

Ainsi, $\inf(B) = 1$.

3. Notons $C = \{(-1)^n \left(1 - \frac{1}{n}\right), n \in \mathbb{N}^*\}.$

On a : $\forall n \in \mathbb{N}^*$, $\left| (-1)^n \left(1 - \frac{1}{n} \right) \right| = 1 - \frac{1}{n} \le 1$. Ainsi : $\forall n \in \mathbb{N}^*$, $-1 \le (-1)^n \left(1 - \frac{1}{n} \right) \le 1$. Ainsi, -1 est un minorant et 1 est un majorant de C. Soit M un majorant de C. Alors : $\forall n \in \mathbb{N}^*$, $(-1)^n \left(1 - \frac{1}{n} \right) \le M$. Ainsi : $\forall n \in \mathbb{N}^*$, $1 - \frac{1}{2n} \le M$.

En faisant tendre n vers $+\infty$, on obtient : $1 \le M$

Donc 1 est le plus petit des majorants. Donc $\sup(C) = 1$.

Soit m un minorant de C. Alors : $\forall n \in \mathbb{N}^*$, $(-1)^n \left(1 - \frac{1}{n}\right) \ge m$. Ainsi : $\forall n \in \mathbb{N}^*$, $-\left(1 - \frac{1}{2n+1}\right) \ge m$. En faisant tendre n vers $+\infty$, on obtient : $-1 \ge m$. Donc -1 est le plus grand des majorants. Donc $\inf(C) = -1$.

4. Notons $D = \{\frac{1}{n} - \frac{1}{n}, (n, p) \in (\mathbb{N}^*)^2\}.$

On a: $\forall n, p \in \mathbb{N}^*, -1 \le -\frac{1}{n} \le \frac{1}{n} - \frac{1}{n} \le \frac{1}{n} \le 1.$

Ainsi, 1 est un majorant de D et -1 est un minorant de D.

Soit M un majorant de D. Alors : $\forall n, p \in \mathbb{N}^*$, $\frac{1}{n} - \frac{1}{p} \leq M$. En particulier, on a : $\forall p \in \mathbb{N}^*$, $1 - \frac{1}{p} \leq M$.

En faisant tendre p vers $+\infty$, on obtient : $1 \leq M$.

Donc 1 est le plus petit des majorants. Donc $\sup(D) = 1$.

Soit m un minorant de D. Alors : $\forall n, p \in \mathbb{N}^*$, $\frac{1}{n} - \frac{1}{p} \ge m$. En particulier, on a : $\forall n \in \mathbb{N}^*$, $\frac{1}{n} - 1 \ge m$.

En faisant tendre n vers $+\infty$, on obtient : $-1 \ge m$.

Donc -1 est le plus grand des majorants. Donc $\inf(D) = -1$.

1. Soient A et B deux parties non vides majorées de \mathbb{R} . Ces parties étant non vides et majorées, elles Exercice 4. admettent une borne supérieure.

Soit $a \in A$, on a $a \in B$, donc $a \leq \sup(B)$. Ainsi : $\forall a \in A$, $a \leq \sup(B)$. Ainsi, $\sup(B)$ est un majorant de A donc est plus grand que le plus petit majorant de A, $\sup(A)$ donc $\sup(A) \leq \sup(B)$.

- 2. Soit $x \in A \cup B$, alors :
 - soit $x \in A$ alors $x \le \sup(A) \le \max(\sup(A), \sup(B))$;
 - soit $x \in B$ et $x \le \sup(B) \le \max(\sup(A), \sup(B))$.

Ainsi, on a : $\forall x \in A \cup B, \ x \leq \max(\sup(A), \sup(B)).$

Ainsi, $A \cup B$ est majorée.

De plus, A est non vide et $A \subset A \cup B$ donc $A \cup B$ est non vide. Ainsi, $A \cup B$ est non vide et majorée donc admet une borne supérieure.

On sait déjà : $\forall x \in A \cup B, x \leq \max(\sup(A), \sup(B))$ donc $\max(\sup(A), \sup(B))$ est un majorant de $A \cup B$ et donc $\sup(A \cup B) \leq \max(\sup(A), \sup(B))$.

Réciproquement, $A \subset A \cup B$ et $B \subset A \cup B$ donc d'après la question précédente, $\sup(A) \leq \sup(A \cup B)$ et $\sup(B) \le \sup(A \cup B)$ donc $\max(\sup(A), \sup(B)) \le \sup(A \cup B)$. Ainsi, $\max(\sup(A), \sup(B)) = \sup(A \cup B)$.

3. Soit $x \in A \cap B$, alors $x \in A$ donc $x \leq \sup(A)$ et $x \in B$ donc $x \leq \sup(B)$. Ainsi, $x \leq \min(\sup(A), \sup(B))$. Ainsi, $A \cap B$ est majorée par $\min(\sup(A), \sup(B))$.

On ne peut pas parler de $\sup(A \cap B)$ car on peut avoir $A \cap B = \emptyset$ et dans ce cas la borne supérieure n'existe pas.

Exercise 5. Comme A et B sont non vides, il existe $a \in A$ et $b \in B$. $a + b \in A + B$ donc A + B est non vide.

Soit $x \in A + B$, il existe $(a, b) \in A \times B$ tel que x = a + b.

De plus, $a \leq \sup(A)$ et $b \leq \sup(B)$ donc $x \leq \sup(A) + \sup(B)$.

Ainsi : $\forall x \in A + B, \ x \leq \sup(A) + \sup(B).$

Ainsi A + B est majorée par $\sup(A) + \sup(B)$, donc A + B admet une borne supérieure.

On a vu que $\sup(A) + \sup(B)$ est un majorant de A + B.

Soit $\epsilon > 0$. Par caractérisation de la borne supérieure, il existe $x \in A$ tel que $\sup(A) - \frac{\epsilon}{2} < x$ et il existe $y \in B$ tel que $\sup(B) - \frac{\epsilon}{2} < y.$

Alors $(\sup(A) + \sup(B)) - \epsilon < x + y$. Posons z = x + y. On a $z \in A + B$ et $(\sup(A) + \sup(B)) - \epsilon < z$.

Par caractérisation de la borne supérieure, on a que $\sup(A+B) = \sup(A) + \sup(B)$

1. A est non vide donc il existe $a \in A$. Ainsi, $-a \in -A$ donc -A est non vide. Exercice 6.

De plus, soit $x \in -A$, $-x \in A$ donc $-x \ge \inf(A)$. D'où $x \le -\inf(A)$. Ainsi, -A est majorée. Donc -A admet une borne supérieure.

De plus, d'après l'inégalité précédente, $-\inf(A)$ majore -A donc est plus grand que le plus petit des majorants. Ainsi, $\sup(-A) < -\inf(A)$.

Montrons l'autre inégalité.

Soit $a \in A$, $-a \in -A$ donc $-a \le \sup(-A)$ et $-\sup(-A) \ge a$. Ainsi, $-\sup(-A)$ est un minorant de A. Ainsi, il est plus petit que le plus grand des minorants de A donc $-\sup(-A) \le \inf(A)$ donc $\sup(-A) \ge -\inf(A)$. On a donc égalité : $-\inf(A) = \sup(-A)$.

2. On sait qu'il existe $M_A \in \mathbb{R}$ tel que : $\forall x \in A, |x| \leq M_B$. De même, il existe $M_B \in \mathbb{R}$ tel que : $\forall y \in B, |y| \leq M_b$. Ainsi : $\forall x \in A, \ \forall y \in B, \ |xy| \leq M_A M_B$, c'est à dire : $\forall z \in AB, \ |z| \leq M_A M_B$ donc AB est bornée. De plus, Aest non vide donc il existe $a \in A$ et B est non vide donc il existe $b \in B$. On a alors $ab \in AB$. Donc AB est non vide et borné donc admet une borne supérieure. Cependant, l'égalité n'est pas toujours vraie. Contre-exemple : posons A = [-1, 1] et B = [-3, 1]. Alors $3 \in AB$ donc $\sup(AB) \ge 3$ alors que $\sup(A) = \sup(B) = 1$. L'égalité n'est donc pas vérifiée.

Exercice 7. 1. Notons $B = \{|x - y|; (x, y) \in A^2\}.$

> Comme A est non vide, il existe $x \in A$ puis $0 = |x - x| \in B$ est B est non vide. Comme A est borné, il existe M > 0 tel que : $\forall x \in A, |x| \leq M$.

Soit $(x,y) \in A^2$, $|x-y| \le |x| + |y| \le 2M$, donc B est majoré et la borne supérieure de B existe. 2. Soit $(x,y) \in A^2$, on a : $\inf(A) \le x \le \sup(A)$ et $\inf(A) \le y \le \sup(A)$.

D'où $-\sup(A) \le -y \le -\inf(A)$.

Ainsi, $-(\sup(A) - \inf(A)) \le x - y \le \sup(A) - \inf(A)$ avec $\sup(A) - \inf(A) \ge 0$.

D'où : $|x-y| \le \sup(A) - \inf(A)$. Ainsi : $\forall (x,y) \in A^2$, $|x-y| \le \sup(A) - \inf(A)$.

Donc $\sup(A) - \inf(A)$ majore B. Donc $\delta(A) \le |x - y|$.

3. Soit $\epsilon > 0$, il existe $x \in A$ tel que $x > \sup(A) - \frac{\epsilon}{2}$ et il existe $y \in A$ tel que $y < \inf(A) + \frac{\epsilon}{2}$ (par caractérisation de la borne supérieure et de la borne inférieure). Ainsi, $-y > -\inf(A) - \frac{\epsilon}{2}$. Donc $\sup(A) -\inf(A) - \epsilon \le x - y \le |x - y|$.

4. D'après la 2, on sait que : $\sup(A) - \inf(A)$ majore B.

D'après la question 3, on a : $\forall \epsilon > 0$, $\sup(A) - \inf(A) - \epsilon < \delta(A)$. Par caractérisation de la borne supérieure, $\delta(A) = \sup(A) - \inf(A).$

1. Posons $A = \{x \in [a, b], f(x) \ge x\}.$

 $f(a) \in [a, b]$ donc $f(a) \ge a$. Ainsi, $a \in A$ et A est non vide.

De plus : $\forall x \in A, x \in [a, b]$. Donc : $\forall x \in A, x \leq b$. Ainsi, A est majoré et il admet donc une borne supérieure.

2. Montrons que f(s) majore A.

b majore A donc $s \leq b$. De plus, $a \in A$ donc $a \leq s$. Ainsi, $s \in [a,b]$. On peut donc calculer f(s), s appartient au domaine de définition de f.

Soit $x \in A$, $x \le s$, donc $f(x) \le f(s)$ (car f croissante) puis $f(s) \ge f(x) \ge x$. Ainsi, f(s) majore A. Donc f(s)est supérieur au plus petit des majorants. Ainsi, $f(s) \geq s$.

3. Montrons que $f(s) \in A$.

On sait déjà que $f(s) \in [a,b]$. De plus, comme f est croissante, on déduit de l'inégalité précédente que $f(f(s)) \ge$ f(s) et donc $f(s) \in A$. Or s majore A, donc $s \geq f(s)$. Ainsi, f(s) = s.

4. Soit

 $f: [0,1] \rightarrow [0,1]$ $x \mapsto \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}.$

f est décroissante et n'admet pas de point fixe.

3 Partie entière

Exercice 9. Soit $x, y \in \mathbb{R}$. On a :

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$
$$|y| \le y < |y| + 1$$

On a donc

$$|x| + |y| \le x + y < |x| + |y| + 2$$

De plus,

$$\lfloor x+y\rfloor \leq x+y < \lfloor x+y\rfloor +1$$

D'où:

$$\lfloor x \rfloor + \lfloor y \rfloor \le x + y < \lfloor x + y \rfloor + 1$$
$$|x + y| \le x + y < |x| + |y| + 2$$

Ainsi:

$$\lfloor x \rfloor + \lfloor y \rfloor < \lfloor x + y \rfloor + 1$$

$$|x + y| < |x| + |y| + 2$$

Or, |x+y|, $|x|+|y| \in \mathbb{Z}$ donc:

$$\lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor$$

$$\lfloor x + y \rfloor \le \lfloor x \rfloor + \lfloor y \rfloor + 1$$

Ainsi:

$$\lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor \le \lfloor x \rfloor + \lfloor y \rfloor + 1$$

Exercice 10. Raisonnons par analyse synthèse.

Analyse: supposons qu'il existe $x \in \mathbb{R}_+$ tel que $\lfloor \sqrt{x} \rfloor = \left\lfloor \frac{x}{2} \right\rfloor$.

Or, on a:

$$\left\lfloor \sqrt{x} \right\rfloor \le \sqrt{x} < \left\lfloor \sqrt{x} \right\rfloor + 1$$
$$\left\lfloor \frac{x}{2} \right\rfloor \le \frac{x}{2} < \left\lfloor \frac{x}{2} \right\rfloor + 1$$

Ainsi:

$$\sqrt{x} - 1 < \lfloor \sqrt{x} \rfloor \le \sqrt{x}$$

$$\frac{x}{2} - 1 < \left\lfloor \frac{x}{2} \right\rfloor \le \frac{x}{2}$$

Donc:

$$\sqrt{x} - 1 < \lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor \le \frac{x}{2}$$

$$\frac{x}{2} - 1 < \lfloor \frac{x}{2} \rfloor = \lfloor \sqrt{x} \rfloor \le \sqrt{x}$$

Ainsi:

$$\sqrt{x} - 1 < \frac{x}{2}$$

$$\frac{x}{2} - 1 < \sqrt{x}$$

Donc $x-2\sqrt{x}+2>0$ et $x-2\sqrt{x}-1<0$. Posons $X=\sqrt{x}$. On a alors : $X^2-2X+2>0$ et $X^2-2X-1<0$. Le discriminant de X^2-2X+2 vaut -4. Ainsi, on a bien $X^2-2X+2>0$ (sans aucune condition sur x).

Le discriminant de $X^2 - 2X - 1$ vaut 8. Ses racines sont $1 - \sqrt{2}$ et $1 + \sqrt{2}$.

Comme $X^2 - 2X - 1 < 0$, on en déduit que $1 - \sqrt{2} < X < 1 + \sqrt{2}$. Or, $X = \sqrt{x} \ge 0$. Ainsi, $0 \le \sqrt{x} < 1 + \sqrt{2}$ donc $0 \le x < 1 + 2\sqrt{2} + 2 < 3 + 4$ car $\sqrt{2} \le 2$.

Ainsi, $x \in [0, 7[$.

Synthèse : Soit $x \in [0, 7[$.

• Si $x \in [0, 1[$, on a :

$$\sqrt{x} \in [0, 1[\text{ et } \frac{x}{2} \in [0, 1[$$

Donc

$$\left\lfloor \sqrt{x} \right\rfloor = 0$$
 et $\left\lfloor \frac{x}{2} \right\rfloor = 0$

Ainsi, $\lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor$.

• Si $x \in [1, 2[$, on a :

$$\sqrt{x} \in [1, 2[$$
 et $\frac{x}{2} \in [0, 1[$

Donc

$$\left\lfloor \sqrt{x} \right\rfloor = 1$$
 et $\left\lfloor \frac{x}{2} \right\rfloor = 0$

Ainsi, $\lfloor \sqrt{x} \rfloor \neq \left\lfloor \frac{x}{2} \right\rfloor$.

• Si $x \in [2, 4[$, on a :

$$\sqrt{x} \in [1, 2[$$
 et $\frac{x}{2} \in [1, 2[$

Donc

$$\left\lfloor \sqrt{x} \right\rfloor = 1$$
 et $\left\lfloor \frac{x}{2} \right\rfloor = 1$

Ainsi, $\lfloor \sqrt{x} \rfloor = \left\lfloor \frac{x}{2} \right\rfloor$.

• Si $x \in [4, 6[$, on a :

$$\sqrt{x} \in [2, 3[$$
 et $\frac{x}{2} \in [2, 3[$

Donc

$$\left\lfloor \sqrt{x} \right\rfloor = 2$$
 et $\left| \frac{x}{2} \right| = 2$

Ainsi, $\lfloor \sqrt{x} \rfloor = \left\lfloor \frac{x}{2} \right\rfloor$.

• Si $x \in [6, 7[$, on a :

$$\sqrt{x} \in [2, 3[$$
 et $\frac{x}{2} \in [3, 4[$

Donc

$$\left\lfloor \sqrt{x} \right\rfloor = 2$$
 et $\left| \frac{x}{2} \right| = 3$

Ainsi, $\lfloor \sqrt{x} \rfloor \neq \lfloor \frac{x}{2} \rfloor$. Ainsi, tout élément de $[0, 1] \cup [2, 6]$ est solution.

Conclusion : L'ensemble des solutions est :

$$[0,1] \cup [2,6]$$

Exercice 11. Indication: Faire différents cas selon la position la position de x par rapport à $\lfloor x \rfloor + \frac{1}{2}$ et de y par rapport à $\lfloor y \rfloor + \frac{1}{2}$ Soient $x, y \in \mathbb{R}$.

On a:

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

$$\lfloor y \rfloor \le y < \lfloor y \rfloor + 1$$

• Cas 1: si $\lfloor x \rfloor \le x < \lfloor x \rfloor + \frac{1}{2}$ et $\lfloor y \rfloor \le y < \lfloor y \rfloor + \frac{1}{2}$. Alors, on a $2\lfloor x \rfloor \le 2x < 2\lfloor x \rfloor + 1$ avec $2\lfloor x \rfloor \in \mathbb{Z}$ donc $\lfloor 2x \rfloor = 2\lfloor x \rfloor$. De même, on a $2\lfloor y \rfloor \leq 2y < 2\lfloor y \rfloor + 1$ avec $2\lfloor y \rfloor \in Z$ donc $\lfloor 2y \rfloor = 2\lfloor y \rfloor$. Enfin, on a $\lfloor x \rfloor + \lfloor y \rfloor \le x + y < \lfloor x \rfloor + \lfloor y \rfloor + 1$ avec $\lfloor x \rfloor + \lfloor y \rfloor \in \mathbb{Z}$ donc $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$. Ainsi, on a:

$$\lfloor x \rfloor + \lfloor y \rfloor + \lfloor x + y \rfloor = 2\lfloor x \rfloor + 2\lfloor y \rfloor = \lfloor 2x \rfloor + \lfloor 2y \rfloor$$

• Cas 2: si $\lfloor x \rfloor \leq x < \lfloor x \rfloor + \frac{1}{2}$ et $\lfloor y \rfloor + \frac{1}{2} \leq y < \lfloor y \rfloor + 1$.

Alors, on a: $2\lfloor x \rfloor \leq 2x < 2\lfloor x \rfloor + 1$ avec $2\lfloor x \rfloor \in \mathbb{Z}$ donc $\lfloor 2x \rfloor = 2\lfloor x \rfloor$.

De plus, $2\lfloor y \rfloor + 1 \leq 2y < 2\lfloor y \rfloor + 2$ avec $2\lfloor y \rfloor + 1 \in \mathbb{Z}$ donc $\lfloor 2y \rfloor = 2\lfloor y \rfloor + 1$.

Enfin, on a: $\lfloor x \rfloor + \lfloor y \rfloor + \frac{1}{2} \leq x + y < \lfloor x \rfloor + \lfloor y \rfloor + \frac{3}{2}$. Ainsi, on a: $\lfloor x \rfloor + \lfloor y \rfloor \leq x + y < \lfloor x \rfloor + \lfloor y \rfloor + 2$ avec $\lfloor x \rfloor + \lfloor y \rfloor \in \mathbb{Z}$. Ainsi, $\lfloor x + \tilde{y} \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$ ou $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + 1$. Donc dans tous les cas, $|x+y| \le |x| + |y| + 1$. On a donc:

$$\lfloor x \rfloor + \lfloor y \rfloor + \lfloor x + y \rfloor \leq 2 \lfloor x \rfloor + 2 \lfloor y \rfloor + 1 = \lfloor 2x \rfloor + \lfloor 2y \rfloor$$

• Cas 3: si $\lfloor x \rfloor + \frac{1}{2} \le x < \lfloor x \rfloor + 1$ et $\lfloor y \rfloor \le y < \lfloor y \rfloor + \frac{1}{2}$. Par symétrie entre x et y, on obtient:

$$|x| + |y| + |x + y| \le 2|x| + 2|y| + 1 = |2x| + |2y|$$

comme dans le cas précédent.

 $\begin{array}{l} \bullet \ \, \text{Cas} \,\, 4: \text{si} \,\, \lfloor x \rfloor + \frac{1}{2} \leq x < \lfloor x \rfloor + 1 \,\, \text{et} \,\, \lfloor y \rfloor + \frac{1}{2} \leq y < \lfloor y \rfloor + 1. \\ \text{Alors, on a} \,\, 2 \lfloor x \rfloor + 1 \leq 2x < 2 \lfloor x \rfloor + 2 \,\, \text{avec} \,\, 2 \lfloor x \rfloor + 1 \in \mathbb{Z} \,\, \text{donc} \,\, \lfloor 2x \rfloor = 2 \lfloor x \rfloor + 1. \end{array}$ De même, on a $2|y| + 1 \le 2y < 2|y| + 2$ avec $2|y| + 1 \in Z$ donc |2y| = 2|y| + 1. Enfin, on a $\lfloor x \rfloor + \lfloor y \rfloor + 1 \le x + y < \lfloor x \rfloor + \lfloor y \rfloor + 2$ avec $\lfloor x \rfloor + \lfloor y \rfloor + 1 \in \mathbb{Z}$ donc |x + y| = |x| + |y| + 1. Ainsi, on a:

$$\lfloor x \rfloor + \lfloor y \rfloor + \lfloor x + y \rfloor = 2 \lfloor x \rfloor + 2 \lfloor y \rfloor + 2 = \lfloor 2x \rfloor + \lfloor 2y \rfloor$$

Ainsi, dans tous les cas, on a bien:

$$|x| + |y| + |x + y| \le |2x| + |2y|$$

Exercice 12. Soit $n \in \mathbb{N}^*$ et soit $x \in \mathbb{R}$.

1. On a $\lfloor nx \rfloor \leq nx$. donc $\frac{[nx]}{} \le x$.

Ainsi, $\left\lfloor \frac{n}{n} \right\rfloor \le \lfloor x \rfloor$ car la fonction partie entière est croissante.

On a également : $|x| \leq x$

donc $n|x| \leq nx$.

D'où $\lfloor n\lfloor x\rfloor \rfloor \leq \lfloor nx\rfloor$. Or, $n\lfloor x\rfloor \in \mathbb{Z}$ donc $\lfloor n\lfloor x\rfloor \rfloor = n\lfloor x\rfloor$

Ainsi, $n \lfloor x \rfloor \leq \lfloor nx \rfloor$

On en déduit donc que : $\lfloor x \rfloor \leq \frac{\lfloor nx \rfloor}{r}$.

D'où $\lfloor \lfloor x \rfloor \rfloor \leq \left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor$ par croissance de la partie entière. Or, Or, $\lfloor x \rfloor \in \mathbb{Z}$ donc $\lfloor \lfloor x \rfloor \rfloor = \lfloor x \rfloor$.

Ainsi, $\lfloor x \rfloor \le \left| \frac{\lfloor nx \rfloor}{n} \right|$.

On a donc:

$$\lfloor x \rfloor = \left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor$$

2. Soit $n \in \mathbb{N}^*$, soit $x \in \mathbb{R}$. D'après la question précédente, on a :

$$\sum_{k=0}^{n-1} \lfloor x + \frac{k}{n} \rfloor = \sum_{k=0}^{n-1} \left\lfloor \frac{\lfloor n(x + \frac{k}{n}) \rfloor}{n} \right\rfloor$$
$$= \sum_{k=0}^{n-1} \left\lfloor \frac{\lfloor nx + k \rfloor}{n} \right\rfloor$$
$$= \sum_{k=0}^{n-1} \left\lfloor \frac{\lfloor nx \rfloor + k}{n} \right\rfloor \quad \text{car } k \in \mathbb{Z}$$

Effectuons la division euclidienne de $\lfloor nx \rfloor$ par n. On a $\lfloor nx \rfloor = nq + r$ avec $q \in \mathbb{N}$ et $r \in [0, n-1]$. Ainsi,

$$\sum_{k=0}^{n-1} \lfloor x + \frac{k}{n} \rfloor = \sum_{k=0}^{n-1} \left\lfloor \frac{nq + r + k}{n} \right\rfloor$$

$$= \sum_{k=0}^{n-1} \left\lfloor q + \frac{r + k}{n} \right\rfloor$$

$$= \sum_{k=0}^{n-1} \left(q + \left\lfloor \frac{r + k}{n} \right\rfloor \right) \quad \text{car } q \in \mathbb{Z}$$

$$= \left(\sum_{k=0}^{n-1} q \right) + \left(\sum_{k=0}^{n-1} \left\lfloor \frac{r + k}{n} \right\rfloor \right)$$

$$= qn + \sum_{k=0}^{n-1} \left\lfloor \frac{r + k}{n} \right\rfloor$$

Soit $k \in \llbracket 0, n-1 \rrbracket$. On a : $0 \le r+k \le 2(n-1)$ donc $0 \le \frac{r+k}{n} \le 2\frac{(n-1)}{n}$. Ainsi, $0 \le \frac{r+k}{n} < 2$ donc $\left\lfloor \frac{r+k}{n} \right\rfloor = 0$ ou $\left\lfloor \frac{r+k}{n} \right\rfloor = 1$. On a :

$$\left\lfloor \frac{r+k}{n} \right\rfloor = 1 \quad \Longleftrightarrow \quad 1 \le \frac{r+k}{n}$$

$$\iff \quad n \le r+k$$

$$\iff \quad n-r \le k$$

$$\iff \quad \max(n-r,0) \le k \quad \text{ car } k \in \llbracket 0,n-1 \rrbracket$$

Ainsi, on obtient:

$$\sum_{k=0}^{n-1} \lfloor x + \frac{k}{n} \rfloor = qn + \sum_{k=0}^{n-r-1} \left\lfloor \frac{r+k}{n} \right\rfloor + \sum_{k=n-r}^{n-1} \left\lfloor \frac{r+k}{n} \right\rfloor$$

$$= qn + \sum_{k=0}^{n-r-1} 0 + \sum_{k=n-r}^{n-1} 1$$

$$= qn + (n-1-n+r+1)$$

$$= qn + r$$

$$= \lfloor nx \rfloor$$

Ce qui termine la preuve.