WQD7004 - Group 10 Project - Credit Risk Prediction

Group No.: 10

Group Members

- LINGYU MENG (S2131391)
- HUIJUN LIU (S2142285)
- ZUOGE CHEN (S2125783)
- KELVIIN RAJJ KARUPAYA (S2151665)
- RUIXUE ZHANG (S2142119)

Dataset

- Title: German Credit Risk
- Year: 2020
- Content: This dataset classifies people described by a set of attributes as good or bad credit risks.
- Source: https://www.kaggle.com/datasets/kabure/german-credit-data-with-risk

1 Introduction

In this dataset, each entry represents a person who takes a credit by a bank. Each person is classified as good or bad credit risks according to the set of attributes.

1.1 Project Objective

To manage and avoid the credit risk of users.

1.2 Project Question

•

•

2 Data Pre-processing

2.1 Data Understanding

Import libraries

library(dplyr)
library(readr)
library(VIM)
library(missForest)
library(Hmisc)
library(caret)
library(ggplot2)

```
library(e1071)
library(klaR)
library(nnet)
library(Metrics)
library(rpart)
library(tidyverse)
```

Read in dataset

```
df=read.csv('german_credit_data.csv')
# Delete the 1st column which is used for indexing.
df=df[,-1]
head(df)
```

```
## Age Sex Job Housing Saving.accounts Checking.account Credit.amount
## 1 67 male 2 own
                            <NA>
                                      little
                                               1169
## 2 22 female 2 own
                           little
                                    moderate
                                                  5951
## 3 49 male 1 own
                           little
                                     <NA>
                                               2096
## 4 45 male 2 free
                                             7882
                          little
                                    little
## 5 53 male 2 free
                          little
                                             4870
                                    little
## 6 35 male 1 free
                           <NA>
                                                 9055
                                       <NA>
## Duration
                  Purpose Risk
               radio/TV good
## 1
       6
## 2
       48
               radio/TV bad
## 3
       12
               education good
## 4
       42 furniture/equipment good
       24
## 5
                  car bad
```

6 36 education good

See the structure of dataset

```
str(df)
```

```
## 'data.frame': 1000 obs. of 10 variables:
## $ Age
              : int 67 22 49 45 53 35 53 35 61 28 ...
              : chr "male" "female" "male" "male" ...
## $ Sex
## $ Job
              : int 2212212313...
                 : chr "own" "own" "free" ...
## $ Housing
## $ Saving.accounts : chr NA "little" "little" "little" ...
## $ Checking.account: chr "little" "moderate" NA "little" ...
## $ Credit.amount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ Duration : int 6 48 12 42 24 36 24 36 12 30 ...
## $ Purpose : chr "radio/TV" "radio/TV" "education" "furniture/equipment" ...
              : chr "good" "bad" "good" "good" ...
## $ Risk
```

2.2 Handle missing data

Check missing values

```
print(paste('Complete obs.:',sum(complete.cases(df))))
```

[1] "Complete obs.: 522"

• Distribution of NAs (by column):

colSums(is.na(df))

```
Housing
##
        Age
                   Sex
                            Job
         0
                  0
                           0
##
                                    0
## Saving.accounts Checking.account Credit.amount
                                                    Duration
        183
                   394
                              0
                                       0
##
##
       Purpose
                    Risk
          0
                  0
##
```

• Check if any missing value is "" type

colSums(df=="")

```
Housing
##
        Age
                   Sex
                            Job
                           0
         0
                  0
##
                                    0
## Saving.accounts Checking.account Credit.amount
                                                    Duration
                   NA
                              0
##
         NA
                                       0
       Purpose
                    Risk
##
          0
##
                  0
```

Visualisation of missing part

```
aggr(df,labels=names(df),col=c('blue','red'),
    numbrs=T,sortVars=T)
```


##

Variables sorted by number of missings:

Variable Count

Checking.account 0.394

Saving.accounts 0.183

Age 0.000

Sex 0.000

Job 0.000

Housing 0.000

Credit.amount 0.000

Duration 0.000

Purpose 0.000

Risk 0.000

As shown above, Saving.accounts & Check.account contain missing values, and red color presents missing part.

Predict and impute NAs

Step 1: Convert chr variables to factor type

```
df1 <- df
df1$Sex <- as.factor(df1$Sex)
df1$Job <- as.ordered(df1$Job)
df1$Housing <- as.factor(df1$Housing)
df1$Saving.accounts <- as.ordered(df1$Saving.accounts)
df1$Checking.account <- as.ordered(df1$Checking.account)
df1$Purpose <- as.factor(df1$Purpose)
df1$Risk <- as.ordered(df1$Risk)</pre>
```

Step 2: Impute NAs using missForest

missForest is used to impute missing values particularly in the case of mixed-type data. It can be used to impute **continuous and/or categorical** data including complex interactions and nonlinear relations. It yields an out-of-bag (OOB) imputation error estimate. Moreover, it can be run parallel to save computation time.

```
df.mis <- df1[!complete.cases(df1),]

df.train <- df1[complete.cases(df1),]

set.seed(42)

df.imp <- missForest(xmis = df.mis, xtrue = df.train, maxiter = 10, ntree = 200)

message('Out of Bag error: ', df.imp$OOBerror)</pre>
```

Out of Bag error: 00.089277066758907

Save imputation result

```
df.nomis <- df1
df.nomis[!complete.cases(df.nomis),] <- df.imp$ximp
```

SavAcct values distribution after imputation:

```
table(df.nomis$Saving.accounts)
```

```
## ## little moderate quite rich rich ## 739 113 92 56
```

CheckAcct values distribution after imputation:

```
table(df.nomis$Checking.account)
```

```
## ## little moderate rich ## 360 489 151
```

2.3 Smooth noisy data (Not yet decided)

• Save cleaned dataset

```
write.csv(df.nomis,file = 'german_credit_data_rmna.csv',row.names=F)
```

Summary dataset

summary(df.nomis)

```
Sex
##
     Age
                    Job
                         Housing
                                    Saving.accounts
## Min. :19.00 female:310 0:22 free:108 little :739
## 1st Qu.:27.00 male :690 1:200 own:713 moderate :113
## Median:33.00
                       2:630 rent:179 quite rich: 92
## Mean :35.55
                       3:148
                                   rich
                                         : 56
## 3rd Qu.:42.00
## Max. :75.00
##
## Checking.account Credit.amount Duration
                                                    Purpose
## little :360 Min. : 250 Min. : 4.0 car
                                                :337
## moderate:489 1st Qu.: 1366 1st Qu.:12.0 radio/TV
                                                         :280
## rich :151 Median: 2320 Median: 18.0 furniture/equipment: 181
##
           Mean: 3271 Mean: 20.9 business
                                                  : 97
##
           3rd Qu.: 3972 3rd Qu.: 24.0 education
                                                  : 59
##
           Max. :18424 Max. :72.0 repairs
                                                 : 22
##
                           (Other)
                                       : 24
   Risk
##
## bad:300
## good:700
##
##
##
##
##
```

Descriptions of cleaned dataset

- Age: (quantitative, in years)
- Sex: (dichotomous: female, male)
- Job: (ordinal: 0 unskilled and non-resident, 1 unskilled and resident, 2 skilled, 3 highly skilled)
- Housing: (nominal: own, rent, or free)
- SavAcct: (ordinal: little, moderate, quite rich, rich) Status of existing saving account.
- CheckAcct: (ordinal: little, moderate, rich) Status of existing checking account.
- CredAmt: (quantitative, in D-mark) The maximum amount that the bank is committed to lend.
- Duration: (quantitative, in month)
- Purpose: (nominal: car, furniture/equipment, radio/TV, domestic appliances, repairs, education, business, vacation/others) Reasons to get a loan.
- Risk: (dichotomous: good, bad)