Newick trees

#NEXUS

Begin trees;

Translate

- 1 Chlamydopodium_vacuolatum_EF113426,
- 2 Protosiphon_sp_FRT2000_JN880462,
- 3 Protosiphon_botryoides_UTEX_B99_JN880463,
- 4 Protosiphon_botryoides_UTEX_B461_JN880464,
- 5 Protosiphon_botryoides_f_parieticola_UTEX_46_JN880465,
- 6 Protosiphon_botryoides_UTEX_47_JN880466

tree $'PAUP_1' = [\&U] (1:0.104899,((2:0.009446,(4:0.001635,6:7.29892e-07):0.030410):$ 0.005612,3:0.007100):0.002552,5:0.001416); End:

https://en.wikipedia.org/wiki/Newick_format

((A:.12,B:.12):.13,(C:.2,(D:.06,E:.06):.14):.05)

edge lengths follow colon after node name (if present)

Hasegawa, Kishino, and Yano (1985)

HKY85 model

Parameters: μ , κ , π_A , π_C , π_G these are global

one parameter in each model is associated with the length of an edge

these are globate parameters (apply to all edge lengths)

	Α	С	G	T
Α	$\int -\mu \left(\pi_C + \pi_G \kappa + \pi_T\right)$	$\pi_C \mu$	$\pi_G \mu \kappa$	$\pi_T \mu$
С	$\pi_A \mu$	$-\mu \left(\pi_A + \pi_G + \pi_T \kappa\right)$	$\pi_G \mu$	$\pi_T \mu \kappa$
G	$\pi_A \mu \kappa$	$\pi_C \mu$	$-\mu \left(\pi_A \kappa + \pi_C + \pi_T\right)$	$\pi_T \mu$
T	$\pi_A \mu$	$\pi_C \mu \kappa$	$\pi_G \mu$	$-\mu \left(\pi_A + \pi_C \kappa + \pi_G\right) $

Tavaré (1986)

GTR model

Parameters: $a, b, c, d, e, \mu, \pi_A, \pi_C, \pi_G$

A C G T

A $\begin{bmatrix} - & \pi_C \mu (a) & \pi_G \mu (b) & \pi_T \mu (c) \end{bmatrix}$ C $\begin{bmatrix} \pi_A \mu (a) & - & \pi_G \mu (d) & \pi_T \mu (e) \end{bmatrix}$ G $\begin{bmatrix} \pi_A \mu (b) & \pi_C \mu (d) & - & \pi_T \mu (f) \end{bmatrix}$ T $\begin{bmatrix} \pi_A \mu (c) & \pi_C \mu (e) & \pi_G \mu (f) & - & - & - \end{bmatrix}$

exchangeability parameters are circled

GTR = General Time Reversible

Time reversibility means...

$$\Pr(A)\Pr(G|A,v) = \Pr(G)\Pr(A|G,v)$$

Time reversibility allows any point on the tree to serve as the root, and thus has some practical advantages, but time reversibility is not a requirement for substitution models used in phylogenetics

GTR family

Rate heterogeneity

Green plant rbcL gene

First 88 amino acids (translation is for Zea mays)

```
M--S--P-O-T-E-T-K-A-S-V-G-F-K-A-G-V-K-D-Y-K-L-T-Y-Y-T-P-E-Y-E-T-K-D-T-D-I-L-A-A-F-R-V-T-P-
Chara
     (green alga; land plant lineage)
                AAAGATTACAGATTAACTTACTATACTCCTGAGTATAAAACTAAAGATACTGACATTTTAGCTGCATTTCGTGTAACTCCA
                .....C....C.T...A...G...C.....T...CC...C.A......C....T...C.T...A...G...C...A.G.....T
Chlorella
     (green alga)
                ......TC.T....A.....C..A.....C..GT.GTA.....C......C....A........A.G......
Volvox
     (green alga)
Conocephalum
     (liverwort)
                Bazzania
     (moss)
                Anthoceros
     (hornwort)
Osmunda
     (fern)
                Lycopodium
     (club "moss")
Ginkgo
     (gymnosperm; Ginkgo biloba)
                Picea
     (gymnosperm; spruce)
                Iris
     (flowering plant)
                ......TC..C.G....T..C..C..C..A..C..G..C........C..T..C..G..A..T..C..GA.G..C...
Asplenium
     (fern; spleenwort)
Nicotiana
     (flowering plant; tobacco)
                O-L-G-V-P-P-E-E-A-G-A-A-V-A-A-E-S-S-T-G-T-W-T-T-V-W-T-D-G-L-T-S-L-D-R-Y-K-G-R-C-Y-H-I-E-
CAACCTGGCGTTCCACCTGAAGAAGCAGGGGCTGCAGTAGCTGCAGAATCTTCTACTGGTACATGGACTACTGTTTGGACTGGATTAACTAGTTTGGACCGATACAAAGGAAGATGCTACGATATTGAA
 \dots \text{A..G.} \dots \text{C..T..C.T..C.T..T..T..T..T.} \dots \text{C......T..C..C..G}
```

All 4 bases are observed at some sites...

...while at other sites, only I base is observed

Site-specific rates

Each defined subset (e.g. 1st+2nd pos. versus 3rd pos.) has its own relative rate

 r_1 applies to subset I Ist+2nd codon positions (sites I - 88) r₂ applies to subset 2 3rd codon positions (sites 89-132)

Relative rates have mean I.0:
$$r_1 \ p(r_1) + r_2 \ p(r_2) = 1$$

Site-specific rates

$$L = p(\mathbf{y}_1|r_1)\cdots p(\mathbf{y}_{88}|r_1) \ p(\mathbf{y}_{89}|r_2)\cdots p(\mathbf{y}_{132}|r_2)$$

1st+2nd codon positions

3rd codon positions

$$r_1 = 0.12255$$

mean relative rate:

$$(0.12255)(2/3) + (2.75490)(1/3) = 1.0$$

Site-specific rates

JC69 transition probabilities that would be used for every site if rate *homo*geneity were assumed:

$$P_{ii}(t) = \frac{1}{4} + \frac{3}{4}e^{-4\beta t} \quad \text{C} \quad \text{identity} \quad \text{C}$$

$$P_{ij}(t) = \frac{1}{4} - \frac{1}{4}e^{-4\beta t} \quad \text{C} \quad \text{difference} \quad \text{T}$$

Site specific rates

JC69 transition probabilities that would be used for sites in **subset 1**:

$$P_{ii}(t) = \frac{1}{4} + \frac{3}{4}e^{-4r_1\beta t}$$

$$P_{ii}(t) = \frac{1}{4} + \frac{3}{4}e^{-4r_1\beta t}$$

 $P_{ij}(t) = \frac{1}{4} - \frac{1}{4}e^{-4r_1\beta t}$

JC69 transition probabilities that would be used for sites in subset 2:

$$P_{ii}(t) = \frac{1}{4} + \frac{3}{4}e^{-4r_2\beta t}$$

$$P_{ij}(t) = \frac{1}{4} - \frac{1}{4}e^{-4r_2\beta t}$$

Site-specific approach

OK, I am going to divide you into 2 groups based on the color of your head, and everyone in each group will get a coat of the average size for their group. Very sorry if this does not work well for some people who are unusually large or small compared to their group.

Site-specific approach

Good: costs less: need to buy just one coat for every person Bad: every person in a group has to wear the same size coat

Mixture models

All k relative rates applied to every site

site i

$$L_i = p(\mathbf{y}_i|r_1)p(r_1) + p(\mathbf{y}_i|r_2)p(r_2) + \dots + p(\mathbf{y}_i|r_k)p(r_k)$$

Common examples

Invariable sites (I) model

Discrete Gamma (G) model

Mixture model approach

OK, I am going to give each of you 2 coats: use the one that fits you best and throw away the other one. This costs twice as much for me, but on average leads to better fit for you. I have determined the two sizes of coats based on the distribution of your sizes.

Mixture model approach

Good: every person experiences better fit because they can choose the size coat that fits best

Bad: costs more because two coats much be provided for each person

Invariable sites model (Reeves 1992)

A fraction p_{invar} of sites are assumed to be invariable (i.e. rate = 0.0)

$$L_i = p(\mathbf{y}_i|r_1)p_{\text{invar}} + p(\mathbf{y}_i|r_2)(1-p_{\text{invar}})$$

$$r_1 = 0.0$$

$$r_2 = \frac{1}{1 - p_{\text{inver}}}$$

Allows for the possibility that any given site could be variable or invariable

$$\bar{r} = p_{\text{invar}}(0.0) + (1 - p_{\text{invar}}) \left(\frac{1}{1 - p_{\text{invar}}}\right) = 1.0$$

Invariable sites model

If site *i* is a *constant* site, both terms will contribute to the site likelihood:

$$L_i = p(\mathbf{y}_i|r_1)p_{\text{invar}} + p(\mathbf{y}_i|r_2)(1-p_{\text{invar}})$$

If site *i* is a *variable* site, there is no way to explain the data with a zero rate, so the likelihood in the first term equals zero:

$$A \longrightarrow A$$

$$L_i = p(\mathbf{y}_i | r_1) p_{\text{invar}} + p(\mathbf{y}_i | r_2) (1 - p_{\text{invar}})$$

Discrete Gamma model (Yang 1994)

No relative rate is exactly 0.0, and all are equally probable

site i

$$L_i = p(\mathbf{y}_i|r_1) \left(\frac{1}{4}\right) + p(\mathbf{y}_i|r_2) \left(\frac{1}{4}\right) + p(\mathbf{y}_i|r_3) \left(\frac{1}{4}\right) + p(\mathbf{y}_i|r_4) \left(\frac{1}{4}\right)$$

Relative rates are determined by a discrete gamma distribution Number of rate categories can vary (4 used here)

Relative rates in 4-category case

Gamma distributions

Codon models

The genetic code

First 12 nucleotides at the 5' end of the rbcL gene in corn:

5'-AUG|UCA|CCA|CAA-3'mRNA

N-Met|Ser|Pro|Gln-Cpolypeptide

Codon Table

	U	С	A	G
U	UUU Phe	UCU Ser	UAU Tyr	UGU Cys
	UUC Phe	UCC Ser	UAC Tyr	UGC Cys
	UUA Leu	UCA Ser	UAA Stp	UGA Stp
	UUG Leu	UCG Ser	UAG Stp	UGG Trp
С	CUU Leu	CCU Pro	CAU His	CGU Arg
	CUC Leu	CCC Pro	CAC His	CGC Arg
	CUA Leu	CCA Pro	CAA GIn	CGA Arg
	CUG Leu	CCG Pro	CAG GIn	CGG Arg
Α	AUU IIe	ACU Thr	AAU Asn	AGU Ser
	AUC IIe	ACC Thr	AAC Asn	AGC Ser
	AUA IIe	ACA Thr	AAA Lys	AGA Arg
	AUG Met	ACG Thr	AAG Lys	AGG Arg
G	GUU Val	GCU Ala	GAU Asp	GGU Gly
	GUC Val	GCC Ala	GAC Asp	GGC Gly
	GUA Val	GCA Ala	GAA Glu	GGA Gly
	GUG Val	GCG Ala	GAG Glu	GGG Gly

Muse & Gaut (1994); Goldman & Yang(1994)

	TTT (Phe)	TTC (Phe)	TTA (Leu)	TTG (Leu)	CTT (Leu)	CTC (Leu)	•••	GGG (Gly)
TTT (Phe)	—	$\alpha \pi_C$	$\beta \ \pi_A$	$eta \pi_G$	$\beta \pi_C$	0	• • •	0
TTC (Phe)	$\alpha \pi_T$		$\beta \pi_A$	$eta \pi_G$	0	$eta \pi_C$	• • •	0
synon. subst. Phe →Phe T→C				$\alpha \pi_G$	0	0	• • •	0
			π_A		0	0	• • •	0
CTT (Leu)	nons	ynon. sul	ost	0	<u></u>	$\alpha \pi_C$	• • •	0
CTC (Leu)		he→Leu C→A		0	$\alpha \pi_T$		• • •	0
•	•	•		•	•	rate =	= 0 if mc	ore
GGG (Gly)	0	0	0	0	0	than one nucleotide change is required		

Interpreting codon model results

$\omega = \beta/\alpha$ is the nonsynonymous/synonymous rate ratio

omega	mode of selection	example(s)	
ω < Ι	stabilizing selection (nucleotide substitutions rarely change the amino acid)	functional protein coding genes	
$\omega = 1$	neutral evolution (synonymous and nonsynonymous substitutions occur at the same rate)	pseudogenes	
ω > I	positive selection (nucleotide substitutions often change the amino acid)	envelope proteins in viruses under active positive selection	

$$\mathbf{P}(t) = e^{\mathbf{Q}t}$$

Q matrix

(instantaneous rates)

JC69 revisited

$$v = 3\beta t$$

P matrix (transition probabilities)

$$\begin{bmatrix} \frac{1}{4} + \frac{3}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} \\ \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} + \frac{3}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} \\ \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} + \frac{3}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} \\ \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} - \frac{1}{4}e^{-4\beta t} & \frac{1}{4} + \frac{3}{4}e^{-4\beta t} \end{bmatrix}$$

Q matrix (instantaneous rates)

$$\begin{bmatrix} 0 & 1 \\ -\beta & \beta \\ \beta & -\beta \end{bmatrix} \qquad v = \beta t$$

P matrix (transition probabilities)

$$\begin{bmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\beta t} & \frac{1}{2} - \frac{1}{2}e^{-2\beta t} \\ \frac{1}{2} - \frac{1}{2}e^{-2\beta t} & \frac{1}{2} + \frac{1}{2}e^{-2\beta t} \end{bmatrix}$$

$$\mathbf{P}(t) = e^{\mathbf{Q}t}$$

$$\mathbf{Q}$$

$$\begin{bmatrix} 0 & 1 \\ -\beta & \beta \\ \beta & -\beta \end{bmatrix}$$

$$\mathbf{P}(t) = e^{\mathbf{Q}t}$$

$$\mathbf{P}(t) = e^{\mathbf{Q}t}$$

$$\begin{array}{c|c} \mathbf{Q}t \\ \circ & \begin{bmatrix} \circ & \circ & \circ \\ -\beta t & \beta t \\ \beta t & -\beta t \end{bmatrix} \end{array}$$

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -2\beta t \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

eigenvector matrix eigenvalue inverse eigenvector matrix

$$\mathbf{P}(t) = e^{\mathbf{Q}t}$$

$$e^{\mathbf{Q}t}$$

$$\begin{bmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\beta t} & \frac{1}{2} - \frac{1}{2}e^{-2\beta t} \\ \frac{1}{2} - \frac{1}{2}e^{-2\beta t} & \frac{1}{2} + \frac{1}{2}e^{-2\beta t} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} e^0 & 0 \\ 0 & e^{-2\beta t} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

Empirical amino acid models

A different path from Q to P

Figure 80. Numbers of accepted point mutations (x 10) accumulated from closely related sequences. Fifteen hundred and seventy-

two exchanges are shown. Fractional exchanges result when ancestral sequences are ambiguous.

The elements of Q

The Q matrix is often presented in the following form, factored into a symmetric matrix exchangeabilities and a set of state frequencies.

```
Ala
     0.267828
Arq
Asn
     0.984474
               0.327059
               0.000000
                          8.931515
    1.199805
Asp
     0.360016
               0.232374
                          0.000000
Cys
                                     0.000000
    0.887753
               2.439939
                          1.028509
                                    1.348551
                                               0.000000
    1.961167
               0.000000
                          1.493409 11.388659
                                                          7.086022
Glu
                                               0.000000
               0.087791
                          1.385352
Gly
     2.386111
                                    1.240981
                                               0.107278
                                                          0.281581
                                                                    0.811907
                          5.290024
                                    0.868241
His
     0.228116
               2.383148
                                               0.282729
                                                          6.011613
                                                                    0.439469
Ile 0.653416
               0.632629
                          0.768024
                                     0.239248
                                               0.438074
                                                         0.180393
                                                                    0.609526
Leu 0.406431 0.154924 0.341113
                                    0.000000
                                               0.000000
                                                          0.730772
                                                                    0.112880
    0.258635
               4.610124
                          3.148371
                                     0.716913
                                               0.000000
                                                         1.519078
                                                                    0.830078
Lys
    0.717840
               0.896321
                          0.000000
                                     0.000000
                                               0.000000
                                                          1.127499
                                                                    0.304803 ...
Met
                                                          0.000000
    0.183641
               0.136906
                          0.138503
                                     0.000000
                                               0.000000
                                                                    0.000000 ...
Phe
Pro
    2.485920
               1.028313
                          0.419244
                                     0.133940
                                               0.187550
                                                         1.526188
                                                                    0.507003
    4.051870
              1.531590
                          4.885892
                                     0.956097
                                               1.598356
                                                          0.561828
                                                                    0.793999 ...
Thr
   3.680365
               0.265745
                          2.271697
                                     0.660930
                                               0.162366
                                                          0.525651
                                                                    0.340156 ...
Trp
     0.000000
               2.001375
                          0.224968
                                     0.000000
                                               0.000000
                                                          0.000000
                                                                    0.000000 ...
Tyr
     0.244139
               0.078012
                          0.946940
                                     0.000000
                                               0.953164
                                                          0.000000
                                                                    0.214717 ...
Val 2.059564
               0.240368
                          0.158067
                                     0.178316
                                               0.484678
                                                          0.346983
                                                                    0.367250 ...
          Ala
                     Arq
                               Asn
                                          Asp
                                                    Cys
                                                               Gln
                                                                         Glu ...
Freq 0.087127
                                     0.046872
                                               0.033474
                                                          0.038255
                                                                    0.049530
                          0.040432
```

exchangeabilities (only values below diagonal shown)

frequencies

GTR revisited

$$\begin{bmatrix} - & \pi_C a & \pi_G b & \pi_T c \\ \pi_A a & - & \pi_G d & \pi_T e \\ \pi_A b & \pi_C d & - & \pi_T f \\ \pi_A c & \pi_C e & \pi_G f & - \end{bmatrix}$$

The off-diagonal elements of the GTR Q matrix can similarly be obtained by multiplying a symmetric exchangeability matrix and a diagonal matrix of frequencies.

frequencies

What does all this accomplish?

- An empirical Q matrix can be constructed from many closelyrelated pairwise comparisons
- A Q matrix can be extrapolated to any desired value of t using P=exp(Qt) to generate a P matrix
- Models generic features of protein evolution; Q matrix does not necessarily reflect your particular sequences
- Frequencies can be swapped with more appropriate set (locally estimated)

Successive improvements

• JTT model (Jones et al. 1992)

Based on a much larger protein database

• WAG model (Whelan & Goldman 2001)

Avoids need to use closely-related sequence pairs by obtaining ML estimate of Q matrix

• LG model (Le & Gascuel 2008)

Add rate heterogeneity to ML estimation of Q matrix

Literature cited

Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. 1978. A model of evolutionary change in proteins. Chapter 22 in Atlas of protein sequence and structure, vol. 5, suppl. 3. M.O. Dayhoff (ed.), pp. 345-352, Natl. Biomed. Res. Found., Washington, DC

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368-376.

Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution 11:725-736.

Hasegawa, M., H. Kishino, and T.Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 21:160-174.

Jones, D.T., Taylor, W.R., and Thornton, J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275–282.

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York.

Kosiol C., and Goldman N. 2005. Different versions of the Dayhoff rate matrix. Molecular Biology and Evolution. 22:193–199.

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

Literature Cited

Le, S.Q., and Gascuel, O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution. 25:1307–1320.

Muse, S.V., and B. S. Gaut. 1994. A likelihood approach for comparing synonymous and nonsynonymous substitution rates, with application to the chloroplast genome. Molecular Biology and Evolution 11:715-724.

Reeves, J. H. 1992. Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. Journal of Molecular Evolution 35:17-31.

Tavaré, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17:57-86.

Whelan, S., and Goldman, N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution. 18:691–699.

Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39:306-314.

Yang, Z., Nielsen, R., and Hasegawa, M. 1998. Models of amino acid substitution and applications to mitochondrial protein evolution. Molecular Biology and Evolution 15:1600-1611.