Assignment 2: Spooky Searching

Daniel Bezden and Param Thakker

Test A

We tested the time it took for two different algorithms to search for a value in an unsorted array, one using multiple processes and the other using multiple threads. We found that the search time generally increased linearly, indicating a O(n) time complexity. Threads typically performed the search in about one third of the time of processes.

Best fit equation for processes: t = (160.41 ns)nBest fit equation for threads: t = (50.2121 ns)n

Figure 1: Results from Test A

Data:

Size	Processes (ms)	Threads (ms)
250	0.156745	0.192143
500	0.164597	0.09477
750	0.181872	0.10057
1000	0.217576	0.215104
1250	0.237349	0.06092
1500	0.287873	0.071195
1750	0.30355	0.096401
2000	0.399755	0.087111
2250	0.415108	0.101222
2500	0.423935	0.110041
2750	0.455759	0.12482
3000	0.514027	0.163804
3250	0.540321	0.173559
3500	0.574699	0.18454
3750	0.588518	0.179966
4000	0.639635	0.18333
4250	0.695506	0.230694
4500	0.647994	0.238458
4750	0.735574	0.318693
5000	0.781476	0.243112
5250	0.71555	0.250199
5500	0.799848	0.314807
5750	0.927847	0.288706
6000	0.779362	0.279536
6250	0.981838	0.304615
6500	1.001875	0.343592
6750	0.979614	0.373457
7000	1.131009	0.352385
7250	1.143972	0.389231
7500	1.170123	0.419415
7750	1.075232	0.415141
8000	1.322372	0.402985
8250	1.32048	0.406503
8500	1.356371	0.41865
8750	1.625968	0.442178
9000	1.509625	0.419289
9250	1.487694	0.430994
9500	1.573882	0.451746
9750	1.705971	0.452698
10000	1.59198	0.466796

Test B

The graph below shows the trade-off point for when using multiple threads to search an array of a certain size is faster than searching through an array of 250 elements with one process. The graph is a bit misleading: it does not indicate that the search time for one process is invariant of array size. It is the time for specifically 250 elements, which was found to be approximately 106 microseconds. It took an array of 2250 elements for the multithreaded algorithm to become slower than the multiprocess algorithm, indicating that threads perform far faster than processes.

Figure 2: Results from Test B

Data:

Size	Search time (ms)
250	0.020869
500	0.02008
750	0.023637
1000	0.033189
1250	0.045138
1500	0.058647
1750	0.073827
2000	0.086896
2250	0.098077
2500	0.119823
2750	0.121146
3000	0.135383
3250	0.153539
3500	0.162763
3750	0.182762
4000	0.194125
4250	0.208528
4500	0.220368
4750	0.233679
5000	0.262649

Test C

We were surprised to see that, when the search is split up over more threads or more processes, the search always took more time. We believe that this is because, for such small arrays, the time taken to create a new process or a new thread, and then wait on all processes or threads to complete takes significantly longer than it would take to just perform a linear search through the entire array at once. Unfortunately, since the number of elements each process or thread can have cannot be bigger than 250, searching through a sufficiently large array would require far too many processes or threads.

Best fit equation for processes: $t = (3.28018 \text{ ms})n^{-0.66358}$ Best fit equation for threads: $t = (2.38345 \text{ ms})n^{-0.96293}$

Figure 3: Process results from Test C

Figure 4: Thread results from Test C

Data (elements per process/thread, time for processes (ms), time for threads (ms)):

	1 1	,	1 ,	,	\ //
1	3.726819 7.582934	28	0.102654 0.310861	55	0.046248 0.188982
2	1.729758 3.890419	29	0.102594 0.316156	56	0.047213 0.198976
3	1.132517 2.690931	30	0.101115 0.309445	57	0.044458 0.195402
4	0.834505 2.002778	31	0.107997 0.305281	58	0.044476 0.19194
5	0.662785 1.550306	32	0.089523 0.275171	59	0.047286 0.199091
6	0.546976 1.288344	33	0.090643 0.273151	60	0.04691 0.190883
7	0.462431 1.082704	34	0.091123 0.301846	61	0.046787 0.195288
8	0.409558 0.986663	35	0.091837 0.320626	62	0.048336 0.202071
9	0.363886 0.857329	36	0.077443 0.288791	63	0.026838 0.171308
10	0.318924 0.765864	37	0.077476 0.277191	64	0.02777 0.173228
11	0.290888 0.700941	38	0.077418 0.282928	65	0.027392 0.163899
12	0.263949 0.649436	39	0.077799 0.309466	66	0.02668 0.170301
13	0.249297 0.64734	40	0.07915 0.324991	67	0.027436 0.166054
14	0.225696 0.582029	41	0.077566 0.319815	68	0.028064 0.170514
15	0.21018 0.549648	42	0.059618 0.288728	69	0.025848 0.170449
16	0.196234 0.504814	43	0.060482 0.244666	70	0.028491 0.173908
17	0.179913 0.477313	44	0.061625 0.22156	71	0.027765 0.175641
18	0.167375 0.441656	45	0.059404 0.220375	72	0.028403 0.161397
19	0.166436 0.435956	46	0.062214 0.220605	73	0.027291 0.166369
20	0.148385 0.410885	47	0.073451 0.229	74	0.027213 0.168081
21	0.140507 0.387284	48	0.061805 0.220891	75	0.028909 0.165948
22	0.133316 0.384453	49	0.06 0.216446	76	0.026191 0.161929
23	0.127325 0.362121	50	0.046214 0.205917	77	0.027812 0.166448
24	0.125173 0.359658	51	0.045191 0.204005	78	0.0272 0.164749
25	0.113982 0.331947	52	0.044991 0.208407	79	0.029777 0.171603
26	0.116318 0.340346	53	0.046763 0.189537	80	0.031016 0.162895
27	0.113946 0.334133	54	0.046235 0.192525	81	0.027826 0.166494

82	0.02665 0.161276	139	0.018392 0.111413	196	0.017059 0.110402
83	0.027727 0.161711	140	0.016231 0.113254	197	0.017582 0.127672
84	0.021382 0.142421	141	0.016858 0.112556	198	0.017978 0.13114
85	0.02029 0.136289	142	0.019314 0.110238	199	0.016854 0.124693
86	0.020232 0.140628	143	0.018029 0.115736	200	0.019457 0.133913
87	0.019908 0.137532	144	0.017946 0.111643	200	0.015903 0.128852
88	0.020201 0.140944	145	0.020132 0.112304	202	0.018607 0.128213
89	0.019093 0.133698	146	0.017437 0.113624	203	0.017164 0.121459
90	0.020037 0.138512	147	0.01668 0.111845	204	0.016104 0.105282
91	0.018775 0.137296	148	0.017661 0.113772	205	0.019271 0.107057
92	0.020596 0.135822	149	0.017408 0.111249	206	0.019391 0.106234
93	0.025986 0.140057	150	0.017796 0.11093	207	0.01866 0.104755
94	0.021066 0.135496	151	0.016208 0.114732	208	0.016695 0.110116
95	0.019328 0.14055	152	0.015793 0.111326	209	0.016432 0.105197
96	0.021671 0.133207	153	0.019767 0.109064	210	0.01727 0.105874
97	0.019435 0.138983	154	0.017434 0.114709	211	0.018098 0.110455
98	0.019872 0.133414	155	0.018794 0.110323	212	0.019335 0.104569
99	0.020761 0.139121	156	0.018774 0.109991	213	0.016569 0.105626
100	0.021792 0.132154	157	0.017047 0.112719	214	0.017214 0.106704
101	0.019099 0.134473	158	0.01767 0.109754	215	0.015957 0.106282
102	0.020028 0.136525	159	0.016817 0.112756	216	0.016517 0.106207
103	0.019006 0.132358	160	0.016396 0.11063	217	0.015667 0.106093
104	0.019735 0.138426	161	0.01854 0.11185	218	0.0169 0.105726
105	0.019685 0.132413	162	0.018025 0.112111	219	0.016725 0.108821
106	0.019733 0.138514	163	0.017945 0.109585	220	0.01585 0.105556
107	0.032076 0.135063	164	0.018613 0.111647	221	0.016411 0.10685
108	0.022436 0.134584	165	0.017562 0.113675	222	0.015591 0.107196
109	0.020499 0.132004	166	0.018113 0.108993	223	0.018142 0.105481
110	0.020628 0.13499	167	0.016581 0.110693	223	0.016336 0.104805
111	0.018271 0.133934	168	0.01779 0.110415	225	0.01611 0.107877
112	0.019704 0.132986	169	0.017408 0.107636	226	0.016753 0.105015
113	0.020283 0.136545	170	0.017488 0.111284	227	0.015707 0.104505
114	0.020018 0.130031	171	0.016754 0.108316	228	0.019575 0.106999
115	0.020892 0.134926	172	0.018071 0.107372	229	0.017272 0.103469
116	0.019162 0.131356	173	0.016495 0.110621	230	0.017823 0.104936
117	0.018708 0.135466	174	0.018745 0.106352	231	0.017901 0.105374
118	0.0195 0.13173	175	0.017895 0.107983	232	0.017401 0.105154
119	0.020028 0.129852	176	0.019145 0.111383	233	0.017612 0.108744
120	0.0185 0.135417	177	0.016335 0.106591	234	0.018435 0.105498
121	0.021977 0.130077	178	0.018454 0.106011	235	0.017769 0.104802
122	0.023886 0.137226	179	0.017186 0.108903	236	0.017408 0.10643
123	0.021599 0.130321	180	0.018308 0.10911	237	0.017355 0.104465
124	0.019821 0.134113	181	0.01699 0.111598	238	0.016824 0.102617
125	0.018243 0.113765	182	0.017444 0.108481	239	0.016948 0.105111
126	0.019522 0.112969	183	0.019022 0.107039	240	0.018295 0.103265
127	0.015964 0.116358	184	0.016508 0.114005	241	0.017399 0.104894
128	0.017759 0.111219	185	0.016551 0.111682	242	0.01805 0.107364
129	0.017755 0.111726	186	0.016043 0.110505	243	0.015361 0.102969
130	0.015755 0.11709	187	0.018201 0.11835	244	0.01698 0.102339
131	0.019186 0.111522	188	0.016361 0.114959	245	0.016591 0.106443
132	0.017237 0.113329	189	0.018389 0.109354	246	0.017558 0.100433
133	0.018219 0.114131	190	0.018673 0.114057	247	0.017292 0.100802
134	0.017734 0.112221	191	0.01633 0.109637	248	0.016737 0.105307
135	0.016703 0.11511	192	0.016433 0.11214	249	0.015685 0.099818
136	0.018168 0.112683	193	0.018095 0.112192	250	0.013886 0.092381
137		193		200	0.010000 0.082001
	0.015977 0.110281		0.018617 0.107771		
138	0.017194 0.115192	195	0.017288 0.114657		