Méthode des éléments finis

Ibrahim ALAME

ESTP

05/02/2024

Rappel: 3 Points alignés

$$\lambda x + \mu y + \nu = 0$$

$$\begin{cases} \lambda x_1 + \mu y_1 + \nu = 0 \\ \lambda x_2 + \mu y_2 + \nu = 0 \\ \lambda x_3 + \mu y_3 + \nu = 0 \end{cases} \iff \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \\ \nu \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Trois points alignés
$$\iff \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

Rappel : Coordonnées barycentriques

$$M-B=x(A-B) \implies M=xA+(1-x)B$$

 (λ,μ) Coordonnées barycentriques de M dans le système $\{A,B\}$ ssi

$$M = \lambda A + \mu B$$
 où $\lambda + \mu = 1$

Rappel : Coordonnées barycentriques

$$\overrightarrow{CM} = x\overrightarrow{CA} + y\overrightarrow{CB}$$

$$M-C=x(A-C)+y(B-C) \implies M=xA+yB+(1-x-y)C$$

 (λ,μ,ν) Coordonnées barycentriques de M dans le système $\{A,B,C\}$ ssi

$$M = \lambda A + \mu B + \nu C$$
 où $\lambda + \mu + \nu = 1$

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めの(*)

Rappel: Interpolation linéaire

$$M = \lambda M_1 + \mu M_2$$
$$f(M) = \lambda f(M_1) + \mu f(M_2)$$
$$y = \lambda y_1 + \mu y_2$$

Rappel : Interpolation linéaire

$$M = \lambda M_1 + \mu M_2 + \nu M_3$$
$$f(M) = \lambda f(M_1) + \mu f(M_2) + \nu f(M_3)$$
$$z = \lambda z_1 + \mu z_2 + \nu z_3$$

Rappel: Interpolation de Lagrange

Théorème

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue et $x_0 < x_1 < \cdots < x_n$, n+1 points distincts de [a,b]. Il existe un unique $P \in \mathbb{R}_n[X]$ tel que $P(x_i) = f(x_i)$ pour i=0,1,...,n. De plus, P est donné par :

$$P(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$$

où les polynômes L_i sont définis par : $L_i(x) = \prod_{j=0, j \neq i}^n \frac{x-x_j}{x_i-x_j}$

• |n=1| deux points de discrétisation $x_0=0$ et $x_1=1$. On a alors :

$$P(x) = \sum_{i=0}^{1} f(x_i) L_i(x) = y_0 \cdot L_0(x) + y_1 \cdot L_1(x)$$

• Exemple : Équation de la droite passant par les deux points (0,1) et (1,3) :

$$y = 1 \cdot (1 - x) + 3 \cdot x \implies y = 2x + 1$$

Éléments finis de Lagrange

On se donne:

- une partie compacte K de \mathbb{R}^n , connexe et d'intérieur non vide;
- ② un ensemble fini $\Sigma = \{a_j\}_{j=1}^N$ de N points distincts de K;
- **3** un espace vectoriel \mathbb{P} de dimension finie et composé de fonctions définies sur K à valeurs réelles.
 - On dit que l'ensemble Σ est \mathbb{P} -unisolvant si et seulement si, étant donné N scalaires réels quelconques α_j , $1 \leq j \leq N$, il existe une fonction p de l'espace \mathbb{P} et une seule telle que

$$p(a_j) = \alpha_j, \qquad 1 \le j \le N \tag{1}$$

Lorsque l'ensemble Σ est \mathbb{P} -unisolvant, le triplet (K, \mathbb{P}, Σ) est appelé élément fini de Lagrange.

• Une condition nécessaire évidente pour que l'ensemble Σ soit \mathbb{P} -unisolvant est que $\dim(\mathbb{P}) = \operatorname{card}(\Sigma) = N$

Éléments finis de Lagrange

• il existe pour tout entier i, $1 \le i \le N$, une fonction $\varphi_i \in \mathbb{P}$ et une seule telle que

$$\varphi_i(a_j) = \delta_{ij}, \qquad 1 \le j \le N \tag{2}$$

Les *N* fonctions $(\varphi_i)_{1 \le i \le N}$ forment une base de \mathbb{P} .

• pour toute fonction v définie sur K à valeurs réelles, il existe une fonction $p \in \mathbb{P}$ et une seule qui interpole v sur Σ :

$$p(a_j) = v(a_j), \qquad 1 \le j \le N \tag{3}$$

• L'opérateur de P-interpolation de Lagrange sur Σ noté Π est définie par

$$\Pi v = \sum_{i=1}^{N} v(a_i) \varphi_i, \tag{4}$$

Éléments finis de Lagrange

• On suppose l'application F injective. Alors si $(\widehat{K}, \widehat{\mathbb{P}}, \widehat{\Sigma})$ est un élément fini de Lagrange, le triplet (K, \mathbb{P}, Σ) , où $K = F(\widehat{K})$ et où on a posé

$$\mathbb{P} = \{ p : K \to \mathbb{R}; \ p \circ F \in \widehat{\mathbb{P}} \}, \quad \text{ et } \quad \Sigma = F(\widehat{\Sigma}) \},$$
 (5)

est un élément fini de Lagrange.

• Deux éléments finis de Lagrange $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ et (K, P, Σ) sont dits affine-équivalents s'il existe une bijection F de \widehat{K} sur K vérifiant (5);

Éléments finis simpliciaux

On considère n+1 points $a_j=(a_{ij})_{i=1}^n\in\mathbb{R}^n$, $1\leq j\leq n+1$, non situés dans un même hyperplan de \mathbb{R}^n , c'est-à-dire tels que la matrice d'ordre n +1

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1,n+1} \\ a_{21} & a_{22} & \cdots & a_{2,n+1} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n,n+1} \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
 (6)

soit inversible. On appelle *n*-simplexe K de sommets a_j , $1 \le j \le n+1$, l'enveloppe convexe des points a_j ;

- pour n = 2, K est un triangle.
- pour n = 3, K est un tétraèdre.

Coordonnées barycentriques

Tout point x de \mathbb{R}^n , de coordonnées cartésiennes x_i , $1 \leq i \leq n$, est caractérisé par la donnée des n+1 scalaires , $\lambda_j = \lambda_j(x)$, $1 \leq j \leq n+1$, définis comme solution du système linéaire

$$\begin{cases}
\sum_{j=1}^{n+1} a_{ij} \lambda_j = x_i, & 1 \le i \le n \\
\sum_{j=1}^{n+1} \lambda_j = 1
\end{cases}$$
(7)

Ces scalaires $\lambda_j(x)$ sont appelés les coordonnées barycentriques du point x par rapport aux n+1 points a_j , $1 \leq j \leq n+1$. D'après (7), chacune de ces fonctions coordonnées barycentriques est une fonction affine de \mathbb{R}^n dans \mathbb{R} et on a

$$\forall x \in \mathbb{R}^n, \quad x = \sum_{j=1}^{n+1} \lambda_j(x) a_j \tag{8}$$

Coordonnées barycentriques

Le *n*-simplexe K de sommets a_j , $1 \le j \le n+1$, est caractérisé par

$$K = \{x \in \mathbb{R}^n; \ 0 \le \lambda_j(x) \le 1, \ 1 \le j \le n+1\}$$
 (9)

Pour tout entier $k \geq 0$, on désigne par $\mathbb{P}_k^{(n)}$ l'espace des (fonctions) polynômes de \mathbb{R}^n dans \mathbb{R} de degré inférieur ou égal à k:

$$\forall x \in \mathbb{R}^{n}, \quad p(x) = \sum_{\substack{i_{1} \geq 0, \cdots, i_{n} \geq 0 \\ i_{1} + \cdots + i_{n} \leq k}} \alpha_{i_{1}, \cdots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}, \quad (10)$$

où les α_{i_1,\dots,i_n} sont des scalaires réels.

L'espace des polynômes à n variables homogènes de degré k est de dimension $\binom{n+k-1}{k}$, nombre de combinaisons avec répétitions de longueur k formées à partir des éléments d'un ensemble de cardinal n. Par conséquent, la dimension de l'espace $\mathbb{P}_k^{(n)}$ est

$$\dim(\mathbb{P}_k^{(n)}) = \sum_{l=0}^k \binom{n+l-1}{l} = \binom{n+k}{k} = \frac{(n+k)!}{n!k!} \tag{11}$$

Ibrahim ALAME (ESTP)

Espace de polynômes d'interpolation

- $\mathbb{P}_k^{(1)} = vect\{1, x, x^2, \cdots, x^k\}, \dim \mathbb{P}_k^{(1)} = k + 1.$
- $\mathbb{P}_k^{(2)} = vect\{x^i y^j; \ 0 \le i + j \le k\}, \ \dim \mathbb{P}_k^{(2)} = \frac{(k+1)(k+2)}{2}.$
- $\mathbb{P}_k^{(3)} = vect\{x^i y^j x^k; \ 0 \le i + j + k \le k\}, \ \dim \mathbb{P}_k^{(2)} = \frac{(k+1)(k+2)(k+3)}{6}.$
- $\bullet \ \mathbb{Q}_k^{(1)} = \mathbb{P}_k^{(1)}.$
- $\mathbb{Q}_k^{(2)} = vect\{x^i y^j; \ 0 \le i, j \le k\}, \ \dim \mathbb{Q}_k^{(2)} = (k+1)^2.$
- $\mathbb{Q}_k^{(3)} = vect\{x^i y^j x^k; \ 0 \le i, j, k \le k\}, \ \dim \mathbb{Q}_k^{(2)} = (k+1)^3.$

Treillis principal d'ordre k

On définit enfin, pour tout entier k le treillis d'ordre k du n-simplexe K comme étant l'ensemble de points de \mathbb{R}^n défini par

$$\Sigma_k^{(n)} = \left\{ x \in \mathbb{R}^n; \ \lambda_j(x) \in \{0, \frac{1}{k}, \cdots, \frac{k-1}{k}, 1\}, \ 1 \le j \le n+1 \right\}$$
 (12)

$$\Sigma_0^{(n)} = \left\{ x \in \mathbb{R}^n; \ \lambda_j(x) = \frac{1}{n+1}, \ 1 \le j \le n+1 \right\}$$
 (13)

En tenant compte de $\lambda_{n+1}=1-\sum_{j=1}^n\lambda_j$, on vérifie que le cardinal de l'ensemble $\Sigma_k^{(n)}$ est le nombre de combinaisons avec répétitions de longueur k formées à partir des éléments de $\{0,\cdots,n\}$ d'où

$$\operatorname{card}(\Sigma_k^{(n)}) = \binom{(n+1)+k-1}{k} = \binom{n+k}{k} = \frac{(n+k)!}{n!k!} \tag{14}$$

Élément fini n-simplexe

- Pour tout entier $k \ge 0$, l'ensemble Σ_k , est P_k -unisolvant.
- Pour tout *n*-simplexe K de \mathbb{R}^n et pour tout entier $k \geq 0$, l'élément fini (K, P_k, Σ_k) , où Σ_k est le treillis principal d'ordre k de K, est appelé n-simplexe de type (k).
- Pour tout entier $k \ge 0$, deux éléments finis n-simplexes de type (k) sont affine-équivalents.

Il suffira donc d'étudier les propriétés d'un n-simplexe de type (k) particulier $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ appelé n-simplexe de référence.

Élément fini *n*-simplexe de référence

On choisit pour \widehat{K} le n-simplexe unité de sommets $\hat{a}_1=(1,0,\cdots,0)$, $\hat{a}_2=(0,1,0,\cdots,0)$, ... $\hat{a}_n=(0,\cdots,0,1)$, $\hat{a}_{n+1}=(0,0,\cdots,0)$. Dans ce cas, les coordonnées barycentriques sont

$$\hat{\lambda}_{i}(\hat{x}) = \hat{x}_{i}, \ 1 \leq i \leq n; \quad \hat{\lambda}_{n+1} = 1 - \sum_{i=1}^{n} \hat{\lambda}_{i},$$
 (15)

Considérons un peu plus en détail les éléments finis (K, P, Σ) *n*-simplexes de type (k) les plus couramment utilisés en pratique.

• Lorsque n=1, K est le segment d'extrémités a_1 , a_2 . On pose

$$a_0 = \frac{1}{2}(a_1 + a_2)$$
, milieu du segment $a_{112} = \frac{1}{3}(2a_1 + a_2)$, au tiers du segment $a_{122} = \frac{1}{3}(a_1 + 2a_2)$, au deux-tiers du segment

n = 1

• k = 0, le segment de type (0) correspond à

$$\mathbb{P} = \mathbb{P}_0^{(1)} = \mathbb{R}, \quad \Sigma = \Sigma_0^{(1)} = a_0$$

La fonction de base est la fonction constante définie par

$$\forall x \in K, \quad p_0(x) = 1$$

$$p_1(\xi) = 1$$

• |k = 1| le segment de type (1) est obtenu pour

$$\mathbb{P} = \mathbb{P}_1^{(1)}, \quad \Sigma = \Sigma_1^{(1)} = \{a_1 = 1, a_2 = 0\}$$

Les fonctions de base sont les fonctions coordonnées barycentriques par rapport à (a_1, a_2) , i.e.

$$\varphi_1 = \lambda_1 = \xi, \quad \varphi_2 = \lambda_2 = 1 - \xi$$

n=1

• Pour k = 2, le segment de type (2) correspond à

$$\mathbb{P} = \mathbb{P}_2, \quad \Sigma = \Sigma_2 = \{a_1, a_{12}, a_2\}$$

Les fonctions de base sont les fonctions

$$\varphi_i = \lambda_i (2\lambda_i - 1), \quad i = 1, 2$$

$$\varphi_{12} = 4\lambda_1\lambda_2$$

401491431431 3 0

21 / 47

Éléments finis triangles (n = 2)

• Lorsque n = 2, K est le triangle de sommets a_1 , a_2 et a_3 . On pose

$$\begin{array}{ll} a_0 = \frac{1}{3}(a_1 + a_2 + a_3) & \text{centre de gravit\'e de } K \\ a_{ij} = \frac{1}{2}(a_i + a_j), & \text{milieu du c\^ot\'e } [a_i, a_j] \\ a_{iij} = \frac{1}{3}(2a_i + a_j), & a_{iij} \text{ et } a_{jji} \text{ aux tiers et deux-tiers du c\^ot\'e } [a_i a_j]. \end{array}$$

Éléments finis triangles de type (0)

• Pour k = 0, le triangle de type (0) correspond à

$$\mathbb{P} = \mathbb{P}_0^{(2)} = \mathbb{R}, \quad \Sigma = \Sigma_0^{(2)} = \{a_0\}$$

La fonction de base est la fonction constante définie par

$$\forall x \in K, \quad \varphi_0(x) = 1$$

Éléments finis triangles de type (1)

• Pour k = 1, le triangle de type (1) est obtenu pour

$$\mathbb{P} = \mathbb{P}_1^{(2)} = \{ax + by + c; (a, b, c) \in \mathbb{R}^3\}, \quad \Sigma = \Sigma_1^{(2)} = \{a_i\}_{1 \le i \le 3}$$

Les fonctions de base sont les fonctions coordonnées barycentriques par rapport à (a_1, a_2, a_3) , i.e.

$$\varphi_i = \lambda_i, \quad 1 \le i \le 3$$

Éléments finis triangles de type (2)

• Pour k = 2, le triangle de type (2) correspond à

$$\mathbb{P} = \mathbb{P}_2^2, \quad \Sigma = \Sigma_2^2 = \{a_1, a_2, a_3\} \cup \{a_{23}, a_{13}, a_{12}\}$$

Les fonctions de base sont les fonctions

$$\varphi_i = \lambda_i (2\lambda_i - 1), \quad 1 \le i \le 3,$$

et

$$\varphi_{ij} = 4\lambda_i \lambda_j, \quad 1 \leq i < j \leq 3,$$

Éléments finis triangles de type (2)

• Pour k = 2, le triangle de type (2) correspond à

$$\mathbb{P} = \mathbb{P}_2^2, \quad \Sigma = \Sigma_2^2 = \{a_1, a_2, a_3\} \cup \{a_{23}, a_{13}, a_{12}\}$$

Les fonctions de base sont les fonctions

$$\varphi_i = \lambda_i (2\lambda_i - 1), \quad 1 \leq i \leq 3,$$

$$\varphi_{ij} = 4\lambda_i \lambda_j, \quad 1 \le i < j \le 3,$$

Éléments finis triangles de type (3)

• Pour k = 3, le triangle de type (3) est obtenu pour

$$\mathbb{P} = \mathbb{P}_3^2, \quad \Sigma = \Sigma_3^2 = \{a_1, a_2, a_3\} \cup \{a_{112}, a_{113}, a_{221}, a_{223}, a_{331}, a_{332}\} \cup \{a_0\}$$

Les fonctions de base sont les fonctions

$$\varphi_i = \frac{1}{2}\lambda_i(3\lambda_i - 1)(3\lambda_i - 2), \quad 1 \leq i \leq 3,$$

$$\varphi_{iij} = \frac{9}{4}\lambda_i\lambda_j(3\lambda_i - 1) \quad 1 \le i, j \le 3, i \ne j$$

et

$$\varphi_0 = 27\lambda_1\lambda_2\lambda_3$$

Éléments finis tétraèdre (n = 3)

• K est le tétraèdre de sommets a_1 , a_2 , a_3 et a_4 . On pose

$$a_0 = \frac{1}{4}(a_1 + a_2 + a_3 + a_4)$$

 $a_{ij} = \frac{1}{2}(a_i + a_j), \quad 1 \le i < j \le 3$

• Pour k = 0, le tétraèdre de type (0) correspond à

$$\mathbb{P} = \mathbb{P}_0^3, \quad \Sigma = \Sigma_0^3 = \{a_0\}$$

• Pour k = 1, le tétraèdre de type (1) est obtenu pour

$$\mathbb{P} = \mathbb{P}_1^3, \quad \Sigma = \Sigma_1^3 = \{a_i\}_{1 \le i \le 4}$$

• Pour k=2, le tétraèdre de type (2) est obtenu pour

$$\mathbb{P} = \mathbb{P}_2, \quad \Sigma = \Sigma_2 = \{a_i\}_{1 \le i \le 4} \cup \{a_{ij}\}_{1 \le i < j \le 4}$$

Les expressions des fonctions de base relatives à ces exemples de tétraèdre de type (k) sont formellement identiques à celles donnant les fonctions de base de triangle de type (k).

L'enveloppe convexe K de 2^n points a_i , est un n-parallèlotope si et seulement si il existe une application affine inversible F telle que

$$a_j = F(\hat{a}_j), \quad 1 \le j \le 2^n, \tag{16}$$

où les points \hat{a}_j , $1 \leq j \leq 2^n$, sont les sommets de \widehat{K} , hypercube unité $[0,1]^n$ de \mathbb{R}^n ;

- pour n = 2, K est un parallélogramme.
- pour n = 3, K est un parallélépipède.

Pour tout entier on désigne par \mathbb{Q}_k l'espace des (fonctions) polynômes de degré inférieur ou égal à k par rapport à chaque variable : une fonction p de \mathbb{R}^n dans \mathbb{R} appartient donc à \mathbb{Q}_k si et seulement si il existe des scalaires réels α_{i_1,\ldots,i_n} tels que

$$\forall x \in \mathbb{R}^n, \quad p(x) = \sum_{0 \le i_1 \le k, \dots, 0 \le i_n \le k} \alpha_{i_1, \dots, i_n} x_1^{\alpha_1} \dots x_n^{\alpha_n}$$
 (17)

On remarque que

$$\dim(\mathbb{Q}_k) = (k+1)^n$$

On prend alors pour domaine \widehat{K} l'hypercube unité $[0,1]^n$ de \mathbb{R}^n et on définit pour tout entier $k \geq 1$ l'ensemble de points de \widehat{K}

$$\widehat{\Xi}_{k}^{(n)} = \left\{ \hat{x} = (\hat{x}_{i})_{1 \le i \le n}; \ \hat{x}_{i} \in \left\{ 0, \frac{1}{k}, ..., \frac{k-1}{k}, 1 \right\}, \ 1 \le i \le n \right\}$$
 (18)

4□ > 4屆 > 4필 > 4필 > 및

Pour k = 0, on posera

$$\widehat{\Xi}_0^{(n)} = \left\{ \left(\frac{1}{n+1}, ..., \frac{1}{n+1} \right) \in \mathbb{R}^n \right\}$$
 (19)

On a ainsi pour tout entier $k \ge 1$

$$\operatorname{card}(\widehat{\Xi}_k) = (k+1)^n$$

- Théorème : Pour tout entier $k \ge 0$, l'ensemble $\widehat{\Xi}_k$ est \mathbb{Q}_k -unisolvant.
- Définition : On appelle n-hypercube unité de type (k), l'élément fini $(K, \mathbb{Q}_k, \widehat{\Xi}_k)$. On appelle n-parallèlotope de type (k) tout élément fini (K, P, Σ) affine-équivalent au n-hypercube unité de. type (k).
- le n-hypercube unité de type (k) est un carré unité de type (k) lorsque n=2,
- et cube unité de type (k) lorsque n=3

Dire que (K, P, Σ) est un *n*-parallèlotope de type (k) signifie donc qu'il existe une application affine inversible F de \mathbb{R}^n sur \mathbb{R}^n telle que

$$K = F(\widehat{K}), \quad \mathbb{P} = \{p : \mathbb{R}^n \to \mathbb{R}^n; \ p \circ F \in \mathbb{Q}_k\}, \quad \Sigma = F(\widehat{\Xi}_k).$$
 (20)

Supposons n = 2 pour simplifier un peu l'exposé :

- **1** K est un parallélogramme de \mathbb{R}^n ;
- 2 pour k=0, Σ est le centre du parallélogramme K; pour k=1, Σ est l'ensemble des sommets; pour k=2, Σ est l'ensemble constitué des sommets de K, des milieux des côtés de K et du centre de K, etc.
- ullet l'espace ${\mathbb P}$ est un espace de polynômes tel que

$$\mathbb{P}_k \subset \mathbb{P} \subset \mathbb{P}_{2k}$$

cet espace \mathbb{P} ne coïncide avec l'espace \mathbb{Q}_k que dans le cas particulier où K est un rectangle de côtés parallèles aux axes.

Dans le cas n=2; \widehat{K} est le carré unité de \mathbb{R}^2 . Nous noterons (\hat{x}_1,\hat{x}_2) les coordonnées cartésiennes du point courant \hat{x} de \widehat{K} , de sommets

$$\hat{a}_1 = (0,0), \quad \hat{a}_2 = (1,0), \quad \hat{a}_3 = (1,1), \quad \hat{a}_4 = (0,1)$$
 (21)

Il sera commode de poser

$$\hat{x}_3 = 1 - \hat{x}_1, \quad \hat{x}_4 = 1 - \hat{x}_2$$
 (22)

et d'associer à tout entier i l'entier \bar{i} congru à i modulo 4 et compris entre 1 et 4. En particulier, un sommet \hat{a}_i , $1 \leq i \leq$ 4, est alors défini par les relations

$$\hat{x}_{\overline{i}} = \hat{x}_{\overline{i+1}} = 0$$

Explicitons les fonctions de base de l'élément fini $(\widehat{K}, \widehat{\mathbb{P}}, \widehat{\Sigma})$ carré unité de type (k), pour les premières valeurs de k.

• Pour k = 0, le carré unité de type (0) est obtenu pour

$$\widehat{\mathbb{P}}=\mathbb{Q}_0,=P_0,\quad \widehat{\Sigma}=\widehat{\Xi}_0=\{\hat{a}_0\}$$

où \hat{a}_0 est le centre du carré, $\hat{a}_0 = \frac{1}{4}(\hat{a}_1 + \hat{a}_2 + \hat{a}_3 + \hat{a}_4)$. La fonction de base $\widehat{\varphi}_0$, est la fonction constante égale à 1.

Le carré de type (1) ou (2)

• Pour k=1, le carré de type (1) correspond à

$$\widehat{\mathbb{P}} = \mathbb{Q}_1, \quad \widehat{\Sigma} = \widehat{\Xi}_1^{(2)} = \{\hat{a}_i\}_{1 \leq i \leq 4}$$

Les fonctions de base s'écrivent

$$\widehat{\varphi}_i(\hat{x}) = \hat{x}_{\overline{i+2}} \hat{x}_{\overline{i+3}}, \quad 1 \le i \le 4$$

• Pour k=2, le carré de type (2) est obtenu pour

$$\widehat{\mathbb{P}} = \mathbb{Q}_2, = P_0, \quad \widehat{\Sigma} = \widehat{\Xi}_2^{(2)} = \{\hat{a}_i\}_{1 \leq i \leq 9}$$

où les points \hat{a}_i , $5 \le i \le 8$, sont les milieux des côtés $[\hat{a}_i \hat{a}_{i+1}]$ et le point \hat{a}_{9} est le centre du carré. Les fonctions de base sont

$$\widehat{\varphi}_{i}(\widehat{x}) = \widehat{x}_{\overline{i+2}}(2\widehat{x}_{\overline{i+2}} - 1)\widehat{x}_{\overline{i+3}}(2\widehat{x}_{\overline{i+3}} - 1), \quad 1 \le i \le 4,
\widehat{\varphi}_{i}(\widehat{x}) = -4\widehat{x}_{\overline{i+2}}(\widehat{x}_{\overline{i+2}} - 1)\widehat{x}_{\overline{i+3}}(2\widehat{x}_{\overline{i+3}} - 1), \quad 5 \le i \le 8,
\widehat{\varphi}_{9}(\widehat{x}) = 16\widehat{x}_{1}\widehat{x}_{2}\widehat{x}_{3}\widehat{x}_{4}.$$
(23)

05/02/2024

A partir des deux derniers exemples de carré unité, on peut construire des éléments fini qui seront de mise en œuvre informatique plus simple sans que cela nuise à la précision. l'élément fini $(\widehat{K},\widehat{\mathbb{P}},\widehat{\Sigma})$ obtenu vérifiera

$$\widehat{\Sigma} = \widehat{\Xi}_2 \cap \partial \widehat{K} \quad \text{ et } \quad \mathbb{P}_2 \subset \widehat{\mathbb{P}} \subset \widehat{\mathbb{Q}}_2$$

On pose

$$\begin{cases}
\widehat{\Sigma} = \widehat{\Xi}_2^{\star} = \{\widehat{a}_i\}_{1 \leq i \leq 8} \\
\widehat{\mathbb{P}} = \widehat{\mathbb{Q}}_2^{\star} = \{q(x) + \alpha_1 x_1^2 x_2 + \alpha_2 x_1 x_2^2, \quad q \in \mathbb{P}_2, \quad (\alpha_1, \alpha_2) \in \mathbb{R}^2\}
\end{cases}$$
(24)

On remarque que l'espace $\mathbb{Q}_2 = \mathbb{Q}_2^{\star} \oplus \textit{vect}\{x_1^2 x_2^2\}$

- L'ensemble $\widehat{\Xi}_2^{\star}$ est \mathbb{Q}_2^{\star} -unisolvant.
- on vérifie que les fonctions

$$\hat{\varphi}_{i}(\hat{x}) = \hat{x}_{i+2}\hat{x}_{i+3}(2\hat{x}_{i+2} + 2\hat{x}_{i+3} - 3), \quad 1 \le i \le 4, \hat{\varphi}_{i}(\hat{x}) = -4\hat{x}_{i+2}(\hat{x}_{i+2} - 1)\hat{x}_{i+3}, \quad 5 \le i \le 8.$$
(25)

sont les fonctions de base de $(\widehat{K}, \mathbb{Q}_2^{\star}, \widehat{\Sigma}_2^{\star})$.

En dimension n=3, on vous laisse le soin de décrire en détail l'élément fini $(\widehat{K},\widehat{\mathbb{P}},\widehat{\Sigma})$ cube unité de type (k), pour les valeurs k=0,1,2. Par exemple, pour k=1, l'ensemble $\widehat{\Sigma}$ est constitué par les 8 sommets du cube. Pour k=2, on préfère utiliser le cube unité de type $(2)^*$ où l'ensemble Σ est constitué par les 8 sommets du cube et les milieux des 12 arêtes de ce cube.

Erreur d'interpolation

Soit (K, \mathbb{P}, Σ) un élément fini *n*-simplexe ou *n*-palallélotope de type (k). On suppose

$$n \le 3$$
 et $k \ge 1$

Alors il existe une constante C qui ne dépend que de n et de k telle que pour tout entier m, $0 \le m \le k$, on a

$$\forall v \in H^{k+1}(K), \quad |v - \Pi v|_{m,k} \le \frac{h_K^{k+1}}{\rho_K^m} |v|_{k+1,K}$$

Intégration numérique

$$a(\varphi_j, \varphi_i) = \sum_{l,m}^{2} \left(a_{lm} \sum_{K \in \mathscr{T}_h} \int_{K} \frac{\partial \varphi_j}{\partial x_m} \frac{\partial \varphi_i}{\partial x_l} dx \right)$$

- Les fonctions de base appartiennent à \mathbb{P}_k donc le produit $\frac{\partial \varphi_i}{\partial x_m} \frac{\partial \varphi_i}{\partial x_l}$ coïncide avec un polynôme de \mathbb{P}_{2k-2} .
- Soit $F_K : \hat{x} \mapsto F_K(\hat{x}) = B_K \hat{x} + b$ une bijection affine du triangle unité \hat{K} sur le triangle K; $\det(B_K) > 0$.

Alors on a pour toute fonction $\varphi = \widehat{\varphi} \circ F_K$ continue sur K :

$$\int_{\mathcal{K}} \psi(x) \mathrm{d}x = \mathsf{d\acute{e}t}(B_{\mathcal{K}}) \int_{\widehat{\mathcal{K}}} \widehat{\psi}(\hat{x}) \mathrm{d}\hat{x}$$

Intégration de $a(\varphi_j, \varphi_i)$

On a

$$dét(B_K) = \frac{\operatorname{mes}(K)}{\operatorname{mes}(\widehat{K})} = 2\operatorname{mes}(K)$$

On prend $\psi = \frac{\partial \varphi_j}{\partial x_m} \frac{\partial \varphi_i}{\partial x_l} \in \mathbb{P}_{2k-2}$. On se ramène à $\widehat{\psi} \in \mathbb{P}_{2k-2}$ sur le triangle unité. Or pour tout monôme $\widehat{x}_1^{k_1} \widehat{x}_2^{k_2}$:

$$\int_{\widehat{K}} \hat{x}_1^{k_1} \hat{x}_2^{k_2} \mathrm{d}\hat{x} = \frac{k_1! k_2!}{(k_1 + k_2 + 2)!}$$

plus généralement

$$\int_{\widehat{K}} \hat{x}_1^{k_1} \hat{x}_2^{k_2} (1 - \hat{x}_1 - \hat{x}_2)^{k_3} d\hat{x} = \frac{k_1! k_2! k_3!}{(k_1 + k_2 + k_3 + 2)!}$$

En coordonnées barycentriques

$$\int_{\widehat{K}} \lambda_1^{k_1} \lambda_2^{k_2} \lambda_3^{k_3} \mathrm{d}\hat{x} = 2 \mathsf{mes}(K) \frac{k_1! k_2! k_3!}{(k_1 + k_2 + k_3 + 2)!}$$

Intégration de $\ell(\varphi_i)$

$$\ell(\varphi_i) = \sum_{K \in \mathscr{T}_h} \int_K f \varphi_i \, \mathrm{d} x$$

Formule de quadrature : $\int_K f \psi(x) dx \simeq \sum_{i=1}^N \omega_{I,K} \psi(b_{i,K})$

• k = 0:

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \mathsf{mes}(K) \psi(\mathsf{a}_{0,K})$$

• k = 1:

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(K) \sum_{i=1}^{3} \psi(a_{i,K})$$

• k = 2:

$$\int_{\mathcal{K}} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(\mathcal{K}) \sum_{i=4}^{6} \psi(a_{i,\mathcal{K}})$$

Intégration de $\ell(\varphi_i)$

$$\ell(\varphi_i) = \sum_{K \in \mathscr{T}_h} \int_K f \varphi_i \, \mathrm{d} x$$

Formule de quadrature : $\int_K f \psi(x) dx \simeq \sum_{i=1}^N \omega_{I,K} \psi(b_{i,K})$

• k = 0:

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \mathsf{mes}(K) \psi(a_{0,K})$$

• k = 1:

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(K) \sum_{i=1}^{3} \psi(a_{i,K})$$

• k = 2:

$$\int_{\mathcal{K}} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(\mathcal{K}) \sum_{i=4}^{6} \psi(a_{i,\mathcal{K}})$$

Maillage

• Un maillage (ou triangulation) de Ω est la donnée de N_{el} triangles $\{K_1,...,K_{Nel}\}$ (fermés par convention) formant une partition de Ω .

$$\overline{\Omega} = \bigcup_{i=1}^{N_{el}} K_i, \quad \mathring{K}_i \cap \mathring{K}_j = \emptyset, \ \forall i \neq j$$

- Le maillage est admissible si pour tout $K_i \neq K_i$, l'ensemble $K_i \cap K_i$ est
 - soit vide
 - 2 soit un sommet commun K_i et K_j
 - 3 soit une arête commune K_i et K_j

Relations d'Euler

- On note
 - N_{el} le nombre d'éléments
 - N_{ar} le nombre d'arêtes
 - N_{so}^{int} le nombre de sommets intérieurs
 - N_{so}^{ext} le nombre de sommets extérieurs
 - $N_{so} = N_{so}^{int} + N_{so}^{ext}$ le nombre total de sommets
- Pour tout maillage admissible, on a (relations d'Euler)

$$N_{el} = N_{so} + N_{so}^{int} - 2(1 - J)$$
 $N_{ar} = 2N_{so} + N_{so}^{int} - 3$

 $(J: nombre de trous dans \Omega)$

ullet Dans la limite pratique $N_{so}^{ext} << N_{so}$ et $N_{so}^{int} \sim N_{so}$, il vient

$$N_{el} \sim 2N_{so}^{int}$$
 $N_{ar} \sim 3N_{so}^{int}$

Échelles de longueur (1)

- On introduit pour chaque maille K_i deux échelles de longueur
 - son diamètre hi
 - le diamètre de son cercle inscrit ρ_i
- On a $h_i/\rho_i \ge 1$ et $h_i/\rho_i >> 1$ lorsque le triangle K_i est très aplati

• On a $h_i/
ho_i \leq \frac{2}{\sin \theta_i} \; \theta_i$ est le plus petit angle du triangle K_i

Échelles de longueur (2)

- On introduit pour chaque maille K_i deux échelles de longueur
 - son diamètre hi
 - le diamètre de son cercle inscrit ρ_i
- On a $h_i/\rho_i \ge 1$ et $h_i/\rho_i >> 1$ lorsque le triangle K_i est très aplati

• On a $h_i/
ho_i \leq \frac{2}{\sin \theta_i} \; \theta_i$ est le plus petit angle du triangle K_i

Échelles de longueur (2)

ullet Pour un maillage $\{K_1...,K_{N_{el}}\}$, on introduit les paramètres globaux

$$h = \max_{1 \le i \le N_{el}} h_i$$
 $\sigma = \max_{1 \le i \le N_{el}} \frac{h_i}{\rho_i}$

- Pour un maillage quasi-uniforme, $\sigma \gtrsim 1$ et $h_i \sim h$
- Pour un maillage quasi-uniforme, on a $h \sim (N_{el})^{-1/2}$
 - en 1D, $h \sim (N_{el})^{-1}$
 - 2 en dimension d, $h \sim (N_{el})^{-1/d}$
 - 3 à h fixé, plus d est grand, plus il faut de mailles!
- Exemple de maillage avec raffinement local

