Grundbegriffe der Informatik Aufgabenblatt 4

Matr.nr.:				
Nachname:				
Vorname:				
Tutorium:	Nr.		Name des Tutors:	
Ausgabe:	8. November	2012		
Abgabe:	16. November 2012, 12:30 Uhr			
	im Briefkasten im Untergeschoss			
	von Gebäude	50.34		
Lösungen w	erden nur kor	rigiert, w	venn sie	
• rechtzeit		1		
	eigenen Hands		1	
	er Seite als De			
		zcke zusa	nmengeheftet	
abgegeben v	verden.			
Vom Tutor au	ıszufüllen:			
erreichte Pu	nkte			
Blatt 4:	/	19		
Blätter 1 – 4	: /	78		

Aufgabe 4.1 (4 Punkte)

Auf einem Tisch stehen 10 Gläser. 5 davon stehen kopfüber und die anderen 5 Gläser normal. In einer Iteration darf man 2 beliebige Gläser nehmen und umdrehen. Ist es möglich, nach mehreren Iterationen alle Gläser richtig zu stellen? Warum (nicht)?

Aufgabe 4.2 (2+2+5 Punkte)

Gegeben sei der folgende Algorithmus.

```
// Eingabe: n \in \mathbb{N}_+
r \leftarrow 1
k \leftarrow 1
while (k < n) do
      r \leftarrow r + k + k + 1
      k \leftarrow k + 1
od
```

- // Ausgabe: r
- a) Machen Sie eine Beispielrechnung für den Fall n = 5. Geben Sie dabei tabellarisch die Werte der einzelnen Variablen r_i und k_i an, wobei der Index i der Variablen den i-ten while-Schleifen-Durchgang angibt.
- b) Finden Sie eine Schleifeninvariante, die das Wesentliche dessen, was der Algorithmus macht, widerspiegelt.
- c) Weisen Sie nach, dass diese Aussage tatsächlich Schleifeninvariante ist.

Aufgabe 4.3 (1+2+3 Punkte)

Gegeben sei ein Alphabet A, die Funktion $f: A \times A \rightarrow \mathbb{G}_2$:

$$\forall x, y \in A : f(x, y) = \begin{cases} 1 & \text{falls } x = y \\ 0 & \text{sonst} \end{cases}$$

und ein Algorithmus mit Eingabe $w \in A^+$:

$$\begin{array}{l} k \leftarrow 0 \\ \textbf{for} \ (\mathfrak{i} \leftarrow 0 \ \text{to} \ |w|-1) \ \textbf{do} \\ \qquad \qquad k \leftarrow k+2^{\mathfrak{i}} \cdot f(w(\mathfrak{i}), w(|w|-1-\mathfrak{i})) \\ \textbf{od} \end{array}$$

- a) Welchen Wert nimmt *k* nach der Eingabe des Wortes legovogel an?
- b) Was muss für w gelten, damit nach Abarbeitung von w am Ende k=0 gilt?
- c) Finden Sie eine Schleifeninvariante über k_i und k_{i+1} , die das Wesentliche dessen, was der Algorithmus macht, widerspiegelt. Der Index i gibt dabei den i-ten Schleifen-Durchgang der Variablen an.

Hinweis: Für $0 \le i < |w|$ bezeichnet w(i) den i-ten Buchstaben eines Wortes w.