Embedded System Concepts 1

Computing System components:

- 1. Processor
- 2. Memory
- 3. I/O peripherals

An Embedded System: is a computing system but with limited resources to perform specific tasks

Two ways to implement E.S:

- 1. System on board (SOB) 3 ic each is a component then built on a board
- 2. System on chip (SOC) one ic with all components

ES Challenges:

- 1. Performance
- 2. Size
- 3. Cost
- 4. Power consumption

	SOB	SOC
Performance	-	-
Cost	expensive	Cheaper
Size	Larger	Smaller
Power Consumption	More	Less
Configurability	Higher	Lower

Every Embedded System has 2 stages that must occur:

- 1. R&D (Development-SOB)
- 2. Production (Soc)

Microcontroller: Complete System on Chip

Microprocessor: 1 element of the 3 elements of the computing system

1. Processor (Components)

1. 3 Busses: Address / Data / Control

- 2. CU: Control Unit contains ID
- 3. ALU
- 4. Register File

Process

- 1. **Control unit:** Fetches the instruction from the memory
- 2. **Instruction Decoder (id):** decoding the instruction

Instruction format:

	1 byte	
opcode	Op1	Op2
3bits	3bits	3bit

The opening code defines what logic circuit will be used

3. ALU (Arithmetic logic unit): Executes

ISA (Instruction Set Architecture)

RISC: Reduced instruction set computing (Less Instruction)

CISC: Complex instruction set computing (More Instruction)

	RISC	CISC
Performance	Fairly the same	
Cycles to execute code	Less	More
Cost (Hardware)	Cheaper	Expensive
Cost (Software)	Expensive	Cheaper
Size (ALU)	Smaller	Bigger
ID	Hardwired (bugger size)	Microprogrammed (size smaller)
Power consumption	Fairly the same	

4. ID (2 ways):

- 1. Hardwired ID (Through gates)
- 2. **Microprogrammed:** Memory with software Slowest Hardware is faster than the fastest software

Register File:

- 1. PC: Program counter (Address of the next instruction to be executed)
- 2. IR: Instruction Register (Instruction to be executed)
- 3. ACC: Accumulator register (the result / output of ALU)
- 4. GPR: General purpose registers
- 5. PSW: Processor status word (Keeps track of Flag Registers)
- 6. SP: Stack pointer (points to data storage address)

How CPU Executes Program Instructions?

Memory:

1. Non-Volatile: Data is permanent

2. Volatile: RAM (2 Types) Data is temporary

DRAM (Capacitors)		SRAM (Transistors)
Dynamic		Static
Performance	Slower	Faster
Cost	Cheaper	Expensive
Size	Bigger	Smaller
Power	Greatly Higher (Has Refreshing circuit)	Lower
Consumption		