EE210: Analog Electronics - Quiz 2

NAME (in capital) Roll No

Time: 15 minutes

I) : Consider the circuit in Fig. 1(a). $R1 = 2k\Omega$. The I - V characteristic of the non-linear element E is shown in Fig. 1(b).

Fig. 1. Problem 1

a): Find V_A such that $V_N = 2V$. Let us call this value V_{AQ} . [4]

$$V_N = 2V$$
 \Rightarrow $I_N = 3mA$ and $slape = -1mA/V$ (From the plut)

$$\frac{V_{A}-V_{N}}{R} = 2N$$

$$\Rightarrow V_{A} = V_{N} + 2NR$$

$$= 2 + 6 \Rightarrow V_{A} = 8V$$

b) : If $V_A = V_{AQ} + 10mV\sin(\omega t)$, sketch the incremental network and find the total v_N .

of : If
$$V_A = V_{AQ} + 10mV \sin(\omega t)$$
, sketch the incremental network and find the total $V_C = 10 \text{ mV}$ $V_A = 10 \text{ mV}$

$$\tilde{R} = \frac{g_{N}}{R + g_{N}} U_{i} = -10 \text{ mV } \tilde{g}_{i} / \omega_{0}$$

c): Is there any V_N for which the incremental change in input voltage not lead to any change in the output voltage? [2]

For this to happen In must be 0 =D slope of ∞ in the 1-V chan of