Devoir libre no 3

Exercice 1

Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points A(1; 2), B(-2; 1) et C(-3; 4).

- 1. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. (a) Calculer $\overrightarrow{AB}.\overrightarrow{AC}$ et $det(\overrightarrow{AB},\overrightarrow{AC})$.
 - (b) Calculer les distances AB,AC et BC.
 - (c) Calculer $\cos(\overrightarrow{\overline{AB}}, \overrightarrow{\overline{AC}})$ et $\sin(\overrightarrow{\overline{AB}}, \overrightarrow{\overline{AC}})$.
 - (d) En déduire la mesure principale de $(\overrightarrow{AB}, \overrightarrow{AC})$.
 - (e) Déduire la nature du triangle ABC.
- 3. Déterminer une équation cartésienne de la droite (D') passant par K(-3,2) et perpendiculaire à la droite (AB).
- 4. Déterminer une équation cartésienne de la droite (D) la médiatrice du segment [BC].
- 5. Déterminer une équation cartésienne de (Δ) la hauteur du triangle ABC issue du point B.

Exercice 2

Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) ,on considère le points $A(2; \sqrt{3})$ et (C) l'ensemble des points M(x; y) du plan tels que $x^2 + y^2 - 6x + 5 = 0$.

- 1. Prouver que (C) est un cercle dont on déterminera le centre Ω et le rayon R.
- 2. Vérifier que $A \in (C)$.
- 3. Déterminer une équation cartésienne de la tangente (D) au cercle (C) en A.
- 4. Soit (Δ) : $\sqrt{3}x + y 5\sqrt{3} = 0$. Montrer que la droite (Δ) coupe le cercle (C) en deux points I et J.
- 5. Déterminer les coordonnées de I et J.
- 6. Résoudre graphiquement \mathbb{R}^2 le système : (S) : $\left\{\begin{array}{l} x^2+y^2-6x+5\leq 0\\ \sqrt{3}x+y-5\sqrt{3}\leq 0 \end{array}\right.$