

Introducción y definiciones

• Se trata de saber qué (y qué no) se puede computar.

Y además...

cómo de rápido, con cuánta memoria y con qué modelo de computación.

Introducción y definiciones

- Qué se entiende por computación?
- La Teoría de Autómatas se centra en la computación en sí, no en detalles sobre dispositivos de entrada y salida.

(Así, no se trata de crear modelos matemáticos para un video juego, por ejemplo).

Definición RAE

autómata.

(Del lat. automăta, t. f. de -tus, y este del gr. αὐτόματος, espontáneo).

- 1. m. Instrumento o aparato que encierra dentro de sí el mecanismo que le imprime determinados movimientos.
- 2. m. Máquina que imita la figura y los movimientos de un ser animado.
- 3. m. coloq. Persona estúpida o excesivamente débil, que se deja dirigir por otra.

uc3m

Modelo Matemático

Autómata:

Modelo Matemático de computación.

Dispositivo abstracto con capacidad de computación.

Teoría de Autómatas:

Abstracción de cualquier tipo de computador y/o lenguaje de programación.

Desglose en sus elementos básicos (Entrada, Estado, Transición, Salidas y elementos auxiliares)

Lenguajes Formales. Definiciones

Símbolo: Entidad abstracta, realmente no se define (análogo al punto en geometría). Son letras, dígitos, caracteres, etc. Forman parte de un alfabeto. También posible encontrar símbolos formados por varios caracteres, pej: IF, THEN, ELSE, ...

Alfabeto (Σ): Conjunto finito no vacío de letras o símbolos. Sea "a" una letra y Σ un alfabeto, si a pertenece a ese alfabeto \Rightarrow $a \in \Sigma$

Ejemplos:

- Σ1= {A, B, C, ...,Z} alfabeto de las letras mayúsculas
- Σ 2= {0, 1} alfabeto binario
- Σ 3= {IF, THEN, ELSE, BEGIN, END} alfabeto de símbolos para programación.

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

18

Lenguajes Formales. Definiciones

Palabra: toda secuencia finita de símbolos del alfabeto.

 Σ_1 = {A, B, C, ...,Z}; palabras sobre Σ_1 JUAN, ISABEL, etc.

 Σ_2 = {0, 1}; palabras sobre Σ_2 00011101

 Σ_3 = {IF, THEN, ELSE, BEGIN, END};

palabras sobre Σ_3 IFTHENELSEEND

Notación: se representan por letras minúsculas del final del

alfabeto (x, y, z)

Ejem: x= JUAN; y= IFTHENELSEEND; z=000011111111111

19

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

uc3m

Lenguajes Formales. Definiciones

Longitud de palabra: número de símbolos que componen una palabra.

Se representa por |x|

Ejemplos:

 $\Sigma_1 = \{A, B, C, ..., Z\}; |x| = |JUAN| = 4$

|y| = |IFTHENELSEEND| = 13

 Σ_3 = {IF, THEN, ELSE, BEGIN, END};

|y| = |IFTHENELSEEND| = 4 OJO!

Palabra vacía λ: Es aquella palabra cuya longitud es cero

Se representa por λ , $|\lambda| = 0$

Sobre cualquier alfabeto es posible construir λ

Utilidad: será el elemento neutro en muchas operaciones

(concatenación, etc.) con palabras y lenguajes

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

10

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

Lenguajes Formales. Definiciones

Universo del discurso, W(Σ): conjunto de todas las palabras que se pueden formar con los símbolos de un alfabeto Σ

También se denomina Lenguaje Universal del alfabeto Σ

Se representa como $W(\Sigma)$

Es un conjunto infinito (i.e. número infinito de palabras)

Ejemplo: sea Σ_4 = {A,B}, W(Σ_4) = { λ , A,B, AA,AB,BA,BB, AAA, ...} con un número ∞ de palabras

COROLARIO:

 \forall Σ , $\lambda \in W(\Sigma) \Rightarrow$ La palabra vacía pertenece a todos los lenguajes universales de todos los alfabetos posibles

. 21

uc3m

Lenguajes Formales. Operaciones

Algunas operaciones importantes con palabras , sobre palabras de un universo del discurso dado:

Concatenación de palabras:

sean dos palabras x, y tal que $x \in W(\Sigma)$, $y \in W(\Sigma)$, y sea $|x| = i = I x_1 x_2 ... x_i | e |y| = j = |y_1 y_2 ... y_j|$, se llama concatenación de x con y, a:

 $x \cdot y = x_1 x_2 ... x_i y_1 y_2 ... y_i = z$, donde $z \in W(\Sigma)$

Propiedades de la concatenación:

- Operación cerrada
- Propiedad Asociativa
- Con elemento neutro
- No conmutativa

Definiciones:

- cabeza
- cola
- longitud de palabra

22

Lenguajes Formales. Operaciones

Potencia de una palabra: Reducción de la concatenación a los casos que se refieren a una misma palabra

- potencia *i-ésima* de una palabra es el resultado de concatenar esa palabra consigo misma *i* veces
- La concatenación es asociativa ⇒ no especificar el orden
- $x^i = x \cdot x \cdot x \cdot ... \cdot x$ ("x" i veces)
- $|x^i| = i \cdot |x| \quad (i>0)$
- se cumple:
 - $x^1 = x^2$
 - $x^{1+i} = x \cdot x^i = x^i \cdot x$ (i>0)
 - $x^{j+i} = x^j \cdot x^i = x^i \cdot x^j$ (i, j>0)
- Si se define $x^0 = \lambda$

@000

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

uc3m

Lenguajes Formales. Definiciones

Lenguaje (L): Se denomina lenguaje sobre el alfabeto Σ :

- · a todo subconjunto del lenguaje universal de Σ , L \subset W(Σ)
- a todo conjunto de palabras sobre un determinado Σ (generado a partir del alfabeto Σ)

24

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

uc3m

Lenguajes Formales

Lenguajes Especiales:

- **1.** ϕ = Lenguaje vacío, $\phi \subset W(\Sigma)$
- 2. $\{\lambda\}$ = Lenguaje de la palabra vacía
 - · se diferencian en el número de palabras (cardinalidad) que los forman $C(\phi) = 0$ mientras que $C(\{\lambda\})=1$
 - · se parecen en que ϕ y $\{\lambda\}$ son lenguajes sobre cualquier alfabeto
- 3. Un alfabeto es uno de los lenguajes generados por el mismo:
 - $\Sigma \subset W(\Sigma)$, por ejemplo el chino

uc3m

Lenguajes Formales

Concatenación de Lenguajes : Sobre un alfabeto dado Σ

Sean L_1 y L_2 definidos sobre el mismo alfabeto Σ , L_1 , $L_2 \subset W(\Sigma)$; se llama concatenación de dos lenguajes, L₁, L₂ y se representa por L₁. L₂ al lenguaje así definido:

$$\mathsf{L}_1.\,\mathsf{L}_2\,\text{=}\,\{\,\mathsf{x}.\mathsf{y}\,/\,\mathsf{x}\in\mathsf{L}_1\,\mathsf{AND}\,\mathsf{y}\in\mathsf{L}_2\,\}$$

Es el conjunto formado por palabrasformadas por parte del del primero seguidas de parte del segundo.

Operación cerrada Asociativa Elemento Neutro {λ} NO comuntativa

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

Lenguajes Formales

Unión de Lenguajes : Sobre un alfabeto dado Σ

Sean L_1 y L_2 definidos sobre el mismo alfabeto Σ , L_1 , $L_2 \subset W(\Sigma)$; se llama **unión** de dos lenguajes, L_1 , L_2 y se representa por $L_1 \cup L_2$ al lenguaje así definido:

$$L_1 \cup L_2 = \{ x / x \in L_1 \circ x \in L_2 \} =$$

Es el conjunto formado indistintamente por palabras de uno u otro de los dos lenguajes (equivale a la suma). $L_1 + L_2 = L_1 \cup L_2$

Op. Cerrada, Asociativa, Conmutativa y Elemento neutro ϕ

27

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

uc3m

2. Teoría de Autómatas

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

