Animation: Proximal bundle method

Welington de Oliveira MINES ParisTech, PSL-Research University CMA - Centre de Mathématiques Appliquées

6 de outubro de 2018

PROXIMAL BUNDLE METHOD: PBM

- ▶ The problem: $\min_{x \in X} f(x)$
- ightharpoonup Both function f and feasible set X are convex
- ▶ Oracle: given x^k , an oracle provides us with $f(x^k)$ and $g^k \in \partial f(x^k)$
- \blacktriangleright Cutting-plane model $\check{f}^k(x) := \max_{j \in J_k} \{f(x^j) + \langle g^j, x x^j \rangle \}$
- ▶ Trial point: $x^{k+1} := \arg\min_{x \in X} \check{f}^k(x) + \frac{1}{2t} \|x \hat{x}^k\|^2$
- ▶ Serious step: if $f(x^{k+1}) \le f(\hat{x}^k) \kappa(f(\hat{x}^k) \check{f}^k(x^{k+1}))$ then $\hat{x}^{k+1} \leftarrow x^{k+1}$
- ▶ Null step: if $f(x^{k+1}) > f(\hat{x}^k) \kappa(f(\hat{x}^k) \check{f}^k(x^{k+1}))$ then $\hat{x}^{k+1} \leftarrow \hat{x}^k$

PBM

PBM: OPTIMAL SOLUTION

ANOTHER PERSPECTIVE: OPTIMAL SOLUTION

