MATA22 Booklet 5 Notes

Definitions:

- 1. A function T: $\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if for all \mathbf{v} , $\mathbf{u} \in \mathbb{R}^n$ and for all $\mathbf{r} \in \mathbb{R}$, the following conditions are satisfied.
 - 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ (Preservation of vector addition)
 - 2. $T(r\mathbf{v}) = r(T(\mathbf{v}))$ (Preservation of scalar multiplication)
- 2. If T: $R^n \rightarrow R^m$ is a linear transformation, then:
 - 1. Rⁿ is the domain of T.
 - 2. Rm is the co-domain of T.
- 3. Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

If $W \subseteq R^n$, then the image of W under T, denoted by T[W], is $\{T(\mathbf{w}) \mid \mathbf{w} \in W\}$. The image is the span of the vectors in the linear transformation. Image = Range = Column Space

- 4. Let T: $R^n \rightarrow R^m$ be a linear transformation. The range of T, denoted by $T[R^n]$, is $\{T(\mathbf{v}) \mid \mathbf{v} \in R^n\}$.
- Let T: Rⁿ → R^m be a linear transformation.
 If W' ⊂ R^m, then the inverse image of W' under T, denoted by T⁻¹[W'], is {w ∈ Rⁿ | T(w) ∈ W'}.
- Let T: Rⁿ → R^m be a linear transformation.
 The kernel of T, denoted by T⁻¹[0'], is {w ∈ Rⁿ | T(w) ∈ 0} and 0' ∈ R^m.
 The kernel is the nullspace of the linear transformation.
- 7. The rank of the linear transformation = dim(Image)
 = dim(Range)
 = dim(Column Space)
- 8. The nullity of the linear transformation = dim(kernel).
- 9. Rank(Linear Transformation) + Nullity(Linear Transformation) equals to the number of columns in the linear transformation.

10. Let T: $R^n \rightarrow R^m$ be a linear transformation.

Let A be a m*n matrix such that A =

Then, $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. A is called the standard matrix representation of T.

Note: T is invertible if m = n and if A is invertible.

Note: To find the inverse image of T, find the inverse matrix of A.

- 11. Let T: $R^n \rightarrow R^m$ be a linear transformation.
 - 1. T is one to one if $T(\mathbf{v}) = T(\mathbf{u})$ implies that $\mathbf{v} = \mathbf{u}$.
 - I.e. If $\mathbf{v} \neq \mathbf{u}$, then $T(\mathbf{v}) \neq T(\mathbf{u})$.
 - I.e. T is one to one if the kernel is empty.
 - 2. T is onto if $T[R^n] = R^m$.
 - I.e. $\forall \mathbf{v}' \in \mathbb{R}^m \ \exists \mathbf{v} \in \mathbb{R}^n \text{ such that } T(\mathbf{v}) = \mathbf{v}'.$
 - I.e. T is onto if the rank of the domain equals the rank of the co-domain.
 - 3. T is isomorphic if T is both one to one and onto.

Theorems:

- 1. Let T: $R^n \rightarrow R^m$ be a linear transformation.
 - 1. If $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}, \in \mathbb{R}^n$ and $r_1, r_2, \dots r_n, \in \mathbb{R}$, then $T(r_1 \mathbf{v_1} + r_2 \mathbf{v_2} + \dots r_n \mathbf{v_n}) = T(r_1 \mathbf{v_1}) + T(r_2 \mathbf{v_2}) + \dots T(r_n \mathbf{v_n}).$
 - 2. $T(\mathbf{0}) = \mathbf{0}'$ where $\mathbf{0} \in \mathbb{R}^n$ and $\mathbf{0}' \in \mathbb{R}^m$.
- 2. If T: $R^n \to R^m$ be a linear transformation and $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}, \in R^n$ such that $\{T(\mathbf{v_1}), T(\mathbf{v_2}), \dots T(\mathbf{v_n})\}$ is a linearly independent set in R^m , then $\{\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}\}$ is also linearly independent.
- 3. If T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and B = $\{\mathbf{b_1}, \mathbf{b_2}, \dots \mathbf{b_n}\}$ is a basis for \mathbb{R}^n , then if $\mathbf{v} \in \mathbb{R}^n$, $T(\mathbf{v})$ is determined by $T(\mathbf{b_1})$, $T(\mathbf{b_2})$, ... $T(\mathbf{b_n})$.
- 4. Let T: $R^n \rightarrow R^m$ be a linear transformation. Then:
 - 1. If W is a subspace of R^{n} , then T[W'] is a subspace of R^{m} . I.e. If W is a subspace of R^{n} , then the image of W is a subspace of R^{m} .
 - 2. If W' is a subspace of R^{m_i} then $T^{-1}[W]$ is a subspace of R^n .
 - I.e. If W' is a subspace of R^m , then the inverse image of W' is a subspace of R^n .