(19) 日本国特許庁 (JP)

⑩特許出願公開

⑩公開特許公報(A)

昭56—123985

①Int. Cl.³ C 07 D 487/04 A 61 K 31/40 C 07 D 487/10 #(C 07 D 487/10

205/00

209/00)

識別記号 101 ADZ 庁内整理番号 6736-4C

6736—4 C

❸公開 昭和56年(1981)9月29日

発明の数 15 審査請求 未請求

(全 34 頁)

②特

14)

願 昭55-169746

22出

願 昭55(1980)12月3日

優先権主張

砂1979年12月3日⊗米国(US)

399275

⑦発 明 者

バートン・ジー> クリステンセ

ン

アメリカ合衆国07060ニュージ

ヤーシイ・スコツチ・プレイン ズ・ウオツチユング・テラス19 5

①出 願 人 メルク・エンド・カムパニー・
インコーポレーテツド
アメリカ合衆国ニユージヤーシ
イ・ローウエイ・イースト・リ
ンカーン・アヴェニユー126

⑩代 理 人 弁理士 岡部正夫 外3名 最終頁に続く

明細書の浄書(内容に変更なし)

1. 発明の名称

6 - , 1 - , 及び2 酸換 - 1 -カルバデチアペン - 2 - エム - 3 - カルボン酸

2. 特許請求の範囲

1 構造:

$$R^{6} \xrightarrow{R^{7}} R^{1} \xrightarrow{R^{2}} SR^{8}$$

$$COOH$$

を有する化合物及び医薬として受け入れられ得るその塩とエステルにして: 式中、R・R・R・ がに R・ は: 水気(但し R・と R 2 は水気ではない)、 微換されたもの及び微換されないもので: 1~10の炭素原子を有する、アルキール アルケニル及びアルキニル; シクロアルキル服に3~600炭素原子を有する、シクロル部分に1~6炭素原子を有する、シクロ

アルキル、シクロアルキルアルキル及びア ルキルシクロアルキル;3~6炭素原子を 有するスピロシクロアルキル:フェニル: アリール部分がフェニルであり且つアルキ ル鎖が1~6炭素原子を有する、アラルキ ル、アラルケニル及びアラルキニル:ヘテ ロアリール、ヘテロアラルキル、ヘテロシ クリル及びヘテロシクリルアルキルで、但 しと」で先にあげた基に関係した単数又は 複数の魔換体が:アミノ、モノー・ジー・ トリアルキルアミノ、ヒドロキシル、アル コキシル、メルカプト、アルキルチオ、フ エニルチオ、スルフアモイル、アミジノ、 グアニジノ、ニトロ、クロロ、プロモ、フ ルオロイオド、シアノ及びカルポキシから 成るグループから選ばれたものであり: 且 つそとで、先にあげた複素頭部分の単数又 は複数のヘテロ原子が、1~4酸素、窒素 又は硫黄原子から成る群から選ばれたもの であり:且つそとで、先にあげた罹機体の

特開昭56-123985 (2)

アルキル部分が1~6炭素を有するもの: 4 R®は、 から成るケループから独立に選ばれたもの であり:R⁶ /R⁷ が水案であり且つ 時には、R®が2-アミノエチル又はその N-誘導体ではない、上記化合物及びその 塩とエステル。

- 2 R¹ と R² は、アルキル、シクロアルキ ル、スピロシクロアルキル、ベンジル又は フェニルから選ばれ;且つ R 6 は H 又はメ チルであり、且つ R ⁷ はアルキル、フェニ ル、アラルキル又はヒドロキシルー置換ア ルキル、フェニル又はアラルキルである、 特許請求の範囲第1項による化合物。
- 3 RIとRIはスピロシクロプロピル、メ チル、エチル、イソプロピル、モーブチル 又はフェニルから選ばれ、且つ R 7 は 1 -ヒドロキシエチル、メチル又はヒドロキシ メチルである、特許請求の範囲第2項によ る化合物。

CH2CH2CH2NH2 , CH2CH (CH3)NH2 ,

$$\begin{array}{c} N\,H\\ \mathbb{I}\\ C\,H_{\,2}\,C\,H_{\,2}\,C\,H_{\,2}\,N\,H - C - C\,H_{\,3} \end{array}\ ,$$

$$- \left(\sum_{i=1}^{N} - C H_{2} N H - C \right)^{N} H$$

H ,

C H 3 ,

 $(CH_2)_2NH_2$,

 $C(CH_3)_2CH_2NH_2$,

$$C(CH_3)_2CH_2NH-C-H$$
,

$$-N(CH_3)_2$$

$$C H_2 N H - C \stackrel{N H}{\swarrow} N H_2$$

$$CH_2NHC \nearrow_{CH_3}^{NH}$$

$$\begin{array}{c} N \ H \\ I \\ (\ C \ H_2 \) \ _2 \ N \ H - C - C \ H_3 \end{array} \ ,$$

特開昭56-123985 (3)

から成るグループから選ばれる、特許請求 の範囲第1項による化合物。

$$CH(OH)-CH_2$$

$$OH \longrightarrow S \longrightarrow NH_2$$

CH (CH3) CH2NH2 .

から選ばれ、そして R1 と R2 は、スピロシクロプロピル:フエニル: 3 ~ 6 炭素原子を有するシクロアルキル: 1 ~ 6 炭素原子を有するアルキル: 4 ~ 9 炭素原子を有するアルキル: から選ばれる、特許請求の範囲第 4 項による化合物。

特開昭56-123985 (4)

$$R \xrightarrow{OH} S \xrightarrow{R} S \xrightarrow{COOH}$$

(
$$R = 7 = 1$$
 、 $m - 7 = 1$ メチルフェニル、 $e - 1 = 1$ ・ $m - 1$ とドロキシフェニル:
 $R = 1$ はフェニル)

$$OH \longrightarrow S \longrightarrow NH_2$$

$$\begin{array}{c}
OH \\
S \\
O 2H
\end{array}$$

$$\begin{array}{c|c}
 & S & N & H_2 \\
\hline
 & O & O & H
\end{array}$$

$$\begin{array}{c}
OH \\
\hline
OOR
\end{array}$$

$$\begin{array}{c}
OOR
\end{array}$$

$$\begin{array}{c|c}
C H & OH \\
C O_2 H & O O_2 H
\end{array}$$

$$CF_3 \stackrel{OH}{C} \longrightarrow V \longrightarrow CO_2 \stackrel{N}{H} \stackrel{2}{\sim}$$

$$\begin{array}{c}
N - N - CH_2 - CH \\
\downarrow N \\
N \\
CH_3
\end{array}$$

$$\begin{array}{c}
OH \\
\downarrow \\
N \\
COOH
\end{array}$$

$$\begin{array}{c}
NH_2 \\
COOH
\end{array}$$

から成るグループから選ばれる、特許請求 の範囲第1項による化合物。 7 アミノエチルチオ側鎖、-s~~^{NII2} は、

特開昭56-123985 (5)

$$-SCF_3$$

$$NH_2$$

$$-S \longrightarrow N = C - H$$

$$-S \xrightarrow{N \neq 2} N = C$$

$$C \neq 3$$

$$-S - (CH_2)_n - NH_2$$
,

$$\begin{array}{c} N\,H_{\,2} \\ \\ -\,S\,-\,\left(\,C\,H_{\,2}\,\,\right)_{\,\,n}\,-\,N\,=\,C\,-\,H \end{array}$$

$$\begin{array}{c|c} & N \, H_{\,2} \\ - \, S - \, (\, C \, H_{\,2} \,) & _{n} - \, N = C \\ & \\ & \\ N \, H_{\,\,2} \\ & \\ N \, H_{\,\,2} \end{array}$$

 $-S - (CH₂)_n - N = C$ NH₂ NH₂ NH₂

い:1~10炭素原子を有するアルキル、 アルケニル、及びアルキニル;シクロアル キル環に3~6炭素原子を有し且つアルキ ル部分に 1 ~ 6 炭素原子を有するシクロア ルキル、シクロアルキルアルキル、及びア ルキルシクロアルキル:3~6炭素原子を 有するスピロシクロアルキル:フエニル: アリール部分がフエニルであり且つアルキ ル鎖が1~6炭素原子を有するアラルキル、 アラルケニル、及びアラルキニル:ヘテロ アリール、ヘテロアラルキル、ヘテロシク リル及びヘテロシクリルアルキルでそとで 先に挙げた夢に関連した単数又は複数の電 換体が、アミノ、モノー・ジー・トリアル ・キルアミノ、ヒドロキシル、アルコキシル、 メルカプト、デルキルチオ、フェニルチオ、 スルラアモイル、アミジノ、グアニジノ、 ニトロ、クロロ、ブロモ、フルオロイオド、 シアノ及びカルボキシから選ばれ、且つそ とで先に挙げた複素環部分の単数又は複数

$$-S \longrightarrow NH$$

$$| CH_2 \rangle_{n} NHC-H$$

n=1、3、4、5又は6o

から成るグループのメンバーによつて置換される、特許請求の範囲第 6 項による化合物。

8 式

$$R^7 \xrightarrow{R^6 \qquad R^1 \qquad R^2}$$

の化合物にして; とゝて R。 は B もしくは 容易に除去し得る保護グループであり; 且つこゝで R¹、 R²、 R6 並びに R²は、水素、 (R¹ と R² は両方共に水素であるとはない)、 置換された且つ置換された

のヘテロ原子が・1~4酸素、窒素又は硫黄原子から選ばれ; そしてこうで前記の電換体のアルキル部分は1~6炭素原子を有するもの:

から成るグループから独立に選ばれる、前 記化合物。

- 9 Rº が、アルキル部分が1~6炭素原子を有する、トリ低級アルキルシリルである、 特許請求の範囲第8項の化合物。
- 10 式

$$R^7 \xrightarrow{R^6} \stackrel{R^1}{\stackrel{R^2}{\longrightarrow}} COOH$$

の化合物にして、 こゝで R ° は水素もしく は容易に取り除くことのできる保護グループであり: 且つこゝで R ⁷ 、 R ⁶ 、 R ¹ 及び R ² は、 水素、 (R ¹ と R ² は両方水素 であることはない)、 置換された及び 電換 されない: 1 ~ 1 0 の炭素原子を有するア

ルキル、アルケニル、及びアルキニルトシ クロアルキル環に3~6炭素原子を有し且 つアルキル部分に1~6炭素原子を有する、 シクロアルキル、シクロアルキルアルキル、 及びアルキルシクロアルキル:3~6炭紫 原子を有するスピロシクロアルキル:アリ ール部分がフェニルであり且つアルキル鎖 が1~6炭素原子を有する、アラルキル、 アラルケニル、及びアラルキニル:ヘテロ アリール、ヘテロアラルキル、ヘテロシク リル及びヘテロシクリルアルキルにして、 といて先に挙げた無に関連した単数又は複 数の覺換体は、アミノ、モノー・ジー・ト リアルキルアミノ、ヒドロキシル、アルコ キシル、メルカプト、アルキルチオ、フェ ニルチオ、スルフアモイル、アミジノ、グ アニジノ、ニトロ、クロロ、ブロモ、イオ ド、フルオロ、シアノ及びカルボキシから 成るグループから選ばれたものであり.; 且 つとくで先に挙げた複素環部分の単数又は

及びアルキニル:シクロアルキル環に3~ 6 炭 累 原 子 を 有 し 且 つ ア ル キ ル 部 分 に 1 ~ 6 炭素原子を有するシクロアルキル、シク ロアルキルアルキル及びアルキルシクロア ルキル:3~6炭素原子を有するスピロシ クロアルキル;フェニル;アリール部分が フェニルであり且つアルキル鎖が1~6炭 紫原子を有するアラルキル、アラルケニル 及びアラルキニル、ヘテロアリール、ヘテ ロアラルキル、ヘテロシクリル及びヘテロ シクリルアルキルにして、とゝで先に挙げ た基に関連した置換体が:アミノ、モノー・ ジー・トリアルキルアミノ、ヒドロキシル、 アルコキシル、メルカプト、アルキルチオ、 フェニルチオ、スルファモイル、アミジノ、 グアニジノ、ニトロ、クロロ、プロモイオ ド、フルオロ、シアノ及びカルボキシから 成るグループから選ばれ、且つとゝで先に 挙げた複素環部分の単数又は複数のヘテロ 原子は1~4酸素、窒素又は硫黄原子から

特開昭56-123985 (6)

複数のヘテロ原子は、1~4酸素、窒素又は硫黄原子から選ばれたものであり;そして前記置換体のアルキル部分は1~6炭素原子を有するもの;

から成るグループから独立に選ばれたものである前記化合物。

11 式

$$R^{7} \xrightarrow{R^{6}} C O O R^{0}$$

の化合物にして、とゝで R の は水素、塩のカチオン、医薬として受け入れるとと除きるエステル部分、又は容易に取り除きる保護グループであり;且つこゝで R 7 、 R 6 、 R 1 、 及び R 2 は、水紫、(R 1 と R 2 は両方共に水素であるととはない)、 保険された及び電換されない: 1 ~ 1 0 の 炭素原子を有するアルキル、アルケニル、

成るグループから選ばれ、そして前記機換体のアルキル部分は 1 ~ 6 炭素原子を有するもの: から成るグループから独立に選ばれる、前記の化合物。

1 2

$$R^7$$
 R^6
 R^1
 R^2

を酸化して

$$R^{7} \xrightarrow{R^{6}} \begin{array}{c} R^{1} & R^{2} \\ C & C_{2} H \end{array}$$

を形成し、その後、 R® が医薬として受け 入れることのできるエステル部分であるか 又は容易に除去し得る保護グループである、 R®O₂ C C H₂ C O₂ で処理する、ことから成

$$R^7 \xrightarrow[O]{R^6} \xrightarrow{R^1} \xrightarrow{R^2} CO_2 R^6$$

の製造方法。

- 1 3 R⁹O₂CCH₂CO₂ ⇔ は (R⁹O₂CCH₂CO₂)₂M₉ として用いられる、特許請求の範囲第 1 2 項の方法。
- 14 R⁶、R⁷、R¹、R²、及びR⁶は 独立の特許請求の範囲第1項により定義され、そしてRは医薬として受け入れること のできるエステル部分であるか、あるいは 容易に除去し得るカルボキシル保護ケルー プである、

$$R^6$$
 R^7
 R^1
 R^2
 $COOR$

を、活性化しそして次いでチオ試薬 HSR® で処理する工程から成る:構造、

を有する化合物並びに医薬として受け入れ ることのできる、その塩とエステルにして、 こゝでR¹ 、R² 、R⁶ 、R⁷ 及びR⁸ は、 水素、並びに 遺換された及び 置換されない: 1~6 炭素原子を有するアルキル、2~6 炭素原子を有するアラルキル、アルケニル 及びアルキニル、6~10の環状炭素原子 を有し且つアルキル鎖に1~6炭素原子を 有するアリールとアラルキル:0 , N又は 5 から選ばれた 1 ~ 5 のヘテロ原子を環に 有 し 且 つ ア ル キ ル 鎖 に 1 ~ 6 の 炭 素 原 子 を 有するヘテロシクリル、ヘテロシクリルチ オ (R ^g は除く)及びヘテロシクリルアル キル:3~6の環の炭素原子を有し且つア ルキル部分に1~6の炭素原子を有するシ クロアルキル、スピロシクロアルキル及び シクロアルキルアルキルから成るグループ にして、 R^1 、 R^2 、 R^6 、 R^7 及び R^8 上の概模体は、プロモ、クロロ、フルオロ、 イオド、ヒドロキシル、アミノ、モノー・

を有する特許請求の範囲第 1 項の化合物並びにそれの医薬として受け入れることのできる塩とエステルの製造方法。

- 15 治療に有効な量の特許請求の範囲第1 項による化合物並びにそのための医薬としてのキャリアから成る、抗生物質医薬組成物。
- 1 6 抗生物質的に有効な量の、特許請求の 範囲第 1 項による化合物を投与することか ら成る、治療方法。
- 17 構造;

$$R^{6} \xrightarrow{R^{7} \cdot R^{2}} R^{8}$$

$$COOH$$

ジー・トリアルキル 置換アミノ (各アルキルは 1 ~ 6 の炭素原子を有す)、 1 ~ 6 炭素原子を有す)、 1 ~ 6 炭素原子を有するアルコキシル、グアニジノ、シアノ、アミジノ及びカルボキシルから選ばれたものであり、 但し R¹ と R² は水楽ではない、グループから独立に選ばれる前記化合物、塩およびそのエステル。

18 R¹ と R² は 1 ~ 6 の 炭素原子を有するアルキル、スピロシクロプロピル、ベンジルもしくはフェニルであり: R⁶ は水素でありそして R⁷ は 橙換されたあるいは 間換されない: 置換体は O H 又は N H₂ である、1 ~ 6 の 炭素原子を有するアルキル又はフェニルアルキルであり、そして R⁸ は:

$$CH_{3} COON_{4}$$

$$CH_{3} CH_{3}$$

$$CH_{3}$$

$$CH_{4} CH_{2} - N$$

$$CH_{2} - N$$

特開昭56-123985 (8)

$$\begin{array}{c}
O \\
-C - OCH_2CH_2 - NH_2
\end{array}$$

$$c < \frac{H}{cH_2 - oE}$$

$$-CH_2 - N - C = NH$$

$$- \underbrace{\begin{array}{c} CH_2 - N = C - NH_2 \\ | \\ CH_3 \end{array}}$$

$$- \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - C H_2 N H_2$$

から選ばれる、特許請求の範囲第17項に よる化合物。

19 R L R R L R L R L X F N . I F N . I Y

プロピル、シクロプロピル、 t ーブチル又 はフェニルであり: R¹ は 1 ーヒドロキシ エチル、メチル、又はヒドロキシメチル; 且つ R⁶ は水素である;特許請求の範囲第 1 8 項による化合物。

20 R 8 15:

水素、 $-CH_2$ CH_2 CH_2 NH_1 , $-CH_2$ CH_2 NH_2 , $-CH_3$, $-CH_2$ CH_2 CH_2 OH, $-CH_2$ CH_2 COOH,

$$- S C H_3 , - C H_2 C H = C H - S C H_3 ,$$

$$- \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - OCH_3 , - CH = CH \cdot CH_2 CH_2 NH_2 ,$$

$$-CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} NH_{2} , -CH_{2}CH_{2}CH_{2}CH_{2}NH - C H_{2} CH_{2}NH + C H_{2} CH_{$$

$$-\mathit{CH}_2\ \mathit{CH}_2\ \mathit{CH}_2\ \mathit{CH}_2\ \mathit{CH}_2\ \mathit{NH}\ \mathit{C}^{\ \mathit{NH}}_{CH_3}, -\mathit{CH}_2\ \mathit{CH}_2\ \mathit{CH}_2\ \mathit{NHC}^{\ \mathit{NH}}_{H},$$

$$- \underbrace{\hspace{1cm}}_{\hspace{1cm} C \ O \ O \ H} \ , \ \ \underbrace{\hspace{1cm}}_{\hspace{1cm} -C \ H \ 2 \ N \ H \ C \ H \ 3} \ \ ,$$

$$- C H_2 N H_2 , - C H_2 N H C H (C H_3)_2 ,$$

$$\begin{array}{c}
H \\
C H_2 - N H_2
\end{array}$$

$$\mathcal{L}_{s}$$

$$\mathcal{L}_{s}$$

特開昭56-123985 (9)

から成るグループから選ばれる、特許請求 の範囲第1~19項による化合物。

2 1 R 1 と R 2 は、 1 ~ 6 の炭素原子を有 するアルキル、フエニル、シクロプロピル 又はスピロシクロプロピルである、特許請 求の範囲 第 2 0 項による化合物。

22 下記の

$$OH \longrightarrow COOH$$

$$OH \longrightarrow NH_{2}$$

$$COOH$$

$$OH \longrightarrow NH_{2}$$

$$COOH$$

$$OH \longrightarrow COOH$$

$$OH \longrightarrow COOH$$

$$R^{6} \xrightarrow{R^{7}} R^{1} \xrightarrow{R^{2}} R^{8}$$

$$O P \phi_{3}$$

$$C O_{2} R^{0}$$

を環化するととから成る、特許請求の範囲 第17項による化合物を製造する方法。

2 4

$$R^6$$
 N^7 R^1 R^2

を酸化して

$$R^{0} \xrightarrow{R^{7} R^{1}} R^{2} O R$$

を形成し、次いで活性化して炭素水核物質で処理して・

から選ばれる、特許請求の範囲第17項に よる化合物。

特開昭56-123985 (10)

$$R^{6} \xrightarrow{R^{7} R^{1}} R^{2} R^{8}$$

の如く R® を設定し、次いで N - 脱保護を 行い、グリオキシラートで処理して下記:

の化合物を得、次いで活性化して、トリオ ルガノホスフィンで処理して下記:

$$R^{6} \xrightarrow{R^{7}} R^{1} \xrightarrow{R^{2}} R^{8}$$

$$Q \xrightarrow{PR''} C Q_{2}R'$$

の化合物を形成し、次いで環化して[®]脱保護 することから成る、(こゝに R® は容易に

クロアルキルから成るがループにして、 但 し、 R 1 と R 2 上の酸 換体 は ハロゲン、 ヒドロキシル、 アミノと 間 後 接 された アミノ・ フシド、 シアノ、 カルボキシル、 アルコキ シル、 及びモノー・ジー・トリアルキル ミノから成るグループから 遇ばれるので あり、 先行の含が如き グループから選ばれ 素原子を有するが如き グループから選ばれる、式:

を有する化合物並びにその医薬として受け 入れることのできる塩とエステル。

- 28 R¹ と R² は、メチル、フエニル、エ チル、シクロプロピル、プロピル、イソプ ロピル、及びスピロシクロプロピルから選 ばれる、特許請求の範囲第 2 7 項による化 合物。
- 29 R¹、R²、R⁶及びR⁷は、水紫、

除去し得る保護グループであり: R ' は容易に除去し得る保護グループ又は医薬的に受け入れることのできるエステル部分であり;そして R " は低級アルキル又はフェニルである) 特許請求の範囲第 1 7 項による化合物の製造方法。

- 2 5 特許請求の範囲第 1 7 ~ 2 3 項による 化合物の治療上有効な量とそのための医薬 的キャリアから成る、抗生物質用医薬組成 物。
- 2 6 特許請求の範囲第 1 7 ~ 2 3 項による 化合物の抗生物質的に有効な量を投与する ことから成る、治療方法。
- 2 7 R L と R 2 は、 置換された及び 置換された及び 間換された及び 間換された及び 間換された及び 間換された及び 間換された及び 間換された及び 間換された及び 間級 アルキル、 フエニル、 フエニル 低級 アルキル、 3 ~ 6 の炭素原子を有するシクロアルキル、 並びに 3 ~ 6 の炭素原子を有するスピロシ

れる:構造

特開昭56-123985 (11)

を有する化合物、並びに医薬として受け入れられる塩とエステル。

- 3 0 R¹ と R² は、アルキル、シクロプロピル、スピロシクロプロピル、及びベンジルとフェニルから選ばれ: R⁶ は、ヒドロキシル又はアミノによつて置換されたアルキルとフェニルアルキルであり: そしてR¹ は水素又はヒドロキシル又はアミノによつて置換されたアルキル又はフェニルアルキルである、特許請求の範囲第29項による化合物。
- 3 1. R¹ と R² は、メチル、エチル、イソ プロピル、 ι – ブチル、スピロシクロプロ ピル、又はフエニルから選ばれ: R⁶ は、 1 – ヒドロキシエチル、メチル又はヒドロ キシメチル:且つ R⁷ は水素である: 等許 請求の範囲第30項による化合物。

3 2 構造

により表わすことができ、ここで R^1 、 R^2 、 R6、及びR8は、水素、鼠換及び鼠換され ていない:1~10の炭素原子を有するアル キル、アルケニル、及びアルキニル;シクロ アルキル環に3~6の炭素原子を有し且つア ルキル部分に1~6炭素原子を有するシクロ アルキル、スピロシクロアルキル、シクロア ルキルアルキル及びアルキルシクロアルキル フェニルの如きアリール:アリール部分がフ ェニルであり且つアルキルが1~6炭素原子 を有するアラルキル、アラルケニル及びアラ ルキニル:ヘテロアリル、ヘテロアラルキル、 ヘテロシクリル及びヘテロシクリルアルキル: から成るグループで、上に名をあげた基に関 連ある関換体(単複両方)は、アミソ、モノ - ・ジー・トリのアルキルアミノ、ヒドロキ シル、アルコキシル、メルカプト、アルキル チオ、フェニルチオのようなアリールチオ、 スルフアモイル、アミジノ、グアニジオ、ニ トロ、クロロ、ブロモ、フルオロ、シアノ、

を有する、特許請求の範囲第29項による 化合物。

3 3 構造、

を有する、特許請求の範囲第29項による 化合物。

3. 発明の詳細な説明

本発明は 6 - , 1 - , 2 - 置換 1 - カルバデチアペン - 2 - エム - 3 - カルボン酸並びに、その誘導体に関するものである。 これは、抗生物質として有用であり、そして下記の一般構造式(I)

及びカルボキシから成るグループから選ばれたもの: 並びにそこでは、上に名をあげた複素 環式部分におけるヘテロ原子(単複両方)が 1~4 酸素、 窒素又は硫黄原子から成るグループから選ばれたもの; 及び上にあげた 懺 検体のアルキル部分が 1、~6 炭素原子を有する。

本発明は亦、Iのカルボキシル誘導体に関するものであり、これは抗生物質であり、且つ一般構造(I)

によつて代表することができ、ここで X ' は酸素、硫黄もしくは、 N R ' (R ' = H 又 は 1 ~ 6 炭素原子を有する低級 アルキル); R 3 は、中でも、水素、トリアルキルシリルのような

特開昭56-123985 (12)

通常の保護港、アシル及び二環式 8 ラクタム 抗生物質技術で知られている医薬的に受け入 れられることのできる塩、エステル及びアミ ド部分から成るグループから代表的に選ばれ たものである。 R 31 の定義は詳細に後述する。

であるから、本発明の目的は、動物と人体 の治療に、又非生体系に有用な、新規なクラ

の用途並びにそれらの製造方法を記載してい る範囲で引例により本文に総括する。

- 1) 米国出願番号第099,400号-1979 年12月3日出願
- - 6 及び 1 , 1 ジ 置換 1 カルバデ チアペン - 2 - エム - 3 - カルボン酸
- 3) 米国出願番号第 Ö 9 9 · 4 5 1号-1 9 7 9 年 1 2 月 3 日出願
 - 1 , 6 及び 2 置換 1 カルバ 2 - ペネム - 3 - カルボン酸

えの抗生物質を提供することにある。これら 抗生物質は、広い範囲の病原、エス・アウレ ウス (S. auraus)、ストレプ・ピオザネス (Strep. pyogenes)及びビー・ズブチルス (B. sublilis) の如きグラム陽性のパクテリ アと、イー・コリー (E. coli)、シュードモナ ス (Pseudomonas)、プロテウス・モルガニ (Proteus morganii)、セラチア (Serratia) 及びクレブシェラ (Klabsiella) の如きグラ ム陰性のバクテリア両方を代表的に含む病原 に対して活性がある。本発明のその他の目的 は、からる抗生物質とそれらの無毒性の医薬 的に許容し得る塩、からる抗生物質から成る 医薬組成物の化学的製造方法を提供すること、 且つかくる抗生物質と抗生物質効果を示す時 の組成物との投与から成る治療方法を提供す るととにある。

下記のChristensenとShih の出願中の米 国時許出願を本出願を構成するため結合した。 これら継続中の出願が、最終生成物!それら

特開昭56-123985 (13)

$$R^{7} \xrightarrow{R^{6}} \stackrel{R^{1}}{\underset{O}{\bigvee}} \stackrel{R^{2}}{\underset{O}{\bigvee}} O$$

$$R^7 \xrightarrow{R^6} \stackrel{R^1}{\longrightarrow} CO_2 R^7$$

除去できる保護基であつて下に定義する。

保護グループ R ° の除去(4 → 5)は、メタノール、エタノール、テトラはドロフラン、・ジオクサン又は同様のものの如き溶媒中で、塩酸、酢酸、又は同様のものの如き酸の存在下で0 でから 1 0 0 での温度で 2 時間から18 時間の、4 の酸性加水分解で達成せられる。

ジアゾのスペシース負は、負から、 CH3 CN、

$$\begin{array}{c|c}
R^{7} & R^{1} & R^{2} \\
\hline
0 & N & Co_{2}R^{7}
\end{array}$$

図に関連して説明すると、2→3の酸化は、メチレンクロライド、メタノール、クロロホルム又は類似のもののような酸化剤と共に、ー100℃から0℃の温度で、0.1時間から4時間、処理し、次いでとの租生成物をmークロロ過安息香酸、必酸化剤と共に、0℃から100℃の温度で1時間から100時間処理することにより達せられる。R⁰ は簡単に

でM2 CC2、TRF 又は同様のもののような溶媒中で、Pーカルボキシベンゼンスルホニルアジド、トルエンスルホニルアジド、メタンスルホニルアジド又は同様なものの如きアジ化物と共に、トリエチルアミン、ピリジン、(C2 M5)2 NF 又は同様なものの如き塩素の存在で、1時間から50時間、0~25℃で5~2を処理することにより調製する。

環化($\frac{6}{2}$ → $\frac{7}{2}$)は、ベンゼン、トルエン、TRF 又は同様なものの如き容媒の中で50°から110℃の温度で、1時間から5時間、ピスアセチルアセトナト銅(0) (Cucacac) 2)、CuSO 4、Cu 粉末、RA(OAc) 2 又はRa(OAc) 2 の如き触媒の存在下で、 $\frac{6}{2}$ としては、ベンゼン、の如き触媒のなる。代替としては、ベンゼン、CC 4、ジェチルエーテル、又は同様のもののから2時間パイレックスフイルターを破り、0.5から2時間パイレックスフイルターを破り、た8 般射する(300 mm より大きい破役

特開昭56-123985 (14)

離脱グループX($7 \rightarrow 8$)の設定は、無水 P-トルエンスルホン酸、無水P-ニトロフ エニルスルホン酸、無水2,4,6-トリイ ソプロピルフェニルスルホン酸、無水メタン スルホン酸、塩化トルエンスルホニル、塩化 アープロモフエニルスルホニル又は同様のも のの如きアシル化剤RXと共にケトエステル 7をアシル化することにより達成される。こ とで×は、トルエンスルホニルオキシ、P-ニトロフエニルスルホニルオキシ、メタンス 'ルホニルオキシ、アープロモフエニルスルホ ニルオキシ並びに従来方法によつて股定され、 且つ当技術にて良く知られている、その他の 雌脱グループの如き相当する離脱するグルー プである。典型的には、離脱グループXを設 定するという上記アシル化は、メチレンクロ ライド、アセトニトリル又はジメチルホルム アミドの如き、溶媒の中で、ジイソプロピル エチルアミン、トリエチルアミン、 4 ージメ チルアミノーピリジン又は同様のものの如き

塩基の存在下で、-20から40℃の温度で、
0.5 から 5 時間、導入される。中間体 8 の離
脱グループ X はハロゲンであるともできる。
ハロゲン離脱グループは CH 2 CO 2、CH 3 CN、
THF 又は同様のものの如き 密媒中で ø 3 PCC 2、
ø 3 PB r 2、(ø 0) 3 PB r 2、塩化オキザリル又は
同様のものの如きハロゲン化剤と共に、ジインプロピルエチルアミン、トリエチルアミン
又はジメチルアミノピリジン又は同様のものの如き塩素の存在下で 7 を処理するととによ
り設定される〔ø = フェニル〕

8→9の反応は、ジオクサン、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、ヘキサメチルホスホルアミド、又は同様なものの如き密媒の中でメルカプタン試薬、パ.S.R.B.Oの過剰のほぼ当最の存在のもとに、8を処理することにより達成される。
R.B. は上に定義するようなものである。代表的なメルカプタン試薬はパSCR2CR2 NRRB'であり、ことでRB'は、水案もしくはP---ト

ロベンジルオキシカルボニル、 0 - - ニトロベンジルオキシカルボニル又は同様のものの如き容易に除去し得る N - 保護基である炭 散ナトリウム、炭酸カリウム、トリエチルアミンスは同様ののの如き塩基の存在下で、マイナスーのものから 2 5 での温度で 1 時間から 7 2 時間で反応させる。

メルカプタン試薬 HSCH2 CH2 NAR® の調製は典型的には、所望の酸性塩化物の存在下で、 無炭酸ナトリウム、水酸化ナトリウム、水酸化ナトリウム、水酸化ナトリウム、水酸化ナトリウム、水酸化ナトリウム、水酸化ナトリウム、水酸化ナトリウム、水酸化ナトリウム、水酸水子でジェチル水溶液、ジオクサン水溶液、アセトン水溶液又は同様なものの如き溶媒中で、 0 でから 2 5 での温度で 0.5 から 4 時間、アミノエチルメルカプタンを処理するのである。

様後の分割ステップ 9 → 1 は加水分解や水 宏化の如き従来の工程により遂成される。典 型的には、ジオクサンー水ーエタノール、テ トラヒドロフランー水溶燐酸水素 2 カリウム ーイソプロパノール、又は同様のものの如き 密棋内で9を1から4迄の気圧の水素圧のも とに、木炭上のパラジウム、水酸化パラジウ ム又は、同様のものの如き水素化触媒の存在 下で0から50℃迄の温度で0.5から4時間 処理して1を得る。

出発物質1と2の調製

出発試楽 1 に関してはその調製は一般的には、米国化学会誌(J. Amer. Chem. Soc.)第74巻、661頁(1952年)所載の E. B. Reid および T. E. Gompfにより、有機化学誌(J. Org. Chem.)第23巻、1063頁(1958年)所載の R. Ciola and K. L. Burwell. Jr. 、 並びにベルギー国特許第632193号(1963年)の R. Polster and E. Scharfにより、記載せられている。下記の企画図は 1 の調製を要約したものである。

特開昭56-123985 (15)

 $HO_2 C \xrightarrow{R^1 \quad R^2} CO_2 H \xrightarrow{E \perp O_2 C} C \xrightarrow{R^1 \quad R^2} CO_2 E \iota \xrightarrow{HO} CO_1 H \xrightarrow{R^1 \quad R^2} OH$ $11 \qquad 12 \qquad 13$

$$C \stackrel{R^1 - R^2}{\sim} C + C H_2 = C H_2 \longrightarrow C \stackrel{R^1 - R^2}{\sim} C$$

上記企而図に関して説明すれば、ジェステル 12 は、二時間、環流で塩化チオニルと共にジアシド 11 を処理し、その後 8 0 ℃で 4 時間、エタノールで反応させることにより調

2の調製は、下記の企画図で要約される。

$$R^{5} \xrightarrow{R^{7} \qquad R^{1} \qquad R^{2}}$$

$$Q \xrightarrow{R^{0} \qquad R^{0}}$$

上記企画図について説明すると、 置換したアセチジノン 1.6 は、 3 一 置換 1 , 4 ー ペンタジエン 1.2 を、クロロスルホニルイソシアネートと共に、 2 5 ℃から 6 0 ℃で、 圧力瓶中で、 3 - 1 2 日間反応させて調製し、 次いで、その結果の混合物を亜硫酸ナトリウム水溶液で別 6.5 ~ 7.5 、 0 ℃から 2 5 ℃で、 5 分から 6 0 分間、加水分解する。

アセチジノン 1.6 を変換して(1.6 → 1.7)、 保護グループRºを設定する。これは、例え ば、ィープチルジメチルシリル、ィープチル フェニルシリル、トリフェニルシリル、イソ プロピルジナチルシリルの如きトリオルガノ シリルグループであつてもよいし、あるいは 例えば3、4-ジナソキシベンジルであつて もよい。シリル保護は好ましい。また典型的 には、 Rº はジメチルホルムアミド、アセト ニトリル、ヘキサメチルホスホルアミド、テ トラヒドロフラン及び同様のものの如き密媒 中で、1-ブチルジメチルクロロシラン、1 ープチルジフエニルクロロシラン、トリフェ ニルクロロシラン及び同様なものの如きシリ ル化剤と共に、-20℃から25℃の温度で、 0.5 から 2 4 時間、トリエチルアミン、ジイ ソプロピルエチルアミン、又はイミダゾール の如き塩基の存在下で、1を処理することに より設定される。

17 のアルキル化が 18 を生ずる。典型的

特開昭56-123985 (16)

 $H S C H_2 C H_2 C H_2 N H C O_2 P N B$, $P N B O_2 C N H C H_2 C H_2 C H_2 S X$,

H S C H₂ C H₂ N H C O₂ P N B,

H S C (C H₃)₂ C H₂ N H C O₂ P N B,

H S C,

H S C H₂ C,

H S C (C H₃)₃,

H S C \(\phi_3 \) \(\phi_3 \) \(\phi_3 \)

$$CH_3 = \frac{N-N}{S} - SH$$

及び同様のもの(φ = フェニル:且つ PNB=P-ニトロベンジル)

 $C H_3 S H$, $C H_3 C H_2 S H$, $C H_3 (C H_2)_2 S H$, $(C H_3)_2 C H S H$,

$$X$$
) n

 $(n = 0.1 \text{ Xit 2}; X = CL, B_T, F, CL,$ OCH_3, CH_3, NH_2, O OCH_3, CH_3, NH_2, O

同様に、終端現位を 6 における R ⁶ 及び/ 又は R ⁷ を設定するための適切なアルキル化 剤($1.7 \rightarrow 1.8 \rightarrow 2$)は、

には、 17 は、ジイソプロピルアミドリチラ ム、水紫化ナトリウム、フェニルリチウム又 はプチルリチウム及び同様なものの如き強塩 基で、'テトラヒドロフラン(TNP)、エーテ ル、ジメトキシエタン及び同様のものの如き 密媒の中で、-80℃から0℃の温度で、処 埋し、そとに選択したアルキル化剤、 Roxを 加え、(R6 は上記した如きであり、且つx は、イオド、クロロ又はブロモである;代替 的にはアルキル化剤はR⁶ -トシレート、 R⁶ -メシレート又はアセトアルデヒド及び 同様のものの如きアルデヒドかケトンである) モノアルキル化スペシース 1.8 を与える。所 望であれば、ジアルキル化スペシース2は、 18 から、アルキル化する工程 17 → 18 を 17→18を繰り返すことにより得ることがで きる。

本発明のとと迄の記載において、適切な試 薬 $\#SR^{8}$ ($8\rightarrow 9$)を、下記のリストによつて 代表的に例示する。

> $C H_3$ ($C H_2$)₃ S H, ($C H_3$)₂ C H ($C H_2$)₂ S H, $C H_2 \equiv C H C H_2$ S H, $C H \equiv C C H_2$ S H,

$$\left\langle \right\rangle - SH$$

 $\phi \ (\ C\ H_2\)_3 \ S\ H \ (\ \phi = 7\ \pm 1\ L) \ ,$ $\phi \ (\ C\ H_2\)_2 \ S\ H \ ,$ $H\ O\ (\ C\ H_2\)_2 \ S\ H \ ,$ $H_2\ N\ (\ C\ H_2\)_2 \ S\ H \ ,$ $H_2\ N\ (\ C\ H_2\)_3 \ S\ H \ ,$ $C\ H_3\ (\ C\ H_2\)_2 \ N\ H_2 \ (\ C\ H_2\)_2 \ S\ H \ ,$

$$\bigcirc$$
 -NH (CH_2)₂ SH,

(C H₃)₂ N (C H₂)₂ S H, (C H₃ C H₂)₂ N (C H₂)₂ S H, H O₂ C (C H₂)₂ S H, \$\phi\$ C H₂ S H, \$CH2 CHO.

 $\phi C H_2 C H_2 C H O$,

CH2 O.

CH₃ I,

ΦCH Br,

CH3COCH3.

である。

本発明の化学物「

$$R^{6} \xrightarrow{R^{7}} N \xrightarrow{R^{1}} S R^{8}$$

に関して、R¹ と R² のための最も好ましい 値には、

エチル、プロピル、イソプロピル、シクロ プロピル、フェニル、ペンジル、スピロシク ロプロピルが入つている。

R6 とR7 に対する最も好ましい基は次の 様なものである:R⁶ = R。R⁷ はヒドロキ

$$R^{5} \xrightarrow{R^{7}} \stackrel{R^{1}}{\overset{R^{2}}{\longrightarrow}} \stackrel{R^{2}}{\overset{R^{8}}{\longrightarrow}} \stackrel{R^{6}}{\overset{R^{7}}{\longrightarrow}} \stackrel{R^{1}}{\overset{R^{2}}{\longrightarrow}} \stackrel{R^{2}}{\overset{R^{2}}{\longrightarrow}} \stackrel{R^{3}}{\overset{R^{4}}{\longrightarrow}} \stackrel{R^{5}}{\overset{R^{5}}{\longrightarrow}} \stackrel{R^{5}}{\longrightarrow} \stackrel{R^{5}}{\longrightarrow} \stackrel{R^{5}}{\longrightarrow} \stackrel{R^{5}}{\longrightarrow}} \stackrel{R^{5}}{\longrightarrow} \stackrel{R^{5}}{\longrightarrow$$

7

8

特開昭56-123985 (17)

シエチル、1-ヒドロキシエチル、1-ヒド ロキシプロピル、2~ヒドロキシプロピル、 2-ヒドロキシエチルから選ぶ。 R® に対す る最も好ましい値は、次の様なものである。 アミノエチルチオ、アミノプロピルチオ、ア ミノシクロプロピルチオ、アミノイソプロピ ルチオ、アミジノイソプロピルチオ及びグア ニジノエチルチオ。

2 - 促換体か R ⁸ 又は H である、本発明の · 化合物は、下記の反応図に依り、従来技術で 調製される。

上記の反応図に関して説明すると、適切に **微換されたアゼチジノン1は、メチレンクロ** ライド、メダノール、クロロホルム又は同様 の物の如き密媒内で、オゾン又は同様の物の 如き酸化剤と共に、-100℃から0℃の温 度で、 0.1 から 4 時間、 1 を処理し、その後 続けて、m-クロロ過安息香酸、過酸化水素、 過酢酸又は同様の物の如き酸化剤と共に、 0 でから100での温度で、1時間から100 時間、粗生成物を処理することに依り酸化す

一連の2→3→4は、カルボン酸をケトン に変換する為の良く知られた方法でできるが、 例えば、カルボン酸機能を、ジシクロヘキシ

ル、 CII2 Cl2 及び同様の物の如き密媒中で、 ピリジン、トリエチルアミン、キノリン及び 何様のものの如き塩基の1から2当量(チオ ニルクロリドに対して)の存在下で、6を処 理することがある。典型的には、反応は、 - 3 0 ℃から 2 5 ℃の温度で、 0.5 時間から 1 時間導入される。結果として生じた7は、 もし望むなら、後の反応 7 → 8 の為に従来技 術のやり方で分離する。中間の8は、ジメチ ルホルムアミド (DMF) 、ジメチルスルホキ シド (DM S O)、T H F、ジメトキシエタン (DME)及び同様のものの如き密媒内で、ト リフェニルホスヒン、トリブチルホスヒン、 トリエチルホスヒン、トリスー(2-シアノ エチル)ホスヒン又は同様の物の如きホスヒ、 ンの1から 1.5 当 量で 7 を処理することによ り調製する。典型的には、反応は、窒素雰囲 気のもとに、 - 20でから25での温度で、 0.5 時間から 2 時間導入される。

典型的には、8→9の閉じるステツブは、

であつて良いし、あるいは医薬的に受け入れ られ得るエステル部分であつて良い。

ベンゼン、トルエン、ジオクサン、キシレン 又は DMF の如き密媒中で、100~160 でで8を加熱することにより導入される。9 →(I)の、カルボキシル分割ステツプは、加水 分解、水素化、又は適当な R ′ グループの光 分解の様な数多くの既知のやり方で達成して よい。分割用の適当な水素化触媒には炭素上 のパラジウムの如きプラチナ金属やそれらの 酸化物及び同様の物から含まれる。水素化の 為の適当な密媒には1から50気圧の圧にお ける水素の存在において、メタノール、ジオ クサン/#20、エタノール/#20及び同様の ものを含む。水素化は典型的には、5分から 4 時間、約25℃の温度で、場合によつては 重炭酸ナトリウム又は同様の物の如きおだや かな塩基の存在下で導入される。

上記の、 5 との反応させる為に用いたグリオキザレートエステルは、 THF、ペンゼン、メチレンクロライドの如き容媒内で、 - 2 0 から 2 5 ℃で、 5 時間から 4 時間、 相当の酒

特開昭56-123985 (19)

本発明の一般的表現(上の1)においては、
2 - 閥換体が、-SR®であるよりもむしろ
-R®である時には、置換基R®は好ましく
は、水素、 置換されたものと 置換されていないもの:1~10の炭素原子を有する直鎖と
分枝の低級アルキル:3~6の炭素原子を有するスピロシクロアルキルとシクロアルキル
シクロアルキル部分が10炭素原子から成る

シクロアルキルアルキル、アルキル部分が1 ~ 6 の 炭 素 原 子 か ら 成 り シ ク ロ ア ル キ ル 部 分 が3~6の炭素原子から成るアルキルシクロ アルキル:フェニルとナフチルの如きアリー ル、ペンジル、フェネチル及び同様のものの 如きアラルキル;5~10の環状原子を有す るモノシクリツクとバイシクリツクの構造か ら成り、ヘテロ原子の一つもしくはそれ以上 が酸素、窒素又は硫黄から選ばれる。(飽和 と不飽和の)ヘテロシクリルで、チオペン、 イミダゾリル、テトラゾリル、フリル及び同 様のものの如きもの:直前にあげたヘテロシ クリル部分から成り且つアルキル部分は1~ 10の炭素原子から成るヘテロシクリルアル キル:上に名を挙げた若に関連した 置換体 (単複)は、アミノ、ヒドロキシル、シアノ、 カルボキシル、ニトロ、クロロ、ブロモ、フ ルオロ、1~6の炭素原子を有する低級アル コキシ、メルカプト、トリフルオロメチル、 の如きペルハロ低級アルキル、低級アルキチ

オ、 グアニジノ、 アミジノ、 スルフアモイル、 及び N - 懺換のされた スルフアモイル、 アミジノ及びグアニジノで N 懺換は、 1 ~ 6 の 炭素原子を有する低級 アルキル又は 6 ~ 1 0 の 炭素原子を有するアリルであるもの; から成るグループから選ばれる。

本発明によつて供給できる化合物は、種々のグラム陽性とグラム陰性のバクテリアに対して、価値ある抗生物質活性があり、従つて、

人体と家畜の薬として有効であると判る。そ の様に敏感であるバクテリアには代表的には 次のものがある。スタヒロコツカスアウレウ ス (Staphylococus aureus), エッシェリトア・ コリー (Escherichia coli)、クレブシィーラ・ = = = = = (Klabsiella preumoniae). セラチア (Serratia)、サルモネラ・チホーサ (Salmonella typhosa), > 1 - | + + |(Pseudomonas) 及びバクテリウム・プロテ ウス (Bacterium proteus). がそれである。 結果として生ずる化合物は、更に、食品保存 用に、動物飼料への添加物として、又消毒剤 として利用することができる。例えば、医用 機器や歯科機器の有害なバクテリアの成長を 破壊し阻止する為に、百万部の容液に対し、 0.1から100部の範囲の機度の抗生物質の 水容液組成で用いるとよく、又産業上の応用 での殺パクテリア剤として、例えば、水性ペ ンキや製紙ミルの白水に用いて、有害なバク テリアの成長を阻止することができる。

特開昭 56-123985 (20)

とれらの抗生物質は単独で用いるとれかの抗生物質は単独で用いるとれたのでは種々のの成が、活性的構成分と組合せて用いるのが抗生物質とそれのの抗生物質とそれののが、カプセルの形で用いるのが出来、ああるには錠剤、切けを高液を繰り物としても、静脈注射や筋肉注射で投与するとしてきる。

で提供してよい。 制成物は は性 又は水性媒体中での 懸満 な、 密液又は エマルションの如き形をと ることができる 懸 満化剤、 安定化剤及び/又 は分散剤の如き処方剤を含有してもよい。 代 替的に、 活性成分は、 適切な媒体、 殺菌した、 発熱性物質のない水との使用前再構成用に粉 末形であることができる。

同様に、キャリアに加えて、インスタント

ラウリルナトリウムの如き使つても差支えの 無い湿潤剤の如きもの;といつた従来技術の 賦形剤を含有するのも良い。錠剤は、当技術 で既知の方法に依り被覆されることが出来る。 経口の液体調剤は、水性又は油性の懸濁液、 容液、乳化剤又はシロツブの形であつて良い。 あるいは使用前に水やその他の適当な媒体で 再構成するよう、乾いた製品として提供する のも良い。その様な液体調剤は、懸傷化剤、 例えば、ソルビトール、シロツプ、メチルセ ルローズ、グルコース/砂糖シロツプ、ゼラ チン、ヒドロキシエチルセルローズ、カルボ キシメチルセルローズ、ステアリン酸アルミ ニウムゲル、又は食用硬化油、分溜ココナツ ツ油、油状エステル、プロピレングリコール 又はエチルアルコール、保存料、例えばメチ ル又はプロピルアーヒドロキシベンゾエート 又はソルビン酸;の如き従来技術の添加物を 含有するととができる。

注射用の組成物はアンプル中に単位投与形

組成は、安定化剤、結合剤、酸化防止剤、保存料、潤滑剤、懸濁剤、粘性剤又は香料及ひ同様のもののようなその他の成分も含むことができる。その上、抗生物作用のよい広いスペクトルを与えるため、その他の作用成分を組成物中に含むこともできる。

家畜用医薬のためには、組成物は、例えば、 遅効又は。速効性のいずれかでの乳腺内調剤と して処方するととができる。

投与されるのと、 とのでは、 と

特開昭56-123985 (21)

る。

本発明化合物(i)のカルボキシルグループを含む、医薬として受け入れられる特に好ましい塩とエステルは、継続中の米国特許出顯第861、314 号(77-12-16出願)中に開示され請求されている。この出願は、なかんずく、チナマイシンのカルボキシルグル

ない任意のアミノグループは、ベルギー特許 第848545号(77-5-20付与)の教 えるところにより導びかれるものを除くもの である。結果として生ずるアミノグループは このように(部分構造が)

$$N = C - X$$

表わされるが、ととでXとYは出版物によつて定義されており、XがF又は低級アルキルでYがNИ2である種が好ましい。

下記の実施例は、本発明に関する製品、製法、組成物もしくは治療方法を例示するものであるが、限定するものではない。すべての反応温度はでについてである。

英施例1

3 , 3 - 3 × 3 × 1 . 4 - 4 × 4 × 4 × 4

調製

ープの、医薬として受け入れられる塩とエス テルを意図したものである。それはまさに、 本発明において好ましいそれら塩とエステル であり、それらは米国 特許 出願第 861314号中 に 開示されている方法と類似の方法で調製さ れる。との出願は引例により本文に取入れら れている。であるから、特に好ましい塩は、 ナトリウム、カリウム、アンモニウム及び同 様なものを含んでいる。そして特に好ましい エステルはピバロキシメチル、p‐ょーブチ ルベンジル、5-インダニル、3-フタリジ ル、3-メチル-2-ブテニル及び同様のも のを含む。注目すべきことは、上に大まかに 述べた全合成において、 R31が医薬として受 け入れ得るエステル部分である時には、医薬 として受け入れ得るエステル形で最終生成物 」を取りたい場合には最終脱保護工程は不要 である。

本発明の特に好ましい実施例は上に定義した様に、 I 構造の R® 基上に生じた 関換され

工程。

β, β-ジメチルグルタール酸 (Aldrich Chemical Company より入手) (1 モル)を、2 時間、塩化チオニル(6 8 男過剰)と共に 遺流する。過剰の塩化ジオニルを除去後、 絶対エタノール(1 0 9 男過剰)をゆつくり加える。混合物を 3 時間遺流し、生成物ジエチルβ, β-ジメチルグリタレートを収集するため蒸溜する(9 8 % 収率)。

特開昭56-123985 C22

3 , 3 - ジメチル - 1 , 5 - ペンタンジオール (0.5 モル) を、3 時間の環流で、塩化チオニル (1.0 5 モル) で処理する。過剰の塩化チオニルを真空中で除去した後、3 , 3 - ジメチル - 1 , 5 - ジクロロペンタンを得る。 (9 0 釆収率)

3 , 3 - ジメチルー1 , 5 - ジクロロペンタン(4 1 g) を、 4 8 g の水酸化ナトリウムと4 0 g のポリエチレングリコールのテトラマーとの混合物に、1 7 0 C で商下しながら加え、そして混合物を蒸溜して3 , 3 - ジメチルー1 , 4 - ペンタジエンを得る。

(66%)

工程占

- 4 0 ℃で、1 、3 - ジクロロ- 3 メチルブタン (5 0 9)を、塩化アルミニウム (5 9)と混合する。エチレンを 4 時間、混合物を適して泡入する。混合物を窒温迄温め、水で加水分解する。混合物を酢酸エチルで抽出し、3、3 - ジメチル-1 、5 - ジクロペン

寒 施 例 3

<u>4 - (1 , 1 - ジメチループロー 2 - エニル</u>) アゼチジン - 2 - オンの調製

タンを得る。

0.5 モルの 3 、 3 ージメチルー 1 、 5 ージ クロロペンタンと 2 ーメチルキノリン (2 モル) と 沃化ナトリウム (0.1 モル) との混合 物を、頂部に 濃縮器と取り出しのあるヴィグローカラム (Vigraaux column) を偏えたフラスコで選流する。 ジオレフィン 1 を、 8 時間反応の間に収集する。 生成物を無水硫酸ナトリウムの上で乾燥させる。

寒施例2

3 - メチルー1,4 - ペンタジエンの調製

2

実施例 1 (a)の工程に従い、但しβ, β-ジメチルゲルタール酸を当量のβ-メチルゲルタール酸で置き換えて、3-メチル-1, 4-ペンタジエンを得る。

実施例4

<u>4 - (-1 - メチループロー2 - エニル) アゼ</u> デジン-2 - オンの調製

実施例3の工程に従い、但し3、3-ジメチル-1、4-ペンタジエンを、3-メチル-1、4-ペンタジエンで置き換え、表題の化合物を得る。

実 施 例 <u>5</u>

5の調製

特開昭 56-123985 (23)

ι ~ プチルジメチルクロロシラン(7.5 1 8)を、無水ジメチルホルムアミド(100 me) 中の 4 - (1 , 1 - ジメチループロプー 2 - エン) - アゼチジン - 2 - オン (6.5 4 9)とトリエチルアミン(5.049)の、氷 で冷やした攪拌容被に、一度加える。反応混 合物を0~5℃で1時間攪拌し、その後室温 **迄暖めせしめる。 容液の大部分を真空下で除** 去し、残液を得るか、残液をジェチルエーテ ル(250 ml)と水との間に分配する。エー テル相を 2.5 規定の塩酸(5 0 元 1)、水(3 × 5 0 mt) とブラインで洗浄し、硫酸マグネ シウムで乾燥し、炉過して、真空下で蒸発し て、粗生成物を得るが、これをシリカゲル上 でクロマトグラフィーにより精製し(石油エ ーテル中208エーテル)、5を収集する。

実施例6

6の調製

塩酸 容 液 (2 × 5 0 ml)、水 (1 0 0 ml)及びプラインで洗浄し、硫酸マグネシウムの上で乾燥する。溶媒を真空で除去しそして残渣をシリカゲル (エーテル:石油エーテル、1:1) でクロマトグラフにかけ、期待の生成物 6 を生ずる。

実施例7

2の調製

イ) 無水トリフルオロ酢酸(7.5 m モル)を、-78℃で、無水塩化メチレン(1.5 ml)中のジメチルスルホキンド(10 m モル)の 溶液に注射器で簡下しながら加える。塩化メ チレン(15 ml)中の6(5.0 m モル)の溶 液を、注射器で加え、そして冷却浴をはずす。

1) LDA HO
2) CH 3 CHO

5i +
5

6

更に1時間後、反応混合物を塩化メチレン
(100me)で希釈し、水(50me)とブラインで洗浄して、硫酸マグネシウム上で乾燥する。真空中の密媒の除去で粗生成物を求め、これをシリカゲル(石油エーテル:エーテル、2:1)上でクロマトグラフにかけて?を求める。

B) ヘキサン中の n ーブチルリチウム (4.10 m モル) を、ー 7 8 ℃で、無水テトラヒドロフラン中のジイソプロピルアミン (4.1 0 m モル) の容液に、注射器で加える。結果として生じた容液を、無水テトラヒドロフラン・(2 ml) 中の 1 ー (t ーブチルージメチルシリル) ー 4 ー (1,1 ージメチループロプー

特開昭 56-123985 (24)

2 - エニル) - アゼチジン - 2 - オン 5 (2.0 n モル)の容液の添加に先立ち、 - 7 8 ℃で 15分間攪拌する。-78℃において更に 15分おいた後、反応混合物を、テフロン管 を介して、-78℃で、無水デトラヒドロフ ラン(16mℓ)中のN-アセチルイミダゾー ル(4.1 πモル)の混合物に加える。その結 果生じた黄色の反応混合物を-78℃で15 分間擔件し、次いで塩化アンモニウム飽和水 溶液(10ml)の添加により焼入れする。 反 応混合物をエーテル (100ml) で希釈し、 2.5 N 塩酸溶液 (2 5 ml)、水 (2 5 ml) と ブラインで洗浄する。有機物相を硫酸マグネ シウムの上で乾燥し、粗生成物を求める。こ の物質を、シリカゲル(石油エーテル:エー テル、2:1)上でクロマトグラフにかけ 7 を求める。

実施例8

6の調製

実施例9

ONB=O-ニトロベンジル

る。 HPLC (シリカゲル) により精製して 4 0 ガエチルアセテート/シクロヘキサンで 密離して 7a を得る。

実施例10

.8 の調製

ドライな塩化メチレン(30ml)中の 2 (3.0 m モル)の容被を、 - 78℃(ドラインの容がでし、 そしてオインの流れを、 反応混合物が育色になる。 して海ず。 オソン流をその後止め、 反応をしてる。 して海で、 短索を他入れ通ししてを酸(3.0 をする。 固体の m モル)を加え、 そして冷却冷をはずす。 反応混合物が窒温になった時、 フラスコを選流

特開昭 56-123985 (25)

機 締 器 に と り つけ、 混 合 物 を 3 日間、 遺 流 で 加 熱 す る。 真 空 中 で の 容 媒 の 除 去 が、 粗 生 成 物 を 与 え 、 これ を 8 の た め に 、 シ リ カ ゲ ル (塩 化 メ チ レ ン 中 の 氷・酢 酸 2 %) 上 で ク ロ マ ト グ ラ フ に か け る 。

爽旃例10 a

8 a の調製

酸 8 (1.0 m モル) を、1 0 f Pd/c の
0.1 m モルの存在で、1 atm H2 のもとで、
室温 3 0 分間、3 0 mt の酢酸エチル内で加水
分解する。混合物を触媒から炉過する。炉過
物を真空中で蒸発させ 8a を与える。

実施例11

2の調製

奥施例12

1.0の調製

$$0 \\ 0 \\ 0 \\ 0 \\ Si \\ + \\ CO_2PNB \\ RCC \\ M \in OH \ H_2O$$

1 , 1 ' - カルボニルジイミダソール (110 m モル) を無水テトラヒドロフラン (5 ml) 中の & (1.0 m モル) の 密液に、室温で、一度に加える。 その結果生じた溶液を、 室型グネシウムエトキシド (5 m モル) を、 無 水 テトラヒドロフラン (2 5 ml) 中のマロン酸 (1 0 m モル) のモノーァーニトロベンルエステルの溶液に一度に加える。 その結果生じた混合物を、 室温で 1 時間 攪拌し次いテ

20mlの9:1(容積/容積)のメタノール水中の9(1.0mモル)の溶液を、0℃に合却する。濃塩酸(0.34ml)を加え、その結果生じた溶液を0℃で15分間撹拌する。その後室温を暖まらしめる。2.5時間後、室温で反応混合物を酢酸エチル(25ml)で希釈し、水(10ml)とブラインで洗浄し硫酸マグネシウムの上で乾燥して真空中で濃縮して10を求める。

奥施例13

11の調製

トリエチルアミン°(263mg)を、ドライなアセトニトリル(6ml)中の10(253mg)とp-カルボキシベンゼンスルホニルアジド(196mg)の混合物に、0℃で注射器で加

特開昭 56-123985 (26)

える。添加を完了した時に、冷却浴をはずし、 反応混合物を室温で1時間攪拌する。混合物 をその後酢酸エチル(50m)で希釈し、そ して沪過する。沪過物を真空中で濃縮し、残 査を短かいシリカゲルカラム(酢酸エチル) 上てクロマトグラフにかけ 11を求める。

12 の調製

ドライなペンゼン (3 ml) 中の 11 (5.6 4 ng)と酢酸ロジウム (II) (0.1mg) との懸濁液 を、10分間窒素を通して泡入れすることに より脱酸素化する。次いで混合物を、1時間、 78℃に加熱する。加熱期間中、固体の出発 物質が徐々に溶液中に入つていく。混合物を

で200mlのブラインで抽出する。各々の水 性層をそれから、100mlの Bt20で連続的に 洗浄し戻す。組合せた Bt20層を、無水 MSO4 の上で乾燥させ、严過し、そしてN2旒のもと に濃縮する。結晶性の残渣を少量のエーテル 中でスラリー化し、沪過し、そして淡黄色の 結晶を高真空下で乾燥して4.78の足ーニト ロベンジルオキシカルボニルアミノエタンチ オール (6 5 % 収率) を得る。 N M R (CDC&) : TM5からの磁場降下 (ppm) 8.1 8 (d 、 J = 8 Hz、芳香族プロトンオルソからニトロ へ)、 7.4 7 (<u>d</u>、 J = 8 H_Z、 芳香族プロト ンメタからニトロへ)、 5.2 7 (- N <u>H</u> -) 、 5.2 0 (<u>s</u> 、C//₂ -N//-)、赤外線吸収(CHCL₃) 俗液: カルポニル 1 7 2 5 cm - 1、質量分析: 分子イオン-256、209で(M-4.7)、 1 2 0 で (M - 1 3 6)、 1 3 6 で ⁺ CH₂ ø_pNO₂。 その結果生じた溶液を、ドライなアセトニト

実施例15の工程に従つて、アミノシクロ プロピルチオールヒドロクロリドを、実施例

爽施例15 €

次いで冷却し、触媒を除くために沪過し、そ して沪過物を真空中で濃縮して12を求める。

実施例15

p - ニトロベンジルオキシカルボニルアミノ エタンチオールの調製

$$HS \longrightarrow NH_2HC\ell + C\ell - COCH_2 \longrightarrow NO_2$$

$$\longrightarrow HS \longrightarrow NHCO_1PNB$$

氷 容 中 攪 拌 の ジェ チ ル エ ー テ ル (Et20) 6 0 0 ml - B20 7 5 ml に、システアミンヒド ロクロリド 3.2 g (分子量=1 1 4 ; 2 8.1 m モル)を加える。 7 5 ml の H2O 中の Na RCO3 7.148(分子量84;85 m ゼル)の溶液 を加える。氷溶をはずし、そして室温で、 2 7 0 mlの Et 20 中の p - ニトロペン ジルクロ ロホルメート (分子量=216;31.3 m モ ル) 6.75 8 の溶液を、一時間に亘つて滴下 したがら加える。更に10分後層を分離する。 エーテル層を1 5 0 mlの 0.2 5 NHCLで、次い・

15のシステアミンヒドロクロリドの代りに 置き換えると、N-p-ニトロペンジルオキ シカルボニルアミノシクロプロピルチオが得 られる。

13の調製

出発物質 1.2 (5 1 mg) を、アセトニトリル (3 ml)中に溶解する。そして、その結果生 じた溶液を、0℃に冷却する。ジイソプロピ ルエチルアミン(22g)を注入器で加え、 リル (1 ml) 中の、新らしく再結晶させた p - トルエンスルホニツク無水物 (5 1 mg) の 溶液の添加に先立つて、0℃で1分間攪拌す

特開昭56-123985 (27)

実施例17

テトラヒドロフラン(2 ml)、 0.1 M 燐酸水素ニカリウム溶液(1.4 ml)及び2~プロパノール(0.2 ml)中の、13と(1 0 mg)と1 0 を pd/cーボルホーヘルタイプとの混合物を、パールシエイカー4 0 psi で3 0 分間、水素化する。混合物を次いで沪過し、触媒を水で洗浄する。組合せた沪過物と洗浄物を、酢酸エチルーエチルエーテルで抽出し、次いて~3 ml に濃縮し、凍結乾燥して14を得る。

奥施例18

$$0 \xrightarrow{N} \stackrel{|S_i|}{\stackrel{|S_i|}}{\stackrel{|S_i|}{\stackrel{|S_i|}{\stackrel{|S_i|}{\stackrel{|S_i|}}{\stackrel{|S_i|}{\stackrel{|S_i|}{\stackrel{|S_i|}}{\stackrel{|S_i|}{\stackrel{|S_i|}}{\stackrel{|S_i|}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}}}{\stackrel{|S_i|}$$

無ナランイスののでは、 1、1 1 当のでは、 1、1 1 当のでは、 1、1 1 当のでは、 1、1 1 1 1 2 では、 1、1 2 では、 2、1 2 では、 3、1 2 では、 4、1 2 では、 3、1 2 では、

る。その結果生した溶液を、0℃で1時間攪 押して、 ァーニトロベンジル 4 . 4 ージメチ ル 3 -(p-トルエン~スルホニルオキシ) - 6 - [ヒドロキシエチル 3 - (p - トルエ ンスルホニルオキシ) - 6 -ヒドロキシエチ ル] - 1 - アザニシクロ[3,2,0] ヘプ トー2-エン-7-オン-2-カルボキシレ - トを与えるようにし、次いで- 2 5 Cに冷 却する。ジイソプロピルエチルアミン(80.5 **99)を注入器で加え、その僅か後にドライな** アセトニトリルの1配中に、N-p-ニトロ ベンジルオキシカルボニルアミノシクロプロ ピルチオール(40mg)の溶液を加える。反 応混合物を次いで、70時間、冷蔵庫中に貯 える。混合物を酢酸エチルの 2 5 ml で希釈し、 ブラインで洗浄し、硫酸マグネシウムの上で 乾燥する。裕謀を真空中で除去し、粗生成物 を求め、これはシリカゲル板上でクロマトグ ラフィーをし、13を得る。

T H F、 2 0 mlを N2下におき、 1.5 4 mlの ジイソプロピルアミンで処理し、一78℃に 冷却する。ヘキサン (5.6 ml) 中のn - ブチ ルリチウム 1.9 7 M の密液を、 5 分に亘つて 摘下しながら加える。 反応混合物を-78℃ で10分間攪拌し、そして次に、15ml THF 中の5(2.148)で処理するが、T H P は 5 分間に亘つて滴下しながら加えたものであ る。更に10分後、ヘキサメチルホスホルア ミド (1.9 7 m.f.) を加える。混合物を更に 10分間攪拌し、その後2mlの矢化メチルで 処理する。反応混合物を一78℃で15分間 攪搾し、25℃にあたゝまらしめ、15分間 攪拌する。反応混合物を EtOAc で希釈し、pH 7 の燐酸塩バツフアーで一度洗浄し、そして 蒸発させる。残渣を、25%の EtOAc/CoH6を **密離剤として用いてシリカゲル上クロマトグ** ラフィーをして、 15を得る。

爽施例20

前記諸実施例の工程に従つて、本発明の化合物の調製に於いて有用な、下記の置換されたアゼチジノンを、試薬の示嗟した置換をする時、得る。

			•
R1	R ²	R ⁶	R ⁷
14.) CH ₃	E t	Н	OCH2 SCH3
15.) H	\triangle	Н	$OCO_2CO_2CH_2 \longrightarrow \bigcirc$
16.) CH ₃	CH ₃	Н	Ph —
17.) CH ₃	CH ₃	H	″ÔL
18.) CH ₃	Н	Ħ	
19.) CH ₃	£t	Ħ	SCO ₂ CH ₂ NO ₂
20.) $R^1 + R^2$	ニスピロン! プロピル	H חל	OCO2PNB

21.) CH₂CH₂Bτ CH₃

-	R ¹	R ²	R ⁶	R ⁷
7.)	CH ₃	CH 3 CH 2 CH 2	СН₃	OCO 2 CH 2 - (O) CH3 NO 2
8.)	Et	E t	CH 3 CH 2	OCO2CH2-O
9.)	СИз	. H	СИ ₃	O
10.) Et	CH_3	H	OCO2CH2 NO2
11.) Et	Et	СИ₃	OCO2CH2 NO2
12.) 🛆	СИз	СИ₃	0CO2CH2 NO2
13.) CH ₃	СИ3	Ħ	OCO2CH2

実施例21

前記の本文と諸実施例に従つて、実施例 20のβーラクタムを、相当の二環式ケトエステルのための標準工程により行ない、それに続けてチオ側の鎖の選択を設定して脱保護すると(実施例16と17)、下記のスペシース(1)を得る。

OCO2PNB

			RB	\triangle_{NB_2}	NH ₂	NB	MA NARC-NB:	CH.
			, Y ₀	Na.+	Na	Н	+**	0.83
$R^2 \times R^1$	SR8		R7	H HOCH2	-CH3	0=0	0 ∥ CB₃C	$(CH_3)_2 C(CH) =$
8.	R,	-	Re	H			H	Н
			R ²	- CB3	CH3	$CB_3CB_6CB_2 - CB_3$. н	. – CH3
•	•		化合物 R1	1.) CH ₃ .	2) Et -CH ₃ H	3.) CB3 CB4	₹	. <u>^</u>
R8	$CB_2 \longrightarrow NB_2$	$CH_2CH_2C - NH_2$	\ \	9	$\bigvee_{NB_2} CO_2 H$	© *	-CH ₃	$-C_{H_2CH_2NHC-H}$
Ro	Н	Н	Ħ	3	Na+	н	. +4	Na
R7	CB, CH (OCH, SCH ₃) -	- H2-					CH3CH (SH) -	CB3CB (OB)
Re	. BB	Ħ	Н	ı	Н	Ħ	Н	r H
R ²	UB ₂ CH ₃	CB_3	CHCH(CH) -		CH3	c_{B_3}	CH_3	20.) R ¹ +R ⁴ ニスピロシクロプロピル H
R1	CA, NB,	Ьķ	CB3	,	CH3	E t	CH_3	R1 + R2=3
化合物	14.)	15.)	16.): CB3		17) CH3	18)	19.)	30.)

化合物	R1	R2	R6	R ⁷	Ro	Rs	
9.)	PhcB1	CH ₃	В	CH ₃ CH (N ₃)	Ħ	× MH1	
(2	Ph	CH_3	CH3	CH ₃ CH (OH)	Н	~ Ma₃	
8)	CH_3	CB_3	CH ₃ CH ₂ -	HOCH2-		-C2H5	
(°6	$\checkmark^{CH_3}_{CH_3}$	c_{B_3}	CH_3	0 	H	- CF ₂ CH ₂ NH ₂	
10.)	C_4H_9	- CH ₂ CH ₂ NH ₂	Н	фСИ ₂ СИ (ОВ) —	Н	-Ph	
11.)	Et	CH_3CH_2	cB3	$CH_3 CH(OH) -$	Н	CO COR, MAY,	
12.)	CH3	4	CB_3	HOCH1-	Na +	CB ₃	
13.)	\bigcirc	CH_3	H	СН3 СН (ОН) СН3 —	(C ₂ B ₅) 4N ⁺	CH2 WH2	

ドライを塩化メチレン中の(30ml)、7.2 イを塩化メチ液を一78℃(ドライを塩化メチ液を一78℃(ドライをし、カストン・カー、カストン・カーのになるでは、カストン・カーのでは、カストン・カーのでは、カーのでは

上でクロマトグラフィーをして、 <u>8</u>とする。 実施例 B

アゼチンノン 10 (0.8519) を、20ml CH2Ct2 中に溶解し、N2下で0 でに冷却する。 塩化オキザリル (0.8 ml)を、5分間に亘り、 適下しながら加え、次いで D M をの一滴を加える。混合物を0で5分間、そしてそのの。混合物を0で5分間、移媒とる。残強が所望の酸塩化物である。このの酸性塩化物を、20mlの CH2Ct2 中に溶解し、N2下で0でに冷却する。メルカプトピリジン (0.4 8) を加える。反応混合をして5分間、機拌する。次いで、室温に迄暖

ンゼンを用いた調製用 t. l. c. が、所望の生成物 1.3 を与える。

寒施例 D

MeOH の 2 0 ml 中の 12 (1.0 m モル) の密液を、 0 ℃に冷却する。塩敏 (2.5 N、1 当) を加え、その結果の溶液を、 0 ℃で 1 時間、 微拌する。後、室温を暖まらしめる。 混合物を酢酸エチルで希釈し、 水 (1 0 ml) とブラインで洗浄し、 硫酸マグネシウムの上で 乾燥して、真空中で濃縮して 13 を与える。

特開昭 56~1239.85 (30)

まらしめる。混合物を CH₂CL₂で希釈し、水で洗浄し、 Na₂SO₄の上で乾燥させ、 真空中で蒸発させる。 残渣を、 裕離剤として 5 0 を Et OAc /C₆H₅ を用いる、シリカゲル上でクロマトグラフィーを行ない、チオエステル 1.1を与える。

実施例 C

2 ml T B P 中のチオエステル 12 (6 4 mg)を、 臭化シクロプロピルマグネシウムの溶液 (Et20 中 0. 2 5 M、 2 6 ml) で処理する。 混合物を 0°で 1 時間攪拌せしめる。 NH CC 飽和 水溶液を加え、混合物を 1 0 分間攪拌せしめる。 有機物層を分離する。 水性相を CB 2 CC で二 度、抽出する。一緒にした有機物層を乾燥し 蒸発させる。シリカゲルと 5 0 ま EtOAc /ベ

実施例 E

$$0CO_{2}(ONB)$$

$$0CO_{2}(ONB)$$

$$0H$$

$$CO_{2}(ONB)$$

$$13$$

アゼチジノン 13 (0.88)と p - ニトロベンジルグリオキシレートヒドラート (1.58) とを、ベンゼン (100ml)中で 6時間 選流する。共沸的に水を除去するため、ディーン・スタークのトラツプに、反応装置を装置する。溶液を冷却し、蒸発し、50% EtOAC /シクロヘキサンで溶離するシリカゲル上でガスクロマトグラフをし、生成物 14 を与える。

奥施例 F

16 の調製

特開昭56-123985 (31)

1,5

14

16

 N_2 のもとに、-20 でで、THF5 ml中のカルビナール 14(0.89) を、塩化チオニル(204 写)とピリジン(136 写)で、10 分間処理する。 次いで混合物を室温に定温めせしめる。 混合物を10 配のベンゼンで希釈し、 固体から沪過する。 真空中での沪過物の 蒸発が、 期待の塩化物を与え、 これを次いて、5 ml 0 M F 中のトリフェニルフオスヒン

物 17 を与える。

実施例

18 の調製

カルバペネムエステル 17 (10g)を、1 ml のジオクサン中に溶解する。溶液に、1 ml の水、0.2 ml のエタノール、1 0 ml の NaHCOs、及び 5 mg の 1 0 を pd/c を加える。混合物を 20 分間、40 psi で水素化する。

(468m) で処理し、室温で1時間、攪拌 する。真空中での溶媒の蒸発後、残瘡を70mlの CB₂Ct₂ 中に溶解し、0.5 M 燐酸ナトリウム緩衝液(pH6.9) で洗浄する。有機物層を分離し、M5O₄の上で気燥させそして30 多の酢酸エチル/ CB₂Ct₂ で溶雌するシリカゲル上でクロマトグラフィーを行ない、1.6 を得る。

実施例 G

1.7 の調製

$$OCO_{2}(ONB)$$

$$OCO_{2}(ONB)$$

$$OCO_{2}(ONB)$$

$$OCO_{2}(ONB)$$

$$OCO_{2}(ONB)$$

$$OCO_{2}(ONB)$$

$$OCO_{2}(ONB)$$

イリド 16(61mg) を 3ml のキシレン中に 移解し、 N_2 下 140° で 1.5 時間、加熱する。 混合物を 25 でに 冷却する。 滅圧下でキシレンを除去する。 シリカゲルプレート上での クロマトグラフィーを行つた 残渣が、 所望の生成

実施例 1

前行の本文並びに緒実施例による工程に従って、下記の1,2,6-懺換-1-カルバデチアペン-2-エム-3-カルボン酸(I)が、示唆した試薬の懺換をなった時、酷似して得られる。

												3न कि	188 26 - 1 2	3985 W	:)
		Ro	Н			Н		Ro	0=	- CB3 OCCMe 3	В	В	Н	Н	
		, R²	СН3	CH_3		C_2H_5		R2		∇	cH_3	cB_3	C H 3	,CH3	
o o	•	R¹	CH ₃	$CH_2CH_2NH_2$		c_{H_3}		R 1		CB_3	CH_3	CH_3	CH_3	CH_3	
$R^6 \xrightarrow{R^7} \frac{R^1}{R^6} \times R^8$. 0~~ v ~ · · · · · · · · · · · · · · · · · ·	R8.	$\stackrel{NH}{\longleftarrow} CB_2 NBC CB_3$	Ç		$\langle - \rangle$		RB	1		$ \begin{array}{c} NH \\ \downarrow \\ \downarrow$	$-CH_{3}CH_{3}NHC-CH_{3}$	$-CH_2CH_2CH_2NH_2$	$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - C B_1 N B_2$	
		R7	H	Н		H		R.1		Н	B	H	Н	.181	
		Re	CH3 X0H	H $CH_3 \searrow OH$	\ \ !E!			Ré		$\sum_{H}^{CH_3} O^{H}$	CH3 V0B.	CH ₃ × OH	$CB_3 \times OB$	$CH_3 \longrightarrow OH$	
		化合物	1.) C	. (3		3 (£		化合物		4.)	. (.g.	9	7:)	7a.) (
1								!	ļ						
Ro	#	t	2 1	Н	Н		H		R.º	Ħ	Н	Na	Н	Н	Н
R2	CH3	ţ	c H ₃	сНз	ĊB3		CH_3		R2	CH3	cH3	CH_3	CH_{3} 5	#3	CH_3
R	CH ₃	t d	C#3	СН3	C ₁ B _S		C_3H_5		R 1	CH_3	CB_3	CH3	CH_3	CB_3	ζH_3
R8	NH -CH1CH1CH1NHC-H	. VHN	. ,	NHCH	$CH_3 - CB = CH - CB_2NHC - CB_3$	HN =	$-CH = CH - CH_2NH\ddot{C} - CH_3$		R	-CH2	- CH2	$-CH_2 \longrightarrow S$	$-c_{H_2}$	CH_3 CH_2NH_2 NH	- CH ₂ CH ₂ NI
R.7	88	4	Ħ	CH_3	CH3 -		В		R.7	#1	Н	В	В	CH3	CB3
Re	CH3 XOB			C_{B_3} Q_B	$_{B0}$ \times $_{^{t}B}$ $_{^{2}}$	Щ	$\sim 10^{10}$		Re	13.) CH ₃ OH	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	15.) CH ₃ OH	16.) - CH ₂ OH	17.) -CH ₂ OB	18.) -CH2OH
化合物			66	10.)	11.)		12)		化合物	13.)	14.)	15.)	16.)	17.)	18.)

<u>.</u>					
, R 0	Ħ	#	Ħ	Н	.#4
R²	CH_3	CH_3	CH3	CH3	$CH_2CH_3CH_3$
R 1	CH3	СВз	C ₂ #s	CH3	СВз
R ⁸	CH ₃	\bigcirc	∇	CH CH3	PO -
R.7	В	Ħ	Н	CB_3	H
Re	CB ₃ NB ₂	$\stackrel{CH_3}{\nearrow} \stackrel{NH_2}{\nearrow}$	CH_3 NH_2	22.) - ÇH ₂ NH ₂	23.) $G_1H_5 \times NH_2$
化合物	19.)	20.)	21.)	22.)	;; (;;

爽	施	例	J

医薬用組成物の調製

1,1-ジメチルー6-(1-ヒドロキシ メチル デー 2 - (2 - アミノシクロプロピル チオ) - 1 - カルバテチアペン - 2 - エムー 3 - カルボン酸を、20 9のラクトース及び 5 189のステアリン酸マグネシウムと混合し、 145gの混合物を3番のゼラチンカプセル 中に入れるととにより、一個のユニツド服用 形を調製する。同様に、もつと多くの活性成 分を使い、もつと少ないラクトースを使うと とにより、別の服用形式を3番のゼラチンカ プセル中に詰め込むことができる。そして、 145gの成分以上のものを一緒に混合する 必要があれば、圧縮錠剤やピルのようなもつ と大きいカプセルも亦、調製することができ る。下記の実施例は、医薬処方の調剤を例示 するものである:

化合物	Re	R.	R ⁸ .	. R 1	R 2	Rº
24.)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ħ	$CH_3 \\ -CH_1CH-NH_2$	CH_3	7	pd.
25.	CH_3 CH_3 GH_3	19	CH ₂ NH ₂	CH3	СН3	Ħ
26.)	- -	Ħ	$CH_3 \longrightarrow CH_2NH_2$	CH_3	CH_3	Н
27.)	8 -<	, H	$-CH_2CH_2CH_2NH_2$	- CH2	-CH2-CH3-	

錠剤

錠剤あたり

1, 1-ジメチル-6-(1-ヒドロキシメチル) 125 mg -2-(2-アミノシタロプロピルチオ)-1-カ

ルバデチアベン・2-エム・3-カルボン酸

類型 カルシウム 192 mg コーンスターデ U. S. P. 6 mg ラクトース U. S. P. 190 mg ステアリン酸マグネシウム 残 余

活性成分を燐酸ニカルシウム、ラクトース 及び約半量のコーンスターチと混和する。 混合物を次いで15gのコーンスターチ ペース ト(6g)でか粒化し、ざつとふるいにかける。 45℃で乾かし、もり一度16番ふるり を通す。コーンスターチの残りとステアリ をでダインラムを加え、混合物を、直径約 0.5インチ、おのおの800gの錠剤にプレスする。

肠管外投与用溶液

アンプル

1, 1ージメチルー6ー(1ーヒドロキシメチル)

持開昭56-123985(34)

-2-(2-アミノシクロプロピルチオ)-1-

カルバデチアペン - 2 -エム - 3 -カルボン酸 500 mg

5 cc

100 mg

5 mg

第1頁の続き

優先権主張 Ø1979年12月3日Ø米国(US)

@99285

@1979年12月3日@米国(US)

3099400

@1979年12月3日@米国(US)

@199451

⑦発明者デイヴィッド・エッチ・シィー

アメリカ合衆国07726ニュージ ヤーシイ・マナラパン・コルビ

ー・コート2

希釈剤: 注射用無菌水

眼薬用溶液

1,1-ジメチルー6ー(1-ヒドロキシメチル)

-2-(2-アミノシクロプロピルチオ)-1-カ

ルバデチアペンー2~エム-3-カルボン酸

ヒドロキシプロピルメチルセルロース

無菌水 1 加 左

耳用溶液

1,1-ジメチル-6-(1-ヒドロキシメチル)

-2-(2-アミノシクロプロビルチオ)-1-

カルバデチアベンー2ーエムー3ーカルボン酸

100 mg

無崩水

1 加迄

局所軟膏

1,1-ジメチルー6ー(1-ヒドロキシメチル)

-2-(2-アミノシクロプロピルチオ)-1-

カルバデチアペンー2-エム-3-カルボン酸

100 mg

昭和56年4月9日

ポリエチレン グリコール 4000 U.S.P. 400 mg

ポリエチレン グリコール 400 U.S.P. 1.0グラム

手 統 補 正 書(方式)

別紙のとおり、明細書1通を提出致しょう。

特許庁長官 島田春樹 殿

1. 水件の表示昭和55年 特許颐第 169746号

2. 発明の名称 6-,1-,及び2 微換-1-カルデザアペン

- 2 - エム - 3 - カルボン酸

3. 特正をする者

事件との関係 特許出聊人

アメリカ合衆[vi]。ニユージヤーシイ。ローウエイ イースト リンカーン アヴエニユー 126

氏 名 (名称) メルク エンド カム/ピー インコーポレーテッド

4. 代理人

(〒100) 住所 東京都千代田区丸の内3の2の3・富士ビル209号室

電点 (213) 1561 (代)

#理: 岡 部 正 夫 (6444)

日付 昭和56年3月 5日 (発送日:昭和56年3月31日) 5. 補正命令の日付

6. 補正の対象 「明細幣」 7. 補正の内容 別紙のとおり

明細書の浄書(内容に変更なし)