

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA -I: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrônica, Química, Ambiente e Civil)

Regente: Félix Tomo

Assistentes: Bartolomeu Ubisse; Belarmino Matsinhe; Esménio Macassa; Fernando Mucomole; Graça Massimbe & Valdemiro Sultane

2022-AP # 05-Dinâmica de sistema de partículas

- 1. Localize o centro de massa de 3 partículas de massas m_1 = 1,0 kg, m_2 = 2,0 kg e m_3 = 3,0 kg que se encontram nos vértices de um triângulo equilátero de 1,0 m de lado.
- 2. O módelo da molécula de água é conforme a Fig.1. Sabendo que $m_O = 16 m_H$, determine a posição do centro de massa da molécula de água.

Figura 1:

- 3. Um observador mede as velocidades de duas partículas de massas m_1 e m_2 e obtém, respectivamente, os valores v_1 e v_2 . Determine a velocidade do centro de massa relativo ao observador e a velocidade de cada partícula relativamente ao centro de massa.
- 4. Duas massas $m_1 = 10,0$ kg e $m_2 = 6,0$ kg estão ligadas por uma barra rígida de massa desprezível. Estando inicialmente em repouso, elas são submetidas às forças $\vec{F}_1 = 8\vec{i}$ (N) e $\vec{F}_2 = 6\vec{j}$ (N), como está indicado na Fig.2.

- (a) Determine as coordenadas do seu centro de massa como função de tempo;
- (b) Expresse a quantidade de movimento total como função de tempo.
- 5. Sobre três partículas $m_1 = 8.0$ kg, $m_2 = 4.0$ kg e $m_3 = 4.0$ kg actuam respectivamente as forças $F_{1y} = 16$ N, $F_{2x} = -6$ N e $F_{3x} = 14$ N. Sabendo que as coordenadas destas partículas em me-

tros são: $A_1(4,1)$, $A_2(-2,2)$ e $A_3(1,-3)$, respectivamente, calcular o vector posição e o valor da aceleração do centro de massa do sistema.

- 6. É dado um sistema de três partículas $m_1 = 0.05$ kg, $m_2 = 0.01$ kg e $m_3 = 0.015$ kg. No instante t = 0s elas encontram-se nas posições $A_1(3,4,5)$, $A_2(-2,4,-6)$ e $A_3(0,0,0)$, em repouso, onde as coordenadas são em metros. Sob a infuência das forças externas, cuja resultante é expressa pelo vector $\vec{F} = 0.05\vec{i}$ (N) na direcção do eixo-ox, as partículas entram em movimento. Calcule o centro de massa (CM) do sistema depois de t = 2 s.
- 7. Duas partículas com 2 e 3 kg de massas estão se movendo, em relação a um observador, com velocidades de 5,0 m/s ao longo do eixo X e 4,0 m/s formando um ângulo de 120° com o eixo X, respectivamente.
 - (a) Exprima a velocidade de cada partícula na forma vectorial.
 - (b) Determine a velocidade do centro de massa.
 - (c) Determine a velocidade de cada partícula em relação ao CM.
 - (d) Determine a quantidade de movimento de cada partícula no referencial CM.
 - (e) Determine a velocidade relativa das partículas.
 - (f) Calcule a massa reduzida do sistema.
- 8. Um sistema é composto de três partículas com massas 3 kg, 1 kg e 2 kg. A primeira tem uma velocidade de $3\vec{j}$ (m/s), a segunda está se movendo com uma velocidade de 4 m/s numa direcção que faz um ângulo de 60^{o} com o eixo-OY. Determine:
 - (a) A velocidade da terceira partícula de tal modo que o centro de massa do sistema esteja em movimento uniforme com velocidade $2\vec{i} + \vec{j}$ (m/s), relativamente a um observador inercial;
 - (b) A velocidade desta partícula relativamente ao referêncial CM.
- 9. Duas partículas com massas $m_1 = 5$ kg e $m_2 = 7$ kg, respectivamente, deslocam-se com as velocidades $\vec{v}_1 = 2\vec{i}$ (m/s) e $\vec{v}_2 = -\vec{i} + 3\vec{j}$ (m/s) (veja a Fig.3, que representa a situação no instante t = 0 s). Determine: .
 - (a) A posição do CM do sistema;
 - (b) O módulo e a direcção da velocidade do CM relativa ao ponto "O";
 - (c) O momento angular do sistema em relação ao ponto "O";
 - (d) Calcule $\vec{L}_{CM} + M \times \vec{r}_{CM} \times \vec{v}_{CM}$ e compare a sua resposta com a da alínea (c). Comente.

Figura 3:

10. A massa "A" desloca-se para direita com uma velocidade $v_A=15~{\rm m/s}$ e a massa "B" move-se para cima com $v_B=20~{\rm m/s}$ (veja a Fig.4). Determine:

(a) A quantidade de movimento do corpo "A" em relação ao CM do sistema;

(b) A energia cinética do sistema em relação ao CM.

Figura 4:

- 11. Uma massa de 20 kg move-se sob a acção de uma força $\vec{F} = 100 \, t \, \vec{i}$ (N), onde t é o tempo em segundos. Se para t = 2 s, $\vec{v} = 3 \, \vec{i}$ m/s, determine:
 - (a) A quantidade de movimento da massa para t = 10 s;
 - (b) A energia cinética do corpo para t = 10 s.
- 12. Um sapo de massa m está parado na extremidade de uma tábua de massa M e comprimento L. A tábua flutua em repouso sobre a superfície de um lago. O sapo pula em direção à outra extremidade da tábua com uma velocidade v que forma um ângulo θ com a horizontal. Determine o módulo da velocidade inicial do sapo para que ele atinja a outra extremidade da tábua.
- 13. Um pescador de massa 74 kg encontra-se parado na popa do seu barco de 3.5 m de comprimento e 40 kg de massa. A proa do barco está a 3 m da margem. A certa altura o pescador decide deslocar-se a proa. Determine:
 - (a) A posição do centro de massa do barco com o pescador parado na popa;
 - (b) A distância que separa o barco da margem depois de o pescador ter se dirigido à proa.