QR Code Authentication: Detecting Original vs. Counterfeit Prints

1. Introduction

1. Objectives

- Explore and analyze the dataset to understand key differences between first prints and second prints.
- Extract relevant features that highlight **print artifacts**, **resolution differences**, and microscopic degradation.
- Develop two classification models:
 - 1. **Traditional Machine Learning Approach** (using feature extraction and ML models).
 - 2. Deep/Transfer Learning Approach (using CNN-based architectures).
- Evaluate the performance of both approaches using accuracy, precision, recall, and F1-score.
- Discuss potential deployment considerations and real-world challenges.

2. Dataset and Preprocessing

2.1 Dataset Description

The dataset consists of QR code images categorized as:

- First Prints (Originals) QR codes printed for the first time with embedded Copy Detection Patterns (CDP).
- Second Prints (Counterfeits) Reprinted versions of the original QR codes with subtle quality degradation due to scanning and reprinting.

Class	Number of Images
First Print	100
Second Print	100

Example Images:

a) First Print

b) Second Print

2.2 Preprocessing Steps

To ensure consistent input for both machine learning and deep learning models, the following preprocessing steps were performed:

- Converted images to grayscale to focus on texture and print artifacts.
- Resize all images to a fixed dimension for uniformity.
- Applied edge detection (Canny, Sobel filters) to enhance print differences.
- Extracted frequency domain features using Fast Fourier Transform (FFT).
- Data Augmentation (for deep learning models).
 - Rotation, scaling, Gaussian noise, and blurring to simulate real-world distortions.

3. Feature Engineering & Model Development

3.1 Traditional Machine Learning Approach

To train a model for counterfeit QR code detection, we first needed to extract meaningful handcrafted features from the images. The create_features_dataset() function was used to process images from a given dataset, converting them to grayscale for uniformity before extracting various key features.

Feature Extraction

Each image was analyzed using multiple techniques to capture different structural and texture-based patterns:

- Local Binary Patterns (LBP): Captured texture variations by analyzing pixel intensity differences.
- Canny Edge Density: Highlighted structural differences by detecting edges in the QR codes.
- Wavelet Features: Detected distortions and frequency-based anomalies in the images.
- **Histogram of Oriented Gradients (HOG):** Identified edge and shape patterns for better feature representation.
- ORB (Oriented FAST and Rotated BRIEF) Features: Extracted key points and local descriptors to differentiate between real and counterfeit codes.

All extracted features were combined into a single feature vector for each image and stored in a structured format using a DataFrame.

Model Selection & Evaluation

After feature extraction, we experimented with three different machine learning models:

- **Support Vector Machine (SVM):** This model did not perform well due to its inability to handle null values in the dataset.
- Random Forest Classifier: While it showed moderate performance, it struggled with overfitting on complex patterns, leading to poor generalization.
- XGBoost Classifier: This model delivered the best accuracy by effectively handling feature importance and reducing noise, making it the most suitable choice for this classification task.

XGBoost Performance Analysis

The **XGBoost classifier** emerged as the most effective model, achieving an impressive **85% accuracy** in distinguishing between original and counterfeit QR codes. Its ability to handle feature importance and reduce noise contributed to its strong performance.

Confusion Matrix:

- The model correctly classified 17 original and 17 counterfeit QR codes.
- Only 6 misclassifications occurred, demonstrating a high level of reliability in predictions.

Classification Report

- **Precision:** 0.89 for originals and 0.81 for counterfeits, indicating that the model makes reliable predictions for both classes.
- **Recall:** 0.81 for originals and 0.89 for counterfeits, showing that most genuine and counterfeit QR codes are correctly identified.
- **F1-score:** 0.85 for both classes, confirming a balanced and effective classification performance.

Cross-Validation Results

To ensure robustness, we conducted **5-fold cross-validation**, which yielded scores of **[0.775, 0.95, 0.9, 0.925, 0.875]**, resulting in a **mean accuracy of 88.5%**. This consistency across different data splits further validates XGBoost's effectiveness as the best-performing traditional machine learning model for this task.

3.2 Deep Learning-Based Approach

3.2.1 CNN based approach

To classify original vs. counterfeit QR codes, we implemented a **Convolutional Neural Network (CNN)**. This model aimed to extract key spatial features from images using convolutional layers and pooling operations.

Data Preprocessing & Augmentation

To enhance model generalization and prevent overfitting, we applied extensive **data augmentation techniques**, including:

- Rotation, shifting, zooming, brightness adjustments, and flipping to introduce variation.
- **Grayscale image conversion** to simplify computations while retaining critical structural information.

CNN Architecture

The model consisted of:

- Two convolutional layers with ReLU activation and batch normalization to stabilize training.
- MaxPooling layers to reduce spatial dimensions while retaining essential features.
- **Dropout (0.5) in the dense layer** to prevent overfitting.
- **Sigmoid activation** in the final layer for binary classification.

Training Strategy

- Adam optimizer was used for adaptive learning.
- Binary cross-entropy loss function suited for binary classification tasks.
- Class weighting was applied to mitigate class imbalance.

CNN Model Performance

Despite efforts to optimize the training process, the CNN model **failed to learn meaningful patterns**, resulting in poor classification performance.

Final Training Accuracy: ~46%

Final Validation Accuracy: 50% (Equivalent to random guessing)
Validation Loss: Extremely high (16.87), indicating unstable learning.

Classification Report:

- Precision: 0.00 for originals, 0.50 for counterfeits → The model failed to detect original QR codes.
- Recall: 0.00 for originals, 1.00 for counterfeits → The model predicted all samples as counterfeits, showing severe class bias.
- Overall Accuracy: 50%, indicating the model performed no better than random guessing.

To improve classification performance, we leveraged Transfer Learning using MobileNetV2, a lightweight deep learning model pre trained on ImageNet.

3.2.1 Transfer Learning approach (MobileNetV2 Base Model):

To improve classification performance, we implemented **Transfer Learning** using **MobileNetV2**, a lightweight deep learning model pretrained on ImageNet. This approach allows us to leverage existing knowledge from large-scale image datasets and fine-tune it for our specific task of counterfeit detection.

For data preprocessing, we applied extensive **data augmentation** techniques, including **rotation**, **shifting**, **zooming**, **brightness adjustments**, **and flipping** to enhance model generalization. The dataset was split into **80% training and 20% validation** to ensure a balanced evaluation.

The MobileNetV2 model was used as a **feature extractor**, where its pretrained layers were initially **frozen** to retain learned representations. On top of this, we added custom **fully connected layers**, including:

- Global Average Pooling to reduce dimensionality.
- Dense layers (128 and 64 neurons) with ReLU activation for feature transformation.
- **Sigmoid activation** in the final layer for binary classification (Original vs Counterfeit).

For optimization, we used the **Adam optimizer** with an initial **learning rate of 0.0001**, alongside the **binary cross-entropy loss function**. **Early stopping** was incorporated to prevent overfitting during training.

Transfer Learning Model Performance (Feature Extraction Stage)

The model demonstrated **high accuracy** after 10 training epochs, showing stable loss reduction over time. The key performance metrics before fine-tuning were as follows:

Training Accuracy: 93.5% Validation Accuracy: 95.0%

Loss: Steadily decreased, indicating effective learning.

Classification Report (Before Fine-Tuning):

Precision: 92% (Original), 95% (Counterfeit
Recall: 95% (Original), 92% (Counterfeit

• Overall Accuracy: 94%

Fine-Tuning for Performance Enhancement

To further improve the model's accuracy and feature extraction capabilities, we **unfroze deeper layers** of MobileNetV2 and **reduced the learning rate to 0.00001** to prevent drastic weight updates. This process, known as fine-tuning, helps the model adapt to the specific characteristics of our dataset.

After an additional 10 training epochs, the fine-tuned model demonstrated:

Training Accuracy: 98.3% Validation Accuracy: 90.0%

Classification Report (After Fine-Tuning):

Precision: 86% (Original), 99% (Counterfeit)
Recall: 99% (Original), 84% (Counterfeit)

• Overall Accuracy: 92%

99 Originals correctly classified, 1 misclassified

8 Counterfeits misclassified as Originals, 92 correct

Key Takeaways & Conclusion

The **CNN-based approach struggled** with feature extraction, class imbalance, and overfitting, leading to poor accuracy (~50%) and unstable training. In contrast, **transfer learning with MobileNetV2 significantly outperformed CNN**, achieving **94%+accuracy** by leveraging pretrained features and fine-tuning strategies. While class imbalance still caused a slight drop in recall for counterfeit detection, the model demonstrated strong generalization.

Conclusion: Transfer learning proved to be a superior approach for QR code classification, effectively addressing the limitations of CNNs. Future improvements, such as further fine-tuning, dataset expansion, and balancing techniques, could enhance performance even further, making this method highly effective for counterfeit detection.

4. Deployment Considerations

4.1 Real-World Application

The model can be integrated into mobile scanning apps and security systems for real-time counterfeit QR code detection. MobileNetV2's efficiency makes it suitable for deployment on smartphones and scanners.

4.2 Challenges & Future Improvements

Scanning Variability – Different lighting and angles may impact accuracy. Improved data augmentation can help.

Better Feature Extraction – Combining traditional and deep learning features may enhance performance.

Model Optimization – Techniques like quantization and pruning can make deployment on edge devices more efficient.

Advanced Feature Fusion – Hybrid approaches using handcrafted and deep learning features could improve classification accuracy.

Optimizing these aspects will ensure fast, reliable QR code authentication for real-world use.

5. Conclusion

In this study, we explored multiple approaches for counterfeit QR code detection, ranging from traditional machine learning to deep learning and transfer learning.

Key Findings:

- Traditional Machine Learning: Feature-based methods (LBP, HOG, ORB, etc.)
 combined with classifiers like SVM, Random Forest, and XGBoost were tested.
 XGBoost achieved the highest accuracy (85%), demonstrating its effectiveness
 in distinguishing real and counterfeit QR codes.
- **CNN-Based Approach:** A custom Convolutional Neural Network struggled to generalize, achieving only 50% accuracy. Issues like poor feature extraction, class imbalance, and loss explosion affected its performance.
- **Transfer Learning:** MobileNetV2, with fine-tuning, significantly outperformed all previous approaches, achieving 94% accuracy. This model effectively leveraged pre-trained feature representations and provided robust classification.

Final Takeaway:

Transfer learning, particularly with MobileNetV2, emerged as the most effective approach, offering high accuracy and real-world feasibility. Future work will focus on optimizing the model for mobile deployment and improving its robustness to real-world variations.