

COMP3430 / COMP8430 Data wrangling

Lecture 2: The data wrangling process and understanding data (Lecturer: Peter Christen)

Lecture outline

The data wrangling process / pipeline / tasks

Understanding data: sources, types, and formats

Example data wrangling tools and resources

The data mining / analytics process

Typically up to 90% of time and effort are spent in the first three steps!

(based on: CRISP-DM, the CRoss Industry Standard Process for Data Mining)

The data wrangling process (1)

The data wrangling process (2)

Main data wrangling tasks

- **Data extraction**: From different sources, both internally and increasingly externally to an organisation
- Data quality assessment: Along a variety of dimensions
- **Data profiling**: Exploration, summarisation, and visualisation to better understand data
- **Data cleaning**: Transformation, reshaping, aggregation, reduction, imputation, parsing, standardisation
- Data integration: Schema matching and mapping, data matching, record linkage, deduplication, data fusion

Understanding data

What is data?

- Data is how we store observations in reusable form
- Observations are about entities and their attributes, as well as relationships between entities
- Sometimes (ideally) entities have unique identifiers (products have barcodes, most Australians have a Tax File Number (TFN) or a Medicare number, books have ISBNs, etc.)
- Unique entity identifiers should be stable over time, accurate, complete, and robust (like a checksum in an identifier number)

Sources of data (1)

Relational databases

• Transactional data, mostly normalised into many tables, with keys between them, continuous and frequent updates on (single) records

Data warehouses

 Decision support data, processed and cleaned, historical data, aggregated, updated at certain intervals

Internet

 Click-stream data, log files, Web pages (HTML, XML), blogs, e-mails, posts, images, videos, audio, etc.

Sources of data (2)

- Files
 - Portable text (like comma separated, tabulator, fixed column) or nonportable proprietary binary files
- Scientific instruments, experiments and simulations
 - Astronomy, genomics, seismology, physics, chemistry, etc.
- Sensors (often data streams)
 - Internet of Things (IoT)

Data size and complexity

- "We are drowning in data but starving of knowledge" (Jiawei Han, author of the Data Mining text book)
- Automated data collection and mature database technology
 - Allows data to be stored efficiently, cheap, persistent
 - Using databases, data warehouses and other repositories
 - Data are increasingly stored distributed (storage area networks, grids, etc.)
- Large and massive data collections
 - Millions to billions of records
 - Tens to thousands of attributes (sometimes also called *variables*)
 - Data are rarely collected for data analytics (rather for online transaction processing, OLTP)
- A lot of data are write only (or read once only)

Types and measurements of data (1)

Numerical data

- Integer, floating-point, binary, interval, ratio
- Non-scalar (like velocity: speed and direction)

Non-numerical data

- Nominal data (just naming things, for example personal names)
- Categorical data (grouping things, like postcodes, university course codes)
- Ordinal data (ordering things, for example wine tasting, movie ratings)

Series data

- Ordering is an important feature (otherwise not series data)
- One attribute must always be monotonic (increasing or decreasing)
- Most common are time series

Types and measurements of data (2)

- Multimedia data
 - Images, video, audio
 - Many standard formats used, binary, often compressed
- Different mappings and conversions between data types are possible and often needed
 - Some conversions are loss-less, others are lossy
- Different data wrangling (and data analytics) techniques can handle different types of data
 - Some are restricted to certain types of data, for example only numerical data

Formats of data

- Structured data
 - Relational database tables, integrated data warehouses
 - Images, video, audio (can be compressed)
- Semi-structured data
 - XML, HTML, e-mails, SMS, log files
- Free-format data
 - Mainly free-format text ASCII or Unicode

Data wrangling tools and resources (1)

- Data wrangling books (mostly specific to a certain language or tool)
 - Data Wrangling with Python; Jacqueline Kazil and Katharine Jarmul, O'Reilly Media, 2016
 - **Python for Data Analysis**; Wes McKinney, O'Reilly Media, 2012 (second edition now available)
 - Data Science from Scratch First Principles with Python; Joel Grus, O'Reilly Media, 2015
 - Data Wrangling with R; Bradley Boehmke, Springer, 2016
 - R for Data Science Import, Tidy, Transform, Visualize, and Model Data; Garrett Grolemund and Hadley Wickham, O'Reilly Media, 2017
- Some of these can be found as PDF files for download

Data wrangling tools and resources (2)

- Programming tools (mostly specific to a certain language or tool)
 - Pandas (Python):
 http://pandas.pydata.org/
 A library that allows efficient data structure and data manipulation and analysis tools, including visualisation (we will show Pandas examples throughout the course)
 - Matplotlib (Python) http://matplotlib.org
 A comprehensive 2D plotting library to produce high quality outputs as well as interactive environments
 - Dplyr (R)
 https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
 Summarise and transform data in rows and columns
- Many more modules / packages relevant to data wrangling

Data wrangling tools and resources (3)

- Software
 - Rattle (R): http://rattle.togaware.com/
 A graphical user interface (GUI) on top of R, includes extensive data exploration, visualisation and transformation operations, developed by Graham Williams (previously Senior Data Miner at ATO), used in this course
 - **DataWrangler** (now TrifactaWrangler) https://www.trifacta.com/ An interactive tool for data cleaning and transformation, developed by a Stanford/Berkeley Wrangler research project, now commercial
 - See also: https://blog.varonis.com/free-data-wrangling-tools/
- Many database and data warehouse systems do include some data wrangling functionalities