भारतीय प्रौद्योगिकी संस्थाल पटना Autoregressive Adaptive Hypergraph Transformer for Skeleton-based Activity Recognition WACV \$\frac{1}{2}\text{0.25}}

Overview

Motivation

- > Adaptive- The set of joints to be grouped together in a hyperedge should be action dependent.
- > Autoregressive- Hypergraph should be learnable just like the parameters of the model

Overall Framework

- > FAHT block contains hypergraph convolution for extracting features.
- > Three kinds of attention operations are used on the extracted features-joint-bone, joint-joint and jointhyperedge.

Abhisek Ray

Ayush Raj

Maheshkumar H. Kolekar

Architecture detail

Hypergraph Quantizer

> We have a codebook and the emebedding for each node is quantized into a vector in codebook.

$$k = argmin_{j} ||E - Q_{j}||_{2}$$

$$\mathcal{L}_{quant} = (1/V) \sum_{j=1}^{V} ||Q_{j} - sg(E)||_{2}^{2}$$

> As the discretizing process is non differentibale, straight through estimator is used for backpropagation.

Adaptive HyperGraph Decoder Block

Hypergraph Attention Network is responsible for generating the weights of the hyperedges.

$$\mathcal{L}_{\text{rec}} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{c=1}^{C} \left\| X_{t,j,c}^{(n)} - \hat{X}_{t,j,c}^{(n)} \right\|^{2} \qquad \mathbf{H}_{\mathbf{i},\mathbf{j}}^{\mathbf{l}+1} = \begin{cases} 1 & \text{if joint } i \text{ is assigned to cluster } j \\ 0 & \text{otherwise} \end{cases}$$

> Reconstruction loss is used as a regularizer for the embeddings extracted from HypEnc block.

Algorithm 1 Forward propagation of training process

1: 1	for $n \leftarrow 1$ to $total_iteration$ do				
2:	if $n == 1$ then				
3:	$\mathbf{H^n} \leftarrow RandomAllocationOfNodesToHyperedges$				
4:	$\mathbf{H}_{\mathbf{w}}^{\mathbf{n}} \leftarrow I(\text{Identity Matrix})$				
5:	end if				
6:	$E_{enc} \leftarrow \mathrm{HypEnc}(\mathbf{A}, X, \mathbf{H^n}, \mathbf{H_w^n})$				
7:	$A_t, attn \leftarrow \text{HAN}(E_{enc}), E_f = E_{enc} + \alpha A_t$				
8:	$rec \leftarrow HypDec(GAP_{time}(E_f), \mathbf{A}), E_c \leftarrow$				
]	$HypDec(GAP_{time}(E_f), \mathbf{A})$				
9:	Feed E_f to classification and reconstruction head				
10:	Update hypergraph for next iteration				
11:	$\mathbf{H^{n+1}}$, $\mathbf{H_w^{n+1}} \leftarrow \mathbf{A}$ TTENTIVE HYPERGRAPH				
(GENERATOR $(attn, E_c)$				
12:	end for				
13:]	procedure Attentive Hypergraph Genera-				
,	$\mathtt{TOR}(attn, E_c)$				
14:	Refer to section 4.2				

- + k = 6

k=3

40 60 80 100 120 140

Number of Epochs

return $\mathbf{H}^{\mathbf{n+1}}$, $\mathbf{H}^{\mathbf{n+1}}$

16: end procedure

Number of Epochs

 $Q_0 \perp \mid - \mid L = 6$

Quantitative Results

Dataset	NTU-60		NTU-120		NW-UCLA
Setting	X-Sub	X-View	X-Sub	X-View	
DST-HCN [6]	90.7	96.0	86.0	87.9	-
DST-HCN*	90.7	95.9	85.9	87.9	94.9
DST-HCN*+Ad HypDec	91.3	96.4	86.5	88.3	95.1
Selective-HCN [9]	90.8	96.6			
Selective-HCN*	90.7	96.6	86.3	88.1	95.0
Selective-HCN*+Ad HypDec	91.4	97.0	86.7	88.3	95.3
Hyperformer [8]	92.9	96.5	- 8 9.9 -	$-91.\bar{3}$	
Hyperformer*	92.9	96.4	89.9	91.3	96.8
Hyperformer*+Ad HypDec	93.65	97.25	90.49	91.91	97.43
3Mformer [5]	94.8	98.7			
3Mformer*	94.8	98.6	91.9	93.8	97.8
3Mformer*+Ad HypDec	95.2	98.9	92.2	94.1	98.1

Model Complexity

Models	Publication	Params (M)	Flops (G)	X-Sub/X-View (%)
ST-GCN [7]	AAAI-2018	3.08	16.32	81.5/88.3
Shift-GCN [2]	CVPR-2020	2.76	10.01	90.7/96.5
CTR-GCN [1]	ICCV-2021	5.84	7.88	92.4/96.8
Info-GCN [3]	ICCV-2022	6.28	6.72	92.7/96.9
HD-GCN [4]	ICCV-2023	6.72	6.40	93.0/97.0
DST-HCN [6]	ICME-2023	3.50	2.93	92.3/96.8
Hyperformer [2]	arXiv-2023	2.60	14.8	92.9/96.5
AutoregAd-HGformer	Proposed	3.20	15.4	94.15/97.83

Qualitative Results

Number of Epochs

3. Info-GCN (Chi et al.), CVPR, pages 20186–20196, 2022.

HD-GCN (Lee et al.), ICCV, pages 10444-10453, 2023.

5. 3Mformer (Wang et al.), CVPR, pages 5620–5631, 2023.