Explainable Ai

Assignment -3

Name: K.SAI TEJA

HTNO: 2303A52325

Batch: 35

Instructor: Dr. Vairachilai Shenbagavel

1. Introduction:

In this assignment, we explored **Explainable Artificial Intelligence (XAI)** using the **LIME** (Local Interpretable Model-agnostic Explanations) technique. Two different problems were addressed:

- Predicting deposit subscription in a bank marketing campaign.
- Classifying house prices as expensive or cheap.

The aim was to build predictive models using **Gradient Boosting** and **Random Forest** and interpret their predictions using LIME.

2. Problem Statements:

Problem 1: Bank Marketing Campaign

- **Objective**: Predict whether a client subscribes to a deposit based on marketing data.
- Dataset: bank.csv
- Algorithm Used: Gradient Boosting Classifier
- Explainability Tool: LIME

Problem 2: House Price Classification

• **Objective**: Classify California houses as **expensive** or **cheap** based on their features.

• Dataset: housing.csv

• Algorithm Used: Random Forest Classifier

• Explainability Tool: LIME

3. Methodology

Step 1 — Data Preprocessing

- Encoded categorical variables using Label Encoding.
- Created binary classification targets:
 - Bank dataset: deposit column (Yes/No).
 - Housing dataset: Converted median_house_value into cheap (0) or expensive (1).
- Split both datasets into training (80%) and testing (20%) sets.

Step 2 — Model Building

- Gradient Boosting for bank marketing data:
 - o Built a predictive model for deposit subscription.
- Random Forest for house price classification:
 - Used an ensemble approach for better accuracy.

Step 3 — Model Evaluation

- Used **Accuracy** and **Classification Report** to evaluate models.
- Achieved high accuracy on both datasets.

Step 4 — Explainability with LIME

- Applied **LIME** to interpret predictions:
 - Selected a single test instance from each dataset.
 - Visualized **feature contributions** to the prediction.
 - Identified top influencing factors for each model.

4. Results

Bank Marketing Campaign

- Model Accuracy: 0.84639
- Top 5 Influencing Features:
 - 1. duration
 - 2. month
 - 3. contact
 - 4. pdays
 - 5. housing
- LIME Visualization: Showed which features pushed a client towards Yes or No.

House Price Classification

- Model Accuracy: 0.897286
- Top 5 Influencing Features:
 - 1. Median_income
 - 2. longitude
 - 3. latitude
 - 4. ocean_proximity
 - 5. population
- **LIME Visualization**: Explained which features contributed to predicting **expensive** or **cheap** houses.

6. Insights

From Bank Dataset

- Features like **balance**, **duration**, and **age** strongly influence deposit subscription.
- Clients with higher balance and longer campaign calls are more likely to subscribe.

From Housing Dataset

- Median income and location coordinates are the strongest predictors of house prices.
- Proximity to the **ocean** also significantly impacts house value.

7. Conclusion

- Successfully built predictive models for both datasets.
- LIME provided clear explanations of model predictions.
- Insights derived can assist:

- Banks in targeting potential customers effectively.
- Real-estate stakeholders in understanding factors influencing house prices.