How flexible should my algorithms be?

Lecture 03

Supervised Learning

Algorithm development and application pipeline

Supervised machine learning model

We search for the model that best fits our data

Components of supervised learning

Input	
-------	--

X

Output

y

Training Data

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

Target function

$$f(x) \to y$$

This is unknown, but the best you could ever do

Hypothesis set

$$f_i(x) \to \hat{y}$$

Functions to consider in trying to approximate f(x)

Learning algorithm

Optimization technique that searches the hypothesis set for the function f_i that best approximates f (typically by choosing parameters in a model)

Supervised Learning

Unobservable

Data Generating Process

p(X,Y)

Target Function

The best function predicting *y* from *x*

$$f(x) \rightarrow y$$

Observable

Training Data

$$(x_1, y_1), \dots, (x_N, y_N)$$

Learning Algorithm

Chooses a hypothesis, $\hat{f} = f_i$ based on the training data such that

$$\hat{f}(x) \approx f(x)$$

Hypothesis Functions Set

$$f_1, f_2, f_3, \dots$$

- Need to select the hypothesis functions (models to train)
 - Need to select the learning algorithm (for fitting the models to the data)

Final Hypothesis

predictions

 $\hat{f}(x) \to \hat{y}$

Example: linear regression

Using any line as a hypothesis function, how many possible hypothesis functions are in the set?

Infinitely many

Using the line y = wx as the family of hypothesis functions, how many possible hypothesis functions are in the set?

Infinitely many

Which set contains the better hypothesis? Which set has more options to consider? What is our learning algorithm?

Historic Progression of Algorithms

François Chollet, Deep Learning with Python, 2017

How flexible should my algorithms be?

Lecture 03

K-Nearest Neighbors

Classification and Regression

Feature

Step 1: Training

Every new data point is a model parameter

Feature 2

Step 2:

Place new (unseen) examples in the feature space

Feature 2

Step 3:

Classify the data by assigning the class of the k nearest neighbors

Score vs Decision:

For 5-NN, the confidence score that a sample belongs to a class could be: {0,1/5,2/5,3/5,4/5,1}

Decision Rule:

If the confidence score for a class > threshold, predict that class

K Nearest Neighbor Regression

Feature 1

K Nearest Neighbor Regression

 $y_i \in \{k \text{ nearest}\}$

$$\hat{y} \cong 3.67$$

KNN Pros and Cons

Pros

- Simple to implement and interpret
- Minimal training time
- Naturally handles multiclass data

Cons

- Computational expensive to find nearest neighbors
- Requires all of the training data to be stored in the model
- Suffers if classes are imbalanced
- Performance may suffer in high dimensions

How flexible should my model be?

the bias-variance tradeoff and learning to generalize

bias consistently incorrect prediction

error from poor model assumptions (high bias results in underfit)

variance inconsistent prediction

error from sensitivity to small changes in the training data

(high variance results in overfit)

noiselower bound on generalization error

irreducible error inherent to the problem

(e.g. you cannot predict the outcome of a flip of a fair coin any more than 50% of the time)

Bias-Variance Tradeoff

generalization error = bias² + variance + noise

Classification feature space

What's the best we can do for binary classification?

If we know the probability distribution of the data

The Bayes decision rule

Bayes' Rule

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$
Posterior
$$P(X|C) = \frac{P(X|C)P(C)}{P(X)}$$
Evidence

X Features

Class label

i.e. $C \in \{c_0, c_1\}$ for the binary case

Bayes' Decision Rule:

choose the most probable class given the data

If
$$P(C_i=c_1|X_i)>P(C_i=c_0|X_i)$$
 then $\hat{y}=c_1$ otherwise $\hat{y}=c_0$

- If the distributions are correct, this decision rule is optimal
- Rarely do we have enough information to use this in practice

Classification feature space

Bayes Decision Boundary

Decision Boundary Examples

Linear Classifier

Decision Tree

K=1 Nearest Neighbor

Bias Variance Tradeoff

higher variance overfit

Bias Variance Tradeoff

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

Problem

Too much flexibility leads to overfit

Too little flexibility leads to underfit

Over/underfit hurts generalization performance

Solutions for overfitting

- 1. Add more data for training
- 2. Constrain model flexibility through regularization
- 3. Use model ensembles