Ames Housing Project

By: Team Lollapalooza

Problem Statement

- Our client, a real estate consultant based in Ames, Iowa, provides their clients with building recommendations to increase the value of their clients' properties.
- They have approached us in hopes of applying a data-driven approach to improve their methodology.
- Breaking this request into two parts:
 - 1. How can we reliably predict property prices?
 - 2. What are the most impactful features can we improve or add, to increase the value of the property?

Workflow

- 1. Data cleaning
 - a. Numericization
 - b. Removal of outliers
 - c. Inclusion / exclusion of variables
- 2. Exploratory Data Analysis
 - a. Data visualization
 - b. Feature selection
 - c. Feature engineering
- 3. Model evaluation
 - a. Baseline model
 - b. Comparative evaluation
- 4. Identify features that provides greatest increase in property values.
 - a. Coefficient comparison
- 5. Conclusion & Recommendation

Data Cleaning

```
# all can change to 0
train[cont_vars_na] = train[cont_vars_na].fillna(0)

# all can change to MA
train[ordinal_vars_na] = train[ordinal_vars_na].fillna('NA')

# all change to MA except Mas Vnr Type to Mone, 4 vars with null values
for var in nominal_vars_na:
    if var == 'Mas Vnr Type':
        train[var] = train[var].fillna('None')
    train[var] = train[var].fillna('NA')
```

Fig.1. Code snippet that impute missing values

Impute the missing values for the continuous, nominal and ordinal features

```
# Overall Qual, Overall Cond already in int datatype
# so only need to convert for the rest of ordinal variables
# NA is assigned to 0
def convert ordinal features(df, features):
    for feature in features:
        if feature - 'Lot Shape':
            df[feature] = df[feature].map(('IR)':1, 'IR2':2, 'IR1':3, 'Reg':4))
        elif feature - 'Exter Qual' or feature -- 'Heating QC' or feature -- 'Kitchen Qual':
            df[feature] = df[feature].map(('Po':1, 'Fa':2, 'TA':3, 'Gd':4, 'Ex':5))
        elif feature -- 'Bant Qual' or feature -- 'Fireplace Qu's
            df[feature] = df[feature].map(('NA':0, 'Fo':1, 'Fa':2, 'TA':3, 'Gd':4, 'Ex':5))
        elif feature - 'Bast Exposure's
            df[feature] = df[feature].map(('NA':0, 'No':1, 'Nn':2, 'Av':3, 'Gd':4))
        elif feature - 'BastFin Type 1':
            df[feature] = df[feature].map({'NA':0, 'Unf':1, 'LwO':2, 'Rec':1, 'BLO':4, 'ALO':5, 'GLO':6))
        elif feature - 'Garage Finish':
            df[feature] = df[feature].map({'NA':0, 'Unf':1, 'RFn':2, 'Fin':3})
```

Fig. 2. Code snippet that convert values of ordinal features to numerical

 Convert value of ordinal features to numerical values

Data Cleaning: Numericizing Values

Old Column Data	New Column Data	Description
Ex	5	Excellent
Gd	4	Good
TA	3	Average/Typical
Fa	2	Fair
Po	1	Poor
nan	0	No (Feature)

Old Column Data	New Column Data	Description (Home Functionality)
Тур	8	Typical Functionality
Min1	7	Minor Deductions 1
Min2	6	Minor Deductions 2
Mod	5	Moderate Deductions
Maj1	4	Major Deductions 1
Maj2	3	Major Deductions 2
Sev	2	Severely Damaged
Sal	1	Salvage only

Before:

- 1. Values have ordinal nature
- 2. Values makes sense to humans who know English
- Some values missing

After:

- 1. Values retain ordinal nature
- 2. Values makes sense to computers
- 3. Missing value replaced with '0' to depict an absence of the variable

Limitation: Fair isn't necessarily twice as impactful as Poor

Data Cleaning: Single Column Dummification Proper

No. of Observation	Old Column Data	New Column Data	Description (Misc. Feature)
56	Shed	1	Shed (100+ sqft)
4	Gar2	1	2nd Garage
3	Othr	1	Others
1	TenC	1	Tennis Court
0	Elev	1	Elevator
1,987	nan	0	No Misc. Feature

Proportion of observations with Misc. Features: 3.1%

Pros:

- 1. Better categorization
- 2. Retention of variable

Cons:

- 1. 'Surprise' miscellaneous feature
- 2. May not be useful in either form

EDA: House Sale Prices in Ames

EDA: Crucial Removal of Outliers

 Property Zones are based on city plans

 Land appropriated for housing purposes are valued higher

Observation 2: Neighborhood Matters Too!

- The **neighborhood** a property belongs to plays a significant role in the sale price

Some Variables are Negatively Correlated

- Negatively correlated variables are also present
- Smaller units like shoebox units in expensive areas can command an inherent premium
- Older houses are generally cheaper

Observation: Volatility in Sale Price

- We observe volatility in sale price per lot area of properties but there is no distinguishable trend
- This debunks the myth that 'house prices always rise'
- Seasonality of sale price per square footage may not be a reliable indicator

Most Variables are Positively Correlated

- Most variables are positively correlated, eg. higher quality or size of property feature -> higher property value / sqft
- However, some variables are more strongly correlated than others

Feature Selection – Continuous/Discrete

Fig.3. Continuous features that are correlated with Sale Price

Fig.4. Collinearity between Continuous features

- Pair plots are used to find the correlation between continuous/discrete relationship
- Collinearity between continuous features can be removed
- Reduced down to 2 continuous features:
 Total Bsmt and Gr Liv Area

Feature Selection - Continuous/Discrete

Fig.11. Collinearity between Continuous features

- Pair plots are used to find the correlation between continuous/discrete relationship
- Collinearity between continuous features

Feature Selection - Continuous/Discrete

Fig. 12. Continuous features that are correlated with Sale Price

- Pair plots are used to find the correlation between continuous/discrete and target feature,
 SalePrice
- Total Bsmt SF and Gr Liv Area correlated with SalePrice

Feature Selection - Nominal

Fig.13. Nominal features with overwhelming occurrence of a single category

Bar charts used to visualize nominal features with a single category > 80% occurrence

Feature Selection - Ordinal

 Bar charts used to visualize ordinal features with a single category > 80% occurrence

 Pair plots are used to find the correlation for ordinal features after converted to numerical values

Fig.15. Ordinal features that are correlated with Sale Price

Feature Engineering - Nominal

- Nominal features with more than 15 categories are split into 3 sub-classes
- The split is based on the median Sale price into 'high', 'mid' and 'low'

Fig.16. Nominal features with more than 15 categories group into sub-classes

Feature Selection – Nominal Features

Fig.5. Nominal features with overwhelming occurrence of a single category

Fig.6. Nominal features without overwhelming occurrence of a single category

- Bar charts used to visualize nominal features with a single category > 80% occurrence
- · Reduced to 11 nominal features

Feature Engineering – Nominal Features

- Nominal features with more than 15 categories are split into 3 sub-classes
- The split is based on the median Sale price into 'high', 'mid' and 'low

Fig.6. Nominal features with more than 15 categories group into sub-classes

Feature Selection – Ordinal Features

- Bar charts used to visualize ordinal features with a single category > 80% occurrence
- Reduced to 11 ordinal features

Fig.7. Ordinal features with overwhelming occurrence of a single category

Fig.8. Ordinal features that are correlated with Sale Price

- Pair plots are used to find the correlation for ordinal features after converted to numerical values
- Further reduced to 5 ordinal features

Model Evaluation – Root Mean Square Error (RMSE)

Table 1. Table of comparison for different regression models

	Description	Hyperparameter	Number of Features	CV RMSE	Kaggle RMSE
Model 1	Linear Reg.	-	2	49996.5	46816.5
Model 2	Linear Reg.	-	85	34992.9	35610.1
Model 3	Ridge Reg.	alpha = 26	85	34541.8	34482.2
Model 4	Lasso Reg.	alpha = 97.7	38	34328.9	34264.7
Model 5	ElasticNet Reg.	alpha – 0.02, l1_ratio = 0.3	85	34546.9	34441.8

- Lasso Regression model has the best predictive performance in terms of RMSE
- · Used lesser features than other models

Model No.	Model Used	Alpha	L1 Ratio	No. of Features	CV RMSE	Kaggle RMSE
1	Linear Regression	n/a	n/a	2	49,997	46,817
2	Linear Regression	n/a	n/a	85	34,993	35,610
3	Ridge Regression	26	n/a	85	34,542	34,482
4	Lasso Regression	97.7	n/a	38	34,329	34,265
5	Elastic Net Regression	0.02	0.3	85	34,547	34,442

Initial Model Selected: Lasso Model

- Lowest RMSE
- Lowest No. of Features Used

 Lasso model has 0 coefficient for some of the MS Zone and Neigborhood features

Model No.	Model Used	Alpha	L1 Ratio	No. of Features	CV RMSE	Kaggle RMSE
1	Linear Regression	n/a	n/a	2	49,997	46,817
2	Linear Regression	n/a	n/a	85	34,993	35,610
3	Ridge Regression	26	n/a	85	34,542	34,482
4	Lasso Regression	97.7	n/a	38	34,329	34,265
5	Elastic Net Regression	0.02	0.3	85	34,547	34,442

Final Model Selected: Elastic Net

- Inclusion of Important Variables
- Good tradeoff against less features and greater accuracy

(RMSF)

Table 1. Table of comparison for different regression models

	Description	Hyperparameter	Number of Features	CV RMSE	Kaggle RMSE
Model 1	Linear Reg.	-	2	49996.5	46816.5
Model 2	Linear Reg.	-	85	34992.9	35610.1
Model 3	Ridge Reg.	alpha = 26	85	34541.8	34482.2
Model 4	Lasso Reg.	alpha = 97.7	38	34328.9	34264.7
Model 5	ElasticNet Reg.	alpha = 0.02, l1_ratio = 0.3	85	34546.9	34441.8

ElasticNet model chosen

How well is did our model predicting sale price?

Estimate of Model Performance

Model	Hyperparams	Num Features	Train RMSE	Holdout RMSE
OLS (1 Feature)	Ε)	1	56210	58465
OLS (All Features)	-1	199	24079	30629
Ridge	Alpha=327	199	26526	30604
Lasso	Alpha=893	66	27160	30842
ElasticNet	Alpha=0.64 ratio=0.5	77	27766	28643

Optimum Model

Model Evaluation – Top 10 features

Fig.9. Top 10 features that affect the Sale Price

Baseline Model

Train/Test	Metric	Result
Train	R^2	0.126
Test	R^2	0.116
Train	Cross Val Score ${\it I\!\!R}^2$	0.104
Train	RMSE	\$74,194
Test	RMSE	\$74,047

We create a baseline model based only on one variable: lot area.

This variable is used as it is the default variable to use in assessing a property.

Low R² and High Root Mean Squared Error suggests that this baseline model has a very limited predictive power.

Elastic Net Model (Numeric Categories)

Train/Test	Metric	Result
n/a	alpha	87.625
n/a	L1 Ratio	1.0
Train	R^2	0.867
Test	R^2	0.868
Train	RMSE	\$28,975
Test	RMSE	\$28,585

We ran a elastic net model based only on numeric categories such as Garage Area and Lot Area.

The main purpose is to see whether there is a clear preference towards one type of penalization as opposed to the other.

Result: Enet model with large alpha range (1 to 100) suggests that a Lasso Model is more appropriate.

Lasso Model 1: 11 Variables model of both quantitative and qualitative features.

Train/Test	Metric	Result
n/a	alpha	1.0
Train	R^2	0.883
Test	R^2	0.872
Train	RMSE	\$27,175
Test	RMSE	\$28,156

Observations:

- Inclusion of qualitative features provide greater predictive power.
- 2. Feature selection allows us to have a better model even with lower number of variables.

Target RMSE: \$32,044

Variables Used: Neighborhood, Total Living Area, Overall Quality, Total Bsmt SF, House Age, Property SubClass, Garage Area, Lot Area, External Quality, 1st Floor Exterior, Heating Type

Metric	Result	_1
alpha	1.0	
R^2	0.883	
R^2	0.872	
RMSE	\$27,175	
RMSE	\$28,156	
	alpha R^2 R^2 RMSE	alpha 1.0 R^2 0.883 R^2 0.872 RMSE \$27,175

irain/iest	Metric	Result
n/a	alpha	0.001
Train	R^2	0.868
Test	R^2	0.856
Train	RMSE	\$28,815
Test	RMSE	\$29,894

Lasso model based on a subset of variables used in Lasso Model 1

Trade-off between bias and variance

Although we get a lower predictive value, the decrease of more than $\frac{1}{3}$ of variables may be worth it.

Target RMSE: \$31, 962

Lasso Model 1: 11 Variables

Lasso Model 2: 7 Variables

Variables Used: Neighborhood, Total Living Area, Overall Quality, Total Bsmt SF, House Age, Property SubClass, Garage Area, Lot Area, External Quality, 1st Floor Exterior, Heating Type

Limitations

- Cannot take into consideration time as a factor if we want to recommend as investment
- Does not factor in inflation

Conclusion

- Lasso regression has the best predictive performance among the models with 50% reduction in the number of features with RMSE of ~34K
- The Lasso regression model produce a set of coefficients for the respective features
- The top 3 features that will influence the price are location of the house, the total area of house and the overall quality of the house
- With a set of features, the model is able to predict the price of a house

Conclusion

- 1. Only using Lot Area as a measure of Sale Price is insufficient.
- 2. Mix of quantitative and qualitative variables perform better due to the premiums associated with the qualitative variables not captured in quantitative variables.
- 3. Using less variables may be worth it: targets high-value variables and reduces noise in the predictive model
- 4. While this model is significantly better than the baseline, we can improve with more data. Some recommended data to obtain:
 - a. Neighborhood school zone
 - b. HOA fees
 - c. Neighborhood crime rate
 - d. Access to services (banks, supermarkets, etc)
 - e. Access to highways and other public services

Recommendation

