PRC 2009 — Resumo de Aula Camada de Aplicação — Protocolos HTTP e FTP

A camada de Aplicação

- Aplicação é o objetivo final das redes. Foram as aplicações criativas que motivaram o aparecimentos das redes desde os anos 80
 - texto e dados (telnet, e-mail, ftp, etc ...)
 - mensagens instantâneas, chat
 - compartilhamento de arquivos
 - multimedia (www, telefonia IP, telefonia via internet, audio/vídeo armazenado e em audio/vídeo em tempo real, videoconferência.
 - algumas vantagens
- Arquiteturas das aplicações
- Arquitetura Cliente Servidor.
 - A maioria das aplicações tem essa arquitetura. O cliente inicia o processo.
 - Exemplos: WEB (há o processo cliente=browser e o processo servidor=servidor de páginas), Telnet (login remoto), transferência de arquivos, e-mail
- Arguitetura P2P Peer-to-Peer (Par a Par)
 - Não há uma hierarquia. Ambos os lados podem iniciar o processo.
 - Intrinsecamente escalável
 - Exemplos: GNUTELLA compartilhamento de arquivos e códigos fonte abertos
- Arquitetura Mixta CS e P2P
 - Em geral, o processo se inicia com CS e depois passa a P2P. Há um servidor central para o estabelecimento da conexão e depois os dados são trocados diretamente entre cada par.
 - Exemplos: Napster (não tem mais), Mensagem instantânea (MSN, Yahoo Messenger, etc.), Skype

- Requisitos da camada de transporte para a camada de aplicação
 - a camada de transporte é acessada através de APIs (Application Program Interface) que na internet tem o nome de Socket
 - a aplicação precisa ser analisada segundo 3 características: perda de dados (algumas podem perder um pouco e outras não), tempo de resposta (algumas são mais tolerantes) e velocidade (algumas precisam uma velocidade mínima garantida)
 - O que é oferecido?
 - TCP mecanismo de controle de fluxo e congestionamento
 - Garantia de entrega dos pacotes
 - Não garante atrasos (tempo de resposta)
 - Não garante velocidade mínima
 - UDP não tem mecanismos de controle de fluxo e congestionamento
 - Não garante nada nem entrega, nem atraso e nem velocidade mínima
 - É mais eficiente
 - Nem TCP nem UDP oferecem velocidade mínima
 - Aplicações que precisam de velocidade mínima (voz e vídeo) não podem rodar na Internet?
 - Podem basta haver tolerância do usuário

- A WEB e o HTTP (versões 1.0 e 1.1)
 - Lado cliente (browser) e lado servidor (web browser)
 - Página WEB formada por objetos (textos, imagens JPEG, GIF)
 - Em geral: um arquivo base HTML e diversos outros objetos referenciados por este HTML
 - Uma pequena história dos browsers (1992-1998)
 - Netscape vs Internet Explorer
 - O protocolo HTTP (versão 1.0 RFC 1945 e versão 1.1 RFC 2616)
 - Usa o TCP como transporte
 - sem estado
 - persistente (vários objetos são solicitados pelo browser dentro da mesma conexão TCP) e não persistente
 - persistente com e sem paralelismo. Com paralelismo, quando um objeto é solicitado pelo browser sem que o anterior ainda tenha chegado
 - default no http 1.1 persistente e com paralelismo

- As mensagens HTTP
 - Mensagens de requisição de páginas e de resposta à requisições
 - Formato (Método; URL e parâmetros)
 - Métodos
 - GET requisita página (o mais comum)
 - POST envia também os dados digitados pelo usuário (formulário)
 - HEAD igual ao GET mas não devolve o objeto usado para depuração
 - Outros métodos no http/1.1
 - Mensagens de resposta (versão http, Código de retorno, parâmetros e a página)
 - Protocolo baseado em mensagens de texto claras e possíveis de serem lidas no vídeo
 - Quem tentou um telnet na porta 80?
 - >telnet www.ime.usp.br 80
 - GET /~mms/mac4481s2009/mac4481s2009.html HTTP/1.0 <enter>
 - Host: www.ime.usp.br
 - <enter>
 - Substitua GET por HEAD
 - Requisite uma página inválida
- Outros usos do http
 - Usado também para transferir dados de um servidor para um cliente.
 - Cliente não necessariamente um Browser.
 - Dados XML, VoiceXML, etc.

- Identificação ou autenticação de usuários no protocolo HTTP
 - Cookies RFC 2109
 - Maneira de associar um usuário a um site. O site fica sabendo toda vez que este usuário o acessa.
 - Quando um usuário acessa um site, recebe a resposta com o parâmentro:
 - Set-cookie: 156478 (número de identificação)
 - O cliente recebe e armazena essa identificação junto com seu arquivo de controle dessa página. Toda vez que esse usuário acessa novamente esse site, envia o parâmetro:

• Cookie: 156478

- Uma maneira fraca de identificação, mas considerando que o http é stateless isso funciona.
- Problema violação de privacidade

CACHE

- Web caches = proxy servers
 - mantém cópia dos objetos recentemente requisitados
 - o próprio browser tem um primeiro nível de cache
 - o próximo nível é o servidor de cache da rede
 - O servidor de cache é servidor e cliente, pois caso não tenha o elemento requisitado ele próprio requisita o mesmo
 - vantagens (tempo de resposta e redução do tráfego)
- Vários tipos
 - sofisticados e caros
 - simples e baratos (alguns rodam num PC e são software free)
- Hierarquia de caches (mais de 1 nível)
- CDN Content Delivery Network
 - Rede de Distribuição de Conteúdo baseada em servidores de conteúdo distribuidos, de forma que o ususário possa acessar o mais próximo
 - Solução para distribuição de vídeo sob demanda
 - Exemplo: block buster sem loja
 - É uma solução em busca de um problema
 - Não há demanda ainda para este tipo de serviço e a solução ficou apenas na tentativa e com um monte de investimento perdido.

- O comando GET condicional
 - atributo if-modified-since no GET
 - resposta com a página ou com mensagem: 304 Not Modified
 - Mecanismo:
 - Browser consulta pela primeira vez uma página.
 - Envia ao servidor cache que não tem a página e portanto solicita a mesma a frente.
 - Servidor cachê recebe página com parâmetro:
 - Last-Modified: Wed, 16 Ago 2008 04:05:33
 - Próxima solicitação desta página o servidor cachê envia o parâmetro
 - If-Modified-Since: Wed, 16 Ago 2008 04:05:33
 - Se não houve modificação após essa data, o servidor não envia a página e sim apenas os cabeçalhos

O Protocolo FTP – File Transfer Protocol – RFC 959

- protocolo para transferência de arquivos
- guarda o estado do usuário (diretórios local e remoto, user/psw)
- usa 2 portas lógicas
 - porta 21 comandos persistente
 - porta 20 dados não persistente (sessão a cada arquivo)
- o formato é totalmente texto, como no HTTP
- Existem variações descritas em outras RFCs
 - para garantir maior segurança (criptografia e outros) alguns protocolos devirados apareceram: SFTP (secure FTP) por exemplo

- Aplicações de FTP
 - ativadas pelo usuário
 - versão de texto
 - ftp ftp.ime.usp.br (acesso ao site ftp do ime)
 - versão gráfica veja ssh SFTP
 - O protocolo FTP pode ser usado para construir outras aplicações que envolvem transferência de dados em geral e que rodam automaticamente a medida que os dados vão sendo criados, por temporização, etc ...
 - Exemplo: coletor de dados. A cada 1 hora por exemplo, abre uma sessão FTP com o servidor e transfere os dados coletados até o momento.