

Towards Fusion of Semantic Knowledge into Deep Learning Models

Neural-Symbolic Systems: Brief Overview and Ongoing Work

M. Ebrahimi (WSU)

What is Multimodal Machine Learning? II.

- J. Francis (CMU & Bosch)
- III. Multimodal Sense-making: a Natural Ground for Neural Symbolic Systems
- A. Oltramari (Bosch)

- **Discussion** IV.
 - **Questions/Comments**
 - "I am working on it!" Share your experience in 60 seconds B.

Neural-Symbolic Systems: Representation and Reasoning Approaches

Monireh Ebrahimi

Data Semantics Laboratory (DaSe Lab)
Wright State University

Advisor: Dr. Pascal Hitzler

Why Neuro-Symbolic? Neural Approaches

X Not created for injection of domain knowledge

Requires large amounts of data for training

Really poor on handling new data/vocabulary/domain

Why Neuro-Symbolic?

Symbolic systems:

- **X** Poor at machine learning problems
- X Sensitive to noise
- ✓ Explainable and understandable
- ✓ Really good at working with symbolic data
- ✓ Easy background knowledge injection
- ✓ No training is required
- ✓ Transferable to new data/vocabulary/domain in the same logic

Why Neuro-Symbolic?

Neuro-Symbolic systems:

- ✓ More explainable and understandable
- ✓ Easy domain knowledge injection
- ✓ Good at working with symbols

Neuro-Symbolic Gap?

• Neural-Symbolic gap:

ssc

- Neural learners use numerical low level representations
- Symbolic reasoners use atomic symbolic representations

- How to do that?
 - Representation?
 - Reasoning Approach?

Neuro-Symbolic RDF Reasoning: Current Approaches

• How can we represent the RFDS logic symbols in a way that it can fed to neural learners?

- Graph embedding approaches for link prediction problem
 - knowledge base completion is the most relevant effort for bridging this gap

Knowledge Graph Reasoning: Current Approaches (Representation)

Embedding of knowledge graphs:

ssc

- Translational distance models:
 - TransE: $h + r \approx t$
 - Maximizing $f_r(h,t)$ for the KG facts
 - Does not support n-ary relationships
 - TransH, TransR, TransD
- Semantic Matching models:
 - Maximizing $f_r(h,t) = h^t M_r t$ for the KG facts
 - M_r is relation adjacency matrix
 - RESCAL, DistMult, ComplEx, HOPE
 - High-Order Proximity preserved Embedding (HOPE)

Knowledge Graph Reasoning: Current (Approaches)

Neural Tensor Networks

- The Neural Tensor Network(NTN), replaces a standard linear neural network layer with a tensor layer
- The model computes the score of how likely it is that two entities are in a certain relationship by the following NTN based function: $g(e_1, R, e_2)$

Knowledge Graph Reasoning: Current (Approaches)

Neural Tensor Networks

Neuro-Symbolic RDF Reasoning: Current Approaches

• RDF embedding Techniques:

- Graph Kernels for RDF:
 - intersection graph kernel
 - intersection tree kernel
 - Weisfeiler-lehman graph kernels
 - h-hop neighbourhood-based graph kernel for LOD
- 2vec RDF embedding:
 - o RDF2vec

Neuro-Symbolic Reasoning: Current Approaches

Neuro-Symbolic Reasoning: Current Approaches

Recursive Reasoning Network (RRN):

P. Hohenecker and T. Lukasiewicz/Ontology Reasoning with Deep Neural Networks

Problem with Previous Works

- What you'd really like to do is:
 - Train a deep learning system so that you can present a new, unseen graph to it, and it can correctly derive the deductively inferred triples.
- Note:
 - You don't know the IRIs in the graph up front. The only overlap is the IRIs in the rdf/s namespace.

Issues?

Out-of-Vocabulary Problem

• Reasoning based on the **similarity/relatedness** and geometric-based proximity of real-valued vectors as opposed to deductive reasoning

Error 404: Word not found

RDFS Deductive Reasoning via Deep Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, Pascal Hitzler

Under Review

Idea overview

Classification model:

Approach: Why Memory Networks?

- Temporal Structure
- **─**

RNN

Spatial Structure

- Out of order access
- Long-term dependency
- Unordered set

• E.g., question answering on story ______ Memory Networks

What is Memory Network?

End to end memory networks (Memn2n)

- Neural network model with external memory
- Reads from memory with soft attention (as opposed to hard attention in memory networks)
 - Multiple hops/lookups over memory
- End to end training using back-propagation

Representation

Normalization of vocabulary

Embeddings A

Representation

Query Representation:

Same normalization

Mechanics

$$o = \sum_{i} p_i c_i$$

$$p_i = Softmax(u^T(m_i))$$

Dot product

Weighted Sum

Softmax

Model

Dataset	Ontologies
	Amino Acid Ontology schema, Biological Pathway Exchange (BioPAX) schema, COmmon Semantic MOdel (COSMO),
	dbpedia-schema, Descriptions and situation, Disease, Dolce, Dublin_core schema, Gene, General formal ontology (GFO),
OWL-Centric	Human Phenotype, Institutional Ontology, Metadata for Ontology Description and publication,
	Ontology for Biomedical Investigations, Phenotypic quality, Schema.org, University of Lehigh benchmark,
	Xenopus anatomy and development, Yet Another More Advanced Top-level Ontology (YAMATO).
7	AGROVOC Linked Dataset, Amsterdam Museum Linked Open Data, The Apertium Bilingual Dictio- naries on the Web of
Linked Data	Data, A Curated and Evolving Linguistic Linked Dataset (Asit), EARTh: an Environmental Application Reference Thesaurus
Linked Data	in the Linked Open Data Cloud data, lemonUby - a large, interlinked, syntactically-rich lexical resource for ontologies,
	Linked European Television Heritage data, Linked Web APIs Dataset: Web APIs meet Linked Data.
×	Animal Health Surveillance Ontology, Cryptographic ontology of Semantic interoperability for rapid integration and deployment,
	Drug Abuse Ontology, Drug target ontology, General Ontology for Linguistic Description (GOLD), Identification ontology,
OWL-Centric Test Set	Inline Hockey League pattern ontology, Knowledge processing ontology for Robots, Minimal category of list ontology,
	Provenance and Plans ontology, SAREF: the Smart Appliances REFerence ontology,
	Tatian Corpus of Deviating Examples (T-CODEX) ontology

Table 1: List of ontologies used to create our datasets

Test Dataset	#KG		av .	В	F 15	8	Inferred									
lest Dataset	#KG	#Facts	#Ent.	%Class	%Indv	%R.	%Axiom.	#Facts	#Ent.	%Class	%Indv	%R.	%Axiom.	#Facts		
OWL-Centric	2464	996	832	14	19	3	0	494	832	14	0.01	1	20	462		
Linked Data	20527	999	787	3	22	5	0	124	787	3	0.006	1	85	124		
OWL-Centric Test Set	21	622	400	36	41	3	0	837	400	36	3	1	12	476		
Synthetic Data	2	752	506	52	0	1	0	126356	506	52	0	1	0.07	700		

Table 2: Statistics of various datasets used in experiments

Results

Training Dataset	Test Dataset	V	alid Triples Cl	ass	In	Accuracy		
Training Dataset	Test Dataset	Precision	Recall /Sensitivity	F-measure	Precision	Recall /Specificity	F-measure	Accuracy
OWL-Centric Dataset	Linked Data	93	98	96	98	93	95	96
OWL-Centric Dataset (90%)	OWL-Centric Dataset (10%)	88	91	89	90	88	89	90
OWL-Centric Dataset	OWL-Centric Test Set b	79	62	68	70	84	76	69
OWL-Centric Dataset	Synthetic Data	65	49	40	52	54	42	52
OWL-Centric Dataset	Linked Data ^a	54	98	70	91	16	27	86
OWL-Centric Dataset ^a	Linked Data ^a	62	72	67	67	56	61	91
OWL-Centric Dataset(90%) a	OWL-Centric Dataset(10%) a	79	72	75	74	81	77	80
OWL-Centric Dataset	OWL-Centric Test Set ab	58	68	62	62	50	54	58
OWL-Centric Dataset ^a	OWL-Centric Test Set ab	77	57	65	66	82	73	73
OWL-Centric Dataset	Synthetic Data ^a	70	51	40	47	52	38	51
OWL-Centric Dataset ^a	Synthetic Data ^a	67	23	25	52	80	62	50
	a .	В	aseline	10	×	For		
OWL-Centric Dataset	Linked Data	73	98	83	94	46	61	43
OWL-Centric Dataset (90%)	OWL-Centric Dataset (10%)	84	83	84	84	84	84	82
OWL-Centric Dataset	OWL-Centric Test Set b	62	84	70	80	40	48	61
OWL-Centric Dataset	Synthetic Data	35	41	32	48	55	45	48

^a More Tricky Nos & Balanced Dataset

Table 3: Experimental results of proposed model

^b Completely Different Domain.

Results

Test Dataset	1	Hop 0			Hop 1			Hop 2			Hop 3			Hop 4			Hop 5			Hop 6			Hop 7			Hop 8	3	1	Hop 9)	I	Top 1	0
Test Dataset	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
Linked Data ^a	0	0	0	80	99	88	89	97	93	77	98	86	2	-	-	2	-	-	-	-	-	-		1	-	2	2	- 3	2	-	-	-	2
Linked Datab	2	0	0	82	91	86	89	98	93	79	100	88	7.0	15	853	70	8	35 7 3	8570	7	.7.0	e37.8	ā:	17	273	7.0	15	35733	7.0	75		8370	- Ti
OWL-Centric c	19	5	9	31	75	42	78	80	78	48	47	44	4	34	6	70				-		· *		4	3#3	78	7		78	-			7
Synthetic	32	46	33	31	87	38	66	55	44	25	45	32	29	46	33	26	46	33	25	46	33	25	46	33	24	43	31	25	43	31	22	36	28

a LemonUby Ontology

Table 4: Experimental results over each reasoning hop

Dataset	Hop 1	Hop 2	Hop 3	Hop 4	Hop 5	Hop 6	Hop 7	Hop 8	Hop 9	Hop 10
OWL-Centric ^a	8%	67%	24%	0.01%	0%	0%	0%	0%	0%	0%
Linked Data ^b	31%	50%	19%	0%	0%	0%	0%	0%	0%	0%
Linked Data ^c	34%	46%	20%	0%	0%	0%	0%	0%	0%	0%
OWL-Centric ^d	5%	64%	30%	1%	0%	0%	0%	0%	0%	0%
Synthetic Data	0.03%	1.42%	1%	1.56%	3.09%	6.03%	11.46%	20.48%	31.25%	23.65%

^a Training Set

Table 5: Data distribution per knowledge graph over each reasoning hop

b Agrovoc Ontology

^c Completely Different Domain

^b LemonUby Ontology

^c Agrovoc Ontology

^d Completely Different Domain

PCA projection of embeddings for the whole general vocabulary

rdf:first

rdfs:label

-5

rdf:nil

0

-5

-10

5

10

rdf:list

rdf:property

15

tsne projection of embeddings for the whole general vocabulary

Summary of Contributions

- 1. Construction of memory networks for emulating the symbolic deductive reasoning.
- 2. Using normalization approach to enhance their transfer capability. We examine the efficacy of our model for cross-domain and cross-knowledge graph deductive reasoning.

Current & Future Work

ER Logic:

$$C \sqsubseteq D \longrightarrow P1 CD$$
 $C1 \sqcap C2 \sqsubseteq D \longrightarrow P2 C1 C2 D$ $C \sqsubseteq \exists R.D \longrightarrow P3 C R D$

$$\exists R.C \sqsubseteq D \longrightarrow P4 R C D R1 \sqsubseteq R \longrightarrow P5 R1 R R1 \circ R2 \sqsubseteq R \longrightarrow P6 R1 R2$$

R

Completion Rules:

$$(1) C \sqsubseteq D, A \sqsubseteq C \qquad |= A \sqsubseteq D$$

(2) C1
$$\sqcap$$
 C2 \sqsubseteq D, A \sqsubseteq C1, A \sqsubseteq C2 \models A \sqsubseteq D

$$(3) C \sqsubseteq \exists R.D, A \sqsubseteq C$$
 $\models A \sqsubseteq \exists R.D$

(5)
$$R \sqsubseteq S$$
, $A \sqsubseteq \exists R.B$ $|= A \sqsubseteq \exists S.B$

(6) R1
$$\circ$$
 R2 \sqsubseteq R, A \sqsubseteq 3 R1.B, B \sqsubseteq 3 R2.C \models A \sqsubseteq 3 R.C

