NLP 大作业——LDA 模型

学院: 自动化科学与电气工程学院 姓名: 王明贤 学号: ZY2103526

一、LDA 模型简介

在文本挖掘领域中大量的数据都是非结构化的,难以从信息中直接获取相关和期望的信息。主题模型(Topic Model)能够识别在文档里的主题,并且挖掘语料里隐藏信息,在主题聚合、特征选择等场景有广泛的用途。

LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。

所谓生成模型,就是说,我们认为一篇文章的每个词都是通过"以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语"这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。

LDA 采用了"词袋"的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是没有考虑词与词之间的顺序,这简化了问题的复杂性。每一篇文档代表了一些主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。

图 1 LDA 模型

1.按照先验概率 $P(d_i)$ 选择一篇文档 d_i

- 2.从狄利克雷分布 α 中取样生成文档 d_i 的主题分布 θ_i
- 3.从主题的多项式分布 θ_i 中取样生成文档 d_i 第 j 个词的主题 $z_{i,j}$
- 4.从狄利克雷分布 β 中取样生成主题 $z_{i,j}$ 对应的词语分布 $\phi_{z,j}$
- 5.从词语的多项式分布 ϕ_{x_i} ,中采样最终生成词语 $w_{i,j}$

二、问题描述与分析

1.问题描述:

从给定的语料库中均匀抽取 200 个段落(每个段落大于 500 个词),每个段落的标签就是对应段落所属的小说。

利用 LDA 模型对于文本建模,并把每个段落表示为主题分布后进行分类。 验证与分析分类结果。截至日期: 5月6日晚12点前

2.问题分析

整个问题包含三个部分: 段落抽取、LDA 模型训练、分类器训练。

段落抽取通过均匀抽取的办法可以实现,这里选取五本小说各抽取四十个段落。LDA模型训练采取初始化各参数后,吉布斯采样逼近所求分布的办法。

吉布斯采样(Gibbs Sampling)首先选取概率向量的一个维度,给定其他维度的变量值当前维度的值,不断收敛来输出待估计的参数。具体地

- 1.随机给每一篇文档的每一个词 w, 随机分配主题编号 z
- z_i 下出现字w的数量,以及每个文档n中出现主题 z_i 中的词w的数量
- 3.每次排除当前词 w 的主题分布 z_i ,根据其他所有词的主题分类,来估计当前词 w 分配到各个主题 $z_1, z_2, z_3, ..., z_k$ 的概率,即计算 $p(z_i | z_{-i}, d, w)$ (Gibbs updating rule)。得到当前词属于所有主题 $z_1, z_2, z_3, ..., z_k$ 的概率分布后,重新为词采样一个新的主题。用同样的方法不断更新的下一个词的主题,直到每个文档下的主题分布和每个主题下的词分布收敛。

4.最后输出待估计参数,每个单词的主题也可以得到。

在大量的迭代后,主题分布和字分布都比较稳定也比较好了,LDA 模型收敛。

最终根据训练得到段落主题分布的向量训练分类器,本文中采用 SVM 进行分类。Skleam 中 OvR 为每一个类别配备一个分类器,是目前最常用的一种多类分类策略。

三、算法设计

该问题是一个混合高斯模型求解问题,可以使用 EM 算法估计隐含量。

图 2 方案流程图

如图 1 所示,该算法分为以下 3 步:

- (1) 段落生成:文本读取、分词预处理、均匀提取段落
- (2) LDA 模型训练:参数随机初始化、吉布斯采样更新迭代参数、计算困惑度
- (3) 分类器训练: 划分训练集测试集、训练 SVM 分类器、评估模型

四、运行结果

1.运行结果

本实验选取倚天屠龙记 0、天龙八部 1、射雕英雄传 2、神雕侠侣 3、笑傲江湖 4 进行实验,每本小说各均匀抽取 40 段,每段 500 词。

图 3 困惑度下降趋势

可以看出,在迭代100次后训练基本收敛。

表 1 各主题前十高频词

Topic1	弟子	令狐	长剑	剑法	甚么	教主	众人	岳不	兵刃	跟着
		冲						群		
Topic2	张无	说道	张翠	今日	少林	谢逊	大师	少林	咱们	冷笑
	忌		Ш					寺		
Topic3	说到	不是	只是	师傅	心中	知道	出来	一个	如此	怎么
Topic4	汉子	萧峰	兄弟	一个	向问	少年	之中	向来	无法	大哥
					天					
Topic5	杨过	小龙	武功	此时	却是	如何	少女	两个	弟子	只是
		女								
Topic6	郭靖	黄蓉	师父	黄药	洪七	周伯	甚么	欧阳	欧阳	梅超
				师	公	通		锋	克	风
Topic7	令狐	一个	你们	我们	左冷	自己	二人	正是	说道	当下
	冲				禅					
Topic8	只见	一个	声响	段正	不见	下来	老者	几个	登时	段誉
				淳						
Topic9	自己	一声	身子	突然	右手	之下	内力	胸口	对方	敌人
Topic10	蒙古	英雄	郭靖	王语	一条	突然	慕容	襄阳	星宿	今日

嫣	复

从最终训练得到的主题高频词中可以看出,对部分主题学习的效果较好,但 是也出现了很多常用词,不能体现具体主题内容,如果对这类没有特点的词进行 限制将得到更好的结果。

表 2 SVM 分类器结果

小说	0	1	2	3	4
正确率	1	0.57	0.83	0. 81	0.8

最终分类器对倚天屠龙记 0、射雕英雄传 2、神雕侠侣 3、笑傲江湖 4 有较好的分辨,对天龙八部 1 则不能区分。

2. 结果分析

首先结果体现了 LDA 模型的有效性。对于部分较差的分类结果是由于语料库不全导致的。同时如果能够增加停用词将进一步提升分类效果。

五、总结体会

该问题是一个文本模型构建的分类问题,通过 LDA 主题模型学习文本内部 关联,并通过 SVM 分类器进行分类,充分说明了统计方法在文本分析等自然语 言处理中的作用。