Machine Learning Practice 4주차#1(EMS)

2022144007 김의진 2025.3.29

1)데이터에 대한 분석

->받아온 50 by 2의 행렬

header가 0인 성분들 x_point_graph 입력

1인 성분들 y_point_graph 입력

1)데이터에 대한 분석

- 1. 추의 무게에 따라 늘어나는 용수철의 길이의 데이터가 1대1 대응함
- 2. 추의 무게가 증가할수록 늘어나는 용수철의 길이도 증가함
- -> 우리가 구할 Loss function이 **우상향하는 형태를** 띌 것을 **예측**할 수 있음

2)Analystic Solution에 대한 분석

Analystic Solution으로 **정확한** weight 구할 수 있음 Bias가 없을 경우

w0_no_bias float64	1	1.7173411515908874
--------------------	---	--------------------

Bias가 없는 경우의 Loss function $\hat{y} = 1.7173411515908874x$

Bias가 있을 경우

w0	float64	1	1.0801563466406503	->x와 곱해지는 값
w1	float64	1	7.646585177675345	-> bias (bias덕분에 보다 자유로운 그래프 형태
				만들어 정확도 높임)

구해진 Loss function $\hat{y} = 1.0801563466406503x + 7.646585177675345$

2)Analystic Solution에 대한 분석

원점을 지나며 데이터들의 가운데를 지나는 모습을 볼 수 있음

향후 측정한 추의 무게에 따라 늘어나는 용수철의 길이를 **예측**할 수 있음

2)Analystic Solution에 대한 분석

Bias가 없을 때와는 달리

Loss function이 원점을 지나지 않고 그래프와 data 점들의 거리가 더 짧고 비슷함

향후 측정한 추의 무게에 따라 늘어나는 용수철의 길이를 **예측**할 수 있음

bias가 그래프를 움직임

3)MSE에 대한 분석

예측한 \hat{y} 가 잘 만들어졌는지 평가해야 함

-> Mean Square Error로 평가

MSE는 작으면 작을 수록 좋음

Bias가 있을 때의 MSE Bias가 없을 때의 MSE

MSE	float64	1	1.9596713644664223
MSE_no_bias	float64	1	7.851521830766251

->bias가 있을 경우의 loss function이 더 정확한 예측을 함을 알 수 있음