Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5152]-138

S.E. (E&TC/Elections) (Second Semester) EXAMINATION, 2017 ANALOG COMMUNICATION

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) State and compare different SSB generation methods. [6]
 - (b) Consider an angle modulated signal. $x(t) = 10 \cos(\omega ct + 3 \sin \omega mt) \text{ assume PM and } f_m = 1 \text{KHz}.$ Calculate the modulation index and find the bandwidth when:
 - (i) Fm is doubled
 - (ii) Fm is decreased by one half

[6]

Or

- 2. (a) An audio frequency signal 10 sin $(2\pi \times 500t)$ is used to amplitude modulate a carrier of 50 sin $(2\pi \times 10^5)$. Calculate:
 - (i) Modulation index
 - (ii) Sideband frequencies

P.T.O.

		(iii) Amplitude of each sideband frequencies	
		(iv) Bandwidth	
		(v) Total power delivered to load of 600Ω	
		(vi) Transmission efficiency [6]]
	(b)	Explain Armstrong method of FM generation. [6]]
3.	(a)	Explain the following:	
		(i) Double spotting	
		(ii) Image frequency rejection	
	^	(iii) Fidelity [6]]
	<i>(b)</i>	Three resistors have values $R1$ = 10 $K\Omega$, $R2$ = 14 $K\Omega$ and	l
		$R3 = 24 \text{ K}\Omega$. It is known that thermal noise voltage generated	l
		by R1 is $0.3~\mu v$. Calculate thermal noise voltage generated	l
		by:	
		(i) Three resistors connected in series	2
		(ii) Three resistors connected in parallel.]
		Or	
4.	(a)	Explain with waveform and block diagram AM superheterodyne)
		receiver. [6]]
	<i>(b)</i>	Derive Friss formula for noise factor of cascaded amplifier	
		[6]	
5.	(a)	Explain the performance of SSB-SC in presence of noise.[7]]

[5152]-138

(*b*) Explain importance of pre-emphasis and De-emphasis in FM system. [6] **6.** Derive expression for signal to noise ratio in DSBSC system.[6] (a) Explain the performance of FM in presence of noise. (*b*) [7]7. State and prove sampling theorem with suitable waveform and (a)mathematical expression. [7]What is aliasing? How is it reduced (*b*) [6]OrExplain with the block diagram and waveform PAM. 8. (a)[6]With the help of block diagram explain transmitter and receiver (*b*) The state of the s of PCM.