AE 313 Orbital Mechanics Exam 2

Instructions: This exam is worth a total of 170 points. Work as quickly and accurately as you can. Write your name at the bottom of this page. A table of constants is included.

Read the problems carefully. Write clearly and use diagrams when necessary.

DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO.

Partial credit can only be given for:

- 1. Correct partial steps toward the complete solution which are
- 2. Clearly labeled in a logical and systematic manner.

		C 1 11	
Name	Exam	Solutions	

Problem 1 (40 pts)

Jason-2 (which measures sea surface height) is currently in orbit about Earth. At time t_I , tracking data provides the following position and velocity vectors relative to an inertial Earth equatorial coordinate system:

$$\overline{r_1} = 0\hat{x} + 45,000\hat{y} - 45,000\hat{z}$$
 km
$$\overline{v_1} = 4\hat{x} + 0\hat{y} - 4\hat{z}$$
 km/s

- A. Assuming that $\theta_{ERA} = \mathbf{vo}^{\circ}$, determine the latitude and longitude at time t_{I} .
- B. On the map below, approximately mark where the spacecraft is located.
- C. Determine the following quantities associated with the vehicle orbit: θ_1 , i

=
$$38971.12'-22,5009'-45,0002'km$$

Latitude:
$$\phi = \sin^{-1}\left(\frac{\Gamma_{\text{ECEF}} \cdot \hat{z}}{\Gamma}\right)$$

$$=-30^{\circ}$$
 or 150°
Since $9' \times 0$ and $\hat{x}' > 0$,

$$\int J = -30^{\circ} \quad \text{or} \quad 30^{\circ} \quad \text{W}$$

C. Find Di, L

$$\hat{N} = \frac{r_1 \times \overline{V_1}}{|r_1 \times \overline{V_1}|} = -\frac{1}{18} \hat{\chi}' - \frac{1}{18} \hat{\chi}' - \frac{1}{18} \hat{\chi}'$$

$$Cosi = \hat{h} \cdot \hat{2} = \frac{1}{\sqrt{3}} \Rightarrow \left| \frac{L = 125.26^{\circ}}{No \quad quad \quad check} \right|$$

$$\hat{Y}_{1} = \frac{1}{\sqrt{16}} \hat{Y}_{2} = \frac{1}{\sqrt{16}} \hat{Y}_{1} - \frac{1}{\sqrt{16}} \hat{Y}_{2} - \frac{1}{\sqrt{16}} \hat{Y}_{3} - \frac{1}{\sqrt{16}} \hat{Y}_{4} - \frac{1}{\sqrt{16}} \hat{Y}_{5} - \frac{1}{\sqrt{16$$

COSO, Sini =
$$\hat{\theta}$$
, $\hat{z} = \frac{1}{16} \Rightarrow \hat{\theta} = \frac{1}{120^{\circ}}$
Sino, Sini = $\hat{\gamma}$, $\hat{z} = \frac{1}{120} \Rightarrow \hat{\theta} = \frac{1}{120^{\circ}}$
Sino, Sini = $\hat{\gamma}$, $\hat{z} = \frac{1}{120} \Rightarrow \hat{\theta} = \frac{1}{120^{\circ}}$

Problem 2 (30 pts)

Sometime in the future, a Martian base is *finally* in operation. The Earth-Mars-Transport (EMT) vehicle is ready to make another run to Earth. The EMT is currently in a Mars orbit with $r^- = 2R_{Mars}$, $v^- = 2.5$ km/s, and $\gamma^- = -30^\circ$.

At this time, a maneuver will shift the EMT to a hyperbolic orbit relative to the Moon.

- A. Determine a^-, e^-, θ^{*-} at the maneuver point in the original orbit.
- B. Immediately after some instantaneous maneuver, $v^+ = 3$ km/s and $\gamma^+ = 30^\circ$, determine the new orbital energy.
- C. Is EMT now on a hyperbolic path? Why or why not?
- D. On the diagram below of the original orbit, draw $\overline{r}^-, \overline{r}^+, \overline{v}^-, \overline{v}^+, \gamma^-, \Delta \overline{v}$

$$a^{-} = -\frac{u}{2\varepsilon} = 6736.5 \, \text{km}$$

$$e^- = \sqrt{1 - \frac{P}{\alpha}} = 0.5$$

$$\Theta^{*-} = \cos^{-1}\left(\frac{P^{-}}{re^{-}} - \frac{1}{e^{-}}\right) = \pm 120.85^{\circ}$$

B. New E.

$$e^{+} = \frac{(v^{+})^{2}}{2} - \frac{u}{r^{+}} = -1.8038 \text{ km}^{2}/\text{s}^{2}$$

C. Since Et KO, Still in an eliptical orbit.