Roll No.: CB.EN.U4CSE19453

Amrita Vishwa Vidyapeetham

Amrita School of Engineering, Coimbatore

B.Tech Internal Assessment – September 2022

Seventh Semester

Computer Science Engineering

19CSE432 Pattern Recognition

Maximum: 5 Marks

Course Outcomes (COs):

CO	Course Outcomes
CO01	Understand basic concepts in pattern recognition
CO02	Understand discriminant functions and apply them for applications
CO03	Understand and apply Parametric techniques of Pattern recognition
CO04	Apply Non parametric techniques of PR and analyze their performance
CO05	Understand the supervised and unsupervised learning algorithms and apply them for real world
	problems.

2.2:

1)

A) Write a procedure to generate random samples according to a normal distribution $N(\mu, \Sigma)$ in d dimensions.

Solution:

To generate five random numbers from the normal distribution we will use numpy.random.normal() method of the random module

```
import numpy as np
import math
r = np.random.normal(0,1,(3,3))
print(r)
```

Explanation:

Here, In the code: 0 is the mean of distribution, 1 is the standard deviation, And (3,3) is the shape for the resultant

B) Write a procedure to calculate the discriminant function (of the form given in Eq. 47) for a given normal distribution and prior probability $P(\omega_i)$.

Formula:

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma|$$

Code:

```
import numpy as np
import math
def discriminant(x,mu,siqma,prior):
    x = np.array(x)
    mu = np.array(mu)
    sigma = np.array(sigma)
    x mu = x - mu
    inv_sigma = np.linalg.inv(sigma)
    return -0.5*((x mu))*(inv sigma)*(x mu) -
(0.5*len(x)*math.log(2*math.pi))-
(0.5*math.log(np.linalg.det(sigma)))+math.log(prior)
def main():
    x = [1,2,3]
    mu = [0,0,0]
    sigma = [[1,0,0],[0,1,0],[0,0,1]]
    prior = 1
    print(discriminant(x,mu,sigma,prior))
main()
```

Output:

```
[[-3.2568156 -2.7568156 -2.756
[-2.7568156 -4.7568156 -2.756
[-2.7568156 -2.7568156 -7.256
```

C) Write a procedure to calculate the Euclidean distance between two arbitrary points. **Formula:**

$$d(p,q) = \sqrt[2]{(q_1-p_1)^2+(q_2-p_2)^2}$$

Code:

```
import numpy as np

point1 = np.array((3, 2))
point2 = np.array((4, 1))

sum_sq = np.sum(np.square(point1 - point2))

print(np.sqrt(sum_sq))

def euclidean(x,y):
    x = np.array(x)
    y = np.array(y)
    return math.sqrt(np.dot(np.dot(x, x), y, y))

def main():
    x = [3,2]
    y = [4,1]
    print(euclidean(x,y))
```

Output:

1.4142135623730951

D) Write a procedure to calculate the Mahalanobis distance between the mean μ and an arbitrary point x, given the covariance matrix Σ .

Formula:

```
import numpy as np
import math

# Mahalanobis distance
def mahalanobis(x=None, data=None, cov=None):
    x_mu = x - np.mean(data)
    if not cov:
        cov = np.cov(data.values.T)
    inv_covmat = np.linalg.inv(cov)
    left = np.dot(x_mu, inv_covmat)
    mahal_dist = np.dot(left, x_mu.T)
    return mahal_dist.diagonal()
```

2.5:

		ω_1			ω_2		
sample	x_1	x_2	x_3	x_1	x_2	x_3	x_1
1	-5.01	-8.12	-3.68	-0.91	-0.18	-0.05	5.35
2	-5.43	-3.48	-3.54	1.30	-2.06	-3.53	5.12
3	1.08	-5.52	1.66	-7.75	-4.54	-0.95	-1.34
4	0.86	-3.78	-4.11	-5.47	0.50	3.92	4.48
5	-2.67	0.63	7.39	6.14	5.72	-4.85	7.11
6	4.94	3.29	2.08	3.60	1.26	4.36	7.17
7	-2.51	2.09	-2.59	5.37	-4.63	-3.65	5.75
8	-2.25	-2.13	-6.94	7.18	1.46	-6.66	0.77

2)

- A) Assume that the prior probabilities for the first two categories are equal $(P(\omega 1) = P(\omega 2)=1/2 \text{ and } P(\omega 3)=0)$ and design a dichotomizer for those two categories using only the x1 feature value.
- D) Repeat all of the above, but now use two feature values, x1, and x2.
- E) Repeat, but use all three feature values.

Implementation:

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st
import math
def bhattacharyya(prior1, prior2, mean1, mean2, cov1, cov2):
    return 0.125 * np.log(np.linalg.det(np.linalg.inv(0.5 * cov1 + 0.5 * cov2))) +
0.5 * np.dot(np.dot((mean1 - mean2), np.linalg.inv(0.5 * cov1 + 0.5 * cov2)),
(mean1 - mean2).T)
def classifier1(x, class1, class2):
    prior1 = 0.5
    prior2 = 0.5
   mean1 = np.mean(class1[:, 0:2], axis=0)
    mean2 = np.mean(class2[:, 0:2], axis=0)
    cov1 = np.cov([class1[:, 0], class1[:, 1]])
    cov2 = np.cov([class2[:, 0], class2[:, 1]])
    discriminant_function1 = gdf.gen_discriminant_function_of_normal_distribution(
        mean1, cov1, prior1)
    discriminant_function2 = gdf.gen_discriminant_function_of_normal_distribution(
        mean2, cov2, prior2)
    if discriminant_function1(x) > discriminant_function2(x):
```

```
# print x, "class 1"
    return 1, bhattacharyya(prior1, prior2, mean1, mean2, cov1, cov2)
elif discriminant_function1(x) < discriminant_function2(x):
    # print x, "class 2"
    return 2, bhattacharyya(prior1, prior2, mean1, mean2, cov1, cov2)
else:
    # print x, "unsure"
    return 0, bhattacharyya(prior1, prior2, mean1, mean2, cov1, cov2)</pre>
```

- 3) Repeat Computer exercise 2 but for categories $\omega 1$ and $\omega 3$.
- 4) Repeat Computer exercise 2 but for categories ω 2 and ω 3.
- 5) Consider the three categories in Computer exercise 2, and assume $P(\omega_i)=1/3$.
- (a) What is the Mahalanobis distance between each of the following test points and each of the category means in Computer exercise 2: $(1, 2, 1)^t$, $(5, 3, 2)^t$, $(0, 0, 0)^t$, $(1, 0, 0)^t$.
- (b) Classify those points.
- (c) Assume instead that $P(\omega 1)=0.8$, and $P(\omega 2)=P(\omega 3)=0.1$ and classify the test points again.

Solution:

Here from the question let,

$$X_1 = [[-5.01, -5.43, 1.08, 0.86, -2.67, 4.94, -2.51, -2.25, 5.56, 1.03]',$$

$$[-8.12, -3.48, -5.52, -3.78, 0.63, 3.29, 2.09, -2.13, 2.86, -3.33]',$$

$$[-3.68, -3.54, 1.66, -4.11, 7.39, 2.08, -2.59, -6.94, -2.26, 4.33]']$$

$$X_2 = [[-0.91, 1.30, -7.75, -5.47, 6.14, 3.60, 5.37, 7.18, -7.39, -7.50]',$$

$$[-0.18, -2.06, -4.54, 0.50, 5.72, 1.26, -4.63, 1.46, 1.17, -6.32]',$$

$$[-0.05, -3.53, -0.95, 3.92, -4.85, 4.36, -3.65, -6.66, 6.30, -0.31]'];$$

$$X_3 = [[5.35, 5.12, -1.34, 4.48, 7.11, 7.17, 5.75, 0.77, 0.90, 3.52]',$$

$$[2.26, 3.22, -5.31, 3.42, 2.39, 4.33, 3.97, 0.27, -0.43, -0.36]',$$

$$[8.13, -2.66, -9.87, 5.19, 9.21, -0.98, 6.65, 2.41, -8.71, 6.43]]$$

And prior probabilities, mean, covariances are:

```
• p1 = [1,2,1]';
```

- p2 = [5,3,1]';
- p3 = [0,0,0]';
- p4 = [1,0,0]';

prior1 = 0.8	mu1 = (mean(x1))	sigma1 = cov(x1)
prior2 = 0.1	mu2 = (mean(x2))	sigma2 = cov(x2)
prior3 = 0.1	mu3 = (mean(x3))';	sigma3 = cov(x3);

- g11 = gaussiandiscriminant(p1,mu1,sigma1,prior1)
- g12 = gaussiandiscriminant(p1,mu2,sigma2,prior2)
- g13 = gaussiandiscriminant(p1,mu3,sigma3,prior3)
- [g1,d1]=max([g11,g12,g13])
- g21 = gaussiandiscriminant(p2,mu1,sigma1,prior1)
- g22 = gaussiandiscriminant(p2,mu2,sigma2,prior2)
- g23 = gaussiandiscriminant(p2,mu3,sigma3,prior3)
- [g2,d2]=max([g21,g22,g23])
- g31 = gaussiandiscriminant(p3,mu1,sigma1,prior1)
- g32 = gaussiandiscriminant(p3,mu2,sigma2,prior2)
- g33 = gaussiandiscriminant(p3,mu3,sigma3,prior3)
- [g3,d3]=max([g31,g32,g33])
- g41 = gaussiandiscriminant(p4,mu1,sigma1,prior1)
- g42 = gaussiandiscriminant(p4,mu2,sigma2,prior2)
- g43 = gaussiandiscriminant(p4,mu3,sigma3,prior3)
- [g4,d4]=max([g41,g42,g43])
- \rightarrow d = [d1,d2,d3,d4]'

Now by using code below we get discriminant function for four data points:

```
[n, m] = size(samples)
for i in range(1, 3):
    mu[i] = mean(samples(:, (i-1)*3+1: i*3))
    sigma[i] = zeroes(3)
    for j in range(1, n):
        sigma[i] = sigma[i] + (samples(j, (i-1)*3+1: i*3) - mu[i])*(samples(j, (i-1)*3+1: i*3) -
mu[i])
    end
    sigma[i] = sigma[i]/n
```

```
0 0 0
     1 0 0]'
for j in range(1, size(s, 2)):
    for i in range(1, 3):
        d = sqrt((s(: , j) - mu(i)))* inv(sigma(i))*(s(: , j) - mu(i)))
        print('Mahabolanobis distance for sample %d and class %d is %f' % (j, i, d))
    end
end
pw(1, :) = [1/3 0.8]
pw(2, :) = [1/3 0.1]
pw(3, :) = [1/3 \ 0.1]
for p in range(1, 2):
    for j in range(1, size(s, 2)):
        max_gi = -1000000
       for i in range(1, 3):
            d = (s(:,j) - mu(i))'* inv(sigma(i))*(s(:,j) - mu(i))
           gi = -0.5*d - 1.5*log(2*pi) - 0.5 * 
                log(det(sigma(i))) + log(pw(i, p))
            if gi > max_gi:
                max_gi = gi
            end
        print('Sample %d belongs to class %d' % (j, cla))
```

$g_i(x_j)$	G1	G2	G3
X1	-7.45	-9.49	-11.6
X2	-8.13	-10.28	-8.3
X3	-7.06	-9.16	-10.5
X4	-7.05	-9.23	-9.14

Applying rule of maximum discriminant function, the classification results are d1=d2=d3=d4=1

i.e., all 4 data points lie in first category

Mahalanobis distances between the three points and mean vector using above code is:

(X_i, μ_j)	μ_1	μ_2	μ_3
X_1	1.01	0.85	2.67
X_2	1.54	1.51	0.74

X_3	0.49	0.26	2.24
X_4	0.48	0.45	1.46

Now applying rule of mahalanobis distance, the classification is:

- 6. Illustrate the fact that the average of a large number of independent random variables will approximate a Gaussian by the following:
- (a) Write a program to generate n random integers from a uniform distribution U(xl, xu). (Some computer systems include this as a single, compiled function call.)

Formula:

```
o v = a + (b-a).*rand(N,1)
```

Code:

```
def uniform_distribution(xl, xu, n):
    # x = np.random.uniform(xl, xu, n)
    x = (xu-xl)*np.random.rand(n) + xl
    return x

def main():
    xl = 0
    xu = 1
    n = 10
    print(uniform_distribution(xl, xu, n))
main()
```

Output:

```
[0.80488261 0.85396388 0.29878133 0.14210106 0.3626601 0.07332778 0.88406115 0.86685774 0.38777871]
```

(b) Now write a routine to choose x_1 and x randomly, in the range $-100 \le x1 < xu \le +100$, and n (the number of samples) randomly in the range $0 < n \le 1000$.

```
import numpy as np
import random
```

```
def uniform distribution(xl, xu, n):
    for xl in range(-100,100):
        if x1 <= xu:</pre>
            x = np.random.uniform(x1, xu, n)
            return x
        else:
            print('xl must be less than xu')
def main():
    xl = random.randrange(-100, 100)
    print("xl=",xl)
    xu = random.randrange(x1, 100)
    print("xu=",xu)
    n = random.randrange(0, 1000)
    print("n=",n)
    print(uniform distribution(x1, xu, n))
main()
```

Output:

```
x1 = 25
n= 272
xu= 53
[-81.65394176 -63.00759522 30.55584124 34.3713052
 -52.44995052 34.12619047 -51.30382895 3.28824798
  24.528094
               27.08268068 -68.52846202 -59.21231672 -42
 -56.8833968 -23.71115851 -87.61501328 -68.0991025
                                                     32
  51.08392357 10.42960652 -0.27239704 26.96888395 -90
  13.87322374 -65.31867868 -62.00337716 -58.35241338 -17
 -78.00840439 10.02837633 -76.50499556 17.8605739
                                                     47
 -55.24957994 -39.66959578 19.92981693 -35.53800961 -97
 -58.27953289 -21.71322401 -75.62805768 -80.30941616
 -96.48283117 -0.93962738 8.75421628 -72.85169392
                                                      44
 -83.65433015
               6.97796447 -13.61687936 -31.73618706
```

(c) Generate and plot a histogram of the accumulation of 10^4 points sampled as just described. **Code:**

```
import numpy as np
s = np.random.uniform(-1,0,10000)

[21] print(np.all(s >= -1))
    print(np.all(s < 0))

True
True

import matplotlib.pyplot as plt
    count, bins, ignored = plt.hist(s, 15, density
    plt.plot(bins, np.ones_like(bins), linewidth=2
    plt.show()</pre>
[24]

[25]

[26]

[27]

[27]

[28]

[28]

[29]

[20]

[20]

[21]

[21]

[22]

[23]

[24]

[24]

[25]

[26]

[27]

[28]

[28]

[29]

[20]

[20]

[20]

[20]

[21]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[26]

[27]

[28]

[28]

[28]

[29]

[20]

[20]

[20]

[21]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[27]

[28]

[28]

[28]

[29]

[20]

[20]

[20]

[21]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[27]

[28]

[28]

[28]

[29]

[20]

[20]

[20]

[21]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[27]

[28]

[28]

[28]

[28]

[29]

[20]

[20]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[27]

[28]

[28]

[28]

[28]

[29]

[29]

[20]

[20]

[20]

[20]

[20]

[21]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[26]

[27]

[27]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28
```

(d) Calculate the mean and standard deviation of your histogram, and plot it **Code:**

(e) Repeat the above for 10^5 and for 10^6 . Discuss your results.

Code:

For 10⁵:

For 10^6:

Inference:

As the value of n increases, the mean remains same close to -0.5 and std close to 0.28.

- 7. Explore how the empirical error does or does not approach the Bhattacharyya bound as follows:
- (a) Write a procedure to generate sample points in d dimensions with a normal distribution having mean μ and covariance matrix Σ .

Code:

```
import matplotlib.pyplot as plt
mean = [0, 0]
cov = [[1, 0], [0, 100]]
x, y = np.random.multivariate_normal(mean, cov, 5000).T
plt.plot(x, y, 'x')
plt.axis('equal')
plt.show()
```

Output:

(b) Consider $p(x|\omega 1) \sim N((1,0),I)$ and $p(x|\omega 2) \sim N((-1\ 0\)\ ,\ I)$ with $P(\omega 1) = P(\omega 2) = 1/2$. By inspection, state the Bayes decision boundary.

```
state the Bayes decision boundary P(\omega 1) = P(\omega 2) = 1/2
import numpy as np
import matplotlib.pyplot as plt

def Bayes():
P(x|\omega 1) = N(x;\mu 1,\Sigma 1)
P(x|\omega 2) = N(x;\mu 2,\Sigma 2)
P(x|\omega 1) = N(x;\mu 1,\Sigma 1)
P(x|\omega 2) = N(x;\mu 2,\Sigma 2)
P(x|\omega 1) = N(x;\mu 1,\Sigma 1)
```

```
 \begin{array}{l} \text{m1 = 0} \\ \text{s1 = [[1,0],[0,1]]} \\ \text{y1 = np.exp(-0.5*(x1-m1)@np.linalg.inv(s1)@(x1-m1))} \\ \#P(x|\omega 2) = N(x;\mu 2,\Sigma 2) \\ \text{x2 = np.linspace(-10,10,1000)} \\ \text{m2 = 1} \\ \text{s2 = [[1,0],[0,1]]} \\ \text{y2 = np.exp(-0.5*(x2-m2)@np.linalg.inv(s2)@(x2-m2))} \\ \#P(x|\omega 1) = P(x|\omega 2) \\ \text{x = np.linspace(-10,10,1000)} \\ \text{y = y1/y2} \\ \text{plt.plot(x,y)} \\ \text{plt.xlabel('x')} \\ \text{plt.ylabel('P(x|\omega 1)/P(x|\omega 2)')} \\ \text{plt.title('Bayes decision boundary')} \\ \text{plt.show()} \\ \end{array}
```

(c) Generate n = 100 points (50 for $\omega 1$ and 50 for $\omega 2$) and calculate the empirical error.

Code:

```
import numpy as np
n=100
points = np.random.uniform(-1, 1, (n, 2))
# Calculate the empirical error
empirical_error = np.sum(np.sign(points[:, 0]**2 + points[:, 1]**2 - 0.6) !=
np.sign(points[:, 1])) / n
print(empirical_error)
```

Ouput:

```
n=100
points = np.random.uniform(-1, 1, (n, 2))
    # Calculate the empirical error
empirical_error = np.sum(np.sign(points[:, 0]**2 + points[:, 1]**2 - 0.6) != np.sig
print(empirical_error)
```

(d) Repeat for increasing values of n, $100 \le n \le 1000$, in steps of 100 and plot your empirical error.

Code:

```
import numpy as np
n=100
points = np.random.uniform(-1, 1, (n, 2))
# Calculate the empirical error
empirical_error = np.sum(np.sign(points[:, 0]**2 + points[:, 1]**2 - 0.6) !=
np.sign(points[:, 1])) / n
print(empirical_error)
```

Output:

[<matplotlib.lines.Line2D at 0x7f1ab82908

(e) Discuss your results. In particular, is it ever possible that the empirical error is greater than the Bhattacharyya or Chernoff bound?

Inference:

Chernoff bound is never looser than the Bhattacharya bound. Here Chernoff bound is at $\beta^* = 0.66$ and is slightly tighter than the Bhattacharya bound ($\beta = 0.5$)