

ALUMNA: BARRON ZAZUETA MARIA GUADALUPE

DOCENTE: ZURIEL DATHAN MORA FELIX

TOPICOS DE IA

EVOLUCION DIFERENCIAL

1. Introducción

La *Evolución Diferencial* (Differential Evolution, DE) es un algoritmo de optimización evolutiva propuesto por **Rainer Storn y Kenneth Price en 1995**. Es ampliamente utilizado para resolver problemas de optimización en espacios continuos, especialmente cuando se trata de funciones complejas, no lineales y no diferenciables.

Su éxito radica en su simplicidad, robustez y efectividad para encontrar soluciones óptimas o cercanas al óptimo global en una amplia gama de problemas.

2. Fundamentos Teóricos

La Evolución Diferencial es una técnica **metaheurística estocástica** inspirada en los mecanismos de la evolución natural, similar a los algoritmos genéticos, pero con diferencias clave en su estrategia de mutación y recombinación.

2.1. Principales Componentes

- Población: Conjunto de soluciones candidatas.
- **Mutación:** Se generan nuevos vectores a partir de diferencias entre miembros de la población.
- Recombinación (crossover): Combinación del vector mutado con el vector original.
- Selección: Comparación entre la solución actual y la nueva; se mantiene la mejor.

3. Funcionamiento del Algoritmo

1. Inicialización:

Se crea aleatoriamente una población de NPNPNP individuos (vectores), cada uno con DDD dimensiones.

2. Mutación:

Para cada individuo XiX_iXi, se elige aleatoriamente tres vectores distintos Xa,Xb,XcX_a, X_b, X_cXa,Xb,Xc, y se calcula un vector mutado ViV_iVi como:

 $Vi=Xa+F\cdot(Xb-Xc)V_i=X_a+F\cdot(Xb-Xc)$

Donde FFF es un factor de escala, normalmente entre [0.4, 1.0].

3. Recombinación:

Se cruza el vector original XiX_iXi con el vector mutado ViV_iVi para formar un nuevo vector UiU_iUi.

4. Selección:

Si $f(Ui)f(U_i)f(U_i)$ es mejor que $f(Xi)f(X_i)f(X_i)$, entonces UiU_iUi reemplaza a XiX_iXi en la siguiente generación.

5. Iteración:

El proceso se repite por un número fijo de generaciones o hasta cumplir un criterio de parada.

4. Ventajas y Desventajas

Ventajas

- Fácil de implementar.
- Requiere pocos parámetros.
- Excelente rendimiento en funciones complejas y multimodales.
- Capacidad para escapar de óptimos locales.

Desventajas

- Puede ser lento en la convergencia.
- Sensibilidad a los parámetros FFF y CRCRCR (tasa de cruce).
- No garantiza la óptima solución en todos los casos.

5. Aplicaciones

La Evolución Diferencial se ha utilizado con éxito en diversas áreas, tales como:

- Optimización de parámetros en redes neuronales.
- Ingeniería de control.
- Diseño de estructuras mecánicas.
- Procesamiento de señales.
- Problemas de clasificación y regresión.
- Predicción de series temporales.
- Bioinformática y visión computacional.

6. Variantes Populares

Para mejorar el rendimiento o adaptarse a diferentes problemas, se han desarrollado variantes del algoritmo DE:

- JADE (Adaptive DE): ajusta dinámicamente los parámetros FFF y CRCRCR.
- SaDE (Self-adaptive DE): adapta tanto los parámetros como las estrategias de mutación.
- DEGL (DE with Global and Local neighborhoods): combina búsqueda global y local.
- L-SHADE: utiliza reducción de población y aprendizaje histórico.

7. Comparación con Otros Algoritmos Evolutivos

Criterio	Evolución Diferencial	Algoritmo Genético	PSO (Particle Swarm Optimization)
Estructura Simple	Sí	No	Sí
Convergencia Rápida	Media	Ваја	Alta
Exploración	Alta	Alta	Media
Explotación	Media	Ваја	Alta

8. Conclusiones

La Evolución Diferencial es un algoritmo de optimización poderoso, especialmente útil en problemas complejos donde las técnicas clásicas fallan. Su combinación de simplicidad y eficacia lo ha convertido en una herramienta indispensable en la investigación y la industria.