#### **Question 1**

Ignoring the gripper, the simulation robot has 6 DOF

### **Question 2**

The kinematic arrangement of the robot without gripper is RRRR, and with gripper is RRRR(R)

#### **Question 3**

Symbolic representation of robot in the zero configuration:



Image of robot in zero configuration



**Question 4**Reachable workspace of simulated robot:

1. 4 radians



# **Question 5**

End effector is pointing up, as shown below:



## **Question 6**

Joint limits for each of the joints (all angles in radians):

| Joint 0 | [-1.4, 1.4] |
|---------|-------------|
| Joint 1 | [-1.2, 1.4] |
| Joint 2 | [-1.8, 1.7] |
| Joint 3 | [-1.9, 1.7] |
| Joint 4 | [-2, 1.5]   |

### **Question 7**

q specifies positions for each of the 6 motors—units for 0-4 are in radians, last input is opening of gripper in mm

$$q = [0,\,0,\text{-pi/2},\text{-pi/2},\text{-pi/2}]$$

## **Question 8**

| Aspects captured by the simulation           | Aspects not captured by the simulation         |
|----------------------------------------------|------------------------------------------------|
| Motion planning from current location of arm | Smooth motions from one location to            |
| to target position                           | another—the simulation tends to time out and   |
|                                              | needs multiple runs, creating jerky motions    |
| Joint limits are the same                    | Does not capture the reason joint limits exist |
|                                              | where they do—can get a better sense of this   |
|                                              | from the real robot                            |

# **Question 9**



## **Question 10**

These commands provide more context on the flow of information between controllers and robot arms, as described in the above ROS node graph.