Tutorial No:3 More Examples on Finite Automata

Q:1 Solve the following MCQs with proper justification.

1 Which of the following is / are true?

(i).
$$(0*1)* = (0+1)*$$

(ii)
$$(0+1)*01(0+1)*+1*0* \neq (0+1)*$$

- (A) (i) only
- (B) (ii) only
- (C) (i) and (ii)
- (D) None of these
- 2 Consider the following finite state machine. Now if the language accepted by the given DFA is (a+b(b+aa)*ab)* then the final state of the machine is, (qo:initial state)
 - (A) qo
- (B) q1 and qo
- (c) q2
- (D) None of these

State	δ(q,a)	δ (q,b)
qo	q _o	q_1
q ₁	q_2	q_1
q_2	q_1	qo

Which of the following regular expression is equivalent to $(a+b)^* a(a+b)^* b(a+b)^*$

(c)
$$(a+b)^* a(a+b)^* a(a+b)^*$$

(B)
$$a(a+b)*b(a+b)*$$

(D)
$$(a+b)^* b(a+b)^* a(a+b)^*$$

- A finite state machine with the following state table has a single input 'x' and a single output 'z' if the initial state is unknown, then the shortest input sequence to reach the final state 'c' is
 - (A) 01
- (B) 10

(C) 101

(D) 110

Present State	Next state z	
	X=1	X=o
A	D,o	В,о
В	В,1	C,1
С	В,о	D,1
D	В,1	С,о

Consider the DFA given below: Initial state is qo and final state is q1

State	δ(q,a)	δ (q,b)
q _o	Q ₁	Q_2
q ₁	q_2	q_1
q_2	Q_2	Q_2

This automation accepts the language

(A)
$$L = \{a_n b_n \mid n \geq o\}$$

(C)
$$L = \{a_n b \mid n \geq 0\}$$

(B)
$$L = \{a_n b_n | n \ge 1\}$$

(D)
$$L = \{a b_n | n \ge 0\}$$

- Q.2 Draw the Finite Automata over alphabet set {0,1} which when considered as a binary number is divisible by 5.
- Q-3 Explain the Mealy Machine and Moore Machine. For the following Mealy Machine find the equivalent Moore Machine, consider q2 is the start state.

	Input Symbol				
Current	a		В		
State					
	Next State	Output	Next State	Output	
q_o	q_1	1	q_3	1	
q_1	q_1	0	q _o	1	
q_2	q _o	1	q_2	0	
q_3	q_3	0	q_1	1	