Interpreting Regression Output in Geoda and ArcMap

Summary Statistics:

Geoda:

Regression SUMMARY OF OUTPUT:	ORDINARY LEAST	SQUARES ESTIMATION	
Data set	: south		
Dependent Variable	: HR90	Number of Observations: 1	412
Mean dependent var	9.5493	Number of Variables :	6
S.D. dependent var	: 7.03637	Degrees of Freedom : 1	406

ArcMap:

	(OLS Diagnostics
Input Features:	south2	Dependent Variable: HR90
Number of Observations:	1412	Akaike's Information Criterion (AICc) [d]: 9008.825986

Traditional Measures of Regression Fit:

- F-statistics/Joint F-Statistic: typically rejects the null hypothesis and is not very useful.
- Adjusted R-squared: Tells you how much of the variation in the dependent variables is accounted for by the independent variables. Ranges from 0 (the independent variables are not related to the dependent variable) to 1 (the independent variables explain all variation in the dependent variable).

Geoda:

R-squared Adjusted R-squared Sum squared residual: Sigma-square S.E. of regression Sigma-square ML S.E of regression ML:	0.306701 48295.9 34.3499			125.839 0 -4497.37 9006.75 9038.26
--	--------------------------------	--	--	--

ArcMap:

fultiple R-Squared [d]:	0,309158	Adjusted R-Squared [d]:	0.306701
Joint F-Statistic [e]:	125.839368	Prob(>F), (5,1906) degrees of freedom:	0.000000*

Analysis of Individual Variables:

- Check the p-values of each variable to see if their coefficients are statistically significant.
- Look at the sign of the coefficient to determine whether the relationship is positive or negative.
- You can create the linear regression equation using these coefficients:
 - O HR90 = 8.962 + 4.587(RD90) + 1.955(PS90) .049(MA90) + .461(DV90) .524(UE90)
- In ArcMap, if the Koenker statistic is significant, look at the robust p-value column.
- Try removing variables with high p-values from your model and observe the effect on R-squared.

Geoda:

Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	8.962537	1.781336	5.031357	0.0000005
RD90	4.587789	0.2145701	21.38131	0.0000000
PS90	1.955899	0.2054009	9.522349	0.0000000
MA90	-0.04948188	0.04890147	-1.011869	0.3117676
DV90	0.46159	0.1151726	4.007811	0.0000645
UE90	-0.5244025	0.07002783	-7.488488	0.0000000

ArcMap:

VIF (Variance Inflation Factor):

 A VIF larger than 7.5 means there could be redundancy among variables. Remove variables with large VIFs one by one and observe the impact on R-squared.

Geoda: not included in output

ArcMap:

Measures of Comparability:

- When comparing models, look at the AICc value. A lower AICc value means the model is a better fit for the data.
- In Geoda, the higher the log likelihood, the better the fit. The lower the Schwartz criterion, the better the fit of the model.

Geoda:

Log likelihood	-	-4497.37
Akaike info criterion	1	9006.75
Schwarz criterion	:	9038.26

ArcMap:

Akaike's	Information	Criterion	(ATCe)	fell:	9008.825986

Multicollinearity Condition Number:

• Values over 30 could indicate a problem with multicollinearity, meaning two predictor variables are highly correlated.

Geoda:

	T. D. Et B. B. A.		2.417711	AVEC 45 (4) (4) (4) (4) (4) (4)
MULTICOLLINEARITY	CONDITION	NUMBER	30	863233

ArcMap: not provided in output

Jarque-Bera Test:

- Tests the normality of the errors.
- This should not be statistically significant. If it is, your model is biased and you may be missing an explanatory variable.

Geoda:

TEST ON NORMALITY	OF ERRORS DF	VALUE	PROB
TEST Jarque-Bera	2	2833.424	0.0000000

ArcMap:

Jarque-Bera Statistic [g]:	2833.424057	Prob(>chi-squared), ((2) de(grees o	of freedom:	0.000000*
----------------------------	-------------	-----------------------	---------	---------	-------------	-----------

Tests for Heteroskedasticity:

- The Breusch-Pagan tests the squares of the explanatory variables to determine if there is non-constant variance in the errors.
- The Koenker-Bassett is similar to the Breusch-Pagan, except the residuals are studentized, meaning they are made robust to outliers/non-normality.
- The White test tests the squares and cross-products of the explanatory variables. It tests for a more general form of heteroskedasticity.
- In ArcMap, if the Koenker statistic is significant, consult the Joint Wald statistic to determine the overall model significance. If it is not significant, consult the joint F statistic.
- When these tests are statistically significant, it indicates relationships between some or all of
 your explanatory variables and your dependent variables are non-stationary. One of your
 variables may be a strong predictor in some areas, but a weak one in others. In ArcMap, you
 may improve your model by running Geographically Weighted Regression (GWR).

Geoda:

RANDOM COEFFICIENTS	-		
TEST	DF	VALUE	PROB
Breusch-Pagan test	5	515.0765	0.0000000
Koenker-Bassett test	5	124,2738	0.0000000
SPECIFICATION ROBUST	TEST		
TEST	DF	VALUE	PROB
White	20	242.806	0.0000000

ArcMap:

Joint F-Statistic [e]:	125.839368	Prob(>F), (5,1406) degrees of freedom:	0.000000-
Joint Wald Statistic [e]:	330.817288	Prob(>chi-squared), (5) degrees of freedom:	0.000000*
Koenker (BP) Statistic [f]:	64.758576	Prob(>chi-squared), (5) degrees of freedom:	0.000000*

Tests for Spatial Autocorrelation:

Geoda:

- Only look at the robust versions when the standard versions are significant.
- Use flow chart below to determine what additional model to run, if any.

```
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : southrk12.gal
   (row-standardized weights)
TEST
                               MI/DF
                                          VALUE
                                                          PROB
                                                          0.0000000
                             0.089930
                                          9.8642967
Moran's I (error)
                                                          0.0000000
Lagrange Multiplier (lag)
                                 1
                                         71.6961448
Robust LM (lag)
                                          4.7738150
                                                          0.0288957
Lagrange Multiplier (error)
                                                         0.0000000
                                         89.3048170
                                 1
Robust LM (error)
                                         22.3824873
                                                         0.0000022
Lagrange Multiplier (SARMA)
                                 2
                                         94.0786320
                                                          0.0000000
```


Figure 23.24: Spatial regression decision process.

From Exploring Spatial Data with Geoda: A Workbook, https://geodacenter.asu.edu/system/files/geodaworkbook.pdf, p. 199