

Aula 03 - Visão Geral da Álgebra de Boole e Introdução às Portas Lógicas

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

Na Aulas Anteriores

- Adição e subtração binária;
- Adição e Subtração no sistema de complemento de 2;
- Multiplicação de números binários;
- Divisão de números binários;
- Aritmética hexadecimal.

Nesta Aula

- Conceitos básicos da Álgebra Booleana;
- Variáveis e Funções Booleanas;
- Operações E, OU e NÃO;
- Tabelas Verdade;
- Exemplos de Funções Lógicas;
 - Circuitos Lógicos Gerados a partir de Expressões Booleanas;

- Operações compostas:
 - NÃO-E;
 - NÃO-OU;
 - OU-Exclusivo;
 - NÃO-OU-Exclusivo;
- Expressões Booleanas Geradas por Circuitos Lógicos;
- Interligação entre Expressões, Circuitos e Tabelas Verdade.

Introdução

- Principal Diferença com relação à Álgebra tradicional reside no fato de que as variáveis e funções podem assumir apenas dois possíveis valores: "0" ou "1", ou seja, é um tipo especial de Álgebra que trabalha com números binários;
- Álgebra Booleana é definida por uma 6-upla (X, \(\Lambda\), \(\nabla\), \(\nabla\), \(\nabla\), que é interpretado como uma variável Booleana, as três possíveis operações e as quantidades válidas;

Algebra Booleana

- Publicada nos anos de 1850 pelo matemático George Boole;
- Trabalho é fundamental para a construção e programação dos computadores eletrônicos iniciada cerca de 100 anos mais tarde.

Variáveis e Funções Booleanas

- Variáveis Booleanas, normalmente representadas por letras maiúsculas (A, B,C, D, etc...) podem acomodar apenas dois possíveis valores, ou seja, "0" ou "1";
- Funções Booleanas, também geralmente representadas por letras maiúsculas (F,G, etc...) representam operações válidas entre variáveis Booleanas.

Álgebra Booleana

• Importante:

Como o conjunto de possíveis valores é discreto e reduzido, é possível listar todas os possíveis valores que uma função booleana pode assumir.

Operação E

 Primeira das três operações fundamentais da Álgebra Booleana;

Pode ser interpretada como:

"verdade (1) apenas quando ambos os operadores forem verdadeiros"

- Representa a operação E lógico;
- Representações alternativas:
 - o E, AND, ⋅, ∧
 - Em expressões/funções Booleanas, a ausência de operador significa que o operador E deve ser inferido

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Porta E

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Diagrama de Tempo – E

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Operação OU

- Segunda operação fundamental;
 Pode ser interpretada como:

 "verdade (1) quando qualquer dos
 operadores for verdadeiro"
- Representa o OU lógico;
- Representações alternativas:
 - o OU, OR, +, V

Α	В	A.B
0	0	0
0	1	1
1	0	1
1	1	1

Porta OU

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Diagrama de Tempo – OU

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Operação NÃO

 Terceira e última das operações fundamentais;

Pode ser interpretada como:

"complemento ou inverso do valor atual"

- Representa o NÃO lógico;
- Representações alternativas:
 - o NÃO, NOT, ~, ¬

Α	~A
0	1
1	0

Porta NÃO

Α	~A
0	1
1	0

Diagrama de Tempo - NÃO

Α	~A
0	1
1	0

Operações Compostas

- É possível definir algumas operações compostas a partir das operações básicas
- Ex: Em Álgebra tradicional N² = N×N
- Em Álgebra Booleana, definem-se as seguintes operações compostas:
 - NAND
 - NOR
 - o XOR
 - XNOR

Porta NÃO E

Α	В	A·B
0	0	1
0	1	1
1	0	1
1	1	0

Diagrama de Tempo – NÃO E

A	В	A·B
0	0	1
0	1	1
1	0	1
1	1	0

Porta NÃO OU

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Diagrama de Tempo - NÃO OU

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Porta XOR

A	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Diagrama de Tempo - XOR

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Operação NÃO OU-Exclusivo

Pode ser interpretada como:

"verdade (1) quando os dois operadores forem iguais"

 $F(A,B) = (\bar{A} \cdot \bar{B}) + (A \cdot B) = A \otimes B$

Α	В	A⊗B
0	0	1
0	1	0
1	0	0
1	1	1

Precedência de Operadores

- Existem apenas três operadores fundamentais: (¬, ∧, ∨)
- Sua precedência segue a orientação da esquerda para a direita, sendo o operador mais a esquerda o mais significativo
- Os símbolos "("e")" podem ser utilizados para alterar a precedência entre operações

Exemplos de Funções Booleanas

•
$$F(A,B) = A \cdot B$$

•
$$F(A,B) = A+B$$

- $F(A,B) = \bar{A} \cdot B$
- $F(A,B,C) = A \cdot B \cdot C$
- $F(A,B) = (\bar{A} \cdot B) + (\bar{B} \cdot A)$

Parênteses são usados para redefinir a ordem de avaliação de expressões Booleanas, tal como na Álgebra tradicional.

Tabelas Verdade

- Listagem sistemática de TODOS os possíveis valores que uma função Booleana pode assumir.
- Ex: $F(A,B,C) = A \cdot B \cdot C$

A	В	С	A·B	A·B·C
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

Outro Exemplo

 $F(A,B) = (\bar{A} \cdot B) + (\bar{B} \cdot A)$

Α	В	Ā	В	Ā·B	B·A	(Ā · B)+(B · A)
0	0	1	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0

Outro Exemplo

• $F(A,B,C) = A \cdot \bar{B} \cdot C$

Α	В	С	В	A·B	A·B·C
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	0

Mais um Exemplo

 $F(A,B,C) = (A \cdot \overline{B}) \cdot (C + \overline{A})$

Α	В	С	Ā	В	A·B	C+Ā	(A · B) · (C+Ā)
0	0	0	1	1	0	1	0
0	0	1	1	1	0	1	0
0	1	0	1	0	0	1	0
0	1	1	1	0	0	1	0
1	0	0	0	1	1	0	0
1	0	1	0	1	1	1	1
1	1	0	0	0	0	0	0
1	1	1	0	0	0	1	0

- Há uma correlação direta entre circuitos lógicos e expressões Booleanas;
- Ex: Dada a Função Booleana abaixo, construa o circuito lógico que a implementa:

$$F(A,B) = (\bar{A}\cdot B) + (A\cdot \bar{B})$$

- Passo 1: identificar as entradas
 - As entradas do circuito sempre encontram-se na assinatura da função F(A,B). Caso a assinatura não seja dada, basta identificar todas as variáveis distintas.

 Desenhe as entradas no topo de linhas paralelas verticais. Desenhe uma linha para cada entrada

A seguir, identifique todas as operações lógicas da expressão

$$F(A,B) = (\bar{A}\cdot B) + (A\cdot \bar{B})$$

- Cada operação identificada será traduzida diretamente para uma porta lógica;
- A seguir, desenhe todas as portas lógicas identificadas.

- A seguir, reorganize a ordem das portas de modo que a disposição geral do circuito fique mais clara;
- Tente minimizar o número de ligações se cruzando.

Expressões Booleanas a Partir de Circuitos Lógicos

 Primeiramente redesenhamos o circuito de modo que possamos escrever sobre as conexões;

Expressões Booleanas a Partir de Circuitos Lógicos

A seguir, propague as entradas para as entradas das portas lógicas;

Por fim, escreva a função Booleana, como sendo a saída

$$\rightarrow$$
 F(A,B) = $(\bar{A}\cdot B)+(A\cdot \bar{B})$

Resumo

- Formar uma tabela verdade a partir de uma expressão Booleana;
- Criar um circuito lógico a partir de uma expressão Booleana;
- Na realidade, Tabelas Verdade, Função Booleana e Circuito Lógico nada mais são do que diferentes maneiras de se olhar para o mesmo problema.

Aula 03 - Visão Geral da Álgebra de Boole e Introdução às Portas Lógicas

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1