19.

•:•

EXERCISE - 01

CHECK YOUR GRASP

- \therefore (p \rightarrow $^{\sim}$ p) \wedge ($^{\sim}$ p \rightarrow p) 5. \equiv ($\tilde{p} \vee \tilde{p}$) \wedge ($p \vee p$) ($\therefore p \rightarrow q \equiv \tilde{p} \vee q$) $(:: b \wedge b \equiv b)$ $\equiv p \wedge p$ c is a contradiction
- $\because \ \ ^{q} \rightarrow \ \ ^{p} \equiv \ \ ^{(^{\sim}q)} \lor \ ^{p} \ \ (\because \ p \rightarrow q \equiv \ \ ^{p} \lor q)$ 8. $\equiv q \vee \tilde{p}$ \equiv $\tilde{p} \vee q$ (by commutative law) $\equiv p \rightarrow q \quad (: p \rightarrow q = p \lor q)$ $p \rightarrow q \equiv q \rightarrow p$ Hence
- 12. : $(p \land q) \rightarrow p$ is false $(p \land q)$ is true and p is false \Rightarrow which is not possible

14.

:

- $(p \land q) \rightarrow p$ is always true i.e. it is a tautology. $p \rightarrow (q \lor r)$ is false
- p is true and $(q \lor r)$ is false \Rightarrow p is true, q and r both are false \Rightarrow $p \rightarrow (q \lor r)$ is false when truth values of p, q, r are T, F, F resp. otherwise it is true. 15. $(p \land q) \land \tilde{} (p \lor q)$ is true
- .: $(p \land q)$ and $(p \lor q)$ both are true which is not possible
 - $(p \land q) \land \tilde{}$ $(p \lor q)$ is always false i.e. it is a So contradiction.
- **16.** Let p, q, r three statement defined as p: a number N is divisible by 15 q: number N is divisible by 5 r: number N is divisible by 3 Here given statement is $p \rightarrow (q \lor r)$ Here negative of above statement is $\tilde{}$ (p \rightarrow (q \vee r)) \equiv p \wedge ($\tilde{}$ (q \vee r) $\equiv p \wedge (q \wedge r)$

i.e. A number is divisible by 15 and it is not divisible by 5 and 3.

 $(p \land q)$ and $(q \land r)$ both are false \Rightarrow \Rightarrow p and r both are false or q is false. otherwise $(p \land q) \lor (q \land r)$ is true 20. $(p \lor q) \lor (p \lor q)$ $(\tilde{p} \vee \tilde{q}) \vee (\tilde{q} \vee p)$ (by commutative law) $p \vee [q \vee (q \vee p)]$ (by Associative law) $\tilde{p} \vee [(\tilde{q} \vee \tilde{q}) \vee p]$ (by Associative law) $\tilde{p} \vee (\tilde{q} \vee p)$ $(:: p \wedge p = p)$ $p \vee (p \vee q)$

 $(p \land q) \lor (q \land r)$ is false

- (by commutative law) $(\tilde{p} \vee p) \vee \tilde{q}$ (by Associative law) $t \vee q \equiv t$ t is a tautology Hence $(\tilde{p} \vee \tilde{q}) \vee (p \vee \tilde{q})$ is a tautology.
- 24. When p and q both are true then $(p \rightarrow q)$ and $(p \lor q)$ both are false i.e. $(p \rightarrow q) \leftrightarrow (p \lor q)$ is true when p and q both are false then $(p \rightarrow q)$ is false and $(p \lor q)$ is true i.e. $(p \rightarrow q) \leftrightarrow (p \lor q)$ is false Hence $(p \rightarrow q) \leftrightarrow (p \lor q)$ is neither tautology nor contradiction.
- $S(p, q) \equiv (p \lor ^{\sim}q) \land ^{\sim}p$ 28. Let $S(\tilde{p}, \tilde{q}) \equiv (\tilde{p} \vee q) \wedge p$ Now $S^*(\tilde{p}, \tilde{q}) \equiv (\tilde{p} \wedge q) \vee p$ $^{\sim}$ S(p, q) \equiv $^{\sim}$ [(p \vee $^{\sim}$ q) \wedge $^{\sim}$ p] \equiv $^{\sim}$ (p \vee $^{\sim}$ q) \vee p $\equiv (\tilde{p} \wedge q) \vee p$ Hence $S^*(\tilde{p}, \tilde{q}) \equiv \tilde{S}(p, q)$
- 32. $[(b \lor b) \to d] \to b \equiv (b \to d) \to b \quad (: b \lor b \equiv b)$ when p is false and q is true (or false) then $(p \rightarrow q)$ is true i.e. $(p \rightarrow q) \rightarrow p$ is false Hence $[(p \land p) \rightarrow q] \rightarrow p$ is not a tautology.
- 34. $(p \vee \tilde{r}) \rightarrow (q \wedge r)$ is false $(p \lor \tilde{r})$ is true, and $(q \land r)$ is false Here $(q \wedge r)$ is false and q is true (given) r is false again r is false and (p \vee \tilde{r}) is true p may be true or false.

- 1. $p \rightarrow (q \rightarrow p)$ is false
 - p is true and $(q \rightarrow p)$ is false. which is not possible.

 $p \rightarrow (q \rightarrow p)$ is always true i.e. it is a tautology. Again $p \rightarrow (p \lor q)$ is false

> p is true and $(p \lor q)$ is false. Which is not possible.

 $p \rightarrow (p \lor q)$ is always true i.e. it is a tautology.

Hence $p \rightarrow (q \rightarrow p) \equiv p \rightarrow (p \lor q)$

2. $r : \tilde{p} \leftrightarrow q$ Given statement-1 $r \equiv q \vee p$ statement-2 $r \equiv (p \leftrightarrow ^{\sim} q)$

р	q	~ p	~ q	$(\tilde{p} \leftrightarrow q)$	q∨p	$(p \leftrightarrow \tilde{q})$
Т	Т	F	F	F	T	F
Т	F	F	T	T	T	T
F	Т	T	F	T	T	T
F	F	T	T	F	F	F

Hence Statement-1 is false and Statement-2 is true.

 $(p \leftrightarrow q)$ is equivalent to $p \leftrightarrow q$ 3. statement-1: statement-2: $(p \leftrightarrow q)$ is a tautology.

р	q	~ q	$(p \leftrightarrow q)$	(p ↔ ~ q)	~ (p ↔~ q)
Т	T	F	T	F	Т
T	F	T	F	T	F
F	Т	F	F	T	F
F	F	T	T	F	Т

Hence statement-1 is true, statement-2 is false.

4. Given $S \subseteq R$ and

> p=There is a rational number $x \in S$ such that x>0then \tilde{p} : Any rational number $x \in S$ such that $x \neq 0$ i.e. \tilde{p} : Every rational number $x \in S$ satisfy $x \le 0$

5. Given Statement:

$$(p \land \tilde{r}) \Leftrightarrow q$$

Negations of $p \Leftrightarrow q$ are

$$\sim$$
 (p \Leftrightarrow q), \sim (q \Leftrightarrow p),

$$\tilde{p} \Leftrightarrow q \text{ and } \tilde{q} \Leftrightarrow p$$

Hence negations of given statement

are
$$(q \Leftrightarrow (p \land r))$$

and
$$\tilde{}$$
 (p \wedge $\tilde{}$ r) \Leftrightarrow q

6.
$$[p \land (p \rightarrow q)] \rightarrow q$$

$$[p \land (\tilde{p} \lor q)] \rightarrow q$$

$$[(p \land \tilde{p}) \lor (p \land q)] \rightarrow q$$

$$\begin{array}{l} [c \ \lor \ (p \ \land \ q)] \ \to \ q \\ \ \Longrightarrow \ (p \ \land \ q) \ \to \ q \\ \ \Longrightarrow \ \widetilde{\ } (p \ \land \ q) \ \lor \ q \end{array} \quad \begin{cases} p \land \sim p \equiv c \equiv contradiction \\ \ \because c \ \lor p \equiv p \end{cases}$$

$$\Rightarrow$$
 $(p \land q) \lor q$

$$\Rightarrow$$
 ($\tilde{p} \vee \tilde{q}$) $\vee q$

$$\Rightarrow$$
 $\tilde{p} \vee (q \vee \tilde{q})$

$$\Rightarrow \ \tilde{p} \lor (t) \equiv tautology$$