The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A laser irradiation method comprising:

delivering a laser beam to a semiconductor layer;

scanning the semiconductor layer to a first direction with the laser beam in a first intensity; and

scanning the semiconductor layer to a second direction with the laser beam in a second intensity,

wherein the first intensity is larger than the second intensity, wherein the first direction is a forward direction, and wherein the second direction is a backward direction.

- 2. (Original) The laser irradiation method according to claim 1, wherein the laser beam is delivered obliquely to the semiconductor layer.
- 3. (Canceled)
- 4. (Original) The laser irradiation method according to claim 1, wherein the semiconductor layer moves to a direction reverse to the first direction, when the semiconductor layer is scanned to a first direction.
- 5. (Original) The laser irradiation method according to claim 1, wherein the semiconductor layer moves to a direction reverse to the second direction, when the semiconductor layer is scanned to a second direction.

6. (Currently Amended) A laser irradiation method comprising: emitting a first laser beam;

changing the first laser beam into a second laser beam through means for varying beam intensity which can vary beam intensity in accordance with a scanning direction;

changing the second laser beam into a third laser beam;

delivering the third laser beam to an irradiation surface; and

scanning the irradiation surface with the third laser beam,

wherein the third laser beam is scanned in a forward direction in a first period,

wherein the third laser beam is scanned in a backward direction in a second

period, and

wherein the beam intensity of the second laser beam in the first period is larger than that in the second period.

- 7. (Original) The laser irradiation method according to Claim 6, wherein the third laser beam is delivered obliquely to the irradiation surface.
- 8. (Original) The laser irradiation method according to Claim 6, wherein the first laser beam is emitted from a laser oscillator.
- 9. (Original) The laser irradiation method according to Claim 6, wherein the means for varying beam intensity comprises at least one of polarizing plates and an ND filter.
- 10. (Original) The laser irradiation method according to Claim 6, wherein the second laser beam is changed into a third laser beam through at least one of a convex lens and a diffractive optical element.

- 11. (Currently Amended) The laser irradiation method according to claim 6, wherein the irradiation surface moves to a direction reverse to [[the]] <u>a</u> scanning direction, when the irradiation surface is scanned with the third laser beam.
 - 12. (Original) The laser irradiation method according to claim 6, wherein the irradiation surface is a surface of a semiconductor layer.
 - 13. (Currently Amended) A laser irradiation apparatus comprising:
 - a laser oscillator;

means for varying beam intensity; and

a convex lens;

wherein a laser beam is incident into an irradiation surface,

wherein the irradiation surface is scanned with the laser beam <u>in a forward</u> <u>direction in a first period</u>,

wherein the irradiation surface is scanned with the laser beam in a backward direction in a second period, and

wherein beam intensity is varied in every scanning direction between the first period and the second period by the means for varying beam intensity.

- 14. (Currently Amended) The laser irradiation apparatus according to claim 13, wherein the laser beam passed through the convex lens or the diffractive optical element has a rectangular, linear, or elliptical shape on the irradiation surface.
- 15. (Original) The laser irradiation apparatus according to claim 13, wherein the means for varying beam intensity comprises at least one of a polarizing plate and an ND filter.
 - 16. (Original) The laser irradiation apparatus according to claim 15,

wherein the number of the polarizing plates is more than one.

- 17. (Original) The laser irradiation apparatus according to claim 13, wherein the laser oscillator is a continuous wave solid-state laser, gas laser, or metal laser or a pulsed solid-state laser, gas laser, or metal laser.
- 18. (Original) The laser irradiation apparatus according to claim 13, wherein the laser oscillator is one selected from the group consisting of continuous wave or pulsed YAG laser, YVO₄ laser, YLF laser, YAIO₃ laser, GdVO₄ laser, Y₂O₃ laser, glass laser, ruby laser, alexandrite laser, and Ti:sapphire laser.
- 19. (Original) The laser irradiation apparatus according to claim 13, wherein the laser oscillator is one selected from the group consisting of an Ar laser, a Kr laser, and a CO₂ laser.
- 20. (Original) The laser irradiation apparatus according to claim 13, wherein the laser oscillator is one selected from the group consisting of a YVO₄ laser, a GdVO₄ laser, and a YAG laser which have a repetition frequency of 10 MHz or more.
- 21. (Original) The laser irradiation apparatus according to claim 13, wherein the laser beam emitted from the laser oscillator is converted into a harmonic by a non-linear optical element.
 - 22. (Currently Amended) A laser irradiation apparatus comprising: a laser oscillator; means for varying beam intensity; and a diffractive optical element;

wherein a laser beam is incident into an irradiation surface,

wherein the irradiation surface is scanned with the laser beam in a forward direction in a first period,

wherein the irradiation surface is scanned with the laser beam in a backward direction in a second period, and

wherein beam intensity is varied in every scanning direction between the first period and the second period by the means for varying beam intensity.

- 23. (Currently Amended) The laser irradiation apparatus according to claim 22, wherein the laser beam passed through the convex lens or the diffractive optical element has a rectangular, linear, or elliptical shape on the irradiation surface.
- 24. (Original) The laser irradiation apparatus according to claim 22, wherein the means for varying beam intensity comprises at least one of a polarizing plate and an ND filter.
 - 25. (Original) The laser irradiation apparatus according to claim 24, wherein the number of the polarizing plates is more than one.
- 26. (Original) The laser irradiation apparatus according to claim 22, wherein the laser oscillator is a continuous wave solid-state laser, gas laser, or metal laser or a pulsed solid-state laser, gas laser, or metal laser.
- 27. (Original) The laser irradiation apparatus according to claim 22, wherein the laser oscillator is one selected from the group consisting of continuous wave or pulsed YAG laser, YVO4 laser, YLF laser, YAIO3 laser, GdVO4 laser, Y₂O₃ laser, glass laser, ruby laser, alexandrite laser, and Ti:sapphire laser.

- 28. (Original) The laser irradiation apparatus according to claim 22, wherein the laser oscillator is one selected from the group consisting of an Ar laser, a Kr laser, and a CO₂ laser.
- 29. (Original) The laser irradiation apparatus according to claim 22, wherein the laser oscillator is one selected from the group consisting of a YVO₄ laser, a GdVO₄ laser, and a YAG laser which have a repetition frequency of 10 MHz or more.
- 30. (Original) The laser irradiation apparatus according to claim 22, wherein the laser beam emitted from the laser oscillator is converted into a harmonic by a non-linear optical element.
 - 31. (Currently Amended) A laser irradiation apparatus comprising:

a laser oscillator;

means for varying beam intensity; and

a convex lens:

wherein a laser beam is incident obliquely into an irradiation surface,

wherein the irradiation surface is scanned with the laser beam in a forward direction in a first period,

wherein the irradiation surface is scanned with the laser beam in a backward direction in a second period, and

wherein beam intensity is varied in every scanning direction between the first period and the second period by the means for varying beam intensity.

32. (Currently Amended) The laser irradiation apparatus according to claim 31, wherein the laser beam passed through the convex lens or the diffractive optical element has a rectangular, linear, or elliptical shape on the irradiation surface.

- 33. (Original) The laser irradiation apparatus according to claim 31, wherein the means for varying beam intensity comprises at least one of a polarizing plate and an ND filter.
 - 34. (Original) The laser irradiation apparatus according to claim 33, wherein the number of the polarizing plates is more than one.
- 35. (Original) The laser irradiation apparatus according to claim 31, wherein the laser oscillator is a continuous wave solid-state laser, gas laser, or metal laser or a pulsed solid-state laser, gas laser, or metal laser.
- 36. (Original) The laser irradiation apparatus according to claim 31, wherein the laser oscillator is one selected from the group consisting of continuous wave or pulsed YAG laser, YVO₄ laser, YLF laser, YAlO₃ laser, GdVO₄ laser, Y₂O₃ laser, glass laser, ruby laser, alexandrite laser, and Ti:sapphire laser.
- 37. (Original) The laser irradiation apparatus according to claim 31, wherein the laser oscillator is one selected from the group consisting of an Ar laser, a Kr laser, and a CO₂ laser.
- 38. (Original) The laser irradiation apparatus according to claim 31, wherein the laser oscillator is one selected from the group consisting of a YVO₄ laser, a GdVO₄ laser, and a YAG laser which have a repetition frequency of 10 MHz or more.
 - 39. (Original) The laser irradiation apparatus according to claim 31,

wherein the laser beam emitted from the laser oscillator is converted into a harmonic by a non-linear optical element.

40. (Currently Amended) A laser irradiation apparatus comprising:

a laser oscillator;

means for varying beam intensity; and

a diffractive optical element;

wherein a laser beam is incident obliquely into an irradiation surface,

wherein the irradiation surface is scanned with the laser beam in a forward direction in a first period,

wherein the irradiation surface is scanned with the laser beam in a backward direction in a second period, and

wherein beam intensity is varied in every scanning direction between the first period and the second period by the means for varying beam intensity.

- 41. (Currently Amended) The laser irradiation apparatus according to claim 40, wherein the laser beam passed through the convex lens or the diffractive optical element has a rectangular, linear, or elliptical shape on the irradiation surface.
- 42. (Original) The laser irradiation apparatus according to claim 40, wherein the means for varying beam intensity comprises at least one of a polarizing plate and an ND filter.
 - 43. (Original) The laser irradiation apparatus according to claim 42, wherein the number of the polarizing plates is more than one.
 - 44. (Original) The laser irradiation apparatus according to claim 40,

wherein the laser oscillator is a continuous wave solid-state laser, gas laser, or metal laser or a pulsed solid-state laser, gas laser, or metal laser.

- 45. (Original) The laser irradiation apparatus according to claim 40, wherein the laser oscillator is one selected from the group consisting of continuous wave or pulsed YAG laser, YVO₄ laser, YLF laser, YAIO₃ laser, GdVO₄ laser, Y₂O₃ laser, glass laser, ruby laser, alexandrite laser, and Ti:sapphire laser.
- 46. (Original) The laser irradiation apparatus according to claim 40, wherein the laser oscillator is one selected from the group consisting of an Ar laser, a Kr laser, and a CO₂ laser.
- 47. (Original) The laser irradiation apparatus according to claim 40, wherein the laser oscillator is one selected from the group consisting of a YVO₄ laser, a GdVO₄ laser, and a YAG laser which have a repetition frequency of 10 MHz or more.
- 48. (Original) The laser irradiation apparatus according to claim 40, wherein the laser beam emitted from the laser oscillator is converted into a harmonic by a non-linear optical element.