Image Analysis Coursework

James Hughes Word count: 0

June 6, 2024

Contents

1	Introduction	3
2	Question 3	3
3	Discussion	3
\mathbf{A}	Statement on the use of auto-generation tools	3

1 Introduction

2 Question 3

Gradient Descent.

We can prove that the given function $f: \mathbb{R}^2 \to \mathbb{R}$ defined

$$f(x_1, x_2) = x_1^2 + \frac{x_2^2}{2}$$

is L-smooth with L=2 via the following

The result given is, for learning rate $\eta = \frac{1}{L}$, and an L-smooth function f,

$$f(x_K) - f(x^*) \le \frac{L||x_0 - x^*||_2^2}{2K}$$

It is important to note that this is an estimate that gives the accuracy as $\mathcal{O}(\frac{1}{K})$. We can use it to compute the estimate the number of steps to required to reach $\epsilon = 0.01$, but this will be an upper bound. Nonetheless, we can set the right-hand side to ϵ and rearrange to give:

$$K = \frac{L||x_0 - x^*||_2^2}{2\epsilon}$$

Substituting $\epsilon = 0.01$, $x^* = (0,0)$, $x_0 = (1,1)$, L = 2, we get K = 200.

3 Discussion

Results/conclusions Further work What I learned How I could have improved [1]

References

[1] X. Li et al., "Three-dimensional structured illumination microscopy with enhanced axial resolution," Nature Biotechnology, vol. 41, pp. 1307–1319, 2023. [Online]. Available: https://doi.org/10.1038/s41587-022-01651-1

A Statement on the use of auto-generation tools