泛函分析第17周作业

林陈冉

2016年12月21日

6.10

(1) ∀ $u \in E$,成立以下关系

$$\begin{split} |Q(I)| \|u\| &= \|Q(I)u - Q(T)u + Q(T)u\| \\ &\leq \|Q(I)u - Q(T)u\| + \|Q(T)u\| \\ &= \|\tilde{Q}(T)(I-T)u\| + \|Q(T)u\| \\ &\leq \|\tilde{Q}(T)\| \|(I-T)u\| + \|Q(T)u\| \\ &\leq C \Big(\|(I-T)u\| + \|Q(T)u\| \Big) \end{split}$$

其中 $C = \max\{\|\tilde{Q}(T),1\|\}$,由 Q(T) 是紧算子, I-T 是线性算子, 由练习(6.9)可知, N(I-T) 有限维, R(I-T) 是闭集.

对于 $E_0 \subset E$, 只要考虑 T 在 E_0 上的限制 $T|_{E_0}$, 完全按照上面的证明, 即可得到 $R(I-T|_{E_0}) = (I-T)E_0$ 是闭集.

(2) 证明 $N(I-T) = \{0\} \Rightarrow R(I-T) = E$:

若 $R(I-T) \neq E$, 设 $(I-T)^n E = E_n$, 则显然 E_n 是一个递减的集合列. 构造序列 $\{u_n\}$, s.t. $\|u_n\| = 1$, $u_n \in E_n$, $\operatorname{dist}(u_n, E_{n+1}) \geq 1/2$, 则当 $m \geq n+1$

$$||Q(T)u_m - Q(T)u_n|| = ||Q(T)u_m - Q(T)u_n + Q(I)u_n - Q(I)u_m - Q(I)u_n + Q(I)u_m||$$
$$= ||Q(I)u_n - ((I - T)\tilde{Q}(T)(u_m - u_n) + Q(I)u_n)||$$

 $u_n\in E_n$, $u_m\in E_m\subset E_{n+1}\subset E_n$, 则 $\tilde{Q}(T)(u_m-u_n)\in E_n$, 那么 $(I-T)\tilde{Q}(T)(u_m-u_n)+Q(I)u_m\in E_{n+1}$, 由 $\mathrm{dist}(u_n,E_{n+1})\geq 1/2$

$$||Q(T)u_m - Q(T)u_n|| = ||Q(I)u_n - ((I - T)\tilde{Q}(T)(u_m - u_n) + Q(I)u_n)|| \ge \frac{||Q(I)||}{2}$$

但 Q(T) 是紧算子, 这显然矛盾, 故 R(I-T)=E.

证明
$$R(I-T) = E \Rightarrow N(I-T) = \{0\}$$
:

首先我们证明 $Q(T^*)$ 是紧算子. $\forall u \in E$, $v \in E^*$, 有 $\langle T^k u, v \rangle = \langle T^{k-1}u, T^*v \rangle = \cdots = \langle u, (T^*)^k v \rangle$, 即 $(T^k)^* = T^{*k}$. 那么

$$\langle Q(T)u,v\rangle = \langle \sum_{k=1}^p a_k T^k u,v\rangle = \sum_{k=1}^p a_k \langle T^k,v\rangle = \sum_{k=1}^p \langle u,T^{*k}v\rangle = \langle u,\sum_{k=1}^p a_k T^{*k}v\rangle = \langle u,Q(T^*)v\rangle$$

即 $Q(T)^* = Q(T^*)$,故 $Q(T^*)$ 是紧算子.

R(I-T)=E,则 $N(I-T^*)=\{0\}$,由上面半个小题的结论可以推出 $R(I-T^*)=E$,那么 $N(I-T)=\{0\}$.

(3) 由 $S(T^*)$ 紧可知, $d^* = \dim(I - T^*) < \infty$. 假设 $d < d^*$,完全仿照定理6.6构造有限秩算子 Λ ,投影 P,令 $S = T + \Lambda \circ P \in \mathcal{L}(E)$,可以证明 $N(I - S) = \{0\}$.

因为 $R\big((\Lambda\circ P)^k\big)=(\Lambda\circ P)^kE\subset R(\Lambda\circ P)$ 是有限维的, 则 $Q(\Lambda\circ P)=\sum_{k=1}^p a_k(\Lambda\circ P)^k$ 是有限秩的, 而 Q(T) 是紧的, 故 $Q(S)=Q(T)+Q(\Lambda\circ P)$ 是紧的. 由第二小题, R(I-S)=E , 这显然是不可能的. 则 $d\geq d^*$

再对 T^* 做类似证明, 有 $d^* \geq d^{**} = \dim N(I-T^{**})$, 易知 $N(I-T) \subset N(I-T^{**})$,则 $d^* > d^{**} > d$,故 $d = d^*$.

6.11

(1) 设 $F_n = \{u \in F | \|u(x) - u(y)\| < nd(x,y)^{\frac{1}{n}}, x, y \in K\}$,显然 $\bigcup_{n=1}^{\infty} F_n = F$,由贝尔定理, $\exists n_0$,s.t. $\operatorname{Int} F_{n_0} \neq \emptyset$.设 $B(u_0,\rho) \subset F_{n_0}$,则 $u \in F$,令 $|\lambda| < \rho/\|u\|$,则 $u_0 + \lambda u \in B(u_0,\rho) \subset F_{n_0}$,即 $\forall x, y \in E$

$$\|(u_0(x) + \lambda u(x)) - (u_0(y) + \lambda u(y))\| < n_0 d(x, y)^{\frac{1}{n_0}}$$

而

$$\|\lambda(u(x) - u(y))\| \le \|(u_0(x) + \lambda u(x)) - (u_0(y) + \lambda u(y))\| + \|u_0(x) - u_0(y)\| < 2n_0 d(x, y)^{\frac{1}{n_0}}$$

则

$$||u(x) - u(y)|| < \frac{2}{n_0|\lambda|} d(x,y)^{\frac{1}{n_0}} < \frac{2||u||}{n_0\rho} d(x,y)^{\frac{1}{n_0}}$$

即对 $\forall u \in F$, $\exists C, \gamma \text{s.t.} \ \|u(x) - u(y)\| < C\|u\|d(x,y)^{\gamma}$.

(2) K 是紧集, $F\cap B_F=B_F$ 是 E=C(K) 的有界闭子集, 由第一小题, $\forall \varepsilon>0$, 令 $\delta=(\varepsilon/C)^{1/\gamma}$, 则当 $d(x,y)<\delta$

$$||u(x) - u(y)|| < C||u||d(x,y)^{\gamma} \le Cd(x,y)^{\gamma} < \varepsilon$$

由Ascoli-Arzelà定理, $\bar{B_F} = B_F$ 是紧集, 则 F 是有限维的.

6.17

考虑算子 $M - \alpha I : l^p \to l^p$, $(M - \alpha I)x = ((\lambda_1 - \alpha)x_i, \dots, (\lambda_n - \alpha)x_i, \dots)$.

若 $\exists i$, s.t. $\alpha = \lambda_i$, $\forall x_i \in \mathcal{R}$, $(M - \alpha I)(0, \dots, 0, x_i, 0, \dots) = 0$, 则显然此时 $M - \alpha I$ 不是双射. 除此以外的 α 都满足 $M - \alpha I$ 可逆, 故 $\sigma(M) = \{\lambda_1, \dots, \lambda_n, \dots\}$.

 $\forall \alpha = \lambda_i \in \sigma(M)$, 上面说明了 $\overbrace{(0,\cdots,0,x_i,0,\cdots)}^{i-1 \uparrow 0} \in N(M-\alpha I)$, 则 $\alpha \in EV(M)$, 即 $EV(M) = \sigma(M) = \{\lambda_1,\cdots,\lambda_n,\cdots\}$.

6.20

(1) 由实分析知识可知, 可积函数可以由阶梯函数来逼近, 定义算子 $P_n: L^p \to L^p$

$$P_n u(x) = u(\frac{i}{n}), \quad x \in [\frac{i}{n}, \frac{i+1}{n}], \quad i = 0, 1, \dots, n$$

当 $n \to \infty$, $P_n u(x) \to u(x)$. $P_n u(x)$ 只由 $0, 1/n, \dots, n$ 这 n+1 个点上的值决定, 所以 $\dim R(P_n) = n+1$, P_n 是有限秩的. 再定义 $T_n = T \circ P_n$, 则显然 T_n 也是连续的有限秩的, 且由控制收敛定理有 $T_n \to T$, 故 T 是紧算子.

(2) 当 $\lambda = 0$,由 Tu(x) = T(u(x) + 1) 可知, $T - \lambda I$ 不是双射,故 $0 \in \sigma(T)$. 但因为 $Tu(x) = \int_0^x u(t)dt = 0$ 对任意 $x \in (0,1)$ 成立,则显然 $u(x) \equiv 0$,故 $0 \notin EV(T)$.

若 $Tu=\lambda u$, 则对 $\forall y\in (0,1)$, $\int_0^y Tu(x)dx=\int_0^y \lambda u(x)dx$, 即

$$\int_0^y \int_0^x u(t)dtdx = \int_0^y \int_0^1 u(t)\chi_{[0,1]}(x-t)dtdx = \int_0^y (y-t)u(t)dt = \int_0^y \lambda u(x)dx$$

故

$$\int_0^y (y - t - \lambda)u(t)dt \equiv 0$$

自然的, 其对 y 的导数也恒为0

$$\frac{d\int_0^y (y-t-\lambda)u(t)dt}{dy} = \int_0^y u(t)dt - \lambda u(y) \equiv 0$$

可以看出, 当 y = 0, u(0) = 0. 再次求导

$$u(y) - \lambda u'(y) \equiv 0$$
$$u(0) = 0$$

解该微分方程, 得 u(y) = 0, 那么 $N(T - \lambda I) = \{0\}$, $\lambda \notin EV(T)$.

综上,
$$EV(T) = \emptyset$$
, $\sigma(T) = \{0\}$.

(3) 考虑 $f \in C((0,1))$ 的特殊情况. 当 $\lambda \neq 0$, $T - \lambda I$ 可逆, 则 引 $u \in C((0,1))$, s.t. $u = (T - \lambda I)^{-1} f$, 那么 $(T - \lambda I)u = Tu - \lambda u = f$. 设 v = Tu , $v \in C^1((0,1))$, v' = u , v(0) = 0 , 故

$$v(x) - \lambda v'(x) = f(x)$$
$$v(0) = 0$$

求解该微分方程组, 得

$$v(x) = -\frac{e^{x/2}}{\lambda} \int_0^x g(t)e^{-t/2}dt$$

那么

$$u(x) = v'(x) = -\frac{f(x)}{\lambda} - \frac{e^{x/2}}{\lambda^2} \int_0^x e^{x/2} f(x) dt$$

上式即当 $\lambda \neq 0$ 时, $T - \lambda I$ 在 C(0,1) 上的限制的显式表达.

(4) $\forall v \in L^{p'}$, $u \in L^p$

$$\langle Tu, v \rangle = \int_0^1 Tu(x)v(x)dx$$
$$= \int_0^1 \left(\int_0^1 u(y)dy \right) v(x)dx$$
$$= \int_0^1 u(y) \left(\int_x^1 v(x)dx \right) dy$$

记 $T^*v(x)=\int_x^1v(t)dt$, 则满足 $\langle Tu,v\rangle=\langle u,T^*v\rangle$.