Bài toán 285

Cho hàm số
$$f(x)=\left\{ egin{array}{ll} \sqrt{-x} & \mbox{khi } x<0, \\ 3-x & \mbox{khi } 0\leq x<3, \\ (x-3)^2 & \mbox{khi } x>3. \end{array} \right.$$

Khảo sát các giới hạn $\lim_{x\to 0}f(x),$ $\lim_{x\to 3}f(x)$ và $\lim_{x\to 2}f(x).$ Tính giới hạn nếu tồn tại.

Bài toán 286

$$\text{Cho hàm số } q(x) = \left\{ \begin{array}{ll} -x+2 & \text{for} \quad x < -3 \\ x^2+x & \text{for} \quad -3 \leq x < 1 \\ \sqrt{x+3} & \text{for} \quad x \geq 1. \end{array} \right.$$

- (a) Khảo sát sự liên tục của q tại mỗi $a \in \mathbb{R}$.
- (b) Khảo sát sự liên tục của q trên \mathbb{R} .

Xét hai giới hạn

(a) Tìm giới hạn (nếu có)
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$$
. (c) $\lim_{(x,y)\to(x_0,y_0)} \frac{3x^2y}{x^2+y^2}$. (b) Tìm giới hạn (nếu có) $\lim_{(x,y)\to(0,0)} f(x,y)$. (d) $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$.

(b) Tìm giới hạn (nếu có)
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
. (d) $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$

Hãy đưa ra cơ sở lý thuyết rõ ràng để thấy mối liên hệ giữa hai giới hạn trên.

ightharpoonup Bài toán 24 Tìm giới hạn (nếu tồn tại; nếu không tồn tại thì đưa ta giải thích) $\lim_{(x,y)\to(0,0)} \sqrt{x} \sin\left(\frac{1}{xy}\right)$.

🔑 Lời giải thích phải dựa trên cơ sở lý thuyết rõ ràng.

Bài toán 287 Hàm số có liên tục trên \mathbb{R}^2 hay không

Cho hàm số
$$f(x,y)=\left\{ egin{array}{ll} \dfrac{xy^2}{x^2+y^2} & (x,y)
eq (0,0), \\ 0 & (x,y)=(0,0). \end{array} \right.$$

Hàm số có liên tục trên \mathbb{R}^2 hay không

Vi tích phân 2 TRANG 162/164

Bài toán 288 Bài tập 29, 31, 33, 37, 38 page 900, section 14.2[Ste12]

Tìm tất cả các điểm mà tại đó f liên tục trong mỗi trường hợp sau:

(a)
$$f(x,y) = \frac{x-y}{1+x^2+y^2}$$
;

(e)
$$f(x,y) = \frac{x-y}{1+x^2+y^2}$$
;

(b)
$$f(x,y) = \arctan(x + \sqrt{y});$$

(c)
$$f(x,y) = e^{x^2y} + \sqrt{x+y^2}$$
;

(f)
$$f(x,y) = \frac{1+x^2+y^2}{1-x^2-y^2}$$
;

(d)
$$f(x,y) = \frac{xy}{1 + e^{x-y}};$$

(g)
$$f(x,y) = \ln(x^2 + y^2 - 4)$$
;

$$\text{(h)} \ \, f(x,y) = \begin{cases} \frac{x^2y^3}{2x^2+y^2} & \text{n\'eu} \quad (x,y) \neq (0,0), \\ 0 & \text{n\'eu} \quad (x,y) = (0,0); \end{cases}$$

(i)
$$f(x,y) = \begin{cases} \frac{x^2y^3}{2x^2 + y^2}, & \text{n\'eu}(x,y) \neq (0,0) \\ 1 & \text{n\'eu}(x,y) = (0,0), \end{cases}$$

(j)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & \text{n\'eu} \quad (x,y) \neq (0,0), \\ 0 & \text{n\'eu} \quad (x,y) = (0,0). \end{cases}$$

Gợi ý (h&j).

(h) Tại $(x_0,y_0)\neq (0,0)$, ta có $P(x,y)=x^2y^3, Q(x,y)=2x^2+y^2$ là các hàm liên tục và $Q(x_0,y_0)\neq 0$ nên $\frac{P}{Q}$ liên tục tại (x_0,y_0) . Suy ra f liên tục tại (x_0,y_0) .

Tại $(x_0, y_0) = (0, 0)$, ta có thể chỉ ra hàm liên tục tại đó vì $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$ (why?). Tóm lại, tập hợp những điểm mà hàm liên tục tại đó là \mathbb{R}^2 .

(j) Tại $(x_0,y_0)\neq (0,0)$, ta có $P(x,y)=xy, Q(x,y)=x^2+xy+y^2$ là các hàm liên tục và $Q(x_0,y_0)\neq 0$ nên $\frac{P}{Q}$ liên tục tại (x_0,y_0) . Suy ra f liên tục tại (x_0,y_0) .

Tại $(x_0, y_0) = (0, 0)$, ta có thể chỉ ra hàm không liên tục tại đó vì $\lim_{(x,y)\to(0,0)} f(x,y)$ không tồn tại (why?). Tóm lại, tập hợp những điểm mà hàm liên tục tại đó là $\mathbb{R}^2\setminus\{(0,0)\}$.

Lưu ý. "Suy ra" ở lời giải trên là điều không đơn giản. Tuy nhiên, dừng lại ở chương trình môn học này, ta sẽ tạm chấp nhận lý luận ẩn phía sau đó.

Vi tích phân 2 TRANG 163/164

Hãy tìm một hình tròn B tâm (x_0, y_0) với bán kính thích hợp sao cho hình tròn này không chứa điểm (0,0). Tìm $f_{|B}$.

Bài toán 289 Bài tâp 2.2 [?]

Cho D là tập mở trong \mathbb{R}^2 và $f:\mathbb{R}^2\to\mathbb{R}$. Ánh xạ thu hẹp $f_{|D}$ của f là ánh xạ được xác định: $f_{|D}:D\to\mathbb{R}$ và $f_{|D}(\mathbf{x})=f(\mathbf{x})$ với mọi $\mathbf{x}\in D$. Giả sử \mathbf{x}_0 là điểm tụ của D. Chứng minh rằng với mỗi , $\lim_{\mathbf{x}\to\mathbf{x}_0}f_{|D}(\mathbf{x})$ tồn tại khi và chỉ khi $\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})$ tồn tại. Hơn nữa, khi các giới hạn tồn tại, ta có $\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=\lim_{\mathbf{x}\to\mathbf{x}_0}f_{|D}(\mathbf{x})$.

Bài toán 290 Bài tập 2.2 [?]

Cho D là tập mở trong \mathbb{R}^2 và $f:\mathbb{R}^2\to\mathbb{R}$. Ánh xạ thu hẹp của $f_{|D}$ của f là ánh xạ được xác định: $f_{|D}:D\to\mathbb{R}$ và $f_{|D}(\mathbf{x})=f(\mathbf{x})$ với mọi $\mathbf{x}\in D$. Chứng minh rằng với mỗi $\mathbf{x}_0\in D$, $f_{|D}$ liên tục tại \mathbf{x}_0 khi và chỉ khi f liên tục tại \mathbf{x}_0 . Chứng minh giả thiết D mở không thể bỏ qua.

Bài toán 291 Bài tập 2.14 [?]

Cho $f, g: D \subset \mathbb{R}^2 \to \mathbb{R}$ và tập mở U trong \mathbb{R}^2 chứa trong D. Giả sử $f(\mathbf{x}) = g(\mathbf{x})$ với mọi $\mathbf{x} \in U$. Chứng minh rằng với mỗi $\mathbf{x}_0 \in U$, f **liên tục** tại \mathbf{x}_0 khi và chỉ khi g liên tục tại \mathbf{x}_0 .

Bài toán 292

Cho D là tập mở trong \mathbb{R}^2 và $f:\mathbb{R}^2\to\mathbb{R}$. Ánh xạ thu hẹp $f_{|D}$ của f là ánh xạ được xác định: $f_{|D}:D\to\mathbb{R}$ và $f_{|D}(\mathbf{x})=f(\mathbf{x})$ với mọi $\mathbf{x}\in D$. Chứng minh rằng với mỗi $\mathbf{x}_0\in D$, $f_{|D}$ khả vi tại \mathbf{x}_0 khi và chỉ khi f khả vi tại \mathbf{x}_0 .

Vi tích phân 2 TRANG 164/164