$\Box \diamondsuit A \rightarrow A \text{ (in S5)}$

Build a Tableau

To Check Whether it is Valid

Hypothesis

 $\square \diamondsuit A \rightarrow A$ is a theorem of S5.

• We are going to use simplified S5.

Hypothesis

- $\square \diamondsuit A \rightarrow A$ is a theorem of S5.
 - We are going to use simplified S5.
 - Note this 'should' fail given what we have shown.
 - We know that ♦A implies □ ♦ A.
 - So if □ ♦ A implies A, we'll have ♦ A implies A, which is absurd.

 $\Box \diamondsuit A \rightarrow A$

1. 1, $\mathbb{F} \square \diamondsuit A \rightarrow A$ Assumption

Start with it being false at 1.

$$\Box \Diamond A \rightarrow A$$

This feels familiar by now.

$$\Box \diamondsuit \mathsf{A} \to \mathsf{A}$$

The unboxed part of a box sentence is true everywhere, so it is true here. (But it doesn't get checked, because it's an open ended rule.)

 $\Box \diamondsuit \mathsf{A} \to \mathsf{A}$

1.	1, $\mathbb{F} \Box \Diamond A \rightarrow A \checkmark$	Assumption
2.	1, T □ ♦A	$\rightarrow \mathbb{F}$, 1
3.	1,	→F , 1
4.	1, T ♦ A 🗸	□ T , 2
5.	2, ⊤ A	◇ T, 4

True \diamondsuit sentences have to be made true by some world. It can't be this one, since A is false here, and in any case we always use a new name.

$$\Box \diamondsuit \mathsf{A} \to \mathsf{A}$$

1.	1, $\mathbb{F} \Box \diamondsuit A \to A \checkmark$	Assumption
2.	1, ⊤ □ ♦A	$\rightarrow \mathbb{F}$, 1
3.	1,	$\rightarrow \mathbb{F}$, 1
4.	1, T ◇ A ✓	□ T , 2
5.	2, T A	◇ T, 4
6.	2, T ♦ A	□ T , 2

True

sentences are true, unboxed, everywhere, so we have to make them true in the new world we added.

 $\square \diamondsuit \mathsf{A} \to \mathsf{A}$

1.	1, $\mathbb{F} \Box \diamondsuit A \to A \checkmark$	Assumption
2.	1, T □ ♦A	$\rightarrow \mathbb{F}$, 1
3.	1,	$\rightarrow \mathbb{F}$, 1
4.	1, T ♦ A 🗸	□ T , 2
5.	2, T A	◇ T, 4
6.	2, T ♦ A	□ T , 2

Now if we are following the rules mechanically we will add a new world to make A true, call it world 3. And the cycle will continue.

 $\Box \diamondsuit \mathsf{A} \to \mathsf{A}$

1.	1, $\mathbb{F} \Box \diamondsuit A \to A \checkmark$	Assumption
2.	1, T □ ♦A	$\rightarrow \mathbb{F}$, 1
3.	1,	$\rightarrow \mathbb{F}$, 1
4.	1, T ♦ A ✓	□ T , 2
5.	2, T A	◇ T, 4
6.	2, T ♦ A	□ T , 2

- But if we think through what the lines are saying, we can see that we can stop here.
- · Line 6 has to be made true somehow.
- But line 5 says that world 2 itself makes line 6 true.
- So there isn't anything extra to do.

 $\Box \diamondsuit A \rightarrow A$

So here is a description of a model where this alleged theorem fails.

- There are two worlds: w₁ and w₂.
- At w₁, A is false.
- At w₂, A is true.
- So $\square \diamondsuit A$ is true everywhere.
- So at w_1 , $\square \diamondsuit A$ is true and A is false.
- So at w_1 , $\square \diamondsuit A \to A$ is false.

