Cheat Sheet

isakhammer

2020

1 Introduction

Theorem 1.1 (Brouwer fixed point theorem). Let $f: D^n \to D^n$ be continuous map from the (unit) disk in \mathbb{R}^n to itself. Then f has a fixed point, i.e., there is some point $x \in D^n$ such that f(x) = x.

Theorem 1.2 (The fundamental theorem of algebra). A polynomial equation

$$z^{n} + a_{n-1}z^{n-1} + \ldots + a_{1}z + a_{0} = 0$$

2 Continious maps

2.1 Metric spaces

Definition 2.1 (Metric spaces). A metric psace (X, d) is a non-empty set X toghether with a map $d: X \times X \to \mathbb{R}$ called a metric such that the following properties hold:

- (i) M1 $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 if and only if x = y.
- (ii) **M2** d(x,y) = d(y,x) for all $x, y \in X$
- (iii) **M3** $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

2.2 Continious maps between metric spaces

Definition 2.2 (Continious maps between metric spaces). Let $d(X, d_X)$ and (Y, d_Y) be two metric spaces. A map $f: X \to Y$ is continious at $p \in X$ if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that if $d_X(p,q) < \varepsilon$ then $d_Y(f(p), f(q)) < \varepsilon$. If f is continious at every point $p \in X$, we say that f is continious.

Definition 2.3 (Open and closed balls). Let X(X,d) be a metric space, and let $a \in X$ and r > 0 be real number. The open ball centered at a with radius r is the subset

$$B(a; r) = \{x \in X \mid d(x, a) < r\}$$

of X. The closed ball centered at a with radius r is the subset

$$\overline{B}(a;r) = \{x \in X \mid d(x,a) < r\}$$

of X.

Definition 2.4 (Open and closed sets). Let (X,d) be a metric space. A subset $A \subseteq X$ is open in X if for every point $a \in A$, there exists an open ball B(a;r) about a contained in A. We say that A is closed in X if the complement

$$A^c = X \setminus A = \{x \in X \mid x \notin A\}$$
 is open

Remark. Let $X = \{a, b, c\}$ and let $U = \{a, b\}$. Then if $\tau = \{X, \emptyset\}$, U is not open nor closed.

Lemma 2.1. Let (X,d) be a metric space, $x \in X$ and r > 0 a real number. Then the open ball $B(x;r) \subseteq X$ is open in X, and the closed ball $\overline{B}(x;r) \subseteq X$ is closed in X.

Definition 2.5 (Neightbourhoods). Let (X, d) be a metric space, A a subset of X and $x \in X$. We say that A is a neighbourhood of x if there is an open ball about x contained in A. We say that A is an open neighborhood (of x) if A itself is open.

Theorem 2.1 (Continuity of a point). Let (X, d_X) and (Y, d_Y) be two metric spaces and let $p \in X$. A map $f: X \to Y$ is continious at p if and only if for all neighbourhoods B of f(p), there is a neighbourhood A of p such that $f(A) \subseteq B$

Theorem 2.2 (Continious maps between metric spaces). Let (X, d_X) and (Y, d_Y) be two metric spaces. A map $f: X \to Y$ is continious if and only if for every subset $B \subseteq Y$ open in Y, the preimage of B under f,

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subseteq X,$$

is open in X.

3 Topological spaces

3.1 Definitions and examples

Definition 3.1 (Topological spaces.). Recall that a topological space is a set X together with a collection Y of subsets of X that are open in X s.t.

- $T1. \emptyset, X \in \tau$
- T2. τ is closed under union if $U_{\lambda} \in \tau$ for all $\lambda \in \Lambda$, then

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \tau$$

• T3. τ is under finite intersections if $U_1, U_2, \ldots, U_n \in \tau$, then

$$U_1 \cap U_2 \cap \ldots \cap U_n \in \tau$$

Theorem 3.1 (Metric spaces are topological spaces). Let (X,d) be a metrix space. Let τ_d be the collection of subsets $U \subseteq X$ with the property that $U \in \tau_d$ if and only if for each $x \in U$ there is an r > 0 such that $B(x;r) \subseteq U$. Then τ_d defines a topology on X.

Theorem 3.2. Let X be any set, and let d_1 and d_2 be two equivalent metrics on X. Then

$$\tau_{d_1} = \tau_{d_2}.$$

Definition 3.2 (Comparable topologies). Let X be a set and suppose that τ_1 and τ_2 are two topologies on X. If $\tau_1 \subseteq \tau_2$, we say that τ_1 is coarser than τ_2 and that τ_2 is finar than τ_1 . We say that τ_1 and τ_2 are comparable if either $\tau_1 \subseteq \tau_2$ or $\tau_2 \subseteq \tau_1$.

3.2 Continious maps.

Theorem 3.3. Continuity between topological spaces. Let X, Y be topological spaces. A map $f: X \to Y$ is said to be continious if preimages of open sets are open, i.e., if V is an open set in Y then the preimage $f^{-1}(V)$ of V is open in X.

Theorem 3.4 (Composition of continious maps). Let X, Y and Z be topological sapers. If $f: X \to Y$ and $g: Y \to Z$ are continious maps, then the composite $g \circ f: X \to Z$ is continious.

Definition 3.3 (Continuity at a point). Let X and Y be topological space, and let $x \in X$. A map $f: X \to Y$ is continious at x if for all neighbourhoods Y of f(x) there is a neighbourhood U of x such that

$$f(U) \subseteq V$$

Theorem 3.5. Let X and Y be topological spaces. A map $f: X \to Y$ is continious if and only if it is continious at each $x \in X$.

3.3 Homeomorhpism

Definition 3.4 (Homeomorphism). Let X and Y be topological spaces. A bijective map $f : \to Y$ with the property that both f and $f^{-1}: Y \to X$ are continious, is called a homeomorphism. if there exists a homeomorphism $f: X \to Y$, we say that X and Y are homeomorphic.

Theorem 3.6. Let X, Y and Z be topological spaces.

- (i) **Reflexivity**: The identity map: $id: X \to X$ (where the domain and the codomain are equipped with the same topology), given by id(x) = x for $x \in X$, is a homeomorphism.
- (ii) Symmetry: If $f: X \to Y$ is a homeomorphis, then $f^{-1}: Y \to X$ is also a homeomorphism.
- (iii) **Transitivity**: If $f: X \to Y$ and $g: Y \to Z$ are homeomorphism, then $g \circ f: X \to Z$ is also a homeomorphism.

3.4 Closes sets

Definition 3.5 (Closed subsets). A subset K of a topological space X is closed in X if and only if the complement

$$K^c = X \setminus K$$

is open in X.

Theorem 3.7. Let X be a topological space.

- (i) Both \emptyset and X are closed (as subsets) in X.
- (ii) The intersection of any subcollection of closed sets in X is closed in X.

(iii) The union of any finite subcollection of closed sets in X is closed in X.

Definition 3.6 (Closure). Let X be a topological space, and let A be a subset of X. The closure of A, written \overline{A} , is the intersection of all subsets of X that constains A and which are closed in X.

Definition 3.7 (Dense). Let X be a topological space, and let A be a subset of X. We say that A is dense in X if $\overline{A} = X$.

Theorem 3.8. Let $f: X \to Y$ be a map between the topological spaces. Then the following are equivalent:

- (i) f is continious.
- (ii) for everry subset A of X, we have $f(\overline{A}) \subseteq \overline{f(A)}$.
- (iii) for every closed subset B of Y, the preimage $f^{-1}(B)$ of B under f is closed in X.

4 Generating topologies

4.1 Generating topologies from subsets

Theorem 4.1 (The intersection of two topologies is a topology). Let X be a set, and let τ_1 and τ_2 be two topologies on X. Then $\tau_1 \cap \tau_2$ is also a topology on X.

Definition 4.1 (Topology generated by a collection of subsets). Let X be a set, and let $\mathscr S$ be a collection of subsets of X. The topology generated by $\mathscr S$ is the topology

$$\langle \mathscr{S} \rangle = \bigcap_{\substack{\tau \ topology \\ S \subseteq \tau}} \tau$$

4.2 Basis for a topology

Definition 4.2 (Basis). Let X be a set. a basis for a topology on X is a collection \mathscr{B} of subsets of X such that

- **B1**: for each $x \in X$, there is a $B \in \mathcal{B}$ such that $x \in B$
- B1: if B_1, B_2 and $x \in B_1 \cap B_2$, then there is a $B_3 \in B$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Theorem 4.2. Let X be a set, and let $\mathscr B$ be basis for a topology on X. The collection τ generated by $\mathscr B$ of subsets U of X with the property that for each $x \in U$ there is a basis element $B \in \mathscr B$ with $x \in B \subseteq U$ is a topology on X.

Theorem 4.3. Let X be a set, and let \mathscr{B} be a basis for a topology τ on X. Then τ is equal to the collection of all unions of elements of \mathscr{B} .

Theorem 4.4. Let X be a set, and let \mathcal{B}_1 and \mathcal{B}_2 be bases for topologies τ_1 and τ_2 , respectively, on X. Then the following are equivalent.

(i) τ_2 is finer than τ_1 , i.e., $\tau \subseteq \tau_2$.

(ii) For each $B_1 \in \mathcal{B}_1$ and each $x \in B_1$, there is a $B_2 \in \mathcal{B}_2$ such that $x \in B_2 \subseteq B_1$.

4.3 Subbasis for a topology

Definition 4.3 (Subbasis). Let X be a set. A **subbasis** for a topology on X is a collection $\mathscr S$ whose union equals X.

Lemma 4.1. Let X be a set, and let $\mathscr S$ be a subbasis for a topology on X. The collection $\mathscr B$ consisting of all finite intersections of elements of $\mathscr S$ is a basis for a topology on X and is called the basis associated to $\mathscr S$.

Definition 4.4 (Standard topology). (Not in compendium.) The standard topology on \mathbb{R} is the topology generated by a basis consisting of all open intervals of \mathbb{R} .

Lemma 4.2. Let X be a set, and let $\mathscr S$ be a subbasis for a topology on X. The collection τ generated by $\mathscr S$ consisting of all unions of all basis elements of the associated basis $\mathscr B$ is a topology on X.

Theorem 4.5. Let X be a set, and let $\mathscr S$ be a subbasis for a topology on X. Then there exists a unique topology $\langle \mathscr S \rangle$ generated by $\mathscr S$ which is smaller than any other topology containing $\mathscr S$, where

$$\langle \mathscr{S} \rangle = \left\{ \bigcup_{\lambda \in \Lambda} \bigcap_{i=1}^{n_{\lambda}} S_{\lambda,i} \mid S_{\lambda,i} \in \mathscr{S} \right\}$$

Theorem 4.6. Let X and Y be topological spaces, and let \mathscr{B} (resp., \mathscr{S}) be a basis (resp., subbasis). Then a map $f: X \to Y$ is continious if and only if for each $B \in \mathscr{B}$ (resp. $S \in \mathscr{S}$) the preimage $f^{-1}(B)$ (resp., $f^{-1}(S)$) is open in X.

5 Constructing topological spaces

5.1 Subspaces

Definition 5.1 (Subspace topology). Let X be a topological space, and let A be a subset of X. The collection

$$\tau_A = \{ A \cap U \mid U \text{ is open in } X \}$$

of subets of A is called the topology on A.

Lemma 5.1. Let X be a topological space, and let A be a subsets of X. Then the collection

$$\tau_A = \{ A \cap U \mid U \text{ is open in } X \}$$

is a topology on A.

Theorem 5.1. Let X be a topological space, and let $\mathscr B$ be a basis for the topology on X. If A is a subset X, the collection

$$\mathscr{B}_A = \{A \cap B \mid B \in \mathscr{B}\}$$

is a basis for the subsapace topology on A.

Theorem 5.2. Let X be a topological space, and let A be a subset of X. Then the subspace topology on A is the only topology on A with the following universal property: for every topological space Y and every map:

$$f: Y \to A$$

f is continious if and only if $i \circ f: Y \to X$ is continious where $i: A \to X$ is the inclusion map given by i(x) = x for $x \in A$.

5.2 Products

Definition 5.2 (Product topology). Let X and Y be topological spaces. The product topology on $X \times Y$ is the topology generated by the basis

 $\mathscr{B} = \{U \times V \mid U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$

Lemma 5.2. Let X and Y be topological spaces. Then the collection

$$\mathscr{B} = \{ U \times V \mid U \text{ is open in } X \text{ and } V \text{ is open in } Y \}$$

is a basis for a topology on $X \times Y$.

Theorem 5.3. Let X and Y be topological paces. If \mathscr{B}_X is a basis for a the topology on X and \mathscr{B}_Y is a basis for the topology on Y, then the collection

$$\mathscr{B}_{X\times Y} = \{B_X \times B_Y \mid B_X \in \mathscr{B}_X \text{ and } B_Y \in \mathscr{B}_Y\}$$

is a bsis for the product topology on $X \times Y$.

Theorem 5.4. Let X and Y be topological spaces. Let $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ be the projections of $X \times Y$ onto its first and second factors, respectively. The product topology is the only topology on $X \times Y$ with the following universial property: for every topological space Z and every map $f: Z \to X \times Y$, f is continuous if and only if $\pi_1 \circ f: Z \to X$ and $\pi_2 \circ f: Z \to Y$ are continuous.

5.3 Quotient spaces

Definition 5.3 (Equivalence classes). Let X be a set, and let \sim be an equivalence relation on X. The equivalence class of $x \in X$ is the subset

$$[x] = \{ y \in X \mid x \sim y \}$$

of X . Let

$$X/\sim=\{[x]\mid x\in X\}$$

Lemma 5.3. Let X and A be sets, and let $\pi: X \to A$ be a surjective map. Then the map

$$\phi: X/\sim \to A$$

given by $\phi([x]) = \pi(x)$, where $x_1 \sim x_2$ if and only if $\pi(x_1) = \pi(x_2)$, is a bijection.

Definition 5.4 (Quotient space). Let X be a topological space, let A be a set, and elt $\pi: X \to A$ be a surjective map. The quotient topology on A induced by π is the collection of subsets U of A such that $\pi^{-1}(U)$ is open in X. We say

that π is a quotient map if A is given the quotient topology, and we call A the quotient space.

Lemma 5.4. Let X be a topological space, let A be a set, and let $\pi: X \to A$ be a surjective map. Then the quotient topology on A induced by π is a topology and it is the finest topology on A such that π is continious.

Definition 5.5 (Open and closed maps). Let X and Y be topological spaces, and let $f: X \to Y$ be a continious map. We say that f is an open map for each suchset U of X that is open in X the image f(U) is open in Y. Likewise, we say that f is a closed map if for each subset V of X that is closed in X the image f(V) is closed in Y.

Lemma 5.5. Let X and Y be topological spaces, and let $\pi: X \to Y$ be a surjective continious map.

- (i) If π is in addition open then it is a quotient map.
- (ii) If π is in addition closed then it is a quotient map.

Theorem 5.5. Let X be a topological space, let A be a set, and let $\pi: X \to A$ be a surjective map. The quotient topology is the only topology on A with the following universal property: for every topological space Y and every map $f: A \to Y$, f is continious if and only if $f \circ \pi: X \to Y$ is continious.

6 Topological properties

6.1 Connected spaces

Definition 6.1 (Connected space). Let X be a topological space. A **seperation** of X is a pair of non-empty subsets U and V that are open in X, disjoint and whose union equal X. We say that X is **connected** if there are no seperations of X. Otherwise it is **disconnected**.

Theorem 6.1 (Closed and open subsets). Let X be a topological space. Then X is connected if and only if the are no non-empty proper subsets of X that are both open and closed in X.

Lemma 6.1 (Disconnectivity). Let X be a disconnected space with separation U and V, and et A be a connected subspace of X. Then $A \subseteq U$ and $A \subseteq V$.

Theorem 6.2 (Collection connectivity). Let X be a topological space, and let $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of connected subspaces of X such that $\bigcap_{{\lambda}\in\Lambda}A_{\lambda}$ is non-empty. Then $\bigcup_{{\lambda}\in\Lambda}A_{\lambda}$ is connected.

Definition 6.2 (Path connected space). Let X be a topological space, and let $x, y \in X$. A path from x to y is a continious map: $f:[a,b] \to X$.t. f(a) = x and f(b) = y where [a,b] is a subspace of \mathbb{R} with the standard topology. We say that X is **path connected** if every pair of points of X can be joined by a path in X.

Theorem 6.3 (Connectivity in product spaces). Let $X_1, X_2, ..., X_n$ be connected spaces. Then the product space $X_1 \times X_2 \times ... \times X_n$ is connected.

Theorem 6.4 (The real numbers are connected). Let \mathbb{R} be the set of real numbers equipped with the standard topology. Then \mathbb{R} is connected.

Theorem 6.5 (Generalized intermediate value theorem). Let X be a connected space and let $f: X \to \mathbb{R}$ be a continious map where \mathbb{R} is given the standard topology. If $a,b \in X$ and if r is a real number that lies between f(a) and f(b), there is a $c \in X$ such that f(c) = r

Theorem 6.6 (Connectivity). Let X be a topological space. Then X is connected if and only if the are no non-empty proper subsets of X that are both open and closed.

Theorem 6.7 (Path connectedness implies connectedness). Let X be a path connectedness space. Then X is connected.

6.2 Hausdorff spaces

Definition 6.3 (Hausdorff). Let X be a topological space. We say that X is **Hausdorff** if for each part of points $x,y \in X$ with $x \neq y$, there are disjoint neighborhoods U and V of x and y, respectively. In other words, for each pair of distinct point $x,y \in X$ there are open subsets U and V of X with $x \in U$ $y \in V$ where $U \cap V = \emptyset$

Theorem 6.8. Every metric space is Hausdorff

Theorem 6.9. Let X be a Hausdorff space. Then for each $x \in X$ the subset $\{x\}$ of X is closed in X.

Theorem 6.10. Let X_1, X_2, \ldots, X_n be Hausdorff spaces. Then the product space $X_1 \times X_2 \times \ldots \times X_n$ is Hausdorff.

Theorem 6.11. Let X be a topological space. Then X is Hausdorff if and only if the diagonal

$$\Delta = \{(x, x) \mid x \in X\}$$

is closed in the product space $X \times X$.

6.3 Compact spaces

Definition 6.4 (Cover of a space). Let X be a topological space, and let $\mathscr A$ be the collection of subsets of X. We say that $\mathscr A$ is a cover of X, or covering of X if $X = \bigcap_{A \in \mathscr A} A$. If A is also open in X for each $A \in \mathscr A$, we say that $\mathscr A$ is an **open** cover of X, or open covering of X. We say that $\mathscr A'$ is a subcover of $\mathscr A$ if $\mathscr A'$ is another cover of X that satisfies $\mathscr A' \subseteq \mathscr A$.

Definition 6.5 (Compact spaces). Let X be a topological space. We say that X is **compact** if every open cover $\mathscr A$ of X contains a finite subcover.

Definition 6.6 (Compact subspaces). Let X be a topological space, and let A be a subset of X. We say that A is compact in X if A is compact in the subspace topology.

Lemma 6.2. Let X be a topological space, and let A be a subspace of X. Then A is compact in X if and only if every cover of A by open subsets of X contains a finite subcollection that covers A.

Theorem 6.12. Let X be a compact space, and let A be a closed subset of X. Then A is compact in X.

Theorem 6.13. Let X be a Hausdorff space, and let K be a subset of X which is compact in X. Then K is closed in X.

Theorem 6.14. Let X be a compact space, Y a topological space and let $f: X \to Y$ be a surjective continious map. Then Y is compact.

Lemma 6.3 (Tube lemma). Let X be a topological space, and let Y be a compact space. If $x \in X$ and U is an oppen set in the product space $X \times Y$ containing $\{x\} \times Y$, then there is a neighborhood W of x in X such that $W \times Y \subseteq U$

Theorem 6.15. Let X_1, X_2, \ldots, X_n be compact spaces. Then the product space $X_1 \times X_2 \times \ldots \times X_n$ is compact.

Theorem 6.16. Let \mathbb{R} be the set of real numbers equipped with the standard topology. Then every closed interval $[a,b] \in \mathbb{R}$ is compact in \mathbb{R} .

Definition 6.7 (Bounded subsets). Let (X,d) be a metric space, and let A be a subset of X. We say that A is bounded if there is an $M \in \mathbb{R}$ such that $d(a_1,a_2) \leq M$ for all $a_1,a_2 \in A$.

Theorem 6.17 (Heine-Borel). Let \mathbb{R}^n be given the (Euclidian) metric topology and the Euclidian metric. A subset A of \mathbb{R}^n if and only if it is closed and bounded.

Theorem 6.18 (Generalized extreme value theorem). Let X be compact space, and let $f: X \to \mathbb{R}$ be a continious map where \mathbb{R} is given the standard topology. Then there are $m, M \in X$ such that

$$f(m) \le f(x) \le f(M)$$

for all $x \in X$.

7 The fundamental group

7.1 Homotopy of paths

Definition 7.1 (Homotopy). Let X and Y be topological spaces, and let $f_0, f_1 : X \to Y$ be two continious maps. Furthermotre, let \mathbb{R} be the set of real numbers with the standard topology, I = [0,1] be a subsapce of \mathbb{R} , and let $X \times I$ be the given topology. We say that f_0 is homotopic to f_1 , written $f_0 \simeq f_1$, if there is a continious map

$$H: X \times I \to Y$$

such that $H(x,0) = f_0(x)$ and $H(x,1) = f_1(x)$ for all $x \in X$. The map H is called a homotopy between f_0 and f_1 . If $f_0 \simeq f_1$ and f_1 is a constant map, we say that f_0 is nullhomotopic.

Lemma 7.1 (Pasting lemma). Let $X = A \cup B$ be a topological space where A and B are closed in X. Furthermore, et Y be a topological space, and assume that $f: A \to Y$ and $g: B \to Y$ are continious maps. If f(x) = g(x) for all $x \in A \cap B$, then the map $h: X \to Y$ given by

$$h(x)$$

$$\begin{cases} f(x), & x \in A \\ g(x), & x \in B \end{cases}$$

is continious.

Theorem 7.1. The relation \simeq is an equivalence relation on the set of all continuous maps from a topological space X to a topological space Y.

Definition 7.2 (Homotopy classes). Let X and Y be topological spaces, and let C(X,Y) be the set of continious maps from X to Y. The homotopy classes in C(X,Y) are the equivalence classes under the relation \simeq . We write [f] for the homotopy class of $f \in C(X,Y)$, i.e.,

$$[f] = \{g \in C(X,Y) \mid f \simeq g\}$$

and we write [X,Y] for the set of homotopy classes of continuous maps from X to Y, i.e.,

$$[X,Y]$$
) $C(X,Y) \setminus \simeq$

Definition 7.3 (Path homotopy). Let X be a topological space, and let $x_0, x_1 \in X$. We say that two paths $f, g: I \to X$ in X from x_0 to x_1 are path homotopic, written $f \simeq_p g$, if there is a continious map $F: I \times I \to X$ such that

$$H(s,0) = f(s)$$
 and $H(s,1) = g(s)$

for all $s \in I$, and

$$H(0,t) = x_0$$
 and $H(1,t) = x_1$

for all $t \in I$. We call H a path homotopy from f to g.

Theorem 7.2. Let X be a topological space, and let $x_0, x_1 \in X$. Then the relation \simeq_p is an equivalence relation on the set of all paths from x_0 to x_1 in X.

Definition 7.4 (Path homotopy classes). Let X be a topological space, and let $x_0, x_1 \in X$. If $f: I \to X$ is a path from x_0 to x_1 , we write [f] for its path homotopy class, i.e.,

$$[f] = \{g: I \to X \mid g \text{ is a path from } x_0 \text{ to } x_1 \text{ and } f \simeq_p g\}$$

Definition 7.5 (Product of paths). Let X be a topological space, and let $x_0, x_1, x_2 \in X$. If $f: I \to X$ is a path from x_0 to x_1 , and $g: I \to X$ is a path from x_1 to x_2 , we define the product of f and g as the path $f * g: I \to X$ from x_0 to x_2 given by

$$(f*g)(s) = \begin{cases} f(2s), & 0 \le s \le \frac{1}{2} \\ g(2s-1), & \frac{1}{2} \le s \le 1. \end{cases}$$

Lemma 7.2. Let X be a topological space, and let $x_0, x_1, x_2 \in X$. If $f: I \to X$ is a path from x_0 to x_1 and $g: I \to X$ is a path from x_1 to x_2 , then the product f*g induses a well-defined operation on path homotopy classes given by

$$[f] * [g] = [f * g]$$

Theorem 7.3. Let X be a topological space. Then the product paths, *, has the following properties on the set of path homotopy classes.

(i) **Associativity.** Let x_0, x_1, x_2 and x_3 be the points in X. If $f_0: I \to X$ is a path from x_0 to $x_1, f_1: I \to X$ is a path from x_1 to x_2 , and $f_2: I \to X$ is a path from x_2 to x_3 , then

$$([f_0] * [f_1]) * [f_2] = [f_0] * ([f_1] * [f_2])$$

(ii) Left and right units. For $x \in X$, let $c_x : I \to X$ denote the constant path at x, given $c_x(s) = x$ for all $s \in I$. If $f : I \to X$ is a path from x_0 to x_1 then

$$[c_{x_0}] * [f] = [f] = [f] * [c_{x_0}]$$

(iii) inverse If $f: I \to X$ is a path from x_0 to x_1 , let $\overline{f}: I \to X$ be the reverse path from x_1 to x_0 , given by $\overline{f}(s) = f(1-s)$ for all $s \in I$. Then

$$[f] * \overline{f} = [c_{x_0}]$$
 and $\overline{f} * [f] = [c_{x_1}]$

7.2 Definition and elementary properties of the fundamental group

Definition 7.6 (The fundemental group). Let (X, x_0) be a based space. A path $f: I \to X$ from x_0 to x_0 is called a loop in X based at x_0 . Let

$$\pi_1(X,x_0) = \{[f] \mid f \text{ is a loop in } X \text{ based at } x_0\}$$

be the set of path hotopy classes of loops in X at x_0 . We say that $\pi_1(X, x_0)$ is the fundemental group of X based at x_0 .

Theorem 7.4. Let (X, X_0) be a based space. Then the fundamenta group $\pi_1(X, x_0)$ of X based at x_0 is, in fact, a group with product paths, *, as its binary operation. The identity element e is equal to the path homotopy class of the constant path at x_0 , $e = [c_{x_0}]$, and the inverse of [f] is $[f]^{-1} = [\overline{f}]$, where \overline{f} is the reverse path of f.

Theorem 7.5. Let X be a path connected space, and let $x_0, x_1 \in X$. Then $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$.

Definition 7.7 (Simply connected spaces). Let X be a path connected sace. We say that X is simply connected if $\pi_1(X,x_0)$ is the trivial group for some $x_0 \in X$, and hence, for all $x_0 \in X$.

Definition 7.8 (Based maps). Let (X, x_0) and (Y, y_0) be based spaces. A based map

$$h: (X, x_0) \to (Y, y_0)$$

is a continious map $h: X \to Y$ such that $h(x_0) = y_0$.

Definition 7.9 (Homomorphism induced by based maps). Let (X, x_0) and (Y, y_0) be based spaces, and let $h: (X, x_0) \to (Y, y_0)$ be based map. The map

$$h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

given by

$$h_*\left([f]\right) = [h \circ f]$$

is called the homomorphism indeiced by h.

Lemma 7.3. Let (X, x_0) and (Y, y_0) be based spaces, and let $h: (X, x_0) \to (Y, y_0)$ be a based map. The map

$$h_*: \pi_1(X, x_0) \to \pi_2(Y, y_0).$$

given by

$$h_*\left([f]\right) = [h \circ f]$$

is a homomorphism.

Theorem 7.6 (Functoriality). Let (X, x_0) , (Y, y_0) and (Z, z_0) be based spaces, and let $h_2: (X, x_0) \to (Y, y_0)$ and $h_2: (Y, y_0) \to (Z, z_0)$ be based maps. Then

$$(h_2 \circ h_1) = (h_2)_* \circ (h_1)_*$$
.

If $id_X: X \to X$ is the identity map, then $(id_X)_*$ is the identity automorphism of $\pi_1(X, x_0)$.

Corollary 7.1. Let (X, x_0) and (Y, y_0) be based spaces. If $h: X \to Y$ is a homeomorphism such that $h(x_0) = y_0$, then

$$h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

is an isomorphism.

Theorem 7.7. Let (X, x_0) and (Y, y_0) be based spaces. Then $\pi_1(X \times Y, (x_0, y_0))$ is isomorphic to the direct product $\pi_1(X, x_0) \times \pi_1(Y, y_0)$.

7.3 Homotopy type

Lemma 7.4. Let (X,x_0) and (Y,y_0) be based spaces, and let $h:(X,x_0)\to (Y,y_0)$ and $k:(X,x_0)\to (Y,y_0)$ be based mmaps. If there is a homotopy $H:X\times I\to Y$ from h to k such that $H(X_0,t)=y_0$. for all $t\in I$, then the homomorphism $h_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ and $k_*:\pi_1:(X,x_0)\to\pi(Y,y_0)$ induced by h and k, respectively, are equal.

Definition 7.10 (Retractions). Let X be topological space, and let A be subspace of X. We say that a continious map $r: X \to A$ is a retraction of X onto A if r(a) = a for each $a \in A$. If there is a retraction of X onto A, we say that A is retract of X.

Lemma 7.5. Let X be topological space, and let A be a subspace of X. If $x_0 \in A$ and A is a retract of X. Then the homomorphism $i_* : \pi_1(A, x_0) \to \pi_1(X, x_0)$ induced by the inclusion map $i : A \to X$ is a monomorphism.

Definition 7.11 (Deformation retracts). Let X be a topological space, and let A be a subspace of X. A homotopy

$$H: X \times I \to X$$

is called deformation retraction of X onto A if H(x,0) = x and $H(x,1) \in A$ for all $x \in X$, and H(a,t) = a for all $a \in A$ and all $t \in I$. We say that A is a deformation tract of X.

Theorem 7.8. Let X be a topological space, and let A be a subspace of X. If $x_0 \in A$ and A is a deformation retract of X, then the homomorphism $i_* : \pi_1(A, x_0) \to \pi(X, x_0)$ indeuced by the inclusion map $i : A \to X$ is an isomorphism.

Definition 7.12 (Homotopy equivalences). Let X and Y be topological spaces. If $f: X \to Y$ and $g: Y \to X$ are continious maps such that $g \circ f$ is homotopic to the identity map of X, id_X , and $f \circ g$ is homotopic to the identity map of Y, id_Y , we say that f and g are homotopy equivalences. We say that each of f and g is a homotopy inverse of the other.

Definition 7.13 (Homotopy types). Let X and Y be topological spaces. We say that X and Y have the same homotopy type if there is a homotopy equivalence $f: X \to Y$.

Lemma 7.6. Let X and Y be topoplogical spaces, and let $f: X \to Y$ and $g: X \to Y$ be continious maps such that $f(x_0) = y_0$ and $g(x_0) = y_1$. if $H: X \times I \to Y$ is a homotopy from f to g, there is a path $\alpha: I \to Y$ in Y from y_0 to y_1 fiven by $\alpha(t) = H(x_0, t)$ such that $g_* = \hat{\alpha} \circ f_*$

Theorem 7.9. Let X and Y be topological spaces, and let $f: X \to Y$ be homotopy equivalence such that $f(x_0) 0y_0$. tThen

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

 $is\ an\ isomorphism.$

8 The fundamental group of the circle

9 References

References