SUBSTITUTE SEQUENCE LISTING

<110>	ROUGEOT, Catherine HUAULME, Jean-Francois UNGEHEUER, Marie-Noelle WISNER, Anne DUFOUR, Evelyne											
<120>	PEPTIDES DERIVED FROM HUMAN BPLP PROTEIN, POLYNUCLEOTIDES CODING FOR SAID PEPTIDES AND ANTIBODIES DIRECTED AGAINST SAID PEPTIDES	3										
<130>	296415US0PCT											
	US 10/593,071 2006-09-15											
	PCT/IB05/00700 2005-03-18											
<150> <151>	EPO 04290754.3 2004-03-19											
<160>	15											
<170>	PatentIn version 3.3											
<210><211><211><212><213>												
<220> <221> <222>	CDS (81)(686)											
<400> aattga	1 gtat ctggcaagag taagattaag cagtaatttg ttccaaagaa gaatcttcta	60										
ccaagg	agca actttaaaga atg aaa tta act ttc ttc ttg ggc ctg ttg gct 1 Met Lys Leu Thr Phe Phe Leu Gly Leu Leu Ala 1 5 10	13										
ctt at Leu Il	t tca tgt ttc aca ccc agt gag agt caa aga ttc tcc aga aga 1 e Ser Cys Phe Thr Pro Ser Glu Ser Gln Arg Phe Ser Arg Arg 15 20 25	61										
cca ta Pro Ty	t cta cct ggc cag ctg cca cca cct cca ctc tac agg cca aga 2 r Leu Pro Gly Gln Leu Pro Pro Pro Pro Leu Tyr Arg Pro Arg 30 35 40	09										
tgg gt Trp Va 45	t cca cca agt ccc cca cct ccc tat gac tca aga ctt aat tca 2 1 Pro Pro Ser Pro Pro Pro Pro Tyr Asp Ser Arg Leu Asn Ser 50 55	257										
cca ct Pro Le 60	t tot ott occ ttt gto oca ggg oga gtt oca oca tot tot tto 3 u Ser Leu Pro Phe Val Pro Gly Arg Val Pro Pro Ser Ser Phe 65 70 75	305										

tct Ser	cga Arg	ttt Phe	agc Ser	caa Gln 80	gca Ala	gtc Val	att Ile	cta Leu	tct Ser 85	caa Gln	ctc Leu	ttt Phe	cca Pro	ttg Leu 90	gaa Glu	353
tct Ser	att Ile	aga Arg	caa Gln 95	cct Pro	cga Arg	ctc Leu	ttt Phe	ccg Pro 100	ggt Gly	tat Tyr	cca Pro	aac Asn	cta Leu 105	cat His	ttc Phe	401
cca Pro	cta Leu	aga Arg 110	cct Pro	tac Tyr	tat Tyr	gta Val	gga Gly 115	cct Pro	att Ile	agg Arg	ata Ile	tta Leu 120	aaa Lys	ccc Pro	cca Pro	449
ttt Phe	cct Pro 125	cct Pro	att Ile	cct Pro	ttt Phe	ttt Phe 130	ctt Leu	gct Ala	att Ile	tac Tyr	ctt Leu 135	cct Pro	atc Ile	tct Ser	aac Asn	497
cct Pro 140	Glu	ccc Pro	caa Gln	ata Ile	aac Asn 145	atc Ile	acc Thr	acc Thr	gca Ala	gat Asp 150	aca Thr	aca Thr	atc Ile	acc Thr	aca Thr 155	545
aat Asn	ccc Pro	ccc Pro	acc Thr	act Thr 160	gca Ala	aca Thr	gca Ala	acc Thr	acc Thr 165	agg Arg	cac His	ttc Phe	cac His	aaa Lys 170	acc Thr	593
cac His	aat Asn	gac Asp	gat Asp 175	Gln	ctc Leu	ctc Leu	aac Asn	agt Ser 180	acc Thr	tat Tyr	ctc Leu	ttc Phe	aac Asn 185	Thr	aga Arg	641
gcc Ala	tgc Cys	cac His 190	Leu	cat His	atc Ile	agc Ser	agc Ser 195	Asn	ccc Pro	cgc Arg	agc Ser	atc Ile 200	Tyr	tga		686
aaatactact caaatteteg ecaacegtee teacacagta ttgeteaatg ecaetgteca									746							
agt	tacg	act	tcca	acca	aa c	tata	ttaa	g ca	gccc	agcc	ttt	aaaa	gtt	tttg	gcaaaa	806
actetttgee atttttggtt gaacatgeaa taaatgatat ttteeaaact getetgatat										866						
cttagaagaa ataaactgca atgattttga tggaaccaac cctgatctaa ccagcacact										926						
aaataaagta tttgagcaat a										947						

<210> 2

<211> 201 <212> PRT

<213> Homo sapiens

<400> 2

Met Lys Leu Thr Phe Phe Leu Gly Leu Leu Ala Leu Ile Ser Cys Phe 1 5 10 15

Thr Pro Ser Glu Ser Gln Arg Phe Ser Arg Arg Pro Tyr Leu Pro Gly 20 25 30

Gln Leu Pro Pro Pro Pro Leu Tyr Arg Pro Arg Trp Val Pro Pro Ser 35 40 45

Pro Pro Pro Pro Tyr Asp Ser Arg Leu Asn Ser Pro Leu Ser Leu Pro 50 55 60

Phe Val Pro Gly Arg Val Pro Pro Ser Ser Phe Ser Arg Phe Ser Gln 65 70 75 80

Ala Val Ile Leu Ser Gln Leu Phe Pro Leu Glu Ser Ile Arg Gln Pro 85 90 95

Arg Leu Phe Pro Gly Tyr Pro Asn Leu His Phe Pro Leu Arg Pro Tyr 100 105 110

Tyr Val Gly Pro Ile Arg Ile Leu Lys Pro Pro Phe Pro Pro Ile Pro
115 120 125

Phe Phe Leu Ala Ile Tyr Leu Pro Ile Ser Asn Pro Glu Pro Gln Ile 130 135 140

Asn Ile Thr Thr Ala Asp Thr Thr Ile Thr Thr Asn Pro Pro Thr Thr 145 150 155 160

Ala Thr Ala Thr Thr Arg His Phe His Lys Thr His Asn Asp Asp Gln 165 170 175

Leu Leu Asn Ser Thr Tyr Leu Phe Asn Thr Arg Ala Cys His Leu His 180 185 190

Ile Ser Ser Asn Pro Arg Ser Ile Tyr 195 200

<210> 3

<211> 5

<212> PRT

<213> Homo sapiens

<400> 3

Gln Arg Phe Ser Arg 1 5

```
<210> 4
<211> 6
<212> PRT
<213> Homo sapiens
<400> 4
Tyr Gln Arg Phe Ser Arg
<210> 5
<211> 6
<212> PRT
<213> Homo sapiens
<400> 5
Cys Gln Arg Phe Ser Arg
<210> 6
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
      (1)..(2)
<222>
<223> Xaa2 is Gln or Glp when Xaal is not present.
       Xaa2 is Gln when Xaa1 is Tyr or Cys.
<400> 6
Xaa Xaa Arg Phe Ser Arg
<210> 7
<211> 5
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaal is Glp.
<400> 7
Xaa Arg Phe Ser Arg
```

```
<210> 8
<211> 5
<212> PRT
<213> Rattus rattus
<400> 8
Gln His Asn Pro Arg
<210> 9
<211> 4
<212> PRT
<213> Rattus rattus
<400> 9
Gln His Asn Pro
<210> 10
<211> 5
<212> PRT
<213> Homo sapiens
<400> 10
Gln Arg Gly Pro Arg
<210> 11
<211> 7
<212> PRT
<213> Homo sapiens
<400> 11
Gln Arg Gly Pro Arg Gly Pro
            5
<210> 12
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<220>
<221> MISC FEATURE
<222> (1)..(1)
<223> Arg at position 1 is modified with (7-methoxycoumarin-4-yl)acetyl
```

```
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> hydroxy substituted 2,4-dinitrophenyl amino acid
<400> 12
Arg Pro Pro Gly Phe Ser Ala Phe Lys Xaa
               5
<210> 13
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Ala at position 1 is modified with succinyl
<220>
<221> MISC_FEATURE
       (3)..(3)
<222>
<223> Phe at position 3 is modified with 7-amino-4-methyl coumarin
<400> 13
Ala Ala Phe
<210> 14
<211> 11
<212> PRT
<213> Homo sapiens
<400> 14
Arg Phe Lys Phe Gln Gln Phe Phe Gly Leu Met
 <210> 15
 <211> 5
 <212> PRT
 <213> Homo sapiens
 <400> 15
 Tyr Gly Gly Phe Met
```