

Clasificación

Clasificación Logística

Clasificación Binaria

Clasificación Binaria

Clasificación Binaria

Hipótesis
$$s(x_i) = \frac{1}{1 + e^{-h(x_i)}}$$

Loss
$$\mathcal{L} = -\sum_{i=1}^{n} (y_i \log(s(x_i)) + (1 - y_i) \log(1 - s(x_i)))$$

$$\mathcal{L} = -\sum_{i=1}^{n} (y_i \log(s(x_i)) + (1 - y_i) \log(1 - s(x_i)))$$

Hipótesis
$$s(x_i) = \frac{1}{1 + e^{-h(x_i)}}$$

Loss
$$\mathcal{L} = -\sum_{i=1}^{n} (y_i \log(s(x_i)) + (1 - y_i) \log(1 - s(x_i)))$$

Derivadas
$$\frac{\partial L}{w_j} = \frac{1}{n} \sum_{i=1}^{n} (y_i - s(x_i))(-x_{ij})$$

Hipótesis
$$s(x_i) = \frac{1}{1 + e^{-h(x_i)}}$$

Loss
$$\mathcal{L} = -\sum_{i=1}^{n} (y_i \log(s(x_i)) + (1 - y_i) \log(1 - s(x_i)))$$

SVM

Máquinas de Soporte Vectorial

¿Cuál es la mejor recta que separa ambos grupos?

¿Cuál es la mejor recta que separa ambos grupos?

¿Cuál es la mejor recta que separa ambos grupos?

Maximizar la distancia d de modo que ambos clases estén lo más separadas posibles

Objetivo: Maximizar 2d sujeto a 2 restricciones

$$X^+W^T + b >= 1$$

$$X^-W^T + b <= -1$$

 x^+ : Conjunto de datos con etiqueta +1

 x^- : Conjunto de datos con etiqueta - 1

¿Demuestre que d =
$$\frac{1}{||w||}$$
 ?

$$max \frac{2}{||w||} s.t$$

$$Y(X^-W^T + b) >= 1$$

¿Queremos maximizar?

$$\begin{aligned} & \min \frac{||w||}{2} \ s.t \\ & Y(X^-W^T + b) >= 1 \end{aligned}$$

Dr. Cristian López Del Alamo

¿Cómo resolvemos esta ecuación?

$$min \frac{||w||^2}{2}$$
 s.t $y_i(x_i w^t + b) >= 1$ $\forall i; 1 <= i <= n$

LAGRANGE

$$\mathsf{F}(\mathsf{X}) \quad \min \frac{||w||^2}{2} \ s.t$$

G(X)
$$Y(X^{-}W^{T} + b) >= 1$$

¿Cómo resolvemos esta ecuación?

$$min\frac{||w||^2}{2}$$
 s.t $y_i(x_iw^t + b) >= 1$ $\forall i; 1 <= i <= n$

$$\mathcal{L}(w, b, \lambda) = \frac{||w||^2}{2} - \sum_{i=0}^{n} \lambda_i (y_i(w^t x_i + b) - 1))$$

Encontrando derivadas:

$$\mathcal{L}(w, b, \lambda) = \frac{||w||^2}{2} - \sum_{i=0}^{n} \lambda_i (y_i(w^t x_i + b) - 1))$$

$$\frac{\partial \mathcal{L}(w,b,\lambda)}{\partial w}$$

$$\frac{\partial \mathcal{L}(w,b,\lambda)}{\partial b}$$

