Лабораторна робота Тема: «CIFAR-100 Розпізнавання зображень за допомогою згорткової нейронної мережі»

Виконав студент групи 2КН-24м Лавров Михайло Васильович Перевірив викладач Колесницький Олег Костянтинович **Мета:** написати комп'ютерну програму мовою Python, що створює та навчає згорткову нейронну мережу для розпізнавання зображень з набору даних CIFAR-100.

Вихідні дані:

- Мова програмування: Python 3.8+ (у вищих версія деякі функції бібліотек можуть бути змінені, їх можна виправити з допомогою інтернету та підказок стек трейсу помилки).
 - Бібліотеки: Keras, NumPy, Pandas, Tensorflow.
 - Середовище розробки Intelij IDEA (або будь яке інше).
 - Відеокарта NVIDIA+CUDA (для пришвидшеного навчання моделі).
 - Вхідні дані для нейронної мережі: CIFAR-100 набір даних.
 - 9 шарова згорткова нейронна мережа.

Теоретичні відомості:

CIFAR-100 — це набір даних, який зазвичай використовується в машинному навчанні та дослідженнях комп'ютерного зору, зокрема для завдань класифікації зображень. Це розширена версія набору даних CIFAR-10 і містить:

- 100 класів зображень (порівняно з 10 класами CIFAR-10).
- 600 зображень на клас із загальною кількістю 60 000 зображень.
- Роздільна здатність кожного зображення: 32х32 пікселів, кольорове (RGB).

Структура класу

Класи в CIFAR-100 ϵ більш дрібнозернистими та організовані в 20 суперкласів, причому кожен суперклас містить 5 дрібніших підкласів. Наприклад, суперклас «великі хижаки» може включати такі класи, як «ведмідь», «леопард», «лев», «тигр» і «вовк».

Кожне зображення в CIFAR-100 має:

- Прекрасна мітка: конкретна мітка класу (наприклад, «ведмідь» або «тигр»).
- Груба мітка: ширша мітка суперкласу (наприклад, «великі хижаки»).

Призначення

Завдяки своїй детальній природі CIFAR-100 часто використовується для порівняння здатності алгоритмів виконувати складніші завдання класифікації порівняно з CIFAR-10, оскільки він вимагає розрізнення між більшою кількістю класів і більш тонкими функціями.

Згортокова нейронна мережа (convolutional neural network) — це клас глибокої нейронної мережі, який зазвичай використовується для аналізу зображень під час їх роботи добре вилучати важливі характеристики із зображень. Допомагають початкові шари згорткової нейронної мережі у вилученні простих ознак із зображень і складність вилучення ознак зростає, коли ми рухаємося до вихідного шару від вхідного шару.

Архітектура ConvNet цієї моделі містить три стеки рівнів CONV-RELU, за якими слідує рівень POOL, а потім два повністю підключених (Fully Connected - FC) шари RELU, за якими слідує повністю підключений вихідний рівень. Це одна з вдалих комбінацій шарів для більшої та глибшої нейронної мережі, оскільки кілька стеків шарів CONV-RELU допомагають витягувати складніші характеристики вхідного зображення перед виконанням операції об'єднання. Ця 9-шарова мережа допомогла отримати хорошу точність не лише на навчальному наборі, але й на тестовому наборі.

Для введення нелінійності в модель, Rectified Linear Unit (ReLU) використовувався як функція активації для прихованих шарів, оскільки він є розрідженим і зменшує ймовірність проблеми зникнення градієнта. ReLU показав хорошу продуктивність конвергенції та також був ефективним з точки зору обчислень. На вихідному рівні була використана функція активації Softmax, щоб гарантувати, що підсумкова сума активацій дорівнює 1 і, таким чином, відповідає обмеженням щільності ймовірності. Пізніше ці ймовірності допомогли в аналізі прогнозу моделі для деяких нових випадкових зображень.

У модель було додано агрегувальні шари (pooling), щоб зменшити просторовий розмір представлення (зменшення дискретизації), що, у свою чергу, зменшило кількість параметрів і вартість обчислень і, таким чином, допомогло контролювати проблему надмірного підгонки. Набір даних CIFAR-100 містить зображення низької якості, тому була необхідна техніка об'єднання, яка могла б отримати максимальну кількість характеристик із цих зображень. Оскільки операція максимального об'єднання обчислює максимальне або найбільше значення в кожній ділянці карти об'єктів, те саме було використано для зменшення дискретизації зображення та виділення найпоширенішої об'єкти в кожній ділянці карти об'єктів.

Техніка відсіву (dropout) також використовувалася для запобігання модель від overfitting. Оскільки виходи з шари, що беруть участь у випаданні, випадково відбираються таким чином, це запобігло переобладнанню, яке може статися через залучення мільйонів параметрів у навчання а глибока нейронна мережа. Модель, створена для цього проекту, має приблизно 13,8 мільйона параметрів, тож у нього було багато шансів надмірного оснащення, якого вдалося уникнути за допомогою відсіву.

Алгоритм оптимізації Адама використовувався в модель для оптимізації, оскільки вона допомогла моделі швидше сходитися, а отже, була більш ефективною з точки зору обчислень ніж інші алгоритми оптимізації. Також потрібно було менше пам'ять і добре працював для моделі, а також дав хороші результати завдяки дуже незначній настройці його гіперпараметра.

Теоретичні відомості взяти з статті **CIFAR-100: Object Recognition**, Chetna Khanna, Professor Jerome J. Braun. З повною версією якої можна ознайомитись за посиланням:

 $\underline{https://github.com/chetnakhanna16/CIFAR100_ImageRecognition?tab=readme-ov-file}$

Хід роботи (написання програми):

1. Створити папку проекту **network** та завантажити необхідні бібліотеки:

```
pip install keras # для створення моделі
pip install pandas # для обробки даних
pip install numpy # для обробки даних
pip install pickle # для завантаження даних
pip install matplotlib # для роботи з зображеннями
pip install pylab # для роботи з зображеннями
```

Для швидкого навчання моделі (30-60 хв) потрібно налаштувати навчання з допомогою GPU (відеокарти), тому що по замовчуванню буде використовуватись CPU та навчання буде набагато повільніше та може бути гіршим за результатами.

Потрібно:

- 1) мати NVIDIA відеокарту (AMD може не мати цієї можливості, але це можна перевітити в інтернеті та спробувати налаштувати).
- 2) Встановити CUDA, ϵ різні способи це зробити, один з них (також можливо потрібно перезавантажити ПК після встановлення):

```
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
```

3) Встановити GPU версію tensorflow бібліотеки:

```
python3 -m pip install tensorflow[and-cuda]
```

https://www.tensorflow.org/install/pip#linux

4) Перевірити використання GPU:

```
python3 -c "import tensorflow as
tf;print(tf.config.list_physical_devices('GPU'))"
```

Оригінал інструкції: https://stackoverflow.com/questions/45662253/can-i-run-keras-model-on-gpu

- 2. Підготовка вхідних та тестових даних:
- завантажити CIFAR-100 набір даних;
- створити папку data та перемістити файли з даними у неї (файли meta, test, train);
- створити папку models для збереження файлів моделей
- створити папку img та завантажити довільні зображення для перевірки (bottle, cat, clock, lion, orange). Зображення можуть бути будь якого формату (jpg, png, jpeg);
 - 3. Опишемо функції для завантаження та підготовки даних для тренування. Створимо файл **data_utils.py**, лістинг коду з поясненнями наведено нижче:

```
import pickle
import keras
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pylab import rcParams

# функція для завантаження даних для тренування/тестування мережі
def get_raw_data_set(file_name):
    with open(file_name, 'rb') as f:
        return pickle.load(f, encoding='latin1')

# функція для попередньої обробки даних
# та приведення їх у необхідний формат для навчання мережі
def preprocess_data(raw_data, num_class):
    # дістаємо дані
    x_data = raw_data['data']
    # перетворюємо дані
    x_data = x_data.reshape(len(x_data), 3, 32, 32).transpose(0, 2, 3, 1)
    # Зміна масштабу шляхом ділення кожного пікселя зображення на 255
    x_data = x_data / 255.
    # дістаємо конкретні надписи (ярлики)
    y_data = raw_data['fine_labels']
    # перетворюємо написи
    y_data = keras.utils.to_categorical(y_data, num_class)
    return x_data, y_data
```

4. Опис функції для побудови загорткової нейронної мережі. Створимо файл **model_utils.py.** Лістинг коду з коментарями:

```
from keras.layers import Conv2D, MaxPool2D, Dropout, Flatten, Dense from keras.models import Sequential

# Функція для побудови згорткової нейронної мережі def build_model(input_shape, num_class):
# Ініціалізація моделі послідовного типу (має лінійний стек шарів)
model = Sequential()

# Стек 1
# Згорткові шари (convolution)
model.add(Conv2D(filters=128, kernel_size=3, padding="same", activation="relu", input_shape))
model.add(Conv2D(filters=128, kernel_size=3, padding="same", activation="relu"))
# Агрегувальні шари (pooling)
model.add(MaxPool2D(pool_size=2, strides=2))
# Виключення з'єднань (dropout)
model.add(Onv2D(filters=256, kernel_size=3, padding="same", activation="relu"))
model.add(Conv2D(filters=256, kernel_size=3, padding="same", activation="relu"))
# Агрегувальні шари (pooling)
model.add(MaxPool2D(pool_size=2, strides=2))
# Виключення з'єднань (dropout)
model.add(Onv2D(filters=512, kernel_size=3, padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=3, padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=3, padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=3, padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=3, padding="same", activation="relu"))
# Агрегувальні шари (convolution)
model.add(Conv2D(filters=512, kernel_size=3, padding="same", activation="relu"))
# Агрегувальні шари (convolution)
model.add(Conv2D(filters=512, kernel_size=3, padding="same", activation="relu"))
# Агрегувальні шари (convolution)
# Агрегувальні шари (conv
```

```
model.add(MaxPool2D(pool_size=2, strides=2))

# Виключення з'єднань (dropout)

model.add(Dropout(0.5))

# Згладжування/розрівняння (flattening)

model.add(Flatten())

# Повноз'єднані шари (fully connected layers)

model.add(Dense(units=1000, activation="relu"))

# Виключення з'єднань (dropout)

model.add(Dropout(0.5))

# Повноз'єднані шари (fully connected layers)

model.add(Dense(units=1000, activation="relu"))

# Виключення з'єднань (dropout)

model.add(Dropout(0.5))

# Вихідний шар (output layer)

model.add(Dense(units=num_class, activation="softmax"))

model.summary()

return model
```

5. Навчання мережі та візуалізація результатів. Для цього створимо файл **train_model.py**, лістинг коду та описом:

```
import matplotlib.pyplot as plt
from network.data_utils import get_raw_data_set, preprocess_data
epochs = 100
metaData = get raw data set('data/meta')
x_train, y_train = preprocess_data(trainData, num class)
x test, y test = preprocess data(trainData, num class)
model = build model(x train.shape[1:], num class)
optimizer = keras.optimizers.Adam(lr=0.0001)
model.compile(optimizer=optimizer, loss='categorical crossentropy',
```

```
early stop = EarlyStopping(monitor='val loss', mode='min', verbose=1, patience=10)
model checkpoint = ModelCheckpoint('best model.h5', monitor='val loss', mode='min',
model history = model.fit(x=x train,
                              validation batch size=batch size)
plt.subplot(1, 2, 1)
plt.plot(model_history.history['loss'], label='Training Loss')
plt.plot(model_history.history['loss'], label='Validation
plt.plot(model history.history['val loss'], label='Validation Loss')
plt.legend()
plt.xlabel('Number of epochs', fontsize=15)
plt.ylabel('Loss', fontsize=15)
plt.subplot(1, 2, 2)
plt.plot(model_history.history['accuracy'], label='Train Accuracy')
plt.plot(model history.history['val accuracy'], label='Validation Accuracy')
plt.legend()
plt.xlabel('Number of epochs', fontsize=14)
plt.ylabel('Accuracy', fontsize=14)
plt.show()
```

6. Створимо файл **evaluate_model.py** для оцінки якості розпізнання. Лістинг з поясненнями:

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from keras.models import load_model
from pylab import rcParams
from sklearn.metrics import confusion_matrix, classification_report

from network.data_utils import get_raw_data_set, preprocess_data

##### Оголошення змінних та початкових даних

# Кількість класів у наборі даних CIFAR-100
num_class = 100
# Розмір партії для розпізнання
batch_size = 64
# Розмір масиву даних для розпізнання
# повинен бути меншим за 10000 для test, або меншим за 50000 для train)
data_set_size = 10000
# завантаження даних з файлу
testData = get raw data set('data/test')
```

```
metaData = get raw data set('data/meta')
x test full, y test full = preprocess data(testData, num class)
model = load model('models/best model.h5')
subCategory = pd.DataFrame(metaData['fine label names'], columns=['SubClass'])
  _eest = x_test_full[:data_set_size]
|test = y_test_full[:data_set_size]
test loss, test accuracy = model.evaluate(x=x test,
y_pred = model.predict(x_test)
cm = confusion_matrix(np.argmax(y_test, axis=1), np.argmax(y_pred, axis=1))
target = ["Category {}".format(i) for i in range(num class)]
print(classification report(np.argmax(y test, axis=1), np.argmax(y pred, axis=1),
target names=target))
prediction = np.argmax(y_pred, axis=1)
prediction = pd.DataFrame(prediction)
rcParams['figure.figsize'] = 12, 15
num row = 4
num col = 4
imageId = np.random.randint(0, len(x test), num row * num col)
        axes[i, j].imshow(x test[imageId[k]])
str(subCategory.iloc[fine labels[imageId[k]]][0]).capitalize()
str(subCategory.iloc[prediction.iloc[imageId[k]]]).split()[
```

```
axes[i, j].axis('off')
    fig.suptitle("Images with True and Predicted Labels", fontsize=18)

plt.show()
print()
```

7. Створимо файл **test_model.py** для перевірки розпізнання довільних зображень. Лістинг з поясненнями:

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from keras.models import load model
from network.data_utils import get_raw_data_set
subCategory = None
def resize test image(test img):
    img = cv2.imread(test img)
    resized_img = resize_test_image(test_img)
prediction = model.predict(np.array([resized_img]))
             if prediction[0][index[i]] > prediction[0][index[j]]:
                  temp = index[i]
                  index[j] = temp
```

```
sorted index = sort prediction test image(test img)
    prediction = predict test image(test img)
    subCategory name = []
    prediction score = []
    k = sorted index[:6]
         subCategory name.append(subCategory.iloc[k[i]][0])
         prediction score.append(round(prediction[0][k[i]], 2))
    df = pd.DataFrame(list(zip(subCategory name, prediction score)),
    fig, axes = plt.subplots(1, 2, figsize=(15, 4))
fig.suptitle("Prediction", fontsize=18)
new_img = plt.imread(test_img)
    axes[0].imshow(new img)
    data = df_top5_prediction_test_image(test_img)
x = data['Label']
y = data['Probability']
    axes[1].spines["top"].set visible(False)
    axes[1].spines["bottom"].set visible(False)
    axes[1].spines["left"].set visible(False)
metaData = get_raw_data_set('data/meta')
subCategory = pd.DataFrame(metaData['fine label names'], columns=['SubClass'])
plot top5 prediction test image('img/orange.png')
plot top5 prediction test image('img/orchid.png')
plot top5 prediction test image('img/cat.png')
plot top5 prediction test image('img/lion.png')
plot_top5 prediction test image('img/clock.jpg')
plot top5 prediction test image('img/bottle.jpg')
```

Хід роботи (запуск та перевірка програми):

1. Потрібно запустити файл **train_model.py**, який завантажить тренувальні дані, створить модель, запустить процес навчання та збереже результати у файл. Навчання даної мережі може тривати 30-60 хв, в залежності від відеокарти. У моєму випадку це було 25 хв (NVIDIA GeForce GTX 1060 3GB).

Вигляд даних до та після попередньої обробки (функція **preprocess_data**): $x_data = raw_data['data']$

```
10 data_size = {int} 50000

10 num_class = {int} 100

11 raw_data = {dict: 5} {'batch_label': 'training batch 1 of 1', 'coarse_labels': [11, 15, 4, 14, 1, 5, 18, 3, 10, 11, 5, 17, 2, 9, ... View

12 'filenames' = {list: 50000} ['bos_taurus_s_000507.png', 'stegosaurus_s_000125.png', 'mcintosh_s_000643.png', ... View

13 'batch_label' = {str} 'training batch 1 of 1'

14 'fine_labels' = {list: 50000} [19, 29, 0, 11, 1, 86, 90, 28, 23, 31, 39, 96, 82, 17, 71, 39, 8, 97, 80, 71, 74, 59, 70, 87... View

15 'coarse_labels' = {list: 50000} [11, 15, 4, 14, 1, 5, 18, 3, 10, 11, 5, 17, 2, 9, 10, 5, 18, 8, 16, 10, 16, 17, 2, 5, 17, 6, 12... View

16 'data' = {ndarray: (50000, 3072)} [[255 255 255 ... 10 59 79], [255 253 253 ... 253 253 255], [250 24!...View as Array 10 len_ = {int} 5

16 'match_label' = {int} 5

17 'match_label' = {int} 5

18 'match_label' = {int} 5

19 'match_label' = {int} 5

20 'match_label' = {int} 6

20 'match_label' = {int} 7

20 'match_label' = {int} 8

2
```

$x_{data} = x_{data.reshape}(data_{size}, 3, 32, 32).transpose(0, 2, 3, 1)$

 $x_{data} = x_{data} / 255$.

y_data = raw_data['fine_labels']

```
#≡ y_data = {list: 50000} [19, 29, 0, 11, 1, 86, 90, 28, 23, 31, 39, 96, 82, 17, 71, 39, 8, 97, 80, 71, 74, 59, 70, 87, 59, 84,... View
    10 00000 = {int} 19
    10 00001 = {int} 29
   10 00002 = {int} 0
   10 00003 = {int} 11
   ^{10}_{01} 00004 = {int} 1
   10 00005 = {int} 86
   10 00006 = {int} 90
   10 00007 = {int} 28
    10 00008 = {int} 23
   10 00009 = {int} 31
    10 00010 = {int} 39
```

y_data = keras.utils.to_categorical(y_data, num_class)

Інформація про назви класів та суперкласів ϵ в metaData:

Pезультат після створення моделі (build_model): model = build_model(x_train, num_class)

Model: "sequential"	iu_iiiouei(x_tra	iii, iiuii_			
	Output Shape				
 conv2d (Conv2D)	(None, 32, 32, 128)	3584			
conv2d_1 (Conv2D)	(None, 32, 32, 128)	147584			
max_pooling2d (MaxPooling2 D)	(None, 16, 16, 128)		dropout_2 (Dropout)	(None, 4, 4, 512)	0
dropout (Dropout)	(None, 16, 16, 128)		flatten (Flatten)	(None, 8192)	
conv2d_2 (Conv2D)	(None, 16, 16, 256)	295168	dense (Dense)	(None, 1000)	8
conv2d_3 (Conv2D)	(None, 16, 16, 256)	590080	dropout_3 (Dropout)	(None, 1000)	
max_pooling2d_1 (MaxPoolin	(None, 8, 8, 256)		dense_1 (Dense)	(None, 1000)	1
g2D)			dropout_4 (Dropout)	(None, 1000)	Θ
dropout_1 (Dropout)	(None, 8, 8, 256)		dense_2 (Dense)	(None, 100)	
conv2d_4 (Conv2D)	(None, 8, 8, 512)	1180160			
conv2d_5 (Conv2D)	(None, 8, 8, 512)	2359808	Total params: 13870484 (5	52.91 MB)	
max_pooling2d_2 (MaxPooling2D)	(None, 4, 4, 512)		Non-trainable params: 0 (

Результат під час навчання моделі:

```
Epoch 2: val_loss improved from 4.26972 to 3.97379, saving model to best_model.h5
625/625 [=======================] - 35s 55ms/step - loss: 4.1720 - accuracy: 0.0483 - val_loss:
Epoch 3/100
625/625 [============] - ETA: 0s - loss: 3.8778 - accuracy: 0.0913
Epoch 3: val_loss improved from 3.97379 to 3.60587, saving model to best_model.h5
625/625 [============] - 36s 57ms/step - loss: 3.8778 - accuracy: 0.0913 - val loss:
Epoch 4/100
Epoch 5/100
Epoch 5: val_loss improved from 3.32255 to 3.18945, saving model to best_model.h5
Epoch 6/100
625/625 [============================] - ETA: 0s - loss: 3.1418 - accuracy: 0.2179
Epoch 6: val loss improved from 3.18945 to 2.90718, saving model to best model.h5
Epoch 7/100
Epoch 7: val loss improved from 2.90718 to 2.73023, saving model to best model.h5
625/625 [=======================] - 35s 55ms/step - loss: 2.9451 - accuracy: 0.2577 - val loss:
Epoch 8/100
Epoch 8: val loss improved from 2.73023 to 2.57866, saving model to best model.h5
625/625 [======================] - 35s 56ms/step - loss: 2.7791 - accuracy: 0.2913 - val loss:
Epoch 9/100
Epoch 9: val loss improved from 2.57866 to 2.45438, saving model to best model.h5
Epoch 10/100
Epoch 10: val_loss improved from 2.45438 to 2.39349, saving model to best_model.h5
Epoch 11/100
Epoch 11: val loss improved from 2.39349 to 2.23361, saving model to best model.h5
625/625 [==============] - 36s 58ms/step - loss: 2.3915 - accuracy: 0.3675 - val loss:
Epoch 12/100
Epoch 12: val_loss improved from 2.23361 to 2.18320, saving model to best_model.h5
625/625 [=======================] - 37s 58ms/step - loss: 2.2941 - accuracy: 0.3929 - val loss:
Epoch 13/100
Epoch 13: val loss improved from 2.18320 to 2.14189, saving model to best model.h5
2.1419 - val_accuracy: 0.4338
Epoch 14/100
Epoch 14: val_loss improved from 2.14189 to 2.04757, saving model to best_model.h5
625/625 [=======================] - 36s 57ms/step - loss: 2.1165 - accuracy: 0.4295 - val_loss:
Epoch 15/100
Epoch 15: val_loss improved from 2.04757 to 2.04400, saving model to best_model.h5
625/625 [=======================] - 35s 56ms/step - loss: 2.0385 - accuracy: 0.4516 - val loss:
2.0440 - val_accuracy: 0.4559
Epoch 16/100
625/625 [==============================] - ETA: 0s - loss: 1.9547 - accuracy: 0.4669
Epoch 16: val loss improved from 2.04400 to 1.97365, saving model to best_model.h5
```

```
625/625 [=======================] - 35s 56ms/step - loss: 1.9547 - accuracy: 0.4669 - val_loss:
Epoch 17/100
Epoch 17: val loss improved from 1.97365 to 1.93098, saving model to best model.h5
625/625 [=======================] - 35s 56ms/step - loss: 1.8817 - accuracy: 0.4822 - val loss:
1.9310 - val accuracy: 0.4842
Epoch 18/100
Epoch 18: val loss improved from 1.93098 to 1.88203, saving model to best model.h5
625/625 [=============] - 35s 56ms/step - loss: 1.8034 - accuracy: 0.4989 - val_loss:
Epoch 19/100
Epoch 19: val loss improved from 1.88203 to 1.85258, saving model to best model.h5
Epoch 20/100
Epoch 20: val_loss improved from 1.85258 to 1.84182, saving model to best_model.h5
625/625 [=======================] - 35s 56ms/step - loss: 1.6810 - accuracy: 0.5281 - val loss:
1.8418 - val accuracy: 0.5061
Epoch 21/100
625/625 [==============================] - ETA: Os - loss: 1.6284 - accuracy: 0.5397
Epoch 21: val loss did not improve from 1.84182
1.8464 - val accuracy: 0.5072
Epoch 22/100
Epoch 22: val_loss improved from 1.84182 to 1.76817, saving model to best_model.h5
Epoch 23/100
Epoch 23: val loss did not improve from 1.76817
Epoch 24/100
Epoch 24: val_loss improved from 1.76817 to 1.73475, saving model to best_model.h5
625/625 [=======================] - 35s 56ms/step - loss: 1.4537 - accuracy: 0.5841 - val_loss:
Epoch 25/100
Epoch 25: val_loss improved from 1.73475 to 1.71191, saving model to best_model.h5
625/625 [======================] - 35s 56ms/step - loss: 1.3982 - accuracy: 0.5994 - val loss:
Epoch 26/100
Epoch 26: val_loss did not improve from 1.71191
625/625 [============] - 35s 56ms/step - loss: 1.3416 - accuracy: 0.6094 - val loss:
1.7152 - val accuracy: 0.5349
Epoch 27/100
Epoch 27: val loss improved from 1.71191 to 1.70736, saving model to best model.h5
625/625 [=======================] - 35s 56ms/step - loss: 1.3028 - accuracy: 0.6236 - val loss:
Epoch 28/100
Epoch 28: val_loss improved from 1.70736 to 1.69613, saving model to best_model.h5
Epoch 29/100
Epoch 29: val_loss improved from 1.69613 to 1.68106, saving model to best_model.h5
625/625 [========================] - 35s 56ms/step - loss: 1.1941 - accuracy: 0.6496 - val loss:
Epoch 30/100
Epoch 30: val_loss did not improve from 1.68106
```

```
625/625 [======================] - 35s 56ms/step - loss: 1.1527 - accuracy: 0.6615 - val loss:
Epoch 31/100
625/625 [==============================] - ETA: Os - loss: 1.1177 - accuracy: 0.6689
Epoch 31: val loss did not improve from 1.68106
Epoch 32/100
Epoch 32: val loss did not improve from 1.68106
1.6842 - val accuracy: 0.5549
Epoch 33/100
Epoch 33: val loss improved from 1.68106 to 1.67202, saving model to best model.h5
Epoch 34/100
Epoch 34: val_loss did not improve from 1.67202
Epoch 35/100
Epoch 35: val loss improved from 1.67202 to 1.65677, saving model to best model.h5
1.6568 - val accuracy: 0.5642
Epoch 36/100
Epoch 36: val_loss did not improve from 1.65677
625/625 [=======================] - 34s 55ms/step - loss: 0.9317 - accuracy: 0.7185 - val loss:
Epoch 37/100
Epoch 37: val loss did not improve from 1.65677
Epoch 38/100
625/625 [============== ] - ETA: 0s - loss: 0.8735 - accuracy: 0.7333
Epoch 38: val_loss did not improve from 1.65677
625/625 [=======================] - 35s 56ms/step - loss: 0.8735 - accuracy: 0.7333 - val_loss:
Epoch 39/100
625/625 [======================] - 34s 55ms/step - loss: 0.8367 - accuracy: 0.7449 - val loss:
Epoch 40/100
Epoch 40: val_loss did not improve from 1.65677
625/625 [============] - 35s 56ms/step - loss: 0.8010 - accuracy: 0.7534 - val loss:
1.6848 - val accuracy: 0.5728
Epoch 41/100
Epoch 41: val loss did not improve from 1.65677
Epoch 42/100
625/625 [=============================] - ETA: 0s - loss: 0.7443 - accuracy: 0.7703
Epoch 42: val_loss did not improve from 1.65677
Epoch 43/100
Epoch 43: val_loss did not improve from 1.65677
625/625 [=======================] - 35s 55ms/step - loss: 0.7201 - accuracy: 0.7742 - val loss:
1.7136 - val accuracy: 0.5644
Epoch 44/100
Epoch 44: val_loss did not improve from 1.65677
```

Візуалізація втрат і точності після навчання мережі:

Loss and Accuracy Plots

2. Для оцінки результатів моделі потрібно запустити evaluate_model.py.

Результат оцінки точності розпізнання:

test_loss, test_accuracy = model.evaluate_generator(generator=test_data_gen, steps=data_set_size // batch_size)

Accuracy: 57.54 % Loss: 1.63

Результат розпізнання набору даних (10000 зображення з тестової вибірки):

•	-			
]	precision	recall	f1-score	support
0	0.80	0.82	0.81	100
1	0.60	0.70	0.65	100
2	0.37	0.40	0.38	100
3	0.39	0.31	0.34	100
4	0.39	0.43	0.41	100
5	0.60	0.55	0.58	100
6	0.61	0.72	0.66	100
7	0.63	0.60	0.62	100
8	0.78	0.65	0.71	100
9	0.75	0.74	0.74	100
	0 1 2 3 4 5 6 7	1 0.60 2 0.37 3 0.39 4 0.39 5 0.60 6 0.61 7 0.63 8 0.78	0 0.80 0.82 1 0.60 0.70 2 0.37 0.40 3 0.39 0.31 4 0.39 0.43 5 0.60 0.55 6 0.61 0.72 7 0.63 0.60 8 0.78 0.65	0 0.80 0.82 0.81 1 0.60 0.70 0.65 2 0.37 0.40 0.38 3 0.39 0.31 0.34 4 0.39 0.43 0.41 5 0.60 0.55 0.58 6 0.61 0.72 0.66 7 0.63 0.60 0.62 8 0.78 0.65 0.71

Category 1	10 0	.59	0.32	0.42	100
Category :					100
Category 1					100
Category :					100
Category 1					100
Category :					100
Category :					100
Category :					100
Category :	18 0	.60	0.50	0.55	100
Category :	19 0	.60	0.43	0.50	100
Category 2	20 0	.81	0.79	0.80	100
Category 2	21 0	.50	0.81	0.62	100
Category 2	22 0	.61	0.51	0.55	100
Category 2	23 0	.70	0.68	0.69	100
Category 2					100
Category 2					100
Category 2					100
Category 2					100
Category 2					100
Category 2					100
Category C					100
Category Category					100 100
Category :					100
Category :					100
Category 3					100
Category 3					100
Category 3					100
Category 3					100
Category 3					100
Category 4					100
Category 4					100
Category 4	42 0	.59	0.57	0.58	100
Category (43 0	.50	0.57	0.53	100
Category 4	44 0	.31	0.28	0.30	100
Category 4					100
Category 4					100
Category 4					100
Category 4					100
Category					100
Category !					100 100
Category !					100
Category !					100
Category !					100
Category !					100
Category !					100
Category !					100
Category !					100
Category !	59 0	.60	0.53	0.56	100
Category			0.85		100
Category (100
Category (100
Category					100
Category					100
Category					100
Category					100
Category Category					100 100
Category Category					100
Category					100
Category Category					100
Category					100
Category					100
Category '					100
Category '					100
Category '	76 0	.81	0.78	0.80	100
Category '	77 0	.49	0.38	0.43	100
Category '					100
Category '					100
Category 8	80 0	.34	0.33	0.34	100

Category	81	0.56	0.78	0.65	100
Category	82	0.93	0.76	0.84	100
Category	83	0.59	0.47	0.52	100
Category	84	0.55	0.54	0.55	100
Category	85	0.67	0.70	0.69	100
Category	86	0.73	0.61	0.66	100
Category	87	0.57	0.73	0.64	100
Category	88	0.57	0.63	0.60	100
Category	89	0.65	0.63	0.64	100
Category	90	0.62	0.57	0.59	100
Category	91	0.68	0.69	0.69	100
Category	92	0.60	0.36	0.45	100
Category	93	0.35	0.39	0.37	100
Category	94	0.86	0.83	0.85	100
Category	95	0.59	0.64	0.62	100
Category	96	0.57	0.47	0.52	100
Category	97	0.46	0.62	0.53	100
Category	98	0.37	0.34	0.36	100
Category	99	0.75	0.53	0.62	100
accura	асу			0.58	10000
macro a	avg	0.58	0.58	0.57	10000
weighted a	avg	0.58	0.58	0.57	10000

Візуальне представлення випадкових 16 зображень з вибірки, їхні класи та класи, які розпізнала модель:

Images with True and Predicted Labels

Images with True and Predicted Labels

3. Для перевірки розпізнання довільних зображень (папка **img**) потрібно запустити **test_model.py.**

Вимоги до звіту

- 1. Покроково виконати хід роботи.
- 2. Запустити навчання мережі (train model.py) та відобразити результати:
- логи навчання мережі
- результати навчання
- візуальний графік навчання
- 3. Запустити оцінку мережі (test model.py) та відобразити результати:
- загальний результат точності та втрат
- результат точності по категоріях
- скриншот 16 випадкових зображень з тестового датасету (у кожного має бути унікальний, так як 10 000 зображень в датасеті)
- 4. Запустити тестування мережі (train_model.py) та відобразити результати:
- підготувати 5-10 зображень різних категорій та покласти в папку ітд
- скриншоти виконання програми з результатами розпізнання зображень (у всіх мають бути унікальні зображення)
- 5. Описати висновки.

Список літератури:

1. Гітхаб коду даної лабораторної роботи –

https://github.com/misha-lavrov/CIFAR-100-CNN

2. Оригінал статті та коду -

https://github.com/chetnakhanna16/CIFAR100_ImageRecognition?tab=readme-ov-file

3. Налаштування бібліотеки tensorflow –

https://www.tensorflow.org/install/pip#linux

4. Налаштування бібліотеки tensorflow –

https://stackoverflow.com/questions/45662253/can-i-run-keras-model-on-gpu

5. Набір даних CIFAR-100 –

https://www.cs.toronto.edu/~kriz/cifar.html