Operating system

Part XI: IO System (Other)

Goals

- Know the advanced services provided by most Oss
 - Scheduling algorithms for disk I/O requests
 - SPOOLING [虚拟脱机技术]
 - RAID
 - Redundant backup for the safe storage
 - USB
 - Universal interface for diverse devices
 - NAS, SAN, ...
 - Scattered storage

Review

 We also have mentioned the four compone nts of OS

Adv anc ed I O

- Scheduling algorithms for disk I/O requests
- SPOOLing
- RAID
 - Redundant backup for the safe storage
- USB
 - Universal interface for diverse devices
- NAS, SAN, ...
 - Scattered storage

OS is responsible for using hardware efficiently

- For disk drives fast access time and disk bandwidth
- Access time has two major components
 - Seek time is the time for the disk to move the heads to the e cylinder containing the desired sector
 - Seek time ≈ seek distance
 - Minimize seek time
 - Rotational latency [旋转延迟] the additional time waiting for the disk to rotate the desired sector to the disk head
 - Difficult for OS
- Disk bandwidth is the total number of bytes transfe rred, divided by the total time between the first req uest for service and the completion of the last trans fer

Disk Optimizations

- Disk latency time: Rotational delay waiting f or proper sector to rotate under R/W head
- Disk seek time: Delay while R/W head moves to the destination track/cylinder
- Transfer Time: Time to copy bits from disk s urface to memory

Access Time = seek + latency + transfer

Seek time

Rotational delay

Transfer time

Several algorithms exist to schedule the disk I/O requests

- We illustrate them with a request queue (0-199).
 - **–** 98, 183, 37, 122, 14, 124, 65, 67
 - After visiting 40, current Head pointer is at 53

FCFS [先来先服务算法]

- First come, first serve (FCFS): requests ar e served in the order of arrival
 - + Fair among requesters
 - Poor for accesses to random disk blocks 98, 183, 37, 122, 14, 124, 65, 67

SSTF[最短寻道时间优先]

 Shortest seek time first (SSTF): picks the request that is closest to the current disk ar m position

+ Good at reducing seeks 98, 183, 37, 122, 14, 124, 65, 67 90, 183, 37, 122, 14, 124, 65, 67

- May result isostangatio 114, 37 - [53] - 65, 67, 98, 122, 124, 1 180 160 Total seek distance 140 (Similar with the **FCFS**) 120 12167 -141*2 + (183-53) **Tracks** 100 98 080 $\frac{106 + 130}{1}$ 060 = 236 53 040 Also = (183-14)+(67-14)+(67-14)= 236020 000 Time

Part XII IO System (Basic)

10

SCAN

- The disk arm starts at one end of the disk, a nd moves toward the other end, serving req uests until it gets to the other end of the dis k, where the head movement is reversed an d servicing continues.
 - Sometimes called the elevator algorithm [电梯 算法].

Elevator Algorithms

PPTs.2012\PPTs from others\u.cs.biu.ac.il_~ariel_download_os381_ppts\os10-3_dsk.ppt

- Algorithms based on the common elevator principle.
- Four combinations of Elevator algorithms:
 - Service in both directions or in only one

SCAN

- SCAN: takes the closest request in the direction of travel (an example of elevator algorithm)
 - a new request can wait for almost two full Scans of the original states of the original 180 160 Total seek distance 140 (Quite straight) 120 124 .99]*2 - (53 + 14) 98 **Tracks** 100 080 060 53 Als = (199-14) + (199-53)040 020 000

Part XII IO System (Basic)

13

Get the **end** of each side [摸边] PPTs from others\www.cs.mtu.edu_~shene_OS-slides\chap13-

- This algorithm requires one more piece of inform ation:
 - the disk head movement direction, inward or outward
- The disk head starts at one end, and move towar d the other in the current direction.
- At the other end, the direction is reversed and se rvice continues.
 - Some authors refer the SCAN algorithm as the elevator algorithm.
 - However, to some others the elevator algorithm mean s the LOOK algorithm.

SCAN

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

C-SCAN

 Circular SCAN (C-SCAN): disk arm always serves requests by scanning in one direction.

C-SCAN

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

LOOK scheduling

- With SCAN and C-SCAN, the disk head moves across the full width of the disk.
- This is very time consuming. In practice, SCA N and C-SCAN are not implemented this way.
- LOOK:
 - It is a variation of SCAN. The disk head goes as far as the last request and reverses its direction.
- C-LOOK:
 - It is similar to C-SCAN. The disk head also goes as far as the last request and reverses its direction.

LOOK

C-LOOK

- Variation of C-SCAN
- Arm only goes as far as the last request in e ach direction, then reverses direction imm ediately, without first going all the way to t he end of the disk first: 14, 37 [53] 65, 67, 98, 122, 124, 124, 65, 67

C-LOOK

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems th at place a heavy load on the disk
- Performance relies on the number and types of requests
 - Requests for disk service can be influenced by the fil e-allocation method (Contiguous? Linked? Indexed?)

Selecting a Disk-Scheduling Algorithm

- The disk-scheduling algorithm should be wr itten as a separate module of the operating system, allowing it to be replaced with a diff erent algorithm if necessary
 - Either SSTF or LOOK is a reasonable choice for t he default algorithm
 - Scheduled by OS or by disk controller?

Adv anc ed I O

- Scheduling algorithms for disk I/O requests
 Simultaneous Peripheral Operations On-line:
- RAID
 - Redundant backup for the safe storage
- USB
 - Universal interface for diverse devices
- NAS, SAN, ...
 - Scattered storage

Basic Printer Operation

- A Printer is a peripheral device, usually attached to a host computer
- The host computer transfer print files to o the printer over the communication channel

Traditionally

- 1. There is an input machine to read cards into tapes
- 2. Then a person carries that full tape to the processor
- 3. After the processor output the result into an output tap e, another person carries the output tape to an output machine
- 4. The output machine prints the result out

Motivation

- Background Multiprogramming
 - The value of multiprogramming is that more programs can be run in the same amount of time.
 - If the turnover rate [周转率] of those programs can be increased, even greater efficiencies can be realized.

For example

- Imagine a given system executes five concurrent programs, and that each program occupies memory for 10 seconds.
- As soon as a program finishes executing, another one repla ces it in memory. Thus, the computer can run thirty progra ms a minute.
- If we could reduce each program's run time to five second
 s, we could run sixty programs in that same minute

- On output, data are **spooled** to disk and later d umped to the printer.
- Because the application program deals only wi th high-speed I/O, it finishes processing much more quickly, thus freeing space for another pr ogram
- Spooling is a way of dealing with dedicat ed I/O devices in a multiprogramming sy stem.
- A spooling directory is used for storing the spooling jobs

Spooler now tp://en.wikipedia.org/wiki/Spooling

• In computer science, **spool** refers to the pr ocess of placing data in a temporary worki ng area for another program to process.

SPOOLing 技术 (Simultaneous Peripheral Operation On Line)

• SPOOLING 技术 [联机同步外设操作] is a way (buffer-based te ch) of dealing with dedicated I/O devices in a multiprogra ,I/O buffering Channels mming system

,—Infoste pooling ud sepooling roties ctories [输入/输出井]

Two Separate Functions

Program-to-Queue.

Spooling
Part XII IO System

SPOOLing 技术

(Simultaneous Peripheral Operation On Line)

- When there are processes need input tasks (reading punched cards), they tells the SPLOOLING daemon, then daemon
 - calls the input management process to put the input data into the input t-spooling directory [输入井]
 - when finished, the daemon notifies the corresponding input process
- No matter how many input tasks, all the processes feel like th at each of them owns the input device by itself.

SPOOLing 技术

(Simultaneous Peripheral Operation On Line)

- When there are processes need output tasks (reading punched cards), they just
 - put their output data into output-spooling directory [輸出井]
 - then the daemon finishes the output task
- No matter how many output tasks, all the output processes fee l like that each of them owns the output device (printer) by itse lf.

SPOOLing can also be used to

Send emails

- When user sends a mail, the system places a copy in it s private storage (spool area).
- The system then initiates transfer to remote machine as a background activity.
- The background mail transfer process becomes client.
- If it succeeds, the transfer process passes a copy of the e message to remote server.
- If it fails, the transfer process records the time delivery was attempted and terminates.
- The background transfer process sweeps through the spool area periodically (typically every 30 mins).

Cont'

- Whenever it finds a message or whenever u ser deposits new outgoing mail, it attempts delivery.
- If mail message cannot be delivered after a n extended time, the mail software returns the mail message to sender

Adv anc ed I

- Scheduling algorithms for disk I/O requests
 Simultaneous Peripheral Operations On-line:
- SPOOLING

 SPOOLING
- RAID
 - Redundant backup for the safe storage
- USB
 - Universal interface for diverse devices
- NAS, SAN, ...
 - Scattered storage

RAID

- RAID is originally defined as Redundant Array of In expensive Disk(廉价磁盘冗余阵列), but the industry redefined I as Independent, not Inexpensive.
 - On the contrary, we have **SLED**, **that is**, **Single Large Expensive Disk**(单个大而贵的磁盘)。
- The basic idea of RAID is
 - To store the <u>backup</u> (copy or parity bits) of your data am ong several disks controller
 - By using RAID controller, we can use that digle get as a well with the edisk
 Namely RAID is just like
 SO-called
 - Namely, **RAID** is just like ce and better reliability

PPTs from others(存培. 操作系统 \CH05.p

controller 🍮

Motivation of RAID – for better Reliability by redundancy

- You all have this experience
 - After long time consideration of your paper, yo ur computer crashes, and you have not done a ny backup!
 - So you MUST have learned that you should ma ke some backup of your important documents every time!
 - I used to backup my materials in 3 places: <u>com</u>
 <u>puter</u>, a <u>portable hard disk</u>, and <u>network stor</u>
 <u>age space</u> (like "微盘" of BaiDU)

RAID Levels

Mirror the data, or store parity bits

Category	Level	Description	(Read/Write)	S (read/Write)	Typical Application
Striping	0	Nonredundant	Large strips: Excellent	Small strips: Excellent	Applications requiring high performance for noncritical data
Mirroring	1	Mirrored	Good/Fair	Fair/Fair	System drives; critical files
Parallel access	2	Redundant via Hamming code	Poor	Excellent	
	3	Bit-interleaved parity	Poor	Excellent	Large I/O request size applications, such as imaging, CAD
	4	Block-interleaved parity	Excellent/Fair	Fair/Poor	
Independent access	5	Block-interleaved distributed parity	Excellent/Fair	Fair/Poor	High request rate, read-intensive, data lookup
	6	Block-interleaved dual distributed parity	Excellent/Poor	Fair/Poor	Applications requiring extremely high availablity

From Ariel J. Frank\OS381\raid.p

Hamming Code [哈明码]

- Designed to correct single bit errors
- Family of (n, k) block error-correcting code s with parameters:
 - Block length: $n = 2^m 1$
 - Number of data bits: $k = 2^m m 1$
 - Number of check bits: n k = m
 - Minimum distance: $d_{min} = 3$
- Single-error-correcting (SEC) code
 - SEC double-error-detecting (SEC-DED) code

(7,4) Hamming code

- As an example, we are sending the string "01 10", where m = 4, hence, we need 3 bits for parity check.
- The message to be sent is: $m_7m_6m_5P_4m_3P_2P_1$ w here $m_7=0$, $m_6=1$, $m_5=1$, and $m_3=0$.
- Compute the value of the parity bits by:
 - $-P_1 = m_7 + m_5 + m_3 = 1$
 - $-P_2 = m_7 + m_6 + m_3 = 1$
 - $-P_4 = m_7 + m_6 + m_5 = 0$
- Hence, the message to be sent is "0110011".

PPTs from others\www.comp.hkbu.edu.hk_~jng\2006Chapter11.pp

†
Part XII IO System 41

- Say for example, if during the transmission, an error has occurred at position 6 from the right, the receiving message will now beco me "0010011".
- To detect and correct the error, compute the efollowings:
- For P_1 , compute $m_7 + m_5 + m_3 + P_1 = 0$ -0+1+0+1 = 0
- For P_2 , compute $m_7 + m_6 + m_3 + P_2 = 1$ - 0+0+0+1=1
- For P_4 , compute $m_7 + m_6 + m_5 + P_4 = 1$ -0+0+1+0=1 others\www.comp.hkbu.edu.hk_~jng\2006Chapter11.pp

- If $(P_4P_2P_1=0)$ then there is no error
- else P₄P₂P₁ will indicate the position of er ror.
- With $P_4P_2P_1 = 110$, we know that position 6 is in error.
- To correct the error, we change the bit at the 6th position from the right from '0' to '1'.
 - That is the string is changed from "001001 1" to "0110011" and priowcabout is the message "0110" from parity bit m_5m_3 .

 Part XII IO System 0111011?

RAID 5 (block-level distributed parity) as instance

Adv anc ed I

- Scheduling algorithms for disk I/O requests
 Simultaneous Peripheral Operations On-line:
- SPOOLING

 SPOOLING
- RAID
 - Redundant backup for the safe storage
- USB
 - Universal interface for diverse devices
- NAS, SAN, ...
 - Scattered storage

USB: Universal Serial Bus

- USB (Universal Serial Bus) is a way of setting up communicati on between a computer and pe ripheral devices.
 - USB can connect computer peripherals such as mice, keyboards,
 PDAs, gamepads and joysticks, somers, digital cameras, printers, personal media players, flash drives, and external hard drives.
 - For many of those devices, USB h as become the standard connecti on method.

Year created: January 1996 Created by: Intel, Compaq, Microsoft, Digital Equipment Corporation, IBM, Northern Tele 4 3 2 1 4 3 Type A Type B

00.Computer & Related\PPTs.2009\Part II Computer architecture.pptx

USB controller

Different types of USB connectors (from left to right)

• 8-pin AGOX • Mini-B plug • Type B

The data cables for USB 1.x and USB 2.x use a twisted pair to reduce noise and crosstalk.

Part Not System

48

Physical Interface

pin	Name	Descryption
1	Vcc	+5 Vdc
2	D-	Data-
3	D+	Data+
4	GND	Ground

USB communication takes the form of packets

- Cutting the huge target into fixed size packets
 - Just as we do in <u>Netwo</u><u>rking</u>
 - Each packet has uniqueID
- Merge all the packets a gain to rebuild the hug e target

http://www.dry.

After all proserts the data ected is transferred through

natwork

How to move this buge Buddha to er place?

s.2009\Part II Computer

USB Applications now

- Wireless video display
- Home and office
- MP3s
- General data transfer
- And More

Adv anc ed I

- Scheduling algorithms for disk I/O requests
 Simultaneous Peripheral Operations On-line:
- SPOOLING

 SPOOLING
- RAID
 - Redundant backup for the safe storage
- USB
 - Universal interface for diverse devices
- NAS, SAN, ...
 - Scattered storage

DAS: Direct Attached Storage

We are familiar with this.

NAS: Network Attached Storage [网络附加存储]

- Each Device Connecte d Directly to network, with own IP Address
- Various Devices (CD to wers, **Tape Towers**, S CSI Towers, Specialty Servers)
 - If a Server crashes, the data on a NAS device
 may be still accessible
 , depending on what device is used

- StorageTek Automated Cartridge System (ACS), with 6,000 tape cartridges storing a total of 300 terabytes
 - Location: Laurel, Maryland Date: June 2004
 - Camera: Canon EOS 10D ID Number: #88015409

SAN: Storage Area Network [存储(区)域网(络)]

- Storage is accessed at bl ock level not at file level
- Very high performances
- Storage is shared
- Good management tools
- Interoperability issues

Storage Area Network (SAN)

Google datacenter

One is not adequate of course

Non-von Neumann Architectures are also popular

• Since 1990, alternative <u>parallel-processing s</u> <u>ystems</u> have entered the marketplace.

(2x1x1)

2x(2.8/5.6) GF/s

2x512 MiB* DDR

15 W

 They have the potential to process much more data at much higher speeds.

(compare this with a 1988

Cray YMP/8 at 2.7 GF/s)

Blue Gene/L

* http://physics.nist.gov/cuu/Units/binary.html

