汉语词义消岐实验报告

霍华荣 1301210680、胡腾 1301210664

2014年4月1日

1. 实验目的

1.1 问题描述

通过试验不同的机器学习算法,根据训练集的标注语料,完成汉语词义消岐(WSD)的任务,并比较不同机器学习算法在此问题中的效果。

1.2 相关语料

训练语料共 2686 个句子,包含标注词语 Type 40 个;测试语料共 935 个句子, 共含待消岐词语 Type 40 个。

1.3 评测方法

微平均:

$$MicroAve = \sum_{i=1}^{N} m_i / \sum_{i=1}^{N} n_i$$

宏平均:

$$MacroAve = \sum_{i=1}^{N} p_i / N$$
, $p_i = m_i / n_i$

2. 特征提取

(1) 本实验主要考虑了两种类型的特征:

标记特征:目标词前后指定窗口内的单词、嵌套短语(目标单词在分词过程中被嵌入到的短语/词组)、对应词性:特征带有位置和类别标签。

标签说明:

W-i: 左边第 i 个单词(W 指单词)

Wi: 右边第 i 个单词

T-j: 左边第 j 个单词 POS (T 指词性标签)

Ti: 右边第 i 个单词 POS

NULL HEAD: 左边指定位置属性不存在的空缺值

NULL TAIL: 右边指定位置属性不存在的空缺值

最后一个为所属的意思,集训练结果

PW:被嵌入的短语(如果有的话)

PT: 短语的 POS

" | "所有属性/最后意思之间使用" | "(空格 竖线 空格)分开

参数:

Wnd_l: 左侧窗口大小

Wnd r: 右侧窗口大小

词袋特征:目标词前后指定窗口内的实词(本文主要考虑了名词、动词两种),不带位置标记。

参数:

CWnd 表示词袋窗口大小(目标词左边、右边距离在 CWnd 以内的实词)。

(2)所有模型的特征都基于朴素贝叶斯分类模型所优化的最优特征,具体优化流程见后续实验方法。

3. 实验方法

3.1 朴素贝叶斯

(1)验证方法:采用 4-fold 随机交叉验证,从训练集每个单词每个词义的所

有样本中随机抽取 1/4 的样本组成调试集,剩余 3/4 样本为训练集,进行训练并测试; 重复抽样、训练和测试 20 次,每个词得到一样平均正确率,所有词再得到一个正确率的宏平均值 Macro AVG,以该值为标准进行模型优化。

(2) Add λ 平滑值粗调:根据一组简单的特征(CWnd = 0, Wnd_l = 2, Wnd_r = 2) 初步确定平滑值 λ 。

λ Gross Tuning			
λ	Macro AVG		
0.5	0.564900153		
0.1	0.686026405		
0.01	0.714557336		
0.001	0.730018373		
0.0001	0.730041184		

(3) 优化特征筛选参数:

CWnd	Macro AVG	
1	0.509908292	
2	0.55382535	
3	0.557113308	
4	0.565982526	
5	0.574454965	
6	0.575142773	
7	0.580318117	
8	0.578937699	
9	0.574370971	
10	0.578529258	

CWnd-Wnd_l- Wnd_r	Macro AVG		
7-1-1	0.717748511		
7-1-2	0.723734342		
7-1-3	0.719334134		
7-2-1	0.730982496		
7-2-2	0.737257622		
7-2-3	0.737628263		
7-3-1	0.733481717		
7-3-2	0.745448969		
7-3-3	0.742495853		
7-4-1	0.718212898		

(4) Add λ 平滑值微调(CWnd-Wnd_l- Wnd_r = 7-3-2):

λ	Macro AVG		
0.001	0.745448969		
0.0005	0.744985585		
0.0001	0.755031757		
0.00005	0.752713891		
0.00001	0.752613186		

(5) Test 集运行结果(CWnd-Wnd_l-Wnd_r=7-3-2, λ=0.0001):

Micro AVG: 0.728342 Macro AVG: 0.767368

3.2 神经网络

(1)特征选择:

直接使用朴素贝叶斯优化所得的特征组合

CWnd-Wnd 1-Wnd r = 7-3-2

(2)参数设置:

输入结点数: 自适应调整为特征数

输出结点数: 自适应调整为类的个数(单词的意思)

隐藏层数:默认只有1层

隐藏层结点数: 15个

迭代次数: 40 次

学习率: 0.5

(3) Test 集运行结果:

Time: 1340s Micro AVG: 0.712299 Macro AVG: 0.753614

(4)由于 ANN 运行时间较长,本次实验未进行调试集拆分验证,除选用之前 贝叶斯最优特征组合以外,还随机选择了一些特征组合与参数设置进行训练,之后 直接运行于 Test 集上,其中结果最好的特征组合与参数设置如下:

 $CWnd-Wnd_l-Wnd_r = 7-1-1$

隐藏结点数: 10

迭代次数 : 40

学习率 : 0.5

运行结果:

Time: 600s Micro AVG: 0.735829 Macro AVG: 0.781223

3.3 最大熵模型

(1)特征:

直接使用朴素贝叶斯优化所得的特征组合

CWnd-Wnd 1-Wnd r = 7-3-2

(2)参数:

迭代算法: iis

迭代次数:80

(3)测试结果:

Total: 935 Finished: 935 Correct: 654 MicroAVG: 0.699465

MacroAVG: 0.728432

3.4 支持向量机

(1)特征:

直接使用朴素贝叶斯优化所得的特征组合

 $CWnd-Wnd_l-Wnd_r = 7-3-2$

(2)参数

核函数: rbf

C: 1000.0

gamma: 0.0001

- (3)参数 C, gamma 选择算法:
 - 1. 固定 C, 以 10 的倍数调整 gamma,选择预测评价最高的 gamma 值;
 - 2. 固定 gamma, 以 10 的倍数调整 C,选择预测评价最高的 C;
 - 3. 重复 1, 2, 直到 C 和 gamma 值收敛。
- (4)特征值数值化处理

从语料中提取的特征的值都是以词语,也就是字符串的形式。但是对于支持向

量机模型而言,特征的值必须为数值型。因此需要对特征的值进行数值化处理。

共有两种的数值化处理方法:

1. 固定特征名的个数,将特征值映射到唯一的标号。

例如:

旧特征:{W-2: "而", T-2: "c", W-1: "钻研", T-1: "v", W1: "理论", T1: "n", W2: ", ", T2: "w"}

新特征: {W-2: 0, T-2: 1, W-1: 3, T-1: 4, W1: 5, T1: 6, W2: 7, T2: 8}

2. 将特征名和特征值一起作为新的特征名, 新的特征值均为1。

旧特征:{W-2: "而", T-2: "c", W-1: "钻研", T-1: "v", W1: "理论", T1: "n", W2: ", ", T2: "w"}

新特征: {W-2=而: 1, T-2=c: 1, W-1=钻研: 1, T-1=v: 1, W1=理论: 1, T1=n: 1, W2=,:1, T2=w: 1}

对于以上两种数值化处理方法,均应用以下 8 个特征: W-2, T-2, W-1, T-1, W1, T1, W2, T2, NamedEntity, NamedEntityType。得出的测试结果为:

处理方法 1:

Total: 935 Finished: 935 Correct: 454 MicroAVG: 0.485561

MacroAVG: 0.552010

处理方法 2:

Total: 935 Finished: 935 Correct: 667 MicroAVG: 0.713369

MacroAVG: 0.739836

从上述结果看出,处理方法 2 效果明显更好。依次后续 SVM 算法均以此方法进行特征数值化处理。

(5)测试结果

Total: 935 Finished: 935 Correct: 680 MicroAVG: 0.727273

MacroAVG: 0.762196

3.5 决策树

(1)特征:

直接使用朴素贝叶斯优化所得的特征组合

CWnd-Wnd l-Wnd r = 7-3-2

(2)参数

熵阀值: 0.05

深度阀值: 100

节点元素个数阀值:10

(3)损失函数

损失函数值 = 按照此特征分类错误实例个数 / 本次待分类实例总数

(4) 各层特征选择

选择损失函数值最小的的特征。

(5)结果

Total: 935 Finished: 935 Correct: 616 MicroAVG: 0.658824

MacroAVG: 0.700084

4. 分析

4.1 不同特征对比

我们又使用了7-1-1模式的特征进行了词义消岐,结果如下表所示:

特征模式	7-3-2		7-1-1	
正确率	微平均	宏平均	微平均	宏平均
朴素贝叶斯	0.728342	0.767368	0.732620	0.767677
神经网络	0.712299	0.753614	0.735829	0.781223
最大熵模型	0.699465	0.728432	0.727273	0.757359
支持向量机	0.727273	0.762196	0.734759	0.772213
决策树	0.658824	0.700084	0.682353	0.719701

上表可以看出,虽然 7-3-2 模式的特征是使用朴素贝叶斯方法选择出的最优特征模式,但是 7-3-2 的正确率要普遍低于 7-1-1 的正确率。这是因为在选择特征时,是根据调试集最优做出选择的,此类特征并不能保证在测试集也最优。

4.2 不同模型对比

从 4.1 表格可以看出,神经网络和支持向量机的效果最好,其次是朴素贝叶斯和最大熵模型, 宏平均都超过了 0.75。神经网络模型过于复杂,训练速度较慢。

4.3 与优秀实现比较

何径舟等研究了基于特征选择和最大熵模型的汉语词义消岐[1],应用特征模板和特征自动选择机制,基于最大熵模型,测出最高正确率为微平均 0.7476, 宏平均 0.7788。本实验的最大熵模型正确率大概小 0.02,说明本实验,尤其是特征选择部分,还有一定的改进空间。

4.4 多分类器集成

吴云芳等研究了多分类器集成的汉语词义消岐研究[2],认为使用乘法、均值、最大值的集成方法均表现出良好的分类性能,3种方法的消岐准确率均高于单一分类器。因此,本实验后续还可以应用不同集成方法将上述5中消岐模型进行整合,构建更优集成模型。

5. 结论

汉语词义消岐是一个分类任务。基本上机器学习中的分类算法都能够应用到此

问题中,并且都能够得到不错的效果。如果只看中正确率,那么神经网络模型具有最高宏平均;如果兼顾效率和正确率,那么支持向量机模型无疑更加实用。

无论应用什么模型,最后预测的准确率均极大的与选择的特征相关。因此应该将更多的时间用在优化特征选择上。

75%左右的词义消岐正确率并不高,离实际应用的要求还有较大的距离,更优秀的算法和算法组合有待提出。

6. 试验环境

操作系统: Elementary OS Luna 64 bits (基于 Ubuntu 12.04)

编程语言: Python 2.7.3

工具模块: NLTK, Scikit-learn

CPU: Intel(R) Core(TM)2 Duo 2.20G Hz

内存: 2G

参考文献:

- [1] 何径舟,王厚峰. 基于特征选择和最大熵模型的汉语词义消歧. 软件学报, 2010, 21(6): 1287-1295.
- [2] 吴云芳,王淼,金澎,俞士汶. 多分类器集成的汉语词义消歧研究. 计算机研究与发展, 2008,45(8): 1354-1361.