ASSIGNMENT 2

FEED FORWARD NEURAL NETWROK

1. Hyperparameters used to train the model are:

Hidden layer size, number of layers, embedding dimensions and activation functions

2. Dev set accuracy of all the configurations and test set accuracy for best model configuration.

3. Evaluation matrix of best model on dev set and test set

4. Context window vs dev set accuracy plot

5. Analysis

- 1. Configuration 1, with lower complexity (single layer, lower hidden size, and smaller embedding dimension), outperformed configurations with higher complexity.
- 2. The use of ReLU activation function seems beneficial, as it resulted in higher accuracy compared to Tanh activation.
- 3. Increasing the number of layers and hidden size did not necessarily lead to improved performance. It's possible that the model may have overfit the training data with higher complexity configurations.
- 4. The performance on the test set is consistent with the dev set, indicating that the model generalizes well.

Recurrent Neural Network

1. Hyperparameters used to train the model are:

Hidden layer size, bidirectional, embedding dimensions and activation functions

2. Dev set accuracy of all the configurations and test set accuracy for best model configuration.

3. Plot of epoch vs test set accuracy on best model

4. Plot of epoch vs Dev set accuracy on model 1

5. Plot of epoch vs Dev set accuracy on model 2

6. Plot of epoch vs Dev set accuracy on model3/best model

6. Analysis

- Configuration 3, with lower complexity (smaller hidden size and embedding dimension) and bidirectional LSTM, outperformed other configurations.
- The use of the Tanh activation function in Configuration 3 seems beneficial, as it resulted in higher accuracy compared to ReLU activation.
- The bidirectional LSTM in Configuration 3 might have helped capture more contextual information, contributing to its improved performance.
- Configuration 1, with a single directional LSTM and higher complexity, performed the worst among the configurations, indicating that increasing model complexity does not always lead to better performance.