Correction

Partie I

- $\begin{array}{ll} 1.a & H_1, H_2 \subset H_1 + H_2 \subset E \ \ \text{donc} \ \ n-1 \leq \dim H_1 + H_2 \leq n \ . \\ & \text{Si} \ \ \dim H_1 + H_2 = n-1 \ \ \text{alors par inclusion et \'egalit\'e des dimensions} \ \ H_1 = H_1 + H_2 = H_2 \ \ \text{ce qui est exclu.} \ \text{Par suite} \ \ \dim H_1 + H_2 = n \ \ \text{et donc} \ \ H_1 + H_2 = E \ . \end{array}$
- $\begin{array}{ll} \text{1.b} & \text{Si } H_1 \neq H_2 \text{ alors } \dim H_1 \cap H_2 = \dim H_1 + \dim H_2 \dim H_1 + H_2 = n-2 \,. \\ & \text{Si } H_1 = H_2 \text{ alors } H_1 \cap H_2 = H_1 \text{ puis } \dim H_1 \cap H_2 = n-1 \,. \end{array}$

Par suite $\dim F \cap H = \dim H + \dim F - \dim F + H = \dim F - 1$.

- 2.a Si $F \subset H$ alors $F \cap H = F$ et $\dim F \cap H = \dim F$. Si $F \not\subset H$ alors considérons H + F. On a $H \subset F + H \subset E$ donc $n-1 \leq \dim F + H \leq n$. Si $\dim F + H = n-1$ alors par inclusion et égalité des dimensions H = F + H. Or $F \subset F + H$ donc $F \subset H$ ce qui est exclu. Nécessairement $\dim F + H = n$.
- 2.b Par récurrence sur $p \in \mathbb{N}^*$ *.

Pour p = 1 : ok

Supposons la propriété établie au rang $p \ge 1$.

Soit H_1, \dots, H_n, H_{n+1} des hyperplans de E.

Soit $F = H_1 \cap ... \cap H_n$. Par HR: $\dim F \ge n - p$.

 $H_1 \cap \ldots \cap H_n \cap H_{n+1} = F \cap H_{n+1}$ et d'après l'étude précédente $\dim F \cap H_{n+1} \geq \dim F - 1$.

Par suite $\dim(H_1 \cap ... \cap H_p \cap H_{p+1}) \ge n - (p+1)$.

Récurrence établie.

- 3.a Considérons $(\vec{e}_1,...,\vec{e}_p)$ une base de F. C'est une famille libre de vecteurs de E, on peut donc la compléter en une base de E de la forme $\mathcal{B} = (\vec{e}_1,...,\vec{e}_p,\vec{e}_{p+1},...,\vec{e}_p)$ et cette base convient.
- 3.b Par construction $(\vec{e}_1, ..., \vec{e}_{i-1}, \vec{e}_{i+1}, ..., \vec{e}_n)$ est une famille génératrice de H_i . De plus cette famille est libre car sous-famille d'une famille libre, c'est donc une base de H_i . Par suite $\dim H_i = n-1$ et H_i est un hyperplan de E.
- 3.c Soit $\vec{x} \in H_{n+1} \cap ... \cap H_n$.

Comme \mathcal{B} est une base de E, on peut écrire $\vec{x} = \lambda_1 \cdot \vec{e_1} + \cdots + \lambda_n \cdot \vec{e_n}$.

Pour tout $p+1 \leq i \leq n$, on a $\vec{x} \in H_i = \mathrm{Vect}(\vec{e}_1,...,\vec{e}_{i-1},\vec{e}_{i+1},...,\vec{e}_n)$.

On peut donc aussi écrire $\vec{x} = \mu_1 \cdot \vec{e}_1 + \dots + \mu_{i-1} \cdot \vec{e}_{i-1} + 0 \cdot \vec{e}_i + \dots + \mu_{i+1} \cdot \vec{e}_{i+1} + \dots + \mu_n \cdot \vec{e}_n$).

Par unicité des composantes d'un vecteur dans une base obtient : $\lambda_i = 0$.

Ainsi $\vec{x} = \lambda_1 \cdot \vec{e_1} + \dots + \lambda_p \cdot \vec{e_p} + \vec{o} \in F$ et donc $H_{p+1} \cap \dots \cap H_n \subset F$.

De plus $\dim H_{p+1}\cap\ldots\cap H_n\geq n-(n-p)=p=\dim F$ donc $\dim H_{p+1}\cap\ldots\cap H_n=\dim F$ puis $H_{n+1}\cap\ldots\cap H_n=F$.

3.d Considérons $\mathcal{B} = (\vec{e}_1, \dots, \vec{e}_n)$ une base de E.

Posons pour tout $i \in \{1,...,n\}$, $H_i = \text{Vect}(\vec{e}_1,...,\vec{e}_{i-1},\vec{e}_{i+1},...,\vec{e}_n)$. H_i est un hyperplan.

Par la même démarche que ci-dessus, on observe que $H_1 \cap ... \cap H_n = \{\vec{o}\}$.

Partie II

1. $\dim F_0 = 0$ et $\dim F_n = n$ donc $F_0 = \{\vec{o}\}$ et $F_n = E$.

- 2.a Si $F_i \subset F_{i-1}$ alors $F_i = F_{i-1}$ puisqu'on sait $F_{i-1} \subset F_i$. Or $\dim F_{i-1} \neq \dim F_i$. Ceci est donc impossible. Par suite $F_i \not\subset F_{i-1}$ et donc $\exists \vec{e}_i \in F_i$ tel que $\vec{e}_i \not\in F_{i-1}$.
- 2.b Montrons que \mathcal{B} est libre :

Version légère :

Supposons $\lambda_1 \vec{e}_1 + \dots + \lambda_n \vec{e}_n = \vec{o}$.

Si
$$\lambda_n \neq 0$$
 alors $\vec{e}_n = -\frac{1}{\lambda_n} (\lambda_1 \cdot \vec{e}_1 + \dots + \lambda_{n-1} \cdot \vec{e}_{n-1})$.

Or $\vec{e}_{_{\!\!1}}\in F_{_{\!\!1}}\subset F_{_{\!\!n-1}},\ldots,\vec{e}_{_{\!\!n-1}}\in F_{_{\!\!n-1}}$ donc $\vec{e}_{_{\!\!n}}\in F_{_{\!\!n-1}}$ ce qui est exclu.

Nécessairement $\lambda_n = 0$.

On obtient alors la relation $\lambda_{\bf i} \vec{e}_{\bf i} + \dots + \lambda_{n-\bf i} \vec{e}_{n-\bf i} = \vec{o}$ et on réitère le processus de sorte d'obtenir successivement $\lambda_{n-\bf i} = 0$,..., puis $\lambda_{\bf i} = 0$.

Version lourde (mais plus rigoureuse):

Par l'absurde, supposons \mathcal{B} liée.

On peut alors écrire $\lambda_1 \vec{e}_1 + \dots + \lambda_n \vec{e}_n = \vec{o}$ avec $(\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$.

Notons p le plus grand élément entier tel que $\lambda_p \neq 0$.

On a la relation $\lambda_1 \vec{e}_1 + \dots + \lambda_p \vec{e}_p = \vec{o}$ car par définition de p, $\lambda_{p+1} = \dots = \lambda_n = 0$.

On peut alors écrire $\vec{e}_p = -\frac{1}{\lambda_p}(\lambda_1 \cdot \vec{e}_1 + \dots + \lambda_{p-1} \cdot \vec{e}_{p-1})$.

Or $\vec{e}_{\!\scriptscriptstyle 1}\in F_{\!\scriptscriptstyle 1}\subset F_{\!\scriptscriptstyle p-1},\ldots,\vec{e}_{\!\scriptscriptstyle p-1}\in F_{\!\scriptscriptstyle p-1}$ donc $\vec{e}_{\!\scriptscriptstyle p}\in F_{\!\scriptscriptstyle p}$. C'est absurde.

Dans les deux versions, $\mathcal B$ est une famille libre formée de $n=\dim E$ vecteurs de E , c'est donc une base de E .

2.c Soit $i \in \{1, ..., p\}$.

La famille $(\vec{e}_1,...,\vec{e}_i)$ est une famille libre car sous famille d'une famille libre.

De plus, pour tout $j \in \{1,...,i\}$ on a $\vec{e}_i \in F_i$ car $F_i \subset F_i$.

La famille $(\vec{e}_1,\ldots,\vec{e}_i)$ est donc une famille libre formée de $i=\dim F_i$ vecteurs de F_i , c'est donc une base de F_i et par suite $F_i=\mathrm{Vect}(\vec{e}_1,\ldots,\vec{e}_i)$.

3.a Considérons $H_i = \text{Vect}(\vec{e}_1, ..., \vec{e}_{i-1}, \vec{e}_{i+1}, ..., \vec{e}_n)$.

Par les mêmes arguments qu'en I.3.b, H_i est un hyperplan.

Puisque $F_i \not\subset H_i$, on a $\dim F_i \cap H_i = \dim F_i - 1 = i - 1$.

Puisque $\,F_{_{i-1}}\subset F_{_i}$ et $\,F_{_{i-1}}\subset H_{_i}$, on a $\,F_{_{i-1}}\subset F_{_i}\cap H_{_i}$.

Par inclusion et égalité des dimensions : $F_{i-1} = F_i \cap H_i$.

3.b $F_{n-1} = F_n \cap H_n = H_n$ puisque $F_n = E$.

 $F_{n-2} = F_{n-1} \cap H_{n-1} = H_{n-1} \cap H_n, \dots, F_0 = F_1 \cap H_1 = H_1 \cap \dots \cap H_n.$