WI2244TN: Differentiaalvergelijkingen (en Lin. Algebra)

Gewone DV's

- **H.2** Lineaire eerste orde DV: y'(t) + a(t)y(t) = g(t); oplossen via integrerende factor $I(t) = e^{A(t)}$ met $A(t) = \int a(t) dt$.
- Separabele eerste orde DV: (te herschrijven tot:) p(y)y'(x) = q(x). Oplossen via integreren:

 $\int p(y)dy = \int q(x)dx$ geeft implicie te oplossing P(y) = Q(x) + K.

- Exacte DV: M(x,y) + N(x,y)y' = 0 met $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. (Impliciete) oplossing: F(x,y) = C, waarbij $\frac{\partial F}{\partial x} = M$, $\frac{\partial F}{\partial y} = N$.
- **H.3** Tweede orde lineaire DV: a(t)y'' + b(t)y' + c(t)y = g(t). Existentiestelling:
 - (I) Oplossingsstructuur: $y = y_H + y_p = c_1y_1 + c_2y_2 + y_p$, y_H : homogene oplossing, d.w.z. opl van homogene (of: complementaire) vgl a(t)y'' + b(t)y' + c(t)y = 0.

 y_p : particuliere oplossing.

Onafhankelijke oplossingen: Wronskiaan.

(II) Unieke oplossing bij beginwaarden (en 'nette' a(t), b(t), ...) y(0) = p, y'(0) = q. Bij constante coëfficiënten a(t), b(t), c(t): y_1, y_2 via karakteristieke vgl: $ar^2 + br + c = 0$. (Soms) Tweede onafhankelijke oplossing bepalen via ordereductie. Eulervergelijking: $t^2y'' + bty' + cy = g(t)$:

 y_H bepalen door t^{α} te substitueren, of via substitutie $t=e^x$.

Particuliere oplossing bepalen via 'slim stellen' of door variatie van constanten.

Hogere orde: Analoog.

• **H.5** Voor 'niet-standaard' tweede orde lineaire DV, bijv. $y'' + ty' - 2y = e^t$:

Machtreeksmethode: Zoek oplossing in de vorm $y(t) = \sum_{n=0}^{\infty} a_n (t - t_0)^n$.

Onderscheid tussen regulier punt en regulier-singulier punt.

Voor regulier-singulier punt: Gegeneraliseerde machtreeks.

H.7 Stelsels Lineaire DV'n:
$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}(t), \quad \mathbf{x}'(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

- ullet Omschrijven van n-de orde lineaire DV geeft stelsel lineaire eerste orde DV'n.
- Homogene stelsel $\mathbf{x}'(t) = A\mathbf{x}(t)$ oplossen via eigenwaarden/-vectoren van A. Klassificeren van gedrag rond oorsprong:

stabiel/instabiel, knoop, zadelpunt, spiraalpunt, centrum,

• Lineaire oplossingsstructuur: $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}(t)$, met A een $n \times n$ matrix, heeft algemene oplossing $\mathbf{x} = \mathbf{x}_H + \mathbf{x}_p = c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \ldots + c\mathbf{x}_n + \mathbf{x}_p$.

Opnieuw: \mathbf{x}_H : homogene oplossing, \mathbf{x}_p : particuliere oplossing.

Uniciteit: beginwaardeprobleem $\begin{cases} \mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{g}(t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$ heeft unieke oplossing.

• Fundamentaalmatrix: $\Phi(t) = [\mathbf{x}_1(t) \ \mathbf{x}_2(t) \ \cdots \ \mathbf{x}_n(t)]$, waarbij de kolommen onafhankelijke oplossingen zijn van $\mathbf{x}'(t) = A\mathbf{x}(t)$, en

Wronskiaan $W(t) = \text{Det}(\Phi(t))$ (bijv om onafhankelijkheid van oplossingen na te gaan).

Particuliere oplossing berekenen:

Als bij n-de orde lineaire DV: 'slim stellen' of variatie van constanten.

- e-macht van een matrix:
 - e^{At} is (unieke) oplossing van $\mathbf{F}'(t) = A\mathbf{F}(t), \ \mathbf{F}(0) = I$
 - Via machtreeks $e^{At} = \sum_{n=0}^{\infty} \frac{A^n t^n}{n!}$
 - Voor diagonaliseerbare matrix A: $A = PDP^{-1} \implies e^{At} = Pe^{Dt}P^{-1}$.
- \bullet Om rekentechnische redenen bekijken we voornamelijk $2 \! \times \! 2$ stelsels

H.9

Stelsels niet-lineaire DV'n:
$$\begin{cases} x_1'(t) &= f_1(x_1, x_2, \dots, x_n, t) \\ & \dots \\ x_n'(t) &= f_n(x_1, x_2, \dots, x_n, t) \end{cases}$$

- Wederom: Om rekentechnische redenen bekijken we uitluitend 2×2 stelsels.
- Autonome stelsels: rechterlid niet expliciet afhankelijk van t.

In dimensie 2:
$$\begin{cases} x'(t) = F(x,y) \\ y'(t) = G(x,y) \end{cases}$$

In dit geval 'vast' richtingsveld; oplossingen (x(t), y(t)) doorlopen banen (trajectorieën) in fasevlak.

- Banen zijn vastgelegd door $\frac{dy}{dx} \left(= \frac{dy/dt}{dx/dt} \right) = \frac{G(x,y)}{F(x,y)}$ (Deze DV is soms oplosbaar, bijv. indien sepa
- Stationaire/Kritieke punten $F(x_0, y_0) = G(x_0, y_0) = 0 \Rightarrow$

$$\Rightarrow x(t) = x_0, y(t) = y_0$$
 is (constante of: stationaire) oplossing

Gedrag rond stationaire punten klassificeren via lineariseringen.

H.10Partiële differentiaalvergelijkingen

- "The Big Three": Warmtevergelijking $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$, u = u(x,t)Golfvergelijking $\frac{\partial^2 u}{\partial x^2} = c^2 \frac{\partial^2 u}{\partial t^2}$, u = u(x,t)Potentiaal- (of: Laplace) Vgl. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$, u = u(x, y)
- Oplosmethode: Driestappenplan

Bijv. bij warmtevgl met begin- en randwaarden u(0,t) = u(0,L) = 0, u(x,0) = h(x):

- Scheiden van variabelen: u(x,t) = X(x)T(t).
- Ontkoppelde DV's voor X en T oplossen; randwaardeprobleem, hier: $u_n(x,t) = X_n(x)T_n(t) = \sin\left(\frac{n\pi x}{L}\right) \exp\left[-k\left(\frac{n\pi}{L}\right)^2 t\right]$
- (III) Coëfficiënten B_n bepalen zodat

$$u(x,t) = \sum_{n=0}^{\infty} B_n u_n(x,t)$$
 voldoet aan beginconditie $u(x,0) = h(x)$.

Dit doorgaans via Fourier-reeksen (hier: sinusreeks).