One_sample_t-test

N Mean Std Dev Std Err Minimum Maximum 5203 64.8132 3.5827 0.0497 51.5000 76.5000 Mean 95% CL Mean Std Dev 95% CL Std Dev 64.8132 64.7158 64.9106 3.5827 3.5152 3.6529				V	ariable	: Hei	ight				
Mean 95% CL Mean Std Dev 95% CL Std Dev	N		Mean	Std D	ev S	td Er	r Min	imum	N	laximum	
	5203	64	.8132	3.58	27 0	0497 51.500		5000		76.5000	
04.8132 04.7108 04.9100 3.0827 3.0102 3.0029											
	04.81	32	04.71	58 0	4.9100	-	0.0627	3.515	2	3.0029	
				DF	t van	ıe	Pr > t				
DF t Value Pr > t				5202	0.3	27	0.7907				

Here, h0 is used to define the population mean which is 64.8 for this data In second table as we see Confidence Interval for mean which is (64.7,64.91) P_value 0.7907 > 0.05 we can say that

Mean weight of height from the data and the given population height is equal.

Distribution of Height

With 95% Confidence Interval for Mean

Two-sample t-test

```
data heart ;
set sashelp.heart;
run;
proc print data=heart ;
run;
* compare weight of the patient according to there Sex ;
proc ttest data=heArt SIDES=2 alpha=0.5 plots=summary ;
class Sex ;
var weight;
run;
/* sides is used for defining the tail
alpha is significance level,
class is categorical variable that divide weight into two independent group;
var is dependent continuouis variable */;
```

Output:

Hypothesis: -

Var equal variance: H_01 : there is no significant difference among the variation of weight according to sex

			The TIEST Procedure									
			Variable	: Weight								
Sex	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum					
Female		2869	141.4	26.2880	0.4908	67.0000	300.0					
Male		2334	167.5	25.2907	0.5235	99.0000	276.0					
Diff (1-2)	Pooled		-26.0775	25.8454	0.7204							
Diff (1-2)	Satterthwaite		-26.0775		0.7176							

N	lethod	Variano	ices DF		t Valu	ıe	Pr>	t	
Р	ooled	Equal 5201 -36.20		20	<.00	01			
S	atterthwaite	Unequa	nequal 5		7.9 -36.3		34	<.00	01
		Equalit	ty of	Varia	nce	5			
	Method	Equalit	·	Varia n DF		s /alue	F	r > F	

For equal variance we check the p_value for last one i.e. Equality of variances;

0.0503 > 0.05; we accept the H 01 for this

Since, variance for the Sex is equal then we Pooled the variance for the both groups For this check the p_value at the front of Pooled

Which is 0.0001 < 0.05;

We reject the H_02;

And conclude that there is significant difference in both the groups.

ONE_WAY_ANOVA

```
* One_Way_Anova;

proc glm data=heart;

class Weight_Status ;

model Cholesterol = Weight_Status ;

means Weight_Status / tukey;

run;
```

Cholesterol is dependent continuous variable

Weight_Status is an independent categorical grouping variable containing more than two groups.

Tukey is used to perform paired-wise comparison.

			The G	LM Pro	cedu	re		
			Dependent '	Variable	: Cho	olesterol		
Source		DF	Sum of S	quares	Me	ean Squa	re F Valu	ie Pr>F
Nodel		2	259	9397.60	129698.80 65.9		2 <.0001	
Error		5048	9932	2551.25		1967.62		
Corrected	Total	5050	10191	1948.85				
	R-Squ 0.0254		Coeff Var 19.50614	Root N 44.35		Cholest	erol Mean 227.4047	
Source	•	DF	Туре	I SS I	Nean	Square	F Value	Pr > F
Weight	_Status	2	259397.0	8031	1296	98.8016	65.92	<.0001
Source		DF	Type I	II SS I	/lean	Square	F Value	Pr > F
	Status	2	259397.0	8031	1298	98.8016	65.92	<.0001

Here R² is 0.025 which variation explained by the overall model is 2.5% which is closer to zero,

And error explained by the model is 43.35 which is overall 50% So we can say that the model is Bad fit.

From the below box plot we can see Normal and Overweight Having more Outliers

Comparisons si	gnificant at th	e 0.05 level are indi	icated by ***.	
Weight_Status Comparison	Difference Between Means	Simultaneous 95%	Confidence Limits	
Overweight - Normal	13.548	10.277	16.820	
Overweight - Underweight	24.833	16.796	32.869	
Normal - Overweight	-13.548	-16.820	-10.277	
Normal - Underweight	11.285	2.978	19.592	
Underweight - Overweight	-24.833	-32.869	-16.796	
Underweight - Normal	-11.285	-19.592	-2.978	

Pairwise_comparison: -

(***) tells us that the respective group means are different

preliminary view of data:

```
* preliminary view of data;
proc means data=heart mean var std nway;
class Status Sex;
var weight;
run;
```

The MEANS Procedure Analysis Variable: Weight N Obs Std Dev Status Sex Variance Mean Alive Female 1977 138.9701114 593.2109663 24.3559226 Male 1241 167.2312651 593.5166346 24.3621968 Dead Female 896 146.7229050 866.3817455 Male 1095 167.7328454 692.4230685 26.3139330

```
* plot ;
proc sgplot data=heart;
vline Status/ group=Sex stat=mean response=Weight markers;
run;
```


Two_Way_Anova:

```
proc glm data=Heart;
class Status Sex;
model Weight= Status Sex Status*Sex;
LSMEANS Status*Sex/diff;
run;
```

LSMEANS (least square means) * for interaction

Dependent Variable: Weight									
Source	DF	Sum of Squ	uares	Mea	n Square	F Value	Pr > F		
Model	3	91236	4.772	304	121.591	460.03	<.0001		
Error	5199	3437037.135			661.096				
Corrected Tota	5202	434940	1.907						
	R-Square	Coeff Var	Root	MSE	Weight N	lean			
	0.209768	16.79557	25.7	1178	153.0	1867			

Here, $R^2 = 0.209$ i.e. total variation explained by the model is 20.9%

P_vlaue for the overall model is 0.0001 < 0.005,

We can say that there is a significant difference between the Wight in Different types of Sex and Status.

Since, we are working on Two-Anova so check for interaction for that we check the table of type3 ss

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Status	1	20371.4353	20371.4353	30.81	<.0001
Sex	1	725834.7735	725834.7735	1097.93	<.0001
Status*Sex	1	15720.8029	15720.8029	23.78	<.0001

For this all the p_value is less than 0.05 so say that No interaction is present in the data
Status having mean weight is also significantly different
Also Sex having mean weight is also significantly different.

		The GLM Pi Least Squar			
Status	Sex	Weight LS	MEAN L	SMEAN Nu	mber
Alive	Female	138.9	70111		1
Alive	Male	167.2	31265		2
Dead	Female	146.7	22905		3
Dead	Male	167.7	22045		4
		107.7	32040		-
L	Pr > t	ares Means t for H0: LSMe	or effect Sean(i)=LSN	lean(j)	7
L i/	Pr > t De	ares Means for H0: LSMe	ior effect S ean(i)=LSN able: Weig	lean(j)	
	Pr > t De	ares Means f for H0: LSMe pendent Vari	ior effect S ean(i)=LSN able: Weig	ht	
i/	Pr > t De	pendent Vari	for effect Sean(i)=LSN able: Weig	lean(j) ht	
i/,	Pr > t De	pendent Vari	ior effect Sean(i)=LSN able: Weig 3 <.0001	ht 4 <.0001	

Only the pair (4,2) are significant 0.6382 > 0.05

For equal variance:

```
* test for equal variance Homogenity;
proc glm data=heart plots=diffplot;
    class Weight_Status;
    model Cholesterol=Weight_Status;
    means Weight_Status / tukey howtest=levene;
    run;
```

The GLM Procedure Levene's Test for Homogeneity of Cholesterol Variance ANOVA of Squared Deviations from Group Means Source DF Sum of Squares Mean Square F Value Pr > F Weight_Status 2 1.0832E8 54157538 3.31 0.0387 Error 5048 8.268E10 16379706

Here the 0.0367 < 0.05 homogeneity is no present in

Normality:

```
* normality ;
proc UNIVARIATE data=heart normal ;
class Status Sex;
var Weight;
run;
```

Sex>Female>Status>Alive

	Tests for Normality								
Test	Si	tatistic	p Va	lue					
Shapiro-Wilk	w	0.942948	Pr < W	<0.0001					
Kolmogorov-Smirnov	D	0.080058	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	3.284532	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	19.90022	Pr > A-Sq	<0.0050					

Sex>Male>Status>Alive

	Tests for Normality								
Test	St	tatistic	p Va	lue					
Shapiro-Wilk	w	0.986975	Pr < W	<0.0001					
Kolmogorov-Smirnov	D	0.040345	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	0.464748	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	3.274516	Pr > A-Sq	<0.0050					

Sex>Female>Status>Dead

Tests for Normality								
St	tatistic	p Value						
w	0.962263	Pr < W	<0.0001					
D	0.067472	Pr > D	<0.0100					
W-Sq	1.070914	Pr > W-Sq	<0.0050					
A-Sq	6.442368	Pr > A-Sq	<0.0050					
	W D W-Sq	Statistic W 0.962263 D 0.067472 W-Sq 1.070914	Statistic p Val W 0.982263 Pr < W					

Sex>Male>Status>Dead

Tests for Normality									
Test	St	atistic	p Value						
Shapiro-Wilk	w	0.991009	Pr < W	<0.0001					
Kolmogorov-Smirnov	D	0.034347	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	0.16309	Pr > W-Sq	0.0174					
Anderson-Darling	A-Sq	1.260595	Pr > A-Sq	<0.0050					