Quantum category O, II

1) Affine Hecke category.

We have seen that the affine Weyl group controls certain aspects of $\mathcal{O}_{\varepsilon}^{\text{mix}}$. In fact, much more is true: there are <u>derived</u> equivalences between $\mathcal{O}_{\varepsilon}^{\Theta}$'s & certain "standard" categories associated to W^{a} : (singular) blocks of the affine Hecke category.

1.1) Definition

Let W'be a (possibly infinite) reflection group acting on its reflection representation V.

Example: $W = W^a$, $V = \mathcal{E} \oplus \mathbb{C}h$; $W^a V : h$ is W^a invariant, W^a acts on \mathcal{E}_{λ} as usual, and for $\lambda \in \Lambda_0$, have $\mathcal{E}_{\lambda} \times (\lambda, x) = (\lambda, x) + (\lambda, x) = (\lambda, x)$.

Let $S \subset W'$ be the subset of simple reflections in W'. Set R = S(V), this is a graded algebra.

Definition: Let $s \in S$. Define the Bott-Samelson R-bimodule $B_s = R \otimes_{ps} R$ (where R^s is the subalgebra of s-invariants in R). Note that B_s is graded as a bimodule.

Consider the categories R-grbimod & R-grmod of graded finitely generated R-bimodules & graded R-modules. For $j \in \mathbb{Z}$, let $\langle j \rangle$ denote the endofunctor of grading shift:

 $B < j > i = B_{i+j}$ (for $B \in R - gr(6i) mod)$

We consider the following (additive) categories:

- SBim (the category of Soergel bimodules): the full subcategory in R-grbimod consisting of all graded bimodules obtained from R&B_s, $s \in S$, by \otimes , \oplus , <? > & taxing direct
- · SMod (the category of Soergel <u>modules</u>), the full subcat $\{B/BV \in R\text{-}grmod \mid B \in SBim\}$. One can show it's closed under taxing direct summands.
- · <u>SMod</u> (the category of <u>ungraded</u> Soergel modules), a full subcategory in R-mod whose objects are the same as in

SMod (w. grading forgotten).

The categories SBim, SMod & <u>SMod</u> are "Krull-Scmidt":

every object is isomorphic to a unique \oplus of indecomposables.

The Soergel categorification theorem describes the indecomposable objects in these categories, we will need a version for <u>SMod</u>

Proposition: The indecomposable objects in \underline{SMod} are in bijection w. W'

We are now in position to define the version of the affine Hecke category we need. Set $W'=W^2$ & $V=5\oplus \mathbb{C}h$, see Example. H: = K^6 (SMod), where K^6 stands for the bounded homotopy category of complexes.

1.2) Derived equivalence, regular blocks

Thm 1 (I.L. 23) Suppose Θ is a free W° -orbit (no stabilizer). Then $\mathbb{D}^{b}(\mathcal{O}_{\varepsilon}^{\Theta}) \xrightarrow{\sim} \mathcal{H}$.

A somewhat weaker version of Thm was also obtained by Q. Situ.

Remark: Such orbit exists \iff d > h (= Coxeter number of G, e.g. for $G = SL_n$, h = n). In this case $G := W^2 = 0$ is free, the corresponding block is called principal.

1.3) Derived equivalence, singular blocks.

Consider the general (not necessarily free) Θ . We want a description of $\mathcal{O}_{\varepsilon}^{\Theta}$ similar to that in Theorem 1. First, we'll choose a distinguished element $\lambda^{\circ} \in \Theta$. Set $\mathcal{S} = \{\lambda \in \Lambda_{0} \mid \langle \lambda + \rho, d_{i}^{\vee} \rangle \leq 0 \ \& \langle \lambda + \rho, \delta^{\vee} \rangle \geq -d \}$, where δ^{\vee} is the maximal coroot. Then \mathcal{S}^{\vee} is a fundamental domain for $\mathcal{W}^{\circ} \wedge \Lambda_{0}$ (exercise) $\sim \lambda^{\circ}$: = unique point in $\mathcal{S} \cap \Theta$.

For S take the set of reflections about the walls of S. Set $J = \{ s \in S \mid s \cdot \lambda^2 = \lambda^2 \} \longrightarrow R^J = \bigcap_{S \in J} R^S$, polynomial algebra.

Definition: The category $_{9}SMod$ is the full subcategory in $R^{-1}mod$ whose objects are direct summands of objects in SMod (viewed as modules over $R^{-1}CR$). Set $_{9}H:=K^{6}(_{9}SMod)$

Thm (I.L. 23) $\mathcal{D}^{6}(\mathcal{O}_{\varepsilon}^{\Theta}) \xrightarrow{\sim} \mathcal{H}$.

1.4) Motivations

 O_{ϵ}^{mix} was popularized by Caitsgory who wanted an extension of the famous Kazhdan-Lusztig equivalence between

(i) a certain parabolic category O for the affine Lie algebra \hat{oj} (ii) and the finite dimensional representations of U_{ϵ}^{L}

He proposed to replace (i) w the full cat. $0 \& U_{\epsilon}^{c}$ model w. O_{ϵ}^{mix} His conjectures essentially yield our main equivalence & were proved by his students then & Fu by methods very different from mine (& with different assumptions on d). The motivation came from Quantum Geometric Langlands.

Another motivation: one should be able to use a connection between $O_{\epsilon}^{\text{mix}}$ and the affine Hecke category to get character formulas in the category of finite dimensional of U_{ϵ}^{DK} with some (currently a bit mysterious) additional "equivariance" structure, similar in spirit to Betrukavnikov-I.L. 20.

Finally, a far reaching motivation is to understand the affine analog of $O_{\varepsilon}^{\text{mix}}$: where instead of $U_{\varepsilon}^{\text{mix}}(g)$ one has $U_{\varepsilon}^{\text{mix}}(\hat{g})$ understanding Ormix is a necessary prerequisite.