Exercice 256:

Quelles sont les $M \in \mathcal{M}_n(\mathbb{C})$ telles que M soit semblable à 2M?

Analyse: Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M \sim 2M$.

 $1^{\text{ère}}$ méthode: En trigonalisant M, on remarque que les valeurs propres de 2M sont le double de celles de M. Or M et 2M sont semblables donc ont les mêmes valeurs propres. Ces dernières sont donc toutes nulles.

Donc M est nilpotente.

 $\underline{2}^{\text{ème}}$ méthode : Il existe $P \in GL_n(\mathbb{C})$ telle que PM = 2MP. Ainsi, $\forall n \in \mathbb{N}, PM^n = 2^nM^nP$. La famille (I_n, M) est libre tandis que I_n, M, \dots, M^{n^2} est liée.

Il existe donc $p \in [1, n^2]$ tel que (I, \ldots, M^p) est libre et (I, \ldots, M^{p+1}) est liée.

On peut donc trouver a_0, \ldots, a_{p+1} non tous nuls tels que $\sum_{i=1}^{p+1} a_i M^i = 0$.

Donc
$$P \sum_{i=0}^{p+1} a_i M^i = 0$$
 donc $\left(\sum_{i=0}^{p+1} a_i 2^i M^i\right) P = 0$ donc $\sum_{i=0}^{p+1} a_i 2^i M^i = 0$.

Donc
$$2^{p+1} \sum_{i=0}^{p+1} a_i M^i - \sum_{i=0}^{p+1} a_i 2^i M^i = 0$$
 donc $\sum_{i=0}^{p} (2^{p+1} - 2^i) a_i M^i = 0$.
Par liberté de (I_n, \dots, M^p) , les $(2^{p+1} - 2^i) a_i$ sont nuls donc les a_i sont nuls pour $i \in [0, p]$.

Donc $a_{p+1} \neq 0$ et $a_{p+1}M^{p+1} = 0$ donc $M^{p+1} = 0$

Donc M est nilpotente.

Synthèse : Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente.

Lemme: Montrons que M étant nilpotente, elle est semblable à une matrice de la forme

$$\begin{pmatrix} J_1 & & & \\ & \ddots & & \\ & & J_p & \\ & & & (0) \end{pmatrix} \text{ où les } J_i \text{ sont des blocs de Jordan} : J_i = \begin{pmatrix} 0 & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

Soit p l'ordre de nilpotence de M. Alors $M^{p-1} \neq 0$ donc il existe $x \in \mathbb{C}^n$ tel que $M^{n-1}x \neq 0$.

Alors la famille $(x, Mx, \ldots, M^{p-1}x)$ est libre, on en note E_1 l'espace engendré et J_1 la matrice de l'induit de ${\cal M}$ sur cet espace. C'est un bloc de Jordan de coefficient 0.

Le supplémentaire de E_1 dans E, qu'on note $\tilde{E_1}$, est stable par M. On note M_1 l'induit, qui est toujours nilpotent.

Soit M_1 est nulle, auquel cas on a fini, soit son ordre de nilpotence p_1 est non nul. On recommence alors le procédé précédent.

On itère cela jusqu'à tomber sur un induit nul ou un supplémentaire égal à {0}.

On prend

$$P = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 2^{n-1} \end{pmatrix}$$

Alors, pour N de la forme donnée par le lemme, PN = 2NP donc N 2N. Comme M et N sont semblables,

M est semblable à 2M.