Notes on Mathematics

David K. Zhang

Last modified January 16, 2022

List of Definitions

Empty Set, \emptyset	1
Non-empty Set	1
Subset, $A \subseteq B$	1
Superset, $A \supseteq B$	1
Set Equality, $A = B, A \neq B$	1
Proper Subset, $A \subsetneq B$	1
Proper Superset, $A \supseteq B$	1
Power Set, $\mathcal{P}(A)$, $2^{A'}$	2
Union, $A \cup B$	2
Intersection, Intersects, $A \cap B$	2
Difference, Relative Complement, $A \setminus B$	2
Cartesian Product, $A \times B$	2
Relation, Binary Relation, Relates, $a R b$, $a R b$	2
Function, Maps, Domain, Codomain, $f: A \rightarrow B$, $f(x)$	3
Injective Function, One-to-one Function, Injection, $f: A \hookrightarrow B$	3
Surjective Function, Onto Function, Surjection, $f:A \rightarrow B$	3
Bijective Function, One-to-one Correspondence, Bijection, $f: A \hookrightarrow B \ldots \ldots$	3
Image, $f[S]$	3
Inverse Image, $f^{-1}[S]$	3
Range	4
Identity Function, id_A	4
Cartesian Product, $\prod_{i \in I} A_i$	4
Topology	5
Topological Space, Point, Open Set	5
Closed Set	5
Closed Set	5
Open Neighborhood	5
	5
Neighborhood	5
Limit Point, Cluster Point, Accumulation Point	6
Derived Set, A'	6
Interior, $\underline{\underline{A}}^{\circ}$	6
Closure, A	6
Continuous Function	7
Metric, Distance Function	7
Metric Space, Underlying Set, Point	7
Continuity	7

Group	8
Abelian Group	ç
Rng	10
Zero Rng, Trivial Rng	11
Nonzero Rng, Nontrivial Rng	11
Subrng, $S \leq R$	11
Rng Homomorphism	11
Ideal, Left Ideal, Right Ideal, One-Sided Ideal, Two-Sided Ideal, $I \leq R$	11
Rng of Formal Power Series, $R[x]$	12
Rng of Polynomials, $R[x]$	12
Commutative Rng	12
Ring	12
Subring	12
Field	13

List of Theorems

Closed \iff Contains All Limit Points	
Cancellation Laws	
Multiplying by Zero Yields Zero	. 10

Set Theory

Definition: Empty Set, Ø

The *empty set*, denoted by \emptyset , is the set that contains no elements at all.

In other words, $x \notin \emptyset$ for all x.

Definition: Non-empty Set

A set is *non-empty* if it contains at least one element.

Definition: Subset, $A \subseteq B$

Let *A* and *B* be sets. We say that *A* is a *subset* of *B*, denoted by $A \subseteq B$, if every element of *A* is also an element of *B*, i.e., for all $x \in A$ we have $x \in B$.

Definition: Superset, $A \supseteq B$

Let *A* and *B* be sets. We say that *A* is a *superset* of *B*, denoted by $A \supseteq B$, if *B* is a subset of *A*.

Note that the empty set is a subset of every set, and that every set is a superset of the empty set.

Definition: Set Equality, A = B, $A \neq B$

Let *A* and *B* be sets. We say that *A* and *B* are *equal*, denoted by A = B, if $A \subseteq B$ and $B \subseteq A$. If this is not the case, then we write $A \neq B$ to denote that *A* and *B* are not equal.

Using this notation, we write $A \neq \emptyset$ to denote that a set A is non-empty.

Definition: Proper Subset, $A \subseteq B$

Let *A* and *B* be sets. We say that *A* is a *proper subset* of *B*, denoted by \subseteq , if $A \subseteq B$ and $A \neq B$.

Definition: Proper Superset, $A \supseteq B$

Let *A* and *B* be sets. We say that *A* is a *proper superset* of *B*, denoted by \supseteq , if $A \supseteq B$ and $A \ne B$.

Definition: Power Set, $\mathcal{P}(A)$, 2^A

Let *A* be a set. The *power set* of *A*, denoted by $\mathcal{P}(A)$ or 2^A , is the set containing all subsets of *A*.

Note that $\mathcal{P}(A)$ contains both the empty set \emptyset and the set A itself.

Definition: Union, $A \cup B$

Let *A* and *B* be sets. The *union* of *A* and *B*, denoted by $A \cup B$, is the set containing all elements of *A* together with all elements of *B*.

$$x \in (A \cup B) \iff x \in A \text{ or } x \in B$$

Definition: Intersection, Intersects, $A \cap B$

Let *A* and *B* be sets. The *intersection* of *A* and *B*, denoted by $A \cap B$, is the set containing all elements that are present in both *A* and *B*.

$$x \in (A \cap B) \iff x \in A \text{ and } x \in B$$

We say that *A intersects B* if the intersection $A \cap B$ is non-empty.

Definition: Difference, Relative Complement, $A \setminus B$

Let *A* and *B* be sets. The *difference* of *A* and *B*, also known as the *relative complement* of *B* in *A*, denoted by $A \setminus B$, is the set containing all the elements of *A* which are not elements of *B*.

$$A \setminus B \coloneqq \{x \in A \ : \ x \notin B\}$$

Definition: Cartesian Product, $A \times B$

Let *A* and *B* be sets. The *Cartesian product* of *A* and *B*, denoted by $A \times B$, is the set of all ordered pairs (a, b) consisting of an element $a \in A$ followed by an element $b \in B$.

$$A \times B := \{(a, b) : a \in A \text{ and } b \in B\}$$

Definition: Relation, Binary Relation, Relates, a R b, a R b

Let *A* and *B* be sets. A *relation* between *A* and *B*, also known as a *binary relation* between *A* and *B*, is a subset $R \subseteq A \times B$ of their Cartesian product.

Given $a \in A$ and $b \in B$, we write a R b to denote that $(a, b) \in R$. If this is the case, then we say that R *relates* a to b. Similarly, we write $a \not R b$ to denote that $(a, b) \notin R$.

If A = B, then instead of saying that R is a relation between A and A, we simply say that R is a binary relation on A.

For example, the less-than relation < is a binary relation on the set $\mathbb N$ of natural numbers. We write 3 < 4 to indicate that the ordered pair $(3,4) \in \mathbb N \times \mathbb N$ is an element of the relation <.

Definition: Function, Maps, Domain, Codomain, $f: A \rightarrow B$, f(x)

Let A and B be sets. A *function* from A to B is a binary relation $f \subseteq A \times B$ between A and B that has the following property: for each $x \in A$, there exists a unique $y \in B$ such that x f y. Instead of the word "relates," we say that the function f *maps* x to y. We call the set A the *domain* of f, and we call B the *codomain* of f.

We write $f: A \to B$ to denote that f is a function from A to B, and given $x \in A$, we write f(x) to denote the unique element of B that is related to x by f.

Definition: Injective Function, One-to-one Function, Injection, $f: A \hookrightarrow B$

Let *A* and *B* be sets. A function $f: A \to B$ is *injective*, or *one-to-one*, or an *injection*, if no two distinct elements of *A* are mapped to the same element of *B* by f.

$$\forall x, y \in A : x \neq y \implies f(x) \neq f(y)$$

We write $f: A \hookrightarrow B$ to denote that f is an injective function from A to B.

Definition: Surjective Function, Onto Function, Surjection, $f: A \rightarrow B$

Let *A* and *B* be sets. A function $f: A \rightarrow B$ is *surjective*, or *onto*, or a *surjection*, if every element of *B* is mapped to by f.

$$\forall y \in B \; \exists x \in A : f(x) = y$$

We write $f: A \rightarrow B$ to denote that f is a surjective function from A to B.

Definition: Bijective Function, One-to-one Correspondence, Bijection, $f:A \hookrightarrow B$

Let A and B be sets. A function $f: A \to B$ is **bijective**, or a **one-to-one correspondence**, or a **bijection**, if f is both injective and surjective. We write $f: A \hookrightarrow B$ to denote that f is a bijective function from A to B.

Definition: Image, f[S]

Let *A* and *B* be sets. Given a function $f: A \to B$, the *image* of a subset $S \subseteq A$ under f, denoted by f[S], is the set defined by

$$f[S] \coloneqq \{f(x) : x \in S\}.$$

In other words, f[S] is the subset of B containing all elements that f maps to from S. For example, consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^2$. The image of the interval (-1,1) under f is the interval f[(-1,1)] = [0,1).

Definition: Inverse Image, Preimage, $f^{-1}[S]$

Let *A* and *B* be sets. Given a function $f: A \to B$, the *inverse image* or *preimage* of a subset $S \subseteq B$ under f, denoted by $f^{-1}[S]$, is the set defined by

$$f^{-1}[S] \coloneqq \{x \in A : f(x) \in S\}.$$

In other words, $f^{-1}[S]$ is the subset of A containing all elements that map into S under f. For example, consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^2$. The inverse image of the interval (1,4) is the union of the two intervals $f^{-1}[(1,4)] = (-2,-1) \cup (1,2)$.

Definition: Range

Let *A* and *B* be sets. The *range* of a function $f: A \to B$ is the image f[A] of *A* under *f*.

Note that a function is surjective if and only if its range equals its codomain.

Definition: Identity Function, id_A

Let *A* be a set. The *identity function* on *A* is the function $id_A : A \to A$ defined by $id_A(a) := a$ for all $a \in A$.

Definition: Cartesian Product, $\prod_{i \in I} A_i$

Let I be an index set, and let $\{A_i\}_{i\in I}$ be an indexed family of sets. The *Cartesian product* of $\{A_i\}_{i\in I}$, denoted by $\prod_{i\in I}A_i$, is the set of all functions $f:I\to\bigcup_{i\in I}A_i$ such that $f(i)\in A_i$ for all $i\in I$.

$$\prod_{i \in I} A_i := \left\{ f : I \to \bigcup_{i \in I} A_i \mid \forall i \in I : f(i) \in A_i \right\}$$

Topology

Definition: Topology

Let *X* be a set. A *topology* on *X* is a collection $T \subseteq \mathcal{P}(X)$ of subsets of *X* that satisfies the following requirements:

- *Empty set is open*: $\emptyset \in T$.
- Whole set is open: $X \in T$.
- Closed under arbitrary unions: If $S \subseteq T$, then $\bigcup S \in T$.
- *Closed under finite intersections*: If $S \subseteq T$ and |S| is finite, then $\bigcap S \in T$.

Definition: Topological Space, Point, Open Set

A *topological space* is an ordered pair (X, T) consisting of a set X, called the *underlying set*, and a topology T on X. The elements of X are called the *points* of the topological space (T, X), and the elements of T are called *open sets*.

Definition: Closed Set

Let (X, T) be a topological space. A subset $F \subseteq X$ is **closed** if $X \setminus F \in T$.

Definition: Clopen Set

Let (X, T) be a topological space. A subset of X is *clopen* if it is both open and closed.

Definition: Open Neighborhood

Let (X, T) be a topological space. An *open neighborhood* of a point $x \in X$ is an open set $U \in T$ that contains x.

Definition: Neighborhood

Let (X, T) be a topological space, and let $x \in X$. A subset $N \subseteq X$ is a *neighborhood* of x if there exists an open set $U \in T$ such that $x \in U$ and $U \subseteq N$.

Definition: Limit Point, Cluster Point, Accumulation Point

Let (X, T) be a topological space, and let $A \subseteq X$. A point $x \in X$ is a *limit point* of A, also known as a *cluster point* or *accumulation point*, if every open neighborhood of x contains a point in A other than x itself.

In other words, x is a limit point of A if every open neighborhood of x intersects $A \setminus \{x\}$.

Definition: Derived Set, A'

Let (X, T) be a topological space, and let $A \subseteq X$. The *derived set* of A, denoted by A', is the set of all limit points of A in X.

 $A' := \{x \in X : x \text{ is a limit point of } A\}$

Closed ⇐⇒ **Contains All Limit Points**

Theorem: Let (X, T) be a topological space. A subset $A \subseteq X$ is closed if and only if A contains all of its limit points, i.e., $A' \subseteq A$.

Proof: Suppose $A \subseteq X$ is closed, and let $x \in A'$ be a limit point of A. We will prove that $x \in A$ by contradiction. If $x \notin A$, then $x \in X \setminus A$. By hypothesis, A is closed, so $X \setminus A$ is open. It follows that $X \setminus A$ is an open neighborhood of x that does not intersect A, contradicting the hypothesis that x is a limit point of A.

Conversely, suppose that $A' \subseteq A$. We must prove that A is closed, i.e., that $X \setminus A$ is open. For each point $x \in X \setminus A$, the hypothesis $A' \subseteq A$ implies that x is not a limit point of A. Hence, by definition, there exists an open neighborhood $U_x \in T$ of x that does not intersect A. The union of all such neighborhoods is precisely $X \setminus A = \bigcup_{x \in X \setminus A} U_x$, which, being a union of open sets, is consequently open.

Definition: Interior, A°

Let (X, T) be a topological space, and let $A \subseteq X$. The *interior* of A, denoted by A° , is the union of all open sets $U \in T$ that are subsets of A.

$$A^\circ \coloneqq \bigcup \left\{ U \in T \, : \, U \subseteq A \right\}$$

Definition: Closure, \overline{A}

Let (X, T) be a topological space, and let $A \subseteq X$. The *closure* of A, denoted by \overline{A} , is the inter-

section of all closed sets $F \subseteq X$ that are supersets of A.

$$\overline{A} := \bigcap \{ F \subseteq X : X \setminus F \in T \text{ and } F \supseteq A \}$$

Definition: Continuous Function

Let (X, T_X) and (Y, T_Y) be topological spaces. A function $f: X \to Y$ is *continuous* with respect to the topologies T_X and T_Y if, for every $U \in T_Y$, we have $f^{-1}[U] \in T_X$.

Definition: Metric, Distance Function

Let X be a set. A *metric* on X, also known as a *distance function* on X, is a function d: $X \times X \to \mathbb{R}$ that satisfies the following requirements:

- *Positive-definiteness*: $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 if and only if x = y.
- *Symmetry*: d(x, y) = d(y, x) for all $x, y \in X$.
- *Triangle inequality*: $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Definition: Metric Space, Underlying Set, Point

A *metric space* is an ordered pair (X, d) consisting of a set X, called the *underlying set* of the metric space, and a metric d on X. The elements of X are called the *points* of the metric space (X, d).

Definition: Continuity

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is *continuous* at a point $x_0 \in X$ if, for every $\epsilon > 0$, there exists $\delta > 0$, such that for all $x \in X$, if $d_X(x, x_0) < \delta$, then $d_Y(f(x), f(x_0)) < \epsilon$.

Group Theory

Definition: Group

A *group* is an algebraic structure $\langle G; 1, ^{-1}, \cdot \rangle$ consisting of:

- a set *G*, called the *underlying set*;
- a distinguished element $1 \in G$, called the *identity element*;
- a unary operation $^{-1}: G \to G$, written as $x \mapsto x^{-1}$, called *inversion*;
- a binary operation \cdot : $G \times G \to G$, written as $(x, y) \mapsto x \cdot y$, called the *group operation* or *group product*;

satisfying the following requirements:

- Associative property: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in G$.
- *Identity property*: $1 \cdot x = x \cdot 1 = x$ for all $x \in G$.
- Inverse property: $x \cdot x^{-1} = x^{-1} \cdot x = 1$ for all $x \in G$.

Cancellation Laws

Theorem: Let $\langle G; 1, ^{-1}, \cdot \rangle$ be a group, and let $x, y, z \in G$.

- *Left cancellation law*: If $x \cdot y = x \cdot z$, then y = z.
- *Right cancellation law*: If $x \cdot z = y \cdot z$, then x = y.

```
Proof: If x \cdot y = x \cdot z, then:
                                                                         (identity property)
                          y = 1 \cdot y
                            = (x^{-1} \cdot x) \cdot y
                                                                         (inverse property)
                            = x^{-1} \cdot (x \cdot y)
                                                                         (associative property)
                            = x^{-1} \cdot (x \cdot z)
                                                                         (by hypothesis)
                            =(x^{-1}\cdot x)\cdot z
                                                                         (associative property)
                                                                         (inverse property)
                            = 1 \cdot z
                                                                         (identity property)
                            = z
Similarly, if x \cdot z = y \cdot z, then
          x = x \cdot 1 = x \cdot (z \cdot z^{-1}) = (x \cdot z) \cdot z^{-1} = (y \cdot z) \cdot z^{-1} = y \cdot (z \cdot z^{-1}) = y \cdot 1 = y.
```

Definition: Abelian Group

An *abelian group* is a group $\langle G; 1, ^{-1}, \cdot \rangle$ that satisfies the following additional requirement:

• Commutative property: $x \cdot y = y \cdot x$ for all $x, y \in G$.

Ring Theory

In this chapter, we introduce a new class of algebraic structures, called rngs and rings, whose study is collectively called *ring theory*. Rngs and rings are more complicated than groups because their definition involves not one, but two binary operations.

Definition: Rng

A *rng* (pronounced as "*rung*") is an algebraic structure $\langle R; 0, -, +, \cdot \rangle$ consisting of:

- a set *R*, called the *underlying set*;
- a distinguished element $0 \in R$, called the *zero element*;
- a unary operation $-: R \to R$, written as $x \mapsto -x$, called *negation*;
- a binary operation $+: R \times R \to R$, written as $(x, y) \mapsto x + y$, called *addition*;
- a binary operation $\cdot : R \times R \to R$, written as $(x, y) \mapsto x \cdot y$, called *multiplication*;

satisfying the following requirements:

- *Additive structure*: $\langle R; 0, -, + \rangle$ is an abelian group.
- Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in R$.
- *Left distributivity*: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ for all $x, y, z \in R$.
- *Right distributivity*: $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$ for all $x, y, z \in R$.

The key ingredient in the definition of a rng is *distributivity*, which establishes a link between two different binary operations. We begin our study of rngs by proving a simple (but important) result to demonstrate the utility of the distributive property.

Multiplying by Zero Yields Zero

Theorem: Let $\langle R; 0, -, +, \cdot \rangle$ be a rng. For any $x \in R$, we have $0 \cdot x = x \cdot 0 = 0$.

Proof: Let $x \in R$ be given. Because 0 is the identity element of the abelian group $\langle R; 0, -, + \rangle$, we have 0 = 0 + 0. Using left distributivity, it follows that $0 \cdot x = (0 + 0) \cdot x = (0 \cdot x) + (0 \cdot x)$, and by canceling one copy of $0 \cdot x$ on both sides, we conclude that $0 \cdot x = 0$. We similarly apply

right distributivity to the expression $x \cdot 0 = x \cdot (0+0) = (x \cdot 0) + (x \cdot 0)$ to conclude that $x \cdot 0 = 0$.

Definition: Zero Rng, Trivial Rng

The **zero rng** or **trivial rng** is the rng $\langle \{0\}; 0, -, +, \cdot \rangle$ whose underlying set is a singleton containing the distinguished element 0, and whose operations are defined by $-0 = 0 + 0 = 0 \cdot 0 = 0$.

Definition: Nonzero Rng, Nontrivial Rng

A rng is *nonzero* or *nontrivial* if its underlying set contains more than one element.

Definition: Subrng, $S \leq R$

Let $\langle R; 0, -, +, \cdot \rangle$ be a rng. A *subrng* of $\langle R; 0, -, +, \cdot \rangle$ is a subgroup $S \leq \langle R; 0, -, + \rangle$ that satisfies the following additional requirement:

• *Closed under products*: If $x, y \in S$, then $x \cdot y$ in S.

We write $S \leq R$ to indicate that S is a subrng of $\langle R; 0, -, +, \cdot \rangle$.

The zero rng is a subrng of every rng.

Definition: Rng Homomorphism

Let $\langle R; 0_R, -_R +_R, \cdot_R \rangle$ and $\langle S; 0_S, -_S +_S, \cdot_S \rangle$ be rngs. A *rng homomorphism* from R to S is a function $f: R \to S$ that satisfies the following requirements:

- *Preserves additive structure*: f is a group homomorphism between the abelian groups $\langle R; 0_R, -_R +_R \rangle$ and $\langle S; 0_S, -_S +_S \rangle$.
- Preserves products: $f(x \cdot_R y) = f(x) \cdot_S f(y)$ for all $x, y \in R$.

Every rng homomorphism is also a group homomorphism, so the theory and terminology of group homomorphisms is immediately applicable to rng homomorphisms. For example, the kernel of a rng homomorphism $f: R \to S$ is still defined to be the set

$$\ker f := \{ x \in R : f(x) = 0_S \}.$$

As with groups, we will often refer to a rng $\langle R; 0, -, +, \cdot \rangle$ by the name of its underlying set R and denote the multiplication operation \cdot by juxtaposition. We will never denote addition, subtraction, or negation by juxtaposition, so the symbols + and - will always be used.

Definition: Ideal, Left Ideal, Right Ideal, One-Sided Ideal, Two-Sided Ideal, $I \leq R$

Let $\langle R; 0, 1, -, +, \cdot \rangle$ be a rng.

- A *left ideal* of R is a subrng $I \leq R$ that satisfies the following additional requirement:
 - Absorbs left multiplication: $rx \in I$ for all $r \in R$ and $x \in I$.
- A *right ideal* of *R* is a subrng $I \le R$ that satisfies the following additional requirement:

- Absorbs right multiplication: $xr \in I$ for all $x \in I$ and $r \in R$.
- A *one-sided ideal* of *R* is a subrng $I \le R$ that is a left ideal or a right ideal (possibly both).
- A *two-sided ideal* of R, or simply an *ideal* of R, is a subrng $I \le R$ that is both a left ideal and a right ideal.

We write $I \leq R$ to denote that I is a (two-sided) ideal of R.

Definition: Rng of Formal Power Series, R[x]

Let $\langle R; 0, -, +, \cdot \rangle$ be a rng. The *rng of formal power series* over $\langle R; 0, -, +, \cdot \rangle$, denoted by R[x], **TO DO: FINISH THIS DEFINITION**

Definition: Rng of Polynomials, R[x]

Let $\langle R; 0, -, +, \cdot \rangle$ be a rng. The *rng of polynomials* over $\langle R; 0, -, +, \cdot \rangle$, denoted by R[x], is the subrng of R[x] TO DO: FINISH THIS DEFINITION

Definition: Commutative Rng

A *commutative rng* is a rng $\langle R; 0, -, +, \cdot \rangle$ that satisfies the following additional requirement:

• Commutativity: $x \cdot y = y \cdot x$ for all $x, y \in R$.

The word "commutative" in the term "commutative rng" emphasizes that the *multiplication* operation is commutative. By definition, the addition operation is always commutative in every rng.

Definition: Ring

A *ring* is an algebraic structure $\langle R; 0, 1, -, +, \cdot \rangle$ consisting of:

- a set *R*, called the *underlying set*;
- a distinguished element $0 \in R$, called the *zero element*;
- a distinguished element $1 \in R$, called the *identity element*;
- a unary operation $-: R \to R$, written as $x \mapsto -x$, called *negation*;
- a binary operation $+: R \times R \to R$, written as $(x, y) \mapsto x + y$, called *addition*;
- a binary operation $\cdot : R \times R \to R$, written as $(x, y) \mapsto x \cdot y$, called *multiplication*;

satisfying the following requirements:

- *Rng structure*: $\langle R; 0, -, +, \cdot \rangle$ is a rng.
- *Identity*: $1 \cdot x = x \cdot 1 = x$ for all $x \in R$.

Definition: Subring

Let $\langle R; 0, 1, -, +, \cdot \rangle$ be a ring. A *subring* of $\langle R; 0, 1, -, +, \cdot \rangle$ is a subring $S \leq \langle R; 0, -, +, \cdot \rangle$ that satisfies the following additional requirement:

• Contains the identity: $1 \in S$.

In these notes, we will only use the notation $S \leq R$ for *subrngs*, not *subrings*. This ensures consistency with the notation $I \leq R$ for ideals (i.e., $I \leq R \implies I \leq R$), since an ideal is always a subrng, but not necessarily a subring.

Definition: Field

A *field* is a commutative ring $\langle K; 0, 1, -, +, \cdot \rangle$ that satisfies the following additional requirements:

- Nontriviality: $0 \neq 1$.
- *Invertibility*: Every element of $K \setminus \{0\}$ has a two-sided inverse, i.e., $K^{\times} = K \setminus \{0\}$.