DEVELOPMENT OF AUSTRALIAN IMPORTS FROM JAPAN DURING THE SECOND HALF OF THE TWENTIETH CENTURY

Meixin Liu

Introduction

Graph of the time series

- overall increasing trend
- large fluctuations after 1980

Monthly Australian imports from Japan

Stationary and Transformation

First difference of the raw data

- Variance not constant
- Not stationary

Differenced Monthly Australian imports from Japan

Stationary and Transformation

After Log-transformation

- an overall linear increasing trend
- Not stationary.

Log(Monthly Imports)

Stationary and Transformation

diff(Log(Monthly Imports))

- Constant variance
 Var(firsthalf) = 0.03240124
 Var(secondhalf) = 0.03170778
 Sqrt(secondhalf/firsthalf) = 0.9892411
- Stationary needed to be verify

Seasonality

- Peaks at seasonal lags
- Seasonal lags decreasing slowly

ACF of diff(Log(Monthly Imports))

Stationary

- ACF only significant at lag 0, 1.
- ACF decreasing exponentially fast

ACF of diff(diff(Log(Monthly Imports)),12)

Seasonal lag

- ACF cuts off after lag 1s
- PACF cuts off after lag 3s

Within seasonal lag

- ACF cuts off after lag 1
- PACF cuts off after lag 2

Table 3.1. Behavior of the ACF and PACF for ARMA Models

	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off	Cuts off after lag q	Tails off
PACF	Cuts off after lag p	Tails off	Tails off

- AR(2)
- MA(1)
- ARMA(2,1)

Table 3.3. Behavior of the ACF and PACF for Pure SARMA Models

ACF*	$AR(P)_s$ Tails off at lags ks , $k = 1, 2, \dots$,	$MA(Q)_s$ Cuts off after lag Qs	$ARMA(P,Q)_s$ Tails off at lags ks	 SAR(3) SAR(1) SARMA(3)
PACF*	Cuts off after $\log Ps$	Tails off at lags ks $k = 1, 2, \dots,$	Tails off at lags ks	

^{*}The values at nonseasonal lags $h \neq ks$, for k = 1, 2, ..., are zero.

Model	Sig. of coefficient	AIC	AICc
ARIMA $(0,1,1) \times (0,1,1)_{12}$	all highest order coefficient	-3.087501	-3.081409
	are significant		
ARIMA $(0,1,1) \times (3,1,0)_{12}$	all highest order coef. are	-2.943235	-2.936824
	sig.		
ARIMA $(0,1,1) \times (3,1,1)_{12}$	SAR(3) is not significant	-3.110061	-3.103437
ARIMA $(2,1,0) \times (0,1,1)_{12}$	all highest order coef. are	-3.091594	-3.085361
	sig.		
ARIMA $(2,1,0) \times (3,1,0)_{12}$	all highest order coef. are	-2.949414	-2.94279
	sig.		
ARIMA $(2,1,0) \times (3,1,1)_{12}$	SAR(3) is not significant	-3.111903	-3.105028
ARIMA $(2,1,1) \times (0,1,1)_{12}$	all highest order coef. are	-3.099141	-3.09273
	sig.		
ARIMA $(2,1,1) \times (3,1,0)_{12}$	all highest order coef. are	-2.954684	-2.947809
	sig.		
ARIMA $(2,1,1) \times (3,1,1)_{12}$	SAR(3) is not significant	-3.119653	-3.112491

- Compare AIC and AICc
- Over fitting Problem

p values for Ljung-Box statistic

Call:

Coefficients:

```
ar1 ar2 ma1 sma1
-0.3829 -0.2447 -0.2922 -0.8892
s.e. 0.1371 0.0874 0.1397 0.0339
```

sigma 2 estimated as 0.0162: log likelihood = 200.41, aic = -390.81

\$degrees_of_freedom
[1] 336

\$ttable

```
Estimate SE t.value p.value ar1 -0.3829 0.1371 -2.7924 0.0055 ar2 -0.2447 0.0874 -2.7996 0.0054 ma1 -0.2922 0.1397 -2.0913 0.0372 sma1 -0.8892 0.0339 -26.1968 0.0000
```

Prediction on Future

Monthly Australian imports from Japan and its prediction for the next 10 observations

Conclusion

- Stationarity and transformation
- Seasonality
- Fitted model
- Model choice and test diagnostics

Reference

 Anderson, S. (Photographer). (2014, July 8). Economic and defence ties are set to be strengthened by Australia's "new special relationship" with Japan as both countries' leaders signed a free trade agreement [digital image]. Retrieved from

http://www.sbs.com.au/news/article/2014/07/08/economic-and-defence-ties-be-boosted-special-relationship-japan

 [Digital image]. Retrieved from <u>http://dfat.gov.au/trade/agreements/jaepa/news/Pages/guide-to-using-jaepa-to-export-and-import-goods.aspx</u>