SEL0620 - Controle Digital

Projeto de Controladores - Parte 2

(uma entrega por grupo, peso 1)

Controle Proporcional

Para projeto do controlador proporcional, a mesma planta utilizada na experiência anterior será utilizada:

$$G_p(s) = K \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2}$$

onde para este sistema:

$$K = 1$$

$$w_n = \sqrt{\frac{1}{(R_1 C_1 R_2 C_2)}}$$

$$\zeta = \frac{(R_1 C_1 + R_2 C_2)}{2\sqrt{R_1 C_1 R_2 C_2}}$$

Nesta etapa, um controlador proporcional $C(s) = K_p$ será projetado para controlar o sistema em malha fechada. A Figura 1 mostra o diagrama contínuo de controle com realimentação unitária em que a planta está sujeita a um distúrbio na entrada.

Desconsiderando o distúrbio na entrada da planta, a função contínua de malha fechada do sistema é dada por:

$$G_{MF}(s) = \frac{Y(s)}{R(s)} = \frac{C(s)G_p(s)}{1 + C(s)G_p(s)}$$

O erro do sistema em relação ao sinal de referência da malha fechada é dado por:

$$E(s) = R(s) - Y(s) = R(s) \left(1 - \frac{C(s)G_p(s)}{1 + C(s)G_p(s)} \right) = \frac{R(s)}{1 + C(s)G_p(s)}$$

Portanto, para um sinal de referência do tipo degrau de amplitude u:

$$R(s) = \frac{u}{s}$$

e o erro pode ser dado por:

$$E(s) = \frac{u}{s(1 + C(s)G_p(s))}$$

O erro em regime permanente em valor absoluto, desconsiderando distúrbio na entrada da planta, considerando uma entrada degrau, planta do sistema de segunda ordem, e controlador proporcional, pode ser calculado através do teorema do valor final:

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{u}{(1 + K_p)}$$

Figura 1: Malha com realimentação unitária

Observações importantes:

Consulte a Tabela 1 para encontrar os valores a serem usados que correspondem ao seu grupo. O distúrbio deve ser modelado como um degrau de amplitude d que é aplicado a partir do instante t_1 . Execute as simulações durante 20 segundos.

Coloque um elemento de saturação na entrada da planta para impedir que sinais superiores a 10V e inferiores a -10V sejam aplicados na planta. É importante projetar um controlador de forma que o sinal nunca precise ser saturado, ou seja, a saída do controlador somada ao pior caso de distúrbio nunca ultrapasse os limites de entrada da planta.

Para os itens em que se pede as **curvas de resposta do sistema**, mostre três figuras: (a) sinal da saída, y, do sistema contínuo e discreto no mesmo gráfico sobreposto com a referência degrau; (b) sinal de erro, e, do sistema contínuo e discreto sobrepostos; (c) entrada da planta após o saturador, do sistema contínuo e discreto sobrepostos.

Responda as seguintes questões:

- 1. Implemente no **xcos** um sistema de realimentação unitária contínuo (FT) para um controlador proporcional $C(s) = K_p = 1$. Qual o tempo de subida da resposta do sistema de malha fechada antes do distúrbio? Qual o tempo de acomodação (5%) do sistema de malha fechada antes do distúrbio? Qual o erro em regime absoluto do sistema antes de ser aplicado o distúrbio? Qual o erro em regime absoluto após o distúrbio ser aplicado? Defina um período de amostragem T_0 adequado, e implemente também o equivalente discreto com zero holder (FTd) do sistema de malha fechada (considere para a malha discreta que o controle proporcional $C(z) = K_p$). Mostre as **curvas de resposta do sistema**.
- 2. Considere agora os seguintes casos: $K_p = 5$ e $K_p = 8$. Qual o erro em regime absoluto do sistema para cada caso antes de ser aplicado o distúrbio? Qual o erro em regime absoluto para cada caso após o distúrbio ser aplicado? Mostre as **curvas de resposta do sistema** para cada caso. Comente se houve saturação na entrada da planta. Comente sobre o efeito do aumento do ganho proporcional no valor do erro em regime, no tempo de subida e de acomodação (5%) antes do distúrbio. Comente se foi possível utilizar o período de amostragem T_0 definido no item anterior para estes casos. Justifique qualquer mudança no valor de T_0 .
- 3. Encontre o valor de K_p necessário para que o erro de regime permanente (antes

do distúrbio) seja igual a $e_{ss\%}$ (ver Tabela 1) dado em porcentagem do valor de u. Por exemplo, se $e_{ss\%} = 10\%$ e u = 1V, então o valor absoluto do erro deve ser 0.1. Verifique se a taxa de amostragem estabelecida no primeiro item é adequada para o processo de malha fechada com este valor de ganho. Explique. Mostre as **curvas de resposta do sistema**. Qual o tempo de subida da resposta do sistema de malha fechada antes do distúrbio? Qual o tempo de acomodação do sistema de malha fechada (critério de 5%) antes do distúrbio?

Conceitos a respeito de desempenho da resposta:

A Figura 2 mostra algumas medidas da resposta degrau de um sistema que geralmente são usadas como requisito de projeto de controladores. Considera-se que a entrada de referência degrau é aplicada no instante de tempo t=0. Então, para um sistema que possui resposta em regime permanente $y_{ss}=1$:

- 1. **Tempo de subida** (rise time), t_r é o tempo que a saída do sistema leva para ir de 0.1 a 0.9;
- 2. **Tempo de acomodação** (settling time), t_s é o tempo que o sistema leva até que a saída fique completamente contida entre dentro da faixa $\pm 1\%$, $\pm 2\%$ ou $\pm 5\%$ (a figura mostra o exemplo do t_s para o critério de 1%);
- 3. Sobressinal (overshoot) M_p é o valor máximo que o sistema supera seu valor final dividido pelo valor final (geralmente expresso em porcentagem).
- 4. **Tempo de pico** (peak time) t_p é o tempo em que o sistema atinge o seu valor máximo.

Figura 2: Medidas de desempenho da resposta transitória a uma entrada degrau (Fonte: [1])

Tabela 1: Parâmetros do sistema.								
Grupo	$R_1 (k\Omega)$	$C_1 (\mu F)$	$R_2(k\Omega)$	$C_2 (\mu F)$	u(V)	d(V)	t_1 (s)	$e_{ss\%}$ (%)
1	748	2.20	564	2.20	1.01	-0.12	12	15
2	740	2.20	496	2.20	1.02	0.26	12	14
3	725	2.20	445	2.20	1.03	-0.13	12	13
4	709	2.20	403	2.20	1.04	0.27	12	12
5	692	2.20	369	2.20	1.05	-0.16	12	12.5
6	675	2.20	339	2.20	1.06	0.24	12	13.5
7	659	2.20	313	2.20	1.07	-0.15	12	14.5
8	644	2.20	291	2.20	1.08	0.26	12	15.5
9	630	2.20	271	2.20	1.09	-0.17	12	15
10	616	2.20	254	2.20	1.1	0.28	12	14
11	455	2.20	343	2.20	1.11	-0.1	12	13
12	505	2.20	338	2.20	1.12	0.24	12	12
13	553	2.20	339	2.20	1.13	-0.14	12	12.5
14	603	2.20	343	2.20	1.14	0.27	12	13.5
15	656	2.20	349	2.20	1.15	-0.11	12	14.5
16	713	2.20	358	2.20	1.16	0.25	12	15.5
17	776	2.20	369	2.20	1.17	-0.13	12	15
18	845	2.20	382	2.20	1.18	0.24	12	14
19	923	2.20	398	2.20	1.19	-0.17	12	13
20	1012	2.20	417	2.20	1.2	0.22	12	12
21	582	2.20	438	2.20	1.21	-0.13	12	12.5
22	529	2.20	355	2.20	1.22	0.21	12	13.5
23	505	2.20	310	2.20	1.23	-0.15	12	14.5
24	861	2.20	490	2.20	1.24	0.25	12	15.5
25	778	2.20	415	2.20	1.25	-0.18	12	15
26	855	2.20	429	2.20	1.26	0.24	12	14
27	942	2.20	448	2.20	1.27	-0.12	12	13

Referências

[1] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Sistemas de Controle para Engenharia. Grupo A / Bookman, 6 edition, 2013.