MA423 Matrix Computations

Lectures 4&5: Vectors and Matrices

Rafikul Alam
Department of Mathematics
Indian Institute of Technology Guwahati
Guwahati - 781039, INDIA

Outline

Topics:

- Vectors in \mathbb{R}^n and \mathbb{C}^n
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Block matrices
- Outer product of vectors

Vectors in \mathbb{R}^n

We define \mathbb{R}^n to be the set of all ordered *n*-tuples of real numbers. Thus an *n*-tuple in \mathbb{R}^n (also called an *n*-vector) is of the form

row vector:
$$\vec{\mathbf{v}} = [v_1, \dots, v_n]$$
 or column vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

Vectors in \mathbb{R}^n

We define \mathbb{R}^n to be the set of all ordered *n*-tuples of real numbers. Thus an *n*-tuple in \mathbb{R}^n (also called an *n*-vector) is of the form

row vector:
$$\vec{\mathbf{v}} = [v_1, \dots, v_n]$$
 or column vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

We always write a vector in \mathbb{R}^n as a column vector. Thus

$$\mathbb{R}^n := \left\{ \left[egin{array}{c} v_1 \ dots \ v_n \end{array}
ight] : v_1, \ldots, v_n \in \mathbb{R}
ight\}.$$

Vectors in \mathbb{R}^n

We define \mathbb{R}^n to be the set of all ordered *n*-tuples of real numbers. Thus an *n*-tuple in \mathbb{R}^n (also called an *n*-vector) is of the form

row vector:
$$\vec{\mathbf{v}} = [v_1, \dots, v_n]$$
 or column vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

We always write a vector in \mathbb{R}^n as a column vector. Thus

$$\mathbb{R}^n := \left\{ \left| \begin{array}{c} \mathsf{v}_1 \\ \vdots \\ \mathsf{v}_n \end{array} \right| : \mathsf{v}_1, \ldots, \mathsf{v}_n \in \mathbb{R} \right\}.$$

Transpose:
$$[v_1, \dots, v_n]^{\top} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 and $\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}^{\top} = [v_1, \dots, v_n]$.

Vectors in \mathbb{C}^n

We define \mathbb{C}^n to be the set of all ordered *n*-tuples of complex numbers. Thus an *n*-tuple in \mathbb{C}^n (also called an *n*-vector) is of the form

row vector:
$$\vec{\mathbf{v}} = [v_1, \dots, v_n]$$
 or column vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

Vectors in \mathbb{C}^n

We define \mathbb{C}^n to be the set of all ordered *n*-tuples of complex numbers. Thus an *n*-tuple in \mathbb{C}^n (also called an *n*-vector) is of the form

row vector:
$$\vec{\mathbf{v}} = [v_1, \dots, v_n]$$
 or column vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

We always write a vector in \mathbb{C}^n as column vector. Thus

$$\mathbb{C}^n := \left\{ \left[egin{array}{c} v_1 \ dots \ v_n \end{array}
ight] : v_1, \ldots, v_n \in \mathbb{C}
ight\}$$

Vectors in \mathbb{C}^n

We define \mathbb{C}^n to be the set of all ordered *n*-tuples of complex numbers. Thus an *n*-tuple in \mathbb{C}^n (also called an *n*-vector) is of the form

row vector:
$$\vec{\mathbf{v}} = [v_1, \dots, v_n]$$
 or column vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

We always write a vector in \mathbb{C}^n as column vector. Thus

$$\mathbb{C}^n := \left\{ \left[egin{array}{c} v_1 \ dots \ v_n \end{array}
ight] : v_1, \ldots, v_n \in \mathbb{C}
ight\}$$

Conjugate transpose: Here \bar{z} is the complex conjugate of $z \in \mathbb{C}$.

$$[v_1,\ldots,v_n]^* = \begin{bmatrix} \overline{v}_1 \\ \vdots \\ \overline{v}_n \end{bmatrix}$$
 and $\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}^* = [\overline{v}_1,\ldots,\overline{v}_n].$

Define addition and scalar multiplication on \mathbb{F}^n ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) as follows:

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix} \text{ and } \alpha \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \vdots \\ \alpha u_n \end{bmatrix} \text{ for } \alpha \in \mathbb{F}.$$

Define addition and scalar multiplication on \mathbb{F}^n ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) as follows:

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix} \text{ and } \alpha \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \vdots \\ \alpha u_n \end{bmatrix} \text{ for } \alpha \in \mathbb{F}.$$

This produces new vectors from old vectors.

Define addition and scalar multiplication on \mathbb{F}^n ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) as follows:

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix} \text{ and } \alpha \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \vdots \\ \alpha u_n \end{bmatrix} \text{ for } \alpha \in \mathbb{F}.$$

This produces new vectors from old vectors. For $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{F}^n and scalars α, β in \mathbb{F} , the following hold:

- **1** Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- **1** Identity: $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- **1** Inverse: u + (-u) = 0

Define addition and scalar multiplication on \mathbb{F}^n ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) as follows:

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix} \text{ and } \alpha \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \vdots \\ \alpha u_n \end{bmatrix} \text{ for } \alpha \in \mathbb{F}.$$

This produces new vectors from old vectors. For $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{F}^n and scalars α, β in \mathbb{F} , the following hold:

- **1** Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- **1** Identity: $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- **1** Inverse: u + (-u) = 0
- **5** Distributivity : $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$
- **1** Distributivity: $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$
- **O** Associativity: $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$
- **1** Identity: $1\mathbf{u} = \mathbf{u}$.

Standard vectors: The vectors $\mathbf{e}_1 := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ \mathbf{e}_2 := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ldots, \mathbf{e}_n := \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^\top$ are called standard vectors or canonical vectors in \mathbb{F}^n .

Standard vectors: The vectors $\mathbf{e}_1 := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ \mathbf{e}_2 := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ldots, \mathbf{e}_n := \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^\top$ are called standard vectors or canonical vectors in \mathbb{F}^n .

Features vectors. A feature vector collects together n different quantities that pertain to a single thing or object. The entries of a feature vector are called the features or attributes.

Standard vectors: The vectors $\mathbf{e}_1 := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ \mathbf{e}_2 := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ldots, \mathbf{e}_n := \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^\top$ are called standard vectors or canonical vectors in \mathbb{F}^n .

Features vectors. A feature vector collects together n different quantities that pertain to a single thing or object. The entries of a feature vector are called the features or attributes.

For instance, a 5-vector $\mathbf{x} := [x_1, x_2, x_3, x_4, x_5]^{\top}$ could give the age, height, weight, blood pressure, and temperature of a patient admitted to a hospital.

Standard vectors: The vectors $\mathbf{e}_1 := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ \mathbf{e}_2 := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ldots, \mathbf{e}_n := \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^\top$ are called standard vectors or canonical vectors in \mathbb{F}^n .

Features vectors. A feature vector collects together *n* different quantities that pertain to a single thing or object. The entries of a feature vector are called the features or attributes.

For instance, a 5-vector $\mathbf{x} := [x_1, x_2, x_3, x_4, x_5]^{\top}$ could give the age, height, weight, blood pressure, and temperature of a patient admitted to a hospital.

Word count vector. An n-vector \mathbf{w} can represent the number of times each word in a dictionary of n words appears in a document.

Standard vectors: The vectors $\mathbf{e}_1 := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ \mathbf{e}_2 := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^\top, \ldots, \mathbf{e}_n := \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^\top$ are called standard vectors or canonical vectors in \mathbb{F}^n .

Features vectors. A feature vector collects together n different quantities that pertain to a single thing or object. The entries of a feature vector are called the features or attributes.

For instance, a 5-vector $\mathbf{x} := [x_1, x_2, x_3, x_4, x_5]^{\top}$ could give the age, height, weight, blood pressure, and temperature of a patient admitted to a hospital.

Word count vector. An n-vector \mathbf{w} can represent the number of times each word in a dictionary of n words appears in a document.

For instance, the word count vector $[25, 2, 0]^{\top}$ means that the first dictionary word appears 25 times, the second one twice, and the third one not at all.

Inner product

Angle, Length, and Distance can all be described by using the notion of inner product (dot product) of two *n*-vectors.

Definition: If $\mathbf{u} := [u_1, \dots, u_n]^{\top}$ and $\mathbf{v} := [v_1, \dots, v_n]^{\top}$ are *n*-vectors then the inner product $\langle \mathbf{u}, \mathbf{v} \rangle$ is defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle := u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$
 when $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

Inner product

Angle, Length, and Distance can all be described by using the notion of inner product (dot product) of two n-vectors.

Definition: If $\mathbf{u} := [u_1, \dots, u_n]^{\top}$ and $\mathbf{v} := [v_1, \dots, v_n]^{\top}$ are *n*-vectors then the inner product $\langle \mathbf{u}, \mathbf{v} \rangle$ is defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle := u_1 v_1 + u_2 v_2 + \dots + u_n v_n \text{ when } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$

 $\langle \mathbf{u}, \mathbf{v} \rangle := u_1 \overline{v}_1 + u_2 \overline{v}_2 + \dots + u_n \overline{v}_n \text{ when } \mathbf{u}, \mathbf{v} \in \mathbb{C}^n.$

The inner product $\langle \mathbf{u}, \mathbf{v} \rangle$ is also called dot product and is written as $\mathbf{u} \bullet \mathbf{v}$.

Inner product

Angle, Length, and Distance can all be described by using the notion of inner product (dot product) of two n-vectors.

Definition: If $\mathbf{u} := [u_1, \dots, u_n]^{\top}$ and $\mathbf{v} := [v_1, \dots, v_n]^{\top}$ are *n*-vectors then the inner product $\langle \mathbf{u}, \mathbf{v} \rangle$ is defined by

$$\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{u}, \mathbf{v} \rangle} := u_1 v_1 + u_2 v_2 + \dots + u_n v_n \quad \text{when } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$

$$\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{u}, \mathbf{v} \rangle} := u_1 \bar{v}_1 + u_2 \bar{v}_2 + \dots + u_n \bar{v}_n \quad \text{when } \mathbf{u}, \mathbf{v} \in \mathbb{C}^n.$$

The inner product $\langle \mathbf{u}, \mathbf{v} \rangle$ is also called dot product and is written as $\mathbf{u} \bullet \mathbf{v}$.

Example: If
$$\mathbf{u}:=[1,2,-3]^{\top}$$
 and $\mathbf{v}:=[-3,5,2]^{\top}$ then
$$\langle \mathbf{u},\mathbf{v}\rangle=1\cdot(-3)+2\cdot5+(-3)\cdot2=1.$$

Matrices

Definition: A matrix is an array of numbers. An $m \times n$ matrix A has m rows and n columns and is of the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Matrices

Definition: A matrix is an array of numbers. An $m \times n$ matrix A has m rows and n columns and is of the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

The
$$j$$
-th column of A : $\mathbf{a}_j := egin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$ for $j=1:n$.

The *i*-th row of A: $\hat{\mathbf{a}}_i := \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$ for i = 1 : m.

Matrices

Definition: A matrix is an array of numbers. An $m \times n$ matrix A has m rows and n columns and is of the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

The
$$j$$
-th column of A : $\mathbf{a}_j := \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mi} \end{bmatrix}$ for $j=1:n$.

The *i*-th row of A: $\hat{\mathbf{a}}_i := \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$ for i = 1 : m. Then

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} -\hat{\mathbf{a}}_1 - \\ \vdots \\ -\hat{\mathbf{a}}_m - \end{bmatrix}.$$

An $m \times n$ matrix said to be a square matrix if m = n.

An $m \times n$ matrix said to be a square matrix if m = n. An $m \times n$ matrix $D := [d_{ij}]$ is said to be a diagonal matrix if $d_{ij} = 0$ for all $i \neq j$.

An $m \times n$ matrix said to be a square matrix if m = n. An $m \times n$ matrix $D := [d_{ij}]$ is said to be a diagonal matrix if $d_{ij} = 0$ for all $i \neq j$. An $n \times n$ diagonal matrix D with diagonal entries d_1, \ldots, d_n is given by

$$D = \operatorname{diag}(d_1, \ldots, d_n) = \begin{bmatrix} d_1 & & & \\ & \ddots & & \\ & & d_n \end{bmatrix}.$$

Identity matrix: An $n \times n$ diagonal matrix with all diagonal entries equal to 1 is called the identity matrix and is denoted by I_n or I.

An $m \times n$ matrix said to be a square matrix if m = n. An $m \times n$ matrix $D := [d_{ij}]$ is said to be a diagonal matrix if $d_{ij} = 0$ for all $i \neq j$. An $n \times n$ diagonal matrix D with diagonal entries d_1, \ldots, d_n is given by

$$D = \operatorname{diag}(d_1, \ldots, d_n) = egin{bmatrix} d_1 & & & \ & \ddots & & \ & & d_n \end{bmatrix}.$$

Identity matrix: An $n \times n$ diagonal matrix with all diagonal entries equal to 1 is called the identity matrix and is denoted by I_n or I.

Zero matrix: An $m \times n$ matrix with all entries 0 is called the zero matrix and is denoted by $\mathbf{O}_{m \times n}$ or simply by \mathbf{O} .

An $m \times n$ matrix said to be a square matrix if m = n. An $m \times n$ matrix $D := [d_{ij}]$ is said to be a diagonal matrix if $d_{ij} = 0$ for all $i \neq j$. An $n \times n$ diagonal matrix D with diagonal entries d_1, \ldots, d_n is given by

$$D = \operatorname{diag}(d_1, \ldots, d_n) = \begin{bmatrix} d_1 & & & \\ & \ddots & & \\ & & d_n \end{bmatrix}.$$

Identity matrix: An $n \times n$ diagonal matrix with all diagonal entries equal to 1 is called the identity matrix and is denoted by I_n or I.

Zero matrix: An $m \times n$ matrix with all entries 0 is called the zero matrix and is denoted by $\mathbf{O}_{m \times n}$ or simply by \mathbf{O} .

Let $\mathbb{F}^{m\times n}$ denote the set of all $m\times n$ matrices with entries in \mathbb{F} where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$.

Let $\mathbb{F}^{m \times n}$ denote the set of all $m \times n$ matrices with entries in \mathbb{F} where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Let $A := [a_{ij}]$ and $B := [b_{ij}]$ be matrices $\in \mathbb{F}^{m \times n}$ and $\alpha \in \mathbb{F}$.

Let $\mathbb{F}^{m\times n}$ denote the set of all $m\times n$ matrices with entries in \mathbb{F} where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Let $A:=[a_{ij}]$ and $B:=[b_{ij}]$ be matrices $\in \mathbb{F}^{m\times n}$ and $\alpha\in \mathbb{F}$.

4 Matrix addition: $A + B := [a_{ii} + b_{ii}] \in \mathbb{F}^{m \times n}$.

Let $\mathbb{F}^{m\times n}$ denote the set of all $m\times n$ matrices with entries in \mathbb{F} where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Let $A:=[a_{ij}]$ and $B:=[b_{ij}]$ be matrices $\in \mathbb{F}^{m\times n}$ and $\alpha\in \mathbb{F}$.

- **1** Matrix addition: $A + B := [a_{ij} + b_{ij}] \in \mathbb{F}^{m \times n}$.
- **4** Multiplication by a scalar: $\alpha A := [\alpha a_{ij}] \in \mathbb{F}^{m \times n}$.

Let $\mathbb{F}^{m \times n}$ denote the set of all $m \times n$ matrices with entries in \mathbb{F} where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Let $A := [a_{ij}]$ and $B := [b_{ij}]$ be matrices $\in \mathbb{F}^{m \times n}$ and $\alpha \in \mathbb{F}$.

- **2** Multiplication by a scalar: $\alpha A := [\alpha a_{ij}] \in \mathbb{F}^{m \times n}$.

Let
$$A := \begin{bmatrix} 1 & 4 & 0 \\ -2 & 6 & 5 \end{bmatrix}$$
 and $B := \begin{bmatrix} -3 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$. Then

Let $\mathbb{F}^{m\times n}$ denote the set of all $m\times n$ matrices with entries in \mathbb{F} where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Let $A:=[a_{ij}]$ and $B:=[b_{ij}]$ be matrices $\in \mathbb{F}^{m\times n}$ and $\alpha\in \mathbb{F}$.

- **2** Multiplication by a scalar: $\alpha A := [\alpha a_{ij}] \in \mathbb{F}^{m \times n}$.

Let
$$A := \begin{bmatrix} 1 & 4 & 0 \\ -2 & 6 & 5 \end{bmatrix}$$
 and $B := \begin{bmatrix} -3 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$. Then

$$A + B = \begin{bmatrix} 1 & 4 & 0 \\ -2 & 6 & 5 \end{bmatrix} + \begin{bmatrix} -3 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 5 & -1 \\ -2 & 6 & 7 \end{bmatrix}$$
$$2A = \begin{bmatrix} 2 & 8 & 0 \\ -4 & 12 & 10 \end{bmatrix} \text{ and } (-1)A = \begin{bmatrix} -1 & -4 & 0 \\ 2 & -6 & -5 \end{bmatrix}.$$

Properties of matrix addition and scalar multiplication

Theorem: Let $A, B, C \in \mathbb{F}^{m \times n}$ and $\alpha, \beta \in \mathbb{F}$. Then

Properties of matrix addition and scalar multiplication

Theorem: Let $A, B, C \in \mathbb{F}^{m \times n}$ and $\alpha, \beta \in \mathbb{F}$. Then

- **1** Commutative Law: A + B = B + A.
- **4** Associative Law: (A+B)+C=A+(B+C).

Properties of matrix addition and scalar multiplication

Theorem: Let $A, B, C \in \mathbb{F}^{m \times n}$ and $\alpha, \beta \in \mathbb{F}$. Then

- **1** Commutative Law: A + B = B + A.
- Associative Law: (A + B) + C = A + (B + C).
- **3** $A + \mathbf{O} = A$, where $\mathbf{O} \in \mathbb{F}^{m \times n}$ is the zero matrix
- **4** $A + (-A) = \mathbf{0}$, where -A := (-1)A.

Properties of matrix addition and scalar multiplication

Theorem: Let $A, B, C \in \mathbb{F}^{m \times n}$ and $\alpha, \beta \in \mathbb{F}$. Then

- **1** Commutative Law: A + B = B + A.
- Associative Law: (A + B) + C = A + (B + C).
- **3** $A + \mathbf{O} = A$, where $\mathbf{O} \in \mathbb{F}^{m \times n}$ is the zero matrix
- **4** $A + (-A) = \mathbf{0}$, where -A := (-1)A.

Properties of matrix addition and scalar multiplication

Theorem: Let $A, B, C \in \mathbb{F}^{m \times n}$ and $\alpha, \beta \in \mathbb{F}$. Then

- **1** Commutative Law: A + B = B + A.
- Associative Law: (A + B) + C = A + (B + C).
- **3** $A + \mathbf{O} = A$, where $\mathbf{O} \in \mathbb{F}^{m \times n}$ is the zero matrix
- **4** $A + (-A) = \mathbf{0}$, where -A := (-1)A.

- **3** 1A = A.

Transpose: The transpose of an $m \times n$ matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^{\top} and is given by $A^{\top} = [a_{ii}]_{n \times m}$.

Transpose: The transpose of an $m \times n$ matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^{\top} and is given by $A^{\top} = [a_{ii}]_{n \times m}$.

Example:
$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{bmatrix} \text{ and } \begin{bmatrix} 1+i & 2 \\ 3 & 4+5i \end{bmatrix}^{\top} = \begin{bmatrix} 1+i & 3 \\ 2 & 4+5i \end{bmatrix}$$

Transpose: The transpose of an $m \times n$ matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^{\top} and is given by $A^{\top} = [a_{ji}]_{n \times m}$.

Example:
$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{bmatrix} \text{ and } \begin{bmatrix} 1+i & 2 \\ 3 & 4+5i \end{bmatrix}^{\top} = \begin{bmatrix} 1+i & 3 \\ 2 & 4+5i \end{bmatrix}$$

Conjugate transpose: The conjugate transpose of an $m \times n$ complex matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^* and is given by

$$A^* = [\bar{a}_{ji}]_{n \times m} = ([\bar{a}_{ij}]_{m \times n})^\top = (\bar{A})^\top,$$

where \bar{a}_{ij} is the complex conjugate of a_{ij} .

Transpose: The transpose of an $m \times n$ matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^{\top} and is given by $A^{\top} = [a_{ij}]_{n \times m}$.

Example:
$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{bmatrix} \text{ and } \begin{bmatrix} 1+i & 2 \\ 3 & 4+5i \end{bmatrix}^{\top} = \begin{bmatrix} 1+i & 3 \\ 2 & 4+5i \end{bmatrix}$$

Conjugate transpose: The conjugate transpose of an $m \times n$ complex matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^* and is given by

$$A^* = [\bar{a}_{ji}]_{n \times m} = ([\bar{a}_{ij}]_{m \times n})^\top = (\bar{A})^\top,$$

where \bar{a}_{ij} is the complex conjugate of a_{ij} .

Example:
$$\begin{bmatrix} i & 4 & 1+i \\ 3 & 4+5i & 0 \end{bmatrix}^* = \begin{bmatrix} -i & 3 \\ 4 & 4-5i \\ 1-i & 0 \end{bmatrix}$$

Exercise: Let $A, B \in \mathbb{F}^{m \times n}$ and $\alpha \in \mathbb{F}$. Then show that

$$(a) (A+B)^{\top} = A^{\top} + B^{\top} (b) (\alpha A)^{\top} = \alpha A^{\top} \text{ and } (\alpha A)^* = \bar{\alpha} A^* (c) (A^{\top})^{\top} = A.$$

Exercise: Let $A, B \in \mathbb{F}^{m \times n}$ and $\alpha \in \mathbb{F}$. Then show that

$$(a) (A+B)^{\top} = A^{\top} + B^{\top} \ \ (b) (\alpha A)^{\top} = \alpha A^{\top} \ \text{and} \ (\alpha A)^* = \bar{\alpha} A^* \ \ (c) (A^{\top})^{\top} = A.$$

Definition: Let A be an $n \times n$ matrix. Then A is said to be

- **2** skew-symmetric if $A^{\top} = -A$

Exercise: Let $A, B \in \mathbb{F}^{m \times n}$ and $\alpha \in \mathbb{F}$. Then show that

$$(a) (A+B)^{\top} = A^{\top} + B^{\top} \ \ (b) (\alpha A)^{\top} = \alpha A^{\top} \ \text{and} \ (\alpha A)^* = \bar{\alpha} A^* \ \ (c) (A^{\top})^{\top} = A.$$

Definition: Let A be an $n \times n$ matrix. Then A is said to be

- symmetric if $A^{\top} = A$
- **2** skew-symmetric if $A^{\top} = -A$
- **3** Hermitian if $A^* = A$
- skew-Hermitian if $A^* = -A$.

Exercise: Let $A, B \in \mathbb{F}^{m \times n}$ and $\alpha \in \mathbb{F}$. Then show that

$$(a) (A+B)^{\top} = A^{\top} + B^{\top} \ \ (b) (\alpha A)^{\top} = \alpha A^{\top} \ \text{and} \ (\alpha A)^* = \bar{\alpha} A^* \ \ (c) (A^{\top})^{\top} = A.$$

Definition: Let A be an $n \times n$ matrix. Then A is said to be

- symmetric if $A^{\top} = A$
- **2** skew-symmetric if $A^{\top} = -A$
- **6** Hermitian if $A^* = A$
- 4 skew-Hermitian if $A^* = -A$.

Remark: Let $A := [a_{ij}]_{n \times n}$. If $A^{\top} = -A$ then $a_{jj} = 0$ for j = 1 : n.

Exercise: Let $A, B \in \mathbb{F}^{m \times n}$ and $\alpha \in \mathbb{F}$. Then show that

$$(a) (A+B)^{\top} = A^{\top} + B^{\top} (b) (\alpha A)^{\top} = \alpha A^{\top} \text{ and } (\alpha A)^* = \bar{\alpha} A^* (c) (A^{\top})^{\top} = A.$$

Definition: Let A be an $n \times n$ matrix. Then A is said to be

- symmetric if $A^{\top} = A$
- **2** skew-symmetric if $A^{\top} = -A$
- **6** Hermitian if $A^* = A$
- skew-Hermitian if $A^* = -A$.

Remark: Let $A := [a_{ij}]_{n \times n}$. If $A^{\top} = -A$ then $a_{jj} = 0$ for j = 1 : n. On the other hand, if $A^* = -A$ then $\text{Re}(a_{jj}) = 0$ for j = 1 : n.

Let $A := [\mathbf{a}_1 \cdots \mathbf{a}_n] \in \mathbb{F}^{m \times n}$ and $\mathbf{x} := [x_1, \dots, x_n]^\top \in \mathbb{F}^n$. We define the matrix-vector multiplication $A\mathbf{x}$ as the linear combination of columns of A.

Let $A := [\mathbf{a}_1 \cdots \mathbf{a}_n] \in \mathbb{F}^{m \times n}$ and $\mathbf{x} := [x_1, \dots, x_n]^\top \in \mathbb{F}^n$. We define the matrix-vector multiplication $A\mathbf{x}$ as the linear combination of columns of A.

Definition: Matrix-vector multiplication

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n.$$

Let $A := [\mathbf{a}_1 \cdots \mathbf{a}_n] \in \mathbb{F}^{m \times n}$ and $\mathbf{x} := [x_1, \dots, x_n]^\top \in \mathbb{F}^n$. We define the matrix-vector multiplication $A\mathbf{x}$ as the linear combination of columns of A.

Definition: Matrix-vector multiplication

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n.$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

A row vector $\begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix}$ is a $1 \times n$ matrix. Therefore

$$\begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = a_{i1}x_1 + \cdots + a_{in}x_n.$$

A row vector $\begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix}$ is a $1 \times n$ matrix. Therefore

$$\begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = a_{i1}x_1 + \cdots + a_{in}x_n.$$

Example: Matrix-vector multiplication in two ways

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_2 + x_3 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x} \\ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \mathbf{x} \\ \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \mathbf{x} \end{bmatrix}$$

Row and column oriented matrix-vector multiplication

```
\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}
```

Row and column oriented matrix-vector multiplication

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \end{bmatrix} \mathbf{x} \\ \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \mathbf{x}$$

Row and column oriented matrix-vector multiplication

Writing
$$A:=\left[egin{array}{c|c} \mathbf{a_1} & \cdots & \mathbf{a_n} \end{array}\right]$$
 and $A=\left[egin{array}{c|c} \vdots & \\ -\mathbf{\hat{a}}_m- \end{array}\right]$, we hav

$$A\mathbf{x} = x_1 \mathbf{a}_1 + \dots + x_n \mathbf{a}_n = \begin{vmatrix} a_{11} x_1 + \dots + a_{1n} x_n \\ \vdots \\ a_{m1} x_1 + \dots + a_{mn} x_n \end{vmatrix} = \begin{vmatrix} \mathbf{\hat{a}}_1 \mathbf{x} \\ \vdots \\ \mathbf{\hat{a}}_{mn} \mathbf{x} \end{vmatrix}.$$

Let
$$A \in \mathbb{F}^{m \times n}$$
 and $B := [\mathbf{b}_1 \ \cdots \ \mathbf{b}_p] \in \mathbb{F}^{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Let
$$A \in \mathbb{F}^{m \times n}$$
 and $B := [\mathbf{b}_1 \ \cdots \ \mathbf{b}_p] \in \mathbb{F}^{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Reason: Define AB to be the $m \times p$ matrix such that $(AB)\mathbf{x} = A(B\mathbf{x})$ for all $\mathbf{x} \in \mathbb{F}^p$.

Let $A \in \mathbb{F}^{m \times n}$ and $B := [\mathbf{b}_1 \ \cdots \ \mathbf{b}_p] \in \mathbb{F}^{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Reason: Define AB to be the $m \times p$ matrix such that $(AB)\mathbf{x} = A(B\mathbf{x})$ for all $\mathbf{x} \in \mathbb{F}^p$. Let C := AB be given by $C = \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_p \end{bmatrix}$. Let $\mathbf{e}_j \in \mathbb{F}^p$ be the standard unit vector. Then for j = 1 : p, we have $B\mathbf{e}_j = \mathbf{b}_j$ and

Let $A \in \mathbb{F}^{m \times n}$ and $B := [\mathbf{b}_1 \cdots \mathbf{b}_p] \in \mathbb{F}^{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Reason: Define AB to be the $m \times p$ matrix such that $(AB)\mathbf{x} = A(B\mathbf{x})$ for all $\mathbf{x} \in \mathbb{F}^p$. Let C := AB be given by $C = \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_p \end{bmatrix}$. Let $\mathbf{e}_j \in \mathbb{F}^p$ be the standard unit vector. Then for j = 1 : p, we have $B\mathbf{e}_j = \mathbf{b}_j$ and

$$\mathbf{c}_j = C\mathbf{e}_j = (AB)\mathbf{e}_j = A(B\mathbf{e}_j) = A\mathbf{b}_j \Longrightarrow C = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{bmatrix}.$$

Let $A \in \mathbb{F}^{m \times n}$ and $B := [\mathbf{b}_1 \cdots \mathbf{b}_p] \in \mathbb{F}^{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Reason: Define AB to be the $m \times p$ matrix such that $(AB)\mathbf{x} = A(B\mathbf{x})$ for all $\mathbf{x} \in \mathbb{F}^p$. Let C := AB be given by $C = \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_p \end{bmatrix}$. Let $\mathbf{e}_j \in \mathbb{F}^p$ be the standard unit vector. Then for j = 1 : p, we have $B\mathbf{e}_j = \mathbf{b}_j$ and

$$\mathbf{c}_j = C\mathbf{e}_j = (AB)\mathbf{e}_j = A(B\mathbf{e}_j) = A\mathbf{b}_j \Longrightarrow C = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{bmatrix}.$$

Fact: Let $A \in \mathbb{F}^{m \times n}$. Let $\mathbf{e}_i \in \mathbb{F}^m$ and $\mathbf{e}_j \in \mathbb{F}^n$ be standard unit vectors. Then

- Ae_j is the j-th column of A.
- $\mathbf{e}_i^{\top} A$ is the *i*-th row of A.

Let
$$A = \begin{bmatrix} -\hat{\mathbf{a}}_1 - \\ \vdots \\ -\hat{\mathbf{a}}_m - \end{bmatrix} \in \mathbb{F}^{m \times n}$$
, $B := \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{bmatrix} \in \mathbb{F}^{n \times p}$. Then

$$AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{bmatrix} = \begin{vmatrix} \mathbf{\hat{a}_1b_1} & \cdots & \mathbf{\hat{a}_1b_p} \\ \vdots & \cdots & \vdots \\ \mathbf{\hat{a}_mb_1} & \cdots & \mathbf{\hat{a}_mb_n} \end{vmatrix} = \begin{vmatrix} \mathbf{\hat{a}_1}B \\ \vdots \\ \mathbf{\hat{a}_m}B \end{vmatrix}.$$

Let
$$A=\left[egin{array}{cccc} -\mathbf{\hat{a}}_1-\ dots\ -\mathbf{\hat{a}}_m-\ \end{array}
ight]\in\mathbb{F}^{m imes n},\ B:=\left[\begin{array}{ccccc} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{array}
ight]\in\mathbb{F}^{n imes p}.$$
 Then

$$AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{bmatrix} = \begin{bmatrix} \mathbf{\hat{a}_1b_1} & \cdots & \mathbf{\hat{a}_1b_p} \\ \vdots & \cdots & \vdots \\ \mathbf{\hat{a}_mb_1} & \cdots & \mathbf{\hat{a}_mb_p} \end{bmatrix} = \begin{bmatrix} \mathbf{\hat{a}_1}B \\ \vdots \\ \mathbf{\hat{a}_m}B \end{bmatrix}.$$

Thus if $A:=[a_{ij}]_{m\times n}, B:=[b_{ij}]_{n\times p}$ and $C:=AB=[c_{ij}]_{m\times p}$ then

$$c_{ij} = \hat{\mathbf{a}}_i \mathbf{b}_j = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{vmatrix} b_{1j} \\ \vdots \\ b_{ni} \end{vmatrix} = \sum_{k=1}^n a_{ik} b_{kj}.$$

Let
$$A = \begin{bmatrix} -\hat{\mathbf{a}}_{1} - \\ \vdots \\ -\hat{\mathbf{a}}_{m} - \end{bmatrix} \in \mathbb{F}^{m \times n}$$
, $B := \begin{bmatrix} \mathbf{b}_{1} & \cdots & \mathbf{b}_{p} \end{bmatrix} \in \mathbb{F}^{n \times p}$. Then

$$AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{bmatrix} = \begin{vmatrix} \mathbf{\hat{a}_1b_1} & \cdots & \mathbf{\hat{a}_1b_p} \\ \vdots & \cdots & \vdots \\ \mathbf{\hat{a}_mb_1} & \cdots & \mathbf{\hat{a}_mb_p} \end{vmatrix} = \begin{vmatrix} \mathbf{\hat{a}_1}B \\ \vdots \\ \mathbf{\hat{a}_m}B \end{vmatrix}.$$

Thus if $A:=[a_{ij}]_{m\times n}, B:=[b_{ij}]_{n\times p}$ and $C:=AB=[c_{ij}]_{m\times p}$ then

$$c_{ij} = \mathbf{\hat{a}}_i \mathbf{b}_j = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ \vdots \\ b_{ni} \end{bmatrix} = \sum_{k=1}^n a_{ik} b_{kj}.$$

Remark: If A and B are $n \times n$ matrices then in general $AB \neq BA$.

Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $B := \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 3 & 0 \end{bmatrix}$. Then

Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $B := \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 3 & 0 \end{bmatrix}$. Then

$$A\mathbf{b}_1 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} 4 \\ 1 \\ 3 \end{matrix}\right] = \left[\begin{matrix} 13 \\ 2 \end{matrix}\right] \text{ and } A\mathbf{b}_2 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} -1 \\ 2 \\ 0 \end{matrix}\right] = \left[\begin{array}{ccc} 5 \\ -2 \end{matrix}\right].$$

Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $B := \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 3 & 0 \end{bmatrix}$. Then

$$A\mathbf{b}_1 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} 4 \\ 1 \\ 3 \end{matrix}\right] = \left[\begin{matrix} 13 \\ 2 \end{matrix}\right] \text{ and } A\mathbf{b}_2 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} -1 \\ 2 \\ 0 \end{matrix}\right] = \left[\begin{array}{ccc} 5 \\ -2 \end{matrix}\right].$$

Therefore
$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 13 & 5 \\ 2 & -2 \end{bmatrix}$$
.

Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $B := \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 3 & 0 \end{bmatrix}$. Then

$$A\mathbf{b}_1 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} 4 \\ 1 \\ 3 \end{matrix}\right] = \left[\begin{matrix} 13 \\ 2 \end{matrix}\right] \text{ and } A\mathbf{b}_2 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} -1 \\ 2 \\ 0 \end{matrix}\right] = \left[\begin{array}{ccc} 5 \\ -2 \end{matrix}\right].$$

Therefore
$$AB=egin{bmatrix}A\mathbf{b}_1&A\mathbf{b}_2\end{bmatrix}=egin{bmatrix}13&5\\2&-2\end{bmatrix}$$
 . On the other hand

$$\widehat{\mathbf{a}}_1 B = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 5 \end{bmatrix} \text{ and } \widehat{\mathbf{a}}_2 B = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 \end{bmatrix}.$$

Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $B := \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 3 & 0 \end{bmatrix}$. Then

$$A\mathbf{b}_1 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} 4 \\ 1 \\ 3 \end{matrix}\right] = \left[\begin{matrix} 13 \\ 2 \end{matrix}\right] \text{ and } A\mathbf{b}_2 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{matrix} -1 \\ 2 \\ 0 \end{matrix}\right] = \left[\begin{array}{ccc} 5 \\ -2 \end{matrix}\right].$$

Therefore
$$AB=\begin{bmatrix}A\mathbf{b}_1&A\mathbf{b}_2\end{bmatrix}=\begin{bmatrix}13&5\\2&-2\end{bmatrix}$$
 . On the other hand

$$\widehat{\mathbf{a}}_1 B = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 5 \end{bmatrix} \text{ and } \widehat{\mathbf{a}}_2 B = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 \end{bmatrix}.$$

Therefore
$$AB = \begin{bmatrix} \widehat{\mathbf{a}}_1 B \\ \widehat{\mathbf{a}}_2 B \end{bmatrix} = \begin{bmatrix} 13 & 5 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 \end{bmatrix}.$$

Block matrices

Definition: An $m \times n$ block matrix (or a partitioned matrix) is a matrix of the form

$$A := \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \cdots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{array} \right]$$

where each A_{ij} is a $p_i \times q_j$ matrix for i = 1 : m and j = 1 : n.

Block matrices

Definition: An $m \times n$ block matrix (or a partitioned matrix) is a matrix of the form

$$A := \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \cdots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{array} \right]$$

where each A_{ij} is a $p_i \times q_j$ matrix for i = 1 : m and j = 1 : n.

Then
$$\begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$
 is the *i*-th block row of A and $\begin{bmatrix} A_{1j} \\ \vdots \\ A_{mj} \end{bmatrix}$ is the *j*-th block

column of A.

Block matrices

Definition: An $m \times n$ block matrix (or a partitioned matrix) is a matrix of the form

$$A := \left[egin{array}{cccc} A_{11} & \cdots & A_{1n} \ dots & \cdots & dots \ A_{m1} & \cdots & A_{mn} \end{array}
ight]$$

where each A_{ii} is a $p_i \times q_i$ matrix for i = 1 : m and i = 1 : n.

Then
$$\begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$
 is the *i*-th block row of A and $\begin{bmatrix} A_{1j} \\ \vdots \\ A_{mj} \end{bmatrix}$ is the *j*-th block

column of A.

Example:
$$\begin{bmatrix} 1 & 2 & 2 & 0 & 1 & | & 4 \\ 3 & 4 & 1 & 2 & 3 & | & 5 \\ \hline 5 & 7 & 2 & 7 & 8 & | & 8 \\ 3 & 4 & 1 & 9 & 2 & | & 2 \end{bmatrix}$$
 has 2 block rows and 3 block columns.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of $A_{ii} = \text{size of } B_{ii}$ for i = 1 : m and j = 1 : n. Then $A + B := [A_{ii} + B_{ii}]_{m \times n}$.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of A_{ij} = size of B_{ij} for i = 1 : m and j = 1 : n. Then $A + B := [A_{ij} + B_{ij}]_{m \times n}$.

Block matrix multiplication: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{n \times p}$ be block matrices. If the matrix multiplication $C_{ij} := \sum_{k=1}^{n} A_{ik} B_{kj}$ is well defined for i = 1 : m and j = 1 : p then AB is an $m \times p$ block matrix given by $AB = [C_{ij}]_{m \times p}$.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of A_{ij} = size of B_{ij} for i = 1 : m and j = 1 : n. Then $A + B := [A_{ij} + B_{ij}]_{m \times n}$.

Block matrix multiplication: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{n \times p}$ be block matrices. If the matrix multiplication $C_{ij} := \sum_{k=1}^{n} A_{ik} B_{kj}$ is well defined for i = 1 : m and j = 1 : p then AB is an $m \times p$ block matrix given by $AB = [C_{ij}]_{m \times p}$.

Conformal partition: If an operation on block matrices A and B are well defined then A and B are said to be partitioned conformably.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of A_{ij} = size of B_{ij} for i = 1 : m and j = 1 : n. Then $A + B := [A_{ij} + B_{ij}]_{m \times n}$.

Block matrix multiplication: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{n \times p}$ be block matrices. If the matrix multiplication $C_{ij} := \sum_{k=1}^n A_{ik} B_{kj}$ is well defined for i = 1 : m and j = 1 : p then AB is an $m \times p$ block matrix given by $AB = [C_{ij}]_{m \times p}$.

Conformal partition: If an operation on block matrices A and B are well defined then A and B are said to be partitioned conformably.

Example:
$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix} =$$

$$\begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} & A_{11}B_{13} + A_{12}B_{23} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} & A_{21}B_{13} + A_{22}B_{23} \end{bmatrix}.$$

Block matrix multiplication

Example:

$$\begin{bmatrix}
1 & 1 & | & 1 & 1 \\
2 & 2 & | & 1 & 1 \\
3 & 3 & | & 2 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 1 & | & 1 & 1 \\
1 & 2 & | & 1 & 1 \\
3 & 1 & | & 1 & 1 \\
3 & 2 & | & 1 & 2
\end{bmatrix} = \begin{bmatrix}
8 & 6 & | & 4 & 5 \\
10 & 9 & | & 6 & 7 \\
18 & 15 & | & 10 & 12
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & | & 1 & 1 \\
2 & 2 & | & 1 & 1 \\
\hline
3 & 3 & | & 2 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 1 & | & 1 & 1 \\
1 & 2 & | & 1 & 1 \\
\hline
3 & 1 & | & 1 & 1 \\
3 & 2 & | & 1 & 2
\end{bmatrix} = \begin{bmatrix}
8 & 6 & | & 4 & 5 \\
10 & 9 & | & 6 & 7 \\
\hline
18 & 15 & | & 10 & 12
\end{bmatrix}$$

Given two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , we have seen that $\mathbf{y}^{\top}\mathbf{x}$ is the inner product given by

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \cdots + x_n y_n = \mathbf{y}^{\top} \mathbf{x}.$$

Given two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , we have seen that $\mathbf{y}^\top \mathbf{x}$ is the inner product given by

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \cdots + x_n y_n = \mathbf{y}^{\top} \mathbf{x}.$$

Outer product: The matrix product $\mathbf{x}\mathbf{y}^{\top}$ is an $n \times n$ matrix and is given by

$$\mathbf{x}\mathbf{y}^{\top} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_ny_n \end{bmatrix}.$$

The product $\mathbf{x}\mathbf{y}^{\top}$ is called the outer product of $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.

Example: If
$$\mathbf{x} := \begin{bmatrix} 4 & 1 & 3 \end{bmatrix}^{\mathsf{T}}$$
 and $\mathbf{y} := \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}^{\mathsf{T}}$ then

$$\mathbf{x}\mathbf{y}^{\top} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 20 & 8 \\ 3 & 5 & 2 \\ 9 & 15 & 6 \end{bmatrix}.$$

Example: If
$$\mathbf{x} := \begin{bmatrix} 4 & 1 & 3 \end{bmatrix}^{\top}$$
 and $\mathbf{y} := \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}^{\top}$ then

$$\mathbf{x}\mathbf{y}^{ op} = \left[egin{array}{ccc} 4 \ 1 \ 3 \end{array} \right] \left[egin{array}{cccc} 3 & 5 & 2 \end{array} \right] = \left[egin{array}{cccc} 12 & 20 & 8 \ 3 & 5 & 2 \ 9 & 15 & 6 \end{array} \right].$$

Outer product of matrices:

Let
$$X := [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_n] \in \mathbb{R}^{m \times n}$$
 and $Y := [\mathbf{y}_1 \ \mathbf{y}_2 \ \cdots \ \mathbf{y}_n] \in \mathbb{R}^{p \times n}$. Then $XY^{\top} \in \mathbb{R}^{m \times p}$ can be written as sum of outer products of vectors

Example: If
$$\mathbf{x} := \begin{bmatrix} 4 & 1 & 3 \end{bmatrix}^{\mathsf{T}}$$
 and $\mathbf{y} := \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}^{\mathsf{T}}$ then

$$\mathbf{x}\mathbf{y}^{\top} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 20 & 8 \\ 3 & 5 & 2 \\ 9 & 15 & 6 \end{bmatrix}.$$

Outer product of matrices:

Let $X := [\begin{array}{cccc} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{array}] \in \mathbb{R}^{m \times n}$ and $Y := [\begin{array}{cccc} \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_n \end{array}] \in \mathbb{R}^{p \times n}$. Then $XY^\top \in \mathbb{R}^{m \times p}$ can be written as sum of outer products of vectors

$$XY^{\top} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \mathbf{y}_1^{\top} \\ \mathbf{y}_2^{\top} \\ \vdots \\ \mathbf{y}^{\top} \end{bmatrix} = \mathbf{x}_1 \mathbf{y}_1^{\top} + \mathbf{x}_2 \mathbf{y}_2^{\top} + \cdots + \mathbf{x}_n \mathbf{y}_n^{\top}.$$

Properties of matrix multiplication

Thoerm: Let A, B and C be matrices (whose sizes are such that the indicated operations can be performed) and let α be a scalar. Then

Properties of matrix multiplication

Thoerm: Let A, B and C be matrices (whose sizes are such that the indicated operations can be performed) and let α be a scalar. Then

- **1** Associative Law: (AB)C = A(BC)
- **2** Left Distributive Law: A(B+C) = AB + AC
- **3** Right Distributive Law: (A + B)C = AC + BC

Properties of matrix multiplication

Thoerm: Let A, B and C be matrices (whose sizes are such that the indicated operations can be performed) and let α be a scalar. Then

- **4** Associative Law: (AB)C = A(BC)
- **2** Left Distributive Law: A(B+C) = AB + AC
- **3** Right Distributive Law: (A + B)C = AC + BC
- Scalar multiplication: $\alpha(AB) = (\alpha A)B = A(\alpha B)$
- **1** Multiplicative identity: If A is an $m \times n$ matrix then $I_m A = A = A I_n$.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. The matrix B is called an inverse of A.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. The matrix B is called an inverse of A.

Exercise: Show that inverse of an invertible matrix A is unique.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. The matrix B is called an inverse of A.

Exercise: Show that inverse of an invertible matrix A is unique.

We denote the inverse of A by A^{-1} .

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. The matrix B is called an inverse of A.

Exercise: Show that inverse of an invertible matrix A is unique.

We denote the inverse of A by A^{-1} . Note that if A is invertible then the system $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. The matrix B is called an inverse of A.

Exercise: Show that inverse of an invertible matrix A is unique.

We denote the inverse of A by A^{-1} . Note that if A is invertible then the system $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

• The matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. The matrix B is called an inverse of A.

Exercise: Show that inverse of an invertible matrix A is unique.

We denote the inverse of A by A^{-1} . Note that if A is invertible then the system $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

• The matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

• The $n \times n$ zero matrix **O** is not invertible.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. The matrix B is called an inverse of A.

Exercise: Show that inverse of an invertible matrix A is unique.

We denote the inverse of A by A^{-1} . Note that if A is invertible then the system $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

• The matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc} 2 & 5 \\ 1 & 3 \end{array}\right] \left[\begin{array}{cc} 3 & -5 \\ -1 & 2 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 3 & -5 \\ -1 & 2 \end{array}\right] \left[\begin{array}{cc} 2 & 5 \\ 1 & 3 \end{array}\right].$$

- The $n \times n$ zero matrix **O** is not invertible.
- If an $n \times n$ matrix A has a zero row or a zero column, then A is NOT invertible.

Vector-vector operations: Let $\alpha \in \mathbb{R}$. Let $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ and $\mathbf{y} := \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$.

Vector-vector operations: Let $\alpha \in \mathbb{R}$. Let $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ and $\mathbf{y} := \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$. We ignore the lower order terms for flop count.

• $\mathbf{z} \leftarrow \mathbf{x} + \mathbf{y}$ and $\mathbf{d} \leftarrow \alpha \cdot \mathbf{x}$ require *n* flops

Vector-vector operations: Let $\alpha \in \mathbb{R}$. Let $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ and $\mathbf{y} := \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$. We ignore the lower order terms for flop count.

- $\mathbf{z} \leftarrow \mathbf{x} + \mathbf{y}$ and $\mathbf{d} \leftarrow \alpha \cdot \mathbf{x}$ require n flops
- $\mathbf{z} \leftarrow \alpha \cdot \mathbf{x} + \mathbf{y}$ and $\mathbf{s} \leftarrow \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{n} x_j y_j$ require 2n flops

Vector-vector operations: Let $\alpha \in \mathbb{R}$. Let $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ and $\mathbf{y} := \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$. We ignore the lower order terms for flop count.

- $\mathbf{z} \leftarrow \mathbf{x} + \mathbf{y}$ and $\mathbf{d} \leftarrow \alpha \cdot \mathbf{x}$ require n flops
- $\mathbf{z} \leftarrow \alpha \cdot \mathbf{x} + \mathbf{y}$ and $s \leftarrow \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_{i} y_{i}$ require 2n flops

Matrix-vector operations: Let $A:=\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ and $\beta \in \mathbb{R}$.

• $\mathbf{z} \leftarrow A\mathbf{x} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n$ and $\mathbf{d} \leftarrow \alpha \cdot A\mathbf{x} + \beta \cdot \mathbf{y}$ require $2n^2$ flops

Vector-vector operations: Let $\alpha \in \mathbb{R}$. Let $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ and $\mathbf{y} := \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$. We ignore the lower order terms for flop count.

- $\mathbf{z} \leftarrow \mathbf{x} + \mathbf{y}$ and $\mathbf{d} \leftarrow \alpha \cdot \mathbf{x}$ require n flops
- $\mathbf{z} \leftarrow \alpha \cdot \mathbf{x} + \mathbf{y}$ and $\mathbf{s} \leftarrow \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{n} x_j y_j$ require 2n flops

Matrix-vector operations: Let $A:=\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ and $\beta \in \mathbb{R}$.

- $\mathbf{z} \leftarrow A\mathbf{x} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n$ and $\mathbf{d} \leftarrow \alpha \cdot A\mathbf{x} + \beta \cdot \mathbf{y}$ require $2n^2$ flops
- $\mathbf{z} \leftarrow A^{\top}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1^{\top}\mathbf{x} & \cdots & \mathbf{a}_n^{\top}\mathbf{x} \end{bmatrix}^{\top}$ and $\mathbf{d} \leftarrow \alpha \cdot A^{\top}\mathbf{x} + \beta \cdot \mathbf{y}$ require $2n^2$ flops

Vector-vector operations: Let
$$\alpha \in \mathbb{R}$$
. Let $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ and $\mathbf{y} := \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$. We ignore the lower order terms for flop count.

- $\mathbf{z} \leftarrow \mathbf{x} + \mathbf{y}$ and $\mathbf{d} \leftarrow \alpha \cdot \mathbf{x}$ require n flops
- $\mathbf{z} \leftarrow \alpha \cdot \mathbf{x} + \mathbf{y}$ and $\mathbf{s} \leftarrow \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{n} x_j y_j$ require 2n flops

Matrix-vector operations: Let $A:=\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ and $\beta \in \mathbb{R}$.

- $\mathbf{z} \leftarrow A\mathbf{x} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n$ and $\mathbf{d} \leftarrow \alpha \cdot A\mathbf{x} + \beta \cdot \mathbf{y}$ require $2n^2$ flops
- $\mathbf{z} \leftarrow A^{\top}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1^{\top}\mathbf{x} & \cdots & \mathbf{a}_n^{\top}\mathbf{x} \end{bmatrix}^{\top}$ and $\mathbf{d} \leftarrow \alpha \cdot A^{\top}\mathbf{x} + \beta \cdot \mathbf{y}$ require $2n^2$ flops

Matrix-matrix operations: Let $B := \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{n \times n}$.

• $D \leftarrow AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_n \end{bmatrix}$ and $D \leftarrow \alpha \cdot AB + \beta \cdot C$ require $2n^3$ flops

Vector-vector operations: Let $\alpha \in \mathbb{R}$. Let $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ and $\mathbf{y} := \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\top \in \mathbb{R}^n$. We ignore the lower order terms for flop count.

- $\mathbf{z} \leftarrow \mathbf{x} + \mathbf{y}$ and $\mathbf{d} \leftarrow \alpha \cdot \mathbf{x}$ require n flops
- $\mathbf{z} \leftarrow \alpha \cdot \mathbf{x} + \mathbf{y}$ and $\mathbf{s} \leftarrow \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{n} x_j y_j$ require 2n flops

Matrix-vector operations: Let $A:=\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ and $\beta \in \mathbb{R}$.

- $\mathbf{z} \leftarrow A\mathbf{x} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n$ and $\mathbf{d} \leftarrow \alpha \cdot A\mathbf{x} + \beta \cdot \mathbf{y}$ require $2n^2$ flops
- $\mathbf{z} \leftarrow A^{\top} \mathbf{x} = \begin{bmatrix} \mathbf{a}_1^{\top} \mathbf{x} & \cdots & \mathbf{a}_n^{\top} \mathbf{x} \end{bmatrix}^{\top}$ and $\mathbf{d} \leftarrow \alpha \cdot A^{\top} \mathbf{x} + \beta \cdot \mathbf{y}$ require $2n^2$ flops

Matrix-matrix operations: Let $B := \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{n \times n}$.

- $D \leftarrow AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_n \end{bmatrix}$ and $D \leftarrow \alpha \cdot AB + \beta \cdot C$ require $2n^3$ flops
- $D \leftarrow A^{\top}B$ or $D \leftarrow AB^{\top}$ and $D \leftarrow \alpha \cdot A^{\top}B + \beta \cdot C$ require $2n^3$ flops