Processamento de Transações

Banco de Dados: Teoria e Prática André Santanchè Instituto de Computação – UNICAMP Setembro 2019

Questão

Quais as vantagens e desvantagens de se permitir acesso concorrente ao banco de dados?

Questão

- Quais as vantagens e desvantagens de se permitir acesso concorrente ao banco de dados?
 - □ Vantagens
 - Otimização do acesso
 - Melhor aproveitamento do sistema
 - Menos tempo ocioso
 - Permite colaboração
 - Desvantagens
 - Pode gerar inconsistência
 - Pode reduzir desempenho
 - Pode ter problemas de bloqueio

Transação

- Execução concorrente de programas é essencial para a boa performance do SGBD
 - □ Acesso a disco é frequente mas lento → concorrência melhora aproveitamento da CPU
- ■Perspectivas sobre os dados:
 - □ Programa do usuário → pode realizar vários operação com os dados
 - □ SGBD → se preocupa apenas com leituras e gravações

(Ramakrishnan, 2003b)

Transação e Concorrência

- ■Transação: visão abstrata do SGBD sobre um programa do usuário:
 - □ Uma sequência de leituras e gravações
- ■Perspectivas sobre a transação:
 - □ Usuário → sua transação sendo executada individualmente
 - □ SGBD → concorrência intercalando leituras/gravações de várias transações

Modelo Simplificado do BD

- ■BD: coleção de itens nomeados
- Conceitos são independentes de granularidade
- ■Operações:
 - □ ler(X): lê item X do BD e armazena na variável X do programa
 - □ gravar(X): grava variável X do programa no item X do BD

(Elmasri, 2010)

Operação de Leitura Como Acontece

- ■ler(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia o item X do buffer para a variável X da memória principal

(Elmasri, 2010)

Operação de Leitura Como Abstraímos

Operação de Gravação Como Acontece

- ■gravar(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia variável X da memória principal para o buffer
 - □ atualiza o buffer no disco (Elmasri, 2010)

Operação de Gravação Como Abstraímos

■gravar(X)

Transação Estados de Execução

- BEGIN_TRANSACTION
- READ ou WRITE
- END_TRANSACTION

- COMMIT_TRANSACTION
- ROLLBACK (ou ABORT)

Exemplo Transação 1: Transferência

T 1

Exemplo Transação 2: Aquisição

T 2

ler(X) X = X + M gravar(X)

Transações Concorrentes Plano de Execução

■ Necessidade de um Plano de Execução

T1	T2
ler(X)	ler(X)
X = X - N	X = X + M
gravar(X)	<pre>gravar(X)</pre>
ler(Y)	
Y = Y + N	
<pre>gravar(Y)</pre>	

Plano de Execução Serial

T1	T2
<pre>ler(X) X = X - N gravar(X) ler(Y) Y = Y + N gravar(Y)</pre>	
	<pre>ler(X) X = X + M gravar(X)</pre>

Plano de Execução Serial

```
ler(X)
X = X - N
gravar(X)
ler(Y)
Y = Y + N
gravar(Y)
ler(X)
X = X + M
gravar(X)
```

Plano de Execução Intercalado

T1	T2
ler(X) X = X - N	
	<pre>ler(X) X = X + M</pre>
gravar(X) ler(Y)	
	gravar(X)
Y = Y + N gravar(Y)	

Plano de Execução Intercalado

```
ler(X)
X = X - N
ler(X)
X = X + M
gravar(X)
ler(Y)
gravar(X)
Y = Y + N
gravar(Y)
```

Plano de Execução (Schedule)

- Aplicável a várias transações simultâneas
- ■Lista de ações de conjunto de transações
 - □ leitura, gravação, abort, commit
- ■Na schedule:
 - □ S para transações T₁, T₂, ..., T_n
 - □ ordem de ações no plano T_i = ordem das ações em S

Exemplo Transações Concorrentes

■ Problemas?

T1	T2
ler(X)	ler(X)
X = X - N	X = X + M
gravar(X)	gravar(X)
ler(Y)	
Y = Y + N	
gravar(Y)	

Problema?

T1	T2
ler(X) X = X - N	
	<pre>ler(X) X = X + M</pre>
gravar(X) ler(Y)	
	gravar(X)
Y = Y + N gravar(Y)	

Problema

T1	T2	■ Atualização
ler(X) X = X - N		Perdida
/\		(Elmasri, 2010)
	ler(X) X = X + M	
<pre>gravar(X) ler(Y)</pre>		
	gravar(X)	
Y = Y + N gravar(Y)		

Problema

T1	T2	■Sobrescrita de	
ler(X) X = X - N		dados alterados sem commit	
	ler(X) X = X + M	conflito WW (write/write)	
<pre>gravar(X) ler(Y)</pre>		(Ramakrishnan, 2003)	
	gravar(X)		
Y = Y + N gravar(Y)			

Problema?

T1	T2
ler(X) X = X - N	
gravar(X)	
	<pre>ler(X) X = X + M gravar(X)</pre>
ler(Y) ***crash***	

Problema Dirtv Read

le	er	(X)	
X	=	Χ -	- N
gı	rav	/ar((X)

T1

T2

Leitura de dados alterados sem commit

conflito WR
(write/read)

(Ramakrishnan, 2003)

AtualizaçãoTemporária

(Elmasri, 2010)

Exemplo Transação 3: Sumário

T3

```
soma = 0
ler (A)
soma = soma + A
```

. . .

. . .

Problema?

Intercalação com Transferência Problema?

T1	T3
	soma = 0 ler(A) soma = soma + A
<pre>ler(X) X = X - N gravar(X)</pre>	
	<pre>ler(X) soma = soma + X ler(Y) soma = soma + Y</pre>
<pre>ler(Y) Y = Y + N gravar(Y)</pre>	• • •

Problema

T1	Т3
	<pre>soma = 0 ler(A) soma = soma + A</pre>
ler(X) X = X - N gravar(X)	
	<pre>ler(X) soma = soma + X ler(Y) soma = soma + Y</pre>
<pre>ler(Y) Y = Y + N gravar(Y)</pre>	

Resumo Incorreto

(Elmasri, 2010)

Problema

T1	Т3
	soma = 0 ler(A) soma = soma + A
<pre>ler(X) X = X - N gravar(X)</pre>	
	<pre>ler(X) soma = soma + X ler(Y) soma = soma + Y</pre>
ler(Y) Y = Y + N gravar(Y)	

Leitura de dados alterados sem commit

□ conflito WR

Exemplo Transação 4: Reserva de Livro

T4
ler(B)
verifica(B)
...
ler(B)
reserva(B)
gravar(B)

Intercalação da Reserva Problema?

T4	T4'
ler(B)	
<pre>verifica(B)</pre>	
	ler(B)
	verifica(B)
	ler(B)
	reserva(B)
	<pre>gravar(B)</pre>
ler(B)	
reserva(B)	
gravar(B)	

Problema Leitura Não Repetitiva

T4'	■Leitura Repeti
<pre>ler(B) verifica(B)</pre>	□ confl (read
ler(B) reserva(B) gravar(B)	(Ran
	■Leitura Repetit
	<pre>ler(B) verifica(B) ler(B) reserva(B)</pre>

- a Não tiva
 - ito RW d/write)
 - makrishnan, 2003)

a Não tiva

(Elmasri, 2010)

Problemas com Transações Concorrentes

- Atualização Perdida
- Atualização Temporária
- Resumo Incorreto
- Leitura não repetitiva

(Elmasri, 2010)

Problemas com Transações Concorrentes

- **■**Conflito WR
 - □ Leitura de dados alterados sem commit
- ■Conflito RW
 - □ Leitura não repetível
- Conflito WW
 - □ Sobrescrita de dados alterados sem commit (Ramakrishnan, 2003)

Propriedades ACID

- **Atomicidade**: todas as operações da transação acontecem ou nenhuma acontece
- ■Preservação de Consistência: a execução completa de uma transação faz o BD passar de um estado consistente para outro
- ■Isolamento: uma transação deve ser executada como se estivesse isolada das demais
- **Durabilidade** ou permanência: se uma transação é efetivada, seu efeito persiste

Consistência DELETE/CASCADE

DELETE FROM Taxi Co
WHERE Taxi.Placa = 'DAE6534';

Cliente (C)

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

Táxi (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
HM3692	Chevrolet	Corsa	1999

Corrida (R1)

<u>Clld</u>	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

Consistência DELETE/CASCADE

DELETE FROM Taxi Co
WHERE Taxi.Placa = 'DAE6534';

Cliente (C)

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

Táxi (TX)

Placa	Marca	Modelo	AnoFah
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Corrida (R1)

CIIA	Dlaga	DataDadida	
	<u> </u>		
1755	DAE6534	15/02/2003	
1982	JDM8776	18/02/2003	

T2

Consistência DELETE/CASCADE

DELETE FROM Taxi Co

WHERE Taxi.Placa = 'DAE6534';

T1 não poderia ser executado sozinho.

Cliente (C)

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

Táxi (TX)

Dlaca	Marca	Modelo	AnoFah	
DAE6534	Ford	Fiesta	1999	
DKL4598	Wolksvagen	Gol	2001	
DKL7878	Ford	Fiesta	2001	
JDM8776	Wolksvagen	Santana	2002	
JJM3692	Chevrolet	Corsa	1999	

Corrida (R1)

	CIIA	Dlaga	DataDadida	
г		<u> </u>		
	1755	DAE6534	15/02/2003	
	1982	JDM8776	18/02/2003	

T2

Consistência DELETE/CASCADE

DELETE FROM Taxi Co

WHERE Taxi.Placa = 'DAE6534';

Consistência: ambas operações na mesma transação

Cliente (C)

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

Táxi (TX)

Placa	Marca	Modelo	AnoFah
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Corrida (R1)

	CIIA	Dlaga	DataDadida	
г		<u> </u>		
	1755	DAE6534	15/02/2003	
	1982	JDM8776	18/02/2003	

T1

Plano de Execução Restaurável

- ■Plano Restaurável
 - □ T realiza commit somente depois que todas as transações cujos valores T leu realizam commit
- Plano Livre de Cascata (cascadeless)
 - □ T só lê valores que foram alterados por transações que já realizaram commit
- Plano Estrito
 - □ T só lê e/ou grava valores que foram alterados por transações que já realizaram commit

Plano Serial e Serializável

- ■Plano Serial
 - □ Transações completas são executadas em série
 - □ Não há intercalação de operações entre transações
- ■Plano Serializável
 - equivalente a algum plano serial

Plano Serial 1

T1	T2
<pre>ler(X) X = X - N gravar(X) ler(Y) Y = Y + N gravar(Y)</pre>	
	<pre>ler(X) X = X + M gravar(X)</pre>

Plano Serial 2

T1	T2
	<pre>ler(X) X = X + M gravar(X)</pre>
<pre>ler(X) X = X - N gravar(X) ler(Y) Y = Y + N gravar(Y)</pre>	

Plano Serializável?

T1	T2
ler(X) X = X - N	
	<pre>ler(X) X = X + M</pre>
gravar(X) ler(Y)	
	gravar(X)
Y = Y + N gravar(Y)	

Não Serializável

T1	T2
ler(X) X = X - N	
	<pre>ler(X) X = X + M</pre>
gravar(X) ler(Y)	
	gravar(X)
Y = Y + N gravar(Y)	

Plano Serializável?

T1	T2
<pre>ler(X) X = X - N gravar(X)</pre>	
	<pre>ler(X) X = X + M gravar(X)</pre>
<pre>ler(Y) Y = Y + N gravar(Y)</pre>	

Serializável

T1	T2
ler(X)	
X = X - N	
gravar(X)	
	ler(X)
	X = X' + M
	gravar(X)
ler(Y)	
Y = Y + N	
gravar(Y)	

Plano Serializável Grafo de Precedência

Grafo de Precedência Algoritmo

- ■Para cada transação crie um nó no grafo
- ■Para cada caso em S

```
\Box Ti \rightarrow gravar(x) e depois Tj \rightarrow ler(x)
```

- o aresta(Ti → Tj)
- \Box Ti \rightarrow ler(x) e depois Tj \rightarrow gravar(x)
 - o aresta(Ti → Tj)
- \Box Ti \rightarrow gravar(x) e depois Tj \rightarrow gravar(x)
 - ∘ aresta(Ti → Tj)
- Serializável → sem ciclos

(Elmasri, 2010)

Grafo de Precedência Algoritmo

- ■Para cada transação crie um nó no grafo
- Para cada caso em S
 - ☐ Ti precede e conflita com Tj
 - o aresta(Ti → Tj)
 - □ Conflita: Ti e Tj realizam uma leitura/gravação no mesmo item e pelo menos um deles é uma gravação
- Serializável → sem ciclos

(Ramakrishnan, 2003)

Plano Serial 1

T1	T2
<pre>ler(X) X = X - N gravar(X) ler(Y) Y = Y + N gravar(Y)</pre>	
	<pre>ler(X) X = X + M gravar(X)</pre>

Plano Serial 1

Plano Serial 2

T1	T2
	<pre>ler(X) X = X + M gravar(X)</pre>
<pre>ler(X) X = X - N gravar(X) ler(Y) Y = Y + N gravar(Y)</pre>	

Não Serializável

T2

T1 ler(X) X = X - N

ler(X)

X = X + 1

gravar(X)
ler(Y)

gravar(X)

Plano Não Serializável

Y = Y + Ngravar(Y)

Serializável

Exercício 2

Defina se os planos a seguir são seriais ou serializáveis. Desenhe os grafos de precedência.

Obs.: r1(x) == Transação 1 lê x.

- a) r1(x), w1(y), r3(x), w2(y), w2(y)
- b) r1(x), r2(y), w2(y), w1(y), w3(x), r2(x)

Equivalência

- Planos Conflito Equivalentes
- ■Equivalência de Visão

Plano Conflito Serializável

- ■Planos Conflito Equivalentes
 - □ Ordem de operações conflitantes for a mesma em ambos
 - □ Operações conflitantes
 - pertencem a diferentes transações
 - acessam o mesmo item
 - pelo menos uma for gravar
- ■Plano Conflito Serializável
 - Conflito equivalente a um plano serial

Equivalência por Conflito

200			
T1	T2	T1	T2
ler(X)		ler(X)	
X = X - N		X = X - N	
gravar(X)		gravar(X)	
ler(Y)			
Y = Y + N			ler(X)
gravar(Y)			X = X + M
			gravar(X)
	ler(X)		
	$X = X \perp M$	ler(Y)	
	gravar(X)	Y = Y' + N	
		gravar(Y)	
		,	

Equivalência por Conflito

9,			
T1	T2	T1	T2
ler(X)		ler(X)	
X = X - N		X = X - N	
gravar(X) ler(Y)		gravar(X)	
Y = Y + N			ler(X)
gravar(Y)			X = X + M
	ler(X)		gravar(X)
	X X I M	ler(Y)	
	gravar(X)	Y = Y + N	
		gravar(Y)	

Equivalência por Conflito Conflito Serializável

100			
T1	T2	T1	T2
ler(X)		ler(X)	
gravar(X)		gravar(X)	
Y = Y + N			ler(X)
gravar(Y)			x = x + M gravar(X)
	ler(X)	ler(Y)	
	gravar(X)	Y = Y + N gravar(Y)	
		g. a. a. (.)	

Equivalência por Conflito

		T1	T2
T1	T2	ler(X)	
ler(X)		X = X - N	
X = X - N gravar(X) ler(Y)			<pre>ler(X) X = X + M</pre>
Y = Y + N $gravar(Y)$		gravar(X) ler(Y)	
	<pre>ler(X) X = X + M gravar(X)</pre>		gravar(X)
		Y = Y + N gravar(Y)	

Não tem Equivalência por Conflito Não Conflito Serializável

9,			
T1	T2	ler(X)	
ler(X)		X = X - N	
X = X - N			
gravar(X)			L
ter(Y)			X
Y = Y + N			
gravar(Y)		gravar(X)	
		ler(Y)	
	ler(X)		
	X X M		Q
	gravar(X)		
	9	Y = Y + N	

T2 ler(X) gravar(X

gravar(Y)

Não tem Equivalência por Conflito Não Conflito Serializável

T2 ler(X gravar(X Y = Y + Ngravar(Y) ler(X) gravar(X

$$Y = Y + N$$

gravar(Y)

$$ler(X)$$

$$X = X + M$$

T2

gravar(X)

Equivalência de Visão

- ■Dois planos S e S' possuem equivalência se:
 - □ Possuem as mesmas transações e operações
 - □ No plano S, se há um read(X) em T_i que seja valor original (antes de S) ou gravado por um write(X) em T_i , o mesmo acontece em S'
 - □ No plano S, se write(Y) é a última operação em Y a gravar em T_k, o mesmo acontece em S'

Falha

- ■Tipos de Falha:
 - □ Sem dano físico ao BD:
 - O computador falhar (crash ou queda de sistema)
 - Um erro de transação ou sistema
 - Erros locais ou condições de exceção detectadas pela transação
 - Imposição do controle de concorrência
 - □ Com dano físico ao BD:
 - Falha de disco
 - Problemas físicos e catástrofes

Transação e Atomicidade

- ■A transação é uma unidade de trabalho atômica:
 - □ ou é executada completamente ou é não é executada por inteiro
 - □ transações podem reverter (rollback)
- **Exemplos**:
 - □T1, T2 & T3 completas
 - □ T4 & T5 devem ser revertidas

(Ramakrishnan,

2003b

Transação e Durabilidade

■O que fazer se o SGBD parar?

- **Exemplos**:
 - □T1, T2 & T3 tem que permanecer

(Ramakrishnan,

2003b)

Exercício 3

■Para cada propriedade ACID (atomicidade, consistência, isolamento, durabilidade), descreva um problema que pode acontecer caso o SGBD não a garanta.

Agradecimentos

■ Luiz Celso Gomes Jr (professor desta disciplina em 2014) pela contribuição na disciplina e nos slides. Página do Celso:

http://dainf.ct.utfpr.edu.br/~gomesjr/

■ Patrícia Cavoto (professora desta disciplina em 2015) pela contribuição na disciplina e nos slides.

André Santanchè

http://www.ic.unicamp.br/~santanche

Referências

- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2010) Sistemas de Banco de Dados. Pearson, 6ª edição em português.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003)

 Database Management Systems. McGraw-Hill,

 3rd edition.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003b) Database Management Systems. McGraw-Hill, 3rd edition (companion slides).

Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link: http://creativecommons.org/licenses/by-nc-sa/3.0/

■ Agradecimentos: fotografia da capa e fundo por Ben Collins -http://www.flickr.com/photos/graylight/.

Ver licença específica em http://www.flickr.com/photos/graylight/261480919/