

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-05, Eq. 7-2)
$I_s =$	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and from the canade.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>818.31</u>	<u>7293.56</u>	k
Compressive Load =	3948.07	<u>5481.53</u>	k
Lateral Load =	<u>329.85</u>	<u>3905.45</u>	k
Moment (Weak Axis) =	<u>0.65</u>	0.28	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 184621.9 in-lbs Resisting Force Required = 2797.30 lbs A minimum 132in long x 39in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4662.17 lbs to resist overturning. Minimum Width = <u>39 in</u> in Weight Provided = 7775.63 lbs Sliding Force = 938.71 lbs Use a 132in long x 39in wide x 18in tall Friction = 0.4 Weight Required = 2346.76 lbs ballast foundation to resist sliding. Resisting Weight = 7775.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 938.71 lbs Cohesion = 130 psf Use a 132in long x 39in wide x 18in tall 35.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3887.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D -	+ 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in
FA	1249 lbs	1249 lbs	1249 lbs	1249 lbs	1640 lbs	1640 lbs	1640 lbs	1640 lbs	2049 lbs	2049 lbs	2049 lbs	2049 lbs	-388 lbs	-388 lbs	-388 lbs	-388 lbs
FB	1235 lbs	1235 lbs	1235 lbs	1235 lbs	2378 lbs	2378 lbs	2378 lbs	2378 lbs	2595 lbs	2595 lbs	2595 lbs	2595 lbs	-3502 lbs	-3502 lbs	-3502 lbs	-3502 lbs
F _V	163 lbs	163 lbs	163 lbs	163 lbs	1680 lbs	1680 lbs	1680 lbs	1680 lbs	1368 lbs	1368 lbs	1368 lbs	1368 lbs	-1877 lbs	-1877 lbs	-1877 lbs	-1877 lbs
P _{total}	10259 lbs	10459 lbs	10658 lbs	10857 lbs	11794 lbs	11993 lbs	12193 lbs	12392 lbs	12420 lbs	12619 lbs	12818 lbs	13018 lbs	776 lbs	896 lbs	1015 lbs	1135 lbs
M	3318 lbs-ft	3318 lbs-ft	3318 lbs-ft	3318 lbs-ft	4731 lbs-ft	4731 lbs-ft	4731 lbs-ft	4731 lbs-ft	5725 lbs-ft	5725 lbs-ft	5725 lbs-ft	5725 lbs-ft	3746 lbs-ft	3746 lbs-ft	3746 lbs-ft	3746 lbs-ft
е	0.32 ft	0.32 ft	0.31 ft	0.31 ft	0.40 ft	0.39 ft	0.39 ft	0.38 ft	0.46 ft	0.45 ft	0.45 ft	0.44 ft	4.83 ft	4.18 ft	3.69 ft	3.30 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	236.3 psf	235.9 psf	235.4 psf	235.0 psf	257.7 psf	256.7 psf	255.8 psf	254.8 psf	260.1 psf	259.0 psf	258.0 psf	257.0 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	337.6 psf	334.6 psf	331.7 psf	329.0 psf	402.1 psf	397.5 psf	393.1 psf	388.9 psf	434.8 psf	429.3 psf	424.2 psf	419.2 psf	236.8 psf	136.0 psf	109.4 psf	98.3 psf

Ballast Width

41 in

42 in

<u>40 in</u>

<u>39 in</u>

Maximum Bearing Pressure = 435 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.25 \text{ ft}) =$

Use a 132in long x 39in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2784.5 \text{ ft-lbs}$

Resisting Force Required = 1713.54 lbsS.F. = 1.67

Weight Required = 2855.90 lbs Minimum Width = 39 in in Weight Provided = 7775.63 lbs A minimum 132in long x 39in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		39 in			39 in		39 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	262 lbs	575 lbs	190 lbs	752 lbs	2062 lbs	697 lbs	102 lbs	168 lbs	30 lbs	
F _V	194 lbs	190 lbs	197 lbs	143 lbs	140 lbs	152 lbs	194 lbs	191 lbs	195 lbs	
P _{total}	9889 lbs	10202 lbs	9816 lbs	9916 lbs	11226 lbs	9860 lbs	2917 lbs	2983 lbs	2845 lbs	
М	758 lbs-ft	749 lbs-ft	766 lbs-ft	567 lbs-ft	566 lbs-ft	595 lbs-ft	758 lbs-ft	747 lbs-ft	759 lbs-ft	
е	0.08 ft	0.07 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.26 ft	0.25 ft	0.27 ft	
L/6	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	
f _{min}	237.5 psf	246.7 psf	235.0 psf	248.1 psf	284.8 psf	245.1 psf	42.5 psf	44.9 psf	40.4 psf	
f _{max}	315.7 psf	324.0 psf	314.1 psf	306.6 psf	343.2 psf	306.6 psf	120.7 psf	122.0 psf	118.8 psf	

Maximum Bearing Pressure = 343 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 39in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 39in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.037 k	Maximum Axial Load = 4.936 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>41%</u>	Utilization = 67%
Diagonal Strut		
Maximum Axial Load =	2.594 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>35%</u>	
	•	Struta under compression are aboun to demonstrate

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 46.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.938 in Max Drift, Δ_{MAX} = 0.532 in $0.532 \le 0.938$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 108 \text{ in}$$

$$J = 0.432$$

$$298.779$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 27.7 \text{ ksi}$$

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_{L} = \varphi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ lx = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ y = & 41.015 \text{ mm} \\ Sx = & 1.335 \text{ in}^3 \end{array}$$

2.788 k-ft

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_b &= 108 \\ \mathsf{J} &= 0.432 \\ 190.005 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F}_L &= \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F}_L &= 28.9 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17}{\theta_b} \frac{\theta_b}{\theta_b} \frac{FCy}{t}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$
 $\phi F_L St = 29.4 \text{ ksi}$

$$lx = 984962 \text{ mm}^4$$

 2.366 in^4
 $v = 43.717 \text{ mm}$

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{\text{max}}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$
 $y = 923544 \text{ mm}^4$
 2.219 in^4
 $x = 40 \text{ mm}$
 $5y = 1.409 \text{ in}^3$

3.904 k-ft

 $M_{max}Wk =$

Compression

3.4.9

$$b/t = 16.2$$

12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_{L} = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \overline{\theta_b}FC}{1.6Dp}$$

$$S1 = 12.3$$
 k_*Rn

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$mDbr$$
 $S2 = 77.3$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \frac{P}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

3.4.16

N/A for Weak Direction

b/t = 24.5

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

7.72 kips $P_{max} =$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16B}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 63.42$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$
.

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.7854 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phi}\textbf{F}_L = & \textbf{\phi}\textbf{c}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi}\textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phi}\textbf{F}_L = & \textbf{\phi}\textbf{c}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi}\textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Υ	-46.9	-46.9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-69.356	-69.356	0	0
2	M14	V	-69.356	-69.356	0	0
3	M15	V	-107.187	-107.187	0	0
4	M16	V	-107.187	-107.187	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	157.628	157.628	0	0
2	M14	V	119.797	119.797	0	0
3	M15	V	63.051	63.051	0	0
4	M16	У	63.051	63.051	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Ζ	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	777.798	2	1309.647	2	.597	1	.003	1	0	1	0	1
2		min	-953.306	3	-1731.328	3	-40.854	5	21	4	0	1	0	1
3	N7	max	.03	9	1105.644	1	509	12	0	12	0	1	0	1
4		min	226	2	-168.407	3	-253.728	4	497	4	0	1	0	1
5	N15	max	.025	9	3036.978	2	0	3	0	3	0	1	0	1
6		min	-2.491	2	-629.466	3	-243.339	4	483	4	0	1	0	1
7	N16	max	2744.9	2	4216.565	2	0	1	0	1	0	1	0	1
8		min	-3004.192	3	-5610.427	3	-40.803	5	212	4	0	1	0	1
9	N23	max	.034	14	1105.644	1	8.558	1	.017	1	0	1	0	1
10		min	226	2	-168.407	3	-247.424	4	487	4	0	1	0	1
11	N24	max	777.798	2	1309.647	2	045	12	0	12	0	1	0	1
12		min	-953.306	3	-1731.328	3	-41.412	5	212	4	0	1	0	1
13	Totals:	max	4297.553	2	11900.692	2	0	3						
14		min	-4911.491	3	-10039.363	3	-863.357	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	85.895	1	475.01	2	-7.591	12	0	15	.205	1	0	4
2			min	5.476	12	-835.595	3	-157.851	1	015	2	.013	12	0	3
3		2	max	85.895	1	332.053	2	-6.081	12	0	15	.097	4	.712	3
4			min	5.476	12	-588.247	3	-121.132	1	015	2	.005	10	404	2
5		3	max	85.895	1	189.096	2	-4.571	12	0	15	.054	5	1.176	3
6			min	5.476	12	-340.899	3	-84.413	1	015	2	038	1	664	2
7		4	max	85.895	1	46.139	2	-3.061	12	0	15	.029	5	1.394	3
8			min	5.476	12	-93.551	3	-47.695	1	015	2	104	1	782	2
9		5	max	85.895	1	153.797	3	521	10	0	15	.006	5	1.364	3
10			min	5.476	12	-96.818	2	-24.574	4	015	2	133	1	756	2
11		6	max	85.895	1	401.145	3	25.743	1	0	15	006	12	1.086	3
12			min	2.337	15	-239.775	2	-19.343	5	015	2	126	1	588	2
13		7	max	85.895	1	648.494	3	62.462	1	0	15	005	12	.561	3
14			min	-6.564	5	-382.732	2	-17.007	5	015	2	081	1	277	2
15		8	max	85.895	1	895.842	3	99.181	1	0	15	.002	2	.177	2
16			min	-16.829	5	-525.689	2	-14.671	5	015	2	05	4	211	3
17		9	max	85.895	1	1143.19	3	135.9	1	0	15	.117	1	.775	2
18			min	-27.094	5	-668.646	2	-12.335	5	015	2	062	5	-1.23	3

Model Name

Schletter, Inc.HCV

: _ . ._.

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC :	y-y Mome	LC_		
19		10	max	85.895	1	1390.538	3	172.618	1	.003	14	.271	1	1.515	2
20			min	5.476	12	-811.603	2	-103.595		01 <u>5</u>	2	.006	12	-2.497	3
21		11	max	85.895	1_	668.646	2	-4.488	12	.015	2	.117	1	.775	2
22			min	5.476	12	-1143.19	3	-135.9	1	0	15	0	3	-1.23	3
23		12	max	85.895	1	525.689	2	-2.978	12	.015	2	.049	4	177	2
24			min	5.476	12	-895.842	3	-99.181	1	0	15	005	3	211	3
25		13	max	85.895	1	382.732	2	-1.468	12	.015	2	.022	5	<u>.561</u>	3
26		4.4	min	5.476	12			-62.462	1	0	15	<u>081</u>	1	277	2
27		14	max	85.895	1	239.775	2	.168	3	.015	2	0	15	1.086	3
28		4.5	min	4.773	15	-401.145	3	-28.388	4	0	15	126	1	588	2
29		15	max	85.895	1	96.818	2	10.976	1	.015	2	005	12	1.364	3
30		4.0	min	-3.002	5	-153.797	3	-20.201	5	0	15	133	1	7 <u>56</u>	2
31		16	max	85.895	1	93.551	3	47.695	1	.015	2	003	12	1.394	2
32		17	min	-13.268	<u>5</u> 1	-46.139 340.899	3	-17.865 84.413	5 1	<u> </u>	15 2	104 .002	3	782 1.176	3
33		17	max min	85.895 -23.533	5	-189.096	2	-15.529	5	015	15	067	4	664	2
35		18	max		1	588.247	3	121.132	1	.015	2	.065	1	.712	3
36		10	min	-33.798	5	-332.053	2	-13.193	5	0	15	073	5	404	2
37		19	max		1	835.595	3	157.851	1	.015	2	.205	1	0	2
38		13	min	-44.063	5	-475.01	2	-10.857	5	0	15	085	5	0	3
39	M14	1	max	50.198	4	515.503	2	-7.806	12	.011	3	.237	1	0	1
40			min	2.37	12	-655.142	3	-163.184	1	013	2	.015	12	0	3
41		2	max	42.574	1	372.546	2	-6.297	12	.011	3	.143	4	.562	3
42		_	min	2.37	12	-468.324	3	-126.465		013	2	.008	12	444	2
43		3	max	42.574	1	229.589	2	-4.787	12	.011	3	.081	5	.937	3
44			min	2.37	12	-281.505	3	-89.747	1	013	2	016	1	745	2
45		4	max		1	86.632	2	-3.277	12	.011	3	.044	5	1.125	3
46			min	2.37	12	-94.687	3	-53.028	1	013	2	088	1	903	2
47		5	max	42.574	1	92.132	3	-1.108	10	.011	3	.01	5	1.126	3
48			min	264	5	-56.325	2	-37.596	4	013	2	122	1	918	2
49		6	max	42.574	1	278.95	3	20.41	1	.011	3	006	12	.94	3
50			min	-10.53	5	-199.282	2	-30.989	5	013	2	12	1	791	2
51		7	max	42.574	1	465.769	3	57.129	1	.011	3	005	12	.568	3
52			min	-20.795	5	-342.239	2	-28.653	5	013	2	082	1	52	2
53		8	max	42.574	1	652.587	3	93.848	1	.011	3	.001	10	.009	3
54			min	-31.06	5	-485.196	2	-26.317	5	013	2	083	4	106	2
55		9	max		1_	839.406	3	130.566	1	.011	3	.106	1	.451	2
56			min	-41.325	5	-628.153		-23.981	5	013	2	105	5	737	3
57		10	max	66.224	4	1026.224	3	167.285	1	.011	3	.255	1	1.15	2
58			min	2.37	12	<u>-771.11</u>	2	-106.636		013	2	.006	12	<u>-1.67</u>	3
59		11	_	55.958		628.153			12	.013	2	.143	4	.451	2
60		40	min	2.37	12	-839.406		-130.566		011	3	0	3	737	3
61		12			4	485.196	2	-2.762	12	.013	2	.079	5	.009	3
62		40	min	2.37	12	-652.587	3	-93.848	1	011	3	006	1	106	2
63		13		42.574	1	342.239	2	-1.252	12	.013	2	.042	5	.568	3
64		4.4	min	2.37	12	-465.769	3	-57.129	1	011	3	082	1	52	2
65		14	max		1	199.282	2	.491	3	.013	2	.007	5	.94	3
66		15	min	2.37	12	-278.95	3	-38.386	4	011	3	12	1	791	2
67		15	max		1	56.325	2	16.309	1	.013 011	2	005	12	1.126	3
68		16	min	2.37	12	-92.132	3	-31.167	5		3	122		918	2
69 70		10	max		1	94.687	3	53.028 -28.831	1	.013	2	002	12	1.125	3
		17	min	-4.858	5	-86.632	2		5	011	3	088 03	1	903	3
71 72		17	max min	42.574 -15.123	1	281.505 -229.589	2	89.747 -26.495	1	.013 - 011	3	.003 087	3	.937	2
73		18		42.574	<u>5</u> 1	468.324	3	126.465	5 1	011 .013	2	.092	1	745 .562	3
74		10	max min	-25.388	5	-372.546	2	-24.159	5	013	3	108	5	.56 <u>2</u> 444	2
75		10	max		1	655.142	3	163.184	1	.013	2	.237	1	- <u>444</u> 0	1
IJ		lθ	шах	42.074		000.142	J	103.104	I	.013	4	.231		U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
76			min	-35.653	5	-515.503	2	-21.824	5	011	3	131	5	0	3
77	M15	1	max	76.633	5	719.836	2	-7.722	12	.013	2	.263	4	0	2
78			min	-44.479	1	-349.076	3	-163.178	1	009	3	.014	12	0	3
79		2	max	66.368	5	516.349	2	-6.212	12	.013	2	.179	4	.301	3
80			min	-44.479	1	-253.051	3	-126.459	1_	009	3	.007	12	618	2
81		3	max	56.103	5	312.863	2	-4.703	12	.013	2	.107	5	.506	3
82		_	min	<u>-44.479</u>	1	-157.026	3	-89.74	1	009	3	016	1	-1.033	2
83		4	max	45.837	5	109.376	2	-3.193	12	.013	2	.06	5	.615	3
84		_	min	<u>-44.479</u>	1	-61.001	3	-58.232	4	009	3	088	1	-1.244	2
85		5	max	35.572	<u>5</u>	35.023	2	-1.148 -47.844	10 4	.013	3	.015	5	.628	2
86 87		6	min	<u>-44.479</u> 25.307	5	<u>-94.111</u> 131.048	3	20.417	1	009 .013	2	122 006	12	-1.251 .545	3
88		0	max	-44.479	1	-297.597	2	-41.211	5	009	3	12	1	-1.056	2
89		7	max	15.042	5	227.073	3	57.135	1	.013	2	005	12	.366	3
90			min	-44.479	1	-501.084	2	-38.875	5	009	3	086	4	656	2
91		8	max	4.777	5	323.098	3	93.854	1	.013	2	.001	10	.091	3
92		Ŭ	min	-44.479	1	-704.57	2	-36.539	5	009	3	108	4	058	1
93		9	max	-2.937	12	419.123	3	130.573	1	.013	2	.106	1	.753	2
94			min	-44.479	1	-908.057	2	-34.203	5	009	3	14	5	28	3
95		10	max	-2.937	12	515.148	3	167.292	1	.013	2	.263	4	1.763	2
96			min	-44.479	1	-1111.543	2	-111.856	14	009	3	.006	12	747	3
97		11	max	262	15	908.057	2	-4.356	12	.009	3	.178	4	.753	2
98			min	-44.479	1	-419.123	3	-130.573	1	013	2	0	12	28	3
99		12	max	-2.937	12	704.57	2	-2.846	12	.009	3	.104	5	.091	3
100			min	-44.479	1	-323.098	3	-93.854	1	013	2	006	1	058	1
101		13	max	-2.937	12	501.084	2	-1.337	12	.009	3	.056	5	.366	3
102			min	-44.479	1	-227.073	3	-59.043	4	013	2	082	1	656	2
103		14	max	-2.937	12	297.597	2	.357	3	.009	3	.012	5	.545	3
104			min	-44.479	1	-131.048	3	-48.655	4	013	2	12	1	-1.056	2
105		15	max	-2.937	12	94.111	2	16.302	1	.009	3	005	12	.628	3
106			min	-52.073	4	-35.023	3	-41.391	5	013	2	122	1	-1.251	2
107		16	max	<u>-2.937</u>	12	61.001	3	53.021	1	.009	3	002	12	.615	3
108		47	min	-62.338	4	-109.376	2	-39.056	5	013	2	091	4	-1.244	2
109		17	max	-2.937	12	157.026	3	89.74	1	.009	3	.003	3	.506	3
110		18	min	-72.603	4	-312.863	3	-36.72	5	013	2	114 .092	4	<u>-1.033</u>	3
111		18	max	-2.937	12	253.051		126.459	1	.009 013	3	145	1	.301	
112		19	min	<u>-82.869</u> -2.937	12	-516.349 349.076	3	-34.384 163.178	<u>5</u> 1	.009	3	.236	5	<u>618</u>	2
114		19	max min	-2.93 <i>1</i> -93.134	4	-719.836	2	-32.048	5	013	2	178	5	0	5
115	M16	1	max	74.922	5	680.818	2	-7.307	12	.013	2	.206	1	0	2
116	IVITO			-91.951	1	-317.33	3	-158.146		013	3	.012	12	0	3
117		2	max	64.657	5	477.331	2	-5.797	12	.011	2	.134	4	.269	3
118			min		1	-221.305	3	-121.427	1	013	3	.005	12	579	2
119		3	max	54.392	5	273.845	2	-4.287	12	.011	2	.08	5	.443	3
120		Ť	min	-91.951	1	-125.28	3	-84.708	1	013	3	037	1	955	2
121		4	max	44.127	5	70.358	2	-2.777	12	.011	2	.045	5	.52	3
122			min	-91.951	1	-29.255	3	-47.989	1	013	3	103	1	-1.127	2
123		5	max	33.861	5	66.77	3	698	10	.011	2	.012	5	.501	3
124			min	-91.951	1	-133.129	2	-34.458	4	013	3	133	1	-1.095	2
125		6	max	23.596	5	162.795	3	25.448	1	.011	2	006	12	.386	3
126			min	-91.951	1	-336.615	2	-29.109	5	013	3	126	1	86	2
127		7	max	13.331	5	258.82	3	62.167	1	.011	2	005	12	.176	3
128			min	-91.951	1	-540.102	2	-26.773	5	013	3	082	1	422	2
129		8	max	3.066	5	354.845	3	98.886	1	.011	2	.002	2	.22	2
130			min	-91.951	1	-743.588	2	-24.437	5	013	3	073	4	131	3
131		9	max	-4.737	15	450.87	3	135.605	1	.011	2	.116	1	1.065	2
132			min	<u>-91.951</u>	1	-947.075	2	-22.101	5	013	3	095	5	534	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
133		10	max	-5.374	12	546.895	3	172.324	1	.011	2	.27	1	2.114	2
134			min	-91.951	1	-1150.562	2	-108.515		013	3	.007	12	-1.033	3
135		11	max	-2.92	15	947.075	2	-4.772	12	.013	3	.136	4	1.065	2
136			min	-91.951	1	-450.87	3	-135.605	1	011	2	.002	12	534	3
137		12	max	-5.374	12	743.588	2	-3.262	12	.013	3	.072	4	.22	2
138			min	-91.951	1	-354.845	3	-98.886	1	011	2	004	3	131	3
139		13	max	-5.374	12	540.102	2	-1.752	12	.013	3	.035	5	.176	3
140			min	-91.951	1	-258.82	3	-62.167	1	011	2	082	1	422	2
141		14	max	-5.374	12	336.615	2	242	12	.013	3	.002	5	.386	3
142			min	-91.951	1	-162.795	3	-38.183	4	011	2	126	1	86	2
143		15	max	-5.374	12	133.129	2	11.27	1	.013	3	005	12	.501	3
144			min	-91.951	1	-66.77	3	-29.951	5	011	2	133	1	-1.095	2
145		16	max	-5.374	12	29.255	3	47.989	1	.013	3	003	12	.52	3
146			min	-91.951	1	-70.358	2	-27.615	5	011	2	103	1	-1.127	2
147		17	max	-5.374	12	125.28	3	84.708	1	.013	3	0	3	.443	3
148			min	-91.951	1	-273.845	2	-25.279	5	011	2	093	4	955	2
149		18	max	-5.374	12	221.305	3	121.427	1	.013	3	.066	1	.269	3
150			min	-97.584	4	-477.331	2	-22.944	5	011	2	108	5	579	2
151		19	max	-5.374	12	317.33	3	158.146	1	.013	3	.206	1	0	2
152			min	-107.849	4	-680.818	2	-20.608	5	011	2	13	5	0	5
153	M2	1		1112.776	2	1.96	4	.555	1	0	3	0	3	0	1
154			min	-1522.489	3	.478	15	-38.24	4	0	4	0	2	0	1
155		2		1113.204	2	1.903	4	.555	1	0	3	0	1	0	15
156		-	min	-1522.167	3	.464	15	-38.613	4	0	4	011	4	0	4
157		3		1113.633	2	1.847	4	.555	1	0	3	0	1	0	15
158			min	-1521.846	3	.451	15	-38.986	4	0	4	022	4	001	4
159		4	_	1114.061	2	1.79	4	.555	1	0	3	0	1	0	15
160			min	-1521.524	3	.438	15	-39.36	4	0	4	034	4	002	4
161		5		1114.489	2	1.733	4	.555	1	0	3	0	1	0	15
162			min	-1521.203	3	.42	12	-39.733	4	0	4	045	4	002	4
163		6		1114.918	2	1.676	4	.555	1	0	3	0	1	0	15
164			min	-1520.882	3	.398	12	-40.106	4	0	4	057	4	003	4
165		7		1115.346	2	1.62	4	.555	1	0	3	0	1	0	15
166				-1520.56	3	.376	12	-40.48	4	0	4	069	4	003	4
167		8		1115.775	2	1.563	4	.555	1	0	3	.003	1	0	15
168		0	min	-1520.239	3	.354	12	-40.853	4	0	4	08	4	004	4
169		9		1116.203	2	1.506	4	.555	1	0	3	.001	1	0	12
170		9	min	-1519.918	3	.332	12	-41.226	4	0	4	092	4	004	4
171		10		1116.632	2	1.449	4	.555	1		3	.001	1	004 001	12
172		10	min	-1519.596	3	.31	12	-41.6	4	0 0	4	104	4	001	4
173		11	mov	1117.06		1.392	4	.555	1	0	3	.002	1	004 001	12
174		11			3		12			0	4				4
		12	min			.288		-41.973	4		3	116	4	005	_
175		12		1117.489 -1518.954		1.336	4	.555	1	0		.002	1	001	12
176		40			3	.265	12	-42.346	4	0	4	129	4	005	4
177		13		1117.917	2	1.279	4	.555	1	0	3	.002	1	001	12
178		4.4	min		3	.243	12	-42.72	4	0	4	141	4	006	4
179		14		1118.346	2	1.222	4	.555	1	0	3	.002	1	001	12
180			1	-1518.311	3	.221	12	-43.093	4	0	4	1 <u>54</u>	4	006	4
181		15		1118.774	2	1.165	4	.555	1	0	3	.002	1	001	12
182		4.0	min	-1517.989	3	.199	12	-43.466	4	0	4	166	4	006	4
183		16		1119.203	2	1.118	2	.555	1	0	3	.002	1	001	12
184			min		3	.177	12	-43.84	4	0	4	179	4	007	4
185		17		1119.631	2	1.074	2	.555	1	0	3	.003	1	002	12
186			min		3	.155	12	-44.213	4	0	4	192	4	007	4
187		18		1120.06	2	1.029	2	.555	1	0	3	.003	1	002	12
188			min	-1517.025	3	.133	12	-44.586	4	0	4	204	4	007	4
189		19	max	1120.488	2	.985	2	.555	1	0	3	.003	1	002	12

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
190			min	-1516.704	3	.111	12	-44.96	4	0	4	217	4	008	4
191	M3	1	max	690.003	2	7.909	4	3.199	4	0	3	0	1	.008	4
192			min	-827.835	3	1.871	15	.008	12	0	4	023	4	.002	12
193		2	max	689.833	2	7.142	4	3.738	4	0	3	0	1	.005	2
194			min	-827.963	3	1.691	15	.008	12	0	4	022	4	0	12
195		3	max	689.662	2	6.375	4	4.276	4	0	3	0	1	.002	2
196			min	-828.091	3	1.51	15	.008	12	0	4	02	4	0	3
197		4	max		2	5.608	4	4.815	4	0	3	0	1	0	2
198			min	-828.219	3	1.33	15	.008	12	0	4	018	4	002	3
199		5	max	689.321	2	4.84	4	5.354	4	0	3	0	1	0	15
200			min	-828.347	3	1.149	15	.008	12	0	4	016	4	003	3
201		6	max		2	4.073	4	5.893	4	0	3	0	1	001	15
202			min	-828.474	3	.969	15	.008	12	0	4	014	5	005	6
203		7	max		2	3.306	4	6.431	4	0	3	0	1	001	15
204		<u> </u>	min	-828.602	3	.789	15	.008	12	0	4	011	5	007	6
205		8	max	688.81	2	2.539	4	6.97	4	0	3	0	1	002	15
206			min	-828.73	3	.608	15	.008	12	0	4	008	5	008	6
207		9	max	688.64	2	1.771	4	7.509	4	0	3	0	1	002	15
208		1 3	min	-828.858	3	.428	15	.008	12	0	4	005	5	002	6
209		10		688.47	2	1.004	4	8.048	4		3	005 0	1	00 <u>9</u> 002	15
210		10	max	-828.985	3	.215	12	.008	12	0	4	002	5	002	
211		11	min			.361	2	8.586	4		3	.002	4	009 002	6
			max		3		3			0					15
212		40	min	-829.113	_	143		.008	12	0	4	0	12	<u>009</u>	6
213		12	max		2	113	15	9.125	4	0	3	.005	4	002	15
214		40	min	-829.241	3	592	3	.008	12	0	4	0	12	009	6
215		13	max		2	293	15	9.664	4	0	3	.009	4	002	15
216		4.4	min	-829.369	3	-1.298	6	.008	12	0	4	0	12	009	6
217		14	max		2_	474	15	10.203	4	0	3	.013	4	002	15
218			min	-829.496	3_	-2.066	6	.008	12	0	4	0	12	008	6
219		15	max	687.618	2	654	15	10.741	4	0	3	.018	4	002	15
220		1.0	min	-829.624	3	-2.833	6	.008	12	0	4	0	12	007	6
221		16	max		2	834	15	11.28	4	0	3	.022	4	001	15
222			min	-829.752	3_	-3.6	6	.008	12	0	4	0	12	006	6
223		17	max		2	-1.015	15	11.819	4	0	3	.027	4	001	15
224			min	-829.88	3	-4.367	6	.008	12	0	4	0	12	004	6
225		18	max		2	-1.195	15	12.358	4	0	3	.032	4	0	15
226			min	-830.007	3	-5.135	6	.008	12	0	4	0	12	002	6
227		19	max		2	-1.375	15	12.896	4	0	3	.037	4	0	1
228			min	-830.135	3	-5.902	6	.008	12	0	4	0	12	0	1
229	<u>M4</u>	1_		1102.578	_1_	0	1	508	12	0	1_	.027	4	0	1
230				-170.707	3	0	1	-252.165		0	1	0	12	0	1
231		2		1102.748	1_	0	1	508	12	0	1	0	3	0	1
232				-170.579	3	0	1	-252.313		0	1	002	4	0	1
233		3		1102.918	1_	0	1	508	12	0	1	0	12	0	1
234			min	-170.452	3	0	1	-252.461	4	0	1	031	4	0	1
235		4	max	1103.089	1	0	1	508	12	0	1	0	12	0	1
236			min	-170.324	3	0	1	-252.608	4	0	1	06	4	0	1
237		5	max	1103.259	1	0	1	508	12	0	1	0	12	0	1
238				-170.196	3	0	1	-252.756		0	1	089	4	0	1
239		6		1103.429	1	0	1	508	12	0	1	0	12	0	1
240				-170.068	3	0	1	-252.904		0	1	118	4	0	1
241		7		1103.6	1	0	1	508	12	0	1	0	12	0	1
242				-169.941	3	0	1	-253.051	4	0	1	147	4	0	1
243		8		1103.77	1	0	1	508	12	0	1	0	12	0	1
244			min	-169.813	3	0	1	-253.199		0	1	176	4	0	1
245		9		1103.94	1	0	1	508	12	0	1	0	12	0	1
246				-169.685	3	0	1	-253.346		0	1	205	4	0	1
240			1111111	103.003	J	U		200.040	-	U		200	7	U	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1104.111	1	0	1	508	12	0	1	0	12	0	1
248			min	-169.557	3	0	1	-253.494	4	0	1	234	4	0	1
249		11	max	1104.281	1	0	1	508	12	0	1	0	12	0	1
250			min	-169.43	3	0	1	-253.642	4	0	1	263	4	0	1
251		12	max	1104.451	1	0	1	508	12	0	1	0	12	0	1
252			min	-169.302	3	0	1	-253.789	4	0	1	292	4	0	1
253		13	max	1104.622	1	0	1	508	12	0	1	0	12	0	1
254			min	-169.174	3	0	1	-253.937	4	0	1	322	4	0	1
255		14	max	1104.792	1	0	1	508	12	0	1	0	12	0	1
256			min	-169.046	3	0	1	-254.085	4	0	1	351	4	0	1
257		15	max	1104.962	1	0	1	508	12	0	1	0	12	0	1
258			min		3	0	1	-254.232	4	0	1	38	4	0	1
259		16	max	1105.133	1	0	1	508	12	0	1	0	12	0	1
260			min	-168.791	3	0	1	-254.38	4	0	1	409	4	0	1
261		17		1105.303	1	0	1	508	12	0	1	0	12	0	1
262			min	-168.663	3	0	1	-254.528	4	0	1	438	4	0	1
263		18	max	1105.473	1	0	1	508	12	0	1	0	12	0	1
264				-168.535	3	0	1	-254.675	4	0	1	468	4	0	1
265		19		1105.644	1	0	1	508	12	0	1	0	12	0	1
266			min	-168.407	3	0	1	-254.823	4	0	1	497	4	0	1
267	M6	1		3542.399	2	2.479	2	0	1	0	1	0	4	0	1
268			min	-4936.127	3	102	3	-38.621	4	0	4	0	1	0	1
269		2	max	3542.828	2	2.434	2	0	1	0	1	0	1	0	3
270			min	-4935.806	3	135	3	-38.994	4	0	4	011	4	0	2
271		3		3543.256	2	2.39	2	0	1	0	1	0	1	0	3
272			min	-4935.484	3	168	3	-39.368	4	0	4	023	4	001	2
273		4		3543.685	2	2.346	2	0	1	0	1	0	1	0	3
274			min	-4935.163	3	202	3	-39.741	4	0	4	034	4	002	2
275		5		3544.113	2	2.302	2	0	1	0	1	0	1	0	3
276			min	-4934.841	3	235	3	-40.114	4	0	4	046	4	003	2
277		6		3544.541	2	2.257	2	0	1	0	1	0	1	0	3
278		<u> </u>	min	-4934.52	3	268	3	-40.488	4	0	4	057	4	003	2
279		7	max		2	2.213	2	0	1	0	1	0	1	0	3
280		<u> </u>	min	-4934.199	3	301	3	-40.861	4	0	4	069	4	004	2
281		8		3545.398	2	2.169	2	0	1	0	1	0	1	0	3
282			min	-4933.877	3	334	3	-41.234	4	0	4	081	4	005	2
283		9		3545.827	2	2.125	2	0	1	0	1	0	1	0	3
284			min	-4933.556	3	367	3	-41.608	4	0	4	093	4	005	2
285		10		3546.255	2	2.08	2	0	1	0	1	0	1	0	3
286		'	min	-4933.235	3	401	3	-41.981	4	0	4	105	4	006	2
287		11		3546.684		2.036	2	0	1	0	1	0	1	0	3
288			min		3	434	3	-42.354	4	0	4	118	4	007	2
289		12		3547.112	2	1.992	2	0	1	0	1	0	1	0	3
290		14	min	-4932.592	3	467	3	-42.728	4	0	4	13	4	007	2
291		13		3547.541	2	1.948	2	0	1	0	1	0	1	.001	3
292		'0	min	-4932.271	3	5	3	-43.101	4	0	4	142	4	008	2
293		14		3547.969	2	1.903	2	0	1	0	1	0	1	.001	3
294		17	min		3	533	3	-43.474	4	0	4	155	4	008	2
295		15		3548.398	2	1.859	2	0	1	0	1	0	1	.001	3
296		13	min	-4931.628	3	567	3	-43.848	4	0	4	168	4	009	2
297		16		3548.826	2	1.815	2	0	1	0	1	0	1	.002	3
298		10	min		3	6	3	-44.221	4	0	4	18	4	002	2
		17				1.771	2	_	1	0	1		1		3
299		17		3549.255 -4930.985	3		3	0	4	0	4	102	4	.002	2
300		10	min			633 1.736	_	-44.594	1			193	_	01	
301		18		3549.683 -4930.664	3	1.726	3	0	_	0	<u>1</u> 4	206	1	.002	2
302		10	min			666 1.692		-44.968	4	0		206	4	01	
303		19	max	3550.112	2	1.682	2	0	1	0	<u>1</u>	0	1	.002	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-4930.342	3	699	3	-45.341	4	0	4	219	4	011	2
305	M7	1		2476.792	2	7.914	6	2.998	4	0	1	0	1	.011	2
306			min	-2592.067	3	1.858	15	0	1	0	4	023	4	002	3
307		2		2476.621	2	7.147	6	3.537	4	0	1	0	1	.008	2
308			min	-2592.195	3	1.678	15	0	1	0	4	022	4	004	3
309		3		2476.451	2	6.38	6	4.075	4	0	1	0	1_	.006	2
310			min	-2592.322	3	1.497	15	0	1	0	4	02	4	005	3
311		4		2476.281	2	5.612	6	4.614	4	0	1	0	1	.003	2
312			min	-2592.45	3	1.317	15	0	1	0	4	019	4	006	3
313		5	max	2476.11	2	4.845	6	5.153	4	0	1	0	1	.001	2
314			min	-2592.578	3	1.137	15	0	1	0	4	017	4	007	3
315		6	max		2	4.078	6	5.692	4	0	1_	0	1_	0	2
316			min	-2592.706	3	.956	15	0	1	0	4	014	4	008	3
317		7	max		2	3.311	6	6.23	4	0	_1_	0	1	002	15
318			min	-2592.834	3	.747	12	0	1	0	4	012	4	008	3
319		8	max	2475.599	2	2.637	2	6.769	4	0	_1_	0	_1_	002	15
320			min	-2592.961	3	.448	12	0	1	0	4	009	4	009	3
321		9	max	2475.429	2	2.039	2	7.308	4	0	1_	0	1_	002	15
322			min	-2593.089	3	.149	12	0	1	0	4	006	4	009	3
323		10	max	2475.259	2	1.442	2	7.847	4	0	1	0	1	002	15
324			min	-2593.217	3	278	3	0	1	0	4	003	5	009	4
325		11	max	2475.088	2	.844	2	8.385	4	0	1	0	4	002	15
326			min	-2593.345	3	726	3	0	1	0	4	0	1	009	4
327		12	max	2474.918	2	.246	2	8.924	4	0	1	.004	4	002	15
328			min	-2593.472	3	-1.174	3	0	1	0	4	0	1	009	4
329		13	max	2474.748	2	306	15	9.463	4	0	1	.008	4	002	15
330			min	-2593.6	3	-1.623	3	0	1	0	4	0	1	009	4
331		14	max	2474.577	2	487	15	10.002	4	0	1	.012	4	002	15
332			min	-2593.728	3	-2.071	3	0	1	0	4	0	1	008	4
333		15	max	2474.407	2	667	15	10.54	4	0	1	.016	4	002	15
334			min	-2593.856	3	-2.827	4	0	1	0	4	0	1	007	4
335		16	max	2474.237	2	847	15	11.079	4	0	1	.021	4	001	15
336			min	-2593.983	3	-3.594	4	0	1	0	4	0	1	006	4
337		17	max	2474.066	2	-1.028	15	11.618	4	0	1	.026	4	001	15
338			min	-2594.111	3	-4.361	4	0	1	0	4	0	1	004	4
339		18	max	2473.896	2	-1.208	15	12.157	4	0	1	.031	4	0	15
340			min	-2594.239	3	-5.129	4	0	1	0	4	0	1	002	4
341		19	max	2473.726	2	-1.388	15	12.695	4	0	1	.036	4	0	1
342			min	-2594.367	3	-5.896	4	0	1	0	4	0	1	0	1
343	M8	1		3033.912	2	0	1	0	1	0	1	.026	4	0	1
344				-631.766	3	0	1	-244.688	4	0	1	0	1	0	1
345		2		3034.082	2	0	1	0	1	0	1	0	1	0	1
346			min			0	1	-244.835		0	1	002	4	0	1
347		3		3034.253		0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-244.983	4	0	1	03	4	0	1
349		4		3034.423		0	1	0	1	0	1	0	1	0	1
350				-631.382	3	0	1	-245.131	4	0	1	059	4	0	1
351		5		3034.594		0	1	0	1	0	1	0	1	0	1
352				-631.255		0	1	-245.278	_	0	1	087	4	0	1
353		6		3034.764	2	0	1	0	1	0	1	0	1	0	1
354				-631.127	3	0	1	-245.426		0	1	115	4	0	1
355		7		3034.934	_	0	1	0	1	0	1	0	1	0	1
356		-	min			0	1	-245.574		0	1	143	4	0	1
357		8		3035.105		0	1	0	1	0	1	0	1	0	1
358		0		-630.871	3	0	1	-245.721	4	0	1	171	4	0	1
359		9					1	0	1		1	171	1		1
		9		3035.275		0	1		_	0	1			0	1
360			THIII	-630.744	3	0		-245.869	4	0		199	4	0	

Model Name

Schletter, Inc. HCV

псу

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	3035.445	2	0	1	0	1_	0	1	0	1	0	1
362				-630.616	3	0	1	-246.016	4	0	1	228	4	0	1
363		11		3035.616	2	0	1	0	_1_	0	1	0	1	0	1
364			min	-630.488	3	0	1	-246.164	4	0	1_	256	4	0	1
365		12		3035.786	2	0	1	0	_1_	0	1	0	1	0	1
366		40	min	-630.36	3	0	1	-246.312	4	0	1	284	4	0	1
367		13		3035.956	2	0	1	0	1_	0	1	0	1	0	1
368		4.4		-630.233	3	0	1	-246.459	4_	0	<u>1</u> 1	313	1	0	1
369		14		3036.127	2	0	1	0 -246.607	<u>1</u> 4	0	1	0	4	0	1
370 371		15		-630.105 3036.297	<u>3</u> 2	0	1	0	1	0	1	341 0	1	0	1
372		13		-629.977	3	0	1	-246.755	4	0		369	4	0	1
373		16		3036.467	2	0	1	0	1	0	1	0	1	0	1
374				-629.849	3	0	1	-246.902	4	0	1	398	4	0	1
375		17		3036.638	2	0	1	0	1	0	1	0	1	0	1
376				-629.721	3	0	1	-247.05	4	0	1	426	4	0	1
377		18	max	3036.808	2	0	1	0	1	0	1	0	1	0	1
378			min	-629.594	3	0	1	-247.198	4	0	1	454	4	0	1
379		19	max	3036.978	2	0	1	0	1	0	1	0	1	0	1
380				-629.466	3	0	1	-247.345	4	0	1	483	4	0	1
381	M10	1	max	1112.776	2	1.886	6	032	12	0	_1_	0	2	0	1
382			min	-1522.489	3	.427	15	-38.557	4	0	5	0	3	0	1
383		2		1113.204	2	1.829	6	032	12	0	1	0	10	0	15
384		_	min	-1522.167	3	.414	15	-38.931	4	0	5	011	4	0	6
385		3		1113.633	2	1.772	6	032	12	0	1	0	10	0	15
386		4	min	-1521.846	3	.401	15	-39.304	4	0	5	023	4	001	6
387		4	-	1114.061	2	1.715	6	032	12	0	1_	0	12	0	15
388		_		-1521.524	3	.387	15	-39.677	4	0	5	034	4	002	6
389		5		1114.489 -1521.203	2	1.659	6	032	12	0	1	0	12	0	15
390 391		6		1114.918	<u>3</u> 2	.374 1.602	<u>15</u>	-40.051 032	<u>4</u> 12	0	<u>5</u> 1	046 0	12	002 0	15
392		0	min	-1520.882	3	.361	15	-40.424	4	0	5	057	4	003	6
393		7		1115.346	2	1.545	6	032	12	0	1	0	12	003	15
394				-1520.56	3	.347	15	-40.797	4	0	5	069	4	003	6
395		8		1115.775	2	1.488	6	032	12	0	1	0	12	0	15
396			min	-1520.239	3	.334	15	-41.171	4	0	5	081	4	003	6
397		9	max	1116.203	2	1.431	6	032	12	0	1	0	12	0	15
398			min	-1519.918	3	.321	15	-41.544	4	0	5	093	4	004	6
399		10	max	1116.632	2	1.383	2	032	12	0	1	0	12	0	15
400				-1519.596	3	.307	15	-41.917	4	0	5	105	4	004	6
401		11		1117.06	2	1.339	2	032	12	0	_1_	0	12	001	15
402				-1519.275	3	.288	12	-42.291	4	0	5	117	4	005	6
403		12		1117.489	2	1.295	2	032	12	0	1	0	12	001	15
404		4.0		-1518.954	3_	.265	12	-42.664	4	0	5	13	4	005	6
405		13		1117.917	2	1.251	2	032	12	0	1_	0	12	001	15
406		4.4		-1518.632	3	.243	12	-43.037	4	0	5	142	4	005	6
407		14		1118.346	2	1.206	2	032	12	0	1	0	12	001	15
408		15		-1518.311	3	.221	12	-43.411	4	0	5	1 <u>55</u>	4	006	15
409		15		1118.774 -1517.989	2	1.162	2 12	032 -43.784	<u>12</u>	0	1_5	167	12	001	15
410		16		1119.203	<u>3</u> 2	.199 1.118	2	032	<u>4</u> 12	0	<u>5</u> 1	167	12	006 001	15
411		10		-1517.668	3	.177	12	032 -44.157	4	0	5	18	4	001	6
413		17		1119.631	2	1.074	2	032	12	0	<u> </u>	0	12	006 001	15
414		17		-1517.347	3	.155	12	-44.531	4	0	5	193	4	007	6
415		18		1120.06	2	1.029	2	032	12	0	1	0	12	007	15
416		'0		-1517.025	3	.133	12	-44.904	4	0	5	206	4	007	2
417		19		1120.488	2	.985	2	032	12	0	1	0	12	002	15
$\overline{}$.									

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-1516.704	3	.111	12	-45.277	4	0	5	219	4	007	2
419	M11	1	max	690.003	2	7.858	6	3.12	4	0	1	0	12	.007	2
420			min	-827.835	3	1.836	15	138	1	0	4	023	4	.002	15
421		2	max	689.833	2	7.09	6	3.659	4	0	1	0	12	.005	2
422			min	-827.963	3	1.656	15	138	1	0	4	022	4	0	12
423		3	max	689.662	2	6.323	6	4.198	4	0	1	0	12	.002	2
424			min	-828.091	3	1.475	15	138	1	0	4	02	4	0	3
425		4	max	689.492	2	5.556	6	4.737	4	0	1	0	12	0	2
426			min	-828.219	3	1.295	15	138	1	0	4	018	4	002	3
427		5	max	689.321	2	4.789	6	5.275	4	0	1	0	12	0	15
428			min	-828.347	3	1.115	15	138	1	0	4	016	4	003	3
429		6	max	689.151	2	4.021	6	5.814	4	0	1	0	12	001	15
430			min	-828.474	3	.934	15	138	1	0	4	014	4	005	4
431		7	max	688.981	2	3.254	6	6.353	4	0	1	0	12	002	15
432			min	-828.602	3	.754	15	138	1	0	4	011	4	007	4
433		8	max	688.81	2	2.487	6	6.892	4	0	1	0	12	002	15
434			min	-828.73	3	.574	15	138	1	0	4	009	4	008	4
435		9	max	688.64	2	1.72	6	7.43	4	0	1	0	12	002	15
436			min	-828.858	3	.393	15	138	1	0	4	006	4	009	4
437		10	max	688.47	2	.959	2	7.969	4	0	1	0	12	002	15
438			min	-828.985	3	.213	15	138	1	0	4	002	4	009	4
439		11	max	688.299	2	.361	2	8.508	4	0	1	.001	5	002	15
440			min	-829.113	3	143	3	138	1	0	4	0	1	01	4
441		12	max	688.129	2	148	15	9.047	4	0	1	.005	5	002	15
442			min	-829.241	3	592	3	138	1	0	4	0	1	01	4
443		13	max	687.959	2	328	15	9.585	4	0	1	.009	5	002	15
444			min	-829.369	3	-1.35	4	138	1	0	4	001	1	009	4
445		14	max	687.788	2	508	15	10.124	4	0	1	.013	5	002	15
446			min	-829.496	3	-2.117	4	138	1	0	4	001	1	008	4
447		15	max	687.618	2	689	15	10.663	4	0	1	.017	4	002	15
448			min	-829.624	3	-2.885	4	138	1	Ö	4	001	1	007	4
449		16	max		2	869	15	11.202	4	0	1	.022	4	001	15
450			min	-829.752	3	-3.652	4	138	1	0	4	001	1	006	4
451		17	max	687.277	2	-1.05	15	11.74	4	0	1	.026	4	001	15
452		1.	min	-829.88	3	-4.419	4	138	1	0	4	001	1	004	4
453		18	max	687.107	2	-1.23	15	12.279	4	0	1	.031	4	0	15
454			min	-830.007	3	-5.186	4	138	1	0	4	001	1	002	4
455		19	max	686.937	2	-1.41	15	12.818	4	0	1	.037	4	0	1
456		10	min	-830.135	3	-5.953	4	138	1	0	4	001	1	0	1
457	M12	1		1102.578	1	0.000	1	8.842	1	0	1	.027	4	0	1
458	10112	•		-170.707	3	0	1	-247.098	4	0	1	0	1	0	1
459		2		1102.748	1	0	1	8.842	1	0	1	0	1	0	1
460				-170.579	3	0	1	-247.246		0	1	002	4	0	1
461		3		1102.918	1	0	1	8.842	1	0	1	.001	1	0	1
462		_ J			3	0	1	-247.394	4	0	1	03	4	0	1
463		4		1103.089	1	0	1	8.842	1	0	1	.002	1	0	1
464				-170.324		0	1	-247.541	4	0	1	059	4	0	1
465		5		1103.259	1	0	1	8.842	1	0	1	.003	1	0	1
466		 	min		3	0	1	-247.689	4	0	1	087	4	0	1
467		6		1103.429	<u> </u>	0	1	8.842	1	0	1	.004	1	0	1
468		0			3	0	1	-247.837	4	0	1	116	4	0	1
469		7		1103.6	<u> </u>		1	8.842			1	.005	1	_	1
470				-169.941	3	0	1	-247.984	4	0	1	144	4	0	1
		0					1								
471		8		1103.77	1	0	1	8.842	1	0	1	.006	1	0	1
472		0	min		3	0	1	-248.132	1	0	1	173	4	0	
473		9		1103.94	<u>1</u>	0		8.842	_	0		.007	1	0	1
474			min	-169.685	3	0	1	-248.279	4	0	1	201	4	0	1

Model Name

Schletter, Inc. HCV

:

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]				_	
475		10		1104.111	1	0	1	8.842	1	0	1	.008	1	0	1
476			min		3	0	1	-248.427	4	0	1_	23	4	0	1
477		11		1104.281	1	0	1	8.842	1	0	1	.009	1	0	1
478			min	-169.43	3	0	1	-248.575	4	0	1_	258	4	0	1
479		12		1104.451	1	0	1	8.842	1	0	_1_	.01	1	0	1
480			min	-169.302	3	0	1	-248.722	4	0	1_	287	4	0	1
481		13		1104.622	1	0	1	8.842	1	0	_1_	.011	1_	0	1
482			min		3	0	1	-248.87	4	0	1_	315	4	0	1
483		14	max	1104.792	1_	0	1	8.842	1	0	_1_	.012	1_	0	1
484			min		3	0	1	-249.018	4	0	1_	344	4	0	1
485		15	max	1104.962	_1_	0	1	8.842	1	0	_1_	.013	1	0	1
486			min		3	0	1	-249.165	4	0	1	372	4	0	1
487		16	max	1105.133	1	0	1	8.842	1	0	_1_	.014	1	0	1
488			min	-168.791	3	0	1	-249.313	4	0	1	401	4	0	1
489		17	max	1105.303	1	0	1	8.842	1	0	1	.015	1	0	1
490			min	-168.663	3	0	1	-249.46	4	0	1	43	4	0	1
491		18	max	1105.473	1	0	1	8.842	1	0	1	.016	1	0	1
492			min	-168.535	3	0	1	-249.608	4	0	1	458	4	0	1
493		19	max	1105.644	1	0	1	8.842	1	0	1	.017	1	0	1
494			min	-168.407	3	0	1	-249.756	4	0	1	487	4	0	1
495	M1	1	max	157.857	1	835.562	3	44.037	5	0	2	.205	1	0	15
496			min	-10.857	5	-474.382	2	-85.802	1	0	3	085	5	015	2
497		2	max	158.462	1	834.588	3	45.279	5	0	2	.159	1	.235	2
498			min	-10.575	5	-475.68	2	-85.802	1	0	3	061	5	441	3
499		3	max	511.091	3	571.063	2	9.071	5	0	3	.114	1	.474	2
500			min	-298.321	2	-608.562	3	-85.414	1	0	2	037	5	864	3
501		4	max	511.545	3	569.765	2	10.312	5	0	3	.069	1	.176	1
502			min	-297.716	2	-609.536	3	-85.414	1	0	2	032	5	542	3
503		5	max		3	568.467	2	11.554	5	0	3	.024	1	003	15
504			min	-297.11	2	-610.509	3	-85.414	1	0	2	027	5	221	3
505		6	max		3	567.169	2	12.795	5	0	3	001	12	.102	3
506			min	-296.505	2	-611.483	3	-85.414	1	0	2	025	4	427	2
507		7	max		3	565.871	2	14.036	5	0	3	004	12	.425	3
508			min	-295.9	2	-612.457	3	-85.414	1	0	2	066	1	726	2
509		8	max	513.362	3	564.572	2	15.278	5	0	3	003	15	.748	3
510			min	-295.294	2	-613.43	3	-85.414	1	0	2	111	1	-1.024	2
511		9	max	525.63	3	51.192	2	52.083	5	0	9	.067	1	.874	3
512			min	-229.445	2	.392		-128.024	1	0	3	117	5	-1.172	2
513		10	max		3	49.894	2	53.324	5	0	9	0	10	.851	3
514			min	-228.839	2	0	5	-128.024		0	3	09	4	-1.199	2
515		11		526.538	3	48.596	2	54.566	5	0	9	004	12	.829	3
516			min		2	-1.623	4	-128.024		0	3	076	4	-1.225	2
517		12	max	538.672	3	394.756	3	138.339	5	0	2	.11	1	.723	3
518			1		2	-670.834	2	-83.576	1	0	3	192	5	-1.086	2
519		13		539.126	3	393.782	3	139.58	5	0	2	.066	1	.515	3
520			min	-161.728	2	-672.132	2	-83.576	1	0	3	119	5	731	2
521		14	max		3	392.809	3	140.822	5	0	2	.022	1	.307	3
522				-161.123	2	-673.43	2	-83.576	1	0	3	045	5	376	2
523		15		540.035	3	391.835	3	142.063	5	0	2	.03	5	.1	3
524				-160.517	2	-674.728	2	-83.576	1	0	3	022	1	041	1
525		16		540.489	3	390.861	3	143.305	5	0	2	.105	5	.336	2
526			min		2	-676.026	2	-83.576	1	0	3	066	1	106	3
527		17		540.943	3	389.888	3	144.546	5	0	2	.181	5	.693	2
528				-159.307	2	-677.325	2	-83.576	1	0	3	111	1	312	3
529		18			5	682.662	2	-5.374	12	0	5	.176	5	.349	2
530			min	-158.746	1	-316.431	3	-109.147	4	0	2	158	1	154	3
531		19	max		5	681.364	2	-5.374	12	0	5	.13	5	.013	3
			,ux	_0.001	_	, 551.557		J.07 T			<u> </u>		<u> </u>		<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
532			min	-158.141	1	-317.405	3	-107.906	4	0	2	206	1	011	2
533	M5	1	max	345.225	_1_	2780.999	3	85.731	5	0	_1_	0	1	.031	2
534			min	11.996	12	-1619.685	2	0	1	0	4	184	4	0	15
535		2	max	345.83	_1_	2780.025	3	86.973	5	0	_1_	0	1	.886	2
536			min	12.299	12	-1620.984	2	0	1	0	4	138	4	-1.466	3
537		3	max	1631.143	3_	1692.472	2	53.268	4	0	4	0	1	1.702	2
538			min	-1015.041	2	-1919.06	3	0	1	0	1	093	4	-2.877	3
539		4	max	1631.597	_3_	1691.174	2	54.51	4	0	_4_	0	1	.809	2
540			min	-1014.436	2	-1920.033	3	0	1	0	1_	064	4	-1.864	3
541		5		1632.052	3_	1689.876	2	55.751	4	0	4	0	1	.013	9
542			min	-1013.83	2	-1921.007	3	0	1	0	1	035	4	85	3
543		6		1632.506	3_	1688.577	2	56.993	4	0	_4_	0	1	.164	3
544			min	-1013.225	2	-1921.981	3	0	1	0	1_	006	5	974	2
545		7	max	1632.96	3	1687.279	2	58.234	4	0	4	.025	4	1.178	3
546			min	-1012.62	2	-1922.954	3	0	1	0	1_	0	1	-1.865	2
547		8	max	1633.414	3_	1685.981	2	59.476	4	0	4	.056	4	2.193	3
548			min	-1012.014	2	-1923.928	3	0	1	0	1_	0	1	-2.755	2
549		9	max	1651.004	_3_	171.748	2	169.438	4	0	_1_	0	1	2.526	3
550			min	-873.409	2	.391	15	0	1	0	1_	171	4	-3.139	2
551		10		1651.458	3_	170.45	2	170.68	4	0	_1_	0	1_	2.442	3
552			min	-872.804	2	0	15	0	1	0	1	081	4	-3.229	2
553		11		1651.912	3_	169.151	2	171.921	4	0	_1_	.01	4_	2.359	3
554			min	-872.199	2	-1.498	6	0	1	0	1_	0	1	-3.319	2
555		12	max	1669.769	3	1223.594	3	198.118	4	0	1_	0	1	2.07	3
556			min	-733.696	2	-2033.574	2	0	1	0	4	278	4	-2.971	2
557		13	max	1670.223	3_	1222.62	3	199.36	4	0	_1_	0	1	1.424	3
558			min	-733.091	2	-2034.872	2	0	1	0	4	173	4	-1.898	2
559		14	max	1670.677	3	1221.647	3	200.601	4	0	<u>1</u>	0	1	.779	3
560			min	-732.486	2	-2036.17	2	0	1	0	4	067	4	824	2
561		15	max	1671.131	3_	1220.673	3	201.843	4	0	1_	.039	4	.251	2
562			min	-731.88	2	-2037.469	2	0	1_	0	4	0	1	003	13
563		16		1671.585	3_	1219.699	3	203.084	4	0	_1_	.146	4	1.327	2
564			min	-731.275	2	-2038.767	2	0	1	0	4	0	1	509	3
565		17		1672.039	_3_	1218.726	3	204.325	4	0	_1_	.253	4	2.403	2
566			min	-730.67	2	-2040.065	2	0	1	0	4	0	1	-1.152	3
567		18	max	-12.865	12	2305.286	2	0	1	0	4_	.281	4	1.238	2
568			min	-345.263	1	-1093.193	3	-24.408	5	0	1_	0	1	603	3
569		19	max	-12.562	12	2303.987	2	0	1	0	_4_	.269	4	.022	2
570			min	-344.657	1	-1094.166	3	-23.167	5	0	1_	0	1	026	3
571	<u>M9</u>	1_	max		_1_	835.562	3	85.802	1_	0	3_	013	12	0	15
572			min	7.59	12	-474.382	2	5.475	12	0	4_	205	1	015	2
573		2	max		1_	834.588	3	85.802	1	0	3	01	12	.235	2
574			min	7.893	12	-475.68	2	5.475	12	0	4	159	1	441	3
575		3	max		3	571.063	2	85.414	1	0	2	007	12	.474	2
576		_	min	-298.321	2	-608.562	3	5.441	12	0	3	114	1	864	3
577		4		511.545	3	569.765	2	85.414	1_	0	2	004	12	.176	1
578			min		2_	-609.536	3	5.441	12	0	3	069	1	542	3
579		5	max		3	568.467	2	85.414	1_	0	2	002	12	003	15
580			min	-297.11	2	-610.509	3	5.441	12	0	3	035	4	221	3
581		6		512.453	3_	567.169	2	85.414	1	0	2	.021	1	.102	3
582			min	-296.505	2	-611.483	3	5.441	12	0	3	017	5	427	2
583		7		512.907	3_	565.871	2	85.414	1	0	2	.066	1	.425	3
584			min	-295.9	2	-612.457	3	5.441	12	0	3	005	5	726	2
585		8	max		3	564.572	2	85.414	1	0	2	.111	1	.748	3
586			min	-295.294	2	-613.43	3	5.441	12	0	3	.006	15	-1.024	2
587		9	max		3_	51.192	2	128.024	1	0	3	004	12	.874	3
588			min	-229.445	2	.399	15	7.807	12	0	9	141	4	-1.172	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	526.084	3	49.894	2	128.024	1	0	3	0	1	.851	3
590			min	-228.839	2	.007	15	7.807	12	0	9	089	4	-1.199	2
591		11	max	526.538	3	48.596	2	128.024	1	0	3	.068	1	.829	3
592			min	-228.234	2	-1.573	6	7.807	12	0	9	052	5	-1.225	2
593		12	max	538.672	3	394.756	3	169.371	4	0	3	006	12	.723	3
594			min	-162.334	2	-670.834	2	4.874	12	0	2	233	4	-1.086	2
595		13	max	539.126	3	393.782	3	170.613	4	0	3	004	12	.515	3
596			min	-161.728	2	-672.132	2	4.874	12	0	2	143	4	731	2
597		14	max	539.58	3	392.809	3	171.854	4	0	3	001	12	.307	3
598			min	-161.123	2	-673.43	2	4.874	12	0	2	053	4	376	2
599		15	max	540.035	3	391.835	3	173.096	4	0	3	.038	4	.1	3
600			min	-160.517	2	-674.728	2	4.874	12	0	2	.001	12	041	1
601		16	max	540.489	3	390.861	3	174.337	4	0	3	.13	4	.336	2
602			min	-159.912	2	-676.026	2	4.874	12	0	2	.004	12	106	3
603		17	max	540.943	3	389.888	3	175.579	4	0	3	.222	4	.693	2
604			min	-159.307	2	-677.325	2	4.874	12	0	2	.006	12	312	3
605		18	max	-7.61	12	682.662	2	92.042	1	0	2	.234	4	.349	2
606			min	-158.746	1	-316.431	3	-76.312	5	0	3	.009	12	154	3
607	·	19	max	-7.307	12	681.364	2	92.042	1	0	2	.206	1	.013	3
608			min	-158.141	1	-317.405	3	-75.071	5	0	3	.012	12	011	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.123	2	.009	3 1.017e-2	2	NC	1	NC	1
2			min	552	4	022	3	005	2 -1.964e-3	3	NC	1	NC	1
3		2	max	0	1	.268	3	.027	1 1.153e-2	2	NC	5	NC	2
4			min	552	4	03	1	015	5 -1.933e-3	3	745.562	3	8114.981	1
5		3	max	0	1	.503	3	.064	1 1.289e-2	2	NC	5	NC	3
6			min	552	4	136	1	018	5 -1.901e-3	3	411.765	3	3368.818	1
7		4	max	0	1	.646	3	.096	1 1.425e-2	2	NC	5	NC	3
8			min	553	4	194	1	013	5 -1.87e-3	3	323.496	3	2247.356	
9		5	max	0	1	.68	3	.112	1 1.561e-2	2	NC	5	NC	3
10			min	553	4	194	1	003	5 -1.838e-3	3	307.746	3	1927.338	1
11		6	max	0	1	.608	3	.108	1 1.697e-2	2	NC	5	NC	3
12			min	553	4	138	1	.004	10 -1.807e-3	3	343.142	3	2012.745	
13		7	max	0	1	.451	3	.083	1 1.832e-2	2	NC	5	NC	3
14			min	553	4	04	1	0	10 -1.775e-3	3	457.118	3	2601.668	1
15		8	max	0	1	.251	3	.047	1 1.968e-2	2	NC	2	NC	2
16			min	553	4	.002	15	005	10 -1.744e-3	3	792.171	3	4672.659	1
17		9	max	0	1	.221	2	.028	3 2.104e-2	2	NC	4	NC	1
18			min	553	4	.004	15	012	2 -1.713e-3	3	2212.193	2	NC	1
19		10	max	0	1	.271	2	.028	3 2.24e-2	2	NC	3	NC	1
20			min	553	4	013	3	019	2 -1.681e-3	3	1460.41	2	NC	1
21		11	max	0	12	.221	2	.028	3 2.104e-2	2	NC	4	NC	1
22			min	553	4	.004	15	012	5 -1.713e-3	3	2212.193	2	NC	1
23		12	max	0	12	.251	3	.047	1 1.968e-2	2	NC	2	NC	2
24			min	553	4	.002	15	012	5 -1.744e-3	3	792.171	3	4672.659	1
25		13	max	0	12	.451	3	.083	1 1.832e-2	2	NC	5	NC	3
26			min	553	4	04	1	004	5 -1.775e-3	3	457.118	3	2601.668	1
27		14	max	0	12	.608	3	.108	1 1.697e-2	2	NC	5	NC	3
28			min	553	4	138	1	.004	10 -1.807e-3	3	343.142	3	2012.745	1
29		15	max	0	12	.68	3	.112	1 1.561e-2	2	NC	5	NC	3
30			min	553	4	194	1	.005	10 -1.838e-3	3	307.746	3	1927.338	1
31		16	max	0	12	.646	3	.096	1 1.425e-2	2	NC	5	NC	3
32			min	553	4	194	1	.005	10 -1.87e-3	3	323.496	3	2247.356	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.503	3	.064	1	1.289e-2	2	NC	5	NC	3
34			min	553	4	136	1	.002		-1.901e-3	3	411.765	3	3368.818	
35		18	max	0	12	.268	3	.027	1	1.153e-2	2	NC	5	NC	2
36		1.0	min	<u>553</u>	4	03	1	001		-1.933e-3	3	745.562	3	8114.981	1
37		19	max	0	12	.123	2	.009	3	1.017e-2	2	NC NC	1	NC NC	1
38	N44.4	4	min	<u>553</u>	4	022	3	005	2	-1.964e-3	3	NC NC	1	NC NC	1
39	M14	1	max	0	1	.262	3	.008	3	5.933e-3	2	NC NC	1	NC NC	1
40		1	min	421	1	392 FF7	2	005	2	-4.65e-3	3	NC NC	1	NC NC	1
41		2	max	0	4	.557	3	.018	1 5	7.048e-3	2		5	NC	1
43		3	min	<u>421</u> 0	1	<u>664</u> .81	3	022 .051	1	-5.614e-3 8.163e-3	2	730.251 NC	5	9130.581 NC	2
44		3	max	421	4	902	2	027	5	-6.578e-3	3	393.99	3	4273.333	
45		4	max	<u>421</u> 0	1	.989	3	.082	1	9.277e-3	2	NC	15	NC	3
46		17	min	421	4	-1.081	2	019	5	-7.542e-3	3	296.869	3	2658.268	
47		5	max	0	1	1.08	3	.099	1	1.039e-2	2	NC	15	NC	3
48			min	421	4	-1.189	2	003	5	-8.505e-3	3	263.758	3	2193.741	1
49		6	max	0	1	1.084	3	.097	1	1.151e-2	2	NC	15	NC	3
50		Ť	min	421	4	-1.226	2	.003		-9.469e-3	3	259.092	2	2235.186	
51		7	max	0	1	1.013	3	.077	1	1.262e-2	2	NC	15	NC	3
52			min	421	4	-1.201	2	0	10	-1.043e-2	3	267.156	2	2838.153	
53		8	max	0	1	.899	3	.044	4	1.374e-2	2	NC	15	NC	2
54			min	421	4	-1.135	2	005	10	-1.14e-2	3	290.694	2	4847.383	
55		9	max	0	1	.786	3	.029	4	1.485e-2	2	NC	5	NC	1
56			min	421	4	-1.063	2	011	2	-1.236e-2	3	322.335	2	7299.377	4
57		10	max	0	1	.732	3	.025	3	1.597e-2	2	NC	5	NC	1
58			min	421	4	-1.026	2	018	2	-1.332e-2	3	340.762	2	NC	1
59		11	max	0	12	.786	3	.025	3	1.485e-2	2	NC	5	NC	1
60			min	421	4	-1.063	2	022	5	-1.236e-2	3	322.335	2	9737.827	5
61		12	max	0	12	.899	3	.044	1	1.374e-2	2	NC	15	NC	2
62			min	422	4	-1.135	2	026	5	-1.14e-2	3	290.694	2	5017.146	
63		13	max	0	12	1.013	3	.077	1	1.262e-2	2	NC	15	NC	3
64			min	422	4	-1.201	2	016	5	-1.043e-2	3	267.156	2	2838.153	
65		14	max	0	12	1.084	3	.097	1	1.151e-2	2	NC	15	NC	3
66			min	422	4	-1.226	2	0		-9.469e-3	3	259.092	2	2235.186	
67		15	max	0	12	1.08	3	.099	1	1.039e-2	2	NC 000.750	15	NC	3
68		10	min	422	4	-1.189	2	.005			3	263.758	3	2193.741	1
69		16	max	0	12	.989	3	.082	1	9.277e-3	2	NC ooc.oco	15	NC OCEO OCO	3
70		47	min	422	4	-1.081	2	.004		-7.542e-3	3	296.869	3	2658.268	
71		17	max	0	12	.81	3	.051	1	8.163e-3	2	NC 202.00	5	NC	2
72 73		10	min max	422 0	12	902 .557	3	.001 .03	10	-6.578e-3 7.048e-3	3	393.99 NC	5	4273.333 NC	1
74		10	min	422	4	664	2	002	10		3	730.251	3	7094.264	
75		19		0	12	.262	3	.002	3	5.933e-3	2	NC	1	NC	1
76		13	min	422	4	392	2	005	2	-4.65e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.267	3	.008	3	3.949e-3	3	NC	1	NC	1
78	WITO	1	min	348	4	392	2	004	2	-6.171e-3	2	NC	1	NC	1
79		2	max	0	12	.459	3	.018	1	4.77e-3	3	NC	5	NC	1
80			min	348	4	734	2	03	5	-7.335e-3	2	631.262	2	6806.744	_
81		3	max	0	12	.627	3	.051	1	5.591e-3	3	NC	5	NC	2
82		Ĭ	min	348	4	-1.028	2	037	5	-8.5e-3	2	339.281	2	4258.661	1
83		4	max	0	12	.756	3	.082	1	6.413e-3	3	NC	15	NC	3
84			min	348	4	-1.242	2	027	5	-9.664e-3	2	253.966	2	2650.453	
85		5	max	0	12	.836	3	.099	1	7.234e-3	3	NC	15	NC	3
86			min	348	4	-1.359	2	007	5	-1.083e-2	2	223.368		2187.253	
87		6	max	0	12	.868	3	.097	1	8.056e-3	3	NC	15	NC	3
88			min	348	4	-1.377	2	.004	10	-1.199e-2	2	219.164	2	2227.52	1
89		7	max	0	12	.857	3	.077	1	8.877e-3	3	NC	15	NC	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

91		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			LC
93	90		_	min	348	4	-1.313	2	0	10	-1.316e-2	2	234.352	2	2824.708	1_
94			8		-											
95			_											_		
95			9													•
99						_										_
98			10			-										
99				min	348	4		_								
99			11	max						3		3		5		
100	98			min	348	4			029	5		2				5
101	99		12	max	0	1	.817	3	.044	1	9.698e-3	3	NC	15	NC	2
102	100			min	348	4	-1.199	2	034	5	-1.432e-2	2	267.63	2	4973.008	1
103	101		13	max	0	1	.857	3	.077	1	8.877e-3	3	NC	15		3
104	102			min	348	4	-1.313	2	023	5	-1.316e-2	2	234.352	2	2824.708	1
105	103		14	max	0	1	.868	3	.097	1		3	NC	15	NC	3
105	104			min	348	4	-1.377	2	002	5	-1.199e-2	2	219.164	2	2227.52	1
106	105		15	max	0	1	.836	3	.099	1		3	NC	15	NC	3
107	106			min	348	4	-1.359	2	.005	10		2	223.368	2	2187.253	1
108			16	max	0	1	.756	3	.082	1	6.413e-3	3	NC	15	NC	3
109	108				348	4		2		10		2	253.966	2	2650.453	
110			17			1						3		5		2
111					348	4				10						
112			18			1										1
113					-							_				4
114			19							_						
115			10			_										_
116		M16	1											-		•
117		IVITO	<u> </u>													_
118			2											•		_
119																
120			3													_
121			5													
122			1									_				
123			++													
124			E													
125			5													
126			-													-
127 7 max 0 12 0 15 .084 1 1.407e-2 3 NC 5 NC 3 128 min 135 4 17 2 .002 10 -1.442e-2 2 .770.987 2 .2566.977 1 129 8 max 0 12 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 130 min 135 4 11 3 003 10 -1.539e-2 2 .2045.544 2 4532.14 1 131 9 max 0 12 .16 2 .026 4 1.637e-2 3 NC 4 NC 1 132 min 135 4 188 3 008 2 -1.637e-2 2 2192.594 3 8371.538 4 134 min 135 4 -			Ь											_		
128 min 135 4 17 2 .002 10 -1.442e-2 2 770.987 2 2566.977 1 129 8 max 0 12 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 130 min 135 4 11 3 003 10 -1.539e-2 2 2045.544 2 4532.14 1 131 9 max 0 12 .16 2 .026 4 1.637e-2 3 NC 4 NC 1 132 min 135 4 188 3 008 2 -1.637e-2 2 2192.594 3 8371.538 4 133 10 max 0 1 .23 2 .002 3 1.75e-2 2 1625.564 3 NC 1 134 min 135 4 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			-													_
129 8 max 0 12 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 130 min 135 4 11 3 003 10 -1.539e-2 2 2045.544 2 4532.14 1 131 9 max 0 12 .16 2 .026 4 1.637e-2 3 NC 4 NC 1 132 min 135 4 188 3 008 2 -1.637e-2 2 2192.594 3 8371.538 4 133 10 max 0 1 .23 2 .02 3 1.752e-2 3 NC 4 NC 1 134 min 135 4 222 3 015 2 -1.735e-2 2 1625.564 3 NC 1 135 11 max 0 1 .16 2 .021 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
130 min 135 4 11 3 003 10 -1.539e-2 2 2045.544 2 4532.14 1 131 9 max 0 12 .16 2 .026 4 1.637e-2 3 NC 4 NC 1 132 min 135 4 188 3 008 2 -1.637e-2 2 2192.594 3 8371.538 4 133 10 max 0 1 .23 2 .02 3 1.752e-2 3 NC 4 NC 1 134 min 135 4 222 3 015 2 -1.735e-2 2 1625.564 3 NC 1 135 11 max 0 1 .16 2 .021 3 1.637e-2 2 1625.564 3 NC 1 136 min 135 4 1																_
131 9 max 0 12 .16 2 .026 4 1.637e-2 3 NC 4 NC 1 132 min 135 4 188 3 008 2 -1.637e-2 2 2192.594 3 8371.538 4 133 10 max 0 1 .23 2 .02 3 1.752e-2 3 NC 4 NC 1 134 min 135 4 222 3 015 2 -1.735e-2 2 1625.564 3 NC 1 135 11 max 0 1 .16 2 .021 3 1.637e-2 2 1625.564 3 NC 1 136 min 135 4 188 3 018 5 -1.637e-2 2 2192.594 3 NC 1 137 12 max 0 1 .033 1 .048 <			8									_		3		2
132 min 135 4 188 3 008 2 -1.637e-2 2 2192.594 3 8371.538 4 133 10 max 0 1 .23 2 .02 3 1.752e-2 3 NC 4 NC 1 134 min 135 4 222 3 015 2 -1.735e-2 2 1625.564 3 NC 1 135 11 max 0 1 .16 2 .021 3 1.637e-2 2 1625.564 3 NC 1 136 min 135 4 188 3 018 5 -1.637e-2 2 2192.594 3 NC 1 137 12 max 0 1 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 138 min 135 4 11 <td></td> <td>2</td> <td></td> <td>1</td>														2		1
133 10 max 0 1 .23 2 .02 3 1.752e-2 3 NC 4 NC 1 134 min 135 4 222 3 015 2 -1.735e-2 2 1625.564 3 NC 1 135 11 max 0 1 .16 2 .021 3 1.637e-2 3 NC 4 NC 1 136 min 135 4 188 3 018 5 -1.637e-2 2 2192.594 3 NC 1 137 12 max 0 1 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 138 min 135 4 11 3 019 5 -1.539e-2 2 2045.544 2 4532.14 1 139 13 max 0 1 <td< td=""><td></td><td></td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			9													
134 min 135 4 222 3 015 2 -1.735e-2 2 1625.564 3 NC 1 135 11 max 0 1 .16 2 .021 3 1.637e-2 3 NC 4 NC 1 136 min 135 4 188 3 018 5 -1.637e-2 2 2192.594 3 NC 1 137 12 max 0 1 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 138 min 135 4 11 3 019 5 -1.539e-2 2 2045.544 2 4532.14 1 139 13 max 0 1 0 15 .084 1 1.407e-2 3 NC 5 NC 3 140 min 135 4 17														_		
135 11 max 0 1 .16 2 .021 3 1.637e-2 3 NC 4 NC 1 136 min 135 4 188 3 018 5 -1.637e-2 2 2192.594 3 NC 1 137 12 max 0 1 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 138 min 135 4 11 3 019 5 -1.539e-2 2 2045.544 2 4532.14 1 139 13 max 0 1 0 15 .084 1 1.407e-2 3 NC 5 NC 3 140 min 135 4 17 2 009 5 -1.442e-2 2 770.987 2 2566.977 1 141 max 0 1 .053			10													_
136 min 135 4 188 3 018 5 -1.637e-2 2 2192.594 3 NC 1 137 12 max 0 1 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 138 min 135 4 11 3 019 5 -1.539e-2 2 2045.544 2 4532.14 1 139 13 max 0 1 0 15 .084 1 1.407e-2 3 NC 5 NC 3 140 min 135 4 17 2 009 5 -1.442e-2 2 770.987 2 2566.977 1 141 14 max 0 1 .053 3 .108 1 1.292e-2 3 NC 5 NC 3 142 min 135 4 313				1 1												
137 12 max 0 1 .033 1 .048 1 1.522e-2 3 NC 3 NC 2 138 min 135 411 3019 5 -1.539e-2 2 2045.544 2 4532.14 1 139 13 max 0 1 0 15 .084 1 1.407e-2 3 NC 5 NC 3 140 min 135 417 2009 5 -1.442e-2 2 770.987 2 2566.977 1 141 14 max 0 1 .053 3 .108 1 1.292e-2 3 NC 5 NC 3 142 min 135 4313 2 .005 15 -1.344e-2 2 511.155 2 1998.443 1 143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3			11	_												
138 min 135 4 11 3 019 5 -1.539e-2 2 2045.544 2 4532.14 1 139 13 max 0 1 0 15 .084 1 1.407e-2 3 NC 5 NC 3 140 min 135 4 17 2 009 5 -1.442e-2 2 770.987 2 2566.977 1 141 14 max 0 1 .053 3 .108 1 1.292e-2 3 NC 5 NC 3 142 min 135 4 313 2 .005 15 -1.344e-2 2 511.155 2 1998.443 1 143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4 388				min	135					5						
139 13 max 0 1 0 15 .084 1 1.407e-2 3 NC 5 NC 3 140 min 135 4 17 2 009 5 -1.442e-2 2 770.987 2 2566.977 1 141 14 max 0 1 .053 3 .108 1 1.292e-2 3 NC 5 NC 3 142 min 135 4 313 2 .005 15 -1.344e-2 2 511.155 2 1998.443 1 143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4 388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3			12	max		_										
140 min 135 4 17 2 009 5 -1.442e-2 2 770.987 2 2566.977 1 141 14 max 0 1 .053 3 .108 1 1.292e-2 3 NC 5 NC 3 142 min 135 4 313 2 .005 15 -1.344e-2 2 511.155 2 1998.443 1 143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4 388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3				min	135	4				5	-1.539e-2	2		2		-
140 min 135 4 17 2 009 5 -1.442e-2 2 770.987 2 2566.977 1 141 14 max 0 1 .053 3 .108 1 1.292e-2 3 NC 5 NC 3 142 min 135 4 313 2 .005 15 -1.344e-2 2 511.155 2 1998.443 1 143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4 388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3			13	max		1	0			1		3		5		3
142 min 135 4 313 2 .005 15 -1.344e-2 2 511.155 2 1998.443 1 143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4 388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3				min	135	4	17	2	009	5	-1.442e-2	2	770.987	2	2566.977	
142 min 135 4 313 2 .005 15 -1.344e-2 2 511.155 2 1998.443 1 143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4 388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3			14			1	.053		.108	1	1.292e-2	3		5		3
143 15 max 0 1 .098 3 .113 1 1.176e-2 3 NC 5 NC 3 144 min 134 4 388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3						4										
144 min 134 4 388 2 .007 10 -1.246e-2 2 433.695 2 1920.174 1 145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3			15			1										3
145 16 max 0 1 .104 3 .097 1 1.061e-2 3 NC 5 NC 3																
			16													•
	146			min	134		378	2	.006		-1.148e-2		442.676	2	2244.566	

Model Name

Schletter, Inc.HCV

TICV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
147		17	max	0	1	.07	3	.064	1	9.461e-3	3	NC 554.470	5	NC	3
148		40	min	<u>134</u>	4	28	2	.003	10	-1.05e-2	2	554.173	2	3373.085	1
149		18	max	0	1	.002	12	.034	4	8.31e-3	3_	NC	5_	NC	2
150		40	min	134	4	107	2	0	10	-9.522e-3		994.53	2	6296.428	4
151		19	max	0	1	.11	2	.007	3	7.158e-3	3_	NC NC	1	NC	1
152	MO	4	min	134	4	089	3	004	2	-8.544e-3	2	NC NC	1_	NC NC	
153	M2	1	max	.007	2	.008	2	.007	1	1.398e-3	5	NC 04.40.00F	1	NC	2
154			min	009	3	013	3	52	4	-1.79e-4	_1_	8140.005	2	120.583	4
155		2	max	.006	2	.007	2	.006	1	1.474e-3	5_4	NC	1	NC	1
156		3	min	009	2	012	2	478	4	-1.68e-4	1_	9299.251	2	131.266 NC	1
157		3	max	.006		.006		.006	1	1.551e-3	5	NC NC	1		_
158		1	min	008	3	012	3	436	4	-1.57e-4	1_	NC NC	1_	143.947	4
159		4	max	.006	2	.005	2	.005	1	1.627e-3	5_4	NC NC	1	NC	1
160		-	min	008	3	011	3	394	4	-1.46e-4	_1_	NC NC	1_	159.145	4
161		5	max	.005	2	.004	3	.004	1	1.703e-3	5_4	NC NC	1	NC 477.FC4	1
162			min	007	3	<u>011</u>		353	4	-1.35e-4	1		•	177.564	4
163		6	max	.005	2	.003	2	.004	1	1.779e-3	5	NC NC	1	NC 200.40	1
164		7	min	007	3	<u>01</u>	3	<u>313</u>	4	-1.24e-4	_1_	NC NC	1_	200.18	4
165		7	max	.004	2	.002	2	.003	1	1.855e-3	5_4	NC NC	1_4	NC	1
166		0	min	006	2	009 .002	2	<u>275</u>	4	-1.13e-4	1_	NC NC	1	228.375 NC	1
167		8	max	.004				.003 237	4	1.931e-3 -1.02e-4	5		<u>1</u> 1		_
168			min	006	3	009	3				1_	NC NC		264.162	4
169		9	max	.004	2	0	2	.003	1	2.008e-3 -9.102e-5	5_4	NC NC	1	NC 240 FC2	11
170		40	min	005	3	008	3	202	4		1	NC NC		310.563	4
171 172		10	max	.003	3	0 008	3	.002	1	2.088e-3 -8.003e-5	<u>4</u> 1	NC NC	1	NC 372.296	4
		11	min	005	2	008 0		<u>168</u>	1		_	NC NC	1	NC	1
173		11	max	.003	3	007	3	.002	4	2.167e-3	4_	NC NC	1		
174		12	min	004				137 001	1	-6.903e-5 2.247e-3	1_1		1	457.054	1
175 176		12	max	.003 004	3	0 006	3	.001 108	4	-5.804e-5	4	NC NC	1	NC 578.104	4
177		13	max	.002	2	<u>006</u> 0	15	<u>106</u> 0	1	2.327e-3	4	NC NC	1	NC	1
178		13	min	003	3	005	3	083	4	-4.704e-5	1	NC	1	759.968	4
179		14	max	.002	2	<u>005</u> 0	15	003 0	1	2.407e-3	4	NC	1	NC	1
180		14	min	003	3	005	3	06	4	-3.605e-5	1	NC NC	1	1052.279	4
181		15		.003	2	<u>005</u> 0	15	00	1	2.487e-3	4	NC	1	NC	1
182		13	max min	002	3	004	3	04	4	-2.505e-5	1	NC NC	1	1568.653	4
183		16	max	.002	2	- <u>004</u> 0	15	0	1	2.567e-3	4	NC	1	NC	1
184		10	min	002	3	003	3	024	4	-1.405e-5	1	NC	1	2620.042	4
185		17	max	<u>002</u> 0	2	003	15	_ 024 0	1	2.647e-3	4	NC	1	NC	1
186		17	min	001	3	002	3	012	4	-3.058e-6	1	NC	1	5341.281	4
187		18	max	0	2	0	15	0	1	2.727e-3		NC	1	NC	1
188		10	min	0	3	001	3	004	4	1.086e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	<u>.004</u>	1	2.807e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	8.347e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.028e-7	12	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-6.856e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.013	4	1.281e-5	1	NC	-	NC	1
194			min	0	2	002	6	0	12	-8.785e-5		NC	1	NC	1
195		3	max	0	3	0	15	.026	4	5.153e-4	4	NC	1	NC	1
196			min	0	2	003	6	0	12	1.84e-6	12	NC	1	6864.576	14
197		4	max	.001	3	001	15	.037	4	1.116e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	2.911e-6	12	NC	1		_
199		5	max	.002	3	002	15	.048	4	1.716e-3	4	NC	1	NC	1
200			min	001	2	002	6	0	12	3.983e-6		NC	1	3684.588	_
201		6	max	.002	3	007	15	.058	4	2.317e-3	4	NC	1	NC	1
202			min	002	2	002	6	0	12	5.054e-6	12	NC	1	3048.17	14
203		7	max	.002	3	002	15	.067	4	2.917e-3	4	NC	1	NC	1
200			παλ	.002	J	.002	IU	.001		2.0176-0	7	110		140	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	002	2	01	6	0	12	6.125e-6		8753.833	6	2621.944	
205		8	max	.003	3	003	15	.076	4	3.518e-3	4	NC	1_	NC	1
206			min	002	2	012	6	0	12	7.197e-6		7849.535	<u>6</u>	2314.487	
207		9	max	.003	3	003	15	.084	4	4.118e-3	4	NC 745	2	NC 2070.02	1
208		10	min	003 .004	3	012 003	15	<u> </u>	1 <u>2</u>	8.268e-6 4.718e-3	<u>12</u> 4	7313.745 NC	<u>6</u> 2	2079.93 NC	14
210		10	max	003	2	003 013	6	<u>.092</u>	12	9.339e-6	12	7052.841	6	1892.684	-
211		11	min max	.003	3	013	15	<u> </u>	4	5.319e-3	4	NC	2	NC	1
212			min	003	2	003 013	6	0	12	1.041e-5	12	7028.288	6	1737.336	-
213		12	max	.003	3	003	15	.108	4	5.919e-3	4	NC	2	NC	1
214		12	min	004	2	013	6	0	12	1.148e-5	12	7241.853	6	1604.079	
215		13	max	.005	3	003	15	.117	4	6.52e-3	4	NC	1	NC	1
216		10	min	004	2	012	6	0	12	1.255e-5	12	7738.166	6	1486.433	-
217		14	max	.005	3	002	15	.126	4	7.12e-3	4	NC	1	NC	1
218			min	004	2	011	6	0	12	1.362e-5	12	8627.96	6	1380.028	
219		15	max	.006	3	002	15	.135	4	7.721e-3	4	NC	1	NC	1
220			min	005	2	009	6	0	12	1.47e-5	12	NC	1	1281.904	14
221		16	max	.006	3	001	15	.145	4	8.321e-3	4	NC	1	NC	1
222			min	005	2	007	6	0	12	1.577e-5	12	NC	1	1190.092	14
223		17	max	.006	3	0	15	.156	4	8.922e-3	4	NC	1	NC	1
224			min	005	2	006	1	0	12	1.684e-5	12	NC	1	1103.334	14
225		18	max	.007	3	0	15	.169	4	9.522e-3	4	NC	1	NC	1
226			min	006	2	004	1	0	12	1.791e-5	12	NC	1	1020.887	14
227		19	max	.007	3	0	5	.183	4	1.012e-2	4	NC	1	NC	1
228			min	006	2	002	1	0	12	1.898e-5	12	NC	1	942.373	14
229	M4	1	max	.003	1	.006	2	0	12	5.214e-5	1	NC	1_	NC	3
230			min	0	3	007	3	183	4	3.315e-6	12	NC	1	135.803	4
231		2	max	.002	1	.005	2	0	12	5.214e-5	1	NC	_1_	NC	2
232			min	0	3	007	3	168	4	3.315e-6	12	NC	1	147.631	4
233		3	max	.002	1	.005	2	0	12	5.214e-5	1	NC	_1_	NC	2
234			min	0	3	007	3	153	4	3.315e-6	12	NC	1_	161.711	4
235		4	max	.002	1	.005	2	0	12	5.214e-5	1	NC	_1_	NC	2
236		-	min	0	3	006	3	<u>139</u>	4	3.315e-6	12	NC	1_	178.625	4
237		5	max	.002	1	.004	2	0	12	5.214e-5	1	NC	1	NC 400 400	2
238			min	0	3	006	3	125	4	3.315e-6	12	NC NC	1_	199.168	4
239		6	max	.002	1	.004	2	0	12	5.214e-5	1	NC NC	1	NC 224 444	2
240		7	min	0	3	005	3	<u>111</u>	4	3.315e-6	12	NC NC	1_	224.441	4
241		7	max	.002	3	.004	3	0	12	5.214e-5	1 12	NC NC	1	NC 256 007	2
242 243		8	min	.002	1	005 .003	2	097 0	12	3.315e-6 5.214e-5	1	NC NC	1	256.007 NC	2
244		0	max min		3	005	3	084	12	3.315e-6			1	296.144	
245		9	max	.001	1	.003	2	- <u>004</u> 0	12	5.214e-5	1	NC	1	NC	2
246		-	min	0	3	004	3	071	4	3.315e-6	12	NC	1	348.285	4
247		10	max	.001	1	.003	2	0	12	5.214e-5	1	NC	1	NC	1
248		10	min	0	3	004	3	059	4	3.315e-6	12	NC	1	417.792	4
249		11	max	.001	1	.002	2	<u>.000</u>	12	5.214e-5	1	NC	1	NC	1
250			min	0	3	003	3	048	4	3.315e-6	12	NC	1	513.437	4
251		12	max	.001	1	.002	2	0	12	5.214e-5	1	NC	1	NC	1
252			min	0	3	003	3	038	4	3.315e-6	12	NC	1	650.397	4
253		13	max	0	1	.002	2	0	12	5.214e-5	1	NC	1	NC	1
254			min	0	3	002	3	029	4	3.315e-6	12	NC	1	856.832	4
255		14	max	0	1	.002	2	0	12	5.214e-5	1	NC	1	NC	1
256			min	0	3	002	3	021	4	3.315e-6	12	NC	1	1190.028	
257		15	max	0	1	.001	2	0	12	5.214e-5	1	NC	1	NC	1
258			min	0	3	002	3	014	4	3.315e-6	12	NC	1	1782.017	4
259		16	max	0	1	0	2	0	12	5.214e-5	1	NC	1	NC	1
260			min	0	3	001	3	008	4	3.315e-6	12	NC	1	2997.717	4

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

261		Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
284			17											_1_		
265												12				_
265			18													
266				min				3	001	4		12		1_		•
267 M6			19			-		-		•	5.214e-5					_
268				min										_		
258		<u>M6</u>	1	max			.028			1	1.469e-3	4				1
270				min	03	3	04	3	525	4	_	1_		3	119.505	4
271	269		2	max	.02		.026		0	1	1.543e-3	4		4	NC	1
272				min					482	4	•	1		3		4
273			3	max						1	1.617e-3	4_				1
274				min	026				44	4		1		3		4
275	273		4	max	.018	2	.021	2	0	1	1.692e-3	4		4	NC	1
276	274			min	025	3	033	3	398	4	0	1	1899.527	3	157.73	4
277	275		5	max	.017	2	.019	2	0	1	1.766e-3	4	NC	4	NC	1
278	276			min	023	3	031	3	356	4	0	1	2041.575	3	175.989	4
279	277		6	max	.015	2	.017	2	0	1	1.841e-3	4	NC	4	NC	1
280	278			min	022	3	028	3	316	4	0	1	2206.258	3	198.41	4
281	279		7	max	.014	2	.015	2	0	1	1.915e-3	4	NC	4	NC	1
281				min				3	277	4		1	2399.308	3		4
Page Page			8			2			0	1	1.989e-3	4		1		1
283				min					24	4		1	2628.546	3	261.842	4
284			9							1	2.064e-3	4				1
285										4		1		3		4
286			10								2 138e-3	4				1
287			1.0							4				3		4
1288			11								•					
12 max																
290			12							-	_			_		
13			12													
14			13								•	_				_
14 max .006 2 .003 2 0 1 2.436e-3 4 NC 1 NC 1			13													
15 max			1/								-					
15 max .005 2 .002 2 0 1 2.51e-3 4 NC 1 NC 1 296 min 007 3 008 3 04 4 0 1 7549.537 3 1555.751 4 297 166 max .004 2 .001 2 0 1 2.584e-3 4 NC 1 NC 1 298 min 005 3 006 3 024 4 0 1 NC 1 2599.115 4 299 17 max .002 2 0 2 0 1 2.659e-3 4 NC 1 NC 1 300 min 003 3 004 3 012 4 0 1 NC 1 5300.833 4 301 18 max .001 2 0 2 0 1 2.733e-3 4 NC 1 NC 1 302 min 002 3 002 3 004 4 0 1 NC 1 NC 1 303 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 304 min 0 1 0 1 0 1 0 1 NC 1 NC 1 305 M7 1 max 0 1 0 1 0 1 0 1 NC 1 NC 1 306 min 0 1 0 1 0 1 0 1 NC 1 NC 1 307 2 max .001 3 0 2 .013 4 0 1 NC 1 NC 1 308 min 001 2 003 3 0 1 -9.884e-5 4 NC 1 NC 1 310 min 002 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 313 5 max .005 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 315 6 max .006 2 012 3 0 1 0 1 8516.867 3 NC 1			14													
296			15								_					
16 max .004 2 .001 2 0 1 2.584e-3 4 NC 1 NC 1 298 min 005 3 006 3 024 4 0 1 NC 1 2599.115 4 4 299 17 max .002 2 0 2 0 1 2.659e-3 4 NC 1 NC 1 300 min 003 3 004 3 012 4 0 1 NC 1 5300.833 4 301 18 max .001 2 0 2 0 2 0 1 2.733e-3 4 NC 1 NC 1 302 min 002 3 002 3 004 4 0 1 NC 1 NC 1 303 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 304 min 0 1 0 1 0 1 0 1 NC 1 NC 1 305 M7 1 max 0 1 0 1 0 1 0 1 NC 1 NC 1 306 min 0 1 0 1 0 1 0 1 NC 1 NC 1 307 2 max .001 3 0 2 .013 4 0 1 NC 1 NC 1 309 3 max .003 3 0 2 .026 4 4.872e-4 4 NC 1 NC 1 310 min 004 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 312 min 004 2 008 3 0 1 0 1 NC 1 NC 1 314 min 005 2 011 3 0 1 0 1 NC 1 NC 1 315 6 max .006 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 315 6 max .006 2 012 3 0 1 0 1 8516.867 3 NC 1			15													_
298 min 005 3 006 3 024 4 0 1 NC 1 2599.115 4 299 17 max .002 2 0 2 0 1 2.659e-3 4 NC 1 NC 1 300 min 003 3 004 3 012 4 0 1 NC 1 5300.833 4 301 18 max .001 2 0 2 0 1 NC			16									•				
299 17 max .002 2 0 2 0 1 2.659e-3 4 NC 1 NC 1 300 min 003 3 004 3 012 4 0 1 NC 1 5300.833 4 301 18 max .001 2 0 2 0 1 2.733e-3 4 NC 1 NC 1 302 min 002 3 002 3 004 4 0 1 NC 1 NC 1 303 19 max 0 1 0 1 0 1 2.807e-3 4 NC 1 NC 1 304 min 0 1 0 1 0 1 0 1 0 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 <td></td> <td></td> <td>10</td> <td></td>			10													
300			47								_					4
301			17											1_		1
302			10	min												
303 19 max 0 1 0 1 0 1 2.807e-3 4 NC 1 NC 1 304 min 0 1 0 1 0 1 0 1 NC 1 NC 1 305 M7 1 max 0 1 0 1 0 1 NC 1 NC 1 306 min 0 1 0 1 0 1 NC 1 NC 1 307 2 max .001 3 0 2 .013 4 0 1 NC 1 NC 1 308 min 001 2 003 3 0 1 -9.884e-5 4 NC 1 NC 1 309 3 max .003 3 0 2 .026 4 4.872e-4 4 NC			18													
304			10													
305 M7 1 max 0 1 0 1 0 1 0 1 NC 1 NC 1 306 min 0 1 0 1 -6.849e-4 4 NC 1 NC 1 307 2 max .001 3 0 2 .013 4 0 1 NC 1 NC 1 308 min 001 2 003 3 0 1 -9.884e-5 4 NC 1 NC 1 309 3 max .003 3 0 2 .026 4 4.872e-4 4 NC 1 NC 1 310 min 002 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1			19								_	4				
306 min 0 1 0 1 -6.849e-4 4 NC 1 NC 1 307 2 max .001 3 0 2 .013 4 0 1 NC 1 NC 1 308 min 001 2 003 3 0 1 -9.884e-5 4 NC 1 NC 1 309 3 max .003 3 0 2 .026 4 4.872e-4 4 NC 1 NC 1 310 min 002 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 312 min 004 2 008 3 0 1 0 1						•				-	_	1_				
307 2 max .001 3 0 2 .013 4 0 1 NC 1 NC 1 308 min 001 2 003 3 0 1 -9.884e-5 4 NC 1 NC 1 309 3 max .003 3 0 2 .026 4 4.872e-4 4 NC 1 NC 1 310 min 002 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 312 min 004 2 008 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 002 15 .048 </td <td></td> <td>M/</td> <td>1</td> <td></td> <td></td> <td>_</td> <td></td>		M/	1			_										
308 min 001 2 003 3 0 1 -9.884e-5 4 NC 1 NC 1 309 3 max .003 3 0 2 .026 4 4.872e-4 4 NC 1 NC 1 310 min 002 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 312 min 004 2 008 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 314 min 005 2 01 3 0										•				_		
309 3 max .003 3 0 2 .026 4 4.872e-4 4 NC 1 NC 1 310 min 002 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 312 min 004 2 008 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 314 min 005 2 01 3 0 1 0 1 NC 1 NC 1 315 6 max .006 3 002 15 .057 4 2.245e-3 4 NC 1 NC 1 316 min 006 2 012 3 0 1 0 1 8516.867 3 NC 1			2									_				
310 min 002 2 005 3 0 1 0 1 NC 1 NC 1 311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 312 min 004 2 008 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 314 min 005 2 01 3 0 1 0 1 NC 1 NC 1 315 6 max .006 3 002 15 .057 4 2.245e-3 4 NC 1 NC 1 316 min 006 2 012 3 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4_</td><td></td><td>_</td><td></td><td></td></t<>												4_		_		
311 4 max .004 3 001 15 .037 4 1.073e-3 4 NC 1 NC 1 312 min 004 2 008 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 314 min 005 2 01 3 0 1 0 1 NC 1 NC 1 315 6 max .006 3 002 15 .057 4 2.245e-3 4 NC 1 NC 1 316 min 006 2 012 3 0 1 0 1 8516.867 3 NC 1			3						.026			4				_
312 min 004 2 008 3 0 1 0 1 NC 1 NC 1 313 5 max .005 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 314 min 005 2 01 3 0 1 0 1 NC 1 NC 1 315 6 max .006 3 002 15 .057 4 2.245e-3 4 NC 1 NC 1 316 min 006 2 012 3 0 1 0 1 8516.867 3 NC 1										-		1				
313 5 max .005 3 002 15 .048 4 1.659e-3 4 NC 1 NC 1 314 min 005 2 01 3 0 1 0 1 NC 1 NC 1 315 6 max .006 3 002 15 .057 4 2.245e-3 4 NC 1 NC 1 316 min 006 2 012 3 0 1 0 1 8516.867 3 NC 1			4						.037	_	1.073e-3	4				_
314 min 005 2 01 3 0 1 0 1 NC 1 NC 1 315 6 max .006 3 002 15 .057 4 2.245e-3 4 NC 1 NC 1 316 min 006 2 012 3 0 1 0 1 8516.867 3 NC 1				min							_	1		1		1
315 6 max .006 3002 15 .057 4 2.245e-3 4 NC 1 NC 1 316 min006 2012 3 0 1 0 1 8516.867 3 NC 1			5						.048	4	1.659e-3	4		1		1
316 min006 2012 3 0 1 0 1 8516.867 3 NC 1				min						1		1		1		1
316 min006 2012 3 0 1 0 1 8516.867 3 NC 1			6	max					.057	4	2.245e-3	4				1
247	316						012			1		1		3		1
317 7 max .008 3 003 15 .067 4 2.831e-3 4 NC 1 NC 1	317		7	max	.008	3	003	15	.067	4	2.831e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

TICV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio			
318			min	007	2	014	3	0	1	0	1_	7614.889	3	NC	1
319		8	max	.009	3	003	15	.075	4	3.417e-3	4	NC	1_	NC	1
320			min	008	2	015	3	0	1	0	_1_	7082.417	3	NC	1
321		9	max	.01	3	003	15	.083	4	4.003e-3	4	NC	1_	NC	1
322		40	min	<u>01</u>	2	015	3	0	1	4.500- 2	1_1	6809.29	3	NC NC	1
323 324		10	max	.011 011	2	003 016	15	<u>.091</u> 0	1	4.589e-3	<u>4</u> 1	NC 6746.271	<u>1</u>	NC NC	1
325		11	min max	.013	3	003	15	.099	4	5.175e-3	4	NC	1	NC	1
326			min	012	2	016	3	<u>.099</u>	1	0.1756-3	1	6881.301	3	NC	1
327		12	max	.014	3	003	15	.107	4	5.762e-3	4	NC	1	NC	1
328		12	min	013	2	015	3	0	1	0.7026-3	1	7233.987	3	NC	1
329		13	max	.015	3	003	15	.115	4	6.348e-3	4	NC NC	1	NC	1
330			min	014	2	015	3	0	1	0	1	7759.414	4	NC	1
331		14	max	.016	3	003	15	.123	4	6.934e-3	4	NC	1	NC	1
332			min	016	2	014	3	0	1	0	1	8650.812	4	NC	1
333		15	max	.018	3	002	15	.132	4	7.52e-3	4	NC	1	NC	1
334			min	017	2	012	3	0	1	0	1	NC	1	NC	1
335		16	max	.019	3	002	15	.142	4	8.106e-3	4	NC	1	NC	1
336			min	018	2	011	3	0	1	0	1	NC	1	NC	1
337		17	max	.02	3	001	15	.153	4	8.692e-3	4	NC	1_	NC	1_
338			min	019	2	009	3	0	1	0	<u>1</u>	NC	1_	NC	1
339		18	max	.021	3	0	15	164	4	9.278e-3	4	NC	1	NC	1
340		40	min	02	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
341		19	max	.023	3	0	15	177	4	9.864e-3	4	NC	1	NC	1
342	MO	1	min	022	2	005 .02	3	<u> </u>	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
343	<u>M8</u>		max	.007 002	3	023	3	177	4	-4.979e-5	5	NC NC	1	139.739	4
345		2	max	.002	2	.019	2	1// 0	1	0	<u> </u>	NC NC	1	NC	1
346			min	001	3	022	3	163	4	-4.979e-5	5	NC	+	151.917	4
347		3	max	.006	2	.018	2	0	1	0	1	NC	1	NC	1
348			min	001	3	02	3	149	4	-4.979e-5	5	NC	1	166.411	4
349		4	max	.006	2	.017	2	0	1	0	1	NC	1	NC	1
350			min	001	3	019	3	135	4	-4.979e-5	5	NC	1	183.824	4
351		5	max	.006	2	.016	2	0	1	0	1	NC	1	NC	1
352			min	001	3	018	3	121	4	-4.979e-5	5	NC	1	204.971	4
353		6	max	.005	2	.015	2	0	1	0	1	NC	1	NC	1
354			min	001	3	017	3	107	4	-4.979e-5	5	NC	1	230.988	4
355		7	max	.005	2	.014	2	0	1	0	_1_	NC	1_	NC	1
356			min	001	3	015	3	094	4	-4.979e-5	5	NC	1_	263.482	4
357		8	max	.004	2	.012	2	0	1	0	_1_	NC	1	NC	1
358		_	min	0	3	014	3	081		-4.979e-5		NC NC	1	304.8	4
359		9	max	.004	2	.011	2	000	1	0		NC	1	NC 250 474	1
360		10	min	004	2	013	2	069	1	-4.979e-5	5	NC NC	<u>1</u> 1	358.474	<u>4</u> 1
361 362		10	max min	.004 0	3	.01 012	3	0 058	4	-4.979e-5	5	NC NC	1	NC 430.025	4
363		11	max	.003	2	.009	2	0 <u>56</u> 0	1	0	<u> </u>	NC NC	1	NC	1
364		11	min	0	3	01	3	047	4	-4.979e-5	5	NC	1	528.484	4
365		12	max	.003	2	.008	2	0	1	0	1	NC		NC	1
366		12	min	0	3	009	3	037	4	-4.979e-5	5	NC	1	669.473	4
367		13	max	.002	2	.007	2	0	1	0	1	NC	1	NC	1
368		1.0	min	0	3	008	3	028	4	-4.979e-5	5	NC	1	881.983	4
369		14	max	.002	2	.006	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	02	4	-4.979e-5	5	NC	1	1224.986	4
371		15	max	.002	2	.005	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	014	4	-4.979e-5	5	NC	1	1834.408	4
373		16	max	.001	2	.003	2	0	1	0	1	NC	1	NC	1
374			min	0	3	004	3	008	4	-4.979e-5	5	NC	1	3085.922	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

375	.056 4
377	
378	
379	
380 min 0 1 0 1 -4.979e-5 5 NC 1 NC 381 M10 1 max .007 2 .008 2 0 12 1.471e-3 4 NC 1 NC 382 min 009 3 013 3 524 4 1.224e-5 12 8140.005 2 119. 383 2 max .006 2 .007 2 0 12 1.544e-3 4 NC 1 NC 384 min 009 3 012 3 481 4 1.51e-5 12 9299.251 2 130 385 3 max .006 2 .006 2 0 12 1.618e-3 4 NC 1 NC 386 min 008 3 011 3 397 4 1.006e-5 12 NC 1	
381 M10 1 max .007 2 .008 2 0 12 1.471e-3 4 NC 1 NO 382 min 009 3 013 3 524 4 1.224e-5 12 8140.005 2 119. 383 2 max .006 2 .007 2 0 12 1.544e-3 4 NC 1 NC 384 min 009 3 012 3 481 4 1.151e-5 12 9299.251 2 130 385 3 max .006 2 .006 2 0 12 1.618e-3 4 NC 1 NC 386 min 008 3 012 3 439 4 1.078e-5 12 NC 1 142. 387 4 max .006 2 .005 2 .0 12 1.692e-3 <td></td>	
382 min 009 3 013 3 524 4 1.224e-5 12 8140.005 2 119. 383 2 max .006 2 .007 2 0 12 1.544e-3 4 NC 1 NC 384 min 009 3 012 3 481 4 1.151e-5 12 9299.251 2 130 385 3 max .006 2 .006 2 0 12 1.618e-3 4 NC 1 NC 386 min 008 3 012 3 439 4 1.078e-5 12 NC 1 142. 387 4 max .006 2 .005 2 0 12 1.692e-3 4 NC 1 NC 388 min 008 3 011 3 397 4 1.006e-5 12 N	
383 2 max .006 2 .007 2 0 12 1.544e-3 4 NC 1 NC 384 min 009 3 012 3 481 4 1.151e-5 12 9299.251 2 130 385 3 max .006 2 .006 2 0 12 1.618e-3 4 NC 1 NC 386 min 008 3 012 3 439 4 1.078e-5 12 NC 1 142. 387 4 max .006 2 .005 2 0 12 1.692e-3 4 NC 1 NC 388 min 008 3 011 3 397 4 1.006e-5 12 NC 1 157. 389 5 max .005 2 .004 2 0 12 1.765e-3 4	
384 min 009 3 012 3 481 4 1.151e-5 12 9299.251 2 130 385 3 max .006 2 .006 2 0 12 1.618e-3 4 NC 1 NC 386 min 008 3 012 3 439 4 1.078e-5 12 NC 1 142. 387 4 max .006 2 .005 2 0 12 1.692e-3 4 NC 1 NC 388 min 008 3 011 3 397 4 1.006e-5 12 NC 1 157. 389 5 max .005 2 .004 2 0 12 1.765e-3 4 NC 1 NC 390 min 007 3 011 3 356 4 9.331e-6 12 NC	
385 3 max .006 2 .006 2 0 12 1.618e-3 4 NC 1 NC 386 min 008 3 012 3 439 4 1.078e-5 12 NC 1 142. 387 4 max .006 2 .005 2 0 12 1.692e-3 4 NC 1 NC 388 min 008 3 011 3 397 4 1.006e-5 12 NC 1 157. 389 5 max .005 2 .004 2 0 12 1.765e-3 4 NC 1 NC 390 min 007 3 011 3 356 4 9.331e-6 12 NC 1 176. 391 6 max .005 2 .003 2 0 12 1.839e-3 4 <td< td=""><td></td></td<>	
386 min 008 3 012 3 439 4 1.078e-5 12 NC 1 142. 387 4 max .006 2 .005 2 0 12 1.692e-3 4 NC 1 NC 388 min 008 3 011 3 397 4 1.006e-5 12 NC 1 157. 389 5 max .005 2 .004 2 0 12 1.765e-3 4 NC 1 NC 390 min 007 3 011 3 356 4 9.331e-6 12 NC 1 176. 391 6 max .005 2 .003 2 0 12 1.839e-3 4 NC 1 NC 392 min 007 3 01 3 316 4 8.605e-6 12 NC	
387 4 max .006 2 .005 2 0 12 1.692e-3 4 NC 1 NC 388 min 008 3 011 3 397 4 1.006e-5 12 NC 1 157. 389 5 max .005 2 .004 2 0 12 1.765e-3 4 NC 1 NC 390 min 007 3 011 3 356 4 9.331e-6 12 NC 1 176. 391 6 max .005 2 .003 2 0 12 1.839e-3 4 NC 1 NC 392 min 007 3 01 3 316 4 8.605e-6 12 NC 1 198 393 7 max .004 2 .002 2 0 12 1.913e-3 4 N	
388 min 008 3 011 3 397 4 1.006e-5 12 NC 1 157. 389 5 max .005 2 .004 2 0 12 1.765e-3 4 NC 1 NC 390 min 007 3 011 3 356 4 9.331e-6 12 NC 1 176. 391 6 max .005 2 .003 2 0 12 1.839e-3 4 NC 1 NC 392 min 007 3 01 3 316 4 8.605e-6 12 NC 1 198 393 7 max .004 2 .002 2 0 12 1.913e-3 4 NC 1 NC 394 min 006 3 009 3 277 4 7.878e-6 12 NC	
389 5 max .005 2 .004 2 0 12 1.765e-3 4 NC 1 NC 390 min 007 3 011 3 356 4 9.331e-6 12 NC 1 176. 391 6 max .005 2 .003 2 0 12 1.839e-3 4 NC 1 NC 392 min 007 3 01 3 316 4 8.605e-6 12 NC 1 198 393 7 max .004 2 .002 2 0 12 1.913e-3 4 NC 1 NC 394 min 006 3 009 3 277 4 7.878e-6 12 NC 1 226 395 8 max .004 2 .002 2 0 12 1.986e-3 4 NC	
390 min 007 3 011 3 356 4 9.331e-6 12 NC 1 176. 391 6 max .005 2 .003 2 0 12 1.839e-3 4 NC 1 NC 392 min 007 3 01 3 316 4 8.605e-6 12 NC 1 198 393 7 max .004 2 .002 2 0 12 1.913e-3 4 NC 1 198 394 min 006 3 009 3 277 4 7.878e-6 12 NC 1 226 395 8 max .004 2 .002 2 0 12 1.986e-3 4 NC 1 NC 398 397 9 max .004 2 0 2 0 12 2.06e-3 4 </td <td></td>	
391 6 max .005 2 .003 2 0 12 1.839e-3 4 NC 1 N0 392 min 007 3 01 3 316 4 8.605e-6 12 NC 1 198 393 7 max .004 2 .002 2 0 12 1.913e-3 4 NC 1 NC 394 min 006 3 009 3 277 4 7.878e-6 12 NC 1 226 395 8 max .004 2 .002 2 0 12 1.986e-3 4 NC 1 NC 396 min 006 3 009 3 239 4 7.152e-6 12 NC 1 262 397 9 max .004 2 0 2 0 12 2.06e-3 4 NC 1 NC 398 min 005 3 008 3 <	
392 min 007 3 01 3 316 4 8.605e-6 12 NC 1 198 393 7 max .004 2 .002 2 0 12 1.913e-3 4 NC 1 NC 394 min 006 3 009 3 277 4 7.878e-6 12 NC 1 226 395 8 max .004 2 .002 2 0 12 1.986e-3 4 NC 1 NC 396 min 006 3 009 3 239 4 7.152e-6 12 NC 1 262 397 9 max .004 2 0 2 0 12 2.06e-3 4 NC 1 NC 398 min 005 3 008 3 203 4 6.426e-6 12 NC	
393 7 max .004 2 .002 2 0 12 1.913e-3 4 NC 1 NC 394 min 006 3 009 3 277 4 7.878e-6 12 NC 1 226 395 8 max .004 2 .002 2 0 12 1.986e-3 4 NC 1 NC 396 min 006 3 009 3 239 4 7.152e-6 12 NC 1 262 397 9 max .004 2 0 2 0 12 2.06e-3 4 NC 1 NC 398 min 005 3 008 3 203 4 6.426e-6 12 NC 1 308 399 10 max .003 2 0 2 0 12 2.133e-3 4 NC 1 NC	
394 min 006 3 009 3 277 4 7.878e-6 12 NC 1 226 395 8 max .004 2 .002 2 0 12 1.986e-3 4 NC 1 NC 396 min 006 3 009 3 239 4 7.152e-6 12 NC 1 262 397 9 max .004 2 0 2 0 12 2.06e-3 4 NC 1 NC 398 min 005 3 008 3 203 4 6.426e-6 12 NC 1 308 399 10 max .003 2 0 2 0 12 2.133e-3 4 NC 1 NC	
395 8 max .004 2 .002 2 0 12 1.986e-3 4 NC 1 NC 396 min 006 3 009 3 239 4 7.152e-6 12 NC 1 262 397 9 max .004 2 0 2 0 12 2.06e-3 4 NC 1 NC 398 min 005 3 008 3 203 4 6.426e-6 12 NC 1 308. 399 10 max .003 2 0 2 0 12 2.133e-3 4 NC 1 NC	
396 min 006 3 009 3 239 4 7.152e-6 12 NC 1 262 397 9 max .004 2 0 2 0 12 2.06e-3 4 NC 1 NC 398 min 005 3 008 3 203 4 6.426e-6 12 NC 1 308. 399 10 max .003 2 0 2 0 12 2.133e-3 4 NC 1 NC	
397 9 max .004 2 0 2 0 12 2.06e-3 4 NC 1 NC 398 min 005 3 008 3 203 4 6.426e-6 12 NC 1 308. 399 10 max .003 2 0 2 0 12 2.133e-3 4 NC 1 NC	
398 min005 3 008 3 203 4 6.426e-6 12 NC 1 308. 399 10 max .003 2 0 2 0 12 2.133e-3 4 NC 1 NC	
399 10 max .003 2 0 2 0 12 2.133e-3 4 NC 1 NC	365 4
	1
400 min005 3008 317 4 5.7e-6 12 NC 1 369.	681 4
401 11 max .003 2 0 2 0 12 2.207e-3 4 NC 1 NO	
402 min004 3007 3138 4 4.974e-6 12 NC 1 453.	373 4
403 12 max .003 2 0 2 0 12 2.281e-3 4 NC 1 NO	
404 min004 3006 3109 4 4.248e-6 12 NC 1 574.	
405 13 max .002 2 0 2 0 12 2.354e-3 4 NC 1 NO	
406 min003 3005 3083 4 3.522e-6 12 NC 1 754.	
407	
408 min003 3005 306 4 2.796e-6 12 NC 1 1045	
409	
410 min002 3004 304 4 2.07e-6 12 NC 1 1558	
411 16 max .001 2 0 15 0 12 2.575e-3 4 NC 1 NO	
412 min002 3003 3024 4 1.186e-6 10 NC 1 2603	
413	
414 min001 3002 3012 4 1.172e-7 10 NC 1 5311 415 18 max 0 2 0 15 0 12 2.722e-3 4 NC 1 NO	
416 min 0 3001 4004 4 -7.937e-6 1 NC 1 NC	
417	
418 min 0 1 0 1 0 1 -1.893e-5 1 NC 1 NC	
419 M11 1 max 0 1 0 1 0 1 6.381e-6 1 NC 1 NC	
420 min 0 1 0 1 0 1 -6.819e-4 4 NC 1 NC	
421 2 max 0 3 0 15 .013 4 -7.686e-7 12 NC 1 NC	
422 min 0 2002 4 0 1 -9.242e-5 4 NC 1 NC	
423 3 max 0 3 0 15 .026 4 4.97e-4 4 NC 1 NC	
424 min 0 2004 4 0 1 -3.201e-5 1 NC 1 NC	
425 4 max .001 3001 15 .037 4 1.086e-3 4 NC 1 NC	
426 min 0 2006 4 0 1 -5.12e-5 1 NC 1 NC	
427 5 max .002 3002 15 .047 4 1.676e-3 4 NC 1 NC	
428 min001 2008 4 0 1 -7.04e-5 1 NC 1 NC	
429 6 max .002 3002 15 .057 4 2.265e-3 4 NC 1 NC	
430 min002 201 4 0 1 -8.96e-5 1 9856.747 4 No	
431 7 max .002 3003 15 .066 4 2.855e-3 4 NC 1 NC	0 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			
432			min	002	2	011	4	0	1	-1.088e-4	1_	8467.83	4	NC	1
433		8	max	.003	3	003	15	.075	4	3.444e-3	4	NC	_1_	NC	1_
434			min	002	2	012	4	001	1	-1.28e-4	1_	7611.229	4	NC	1
435		9	max	.003	3	003	15	.083	4	4.034e-3	_4_	NC	2	NC	1
436			min	003	2	013	4	001	1	-1.472e-4	1_	7105.801	4_	NC	1
437		10	max	.004	3	003	15	.091	4	4.623e-3	4	NC	2	NC	1
438		.	min	003	2	014	4	002	1	-1.664e-4	1_	6863.728	4	NC	1
439		11	max	.004	3	003	15	.099	4	5.213e-3	4	NC	2	NC	1
440			min	003	2	014	4	002	1	-1.856e-4	1	6849.428	4_	NC	1
441		12	max	.004	3	003	15	.107	4	5.802e-3	4	NC	2	NC	1
442			min	004	2	014	4	002	1	-2.048e-4	<u>1</u>	7065.901	4	NC	1
443		13	max	.005	3	003	15	<u>.115</u>	4	6.392e-3	4	NC	1_	NC	1
444			min	<u>004</u>	2	013	4	003	1	-2.24e-4	1_	7557.65	4_	NC	1
445		14	max	.005	3	003	15	.124	4	6.981e-3	4	NC	1_	NC	1
446		4.5	min	004	2	012	4	003	1	-2.432e-4	1_	8433.642	4_	NC	1
447		15	max	.006	3	003	15	.133	4	7.57e-3	4	NC	1_	NC	1
448		40	min	005	2	01	4	004	1	-2.624e-4	1	9935.019	4	NC NC	1
449		16	max	.006	3	002	15	.143	4	8.16e-3	4	NC	1	NC NC	1
450		4-7	min	005	2	008	4	004	1	-2.815e-4	1_	NC	1_	NC	1
451		17	max	.006	3	002	15	.154	4	8.749e-3	4	NC NC	1	NC NC	1
452		40	min	005	2	006	4	005	1	-3.007e-4	1	NC NC	_	NC NC	1
453		18	max	.007	3	001	15	.166	4	9.339e-3	4	NC NC	1_	NC	1
454		40	min	006	2	004	1	006	1	-3.199e-4	1_1	NC NC	1_	NC NC	1
455		19	max	.007	3	0	10	.179	4	9.928e-3	4	NC NC	1_1	NC	1
456	MAO	1	min	006	2	002	1	006	1	-3.391e-4	1_	NC NC	<u>1</u> 1	NC NC	1
457	M12		max	.003 0	3	.006	3	.006	1	8.303e-6 -5.214e-5	5	NC NC	1		3 4
458		2	min			007	2	179	1		1_	NC NC	1	138.572	2
459			max	.002	3	.005	3	.006	4	8.303e-6	_5_		1	NC 150.642	4
460 461		3	min	.002	1	007 .005	2	165 .005	1	-5.214e-5		NC NC	1	150.642 NC	2
462		3	max	<u>.002</u>	3	007	3	15	4	8.303e-6 -5.214e-5	<u>5</u> 1	NC NC	1	165.008	4
463		4	max	.002	1	.005	2	.005	1	8.303e-6	5	NC	1	NC	2
464		-	min	0	3	006	3	136	4	-5.214e-5	1	NC	1	182.268	4
465		5	max	.002	1	.004	2	.004	1	8.303e-6	5	NC	1	NC	2
466			min	0	3	006	3	122	4	-5.214e-5	1	NC	1	203.229	4
467		6	max	.002	1	.004	2	.004	1	8.303e-6	5	NC	1	NC	2
468			min	0	3	005	3	108	4	-5.214e-5	1	NC	1	229.018	4
469		7	max	.002	1	.004	2	.003	1	8.303e-6	5	NC	-	NC	2
470			min	0	3	005	3	095	4	-5.214e-5	1	NC	1	261.227	4
471		8	max	.002	1	.003	2	.003	1	8.303e-6	5	NC	1	NC	2
472			min	0	3	005	3	082		-5.214e-5		NC	1	302.182	4
473		9	max	.001	1	.003	2	.002	1	8.303e-6	5	NC	1	NC	2
474		Ť	min	0	3	004	3	07	4	-5.214e-5		NC	1	355.386	4
475		10	max	.001	1	.003	2	.002	1	8.303e-6	5	NC	1	NC	1
476			min	0	3	004	3	058	4	-5.214e-5	1	NC	1	426.309	4
477		11	max	.001	1	.002	2	.002	1	8.303e-6	5	NC	1	NC	1
478			min	0	3	003	3	047	4	-5.214e-5	1	NC	1	523.904	4
479		12	max	.001	1	.002	2	.001	1	8.303e-6	5	NC	1	NC	1
480			min	0	3	003	3	037	4	-5.214e-5		NC	1	663.655	4
481		13	max	0	1	.002	2	.001	1	8.303e-6	5	NC	1	NC	1
482			min	0	3	002	3	028	4	-5.214e-5	1	NC	1	874.297	4
483		14	max	0	1	.002	2	0	1	8.303e-6	5	NC	1	NC	1
484			min	0	3	002	3	02	4	-5.214e-5		NC	1	1214.283	_
485		15	max	0	1	.001	2	0	1	8.303e-6	5	NC	1	NC	1
486			min	0	3	002	3	014	4	-5.214e-5	1	NC	1	1818.336	4
487		16	max	0	1	0	2	0	1	8.303e-6	5	NC	1	NC	1
488			min	0	3	001	3	008	4	-5.214e-5	_	NC	1	3058.808	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
489		17	max	0	1	0	2	0	1	8.303e-6	5	NC	1_	NC	1
490		4.0	min	0	3	0	3	004	4	-5.214e-5	_1_	NC	1_	6315.885	4
491		18	max	0	1	0	2	0	1	8.303e-6	_5_	NC	1	NC NC	1
492		40	min	0	3	0	3	001	4	-5.214e-5	_1_	NC NC	1_	NC NC	1
493		19	max	0	1	0	1	0	1	8.303e-6	5	NC NC	1	NC NC	1
494	N 1 1	1	min	0		0 .123	1	<u> </u>	1	-5.214e-5	1	NC NC		NC NC	1
495	<u>M1</u>		max	.009	3	022	3	.553	12	1.236e-2	3	NC NC	<u>1</u> 1	NC NC	1
496 497		2	min	005 .009	3	022 .059	2	0 .537	4	-2.505e-2 7.018e-3	<u> </u>	NC NC	4	NC NC	1
497			max	005	2	008	3	005	1	-1.239e-2	3	1782.838	2	NC NC	1
499		3	max	.009	3	.014	3	005 .52	4	1.189e-2	4	NC	5	NC NC	1
500		-	min	005	2	011	2	007	1	-1.284e-4	3	859.658	2	7646.456	5
501		4	max	.009	3	.052	3	.503	4	1.032e-2	4	NC	5	NC	1
502		7	min	005	2	089	2	006	1	-4.802e-3		543.043	2	5463.307	5
503		5	max	.009	3	.101	3	.485	4	8.748e-3	4	NC	5	NC	1
504			min	005	2	17	2	004	1	-9.475e-3	3	392.151	2	4362.787	5
505		6	max	.008	3	.154	3	.467	4	1.29e-2	2	NC	15	NC	1
506			min	005	2	249	2	002	1	-1.415e-2	3	308.995	2	3698.362	5
507		7	max	.008	3	.205	3	.449	4	1.719e-2	2	NC	15	NC	1
508			min	005	2	32	2	0	3	-1.882e-2	3	259.893	2	3234.608	4
509		8	max	.008	3	.248	3	.429	4	2.149e-2	2	9763.063	15	NC	1
510			min	005	2	375	2	0	12	-2.349e-2	3	230.842	2	2894.326	4
511		9	max	.008	3	.276	3	.409	4	2.435e-2	2	9129.703	15	NC	1
512			min	004	2	411	2	0	1	-2.367e-2	3	215.716	2	2676.83	4
513		10	max	.008	3	.286	3	.387	4	2.625e-2	2	8936.579	15	NC	1
514			min	004	2	423	2	0	12	-2.085e-2	3	211.277	2	2608.244	4
515		11	max	.008	3	.279	3	.363	4	2.815e-2	2	9129.34	15	NC	1
516			min	004	2	411	2	0	12	-1.803e-2	3	216.428	2	2657.216	4
517		12	max	.007	3	.256	3	.337	4	2.715e-2	2	9762.231	15	NC	1_
518			min	004	2	374	2	0	1	-1.513e-2	3	233.003	2	2833.902	4
519		13	max	.007	3	.218	3	.308	4	2.177e-2	2	NC	<u>15</u>	NC	1
520			min	004	2	31 <u>5</u>	2	0	1	-1.211e-2	3	265.139	2	3314.338	4
521		14	max	.007	3	.17	3	.277	4	1.639e-2	2	NC	15	NC	1
522		4.5	min	004	2	242	2	0	12	-9.095e-3	3	320.177	2	4333.502	4
523		15	max	.007	3	.115	3	.245	4	1.102e-2	2	NC 445.400	5_	NC CECZ COO	1_
524		4.0	min	004	2	162	2	0	12	-6.076e-3	3	415.106	2	6567.933	4
525		16	max	.007	3	.059	3	.213	4	8.397e-3 -3.057e-3	<u>4</u> 3	NC 501 202	<u>5</u>	NC NC	1
526		17	min	004		08	3	102	1 <u>2</u>	9.533e-3	<u> </u>	591.303			1
527 528		17	max	.007 004	3	.005 006	2	.183 0	12	-3.808e-5	3	NC 968.755	<u>5</u>	NC NC	1
529		1Ω	max	.007	3	.055	2	.157	4	9.383e-3		NC	4	NC NC	1
530		10	min	004	2	044	3	0	12	-3.857e-3		2060.07	2	NC	1
531		19	max	.007	3	.11	2	.134	4	1.884e-2	2	NC	1	NC	1
532		10	min	004	2	089	3	0	1	-7.835e-3		NC	1	NC	1
533	M5	1	max	.028	3	.271	2	.553	4	0	1	NC	1	NC	1
534	1710		min	019	2	013	3	0	1	-5.131e-6	_	NC	1	NC	1
535		2	max	.028	3	.128	2	.54	4	6.1e-3	4	NC	5	NC	1
536			min	019	2	0	3	0	1	0	1	806.883	2	NC	1
537		3	max	.028	3	.043	3	.524	4	1.202e-2	4	NC	5	NC	1
538			min	019	2	033	2	0	1	0	1	379.561	2	6252.141	4
539		4	max	.027	3	.139	3	.507	4	9.79e-3	4	NC	15	NC	1
540			min	019	2	226	2	0	1	0	1	232.266	2	4782.266	4
541		5	max	.027	3	.273	3	.488	4	7.564e-3	4	7846.725	15	NC	1
542			min	019	2	435	2	0	1	0	1	163.45	2	4062.918	4
543		6	max	.026	3	.423	3	.468	4	5.337e-3	4	6036.753	15	NC	1
544			min	018	2	642	2	0	1	0	1	126.324	2	3616.544	4
545		7	max	.026	3	.57	3	.448	4	3.111e-3	4	4992.4	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
546			min	018	2	83	2	0	1	0	1_	104.783	2	3269.704	-
547		8	max	.025	3	.694	3	.429	4	8.851e-4	4	4385.558	<u>15</u>	NC	1
548			min	018	2	<u>981</u>	2	0	1	0	1_	92.217	2	2942.476	
549		9	max	.025	3	.774	3	.41	4	0	1_	4074.51	15	NC	1
550		40	min	017	2	<u>-1.076</u>	2	0	1	-3.511e-6	5	85.759	2	2671.781	4
551		10	max	.024	3	.802	3	.387	4	0	1	3980.825	<u>15</u>	NC 2626.42	4
552		11	min	017 .024	3	<u>-1.108</u> .782	3	<u> </u>	4	-3.389e-6	<u>5</u> 1	83.868 4074.658	<u>2</u> 15	NC	1
553 554			max	017	2	-1.076	2	<u>.303</u>	1	-3.267e-6	5	86.057	2	2688.264	
555		12	max	.023	3	.715	3	.338	4	6.791e-4	4	4385.905	15	NC	1
556		12	min	017	2	977	2	<u>.ააი</u> ე	1	0.7916-4	1	93.195	2	2784.01	4
557		13	max	.022	3	.606	3	.309	4	2.388e-3	4	4993.096	15	NC	1
558		13	min	016	2	818	2	0	1	0	1	107.322	2	3255.692	
559		14	max	.022	3	.468	3	.276	4	4.097e-3	4	6038.098	15	NC	1
560		17	min	016	2	621	2	0	1	0	1	132.054	2	4492.593	4
561		15	max	.021	3	.315	3	.242	4	5.805e-3	4	7849.361	15	NC	1
562			min	016	2	408	2	0	1	0.0000	1	175.956	2	7975.884	-
563		16	max	.021	3	.16	3	.208	4	7.514e-3	4	NC	15	NC	1
564			min	016	2	2	2	0	1	0	1	260.567	2	NC	1
565		17	max	.02	3	.014	3	.178	4	9.223e-3	4	NC	5	NC	1
566			min	015	2	019	2	0	1	0	1	449.435	2	NC	1
567		18	max	.02	3	.118	2	.153	4	4.683e-3	4	NC	5	NC	1
568			min	015	2	11	3	0	1	0	1	996.474	2	NC	1
569		19	max	.02	3	.23	2	.135	4	0	1	NC	1	NC	1
570			min	015	2	222	3	0	1	-2.845e-6	4	NC	1	NC	1
571	M9	1	max	.009	3	.123	2	.552	4	2.505e-2	3	NC	1_	NC	1
572			min	005	2	022	3	0	1	-1.236e-2	2	NC	1_	NC	1
573		2	max	.009	3	.059	2	.539	4	1.239e-2	3	NC	4	NC	1
574			min	005	2	008	3	0	12	-6.067e-3	2	1782.838	2	NC	1
575		3	max	.009	3	.014	3	.524	4	1.198e-2	4_	NC	5_	NC	1
576			min	005	2	011	2	0	12	-3.408e-5	<u>10</u>	859.658	2	6480.88	4
577		4	max	.009	3	.052	3	.506	4	9.454e-3	5	NC Transfer	5	NC	1
578			min	005	2	089	2	0	12	-4.312e-3	2	543.043	2	4874.973	
579		5	max	.009	3	.101	3	.488	4	9.475e-3	3_	NC 000 454	5_	NC 4070.045	1
580			min	005	2	17	2	0	12	-8.606e-3	2	392.151	2	4079.215	
581		6	max	.008	3	.154	3	.468	4	1.415e-2	3	NC 200 005	<u>15</u>	NC 2500 502	1
582		7	min	005	3	249	3	0	12	-1.29e-2	3	308.995 NC	<u>2</u> 15	3590.503	
583			max	.008	2	.205	2	.448	1	1.882e-2	2	259.893	2	NC 3231.016	1
584 585		8	min	005 .008	3	32 .248	3	<u> </u>	4	-1.719e-2 2.349e-2	3	9742.094	15	NC	1
586		0	max min		2	375	2	<u>.429</u> 0		-2.149e-2				2919.635	
587		9	max		3	.276	3	.409	4	2.367e-2	3	9110.322	15	NC	1
588		3	min	004	2	411	2	0	12	-2.435e-2	2	215.716	2	2669.494	
589		10	max	.008	3	.286	3	.387	4	2.085e-2	3	8917.656	15	NC	1
590		10	min	004	2	423	2	0	1	-2.625e-2	2	211.277	2	2609.366	4
591		11	max	.008	3	.279	3	.363	4	1.803e-2	3	9109.944	15	NC	1
592			min	004	2	411	2	0	1	-2.815e-2	2	216.428	2	2666.255	-
593		12	max	.007	3	.256	3	.338	4	1.513e-2	3	9741.345	15	NC	1
594			min	004	2	374	2	0	12	-2.715e-2	2	233.003	2	2810.079	
595		13	max	.007	3	.218	3	.308	4	1.211e-2	3	NC	15	NC	1
596			min	004	2	315	2	0	10	-2.177e-2	2	265.139	2	3313.906	4
597		14	max	.007	3	.17	3	.276	4	9.095e-3	3	NC	15	NC	1
598			min	004	2	242	2	002	1	-1.639e-2	2	320.177	2	4467.386	5
599		15	max	.007	3	.115	3	.242	4	6.076e-3	3	NC	5	NC	1
600			min	004	2	162	2	004	1	-1.102e-2	2	415.106	2	7225.198	5
601		16	max	.007	3	.059	3	.21	4	7.406e-3	5	NC	5	NC	1
602			min	004	2	08	2	006	1	-5.638e-3	2	591.303	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.007	3	.005	3	.18	4	9.302e-3	4	NC	5	NC	1
604			min	004	2	006	2	006	1	-4.556e-4	1	968.755	2	NC	1
605		18	max	.007	3	.055	2	.155	4	4.487e-3	5	NC	4	NC	1
606			min	004	2	044	3	004	1	-9.383e-3	2	2060.07	2	NC	1
607		19	max	.007	3	.11	2	.135	4	7.835e-3	3	NC	1	NC	1
608			min	004	2	089	3	0	12	-1.884e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	I.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.