PRZYKŁADY SIECI PETRIEGO

JAN SMÓŁKA

ABSTRACT. Niniejszy dokument zawiera sprawozdanie z wykonania ćwiczeń na laboratorium 9 na przedmiocie Teoria Współbieżności w semestrze zimowym roku akademickiego 2023/24.

1. Zadanie 1

FIGURE 1. Przykładowa maszyna stanów

FIGURE 2. Własności stworzonej maszyny stanów

FIGURE 3. Sieć dana do analizy w zadaniu 2

Petri net state space analysis results

Bounded	false
Safe	false
Deadlock	false

FIGURE 4. Cechy sieci

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

FIGURE 5. Niezmienniki - nie można określić, czy sieć jest żywa

FIGURE 6. Graf osiągalności

 ${\it Figure}$ 7. Graf osiągalności z widocznym cyklem stanów; Sieć nie jest odwracalna

FIGURE 8. Ciekawe zjawisko po wygenerowaniu grafu widoczności; Pętla ciasna $P3 \to T0 \to P3$ generuje nieograniczoną liczbę tokenów

Idea modelu zaczerpnięta z [artykułu]

FIGURE 9. Model mutexu współdzielonego między dwoma wątkami

FIGURE 10. Własności sieci; Ochronę sekcji krytycznej wyraża ostatnie równanie, jako jedyne zawierające markowanie miejsca "Mutex"

FIGURE 11. Sieć "Producer & Consumer" ze zbioru przykładów PIPE2

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

þ	P0	Р1	P2	Р3	Р4	Р5	Р6	Р7
	1	1	1	0	0	0	0	0
	0	0	0	1	1	1	0	0
	0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$\begin{aligned} &M(P0) + M(P1) + M(P2) = 1 \\ &M(P3) + M(P4) + M(P5) = 1 \\ &M(P6) + M(P7) = 3 \end{aligned}$$

FIGURE 12. Niezmienniki; Rozmiar bufora określa równanie M(P6) + M(P7) = 3; Każde miejsce wystepuje w co najmniej jednym równaniu, więc sieć jest zachowawcza

FIGURE 13. Modyfikacja sieci z zadania 4. - producent i konsument z nieograniczonym buforem

Petri net invariant analysis results

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants										
P0	Р1	P2	Р3	P4	Р5	P6				
1	1	1	0	0	0	0				
Ω	0	0	1	1	1	0				

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

M(P0) + M(P1) + M(P2) = 1M(P3) + M(P4) + M(P5) = 1

FIGURE 14. Niezmienniki; Miejsca nie są w pełni pokryte - P6, reprezentujące bufor, jest nieograniczone. Co za tym idzie, sieć nie jest bezpieczna, ograniczona ani zachowawcza

FIGURE 15. Sieć z tematu zadania

FIGURE 16. Niezmienniki

FIGURE 17. Własności sieci; widać, że do zakleszczenia (S6 lub S7) może dojść na wiele sposobów