Poznámka (Úmluva)

Všechny topologické prostory v tomto semestru budou Hausdorffovy (T_2) . Tedy regulární jsou automaticky T_3 , úplně regulární jsou automaticky T_{π} a normální jsou T_4 .

Speciálně např. kompaktní prostory jsou T_4 .

1 Parakompaktní prostory

Poznámka (Připomenutí)

Pokrytí, otevřené pokrytí, podpokrytí.

Definice 1.1 (Zjemnění)

At X je množina a \mathcal{S} je pokrytí X. Řekneme, že systém $\mathcal{T} \in \mathcal{P}(X)$ je zjemnění \mathcal{S} , pokud \mathcal{T} je pokrytí a $\forall T \in \mathcal{T} \exists S \in \mathcal{S} : T \subseteq S$.

Definice 1.2 (Lokálně konečný systém)

Ať \mathbb{X} je TP, $\mathcal{S} \subseteq \mathcal{P}(\mathbb{X})$. \mathcal{S} se nazývá lokálně konečný, pokud

$$\forall x \in \mathbb{X} \ \exists U \in \mathcal{U}(x) : \{S \in \mathcal{S} | S \cap U \neq \emptyset\}$$
 je konečná.

Systém S se nazve diskrétní, pokud

$$\forall x \in \mathbb{X} \ \exists U \in \mathcal{U}(x) : |\{S \in \mathcal{S} | S \cap U \neq \emptyset\}| \le 1.$$

Systém S se nazve σ -lokálně konečný (resp. σ -diskrétní), pokud $\exists S_n$, že $=\bigcup_{n=1}^{\infty}$, že S_n jsou lokálně konečné (resp. diskrétní), $n \in \mathbb{N}$.

Poznámka

Diskrétní systém je lokálně konečný. σ -diskrétní systém je σ -lokálně konečný.

Lemma 1.1 (Uzávěr lokálně konečného prostoru)

 $Af \ X \ je \ TP, \ A \subseteq \mathcal{P}(X) \ lokálně konečný systém. Pak <math>\{\overline{A}|A \in A\}$ je opět lokálně konečný a platí $\overline{\bigcup A} = \bigcup \{\overline{A}|A \in A\}$.

Důkaz

Af $x \in \mathbb{X}$ je libovolné. Existuje $U \in \mathcal{U}(x)$: $\{A \in \mathcal{A} : A \cap U \neq \emptyset\}$ je konečná. Af $V = \int U, V \in \mathcal{U}(x)$. $\{A \in \mathcal{A} : A \cap V \neq \emptyset\}$ je zřejmě konečná. $V \cap A \neq \emptyset \Leftrightarrow V \cap \overline{A} \neq \emptyset$. Tedy $\{A \in \mathcal{A} : \overline{A} \cap V \neq \emptyset\} = \{A \in \mathcal{A} : A \cap V \neq \emptyset\}$. Tedy $\{\overline{A} | A \in \mathcal{A}\}$ je konečná.

$$\supseteq$$
: $\bigcup A \supseteq A, A \in A$, tedy $\overline{\bigcup A} \supseteq \overline{A} \implies \overline{\bigcup A} \supseteq \bigcup \{\overline{A} | A \in A\}$.

$$\subseteq: \text{Af } x \in \overline{\bigcup \mathcal{A}}. \ \exists U \in \mathcal{U}(x) \text{ otevřená, že } \{A \in \mathcal{A}: A \cap U \neq 0\} = \{A_1, \dots, A_n\}. \ x \in \overline{A_1 \cup \dots \cup A_n} \stackrel{\text{konečn\'e}}{=} \overline{A_1 \cup \dots \cup A_n}. \ \exists i \leq n: x \in \overline{A_i}.$$

Definice 1.3 (Parakompaktní)

 $\operatorname{TP} \mathbb X$ se nazývá parakompaktní, pokud každé jeho otevřené pokrytí má lokálně konečné otevřené zjemnění.

Poznámka

Kompaktní \Longrightarrow parakompaktní (protože podpokrytí je zjemnění a konečné je lokálně konečné).

Diskrétní TP \implies parakompaktní.

Tvrzení 1.2

Uzavřený podprostor parakompaktního TP je parakompaktní.

 $D\mathring{u}kaz$

 \mathbb{X} je parakompaktní TP a $F\subseteq\mathbb{X}$ uzavřená. At \mathcal{U} je otevřené pokrytí F (otevřenými množinami v F). Z definice podprostoru $\forall U\in\mathcal{U}\ \exists V_U$ otevřená v $\mathbb{X}:U=F\cap V_U$. Uvažujme $\mathcal{V}=\{V_U|U\in\mathcal{U}\}\cup\{F\setminus F\}$. \mathcal{V} je otevřené pokrytí \mathbb{X} . Existuje otevřené lokálně konečné zjemnění \mathcal{W} tohoto \mathcal{V} . $\{F\cap W|W\in\mathcal{W}\}$ je otevřené pokrytí F a zároveň lokálně konečné. Navíc je to i zjemnění \mathcal{U} .

Věta 1.3 (Charakterizace parakompaktnosti)

Pro regulární TP X jsou následující podmínky ekvivalentní:

- a) X je parakompaktní.
- b) Každé otevřené pokrytí X má otevřené σ-lokálně konečné zjemnění.
- c) Každé otevřené pokrytí X má lokálně konečné zjemnění (libovolnými množinami).
- d) Každé otevřené pokrytí X má uzavřené lokálně konečné zjemnění.

- $a) \implies b$): každé lokálně konečné zjemnění je σ -lokálně konečné.
- $b) \implies c$) : At $\mathbb U$ je otevřené pokrytí $\mathbb X$. Podle b) existuje otevřené zjemnění $\mathcal V = \bigcup_{n=1}^\infty \mathcal V_n, \ \mathcal V_n$ lokálně konečný systém. $W_n := \bigcup \mathcal V_n$ je otevřené $\{W_n | n \in \mathbb N\}$ je otevřené pokrytí $\mathbb X$. At $A_n := W_n \setminus \bigcup_{i < n} W_i$. $\{A_n | n \in \mathbb N\}$ je lokálně konečné pokrytí $\mathbb X$ (každé $x \in \mathbb X$ je v nějakém W_n , takže už není ve větších A_n). $\{A_n \cap V | n \in \mathbb N, V \in \mathcal V_n\}$ je lokálně konečné zjemnění $\mathcal U$.
- $c) \implies d$) : At \mathcal{U} je otevřené pokrytí \mathbb{X} . Pro každé $x \in \mathbb{X}$ existuje $U_x \in U$: $x \in U_x$. Nyní máme bod v otevřené množině, tedy z regularity existují otevřené množiny $V_x \subseteq \mathbb{X}$: $x \in V_x \subseteq \overline{V_x} \subseteq U_x$. $\mathcal{V} := \{V_x | x \in \mathbb{X}\}$ je otevřené pokrytí \mathbb{X} . \mathcal{V} má lokálně konečné zjemnění \mathcal{W} podle c). $\{\overline{W} | W \in \mathcal{W}\}$ je lokálně konečný systém podle lemmatu "Uzávěr lokálně konečného systému". Navíc je i pokrytí a zjemňuje \mathcal{U} .
- $d) \implies a)$ At \mathcal{U} je otevřené pokrytí \mathbb{X} . Z d) existuje lokálně konečné uzavřené zjemnění \mathcal{V} . Pro $x \in \mathbb{X}$ existuje W_x otevřené okolí x protínající jen konečně mnoho prvků z \mathcal{V} . $\mathcal{W} := \{W_x | x \in \mathbb{X}\}$ je otevřené pokrytí \mathbb{X} . Z d) existuje lokálně konečné uzavřené zjemnění \mathcal{A} toho \mathcal{W} . Pro $V \in \mathcal{V}$ označíme $V^* := \mathbb{X} \setminus \bigcup \{A \in \mathcal{A} | A \cap V = \emptyset\}$. Zřejmě $V^* \supseteq V$. Tedy $\{V^* | V \in \mathcal{V}\}$ je otevřené (odčítáme uzavřenou množinu, neboť A jsou uzavřené a množina je lokálně konečná, tedy podle lemmatu ... je uzavřené i sjednocení) pokrytí.

Ať $x \in \mathbb{X}$. $\exists U$ okolí x, které protíná jen konečně prvků $A_1, \ldots, A_n \in \mathcal{A}$. Zřejmě $U \subseteq A_1 \cup \ldots \cup A_n$. Každé A_i je podmnožinou nějakého W_y , tj. (podle volby W_y) A_i protíná jen konečně mnoho prvků z \mathcal{V} . Navíc je-li $V \in \mathcal{V}$ a $A \in \mathcal{A}$, že $A \cap V = \emptyset$, pak $A \cap V^* = \emptyset$. Tedy každé A_i protíná pouze konečně mnoho prvků V^* , $V \in @V$. Pro každé $V \in @V$ fixujeme $U_v \in \mathcal{U} : V \subseteq U_V$. Zřejmě $V \subseteq U_V \cap V^*$. Pak $\{U_V \cap V^* | V \in \mathcal{V}\}$ je otevřené pokrytí \mathbb{X} , které je lokálně konečné a které je zjemnění \mathcal{U} .

Důsledek

Každý Lindelöfův regulární prostor je parakompaktní.

 $D\mathring{u}kaz$

At \mathcal{U} je otevřené pokrytí \mathbb{X} . Z lindolöfovosti existuje spočetné pokrytí $\mathcal{V} \subseteq \mathcal{U}$. \mathcal{V} je σ -lokálně konečné otevřené zjemnění \mathcal{U} . Tedy platí b) z minulé věty.

Definice 1.4 (Skrčení)

At X je množina a $\mathcal{S} \subseteq \mathcal{P}(X)$ (pokrytí X). Indexovaný systém $\{T_S : S \in \mathcal{S}\} \subseteq \mathcal{P}(X)$ se nazývá skrčení systému \mathcal{S} , pokud (je to pokrytí) a $T_S \subseteq S, S \in \mathcal{S}$.

Poznámka (Nadmutí)

Skrčení je speciální případ zjemnění.

Lemma 1.4 (O skrčení)

Ať X je normální TP. Pak každé lokálně konečné (stačí bodově konečné) otevřené pokrytí X má uzavřené skrčení, jehož vnitřky tvoří pokrytí.

 $D\mathring{u}kaz$

At $\mathcal{U} = \{U_{\alpha} : \alpha < \varkappa\}, \varkappa$ kardinál, \mathcal{U} je lokálně kompaktní, otevřené pokrytí X. Nyní $F_0 := \mathbb{X} \setminus \bigcup \{U_\alpha : 0 < \alpha < \varkappa\}$ uzavřená, $F_0 \subseteq U_0$ (z toho, že \mathcal{U} je pokrytí). Z normality existuje otevřená $V_0 \subseteq \mathbb{X} : F_0 \subseteq V_0 \subseteq \overline{V_0} \subseteq U_0$.

Nyní indukcí: Nechť máme zkonstruované $V_{\beta}: \forall \beta < \alpha < \varkappa$. Označíme $F_{\alpha}:= \mathbb{X} \setminus$ $\{\bigcup \{V_{\beta}: \beta < \alpha\} \cup \bigcup \{U_{\gamma}: \alpha < \gamma < \varkappa\}\}$. Z normality zas $V_{\alpha} \subseteq \mathbb{X}: F_{\alpha} \subseteq V_{\alpha} \subseteq \overline{V_{\alpha}} \subseteq U_{\alpha}$.

 $\mathcal{V} = \left\{ \overline{V_{\alpha}} : \alpha < \varkappa \right\} \text{ je skrčení } \mathcal{U}, \text{ int } \overline{V_{\alpha}} \supseteq V_{\alpha} \text{ a } \bigcup_{\alpha < \varkappa} V_{\alpha} = \mathbb{X}, \text{ tedy } \bigcup_{\alpha < \varkappa} \text{ int } \overline{V_{\alpha}} = \mathbb{X}. \quad \Box$

Definice 1.5 (Kolektivně normální)

TP \mathbb{X} se nazývá kolektivně normální, pokud pro každý diskrétní systém \mathcal{F} z uzavřených množin existuje disjunktní systém otevřených množin $\{U(F): F \in \mathcal{F}\}$, že $F \subseteq U(F), F \in \mathcal{F}$ \mathcal{F} (tj. otevřené nadmutí).

Poznámka

Každý kolektivně normální prostor je normální.

Tvrzení 1.5

Každý parakompaktní prostor už je kolektivně normální, tedy i normální.

Důkaz

Ukážeme nejprve, že \mathbb{X} je regulární. At $F \subseteq \mathbb{X}$ uzavřená, $x \in \mathbb{X} \setminus F$. Pro $y \in F$ existuje otevřené okolí U_y bodu y, že $x \notin \overline{U_y}$. $\mathcal{U} := \{U_y : y \in F\} \cup \{X \setminus F\}$ otevřené pokrytí X. Ať $\mathcal V$ je lokálně konečné otevřené zjemnění $\mathcal U$. $G:=\bigcup \{V\in \mathcal V: V\cap F\neq\emptyset\}$. Z lemmatu $\overline{G} = \bigcup \{ \overline{V} : V \in \mathcal{V}, V \cup F \neq \emptyset \} \not\ni x. \ G \supset F, G \text{ otevřená. Tedy } \mathbb{X} \text{ je regulární.}$

At \mathcal{F} je diskrétní soubor z uzavřených množin. Pro $F \in \mathcal{F}$ uvážíme $\bigcup \{H \in \mathcal{F} : H \neq F\}$... uzavřená z lemmatu o uzávěru sjednocení lokálně kompaktního systému. Pro $x \in F$ existuje (z první části důkazu) U_x otevřená, že $x \in U_x$, $\overline{U_x} \cap H = \emptyset$ pro $H \neq F, H \in \mathcal{F}$. $\{U_x:x\in F\in\mathcal{F}\}\cup\{\mathbb{X}\setminus\bigcup F\}$ je otevřené pokrytí \mathbb{X} . At \mathcal{V} je otevřené lokálně konečné zjemnění. Pro $F \in \mathcal{F} : V(F) := \{ V \in \mathcal{V} : V \cup F \neq \emptyset \} \setminus \bigcup \{ \overline{V} : V \in \mathcal{V}, V \cap H \neq \emptyset \text{ pro nějaké} | H \in \mathcal{F}, H \in \mathcal{F} \}$ Platí $F \subseteq V(F)$. Pro $F, F' \in \mathcal{F}, F \neq F' \implies V(F) \cap V(F') = \emptyset$. $\{V(F) : F \in \mathcal{F}\}$ je disjunktní otevřené nadmutí \mathcal{F} .

Definice 1.6 (Hvězda)

At X je množina a $S \subseteq \mathcal{P}(X)$, $x \in X$, $A \subseteq X$.

Hvězda bodu x vzhledem k S je $st(x, S) = \bigcup \{S \in S : x \in S\}.$

Hvězda množiny A vzhledem k @S je st $(A, S) = \bigcup_{x \in A} \operatorname{st}(x, S)$.

Definice 1.7 (Barycentrické a hvězdovité zjemnění)

At \mathcal{U} , \mathcal{V} jsou pokrytí \mathbb{X} . Řekneme, že \mathcal{U} barycentricky zjemňuje \mathcal{V} , pokud $\{\operatorname{st}(x,\mathcal{U}): x \in \mathbb{X}\}$ zjemňuje \mathcal{V} .

Řekneme, že \mathcal{U} hvězdovitě zjemňuje \mathcal{V} , pokud $\{\operatorname{st}(U,\mathcal{U}): U \in \mathcal{U}\}$ zjemňuje \mathcal{V} .

Například

Ať (\mathbb{X}, ϱ) je MP. Ať $\mathcal{U}, \mathcal{V}, \mathcal{W}$ jsou pokrytí \mathbb{X} tvořená po řadě všemi $\varepsilon, 2\varepsilon, 3\varepsilon$ koulemi $(\varepsilon > 0)$ pevné). Pak \mathcal{U} zjemňuje barycentricky \mathcal{V} a hvězdovitě \mathcal{W} .

Lemma 1.6 (Dvojité barycentrické zjemnění je hvězdovité)

Ať X je množina, $\mathcal U$ pokrytí $\mathcal X$, $\mathcal V$ barycentrické zjemnění $\mathcal U$ a $\mathcal W$ barycentrické zjemnění $\mathcal V$. Potom $\mathcal W$ je hvězdovité zjemnění $\mathcal U$.

 $D\mathring{u}kaz$

 $\operatorname{st}(x_0, \mathcal{V}) \subseteq U$.

Mějme $W \in \mathcal{W}$ libovolně. Chceme najít $U \in \mathcal{U}$: $\operatorname{st}(W, \mathcal{W}) \subseteq U$. $W = \emptyset$ triviální. $W \neq \emptyset$: Fixujeme $x_0 \in W$. Pro každé $x \in \mathbb{X}$ existuje $V_x \in \mathcal{V}$: $\operatorname{st}(x, \mathcal{W}) \subseteq V_x$. Nyní

protože $W\subseteq V_x$ pro každé $x\in W.$ $\mathcal V$ barycentricky zjemňuje $\mathcal U$, tedy existuje $u\in \mathcal U$:

 $\operatorname{st}(W, \mathcal{W}) = \bigcup \{ T \in \mathcal{W} : T \cap W \neq \emptyset \} = \bigcup \{ \{ T \in \mathcal{W} | x \in T \} | x \in W \} = \bigcup \{ \operatorname{st}(x, \mathcal{W}) | x \in W \} \subseteq \bigcup \{ W \in \mathcal{W} \} \subseteq \bigcup \{ W \in \mathcal$

Věta 1.7 (Charakterizace parakompaktnosti pomocí hvězdovitých zjemně-

Pro $TP \times je \ ekvivalentni$:

- a) X je parakompaktní.
- b) Každé otevřené pokrytí X má barycentrické zjemnění.
- c) Každé otevřené pokrytí X má hvězdovité zjemnění.
- d) Každé otevřené pokrytí X má otevřené σ-diskrétní zjemnění a X je regulární.

 $a) \Longrightarrow b)$ At $\mathcal U$ je otevřené pokrytí $\mathbb X$. Z a) vyplývá, že existuje jeho lokálně konečné otevřené zjemnění $\mathcal V$. Víme, že $\mathbb X$ je parakompaktní, tedy normální. Z lemmatu o skrčení existuje uzavřené pokrytí $\mathcal W = \{W_V | V \in \mathcal V\}, W_V \subseteq V . \mathcal V$ je lokálně konečné, tedy i $\mathcal W$ je lokálně konečné. Pro $x \in \mathbb X$ definujeme $A_x = \bigcap \{V | x \in W_V\}$. Jde o konečný průnik (vzhledem k lokální kompaktnosti), tedy A_x je otevřená. Položme $B_x = \bigcup \{W \in \mathcal W | x \notin W\}$. Podle lemmatu o sjednocení lokálně konečného systému je B_x uzavřená. Zřejmě $x \in A_x \setminus B_x =: C_x$ je otevřená. Tedy $\mathcal C = \{C_x | x \in \mathbb X\}$ je otevřené pokrytí $\mathbb X$.

Ukážeme, že \mathcal{C} barycentricky zjemňuje \mathcal{U} : At $y \in \mathbb{X}$. Chceme najít $V \in \mathcal{U}$: $\operatorname{st}(y,\mathcal{C}) \subseteq V$. Víme, že existuje $V \in \mathcal{V}$: $y \in W_V$. At $x \in \operatorname{st}(y,\mathcal{C})$. Pak $y \in C_x = A_x \setminus B_x$, tedy $y \notin B_x$, tudíž $x \in W_V \subseteq V$ (kdyby ne, pak $W_V \subseteq B_x$, tedy $y \notin C_x$).

- $b) \implies c$) k otevřenému pokrytí můžeme najít barycentrické zjemnění, ke kterému můžeme najít barycentrické zjemnění. Pak c) vyplývá z předchozího lemmatu.
- $c) \implies d$) \mathbb{X} je regulární: At $F \subseteq \mathbb{X}$ uzavřená, $x \in \mathbb{X} \setminus F$. Uvažujme otevřené pokrytí $\{\mathbb{X} \setminus F, \mathbb{X} \setminus x\}$. Podle c) existuje otevřené hvězdovité zjemnění \mathcal{U} . $\exists U \in \mathcal{U} : x \in U$. Nutně $U \cap F = \emptyset$. Pak $\overline{U} \subseteq \operatorname{st}(U, \mathcal{U}) \subseteq \mathbb{X} \subseteq \mathbb{X} \setminus F$. Tedy \mathbb{X} je regulární.

At \mathcal{U}_0 je otevřené pokrytí \mathbb{X} . Chceme najít σ -diskrétní zjemnění toho \mathcal{U}_0 . Použijeme podmínku c) spočetně nekonečněkrát, abychom induktivně našli otevřená pokrytí $\mathcal{U}_1, \mathcal{U}_2, \ldots$, že \mathcal{U}_{n+1} hvězdovitě zjemňuje $\mathcal{U}_n, n \geq 0$. Oindexujme prvky $\mathcal{U}_0 : \mathcal{U}_0 = \{U_i | i \in I\}$. Pro $i \in I$ a pro $n \in \mathbb{N}$ uvažujme $U_{i,n} := \{x \in \mathbb{X} | x \text{ má okolí } V : \text{st}(V, \mathcal{U}_n) \subseteq U_i\}$. Pro každé $n \in \mathbb{N} : \{U_{i,n} | i \in I\}$ je otevřené zjemnění \mathcal{U} , ale ne nutně pokrytí.

Pomocné tvrzení: Pokud $x \in U_{i,n}, u \notin U_{i,n+1}$, pak neexistuje $U \in \mathcal{U}_{n+1}$, že $x, y \in U$. Důkaz: Pro $U \in \mathcal{U}_{n+1}$ existuje $W \in \mathcal{U}_n$: $\operatorname{st}(U, \mathcal{U}_{n+1}) \subseteq W$. Tedy pokud $x \in U \cap U_{i,n}$, pak $W \subseteq \operatorname{st}(x, \mathcal{U}_n) \subseteq U_i$. Pak $\operatorname{st}(U, \mathcal{U}_{n+1}) \subseteq U_i$ a $u \subseteq U_{i,n+1}$. Tedy $y \notin U$, protože $y \notin U_{i,n+1}$.

Uvažme dobré uspořádání < na I. At $V_{i_0,n} = U_{i_0,n} \setminus \bigcup \{U_{i,n+1} | i < i_0\}, i_0 \in I, n \in \mathbb{N}$. Ukážeme, že ** = $\{V_{i_0,n} | i_0 \in I, n \in \mathbb{N}\}$ je hledané σ -diskrétní zjemnění \mathcal{U}_0 . Pro $i_1 \neq i_2, i_1, i_2 \in I$, pak $i_1 < i_2$ nebo naopak. Podle toho buď $V_{i_2,n} \subseteq \mathbb{X} \setminus U_{i_1,n+1}$ nebo $V_{i_1,n} \subseteq \mathbb{X} \setminus U_{i_2,n+1}$. Podle pomocného tvrzení platí, že pokud $x \in V_{i_1,n}$ a $y \in V_{i_2,n}$, pak neexistuje $U \in \mathcal{U}_{n+1}$, že $x,y \in U$. To nám říká, že $\forall n \in \mathbb{N} : \{V_{i,n} | i \in I\}$ je diskrétní. Zbývá už jen ukázat, že ** je pokrytí: At $y \in \mathbb{X}$. Existuje <-nejmenší $i(y) \in I : y \in U_{i(y),n}$ pro nějaké $n \in \mathbb{N}$. Nyní $y \notin U_{i,n+2}$ pro i < i(y). Podle pomocného tvrzení použitého na n+1 platí $\mathrm{st}(y,\mathcal{U}_{n+2}) \cap \bigcup \{U_{i,n+1} | i < i(y)\} = \emptyset$. Tedy $y \in V_{i(y)}, n$.

 $d) \implies a)$ Víme, že $\mathbb X$ je regulární, tedy můžeme aplikovat charakterizaci parakompaktnosti z minulého týdne, jelikož σ -diskrétní $\implies \sigma$ -lokálně konečný.

Věta 1.8 (Stone)

Každý metrizovatelný prostor je parakompaktní.

Ukážeme, že každé otevřené pokrytí \mathcal{U} má barycentrické zjemnění. Fixujeme na nějakém tom prostoru \mathbb{X} kompatibilní metriku $\varrho \leq 1$. Navíc búno $\mathbb{X} \notin \mathcal{U}$. Pro každé $x \in \mathbb{X}$ a $U \in \mathcal{U}$, že $x \in U$, existuje největší možné $\varepsilon_{x,U} > 0$, že $B(x, 5\varepsilon_{x,U})$. Položíme $\mathcal{V} = \{B(x, \varepsilon_{x,U}) | x \in U \in \mathcal{U}\}$. Ověříme, že \mathcal{V} barycentricky zjemňuje \mathcal{U} : At $x \in \mathbb{X}$. Chceme najít $U \in \mathcal{U}$: $\operatorname{st}(x, \mathcal{V}) \subseteq U$. At $\varepsilon_x = \sup \{\varepsilon_{x,U} | x \in U \in \mathcal{U}\}$. $0 < \varepsilon_x \leq 1$. Existuje $U \in \mathcal{U}$: $\varepsilon_{x,U} \geq \frac{\varepsilon_x}{2}$.

Ukážeme, že st $(x, \mathcal{V}) \subseteq U$. At tedy $x \in B(y, \varepsilon_{y,v})$ pro nějaké $y \in V \in \mathcal{U}$. Chceme $B(y, \varepsilon_{y,v}) \subseteq U$. Máme $B(y, 5\varepsilon_{y,v}) \subseteq V$ a zároveň $\varrho(x,y) < \varepsilon_{U,V}$. Z \triangle -nerovnosti: $B(x, 4\varepsilon_{y,V}) \subseteq V$. Z maximality $\varepsilon_{x,V} \geq \frac{1}{5} 4\varepsilon_{y,V}$. Také $2\varepsilon_{x,U} > \varepsilon_x \geq \varepsilon_{x,V}$. Dohromady $2\varepsilon_{x,U} > \frac{4}{5}\varepsilon_{y,V}$, tj. $5\varepsilon_{x,U} > 2\varepsilon_{y,V}$. Pro $z \in B(y, \varepsilon_{y,V}) : \varrho(x,z) < 2\varepsilon_{y,V}$, a tedy $\varrho(x,z) < 5\varepsilon_{x,U}$. Proto $z \in U$. Tudíž $B(y, \varepsilon_{y,v}) \subseteq U$.

Definice 1.8

Pro funkci $f: X \to \mathbb{R}$ značíme supp $f = \overline{\{x \in X : f(x) \neq 0\}}$.

Věta 1.9 (Rozklad jednotky)

Ať \mathbb{X} je parakompaktní prostor, \mathcal{U} otevřené pokrytí \mathbb{X} . Pak existuje rozklad jednotky podřízený tomuto pokrytí, tj. systém spojitých funkcí $f_i: X \to [0,1], i \in I$, že $\{\text{supp } f_i: i \in I\}$ je lokálně konečné zjemnění \mathcal{U} a $\sum_{i \in I} f_i(x) = 1, \forall x \in \mathbb{X}$.

 $D\mathring{u}kaz$

 \mathbb{X} parakompaktní, tedy normální. Tedy existuje otevřené pokrytí \mathcal{W} takové, že $\{\overline{W}: W \in \mathcal{W}\}$ zjemňuje \mathcal{U} . At \mathcal{V} je lokálně konečné otevřené zjemnění \mathcal{W} . Víme, že existuje uzavřené skrčení $\{F_V: V \in \mathcal{V}\}, F_V \subseteq V$. Z normality existují spojité funkce $g_V: \mathbb{X} \to [0,1], g_V|_{F_V} = 1$, $g_V|_{\mathbb{X}\setminus V} = 0$. Položme $g(x) := \sum_{V \in \mathcal{V}} g_V(x)$. Funkce g je spojitá, protože spojitost je lokální pojem a g je lokálně součet konečně mnoha nenulových spojitých funkcí. Navíc zřejmě $g \geq 1$, protože $\{F_V: V \in \mathcal{V}\}$ je pokrytí \mathbb{X} . Tedy položme $f_V:=\frac{g_V}{g}$.

Věta 1.10 (Michaelova selekční)

Zdola polospojitá (vícehodnotová) funkce z parakompaktního prostoru do neprázdných uzavřených konvexních podmnožin Banachova prostoru má spojitou selekci.

Věta 1.11 (Dugunjiho)

At X je metrizovatelný a $A \subseteq X$ uzavřená. Pak existuje lineární zobrazení $L: C(A, \mathbb{R}) \to C(X, \mathbb{R})$, že L(f) rozšiřuje f pro $f \in C(A, \mathbb{R})$.

2 Metrizační věty

Poznámka (Opakování)

Uryshonova metrizační věta: Regulární prostor se spočetnou bází je metrizovatelný.

Věta 2.1 (Bing, Nagata, Smirnov)

 $Pro\ regulární\ prostor\ \mathbb{X}\ jsou\ následující\ podmínky\ ekvivalentní:$

- a) X je metrizovatelný.
- b) \mathbb{X} má σ -diskrétní bázi.
- c) \mathbb{X} má σ -lokálně konečnou bázi.

Důkaz

- $a) \implies b$): At \mathcal{B}_n je otevřené pokrytí $\mathbb X$ koulemi o poloměru $\frac{1}{n}$. $\mathbb X$ je parakompaktní podle Stoneovy věty. Z charakterizace parakompaktnosti máme, že \mathcal{B}_n má σ -diskrétní otevřené zjemnění \mathcal{V}_n . $\bigcup_{n\in\mathbb N} \mathcal{V}_n$ je opět σ -diskrétní, navíc je to báze.
 - $b) \implies c$): triviální.
- $c) \implies a$) At $B = \bigcup_{n=1}^{\infty}$ je báze \mathbb{X} , \mathcal{B}_n lokálně konečný soubor. Uvědomíme si, že \mathbb{X} je parakompaktní: Je-li totiž \mathcal{U} otevřené pokrytí \mathbb{X} , pak $\{B \in \mathcal{B} : \exists U \in \mathcal{U} : B \subseteq U\}$ je zjemnění U a vzhledem k tomu, že B je báze, tak je to i pokrytí. Navíc je σ -lokálně konečné. Tedy z charakterizace parakompaktnosti to máme.

Z parakompaktnosti dostáváme normalitu \mathbb{X} . Pro $n,k\in\mathbb{N}$ a $B\in\mathcal{B}_n$ položme $V_{k,n,B}:=\bigcup\left\{C\in\mathcal{B}_k:\overline{C}\subseteq B\right\}$. \mathcal{B}_k je lokálně konečný, tedy (z lemmatu o uzávěru lokálně konečného systému) $\overline{V_{k,n,B}}\subseteq B$. Tedy existují (z normality) spojité funkce $f_{k,n,B}:\mathbb{X}\to[0,1]$, $f_{k,n,B}(x)=0$ pro $x\in\mathbb{X}\setminus B$ a 1 pro $x\in\overline{V_{k,n,B}}$.

Definujeme $M_{k,n} \subseteq [0,1]^{\mathcal{B}_n}$ následovně $M_{k,n} = \{\varphi : \mathcal{B}_n \to [0,1] : \{B \in \mathcal{B}_n : \varphi(B) \neq 0\}$ je konečná}. Na $M_{k,n}$ uvažme metriku $\varrho_{k,n}\varphi, \psi := \sum_{B \in \mathcal{B}_n} |\varphi(B) - \psi(B)|$. At $g_{k,n} : \mathbb{X} \to M_{k,n}, g_{k,n} = \Delta_{B \in \mathcal{B}_n} f_{k,n,B}, g_{k,n}(x) = (f_{k,n,B}(x))_{B \in \mathcal{B}_n}$.

Ověříme, že $g_{k,n}: \mathbb{X} \to (M_{k,n}, \varrho_{k,n})$ je spojité: At $x \in \mathbb{X}$, $\varepsilon > 0$, existuje U okolí x protínající jen konečně prvků $B_1, \ldots, B_m \in \mathcal{B}_n$. $f_{k,n,B_1}, \ldots, f_{k,n,B_m}$ jsou spojitá, tedy existuje $V \subseteq U$ okolí x, že $|f_{k,n,B}(x) - f_{k,n,B_i}(y)| < \frac{\varepsilon}{m}$ pro $i \leq m, y \in V$. Nyní

$$\varrho_{k,n}(g_{k,n}(x), g_{k,n}(y)) = \sum_{i=1}^{m} |g_{k,n}(x)(B_i) - g_{k,n}(y)(V_i)| = \sum_{i=1}^{m} |f_{k,n,B}(x) - f_{k,n,B_i}(y)| < m \cdot \frac{\varepsilon}{m} = \varepsilon$$

Pokud systém $\{g_{k,n}:k,n\in\mathbb{N}\}$ odděluje body a uzavřené množiny, pak $\delta:=\triangle_{k,n\in\mathbb{N}}g_{k,n}:\mathbb{X}\to\prod_{k,n\in\mathbb{N}}M_{k,n}$ je vnoření (podle lemmatu o Tichonovově vnoření). Tím jsme vnořili \mathbb{X} do spočetného součinu metrizovatelných prostorů, tedy do metrizovatelného prostoru, tedy \mathbb{X} je metrizovatelné.

 $\{g_{k,n}: k, n \in \mathbb{N}\}$ odděluje body a uzavřené množiny: At $F \subseteq \mathbb{X}$ je uzavřená, $x \in \mathbb{X} \setminus F$. Existuje $n \in \mathbb{N}$ a $B \in \mathcal{B}_n: x \in B \subseteq X \setminus F$. Z regularity existuje $C \in \mathcal{B}_k, k \in \mathbb{N}$. $g_{k,n}(x)(B) = f_{k,n,B}(x) = 1$ a $g_{k,n}(y)(B) = f_{k,n,B}(y) = 0$ pro $y \in \mathbb{X} \setminus B \supseteq F$.

Definice 2.1

Ať \mathbb{X} je TP. Posloupnost otevřených pokrytí \mathcal{V}_n prostoru \mathbb{X} se nazývá development, pokud pro každé $x \in \mathbb{X}$: $\{\operatorname{st}(x,\mathcal{V}_n)|n \in \mathbb{N}\}$ je báze okolí v bodě x.

Poznámka

Je-li (X, ϱ) MP, pak $\mathcal{V}_n := \{B(x, \frac{1}{n}) : x \in \mathbb{X}\}, n \in \mathbb{N}$ je development \mathbb{X} .

Věta 2.2 (Bing)

 $TP \ \mathbb{X} \ je \ metrizovateln \acute{y} \Leftrightarrow je \ kolektivn \check{e} \ normáln \acute{i} \ a \ m \acute{a} \ development.$

 $D\mathring{u}kaz$

- ⇒ : metrizovatelný ⇒ má development (podle předchozí poznámky) a metrizovatelný ⇒ parakompaktní ⇒ kolektivně normální.
 - ⇐: Dokážeme ve 4 částech:
- 1. Pro diskrétní soubor $\mathcal{F}=\{F_{\alpha}\}_{\alpha\in A}$ uzavřených množin v \mathbb{X} existuje diskrétní soubor otevřených množin $\mathcal{W}=\{W_{\alpha}\}_{\alpha\in A}$, že $F_{\alpha}\subseteq W_{\alpha}$: Dle kolektivní normality existují otevřené disjunktní $U_{\alpha}: \alpha\in A, F_{\alpha}\subseteq U_{\alpha}$. Položme $F=\bigcup\mathcal{F},\ Z=\mathbb{X}\setminus\bigcup_{\alpha\in A}U_{\alpha}$. F uzavřená (sjednocení lokálního systému uzavřených množin), Z uzavřená. \mathbb{X} je kolektivně normální, tedy speciálně normální, tedy existují otevřené disjunktní V,W, že $Z\subseteq V$ a $F\subseteq W$. Položme $W_{\alpha}:=U_{\alpha}\cap W$. Systém $\{W_{\alpha}\}$ už je diskrétní (je-li $x\in Z$, pak $x\in V$ a $V\cap W_{\alpha}=\emptyset$, je-li naopak x v U_{α} , pak $U_{\alpha}\cap W_{\beta}=\emptyset$ pro $\beta\neq \alpha$) a $F_{\alpha}\subseteq W_{\alpha}$.
- 2. Ať \mathcal{V}_n je development prostoru \mathbb{X} . Buď $\varkappa \geq \omega$ a očíslujme $\mathcal{V}_n = \{V_{\alpha,n} | \alpha < \varkappa\}$ (s případným opakováním prvků). Položme $D_{\alpha,n,k} = \{x \in V_{\alpha,n} | \operatorname{st}(x,V_k) \subseteq V_{\alpha,n}\}$ a $C_{\alpha,n,k} = D_{\alpha,n,k} \setminus \bigcup_{\beta < \alpha} V_{\beta,n}$. $D_{\alpha,n,k}$ (a tudíž i $C_{\alpha,n,k}$) je uzavřená:

Volme $x \in \overline{D_{\alpha,n,k}}$. Pak pro libovolné $V \in \mathcal{V}_k$, že $x \in V$ platí, že existuje $y \in V \cap D_{\alpha,n,k}$. Pak $V \subseteq \operatorname{st}(y, \mathcal{V}_k) \subseteq V_{\alpha,n}$. Tedy $\operatorname{st}(x, \mathcal{V}_k) = \bigcup \{V \in \mathcal{V}_k | x \in V\} \subseteq V_{\alpha,n}$. Tedy $x \in D_{\alpha,n,k}$, tudíž $D_{\alpha,n,k}$ je uzavřená.

- 3. Pro pevná $n, k \in \mathbb{N}$ je $\{C_{\alpha,n,k} | \alpha < \varkappa\}$ diskrétní: Buď $y \in \mathbb{X}$ libovolné. Pak existuje nejmenší $\beta < \varkappa : y \in V_{\beta,n}$. Najděme $V \in \mathcal{V}_k : y \in V$. Pro $\alpha > \beta : V_{\beta,n}$ je disjunktní s $C_{\alpha,n,k}$ a pro $\alpha < \beta : V$ je disjunktní s $C_{\alpha,n,k}$ (kdyby existovalo $z \in V \cap C_{\alpha,n,k}$ pak $\operatorname{st}(z,\mathcal{V}_k) \subseteq V_{\alpha,n}$, speciálně $y \in V_{\alpha,n}$, což je spor s minimalitou β). Tedy $V \cap V_{\beta,n}$ je okolí bodu y, které protíná nejvýše jeden prvek systému $\{c_{\alpha,n,k} | \alpha \in A\}$ (a sice prvek $C_{\beta,n,k}$).
- 4. $\{C_{\alpha,n,k}\}$ je diskrétní soubor uzavřených množin (podle 2, 3). Podle 1 existuje diskrétní soubor otevřených nadmnožin $\{V_{\alpha,n,k}|\alpha<\varkappa\}$. Tedy $\mathcal{V}_{n,k}:=\{V_{\alpha,n,k}\cap V_{\alpha,n}|\alpha<\varkappa\}$ je diskrétní (zmenšili jsme jeho množiny). Ukážeme, že $\mathcal{V}:=\bigcup_{n,k\in\mathbb{N}}\mathcal{V}_{n,k}$ je báze \mathbb{X} :

At $U \subseteq \mathbb{X}$ je otevřená, $x \in U$. $\exists n \in \mathbb{N} : \operatorname{st}(x, \mathcal{V}_n) \subseteq U$. Najdeme α nejmenší možné, že $x \in V_{\alpha,n}$. Zřejmě $V_{\alpha,n} \subseteq U$. Opět z vlastností developmentu existuje $k \in \mathbb{N} : \operatorname{st}(x, \mathcal{V}_k) \subseteq V_{\alpha,n}$. Nyní $x \in C_{\alpha,n,k}$, tedy $x \in V_{\alpha,n,k} \cap V_{\alpha,n} \subseteq U$. Tudíž \mathcal{V} je báze \mathbb{X} .

 $\mathcal V$ je σ -diskrétní báze $\mathbb X$, tedy podle metrizační věty Bing-Nagata-Smirnov je $\mathbb X$ metrizovatelný.

3 Uniformní prostory

Poznámka

Zavedeno např. díky tomu, že stejnoměrnou spojitost nelze charakterizovat pomocí topologie.

Matematici Weil(1936), Tukey(1940) ... prvotní zkoumání UP.

Definice 3.1 (Značení)

Pro množinu X značíme $\triangle(X) = \{(x, x) | x \in X\}.$

Pro $E \subseteq X \times X$ značíme $E^{-1} = \{(y, x) | (x, y) \in E\}.$

Pro $C, D \in X \times X$ značíme $C \circ D = \{(x, z) \in X \times X | \exists y \in X : (x, y) \in C \land (y, z) \in D\}.$

 $E[x] = \{ y \in X | (x, y) \in E \}.$

Definice 3.2 (Uniformní prostor (UP))

Dvojice (X, \mathcal{D}) se nazývá uniformní prostor (UP), pokud X je množina a $\mathcal{D}\subseteq\mathcal{P}(X\times X), \mathcal{D}\neq 0$ splňující

- 1. $\forall D \in \mathcal{D} : \triangle(\mathbb{X}) \subseteq D$,
- 2. $\forall C, D \in \mathcal{D} : C \cap D \in \mathcal{D}$,
- 3. $\forall D \in \mathcal{D} \ \exists C \in \mathcal{D} : C \circ C \subseteq D$,
- 4. $\forall D \in \mathcal{D} : D^{-1} \in \mathcal{D}$.
- 5. $\forall D \in \mathcal{D} \ \forall E \subseteq X \times X : D \subseteq E \implies E \in \mathcal{D}$,
- 6. $\forall x, y \in X : x \neq y \implies \exists D \in \mathcal{D} : (x, y) \notin D. \ (\Leftrightarrow \bigcap \mathcal{D} = \triangle(\mathbb{X}).)$

Prvky systému \mathcal{D} nazýváme okolí diagonály.

Definice 3.3 (Báze uniformity)

Systém $\mathcal{B} \subseteq \mathcal{P}(\mathbb{X}^2)$ se nazývá báze uniformity (resp. báze uniformity \mathcal{D}), pokud uzavřením \mathcal{B} na nadmnožiny dostaneme \mathcal{D} .

Definice 3.4 (Subbáze uniformity)

Systém $\mathcal{S} \subseteq \mathcal{P}(\mathbb{X}^2)$ tvoří subbázi uniformity (resp. uniformity \mathcal{D}), pokud uzavřením na konečné průniky dostaneme bázi uniformity (resp. bázi uniformity \mathcal{D}).

Definice 3.5 (Uniformní zobrazení)

Jsou-li (X, \mathcal{D}) a (Y, \mathcal{E}) UP, $f : X \to Y$ se nazývá uniformní (stejnoměrně spojité), pokud $\forall E \in \mathcal{E} : (f \times f)^{-1}(E) \in \mathcal{D}$. $(\Leftrightarrow \forall E \in \mathcal{E} \exists D \in \mathcal{D} : (f \times f)(D) \subseteq E$.) $(\Leftrightarrow \forall E \in \mathcal{E} \exists D \in \mathcal{D} \forall x, y \in X : (x, y) \in D \implies (f(x), f(y)) \in E$.)

Definice 3.6 (Uniformní izomorfismus)

Zobrazení f se nazývá uniformní izomorfismus, pokud f je bijekce a f i f^{-1} jsou uniformní.

Lemma 3.1

Systém $\mathcal{B} \subseteq \mathcal{P}(\mathbb{X}^2)$ tvoří bázi nějaké uniformity na \mathbb{X} , pokud

$$a) \bigcap \mathcal{B} = \triangle(\mathbb{X}),$$

$$b) \forall C, D \in \mathcal{B} \ \exists E \in \mathcal{B} : E \subseteq C \cap D,$$

$$c) \forall D \in \mathcal{B} \ \exists C \in \mathcal{B} : C \circ C \subseteq D,$$

$$d) \forall D \in \mathcal{B} \ \exists E \in \mathcal{B} : E \subseteq D^{-1}.$$

 $D\mathring{u}kaz$

 $\mathcal{D}:=\{C\subseteq \mathbb{X}\times \mathbb{X}|\exists B\in \mathcal{B}: B\subseteq C\}.$ Následně ověříme podmínky.

Tvrzení 3.2 (Vytvoření UP z MP a TP z UP)

Je-li (X, ϱ) metrický prostor a $D_{\varepsilon} = \{(x, y) | \varrho(x, y) < \varepsilon\}$, potom $\{D_{\varepsilon} | \varepsilon > 0\}$ je báze nějaké uniformity na X – značíme ji \mathcal{D}_{ϱ} . Tato uniformita se nazývá generovaná metrikou ϱ .

Je-li $(\mathbb{X}, \mathcal{D})$ UP, pak systém $\tau_{\mathcal{D}} = \{A \subseteq X | \forall x \in A \ \exists D \in \mathcal{D} : D[x] \subseteq A\}$ je topologie na \mathbb{X} a pro každé $x \in \mathbb{X}$ tvoří systém $\mathcal{B}(x) := \{D[x] | D \in \mathcal{D}\}$ bázi okolí v bodě x. Topologie $\tau_{\mathcal{D}}$ se nazývá generovaná uniformitou \mathcal{D} .

Pokud místo systému \mathcal{D} použijeme v definici topologie $\tau_{\mathcal{D}}$ nějakou bázi \mathcal{D} , pak dostaneme stejnou topologii. Zároveň také $\tau_{\mathcal{D}_o}$ je systém všech otevřených množin v (\mathbb{X}, ϱ) .

 $D\mathring{u}kaz$

Ověříme definice.

Definice 3.7

UP (X, \mathcal{D}) se nazývá metrizovatelný, pokud existuje metrika ϱ na X, že $\mathcal{D} = \mathcal{D}_{\varrho}$. TP (X, τ) se nazývá metrizovatelný, pokud existuje uniformita \mathcal{D} na X, že $\tau = \tau_{\mathcal{D}}$

Definice 3.8

Af $\mathcal{U} \subseteq \mathcal{P}(\mathbb{X})$, $A \subseteq \mathbb{X}$, pak značíme $\operatorname{st}(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} | U \cap A \neq \emptyset\}$. $\mathcal{U}^* = \{\operatorname{st}(U,\mathcal{U}) | U \in \mathcal{U}\}$

Pro \mathcal{U}, \mathcal{V} pokrytí \mathbb{X} , definujeme jejich společné zjemnění $\mathcal{U} \wedge \mathcal{V} = \{U \cap V | U \in \mathcal{U}, V \in \mathcal{V}\}.$

Poznámka

Pro \mathcal{U} , \mathcal{V} pokrytí množiny \mathbb{X} : \mathcal{U} hvězdovitě zjemňuje \mathcal{V} , pokud \mathcal{U}^* zjemňuje \mathcal{V} .

Definice 3.9

At X je množina, $\mathbf{U} \subseteq \mathcal{P}(\mathcal{P}(X))$ se nazývá pokrývací uniformita na X, pokud:

- $\forall \mathcal{U} \in \mathbf{U} : \mathcal{U} \text{ je pokrytí } \mathbb{X},$
- Je-li $\mathcal{U} \in \mathbf{U}, \mathcal{V}$ pokrytí \mathbb{X} a \mathcal{U} zjemňuje \mathcal{V} , pak $\mathcal{V} \in \mathbf{U}$,
- $\forall \mathcal{U} \in \mathbf{U} \; \exists \mathcal{V} \in \mathbf{U} : \mathcal{V} \text{ hvězdovitě zjemňuje } \mathcal{U},$
- $\forall \mathcal{U}, \mathcal{V} \in \mathbf{U} : \mathcal{U} \wedge \mathcal{V} \in \mathbf{U}$,
- $\forall x, y \in \mathbb{X}, x \neq y \; \exists \mathcal{U} \in \mathbf{U} \; \forall U \in \mathcal{U} : |\{x, y\} \cap U| \leq 1.$

Prvky systému U se nazývají uniformní pokrytí.

Je-li U pokrývací uniformita na X, pak položme

$$\mathcal{D}_{\mathbf{U}} := \{ D \subseteq \mathbb{X} \times \mathbb{X} | \exists \mathcal{U} \in \mathbf{U} \ \forall u \in \mathcal{U} : U \times U \subseteq D \} .$$

Je-li \mathcal{D} (diagonální) uniformita na \mathbb{X} , pak položme

$$\mathcal{U}_{\mathcal{D}} := \{ \mathcal{U} \in \mathcal{P}(\mathcal{P}(\mathbb{X})) | \exists D \in \mathcal{D} : \{D[x] | x \in \mathbb{X}\} \text{ zjemňuje} \mathcal{U} \}.$$

Přiřazení $\mathbf{U} \mapsto \mathcal{D}_{\mathbf{U}}$ a $\mathcal{D} \mapsto \mathbf{U}_{\mathcal{D}}$ jsou navzájem inverzní bijekce systému všech pokrývacích uniformit na \mathbb{X} a systém všech uniformit.

Lemma 3.3 (O pseudometrice)

At $(\mathbb{X}, \mathcal{D})$ je UP a $D_i \in \mathcal{D}$, $D_i = D_i^{-1}$, $i \in \mathbb{N}_0$, $D_0 = \mathbb{X} \times X$, $D_{i+1} \circ D_{i+1} \subseteq D_i$. Pak existuje pseudometrika d na \mathbb{X} , že pro každé $i \geq 1$: $\{(x,y): d(x,y) < \frac{1}{2^i}\} \subseteq D_i \subseteq \{(x,y)|d(x,y) \leq \frac{1}{2^i}\}$.

Položme $d(x,y) := \inf \left\{ \frac{1}{2^{i_1}} + \frac{1}{2^{i_2}} + \ldots + \frac{1}{2^{i_k}} | x_0, \ldots, x_k \in \mathbb{X} \land (x_{j-1}, x_j) \in D_{i_j} \land x = x_0, y = x_k \right\}.$ $d(x,y) \text{ je pseudometrika na } \mathbb{X}. \ D_i \subseteq \left\{ (x,y) | d(x,y) \le \frac{1}{2^i} \right\} \text{ vidíme z toho, že pro } (x,y) \in D_i$ $\text{zvolíme } k = 1. \ \text{Zbývá dokázat } \left\{ (x,y) | d(x,y) < \frac{1}{2^i} \right\} \subseteq D_i. \ \text{Tedy cheeme, že } d(x,y) < \frac{1}{2^i},$ $\text{pak } (x,y) \in D_i, \text{ tj. že pro každou posloupnost } x_0, \ldots, x_k, \text{ kde } (x_{j-1}, x_j) \in D_{i_j}: \text{ pokud}$ $\frac{1}{2^{i_1}} + \ldots + \frac{1}{2^{i_k}} < \frac{1}{2^i}, \text{ pak } (x_0, x_k) \in D_i. \ \text{To dokážeme indukcí podle } k:$

Pro $k=1:\frac{1}{2^{i_1}}<\frac{1}{2^i}$, tj. $i< i_1$, tedy $(x_0,x_k)\in D_{i_1}\subseteq D_i$. Nyní předpokládejme, že m>1 a pro všechna k< m uvedené tvrzení platí. Uvažme posloupnost x_0,\ldots,x_m , že $(x_{j-1},x_j)\in D_{i_j}, j=1,\ldots,m$, a $\frac{1}{2^{i_1}}+\ldots+\frac{1}{2^{i_m}}<\frac{1}{2^i}$. Zřejmě buď $\frac{1}{2^{i_1}}<\frac{1}{2^{i+1}}$, nebo $\frac{1}{2^{i_m}}<\frac{1}{2^{i+1}}$. Ze symetrie obou případů můžeme BÚNO předpokládat platnost první nerovnosti.

At $n \leq m-1$ je největší takové, že $\frac{1}{2^{i_1}}+\ldots+\frac{1}{2^{i_n}}<\frac{1}{2^{i+1}}$. Pokud n < m-1, pak $\frac{1}{2^{i+1}}+\ldots+\frac{1}{2^{i_{n+1}}}\geq \frac{1}{2^{i+1}}$, tedy $\frac{1}{2^{i_{n+1}}}+\ldots+\frac{1}{2^{i_m}}<\frac{1}{2^{i+1}}$. Podle indukčního předpokladu $x_0, n \in D_{i+1}, \ (x_{n+1}, x_m) \in D_{i+1}$. Navíc $\frac{1}{2^{i_{n+1}}}<\frac{1}{2^i}$, tedy $i < i_{n+1}, \ i+1 \leq i_{n+1}, \ D_{i_{n+1}} \subseteq D_{i+1}$. $(x_0, x_m) = (x_0, x_n) \circ (x_n, x_{n+1}) \circ (x_{n+1}, x_m) \in D_{i+1} \circ D_{i+1} \circ D_{i+1} \subseteq D_i$.

Pokud n=m-1, pak podle IP $x_0,x_{m-1}\in D_{i+1}$, a jelikož $\frac{1}{2^{i_m}}<\frac{1}{2^i}$, tak $(x_{m-1},x_m)\in D_{i_m}\subseteq D_{i+1}$. Tedy $(x_0,x_m)\in D_{i+1}\cap D_{i+1}\subseteq D_i$.

Věta 3.4 (Metrizovatelnost UP)

 $UP(X, \mathcal{D})$ je metrizovatelný, právě když má spočetnou bázi uniformity.

 $D\mathring{u}kaz$

 (\Longrightarrow) : At d je metrika na \mathbb{X} generující \mathcal{D} . Pak $\{\{(x,y):d(x,y)<\frac{1}{n}\}\mid n\in\mathbb{N}\}$ je báze \mathcal{D} .

(⇐): At $\{C_n|n\in\mathbb{N}\}$ je báze \mathcal{D} . Indukcí najdeme posloupnost $D_n\in\mathcal{D}$, že jsou splněny předpoklady předchozího lemmatu. A že $D_i\subseteq C_i$: Předpokládejme, že D_0,\ldots,D_n máme $(D_0=\mathbb{X}\times\mathbb{X})$, pak víme, že $\exists E:E\circ E\subseteq D_n,\,\exists F:F\circ F\subseteq E.$ Tedy $F\circ F\circ F\subseteq D_n.$ At $D_{n+1}:=(F\cap C_{i+1})\cap (F\cap C_{i+1})^{-1}.$ Tedy $D_{n+1}\circ D_{n+1}\subseteq D_n,\,D_{n+1}\subseteq C_{i+1}.$ Tedy podle lemmatu o pseudometrice existuje pseudometrika d na \mathbb{X} , že

$$\left\{ (x,y)|d(x,y) < \frac{1}{2^i} \right\} \subseteq D_i \subseteq \left\{ (x,y)|d(x,y) \le \frac{1}{2^i} \right\}.$$

Pro $x,y \in \mathbb{X}, x \neq y \; \exists C \in \mathcal{D} : (x,y) \notin C. \; \exists i \in \mathbb{N} : C_i \subseteq C. \; D_i \subseteq C_i. \; (x,y) \notin D_i.$ Tedy $d(x,y) \geq \frac{1}{2^i} > 0$. Tedy d je metrika. d generuje uniformitu \mathcal{D} : Tj. pro $\varepsilon > 0$ $\{(x,y|d(x,y)<\varepsilon)\} \in \mathcal{D}$. To platí díky vlastnosti z předchozího lemmatu. A pro $D \in \mathcal{D} \; \exists \varepsilon > 0 : \{(x,y)|d(x,y)<\varepsilon\} \subseteq D. \; D \in \mathcal{D} \; \text{dan\'e} \; \exists i \in \mathbb{N} : C_i \subseteq D, \; D_i \subseteq C_i \subseteq D. \; \varepsilon := \frac{1}{2^i}.$ To máme také díky vlastnosti z předchozího lemmatu.

Věta 3.5 (Jemná uniformita)

Ať (X,τ) je TP. Všechny otevřené podmnožiny $X \times X$ obsahující $\delta(X)$ tvoří bázi nějaké uniformity na X právě tehdy, když X je parakompaktní.

Poznámka (Reformulace)

At (X, τ) je TP. Všechna otevřená pokrytí X tvoří bázi nějaké pokrývací uniformity na X, právě když X je parakompaktní.

 $D\mathring{u}kaz$

Pokud všechna otevřená pokrytí $\mathbb X$ tvoří bázi pokrývací uniformity, pak speciálně každé otevřené pokrytí má hvězdovité otevřené zjemnění. Tedy podle charakterizační věty je $\mathbb X$ parakompaktní.

Je-li $\mathbb X$ parakompaktní, tak podle charakterizační věty má každé otevřené pokrytí $\mathbb X$ otevřené hvězdovité zjemnění a snadno se ověří, že $\{\mathcal U|\mathcal U$ je pokrytí $\mathbb X$, které je zjemňované nějakým ote je pokrývací uniformita na $\mathbb X$.

Věta 3.6 (Uniformizovatelnost TP)

TP je uniformizovatelný (tj. generován nějakou uniformitou), právě když je Tichonovův.

Důkaz

At (X, τ) je generovaný uniformitou \mathcal{D} . Buď $F \subseteq X$ uzavřená, $x \in X \setminus F$. Pak existuje $D \in \mathcal{D} : D[x] \subseteq X \setminus F$. At d je pseudometrika z předchozího lemmatu, kde volíme $D_1 = D$. Pak $B_d(x, \frac{1}{2}) \subseteq D[x]$. Definujeme $f : X \to \mathbb{R}$, f(y) = d(x, y), $0 \le f \le 1$, f(x) = 0 a f je spojitá. Pro $y \in F : f(y) \ge \frac{1}{2}$. Tedy X je T_{π} .

Ať (\mathbb{X}, τ) je Tichonovův. Pak uvažme $\beta \mathbb{X}$. $\beta \mathbb{X}$ je (para)kompaktní. Tedy na $\beta \mathbb{X}$ máme jemnou uniformitu, která generuje topologii na $\beta \mathbb{X}$. Tuto jemnou uniformitu na $\beta \mathbb{X}$ můžeme zúžit na \mathbb{X} a ta již generuje topologii τ .

3.1 Operace s uniformními prostory

Definice 3.10

At (X, \mathcal{D}) je UP, $Y \subseteq X$. Pak uniformní podprostor (Y, \mathcal{D}_Y) je definován následovně $\mathcal{D}_Y := \{D \cap (Y \times Y) | D \in \mathcal{D}\}.$

Jsou-li (X_i, \mathcal{D}_i) UP, pak suma těchto UP je definována jako $(\bigcup X_i, \{\bigcup D_i | D_i \in \mathcal{D}_i\})$. Součin pak jako $(\prod X_i | \{\prod D_i | D_i \in \mathcal{D}_i, \operatorname{Fin}(D_i \neq X_i \times X_i)\})$. (Tedy jsou různé od identity jen v konečně mnoha případech.)

3.2 Úplnost a totální omezenost

Definice 3.11 (Net)

Net $(x_i)_{i\in I}$ UP (X, \mathcal{D}) se nazývá cauchyovský, pokud $\forall D \in \mathcal{D} \ \exists i_0 \in I \ \forall i, j \geq i_0 : (x_i, x_j \in D).$

Definice 3.12 (Úplný a totálněomezený prostor)

UP (X, \mathcal{D}) se nazývá úplný, pokud každý cauchyovský net v (X, \mathcal{D}) je konvergentní v $(X, \tau_{\mathcal{D}})$.

UP (X, \mathcal{D}) se nazývá totálně omezený, pokud $\forall E \in \mathcal{D} \exists K \subseteq X$ konečná: E[K] = X.

Poznámka

MP je totálně omezený (úplný) ⇔ UP jím generovaný je totálně omezený (úplný).

Poznámka

UP (X, \mathcal{D}) je totálně omezený $\Leftrightarrow \forall D \in \mathcal{D} \exists$ konečné pokrytí U_1, \ldots, U_n prostoru X, že $(U_1 \times U_1) \cup \ldots \cup (U_n \times U_n) \subseteq D$.

Věta 3.7

 $Bud'(\mathbb{X}, \mathcal{D})$ UP. $Pak'(\mathbb{X}, \tau_{\mathcal{D}})$ je kompaktní \Leftrightarrow $(\mathbb{X}, \mathcal{D})$ je úplný a totálně omezený.

Důkaz

 \implies Je-li $D \in \mathcal{D}$, pak {int $D[x]|x \in \mathbb{X}$ } je otevřené pokrytí \mathbb{X} . Tedy z kompaktnosti existuje konečné podpokrytí {int $D[x_1], \ldots, \text{int } D[x_n]$ }. Tedy pro $K := \{x_1, \ldots, x_n\}$ je $D[K] = \bigcup D[x_i] \supseteq \bigcup \int D[x_i] = \mathbb{X}$.

Ať $(x_i)_{i\in I}$ je cauchyovský net v (\mathbb{X},\mathcal{D}) . Z charakterizace kompaktnosti víme, že $(x_i)_{i\in I}$ má hromadný bod – řekněme x. Ukážeme, že x je limitou netu x_i (tj. x_i konverguje k x). Ať U je okolí x. Pak existuje symetrické $D\in\mathcal{D}:(D\circ D)[x]\subseteq U$. Z cauchyovskosti existuje i_0 , že pro $i,j\geq i_0:(x_i,x_j)\in D$

TODO

4 Topologické grupy

Definice 4.1 (Topologická grupa)

 $(\mathbb{G}, \cdot, \tau)$ se nazývá topologická grupa (TG), pokud (\mathbb{G}, \cdot) je grupa, (\mathbb{G}, τ) je TP a $\cdot : \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ je spojité, $^{-1} : \mathbb{G} \to \mathbb{G}$ je spojité.

Pozorování

At G je TG. Pak:

- $^{-1}$ je homeomorfismus.
- $\forall g \in \mathbb{G} : L_g : \mathbb{G} \to \mathbb{G}, \ L_g(h) := g \cdot h$ (tzv. levá translace) je homeomorfismus.

$$(L_q^{-1} = L_{g^{-1}}.)$$

- $\forall x, y \in \mathbb{G} \exists h : \mathbb{G} \to \mathbb{G}$ homeomorfismus: h(x) = y. $(L_{yx^{-1}}(x) = y)$.
- $\forall U$ okolí $e \exists V$ okolí $e: V \cdot V^{-1} := \{u \cdot v^{-1} | u \in V, v \in V\} \subseteq U$.
- Pro U otevřenou v \mathbb{G} a $M \subseteq \mathbb{G}$ libovolnou $M \cdot U$ je otevřené.
- Uzávěr podgrupy $H \leq \mathbb{G}$ je opět grupa.
- Uzávěr normální (algebraicky) podgrupy je normální (algebraicky) podgrupa.
- Je-li H podgrupa \mathbb{G} s neprázdným vnitřkem, pak je obojetná.
- Součin TG se součinovou topologií a operací po složkách je TG.

Tvrzení 4.1 (Uniformita na TG)

At \mathbb{G} je TG. Pak systém $\{D_U|U \text{ je okolí }e\}$, $kde\ D_U = \{(x,y)|x\cdot y^{-1}\in U\}$, je bází nějaké uniformity na \mathbb{G} . (Tzv. pravá uniformita na \mathbb{G}). Tato uniformita je kompatibilní s topologií \mathbb{G} .

 $D\mathring{u}kaz$

 $\delta(G) \subseteq D_u$. At U je okolí e. Chceme najít \mathbf{V} okolí $e: D_V \circ D_V \subseteq D_U$. Uvažme spojité zobrazení $(x,y) \mapsto x \cdot y, \ x,y \in \mathbb{G}$. $(e,e) \to e$.

Tedy existuje V okolí $e: \mathbf{V} \cdot \mathbf{V} \subseteq U$. Nyní $D_V \circ D_V \subseteq D_u$: At $(a,b) \in D_V \circ D_V$. Pak existuje $c \in G: (a,c) \in D_V, (c,b \in D_V)$. $a \cdot c^{-1} \in V$ a $cb^{-1} \in V$, tedy $a \cdot c^{-1} \cdot c \cdot b^{-1} \in V \cdot V \subseteq U$. $a \cdot b^{-1} \in U$. $(a,b) \in D_U$. Pro V,W okolí $e: D_V \cap D_W \supseteq D_{V \cap W}$. Tedy $\{D_U | U \text{ okolí } e\}$ tvoří bázi uniformity.

Tato uniformita je kompatibilní s původní topologií na \mathbb{G} : At V okolí $e, x \in \mathbb{G}$. $D_V[x] = \{y \in \mathbb{G} | xy^{-1} \in V\} = \{y \in \mathbb{G} | y \in V^{-1} \cdot x\} i = V^{-1} \cdot x \text{ je okolí } x.$

Věta 4.2

Každá TG je Tichonovova.

 $D\mathring{u}kaz$

At $(\mathbb{G}, \cdot, \tau)$ je TG. At \mathcal{D} je pravá uniformita na $(\mathbb{G}, \cdot, \tau)$. Víme, že $(\mathbb{G}, \tau_{\mathcal{D}})$ je Tichonovův. Předchozí tvrzení dává, že $\tau_{\mathcal{D}} = \tau$.

Věta 4.3 (Metrizovatelnost TG)

TG je metrizovatelná, právě když má spočetný charakter.

 \Longrightarrow : Triviální (každý met. prostor má spočetný charakter). \Leftarrow : At $(\mathbb{G}, \cdot, \tau)$ má spočetný charakter. At $\{U_n : n \in \mathbb{N}\}$ je báze okolí v e. $D_n := \{(x, y) \in \mathbb{G} \times \mathbb{G} | xy^{-1} \in U_n\}$, $\{D_n | n \in \mathbb{N}\}$ je báze pravé uniformity \mathcal{D} . Tedy \mathcal{D} má spočetnou bázi. Tedy $(\mathbb{G}, \mathcal{D})$ je metrizovatelný, tedy (\mathcal{G}, τ) je metrizovatelný.

Poznámka (Informativně)

Věta (Birkhoff Kahutani): Každá metrizovatelná grupa má zleva (zprava) invariantní metriku, tj. metrika ϱ , že $\varrho(x,y) = \varrho(c \cdot x, c \cdot y), \forall c, x, y \in \mathbb{G}$.

Tvrzení 4.4 (Spojitost homomorfismu)

 $At \; \mathbb{G}, \; \mathbb{H} \; jsou \; TG. \; f: \mathbb{G} \to \mathbb{H} \; je \; homomorfismus \; grup. \; f \; je \; spojit\acute{e} \; \Leftrightarrow \; f \; je \; spojit\acute{e} \; v \; e \in \mathbb{G}.$

Důkaz

 \Longrightarrow : zřejmě. \Leftarrow : At $x \in \mathbb{G}$, $(x_i)_{i \in I}$ je net v \mathbb{G} , který konverguje k x. Chceme, že $(f(x_i))_{i \in I}$ konverguje k f(x) v \mathbb{H} . $(x_i \cdot x^{-1})_{i \in I}$ je net v \mathbb{G} , konverguje k $x \cdot x^{-1} = e \in \mathbb{G}$. f spojité v e, tedy $f(x_i \cdot x^{-1})$ konverguje k $f(e) = e \in \mathbb{H}$. Tudíž $f(x_i) \cdot (f(x))^{-1} \to e \in \mathbb{H}$. Tudíž (po vynásobení f(x)) $f(x_i) \to f(x)$. Tedy f spojité v x. $x \in \mathbb{G}$ libovolné. Tedy f je spojité. \square

Věta 4.5 (Faktor TG)

Buď N uzavřená normální podgrupa TG \mathbb{G} . Pak faktogrupa \mathbb{G}/N s kvocientovou topologií je TG a přirozená projekce (= kvocientové zobrazení) $\pi: \mathbb{G} \to \mathbb{G}/N$, $\pi(g) := g \cdot N$, je spojitý a otevřený homeomorfismus.

$D\mathring{u}kaz$

Víme: π je spojitý homeomorfismus. π je otevřené: je-li $U \subseteq \mathbb{G}$ otevřené, pak $\pi(U) = \{xN : x \in U\} \subseteq G/N, \, \pi^{-1}(\pi(U)) = U \cdot N$ je otevřením. Tedy z definice kvocientové topologie je $\pi(U)$ otevřená množina.

 \mathbb{G}/N je TG: Násobení je spojité: $f: \mathbb{G} \times G \to \mathbb{G}/N, f(g,h) := g \cdot h \cdot N$ je spojité, jelikož je to složení součinu a kvocientového zobrazení. Poznamenejme, že můžeme přirozeně identifikovat $\mathbb{G} \times \mathbb{G}/N \times N$ a $(\mathbb{G}/N) \times (\mathbb{G}/N)$. Operace součinu na G/N je kvocientem spojitého zobrazení f. Tedy je také spojité podle charakterizace spojitosti a projektivně vytvořeného prostoru.

Spojitost ⁻¹ se ukáže obdobně.

Zbývá ověřit, že \mathbb{G}/N je Hausdorffův. Stačí ověřit, že je T_1 . N je uzavřená, tedy $G \setminus N$ je otevřená. $\pi^{-1}(G/N \setminus \{N\}) = \mathbb{G} \setminus N$ je otevřená. Tedy z definice kvocientové topologie $G/N \setminus \{N\}$ je otevřená v G/N, ...

Tvrzení 4.6 (O homomorfismu)
At \mathbb{G} , \mathbb{H} jsou TG a $f:G\to H$ spojitý homomorfismus. Pak $N:=f^{-1}(e)$ je normální (uzavřená) podgrupa G a existuje spojitý homomorfismus $\overline{f}:G/N\to H$, že $\overline{f}\pi=f$ (kde $\pi:G\to G/N$ je přirozená projekce).
$Pozn\acute{a}mka$
f nemusí být vnoření topologických prostorů.
Bez důkazu.
Tvrzení 4.7 (O izomorfismu)
At \mathbb{G} je TG , $K\subseteq H$ její uzavřené normální podgrupy. Pak H/K je uzavřenou normální podgrupou G/K a $(G/K)/(H/K)$ je izomorfně homeomorfní s G/H .

5 Souvislé prostory

Definice 5.1

 $D\mathring{u}kaz$

Bez důkazu.

TP se nazývá souvislý, pokud je neprázdný a nelze ho vyjádřit jako sjednocení dvou disjunktních otevřených neprázdných množin. (Tj. obsahuje právě dvě obojetné množiny, sám sebe a prázdný prostor.)

Tvrzení 5.1 Pro neprázdný TP X je ekvivalentní: a) X je souvislý, b) Je-li X =

Pro neprázdný $TP \mathbb{X}$ je ekvivalentní: a) \mathbb{X} je souvislý, b) Je-li $\mathbb{X} = A \cup B$ a $\overline{A} \cap B = \emptyset = \overline{B} \cap A$, pak $A = \emptyset$ nebo $B = \emptyset$. c) \mathbb{X} neobsahuje vlastní obojetnou podmnožinu. d) Každé spojité zobrazení $f: \mathbb{X} \to \{0,1\}$ je konstantní.

Důkaz Přímočaré.

Tvrzení 5.2

Spojitý obraz souvislého prostoru je souvislý.

At $f: \mathbb{X} \to \mathbb{Y}$ je spojité zobrazení, \mathbb{X} souvislé, f na. Sporem. \mathbb{Y} není souvislý. Potom z minulého tvrzení $\exists g: \mathbb{Y} \to \{0,1\}$ spojitý nekonstantní. Potom ale $g \circ f: \mathbb{X} \to \{0,1\}$ je spojité a nekonstantní $\Longrightarrow \mathbb{X}$ není souvislý. \not .

Tvrzení 5.3 (Sjednocení souvislých množin)

At $C_i \subseteq \mathbb{X}$, C_i souvislé, $i \in I, 0 \in I, C_i \cap C_0 \neq \emptyset$ pro $i \in I$. Pak $\bigcup C_i$ je souvislé.

Důkaz

At O je neprázdná obojetná množina v $\bigcup C_i$. Existuje $j \in I$, $C_j \cap O \neq \emptyset$. $C_j \cap O$ je obojetná v C_j , C_j je souvislá, tedy $C_j \subseteq O$. Tedy $C_0 \cap O \neq \emptyset$, tj. $C_0 \subseteq O$. Je-li $i \in I$ libovolná, pak $C_i \cap O \neq \emptyset$ a opět $C_i \subseteq O$. Tudíž $O = \bigcup C_i$, tj. $\bigcup C_i$ je souvislá.

Důsledek

Jsou-li C_i souvislé v TP \mathbb{X} , $i \in I$ a $\bigcap C_i \neq \emptyset$, pak $\bigcup_{i \in I} C_i$ je souvislá.

 $D\mathring{u}kaz$

Předchozí s $C_0 := \{x_0\} \subseteq \bigcap C_i$.

Důsledek

Je-li $A \subseteq \mathbb{X}$ souvislá a $A \subseteq M \subseteq \overline{A}$, pak M je souvislá.

 $D\mathring{u}kaz$

 $C_a:=A\cup\{a\}$ pro $a\in M\setminus A.$ Vzhledem k předchozímu stačí ověřit, že C_a je souvislá $(M=\bigcup_{a\in M\setminus A}C_a).$ \qed

Věta 5.4

Bud' X Tichonovův prostor. Pak X je souvislý $\Leftrightarrow \beta X$ je souvislý.

 $D\mathring{u}kaz$

 \Longrightarrow : $\overline{\mathbb{X}} = \beta \mathbb{X}$, \mathbb{X} je souvislá \Longrightarrow $\overline{\mathbb{X}}$ je souvislá \Longrightarrow $\beta \mathbb{X}$ je souvislá.

 \Leftrightarrow : At $\beta \mathbb{X}$ je souvislý. At $f: \mathbb{X} \to \{0,1\}$ je spojité zobrazení. Z vlastností $\beta \mathbb{X}$ existuje spojité rozšíření $\overline{f}: \beta \mathbb{X} \to \{0,1\}$. $\beta \mathbb{X}$ je souvislý $\Longrightarrow \overline{f}$ je konstantní $\Longrightarrow \mathbb{X}$ je souvislý.

Věta 5.5 (Součin souvislých prostorů)

At $X_i : i \in I$ jsou TP. Pak $\prod_{i \in I} X_i$ je souvislý $\Leftrightarrow \forall i \in I : X_i$ je souvislý.

Pokud některý $\mathbb{X}_i = \emptyset$, tvrzení platí. Dále at $\mathbb{X}_i \neq \emptyset$, $i \in I$. \Longrightarrow : Je-li $\prod \mathbb{X}_i$ souvislý, $\pi_j : \prod \mathbb{X}_i \to \mathbb{X}_j$ je spojité a na, tedy i \mathbb{X}_j je souvislý.

 \Leftarrow : Nejprve pro dva prostory \mathbb{X} , \mathbb{Y} : $\mathbb{X} \times \mathbb{Y} = (\{x_0\} \times \mathbb{Y}) \cup \bigcup_{y \in \mathbb{Y}} \mathbb{X} \times \{y\}$. Tedy podle tvrzení výše je $\mathbb{X} \times \mathbb{Y}$ souvislý. Indukcí dokážeme pro konečně mnoho. Obecně: $\forall i \in I$ fixujeme bod $x_i \in \mathbb{X}_i$.

 $M:=\left\{(y_i)_{i\in I}\in\prod\mathbb{X}_i:y_i=x_i\text{ pro všechna }i\in I\text{ až na konečně mnoho výjimek}\right\}.$

$$M = \bigcup_{K \subseteq I \text{ konečná}} \left(\prod_{i \in K} \mathbb{X}_i \times \prod_{i \in I \setminus K} \{x_i\} \right).$$

To znamená, že M je souvislé, protože je sjednocením souvislých množin s průnikem obsahujícím $(x_i)_{i\in I}$. Ale M je hustá v $\prod \mathbb{X}_i$. \overline{M} je souvislá, tedy $\prod \mathbb{X}_i$ je souvislá.

Definice 5.2 (Komponenta souvislosti)

Ať \mathbb{X} je TP, $x \in \mathbb{X}$, pak komponenta souvislosti bodu x je největší souvislá množina, která x obsahuje. Značíme ji C_x .

Důkaz (Existence)

Plyne z jednoho z důsledků: $\bigcup \{C|x\in C\land C \text{ je souvislá}\}$ je souvislá a maximální. Navíc je to vždy uzavřená množina.

Poznámka

Komponenty souvislosti tvoří rozklad, tj. $C_x = C_y$ nebo $C_x \cap C_y = \emptyset$.

Tvrzení 5.6

Jsou-li X_i TP a $x_i \in X_i$, C_i komponenta bodu x_i v X_i . Pak $\prod C_i$ je komponenta $(x_i)_{i \in I}$ $v \prod X_i$.

 $D\mathring{u}kaz$

Cvičení.

Definice 5.3 (Kvazikomponenty)

Ať \mathbb{X} je TP. Množina $Q \subseteq \mathbb{X}$ se nazývá kvazikomponenta bodu $x \in \mathbb{X}$ v prostoru \mathbb{X} , pokud $Q = \bigcap \{Z | x \in Z \land Z \text{ obojetná} \}$. Značíme ji Q_x .

Poznámka

 $\forall x \in \mathbb{X} : C_x \subseteq Q_x$. Navíc Q_x je uzavřená. A opět tvoří rozklad prostoru \mathbb{X} .

Například (TP X, že $C_x\neq Q_x$) X $\subseteq \mathbb{R}^2$ skládající se ze 2 bodů x,ya úseček k ním konvergujícím (:|| | | |). $C_x=\{x\},\,Q_x=\{x,y\}.$

Lemma 5.7 (O průniku v kompaktu)

Buď \mathbb{X} kompaktní TP, \mathcal{A} soubor uzavřených množin v \mathbb{X} . $U \subseteq \mathbb{X}$ otevřená a $\bigcap \mathcal{A} \subseteq U$. Pak existuje konečný systém $\mathcal{F} \subseteq \mathcal{A} : \bigcap \mathcal{F} \subseteq U$.

 $D\mathring{u}kaz$

Kdyby ne, pak $\forall \mathcal{F} \subseteq \mathcal{A}$ konečné: $\bigcap \mathcal{F} \setminus U \neq \emptyset$. Tedy $\mathcal{A} \cup \{\mathbb{X} \setminus U\}$ má konečnou průnikovou vlastnost. \mathbb{X} kompaktní: $\bigcap \mathcal{A} \cap (\mathbb{X} \setminus U) \neq \emptyset$. Tedy $\bigcap \mathcal{A} \not\subseteq U$. 4.

Věta 5.8

V kompaktním TP komponenty a kvazikomponenty splývají.

 $D\mathring{u}kaz$

At $x \in \mathbb{X}$. $C_x \subseteq Q_x$. Pro $Q_x \subseteq C_x$ stačí dokázat, že Q_x je souvislá. Předpokládejme $E \cup F$, E, F uzavřené (v Q_x , a tedy i v \mathbb{X}) disjunktní množiny. BÚNO $x \in E$. \mathbb{X} je normální, tedy existují otevřené disjunktní množiny $U, V \colon E \subseteq U, \ F \subseteq V. \ Q_x = E \cup F \subseteq U \cup V.$ Podle předchozího lemmatu existují obojetné množiny $Q_1, \ldots, Q_n \colon Q_1 \cap \ldots \cap O_n \subseteq U \cup V.$ Otevřené $O \cap U = O \setminus V$ uzavřené, tedy $x \in O \cap U$, tedy $Q_x \subseteq O \cap U$. Tedy $F = \emptyset$. Proto Q_x je souvislá.

Definice 5.4 (Křivková a oblouková souvislost)

TP \mathbb{X} se nazývá obloukově (resp. křivkově) souvislý, pokud $\forall x,y \in \mathbb{X}, x \neq y \exists f : [0,1] \rightarrow f([0,1])$ homeomorfní (resp. f spojité), že f(0) = x, f(1) = y.

Poznámka

Obecně je mezi nimi rozdíl, v Hausdorffových prostorech je to totéž.

6 Kontinua

Definice 6.1 (Kontinuum)

Kontinuum je kompaktní souvislý prostor.

Jednoprvkové kontinuum se nazývá degenerované, ostatní nedegenerovaná.

Tvrzení 6.1

At K_n je klesající (vzhledem k inkluzi) posloupnost kontinuí, pak $\bigcap_{n=1}^{\infty} K_n$ je opět kontinuum.

 $D\mathring{u}kaz$

 $K:=\bigcap_{n=1}^{\infty}K_n$ je zřejmě kompaktní. Předpokládejme, že $K=E\cup F$, kde E,F jsou uzavřené disjunktní. Chceme $E=\emptyset$ nebo $F=\emptyset$. K_1 je normální, tedy existují otevřené disjunktní U,V, že $E\subseteq U$ a $F\subseteq V$. Podle lemmatu o průniku v kompaktu existuje $n\in\mathbb{N}$, že $K_n\subseteq U\cup V$, tedy $K_1=(K_n\cap U)\cup (K_n\cap V)$. K_n je sovislá, tedy $K_n\cap U=\emptyset$ nebo $K_n\cap V=\emptyset$. Tedy $E=\emptyset$ nebo $F=\emptyset$.

Tvrzení 6.2 (Bum do hranice (Boundary bumping theorem))

 $At \ X$ je kontinuum, A vlastní uzavřená podmnožina X. Pak každá komponenta množiny A protíná hranici A.

 $D\mathring{u}kaz$

 $A=\emptyset$ nemá žádnou komponentu. Tedy $A\neq\emptyset, x\in A,\ C_x$... komponenta bodu x v A. Pro spor předpokládejme, že $C_x\cap\partial A=\emptyset$. $A\subset\mathbb{X}$, X je kontinuum, tedy $\partial A\neq\emptyset$. Víme, že C_x je kvazikomponenta X, $C_x\subseteq A\setminus\partial A$. Tedy podle lemmatu o průniku v kompaktu existuje obojetná množina Z v A, že $C_x\subseteq Z\subseteq A\setminus\partial A$. Z je uzavřená v X, neprázdná, vlastní. Navíc Z je otevřená v X a neprotíná hranici, tedy Z je otevřená v X (Z je otevřená v otevřené Z) je tedy obojetná vlastní podmnožina v Z0.

Věta 6.3 (Sierpinski)

Ať X je kontinuum, $X_n, n \in \mathbb{N}$ po dvou disjunktní uzavřené množiny v X, že $X = \bigcup X_n$. Pak všechna $X_n = \emptyset$ až na jednu výjimku.

Je-li kontinuum \mathbb{D} spočetným sjednocením uzavřených neprázdných disjunktních množin $Y_i, i \in \mathbb{N}$, pak pro každé $i \in \mathbb{N}$ existuje kontinuum $\mathbb{C} \subseteq \mathbb{D}$, které je disjunktní s Y_i , ale není obsaženo v žádném $Y_j, j \in \mathbb{N}$ (protíná alespoň 2). Důkaz:

Fixujeme $j \neq i$: existují disjunktní otevřené $U, V \colon Y_j \subseteq U, Y_i \subseteq V$. Buď C komponenta libovolného bodu z Y_j v množině \overline{U} . Podle bum do hranice víme, že $C \cap \partial \overline{U} \neq \emptyset$. Tj. $\partial \overline{U} \cap Y_j = \emptyset$, tedy $C \nsubseteq Y_j$. $C \subseteq \overline{U} \subseteq \mathbb{D} \setminus V$, tedy $C \cap Y_i = \emptyset$.

Důkaz věty: Sporem: Existují alespoň dva indexy $n \neq m : X_n \neq \emptyset \neq X_m$. Kdyby $\{k \in \mathbb{N} : X_n \neq \emptyset\}$ byla konečná, pak \mathbb{X} je sjednocením konečně mnoha disjunktních uzavřených neprázdných množin, tyto množiny by již byly obojetné, spor se souvislostí \mathbb{X} .

BÚNO (vyházíme prázdné a přeindexujeme) $X_n \neq \emptyset, \forall n \in \mathbb{N}$. Indukcí najdeme posloupnost kontinuí C_n , že $C_{n+1} \subseteq C_n \wedge C_n \cap X_n = \emptyset \wedge C_n$ není obsaženo v žádném X_i , $i \in \mathbb{N}$. Podle prvního odstavce $\mathbb{X} = \mathbb{D}, X_j = Y_j, i = 1$ existuje $C = C_j$. Dále uvažme C_1 . To protíná nekonečně mnoho z množin X_i . V druhém kroku indukce použijeme první odstavec na $\mathbb{D} = C_1, \{Y_i | i \in \mathbb{N}\} = \{C_1 \cap X_i | C_1 \cap X_i \neq \emptyset\}, \dots$

$$\bigcap C_n \neq \emptyset$$
, at tedy $c \in \bigcap C_n$. $c \notin \bigcup X_n = X$. 4.

Definice 6.2 (Rozložitelné a nerozložitelné kontinuum)

Kontinuum \mathbb{X} se nazývá rozložitelné, pokud existují dvě vlastní podkontinua \mathbb{A} , \mathbb{B} (ne nutně disjunktní), že $\mathbb{X} = \mathbb{A} \cup \mathbb{B}$. Jinak je nerozložitelné.

Věta 6.4 (Charakterizace nerozložitelnosti)

Kontinuum \mathbb{X} je nerozložitelné, právě když každé jeho vlastní podkontinuum je v něl řídké (tj. uzávěr má prázdný vnitřek).

 $D\mathring{u}kaz$

 \Leftarrow Kdyby $X = \mathbb{A} \cup \mathbb{B}$, \mathbb{A} , \mathbb{B} vlastní podkontinua, pak \mathbb{A} , \mathbb{B} řídké. $\mathbb{A} \cup \mathbb{B}$ je řídká v \mathbb{X} , $\cancel{4}$.

 \Longrightarrow : Ať $\mathbb{Y}\subseteq\mathbb{X}$ je vlastní podkontinuum \mathbb{X} , int $\mathbb{Y}\neq\emptyset$. Ať $M=\mathbb{X}\setminus\mathbb{Y}$. Pak M je souvislá: $\mathbb{X}=M\cup\mathbb{Y}$ a M je kontinuum, tedy \mathbb{X} je rozložitelné. Nebo M je nesouvislá: $M=E\cup F$, kde E,F jsou uzavřené disjunktní neprázdné podmnožiny v M. Potom $(\mathbb{Y}\cup E)\cup(\mathbb{Y}\cup F)$. Ale tyto dvě množiny jsou vlastní uzavřené podmnožiny \mathbb{X} , které jsou souvislé (neboť každá komponenta E nebo F protíná jejich hranici a ta je podmnožinou \mathbb{Y} a sjednocení souvislých protínajících se ve stejném bodě je souvislé).