Geometry

Computer Graphics Instructor: Sungkil Lee

Today

- Fundamental elements of geometry
 - Points, scalars, and vectors
- Vector, Euclidean, and affine spaces
- Additional elements of geometry
- Geometric modeling

Prerequisites: Vector Spaces

Vector Spaces

Formal definition of a vector space

- A vector space over a field F is a set V together with addition and multiplication that satisfy the eight axioms.
- Elements of V and F are called vectors and scalars.

Axiom	Meaning
Associativity of addition	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
Commutativity of addition	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
Identity element of addition	There exists an element $0 \in V$ such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in V$.
Inverse elements of addition	For every $\mathbf{v} \in V$, there exists an element $\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = 0$.
Distributivity of scalar multiplication with respect to vector addition	$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
Distributivity of scalar multiplication with respect to field addition	$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$
Compatibility of scalar multiplication with field multiplication	$a(b\mathbf{v}) = (ab)\mathbf{v}$
Identity element of scalar multiplication	$1\mathbf{v}=\mathbf{v}$, where 1 denotes the multiplicative identity in F .

More on Algebra

 Mathematical structures related to the concept of a field can be tracked as follows:

- A field is a ring whose nonzero elements form a abelian group under multiplication.
- A ring is an abelian group under addition and a semigroup under multiplication; addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity.
- An abelian group (commutative group) is a group in which commutativity $(a \cdot b = b \cdot a)$ is satisfied.
- A semigroup is a set A in which $a \cdot b$ satisfies associativity for any two elements a and b and operator \cdot .
- A group is a set A in which $a \cdot b$ satisfies closure, associativity, identity element, and inverse element for any two elements a and b and operator \cdot .

Vector Spaces

More simply:

- Vectors can be added, and such a sum is also a vector.
- There is a zero vector and an inverse on vector addition.
- Vectors can be multiplied by a scalar.
- Identity exists for scalar multiplication (i.e., 1).

Geometric Elements

Geometry and Fundamental Elements

Geometry:

- The study of the relationships among objects in an n-dimensional space
- In CG, we work with sets of geometric objects, such as points, lines, triangles, and quads.
 - Such objects exist in a 3D space.
 - We can define them and their relationships using a limited set of primitives.

Three fundamental types of elements:

Points, scalars, and vectors

Fundamental Elements (1): Points

- Point: a location in space
 - a mathematical point has neither a size nor a shape.
- Points are useful in specifying geometric objects but are insufficient by themselves
 - We need real numbers to specify quantities such as the distance between two points
 - Such real numbers are examples of scalars.

Fundamental Elements (2): Scalars

Scalars:

- Objects that obey a set of rules that abstract the operations of ordinary arithmetic.
- Addition and multiplication are well defined and obey fundamental axioms (associativity, commutativity, inverse, and identity).

Examples of scalars:

- real numbers
- complex numbers

Scalars alone have no geometric properties

Fundamental Elements (3): Vectors

A physical definition of vectors:

- A quantity with direction and magnitude.
- Vectors do not have a fixed location in space.

Examples:

- Force, velocity, and directed line segments
- **Directed** line segments, connecting two points, will be often used synonymously to the term **vector**.

Operations on Vectors and Points

- Vectors are insufficient for geometry
 - We need to represent a location in space.
 - Points necessary
- Operations allowed between points and vectors
 - v = P Q: **point-point subtraction** yields a vector
 - P = Q + v: equivalent to **point-vector addition**

Computer Science View on Geom. Elements

- We may need to define abstract data types for points, scalars, and vectors independently.
 - The operations allowed between elements can be exactly implemented with operator overloading (in C++).
 - We can overload only allowed operators among them, and do not overload others (e.g., do not define point-point addition).
- Notes on GLSL: confusion with vec2,vec3,vec4.
 - Unfortunately, this choice of names by GLSL can cause some confusion.
 - They are actually not geometric types but rather storage types.
 - Hence, we can use them to store a point, a vector, or a color.

Extensions of Vector Spaces

Euclidean Space

Euclidean space

- Vector space + a measure of distance (i.e., Euclidean distance)
- Euclidean distance allows us to define size or distance as the length of a line segment.
- When we also have the notion of point (i.e., affine space),
 a Euclidean distance between two points can be defined as (in 3D):

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

Affine Space

Affine space

- Vector space (scalars and vectors only) + points
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Scalar-scalar operations
 - Vector-point addition (newly defined in affine space)
- New points are defined by vector-point addition
 - Alternatively, we can say there is point-point subtraction (equivalent to vector-point addition).
- Note that there are no operations between points or scalars.

Representations

- In these abstract spaces (vector space, Euclidean space, and affine space),
 - Objects can be defined independently of any particular representations.
 - Representation (the lecture covered later) provides the tie between the abstract objects and their implementation (in real spaces).
 - Conversion between representations leads us to geometric transformations.

Additional Elements of Geometry

Lines

- The sum of a point and a vector (or the subtraction of two points) leads to the notion of a line in an affine space.
 - Consider all points of the parametric form

$$P(\alpha) = P_0 + \alpha \mathbf{d}$$

• Here, a line can be defined as a set of all points that pass through P_0 in the direction of the vector d

FIGURE 3.10 Line in an affine space.

Rays and Line Segments

$$P(\alpha) = Q + \alpha d = Q + \alpha (R - Q)$$

- If we restrict α to semi-positive values ($\alpha \geq 0$), this defines a ray emanating from Q.
- If we restrict α to [0,1], this defines a line segment between Q and R.

FIGURE 3.11 Affine addition.

Affine Sum

- In an affine space, the addition of two arbitrary points and multiplication of a point by a scalar are not defined.
 - However, we have a limited form of an operation that has certain elements of the two operations, *affine addition*.

Affine Sum

Affine addition:

$$P = Q + \alpha v = Q + \alpha (R - Q) = (1 - \alpha)Q + \alpha R$$

 This operation looks like the addition of two points and leads to the equivalent form.

$$P = \alpha_1 Q + \alpha_2 R$$
, where $\alpha_1 + \alpha_2 = 1$

FIGURE 3.11 Affine addition.

- Then, this defines the two operations, not allowed in an affine space:
 - (1) addition of two points and (2) multiplication of a point by a scalar
 - yet only with the limited condition (the sum of scalars=1).

Affine Sum

Affine sum:

• By extending such a point-vector addition to include n points, we have the following sum:

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \cdots + \alpha_n P_n$$
, where $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$

- We call this kind of sum the affine sum.
- By this way, we can define the addition of points as well as the multiplication of points by scalars.

Convex Hull

• Given a set of points, $\{P_i\}$, one more constraint, $\alpha_i \ge 0$, defines its *convex hull*, H, as:

$$H = \left\{ \sum_{i} \alpha_{i} P_{i} \middle| \sum_{i} \alpha_{i} = 1, \alpha_{i} \geq 0 \right\}$$

- The convex hull is the smallest convex object containing $\{P_1, P_2, ..., P_n\}$
- **Convex object**: for any two points in the object, all points on the line segment between these points are also in the object.

Triangles: Barycentric Coordinates

Also, we are able to write the plane in terms of affine sum as:

$$T(\alpha, \beta, \gamma) = \alpha P + \beta Q + \gamma R$$
, where $\alpha + \beta + \gamma = 1$.

- When $\alpha, \beta, \gamma \geq 0$, this represents a triangle and its internal points.
 - Hence, triangles are convex by default.
- This representation of a point is called the barycentric coordinate representations.
 - c.f., Barycenter: the center of mass

Geometric Modeling

Models

Models:

Mathematical abstraction of the real world or virtual worlds.

Geometric Models:

- In CG, we model our worlds with geometric objects.
- Building blocks: a set of simple 3D primitives (Points, lines, triangles, ...)
- *Triangular meshes* are common, which comprises a set of triangles connected by their common edges or corners.

3D Primitives

3D objects that fit well with graphics HW and SW:

- described by their 2D surfaces and can be thought of as being hollow.
 - c.f., objects with 3D surfaces are called the volumetric objects (e.g., CT).
- can be specified through a set of vertices.
- either are composed of or can be approximated by flat, convex polygons.
 - e.g., a circle/sphere approximated by flat triangles.

3D Primitives

Why we set these conditions?

- Modern graphics systems are optimized for rendering triangles or meshes of triangles (e.g., more than 100 M triangles / sec.).
 - Points and lines are also supported well.
- Vertices can be processed with the pipeline architecture, independently.

Why are triangles fundamental primitives?

- The triangles are always flat.
- General polygons might not lie in the same plane, and then, there is no simple way to define interior of the object.
- Also, general polygons can be decomposed into a set of triangles:
 - then, we can apply the same pipeline on the triangles.

Triangular Mesh Representation

A simple list-based representation

Define each polygon by the geometric locations of its vertices.

- A simple list-based representation is often inefficient and unstructured.
- When a vertex moves to a new location, we must search and replace it for all the occurrences.

Geometry vs. Topology

- Generally, it is a good idea to look for data structures that separate the geometry from the topology
 - Geometry: locations of the vertices
 - Topology: structural organization of the vertices and edges
 - Connectedness is preserved under continuous deformation
 - Topology holds even if geometry changes

The cup and torus share the same topology.

Index Buffering

Topology is separated from geometry by indexing scheme.

Use indices from the vertices into this array.

Typically faster than simple vertex buffering

 Index buffering avoids redundant vertex shading, while the simple vertexonly buffering has redundant/duplicate vertices in its definition.