Equivalências entre Programas e Máquinas

Teoria da Computação

INF05501

Equivalências

- A determinação de funções computadas permite a introdução de relações de equivalência de programas e máquinas
- Equivalências determinam programas e máquinas que produzem uma mesma função computada
- Com isto, podemos analisar se é possível obterem-se os mesmos resultados usando diferentes combinações de programas e máquinas

Definições Auxiliares

- Igualdade de funções parciais: duas funções parciais $f,g:X\to Y$ são ditas iguais, ou seja, f=g, sss, para cada $x\in X$, ou f(x) e g(x) são ambas indefinidas ou ambas são definidas e f(x)=g(x)
- Composição sucessiva de funções: para uma função $f: S \to S$, denotase a composição sucessiva de f consigo mesma usando-se um expoente, de forma que $f^n = f \circ f \circ f \circ ... \circ f$ descreve a composição de f com ela própria n vezes

Relação de Equivalência Forte entre Programas

Sejam P e Q dois programas quaisquer, de tipos quaisquer.

O par (P,Q) pertence à relação de equivalência forte entre programas, denotada por $P \equiv Q$, sss, para qualquer máquina M, as suas funções computadas correspondentes são iguais. Isto é,

$$\langle P, M \rangle = \langle Q, M \rangle$$

Neste caso, dizemos que P e Q são programas fortemente equivalentes

Relação de Equivalência Forte entre Programas (cont.)

• Esta relação é uma **relação de equivalência**, visto que, para quaisquer programas $P,\,Q$ e R

$$P \equiv P$$

$$P \equiv Q \rightarrow Q \equiv P$$

$$P \equiv Q \land Q \equiv R \rightarrow P \equiv R$$

 Desta forma, esta relação induz uma partição do conjunto de todos os programas em classes de equivalência

Exemplo de Equivalência Forte entre Programas

Considere o programa monolítico P_1

```
1: se T então vá_para 2 senão vá_para 3
```

2: faça F vá_para 1

e uma **máquina qualquer** $M=(V,X,Y,\pi_X,\pi_Y,\Pi_F,\Pi_T)$, e que $x\in X$ tal que $\pi_X(x)=v$, onde $v\in V$

Se $\langle P_1, M \rangle$ é definida para x, a computação correspondente é a seguinte:

$$(1, v)(2, v)(1, \pi_F(v))(2, \pi_F(v))(1, \pi_F^2(v))(2, \pi_F^2(v))...(1, \pi_F^n(v))(2, \pi_F^n(v))$$

supondo-se que n seja o menor natural tal que $\pi_T(\pi_F^n(v)) = falso$

Assim,
$$\langle P_1, M \rangle(x) = \pi_Y(\pi_F^n(v))$$

Exemplo de Equivalência Forte entre Programas (cont.)

Agora considere o **programa recursivo** P_2

$$P_2$$
 é ${\mathcal R}$ onde ${\mathcal R}$ def (se T então faça $F;{\mathcal R}$ senão ${\checkmark}$)

e uma máquina qualquer $M=(V,X,Y,\pi_X,\pi_Y,\Pi_F,\Pi_T)$, e que $x\in X$ tal que $\pi_X(x)=v$, onde $v\in V$

```
7
```

```
(\mathcal{R}; \checkmark, v)
((se T então faça F; \mathcal{R} senão \checkmark);\checkmark, v)
(F; \mathcal{R}; \checkmark, v)
(\mathcal{R}; \checkmark, \pi_F(v))
((se T então faça F; \mathcal{R} senão \checkmark); \checkmark, \pi_F(v))
(F; \mathcal{R}; \checkmark, \pi_F(v))
(\mathcal{R}; \checkmark, {\pi_F}^2(v))
((se T então faça F; \mathcal R senão \checkmark); \checkmark, {\pi_F}^2(v))
(F; \mathcal{R}; \checkmark, \pi_F^2(v))
(\mathcal{R}; \checkmark, \pi_F{}^n(v))
((se T então faça F; \mathcal R senão \checkmark);\checkmark, {\pi_F}^n(v))
(\checkmark; \checkmark, \pi_F^n(v))
(\checkmark, \pi_F^n(v))
```

Assim,
$$\langle P_2, M \rangle(x) = \pi_Y(\pi_F^n(v))$$

Exemplo de Equivalência Forte entre Programas (cont.)

• Portanto, podemos concluir que $P_1 \equiv P_2$, pois, para qualquer máquina M

$$\langle P_1, M \rangle = \langle P_2, M \rangle$$

 Note que, como descrito na definição, a relação de equivalência forte entre programas não requer que os programas sejam do mesmo tipo, o quê foi demonstrado por este exemplo

Consequências da Relação de Equivalência Forte entre Programas

- Podemos identificar diferentes programas que pertencem a uma mesma classe de equivalência (i.e., possuem as mesmas funções computadas para qualquer máquina)
- Funções computadas de programas fortemente equivalentes têm a propriedade de que as mesmas operações são efetuadas na mesma ordem, independentemente do significado das mesmas
- Podemos obter subsídios para analisar a complexidade estrutural de programas e identificar qual dos programas equivalentes é estruturalmente "mais otimizado" (por exemplo, possui menos testes)

Teoremas sobre Equivalência Forte de Programas

- A partir da definição da relação de equivalência forte entre programas, podemos apresentar alguns teoremas sobre os tipos de programas envolvidos
- Tais teoremas visam ao estabelecimento formal da relação entre os tipos de programas e suas equivalências

Teorema 1. "Para todo programa iterativo P_i existe um programa monolítico P_m tal que $P_i \equiv P_m$."

- Para provar este teorema, precisamos demonstrar que cada componente de um programa iterativo possui uma representação correspondente em um programa monolítico
- Para facilitar tal demonstração, podemos usar fluxogramas para descrever componentes de um programa monolítico, visto que ambos são equivalentes
- A prova do Teorema 1 é apresentada a seguir

Prova:

Seja P_i um programa iterativo qualquer. Podemos construir um programa monolítico P_m fortemente equivalente a P_i de forma indutiva da seguinte maneira:

A operação vazia ✓ corresponde ao fluxograma elementar:

• Para cada **identificador de operação** F de P_i , temos um fluxograma elementar correspondente do tipo:

- Sendo T um identificador de teste e V e W programas iterativos usados na construção de P_i , então, para cada possível composição correspondem os seguintes fluxogramas elementares:
 - Composição sequencial: V; W

- Sendo T um identificador de teste e V e W programas iterativos usados na construção de P_i , então, para cada possível composição correspondem os seguintes fluxogramas elementares:
 - $oldsymbol{-}$ Composição condicional: (se T então V senão W)

- Sendo T um identificador de teste e V e W programas iterativos usados na construção de P_i , então, para cada possível composição correspondem os seguintes fluxogramas elementares:
 - Composição Enquanto: enquanto T faça (V)

- Sendo T um identificador de teste e V e W programas iterativos usados na construção de P_i , então, para cada possível composição correspondem os seguintes fluxogramas elementares:
 - $oldsymbol{-}$ Composição Até: até T faça (V)

- Adicionalmente, os tratamentos de início e de fim de um programa iterativo correspondem aos fluxogramas elementares de partida e de parada, respectivamente
- Assim, toda construção de um programa iterativo P_i possui uma construção correspondente em um fluxograma que equivale a um programa monolítico P_m e, portanto, $P_i \equiv P_m$.

Fim da Prova

Teorema 2: Monolítico ⇒ **Recursivo**

Teorema 2. "Para todo programa monolítico P_m existe um programa recursivo P_r tal que $P_m \equiv P_r$."

- Para esta prova, temos de demonstrar que toda operação e todo teste de P_m corresponde a alguma expressão de sub-rotina em P_r
- Esta demonstração é apresentada a seguir

Teorema 2: Monolítico ⇒ **Recursivo**

Prova:

Seja P_m um programa monolítico qualquer, onde $L = \{r_1, r_2, ..., r_n\}$ é o seu conjunto de rótulos. Suponha-se que r_n é o único rótulo final de P_m , F é um identificador de operação e T é um identificador de teste. Então, P_r é um programa recursivo construído a partir de P_m tal que

$$P_r$$
 é \mathcal{R}_1 def E_1 , \mathcal{R}_2 def E_2 , ..., \mathcal{R}_n def \checkmark

onde, para $k \in \{1, 2, ..., n-1\}$, E_k é definido como segue:

Teorema 2: Monolítico ⇒ **Recursivo**

• Operação: Se r_k é da forma r_k : faça F vá_para r_k' , então E_k é a seguinte expressão de sub-rotina:

```
F; {\mathcal{R}_k}'
```

• Teste: Se r_k é da forma r_k : se T então vá_para r_k' senão vá_para r_k'' , então E_k é a seguinte expressão de sub-rotina:

```
(se T então {\mathcal{R}_k}' senão {\mathcal{R}_k}'')
```

Logo, $P_m \equiv P_r$.

Fim da Prova

Corolário 1: Iterativo ⇒ Recursivo

Dados os resultados dos Teoremas 1 e 2, e sabendo-se que a relação de equivalência forte entre programas é uma relação de equivalência, pela transitividade, temos:

Corolário 1. "Para todo programa iterativo P_i existe um programa recursivo P_r tal que $P_i \equiv P_r$."

Equivalências Eventuais

- Vimos que, obrigatoriamente:
 - Todo programa iterativo possui um programa monolítico fortemente equivalente a ele
 - Todo programa monolítico possui um programa recursivo fortemente equivalente a ele
 - Todo programa iterativo possui um programa recursivo fortemente equivalente a ele
- No entanto, existem equivalências fortes que são eventuais
- Isto é, que não são necessariamente verdadeiras para todos os programas de um tipo

Teorema 3. "Dado um programa recursivo P_r qualquer, nem sempre existe um programa monolítico P_m tal que $P_r \equiv P_m$."

- Para provar esta afirmação, é suficiente apresentar um programa recursivo que, para uma determinada máquina, não possua um programa monolítico fortemente equivalente
- A prova do Teorema 3 é apresentada a seguir

Prova:

- Considere o programa recursivo duplica e a máquina um_reg
- A função computada $\langle duplica, um_reg \rangle : \mathbb{N} \to \mathbb{N}$, para todo $n \in \mathbb{N}$, é:

$$\langle duplica, um_reg \rangle(n) = 2n$$

- Suponha que:
 - Existe um **programa monolítico** P_m que computa a mesma função, ou seja, que $\langle P_m, um_reg \rangle : \mathbb{N} \to \mathbb{N}$ e:

$$\langle duplica, um_reg \rangle = \langle P_m, um_reg \rangle$$

- P_m é constituído de k operações ad
- $-n \in \mathbb{N}$ tal que $n \ge k$

- Então, para que $\langle P_m, um_reg \rangle(n) = 2n$, é necessário que P_m execute n vezes a operação ad
- Mas, como $n \ge k$, então **pelo menos uma das ocorrências de** *ad* **será executada mais de uma vez**; ou seja, existe um ciclo em P_m
- Na função computada por dois programas fortemente equivalentes, as mesmas operações são efetuadas na mesma ordem; portanto, o programa monolítico correspondente não pode intercalar testes de controle de fim de ciclo na sequência de operações ad

- Desse modo, a computação resultante é infinita e a correspondente função não é definida para n, o que é um absurdo, pois é suposto que os dois programas são fortemente equivalentes
- Logo, não existe um programa monolítico fortemente equivalente ao programa recursivo duplica

Fim da Prova

- Entendendo o resultado do Teorema 3:
 - Um programa de qualquer tipo não pode ser modificado dinamicamente durante uma computação
 - Um programa, para ser fortemente equivalente a outro, n\u00e3o pode conter ou usar facilidades adicionais, como mem\u00f3ria auxiliar ou opera\u00f3\u00f3es extras
 - Para que um programa monolítico possa simular uma recursão sem um número finito e predefinido de quantas vezes a recursão pode ocorrer, seriam necessárias infinitas opções de ocorrências das diversas operações ou testes envolvidos na recursão em questão

- Entendendo o resultado do Teorema 3:
 - Infinitas opções implicam um programa infinito, o quê contradiz a definição de programa monolítico, o qual é constituído por um conjunto finito de instruções rotuladas
 - Na máquina só existe um registrador, assim o programa tenta utilizar esse registrador tanto para controlar o ciclo como para acumular o resultado, o quê resulta em um programa com ciclo infinito

Teorema 4. "Dado um programa monolítico P_m qualquer, nem sempre existe um programa iterativo P_i tal que $P_m \equiv P_i$."

- Para provar esta afirmação, é suficiente apresentar um programa monolítico que, para uma determinada máquina, não possua um programa iterativo fortemente equivalente
- A prova do Teorema 4 é apresentada a seguir

Prova:

• Considere o programa monolítico par, apresentado como um fluxograma:

• Considerando-se a máquina um_reg , a função computada $\langle par, um_reg \rangle$: $\mathbb{N} \to \mathbb{N}$ é tal que, para todo $n \in \mathbb{N}$:

$$\langle par, um_reg \rangle(n) = 1$$
, se n é par $\langle par, um_reg \rangle(n) = 0$, se n é ímpar

- Suponha que:
 - Existe um **programa iterativo** P_i que computa a mesma função, de forma que $\langle P_i, um_reg \rangle : \mathbb{N} \to \mathbb{N}$, tal que

$$\langle par, um_reg \rangle = \langle P_i, um_reg \rangle$$

- O programa P_i em questão é constituído de k operações sub
- $-n \in \mathbb{N}$, tal que $n \ge k$

- Então, é necessário que P_i execute n vezes a operação sub
- Mas, como $n \ge k$, então pelo menos uma das ocorrências de sub será executada mais de uma vez, ou seja, existe um **ciclo iterativo** (do tipo Enquanto ou Até) em P_i
- Independentemente de o valor ser par ou ímpar, o ciclo terminará sempre na mesma condição, sendo a computação resultante incapaz de distinguir entre os dois casos, o que é um absurdo, pois é suposto que os dois programas são fortemente equivalentes
- ullet Logo, não existe um programa iterativo fortemente equivalente ao programa monolítico par

Fim da Prova

Poder Computacional de Programas

- Os teoremas vistos podem levar à conclusões incorretas sobre o poder computacional das diferentes classes de programas
- A Relação de Equivalência Forte entre Programas considera a coincidência de funções computadas por dois programas distintos em qualquer máquina
- No entanto, é possível, por exemplo, dado um programa recursivo qualquer em qualquer máquina, encontrar-se um programa monolítico em uma dada máquina que possui a mesma função computada

Poder Computacional de Programas (cont.)

- Na verdade, as três classes de programas possuem o mesmo poder computacional
- Portanto, para efeito de análise de poder computacional, pode-se considerar máquinas distintas para programas distintos e não necessariamente existe uma relação entre as operações e testes (e a sua ordem de execução) dos programas

Equivalência de Programas

- Em certas situações, podemos querer analisar uma noção de equivalência de programas mais fraca
- Neste caso, podemos restringir à análise a verificar a equivalência de dois programas em uma dada máquina

Definição Formal de Equivalência de Programas

Sejam P e Q dois programas quaisquer, não necessariamente do mesmo tipo, e M uma máquina qualquer. O par (P,Q) está na Relação de Equivalência de Programas na Máquina M, denotado por $P \equiv_M Q$, sss, a suas correspondentes funções parciais computadas são iguais. Ou seja:

$$\langle P, M \rangle = \langle Q, M \rangle$$

Neste caso, diz-se que P e Q são programas equivalentes na máquina M ou, simplesmente, que P e Q são programas M-equivalentes

Definição Formal de Equivalência de Programas (cont.)

- Desta forma, podemos analisar se dois programas computam a mesma função quando executados em uma mesma máquina
- Entretanto, há máquinas para as quais não se pode provar a existência de um algoritmo para determinar se, dados dois programas, eles são ou não M-equivalentes

Equivalência de Máquinas

- Assim como podemos analisar a equivalência entre dois programas, também podemos verificar se duas máquinas são equivalentes
- Dizemos que duas máquinas são equivalentes quando uma pode simular a outra e vice-versa

Simulação Forte entre Máquinas

Sejam $M = (V_M, X, Y, \pi_{XM}, \pi_{YM}, \Pi_{FM}, \Pi_{TM})$ e $N = (V_N, X, Y, \pi_{XN}, \pi_{YN}, \Pi_{FN}, \Pi_{TN})$ duas máquinas quaisquer. N simula fortemente M sss, para qualquer programa P para M, existe um programa Q para N tal que as funções parciais computadas coincidem. Isto é,

$$\langle P, M \rangle = \langle Q, N \rangle$$

Simulação Forte entre Máquinas (cont.)

- Note-se que a análise pode ser feita usando-se programas diferentes
- É importante observar que a igualdade de funções exige que os conjuntos de domínio e contra-domínio sejam iguais
- Pode-se contornar essa dificuldade, tornando menos restritiva a definição de simulação, através da noção de codificações

Simulação entre Máquinas

Sejam $M=(V_M,X_M,Y_M,\pi_{XM},\pi_{YM},\Pi_{FM},\Pi_{TM})$ e $N=(V_N,X_N,Y_N,\pi_{XN},\pi_{YN},\Pi_{FN},\Pi_{TN})$ duas máquinas quaisquer. N simula M sss, para qualquer programa P para M, existe um programa Q para N e existem

Função de codificação $c: X_M \to X_N$

Função de decodificação $d:Y_N \to Y_M$

tais que:

$$\langle P, M \rangle = d \circ \langle Q, N \rangle \circ c$$

Relação de Equivalência entre Máquinas

Sejam M e N duas máquinas quaisquer. O par (M,N) pertence à Relação de Equivalência entre Máquinas sss

M simula N **E** N simula M