Pontifícia Universidade Católica de Minas Gerais - PUC/MG

Pós-graduação Lato Sensu em Ciência de Dados e Big Data

Covid-19 no Estado de Minas Gerais: Uma análise do padrão de propagação e a influência de fatores no contexto da pandemia do novo Coronavírus.

Leonardo Alves Mateus

Contextualização

- Dezembro/2019: China revela surto de novo vírus identificado como SARS-Cov-2
- Março/2020: a primeira morte por COVID-19 No Brasil
- Novembro/2020: 160 mil mortes e aproximadamente 5,4 milhões de infectados.

- Minas Gerais é o maior estado do sudeste
- 586.528 km² de extensão territorial
- 21 milhões de habitantes aproximadamente
- Possui **853 municípios**

Problema Proposto

Compreender os diversos cenários de propagação do Coronavírus nos 853 municípios de Minas Gerais, através da clusterização de séries temporais, bem como verificar a correlação entre variáveis demográficas para com os diferentes padrões de disseminação da doença.

Técnica 5-Ws

Coleta de Dados

- Dados de diferentes fontes governamentais, disponibilizados em sítios oficiais.
- Datasets foram obtidos em geral nos formatos
 CSV e XLSX
- A biblioteca utilizada para leitura foi o Pandas pandas.read_csv()
- Os dados foram armazenadas em dataframes pandas.DataFrame()

Datasets

- **CSV_Painel** (SES/MG-2020)
 - CSV_Painel Confirmados
 - CSV_Painel Óbitos
- CSV_Sistemas (SES/MG-2020)
- IBGE Cidades e Estados (IBGE)

Processamento/Tratamento de Dados

- Conversão de datasets Excel (XLSX) para o formato
 CSV
- Tratamento específico para tags HTML existentes em alguns Datasets
- Valores ausentes preenchidos com zero
 Numpy.fillna(0), para não afetar as totalizações.
- Interligação dos Datasets utilizando o campo (chave)
 de referência COD_IBGE

Total de Registros

- 119.245 registros de casos confirmados
- 143.896 registros de óbitos
- 853 registros do IBGE

Análise e Exploração dos Dados

Análise Vertical

- Exploração de dados qualitativos da pandemia no Estado de Minas Gerais
- Raça, Idade, Internação, Tipo de Internação,
 Comorbidade e Evolução do caso
- Observação de como os dados estavam distribuídos entre as características
- Obtenção de insights sobre como a pandemia afetou a população do Estado de MG

Análise Horizontal

- Foco em séries temporais
- Observação da progressão do número de casos e do acometimento de óbitos
- Análise da velocidade e o alcance da propagação da pandemia
- Exploração dos dados de forma ampla para cada município do estado

Análise Vertical

AMARELA

PRETA

INDIGENA

NAO INFORMADO

PARDA

BRANCA

Disseminação Igualitária entre Sexos

Análise Vertical

HISTOGRAMA DE IDADES DOS CASOS COM COMORBIDADE Com Comorbidade - 21418 Comorbidade com internação - 19093 Comorbidade sem internação - 1710 400 Nº REGISTROS 300 200 100 100 40 60 80

Concentração de casos em torno dos 40 anos, e de morte em torno dos 80 anos

População com comorbidades entre 40 e 60 anos responderam melhor à doença, sem internações

IDADE

Análise Horizontal

Análise Horizontal

Clusterização de Séries Temporais

- Algoritmo K-Means
- Aprendizado não supervisionado
- Agrupamento de séries temporais de propagação da pandemia em clusters representativos
- Representação de características como amplitude alcançada em números de casos
- Traçado da linha de tendência através da semanas e os aspectos das curvas

Formatação do Data Frame

	MUNICIPIO	S10	S11	S12	S13	S14	S15	S16	S17	S18	 \$38	S39	S40	S41	S42	\$43	\$44	\$45	\$46	S47
0	IPATINGA	0	0	0	0	0	2	2	5	2	 250	223	176	178	235	307	221	234	391	87
1	DIVINOPOLIS	0	0	0	5	4	7	8	17	19	 108	83	81	85	74	149	103	86	107	63
2	JUIZ DE FORA	0	0	5	5	21	17	20	21	41	 371	308	226	190	229	268	155	259	575	177
3	PATROCINIO	0	0	0	0	2	1	1	0	0	 148	125	120	79	110	69	29	15	66	3
4	BELO HORIZONTE	0	0	52	78	76	83	89	81	273	 1734	1994	1567	1482	1323	1179	1202	990	976	907
5	CORONEL FABRICIANO	0	0	0	0	0	0	3	0	0	 95	112	85	111	74	86	108	86	244	62
6	NOVA LIMA	0	0	6	11	13	6	0	2	6	 82	135	167	216	460	17	132	93	145	158
7	SETE LAGOAS	0	0	0	0	0	0	2	0	0	 213	229	109	131	84	106	51	82	105	79
8	UBERLANDIA	0	0	2	5	18	10	10	24	44	 1327	1748	1706	1279	1296	985	795	461	547	151
9	MARIANA	0	0	0	0	0	0	3	5	1	 43	75	45	58	41	56	47	3	59	0

Municípios na horizontal (linhas) e Contagem de casos por semana na vertical (colunas)

Número ideal de clusters: Método Elbow (Cotovelo)

Número escolhido: 7 Clusters

Resultado da execução: Quantitativo por Clusters

Resultado da execução: Mapa dos Clusters

Apresentação dos Resultados

Análise de Clusters

Cluster C0

Agrupamento: 18 municípios

Início da propagação: 20ª semana (10/maio) Pico: 175 casos na 30ª semana (19/julho)

Cluster C1

Agrupamento: 40 municípios

Início da propagação: 22ª semana (24/maio)

Pico: 60 casos na 30ª semana (19/julho)

Cluster C2

Agrupamento: 22 municípios

Início da propagação: 25ª semana (14/junho)

Pico: 110 casos na 37ª semana (6/setembro)

Análise de Clusters

Cluster C3

Agrupamento: 125 municípios

Início da propagação: 25ª semana (14/junho)

Pico: 30 casos na semana 34ª (16/agosto)

Cluster C4

Agrupamento: 7 municípios

Início da propagação: 21ª semana (17/maio)

Pico: 800 casos na 34 semana (16/agosto)

Análise de Clusters

Cluster C5

Agrupamento: 640 municípios

Início da propagação: 25ª semana (14/junho)

Pico: 3 casos semana 34 (16/agosto)

Cluster C6

Agrupamento: 2 municípios

Início da propagação: 18ª semana (16/abril)

Pico: 3000 casos na 32ª semana (02/agosto)

Resultado da Clusterização

Todos os clusters em uma mesma escala

Métrica dos Clusters

Coeficiente de Silhueta

Tabela referência

Coeficiente de Silhueta	Interpretação					
0,71 a 1,00	Estrutura forte					
0,51 a 0,70	Estrutura razoável					
0,26 a 0,50	Estrutura fraca					
Menor que 0,25	Nenhuma estrutura					

Fonte: Kaufman e Rousseeuw (1990)

$$s = \frac{b - a}{\max(a, b)}$$

Valores encontrados

Cluster	Coeficiente de Silhueta				
Cluster CO	-0.058691				
Cluster C1	-0.035210				
Cluster C2	0.099170				
Cluster C3	-0.009606 -0.003271				
Cluster C4					
Cluster C5	0.687137				
Cluster C6	0.065154				
Valor Médio	0.513339				

Métrica dos Clusters

Indice Davies-Bouldim

- Razão entre as distâncias "dentro do cluster" e "entre clusters".
- Valores mais próximos de zero indicam agrupamentos bem particionados.

$$R_{i,j} = \frac{s_i + s_j}{d_{i,j}}$$

Objetivos

- Confrontar cada grupo de municípios com seus fatores demográficos
- Identificar possíveis correlações entre estes fatores
- Avaliar a influência destes fatores na propagação das infecções e óbitos

Fatores Demográficas (IBGE)

- Área Territorial
- População Estimada
- Densidade Demográfica
- Educação
- IDH Municipal
- Receitas realizadas no ano
- Despesas empenhadas no ano
- PIB per Capita

Variáveis Contextuais (SES/MG)

- Total de casos confirmados de Covid-19
- Total de óbitos por Covid-19

Matriz de Correlação entre os Fatores Demográficas

- Quanto mais populosos e densos os municípios, maiores as chances de propagação da doença e também maior o índice de mortalidade.
- Apesar de alguns locais possuírem grandes áreas, as cidades e locais de aglomeração de pessoas não são proporcionais às áreas territoriais.
- Os fatores IDHM, PIB per Capita e Índice de Escolaridade apresentaram graus de correlação baixos para influenciar o número de casos e óbitos

Alta correlação em **Vermelho** Baixa correlação em **Azul**

Matriz de Correlação entre os Clusters e os Fatores

- As Malhas Poligonais concêntricas evidenciam que a clusterização obedeceu também determinados padrões demográficos.
- O Cluster C6, de maior amplitude na curva de propagação, também detém maiores valores para as variáveis demográficas.
- O Cluster C5, que agrupou o maior número de municípios, apresenta as menores dimensões para as variáveis demográficas.

Conclusão

- Comparou os diferentes cenários de propagação da pandemia do Coronavírus para os 853 municípios de Minas Gerais
- Criou-se um modelo de aprendizado que dividiu as curvas de propagação da pandemia nos municípios em 7 cenários diferentes
- Associou-se os diferentes cenários a fatores como População, Área Territorial,
 Densidade Demográfica, IDHM, Receitas e Despesas
- Avaliou possíveis influências dos fatores na forma com que ocorreu a disseminação da doença.

Obrigado!

