#### Informacija

- Osnovna ideja: pronaći i ukloniti redundanciju u podacima
- Svojstvena (vlastita informacija)
  - Kvantitativna mjera za količinu informacije

$$i(A) = \log_b (1/P(A)) = -\log_b P(A)$$

gdje je: P(A) vjerojatnost pojavljivanja događaja A

■ primjer: za P(A)=1 i(A)=0 za P(A)=0 i(A)=
$$\infty$$

# Informacija

- i(A) nam formalno definira ono što je logično:
  - ako se nešto događa često (sa velikom vjerojatnošću) tada nam takav događaj ne donosi puno informacija (npr. suma brojeva na dvije kockice je 7)
  - rijetki događaji donose puno informacija (npr. suma brojeva na dvije kockice je 2)
- ako izaberemo log<sub>2</sub> tada je količina informacija izražena u bitovima

# Entropija

■ S =  $\{a_1, a_2, a_3, ..., a_N\}$  – skup svih mogućih simbola sa vjerojatnostima  $P(a_1), P(a_2), ..., P(a_N)$ 

$$\mathbf{H(S)} = \sum P(a_n) i(a_n) = -\sum P(a_n) \log_b P(a_n)$$

- H predstavlja prosječni vlastiti sadržaj informacije za izvor S i naziva se Entropija.
- Gornji izraz predstavlja pojednostavljenje stvarnog izraza za entropiju i naziva se entropija nultog reda i biti će dovoljno dobra aproksimacija za naša predavanja

#### Entropija

Ako izaberemo log<sub>2</sub> tada vrijednost entropije definira najmanji prosječan broj bitova potreban za kodiranje pojedinog simbola iz ulaznog niza

 Stvarnu entropiju slučajnog izvora za općeniti slučaj nikada ne možemo doznati

#### MAS – Osnove kompresije

Kompresija podataka:



 Entropijski koder (statističko kodiranje): uklanja statističku redundanciju iz toka podataka

#### MAS – Entropijsko kodiranje

- Entropijsko kodiranje:
  - Huffmanovo kodiranje
  - RLE (engl. run length encoding)
  - Aritmetičko kodiranje
  - Shannon-Fano, Golomb-Rice, ...



#### MAS – Osnove kompresije: Huffmanovo kodiranje

- Huffman, 1952:
  - Huffman-ovo kodiranje
  - Optimalni cjelobrojni kodovi (najbliži entropiji modela)
  - Prefiks kodovi (nijedan kod nije početak nekog drugog koda)
  - Često korištena metoda

# MAS – Huffmanovo kodiranje

Jednostavna prezentacija pomoću binarnog stabla



#### MAS – Huffmanovo kodiranje

- Generiranje Huffmanovih kodova:
  - Statički dva prolaza po podatcima, prvi skupljanje vjerojatnosti, drugi kodiranje, moraju se prenijeti i huffmanovi kodovi
  - Adaptivno jedan prolaz, model (Huffmanovo stablo) se adaptivno izgrađuje tijekom prijelaza po podatcima, računski zahtjevnije jer i kompresor i dekompresor adaptivno izgrađuju model

# MAS – Osnove kompresije: RLE kodiranje

- Zasniva se na uzastopnom ponavljanju jednog simbola
- Jednostavna izvedba
- Primjer:
  - linije očitane sa dokumenta u fax uređaju
  - 1 linija (75 dpi, 8")=600 bita=75 B

17,24,3,211,22,188,77,54,4 = 9 B

#### Osnovni modeli

- Fizikalni model
  - ako poznajemo fizikalna svojstva izvora
  - obično je ovo prekompleksan model te se u takvim slučajevima pokušava koristiti neki alternativni model

#### Osnovni modeli

- Vjerojatnosni model
  - često korišten model, osnova za neke vrlo efikasne modele
  - pretpostavka je da su svi simboli generirani iz izvora potpuno neovisni
- Dvije osnovne varijante
  - 'slijepi' model: dodatno pretpostavljamo da je za sve simbole vjerojatnost pojavljivanja ista
  - statistički model: na neki način izračunati učestalost pojavljivanja simbola te na temelju toga definirati vjerojatnosti
- Problem: mogućnost POVEĆANJA ENTROPIJE!!

#### Osnovni modeli

- Markovljev model (A.A. Markov 1856-1922)
  - ovim modelom opisuje se izvor 's pamćenjem' tj izvor kod kojeg vjerojatnost pojavljivanja određenog simbola ovisi o svim simbolima koji su se pojavili prethodno u nizu
  - tako za Markovljev model prvog reda vrijedi  $P(A_i|A_{i-1},A_{i-2},A_{i-3},...) = P(A_i|A_{i-1})$
  - ovaj model je izuzetno efikasan za određene tipove podataka (npr model "predviđanja" spada u ovaj model)
  - ponovo postoji opasnost od povećanja entropije!!

#### MAS – neki modeli

- Primjeri modela:
  - Slikovni podatci prostorna korelacija u 2D prostoru, HVS
  - Video podatci prostorna i vremenska korelacija podataka, HVS
  - Financijski podatci korelacija u 1D, predviđanje

# Model za slikovne podatke

- Podaci bi se mogli obraditi (kompresirati) i bez upotrebe posebno odabranog modela
- Npr. ZIP, RAR, ...
- Iz iskustva znamo da time nećemo ostvariti značajne omjere kompresije
- Upotrebljava se model koji omogućuje znatno veće omjere kompresije

# Model zasnovan na našem vizualnom sustavu

- fotoreceptori mrežnice
  - štapići (rods) i čunjići (cones)
  - sadrže kemijske tvari osjetljive na svjetlost
- čunjići i štapići nisu jednako osjetljivi štapići na cijeli spektar vidljive svjetlosti
  - različite vrste monokromatskog svjetla podražuju ili čunjiće ili štapiće





# HVS – spektralna osjetljivost

#### štapići

- osjetljivi na svjetlo i pri niskim razinama luminancije ispod 1cd/m² ("noćno" gledanje ili skotopski vid)
- mogu razlikovati samo promjene u luminanciji, a nisu osjetljivi na boju

#### čunjići

- doprinose osjetu i razlikovanju boja, a postaju aktivni pri višim razinama luminancije
- kod razina luminancije između 1cd/m² i 100cd/m² aktivni su i štapići i čunjići (fotopski vid)
- pri razinama luminancije većim od 100 cd/m² štapići postaju zasićeni i aktivni su samo čunjići

# HVS – spektralna osjetljivost



Ljudsko oko ima cca 10-20 puta više štapića nego čunjića

ZAKLJUČAK #1:

Znatno smo osjetljiviji na promjene u luminanciji nego u boji

# HVS – prostorna osjetljivost

- Zbog konačne fizičke gustoće receptora, oko može razaznati detalje ako su zrake svjetlosti pod kutem upada većim od cca 1minute
- Prostorna frekvencija



#### HVS – prostorna osjetljivost



ZAKLJUČAK #2:

Oko je neosjetljivo na visoke prostorne frekvencije, a posebno to vrijedi za komponente boje.

#### HVS Model za slike

Kako iskoristiti prethodna saznanja o ljudskom vizualnom sustavu da bi omogućili veće omjere kompresije

- Cilj bi nam bio:
  - Zadržati što više informacija o luminantnoj komponenti
  - Izbaciti prostorne frekvencije koje oko ne vidi

#### Promjena prostora boja

- Ulazni podaci: uglavnom RGB
- Prikladan prostor boja: YUV
- RGB-YUV konverzija vrlo se lako može obaviti jednostavnom matričnom operacijom:

$$Y = (0,257*R) + (0,504*G) + (0,098*B) + 16$$
  
 $U = -(0,148*R) - (0,291*G) + (0,439*B) + 128$   
 $V = (0,439*R) - (0,368*G) - (0,071*B) + 128$ 

 Kompleksnost (za kasnije analize): za izračun svakog piksela treba 9 množenja i 9 zbrajanja (+dohvat,spremanje)

# Promjena prostora boja

Postoji i nešto drugačija formula za konverziju koja se koristi u JPEG-u a definirana je u JFIF dokumentu:

$$Y = 0.299 R + 0.587 G + 0.114 B$$

$$Cb = -0.1687 R - 0.3313 G + 0.5 B + 128$$

$$Cr = 0.5 R - 0.4187 G - 0.0813 B + 128$$

# Što smo postigli konverzijom?

- Dobili smo dva skupa komponenata
  - Y: luminancija, oko je znatno osjetljivije na ovu komponentu
  - U,V: boja, oko manje osjetljivo
- Ideja je da prethodna dva skupa obrađujemo RAZLIČITO
- No ovime još uvijek nismo postigli apsolutno nikakvu promjenu u količini podataka

# Poduzorkovanje

- "subsampling"
- Jedna od najjednostavnijih metoda kako nakon konverzije u YUV prostor boja možemo smanjiti količinu podataka je poduzorkovanje:
  - Oko nije toliko osjetljivo na prostornu frekvenciju komponenata boje te se one ne prenose za svaki piksel
  - **4:4:4**, 4:2:2,...

# Transformacija

- Prebacivanjem podataka u frekvencijsku domenu želimo dobiti informacije o frekvencijskim karakteristikama svake komponente
- Koju transformaciju izabrati?
  - Želja nam je da se nakon transformacije većina informacija zadrži u što manjem broju što nižih frekvencijskih elemenata
  - Prema teoriji: Karhunen-Loève (KLT) je idealna (ali je potpuno nepraktična za primjenu)

#### Transformacija: DCT

- Iz teorije se može vidjeti da je diskretna kosinusna transfromacija (DCT) vrlo bliska idealnoj
- Prednost DCT:
  - Može se jednostavnije izračunati (brzi algoritmi)

#### **DCT**

$$F(u,v) = \frac{2}{\sqrt{M \cdot N}} \cdot C(u) \cdot C(v) \cdot \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f(i,j) \cdot \cos \left[ \frac{(2 \cdot i + 1) \cdot u \cdot \pi}{2 \cdot M} \right] \cdot \cos \left[ \frac{(2 \cdot j + 1) \cdot v \cdot \pi}{2 \cdot N} \right]$$

F(u,v) - transformacijski koeficijent

f(i,j) - amplitude elemenata slike u bloku

u, v - koordinate u području transformacije (prostorne frekvencije)

*i* , *j* - koordinate u području elemenata slike

$$C(u)=C(v)=(1/2)^{1/2}$$
, za  $u,v=0$ 

$$C(u)=C(v)=1$$
, za  $u=1,2,...M-1$ ,  $v=1,2,...N-1$ 

#### DCT za slike

DCT kod obrade slika uglavnom se obavlja nad blokovima podataka veličine 8x8:

$$F(u,v) = \frac{1}{4} \cdot C(u)C(v) \cdot \sum_{i=0}^{7} \sum_{j=0}^{7} f(i,j) \cdot \cos \left[ \frac{(2 \cdot i + 1) \cdot u \cdot \pi}{16} \right] \cdot \cos \left[ \frac{(2 \cdot j + 1) \cdot v \cdot \pi}{16} \right]$$

- ■Poduzorkovanje je vrlo "primitivna" i nekvalitetna metoda
- DC koeficijent:

$$F(0,0) = \frac{1}{8} \cdot \sum_{i=0}^{7} \sum_{j=0}^{7} f(i,j)$$

(DC=8 x srednja vrijednost elemenata bloka)

#### **IDCT**

Na sličan način definirana je i inverzna DCT:

$$f(i,j) = \frac{1}{4} \cdot \sum_{v=0}^{7} \sum_{u=0}^{7} C(u)C(v)F(v,u) \cdot \cos\left[\frac{(2 \cdot i + 1) \cdot u \cdot \pi}{16}\right] \cdot \cos\left[\frac{(2 \cdot j + 1) \cdot v \cdot \pi}{16}\right]$$

 Vidimo da DCT koeficijenti F(v,u) u stvari predstavljaju faktore kojima množimo bazne valne oblike pri restauraciji signala

# Opseg podataka

- DCT dovodi do proširenja opsega podataka (dinamički opseg za 8x8 2D DCT je 2³ puta veći u odnosu na ulaz)
  - Ako na ulazu imamo 8 bitovne podatke nakon 2D DCT imati ćemo 11 bitovne koeficijente!!
- Još uvijek su SVI podaci sačuvani i moguće je obaviti perfektnu rekonstrukciju (uz uvažavanje nepreciznosti matematičkih izračuna)

#### Pomak kod DCT

- Slikovni podaci na ulazu su pozitivni cijeli brojevi (npr. 0-255)
- S obzirom da je DCT definirana i za pozitivno i negativno područje na ovaj način bi se polovica ulaznog prostora izgubila ( a time i znatno smanjila efikasnost)
- Zato se prije DCT sve vrijednosti na ulazu translatiraju za polovicu opsega tj. -128
- Prema tome umjesto da ulazni elementi budu u opsegu [0-255] biti će u opsegu [-128 – 127]

# Što smo dobili sa DCT?

- Energija signala koncentrirana u nižim frekvencijama
- Značajniji koeficijenti
- Manje značajni koef.



Multimedijske arhitekture i susta

# Cik-cak (Zig-zag) reorganizacija



#### Kako iskoristiti DCT?

- Nakon DCT, uz poznavanje prosječnih osjetljivosti oka možemo smanjivati količinu podataka koja opisuje frekvencije na koje naše oko nije osjetljivo
- To ne možemo učiniti potpunim odbacivanjem visokofrekventnih komponenata već smanjenjem njihove preciznosti (problemi naglih prijelaza!)

# Što je kvantizacija

- Postupak kojim se smanjuje dinamički opseg ulaznih vrijednosti (a time i potreban broj bita)
- Ulazni podatak dijeli se sa zadanim brojem (kvantizacijski korak)
- Kod inverznog postupka podatak se množi sa kvantizacijskim korakom
- Primjer (Q=4):
  - Ulazni niz5,11,4,17,1 (potrebno 5 bitova za prikaz)
  - Izlazni niz1,3,1,4,0 (potrebno 3 bita za prikaz)
  - Restaurirani niz 4,12,4,16,0 (GUBITAK PODATAKA)
- KVANTIZACIJOM DOLAZI DO NEPOVRATNOG GUBITKA INFORMACIJA !!!

## Kvantizacija nakon DCT

- kvantizacijska tablica sa 64 vrijednosti q(u,v) određenih na temelju HVS (koraci kvantizacije)
- Svaki DCT koeficijent F(u,v) dijeli se sa pripadnim (skaliranim) faktorom q(u,v), a rezultat se zaokružuje na najbližu cjelobrojnu vrijednost
- Skaliranjem sa faktorom S se pojednostavljeno određuje stupanj kompresije i "kvaliteta" slike
- vrijednosti nastale kvantizacijom S(u,v) su:

$$S(u,v) = round\left(\frac{F(u,v)}{Q(u,v)}\right) = round\left(\frac{F(u,v)}{q(u,v)S}\right)$$

### Kvantizacija nakon DCT

- Utjecaj pojedinih prostornih frekvencija može se proizvoljno kontrolirati postupkom kvantizacije
- S obzirom da smo razdvojili Y i U, V komponente sada možemo Y DCT frekvencijske koeficijente kvantizirati sa različitim kvantizacijskim vrijednostima od U,V komponenti (kvant. koef. za U,V biti će veći zbog HVS)
- Također kvantizacijski koeficijenti za visoke frekvencije mogu biti veći

# Tipične kvantizacijske tablice

Table K.1 - Luminance quantization table

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |

Table K.2 – Chrominance quantization table

| 17 | 18 | 24 | 47 | 99 | 99 | 99 | 99 |
|----|----|----|----|----|----|----|----|
| 18 | 21 | 26 | 66 | 99 | 99 | 99 | 99 |
| 24 | 26 | 56 | 99 | 99 | 99 | 99 | 99 |
| 47 | 66 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |

# Što se postiže kvantizacijom

- Dijeljenje viših frekvencija sa većim kvantizacijskim faktorima rezultira time da veliki broj koeficijenata postaje 0
- Nakon zig-zag reorganizacije koeficijenti iz 2D se prebacuju u 1D na način da važni koeficijenti dolaze prvi u nizu a manje važni koeficijenti koji imaju veliku vjerojatnost da su jednaki nuli nakon njih
- To rezultira nizovima od 64 koeficijenta sa velikim brojem nula na kraju

#### JPEG koderski model



## Što nakon HVS modela

Statističkom analizom podataka nakon obrade u koderskom modelu može se vidjeti da je njihova raspodjela izvrsna za daljnju kompresiju algoritmima zasnovanim na statističkim modelima

Drugi dio JPEG kodera radi upravo to

## Od čega krećemo

- Entropijski koder prima kvantizirane koeficijete presložene po cik-cak algoritmu u nizove od po 64 koeficijenta za svaku komponentu bloka
- Koje karakteristike možemo uočiti? (koristite DZ i proučite rezultantne vrijednosti za nekoliko slika)

### DC koeficijenti

- Teorijska podloga: DC koeficijent predstavlja srednju vrijednost svih 64 elementa bloka
  - dva susjedna bloka obično imaju vrlo slične srednje vrijednosti

#### Rezultat:

- Distribucija DC vrijednosti je prilično jednolika i nepogodna za kodiranje
- Distribucija RAZLIKE dva susjedna DC koeficijeta je vrlo gusta oko nule i idealna za kodiranje

#### DC razlika

- Iz prethodnoga odlučujemo da ne želimo kodirati vrijednost DC elementa već razliku između trenutnog i prethodnog
- Znatna ušteda u bitovima (malo po malo...)



#### Kodiranje duljine niza nula (ZRL)

- Slijedeći korak u našoj analizi proizlazi iz postupka kvantizacije nakon koje je mnogo elemenata viših frekvencija postalo nula.
- Za ovakve nizove izuzetno je pogodna metoda kodiranja duljine niza (ZRL coding)
- Metoda radi na način da umjesto da se kodira svaki koeficijent koji je nula u nizu, da se kodira broj uzastopnih nula koji se nalazi u nizu

#### DC/AC simboli

- Dodatno se u statističkom modelu određuje pripadnost pojedinog ulaznog elementa određenoj kategoriji prema apsolutnoj vrijednosti njegove amplitude
- Određivanje kategorije povezano je sa postupkom modificiranog Huffmanovog kodiranja o čemu će biti više riječi kasnije. Na izlazu iz statističkog modela svaka ulazna DC razlika i svaki ulazni AC koeficijent različit od nule biti će zamijenjeni sljedećim simbolima:
- DC simbol: [kategorija] [amplituda]
- AC simbol: [[duljina niza nula],[kategorija]] [amplituda]
- DC simbol nema komponentu koja određuje duljinu niza nula što je i logično jer JPEG zasebno obrađuje svaki slikovni blok a DC razlika uvijek je prvi element bloka.
- Za AC komponente duljina niza nula opisuje koliko koeficijenata ima vrijednost nula prije nekog koeficijenta koji je različit od nule.

#### ZRL/EOB

- Veličina polja koje opisuje duljinu niza normom je ograničena na 4 bita kojima se mogu opisati nizovi od 0 do 15 nula. U stvarnom nizu ulaznih elemenata može se pojaviti i niz koji sadrži i više od 15 nula te se u tom slučaju koristi specijalni simbol nazvan ZRL (Zero Run Length).
- ZRL simbol označava niz od 16 nula a nakon tog simbola nule se počinju brojati iz početka.
- Drugi, i zadnji, specijalni simbol označava da su od trenutnog elementa do kraja bloka svi elementi jednaki nuli. Ovaj simbol ima oznaku EOB (End Of Block).
- Slikovni blok sastoji se od 64 ulazna elementa te se nakon obrade u statističkom modelu na izlazu može naći najviše tri simbola ZRL. U normi je također definirano kako se niz ZRL simbola nakon kojih slijedi EOB simbol mora izbaciti iz izlaznog niza.
  - Razlog je prirodan. EOB simbol ozna ava sve nule od trenutnog mjesta do kraja bloka pa su prema tome ZRL simboli koji eventualno prethode EOB simbolu nepotrebni.

# Kategorija

| Kategorija | DC razlika              | AC koeficijent        |
|------------|-------------------------|-----------------------|
| 0          | 0                       |                       |
| 1          | -1,1                    | -1,1                  |
| 2          | -3,-2,2,3               | -3,-2,2,3             |
| 3          | -7,,-4,4,,7             | -7,,-4,4,,7           |
| 4          | -15,,-8,8,,15           | -15,,-8,8,,15         |
| 5          | -31,,-16,16,,31         | -31,,-16,16,,31       |
| 6          | -63,,-32,32,,63         | -63,,-32,32,,63       |
| 7          | -127,,-64,64,,127       | -127,,-64,64,,127     |
| 8          | -255,,-128,128,,255     | -255,,-128,128,,255   |
| 9          | -511,,-256,256,,511     | -511,,-256,256,,511   |
| 10         | -1023,,-512,512,,1023   | -1023,,-512,512,,1023 |
| 11         | -2047,,-1204,1024,,2047 |                       |

### Kategorija

- Neke vrijednosti se rijetko pojavljuju pa nije imalo smisla svakom broju pridjeljivati kod
- Kategorije su određene prema vjerojatnosti pojavljivanja ulaznih elemenata
- Kako se kategorijom ne može točno odrediti vrijednost elementa poslije kategorije mora se poslati još podatak [amplituda] koji unutar kategorije definira koji je to element.
- Amplituda ima različit broj bitova za svaku kategoriju (koji je jednak rednom broju kategorije)

#### Tablica simbola za AC komponente

| Duljina | Kategorija |      |      |  |       |  |
|---------|------------|------|------|--|-------|--|
| niza    | 0          | 1    | 2    |  | 10    |  |
| 0       | EOB        | 0/1  | 0/2  |  | 0/10  |  |
| 1       | Х          | 1/1  | 1/2  |  | 1/10  |  |
| ÷       | Х          | :    | :    |  | :     |  |
|         |            |      |      |  |       |  |
| 14      | Х          | 14/1 | 14/2 |  | 14/10 |  |
| 15      | ZRL        | 15/1 | 15/2 |  | 15/10 |  |

### **Amplituda**

- Za kodiranje amplitude koristi se sljedeće pravilo:
- Pretpostavimo da je koeficijent C zapisan u formatu dvojnog komplementa, a K je kategorija kojoj taj koeficijent pripada.
  - Ako je C pozitivan broj tada će se Huffmanovom kodu, kao proširenje, dodati K nižih bitova od C.
  - Ako je C negativan tada će se Huffmanovom kodu dodati K nižih bitova od vrijednosti koeficijenta C umanjenog za jedan, tj. (C-1).

#### Huffman-ova tablica za DC simbole

| Kategorija | Duljina<br>koda | Kodna riječ |  |
|------------|-----------------|-------------|--|
| 0          | 2               | 00          |  |
| 1          | 3               | 010         |  |
| 2          | 3               | 011         |  |
| 3          | 3               | 100         |  |
| 4          | 3               | 101         |  |
| 5          | 3               | 110         |  |
| 6          | 4               | 1110        |  |
| 7          | 5               | 11110       |  |
| 8          | 6               | 111110      |  |
| 9          | 7               | 1111110     |  |
| 10         | 8               | 11111110    |  |
| 11         | 9               | 111111110   |  |

#### Huffman-ova tablica za AC simbole

| Duljina niza/Kategorija | Duljina koda | Kodna rije <b>č</b> |
|-------------------------|--------------|---------------------|
| 0/0 (EOB)               | 4            | 1010                |
| 0/1                     | 2            | 00                  |
| 0/2                     | 2            | 01                  |
| 0/3                     | 3            | 100                 |
| 0/4                     | 4            | 1011                |
| 0/5                     | 5            | 11010               |
| 0/6                     | 7            | 1111000             |
| 0/7                     | 8            | 11111000            |
| 0/8                     | 10           | 1111110110          |
| 0/9                     | 16           | 1111111110000010    |
| 0/10                    | 16           | 1111111110000011    |
| 1/1                     | 4            | 1100                |
| 1/2                     | 5            | 11011               |
|                         |              |                     |

#### JPEG koder



### Pomak (level shift)

### 2D DCT, kvantizacija

### Cik-cak + entropijsko kodiranje

-2 -8 1 -1 0 0 -1 0 1 0 0 0 0 0 0 -1 0 .....0

[011:01][1011:0111][00:1][00:0][11100:0][1100:1][1111011:0][1010]

#### Markeri

- Sve počinje definiranjem MARKERa
- Markeri su specijalni dvo-bajtni podaci koji počinju sa podatkom 0xFF kojeg slijedi podatak različit od 0 ili 0xFF a kojim se identificiraju različiti strukturalni dijelovi kompresiranog niza podataka

#### Minimalna struktura JPEG datoteke

| SOI                    | FFD8 | Start of Image        |
|------------------------|------|-----------------------|
| DQT                    | FFDB | Quantization table(s) |
| DHT                    | FFC4 | Huffman table(s)      |
| SOF                    | FFC0 | Frame header          |
| SOS                    | FFDA | Scan header           |
| Kompresirani<br>podaci |      |                       |
| EOI                    | FFD9 | End of Image          |

# Primjer: (test1\_crno\_gray.jpg)



**EOI**