Education for the future

Morten Hjorth-Jensen^{1,2} Anders Malthe-Sørenssen¹

 $\label{eq:Department} \mbox{ Department of Physics, University of Oslo}^{1}$ $\mbox{ Department of Physics and Astronomy, Michigan State University, USA}^{2}$

September 2 2015,

This talk is about how we perceive the role of present and future education

- Research-based education, from undergraduate studies to a PhD: The Computational Physics group at the University of Oslo as example
- Future challenges and directions

Takeaway message

A successful research program cannot be disconnected from education and vice versa

The role of computations, from education to society

Computations of almost all systems in science are central to our basic understanding of nature and technological advances.

Examples

- Nanotech and Materials: quantum physical systems in nanotechnology; characteristics of new materials; semi-conductor devices and quantum computers
- The smallest particles in nature: subatomic physics at its smallest length scale
- And the largest: simulating galaxies and the evolution of the universe.
- Life science: cancer treatment and how the brain works
- Geosciences: predicting climate changes and this week's weather, simulating natural disasters
- Finance: assessing risk in the insurance and financial industry
- and many many more

Modeling and computations as a way to enhance algorithminc thinking

Algorithm: A set of instructions to solve a problem.

Algorithmic thinking:

- Enhances instruction-based teaching
- Introduces research-based teaching from day one
- Triggers further insights in math and other disciplines
- Emphasizes validation and verification of scientific results, and integrates ethics
- Ensures good working practices from day one!

What does computing mean?

Computing means solving scientific problems using computers. It covers numerical as well as symbolic computing. Computing is also about developing an understanding of the scientific process by enhancing the algorithmic thinking when solving problems.

Computing competence is about:

- derivation, verification, and implementation of algorithms
- understanding what can go wrong with algorithms
- overview of important, known algorithms
- understanding how algorithms are used to solve complicated problems
- reproducible science and ethics
- algorithmic thinking for gaining deeper insights about scientific problems

All these elements (and many more) aid students in maturing and gaining a better understanding of the scientific process per se

Computing and research-based education

A computational approach allows us to introduce research concepts and engage students in research from *day one*.

How do we define research-based education?

It is fully integrated with a direct participation in actual research and builds upon established knowledge and insights about scientific methods.

Research-based education

What should the education contain?

- Theory + experiment + simulation is the norm in research and industry
- Modeling of real, complex systems with no simple answers
- Insight and understanding of fundamental principles and laws
- Visualization, presentation, discussion, interpretation, and critical analysis of results
- Development of a sound ethical attitude to own and other's work
- Enhanced reasoning about the scientific method

This is what we do in the Computational Physics group at UiO!

Computational Physics group at UiO; our visions

A particular strength of physics students is their ability to pose and solve problems that combine physical insights with mathematical tools and now also computational skills. This provides a unique combination of applied and theoretical knowledge and skills. These features are invaluable for the development of multi-disciplinary educational and research programs.

We develop a social and scientific learning environment

The main aim is that students should realize their own potentials and creative power

- Students come with different dreams, ambitions, aspirations and topics they wish to study, our approach is to tailor the education to all these aspects
- Our motto: foster students who are better than their supervisors - that's progress!
- Students and teachers help each other
- Students with different backgrounds and needs can thrive socially and scientifically
- No competing environment, but a drive and enthusiam for sharing and developing knowledge

We develop a social and scientific learning environment

- We target bachelor, MSc and PhD students
- Project-oriented work where students develop and mature their own ideas, with an individually tailored approach to each student
- Office space with desktops to every student and large common room for recreational activities (meals, gaming, movies)
- Many students collaborate on similar thesis topics and publish in top scientific journals

Features of the Computational Physics group

- Our students have made significant contributions to the Computing in Science Education (UiO education prize in 2011) by developing exercises and participating in educational projects at the MN faculty
- Our students have also developed educational tools and applications for understanding complicated physical problems
- A group of PhD students is now developing new textbooks for Computational Life Science
- ullet 2005-2015: > 60 students have finalized their master's theses and 60% have continued with PhD studies
- Many students don't want to leave the group after finishing their studies

Investing in equipment for students

Using research funds for visualization tools

The challenges for the future

We need to educate the next generation of science students with the knowledge, skills, and values needed to pose and solve current and new scientific, technological and societal challenges.

This will lay the foundation for cross-disciplinary educational, research and innovation activities. It will contribute to building a common cross-disciplinary approach to key strategic initiatives, with important examples from fields like Energy research, Materials science and Life Science.

Create the Department for Computational Science!

UiO's strength in computational science (education and research) has the potential to make UiO a top European university

How to achieve i

- Establish a new center/department with focus on computational science and its applications to a wide range of fields (natural science, medicine, social sciences, humanities, applied research etc)
- Hire ten young professors (age < 40) dedicated to innovative computational research and education
- Establish another ten professorships with shared positions between the new department and the discipline-specificdepartment (physics, chemistry, ...)

The process must start now in order not to lose momentum.

Our success builds on the Computing in Science Education project (UiO educational prize in 2011)

The results, insights, ideas and thoughts presented here, would have been impossible without the continuous interaction with colleagues in the Computing in Science Education project.

- Hans Petter Langtangen, Informatics and Simula Research Laboratory
- Knut Mørken, Mathematics
- Arnt Inge Vistnes, Physics
- Oyvind Ryan, Mathematics
- Solveig Kristensen and Annik Myhre, Deans of Education, MN faculty
- Hanne Sølna, Director of studies MN faculty
- And: all our fantastisc students who keep giving us new insights!

Thanks for the attention

A new type of students

Candidates who are capable of modeling and understanding complicated systems, are in short supply in society.

The computational methods and approaches to scientific problems students learn when working on their thesis projects are very similar to the methods they will use in later stages of their careers.

- To handle large numerical projects demands structured thinking and good analytical skills and a thorough understanding of the problems to be solved.
- This knowledge makes the students unique on the labor market, a labor market which in the years to come will experience heavy automatization and massive loss of jobs.

Our takeaway messages

- Computing plays and will play an even more important role in future scientific and technological advances
- A successful research program cannot be disconnected from education and vice versa
- An educational and research program which focuses on these issues needs to be established as soon as possible
- Key goal: students must realize their own potentials and creative power