## EE1390 Project - 1

Solving a Coordinate Geometry Problem with Matrices

Raagini Vishnubotla EE17BTECH11050 Sai Manasa Pappu EE17BTECH11036

IIT Hyderabad, Feb 2019

### Index

- Geometry Question
- 2 Matrix transformation of Question
- 3 Approach/Strategy
- 4 Solution
- Figure of Solution

## Geometry Question

#### Question 52 in JEE Main 2015 Code D

The normal to the curve,  $x^2 + 2xy - 3y^2 = 0$ , at (1, 1)

- (1) does not meet the curve again.
- (2) meets the curve again in the second quadrant.
- (3) meets the curve again in the third quadrant.
- (4) meets the curve again in the fourth quadrant.

## Diagram



### Rewriting in the form of matrices...

Find the direction vectors, and normal vectors (as column vectors), to the pair of lines represented by the equation  $x^2 + 2xy - 3y^2 = 0$ . If a normal is drawn at (1,1), find out in which quadrant it intersects the curve again, i.e.,

If M stores the normal vector of the normal at (1,1) as  $M_1$ , and the normal vector of the other line as  $M_2$  as  $M = (M_1 \quad M_2)$ , and

$$K = \left(\begin{pmatrix}1\\1\end{pmatrix}^T M_1 & \begin{pmatrix}0\\0\end{pmatrix}^T M_2\right)$$
. Find X such that  $K = X^T M$ 
 $X^T = KM^{-1}$ 

$$\mathsf{X}^{\mathsf{T}} = \mathit{K} \mathit{M}^{-1}$$

## Approach/Strategy

#### Approach

Given equation:  $x^2 + 2xy - 3y^2 = 0$ 

The equation is in the form of a general second degree equation  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ 

with g, f, c = 0.

In such a case, the condition to be satisfied for the equation to represent a pair of straight lines is  $h^2 \ge ab$ , which holds for the given equation.

Also, the above lines pass through the origin as (0,0) satisfies the equation.

### Strategy

- Split the above combined equation into two individual lines.
- Find the line on which the given point (1,1) lies, say 11.
- Using the direction vector of this line, find the normal vector.
- The line passing through (1,1) with direction vector as normal vector as computed above is our required new line.
  - If this line is parallel to 12, they do not intersect.
  - Else, they intersect.

### Solution

Given combined line equation:  $x^2 + 2xy - 3y^2 = 0$ It can be rewritten as

$$\frac{x^2}{y^2} + 2\frac{x}{y} - 3 = 0$$

which is in the form  $at^2 + bt + c = 0$ .

It can be split into individual lines using the quadratic roots formula,

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\frac{x}{y} = \frac{-2 \pm \sqrt{(-2)^2 - 4 \times (-3)}}{2}$$

Therefore, we get the two following lines:

$$\frac{x}{y} = 1$$

$$\frac{x}{y} = -3$$

Let M be a matrix that stores the direction vectors of the lines as  $M=\begin{pmatrix} M_1 & M_2 \end{pmatrix}$ . Therefore,

$$M = \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix}$$

Let N denote a matrix that stores the normal vectors of the lines as  $N = \begin{pmatrix} N_1 & N_2 \end{pmatrix}$ . So,

$$N = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 1 & -3 \end{pmatrix}$$

The point P (1,1) lies on that line whose normal is  $\perp^r$  to P-O = (1-0 , 1-0), since two lines intersect at the origin.

$$P^T N = \begin{pmatrix} 1 & 1 \end{pmatrix} N = \begin{pmatrix} 0 & -4 \end{pmatrix}$$

Let the new line obtained at P by drawing a normal to the curve at that point, be  $\emph{I3}$ .

$$l3: (x^T - \begin{pmatrix} 1 & 1 \end{pmatrix}) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0 \text{ or } x^T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2$$

$$12: x^{T} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = 0$$

Since l3 is not parallel to l2, they have a point of intersection. Let this point be  $x_o$ .

Since  $x_o$  satisfies both the above equations, we have

$$x_o^T \begin{pmatrix} 1 & -1 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \end{pmatrix}$$

$$x_o^T = \begin{pmatrix} 2 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & -3 \end{pmatrix}^{-1}$$

$$x_o^T = \begin{pmatrix} 2 & 0 \end{pmatrix} \times -0.5 \times \begin{pmatrix} -3 & 1 \\ -1 & 1 \end{pmatrix} = -0.5 \times \begin{pmatrix} -6 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -1 \end{pmatrix}$$

Therefore, the point of Intersection is

$$x_o = \begin{pmatrix} 3 & -1 \end{pmatrix}^T = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

which lies in the IV quadrant.

Hence, the correct answer is -

(4) Meets the curve again in the fourth quadrant.

# Figure of Solution

