

Konrad BASLER et al
USSN 10/664,859-Q77377
REPLACEMENT SHEET

FIGURE 1A

wild type

sev-wg

sev-wg, lgs^{S17}/+

FIGURE 1B

FIGURE 1C

wg[CE7] /+ ; lgs /+
loss of wing
margin structures

wg[IL114] /+ ; lgs /+
Janus phenotype (double dorsal)

FIGURE 1A

wild type

sev-wg

sev-wg, lgs^{S17} /+

FIGURE 1B

FIGURE 1C

FIGURE 1A

wild type

sev-wg

sev-wg, lgs^{S17}/+

FIGURE 1B

FIGURE 1C

FIG. 2A

ACGAGTGCTTCTCTTATTATGCGAGCTGTTATTCAAAGTATGTCGAATTCGACT	60
CCTGCTAACATAACGCACGGTAAAGCAGGAACATTGGCCCTATAAGCCAAAATTCA	120
TTAGCTTAATACGATGCTCCGAAGTGTATTGCATTGCACATACATACATAAAATTGTGAC	180
ATAGAATAGGAGAATTCCACATACAAATACAAAATACAAAATCCTCCAGTAAAATTAA	240
AACGATATCGTGTGCTTCGCGTATCTCACGTGAGATGTAATCGCATGCATATGAGTG	300
GTGAGTGCCTGCGTGCAGTCCTGGCTAAATATGCTTAATTGCGTTCGCCACTTCAA	360
AGCAATAAAACGATGGATTAAATTGCTACTTGAGCAATTAGCCACACAAGGGATCTGG	420
GAAGGTCGATT <u>GAAGGAATT</u> CGATTCTAGGATGCTCTG <u>ACAA</u> ATGCCCGCAGTC	480
M P R S P	5
CAACCCAACAAACAGCCGCAACAAACTCCGATGCCTCCTCAACAAGTCATCTGGATCAA	540
T Q Q Q P Q P N S D A S S T S A S G S N	25
ATCCTGGAGCAGCGATCGGAAATGGGGACTCGGCGGCGAGCAGAAGTTCTCCGAAGACCC	600
P G A A I G N G D S A A S R S S P K T L	45
TTAATAGCGAACCTTTCTACTTGCGCCGG <u>TAAGACTTGATTGATT</u> CTCTTTGT	660
N S E P F S T L S P	55
<u>CCGGAATTATAACAACTTTCTGTGTTCCAGATCAAATAAAATTGACGCCAGAAGAAGGC</u>	720
D Q I K L T P E E G	65
ACTGAGAAAAGCGGACTATCAACTAGTGATAAAGCTGCCACTGGAGGAGCCCCAGGCAGT	780
T E K S G L S T S D K A A T G G A P G S	85
GGAAATAATCTGCCGAGGGACAAACTATGCTAAGGCAGAACTCTACGAGCACAATCAAC	840
G N N L P E G Q T M L R Q N S T S T I N	105
TCGTGCCTAGTCGCTTCTCCACAAA <u>ACTCCAGTGAACACTCGAATAGCAGCAATGTGTCT</u>	900
S C L V A S P Q N S S E H S N S S N V S	125
GCTACAGTGGCCTTACTCAGATGGTAGATTGTGACGAGCAATCGAAGAAAAACAAATGT	960
A T V G L T Q M V D C D E Q S K K N K C	145
AGTGTGAAGGACGAGGAAGCTGGTAAGACTGCC <u>TACAAATGGTTAAAATTAAATG</u>	1020
S V K D E E A	152
<u>TATTGGCGTTCACCTTGT</u> TAATCATTAATTGTTTTTGCTATACTTACAATT	1080
AGTTTAAACTGTAAACTGACTAAA <u>ACTCGCGAAGCTCGGATCAAACAGACATTTC</u>	1140
TTGGAACCGTAATTAAGCTCATAAAATATTAATTCATCTGATGGAATGCATATCATAG	1200

FIG. 2B

ATGTACTCAAACATCTCAAGAAAGACCTCAAATTGGATCAACTAATTAGTTGAGAAAAAA 1260
ATTGCTGTACTTTAAGAATATATTAATTAAAAATTGCTGAGTGAAATGATATAATAG 1320
TCACAATATTTAGTTAACTGCTAAAGCATTGAATAGCCGTGCTACGCAGATGCT 1380
ACTAGACGCGGTGTAAAAGCTAATTTTATTAAAAGCTGTCCTAATATTCCATAACC 1440
TAATGTCCCATTCAGAAATAAGTCTAATAAAGCAAAAGGTCAAGCAGCTGGTGGCGGC 1500
E I S S N K A K G Q A A G G G 167
TGCGAAACAGGTTCTACATCCAGTTGACTGTCAAGGAAGAACCCACCGATGTCTTAGGC 1560
C E T G S T S S L T V K E E P T D V L G 187
AGTTAGTAAAATATGAAAAAGAAGAAAGAGAAAATCATCGCCAACGATGTCCCCTGTT 1620
S L V N M K K E E R E N H S P T M S P V 207
GGTTTGGTTCAATTGGAATGCACAGGACACTCCGCTACACCGGGTAAGTTAAGAG

G F G S I G N A Q D N S A T P 222
ATCCCATATAAAGCAAATAACAAGAATTATGTCAGTTACCAATTATTTGATAGTC 1740
AACTACTATAGCGATATCTCCTGCCTTTAATTAAATTAGGAAATACGAATAT 1800
TTCTAATTGAAAATAAAATTGATTAATTAACTAGAATTAAAAACCTTTGAATTAGG 1860
ACATACCCCTCCAAAATCAGTAATCATTGGAACGAGAGTGTGGTCCGAAGGAGACTA 1920
CTATAAAAACCTTGAGCTATGATACTGCACGCTACTAAAATGATTAGTTAGGAAA 1980
ATGGGTGTAATTGAGTTTCATTAGAAGAAATGTGATTATTTATTAAACC 2040
CCTTCAAGCGGAACTACATTGTTCTACGATATTGGAAAAACAAATGGTAAGTTGGA

AAGTGCCTATAAAACAGAATTCCACGGTTCAAATACTAACCACCAGGTTTGATTAA

TGTTAATTGAGAAATTATCACACTCAGTAAATGTTAATTGATTAAGGTCGGACA 2220
ATCACAGCAGATTCCATTGGTGTATATAGAAGTCGCCTCACACTCTCTGGC 2280
GCGCTCACCACACTGGAGTTCCGCCCGCAGTGATTATAGATGATTACGAGTTA

TTTAATTGATGGTATTTAATAAAATCTTATTACATTACATAGTAA 2400
V K I 225
TTGAAAGAATTCAAACGACAGTACCACGGAAAAAAAAGGATCGCCTTGACAATGA 2460
E R I S N D S T T E K K G S S L T M N N 245
ATGACGAAATGAGCATGGAAGGCTGCAATCAGTTGAATCCGATTTATCAATGA 2520
D E M S M E G C N Q L N P D F I N E S L 265

FIG. 2C

TAAATAATCCTGCAATTGAGCATATTAGTAAGCGGAGTAGGACCAATACCCGGAATCG	2580
N N P A I S S I L V S G V G P I P G I G	285
GAGTTGGAGCGGGGACGGAAATTATTGACTGCCAACGCCAATGGAATCTCCTCGGGTA	2640
V G A G T G N L L T A N A N G I S S G S	305
GCAGTAATTGTTGGATTACATGCAACAGCAAATCACATATTGTGTTTCAACTCAGC	2700
S N C L D Y M Q Q Q N H I F V F S T Q L	325
TGGCCAACAAAGGGGCCAATCAGTTAAGCGGTCAATTCAAACATTGCGTATCAGC	2760
A N K G A E S V L S G Q F Q T I I A Y H	345
ACTGCACTCAGCCTGCTACAAAAGCTTCCTGGAAGACTTTTATGAAAAACCCTTAA	2820
C T Q P A T K S F L E D F F M K N P L K	365
AGATTAACAAGTTACAGCGGCACAATTCCGTCGGTATGCCATGGATAGGCATGGGCAGG	2880
I N K L Q R H N S V G M P W I G M G Q V	385
TTGGACTAACTCCTCCTAATCCTGTAGCCAAAATAACACAAACAGCAGCCACATACAAAGA	2940
G L T P P N P V A K I T Q Q Q P H T K T	405
CCGTAGGCCTATTGAAACCCCATTCAATCAACATGAAAACAGCAAACGTAGTACTGTAA	3000
V G L L K P Q F N Q H E N S K R S T V S	425
GCGCGCCTAGCAACTCTTGTCGACCAGTCTGATCCTATGGCAACGAAACTGAATTGA	3060
A P S N S F V D Q S D P M G N E T E L M	445
TGTGCTGGGAAGGCGGATCCTCAAACACCAAGTAGGTCTGGACAAAACACGAAATCATG	3120
C W E G G S S N T S R S G Q N S R N H V	465
TAGACAGTATCAGTACATCCAGCGAGTCACAGGAATAAGATACTGGAAGCAGCTGGCG	3180
D S I S T S S E S Q A I K I L E A A G V	485
TTGATTGGGACAGGTACAAAAGGAAGCGATCCTGGCCTGACAACGAAACTGAAACATTG	3240
D L G Q V T K G S D P G L T T E N N I V	505
TATCACTGCAAGGAGTTAAGGTTCCAGACGAAAACCTTACACCACAAACAGCGGCAACATC	3300
S L Q G V K V P D E N L T P Q Q R Q H R	525
GGGAAGAACAGTTGGCAAAATAAAAAAAATGAATCAATTCTTTCTGAAAATGAGA	3360
E E Q L A K I K K M N Q F L F P E N E N	545
ATTCACTAGGAGCTAATGTAAGCTCACAGATAACAAAATTCCAGGAGATTAAATGATGG	3420
S V G A N V S S Q I T K I P G D L M M G	565
GGATGTCGGGTGGCGGAGGCAGGATCTATTATAAATCCGACGATGCGACAACGCGATATGC	3480
M S G G G G G S I I N P T M R Q L H M P	585
CAGGTAACGCCAAATCGGAGCTTTATCGGCGACAAGTTCAAGGACTTCGGAAGATGTAA	3540
G N A K S E L L S A T S S G L S E D V M	605

FIG. 2D

TGCATCCAGGGGATGTTATATCAGATATGGGTGCCGTAATAGGATGTAATAATAATCAA	3600
H P G D V I S D M G A V I G C N N N Q K	625
AAACCAGTGTGCAATGTGGATCTGGAGTAGGTGTTGTCACTGGAACAACGTGAGCTGGAG	3660
T S V Q C G S G V G V V T G T T A A G V	645
TAAATGTCAATATGCATTGCTCAAGCTCCGGCGCCCCGAATGGCAATATGATGGGAAGCT	3720
N V N M H C S S S G A P N G N M M G S S	665
CTACGGATATGCTAGCCTCGTTGGCAACACAAAGCTGCAACGTCATCGGAACGGCCCCAG	3780
T D M L A S F G N T S C N V I G T A P D	685
ATATGTCTAAGGAAGTTAAATCAAGATAGCCGAACCCATTCACATCAAGGGGGAGTTG	3840
M S K E V L N Q D S R T H S H Q G G V A	705
CTCAAATGGAGTGGTCGAAGATTCAACATCAATTTCGAAGAACGCCCTCAAGGGGGCA	3900
Q M E W S K I Q H Q F F E E R L K G G K	725
AGCCCAGACAAGTCACTGGAACTGTAGTACCAACAGCAAACCCCTCTGGATCTGGTG	3960
P R Q V T G T V V P Q Q Q T P S G S G G	745
GAAACTCGTTAAACAACCAGGTGCGACCCCTGCAAGGTCCACCTCCTACCACTCCA	4020
N S L N N Q V R P L Q G P P P P Y H S I	765
TCCAGAGATCTCGTCAGTACCAATAGCCACTCAATGCCCAATCCCTCGAGTCAAACA	4080
Q R S A S V P I A T Q S P N P S S P N N	785
ATCTATCTCTCCCGTCACCGCGGACAACCGCAGCAGTCATGGGATTGCCGACCAACTCTC	4140
L S L P S P R T T A A V M G L P T N S P	805
CTAGCATGGATGGAACAGGATCATTATCTGGATCTGTTCCGCAAGCTAATACTTCGACGG	4200
S M D G T G S L S G S V P Q A N T S T V	825
TTCAGGCAGGCACAACAACAGTGTCTCAGCAAAGAAACTGTTTCAGGCAGACACCC	4260
Q A G T T T V L S A N K N C F Q A D T P	845
CATGCCGTAAATCAAAATCGTAGAATACCGGATCGTCAAGCGTTCTACGCATA	4320
S P S N Q N R S R N T G S S S V L T H N	865
ACTTAAGCAGCAACCAAGTACCCCTTATCTCATCTATCCCCAAAGGAATTGAGTCTT	4380
L S S N P S T P L S H L S P K E F E S F	885
TCGGTCAGTCCTCTGCTGGTATGTTATTTGTTAATTTAAAGACAAATCAAATA	4440
G Q S S A	890
<u>TGAATTGCGTTAATAATAAGTTATATTACATAACTCGGAAATTGATAGAAAAATCA</u>	4500
<u>GGAATAGAAAAATAAAATTATTTCCGGACCGCCCATTCTGAATCCAATTCTG</u>	4560
<u>GAGTGATTGTTAGAGATAATCTACTATTAAAATTAAACACGAAAATTCAATATCCGTTAAT</u>	4620

FIG. 2E

<u>TGAAAATCACTATTGTTAATAAGAAATTAAAAATGTTTATTATAATATTCTACAGG</u>	4680
G	891
TGATAACATGAAAAGTAGCGACCAAGCCCACAGGGTCAGCGGTACCAAGTAAATAGTCT	4740
D N M K S R R P S P Q G Q R S P V N S L	911
AATAGAGGCCAATAAGATGTACGATTGCTGCATCCAGTCCTGGTTAACCCGCATCC	4800
I E A N K D V R F A A S S P G F N P H P	931
ACATATGCAAAGCAATTCAAATTCACTAAACGCCTATAAAATGGGCTCTACCAATAT	4860
H M Q S N S N S A L N A Y K M G S T N I	951
ACAGATGGAGGTAAATATTAAATATTTAACGTTTGTTGTAAATTATCTTCTT	4920
Q M E	954
<u>TTTCAGCGTCAAGCATCAGCGCAAGGTGGATCCGTACAATTAGTCGGCGCTCCGATAAT</u>	4980
R Q A S A Q G G S V Q F S R R S D N	972
ATTCCGCTAAATCCAATAGTGGCAATCGGCCGCCACCAAAACAAGATGACCCAAAAC	5040
I P L N P N S G N R P P P N K M T Q N F	992
GATCCAATCTCTTCTTGGCACAAATGTCCAACAACTAACAAAGTTGCGTGTCCAGCATG	5100
D P I S S L A Q M S Q Q L T S C V S S M	1012
GGTAGTCCAGCCGGAACTGGTGGTATGACGATGATGGGGGGTCCGGGACCGTCCGACATC	5160

FIG. 2F

legless

G	S	P	A	G	T	G	G	M	T	M	M	G	G	P	G	P	S	D	I	1032
.																				.
N	I	E	H	G	I	I	S	G	L	D	G	S	G	I	D	T	I	N	Q	5220
.																				1052
N	N	C	H	S	M	N	V	V	M	N	S	M	G	P	R	M	L	N	P	5280
.																				1072
K	M	C	V	A	G	G	P	N	G	P	P	G	F	N	P	N	S	P	N	5340
.																				1092
G	G	L	R	E	N	S	I	G	S	G	C	G	S	A	N	S	S	N	F	5400
.																				1112
Q	G	V	V	P	P	G	A	R	M	M	G	R	M	P	V	N	F	G	S	5460
.																				1132
N	F	N	P	N	I	Q	V	K	A	S	T	P	N	T	I	Q	Y	M	P	5520
.																				1152
V	R	A	Q	N	A	N	N	N	N	N	N	N	G	A	N	N	V	R	M	5580
.																				1172
P	S	L	E	F	L	Q	R	Y	A	N	P	Q	M	G	A	V	G	N	G	5640
.																				1192
S	P	I	C	P	P	S	A	S	D	G	T	P	G	M	P	G	L	M	A	5700
.																				1212
G	P	G	A	G	G	M	L	M	N	S	S	G	E	Q	H	Q	N	K	I	5760
.																				1232
T	N	N	P	G	A	S	N	G	I	N	F	F	Q	N	C	N	Q	M	S	5820
.																				1252
I	V	D	E	E	G	G	L	P	G	H	D	G	S	M	N	I	G	Q	P	5880
.																				1272
S	M	I	R	G	M	R	P	H	A	M	R	P	N	V	M	G	A	R	M	5940
.																				1292
P	P	V	N	R	Q	I	Q	F	A	Q	S	S	D	G	I	D	C	V	G	6000
.																				1312
D	P	S	S	F	F	T	N	A	S	C	N	S	A	G	P	H	M	F	G	6060
.																				1332
S	A	Q	Q	A	N	Q	P	K	T	Q	H	I	K	N	I	P	S	G	M	6120
.																				1352

FIG. 2G

TGTCAAAACCAATCGGGACTTGCAGTGGCACAGGGCAGATCCAAC	6180
C Q N Q S G L A V A Q G Q I Q L H G Q G	1372
CATGCGCAGGGTCAGTCTTAATTGGACCTACTAATAATAATTAA	6240
H A Q G Q S L I G P T N N N L M S T A G	1392
AGTGTCACTAACGGTGTCTCTGGCATCAATTCTAGGTCCCTCTTCTACGGAC	6300
S V S A T N G V S G I N F V G P S S T D	1412
CTGAAGTATGCCAGCAATATCATAGTTTCAGCAGCAGTATATGCTACCAACACCAGA	6360
L K Y A Q Q Y H S F Q Q Q L Y A T N T R	1432
AGTCAACAACAACAGCATATGCACCAAGCAGCACAGAGCAACATGATAACAATGCCGCCG	6420
S Q Q Q Q H M H Q Q H Q S N M I T M P P	1452
AATTTATCACCAAATCCAACGTTCTTGTCACAAATAAACTTCTAAATTGGCCGCC	6480
N L S P N P T F F V N K *	1465
TCGTCATGTATTGTTACTAGTCTCAAATTAAGACATGCATCTCTAAATAAGATTTT	6540
GAAGCTTATTACTTAGGTGTTTACAACGGAGAAAATAAACTTTGGATATGCAAATG	6600
ATAACGTTGGAAACAACATAATTCAATTGCAACTTTAGAAGTCACGTCGAAGTTAAATG	6660
TAGAATCTGTATTTAACATAATAGTCATCTGTAAAATAATTAAACATCGAAATTTA	6720
GTTATCAGCAGCTATTTCTGTTATTATTAATATGTGCGCTGCTCTCTGTGTTAAAT	6780
GAAATTAAAATATATATAATGTAAAACGCTATTGATATATTGCTCTCAACTGTAT	6840
TGTAATCAATATTAAGAGAACTGTAAATTCTCCATATAAGGTAATGAAAAAA	6900
AAAAAAAAAA	6909

FIG. 3A

FIG. 3B

Konrad BASLER et al
USSN 10/664, 859-Q77377
REPLACEMENT SHEET

FIG. 4

Figure 5A

EGFP-Lgs

Figure 5B

EGFP-Lgs + pcDNA3-Arm-NLS

Figure 5A

EGFP-Lgs

Figure 5B

EGFP-Lgs + pcDNA3-Arm-NLS

Konrad BASLER et al
USSN 10/664, 859-Q77377
REPLACEMENT SHEET

Figure 5A

EGFP-Lgs

Figure 5B

EGFP-Lgs + pcDNA3-Arm-NLS

Figure 5C

Figure 5D

		BAIT fusions: pLex						
		Lgs	BCL9	BCL9	Dco+	ΔArmC	Δβ-Cat	Pan
PREY fusions: pJG4-5	Igs364-555					+		
	Igs1-385					+		
	Igs1-732					+		
	Igs364-1090					+		
	Igs726-1464					+		
	Igs1-1464				+	+	n.d.	+
	BCL9 199-392					+	n.d.	
	BCL91-1426					+	+	
	Dco+	+						
	DAxin	(+)				+		

+: interaction seen in yeast two-hybrid assay

-: no interaction seen in yeast two-hybrid assay

n.d.: not done

numberings refer to amino acid positions.

Figure 5E

Figure 5F

Figure 5G

FIG. 6

FIG. 7A

FIG. 7B

Sequence homology domain 1: 57.1% identity in 28 aa

LGS	320	330	340
	IFVFSTQLANKGAESVLSGQFQTIIAYH		
BCL9	180	190	200
	VYVFSTEMANKAAEAVLKGQVETIVSFH		

Sequence homology domain 2: 31.4% identity in 35 aa

LGS	520	530	540
	ENLTPQQQRQHREEQLAKIKKMNQFLFPENENSGA		
BCL9	350	360	370
	DGLSQEQLEHRERSLQTLRDIQRMLFPDEKEFTGA		
	380		

Sequence homology domain 3: 46.7% identity in 15 aa

LGS	710	720
	QMEWSKIQHQFFER	
BCL9	470	480
	QIAWLKLQQE FYEEK	

Sequence homology domain 4: 66.6% identity in 9 aa

LGS	760
	LQGPPPPPYH
BCL9	520
	VRGPPPPYQ

Sequence homology domain 5: 22.3% identity in 112 aa

LGS	770	780	790	800	810	820
	SASVPIATQSPNPSSPNLNSLPSRTTAAVMGLPTNSPSMDGTGSLGSVPQANTSTVQA					
BCL9	970	980	990	1000	1010	1020
	GPPPPTASQPASVNIPGSLPSSTPYTMPEPTLSQNPLSIM-MSRMSKFAMPSSTPLYHD					
LGS	830	840	850	860	870	
	GTTCVLSANKNCFQADTPSPSNQRNRNTGSSVLTHNLSSNPSTPLSHLSP					
BCL9	1030	1040	1050	1060	1070	
	AIKTVASSDDSPPARSPNLPMSNNMPGMINTQNPRISGPNPVPMPTLSP					

Sequence homology domain 6: 43.8% identity in 16 aa

LGS	1080	
	NPKMCVAGGPNGPPGF	
BCL9	1190	1200
	DAALCKPGGPGGPDSF	

Figure 8A

ATGCATTCCAGTAACCCTAAAGTGAGGAGCTCTCCATCAGGAAACACACA
GAGTAGCCCTAAGTCAGCAGGAGGTGATGGTCCGCCCTACAGTGA
TGTCCCCATCTGGAAACCCCCAGCTGGATCCAAATTCTCCAATCAGGGT
AACACAGGGGGGCTCAGCCAGCCAATCCCAGCCATCCCCCTGTGACTCCAA
GAGTGGGGGCCATACCCCTAAAGCACTCCCTGGCCCCAGGTGGGAGCATGG
GGCTGAAGAATGGGGCTGGAAATGGTGCCAAGGGCAAGGGAAAAGGGAG
CGAAGTATTCCGCCGACTCCTTGATCAGAGAGATCCTGGGACTCCAAA
CGATGACTCTGACATTAAGAATGTAATTCTGCTGACCACATAAAGTCCC
AGGATTCCCAGCACACACCACTCGATGACCCCATCAAATGCTACAGCC
CCCAGGTCTTCTACCCCCCTCCATGGCCAAACTACTGCCACAGAGCCCCAC
ACCTGCTCAGAAGACTCCAGCCAAAGTGGTGTACGTGTTTCTACTGAGA
TGGCCAATAAGCTGCAGAAGCTGTTTGAAGGGCCAGGTTGAAACTATC
GTCTCTTCCACATCCAGAACATTCTAACAAACAAGACAGAGAGAACAC
AGCGCCTCTGAACACACAGATATCTGCCCTCGGAATGATCCGAAACCTC
TCCCACAAACAGCCCCCAGCTCCGGCCAACCAGGACCAGAACCTTCCAG
AATACCAGACTGCAGCCAACTCCACCCATTCCGGCACCAAGCACCCAGCC
TGCCGCACCCCCACGTCCCCTGGACCAGGGAGACTCCTGGGTAGAAAACA
AACTGATTCTCTGTAGGAAGTCCTGCCAGCTCCACTCCACTGCCACCA
GATGGTACTGGGCCAACTCAACTCCAAACAATAGGGCAGTGACCCCTGT
CTCCCAGGGAGCAATAGCTCTTCAGCAGATCCAAAGGCCCTCCGCCTC
CACCAGTGTCCAGTGGCGAGCCCCCACAATGGGAGAGAACCTCGATGGC
CTATCTCAGGAGCAGCTGGAGCACCAGGGAGCGCTCCTACAAACTCTCAG
AGATATCCAGCGCATGCTTTCTGTAGGAAAGAACATTACAGGAGCAC
AAAGTGGGGGACCGCAGCAGAACCTGGGTATTAGATGGCCTCAGAAA
AAACCAGAAGGGCCAATACAGGCCATGATGGCCAATCCAAAGCCTAGG
TAAGGGACCTGGGCCCGGACAGACGTGGAGCTCCATTGGCCTCAAG
GACATAGAGATGTACCCCTTCTCCAGATGAAATGGTCCACCTCTATG
AACTCCCAGTCTGGGACCATAGGACCCGACCACCTTGACCATATGACTCC
CGAGCAGATAGCGTGGCTGAAACTGCAGCAGGAGTTATGAAGAGAAC
GGAGGAAGCAGGAACAAAGTGGTGTCCAGCAGTGTCCCTCCAGGACATG
ATGGTCCATCAGCACGGGCCTCGGGGAGTGGTCCGAGGACCCCCCCTCC
ATACCAGATGACCCCTAGTGAAGGCTGGCACCTGGGGTACAGAGCCAT
TTTCTGATGGTATCAACATGCCACATTCTCTGCCCTGGGGCATGGCT
CCCCACCCCAACATGCCAGGGAGCCAGATGCGCCTCCCTGGATTGCAAG
CATGATAAAACTCTGAAATGGAAGGGCGAATGTCCCCAACCTGCATCTA
GACCAGGTCTTCTGGAGTCAGTTGCCAGATGATGTGCCAAAAATCCCA
GATGGTCGAAATTTCCTCTGGCCAGGGCATTTCAGGGTCTGGCC
AGGGGAACGCTTCCAAACCCCCAAGGATTGTCTGAAGAGATGTTCAGC
AGCAGCTGGCAGAGAACAGCTGGGTCTCCCCCAGGGATGGCCATGGAA
GGCATCAGGCCAGCATGGAGATGAACAGGATGATTCCAGGCTCCAGCG
CCACATGGAGCCTGGATAACCCATTTCCTCGAATACCAGTTGAGG
GCCCTCTGAGTCCTCTAGGGGTGACTTCAAAAGGAATTCCCCCACAG

Figure 8A (Cont.)

ATGGGCCCTGGTCGGAACTTGAGTTGGGATGGTCTAGGGATGAA
GGGAGATGTCAATCTAAATGTCAACATGGGATCCAACCTCTCAGATGATAC
CTCAGAAGATGAGAGAGGGCTGGGGCGGGCCCTGAGGAGATGCTGAAATT
CGCCCAGGTGGCTCAGACATGCTGCCTGCTCAGCAGAAGATGGTGCCACT
GCCATTGGTGAGCACCCCCAGCAGGAGTATGGCATGGGCCAGACCAT
TCCTTCCCCTGTCAGGGTCCAGGCAGCAACAGTGGCTTGCAGGAATCTC
AGAGAACCAATTGGGCCGACCAGAGGACTAACAGCCGGCTCAGTCATAT
GCCACCACTACCTCTCAACCCCTCCAGTAACCCCCACCAGCCTAACACAG
CTCCTCCAGTTCAGCGGGCCTGGGGCGGAAGCCCTGGATATATCTGTG
GCAGGCAGGCCAGGTGCATTCCCCAGGCATTAACCCCTCTGAAGTCTCCCAC
GATGCACCAAGTCCAGTCACCAATGCTGGCTGCCCTCGGGAACCTCA
AGTCCCCCCAGACTCCATCGCAGCTGGCAGGCATGCTGGCGGGCCAGCT
GCTGCTGCTTCCATTAAGTCCCCCTGTTGGGTCTGCTGCTGCTTC
ACCTGTCCACCTCAAGTCTCCATCACTTCCCTGCCCGTCACCTGGATGGA
CCTCTTCTCCAAAACCTCCCCCTCAGAGTCCTGGGATCCCTCCAAACCAT
AAAGCACCCCTCACCATGGCCTCCCCAGCCATGCTGGGAAATGTAGAGTC
AGGTGGCCCCCCCACCTCCTACAGCCAGGCCAGCCTGCCTGTGAATATCC
CTGGAAAGTCTTCCCTCTAGTACACCTTACCATGCCTCCAGAGCCAACC
CTTCCCAGAACCCACTCTCTATTATGATGTCTCGAATGTCCAAGTTGC
AATGCCAGTTCCACCCCGTTACCATGATGCTATCAAGACTGTGGCCA
GCTCAGATGACGACTCCCCCTCAGCTCGTCTCCCAACTTGCATCAATG
AATAATATGCCAGGAATGGCATTAAATACACAGAACCTCGAATTTCAGG
TCCAAACCCCGTGGTCCGATGCCAACCTCAGCCCAATGGGAAATGACCC
AGCCACTTTCTCACTCCAATCAGATGCCCTCTCCAAATGCCGTGGACCC
AACATACCTCCTCATGGGGTCCAATGGGCTGGCTTGATGTCACACAA
TCCTATCATGGGCATGGTCCCAGGAGCCACCGATGGTACCTCAAGGAC
GGATGGGCTTCCCCAGGGCTCCAGTACAGTCTCCCCACAGCAG
GTTCCATTCCCTACAATGGCCCCAGTGGGGGGCAGGGCAGCTCCAGG
AGGGATGGGTTCCCAGGAGAAGGCCCCCTGGCCGCCAGCAACCTGC
CCCAAAGTTCAGCAGATGCAGCACTTGCAAGCCTGGAGGCCCCGGGG
CCTGACTCCTCACTGTCCTGGGAACAGCATGCCTCGGTGTTACAGA
CCCAGATCTGCAGGAGGTATCCGACCTGGAGCCACCGGAATACCTGAGT
TTGATCTATCCCGCATTATTCCATCTGAGAAGCCCAGCCAGACGCTGCAA
TATTTCCTCGAGGGGAAGTCCAGGCCGAAACAGCCCCAGGGCTCTGG
ACCTGGGTTTCACACATGCAGGGATGATGGCGAACAGCCCCAGAA
TGGGACTAGCATTACCTGGCATGGGAGGTCCAGGGCCAGTGGGAACCTCG
GACATCCCTCTGGTACAGCTCCATCCATGCCAGGCCACAACCCATGAG
ACCACCAAGCCTTCTCCAACAAGGCATGATGGACCTCACCATCGGATGA
TGTCAACAGCACAATCTACAATGCCCGCCAGCCCACCCCTGATGAGCAAT
CCAGCTGCTGCCGTGGCATGATTCCCTGGCAAGGATCGGGGGCTGCCGG
GCTCTACACCCACCCCTGGCCTGTGGCTCTCCAGGCATGATGATGTCCA
TGCAGGGCATGATGGGACCCAAACAGAACATCATGATCCCCCACAGATG
AGGCCCCGGGGCATGGCTGCTGACGTGGCATGGTGATTTAGCCAAGG
ACCTGGCAACCCAGGAAACATGATGTTTAA

Figure 8B

MHSSNPKV RSSPSGNTQSSPKSKQEVMVRPPTVMSPSGNPQLDSKFSNQG
KQGG SASQSQPSPCDSKSGGHTPKALPGPGGSMGLNGAGNGAKGKGKRE
RSISADSDFDQRDPGTPNDDSDIKECNSADHIKSQDSQHTPHSMTPSNATA
PRSSTPSHGQT TATEPTPAQKTPAKVVYVFSTEMANKAAEAVLKGQVETI
VSFHIQNISNNKTERSTAPLNTQISALRNDPKPLPQQPPAPANQDQNSSQ
NTRLQPTPPIPAPAPKPAAPPRPLDRESPGVENKLIPSGSPASSTPLPP
DTGPNSTPNNAVTPVSQGSNSSADPKAPPPPVSSGEPTLGENPDG
LSQEQL EHRERSLQTLRDIQRMLFPDEKEFTGAQSGGPQQNPGVLDGPQK
KPEGPIQAMMAQS QSLKGPGPRTDVGAPFGPQGH RDVPFSPDEM VPPSM
NSQSGTIGPDHLDHMTPEQIAWLKLQQEFYEEKRRKQEQQVQQCSLQDM
MVHQHGPRGVVRGPPPYQMTPSEG WAPGGTEPFSDGINMPHSLPPRGMA
PHPNMPGSQMRLPGFAGMINSEMEGPVNPNPASRPGLSGVSWPDDVPKIP
DGRNFPPGQGIFSGPGRGERFPNPQGLSEEMFQQQLAEKQLGLPPGMAME
GIRPSMEMNRMIPGSQRHMEPGNNP IFPRI PVEGPLSPSRGD FPKGIPPQ
MGPGRELEFGMVP SGMKGDVN LN VNMGSNSQMIPQKMREAGAGPEEMLKL
RPGGSDMLPAQQK MVPLPFGEHPQQEYGMGPRPFLPM SQGPGSNSGLRNL
REPIGP DQRTNSRLSHM PPLLPN PSSNPTSLNTAPPVQRGLGRKPLDISV
AGSQVHSPGINPLKSPTMHQVQSPMLGSPSGNLKSPQPSQLAGMLAGPA
AAASI KSPPV LGSA AASP VHLKSPSLPAPSPGWTSSPKPLQSPGIPPNH
KAPLT MAS PAMLGNV EGGPPPPTASQPASVNIPGSLPSSTPYTM PPEPT
LSQNPLSIMMSRMSKFAM PSSTPLYHDAIKTVASSDDSPPARSPN LPSM
NNMPGMGINTQNPRISGP VPVPMPTLSPMGMTQPLSHSNQMPSPNAVGP
NIPPHGVPMGPGLMSHN PIMGHGSQEPPMVPQGRMGFPQGFPPVQSPPQQ
VPFPHNGPSGGQGSFPGGMGFPGEGPLGRPSNL PQSSADAALCKPGGGPGG
PDSFTVLGN S M P S VFTDPDLQEVIRPGATGIPEFDLSRIIPSEKPSQTLQ
YFPRGEVPGRKQPQGP GPGF SHMQGMMGEQAPRMGLALPGMGGPGPVGTP
DIPLGTAPSMPGHNPMRPPAFLQQGMMGPHHRMMSPAQSTMPGQPTLMSN
PAAAVGMIPGKDRGPAGLYTHPGPVGSPGMMMSMQGMMGPQQNIMIPPQM
RPRGMAADVGMGGFSQGPGNPGNMMF*

FIG. 9

Figure 10A

ATGGCCTGCTTCCCATCCCCTGCTGCCATCTCCTGCACCCCTAGGGCACAGTGGGCATCT
CGGGAGCTGTCAGCGGACAGACTAGGGTTACCCCCACCCCAAGGAGGAGAAGCTCCAG
GGAGCCCGCCGCTGTCCCCCGGGTATTGCCCTGCCCAAGCCAATGCACCCA
GAAAATAAAATTGACCAATCATGGCAAGACAGGGAATGGCGGGGCCAATCTCAGCACCAG
AATGTGAACCAAGGACCCACCTGCAACGTGGCTCGAAGGGCGTGGGGCGGGGAACCAT
GGGGCCAAGCCAACCAGATCTGCCTAGCAACTCAAGTCTGAAGAACCCCCCAGGCAGGG
GTGCCCTTTCAGCTCGCTCAAGGGCAAGGTGAAGAGGGACCGGAGTGTCTGTGGAC
TCTGGAGAGCAGCGAGAGGCTGGGACCCATCCCTGGATTCAAGAGGCCAAAGAGGTGGCG
CCGGAGTAAGCGGCCTGTGTGCTGGAGCGGAAGCAGCCGTACAGTGGGGACGAATGG
TGCTCTGGACCGGACAGTGAGGAGGACGACAAGCCATTGGGGCCACCCACAAAGCTGCT
TTCAAAGAACGGCTTCAGGACAAGGCATCACACTCTTCTCCAGCACGTACAGTCCT
GAAACCTCCAGGAGGAAGCTGCCCAAGCCCCAAGGCTTCCTGGGGCAGCAGGGC
CGAGTCATTGGAAACCTCTCGAGGAGCTCCGTATCAAGGTGCAGATGCAGCAGGT
GGGCCGGCCTCAATCATGTCTCCAATCGCGACGGTGAATGCGAGTGGCTGTCAAAGAG
CAGCTGGAGCATCGGAACGGTCCCTCCAGACGCTGCGAGACATTGAGCGACTGCTGCTC
CGCAGCGGAGAGACTGAGCCCTCCTCAAGGGGGCCCCCAGGAGGAGCGGGCTGAAG
AAATATGAGGAACCCCTGCAGTCCATGATTCACAGACACAGAGCCTAGGGGGCCCCCG
CTGGAGCATGAAGTGCCTGGGACCCCCCGGGTGGGACATGGGGCAGCAGATGAACATG
ATGATACAGAGGCTGGGCCAGGACAGCCTCACGCCGTAGCAGGTGGCCTGGCGAAGCTG
CAGGAGGAGTACTACGAAGAGAACGGGAAAGAGGAACAGATTGGGCTGCATGGGAGC
CGTCCTCTGCAGGACATGATGGGATGGGGCATGATGGGCTGAGGGGGCCCCCGCCTCCT
TACCACAGCAAGCCTGGGATCAGTGGCACCTGGAATGGGTGCGCAGCTGCGGGGGCCC
ATGGATGTTCAAGATCCCATGCAGCTCCGGGGCGACCTCCCTTCCTGGGCCCGTTTC
CCAGGCAACCAGATAACACGGTACCTGGTTGGGGCATGCAGAGTATGCCCATGGAG
GTGCCCATGAATGCCATGCAGAGGCCGTGAGACCAGGCATGGGCTGGACCGAAGACTTG
CCCCCTATGGGGGACCCAGCAATTTCAGCAGACCCATGCCCTACCCAGGTGGCAG
GGTAGGGCGGAGCGATTCATGACTCCCCGGTCCGTGAGGAGCTGCTGCGGACCCAGCTG
CTGGAGAAGCGGTGATGGGATGCAGGCCCTGGCATGGCAGGCACTGGCAGTGGCATGGG
CAGAGCATGGAGATGGAGCGGATGATGCAGGCCACCGACAGATGGATCCTGCCATGTT
CCCAGGCAAGATGGCTGGTGGTGAGGGCCTGGCGGGCACTCCATGGGATGGAGTTGGT
GGAGGCCGGGGCCTCTGAGCCCTCCATGGGCACTGGCTGAGGGAGATGGCCGGTTGGGCCAG
CCCATGGGGCAGGCAACCTCAACATGAACATGAATGTCAACATGAACATGAACATGAAC
CTGAACGTGCAGATGACCCCGCAGCAGCAGATGCTGATGTCAGAAGATGCGGGCCCT
GGGGACTTGATGGGGCCCCAGGGCCTCAGTCCTGAGGAGATGGCCGGTTGGGCCAG
AACAGCAGTGGCATGGTGCCTTGCCTCTGCAACCCGCCAGGACCTCTCAAGTCGCC
CAGGTCCCTGGCTCCTCCCTCAGTGTCCGTTCACCCACTGGCTGCCAGCAGGCTCAAG
TCTCCTCATGGCGTGCCTCTCCAGGCTGGTGCCTCACCAAGACGGCCATGCC
AGCCCGGGGTCTCCAGAACAGCAGGCCCTCAACATGAACCTGGTACCTCCACCACTG
AGCAACATGGAACAGGACCCCACACCTCCCAGAACCCCTGTCAGTGTGACCCAG
ATGTCCAAGTACGCCATGCCAGCTCCACCCCGCTCTACCAATGCCATCAAGACCATC
GCCACCTCAGACGAGCTGCTGCCGACCGGCCCTGCTGCCCTGGGCCACCAACCG
CAGGGCTCCGGGCCAGGTGGCCCCGACTCCCTGAATGCCCTGTGGCCAGTGGCCAGC
TCCTCCAGATGATGCCCTTCCCCCTCGGCTGCAGCAGCCCCATGGTGCCTGGCC
ACTGGGGGTGGGGCGGGGGCTGGCCTGCAGCAGCACTACCGTCAGGCATGCCCTG
CCTCCCGAGGACCTGCCAACAGCCGCCAGGCCATGCCCTCCAGCAGCACCTGATG
GGCAAAGCCATGGCTGGCGCATGGCGACGCATACCCACCGGGTGTGCTCCCTGGGTG
GCATCAGTGTGAACGACCCGAGCTGAGCGAGGTGATCCGGCCACCCAAACGGGATC
CCCGAGTTGACTGTGAGGATCATCCCTCTGAGAAGCCAAGCAGCACCCCTCAGTAC
TTCCCCAAGAGCGAGAACACCAGCCCCCAAGGCTCAGCCCCCTAATCTGCATCTCATGAAC
CTGCAGAACATGATGGCGGAGCAGACTCCCTCTCGGCCCTCCAAACCTCCAGGCCAGCAG
GGCGATCGGCCGCTGGTGGTGTGATACCGGGTACCCGGCTATGGCGCCGGCGCAGCG
TGCCCTCTGTGCCGCCAGACCTCTGTGGTGCAGGGCACGTTACAGCCGAAGCAC
CAGCAGCTGAAGGAGGCTTGGAGAGGCTCTGCCCAAGGTGGAGGGGGCCCGCAAG
GCCATCCCGCCGCTCAGGTGGAGCGCTATGTGCCGAACACGAGCGATGCTGCTGGTGC
CTGTGCTGCCGTGTGAGGTGCCAACACCTGAGGCATGGAAACCTGACGGTGTAC

Figure 10A (Cont.)

GGGGGGCTGCTGGAGCATCTGCCAGCCCAGAGCACAAAGAACCAACAAATTCTGG
TGGGAGAACAAAGCTGAGGTCCAGATGAAAGAGAAGTTCTGGTCACTCCCCAGGGATTAT
GCGCGATTCAAGAAATCCATGGTGAAGGTTGGATTCTATGAAGAAAAGGAGGATAAA
GTGATCAAGGAGATGGCAGCTCAGATCCGTGAGGTGGAGCAGAGCCGACAGGAGGTGGTT
CGGTCTGTCTTAGAGACAGGTCCCCAAGATAACGCCCTCACAGTCCGGTCCCCGCCGTC
CTCTCCCGGGCACGGCTCAAGTCCGGTGCCTTCCCCCGCAGACCCCCGAGGCGCACCCCT
CAAGCTCGGTGCCTCTGCGCCCCCGCAGGGCGCCCTCAAGCCTGAGCCCCCGGGCGC
ACCCTCAAGCTCGGTGTACCCCCCATACCACCCGCAAGGCGGCCCTCATGCCGCGAAG
ACTTCGCCCCGCCAAGGTGCACCGTCAAGCCCCGAATAAAACCCAGTCACTCCAACCT
GCAGGCCAAAGCTAGAAAAACTGCGCTGCATTGCAAACAAAAGCTTTGGCGATGAC
GATACTGTTTGGGTGTGAAACTGTCAATTGCTAACTACGATCTGTGA

Figure 10B

FKEDGFQDKASHFFSSTYSPETSRRKLPQAPKASFLGQQGRVIWKPLSEE
LRDQGADAAGGPASIMSPIATVNASGLSKEQLEHRERSLQTLRDIERRLL
RSGETEPFLKGAPRRSGGLKKYEEPLQSMISQTQLGGPPLEHEVPGHPP
GGDMGQQQMNMIMIQRQLGQDSLTPEQVAWRKLQEYYEERKREEQIGLHGS
RPLQDMMGMGGMMVRGPPPYHSKPGDQWPPGMGAQLRGPMMDVQDPMQLR
GGPPFPGPFRPGNQIQRVPFGGMQSMPMEVPMNAMQRPVPGMWTEDL
PPMGGPSNFAQNTMPYPGGQGEAERFMTPRVREELLRHQLLEKRSMGMQR
PLGMAGSGMGQSMEMERMMQAHRQMDPAMFPQGMAGGEGLAGTPGMGMEFG
GGRGLLSPPMGQSGLREVDPPMGPGLNMNMNVNMNMNLNVQMTPQQQ
MLMSQKMRGPGLMGPQGLSPEEMARVRAQNNSGMVPLPSANPPGPLKSP
QVLGSSLRSPTGSPSRLKSPSMAVPSPGWVASPKTAMPSPGVSNKQP
PLNMNSSTTLSNMEQDPTPSQNPLSLMMTQMSKYAMPSSTPLYHNAIKTI
ATSDDELLPDRPLLPPPPPQGSGPGPDSLNAPCGPVSSSQMMPFPPR
LQQPHGAMAPTGGGGGGPLQQHYPGMALPPEDLPNQPPGPMPPQQHLM
GKAMAGRGMGDAYPPGVLPGVASVLNDPELSEVIRPTPTGIPEFDLSRIIP
SEKPSSTLQYFPKSENQPPKAQPPNLHLMNLQNMMAEQTPSRPPNLPGQQ
GDRPLVVVIPGTRAMAPAQRCPCLCRQTFFCGRGHVYSRKHQRQLKEALER
LLPQVEAARKAIRAAQVERYVPEHERCCWCLCCGCEVREHLSHGNLTLY
GGLLEHLASPEHKKATNKFWWEENKAEVQMKEKFLVTPQDYARFKKSMVK
LDSYEEKEDKVIKEMAAQIREVEQSRQEVRSVLETGPPRYALTVRSPA
LSRRTLKGAFPPQTPEAHPQARCLCAPRRGALKPEPPGRTLKLGVPPHT
TRKARPHAAKTSPRPRCTRQAPNKTQLQLAGKARKTALHLQTKALVGDD
DTVLGVKLSIANYDL

Konrad BASLER et al
USSN 10/664,859-Q77377
REPLACEMENT SHEET

FIG. 11A

FIG. 11B

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

FIG. 12E

Invitro
interaction

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 13D

FIG. 13E

FIG. 14A

FIG. 14B

FIG. 15A

FIG. 15B

