ISEL ADEETC LEIM e MEET

Codificação de Sinais Multimédia

2º Semestre Lectivo 2015/16 Exame 2ª Época (20/07/2015)

- 1. Considere a codificação de sinais de áudio.
 - a) (1.5 val) Diga quais os critérios para fazer a codificação PCM de um sinal de áudio.
 - b) (1.5 val) Quais as características principais que são usadas num codificador de áudio com perdas.
- 2. Considere que foram recebidos os códigos "1, 2, 3, 2, 5, 9, 8, 4" correspondentes a uma codificação LZW cujo o dicionário inicial é [1-'A', 2-'N', 3-'O', 4-'Z'].
 - a) (2,0 val) Faça a descodificação desta mensagem.
 - b) (1,5 val) Calcule a entropia e o número médio de bits por símbolo do código LZW. Descreva todos os pressupostos assumidos para obter os resultados.
 - c) (1,5 val) Calcule a taxa de compressão descreva todos os pressupostos assumidos para calcular a taxa de compressão. Comente o resultado e proponha outras soluções alternativas para compressão dos mesmos símbolos.
- 3. Considere a codificação de imagens com perdas.
 - a) (1,5 val) Calcule o número de blocos 8x8 de luminância e de crominância de uma imagem a côres com resolução de 1920x1080, com subsampling de côr, 4:2:0 e 8 bits por amostra:

0	0
2	2

- b) (1,5 val) Considere o bloco 2x2 representado ao lado. Calcule a DCT deste bloco.
- c) (1,5 val) Considere o gráfico típico da dependência entre a relação sinal-ruído (SNR, *Signal-to-Noise Ratio*) e a taxa de compressão. Diga, justificando, se existe proporcionalidade direta ou inversa entre estas medidas.
- d) (1,5 val) Explique resumidamente as diferenças entre o modo progressivo e o modo sequêncial da norma JPEG.
- 4. Considere as normas de compressão de vídeo.
 - a) (1.5 val) Explique o modo de codificação de SNR escalável da norma MPEG2. Faça um diagrama de blocos que ilustre este modo de codificação.
 - b) (1.5 val) Quais as vantagens e desvantagens de usar estimação de movimento na codificação?
 - c) (1.5 val) Admita que pretende transmitir um vídeo num canal de com 8Mbit/s. A resolução para a componente luminância (8 bit por amostra) é de 1920x1080 pixels e é usado subsampling 4:4:4.
 Considerando que o factor de compressão é de 40 e 60 para a luminância e crominância respectivamente, calcule o frame rate máximo que consegue transmitir.
 - d) (1.5 val) Apresente uma forma de codificação de video 3D (considerando as normas actuais), explique resumidamente o seu funcionamento e quais as desvantagens.

Table K.1 – Luminance quantization table

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Table K.2 – Chrominance quantization table

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

Table K.3 – Table for luminance DC coefficient differences

Category	Code length	Code word
0	2	00
1	3	010
2	3	011
3	3	100
4	3	101
5	3	110
6	4	1110
7	5	11110
8	6	111110
9	7	1111110
10	8	11111110
11	9	111111110

Table K.5 – Table for luminance AC coefficients (sheet 1 of 4)

Run/Size	Code length	Code word
0/0 (EOB)	4	1010
0/1	2	00
0/2	2	01
0/3	3	100
0/4	4	1011
0/5	5	11010
0/6	7	1111000
0/7	8	11111000
0/8	10	1111110110
0/9	16	1111111110000010
0/A	16	11111111110000011
1/1	4	1100
1/2	5	11011
1/3	7	1111001
1/4	9	111110110
1/5	11	11111110110
1/6	16	11111111110000100
1/7	16	11111111110000101
1/8	16	11111111110000110
1/9	16	11111111110000111
1/A	16	11111111110001000
2/1	5	11100
2/2	8	11111001
2/3	10	1111110111
2/4	12	111111110100
2/5	16	1111111110001001
2/6	16	1111111110001010
2/7	16	1111111110001011
2/8	16	1111111110001100
2/9	16	11111111110001101
2/A	16	1111111110001110
3/1	6	111010
3/2	9	111110111
3/3	12	111111110101
3/4	16	11111111110001111
3/5	16	1111111110010000
3/6	16	1111111110010001
3/7	16	1111111110010010
3/8	16	1111111110010011
3/9	16	1111111110010100
3/A.	16	1111111110010101

4/1	6	111011
4/2	10	1111111000
4/3	16	1111111110010110
4/4	16	1111111110010111
4/5	16	1111111110011000
4/6	16	11111111110011001
4/7	16	1111111110011010
4/8	16	1111111110011011
4/9	16	1111111110011100
4/A	16	11111111110011101
5/1	7	1111010
5/2	11	11111110111
5/3	16	1111111110011110
5/4	16	1111111110011111
5/5	16	1111111110100000
5/6	16	11111111110100001
5/7	16	1111111110100010
5/8	16	1111111110100011
5/9	16	11111111110100100
5/A	16	11111111110100101
6/1	7	1111011
6/2	12	111111110110
6/3	16	11111111110100110
6/4	16	1111111110100111
6/5	16	1111111110101000
6/6	16	1111111110101001
6/7	16	1111111110101010
6/8	16	1111111110101011
6/9	16	11111111110101100
6/A	16	11111111110101101
7/1	S	11111010
7/2	12	111111110111
7/3	16	11111111110101110
7/4	16	1111111110101111
7/5	16	11111111110110000
7/6	16	11111111110110001
7/7	16	11111111110110010
7/8	16	11111111110110011
7/9	16	11111111110110100
7/A	16	11111111110110101
8/1	9	111111000
8/2	15	111111111000000

Table K.5 (sheet 3 of 4)

Run/Size	Code length	Code word
8/3	16	11111111110110110
8/4	16	11111111110110111
8/5	16	11111111110111000
8/6	16	11111111110111001
8/7	16	11111111110111010
\$/\$	16	11111111110111011
8/9	16	11111111111111100
8/A.	16	11111111110111101
9/1	9	111111001
9/2	16	111111111101111110
9/3	16	11111111110111111
9/4	16	11111111111000000
9/5	16	11111111111000001
9/6	16	11111111111000010
9/7	16	11111111111000011
9/8	16	11111111111000100
9/9	16	11111111111000101
9/A	16	11111111111000110
A/1	9	111111010
A/2	16	11111111111000111
A/3	16	11111111111001000
A/4	16	11111111111001001
A/5	16	11111111111001010
A/6	16	11111111111001011
A/7	16	11111111111001100
A/8	16	11111111111001101
A/9	16	11111111111001110
A/A	16	11111111111001111
B/1	10	1111111001
B/2	16	11111111111010000
B/3	16	11111111111010001
B/4	16	11111111111010010
B/5	16	11111111111010011
B/6	16	11111111111010100
B/7	16	11111111111010101
B/8	16	11111111111010110
B/9	16	11111111111010111
B/A	16	11111111111011000
C/1	10	1111111010
C/2	16	11111111111011001
C/3	16	11111111111011010
C/4	16	11111111111011011

11111111101100 111111111011101 11111111
1111111101110 11111111100111 1111111111
11111111101111 111111111100000 11111111
1111111110000 11111111110001 1111111111
111111111100001 111111111000 1111111111
11111111000 11111111111100010 111111111
111111111100010 1111111111100011 1111111
111111111100011 1111111111100100 1111111
1111111111100100 11111111111100101 111111
1111111111100101 11111111111100110
1111111111100110
1111111111100111
11111111111101000
11111111111101001
11111111111101010
11111111111101011
11111111111101100
11111111111101101
11111111111101110
111111111111111111111111111111111111111
1111111111110000
1111111111110001
1111111111110010
1111111111110011
1111111111110100
11111111001
1111111111110101
11111111111110110
111111111111111111111111111111111111111
1111111111111000
1111111111111001
1111111111111010
11111111111111111
1111111111111100
1111111111111101
111111111111110