Topic 3 Lecture -Introduction to Computer Vision and Machine Learning

Aims of the Session

• Learn the basics on how images are imported to our computers and converted into data

Resources for the Lecture

- Introduction to Computing and Programming in Python: A Multimedia Approach. Mark Guzdial, Barbara Ericson. Pearson, 2016.
- Various others mentioned throughout the lecture!

How does an image look *digitally*?

How does an image look *digitally*?

• These are the main **compression algorithms** used to store images:

How does an image look digitally?

• These are the main **compression algorithms** used to store images:

• The *art* of compression algorithms is in **quantisation**!

- The *art* of compression algorithms is in **quantisation**!
- Best algorithms are the ones that achieve best visual quality with reduced size.

- The *art* of compression algorithms is in **quantisation**!
- Best algorithms are the ones that achieve best visual quality with reduced size.

8.9M 68.34K

• The importance of compression

• The importance of compression

```
In [1]: | import warnings
         warnings.filterwarnings('ignore')
         from IPython.display import HTML
         HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/NMk2
Out[1]:
              The first movie with CGI
```

• Fortunately, this is NOT our problem in this module!

• We are going to work with images in *simpler* ways

Images as arrays/matrices

• Using the numpy module

Images as arrays/matrices

- Using the numpy module
- Complementing by using the OpenCV module, which will let us import and manipulate images

• When we import an image, the first thing we will get is a **bitmap**

• When we import an image, the first thing we will get is a **bitmap**

• When we import an image, the first thing we will get is a **bitmap**

ullet Each pixel will be represented as a value within an n imes m matrix

Grayscale Images

Grayscale Images

• A 2D grid of pixels

Grayscale Images

- A 2D grid of pixels
- Two ways to represent them:

1. Standard: from 0 (black) to 255 (white) with 254 gray values in between.

1. Standard: from 0 (black) to 255 (white) with 254 gray values in between.

1. Normalised: from 0 (black) to 1 (white) with "infinite" gray values in between.

1. Normalised: from 0 (black) to 1 (white) with "infinite" gray values in between.

Colour Images

Colour Images

ullet Each pixel has three channels : ${\it red}$, ${\it green}$ and ${\it blue}$

- ullet Each pixel has three channels: ${\it red}$, ${\it green}$ and ${\it blue}$
- Images with colour are often called RGB images

Option 1

$\hbox{\rm Option } 1$

• If a colour image is imported, a matrix will be produced, this time with three values per pixel instead of one

Option 1

- If a colour image is imported, a matrix will be produced, this time with three values per pixel instead of one
- The three values will be stored in a tuple

Option 2

• When importing a colour image in OpenCV, a 3D array will be produced, with the third dimension representing the three channels

• Advantage of option 2: Faster to do calculations and transformations

HOW MANY	COLOURS CAN BE	REPRESENTED	USING THIS STA	ANDARD?

HOW MANY COLOURS CAN BE REPRESENTED USING THIS STANDARD? CAN RGB BE NORMALISED? ARE THERE ANY OTHER STANDARDS THAT CAN REPRESENT MORE COLOURS?

Machine Learning

ullet Machine learning: An automatic function that maps x o y based on the input data

Supervised Learning

Supervised Learning

• Aims to learn a function that, given a sample of data and desired outputs, approximates a function that maps inputs to output

Supervised Learning

- Aims to learn a function that, given a sample of data and desired outputs,
 approximates a function that maps inputs to output
- Done in the context of **classification** (when mapping input to output label) or **regression** (when mapping input to continuous output)

Supervised Learning

- Aims to learn a function that, given a sample of data and desired outputs,
 approximates a function that maps inputs to output
- Done in the context of **classification** (when mapping input to output label) or **regression** (when mapping input to continuous output)
- The "correct" output will be deduced from the training data, therefore the model requires a reliable base

Regression

Regression

• The simplest ML out there! A line (or curve) that adapts to the data points and tries to do a prediction based on the existing data and how it adapts to a mathematical function

Regression

• The simplest ML out there! A line (or curve) that adapts to the data points and tries to do a prediction based on the existing data and how it adapts to a mathematical function

Source

• There's a version called logistic regression which uses a probability curve, which in turn can be adapted for binary classification!

• There's a version called logistic regression which uses a probability curve, which in turn can be adapted for binary classification!

• Also very simple code to implement

• Also very simple code to implement

```
In [2]: # Source: https://www.w3schools.com/python/python_ml_linear_regression.asp
        import matplotlib.pyplot as plt
        from scipy import stats
        x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
        y = [99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86]
        # This is the lin req, one line of code!
        slope, intercept, r, p, std err = stats.linregress(x, y)
        def myfunc(x):
          return slope * x + intercept
        mymodel = list(map(myfunc, x))
        plt.scatter(x, y, color='red')
        plt.plot(x, mymodel)
        plt.show()
```


K Nearest Neighbours

• Classify by a majority vote of neighbours

K Nearest Neighbours

- Classify by a majority vote of neighbours
- Advantages: Simple to implement, robust to noisy training data, and effective if training data is large

K Nearest Neighbours

- Classify by a majority vote of neighbours
- Advantages: Simple to implement, robust to noisy training data, and effective if training data is large
- Disadvantages: Need to determine the value of K computation cost is high


```
In [3]: | # Source: https://www.w3schools.com/python/python_ml_knn.asp
        import matplotlib.pyplot as plt
        from sklearn.neighbors import KNeighborsClassifier
        x = [4, 5, 10, 4, 3, 11, 14, 8, 10, 12]
        y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]
        classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
        data = list(zip(x, y))
        # Two lines of code to declare and "fit" the model!
        knn = KNeighborsClassifier(n_neighbors=1)
        knn.fit(data, classes)
        # Test it
        new x = 8
        new y = 21
        new point = [(\text{new } x, \text{new } y)]
        prediction = knn.predict(new point)
        plt.scatter(x + [new x], y + [new y], c=classes + [prediction[0]])
        plt.text(x=new x-1.7, y=new y-0.7, s=f"new point, class: {prediction[0]}")
        plt.show()
```


Decision Tree/Random Forest

• Segment the predictor space into multiple regions

Decision Tree/Random Forest

- Segment the predictor space into multiple regions
- Each region has only a subset of the training dataset

Decision Tree/Random Forest

- Segment the predictor space into multiple regions
- Each region has only a subset of the training dataset
- ullet High variance o Small changes in the training data can give an entirely different decision tree model


```
In [4]: | # Source: https://scikit-learn.org/stable/modules/tree.html
                                      from sklearn.datasets import load iris
                                      from sklearn import tree
                                      iris = load_iris()
                                      X, y = iris.data, iris.target
                                      ## Again, classifier is just two lines of code
                                      clf = tree.DecisionTreeClassifier()
                                      clf = clf.fit(X, y)
                                      # You can even visualise the tree
                                      tree.plot tree(clf)
                                        Out[4]:
                                         150 \text{ nvalue} = [50, 50, 50]'),
                                             Text(0.4230769230769231, 0.75, 'gini = 0.0 \nsamples = 50 \nvalue = [5]
                                         0, 0, 0]'),
                                             Text(0.5769230769230769, 0.75, 'x[3] <= 1.75 \setminus gini = 0.5 \setminus gini = 0
                                         100 \text{ nvalue} = [0, 50, 50]'),
                                             Text(0.3076923076923077, 0.58333333333333334, 'x[2] <= 4.95 \ngini =
                                         0.168 \times = 54 \times = [0, 49, 5]'
                                             Text(0.15384615384615385, 0.41666666666666667, 'x[3] <= 1.65 \ngini =
                                         0.041 \times = 48 \times = [0, 47, 1]'
                                             Text(0.07692307692307693, 0.25, 'gini = 0.0\nsamples = 47\nvalue =
                                          [0, 47, 0]'),
```

Text(0.23076923076923078, 0.25, 'gini = 0.0\nsamples = 1\nvalue =

 $Text(0.46153846153846156, 0.41666666666666667, 'x[3] <= 1.55 \ngini =$

[0, 0, 1]'),

```
0.444 \times = 6 \times = 6 \times = [0, 2, 4]'),
Text(0.38461538461538464, 0.25, 'gini = 0.0\nsamples = 3\nvalue =
[0, 0, 3]'),
Text(0.5384615384615384, 0.25, 'x[2] <= 5.45\ngini = 0.444\nsamples
= 3 \text{ nvalue} = [0, 2, 1]'),
Text(0.46153846153846156, 0.0833333333333333, 'gini = 0.0\nsamples
= 2 \text{ nvalue} = [0, 2, 0]'),
Text(0.6153846153846154, 0.08333333333333333, 'gini = 0.0\nsamples =
1\nvalue = [0, 0, 1]'),
Text(0.8461538461538461, 0.5833333333333333, 'x[2] <= 4.85 \ngini =
0.043 \times = 46 \times = [0, 1, 45]'
0.444 \setminus samples = 3 \setminus samples = [0, 1, 2]'),
Text(0.6923076923076923, 0.25, 'gini = 0.0\nsamples = 1\nvalue = [0,
1, 0]'),
Text(0.8461538461538461, 0.25, 'gini = 0.0\nsamples = 2\nvalue = [0,
0, 2]'),
43\nvalue = [0, 0, 43]')]
```


Naive Bayes

• Probabilistic classifier inspired by the Bayes theorem, assumes attributes are conditionally independent

Naive Bayes

- Probabilistic classifier inspired by the Bayes theorem, assumes attributes are conditionally independent
- Advantages: small amount of training data required, extremely fast

Naive Bayes

- Probabilistic classifier inspired by the Bayes theorem, assumes attributes are conditionally independent
- Advantages: small amount of training data required, extremely fast
- Disadvantages: zero probability problem, if the conditional probability is zero for a particular attribute...

Posterior Attributes likelihoods
$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$
 Predictor prior Class prior

```
In [5]: # Credit: https://www.kaggle.com/code/nizamudma/iris-data-classification-using
    from sklearn.model_selection import train_test_split
    from sklearn.naive_bayes import GaussianNB

#split data for train and test
    x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.15)

# No surpise, two lines
    bc=GaussianNB()
    bc.fit(x_train,y_train)

# Predict samples from the text set
    print(bc.predict(x_test))
```

[0 1 2 1 1 0 0 2 0 2 0 0 0 2 1 1 1 0 0 2 2 0 0]

Support Vector Machine (SVM)

• Discriminative classifier defined by a separating hyperplane

Support Vector Machine (SVM)

- Discriminative classifier defined by a separating hyperplane
- Tuning parameters in SVM classifier
 - Kernel transformation method, e.g. Polynomial and exponential kernels
 - Regularisation how much to avoid misclassifying each training example
 - Gamma how far the influence of a single training example reaches, high gamma → only nearby examples

Support Vector Machine (SVM)

- Discriminative classifier defined by a separating hyperplane
- Tuning parameters in SVM classifier
 - Kernel transformation method, e.g. Polynomial and exponential kernels
 - Regularisation how much to avoid misclassifying each training example
 - Gamma how far the influence of a single training example reaches, high gamma → only nearby examples
- A margin in SVM is a separation of line to the closest class points
 - A good margin is one where this separation is larger for both the classes

• We will do this one in Lab Topic 5! But trust me, again it is two lines of code

Neural Network (NN)

We will talk **EXTENSIVELY** about them later on

Accuracy and Interpretability

Accuracy

Semi-supervised Learning • Aims to label unlabelled data points using knowledge learned from a small number of labelled data points

Semi-supervised Learning

- Aims to label unlabelled data points using knowledge learned from a small number of labelled data points
- Learning with both unlabelled and labeled data points

Semi-supervised Learning

- Aims to label unlabelled data points using knowledge learned from a small number of labelled data points
- Learning with both unlabelled and labeled data points
- Used when large amounts of data are costly to label

Assumptions of Semi-supervised Learning

• Continuity: Data points that are "close" have a common label

Assumptions of Semi-supervised Learning

- Continuity: Data points that are "close" have a common label
- Cluster: Data naturally forms discrete clusters, most common to share label

Assumptions of Semi-supervised Learning

- Continuity: Data points that are "close" have a common label
- Cluster: Data naturally forms discrete clusters, most common to share label
- Manifold: Data lies in a lower dimensional space than the input space

Examples of Semi-supervised Learning Algorithms

Transductive SVM

Examples of Semi-supervised Learning Algorithms

Transductive SVM

Label Propagation

Unsupervised Learning

• Does not have (or need) any labelled outputs, so its goal is to infer the natural structure present within a set of data points

Unsupervised Learning

- Does not have (or need) any labelled outputs, so its goal is to infer the natural structure present within a set of data points
- Finds inherent patterns of data

Unsupervised Learning

- Does not have (or need) any labelled outputs, so its goal is to infer the natural structure present within a set of data points
- Finds inherent patterns of data
- Most common tasks: clustering and exploratory data analysis

Examples of Unsupervised Learning Algorithms

K-means Clustering

Examples of Unsupervised Learning Algorithms

K-means Clustering

Principal Component Analysis (PCA)

Examples of Unsupervised Learning Algorithms

K-means Clustering

Principal Component Analysis (PCA)

Autoencoders

A simpler explanation of what I just said

```
In [6]:
        import warnings
         warnings.filterwarnings('ignore')
         from IPython.display import HTML
         HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/R90
Out[6]:
              How Als, like ChatGPT, Learn
```

As you can see, we can do more things beyond classification, such as detecting where the object lies in the image, recognise it from a pool of similar objects, segment where it is or even track it in a video feed!