Artificial Intelligence Algorithms and Mathematics

CSCN 8000

Linear Algebra

- Vectors
- Matrix
 - Inverse
 - Rank
- Linear Transformation
- Eigenvalues
- Eigenvectors
- These are used in machine learning to store and compute on data.

Motivation to Machine Learning

- Linear Algebra most useful in machine learning
- Most popular application –Neural Networks –image recognition –using matrix operations.

Recap: Singular vs Non-Singular

 Linear dependence between rows – Second row is multiple of the first row. Here they are linearly dependent

For Example : x+y = o

2X+2Y=0

1	1	First Row
2	2	Second Row/multiple of the first row

Otherwise, they are referred to be linearly independent

For Example : x+y = o

x+2y=0

 1
 1

 1
 2

Second Row/not a multiple of the first row

First Row

Rank of Matrix

- The rank of a matrix is the maximum number of linearly independent rows (or columns) in the matrix.
- A matrix is considered to be of full rank if none of its columns (or rows) can be expressed as a linear combination of the others. This implies linear independence. [Non-Singular]
- A matrix is non-full rank if its columns (or rows) are linearly dependent. In this case, at least one column (or row) can be expressed as a linear combination of the others. [Singular]

Solving System of Linear Equations

- To solve the linear equations, we could get to a solved system
 - Multiplying by a constant [Scaling]
 - Adding two equations [Elimination]
 - Subtracting the equations [Elimination]
 - Substitution with values
 - For example :
 - Eq 1: 4x + y = 16
 - $Eq \ 2: x \frac{1}{2}y = 4$
 - Multiply Eq 2 by 2 \rightarrow Eq 2: 2x y = 8
 - Add Eq 1 & Eq2 \rightarrow 6 $x = 24 \rightarrow x = 4$
 - Substitute x in Eq1 \rightarrow $(4*4) + y = 16 \rightarrow y = 0$

Matrix Row Reduction –Gaussian Elimination

 Apply the operations to convert the matrix into a much <u>simpler</u> representation and solve the system.

System (Actual)

- 5x+y =17
- 4x-3y=6

5	1	17
4	-3	6

Scaling $R1 = \frac{1}{5}R1$

$$1x + \frac{1}{5}y = \frac{17}{5}$$

Addition

$$R2 = R2 - 4R1$$

$$1x + \frac{1}{5}y = \frac{17}{5}$$

Scaling 1

$$R2 = \frac{1}{-3.8}R2$$

$$1x + \frac{1}{5}y = \frac{17}{5}$$

1	1/5	17/5
0	1	2

Substitution

$$R2 \rightarrow R1$$

$$1x + \frac{1}{5}y = \frac{17}{5}$$

1	1/5	17/5
0	1	2

Example

- Actual System
 - 5X+Y=11
 - 10X+2Y=22

Matrix form

5	1
10	2

Manipulated system

$$X+0.2Y=2.2$$

$$ox+oy=o$$

Upper Diagonal Matrix

1	0.2
0	0

Row Echelon Matrix

Row Echelon Form

- The Row Echelon Form (REF), also known as row-reduced form, is a specific arrangement of a matrix that simplifies solving systems of linear equations. A matrix is in row echelon form if it satisfies the following conditions:
 - Zero Rows: Any row containing only zeros is at the bottom.
 - Leading Entry: In each nonzero row, the leftmost nonzero entry is 1, and the element directly below this leading 1 is zero.
 - Leading 1s: The leading 1 in the second row (if it exists) is to the right of the leading 1 in the first row. The leading 1 in the third row (if it exists) is to the right of the leading 1 in the second row, and so on.

1	2	5	2	
0	1	3	3	٨
0	0	0	1	А
0	0	0	0	

1	2	5	2	
0	1	3	3	В
0	0	1	0	
0	0	1	1	

Rank of Matrix

- Number of pivot elements –Rank of matrix
- The rank of the matrix is the number of non-zero rows in the row echelon form. To find the rank, we need to perform the following steps:
 - Find the row-echelon form of the given matrix
 - Count the number of non-zero rows.

Trace of a Matrix

The trace of a matrix, typically denoted as tr(A) for a matrix A, is the sum of the elements on the main diagonal of the matrix.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

- tr(A) = 1 + 4 = 5
- Applications:
 - Often used in optimization problems
 - Understanding the properties of certain matrices like covariance matrices

Which Matrices have inverse?

- An invertible matrix is one that is:
 - Full Rank
 - Has Determinant not equal to zero
 - All rows and columns are <u>linearly independent</u>
 - Non-Singular
 - Square Matrix
- For example, for the following 2x2 matrix:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$A A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Recall: Vector

- A vector is a quantity defined by a magnitude and a direction. For example, a rocket's velocity is a 3-dimensional vector: its magnitude is the rocket's speed, and its direction is (hopefully) up.
- A vector can be represented by an array of numbers called scalars.
- Each scalar corresponds to the magnitude of the vector with regard to each dimension.
- For example, say the rocket is going up at a slight angle: it has a vertical speed of 5,000 m/s, and also a slight speed towards the East at 10 m/s, and a slight speed towards the North at 50 m/s.

17 of 14

Norms

L1 –norm:

- Formulation: |[a, b]| = |a| + |b|
- Geometric Interpretation: the distance you would travel if you could only move along the grid lines.
- L2 –norm:
 - Formulation: $||[a, b]||| = \sqrt{a^2 + b^2}$
 - Geometric Interpretation: measures the straight-line distance, which is the Euclidean distance between two points.

Sum and Difference of Vectors

• Sum and Difference of Vectors : $z = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $y = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$

- Add the coordinates of vectors, $z + y = \begin{bmatrix} 2+1 \\ 1+4 \end{bmatrix}$
- Subtract the coordinates of vectors , $z-y=\begin{bmatrix} 2-1\\1-4 \end{bmatrix}$

Distance between the Vectors

- How different are two vectors $A = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$ and $B = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$ from each other?
 - L1-distance |A B|:

$$|A - B| = |1 - 5| + |8 - 7| = 5$$

• L2-distance ||A - B||:

$$||A - B|| = \sqrt{(1 - 5)^2 + (8 - 7)^2} = 4.12$$

Geometric Definition of the Dot Product

- In Euclidean space, a Euclidean vector has both magnitude and direction.
- The dot product of two vectors x and y is defined by:
 - $x \cdot y = |x||y|\cos(\theta)$, where θ is the angle between the two vectors.
 - $x \cdot y = x_1 y_1 + x_2 y_2 + x_3 y_3 + \dots$

What is the value of A. B?

Cosine Similarity

- Evaluates similarity in direction, regardless of magnitude.
- Commonly used in text analysis, recommendation systems, and information retrieval.
- Formulation:

$$\cos(\theta) = \frac{x.y}{|x||y|}$$

•
$$cos(\theta) = \frac{x.y}{|x||y|}$$

• Dimensions =
$$\begin{bmatrix} hi \\ hello \\ world \end{bmatrix}$$

•
$$A = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},$$

• $Cos - Sim(A, B) = \frac{1}{2}$

$$Cos - Sim(A, B) = \frac{1}{2}$$

Cosine Similarity

How to find a norm of a vector?

- The norm of a vector can be found using NumPy function np.linalg.norm():
- print("Norm of a vector v is", np.linalg.norm(v))
 - Norm refers to the L₂ norm = $\sqrt{a^2 + b^2}$

Spam Classifier

Spam	Prize	Award
Yes	1	2
Yes	2	2
Yes	0	2
No	0	1
Yes	2	2
No	1	0

What threshold do we need to consider for the classifier to be considered as a model that does spam classifier?

Matrix Multiplication

Spam	Prize	Award
Yes	1	2
Yes	2	2
Yes	0	2
No	0	1
Yes	2	2
No	1	0

Linear Transformations

- A transformation is a function from one vector space to another that respects the underlying (linear) structure of each vector space.
- Linear Transformations
 - A transformation T is said to be linear if the following two properties are true for any scalar k and any input vectors u and v:
 - T(kv) = k.T(v)
 - T(u+v) = T(u) + T(v)

Linear Transformations as Matrices

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} Vector = \begin{bmatrix} -1 \\ 2 \end{bmatrix} -> in$$

• Matrix Multiplication, A @ Vector = $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ ->Out

Eigen Vectors and Eigen Values

• Given a vector v, apply linear transformation with square matrix A.

$$A.v = ?$$

 $A.v = \lambda v \rightarrow [Special Case]$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\lambda_1 = 3$$
, $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -1 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\lambda_2 = -1$$
, $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Eigen Values and Eigen Vectors

- An eigenvalue of a matrix represents the scaling factor that the matrix applies to a vector in its eigenvector direction.
- If v is an eigenvector of a matrix A with eigenvalue λ , then $Av = \lambda v$.
- Matrix A stretches or compresses the vector v by a factor of λ in its eigenvector direction.
- Eigenvalues and eigenvectors can be found using the NumPy function np.linalg.eig().
 - It returns a tuple consisting of a vector and an array.
 - The vector contains the eigenvalues.
 - The array contains the corresponding eigenvectors, one eigenvector per column

Quick Quiz 1

- What is the Cosine Similarity between the following pairs of sentences:
 - "hi hi" and "hello world"
 - "hello world" and "hello world"

References

https://learning.oreilly.com/library/view/hands-on-machinelearning/9781098125967/cho1.html#what_is_machine_learning

Thank you!

Any questions?

Thank You
Youssef Abdelkareem
yabdelkareem@conestogac.on.ca