

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Теория автоматического управления Курсовой проект на тему «Синтез следящего управления в условиях внешних возмущений для многоканальной системы» Вариант 17

> Студент: *Евстигнеев Д.М.*

Группа: *R33423* Преподаватель:

Оглавление

I.	Цель работы	2
II.	Ход работы	2
-	Исходные данные:	2
	1. Проверка объекта управления на свойство полной управляемости по состоянию)
]	и по выходу и наблюдаемости.	2
,	2. Проверка на вырожденность передаточных матриц от управляющих воздействи	ιй
]	к регулируемым и выходным переменным.	3
•	3. Определение математической модели возмущающего воздействия	5
4	4. Определение математической модели задающего воздействия	6
	5. Формирование модели ошибок	6
(б. Формирование требуемых компонентов системы управления (наблюдатели,	
]	встроенные модели)	6
,	7. Формирование эталонной модели на основе требуемых показателей качества	7
:	8. Расчёт параметров всех необходимых компонентов замкнутой системы	
((наблюдатели, стабилизирующая, следящая и компенсирующая компоненты)	7
	9. Вычисление матрицы замкнутой системы с последующим вычислением корней	Ĺ
(её характеристического полинома и сравнение их с желаемыми параметрами	
,	замкнутой системы	10
	10. Компьютерное моделирование САУ.	11
Ві	ывод:	15

I. Цель работы

Требуется синтезировать регулятор, обеспечивающий в замкнутой системе заданный набор показателей качества и выполнение целевого условия

II. Ход работы

Данные для 17 варианта:

)	<u>{o</u>	Α	В	B_f	С	D	Е	F	g(t)	$f_1(t)$	$f_2(t)$	Желаемые параметры замкнутой системы
1	7. [$\begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix}$	$\begin{bmatrix} -3 & 2 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix}$	$\begin{bmatrix} -4 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$	$\begin{bmatrix} 4\sin(7t-2) \\ 6\sin(7t-2) \end{bmatrix}$, , , ,	$1 < Re\lambda_i^* < 4$ $0 \le Im\lambda_i^* < 3$

Исходные данные:

$$A = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix}; B = \begin{bmatrix} -3 & 2 \\ 1 & 1 \end{bmatrix}; C = \begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix};$$
$$D = \begin{bmatrix} -4 & 0 \\ 0 & 1 \end{bmatrix}; E = \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix}; F = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix};$$

$$g(t) = \begin{bmatrix} 4\sin(7t-2) \\ 6\sin(7t-2) \end{bmatrix}; f_1(t) = \begin{bmatrix} 9\sin(4t+3) \\ \sin(4t+3) \end{bmatrix}; f_2(t) = \begin{bmatrix} \sin(5t+7) \\ 3\sin(5t+7) \end{bmatrix};$$

$$1 < |Re\lambda_i^*| < 4$$
$$0 \le |Im \lambda_i^*| < 3$$

1. Проверка объекта управления на свойство полной управляемости по состоянию и по выходу и наблюдаемости относительно регулируемых и выходных переменных.

Управляемость по состоянию:

$$\widetilde{B} = (B|AB|A^2B|...|A^{n-1}B)$$

Управляемость по выходу находится также, но с матрицами F и E:

Наблюдаемость относительно регулируемых переменных:

$$\widetilde{C} = (C|CA|CA^2|...|CA^{n-1})^T$$

$$\text{Nabl} = \\ -1 & 0 & 0 & -1 \\ 3 & 1 & 4 & 6 \\ \\ \text{ans} =$$

Наблюдаемость относительно выходных переменных:

Вывод: из полученных данных мы можем понять, что система полностью управляема и по состоянию, и по выходу, полностью наблюдаема по регулируемым и выходным переменным

2. Проверка на вырожденность передаточных матриц от управляющих воздействий к регулируемым и выходным переменным.

Условия существования единственного невырожденного решение уравнения Сильвестра:

$$M\Gamma - AM = BH$$

- Пара (A, B) полностью управляема.
- Пара (Г. Н) полностью наблюдаема.
- 3. Спектры матриц Γ, A не пересекаются.
- 4. Ранг матрицы ВН единичный.
- 5. Произведение матриц BH декомпозируемо на произведение векторов BH = bh, для которых выполняются условия полной управляемости пары (A,b) и полной наблюдаемости пары (Γ, h) .

$$W_{11}(s) = C_1 * (sI - A)^{-1}B_1 + D_{11}$$

val =

1/(- s^2 + 3*s + 4) - (3*(s - 3))/(- s^2 + 3*s + 4) - 4

$$W_{12}(s) = C_1 * (sI - A)^{-1}B_2 + D_{12}$$

$$W_{21}(s) = C_2 * (sI - A)^{-1}B_1 + D_{21}$$

Ws(2, 1)

val =

$$9/(-s^2 + 3*s + 4) - s/(-s^2 + 3*s + 4) + (9*(s - 3))/(-s^2 + 3*s + 4)$$

$$W_{22}(s) = C_2 * (sI - A)^{-1}B_2 + D_{22}$$

Ws(2, 2)

val =

$$1 - 11/(-s^2 + 3*s + 4) - (6*(s - 3))/(-s^2 + 3*s + 4) - s/(-s^2 + 3*s + 4)$$

$$W(s) = \begin{bmatrix} \frac{1-3(s-3)}{-s^2+3s+4} - 4 & \frac{1+2(s-3)}{-s^2+3s+4} \\ \frac{9-s+9(s-3)}{-s^2+3s+4} & 1 - \frac{11-6(s-3)-s}{-s^2+3*s+4} \end{bmatrix}$$

Определитель матрицы ПМ от управляющих воздействий к регулируемым переменным:

```
vir =
(4*s^2 + 13*s - 39)/(- s^2 + 3*s + 4)
```

Вывод: передаточная матрица от управляющих воздействий к регулируемым переменным не вырождена

3. Определение математической модели возмущающего воздействия.

Для начала определим модель возмущающего воздействия по входу:

$$\begin{cases} \dot{\xi}_{f1} = \Gamma_{f1}\xi_{f1}, \xi_{f_1}(0) = \xi_{f_10} \\ f_1 = H_{f1}\xi_{f1}, \xi_{f_1}(0) = \xi_{f_10} \end{cases}$$

$$f_1(t) = \begin{bmatrix} 9\sin(4t+3) \\ \sin(4t+3) \end{bmatrix}$$

$$z_1 = \sin(4t+3); \quad z_1(0) = 0.1411$$

$$z'_1 = z_2 = 4\cos(4t+3); \quad z_2(0) = -3.9600$$

$$z'_2 = -16\sin(4t+3) = -16z_1$$

$$\Gamma_{f_1} = \begin{bmatrix} 0 & 1 \\ -16 & 0 \end{bmatrix}; \quad H_{f_1} = \begin{bmatrix} 9 & 0 \\ 1 & 0 \end{bmatrix};$$

Далее модель для выхода:

$$\begin{cases} \dot{\xi}_{f2} = \Gamma_{f2}\xi_{f2}, \xi_{f_2}(0) = \xi_{f_20} \\ f_2 = H_{f2}\xi_{f2}, \xi_{f_2}(0) = \xi_{f_20} \end{cases}$$

$$f_2(t) = \begin{bmatrix} \sin(5t+7) \\ 3\sin(5t+7) \end{bmatrix}$$

$$z_1 = \sin(5t+7); \quad z_1(0) = 0.657$$

$$z'_1 = z_2 = 5\cos(5t+7); \quad z_2(0) = 3.7695$$

$$z'_2 = -25\sin(5t+7) = -25z_1$$

$$\Gamma_{f_2} = \begin{bmatrix} 0 & 1 \\ -25 & 0 \end{bmatrix}; H_{f_2} = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix};$$

Также найдем модель входного воздействия:

$$\begin{cases} \dot{\xi}_{g} = \Gamma_{g} \xi_{g} \\ g = H_{g} \xi_{g} \end{cases}, \xi_{g}(0) = \xi_{g0}$$
$$g(t) = \begin{bmatrix} 4 \sin(7t - 2) \\ 6 \sin(7t - 2) \end{bmatrix}$$

$$z_{1} = \sin(7t - 2); \quad z_{1}(0) = -0.9093$$

$$z'_{1} = z_{2} = 7\cos(7t - 2); \quad z_{2}(0) = -2.9130$$

$$z'_{2} = -49\sin(7t - 2) = -49z_{1}$$

$$\Gamma_{g} = \begin{bmatrix} 0 & 1 \\ -49 & 0 \end{bmatrix}; \quad H_{g} = \begin{bmatrix} 4 & 0 \\ 6 & 0 \end{bmatrix};$$

Вывод: получены модели возмущающего воздействия для входного и выходного сигнала и модель входного воздействия

4. Определение математической модели задающего воздействия.

$$\begin{cases} \dot{\xi} = \Gamma \xi, & \xi(0) = \xi_0 \\ f_1 = H_1 \xi \\ f_2 = H_2 \xi \\ g = H_g \xi \end{cases}$$

$$H_1 = \begin{bmatrix} 9 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}; H_2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \end{bmatrix};$$

$$H_g = \begin{bmatrix} 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 \end{bmatrix};$$

$$Gamma = \qquad \qquad z_0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0.1411 \\ -16 & 0 & 0 & 0 & 0 & 0 & 0 & -3.9600 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.6570 \\ 0 & 0 & -25 & 0 & 0 & 0 & 0.6570 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -0.9093 \\ 0 & 0 & 0 & 0 & -49 & 0 & -2.9130 \end{bmatrix}$$

5. Формирование модели ошибок.

$$\begin{cases} e = x - M\xi' \\ \varepsilon = g - y \end{cases} \rightarrow \begin{cases} e' = Ax + Bu + B_f f_1 - M\Gamma\xi \\ \varepsilon = g - Cx - Du \end{cases}$$
$$\begin{cases} e' = (A - BK)e + B\bar{u} + B_f H_1 \xi + (A - BK)M\xi - M\Gamma\xi \\ \varepsilon = (C - DK)e - D\bar{u} - (C - DK)M\xi + H_g\xi \end{cases}$$

6. Формирование требуемых компонентов системы управления (наблюдатели, встроенные модели).

Модель расширенной системы с внутренней моделью: $\begin{cases} x_f' = \bar{A}x_f + \bar{B}u \\ z - g = \bar{E}x_f + Fu \end{cases}$

Наблюдатель расширенной размерности:

$$\hat{x}_f' = (\bar{A} - \bar{L}\bar{E})\hat{x}_f + \bar{L}(z - g) + (\bar{B} - \bar{L}F)u$$

Ошибка наблюдения:
$$\dot{ ilde{x}}_f = x\dot{f} - \hat{x}_f'
ightarrow \dot{ ilde{x}}_f = (ar{A} - ar{L}ar{E}) \widetilde{x}_f$$

7. Формирование эталонной модели на основе требуемых показателей качества.

$$1 < |Re\lambda_i^*| < 4$$

$$0 \le |Im \lambda_i^*| < 3$$

$$\lambda_i^* = -3$$

$$\Gamma = \begin{bmatrix} -3 & 1\\ 0 & -3 \end{bmatrix}; H_g = \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix}$$

ans =

Проверим ранг:

Вывод: пара (Γ, H) полностью наблюдаема

8. Расчёт параметров всех необходимых компонентов замкнутой системы (наблюдатели, стабилизирующая, следящая и компенсирующая компоненты).

Модель ошибок управления:

$$\begin{cases} \dot{e} = (A - BK)e + B\overline{u} + (A - BK)M\xi + B_f H_1 \xi - M\Gamma \xi \\ \varepsilon = (C - DK)e - D\overline{u} - (C - DK)M\xi + H_g \xi \end{cases}$$

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} BL = M\Gamma - (A - BK)M - B_f H_1 \\ DL = H_g - (C - DK)M \end{cases}$$

Закон управления:

$$u = L\hat{\xi} - K\hat{x}$$

Для начала найдем матрицу линейных стационарных обратных связей К

$$\begin{cases} BH = M\Gamma - AM \\ K = -HM^{-1} \end{cases}$$

>> M=sylvester(-A,G,B*H)

M =

>> K=-H*inv(M)

K =

Далее рассчитаем следящую и компенсирующую компоненту по модели ошибки управления с помощью уравнения Франкиса-Дэвисона

$$\begin{cases} e' = (A - BK)e + B\bar{u} + B_f H_1 \xi + (A - BK)M\xi - M\Gamma\xi \\ \varepsilon = (C - DK)e - D\bar{u} - (C - DK)M\xi + H_g \xi \end{cases}$$

$$\begin{cases} BL = M\Gamma - (A - BK)M - B_f H_1 \\ DL = H_g - (C - DK)M \end{cases}$$

$$L_g = \begin{bmatrix} -5.1354 & -0.6920 & 0 & 0.6.8659 & -2.9620 \\ 1.0769 & 3.4873 & 0 & 0.11.1406 & -2.3256 \end{bmatrix}$$

Модель расширенной системы с внутренней моделью: $\begin{cases} x_f' = \bar{A}x_f + \bar{B}u \\ z - g = \bar{E}x_f + Fu \end{cases}$

Наблюдатель расширенной размерности:

$$\hat{x}_f' = (\bar{A} - \bar{L}\bar{E})\hat{x}_f + \bar{L}(z - g) + (\bar{B} - \bar{L}F)u$$

Ошибка наблюдения: $\vec{x}_f = x\dot{f} - \hat{x}_f' o \dot{\tilde{x}}_f = (\bar{A} - \bar{L}\bar{E})\tilde{x}_f$

Gn_	. =							
	-3	1	0	0	0	0	0	0
	0	-3	1	0	0	0	0	0
	0	0	-3	1	0	0	0	0
	0	0	0	-3	1	0	0	0
	0	0	0	0	-3	1	0	0
	0	0	0	0	0	-3	1	0
	0	0	0	0	0	0	-3	1
Hn	=							

>> obsv(Gn_,Hn_)

ans =

Columns 1 through 6

1	0	0	0	0	0
1	0	0	0	0	0
-3	1	0	0	0	0
-3	1	0	0	0	0
9	-6	1	0	0	0
9	-6	1	0	0	0
-27	27	-9	1	0	0
-27	27	-9	1	0	0
81	-108	54	-12	1	0
81	-108	54	-12	1	0
-243	405	-270	90	-15	1
-243	405	-270	90	-15	1
729	-1458	1215	-540	135	-18
729	-1458	1215	-540	135	-18
-2187	5103	-5103	2835	-945	189
-2187	5103	-5103	2835	-945	189

Columns 7 through 8

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1	0
1	0
-21	1
-21	1

```
>> rank(ans)
ans =
8
```

Вывод: пара ($\overline{\Gamma}$ н, \overline{H} н) полностью наблюдаема

Уравнение для нахождения матрицы входа наблюдателя \overline{L} :

```
>> M_=sylvester(-transpose(A_),Gn_,transpose(E_)*Hn_)
M_ =
```

2.3314	0.9297	0.3185	0.1340	0.0669	0.0344	0.0175	0.0088
-0.7771	-0.5690	-0.2958	-0.1433	-0.0701	-0.0348	-0.0174	-0.0087
-0.3529	0.0554	0.0202	0.0019	-0.0003	-0.0001	-0.0000	0.0000
0.1176	0.0208	0.0002	-0.0006	-0.0001	-0.0000	0.0000	0.0000
0.5172	-0.1189	-0.0212	-0.0001	0.0004	0.0000	-0.0000	-0.0000
-0.1724	-0.0178	0.0011	0.0004	0.0000	-0.0000	-0.0000	-0.0000
1.8571	0.9796	0.4971	0.2496	0.1249	0.0625	0.0312	0.0156
-0.6429	-0.2704	-0.1279	-0.0629	-0.0313	-0.0156	-0.0078	-0.0039

Закон управления:

$$u = L\xi + K\hat{x}$$
 $u = KL\hat{x}f$ $\Gamma_{\text{Де}} = \hat{x_f} = \hat{x_f}, K_L = [L \quad K]$

9. Вычисление матрицы замкнутой системы с последующим вычислением корней её характеристического полинома и сравнение их с желаемыми параметрами замкнутой системы.

Вывод: корни характеристического полинома замкнутой системы совпали с желаемыми корнями замкнутой системы

10. Компьютерное моделирование САУ.

Рис.1 Модель симуляции

Рис.2 Состояние генератора

Рис.3 График вектора невязки состояния генератора и состояния его наблюдателя

Рис 4. График вектора невязки состояния генератора и состояния его наблюдателя

Рис.5 График выходных переменных системы

Рис.6 График переменных состояния объекта управления

Рис.7 График вектора невязки переменных состояния объекта и состояния наблюдателя

Рис.8 График переменных состояния наблюдателя за переменными состояния объекта

Рис 9. График регулируемых переменных системы

Рис 10. График управляющих воздействий системы

Вывод: в итоге выполнения курсового проекта был произведен синтез следящего управления в условиях внешних возмущений многоканальной системы. Синтезирован регулятор, обеспечивающий в замкнутой системе заданный набор показателей качества и выполнение целевого условия