#### Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Двудольные графы

Примеры двудольных графов

Паросочетания

Теорема Холла

Стабильное паросочетание

• В некоторых графах вершины естественным образом разбиваются на две части



- В некоторых графах вершины естественным образом разбиваются на две части
- И все ребра соединяют вершины одной части с вершинами другой части



 Например: вершины — пользователи и видеоролики, ребра — просмотрел ли пользователь видеоролик



- Например: вершины пользователи и видеоролики, ребра — просмотрел ли пользователь видеоролик
- Или вершины абитуриенты и университеты, ребра — поступил ли абитуриент в университет



- Например: вершины пользователи и видеоролики, ребра — просмотрел ли пользователь видеоролик
- Или вершины абитуриенты и университеты, ребра — поступил ли абитуриент в университет
- Такие графы называются двудольными



• Более формально, граф двудольный, если

- Более формально, граф двудольный, если
- его вершины можно разбить на два непересекающихся подмножества L и R так, что

- Более формально, граф двудольный, если
- его вершины можно разбить на два непересекающихся подмножества L и R так, что
- у каждого ребра один конец лежит в L, а второй в R

- Более формально, граф двудольный, если
- его вершины можно разбить на два непересекающихся подмножества L и R так, что
- у каждого ребра один конец лежит в L, а второй в R
- Множества L и R называются долями

### Лемма

#### Лемма

В двудольном графе нет циклов нечетной длины

• Пусть L и R — доли

#### Лемма

- Пусть L и R доли
- Каждое ребро ведет из L в R или наоборот

#### Лемма

- Пусть L и R доли
- Каждое ребро ведет из L в R или наоборот
- Чтобы вернуться в начальную вершину придется сделать четное число шагов

#### Лемма

- Пусть L и R доли
- Каждое ребро ведет из L в R или наоборот
- Чтобы вернуться в начальную вершину придется сделать четное число шагов
- Оказывается верно и обратное!

### Теорема

Граф двудольный тогда и только тогда, когда в нем нет циклов нечетной длины

### Теорема

Граф двудольный тогда и только тогда, когда в нем нет циклов нечетной длины

 Мы уже доказали, что в двудольных графах нет циклов нечетной длины

### Теорема

Граф двудольный тогда и только тогда, когда в нем нет циклов нечетной длины

- Мы уже доказали, что в двудольных графах нет циклов нечетной длины
- Осталось убедиться, что всякий граф без циклов нечетной длины является двудольным

### Теорема

Граф двудольный тогда и только тогда, когда в нем нет циклов нечетной длины

- Мы уже доказали, что в двудольных графах нет циклов нечетной длины
- Осталось убедиться, что всякий граф без циклов нечетной длины является двудольным
- Идея: возьмем произвольную вершину v и покрасим ее в красный цвет

### Теорема

Граф двудольный тогда и только тогда, когда в нем нет циклов нечетной длины

- Мы уже доказали, что в двудольных графах нет циклов нечетной длины
- Осталось убедиться, что всякий граф без циклов нечетной длины является двудольным
- Идея: возьмем произвольную вершину v и покрасим ее в красный цвет
- Для вершины u, если в нее из v ведет путь четной длины, красим ее тоже в красный цвет, а иначе в синий цвет





















• Раскраска образует разбиение вершин на доли

- Раскраска образует разбиение вершин на доли
- Теорема доказана?

- Раскраска образует разбиение вершин на доли
- Теорема доказана?
- Нет, есть одна тонкость

- Раскраска образует разбиение вершин на доли
- Теорема доказана?
- Нет, есть одна тонкость
- Покрасили все вершины, в которые есть путь из A

- Раскраска образует разбиение вершин на доли
- Теорема доказана?
- Нет, есть одна тонкость
- Покрасили все вершины, в которые есть путь из  ${\cal A}$
- А что если в некоторые вершины нет пути из A?

- Раскраска образует разбиение вершин на доли
- Теорема доказана?
- Нет, есть одна тонкость
- Покрасили все вершины, в которые есть путь из  ${\cal A}$
- А что если в некоторые вершины нет пути из A?
- Мы разбили на доли только компоненту связности, в которой лежит A

- Раскраска образует разбиение вершин на доли
- Теорема доказана?
- Нет, есть одна тонкость
- Покрасили все вершины, в которые есть путь из  ${\cal A}$
- А что если в некоторые вершины нет пути из A?
- Мы разбили на доли только компоненту связности, в которой лежит A
- Но можно отдельно провести разбиение для остальных компонент!

Двудольные графы

Примеры двудольных графов

Паросочетания

Теорема Холла

Стабильное паросочетание

 Часто вершины двудольного графа заранее разбиты на доли

- Часто вершины двудольного графа заранее разбиты на доли
- Но это не всегда так

- Часто вершины двудольного графа заранее разбиты на доли
- Но это не всегда так
- Мы разберем пару примеров двудольных графов, в которых двудольность не сразу очевидна

### Двумерная решетка

• Такой граф называется двумерной решеткой



### Двумерная решетка

- Такой граф называется двумерной решеткой
- Он двудольный!



### Двумерная решетка

- Такой граф называется двумерной решеткой
- Он двудольный!



• В качестве V возьмем множество  $\{0,1\}^n$  всех последовательностей из нулей и единиц длины n



- В качестве V возьмем множество  $\{0,1\}^n$  всех последовательностей из нулей и единиц длины n
- Ребрами соединим те последовательности, которые отличаются только в одной координате



• Это вершины и ребра единичного куба в n-мерном пространстве



- Это вершины и ребра единичного куба в n-мерном пространстве
- Но это же и частый объект в computer science



• Это двудольный граф



- Это двудольный граф
- В одной доле те вершины, в которых четно единиц, в другой те, в которых нечетно



- Это двудольный граф
- В одной доле те вершины, в которых четно единиц, в другой те, в которых нечетно
- Ребра только между долями



Двудольные графы

Примеры двудольных графов

#### Паросочетания

Теорема Холла

Стабильное паросочетание

#### Паросочетания

• Паросочетанием в графе называется множество ребер без общих концов

#### Паросочетания

- Паросочетанием в графе называется множество ребер без общих концов
- Наибольшим паросочетанием называется паросочетание самого большого размера

#### Паросочетания

- Паросочетанием в графе называется множество ребер без общих концов
- Наибольшим паросочетанием называется паросочетание самого большого размера
- Нам часто требуется найти паросочетание в двудольном графе, покрывающее все вершины одной из долей

|          | Сотр. А | Сотр. В | Сотр. С | Сотр. D |
|----------|---------|---------|---------|---------|
| Задача 1 | +       |         | +       |         |
| Задача 2 |         | +       | +       |         |
| Задача 3 | +       | +       |         |         |
| Задача 4 |         |         |         | +       |



(3)







|   | Α | В | C | D | Ε | F |
|---|---|---|---|---|---|---|
| 1 | + | + |   |   |   |   |
| 2 | + | + | + |   |   |   |
| 3 |   |   |   | + | + |   |
| 4 |   | + | + | + |   | + |
| 5 |   |   |   | + | + |   |
| 6 |   |   |   | + | + |   |

| 1   | A   |
|-----|-----|
| 2   | B   |
| 3   | (C) |
| 4   | D   |
| (5) | E   |
| 6   | F   |









Двудольные графы

Примеры двудольных графов

Паросочетания

Теорема Холла

Стабильное паросочетание

#### Определение

Пусть G=(V,E) — граф и  $S\subseteq V$  подмножество его вершин. Окрестностью N(S) множества S называется множество вершин, соединенных с хотя бы одной вершиной из S

#### Определение

Пусть G=(V,E) — граф и  $S\subseteq V$  подмножество его вершин. Окрестностью N(S) множества S называется множество вершин, соединенных с хотя бы одной вершиной из S

#### Теорема Холла

В двудольном графе  $G=(L\cup R,E)$  существует паросочетание, покрывающее все вершины из L тогда и только тогда, когда для всякого подмножества вершин  $S\subseteq L$ ,

$$|S| \le |N(S)| .$$

• В одну сторону доказательство несложно

- В одну сторону доказательство несложно
- Если есть паросочетание, покрывающее все вершины в L, то для всякого  $S\subseteq L$  можно взять парные вершины из R

- В одну сторону доказательство несложно
- Если есть паросочетание, покрывающее все вершины в L, то для всякого  $S\subseteq L$  можно взять парные вершины из R
- Их |S|, а значит  $|N(S)| \geq |S|$













• В другую сторону доказательство сложнее

- В другую сторону доказательство сложнее
- Мы знаем, что выполняется условие  $|N(S)| \geq |S|$  для каждого подмножества вершин S, нужно доказать, что есть паросочетание

- В другую сторону доказательство сложнее
- Мы знаем, что выполняется условие  $|N(S)| \geq |S|$  для каждого подмножества вершин S, нужно доказать, что есть паросочетание
- Будем доказывать для графа на n вершинах, предполагая, что для меньшего числа вершин теорема уже доказана

- В другую сторону доказательство сложнее
- Мы знаем, что выполняется условие  $|N(S)| \geq |S|$  для каждого подмножества вершин S, нужно доказать, что есть паросочетание
- Будем доказывать для графа на n вершинах, предполагая, что для меньшего числа вершин теорема уже доказана
- Взгляд с другой стороны: будем строить паросочетание рекурсивно





Выберем любую вершину слева



Попробуем соединить с произвольным соседом справа



Посмотрим, есть ли паросочетание в оставшемся графе



Пусть есть паросочетание



Получаем паросочетание в изначальном графе



Рассмотрим второй случай



Выбрали пару к вершине



И в оставшемся графе паросочетания нет



Тогда для него нарушается условие теоремы



Но тогда вместе с удаленной вершиной получится поровну вершин



Найдем паросочетание в этом подграфе



Рассмотрим оставшийся подграф



В нем выполняется условие теоремы!



В нем выполняется условие теоремы!



В нем выполняется условие теоремы!



Найдем в нем паросочетание



Получаем паросочетание во всем графе

## Двудольные графы

Двудольные графы

Примеры двудольных графов

Паросочетания

Теорема Холла

Стабильное паросочетание

• Пусть у нас есть объекты двух типов

- Пусть у нас есть объекты двух типов
- Мы хотим их соединять друг с другом

- Пусть у нас есть объекты двух типов
- Мы хотим их соединять друг с другом
- Не обязательно паросочетание: одному объекту могут быть сопоставлены несколько разных

- Пусть у нас есть объекты двух типов
- Мы хотим их соединять друг с другом
- Не обязательно паросочетание: одному объекту могут быть сопоставлены несколько разных
- Любой объект можно сопоставить с другим, но есть предпочтения

- Пусть у нас есть объекты двух типов
- Мы хотим их соединять друг с другом
- Не обязательно паросочетание: одному объекту могут быть сопоставлены несколько разных
- Любой объект можно сопоставить с другим, но есть предпочтения
- Хотим локальную стабильность: несопоставленным объектам не должно быть выгодно бросить свои пары и соединиться друг с другом

#### Примеры

 Бытовые примеры: распределение студентов по университетам, доноров почек по пациентам и так далее

#### Примеры

- Бытовые примеры: распределение студентов по университетам, доноров почек по пациентам и так далее
- Более близкий нам пример: распределение пользователей по серверам

• Рассмотрим упрощенную постановку

- Рассмотрим упрощенную постановку
- У нас есть n кандидатов

- Рассмотрим упрощенную постановку
- У нас есть n кандидатов
- У нас есть n вакансий

- Рассмотрим упрощенную постановку
- У нас есть n кандидатов
- У нас есть n вакансий
- Есть полные списки предпочтений для всех кандидатов и для всех вакансий

- Рассмотрим упрощенную постановку
- У нас есть n кандидатов
- У нас есть n вакансий
- Есть полные списки предпочтений для всех кандидатов и для всех вакансий
- Хотим построить паросочетание: n пар из кандидатов и вакансий

- Рассмотрим упрощенную постановку
- У нас есть n кандидатов
- У нас есть n вакансий
- Есть полные списки предпочтений для всех кандидатов и для всех вакансий
- Хотим построить паросочетание: n пар из кандидатов и вакансий
- Хотим устойчивости: никого из кандидатов нельзя перенаправить на другую вакансию ко взаимной выгоде









Существует ли стабильное паросочетание?

• Не всегда речь именно про вакансии и кандидатов

- Не всегда речь именно про вакансии и кандидатов
- Нужны какие-то удобные обозначения

- Не всегда речь именно про вакансии и кандидатов
- Нужны какие-то удобные обозначения
- Стандартная терминология: мужчины и женщины

- Не всегда речь именно про вакансии и кандидатов
- Нужны какие-то удобные обозначения
- Стандартная терминология: мужчины и женщины
- Паросочетания браки

- Не всегда речь именно про вакансии и кандидатов
- Нужны какие-то удобные обозначения
- Стандартная терминология: мужчины и женщины
- Паросочетания браки
- Терминология удобна из-за краткости и симметричности

- Не всегда речь именно про вакансии и кандидатов
- Нужны какие-то удобные обозначения
- Стандартная терминология: мужчины и женщины
- Паросочетания браки
- Терминология удобна из-за краткости и симметричности
- Нам будет удобно говорить о вершинах левой и правой доли

• Оказывается, что стабильное паросочетание всегда существует

- Оказывается, что стабильное паросочетание всегда существует
- Но как это доказывать?

- Оказывается, что стабильное паросочетание всегда существует
- Но как это доказывать?
- И как искать стабильное паросочетание?

- Оказывается, что стабильное паросочетание всегда существует
- Но как это доказывать?
- И как искать стабильное паросочетание?
- Мы разберем алгоритм Гэйла-Шепли

- Оказывается, что стабильное паросочетание всегда существует
- Но как это доказывать?
- И как искать стабильное паросочетание?
- Мы разберем алгоритм Гэйла-Шепли
- Обобщается на гораздо более общие постановки

 На каждом шаге алгоритма у нас есть частичное паросочетание

- На каждом шаге алгоритма у нас есть частичное паросочетание
- На каждом шаге вершина левой доли без пары делает предложение

- На каждом шаге алгоритма у нас есть частичное паросочетание
- На каждом шаге вершина левой доли без пары делает предложение
- Его либо принимают, либо отвергают

- На каждом шаге алгоритма у нас есть частичное паросочетание
- На каждом шаге вершина левой доли без пары делает предложение
- Его либо принимают, либо отвергают
- Продолжаем до тех пор, пока не построим полное паросочетание

- На каждом шаге алгоритма у нас есть частичное паросочетание
- На каждом шаге вершина левой доли без пары делает предложение
- Его либо принимают, либо отвергают
- Продолжаем до тех пор, пока не построим полное паросочетание
- Нужно уточнить, кто и кому делает предложение

- На каждом шаге алгоритма у нас есть частичное паросочетание
- На каждом шаге вершина левой доли без пары делает предложение
- Его либо принимают, либо отвергают
- Продолжаем до тех пор, пока не построим полное паросочетание
- Нужно уточнить, кто и кому делает предложение
- Нужно уточнить, когда предложение принимают

На каждом шаге выбираем любую свободную вершину левой доли

- На каждом шаге выбираем любую свободную вершину левой доли
- Она делает предложение своему старшему приоритету среди тех, кому еще не делала предложение

- На каждом шаге выбираем любую свободную вершину левой доли
- Она делает предложение своему старшему приоритету среди тех, кому еще не делала предложение
- Вершина правой доли принимает предложение, если она без пары

- На каждом шаге выбираем любую свободную вершину левой доли
- Она делает предложение своему старшему приоритету среди тех, кому еще не делала предложение
- Вершина правой доли принимает предложение, если она без пары
- Вершина правой доли принимает предложение, если ее текущая пара для нее менее приоритетна

$$p > q > r$$
 (a) (p)  $c > b > a$   
 $p > q > r$  (b) (q)  $a > c > b$   
 $q > p > r$  (c) (r)  $b > a > c$ 

$$p > q > r$$
 (a) (p)  $c > b > a$   
 $p > q > r$  (b) (q)  $a > c > b$   
 $q > p > r$  (c) (r)  $b > a > c$ 

$$p > q > r$$
 (a) (p)  $c > b > a$   
 $p > q > r$  (b) (q)  $a > c > b$   
 $q > p > r$  (c) (r)  $b > a > c$ 

$$p > q > r$$
 (a)  $p$  (c) b > a  
 $p > q > r$  (b)  $q$  (a) c > b  
 $q > p > r$  (c)  $r$  (b) a > c

$$p > q > r$$
 (a) (p)  $c > b > a$   
 $p > q > r$  (b) (q)  $a > c > b$   
 $q > p > r$  (c) (r)  $b > a > c$ 

$$p > q > r$$
 (a) (p)  $c > b > a$   
 $p > q > r$  (b) (q)  $a > c > b$   
 $q > p > r$  (c) (r)  $b > a > c$ 





























Нужно проверить три вещи:

Нужно проверить три вещи:

• Почему алгоритм заканчивает работу?

Нужно проверить три вещи:

- Почему алгоритм заканчивает работу?
- Почему он строит полное паросочетание?

Нужно проверить три вещи:

- Почему алгоритм заканчивает работу?
- Почему он строит полное паросочетание?
- Почему это стабильное паросочетание?

• На каждом шаге делаем предложение

- На каждом шаге делаем предложение
- Предложения никогда не повторяются

- На каждом шаге делаем предложение
- Предложения никогда не повторяются
- Всего  $n^2$  возможных предложений

- На каждом шаге делаем предложение
- Предложения никогда не повторяются
- Всего  $n^2$  возможных предложений
- Остановимся за  $O(n^2)$  шагов

- На каждом шаге делаем предложение
- Предложения никогда не повторяются
- Всего  $n^2$  возможных предложений
- Остановимся за  $O(n^2)$  шагов
- Размер входа тоже  $O(n^2)$

• Пусть вершина левой доли осталась без пары

- Пусть вершина левой доли осталась без пары
- Тогда ее все отвергли

- Пусть вершина левой доли осталась без пары
- Тогда ее все отвергли
- Чтобы отвергнуть вершина правой доли должна иметь пару

- Пусть вершина левой доли осталась без пары
- Тогда ее все отвергли
- Чтобы отвергнуть вершина правой доли должна иметь пару
- Если у вершины правой доли появляется пара, дальше у нее всегда есть пара

- Пусть вершина левой доли осталась без пары
- Тогда ее все отвергли
- Чтобы отвергнуть вершина правой доли должна иметь пару
- Если у вершины правой доли появляется пара, дальше у нее всегда есть пара
- В конце у каждой вершины правой доли есть пара

- Пусть вершина левой доли осталась без пары
- Тогда ее все отвергли
- Чтобы отвергнуть вершина правой доли должна иметь пару
- Если у вершины правой доли появляется пара, дальше у нее всегда есть пара
- В конце у каждой вершины правой доли есть пара
- Противоречие

• Пусть есть нестабильная пара l и r

- Пусть есть нестабильная пара l и r
- Тогда r предпочтительнее для l, чем его текущая пара

- Пусть есть нестабильная пара l и r
- Тогда r предпочтительнее для l, чем его текущая пара
- Значит r отвергла l

- Пусть есть нестабильная пара l и r
- Тогда r предпочтительнее для l, чем его текущая пара
- Значит r отвергла l
- Но для r ситуация может только улучшаться

- Пусть есть нестабильная пара l и r
- Тогда r предпочтительнее для l, чем его текущая пара
- Значит r отвергла l
- Но для r ситуация может только улучшаться
- Значит ее текущая пара для нее приоритетнее, противоречие

Двудольные графы: вершины двух типов, ребра соединяют разнотипные вершины

- Двудольные графы: вершины двух типов, ребра соединяют разнотипные вершины
- Важный объект паросочетания

- Двудольные графы: вершины двух типов, ребра соединяют разнотипные вершины
- Важный объект паросочетания
- Есть теоретический критерий

- Двудольные графы: вершины двух типов, ребра соединяют разнотипные вершины
- Важный объект паросочетания
- Есть теоретический критерий
- Есть хорошие алгоритмы