Predicting house price

LINEAR REGRESSION - KC_HOUSE_DATA

CONTEXT

- 1. Variable Selection & Data preprocess
- 2. 4 Assumptions of Linear Regression
- 3. Summary

VARIABLE SELECTION & DATA PREPROCESS

PURPOSE OF ANALYSIS

> Based on information and data on housing, I want to make a modeling predict price of house by using Linear Regression.

There are some explanatory variables (input variables) and target value is "price"

INFORMATION OF VARIABLES

There are 21 variables in this dataset

I don't know information about some explanatory variables.

So I want to know mean of them

- > sqft_living: the area of Residential space
- > sqft_lot: the area of site
- > sqft_above : the area except for the basement
- > sqft_basement : the area of underground
- **Waterfront: River-view**

- > lat : latitude
- **L**ong: longitude
- **▶** Grade: class of the house in King Country

VARIABLE TRANSFORM

	id	recent_built	date	price	bedrooms	bathrooms	sqft_
0	7129300520	1955	20141013T000000	221900.0	3	1.00	
1	6414100192	1991	20141209T000000	538000.0	3	2.25	
2	5631500400	1933	20150225T000000	180000.0	2	1.00	
3	2487200875	1965	20141209T000000	604000.0	4	3.00	
4	1954400510	1987	20150218T000000	510000.0	3	2.00	
21608	263000018	2009	20140521T000000	360000.0	3	2.50	
21609	6600060120	2014	20150223T000000	400000.0	4	2.50	
21610	1523300141	2009	20140623T000000	402101.0	2	0.75	
21611	291310100	2004	20150116T000000	400000.0	3	2.50	
21612	1523300157	2008	20141015T000000	325000.0	2	0.75	

- ➤ I think 'year_built' column and 'year_renovated' column can be combined with 'recent_built. Because renovated house mean re-built house for fixing and renovating, so this is same with 'year_built'
- > So I make new column 'recent_built' and not renovated house ('year_renovate' =0) have year_built value in 'recent_built' and renovated house have year_renovated value in 'recent_built'.

VARIABLE SELECTION

- > Date is not numerical but object of date format. So I don't use 'Date' Column
- And I think latitude, longitude, zipcode is not affect to House' price

zipcode	describe
count	21613.000000
mean	98077.939805
std	53.505026
min	98001.000000
25%	98033.000000
50%	98065.000000
75%	98118.000000
max	98199.000000
Name: z	ipcode, dtype: float64

lat de	escribe
count	t 21613.000000
mean	47.560053
std	0.138564
min	47.155900
25%	47.471000
50%	47.571800
75%	47.678000
max	47.777600
Name:	lat, dtype: float64

long (describe
count	t 21613.000000
mean	-122.213896
std	0.140828
min	-122.519000
25%	-122.328000
50%	-122.230000
75%	-122.125000
max	-121.315000
Name:	long, dtype: float64

There are zipcode, lat and long's describe.

The describes show there is a little difference each column's datas(location) So I don't use these columns in Linear Regression Model

VARIABLE SELECTION

▶ Before deleting outliers, I select variable first. Because if I delete outlier before variable selection, there are many datas which is deleted before use.

```
corr = house[['price','date','sqft_lot','recent_built','bedrooms','grade','sqft_above','bathrooms','sqft_lot','condi
corr['price']
                 1.000000
price
                 0.091812
sqft_lot
recent built
                 0.103392
                 0.313419
bedrooms
                 0.678333
grade
sqft_above
                 0.596404
bathrooms
                 0.519106
                 0.091812
sqft_lot
                 0.041264
condition
sqft_living
                 0.692901
                 0.309669
sqft_basement
                 0.265588
floors
                 0.390700
view
waterfront
                 0.230223
sqft_living15
                 0.599003
sqft_lot15
                 0.083281
Name: price, dtype: float64
```

- **Above numbers represents correlation between price and other columns.**
- 'Grade', 'sqft_above', 'bathrooms','sqft_living', 'view' and 'sqft_living15' have higher correlation than other columns

> By using IQR, I want to delete outliers first. But I have some problem in that way I explain that after commenting IQR

```
def find_outlier(data):
    Q1 , Q3 = np.percentile(data,[25,75])
    IQR = Q3 - Q1
    Over_outlier = Q3 + 1.5*IQR
    Low_outlier = Q1 - 1.5*IQR
    location = np.where((data>Over_outlier)|(data<Low_outlier))
    result = [list(location[0]),len(list(location[0]))]
    return result</pre>
```

- **▶** Q1, Q3 each mean value of 25 percent of datas and value of 75 percent of datas
- **▶ IQR = Q3 Q1 and Over_Outlier is Q3 + 1.5*IQR and Low_Outlier is Q1 1.5*IQR**

I want to find outlier's index, so I make above function

```
print("Grade column's Number of Outliers by IQR : " ,find_outlier(house['grade'])[1])
print("\nsqft_above column's Number of Outliers by IQR : " ,find_outlier(house['sqft_above'])[1])
print("\nbathrooms column's Number of Outliers by IQR : " ,find_outlier(house['bathrooms'])[1])
print("\nsqft_living column's Number of Outliers by IQR : " ,find_outlier(house['sqft_living'])[1])
print("\nsqft_living15 column's Number of Outliers by IQR : " ,find_outlier(house['view'])[1])
print("\nsqft_living15 column's Number of Outliers by IQR : 1911
sqft_above column's Number of Outliers by IQR : 611
bathrooms column's Number of Outliers by IQR : 571
sqft_living column's Number of Outliers by IQR : 572
view column's Number of Outliers by IQR : 2124
sqft_living15 column's Number of Outliers by IQR : 544
```

- > Those number show the number of Outliers (Over_Outlier + Low_Outlier)
- Number of our data is 21612, If I delete data by using IQR at least 3000 data are removed this is 15% of whole data. I think this is not good when modeling.
- > So I remove outliers in a different way.

Those variables(sqft_living, sqft_above, sqft_living15) are continuous variable. So I make scatter plot between those columns and price. There are some outliers (when I see) that stand out. So I delete those datas

Those variables (view, bathrooms, grade) are discrete variable. And I make box plot x is variable and y is price. So I find some outliers. So I delete them

```
outliers which is deleted
house['price']>3500000].index),len(house[house['sqft_living']>8000].index),len(house[house['sqft_above']>7000].index]

(22, 9, 9)

house.drop(house[(house['price']>3000000) & (house['bathrooms']==1.75)|(house['price']>1000000)&(house['bathrooms']=house.drop(house[house['price']>3500000].index,inplace=True)
house.drop(house[house['sqft_living']>8000].index,inplace=True)
house.drop(house[house['sqft_above']>7000].index,inplace=True)
```

- 22+9+9=40=> this is number of outliers which is deleted
- > Those code made for deleting outliers

4 ASSUMPTIONS OF LINEAR REGRESSION

IN MODELING, HAVE A COEFFICIENT PROBLEM

- Except for sqft_above and bathrooms, all coefficient of values are positive.
 This is understandable.
- ▶ But coefficient of sqft_above and bathrooms are negative. This is not understandable. Because house price and sqft_above&bathroom have positive correlation, which is common sense.
- > So After VIF calculation, I decide drop the biggest VIF value variable.

1.TESTING MULTICOLLINEARITY

- This is output of VIF calculation.
- Those explanatory variable's VIF value are lower than 10.
- > But in previous slide, the problem of coefficient I delete 'sqft_living' variable.

2.TESTING LINEARITY

	coef	std err	t	P> t	[0.025	0.975]
const	-6.617e+05	1.37e+04	-48.432	0.000	-6.88e+05	-6.35e+05
sqft_above	80.1591	3.704	21.643	0.000	72.900	87.419
sqft_living15	48.5349	3.979	12.197	0.000	40.735	56.335
view	1.141e+05	2342.051	48.721	0.000	1.1e+05	1.19e+05
grade	1.139e+05	2488.019	45.790	0.000	1.09e+05	1.19e+05
bathrooms	2.975e+04	3201.413	9.294	0.000	2.35e+04	3.6e+04

- Those explantory variables's t-test p-value is almost 0
- > So we can decide Each explanatory variable is significant in predicting the output value(price)
- > I use those all variables in this Linear Regression model.

3. ERROR'S HOMOGENEITY

Dep. Variable:	price	R-squared:	0.533
Model:	OLS	Adj. R-squared:	0.533
Method:	Least Squares	F-statistic:	4940.
Date:	Fri, 17 Sep 2021	Prob (F-statistic):	0.00
Time:	20:16:21	Log-Likelihood:	-2.9937e+05
No. Observations:	21613	AIC:	5.987e+05
Df Residuals:	21607	BIC:	5.988e+05
Df Model:	5		
Covariance Type:	nonrobust		

- > Probablity for F-test (deciding error's Homogeneity) is low (almost 0). So we can decide error have homogeneity.
- > So this model satisfy 3rd condition (Homogeneity)

4. ERROR'S NORMALITY

1000000

500000

-500000

-1000000

- To decide if error have normality or not, we use Jarque-Bera
- The probability of JB-test is low(almost 0) => this mean this model's error don't follow normality. SO we can decide this model's error don't follow normality. So I draw Q-Q plot

Q-Q PLOT FOR ERROR'S NORMALITY

```
# Error's Q-Q plot
import scipy.stats

residual = result.predict()
scipy.stats.probplot(residual, dist=scipy.stats.norm, plot=plt)
plt.show()
```


This Q-Q plot shows this model don't follow normality by this Q-Q plot

MODELING BY OLS IN PYTHON

```
import statsmodels.api as sm
X = house[['sqft_above','sqft_living15','view','grade','bathrooms']]
y = house['price']
X = sm.add_constant(X)
model = sm.OLS(y,X)
result = model.fit()
result.summary()
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.31e+04. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Varia	able:		price	R-s	quared:	0.	533
Mo	del:		OLS	Adj. R-s	quared:	0.	533
Meti	hod:	Leas	t Squares	F-s	tatistic:	49	940.
D	ate:	Fri, 17	Sep 2021	Prob (F-st	tatistic):	C	0.00
Ti	ime:		20:16:21	Log-Lik	elihood:	-2.9937e	+05
No. Observation	ons:		21613		AIC:	5.987e	+05
Df Residu	uals:		21607		BIC:	5.988e	+05
Df Mo	del:		5				
Covariance T	ype:	r	nonrobust				
		coef	std err	t	P> t	[0.025	0.975]
const	-6.61	7e+05	1.37e+04	-48.432	0.000	-6.88e+05	-6.35e+05
sqft_above	8	0.1591	3.704	21.643	0.000	72.900	87.419
sqft_living15	4	8.5349	3.979	12.197	0.000	40.735	56.335
view	1.14	1e+05	2342.051	48.721	0.000	1.1e+05	1.19e+05
grade	1.13	9e+05	2488.019	45.790	0.000	1.09e+05	1.19e+05
bathrooms	2.97	′5e+04	3201.413	9.294	0.000	2.35e+04	3.6e+04
Omnibu	s: 18	8289.76	8 Durb i	in-Watson:		1.972	
Prob(Omnibus	s):	0.00	0 Jarque	-Bera (JB):	16245	63.005	
Skev	N:	3.58	3	Prob(JB):		0.00	

- **Compare with previous** model(After delete sqft_living column), all coefficient have positive number. It is relevant.
- Adjust R Squared value is 0.533
- This value not big.
- I should found problem in my analysis. The condition number is so large.
- So I edit some data.

MODELING BY OLS IN PYTHON

```
house['sqft_above'].astype('float')
house['sqft_living15'].astype('float')
house['sqft_above'] = house['sqft_above']/100
house['sqft_living15'] = house['sqft_living15']/100

reg = sm.OLS(house['price'],house[['intercept','sqft_above','sqft_living15','view','grade','bathrooms']])
result = reg.fit()
result.summary()
```


- > The condition number is proportion of max and min in covariance matrix
- ▶ If the proportion is large -> error of output is lager. So I change data by scaling for fix this problem
- **>** By scaling two variables, the problem is solved.

SUMMARY

SUMMARY

- This Linear Regression model satisfy 3 assumptions (Linearity, Error's Homogeneity and Multicollinearity) of Linear Regression. But not satisfy Error's Normality,
- > Price = -6.473*10^5 + 5412.8285*sqft_above + 6323.6311*sqft_living15 + 1.023*10^5 *view + 1.158*10^5*grade + 2.424*10^4*bathrooms
- Above equation is this model's linear regression equation.
- ➤ According to coefficient, price have positive correlation with sqft_above, sqft_living + view + grade + bathrooms. Sqft_above, sqft_living15 have lower positive correlation than other 3 variables.

SUMMARY

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

X = house[['sqft_above', 'sqft_living15', 'view', 'grade', 'bathrooms']]
y = house['price']

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
reg = LinearRegression()
reg.fit(X_train,y_train)
reg.score(X_test,y_test)

0.552527753927284
```

- **Accuracy of test set is 0.55**
- This say this model represent the variance ratio of the predicted value to the variance of the acutal value is not big and low -> somewhat suitable

THANKYOU