1주차 2차시 컴퓨터 역사와 분류

[학습목표]

- 1. 컴퓨터의 발전을 시대별로 특징지어 설명할 수 있다.
- 2. 사용 목적 및 구조와 처리에 따라서 구분할 수 있다.

학습내용1 : 컴퓨터의 역사

1. 계산기 형태

- 1) 고대의 계산기
- 기원 후 1세기경 휴대용 계산기(계산판과 계산말로 구성)
- 기원후 3세기경 : 주판

2) 중세의 계산기

- * 네피어의 골패
- 1617년에 제작된 세계에서 가장 오래된 승제산(乘除算: 곱셈 및 나눗셈)용구
- 나무쪽에 수표를 새겨서 다른 계산에도 이용할 수 있도록 하였다. 바로 이 나무쪽이 컴퓨터가 본격적으로 보급되기 이전까지 흔히 볼 수 있었던 공업용 계산자 (slide ruler) 의 효시가 되었음
- * 파스칼: "파스칼린(pascalin)"
- 톱니바퀴를 이용하여 기계적으로 덧셈을 하도록 만든 것임
- 파스칼의 계산기는 (나중에 여러 종류가 개발되었지만) 덧셈과 뺄셈 이외의 연산은 불가능하였음

- * 라이프니츠의 계산기
- 본질적으로는 파스칼린과 같은 톱니바퀴식이었지만, 곱셈과 나눗셈이 가능하였음
- 9개의 이를 가진 커다란 기어들을 사용(계층통)
- 커다란 기어들 각각이 완전히 한 번 회전하면 일단 피승수로 기록되며, 승수는 큰 기어들의 회전수로 표시됨
- 현대의 전자식 컴퓨터의 기초가 되었음

- * 헨리 배비지 : 미분기
- 범용적인 자동축차방식의 계산기
 - 축차처리방식이란 입력된 연산 명령을
- 하나씩 순차적으로 수행하는 것
- 제어 및 입출력의 기능을 갖도록 설계
- 주요 4개 부분
 - 밀(mill) : 산술연산 담당
 - 스토어(store) : 연산용의 기억기구
 - 제어기구 : 수의 전송과 동작순서의 제어
 - 입출력기구 : 카드를 사용
- 모든 범용 디지털 컴퓨터의 모체로 인식
 - 제어부분, 산술연산부분, 기억장치, 입출력장치를 포함
- 미분기의 작동제어
 - 산술연산 부분과 산술 연산의 형태, 또는 기억장치로 부터 자료를 이동시키기 위해 제어카드를 사용함
 - 설계상의 계산 능력

3) 근세의 계산기

- * 토마스 : 계수기
- 프랑스의 찰스 토마스(Charles Xavier Thomas)가 1820년에 설계에 착수해서 1852년에 완성
- 세계 최초의 상업용 계산기
- 19세기 말엽의 20년 동안은 계산기가 상업적 용도로 광범위하게 사용되지 못했기 때문에 약 1500대 밖에 제작되지 못했음

- * 버러프 : 가산기
- 상업적으로 성공한 최초의 계산기
- 1884년에 크랭크를 이용한 키셋 가산기를 개발
- 현대의 가산기가 갖춘 대부분의 모형을 다 갖춤
- 이 기계의 도입을 계기로 파스칼 이후 시작되었던 기계적 연산기가 드디어 실현화되었다고 할 수 있음

- * 펠트와 타란트 : 컴프토미터
- 여러 순서에 의한 키구동 방식의 계산기를 설계
- 1877년에 컴프토미터 (comptometer)를 제작하기 위해 타란트 (Robert Tarrant) 와 합작
- 1902년까지 이 기계에 필적할만한 어떠한 기계도 나오지 않았음

- * 볼레: Bollee Machine
- 곱셈을 함에 있어서 덧셈을 반복적으로 하지 않고 직접연산이 가능한 새로운 기계
- 기계는 돌출한 사각판 형태의 연속한 곱셈 부분을 가지는데, 이 부분들은 109까지의 정상적인 곱셈 기능을 수행

- * 천공 카드의 고안
- 천공카드는 직조회사에서 최초로 사용
- 1890년 미국 통계자료의 처리를 위한 홀러리스의 천공카드
- 1907년 파워(James Power)가 천공카드 시스템 개발

2. 근현대 컴퓨터

1) 제1세대 (1942~1959) -진공관

* ABC : 아타나소프가 제작(1939)

- ABC(Atanasoff Berry Computer)

- IBM의 천공카드를 개조하여 계산을 기계적으로 수행할 수 있도록 만듦

2) 최초의 진공관 컴퓨터

* 마크 I : 아이켄이 제작(1944)

- 4칙연산과 삼각법에 의한 함수계산과 다른 복잡한 계산을 수행할 수 있는 능력을 가지고 있는 MARK1 개발

- 가로가 15m, 높이가 2.5m이고, 76만 개의 부품과 900km의 전선을 사용하는 엄청난 것이었음

- * SSEC
- Selective Sequence Electronic Calcualtion
- 프랭크 해밀턴이 개발
- 공개 시험을 통해 태음 천체력을 수월하게 풀어냄
- 1952~1971까지의 달의 위치를 12시간 간격으로 정확히 계산
- 모든 과학기술자에게 무료로 사용이 허용되어 많은 과학기술 발전에 이바지함

3) 전자계산기의 시초

- * 애니액(ENIAC)
- 미군 탄도연구소의 의뢰로 1946년 펜실베니아대학에서 모클리와 에커트가 만듦
- 인텔의 80286 CPU 정도의 성능
- 7백자리까지 수초만에 계산

〈애니액의 문제점〉

- 입출력이 자유롭지 못함
- 프로그램 내장방식(폰 노이만 방식)이 아님

4) 애니액 이후의 진공관 컴퓨터

- * 애드백(EDVAC)
- 명령어의 내부 기억장치가 디지털 형태라는 점과 2진수를 사용했다는 점에서 애니액과 차이가 있음
- 폰노이만 구조를 실현한 최초의 컴퓨터

- * 애드색(EDSAC)
- 폰 노이만이 제안한 프로그램 내장 방식을 적용

- * 유니백 I (UNIVAC I)
- 최초의 상업용 컴퓨터
- 유니백이 작동된 후 초보적인 컴퓨터언어의 개발과 함께 생산성 향상을 위한 최초의 시도가 1950년대 초에 이루어졌음

3. 컴퓨터 구조의 발전 과정 정리

- 1) 컴퓨터의 발전 과정
- ① 수동식 계산기 : 수판
- 기원전 3000~2500년 경 중국에서 개발, 1980년대까지 사용
- ② 기계식 계산기
- 파스칼라인 -가감승제 계산기 -차분기관과
- 분석기관 -천공카드 도표 작성기

- ③ 전기기계식 계산기
- MARK1: 종이 테이프에 천공된 프로그램 명령어들에 의하여 작동 제어되도록 설계되었음
- ④ 전자식 계산기
- 아타나소프-베리 컴퓨터(ABC computer)
- 순차적 방식과 2진 법체계를 사용하는 진공관방식임

학습내용2 : 컴퓨터 구조의 발전과정

1. 전자식 디지털 컴퓨터

1) ENIAC

- 최초의 전자식 디지털 컴퓨터(1946)
- 전자적인 가산기를 연산용 기억장치로 사용
- 컴퓨터 내부의 회로 소자로 진공관을 사용
- 프로그램을 작성하려면 컴퓨터 각 부분을 전선으로 연결해야 하고, 프로그램의 수행을 위해서는 6,000여 개의 스위치를 조절해야 함

2) 내장 프로그램 방식 컴퓨터

- 1945년 폰 노이만(Von Neumann)이 제안하였음
- 컴퓨터에 기억장치를 설치하고, 프로그램과 데이터를 함께 기억장치에 저장했다가, 프로그램에 포함된 명령에 따라 자동으로 작업을 처리하는 방식임
- 오늘날 컴퓨터의 기본 사상임
- * EDVAC(Electronic Discrete Variables Automatic Computer)
- 1952년 미국에서 최초로 개발된 프로그램 내장 방식의 컴퓨터

- 3) UNIVAC I(Universal Automatic Computer)
- 이전의 특수 목적용이 아닌 최초의 순수 데이터 처리용이면 상업용 컴퓨터

4) IBM 701

- 1952년에 CRT(cathode-ray-tube)를 주기억장치로 하고, 보조기억장치로서 자기 드럼과 자기 테이프를 채택
- 본격적인 상업용 컴퓨터 시대를 열었음

5) 컴퓨터의 세대별 발전

세대별		사용전자소자	사용언어	특징및응용분야	때표기종
1세대 (194 6- 195	6)	회로:진공관 기억:자기코어 자기드럼 수은지연회로	• 기계어 • 어셈 블리어	 수명이짧음 부피가크고 전력소모많음 냉각장치필요 하드웨어에중점 과학계산, 통계집계 	ENIAC EDVAC UNIVAC
2세대 (1957~196	54)	회로:트랜지스터 기억:자기코어 자기드럼 자기테이프	• FORTRAN • COBOL • ALGOL	 일괄처리 컴파일러사용 입출력채널대두 생산관리, 원가관리 	IBM 1101 NCR 304 Honeywell 800

세대별	사용전자소자	사용언어	특징및응용분야	때표기종
3세대 (1965~1979)	회로:직접회로 기억:IC기억장치 자성망막 자기 디스크 자기 테이프	• PASCAL • IISP • 구조화된 언어	다중처리예측,의사결정운여체제개발	UNIVAC 9000 PDP-11 CRAY-1 CYBER-205

세대별	사용전자소자	사용언어	특징및응용분야	ᅋᄑᄱ
4세대 (1980~현재)	회로:-고밀도 직접회로 - 초고밀도 직접회로 기억:LS VLS 사기 디스크 자기 테이프	• ADA • 문제중심 언어	 네트워크관리 데이터베이스 관리 지식정보처리 인공자능 로봇 	CRAY XMP IBM 308

세대별	사용전자소자	사용언어	특징및응용분야	때표기종
5세대 (미래)	사용소자 중심으로 분류하는세대가 아니라얼마나 인간다운 컴퓨터가 될것인가로 세대를구별		인간 진으화시대 사고하는 감각을 지닌 컴퓨터 처리속도의 초고속화 (4세대의 약10-100배속도) 바이오칩이나 광소자를 이용한 칩의 실현	

학습내용3: 사용 목적 및 구조·처리에 따른 분류

1. 사용 목적에 따른 분류

전용 컴퓨터

- Special Purpose Computer
- 특정한 목적 위해 설계된 컴퓨터로, 군사용이나 공장의 공정 제어용 등으로 한정된 목적으로 사용한

범용 컴퓨터

- General Purpose Computer
- 여러 분야의 다양한 일을 처리할 수 있도록 설계 제작된 컴퓨터
- 다양한 응용 소프트웨어가 여러 분야의 다양한 일 처리를 가능하게 한함

2. 사용 데이터에 따른 분류

- 1) 디지털 컴퓨터
- 모든 정보를 2진수의 데이터로 부호화하여 사용함
- 모든 정보를 2진수의 데이터로 부호화하여 사용함
- 대부분의 컴퓨터가 디지털 컴퓨터, 아날로그 컴퓨터보다 정밀도가 높은 편임
- 2) 아날로그 컴퓨터
- 아날로그 신호를 데이터로 이용하는 컴퓨터
- 신속한 입력과 즉각적인 반응을 얻을 수 있어 제어용 목적에 적합
- 3) 하이브리드 컴퓨터
- 아날로그와 디지털의 장점을 취하여 제작한 것으로 어떤 종류의 데이터도 처리할 수 있는 컴퓨터

3. 구조 및 처리에 따른 분류

- 1) 처리 능력에 따른 분류
- * 중앙처리장치와 기억장치의 규모에 따른 분류
- 마이크로 컴퓨터(Microcomputer)
 - PC를 의미하며 가정용이나 작은 사업의 용도로 사용되는 소형의 컴퓨터
- 중형 컴퓨터(Minicomputer)
 - 대용량의 주기억장치와 보조기억장치 그리고 빠른 주변장치들을 가지고 있어 수십 명 또는 수백 명이 쓰기에 적합한 컴퓨터
 - 중소기업, 학교, 연구소들에서 주로 사용

- 대형 컴퓨터(Mainframe Computer)
 - 대용량의 저장장치를 보유하여 다중 입출력 채널을 이용한 고속의 입출력 처리 능력을 보유한 컴퓨터
 - 공공 단체, 대기업, 은행, 병원, 대학 등으로 단말기를 연결시켜 온라인 업무나 분산 처리 업무에 이용
 - 또한 대규모 데이터 베이스 저장 및 관리 용으로 사용
- 수퍼 컴퓨터(Super Computer)
 - 복잡한 계산을 초고속으로 처리하는 초대형 컴퓨터로 가장 빠르고 비싼 컴퓨터
 - 원자력 개발, 항공우주, 기상 예측 등의 분야에서 사용
- 2) 구조에 따른 분류
- * 파이프라인 슈퍼 컴퓨터(Pipeline Supercomputer)
- 하나의 CPU 내에 다수의 연산장치를 포함하고 있는 컴퓨터
- 각 연산장치는 파이프 라이닝 구조를 이용하여 고속 벡터 계산이 가능
- * 대규모 병렬 컴퓨터(Massively Parallel Computer)
- 하나의 시스템 내에 상호 연결된 수백 혹은 수천 개 이상의 프로세스들을 포함함
- 프로세서들이 하나의 큰 작업을 나누어서 병렬로 처리하는 구조

[학습정리]

- 1. 컴퓨터의 역사는 반도체와 같이 발전하였다.
- 2. 컴퓨터의 분류는 사용하는 데이터, 처리 능력, 컴퓨터의 구조 등에 따라 분류한다.