KØBENHAVNS UNIVERSITET



Det Natur- og Biovidenskabelige Fakultet

Statistisk Dataanalyse 1: Introduktion til lineær regression og ensidet variansanalyse

Anders Tolver Institut for Matematiske Fag



### Dagens program

- Praktiske oplysninger og spørgsmål
- Sammenhæng ml. kontinuerte variable
- Lineær regression
- Ensidet variansanalyse (ANOVA)



# Sammenhæng mellem to kontinuerte variable (lineær association)



### Kropsvægt og hjertevægt for 144 katte



**Overvej:** Hvorfor tænker vi straks, at der ses en klar sammenhæng ml. kropsvægt og hjertevægt?



# Hvad betyder sammenhæng (association)

Ofte indsamles data bestående af **par** (x, y) **af kvantitative, kontinuerte variable** med henblik på at undersøge om der er sammenhæng ml. x og y.

Hvad mener vi med **sammenhæng** (eng: association)?

- Intuitivt/visuelt → se på scatterplot
- Intuitivt: hvis x er stor, så er y typisk stor
- Intuitivt: jeg kan bedre gætte værdien af y, hvis jeg kender x

Hvad skal vi se på?

- Kan vi lave (objektiv) mål for sammenhæng → korrelationskoefficient
- Hvordan kan modellere og udnytte (matematisk) sammenhæng → prædiktion



# Er der en sammenhæng?



**Overvej:** Prøv at argumentere både for og imod at der er en sammenhæng ml. x og y?



#### Korrelationskoefficienten

Korrelationskoefficienten måler graden af lineær sammenhæng mellem x og y:

$$\hat{\rho} = \frac{\frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\mathsf{sd}_{x} \cdot \mathsf{sd}_{y}}$$

(Kan tænke på  $\hat{\rho}$  som hældningen i en lineær regression hvor man bruger standardiserede versioner af x og y.)



#### Korrelationskoefficienten

Korrelationskoefficienten måler graden af lineær sammenhæng mellem x og y:

$$\hat{\rho} = \frac{\frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\mathsf{sd}_{x} \cdot \mathsf{sd}_{y}}$$

(Kan tænke på  $\hat{\rho}$  som hældningen i en lineær regression hvor man bruger standardiserede versioner af x og y.)

Korrelationskoefficienten er

- ullet altid mellem -1 og +1
- 0 hvis der ikke er nogen (lineær) information om y i x, eller omvendt
- ±1 hvis observationerne ligger perfekt på en linje med positiv/negativ hældning

**Intuition:** Måler om punkter over gennemsnit for x har en lige så stor tendens til at ligge over/under gennemsnit for y?



# Korrelationskoefficienten: eksempler





#### Sammenhæng, korrelation eller effekt?

**Sammenhæng:** kendskab til x forbedrer muligheder for at udtale os om y (eller omvendt!).

**Korrelation** (=lineær association) *væsentlig* forskellig fra 0: vi kan bruge lineær funktion til at udtale os om y på baggrund af x (eller omvendt!)

Ved **lineær regression** forsøger man at beskrive y ud fra x ved en lineær funktion

$$a + b \cdot x$$
.

Kræver valg af **respons** y og **forklarende variabel** x.

Mere skal til for at konkludere at x har **(kausal)** effekt på y.



# Lineær regression



# Eksempel: Kattes krops- og hjertevægt

Data: Kropsvægt i kg, vægt af hjerte i gram for 144 katte. Glem alt om kattenes køn i dag.

Ønsker at **prædiktere** (forudsige) hjertevægt udfra kropsvægt: Brug

- Hwt som responsvariabel
- Bwt som forklarende variabel

**Overvej:** Hvorfor virker det mest naturligt med *x* som forklarende (også kaldet **uafhængig**) variabel?





# Giver lineær regression overhovedet mening her?



Det ser faktisk ud til at punkterne varierer omkring en ret linie, så lineær regression giver mening.



# Lineær regression

Ligning for ret linie med skæring (intercept)  $\alpha$  og hældning (slope)  $\beta$ :

$$y = \alpha + \beta \cdot x$$

Vores opgave er at finde den rette linie der "'passer bedst"' med data.

Altså: Find de værdier af  $\alpha$  og  $\beta$  der passer bedst.



#### Legetøjsdata

Dette er nogle andre data! To gode forslag til rette linier, men hvilken linie er bedst?



Bliver nødt til at have en objektiv metode: **Mindste kvadraters metode (least squares)** 



# Mindste kvadraters metode (least squares)

For alle mulige linjer kan vi se på:

- Lodret afstand mellem punkter og linie,  $r_i = y_i \alpha \beta x_i$
- Kvadrér disse afstande,  $r_i^2$ , og beregn  $r_1^2 + \cdots + r_n^2$





# Mindste kvadraters metode (least squares)

For alle mulige linjer kan vi se på:

- Lodret afstand mellem punkter og linie,  $r_i = y_i \alpha \beta x_i$
- Kvadrér disse afstande,  $r_i^2$ , og beregn  $r_1^2 + \cdots + r_n^2$



Find den linie der giver den mindste residualkvadratsum.



#### Formlerne

Det viser sig at den bedste rette linie er givet ved følgende formler:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\hat{\alpha} = \bar{y} - \hat{\beta} \cdot \bar{x}$$

hvor  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$  og  $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$  er gennemsnittene.



#### Formlerne

Det viser sig at den bedste rette linie er givet ved følgende formler:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\hat{\alpha} = \bar{y} - \hat{\beta} \cdot \bar{x}$$

hvor  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$  og  $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$  er gennemsnittene.

#### Bemærk:

- Fortegnet på  $\hat{\beta}$
- Regressionslinien går gennem  $(\bar{x}, \bar{y})$

I praksis skal vi ikke bruge formlerne — det lader vi R klare!



### Eksempel: Kattes krops- og hjertevægt

Regressionslinien — den bedste rette linie — for kattene:

$$Hwt = -0.3567 + 4.0341 \cdot Bwt$$



#### Fortolkning af parametrene?



# Fortolkning!

Mindste kvadraters metode giver estimeret regressionslinie:

$$y = \hat{\alpha} + \hat{\beta} \cdot x$$



# Fortolkning!

Mindste kvadraters metode giver estimeret regressionslinie:

$$y = \hat{\alpha} + \hat{\beta} \cdot x$$

#### Fortolkning:

• Model/linjen fortæller, hvad vi vil forvente for et givet x:

$$\hat{y} = \hat{\alpha} + \hat{\beta} \cdot x$$

- $\hat{\beta}$ : For to enheder med en forskel i x-værdi på  $\Delta x$ , vil vi forvente en forskel på  $\Delta y = \hat{\beta} \cdot \Delta x$ .
- â: den forventede y-værdi for x = 0 (hvis det giver mening).

Advarsel: pas på med at

- ekstrapolere til ekstreme x-værdier:  $\hat{\alpha} + \hat{\beta} \cdot 10$
- udtale dig om den forventede ændring i hjertevægt, hvis vi feder alle katte op til de har taget 1 kg på



#### Usikkerhed

Har endnu intet sagt om usikkerheden på estimaterne!

- Hvor meget kan vi stole på estimaterne?
- Hvor meget anderledes kunne estimaterne blive hvis vi kiggede ny sample af katte fra samme population?
- Er der overhovedet en sammenhæng?

Coming up: Standard errors, konfidensintervaller, hypotesetest, prædiktionsintervaller, modelkontrol.



# Brug af lineær regression

#### Hvornår kan vi bruge lineær regression?

- Begge variable skal være kvantitative
- Der skal være et "'naturligt"' valg af hhv. respons og forklarende variabel (hvad er x hhv. y?)
- Der skal være tilnærmelsesvis lineær sammenhæng.
- Et par antagelser mere som vi vender tilbage til…
- Pas på hvis der er ekstremt store/små værdier af x eller
   y. Kan trække meget i linien.



#### Hvad hvis sammenhængen ikke er lineær?

**Sommetider** kan man transformere sig til lineær sammenhæng.

Eksempel 2.4: Hvis (x, y) sammenhængen er eksponentiel, så er  $(x, \log(y))$ -sammenhængen lineær.





# **Ensidet variansanalyse**



# Eksempel 3.2: Nedbrydning af organisk materiale

#### Data

- Fem typer antibiotika og en kontrolbehandling.
- 36 kvier inddelt i seks grupper. Foder tilsat antibiotikum.
- Gødning gravet ned i poser og mængden af organisk materiale målt efter 8 uger.
- For spiramycin: Kun fire brugbare målinger.



# Eksempel 3.2: Nedbrydning af organisk materiale

#### Data

- Fem typer antibiotika og en kontrolbehandling.
- 36 kvier inddelt i seks grupper. Foder tilsat antibiotikum.
- Gødning gravet ned i poser og mængden af organisk materiale målt efter 8 uger.
- For spiramycin: Kun fire brugbare målinger.

#### Formål

- Påvirker antibiotika nedbrydningen af organisk materiale?
- Hvis kontrolmålingerne ligger lavere end de andre, tyder det på at antibiotika hæmmer nedbrydningen.



#### Data

Data er tilgængelige i datasættet antibio i isdals-pakken.

```
library(isdals)
data(antibio)
head(antibio, n=7)
         type org
## 1 Ivermect 3.03
## 2 Ivermect 2.81
## 3 Ivermect 3.06
## 4 Tvermect 3.11
## 5 Ivermect 2.94
## 6 Ivermect 3.06
## 7 Alfacyp 3.00
```



#### Data

Data er tilgængelige i datasættet antibio i isdals-pakken.

```
library(isdals)
data(antibio)
head(antibio, n=7)
         type org
## 1 Ivermect 3.03
## 2 Ivermect 2.81
## 3 Ivermect 3.06
## 4 Tvermect 3.11
## 5 Ivermect 2.94
## 6 Ivermect 3.06
## 7 Alfacyp 3.00
```

**To variable:** type og org. Datatyper? Responsvariabel? Forklarende variabel?





# Hvorfor hedder det ensidet variansanalyse?

- Ensidet: Fordi der kun er en enkelt forklarende variabel
- Variansanalyse: Fordi forskelle mellem grupper påvises ved at sammenligne forskellige kilder til variation
   Variansanalyse = Analysis of variance = ANOVA.

I behøver ikke læse detaljerne i bogen nu. Vi vender tilbage senere...



#### Hvordan ser data ud?



- Hvad kan vi se?
- Kan vi konkludere at der er forskel på grupperne?



#### Between-group og within-group variation

Alle observationer er ikke ens! Men hvorfor ikke?

- Fordi der (potentielt) er forskel på behandlingerne  $\rightarrow$  between-group variation
- Fordi der er biologisk variation, ikke-ens respons selv hvis gødningen behandles ens → within-group variation



#### Between-group og within-group variation

Alle observationer er ikke ens! Men hvorfor ikke?

- Fordi der (potentielt) er forskel på behandlingerne  $\rightarrow$  between-group variation
- Fordi der er biologisk variation, ikke-ens respons selv hvis gødningen behandles ens → within-group variation

Hvis between-group variation er stor ift. within-group variation, er det tegn på at der er forskel på grupperne.

Der er formler i bogen, for  $SS_{\text{between}}$  og  $SS_{\text{within}}$  i bogen, men det er vigtigere at forstå den grafiske betydning.



### Between-group og within-group variation



- **Between-group variation:** Forskel mellem de forskellige grupper. Gruppegennemsnit vs totalgennemsnit.
- Within-group variation: Forskel mellem obs. fra samme gruppe. Punkter vs gruppegennemsnit



# Gruppegennemsnit og -spredninger Gruppegennemsnit (og -spredninger) er vigtige:

| Behandling   | nj | $\bar{y}_{j}$ | Sj    |
|--------------|----|---------------|-------|
| Control      | 6  | 2.603         | 0.119 |
| lpha-cyperm. | 6  | 2.895         | 0.117 |
| Enrofloxacin | 6  | 2.710         | 0.162 |
| Fenbendaz.   | 6  | 2.833         | 0.124 |
| Ivermectin   | 6  | 3.002         | 0.109 |
| Spiramycin   | 4  | 2.855         | 0.054 |



### Gruppegennemsnit og -spredninger Gruppegennemsnit (og -spredninger) er vigtige:

| Behandling   | nj | $\bar{y}_j$ | Sj    |
|--------------|----|-------------|-------|
| Control      | 6  | 2.603       | 0.119 |
| lpha-cyperm. | 6  | 2.895       | 0.117 |
| Enrofloxacin | 6  | 2.710       | 0.162 |
| Fenbendaz.   | 6  | 2.833       | 0.124 |
| Ivermectin   | 6  | 3.002       | 0.109 |
| Spiramycin   | 4  | 2.855       | 0.054 |

Gennemsnittene kan beregnes i R med summarize() eller på følgende måde:

```
data(antibio)
lm(org ~ type-1, data=antibio)
```

Hvad mon der sker hvis vi ikke skriver -1? Se opgave HS.4!



#### Usikkerhed

Gennemsnittene er **estimater for populationsgennemsnit**, dvs. gennemsnit af responsen hvis vi testede behandlingerne på alle kvier i verden.



#### Usikkerhed

Gennemsnittene er **estimater for populationsgennemsnit**, dvs. gennemsnit af responsen hvis vi testede behandlingerne på alle kvier i verden.

Har endnu intet sagt om usikkerheden på gennemsnittene:

- Hvor meget kan vi stole på estimaterne?
- Hvor meget anderledes kunne estimaterne blive hvis vi kiggede på andre kvier fra samme population?
- Er der forskel på behandlingerne?

Coming up: Standard errors, konfidensintervaller, hypotesetest, prædiktionsintervaller, modelkontrol.



# Opsummering - til eget brug

- Hvornår er det rimeligt at benytte lineær regression?
- Hvad er fortolkningen af parametrene i en lineær regression?
- Hvad er princippet i at bestemme den bedste rette linie?
- Hvad måler korrelationskoefficienten?
- Hvad er formålet i en ensidet variansanalyse?
- Hvilke typer variation er der når vi har data fra flere grupper?
- Kan vi konkludere om der er forskel på grupperne på baggrund af plots og/eller tabel med gruppegennemsnit?

