ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2012-2013

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4533: Graph Theory

Programmable calculators are not allowed. Do not write anything on the question paper.

There are <u>4 (four)</u> questions. Answer any <u>3 (three)</u> of them.

Figures in the right margin indicate marks.

1.	a) b)	Describe applications of graphs in floor-planning and in map coloring. Show that a graph is bipartite if and only if it has no odd cycle.	6 7
	c)	Give an efficient algorithm to determine whether a given graph is bipartite or not. Analyze the time complexity of your algorithm.	6
	d)	Describe the following graph operations by illustrative examples. i. Deletion of a vertex ii. Subdividing an edge iii. Contraction of an edge	6
2.	a)	When do we call two graphs G_1 and G_2 isomorphic? Give an algorithm to check whether two graphs are isomorphic or not. Does the algorithm take polynomial time? Justify.	7
	b)	What is a self-complementary graph? Give two examples of self-complementary graphs.	5
	c)	Show that every <i>u</i> , <i>v</i> -walk contains an <i>u</i> , <i>v</i> -path.	7
	d)	State the degree-sum formula. Show that the number of odd degree vertices of a graph is even.	6
3.	a) b)	Let G be a graph with the minimum degree 2. Then show that G contains a cycle. Is the following graph in figure 1 Eulerian? If yes, find out the Eulerian circuit in the graph.	4 10
	c)	Figure 1: A graph Let G be a simple graph of n vertices and m edges. If G has k connected components, then	7
	c)	Let G be a simple graph of n vertices and m edges. If G has k connected components, then	/

- show that the number m satisfies the constraint, n-k ≤ m ≤ (n-k)(n-k+1)/2.
 d) Construct the complements of C₅ and W₇.
- 4. a) Define a Hamiltonian graph. Show that K_{n,n} is Hamiltonian.
 b) Let G be a simple graph of n ≥ 3 vertices. Show that G is Hamiltonian if d_G(u) + d_G(v) ≥ n for every pair of nonadjacent vertices u and v.
 c) Describe the structure of the Petersen graph. Show that the Petersen graph has girth 5.