Matrices

Trace

QCOP MAT. 1

Soit $n \in \mathbb{N}^*$. Soient $A, B, C \in M_n(\mathbb{K})$.

- **1.** Définir Tr(A).
- **2.** Montrer que Tr(AB) = Tr(BA).
- 3. a) Montrer que :

$$Tr(ABC) = Tr(BCA) = Tr(CAB).$$

- **b)** A-t-on Tr(ABC) = Tr(CBA)?
- c) Soit $P \in GL_n(\mathbb{K})$ telle que :

$$A = PBP^{-1}$$
.

Déterminer Tr(B).

QCOP MAT.2 ★

Soit $n \in \mathbb{N}$. Soit $M \in M_n(\mathbb{R})$.

- 1. a) Soit $(i,j) \in [1,n]^2$. Donner l'expression du coefficient d'indice (i,j) de $M^{\top}M$.
 - **b)** Montrer que :

$$\operatorname{Tr}(M^{\top}M) = 0 \iff M = 0_n.$$

- **2.** Le résultat est-il vrai si $M \in M_n(\mathbb{C})$?
- **3.** Quel résultat pourrait-on énoncer et démontrer si $M \in \mathsf{M}_n(\mathbb{C})$?

Matrices symétriques et antisymétriques

QCOP MAT.3

Soit $n \in \mathbb{N}^*$.

- **1.** Définir les espaces $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$.
- **2.** Soit $M \in M_n(\mathbb{K})$. Calculer:

$$(M + M^{\top})^{\top}$$
 et $(M - M^{\top})^{\top}$.

- **3.** a) Montrer que toute matrice est somme d'une matrice symétrique et d'une matrice antisymétrique.
 - b) Montrer que

$$S_n(\mathbb{K}) \cap A_n(\mathbb{K}) = \{0_n\}.$$

QCOP MAT.4

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{K})$.

- **1.** Soit $(i,j) \in [1, n]^2$. Donner l'expression du coefficient d'indice (i,j) de la matrice AB.
- **2.** Montrer que :

$$(AB)^{\top} = B^{\top}A^{\top}.$$

- **3.** On suppose que $A, B \in S_n(\mathbb{K})$.
 - a) A-t-on $AB \in S_n(\mathbb{K})$?
 - **b)** Déterminer une condition nécessaire et suffisante pour que $AB \in S_n(\mathbb{K})$.

Inversibilité, opérations élémentaires

QCOP MAT.5

Soit $n \in \mathbb{N}^*$. Soit $A \in GL_n(\mathbb{K})$.

- **1.** Définir « $A \in GL_n(\mathbb{K})$ ».
- 2. Montrer que :

$$A^{ op} \in \mathsf{GL}_n(\mathbb{K}) \; \operatorname{et} \; \left(A^{ op}\right)^{-1} = \left(A^{-1}\right)^{ op}.$$

3. Montrer que :

$$A \in S_n(\mathbb{K}) \iff A^{-1} \in S_n(\mathbb{K}).$$

QCOP MAT.6

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{K})$.

- **1.** Soit $X \in M_{n,1}(\mathbb{K})$. Calculer AX.
- 2. Montrer que

$$A \in \mathsf{GL}_n(\mathbb{K}) \implies \mathsf{Ker}(A) = \{0_{n,1}\}.$$

On admettra la réciproque.

- **3.** On suppose que A est diagonale.
 - a) Montrer que $A \in GL_n(\mathbb{K})$ si, et seulement si, tous ses coefficients sont non nuls.
 - **b)** Donner, dans ce cas, A^{-1} .

QCOP MAT.7 ★

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{K})$.

- 1. Donner la définition de « A est inversible dans $M_n(\mathbb{K})$ ».
- **2.** Soit $p \in \mathbb{N}$. Soient $a_0, \dots, a_p \in \mathbb{K}$.

On pose:

$$P := \sum_{k=0}^{p} a_k X^k \text{ et } P(A) := \sum_{k=0}^{p} a_k A^k.$$

On suppose que 0 n'est pas racine de P.

- a) Que dire du coefficient a_0 ?
- **b)** On suppose que $P(A) = 0_n$. Montrer que $A \in GL_n(\mathbb{K})$ et déterminer A^{-1} .

QCOP MAT.8 *

- 1. Définir les matrices d'opérations élémentaires : matrice de transvection, de dilatation et d'échange.
- **2.** a) Compléter :

multiplier à par une matrice d'opération élémentaire	opération sur les
droite	
gauche	

- **b)** Décrire les opérations réalisables sur une matrice M par produit de M par une matrice d'opération élémentaire.
- 3. Quels liens peut-on faire entre opérations élémentaires et inversibilité d'une matrice?