Recap - Review of prop, Law of lovge numbers +	CLT => Confidence Intervals
Today + Thursday - Genevate random numbers	Thou does np. random generate U[0,1] (princtive)
ORIE 4580/5580: Simulation Modeling and	Analysis
ORIE 5581: Monte Carlo Simulation	Fundamental theorem)
Unit 4: Generating Random Numbers	of simulation / Every random vau
Sid Banerjee School of ORIE, Cornell University	vandom process can be generated
Today - Generate U[0,1] using PRNG (Pseudo - Inversion method	using U[0,1] vandon generator)

generating uniformly distributed random variables

random number: a sample from U[0,1]

the 'fundamental theorem' of simulation

can 'transform' a stream of U[0,1] to any other random variable

- arbitrary probability distribution
- arbitrary correlations
- complex processes

where can we find random numbers?

physical Methods

```
manual methods: coin toss, dice throw, drawing from an urn objects that appear random: computer clock physical devices: circuit noise, gamma-ray detectors
```

advantage

"true" random numbers (critical for cryptographic applications)

• for example, check out Radiolab podcast on launching a cryptocurrency

drawbacks

- slow (if generated as needed)
 expensive (if precomputed and stored in memory)
- bias may exist in the device for example, see Persi Diaconis on coin-tossing
- hard to replicate the random input sequence

essential for simulation hash functions (big-date algorithms)

'pseudo-random' generators

- objection: random numbers are not random at all!
 - this criticism applies to all pseudo-random number generators
 - need tests to determine if algorithm produces "valid" outputs

$$X_{n+1} = (\underline{a}X_n + c) \bmod \underline{m},$$

- (fixed) parameters: modulus \underline{m} , multiplier a, increment c $A, C \in \{0, \dots, m-1\}$ seed: X_0 (the first input) is typically supplied by the user (Seed) $X_0 \in \{0, \dots, m-1\}$
- each X_n is an integer in the set $\{0, 1, \dots, m-1\}$.
- to get pseudorandom number $U_n \in (0,1)$, set:

-
$$U_n = \frac{X_n}{m}$$
 (may get $U_n = 0$ - Undesirable)
- $U_n = \frac{X_{n+1}}{m+1} \in (0, 1)$

LCG: example

$$m = 32$$
, $a = 11$, $c = 0$, different seeds.

LCG: properties

- an LCG produces periodic output. period $\leq m$
 - 1. if period = m with a seed X_0 , then period = m for any seed
 - 2. if period < m, then it may depend on the seed
- full period is desirable:
 - 1. one should never use the whole period of a LCG, otherwise dependencies between the random numbers will occur.
 - 2. not have full period \implies gaps in the output sequence.
- full period \implies granularity = 1/m. not a problem when m is large.

the period of LCGs is well understood.

Theorem: LCGs with full period

an LCG(m, a, c) has full period if all of the following are true

- 1. m and c are relatively prime.
- 2. if q is a prime number that divides m, then q divides a-1.
- 3. if 4 divides m, then 4 divides a 1.

Corollary:

an LCG with $m = 2^b$ has full period if c is odd and 4 divides a - 1.

example –
$$m = 8$$
, $a = 5$, $c = 3$

multiplicative generators

$$X_{n+1} = (aX_n) \mod m$$

- $X_n = 0 \implies X_n = X_{n+1} = X_{n+2} = \dots = 0$
- for an MG, Full period $\implies \{1, \dots, m-1\}$.

even faster as only using multiplication and modulo

Theorem: MGs with full period

an MG has full period if all of the following are true

- 1. m is prime 2. $a^{m-1} 1$ is divisible by m.
- 3. there is no j < m-1 such that a^j-1 is divisible by m.

Theorem: Sufficient conditions for good MGs

the largest possible period for a MG with $m=2^b$ is m/4

this is achieved when X_0 is odd and a is of the form:

$$a = 3 + 8k$$
 or $a = 5 + 8k$,

for some positive integer k.

- LCG's possess theoretical deficiencies
 (any deterministic generator must have deficiencies.)
- if U_0, U_1, \ldots are iid U[0, 1], then the points

$$(U_0, U_1), (U_2, U_3), (U_4, U_5), \dots$$

should lie uniformly over the square $[0,1] \times [0,1]$.

• suppose U_0, U_1, \ldots be generated by a LCG: How do the points $(U_0, U_1), (U_2, U_3), (U_4, U_5), \ldots$ behave?

the points

$$(U_0, U_1), (U_2, U_3), (U_4, U_5), \ldots$$

lie on a relatively small number of parallel lines!

in general, the points

$$(U_0, U_1, U_2, \dots, U_{d-1}), (U_d, U_{d+1}, U_{d+2}, \dots, U_{2d-1}), \dots$$

lie on parallel (d-1)-dimensional hyperplanes!

problematic in simulations of geometric phenomena.
 OK for discrete-event simulations.

deficiencies of LCGs for generating other rvs

let N_0,N_1,N_2,\ldots be samples from $\mathcal{N}(0,1)$ generated using the Box-Muller method using U_0,U_1,U_2,\ldots from an LCG

– then the pairs (N_0, N_1) , (N_2, N_3) , (N_4, N_5) ,... lie on a spiral in two-dimensional space. E.g., $a=9, m=2^{21}, c=1$

combining generators

- $m = 2^{31} 1$ is popular, but period is only about 2 billion.
- not sufficient! E.g. traffic simulators need lots of random numbers. (10s of 000s of vehicles, 1000s of random disturbances, lots of replications).
- ullet shouldn't use anywhere near the full period maybe $\leq 1\%$
- to generate longer period, take two MG's

$$X_{n+1} = (a_1 X_n) \mod m_1$$
 , $Y_{n+1} = (a_2 Y_n) \mod m_2$

and set

$$Z_n = (X_n + Y_n) \mod m_3.$$

- ullet period can be on the order of m_1m_2 . For example, set $a_1=40014,\ a_2=40692,\ m_1=2147483563,\ m_2=2147483399$ and $m_3=m_1$.
- can combine more than two.

streams and substreams

- useful to divide the numbers produced by a PRNG into streams and substreams
- stream = simulation replication substream = source of randomness
- useful for debugging and for variance-reduction techniques

tl;dr

- hyperplane/spiral problems are well understood (and avoided)
- current generators have been carefully tested, pass lots of statistical tests (but must fail at least one test...)

the last word

modern PRNGs are

- random enough for your sim answer to be correct
- deterministic enough (by setting seed) for your sim to be repeatable

for repeatable expts