Milestone Meeting 3

- aktueller Stand
 - Single/Multi-world
 - HPO
- mögliche nächste Schritte

Single World

Multi world

Multi-World Entropy Formula

For a given time step t after the branching point:

$$H(X_t) = H_{between} + H_{within}$$

Where:

- ullet $H_{between}$ is the entropy from choosing between worlds
- ullet H_{within} is the expected entropy within each world

More specifically:

$$H_{between} = -\sum_{i=1}^{n_{worlds}} p(w_i) \log p(w_i)$$

Since all worlds have equal probability $p(w_i) = rac{1}{n_{worlds}}$, this simplifies to:

$$H_{between} = -n_{worlds} \cdot rac{1}{n_{worlds}} \log rac{1}{n_{worlds}} = \log(n_{worlds})$$

For the within-world entropy, assuming Gaussian distributions within each world:

$$H_{within} = \sum_{i=1}^{n_{worlds}} p(w_i) \cdot H(X_t|w_i)$$

For a Gaussian with standard deviation σ_i in world i:

$$H(X_t|w_i) = rac{1}{2} \mathrm{log}(2\pi e \sigma_i^2)$$

Therefore, the total entropy is:

$$H(X_t) = \log(n_{worlds}) + rac{1}{n_{worlds}} \sum_{i=1}^{n_{worlds}} rac{1}{2} \log(2\pi e \sigma_i^2)$$

Ist das ein Forecasting szenario?

Multi-world:

- Fokus auf identifizierung des richtigen Weges
- immer der gleiche prefix → unrealistisch
- Aber: man könnte es als zusammegefaltete Zeitreihe sehen (prefix müsste auch noise bekommen, ohne Informationen für world pfad zu verraten)

Forecasting:

- extrapolation in die Zukunft
- unterschiedlicher prefix basierend auf dem man vorhersagt

HPO

Data

+ ExchangeRate + ILI

N	am	ne∰

Domain %

Length

Time Series Count

Freq. (m)

©Task

Dataset	ETTh1 & ETTh2	ETTm1 & ETTm2	Electricity	Solar-Energy	Traffic	Weather
Timesteps	17,420	69,680	26,304	52,560	17,544	52,696
Channels	7	7	321	137	862	21
Frequency	1 hour	15 mins	1 hour	10 mins	1 hour	10 mins
Cyclic Patterns	Daily	Daily	Daily & Weekly	Daily	Daily & Weekly	Daily
Cycle Length	24	96	168	144	168	144

BeijingAirQuality				
Beijing Air Quality				
36000				
7				
False				
60				
LTSF				

ExchangeRate	Illness
Exchange Rate	Ilness Data
7588	966
8	7
False	False
1440	10080
LTSF	LTSF

HPO

Forecasting task

Typical forecasting horizons {96, 192, 336, 720} with 96 look back length

Models

- PatchTST
- 2. DeepAR
 - only IMS model in benchmark
- 3. DLinear
 - MLP based
- 4. iTransformer
 - newer Tranformer modle that does not use patching

For ETTh1 and forecasting from 96 steps to 720

MODEL HPO FERTIG/TODO

PatchTST quantile, i_quantile, multivariate, univariate

DeepAR quantile, univariate, i_quantile

iTransformer quantile, i_quantile, multivariate, univariate

DLinear quantile, i_quantile, multivariate, univariate

Next steps

- 1. HPO fertig für 2-3 weitere Datensätze
- 2. IMS-DMS
 - a. Upscale Dataset
 - b. Domain Bezug
 - c. GP on top of DMS?
 - d. multivariate DMS
- 3. (Copula and Flows)