EXTRA ASSIGNMENT 1

Due: 30 September, 11:59pm

Problem 1 (Ternary expansion). To formulate this problem, we first assume some basic knowledge in mathematical analysis:

- (Convergence of geometric series) If $q \in (0,1)$, then geometric series $\sum_{n=0}^{\infty} q^n$ converges to $\frac{1}{1-q}$.
- (Comparison principle) Let $a_n \ge 0$ and $b_n \ge 0$ satisfy $b_n \ge a_n$ for any $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} b_n$ converges to $B \in \mathbb{R}$, then $\sum_{n=1}^{\infty} a_n$ converges to some real number A. Moreover, $A \le B$.

Let us formulate the ternary expansions for all real numbers in [0,1] as follows: for any $x \in [0,1]$, we write

$$[x]_3 = 0.d_1d_2d_3... \equiv \sum_{n=1}^{\infty} \frac{d_n}{3^n}, \quad d_n \in \{0, 1, 2\}.$$

For example, $\frac{1}{3}$ has two different ternary expansions:

$$\left[\frac{1}{3}\right]_3 = 0.1000000\ldots = 0.0222222\ldots$$

Now prove the following property. If $x \in [0,1]$ has two distinct ternary expansions

$$[x]_3 = 0.d_1d_2...d_n... = 0.e_1e_2...e_n...,$$

then the following holds. Let $n \equiv \min\{k \in \mathbb{Z}_+ : d_k \neq e_k\}$. Then $e_n = d_n + 1$ and

$$d_k = 2$$
, $e_k = 0$, $\forall k \geqslant n+1$.

Problem 2. Let us construct an infinite subset $C \subset [0,1]$ in the following inductive process.

$$F_{0} = [0, 1],$$

$$F_{1} = \underbrace{\begin{bmatrix} 0, \frac{1}{3} \end{bmatrix}}_{I_{1}^{(1)}} \cup \underbrace{\begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}}_{J_{1}^{(1)}},$$

$$F_{2} = \underbrace{\begin{bmatrix} 0, \frac{1}{9} \end{bmatrix}}_{I_{1}^{(2)}} \cup \underbrace{\begin{bmatrix} \frac{2}{9}, \frac{1}{3} \end{bmatrix}}_{J_{1}^{(2)}} \cup \underbrace{\begin{bmatrix} \frac{2}{3}, \frac{7}{9} \end{bmatrix}}_{I_{2}^{(2)}} \cup \underbrace{\begin{bmatrix} \frac{8}{9}, 1 \end{bmatrix}}_{J_{2}^{(2)}},$$

$$\vdots$$

$$F = \bigcap_{n=0}^{\infty} F_{n}.$$

That is, in the *n*th step, there are 2^n -intervals $I_k^{(n)}$ and $J_k^{(n)}$ in the set F_n . The union $I_k^- \cup I_k^+$ comes from deleting an open interval that contributes the central 1/3 in its predecessor. We will prove that F is uncountable by achieve the following steps.

(1) For any $n \in \mathbb{Z}_+$, F_n is identical to the following set F'_n of ternary decimals

$$\{0.d_1d_2d_3d_4\dots|d_j\in\{0,2\}\ \forall 1\leqslant j\leqslant n\}.$$

Also prove that any element $x \in F_n$ has a unique ternary expansion in F'_n .

(2) We take a countable subset $G = \{x^1, x^2, x^3 \dots\} \subseteq F$ and write them in the ternary expansion as described above,

$$x^{1} = 0.d_{1}^{1}d_{2}^{1}d_{3}^{1}d_{4}^{1} \dots$$

$$x^{2} = 0.d_{1}^{2}d_{2}^{2}d_{3}^{2}d_{4}^{2} \dots$$

$$x^{3} = 0.d_{1}^{3}d_{2}^{3}d_{3}^{3}d_{4}^{3} \dots$$

$$x^{4} = 0.d_{1}^{4}d_{2}^{4}d_{3}^{4}d_{4}^{4} \dots$$

$$\vdots$$

where $d_i^j \in \{0,2\}$ for any $i,j \in \mathbb{Z}_+$. We define an element $p \in F$ with a ternary expansion $[p]_3 = 0.p_1p_2p_3p_4...$ such that

$$p_j = \begin{cases} 0 & \text{if } d_j^j = 2, \\ 2 & \text{if } d_j^j = 0. \end{cases}$$

Prove that $p \notin G$.

(3) Based on the previous steps, prove that the set F is uncountable.

Problem 3. This problem is to prove Cantor's Theorem: Given any set A, denote by $\mathscr{P}(A)$ the power set of A. Then there does not exist a surjective function $f: A \to \mathscr{P}(A)$.

(1) First, consider a simpler case of Cantor's Theorem. Let $D = \{1, 2, 3, 4\}$. Then construct an injective function $f: D \to \mathcal{P}(D)$. For the function f you just constructed, write down all the elements of the set

$$B \equiv \{x \in D | x \notin f(x)\}.$$

- (2) Show that there exists no surjective function $f: D \to \mathscr{P}(D)$ for any finite set.
- (3) Using the constructive strategy in (1), prove Cantor's Theorem in full generality.