Exercices:

Ils porteront sur les familles sommables, les fonctions vectorielles et le début des probabilités.

Cours

Toutes les définitions générales, et les points marqués d'une astérisque peuvent faire l'objet d'une question de cours. Le théorème de transfert est exigible pour le groupe 2 uniquement.

CONTENUS CAPACITÉS & COMMENTAIRES

e) Variables aléatoires discrètes

 (\star) Une variable aléatoire discrète X définie sur l'espace probabilisé (Ω, \mathcal{A}, P) et à valeurs dans E est une application définie sur Ω , à valeurs dans l'ensemble E, telle que $X(\Omega)$ soit au plus dénombrable et que, pour tout $x \in X(\Omega)$, l'ensemble $X^{-1}(\{x\})$ appartienne à \mathcal{A} .

Notations (X = x), $(X \in A)$, $\{X = x\}$, $\{X \in A\}$. Lorsque $E = \mathbb{R}$, la variable aléatoire X est dite réelle.

Notations $(X \le x), (X \ge x), (X < x), (X > x)$ (et analogues avec accolades) pour une variable aléatoire réelle X.

 (\star) Loi P_X d'une variable aléatoire discrète X.

La loi de X peut au besoin être définie sur un ensemble contenant $X(\Omega)$.

Dans ce qui suit, toutes les variables aléatoires sont supposées discrètes.

La probabilité P_X est déterminée par la distribution de probabilités discrète $(P(X=x))_{x\in X(\Omega)}$. Notation $X\sim Y$.

La notation $X \sim Y$ ne suppose pas que X et Y sont définies sur le même espace probabilisé.

- (\star) Variable aléatoire f(X).
- (\star) Si $X \sim Y$ alors $f(X) \sim f(Y)$.

Loi conditionnelle d'une variable aléatoire *X* sachant un événement *A*.

Couple de variables aléatoires. Loi conjointe, lois marginales.

Détermination des lois marginales à partir de la loi conjointe.

Un couple est une variable aléatoire à valeurs dans un produit.

Notation P(X = x, Y = y).

Extension aux *n*-uplets de variables aléatoires.

f) Variables aléatoires indépendantes

Couple de variables aléatoires indépendantes, famille finie de variables aléatoires indépendantes.

Notation $X \perp Y$.

Les variables aléatoires X et Y sont indépendantes si et seulement si la distribution de probabilités de (X,Y) est le produit des distributions de probabilités de X et Y. Extension aux n-uplets de variables aléatoires.

Famille quelconque de variables aléatoires indépendantes.

 (\star) Fonctions de variables aléatoires indépendantes : si $X \perp Y$, alors $f(X) \perp g(Y)$

Extension au cas de plus de deux variables.

CONTENUS CAPACITÉS & COMMENTAIRES

(★) Lemme des coalitions :

si les variables aléatoires $X_1, ..., X_n$ sont indépendantes, les variables aléatoires $f(X_1, ..., X_m)$ et $g(X_{m+1}, ..., X_n)$ le sont aussi.

Existence d'espaces probabilisés portant une suite de variables indépendantes de lois discrètes données. (★) Extension au cas de plus de deux coalitions.

La démonstration est hors programme. Suites i.i.d. Modélisation du jeu de pile ou face infini : suite i.i.d. de variables de Bernoulli.

g) Lois usuelles

(\star) Pour p dans]0,1[, loi géométrique de paramètre p.

Variable géométrique de paramètre p.

Pour λ dans \mathbb{R}_+^* , loi de Poisson de paramètre λ . Variable de Poisson de paramètre λ .

Notations $\mathcal{G}(p)$, $X \sim \mathcal{G}(p)$.

 (\star) Interprétation comme rang du premier succès dans le jeu de pile ou face infini.

Notations $\mathcal{P}(\lambda)$, $X \sim \mathcal{P}(\lambda)$.

(★) Interprétation en termes d'événements rares.

h) Espérance d'une variable aléatoire réelle ou complexe

Si X est une variable aléatoire à valeurs dans $\mathbb{R}^+ \cup \{+\infty\}$, l'espérance de X est la somme, dans $[0, +\infty]$, de la famille $(x P(X = x))_{x \in X(\Omega)}$.

(*)Pour une variable aléatoire à valeurs dans $\mathbb{N} \cup \{+\infty\}$, égalité $+\infty$

$$E(X) = \sum_{n=0}^{+\infty} P(X > n) = \sum_{n=1}^{+\infty} P(X \ge n).$$

Une variable aléatoire complexe X est dite d'espérance finie si la famille $(x P(X = x))_{x \in X(\Omega)}$ est sommable; dans ce cas, la somme de cette famille est l'espérance de X.

(*) Espérance d'une variable géométrique, d'une variable de Poisson.

 $(\star\star)$ Formule de transfert : soit X une variable aléatoire discrète à valeurs dans un ensemble quelconque, f une fonction définie sur $X(\Omega)$ à valeurs complexes; alors f(X) est d'espérance finie si et seulement si la famille $\left(f(x)\,P(X=x)\right)_{x\in X(\Omega)}$ est sommable; si tel est le cas : $\mathrm{E}\left(f(X)\right) = \sum_{x\in X(\Omega)} f(x)\,P(X=x)$.

(*) Linéarité. Positivité, croissance, inégalité triangulaire.

 (\star) Si $|X| \le Y$ et si $Y \in L^1$, alors $X \in L^1$.

 (\star) Si X et Y sont dans L^1 et indépendantes, alors XY est dans L^1 et :

$$E(XY) = E(X) E(Y)$$
.

Notation E(X).

Notation E(X). Variables centrées.

La notation $X \in L^1$ signifie que X est d'espérance finie. On ne soulèvera aucune difficulté quant à la définition précise de L^1 .

Caractérisation des variables aléatoires à valeurs dans \mathbb{R}^+ d'espérance nulle.

 (\star) Extension au cas de n variables aléatoires.