华东理工大学 2017 - 2018 学年第一学期

《高等数学(上)11学分》课程期中考试试卷 2017.11

开课学院:理学院,专业:大面积,考试形式:闭卷,所需时间 120 分钟

考生姓名: ______ 学号: _____ 班级: _____ 任课教师: _____

题序	_	<u></u>	=	四	五	六	总分
本题分	52	16	8	8	8	8	
得分							
阅卷人							

注意: 试卷共二大页六大题

- 一. 填空题 (本大题共13小题,每小题4分,共52分):
- 1、极限 $\lim_{n\to\infty} \left(\sqrt{n+3}-\sqrt{n}\right)\sqrt{n-1} =$ ______.
- 2、极限 $\lim_{n\to\infty} \left(2\sqrt{n} + \sqrt{n+3}\right) \ln\left(1 + \sqrt{n} \sqrt{n+4}\right) = \underline{\hspace{1cm}}$
- 3、极限 $\lim_{x\to 0} \left(\frac{1}{1+2x}\right)^{\frac{1}{x}} = \underline{\hspace{1cm}}.$
- **4、**设 n 是正整数, $f(x) = (1 \sqrt{\cos x}) \ln(1 + x^2)$, $g(x) = x \sin(x^n)$, $h(x) = e^{-x^2} 1$. 当

 $x \to 0$ 时 f(x) 是比 g(x) 高阶的无穷小, g(x) 是比 h(x) 高阶的无穷小,则 n =

- 5、设 $y = e^{\arctan \sqrt{x}}$,则 $dy|_{x=1} =$.
- **6、**设函数 f(x) 在点 x = 0 处具有连续的一阶导数, f'(0) = 1 ,则

 $\lim_{x \to 0} \frac{1}{x^5} \frac{d}{dx} f(\ln^3 (1 + x^2)) = \underline{\hspace{1cm}}.$

- 7、设 $\tan(x+y) = e^{xy} 1$,则 $\frac{dy}{dx}\Big|_{(x,y)=(0,0)} =$.
- **8、**设 y = f(x) 具有连续的一阶导数,已知 f(2) = 1, f'(2) = 2,则 $\left[f^{-1}(x) \right]' \Big|_{x=1} = ____.$
- **9、**设 f(x) 在 $x = x_0$ 处可导,则 $\lim_{x \to x_0} \frac{x f(x_0) x_0 f(x)}{x x_0} = \underline{\hspace{1cm}}$.

10	D、设 $y = (1+x)^x$,则 $y' =$			
11	1、设有参数方程 $\begin{cases} x = \cos t \\ y = 2\sin t \end{cases}$ 确定的函数 $y = y(x)$,则 $\frac{d^2 y}{dx^2} \bigg _{t=\frac{\pi}{6}} = \underline{\qquad}$			
12	2、函数 $y = \frac{x-1}{x+1}$ 的 n 阶导数 $y^{(n)} =$			
13	3、设 $f(x) = 3x^3 + x^2 x $,则使得 $f^{(n)}(0)$ 存在的最高阶数 $n = $	·		
=	L. 选择题(本大题共 4 小题,每小题 4 分,共 16 分):			
1,	、设函数 $f(x)$ 在 $(-\infty, +\infty)$ 内单调有界, $\{x_n\}$ 为数列,则	()
	(A) 若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛 (B) 若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$	x _n)}收敛		
	(C) 若 $\{f(x_n)\}$ 收敛,则 $\{x_n\}$ 收敛 (D) 若 $\{f(x_n)\}$ 单调,则	$\{x_n\}$ 收敛		
2、	、设函数 $f(x)$ 和 $g(x)$ 在点 x_0 的某个邻域内有定义,且 $f(x)$ – $f(x_0)$	$= (x - x_0)$	g(x)	,
则	」"函数 $g(x)$ 在点 x_0 处连续"是" $f(x)$ 在点 x_0 处可导"的	1	()
	(A) 充分非必要条件 (B) 必要非充分条件 (C) 充分必要条件 (D) 既非充分也非必要条件	4件		
3、	、下列关于函数 $f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$ 的间断点的类型的说法正确的是	()
4、	(A) $x = 1$ 和 $x = 2$ 都是第一类 (C) $x = 1$ 和 $x = 2$ 都是第二类 (D) $x = 1$ 是第二类, $x = 1$ 下面三个结论中:			
	(1)若 $u = \varphi(x)$ 在点 x_0 处不可导,而 $y = f(u)$ 在 $u_0 = \varphi(x_0)$ 处可导,	则复合函	函数	
у	$\varphi = f(\varphi(x))$ 在点 x_0 处一定不可导;			
	(2) 若 $u = \varphi(x)$ 在点 x_0 处可导,而 $y = f(u)$ 在 $u_0 = \varphi(x_0)$ 处不可导	,则复合	函数	
у	$\varphi = f(\varphi(x))$ 在点 x_0 处一定不可导;			
	(3) 若 $u = \varphi(x)$ 在点 x_0 处不可导,而 $y = f(u)$ 在 $u_0 = \varphi(x_0)$ 处也不	可导,则	复合函	函数
ν	$v = f(\varphi(x))$ 在点 x_0 处一定不可导,			

正确结论的个数为

()

(A) 0 (B) 1 (C) 2 (D) 3

三、(本题8分).

设
$$\lim_{x\to 0} \frac{x^2}{\sqrt{a^2+x^2}(b-\cos^2 x)} = \frac{1}{2}(a>0)$$
, 试确定常数 a 和 b 的值.

四、(本题8分).

设曲线
$$y = f(x)$$
与 $y - x = e^{x(1-y)}$ 在点 $(0,1)$ 有公共切线,求 $\lim_{n \to \infty} n [f(\frac{-2}{n+2}) - 1]$.

五、(本题8分)

设
$$x_1 = 1$$
,且 $x_n = \frac{2 + 3x_{n-1}}{1 + x_{n-1}}$ $(n = 2, 3, \cdots)$,证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$.

六、(本题8分)

设 f(x) 在[0,3]上连续,在(0,3)内可导,f(0)+f(1)+f(2)=3,f(3)=1. 证明: 至少存在一点 $\xi \in (0,3)$ 使得 $f'(\xi)=0$.