Padronização ou Normalização

```
In [1]:
         import pandas as pd
         from matplotlib import pyplot as plt
         import seaborn as sns
         # Biblioteca para fazer a PADRONIZAÇÃO
         from sklearn.preprocessing import StandardScaler
         # Biblioteca para fazer a NORMALIZAÇÃO
         from sklearn.preprocessing import MinMaxScaler
         # Bilioteca para separação de dados em treino e teste
         from sklearn.model_selection import train_test_split
         # Biblioteca para calcular a acuracia do modelo
         from sklearn.metrics import accuracy_score
         # Algoritmo KNN
         from sklearn.neighbors import KNeighborsClassifier
         # Algoritmo SVM
         from sklearn import svm
In [2]:
         # Carregando o arquivo
         df original = pd.read csv("https://archive.ics.uci.edu/ml/machine-learning-database
In [3]:
         # Nomeando as colunas
         df_original.columns = ['CLASS','ALCOHOL','MALICACID','ASH','ASHALCALINITY','MAGNES]
                                'NONFLAVONOIDSPHENOLS', 'PRONTHOCYANINS', 'COLORINTENSITY', 'HUE
         # Visualizando as primeiras linhas do DataFrame
         df_original.head()
           CLASS ALCOHOL MALICACID ASH ASHALCALINITY MAGNESIUM TOTALPHENOLS FLAVONO
Out[3]:
                      13.20
                                   1.78
                                        2.14
                                                       11.2
                                                                    100
                                                                                   2.65
         1
                                                       18.6
                                                                    101
                                                                                   2.80
                      13.16
                                   2.36
                                        2.67
         2
                1
                      14.37
                                        2.50
                                                       16.8
                                                                    113
                                                                                   3.85
                                   1.95
         3
                                                                                   2.80
                      13.24
                                   2.59
                                        2.87
                                                       21.0
                                                                    118
         4
                1
                      14.20
                                   1.76 2.45
                                                       15.2
                                                                    112
                                                                                   3.27
         # Analisando um resumo das medidas
         df original.describe()
```

Out[4]:		CLASS	ALCOHOL	MALICACID	ASH	ASHALCALINITY	MAGNESIUM	TOTALPHE	
	count	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.0	
	mean	1.943503	12.993672	2.339887	2.366158	19.516949	99.587571	2.29	
	std	0.773991	0.808808	1.119314	0.275080	3.336071	14.174018	0.67	
	min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.98	
	25%	1.000000	12.360000	1.600000	2.210000	17.200000	88.000000	1.74	
	50%	2.000000	13.050000	1.870000	2.360000	19.500000	98.000000	2.3	
	75%	3.000000	13.670000	3.100000	2.560000	21.500000	107.000000	2.80	
	max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.8	
4								>	
In [5]:	plt.f: ax = :	ando um Boxigure(figsisns.boxplot	ze=(16,6)) c(data = df			IBSAVONOIDS#REINIDISCYASQNLSR	LINTENSITY HUE OD280	OD315 PROLINE	
In [6]:		_		PADRONIZAÇÃO PdScaler().f					
In [7]:		i <i>cando a PA</i> dronizado =		onizacao.tra	ansform(df_	original)			
In [8]:		<i>erve que é</i> dronizado	criado um	ARRAY dos d	dados				
Out[8]:	array([[-1.22246766, 0.2558245 , -0.50162433,, 0.40709978, 1.13169801, 0.97105248], [-1.22246766, 0.20622873, 0.01802001,, 0.3195674 , 0.80457911, 1.40099798], [-1.22246766, 1.70650069, -0.34931478,, -0.4244579 , 1.20281081, 2.34050852],, [1.36887097, 0.34261709, 1.73822194,, -1.60614514, -1.48525319, 0.28632445], [1.36887097, 0.21862767, 0.22408586,, -1.56237895, -1.39991783, 0.30224836], [1.36887097, 1.40892609, 1.57695301,, -1.51861275, -1.42836295, -0.58949046]])								
In [9]:	df_pa	dronizado = dronizado.o	pd.DataFr		ronizado)	olunas NLICACID','ASH'	,'ASHALCALIN	ITY','MAGN	

'NONFLAVONOIDSPHENOLS', 'PRONTHOCYANINS', 'COLORINTENSITY', 'HUE

Visualizando os dados padronizados
df_padronizado.head()

Out[9]:		CLASS	ALCOHOL	MALICACID	ASH	ASHALCALINITY	MAGNESIUM	TOTALPHENOLS	F
	0	-1.222468	0.255824	-0.501624	-0.824485	-2.500110	0.029180	0.572666	
	1	-1.222468	0.206229	0.018020	1.107690	-0.275639	0.099932	0.812784	
	2	-1.222468	1.706501	-0.349315	0.487935	-0.816726	0.948953	2.493609	
	3	-1.222468	0.305420	0.224086	1.836812	0.445811	1.302712	0.812784	
	4	-1.222468	1.495719	-0.519543	0.305655	-1.297693	0.878201	1.565153	

In [10]: # Visualizando as medidas dos dados PADRONIZADOS
df_padronizado.describe()

Out[10]:		CLASS	ALCOHOL	MALICACID	ASH	ASHALCALINITY	MAGNESIUN
	count	1.770000e+02	1.770000e+02	1.770000e+02	1.770000e+02	1.770000e+02	1.770000e+0
	mean	1.327250e-15	-2.609338e-16	4.252719e-16	-4.378168e-16	-6.410440e-16	-1.028681e-1
	std	1.002837e+00	1.002837e+00	1.002837e+00	1.002837e+00	1.002837e+00	1.002837e+0
	min	-1.222468e+00	-2.434746e+00	-1.433400e+00	-3.668064e+00	-2.680472e+00	-2.093373e+0
	25%	-1.222468e+00	-7.856866e-01	-6.628933e-01	-5.692924e-01	-6.964846e-01	-8.198411e-0
	50%	7.320166e-02	6.984037e-02	-4.209899e-01	-2.245039e-02	-5.094986e-03	-1.123234e-0
	75%	1.368871e+00	8.385748e-01	6.810145e-01	7.066723e-01	5.961134e-01	5.244425e-0
	max	1.368871e+00	2.276852e+00	3.100048e+00	3.149233e+00	3.151249e+00	4.415790e+0

In [11]: # Gerando os BoxPlot dos dados Padronizados
 plt.figure(figsize=(16,6))
 ax = sns.boxplot(data = df_padronizado)

In []:

In [12]: # Visualizando novamente o DataFrame Original
df_original.head()

Out[12]:	c	LASS	ALCOHOL	MALICACID	ASH	ASHALCALINITY	MAGNESIUM	TOTALPHENOLS	FLAVON		
,	0	1	13.20	1.78	2.14	11.2	100	2.65			
	1	1	13.16	2.36	2.67	18.6	101	2.80			
	2	1	14.37	1.95	2.50	16.8	113	3.85			
	3	1	13.24	2.59	2.87	21.0	118	2.80			
	4	1	14.20	1.76	2.45	15.2	112	3.27			
									•		
13]:	<pre># Criando um objeto para NORMALIZAR os dados obj_normalizacao = MinMaxScaler().fit(df_original)</pre>										
4]:	# Aplicando a NORMALIZAÇÃO df_normalizado = obj_normalizacao.transform(df_original)										
5]:			izando os	dados norma	ılizado	05					
5]:	arra	9 [9 9]	.55064194). 0.64693295], , 0.5605263], , 0.8789473	2, 0.3	2055336 ,, 3201581 ,, 23913043,,	0.44715447,	0.6959707 ,			
0 0	df_r	[1 eransfo	0.40085592 0.20114123 ormando pa lizado = p], , 0.8157894]]) ra DataFrame d.DataFrame umns = ['CL	ne e no e(df_no_ASS',	'ALCOHOL', MAL	0.10569106, unas ICACID','ASH'	-			
	# Visualizando os dados NORMALIZADOS df_normalizado.head()										
[16]:	С	LASS	ALCOHOL	MALICACID	AS	SH ASHALCALIN	ITY MAGNESI	JM TOTALPHENO	DLS FLAV		
	0	0.0	0.571053	0.205534	0.4171	12 0.0309	928 0.3260	0.575	362		
	1	0.0	0.560526	0.320158	0.7005	35 0.412.	371 0.3369	0.627	586		
	2	0.0	0.878947	0.239130	0.6096	26 0.319	588 0.4673	391 0.989	655		
	3	0.0	0.581579	0.365613	0.8074	87 0.536	0.521	739 0.627	586		
	4	0.0	0.834211	0.201581	0.5828	88 0.237	113 0.456	522 0.789	655		
									•		
57]:	<pre># Visualizando as medidas dos dados normalizados df_normalizado.describe()</pre>										

Out[67]:

	CLASS	ALCOHOL	MALICACID	ASH	ASHALCALINITY	MAGNESIUM	TOTALPHE
count	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.00
mean	0.471751	0.516756	0.316183	0.538053	0.459637	0.321604	0.4
std	0.386996	0.212844	0.221208	0.147102	0.171962	0.154065	0.2
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	0.000000	0.350000	0.169960	0.454545	0.340206	0.195652	0.20
50%	0.500000	0.531579	0.223320	0.534759	0.458763	0.304348	0.4
75%	1.000000	0.694737	0.466403	0.641711	0.561856	0.402174	0.67
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00


```
In []:
In []:
```

Algoritmo KNN

```
# Gerando um DataFrame das variáveis preditoras originais SEM a variável TARGET
In [69]:
         VAR_PREDITORAS_ORIG = df_original.drop('CLASS', axis = 1)
In [70]:
         # Gerando um DataFrame somente da variavel TARGET
         VAR_TARGET = df_original['CLASS']
         # Separando os dados em TREINO e TESTE (VARIAVEIS ORIGINAIS)
In [71]:
         # 70% PARA TREINO E 30% PARA TESTE
         X_train, X_test, Y_train, Y_test = train_test_split(VAR_PREDITORAS_ORIG, VAR_TARGET
         knn = KNeighborsClassifier()
In [72]:
In [73]:
         knn.fit(X_train, Y_train)
         KNeighborsClassifier()
Out[73]:
```

```
import warnings
In [78]:
         warnings.filterwarnings("ignore", category=FutureWarning, message=".*keepdims.*")
         resultados = knn.predict(X_test)
         score = accuracy_score(Y_test, resultados)
In [79]:
         score
In [80]:
         0.666666666666666
Out[80]:
In [ ]:
         # Gerando um DataFrame das variáveis preditoras NORMALIZADAS SEM a variável TARGET
In [82]:
         VAR_PREDITORAS_NORM = df_normalizado.drop('CLASS', axis = 1)
In [83]: # Gerando um DataFrame somente da variavel TARGET
         # Obs: A variável TARGET NÃO É NORMALIZADA E NEM PADRONIZADA
         VAR_TARGET = df_original['CLASS']
In [84]: # Separando os dados em TREINO e TESTE (VARIAVEIS NORMALIZADAS)
         # 70% PARA TREINO E 30% PARA TESTE
         X_train, X_test, Y_train, Y_test = train_test_split(VAR_PREDITORAS_NORM, VAR_TARGET
         knn = KNeighborsClassifier()
In [85]:
         knn.fit(X_train, Y_train)
         KNeighborsClassifier()
Out[85]:
In [86]:
         resultados = knn.predict(X_test)
         score = accuracy_score(Y_test, resultados)
In [87]:
In [88]:
         score
         0.9074074074074074
Out[88]:
In [ ]:
In [ ]:
         # Gerando um DataFrame das variáveis preditoras PADRONIZADAS SEM a variável TARGET
In [89]:
         VAR PREDITORAS PADRON = df padronizado.drop('CLASS', axis = 1)
         # Gerando um DataFrame somente da variavel TARGET
In [90]:
         # Obs: A variável TARGET NÃO É NORMALIZADA E NEM PADRONIZADA
         VAR_TARGET = df_original['CLASS']
         # Separando os dados em TREINO e TESTE (VARIAVEIS PADRONIZADAS)
In [91]:
         # 70% PARA TREINO E 30% PARA TESTE
         X_train, X_test, Y_train, Y_test = train_test_split(VAR_PREDITORAS_PADRON, VAR_TARG
         knn = KNeighborsClassifier()
In [92]:
         knn.fit(X_train, Y_train)
         KNeighborsClassifier()
Out[92]:
```

Algoritmo SVM

```
In [96]:
           VAR_PREDITORAS_ORIG = df_original.drop('CLASS', axis = 1)
           VAR_TARGET = df_original['CLASS']
 In [97]:
 In [98]:
           X_train, X_test, Y_train, Y_test = train_test_split(VAR_PREDITORAS_ORIG, VAR_TARGET
           svm = svm.SVC(kernel = 'linear')
 In [99]:
           svm.fit(X_train, Y_train)
           SVC(kernel='linear')
Out[99]:
In [100...
           resultados = svm.predict(X_test)
In [101...
           score = accuracy_score(Y_test, resultados)
In [102...
           score
           0.9074074074074074
Out[102]:
 In [ ]:
 In [ ]:
           VAR PREDITORAS NORM = df normalizado.drop('CLASS', axis = 1)
In [103...
           VAR_TARGET = df_original['CLASS']
In [104...
In [105...
           X_train, X_test, Y_train, Y_test = train_test_split(VAR_PREDITORAS_NORM, VAR_TARGET
In [106...
           svm = svm
           svm.fit(X_train, Y_train)
           SVC(kernel='linear')
Out[106]:
           resultados = svm.predict(X_test)
In [107...
In [108...
           score = accuracy_score(Y_test, resultados)
In [109...
           score
```

```
0.9259259259259
Out[109]:
  In [ ]:
  In [ ]:
          VAR_PREDITORAS_PADRON = df_padronizado.drop('CLASS', axis = 1)
In [110...
          VAR_TARGET = df_original['CLASS']
In [111...
          X_train, X_test, Y_train, Y_test = train_test_split(VAR_PREDITORAS_PADRON, VAR_TARG
In [112...
In [113...
           svm = svm
           svm.fit(X_train, Y_train)
          SVC(kernel='linear')
Out[113]:
In [114...
           score = accuracy_score(Y_test, resultados)
In [115...
           score = accuracy_score(Y_test, resultados)
In [116...
           score
          0.9259259259259
Out[116]:
 In [ ]:
```