HW Problem Set 3

EE379 Linear Control Systems Fall 2015

Due: 10 Jan 2016

Notes

- This assignment will be submitted in LaTeX ONLY (as a report)
- No Hard Copies accepted
- You need to submit the
 - TeX File (source file of the LaTeX code)
 - Compiled PDF File
- You can use either a cloud version of LaTeX (ShareLatex, Overleaf* etc.) or an offline version (TeX, WinEdt etc.)

^{*} I found it better than ShareLatex

Chapter 9

- Do any one of the following
 - Problem 50
 - Problem 51
 - Problem 34
- Write the solution in Latex

Linearization based PID Design

- Remember the inverted pendulum on the cart (in the slides)? In that
 problem we 'linearized' the nonlinear system about an operating point. A
 real-world example that relates directly to this inverted pendulum system
 is the attitude control of a booster rocket at takeoff.¹
- You will need to first linearize the system
- You need to derive the transfer function between the force applied to the cart (input) and the angular position of the pendulum (output).
- After you have obtained the linearized model of the system, design a 1)
 PID and 2) Lead-Lag compensator such that certain design specifications (next slide) are achieved
- Here are the system parameters:
 - Mass of pendulum = max(Your scores in sessional 1/50, 0.9) (in kg)
 - Mass of the cart = Your previous semester GPA (in kg)
 - Coefficient of friction = 0.5 N/m/sec
 - Length to pendulum center of mass = Your CGPA (in m)
 - Mass moment of inertia of pendulum = 0.005 kg m²

Linearization based PID Design (cont.)

- Design Specifications:
 - Settling time for θ of less than 7 seconds
 - Pendulum angle $\,\theta$ never more than 0.06 rad from the vertical
 - Steady-state error of less than 3% for θ
- Do everything in MATLAB/Simulink
- You should use the sisotool (SISO Design Toolbox) to verify your design via simulations

Resources

- You may use resources for taking help
- Highly recommended is this one: <u>http://ctms.engin.umich.edu/CTMS/index.php</u>
 - ?aux=Home