My photo search advice

Ivan Listopadov Sergey Grozny Alexander Zaytsev Yurii Melnik TA: Petr Sokerin

Problem statement

How to find yourself in dozens of photos?

What we achieved

- 1. Created dataset and labelled by hand via detector to find faces
- 2. Used 2 pre-trained models from DeepFace as baseline
- 3. Trained 2 models, using transfer learning on our dataset
- 4. Got better results than benchmark models

Data collection

Detection

YOLOv8

Preprocessing: Deblurring

L = Laplacian(image)

If L.var() < threshold

return "blurred image"

Preprocessing: Deduplications

Original Image: IMG_3028_face_2.jpg

Data labelling

IMG_8791_face_1.jpg

IMG_8793_face_1.jpg

IMG_8799_face_2.j...

0, if not Yurii label =

1, if Yurii

not valid

IMG_8882_1_face_1...

IMG_8882_face_1.jpg

IMG_8890_face_1.jpg

IMG_8946_face_3.j... IMG_8947_face_2.j...

IMG_8948_face_1.j...

8 **Skoltech**

Triplet Loss

- f(x) d-dimensional embedding with unit euclidean norm of an image x
- a, p and n anchor, positive and negative examples
- a margin that is enforced between positive and negative pairs

Triplet Loss Visualization

Triplet Loss Definition

$$L(a,p,n) = \sum_i \max\{\|f(a_i) - f(p_i)\|_2^2 - |f(a_i) - f(n_i)\|_2^2 + lpha, 0\}$$

FaceNet

- Inception-ResNetV1 backbone pretrained on VGGFace2 Dataset
- Training method Transfer Learning
- Triplet Selection Strategy Offline Selection

FaceTripleNet

- All triplets all possible anchor-positive-negative combos
- In semi-hard mining it selects negatives harder than positives but within margin
- In hard mining closest to anchor negative is selected

Evaluation

- Used baseline recognition (ArcFace/VGG-Face), and YOLOv8 for detection
- Used classical metrics: Precision, Recall & F1
- Our model outperformed both VGG-Face and ArcFace
- More data needed for a definitive efficiency comparison

Table 1: Performance of models

Model	F_1	Recall	Precision
YOLOv8 + ArcFace	0.58	0.78	0.46
YOLOv8 + VGG-Face	0.73	0.82	0.66
FaceTripleNet (ours)	0.78	0.85	0.72
FaceNet (ours)	0.74	0.60	0.92

Conclusion

- We constructed new dataset and labeled by hand faces.
- Made 4 experiments (2 baselines, 2 ours)
- Via transfer learning trained our models.
- Achieved superior performance compared to benchmarks.

Questions?

