Lattices

Introduction to Model Theory (Third hour)

December 9, 2021

Section 1

Semilattices

2/58

Suprema and infima

Definition

Let (P, \leq) be a poset and $S \subseteq P$ be a subset.

- An *upper bound* of S is an element $a \in P$ such that $x \in S \implies x \le a$.
- ② A lower bound of S is an element $a \in P$ such that $x \in S \implies x \ge a$.
- \odot A maximum of S is an upper bound of S in S.
- \bigcirc A minimum of S is a lower bound of S in S.
- A supremum or least upper bound of S is a minimum in the set of upper bounds of S.
- An *infimum* or *greatest lower bound* of *S* is a maximum in the set of lower bounds of *S*.

Suprema and infima

Suppse $S \subseteq (P, \leq)$.

- S has at most one maximum.
- 2 S has at most one minimum.
- S has at most one supremum.
- S has at most one infimum.

Example

In (\mathbb{R}, \leq) , the set S = [0,1) has $0 = \min(S) = \inf(S)$, $1 = \sup(S)$, and no maximum.

Suprema and infima of \varnothing

Let (P, \leq) be a poset.

Fact

$$a = \inf(\emptyset) \iff a = \max(P)$$
. [sic]
 $a = \sup(\emptyset) \iff a = \min(P)$. [sic]

 \emptyset is the one set where $\sup(S) < \inf(S)$ can happen.

Meet-semilattices as posets

Definition

A *meet-semilattice* is a poset (S, \leq) such that $\inf\{x, y\}$ exists for any $x, y \in S$.

 $\inf\{x,y\}$ is called the *meet* of x and y, and is written $x \wedge y$.

Example

Any linear order (S, \leq) is a meet-semilattice, with $x \wedge y = \min\{x, y\}$.

Example

The powerset $(P(A), \subseteq)$ is a meet-semilattice with $x \wedge y = x \cap y$.

Meet-semilattices as algebraic structures

Definition

A *meet-semilattice* is a set S with an operation \wedge satisfying the identities:

$$x \wedge y = y \wedge x$$
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
$$x \wedge x = x.$$

To recover ≤:

$$x \le y \iff x = x \land y$$
.

Meet-semilattices as posets

Fact

A poset (S, \leq) is a meet-semilattice iff inf A exists for any finite non-empty $A \subseteq S$.

Proof idea: $\inf\{x_1,\ldots,x_n\}=x_1\wedge x_2\wedge\cdots\wedge x_n$.

Bounded meet-semilattices

A bounded meet-semilattice is. . .

- **1** A poset (S, \leq) such that inf A exists for every finite $A \subseteq S$.
- **2** A meet-semilattice (S, \leq) such that inf \varnothing exists.
- 3 A meet-semilattice (S, \leq) with a maximum element 1.
- **3** A meet-semilattice (S, \wedge) with an element 1 such that $x \wedge 1 = x$ for all $x \in S$.

Posets as categories

We can regard a poset P as a category where

- Objects are elements of P.
- If $x \le y$, there is a unique morphism from x to y.
- If $x \not \leq y$, there are no morphisms from x to y.

Fact

P has finite limits iff P is a bounded meet-semilattice.

Join-semilattices

Definition

A *join-semilattice* is a poset (S, \leq) such that $\sup\{x, y\}$ exists for any $x, y \in S$.

 $\sup\{x,y\}$ is called the *join* of x and y, and is written $x\vee y$.

Definition

A bounded join-semilattice is a join-semilattice with a least element 0.

Section 2

Lattices

Lattices

Definition

A *lattice* is a partial order (L, \leq) that is a meet-semilattice and a join-semilattice.

That is, every finite non-empty subset of L has a supremum and infimum. That is, every two-element subset $\{x,y\}\subseteq L$ has a supremum and infimum.

Examples:

- Linear orders.
- Powersets $(P(A), \subseteq)$.

Lattices

Definition

A *lattice* is a set L with two operations \land, \lor satisfying the identities

$$x \wedge y = y \wedge x \qquad x \vee y = y \vee x$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z \qquad x \vee (y \vee z) = (x \vee y) \vee z$$

$$x \wedge x = x \qquad x \vee x = x$$

$$x \wedge (x \vee y) = x \qquad x \vee (x \wedge y) = x.$$

Absorption laws

The identities

$$x \wedge (x \vee y) = x$$

 $x \vee (x \wedge y) = x$.

ensure that \wedge and \vee define the same partial order on L.

Bounded lattices

Definition

A bounded lattice is a partial order (L, \leq) such that inf S and sup S exists for every finite $S \subseteq L$.

Definition

A bounded lattice is a lattice (L, \leq) with a maximum 1 and a minimum 0.

Definition

A bounded lattice is a lattice (L, \wedge, \vee) with elements 0, 1 satisfying the identities

$$x \land 1 = x \lor 0 = x$$
.

Sublattices

Let (L, \leq) be a lattice.

Definition

A *sublattice* is a subset $S \subseteq L$ such that S is closed under \wedge and \vee .

Now suppose (L, \leq) is a bounded lattice.

Definition

A bounded sublattice is a sublattice $S \subseteq L$ containing the minimum 0 and the maximum 1.

Warning

 $([1,2], \leq)$ is a sublattice of $([0,3], \leq)$, and [1,2] is a bounded lattice, but [1,2] is not a bounded sublattice.

The category of lattices

Definition

A *lattice homomorphism* from a lattice A to a lattice B is a function $f: A \rightarrow B$ preserving \land, \lor :

$$f(x \lor y) = f(x) \lor f(y)$$

$$f(x \land y) = f(x) \land f(y).$$

Definition

The *category of lattices* has lattices as objects, and lattice homomorphisms as morphisms.

The category of bounded lattices

Definition

A bounded lattice homomorphism from a bounded lattice A to a bounded lattice B is a function $f:A\to B$ preserving $\land,\lor,0,1$:

$$f(x \lor y) = f(x) \lor f(y)$$

$$f(x \land y) = f(x) \land f(y)$$

$$f(0) = 0$$

$$f(1) = 1.$$

This defines the category of bounded lattices.

Warning

The inclusion $[1,2] \hookrightarrow [0,3]$ is a lattice homomorphism between bounded lattices, but not a bounded lattice homomorphism.

The wrong category

Let C be the category where

- Objects are bounded lattices.
- Morphisms are lattice homomorphisms.

Fact

C does not have finite limits. C does not have finite colimits.

In contrast...

Fact

The category of bounded lattices has all small limits and small colimits.

Section 3

Complete lattices

Complete lattices

Definition

A *complete lattice* is a partial order (L, \leq) such that inf S and sup S exist for every $S \subseteq L$.

- A complete lattice is a bounded lattice.
- Complete lattices are non-empty (take $S = \emptyset$).

Complete lattices

Example

 $([0,1],\leq)$ is a complete lattice, by the completeness axiom of \mathbb{R} .

Example

For any set A, the powerset $(P(A), \subseteq)$ is a complete lattice, with $\sup \mathcal{F} = \bigcup \mathcal{F}$ and $\inf \mathcal{F} = \bigcap \mathcal{F}$.

Example

Any finite non-empty lattice is a complete lattice.

Complete semilattices. . . ?

Fact

Let (P, \leq) be a poset. The following are equivalent:

- Every $S \subseteq P$ has an infimum.
- Every $S \subseteq P$ has a supremum.

Consequences:

- "complete lattice" = "complete meet-semilattice" = "complete join-semilattice"
- Any finite bounded semilattice is a complete lattice.

More complete lattices

These are complete lattices:

- The lattice of subrings of a ring R.
- The lattice of ideals in a ring R.
- The lattice of subgroups of a group G.
- The lattice of normal subgroups of a group G.
- ullet The lattice of linear subspaces of a vector space V.
- The lattice of sublattices of a lattice L.
- ullet The lattice of closed sets in a topological space T.

In each case, inf *S* is $\bigcap_{X \in s} X$.

Closure operations

Definition

A *closure operation* on a set S is a map $cl: P(S) \rightarrow P(S)$ satisfying these properties:

- $X \subseteq \operatorname{cl}(X)$.
- If $X \subseteq Y$, then $cl(X) \subseteq cl(Y)$.
- $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$.

Examples:

- Topological closure.
- $cl(S) = the subring generated by <math>S \subseteq (R, +, \cdot)$.

Closure operations

Let cl(-) be a closure operation on S.

Definition

 $X \subseteq S$ is *closed* if cl(X) = X.

Fact

Let cl(-) be a closure operation on S. Let C be the family of closed sets.

- **1** (C, \subseteq) is a complete lattice.
- $\bigvee_{i \in I} X_i$ is cl $(\bigcup_{i \in I} X_i)$.

Topological closure

Fact

A closure operation cl(-) on S corresponds to a topology on S if and only if this identity holds:

$$cl(X \cup Y) = cl(X) \cup cl(Y).$$

Knaster-Tarski Theorem

Fact (Knaster-Tarski)

Let (L, \leq) be a complete lattice. Let $f: L \to L$ be monotone:

$$x \leq y \implies f(x) \leq f(y).$$

Let $L' = \{x \in L : f(x) = x\}.$

THEN:

- L' is non-empty.
- (L', \leq) is a complete lattice.

Warning

 (L', \leq) is usually not a sublattice of (L, \leq) .

Knaster-Tarski Theorem: example

Let T be a topological space. Define

$$f: P(T) \to P(T)$$

 $f(X) = \operatorname{int}(\overline{X}).$

The fixed points are the *regular open sets*.

- $(0,1) \cup (2,3) \subseteq \mathbb{R}$ is a regular open set.
- $(0,1) \cup (1,3) \subseteq \mathbb{R}$ is a non-regular open set.

The poset of regular open sets is a complete lattice, by Knaster-Tarski.

Section 4

Distributive lattices

Distributive lattices

Theorem

Let (L, \leq) be a lattice. The following are equivalent:

- **1** L satisfies the identity $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$.
- 2 L satisfies the identity $x \lor (y \land z) = (x \lor y) \land (x \lor z)$.

Proof.

$$(1) \Longrightarrow (2)$$
:

$$(x \lor y) \land (x \lor z) = (x \land x) \lor (x \land z) \lor (y \land x) \lor (y \land z)$$

$$= x \lor (x \land z) \lor (x \land y) \lor (y \land z)$$

$$= x \lor (x \land y) \lor (y \land z)$$

$$= x \lor (y \land z).$$

Distributive lattices

Definition

A distributive lattice is a lattice satisfying the equivalent identities

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$$

Examples:

- Linear orders.
- Power sets.

Distributive lattices and power sets

Fact

 (L, \wedge, \vee) is distributive iff L is isomorphic to a sublattice of $(P(A), \cap, \cup)$ for some set A.

Distributive lattices from partial orders

Fact

Let (P, \leq) be a partial order. Let \mathcal{D} be the family of downward-closed sets, i.e., sets $A \subseteq P$ for which

$$x \le y \in A \implies x \in A$$
.

Then $(\mathcal{D}, \cap, \cup)$ is a distributive lattice.

Fact

All finite distributive bounded lattices arise this way.

Fact

Any finitely generated distributive lattice is finite.

(This doesn't hold for general lattices.)

Section 5

Boolean algebras

Complements

Let L be a bounded lattice.

Definition

x and y are complements if

$$x \wedge y = 0$$
 and $x \vee y = 1$.

Fact

In a bounded <u>distributive</u> lattice, complements are unique: if y, y' are complements of x, then y = y'.

Boolean algebras

Definition

A *Boolean algebra* is a distributive lattice in which every element has a complement.

We write the complement of x as $\neg x$.

Example

The powerset $(P(A), \subseteq)$ is a Boolean algebra, with $\neg X = A \setminus X$.

Finite Boolean algebras

Fact

Every finite Boolean algebra has the form $(P(A), \subseteq)$ for some finite set A.

Fact

The category of finite Boolean algebras is dual to the category of finite sets.

Categories C and D are dual if C is equivalent to D^{op} , or equivalently, C^{op} is equivalent to D.

Boolean algebras from topological spaces

Fact

Let T be a topological space. Let $\mathcal B$ be the family of clopen subsets of T. Then $\mathcal B$ is a Boolean algebra.

Fact

All Boolean algebras arise this way.

Another characterization of Boolean algebras

Fact

A structure $(B, \land, \lor, 0, 1, \neg)$ is a Boolean algebra iff it is isomorphic to a substructure of $(P(A), \cap, \cup, \varnothing, A, \neg)$ for some set A.

Stone spaces

Fact

If T is a compact topological space, then the following conditions are equivalent:

- T is totally separated: for any $x, y \in T$, there is a clopen set U with $x \in U$ and $y \notin U$.
- T is totally disconnected: the connected components of T are points.
- T is Hausdorff and zero-dimensional: there is a basis of open sets consisting of clopen sets.

Stone spaces

Definition

A *Stone space* is a compact totally disconnected space.

Examples:

- A finite discrete topological space.
- The Cantor set.
- The one-point compactification of a discrete topological space.
- $\{0, 1, 1/2, 1/3, 1/4, \ldots\}$.

Stone duality

Fact

The category of Stone spaces is dual to the category of Boolean algebras.

- A Stone space S corresponds to the Boolean algebra of clopen subsets.
- The other direction involves ultrafilters...

Ultrafilters

Let B be a Boolean algebra.

Definition

An *ultrafilter* in B is a subset $U \subseteq B$ such that

- $x, y \in U \implies x \land y \in U$.
- $x \in U$ and $x \le y$ imply $y \in U$.
- $1 \in U$.
- 0 ∉ *U*.

Ultrafilters

Fact

An ultrafilter U determines a Boolean algebra homomorphism

$$B \to \{0, 1\}$$
$$x \mapsto \begin{cases} 1 & x \in U \\ 0 & x \notin U. \end{cases}$$

Ultrafilters in B correspond bijectively to Boolean algebra homomorphisms $B \to \{0,1\}$.

The space of ultrafilters

Given a Boolean algebra B, let S(B) be the set of ultrafilters in B.

- For $x \in B$, let $[x] = \{U \in S(B) : x \in U\}$.
- The family $\{[x] : x \in B\}$ is a basis for a topology on S(B).
- This makes S(B) into a Stone space
- This gives the functor from Boolean algebras to Stone spaces.

Remark

If M is a model and $A \subseteq M$, then the type space $S_n(A)$ is a Stone space, dual to the Boolean algebra of A-definable subsets $X \subseteq M^n$.

Boolean rings

Definition

A Boolean ring is a (unital) ring R satisfying the identity $x^2 = x$ for all $x \in R$.

Fact

Boolean rings are equivalent to Boolean algebras.

The correspondence works like so:

$$0 = 0 1 = 1$$

$$x \cdot y = x \wedge y$$

$$x + y = (x \wedge \neg y) \vee (\neg x \wedge y)$$

$$x \vee y = x + y + xy$$

$$\neg x = 1 - x.$$

In a Boolean ring, maximal ideals = prime ideals, and these correspond bijectively to ultrafilters.

Heyting algebras

Definition

A bounded lattice (L, \leq) is a *Heyting algebra* if for every a, b, the set $\{x \in L : x \land a \leq b\}$ has a maximum.

This maximum is denoted $a \rightarrow b$.

Fact

- Boolean algebras are Heyting algebras.
 - ightharpoonup a
 ightharpoonup b is the logical implication operator $\neg a \lor b$.
- ② The lattice of open sets in a topological space is a Heyting algebra.
- Heyting algebras are distributive lattices.

Heyting algebras and logic

- Boolean algebras govern classical logic.
 - ▶ A propositional identity holds in classical logic iff it holds in all Boolean algebras.
- 4 Heyting algebras govern intuitionistic logic.
 - A propositional identity holds in intuitionistic logic iff it holds in all Heyting algebras.
- **③** If T is a topos and $A \in T$, then the subobject poset Sub(A) is always a Heyting algebra.
- **4** A poset (P, \leq) is a Heyting algebra iff the category P is *cartesian closed*: it has finite limits, finite colimits, and exponential objects.
 - ▶ The exponential object b^a is $a \rightarrow b$.
- More generally, the *Curry-Howard isomorphism* connects intuitionistic logic and cartesian closed categories.

Section 6

Modular lattices

Modular lattices: definition 1

Fact

Let (L, \leq) be a lattice. Suppose $a \leq b$ and x is arbitrary. Then

$$(x \wedge b) \vee a \leq (x \vee a) \wedge b \tag{1}$$

Intuition: we are trying to "round" x into the interval [a, b].

Definition

A lattice (L, \leq) is *modular* if equality always holds in (1):

$$(x \wedge b) \vee a = (x \vee a) \wedge b.$$

Modular lattices: definition 2

Fact

Let (M, \leq) be a modular lattice. For any a, b, there is an isomorphism

$$f: [a \land b, a] \to [b, a \lor b]$$
$$f(x) = x \lor b$$
$$f^{-1}(y) = y \land a$$

Fact

This property characterizes modular lattices.

Modular lattices: examples

Fact

These are modular lattices:

- The lattice of ideals in a ring R.
- The lattice of normal subgroups in a group G.
- The lattice of subgroups in an abelian group A.
- The lattice of subspaces in a vector space V.
- Any distributive lattice.

Three of these examples are instances of

• The lattice of submodules of an R-module M,

which is the inspiration for the name "modular lattice."

Length

Definition

If $a \le b$, the length $\ell(b/a)$ is the maximum n such that there exist

$$a = x_0 < x_1 < \cdots < x_n = b,$$

or ∞ if there is no finite maximum.

- $\ell(b/a) = 0$ iff b = a
- $\ell(b/a) > 0$ iff b > a.
- $\ell(b/a) = 1$ iff b "covers" a, i.e., b > a and there is no b > x > a.

Jordan-Hölder

Fact

If $a \le b \le c$ in a modular lattice, then $\ell(c/a) = \ell(c/b) + \ell(b/a)$.

Definition

A composition series from a to b is a maximal chain a = b

$$a = x_0 < x_1 < \cdots < x_n = b.$$

Then
$$\ell(b/a) = \sum_{i=1}^{n} \ell(x_i/x_{i-1}) = \sum_{i=1}^{n} 1$$
, so...

Theorem (Jordan-Hölder)

In a modular lattice, any composition series from a to b has length $\ell(b/a)$.

Length in vector spaces

Let M be the lattice of linear subspaces of \mathbb{R}^n .

Fact

If $W \subseteq V \subseteq \mathbb{R}^n$ are subspaces, then $\ell(V/W) = \dim(V/W) = \dim(V) - \dim(W)$.

Finite-length modular lattices

Let M be a bounded modular lattice of finite length. Define $\rho(x) = \ell(x/0)$. Then

$$\rho(x \vee y) = \rho(x) + \rho(y) - \rho(x \wedge y) \tag{2}$$

$$x < y \implies \rho(x) < \rho(y)$$
 (3)

$$\ell(y/x) = \rho(y) - \rho(x). \tag{4}$$

Fact

Let (L, \leq) be a lattice and ρ be a function from L to an ordered abelian group satisfying (2) and (3). Then (L, \leq) is a modular lattice.