Aufgabenblatt 2

Philipp Stassen, Felix Jäger, Lisa Krebber 25. April 2018

Aufgabe 6

(1)

(a) Es sei $\Phi \vDash \varphi$ und $\Phi \vDash \psi$ und \mathfrak{M} ein beliebiges Modell, sodass $\mathfrak{M} \vDash \Phi$.

Dann ist ebenfalls $\mathfrak{M} \models \varphi \land \psi$, wie man der Wahrheitstabelle für \land entnehmen kann. Da \mathfrak{M} beliebig war, gilt die Aussage für alle Modelle von Φ . Demnach folgt $\Phi \models \varphi \land \psi$.

Alternativer Beweis Wenn $\Phi \vDash \varphi$ und $\Phi \vDash \psi$, dann gilt $\Phi \nvDash \neg \psi$. Demnach gilt auch $\Phi \nvDash \varphi \to \neg \psi$, also $\Phi \vDash \neg (\varphi \to \neg \psi)$. Da wir $\neg (\varphi \to \neg \psi) := \varphi \land \psi$ definiert haben, folgt die Behauptung.

(b) Die Argumente aus (a) lassen sich einfach umkehren. Ich zeige dies nur für den ersten Beweis.

Es sei $\Phi \vDash \varphi \land \psi$ und \mathfrak{M} ein beliebiges Modell, sodass $\mathfrak{M} \vDash \Phi$. Dann gilt auch $\mathfrak{M} \vDash \varphi$ und $\mathfrak{M} \vDash \psi$, wie man der Wahrheitstabelle für \land entnehmen kann. Da \mathfrak{M} beliebig war, gilt dies für alle Modelle von Φ . Daraus folgt $\Phi \vDash \varphi$ und $\Phi \vDash \psi$.

- (c) Es sei $\Phi \vDash \varphi$, $\psi \in L^S$ eine beliebige Formel und \mathfrak{M} ein Modell, sodass $\mathfrak{M} \vDash \Phi$. Dann ist $\mathfrak{M} \vDash \varphi$, und anhand der Wahrheitstabelle für \vee ist sowohl $\mathfrak{M} \vDash \varphi \vee \psi$ als auch $\mathfrak{M} \vDash \psi \vee \varphi$. Da das Modell beliebig war, folgt $\Phi \vDash \varphi \vee \psi$ bzw. $\Phi \vDash \psi \vee \varphi$.
- (d) Es seien $\Phi \vDash \varphi \lor \psi$, $\Phi \vDash \neg \psi$ und \mathfrak{M} ein Modell, sodass $\mathfrak{M} \vDash \Phi$. Demnach ist $\mathfrak{M} \vDash \varphi \lor \psi$ und $\mathfrak{M} \vDash \neg \psi$. Man kann der Wahrheitstabelle für \lor entnehmen, dass $\mathfrak{M} \vDash \varphi$ gelten muss. Da das Modell \mathfrak{M} beliebig war, folgt $\Phi \vDash \varphi$
- (2) Sei $S_{Gr} = (e, \circ)$ die Sprache der Gruppen, Φ sei leer, und

$$\varphi = \forall v_1 \forall v_2 v_1 \circ v_2 \equiv v_2 \circ v_1 \text{ sowie} \tag{1}$$

$$\psi = \neg \varphi. \tag{2}$$

Da $\varphi \vee \neg \varphi$ eine Tautologie ist, gilt $\vDash \varphi \vee \psi$.

Allerdings ist $(\mathbb{N}, +)$ ein Modell einer abelsche Gruppe und $(\mathrm{GL}_n(\mathbb{R}), \cdot)$, die Gruppe der invertierbaren $(n \times n)$ -Matrizen, ein Modell einer nicht abelschen Gruppe. Deshalb gelten $\nvDash \phi$ und $\nvDash \psi$.

Ein bekannteres Beispiel ist die Wahl von $S=(\in), \Phi$ ist das ZFC Axiomsystem gemeinsam mit der Annahme, dass es konsistent ist. ϕ ist die Kontinuumshypothese und ψ die Negation derselben. Auch hier ist $\phi \vee \psi$ eine Tautologie, aber sowohl ϕ als auch ψ gelten nicht für alle Modelle.