

E2

ELEC2760 - Exercise Session #2: Software Implementations

Exercise #1. Create a new project in AVR Studio.

- a. Type : AVR Atmel assembler.
- b. Debug: AVR Simulator 2.
- c. Device : ATmega644P.
- d. Entry file: rijndaelfurious.asm (source: http://point-at-infinity.org/avraes/).

Exercise #2. Read and understand:

- a. main.
- b. encrypt, related to the FIPS-197 standard, Chapter 5.
- c. $\it mixcolumns,$ note the link with the implementation presented in Lecture 5.

Exercise #3. Assemble the code and record the space taken in the program memory.

Exercise #4. Simulate the code.

- a. See the effect of key_expand in the RAM (at the beginning of the execution).
- b. How many clock cycles does it take to execute:
 - i. encrypt?
 - ii. decrypt?
 - iii. mixcolumns?
- c. What is the ciphertext of the plaintext 0 enciphered with the master key 0 ?

Exercise #5. Write a function xtime2, as compact as possible, that is using no table.

Exercise #6. Insert this function in mixcolumns, and delete the now useless table xtime.

Exercise #7. Compare xtime and xtime2 in terms of:

- a. execution time
 - i. for mixcolumns
 - ii. for a complete encryption.
- b. space consumed in the program memory.

Exercise #8. Improve xtime2 into xtime3 with data-independent execution time. Why is this feature important? What is its cost in terms of execution time and memory space?

1

- 1) Donne
- 2) Understanding
 - a. Main:
 - i. Init stack
 - ii. Load key
 - iii. Expand key
 iv. Load plaintext
 - v. Encrypt
 - vi. Decrypt
 - b. Encrypt:
 - i. N rounds ii. Add round key
 - iii. SubBytes
 - iv. Shift rows
 - v. S-box (in function)
 - vi. Add round key (if last op)
 - vii. Mix columns
 - c. Mixcolumns:
- i. Move from registers, then xor it, using the matrix and LUT
- 3) Assembly

"ATmega644P" memory use summary [bytes]: Segment Begin End Code Data Used Size Use%

[.cseg] 0x000000 0x001300 802 800 1602 65536 2.4% [.dseg] 0x000100 0x000100 0 0 0 4096 0.0% [.eseg] 0x000000 0x000000 0 0 0 0 2048 0.0% Assembly complete, 0 errors. 0 warnings

1.602 KB used

4) Simulation

a. Key expansion (in main)

- ii. Make 2 brake points, and press play, then continue to see the red changes
- iii. Key expansion -> Create the sub-keys for the rest of the algorithm
- b. Clock cycles

(You have to turn on the Processor Status thing in debug mode, and add breaks)

i. Encrypt:

5) Total cycle count : 3603 - 864 = 2739 cycles

ii. Decrypt:

1) Entry of decrypt:

Processor Status	□ ×	Value
Name	Program Counter	0.00000031
Stack Pointer	0.000000	
X Register	0.0000	
Y Register	0.0180	
Z Register	0.0180	
Z Register	0.0100	
Status Register	0.0100	
Cycle Counter	3605	
Frequency	1.000 MHz	

3) Output of decrypt (at ret):

Exercise #5. Write a function xtime2, as compact as possible, that is using no table.

Exercise #6. Insert this function in mixcolumns, and delete the now useless table xtime.

Exercise #7. Compare xtime and xtime2 in terms of:

a. execution time

i. for mixcolumns.

ii. for a complete encryption.

b. space consumed in the program memory.

Exercise #8. Improve xtime2 into xtime3 with data-independent execution time. Why is this feature important? What is its cost in terms of execution time and memory space?

Warning, the xtim2 and xtime3 functions need to be above xtime to not be outside the address space $\frac{1}{2}$

4) 0x00F0 OTHSVNZC Cycle Co 7180 1.000 MHz

5) Total cycle count : 7180 - 3605 = 3575 cycles

iii. Mixcolumns :

1) Before the mixcolumn:

2)

Stop Watch 993.00 µs
After the mixcolumns rcall 3)

5) Total cycle count : 1150 - 993 = 157 cycles

iv. Comparaison with theory :

```
; 16 MHz MCU | clock cycles |
1) ; encryption |
; decryption |
                        2739
                       3579
```

2) Difference for decryption since I had to measure at ret, instead of after it c. Ciphertext of the plaintext 0 with master key 0 ?

i. Modifications :

```
;;;text:
;;;:de $12,645,646,648,658,554,650,564,631,633,698,642,640,637,607,634
;;;:de $20,676,615,516,520,646,621,546,640,677,515,588,600,647,647,630
ii.
```

١:		
	■ Registers	
	R00	0x66
	R01	0xE9
	R02	0x48
	R03	0xD4
	R04	0xEF
	R05	0x8A
	R06	0x2C
1)	R07	0x38
	R08	0x88
	R09	0x4C
	R10	0xFA
	R11	0x59
	R12	0xCA
	R13	0x34
	R14	0x28
	R15	0x2E

5) Xtime2 as compact as possible

6) Insert in mix columns

7) Compare Xtime and Xtime2 in terms of :

a. Execution time

i. Mixcolumns

	Xtime	157
1)	Xtime2	1241 - 994 = 247

ii. Co

omplete encryption										
11	Xtime	2739								
	Xtime2	4485 - 864 = 3621								

b. Space consumed in the program memory

	Xti		16x16=256 B																													
ı.	Xti	me2	I	1	0	В	(X	tiı	m	e2	2 2	ın	d	Χt	in	ne	23	a	re	ir	n t	h	e s	sa	m	e	a	dd	lre	ess	0x130	Α
ii.	prog prog prog prog prog prog prog	0x1270 0x128C 0x12AB 0x12C4 0x12E0	38 78 48 69 45 93 4b	3a 72 aa e2 01 49 91 d9	94 3c 74 ac e4 97 4f 97 df	36 76 86 65 4d 95 dd	48 78 68 35 43 85 43	42 7a b2 ea 39 41 89 d1	44 7c b4 ec 3f 47 8f d7	46 7e b6 ee 3d 45 8d d5	48 88 68 78 33 76 83 cb	48 82 ba f2 31 79 81 c9	4c 84 bc f4 37 7f 87 cf	4e 86 be 16 35 7d 85 cd	58 c8 f8 2b 73 bb c3	52 8a c2 fa 29 71 b9 c1	54 8c c4 fc 2f 77 bf c7	56 8e c6 fe 2d 75 bd c5	58 98 c8 1b 23 6b b3 fb	5a 92 ca 19 21 69 b1 f9	5c 94 cc 1f 27 6f b7 ff	5e 96 ce 1d 25 6d b5 fd	68 98 d8 13 5b 63 ab f3	62 9a d2 11 59 61 a9 f1	64 9c 64 17 5f 67 af f7	66 9e d6 15 5d 63 ad f5	68 d8 6b 53 9b a3 eb	68 a2 da 89 51 99 a1 e9	6c a4 dc 0f 57 9f a7 ef	6e ad da 8d 55 9d a5 ed		
					-		-	-					-							-	-			-	-0							

8) Xtime<u>3 be branchless</u>

i. Encryption: 4710 - 864 = 3846 ii. MixColumns : 1273 - 994 = 279

c. Memory:

i. Same: 10 B d. ITS IMPORTANT SO THAT THE POWER DOES NOT LEAK THE DATA