DTU Compute

Department of Applied Mathematics and Computer Science

Dynamics of adaptive neuronal networks A trip to topology and back

Author Simon Aertssen s181603 Supervisor Erik Martens Poul Hjorth

Contents

	Abstract	
1	Nomenclature	3
2	Network Topologies2.1 Fixed-degree networks2.2 Random / Erdös-Rény networks2.3 Scale-free networks	4
3	The Theta Neuron Model 3.1 Model description	5
4	Mean Field Reductions4.1 The Ott-Antonsen manifold for fully connected networks4.2 Extension to arbitrary network topologies	
5	Mean Field Reductions5.1 Directed graphs as permutations5.2 Results	
6	Hebbian Learning6.1 Fire and Wire6.2 Anti-hebbian learning	
7	Plasticity 7.1 Intrinsic plasticity	
8	Emerging Network Topologies8.1 Redefinition of the network8.2 Results8.3 Discussion	10 10 10
9	Conclusion and discussion	11
10) References	12
11	Appendix 11.1 Solution to the theta neuron model	13 13 13 13

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

Acknowledgements

thankyou thankyou

1 Nomenclature

N Network degree. Number of neurons in the network.

 A_{ij} Adjacency matrix. Models which neuron i is connected to neuron j and vice-ersa.

P Network degree distribution.

 $k,\langle k \rangle$ Node degree, average node degree

 γ Degree exponent of a scale-free network

 $\dot{\theta}, \theta$ Phase variable of the theta model

 $\eta_i, I(t)_i$ Excitability and input current of neuron i

 $g(\eta|\eta_0,\Delta)$ Excitability distribution

 κ Coupling strength

 $Z(t), \bar{Z}(t)$ Order parameter, discrete and continuous.

2 Network Topologies

2.1 Fixed-degree networks

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

2.2 Random / Erdös-Rény networks

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

2.3 Scale-free networks

3 The Theta Neuron Model

3.1 Model description

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

3.2 Solutions for static currents

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

3.3 Networks of theta neurons

4 Mean Field Reductions

4.1 The Ott-Antonsen manifold for fully connected networks

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

4.2 Extension to arbitrary network topologies

5 Mean Field Reductions

5.1 Directed graphs as permutations

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

5.2 Results

6 Hebbian Learning

6.1 Fire and Wire

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

6.2 Anti-hebbian learning

7 Plasticity

7.1 Intrinsic plasticity

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

7.2 Spike-timing dependant plasticity

8 Emerging Network Topologies

8.1 Redefinition of the network

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

8.2 Results

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

8.3 Discussion

9 Conclusion and discussion

Test citations: In [1]

10 References

[1] C. Bick, M. Goodfellow, C. Laing, and E. Martens, *Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. Journal of Mathematical Neuroscience* 10 no. 1, (Dec., 2020) .

- 11 Appendix
- 11.1 Solution to the theta neuron model
- 11.2 Jacobian of the Ott-Antonsen manifold
- 11.3 Jacobian of the Ott-Antonsen extended manifold