Linear Algebra

Ashan Jayamal

2024-03-13

Contents

1	Vector space				
	1.1	\mathbb{R}^n	n and \mathbb{C}^{n}	5	
2	Ashan				

4 CONTENTS

Chapter 1

Vector space

1.1 \mathbb{R}^n and \mathbb{C}^n

We are already be familiar with basic properties of the set of real numbers (\mathbb{R}) . Complex numbers comes when we can take square roots of negative numbers. The idea is to assume we have a square root of -1, denoted by i that obeys the usual rules of arithmetic. Here are the formal definition.

Definition 1.1 (Complex Numbers).

- A complex number is an ordered pair (x,y), where $x,y \in \mathbb{R}$, but we will write this as x+yi.
- The set of all complex numbers is denoted by \mathbb{C} :

$$\mathbb{C} = \{ x + yi \, | \, x, y \in \mathbb{R} \}.$$

• Addition and multiplication on \mathbb{C} are defined by

$$(x+yi)+(u+vi)=(x+u)+(y+v)i,$$

$$(x+yi)(u+vi) = (xu-yv) + (xv+yu)i;$$

here $x, y, u, v \in \mathbb{R}$

Chapter 2

Ashan