Numerical Integration

- Integration replaced by Summation
- Newton-Cotes
 - ☐ Equally spaced points
 - ☐ Trapezoidal Rule
 - ☐ Simpsons rule
- Gauss Quadrature
 - ☐ Unequally spaced points
- Romberg Integration
 - Newton-Cotes + Richardson Extrapolation

 $\int_{a}^{b} f(x) dx = \sum_{i=0}^{n} A_{i} f(x_{i})$

Numerical Integration: Trapezoidal Rule

Trapezoidal Rule:

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} A_{i} f(x_{i})$$
$$= \left[f(a) + f(b) \right] \frac{h}{2}$$

f(x)

Composite Trapezoidal Rule:

$$\int_{a}^{b} f(x) dx$$

$$= \sum_{i=1}^{n-1} \left[f(x_i) + f(x_{i+1}) \right] \frac{h}{2}$$

$$= \left[f(x_1) + 2f(x_2) + 2f(x_3) + \dots + 2f(x_{n-1}) + f(x_n) \right] \frac{h}{2}$$

Sham Gurav

Numerical Integration: Simpson's Rule

Simpson's (1/3) Rule:

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{3} A_{i} f(x_{i}) = \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{h}{3}$$

Simpson's (1/3) Composite Rule:

$$\int_{a}^{b} f(x) dx = \begin{bmatrix} f(x_{1}) + 4f(x_{2}) + 2f(x_{3}) + 4f(x_{4}) + 2f(x_{5}) + \cdots \\ \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \end{bmatrix} \frac{h}{3}$$

Simpson's (3/8) Rule:

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{4} A_{i} f(x_{i}) = \left[f(x_{1}) + 3f(x_{2}) + 3f(x_{3}) + f(x_{4}) \right] \frac{3h}{8}$$

Sham Gurav

Numerical Integration: Gauss Quadrature

- Unequally spaced points
- Higher Accuracy: Exact for polynomial of degree (2n-1)
- > Integrals of the form $\int_a^b w(x) f(x) dx$
- Map Integration range from \int_a^b to \int_{-1}^1 using transformation from x to ξ

$$x = \frac{b+a}{2} + \frac{b-a}{2}\xi$$

$$\int_{a}^{b} f(x)dx \approx \left(\frac{b-a}{2}\right) \int_{-1}^{1} f(\xi)d\xi$$

$$dx = \left(\frac{b-a}{2}\right) d\xi$$

$$\approx \left(\frac{b-a}{2}\right) \sum_{i=1}^{n} A_{i} f(\xi_{i})$$

Numerical Integration: Gauss-Legendre Quadrature

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{i=1}^{n} A_{i} f(\xi_{i})$$

$$\int_{-1}^{1} f(\xi) d\xi$$

$$\approx A_{1} f(\xi_{1}) + A_{2} f(\xi_{2})$$

$$n = 2$$

$$n = 3$$

Numerical Integration: Gauss-Legendre Quadrature Example

Calculate
$$\int_{1.5}^{3} (-\cos x) dx$$

For polynomial of order 5:

$$5 = 2n - 1$$

$$n = 3$$

n	ξ_i	A_i
3	0.000000	0.888889
	±0.774597	0.55556

ξ_i	A_{i}
±0.577350	1.000000
0.000000	0.888889
±0.774597	0.555556
±0.339981	0.652145
± 0.861136	0.347855
0.000000	0.568889
±0.538469	0.478629
± 0.906180	0.236927
±0.238619	0.467914
±0.661209	0.360762
±0.932470	0.171324
	±0.577350 0.000000 ±0.774597 ±0.339981 ±0.861136 0.000000 ±0.538469 ±0.906180 ±0.238619 ±0.661209

Numerical Integration: Gauss-Legendre Quadrature Example

Calculate
$$\int_{1.5}^{3} (-\cos x) dx$$
 $x = \left(\frac{3+1.5}{2}\right) + \left(\frac{3-1.5}{2}\right) \xi$ $x = 2.25 + 0.75 \xi$

$$\int_{1.5}^{3} \left(-\cos x\right) dx = \frac{\left(3-1.5\right)}{2} \int_{-1}^{1} \left(-\cos\left(2.25+0.75\xi\right)\right) d\xi = 0.75 \sum_{i=1}^{3} A_{i} f\left(\xi_{i}\right)$$

$$A_{1} = 0.888889 \qquad \qquad \xi_{1} = 0.0$$

$$A_{2} = 0.555556 \qquad \qquad \xi_{2} = -0.774597$$

$$A_{3} = 0.555556 \qquad \qquad \xi_{3} = 0.774597$$

$$= 0.75 \left[0.888889 \times 0.62816 + 0.555556 \times 0.098 + 0.555556 \times 0.95216 \right]$$

= 0.85637

Sham Gurav