```
584
```

(1)

$$V = IR$$
 より、 $(オ- \Delta の法則)$ $I = 2.0A$, $R = 7.5\Omega$ を代入して、 $V = 2.0 \cdot 7.5$ $= 15V$ $V = Ed$ より、 $(電位差と電界の関係式)$ $V = 15V$, $d = 15m$ を代入して、 $15 = E \cdot 15$ $\therefore E = 1 V/m$

(2)

$$F=qE$$
 より、 (電界と受ける力の式) $q=1.6\times 10^{-19}C$, $E=1^{V}/m$ を代入して、 $F=1.6\times 10^{-19}\cdot 1$ $=1.6\times 10^{-19}N$

(3)

銅の分子量が64なので、1mol 当たりの質量は64gとなる。 よって、1g当たりの物質量は $\frac{1}{64}$ molである。また、 $1cm^3$ の銅の質量は8.0gなので、 $1cm^3$ の中に含まれる銅の原子数nは、 $n=8.0\cdot\frac{1}{64}\cdot6.0\times10^{23}$ $=7.5\times10^{22}$ 個 $/cm^3$

(4)

この銅線内に含まれる $1m^3$ 自由電子の個数n'は、 n'=2n となる。 $n=7.5\times 10^{28}$ 個 $/m^3$ を代入して、 $n'=2\cdot (7.5\times 10^{16})$

 $=1.5 \times 10^{29}$ 個/ m^3 I=envS より、 (電流の定義より) $I=2.0A~,~e=1.6 \times 10^{-19}C~,~n=1.5 \times 10^{29}$ 個/ $m^3~,~S=0.34 \times 10^{-6}m^2$ を代入して、 $2.0=(1.6 \times 10^{-19})\cdot (1.5 \times 10^{29})\cdot v\cdot (0.34 \times 10^{-6})$ $\therefore v=2.45 \times 10^{-4}$ $m/_S$