Medical/Bio Research Topics I: Week 08 (22 April 2025)

Diffusion-weighted MRI (2): Data Processing Methods

확산가중 자기공명영상 (2): 데이터 처리 방법

Brain Mapping with Diffusion-weighted MRI (dMRI)

Diffusion-weighted MRI

Analytical Variability in dMRI

- Variability of white matter tractography [Schilling et al., 2021]
 - Resulted from different protocols for white matter bundle segmentation

From the same probabilistic streamline set

[Schilling et al., 2021]

Analytical Variability in White Matter Tract Dissection Using Different Protocols

From the same deterministic streamline set

[Schilling et al., 2021]

Analytical Variability in White Matter Tract Dissection Using Different Protocols

Preprocessing

- Numerous steps to clean dMRI data before diffusion modeling
 - Correction for unwanted variation
 - Head motion
 - Eddy current-induced distortion
 - Inhomogeneity-induced distortion

[dMRI: Preprocessing]

- 46 scans
 - 1 scan without diffusion weighting
 - 45 scans with diffusion weighting at $b = 1000 \text{ s/mm}^2$

Average image for $b = 0 \text{ s/mm}^2$

Average image for $b = 1,000 \text{ s/mm}^2$

b-values

0 1000 1000 1000 1000 1000 ··· 1000

46 values

b-vectors

```
0.2488
           -0.4396
                    0.6565
                            -0.3743
                                      0.2818
                                                   0.4357
                                      0.0936
0
   0.9672
           0.7676 -0.0606
                            -0.5783
                                                   0.8473
  -0.0588
           0.4671
                    -0.7513
                             0.7245
                                    0.9545
                                                   0.3021
```

46 vectors

Diffusion-sensitizing Gradient Directions

Estimated Head Motion

Estimated Eddy Currents

White Matter Microstructure

- Given the notion that diffusion measurement is sensitive to water molecule diffusion on a "microscopic scale"
 - Mean squared displacement in terms of time elapsed and diffusivity: $\langle r^2 \rangle = 2Dt = \sim \mu m$
- Through measurement of the average Brownian diffusion behavior of water molecules by aggregating diffusion properties over a great many cells and axons within a voxel

Diffusion tensor model

- Represents the directional dependence of diffusion by a diagonalized matrix or an ellipsoid
- Depicts only a single fiber population at each voxel based on the assumption that the probability density function describing the random displacement of water molecules due to diffusion is Gaussian
 - Not proper to voxels that have multiple fiber populations crossing or highly curving fiber bundles

MRI Signals Measured without and with Diffusion Weighting

https://www.blog.brainsightai.com/post/from-dti-to-hardi]]

Diffusion Tensor and Its Ellipsoid Representation

[Geva et al., 2011]

Grey matter
Isotropic,
restricted
diffusion

White matter
Anisotropic,
restricted
diffusion

Potential sources of diffusion anisotropy

- Cytoskeleton
 - Microtubules (25 nm diameter)
 - Neurofilaments (10 nm diameter)
 - Microfilaments (7 nm diameter)
- Axonal membranes
- Myelin sheath

[Noguerol et al., 2017]]

Isotropic and Anisotropic Diffusion in Brain Tissues

[Beaulieu, 2002]]

Transverse and Longitudinal Sections of Myelinated Optic Nerves of the Garfish

Diffusion tensor metrics

- Characterize aspects of water molecule diffusion, such as the magnitude and anisotropy (directional dependence), offering insights into tissue structure and organization
- Fractional anisotropy (FA)
- Mean diffusivity (MD)
- Axial diffusivity (AD)
- Radial diffusivity (RD)

[Geva et al., 2011]

Directional Information Added to an FA Map

[dMRI: Diffusion Modeling]

FA

1

AD

RD

[Chang et al., 2005]

FA Maps According to Different Numbers of Diffusion-sensitizing Gradient Directions

Information of White Matter Microstructure

[Statistical Analysis of dMRI]

```
    FA ~
    Age +
    Sex +
    Education year +
    Memory performance
```

Design matrix

Output Regression

Positive correlation

Negative correlation

MD ~
 Age +
 Sex +
 Education year +
 Memory performance

OutputRegression

Positive correlation

Negative correlation

- Input to machine learning models
 - Table of voxel-wise or area-wise metric values for diffusion tensors

	Features				
I		Voxel or Area 1 metric	Voxel or Area 2 metric	Voxel or Area 3 metric	
Samples	Subject 1	-	-	-	-
	Subject 2	-	-	-	-
	Subject 3	-	-	-	-
	:	-	-	-	-

Diffusion tensor metric map

[Adapted from Wang et al., 2023]

Application of Deep Learning to Diffusion Tensor Metric Maps

Automated Diffusion Tensor Metrics Computation

- Employs deep learning algorithms to overcome limitations of traditional tensor fitting methods
- Enables to improve computation accuracy and reduce noise sensitivity

[Li et al., 2021]

SuperDTI: Diffusion Tensor Metrics Estimation

Computational Representation of White Matter Pathways

- White matter tractography hierarchy
 - Streamline → bundle
- Streamline
 - Fundamental unit of tractography, representing a single reconstructed fiber trajectory from a seed point through the brain
 - Highly dependent on algorithm parameters (seed density, step size, angular threshold, etc.)
 - Number of streamlines does not directly correspond to actual axon counts;
 rather it represents a computational estimation

Bundle

- Collection of streamlines that share similar trajectories and anatomical locations
- Represents an anatomical structure believed to serve a common functional role
- Can be defined through automatic or semi-automatic algorithms or expert manual segmentation
- Examples include well-known white matter pathways

Relationship between biological and tractography hierarchies

- Scale mismatch
 - A single voxel contains millions of axons, but generates far fewer streamlines
- Resolution limitations
 - MRI resolution (\sim 1-2 mm) is insufficient to directly visualize individual axons (\sim 1-10 $\mu m)$
- Indirect measurement
 - Diffusion MRI measures water molecule movement as a proxy for tissue organization

Validation challenges

 Direct comparison between tractography results and actual neural pathways in living human brain is nearly impossible

Model assumptions

 All tractography algorithms are based on simplified models that cannot fully capture complex biological reality

Interpretative caution

 Streamline-based connectivity metrics should be considered estimations rather than direct representations of anatomical connections

White Matter Tractography

- Map of connectional anatomy of white matter
 - Bundled streamlines that reflect where organized white matter tracts are likely to be
 - Based on how strongly and in what directions water molecules diffuse given physical constraints in the brain

Tractography vs tracking vs tractogram

Tractography

- Comprehensive technique that uses dMRI data to reconstruct and visualize white matter pathways in 3D
- Encompasses both the tracking algorithms and visualization methods

Tracking

 Algorithmic process of following the direction of nerve fibers to calculate their paths

Tractogram

- Final output or result of tractography
- Complete set of reconstructed white matter pathways displayed together

[Geva et al.,2011]

[Oishi et al., 2011]

- Deterministic vs probabilistic tractography
 - Deterministic by strictly following the directions of water molecule diffusion
 - Each seed point produces one unique streamline following the dominant diffusion direction at each step
 - Probabilistic by inferring a probability of different directions of water molecule diffusion at any given location
 - Multiple streamlines are generated from each seed point by sampling from a distribution of possible directions, representing uncertainty in fiber orientation

[Garyfallidis, 2012]

[Schreiber et al., 2014]

Comparison between Probabilistic and Deterministic Tractography

- Bundle as a computational representation of a white matter tract
 - Isolated specific white matter pathway
 - Specificity: Connection between particular areas
 - Isolation: Identifiable pathway with defined trajectories
 - Based on information about:
 - Terminations in specific grey matter structures
 - Histologically-derived definitions
 - Identified by filtering streamlines based on various criteria (length, curvature, anatomical areas they pass through)

[https://www.mrtrix.org/]]

[Oishi et al., 2011]

Trajectory of the Corticospinal Tract

[Oishi et al., 2011]

Trajectory of the Corpus Callosum

[Oishi et al., 2011]

Trajectory of the Inferior Longitudinal Fasciculus

[dMRI: White Matter Tractography]

Whole Brain White Matter Tractography

Terminations of Streamlines

Generated Streamlines

Determination of White Matter Tracts

Network

- Set of nodes and edges
 - Nodes: pre-defined areas
 - Edges: connectivity (white matter streamlines) between areas

[Honey et al., 2007]

Modes of Brain Connectivity

Streamline count

Structural Network or Connectome

Structural Network based on Diffusion Tensor Metrics

- Input to machine learning models
 - Table of area-to-area connectivity (white matter streamlines)
 values

			Features		
		Areas 1 – 2 connectivity	Areas 1 – 3 connectivity	Areas 1 – 4 connectivity	
Samples	Subject 1	-	-	-	-
	Subject 2	-	-	-	-
	Subject 3	-	-	-	-
	:	-	-	-	-

Structural network map

[Yasaka et al., 2021]

Automated White Matter Tractography

- Employs neural networks trained on large diffusion-weighted MRI datasets to identify white matter tracts
- Incorporates tissue segmentation to improve biological plausibility

[Benou & Riklin-Raviv, 2018; https://github.com/itaybenou/DeepTract]

DeepTract: White Matter Tracking

[Wasserthal et al., 2018; https://github.com/MIC-DKFZ/TractSeg]

TractSeg: White Matter Tract Segmentation