Lecture Notes for Introduction to Modern Algebra I: Lecture 8

1 Lagrange theorem

1.1 Cosets and Lagrange Theorem

Definition 1. Let (G, *) be a group. Let $H \leq G$ be a subgoup. The left coset of an element $x \in G$ is the set $xH = \{x * h \mid h \in H\}$. The right coset of an element $x \in G$ is the set $Hx = \{h * x \mid h \in H\}$.

Example 2. Consider the subgroup $K = \langle (12) \rangle = \{(1), (12)\}$ of S_3 . Then the left cosets of K are:

$$(1)K = (12)K = \{(1), (12)\},\$$
$$(13)K = (123)K = \{(13), (123)\},\$$
$$(23)K = (132)K = \{(23), (132)\}.$$

The right cosets on the other hand are:

$$K(1) = (12)K = \{(1), (12)\},\$$

 $K(13) = K(132) = \{(13), (132)\},\$
 $K(23) = K(123) = \{(23), (123)\}.$

Lemma 3. Let H be a subgroup of a group G and suppose that $g_1, g_2 \in G$. The following conditions are equivalent.

- (1) $q_1H = q_2H$.
- (2) $g_1^{-1}g_2 \in H$.
- (3) $Hg_1^{-1} = Hg_2^{-1}$.
- (4) $g_2 \in g_1 H$.

Definition 4. Let G be a group. Let $H \leq G$ be a subgoup. The subgroup H determines an equivalence relation on G given by equality of left cosets

$$x \sim y \iff xH = yH.$$

The quotient set G/\sim_H , is the set $\{xH \mid x \in G\}$ of left cosets.

Definition 5. Let $H \leq G$ be a subgoup, the index of H in G, denoted by [G : H], is the cardinality of the set of left cosets $\{xH \mid x \in G\}$.

Proposition 6. Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

Proof. Let L_H and R_H denote the set of left and right cosets of H in G, respectively. We can define a bijective map

$$\Phi \colon L_H \longrightarrow R_H$$

by the formula $\Phi(gH) = Hg^{-1}$. The map is well defined and bijective because of lemma 3.

Corollary 7. Let H be a subgroup of G. If the index of [G:H]=2, the left and right cosets are the same.

Theorem 8. (Lagrange Theorem) Let G be a group and $H \leq G$ a subgroup. Then

- 1. Let $x, x' \in H$, any two left cosets, xH and x'H, has the same cardinality.
- 2. If |G| has finite order, then |G| = |H|[G:H].

Proof. The map $\psi \colon xH \longrightarrow x'H$ defined by $\psi(x*h) = x'*h$ is bijective. The set G is therefore partitioned in [G:H] equivalence classes of cardinality |H|.

Example 9. Consider the alternate group A_4 of order 12. The subgroups of order 2 are given by:

$$\{\langle (12)(34)\rangle, \langle (13)(24)\rangle, \langle (14)(23)\rangle\}.$$

Now consider the elements (14)(23), (12)(34), (13)(24). We can check that multiplication of any two of those elements, gives the third one, for example:

$$(12)(34) \circ (14)(23) = (13)(24)$$
 $(12)(34) \circ (13)(24) = (14)(23)$

Hence we can make the subgroup of order 4;

$$H = \langle (12)(34), (14)(23) \rangle = \{1, (12)(34), (13)(24), (14)(23)\}$$

On the other hand, the subgroups of order three can be found generated by elements of order three:

$$\{\langle 123\rangle = \langle 132\rangle, \langle 124\rangle = \langle 142\rangle, \langle 134\rangle = \langle 143\rangle, \langle 234\rangle = \langle 243\rangle\}.$$

In general if the index of a group H, [G:H]=2, the group H must contains all elements of odd order. But in A_4 there are 8 elements of order 3. Hence, there is no such subgroup of order 6 in A_4 , showing that the converse of Lagrange theorem is, in general, not true.

Order	Subgroups
1	$\langle 1 \rangle = \{1\}$
2	$\{(1), (12)(34)\}; \{(1), (13)(24)\}; \{(1), (14)(23)\}$
3	$\{(1), (123), (132)\}; \{(1), (124), (142)\}$
	$\{(1), (134), (143)\}; \{(1), (234)(243)\}$
4	$\{(1), (12)(34), (13)(24), (14)(23)\}$
12	A_4

Corollary 10. Let G be a finite group and $g \in G$. The order g must divide the order of G.

Corollary 11. Let p be a prime number and G a group of order p. Then, the group G must be cyclic generated by any element $g \neq e$ in G.

Practice Questions:

- 1. As a group of order four, what type of subgroup is H, a \mathbb{V}_4 or a \mathbb{Z}_4 ?
- **2.** Show that if $H \leq G$ is a subgroup of index 2, then the group H must contains all elements of odd order.