$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Large Fock space: dim 2¹²

Use conservation of S_z : (s1, s2) sectors of dim $\binom{0}{s_1}$

For example a **basis** function from (1,2) sector:

in binary code (10000|101000)

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Matrix elements of the interaction part (diagonal in present basis):

Sector (3,3)

implementation of $\sum_{i} n_{i\uparrow} n_{i\downarrow}$

implementation of S_{iz}

$$(101000|100000) \rightarrow (101000) - (100000) = (001000)$$

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Matrix elements of the hopping part:

in binary code (10100|100000)

 \checkmark (1<u>1</u>000|000000)

Signs:

$$c_j | c^{\dagger} \dots c^{\dagger} c_j^{\dagger} c^{\dagger} \dots c^{\dagger} | \emptyset \rangle = (-1)^n c^{\dagger} \dots c^{\dagger} c^{\dagger} \dots c^{\dagger} | \emptyset \rangle$$

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Spectrum of eigenenergies:

Sector (3,3)

$$H = t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Non-interacting (canonical) bosons or fermions

=> We can find all eigenstates by diagonalizing the 1-p Hamiltonian (= hopping matrix)

$$H = \sum_{a,b} h_{ab} c_a^{\dagger} c_b$$

$$c_b = U_{bi}c_i, \quad (c_b^{\dagger} = U_{bi}^*c_i^{\dagger} = U_{ib}^{\dagger}c_i^{\dagger})$$

$$H = \sum_i \epsilon_i c_i^\dagger c_i^{}$$

$$|\phi\rangle = c_{i_1}^{\dagger} \dots c_{i_N}^{\dagger} |\text{vac}\rangle$$

$$H|\phi
angle = \left(\sum_{k=1}^N \epsilon_{i_k}\right)|\phi
angle$$

$$\{c_i,c_j^\dagger\}=U_{ia}^\dagger\{c_a,c_b^\dagger\}U_{bj}=U_{ia}^\dagger\delta_{ab}U_{bj}=\delta_{ij}$$

Canonical commutation relations!

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Large U >> t limit:

Sector (3,3)

Degeneracy:

$$\binom{6}{3} = 20$$

$$6 \cdot 5 \cdot \binom{4}{2} = 120$$

$$180$$

$$6 \cdot 5 \cdot {4 \choose 2} = 120 \qquad {6 \choose 2} \cdot {4 \choose 2} \cdot 2 = 120$$

$$180 \qquad 180$$

$$\binom{6}{3} = 20$$

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Expectation values/correlation functions:

$$|\psi_g\rangle = \sum_l a_l |l\rangle$$

Simple form for operator diagonal in a given basis

$$\langle S_{iz} \rangle = \langle \psi_g | S_{iz} | \psi_g \rangle = \sum_l \langle l | S_{iz} | l \rangle |a_l|^2$$

The average value one gets when many measurement on site i are performed. Possible result of each individual measurement is 0, 1 and -1.

At half filling (N=6)
$$\langle S_{iz}
angle = 0 \hspace{0.5cm} \langle n_{i\uparrow}
angle = rac{1}{2}$$

Fluctuations of S_z

$$\langle S_{iz}^2 \rangle - \langle S_{iz} \rangle^2 \neq 0$$

Total moment (occupation number):

$$S_z \equiv \sum_i S_{iz}$$

$$\langle S_z \rangle = 0$$
 $\langle (\delta S_z)^2 \rangle \equiv \langle (S_z - \langle S_z \rangle)^2 \rangle = 0$

$$\langle N \rangle = 6$$
 $\langle (\delta N)^2 \rangle \equiv \langle (N - \langle N \rangle)^2 \rangle = 0$

Conserved quantities (corresponding operators commute with Hamiltonian)

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Expectation values/correlation functions:

Double occupancy: (probability to find two electrons in a given site) $\langle n_{i\uparrow}n_{i\downarrow}\rangle$

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Expectation values/correlation functions:

(Fluctuating) local moment

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Expectation values/correlation functions:

Non-local spin-spin correlation function $\langle S_{iz}S_{jz}\rangle$

Weighted sum over configurations like

Which one has the largest weight?

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Expectation values/correlation functions:

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Why correlation functions?

- Contributions to interaction energy of the system $\langle n_{i\uparrow} n_{i\downarrow} \rangle$
- Response to small perturbations

external local field

$$\delta \langle S_{iz} \rangle = \chi_{\text{loc}} \cdot \delta h$$

$$\chi_{\text{loc}} = 2\sum_{n>g} \frac{|\langle \psi_n | S_{iz} | \psi_g \rangle|^2}{E_n - E_g}$$

Correction: Factor 2 missing in the recorded presentation

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

What about symmetry?

- We have used conservation of N and S_z when constructing the basis
- We did not use translation symmetry

This would require a bit more 'brain' input

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Translation symmetry is reflected in the correlation functions:

$$S_z(\mathbf{k}) = \sum_k e^{i\mathbf{k}\cdot\mathbf{R}} S_{\mathbf{R}z}$$

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Translation symmetry is reflected in the correlation functions:

$$S_z(\mathbf{k}) = \sum_k e^{i\mathbf{k}\cdot\mathbf{R}} S_{\mathbf{R}z}$$

 $k+k'+(k''-k'')=0 \ (mod \ 2\pi)$

$$\Rightarrow$$
 $\langle S_z(\mathbf{k})S_z(-\mathbf{k}')\rangle = \delta_{\mathbf{k}\mathbf{k}'}$

Correction:

 $k''=\pi$

The ground state is dominated by the states of the type

The ground state phase does not matter as pointed out correctly.

$$H = t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Translation symmetry is reflected in the correlation functions:

$$S_z(\mathbf{k}) = \sum_k e^{i\mathbf{k}\cdot\mathbf{R}} S_{\mathbf{R}z}$$

