

Ayudantía 10 - Semiconductores: Transistores

Pedro Morales Nadal

pedro.morales1@mail.udp.cl

© +56 9 30915977

Edicson Solar Salinas

edicson.solar@mail.udp.cl

© +56 9 92763279

Shi Hao Zhang shi.zhang@mail.udp.cl

\(\Omega\) +56 9 90787770

Ingeniería Civil en Informática y Telecomunicaciones

¿Qué veremos?

- Recordatorio de Thévenin
- Transistores
 - ► ¿Qué son?
 - ► ¿Para que se usan?
 - Tipos
 - Curvas
- Ejercicios

Leve aclaración

Recordatorio: Thévenin

Circuito equivalente de Thévenein

Un circuito se reduce a una fuente de tensión (V_{TH}) en serie con una resistencia equivalente (R_{TH})

Pasos

- 1 Retirar la carga
- 2 Calcular resistencia equivalente
 - 2.a Si hay fuente de tensión: cortocircuito
 - 2.b Si hay fuente de corriente: circuito abierto
- 3 Calcular voltage entre terminales abiertas: Thévenin
- 4 Calcular corriente entre terminales cortocircuitadas: Norton

Recordatorio: Thévenin

Ejemplo

Encontrar el circuito equivalente de Thévenin entre los puntos A y B

Recordatorio: Thévenin

Ejemplo

Chao carga y chao fuente

Hola fuente y calcular

Circuito equivalente de Thévenin

$$V_{TH} = V \cdot \frac{R_2}{R_1 + R_2}$$

$$R_{TH} = \frac{R_1 + R_2}{R_1 \cdot R_2}$$

Transistores

¿Qué son?

Transistores ; Para qué?

- Como switches
- Como amplificadores
- Para rajar en el ramo

Transistor NPN

Circuitos

Circuito que nos gusta

Circuito que nos gusta

Voltajes

- V_{CC}: Fuente del colector
- V_{BB}: Fuente de la base
- V_{EE}: Fuente del emisor (tierra)
- $V_{CB} = V_C V_B$
- $V_{BF} = V_B V_F$ (Aprox. 0.7 V)
- $V_{CF} = V_C V_F$

Corrientes

- I_C : C. colectora = βI_B Z. ACTIVA
- I_B: C. basal, tiene que ser chica
- I_E : C. emisora = $I_B + I_C$

Zonas

CORTE

- $I_C = 0$
- $V_{CE} = V_{CC}$
- V_B < V_E

ACTIVA

- $0 < I_C < I_{Cmax}$
- $0 < V_{CE} < V_{CC}$
- V_B ≥ V_E

SATURACIÓN

- $I_C = I_{Cmax}$
- $V_{CE} = 0$
- V_B >> V_E

Gráfico

Ejericicio 1

Sabiendo que para el circuito de la figura $V_{cc}=2v_{CE}$, determine y calcule V_{CC},R_C,β y R. Tome como referencia la curva característica de salida, su recta de carga y punto de operación.

Ejericicio 2

Dado un setup (bastante) similar al del ejercicio anterior, encuentre los valores de R, $R_C \vee R_F$, sabiendo que $V_F = 1.5 V$

¿DUDAS?

CHAO GENTE

