Autômato de Pilha

Analogamente às Linguagens Regulares, a Classe das Linguagens Livres do Contexto pode ser associada a um formalismo do tipo autômato, denominado Autômato com Pilha.

O Autômato com Pilha é análogo ao Autômato Finito que reconhece as Linguagens Livre de Contexto, basicamente um AFNDɛ incluindo uma pilha como memória auxiliar e a facilidade de não-determinismo. A pilha é independente da fita de entrada e não possui limite máximo de tamanho ("infinita").

Estruturalmente, sua principal característica é que o último símbolo gravado é o primeiro a ser lido. (FIFO last in first out). Ao contrário da fita de entrada, a pilha pode ser lida e alterada durante um processamento;

A base de uma pilha é fixa e define o seu início.

O topo é variável e define a posição do último símbolo gravado.

A facilidade de não-determinismo é importante e necessária, pois aumenta o poder computacional dos Autômatos com Pilha, permitindo reconhecer exatamente a Classe das Linguagens Livres do Contexto e Gramatica Livres de Contexto. Por exemplo, o reconhecimento da linguagem:

só é possível por um Autômato com Pilha Não-Determinístico.

Caracteristicas da Transicao

Um AFP em uma transição:

- Consome da entrada o símbolo que ele utiliza na transição, com exceção de λ .
- Substitui o símbolo do topo da pilha por qualquer cadeia.
 - \circ Se for λ , corresponde a uma extração da pilha.
 - Se for o mesmo símbolo que estava presente no topo da pilha, a pilha não se altera.
 - Podemos colocar uma cadeia, então o topo é substituído pela cadeia.
- Normalmente usa-se para símbolo inicial da pilha o carácter especial # (cardinal).

Definicao

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

Q: conjunto finito de estados

 Σ : alfabeto (simbolos de entrada)

 Γ : alfabeto finito a pilha

δ: função de transição - δ: $Q \times (\Sigma \cup \lambda)$) $\times \Gamma \rightarrow Q \times \Gamma^*$

qo: estado inicial

Zo: símbolo de início da pilha (opcional)

F: o conjunto de estados finais.

Funcao de Transicao (δ)

$$\delta(q, \alpha, \beta) = \{ (q', \gamma) \}$$

q: estado atual

 α : carácter lido à entrada β : símbolo no topo da pilha

q': estado seguinte

 γ : transicao

Exemplo:

$$\delta (q_0, a, 0) = \{ (q_1, 10) \}$$

*q*₀: estado atual

a : carácter lido à entrada0 : símbolo no topo da pilha

 q_1 : estado seguinte

10: escrever 1 no topo, por cima do zero; i.e,

"push 1".

Operações sobre a pilha

Transições	Operações sobre a a pilha	Significado
1. $\mathcal{S}(q_0, a, \#) = \{ (q_1, 0\#) \}$	push	acrescenta 0
2. $\delta(q_0, b, 1) = \{ (q_1, \lambda) \}$	pop	apaga 1
3. $\delta(q_1, b, 0) = \{ (q_1, 1) \}$	substituição	substitui 0 por 1
4. $\delta(q_0, b, 1) = \{ (q_1, 1) \}$	nenhuma	não altera
5. $\delta(q_1, \lambda, 0) = \{ (q_2, \lambda) \}$	pop	apaga 0
6. $\delta(q_1, \lambda, 0) = \{ (q_2, 10) \}$	push	acrescenta 1

Exemplo

Projetar automato de pilha (P) para aceitar a linguagem L = {wcw^r | w ∈ Σ = {a,b,c}* }. Onde P = P = (Q, Σ , Γ , δ , q0, F) Q = {q0, q1}, Σ = {a,b,c}, Γ = {a, b}, F = {q1}

Funcao de Transicao (δ)

```
1) \delta(q0, a, \lambda) = \{(q0, a)\}\
2) \delta(q0, b, \lambda) = \{(q0, b)\}\
3) \delta(q0, a, a) = \{(q0, aa)\}\
4) \delta(q0, a, b) = \{(q0, ab)\}\
5) \delta(q0, b, a) = \{(q0, ba)\}\
6) \delta(q0, b, b) = \{(q0, bb)\}\
7) \delta(q0, c, \lambda) = \{(q1, \lambda)\}\
8) \delta(q0, c, a) = \{(q1, a)\}\
9) \delta(q0, c, b) = \{(q1, \lambda)\}\
10) \delta(q1, a, a) = \{(q1, \lambda)\}\
11) \delta(q1, b, b) = \{(q1, \lambda)\}\
```


Teste : Entrada = abbcbba

ESTADO	FITA (entrada nao lida)	PILHA	TRANSICAO UTILIZADA
q0	a bbcbba	λ	-
q0	b bcbba	а	1
q0	b cbba	ba	5
q0	Cbba	bba	6
q1	B ba	bba	9
q1	B a	ba	11
q1	A	а	11
q1	λ	λ	10

Exercícios

1) Apartir do automato de pilha (P) do exemplo, testar as seguintes entradas

1 - aacaa 2 - babcbab 3 - abcab 4 - cbc 5 - babbcbbab

2) Desenhar o seguinte Automoto de Pilha (P) para aceitar a linguagem L = $\{wcw^r \mid w \in \Sigma = \{a,b\}^*\}$. Onde P = $\{Q, \Sigma, \Gamma, \delta, q0, F\}$ Q = $\{q0, q1\}$, $\Sigma = \{a,b,c\}$, $\Gamma = \{a,b\}$, $\Gamma = \{q1\}$. E Testar as seguintes entradas

1) $\delta(q0, a, \lambda) = \{ (q0, a) \}$ 5) $\delta(q0, b, a) = \{ (q0, ba) \}$

2) $\delta(q0, b, \lambda) = \{ (q0, b) \}$ 6) $\delta(q0, b, b) = \{ (q0, bb) \}$

3) $\delta(q0, a, a) = \{ (q0, aa) \}$ 7) $\delta(q1, a, a) = \{ (q1, \lambda) \}$

4) $\delta(q0, a, b) = \{ (q0, ab) \}$ 8) $\delta(q1, b, b) = \{ (q1, \lambda) \}$

1 - bbbb 2 - babbab 3 - abab 4 - ab 5 - aabaabaa