Homework Set #3

Problem 1

Read *Application Example 8* and do Problem 8.1.

Problem 2

The way MIT admits undergraduate students is exemplified in the following table. Each applicant is rated to a discrete "scholastic index" X (horizontal axis) and a discrete "personal rating index" Y (vertical axis). The top number in each cell (**in bold**) is the number of applicants is a given year with the associated combination. The bottom number in each cell (*in italic*) is the probability of being accepted. (Although this is indeed the way MIT handles applications, all numbers are fictitious).

	\leftarrow Scholastic Index, X \rightarrow					
Personal Rating, Y	90-100	80-90	70-80	60-70	50-60	≤ 50
10	20	40	52	32	10	6
	1.0	0.9	0.7	0.5	0.4	0.3
9	60	110	150	192	47	17
	0.9	0.7	0.5	0.4	0.3	0.2
8	86	215	305	351	87	62
	0.7	0.5	0.4	0.3	0.2	0.1
7	39	173	250	192	102	53
	0.5	0.4	0.3	0.2	0.1	0.0
6	17	54	118	152	97	68
	0.4	0.3	0.2	0.1	0.0	0.0
≤ 5	1	12	32	31	19	21
	0.3	0.2	0.1	0.0	0.0	0.0

- (a) Plot the marginal PMF of the two indices.
- (b) Plot the conditional PMFs of (X|Y = 8) and (X|Y = 6).
- (c) Plot the conditional PMF of $(Y|X \le 50)$.
- (d) What is the probability that an applicant with Y = 7 is accepted.
- (e) Are X and Y independent? Why?

Problem 3

In Bounty Town, U.S.A., total precipitation during the crop-growing season, Q, has a uniform distribution between 2 and 4 inches. The total crop value \$ depends on Q in such a way that (\$|Q=q) has uniform distribution (in millions of dollars) between (2q-1) and (2q+1). Note that the possible values of (Q,\$) are inside the parallelepiped shaded in the figure below:

- (a) What is the joint PDF of Q and \$?
- (b) What is the marginal PDF of \$?
- (c) What value of \$ is exceeded on average every 5 years?

Read Application Examples 7, 9 and 10. .