Introducción a la lógica difusa II

Juan Luis Castro

Conjuntos (clásicos o crisps) asociados a un subconjunto difuso

A subconjunto difuso de
$$X$$
 \rightarrow $A \equiv \mu_A: X \rightarrow [0,1]$

- Soporte: conjuntos de elementos con grado de pertenencia distinto de cero $Sop(A) = \{x \in X \mid \mu_A(x) > 0\}$ $\equiv Sop(A) = \{x \in X \mid A(x) > 0\}$
- Núcleo: Conjunto de elementos cuyo grado de pertenencia es máximo $Núcleo(A) = \{x \in X \mid \forall y \in X, \, \mu_A(x) \geq \mu_A(y)\}$
- α -corte: Conjunto de elementos cuyo grado de pertenencia es mayor que α α -corte $(A) = \{x \in X \mid \mu_A(x) > \alpha\}$

Propiedades de subconjuntos difusos

- Altura: Grado de pertenencia más grande de los elementos del conjunto $Altura(A) = \sup \{ \mu_A(x) / x \in X \}$
- Conjunto Difuso Normal: Conjunto difuso cuya altura es igual a 1 A es normal $\Leftrightarrow Altura(A)=1$
- Conjunto Difuso Convexo: Conjunto difuso con función de pertenencia convexa
- Inclusión: $A \subseteq B \iff \forall x \in X, \ \mu_A(x) \leq \mu_B(x)$

Tipos estándares de conjuntos difusos

Generalizaciones del conectivo "Y"

- T-normas: T: $[0,1]x[0,1] \rightarrow [0,1]$ $T[\mu_A(a),\mu_B(b)] = \text{grado de verdad de "a es A y b es B"}$
- Conmutativa: T(x,y) = T(y,x)
- Asociativa: T(x,T(y,z)) = T(T(x,y),z)
- No dcreciente: T(x,y) > = T(z,v), si x > = z y y > = v
- 1 es neutro: T(x,1) = x
 - _____
- 0 es absorvente: T(x,0) = 0
- $T(x,y) \leq Min(x,y)$

t-normas usualmente utilizadas

```
Mínimo: T(a,b) = min (a,b) Mayor t-norma, Positiva (T(a,b)=0 \Rightarrow a=0 \text{ o } b=0) Producto: T(a,b) = a \cdot b Separa puntos: Si b \neq c, entonces T(a,b) \neq T(a,c) Diferencia acotada: T(a,b)=max (0, a+b-1) No positiva si a+b \leq 1, T(a,b)=0 t-norma drástica: T(a,b) = a, si b=1 Menor t-norma = b, si a=1 = 0, en otro caso
```

Para cada t-norma T; t-norma drástica $\leq T(a,b) \leq min(a,b)$

t-norma drástica ≤ Diferencia acotada ≤ Producto ≤ Mínimo

Generalizaciones del conectivo "0"

Dualidad:

- Si T es t-norma, entonces $S_T(x,y)=1-T(1-x,1-y)$ es una t-conoma (t-conorma dual de T, S_T =dual(T))
- Si S es t-conorma, entonces $T_S(x,y)=1-S(1-x,1-y)$ es una t-noma (t-norma dual de S, T_S =dual(S))
- Leyes de De Morgan: S= dual(dual(S)) y T=dual(dual(S))

t-conormas usualmente utilizadas

```
Máximo: S(a,b) = max (a,b) Menor t-conorma, S(a,b)=1 \Rightarrow a=1 \text{ o } b=1

Suma probabilística: S(a,b) = a+b-a\cdot b Separa puntos: S(a,b) \neq C, entonces S(a,b) \neq S(a,c)

Suma acotada: S(a,b) = min (1, a+b) S(a,b)=1 \text{ sin que } a=1 \text{ o } b=1, S(a,b)=1 \text{ o } b=1, S(a,b)=1, S(a,b
```

Para cada t-conorma S; $\max \le S(a,b) \le t$ -conorma drástica

Máximo ≤ Suma probabilística ≤ Suma acotada ≤ t-conorma drástica

Sistemas basados en reglas difusas. Modelo Mamdani

```
Si X_1 es A_1^1 y .... y X_n es A_n^1 , entonces Y es B^1. Y .... y X_n^1 es A_n^2 entonces Y es A_n^3 entonces Y es A_n^4 entonces Y es A_n^4 entonces Y es A_n^4
```

Interpretación

```
X_1 es A_1^1 y .... y X_n es A_n^1 e Y es B^1.

ó

...

ó

X_1 es A_1^k y .... y X_n es A_n^k e Y es B^k
```

Reglas difusas: modelo general

Reglas del tipo si-entonces:

R: Si X_1 es A_1 y y X_n es A_n , entonces Y es B

donde A_i es una etiqueta lingüística representada como un subconjunto difuso del dominio de X_i

 A_i : Dominio $(X_i) \rightarrow [0,1]$

 $A_i(x)$ ="grado en que x es A_i "

Matching de una entrada con una regla

Grado en que se da el antecedente: Se fija una t-norma T

Si
$$X_1 = x_1, ..., X_n = x_n$$
:

 $A_i(x_i)$ ="grado en que x_i es A_i "="grado en que es cierto X_i es A_i "

$$T(A_1(x_1),...,A_n(x_n))$$
="grado en que es cierto X_1 es A_1 y y X_n es A_n "

Si T=Mínimo, Matching($X_1=x_1,..., X_n=x_n; R$) = min($A_1(x_1),..., A_n(x_n)$) Si T=Producto, Matching ($X_1=x_1,..., X_n=x_n; R$) = $A_1(x_1) * ... * A_n(x_n)$

Disparando la regla difusa, modelo Mamdani

Se fija una t-norma T2

Si
$$X_1$$
 es A_1 y y X_n es A_n , entonces Y es B
$$X_1 = x_1, ..., X_n = x_n$$

$$X_1 = x_1, ..., X_n = x_n$$

$$Y \text{ es B'}$$

$$Y \text{ es B'}$$

$$M = Matching(X_1=x_1,..., X_n=x_n;R)$$

$$B'(y)=T2(M,B(y))$$

Si T2=Mínimo: B'(y) = min(M,B(y))

Si T2=Producto: B'(y) = M * B(y)

Salida difusa del sistema, Agregación (Modelo Mamdani)

Desfuzzificación

Yes B'
$$Y=y_0$$

- Centro de gravedad (centroide): $y_0 = (\int Y y \cdot \mu B'(y) dy) / (\int Y \mu B'(y) dy)$
- Media de los máximos (MoM):

$$y_1 = Inf \{ z / \mu B'(z) = Sup \mu_{B'}(y) \},$$

 $y_2 = Sup \{ z / \mu B'(z) = Sup \mu_{B'}(y) \},$
 $y_3 = Sup \{ z / \mu B'(z) = Sup \mu_{B'}(y) \},$

Sistema basados en reglas difusas para problemas de clasificación

```
Características: X<sub>1</sub>,..., X<sub>n</sub>
¿Clase? C_1,...,C_l
                                                                   Dominio(Y) = \{C_1,...,C_l\}
Si X_1 es A_1^1 y .... y X_n es A_n^1, entonces Clase es C^{O(1)}.
                                                                                               Clase es C<sup>O(i)</sup>
У
У
Si X_1 es A_1^k y .... y X_n es A_n^k, entonces Clase es C^{O(k)}
                                                                                                 Y es {C<sup>O(ii</sup>)
```

MoM da como respuesta la clase con mayor grado