

planetmath.org

Math for the people, by the people.

Sard's theorem

Canonical name SardsTheorem

Date of creation 2013-03-22 13:04:09

Last modified on 2013-03-22 13:04:09

Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Theorem Classification msc 57R35 Related topic Residual

Related topic BaireCategoryTheorem

Defines critical point
Defines critical value
Defines regular value

Let $\phi: X^n \to Y^m$ be a smooth map on smooth manifolds. A critical point of ϕ is a point $p \in X$ such that the differential $\phi_*: T_pX \to T_{\phi(p)}Y$ considered as a linear transformation of real vector spaces has http://planetmath.org/RankLinearMappingratery. A critical value of ϕ is the image of a critical point. A regular value of ϕ is a point $q \in Y$ which is not the image of any critical point. In particular, q is a regular value of ϕ if $q \in Y \setminus \phi(X)$.

Following Spivak [?], we say a subset V of Y^m has measure zero if there is a sequence of coordinate charts (x_i, U_i) whose union contains V and such that $x_i(U_i \cap V)$ has measure 0 (in the usual sense) in \mathbb{R}^m for all i. With that definition, we can now state:

Sard's Theorem. Let $\phi: X \to Y$ be a smooth map on smooth manifolds. Then the set of critical values of ϕ has measure zero.

References

[Spivak] Spivak, Michael. A Comprehensive Introduction to Differential Geometry. Volume I, Third Edition. Publish of Perish, Inc. Houston, Texas. 1999.