Introduction to R Lecture 2 September 21st, 2020

Dr. Kristin Eccles

kristin.eccles@utoronto.ca

https://github.com/kristineccles/Introduction_to_R

Overview

- Crash course in statistics
 - Probability distribution and the p-value
 - Descriptive statistics
 - Parametric Tests
 - -Difference of means: T-Test and ANOVA
 - -Relational Statistics: correlations, linear regression
 - -PCA

Steps of Statistical Analysis

Step 1	State the null and alternative hypothesis
Step 2	Select the appropriate statistical test
Step 3	Select level of significance
Step 4	Delineate regions of rejection and non-rejection of the null (α)
Step 5	Calculate test statistic
Step 6	Make decision regarding null and alternative hypothesis

Statistics

- Descriptive statistics uses the data to provide descriptions of the population, either through numerical calculations, graphs, or tables.
- Inferential statistics makes inferences and predictions about a population based on a sample of data taken from the population in question.
 - Based on probability distributions
 - Probability theory deals with random events
 - Random/probabilistic independent sample(s)

T/z-distribution

F-distribution

Probability Distributions

- The area under the curve gives the probability of finding a given value in that range
- Total area under the curve is = 1 (probability is 1)
- The normal distribution
 - What the probability is of getting an extreme value (the tail)
 - 68% of the values are within 1 s.d. of the mean
 - Or, there is a probability of 0.68 that a given value is within 1 s.d. of the mean
 - 95% of the area under the curve is within 1.96 s.d. of the mean
 - 99.7% of the area is within 3 standard deviations of the mean
- Empirical probability relies on the law of large numbers: the relative frequency will eventually converge on the true probability

P-value

- Evaluates the validity of our prediction using a statistical test
 - This will say if the result is statistically significant or not
- Two hypotheses:
 - H_0 the null hypothesis
 - Status quo, no change, nothing special going on, conservative
 - H_A (aka H_1) the alternate hypothesis
 - Your hypothesis there is a difference/change.
- They are mutually exclusive and exhaustive

FIGURE 9.2

Normal Distribution Values Associated with a Significance Level (α) = .05: Two-Tailed Case

Descriptive Statistics

- Characteristics of a normal (Gaussian) distribution:
 - Mean, median, mode are all the same & in the middle of the distribution
- Symmetrical, smooth, continuous distribution
- Is my data normal?
 - Make a histogram
 - Look at mean, median, and modal values
 - Check the shape of the distribution:
 - Skewness and Kurtosis

summary(df)

- no st.dev in summary
- -sd(df)

library(psych)

describe(df)

Unpaired T-Test

- Objective: Test if there is a difference between the mean of two groups
 - Boxplots show the median
- Data type: one continuous and one categorical variable
- Assumptions: variable normality, equal variance between the groups
 - For unequal variance use Welch's T-Test

ANOVA

- Test: If there is a difference between the mean of 3 or more groups
 - This only tells you if there is a different NOT where the difference is
- Data: Three or more groups and a continuous variable
- Assumptions (F-test):variable normality, equal variance between the groups (ish)

ANOVA Post-hoc test (Tukey)

- Test: Multiple comparison to determine the differences in means after an ANOVA
- Data: Three or more groups and a continuous variable
- Assumptions (t-test):variable normality, equal variance between the groups
- Note the p adj: This p-value is adjusted for multiple comparison
 - By default R uses Bonferroni (α /n), where n= number of comparisons

Correlation (Pearson Product-Moment)

- Test: Association between variables
 - correlation coefficient ρ (Greek letter rho)
- Data: Two continuous variables
 - Pearson product-moment correlation
 - Spearman rank and Kendall Tau are the non-parametric version
 - Contingency analysis (categorical data)
- Assumptions (t-test): variable normality, linear association between variables

Linear Regression (Univariate)

- Test: the slope coefficient is significant
- Data: two continuous variables
 - Generalized linear model is used for non-parametric (e.g. logit)
- Assumptions (t-test): , Test statistic: t, Assumptions: Variable normality , Random/probabilistic sample of paired variables, Variables have a linear association
- Test: Goodness of fit (R²)
 - test that the model predicts a significant amount of the variance in y
 - Coefficient of determination (not the same as ρ)
- Assumptions (F-test): Variable normality ,Random/probabilistic sample of paired variables, Variables have a linear association

Assumptions of the residuals

- e = y Y-hat
- In linear regression we have assumptions on the residuals too
 - Normality (Shapiro-Wilk)
 - Linearity (RESET test)
 - Lack of serial autocorrelation (Durbin-Watson test)
 - Homogeneity (Breusch-Pagan test)
- Can use individual test or plot(lm1)

Readings a Regression Output

```
Call:
Im(formula = y \sim x, data = dataset)
Residuals:
      1Q Median 3Q Max
-212.04 -62.52 30.87 86.77 121.88
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.149 180.756 0.156 0.88010
           39.057 9.172 4.258 0.00277 **
Χ
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 121.8 on 8 deg. of freedom
Multiple R-squared: 0.69, Adjusted R-squared: 0.65
F-statistic: 18.13 on 1 and 8 DF, p-value: 0.002767
```

- What you asked for:
 - the formula here says predict 'y' from 'x' with data from 'dataset'
- Residuals:
 - 5 number summary of the residuals

Reading a Regression Output

```
Call:
Im(formula = y ~ x, data = dataset)
Residuals:
Min 1Q Median 3Q Max
-212.04 -62.52 30.87 86.77 121.88

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.149 180.756 0.156 0.88010
x 39.057 9.172 4.258 0.00277 **
```

Residual standard error: 121.8 on 8 deg. of freedom Multiple R-squared: 0.69, Adjusted R-squared: 0.65 F-statistic: 18.13 on 1 and 8 DF, p-value: 0.002767

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model coefficients (aka parameters)

- cols are the coefficient estimates, the standard error of the coefficient, the t value for the coefficient & the p-value for this t value
- y-intercept (intercept)
- slope (Estimate)
- legend explaining level of significance codes (α =0.05)

Reading a Regression Output

```
Call:
Im(formula = y ~ x, data = dataset)
Residuals:
Min 1Q Median 3Q Max
-212.04 -62.52 30.87 86.77 121.88
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.149 180.756 0.156 0.88010
x 39.057 9.172 4.258 0.00277 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 121.8 on 8 deg. of freedom
Multiple R-squared: 0.69, Adjusted R-squared: 0.65
F-statistic: 18.13 on 1 and 8 DF, p-value: 0.002767

- Overall model performance
- Standard error of the residuals (SSE)
- R² and the adjusted R²
- Use the adj. R2 since it is more conservative
- F statistic and the p-value (prob. of getting a bigger F)

Multivariate

- $Im(y \sim v1 + v2 + v3...)$
- Assumptions and test the same as univariate linear regression
- One additional
 - Multicollinearity
 - Cannot have a high correlation between independent variables
 - > +/- 0.70 it typically the threshold
 - Correlation matrices are helpful
 - Can test this using a variance inflation factor (VIF)
 - >5

Principal Component Analysis (PCA)

- Test:
 - Clustering
 - A way to summarize complex real-valued data with a single categorical variable
 - Dimensionality reduction
 - A way to simplify complex high-dimensional data
- Data: ratio of 5 cases: 1 variable, variables must be of similar magnitude, and must not have outliers
 - Scale and center
- In R prcomp and princomp are used

PCA Outputs

- Variance explained
 - Summary(pca1)
 - # of variables = # of PCs
- Scree plot
 - Displays how much variation each principal component captures from the data
 - Used to determine the number of factors to retain components in an analysis

PCA Outputs

- Biplot
 - PCA biplot = PCA score plot (points) + loading plot (arrows)
 - Biplots are a type of exploratory graph used in statistics, a generalization of the simple two-variable scatterplot.
 - A loading plot shows how strongly each characteristic influences a principal component.
 - Shows how samples cluster based on their similarity
- Eigenvalues (scores)
- Eigenvectors (loadings)

Loadings (eigenvectors)

```
PC2
                                                         PC4
                                                                       PC5
                          0.03786529 -0.5932799 -0.089331673
                                                              0.040512600
length
diameter
                          0.06532324 -0.5853661 -0.008285814
                                                              0.008517628 -0.711025627
height
                          0.86683603
                                      0.3148764 -0.165564868 -0.027110424
whole_weight
               0.3906735 -0.23327117
shucked_weight 0.3781883 -0.34801069
                                      0.2315678 -0.496179039
gut_weight
                         -0.25290295
                                      0.2702527 -0.140972073
shell_weight
               0.3789217 -0.05837478
                                      0.1621047
                                                 0.834110000 -0.181668556
```

- Scores (eigenvalues)
- Scores can be mapped (to look for spatial clustering) and can be used in linear regression
 - Can be difficult to interpret

What is reproducible analysis?

- One particular form:
 - code transforms raw data and meta-data into processed data,
 - code runs analyses on the data, and
 - code incorporates analyses into a report
- Ideally, the process involves a one-click build
 - Knitr: an engine for dynamic report generation with R.
- Public sharing of document, code, and data is optional, but forms part of gold standard of scientific openness
 - Journals are now requiring this

intro_to_r_lecture2_excercise.R

kristineccles

2020-01-12

```
# Introduction to R
# Lecture 2- Statistics
# By: Kristin Eccles
# Written in R 3.6.2
# Install Libraries
# only need to run this once
#install.packages(c("psych", "car", "stats", "corrplot", "factoextra", "lmtest", "devtools"))
# Load Libraries
library(ggplot2)
library(psych) # describe and mutli.hist
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
     %+%, alpha
library(car) #stats
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
```


Reproducible analysis in R

 Combine R and plain text file format to produce documents (e.g., pdfs, HTML documents, etc.)

Rmarkdown

- General workflow
 - Create an RMarkdown File
 - either use Rstudio File New File RMarkdown or just create a file with an empty text file with the .rmd extension
 - Optionally add a header
 - Options to specify output format (see RMarkdown cheat sheet)
 - Write the main document in Markdown
 - Embed R code chunks
 - R code chunks can be customised to control output

See RMarkdown Cheat Sheet for more info

Reproducible Science is good. Replicated Science is better.

ReScience C is an open-access peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research is reproducible.

To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience C lives on GitHub where each new implementation of a computational study is made available together with comments, explanations and tests. Each submission takes the form of an issue that is publicly reviewed and tested in order to guarantee that any researcher can re-use it. If you ever replicated computational results (or failed at) from the literature in your research, ReScience C is the perfect place to publish your new implementation.

ReScience C is collaborative and open by design. Everything can be forked and modified. Don't hesitate to write a submission, join us and to become a reviewer.

