

CERTIFICATE ISOTOPIC REFERENCE MATERIAL IRMM- 652

156.000 (50) · 10⁻⁹ mol (⁶⁴Zn) · g⁻¹ (solution)

The Isotopic Reference Material is supplied with an isotope amount content of ⁶⁴Zn certified as above.

The amount of zinc isotopes present are related to the ⁶⁴Zn content through the following certified amount ratios:

n(⁶⁶ Zn)/n(⁶⁴ Zn):	0.004 107 3 (59)
<i>n</i> (⁶⁷ Zn)/ <i>n</i> (⁶⁴ Zn) :	0.000 499 87 (96)
<i>n</i> (⁶⁸ Zn)/ <i>n</i> (⁶⁴ Zn) :	0.002 029 5 (23)
$n(^{70}\text{Zn})/n(^{64}\text{Zn})$:	0.000 052 76 (34)

This corresponds to an isotopic composition with the following abundances:

amount fr	raction (·100)	Mass fra	action (·100)
$n(^{64}Zn)/n(Zn)$	99.335 50 (59)	$m(^{64}$ Zn)/ $m($ Zn)	99.307 53 (61)
$n(^{66}Zn)/n(Zn)$	0.408 00 (58)	$m(^{66}Zn)/m(Zn)$	0.420 62 (60)
$n(^{67}Zn)/n(Zn)$	0.049 655 (95)	$m(^{67}Zn)/m(Zn)$	0.051 969 (99)
$n(^{68}Zn)/n(Zn)$	0.201 61 (23)	<i>m</i> (⁶⁸ Zn)/ <i>m</i> (Zn)	0.214 15 (24)
$n(^{70}Zn)/n(Zn)$	0.005 241(34)	$m(^{70}\mathrm{Zn})/m(\mathrm{Zn})$	0.005 731 (37)

The molar mass of the zinc in this sample is $63.947 \ 148(14) \ g \cdot mol^{-1}$

From the certified values, the following amount content and mass contents are derived:

157.044 (51) . 10 ⁻⁹	mol (Zn) · g ⁻¹ (solution)
9.973 0 (32) · 10 ⁻⁶	g (⁶⁴ Zn) · g ⁻¹ (solution)
10.042 5 (32) · 10 ⁻⁶	g (Zn) · g ⁻¹ (solution)

B-2440 GEEL (Belgium) Tel.: +32-(0)14-571 608 • Fax: +32-(0)14-571 863

NOTES

- 1. The isotope amount content value and the isotopic ratios of this Isotopic Reference Material are traceable to the SI in the shortest possible way via metrological weighings and via IRMM-653, IRMM-654 and IRMM-1007/1. Measurements calibrated by this Isotopic Reference Material have therefore the potential of being traceable to the SI (mole).
- 2. All uncertainties indicated are expanded uncertainties $U = k \cdot u_c$ where u_c is the combined standard uncertainty estimated following to the ISO/BIPM Guide to the Expression of Uncertainty in Measurement¹. They are given in parentheses and include a coverage factor k=2. They apply to the last two digits of the value. The values certified are traceable to the SI.
- 3. The IRMM-652 has been prepared from diluting a vacuum distilled shot. The IRMM-652 comes in a flame sealed quartz ampoule containing about 0.78 µmol Zinc in 5 mL of a chemically stable nitric acid solution. The molarity is about 0.5M. Details of the preparation and certification procedure can be found in².
- 4. The atomic masses used in the calculations are³:

⁶⁴Zn: 63.929 142 2 (14)

⁶⁶Zn: 65.926 033 4 (20)

⁶⁷Zn: 66.927 127 3 (20)

⁶⁸Zn: 67.924 844 2 (20)

⁷⁰Zn: 69.925 319 3 (42)

5. All metrological weighings required in the preparation and certification were done by F. Hendrickx. The isotope abundance ratio measurements of the IRMM-652 were done by E. Ponzevera, using Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). M. Berglund and C. Hennessy co-ordinated the preparation of this Isotopic Reference Material and G. Van Baelen was responsible for ampouling. C. Quétel co-ordinated the work leading to the certification of this Isotopic Reference Material and A. Verbruggen was responsible for issuance of the certificate.

B-2440 GEEL July 2007

Dr P. Taylor

Head

IRMM Isotope Measurements

¹ International Organisation for Standardisation, Guide to the Expression of Uncertainty in Measurements, Geneva, Switzerland 1995. ² Mass discrimination during MC-ICPMS isotopic ratio measurements: investigation by means of synthetic isotopic mixtures (IRMM-007 series) and application to the calibration of natural-like zinc materials (including IRMM-3702 and IRMM-651), Ponzevera *et al.*, Journal of the Application Society for Mass Spectrometry, 2006. 17: p. 1412-1427.

³ The 2003 atomic mass evaluation: (II). Tables, graphs and references. Audi *et al.*, Nuclear Physics A, 2003. 729(1): p. 337-676. Atomic masses used in ² above come from an older reference (Isotope abundance variations of selected elements, Coplen *et al.* Pure Appl. Chem., Vol. 74, 10, pp1987-2017, 2002). This difference has impact only on last decimal of the calculated molar mass and no impact on Zn isotope ratios, amount and mass fractions.