Bewegingsherkenning met een smartphone

Arne De Brabandere en Menno Keustermans

Begeleiders: Wannes Meert en Leander Schietgat

Inhoud

- Inleiding: probleemstelling en motivatie
- Afzonderlijke activiteiten
- Sequenties van activiteiten
- Besluit

Probleemstelling: afzonderlijk

Probleemstelling: sequentie

Motivatie

Bewegingsherkenning is een belangrijk onderdeel van context aware computing

Waarom smartphone?

- Populariteit van smartphone
- Ingebouwde sensoren (accelerometer en gyroscoop)

Onderzoeksvraag

Welke machine learning techniek (model) is het nauwkeurigst om activiteiten te herkennen?

Kunnen we dit model gebruiken om een sequentie van activiteiten te classificeren?

Afzonderlijke activiteiten

- 1. Gegevens verzamelen
- 2. Features berekenen
- 3. Classificatie

Gegevens verzamelen

- 2 personen,
- 11 metingen per activiteit

Features berekenen

- Statistische features

 Gemiddelde en standaardafwijking van versnelling, ...
- Fast Fourier Transformatie (FFT) features

 Amplitude van pieken, ...
- Discrete Wavelet Transformatie (DWT) features
 Gemiddelde van de coëfficiënten per schaal, ...
- Hidden Markov Model (HMM) features

 Likelihoods voor HMM modellen van activiteiten

Classificatie

Classificatie: confusionmatrix (random forest)

```
<-- classified as
 a
                        h
16
              0
                               0
       0
                        0
                                    a = Trap af
   16 0
              0
                        0
                           0
                                         Lopen
    0 15
              0
                        0
                           0
                               0
                                    c = Trap op
         16
                                    d = Tanden poetsen
              0
 0
    0
       0
                        0
                           0
                               0
                                    e = Lift versnelt omlaag
 0
    0
       0
             15
                     0
                        1
                           0
                               0
                                    f = Fietsen
       0
           0
              0
                16
                        0
                           0
                               0
    0
           0
                   16
                                    g = Wandelen
       0
              0
                 0
                           0
                               0
                                       = Lift versnelt omhoog
              6
                       10
                           0
                               0
                                       = Stilstaan
              0
                     0
                          14
                                    j = Springen
                     0
                        0
                              16
                           0
```

Feature selectie: experiment

Feature selectie: resultaten

Sequenties van activiteiten

Tijdsvensters:

Overlappingen:

Voorspelling maken (1):

```
labels = {labels van elk overlappend venster}
kansen = {kansen van de labels}
if aantal overlappende vensters >= 2
   and alle labels zijn gelijk then
     voorspelling = labels[0]
else
   voorspelling = labels[i]
     met i zodat kansen[i] maximaal is
end if
```

Voorspelling maken:

Voorspelling maken:

Ruis cut-off:

Voorspelling maken (2):

```
labels = {labels van elk overlappend venster}
kansen = {kansen van de labels}
if aantal overlappende vensters >= 2
   and alle labels zijn gelijk then
     voorspelling = labels[0]
else
   if kansen[i] <= cutoff voor alle i then</pre>
     voorspelling = "Ruis"
   else
     voorspelling = labels[i]
       met i zodat kansen[i] maximaal is
   end if
end if
```

 Data opmeten voor sequenties: wandelen / lopen / springen / trap / lift

 Elke meting labelen: start en einde van activiteiten aanduiden

Modellen voor afzonderlijke activiteiten gebruiken om activiteit van elk tijdsvenster te bepalen

- voor tijdsvensters van verschillende lengte (1s, 1.5s, ..., 7.5s)
- voor verschillende overlappingen (0%, 20%, 25%, ..., 85%)

met 50% ruis cut-off

Sequentie van activiteiten: Lengte van tijdsvensters (75% overlap)

Sequentie van activiteiten: Overlappingspercentage (4s tijdsvensters)

Besluit

Vragen?

Extra slides

Feature selectie: statistische

```
Ranked attributes:
                               1.5198
                                        12 z mean
2.3695
          1 z e stddev
                               1.4619
                                        13 mcr z
2.306 2 t_mean
                               1.4381
                                        14 zcr z
2.2267
                             1.3703
                                        15 mcr t
          3 xy e mean
2.2229
          4 z e mean
                            1.3078
                                        16 z peak d mean
2.2224
          5 z stddev
                               1.1727
                                        17 z peak d stddev
2.1731
          6 t stddev
                               0.953
                                        18 z_kurt
2.1236
          7 xy_e_stddev
                               0.406
                                        19 corr z e xy e
2.1072
          8 z peak mean
                               0.3277
                                        20 corr z xy e
2.0454
          9 angle_mean
1.6348
         10 angle stddev
         11 z peak stddev
1.5203
```

Ranked att	ributes:	1.9652	12 z_freq_m_1.67
2.306	1 t_freq_m_0.00	1.9357	13 z_freq_m_0.42
2.2267	2 xy_e_freq_m_0.00	1.9129	14 xy_e_freq_m_3.33
2.207	3 xy_e_freq_m_1.25	1.8899	15 xy_e_freq_m_2.92
2.1778	4 z_freq_m_0.83	1.8247	16 z_freq_m_2.50
2.166	5 xy_e_freq_m_4.17	1.7856	17 z_freq_m_0.00
2.1359	6 xy_e_freq_m_4.58	1.737	18 t_freq_m_3.33
2.0893	7 xy_e_freq_m_2.50	1.699	19 z_freq_m_4.17
2.0777	8 xy_e_freq_m_1.67	1.6964	20 xy_e_freq_m_0.83
2.0773	9 z_freq_m_1.25	1.6669	21 z_freq_m_2.08
2.0672	10 xy_e_freq_m_3.75	1.6566	22 xy_e_freq_m_0.42
1.9872	11 xy_e_freq_m_2.08	1.633	23 z_freq_e_1.67

1.6128	24 z_freq_e_2.50	1.4864	36 t_freq_p1
1.6114	25 t_freq_m_1.25	1.4332	37 z_freq_e_0.00
1.6087	26 z_freq_m_4.58	1.4212	38 z_freq_m_2.92
1.6044	27 t_freq_m_2.50	1.3959	39 z_freq_p1
1.6008	28 t_freq_m_2.92	1.3892	40 t_freq_m_2.08
1.5853	29 z_freq_e_1.25	1.3559	41 t_freq_e_0.42
1.578	30 t_freq_m_0.42	1.3505	42 t_freq_p2
1.5581	31 t_freq_m_4.58	1.3469	43 t_freq_m_0.83
1.5383	32 t_freq_m_1.67	1.311	44 z_freq_e_2.08
1.5331	33 z_freq_m_3.33	1.2248	45 z_freq_m_3.75
1.5265	34 t_freq_m_3.75	1.2122	46 z_freq_p2
1.5256	35 t_freq_m_4.17	1.2072	47 t_freq_p3

1.1718	48 z_freq_e_3.33	0.5458	60 t_freq_e_3.75
1.116	49 z_freq_e_0.42	0.4731	61 t_freq_e_2.92
1.0302	50 z_freq_e_2.92	0.4472	62 xy_e_freq_e_2.08
0.9549	51 z_freq_e_3.75	0.4464	63 z_freq_p3
0.9137	52 t_freq_e_2.50	0.4045	64 xy_e_freq_e_2.50
0.9093	53 z_freq_e_0.83	0.4017	65 t_freq_e_0.83
0.8277	54 t_freq_e_2.08	0.4015	66 xy_e_freq_e_0.83
0.8255	55 t_freq_p4	0.374	67 t_freq_e_4.17
0.7658	56 t_freq_e_4.58	0.3718	68 z_freq_p4
0.6711	57 t_freq_e_1.67	0.3493	69 xy_e_freq_p1
0.6029	58 xy_e_freq_e_0.42	0.3345	70 z_freq_e_4.17
0.5923	59 t_freq_e_3.33	0.3276	71 z_freq_e_4.58

0.3124	72 t_freq_e_0.00	0	84 xy_e_freq_e_3.33
0	81 xy_e_freq_e_4.17		
0	80 xy_e_freq_e_0.00		
0	78 xy_e_freq_p3		
0	82 t_freq_e_1.25		
0	79 xy_e_freq_p2		
0	83 xy_e_freq_e_3.75		
0	77 xy_e_freq_p4		
0	76 xy_e_freq_e_1.25		
0	73 xy_e_freq_e_1.67		
0	74 xy_e_freq_e_2.92		
0	75 xy_e_freq_e_4.58		

Ranked at	tributes:	0.9943	12 z_dwt_ar2
1.5365	1 z_dwt_ar6	0.9915	13 z_dwt_ar3
1.4574	2 z_dwt_ar5	0.9611	14 z_dwt_ar1
1.386	3 z_dwt_avg0	0.9593	15 z_dwt_avg5
1.3818	4 z_dwt_avg7	0.9403	16 z_dwt_avg6
1.3083	5 z_dwt_norm7	0.9402	17 z_dwt_norm5
1.217	6 z_dwt_avg1	0.8701	18 z_dwt_avg3
1.1491	7 z_dwt_norm6	0.8693	19 z_dwt_norm9
1.1226	8 z_dwt_ar4	0.8475	20 z_dwt_avg9
1.0966	9 z_dwt_avg4	0.8089	21 z_dwt_ar7
1.0946	10 z_dwt_avg8	0.8089	22 z_dwt_norm8
0.9994	11 z_dwt_ar8	0.6345	23 z_dwt_norm4

```
0.5918     24 z_dwt_norm_-2
0.54     25 z_dwt_ar_-9
0.5073     26 z_dwt_norm_-3
0.4943     27 z_dwt_norm_-1
0.3262     28 z_dwt_ar_-0
0.3262     29 z_dwt_norm_-0
0     30 z_dwt_avg_-2
```

Feature selectie: HMM

Met Weka: InfoGainAttributeEval

Ranked attributes:

0.477

```
2.259
       1 z hmm model-Trapop
2.226 2 z hmm model-Lopen
2.216
       3 z hmm model-Wandelen
2.136
       4 z hmm model-Fietsen
2.13
       5 z hmm model-Trapaf
1.882
       6 z_hmm_model-Springen
0.543
       7 z hmm model-Nietsdoen
       8 z_hmm_model-Tandenpoetsen
0.486
0.48
       9 z hmm model-LiftAD
```

10 z hmm model-LiftAU