Stretching

When you pull a spring, it gets .

The extra length is called and is measured in or .

If it goes back to its when you let it go, it is .

- 1 A new spring is 6.0 cm long. You pull it, and it is now 8.0 cm long.
 - (a) Calculate the extension.
 - (b) You now pull it harder, and make it 10.0 cm long. What is the extension now?
 - (c) When you let it go, it is now 6.4 cm long. Was the stretch elastic?
- 2 An athlete trains using a chest expander. They measure the force needed to stretch it.

Force (N)	0	50	100	150	200	250
$\mathbf{Length}\ (\mathbf{cm})$	42.5	46.5	50.5	54.5		62.5
Extension (cm)	0.0		8.0			20.0

- (a) How long was the chest expander before they stretched it?
- (b) Fill in the missing length.
- (c) Fill in the row with the extensions.
- (d) How much longer does an extra force of $100\,\mathrm{N}$ make it?
- (e) How much extra force is needed to make it 1 cm longer?
- A spring gets 2.0 cm longer each time the force goes up by 1.0 N. Calculate the extension for forces of

(a) 3.0 N

(c) 1.5 N

(e) 0.5 N

(b) 6.0 N

(d) 4.5 N

(f) 0.2 N

4 How much force is needed to make the spring in question 3 get 1.0 cm longer?

Below the ______, each 1 N force gives the _____ extra _____. The spring Hooke's Law. The line on the graph of extension and force is ____.

When a spring passes its ______, each additional 1 N force does not give the extra . It obey Hooke's Law.

5 The extension of a spring for different forces is given in the table.

Force (N)	Extension (cm)	
0.0	0.0	
2.0	1.2	
4.0	2.5	
6.0	3.8	
8.0	5.1	
10.0	8.2	

- (a) Plot a graph of the data. Add a best fit line to your points.
- (b) Label the limit of proportionality on your graph.
- (c) Is the spring obeying Hooke's Law with a 5 N force?
- (d) If the spring were stiffer, would the line on the graph be steeper?
- 6 Complete the word equations using Force, Extension and Spring constant.

7 Rewrite your word equations using symbols.

F is the force, e is the extension and \hat{k} is the spring constant.

(a)
$$F =$$

(b)
$$k =$$

(c)
$$e =$$

- Calculate the force needed to extend a k = 20 N/cm spring by 7.0 cm.
- 9 Calculate the spring constant if a $10\,\mathrm{N}$ force causes a $0.20\,\mathrm{cm}$ extension.
- 10 Calculate the extension caused by a 400 N force on a a k=8 N/cm spring.