Cálculo Numérico

Sistemas de EDOs de Primer Orden y Diferencias Finitas (Parte I)

Nazareno Faillace

12/04

Departamento de Matemática - FCEyN - UBA

Sistemas de EDOs de primer orden

Ya hemos estudiado cómo resolver numéricamente ecuaciones de primer orden.

Sistemas de EDOs de primer orden

Ya hemos estudiado cómo resolver numéricamente ecuaciones de primer orden. ¿Y los sistemas de ecuaciones de primer orden?

Por ejemplo:

$$\begin{cases} x'(t) = 3y(t) - 2tcos(x(t)) \\ y'(t) = x^{2}(t) - ty(t) \\ x(0) = -1 \\ y(0) = 2 \end{cases}$$

Sistemas de EDOs de primer orden

Ya hemos estudiado cómo resolver numéricamente ecuaciones de primer orden. ¿Y los sistemas de ecuaciones de primer orden?

Por ejemplo:

$$\begin{cases} x'(t) = 3y(t) - 2tcos(x(t)) \\ y'(t) = x^{2}(t) - ty(t) \\ x(0) = -1 \\ y(0) = 2 \end{cases}$$

¡Podemos usar los mismos métodos! Euler, Taylor, Runge-Kutta...

Escribamos la itración de Euler para el ejemplo. Sean $f_1(t,x,y)=3y(t)-2tcos(x(t))$ y $f_2(t,x,y)=x^2(t)-ty(t)$, el método de Euler nos indica que:

$$\begin{pmatrix} x_{i+1} \\ y_{i+1} \end{pmatrix} = \begin{pmatrix} x_i \\ y_i \end{pmatrix} + h \begin{pmatrix} f_1(t, x_i, y_i) \\ f_2(t, x_i, y_i) \end{pmatrix}$$

el par de iteraciones del método de Euler viene dado por:

$$\begin{cases} x_{i+1} = x_i + h(3y_i - 2t_i cos(x_i)) \\ y_{i+1} = y_i + h(x_i^2 - t_i y_i) \end{cases}$$

EDOs de orden n

Saber resolver sistemas de ecuaciones de primer orden nos permite buscar soluciones numéricas a EDOs de orden superior.

Ejemplo (EDO de orden 2):

$$\begin{cases} y''(t) = y'(t)e^{y(t)^2} \\ y(t_0) = a \\ y'(t_0) = b \end{cases}$$

Consideramos z_1 y z_2 tales que $z_1=y$ y $z_2=y'$. Entonces, podemos traducir la ecuación al siguiente sistema:

$$\begin{cases} z'_1(t) = z_2(t) \\ z'_2(t) = z_2(t)e^{z_1(t)^2} \\ z_1(t_0) = a \\ z_2(t_0) = b \end{cases}$$

y podemos resolverlo numéricamente utilizando los métodos estudiados.

3

Ejemplo. Hallar el error local de la siguiente discretización de la derivada primera e indicar la hipótesis de suavidad que requiere de la función f:

$$f'(x) \approx \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h}$$

Queremos calcular:

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h}$$

Empecemos calculando 4f(x+h) - f(x+2h).

Desarrollamos Taylor para f(x + h) centrado en x:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(\xi) \qquad \xi \in (x, x+h)$$
$$\Rightarrow 4f(x+h) = 4f(x) + 4hf'(x) + 2h^2f''(x) + \frac{2}{3}h^3f'''(\xi)$$

Y desarrollamos Taylor para f(x+2h) centrado en x:

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4}{3}h^3f'''(\eta) \qquad \eta \in (x, x+2h)$$

5

Como:

$$4f(x+h) = 4f(x) + 4hf'(x) + 2h^2f''(x) + \frac{2}{3}h^3f'''(\xi)$$

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4}{3}h^3f'''(\eta)$$

Tenemos que:

$$4f(x+h) - f(x+2h) = 3f(x) + 2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))$$

Volviendo a lo que queremos calcular:

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} =$$

Volviendo a lo que queremos calcular:

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} =$$

$$= f'(x) - \frac{-3f(x) + 3f(x) + 2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h}$$

Volviendo a lo que queremos calcular:

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} =$$

$$= f'(x) - \frac{-3f(x) + 3f(x) + 2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h} =$$

$$= f'(x) - \frac{2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h}$$

7

Volviendo a lo que queremos calcular:

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} =$$

$$= f'(x) - \frac{-3f(x) + 3f(x) + 2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h} =$$

$$= f'(x) - \frac{2hf'(x) + \frac{1}{3}h^{\frac{1}{2}2}(f'''(\xi) - 2f'''(\eta))}{2h} =$$

$$= f'(x) - f'(x) + \frac{1}{3}h^2(f'''(\xi) - 2f'''(\eta))$$

Volviendo a lo que queremos calcular:

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} =$$

$$= f'(x) - \frac{-3f(x) + 3f(x) + 2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h} =$$

$$= f'(x) - \frac{2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h} =$$

$$= f'(x) - f'(x) + \frac{1}{3}h^2(f'''(\xi) - 2f'''(\eta)) =$$

$$= \frac{1}{3}h^2(f'''(\xi) - 2f'''(\eta)) = O(h^2)$$

Volviendo a lo que queremos calcular:

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} =$$

$$= f'(x) - \frac{-3f(x) + 3f(x) + 2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h} =$$

$$= f'(x) - \frac{2hf'(x) + \frac{2}{3}h^3(f'''(\xi) - 2f'''(\eta))}{2h} =$$

$$= f'(x) - f'(x) + \frac{1}{3}h^2(f'''(\xi) - 2f'''(\eta)) =$$

$$= \frac{1}{3}h^2(f'''(\xi) - 2f'''(\eta)) = O(h^2)$$

$$\Rightarrow f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} = O(h^2)$$
O, equivalentemente, $\frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} = f'(x) + O(h^2)$

7

Hallar el error local...

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} = O(h^2)$$

... e indicar la hipótesis de suavidad que requiere de la función

Hallar el error local...

$$f'(x) - \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} = O(h^2)$$

... e indicar la hipótesis de suavidad que requiere de la función

Hipótesis de suavidad: para que puedan llevarse a cabo las operaciones que utilizamos para encontrar el error, pedimos que $f \in C^3$

Dado el siguiente problema de valores de contorno:

$$\begin{cases} u''(x) = u'(x) + 2u(x) + \cos(x) \\ u(0) = \alpha \\ u(x_F) = \beta \end{cases}$$

- Escribir el sistema discretizado que corresponde a utilizar la discretización usual de la derivada segunda y la diferencia forward para la derivada primera.
- 2. Formular el problema de forma matricial.
- 3. Calcular el error de truncado local al utilizar la discretización.

Punto 1. Esquema Numérico

$$x_j = jh$$
 $x_F = x_N = Nh$

Punto 1. Esquema Numérico

$$x_j = jh$$
 $x_F = x_N = Nh$

Conocemos $u(\mathbf{0}) = \alpha$ y $u(x_N) = \beta$

```
Diferencia forward: u'(x) \approx \frac{u(x+h)-u(x)}{h}
```

Discretización habitual de la derivada segunda:
$$u^{\prime\prime}(x) pprox rac{u(x+h)-2u(x)+u(x-h)}{h^2}$$

Diferencia forward: $u'(x) \approx \frac{u(x+h)-u(x)}{h}$

Discretización habitual de la derivada segunda: $u''(x) pprox rac{u(x+h)-2u(x)+u(x-h)}{h^2}$

$$u''(x_j) = u'(x_j) + 2u(x_j) + \cos(x_j)$$

Diferencia forward: $u'(x) \approx \frac{u(x+h)-u(x)}{h}$

Discretización habitual de la derivada segunda: $u''(x) pprox rac{u(x+h)-2u(x)+u(x-h)}{h^2}$

$$u''(x_j) = u'(x_j) + 2u(x_j) + \cos(x_j)$$

Reescribimos la ecuación para que todos los términos con u queden del mismo lado de la igualdad:

$$u''(x_j) - u'(x_j) - 2u(x_j) = cos(x_j)$$

Diferencia forward: $u'(x) \approx \frac{u(x+h)-u(x)}{h}$

Discretización habitual de la derivada segunda: $u''(x) pprox rac{u(x+h)-2u(x)+u(x-h)}{h^2}$

$$u''(x_j) = u'(x_j) + 2u(x_j) + cos(x_j)$$

Reescribimos la ecuación para que todos los términos con u queden del mismo lado de la igualdad:

$$u''(x_j) - u'(x_j) - 2u(x_j) = \cos(x_j)$$

Reemplazamos las derivadas por sus aproximaciones, y notamos con u_j a la aproximación numérica de $u(x_j)$:

$$\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} - \frac{u_{j+1} - u_j}{h} - 2u_j = \cos(x_j)$$

Diferencia forward: $u'(x) \approx \frac{u(x+h)-u(x)}{h}$

Discretización habitual de la derivada segunda: $u''(x) \approx \frac{u(x+h)-2u(x)+u(x-h)}{h^2}$

$$u''(x_j) = u'(x_j) + 2u(x_j) + cos(x_j)$$

Reescribimos la ecuación para que todos los términos con u queden del mismo lado de la igualdad:

$$u''(x_j) - u'(x_j) - 2u(x_j) = cos(x_j)$$

Reemplazamos las derivadas por sus aproximaciones, y notamos con u_j a la aproximación numérica de $u(x_j)$:

$$\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} - \frac{u_{j+1} - u_j}{h} - 2u_j = \cos(x_j)$$

Multiplicamos ambos lados de la igualdad por h^2 :

$$u_{j+1} - 2u_j + u_{j-1} - h(u_{j+1} - u_j) - 2h^2 u_j = \cos(x_j)h^2$$

Diferencia forward: $u'(x) \approx \frac{u(x+h)-u(x)}{h}$

Discretización habitual de la derivada segunda: $u''(x) \approx \frac{u(x+h)-2u(x)+u(x-h)}{h^2}$

$$u''(x_j) = u'(x_j) + 2u(x_j) + cos(x_j)$$

Reescribimos la ecuación para que todos los términos con u queden del mismo lado de la igualdad:

$$u''(x_j) - u'(x_j) - 2u(x_j) = cos(x_j)$$

Reemplazamos las derivadas por sus aproximaciones, y notamos con u_j a la aproximación numérica de $u(x_j)$:

$$\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} - \frac{u_{j+1} - u_j}{h} - 2u_j = \cos(x_j)$$

Multiplicamos ambos lados de la igualdad por h^2 :

$$u_{j+1} - 2u_j + u_{j-1} - h(u_{j+1} - u_j) - 2h^2 u_j = \cos(x_j)h^2$$

Agrupamos los términos:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

Tenemos que:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

Tenemos que:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

$$j = 1$$

Tenemos que:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

$$j = 1 (-2 + h - 2h^2)u_1 + (1 - h)u_2 = cos(x_1)h^2 - \alpha$$

Tenemos que:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

$$j = 1$$
 $(-2 + h - 2h^2)u_1 + (1 - h)u_2 = cos(x_1)h^2 - \alpha$ $j = 2, \dots, N - 2$

Tenemos que:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

$$j = 1$$
 $(-2 + h - 2h^2)u_1 + (1 - h)u_2 = cos(x_1)h^2 - \alpha$ $j = 2, ..., N - 2$ $u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = cos(x_j)h^2$

Tenemos que:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

$$j = 1 (-2 + h - 2h^2)u_1 + (1 - h)u_2 = cos(x_1)h^2 - \alpha$$

$$j = 2, \dots, N - 2 u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = cos(x_j)h^2$$

$$j = N - 1$$

Tenemos que:

$$u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = \cos(x_j)h^2$$

Recordar que los valores de u_0 y u_N vienen dados como datos. Entonces, el sistema queda de la siguiente manera:

$$j = 1 (-2 + h - 2h^2)u_1 + (1 - h)u_2 = cos(x_1)h^2 - \alpha$$

$$j = 2, \dots, N - 2 u_{j-1} + (-2 + h - 2h^2)u_j + (1 - h)u_{j+1} = cos(x_j)h^2$$

$$j = N - 1 u_{N-2} + (-2 + h - 2h^2)u_{N-1} = cos(x_{N-1})h^2 - (1 - h)\beta$$

Observar que tenemos N-1 incógnitas y N-1 ecuaciones.

Así concluimos el punto 1 de la consigna.

Punto 2. Forma matricial

En el Punto 1 obtuvimos un sistema de ecuaciones lineales, lo podemos resolver utilizando representación matricial.

Punto 2. Forma matricial

En el Punto 1 obtuvimos un sistema de ecuaciones lineales, lo podemos resolver utilizando representación matricial.

$$\begin{array}{ll} j=1 & (-2+h-2h^2)u_1+(1-h)u_2=\cos(x_1)h^2-\alpha \\ j=2,\ldots,N-2 & u_{j-1}+(-2+h-2h^2)u_j+(1-h)u_{j+1}=\cos(x_j)h^2 \\ j=N-1 & u_{N-2}+(-2+h-2h^2)u_{N-1}=\cos(x_{N-1})h^2-(1-h)\beta \end{array}$$

$$\begin{bmatrix} -2+h-2h^2 & 1-h & 0 & \cdots & 0 & 0 \\ 1 & -2+h-2h^2 & 1-h & 0 & \cdots & 0 & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 1-h & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 & -2+h-2h^2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-2} \\ u_{N-1} \end{bmatrix} = \begin{bmatrix} \cos(x_1)h^2 - \alpha \\ \cos(x_2)h^2 \\ \vdots \\ \cos(x_{N-2})h^2 \\ \cos(x_{N-1})h^2 - (1-h)\beta \end{bmatrix}$$

$$A_h u_h = b_h \Rightarrow u_h = A_h^{-1} b_h$$
 (si A_h es inversible)

 u_h es la solución numérica de la ecuación.

Pero, $\ \ \ A_h$ es inverible?

Pero, $\geq A_h$ es inverible?

Teorema: sea A tal que $|a_{jj}| > \sum_{k \neq j} |a_{jk}| \quad \forall j$, entonces A es invertible.

En nuestro caso, si pedimos que $h \le 1$, tenemos que:

$$\begin{aligned} j &= 1 & |a_{12}| &= |1-h| = 1-h < 2-h < 2-h + 2h^2 = |-2+h - 2h^2| = |a_{11}| \\ j &= 2, \ldots, N-2 & |a_{j,j-1}| + |a_{j,j+1}| = |1| + |1-h| = 1+1-h = 2-h < 2-h + 2h^2 = |a_{jj}| \\ j &= N-1 & |a_{N-1,N-2}| &= |1| = 1 < 1+(1-h) = 2-h < 2-h + 2h^2 = |a_{N-1,N-1}| \end{aligned}$$

Entonces, si $h \leq 1$, A_h es invertible.

Punto 3. Error de truncado local

Cuando introducimos la solución exacta u en el esquema numérico, tenemos que:

$$\frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2} - \frac{u(x_{j+1}) - u(x_j)}{h} - 2u(x_j) = \cos(x_j) + \mathbf{\tau_j}$$

 au_j es el error que proviene de utilizar las aproximaciones de las derivadas.

Punto 3. Error de truncado local

Cuando introducimos la solución exacta u en el esquema numérico, tenemos que:

$$\frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2} - \frac{u(x_{j+1}) - u(x_j)}{h} - 2u(x_j) = \cos(x_j) + \frac{\tau_j}{h}$$

 τ_i es el error que proviene de utilizar las aproximaciones de las derivadas.

Vale lo siguiente (ejercicios 1 y 2 de la Práctica 3):

$$\frac{u(x_{j+1}) - u(x_j)}{h} = u'(x_j) + O(h)$$
$$\frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2} = u''(x_j) + O(h^2)$$

Punto 3. Error de truncado local

Cuando introducimos la solución exacta u en el esquema numérico, tenemos que:

$$\frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2} - \frac{u(x_{j+1}) - u(x_j)}{h} - 2u(x_j) = \cos(x_j) + \mathbf{\tau_j}$$

 τ_i es el error que proviene de utilizar las aproximaciones de las derivadas.

Vale lo siguiente (ejercicios 1 y 2 de la Práctica 3):

$$\frac{u(x_{j+1}) - u(x_j)}{h} = u'(x_j) + O(h)$$
$$\frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2} = u''(x_j) + O(h^2)$$

Reemplazando en el esquema numérico:

$$u''(x_j) + O(h^2) - u'(x_j) - O(h) - 2u(x_j) = \cos(x_j) + \tau_j$$

Punto 3. Error de truncado local

Cuando introducimos la solución exacta u en el esquema numérico, tenemos que:

$$\frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2} - \frac{u(x_{j+1}) - u(x_j)}{h} - 2u(x_j) = \cos(x_j) + \mathbf{7}_{\mathbf{7}_j}$$

 τ_i es el error que proviene de utilizar las aproximaciones de las derivadas.

Vale lo siguiente (ejercicios 1 y 2 de la Práctica 3):

$$\frac{u(x_{j+1}) - u(x_j)}{h} = u'(x_j) + O(h)$$
$$\frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2} = u''(x_j) + O(h^2)$$

Reemplazando en el esquema numérico:

$$u''(x_j) + O(h^2) - u'(x_j) - O(h) - 2u(x_j) = \cos(x_j) + \tau_j$$

$$\Rightarrow \tau_j = -O(h) + O(h^2) = O(h)$$