Exercises Set 1 Solutions

1 - Optimization

1.1 - One dimension

$$f(x) = x^2 - x + 3$$

$$f'(x) = 2x - 1$$

ЭĊ	- 1,75	- 1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25
F(50)	- 1,75 7.8125	5.8125	4.3125	3.3125	2.8125	2.8125	3.3125	4.3 125	5.8125
								_	

The two smallest values found are 2.8125, reached for x=0.25 and x=0.75. Hence, we can suppose the minimum reached for x in (0.25, 0.75).

step	, >	1 6	(f(3)	(F (b)
0	- 10	10	113	93
1	0	10	3	93
2	0	5	3	23
3	0	2,5	3	6.75
4	0	7.25	3	3.3725
5	0	0.625	3	2. 7656
6	0.3125	6.625	2,7852	2.7656
7	0.46975	0.625		

(Table rounded to 10-4)

Stop (K)	x _k	(f(x n)	F(2n)	\(\sigma = 0.8	- 1
0	-0,5	-2	3,75	(rounding to	10-7
1	1.7	7.1	3.71		
2	0.22	-0.56	2.83		
3	0.67	0.34	2.78		
4	0.40	-0.20	2.76		
5	0.56				

Stip (K)	x _h	f'(2n)	f (=n)
1	0.1	- 2	3.75
7	0.34	-0.32	2.76
3	0.44	-0.12	2.75
4	0.48	-0.04	2.75
5	0.49	_	_

2=0.3 (rounding to 70⁻²)

Step (h)
$$x_{k}$$
 $f'(x_{k})$ $f(x_{k})$
0 -0.5 - 2 3.75
7 -0.3 -1.6 3.39
2 -0.14 -1.28 3.16
3 -0.01 -1.02 3.01
4 0.09 -0.82 2.92
5 0.17 -

 $\lambda = 0.7$ (rounding to 10^{-2})

Stop (k)	× _h	f'(xn)	P(xn)	ス = 1
6	-0.5	- 2	3.75	
1	1.5	2	3.25	(rounding to 10 ⁻²)
2	-0.5	-2	3.75	
3	7.5	7	3.75	
4	-0.5	-2	3. 75	
5	1.5		-	
step (K)	DC K	F'(2011)	f(xn)	7 = 2
0	-0.5	- 2	3.75	(rounding to 10 ⁻²)
1	3.5	6	11.75	trocholing to to t
2	-8.5	_ 18	83.75	
3	27.5	54	731.75	
4	-80.5	_162	6563,75	
5	404,5	_	_	
Method	-	<u>-</u>		_
brid (a)	· E25;	, to in	nplement for derivative	· Not very efficient
				· Needs bounds
Dichotomy (2)	· No · Conv	need for	or desirative st	· Needs bounds
				· Need derivative
Gradient Descent (3)	· Conv	crocs Fo	•st	· Need derivative

* 2 is called the "learning rate"

$$f(x,y) = (x+y+1)^{2} + \frac{1}{5}(x-y)^{2}$$

$$\frac{\partial f}{\partial x}(x,y) = 2(x+y+1) + \frac{2}{5}(x-y) = \frac{12}{5}x + \frac{8}{5}y + 2$$

$$\frac{\partial f}{\partial y}(x,y) = 2(x+y+1) - \frac{2}{5}(x-y) = \frac{8}{5}x + \frac{12}{5}y + 2$$

brid scarch i calculate from 52 { (2,y) | xts, yts}
with S= {-2.25, -1.25, -1.25, ..., 2.75}

find the pair (2,y) 652 st. f(x,y) is minimum.

Dichotomy: Start with
$$a = -70$$
, $b = 70$

$$c = -70$$
, $d = 10$

if $f(a, \frac{c+d}{2}) < f(b, \frac{c+d}{2})$; put $b = \frac{2+b}{2}$

if $f(\frac{a+b}{2}, c) < f(\frac{a+b}{2}, d)$; put $d = \frac{c+d}{2}$

if $c = \frac{c+d}{2}$

Gradient Descent: Apply gradient descent on each component:

$$(x_{0}, y_{0}) = (-0.5, -0.25)$$

$$\frac{\partial f}{\partial x}(x_{0}, y_{0}) = \frac{6}{5} + \frac{2}{5} + 2 = \frac{18}{5}$$

$$\frac{\partial f}{\partial y}(x_{0}, y_{0}) = \frac{4}{5} + \frac{3}{5} + 2 = \frac{17}{5}$$

$$x_{1} = x_{0} - \lambda \cdot \frac{\partial f}{\partial x}(x_{0}, y_{0}) = \frac{1}{2} - \frac{1}{2} \cdot \frac{18}{5} = \frac{5 - 18}{10} = -\frac{13}{10}$$

$$y_{1} = y_{0} - \lambda \cdot \frac{\partial f}{\partial y}(x_{0}, y_{0}) = \frac{1}{4} - \frac{1}{2} \cdot \frac{17}{5} = \frac{10 - 39}{20} = -\frac{12}{10}$$

$$(x_{1}, y_{1}) = (7.3, 7.2)$$

[continue steps]

	Computational	cost for n stops		
Method	1D	2 D	KD	
Grid Swith (1)	n	n ²	l h	
Dichotomy (2)	n	2,0	k.n	
Oradient (3) Descent	n	n or 2n (depending on how fast you compute partial derivatives)	1 (if we compute 1 partial derivatives 1 all at once)	

It is clear that for high dimensions, gradient descent is the most appropriate cassuming the function to optimize is differentiable).

Modern optimization algorithms are all variations of gradient descent; you can look at "mementum" or "Adam" if you are interested in modern techniques.

2 - Regression

Our model is y = ax + b. We want to find the best a = b.

 $w_{c} = \frac{1}{2} \frac{1}$

Let's build a function that measures the "performance"

of the model given (3,b): $F(3,b) = \sum_{n=0}^{3} (e_n)^2 = \sum_{n=0}^{3} (y_n - y_n)^2 = \sum_{n=0}^{3} (3x + b - y_n)^2$

 $= (3.0+b-1)^{2} + (3.3+b-8)^{2} + (3.5+b-12)^{2} + (3.8+b-17)^{2}$

The model perform the best with parameters (a^*,b^*) such that $F(a^*,b^*)$ is the minimum of F.

While we could use optimisation like in part 1 to find the minimum, there is an analytic solution in this case.

6

The minimum is reached when $\frac{\partial F}{\partial b}(a,b) = 0$ & $\frac{\partial F}{\partial b}(a,b) = 0$

(i.e. when $\nabla F = 0$)

 $\frac{\partial f}{\partial z}(z,b) = 2(3z+b-8).3 + 2(5z+b-12).5 + 2(8z+b-17).8$ = 2[9z+3b-24+25z+5b-60+64z+8b-136] = 2[98z+16b-220]

 $\frac{\partial f}{\partial b}(3,b) = 2(b-1) + 2(33+b-8) + 2(53+b-12) + 2(83+b-12)$ = 2[763+4b-38]

5. we want $\begin{cases} 982 + 16b = 220 \\ 162 + 4b = 38 \end{cases}$ (=) $\begin{cases} 342 = 68 & (L_1 - 4.L_2) \\ 4b = 38 - 162 & (L_2 rearranged) \end{cases}$ (=) $\begin{cases} 3=2 \\ b=1.5 \end{cases}$

[There is only one minimum since our function F is convex.]

The best linear model is acheived For a=2, b=1.5.