3. Transmission Line Parameters. A transmission line has four parameters which affect its ability to fulfill its function as a part of a p.s. These parameters are resistance, inductionee, capacitance and conductionee. Inductoria of TL. When the current - Flows through the conductor, magnetic field is generaled around it. Variation in the current causes a change in the number of lines of magnetic flux linking in the circuit. Any change in flux linking induces a wittage in the circuit and the induced whage is proportional to the rate of change of tlux. Inductance is the property of the circuit that relater the voltage induced by changing flux to the rate of change of current. where & represents the flux linkages (wb-T). This can be written as, $e = \frac{dv}{di} \cdot \frac{di}{dt} = L \cdot \frac{di}{dt} v$ where L = de de in defined on the inductonce of the circuit in henry, which in general is function of i. · In a linear magnetic ckt, ie ckt with const permeability, flux Inkages vary linearly with current, such that inductiona is constant OR P = Li Wb-T

Page In weber-turns divided by the current in the ckt in amperer is the inductiona in Henry du to Internal flux. is applicable to industrince resulting from exclession as well as internal flux. * Inductance of a conductor due to internal flux In order to obtain an accurate value For the inductionce of transmission line, it is necessary to consider the flux Inside each conductor as well as externed Consider a long, cylindrical conductor Let's cossume I not the return path for the current in this conductor is so Far away that it does not appreciably affect I'm magnetic field of the conductor shown Then the lines of flux are concentric with the conductor.

		[Date / /][[]]
	2	Page Date / / bill on on 10 Northwest Newstrooks
		Prerequisite formulae.
	*	Mag field strength, $H = \frac{I}{2\pi R}$ A/m. -1
	6	Flux density, B = MH wb/m= (T). (2)
		Flux \$ = B. A. coso (wb) - 3
		B -> flux density
		A > surface area through which flux lines are
		passing
		0 - angle which normal of that surface make with flux lines.
		Flux Linkager, $\lambda = N\phi$ Wb-turns. — 9
		No of turns, forno of times the
		current is linking)
	0	$L = \frac{\gamma}{I} H. \qquad \boxed{\bigcirc}$
		Let -> 2 -> reading of conductor.
		. Consider a section of radius y with
		· ds -> small length in the section under
		Consideration.
		Let's first calculate magnetic field intensity
		Let's first calculate magnetic field intensity de Hy at a small length ds.
-		
		Ang. de Te by
		Since, dy is a small section,
		Urrent in this small section will not be
		conductor. It will be proportional to the thickness dy
		condition. It will be proportional to the tuckness of

Saction of het that small a consent is Iy Also magnetic field strength as will be a fraction of all H, ie Hy .. Fran egn O, Hy = 14 (6) Garage of It is different than I. Current is directly prop. to C.s. area. 1 1y xy2 17 = (-y2)-1. -Substitute egr (7) in 6 : Hy = y2 - 7:1 :. Hy = - 1 - 8 AT/m To Calculate, By, By= MHy : By = M. y1 2 Th2 wb/me

		d& = Rey By (c-s ween) Date / / bill on
10.	- 12	Date / / bill 10/ Page Student Note hours
10 5		Studion Notebooks
	I,	the tubular element of thickness dy, The figs
	dφ	is By times the C.S. area of the element
	no	in By times the C.S. area of the element smal to the flux lines (area is dy times the
	9xi	al length),
		The flux permeter length is,
		$d\phi = \frac{\mathcal{U}_{\mathcal{J}} \mathbf{I}}{2\pi x^2} \cdot dy \text{whom} \underline{\qquad} \boxed{10}$
		= Flux linkages, dx per meter of length are caused by the flux in the tubular element,
		are the fre product of the flux per meter of
	1	length and the fraction of the current linked.
		That fraction of current is,
		TT J2
		7.22
		Francisco de la constantina della constantina de
		flux linkage,
1		$d\lambda = \frac{\pi y^2}{\pi x^2} d\phi$
		= Ty2 . UJ. 1 . dy Ta2 2 Ta2
		$dx = \frac{u_1y^2}{2x^24} dy wb-T/m.$
	-	
		: Flux linkages for whole conductor & of
+=		Zadius 2,
		$\lambda_{int} = \int \frac{u_1 y^3}{2\pi x^4} \cdot dy$
		O 2 71-2
		= UI _ 24 = UI _ 8x
	6	2/24 4 87

* Flyx linkages & hence induction ce due to flyx upto an external point.

from the centre of the conductor.

Flux linkages of the conductor due to external flux (from the surface of the conductor capto the external point) in obtained from egn (4) in earlier derivation by substituting D1 = 2 and D2 = D. ie,

Nem = 2×10-7.1. ln(D) - 0

Total flux linkages of the Conductor due to internal & external flux are,

 $\lambda = \frac{1}{2} \times 10^{-7} + 2 \times 10^{7} - 1 \cdot \ln\left(\frac{D}{2}\right)$

 $= 2 \times 15^{7} 2 \left(\frac{1}{4} + ln(D) \right)$

= 2 × 107 1 ln (D)

Let 2' = x-e^{y4} = 0.77888

= 2 × 10 7 ln (-D) wb-7/m. -(7)

an external point is,

Here & combe regarded as the radius of a fictitious conductor with no internal inductional but some total inductional as the actual conductor.

40

Inductiona of a single-phase two wire Consider a simple two-wire line composed of solid reund conductors cornying currents 1, & Iz as shown below, D-22-> K - D+te + In a single phase line, I1+ I2 = 0 ie, 12 = -1, of circuit caused by In current in conductor We consider three tun linkages i) External flux from 2, to (D-12) links all the current 1, in conductor 1. ii) External flux from (D-22) - to (D+22) links a current whose magnitude progressively reduces from In to zero along this distance, because of the effect of negative current flowing in conductor 2

iii) Flyn begond (D+22) links a net

current of zero

For calculating the total inductance du to current in conductor 1, a simple assumption is made. It Dis much greater than 2, & 2, it can be assumed that the flux from (D-92) to the contre of conductor 2 links auth whent I & the fige from the conductor 2 to (D+22) links zero current. Based on above assymption, the flax linkages of the circuit caused by current in conductor 1 as per eq (7) of carlier page, $\lambda_1 = 2 \times 15^7 \text{ In } \left(\frac{D}{2!}\right) \qquad \boxed{D}$ The Inductionce of the conductor due to current in conductor 1 is then, $L_1 = 2 \times 10^{\frac{1}{2}} \ln \left(\frac{D}{a_1} \right)$. Similarly, the Inductance of the circuit due to cyrrent in conductor 2 is, L2 = 2 × 10 + ln (2 (2)) - 3 Using superposition theorem, the flux Inkages & hence inductances of the circuit caused by current in each conductor considered separately may be added to obtain the total circuit inductance,

 $\int L = L_1 + L_2$ $= 4 \times 10^7 \ln \left(\frac{D}{2_1' + 2_2'} \right) H/m$

Flux linkages of one conductor in group. Consider a group of n parallel round conductors carrying currents 1, 1, 1, ... In whose sum is zero.

Distances of these conductors from a remote point P are indicated as D1, D2, D3...Dm Here we are going to obj derive an expression for total flux linkages of the it conductor of the group considering flux upto point ponly.

. The flux linkages of it conductor due to its own current Ii (self linkages) are,

 $\lambda_{ii} = 2 \times 10^{-7} \text{ Li. In} \left(\frac{D_i}{r_i!}\right) \text{ wb-7/m. (already derived)}$

· Similarly, flux linkages of conductor i due to Current in conductor j in,

$$\lambda_{ij} = 2 \times 10^7 \text{ Ij ln} \left(\frac{D_j}{2}\right) \dots \text{wh} T/m$$

Where Dij is distance of it conductor from jth conductor carrying current 1j

gives the industrince of one conductor of a Single phase line for the special case of two solid, rund conductors, where, of in the self GMD of the single conductor and Das the mutual GMD of two single Conductors. The Inductional of the composite Conductor B is determined in a similar manner, and - the total industrance of the L = LA+ LB.