

Description of Dimensionalization Process in the Program

Adopted Physical Parameters

To ensure consistency with the physical parameters reported in Reference [1], the program employs various material properties as illustrated in the accompanying figure.

Using the above values, the shear stress applied to the droplet is calculated as

$$au =
ho_c (\delta u_d)^2$$

where $ho_c=1000 {
m kg/m^3}$ is the mass density of the continumm phase fluid.

The implementation incorporates Taylor's frozen turbulence hypothesis to convert spatial sequences along the streamwise direction of the three-dimensional flow field into temporal sequences. The temporal scale δt is determined by the streamwise grid spacing Δx and a certain value $0.8U_{inf}$ is chosen as the local convection velocity:

$$\delta t = \Delta x/(0.8 U_{inf})$$

Reynolds Number Conversion

The experimental configuration in Reference [1] was established for Taylor-Couette flow, where the Reynolds number is defined as:

$$Re = rac{\omega_i r_i d}{
u}$$

where ω_i represents the angular velocity of the inner cylinder, r_i the inner cylinder radius, d the gap width, and ν the kinematic viscosity.

For Taylor-Couette flow, the dimensionless torque parameter ${\cal G}$ characterizes the externally applied torque:

$$G = rac{ au}{2\pi L
ho
u^2}$$

where τ denotes the applied torque, which equivalently corresponds to the total wall shear stress ($\tau = \tau_w$). Empirical analysis yields the relationship:

$$G = KRe^{1.58}$$

Through substitution of these expressions into the definition of friction Reynolds number $Re_{\tau}=\frac{u_{\tau}d}{\nu}$, we establish the conversion relationship between the experimental Reynolds number Re_{τ} and the friction Reynolds number Re_{τ} as reported in Reference [1].

[1] Yi L, Toschi F, Sun C. Global and local statistics in turbulent emulsions. Journal of Fluid Mechanics. 2021;912:A13. doi:10.1017/jfm.2020.1118