Experiment 9

Shift Register

Outline

In this experiment, it is expected from you to,

- 1. Learn the shift register structure and usage
- 2. Assemble and test the shift register circuit
- 3. Modification

1. Shift Register

Structure of Shift Register

A shift register is a type of digital circuit using a cascade of flip-flops where the output of one flip-flop is connected to the input of the next. They share a single clock signal, which causes the data stored in the system to shift from one location to the next. By connecting the last flip-flop back to the first, the data can cycle within the shifters for extended periods, and in this form they were used as a form of computer memory.

Logic Diagram of the Shift Register

2. Assembling the Shift Register Circuit

Required Parts

Fritzing Diagram of the Circuit

- 1. Select your resistors (330 Ω) by using the color code table
- 2. Connect your shift register and the LEDs as shown in the diagram
- 3. Verify and upload your code to the arduino board
- 4. Observe the result and compare it with the expected outcome

Expected Outcome: LEDs should turn on one after another then they should turn off in reverse order.

Modification

Use a shift register, 8 LEDs and the serial port as follows,

- 1. Serial port will be used to read the input
 - o Input will be in type of integer value
 - Range of input is [0 255]
- 2. By using LEDs visualize the binary equivalent of the input value.
 - Turned on state means 1
 - Turned off state means 0