Chapter 6: System Testing

This chapter presents a comprehensive overview of the system-level testing procedures conducted for the autonomous vehicle software developed in this project. The primary objective of system testing is to verify the end-to-end functionality, robustness, and safety of the autonomous system in real-world scenarios. Our approach ensures that the software components function cohesively, meeting both user requirements and safety standards for personal autonomous vehicle systems.

6.1 Objectives of System Testing

The objectives of system testing in this project are:

- **6.1.1 Validate Functional Requirements**: Ensure that all components work together to meet specified functionalities, such as navigation, obstacle avoidance, and traffic light recognition.
- **6.1.2 Safety and Reliability Testing**: Test the system's response to hazardous situations, such as obstacle detection failures or adverse weather conditions.
- **6.1.3 Performance and Environmental Testing**: Assess the system's capability under various environmental conditions to ensure reliability in practical usage.
- **6.1.4 Simulation Integration Testing**: Validate the interaction between ROS Noetic and the CARLA simulator, ensuring accurate data exchange and feedback.

6.2 System Testing Methodology

We adopted a rigorous, systematic testing approach tailored to the specifics of our autonomous vehicle software. Given the complexity and safety-critical nature of autonomous systems, we utilized a **black-box testing methodology**. This approach focuses on evaluating the system's external behavior without requiring knowledge of its internal workings, ensuring that the software meets the specified requirements from an end-user perspective. The methodology involved creating realistic test scenarios using the CARLA simulator, setting up test cases for each subsystem, and observing the interactions between components.

6.3 Functional System Test Cases

This section documents the functional system test cases, focusing on core functionalities like navigation, traffic light detection, and obstacle avoidance.

6.3.1 Path Planning

Equivalence Class Partitioning (ECP):

- Valid Classes:
- o The destination is selected from the provided options.
- o The destination is entered manually and is valid (x is integer, y is integer).

• Invalid Classes:

- The destination is selected but is not available (e.g., out of service area).
- The destination coordinates are entered manually but are invalid (e.g., incorrect format, non-existent location).

Test Case:

Table 6.1: Black Box TC1

Scenario	Input Value	ECP	Expected Output
User enters the destination from given destinations	Home	Valid	Vehicle navigates successfully to the entered destination.
User enters the destination from given destinations	x = -60.000000 $y = 60.000000$	Valis	Vehicle navigates successfully to the entered destination.

6.3.2 Path Following

Equivalence Class Partitioning (ECP):

- Valid Classes:
- The vehicle's velocity and acceleration parameters are within normal operational ranges. i.e. <120 km/h
- Invalid Classes:
- The vehicle's velocity or acceleration parameters are abnormal or invalid. i.e. = 120km/h

Table 6.2: Black Box TC2

Scenario	Input Value	ECP	Expected Output
Normal Velocity	Velocity = 200 km/h	Valid	Vehicle accelerates
Parameters			smoothly within limits
			and maintains a steady
			trajectory

6.3.3 Vehicle Control

Equivalence Class Partitioning (ECP):

• Valid Classes:

- o The vehicle's speed is within the normal operational range (i.e. 0 km/h to maximum speed limit).
- o The throttle position is within the normal operational range (i.e. 0% to 100%).

• Invalid Classes:

- The vehicle's speed parameters are abnormal or invalid (i.e. speed exceeding maximum permissible limit).
- o The throttle position is abnormal or invalid (i.e. throttle position exceeding 100%).

Test Cases:

Table 6.3: Black Box TC3

Scenarios	Input Value	ECP	Expected Output
Normal Speed	Speed = 50 km/h	Valid	Vehicle operates smoothly at the given speed.
Normal Throttle Position	Throttle = 50%	Valid	Vehicle accelerates normally without issues.

6.3.4 Vehicle Control

Equivalence Class Partitioning (ECP):

• Valid Classes:

Normal Steering: Steering angle within operational range

 \circ -90° to 90° latitude, -180° to 180° longitude

Invalid Classes:

Abnormal Steering: Steering angle outside operational range ($< -30^{\circ} \text{ or } > +30^{\circ}$)

Test Cases:

Table 6.4: Black Box TC4

Scenarios	Input Value	ECP	Expected Output
Normal Orientation	Roll = 10°	Valid	Vehicle maintains
	Pitch = 5°		stable orientation.
Acceptable Steering	Angle = 15°	Valid	Vehicle steers
Angle			appropriately without
			error.

6.3.5 Vehicle Control

Equivalence Class Partitioning (ECP):

Valid Classes:

o Speed: $0 \text{ km/h} \le \text{Speed} \le 120 \text{ km/h}$

o Distance: 2 meters ≤ Distance ≤100 meters

o Throttle Adjustment: 0 % ≤ Throttle ≤ 80 %

o Brake Application: 0 % ≤ Braking Force ≤ 100 %

• Invalid Classes:

 \circ Speed: > 120 km/h

o Distance: Distance > 100 meters

o Throttle Adjustment: < 0 % or Throttle > 80 %

o Brake Application: < 0 % or Braking Force > 100 %

Test Cases:

Table 6.5: Black Box TC5

Scenarios	Input Value	ECP	Expected Output
Normal Speed	Speed = 100 km/h	Valid	Vehicle operates efficiently
			within speed limits.
Safe distance	Distance = 50	Valid	Vehicle maintains safe
	meters		distance without issue.
Acceptable	Throttle = 60%	Valid	Vehicle accelerates smoothly
Throttle			as expected.
Normal Brake	Force = 75%	Valid	Vehicle decelerates smoothly
Application			without issues.

6.3.6 Vehicle Control

Equivalence Class Partitioning (ECP):

• Valid Classes:

○ Lateral Position: -1.0 meters \leq Lateral Position \leq 1.0 meters

o Steering Adjustment: -30° ≤ Steering Angle ≤30°

• Invalid Classes:

Lateral Position: Lateral Position > 1.0 meters

 \circ Steering Adjustment: Steering Angle $> 30^{\circ}$

Table 6.6: Black Box TC6

Scenarios	Input Value	ECP	Expected Output
Valid Lateral	Lateral Position =	Valid	Vehicle maintains intended
Position	0.5 meters		lane position.
Normal Steering	Angle = 15°	Valid	Vehicle steers correctly
Adjustment			without issue.

6.3.7 Localization Module Test Cases

Equivalence Class Partitioning (ECP):

• Valid Classes:

- o Sensor data (GPS, IMU, LIDAR) within acceptable ranges.
- GPS accuracy \leq 5 meters.
- o IMU data drift ≤ 2 degrees.
- o LIDAR scan range ≥ 50 meters.

• Invalid Classes:

- o Sensor data outside acceptable ranges.
- o GPS accuracy > 5 meters.
- o IMU data drift > 2 degrees.
- o LIDAR scan range < 50 meters.

Table 6.7: Black Box TC7

Scenario	Input Value	ECP	Expected Output
Accurate GPS	GPS Accuracy = 3	Valid	Vehicle update's location
Signal	meters	vand	correctly.
Valid IMU Data	IMU Drift = 1 degree	Valid	Vehicle continues to maintain
vand hvio Data	INTO DITIT – I degree	vanu	accurate positioning.
Adequate LIDAR	LIDAR Range = 60	Valid	Vehicle successfully detects
Scan Range	meters	v allu	surroundings.

6.3.8 Obstacle Detection and Avoidance Module Test Cases Equivalence Class Partitioning (ECP):

• Valid Classes:

- Obstacle detected within sensor range.
- o LIDAR detection distance ≤ 100 meters.
- Obstacle size \geq 0.5 meters.
- Obstacle-free zone.
- o No objects detected within 100 meters.

• Invalid Classes:

- o Sensor fails to detect within expected range.
- o LIDAR detection distance > 100 meters for a detected obstacle.
- Obstacle size < 0.5 meters considered noise.

Table 6.8: Black Box TC8

Scenario	Input Value	ECP	Expected Output
No Obstacle	LIDAR Detection	Valid	Vehicle proceeds without
Detected	Distance = 150 meters		any detection issues.
Valid Obstacle	LIDAR Detection		Vehicle transitions to
Detected	Distance = 50 meters	Valid	classify detected
Bettetteu	Distance 50 meters		obstacle.
	LIDAR Detection		Vehicle successfully
Clear Path Ahead	Distance = 80 meters	Valid	computes navigation
	Distance – 00 meters		path.

Equivalence Class Partitioning (ECP):

Valid Classes:

- o Traffic light detected and state correctly identified.
- o Distance to traffic light ≤ 50 meters.
- o Recognition confidence $\geq 80\%$.

• Invalid Classes:

- o Traffic light detection errors or low recognition confidence.
- O Distance to traffic light > 50 meters.
- o Recognition confidence < 80%.

Test Cases:

Table 6.9: Black Box TC9

Scenario	Input Value	ECP	Expected Output
Traffic Light Detected	Detection Distance = 30	Valid	Vehicle identifies
	meters		traffic light state
			correctly.
Traffic Light Detected,	Recognition Confidence =	Valid	Transition to
High Confidence	90%		Recognize State
Low Confidence in	Recognition Confidence =	Invalid	Re-scan for traffic
Recognition	70%		light state
Traffic Light at	Detection Distance = 50	Valid	Proceed with state
Threshold	meters		recognition
			(Red/Yellow/Green)

6.3.10 Functional Requirement Testing

Equivalence Class Partitioning (ECP):

• Valid Classes:

- O Destination coordinates within defined boundaries and obstacles.
- O Setpoints defined and within ± 0.5 meters of the planned path.
- o Traffic light present and recognized properly.
- Obstacle within detection range and accurately identified.

• Invalid Classes:

- O Destination coordinates outside operational boundaries or near non-navigable areas.
- \circ Setpoints defined with deviations greater than ± 0.5 meters from the planned path.
- o No traffic light present or misidentified state (e.g., recognition error).
- Obstacle detected outside the 5-meter range or misclassified as safe.

Test Cases:

Table 6.10: Black Box TC10

Scenario	Input/Conditions	ECP	Expected Outcome
Path planning to	Input destination	Valid	Vehicle plans a feasible route
destination	coordinates		considering obstacles and road
			boundaries
Path following	Input setpoints for	Valid	Vehicle follows the planned
accuracy	route		path accurately within ±0.5
			meters deviation
Traffic light	Approach	Valid	Vehicle detects traffic light
detection	intersection with		state and acts accordingly
	traffic light		(stop/go)
Obstacle detection	Obstacle within 5	Valid	Vehicle decelerates and
and avoidance	meters ahead		navigates around obstacle
			safely

6.4 Safety and Hazard Response Testing

Testing the system's response to hazardous scenarios ensures that the vehicle can handle safety-critical situations without compromising passenger safety.

Equivalence Class Partitioning (ECP):

• Valid Classes:

- o Sensors functioning normally, detection within acceptable limits
- o Rain simulation executed without sensor errors.
- o GPS operational, providing accurate positioning data.
- Obstacles detected within the specified range.

• Invalid Classes:

- o Sensor failure not triggering safe mode or alerts.
- O Vehicle fails to adjust speed or braking distance during heavy rain.

- GPS failure leading to a localization error without fallback.
- o Emergency braking not performed within 1 meter or failure to detect obstacle.

Test Cases:

Table 6.11: Black Box TC11

Scenario	Input/Conditions	ECP	Expected Outcome
Obstacle detection	Simulated sensor	Valid	Vehicle enters safe mode,
failure	failure		slows down, and alerts user
Adverse weather	Heavy rain	Valid	Vehicle adjusts speed,
(rain simulation)	simulation in		increases braking distance
	CARLA		
GPS signal loss	Disable GPS in	Valid	System initiates localization
	CARLA		using IMU and LIDAR data
Emergency braking	Immediate obstacle	Valid	Vehicle performs emergency
	within 2 meters		brake within 1 meter distance

6.5 Performance Testing

Performance testing evaluates the system's responsiveness, computational efficiency, and resource usage to ensure it meets operational requirements.

Equivalence Class Partitioning (ECP):

• Valid Classes:

- o System response time meets specified performance criteria.
- System resource usage remains under limits during full load.
- \circ Localization accuracy is maintained within ± 2 meters.

• Invalid Classes:

- o Response time exceeds 0.5 seconds for obstacle detection.
- o CPU or memory usage exceeds acceptable limits (>80%).
- Localization accuracy exceeds ± 2 meters from input coordinates

Table 6.12: Black Box TC12

Scenario	Input/Conditions	ECP	Expected Outcome
Response time for	Moving obstacle	Valid	System detects and begins
obstacle detection	appears within		avoidance maneuver within 0.5
	range		seconds

Computational load	Full system	Valid	CPU and memory usage within
	simulation with all		acceptable limits (<80%)
	modules active		
Localization	Test using varied	Valid	Vehicle stays within ±2 meters
accuracy	GPS coordinates		accuracy to input coordinates

6.6 Environmental Testing

Environmental testing assesses the system's reliability and response under various simulated weather conditions, including rain, fog, and low visibility.

Equivalence Class Partitioning (ECP):

• Valid Classes:

- Vehicle responds appropriately to fog conditions.
- Vehicle adapts correctly to night driving conditions.
- Vehicle maintains safe operation during heavy rain.

• Invalid Classes:

- Vehicle fails to slow down or activate fog lights in fog.
- Vehicle does not adjust to reduced visibility.
- O Vehicle does not adjust speed or distance during heavy rain.

Test Cases:

Table 6.13: Black Box TC13

Scenario	Input/Condition	ECP	Expected Outcome
Fog simulation	High-density fog in	Valid	Vehicle slows to maintain safe
	CARLA		distance, activates fog lights
Night-time driving	Night mode with	Valid	Vehicle adjusts to reduced
	reduced lighting		visibility, activates headlights
Heavy rain	Rain simulation	Valid	Vehicle adjusts speed,
			maintains safe distance from
			other objects

6.7 Simulation Integration Testing

Testing integration between CARLA and ROS is critical for verifying that the data exchange is accurate and that system responses reflect real-time simulation inputs.

Equivalence Class Partitioning (ECP):

• Valid Classes:

- Accurate and timely data exchange occurs between CARLA and ROS.
- o Command successfully transmitted and executed.
- o Continuous feedback allows for effective vehicle control adjustments.

• Invalid Classes:

- o Data exchange delayed or inaccurate.
- Command transmission fails to stop the vehicle.
- Feedback loop not resulting in smooth control transitions.

Table 6.14: Black Box TC14

Scenario	Input/Conditions	ECP	Expected Outcome
CARLA-ROS	Position and velocity	Valid	ROS receives accurate, real-time
data exchange	data updates		data from CARLA without delay
Action command	Send stop command to	Valid	CARLA vehicle stops
transmission	CARLA vehicle		immediately on command
Feedback loop	Continuous	Valid	Smooth transitions and
validation	commands based on		adjustments in vehicle control
	feedback		