Anthony Van Herrewege Prof. Dr. Ir. I. Verbouwerende & Prof. Dr. Ir. B. Preneel

18 Februari 2009

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Introduction

Implement a compact hardware implementation of elliptic curve pairings.

Implement a compact hardware **implementation of** elliptic curve pairings.

- Program in GEZEL
- Optimize in VHDL
- Synthetize to FPGA/ASIC

- 1 Introduction
- **2** Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Overview

- 1 What?
- 2 Why?
- 3 How?

What?

■ Calculations over elliptic curves

What?

- Calculations over elliptic curves
- Public key cryptography

What?

- Calculations over elliptic curves
- Public key cryptography
- Identity-based cryptography

- Identity-based cryptography
 - No public key lookup required:
 eg. P = National identification number

- Identity-based cryptography
 - No public key lookup required:
 eg. P = National identification number
 - Date-stamped encryption possible: eg. *P* = Nin + "20091223"

- Identity-based cryptography
 - No public key lookup required:
 eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"
 - Drawbacks as well: key revocation, central authority, ...

- Identity-based cryptography
 - No public key lookup required:
 eg. P = National identification number
 - Date-stamped encryption possible: eg. *P* = Nin + "20091223"
 - Drawbacks as well: key revocation, central authority, ...
- Key strength [bits]:

RSA

ECC 256

Underlying mathematics

■ Discrete logarithm (DL) problem [hard]:

Given:
$$g, h \in G$$
: $h \stackrel{?}{=} g^a \pmod{n}$

Underlying mathematics

■ Discrete logarithm (DL) problem [hard]:

Given:
$$g, h \in G$$
: $h \stackrel{?}{=} g^a \pmod{n}$

Computational DL problem [hard]:

Given:
$$g, g^a, g^b, \in G$$
: $h \stackrel{?}{=} g^{ab} \pmod{n}$

Elliptic Curve Pairings

Underlying mathematics

Discrete logarithm (DL) problem [hard]:

Given:
$$g, h \in G$$
: $h \stackrel{?}{=} g^a \pmod{n}$

■ Computational DL problem [hard]:

Given:
$$g, g^a, g^b, \in G$$
: $h \stackrel{?}{=} g^{ab} \pmod{n}$

Decision DL problem [easy]:

Given:
$$g, g^a, g^b, g^c \in G$$
: $g^c \stackrel{?}{=} g^{ab} \pmod{n}$

Pairings

Q: What group satisfies CDL_{hard} and DDL_{easy} ?

A: Elliptic curve pairing e:

$$e:\, \textit{G}_{1} \times \textit{G}_{1} \rightarrow \textit{G}_{2}$$

Mapping needs to be bilinear, non-degenerate & efficiently computable. Several available pairings:

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

MALU

Modulo Arithmetic Logical Unit [general]:

MALU

Modulo Arithmetic Logical Unit [optimized]:

Wrappers

Multiplication/Addition:

Implementation

State of the art

Current available implementations:

Name	SW/HW	Speed
TinyTate	SW	5s

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Conclussion

Progress so far

MALU

Progress so far

- MALU
- ECC functions

Progress so far

- MALU
- ECC functions
- Pairing functions

Conclussion

To do

Bugfixing

To do

- Bugfixing
- Optimization (VHDL)

Conclussion

The end

Questions?

