

1. Radioactive Decay Solutions

Practice Set-1

1. A radioactive element X decays to Y, which in turn decays to a stable element Z. The decay constant from X to Y is λ_1 , and that from Y to Z is λ_2 . If, to begin with, there are only N_0 atoms of X, at short times $\left(t \ll \frac{1}{\lambda_1} \text{ as well as } \frac{1}{\lambda_2}\right)$ the number of atoms of Z will be

[**NET/JRF** (**JUNE-2016**)]

a.
$$\frac{1}{2}\lambda_1\lambda_2N_0t^2$$

b.
$$\frac{\lambda_1 \lambda_2}{2(\lambda_1 + \lambda_2)} N_0 t$$

c.
$$(\lambda_1 + \lambda_2)^2 N_0 t^2$$
 d. $(\lambda_1 + \lambda_2) N_0 t$

d.
$$(\lambda_1 + \lambda_2) N_0 t$$

Solution:
$$\begin{array}{cccc} & X \xrightarrow{\lambda_1} & Y \xrightarrow{\lambda_2} & Z \\ t & N_0 & O & O \\ t & N_1 & N_2 & N_3 \end{array}$$

Rate equations
$$N_1 = N_0 e^{-\lambda_1 t}$$
, $\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$, $\frac{dN_3}{dt} = \lambda_2 N_2$

$$\begin{split} N_{3} &= N_{0} \left[1 + \frac{\lambda_{1}e^{-\lambda_{2}t}}{(\lambda_{2} - \lambda_{1})} - \frac{\lambda_{2}e^{-\lambda_{1}t}}{(\lambda_{2} - \lambda_{1})} \right] \\ &= N_{0} \left[1 + \frac{\lambda_{1}}{(\lambda_{2} - \lambda_{1})} \left(1 - \lambda_{2}t + \frac{\lambda_{2}^{2}t^{2}}{2} \right) - \frac{\lambda_{2}}{(\lambda_{2} - \lambda_{1})} \left(1 - \lambda_{1}t + \frac{\lambda_{1}^{2}t^{2}}{2} \right) \right] \\ &= N_{0} \left[1 + \frac{\lambda_{1}}{(\lambda_{2} - \lambda_{1})} - \frac{\lambda_{1}\lambda_{2}t}{(\lambda_{2} - \lambda_{1})} + \frac{\lambda_{1}}{(\lambda_{2} - \lambda_{1})} \frac{\lambda_{2}^{2}t^{2}}{2} - \frac{\lambda_{2}}{(\lambda_{2} - \lambda_{1})} + \frac{\lambda_{2}\lambda_{1}t}{(\lambda_{2} - \lambda_{1})} - \frac{\lambda_{2}}{(\lambda_{2} - \lambda_{1})} \frac{\lambda_{1}^{2}t^{2}}{2} \right] \\ &= N_{0} \left[\frac{\lambda_{1}}{(\lambda_{2} - \lambda_{1})} \times \frac{\lambda_{2}^{2}t^{2}}{2} - \frac{\lambda_{2}}{(\lambda_{2} - \lambda_{1})} \times \frac{\lambda_{1}^{2}t^{2}}{2} \right] = \frac{\lambda_{1}\lambda_{2}t^{2}}{2} N_{0} \left[\frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}} - \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} \right] = \frac{1}{2}\lambda_{1}\lambda_{2}N_{0}t^{2} \end{split}$$

So the correct answer is **Option** (a)

2. What should be the minimum energy of a photon for it to split an α -particle at rest into a tritium and a proton? (The masses of ⁴₂He, ³₁H and ¹₁H are 4.0026amu, 3.0161amu and 1.0073amu respectively, and $1 \text{amu} \approx 938 \text{MeV}$)

[NET/JRF (DEC-2016)]

a. 32.2MeV

b. 3MeV

c. 19.3MeV

d. 931.5MeV

Solution:

From conservation of energy

$$E_{\alpha} + m_{\alpha}c^2 = m_{1H^3}c^2 + m_{1H^1}c^2$$

or $E_{\alpha} = [m_{1H^3} + m_{1H^1} - m_{\alpha}] \times 938 \text{MeV} = 19.5 \text{MeV}$

So the correct answer is **Option** (c)

3. If in a spontaneous α -decay of $\frac{232}{92}U$ at rest, the total energy released in the reaction is Q, then the energy carried by the α -particle is

[NET/JRF (JUNE-2017)]

a. 57*Q*/58

b. Q/57

c. Q/58

d. 23*Q*/58

Solution:

Energy carried by the \propto – particle is

$$KE_{\infty c} = \left(\frac{A-4}{A}\right)Q = \frac{228}{232}Q = \frac{57}{58}Q$$

So the correct answer is **Option** (a)

4. The reaction $^{63}\text{Cu}_{29} + p \rightarrow ^{63}\text{Zn}_{30} + n$ is followed by a prompt β -decay of zinc $^{63}\text{Zn}_{30} \rightarrow ^{63}\text{Cu}_{29} + n$ $e^+ + v_e$. If the maximum energy of the position is 2.4MeV, the Q value of the original reaction in MeV is nearest to [Take the masses of electron, proton and neutron to be $0.5 \text{MeV}/c^2$, $938 \text{MeV}/c^2$ and 939.5MeV/c²,respectively.]

[NET/JRF (JUNE-2018)]

a. -4.4

ng your future

d. -3.4

Solution:

For
63
Zn₃₀ \rightarrow 63 Cu₂₉ + e^+ + v_e
 $Q_1 = (Zn - 30e) - [Cu - 29e + e] = Zn - Cu - 2e = 2.4 \text{MeV}$
For 63 Cu₂₉ + $p \rightarrow$ 63 Zn₃₀ + n
 $Q_0 = [(Cu - 29e) + p] - [(Zn - 30e) + n]$
 $= Cu - Zn + e + p - n = (-Q_1 - 2e) + e + p - n = -Q_1[e - p + n]$
 $= -2.4 - (0.5 - 938 + 939.5) = -4.4 \text{MeV}$

So the correct answer is **Option** (a)

5. A nucleus decays by the emission of a gamma ray from an excited state of spin parity 2⁺ to the ground state with spin-parity 0^+ what is the type of the corresponding radiation?

[NET/JRF (DEC-2018)]

a. Magnetic dipole

b. Electric quadrupole

c. Electric dipole

d. Magnetic quadrupole

Solution:

$$I_i = 2$$
, $I_+ = 0$
 $\Rightarrow L = 2$ and parity change

 \therefore The transition is of electric quadrupole (E_2) nature.

So the correct answer is **Option** (b)

6. The ground state of $^{207}_{12}$ Pb nucleus has spin-parity $J^p = \frac{1^-}{2}$, while the first excited state has $J^p = \frac{5^-}{2}$. The electromagnetic radiation emitted when the nucleus makes a transition from the first excited state to ground state are

[NET/JRF (JUNE-2012)]

- **a.** E2 and E3
- **b.** M2 or E3
- **c.** E2 or M3
- **d.** M2 or M3

Solution:

No parity change; $\Delta J = 2,3$

For E_l type, $\Delta \pi = (-1)^l$, (for no parity change l = 2)

For M_l type, $\Delta \pi = (-1)^{l+1}$, (for no parity change l = 3)

 $\Delta J = 2$, No parity change $\rightarrow E2$; $\Delta J = 3$, No parity change $\rightarrow M3$

So the correct answer is **Option** (c)

Practice Set-2

[GATE-2019]

Solution: Branching ratio is the fraction of particles (here β) which decays by an individual decay mode with respect to the total number of particles which decays

$$BR = \frac{\left(\frac{dN}{dt}\right)_x}{\left(\frac{dt}{dt}\right)_B} = \frac{\left(T_{1/2}\right)_x}{\left(T_{1/2}\right)_B} \Rightarrow \left(T_{1/2}\right)_\beta = \frac{\left(T_{1/2}\right)_x}{BR} = \frac{30}{0.75} = 40 \text{ hours}$$

So the correct answer is 40

2. An α particle is emitted by a $^{230}_{90}$ Th nucleus. Assuming the potential to be purely Coulombic beyond the point of separation, the height of the Coulomb barrier is MeV (up to two decimal places). $\left(\frac{e^2}{4\pi\epsilon_0} = 1.44 \text{MeV} - \text{fm}, r_0 = 1.30 \text{fm}\right)$

[GATE-2018]

Solution:

The height of coulomb barrier for α particle from

$$_{90}Th^{230} \rightarrow_{88} X^{226} + 2He^4(\alpha\text{-particle})$$

$$V_C = \frac{1}{4\pi \in_0} \left(\frac{2ze^2}{R} \right)$$

Here, $R_0 = 1.3$ fm, $\frac{e^2}{4\pi\varepsilon_0} = 1.44$ MeV fm

And
$$R = R_0 A^{1/3}$$

Here, we consider pure Columbic interaction

$$A_{Th}^{1/3} = A_X^{1/3} + A_{\alpha}^{1/3} = (226)^{1/3} + (4)^{1/3} = (6.09 + 1.58) = 7.67, \quad R = R_0 A_{Th}^{1/3} = 1.3(7.67)$$
Hence, $V_C = \left(\frac{e^2}{4\pi \in 0}\right) \frac{2 \times 90}{1.3(7.67)} = \frac{180 \times 1.44}{1.3 \times 7.67} \frac{\text{MeV}}{\text{fm}}$

$$V_C = 25.995 \text{MeV}$$

So the correct answer is **25.995**

3. Consider the reaction $^{54}_{25}{\rm Mn} + e^- \rightarrow ^{54}_{24}{\rm Cr} + {\rm X}$. The particle X is

[GATE-2016]

a. γ

b. v_e

c. *n*

d. π^{0}

Solution: So the correct answer is **Option (b)**

4. In the nuclear reaction ${}^{13}C_6 + v_e \rightarrow {}^{13}N_7 + X$, the particle X is

[GATE-2017]

a. An electron

b. An anti-electron

c. A muon

d. A pion

Solution:

$$^{13}C_6 + v_e \rightarrow ^{13}N_7 + X \Rightarrow ^{13}C_6 \rightarrow ^{13}N_7 + X + \bar{v}_e$$

$$L_e = 0 \quad 0 + 1 - 1$$

To conserve the Lepton number L_e , X should be e^-

So the correct answer is **Option (a)**

5. In the β -decay of neutron $n \to p + e - \bar{\nu}_e$, the anti-neutrino $\bar{\nu}_e$, escapes detection. Its existence is inferred from the measurement of

[GATE-2011]

- a. Energy distribution of electrons
- **b.** Angular distribution of electrons
- c. Helicity distribution of electrons
- d. Forward-backward asymmetry of electrons

Solution: So the correct answer is **Option** (a)

6. In the β decay process, the transition $2^+ \rightarrow 3^+$, is

[GATE-2013]

- a. Allowed both by Fermi and Gamow-Teller selection rule
- **b.** Allowed by Fermi and but not by Gamow-Teller selection rule
- c. Not allowed by Fermi but allowed by Gamow-Teller selection rule
- d. Not allowed both by Fermi and Gamow-Teller selection rule

Solution:

According to Fermi Selection Rule:

$$\Delta I = 0$$
, Parity = No Change

According to Gammow-Teller Selection Rule: $\Delta I = 0, \pm 1$, Parity = No Change In the β decay process, the transition $2^+ \to 3^+$, $\Delta I = \pm 1$, Parity = No Change.

So the correct answer is **Option** (c)

7. A nucleus X undergoes a first forbidden β -decay to nucleus Y. If the angular momentum (I) and parity (P), denoted by I^P as $\frac{7}{2}$ for X, which of the following is a possible I^P value for Y?

[GATE-2014]

a.
$$\frac{1^+}{2}$$

b.
$$\frac{1^{-}}{2}$$
 c. $\frac{3^{+}}{2}$

c.
$$\frac{3^{+}}{2}$$

d.
$$\frac{3^{-}}{2}$$

Solution:

For first forbidden β -decay; $\Delta I = 0, 1$ or 2 and Parity does change.

So the correct answer is **Option** (c)

8. A beam of X - ray of intensity I_0 is incident normally on a metal sheet of thickness 2 mm. The intensity of the transmitted beam is $0.025I_0$. The linear absorption coefficient of the metal sheet (in m⁻¹) is—— (upto one decimal place)

[GATE-2015]

Solution:

$$I = I_0 e^{-\mu x} \Rightarrow \mu = \frac{1}{x} \ln \left(\frac{I_0}{I} \right) = \frac{1}{2 \times 10^{-3}} \ln \left(\frac{I_0}{0.025 I_0} \right) = \frac{1}{2 \times 10^{-3}} \ln(40)$$
$$\Rightarrow \mu = \frac{2.303}{2 \times 10^{-3}} \left[\log_{10} 40 \right] = 1.151 \times 10^3 \left[2 \times 0.3010 + 1 \right] = 1844.4 \text{ m}^{-1}$$

So the correct answer is 1844.4

9. The atomic masses of ${}^{152}_{63}\text{Eu}, {}^{152}_{62}\text{Sm}, {}^{1}_{1}\text{H}$ and neutron are 151.921749, 151.919756, 1.007825 and 1.008665 in atomic mass units (amu), respectively. Using the above information, the *Q*-value of the reaction ${}^{152}_{63}Eu + n \rightarrow {}^{152}_{62}Sm + p$ is ——×10⁻³ amu (upto three decimal places)

[GATE-2015]

Solution:

$$Q = 152.930414 - (152.927581) = 2.833 \times 10^{-3}$$
 a.m.u.

So the correct answer is 2.833

10. The atomic masses of ${}^{152}_{63}$ Eu, ${}^{152}_{62}$ Sm, 1_1H and neutron are 151.921749, 151.919756, 1.007825 and 1.008665 in atomic mass units (amu), respectively. Using the above information, the *Q*-value of the reaction ${}^{152}_{63}Eu+n \rightarrow {}^{152}_{62}Sm+p$ is —×10⁻³ amu (upto three decimal places)

[GATE-2015]

Solution:

$$Q = 152.930414 - (152.927581) = 2.833 \times 10^{-3}$$
 a.m.u.

So the correct answer is 2.833

