METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – Metody wyznaczania miejsca zerowego

Opis rozwiązania

Opis:

Metoda bisekcji – funkcja na badanym przedziale musi być określona, ciągła, oraz na krańcach przedziału musi mieć różne znaki. Dzięki tym założeniom wiemy że w badanym przedziale musi występować co najmniej jedno miejsce zerowe. Dzielimy dany przedział na połowy, aż do warunku stopu.

Wzory:

$$x_0 = \frac{a+b}{2}$$

 $\label{eq:Gdzie: x0 - fodek przedziału, a- lewy kraniec przedziału, b- prawy kraniec przedziału} \\$

Algorytm:

- 1. Liczymy wartości funkcji na krańcach podanego przedziału
- 2. Jeśli funkcja nie ma wartości z różnym znakiem na krańcu przedziału, czyli $f_a \cdot f_b > 0$, to zakończ z błędem, jeśli nie to kontynuujemy
- 3. Wyznaczamy środek przedziału x_0 , ze wzoru powyżej
- 4. Jeśli $f(x_0) < \varepsilon$, lub osiągnięto liczbę żądanych iteracji zakończ program, jeśli nie to kontynuujemy
- 5. Obliczamy wartość funkcji na środku przedziału
- 6. Jeśli $f(x_0) \cdot f(a) < 0$ to $b = x_0$, w przeciwnym wypadku jeśli $f(x_0) \cdot f(b) < 0$, to $a = x_0$
- 7. Wracamy do kroku 3

Opis:

Metoda Falsi- W metodzie traktujemy funkcję tak, jakby była funkcją, której wykres jest prostą. Prosta ta przecina oś OX w punkcie, który jest przybliżeniem pierwiastka. Wyliczamy punkt przecięcia fałszywej prostej x_0 z osią OX, obliczamy wartość funkcji w tym punkcie. Jeśli jest ona dostatecznie bliska zeru, to kończymy z wynikiem x_0 . Jeśli nie trafiliśmy, to punkt x_0 dzieli przedział poszukiwań pierwiastka na dwie części (tutaj nie będą to zwykle połówki jak w metodzie bisekcji). Za nowy przedział przyjmujemy tę część, w której funkcja ma różne znaki na krańcach. Wzory:

$$x_0 = \frac{f(b) \cdot a - f(a) \cdot b}{f(b) - f(a)}$$

Gdzie: x_0 – przybliżony pierwiastek funkcji, f(a)- wartość funkcji w punkcie a, f(b)- wartość funkcji w punkcie b, a- lewy kraniec przedziału, b- prawy kraniec przedziału

Algorytm

- 1. Liczymy wartości funkcji na krańcach podanego przedziału
- 2. Jeśli funkcja nie ma wartości z różnym znakiem na krańcu przedziału, czyli $f_a \cdot f_b > 0$, to zakończ z błędem, jeśli nie to kontynuujemy
- 3. Wyznaczamy środek przedziału x_0 , ze wzoru powyżej
- 4. Jeśli $x_0 < \varepsilon$, lub osiągnięto liczbę żądanych iteracji zakończ program, jeśli nie to kontynuujemy
- 5. Obliczamy wartość funkcji na środku przedziału
- 6. Jeśli $f(x_0) \cdot f(a) < 0$ to $b = x_0$ oraz $f(b) = f(x_0)$, w przeciwnym wypadku, jeśli $f(x_0) \cdot f(b) < 0$, to $a = x_0$, oraz $f(a) = f(x_0)$
- 7. Wracamy do kroku 3

Wyniki

L.p.	Funkcja	Dokładność	Liczba	Zakres	Wartość	Wartości	Liczby
		(epsilon)	maksymalnych	przedziałów	teoretyczna	zmierzone	iteracji
			iteracji				
1	y=x-1	0.001	-	[-10,10]	1	Falsi- 1	Falsi -1
						Bisekcja-	Bisekcja-
						1.0009765625	12
2	y=x-1	-	10	[-10,10]	1	Falsi- 1	Maks
						Bisekcja-	
						0.99609375	
3	$y=x^3-4x+1$	0,1	-	[-3,0]	-2,114905741476	Falsi-	Falsi – 10
						(-2,10993357)	iteracji
						Bisekcja-	Bisekcja
						(-2,109375)	- 6
							iteracji

4	$y=x^3-4x+1$	-	20	[1,3]	1,861	Falsi- 1,8607944375 Bisekcja- 1,8608074188	Maks
5	y=sin(x)	0.001	-	[-2,2]	0	Falsi – 0.0 Bisekcja – 0.0	Falsi — 1 iteracja Bisekcja — 1 iteracja
6	y=sin(x)	-	4	[-2,1]	0	Falsi – 0.0000004116 Bisekcja – 0.0625	Maks
7	y=e* - 2	-	100	[-100.100]	0,6931471785411	Falsi – (-100) Bisekcja- 0,693147180	Maks
8	y=e ^x - 2	-	100	[-2,2]	0,6931471785411	Falsi- 0,693147180 Bisekcja- 0, 693147180	Maks
9	y=2sin(2x+1)- 0,5	0.01	-	[0,2]	0,9444561992177	Falsi- 0,9442321763 Bisekcja- 0,9453125	Falsi— 4 iteracje Bisekcja — 8 iteracji
10	y=2sin(2x+1)- 0,5	-	20	[0,2]	0,9444561992177	Falsi- 0,9444561992 Bisekcja- 0,9444561004	Maks

Kolorem niebieskim oznaczone są wyniki uzyskane metodą Falsi, a kolorem czerwonym te uzyskane metodą bisekcji. Jeżeli widoczne jest tylko jedno z miejsc zerowych, oznacza to, że uzyskane wyniki są do siebie bardzo zbliżone. Wykresy:

2. y=x-1 ; kryterium iteracji

3. $y=x^3-4x+1$; kryterium epsilon

4. $y=x^3-4x+1$; kryterium iteracji

5. y=sin(x)-kryterium epsilon

6. y=sin(x)- kryterium iteracji

7. $y=e^x-1$; kryterium iteracji; zakres [-100;100]

8. $y=e^x-1$; kryterium iteracji; zakres [-2,2]

9. $y=2\sin(2x+1)-0, 5$; kryterium epsilon

10. $y=2\sin(2x+1)-0, 5$; kryterium iteracji

Wnioski

- Metoda Bisekcji znajduje coraz dokładniejszy pierwiastek z postępem wykładniczym- dzieląc przedział na połowy z każdym obiegiem szerokość maleje dwukrotnie, po 10 obiegach 2¹⁰ razy
- Metoda Falsi jest zwykle szybsza, dokładniejsza i wymaga mniej iteracji- ponieważ nie dzielimy tutaj bezwzględnie przedziału na połowy a badamy punkt przecięcia fałszywej prostej z osią OX co przyśpiesza rozwiązywanie pierwiastków. Można to zauważyć na przykładzie funkcji wielomianowej i trygonometrycznej.
- Jeśli chodzi o funkcje wykładnicze, to na dużych przedziałach metoda Falsi nie działa, przedziały muszą być dokładniejsze i krótsze aby metoda Falsi potrafiła sobie poradzić ze znalezieniem pierwiastka, co widać na przykładzie funkcji wykładniczej.