8- Properties of Context Free Languages

8.1 Useless Symbols:

Variables or Terminals that do not appear in any derivation of a terminal string from the start symbol.

Omitting Useless symbols from the grammar will not change the language of the Grammar.

8.1.1 Useful Symbols:

The symbols must be both generating and reachable.

Generating Symbols: Symbol X is generating if $X \stackrel{*}{\Rightarrow} w$ for some terminal string w.

Reachable Symbols: Symbol X is reachable if S $\stackrel{*}{\Rightarrow} \alpha X \beta$ for some sentential forms α and β .

Useless symbol is not *generating* or not *reachable*.

8.1.2 Eliminating Useless Symbols:

- Eliminate symbols that are not generating.
- Eliminate symbols that are not reachable.

Example: Consider the grammar

$$S \rightarrow AB \mid a$$

 $A \rightarrow b$

Solution:

S is reachable and also generating. ∴ S is a useful symbol.

A is generating but not reachable. ∴ S is a useless symbol.

.. After eliminating A (the useless symbol) the grammar is

$$S \rightarrow AB \mid a$$

Example: Eliminate useless symbols from the grammar

$$S \rightarrow ABC \mid AC \mid AB$$

$$A \rightarrow ab$$

$$B \rightarrow c$$

$$D \rightarrow cc \mid d$$

Solution:

S is reachable and also generating. ∴ S is a useful symbol.

A is reachable and also generating. ∴ A is a useful symbol.

B is reachable and also generating. ∴ B is a useful symbol.

C is reachable but not generating. ∴ C is a useless symbol.

D is not reachable but generating. \therefore D is a useless symbol.

: After eliminating C, D (the useless symbols) the grammar is

 $S \rightarrow AB$

 $A \rightarrow ab$

 $\mathsf{B} \to \mathsf{c}$

8.2 <u>Simplification of Grammars</u>.

8.2.1 Chomsky Normal Form (CNF):

A Grammar where all productions are of the form

- $A \rightarrow BC OR$
- $A \rightarrow b$ is called Chomsky Normal Form.

Where A, B, C are Non Terminals (Variables) and b is a terminal.

To convert a CFG to its equivalent CNF

- Eliminate useless symbols.
- Eliminate ε productions i.e., productions of the form A $\to \varepsilon$.
- Eliminate unit productions i.e., productions of the form A → B.

8.2.2 Eliminating ε productions

Nullable Symbols:

The Symbol A is nullable if $A \Rightarrow \varepsilon$.

Finding Nullable Symbols (Algorithm):

- BASIS: If $A \rightarrow \varepsilon$ is in G, then A is nullable.
- INDUCTION: If $B \to C_1C_2 \dots C_k$ is a production in G, where each C_i is nullable then B is nullable.

Eliminating ε productions

- Find Nullable Symbols.
- If $A \to X_1 X_2 \dots X_{i-1} X_i X_{i+1} \dots X_k$ is a production in G and X_i is a nullable symbol then rewrite the production as

$$A \longrightarrow X_1X_2 \dots X_{i-1}X_iX_{i+1} \dots X_k \mid X_1X_2 \dots X_{i-1}X_{i+1}X_{i+2} \dots X_k$$

Example: Consider the Grammar

1.
$$S \rightarrow AB$$

2. A
$$\rightarrow$$
 aAA | ε

3. B
$$\rightarrow$$
 bBB | ε

Eliminate ε productions from the above grammar.

Solution:

Finding nullable symbols.

Basis:

- A is a nullable symbol. ($: A \rightarrow \varepsilon$ is a production in the Grammar)
- B is a nullable symbol. ($: B \to \varepsilon$ is a production in the Grammar)

Induction:

- $S \rightarrow AB$ is in the grammar and both A and B are nullable.
- ∴S is a nullable symbol.

The set N of nullable symbols $N = \{S, A, B\}$

Eliminating ε productions: If a production contains a nullable symbol then include the productions with and without nullable symbols in the grammar.

- S → AB | A | B
- A → aAA | aA | a
- B → bBB | bB | b

Example: Consider the Grammar

- 1. $S \rightarrow aTa$
- 2. $T \rightarrow ABC$
- 3. $A \rightarrow aA \mid C$
- 4. $B \rightarrow Bb \mid C$
- 5. $C \rightarrow c \mid \varepsilon$

Eliminate ε productions from the above grammar.

Solution:

Set of nullable symbols N = {T, A, B, C}

Grammar after eliminating ε productions

- 1. $S \rightarrow aTa \mid aa$
- 2. $T \rightarrow ABC \mid AB \mid AC \mid BC \mid A \mid B \mid C$
- 3. $A \rightarrow aA \mid a \mid C$
- 4. $B \rightarrow Bb \mid b \mid C$
- 5. $C \rightarrow c$

8.2.3 Eliminating Unit Productions

- A Unit production is a production of the form A → B where both A and B are Variables or Non Terminals.
- If A \rightarrow B is a production in the grammar and B \rightarrow β is in G then replace the production A \rightarrow B by the production A \rightarrow β .

Example: Remove Unit Productions from the grammar

$$S \rightarrow XY$$

$$X \rightarrow A$$
 $A \rightarrow B \mid a$
 $B \rightarrow b$
 $Y \rightarrow T$
 $T \rightarrow Y \mid c$

Solution:

8.2.4 Converting a Grammar to CNF

- 1. Eliminate ε Productions.
- 2. Eliminate Unit Productions.
- 3. Eliminate Useless Symbols.
- 4. If the length of the Right Hand Side of a production is >= 2 and there is a terminal a on the RHS, then replace the terminal a by a nonterminal T_a and add a new production T_a → a to the grammar.
- 5. If the length of the Right Hand Side of a production is > 2, i.e., the production is of the form $A \rightarrow X_1 X_2 \dots X_k$ (k > 2) rewrite the production as

Where M_1 , M_2 , ..., M_{k-2} are the new non terminals.

Example: Convert the below CFG to CNF.

$$S \rightarrow aACa$$

$$A \rightarrow B \mid a$$

$$B \rightarrow C \mid c$$

$$C \rightarrow cC \mid \varepsilon$$

1. Eliminate ε Productions:

$$N = \{C, B, A\}$$

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow B \mid a$$

$$B \rightarrow C \mid c$$

$$\mathsf{C} \to \mathsf{c}\mathsf{C}$$

2. Eliminate Unit productions:

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow B \mid a$$

$$\mathsf{B} \to \mathsf{C} \mid \mathsf{c}$$

$$\mathsf{C} \to \mathsf{c}\mathsf{C}$$

$$\mathsf{S} \to \mathsf{aACa} \, | \, \mathsf{aAa} \, | \, \mathsf{aCa} \, | \, \mathsf{aa}$$

$$A \rightarrow C \mid c \mid a$$

$$B \rightarrow cC \mid c$$

$$C \rightarrow cC$$

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$\mathsf{A} \to \mathsf{cC} \mid \mathsf{c} \mid \mathsf{a}$$

$$B \rightarrow cC \mid c$$

$$C \rightarrow cC$$

3. Eliminate Useless Symbols.

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow cC \mid c \mid a$$

$$B \rightarrow cC \mid c$$

$$\mathsf{C} \to \mathsf{c}\mathsf{C}$$

B is a useless symbol because it is not reachable from the start symbol.

Eliminate B. The grammar is

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow cC \mid c \mid a$$

$$C \rightarrow cC$$

4. If the length of the Right Hand Side of a production is >= 2

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow cC \mid c \mid a$$

$$C \rightarrow cC$$

$$S \to T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$

$$A \rightarrow T_cC \mid c \mid a$$

$$C \longrightarrow T_c C$$

$$T_a \longrightarrow a$$

5.

$$S \to T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$

$$A \longrightarrow T_cC \mid c \mid a$$

$$C \longrightarrow T_c C$$

$$T_a {\longrightarrow} \; a$$

$$T_c \rightarrow c$$

$$S \rightarrow T_a M_1 \mid T_a M_2 \mid T_a M_3 \mid T_a T_a$$

$$A \longrightarrow T_c C \mid c \mid a$$

$$C \longrightarrow T_c C$$

$$T_a \!\!\!\! \to a$$

CNF

$$M_1 \longrightarrow AM_3$$

$$M_2 \longrightarrow AT_a$$

$$M_3 \,{\longrightarrow}\, CT_a$$

Example: Convert the below CFG to CNF.

$$S \rightarrow aSa$$

$$S \rightarrow B$$

$$B \rightarrow bbC$$

$$B \rightarrow bb$$

$$C \rightarrow \varepsilon$$

$$C \rightarrow cC$$

Example: Convert the below CFG to CNF.

$$\mathsf{S} \to \mathsf{ABC}$$

$$A \rightarrow aC \mid D$$

$$B \rightarrow bB \mid \varepsilon \mid A$$

$$C \rightarrow Ac \mid \varepsilon \mid Cc$$

$$D \rightarrow aa$$

8.3 Context Free Languages:

Languages defined by the CFG are called context free languages.

Language of a CFG:

If G is a CFG then
$$L(G) = \{ w \mid S \stackrel{*}{\Rightarrow} w \}$$

8.3.1 Properties of Parse Tree (Introduction)

- Let G be the CFG i.e., G = (V, T, P, S).
- Let m be the number of non terminals or variables in G.
- Let b be the branching factor i.e., the length of the longest right hand side of any production in the Grammar G. In other words b is the maximum number of children of any node in the parse tree.
- Let h be the height of the parse tree, i.e., the length of the longest path from root to any of the leaf nodes.

8.3.2 Pumping Lemma for Context Free Languages

Statement: Let L be a CFL. There exists a constant n such that , if z is any string in L and $|z| \ge n$, then we can write z=uvwxy, subject to the following conditions:

- 1. |vwx| <= n. That is the middle portion is not too long.
- 2. $vx \neq \varepsilon$. Since v and x are the strings to be "pumped ", at least one of them must not be empty.
- 3. For all $i \ge 0$, uv^iwx^iy is in L. That is two strings v and x may be pumped in any number of times, the resulting string still will be a member of L.

Example: Prove that the language $L = \{0^n1^n2^n \mid n \ge 1\}$ is a non-context free language.

Proof:

- Let L be a context Free Language.
- Let $z = 0^n 1^n 2^n$.
- Split z as z = uvwxy, where $|vwx| \le n$ and v and x are not both ε .
- vwx cannot contain both 0's and 2's since the last 0 and the first 2 are separated by n + 1 positions.
- We shall prove L contains some string ∉ L, thus contradicting the assumption.

There are two cases

- 1. vwx has no 2's.
 - a. Then vx consists of only 0's and 1's and has at least one of these symbols.
 - b. uwy has n 2's but has fewer than n 0's or fewer than n 1's or both.
 - c. ∴ uwy ∉ L and L is not a CFL.
- 2. vwx has no 0's.

Similarly uwy has n 0's but has fewer than n 1's or fewer than n 2's or both.

Example: Prove that the language $L = \{0^{i}1^{j}2^{i}3^{j} \mid i,j \ge 1\}$ is a non context free language.

Proof:

- Let L be a context Free Language.
- Pick $z = 0^n 1^n 2^n 3^n$.
- Split z as z = uvwxy, where $|vwx| \le n$ and v and x are not both ε .
- vwx either contains single symbol or two adjacent symbols.
- We shall prove L contains some string ∉ L, thus contradicting the assumption.

There are two cases

1. vwx consists of only one symbol.

- a. Then uwy consists of n occurrences of three symbols and fewer than n occurrences of the fourth symbol.
- b. ∴ uwy ∉ L and L is not a CFL.
- 2. vwx consists of two adjacent symbols (say 1's and 2's).
 - a. Then uwy is missing some 1's or some 2's or both.
 - b. ∴ uwy ∉ L and L is not a CFL.

8.3.3 Closure Properties of Context Free Languages

- 1. Context Free Languages are closed Under Union.
- 2. Context Free Languages are closed Under Concatenation.
- 3. Context Free Languages are closed Under Kleene Closure.
- 4. Context Free Languages are closed Under Reversal.

1. Context Free Languages are closed Under Union.

If L1 and L2 are Context Free Languages then L1∪ L2 is a Context Free Language.

Proof:

L1 is a CFL
$$\therefore$$
 L1 = L(G1) where G1 = (V1, T1, P1, S1)
L2 is a CFL \therefore L2 = L(G2) where G2 = (V2, T2, P2, S2)

Build a new Grammar G such that

$$L(G) = L1 \cup L2 = L(G1) \cup L(G2)$$
Where G = (V, T, P, S) and
$$V = V1 \cup V2$$

$$T = T1 \cup T2$$

$$P = P1 \cup P2 \text{ and}$$

 $S \rightarrow S1 \mid S2$

2. Context Free Languages are closed Under Concatenation.

If L1 and L2 are Context Free Languages then L1L2 is a Context Free Language.

Proof:

L1 is a CFL
$$\therefore$$
 L1 = L(G1) where G1 = (V1, T1, P1, S1)
L2 is a CFL \therefore L2 = L(G2) where G2 = (V2, T2, P2, S2)

Build a new Grammar G such that

L(G) = L1 L2 = L(G1) L(G2)
Where G = (V, T, P, S) and

$$V = V1 \cup V2$$

 $T = T1 \cup T2$
 $P = P1 \cup P2$ and
 $S \rightarrow S1S2$

3. Context Free Languages are closed Under Closure.

If L is a Context Free Language then L* is a Context Free Language.

Proof:

L is a CFL
$$\therefore$$
 L = L(G) where G = (V, T, P, S)

Build a new Grammar G1 such that
$$L(G1) = L^* = L(G)^*$$

Where G1 = (V1, T1, P1, S1) and
$$V1 = V \cup S1$$

$$T1 = T$$

$$P1 = P \cup \{S1 \rightarrow \varepsilon, S1 \rightarrow S1S\} \text{ and } S1 \rightarrow \varepsilon \mid S1S$$

4. Context Free Languages are closed Under Reversal.

If L is a Context Free Language then L^R is a Context Free Language.

Proof:

L is a CFL \therefore L = L(G) where G = (V, T, P, S)

Build a new Grammar G1 such that

$$L(G1) = L^{R} = L(G)^{R}$$

Where G1 = (V1, T1, P1, S1) and

V1 = V

T1 = T

P1 = Each production $A \to \alpha$ is replaced by $\ A \to \alpha^R$ and

S1 = S

