臺中市立高級中等學校 108 學年度指定科目第二次聯合複習考試

數學甲

一作答注意事項—

考試範圍:第一~四冊全、選修數學甲(上)

考試時間:80分鐘

作答方式: ·選擇(填)題用 2B 鉛筆在「答案卡」上作答;更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。

- · 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

選填題作答說明:選填題的題號是 A,B,C,……,而答案的格式每題可能不同,考生必須依各題的格式填答,且每一個列號只能在一個格子畫記。請仔細閱讀下面的例子。

例:若第 B 題的答案格式是 $\frac{\text{(B)}}{\text{(D)}}$,而依題意計算出來的答案是 $\frac{3}{8}$,則考生必須分別在答案卡上的第 18 列的 $\frac{3}{2}$ 與第 19 列的 $\frac{8}{2}$ 畫記,如:

例:若第 C 題的答案格式是 $\frac{202}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答案卡的第 20 列的二與第 21 列的二書記,如:

祝考試順利

版權所有・翻印必究

第壹部分:選擇題(單選題、多選題及選填題共占76分)

一、單選題(占18分)

說明:第1題至第3題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. 一圓盤分成標有數字 1、2、3 的三個區域,且圓盤上有一可轉動的指針。已知每次轉動指針後,前後兩次指針絕對不會停在同一區域,而停在另兩區域的機率相等。遊戲規定為連續轉動指針三次,計算指針在這三次所停區域的標號數字之和。若遊戲前指針的位置在標號數字 1 的區域,則此遊戲的期望值最接近哪一個選項?
 - (1) 5.5
 - (2) 6
 - (3) 6.5
 - (4) 7
 - (5) 7.5

2. 給一長方體 ABCD-EFGH,如右圖,若 $\overline{AB}=\overline{AE}=3$, $\overline{AD}=6$, 則直線 BD 與直線 AF 的距離為

- (1) 1
- (2) 2
- (3) 3
- (4) 4
- (5) 5

- 3. 在 $\triangle ABC$ 中, $\overline{AB} = \overline{BC}$ 。在 \overline{AB} 上取一點 D 使得 $\overline{AD} = 2\overline{BD}$ 且 $\overline{CD} = 1$ 。若 $\triangle ACD$ 的周長 與 $\triangle BCD$ 的周長相等,則 $\triangle ACD$ 的周長為
 - $(1) 1 + \sqrt{3}$
 - (2) 3
 - (3) $1 + \sqrt{5}$
 - (4) $1+\sqrt{6}$
 - $(5) 1 + \sqrt{7}$

二、多選題(占40分)

說明:第4題至第8題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得 8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或 所有選項均未作答者,該題以零分計算。

- 4. 設實係數多項式 f(x) 滿足 f(2-i)=-5 與 f(i)=-1+12i (其中 $i=\sqrt{-1}$),且 f(x) 除以 $(x^2-4x+5)(x^2+1)$ 的餘式為 g(x)。請選出正確的選項。
 - (1) f(2+i) = 5
 - (2) g(-i) = -1 12i
 - (3) g(x) = 0 無負實根
 - (4) g(x) = 0 無有理根
 - (5) y=g(x) 與拋物線 $y=x^2-2x+2$ 恰只有一個交點

- 5. 給兩不平行的非零向量 \overline{u} 與 \overline{v} ,已知 \overline{u} +2 \overline{v} 與 \overline{u} -2 \overline{v} 互相垂直,下列哪些選項是正確的?
 - $(1) \mid \overrightarrow{u} \mid = 2 \mid \overrightarrow{v} \mid$
 - (2) u 與 v 可能互相垂直
 - (3)若 \overline{u} +2 \overline{v} 與 \overline{u} 的夾角為 60° ,則 \overline{u} 與 \overline{v} 的夾角為 120°
 - (4)若 $\overrightarrow{u} + 2\overrightarrow{v}$ 與 \overrightarrow{u} 的夾角為 60° ,則 $\overrightarrow{u} \cdot \overrightarrow{v} = -2$
 - (5)若 | \overrightarrow{u} | = 2 , 則 \overrightarrow{u} · \overrightarrow{v} 的最大值為 2
- 6. 如右圖所示,坐標平面上,已知直線 L 與函數 $y = \log_2 x$ 的圖形有兩交點 A , C ,且 \overline{AC} 與 x 軸交於 B 。若已知 A , B , C 三點之 x 坐標 a , b , c 成等比, 試選出正確的選項。

- (1)等比數列 a, b, c 的公比大於 1
- $(2)\log_2 a$, $\log_2 b$, $\log_2 c$ 三數成等差
- $(3)\log_2\frac{a+c}{2} < \log_2 b$
- (4) $\overline{AB} < \overline{BC}$
- (5)若等比數列 a , b , c 的公比為 3 , 則 $b = \sqrt[3]{3}$
- 7. 在複數平面上,給定三點 $A(0) \cdot B(4) \cdot C\left(1 + \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$ 。下列哪些選項是正確的?
 - $(1) 1+\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}$ 的主輻角為 $\frac{2\pi}{3}$
 - $(2) \angle BAC = \frac{2\pi}{3}$
 - (3) $\triangle ABC$ 的面積為 $\sqrt{3}$
 - (4)若z 為方程式 $x^3 = 1 + \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ 的解,則z 可能落在第一象限
 - (5)承(4),|z|=1

- 8. 已知函數 $f(x) = \sin 2x + \frac{2}{\sin 2x}$, $g(x) = 2\cos x + \frac{1}{\cos x}$, 其中 $0 < x < \frac{\pi}{2}$, 則下列哪些敘述是正確的?
 - (1)f(x)有最大值
 - (2) g(x) 的最小值為 $2\sqrt{2}$
 - (3) f(x) 的最小值為 $2\sqrt{2}$
 - (4)當 $x = \frac{\pi}{4}$ 時,f(x)產生最小值
 - (5) f(x) + g(x) 的最小值為 $3 + 2\sqrt{2}$

三、選填題(占18分)

說明:1.第A至C題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(9-17)。 2.每題完全答對給6分,答錯不倒扣,未完全答對不給分。

- A. 給定兩平行線 $L_1: 2x-y-4=0$ 與 $L_2: 2x-y+10=0$,已知這兩平行線與圓 C 的交點恰將 圓 C 的圓周四等分。若圓 C 的圓心在直線 3x-4y-3=0 上,則圓 C 的圓心坐標為 (⑨⑩,⑪⑫) 。
- B. 設矩陣 $A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$,若 $\begin{bmatrix} x' \\ y' \end{bmatrix} = A\begin{bmatrix} x \\ y \end{bmatrix}$ 表示以矩陣 A 對點 P(x,y) 作線性變換得到對應點 P'(x',y')。若將直線 L: x+2y+2=0 上所有的點,利用矩陣 A 作變換,所有對應點所成的 圖形為直線 L'。設 L 與 L'所夾的銳角為 θ ,則 $\tan \theta$ 的值為 $\frac{13}{4}$ 。(化為最簡分數)
- C. 投擲一公正骰子 4 次。在最初兩次的投擲中曾經出現過 3 點的條件下,4 次投擲的點數和 為 9 的機率為 $\frac{(5)}{(6)(7)}$ 。(化為最簡分數)

第貳部分:非選擇題(占24分)

說明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號((1)、(2)、……),同時必須寫出演算過程或理由,否則將予扣分甚至零分。 作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題配分標於題末。

- 一、袋中有大小相同編號 1 到 8 號的球各兩顆。<u>柚子</u>自袋中隨機一次取兩球,設隨機變數 X 的 值為取出兩球中的較小號碼,若取出兩球同號,則 X 的取值即為該號碼。若 p_k 表 X 取值 為 k 的機率 $(k=1,2,\dots,8)$,則:
 - (1) 試求 p_2 , p_3 。(4分)
 - (2) 試求滿足 $p_k > \frac{1}{10}$ 之所有正整數 k 的值。(5 分)
 - (3) 試求隨機變數 X 的期望值。(5 分)

- 二、如右圖,在四角錐 P-ABCD 中,其中 PD 垂直平面 ABCD, $\overline{AD} \perp \overline{AB} \perp \overline{AD} / \overline{BC} \circ \stackrel{.}{\otimes} \overline{BC} = 3 , \overline{PD} = \overline{AD} = \overline{AB} = 2 \circ$ 已知 $E \stackrel{.}{\Rightarrow} \overline{PA}$ 中點, $F \stackrel{.}{\leftarrow} \overline{PB} \perp \stackrel{.}{\Rightarrow} \overline{BF} = 2\overline{PF} \circ$
 - (1) 試證:直線 EF 平行平面 CDP。(5分)
 - (2) 設 G 在 \overline{PC} 上且 \overline{PG} = $k\overline{PC}$ 。 若 G 、 D 、 E 、 F 四點共平面, 試求 k 值。 (5 分)

臺中市立高級中等學校 108 學年度指定科目第二次聯合複習考試

數學甲參考答案暨詳解

版權所有・翻印必究

數學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	The state of the s
答案	(3)	(2)	(1)	(2)(3)(5)	(1)(2)(3)	(1)(2)(4)	(3)(5)	(2)(4)(5)	

第壹部分:選擇題

一、單選題

1. (3)

出處:選修數學甲(上)第一章〈機率統計〉

目標:樹狀圖,期望值的定義

解析:轉動指針三次的所有可能情況,如右樹狀圖

令 X 為三次所停區域的標號數字和,則:

X	5	6	7	8
P(X)	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	1/8

所以
$$E(X) = 5 \cdot \frac{1}{8} + 6 \cdot \frac{4}{8} + 7 \cdot \frac{2}{8} + 8 \cdot \frac{1}{8}$$

= $\frac{51}{8} = 6.375$

故選(3)。

出處:第四冊第二章〈空間中的平面與直線〉

目標:空間坐標,向量的外積,兩歪斜線求距離

解析: 訂一坐標系,E(0,0,0),A(0,0,3),F(3,0,0),H(0,6,0) \Rightarrow B(3,0,3),D(0,6,3)

設平面 K 包含直線 AF 且平行直線 BD,

因為
$$\overrightarrow{AF} \times \overrightarrow{BD} = (18, 9, 18) // (2, 1, 2)$$

又 B 點到平面 K 的距離為
$$\frac{|2\times 3+0+2\times 3-6|}{\sqrt{2^2+1^2+2^2}} = 2$$

⇒直線BD與直線AF的距離為2

故選(2)。

3. (1)

出處:第三冊第一章〈三角〉

目標:餘弦定理

解析: $\overline{AD} = 2\overline{BD}$ 且 $\overline{AB} = \overline{BC}$

故令 $\overline{BD} = t$, $\overline{AD} = 2t$, $\overline{BC} = 3t$

又 $\triangle ACD$ 與 $\triangle BCD$ 周長相等

$$\Rightarrow \overline{AC} = 2t$$

 $\triangle ACD$ 與 $\triangle ABC$ 中

由餘弦定理知,

$$\cos A = \frac{4t^2 + 4t^2 - 1^2}{2 \cdot 2t \cdot 2t} = \frac{4t^2 + 9t^2 - 9t^2}{2 \cdot 2t \cdot 3t}$$

解得
$$t=\frac{\sqrt{3}}{4}$$

⇒△ACD 問長為 $1+4t=1+\sqrt{3}$

故選(1)。

二、多選題

4. (2)(3)(5)

出處:第一冊第二章〈多項式函數〉

目標:虚根共軛成對,一次有理因式檢驗法,多項式不等式

解析:(1) \times :f(x) 為實係數多項式

$$(2) \bigcirc : f(x) = (x^2 - 4x + 5)(x^2 + 1)q(x) + g(x) \Rightarrow f(-i) = g(-i) \Rightarrow g(-i) = \overline{f(i)} = -1 - 12i$$

$$(3)$$
 〇:因為 $f(2 \pm i) = g(2 \pm i) = -5$,

$$\bigvee \deg g(x) \le 3 \Rightarrow g(x) = (x^2 - 4x + 5)(ax + b) - 5$$

$$\nabla g(i) = f(i) = -1 + 12i \Rightarrow (-1 - 4i + 5)(ai + b) - 5 = -1 + 12i$$

$$\Rightarrow$$
 4(1-i)(b+ai)=4(1+3i)

$$\Rightarrow (a+b)+(a-b)i=1+3i \Rightarrow \begin{cases} a=2\\ b=-1 \end{cases},$$

故當 $x < 0 \Rightarrow g(x) < 0$ 恆成立

$$(4)$$
 \times : 由(3)知 $g(x)=2x^3-9x^2+14x-10=0$ 無負實根,

故可能的正有理根為: $1, 2, 5, 10, \frac{1}{2}, \frac{5}{2}$,逐一檢查之,得 $g\left(\frac{5}{2}\right) = 0$

(5) 〇:由(4)知,
$$g(x)=(2x-5)(x^2-2x+2)$$

$$\Rightarrow g(x) - (x^2 - 2x + 2) = (x^2 - 2x + 2)(2x - 6)$$

所以
$$g(x) = x^2 - 2x + 2$$
 只有一個實根 $x = 3$

故
$$y=g(x)$$
 與 $y=x^2-2x+2$ 恰只有一個交點

故選(2)(3)(5)。

5. (1)(2)(3)

出處:第三冊第三章〈平面向量〉

目標:向量的加法與減法,向量的內積

解析: (1) 〇: 因為 $\frac{1}{u}$ +2 $\frac{1}{v}$ 與 $\frac{1}{u}$ -2 $\frac{1}{v}$ 互相垂直

所以 $\frac{1}{u}$ 與 $\frac{1}{v}$ 所張成的四邊形為菱形

$$\Rightarrow |\overrightarrow{u}| = 2|\overrightarrow{v}|$$

(2) \bigcirc : 當 u 與 2 v 所張成的四邊形為正方形

(3) 〇:因為 $\frac{1}{u}$ +2 $\frac{1}{v}$ 平分 $\frac{1}{u}$ 與 $\frac{1}{v}$ 的夾角

(4) ×: 因為未給向量的長度

(5) ×: 因為 \overrightarrow{u} 與 \overrightarrow{v} 不平行,所以 $|\overrightarrow{u} \cdot \overrightarrow{v}| < |\overrightarrow{u}|$ $|\overrightarrow{v}| = 2$

故選(1)(2)(3)。

6. (1)(2)(4)

出處:第一冊第三章〈指數、對數函數〉、第二冊第一章〈數列與級數〉

目標:等差數列、等比數列、對數的運算、對數函數的圖形

解析:(1)〇:由圖形可知: $0 < a < b \Rightarrow$ 公比= $\frac{b}{a} > 1$

(2)
$$\bigcirc$$
: $\frac{\log_2 a + \log_2 c}{2} = \frac{1}{2} \log_2 ac = \log_2 (b^2)^{\frac{1}{2}} = \log_2 b$

$$(3)$$
 \times : 由 (2) 知 $\log_2 b = \frac{\log_2 a + \log_2 c}{2}$,又凹口向下,

数
$$\log_2 \frac{a+c}{2} > \frac{\log_2 a + \log_2 c}{2} = \log_2 b$$

(4)〇:由(2)知 $\log_2 a$, $\log_2 b$, $\log_2 c$ 三數成等差,

如右圖所示:

可知
$$\overline{PQ} = \overline{QR}$$
,

水平線 $y = \log_2 b \, \bar{\chi} \, L \, \hat{k} \, \overline{AC} \, \hat{k} \, \overline{AC}$ 中點M

故 $\overline{AB} < \overline{AM} < \overline{BC}$

$$(5)$$
 \times : $\Leftrightarrow a = \frac{b}{3}$, $c = 3b$, 由 A , B , C 共線 ,

 \Rightarrow $-3 \log_2 b + 3 \log_2 3 = \log_2 b + \log_2 3$

$$\Rightarrow 2 \log_2 3 = 4 \log_2 b \Rightarrow b = \sqrt{3}$$

故選(1)(2)(4)。

7. (3)(5)

出處:選修數學甲(上)第二章〈三角函數〉

目標:複數的極式,複數運算的幾何意涵,棣美弗定理

解析:
$$(1)$$
 \times : $\Rightarrow P\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$ 因為 $\overline{PA} = \overline{PC} = 1$ 且 $\angle APC = \frac{\pi}{3}$ 所以 $\triangle APC$ 為正三角形 $\Rightarrow C$ 的主輻角為 $\frac{5\pi}{3}$

(3) 〇:
$$\triangle ABC$$
 的面積 $=\frac{1}{2} \times 1 \times 4 \times \sin \frac{\pi}{3} = \sqrt{3}$

$$(4) \times : 因為 1 + \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}$$
所以 $x^3 = 1 + \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ 的解為
$$\cos \left(\frac{5\pi}{9} + \frac{2k\pi}{3}\right) + i \sin \left(\frac{5\pi}{9} + \frac{2k\pi}{3}\right), \text{ 其中 } k = 0, 1, 2$$
 依序落在第二、三、四象限

$$(5)\bigcirc:|z^3|=\left|\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right|=1, \text{ fill } |z|=1$$

故選(3)(5)。

8. (2)(4)(5)

出處:第一冊第一章〈數與式〉、選修數學甲(上)第二章〈三角函數〉

目標:算幾不等式,三角函數的值域

解析:
$$(1)$$
 ×: $0 < 2x < \pi$, 當 $2x \to 0$ 或 π , 則 $\frac{2}{\sin 2x} \to \infty$, 故無最大值

(2) 〇:由算幾不等式:
$$\frac{2\cos x + \frac{1}{\cos x}}{2} \ge \sqrt{2\cos x \cdot \frac{1}{\cos x}} \Rightarrow g(x) \ge 2\sqrt{2}$$
 ,且等號成立時
 $\Leftrightarrow 2\cos x = \frac{1}{\cos x} \Leftrightarrow \cos x = \pm \frac{\sqrt{2}}{2}$
 故 $x = \frac{\pi}{4}$ 時, $g(x)$ 有最小值 $2\sqrt{2}$

$$(3)$$
 \times : 由算幾不等式: $\frac{\sin 2x + \frac{2}{\sin 2x}}{2} \ge \sqrt{\sin 2x \cdot \frac{2}{\sin 2x}} \Rightarrow f(x) \ge 2\sqrt{2}$,等號成立時 $\Leftrightarrow \sin 2x = \frac{2}{\sin 2x} \Leftrightarrow \sin 2x = \pm \sqrt{2}$,不合 故 $f(x) > 2\sqrt{2}$

$$(4) \bigcirc : f(x) = \sin 2x + \frac{1}{\sin 2x} + \frac{1}{\sin 2x} \ge 2\sqrt{\sin 2x \cdot \frac{1}{\sin 2x}} + \frac{1}{1} = 2 + 1 = 3,$$
其中等號成立時 \Leftrightarrow
$$\begin{cases} \sin 2x = \frac{1}{\sin 2x} \Leftrightarrow \sin 2x = \pm 1 \\ \sin 2x = 1 \end{cases}$$

故當
$$\sin 2x = 1$$
 時,有最小值 3,此時 $2x = \frac{\pi}{2} \Rightarrow x = \frac{\pi}{4}$

(5) 〇:由(2)、(4)可知,當
$$x=\frac{\pi}{4}$$
 時, $f(x)$ 與 $g(x)$ 分別有最小值 3 與 $2\sqrt{2}$,

故
$$f(x)+g(x)$$
 之最小值為 $3+2\sqrt{2}$

故選(2)(4)(5)。

三、選填題

A. (-3, -3)

出處:第三冊第二章〈直線與圓〉

目標:直線方程式,圓的方程式

解析:由題設條件知,圓心為兩直線 3x-4y-3=0 與 2x-y+3=0 的交點

故圓心為 (-3,-3)。

B. $\frac{1}{2}$

出處:第四冊第三章〈矩陣〉

目標:平面上的線性變換,直線的斜率

解析:設 P(x,y) 為 L 上任一點,且點 P 經 A 變換後對應到點 P'(x',y'),

$$\operatorname{ED}\begin{bmatrix} x' \\ y' \end{bmatrix} = A\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1}\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & \frac{1}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \frac{2}{5}x' + \frac{1}{5}y' \\ -\frac{1}{5}x' + \frac{2}{5}y' \end{bmatrix}$$

又
$$\left(\frac{2}{5}x'+\frac{1}{5}y'\right)+2\left(-\frac{1}{5}x'+\frac{2}{5}y'\right)+2=0$$
,化簡得 $y'+2=0$

所以 L' 的方程式為 $\nu+2=0$

故 $\tan \theta = \frac{1}{2}$ 。

C. $\frac{1}{22}$

出處:第二冊第三章〈機率〉

目標:條件機率,排列組合

解析: $\Diamond A$ 事件: $\Diamond A$ 实點數和為 ∂B 事件:前兩次至少一次 ∂B 點

則所求為
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{n(A \cap B)}{n(B)}$$
,其中 $n(B) = (6^2 - 5^2) \cdot 6^2 = 11 \cdot 6^2$

考慮事件 $A \cap B$ 所有的組合:

(1)前兩次恰兩次3點:

③③
$$a$$
 b ,則 $a+b=3 \Rightarrow (a,b)=(1,2),(2,1),共2組$

(2)前兩次恰一次3點:

$$3 a b c$$
,則 $a+b+c=6$ 且 $a \neq 3$

$$\Rightarrow (a,b,c)=(1,1,4),(1,2,3),(2,2,2)$$
 及其直線排列,

但
$$a \neq 3$$
,故有 $\frac{3!}{2!}$ +(3!-2!)+1=8 組

a3bc與3abc的討論相同,故也有8組

由(1)、(2)得:
$$n(A \cap B) = 18 \Rightarrow P(A \mid B) = \frac{18}{11 \cdot 6^2} = \frac{1}{22}$$
。

第貳部分:非選擇題

$$-\cdot (1) p_2 = \frac{5}{24} \cdot p_3 = \frac{7}{40} ; (2) k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 ; (3) \frac{31}{10}$$

出處:選修數學甲(上)第一章〈機率統計〉

目標:期望值,機率

二、(1)證明略; $(2)\frac{2}{3}$

出處:第四冊第二章〈空間中的平面與直線〉

目標:平面方程式,直線方程式,向量的外積

解析:(1)設一坐標系, A(2,0,0), B(2,2,0), D(0,0,0), P(0,0,2), C(-1,2,0)

因為E為 \overline{PA} 中點,所以E(1,0,1)

又
$$F$$
 在 \overline{PB} 上且 $\overline{BF} = 2\overline{PF}$,所以 $F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}\right)$

$$\Rightarrow \overrightarrow{EF} = \left(-\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right), \overrightarrow{DP} \times \overrightarrow{DC} = (-4, -2, 0)$$

因為 $\overrightarrow{DP} \times \overrightarrow{DC}$ 為平面 CDP 的法向量

$$\underline{\mathbb{H}} \overrightarrow{EF} \cdot (\overrightarrow{DP} \times \overrightarrow{DC}) = \left(-\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right) \cdot (-4, -2, 0) = 0$$

故直線 EF 平行平面 CDP。

(2)因為
$$\overrightarrow{DE} \times \overrightarrow{DF} = \left(-\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}\right)$$

所以平面 DEF 的方程式為 x+y-z=0

又G點坐標為(-k, 2k, 2-2k)

把 G 代入 x+y-z=0,解得 $k=\frac{2}{3}$ 。

非選擇題批改原則

第貳部分:非選擇題

- \(\cdot(1)\)p_2 =
$$\frac{5}{24}$$
 \(\cdot p_3 = $\frac{7}{40}$ \); \((2)\)k=1 \(\cdot 2 \cdot 3 \cdot 4 \cdot 5\); \((3)\) $\frac{31}{10}$

出處:選修數學甲(上)第一章〈機率統計〉

目標:期望值,機率

解析:(1)
$$p_2 = \frac{14 \cdot 13 - 12 \cdot 11}{16 \cdot 15} = \frac{5}{24}$$
 (2分); $p_3 = \frac{12 \cdot 11 - 10 \cdot 9}{16 \cdot 15} = \frac{7}{40}$ (2分)

(2)
$$p_k = \frac{(18-2k) \cdot (17-2k) - (16-2k) \cdot (15-2k)}{16 \cdot 15} = \frac{33-4k}{120} > \frac{1}{10}$$
 (2 分)

$$\Rightarrow k < \frac{21}{4} \quad (1) \Rightarrow k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \circ (2)$$
(3) $E(X) = \sum_{k=1}^{8} p_k \cdot k = \sum_{k=1}^{8} \frac{(33-4k)k}{120}$ (2 分)

$$= \frac{33}{120} \sum_{k=1}^{8} k - \frac{1}{30} \sum_{k=1}^{8} k^2 \quad (1)$$

$$= \frac{31}{10} \circ (2)$$

二、(1)證明略; $(2)\frac{2}{3}$

出處:第四冊第二章〈空間中的平面與直線〉

目標:平面方程式,直線方程式,向量的外積

解析:(1)設一坐標系,A(2,0,0),B(2,2,0),D(0,0,0),P(0,0,2),C(-1,2,0)

因為E為 \overline{PA} 中點,所以E(1,0,1)

又
$$F$$
 在 \overline{PB} 上且 $\overline{BF} = 2\overline{PF}$,所以 $F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}\right)$ (2分)

$$\Rightarrow \overrightarrow{EF} = \left(-\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right), \overrightarrow{DP} \times \overrightarrow{DC} = (-4, -2, 0) \quad (2 \ \%)$$

因為 $\overrightarrow{DP} \times \overrightarrow{DC}$ 為平面 CDP 的法向量

且
$$\overrightarrow{EF}$$
 · $(\overrightarrow{DP} \times \overrightarrow{DC}) = \left(-\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right) \cdot (-4, -2, 0) = 0$ (1分)

故直線 EF 平行平面 CDP。

(2)因為
$$\overrightarrow{DE} \times \overrightarrow{DF} = \left(-\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}\right)$$
 (2分)

所以平面 DEF 的方程式為 x+y-z=0 (1分)

又G點坐標為(-k, 2k, 2-2k)

把
$$G$$
 代入 $x+y-z=0$,解得 $k=\frac{2}{3}$ 。 (2 分)

