Multi-Agent Reinforcement Learning

Algorithms:

- **QLearnerBoltzmann**: A standard Q-learning approach combined with Boltzmann (softmax) exploration. Balances exploration and exploitation using a temperature parameter.
- **Learning Automata**: Uses probability vectors updated based on reward/penalty feedback. Effective in converging rapidly when clear optimal solutions exist.
- **Joint Action Learner**: Considers joint action pairs, estimating opponent action distributions. Learns stable joint policies effectively.
- **WoLF (Win-or-Learn-Fast)**: Adjusts its learning rate based on current performance relative to historical averages.

Game/Agent	QLearnerBoltzmann	Learning Automata	JointActionLearner	WoLFAgent
Prisoner's Dilemma	Converged to Nash equilibrium with some smaller oscillations.	Fastest convergence to Nash equilibrium.	Convergence to Nash equilibrium (similar to QLearnerBoltzman).	Converged after oscillations.
Matching Pennies	Oscillaing around 50-50, didn't converge.	Persistent oscillation around 50-50 without convergence.	Less oscillation, limited convergence to 50-50.	Significant oscillations, did not stabilize.
Battle of Sexes	Rapidly found equilibrium.	After oscillating, converged to different optima from other agents.	Converged, slower than QLearnerBoltzman.	Fast and stable convergence.

Results:

- **QLearnerBoltzmann**: Generally effective but struggles in competitive games like Matching Pennies, leading to oscillatory behavior.
- **Learning Automata**: Excellent in Prisoner's Dilemma game, but struggles significantly in competitive settings like Matching Pennies game.
- **JointActionLearner**: Robust in most scenarios thanks to considering opponent actions explicitly.
- **WoLFAgent**: Effective in Prisoner's Dilemma and Battle of Sexes games; however, prone to oscillations in competitive scenarios (Matching Pennies).