

Physics 2: Electricity, Optics and Quanta

Week 4 - Kirchhoff's rules and battery

2023.9

QQ group: 776916994

cyjing@swjtu.edu.cn

Kirchhoff's rules

What is the current in the different resistors?

Not easy to analyze by reducing to resistors in series and parallel

- >Use Kirchhoff's rules
 - >junction rule
 - >loop rule

Kirchhoff's rules 1 - Junction rule

The total current that

enters = leaves

the junction

> Conservation of charge!

Of course, this is only true in a "steady state"

Kirchhoff's rules 2 - Loop rule

$V_{loop} = 0$

The sum of the potential differences (positive and negative) around any loop in a circuit must be zero

Rules for loop rule

- When going across a resistor in the same direction as the current, the potential drops by *IR*
- When going across a resistor in the opposite direction as the current, the potential increases by *IR*

- When going from the negative to the positive terminal of a source of voltage, the potential increases by V
- When going from the positive to the negative terminal of a source of voltage, the potential decreases by V

Example

Junction: rule 1!

$$I_3 = I_2 - I_1$$

 $-V_1 + R_1 I_3 - R_2 I_1 = 0$
 $-R_3 I_2 - R_1 I_3 + V_2 = 0$

3 equations

3 unknowns (I_1 , I_2 and I_3)

Kirchhoff's rules

- >Use Kirchhoff's rules
 - >junction rule I just define
 - >loop rule V increase positive

Example

$$I_{1} - I_{2} = I_{3}$$

$$-I_{2}R_{3} - V_{2} - I_{3}R_{2} = 0$$

$$-I_{1}R_{1} - V_{1} - I_{3}R_{2} = 0$$

$$3I_1 + 2I_2 = -2$$
 $I_1 = -0.73 \text{ A}$
 $2I_1 + 5I_2 = -1$ $I_2 = +0.09 \text{ A}$

Equivalent resistance

A resistance bridge circuit

No current in R₅?

Equivalent resistance

A (resistance) bridge circuit – what is the equivalent resistance?

Batteries, E.M.F. and Internal Resistance

Alessandro Volta inventor of the battery (1799)

Batteries

Batteries

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$
 $Cu^{2+} + 2e^{-} \longrightarrow Cu$

Dry cell battery

Some parameters of battery

Voltage (volts)

the amount of electrical force, or pressure, at which free electrons move from the positive end of the battery to the negative end

Capacity (ampere-hours)

the number of hours the battery can supply a particular amount of electrical current before its voltage drops below a certain threshold

Power density

the amount of power a battery can deliver per unit weight

Energy density

how much energy a battery is capable of delivering, divided by the battery's volume or mass

Specs	Lithium-ion	Lead acid	Ni-MH	Ni-Cd
Specific energy (Wh/kg)	160	40	90	45
Nominal voltage (V)	Li-cobalt – 3.6V	2.1V	1.2V	1.2V
	Li-manganese – 3.8V			
	Li-phosphate – 3.2V			
	NMC – 3.6V			
Common sizes and				
average capacities for	Custom	Custom	3xAA	3-5xAA
portable and solar lights				
	2000-6000 mAh	4000-7000 mAh	2000 mAh	600 mAh
Average self-discharge				
rate per month (room	2-8%	2-5%	30-50%	10%
temperature)				
Cycle life	500-2000 (closer to 2000 for lithium phosphate batteries)	500-800	500-1000	800-1500
Typical internal	$150-200m\Omega$	$< 50 m\Omega$	$200 - 300 m\Omega$	

resistance

Movement of cations

Movement of anions

Resistance!

Internal resistance

Maximum voltage the battery can provide

But we may treat it as a constant for a given battery!

Voltage vs EMF

EMF (\mathcal{E}) = Electromotive Force

A battery is a source of EMF in series with an *internal* resistance (r)

• The voltage at the poles of the battery depends on *r* and the current *I*

EMF = "open circuit" voltage

One resistance R:

$$I_R = \frac{\xi}{r + R}$$

$$V_R = \xi - Ir = \xi - \frac{\xi}{r + R}r$$

$$V_R = \xi \left(\frac{R}{r+R} \right)$$

$$I_{R/R} = \frac{\xi}{r + (R/2)}$$

$$V_{R/R} = \xi \left(\frac{R/2}{r + R/2} \right)$$

$$V_{R/R} = \xi \left(\frac{R}{2r+R} \right) < V_R$$

Power with only one resistance

$$P_R = \frac{V_R^2}{R} = \frac{\xi^2}{R} \left(\frac{R}{r+R}\right)^2$$

Power (on each resistor) with two resistances:

$$P_{R/R} = \frac{\xi^2}{R} \left(\frac{R}{2r+R}\right)^2 < P_R$$

Connecting a second load reduces the power in each load!

Voltage vs EMF

Output

 $\frac{V}{\xi}$

Batteries

What is the maximum current you can get from a battery?

$$R = 0 \implies (R \ll r)$$

$$I = \frac{\xi}{r}$$

Multiple batteries in series

$$R_i^{tot} = r_1 + r_2 + \dots$$

6 cells @ 1.5V

→higher internal resistance than a 1-cell AA battery

Multiple batteries in parallel

Jump starting a car

Jump starting a car

Charge a car battery

To charge the battery: what is the direction of the current?

How to calculate I?

Use Kirchhoff!

Battery Charger

 $\Longrightarrow \xi_{\scriptscriptstyle C} > \xi_{\scriptscriptstyle B}$

$$-\xi_B - r_1 I - r_2 I + \xi_C = 0$$

$$I = \frac{\xi_C - \xi_B}{r_1 + r_2} > 0$$

Jump starting a car

Mistakenly connected in reverse

Car battery

Cells
3 series and 2 parallels

Example

Find the terminal voltage of a 12.0 V motorcycle battery having a 0.600Ω internal resistance, if it is being charged by a current of 10.0A. (b) What is the output voltage of the battery charger?

$$\xi = 12 \text{ V}$$
 $I = 10 \text{ A}$

$$r_1 = 0.600 \,\Omega$$

$$r_1 I = 0.600 \,\Omega \,\mathrm{x} \, 10 \,\mathrm{A} = 6 \,\mathrm{V}$$

$$V = 12 \text{ V} + 6 \text{ V} = 18 \text{ V}$$

Voltmeters and Ammeters

How to measure voltage?

How to measure current?

How would them be connected in the circuit?

Voltmeters and Ammeters

Voltmeter:

- > large internal resistance
- > connect in parallel
- > does not disturb the voltage

- > small internal resistance
- > connect in series
- > does not disturb the current

Digital Multimeter

