LMI Methods in Optimal and Robust Control

Matthew M. Peet Arizona State University

Lecture 13: LMIs for Optimal Control and Quadratic Stability with Affine Polytopic and Interval Uncertainty

Types of Uncertainty

We will start with Time-Varying Parametric Uncertainty.

Unstructured, Dynamic, norm-bounded:

$$\Delta := \{ \Delta \in \mathcal{L}(L_2) : \|\Delta\|_{H_\infty} < 1 \}$$

Structured, Static, norm-bounded:

$$\Delta := \{ \operatorname{diag}(\delta_1, \dots, \delta_K, \Delta_1, \dots \Delta_N) : |\delta_i| < 1, \ \bar{\sigma}(\Delta_i) < 1 \}$$

Structured, Dynamic, norm-bounded:

$$\Delta := \{ \operatorname{diag}(\Delta_1, \Delta_2, \cdots) \in \mathcal{L}(L_2) : \|\Delta_i\|_{H_{\infty}} < 1 \}$$

• Unstructured, Parametric, norm-bounded:

$$\Delta := \{ \Delta \in \mathbb{R}^{n \times n} : \|\Delta\| \le 1 \}$$

• Parametric, Polytopic:

$$\Delta := \{ \Delta \in \mathbb{R}^{n \times n} : \Delta = \sum_{i} \alpha_i H_i, \, \alpha_i \ge 0, \, \sum_{i} \alpha_i = 1 \}$$

Parametric, Interval:

$$\boldsymbol{\Delta} := \{ \sum_i \Delta_i \delta_i \, : \, \delta_i \in [\delta_i^-, \delta_i^+] \}$$

Each of these can be Time-Varying or Time-Invariant!

M. Peet Lecture 13: 2 / 14

Additive Affine Time-Varying Interval and Polytopic Uncertainty

Stability Concepts

Recall the system with Affine Time-Varying uncertainty (No Input).

$$\dot{x}(t) = (A_0 + \Delta A(t))x(t)$$

where

$$\Delta A(t) = A_1 \delta_1(t) + \dots + A_k \delta_k(t)$$

where $\delta(t)$ lies in either the intervals

$$\delta_i(t) \in [\delta_i^-, \delta_i^+]$$

or the simplex

$$\delta(t) \in \{\delta : \sum_{i} \alpha_i = 1, \, \alpha_i \ge 0\}$$

M. Peet Lecture 13: 3 / 14

Definitions: Use Robust Stability for Static Uncertainty

Definition 1.

The system

$$\dot{x}(t) = (A_0 + \Delta(t))x(t)$$

is **Robustly Stable** over Δ if $A_0 + \Delta$ is Hurwitz for all $\Delta \in \Delta$.

Note that Robust Stability DOES NOT imply stability if $\Delta(t)$ is time-varying.

• It implies that for any $\Delta \in \Delta$, there exists a $P(\Delta) > 0$ such that

$$(A+\Delta)^TP(\Delta)+P(\Delta)(A+\Delta)<0\quad\text{for all }\Delta\in\mathbf{\Delta}$$

- For a fixed Δ , this implies stability using Lyapunov function $V(x) = x^T P(\Delta) x$.
- Does not imply stability for TV Δ because if $V(x,t)=x^TP(\Delta(t))x$,

$$\frac{d}{dt}V(x(t),t) = x(t)^T \Big((A + \Delta(t))^T P(\Delta(t)) + P(\Delta(t))(A + \Delta(t)) \Big) x(t)$$

$$+ x(t)^T \left(\frac{d}{dt} P(\Delta(t)) \right) x(t)$$

$$\leq x(t)^T \left(\frac{d}{dt} P(\Delta(t)) \right) x(t)$$

M. Peet Lecture 13: 4 / 14

Robust Stability is necessary and sufficient for static uncertainty.

Definitions: Quadratic Stability for Dynamic Uncertainty

Definition 2.

The system

$$\dot{x}(t) = (A_0 + \Delta(t))x(t)$$

is **Quadratically Stable** over Δ if there exists a P>0 such that

$$(A+\Delta)^TP+P(A+\Delta)<0\quad\text{for all }\Delta\in\mathbf{\Delta}.$$

Quadratic Stability Implies Stability of trajectories for any $\Delta(t)$ with $\Delta(t) \in \Delta$ for all $t \geq 0$.

• Use the Lyapunov function $V(x) = x^T P x$.

$$\frac{d}{dt}V(x(t)) = x(t)^T((A + \Delta(t))^T P + P(A + \Delta(t))x(t) < 0$$

Counterintuitive:

- Robust Stability does not imply stability!
- Stability does not imply quadratic stability!

M. Peet Lecture 13: 5 / 14

Quadratic Stability is Conservative

Definition 3.

The system

$$\dot{x}(t) = (A_0 + \Delta A(t))x(t)$$

is **Quadratically Stable** over Δ if there exists a P > 0 such that

$$(A + \Delta A)^T P + P(A + \Delta A) < 0$$
 for all $\Delta A \in \Delta$.

Quadratic Stability is CONSERVATIVE.

• There are Stable Systems which are not Quadratically Stable

$$\dot{x} = A(t)x,$$

$$A(t) = \delta_1(t) \begin{bmatrix} -100 & 0 \\ 0 & -1 \end{bmatrix} + \delta_2(t) \begin{bmatrix} 8 & -9 \\ 120 & -18 \end{bmatrix}, \quad \delta_i \ge 0, \quad \delta_1 + \delta_2 = 1$$

• Use $V(x) = \max\{x^T P_1 x, x^T P_2 x\}$ where

$$P_1 = \begin{bmatrix} 14 & -1 \\ -1 & 1 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

M. Peet Lecture 13: 6

—Quadratic Stability is Conservative

Quadratic Stability is Conservative Difficulties 3. $i(t) = (A_a + \Delta A(t))x(t)$ a Quadratic Stable over Δt then seem $x \in \mathbb{R}^n$ to the that $(x + \Delta A)^2 = P_t + P_t + 2A(t) = 0$ Construct Stability is CONSERVATIVE. $i = A(t)x, \qquad 0$ Construct Stability is CONSERVATIVE. $i = A(t)x, \qquad 0$ $A(t) = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t) \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} - A_t = A(t)$ $i = A(t) = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t) \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$ $i = A(t) = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t) \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = A(t)$ $i = A(t) = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t) \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = A(t)$ $i = A(t) = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} = A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} = A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} = A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} + A(t)$ $i = A(t) \begin{bmatrix} -1 & 0$

Quadratic Stability is sometimes referred to as an "infinite-dimensional LMI"

- Meaning it represents an infinite number of LMI constraints
- ullet One for each possible value of $\Delta \in oldsymbol{\Delta}$
- Also called a parameterized LMI
- Such LMIs are not tractable.
- For polytopic sets, the LMI can be made finite.

Enforcing an LMI on the entire Polytope

Making an infinite-dimensional LMI finite dimensional

Theorem 4 (LMIs on the Polytope).

The following are equivalent for any H, L_i, R_i .

$$H + \sum_{i} L_i \Delta R_i > 0$$
 for all $\Delta \in Co(\Delta_1, \dots \Delta_k)$ (1)

$$H + \sum_{i} L_i \Delta_j R_i > 0$$
 for all $j = 1, \dots, k$ (2)

Proof.

To show $1 \Rightarrow 2$, note that $\Delta_j \in Co(\Delta_1, \cdots \Delta_k)$ for each j. Next, show $2 \Rightarrow 1$.

$$H + \sum_{i} L_{i} \Delta R_{i} = H + \sum_{i} L_{i} \left(\sum_{j} \alpha_{i} \Delta_{j} \right) R_{i} \qquad \alpha_{i} \geq 0, \ \sum_{j} \alpha_{j} = 1$$
$$= \sum_{j} \alpha_{j} \left(H + \sum_{i} L_{i} \Delta_{j} R_{i} \right) \geq 0$$

M. Peet Lecture 13: 7

An LMI for Polytopic Quadratic Stability

Definition 5.

The pair $(A+\Delta, {\bf \Delta})$ is **Quadratically Stable** over ${\bf \Delta}$ if there exists a P>0 such that

$$(A+\Delta)^TP+P(A+\Delta)<0\quad\text{for all }\Delta\in\mathbf{\Delta}.$$

Theorem 6.

 $(A+\Delta, \Delta)$ is quadratically stable over $\Delta:=Co(A_1, \cdots, A_k)$ if and only if there exists a P>0 such that

$$(A + A_i)^T P + P(A + A_i) < 0$$
 for $i = 1, \dots, k$

The theorem says the LMI only needs to hold at the EXTREMAL POINTS or VERTICES of the polytope.

- In Fact, Quadratic Stability MUST be expressed as an LMI
- There is NO Ricatti Eqn. Equivalent.

An LMI for Interval Quadratic Stability

Recall the system with Affine Time-Varying uncertainty.

$$\dot{x}(t) = (A_0 + \Delta(t))x(t)$$

where

$$\Delta(t) = A_1 \delta_1(t) + \dots + A_k \delta_k(t)$$

The vertices of the hypercube define the vertices of the uncertainty set

$$V := \left\{ A_0 + \sum_i A_i \delta_i, \ \delta_i \in \{-1, 1\} \right\}$$

Theorem 7 (Quadratic Stability using 2^k LMI constraints!).

 $(A + \Delta, \Delta)$ is quadratically stable over $\Delta := Co(V)$ if and only if there exists a

$$P > 0$$
 such that
$$\left(A_0 + \sum A_1 \delta_1 \right)^T P + P \left(A_0 + \sum A_2 \delta_1 \right) < 0$$
 for ever

$$\left(A_0 + \sum_i A_i \delta_i\right)^T P + P\left(A_0 + \sum_i A_i \delta_i\right) < 0 \quad \textit{for every } \delta \in \{-1, 1\}^k$$

M. Peet Lecture 13:

An LMI for Quadratic Polytopic Stabilization

Controller Synthesis is a simple application of the previous theorem:

Theorem 8.

There exists a K such that

$$\dot{x}(t) = (A + \Delta_A + (B + \Delta_B)K)x(t)$$

is quadratically stable for $(\Delta_A, \Delta_B) \in Co((A_1, B_2), \cdots, (A_k, B_k))$ if and only if there exists some P > 0 and Z such that

$$(A+A_i)P + P(A+A_i)^T + (B+B_i)Z + Z^T(B+B_i)^T < 0$$
 for $i = 1, \dots k$.

with $K = ZP^{-1}$.

Note that here the controller doesn't depend on Δ !

- If you want K to depend on Δ , the problem is harder.
- But this would require sensing Δ in real-time.

M. Peet Lecture 13: 10 /

An LMI for Quadratic D-Stabilization

Lemma 9 (An LMI for Quadratic D-Stabilization).

Suppose there exists X > 0 and Z such that

$$\begin{split} &\begin{bmatrix} -rP & AP + BZ \\ (AP + BZ)^T & -rP \end{bmatrix} + \begin{bmatrix} 0 & A_iP + B_iZ \\ (A_iP + B_iZ)^T & 0 \end{bmatrix} < 0, \\ &AP + BZ + (AP + BZ)^T + A_iP + B_iZ + (A_iP + B_iZ)^T + 2\alpha P < 0, \quad \text{and} \\ &\begin{bmatrix} AP + BZ + (AP + BZ)^T & c(AP + BZ - (AP + BZ)^T) \\ c((AP + BZ)^T - (AP + BZ)) & AP + BZ + (AP + BZ)^T \end{bmatrix} \\ &+ \begin{bmatrix} A_iP + B_iZ + (A_iP + B_iZ)^T & c(A_iP + B_iZ) - (A_iP + B_iZ)^T \\ c((A_iP + B_iZ)^T - (A_iP + B_iZ)) & A_iP + B_iZ + (A_iP + B_iZ)^T \end{bmatrix} < 0 \end{split}$$

for
$$i=1,\cdots,k$$
. Then if $K=ZP^{-1}$, the pole locations, $z\in\mathbb{C}$ of $A(\Delta)+B(\Delta)K$ satisfy $|x|\leq r$, $\operatorname{Re} x\leq -\alpha$ and $z+z^*\leq -c|z-z^*|$ for all $\Delta\in Co(\Delta_1,\cdots,\Delta_k)$.

Of course, if Δ is time-varying, eigenvalues are meaningless.

M. Peet Lecture 13: 11 /

An LMI for Quadratic Polytopic H_{∞} -Optimal State-Feedback Control

Recall the closed-loop in state feedback is:

$$\underline{S}(P,K) = \begin{bmatrix} A + B_2 F & B_1 \\ \hline C_1 + D_{12} F & D_{11} \end{bmatrix}$$

Now add uncertainty to system matrices A, B_1, B_2, C_1, D_{12} and D_{11} .

Theorem 10.

There exists an F such that $\|\underline{S}(P(\Delta), K(0, 0, 0, F))\|_{H_{\infty}} \leq \gamma$ for all $\Delta \in Co(\Delta_1, \dots \Delta_k)$ if there exist Y > 0 and Z such that

$$\begin{bmatrix} {{_{(A+A_i)}}^T} + {{_{(A+A_i)}}^Y} + {z^T}_{(B_2+B_{2,i})}^T + {{_{(B_2+B_{2,i})}}^Z} & *^T & *^T \\ {{_{(B_1+B_{1,i})}}^T} & -\gamma I & *^T \\ {{_{(C_1+C_{1,i})}}^Y} + {{_{(D_1+B_{1,i})}}^Z} & D_{11} + D_{11,i} & -\gamma I \end{bmatrix} < 0 \ i = 1, \cdots, k$$

Then $F = ZY^{-1}$.

$$\underline{S}(P(\Delta), K) = \begin{bmatrix} A + B_2 F & B_1 \\ \hline C_1 + D_{12} F & D_{11} \end{bmatrix} + \Delta \qquad \Delta \in Co(\Delta_1, \dots \Delta_k)$$

$$\Delta_i = \begin{bmatrix} A_i + B_{2,i} F & B_{1,i} \\ \hline C_{1,i} + D_{12,i} F & D_{11,i} \end{bmatrix}$$

M. Peet Lecture 13: 12 / 14

\sqsubseteq An LMI for Quadratic Polytopic H_{∞} -Optimal State-Feedback Control

An LM for Quadratic Polytopic H_{∞} -Optimal State-Feedback Control Fiscal the closed loop in state feedback is: $E(P,K) = \frac{A + B_0 P}{C_1 + B_2 P} \frac{B_1}{B_1}$ Now add uncertainty to upture metrics A_1 , B_1 , B_2 , B_3 , B_4 , $B_$

 $\underline{\underline{S}}(P(\Delta), K) = \begin{bmatrix} A + B_2 F & ||B_1|| \\ C_1 + D_{12} F & ||D_{11}|| \end{bmatrix} + \Delta \quad \Delta \in Co(\Delta_1, \dots \Delta_k)$ $\Delta_i = \begin{bmatrix} A_i + B_{2,k} F & ||B_{1,i}|| \\ C_{1,i} + D_{12,i} F & ||D_{11,i}|| \end{bmatrix}$

In this case, the uncertain system is:

$$\dot{x}(t) = (A + \Delta A(t))x(t) + (B_1 + \Delta B_1(t))w(t) + (B_2 + \Delta B_2(t))u(t)$$

$$y(t) = (C_1 + \Delta C_1(t))x(t) + (D_{11} + \Delta D_{11}(t))w(t) + (D_{12} + \Delta D_{12}(t))u(t)$$

where

$$\Delta A(t) = A_1 \delta_1(t) + \dots + A_k \delta_k(t)$$

$$\Delta B_1(t) = B_{1,1} \delta_1(t) + \dots + B_{1,k} \delta_k(t)$$

$$\Delta B_2(t) = B_{2,1} \delta_1(t) + \dots + B_{2,k} \delta_k(t)$$

$$\Delta C_1(t) = C_{1,1} \delta_1(t) + \dots + C_{1,k} \delta_k(t)$$

$$\Delta D_{11}(t) = D_{11,1} \delta_1(t) + \dots + D_{11,k} \delta_k(t)$$

$$\Delta D_{12}(t) = D_{12,1} \delta_1(t) + \dots + D_{12,k} \delta_k(t)$$

An LMI for Quadratic Polytopic H_2 -Optimal State-Feedback Control

Similarly

Theorem 11.

There exists an F such that $\|\underline{S}(P(\Delta),K(0,0,0,F))\|_{H_2}^2 \leq \gamma$ for all $\Delta \in Co(\Delta_1,\cdots \Delta_k)$ if there exist X>0 and Z such that

$$\begin{bmatrix} AX + B_2Z + XA^T + Z^TB_2^T & B_1 \\ B_1^T & -I \end{bmatrix} + \begin{bmatrix} A_iX + B_{2,i}Z + XA_i^T + Z^TB_{2,i}^T & B_{1,i} \\ B_{1,i}^T & 0 \end{bmatrix} < 0 \qquad i = 1, \cdots, k$$

$$\begin{bmatrix} X & (C_1X + D_{12}Z)^T \\ C_1X + D_{12}Z & W \end{bmatrix} + \begin{bmatrix} 0 & (C_{1,i}X + D_{12,i}Z)^T \\ C_{1,i}X + D_{12,i}Z & 0 \end{bmatrix} > 0 \qquad i = 1, \cdots, k$$

$$\text{Trace} W < \gamma$$

Then
$$F = ZY^{-1}$$
.

Similar Steps can be taken for robust estimator design, using the LMIs in Duan.

 However, I am not aware of a robust version of the general optimal output feedback LMI for polytopic uncertainty.

M. Peet Lecture 13: 13 / 14

An LMI for Quadratic Schur Stabilization

State Equations: Let u(k) = Fx(k) In this case, the uncertain system is:

$$x(k+1) = (A + \Delta A(k))x(k) + (B + \Delta B(k))u(k)$$
$$= (A + \Delta A(k) + BF + \Delta B(k)F)x(k)$$

where

$$\Delta A(k) = A_1 \delta_1(t) + \dots + A_m \delta_m(k)$$

$$\Delta B(k) = B_1 \delta_1(k) + \dots + B_m \delta_m(k)$$

Theorem 12.

There exists a F such that

$$x_{k+1} = (A + \Delta_A + (B + \Delta_B)F)x_k$$

is quadratically stable for $(\Delta_A, \Delta_B) \in Co((A_1, B_2), \cdots, (A_k, B_k))$ if and only if there exists some X > 0 and Z such that

$$\begin{bmatrix} X & AX + BZ \\ (AX + BZ)^T & X \end{bmatrix} + \begin{bmatrix} 0 & A_iX + B_iZ \\ (A_iX + B_iZ)^T & 0 \end{bmatrix} > 0 \quad \text{for } i = 1, \cdots m.$$

In this case, we have $F = ZP^{-1}$.

M. Peet Lecture 13:

14 / 14