Al 5090: Stochastic Processes

LECTURE 01

SCRIBE: KARTHIK P. N.

Contents

1	Notation	1
2	Supremum and Infimum of a Set of Real Numbers	1
3	Limit Infimum, Limit Supremum, and Limit of a Real Sequence	3

We begin with a review of some basic concepts from real analysis such as supremum and infimum of a set of real numbers, limit supremum, limit infimum, and limit of a sequence of real numbers.

1 Notation

We will use the following notations throughout the course.

- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of **natural** numbers.
- $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$: the set of **integers**. Historically, the usage of the symbol \mathbb{Z} (rather than the more natural symbol \mathbb{I}) to denote the set of integers has its roots in German literature, where integers (or "numbers" more generally) are referred to as *Zahlen*.
- $\mathbb{Q}=\left\{\frac{p}{q}:p,q\in\mathbb{Z},\;q\neq0\right\}$: the set of **rational** numbers.
- \mathbb{R} : the set of **real** numbers.
- $\mathbb{R} \cup \{\pm \infty\}$: the set of **extended real** numbers.

2 Supremum and Infimum of a Set of Real Numbers

We begin this section with a formal definition of a **sequence** of real numbers.

Definition 1 (Sequence of Real Numbers). A sequence of real numbers is mapping (function) $f: \mathbb{N} \to \mathbb{R}$ from the set of natural numbers \mathbb{N} to the set of real numbers \mathbb{R} . That is, a sequence defines a list of real numbers, one corresponding to every natural number.

Consider a real sequence in which the element of the sequence corresponding to the natural number n is denoted by $f(n)=a_n$. Such a sequence is represented in shorthand notation as $\{a_n\}_{n=1}^{\infty}$ or $\{a_n\}_{n\in\mathbb{N}}$ or $\{a_n:n\geq 1\}$ or $\{a_n:n\in\mathbb{N}\}$. In this sense, a real sequence may be perceived as a countably infinite set of real numbers.

Let $A \subseteq \mathbb{R}$ be any subset of real numbers. A number $l \in \mathbb{R} \cup \{\pm \infty\}$ is said to be a **lower bound** for the set A if $x \geq l$ for all $x \in A$. In other words, l is a lower bound for every element of A. Likewise, a number $u \in \mathbb{R} \cup \{\pm \infty\}$ is said to be an **upper bound** for the set A if $x \leq u$ for all $x \in A$. That is, u is an upper bound for every element of A.

We now present the formal definition of the supremum of a subset of real numbers.

Definition 2 (Supremum). The **supremum** of a set of real numbers, denoted by $\sup A$, is an element $x^* \in \mathbb{R} \cup \{\pm \infty\}$ such that:

- 1. x^* is an upper bound for the set A, and
- 2. x^* is the **least upper bound** for the set A. That is, there exists no upper bound for A lesser than x^* . Formally, for every choice of $\varepsilon > 0$, there exists an element $x \in A$ (potentially depending on ε) such that $x > x^* \varepsilon$.

Note that the supremum of a set A may not necessarily belong to A. Below, we present some examples.

- If A=(0,1), then $\sup A=1$. To see this formally, note that $x\leq 1$ for all $x\in A$. Furthermore, for any $\varepsilon>0$, the number $1-\varepsilon$ is not an upper bound for A, as the number $x=1-\frac{\varepsilon}{2}$ is an element of A and is greater than $1-\varepsilon$. Therefore, 1 is the least upper bound for A. Note that the supremum is not an element of A in this example.
- If $A = \{1, 2, 3\}$, then $\sup A = 3$. In this case, because the supremum belongs to A, it is referred to as the **maximum**.
- If $A = \mathbb{N}$, then $\sup A = +\infty$.
- If $A = \emptyset$, then by convention, sup $A = -\infty$.
- If $A=\{a_n\}_{n=1}^{\infty}$, where $a_n=1-\frac{1}{n}$ for every $n\in\mathbb{N}$, then $\sup A=1$. To see this formally, note that $a_n\leq 1$ for all $n\in\mathbb{N}$. Furthermore, for any $\varepsilon>0$, the number $1-\varepsilon$ is not an upper bound for A. Clearly,

$$1 - \frac{1}{n} > 1 - \varepsilon$$
 \iff $n > \frac{1}{\varepsilon}$.

In particular, the element $1-\frac{1}{\lceil 1/\varepsilon \rceil+1}$ is an element of A, and is larger than $1-\varepsilon$, thereby proving that $1-\varepsilon$ is **NOT** an upper bound for A. Here, $\lceil x \rceil$ denotes the **ceil** of x, i.e., the smallest integer greater than or equal to x.

We now present the definition of the **infimum** of a subset of real numbers.

Definition 3 (Infimum). The **infimum** of a set of real numbers, denoted by inf A, is an element $x_* \in \mathbb{R} \cup \{\pm \infty\}$ such that:

- 1. x_{\star} is a lower bound for the set A, and
- 2. x_{\star} is the **greatest lower bound** for the set A. That is, there exists no lower bound for A greater than x_{\star} . Formally, for every choice of $\varepsilon > 0$, there exists an element $x \in A$ (potentially depending on ε) such that $x < x_{\star} + \varepsilon$.

Just as in the case of supremum, the infimum of a set A may not belong to A. We now present some examples.

- If A=(0,1), then $\inf A=0$. To see this formally, note that $x\geq 0$ for all $x\in A$. Furthermore, for any $\varepsilon>0$, the number $0+\varepsilon=\varepsilon$ is not an upper bound for A, as the number $x=\frac{\varepsilon}{2}$ is an element of A and is lesser than ε . Therefore, 0 is the least upper bound for A. Note that the supremum is not an element of A in this example.
- If $A = \{1, 2, 3\}$, then inf A = 1. In this case, because the infimum belongs to A, it is referred to as the **minimum**.
- If $A = \mathbb{N}$, then inf A = 1.
- If $A = \emptyset$, then by convention, $\inf A = +\infty$.
- If $A = \{a_n\}_{n=1}^{\infty}$, where $a_n = 1 \frac{1}{n}$ for every $n \in \mathbb{N}$, then inf A = 0.

Remark 1. It is customary to denote the supremum of a sequence of real numbers $\{a_n\}_{n=1}^{\infty}$ as $\sup_{n\geq 1} a_n$. Similarly, the infimum of the sequence $\{a_n\}_{n=1}^{\infty}$ is typically denoted by $\inf_{n\geq 1} a_n$.

It is an easy exercise to show that the infimum of a non-empty subset of real numbers is lesser than or equal to its supremum. We state this result formally below, leaving the proof as exercise.

Theorem 4. For any non-empty set $A \subseteq \mathbb{R}$, we have $\inf A \leq \sup A$. As a consequence, for any real sequence $\{a_n\}_{n=1}^{\infty}$, we have $\inf_{n\geq 1} a_n \leq \sup_{n\geq 1} a_n$.

Question 1. When does equality hold in the inequalities of Theorem 4?

3 Limit Infimum, Limit Supremum, and Limit of a Real Sequence

In this section, we define the notions of limit supremum, limit infimum, and limit of a sequence of real numbers.

Definition 5 (Limit Infimum). The **limit infimum** of a sequence $\{a_n\}_{n=1}^{\infty}$ of real numbers, denoted as $\liminf_{n\to\infty} a_n$, is defined as

$$\liminf_{n \to \infty} a_n = \sup_{n \ge 1} \inf_{k \ge n} a_k.$$

For any fixed $n \in \mathbb{N}$, let y_n denote the inner infimum on the right-hand side of the above equation, i.e., $y_n = \inf_{k \ge n} a_k$. To compute the \lim inf of the sequence $\{a_n\}_{n=1}^{\infty}$, we first compute y_n for each $n \in \mathbb{N}$, and then take the supremum of the sequence $\{y_n\}_{n=1}^{\infty}$.

We note the following lemma in connection with the limit infimum of a sequence.

Lemma 1. Fix $\underline{L} \in \mathbb{R}$, and suppose that $\liminf_{n \to \infty} a_n = \underline{L}$. Then, for every choice of $\varepsilon > 0$, there exists $N \in \mathbb{N}$ (possibly depending on the choice of ε) such that

$$a_k > \underline{L} - \varepsilon \qquad \forall k \ge N.$$

Proof of Lemma 1. For any $n \in \mathbb{N}$, let $y_n = \inf_{k \geq n} a_k$. Then, as per the definition of \liminf , we have $\underline{L} = \sup_{n \geq 1} y_n$. This implies that \underline{L} is an upper bound for $\{y_n\}_{n=1}^\infty$, and for every choice of $\varepsilon > 0$, the number $\underline{L} - \varepsilon$ is not an upper bound for $\{y_n\}_{n=1}^\infty$. That is, for every choice of $\varepsilon > 0$, there exists $N \in \mathbb{N}$ (possibly depending on the choice of ε) such that $y_N > \underline{L} - \varepsilon$, or equivalently $\inf_{k \geq N} a_k > \underline{L} - \varepsilon$. Noting that

$$\inf_{k > N} a_k > \underline{L} - \varepsilon \qquad \text{implies} \qquad a_k > \underline{L} - \varepsilon \qquad \forall k \geq N$$

completes the desired proof.

The limit supremum of a sequence is defined as below.

Definition 6 (Limit Supremum). The **limit supremum** of a sequence $\{a_n\}_{n=1}^{\infty}$ of real numbers, denoted as $\limsup_{n\to\infty} a_n$, is defined as

$$\limsup_{n\to\infty} a_n = \inf_{n\geq 1} \sup_{k\geq n} a_k.$$

For any fixed $n \in \mathbb{N}$, let z_n denote the inner supremum on the right-hand side of the above equation, i.e., $z_n = \sup_{k \ge n} a_k$. To compute the lim sup of the sequence $\{a_n\}_{n=1}^{\infty}$, we first compute z_n for each $n \in \mathbb{N}$, and then take the infimum of the sequence $\{z_n\}_{n=1}^{\infty}$.

We note the following lemma in connection with the limit supremum of a sequence.

Lemma 2. Fix $\bar{L} \in \mathbb{R}$, and suppose that $\limsup_{n \to \infty} a_n = \bar{L}$. Then, for every choice of $\varepsilon > 0$, there exists $N \in \mathbb{N}$ (possibly depending on the choice of ε) such that

$$a_k < \bar{L} + \varepsilon \qquad \forall k \ge N.$$

Proof of Lemma 2. For any $n \in \mathbb{N}$, let $z_n = \sup_{k \geq n} a_k$. Then, as per the definition of \limsup , we have $\bar{L} = \inf_{n \geq 1} z_n$. This implies that \bar{L} is a lower bound for $\{z_n\}_{n=1}^{\infty}$, and for every choice of $\varepsilon > 0$, the number $\bar{L} + \varepsilon$ is not a lower bound for $\{z_n\}_{n=1}^{\infty}$. That is, for every choice of $\varepsilon > 0$, there exists $N \in \mathbb{N}$ (possibly depending on the choice of ε) such that $z_N < \bar{L} + \varepsilon$, or equivalently $\sup_{k \geq N} a_k > \bar{L} + \varepsilon$. Noting that

$$\sup_{k \geq N} a_k < \bar{L} + \varepsilon \qquad \text{implies} \qquad a_k < \bar{L} + \varepsilon \qquad \forall k \geq N$$

completes the desired proof.

With the above ingredients in place, we now formally define the limit of a real sequence.

Definition 7 (Limit). We say that a sequence $\{a_n\}_{n=1}^{\infty}$ of real numbers has a **limit** if

$$\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n.$$

Mathematically, we say that the sequence $\{a_n\}_{n=1}^{\infty}$ has a (finite) limit $L \in \mathbb{R}$ if for every choice of $\varepsilon > 0$, there exists $N \in \mathbb{N}$ (possibly depending on the choice of ε) such that

$$L - \varepsilon < a_k < L + \varepsilon$$
 $\forall k \ge N$.

In such a case, we say that the sequence **converges** to L, and write $a_n \stackrel{n \to \infty}{\longrightarrow} L$ or $\lim_{n \to \infty} a_n = L$.

It is important to note that a sequence r	may not have always h	ave a limit, but will a	lways have lim inf ar	nd lim sup. When the
latter are equal, then the limit exists. If	a sequence has an inf	inite limit (i.e., $L=\pm$	$\pm\infty$), we say that the	sequence diverges