

Europäisches **Patentamt**

European Patent Office Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

03425094.4

CERTIFIED COPY OF PRIORITY DOCUMENT

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

CERTIFIED COPY OF PRIORITY DOCUMENT

R C van Dijk

THIS PAGE BLAT (USPTO)

THIS PAGE BLAT (USPTO)

Anmeldung Nr:

Application no.: 03425094.4

Demande no:

Anmeldetag:

Date of filing: 18.02.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

STMicroelectronics S.r.1. Via C. Olivetti, 2 20041 Agrate Brianza (Milano) ITALIE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

An analog-to-digital converter with correction of offset errors

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

H03M1/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR LI

CERTIFIED COPY OF PRIORITY DOCUMENT

I02086-EP/EP

5

10

30

The present invention relates to an Analog-To-Digital converter.

Analog-To-Digital (ADC) converters are commonly used in several applications (for example, in the telecommunication field), whenever an analog input signal is to be converted into a corresponding digital output signal. The basic component of every converter is a quantizer. The quantizer compares an analog signal with one or more predefined threshold values; the combination of the results of the comparisons uniquely identifies the digital representation of the analog signal. In order to achieve a high resolution of the whole converter, quantizers of the parallel type are commonly used; in this case, the analog signal is compared with multiple threshold values at the same time.

However, the inherent imprecision of the technological processes used to implement the converter brings about an error in each threshold value of the quantizer. The error has a common component (equal to the mean value of the errors in all the threshold values) and a differential component (equal to the error in each threshold value minus the common component). The differential error causes a harmonic distortion in the resulting digital signal, which distortion jeopardizes the linearity of the whole converter; instead, the differential component introduces an offset in the digital signal.

Many solutions are known in the art for reducing the effects of the differential errors in the digital signal. Conversely, the offset errors have been (wrongly) deemed not particularly deleterious for the performance of the converter; therefore, the effects of the offset errors have not been investigated thoroughly.

10

25

Particularly, some converters (such as the converters of the sigma-delta type) implement a feedback loop that compensates the offset errors to a certain extent (without adversely affecting the accuracy of the converter). However, different remarks apply to converters having a multistage the converter includes architecture. In this case, sequence of cascade-connected stages providing successive approximations of the digital output signal. For this purpose; each stage performs a low-resolution conversion; a residue of the corresponding analog signal, representing a quantization error of the conversion, is then amplified by an inter-stage gain and passed to a next stage in the sequence (so as to ensure that each stage operates with a similar input signal range).

As a consequence, the offset error in the quantizer of each stage (with the exception of the last one) affects the dynamic range of the analog signal that is input to the next stages; this change in the dynamic range can cause an overflow in the respective quantizers. The problem is particular acute in the first stages of the converter (since the corresponding offset error is amplified by all the next stages).

The only solution known in the art for solving the above-mentioned problem is to scale down the analog signal that is input to the next stages of the converter; this result is achieved reducing the corresponding inter-stage gain, and then the dynamic range of the analog signal. However, the proposed solution strongly reduces the actual resolution that can be achieved by the converter.

This drawback is particular acute in applications working with wide-band signals and requiring high

resolutions (for example, in modern mobile telecommunication techniques such as the UMTS). In this case, a commonplace solution is that of using a sigma-delta, or delta-sigma, $(\Sigma\Delta)$ architecture.

In a sigma-delta converter, the analog input signal is 5 oversampled at a rate far higher than the one of the Nyquist theorem (i.e., twice the bandwidth of the signal); the oversampling spreads the quantization error power over a large band, so that its density in the band of the analog 10 input signal is reduced; typical values of an OverSampling Rate (OSR) are from 32 to 64. The sigma-delta converter reacts to the changes in the analog input signal, thereby performing a delta modulation (from which the name "delta"). A corresponding analog delta signal is applied to one or 15 more filters (through a feed-back loop). Each filter integrates the analog delta signal (from which the name "sigma"), and contours the quantization error so that its spectrum is not uniform; this process (known as noise shaping) pushes the quantization error power out of the band 20 of the analog input signal. The resulting analog signal is quantized by means of a very low resolution ADC (typically, at 1 bit). The digital signal so generated is filtered, in order to suppress the out-of-band quantization error; at the time, a decimator downsamples the digital signal 25 extracting higher resolution at lower a rate. This architecture provides good performance at very low cost.

The number of filters in the sigma-delta converter defines the degree of noise-shaping (referred to as the order of the sigma-delta converter). Sigma-delta converters with a single-loop structure are typically designed with an order of one or two because of instability problems.

Whenever a higher order is required, a multistage architecture implementing two or more loops is commonly used. A multistage architecture including at least one sigma-delta converter, also known as MASH (MultistAge noise SHaping), is inherently stable; moreover, a MASH converter provides performance comparable to the one of a single-loop convert having an order equal to the sum of the orders of the different stages of the MASH converter.

Additional problems arise with wide-band signals. In this case, the sampling frequency of the analog input signal 10 is limited by the technological restraints, so that the oversampling rate must be relatively low (for example, 4-8). Moreover, the use of sigma-delta converters of high order is substantially useless, since the noise-shaping is unable to push the quantization error out of the 15 (wide) band of interest. Therefore, the resolution of the quantizer included in every stage of the sigma-delta converter is the last parameter on which it is possible to act, in order to achieve the desired performance (thereby introducing the 20 offset errors described above).

It is an object of the present invention to overcome the above-mentioned drawbacks. In order to achieve this object, a converter as set out in the first claim is proposed.

Briefly, the present invention provides an analog-todigital converter including at least one stage for converting an analog input signal into a digital output signal using a parallel quantizer comparing the analog input signal with a plurality of threshold values in parallel, wherein the converter further includes, for at least one selected stage, means for estimating an analog correction

10

25

signal indicative of the mean value of a quantization error of the selected stage, and means for at least partially compensating an offset error of the parallel quantizer in the selected stage according to the analog correction signal.

Moreover, a corresponding analog-to-digital conversion method is also encompassed.

Further features and the advantages of the solution according to the present invention will be made clear by the following description of a preferred embodiment thereof, given purely by way of a non-restrictive indication, with reference to the attached figures, in which:

Figure 1 is a schematic block diagram of a converter known in the art;

Figure 2 shows a preferred embodiment of the converter according to the present invention;

Figure 3 depicts the functional blocks of a logic module of the converter; and

Figure 4 is a circuit scheme implementing a 20 compensation of the offset error.

With reference in particular to Figure 1, an Analog-To-Digital (ADC) converter 100 is shown. The converter 100 receives a (continuos) wide-band analog input signal, denoted with X(z) in the z-transform domain; the analog input signal X(z) is oversampled at a relatively low OSR, such as 4 or 8. The analog input signal X(z) is converted into a corresponding digital output signal Y(z), which consists of discrete samples taken at evenly spaced intervals.

The converter 100 has a multistage architecture, with a plurality of cascade-connected stages. In the example shown

30

in the figure, the converter 100 includes a first stage 105 consisting of a sigma-delta converter of the second order; the sigma-delta stage 105 is followed by a stage 110 of the pipeline type. The above-described structure defines a MASH architecture. A MASH converter is commonly designated adding, for each stage, a number denoting the order of the stage (the number is set to 0 for a stage that is not of the sigma-delta type); therefore, the converter 100 at issue will be denoted with MASH₂₀.

detail, the sigma-delta stage 105 converts the 10 In analog input signal X(z)into a corresponding (local) output signal $Y_2(z)$ at 4 bits. For this purpose, the sigma-delta stage 105 exploits a flash ADC 115 with even resolution (i.e., discriminating $2^4=16$ levels of its analog input signal). The digital output signal $Y_2(z)$ represents 15 the analog input signal X(z) with the addition of a residue $E_2\left(z\right)$ introduced by the quantization error of the flash ADC (in the following, the analog signals and the corresponding digital signals will be denoted with the same symbols for the sake of simplicity). Moreover, the digital 20 output signal $Y_2(z)$ includes an offset ofs introduced by the flash ADC 115.

digital output signal $Y_2(z)$ The is applied to Digital-To-Analog (DAC) converter 120. The DAC 120 reconverts the digital output signal $Y_2(z)$ corresponding analog signal. An adder 125a subtracts the analog output signal $Y_2(z)$ from the analog input signal X(z). The resulting analog delta signal is provided to a filter 130a. The filter 130a integrates the analog delta signal and shapes the quantization error according to a transfer function $H_{a}(z)$ of the filter 130a. A further adder

125b subtracts the analog output signal $Y_2(z)$ from the analog signal provided by the filter 130a. The resulting analog delta signal is applied to a further filter 130b, which performs an additional noise shaping process based on its transfer function $H_b(z)$. Therefore, the filter 130b provides an analog signal $V_2(z)$ that is shaped according to the transfer functions $H_a(z)$ and $H_b(z)$; this analog shaped signal $V_2(z)$ is then supplied to the flash ADC 115, which delivers the digital output signal $Y_2(z)$.

The sigma-delta stage 105 further includes an adder 140, which subtracts the analog shaped signal $V_2(z)$ from the analog output signal $Y_2(z)=V_2(z)+E_2(z)+ofs$. The resulting analog signal $E_2(z)+ofs$ is applied to an amplifier 145 having an analog inter-stage gain $G=2^B$. The analog signal generated by the amplifier 145 is then passed to the pipeline stage 110; in this way, the pipeline stage 110 operates with a similar input signal range (being the dynamic of the analog residue $E_2(z)$ equal to $X(Z)/2^B$).

The pipeline stage 110 includes multiple cascade-20 connected sub-stages 147; each sub-stage 147 performs a lowresolution conversion (by means of a corresponding flash and provides an analog signal, indicative of quantization error of the conversion, to the next sub-stage 147. A shifter 148 combines the results of the conversions 25 performed by the different sub-stages 147 into a digital output signal $Y_0(z)$. For example, the pipeline stage 110 includes 6 sub-stages 147 each one having a flash ADC at 1,5 bit (i.e., discriminating 3 levels of the corresponding analog input signal), so as to achieve a total resolution of 30 the digital output signal $Y_0(z)$ equal to 1,5*6 = 9 bits. A digital filter $(H_d(z))$ 150 removes the effects of the

10

15

20

. 25

30

shaping in the analog residue $E_2(z)$ from the digital output signal $Y_0(z)$.

The pipeline stage 110 (together with the digital filter 150) directly generates the 9 least significant bits (LSB) of the digital output signal U(z). The sigma-delta stage 105 provides the 7 more significant bits (MSB) of the digital output signal U(z); therefore, a shifter 155 multiplies the output digital signal $Y_2(z)$, from the flash ADC 115, by a digital weight equal to 2^9 . An adder 160 sums the digital signal from the filter 150 and the digital signal from the shifter 155, in order to combine them into the overall digital output signal U(z).

The digital output signal U(z) is then downsampled by a decimator circuit (not shown in the figure). In this way, the decimator generates the desired number of bits (for example, 7) of the digital output signal U(z) and restores its correct sample rate. At the same time, the decimator filters the digital output signal U(z) in the band of interest so as to suppress the out-of-band quantization error.

Considering now Figure 2, a converter 200 according to a preferred embodiment of the present invention is shown (the elements corresponding to the ones shown in Figure 1 are denoted with the same references, and their explanation is omitted for the sake of simplicity).

The invention is based on the intuition that an estimation of the offset error of each flash ADC can be extracted from an analysis of the corresponding quantization error. In fact, the theoretical quantization error should have a mean value equal to zero and a substantially uniform distribution (between +LSB/2 and -LSB/2, wherein LSB is the

15

20

25

30

quantization step of the flash ADC). The offset error is a constant value that is introduced in the same position as the quantization error, and then modifies its mean value. Therefore, in the proposed algorithm the actual mean value of the quantization error is estimated; the offset error of the flash ADC is then compensated accordingly.

For this purpose, the digital signal $Y_0(z)$ output by the pipeline stage 110 is supplied to a logic module (EST) 210. As described in detail in the following, the logic module 210 calculates a digital correction signal crt (for example, at 5 bits) that approximates the analog offset ofs of the flash ADC 115. A servo-DAC 220 converts the digital correction signal crt into a corresponding analog signal. The analog correction signal crt is then used to introduce an opposed offset into the flash ADC 115, so as to compensate the effects of its offset error (at least partially).

Particularly, the maximum offset error that can be compensated is determined by the absolute value of the weights that the servo-DAC 220 assigns to the bits of the digital correction signal crt. These weights are selected according to the characteristics of the flash ADC 115. Empirical considerations suggest to set the dynamic range of the analog correction signal crt to a value proportional to the dynamic range of the analog residue $E_2(z)$.

In detail, if Vfs is the full-scale value of the flash ADC 115, the maximum dynamic range of the analog shaped signal $V_2(z)$ is from -Vfs to +Vfs; therefore, the quantization step of the flash ADC 115 (at 16 levels) will be LSB=2Vfs/16. The dynamic range of the analog residue $E_2(z)$ is from -LSB/2 to +LSB/2, that is from -Vfs/16 to

15

+Vfs/16. For example, let us assume that we desire to compensate a maximum offset error equal to the dynamic range of the quantization error. In the flash ADC 115 at issue (wherein the analog correction signal crt has a resolution of 5 bits, that is from -15 to +15), the weight of the least significant bit of the servo-DAC 220 should be Vfs/(16*15).

However, the concepts of the present invention are also applicable when the converter includes another number of stages, when each stage is of a different type, or when the digital signals output by the stages are combined in another Similar considerations apply if the converter, the stages and the corresponding flash ADCs have different resolutions, if the flash ADC is replaced with an equivalent parallel quantizer, if the weight of the bits of the servodifferent, DAC and the like. Alternatively, correction of the offset error is applied to a different number of stages of the converter (even to all of them, with the exception of the last stage).

Moving now to Figure 3, the logic module 210 includes a digital (or sinc) filter 310 receiving the digital output 20 signal $Y_0(z)$ from the pipeline stage. The sinc filter 310 calculates the mean value of a number of samples of the digital output signal $Y_0(z)$, as defined by a decimation parameter (for example, 128). The result of this operation consists of a digital signal that is proportional to a 25 residual error caused by the offset (of the flash ADC in the sigma-delta converter) still to be corrected; the digital residual error has a high resolution equal to the one of the whole pipeline stage (i.e., 9 bits). A quantizer 320 discards the least significant bits of the digital residual 30 error, so as to reduce its resolution to the desired value

(5 bits in the example at issue).

signal resulting digital is provided to an integrator, which calculates the digital correction signal crt. In detail, a delay block (Z⁻¹) 330 (implemented with a bank of flip-flops) accumulates the digital correction signal crt. An adder 340 sums the digital residual error to digital correction signal crt, which (previous) provided by the delay block 330 with a feedback loop. The resulting (current) digital correction signal crt is then latched by the delay block 330. In this way, the digital correction signal crt converges towards the representation of the analog offset ofs (until the digital residual error falls below a threshold value).

The decimation parameter of the sinc filter 310 defines 15 the precision and the convergence speed of the process. High values of the decimation parameter increase the number of samples taken into consideration at every estimation step, and then also the precision of the sinc filter 310; however, this slows down the convergence speed of the process (since 20 the digital correction signal crt is updated with a lower frequency). Conversely, low values of the decimation parameter increase the convergence speed of the process, but reduce its precision.

However, the concepts of the present invention are also applicable when the logic module has another structure or includes equivalent components; similar considerations apply if the decimation parameter of the sinc filter has a different value, if the digital signals have another resolution, and the like.

A circuit scheme of the flash ADC 115 (in the sigmadelta stage) is illustrated in Figure 4; the flash ADC 115

10

is based on a switched-capacitor architecture, which is modified to implement a compensation of its offset error. The flash ADC 115 receives an input voltage Vin. representing the analog signal $V_2(z)$, and outputs 4 bits $b_3b_2b_1b_0\text{,}$ representing the digital signal $Y_2\text{(z)}\text{.}$ The input voltage Vin simultaneously compared is with multiple threshold voltages Vth, each one identifying an upper limit a corresponding level of the input voltage to discriminated (16-in the example at issue); typically, the threshold voltages Vth are generated by means of a resistive ladder (not shown in the figure).

In order to perform the above-mentioned comparisons, the flash ADC 115 includes an even number of comparators 410 (only one shown in the figure), which comparators operate in parallel. Each comparator 410 is actuated by a latching 15 signal Φ_1 . The comparator 410 has a non-inverting input terminal (+), which is connected to a ground terminal through an electronic switch 420i (for example, implemented with a MOS transistor); the switch 420i is controlled by a 20 pre-charging signal $\Phi_{\rm p}$. Likewise, an inverting terminal (-) of the comparator 410 is connected to the ground terminal through a switch 420t, which is controlled by the same pre-charging signal Φ_p .

The non-inverting terminal of the comparator 410 is further connected to a first terminal of a capacitor 430i. A 25 pre-charging voltage Vp (corresponding to the correction signal crt) is applied to a second terminal of the capacitor 430i through a switch 440i; alternatively, the second terminal of the capacitor 430i receives the input voltage Vin through a further switch 450i. The switch 440i 30 is controlled by the pre-charging signal $\Phi_{\rm p}$, whereas the

15

20

25

30

switch 450i is controlled by a sampling signal Φ_s . On the other hand, the inverting terminal of the comparator 410 is further connected to a first terminal of a capacitor 430t. A second terminal of the capacitor 430t is connected to the ground terminal through a switch 440t or receives the threshold voltage Vth through a switch 450t; the switch 440t is controlled by the pre-charging signal Φ_p , whereas the switch 450t is controlled by the sampling signal Φ_s .

The signals output by all the comparators 410 are supplied to a decoder 460. The decoder 460 delivers the bits $b_3b_2b_1b_0$, which uniquely identify the level of the input voltage Vin (according to the results of the comparisons performed by the comparators 410). A phase generator circuit 470 provides the signals Φ_1 , Φ_p , Φ_s controlling operation of the flash ADC 115.

every period of clock а signal (which synchronizes the whole convert), the pre-charging signal Φ_n is at first asserted (with all the other signals $\Phi_{ extsf{s}}$ and Φ_{1} that are deasserted). In this way, the switches 420i,440i and 420t,440t are closed (while the switches 450i and 450t are open); as a consequence, the capacitor 430i is precharged to the voltage Vp and the capacitor 430t discharged to ground. The pre-charging signal Φ_{p} is kept asserted for a time interval (slightly shorter than half a period of the clock signal) ensuring the correct reset of the capacitors 430i,430t. The pre-charging signal Φ_n is then deasserted (opening the switches 420i,440i and 420t,440t), and the sampling signal Φ_s is asserted after a short delay (so that the two signals are disoverlapped). In this way, the switches 450i and 450t are closed; as a consequence, the capacitor 430i is charged to the input voltage Vin plus the

25

30

pre-charging voltage Vp and the capacitor 430t is charged to the threshold voltage Vth. The sampling signal Φ_s is then deasserted (opening the switches 450i and 450t), and the latching signal Φ_1 is in turn asserted.

The latching signal Φ₁ consists of a short pulse, which actuates the comparison of the voltages at the non-inverting terminal and at the inverting terminal of the comparator 410. Particularly, the non-inverting terminal receives the voltage on the capacitor 430i (Vin+Vp), whereas the inverting terminal receives the voltage on the capacitor 430t (Vth). Therefore, the signal output by each comparator 410 of the flash ADC 115 is asserted only when the input voltage Vin (with the addition of the pre-charging voltage Vp) exceeds the corresponding threshold voltage Vth. The decoder 460 then generates the bits b₃b₂b₁b₀ accordingly.

The circuit described-above introduces an offset opposed to the one generated by the comparator 410 internally (for example, due to the mismatching of the resistors forming the ladder). In this way, the effects of the offset error in the flash ADC 115 are substantially suppressed (within the limits of the desired precision).

However, the concepts of the present invention are also applicable when the flash converter includes equivalent components, or when different signals are used to control its operation. Similar considerations apply if the capacitors are pre-charged with another procedure, or if the pre-charging is applied to the capacitors associated with the threshold voltages (instead of the ones associated with the input voltage). Alternatively, the flash converter has another architecture or includes a different number of capacitors (down to a single one for sampling and holding

20

30

the input voltage).

More generally, the present invention proposes an analog-to-digital converter. The converter includes one or more stages for converting an analog input signal into a digital output signal; for this purpose, each stage uses a parallel quantizer that compares the analog input signal with a plurality of threshold values in parallel. The converter of the invention further includes, for one or more selected stages, means for estimating an analog correction signal indicative of the mean value of a quantization error of the selected stage; means are then provided for at least partially compensating an offset error of the parallel quantizer in the selected stage according to the analog correction signal.

The solution of the invention substantially reduces the effects of the offset errors introduced by the parallel quantizers.

The algorithm implemented by the proposed structure is self-adaptive, and allows correcting the offset error with the desired precision in a very simple manner.

This result is achieved in the background, without interfering with operation of the converter.

The preferred embodiment of the invention described above offers further advantages.

25 Particularly, the proposed solution is implemented in a converter with a multistage architecture.

In this case, the analog residue required to estimate the analog correction signal is already available in the converter (being used to generate the analog input signal for the next stage); therefore, the algorithm of the invention can be implemented with the addition of a few

10

15

circuit elements. The devised solution avoids reducing the dynamic range of the analog signal that is input to the next stages (as done in the prior art to prevent an overflow in the corresponding quantizers); this results in an increased resolution of the converter. The above-mentioned advantages are clearly perceived in applications working with wide-band signals and requiring high resolutions (for example, when the converter has a MASH architecture); however, different applications of the invention are contemplated (such as in a pipeline converter).

Preferably, the algorithm of the invention at first calculates a digital correction signal from the digital representation of the analog residue passed to the next stages; the digital correction signal is then converted into a corresponding analog signal.

The proposed solution operates in the digital domain; therefore, it does not adversely affect the stability of the whole converter.

However, the use of the proposed algorithm in a converter with a single stage is not excluded (even if it is far less advantageous and requires more dedicated circuit elements). Moreover, the algorithm is also suitable to be implemented in the analog domain; for example, a copy of the analog residue is filtered so as to extract its direct component (representing the offset error).

A suggested choice for calculating the digital correction signal is to use the whole digital signal resulting from the conversions performed by multiple stages following the selected stage.

In this way, the mean value of the analog residue can be estimated with a very high accuracy.

10

15

Preferably, each stage following the selected one has a resolution lower than the one of the selected stage.

As a consequence, the offset error introduced by these stages is negligible (being virtually zero when their resolution is equal to 1 bit). Therefore, the offset errors of the stages following the selected one do not substantially affect the digital residue, and then the estimation of the analog correction signal.

As a further improvement, the resolution of the digital correction signal is reduced (before its conversion into the corresponding analog signal).

This additional feature avoids the need of using a servo-DAC very accurate and expensive. Moreover, it increases the stability of the whole converter. corresponding loss of resolution does not substantially affect the effectiveness of the algorithm; in fact, the solution of the invention does not require a very high accuracy (being enough to ensure that the analog correction signal avoids the overflow of the next stages).

Alternatively, the digital correction signal is calculated only from the digital signal output by the stage directly following the selected one (thereby reducing the resolution of the digital correction signal but avoiding the addition of the offset errors of the other next stages);

25 moreover, the solution of the present invention leads itself to be implemented even with a different resolution of the stages following the selected one, or without reducing the resolution of the digital correction signal.

Advantageously, the analog correction signal has a 30 dynamic range proportional to the one of the corresponding quantization error.

I02086-EP/EP

5

15

20

25

This choice facilitates the appropriate selection of the maximum offset error that can be compensated.

A suggested choice for calculating the digital correction signal is to use a sinc filter followed by an integrator.

The proposed structure ensures the convergence of the algorithm; moreover, the decimation parameter of the sinc filter makes it possible to control either the precision or the convergence speed of the process.

Without detracting from the general applicability of the invention, the offset error is compensated pre-charging at least one capacitor (providing one of the input voltages for each comparator in the flash ADC).

This solution is very simple, but at the same time effective.

However, the devised algorithm is also suitable to be implemented setting the dynamic range of the analog correction signal in a different manner, calculating the digital correction signal with alternative circuit solutions, or even compensating the offset error in another way or position.

Naturally, in order to satisfy local and specific requirements, a person skilled in the art may apply to the solution described above many modifications and alterations all of which, however, are included within the scope of protection of the invention as defined by the following claims.

CLAIMS

1. An analog-to-digital converter (200) including at least one stage (105) for converting an analog input signal into a digital output signal using a parallel quantizer (115) comparing the analog input signal with a plurality of threshold values in parallel,

characterised in that

- the converter further includes, for at least one selected 10 (105), means (210,220) for estimating an correction signal indicative of the mean value of quantization error of the selected stage, and means (440i) for at least partially compensating an offset error of the parallel quantizer (115) in the selected stage according to 15 the analog correction signal.
- 2. The converter (200) according to claim 1, wherein the converter includes at least one further stage (110), the stages (105,110) being cascade-connected in a sequence, and wherein each stage different from a last stage in the sequence (110) includes means (120,140) for determining an analog residue indicative of the corresponding quantization error and means (145) for generating the analog input signal for a next stage in the sequence according to the analog residue.
- 3. The converter (200) according to claim 2, wherein the means for estimating (210,220) includes means (210) for calculating a digital correction signal indicative of the mean value of a digital residue consisting of a digital representation of the analog residue provided by the digital output signal of at least one stage (110) following the selected stage (105) in the sequence, and means (220) for

converting the digital correction signal into the analog correction signal.

- 4. The converter (200) according to claim 3, wherein the at least one stage following the selected stage (105) consists of a plurality of stages (147), the converter further including means (148) for combining the digital output signals of the stages following the selected stage into the digital residue.
- wherein each stage (147) following the selected stage (105) has a resolution lower than the resolution of the selected stage.
- 6. The converter (200) according to any claim from 3 to 5, further including means (320) for reducing the resolution of the digital correction signal to a predefined value.
 - 7. The converter (200) according to any claim from 3 to 6, wherein the analog correction signal has a dynamic range proportional to the dynamic range of the corresponding quantization error according to a predefined factor.
- 8. The converter (200) according to any claim from 3 to 7, wherein the means (210) for calculating the digital correction signal includes a digital filter (310) for providing a digital residual error indicative of the mean value of a predefined number of samples of the digital residue and an integrator (330,340) for converging towards the digital correction signal according to the digital residual error.
- 9. The converter (200) according to any claim from 1 to 8, wherein the quantizer (115) in the selected stage (105) includes a plurality of comparators (410) each one for comparing a first voltage corresponding to the analog input

signal with a second voltage corresponding to a respetive threshold value, and at least one capacitor (430i) for sampling the first voltage or the second voltage, the means for compensating including means (440i) for charging the at least one capacitor to a voltage corresponding to the analog correction signal.

10. An analog-to-digital conversion method including the steps of:

at least one stage included in an analog-to-digital converter converting an analog input signal into a digital output signal using a parallel quantizer comparing the analog input signal with a plurality of threshold values in parallel,

characterised in that

15 the method further includes, for at least one selected stage, the steps of:

estimating an analog correction signal indicative of the mean value of a quantization error of the selected stage, and

at least partially compensating an offset error of the parallel quantizer in the selected stage according to the analog correction signal.

THIS PAGE BLAT (USPTO)

ABSTRACT

AN ANALOG-TO-DIGITAL CONVERTER WITH CORRECTION OF OFFSET ERRORS

5

An analog-to-digital converter (200) is proposed. The converter includes at least one stage (105) for converting an analog input signal into a digital output signal using a parallel quantizer (115) comparing the analog input signal with a plurality of threshold values in parallel; the converter of the invention further includes, for at least one selected stage (105), means (210,220) for estimating an analog correction signal indicative of the mean value of a quantization error of the selected stage, and means (440i) for at least partially compensating an offset error of the parallel quantizer (105) in the selected stage according to the analog correction signal.

(Figure 2)

THIS PAGE BLAT (USPTO)

__i

Γ

10.4

 \Box