Cours TalENS 2023-2024

Dérivée, Volume, Aire, Périmètre

Matthieu Boyer

chaipakan

Plan

Rappels Mathématiques

Dérivation

Polygones Réguliers et Solides de Platon

Constatations

Dérivée par rapport à une variable

Definition

Si f est dérivable, $f'(x) = \lim_{\mathrm{d}x \to 0} \frac{f(x+\mathrm{d}x)-f(x)}{\mathrm{d}x}$. f'(x) est la pente de la tangente à la courbe de f en x.

Toutes les fonctions que nous allons étudier seront dérivables, et même souvent rationnelles. Règles de dérivation usuelles :

- $\forall n \in \mathbb{Z}, \frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$

Règle de la chaîne - Changement de Variable

Theorem (Règle de la Chaîne)

Soit f dérivable, g dérivable : $(f(g(v))) = g'(v) \times f'(g(v))$.

Definition (Changement de Variable)

On appelle poser dans f le changement de u=g(v) le fait d'écrire :

$$f(u)=f(g(v)).$$
 On a alors : $\frac{\mathrm{d}}{\mathrm{d}u}(f(u))=\frac{\mathrm{d}}{\mathrm{d}u}(v)\,\frac{\mathrm{d}}{\mathrm{d}v}(f(g(v)))$

Exemples : Poser le changement de variable $x = \exp y$ pour calculer la dérivée de $\frac{d}{dx}(\ln(x))$.

Plan

Rappels Mathématiques

Dérivation

Polygones Réguliers et Solides de Platon

Constatations

Polygones Réguliers : Aire et Périmètre

Un n-gone régulier est un polygone (convexe) à n côtés de même longueur c.

On fait ici un abus de notation, en ne considérant que les polygones convexes pour parler des n-gones réguliers, pourquoi?

Theorem

En notant ρ l'apothème du polygone (la distance du centre à un côté) :

- ightharpoonup P(n,c) = nc
- $A(n,c) = n \frac{c\rho}{2} = P(n,c) \frac{\rho}{2}$

Un catalogue des Solides de Platon

Definition

Les solides de Platon sont les polyèdres réguliers convexes, i.e. des solides dont les faces sont planes polygonales régulières, similaires et se rencontrent selon des segemnts appelés arêtes.

Exhaustivité

Theorem

Il y en a 5 et seulement 5 : Le Tétraèdre (pyramide à ? faces), le cube (hexaèdre), l'octaèdre, le dodécaèdre, l'icosaèdre.

Démonstration.

On a toujours : S-A+F=2 et pF=2A=qS, où p est le nombre de côtés des faces, et q le nombre de face se rejoignant à chaque sommet. On en déduit qu'on doit avoir : $\frac{1}{p}+\frac{1}{q}>\frac{1}{2}$. Mais comme $p,q\geq 3$, on n'a bien que 5 possibilités qui sont autant de solides.

En Dimension 2 : Le Cercle

Plan

Rappels Mathématiques

Constatations

En Dimension 2: Le Cercle

En Dimension 3 : La Sphère

Presque Contre-Exemples

En Dimension 2 : Le Cercle

Rayon, Périmètre, Aire

En Dimension 3 : La Sphère

Plan

Rappels Mathématiques

Constatations

En Dimension 2 : Le Cercle

En Dimension 3 : La Sphère

Presque Contre-Exemples

Plan

Rappels Mathématiques

Constatations

En Dimension 2 : Le Cercle

Presque Contre-Exemples

Presque Contre-Exemples

Le Carré

Presque Contre-Exemples

Le Triangle Equilatéral

Constatations ○○ ○○○

Presque Contre-Exemples

Les *n*-gones Réguliers

Presque Contre-Exemples

Le Cube

Plan

Rappels Mathématiques

Constatations

Généralisation

L'Aire et le Volume en d Dimensions

Relation entre Volume et Aire en d Dimensions pour un Solide

Et pour une forme quelconque?

L'Aire et le Volume en d Dimensions

Un Espace en d Dimensions?

L'Aire et le Volume en d Dimensions

Un Solide en d Dimensions

L'Aire et le Volume en d Dimensions

Aire et Volume d'un Solide en d Dimensions

Relation entre Volume et Aire en d Dimensions pour un Solide

Plan

Rappels Mathématiques

Constatations

Généralisation

L'Aire et le Volume en d Dimensions

Relation entre Volume et Aire en d Dimensions pour un Solide

Et pour une forme quelconque?

Relation entre Volume et Aire en d Dimensions pour un Solide

Le cas du Cube

Et pour une forme quelconque?

Plan

Rappels Mathématiques

Constatations

Généralisation

L'Aire et le Volume en d Dimensions

Relation entre Volume et Aire en d Dimensions pour un Solide

Et pour une forme quelconque?

C<mark>onstatation</mark>

Et pour une forme quelconque?

Famille Lisse de Formes Uni-Paramétrées

Et pour une forme quelconque?

Famille Lisse de Formes k-Paramétrées

