SPN Encryption/Decryption & Linear Cryptanalysis

请实现 SPN 加密算法

密码体制 代换-置换网络

设 ℓ , m 和 Nr 都是正整数, $\pi_s: \{0,1\}^\ell \to \{0,1\}^\ell$ 和 $\pi_p: \{1,\cdots,\ell m\} \to \{1,\cdots,\ell m\}$ 都是置换。 设 $\mathcal{P} = \mathcal{C} = \{0,1\}^{\ell m}$, $\mathcal{K} \subseteq (\{0,1\}^{\ell m})^{Nr+1}$ 是由初始密钥 K 用密钥编排算法生成的所有可能的密钥编排方案之集。对一个密钥编排方案 (K^1,\cdots,K^{Nr+1}) ,我们使用算法来加密明文 x 。

算法 SPN
$$(x, \pi_S, \pi_P, (K^1, \dots, K^{Nr+1}))$$
 $w^0 \leftarrow x$

for $r \leftarrow 1$ to $Nr - 1$

$$\begin{cases} u' \leftarrow w'^{-1} \oplus K' \\ \text{for } i \leftarrow 1 \text{ to } m \end{cases}$$

$$do \ v'_{>} \leftarrow \pi_S(u'_{>}) \\ w' \leftarrow (v'_{\pi_P(1)}, \dots, v'_{\pi_P(\ell m)}) \end{cases}$$
 $u^{Nr} \leftarrow w^{Nr-1} \oplus K^{Nr}$

for $i \leftarrow 1$ to m

$$do \ v_{>} \leftarrow \pi_S(u_{>}) \\ y \leftarrow v^{Nr} \oplus K^{Nr+1}$$

output (y)

设 $\ell = m = Nr = 4$, π_S, π_P 如下定义:

$\frac{z}{\pi_{x}(z)}$	0	1	2	3	4	5	6	7	8	9	A	В	$C \mid$	$D \mid$	E	F
$\pi_{_{\mathcal{S}}}(z)$	E	4	$\mid D$	1	2	F	B	8	3	A	6	C	5	9	0	7
$\frac{z}{\pi_{P}(z)}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\pi_{P}(z)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

密钥编排算法:

 $K = (k_1, \dots, k_{32})$ 定义 K' 是由 K 中从 k_{4r-3} 开始的 16 个连续的比特

Sample:

Input: (明文 x, 密钥 K)

0010011010110111 (明文 x)

00111010100101001101011000111111 (密钥 K)

Output: (密文 y)

10111100110110 (密文 v)