

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

F L

(19)

(11) Publication number:

Generated Document

PATENT ABSTRACTS OF JAPAN(21) Application number: **03286368**(51) Int'l. Cl.: **G09G 5/00 G06F 3/03 G06F 3/033**(22) Application date: **31.10.91**

(30) Priority:

(71) Applicant: **DIGITAL:KK**(43) Date of application publication: **25.05.93**(72) Inventor: **OYANAGI NORIO**

(84) Designated contracting states:

(74) Representative:

(54) DISPLAY CONTROLLER**(57) Abstract:**

PURPOSE: To send a control signal out to an external device side without giving any time delay to the operation period of the operation means on the side of the display controller which is connected to the external device through a general communication line and performs display operation corresponding to the operation state of the external device.

CONSTITUTION: While a process instruction word Wt containing information specifying the operation period of the operation means 20 is provided as a process indication word W stored in an event data storage means 24, the display controller 10 and external device 12 are connected by a leased communication line 100 and when the operation of the operation means 10 is specified with the process indication word Wt, the control signal S2 is sent to the side of the external device 12 through the communication line 100 without any time delay.

COPYRIGHT: (C)1993,JPO&Japio

日本特許

三千円

(19) 日本国特許庁

公開特許公報

特 許 書 (1)

昭和49年 9月 1日

特許庁長官 殿

1. 発明の名称

内燃機関用改質ガス発生装置

2. 発明者

住所 愛知県刈谷市昭和町1丁目1番地
日本電装株式会社内

氏名 笠内 韶久 (ほか1名)

3. 特許出願人

郵便番号 448

住所 愛知県刈谷市昭和町1丁目1番地

名称 (426) 日本電装株式会社

代表者 白井 武明

(電話番号 <0566> 22-3211)

4. 添付書類の目録

- (1) 明細書 1通
(2) 図面 1通

(11) 特開昭 51-27630

(43) 公開日 昭51.(1976)3.8

(21) 特願昭 49-100192

(22) 出願日 昭49.(1974)9.1

審査請求 未請求 (全4頁)

庁内整理番号

7179 32

(52) 日本分類

51 E1

(51) Int.CI²

F02M 27/00

分が蓄積する欠点がある。また触媒としてはセラミックの担体よりも一体型触媒を用いており強度的に弱く内燃機関等の振動による触媒の破損の欠点、あるいは改質反応器が反応熱源として排気ガス熱を利用する場合においては熱伝導性が悪いことにより改質反応の効率が良くないという欠点がある。

本発明は上記点に鑑みアルコールもしくはアルコールを含む混合液を改質反応器にて水素を含む改質ガスに変換し、またこの反応を良好に促進する触媒として金属を担体とする一体型触媒を用いることにより、あるいはタール分の析出が傷かで、しかも触媒が強度的に強く、かつ熱伝導性に優れ改質反応の効率にも優れた改質ガス発生装置を提供することを目的とするものである。

以下本発明を図に示す実施例について説明する。
第1図は本発明装置を用いた内燃機関の系統図で
1はエアクリーナ、2は吸入管、3は改質ガスと
空気とを混合する混合器、4は一般に用いられて
いる気化器、5は内燃機関、6は排気管、7は排

明 細 書

1. 発明の名称

内燃機関用改質ガス発生装置

2. 特許請求の範囲

アルコールもしくはアルコールを含む混合液を少なくとも水素を含む改質ガスに変換する改質反応器を備え、この改質反応器内に金属を担体とする一体型触媒を設けたことを特徴とする内燃機関用改質ガス発生装置。

3. 発明の詳細な説明

本発明はアルコールもしくはアルコールを含む混合液を少なくとも水素を含む改質ガスに変換し、このガス内燃機関に供給する改質ガス発生装置に関するものである。

内燃機関の有害排出ガス低減を目的として燃料を改質反応器により水素等を含む改質ガスに変換する装置が提案されているが、この燃料としてガソリン軽油、灯油等の環式炭化水素あるいはガム質を有する炭化水素を用いた場合改質反応器内に設けた触媒の表面に反応時生成される焦やタール

気管 6 内に設けた改質反応器、8 は改質反応器 7 内の上流側に設けた点火装置、9 はアルコールタンク、10 は導管、11a はアルコールタンク 9 内のアルコール（もしくはアルコールを含む混合液）を圧送する燃料ポンプ、11b は燃料ポンプ 11a から圧送されるアルコールの供給量を制御するアルコール量制御装置、12 は空気導管、13a は空気ポンプ、13b は空気ポンプ 13a から送られる空気の供給量を制御する空気量制御装置、14 は改質反応器 7 内に設けた触媒、15 は改質反応器 7 と混合器 8 を接続する導管、16 はこの導管 15 に設けられ改質ガスを冷却する冷却器である。

第 2 図は第 1 図に示した改質反応器 7 部の拡大模式図で、改質反応器 7 は排気管 6 のうち内径の拡大された大径部 6a に設けられている。この大径部 6a の排気ガス入口側には排気ガスの熱が適当に分散するよう羽板 19 を設けてある。反応器 7 のこの大径部 6a が面する部分には貫通穴を有するパイプ 20 が配列され、このパイプ 20 の

周囲には第 3 図に示すようにフイン状の金属担体 21 が設けられている。この金属担体 21 としては主にステンレス鋼板、鉄板等を用いる。金属担体 21 上には第 4 図に示すように、担体 21 とセラミックス 14b との密着性を良好なものとするため金属粉 14a を浴射し、その上にセラミックス 14b を浴射する。金属粉 14a としては担体 21 がステンレス鋼板のときはニッケルクロム系の粉末を、鉄板のときは鉄粉を用いるとよい。なお、セラミックス 14b と金属担体 21 とが良好に密着する場合はこの金属粉 14a は必ずしも必要としない。セラミックス 14b の上には Y-アルミナの様な比表面積の比較的大きいセラミックスを付着させ、その後触媒物質 14c を含浸させて一体型触媒 14 を造る。この場合セラミックス 14b としてはアルミナ、シリカ、ジルコニア、マグネシア等の耐熱性のある酸化物を用い、出来るだけ金属担体 21 と熱膨脹係数が近似した材料を用いる方が冷却・加熱による熱衝撃に対する耐久性が良くなる。

上記構成の作動を説明する。アルコールタンク 9 からアルコール量制御装置 11b により制御された量のアルコール反応器 7 に送られる。同時に空気ポンプ 13a から圧送される空気は空気量制御装置 13b によって供給量を制御され反応器 7 に送られる。（このときの空気量は、アルコール量に対し理論空気量の 1/6 程度とした。）こうして送られアルコールおよび空気は点火装置 8 によって一部が酸化反応し、残りに酸化された機関排気ガスで加熱された触媒 14 によって水素、一酸化炭素等に富む改質ガスに変換される。機関 5 からの排気ガスは排気管 6 の大径部 6a に設けた羽板 19 により適当に分散してパイプ 20 内を通過し、羽板 14 を熱する。このとき触媒の担体は金属担体 21 であり、熱伝導性に優れ触媒 14 に効率よく熱を伝導する。点火装置 8 への電力の供給は機関が充分暖機された状態においては必ずしも必要としない。

このようにして得られた改質ガスは冷却器 16 で適当に冷却された後、エアクリーナ 1 から吸入

される空気と混合器 8 にて混合され、さらに酸化器 4 にて通常の燃料と混合されて機関 5 に吸入され燃焼される。この燃焼時には改質ガス特に水素によって燃焼が良好に行なわれるものであり、混合気は非常に希薄な空燃比にて燃焼でき、機関の排気ガス中の有害排気ガス成分の量を極めて低減できる。

酸化器 4 に送る燃料としてはガソリン、軽油、灯油、ジーゼル油等の炭化水素燃料からケトン類アルコール類に至る燃料の使用が可能である。

また改質反応させるアルコールとしては、メチルアルコール、エチルアルコール、プロピルアルコール等の低級アルコールが適する。この他に、これらのアルコールにガソリン、軽油、灯油、ジーゼル油等の炭化水素を添加した混合液の使用も可能である。

次に一体型触媒 14 の製作例を示す。

金属担体 21 としてステンレス SUS 4·8·0 鋼材を用い、金属粉としてニッケルクロム系の酸化物粉末を金属担体 21 に浴射した後、アルミナ粉

末を浴射せしる。出来上がつたものをエチルシリケートを結合剤とした γ -アルミナ水溶液中に浸し真空空気にて脱気泡を行ないながら $5 \sim 10$ 分^{5℃}に含浸する。 $160 \sim 200$ ℃で2時間乾燥した後 400 ℃で $1.5 \sim 2$ 時間焼成し γ -アルミナをアルミナ上に付着せしる。この方法を $2 \sim 3$ 回繰り返す。次に硝酸第2鉄 0.5 モル溶液に浸し真空空気で脱気泡を行つて鉄を含む。そして 110 ℃で乾燥後 600 ℃で2時間焼成し鉄を酸化物まで分解する。その粉硝酸ニフケル 2.5 モル+無水クロム酸 1.5 モル混合液、硝酸銅 1.5 モル+硝酸ニフケル 2.5 モル混合液にても同様に含浸乾燥、焼成を繰り返す。以上の様にして γ - Al_2O_3 - Cu 系の触媒を γ -アルミナ上に付着し一体型触媒を作る。

アルコールとしてメチルアルコールを用いるとこの一体型触媒 1.4 は約 160 °C から反応を開始し 800 °C で十分な性能を発揮する。メチルアルコール 1 モルから水素 1.4 ~ 1.5 モル、一酸化炭素 0.7 ~ 0.8 モルを作ることができる。これを式

(1) を示す。

以上述べたように本発明装置では、改質反応器内において焦、タル分の蓄積が僅かで、しかも触媒が強度的にみて強固であり。かつ熱伝導性がよく改質反応の効率に優れおり、内燃機関の有害排気ガス低減のため機関に装着する場合非常に有用なものである。

4. 図面の簡単な説明

第1図は本発明装置を装着した内燃機関の系統図。第2図は第1図図示要部の拡大模式図。第3図は第2図図示一体型触媒の要部拡大断面図。第4図は第3図図示要部のさらに拡大した断面図である。

7—改質反應器，14—一体型触媒，21—金属担体。

第二

5. 前記以外の発明者

住 所 愛知県刈谷市昭和町1丁目1番地
 日本電装株式会社内

氏 名 堀江 豊三

第3図

第4図

