Data Modelling/Data Base Systems VU 184.685/VU 184.686, WS 2020

Introduction

Anela Lolić

Institute of Logic and Computation, TU Wien

Acknowledgements

The slides are based on the slides (in German) of Sebastian Skritek.

The content is based on Chapter 1 of (Kemper, Eickler: Datenbanksysteme – Eine Einführung).

For related literature in English see Chapter 1 of (Ramakrishnan, Gehrke: Database Management Systems).

What do these companies have in common?

Motivation

Today we have

- a large amount of data . . .
- ...in various areas
- distributed applications
- critical applications

Motivation

Today we have

- a large amount of data . . .
- ...in various areas
- distributed applications
- critical applications

⇒ we need software for an efficient processing

Additional Software Requirements

problems that need to be solved:

- redundancy and inconsistency
- loss of data
- multiple users
- security issues
- integrity violations
- restricted access

lead to:

- complex software
- high development costs

source: https://xkcd.com/1906/

Definition (data base management system (DBMS))

A data base management system (DBMS) is a software for accessing data (stored in the DBMS).

Definition (data base)

The data stored in a DBMS is called data base.

logical schema

physical schema

logical schema

Data Base Schema and Instance

Definition (data base schema)

The data base schema determines the structure of the data. (meta-data: data about the database.)

Definition (data base instance)

A data base instance is a specific data base that obeys the structure described and satisfies all the conditions determined by the data base schema.

intuitively: A data model defines the language and the tools to describe the data base schema and to manipulate and interact with the data base instance.

intuitively: A data model defines the language and the tools to describe the data base schema and to manipulate and interact with the data base instance.

Data models:

- network model
- hierarchical model
- relational model
- object-oriented data models

student

Name: "Xenokrates

matrNr: 24002

- XML
- graph data models
- **...**

matrNr: 25403

Name: " Ionas'

attends

attend				
<u>matrNr</u>	<u>lecNr</u>			
26120	5001			

lecture				
<u>lecNr</u>	title			
5001	Grundzüge			
5041	Ethik			

Anela Lolić

locNr: 5041

title: Ethik'

Lecture lecNr: 5001

Lecture

title: "Grundzüge"

attends

attends

Definition (data model)

A data model determines the applicable structures and operators. It consists of:

■ a data definition language (DDL) for defining the schema

Definition (data model)

A data model determines the applicable structures and operators. It consists of:

- a data definition language (DDL) for defining the schema
- a data manipulation language (DML) for interacting with and manipulating the data base instance. Usually we distinguish

Definition (data model)

A data model determines the applicable structures and operators. It consists of:

- a data definition language (DDL) for defining the schema
- a data manipulation language (DML) for interacting with and manipulating the data base instance. Usually we distinguish
 - the query language
 - the actual data manipulation language (commands for inserting, deleting, ...)

4 D F 4 B F 4 B F - 3

© 2019, DB-Engines.com

The Relational Data Model

Edgar F. Codd (1923-2003)

A Relational Model of Data for Large Shared Data Banks in: Communications of the ACM, Volume 13, Issue 6 (June 1970) Pages: 377 - 387 (1970)

Turing Award (1981) \approx Nobel Prize in Computer Science

Anela Lolić Seite 12

The Relational Data Model

requirements according to E.F. Codd:

- data integration (consistent management of data)
- operations (storing, searching, changing)
- data dictionary (access to data description)
- user views (view depending on application)
- consistency surveillance (logical correctness of data)
- access control (data privacy)
- transactions (indivisible blocks of operations)
- synchronisation (multiple users)
- data backup (recovery after a crash)

Modern Relational DBMS

- DDL/DML: SQL (Structured Query Language)
- embedding in programming languages
- tools (e.g.. design, masks, interaction, ...)
- multiple users, security mechanisms

Oracle, IBM DB2, MS SQL Server, PostgreSQL, MySQL, IBM Informix, SAP Sybase, Teradata, SQLite, . . .

Modern Relational DBMS

- DDL/DML: SQL (Structured Query Language)
- embedding in programming languages
- tools (e.g., design, masks, interaction, ...)
- multiple users, security mechanisms

Oracle, IBM DB2, MS SQL Server, PostgreSQL, MySQL, IBM Informix, SAP Sybase, Teradata, SQLite, ...

			355 systems in ranking, October 20						
Rank					Score				
Oct 2019	Sep 2019	Oct 2018	DBMS	Database Model	Oct 2019	Sep 2019	Oct 2018		
1.	1.	1.	Oracle 😷	Relational, Multi-model 📳	1355.88	+9.22	+36.61		
2.	2.	2.	MySQL 😷	Relational, Multi-model 👔	1283.06	+3.99	+104.94		
3.	3.	3.	Microsoft SQL Server [1]	Relational, Multi-model 🗉	1094.72	+9.66	+36.39		
4.	4.	4.	PostgreSQL 🚦	Relational, Multi-model 🔞	483.91	+1.66	+64.52		
5.	5.	5.	MongoDB 🖽	Document	412.09	+2.03	+48.90		
6.	6.	6.	IBM Db2 🚻	Relational, Multi-model 🔞	170.77	-0.79	-8.91		
7.	7.	↑ 8.	Elasticsearch 😷	Search engine, Multi-model 👔	150.17	+0.90	+7.85		
8.	8.	4 7.	Redis 🚼	Key-value, Multi-model 📳	142.91	+1.01	-2.38		
9.	9.	9.	Microsoft Access	Relational	131.18	-1.53	-5.62		
10.	10.	10.	Cassandra 😷	Wide column	123.22	-0.18	-0.17		
11.	11.	11.	SQLite 😷	Relational	122.62	-0.74	+5.88		
12.	12.	↑ 13.	Splunk	Search engine	86.84	-0.17	+9.94		
13.	13.	1 4.	MariaDB 🔠	Relational, Multi-model	86.77	+0.71	+13.64		

source: https://db-engines.com/en/ranking

Content of the Lecture

snippet of real world

1 differentiation to the world to be modelled

1 differentiation to the world to be modelled

lectures students lecturers

real world: university

differentiation to the world to be modelled

lectures students lecturers real world: university

2 transformation of the world to be modelled in a conceptual schema (in the lecture: EER)

differentiation to the world to be modelled

lectures students lecturers real world: university

2 transformation of the world to be modelled in a conceptual schema (in the lecture: EER)

3 translation of the conceptual schema in a logical schema (in the lecture: relational schema)

3 translation of the conceptual schema in a logical schema (in the lecture: relational schema)

student		
<u>matrNr</u>	name	
24002	Xenokrates	
25403	Jonas	
26120	Fichte	
26830	Aristoxenos	
28106	Carnap	
29555	Feuerbach	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5001	
24002	5001	
24002	4052	

lecture		
<u>lecNr</u>	title	
5001	Grundzüge	
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

Modelling . . .

models:

- simplification of reality (abstraction)
- (better) understanding of complex issues (or of parts/aspects thereof)

(formal) modelling languages

- used to describe models
- facilitate communication about models
- have a clearly defined semantics
- make sure that everyone involved assumes the same model

