Университет ИТМО Кафедра ВТ

Моделирование Домашнее задание №1 Вариант 17

Выполнил студент 3 курса Группы Р3311 Романов Олег

Преподаватель: Муравьева-Витковская Л.А.

Постановка задачи и исходные данные

Вариант 17						
	Система 1	Система 2				
Кол-во	3	2				
приборов						
Емкости	1/0/0	1/1				
накопителей						
Критерий эффект.	Минимальные	потери заявок				

Интен. потока, λ [1/c]	0,7		
Ср. длит. обслуж, b [c]	8		
Вероятн. занятия приборов q	$ \Pi 1 = 0,2 \Pi 2 = 0,4 \Pi 3 = 0,4 $ $ \Pi 1 = 0,2 \Pi 2 = 0,8 \Pi 3 = 0,4 $		

CUCTEMA 1

РАЗМЕЧЕННЫЙ ГРАФ ПЕРЕХОДОВ МАРКОВСКОГО ПРОЦЕССА

МАТРИЦА ИНТЕНСИВНОСТИ ПЕРЕХОДОВ

G=

Γ-	-λ	λq_1	λq_2	$\lambda - \lambda q_1 - \lambda q_2$	0	0	0	0	0	0	0	0 1
- 17	μ –	$-\mu - \lambda$	0	0	λq_1	λq_2	0	$\lambda - \lambda q_1 - \lambda q_2$	0	0	0	0
- 17	μ	0	$-\mu - \lambda + \lambda q_2$	0	0	λq_1	$\lambda - \lambda q_1 - \lambda q_2$	0	0	0	0	0
	μ	0	0	$-\mu - \lambda q_1 - \lambda q_2$	0	0	λq_2	λq_1	0	0	0	0
- 1	0	μ	0	0	$-\mu - \lambda + \lambda q_1$	0	0	0	λq_2	$\lambda - \lambda q_1 - \lambda q_2$	0	0
- 1	0	μ	μ	0	0	$-2\mu - \lambda + \lambda q_2$	0	0	λq_1	0	$\lambda - \lambda q_1 - \lambda q_2$	0
- 1	0	0	μ	μ	0	0	$-2\mu - \lambda q_1$	0	0	0	λq_1	0
- 1	0	μ	0	μ	0	0	0	$-2\mu - \lambda q_1 - \lambda q_2$	0	λq_1	λq_2	0
- 1	0	0	0	0	μ	μ	0	0	$-2\mu-\lambda+\lambda q_1+\lambda q_2$	0	0	$\lambda - \lambda q_1 - \lambda q_2$
- [(0	0	0	0	μ	0	0	μ	0	$-2\mu - \lambda q_2$	0	λq_2
- 1	0	0	0	0	0	μ	μ	μ	0	0	$-3\mu - \lambda q_1$	λq_1
L	0	0	0	0	0	0	0	0	μ	μ	μ	-3μ

$$\lambda = 0.7 \left[\frac{1}{c} \right]; \ \mu = \frac{1}{b} = 0.125 \left[\frac{1}{c} \right]; \ q_1 = 0.2; \ q_2 = 0.4$$

$$\begin{cases} -p_0\lambda + p_1\mu + p_2\mu + p_3\mu = 0 \\ p_0\lambda q_1 - p_1(\lambda + \mu) + p_4\mu + p_5\mu + p_7\mu = 0 \\ p_0\lambda q_2 - p_2(\lambda + \mu - \lambda q_2) + p_5\mu + p_6\mu = 0 \\ p_0\lambda (1 - q_1 - q_2) - p_3(\mu + \lambda q_1 + \lambda q_2) + p_6\mu + p_7\mu = 0 \\ p_1\lambda q_1 - p_4(\lambda + \mu - \lambda q_1) + p_8\mu + p_9\mu = 0 \\ p_1\lambda q_2 + p_2\lambda q_1 - p_5(2\mu + \lambda - \lambda q_2) + p_8\mu + p_{10}\mu = 0 \\ p_2\lambda (1 - q_1 - q_2) + p_3\lambda q_2 - p_6(2\mu + \lambda q_1) + p_{10}\mu = 0 \\ p_1\lambda (1 - q_1 - q_2) + p_3\lambda q_1 - p_7(2\mu + \lambda q_1 + \lambda q_2) + p_9\mu + p_{10}\mu = 0 \\ p_4\lambda q_2 + p_5\lambda q_1 - p_8(2\mu + \lambda - \lambda q_1 - \lambda q_2) + p_{11}\mu = 0 \\ p_4\lambda (1 - q_1 - q_2) + p_7\lambda q_1 - p_9(2\mu + \lambda q_2) + p_{11}\mu = 0 \\ p_5\lambda (1 - q_1 - q_2) + p_6\lambda q_1 + p_7\lambda q_2 - p_{10}(3\mu + \lambda q_1) + p_{11}\mu = 0 \\ p_8\lambda (1 - q_1 - q_2) + p_9\lambda q_2 + p_{10}\lambda q_1 - 3p_{11}\mu = 0 \\ p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8 + p_9 + p_{10} + p_{11} = 1 \end{cases}$$

CUCTEMA 2

РАЗМЕЧЕННЫЙ ГРАФ ПЕРЕХОДОВ МАРКОВСКОГО ПРОЦЕССА

МАТРИЦА ИНТЕНСИВНОСТЕЙ ПЕРЕХОДОВ

$$\mathbf{G} \ = \begin{bmatrix} -\lambda & \lambda q & \lambda - \lambda q & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mu & -\lambda - \mu & 0 & \lambda q & \lambda(1-q) & 0 & 0 & 0 & 0 & 0 \\ \mu & 0 & -\lambda - \mu & 0 & \lambda q & \lambda(1-q) & 0 & 0 & 0 & 0 \\ 0 & \mu & 0 & -(\lambda + \mu + \lambda \mu) & 0 & 0 & \lambda(1-q) & 0 & 0 \\ 0 & \mu & \mu & 0 & -(2\mu + \lambda) & 0 & \lambda q & \lambda(1-q) & 0 \\ 0 & 0 & \mu & 0 & 0 & -(\mu + \lambda q) & 0 & \lambda q & 0 \\ 0 & 0 & 0 & \mu & \mu & 0 & -(2\mu + \lambda - \lambda \mu) & 0 & \lambda(1-q) \\ 0 & 0 & 0 & 0 & \mu & \mu & 0 & -(2\mu + \lambda \mu) & \lambda q \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu & \mu & 0 \end{bmatrix}$$

$$\lambda = 0.7 \left[\frac{1}{c} \right]; \ \mu = \frac{1}{b} = 0.125 \left[\frac{1}{c} \right]; \ q = 0.2$$

$$\begin{cases} -p_0\lambda + p_1\mu + p_2\mu = 0 \\ p_0\lambda q - p_1(\lambda + \mu) + p_3\mu + p_4\mu = 0 \\ p_0\lambda(1-q) - p_2(\mu + \lambda) + p_4\mu + p_5\mu = 0 \\ p_1\lambda q - p_3(\lambda + \mu + \lambda q) + p_6\mu = 0 \\ p_1\lambda(1-q) + p_2\lambda q - p_4(2\mu + \lambda) + p_6\mu + p_7\mu = 0 \\ p_2\lambda(1-q) - p_5(\mu + \lambda q) + p_7\mu = 0 \\ p_3\lambda(1-q) + p_4\lambda q - p_6(2\mu + \lambda - \lambda \mu) + p_8\mu = 0 \\ p_4\lambda(1-q) + p_5\lambda q - p_7(2\mu + \lambda \mu) + p_8\mu = 0 \\ p_6\lambda(1-q) + p_7\lambda q - 2p_8\mu = 0 \\ p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8 = 10 \end{cases}$$

ЗНАЧЕНИЯ СТАЦИОНАРНЫХ ВЕРОЯТНОСТЕЙ

	Система 1		Система 2		
Номер состояния	Обозначение	Вероятность	Обозначение	Вероятность	
1	Eø	0,0282	Eø	0,0116	
2	E ₁	0,0316	E ₁	0,0130	
3	E ₂	0,0632	E ₂	0,0520	
4	E ₃	0,0632	E ₃	0,0145	
5	E ₄	0,0354	E ₄	0,0582	
6	E ₅	0,0708	E ₅	0,2328	
7	E ₆	0,1416	E ₆	0,0652	
8	E ₇	0,0708	E ₇	0,2607	
9	E ₈	0,0793	E ₈	0,2920	
10	E ₉	0,0793			
11	E ₁₀	0,1586			
12	E ₁₁	0,1777			

ФОРМУЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ РАСЧЕТА ХАРАКТЕРИСТИК СИСТЕМЫ И ЗНАЧЕНИЯ ХАРАКТЕРИСТИК СИСТЕМЫ, СВЕДЕННЫЕ В ТАБЛИЦЫ (ФОРМА 2)

Характеристика	Прибор	Расчет. формула	Сис. 1	Сис. 2
	П1	$y_1 = \frac{\lambda q_1}{\mu} = \lambda q_1 b$	1,12	1,12
Нагрузка	П2	$y_2 = \frac{\lambda q_2}{\mu} = \lambda q_2 b$	2,24	4,48
	П3	$y_3 = \frac{\lambda(1 - q_1 - q_2)}{\mu} = \lambda(1 - q_1 - q_2)b$	2,24	

	Сумм.	$y = y_1 + y_2 + y_3 = \lambda h$	5,6	5,6
	<u> </u>	$y = y_1 + y_2 + y_3 = \lambda b$ Кол-во состояний $/p_i$ — если П1 активен		2,0
	П1	$\rho_1 = \sum_{i=1}^{n} \binom{p_i}{p_i}$ в этом состоянии,	0,7035	0,7036
		i=0 0 — если нет /		
	П2	$ ho_2 = \sum_{i=1}^{Kon-bo} (p_i - ecли П2 aктивен) ho_2$	0,6912	0,9609
	112	$\sum_{i=0}^{\infty}$ 0 — если нет	0,0512	0,5005
Загрузка		$^{ ext{Кол-во состояний}}/p_i$ — если ПЗ активен \setminus		
	П3	$ ho_3 = \sum_{\alpha} \left(\text{ в этом состоянии, } \right)$	0,6912	
		$i=0$ $0-$ если нет / $ ho = \sum_{i=0}^{\text{Кол-во состояний}} (p_i \cdot \Pi_i)$ / (Кол. прибор)		
	•	$p - \sum_{i=0}^{n} (p_i \Pi_i)$ (Ron: Inproop)	0.6050	0 0000
	Сумм.	где Π_i — кол — во активных приборов в i —	0,6953	0,8322
		том состоянии		
		$\sum_{i}^{\text{Кол-во состояний}} p_i - $ если накопитель \sum_{i}^{i}		
	Π1	$l_1 = \sum_{i} \left(\Pi 1 \operatorname{coдержит} \operatorname{заявку}_{i} \right)$	0,3717	0,3717
		i=0 0 — если нет /		
	по	\mathbf{r} / \mathbf{p}_i cesim makeminicisis \	0	0.7055
	П2	$l_2 = \sum_{\alpha} \left(\Pi 2 \operatorname{codepжut} \operatorname{заявку}, \right)$	0	0,7855
Длина очереди		$i=0$ 0 — если нет p_i — если накопитель p_i		
	П3	$l_3 = \sum_{i=1}^{p_i} \left(\begin{array}{c} p_i & \text{сели пакопитель} \\ \text{ПЗ содержит заявку,} \end{array} \right)$	0	
	115	$t_3 = \sum_{i=0}^{13} \left(\begin{array}{c} \text{пз содержит запьку,} \\ 0 - \text{если нет} \end{array} \right)$	Ü	
		Кол-во приборов		
	Сумм.	$l = \sum_{i} l_i$	0,3717	1,1572
		<i>i</i> =0		
	Π1	$m_1 = \rho_1 + l_1$	1,0752	1,0753
	П2	$m_2 = \rho_2 + l_2$	0,6912	1,7464
Число заявок	П3	$m_3 = ho_3 + l_3$ Кол-во приборов	0,6912	
		Кол-во приборов		
	Сумм.	$m = \sum_{i=1}^{n} m_i$	2,4576	2,8217
		i=0 Кол−во приборов		
	П1	$\pi_1 = \sum \left(p_i - \text{если } \Pi 1 \text{ активен} \right)$	0,3717	0,3717
		i=0 и накопитель полон/		-
		Кол-во приборов $p_i - \sum_{i=1}^{K_{0,1}-k_{0,1}} (p_i - e c л и П2 активен)$		0 7055
Вероятность	П2	$\pi_2 = \sum_{\substack{p_i - \text{если п2 активен} \\ \text{и накопитель полон}}} \begin{pmatrix} p_i - \text{если п2 активен} \end{pmatrix}$	0,6912	0,7855
потери		i=0 Кол-во приборов		
Потери	П3	$\pi_3 = \sum \qquad (p_i - \text{если } \Pi 3 \text{ активен})$	0,6912	
		$i=0$ \ И Накопитель полон		
	Сумм.	Кол-во приборов	0 6272	0.7024
		$\pi = \sum_{i} \pi_i \cdot q_i$	0,6273	0,7024
	П1	$\lambda_1' = \lambda q_1 (1 - \pi_1)$	0,0880	0,0880
	П2	$\lambda_1 = \lambda q_1(1 - \lambda_1)$ $\lambda_2' = \lambda q_2(1 - \pi_2)$	0,0865	0,1201
Производит.	П3		0,0865	-,
системы		$\lambda_3' = \lambda q_3 (1 - \pi_3)$ Кол-во приборов	2,000	
	Сумм.	$\lambda' = \sum_{i} \lambda'_{i} = \lambda(1-\pi)$	0,261	0,2083
	Сунин	$\lambda = \sum_{i=0}^{n} \lambda_i = \lambda(1-n)$	0,202	0,2005
	П1	$\lambda_1^{\prime\prime} = \lambda q_1 \pi_1$	0,0520	0,0520
	П2	$\lambda_1'' = \lambda q_1 \pi_1$ $\lambda_2'' = \lambda q_2 \pi_2$	0,1935	0,4399
Интенсивность	П3	$\lambda_2^{\prime\prime} = \lambda q_2 \pi_2$	0,1935	- ,
потерянных		$\lambda_3^{\prime\prime}=\lambda q_3\pi_3$ Кол-во приборов	- ,	
заявок	Сумм.	$\lambda^{\prime\prime} = \sum \qquad \lambda_i^{\prime\prime} = \lambda \pi$	0,4391	0,4917
	٠٠ - ٠٠	$\sum_{i=0}^{n_i} n_i = nn$.,	- ,
		l_1		_ = _ :
_	Π1	$w_1 = \frac{1}{\lambda_1}$	4,2239	4,2239
Время ожидания		l_2		6 546
	П2	$w_2 = \frac{1}{\lambda_2}$	0	6,540
		1 <i>L</i>		

	ПЗ	$w_3 = \frac{l_3}{\lambda_3'}$	0	
	Сумм.	$w = rac{\sum_{i=0}^{ ext{Кол-во приборов}}(\lambda_i^{'}w_i)}{\lambda^{'}} = rac{l}{\lambda^{'}}$	1,4241	5,5554
	П1	$u_1 = \frac{m_1}{\lambda_1'} = w_1 + b$	12,2239	12,2193
Время	П2	$u_2 = \frac{m_2}{\lambda_2'} = w_2 + b$	8	14,5412
пребывания	ПЗ	$u_3 = \frac{m_3}{\lambda_3'} = w_3 + b$	8	
	Сумм.	$u = \frac{\sum_{i=0}^{ ext{Кол-во приборов}} (\lambda_i^{'} u_i)}{\lambda^{'}} = \frac{m}{\lambda^{'}} = w + b$	9,4161	13,5463

РЕЗУЛЬТАТЫ (ГРАФИКИ И ВЫВОДЫ) СРАВНИТЕЛЬНОГО АНАЛИЗА ХАРАКТЕРИСТИК ФУНКЦИОНИРОВАНИЯ ИССЛЕДУЕМЫХ СИСТЕМ

Почти при всех значениях интенсивности потока вероятность потери во 2 системе выше чем в 1 системе. Отсюда следует, что система 1 является лучшим вариантом организации системы.