# Quantum Mechanics II

lecture notes

Prof. Adrian Signer

Notes

Marc Maetz

FS 2013

# Contents

| C        | omer | its                                                                | 1  |
|----------|------|--------------------------------------------------------------------|----|
| 1        | App  | proximation methods for stationary problems                        | 5  |
|          | 1.1  | Time-independent perturbation theory, non-degenerate case          | 5  |
|          | 1.2  | Time-independent perturbation theory: degenerate case              | 8  |
|          |      | 1.2.1 easy way out (sometimes)                                     | 10 |
|          | 1.3  | The variational principle                                          | 11 |
|          | 1.4  | WKB approximation, semiclassical approximation $\ \ldots \ \ldots$ | 13 |
| <b>2</b> | The  | hydrogen atom                                                      | 15 |
|          | 2.1  | Basics                                                             | 15 |
|          | 2.2  | Relativistic corrections                                           | 16 |
|          | 2.3  | Spin-orbit term                                                    | 17 |
|          | 2.4  | Darwin term                                                        | 19 |
|          | 2.5  | Fine structure of hydrogen                                         | 20 |
|          |      | 2.5.1 first few states                                             | 20 |
|          | 2.6  | Corrections beyound fine structure                                 | 21 |
|          |      | 2.6.1 Hyperfine structure                                          | 21 |
|          |      | 2.6.2 Lamb shift (needs QED!)                                      | 21 |
| 3        | Mai  | ny Electron Atoms                                                  | 23 |
|          | 3.1  | Identical particles                                                | 23 |
|          | 3.2  | Thomas-Fermi approximation                                         |    |
|          | 3.3  | The Hartree approximation                                          |    |
|          | 3.4  | Hartree-Fock approximation                                         | 28 |
|          | 3.5  | The periodic table and Hund's rules                                | 28 |
| 4        | Apr  | proximation methods for time-dependent problems                    | 31 |
|          | 4.1  | Time-dependent perturbation theory                                 |    |
|          | 4.2  | Constant perturbation                                              |    |
|          | 4.3  | Periodic perturbations                                             |    |
|          | 4.4  | The Interaction picture                                            |    |
|          | 4.5  | The adiabatic approximation                                        |    |

Contents, 19.02.13

| 5  | Inte | raction of matter with classical radiation                           | 41  |
|----|------|----------------------------------------------------------------------|-----|
|    | 5.1  | Basics from EM & QMI                                                 | 41  |
|    | 5.2  | Induced emission and absorption                                      | 43  |
|    | 5.3  | Dipole approximation and selection rules                             | 43  |
| 6  | Pote | ential scattering                                                    | 47  |
|    | 6.1  | Elastic scattering and cross sections $\dots \dots \dots \dots$ .    | 47  |
|    | 6.2  | Partial-wave analysis                                                | 48  |
|    |      | 6.2.1 The optical theorem                                            | 52  |
|    | 6.3  | Coulomb scattering                                                   | 53  |
|    | 6.4  | Lippman- Schwinger equation & Green's function                       | 55  |
|    | 6.5  | The Born approximation                                               | 59  |
| 7  | Gen  | eral scattering theory                                               | 63  |
|    | 7.1  | Dynamics of scattering                                               | 63  |
|    | 7.2  | Møller operators & scattering operator                               | 66  |
| 8  | Qua  | ntization of radiation field                                         | 71  |
|    | 8.1  | Quantization of free radiation field                                 | 71  |
|    |      | 8.1.1 2nd quantization                                               | 75  |
|    | 8.2  | Fock space                                                           | 76  |
|    | 8.3  | Photon emission and absorption                                       | 78  |
|    |      | 8.3.1 Absorption of photon                                           | 78  |
|    |      | 8.3.2 Emission of photons                                            | 79  |
|    | 8.4  | Scattering of photons by atoms $\dots \dots \dots \dots \dots \dots$ | 79  |
| 9  | Rela | ativistic QM                                                         | 85  |
|    | 9.1  | Klein-Gordon equation (KGE)                                          | 85  |
|    | 9.2  | Dirac equation                                                       | 87  |
|    | 9.3  | Coraviance of Dirac equation                                         | 89  |
|    |      | 9.3.1 Bilinear covariants                                            | 91  |
|    | 9.4  | Solutions to the dirac equation                                      | 92  |
|    |      | 9.4.1 Interpretation of solutions and spin                           | 94  |
|    |      | 9.4.2 Lie algebra of generators                                      | 96  |
|    |      | 9.4.3 2nd casimir operator                                           | 97  |
|    | 9.5  | The non-relativistic limit                                           | 97  |
|    | Seco | ond Quantization                                                     | 103 |
| 10 |      | Creation and annihilation operators for bosons and fermions          |     |
| 10 | 10.1 | Creation and annumental operators for posons and fermions            | エハい |
| 10 |      |                                                                      |     |
| 10 | 10.2 | Field operators                                                      | 104 |

# Introduction

These are my lecture notes of the lecture. You are welcome to tell any mistakes to: mmaetz AT student.ethz.ch. Unfortunately, some lectures are missing because lenovo/IBM is incompetent to give me a working laptop (thinkpad) after two months (even after about 30 e-mails and 10 phone calls).

# APPROXIMATION METHODS FOR STATIONARY PROBLEMS

- standard QM problem:
  - given  $|\psi(t_0)\rangle$
  - wanted

$$|\psi(t)\rangle = U(t, t_0) |\psi(t_0)\rangle$$
  

$$U = e^{-\frac{i}{\hbar}H(t-t_0)}$$

 $\bullet$  for time independent H

$$U = e^{-\frac{i}{\hbar}H(t-t_0)} \tag{1.1}$$

find eigenvalue and eigenstates (diagonalize H)

but: most problems cannot be solved exactly  $\rightarrow$  find approximate solution.

# 1.1 Time-independent perturbation theory, non-degenerate case

Assume:

$$H = H_0 + \lambda V \tag{1.2}$$

with  $H_0$  the Hamiltonian that I can solve ("free" Hamiltonian) and the perturbation V "small" and  $\lambda$  a dimensionless bookkeeping part.

$$\lambda \to 0$$
,  $H \to H_0$   
 $\lambda \to 1$ , full  $H$ 

We know

$$\left|\psi_n^{(0)}\right\rangle, E_n^{(0)}$$

with

$$H_0 \left| \psi_n^{(0)} \right\rangle = E_n^{(0)} \left| \psi_n^{(0)} \right\rangle$$

with

$$\left\langle \psi_n^{(0)} \middle| \psi_m^{(0)} \right\rangle = \delta_{mn}$$

(continuous spectrum also understood.)

We want  $|\psi_n\rangle$  and  $E_n$  with

$$(H_0 + \lambda V) |\psi_n\rangle = E_n |\psi_n\rangle$$

let

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$$
$$|\psi_n\rangle = \left|\psi_n^{(0)}\right\rangle + \lambda \left|\psi_n^{(1)}\right\rangle + \lambda^2 \left|\psi_n^{(2)}\right\rangle + \dots$$

seems obvious, but assumption. (convergence?)

$$(H_0 - E_n^{(0)}) |\psi_n^{(0)}\rangle + \lambda ((H_0 - E_n^{(0)}) |\psi_n^{(1)}\rangle)$$

$$+ \lambda^2 ((H_0 - E_n^{(0)}) |\psi_n^{(2)}\rangle + (V - E_n^{(1)}) |\psi_n^{(1)}\rangle - E_n^{(2)}) + \mathcal{O}(\lambda^3) = 0$$

with  $\mathcal{O}(1)$  "step 0",  $\mathcal{O}(\lambda)$  "step 1",  $\mathcal{O}(\lambda^2)$  "step 2".

**Step 0:** nothing to do

**Step 1** multiply by  $\langle \psi_m^{(0)} |$ 

$$\left\langle \psi_m^{(0)} \middle| H_0 - E_n^{(0)} \middle| \psi_m^{(0)} \right\rangle + \left\langle \psi_m^{(0)} \middle| V - E_n^{(1)} \middle| \psi_m^{(0)} \right\rangle = 0$$

$$= \left( E_m^{(0)} - E_n^{(0)} \right) \left\langle \psi_m^{(0)} \middle| \psi_n^{(1)} \right\rangle + \left\langle \psi_m^{(0)} \middle| V \middle| \psi_m^{(0)} \right\rangle - E_n^{(1)} \delta_{mn} = 0$$

to get  $|\psi_n^{(1)}\rangle$ 

$$\begin{aligned} \left| \psi_n^{(1)} \right\rangle &= \sum_m \underbrace{\left\langle \psi_m^{(0)} \middle| \psi_n^{(1)} \right\rangle}_{m} \left| \psi_m^{(0)} \right\rangle \\ &= \sum_m \underbrace{\left\langle \psi_m^{(0)} \middle| V \middle| \psi_m^{(0)} \right\rangle}_{E_n^{(0)} - E_m^{(0)}} \left| \psi_m^{(0)} \right\rangle + \left| \psi_n^{(0)} \right\rangle \left\langle \psi_n^{(0)} \middle| \psi_n^{(1)} \right\rangle \end{aligned}$$

from normalization

$$\langle \psi_n | \psi_n \rangle \stackrel{!}{=} 1 = \underbrace{\left\langle \psi_n^{(0)} \middle| \psi_n^{(0)} \right\rangle}_{1} + \lambda \underbrace{\left\langle \psi_n^{(0)} \middle| \psi_n^{(1)} \right\rangle}_{0} + \lambda \left\langle \psi_n^{(1)} \middle| \psi_n^{(0)} \right\rangle + \mathcal{O}\left(\lambda^2\right) \quad (1.3)$$

has to be small. If  $E_n^{(0)} = E_m^{(0)}$ ?? degeneracy!  $\to$  sec 1.2 if  $E_n^{(0)} \simeq E_m^{(0)}$  quasi degenerate

step 2 take  $\mathcal{O}(\lambda^2)$  terms  $\left\langle \psi_k^{(0)} \right|$ 

$$\left(E_k^{(0)} - E_n^{(0)}\right) \left\langle \psi_k^{(0)} \middle| \psi_n^{(2)} \right\rangle + \left\langle \psi_k^{(0)} \middle| V \middle| \psi_k^{(0)} \right\rangle - E_n^{(1)} \left\langle \psi_k^{(0)} \middle| \psi_n^{(1)} \right\rangle = E_n^{(2)} \delta_{kn} \tag{1.4}$$

for k = n

$$E_{n}^{(2)} = \left\langle \psi_{n}^{(0)} \middle| V \middle| \psi_{n}^{(0)} \right\rangle$$

$$= \sum_{m \neq n} \frac{\left\langle \psi_{n}^{(0)} \middle| V \middle| \psi_{n}^{(0)} \right\rangle \left\langle \psi_{m}^{(0)} \middle| V \middle| \psi_{m}^{(0)} \right\rangle}{E_{n}^{(0)} - E_{m}^{(0)}}$$

$$= \sum_{m \neq n} \frac{\left\| V_{nm}^{2} \right\|}{E_{n}^{(0)} - E_{m}^{(0)}}$$
(1.5)

Note  $E_n^{(2)} < 0$  for ground state.

Next compute  $|\psi_n^{(2)}\rangle$ : initially fix normalization such that

$$\left\langle \psi_n^{(0)} \middle| \psi_n^{(i)} \right\rangle = \delta_{i0} \tag{1.6}$$

this is in conflict

$$\langle \psi_n | \psi_n \rangle = 1 \tag{1.7}$$

 $\rightarrow$  sort out at the end.

$$\left| \psi_n^{(2)} \right\rangle = \sum_{k \neq n} \left| \psi_k^{(0)} \right\rangle \left\langle \psi_k^{(0)} \middle| \psi_n^{(2)} \right\rangle + 0$$

$$= \sum_{k \neq n} \left| \psi_k^{(0)} \right\rangle \left( \frac{\left\langle \psi_k^{(0)} \middle| V \middle| \psi_k^{(0)} \right\rangle}{E_n^{(0)} - E_k^{(0)}} - \frac{E_n^{(1)} \left\langle \psi_k^{(0)} \middle| \psi_n^{(1)} \right\rangle}{E_n^{(0)} - E_k^{(0)}} \right)$$
(1.8)

plug in  $\left|\psi_{n}^{(1)}\right\rangle$  and sort out normalization

$$|\psi_n\rangle_N = \mathbb{Z}^{1/2} |\psi_n\rangle \tag{1.9}$$

fix such that

$$_{N}\left\langle \psi _{n}|\,\psi _{n}\right\rangle _{M}=1\tag{1.10}$$

$$N \langle \psi_{n} | \psi_{n} \rangle_{N} = 1$$

$$= Z_{n} \langle \psi_{n} | \psi_{n} \rangle$$

$$= Z_{n} \left( \langle \psi_{n}^{(0)} | + \lambda \langle \psi_{n}^{(1)} | + \lambda^{2} \langle \psi_{n}^{(2)} | \right)$$

$$\times \left( \left| \psi_{n}^{(0)} \rangle + \lambda \left| \psi_{n}^{(1)} \rangle + \ldots \right) \right.$$

$$= E_{n}^{(2)} \delta_{kn}$$

$$= Z_{n} \left( 1 + \lambda^{2} \langle \psi_{n}^{(1)} | \psi_{n}^{(1)} \rangle + \mathcal{O} \left( \lambda^{3} \right) \right)$$

$$(1.11)$$

$$Z_n^{1/2} = 1 - \frac{\lambda^2}{2} \left\langle \psi_n^{(1)} \middle| \psi_n^{(1)} \right\rangle \mathcal{O}\left(\lambda^3\right)$$

$$\tag{1.12}$$

$$\Rightarrow \left|\psi_n^{(2)}\right\rangle$$

$$= \sum_{k \neq n} \sum_{m \neq n} \left| \psi_k^{(0)} \right\rangle \left[ \frac{V_{km} - V_{mn}}{\left( E_n^{(0)} - E_k^{(0)} \right) \left( E_m^{(0)} - E_n^{(0)} \right)} - \frac{V_{kn} V_{nn}}{\left( E_n^{(0)} - E_n^{(0)} \right)} \right] (1.13)$$
$$- \frac{1}{2} \sum_{k \neq n} \left| \psi_n^{(0)} \right\rangle \frac{\left\| V_{kn}^2 \right\|}{\left( E_n^{(0)} - E_k^{(0)} \right)}$$

# 1.2 Time-independent perturbation theory: degenerate case

Assume  $E_n^{(0)}$  is  $\alpha$ -fold degenerate i.e.

$$H_0 \left| \psi_{n_i}^{(0)} \right\rangle = E_n^{(0)} \left| \psi_n^{(0)} \right\rangle, \quad 1 \le i \le \alpha$$
 (1.14)

fix

$$\left\langle \psi_{n_i}^{(0)} \middle| \psi_{n_j}^{(0)} \right\rangle = \delta_{ij} \tag{1.15}$$

Any linear combination

$$\left|\chi_n^{(0)}\right\rangle = \sum_{i=1}^{\alpha} c_{n_i} \left|\psi_{n_i}^{(0)}\right\rangle \tag{1.16}$$



Figure 1.1:

is an eigenstate of  $H_0$  with evaluation  $E_n^{(0)}$  Typically V "lifts" degeneracy at least partially since often

$$[H_0, V] \neq 0 \tag{1.17}$$

Pick one of the evals  $E_{n_k}$  with

$$H |\psi_{n_k}\rangle = E_{n_k} |\psi_{n_k}\rangle \tag{1.18}$$

for  $\lambda \to 0$ :  $E_{n_k} \to E_n^{(0)}$  and

$$|\psi_{n_k}\rangle \to |\chi_{n_k}(0)\rangle$$

$$= \sum_{i=1}^{\alpha} \underbrace{c_{n_k i} |\psi_{n_i}^{(0)}\rangle}_{\text{some lin}}$$
(1.19)

have to find "good" linear combination, i.e. coeff  $c_{n_k i}$ . Main idea as before:

$$\left|\psi_{n_k}\right\rangle = \left|\chi_{n_k}^{(0)}\right\rangle + \lambda \left|\psi_{n_k}^{(1)}\right\rangle \tag{1.20}$$

$$0 = \left(H_0 - E_n^{(0)}\right) \left| \psi_{n_k}^{(1)} \right\rangle + \left(V - E_{n_k}^{(1)}\right) \left| \chi_{n_k}^{(1)} \right\rangle \tag{1.21}$$

with

$$\left|\psi_{n_k}^{(1)}\right\rangle = \sum_{\ell=1}^{\dim(H_0)} a_{n_\ell} \left|\psi_\ell^{(0)}\right\rangle \tag{1.22}$$

and

$$\sum_{i=1}^{\alpha} c_{n_k i} \left| \psi_{n_i}^{(0)} \right\rangle \tag{1.23}$$

multiply by  $\langle \psi_{n_j}^{(0)} |$ .

$$\sum_{\ell=1}^{\dim H_0} \underbrace{\left(E_{\ell}^{(0)} - E_{n}^{(0)}\right)}_{=0 \text{ for } n=\ell} a_{n\ell} \underbrace{\left\langle \psi_{n_j}^{(0)} \middle| \psi_{\ell}^{(0)} \right\rangle}_{=0 \text{ for } n\neq\ell} + \sum_{i=1}^{\alpha} c_{n_k i} \left( \left\langle \psi_{n_j}^{(0)} \middle| V \middle| \psi_{n_j}^{(0)} \right\rangle - E_{n_k}^{(1)} \underbrace{\left\langle \psi_{n_j}^{(0)} \middle| \psi_{n_i}^{(0)} \right\rangle}_{V_{ji}} - E_{n_k}^{(1)} \underbrace{\left\langle \psi_{n_j}^{(0)} \middle| \psi_{n_i}^{(0)} \right\rangle}_{\delta_{ij}} \right) \tag{1.24}$$

 $\rightarrow$  solve

$$\det \begin{pmatrix} V_{11} - E_{n_k}^{(1)} & V_{12} & \dots & V_{1\alpha} \\ V_{21} & V_{22} - E_{n_k}^{(1)} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ V_{\alpha 1} & \dots & \dots & V_{\alpha \alpha} - E_{n_k}^{(1)} \end{pmatrix} = 0 \quad (1.25)$$

- $\rightarrow$  eq. of order  $\propto$  in  $E_{n}^{(1)}$
- $\rightarrow \alpha$  solutions

# 1.2.1 easy way out (sometimes)

if  $V_{ij} = 0$  for  $i \neq j$  problem already solved

 $\rightarrow \alpha$  solutions are

$$E_{n_i}^{(1)} = \left\langle \psi_i^{(0)} \middle| V \middle| \psi_i^{(0)} \right\rangle \tag{1.26}$$

Note: if  $\exists$  operator A with

$$[A, V] = 0 \tag{1.27a}$$

and

$$A\left|\psi_{n_i}^{(0)}\right\rangle = a_{n_i}\left|\psi_{n_i}^{(0)}\right\rangle,\tag{1.27b}$$

with

$$a_{n_i} \neq a_{n_k}, \quad \text{for } k \neq i$$
 (1.27c)

then these  $\left|\psi_{n_i}^{(0)}\right\rangle$  are "good" eigenstates

Proof:

$$\left\langle \psi_{n_{i}}^{(0)} \middle| [A, V] \middle| \psi_{n_{i}}^{(0)} \right\rangle = 0$$

$$= \underbrace{(a_{n_{i}} - a_{n_{k}})}_{\neq 0} \underbrace{\left\langle \psi_{n_{i}}^{(0)} \middle| V \middle| \psi_{n_{i}}^{(0)} \right\rangle}_{V_{ik}}$$

$$\Rightarrow V_{ik} = 0$$

$$(1.28a)$$

# 1.3 The variational principle

Useful to get good estimate of ground-state energy  $E_0$  of complicated systems. Claim

$$E_0 \le \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} = \langle \psi | H | \psi \rangle \tag{1.29}$$

if  $|\psi\rangle$  normalized.

**Proof:** Let

$$|\psi\rangle = \sum c_n |\psi_n\rangle, \qquad (1.30a)$$

with

$$H|\psi_n\rangle = E_n|\psi_n\rangle \tag{1.30b}$$

and

$$\langle \psi | \psi \rangle = 1 \tag{1.30c}$$

$$\Rightarrow \sum \|c_n\|^2 = 1 \tag{1.30d}$$

then

$$\langle \psi | H | \psi \rangle = \sum_{m,n} c_m^* c_n \langle \psi_m | H | \psi_m \rangle = \sum_{m,n} c_m^* c_n E_n \underbrace{\langle \psi_m | \psi_n \rangle}_{\delta_{mn}}$$

$$= \sum_n \|c_n\|^2 E_n \ge E_0 \sum_n \|c_n\|^2 = E_0$$

$$(1.30e)$$

### Example 1.3.1 (Harmonic oscillator):

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \frac{m}{2} \omega^2 x^2$$
 (1.31)

(of course we know  $E_0 = \frac{\hbar}{2}\omega$ ). Let

$$\psi(x) = Ae^{-bx^2} \tag{1.32a}$$

since

$$\langle \psi | \psi \rangle \stackrel{!}{=} 1 = \int dx \|A\|^2 e^{-2bx^2}$$
  
=  $\|A\|^2 \sqrt{\frac{\pi}{2b}}$  (1.32b)

compute

$$\langle \psi | H | \psi \rangle = ||A||^2 \int dx \, e^{-bx^2} \left( -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \frac{m}{2} \omega^2 x^2 \right) e^{-bx^2}$$

$$= \dots$$

$$= \frac{\hbar^2 b}{2m} + \frac{m\omega^2}{8b}$$

$$= \langle \psi | H | \psi \rangle$$

$$> E_0$$

$$(1.32c)$$

Minimize with respect to b

$$\frac{\mathrm{d}}{\mathrm{d}b} \langle \psi | H | \psi \rangle = \frac{\hbar^2}{2m} - \frac{m\omega^2}{8b^2} \tag{1.33a}$$

$$b_{\min} = \frac{m\omega}{2\hbar} \tag{1.33b}$$

$$E_{0} \leq \langle \psi | H | \psi \rangle_{\min}$$

$$= \frac{\hbar \omega}{2}$$
(1.33c)

in this case we get  $E_0$  exactly is a coincidence, since Ansatz=true wave function.

# 1.4 WKB approximation, semiclassical approximation

WKB for Wentzel, Kramers, Brillouin (see QMI Ch. 8.3.) useful for 1-dim problems with "smooth" popential. Schrödinger:

$$\left(-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}V(x)\right)\psi(x) = E\psi(x) \tag{1.34a}$$

if

$$V(x) \equiv V_0 \text{ const.}$$
 (1.34b)

$$\psi(x) = e^{\pm \frac{i}{\hbar} \sqrt{2m(E - V_0)}x} \tag{1.34c}$$

if V(x) is slowly varying. Ansatz

$$\psi(x) = e^{\frac{i}{\hbar}S(x)} \tag{1.34d}$$

Ansatz into Schrödinger:

$$\frac{-i\hbar}{2m}S'' + \frac{1}{2m}(S')^2 + V(x) - E = 0$$
 (1.34e)

equivalent to but more complicated than Schrödinger. Note for

$$V(x) \equiv V_0$$
$$S = \pm \sqrt{2m(E - V_0)} \cdot x$$

and

$$S'' = 0$$

first term  $\sim \hbar$  vanishes for

$$V(x) \equiv V_0$$
, (classical limit),

Let

$$S(x) = S_0(x) + \hbar S_1(x) + \mathcal{O}(\hbar^2)$$
 (1.35a)

plug in into differential equation for S

$$\frac{1}{2m} \left( S_0' \right)^2 + V(x) - E = 0 \tag{1.35b}$$

$$\Rightarrow S_0' = \pm \sqrt{2m(E - V(x))}$$

$$\equiv \pm p(x)$$
(1.35c)

$$S_0'S_1' - \frac{1}{2}S_0'' = 0 (1.35d)$$

$$\Rightarrow S_1' = \frac{i}{2} \frac{S_0''}{S_0'} = \frac{i}{2} \frac{p'(x)}{p(x)} \tag{1.35e}$$

solve these differential equation

$$S_0 = \pm \int^x \mathrm{d}x' \, p(x') \tag{1.35f}$$

$$S_1 = \frac{i}{2} \ln p(x) \tag{1.35g}$$

$$\Rightarrow \psi(x) = Ae^{\frac{i}{\hbar}(S_0 + \hbar_1)} \\ = \frac{A_+}{\sqrt{p(x)}} e^{\frac{i}{\hbar} \int dx' \, p(x')} + \frac{A_-}{\sqrt{p(x)}} e^{-\frac{i}{\hbar} \int dx' \, p(x')} (1.35h)$$

# THE HYDROGEN ATOM

# 2.1 Basics

Two body problem proton (1)-electron (2)

$$H = -\frac{\hbar^2}{2m_2} \nabla_1^2 - \frac{\hbar^2}{2m_2} \nabla_2^2 + V(\mathbf{r}_1 - \mathbf{r}_2)$$
 (2.1)

new variables

$$R = \frac{m_2 r_1 + m_2 r_2}{m_1 + m_2} \tag{2.2}$$

$$r = r_1 - r_2 (2.3)$$

$$M = m_1 + m_2 (2.4)$$

$$m = \frac{m_1 m_2}{m_1 + m_2} \tag{2.5}$$

$$H = -\frac{\hbar^2}{2M} \tag{2.6}$$

For hydrogen-like atoms

$$V(r) - \frac{Ze^2}{r} \tag{2.7a}$$

QMI uses spherical coordinates

$$\psi\left(\mathbf{r}\right) = R_{E\ell}\left(r\right) \mathcal{Y}_{\ell}^{m_{\ell}}\left(\vartheta,\varphi\right) 
= \frac{U_{E\ell(r)}}{r} Y_{\ell}^{m_{\ell}}\left(\vartheta,\varphi\right)$$
(2.7b)

Then  $Schrödinger \rightarrow \text{differential equation for } U_{E\ell}(r)$ 

$$U_{E_{\ell}} - \left(\frac{\ell(\ell+1)}{r^2} + \frac{2m(V(r) - E)}{\hbar^2}\right)U_{E\ell} = 0$$
 (2.7c)

 $\rightarrow$  eigenvalues

$$E_n = -\left(\frac{Ze^2}{\hbar}\right)^2 \frac{m}{2n^2}$$

$$= -\frac{(Ze)^2}{2n^2}$$

$$= -\frac{(Ze)^2}{2n^2} \frac{1}{a}$$

$$= -\frac{(Z\alpha)^2}{2n^2} mc^2$$
(2.7d)

Bohr radius  $a=\frac{\hbar^2}{mc^2}$  (Fine structure constant  $\alpha=\frac{\ell^2}{\hbar c}\simeq\frac{1}{137})$ 

$$n = 1, 2, 3, \dots$$
 (2.7e)

$$\ell = 0, 1, \dots, n - 1 \tag{2.7f}$$

$$m_{\ell} = -\ell, -\ell + 1, \dots, \ell \tag{2.7g}$$

for each n:

$$2\sum_{\ell=0}^{n-1} (2\ell+1) = 2n^2$$
, degeneracy (2.7h)

where the left-most 2 comes from the electron spin. Eigenfunctions

$$\psi_{n\ell m_{\ell}} = |n, \ell, m_{\ell}\rangle 
= \sqrt{\frac{\rho^{3} (n - \ell - 1)!}{(n + \ell)!}} L_{n-\ell+1}^{2\ell+1}(\rho r) e^{-\rho r/2} (\rho r)^{\ell} \mathcal{Y}_{\ell}^{m_{\ell}} (\vartheta, \varphi)$$
(2.7i)

# 2.2 Relativistic corrections

For  $Z\alpha \ll 1$ :  $E_n \ll mc^2 \to \text{non-relativistic system} \to \text{relativistic corrections}$  are small (so we can use Schrödingers equation)

$$T = \frac{p^2}{2m} \tag{2.8a}$$

$$\rightarrow \sqrt{p^2 c^2 - m^2 c^4} - mc^2 = \frac{p^2}{2m} - \frac{p^4}{8^3 c^2} + \dots$$
 (2.8b)

where  $-\frac{p^4}{8m^3c^2}$  are corrections to  $E_n$  computed with perturbation theory

$$\Delta E_{\text{rel}} = \langle n, \ell, m_{\ell} | \frac{-p^4}{8m^3c^2} | n, \ell, m_{\ell} \rangle$$

$$= -\frac{1}{2mc^2} \langle n, \ell, m_{\ell} | \left(\frac{p^2}{2m}\right)^2 | n, \ell, m_{\ell} \rangle$$

$$= -\frac{1}{2mc^2} \langle n, \ell, m_{\ell} | \left(H_0 + Z\frac{e^2}{r}\right)^2 | n, \ell, m_{\ell} \rangle \qquad (2.8c)$$

$$= -\frac{1}{2mc^2} \langle n, \ell, m_{\ell} | \left(H_0 + Z\frac{e^2}{r}\right)^2 | n, \ell, m_{\ell} \rangle$$

$$= -\frac{1}{2mc^2} \left(E_n^2 + 2Ze^2E_n \left\langle\frac{1}{r}\right\rangle_{n\ell m_{\ell}} + Z^2e^4 \left\langle\frac{1}{r^2}\right\rangle_{n\ell m_{\ell}}\right)$$

from exercise

$$\left\langle \frac{1}{r} \right\rangle_{n\ell} = \frac{Z}{an^2},$$

$$\left\langle \frac{1}{r^2} \right\rangle_{n\ell} = \frac{Z^2}{a^2 n^3 \left(\ell + \frac{1}{2}\right)} \quad \left\langle \frac{1}{r^3} \right\rangle_{n\ell} = \frac{Z^3}{a^3 n^3 \ell \left(\ell + \frac{1}{2}\right) \left(\ell + 1\right)}$$

$$\Delta E_{\text{rel}} = -E_n \underbrace{\frac{\left(Ze^2\right)^2}{\hbar^2 c^2}}_{(Z\alpha)^2} \frac{1}{n^2} \left(\frac{3}{4} - \frac{n}{\ell + \frac{1}{2}}\right)$$
(2.8e)

# 2.3 Spin-orbit term

naive "derivation"

(1) Electron with spin  $\rightarrow$  magnetic dipole moment

$$\mu = \frac{e}{m} \frac{g}{2} \mathbf{s} \,, \tag{2.9}$$

$$\mu = \frac{e}{T}\pi r^2$$
,  $s = \frac{2\pi}{T}mr^2$ ,  $g \simeq \text{(from Dirac)}$  (2.10)

(2) Electron feeds magnetic field due to the proton

$$\mathbf{E} \sim \frac{e}{r^3} \mathbf{r} \tag{2.11}$$

wrong by factor 2 (Thomas precession)

correct result

$$H_{SO} = \frac{Ze^2}{2mc^2} \frac{1}{r^3} \mathbf{L} \cdot \mathbf{S}, \quad (\sim -\mathbf{\mu} \cdot \mathbf{B})$$
 (2.13)

To describe spin

$$\left| n, \ell, \left( s = \frac{1}{2}, m_s \right) \right\rangle = \psi_{n\ell m_\ell m_s}$$

$$= \psi_{n\ell m_\ell} \left( r, \theta \varphi \right) \chi_{m_s}$$
(2.14a)

with  $\chi_{m_s}$  spin-orbit

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{2.14b}$$

Note  $H_{\rm SO}$  "mixes" states with same  $\ell$ , but different  $m_\ell, m'_\ell \to$  use degenerate perturbation theory with  $2 \cdot (2\ell+1) \times \underbrace{2}_{\rm spin} \underbrace{(2\ell+1)}_{m_\ell}$  matrix

$$\langle n, \ell, m'_{\ell}, m'_{s} | H_{SO} | n, \ell, m'_{\ell}, m'_{s} \rangle \rightarrow \text{diagonalize}$$
 (2.15)

recall degenerate perturbation theory  $\rightarrow$  find "good" linear combination that diagonalize this matrix by looking for symmetry use total angular momentum

$$J \equiv L + S \tag{2.16}$$

for  $\ell = 0$   $j = \frac{1}{2}$ , for  $\ell \neq 0$   $j = \ell \pm \frac{1}{2}$ . Use states

$$|n,\ell,j,m_j\rangle \tag{2.17}$$

$$|n,\ell,j,m_j\rangle = \sum_{m_\ell,m_s} |n,\ell,m_\ell,m_s\rangle \underbrace{\langle n,\ell,m_\ell,m_s|n,\ell,j,m_j\rangle}_{\text{Clebsch-Gordan}}$$
 (2.18)

use

$$J^2 = L^2 + 2L \cdot S + S^2 \tag{2.19a}$$

$$L \cdot S = \frac{1}{2} \left( J^2 - L^2 - S^2 \right)$$
 (2.19b)

 $|n,\ell,j,m_i\rangle$  are eigenstates of

$$H_0, L^2, S^2, J^2, J_z (2.20)$$

with eigenvalues

$$E_n, \hbar^2 \ell (\ell+1), \hbar^2 \frac{3}{4}, \hbar^2 j (j+1), \hbar m_j$$
 (2.21)

$$\Delta E_{SO} = \langle n, \ell, j, m_j | H_{SO} | n, \ell, j, m_j \rangle$$
 (2.22)

for  $\ell = 0$ 

$$\Delta E_{\rm SO} = 0 \tag{2.23a}$$

for  $\ell \neq 0$ 

$$\Delta E_{SO} = \frac{Ze^2}{2m^2c^2} \langle n, \ell, j, m_j | \frac{1}{r^3} \frac{1}{2} \left( J^2 - L^2 - S^2 \right) | n, \ell, j, m_j \rangle$$

$$= \frac{Ze^2}{2m^2c^2} \left\langle \frac{1}{r^3} \right\rangle \frac{\hbar^2}{2} \left( j \left( j + 1 \right) - \ell \left( \ell + 1 \right) - \frac{3}{4} \right)$$

$$= -E_n \frac{\left( Z\alpha \right)^2}{2n \left( \ell + \frac{1}{2} \right)} \begin{cases} \frac{1}{\ell+1} & j = \ell + \frac{1}{2} \\ -\frac{1}{\ell} & j = \ell - \frac{1}{2} \end{cases}$$
(2.23b)

# 2.4 Darwin term

Sloppy consideration electron position fluctuates by  $\delta r \simeq \lambda_c \simeq \frac{\hbar}{mc}$  electron feels average potential

$$\langle V(r+\delta r)\rangle = \langle V(r)\rangle + \underbrace{\frac{1}{2}\langle \delta\rangle r \cdot \nabla \delta r \cdot \nabla V}_{(2.24)}$$

correct result is

$$H_D = \frac{\hbar^2}{8m^2c^2}\nabla^2V$$

$$= \frac{\pi\hbar^2Ze^2}{2m^2c^2}\delta(r)$$
(2.25)

only for  $\ell = 0!$ 

$$\Delta E_D = \langle n, \ell, j, m_j | H_D | n, \ell, j, m_j \rangle$$

$$= \frac{\pi \hbar^2 Z e^2}{2m^2 c^2} \|\psi_{n\ell}(0)\|^2$$

$$= -E_n \frac{(Z\alpha)^2}{m} \delta_{\ell 0}$$
(2.26)

# 2.5 Fine structure of hydrogen

Combine  $\Delta E_{\rm rel}$ ,  $\Delta E_{\rm SO}$  and  $\Delta E_D$ 

$$\Delta E_n = -E_n^{(0)} \frac{(Z\alpha)^2}{n^2} \left( \frac{3}{4} - \frac{n}{j + \frac{1}{2}} \right)$$
 (2.27)

valid for  $\ell = 0$ , i.e.  $j = \frac{1}{2}$  and  $j = \ell \pm \frac{1}{2}$ .

fine structure suppressed  $\sim (Z\alpha)^2$  relative to  $E_n^{(0)}$  only depends on j (not independently on  $\ell$  and s).

Notation for states  $nL_J$ 

$$n = 1, 2, \dots$$
  
 $L \equiv S(\ell = 0), P(\ell = 1), D(\ell = 2), F(\ell = 3)$ 

#### 2.5.1 first few states

$$\ell = 0 \quad \ell = 1 \quad \ell = 2 \quad \text{degeneracy } 2n^2$$
   
  $n = 1$ 

Figure 2.1:

# 2.6 Corrections beyound fine structure

## 2.6.1 Hyperfine structure

Effect of proton spin Sp

$$\mu_p = \frac{e}{2m_p} g_p \mathbf{s}_p \tag{2.28}$$

 $\mu_p$ indices B-field<br/> $\mu$  of electron "feels"  $B\text{-field}\sim \mathbf{\mu}\cdot \mathbf{B}$ 

$$\rightarrow \Delta E_{\rm Hfs} \sim (Z\alpha)^4 \frac{m_e}{m_p},$$
 (2.29)

with  $\left(Z\alpha\right)^4$  as always and  $\frac{m_e}{m_p}$  suppression. total spin

$$F = S_e + S_p$$

$$= \begin{cases} 1 & \text{triplet} \\ 0 & \text{singlet} \end{cases}$$
(2.30)

# 2.6.2 Lamb shift (needs QED!)

 $\leadsto$  modification of Coulomb potential. splits e.g.  $2S_{\frac{1}{2}}$  and  $2p_{\frac{1}{2}}$ 

$$\Delta E_{\text{Lamb}} \sim (Z\alpha)^4 \cdot \alpha \left(\frac{1}{\log(Z\alpha)}\right) \dots$$
 (2.31)

# Many Electron Atoms

$$H = \sum_{i=1}^{N} \left( \frac{p^2}{2m} - \frac{Ze^2}{r} \right) + \underbrace{\sum_{i>j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}}_{1}$$
(3.1)

 $\rightarrow$  complicated! we want:

$$H\psi(1,\ldots,N) = E\psi(1,\ldots,N) \tag{3.2}$$

# 3.1 Identical particles

Consider N identical particles H(1,...,N) wave function  $\psi(1,\cdots,N)$ .

In classical mechanics we can always distinguish these n particles state. In Quantum Mechanics, we cannot keep track of individual particles if their wave functions overlap. Defin permutation operator  $P_{ij}$  interchanging i and j

$$P_{ij}\psi(1,...,i,...,j,...,N) = \psi(1,...,j,...,i,...,N)$$
 (3.3a)

$$P_{ij}^2 = 1$$
 (3.3b)

$$\Rightarrow$$
 evals  $\pm 1$  (3.3c)

<sup>&</sup>lt;sup>1</sup>interaction between electrons



Figure 3.1:

H must be invariant under  $i \leftrightarrow j$ 

$$\Rightarrow [H, P_{ij}] = 0 \tag{3.4}$$

There are N! permutations of elements  $1 \cdots N$ , they fall into two classes, even and odd:

$$\operatorname{tr}(P) = \begin{cases} +1 & (-1)^2 \text{ even nr. of Interchanges} \\ -1 & (-1)^2 \text{ odd nr. of Interchanges} \end{cases}$$
(3.5)

we have [H, P]. P is unitary since

$$\langle \chi | \psi \rangle = \langle P\xi | P\psi \rangle$$

$$= \langle \xi | P^{\dagger}P | \psi \rangle$$
(3.6a)

$$\Rightarrow P^{\dagger}P = 1 \tag{3.6b}$$

for any observable A we have

$$[A, P] = 0.$$
 (3.6c)

(*Identical* part) two combinations are important:

i) totally symmetric  $|\psi\rangle_S$  with

$$P |\psi\rangle_S = |\psi\rangle_S \tag{3.7}$$

with  $|\psi\rangle_S$  completely symmetric linear combination of all N! Permutations.

ii) totally antisymmetric  $|\psi\rangle_A$  with

$$P |\psi\rangle_A = (-1)^P |\psi\rangle_A \tag{3.8}$$

Example N=3

$$|\psi\rangle_{S} = \frac{1}{\sqrt{3!}} \left( \psi(1,2,3) + \psi(2,1,3) + \psi(1,3,2) + \psi(2,3,1) \right) + \psi(3,1,2) + \psi(3,2,1)$$

$$|\psi\rangle_A = \frac{1}{\sqrt{3!}} \left( \psi(1,2,3) + \psi(2,3,1) + \psi(3,2,1) - \psi(2,1,3) - \psi(3,2,1) - \psi(1,3,2) \right)$$

$$- \psi(3,2,1) - \psi(1,3,2)$$

**spin-statistics theorem** particles with *integer spin* (bosons) are described by *symmetric* wave-functions

particles with half-integer spin (fermions) are described by antisymmetric wave functions

Bosonic case:

$$\psi_S(1,...,N) = \frac{1}{\sqrt{N!}} \sum_{p \in S_n} \psi_1(P(1))...\psi_N(P(N))$$
 (3.10a)

fermionic case

$$\psi_A(1,...,N) = \frac{1}{\sqrt{N!}} \sum_{n \in S_-} (-1)^P \psi_1(P(1)) ... \psi_N(P(N))$$
 (3.10b)

 $\psi_A$  can be written as a Slater determinant

$$\psi_A(1,\ldots,N) = \frac{1}{\sqrt{N!}} \det \begin{pmatrix} \psi_1(1) & \cdots & \psi_1(N) \\ \vdots & \ddots & \vdots \\ \psi_N(1) & \cdots & \psi_N(N) \end{pmatrix}$$
(3.10c)

**Pauli exclusion principle** Two identical fermions (same quantum number, s,...) cannot be at the same position. Wave function vanishes for  $r_i, r_j; s_i = s_j, \cdots$  i.e.  $1 = 2 \rightarrow$  Fermi gas.

# 3.2 Thomas-Fermi approximation

 $\simeq$  semi classical: assume each electron feels average potential  $\Phi(r)$ , (spherically symmetric)

$$V = -\frac{Ze^2}{r} \xrightarrow{\text{other electron}} -e\Phi(r)$$
 (3.11)

Poisson equation:

$$\nabla^2 \Phi = -4\pi \tilde{\rho} \stackrel{r > 0}{=} 4\pi e \rho(r) \tag{3.12}$$

total charge density (other electron and nucleus)

$$\tilde{\rho} = -e\rho(r) + Ze\delta(r) \tag{3.13}$$

find relation between  $\rho$  and  $\Phi$ . Let n be nr. states in certain energy range

$$n = \frac{2}{(2\pi\hbar)^3}$$
, if  $E = \frac{p^2}{2m} - e\Phi < 0$  (3.14a)

$$n = 0$$
, if  $E = \frac{p^2}{2m} - e\Phi > 0$  (3.14b)

$$\rho = \int_{0}^{\sqrt{2me\Phi}} d^{3} pn$$

$$= \frac{(4\pi) 2}{(2\pi\hbar)^{3}} \int_{0}^{\sqrt{2me\Phi}} dp \, p^{2}$$

$$= \frac{\rho\pi}{3 (2\pi\hbar)^{3}} (2me\Phi)^{3/2}$$
(3.14c)

plug this into Poisson  $\rightarrow$  differential equation for  $\Phi$ 

$$\nabla^2 \Phi = \frac{1}{R} \frac{\mathrm{d}^2}{\mathrm{d}r^2} \Phi(r)$$

$$= \frac{32\pi^2 e}{3(2\pi\hbar)^3} (2me\Phi)^{3/2}$$
(3.15)

solve numerically. boundary condition:

$$\phi(r) \to \frac{Ze}{r}$$
, for  $r \to 0$  (3.16a)

normalize

$$4\pi \int \mathrm{d}r \,\rho(r)r^2 = Z \tag{3.16b}$$

→ "radius" of atom (contains all but one electron)

$$\overline{R} \simeq \text{constant} \cdot a \cdot Z^{1/3}$$
 (3.17)

# 3.3 The Hartree approximation

Assume

$$\psi(1\dots N) = \varphi_1(1)\dots\varphi_N(N) \tag{3.18a}$$

as solution to

$$H\psi = E\psi \tag{3.18b}$$

with

$$H = \sum_{i} \left( \frac{p_i^2}{2m} - \frac{Ze^2}{r_i} \right) + \sum_{i>j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$
(3.18c)

let  $\varphi_i$  be distinct and orthogonal (partially taking into account Pauli principle) and normalized

$$\int d^3 r_i \left| \varphi_i(r_i) \right|^2 = 1 \tag{3.19}$$

Want to find stationary state with respect to variation in  $\varphi_i$  taking into account normalization via Lagrange multipliers  $\varepsilon_i$ 

$$\langle H \rangle = \sum_{i} \int d^{3}\mathbf{r} \left( \varphi_{i}^{*}(\mathbf{r}) \left( -\frac{\hbar^{2}}{2m} \nabla^{2} - \frac{Ze^{2}}{r} \right) \varphi_{i}(r) \right)$$

$$+ \sum_{i>j} \int d^{3}\mathbf{r} \int d^{3}\mathbf{r} \varphi_{i}^{*}(\mathbf{r}) \varphi_{j}^{*}(\mathbf{r}) \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \varphi_{i}(r) \varphi_{j}(r')$$

$$+ \sum_{i} \varepsilon_{i} \left( \int d^{3}r |\varphi_{i}(r)|^{2} - 1 \right)$$

$$(3.20)$$

take functional derivative  $\frac{\delta}{\delta \varphi_*^*}$ 

$$\left(-\frac{\hbar}{2m}\nabla^2 - \frac{Ze^2}{r}\right)\varphi_i + V_i(r)\varphi_i(r) = \varepsilon_i\varphi_i(r)$$
(3.21a)

$$V_i(r) = \sum_{j \neq i} \int d^3 r' \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} |\varphi_j(\mathbf{r}')|^2 (3.21b)$$

interaction of *i*-th electron with potential caused by all other  $(j \neq i)$  electrons  $\varepsilon_i$ : ionization energy of *i*-ith electron. "solve" numerically with iterative procedure, start with "guess" for  $\varphi_i^{(0)}$ .  $\Rightarrow$  into Eq. 3.21b  $\Rightarrow V_i^{(0)} \Rightarrow$  into Eq. 3.21a solve  $\Rightarrow \varphi_i^{(1)} \Rightarrow$  etc.

physical interpretation of Lagrange multipliers  $\varepsilon_i \varphi_i^* \cdot 3.21a$ 

$$\Rightarrow \int d^3r \left( \frac{-\hbar^2}{2m} |\nabla_i \varphi_i|^2 + \left( -\frac{Ze^2}{r_i} + V_i \right) |\varphi_i|^2 \right) = \varepsilon_i \qquad (3.22a)$$

with  $\varepsilon_i$  the ionization energy of *i*-th electron, assuming others are not affected.

# 3.4 Hartree-Fock approximation

improved ansatz for

$$\psi(1,\dots,N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_1(1) & \cdots & \varphi_N(1) \\ \vdots & \ddots & \vdots \\ \varphi_1(N) & \cdots & \varphi_N(N) \end{vmatrix}$$
(3.23a)

fully comptible with Pauli  $\leadsto$  as for Hartree, plug into H and minimize. Eq. 3.21a stayse the same. Eq. 3.21b

$$\frac{1}{2} \sum_{j \neq i} \int d^3 \mathbf{r}_i \int d^3 \mathbf{r}_j \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \\
\times \left( \varphi_i^*(r_i) \varphi_j^*(r_j) \varphi_i(r_i) \varphi_j(r_j) - \varphi_i^*(r_i) \varphi_j^*(r_j) \varphi_i(r_j) \varphi_j(r_i) \right)$$
(3.24a)

with  $\varphi_i^*(r_i)\varphi_j^*(r_j)\varphi_i(r_i)\varphi_j(r_j)$  the Hartree term and  $\varphi_i^*(r_i)\varphi_j^*(r_j)\varphi_i(r_j)$  the exchange term.

To understand exchange term consider N=2

$$\psi(1,2) = \frac{1}{\sqrt{2!}} \left( \varphi_i(1) \varphi_2(2) - \varphi_1(2) \varphi_2(1) \right)$$
 (3.25a)

"new" in H-F write down all terms for

$$\langle \psi | \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} | \psi \rangle = \frac{1}{2} \int d^3 \mathbf{r}_1 \int d^3 \mathbf{r}_2 \left( \varphi_1^*(r_1) \varphi_2^*(r_2) \varphi_1(r_1) \varphi_2(r_2) + \text{``}1 \leftrightarrow 2 \text{''} \right)$$
$$- \varphi_1^*(r_1) \varphi_2^*(r_2) \varphi_1(r_2) \varphi_2(r_1) - \text{``}1 \leftrightarrow 2 \text{''})$$

# 3.5 The periodic table and Hund's rules

Electron in atom feels effective potential  $V_{\rm eff}$  (from nucleus and other electron) which is spherically symmetric.

$$\psi_i = R_{n\ell}(r) Y_\ell^m \left(\theta, \varphi\right) \chi_{m_s} \,, \tag{3.26a}$$

with  $\chi_{m_s}$  the spin and  $R_{n\ell}$  different from hydrogen

### general rules

$$\begin{cases} n \text{ small} & \text{stronger binding} \\ \ell \text{ small} & \text{electron is closer to nucleus} \end{cases} \tag{3.27}$$

"compete sometimes". for each n:

configuration of electron  $\rightarrow$  chemical properties of elements. What is the configuration (total spin, L, J) of the outer electron.  $\rightarrow$  Hund's rules (empirical) [Notation  $^{2s+1}L_J$ ]

**Example 3.5.1:** Carbon  $(1s)^2 (2s)^2 (2p)^2$  for each of the 2 2p-electrons 2p-electrons we can have  $m_{\ell} = -1, 0, 1, m_s = -\frac{1}{2}, \frac{1}{2}. \rightarrow 6$  possibilities for both

$$\frac{6 \cdot 5}{2} = 15 \text{ possibilities} \tag{3.29}$$

$$L = {0, 2 \atop 1 \text{ symmetric}}$$
 (3.30a)

$$S = \frac{1 \quad \text{symmetric}}{0 \text{anti-symmetric}} \tag{3.30b}$$

total wave function is antisymmetric

Which one is ground state?  $\rightarrow$  Hund's rules

#### (1) make spin maximal

$$\rightarrow$$
 spin part more symmetric  $\rightarrow$  orbital port more asymmetric  $\rightarrow$  electron further away from each other  $\rightarrow$  less repulsion (3.32)

for C: s = 1

#### (2) make L maximal

$$\rightarrow$$
 electron average further away from each other  $\rightarrow$  less repulsion (3.33)

no impaft for C

(3)

$$\Delta E_{\rm SO} = {\rm constant} \left( j \left( j+1 \right) - \ell \left( \ell +1 \right) - s \left( s+1 \right) \right) \tag{3.34a}$$
 
$${\rm constant} \begin{cases} >0 & {\rm if \ subshell \ } no \ {\rm more \ than \ half \ filled \ } J = |L-S| \\ <0 & {\rm if \ subshell \ more \ than \ half \ filled \ } J = |L+S| \end{cases} \tag{3.34b}$$

for C first case and

$$J = |L - S| \tag{3.35}$$
$$= 0$$

ground state  ${}^{3}P_{0}$ 

# APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

We now want to know time evolution

$$|\psi(t)\rangle = U(t, t_0) |\psi(t_0)\rangle \tag{4.1}$$

We know:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H(t) |\psi(t)\rangle$$
 (4.2)

with H(t) now time dependent  $\rightarrow$  more complicated relation between H and U

# 4.1 Time-dependent perturbation theory

Let

$$H(t) = H_0 + \lambda V(t), \qquad (4.3a)$$

with  $H_0$  time independent and that can be solved and V(t) with t the "only" difference to chapter 1.

$$H_0 \left| \psi_n^{(0)} \right\rangle = E_n^{(0)} \left| \psi_n^{(0)} \right\rangle \tag{4.3b}$$

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H(t) |\psi(t)\rangle$$
 (4.3c)  
=  $(H_0 + \lambda V(t)) |\psi(t)\rangle$ 

for any t:

$$|\psi(t)\rangle = \sum_{n} c_n(t)e^{-\frac{i}{\hbar}E_n^{(0)}} \left|\psi_n^{(0)}\right\rangle \tag{4.3d}$$

$$\langle \psi(t)|\psi(t)\rangle = 1 \tag{4.3e}$$

$$\Rightarrow \sum_{n} \left| c_n \right|^2 = 1 \tag{4.3f}$$

we can also write

$$V(t) \left| \psi_n^{(0)} \right\rangle = \sum_{m} \left| \psi_m^{(0)} \right\rangle \left\langle \psi_m^{(0)} \right| V(t) \left| \psi_n^{(0)} \right\rangle \tag{4.3g}$$

with

$$\left\langle \psi_m^{(0)} \middle| V(t) \middle| \psi_n^{(0)} \right\rangle = V_{mn}(t)$$
 (4.3h)

 $\rightarrow$  into Schrödinger

$$\sum_{n} \left( i\hbar \dot{c}_{n} + E_{n}^{(0)} c_{n} \right) \left| \psi_{n}^{(0)} \right\rangle = \sum_{n} c_{n} e^{-\frac{i}{\hbar} E_{n}^{(0)} t} \left( E_{n}^{(0)} \left| \psi_{n}^{(0)} \right\rangle + \lambda \sum_{m} V_{mn}(t) \left| \psi_{m}^{(0)} \right\rangle \right)$$
(4.3i)

swap labels m and n on rhs

$$\sum_{n} i\hbar \dot{c_n} e^{-\frac{i}{\hbar}E_n^{(0)}t} \left| \psi_n^{(0)} \right\rangle = \sum_{n,m} \lambda c_m e^{-\frac{i}{\hbar}E_m^{(0)}t} V_{nm}(t) \left| \psi_n^{(0)} \right\rangle \tag{4.3j}$$

$$\Rightarrow \dot{c_n} = (i\hbar)^{-1} \lambda \sum_{m} V_{mn} e^{\frac{i}{\hbar} \left(E_n^{(0)} - E_m^{(0)}\right)t} c_m \quad (4.3k)$$

with

$$\omega_{nm} = \frac{E_n^{(0)} - E_m^{(0)}}{\hbar} \tag{4.31}$$

so

$$\dot{c_n} = (i\hbar)^{-1} \lambda \sum_{m} V_{nm} e^{i\omega_{nm}t} c_m.$$
 (4.3m)

Now expand in  $\lambda$  ( $\rightarrow$  perturbation theory)

$$c_n = c_n^{(0)} + \lambda c_n^{(1)} + \lambda^2 c_n^{(2)} + \dots$$
 (4.3n)

$$\dot{c}_n^{(0)} = 0, \quad \mathcal{O}(\lambda^0) \tag{4.30}$$

$$c_n^{(1)} = (i\hbar)^{-1} \sum V_{nm} e^{i\omega_{nm}t} c_m^{(0)}$$
 (4.3p)

. . .

$$c_n^{(j)} = (i\hbar)^{-1} \sum_m V_{nm} e^{i\omega_{nm}t} c_m^{(j-1)}$$
 (4.3q)

Let system be in state  $\left|\psi_{i}^{(0)}\right\rangle$  at time to initial condition

$$c_m^{(0)} = \delta_{im} \tag{4.3r}$$

$$\dot{c}_f^{(1)} = (i\hbar)^{-1} V_{fi} e^{i\omega_{fi}t} \tag{4.3s}$$

$$c_f^{(1)}(t) = (i\hbar)^{-1} \int_{t_0}^t dt' V_{fi}(t') e^{i\omega_{fi}t'}$$
 (4.3t)

 $\rightarrow$  transition probability for the system to be found in state  $\left|\psi_f^{(0)}\right\rangle$  at time t.

$$P_{i \to f} = \left| c_f^{(1)} \right|^2$$

$$= \frac{1}{\hbar^2} \left| \int_{t_0}^t dt' \ V_{fi} e^{i\omega_{fi}t'} \right|^2 + \mathcal{O}\left(\lambda^2\right)$$
(4.3u)

approximation only valif if

$$\left|c_f\right|^2 \ll 1\tag{4.3v}$$

Higher orders in  $\lambda$  will be covered section 4.4 and Exercise

# 4.2 Constant perturbation

Let

$$V(t) = \begin{cases} 0 & \text{for } t < t_0 (=0) \\ V & \text{(constant) for } t > t_0 \end{cases}$$

$$\tag{4.4a}$$

$$P_{i \to f} = \frac{1}{\hbar^2} |V_{fi}|^2 \left| \int_{t_0=0}^t dt' e^{i\omega_{fi}t'} \right|,$$
 (4.4b)

using

$$\int_{t_0}^{t} dt' e^{i\omega_{fi}t'} = \frac{2}{\omega^2} \left( 1 - \cos \omega_{fi}t \right)$$

$$= \frac{4}{\omega^2} \sin^2 \left( \frac{\omega_{fi}t}{2} \right),$$
(4.4c)

and

$$\delta_t(\alpha) \equiv \frac{\sin^2(\alpha t)}{\pi \alpha^2 t} 
= \begin{cases} \frac{t}{\pi} & \alpha = 0 \\ < \frac{1}{\pi \alpha^2 t} & \alpha \neq 0 \end{cases},$$
(4.4d)



Figure 4.1:

which is plotted in Fig. 4.1

$$\lim_{t \to \infty} P_{i \to f} = \frac{\pi t}{\hbar^2} |V_{fi}|^2 \delta\left(\frac{E_f^{(0)} - E_j^{(0)}}{2\hbar}\right)$$
(4.4e)

$$P_{i \to f} = \frac{2\pi t}{\hbar} |V_{fi}|^2 \delta \left( E_f^{(0)} - E_i^{(0)} \right)$$
 (4.4f)

transition rate= probability/time

$$\Gamma_{fi} = \frac{2\pi}{\hbar} \left| V_{fi} \right|^2 \delta \left( E_f - E_i \right) \tag{4.4g}$$

Consider transitions into continuous specturm  $\rho(E)$ 

$$\int_{E_1}^{E_2} dE \, \rho(E) = \text{number of states in energy range } E_1 - E_2 = 0.5$$

$$\sum_{f} \Gamma_{fi} \to \int dE \, \rho(E) \Gamma_{fi} = \frac{2\pi}{\hbar} \rho(E_f) |V_{fi}|^2$$
(4.5b)

golden rule!

requires continum of states and applicability of perturbation theory.

# 4.3 Periodic perturbations

Let

$$V(t) = \left(Ve^{-i\omega t} + V^{\dagger}e^{+i\omega t}\right), \quad \text{for } t > t_0 = 0 \tag{4.6}$$

The transition probability  $P_{i\to f}$  is given by

$$P_{i \to f}(t) = \frac{1}{\hbar} \left| \int_{t_0}^t dt' \left( V_{fi} e^{i(\omega_{fi} - \omega)t'} + V_{fi}^{\dagger} e^{i(\omega_{fi} + \omega)t'} \right) \right|^2$$

$$= \frac{\pi t}{\hbar^2} \left( \left| V_{fi} \right|^2 \sin^2 \left( \frac{t}{2} \left( \omega_{fi} - \omega \right) \right) + \left| V_{fi}^{\dagger} \right|^2 \frac{\sin^2 \left( \frac{t}{2} \left( \omega_{fi} + \omega \right) \right)}{\pi t \left( \frac{\omega_{fi} + \omega}{2} \right)^2} \right| 4.7a \right)$$

$$+ \Re \left( V_{fi} V_{fi}^{\dagger} \cdot \mathcal{F} \left( \omega_{fi}, \omega \right) \right) \right)$$

with  $\mathcal{F}(\omega_{fi}, \omega)$  the interference pattern

the behaviour for large  $t,\,t>\frac{2\pi}{\omega}$  (recall  $\sin^2\to\delta$ -function), interference term vanishes, transition rate

$$\Gamma_{i \to f} = \frac{P_{i \to f}}{t}$$
, for large  $t$  (4.8a)

$$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \left( |V_{fi}|^2 \delta \left( \underbrace{E_f - E_i - \hbar\omega}_{E_f = E_i + \hbar\omega} \right) + |V_{fi}^{\infty}|^2 \delta \left( \underbrace{E_f - E_i + \hbar\omega}_{E_f = E_i - \hbar\omega} \right) \right)$$
(4.8b)

= absorption of  $\hbar\omega$  + emission of  $\hbar\omega$ 

 $\rightarrow$  inteaction of matter with radiation

# 4.4 The Interaction picture

Consider again evolution operator

$$|\psi(t)\rangle = U(t, t_0) |\psi(t_0)\rangle \tag{4.9}$$

i) 
$$U(t, t_0) = 1$$

ii) 
$$U(t, t_1) U(t_1, t_0) = U(t, t_0)$$

iii)

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H(t) |\psi(t)\rangle$$

$$= i\hbar \frac{\partial}{\partial t} U(t, t_0) |\psi(t_0)\rangle$$

$$= H(t) U(t, t_0) |\psi(t_0)\rangle$$
(4.10)

U satisfies

$$i\hbar \frac{\partial}{\partial t} U(t, t_0) = H(t)U(t, t_0)$$
 (4.11a)

Formial solution:

$$U(t,t_0) = 1 + (i\hbar)^{-1} \int_{t_0}^t dt' H(t') U(t',t_0)$$
(4.11b)

"solve" by iteration

$$U(t,t_0) = \sum_{n=0}^{\infty} U^{(n)}(t,t_0)$$

$$= 1 + U^{(1)} + \dots$$
(4.11c)

$$U^{(1)}(t,t_0) = (i\hbar)^{-1} \int_{t_0}^{t} dt_1 H(t_1)$$
(4.11d)

$$U^{(2)}(t,t_0) = (i\hbar)^{-2} \int_{t_0}^t dt_2 H(t_2) \int_{t_0}^t dt_1 H(t_1)$$

$$= \frac{(i\hbar)^{-2}}{2!} \int_{t_0}^t dt_1 h dt_2 T(H(t_1) H(t_2))$$
(4.11e)

(last step see exercise)

$$\vdots = \vdots$$

$$U^{(n)}(t, t_0) = (i\hbar)^{-n} \int_{t_0}^t dt_n \, H(t_n) \int_{t_0}^{t_n} dt_{n-1} \, H(t_{n-1}) \dots \int_{t_0}^{t_2} dt_1 \, H(T_1)$$

$$= \frac{1}{n!} (i\hbar)^{-n} \int_{t_0}^t dt_n \int_{t_0}^t dt_{n-1} \dots \int_{t_0}^t dt_1 \, T(H(t_n) \dots H(t_1))$$
(4.11g)

with T the time ordering operator

$$T\left(H(t_1)\dots H\left(t_1\right)\right) = H\left(t_{\tau(1)}\dots H\left(t_{\tau(n)}\right)\right) \tag{4.11h}$$

if

$$t_{\tau(1)} > t_{\tau(2)}$$

$$> \dots$$

$$> t_{\tau(n)}$$

$$(4.11i)$$

full solution

$$U\left(t,t_{0}\right) = T\left[e^{-\frac{i}{\hbar}\int_{t_{0}}^{t}\mathrm{d}t'\,H\left(t'\right)}\right] \tag{4.11j}$$

cannot be expanded in a useful way. All terms are equally important.

T: time ordering

$$T(H(t_1), H(t_2)) \equiv H(t_1) H(t_2) \vartheta(t_1 - t_2) + H(t_2) H(t_1) \vartheta(t_2(4.12a))$$

$$T(H(t_1), H(t_2)H(t_3)) = H(t_1) H(t_2) H(t_3) \vartheta(t_1 - t_2) \vartheta(t_2 - t_3)$$
(4.12b)

$$T(H(t_1), H(t_2)H(3)) = H(t_1) H(t_2) H(t_3) \vartheta(t_1 - t_2) \vartheta(t_2 - t_3) + H(t_1) H(t_3) H(t_2) \vartheta(t_1 - t_3) \vartheta(t_3 - t_1)^{(4.12b)} + 4 \text{ more terms}$$

to make approximations posible, us interaction picture. recall

#### Schrödinger picture:

$$|\psi_S(t)\rangle$$
,  $A_S$  (time independent) (4.13)

with  $\psi_S(t)$  time dependent

#### Heisenberg picture:

$$|\psi\rangle_{H} = |\psi(t_{0})\rangle$$

$$= U(t_{0}, t) |\psi(t)\rangle$$
(4.14a)

with

$$A_H(t) = U(t_0, t) AU(t, t_0)$$
 (4.14b)

#### interaction picture:

$$H = H_0 + V(t) (4.15a)$$

with  $H_0$  time independent

$$U_0(t, t_0) = e^{-\frac{i}{\hbar}H_0(t - t_0)}$$
(4.15b)

$$\begin{split} \psi\left(t\right)_{I} &= \\ &\equiv U_{0}\left(t_{0}, t\right) \left|\psi(t)\right\rangle \\ &= U_{0}\left(t_{0}, t\right) U\left(t, t_{0}\right) \left|\psi\right\rangle_{H} \end{split} \tag{4.15c}$$

$$A_I(t) \equiv U_0(t_0, t) A U_0(t, t_0)$$
 (4.15d)

 $A_I(t)$  and  $|\psi(t)\rangle$  both time dependent

Time evolution in interaction picture

$$|\psi(t)\rangle_I = U_I(t, t_1) |\psi(t_1)\rangle_I \tag{4.16a}$$

where

$$U_{I}(t, t_{1}) = U_{0}(t_{0}, t) U(t, t_{1}) U_{0}(t_{1}, t_{0})$$
(4.16b)

$$i\hbar \frac{\partial}{\partial t} U_I(t, t_1) = V_I(t) U_I(t, t_1)$$
(4.17)

$$i\hbar \frac{\partial}{\partial t} U(t, t_1) = H(t)U(t, t_1)$$
 (4.18)

$$U_{I}(t,t_{1}) = Te^{-\frac{i}{\hbar} \int_{t_{1}}^{t} dt' V_{I}(t')}$$
(4.19)

If V(t) "small", can do perturbation theory by expanding exponential. Structure of expansion

$$U_{I}(t,t_{0}) = 1 + (i\hbar)^{-1} \int_{t_{0}}^{t} dt \, V_{I}(t) + (i\hbar)^{-1} \int_{t_{0}}^{t} dt_{1} \int_{t_{1}}^{t_{1}} dt_{2} \, V_{I}(t_{1}) V_{I}(t_{2}) + \dots$$
(4.20)

Compurae to Chapter 4.1. Let V(t) = 0 for  $t < t_0$ 

Amplitude for initial state  $\left|\psi_{i}^{(0)}\right\rangle$  to go over into final state

$$\left\langle \psi_f^{(0)} \middle| \psi_i(t) \right\rangle = \left\langle \psi_f^{(0)} \middle| U_I(t, t_0) \middle| \psi_i^{(0)} \right\rangle$$

$$= \underbrace{\left\langle \psi_f^{(0)} \middle| \psi_i^{(0)} \right\rangle}_{\delta_{i,t}} + (i\hbar)^{-1} \left\langle \psi_f^{(0)} \middle| \int_{t_0}^t \mathrm{d}t' \, V_I(t') \middle| \psi_i^{(0)} \right\rangle^{1/2}$$

where

$$\left\langle \psi_{f}^{(0)} \middle| \int_{t_{0}}^{t} dt' V_{I}(t') \middle| \psi_{i}^{(0)} \right\rangle = \int_{t_{0}}^{t} dt' \left\langle \psi_{f}^{(0)} \middle| e^{-\frac{i}{\hbar} (t_{0} - t')} V(t') e^{-\frac{i}{\hbar} H (t' - t_{0})} \middle| \psi_{i}^{(0)} \right\rangle$$

$$= \int_{t_{0}}^{t} dt' \left\langle \psi_{f}^{(0)} \middle| V(t') e^{\frac{i}{\hbar} (E_{F} - E_{i}) t'} \middle| \psi_{i}^{(0)} \right\rangle$$
(4.21b)

#### 4.5 The adiabatic approximation

Here V(t) not small by change is slow

**Theorem 4.5.1:** For an adiabatic change  $H_i \to H_F$  a system that is initially in the nth eigenstate of  $H_i$  will evolve into the nth eigenstate of  $H_f$  (no level crossing).

**Proof:** Let

$$H(t) = E_n(t) |\psi_n(t)\rangle \tag{4.22a}$$

$$|\psi(t)\rangle = \sum_{n} c_n(t) e^{(i\hbar)^{-1} \int_0^t d\tau E_n(\tau)} |\psi_n(t)\rangle$$

$$= \sum_{n} c_n e^{iE_n} |\psi_n(t)\rangle$$
(4.22b)

to into Schrödinger

$$i\hbar \sum_{n} \left( C_n^i |\psi_n\rangle + c_n |\dot{\psi}_n\rangle \right) e^{iE_n} = \sum_{n} c_n e^{iE_n} H |\psi_n\rangle$$
 (4.23a)

multiply by  $\langle \psi_m |$ 

$$\dot{c}_m = -\sum c_n \langle \psi_m | \dot{\psi}_n \rangle e^{i(E_n - E_n)} (4.23b)$$

where we need to compute  $\langle \psi_m | \dot{\psi}_n \rangle$ 

$$H|\psi_n\rangle =_n |\psi_n\rangle \tag{4.24a}$$

$$\dot{H} |\psi_m\rangle + H |\dot{\psi}_n\rangle = \dot{E}_n |\psi_n\rangle + E_n |\dot{\psi}_n\rangle$$
 (4.24b)

 $m \eta l$ 

$$\langle \psi_m | \dot{H} | \psi_n \rangle = (E_n - E_m) \langle \psi_m | \dot{\psi}_n \rangle$$
 (4.24c)

into equation for  $\dot{c}_m$ 

$$\dot{c}_m = -c_m \langle \psi_m | \dot{\psi}_m \rangle - \sum_{n \neq m} c_n \frac{\langle \psi_m | \dot{H} | \psi_n \rangle}{(E_n - E_m)} \quad (4.24d)$$

adiabatic approximation  $\dot{H}$  small  $\rightarrow 0$  also must not have degeneracy

$$\dot{c}_m(t) = -c_m \left\langle \psi_m | \dot{\psi}_m \right\rangle \tag{4.25a}$$

$$\rightarrow c_m(t) = c_m(t_0)e^{i\gamma_m(t)} \tag{4.25b}$$

$$\gamma_m(t) = i \int_{t_0}^t d\tau \, \langle \psi_m(\tau) | \dot{\psi}_m(\tau) \rangle$$
 (4.25c)

if system is in state  $|\psi_m\rangle$  at time t it remains in this state

$$\psi(t) = c_m(t)e^{iE_m(t)} |\psi_m(t)\rangle$$

$$= e^{i\gamma_m(t)}e^{iE_m(t)} |\psi_m(t)\rangle$$
(4.25d)

where  $e^{i\gamma_m(t)}$  is the geometric phase ( $\to$  Berry phase) and  $e^{iE_m(t)}$  is the dynamic phase

# INTERACTION OF MATTER WITH CLASSICAL RADIATION

Here radiation treated as a classical field (quantization of radiation  $\rightarrow$  Chaptor 8)

#### 5.1 Basics from EM & QMI

External classicial field

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} \tag{5.1a}$$

$$\mathbf{E} = -\nabla \phi - \dot{\mathbf{A}} \tag{5.1b}$$

(in relativity  $\phi$ ,  $A \to A^{\mu}$  not here) physics invariant und er gauge transformation

$$A^{\mu} \to A^{\mu} + \partial^{\mu} \chi \begin{cases} \mathbf{A} \to \mathbf{A} + \nabla \chi (\mathbf{r}, t) \\ \phi \to \phi - \frac{1}{c} \dot{\chi} (\mathbf{r}, t) \end{cases}$$
 (5.2a)

gauge choice: here Coulomb gauge

$$\mathbf{\nabla \cdot A} = 0 \tag{5.3a}$$

Maxwell equation in free space  $\rightarrow$  wave equation for **A** 

$$\Box \mathbf{A} = \left(\frac{1}{c^{\prime}} \frac{\partial^{2}}{\partial t^{2}} - \nabla^{2}\right) \mathbf{A}$$

$$= 0$$
(5.3b)

solution

$$\mathbf{A} = \int \frac{\mathrm{d}^{3} \mathbf{k}}{(2\pi)^{3}} \sum_{\lambda} \left( \chi(k, \lambda) \, \mathbf{\epsilon}(k, \lambda) \, e^{i\mathbf{k} \cdot \mathbf{r} - i\omega_{k}t} \right)$$
 (5.3c)

$$+\alpha^{*}(\mathbf{k},\lambda)\epsilon^{*}(\mathbf{k},\lambda)\epsilon^{*}(\mathbf{k},\lambda)e^{-i\mathbf{k}\cdot\mathbf{r}}+i\omega_{k}t$$
,

where  $\alpha(\mathbf{k}, \lambda)$  is the coefficient of linear combination and  $\lambda$  is the polarization  $\lambda \in \{1, 2\}$  and  $\mathbf{k} \cdot \mathbf{e} = 0 \rightarrow 2$  polarizations from  $\Box A = 0 \ (\rightarrow \omega_k = c \, |\mathbf{k}|)$ .

Recall QMI Chapter 9

$$H = \frac{1}{2m} \left( i\hbar \nabla - \frac{q}{c} \mathbf{A} \right)^2 + q\phi + V_0$$

$$= \underbrace{\frac{p^2}{2m} + V_0}_{H_0} - \underbrace{\frac{q}{2mc} \left( \mathbf{p} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{p} \right) + \frac{q^2}{2mc^2} \mathbf{A}^2 + q\phi}_{V(t)}$$
(5.4a)

Introduce number density:

$$\rho(\mathbf{r}) = \sum_{i} \delta(\mathbf{r} - \mathbf{r}_{i})$$

$$= \delta(\mathbf{r} - \mathbf{r}_{1})$$
(5.5)

and current density:

$$\mathbf{j}(\mathbf{r}) = \frac{1}{2m} \sum_{i} (\mathbf{p}_{i} \delta(\mathbf{r} - \mathbf{r}_{i}) + \delta(\mathbf{r} - \mathbf{r}_{i}) \mathbf{p}_{i})$$
 (5.6)

then rewrite

$$V(t) = \int d^3r \left( \frac{e}{c} \mathbf{j}(\mathbf{r}) \mathbf{A} (\mathbf{r}, t) + \frac{e^2}{2mc^2} \rho(\mathbf{r}) \mathbf{A}^2 - e\rho(\mathbf{r}) \phi(\mathbf{r}, t) \right)$$
(5.7a)

where  $\mathbf{j}(\mathbf{r})$  is the dominant term,  $\rho(\mathbf{r})$  drop  $\sim \frac{e^2}{c^2}$  (small compared to  $\mathbf{j} \cdot \mathbf{A}$ ) and  $\phi(\mathbf{r},t), \phi = 0$ . Write  $V(\mathbf{r}_1,t)$  for a single electron in terms of Fourier transform

$$\mathbf{j}(\mathbf{k}) = \int d^{3}\mathbf{r} \, e^{-i\mathbf{k}\cdot\mathbf{r}} \mathbf{j}(\mathbf{r})$$

$$= \left(\frac{\mathbf{p}_{1}}{2m} e^{-ik\mathbf{r}_{1}} + e^{-ik\mathbf{r}_{1}} \frac{\mathbf{p}_{1}}{2m}\right)$$
(5.7b)

$$V(t) = \frac{e}{c} \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{\lambda = \{1,2\}} \left( \underbrace{\alpha(k,\lambda)\tilde{\mathbf{j}}(-\mathbf{k}) \cdot \mathbf{e}(k,\lambda)}_{V} e^{-i\omega_{k}t} + \underbrace{\alpha^{*}(k,\lambda)\tilde{\mathbf{j}}(\mathbf{k}) \cdot \mathbf{e}^{*}(\mathbf{k},\lambda)}_{V} e^{i\omega_{k}t} \right)$$

$$(5.7c)$$

### 5.2 Induced emission and absorption

Consider atom in external (classical) electromagnetic field. Compute transition probability/rate of state  $\psi_0$  into  $\psi_n(n \neq 0)$  by absorption of electromagnetic radiation. From section 4.3 for a single mode  $(k\lambda)$ 

$$\Gamma_{10}(\mathbf{k},\lambda) = \frac{2\pi}{\hbar} \delta \left( E_n - E_0 - \hbar \omega \right) \frac{e^2}{c^2} \left| \alpha \left( k, \lambda \right) \right|^2 \underbrace{\left| \left\langle \psi_n | \tilde{\mathbf{j}} \left( -\mathbf{k} \right) \cdot \boldsymbol{\epsilon} \left( \mathbf{k}, \lambda \right) | \psi_0 \right\rangle \right|^2}_{|V_{n0}|^2}$$
(5.8a)

For incoherent radiation (nointerference effects)

$$\Gamma_{n0} = \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \sum_{\lambda} \Gamma_{n0} (\mathbf{k}, \lambda)$$

$$= \int \frac{\mathrm{d}\omega'w}{(2\pi c)^{3}} \int \mathrm{d}\Omega \sum_{\lambda} \Gamma_{n0} (\mathbf{k}, \lambda)$$

$$= \int \frac{2\pi}{(\hbar c)^{2}} \frac{\omega_{n0}^{2}}{(2\pi c)^{3}} \sum_{\lambda} |\alpha|^{2} \langle \psi_{n} | \mathbf{j} \cdot \mathbf{"} | \psi_{0} \rangle J^{2} \, \mathrm{d}\Omega \left(\hat{k}\right)$$
(5.8b)

the reverse process: induced emission

$$\Gamma_{on} = \frac{2\pi e^2}{(\hbar c)^2} \frac{\omega_{n0}^2}{(2\pi c)^3} \sum |\alpha^*|^2 |\langle \psi_0 | j(\mathbf{k}) \cdot \mathbf{\epsilon}(k) | \psi_n \rangle|^2$$

$$= \Gamma_{n0}$$
(5.8c)

where

$$\langle \psi_0 | j(\mathbf{k} \cdot \mathbf{\epsilon}(k)) | \psi_n \rangle^2 = |\langle \psi_0 | \mathbf{j}(-\mathbf{k}) \mathbf{\epsilon}(\mathbf{k}) | \psi_0 \rangle|^2$$
 (5.8d)

Aside: there is a 3rd process: spontaneous emmission (without external field)

#### 5.3 Dipole approximation and selection rules

Transitions are governed by  $\alpha^* \langle \psi_0 | j(\mathbf{k}) \cdot \mathbf{\epsilon}^* (\mathbf{k}) | \psi_n \rangle$ 

$$j(\mathbf{k}) = \frac{1}{2m} \left( \mathbf{p} e^{-i\mathbf{k} \cdot \mathbf{r}} \right] + e^{-i\mathbf{k} \cdot \mathbf{r}} \mathbf{p}$$

$$= \frac{\mathbf{p}}{m}$$
(5.9a)

with Dipole approximation

$$e^{-i\mathbf{k}\mathbf{r}} = 1 - i\mathbf{k}\mathbf{r} + \dots ag{5.9b}$$

$$k \sim \frac{1}{\lambda}$$
, for visible light  $\sim (10 \times 10^{-7} \,\mathrm{m})^{-1}$  (5.9c)

$$r \sim \text{size of atom}$$
  
  $\sim \text{Bohr radius}$  (5.9d)

$$\sim 10 \times 10^{-10} \,\mathrm{m}$$

$$\mathbf{j} \cdot \mathbf{A} \to \text{Dipole approx.}$$

$$: \mathbf{j} = \frac{\mathbf{p}}{m}$$
(5.9e)

(radiation filed  $\sim$  constant within atom)

Aside: this is equivalent to a term

$$e\mathbf{r} \cdot \mathbf{E} = -\mathbf{d} \cdot \mathbf{E} \tag{5.9f}$$

with **d** dipole moment

$$\mathbf{d} \equiv -e\mathbf{r} \tag{5.9g}$$

(compare  $\mu \cdot \mathbf{B}$ )

**Proof:** 

$$[r_x, H_0] = \left[r_x, \frac{\mathbf{p}^2}{2m}\right]$$

$$= \frac{1}{2m} \left([r_x, \mathbf{p}] \mathbf{p} + \mathbf{p} [r_x, p]\right)$$
(5.10a)

with

$$[r_x, \mathbf{p}] = \sum_y i\hbar \delta_{xy} p_y \tag{5.10b}$$

$$[r_x, H_0] = \frac{p_x}{m} i\hbar \tag{5.10c}$$

$$[r, H_0] = i\hbar \frac{\mathbf{p}}{m} \tag{5.10d}$$

emission

$$\langle \psi_{0} | e \mathbf{r} \cdot \mathbf{E} | \psi_{n} \rangle = -\frac{e}{c} \langle \psi_{0} | \mathbf{r} \cdot \dot{\mathbf{A}} | \psi_{n} \rangle$$

$$= -\frac{e}{c} i \omega \langle \psi_{0} | \mathbf{r} \cdot \mathbf{A} | \psi_{n} \rangle$$

$$= -\frac{e}{c} \frac{i}{\hbar} (E_{n} - E_{0}) \langle \psi_{0} | \mathbf{r} \cdot \mathbf{A} | \psi_{n} \rangle$$

$$= -\frac{e}{c} \frac{i}{\hbar} \langle \psi_{0} | [\mathbf{r}, H_{0}] \cdot \mathbf{A} | \psi_{n} \rangle$$
(5.10e)

using Eq. 5.10d

$$\langle \psi_0 | e \mathbf{r} \cdot \mathbf{E} | \psi_n \rangle = -\frac{e}{c} \langle \psi_0 | \frac{\mathbf{p}}{m} \cdot \mathbf{A} | \psi_n \rangle$$

$$= \frac{e}{c} \langle \psi_0 | \mathbf{j} \cdot \mathbf{A} | \psi_n \rangle$$
(5.10f)

**Proof (alternative):** Make gauge trafo with

$$\chi\left(\mathbf{r},t\right) = -\mathbf{A}(t) \cdot \mathbf{r} \tag{5.11a}$$

$$\mathbf{A} \to \mathbf{A} + \mathbf{\nabla}\xi = 0 \tag{5.11b}$$

$$0 = \Phi \to \Phi - \frac{1}{c}\dot{\chi} = -\frac{1}{c}\dot{\mathbf{A}} \cdot \mathbf{r} = -\mathbf{E} \cdot \mathbf{r}$$
 (5.11c)

$$H - e\Phi = -e\mathbf{r}\mathbf{E} \tag{5.11d}$$

Atomic transitions are only possible if

$$\left\langle \psi_{n'\ell'm'_{\ell}} \middle| \mathbf{r} \middle| \psi_{n\ell m_{\ell}} \right\rangle \neq 0$$
 (5.12a)

Given  $\ell, m_{\ell}$  this imposes constraints on  $\ell', m_{\ell'} \to \text{selection rules}$  (in dipole approximation). Can be obtained by (solving at properties of spherical harmonics).

$$\int d\Omega \left(Y_{\ell'}^{m_{\ell'}}(\theta,\phi)\right)^* \begin{pmatrix} x+iy\\ x-iy\\ z \end{pmatrix} \mathcal{Y}_{\ell}^{m_{\ell}}(\theta,\phi)$$
(5.13a)

this is most of the time 0 exept if

$$\left\langle \psi_{n'\ell'm'_{\ell}} \middle| z \middle| \psi_{n\ell m_{\ell}} \right\rangle \neq 0, \quad \ell' = \ell \pm 1, m'_{\ell} = m_{\ell}$$
 (5.13b)

$$\left\langle \psi_{n'\ell'm'_{\ell}} \middle| x \pm iy \middle| \psi_{n\ell m_{\ell}} \right\rangle \neq 0, \quad \ell' = \ell \pm 1, m'_{\ell} = m_{\ell} \pm 1$$
 (5.13c)

(or use Wigner-Ekcart theorem, **r** is a vector operator)

 $\Rightarrow$  selection rules for  $E_1$  transitions (dipole approximation)

$$\Delta \ell = \pm 1 \tag{5.13d}$$

$$\Delta m = 0, \pm 1 \tag{5.13e}$$

These rules are violated by "beyound-dipole" transitions (e.g.  $E_2$  quadrupole transitions).

Further selection rules:  $\Delta S = 0$  (spin part of wavefunction not affected by  $\mathbf{r} \cdot \mathbf{E}$ ) always true: no transitions between  $j = 0 \rightarrow j = 0$  (total angular momentum conservation)

# POTENTIAL SCATTERING

We consider

$$H = H_0 + V(r) \tag{6.1a}$$

with

$$\lim_{r \to \infty} rV(r) = 0, \quad \text{(i.e. not Coloumb)}$$
 (6.1b)

V is restricted to "small" region.

Want to find stationary solutions

$$\psi\left(\mathbf{r},t\right) = e^{-\frac{i}{\hbar}Et}\psi\left(\mathbf{r}\right), \text{ for } r \to \infty$$
 (6.1c)

steady incoming beam scattered by potential (more general treatment in section 7)

## **6.1** Elastic scattering and cross sections

we are looking for solutions to

$$(H_0 + V) |\psi\rangle = E |\psi\rangle \tag{6.2a}$$

$$E_{\text{in}} = E_{\text{out}}$$

$$= \frac{p^2}{2m}$$

$$= \frac{\hbar^2 k^2}{2m}$$
(6.2b)

of the form

$$r \to \infty$$
 (6.2c)

$$\psi_k(\mathbf{r}) \to \psi_{\rm in}(\mathbf{r}) + \psi_{\rm sc}(\mathbf{r})$$

$$= e^{i\mathbf{k}\mathbf{r}} + f(\theta, \phi) \frac{e^{ikr}}{r}$$
(6.2d)

where we are not interested in  $\psi(r)$  for small r (in range of V) and  $f(\theta, \phi)$  is the scattering amplitude and  $\frac{e^{ikr}}{r}$  is the outgoing spherical wave

Differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{N}{F} \tag{6.3}$$

N: #particles scattered into  $d\Omega$  per time in  $N d\Omega$ 

F: flux of incoming particles, number/time/unit area

**Exercise:** For  $|\psi_{in}|^2 = 1$  (1 part/volume),

$$F = V$$

$$= \frac{p}{m}$$

$$= \frac{\hbar k}{m}$$
(6.4a)

outgoing:

$$\mathbf{j} = \dots = \frac{\hbar k}{m} |f(\theta, \phi)|^2 \frac{\mathbf{e}_r}{r^2}$$
(6.4b)

$$\Rightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left| f\left(\theta, 'i\right) \right|^2 \tag{6.4c}$$

total cross section

$$\sigma = \int d\Omega \frac{d\sigma}{d\Omega} \tag{6.4d}$$

#### 6.2 Partial-wave analysis

For central potential V(r). No  $\phi$  dependence in  $\psi_k$ 

$$\psi_k(r,\theta) = \sum_{\ell=0}^{\infty} R_{\ell}(kr) P_{\ell}(\cos \theta \cdot 5a)$$

 $P_{\ell}(\cos \theta)$  being Legendre polynomials

$$f(\theta) = \sum_{\ell=0}^{\infty} P_{\ell}(k) P_{\ell}(\cos \theta) (6.5b)$$

 $\rightarrow$  equation for  $R_{\ell}$ :

$$\frac{\mathrm{d}^2}{\mathrm{d}r^2} \frac{2}{r} \frac{\mathrm{d}}{\mathrm{d}r} - \frac{\ell(\ell+1)}{r^2} + 2m(V(r) - E) R_\ell(kr) = 0 \tag{6.5c}$$

Aside: Assume V is constant  $(\rho = kr)$ 

Solutions for E > V: Spherical Bessel function:

$$j_{\ell}(\rho) \equiv (-\rho)^{\ell} \left(\frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho}\right)^{\ell} \frac{\sin \rho}{\rho}$$
 (6.6a)

Spherical Neumann function:

$$n_{\ell}(\rho) = -(-\rho)^{\ell} \left(\frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho}\right)^{\ell} \frac{\cos \rho}{\rho}$$
 (6.6b)

$$j_{\ell}\left(\rho\right) \xrightarrow{\rho \to 0} \rho^{\ell} \xrightarrow{\rho \to \infty} \frac{1}{\rho} \sin\left(\rho - \frac{\pi\ell}{2}\right)$$
 (6.7a)

$$n_{\ell}(\rho) \xrightarrow{\rho \to 0} \frac{1}{\rho^{\ell-1}} \xrightarrow{\rho \to \infty} -\frac{1}{\rho} \cos\left(\rho - \frac{\pi\ell}{2}\right)$$
 (6.7b)

$$h_{\ell} = j_{\ell} \pm i n_{\ell} \tag{6.7c}$$

General solution for radial Schrödinger equation for  $r \to 0$   $\frac{\ell(\ell+1)}{r^2}$  dominant for V(r) less singular tan  $\frac{1}{r^2}$ 

$$R_{\ell}(r) \sim j_{\ell}(\rho)$$

$$= j_{\ell}(kr)$$
(6.8a)

for  $r \to \infty$   $V(r) \to 0$  general solution

$$R_{\ell}(r) = B_{\ell}(k)j_{\ell}(kr) + C_{\ell}n_{\ell}(kr) \xrightarrow{r \to \infty} B_{\ell}(k) \frac{1}{kr} \sin\left(kr - \frac{\pi\ell}{2}\right)$$

$$- C_{\ell}(k) \frac{1}{kr} \cos\left(kr - \frac{\pi\ell}{2}\right)$$

$$= \frac{1}{kr} A_{\ell}(k) \sin\left(kr - \frac{\ell\pi}{2} + \delta_{\ell}(k)\right),$$

$$A_{\ell} = \sqrt{B_{\ell}^{2} + C_{\ell}^{2}}, \text{ phase shift } \tan\delta_{\ell} = -\frac{C_{\ell}(k)}{B_{\ell(k)}}$$

$$(6.8b)$$

note: for V = 0:

$$R_{\ell} \sim j_{\ell} (kr)$$
 (6.9a)

i.e.  $C_{\ell}$  and  $\delta_{\ell} = 0$ 

Solutions for  $r \to \infty$  are characterized by phase shift  $\delta_{\ell}$ Next: find relation between  $\delta_{\ell} \leftrightarrow f(\theta)$ 

$$\psi_k \to e^{i\mathbf{k}\cdot\mathbf{r}} + f(\theta)e^{ikr}\frac{1}{r}$$
 (6.10)

central potential

$$\psi_k = \sum_{\ell=0}^{\infty} R_{\ell}(kr) P_{\ell}(\cos \theta)$$
 (6.11a)

$$f_k = \sum_{\ell=0}^{\infty} f_{\ell}(k) P_{\ell}(\cos \theta)$$
 (6.11b)

Schrödinger equation for  $R_{\ell}$ , solution  $\stackrel{r\to\infty}{\sim} j_{\ell}n_{\ell}$ 

$$R_{\ell}(kr) \stackrel{r \to \infty}{\simeq} \frac{1}{kr} \left( B_{\ell} \sin\left(kr - \frac{\ell\pi}{2}\right) + C_{\ell} \cos\left(kr - \frac{\ell\pi}{2}\right) \right)$$

$$= \frac{1}{kr} A_{\ell} \sin\left(kr - \frac{\ell\pi}{2} + \underbrace{\delta_{\ell}(k)}_{\text{phase shift}}\right)$$
(6.11c)

for V=0 we have  $C_{\ell}=0$ , i.e.  $\rho_{\ell}=0$ 

next: find relation between phase shifts  $\delta_{\ell}(k)$  and scattering amplitude  $f(\theta)$   $\left( \to \frac{d\sigma}{d\Omega} \right)$ 

Aside: ree particle eigenfunction in spherical coordinates

$$\psi_{j\ell m_{\ell}}(r,\phi,\theta) = C_{J\ell}(kr)Y_{\ell}^{m_{\ell}}(\theta,\phi), \quad E = \frac{\hbar^{2}k^{2}}{2m}(6.12a)$$

Form a basis, expand

$$e^{i\mathbf{k}\mathbf{r}} = e^{ikr\cos\theta} \tag{6.12b}$$

in this basis

$$e^{i\mathbf{k}\mathbf{r}} = \sum_{\ell=0}^{\infty} \sum_{m_{\ell}}^{\ell} C_{\ell m_{\ell}} j_{\ell}(kr) Y_{\ell}^{m_{\ell}}(\theta, \phi) \quad (6.12c)$$

having no  $\phi$  dependence

$$\rightsquigarrow e^{i\mathbf{k}\mathbf{r}} = \sum_{\ell=0}^{\infty} a_{\ell} j_{\ell}(kr) P_{\ell}(\cos \theta)$$
(6.12d)

fix coefficient  $a_{\ell}$  (use orthogonality)

$$e^{i\mathbf{k}\mathbf{r}} = \sum_{\ell=0}^{\infty} (2\ell+1) i^{\ell} j_{\ell}(kr) P_{\ell}(\cos\theta) \quad (6.12e)$$

Put everything into (\*) for  $r \to \infty$ 

$$\frac{1}{kr}A_{\ell}\sin\left(kr-\frac{\pi\ell}{2}+\delta_{\ell}\right)=\left(2\ell+1\right)i^{\ell}\frac{1}{kr}\sin\left(kr-\frac{\pi\ell}{2}\right)+R^{\ell}\frac{e^{ikr}}{r}$$

$$\frac{A_{\ell}}{2i}e^{ikr}e^{-\frac{i\pi\ell}{2}}e^{i\delta_{\ell}} - \frac{A_{\ell}}{2i}e^{-ikr}e^{\frac{i\pi\ell}{2}}e^{-i\delta_{\ell}} = (2\ell+1)i^{\ell}\frac{1}{2i}e^{ikr}e^{-\frac{i\ell\pi}{2}} - (2\ell+1)i^{\ell}\frac{1}{2i}e^{-ikr}e^{\frac{i\ell\pi}{2}} + kf_{\ell}e^{ikr}$$
(6.12g)

$$A_{\ell} = (2\ell + 1) i^{\ell} e^{i\delta_{\ell}} \tag{6.12h}$$

$$f_{\ell} = \frac{2\ell + 1}{2ik} \left( e^{2i\delta_{\ell}} - 1 \right)$$

$$= \frac{2\ell + 1}{k} e^{i\delta_{\ell}} \sin\left(\delta_{\ell}\right)$$
(6.12i)

having the full information of  $f(\theta)$ , thus  $\frac{d\sigma}{d\Omega}$ 

$$f(\theta) = \sum_{\ell=0}^{\infty} \frac{2\ell+1}{k} e^{i\delta_{\ell}} \sin(\delta_{\ell}) P_{\ell} (\cos \theta)$$

$$= \sum_{\ell=0}^{\infty} f_{\ell} P_{\ell} (\cos \theta)$$
(6.12j)

Total cross section

$$\sigma_{\text{tot}} = \int d\Omega \frac{d\sigma}{d\Omega}$$

$$= \int d\Omega |f(\theta)|^{2} \qquad (6.13a)$$

$$= 2\pi \int_{-1}^{1} d\cos \theta \sum_{\ell=0}^{\infty} \sum_{\ell'=0}^{\infty} f_{\ell} f_{\ell'}^{*} P_{\ell} (\cos \theta) P_{\ell} (\cos \theta)$$

use

$$\int d\cos\theta \, P_{\ell}(\cos\theta) \, P_{\ell'}(\cos\theta) = \frac{2}{2\ell+1} \delta_{\ell\ell'} \tag{6.13b}$$

$$\Rightarrow \sigma_{\text{tot}} = \sum_{\ell=0}^{\infty} 4\pi \frac{2\ell+1}{k^2} \sin^2(\delta_{/ell})$$

$$\equiv \sum_{\ell=0}^{\infty} \sigma_{\ell}$$
(6.13c)

#### 6.2.1 The optical theorem

$$\operatorname{im}\left(f\left(\theta=0\right)\right) = \Im\left(\sum_{\ell=0}^{\infty} f_{\ell}\right)$$

$$= \operatorname{im}\left(\sum_{\ell=0}^{\infty} \frac{2\ell+1}{k} e^{i\delta_{\ell}} \sin\left(\delta_{\ell}\right)\right)$$

$$= \sum_{\ell=0}^{\infty} \frac{2\ell+1}{k} \sin^{2}\left(\delta_{\ell}\right)$$

$$\Rightarrow \sigma_{\text{tot}} = \frac{4\pi}{k} \operatorname{im}\left(f\left(\theta\right)\right)$$

$$= 0)$$

$$(6.14a)$$

often an "easy" way to compute the total cross section by computing im of forward scattering amplitude.

Partial-wave useful if not too many  $\sigma_{\ell}$  contribute.

semi-classical: potential of range A, V(r) = 0 for r > 0

classical: no scattering if b > a

$$L \simeq \ell \cdot \hbar$$

$$= b \cdot P$$

$$= b \cdot \hbar \cdot k$$
(6.15)

no scattering for

$$b = \frac{\ell}{k}$$

$$> a$$

$$(6.16)$$

#### 6.3 Coulomb scattering

So far we have assumed  $\mathbf{r}V(\mathbf{r}) \to 0$ ,  $|\mathbf{r}| \to \infty$ , but this is not the case for Coulomb scattering.

However, exact solution is known (recall Hydrogen atom)

$$\left(-\frac{\hbar^2}{2m}\nabla^2 - \frac{Z_1Z_2e^2}{r}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(6.17)

• hydrogen E < 0 (bound states),

$$\lim_{r \to \infty} |\psi(\mathbf{r})|^2 = 0 \tag{6.18}$$

• scattering E > 0 with different

$$\nabla^2 = \frac{4}{\xi + \eta} \left( \partial_{\xi} \xi \partial_{\xi} + \partial_{\eta} \eta \partial_{\eta} \right) + \underbrace{\frac{1}{\xi \eta} \frac{\partial^2}{\partial \varphi^2}}_{\bullet}$$
 (6.19)

 $\spadesuit$ : do not contribute  $\rightarrow$  Confluent hypogeometric equation  $\rightarrow$ 

2 linearly independent solutions: find the linear combination which is regular at the origin. Result for  $r\to\infty$ 

$$\gamma = \frac{mZ_1Z_2e^2}{\hbar^2k} \tag{6.20a}$$

$$\psi_{\ell}(r) \xrightarrow{\mathbf{k} = k\mathbf{e}_{z}} \underbrace{e^{i(kz + \gamma \log 2k(r - z))}}_{\text{distorted plane wave}}$$

$$-\frac{\gamma}{2k \sin^{2} \frac{\vartheta}{2}} \frac{\Gamma(1 + \gamma)}{\Gamma(1 - i\gamma)} e^{-i\gamma \log\left(\sin\frac{2\vartheta}{2}\right)} \underbrace{e^{i(kr - \gamma \log 2kr)}}_{2}$$

$$(6.20b)$$

This looks the same as

$$\psi(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} + f(\vartheta) \frac{e^{ikr}}{r}$$
(6.21)

but gets additional phases, because not  $rV(r) \xrightarrow{r \to \infty}$  Cross-section

$$\frac{d\sigma}{d\Omega} = |f_c(\vartheta)|$$

$$= \frac{\gamma}{4k^2 \sin^4 \frac{\vartheta}{2}}$$

$$= \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\sin^4 \frac{\vartheta}{2}}$$
(6.22)

- $\rightarrow$  Rutherford scattering formula (classical!)
- $\rightarrow$  Phases drop out in this case

Additional phases can have an effect in scattering of 2 identical particles. Here  $2 \to 2$ ,  $\xrightarrow{A} \xleftarrow{B}$ . Go to the center of mass frame (sec 2.1)

$$\left[ -\frac{\hbar^2}{2\mu} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E\psi(\mathbf{r})$$
 (6.23)

 $\mu = \frac{m_1 m_2}{m_1 + m_2}$   $= \frac{m}{2}, \text{ reduced mass}$ (6.24)

$$V \sim \text{interaction potential}$$
 (6.25)

$$\mathbf{r} = \mathbf{r}_A - \mathbf{r}_B$$
 (6.26)  
  $\sim$  relative coordinate

In QM the particles are undistinguishable when idential. Two pictures with a particle A and B going to each other.

Moreover: Total wave function (spin+space+...) must be either symmetric or antisymmetric under exchange  $A \leftrightarrow B$ ,  $\mathbf{r} \leftrightarrow -\mathbf{r}$ . Spatial wave function

$$\psi_{\text{sym/antysym}} = \left(e^{i\mathbf{k}\mathbf{r}} \pm e^{-i\mathbf{k}\mathbf{r}}\right) + \left(f\left(\vartheta\right) \pm f\left(\pi - \vartheta\right)\right) \frac{e^{ikr}}{r} \tag{6.27}$$

**Example:** Coulomb scattering of two protons (spin  $\frac{1}{2}$ , fermions  $\rightarrow$  t.w.f. antisymmetric). Let us look at unpolarized protons and assume that the potential does not depend on spin. Spin wave function:

**prob**  $\frac{1}{4}$  singlet state (anti sym.)

**prob.**  $\frac{3}{4}$  triplet states (sym.)

Spatial wave function

**prob**  $\frac{1}{4}$  symm.

$$\to \sigma_{\rm sing} = |f_{\ell}(\vartheta) + f_c(\pi - \vartheta)|^2 \tag{6.28}$$

**prob**  $\frac{3}{4}$  antisym.

$$\rightarrow \sigma_{\rm trp} = \left| f_c \left( \vartheta \right) - f_c \left( \pi - \vartheta \right) \right|^2 \tag{6.29}$$

Unpolarized cross-section:

$$\sigma = \frac{1}{4} |f_c(\vartheta) + f(\pi - \vartheta)|^2 + \frac{3}{4} |f_c(\vartheta) - f_c(\pi - \vartheta)|^2$$

$$= |f_c(\vartheta)|^2 + |f_c(\pi - \vartheta)|^2$$

$$-\frac{1}{2} (f_c(\vartheta) f_c^* (\pi - \vartheta) + f_c^* (\vartheta) f_c (\pi - \vartheta))^{Z_1 = Z_2 = 1} \left(\frac{e}{4E}\right)^2 \left(\underbrace{\frac{1}{\sin \frac{4\theta}{2}} + \frac{1}{\cos^4 \frac{\vartheta}{2}}}_{\text{classical}} - \frac{\cos \left(\gamma \log \left(\tan^2 \frac{\vartheta}{2}\right)\right)}{\sin^2 \frac{\vartheta}{2} \cos^2 \frac{\vartheta}{2}}\right)$$

$$(6.30)$$

 $Mott\ scattering\ formula$ 

# 6.4 Lippman- Schwinger equation & Green's function

Again:

$$E_k = \frac{\hbar^2 k^2}{2m} \tag{6.31a}$$

$$\left(\frac{\hbar^2}{2m}\nabla^2 + E_k\right)\psi_k(\mathbf{r}) = V(\mathbf{r})\psi(\mathbf{r})$$
(6.31b)

If we know the *Green's function* defined by

$$\left(\frac{\hbar^2}{2m}\nabla^2 + E_k\right)g_k(\mathbf{r}) = \delta(\mathbf{r}) \tag{6.32}$$

then we can write a formula solution for  $\psi_k(\mathbf{r})$ 

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} + \int d^3 \mathbf{r}' g_k(\mathbf{r} - \mathbf{r}') V(\mathbf{r}') \psi_k(\mathbf{r}')$$
(6.33)

with  $e^{i\mathbf{kr}}$  solution to homogeneous equation (V=0) Checik it at home.

**Idea:** As in section 4.4 we can turn this formal solution into a series for  $\psi_k$  (in powers of V)

**First:** Compute  $g_k$ : Go to Fourier space

$$g_k(\mathbf{r}) = \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} e^{-i\mathbf{q}\mathbf{r}} \tilde{g}_k(\mathbf{q})$$
 (6.34)

We get

$$\left(\frac{\hbar^2}{2m}\nabla^2 + E_k\right)g_k(\mathbf{r}) = \int \frac{\mathrm{d}^3\mathbf{q}}{(2\pi)^3} \left(-\frac{\hbar^2}{2m}q^2 + \frac{\hbar^2}{2m}k^2\right)e^{-i\mathbf{q}\mathbf{r}}\tilde{g}_k(\mathbf{q})$$

$$= \delta(\mathbf{r})$$

$$= \int \frac{\mathrm{d}^3\mathbf{q}}{(2\pi)^3}e^{-i\mathbf{q}\mathbf{r}}$$

$$\Rightarrow \tilde{g}_k(\mathbf{q}) = \frac{2m}{\hbar^2} \frac{1}{k^2 - q^2}$$

$$= \left(E_k - \frac{\hbar^2q^2}{2m}\right)^{-1}$$
(6.35b)



Figure 6.1:

$$g_{k}(r) = \frac{1}{(2\pi)^{3}} \int_{0}^{\infty} dq \int_{0}^{2\pi} |d\varphi \int_{-1}^{1} d\cos\vartheta + q^{2} \frac{2m}{\hbar^{2}} \frac{1}{k^{2} - q^{2}} e^{-iqr\cos\vartheta}$$

$$= \frac{2m}{\hbar^{2}} \frac{1}{(2\pi)^{2}}$$

$$= \frac{2m}{\hbar^{2}} \frac{1}{(2\pi)^{2}} \int_{0}^{\infty} dq \frac{q^{2}}{iqr} \frac{1}{k^{2} - q^{2}} \left( e^{iqr} - e^{-iqr} \right)$$

$$= \frac{m}{2\pi^{2}\hbar^{2}} \frac{1}{ir} \int_{-\infty}^{\infty} dq \frac{q}{k^{2} - q^{2}} e^{iqr}$$

$$\oint_{0}^{\infty} dq \xrightarrow{q \to -1} - \int_{0}^{-\infty} = \int_{-\infty}^{0} dq \qquad (6.36)$$

Integral is not well defined!  $\rightarrow$  We need a prescription for the poles. We use contour integral, close it in upper half plane

$$q = q_{R\ell} + iq_{\ell m}$$

$$\to e^{iqr}$$

$$= e^{iq_{R\ell}r} e^{-q_{\ell m}r}$$
(6.37)

We deform the contour at  $q = \pm k \rightarrow$  different options, giving different asympt behaviours for  $g_k(\mathbf{r})!$  For negative point outside and positive point inside

curve:

$$g_{k}^{+}(r) = 2\pi i \frac{m}{2\pi^{2}\hbar^{2}} \frac{1}{ir} Res_{q=k} \frac{-q}{(q-k)(q+k)} e^{iqr}$$

$$= -\frac{m}{2\pi\hbar^{2}} \frac{e^{ikr}}{r}$$
(6.38a)

For negative point inside and positive point outside curve:

$$g_{k}^{-}(r) = -\frac{m}{2\pi\hbar^{2}} \frac{e^{-ikr}}{r}$$
 (6.38b)

for both points inside:

$$g_k^+(r) + g_k^-(r)$$
 (6.38c)

Both points outside

$$0 ag{6.38d}$$

 $g_k^+ \sim \text{ outgoing spherical wave}$ 

 $g_k^- \sim$  incoming spherical wave

What we need is  $g_k^+$ !

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} - \int d^3\mathbf{r}' \frac{m}{2\pi\hbar^2} \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|} V(\mathbf{r}') \psi(\mathbf{r}')$$
(6.39)

Check asymptotic behaviour  $(\mathbf{r}'V(\mathbf{r}') \to 0)$ 

$$|\mathbf{r} - \mathbf{r}'| \xrightarrow{|\mathbf{r}| \to \infty} r \left( 1 - \frac{r'}{r} \cos \vartheta + \mathcal{O}\left( \left( \frac{r'}{r} \right) \right) \right)$$

$$= r - \frac{\mathbf{r}\mathbf{r}'}{r'}$$

$$= r - \hat{e}_r \cdot \mathbf{r}'$$
(6.40a)

We get:

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} - \frac{m}{2\pi\hbar^2} \int d^3\mathbf{r}' \frac{e^{ikre^{-ik\mathbf{e}_r\mathbf{r}'}}}{r} \times V(\mathbf{r}')\psi_k(\mathbf{r}')$$

$$= e^{ikr} + f(\mathbf{r}) \frac{e^{ikr}}{r}$$
(6.40b)

where

$$f(\mathbf{r}) = \frac{-m}{2\pi\hbar} \int d^3 \mathbf{r}' \, \underbrace{e^{-ik\hat{\mathbf{e}}_r \cdot \mathbf{r}'}}_{\bullet} V(\mathbf{r}') \psi_k \left(\mathbf{r}'\right)$$
 (6.40c)

 $\spadesuit$ :  $\vartheta = \angle (\mathbf{k}, \mathbf{r})$  dependence. If  $V(\mathbf{r}') = V(r) \leadsto f(\vartheta, \varphi)$ .

This is still a formal solution because  $\psi_k$  is on the right hand side.  $\rightsquigarrow$  Proceed as in perturbation theory and get another expansion.

#### 6.5 The Born approximation

Formal solution

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} + \int d^3\mathbf{r}' g_k^+ (\mathbf{r} - \mathbf{r}') V(\mathbf{r}') \psi_k(\mathbf{r}')$$
 (6.41a)

$$g_k^+(\mathbf{r} - \mathbf{r}') = -\frac{m}{2\pi\hbar^2} \frac{e^{ik|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|}$$
(6.41b)

$$f = -\frac{m}{2\pi\hbar^2} \int d^3 \mathbf{r}' e^{-ik\mathbf{e}_r \cdot \mathbf{r}'} V(\mathbf{r}') \psi_k(\mathbf{r}')$$
 (6.41c)

Solve this "pertubatively" by iteration.

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} + \sum_{n=1}^{\infty} \int d^3\mathbf{r}' K_{(\mathbf{r}, \mathbf{r}')} e^{i\mathbf{k}\cdot\mathbf{r}'}$$
(6.42a)

$$K_1(\mathbf{r}, \mathbf{r}') = g_k^+(\mathbf{r} - \mathbf{r}') V(\mathbf{r}'), \sim V^1$$
 (6.42b)

$$K_{n}(\mathbf{r}, \mathbf{r}') = \int d^{3}\mathbf{r}'' K_{1}(\mathbf{r}, \mathbf{r}'') K_{n-1}(\mathbf{r}'', \mathbf{r}'), \sim V^{n}$$

$$= \int \left(\prod_{i=1}^{n} d^{3}\mathbf{r}_{i}\right) g_{k}^{+}(\mathbf{r} - \mathbf{r}) V(\mathbf{r}_{n}) g^{+}(\mathbf{r}_{n} - \mathbf{r}_{n-1}) \dots g_{k}^{+}(\mathbf{r}_{2} - \mathbf{r}_{1}) V(\mathbf{r}_{1})$$

Retaining only the 1st term we have (1st) Born approx.

$$\psi_k^{(1)}(\mathbf{r}) = e^{ikz} \underbrace{-\frac{m}{2\pi\hbar^2} \int d^3\mathbf{r}' V(\mathbf{r}') e^{ik(\mathbf{e}_z - \mathbf{e}_r) \cdot \mathbf{r}'}}_{f^{(1)}(\theta, \phi)} \underbrace{\frac{e^{ikr}}{r}}$$
(6.43)

assuming k is along the z-axis.  $f^{(1)}$  is the Fourier transform of potential w.r.t.  $\mathbf{q}$ 

$$\mathbf{q} \equiv k \left( \mathbf{e}_z - \mathbf{e}_r \right)$$

$$= \mathbf{k} - \mathbf{k}', \quad \text{momentum transfer}$$
(6.44a)

for central potential V(r') (not  $V(\mathbf{r}')$ ).

$$f^{(1)}(\theta,\phi) = -\frac{m}{2\pi\hbar^2} \int d\phi \int_{-1}^{1} d\cos\theta \int dr' V(r') e^{iqr'\cos\theta}$$

$$= -\frac{m}{\hbar^2} \int r'^2 dr' \frac{2\sin(qr')}{qr'} V(r')$$

$$f^{(1)}(\theta) = -\frac{2m}{\hbar^2 q} \int dr' r' V(r') \sin(qr'), \quad q = 2k \sin\frac{\theta}{2}$$
 (6.45b)

Note  $f^{(1)}$  is real! Cp optical theorem!?

#### **Example:** Yukawa potential:

$$V(r) = V_0 \frac{e^{-\mu r}}{r}, \quad \mu \sim \text{range of interaction}$$
 (6.46a)

$$f^{(1)} = -\frac{2m}{\hbar^2 q} V_0 \underbrace{\int_0^\infty dr' e^{-\mu r'} \sin(qr')}_{q/(\mu^2 + q^2)}$$

$$= -\frac{2m}{\hbar^2} \frac{V_0}{\mu^2 + q^2}$$
(6.46b)

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)^{(1)} = \left|f^{(1)}(\theta)\right|^2 
= \left(\frac{2mV_0}{\hbar^2}\right)^2 \frac{1}{(\mu^2 + 2k^2(1-\cos\theta))^2}$$
(6.46c)

total cross section

$$\sigma_{\text{tot}}^{(1)} = 2\pi \int_{-1}^{1} d\cos\theta \left(\frac{2mV_0}{\hbar^2}\right)^2 \frac{1}{(\mu^2 + 2k^2 (1 - \cos\theta))^2}$$

$$= 2\pi \left(\frac{2mV_0}{\hbar^2}\right) \frac{2}{\mu^4 + 4k^2\mu^2}$$
(6.46d)

Take limit  $\mu \to 0$ : "infinite" range of interaction

$$V(\mathbf{r}) = \frac{V_0}{r},$$
 (Coulomb) (6.47a)

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Coulomb}}^{(1)} = \left(\frac{2mV_0}{\hbar^2}\right)^2 \frac{1}{(2k^2(1-\cos\theta))}$$
(6.47b)

but total cross section diverges! Note  $\lim_{r\to\infty} rV(r) \neq 0$  for Coulomb!

# GENERAL SCATTERING THEORY

General scattering more complicated than in section 6 e.g. production of new particles. Want to use general representation, so  $|\psi\rangle$  is a general state in Hilbert space (not nec. wave function)

#### 7.1 Dynamics of scattering

Start from time dependent Schrödinger

$$i\hbar\partial_t |\psi, t\rangle = H |\psi, t\rangle$$
 (7.1a)

$$H = H_0 + V \tag{7.1b}$$

$$\dots = \dots \tag{7.1c}$$

$$(i\hbar\partial_t - H_0) |\psi, t\rangle = V |\psi, t\rangle$$

$$= |\chi, t\rangle$$
(7.1d)

**Definition 7.1.1:** Green operation  $G_0(t, t')$  through

$$(i\hbar\partial_t - H_0) G_0(t, t') = \delta(t - t') \cdot \mathbf{1}, \quad (\leftarrow \text{ operators})$$
 (7.2)

inhomogeneous differential equation in t

$$G_0^+(t,t') = -\frac{i}{\hbar}\theta(t-t')e^{-\frac{i}{\hbar}H_0(t-t')}$$
 (7.3a)

$$G_0^-(t,t') = +\frac{i}{\hbar}$$
 (7.3b)

Proof:

$$i\hbar\partial_{t}G_{0}^{+}(t-t') = i\hbar\left(-\frac{i}{\hbar}\right)\partial_{t}\theta\left(t-t'\right)e^{-\frac{i}{\hbar}H_{0}(t-t')}$$

$$= \delta\left(t-t'\right)e^{-\frac{i}{\hbar}H_{0}(t-t')}$$

$$+ \theta\left(t-t'\right)\left(-\frac{i}{\hbar}H_{0}\right)e^{-\frac{i}{\hbar}H_{0}(t-t')}$$

$$= \delta\left(t-t'\right) + H_{0}G_{0}^{+}(t-t')$$
(7.4a)

Note: The superscripts  $\pm$  are related to those in section 6

$$G_0^{\pm}(t,t') = G_0^{pm}(t-t') \tag{7.5a}$$

Write solution to Schrödinger

$$\left|\psi^{\pm},t\right\rangle = \left|\psi^{0},t\right\rangle + \int dt' G_{0}^{\pm} \left(t-t'\right) V \left|\psi^{\pm},t'\right\rangle \quad (7.5b)$$

with  $|\psi^0,t\rangle$  solution to homogeneous problem

$$(i\hbar\partial_t - H_0)|\psi_0, t\rangle = 0 \tag{7.5c}$$

The "physical" solution is given by  $|\psi^+, t\rangle$ , since  $G^+(t-t')$  moves "forward" in time. (retardation)

To make connection with section 6:  $t \to E$ 

$$G_0^+(E) = \int_{-\infty}^{\infty} dt \, e^{\frac{i}{\hbar}Et} G_0^+(t)$$

$$= -\frac{i}{\hbar} \int_0^{\infty} dt \, e^{\frac{i}{\hbar}Et} e^{-\frac{i}{\hbar}H_0t}$$
(7.6a)

with

$$G_0^+(t) = G_0^+(t, t'=0)$$
 (7.6b)

for  $t \to \infty$  need  $E \to E + i0^+, 0^+ > 0$ 

$$G_0^{\pm} = \frac{1}{E - H_0 \pm i0^+}$$

$$\equiv (E - H_0 \pm i0^+)^{-1}$$
(7.6c)

 $|\psi^{\pm},t\rangle$  evolves with H, but was equal to free state  $|\psi^{0},t\rangle$  @  $t\to-\infty$ Let  $\alpha$  be a complete set of quantum number of  $H_0$  (including  $E_{\alpha}$ )

$$\rightarrow \left| \psi_{\alpha}^{0}, t \right\rangle \leftrightarrow \left| \psi_{\alpha}^{\pm}, t \right\rangle \tag{7.7a}$$

make Fourier  $t \to E$  of Eq.  $\pm$ 

$$\underbrace{\int dt \, e^{\frac{i}{\hbar}Et} \, \left| \psi_{\alpha}^{\pm}, t \right\rangle}_{\left| \psi_{\alpha}^{\pm}(E) \right\rangle \rightarrow \left| \psi_{\alpha}^{\pm} \right\rangle} = \underbrace{\int dt \, e^{\frac{i}{\hbar}Et} \, \left| \psi_{\alpha}^{0}, t \right\rangle}_{\left| \psi_{\alpha}^{0}(E) \right\rangle \sim \left| \psi_{\alpha}^{0} \right\rangle} + \int dt \, e^{\frac{i}{\hbar}Et} \underbrace{\int dt' \, G_{0}^{\pm} \left( t - t' \right) V \left| \psi_{\alpha}^{\pm}, t \right\rangle}_{t \rightarrow t + t'} \tag{7.7b}$$

$$\int dt \, e^{\frac{i}{\hbar}Et} G_0^+(t) = G_0^+(E) \tag{7.7c}$$

$$V \left| \psi_{\alpha}^{\pm}(E) \right\rangle = \int dt' \, e^{\frac{i}{\hbar}Et'} V \left( \psi_{\alpha}^{\pm}(E) \right) \tag{7.7d}$$

$$\begin{vmatrix} \pm \\ \alpha \end{vmatrix} = \begin{vmatrix} \psi_{\alpha}^{0} \end{pmatrix} + G_{0}^{\pm} V | \psi_{\alpha}^{\pm} \rangle, \quad \text{(Lippmann-Schwinger)}$$
 (7.8a)

Solution:

$$|\psi_{\alpha}^{\pm}\rangle = (1 - G_{0}^{\pm}V)^{-1} |\psi_{\alpha}^{0}\rangle$$

$$= \frac{1}{(G_{0}^{\pm})^{-1} - V} (G_{0}^{pm})^{-1} |\psi_{\alpha}^{0}\rangle$$

$$= \frac{1}{E_{\alpha} - H_{0} \pm i0^{+} - V} (E_{?a} - H_{0} \pm i0^{+} - V + V) |\psi_{\alpha}^{0}\rangle (7.9a)$$

$$= \underbrace{\frac{1}{E_{\alpha} - H \pm i0^{+}}}_{G^{\pm}E_{\alpha}} (E_{\alpha} - H + V \pm i0^{+}) |\psi_{\alpha}^{0}\rangle$$

$$= (1 + G^{\pm}V) |\psi_{\alpha}^{0}\rangle$$

$$\psi_{\alpha}^{\pm} = (1 + G^{\pm}V) |\psi_{\alpha}^{0}\rangle (7.9b)$$

can also be obtained from (exercise 2)

$$\left|\psi^{\pm},t\right\rangle = \lim_{t'\to\pm\infty} i\hbar G^{+}\left(t-t'\right)\left|\psi_{0},t'\right\rangle \tag{7.9c}$$

# 7.2 Møller operators & scattering operator

 $\alpha$ : Complete set of quantum numbers

$$H_0 \left| \psi_{\alpha}^0 \right\rangle = E_{\alpha} \left| \psi_{\alpha}^0 \right\rangle \tag{7.10a}$$

$$H\left|\psi_{\alpha}^{\pm}\right\rangle = E_{\alpha}\left|\psi_{\alpha}^{\pm}\right\rangle \tag{7.10b}$$

Consider again

$$|\psi_{\alpha}^{\pm}\rangle = |\psi_{\alpha}^{0}\rangle + (E_{\alpha} - H_{0} + \pm O^{+})^{-1} V |\psi_{\alpha}^{\pm}\rangle$$

$$= |\psi_{\alpha}^{0}\rangle + \int d\beta \frac{T_{\beta\alpha} |\psi_{\beta}^{0}\rangle}{E_{\alpha} - E_{\beta} \pm i0^{+}}$$
(7.10c)

$$1 = \int d\beta |\psi_{\beta}^{0}\rangle \langle \psi_{\beta}^{0}| \qquad (7.10d)$$

$$T_{\beta\alpha} \equiv \langle \psi_{\beta}^{0} | V | \psi_{\alpha}^{\pm} \rangle \tag{7.10e}$$

Transfer matrix

This state satisfies:

$$\int d\alpha \, e^{-\frac{i}{\hbar}E_{\alpha}\tau} f(\alpha) \left| \psi_{\alpha}^{\pm} \right\rangle \xrightarrow{\tau \to \mp \infty} \int d\alpha \, e^{-\frac{i}{\hbar}E_{\alpha}\tau} f(\alpha) \left| \psi_{\alpha}^{0} \right\rangle \tag{7.11a}$$

or

$$e^{-\frac{i}{\hbar}H\tau} \int d\alpha f(\alpha) \left| \psi_{\alpha}^{\pm} \right\rangle \xrightarrow{e^{-\frac{i}{\hbar}H_0\tau}} \int d\alpha f(\alpha) \left| \psi_{\alpha}^{0} \right\rangle$$
 (7.11b)

$$\Rightarrow \left| \psi_{\alpha}^{\pm} \right\rangle = \lim_{\tau \to \infty} e^{+\frac{i}{\hbar}H_{\tau}} e^{-\frac{i}{\hbar}H_{0}\tau} \left| \psi_{\alpha}^{0} \right\rangle$$

$$= \Omega^{\pm} \left| \psi_{\alpha}^{0} \right\rangle$$
(7.11c)

with  $\Omega^{\pm}$  Møller operators

Typical scattering experiment:

At  $t \to -\infty$  prepare state with quantum number  $\alpha$  of  $H_0$ 

Q: What is amplitude for this state to end up in (another) eigenstate of  $H_0$  with quantum number  $\beta$ .

A:

$$\left\langle \psi_{\beta}^{-} \middle| \psi_{\alpha}^{+} \right\rangle = \left\langle \psi_{\beta}^{0} \middle| \left( \Omega^{-} \right)^{\dagger} \Omega^{+} \middle| \psi_{\alpha}^{0} \right\rangle$$

$$\equiv \left\langle \psi_{\beta}^{0} \middle| S \middle| \psi_{\alpha}^{0} \right\rangle$$
(7.12)

$$S = \lim_{\substack{\tau \to \infty \\ \tau \to -\infty}} e^{\frac{i}{\hbar} H_0 \tau} e^{\frac{i}{\hbar} H(\tau_0 - \tau)} e^{-\frac{i}{\hbar} H_0 \tau_0}$$

$$= \lim_{\substack{\tau \to \infty \\ \tau_0 \to -\infty}} U(\tau, \tau_0)$$

$$= U(\infty, -\infty)$$

$$(7.13)$$

ex 1: sheet 6:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}\tau} U(\tau, \tau_0) = e^{\frac{i}{\hbar}H_0\tau} (H - H_0) e^{\frac{i}{\hbar}H(\tau_0 - \tau)} e^{-\frac{i}{\hbar}H_0\tau_0}$$

$$= \underbrace{e^{\frac{i}{\hbar}H_0\tau} V e^{-\frac{i}{\hbar}H_0\tau}}_{V(\tau)} U(\tau, \tau_0)$$

$$= V(\tau)U(\tau, \tau_0)$$
(7.14a)

 $V(\tau)$  evolution operator in IA picture section 4.4. Solution

$$U(\tau, \tau_0) = T\left(e^{-\frac{i}{\hbar} \int_{\tau_0}^{\tau} V(\tau) d\tau}\right)$$
(7.15a)

and

$$S = U(\infty, -\infty)$$

$$= \mathbf{1} - \frac{i}{\hbar} \int_{-\infty}^{\infty} dt_1 V(t_1) + \left(-\frac{i}{\hbar}\right)^2 \int_{-\infty}^{\infty} dt_1 \int_{-\infty}^{t_1} dt_2 V(t_1) V(t_2) + \dots$$
(7.15b)

Note:

$$SS^{\dagger} = \mathbf{1}, \quad S \text{ operator is unitary}$$
 (7.16)

S-matrix

$$S_{\beta\alpha} \equiv \langle \psi_{\beta}^{0} | S | \psi_{\alpha}^{0} \rangle$$

$$= \langle \psi_{\beta}^{-} | \psi_{\alpha}^{\dagger} \rangle$$
(7.17)

#### **option 1** insert S operator

1st term:

$$\langle \psi_{\beta}^{0} | \mathbf{1} | \psi_{\alpha}^{0} \rangle = \delta (\beta - \alpha)$$
 (7.18)

2nd term

$$-\frac{i}{\hbar} \int_{-\infty}^{\infty} dt_1 \left\langle \psi_{\beta}^0 \right| e^{\frac{i}{\hbar} H_0 t} V e^{-\frac{i}{\hbar} H_0 t} \left| \psi_{\alpha}^0 \right\rangle$$

$$= -\frac{i}{\hbar} \int dt e^{-\frac{i}{\hbar} (E_{\alpha} - E_{\beta}) t} \left\langle \psi_{\beta}^0 \right| V \left| \psi_{\alpha}^0 \right\rangle$$

$$= -2i\pi \delta \left( E_{\alpha} - E_{\beta} \right) V_{\beta \alpha}$$

$$(7.19)$$

3rd and 4th  $\rightarrow$  exercise sheet 8

$$\begin{aligned} \left| \psi_{\alpha}^{\pm} \right\rangle &= \left| \psi_{\alpha}^{0} \right\rangle + G_{0}^{\pm}(E)V \left| \psi_{\alpha}^{\pm} \right\rangle \\ &= \left| \psi_{\alpha}^{0} \right\rangle + G^{\pm}(E)V \left| \psi_{\alpha}^{0} \right\rangle \end{aligned}$$
 (7.20a)

$$S_{\beta\alpha} = \left\langle \psi_{\beta}^{-} \middle| \psi_{\alpha}^{+} \right\rangle$$

$$= \left\langle \psi_{\beta}^{0} \middle| S \middle| \psi_{\alpha}^{0} \right\rangle$$

$$(7.20b)$$

 $\rightarrow$  exercise 3 sheet 8 or

$$|\psi_{\alpha}^{-}\rangle - |\psi_{\alpha}^{+}\rangle = G^{-}$$

$$= (G^{-}(E_{\alpha}) - G^{+}(E_{\alpha})) V |\psi_{0}^{\alpha}\rangle$$
(7.21a)

$$\left\langle \psi_{\alpha}^{-} \right| - \left\langle \psi_{\alpha}^{+} \right| = \left\langle \psi_{\alpha}^{0} \right| V \left( G^{+}(E_{\alpha}) - G^{-}(E_{\alpha}) \right) \tag{7.21b}$$

$$S_{\beta\alpha} = \left\langle \psi_{\alpha}^{+} \middle| \psi_{\alpha}^{+} \right\rangle$$

$$= \left( \left\langle \psi_{\beta}^{+} \middle| + \left\langle \psi_{\beta}^{0} \middle| V \left( \frac{1}{E_{\beta} - H + i0^{+}} - \frac{1}{E_{\beta} - H - i0^{+}} \right) \right) (7.21c)$$

$$= \delta \left( \beta - \alpha \right) + \underbrace{\left( \frac{1}{E_{\beta} - E_{\alpha} + i0^{+}} - \frac{1}{E_{\beta} - E_{\alpha} - i0^{+}} \right)}_{\bullet}$$

$$\delta(x) = \lim_{\varepsilon \searrow} \frac{1}{\pi} \frac{\varepsilon}{x^2 + \varepsilon^2} \tag{7.21e}$$

#### Remark 7.2.1:

$$\sqrt{H} |\phi\rangle = \sum \sqrt{E} c_{\alpha} |\psi_{\alpha}\rangle$$

$$= \sum c_{\alpha} \sqrt{E_{\alpha}} |\psi_{\alpha}\rangle$$
(7.22a)

with

$$|\phi\rangle = \sum c_{\alpha} |\psi_{\alpha}\rangle,$$
 (7.22b)

$$H |\psi_{\alpha}\rangle = E_{\alpha} |\psi_{\alpha}\rangle,$$
 (7.22c)

$$\Rightarrow \sqrt{H} |\psi_{\alpha}\rangle = \sqrt{E_{\alpha}} |\psi_{\alpha}\rangle. \tag{7.22d}$$

$$S_{\beta\alpha} = \delta \left(\beta - \alpha\right) - 2i\pi\delta \left(E_{\alpha} - E_{\beta}\right) \underbrace{\left\langle \psi_{\beta}^{0} \middle| V \middle| \psi_{\alpha}^{+} \right\rangle}_{T_{\beta\alpha} \text{ transition matrix}}$$
(7.23a)

# QUANTIZATION OF RADIATION FIELD

#### 8.1 Quantization of free radiation field

from section 5.1

$$\mathbf{A}(\mathbf{r},t) = \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{\lambda} (\alpha(k\lambda) \mathbf{\epsilon}(k\lambda) e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}$$
(8.1a)

$$+\alpha^{*}(k,\lambda) \epsilon^{*}(k,\lambda) e^{-i\mathbf{k}\cdot\mathbf{r}+i\omega_{k}t}, \quad \omega = c |\mathbf{k}|$$

with  $\lambda \to 2$  polarizations,  $\epsilon$  polarization vectors with

$$\mathbf{k} \cdot \mathbf{e} (k, \lambda) = 0 \tag{8.1b}$$

consider time dependence of single mode  $(\mathbf{k}, \lambda)$ :

$$q_{k\lambda} = \alpha(k,\lambda) e^{-i\omega_k t} \tag{8.2a}$$

$$\ddot{q}_{k\lambda} = \omega_k^2 q_{k\lambda} \tag{8.2b}$$

 $\rightarrow$  harmonics oscillator

Recall QMI: harmonic oscillator

$$\hat{H} = \frac{\hbar\omega}{2} \left( \hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right) \tag{8.3a}$$

states

$$\hat{a} |0\rangle = 0 \tag{8.3b}$$

$$|n\rangle \equiv \frac{\left(\hat{a}^{\dagger}\right)^n}{\sqrt{n!}}|0\rangle \tag{8.3c}$$

The Hilbert space

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle \dots \tag{8.3d}$$

$$\hat{N} = \hat{a}^{\dagger} \hat{a} \tag{8.3e}$$

with

$$\hat{N}|n\rangle = n|n\rangle$$
, etc. (8.3f)

outlook  $\mathbf{A} \to \hat{\mathbf{A}}$  (2nd quantization)

To motivate the interpretation of  ${\bf A}$  as collection of independent harmonic oscillator compute

$$H = \frac{1}{8\pi} \int d^3 \mathbf{r} \left( \mathbf{E}^2 + \mathbf{B}^2 \right) \tag{8.4a}$$

$$\mathbf{E} = -\frac{1}{c}\dot{\mathbf{A}}$$

$$= \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \sum_{\lambda} \left( \alpha \mathbf{\epsilon} \frac{i\omega}{c} e^{-i\omega t + i\mathbf{k}\cdot\mathbf{r}} - \alpha^{*} \mathbf{\epsilon} \frac{i\omega}{c} e^{i\omega t - i\mathbf{k}\mathbf{r}} \right)$$
(8.4b)

$$\int d^{3}\mathbf{r} \mathbf{E}^{2} = \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{\lambda\lambda'} \left( \alpha \boldsymbol{\epsilon} e^{-i\omega t + i\mathbf{k}\mathbf{r}} - \alpha^{*} \boldsymbol{\epsilon}^{*} e^{i\omega t - i\mathbf{k}\mathbf{r}} \right) \left( \frac{i\omega}{c} \right)$$

$$\cdot \left( \alpha' \boldsymbol{\epsilon}' e^{i\omega' t + i\mathbf{k}' \cdot \mathbf{r}} - \alpha^{*'} \boldsymbol{\epsilon}^{*'} e^{i\omega' t - i\mathbf{k}' \cdot \mathbf{r}} \right) \left( \frac{i\omega'}{c} \right)$$

$$= \int d^{3}\mathbf{r} \iint \sum_{\lambda\lambda'} \left( \alpha \alpha' \boldsymbol{\epsilon} \times \boldsymbol{\epsilon}'^{*} \frac{-\omega\omega'}{c^{2}} e^{-it(\omega-\omega')} e^{r\mathbf{r}(\mathbf{k}-\mathbf{k}')} \right)$$

$$(8.4c)$$

use

$$\int d^3 \mathbf{r} \ e^{i\mathbf{r}(\mathbf{k}-\mathbf{k}')} = (2\pi)^3 \delta(\mathbf{k} - \mathbf{k}')$$
(8.4d)

$$\int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\lambda \lambda'} \left( \alpha \alpha' \mathbf{\epsilon} \times \mathbf{\epsilon}^{*'} \left( \frac{-\omega^2}{c^2} \right) + \ldots \right)$$
 (8.4e)

$$P = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\lambda} \hbar \mathbf{k} a_{k\lambda}^* a_{k,\lambda}$$
 (8.5a)

2nd quantiziation: so far **A** classical field,  $a^* = f^{\text{cts}}$ 

$$A.H, P \rightarrow \hat{A}, \hat{H}, \hat{P}$$
 (8.6a)

commutation relations

$$[\hat{a}_{k\lambda}, \hat{a}_{k'\lambda'}] = [\hat{a}_{k\lambda}^!, \hat{a}_{k'\lambda'}^!]$$

$$= 0$$
(8.6b)

$$\left[\hat{a}_{k\lambda}, \hat{a}_{k'\lambda'}^{\dagger}\right] = (2\pi)^{3} \delta\left(k - k'\right) \delta_{\lambda\lambda'}$$
(8.6c)

k continuous  $\rightarrow$  world in a box  $\rightarrow k$  discrete; box  $\rightarrow \infty$ ,  $k \rightarrow$  const

 $\lambda$ : discrete

another way to quanise field **A**:

$$\mathcal{L} = \frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu}$$

$$= \frac{1}{8\pi} \left( E^2 - B^2 \right)$$
(8.7a)

define conjugate momentum field.

$$\pi = \frac{\partial f}{\partial \mathbf{A}}$$

$$= \dots$$

$$= -\frac{1}{4\pi c} \mathbf{E}^{2}$$
(8.7b)

 $A, \pi \to \hat{A}, \hat{\pi}$ 

$$[A_{i}(x,t), A_{j}(y,t)] = [\pi_{i}(x,t), \pi_{j}(y,t)]$$
(8.8a)

$$[A_i, \pi_j] \approx i\hbar\delta(x - y)\,\delta_{ij}$$
 (8.8b)

$$\mathbf{A}(\mathbf{r},t) = \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \sum_{\lambda} \left( \alpha(k,\lambda) \, \boldsymbol{\epsilon}(k,\lambda) \, e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t} \right)$$
(8.9a)

$$+\alpha^*(\mathbf{k},\lambda) \, \mathbf{\epsilon}^*(\mathbf{k},\lambda) \, e^{-i\mathbf{k}\cdot\mathbf{r}+i\omega t}$$

$$H = \frac{1}{8\pi} \int d^3 \mathbf{r} \left( \mathbf{E}^2 + \mathbf{B}^2 \right) \tag{8.9b}$$

$$\int d^{3}\mathbf{r} \,\mathbf{E}^{2} = \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{k}'}{(2\pi)^{3}} \sum_{\lambda\lambda'} \left(\alpha\alpha'\mathbf{\epsilon} \cdot \mathbf{\epsilon} \left(-\frac{\omega\omega'}{c^{2}}\right) e^{-i(\omega+\omega')t} e^{+i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{r}} + \alpha^{*}\alpha'^{*}\mathbf{\epsilon}^{*}\mathbf{\epsilon}'^{*} \left(-\frac{\omega\omega'}{c^{2}} e^{+i(\omega+\omega')t} e^{-i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{r}}\right) - \alpha\alpha'^{*}\mathbf{\epsilon}^{*}\mathbf{\epsilon}'^{*} \left(-\frac{\omega\omega'}{c^{2}} e^{-i(\omega+\omega')t} e^{-i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}}\right) - \alpha^{*}\alpha'\mathbf{\epsilon}^{*}\mathbf{\epsilon}'^{*} \left(-\frac{\omega\omega'}{c^{2}} e^{+i(\omega+\omega')t} e^{+i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{r}}\right)\right)$$

$$= \int \frac{d^{3}k}{(2\pi)^{3}} \sum_{\lambda\lambda'} \left(-\frac{\omega^{2}}{c^{2}}\right) \left(\alpha_{k}\alpha_{-k}\mathbf{\epsilon}_{k} \cdot \mathbf{\epsilon}_{-k} e^{-2i\omega t} + \alpha_{k}^{*}\alpha_{-k}^{*}\mathbf{\epsilon}_{k}^{*} \cdot \mathbf{\epsilon}_{k} + \alpha_{k}^{*}\alpha_{-k}^{*}\mathbf{\epsilon}_{k}^{*}\right)$$

$$= \int \frac{d^{3}k}{(2\pi)^{3}} \sum_{\lambda} \left(\frac{\omega^{2}}{c^{2}}\right) \left(\alpha_{k}\alpha_{k}^{*} + \alpha_{k}^{*}\alpha_{k} \cdot \mathbf{\epsilon}_{k}^{*} - \alpha_{k}^{*}\alpha_{k}\mathbf{\epsilon}_{k}^{*} \cdot \mathbf{\epsilon}_{k} + \alpha_{k}^{*}\alpha_{k}\right)$$

$$= \int \frac{d^{3}k}{(2\pi)^{3}} \sum_{\lambda} \left(\frac{\omega^{2}}{c^{2}}\right) \left(\alpha_{k}\alpha_{k}^{*} + \alpha_{k}^{*}\alpha_{k} + \alpha_{k}^{*}\alpha_{k}\right)$$

$$+ \left\{\alpha_{k}\alpha_{-k}, \alpha_{k}^{*}\alpha_{-k}^{*} \text{ terms}\right\}\right)$$

use

$$\int d^3 r \, e^{i(k \pm k')r} = (2\pi)^3 \, \delta (k \pm k') \tag{8.9c}$$

 $\lambda, k'$  integration and  $\omega_{-k} = \omega_k = \omega$ 

$$\int d^3 \mathbf{r} \, \mathbf{B}^2 = \dots$$

$$= \int \frac{d^3 k}{(2\pi)^3} \sum_{\lambda} \left(\frac{\omega^2}{c^2}\right) (\alpha_k \alpha_k^* + \alpha_k^* \alpha_k - \{\dots\})$$
(8.9e)

$$H = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \sum_{k} \frac{\omega^2}{4\pi c^2} \left( \alpha_k \alpha_k^* + \alpha_k^* \alpha_k \right)$$
 (8.9f)

define:

$$\alpha^*(k,\lambda) = \sqrt{\frac{\omega}{2\pi c^2 \hbar}} \alpha^*(k,\lambda)$$
 (8.10a)

$$\mathbf{A}\left(\mathbf{r},t\right) = \int \frac{\mathrm{d}^{3}k}{\left(2\pi\right)^{3}} \sqrt{\frac{2\pi c^{2}\hbar}{\omega}} \sum_{\lambda} \left(q_{k\lambda} \mathbf{\epsilon}_{k\lambda} e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t} + q_{k\lambda}^{*} \mathbf{\epsilon}_{k\lambda}^{*} e^{-i\mathbf{k}\cdot\mathbf{r}+i\mathbf{g}t}\right) 0 \mathbf{b}$$

$$H = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\lambda} \frac{\hbar \omega}{2} \left( a_{k\lambda}^* a_{k\lambda} + a_{k\lambda\lambda} a_{k\lambda}^* \right)$$
 (8.10c)

$$\mathbf{P} = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\lambda} \hbar \mathbf{k} a_{k\lambda}^* a_{k\lambda}$$
 (8.10d)

#### 8.1.1 2nd quantization

So far **A** classical field,  $a^{(*)}$  functions

$$a(k,\lambda) \to \hat{a}(k,\lambda)$$
, operator (8.11a)

$$a^*(k,\lambda) \to \hat{a}^{\dagger}(k,\lambda)$$
, operator (8.11b)

as for harmonic oscillator

$$\mathbf{A}, H, \mathbf{P} \to \hat{\mathbf{A}}, \hat{H}, \hat{P}$$
 (8.11c)

commutation relations:

$$[\hat{a}_{k\lambda}, \hat{a}_{k',\lambda'}] = [\hat{a}_{\dagger}^{k\lambda}, \hat{a}_{k',\lambda'}^{\dagger}]$$

$$= 0$$

$$(8.12a)$$

$$\left[\hat{a}_{k\lambda}, \hat{a}_{k'\lambda'}^{\dagger}\right] = (2\pi)^{3} \delta\left(\mathbf{k}, -\mathbf{k'}\right) \delta_{\lambda\lambda'}$$
(8.12b)

**k:** continuous label  $\rightarrow$  ften system in a box, k becomes discrete

 $\lambda$ : discrete, l.z

another way to quantize field A

$$\mathcal{L} = \frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu}$$

$$= \frac{1}{8\pi} \left( \mathbf{E}^2 - \mathbf{B}^2 \right)$$
(8.13a)

define conjugate momentum field

$$\pi = \frac{\partial f}{\partial \mathbf{A}}$$

$$= \dots$$

$$= -\frac{1}{4\pi c} \mathbf{E}^{2}$$
(8.13b)

 $A, \pi \to \hat{A}, \hat{\pi}$ 

$$[A_{i}(x,t), A_{j}(y,t)] = [\pi_{i}(x,t), \pi_{j}(y,t)]$$

$$= 0$$
(8.13c)

$$[A_i, \pi_j] \approx i\hbar\delta(x - y)\,\delta_{ij}$$
 (8.13d)

# 8.2 Fock space

Built up as for single harmonic oscillator with "ladder" operators

$$\hat{a}^{\dagger}\left(k,\lambda\right)=\hat{a}_{k\lambda}^{\dagger},\quad \text{creation operator}$$
 (8.14a)

$$\hat{a}(k,\lambda) = \hat{a}_{k\lambda}$$
, annihilation operator (8.14b)

start with vacuum  $|0\rangle$  definition

$$\hat{a}_{k\lambda} \left| 0 \right\rangle = 0 \tag{8.14c}$$

$$|1(k,\lambda)\rangle = \hat{a}^{\dagger}|0\rangle \tag{8.14d}$$

state with 1 photon momentum,  $\mathbf{k}$ , polarization  $\lambda$ 

#### **General state** Note:

$$\hat{a}_{k_{j}\lambda_{j}}^{\dagger} | n_{1}(k_{1}, \lambda_{1}) \dots n_{j}(k_{j}, \lambda_{j}) \dots n_{m}(k_{m}, \lambda_{m}) \rangle$$

$$= \sqrt{n_{j} + 1} | n_{1} \dots n_{j+1} \dots n_{m} \rangle$$
(8.15a)

$$\int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{\lambda} \hat{a}_{k\lambda} |n_{1}(k_{1}, \lambda_{1})\rangle = \frac{1}{\sqrt{n_{1}!}} \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \sum_{\lambda} \hat{a}_{k\lambda} \left(\hat{a}_{k_{1}\lambda_{1}}^{\dagger}\right)^{n_{1}} |0.5.15b\rangle$$

with

$$\hat{a}_{k\lambda} \left( \hat{a}_{k_1\lambda_1}^{\dagger} \right)^{n_1} |0\rangle = \left( \hat{a}_{k_1\lambda_1}^{\dagger} \right)^{n_1-1} n_1 \left[ \hat{a}_{k\lambda}, \hat{a}_{k_1\lambda_1}^{\dagger} \right] + \left( \hat{a}_{k_1\lambda_1}^{\dagger} \right) \hat{a}_{k\lambda}$$
 (8.15c)

with

$$\left[\hat{a}_{k\lambda}, \hat{a}_{k_1\lambda_1}^{\dagger}\right] = n_1 \left(2\pi\right)^3 \delta\left(\mathbf{k} - \mathbf{k}_1\right) \delta_{\lambda\lambda_1} \tag{8.15d}$$

$$\Rightarrow \int \frac{\mathrm{d}^{3} \mathbf{k}}{(2\pi)^{3}} \sum_{\lambda} \hat{a}_{k\lambda} |n_{1}(k_{1}, \lambda_{1})\rangle = \frac{n_{1}}{\sqrt{n_{1}!}} \binom{\dagger}{k_{1}\lambda_{1}}^{n_{1}-1} |0\rangle 
= \frac{n_{1}\sqrt{(n_{1}-1)!}}{\sqrt{n_{1}!}} \frac{\left(\hat{a}_{k_{1}\lambda_{1}}^{\dagger}\right)^{n_{1}-1}}{\sqrt{(n_{1}-1)!}} |0\rangle 
= \sqrt{n_{1}} |(n_{1}-1)(k_{1}\lambda_{1})\rangle$$
(8.15e)

General:

$$\int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\lambda} a_{k\lambda} |n_1 \dots n_m\rangle = \sum_{i=1}^m \sqrt{n_i} |n_1 \dots n_{i-1}, \dots n_m\rangle$$
(8.16a)

Compute expectation value of  $\hat{H}$  in state  $|n_1(k_1\lambda_1)\rangle$ 

$$\left\langle n_{1}\right|\hat{H}\left|n_{1}\right\rangle =\int\frac{\mathrm{d}^{3}k}{\left(2\pi\right)^{3}}\sum_{\lambda}\frac{\hbar\omega}{2}\left\langle n_{1}\right|\hat{a}_{k\lambda}^{\dagger}\hat{a}_{k\lambda}+\underbrace{\hat{a}_{k\lambda}\hat{a}_{k\lambda}^{\dagger}}_{\hat{a}_{k\lambda}}+\delta(0)\left(0\right)\right\rangle \label{eq:n1}$$

$$\langle n_{1} | \hat{H} | n_{1} \rangle = \int \frac{\mathrm{d}^{3} k}{(2\pi)^{3}} \sum_{\lambda} \hbar \omega \langle n_{1} | \hat{a}_{k\lambda}^{\dagger} \hat{a}_{k\lambda} | n_{1} \rangle$$

$$= \hbar \omega \langle n_{1} | \hat{a}_{k_{1}\lambda_{1}}^{\dagger} | n_{1} - 1 \rangle \sqrt{n_{1}}$$

$$= \hbar \omega n_{1} \langle n_{1} | n_{1} \rangle$$

$$= n_{1} \hbar \omega$$
(8.16c)

$$\rightarrow \langle n_1 \dots n_m | \hat{H} | n_1 \dots n_m \rangle = \sum_{i=1}^m \hbar \omega_i n_i$$
 (8.16d)

introduce interactions with matter (compare Section 5)

$$V = -\frac{q}{2mc} \left( \mathbf{p} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{p} \right) + \frac{q^2}{2mc^2} \hat{\mathbf{A}}^2$$
 (8.17a)

in Coulomb gauge

$$\mathbf{\nabla \cdot A} = 0 \tag{8.18a}$$

$$\Rightarrow \mathbf{p} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{p} \tag{8.18b}$$

$$\hat{V} = -\frac{q_{-}}{mc}p \cdot \hat{A} + \frac{q^{2}}{2mc^{2}}\hat{A}^{2}$$
 (8.18c)

is operator in Fock space and will be used to compute transition matrix elements

$$V_{\beta\alpha} = \langle \psi_{\beta}^{0} | V | \psi_{\alpha}^{0} \rangle \tag{8.18d}$$

#### 8.3 Photon emission and absorption

We have considered these processes before in section 5.2

$$H = H_0 + H_{em} + \hat{V}$$

$$= \sum_{i} \frac{p_i^2}{2m} + \frac{1}{8\pi} \int d^3r \left( \hat{\mathbf{E}}^2 + \hat{\mathbf{B}}^2 \right)$$
+ interaction matter  $\leftrightarrow$  photons (8.19a)

eigenstates 
$$|\psi_{\alpha}^{0}\rangle = |\text{matter}\rangle \otimes |\text{photons}\rangle$$
  
= wave function  $\otimes$  new, Fockspace  
=  $|A; n_{1}(k, \lambda_{1}) \dots n_{m}(k_{m}, \lambda_{m})\rangle$  (8.19b)

#### 8.3.1 Absorption of photon

$$V_{\beta\alpha} = \langle B; (n-1)(k,\lambda) | \hat{V} | A; n(k,\lambda) \rangle$$
(8.20a)

with

B: final state of atom

(n-1): one photon "lost"

A: initial state of atom

 $n(k,\lambda)$ : n photons,  $k,\lambda$ 

 $\hat{a}^{\dagger}$  term gives no contribution

$$\rightsquigarrow V_{\beta\alpha} = \frac{e}{m} \sqrt{\frac{2\pi\hbar}{\omega}} \sqrt{n} \langle B; | \mathbf{p} \cdot \mathbf{\epsilon}(k, \lambda) e^{i\mathbf{k} \cdot \mathbf{r}} | A \rangle$$

$$\sim \sqrt{n}$$
(8.20c)



Figure 8.1:

#### 8.3.2 Emission of photons

$$V_{\beta\alpha} = \langle B; (n+1)(k,\lambda) | \hat{V} | A; n(k,\lambda) \rangle, \qquad (8.21a)$$

with  $\hat{V}$  now anly  $\hat{a}^{\dagger}$  part contribution.

$$\rightsquigarrow V_{\beta\alpha} = \frac{e}{m} \sqrt{\frac{2\pi\hbar}{\omega}} \sqrt{n+1} \langle B | \mathbf{p} \cdot \mathbf{\epsilon}^* (k, \lambda) e^{-i\mathbf{k}\cdot\mathbf{r}} | A \rangle \qquad (8.21b)$$

$$\sim \sqrt{n+1}$$

Note: This is non-zero even for  $n=0 \to \text{spontaneous emission!}$  recall classical:

$$\Gamma_{n0} = \Gamma_{0n} \tag{8.22a}$$

absorption = emission 
$$(8.22b)$$

now

$$\frac{\Gamma_{n0}}{\Gamma_{0n}} = \frac{n_{k\lambda}}{n_{k\lambda} + 1} \tag{8.22c}$$

# 8.4 Scattering of photons by atoms

involves creation and annihilation of photon need  $\hat{a}^{\dagger}\left(k_f,\lambda_f\right)\hat{a}\left(k_i,\lambda_i\right)$  recall

$$\hat{V} = \frac{e}{mc} \mathbf{p} \cdot \hat{\mathbf{A}} + \frac{e^2}{2mc^2} \hat{\mathbf{A}}^2$$
 (8.23)

where  $\hat{\bf A}$  contains either  $\hat{a}^{\dagger}$  or  $\hat{a}$  and cotributes only at 2nd order,  $\hat{\bf A}^2$  contains  $\hat{a}^{\dagger}\hat{a} \to \text{contributes}$  at first order. Both  $\hat{\bf A}$  and  $\hat{\bf A}^2$  are  $\sim \frac{e^2}{c^2}$ 

#### first-order contribution

$$V_{\beta\alpha}^{(1)} = \langle F, 1 (k_f, \lambda_f) | \frac{e^2}{2mc^2} \hat{\mathbf{A}}^2 | I, 1 (k_i, f_i) \rangle$$

$$= \frac{e^2}{2mc^2} \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \int \frac{\mathrm{d}^3 \mathbf{k}'}{(2\pi)^3} \sum_{\lambda \lambda'} \frac{2\pi \hbar c^2}{\sqrt{\omega \omega'}}$$

$$\cdot \langle F, 1 (k_f, \lambda_f) | \left( \hat{a} \boldsymbol{\epsilon} e^{i\mathbf{k} \cdot \mathbf{r} - i\omega t} + \hat{a}^{\dagger} (k, \lambda) e^{-i\mathbf{k} \cdot \mathbf{r} + i\omega t} \right)$$

$$\cdot \left( \hat{a}' (k', \lambda') e^{i\mathbf{k} \cdot \mathbf{r} - i\omega t} + \hat{a}^{\dagger'} \boldsymbol{\epsilon}'^* e^{-i\mathbf{k} \cdot \mathbf{r} + i'wt} \right) | I, 1 (k_i, \lambda_i) \rangle$$

$$= \frac{e^2}{2mc^2} \frac{2\pi \hbar c^2}{\sqrt{\omega_i \omega_f}} 2 \cdot \langle F | \boldsymbol{\epsilon} \left( k_i, \lambda_i \cdot \boldsymbol{\epsilon} (k_f, \lambda_f) e^{it(\omega_i - \omega_f)} \right) e^{i\mathbf{r} \cdot (\mathbf{k}_i - \mathbf{k}_f)} | I \rangle$$

$$(8.24)$$

Recall from section 7.2

$$H = H_0 + V$$

$$S_{\beta\alpha} = \delta \left(\beta - \alpha\right) - \frac{i}{\hbar} \int_{\mathbb{R}} dt_1 \, e^{-\frac{i}{\hbar} t_1 (E_{\alpha} - E_{\beta})} \left\langle \psi_{\beta}^0 \middle| V \middle| \psi_{\alpha}^0 \right\rangle$$

$$- \frac{i}{\hbar} \int_{-\infty}^{\infty} dt_1 \, e^{-\frac{i}{\hbar} t_1 (E_I + \hbar \omega_i - E_F - \hbar \omega_f)} \left( \frac{2e^2 \hbar \pi}{m \sqrt{\omega_i \omega_f}} \mathbf{\epsilon} \right)$$

$$\cdot \mathbf{\epsilon}^* \left\langle F \middle| \dots \middle| F \right\rangle$$

golden rule (sec 4.2/4.3) Transition rate  $\frac{2\pi}{\hbar} |T|^2 \rho$  cross section  $\frac{d\sigma}{d\Omega}$  (final photon energy  $\hbar \omega_f + a (\hbar \omega_f)$ )

- divide by flux v = c (section 6.1)
- nr. states

$$\frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} = \frac{k^{2} \,\mathrm{d}k \,\mathrm{d}\Omega}{(2\pi)^{3}}$$

$$= \frac{\omega_{f}^{2} \,\mathrm{d}\Omega}{(2\pi)^{3} \,c^{3}\hbar} \,\mathrm{d}(\hbar\omega_{f})$$
(8.26a)

$$\rho\left(\omega_f\right) = \frac{\omega_f^2 \,\mathrm{d}\Omega}{\left(2\pi\right)^3 \,c^3\hbar} \tag{8.26b}$$

#### Feynman diagrams

Figure 8.2:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{c} \frac{2\pi}{\hbar} \underbrace{\frac{\omega_f^2}{(2\pi)^3 c^3 \hbar}} |T|^2$$

$$= \frac{e^4}{m^2 c^4} \frac{\omega_f}{\omega_i} \left| \mathbf{\epsilon}_i \cdot \mathbf{\epsilon}_f^* \left\langle F \right| e^{i\mathbf{r} \cdot (\mathbf{k}_i - \mathbf{k}_f)} |I\rangle \right|^2$$

$$\left( \frac{\alpha \hbar}{mc} \right)^2 = r_0^2 \tag{8.27b}$$

(classical electron radius)

However, there are further contributions of order  $\alpha^2 \sim e^4$  golden rule (sec 4.2/4.3) Transition rate  $\frac{2\pi}{\hbar} |T|^2 \rho$  cross section  $\frac{d\sigma}{d\Omega}$  (final photon)...

#### **2nd order contribution** for $T_{\beta\alpha}$

$$S_{\beta\alpha} = \dots \left(-\frac{i}{\hbar}\right)^2 \int_{-\infty}^{\infty} dt_1 \int_{-\infty}^{t_1} dt_2 \sum_{\gamma} e^{-\frac{i}{\hbar}t_1(E_{\gamma} - E_{\beta})} e^{-\frac{i}{\hbar}t_2(E_{\alpha} - E_{\gamma})} V_{\beta\gamma} V_{\gamma\alpha}$$

$$(8.28a)$$

In our case

$$\left(-\frac{i}{\hbar}\right)^{2} \int_{-\infty}^{\infty} dt_{1} \int_{-\infty}^{t_{1}} dt_{2} \underbrace{\int} dN \, e^{-\frac{i}{\hbar}(E_{N}-E_{F})t_{i}} e^{-\frac{i}{\hbar}(E_{I}-E_{N})t_{2}} \left(\frac{e}{mc}\right)^{2} 
\cdot \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{k}'}{(2\pi)^{3}} \underbrace{\sum_{\lambda\lambda'}} \langle F, P(\omega_{f}, \lambda_{f}) | \, \hat{a}_{k}\mathbf{p} \cdot \mathbf{e}_{k} e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t_{1}+\hat{a}_{k}^{\dagger}\mathbf{p}\cdot\mathbf{e}_{k}^{*}e^{-i\mathbf{k}\cdot\mathbf{r}+i\omega t_{1}}} | N \rangle 
\cdot \langle N | \, \hat{a}_{k'}\mathbf{p} \cdot \mathbf{e}_{k'} e^{i\mathbf{k}'\cdot\mathbf{r}-i\omega't_{2}} + \hat{a}_{k'}^{\dagger}\mathbf{p} \cdot \mathbf{e}_{k'}^{*}e^{-i\mathbf{k}'j\mathbf{r}+i\omega't_{2}} | I, 1(k_{i}, \lambda_{i}) \rangle$$
(8.29a)

need 1  $\hat{a}(k_i, \lambda_i)$  and one  $\hat{a}^{\dagger}(k_f, \lambda_f)$ 

$$= \dots$$

$$= \langle F | \hat{a}_{k_f}^{\dagger} \dots | N \rangle \langle N | \dots \hat{a}_{k_i} | I \rangle + \langle F | \hat{a}_{k_i} \dots | N \rangle \langle N | \dots \hat{a}_{\dagger}^{k_f} | I \rangle$$
(8.29b)

Kramers Heisenberg formula

$$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha\hbar}{mc}\right)^{2} \frac{\omega_{f}}{\omega_{i}} \left| \boldsymbol{\epsilon}_{i} \boldsymbol{\epsilon}_{f}^{*} \delta_{FI} + \sum_{N} \langle F | \mathbf{p} \cdot \boldsymbol{\epsilon}_{f}^{*} | N \rangle \langle N | \mathbf{p} \cdot \boldsymbol{\epsilon}_{i} | I \rangle + \frac{\langle F | \mathbf{p} \cdot \boldsymbol{\epsilon}_{i} | N \rangle \langle N | \mathbf{p} \cdot \boldsymbol{\epsilon}_{f}^{*} | I \rangle}{m \left( E_{I} - \hbar \omega_{f} - E_{N} \right)} \right|$$
(8.30)

 $\rightarrow$  limiting cases

Rayleight scattering elastic scattering

$$|I\rangle = |F\rangle, \tag{8.31a}$$

$$\omega_i = \omega_f \tag{8.31b}$$

$$\hbar\omega \ll E_I - E_N \tag{8.31c}$$

combine  $\boldsymbol{\epsilon}_i \cdot \boldsymbol{\epsilon}_f$  with other terms

$$\langle I | \mathbf{\epsilon}_{i} \mathbf{\epsilon}_{f}^{*} | I \rangle = \frac{1}{i\hbar} \langle I | \left[ \mathbf{x} \cdot \mathbf{\epsilon}_{i}, \mathbf{p} \cdot \mathbf{\epsilon}_{f}^{*} \right] | I \rangle$$

$$= \frac{1}{i\hbar} \sum_{N} \left( \langle I | \mathbf{x} \cdot \mathbf{\epsilon}_{i} | N \rangle \langle N | \mathbf{p} \cdot \mathbf{\epsilon}_{f}^{*} | I \rangle - \langle I | \mathbf{p} \cdot \mathbf{\epsilon}_{f}^{*} | N \rangle \langle N | \mathbf{p} \cdot \mathbf{\epsilon}_{f}^{*} | I \rangle \right)$$

$$(8.32a)$$

 $\rightarrow$  put everything together:

$$\frac{1}{E_N - E_I} + \frac{1}{E_I - E_N + \pm \hbar \omega} = \mp \frac{\hbar \omega}{(E_I - E_N)^2} + \frac{(\hbar \omega)^2}{(E_I - E_N)^2} + \dots \quad (8.33a)$$

$$\frac{d\sigma}{d\Omega} = r_0^2 \frac{(\hbar \omega)^4}{m^2} \left| \sum_N \frac{\langle I | \mathbf{p} \cdot \mathbf{e}_f^* | N \rangle \langle N | \mathbf{p} \cdot \mathbf{e}_i | I \rangle}{(E_I - E_N)^2} + \leftrightarrow \right|^2$$

 $r_0^2$ classical $e\text{-radius},\,\omega^4$ blue sky red sunset

$$\hbar\omega_i \gg E_N - E_I \tag{8.34a}$$

(large compared to bindig energy  $\rightsquigarrow$  scattering off "free" electrons)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = r^2 \left| \boldsymbol{\epsilon}_i \cdot \boldsymbol{\epsilon}_f \right|^2 \tag{8.34b}$$

for unpolarized photons

$$\frac{1}{2} \sum_{\lambda_{i}\lambda_{f}} \varepsilon_{i}^{a} (k_{i}, \lambda_{i}) (\varepsilon_{f})^{a} (k_{f}, \lambda_{f}) \varepsilon_{i}^{b} (\varepsilon_{f}^{*})^{b}$$

$$= \frac{1}{2} \left( \delta_{ab} - \frac{k_{i}^{a} k_{i}^{b}}{k_{i}^{b}} \right) \left( \delta_{ab} - \frac{k_{f}^{a} k_{f}^{b}}{k_{f}^{2}} \right)$$

$$= \frac{1}{2} \left( 1 + \cos^{2} \theta \right)$$
(8.34c)

with

$$\theta = \langle (\mathbf{k}_i, \mathbf{k}_f) \tag{8.34d}$$

$$\sigma = \int \operatorname{dcos} \theta \, 2\pi r_0^2 \left( 1 + \cos^2 \theta \right)$$

$$= \frac{8\pi}{3} r_0^2$$
(8.34e)

**Resonances** What if  $E_N \sim E_I + \hbar \omega_i$ 

so far : neglected finite lifetime of  $E_N,\, au_N=\frac{\hbar}{\Gamma_N}$  time evolution

$$e^{-\frac{i}{\hbar}E_N t} e^{-\tau_N t} = e^{-\frac{i}{\hbar}t(E_N - i\Gamma_N)}$$
(8.35a)

with  $\Gamma_N$  that one cannot neglect

$$|T|^2 \approx \left| \frac{1}{E_I - E_N + i\Gamma_N} \right|^2$$

$$= \frac{1}{(E_I - E_N)^2 + \Gamma_N^2}$$
(8.35b)

# Relativistic QM

Will wry to find relativistic generalization of Schrödinger as single-particle equation ( $\rightarrow$  we will fail) but will be basis of relativistic (2nd quantized field theory) Rel: Cannot fix number of particles

# 9.1 Klein-Gordon equation (KGE)

Consider dfree scalar particle

$$X^{\mu} \to X^{\mu'}$$

$$= \Lambda^{\mu}_{\ \nu} x^{\nu}$$

$$(9.1a)$$

$$\phi(x) \to \phi'(x')$$

$$= \phi(x)$$

$$= \phi(\Lambda^{-1}x')$$
(9.1b)

Now start from

$$E^2 = m^2 c^4 + \mathbf{p}^2 c^2 \tag{9.2a}$$

 $(not E = \frac{p^2}{2m})$ 

$$E \to i\hbar \frac{\partial}{\partial t}$$
 (9.2b)

$$\mathbf{p} = -i\hbar \mathbf{\nabla} \tag{9.2c}$$

$$\left(-\hbar^2 \frac{\partial^2}{\partial t^2}\right) \phi(\mathbf{x}, t) = \left(m^2 c^4 - \hbar c^2 \nabla^2\right) \phi(x, t) \tag{9.2d}$$

in covariant form:

$$\partial_{\mu}\partial^{\mu} + \frac{m^2c^2}{\hbar^2}\phi(x) = 0 \tag{9.2e}$$

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$$

$$= \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right)$$
(9.2f)

$$\partial^{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t} - \nabla\right) \tag{9.2g}$$

KGE:

$$\left(\partial_{\mu}\partial^{\mu} + \frac{m^2c^2}{\hbar^2}\right)\phi = 0 \tag{9.3a}$$

$$\partial_{\mu} = \left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla\right) \tag{9.3b}$$

Solution

$$\phi(t, \mathbf{x}) = A \cdot e^{i\mathbf{k} \cdot \mathbf{x} - i\omega t} \tag{9.3c}$$

$$\phi(x) = A \cdot e^{-ik_{\mu}x^{\mu}} \tag{9.3d}$$

$$k^{\mu} = \left(\frac{\omega}{c}, \mathbf{k}\right), \quad k^2 = k_{\mu}k^{\mu} = \frac{\omega^2}{c^2} - \mathbf{k}^2 = \frac{m^2c^2}{\hbar^2}$$
 (9.3e)

or

$$(h\omega) = \pm \sqrt{m^2 c^4 + \mathbf{p}^2 c^2} \tag{9.3f}$$

Negative solutions?!

In analogy to Schrödinger, try to define probability density  $\rho(\mathbf{x},t)$  and probability current density  $\mathbf{j}(\mathbf{x},t)$  satisfying

$$\frac{\partial}{\partial t}\rho + \nabla \mathbf{j} = 0 \tag{9.4a}$$

$$\mathbf{j} = \frac{\hbar}{2mi} \left( \phi^* \left( \nabla \phi \right) - \left( \nabla \phi^* \right) \phi \right) \tag{9.4b}$$

$$\rho = \frac{i\hbar}{2mc^2} \left( \phi^* \frac{\partial \phi}{\partial t} - \frac{\partial \phi^*}{\partial t} \phi \right)$$
 (9.4c)

covariant form

$$j^{\mu} = (cp, j)$$

$$= \frac{i\hbar}{2m} \left( \phi^* \partial^{\mu} \phi - (\partial^{\mu} \phi^*) \phi \right)$$
(9.4d)

Note that  $\rho(\mathbf{x},t)$  is not positive definite  $\to$  cannot be interpreted as probability density

# 9.2 Dirac equation

Try a linear (in  $\frac{\partial}{\partial t}$ ,  $\nabla$ ) equation. Mostgeneral linear equation.

$$i\hbar \frac{\partial}{\partial t} \psi = H\psi$$

$$= \left(-i\hbar c\boldsymbol{\alpha} \cdot \boldsymbol{\nabla} + \beta mc^{2}\right) \psi$$

$$= \left(-i\hbar c\alpha_{i} \nabla_{i} + \beta mc^{2}\right) \psi$$
(9.5a)

With summation convention and

$$\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \alpha_3) \tag{9.5b}$$

and  $\beta$  are 4 non-commeting coefficients

Iterate tis equation

$$-\hbar^2 \frac{\partial^2}{\partial t^2} \psi = \left(-i\hbar c\alpha_i \nabla_i + \beta mc^2\right) \left(-i\hbar c\alpha_j \nabla_j + \beta mc^2\right) \psi$$
$$= \left(c^2 \frac{\hbar^2}{2} \left(\alpha_i \alpha_j + \alpha_j \alpha_i\right) \nabla_i \nabla_j - i\hbar \left(\alpha_i \beta + \beta \alpha_i\right) \nabla_i mc^2 + \beta m^2 c^4\right) \psi$$

Compare to KGE

$$-\hbar^2 \frac{\partial^2}{\partial t^2} \psi = \left(-\hbar c^2 \nabla_i \nabla_i + m^2 c^4\right) \psi \tag{9.6a}$$

$$\beta^2 = 1 \tag{9.6b}$$

$$(\alpha_i \beta + \beta \alpha_i) = \{\alpha_i, \beta\}$$

$$= 0, \text{ (sometimes } [\alpha_i, \beta]_+)$$

$$(9.6c)$$

$$(\alpha_i \alpha_j + \alpha_j \alpha_i) = \{\alpha_i, \alpha_j\}$$

$$= 2\delta_{ij}$$
(9.6d)

From anticommutation relations we see that coeff. cannot be "numbers". ( $\rightarrow$  Exercise dim 4 matrices are simplest possibility)

 $\rightarrow$  wave function

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \tag{9.7}$$

and one possible choice for  $\alpha$  and  $\beta$ .

$$\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix} \tag{9.8a}$$

$$\beta = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \text{ Dirac representiation}$$

$$(9.8b)$$

Rewrite Dirac equation in terms of  $\gamma$  matrices (4 × 4 again)

$$\gamma^{\mu}, \quad \mu \in \{0, 1, 2, 3\}, \gamma^{0} = \beta, \gamma^{i} = \beta \alpha^{i}$$
 (9.9a)

in Dirac representation

$$\gamma^0 = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \tag{9.9b}$$

$$\gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \tag{9.9c}$$

Note cane use any other representation:

$$\gamma^{\mu} \to U \gamma^{\mu} U^{']} \tag{9.10a}$$

Take  $\beta$ : Dirac equation

$$\beta \cdot \left(i\hbar \frac{\partial}{\partial t}\right) \psi = \beta \left(-i\hbar c\alpha_i \nabla_i + \beta mc^2\right) \psi \tag{9.10b}$$

$$i\hbar \frac{\partial}{\partial t} \gamma^0 \psi = \left( -i\hbar c \gamma^i \nabla_i + mc^2 \right) \psi$$
 (9.10c)

$$(i\hbar\partial_{\mu} - mc)\,\psi = 0\tag{9.10d}$$

Notation any 4-vector  $a^{\mu}$ :

$$\partial \equiv a_{\mu} \gamma^{\mu} \tag{9.10e}$$

 $(\phi \text{ and } \partial \text{ have been mistaken...})$ 

$$(i\hbar \partial -mc)\psi = 0 \tag{9.10f}$$

Properties of  $\gamma$  matrices:

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \tag{9.10g}$$

$$\gamma^0 \gamma^\mu \gamma^0 = (\gamma^\mu)^\dagger \tag{9.10h}$$

(There is an old notation in Sakurai.) Dirac equation:

$$(i\hbar\partial_{\mu}\gamma^{\mu} - mc) \psi \equiv (i\hbar\partial - mc) \psi$$

$$= 0$$

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \operatorname{Id}$$
(9.11a)
$$(9.11b)$$

The adjoint Dirac equation

$$0 = \gamma^{+} \left( i\hbar \partial_{\mu} \left( \gamma^{\mu} \right)^{\dagger} - mc \right)$$

$$= \psi^{\dagger} \left( -i\hbar \overleftarrow{\partial}_{\mu} \gamma^{0} \gamma^{\mu} \gamma^{0} - \gamma^{0} \gamma^{0} - \gamma^{0} \gamma^{0} mc \right) \quad (9.11c)$$

$$= \psi^{\dagger} \gamma^{0} \left( \overleftarrow{\partial}_{\mu} - mc \right) \gamma^{0}$$

$$= 0$$

$$\Rightarrow \overline{\psi} \left( i\hbar \partial \!\!\!/ + mc \right) = 0 \tag{9.11d}$$

$$\overline{\psi} \equiv \psi^{\dagger} \gamma^0 \tag{9.11e}$$

The current:

$$j^{\mu} \equiv \overline{\psi} \gamma^{\mu} \psi \tag{9.12a}$$

$$\partial_{\mu}j^{\mu} = \left( \partial \overline{\psi} \right) \psi + \overline{\psi} \partial \psi$$

$$= 0$$
(9.12b)

$$\begin{split} \rho &\equiv j^0 \\ &= \psi^\dagger \gamma^0 \gamma^0 \psi \\ &= \psi^\dagger \psi, \ \ \text{positive definite} \end{split} \tag{9.12c}$$

 $(\rightarrow \text{ we still will have problem with } E < 0 \text{ solutions})$ 

# 9.3 Coraviance of Dirac equation

Consider LT

$$x^{\mu} \to x'^{\mu}$$

$$= \Lambda^{\mu}{}_{\nu}x^{\nu}$$

$$= \frac{\partial x'^{\mu}}{\partial x^{\nu}}x^{\nu}, \quad (x \to \Lambda x)$$

$$(9.13a)$$

Dirac

$$(i\hbar\partial_{\mu}\gamma^{\mu} - mc)\,\psi(x) = 0 \tag{9.13b}$$

$$\rightarrow (i\hbar\partial'_{\mu} - mc) \psi(x') = 0 \tag{9.13c}$$

require transformation

$$\psi(x) \to \psi'(x') \tag{9.13d}$$
$$= S(\Lambda) \psi(x)$$

such that the "new" equation holds start from  $S(\Lambda) \times \text{Dirac}$  equation

$$\begin{split} S(\Lambda) \left( i\hbar \frac{\partial}{\partial x^{\mu}} \gamma^{\mu} - mc \right) \psi &= S\left( \Lambda \right) \left( i\hbar \Lambda^{\nu}{}_{\mu} \partial^{\prime}_{\nu} \gamma^{\mu} - mc \right) \psi \\ &= S(\Lambda) \left( i\hbar \Lambda^{\nu}{}_{\mu} \partial^{\prime}_{\nu} \gamma^{\mu} - mc \right) \psi \\ &= \left( i\hbar S(\Lambda) \left( \Lambda^{\nu}{}_{\mu} \gamma^{\mu} \right) S^{-1} \left( \Lambda \right) \partial^{\prime}_{\nu} \\ &- mc \right) \underbrace{S(\Lambda) \psi(x)}_{\psi^{\prime}(x^{\prime})} \end{split}$$

Compare with Dirac in S'

$$S(\Lambda)\Lambda^{\nu}_{\mu}\gamma^{\mu}S^{-1}(\Lambda) = \gamma^{\nu} \tag{9.13f}$$

or

$$\Lambda^{\nu}_{\mu}\gamma^{\mu} = S^{-1}(\Lambda)\gamma^{\nu}S(\Lambda) \tag{9.13g}$$

A proper LT has 6 parameterns (3rot, 3boos par)

$$\omega_{\rho\sigma} = -\omega_{\sigma\rho}$$
, (antisymmetric) (9.13h)

Claim: For infinitesimal propel LT:

$$S(\Lambda) = \mathbf{1} + \frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu} \tag{9.14a}$$

with

$$\sigma^{\mu\nu} \equiv \frac{i}{2} \left[ \gamma^{\mu}, \gamma^{\nu} \right] \tag{9.14b}$$

or for finite LT

$$S(\Lambda) = e^{\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}} \tag{9.14c}$$

(compare to QMI rotations)  $\rightarrow$  exercise sheet 12

Fro pariti  $(t, \mathbf{x}) \to (t, -\mathbf{x})$  or

$$\Lambda^{\mu}{}_{\nu} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$
(9.15a)

we get for  $\nu = 0$ 

$$S\gamma^0 S = \gamma^0 \tag{9.15b}$$

and for  $\nu = i$ 

$$S\gamma^i S = -\gamma^i \tag{9.15c}$$

$$S(\Lambda_p) = \gamma^0 \times \underbrace{\text{Phase}}_{1} \tag{9.15d}$$

Define

$$\gamma_5 \equiv i\gamma_0 \psi_1 \gamma_2 \psi_3 \tag{9.16a}$$

in Dirac representation

$$\gamma_5 = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix} \tag{9.16b}$$

Note

$$(\gamma_5) = \mathbf{1}. \tag{9.16c}$$

Now we can parametrize any  $4\times 4$  matrix in terms of the following 16 matrices  $\{1, \gamma_5, \gamma^4, \gamma_5 \gamma^4, \sigma^{\mu\nu}\}$ . We know

$$\psi(x) \xrightarrow{\text{LT}} S(\Lambda)\psi(x)$$
 (9.17a)

$$\overline{\psi}(x) \xrightarrow{\text{LT}} \overline{\psi}(x) S^{-1}(\Lambda)$$
 (9.17b)

 $\rightarrow$  exercise sheet 12

#### 9.3.1 Bilinear covariants

$$\overline{\psi}(x)\psi(x) \xrightarrow{\text{pLT}} \overline{\psi}S^{-1}S\psi = \overline{\psi}(x)\psi(x)$$
 (9.18a)

$$\xrightarrow{\text{Parity}} \overline{\psi} \gamma^0 \gamma^0 \psi = \overline{\psi}(x) \psi(x) \tag{9.18b}$$

$$\overline{\psi}(x)\gamma_5(x)\psi(x) \xrightarrow{\text{pLT}} \overline{\psi}S^{-1}\gamma^5S\psi = \overline{\psi}\gamma_5\psi$$
 (9.18c)

$$\{\gamma^5, \gamma^\mu\} = 0 \tag{9.18d}$$

$$\Rightarrow [S, \gamma_5] = 0 \tag{9.18e}$$

$$\overline{\psi}\gamma^{\mu}\psi \to \Lambda^{\mu}{}_{\nu}\overline{\psi}\gamma^{\nu}\psi, \text{ vector}$$
 (9.19a)

$$\overline{\psi}\gamma_5\gamma^{\mu}\psi \to \text{Det}(\Lambda)\Lambda^{\mu}_{\ \nu}\overline{\psi}\gamma^{\nu}\gamma_5\psi$$
, axial vector (9.19b)

$$\overline{\psi}\sigma^{\mu\nu}\psi \to \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}\overline{\psi}\gamma^{\rho\sigma}\psi, \text{ tensor rank 2}$$
 (9.19c)

# 9.4 Solutions to the dirac equation

$$\psi(x) = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \tag{9.20}$$

4 comps:  $2 \text{ spin} \times 2 \text{ positive/negative energy}$  momentum space

$$\psi^+(x) = e^{-ikx}u(k)$$
, positive  $E$  (9.21a)

$$\psi^{-}(x) = e^{ikx}v(k)$$
, negative  $E$  (9.21b)

$$\mathbf{k} \cdot \mathbf{x} = k_{\mu} x^{\mu}$$

$$= \omega t - \mathbf{x} \cdot \mathbf{k}$$
(9.22a)

write as:

$$\psi^{+} = e^{-\frac{i}{\hbar}(Et - px)}u(p) \tag{9.22b}$$

$$\psi^{-} = e^{\frac{i}{\hbar}(-Et - px)}u(p) \tag{9.22c}$$

$$p^{\mu} = \left(\frac{E}{c}, p\right) \tag{9.22d}$$

Dirac

$$(\not p - mc) u(p) = 0 \tag{9.23a}$$

$$-\not p - mcv(p) = 0 \tag{9.23b}$$

are matrix equations

$$(\not p \mp mc) = \begin{pmatrix} \frac{E}{c} \mp mc & -\mathbf{p} \cdot \mathbf{\sigma} \\ \mathbf{p} \cdot \mathbf{\sigma} & -\frac{E}{c} \mp mc \end{pmatrix} \begin{pmatrix} \chi \\ \varphi \end{pmatrix}$$

$$= 0$$
(9.23c)

par. of u and/or v

$$u(p) \equiv \begin{pmatrix} \chi \\ \varphi \end{pmatrix} \tag{9.23d}$$

$$\varphi = \left(\frac{c\mathbf{p} \cdot \mathbf{\sigma}}{E + mc^2}\right) \chi \tag{9.23e}$$

pick normalization factor  $\sqrt{E + mc^2}$ 

$$u\left(p,r\right) = \begin{pmatrix} \sqrt{E + mc^{2}} & \chi_{r} \\ \frac{c\mathbf{p}\cdot\mathbf{\sigma}}{\sqrt{E + mc^{2}}}\chi_{r} \end{pmatrix}$$
(9.23f)

and

$$v(p,r) = \begin{pmatrix} \frac{c\mathbf{p}\cdot\mathbf{\sigma}}{\sqrt{E+mc^2}} & \chi_r\\ \sqrt{E+mc^2} & \chi_r \end{pmatrix}$$
(9.23g)

$$\chi_1 = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{9.23h}$$

$$\chi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{9.23i}$$

r related to spin, 4-solutions

some propertes of u and v:

$$\overline{u}(p, r_i) u(p, r_j) = u^{\dagger}(p, r_i) \gamma^0 u(p, R - j)$$
(9.23j)

$$\left(\sqrt{E + mc^{2}}\chi_{i} \quad \frac{c\mathbf{p}\cdot\mathbf{\sigma}}{\sqrt{E + mc^{2}}\chi_{i}}\cdot\right) \begin{pmatrix} \mathbf{1} & 0\\ 0 & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \sqrt{E + mc^{2}} & \chi_{j}\\ \frac{c\mathbf{\sigma}\cdot\mathbf{p}}{\sqrt{E + mc^{2}}} & \chi_{j} \end{pmatrix}$$

$$= \left((E + mc^{2})\chi_{i}\cdot\chi_{j} - \frac{c\mathbf{p}^{2}}{(Emc^{2})}\chi_{i}\chi_{j}\right)$$

$$= 2mc^{2}\chi_{i}\chi_{j}$$

$$= 2mc^{2}\delta_{ij}$$
(9.23k)

similar

$$\overline{v}(p,r_i)v(p,r_j) = -2mc^2\delta_{ij}$$
(9.231)

and

$$\overline{v}u = \overline{u}v \tag{9.23m}$$

Convention: In some books

$$u/v \to \frac{1}{\sqrt{2mc^2}} u/v \tag{9.23n}$$

 $\rightarrow u, v$  form a basis

We can also show:

$$\sum_{i=1}^{3} u(p, r_i) \cdot \overline{u}(p, r_i) = c(\not p + mc)$$

$$(9.24a)$$

 $\leftarrow$  projection to positios energy states

$$\sum v(p, r_i) \cdot \overline{v}(p, r_i) = c(-\not p + mc)$$
(9.24b)

 $\leftarrow$  negative

Show equaivalence for complete set  $u(p, r_j)$  and  $v(p, r_j)$  e.g.

$$\left(\sum_{i=1}^{3} u(p, r_{i}) \cdot \overline{u}(p, r_{i})\right) u(p, r_{j}) = 2mc^{2} u(p, r_{j}) \dots$$
(9.24c)

#### 9.4.1 Interpretation of solutions and spin

Now we show that Dirac equation describes spin  $\frac{1}{2}$ 

$$H = \mathbf{\alpha} \cdot \mathbf{p} + \beta mc^2 \tag{9.25a}$$

$$\mathbf{L} = \mathbf{x} \times \mathbf{p} \tag{9.25b}$$

$$[L_{i}, H] = [\varepsilon_{ijk}x_{j}p_{k}, \alpha_{\ell}p_{\ell}]$$

$$= \varepsilon_{ijk}\alpha_{\ell} [x_{j}, p_{\ell}] p_{k}$$

$$= i\hbar\varepsilon_{ijk}\alpha_{j}p_{k}$$
(9.25c)

$$[\mathbf{L}, H] = i\hbar \mathbf{\alpha} \times \mathbf{p}$$

$$\neq 0$$
(9.25d)

is not conserved. However  $\mathbf{J} = \mathbf{L} + \mathbf{S}$  must be conserved  $\mathbf{S} \neq 0$ 

need to find **S** such that

$$[\mathbf{J}, H] = 0, \tag{9.26a}$$

i.e.

$$[\mathbf{S}, H] = -i\hbar \mathbf{\alpha} \times \mathbf{p} \tag{9.26b}$$

and of course

$$[S_i, S_j] = i\hbar \varepsilon_{ijk} S_k \tag{9.26c}$$

claim:

$$\mathbf{S} = \frac{\hbar}{2} \sum_{\mathbf{m}} = \frac{-i\hbar}{2} \alpha^{1} \alpha^{2} \alpha^{3} \mathbf{\alpha}$$

$$= \frac{\hbar}{2} \begin{pmatrix} \mathbf{\sigma} & 0 \\ 0 & \mathbf{\sigma} \end{pmatrix}$$
(9.26d)

Proof:

$$[S_i, S_j] = i\hbar \varepsilon_{ijk} S_k \tag{9.27a}$$

$$[S_i, H] = \frac{-i\hbar}{2} \left[ \alpha^1 \alpha^2 \alpha^3 \alpha^i, H \right]$$

$$= \frac{-i\hbar}{2} \frac{1}{2} \left[ \alpha^j \alpha^k, \alpha^n p^n + \beta m c^2 \right]$$
(9.27b)

with

$$\left[\alpha^{j}\alpha^{k},\beta\right] = 0\tag{9.27c}$$

use

Let's look at relation between spin and coordinate transformation more carefulle

QMI (nor-rel) [Section 10.4] Translation & rotations: generators  $P^i, J^i$ 

$$\left[P^i, P^j\right] = 0 

(9.28a)$$

$$\left[J^{i}, J^{j}\right] = i\hbar \varepsilon^{ijk} J^{k} \tag{9.28b}$$

$$\left[J^{i}, P^{j}\right] = i\hbar \varepsilon^{ijk} P^{k} \tag{9.28c}$$

coordinate transformation:

$$\mathbf{x} \to \mathbf{x}' \tag{9.28d}$$
$$= R\mathbf{x} + \mathbf{a}$$

a: state  $|\psi\rangle$  transformation under a certain representation

$$|\psi\rangle \to |\psi'\rangle$$
 (9.28e)  
=  $U(R, a) |\psi\rangle$ 

in relativity add boosts

$$x^{\mu} \to \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu} \tag{9.28f}$$

$$[K_i, K_j] = -i\hbar \varepsilon_{ijk} J_k \tag{9.28g}$$

$$[K_i, J_i] = i\hbar \varepsilon_{ijk} K_k \tag{9.28h}$$

generator

$$J^{\mu\nu} = \begin{cases} J_{0i} = -J_{i0} = K_i \\ J_{ij} = -J_{ji} = i\varepsilon_{ijk}J_k \end{cases}$$
(9.28i)

6 generators +4  $P^{\mu}$ 

### 9.4.2 Lie algebra of generators

$$[P_{\mu}, P_{\nu}] = 0 \tag{9.29a}$$

$$[J_{\mu\nu}, J_{\rho\sigma}] = i\hbar \left( g_{\nu\rho} J_{\mu\sigma} - g_{\mu\rho} J_{\nu\sigma} - g_{\nu\sigma} J_{\mu\rho} + g_{\mu\sigma} J_{\nu\rho} \right)$$
(9.29b)

$$[P_{\mu}, J_{\rho\sigma}] = i\hbar \left( g_{\mu\rho} P_{\sigma} - G_{\mu\sigma} P_{\rho} \right) \tag{9.29c}$$

under Lorentz transform a state  $|p,\rangle$  transforms under a certain representation

$$|p\rangle \to |\Lambda p\rangle$$
 (9.29d)  
=  $U(\Lambda)|p\rangle$ 

 $P_{\mu}P^{\mu}$  commutes with all generators,  $P^2$  is L-invariant (Casimir). What else do we need to know (Result: "only" transform under rotations, i.e., "spin") Consider any  $P^{\mu}$ . little group of  $P^{\mu}$ :

Subgroup of all Poincaré transformations that leave  $P^\mu$  invariant for  $p^\mu$  in rest frame  $p^\mu=(m,0,0,0)$ : Little group  $\simeq$  rotatinos

$$p^{\mu} = L^{\mu}{}_{\nu}q^{\nu} \tag{9.30a}$$

i.e. for any  $q^{\mu}$  with

Let

$$q^2 = m^2 \tag{9.30b}$$
$$> 0$$

we can find LT L(p), s.t.

$$p = L(p)q (9.30c)$$

is in rest frame . . . under any LT,  $\Lambda$ 

$$|p\rangle \to U(\Lambda) |p\rangle$$
 (9.30d)  
=  $U(\Lambda)U(L(p)) |q\rangle$ 

$$U(L(\Lambda p)) U^{-1}(L(\Lambda p)) U(\Lambda) U(L(p)) |q\rangle$$
 (9.30e)

$$U(L(\Lambda p)) \cdot U(L^{-1}(\Lambda p)) U(\Lambda) U(L(p)) |q\rangle$$
(9.30f)

$$U(L(\Lambda p)) U(L^{-1}(\Lambda p) \Lambda \cdot L(p)) |q\rangle$$
(9.30g)

 $\rightarrow$  additional labels in  $|p,s\rangle$  are affected by rotations only

$$|p,s\rangle \to U(\Lambda) |p,s\rangle$$

$$= U(L(\Lambda p)) \sum_{ss'} D_{ss'}$$
def. transformation under rotations
$$= \sum_{ss'} D_{ss'} |\Lambda p, s'\rangle$$
(9.31a)

#### 9.4.3 2nd casimir operator

$$W_{\mu}W^{\mu} = -m^2\hbar^2 s (s+1) \tag{9.32a}$$

Pauli-Lubanski (axial) vector

$$W_{\mu} = -\frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} J^{\nu\rho} P^{\sigma} \tag{9.32b}$$

in rest frame

$$P^{\sigma} = (m, 0, 0, 0) \tag{9.32c}$$

$$W_{\mu} = (0, \mathbf{\omega}) \tag{9.32d}$$

$$W_{i} = -\frac{1}{2} \varepsilon_{i\nu\rho\sigma} J^{\nu\rho} P^{\sigma}$$

$$= -\frac{m}{2} \varepsilon_{i\nu\rho\sigma} J^{\nu\rho}$$

$$= -mJ_{i}$$
(9.32e)

## 9.5 The non-relativistic limit

Consider expansion in  $\frac{\mathbf{p}}{m} \sim V$  of Dirac equation.

We will derive the Hamiltionian used in section 2 (for fine structure)

Dirac equation in presence of em field:

$$p^{\nu} \rightarrow p^{\nu} + \frac{e}{c} A^{\nu} \tag{9.33a}$$

write

$$\psi = \begin{pmatrix} \chi \\ \eta \end{pmatrix}$$
, 2-component-spinors (9.33b)

$$\not p + \frac{e}{c} \not A - mc \tag{9.33c}$$

$$\begin{pmatrix} \chi \\ \eta \end{pmatrix} = \begin{pmatrix} \frac{E}{c} + \frac{e}{c}\phi - mc & -(\mathbf{p} + \frac{e}{c}\mathbf{A}) \cdot \mathbf{\sigma} \\ (\mathbf{p} + \frac{e}{c}\mathbf{A}) \cdot \mathbf{\sigma} & -(\frac{E}{c} + \frac{e}{c}\phi + mc) \end{pmatrix} \begin{pmatrix} \chi \\ \eta \end{pmatrix}$$

$$= 0$$
(9.33d)

$$\Rightarrow \left(\frac{E}{c} + \frac{e}{c}\phi - mc\right)\chi = \left(\mathbf{p} + \frac{e}{c}\mathbf{A}\right) \cdot \mathbf{\sigma}\eta \tag{9.33e}$$

$$\left(\mathbf{p} + \frac{e}{c}\mathbf{A}\right) \cdot \mathbf{\sigma}\chi = \left(\frac{E}{c} + mc + \frac{e}{c}\phi\right)\eta \tag{9.33f}$$

Putting Eq. 9.33g in Eq. 9.33e gives us

$$\left(\frac{E}{c} + \frac{e}{c}\phi - mc\right)\chi = \left(\mathbf{p} + \frac{e}{c}\mathbf{A}\right) \cdot \mathbf{\sigma} \left(\mathbf{p} + \frac{e}{c}\mathbf{A}\right) \cdot \mathbf{\sigma} \frac{1}{2mc}\chi$$

$$= \frac{1}{2mc} \left(\left(\mathbf{p} + \frac{e}{c}\mathbf{A}\right)^{2} + i\left(-i\hbar\right)\frac{e}{c}\left(\mathbf{\nabla} \times \mathbf{A} + \mathbf{A} \times \mathbf{\nabla}\right) \cdot \mathbf{\sigma}\right)\chi$$

$$+ i\left(-i\hbar\right)\frac{e}{c}\left(\mathbf{\nabla} \times \mathbf{A} + \mathbf{A} \times \mathbf{\nabla}\right) \cdot \mathbf{\sigma}$$

"derivative within  $[\cdot]$  only"

$$\Rightarrow \left(\frac{1}{2m} \left(\mathbf{p} \cdot \frac{e}{c} \mathbf{A}\right)^2 + \frac{\hbar e}{2mc} \mathbf{\sigma} \cdot \mathbf{B} - e\phi\right) \chi$$

$$= \left(E - mc^2\right) \chi$$

$$= : E'\chi$$
(9.33i)

where  $\frac{\hbar e}{2mc} \mathbf{\sigma} \cdot \mathbf{B}$  has to be compare to section 2.3 with

$$H \sim \mathbf{\mu} \cdot \mathbf{B}$$

$$= \frac{e}{2m} g \mathbf{S} \cdot \mathbf{B}$$

$$= \frac{e}{4m} g \mathbf{\sigma} \cdot \mathbf{B}$$

$$\Rightarrow g = 2$$
(9.33j)

Let's do this more systematically (expand in  $\frac{|e|}{m}$ ) Find transformation

$$\psi = e^{-iS}\psi'$$
, (Foldy-Wontthuysen transformation) (9.34a)

such that h odd operators are suppressed by  $\left(\frac{|p|}{m}\right)^n \leadsto \text{mixes } \chi \text{ and } \eta$ 

$$\sigma := c\mathbf{\alpha} \left( \mathbf{p} + \frac{e}{c} \mathbf{A} \right) \tag{9.34b}$$

$$i\hbar\partial_{t}\psi' = i\hbar\partial_{t}e^{iS}\psi$$

$$= i\hbar \left[\partial_{t}e^{iS}\right]\psi + e^{@S}i\hbar\partial_{t}\psi$$

$$= i\hbar \left[\partial_{t}e^{+iS}\right]e^{-iS}\psi' + e^{iS}He^{-iS}\psi'$$

$$=: H'\psi'$$
(9.34c)

$$H' = H + i [S, H] + \frac{i^2}{2!} [S, [S, H]] + \frac{i^3}{3!} \dots$$

$$- \hbar \dot{S} - \frac{i\hbar}{2!} [S, \dot{S}] - \frac{i^2\hbar}{3!} [S, [S, \dot{S}]] \dots$$
(9.34d)

Recall

$$H = \beta mc^2 + \sigma + \xi$$
, even:  $\xi = -e\phi$  (9.34e)

Set

$$S = \frac{-i\beta}{2mc^2}\sigma\tag{9.34f}$$

Compute

$$i[S, H] = i \left[ \frac{-i\beta}{2mc^2} \sigma, \beta mc^2 + \sigma + \xi \right]$$

$$= \frac{\beta}{2mc^2} [\sigma, \xi] + \frac{\beta}{mc^2} \sigma^2 - \sigma$$
(9.34g)

$$[\beta \sigma, \sigma] = \beta \sigma \sigma - \sigma \beta \sigma$$

$$= 2\beta \sigma^{2}$$
(9.35a)

$$[\beta \sigma, \beta] = c [\beta \alpha, \beta] \left( + \frac{e}{c} \mathbf{A} \right)$$

$$= -2\sigma$$
(9.35b)

$$H' = \beta mc^{2} + \frac{\sigma^{2}}{2mc^{2}} - \frac{\sigma^{4}}{8m^{3}c^{6}} + \varepsilon - \frac{[\sigma, [\sigma, \varepsilon]]}{8m^{2}c^{4}} - \frac{i\hbar [\sigma, \sigma]}{8m^{2}c^{4}} \leftarrow \text{(even)}$$
$$+ \frac{\beta}{2mc^{2}} [\sigma, \varepsilon] - \frac{\sigma^{3}}{2m^{2}c^{4}} + \frac{i\hbar\beta\sigma}{2mc^{2}} (\leftarrow \text{add, suppressed by at least } \frac{(9.36a)}{m})$$

repeat

$$\psi' = e^{iS'}\psi'' \tag{9.36b}$$

with

$$S' = \frac{-i\beta\sigma'}{2mc^2} \tag{9.36c}$$

$$H'' = H_{\text{even}} + \sigma'' \tag{9.36d}$$

suppressen by  $\frac{1}{m^2}$  3rd and last iteration

$$H''' =: H$$

$$= \beta c^2 + \frac{\sigma^2}{2mc^2} - \frac{\sigma^4}{8m^3c^6} + \varepsilon - \frac{[\sigma, [\sigma, \varepsilon]]}{8m^2c^4} - \frac{i\hbar [\sigma, \sigma]}{8m^2c^4} + \mathcal{O}\left(\frac{1}{m^3}\right)^{9.36e}$$

$$\frac{\sigma^2}{2mc^2} = \frac{1}{2m} \alpha_i \left( p_i + \frac{e}{c} A_i \right) \alpha_j \left( p_j + \frac{e}{c} A_j \right) 
= \frac{1}{2m} \left( \mathbf{p} + \frac{e}{c} \mathbf{A} \right)^2 + \frac{\hbar e}{2m} \mathbf{e} \cdot \mathbf{\beta}$$
(9.37a)

$$\frac{-\sigma^4}{8m^3c^6} = \frac{\mathbf{p}^4}{8m^3c^2} + \dots \text{ relativistic correction to kinetic energy} \quad (9.37b)$$

$$-\frac{1}{8m^2c^4}\left[\sigma, [\sigma, \varepsilon]\right] = \frac{\left(-i\hbar\right)^2}{8m^2c^2} \left(\alpha_i \nabla_i \left[\alpha_j \nabla_j, eV\right]\right) \tag{9.37c}$$

where

$$[\alpha_j \nabla_j, eV] = \alpha_j e (\nabla_j V - V \nabla_j)$$
  
=  $\alpha_i e (\nabla_j V)$  (9.37d)

which gives us

$$-\frac{1}{8m^2c^4}\left[\sigma, [\sigma, \varepsilon]\right] = \frac{\left(i\hbar^2\right)}{8m^2c^2}\left[\alpha_i\nabla_i, \alpha_j E_j\right]$$
(9.37e)

where

$$[\alpha_{i}\nabla_{i}, \alpha_{j}E_{j}] = \alpha_{i}\alpha_{j}\nabla_{i} \cdot E_{i} - \alpha_{j}\alpha_{i}E_{j}\nabla_{i}$$

$$= \nabla \cdot E + i\sigma\left(\nabla \times E\right) - E \cdot \nabla - i\sigma\left(E \times \nabla\right)$$

$$= (\nabla \cdot E) - 2i\sigma\left(\mathbf{E} \times \mathbf{\nabla}\right) + i\sigma\left[\mathbf{\nabla} \times \mathbf{E}\right]$$
(9.37f)

which leads to

$$\frac{-\sigma^4}{8m^3c^6} = \frac{ie\hbar^2}{4m^2c^2} \left( \underbrace{\boldsymbol{\sigma} \cdot (\mathbf{E} \times \boldsymbol{\nabla})}_{\text{spin orbit}} - \underbrace{\frac{\boldsymbol{\sigma}(\boldsymbol{\nabla} \times \mathbf{E})}{2}}_{\text{=0 Coulomb}} - \underbrace{\frac{\hbar^2e}{8m^2c^2}(\boldsymbol{\nabla} \cdot \mathbf{E})}_{\text{Darwin term}} \right) (9.37g)$$

$$= \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \cdot \mathbf{S} \cdot \mathbf{L}$$

and

$$\frac{-\hbar}{4m^2c^2}\boldsymbol{\sigma}\left(-\frac{\mathrm{d}V}{\mathrm{d}r}\cdot\mathbf{S}\cdot\mathbf{L}\right) = \frac{1}{2m^2c^2}\frac{1}{r}\frac{\mathrm{d}V}{\mathrm{d}r}\cdot\mathbf{S}\cdot\mathbf{L} \tag{9.37h}$$

and

$$\frac{\hbar^2}{8m^2c^2}\left(\boldsymbol{\nabla}\left(-cE\right) = \frac{\hbar^2}{8mc^2}\boldsymbol{\nabla}\left(\boldsymbol{\nabla}V\right)\right) = \frac{+i\hbar^2Ze^3}{2m^2c^2\delta(r)} \tag{9.37i}$$

where we have used

$$\Delta\left(\frac{1}{r}\right) = -4\pi\delta(\mathbf{r})\tag{9.37j}$$

and Z=1

including all other terms

• 
$$-i\hbar\nabla \rightarrow -i\hbar\nabla + \frac{e}{c}\mathbf{A}$$
 (gauge symmetry)

• 
$$\mathbf{E} = -\nabla \phi - \frac{1}{c}\dot{\mathbf{A}}$$
 (internal symmetry)

# SECOND QUANTIZATION

Classical field theory  $\to$  quatized field theory "done" already for radiation field, section  $5\to 8$ 

# 10.1 Creation and annihilation operators for bosons and fermions

Bosons: recall radiation field  $\hat{a}_{\mathbf{k}\lambda}$ ,  $\hat{a}^{\dagger}_{\mathbf{k}\lambda}$  ( $\hat{\cdot}$ : bosons, Signer will forget  $\hat{\cdot}$  ...) now  $i \sim \{\mathbf{k}, \lambda\}$ . Discrete

$$[\hat{a}_i, \hat{a}_j] = \begin{bmatrix} \hat{a}_i^{\dagger}, \hat{a}_j^{\dagger} \end{bmatrix}$$

$$= 0$$

$$(10.1a)$$

$$\left[\hat{a}_{i}, \hat{a}_{i}^{\dagger}\right] = \delta_{ij}, \quad \text{(discrete)}$$
 (10.1b)

states

$$|n_1, n_2, \dots, n_m\rangle = \frac{\left(\hat{a}_1^{\dagger}\right)^{n_1} \dots \left(\hat{a}_m^{\dagger}\right)^{n_m}}{\sqrt{n_1! \dots n_m!}} |0\rangle$$
 (10.1c)

$$\hat{a}_i |0\rangle = 0 \tag{10.1d}$$

fermions: the same exept

$$[\cdot, \cdot] \equiv [\cdot, \cdot]_{-} \tag{10.2a}$$

$$\rightarrow \left\{ \cdot , \cdot \right\} \equiv \left[ \cdot , \cdot \right]_{+} \tag{10.2b}$$

$$\left\{\hat{b}_{i}, \hat{b}_{j}^{\dagger}\right\} = \delta_{ij} \tag{10.3a}$$

$$\left\{ \hat{b}_i, \hat{b}_j \right\} = \left\{ \hat{b}_i^{\dagger}, \hat{b}_j^{\dagger} \right\}$$

$$= 0$$

$$(10.3b)$$

$$\left(\hat{b}_i^{\dagger}\right)^2 = 0 \tag{10.3c}$$

$$n_i = \{0, 1\}, \text{ Pauli}$$
 (10.3d)

particularly:

$$|1\rangle = \hat{b}_i^{\dagger} |0\rangle \tag{10.3e}$$

$$\hat{b}_{i}^{\dagger} |1\rangle = \left(\hat{b}_{i}^{\dagger}\right)^{\pm} |0\rangle 
= 0$$
(10.3f)

$$\begin{split} |n_1 = 1, n_2 = 1\rangle &= \hat{b}_1^{\dagger} \hat{b}_2^{\dagger} \, |0\rangle \\ &= -\hat{b}_2^{\dagger} b_1^{\dagger} \, |0\rangle \\ &= - \left| n_2 = 1, n_1 = 1 \right\rangle, \quad \text{antisymmetric} \end{split} \tag{10.3g}$$

$$\langle n_1 \dots n_m | n'_1 \dots n'_m \rangle = \delta_{n1, n'_1} \dots \delta_{n_m n'_m}, \text{ orthogonality } (10.3h)$$

$$\sum_{n_1, \dots, n_m} \langle n_1 \dots n_m \rangle \langle n_1 \dots n_m | = 1, \text{ completeness}$$
 (10.3i)

$$n = \sum_{i} n_{i}$$
 (10.3j) 
$$= \sum_{i} \hat{b}_{i}^{\dagger} \hat{b}_{i}, \quad \text{counting operator}$$

# 10.2 Field operators

Let  $\psi_i(x)$  wave function (coord. rep. of state) x: here 3-vector not 4-vector any more

$$\rightarrow \text{basis} \int d^3 x \, \psi_i^*(x) \psi_j(x) = \delta_{ij}$$
 (10.4a)

(can think of  $\psi_i$  as eigenfunctions of H,  $H\psi_i = E\psi_i$ ) consider any state  $\to f(x) \in L^2$ 

$$f(x) = \sum_{i} c_{i} \psi_{i}(x)$$

$$= \int d^{3}\mathbf{y} f(y) \underbrace{\sum_{i} \psi_{i}^{*}(y) \psi_{i}(x)}_{\delta^{(3)}(\mathbf{x} - \mathbf{y})}$$
(10.4b)

with

$$c_i = \int d^3 \mathbf{y} \, \psi_i^*(y) f(y) \tag{10.4c}$$

$$\hat{\psi}(\mathbf{x}) = \sum \hat{a}_i \psi_i(\mathbf{x}) \tag{10.5a}$$

$$\hat{\psi}^{\dagger} = \sum \hat{a}_i^{\dagger} \psi_i^*(x) \tag{10.5b}$$

$$\hat{\psi}^{\dagger} |0\rangle = \sum_{j} |j\rangle \langle j| \sum_{i} \hat{a}_{i}^{\dagger} \psi_{i}^{*} |0\rangle$$

$$= \sum_{j,i} |j\rangle \langle 0| \hat{a}_{j} \hat{a}_{i}^{\dagger} |0\rangle \psi_{i}^{\dagger}(x) ,$$
(10.5c)

where

$$\hat{a}_{j}\hat{a}_{i}^{\dagger} = \left[\hat{a}_{j}, \hat{a}_{i}^{\dagger}\right]_{\mp} \pm \hat{a}_{i}^{\dagger}\hat{a}_{j}$$

$$= \delta_{ij} \pm \text{does not contribute}$$
(10.5d)

 $\hat{\psi}^{\dagger}(\mathbf{x})$  creates a particle localized at  $\mathbf{x}$   $\hat{\psi}(\mathbf{x})$  annihilates a particle localized at  $\mathbf{x}$ 

$$\left[\hat{\psi}(x), \hat{\psi}(y)\right]_{\mp} = \left[\hat{\psi}^{\dagger}(x), \hat{\psi}^{\dagger}(y)\right]$$

$$= 0$$
(10.6a)

$$\left[\hat{\psi}(x), \hat{\psi}(y)\right]_{\mp} = \sum_{j} \psi_{i}(x)\psi_{j}^{*}(y) \underbrace{\left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right]_{\mp}}_{\delta_{ij}}$$

$$= \sum_{i} \psi_{i}(x)\psi_{j}^{*}(g)$$

$$= \delta\left(\mathbf{x} - \mathbf{y}\right)$$
(10.6b)

Many particle states

$$|\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\rangle = \frac{1}{\sqrt{n!}} \hat{\psi}^{\dagger}(\mathbf{x}_1) \dots \hat{\psi}(\mathbf{x}_n) |0\rangle$$
 (10.7)

Example: Two identical bosons/fermions at  $\mathbf{x}_1 \& \mathbf{x}_2$ :

$$\psi_{ij} (\mathbf{x}_{1}, \mathbf{x}_{2}) = \langle \mathbf{x}_{1}, \mathbf{x}_{2} | ij \rangle$$

$$= \frac{1}{\sqrt{2}} \langle 0 | \hat{\psi}(\mathbf{x}_{2}) \hat{\psi}(x_{1}) \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} | 0 \rangle$$

$$= \frac{1}{\sqrt{2}} \sum_{n,m} \langle 0 | \hat{a}_{m} \hat{a}_{n} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} | 0 \rangle \psi_{m}(\mathbf{x}_{2}) \psi_{1}(\mathbf{x}_{1})$$
(10.8a)

where

$$\langle 0 | \hat{a}_m \hat{a}_n \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} | 0 \rangle = \delta_{n_1 m_j} \pm \delta_{m_i} \delta_{n_j} \begin{cases} + & \text{bosons} \\ - & \text{fermions} \end{cases}$$
 (10.8b)

$$\rightarrow \psi_{ij} (\mathbf{x}_1, \mathbf{x}_2) 
= \frac{1}{\sqrt{2}} (\psi_j(\mathbf{x}_2) \psi_1(\mathbf{x}_1) \pm \psi_i(\mathbf{x}_2) \psi_j(\mathbf{x}_1)), 
\text{(bosons symmetric, fermions antisummetric (Slater determinant))}$$
(10.8c)

For fixed number n of particles Hilbert space  $\mathcal{H}_n$ 

$$\hat{\psi}^{\dagger}(\mathbf{x})\mathcal{H}_n \to \mathcal{H}_{n-1} \tag{10.8d}$$

$$\hat{\psi}(\mathbf{x})\mathcal{H}_n \to \mathcal{H}_{n-1} \tag{10.8e}$$

Fock space

$$\mathcal{F} = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$$

$$= \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \dots$$
(10.8f)

with  $\mathcal{H}_0$  Volume  $|0\rangle$ 

# 10.3 Observables in 2nd quantization

Observables expressed in terms of fields /to operators in Fock space  $\mathcal{F}$ . Example: particle number density

QM: probability density

$$\rho(x) = |\psi(x)|^2 \tag{10.9}$$

now:

$$\rho(\hat{x}) = \hat{\psi}^{\dagger}(x)\hat{\psi}(x)$$

$$= \sum_{ij} \hat{a}_{i}^{\dagger}\hat{a}_{j}\psi_{i}^{*}(x)\psi_{j}(x)$$

$$= \sum_{ij} \hat{a}_{i}^{\dagger}\hat{a}_{j} \langle x|i\rangle \langle j|x\rangle$$
(10.10a)

$$\int d^3 \mathbf{x} \, \hat{\rho}(x) = \sum_{ij} \hat{a}_i^{\dagger} \hat{a}_j \, \langle j | \underbrace{\int d^3 x \, |x \rangle \langle x|}_{\mathbf{1}} |i\rangle$$

$$= \sum_i \hat{a}_i^{\dagger} \hat{a}_i$$

$$= \sum_i n_i$$
(10.10b)

$$\hat{T} = \int d^3 \mathbf{x} \, \hat{\psi}^{\dagger} \left( -\frac{\hbar^2 \nabla^2}{2m} \right) \hat{\psi}(x)$$
 (10.11a)

$$\hat{\psi}(x) = \sum_{i} \hat{a}_i \psi_i(x) \tag{10.12a}$$

$$\hat{\psi}^{\dagger}(x) = \sum_{i} \hat{a}_{i}^{\dagger} \tag{10.12b}$$

$$\hat{\psi}(x) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \hat{a}_k e^{-i\mathbf{k}\cdot\mathbf{x}}$$
 (10.12c)

$$\hat{\psi}^{\dagger}(x) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \hat{a}_k^{\dagger} e^{i\mathbf{k}\cdot\mathbf{x}}$$
 (10.12d)

$$\hat{T} = \int d^3 \mathbf{x} \int \frac{d^3 k'}{(2\pi)^3} \underbrace{e^{i\mathbf{x}(\mathbf{k}-\mathbf{k'})}}_{(2\pi)^3 \delta(\mathbf{k}-\mathbf{k'})} \hat{a}_k^{\dagger} \hat{a}_{k'} \left(-\frac{\hbar^2 \left(i\mathbf{k'}\right)^2}{2m}\right)$$

$$= \int \frac{d^3 k}{(2\pi)^3} \frac{\hbar^2 \mathbf{k}^2}{2m} \underbrace{\hat{a}_k^{\dagger} \hat{a}_k}_{N.}$$
(10.12e)

 $N_k$  counts number of particles of kind k. Potential

$$U(x) = \int \frac{\mathrm{d}^3 q}{(2\pi)^3} e^{-i\mathbf{q}\cdot\mathbf{x}} \tilde{U}(\mathbf{q})$$
 (10.12f)

$$\hat{U} = \int d^{3}\mathbf{x} \,\hat{\psi}^{\dagger}(x)U(x)\hat{\psi}(x)$$

$$= \int \frac{d^{3}k_{1}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{k}_{2}}{(2\pi)^{3}} \int \frac{d^{3}q}{(2\pi)^{3}} \int \underbrace{d^{3}x \, e^{i\mathbf{k}_{1} \cdot \mathbf{x}} e^{-i\mathbf{k}_{2} \cdot \mathbf{x}} e^{-i\mathbf{q} \cdot \mathbf{x}}}_{(2\pi)^{3}\delta(\mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{q})} \hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}} \tilde{U}(\mathbf{q})$$

$$= \int \frac{d^{3}\mathbf{k}_{1}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{k}_{2}}{(2\pi)^{3}} \tilde{U}(\mathbf{k}_{1}\mathbf{k}_{2})$$
(10.12g)

$$V(x_1, x_2) = V(x_1 - x_2)$$

$$= \int \frac{\mathrm{d}^3 q}{(2\pi)^3} e^{-i\mathbf{q}(\mathbf{x}_1 - \mathbf{x}_2)} \tilde{V}(q)$$
(10.12h)

$$\hat{V} = \int d^{3}x_{1} \int d^{3}x_{2} \,\hat{\psi}^{\dagger}(x_{1}) \,\hat{\psi}^{\dagger}(x_{2}) V(x_{1} - x_{2}) \,\hat{\psi}(x_{1}) \hat{\psi}(x_{2}) 
= \int \prod_{i=1}^{4} \frac{dk_{i}}{(2\pi)^{3}} \int \frac{d^{3}q}{(2\pi)^{3}} \cdot \int d^{3}x_{1} \,e^{i\mathbf{x}_{1}(\mathbf{k}_{1} - \mathbf{k}_{3} - \mathbf{q})} 
\cdot \int d^{3}x_{2} \,e^{i\mathbf{x}_{2}(\mathbf{k}_{2} - \mathbf{k}_{4} + \mathbf{q})} \hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{k_{3}} \hat{a}_{k_{4}} 
= \int \frac{d^{3}\mathbf{k}_{1}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{k}_{2}}{(2\pi)^{3}} \int \frac{d^{3}q}{(2\pi)^{3}} \,\hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{\mathbf{k}_{1} - \mathbf{q}} \hat{a}_{\mathbf{k}_{2} + \mathbf{q}} \tilde{V}(q)$$
(10.12i)

consider commutation relation between field operators:

$$\left[\hat{\psi}(x), \hat{\psi}(y)\right]_{\mp} = \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \int \frac{\mathrm{d}^{3}\mathbf{k}'}{(2\pi)^{3}} \int \frac{\mathrm{d}^{3}\mathbf{k}'}{(2\pi)^{3}} e^{-i\mathbf{k}\cdot\mathbf{x}} e^{+i\mathbf{k}'\cdot\mathbf{y}} \underbrace{\left[\hat{a}_{k}, \hat{a}_{k'}^{\dagger}\right]}_{(2\pi)^{3}\delta\left(\mathbf{k}-\mathbf{k}'\right)} \stackrel{!}{=} \delta\left(\mathbf{x}-\mathbf{y}\right)$$
(10.13a)

with the  $(2\pi)^3$  of  $(2\pi)^3 \delta(\mathbf{k} - \mathbf{k}')$  being convection and generalization of  $\left[\hat{a}_i, \hat{a}_i^{\dagger}\right] = \delta_{ij}$  (10.13b)

time dependence of field operator: Schrödinger picture  $\rightarrow$  Heisenberg

$$\underbrace{\hat{\psi}(\mathbf{x},t)}_{\text{Heisenberg}} = e^{\frac{i}{\hbar}\hat{H}t} \underbrace{\hat{\psi}(\mathbf{x})}_{\text{SChrödinger}} e^{\frac{-i}{\hbar}\hat{H}t} \tag{10.14a}$$

$$i\hbar \frac{\partial}{\partial t} \hat{\psi}(\mathbf{x}, t) = -\left[\hat{H}, \hat{\psi}(\mathbf{x}, t)\right]$$

$$= -\left[\hat{H}, \hat{\psi}(\mathbf{x})\right]$$

$$= -e^{\frac{i}{\hbar}\hat{H}t} \left[\hat{H}, \hat{\psi}(x)\right] e^{-\frac{i}{\hbar}\hat{H}t}$$
(10.14b)

take free case

$$\hat{H} = \hat{T}$$
, bosons (10.14c)

$$\left[\hat{T}, \hat{\psi}(x)\right] = \int d^3y \, \frac{\hbar^2}{2m} \left[\nabla_y \psi^{\dagger}(y) \nabla_y \hat{\psi}(y), \hat{\psi}(x)\right] \quad (10.14d)$$

from now on, don't write  $\nabla_y$  but  $\nabla$ 

$$\begin{split} \left[\nabla_{y}\psi^{\dagger}(y)\nabla_{y}\hat{\psi}(y),\hat{\psi}(x)\right] &= \nabla\hat{\psi}^{\dagger}(y)\varsigma\hat{\psi}(y)\hat{\psi}(x) - \hat{\psi}(x)\nabla\hat{\psi}^{\dagger}(y)\nabla\hat{\psi}(y) \\ &= \nabla\hat{\psi}^{\dagger}(y)\hat{\psi}(x)\nabla\hat{\psi}(y) - \hat{\psi}(x)\nabla\hat{\psi}^{\dagger}(y)\nabla\hat{\psi}(y) \\ &= \nabla\bigg(\left[\hat{\psi}^{\dagger}(y),\hat{\psi}(x)\right] \\ &+ \hat{\psi}(x)\underbrace{\hat{\psi}^{\dagger}(y)}\nabla\hat{\psi}(y) - \hat{\psi}(x)\nabla\hat{\psi}^{\dagger}(y)\nabla\hat{\psi}(y) \\ &= \underbrace{\int}_{=0}^{=0} d^{3}y\,\frac{-\hbar^{2}}{2m}\nabla_{y}\delta\left(\mathbf{x} - \mathbf{y}\right)\nabla\hat{\psi}(y) \\ &= \frac{\hbar^{2}}{2m}\nabla_{x}^{2}\hat{\psi}(x) \end{split}$$

in free case

$$i\hbar \frac{\partial}{\partial t}\hat{\psi}(x,t) = -\frac{\hbar^2}{2m}\nabla^2\hat{\psi}(x,t) + \diamondsuit$$
 (10.14e)

 $\diamondsuit$  with interations much more complicated  $\to$  QFT

# 10.4 Quantization of relativistic fields

- ullet Start with Lagrangian density  ${\mathcal L}$  for classical field tehory
- Compute conjugate momentum field
- impose equal-time (anti-) commutation relations

# Example 1: free scalar field $\Phi(\mathbf{x},t) = \Phi(x)$

•

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi - \frac{1}{2} \underbrace{\frac{m^2 c^2}{\hbar^2}}_{=m^2} \Phi^2 - \underbrace{V(\Phi)}_{=0}$$
 (10.15a)

free field (no interactions). Action:

$$S = \int dt \int d^3x \mathcal{L}$$

$$= \int d^34x \mathcal{L} (\Phi, \partial_\mu \Phi)$$
(10.15b)

$$\delta S = 0 \tag{10.15c}$$

$$\rightarrow \frac{\partial \mathcal{L}}{\partial \Phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \Phi)} 90 \tag{10.15d}$$

for our  $\mathcal{L}$ :

$$-m^2\Phi - \partial_\mu \partial^\mu \Phi = 0 \tag{10.15e}$$

Klein-Gordan equation

• Conjugate momentum field

$$\pi (\mathbf{x}, t) = \frac{\partial \mathcal{L}}{\partial \Phi}$$

$$= \dot{\phi} (\mathbf{x}, t)$$
(10.16a)

Hamiltonian

$$H = \int d^3 \mathbf{x} \, \pi \dot{\Phi} - L$$

$$= \int d^3 x \, \left( \pi \dot{\phi} - \mathcal{L} \right)$$

$$= \frac{1}{2} \int d^3 x \, \left( \pi^2 + (\nabla \Phi)^2 + m^2 \Phi^2 \right)$$
(10.16b)

with  $\mathcal{L}$  the Lagrangian density

$$\int d^3x \, \mathcal{L} = L$$
= Lagriangian (10.16c)

• now second quantization:

$$\Phi(x) \to \Phi(x)$$
 (10.17a)

and

$$\pi(x) \to \hat{\pi}(x) \tag{10.17b}$$

$$\left[\hat{\phi}(\mathbf{x},t),\hat{\phi}(\mathbf{y},t)\right] = \left[\hat{\pi}(\mathbf{x},t),\hat{\pi}(\mathbf{y},t)\right]$$

$$= 0$$
(10.17c)

impose

$$\left[\hat{\Phi}\left(\mathbf{x},t\right),\hat{\pi}\left(\mathbf{y},t\right)\right] = i\delta\left(\mathbf{x} - \mathbf{y}\right) \tag{10.17d}$$

$$\sim [x_i, p_i] = i\delta_{ij}, \quad (\hbar = 1) \tag{10.17e}$$

spin 0, bosonic field use  $[\cdot,\cdot]=[\cdot,\cdot]_-$  and not  $\{\cdot,\cdot\}=[\cdot,\cdot]_+$ 

now as for radiation field

$$\hat{\Phi}(\mathbf{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{2\omega_k} \left( \hat{a}_k e^{i\mathbf{k}\mathbf{x} - i\omega_k t} + \hat{a}_k^{\dagger} e^{-i\mathbf{k}\mathbf{x} + i\omega_k t} \right)$$
(10.17f)

with  $\omega_k = \sqrt{\mathbf{k}^2 + m^2}$  this satisfies KGE

$$\hat{\pi}(\mathbf{x},t) = \hat{\Phi}(\mathbf{x},t)$$

$$= \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{2\omega_k} \left( -i\omega_k \hat{a}_k e^{i\mathbf{k}\mathbf{x} - i\omega_k t} + i\omega_k \hat{a}_k^{\dagger} e^{-i\mathbf{k}\mathbf{x} + i\omega_k t} \right)$$
(10.17g)

Note: change in normalization:

$$\int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \to \underbrace{\int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \frac{1}{2\omega_{k}}}_{\text{Lorentz invariant}}$$
(10.17h)

#### **Proof:**

$$\int \frac{\mathrm{d}^{3}k}{(2\pi)^{4}} 2\pi\delta \left(k^{2} - m^{2}\right) \sigma(k_{0}),$$

$$(\text{manifestly } L\text{-invariant}) = \int \frac{\mathrm{d}^{4}k}{(2\pi)^{3}} \delta\left(k^{2} - m^{2}\right) \vartheta\left(k_{0}\right)$$

$$= \int \frac{\mathrm{d}^{4}k}{(2\pi)^{3}} \frac{1}{2\omega_{k}} \left(\delta\left(k_{0} - \omega_{k}\right) + \delta\left(k_{0} + \omega_{k}\right)\vartheta\left(k_{0}\right)\right)$$

$$= \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{1}{\omega_{k}}$$

$$(10.18a)$$

where in  $\delta(k_0 + \omega_k)$   $\omega_k$  does not contribute and we used

$$\delta(f(x)) = \sum_{i} \frac{1}{|f(x_i)|} \delta(x_i), \quad f(x_i) = 0$$
 (10.18b)

Express  $\hat{a}_k$  and  $\hat{a}_k^{\dagger}$  in terms of  $\hat{\phi}$  and  $\hat{\pi}$ 

$$\int d^3x \, e^{i\mathbf{k}\cdot\mathbf{x}} \left(\omega_k \hat{\phi}(\mathbf{x},t) + i\hat{\pi}(\mathbf{x},t)\right) = \dots \hat{a}_k e^{-i\omega_k t}$$
(10.18c)

$$\Rightarrow \hat{a}_k = \int d^3 \mathbf{x} \, e^{ikx} \left( \omega_k \hat{\phi} + i\hat{\pi} \right) \tag{10.18d}$$

$$\hat{a}_k^{\dagger} = \int d^3 x \, e^{-i\mathbf{k}\mathbf{x}} \left(\omega_k \hat{\phi} - i\hat{\pi}\right) \tag{10.18e}$$

check consistency:

$$\left[\hat{a}_{k},\hat{a}_{k'}^{\dagger}\right] = \int d^{3}\mathbf{x} \int d^{3}\mathbf{y} \, e^{i\omega_{k}t - i\mathbf{k}\mathbf{x}} e^{-i\omega_{k'}t + i\mathbf{k}'\mathbf{x}} \left[\omega_{k}\hat{\phi} + i\hat{\pi}, \omega_{k'}\hat{\phi} \pm i\hat{\pi}\right]$$

$$(10.18f)$$

where

$$\left[\omega_k \hat{\phi} + i\hat{\pi}, \omega_k \hat{\phi} \pm i\hat{\pi}\right] = \left(\omega_k \mp \omega_{k'}\right) \delta\left(\mathbf{x} - \mathbf{y}\right)$$
(10.18g)

$$\Rightarrow \left[\hat{a}_{k}, \hat{a}_{k'}^{\dagger}\right] = \int d^{3}\mathbf{x} \, e^{-i\mathbf{x}(\mathbf{k} - \mathbf{k}')} e^{i(\omega_{k} - \omega_{k'})t}$$

$$= (2\pi)^{3} \, 2\omega_{k} \delta\left(\mathbf{k} - \mathbf{k}'\right)$$

$$(10.18h)$$

where

$$\int d^3 \mathbf{x} \, e^{-i\mathbf{x}(\mathbf{k} - \mathbf{k}')} = (2\pi)^3 \, \delta(\mathbf{k} - \mathbf{k}') \tag{10.18i}$$

$$\leadsto \hat{H} = \dots$$

$$= \frac{1}{2} \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \frac{1}{2\omega_k} \omega_k \left( \hat{a}_k^{\dagger} \hat{a}_k + \underbrace{\hat{a}_k \hat{a}_k^{\dagger}}_{\hat{a}^{\dagger} \hat{a}_k + \sim \delta(0)} \right)$$
(10.18j)

where  $\delta(0)$  is infinite ground state energy but no absolute energy scale (only cae about energy differences)

nermal ordering: (anti) commute all  $\hat{a}^{\dagger}$  to the left of  $\hat{a}$ 

$$\hat{H} := \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{2\omega_k} \left( \hat{a}_k^{\dagger} \hat{a}_k \right) \omega_k, \quad \text{subtracted } \langle 0 | H | 0 \rangle = \infty \quad (10.19)$$

$$\mathcal{L} = \overline{\psi}(x) \left(i\partial \!\!\!/ - m\right) \psi(x), \quad (\hbar = 1, c = 1)$$

$$\frac{\partial \mathcal{L}}{\partial \psi} - \partial^{\mu} \frac{\partial \mathcal{L}}{\partial (\partial^{\mu} \psi)}$$

$$= 0$$

$$= -m\overline{\psi} - \partial^{\mu} \left(\overline{\psi}i\gamma_{\mu}\right)$$

$$= \overline{\psi} \left(i\partial \!\!\!/ + m\right)$$
adjoint Dirac equation
$$= 0$$
(10.20a)

Field momentum conjugate to  $\psi$ 

$$\pi \doteq \frac{\partial \mathcal{L}}{\partial \dot{\phi}}$$

$$= \overline{\psi} i \Gamma^{0} i \psi^{\dagger}$$
(10.21a)

Hamiltonian

$$H = \int d^3x \left(\pi \dot{\psi} - \mathcal{L}\right)$$

$$= \int d^3x \, i\psi^{\dagger} \dot{\psi}$$
(10.21b)

add and impose

$$\left\{ \hat{\psi}_{\alpha} \left( \mathbf{x}, t \right), \hat{\psi}_{\beta} \left( \mathbf{y}, t \right) \right\} = \left\{ \hat{\pi}_{\alpha} \left( \mathbf{x}, t \right), \hat{\pi}_{\beta} \left( \mathbf{y}, t \right) \right\}$$

$$= 0$$
(10.21c)

$$\left\{\hat{\psi}_{\alpha}\left(\mathbf{x},t\right),\hat{\pi}_{\beta}\left(\mathbf{y},t\right)\right\} = i\Delta_{\alpha\beta}\delta\left(\mathbf{x}-\mathbf{y}\right),$$

$$\alpha,\beta \in \left\{1,\cdots,4\right\} \text{ spinor indices}$$
(10.21d)

 $fermions \Rightarrow use$ 

$$\{\cdot,\cdot\} = [\cdot,\cdot]_+ \tag{10.22}$$

and not

$$[\cdot,\cdot] = [\cdot,\cdot]_{-} \tag{10.23}$$

field operators in momentum representation

$$v=0$$

$$\hat{\psi}_{\alpha} = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2\omega_k} \sum_{r=1}^{2} \left( \hat{b}(\mathbf{k}, r) U_{\alpha}(k, r) e^{-ikx} + \hat{d}^{\dagger}(k, r) V_{\alpha}(k, r) e^{ikx} \right)$$
(10.24a)

where  $\int \frac{\mathrm{d}^3k}{(2\pi)^3} \frac{1}{2\omega_k}$  is Lorentz invariant and  $\sum_{r=1}^2$  from spin and  $b^\dagger$  creates E>0 electrons and  $d^\dagger$  creates a E>0 positron satisfies Dirac, since

$$(k-m)u = 0 ag{10.24b}$$

$$-k - m \tag{10.24c}$$

The anti commutation relations of the fields are consistent with

$$\left\{\hat{b}_{kr}, \hat{b}_{k'r'}\right\} = \left\{\hat{d}_{kr}, \hat{d}_{k'r'}^{\dagger}\right\} 
= (2\pi)^{3} 2\omega_{k} \delta_{rr'} \delta\left(\mathbf{k} - \mathbf{k'}\right)$$
(10.25a)

$$\begin{aligned}
\left\{\hat{b}, \hat{b}\right\} &= \left\{\hat{b}^{\dagger}, \hat{d}^{\dagger}\right\} \\
&= \left\{b, d\right\} \\
&= \dots \\
&= 0
\end{aligned} \tag{10.25b}$$

Check:

$$\begin{aligned}
&\left\{\hat{\psi}_{\alpha}, \hat{\psi}_{\beta}^{\dagger}\right\} \\
&= \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} 2\omega_{k} \int \frac{\mathrm{d}^{3}k'}{(2\pi)^{3}} \frac{1}{2\omega_{k}'} \sum_{?} \left(\left\{\hat{b}_{kr}, \hat{b}_{k'r'}\right\} U_{\alpha}\left(\mathbf{k}, r\right) U_{\beta}^{\dagger}\left(k', r'\right) e^{-ikx} e^{ik'y} \right. \\
&\left. + \left\{\hat{d}_{kr}^{\dagger}, \hat{d}_{k'r'}\right\} V_{\alpha}\left(k, r\right) V_{\beta}^{\dagger}\left(k', r'\right) e^{ikr} e^{-ik'y}\right) \\
&= \int \underbrace{\frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{1}{2\omega_{k}}}_{\text{section 9.4}} \frac{1}{2\omega_{k}} \sum_{r} \left(\left(U\left(k, r\right) \overline{U}\left(k, r\right) \gamma_{0}\right)_{\alpha\beta} e^{-ik(x-y)} \right. \\
&\left. - \left(U\left(k, r\right) \overline{U}\left(k, r\right) \gamma_{0}\right)_{\alpha\beta} e^{ik(x-y)}\right) \\
&= \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{1}{2\omega_{k}} 2\omega_{k} \sum_{r} \left(\hat{b}_{kr}^{\dagger} \hat{b}_{kr} - \hat{d}_{kr} \hat{d}_{kr}^{\dagger}\right) \\
\end{aligned} \tag{10.26a}$$

where

$$(U(k,r)\overline{U}(k,r)\gamma_0)_{\alpha\beta} = ((k+m)\gamma_0)_{\alpha\beta}$$
(10.26b)

and

$$\left(U\left(k,r\right)\overline{U}\left(k,r\right)\gamma_{0}\right)_{\alpha\beta} = \left(\left(-k+m\right)\gamma_{0}\right)_{\alpha\beta} \tag{10.26c}$$

in 2nd term change integration variable  $\mathbf{k} \to -\mathbf{k}$ 

$$\Rightarrow \left\{ \hat{\psi}_{\alpha}, \hat{\psi}_{\beta}^{\dagger} \right\} = \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3} (2\omega_{k})} \left( (k_{0}\gamma_{0} - \mathbf{k}\gamma + m) \gamma_{0} + (k_{0}\gamma_{0} + \mathbf{k}'\gamma - m) \gamma_{0} \right)_{\alpha\beta} e_{10}^{i\mathbf{k}(\mathbf{x}} = \mathbf{k}')$$

$$= \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3} 2\omega_{k}} 2\omega_{k} \delta_{\alpha\beta} e^{ik(\mathbf{x} - \mathbf{y})}$$

$$= \delta_{\alpha\beta} \delta (\mathbf{x} - \mathbf{y})$$

$$\hat{H} = \dots$$

$$= \int \frac{\mathrm{d}^3 k}{(2\pi)^3 2\omega_k} \omega_k \sum_r \left( \hat{b}_{kr}^{\dagger} \hat{b}_{kr} - \hat{d}_{kr} \hat{d}_{kr}^{\dagger} \right)$$
(10.26e)

$$\hat{H} = \int \frac{\mathrm{d}^3 k}{(2\pi)^3 2\omega_k} \omega_k \sum_r \left( \hat{b}_{kr}^{\dagger} \hat{b}_{kr} + \hat{d}_{kr}^{\dagger} \hat{d}_{kr} \right)$$
 (10.26f)

$$\hat{Q} = \hat{j}^{0} 
= \bar{\psi}\gamma^{0}\hat{\psi} 
= \dots 
= \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3} 2\omega_{k}} \sum_{r} \left(\hat{b}_{kr}^{\dagger}\hat{b}_{kr} - \hat{d}_{kr}^{\dagger}\hat{d}_{kr}\right)$$
(10.26g)

WHy all this? Add interactions  $p^{\mu} \rightarrow p^{\mu} + eA^{\mu}$  or  $i \infty \rightarrow i \infty + eA^{\mu}$ 

$$\mathcal{L} = \overline{\psi} \left( i \mathscr{L} - m \right) \psi + e A_{\mu} \overline{\psi} \gamma^{\mu} \psi \tag{10.27a}$$

with

$$eA_{\mu}\overline{\psi}\gamma^{\mu}\psi = eA_{\mu}j^{\mu} \tag{10.27b}$$

recall (section 5)

$$\hat{U} = T \left( e^{-i \int_{t_0}^t dt \, \hat{V}_{\rm I}(t)} \right) 
= \left( 1 - i \int_{t_0}^t dt \, \hat{V}_{\rm I} + \dots \right)$$
(10.27c)

recall section 4, transition matrix elements  $\langle f|\,\hat{U}\,|i\rangle$  with f and i having different particle content