ARITHMETIC Chapter 1

VERANO UNI

Razones y Proporciones

<u>INTRODUCCIÓN</u>

Frecuentemente en la vida diaria nos encontramos con situaciones como:

- El costo de un TV hace un mes era de \$1050, actualmente es de \$900.
- La temperatura en Lima es de 19°C y en Puno es 8°C.

Son 40 mujeres por cada 100 personas.

Fabrizzio realiza 5 sillas por cada 7 sillas que hace Jesús.

Se observa en estos ejemplos una variedad de magnitudes matemáticas (costo, temperatura, número de personas, número de sillas) que están asociadas a una cantidad, la cual nos permite realizar comparaciones y son las comparaciones las que vamos a estudiar y ampliar en este capítulo.

<u>RAZÓN</u>

DEFINICIÓN

Se denomina razón a la comparación que se establece entre dos cantidades, generalmente homogéneas, por medio de una operación matemática (sustracción o división).

Por ejemplo:

 \boldsymbol{B}

Se afirma:

- La velocidad del automóvil A es mayor que la velocidad del automóvil B en 30 km/h.
- La velocidad del automóvil A es el doble que la velocidad del automóvil B.

Estamos comparando dos cantidades haciendo uso de operaciones matemáticas.

CLASES DE RAZÓN

RAZÓN ARITMÉTICA

Es la comparación entre dos cantidades mediante la operación de sustracción.

Por ejemplo:

En una tienda comercial, el precio de dos artículos es tal como se muestra en el gráfico:

\$2400

\$3600

Comparemos dichos precios (cantidades) mediante la sustracción.

Razón Aritmética

\$3600 - \$2400 = \$1200

Antecedente Consecuente Valor de la R.A.

Se afirma:

- El precio de la refrigeradora excede (es mayor) al precio del TV en \$1200.
- El precio del TV es excedido (es menor) por el precio de la refrigeradora en \$1200.

RAZÓN GEOMÉTRICA

Es la comparación entre dos cantidades mediante la operación de división.

Por ejemplo:

Se mezclan 15 litros de vino con 10 litros de gaseosa. Observemos:

Comparemos dichos volúmenes (cantidades) mediante la división.

Se afirma:

- En dicha mezcla por cada 3 litros de vino hay 2 litros de gaseosa.
- Los volúmenes de vino y gaseosa están en la relación de 3 a 2.
- Los volúmenes de vino y gaseosa son entre si como 3 es a 2.

EN GENERAL

Sean las cantidades: a y b

RAZÓN	
ARITMÉTICA	GEOMÉTRICA
$a - b = \mathbf{r}$	$\frac{a}{b} = \mathbf{k}$

Donde:

a: Antecedente

b: Consecuente

r : Valor de la Razón Aritmética

k : Valor de la Razón Geométrica

Observaciones:

- De las dos razones estudiadas, la que tiene mayor uso es la razón geométrica; es por ello que si nos mencionan solo razón, se entenderá que se trata de la razón geométrica.
- No es lo mismo "n veces" que "n veces más".

Una vez más <> Dos veces

Dos veces más <> Tres veces

Tres veces más <> Cuatro veces

k veces más <> (k+1) veces

PROPORCIÓN

DEFINICIÓN

Se denomina proporción a la igualdad de dos razones de la misma clase que poseen el mismo valor de la razón.

CLASES DE PROPORCIÓN

PROPORCIÓN ARITMÉTICA

Es la igualdad de dos razones aritméticas que tienen el mismo valor de la razón. Se le denomina también equidiferencia.

Por ejemplo:

La edad de Ana es 24 años y la edad de José es 20 años. Hace 5 años sus edades fueron 19 años y 15 años respectivamente.

Observemos:

Proporción Aritmética

Términos Extremos

Se cumple:

Suma de Términos Suma de Términos Extremos Medios

PROPORCIÓN GEOMÉTRICA

Es la igualdad de dos razones geométricas que tienen el mismo valor de la razón. Se le denomina también equicociente.

Por ejemplo:

Un móvil experimenta una velocidad constante de 20 m/s, por ende, en 10 s recorre 200 m y en 30 s recorre 600 m.

Observemos:

Relación de
$$\frac{10}{30} = \frac{1}{3}$$
 Relación de Espacios $\frac{200}{600}$

Proporción Geométrica

$$\longrightarrow \frac{1 \operatorname{er}}{2 \operatorname{do}} \left(\frac{10}{30} = \frac{200}{600} \right) \frac{3 \operatorname{er}}{4 \operatorname{to}}$$

Donde:

- 10 y 600: Términos Extremos
- 30 y 200: Términos Medios

Se cumple:

EN GENERAL

Sean las cantidades: a, b, c y d

RAZÓN	
ARITMÉTICA	GEOMÉTRICA
a - b = c - d	$\frac{a}{b} = \frac{c}{d}$
Se cumple: a + d = b + c	Se cumple: $a \times d = b \times c$

Donde:

a y d : Términos Extremos

b y c : Términos Medios

Observaciones:

- Si no especifican la clase de proporción, asumiremos que se trata de una proporción geométrica.
- Dependiendo del valor que asumen los términos medios, se estudian los tipos de proporción.
- La proporción geométrica cumple ciertas propiedades, luego detallaremos algunas de ellas.

TIPOS DE PROPORCIÓN

PROPORCIÓN DISCRETA

Se denomina así cuando los términos medios son diferentes.

Puede ser:

Proporción Aritmética Discreta

Es de la forma:

$$a - b = c - d$$

Donde:

d: Cuarta diferencial de a, b y c.

Proporción Geométrica Discreta

Es de la forma:

$$\frac{a}{b} = \frac{c}{d}$$

Donde:

d: Cuarta proporcional de a, b y c.

Ejercicio:

Calcule la suma de la cuarta diferencial de 120, 90 y 70 y la cuarta proporcional de 12, 9 y 40.

Resolución

Del enunciado:

$$120 - 90 = 70 - x$$

 $x = 40$

$$\frac{12}{9} = \frac{40}{v}$$
 y = 30

$$x + y = 70$$

PROPORCIÓN CONTINUA

Se denomina así cuando los términos medios son iguales.

Puede ser:

Proporción Aritmética Continua

Es de la forma:

Donde:

b: Media diferencial de a y c.

c: Tercera diferencial de a y b.

Proporción Geométrica Continua

Es de la forma:

$$\frac{a}{b} = \frac{b}{c}$$

Donde:

b: Media proporcional de a y c.

c: Tercera proporcional de a y b.

Ejercicio:

Calcule el producto de la tercera diferencial de 30 y 20 y la media proporcional de 72 y 2.

Resolución

Del enunciado:

$$30 - 20 = 20 - m$$

 $m = 10$

$$\frac{72}{n} = \frac{n}{2} \qquad n = 12$$

PROPIEDADES

Sea la proporción:

$$\frac{a}{b} = \frac{c}{d} = \mathbf{k}$$

Se cumple:

$$a = b \times k$$

 $c = d \times k$

$$\frac{a+c}{b+d} = \frac{a-c}{b-d} = k$$

$$\frac{\mathbf{a} \mathbf{x} \mathbf{c}}{b \mathbf{x} d} = k^2$$

$$\frac{a+b}{b} = \frac{c-d}{d} = k+1$$

$$\frac{a}{a-b} = \frac{c}{c-d} = \frac{k}{k-1}$$

$$\frac{a+b}{a-b} = \frac{c+d}{c-d} = \frac{k+1}{k-1}$$

$$\frac{a-b}{a+b} = \frac{c-d}{c+d} = \frac{k-1}{k+1}$$

$$\frac{\mathbf{a}^{\mathbf{n}}}{b^n} = \frac{c^n}{d^n} = \mathbf{k}^{\mathbf{n}}$$

SERIE DE RAZONES GEOMÉTRICAS EQUIVALENTES

DEFINICIÓN

Se denomina así a la igualdad de tres o más razones geométricas que tienen el mismo valor de la razón.

Por ejemplo:

Antecedentes

ler 3er 5to
$$\frac{6}{9} = \frac{10}{15} = \frac{20}{30}$$
Consequentes

Consequentes

Consequentes

Antecedentes $\frac{21}{7} = \frac{15}{5} = \frac{33}{11} = \frac{9}{3}$ Constante de Proporcionalidad Consecuentes

EN GENERAL

$$\frac{\mathbf{a}_1}{\mathbf{b}_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n} = k$$

Donde:

a₁, a₂, ..., a_n: Antecedentes
b₁, b₂, ..., b_n Consecuentes
k: Constante de Proporcionalidad

PROPIEDADES

Sea la SRGE:

$$\frac{\mathbf{a}_1}{\mathbf{b}_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n} = k$$

Se cumple:

$$a_1 = b_1 \times k$$

$$a_2 = b_2 \times k$$

$$\vdots$$

$$a_n = b_n \times k$$

$$\frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n} = k$$

$$\begin{cases} a_1 \times a_2 \times \dots \times a_n \\ b_1 \times b_2 \times \dots \times b_n \end{cases} = k^{\mathsf{n}}$$

Observación:

Las propiedades aplicadas en las proporciones son válidas también en una SRGE.

SRGE CONTINUA

Es de la forma:

$$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{d}{e} = \mathbf{k}$$

Donde, los términos se pueden expresar en función del último término y la constante:

De la Serie Continua:

$$d = e \times k$$

$$b = e \times k^{3}$$

$$c = e \times k^{2}$$

$$a = e \times k^{4}$$

1. Un cilindro contiene 5 galones de aceite más que otro. Si la razón del número de galones del uno a otro cilindro es 8/7; ¿cuántos galones de aceite hay en cada uno?

RESOLUCIÓN

Sea:

N° de galones del 1^{ro} =
$$G_1$$
 \hookrightarrow G_1 = G_2 \hookrightarrow G_1 = G_2 \hookrightarrow G_1 = G_2 \hookrightarrow G_2 = G_2 \hookrightarrow G_3 = G_4 \hookrightarrow G_4 = G_5 \hookrightarrow G_5 = G_5 \hookrightarrow G_6 = G_7 \hookrightarrow G_7 = G_8 \hookrightarrow G_8 = G_8 \hookrightarrow G_8 = G_8

Pero
$$G_1$$
- G_2 =5. Es 8K-7K=5 \downarrow K=5 decir:

Luego:
$$G_1 = 8x5 = 40$$

 $G_2 = 7x5 = 35$

35 y 40

2. En un salón de clase; el número de varones es al número de mujeres como 3 es a 5. Si se considera al profesor y una alumna menos, la nueva relación será 2/3. ¿Cuántas alumnas hay en el salón?

A) 25 B) 15 C) 20

D) 30 E) 24

RESOLUCIÓN

Sea:

N° de varones = V
N° de mujeres M
$$\Rightarrow \frac{V}{M} = \frac{3}{5} \Rightarrow V_1 = 3K$$

M = 5K

Pero

Si se considera al profesor (varón) y una alumna (mujer) menos, tenemos:

$$\frac{3K+1}{5K-1} = \frac{2}{3}$$
 > 9K+3 = 10K-2 > K = 5

Por lo N° de mujeres 5x5 = 25 tanto:

3. A - B y B - C están en relación de 1 a 5. A es siete veces C y sumando A; B y C obtenemos 140. ¿Cuánto es A²+B²+C²?

RESOLUCIÓN

Tenemos que:

$$\frac{A - B}{B - C} = \frac{1}{5}$$
; A = 7C \Rightarrow 35C-5B = B-C 6C = B

Por lo
$$70^2+60^2+10 = 8600$$
 tanto:

A) 8600 B) 5400 C) 3025

D) 2304 E) 3364

4. Si a·b·c=1120 y $\frac{2}{a} = \frac{7}{b} = \frac{10}{c}$ Calcule: a+b+c.

RESOLUCIÓN

Como
$$\frac{a}{2} = \frac{b}{7} = \frac{c}{10} =$$
 a = ; b = 7K; c = 10K
: 2K

Pero: a·b·c = 1120
$$\Rightarrow$$
 140K³ = \Rightarrow K³ = 8

Luego:
$$a+b+c = 19K = = 38$$

5. Sea: $\frac{m}{2} = \frac{n}{5} = \frac{p}{8} = \frac{q}{10}$ además nq – mp=306. Calcule: p + q – m – n.

- A) 11
- B) 22
- C) 33

- D) 44
- E) 55

RESOLUCIÓN

Como
$$\frac{m}{2} = \frac{n}{5} = = K$$
 m=2K; ; p=8K; q=10K
: $\frac{p}{8} = \frac{q}{10}$ n=5K
 $n=5K$; mp=16K²

Además: nq - mp = 306
$$\Rightarrow$$
 34K² = 306 K² = 9 K = 3

6. Se tiene una proporción aritmética continua, donde la suma de sus cuatro términos es 160. Halle el valor de la razón aritmética, sabiendo que los extremos son entre sí como 11 es a 5.

- A) 15 B) 6 C) 8
- D) 50 E) 24

RESOLUCIÓN

Sea la a - b = b -. a + c = 2b proporción: c Donde: Pero a + c + b + b = 4b = 160: b = 40 a + c = 80

Como
$$\frac{a}{c} = \frac{11}{5}$$
 | $a = 11K$ |

Luego:
$$a = 11x5 = 55$$

 $c = 5x5 = 25$

7. Se tiene una proporción aritmética continua, donde la suma de sus cuatro términos es 360. Halle el valor de la razón aritmética, sabiendo que los extremos son entre sí como 7 es a 2.

RESOLUCIÓN

8. La diferencia entre el mayor y el menor término de una proporción geométrica continua es 245. Si el otro término es 42; calcule la suma de los términos extremos.

A) 259

B) 6

C) 8

D) 50

E) 24

RESOLUCIÓN

Convenientemente,

arpparción:

$$\frac{C!K^2}{C.K} = \frac{C!K^{1011}}{C} = K > 1$$
 Por dato:

expresamos

la

$$C.K^2 - C = 245$$

La proporción

$$\frac{252}{42} = \frac{42}{7} = 6$$

Piden: 252 + 7 = 259

9. La diferencia entre el mayor y el menor término de una proporción geométrica continua es 64. Si el otro término es 24; calcule la suma de los términos extremos.

RESOLUCIÓN

Sea la proporción:

$$\begin{array}{c|c}
C+32 \\
\hline
24 \\
\hline
C-32
\end{array}
\qquad (C+32).(C-32) = 24^{2}$$

$$C^{2}-32^{2} \quad 24^{2}$$

$$= \\
C^{2} = 24^{2}+32^{2}$$

$$C^{2} = 576+1024$$

$$C^{2} = 1600$$

$$C = 40$$

10. Si 45 es la cuarta diferencial de a, b y c, además 140 es la tercera diferencial de 2a y 160: halle la media aritmética de b y c.

B) 67,5 C) 15

E) 11,5

RESOLUCIÓN

Formamos la primera proporción:

$$a - b = c - 45$$
 \Rightarrow $a + 45 = b + c$

Formamos la segunda proporción:

90 + 45 = b + c

$$135 = b + c$$

Piden:
$$\frac{b+c}{2} = \frac{135}{2} = 67,5$$

A) 14

D) 12,5

11. La suma de los cuatro términos de una proporción geométrica es 65; cada uno de los tres últimos términos es los 2/3 del precedente. ¿Cuál es el último término?

RESOLUCIÓN

Sea la Geométrica: C

$$\frac{A}{B} = \frac{C}{D}$$

Por condición:

$$B = \frac{2A}{3} C = \frac{2B}{3} D = \frac{2C}{3}$$

Expresando C y D en función de A:

$$C = \frac{4 \text{ A}}{9}$$
 $D = \frac{8 \text{ A}}{27}$

Luego:

$$\frac{A}{D} = \frac{27}{8}$$

$$A = 27n$$

$$D = 8n$$

Proporción Reemplazamos en la proporció

Ahora:

$$A + B + C + D = 65$$

 $27n + 18n + 12n + 8n = 65$

Nos piden el último término:

$$D = 8n$$

D = 8

12. Si
$$\frac{ab}{8} = \frac{ac}{15} = \frac{bc}{10} = k$$

calcule la suma de los menores valores naturales de a, b, c y k.

- A) 30.
- B) 35.
- C) 37
- D) 45
- E) 47

RESOLUCIÓN

De los datos:

$$\frac{ab}{8} = \frac{ac}{15} = \frac{bc}{10} = K$$

Además:

$$ac = 15k$$

$$bc = \frac{3 \times 4}{b}$$

$$ab = \frac{3 \times 4}{2 \times 4}$$

$$ab = 8k$$

$$ab = 8k$$

$$ac = \frac{4 \times 3}{5 \times 3}$$

<u> 19</u>kgo:

Nos piden:

$$a + b + c + k = 12 + 8 + 15 + 12 = S = 4$$

proporción geométrica es un entero positivo, los términos extremos son iguales y la suma de los términos de la proporción es 192. Halle el menor término medio.

A) 9

B) 3

C) 147

D) 21

E) 63

RESOLUCIÓN

Sea la proporción:
$$\frac{1}{K_a} = \frac{1}{aK} = K \in Z^+$$

Por dato:

$$aK + a + aK^{2} + aK = 192$$

 $a + 2aK + aK^{2} = 192$
 $a (K+1)^{2} = 3 (7 + 1)^{2}$

K = 7

Nos piden el menor término medio:

a = 3

- 14. Halle 3 números enteros que sumen 35, tales que primero es segundo como segundo es Dé tercero. como respuesta producto de los tres números enteros. A) 500
 - B) 1000 C) 1500
 - C) 1300
 - D) 2000
 - E) 2500

RESOLUCIÓN

Sean los A; B y C números: Además:

$$\frac{A}{B} = \frac{B}{C} = K$$

Luego:

$$B = CK$$
 $A = CK^2$

Reemplazando en el dato:

$$A + B + C = 35$$

Se obtiene: $CK^2 + CK + C = 35$ $C(K^2 + K + 1) = 5 \times 7$ C = 5 K = 2

$$A = 5(2)^2$$
 $A = 20$
 $B = 5(2)$ $B = 10$

Ahora:

$$P = 20 \times 10 \times 5$$

P = 1000

15. En una serie de razones geométricas equivalentes; el primer y tercer antecedente son 18 y 33, y el segundo consecuente es 8. Si el producto de los 3 términos restantes es 1584; halle el segundo antecedente.

A) 30

B) 18

C) 24

E) 48

RESOLUCIÓN

De los datos:

$$\frac{18}{A} = \frac{B}{8} = \frac{33}{C} = K$$

Luego:

$$A = \frac{18}{K}$$

$$B = 8$$

$$K$$

$$C = \frac{33}{K}$$

Reemplazamos en:

$$A \times B \times C = 1584$$

$$K = 3$$

Nos piden e segundo antecedente:
B = 8(3)

$$B = 24$$

16. Si la suma de los cuatro términos de una proporción geométrica continua es a la diferencia de sus extremos como 3 es a 1; ¿cuál es la razón geométrica del extremo mayor y el extremo menor?

A) 3/1 B) 3/2 C) 4/1 D) 2/1 E) 5/3

RESOLUCIÓN

Sea la PGC:

$$\frac{A}{B} = \frac{B}{C} = K$$

Se obtiene:

$$B = CK$$
 $A = CK^2$

Del dato:

$$A + 2B + C$$
 $A - C$
 $A + 2B + C = 3A - 3C$
 $2B + 4C = 2A$
 $B + 2C = A$

Reemplazamos:

$$CK+2C = CK^{2}$$
 $K+2 = K^{2}$
 $K^{2}-K-2 = 0$

Resolviendo:

Nos piden:

$$\frac{A}{C} = K^2 \qquad \frac{A}{C} = 2^2$$

4/1

17. En una serie de cuatro razones geométricas; diferencias de los términos de cada razón 6, 9, 15 21 son respectivamente y la suma de los cuadrados de los antecedentes es 1392. Calcule la suma de los dos primeros consecuentes si constante de proporcionalidad es menor que uno.

RESOLUCIÓN

Sea la SRGE:

$$\frac{A}{M} = \frac{B}{N} = \frac{C}{P} = \frac{D}{Q} = K < 1$$

$$\frac{A}{A^{+}} = \frac{B}{B+9} = \frac{C}{C+15} = \frac{D}{D+21} = K < 1$$

⁶De donde:

Además por dato:

$$A^2 + B^2 + C^2 + D^2 = 1392$$

 $4n^2 + 9n^2 + 25n^2 + 49n^2 = 1392$

Resolviendo:

$$n^2 = 16$$

Nos piden M + N:

$$M + N = (A+6) + (B+9)$$

$$M + N = 5n + 15$$

$$M + N = 5(4) + 15$$

M+N = 35

18. El producto de los términos de una proporción continua es 38 416. Si la diferencia de los antecedentes es la mitad de la diferencia de los consecuentes. calcule la diferencia entre la suma de las terceras proporcionales y la media proporcional. A) 13 B) 16 C) 31 E) 11 D) 21

RESOLUCIÓN

Sea la PGC:

$$\frac{A}{B} = \frac{B}{C} = K$$

Por dato:

$$A \times B \times B \times C = 38416$$

RECORDEMOS

$$B^2 = A \times$$
 C
 $B^4 = 38 416$
 C
 C
 C

Además:

$$A - B = B - C$$
 $2A + C = 3B$

$$2(CK^2) + C = 3(CK)$$

 $2K^2 + 1 = 3K$

Resolviendo:

$$2K^2 - 3K + 1 = 0$$

$$K = X$$
 $K = \frac{1}{2}$

Nos piden:

$$(A + C) - B = (7 + 28) - 14$$

19. Tres números enteros, cuya suma es 1587, son proporcionales a los factoriales de sendos números consecutivos. Halle el mayor de estos números si la constante de proporcionalidad es entera.

D) 1518 E) 1536

RESOLUCIÓN

De los datos:

$$\frac{A}{N!} = \frac{B}{(N+1)!} = \frac{C}{(N+2)!} = K$$
1 (N+1) (N+1)(N+2)

Se obtiene:

$$A = 1K$$
 $B = (N+1)K$
 $C = (N+1)(N+2)K$

Reemplazamos en la suma:

Nos piden el mayor:

$$C = 22 \times 23 \times 3$$

$$C = 1518$$

20. En una reunión, hay hombres y mujeres, siendo el número de mujeres al total personas como 7 es a 11 y la diferencia entre mujeres y hombres es 21. ¿Cuál es la razón de mujeres a hombres si se retiran 14 mujeres?

E)
$$3/2$$

RESOLUCIÓN

De los datos:

$$T = M + H$$

$$M = \frac{7}{11}$$

Se obtiene:

$$M = 7K$$

$$T = 11K$$

$$H = 4K$$

$$7K - 4K = 21$$

$$K = 7$$

$$M = 49 | H = 28$$

Se retiran 14 mujeres:

$$\frac{M}{H} = \frac{49 - 14}{28}$$

$$\frac{M}{H} = \frac{35}{28}$$

5 / 4

MUCHAS GRACIAS

ATENTAMENTE SU PROFESOR JIMMY GARCÍA

