Chapitre 3: Espaces vectoriels

I Corps

Définition : Un **corps** est un ensemble K muni de deux lois de composition interne notées + et \times telles que :

- (K, +) est un groupe abélien
- $(K \setminus \{0\}, \times)$ est un groupe abélien
- La loi \times est distributive par rapport à la loi +

Si de plus la loi \times est commutative, on dit que K est un **corps commutatif**.

- **1** Rappel: Distributivité: $\forall a, b, c \in K, a \times (b+c) = a \times b + a \times c$
- **© Exemple:** $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}, p$ premier sont des corps.

II Espaces vectoriels

Définition : Soient K un corps et E un groupe abélien.

Soit une loi $: {}^{K \times E \to E}_{(\lambda, v) \mapsto \lambda \cdot v}$ (multiplication externe).

On dit que $(E, +, \cdot)$ est un K-espace vectoriel si on a $\forall \lambda, \mu \in K, \forall v \in E$:

- $\lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v$
- $1 \cdot v = v$
- $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ (on a deux + différents)
- $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$
- \bigcirc Vocabulaire : Les éléments de E sont appelés **vecteurs**. Les éléments de K sont appelés **scalaires**.
- **© Exemple :** \mathbb{R}^n est un \mathbb{R} -espace vectoriel. De même pour $\{0\}$, $\mathbb{R}[X]$, $M_n(\mathbb{R})$. On peut voir \mathbb{C} comme un \mathbb{R} -espace vectoriel.

Définition : Soit E un K-ev, et soit $(v_i)_{i \in I}$ une famille de vecteurs de E.

Soit $(\lambda_i)_{i\in I}$ une famille de scalaires de K.

On dit que $(\lambda_i)_{i \in I}$ est presque nulle si : $\{i \in I, \lambda_i \neq 0\}$ est fini.

Alors on considère $\sum_{i \in I, \lambda \neq 0} \lambda_i v_i$ noté $\sum_{i \in I} \lambda_i v_i$. C'est une **combinaison linéaire** des v_i .

Définition : Soit $X \subset E$. Une combinaison linéaire de vecteurs de X est de la forme $\sum_{v \in X} \lambda_v v$ avec $(\lambda_v)_{v \in X}$ presque nulle.

 \bigcirc Vocabulaire : Les $(\lambda_v)_{v \in X}$ sont appelés les **coefficients** de la combinaison linéaire.

III Sous-espaces vectoriels

Définition : Soit E un K-ev. Soit $F \subset E$.

On dit que F est un **sous-espace vectoriel** (sous-ev) de E si :

- $F \neq \emptyset$
- $\forall u, v \in F, \lambda, \mu \in K, \lambda u + \mu v \in F$

Proposition: Caractérisation des sous-ev

Tout sous-espace vectoriel est un espace vectoriel pour les lois induites par E.

Preuve:

Montrons (F, +) est un sous-groupe de (E, +):

- $F \neq \emptyset$ donc $\exists u \in F$.
- $\lambda = \mu = 1 \implies u + v \in F, \forall u, v \in F \text{ donc } F \text{ est stable par } +$
- $u + (-1)u = u(1 + (-1)) = 0_E \in F$. On a donc $-u \in F, \forall u \in F$.

Donc on a bien un sous-groupe.

Les autres propriétés sont vérifiables et immédiates, on a bien un espace vectoriel

- **?** Exemple : Soit E un \mathbb{K} -ev.
 - $\{0_E\}$ et E sont des sous-ev de E.
 - $\{(x,y) \mid ax + by = 0\} \subset \mathbb{R}^2$ est un sous-ev de \mathbb{R}^2 .

Proposition: Intersection de sev

Soit E un K-ev. Soit $(F_i)_{i\in I}$ une famille de sev de E. Alors $\bigcap_{i\in I}F_i$ est un sev de E.

Preuve:

Montrons que $\bigcap_{i \in I} F_i$ est stable par combinaison linéaire.

Soient $x, y \in \bigcap_{i \in I} F_i$ et $\lambda, \mu \in K$.

On a $x, y \in F_i$ pour tout $i \in I$, donc $\lambda x + \mu y \in F_i$ pour tout $i \in I$.

Donc $\lambda x + \mu y \in \bigcap_{i \in I} F_i$. \square

Remarque : L'union de sev n'est pas forcément un sev.

Proposition: Sous-ev engendré

Soit E un K-ev. Soit $X \subset E$.

Alors il existe un plus petit sev de E contenant X, noté Vect(X) et appelé le **sev engendré** par X.

On a $Vect(X) = \{\sum_{x \in X} \lambda_x x \mid (\lambda_x)_{x \in X} \text{ est presque nulle}, \lambda_x \in K\} = \bigcap_{F \text{ sev de } E} F.$

Intuitivement, c'est l'ensemble des combinaisons linéaires d'éléments de X.

1 Rappel: "Presque nulle" signifie que tous les coefficients sont nuls sauf un nombre fini d'entre eux.

Preuve:

Montrons que Vect(X) est un sev de E.

Soient $u, v \in Vect(X)$ et $\lambda, \mu \in K$.

On a $u = \sum_{x \in X} \lambda_x x$ et $v = \sum_{x \in X} \mu_x x$ avec $(\lambda_x)_{x \in X}$ et $(\mu_x)_{x \in X}$ presque nulles.

Donc $\lambda u + \mu v = \sum_{x \in X} (\lambda \lambda_x + \mu \mu_x) x$ est une combinaison linéaire d'éléments de X avec des coefficients presque

nuls.

Donc $\lambda u + \mu v \in Vect(X)$. C'est bien un sev.

On a $X \subset \{CLdeX\}$ car $x = 1 \cdot x + 0 \cdot y, \forall x \in X, y \in E$.

Donc $Vect(X) \subset \{CLdeX\}.$

Réciproquement, Vect(X) est stable par combinaison linéaire et contient X, donc $\{CLdeX\} \subset Vect(X)$. Donc $Vect(X) = \{CLdeX\}$. \square .

1 Remarque: La démonstration est générée par IA, elle diffère de celle du cours.

Proposition: Addition de sev

Soit E un K-ev. Soit $(F_i)_{i \in I}$ une famille de sev de E.

On peut considérer $Vect(\bigcup_{i\in I} F_i)$, noté $\sum_{i\in I} F_i$ et appelé la **somme** de la famille $(F_i)_{i\in I}$.

1 Remarque: On note $F_1 + F_2 + \cdots + F_n$ au lieu de $\sum_{i=1}^n F_i$.

Proposition: Caractérisation de la somme

Soit E un K-ev. Soit $(F_i)_{i\in I}$ une famille de sev de E. Alors $\sum_{i\in I}F_i=\{\sum_{i\in I}x_i\mid x_i\in F_i, \text{ presque tous nuls}\}.$

Preuve:

Note de rédaction : cf. Laurent

Q Exemple : Soient F et G deux sev de E. Alors $F + G = \{x + y \mid x \in F, y \in G\}$.

Proposition: Application

On a une application $\varphi: \stackrel{F_1 \times F_2 \times \cdots \times F_n \to F_1 + F_2 + \cdots + F_n}{(x_1, x_2, \ldots, x_n) \mapsto x_1 + x_2 + \cdots + x_n}$. Elle est surjective.

Proposition: Caractérisation de la somme directe

Soient F_1, F_2, \dots, F_n des sev de E. Les assertions suivantes sont équivalentes :

- $F_1 + F_2 + \cdots + F_n$ est une somme directe.
- $\forall (u_1, u_2, \dots, u_n) \in F_1 \times F_2 \times \dots \times F_n, u_1 + u_2 + \dots + u_n = 0_E \implies u_1 = u_2 = \dots = u_n = 0_E$
- $\forall i \in \{1, 2, \dots, n\}, F_i \cap (F_1 + \dots + F_{i-1}) = \{0_E\}$

Preuve:

Note de rédaction : cf. Laurent

X Attention **X** On a F_1 somme directe avec F_2 ssi $F_1 \cap F_2 = \{0_E\}$. Mais pour avoir $F_1 \oplus F_2$ et $F_1 \oplus F_3$, et $F_2 \oplus F_3 = \{0_E\}$, mais pas forcément $F_1 \oplus F_2 \oplus F_3$.

Exemple: On prend 3 droites dans le plan passant par l'origine, deux par deux distinctes. Alors elles sont en somme, mais pas en somme directe.

- \bigcirc Vocabulaire : Si $F \oplus G = E$, on dit que F et G sont des supplémentaires.
- X Attention X Le supplémentaire n'est pas unique.

IV Familles

Définition : Soit E un K-ev. Soit I un ensemble. Soit $(x_i)_{i \in I}$ une famille d'éléments de E.

Soit $J \subset I$. On dit que $(x_i)_{i \in J}$ est une **sous-famille** de $(x_i)_{i \in I}$.

- \bigcirc Vocabulaire: À l'inverse, $(x_i)_{i\in I}$ est une sur-famille de $(x_i)_{i\in J}$.
- **1** Remarque: Dans la pratique, on prend souvent $I = \{1, 2, ..., n\}$.
- **1** Remarque : Soit $X \subset E$. On a une famille $(x)_{x \in X}$ indexée par X. Donc une combinaison linéaire de X est une combinaison linéaire de la famille $(x)_{x \in X}$. (la réciproque n'est pas vraie, car il peut y avoir des répétitions dans la famille: x+x n'est pas une combinaison linéaire de X)

Définition : Soit $(x_i)_{i \in I}$ une famille de vecteurs de E.

On dit que $(x_i)_{i \in I}$ est **libre** si :

 $\forall (\lambda_i)_{i \in I}$ presque nulle, $\sum_{i \in I} \lambda_i x_i = 0_E \implies \forall i \in I, \lambda_i = 0.$

On dit que $(x_i)_{i \in I}$ est **liée** sinon.

Pour $X \subset E$, on dit que X est une partie libre (resp. liée) si la famille $(x)_{x \in X}$ est libre (resp. liée).

Exemple : Dans \mathbb{R}^3 , les vecteurs (1,0,0) et (0,1,0) sont libres. Les vecteurs (1,0,0) et (2,0,0) sont liés.

Définition : Soit $(x_i)_{i \in I}$ une famille de vecteurs de E.

On dit que c'est une famille génératrice de E si $Vect(\{x_i \mid i \in I\}) = E$.

Alors tout élément de E s'écrit comme une combinaison linéaire des x_i .

Pour $X \subset E$, on dit que X est une partie génératrice de E si la famille $(x)_{x \in X}$ est génératrice de E.

Proposition: Sous-familles

Soit $(x_i)_{i \in I}$ une famille de vecteurs de E.

Alors toute sous-famille $(x_i)_{i \in I}$ de $(x_i)_{i \in I}$ est libre (resp. liée) si $(x_i)_{i \in I}$ est libre (resp. liée).

Et toute sur-famille $(x_k)_{k \in K}$ de $(x_i)_{i \in I}$ est génératrice (resp. non génératrice) si $(x_i)_{i \in I}$ est génératrice (resp. non génératrice).

(de même pour un sous-ensemble et un sur-ensemble d'une partie de E)

Bases

Définition : Soit $(x_i)_{i \in I}$ une famille de vecteurs de E.

On dit que $(x_i)_{i \in I}$ est une **base** de E si c'est une famille libre et génératrice de E.

Pour $X \subset E$, on dit que X est une partie basique de E si c'est une partie libre et génératrice de E. Alors la famille $(x)_{x \in X}$ est une base de E.

💬 Vocabulaire : Une partie basique appelée une base par abus de langage.

Théorème: Coordonnées

Soit $(b_i)_{i \in I}$ une base de E, et soit $u \in E$.

Alors il existe une unique famille $(\lambda_i)_{i\in I}$ presque nulle telle que $u=\sum_{i\in I}\lambda_ib_i$.

Description Vocabulaire: On dit que λ_i est la **i-ème coordonnée** de u dans la base B.

Preuve:

Montrons l'existence.

Comme B est une base, c'est une famille génératrice, donc u s'écrit comme une combinaison linéaire de vecteurs de B.

Montrons l'unicité.

Supposons qu'il existe $(\lambda_i)_{i\in I}$ et $(\mu_i)_{i\in I}$ presque nulles telles que $u=\sum_{i\in I}\lambda_ib_i=\sum_{i\in I}\mu_ib_i.$ On a donc $\sum_{i \in I} (\lambda_i - \mu_i) b_i = 0_E$. Comme B est libre, on a $\forall i \in I, \lambda_i - \mu_i = 0$, donc $\lambda_i = \mu_i$. \square

Exemple: $E=\{0\}$, la seule base est la base vide.

Dans \mathbb{R}^2 , la famille ((1,0),(0,1)) est une base : c'est la base canonique.

- \bigcirc Vocabulaire : Si E est engendré par une partie finie, on dit que E est de **dimension finie**.
- **1** Remarque: K^n est de dimension finie, K^X avec X infini est de dimension infinie.

Proposition:

Soit $L \subset E$ avec une partie libre. Soit $u \in E$.

Alors $L \cup \{u\}$ est libre ssi $u \notin Vect(L)$.

Si $u \in Vect(L)$, alors $u = \sum_{v \in L} \lambda_v v$ avec $(\lambda_v)_{v \in L}$ presque nulle. Donc $u - \sum_{v \in L} \lambda_v v = 0$ avec $1 \neq 0$, donc $L \cup \{u\}$ est liée.

Réciproquement, si $L \cup \{u\}$ est liée, alors il existe $(\lambda_v)_{v \in L}$ presque nulle et $\mu \neq 0$ tels que $\sum_{v \in L} \lambda_v v + \mu u = 0_E$. Donc $u = -\frac{1}{\mu} \sum_{v \in L} \lambda_v v \in Vect(L)$. \square

- ★ Attention ★ Démonstration générée par IA, différente de celle du cours.
- Note de rédaction : cf. Laurent pour une autre preuve

Théorème : Base incomplète

Soit G une partie génératrice finie de E.

Soit $L \subset G$ une partie libre.

Alors il existe une partie basique B de E telle que $L \subset B \subset G$.

Note de rédaction : cf. Laurent pour les preuve

Corollaire: Existence de base

Si E est un K-ev de dimension finie, alors E admet une base.

Preuve:

On applique le théorème de la base incomplète avec $L=\emptyset$. \square

Corollaire : Caractérisation des bases

Si L est une partie libre à p éléments de E et G une partie génératrice finie à q éléments de E. On a $p \leq q$.

Note de rédaction : cf. Laurent pour les preuve

Théorème : Bases finies

Si E est un K-ev de dimension finie, alors toutes les bases de E ont le même cardinal, appelé la **dimension** de E et noté $\dim(E)$.

Si E est de dimension finie n et (u_1, \ldots, u_n) est une famille libre de E, il existe (u_{p+1}, \ldots, u_n) tels que (u_1, \ldots, u_n) est une base de E.

Théorème : Assertions équivalentes

Les assertions suivantes sont équivalentes :

- 1. E est un ev de dimension n.
- 2. Toute base de E a n vecteurs.
- 3. Toute base génératrice de E a au moins n vecteurs.
- 4. Toute partie génératrice de E a n vecteurs est libre.
- 5. Toute partie libre de E a au plus n vecteurs.
- 6. Toute partie libre E à n éléments est génératrice.

💬 Note de rédaction : cf. Laurent pour les preuves

Proposition:

Soit E un K-ev. Supposons E de dimension finie.

Soit F un sev de E. Alors F est de dimension finie et $\dim(F) \leq \dim(E)$.

Si de plus $\dim(F) = \dim(E)$, alors F = E.

Note de rédaction : cf. Laurent pour la preuve

VI Applications linéaires

Définition : Soient E et F des K-ev.

Soit une application $f: E \to F$.

On dit que f est une application linéaire si $\forall x,y \in E, \forall \lambda,\mu \in K, f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$.

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

- Vocabulaire : On appelle aussi les applications linéaires des morphismes d'espaces vectoriels.
- **1** Remarque: f est un morphisme de groupes de (E, +) dans (F, +).
- **Solution** Vocabulaire: On dit que f est un **endomorphisme** si E = F.

On dit que f est un **isomorphisme** si f est bijective.

On dit que f est un **automorphisme** si f est un endomorphisme et un isomorphisme.

 \bigcirc Vocabulaire : Si F = K, on dit que f est une forme linéaire.

© Exemple :

- 1. Soit $\alpha \in K$. L'application $\varphi_{\alpha} : \underset{x \mapsto \alpha x}{E \to E}$ est linéaire. C'est l'**homotétie** de rapport α .
- 2. Soit B une base de E. L'application $\varphi_B: {}_{x\mapsto {\sf ième\ coordonn\acute{e}e\ de\ }x\ {\sf dans\ la\ base\ }B}$ est linéaire. C'est **l'application coordonnées** dans la base B.

Proposition:

Soit $f \in \mathcal{L}(E, F)$. Soit B une base de E.

Alors f est déterminée par ses valeurs sur B. (i.e. si $g \in \mathcal{L}(E,F)$ vérifie $f(e_i) = g(e_i), \forall i$, alors f = g)

Remarque :

- B génératrice suffit.
- Si E est de dimension finie, f est déterminée par un nombre fini de valeurs.
- Note de rédaction : cf. Laurent pour la preuve

Proposition:

 $\mathcal{L}(E,F)$ est un K-ev.

Note de rédaction : cf. Laurent pour la preuve

Proposition: Composition d'applications linéaires

Soient E,F,G des K-ev. Soient $f\in\mathcal{L}(E,F)$ et $g\in\mathcal{L}(F,G)$. Alors $g\circ f\in\mathcal{L}(E,G)$.

Note de rédaction : cf. Laurent pour la preuve

Proposition:

Si on fixe $f \in \mathcal{L}(E,F)$ (respectivement $g \in \mathcal{L}(F,G)$), l'application $\varphi_f : \frac{\mathcal{L}(F,G) \to \mathcal{L}(E,G)}{g \mapsto g \circ f}$ (resp. $\psi_g : \frac{\mathcal{L}(E,F) \to \mathcal{L}(E,G)}{f \mapsto g \circ f}$) est linéaire.

Note de rédaction : cf. Laurent pour la preuve

Proposition:

Soit $f \in \mathcal{L}(E, F)$ bijective.

Alors $f^{-1} \in \mathcal{L}(F, E)$ et est un isomorphisme.

Note de rédaction : cf. Laurent pour la preuve

Définition : Si E = F. Soit $f \in \mathcal{L}(E)$. On définit $f^0 = id_E$ et pour $n \in \mathbb{N}^*$, $f^n = f \circ f^{n-1}$. Si f est un automorphisme, on définit pour $n \in \mathbb{N}$, $f^{-n} = (f^{-1})^n$.

Définition : On note $GL(E) = \{ f \in \mathcal{L}(E) \mid f \text{ est bijective} \}$ est le groupe linéaire de E.

Proposition:

GL(E) est un groupe pour la composition.

1 Remarque: Si K est un corps fini, i.e. $K = \mathbb{Z}/p\mathbb{Z}$, p premier, et si E est de dimension finie n, alors GL(E) est fini.

VII Noyau et image d'une application linéaire

Note de rédaction : Un grand merci à Laurent qui a pris en note cette partie du cours. J'ai omis les démonstrations, voir le cours de l'année précédente pour les détails.

Définition : Soit $f \in \mathcal{L}(E, F)$. On définit le **noyau** de f par : $\ker(f) = f^{-1}(0_E) = \{x \in E \mid f(x) = 0_F\}$. On définit l'**image** de f par : $\operatorname{Im}(f) = f(E) = \{f(x) \mid x \in E\}$.

 \bigcirc Vocabulaire: On appelle rang de f la dimension de Im(f), notée rg(f).

Proposition: (admis)

Soit $f \in \mathcal{L}(E, F)$. Alors $\ker(f)$ est un sev de E et $\operatorname{Im}(f)$ est un sev de F.

Proposition: Injectivité (admis)

Soit $f \in \mathcal{L}(E, F)$. Alors f est injective si et seulement si $\ker(f) = \{0_E\}$.

Proposition : Surjectivité (admis)

Soit $f \in \mathcal{L}(E, F)$. Alors f est surjective si et seulement si Im(f) = F.

Théorème du rang: (admis)

Supposons E de dimension finie. Alors $\ker(f)$ et $\mathsf{Im}(f)$ sont de dimension finie et on a :

$$\dim(E) = \dim(\ker(f)) + \dim(\operatorname{Im}(f))$$

.

1 Remarque: Le rang d'une famille de vecteurs (x_1, \ldots, x_k) est la dimension de $Vect(\{x_i\})$.

Corollaire: (admis)

On suppose E de dimension finie.

- 1. Si f est injective, alors $\dim(F) \ge \dim(E)$.
- 2. Si f est surjective, alors $\dim(F) \leq \dim(E)$.
- 3. Si f est bijective, alors $\dim(F) = \dim(E)$.
- 4. Si F est de dimension finie, et $\dim(E) = \dim(F)$, alors les assertions suivantes sont équivalentes :
 - f est bijective
 - · f est injective
 - f est surjective

VIII Espaces vectoriels produits

Proposition: Construction (admis)

Soient E,F des K-ev. Alors $E\times F$ est un groupe produit pour +. On munit $E\times F$ de la multiplication externe donnée par $\cdot: {K\times (E\times F)\to E\times F \atop (\lambda,(x,y))\mapsto (\lambda x,\lambda y)}$.

Alors $E \times F$ est un K-ev, appelé **espace-vectoriel produit** de E et F.

1 Remarque: Si $E_1 \dots E_n$ sont des K-ev, on définit de même le K-ev produit $E_1 \times E_2 \times \dots \times E_n$. En particulier, $E^n = E \times E \times \dots \times E$.

Proposition: Base et dimension de l'espace-vectoriel produit (admis)

Soient $(b_i)_{i\in I}$ une base de E et $(c_i)_{i\in J}$ une base de F, et $I\cap J=\emptyset$.

Alors la famille $(d_k)_{k\in I\cup J}$ définie par $d_i=(b_i,0_F)$ si $i\in I$ et $d_i=(0_E,c_i)$ si $i\in J$ est une base de $E\times F$.

En particulier, si E et F sont de dimension finies, $E \times F$ est de dimension finie et $\dim(E \times F) = \dim(E) + \dim(F)$.

Propriété: (admise)

On sait que K est un K-ev de dimension 1, de base $\{1\}$.

Donc pour $n \ge 1$, K^n est de dimension n et de base canonique $\{e_1, e_2, \dots, e_n\}$ où e_i est le vecteur dont la i-ème coordonnée vaut 1 et les autres 0.

Vocabulaire : Une telle base est appelée la base canonique de Kⁿ.

Proposition : Espace vectoriel de dimension égale (admis)

Soit E un K-ev de dimension finie n et base $B=(b_i)_{1\leq i\leq n}$. Il existe un isomorphisme de E sur K^n qui à $\sum_{i=1}^n \lambda_i b_i \mapsto \sum_{i=1}^n \lambda_i e_i$.

Théorème : Isomorphisme sur K^n (admis)

Tout espace vectoriel de dimension finie n est isomorphe à K^n .

1 Remarque : Cet isomorphisme dépend du choix d'une base et n'est pas unique.

Théorème : Généralisation de l'isomorphime de deux espaces vectoriels (admis)

Soient E et F deux K-ev de dimension finie.

Alors E et F sont isomorphes si et seulement si $\dim(E) = \dim(F)$.

IX Sommes et supplémentaires

Proposition: Formule de Grassman (admis)

Soit E un K-ev de dimension finie. Soient F et G deux sev de E.

Alors F + G est de dimension finie et on a :

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

.

Corollaire: (admis)

Si F et G sont en somme directe, alors on a $F \oplus G$ est isomorphe à $F \times G$.

Proposition: Existence de supplémentaires (admis)

Soit E un K-ev de dimension finie. Soit F un sev de E.

Alors il existe un sev (non unique) G de E tel que $F \oplus G = E$.

Propriété: (admise)

Supposons que $F \oplus G = E$.

Tout $x \in E$ s'écrit de manière unique x = y + z avec $y \in F$ et $z \in G$.

Définition : On appelle **projection sur** F **parallèlement à** G l'application $\pi_{F,G}: \underset{x=y+z\mapsto y}{E\to E}$ où $y\in F$ et $z\in G$.

Proposition: (admis)

- 1. On a p(x) = x si $x \in F$.
- 2. On a $p(x) = 0_E$ si $x \in G$.
- 3. On a p(x) = 0 so $F = \{0_E\}$.
- 4. On a p(x) = id si F = E.
- 5. On a $p \circ p = p$ (on dit que p est idempotente).
- 6. L'endomorphisme $id_E p$ est la projection sur G parallèlement à F.

Proposition: Projection et noyau (admis)

Soit $p \in \mathcal{L}(E)$ tel que $p \circ p = p$.

Alors on a $\ker(p) \oplus \operatorname{Im}(p) = E$ et p est la projection sur $\operatorname{Im}(p)$ parallèlement à $\ker(p)$.

Définition : Soit E un K-ev de dimension finie. Soient F et G deux sev de E.

On appelle symétrie par rapport à F parallèlement à G l'application $s_{F,G}: \underset{x=y+z\mapsto y-z}{\overset{E\to E}{\to}}$ où $y\in F$ et $z\in G$.

Proposition: (admis)

On a $s=2p-id_E$ où p est la projection sur F parallèlement à G.

Proposition: (admis)

On a $s^2 = id_E$.

Proposition: (admis)

Soit $s \in \mathcal{L}(E)$ tel que $s^2 = id_E$.

Alors on a $E = \ker(s - id_E) \oplus \ker(s + id_E)$ et s est la symétrie par rapport à $\ker(s - id_E)$ parallèlement à $\ker(s + id_E)$.