Day 3: Vector Operations — Dot Product, Norms, Cosine Similarity & Projections

Goal. Understand core vector operations used everywhere in AI: dot product, norms, cosine similarity, and projections. These power similarity search, recommendation, embeddings, attention, and more.

1. Vectors & Notation

Let $a, b \in \mathbb{R}^n$ be column vectors. The *i*-th entry of a is a_i . The Euclidean (L2) norm is

$$||a|| = \sqrt{\sum_{i=1}^n a_i^2}.$$

2. Dot Product: Algebraic & Geometric Views

Algebraic:

$$a \cdot b = \sum_{i=1}^{n} a_i b_i.$$

Geometric: If θ is the angle between a and b,

$$a \cdot b = ||a|| \, ||b|| \cos \theta.$$

Thus, the dot product measures alignment. Large positive values \Rightarrow small angle (similar direction). Zero \Rightarrow orthogonal (no linear alignment). Large negative \Rightarrow opposite direction.

3. Norms (Magnitude)

The L2 norm measures vector length. Useful normalizations:

$$\hat{a} = \frac{a}{\|a\|}, \qquad \hat{b} = \frac{b}{\|b\|}.$$

Normalization isolates direction by removing scale.

4. Cosine Similarity

Definition.

$$\cos_{-\sin(a,b)} = \frac{a \cdot b}{\|a\| \|b\|} = \cos \theta.$$

It depends only on direction, not magnitude.

Proposition 1 (Bounds via Cauchy–Schwarz). For all $a, b \in \mathbb{R}^n$, $-1 \le \cos \sin(a, b) \le 1$.

Interpretation.

- 1: identical direction (maximally similar).
- 0: orthogonal (no linear alignment).
- -1: opposite directions.

5. Orthogonality & Independence (Caution)

If $a \cdot b = 0$, vectors are *orthogonal* (uncorrelated in a linear sense). This is *not* the same as statistical independence, but orthogonality is a useful proxy for "no linear relation" in feature spaces.

6. Projections

Projection of a onto direction $b \neq 0$:

$$\operatorname{proj}_b(a) = \frac{a \cdot b}{\|b\|^2} b.$$

The scalar coefficient $\frac{a \cdot b}{\|b\|}$ is the length of a along the unit direction \hat{b} .

7. Worked Numeric Example

Let $a = (1, 2, 3)^{\top}, b = (2, 0, 1)^{\top}.$

$$a \cdot b = 1 \cdot 2 + 2 \cdot 0 + 3 \cdot 1 = 5$$
, $||a|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$, $||b|| = \sqrt{2^2 + 0^2 + 1^2} = \sqrt{5}$.

Cosine similarity:

$$\cos_{\sin}(a, b) = \frac{5}{\sqrt{14}\sqrt{5}} \approx \frac{5}{8.3666} \approx 0.598.$$

Projection of a onto b:

$$\operatorname{proj}_b(a) = \frac{5}{5}b = b = (2, 0, 1)^{\top}.$$

Here a has a strong component along b (cosine ≈ 0.6), and its projection equals b because $a \cdot b = ||b||^2$.

LinkedIn: rohit-sanwariya

8. Why This Matters in AI

- Embeddings & Semantic Search: Compare text/image/audio embeddings with cosine similarity.
- Recommendation: User/item vectors; $a \cdot b$ ranks relevance.
- Attention Mechanisms: Query/key alignment often reduces to (scaled) dot products.
- **Feature Engineering:** Orthogonality reduces redundancy; projections decompose signals along meaningful directions.

9. Practical Tips

- Use **cosine similarity** when scale should be ignored (e.g., sentence length).
- Use **dot product** when magnitude encodes importance (e.g., TF-IDF with weights).
- Always guard against zero vectors before normalizing.
- In high dimensions, many random vectors are nearly orthogonal; calibrate thresholds accordingly.

10. Mini-Exercises

- 1. Compute $\cos_{-\sin}((1,0,0),(1,1,0))$ and interpret.
- 2. Show that $||a-b||^2 = ||a||^2 + ||b||^2 2a \cdot b$ and relate this to similarity vs. distance.
- 3. For nonzero b, prove $\operatorname{proj}_b(a)$ is the closest point to a on the line $\{tb:t\in\mathbb{R}\}$.

Next

Day 4: Matrix multiplication as linear transformation; transpose, and how backprop uses transposes.

LinkedIn: rohit-sanwariya