

#### CS 372 Lecture #29

#### Routing

- Modeling the network core
- Djikstra's Algorithm

**Note**: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6<sup>th</sup> edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.



#### **Optimal routes**

- Router software computes optimal routes
- Many algorithms
  - Find shortest path
  - Find path with least traffic
  - Etc.



- Model the network core (group of routers) as a weighted undirected graph
  - "Nodes" represent routers
  - "Edges" model direct connections between routers
  - "Weights" represent costs
    - Costs are determined by speed, distance, additional hardware, traffic, bottlenecks, etc.



#### Shortest path

- Shortest path is the path with lowest total weight (sum of weights of all edges in the path)
  - Router groups collaborate to keep cost information current
- Shortest path is not necessarily fewest edges or fewest hops
- First node in shortest path is "next-hop"
  - Insert next-hop information into routing tables
- Djikstra's Algorithm
  - Sometimes called "Link-State Algorithm"
    - ... but Link-State <u>uses</u> Djikstra's

#### Data structures:

- choose source node and destination node
- S = {all nodes except source}
- variables u, v represent nodes
- D is array of weights of edges
  - Initially, D[v] = edge weight ("cost") if edge from source to v exists
  - Use to represent the "cost" of a node for which a path has not yet been computed
- R is an array of nodes
  - Initially, R[v] = v (if edge from source to v exists) or zero (otherwise)
- P is an array of nodes
  - Initially, P [v] = source (if an edge from source to v exists), or zero (otherwise)





| Example: Find      |
|--------------------|
| shortest path from |
| d to a             |



Initialization

$$S = \{a,b,c,e,f,g\}$$

| Dest | D        | R | Р |
|------|----------|---|---|
| а    | <b>∞</b> | 0 | 0 |
| b    | <b>∞</b> | 0 | 0 |
| С    | 11       | С | d |
| d    | *        | * | * |
| е    | <b>∞</b> | 0 | 0 |
| f    | <b>∞</b> | 0 | 0 |
| g    | 3        | g | d |



| Example: Find      |
|--------------------|
| shortest path from |
| d to a             |



| Dest | D          | R   | Р   |
|------|------------|-----|-----|
| а    | <b>∞</b>   | 0   | 0   |
| b    | <b>∞</b>   | 0   | 0   |
| С    | 11         | С   | d   |
| d    | *          | *   | *   |
| е    | <b>∞</b>   | 0   | 0   |
| f    | <b>≈</b> 8 | ∕Øg | ∕0g |
| g    | 3          | g   | d   |

Iteration #1

$$S = \{a,b,c,e,f,g\}$$

$$u = g$$
 (smallest D[u], u in S)  
 $S = \{a,b,c,e,f,g\}$   
 $v = f$  cost = 3 + 5 = 8



| Example: Find      |
|--------------------|
| shortest path from |
| d to a             |



| Dest | D            | R          | Р            |
|------|--------------|------------|--------------|
| а    | <b>∞</b>     | 0          | 0            |
| b    | <b>∞</b> 16  | <b>Ø</b> g | ∕ <b>ó</b> f |
| С    | <b>½</b> 110 | <b>∠</b> g | ∕df          |
| d    | *            | *          | *            |
| е    | <b>∞</b>     | 0          | 0            |
| f    | <b>≈</b> 8   | <b>Ø</b> g | ∕0g          |
| g    | 3            | g          | d            |

$$S = \{a,b,c,e,f\}$$

$$u = f$$
 (smallest D[u], u in S)  
 $S = \{a,b,c,e,f\}$   
 $v = c$   $cost = 8 + 2 = 10$   
 $v = b$   $cost = 8 + 8 = 16$ 



| Example: Find      |
|--------------------|
| shortest path from |
| d to a             |



| Dest | D            | R            | Р           |
|------|--------------|--------------|-------------|
| а    | <b>∞</b>     | 0            | 0           |
| b    | <b>1613</b>  | <b>Øg</b> ′g | <b>Ø</b> €c |
| С    | <b>11</b> 10 | <b>∠</b> g   | ∕df         |
| d    | *            | *            | *           |
| е    | <b>∞</b>     | 0            | 0           |
| f    | <b>%</b> 8   | ∕Øg          | ∕0g         |
| g    | 3            | g            | d           |

Iteration #3

$$S = \{a,b,c,e\}$$

$$u = c$$
 (smallest D[u], u in S)  
 $S = \{a,b, \ell,e\}$   
 $v = b$  cost = 10 + 3 = 13



| Example: Find      |
|--------------------|
| shortest path from |
| d to a             |



| Dest | D           | R            | Р          |
|------|-------------|--------------|------------|
| а    | <b>∞</b> 20 | ∕ <b>Ø</b> g | ∕ðb        |
| b    | <b>1613</b> | <b>Øg</b> ′g | Ø₹ c       |
| С    | 1110        | <b>∠</b> g   | <b>∆</b> f |
| d    | *           | *            | *          |
| е    | <b>%</b> 19 | ₽g           | <b>Ø</b> b |
| f    | <b>%</b> 8  | ∕Øg          | ∕0g        |
| g    | 3           | g            | d          |

$$S = \{a,b,e\}$$

u = b (smallest D[u], u in S)  
S = 
$$\{a, b, e\}$$
  
v = a cost = 13 + 7 = 20  
v = e cost = 13 + 6 = 19



| Example: Find      |
|--------------------|
| shortest path from |
| d to a             |



| Dest | D           | R            | Р          |
|------|-------------|--------------|------------|
| а    | <b>∞</b> 20 | ∕ <b>Ø</b> g | ∕ðb        |
| b    | <b>1613</b> | <b>Øg</b> ′g | Ø₹ c       |
| С    | 1110        | <b>∠</b> g   | <b>∆</b> f |
| d    | *           | *            | *          |
| е    | <b>%</b> 19 | ₽g           | <b>Ø</b> b |
| f    | <b>%</b> 8  | ∕Øg          | ∕0g        |
| g    | 3           | g            | d          |

Iteration #5 
$$S = \{a,e\}$$

$$u = e$$
 (smallest D[u], u in S)  
 $S = \{a, e\}$   
 $v = a$  cost = 19 + 9 = 28

Note: cost is <u>not less than D[a]</u>, so don't replace.



Example: Find shortest path from d to a



| Dest | D           | R            | Р            |
|------|-------------|--------------|--------------|
| а    | <b>%</b> 20 | ∕ <b>Ø</b> g | <b>♂</b> b   |
| b    | <b>1613</b> | <b>Øg</b> ′g | Ø∜ c         |
| С    | 1110        | <b>∠</b> g   | <b>∆</b> f   |
| d    | *           | *            | *            |
| е    | <b>%</b> 19 | ₽g           | <b>∅</b> b   |
| f    | <b>%</b> 8  | ∕Øg          | <b>∕</b> 0 g |
| g    | 3           | g            | d            |

Iteration #6

$$S = \{a\}$$

$$u = a$$
 (smallest D[u], u in S)  
S = { $a$ }

Note: S is empty, so the for loop does nothing, and the while loop terminates.

Now, start from destination and trace backwards in P:

$$a \leftarrow b \leftarrow c \leftarrow f \leftarrow g \leftarrow d$$
  
Shortest path is d-g-f-c-b-a (cost = 20)



Example: Find shortest path from d to a



| Dest | D           | R            | Р            |
|------|-------------|--------------|--------------|
| а    | <b>%</b> 20 | <b>∅</b> g   | <b>∅</b> b   |
| b    | <b>1613</b> | <b>Øg</b> ′g | Ø∜ c         |
| С    | 1/110       | <b>ℒ</b> g   | <b>∆</b> f   |
| d    | *           | *            | *            |
| е    | <b>%</b> 19 | <b>∅</b> g   | <b>∅</b> b   |
| f    | <b>%</b> 8  | <b>∅</b> g   | <b>∕</b> 0 g |
| g    | 3           | g            | d            |

Shortest path is d-g-f-c-b-a Note: P is not stored by the router. What does R represent?

It's the complete routing table for router d



#### Further study

- Graph theory important in advanced computer research
  - major topic
    - networking
    - artificial intelligence
- Other optimal path algorithms
  - Link-state
  - Distance-vector



#### Summary Lecture #29

- Graph representation of router group
- Shortest path
  - Computed by weight (not by minimum hops)
- Djikstra's algorithm
  - several forms exist
    - use at least one form to compute shortest path