Problem 11.1

What is the change in entropy when $0.7~\mathrm{m}^3$ of CO_2 and $0.3~\mathrm{m}^3$ of N_2 , each at 1 bar and 25 °C blend to form a gas mixture at the same conditions? Assume ideal gases.

Solution:

Label CO_2 and N_2 as (1) and (2) respectively

$$V_1 = 0.7 \text{ m}^3$$
 $V_2 = 0.3 \text{ m}^3$

For ideal gases it follows that:

$$x_1=0.7$$

$$x_2=0.3P=1~{\rm bar} \qquad T=298.15~{\rm K}$$

$$n=\frac{P\sum_i V_i}{RT}$$

$$n=$$

$$\Delta S=-nR\sum_i x_i \ln x_i$$

$$\Delta S=$$