Master ACSYON, Final Exam Splitting Methods in Convex Optimization

December 12, 2023 - 3 hours

Documents are not allowed.

1 Rate for the Proximal Point Algorithm (Theoretical part)

1.1 Preliminaries

We consider a maximally monotone operator $A: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ defined on \mathbb{R}^n . For simplicity, we assume that the domain of A is the whole space \mathbb{R}^n . The space \mathbb{R}^n is endowed with the Euclidean scalar product $\langle \cdot, \cdot \rangle$ and the corresponding Euclidean norm $\|\cdot\|$. The identity map on \mathbb{R}^n is denoted by Id , and the resolvent operator associated with A is denoted by $\mathrm{J}_A = (\mathrm{Id} + A)^{-1}$. We also assume that the set of zeros of A, denoted by S, is nonempty; that is, $S = A^{-1}(0) \neq \emptyset$. We recall the following properties, taken from the course:

- (i) A nonexpansive operator is an operator which is 1-Lipschitz continuous.
- (ii) An operator $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be firmly nonexpansive if

$$||T(x_2) - T(x_1)||^2 + ||(\mathrm{Id} - T)(x_2) - (\mathrm{Id} - T)(x_1)||^2 \le ||x_2 - x_1||^2, \ \forall x_1, x_2 \in \mathbb{R}^n.$$

- (iii) An operator $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be α -averaged, with $0 < \alpha < 1$, if there exists a nonexpansive operator $R: \mathbb{R}^n \to \mathbb{R}^n$ such that $T = (1 \alpha) \mathrm{Id} + \alpha R$.
- (iv) An operator $T: \mathbb{R}^n \to \mathbb{R}^n$ is firmly nonexpansive if and only if it is $\frac{1}{2}$ -averaged.
- (v) A mapping T is said to be quasinonexpansive if for all $(x_1, x_2) \in Fix(T) \times \mathbb{R}^n$, the following inequality holds:

$$||T(x_2) - x_1|| < ||x_2 - x_1||.$$

- (vi) The resolvent operator to a maximally monotone operator is firmly nonexpansive.
- (vii) firmly nonexpansive \implies nonexpansive \implies quasinonexpansive,

The following Lemma taken from the course can be useful.

Lemma 1. Let $T: D \to D$ be a continuous and quasinonexpansive operator such that D is closed and $Fix(T) \neq \emptyset$. Consider the fixed-point algorithm given by

$$x_0 \in D$$
 and $x_{\nu+1} := T(x_{\nu}), \ \forall \nu \in \mathbb{N}.$

If $x_{\nu} - T(x_{\nu}) \to 0$ in \mathbb{R}^d when $\nu \to \infty$, then the sequence $(x_{\nu})_{\nu \in \mathbb{N}}$ converges to some point in Fix(T).

1.2 Part I

Let x^* be an element of S, which implies $0 \in A(x^*)$. Given an initial point $x_0 \in \mathbb{R}^n$, we define a sequence $(x_{\nu})_{\nu \in \mathbb{N}}$ by the following iterative process:

$$x_{\nu+1} = \mathcal{J}_A(x_{\nu}). \tag{1}$$

This defines the iterations of the Proximal-Point Algorithm (PPA).

1. Show that $x^* = J_A(x^*)$ and that for every $\nu \in \mathbb{N}$, we have

$$||x_{\nu+1} - x^*||^2 + ||x_{\nu} - x_{\nu+1}||^2 \le ||x_{\nu} - x^*||^2.$$
 (2)

Deduce that for every $\nu \in \mathbb{N}$, we have

$$||x_{\nu} - x^*||^2 \le ||x_0 - x^*||^2.$$

Hint. To prove (2), use the fact that J_A is firmly nonexpansive.

- 2. Show that $\nu \in \mathbb{N}^* \mapsto \varphi(\nu) := ||x_{\nu+1} x_{\nu}||^2$ is a decreasing function of $\nu \in \mathbb{N}^*$.
- 3. Deduce from the previous question that, we have for every $\nu \in \mathbb{N}$

$$(\nu+1)\|x_{\nu+1}-x_{\nu}\|^{2} \le \sum_{k=0}^{\nu} \|x_{k+1}-x_{k}\|^{2}.$$
(3)

4. Using (2), show that for every $\nu \in \mathbb{N}$

$$\sum_{k=0}^{\nu} \|x_{k+1} - x^*\|^2 + \sum_{k=0}^{\nu} \|x_{k+1} - x_k\|^2 \le \sum_{k=0}^{\nu} \|x_k - x^*\|^2.$$

Deduce that

$$||x_{\nu+1} - x^*||^2 + \sum_{k=0}^{\nu} ||x_{k+1} - x_k||^2 \le ||x_0 - x^*||^2.$$
(4)

5. Deduce from (3) and (4) that for every $\nu \in \mathbb{N}$

$$||x_{\nu+1} - x_{\nu}|| \le \frac{1}{\sqrt{\nu+1}} \operatorname{dist}(x_0, S).$$
 (5)

Hint. Start by showing that $(\nu + 1)||x_{\nu+1} - x_{\nu}||^2 \le ||x_0 - x^*||^2$.

6. Use Lemma 1 to deduce that the sequence $(x_{\nu})_{\nu \in \mathbb{N}}$ is convergent to some point in $S = A^{-1}(0)$.

1.3 Part II

- 7. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a nonexpansive operator. For $\theta \in]0,1[$, we set $T_\theta = (1-\theta)\mathrm{Id} + \theta T$. Let x^* be a fixed point of T.
 - (a) Show that T_{θ} is also nonexpansive and that $Fix(T) = Fix(T_{\theta})$.

(b) We now consider the algorithm given by

$$x_{\nu+1} = T_{\theta}(x_{\nu}), \ x_0 \in \mathbb{R}^n, \ \nu = 0, 1, 2 \dots$$

Show that:

$$||x_{\nu+1} - x^*||^2 \le ||x_{\nu} - x^*||^2 - \theta(1-\theta)||T(x_{\nu}) - x_{\nu}||^2$$

Hint. Use the fact that for every $x, y \in \mathbb{R}^n$ and $\theta \in]0,1[$, we have

$$\|(1-\theta)x + \theta y\|^2 = (1-\theta)\|x\|^2 + \theta\|y\|^2 - \theta(1-\theta)\|x - y\|^2.$$

8. (a) Use the same technique as in Part I to deduce that for every $\nu \in \mathbb{N}$

$$||T(x_{\nu}) - x_{\nu}|| \le \frac{1}{\sqrt{\theta(1-\theta)(\nu+1)}} ||x_0 - x^*||.$$
 (6)

(b) Deduce from (6) that for every $\nu \in \mathbb{N}$, we have

$$||T_{\theta}(x_{\nu}) - x_{\nu}|| \le \frac{\sqrt{\theta}}{\sqrt{(1-\theta)(\nu+1)}} ||x_0 - x^*||.$$
 (7)

9. Consider the over-relaxed proximal point algorithm:

(ORPPA)
$$\begin{cases} y_{\nu} = J_A(x_{\nu}), \ \nu \in \mathbb{N} \\ x_{\nu+1} = x_{\nu} + \omega(y_{\nu} - x_{\nu}). \end{cases}$$

for $0 < \omega < 2$.

- (a) Using properties (iv) and (vi) in the preliminaries subsection, show that there exists a nonexpansive map $R: \mathbb{R}^n \to \mathbb{R}^n$ such that $J_A = \frac{1}{2} \mathrm{Id} + \frac{1}{2} R$.
- (b) Show that the sequence $(x_{\nu})_{\nu \in \mathbb{N}}$ defined by (ORPPA) satisfies

$$x_{\nu+1} = (1 - \frac{\omega}{2})x_{\nu} + \frac{\omega}{2}Rx_{\nu}.$$

(c) Use (7) and Lemma 1 to conclude that the sequence $(x_{\nu})_{\nu \in \mathbb{N}}$, defined in the over-relaxed proximal point algorithm (ORPPA), converges to some point in $S = A^{-1}(0)$.

2 Coding Exercise (Practical part)

In this section, students who are more proficient in Python are welcome to use it, even if the questions are specifically designed for Matlab.

Objective: Implement two versions of the proximal point algorithm in MATLAB for the case where A is the subdifferential of the ℓ_1 norm on \mathbb{R}^n . The ℓ_1 norm is defined as $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$, where \mathbf{x} is a vector in \mathbb{R}^n .

1. Basic Proximal Point Algorithm:

Implement the basic proximal point algorithm where the update rule is given by:

$$x_{\nu+1} = (\text{Id} + \lambda \partial \| \cdot \|_1)^{-1} x_{\nu}.$$

Here, $\lambda > 0$ is a regularization parameter, and x_0 is your initial guess (you can use a random vector in \mathbb{R}^n). The proximal operator of $\lambda \| \cdot \|_1$ can be computed element-wise.

Instructions:

- Create a MATLAB function that accepts the initial vector x_0 , the regularization parameter λ , the tolerance for convergence, and the maximum iteration limit. It outputs the final iterate x_{ν} , the optimal value, the actual number of iterations executed, and the vector ' $iter_diff_norm$ '. This last vector tracks the norm of the difference between consecutive iterates, aiding in evaluating the algorithm's convergence speed under various λ values and initial conditions.
- Test the function with diverse λ values and starting vectors.
- Visualize convergence by plotting $||x_{\nu+1} x_{\nu}||$ against the iteration count.

2. Over-Relaxed Proximal Point Algorithm:

Implement the over-relaxed proximal point algorithm with the update rules:

$$y_{\nu} = (\mathrm{Id} + \lambda \partial \| \cdot \|_1)^{-1} x_{\nu}, \quad x_{\nu+1} = x_{\nu} + \omega (y_{\nu} - x_{\nu}).$$

Here, $0 < \omega < 2$ is the relaxation parameter. Use the same proximal operator as in the first part.

Instructions:

- Create a MATLAB function similar to the first part, but include the relaxation parameter ω as an additional input.
- Test your implementations with different values of λ , ω , and initial vectors.
- Plot the norm of the difference between consecutive iterates ($||x_{\nu+1} x_{\nu}||$) against the iteration number to observe convergence behavior.
- Plot ω against the iteration number and find the optimal value $\omega^* \in]0,2[$.
- Comment on the effects of different values of λ and ω on the convergence speed.

3. Basic Proximal Point Algorithm for the LASSO:

Implement the basic proximal point algorithm for the LASSO problem to minimize h(x) = f(x) + g(x) with $f(x) = \frac{1}{2} ||Ax - b||_2^2$ and $g(x) = \lambda ||x||_1$ with $\lambda > 0$. The update rule is given by:

$$x_{\nu+1} = \operatorname{prox}_q \left(x_{\nu} - s \nabla f(x_{\nu}) \right). \tag{8}$$

Here, s > 0 is a step size parameter. The proximal operator for the ℓ_1 norm term $\lambda ||x||_1$ can be computed element-wise.

Instructions:

- Create a MATLAB function that inputs the matrix $A \in \mathbb{R}^{m \times n}$, the vector $b \in \mathbb{R}^m$, the regularization parameter λ , the step size s, the initial vector x_0 , and the number of iterations. The function should output the same as before.
- Test your implementations with different values of λ , s, and initial vectors x_0 .
- Plot the norm of the difference between consecutive iterates ($||x_{\nu+1} x_{\nu}||$) against the iteration number to observe convergence behavior.
- Comment on the effects of different values of λ and s on the convergence speed and solution quality.

You can use the following Matlab code as a starting point for your own coding (this is just for reference, and you may choose a different coding approach).

```
% Test parameters
    lambdas = [0.1, 0.5, 1]; % Different values of lambda
    num_tests = length(lambdas);
    m = 50; % Number of rows in A
    n = 100; % Number of columns in A
    max_iter = 1000; % Maximum number of iterations
    b = randn(m, 1); % Random vector b
    A = randn(m, n); % Random matrix A
    step_sizes = [0.0001, 0.001 0.005]; % Different values of step size s
```

4. Over-Relaxed Proximal Point Algorithm for LASSO:

Implement the over-relaxed proximal point algorithm for the LASSO problem with the following update rules:

Basic Update Step:

$$y_{\nu} = \operatorname{prox}_{a}(x_{\nu} - s\nabla f(x_{\nu})), \ x_{\nu+1} = x_{\nu} + \omega(y_{\nu} - x_{\nu}).$$
 (9)

Here, s is the step size, and prox $_g$ is the proximal operator for the ℓ_1 norm scaled by λ , and where $0 < \omega < 2$ is the over-relaxation parameter.

Instructions:

- Test your implementations with different values of λ , ω , s, and initial vectors x_0 .
- Plot the norm of the difference between consecutive iterates ($||x_{\nu+1} x_{\nu}||$) against the iteration number to observe convergence behavior.
- Plot ω against the iteration number and find the optimal value $\omega^* \in]0,2[$.
- Comment on the effects of different values of λ , ω , and s on the convergence speed and solution quality.