Incomplete Block Designs II

Sean Hellingman ©

Design for Data Science (ADSC2030) shellingman@tru.ca

Winter 2025

Topics

- Introduction
 Balanced Treatment
 Incomplete Block Designs
- Partially Balanced Incomplete Block Design
- 6 Row Column Designs
- 6 Exercises and References

Introduction

- Sometimes a BIB design requires more blocks or EUs than are available or needed (power of test).
- When this happens the following BIB design requirements may be relaxed:
 - Each treatment level will be equally replicated.
 - Each treatment level appears within a block with every other treatment level the same number of times.
- The frequency of occurrences of pairs of factor levels in blocks will not be the same.
 - Some pairwise comparisons of treatment levels will have smaller standard errors than others.

Road Map

Figure: Source: (1)

Balanced Treatment Incomplete Block (BTIB) Designs

- In **balanced treatment incomplete block** (BTIB) designs one treatment level is designated as the control.
 - More interest in comparing the other treatment levels.
- Each treatment must appear the same number of times (λ_0) with the control.
- Each treatment must appear the same number of times (λ_1) in a block with every other test treatment.
- The design that is more efficient in comparing each treatment with the control but less efficient in comparisons among the other treatment levels.

Example 1 Preliminaries I

- Design to study the diastolic blood pressure readings of three different pharmacies.
- Blood pressure is most consistent in one person within a short period of time.
 - blocked into homogeneous groups by subject and time.
- It is impossible to move subjects immediately to the different pharmacies.
 - A portable blood pressure model was taken to each pharmacy to act as a control level for the factor.
- The model and analysis will be the same as the BIB designs, but the efficiency of the comparisons will be different.

Example 1

- Use the *BPmonitor* dataset from the daewr package to conduct the following analysis:
 - **1** Take some time to get to know the data.
 - What do you notice about the frequency of the different factor levels?
 - Construct an appropriate ANOVA table for this data.
 - Make pairwise comparisons to see if there are any significant differences in the blood pressure readings at the different pharmacies.
 - What do you notice about the standard error?

Partially Balanced Incomplete Block (PBIC) Designs

- In partially balanced incomplete block (PBIC) designs each pair of treatments are either *first associates* or *second associates*.
- First associates occur together in a block λ_1 times.
- **Second associates** occur together in a block λ_2 times.
 - $\lambda_1 > \lambda_2$
- The standard error for first associates is smaller than that of second associates.

Generalized Cyclic Incomplete Block Designs

- Generalized cyclic incomplete block designs are a class of PBIB designs that are easy to create and have good statistical properties.
- Algorithm to create a generalized cyclic incomplete block design with block size k and b=t blocks:
 - ① Start with a subset of *k* treatment factor levels as the initial block.
 - ② Add 1 to each treatment level in the initial block to form the next block (rolls over if last level)
 - **3** Continue adding blocks in this manner until you have *t* blocks.

Generalized Cyclic Incomplete Block Designs in R

- Assuming the inequalities are satisfied we can use R to create generalized cyclic incomplete block designs:
 - set.seed(2030)
 - library(agricolae)
 - treat <- c(1, ..., t)
 - des <- design.cyclic(treat, k = k, r = r)
 - des\$book
- Inequalities:
 - $\mathbf{0}$ b > t
 - 2 tr = bk
 - **3** $\lambda(t-1) = r(k-1)$

Example 2

- Use the design.cyclic() function to create a generalized cyclic incomplete block design with t = 6, k = 3, and r = 3.
- Identify λ_1 and λ_2

Generalized Cyclic Incomplete Block Designs Comments

- The design.cyclic() function automatically randomizes the plan.
- Analysis is performed in the same way as BIB and BTIB designs.
- The model assumptions of normality and homogeneity of experimental error variance are expected to hold.

Recall: Latin-square Block Designs I

- Latin-square design (LSD) is blocked both horizontally and vertically.
- Each treatment level is assigned only once to each row and each column.
- The number of row blocks must equal the number of column blocks.

Recall: Latin-square Block Designs II

- Latin-square designs may be used when there are two independent blocking factors.
- Illustrative Example:
 - Experiment to determine the effect of tread design on the wear life of automobile tires.
 - FU: A wheel on the car.
 - Treatment: The tread design of the mounted tire.
 - Block 1: Type of automobile (weights may impact wear)
 - Block 2: Wheel position on car (front differs from back)
- The number of row blocks must equal the number of column blocks.

Row Column Designs

- It may be impractical to have the number of row blocks equal to the number of column blocks.
- A row column design (RCD) uses a *complete* block design in the column blocks and an *incomplete* block design in the row blocks.
- The modelling is the same as what is used for Latin-square designs.

Road Map

Figure: Source: (1)

Row Column Designs in R

- We can use R to create a row column design:
 - set.seed(2030)
 - library(agricolae)
 - treat <- c(1, ..., t)
 - RCD <- design.cyclic(treat, k = k, r = r, rowcol = TRUE)

Example 3

- Researchers are interested in studying the effect of shelf facing on the sales of toothpaste in drugstores.
- Assume there are 8 stores (blocking factor) and four weeks of sales (blocking factor).
 - Test 8 different shelf configurations (treatment factor).
- Use R to construct a row column design for this study.

Analysis of RCD in R

- We can analyse the data from a RCD in R:
 - model <- aov(response ~ Block.row + Block.column +
 factor, data = data)</pre>
 - summary(model)
- We can also examine the means and test the differences in factor levels:
 - Ismeans(model, pairwise \sim factor, adjust = ("tukey"))

Example 4

- Import the RCD.csv data into R.
- Take some time to get to know the data.
- Construct an ANOVA table to examine the effects of the different treatment levels.
- Make pairwise comparisons to see if there are any significant differences in the effects of the formulations.

References & Resources

- Lawson, J. (2014). Design and Analysis of Experiments with R (Vol. 115). CRC press.
 - design.cyclic()
 - lsmeans()
 - daewr