SCHEMATIC SYMBOL AND SIMULATION OF NAND AND XOR GATES

STEPS:

- 1)Open oracle VM virtual box
- 2)Click on start

3) Right click on workspace, select open in terminal

4)Type the commands

mkdir <any name>

(ENTER)

cd <any name> (ENTER)

pwd (ENTER)

source /usr/software/gpdk090 (ENTER)

virtuoso & (ENTER)

EXPLANATION:

<u>mkdir:</u> This command is used to create a new directory (folder) within the current directory.

<u>cd:</u> Short for "**change directory**," this command is used to navigate between directories. For example, cd folder_name would move you into the directory named "folder_name."

pwd: Short for "print working directory," this command shows you the full path of the current directory you are in.

<u>virtuoso</u>: Virtuoso is a widely-used tool within Cadence for electronic design automation (EDA). It's primarily used for designing and simulating integrated circuits (ICs) and electronic systems. It includes various modules for schematic capture, layout editing, simulation, and more.

5) virtuso tab appears

6)In virtuoso tab

- File>New>Library>mylib(give any name)>select Attach library to technology>Ok
- Select gpdk090>Ok

Again in Virtuoso tab

Tools>Library Manager>mylib

7)In mylib

- File>New>cell view
- Enter cell view: nand2
- Select OK
- 8)Create>Instance(shortcut-press "I")
 - Select the following and place it on the schematic Editing window each time.

Library	Cell view	Value
gpdk090	nmos1v	2
gpdk090	Pmos1v	2
analogLib	vdd	Hide
analogLib	gnd	Hide

9)Set up the connections as shown

Press "W" for wire to connect the circuit

10)Create>pins>a b (input), y(output)>Save

11)Create>**Cell view**>From Cell view>in Pop Up >OK>In another Pop Up>Select left pin:a b

right pin: y

12)Convert it into the following format using wire and create>shapes:circle, arc

13)Save

14)Go back to **mylib**>click on **nand2**>File>New>cell view>nand2test>a new schematic window appears

15)Create>instance

Library	Cell view	Select
mylib	nand2	Hide
analogLib	vdc	Hide
analogLib	vdd	Hide
analogLib	gnd	2
analogLib	vpulse	2
analogLib	сар	Hide

16)Set up the connections as shown

Press "W" for wire to connect the circuit

17) Create>wire name>va vb vy>Save

18) save it

19))Launch>ADE L

Output>**To be plotted**>select on simulation>click va vb vy in schematic window

Run

20)In mylib

- File>New>cell view
- Enter cell view: xor2
- Select OK
- 21) Create>Instance(shortcut-press "I")
 - Select the following and place it on the schematic Editing window each time.

Library	Cell view	Select
gpdk090	nmos1v	6
gpdk090	pmos1v	6
analogLib	vdd	3
analogLib	gnd	3

22)Set up the connections as shown

Press "W" for wire to connect the circuit

23) Create>wire name>(a b) (ab bb) (a b a b ab bb) (ab bb)>Save

- 24) Create>Pins>output:y input:a b>Save
- 25)Create>**Cell view**>From Cell view>in Pop Up >OK>In another Pop Up>Select left pin:a b

right pin: y

26)Convert it into the following format using wire and create>shapes: arc

27)Save

28)Go back to **mylib**>click on **xor2**>File>New>cell view>xor2test>a new schematic window appears

29)Create>instance

Library	Cell view	select
mylib	Xor2	1
analogLib	vdd	1
analogLib	gnd	2
analogLib	vdc	1
analogLib	vpulse	2
analogLib	cap	2

30)Set up the connections as shown

Press "W" for wire to connect the circuit

31) Create>wire name>va vb vy>Save

32))Launch>ADE L

Analyses >choose>trans>give stop:20n>OK

33) Again in ADE L

Output>**To be plotted**>select on simulation>click va,vb, vy in schematic window

Run

SCHEMATIC SYMBOL AND SIMULATION OF 1Bit Full Adder

STEPS:

34)In mylib

File>New>cell view

• Enter cell view: fa

Select OK

35)Create>Instance(shortcut-press "I")

Select the following and place it on the schematic Editing window each time

Library	Cell view	Select
mylib	xor2	2
mylib	nand2	2

36)Create>pins>a b cin(input), sum cout(output)>Save

37)Create>**Cell view**>From Cell view>in Pop Up >OK>In another Pop Up>Select left pin:a b cin

right pin: sum cout

38)Convert it into the following format using wire

39)Save

40)Go back to **mylib**>click on **fa**>File>New>cell view>fatest>a new schematic window appears

41)Create>instance

Library	Cell view	Select
mylib	fa	1
analogLib	vdd	1
analoglib	gnd	6
analoglib	vpulse	3
analogLib	сар	2
analoglib	vdc	1

42)Set up the connections as shown

Press "W" for wire to connect the circuit

43) Create>wire name>va vb vcin vsum vcout>Save

44))Launch>ADE L

Analyses >choose>trans>give stop:20n>OK

45) Again in ADE L

Output>**To be plotted**>select on simulation>click va,vb,vcin,vsum,vcout in schematic window

Run

