AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A method for producing a peptide having three or more amino acid residues, comprising:

the step of forming the peptide having three or more amino acid residues with an enzyme or enzyme-containing substance,

wherein the enzyme or enzyme-containing substrate has an ability to use as substrates an amine component having two or more amino acid residues and a carboxy component, to form a peptide having one more peptide bond than the amine component.

- 2. (Currently Amended) The method for producing a peptide according to claim 1, wherein the enzyme or enzyme-containing substance comprises one type or two or more types selected from the group consisting of a culture of a microbe, microbial cells separated from the culture, and a treated microbial cell product of the an enzyme obtained from a microbe which have the ability to use as substrates an amine component having two or more amino acid residues and a carboxy component, to form a peptide having one more peptide bond than the amine component.
- 3. (Original) The method for producing a peptide according to claim 1, wherein the enzyme or enzyme-containing substance is able to use, as the carboxy component, both an amino acid ester and an amino acid amide.

4. (Canceled)

Reply to the Restriction Requirement mailed December 1, 2005

5. (Currently Amended) The method for producing a peptide according to claim 1, wherein the enzyme is a protein (A) or (B):

- (A) a protein having an amino acid sequence consisting of amino acid residues numbers 23 to 616 of an amino acid sequence described in SEQ ID NO: 6 of the Sequence Listing,
- (B) a protein having an amino acid sequence including substitution, deletion, insertion, addition, and/or inversion of one or a plurality of amino acids in the amino acid sequence consisting of amino acid residues 23 to 616 of the amino acid sequence described in SEQ ID NO: 6 of the Sequence Listing, and having activity to use as substrates an amine component having two ore more amino acid residues and a carboxy component, to form a peptide having one more peptide bond than the amine component.
- 6. (Currently Amended) The method for producing a peptide according to claim 1, wherein the enzyme is a protein (C) or (D):
- (C) a protein having an amino acid sequence consisting of amino acid residues numbers 21 to 619 of an amino acid sequence described in SEQ ID NO: 12 of the Sequence Listing,
- (D) a protein having an amino acid sequence including substitution, deletion, insertion, addition, and/or inversion of one or a plurality of amino acids in the amino acid sequence consisting of amino acid residues 21 to 619 of the amino acid sequence described in SEQ ID NO: 12 of the Sequence Listing, and having activity to use as substrates an amine component having two or more amino acid residues and a carboxy component, to form a peptide having one more peptide bond than an amine component.

Reply to the Restriction Requirement mailed December 1, 2005

7. (Currently Amended) The method for producing a peptide according to claim 1, wherein the enzyme is a protein (E) or (F):

- (E) a protein having an amino acid sequence described in SEQ ID NO: 6 of the Sequence Listing,
- (F) a protein containing a mature protein region, the protein having an amino acid sequence including substitution, deletion, insertion, addition, and/or inversion of one or a plurality of amino acids in the amino acid sequence described in SEQ ID NO: 6 of the Sequence Listing, and having activity to use as substrates an amine component having two or more amino acid residues and a carboxy component, to form a peptide having one more peptide bond than the amine component.
- 8. (Currently Amended) The method for producing a peptide according to claim 1, wherein the enzyme is a protein (G) or (H):
- (G) a protein having an amino acid sequence described in SEQ ID NO: 12 of the Sequence Listing,
- (H) a protein containing a mature protein region, the protein having an amino acid sequence including substitution, deletion, insertion, addition, and/or inversion of one or a plurality of amino acids in the amino acid sequence described in SEQ ID NO: 12 of the Sequence Listing, and having activity to use as substrates an amine component having two or more amino acid residues and a carboxy component, to form a peptide having one more peptide bond than the amine component.

Reply to the Restriction Requirement mailed December 1, 2005

9. (Original) The method for producing a peptide according to claim 2, wherein the microbe is a microbe belonging to the genus *Empedobacter* or belonging to the genus *Sphingobacterium*.

- 10. (Currently Amended) The method for producing a peptide according to claim 2, wherein the microbe is a microbe that has been transformed so as to be able to express a protein encoded by a DNA (a) or (b):
- (a) a DNA having a base sequence consisting of bases numbers 127 to 1908 of a base sequence described in SEQ ID NO: 5 of the Sequence Listing,
- (b) a DNA that hybridizes with a DNA having a base sequence complementary to the base sequence consisting of bases numbers 127 to 1908 of the base sequence described in SEQ ID NO: 5 of the Sequence Listing under stringent conditions, and encodes a protein that has peptide-forming activity.
- 11. (Currently Amended) The method for producing a peptide according to claim 2, wherein the microbe is a microbe that has been transformed so as to be able to express a protein encoded by a DNA (c) or (d):
- (c) a DNA that consists of bases numbers 121 to 1917 of the base sequence described in SEQ ID NO: 11 of the Sequence Listing,
- (b) a DNA that hybridizes with a DNA consisting of a base sequence complementary to the base sequence consisting of bases numbers 121 to 1917 of the base sequence described in SEQ ID NO: 11 of the Sequence Listing under stringent conditions, and encodes a protein that has a peptide-forming activity.

Reply to the Restriction Requirement mailed December 1, 2005

12. (Currently Amended) The method for producing a peptide according to claim 2, wherein the microbe is a microbe that has been transformed so as to be able to express protein encoded by a DNA (e) or (f):

- (e) a DNA having a base sequence consisting of bases numbers 61 to 1908 of a base sequence described in SEQ ID NO: 5 of the Sequence Listing,
- (f) a DNA that hybridizes with a DNA having a base sequence complementary to the base sequence consisting of bases numbers 61 to 1908 of the base sequence described in SEQ ID NO: 5 of the Sequence Listing under stringent conditions, and encodes a protein that has a peptide-forming activity.
- 13. (Currently Amended) The method for producing a peptide according to claim 2, wherein the microbe is a microbe that has been transformed so as to be able to express a protein encoded by a DNA (g) or (h):
- (g) a DNA that consists of bases numbers 61 to 1917 of the base sequence described in SEQ ID NO: 11 of the Sequence Listing,
- (h) a DNA that hybridizes with a DNA consisting of a base sequence complementary to the base sequence consisting of bases numbers 61 to 1917 of the base sequence described in SEQ ID NO: 11 of the Sequence Listing under stringent conditions, and encodes a protein that contains a mature protein region having a peptide-forming activity.
- 14. (Original) The method for producing a peptide according to claim 1, wherein the carboxy component comprises one type or two or more types selected from the group consisting of an L-alanine ester, a glycine ester, an L-threonine ester, an L-tyrosine ester and a D-alanine ester.