

Big Data dla początkujących

Koło Naukowe Machine Learning Politechnika Rzeszowska mgr inż. Paweł Kuraś, EMBA

O czym będzie ten wykład?

		Archie Query Form
		Search for:
Database:		nymous FTP OPolish Web Index
Search Type: Case:	• Sub String • Insensitive	Exact Regular Expression Sensitive
Do you want	to look up string	s only (no sites returned):
	⊙ NO	○ YES
Output Forma	t For Web Index S	earch: OKeywords Only
		●Excerpts Only
		Links Only

Netscape - [Alta Vista: Main Page]				
ile Edit Yiew Go Bookn	arks Options Directory Wi	ndow <u>H</u> elp		
Go Back Former Home	Reload Open	日 前 Print Find	9	
Location: http://altavista.digita		I to the	•	N
What's Newl What's Cooll	Handbook Net Search	Net Directory		
AL OP			The same of	
ALTA VISTA	Simple Advan	ery Surprise	Help	
,aigirai	COIII		10000	
Search the Web 💌	nd Display the Result	in Standard For	m 💌	
"Jane Austen"		-034		
Submit				
To find good food: pizza "de	ep dish" +Chicago			
		11(6)		
■ Document Done		-)		□?

Search the web using Google!

10 results \$\(\circ\) Google Search (I'm feeling lucky)

Index contains ~25 million pages (soon to be much bigger)

About Google!

Stanford Search Linux Search

Get Google! updates monthly!

your e-mail

Subscribe Archive

Copyright @1997-8 Stanford University

- 2003 rok Google File System (GFS)
- 2004 rok Map Reduce
- 2005 rok Big Table
- 2007 rok Apache Hadoop
- 2008 rok Apache HBase, Accumulo

Filozofia Big Data - czym różni się od myślenia "tradycyjnego"?

Czym nie jest Big Data?

Big Data - czym nie jest?

- Big Data nie jest prostym i skutecznym rozwiązaniem złożonych problemów dostępnym "od ręki"
- Big Data nie jest narzędziem dostępnym dla każdego bez przeszkolenia
- Big Data nie jest "Bl na sterydach"
- Big Data nie jest "rozwiązaniem"
- Big Data nie nadaje się do "nisko wiszących owoców".

Zasada 5V

Co odróżnia Big Data?

- Podejście rozproszone
- Podzespoły ulegają awarii jest to norma, a nie anomalia
- Gromadzimy wszystkie możliwe dane, które być może się przydadzą, ale nie muszą
 - część danych może dostać nowe życie w nowych okolicznościach
 - czasem będziemy mieć mało danych
- Decentralizacja
- Długie czasy przetwarzania danych
- Duży poziom zróżnicowania danych
- Wiele iteracji!

1. Wprowadzanie danych

- 1. Wprowadzanie danych
- 2. Przechowywanie danych

Increasing bandwidth, cost

- 1. Wprowadzanie danych
- 2. Przechowywanie danych
- 3. Jakość danych

- 1. Wprowadzanie danych
- 2. Przechowywanie danych
- 3. Jakość danych
- 4. Operacje na danych

- 1. Wprowadzanie danych
- 2. Przechowywanie danych
- 3. Jakość danych
- 4. Operacje na danych
- 5. Skalowalność i bezpieczeństwo danych

Budowanie strategii Big Data

Pięć "P" procesu analizy danych

Pięć "P" analizy danych

- 1. Purpose (cel)
- 2. People (ludzie)
- 3. Process (proces)
- 4. Platforms (platformy)
- 5. Programmability (programowalność)

Technologie Big Data: Grupy

Omawiane grupy technologii:

- 1. Storages
- 2. Bazy danych (nierelacyjne)
- 3. Full-text search
- 4. Przetwarzanie danych
- 5. Komunikacja z danymi
- 6. Schedulers
- 7. Messaging

Storages (magazyny danych?)

- 1. HDFS
- 2. Ozone
- 3. ADLS (Azure)
- 4. Amazon S3 (AWS)
- 5. Google Cloud Storage (GCP)

Bazy danych (nierelacyjne!)

1. HBase

2. Accumulo

3. MongoDB

4. Cassandra

5. CosmosDB (Azure)

6. Dynamo DB (AWS)

7. Firestore (GCP)

8. Kudu

9. Ozone (wymienione

także w storages)

10.Neo4j

11.Druid

Full-text search

- 1. Lucene
- 2. Elasticsearch
- 3. Solr

Przetwarzanie danych

- 1. Spark
- 2. Spark Structured Streaming
- 3. Kafka Streams
- 4. Flink
- 5. Map Reduce

Komunikacja z danymi

- 1. Hive
- 2. Impala

- 1. Oozie
- 2. Airflow
- 3. Step Functions (AWS)
- 4. Workflows (GCP)
- 5. Logic Apps (Azure)

- 1. Kafka
- 2. RabbitMQ
- 3. EventHub (Azure)
- 4. Kinesis (AWS)
- 5. Pub/Sub (GCP)

Przegląd technologii Big Data

Grupa: ekosystem technologii BD

Grupa: Storage

Grupa: Storage, Bazy danych

Podstawowy opis struktury:

- 1. Volumes
- 2. Buckets
- 3. Keys

ADLS (gen 2)

Grupa: Storage

Cechy:

- Kompatybilność z Hadoop
- Bezpieczeństwo
- Efektywność
- Dobra optymalizacja

Grupa: Storage

Budowa:

- Buckets
- Objects
- Keys

HBase i Accumulo

Grupa: Bazy Danych

Cechy:

- API dla wielu języków
- Szybkość, wydajność
- Model danych JSON

Model danych:

- Tables
- Items
- Attributes

Model danych:

- Tabele
- Kolumny
- Nazwy, typy
- Klucze

Model danych:

- Wierzchołki (nodes)
- Relacje (relationships)

Apache Druid

Grupa: Bazy danych

Grupa: Full-text Search

Komponenty

- Request Hangler
- Search Component
- Query Parser
- Response Writer
- Analyzer/Tokenizer
- Update Request Processor

Grupa: Full-text Search

Pojęcia

- Instancja (instance)
- Core
- Shard
- Kolekcja (collection)
- Replika (replica)

Elasticsearch

Grupa: Full-text Search

Budowa

- Node
- Cluster
- Index
- Type
- Document

Grupa: Przetwarzanie danych

Biblioteki:

- Spark SQL
- Spark ML
- GraphX
- GraphQL
- Spark Structured Streaming
- Spark Streaming
- Connectory

Grupa: Przetwarzanie danych

Apache Flink to framework i silnik do rozproszonego przetwarzania danych dla stanowych (ang. stateful), ograniczonych i nieograniczonych strumieni danych

Kafka Streams

Grupa: Przetwarzanie danych

Budowa

- Stream Processor
- Table
- Aggregation Operation
- Join Operation
- Windowing
- Interactive Queries

Map Reduce

Grupa: Przetwarzanie danych

Po co dziś?

- Kompatybliność wsteczna
- Fundament innych technologii (np. Hive)

Grupa: Komunikacja z danymi

Budowa

- User Interface
- Meta Store

Grupa: Komunikacja z danymi

Grupa: Schedulery

Rodzaje jobów:

- Oozie Workflow jobs
- Oozie Coordinator jobs
- Oozie Bundle

Apache Airflow

Grupa: Schedulery

Podstawowe zasady Airflow:

- Dynamic
- Extensible
- Elegant
- Scalable

Step Functions

Grupa: Schedulery

Dwa typy Workflow:

- Standard (domyślnie)
- Express

Grupa: Schedulery

W przypadku Workflows, przepływy tworzone są "ręcznie" - przy pomocy plików typu yaml.

Azure Logic Apps

Grupa: Schedulery

Jest to usługa analogiczna jak dwie poprzednie, z tą różnicą, że znajduje się na Azure, czyli chmurze Microsoftu.

Grupa: Messaging/Kolejkowanie

Budowa Kafki:

- Broker
- Klaster
- Topic
- Partycje
- Producer
- Consumer
- Message

Grupa: Messaging/Kolejkowanie

Budowa RabbitMQ:

- Broker
- Klaster
- Kolejka
- Exchange
- Binding
- Producer
- Consumer

Event Hubs

Grupa: Messaging/Kolejkowanie

Budowa (w stosunku do Kafki):

- Cluster (Kafka) to Namespace
- Topic (Kafka) to Event Hub
- Partition, Consumer group i offset pozostają bez zmian.

Grupa: Messaging/Kolejkowanie

Cechy:

- Real-time
- Fully managed
- Scalable

Grupa: Messaging/Kolejkowanie

Budowa:

- Topic
- Subscription
- Message
- Message attribute
- Publisher
- Subscriber
- Push i Pull

Cloud vs On-premise - jak wybrać infrastrukturę?

1. Własna architektura

- 1. Własna architektura
- 2. Chmura

- 1. Własna architektura
- 2. Chmura
- 3. Chmury prywatne
 - a. Infrastructure as a Service (laaS)
 - b. Platform as a Service (PaaS)

- 1. Własna architektura
- 2. Chmura
- 3. Chmury prywatne
 - a. Infrastructure as a Service (laaS)
 - b. Platform as a Service (PaaS)
- 4. Chmury hybrydowe

Uproszczone porównanie chmury i on-premise

- 1. Koszt zasobów
- 2. Koszt obsługi
- 3. Jakość obsługi
- 4. Stabilność kosztów
- 5. Gdzie przechowywane są dane
- 6. Z jakich technologii można korzystać
- 7. Łatwość skalowalności
- 8. Dostęp do danych w kontekście prywatności

Zrozumienie chmury na tle on-premise

Prostota chmury

- 1. Utworzenie klastra klikając "Utwórz"
- 2. Określenie ilości nodów
- 3. Przesłanie kodu na serwer
- 4. Określenie kilka opcji potrzebnych do uruchomienia programu.
- 5. Kliknięcie "Uruchom".

"Prostota chmury"

- 1. Bardzo mocne uzależnienie
- 2. Niestabilne koszty

