Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Chapitre 1 – Stabilité des systèmes

Sciences Industrielles de l'Ingénieur

Activation Corrigé

Activation

Patrick Dupas, http://patrick.dupas.chez-alice.fr/.

Savoirs et compétences :

- Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe
- Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

Exercice 1 – Réponse impulsionnelle (entrée Dirac)

Question 1 Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 2 - Pôles de la FTBF

Question 1 Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 3 – Applications du critère du Revers

Question 1 On donne ci-dessous les lieux de transferts de plusieurs FTBO. Déterminer, à l'aide du critère du Revers si les systèmes sont stables en BF.

Question 2 Pour les systèmes stables déterminer les marges de gain et de phase.

Exercice 4 – Étude de la stabilité

On a K = 1, $\tau = 0$, 1 et G = 20.

Question 1 Déterminer l'erreur statique et l'erreur de traînage.

Correction Ici on a
$$\varepsilon(p) = \frac{E(p)}{1 + \text{FTBO}(p)}$$
.

Erreur statique (entrée échelon) :
$$\varepsilon_s = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{p} \frac{1}{1 + \frac{20}{1 + \frac{20}{1$$

Erreur statique (entrée échelon):
$$\varepsilon_s = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{p} \frac{1}{1 + \frac{20}{(1 + 0, 1p)p}} = 0$$

Erreur trainage (entrée rampe): $\varepsilon_t = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{p^2} \frac{1}{1 + \frac{20}{(1 + 0, 1p)p}} = 1/20$

Question 2 Effectuer les tracés des diagrammes de Bode de la FTBO.

Question 3 Déterminer graphiquement les marges de gains et de phase.

Correction

Question 4 *Confirmer ces résultats par le calcul.*

Correction

La phase ne coupe jamais l'axe des abscisses. Ainsi, La marge de gain n'est pas définie (elle est infinie). Pour déterminer la marge de phase analytiquement :

1. On cherche ω_c tel que $G_{dB}(\omega_c) = 0$;

La marge de phase est donc de 38,66°.

- 2. On calcule $\varphi(\omega_c)$;
- 3. La marge de phase est de $\varphi(\omega_c)$ (–180).

Cherchons ω_c tel que $G_{\mathrm{dB}}(\omega_c) = 0$. On a FTBO $(j\omega) = \frac{20}{(1+0,1j\omega)j\omega} = \frac{20}{j\omega-0,1\omega^2}$. $20\log|\mathrm{FTBO}(j\omega)| = 20\log 20 - 20\log \sqrt{\omega^2+0,01\omega^4} = 20\log 20 - 20\log \omega \sqrt{1+0,01\omega^2}$. $G_{\mathrm{dB}}(\omega_c) = 0 \Leftrightarrow 20 = \omega_c \sqrt{1+0,01\omega_c^2} \Leftrightarrow 400 = \omega_c^2 \left(1+0,01\omega_c^2\right)$ On pose $x = \omega_c^2$ et on a : $400 = x(1+0,01x) \Leftrightarrow x^2 + 100x - 40000 = 0$. On a donc $\Delta = 412,3^2$ et $x_{1,2} = \frac{-100 \pm 412,3}{2}$ on conserve la racine positive et $x_1 = 156,15$ et $\omega_c = 12,5 \,\mathrm{rad}\,\mathrm{s}^{-1}$. $\varphi(\omega_c) = \arg(20) - 90 - \arg(1+0,1j\omega_c) = 0 - 90 - \arctan(0,1\omega_c) = 0 - 90 - 51,34 = -141,34^\circ$.

Question 5 *Conclure par rapport au cahier des charges.*

Correction Le système ne sera pas stable vis-à-vis du cahier des charges.

Pour $\tau = 0.005$

Sciences

Application – Corrigé

Application

Xavier Pessoles

Savoirs et compétences :

□ Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe

Chapitre 1 – Stabilité des systèmes

Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

On considère le schéma-blocs suivant.

On donne ci-dessous la réponse indicielle pour $K_C = 1$.

Question 1 *Justifier l'allure du diagramme du diagramme de Bode donné ci-dessous pour* $K_C = 1$.

Question 2 Donner graphiquement les marges de phase et de gain pour $K_C = 1$.

Question 3 Donner analytiquement les marges de phase et de gain pour $K_C = 1$ (méthode).

```
Correction Calcul de la marge de gain

• On détermine \omega_{180} tel que \arg(\mathrm{FTBO}(j\omega_{180})) = -180^\circ. \arg(\mathrm{FTBO}(j\omega)) = -\arg(j\omega) - \arg(1+10j\omega) - \arg(1+0.5j\omega) = -90 - \arctan(10\omega) - \arctan(0.5\omega). \arg(\mathrm{FTBO}(j\omega_{180})) = -180^\circ \Leftrightarrow -90 - \arctan(10\omega) - \arctan(0.5\omega) = -180

import math as m from pylab import * from scipy.optimize import bisect

def f(x):

res = m.pi/2 - m.atan(10*x) - m.atan(0.5*x)

return res

zero1 = bisect(f, .1, 10)

On a \omega = 0.447 \, \mathrm{rad} \, \mathrm{s}^{-1}.
```

Question 4 Le cahier des charges impose des marges de gain et de phase minimales de 12 dB et 40°. Déterminer la plus grande valeur de K_C permettant de vérifier ce cahier des charges

PSI* - MP

Sciences

Application – Corrigé

Application

Xavier Pessoles

Savoirs et compétences :

- □ Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe
- Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

Sciences

Chapitre 1 – Stabilité des systèmes

TD 01 – Corrigé

Direction automobile découplée

Banque PT - SIA 2017

Savoirs et compétences :

- *Mod2.C7.SF2 : déterminer les fonctions de transfert ;*
- Res2.C5 : stabilité des SLCI : équation caractéristique ;
- Res2.C7 : stabilité des SLCI : marges de stabilité (de gain et de phase).

Mise en garde: il se peut qu'il manque des informations ou que certaines soient superflues. N'hésitez pas à m'en faire part!!

Mise en situation

Le principe de la direction découplée est de substituer la liaison mécanique entre le volant et les roues, une architecture de typé télémanipulateur à un degré de liberté qui consiste à coupler un robot maître, manipulé par un opérateur, avec un robot esclave, distant, qui effectue la tâche. Cette structure peut être schématisé par l'organisation qui suit (Figure 1).

FIGURE 1 - Architecture maître-esclave

Une direction automobile découplée doit conserver les qualités d'une direction conventionnelle et apporter les améliorations de comportement attendues par le conducteur, en termes de performances, de confort de conduite et de sécurité. Le diagramme (Figure 8) précise les principales exigences.

Modélisation du comportement du système mécanique

Le modèle utilisé pour la structure est celui de la figure Figure 2.

FIGURE 2 - Unité de pilotage (chaîne d'énergie) et schéma cinématique

Notations:

- arbre-volant v: le solide constitué du rotor du moteur, de l'arbre volant et du volant;
- G_v : centre d'inertie de l'arbre-volant v;
- $I_{\nu}(G_{\nu})$: opérateur d'inertie de ν au point G_{ν} ;

- J_v : le moment d'inertie de v autour de l'axe $(G_v, \overrightarrow{x_v})$;
- f_v : le coefficient de frottement visqueux de la liaison pivot;
- $\theta_{\nu}(t)$: l'angle de rotation de l'arbre-volant ν par rapport au châssis 1 (noté $\theta_{\nu}(p)$ dans le domaine de Laplace);
- $\omega_v(t)$: la vitesse de rotation de l'arbre-volant v par rapport au châssis 1 (noté $\Omega_v(p)$ dans le domaine de Laplace).

Hypothèses:

- le repère lié au châssis 1 est supposé galiléen;
- G_{ν} est situé sur l'axe de la liaison pivot;
- la liaison pivot est supposée parfaite hormis un couple de frottement visqueux $C_f \vec{x}_v$;
- les actions mécaniques du conducteur et du moteur sur l'arbre-volant ν se réduisent respectivement aux couples $C_c \vec{x_\nu}$ et $C_{\rm mv} \vec{x_\nu}$.

Analyse et optimisation du comportement l'unité de pilotage

Le schéma-blocs retenu est celui de la Figure 3 où le retour est unitaire. On note $\varepsilon_{\theta v}(t)$ l'écart entre la consigne et l'angle obtenu, et $\varepsilon_{\rm c \, v}(t)$ le couple résultant des couples C_c et $C_{\rm mv}$.

FIGURE 3 - Schéma-blocs de l'unité de pilotage

En considérant que la dynamique électromécanique du moteur seul est négligeable devant celle de l'arbre-volant, on adopte pour la motorisation constituée du moteur à courant continu et de son électronique de commande, comportant notamment une boucle de courant, un modèle sous la forme d'un gain pur. On lui associe le gain $K_{\rm mv}$.

Pour les applications numériques, on prendra les valeurs suivantes : $g_v = 5 \,\mathrm{rad}\,\mathrm{s}^{-1}\,\mathrm{N}^{-1}\,\mathrm{m}^{-1}$; $\tau_v = 0.1 \,\mathrm{s}$ et $K_{\mathrm{mv}} = 0.4 \,\mathrm{N}\,\mathrm{mV}^{-1}$.

Correction proportionnelle intégrale

On choisit un correcteur proportionnel intégral (PI) tel que $K_v(p) = K_i \frac{1 + \tau_i p}{\tau_i p}$ avec $\tau_i = \alpha \tau_v$.

Question 1 Quelles sont les conséquences de la mise en œuvre d'un tel correcteur pour le système, en termes de stabilité?

Correction

Question 2 Exprimer la fonction de transfert en boucle ouverte $FTBO_{v1}(p)$ du système corrigé, avec le correcteur PI, telle que $\theta_v(p) = FTBO_{v1}(p)\varepsilon_{\theta v}(p)$ sous la forme $FTBO_{v1}(p) = K_{BOv1}\frac{1}{p^2}H(p)$ pour laquelle on précisera les expressions de K_{BOv1} et de H(p) avec H(p) de gain statique unitaire. Déduire de cette expression, en le justifiant, si α doit être supérieur ou inférieur à 1 pour que le système puisse être stabilisé (on pourra donner l'allure du diagramme de phase en fonction de la valeur de α).

Correction

On commence par choisir τ_i en prenant $\alpha = 10$ et on cherche à optimiser K_i .

On donne
$$\varepsilon_{\theta v}(p) = \frac{\theta_{v_ref}(p)}{1 + \text{FTBO}_{v1}(p)} - \frac{g_v}{p(1 + \tau_v p)} \cdot \frac{C_C(p)}{1 + \text{FTBO}_{v1}(p)}$$

Question 3 *Quelle doit être la valeur minimale de* K_i *pour que les critères de précision soient satisfaits?*

On donne Figure 9 le tracé du lieu de transfert de la FTBO_{v1}(p) dans le plan de Bode, pour $K_i = 0.5 \,\mathrm{V}\,\mathrm{rad}^{-1}$.

Question 4 Tracer sur le lieu de transfert de la FTBO_{v1}(p), les diagrammes asymptotiques dans le plan de Bode. On justifiera rapidement les valeurs particulières de pentes, de pulsations, de gains et de phases.

Correction

Question 5 Donner, par lecture du lieu de transfert de la FTBO $_{v1}(p)$, la valeur de K_i qui permet d'obtenir la valeur minimale de la marge de phase exigée par le cahier des charges. On donnera cette valeur pour la pulsation la plus haute dont on précisera la valeur.

Correction

On note:

- $\varphi(\omega)$ la phase de H(p), soit $Arg[H(j\omega)]$;
- ω_{ℓ} la plus grande pulsation qui vérifie $\varphi(\omega = \omega_{\ell}) = 45^{\circ}$.

On donne (Figure 4) l'évolution de cette pulsation ω_ℓ en fonction de α et un abaque qui représente la valeur maximale φ_m de $\varphi(\omega)$ en fonction de α .

FIGURE 4 – Abaques de réglage de H(p) en fréquentiel

Question 6 Peut-on obtenir la valeur minimale de la pulsation de coupure à 0 dB en boucle ouverte, ω_0 , fixée au cahier des charges en modifiant la valeur de α et/ou K_i ? On pourra s'aider des abaques fournis (Figure 4) pour justifier la réponse.

Correction

On donne (Figure 5), en réponse à un échelon en boucle fermée, les abaques du temps de réponse à 5% et du 1^{er} dépassement en % de la valeur finale, en fonction de K_i et pour $\alpha = 10$.

FIGURE 5 – Abaques de réglage en temporel de l'unité de pilotage corrigée

Question 7 Conclure sur les capacités de cette correction à satisfaire les critères de l'exigence Id 1-3.3 en reprenant chaque critère. On rappelle que l'on a choisi $\alpha = 10$.

Correction proportionnelle intégrale et retour tachymétrique

 $\frac{C_{c}\left(p\right)}{\underbrace{\theta_{v_ref}\left(p\right)}}\underbrace{K_{v}\left(p\right)}\underbrace{K_{v}\left(p\right)}\underbrace{K_{v}\left(p\right)}\underbrace{K_{mv}\left(p\right)}\underbrace{K_{rt}}\underbrace{K_{rt}\left(p\right)}\underbrace{K_{v}\left(p\right)$

FIGURE 6 - Schéma-blocs de l'unité de pilotage avec retour tachymétrique

Question 8 Au vu des conclusions de la question précédente, donner deux arguments qui précisent l'objectif poursuivi par la mise en œuvre d'une telle correction.

Correction

Question 9 Exprimer la fonction de transfert en boucle fermée $T_{vrt}(p)$ définie par $\Omega_v(p) = T_{vrt}(p)\varepsilon_{cv}(p)$ en fonction de $T_v(p)$ et K_{rt} . Mettre alors $T_{vrt}(p)$ sous la forme $T_{vrt}(p) = T_v(p)\beta \frac{1+\tau_v p}{1+\beta \tau_v p}$ pour laquelle, on précisera l'expression de β en fonction de K_{rt} et du gain statique g_v .

Correction

Question 10 Montrer que la nouvelle fonction de transfert en boucle ouverte FTBO_{v2}(p), telle que, $\theta_v(p) = FTBO_{v2}(p)\varepsilon_{\theta_v}(p)$, peut ainsi se mettre sous la forme FTBO_{v2}(p) = $K_{BOv2}\frac{1}{p^2}\frac{1+\alpha\tau_v p}{1+\beta\tau_v p}$ pour laquelle on donnera l'expression de K_{BOv2} en fonction de K_{mv} , g_v , τ_v , K_i , α et β .

Correction

On donne sur la Figure 10 le tracé du lieu de transfert de la FTBO_{v2}(p) dans le plan de Bode, pour $K_i = 1,2 \,\mathrm{V}\,\mathrm{rad}^{-1}$ (valeur évitant des calculs trop longs), réglé avec $\beta = 1/6$ (non justifié) et pour $\alpha = 10$ (valeur choisie précédemment).

Question 11 *Justifier que* β *doit être inférieur à 1 pour que la correction par retour tachymétrique soit efficace vis-à-vis du critère de pulsation de coupure à* 0 dB.

Correction

On donne (Figure 7), pour le système en boucle fermée et non perturbé (couple conducteur nul), les abaques du temps de réponse à 5% et du premier dépassement en réponse à un échelon d'angle θ_{v_ref} , en fonction de la marge de phase du système, réglé avec $\beta=1/6$.

FIGURE 7 – Abaques de réglage en temporel de l'unité de pilotage corrigée avec retour tachymétrique

Question 12 Donner par lecture des abaques (Figure 7), la valeur de la marge de phase la plus grande, permettant de satisfaire les deux critères de temps de réponse et de dépassement.

Correction

Question 13 Déterminer par lecture du lieu de transfert dans le plan de Bode de FTBO $_{v2}(p)$, tracé dans les conditions de la question 11, la valeur de K_i permettant d'obtenir la marge de phase trouvée à la question précédente.

Correction

Question 14 Faire une synthèse argumentée de la démarche proposée dans cette partie, pour optimiser le comportement de l'unité de pilotage. Conclure, en reprenant chaque critère de l'exigence Id 1-3.3, sur la satisfaction du cahier des charges

Correction

Question 15 Avec le réglage établi par le modèle, quel phénomène pourrait endommager certains composants du système réel? Quelle disposition technologique permettrait d'éviter ce phénomène? Quelles en seraient les conséquences sur les performances du système?

```
Eléments de corrigé :

1. .

2. K_{\rm BOV1} = \frac{K_i K_{\rm mv} g_v}{\alpha \tau_v} et H(p) = \frac{1 + \alpha \tau_v p}{1 + \tau_v p}, \alpha > 1.

3. K_i \ge 10 \alpha \frac{\tau_v}{K_{\rm mv}} et K_i \ge 25 \, {\rm V \, rad}^{-1}.

4. .

5. K_i = 5 \, {\rm V \, rad}^{-1}.

6. .

7. .

8. .

9. \beta = \frac{1}{1 + K_{\rm rt} g_v}

10. K_{\rm BOV2} = \frac{K_i K_{\rm mv} \beta g_v}{\alpha \tau_v}.

11. .

12. M_{\varphi} = 58^{\circ}.

13. K_i = 120 \, {\rm V \, rad}^{-1}.

14. .

15. .
```

Exigence	Critères	Niveaux	Flexibilité
ld 1-3.3 – Le système	1- Pulsation de coupure à 0dB en boucle ouverte ω ₀	30 rad/s (≈ 5 Hz)	mini
doit fournir au	2- Temps de réponse à 5% (boucle fermée)	0,1 s	± 20 ms
conducteur un	3- Erreur statique en réponse à une consigne d'angle		
retour d'effort qui	 pour une consigne en échelon 	nulle	aucune
optimise le confort		\leq 0,5% de Ω_{v0}	± 0,2%
et la sécurité.	Erreur statique en réponse à une perturbation de couple		
	 pour une perturbation en échelon 	nulle	aucune
	 pour une perturbation en rampe de pente C₀₀ 5- Stabilité 	≤ 10% de C _{c0}	± 5%
	- Marge de phase	45°	mini
	- Marge de gain	20 dB	mini
	6- Amortissement		
	 1^{er} dépassement en réponse indicielle (boucle fermée) 	0%	15% maxi

FIGURE 8 - Exigences

FIGURE 9 – Lieu de transfert de FTBO $_{\rm vl}(p)$

FIGURE 10 – Lieu de transfert de FTBO $_{v2}(p)$

TD 02 - Corrigé

Stabilisateur actif d'image

Mines Ponts 2018 - PSI

Savoirs et compétences :

- □ *Mod2.C7.SF2* : déterminer les fonctions de transfert;
- ☐ Res2.C5 : stabilité des SLCI : équation caractéristique ;
- Res2.C7 : stabilité des SLCI : marges de stabilité (de gain et de phase).

Mise en situation

Objectif Vérifier l'exigence 1.1 « déplacer la caméra ».

Travail demandé

Question 1 Avec $K_mA = 1$, calculer la fonction de transfert en boucle ouverte (FTBO) et la fonction de transfert en boucle fermée (FTBF) du schéma (modèle 1).

Correction Attention au signe du comparateur de la boucle inbriquée!

On définit la FTBO par FTBO $(p) = \frac{\varepsilon(p)}{\mathrm{Mes}\varphi(p)}$ avec $\varepsilon(p)$ la sortie du premier comparateur.

On a d'une part
$$G(p) = \frac{\frac{K_m A}{1 + \tau_m p}}{1 - \frac{K_m A K_D}{1 + \tau_m p}} = \frac{K_m A}{1 + \tau_m p - K_m A K_D}$$
. On a alors FTBO $(p) = \frac{K_m A K_P}{p \left(1 + \tau_m p - K_m A K_D\right)}$.

Si on définit la FTBF par FTBF(p) =
$$\frac{\varphi(p)}{\varphi^*(p)}$$
, on a FTBF(p) = $A_i(p) \frac{\frac{K_m A K_P}{p(1 + \tau_m p - K_m A K_D)}}{1 + \frac{K_m A K_P}{p(1 + \tau_m p - K_m A K_D)}}$

$$= A_{i}(p) \frac{K_{m}AK_{P}}{p(1+\tau_{m}p-K_{m}AK_{D})+K_{m}AK_{P}}.$$
Au final, FTBO(p) =
$$\frac{K_{P}}{p(1+\tau_{m}p-K_{D})} \text{ et FTBF}(p) = A_{i}(p) \frac{K_{P}}{p(1+\tau_{m}p-K_{D})+K_{P}}.$$

Dans un premier temps en mode pilotage, on s'intéresse au comportement de l'axe de tangage sans le filtre passe bas : $A_1(p) = 1$.

Question 2 Quelle est la valeur maximale de K_D pour que la commande de l'axe de tangage soit strictement stable? Préciser le(s) critère(s) de stabilité appliqué(s).

Correction Pour que le système soit stable, tous les coefficients du dénominateur D(p) de la FTBF doivent être de même signe (ainsi toutes les racines sont à partie réelle négative). On a $D(p) = p(1 + \tau_m p - K_D) + K_P = \tau_m p^2 p + (1 - K_D) p + K_P$ et donc nécessairement, $1 - K_D > 0$ et $K_D < 1$.

Question 3 Lorsque $A_i(p) = 1$, le comportement est-il compatible avec l'exigence 1.1.1 « Maîtriser les déplacements »?

Correction On a : FTBF(p) =
$$\frac{K_P}{p + \tau_m p^2 - K_D p + K_P} = \frac{K_P}{\frac{\tau_m}{K_p} p^2 + p \frac{1 - K_D}{K_P} + 1}$$

On a alors
$$\omega_0 = \sqrt{\frac{K_P}{\tau_m}}$$
 et $\xi = \frac{1 - K_D}{K_P} \sqrt{\frac{K_P}{\tau_m}} = \frac{1 - K_D}{2\sqrt{K_P\tau_m}} = \frac{0.5}{2\sqrt{2}} < 1$. Il y a donc du dépassement. L'exigence n'est pas vérifiée.

Question 4 Avec le « modèle 2 » calculer la fonction de transfert $Stab(p) = \frac{Com(p)}{Pe(p)}$ qui lie la commande à la perturbation.

$$\begin{aligned} & \textbf{Correction} \quad \text{On a } \varepsilon_2(p) = -\text{Mes} \big(\varphi(p) \big) = -\varphi(p) = -\varepsilon_1(p) \frac{1}{p}. \text{ Par ailleurs, } \varepsilon_1(p) = \text{Pe}(p) + \varepsilon_3(p) \frac{AK_m}{1 + \tau_m p}. \text{ Enfin,} \\ & \varepsilon_3(p) = K_P \varepsilon_2(p) + K_D \varepsilon_1(p) \Leftrightarrow \varepsilon_3(p) = \varepsilon_1(p) \bigg(K_D - \frac{K_P}{p} \bigg) \Leftrightarrow \varepsilon_1(p) = \varepsilon_3(p) \frac{1}{K_D - \frac{K_P}{p}}. \\ & \text{On a donc } \varepsilon_3(p) \frac{1}{K_D - \frac{K_P}{p}} = \text{Pe}(p) + \varepsilon_3(p) \frac{AK_m}{1 + \tau_m p} \Leftrightarrow \varepsilon_3(p) \bigg(\frac{p}{pK_D - K_P} - \frac{AK_m}{1 + \tau_m p} \bigg) = \text{Pe}(p) \\ & \Leftrightarrow \varepsilon_3(p) \frac{p \left(1 + \tau_m p \right) - AK_m \left(pK_D - K_P \right)}{\left(pK_D - K_P \right) \left(1 + \tau_m p \right)} = \text{Pe}(p). \\ & \text{On a donc Stab}(p) = \frac{\text{Com}(p)}{\text{Pe}(p)} = \frac{\left(pK_D - K_P \right) \left(1 + \tau_m p \right)}{p \left(1 + \tau_m p \right) - AK_m \left(pK_D - K_P \right)}. \end{aligned}$$

Question 5 Avec le modèle 2 et une entrée Pe(p) échelon unitaire, déterminer la limite quand t tend vers l'infini de la commande : com(t). Quel sens physique donner à ce résultat?

$$\begin{aligned} & \textbf{Correction} & \text{ On a } \lim_{t \to \infty} \text{com}(t) = \lim_{p \to 0} p \text{Com}(p) = \lim_{p \to 0} p \text{Stab}(p) \text{Pe}(p) \\ & = \lim_{p \to 0} p \frac{1}{p} \frac{\left(p K_D - K_P\right) \left(1 + \tau_m p\right)}{p \left(1 + \tau_m p\right) - A K_m \left(p K_D - K_P\right)} = \lim_{p \to 0} \frac{-K_P}{A K_m K_P} = -1 \text{ si } A K_m = 1. \\ & \text{Ainsi, pour une perturbation angulaire dans un autre sens, le système commande les moteurs avec une consigne dans le sens opposé.} \end{aligned}$$

Question 6 Avec le modèle 2 déterminer la FTBO $\frac{Mes\varphi(p)}{\varepsilon_2(p)}$ de ce schéma puis calculer la fonction de transfert liant la perturbation et la sortie $Pert(p) = \frac{\varphi(p)}{Pe(p)}$.

Question 7 Déterminer la valeur lorsque t tend vers l'infini de la réponse temporelle de ce système à une perturbation de type échelon unitaire. Quel sens physique donner à ce résultat?

Correction On a
$$\lim_{t \to \infty} \varphi(t) = \lim_{p \to 0} p \Phi(p) = \lim_{p \to 0} p \operatorname{Pert}(p) \operatorname{Pe}(p) = \lim_{p \to 0} p \frac{1}{p} \frac{1 + \tau_m p}{p(1 + \tau_m p) + (K_P - p K_D) A K_m}$$

$$= \lim_{p \to 0} \frac{1}{K_P A K_m} = \frac{1}{K_P} = 0, 1^{\circ}.$$

Le système n'est pas précis s'il y a une perturbation échelon.

Question 8 On désire une marge de gain de $M_G \ge 5\,\mathrm{dB}$ et une marge de phase $M\,\varphi \ge 20\,^\circ$ (exigence 1.1.3 « Stabilité de la commande »). Déterminer la valeur maximale de K_P en utilisant les données ci-dessous.

Correction Pour une marge de de phase de 20°, la phase doit être de -160° lorsque le gain est nul. Or en -160° le gain est de -3 dB. Pour respecter la marge de phase, il faut donc déterminer K_P tel que $20\log K_P = 3$ soit $K_P < 10\overline{20} \simeq 1,41$.

Le système étant d'ordre 2, la marge de gain sera forcément infinie.

Question 9 Analyser ce tracé par rapport à l'exigence 1.1.2 « Perturbations » et justifier le tracé de Com(t) relativement à Pe(t) en utilisant le résultat de la question 5.

Correction La commande s'oppose à la perturbation (comme évoqué question 5). Le stabilisateur a au final un mouvement sinusoïdal dont les valeurs maximales et minimales sont voisines de $0,1^{\circ}$ et $-0,1^{\circ}$.

Question 10 Analyser comparativement ce nouveau tracé.

Correction Dans ce cas, les mouvements du porteur sont inférieurs à 0,1 degres (en valeur absolue).

Synthèse

Question 11 En utilisant la figure suivante, faire le bilan des travaux réalisés. Quel bilan faire au vu des écarts observés entre les performances obtenues et les performances modélisées.

