Projekt 1 Use Case Robot

Search Robot

Use Case Roboter

Camille Zanni (zannc2) Simon Gfeller (gfels4)

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Revision History	3
Akteure	3
Primäre Akteure	3
Benutzer Goals	3
Use Cases	3
Ziel suchen	3
Use Case UC1: Ziel suchen	4

Projekt 1 Use Case Robot

Revision History

Version	Date	Description	Author
First Draft	22. Oktober 2013	First Draft	gfels4/zannc2
Last Draft	7. Januar 2014	Last Draft	gfels4/zannc2

Akteure

Primäre Akteure

Roboter

Der Roboter sucht eine gegebene Fläche nach dem Ziel ab.

Benutzer Goals

Roboter
 Mit einem geeigneten Algorithmus m\u00f6chte der Roboter das Ziel so schnell wie m\u00f6glich finden.

Use Cases

Ziel suchen

Der Roboter sucht nach einem bestimmten Algorithmus das Spielfeld ab, d.h. Er kann sich fortbewegen, jeweils -90° und +90° scannen und die Hindernisse und die Spielrandfläche so erforschen.

Projekt 1 Use Case Robot

Use Case UC1: Ziel suchen

Primärer Akteur: Robter Haupterfolgs Szenario:

- 1. Die Suche des Roboters wird gestartet.
- 2. Position, Richtung und Spielfeldgrösse werden gespeichert.
- 3. Der Roboter scannt seine Umgebung (-90° und +90° des aktuellen Standpunktes)
- 4. Der Roboter berechnet die Umliegenden Spielfeldränder und erkannte Hindernisse.
- 5. Der Roboter berechnet die noch unentdeckte Spielfeldfläche.
- 6. Der Roboter bewegt sich zum nächsten berechneten Standpunkt fort.

Erweiterungen:

- 3. 6. Werden wiederholt, bis das Ziel gefunden wurde.
- 6. Der nächste Standpunkt wird anhand eines Algorithmus berechnet.