

Using Grammar-Based Genetic Programming for Mining Subsumption Axioms Involving Complex Class Expressions

Evolutionary Axiom Discovery from Knowledge Graphs

Rémi FELIN and Andrea G. B. TETTAMANZI

Université Côte d'Azur, I3S-INRIA Laboratory WIMMICS Team

2021/12/16

- 1 Introduction
- 2 Preliminaries
- 3 Grammar-Based Genetic Programming
- 4 Scoring OWL 2 Axioms
- 5 Experimental Protocol
- 6 Results
- 7 Conclusion and futher work

Introduction

- An area of research focused on Ontology Enrichment of the Semantic Web.
- RDFMiner : an evolutionnary approach for OWL 2 axiom extraction
- ... based on association of grammatical evolution and possibility theory.

Introduction

- An area of research focused on Ontology Enrichment of the Semantic Web.
- RDFMiner : an evolutionnary approach for OWL 2 axiom extraction
- ... based on association of grammatical evolution and possibility theory.

Introduction

- An area of research focused on Ontology Enrichment of the Semantic Web.
- RDFMiner : an evolutionnary approach for OWL 2 axiom extraction
- ... based on association of grammatical evolution and possibility theory.

A set of W3C Standards to express linked data on the Web :

■ The RDF 'Ressource Description Format' standard to express data as triple :

- The **OWL** 'Web Ontology Language' standard to express **ontology** as : $\mathcal{O} = \langle \mathcal{C}, \mathcal{R}, \mathcal{I}, \mathcal{A} \rangle$,
- The **SPARQL** 'SPARQL Protocol and RDF Query Language' to query information directly on the web.

- A set of W3C Standards to express **linked data** on the Web:
 - The RDF 'Ressource Description Format' standard to express data as triple :

- The **OWL** 'Web Ontology Language' standard to express **ontology** as $\mathcal{O} = \langle \mathcal{C}, \mathcal{R}, \mathcal{I}, \mathcal{A} \rangle,$
- The **SPARQL** 'SPARQL Protocol and RDF Query Language' to query information directly on the web.

- A set of W3C Standards to express **linked data** on the Web:
 - The RDF 'Ressource Description Format' standard to express data as triple :

- The **OWL** 'Web Ontology Language' standard to express **ontology** as : $\mathcal{O} = \langle \mathcal{C}, \mathcal{R}, \mathcal{I}, \mathcal{A} \rangle$.
- The **SPARQL** 'SPARQL Protocol and RDF Query Language' to query information directly on the web.

- A set of W3C Standards to express **linked data** on the Web:
 - The RDF 'Ressource Description Format' standard to express data as triple :

- The **OWL** 'Web Ontology Language' standard to express **ontology** as : $\mathcal{O} = \langle \mathcal{C}, \mathcal{R}, \mathcal{I}, \mathcal{A} \rangle$,
- The **SPARQL** 'SPARQL Protocol and RDF Query Language' to query information directly on the web.

Preliminaries > An example of a knowledge graph

Preliminaries

Grammar-Based Genetic Programming > A look on our approach

Here is our evolutionary approach, based on a population of OWL 2 subsumption axioms. The operators deployed aim to maximise the fitness of individuals, which attests to the credibility of an axiom.

Grammar-Based Genetic Programming D Initialization

An available candidate axiom, formed with ressources of the training dataset, is builded according to the **BNF Grammar** specified in a file. It provides the **template** of axioms during the experiments, such as:

Static rules of BNF Gramma

A set of rules which used to build the **structure** of axiom. This generalization is limited by the *fina content* of an axiom, which gives meaning.

Dynamic rules of BNF Gramma

A set of rules, called **primitives**, which used to specify the **final content** of axiom and complete the static part. A set of *SPARQL Query* is used to define the values for a given rules.

Grammar-Based Genetic Programming > Initialization

An available candidate axiom, formed with ressources of the training dataset, is builded according to the **BNF Grammar** specified in a file. It provides the **template** of axioms during the experiments, such as:

Static rules of BNF Grammar

A set of rules which used to build the **structure** of axiom. This generalization is limited by the *final content* of an axiom, which gives meaning.

Dynamic rules of BNF Grammai

A set of rules, called **primitives**, which used to specify the **final content** of axiom and complete the static part. A set of *SPARQL Query* is used to define the values for a given rules.

Grammar-Based Genetic Programming D Initialization

An available candidate axiom, formed with ressources of the training dataset, is builded according to the **BNF Grammar** specified in a file. It provides the **template** of axioms during the experiments, such as:

Static rules of BNF Grammar

A set of rules which used to build the **structure** of axiom. This generalization is limited by the *final content* of an axiom, which gives meaning.

Dynamic rules of BNF Grammar

A set of rules, called **primitives**, which used to specify the **final content** of axiom and complete the static part. A set of *SPARQL Query* is used to define the values for a given rules.

Grammar-Based Genetic Programming ▷ Example of simple BNF Grammar

Static rules of SubClassOf axiom :

- Primitive Class
 - Sparql query: SELECT ?class WHERE { ?instance rdf:type ?class .}
 - VVrite the results such as :
 Class := dbo:Actor | dbo:Work | dbo:Artist | ...
- Possible result : SubClassOf(dbo:Actor dbo:Artist)

Grammar-Based Genetic Programming > Example of simple BNF Grammar

Static rules of SubClassOf axiom :

- Primitive Class:
 - Sparq query: SELECT ?class WHERE { ?instance rdf:type ?class .}
 - Write the results such as :
 Class := dbo:Actor | dbo:Work | dbo:Artist | ...
- Possible result : SubClassOf(dbo:Actor dbo:Artist)

Grammar-Based Genetic Programming > Example of simple BNF Grammar

Static rules of SubClassOf axiom :

- Primitive Class :
 - Sparql query: SELECT ?class WHERE { ?instance rdf:type ?class .}
 - Write the results such as :

```
Class := dbo:Actor | dbo:Work | dbo:Artist | ...
```

■ Possible result : SubClassOf(dbo:Actor dbo:Artist)

Grammar-Based Genetic Programming > Example of simple BNF Grammar

Static rules of SubClassOf axiom :

- Primitive Class:
 - Sparq query: SELECT ?class WHERE { ?instance rdf:type ?class .}
 - Write the results such as :

```
Class := dbo:Actor | dbo:Work | dbo:Artist | ...
```

Possible result : SubClassOf(dbo:Actor dbo:Artist)

Grammar-Based Genetic Programming > Mapping process

Definition of axiom codons

In order to choose *randomly* the *production* and apply operations of evolutionnary algorithms using *codons*, we used the following mapping process:

 $production = codon \mod n$

where production is a value of a given rule, codon an integer and n the number of productions for the current non-terminal.

Grammar-Based Genetic Programming > Mapping process

- Simple example applied on the previous BNF Grammar :
 - (A) Axiom := (0) ClassAxiom
 - (B) ClassAxiom := (0) SubClassOf

 - (D) subClassExpression := (0) Class
 superClassExpression := (0) Class
 - (E) Class := (0) dbo:Actor | (1) dbo:Work | (2) dbo:Artist
- We don't focus on the first rules: only 1 possibility.
- let's consider a set of integer as codons for (E):
 - **codon=16**: 16 mod 3 = 1, thus 16 correspond to dbo: Work
 - **codon=92**: 92 mod 3 = 2, thus 92 correspond to dbo:Artist
 - **...**
- A given axiom correspond to a set of codons

Scoring OWL 2 Axioms > Possibility theory

Possibility theory

Possibility theory is a mathematical theory of epistemic uncertainty which uses the events, variables, ... denoted ω of a universe of discourse Ω $(\omega \in \Omega)$ where each ω has a degree of possibility such that $\pi:\Omega \to [0,1]$. The theory includes a measure of possibility denoted by Π and a measure of necessity denoted by N such that:

$$\Pi(A) = \max_{\omega \in A} \pi(\omega),$$
 $N(A) = 1 - \Pi(\bar{A}) = \min_{\omega \in \bar{A}} \{1 - \pi(\omega)\},$

where $A \in \Omega$ or $A = \{\omega : \omega \models \phi\}$.

Scoring OWL 2 Axioms > Possibility and Necessity

Possibility theory applied on subsumption axioms evaluation

let us consider v_{ϕ}^+ the *confirmations* and v_{ϕ}^- the *exceptions* observed among the elements of v_{ϕ} , either the **support** for ϕ . We define the **possibility** $\Pi(\phi)$ and **necessity** $N(\phi)$ of an axiom as follows:

$$\Pi(\phi) = 1 - \sqrt{1 - \left(rac{arphi_{\phi} - arphi_{\phi}^-}{arphi_{\phi}}
ight)^2}, \ \textit{N}(\phi) = \left\{egin{array}{l} \sqrt{1 - \left(rac{arphi_{\phi} - arphi_{\phi}^+}{arphi_{\phi}}
ight)^2}, & \textit{if} \ \Pi(\phi) = 1 \ 0 & \textit{otherwise} \end{array}
ight.$$

Scoring OWL 2 Axioms > Fitness function

Fitness definition for subsumption axioms

The fitness f of an axiom ϕ should be proportional to its **necessity**, its **possibility** and its **support**, we proposed this approach:

$$f(\phi) = v_{\phi} \times \frac{\Pi(\phi) + N(\phi)}{2}.$$

Experimental Protocol > Proposed BNF Grammar

- We proposed the following rules:
 - (r.1) Axiom := ClassAxiom
 - (r.2) ClassAxiom := SubClassOf
 - (r.3) SubClassOf := 'SubClassOf' '('

classExpression ' ' classExpression
')'

- - ObjectIntersectionOf | Class

- We proposed 10 executions of 30 generations for each population size fixed bellow.
- Population size : 100 ; 200 ; 500.
- We fixed the length of candidate axiom: **6**.
- probability of crossover : 80%.
- probability of mutation : 1%.
- the calculation of exceptions is very time-consuming. Therefore, we limit the calculation time of these requests to **30 seconds**.

- We proposed 10 executions of 30 generations for each population size fixed bellow.
- Population size : 100 ; 200 ; 500.
- We fixed the length of candidate axiom: 6
- probability of crossover : 80%.
- probability of mutation : 1%.
- the calculation of exceptions is very time-consuming. Therefore, we limit the calculation time of these requests to **30 seconds**.

- We proposed 10 executions of 30 generations for each population size fixed bellow.
- Population size : 100 ; 200 ; 500.
- We fixed the length of candidate axiom: **6**.
- probability of crossover : 80%.
- probability of mutation : 1%
- the calculation of exceptions is very time-consuming. Therefore, we limit the calculation time of these requests to **30 seconds**.

- We proposed 10 executions of 30 generations for each population size fixed bellow.
- Population size : 100 ; 200 ; 500.
- We fixed the length of candidate axiom: **6**.
- probability of crossover : 80%.
- probability of mutation : 1%.
- the calculation of exceptions is very time-consuming. Therefore, we limit the calculation time of these requests to **30 seconds**.

- We proposed 10 executions of 30 generations for each population size fixed bellow.
- Population size : 100 ; 200 ; 500.
- We fixed the length of candidate axiom: **6**.
- probability of crossover : 80%.
- probability of mutation : 1%.
- the calculation of exceptions is very time-consuming. Therefore, we limit the calculation time of these requests to 30 seconds.

Experimental Protocol > Architecture

RDFMiner source code: https://github.com/RemiFELIN/RDFMining

Results

We observe that a large part of the axioms found and evaluated from our training dataset with a non-zero possibility and non-zero support, keep a non-zero possibility in our full dataset.

Parameter	Number of axioms	
	with training dataset	with full dataset
100	476	358
200	525	525
500	1911	1888

the calculation of exceptions on the complete database is expensive and the time allocated is not sufficient for most of the axioms found.

Results

- Some axioms founded have been studied in more detail, in particular by allowing the time needed to calculate exceptions to the request.
- Example:

```
SubClassOf (
   ObjectSomeValuesFrom (
        <http://dbpedia.org/property/narrated>
        <http://dbpedia.org/ontology/Agent>
   )
   <http://dbpedia.org/ontology/Work>
)
```

■ 1052 confirmations against only 5 counterexamples on the 1283 individuals concerned, giving a very strong possibility: 0.912 completed in 47 minutes.

Results > Evolution of fitness accuracy

Figure: Evolution of average fitness over 10 executions with the same parameters (those that have been successfully completed)

- This first approach to the discovery of the axiom of subsumption composed of a complex class allowed us to obtain interesting results.
- It highlights several areas of discussion to improve the project
- the multi-threading system for the fitness calculation discussed, has been processed and tested:
 - considerably reduces the execution time. It decreases according to the number of threads available on the machine.
 - Allows us to increase the time allocated to calculating exceptions.
- We plan to extend our search for axioms composed of complex classes to other types of axioms among those provided by OWL 2.

- This first approach to the discovery of the axiom of subsumption composed of a complex class allowed us to obtain interesting results.
- It highlights several areas of discussion to improve the project.
- the multi-threading system for the fitness calculation discussed, has been processed and tested:
 - considerably reduces the execution time. It decreases according to the number of threads available on the machine.
 - Allows us to increase the time allocated to calculating exceptions.
- We plan to extend our search for axioms composed of complex classes to other types of axioms among those provided by OWL 2.

- This first approach to the discovery of the axiom of subsumption composed of a complex class allowed us to obtain interesting results.
- It highlights several areas of discussion to improve the project.
- the multi-threading system for the fitness calculation discussed, has been processed and tested:
 - considerably reduces the execution time. It decreases according to the number of threads available on the machine.
 - Allows us to increase the time allocated to calculating exceptions.
- We plan to extend our search for axioms composed of complex classes to other types of axioms among those provided by OWL 2.

- This first approach to the discovery of the axiom of subsumption composed of a complex class allowed us to obtain interesting results.
- It highlights several areas of discussion to improve the project.
- the multi-threading system for the fitness calculation discussed, has been processed and tested:
 - considerably reduces the execution time. It decreases according to the number of threads available on the machine.
 - Allows us to increase the time allocated to calculating exceptions.
- We plan to extend our search for axioms composed of complex classes to other types of axioms among those provided by OWL 2.

- This first approach to the discovery of the axiom of subsumption composed of a complex class allowed us to obtain interesting results.
- It highlights several areas of discussion to improve the project.
- the multi-threading system for the fitness calculation discussed, has been processed and tested:
 - considerably reduces the execution time. It decreases according to the number of threads available on the machine.
 - Allows us to increase the time allocated to calculating exceptions.
- We plan to extend our search for axioms composed of complex classes to other types of axioms among those provided by OWL 2.

Thank you!