ADS - Lab 1 solutions

Part 1

2/N, 37, \sqrt{N} , N, N log log N, N log N, N log N, N log N, $N^{1.5}$, N^2 , N^2 log N, N^3 , N^2 , N^3 , N^2 , N^3 ,

Part 2

For all these programs, the following analysis will agree with a simulation:

- (I) The running time is O(N).
- (II) The running time is $O(N^2)$.
- (III) The running time is $O(N^3)$.
- (IV) The running time is $O(N^2)$.
- **(V)** j can be as large as i^2 , which could be as large as N^2 . k can be as large as j, which is N^2 . The running time is thus proportional to N N^2 N^2 , which is $O(N^5)$.
- **(VI)** The *if* statement is executed at most N^3 times, by previous arguments, but it is true only $O(N^2)$ times (because it is true exactly *i* times for each *i*). Thus the innermost loop is only executed $O(N^2)$ times. Each time through, it takes $O(j^2) = O(N^2)$ time, for a total of $O(N^4)$. This is an example where multiplying loop sizes can occasionally give an overestimate.

Part 3

- (a) Five times as long, or 2.5 ms.
- **(b)** Slightly more than five times as long.
- **(c)** 25 times as long, or 12.5 ms.
- (d) 125 times as long, or 62.5 ms.

Part 4

- (a) True
- (b) True
- (c) False. A counter example is $T_1(N) = N^2$, $T_2(N) = N$, and $f(N) = N^{2}$,

 $T_1(N)/T_2(N) = N$ and N is not equal to O(1)

(d) False. The same counterexample as in part (c) applies :

 N^2 is not equal to O(N)