1.9 - Domain, Range and Function Notation

Recall: SET NOTATION $\{X \in$

 $\{x \in \mathbb{R} \mid \dots \}$

x is an element of the set of all real numbers such that ...

Interval Notation

• All denote a set of real numbers

Bracket

- [] Square brackets indicate that the end value is included in the interval
- () Round brackets indicate that the end value is not included
- Infinite intervals are expressed by $(-\infty, \infty)$ as they are without bound

Inequality

- ≤ less than or equal to and ≥ greater than or equal to
- < less than and indicate end value is not included > greater than

Graph/Number Line

- closed dots indicate the end value is included in the interval
- O open dots indicate the end value is not included

Examples:

Determining the Domain and Range from the Function Equation

Ex. 2 Determine the domain and range of each function:

ii.
$$y = \frac{3}{4}(x-7)^2 + 1$$

vertex: $(7, 1)$

open up $(7, 1)$

R: $\{y \in R \mid y \geq 1\}$

iii.
$$y = \sqrt{6-x}$$

Consider:

E-tunes sells music downloads for \$0.50 per song, plus a one-time membership fee of \$10.00. Write an equation to model this situation.

i. using traditional variables

$$C = 0.50n + 10$$

 $Y = 0.50n + 10$

ii. using function notation

$$C(n) = 0.50 + 10$$

 $C(s) = 0.50 (s) + 10$
 $C(s) = 12.50
 $C(s) = 12.50

Function Notation

1. Same as "y"

In general,

- represents the dependent variable...we used to use y
- means the value of the function (output) for a given x value (input)
- reads "fofx" or "fatx"
- finding a **y**-value given an **x**-value simply requires **substitution**
- thus, we can write ordered pairs (x,f(x)) which is the same as (x,y)

Over the semester we will use different notations [f(x), g(x), h(x), v(x), etc...]. These are all function notations. Different letters are used to distinguish between different functions.

Ex. 2 Complete a *table of values* for the **function** $f(x) = x^2 - 5$ and **graph**.

$y = x^2 - 5$			
	X	$f(x) = x^2 - 5$	(x, f(x))
	-2	f(-2)=(-2)2-5=-1	(-2, -1)
	-1	f(-1)=(-1)-5 =-4	(-1,-4)
	0	f (a) = (0)2-5=-5	(0 , -5)
	1	f(1) = (1)=5=-4	(1,-4)
	2	f(a) = (a)2-5= -1	(2,-1)

Ex. 3 Find f(2) if $f(x) = x^2 - 2x + 1$. (Here, we are looking for the "y-value" when x = 2.)

$$f(2) = 2^2 - 2(2) + 1$$

$$= 4 - 4 + 1$$

 $f(3) = 1$

Ex. 4 Given the function
$$f(x) = x^2 - 3x$$

and g(x) = 1 - 2x, find...

a. 2g(x)

$$q(x) = 1-2x$$

$$Sub in 9+2$$

$$for x$$

c.
$$g(a+2)$$

= $1-2(a+2)$
= $1-2a-4$
= $-3-2a-3$

b.
$$f(5) - g(5)$$

$$= \left[5^{2} - 3(5)\right] - \left[1 - 2(5)\right]$$

$$= 25 - 15 - (-10)$$

$$= 10 - (-10)$$

$$= -19$$

d.
$$f(x) + g(x)$$

Classwork / Homework:

pg 22 #1, 2, 5, 6, 8b

pg 35 # 2, 3, 5, 9

Domain & Range and Function Notation ~ Worksheet pg 22 #1, 2, 5, 6, 8b

- 1. Evaluate, where f(x) = 2 3x. a) f(2) = -4 c) f(-4) = 14 e) f(a) = -39 + 2b) f(0) = 2 d) $f(\frac{1}{2}) = 0.5$ f) f(3b) = -9b + 2

12,5,6,86

D: 2x ER1 -45 X 50} **2.** The graphs of y = f(x) and y = g(x) are shown.

Using the graphs, evaluate

- a) f(1)
- **b**) g(-2)
- c) f(4) g(-2)d) x when f(x) = -3
- **5.** For $f(x) = \frac{1}{2x}$, determine

- a) f(-3) b) f(0) c) f(1) f(3) d) $f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right)$ $\beta\left(-3\right) = \frac{1}{2\left(-3\right)}$ and f(3) and f(3)

 $\frac{2}{3} = \frac{1}{3}$

- **6.** The graph of y = f(x) is shown at the right.
 - a) State the domain and range of f.
 - **b**) Evaluate.
 - i) f(3)

- iii) f(5-3)
- ii) f(5)
- iv) f(5) f(3)

- **8.** Consider the function g(t) = 3t + 5.
 - a) Create a table of values and graph the function.
 - **b)** Determine each value. **i)** g(0) = 5 **iv)** g(2) g(1) = 3

- ii) g(3) = 14
- v) g(1001) g(1000) = 3vi) g(a+1) g(a) = 3
- iii) g(1) g(0)

- 34+3+5 34+8 34+5

= 3

ANSWERS:

Lesson 1.2, pp. 22-24

- 1. a) -4
- c) 14
- e) 2 3a

- b) 2
- **d**) $\frac{1}{2}$
- f) 2 9b

- 2. a) 2
- b) 4
- c) -5 d) -3 or -4
- 3. a) f(x) = 1200 3x
 - b) 840 mL
- c) 3:10 pm **b**) -5, -25, -2.5
- **4.** a) 8, 0, -0.75
- b) undefined
- **6.** a) domain = $\{-2, 0, 2, 3, 5, 7\}$, range = $\{1, 2, 3, 4, 5\}$
 - b) i) 4
- ii) 2
- iii) 5
- 7. a) 2a 5
 - **b**) 2b 3
- c) 6c 7 d) -10x 1
- 8. b) i) 5 ii) 14 iii) 3 iv) 3 v) 3 vi) 3

Domain & Range and Function Notation ~ Worksheet pg 35 # 2, 3, 5, 9

2. State the domain and range of each relation.

3. Identify which of the relations in questions 1 and 2 are functions.

5. The graph shows how 2007 prices for mailing letters in Canada vary with mass.

Canadian Domestic Letter Prices

- Explain why this relation is a function. Why is it important for this
- b) State the domain and range of the function.
- 9. Determine the domain and range of each function.

a)
$$f(x) = -3x + 8$$

a)
$$f(x) = -3x + 8$$

b) $g(x) = -0.5(x + 3)^2 + 4$
c) $h(x) = \sqrt{x - 1}$
d) $p(x) = \frac{2}{3}(x - 2)^2 - 5$
e) $q(x) = 11 - \frac{5}{2}x$
f) $r(x) = \sqrt{5 - x}$

b)
$$g(x) = -0.5(x+3)^2 +$$

e)
$$q(x) = 11 - \frac{5}{2}$$

c)
$$h(x) = \sqrt{x-1}$$

f)
$$r(x) = \sqrt{5-x}$$

ANSWERS:

Lesson 1.4, pp. 35-37

- a) domain = {1900, 1920, 1940, 1960, 1980, 2000},
 range = {47.3, 54.1, 62.9, 69.7, 73.7, 77.0}
 - b) domain = $\{-5, -1, 0, 3\}$, range = $\{9, 15, 17, 23\}$
 - c) domain = $\{-4, 0, 3, 5\}$, range = $\{-1, 0, 3, 5, 7\}$
- 2. a) domain = $\{0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10\}$, range = $\{-8, -7, -6, -5, -4, -2, 0, 4, 8\}$
 - b) domain = $\{x \in \mathbb{R}\}$, range = $\{y \in \mathbb{R}\}$
 - c) domain = $\{x \in \mathbb{R}\}$, range = $\{y \in \mathbb{R} \mid y \ge -8\}$
 - d) domain = $\{x \in \mathbb{R} \mid -6 \le x \le 6\}$, range = $\{y \in \mathbb{R} \mid -6 \le y \le 6\}$

- 3. 1. (a), (b); 2. (b), (c), (e), (f)
- 4. domain = $\{x \in R\}$, range = $\{y \in R \mid y \ge -3\}$
- a) Even at masses when the price changes, a single price (the lower one) is assigned. It would not make sense to assign two or more prices to the same mass.
 - b) domain = $\{x \in \mathbb{R} \mid 0 < x \le 500\}$, range = $\{0.52, 0.93, 1.20, 1.86, 2.55\}$
- **9.** a) domain = $\{x \in R\}$, range = $\{y \in R\}$
 - b) domain = $\{x \in \mathbb{R}\}$, range = $\{y \in \mathbb{R} \mid y \le 4\}$
 - c) domain = $\{x \in \mathbb{R} | x \ge 1\}$, range = $\{y \in \mathbb{R} | y \ge 0\}$
 - d) domain = $\{x \in \mathbb{R}\}$, range = $\{y \in \mathbb{R} \mid y \ge -5\}$
 - e) domain = $\{x \in R\}$, range = $\{y \in R\}$
 - f) domain = $\{x \in \mathbb{R} | x \le 5\}$, range = $\{y \in \mathbb{R} | y \ge 0\}$