

CSC349A Numerical Analysis

Lecture 8

Rich Little

University of Victoria

2018

R. Little

Table of Contents I

1 Newton-Raphson

2 Newton method convergence

R. Little 2 / 22

Geometric derivation

- The real roots of a function f(x) occur when the graph of the function intersects with the x-axis.
- The main idea behind the Newton/Raphson method for root finding is given an initial approximation x_0 to a zero of f(x) to approximate the graph of f(x) at x_0 by the tangent line essentially linearizing the function in that area.

R. Little 3 / 22

An illustrative example

R. Little 4 / 22

Newton-Raphson Formula

Each iteration we approximate the root x_t with x_{i+1} based on previous approximation x_i using,

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{1}$$

with the hope that

$$\lim_{i \to \infty} x_i = x_t \tag{2}$$

R. Little 5 / 22

Example of Newton-Raphson Method

Estimate the root of $f(x) = e^{-x} - x$ employing an initial guess of $x_0 = 0$. The iterative equation can be applied to compute:

i	X_i	$\varepsilon_t(\%)$
0	0	100
1	0.5	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	$< 10^{-8}$

Notice that the approach rapidly converges on the true root much faster than it would using *Bisection*.

R. Little 6 / 22

Table of Contents I

1 Newton-Raphson

2 Newton method convergence

R. Little 7 / 22

Derivation using Taylor's theorem

Recall the Taylor theorem for f(x) with n = 1 expanded about $a = x_i$:

$$f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(\xi)}{2}(x - x_i)^2$$
 (3)

for some value ξ between x and x_i .

R. Little 8/22

Convergence

The derivation of the Newton/Raphson method gives insight into how fast Newton's method converges:

First we evaluate the Taylor Theorem at $x = x_t$, an exact zero:

$$0 = f(x_t) = f(x_i) + (x_t - x_i)f'(x_i) + \frac{(x_t - x_i)^2}{2}f''(\xi)$$
 (4)

Newton's method $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$ can be rewritten as:

$$0 = f(x_i) + (x_{i+1} - x_i)f'(x_i)$$
 (5)

R. Little 9 / 22

Convergence II

If we subtract the last two equations (4,5) then we get:

$$0 = (x_t - x_{i+1})f'(x_i) + \frac{(x_t - x_i)^2}{2}f''(\xi)$$
 (6)

and if we let $E_{i+1} = x_t - x_{i+1}$ and $E_i = x_t - x_i$ denote the error in x_{i+1}, x_i then we have:

$$0 = E_{i+1}f'(x_i) + \frac{E_i^2}{2}f''(\xi) \quad \text{thus} \quad \frac{E_{i+1}}{E_i^2} = \frac{-f''(\xi)}{2f'(x_i)}$$

R. Little 10 / 22

Order of convergence

(not in textbook)

If a sequence $x_0, x_1, x_2, x_3, \ldots$ converges to x_t that is $\lim_{i \to \infty} x_i = x_t$ and $E_i = x_t - x_i$, then the order of converge of the sequence is α if there are constants $\lambda > 0$ and $\alpha \ge 1$ such that:

$$\lim_{i \to \infty} \frac{|E_{i+1}|}{|E_i|^{\alpha}} = \lambda \tag{7}$$

R. Little 11/2:

In general, λ and α depend on the algorithm used to compute x_i , on f(x), and on the multiplicity of the zero x_t .

Most common case:

 $\alpha=1$ linear convergence

For large i, $|E_{i+1}| \approx \lambda |E_i|$

In this case, successive errors decrease approximately by a constant amount:

$$\begin{array}{lll} |E_{i+1}| & \approx & \lambda |E_i| \\ |E_{i+2}| & \approx & \lambda |E_{i+1}| \approx \lambda^2 |E_i| \\ |E_{i+3}| & \approx & \lambda |E_{i+2}| \approx \lambda^3 |E_i| \\ & \text{etc} \end{array}$$

Errors $|E_{i+1}| \to 0$, that is $\lim_{i \to \infty} x_i = x_t$ only if $0 < \lambda < 1$.

12 / 22

Quadratic convergence

For $\alpha=2$ we have quadratic convergence. For large i, $|E_{i+1}|\approx \lambda |E_i|^2$

After some error $|E_i| < 1$, convergence is rapid as the number of correct significant digits approximately doubles with each iteration e.g if $|E_i| = 10^{-t}$, then $|E_{i+1}| \approx \lambda 10^{-2t}$.

R. Little 13 / 22

Convergence of Newton's method

For Newton's method above:

$$\frac{E_{i+1}}{E_i^2} = \frac{-f''(\xi)}{2f'(x_i)}$$

for some ξ between x_i and x_{i+1} .

$$\lim_{i \to \infty} \frac{|E_{i+1}|}{|E_i|^2} = \lim_{i \to \infty} \frac{|f''(\xi)|}{2|f'(x_i)|} = \frac{|f''(x_t)|}{2|f'(x_t)|}$$

which is a constant λ provided that $f'(x_t) \neq 0$.

Result: Newton's method converges quadratically to a zero x_t provided that $f'(x_t) \neq 0$

R. Little 14 / 22

Implementation


```
function root = Newton(x_0, \varepsilon, imax, f(x), f'(x))
i \leftarrow 1
output heading
while i < \max
     root \leftarrow x_0 - f(x_0)/f'(x_0)
     output i, root
     if |1 - x_0/root| < \varepsilon
          exit
     end if
     i \leftarrow i + 1
     x_0 \leftarrow root
end while
output "failed to converge"
```

R. Little 15 / 22

Implementation Note

Note that in general, using $|f(root)| < \varepsilon$ is not a suitable test for convergence (instead of testing approximation error). The reason is that $|f(root)| < \varepsilon$ does not imply that the value *root* is within distance of ε of an exact root x_t .

R. Little 16 / 22

Newton Convergence

Theorem: If Newton's method is applied to f(x) = 0 producing a sequence x_i that converges to a root x_t , and if $f'(x_t) \neq 0$, then then order of convergence is 2.

■ If $f'(x_t) = 0$ and Newton's method convergences to a root x_t , then we will see later that the order of convergence is NOT quadratic.

R. Little 17 / 22

Example 1

An illustration of the quadratic convergence of Newton's method. Here f(x) = cos(x) - x. This was computed in MATLAB, so at most 16 correct digits are possible. The bold digits are all correct.

i	Xi	no. of correct digits
0	$\frac{\pi}{4} = 0.785398$	1
1	0. 739 5361	3
2	0. 7390851 78	7
3	0. 73908513321516 10	14
4	0.7390851332151606	16

R. Little 18 / 22

Example 2 (Newton)

Root of
$$x^3 + 4x^2 - 10 = 0$$
 with $p_0 = -100$.

$$p_0 = -100$$
 $p_1 = -67.12$
 $p_2 = -45.21$
...
 $p_{14} = -2.54$
 $p_{15} = -3.14$
 $p_{16} = -2.80$
...
 $p_{21} = 1.9405$
 $p_{22} = 1.4793$
 $p_{23} = 1.3711$
 $p_{24} = 1.36525$
 $p_{25} = 1.3652300011$

R. Little 19 / 22

Four Cases of Poor Convergence

R. Little (d) 20 / 22

Newton Convergence

Theorem

Suppose that f(x), f'(x) and f''(x) all exist and are continuous on some interval [a, b], that $x_t \in [a, b]$ is a root of f(x) = 0, and that $f'(x_t) \neq 0$. Then there exists a value $\delta > 0$, such that Newton's method converges for all initial approximations $x_0 \in [x_t - \delta, x_t + \delta]$.

R. Little 21 / 22

Note

In general there is no way to determine such a value δ . This theorem only says that for all such functions f(x), such a value δ exists. Even if the value of δ is extremely small, there is an interval of values around the root x_t such that if x_0 (the initial approximation) lies in this interval, then Newton's method will converge.

Thus the interpretation of the above theorem is that Newton's method always converges if the initial approximation x_0 is sufficiently close to the root x_t .

R. Little 22 / 22