

Eexam

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- · Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Hausaufgabe 2 Datum: Montag, 4. Mai 2020

Prüfer: Prof. Dr.-lng. Georg Carle **Uhrzeit:** 00:01 – 23:59

Bearbeitungshinweise

- Bitte geben Sie bis spätestens Sonntag, den 10. Mai um 23:59 CEST über TUMexam ab. Bitte haben Sie Verständnis, wenn das Abgabesystem noch nicht reibungslos funktioniert. Wir arbeiten daran!
- Ihren persönlichen Link zur Abgabe finden Sie auf Moodle. Geben Sie diesen nicht weiter.
- Bitte haben Sie Verständnis, falls die Abgabeseite zeitweilig nicht erreichbar ist.

Bitte nehmen Sie die Hausaufgaben dennoch ernst:

- Neben der Einübung des Vorlesungsstoffs und der Klausurvorbereitung dienen die Hausaufgaben auch dazu, den Ablauf der Midterm zu erproben.
- Finden Sie einen für sich selbst praktikablen und effizienten Weg, die Hausaufgaben zu bearbeiten. Hinweise hierzu haben wir auf https://grnvs.net/homework_submission.pdf für Sie zusammengestellt.

Hörsaal verlassen von	bis	/	Vorzeitige Abgabe um

Aufgabe 1 Quellenentropie (14 Punkte)

Gegeben sei eine binäre, gedächtnislose Nachrichtenquelle Q, welche voneinander statistisch unabhängige Zeichen aus dem Alphabet $\mathcal{X} = \{a, b\}$ emittiert. Wir modellieren diese Nachrichtenquelle als diskrete Zufallsvariable X. Die Wahrscheinlichkeit, dass die Quelle das Zeichen X = a emittiert, betrage $p_a = \Pr[X = a] = 0.25$.

		_	-	-		Wa										-	-						_	_	_			1			_
+																															
1																															1
L																															
Ε	estim	ıme	n Si	ie d	len	Info	orm	natio	ons	geł	nalt	I(a) un	nd I	(b) l	bei	der	Ze	iche	en.											
Be	estim	imei	n Si	e d	ie E	=nti	rop	ie F	de de	er G	(uel	le.																			
B	estin n En	nme trop	n S ie <i>F</i>	ie d I m	die <i>i</i> axi	Auf ma	tritt: I ist	swa i.	ıhrs	che	einli	chk	eite	en p	o u	nd ,	0 1 €	ine	er a	nde	eren	bir	näre	en N	Vac	hric	chte	enqı	uell	e C	Q′
L																															
L																															
+															_															+	_
																															_

		-																															
											0.5	H				0.5				1.0	- p												
		on (hlu: dar					äss	t si	ch a	aus	die	ese	er T	atsa	ache
																									äss	t sid	ch a	aus	die	ese	er T	atsa	ache
																									äss	t sid	ch a	aus	die	ese	er T	atsa	ache
																									äss	t sid	ch a	aus	die	ese	er T	atsa	ache
																									äss	t sid	ch a	aus	die	ese	er T	atsa	ache
																									äss	t sid	ch a	aus	die	ese	er T	atsa	ache
																									äss	t sid	ch a	aus	die	ese	Per T	atsa	ache
de	ralle		der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									
Ve	ralle	gem	der	Que	Sie	Q die	emi:	gek	rter	n Da	ate	nstr	rom	hir	nsic	htli	ch	Red	dun	dar	nz a	able	iter	1?									

Aufgabe 2 Fourierreihe (15 Punkte)

Gegeben sei das folgende T-periodische Zeitsignal s(t):

0 ______1 ____

a)* Finden Sie einen analytischen Ausdruck für s(t) im Intervall [0, T].

Das Signal s(t) lässt sich als Fourierreihe entwickeln, d. h.

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(k\omega t) + b_k \sin(k\omega t) \right). \tag{1}$$

Die Koeffizienten a_k und b_k lassen sich wie folgt bestimmen:

$$a_k = \frac{2}{T} \int_0^T s(t) \cdot \cos(k\omega t) \ dt \ \text{und } b_k = \frac{2}{T} \int_0^T s(t) \cdot \sin(k\omega t) \ dt. \tag{2}$$

0 |

b)* Welcher Koeffizient in Formel (1) ist für den Gleichanteil von s(t) verantwortlich?

0 1 2

c) Bestimmen Sie rechnerisch den Gleichanteil des Signals s(t).

d)* Hätte man das Ergebnis aus der vorhergehenden Teilaufgabe auch by inspection erahnen können?	
	H
e)* Bestimmen Sie die Koeffizienten a_k .	
Hinweis: Sie benötigen hier keine Rechnung. Vergleichen Sie stattdessen die Symmetrie von $s(t)$ mit einer Kosinus-Schwingung. Kann ein gewichteter Kosinus einen Beitrag zum Gesamtsignal liefern?	

Von nun an nehmen wir zur Vereinfachung T = 1 an.

f)* Bestimmen Sie die Koeffizienten b_k .

Hinweise: $\int_0^1 t \sin(ct) dt = \frac{\sin(c) - c \cdot \cos(c)}{c^2} \text{ und } \omega = 2\pi/T.$

g) Skizzieren Sie mit Hilfe der bisherigen Ergebnisse den Gleichanteil $a_0/2$, die ersten beiden Harmonischen sowie deren Summe für $A=\pi$ in einem Koordinatensystem.

