Something Else to Study

An Algebraic Construction of Complete Regular Maps via Prime Ideals

Question

What is the action of the Galois group on CRMs?

What is the Galois Group?

An Algebraic Construction of Complete Regular Maps via Prime Ideals

The Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ is the group of automorphisms $\mathbb{Q}(\zeta_{n-1}) \to \mathbb{Q}(\zeta_{n-1})$ fixing the elements of \mathbb{Q} . Visually, it can be represented like so:

What are dessins?

An Algebraic Construction of Complete Regular Maps via Prime Ideals

Definition

A K_n -dessin is a topological map whose underlying graph is bipartite with n vertices on each side.

Figure: Bipartification of a CRM to obtain a dessin

 K_n -dessins D give surfaces defined by polynomials over $\mathbb{Q}(\zeta_{n-1})$, which yields an action of $\operatorname{Gal}(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ on K_n -dessins that we denote by D^{σ} for $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$.

Our results

An Algebraic Construction of Complete Regular Maps via Prime Ideals

Theorem

Given $\sigma \in Gal(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ and a prime $\mathfrak{p} \subseteq \mathbb{Z}[\zeta_{n-1}]$ containing p, there is an isomorphism

$$D_{\mathfrak{p}}^{\sigma} \simeq D_{\sigma \mathfrak{p}}$$

of K_n -dessins.

So this tells us the two actions of $Gal(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ on K_n -dessins are "equivalent".

Recall:

- Prime ideals $\mathfrak{p} \subseteq \mathbb{Z}[\zeta_{n-1}]$ give CRMs $M_{\mathfrak{p}}$.
- These $M_{\mathfrak{p}}$ induce K_n -dessins $D_{\mathfrak{p}}$.
- K_n -dessins $D_{\mathfrak{p}}$ give rise to surfaces that can be described by algebraic equations over $\mathbb{Q}(\zeta_{n-1})$.

 $Gal(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ acts on K_n -dessins by acting on the coefficients of these equations.

Denote the action of $\sigma \in Gal(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ on $D_{\mathfrak{p}}$ by $D_{\mathfrak{p}}^{\sigma}$).

Action II of the Galois group

An Algebraic Construction of Complete Regular Maps via Prime Ideals

- Gal($\mathbb{Q}(\zeta_{n-1})/\mathbb{Q}$) also permutes prime ideals of $\mathbb{Z}[\zeta_{n-1}]$.
- We saw earlier that prime ideals are in bijection with CRMs on n vertices.

Thus, we obtain a second action of $Gal(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ on K_n -dessins: $\sigma \in Gal(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ takes $D_{\mathfrak{p}}$ to $D_{\sigma\mathfrak{p}}$.

Statement & Proof Sketch

An Algebraic Construction of Complete Regular Maps via Prime Ideals

Theorem

Given $\sigma \in Gal(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ and a prime $\mathfrak{p} \subseteq \mathbb{Z}[\zeta_{n-1}]$ containing p, there is an isomorphism

$$D_{\mathfrak{p}}^{\sigma}\simeq D_{\sigma\mathfrak{p}}$$

of K_n -dessins.

Each $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_{n-1})/\mathbb{Q})$ gives rise to an operation H_j on dessins (called a Wilson operator).

Proof.

- **1** Jones, Streit & Wolfart (2009) proved $D_{\mathfrak{p}}^{\sigma} \simeq H_j D_{\mathfrak{p}}$.
- 2 We proved $H_j D_{\mathfrak{p}} \simeq D_{\sigma \mathfrak{p}}$ using additional results from our construction.

Thus $D_{\mathfrak{p}}^{\sigma} \simeq D_{\sigma \mathfrak{p}}$.

