Problem Set 3, Answers

Kevin Lacker

June 1, 2020

Problem 1. This is a four-part problem.

1. Let L be the set of leaves of the minimum-height protocol tree for f that give output 1. For each $l \in L$, let M_l be the matrix which is 1 on the input pairs whose path through the protocol tree ends at the lead l. By the definition of a protocol tree, M_l can also be defined by a set X and Y with:

$$M_l[i,j] = 1 \iff i \in X, j \in Y \tag{1}$$

Thus, there are two possible rows in M_l , either all zeros or 1 precisely on indices in Y. Thus, the rank of M_l is 1, regardless of what field the rank is taken over.

Note that:

$$M_f = \sum_{l \in L} M_l \tag{2}$$

Since rank is subadditive, we can conclude:

$$rank(M_f) \le \sum_{l \in L} rank(M_l) = |L| \le 2^{D(f)}$$
(3)

The last inequality holds since L is a subset of leaves of a tree of height D(f). We can then conclude

$$log_2(rank(M_f)) \le D(f) \tag{4}$$

- 2. There are 2^n rows of M_f . Consider them as vectors over the field \mathbb{F}_2 , and say the rows span a subspace of dimension d, so $rank(M_f) = d$. Since the field has size 2, this subspace has exactly 2^d elements in it. Since the rows of M_f are 2^n distinct vectors in this subspace of size 2^d , we have $2^n \leq 2^d$. So $log_2(n) \leq log_s(d)$ and by the conclusion of the previous problem, $log_2(n) \leq D(f)$.
- 3. TODO
- 4. TODO

Problem 2. Our randomized protocol for GT will use the randomized protocol for EQ, to do a binary search to find the first bit in which the two bit strings disagree. The algorithm works like:

- Find the middle of our bit string.
- Use the EQ protocol to determine whether the bits to the left of the midpoint are the same in the two strings.
- If they are the same, recurse on the right half of the string. If they are not the same, recurse on the left half of the string.
- Once we have found the first bit that disagrees, in constant communication we can figure out which of the strings is greater.

We have O(logn) steps, and each step introduces a constant error. We need to reduce this error to O(1/log(n)) so that it is constant over the whole algorithm, so we need to repeat the protocol at each steg O(log(log(n))) times. This gives a total communication complexity of $R^{pub}(GT) \leq O(log(n)log(log(n)))$.

Newman's theorem states that this can be converted into a private coin protocol with an additive log penalty, but this complexity is larger than the log penalty already, so the same asymptotic bound holds for R(GT) as for $R^{pub}(GT)$.