User-manual for TDSE numerical solver

Code by - MD ELIOUS ALI MONDAL
Supervisor - Dr. VARADHARAJAN SRINIVASAN
Associate Professor, IISER BHOPAL

Contents

1	Intr	roduction	1	
2	Mo	Modules		
	2.1	time_steps	2	
	2.2	Global_constants	2	
	2.3	Potential	3	
	2.4	TISE_solver	3	
		2.4.1 Numerov	3	
		2.4.2 Psi	3	
		2.4.3 Eigen	4	
		2.4.4 Psi_gs	4	
	2.5	AB	4	
	2.6	PSI_generation	4	
	2.7	coefficients	5	
2	Нот	y to use the code?	6	

1 Introduction

This code can be used to find the numerical solutions to both Time-independent as well as time-dependent Schrodinger equations for 1-D potentials. The code is divided into 7 modules and a run_file (script file) and each of these files can be individually modified as the user wants. The code is executed in the following order:

- time_steps
- Global_constants (Defining values which remain constant throughout the code)
- Potential (defining the time-dependent (or independent) potential)
- TISE_solver (Solver for time-independent schrodinger equation)
- AB
- **PSI_generation**(Generating $\Psi(x, t_i)$ for each t_i)
- coefficients
- run_file

2 Modules

2.1 time_steps

It requires three parameters:

- **ntp** number of time periods
- \bullet **k** gap between each time step
- omega The frequency of oscillation of time-dependent potential

In cases in which the time-dependent potential is not oscillatory in time omega is to be set to 0.

When **time_steps.t_val(ntp,k,omega)** is called, it generates an array of all the time steps at which the wavefunction is to be evaluated

2.2 Global_constants

This contains all the constants that remain constant throughout the code. The following are the constant parameters:

- \bullet **h** = step size for x-coordinate values
- \bullet **k** = step size for time-coordinate values
- x_range = range of x-coordinate values
- \bullet **n** = number of x-coordinates to be included
- $lam = \lambda$ value for A and B matrices
- omega = The frequency of oscillation of time-dependent potential

Some arrays are also defined here:

- $\mathbf{x} = \text{array to store the x-coordinate values}$
- $\mathbf{y} = \text{array to store } \Psi(x_i) \text{ at each } x_i$
- $\mathbf{t}_{-}\mathbf{val} = \text{array to store all time-coordinate values}$

2.3 Potential

Here we define the time-dependent potential V(x,t). Here x implies position and t implies time. The constants dist, epsilon and gamma are given according to the potential as discussed in report. If a different potential is to be studied change b to the potential of interest.

2.4 TISE_solver

This module is used to solve the time-dependent schrodinger equation to obtain the stationary states and corresponding eigenvalues at any time t_i .

2.4.1 Numerov

This function applies Numerov method to obtain Ψ_{i+1} by $\mathbf{y1}$ (Ψ_{i-1}), $\mathbf{y2}$ (Ψ_i) (Here $\Psi_i \equiv \Psi(x_i)$) and energy \mathbf{E} .

2.4.2 Psi

This function applies Numerov function (above) to evaluate $\Psi(x)$ for a given **E**. It returns a tuple (m[-1],m):

- m[-1] = Value of Ψ corresponding to the last element of x.
- \mathbf{m} = The array containing Ψ values for each x-value.

2.4.3 Eigen

This function calculates and returns an array containing all the possible eigenvalues within a given range of interest.

- $\mathbf{a} = \text{array containing values within which the eigenvalues is to be searched.}$
- $\mathbf{P} = \text{array containing } \mathbf{m}[-1]$ for all Ψ corresponding to each E_{trial} value in \mathbf{a} .

2.4.4 Psi_gs

This is a dictionary which stores the ground state wavefunction (Ψ_{gs}) corresponding to each time step t_i .

2.5 AB

This module is used to generate the matrices A and B and to carry out the LU decomposition of A. The functions a(i,j) and b(i,j) are used to generate the A and B matrix elements. The dictionaries A_val and B_val are used to store the A and B matrices corresponding to each time step t_i . The dictionaries L_val and U_val store the LU decomposed matrices of A for each time step t_i

2.6 PSI_generation

This module generates $\Psi(t_{i+1})$ from $\Psi(t_i)$ by solving the time-dependent Schroedinger equation through Crank-Nicolson method as discussed in report. **PSI**_t is a dictionary used to store $\Psi(t_i)$ at each time step.

2.7 coefficients

Two dictionaries are used as storage here:

- Coeff = stores the coefficients $(c(t), \text{ contribution of } \Psi_{gs}(t_i) \text{ to the actual } \Psi(t_i)).$
- Coeff2 = stores $c(t)c(t)^* = |c(t)|^2$ for each time step

3 How to use the code?

The run_file is the execution file which runs all the above module in the same sequence as described above. The parameters can be changed from Global_constants module according to the requirement. C2_val stores the same values as Co-eff2. We can plot $|c(t)|^2$ vs t by un-commenting the region below as written in code.