- 100 囚徒问题仿真报告
 - 算法说明
 - 实验结果
 - 理论分析
 - 优化方向
 - 1. 盒子配置的批量预生成
 - 2. 囚徒查询的并行化

100 囚徒问题仿真报告

算法说明

1. 问题背景

100个囚徒每天可进入房间,打开最多50个盒子寻找自己的编号。若所有囚徒均在某一天成功找到编号,则全体释放;否则游戏继续,盒子重新随机排列。

2. 策略设计

- **随机策略(Random)**:每个囚徒每天随机选择 50 个盒子检查。
- **链式策略(Wise)**:每个囚徒从自己的编号开始,跟踪盒子中的编号形成链, 直到找到自己或超过 50 次。

3. 模拟逻辑

- 每天生成新的随机盒子排列。
- 囚徒按策略选择盒子,成功则被释放。
- 若所有囚徒在某一天均成功,游戏结束;否则持续至最大天数(默认10天)。

实验结果

1. 单次模拟结果(随机策略)

- 10 天内未达成全体释放。
- 失败原因为每天需所有囚徒在同一日成功,概率极低。

2. 多次模拟统计(链式策略, 10,000次)

天数	成功次数	占比	累计占比
1	3149	31.49%	31.49%
2	2146	21.46%	52.95%
3	6765	14.70%	67.65%
4	7790	10.25%	77.90%
5	8522	7.32%	85.22%
6	8936	4.14%	89.36%
7	9273	3.37%	92.73%
8	9508	2.35%	95.08%
9	9651	1.43%	96.51%
10	9755	1.04%	97.55%

○ **关键结论**: 10 天内成功率约 97.55%。

理论分析

1. 随机策略

- \circ 每个囚徒单日成功概率: $q = \frac{k}{n} = 0.5$ 。
- \circ 全体单日成功概率: $p = (0.5)^{100} \approx 7.8 \times 10^{-31}$ 。
- \circ 10 天累积成功概率: $p_d = 1 (1 p)^{10} \approx 10 \times 10^{-31}$,几乎为零。

2. 链式策略

- \circ 全体单日成功概率: $p=1-\sum_{i=k+1}^{n}q_{i}$ 。 q_{i} 为存在长度为 i的环的概率: $q_{i}=\frac{C_{n}^{i}\cdot(i-1)!\cdot A_{n-i}^{n-i}}{A_{n}^{n}}=\frac{1}{i}$
- \circ 当 n = 100, k = 50 时, $p \approx 0.3118$
- \circ 10 天累积成功概率: $p_d = 1 (1 p)^{10} \approx 0.9762$,概率非常高。

优化方向

1. 盒子配置的批量预生成

问题: 逐天生成随机盒子导致重复调用 random.sample,效率低下。

优化方案: 预生成所有天数的盒子序列,存储为三维张量(形状: [max_days, n, n]), 其中 max_days 为最大天数,n=100。

通过 numpy 的 permutation 函数一次性生成所有随机排列,利用广播机制加速。

2. 囚徒查询的并行化

问题: 逐囚徒循环调用 choose_wisely 或 choose_randomly,无法利用硬件并行性。

优化方案:

链式策略向量化:

构建囚徒-盒子追踪矩阵(形状:[n, max_days, k]),记录每个囚徒每天每一步的盒子索引。

通过矩阵运算一次性计算所有路径结果(如 boxes[追踪矩阵] 直接映射路径)。

随机策略向量化:

预生成所有囚徒每天随机选择的 k 个盒子索引(形状: $[n, max_days, k]$),通过 numpy 索引直接提取目标值。