Project Report

Team #12

WANG Zeyu

YANG Xirui

Wu Tianxiao

April 6, 2025

Contents

- Problem definition
- 2 Data Prepare
 - Pearson, Kendall and Spearman correlation coefficient
 - k-nearest neighbors imputer
 - Dimension raising
- Oata Analysis
- Solution
 - Solution Task 1
 - Solution Task 2
 - Solution Task 3
- Summary

Problem definition

- Task 1: Given the dataset including features (e.g. academic metrics, aptitude scores, and soft skill ratings) of each student, the goal is to predict whether a student will be successfully placed in a job.
- Task 2:
- **Task 3**: Given the anonymized numerical features with the transaction amount, the goal is to detect fraudulent transactions.

Team #12 Problem definition April 6, 2025 3 / 18

Pearson, Kendall and Spearman correlation coefficient

- Pearson correlation coefficient: Measures linear correlation between two sets of data: Sensitive to the data.
- Kendall correlation coefficient: Measures the rank correlation: Robust to outliers: Only effective for monotonic relationships; More robust to ties and suitable for smaller datasets.
- **Spearman correlation coefficient**: Measures the rank correlation; Robust to outliers; Only effective for monotonic relationships; Can be influenced more by large tied ranks and suitable for larger datasets.

Data Prepare April 6, 2025 4 / 18

k-nearest neighbors imputer

The k-nearest neighbors imputer estimating the missing values using the k-nearest neighbors which:

- Works with both numerical and categorical data;
- Don't need any assumption about the data distribution;
- Can be slow for large datasets;
- Sensitive to the neighbors and the distance metric.

Dimension raising

In order to deal with the nonlinearity with the logistic regression, we use the dimension raising where for scalar data x_i and a given degree d, we compute a vector

$$(x_i, x_i^2, \ldots, x_i^d)$$

as the new data.

Figure: Example for dimension raising. The left shows that origin data, where the data is not linearly separable, while the right shows the data after dimension raising, where the y_2 is easy to be separated by a line.

Logistic regression

The logistic regression is a widely used linear classification model which:

- Will be less prone to overfitting;
- Can't catch the nonlinearity;
- Might be sensitive to the outliers;
- Can be easily expanded to categorical variables.

Decision tree

The decision tree is a decision support recursive partitioning structure which:

- Don't require normalization or standardization of data;
- Can handle both categorical and numerical data;
- Will be prone to overfitting and sensitive to the noise;
- Not suitable for large dataset.

Multilayer perceptron (MLP)

The multilayer perceptron (MLP) is a basic kind of neural network which:

- Can handle nonlinearity (or approximate any function);
- Can automatically extract features during training;
- Can handle large datasets;
- Will be sensitive to hyperparameters and noise.

Task 1 - Overview

Team #12 Solution April 6, 2025 10 / 1

Task 2 - Overview

Team #12 Solution April 6, 2025 11 / 1

Figure: Overview Flowchart.

Team #12 Solution April 6, 2025 12 / 18

Task 3 - Distribution Analysis

Figure: Data visualization for task 3. The top shows the parallel coordinate plot for each features, and the below shows some features that can be linearly separable.

Team #12 Solution April 6, 2025 13 / 18

Task 3 - Correlation Coefficient

Figure: Correlation coefficient for each features.

We droped the features with all the correlation coefficient less than a threshold (e.g. 0.1).

Task 3 - Preformance - Logistic Regression

Penalty	Dimension Raising (Degree)	Feature Selection	F1 Score	Time/Mem
None	None	False	0.958580	19.5(s)/866(MB)
None	2	False	0.961884	33.5(s)/915(MB)
None	3	False	0.962137	49.6(s)/973(MB)
Lasso	None	False	0.957949	21.5(s)/854(MB)
Ridge	None	False	0.955308	19.8(s)/853(MB)
None	None	True	0.958186	16.5(s)/825(MB)

Table: Preformance for logistic regression. We tested each option with 5 times cross validation (80% for training set, 20% for training set) and 1 times that using all data as training set. The f1 scores showed in the table is the average f1 score for cross validation, the time is the total time for 6 run, and the memory usage is tested using all the data as training set.

Task 3 - Preformance - MLP

Dropout	Hidden Size	Feature Selection	F1 Score	Time/Mem
0.1	32	False	0.952208	31.9(s)/929(MB)
0.2	32	False	0.900007	31.1(s)/916(MB)
0.1	32	True	0.948050	31.3(s)/899(MB)
0.1	16	False	0.950315	31.7(s)/929(MB)
0.1	64	True	0.950000	29.7(s)/902(MB)

Table: Preformance for MLP. We tested each option with 5 times cross validation (80% for training set, 20% for training set) and 1 times that using all data as training set. The f1 scores showed in the table is the average f1 score for cross validation, the time is the total time for 6 run, and the memory usage is tested using all the data as training set.

Summary

Team #12 Summary April 6, 2025 17 / 1

Reference I

Team #12 Reference April 6, 2025 18 / 1