3.7.2 Двудольные графы

- Двудольный граф (биграф, четный граф) это граф $G(V,E): V_1 \cup V_2 = V, \ V_1 \cap V_2 = \emptyset$, при этом любое ребро соединяет вершину из V_1 с вершиной из V_2 . Множества V_1 и V_2 называются долями графа G.
- Если граф содержит все ребра, соединяющие множества V_1 и V_2 , то он называется полным двудольным графом.
- Если $|V_1|=m$ и $|V_2|=n$, то полный двудольный граф обозначается $K_{m,n}$.
- **Теорема.** Граф является двудольным тогда и только тогда, когда все его простые циклы имеют четную длину.

3.7.3 Плоский (планарный) граф

Граф называется планарным, если он может быть изображен на плоскости так, что вершинам соответствуют различные точки плоскости, а линии, соответствующие ребрам, не пересекаются.

Любая правильная укладка связного графа порождает разбиение плоскости на отдельные области (грани). Такое разбиение называется плоской картой.

- Внутренней гранью плоского связного графа называется конечная область плоскости, ограниченная замкнутым маршрутом и не содержащая внутри себя ни вершин, ни ребер графа. Этот маршрут называется границей грани.
- Часть плоскости, состоящая из точек, не принадлежащих ни графу и ни одной из его внутренних граней, называется внешней гранью.
- Для любой плоской карты имеет место формула 3йлера: n-m+r=2,
- где n число вершин, m число ребер, r число областей карты (включая внешнюю).
- Графы $K_{3,3}$, K_5 не являются планарными.

3.7.4 Направленные орграфы и сети

Если в графе ориентировать все ребра, то получится орграф, который называется направленным

Если в орграфе $deg^+(v)=0$, то такая вершина *источник*; Если $deg^-(v)=0$, то такая вершина сток.

Направленный орграф с одним источником и с одним стоком называется сетью.

3.8 Операции над графами.

- 1. Дополнением графа $G_1(V_1, E_1)$ называется граф $G_2(V_2, E_2)$: E_1 : $V_2 = V_1$, $E_1 = E_1 = (V_1 \times V_1) \setminus E_1$.
- Обозначение: $G_1(V_1, E_1)$.
- Дополнение графов есть дополнение отношений.
- 2. Удаление вершины v из графа $G_1(V_1,E_1)$ (при условии $v ∈ V_1$):
- $V = V_1 \setminus \{v\}$, $E = E_1 \setminus \{e = (v_1, v_2) \mid v_1 = v$ или $v_2 = v\}$. Обозначение: $G = G_1(V_1, E_1) v$.
- 3. Добавление вершины v в граф $G_1(V_1,E_1)$ (при условии $v \notin V_1$): $V = V_1 \cup \{v\}$, $E = E_1$.
- Обозначение: $G = G_1(V_1, E_1) + v$.

- 4. Удаление ребра e из графа $G_1(V_1,E_1)$ (при условии $e \in E_1$): $V = V_1$, $E = E_1 \setminus \{e\}$;
- $G = G_1(V_1, E_1) e.$
- 5. Добавление ребра e в граф $G_1(V_1,E_1)$ (при условии $e \notin E_1$): $V = V_1$, $E = E_1 \cup \{e\}$. Обозначение: $G = G_1(V_1,E_1) + e$.
- 6. Отождествление вершин v_1, v_2 графа $G_1(V_1, E_1)$: замена этой пары новой вершиной v, причем все ребра, которые вели в удаленные вершины, заменяются ребрами, ведущими в v.
- Если эти вершины были смежными, то их отождествление называется стягиванием ребра.

- 7. Стягивание подграфа A графа $G_1(V_1,E_1)$: $V = V_1 \setminus A \cup \{v\}$, $E = E_1 \setminus \{e = (u,v) \mid u \in A \text{ или } v \in A\} \cup \{e = (u,v) \mid u \in \Gamma(A) \setminus A\}$.
- Обоз.: $G = G_1(V_1, E_1)/A$.
- 8. Подразбиение ребра графа $G_1(V_1, E_1)$: удаление ребра и добавление новой вершины, которая соединяется ребром с каждой вершиной удаленного ребра.
- 9. Размножение вершины v графа $G_1(V_1,E_1)$: $V = V_1 \cup \{v'\}$, $E = E_1 \cup \{(v,v')\} \cup \{e = (u,v') \mid u \in \Gamma^+(v)\}$.
- Обозначение: $G = G_1(V_1, E_1) \uparrow v$.
- 10. Объединением графов $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$ ($V_1 \cap V_2 = \emptyset$ и $V_1 \cap V_2 = \emptyset$) называется граф G(V, E), в котором $V_1 \cap V_2 = \emptyset$. Обозначение: $G = G_1 \cup G_2$.

11. Соединением графов $G_1(V_1,E_1)$ и $G_2(V_2,E_2)$ ($V_1 \cap V_2 = \emptyset$ и $V_1 \cap V_2 = \emptyset$) называется граф G(V,E), в котором $V = V_1 \cup V_2$, $E = E_1 \cup E_2 \cup \{e = (v_1,v_2) \mid v_1 \in V_1, v_2 \in V_2\}$.

Обозначение: $G = G_1 + G_2$.

12. Произведением графов $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$ ($V_1 \cap V_2 = \emptyset$ и $V_1 \cap V_2 = \emptyset$) называется граф $G(V, E): V = V_1 \times V_2$, и вершины (u_1, u_2) и (v_1, v_2) смежны только в том случае, если либо $u_1 = v_1$ и u_2 смежна с v_2 , либо $u_2 = v_2$ и u_1 смежна с v_1 .

Обозначение: $G = G_1 \times G_2$.