3.13. A stochastic process $X_t(\cdot)$: $\Omega \to \mathbf{R}$ is continuous in mean square if $E[X_t^2] < \infty$ for all t and
$\lim_{s \to t} E[(X_s - X_t)^2] = 0 \text{for all } t \ge 0.$
a) Prove that Brownian motion B_t is continuous in mean square.
Since
EB-]=+<0, V+ER
and
Im E[(Bs-B+)2]= Im(s-+)=0, V+>0
3 —) {
Hence, By is continuous in mean Equare.
b) Let $f: \mathbf{R} \to \mathbf{R}$ be a Lipschitz continuous function, i.e. there exists
$C < \infty$ such that $ f(x) - f(y) \le C x - y \text{for all } x, y \in \mathbf{R} . $
Prove that $ - $
$Y_t := f(B_t)$
is continuous in mean square.
By the foot that & 15 Lipschitz 14- Y5 1 C 14-5) Dominated
1,e., Dominated
$E\left[\frac{1}{2} + -\frac{1}{2}\right]^{2} \le E\left[\frac{1}{2} + -\frac{1}{2}\right]^{2}$ Convergence
Taking the limit as +>5.
1.e., $E \left[\frac{1}{1-6} \right]^2 \le E \left[\frac{1}{1-6} \right]^2$ Taking the limit as $+ \rightarrow 5$, $\lim_{t \to 6} E \left[\frac{1}{1-6} \right]^2 = E \left[\lim_{t \to 6} \left(\frac{1}{1-6} \right) \right]^2 = 0$ $\lim_{t \to 6} E \left[\frac{1}{1-6} \right]^2 = E \left[\lim_{t \to 6} \left(\frac{1}{1-6} \right) \right]^2 = 0$
+>6 +>6 +>6
Therefore,
Therefore, Im E[14-45 =]=0, 4070
Moreovec

$$E[Y^2] = E[f^2(Br)] < \infty$$

since f is continuous.

c) Let X_t be a stochastic process which is continuous in mean square and assume that $X_t \in \mathcal{V}(S,T)$, $T < \infty$. Show that

$$\int_{S}^{T} X_{t} dB_{t} = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t, \omega) dB_{t}(\omega) \qquad \text{(limit in } L^{2}(P)\text{)}$$

where

$$\phi_n(t,\omega) = \sum_j X_{t_j^{(n)}}(\omega) \mathcal{X}_{[t_j^{(n)},t_{j+1}^{(n)})}(t) , \qquad T < \infty .$$

(Hint: Consider

$$E\left[\int_{S}^{T} (X_{t} - \phi_{n}(t))^{2} dt\right] = E\left[\sum_{j} \int_{t_{j}^{(n)}}^{t_{j+1}^{(n)}} (X_{t} - X_{t_{j}^{(n)}})^{2} dt\right].$$

Consider

$$\mathbb{E}\left[\int_{s}^{+}(X_{t}-\varrho_{n}(t))^{2}dt\right]=\mathbb{E}\left[\sum_{i}\int_{t_{i}^{\infty}}^{+}(X_{t}-X_{t_{i}^{\infty}})^{2}dt\right]$$

Taking the limit of n -> 00,