```
Follow(S) := \{\$\}
Ripeti il ciclo sequente, finché nessun Follow(x) viene più modificato in una iterazione:
       Per ogni produzione X \rightarrow \alpha Y \beta
                                                           % Come vedremo dopo, una certa produzione può avere più mapping
              Follow(Y) := Follow(Y) \cup (First(\beta) \ {\epsilon})
              Se \beta = \varepsilon oppure \varepsilon \in First(\beta)
                      Follow(Y) := Follow(Y) \cup Follow(X);
                                                                                 % Freccia da Follow(X) a Follow(Y)
Esercizio 1
Grammatica
S -> a A B b
A -> A c | d
B -> C D
C \rightarrow e \mid \epsilon
D \rightarrow f \mid \epsilon
       FIRST
                                    FOLLOW
S:
                                    $
       а
                                    e f b c
A:
      d
     e, f, ε
B:
C:
     e, ε
     f, ε
CALCOLO DEI FOLLOW
S \rightarrow a A B b
Ha due mapping:
       S \rightarrow a A B b
                                                                                 S \rightarrow a A B b
       X \rightarrow \alpha \quad Y \quad \beta
                                                                                 X \rightarrow \alpha Y \beta
       Follow(A) += (First(Bb) \ \{\epsilon\}) = \{e, f, b\}
                                                                         Follow(B) += (First(b) \ \{\epsilon\}) = \{b\}
A -> A c
Ha un mapping:
       A -> A c
       X \rightarrow \alpha Y \beta
       \mathsf{Follow}(\mathbb{A}) \ += (\mathsf{First}(\mathbb{C}) \setminus \{\varepsilon\}) = \{\mathbb{C}\}
A \rightarrow d
Non ha mapping validi
B -> C D
Ha due mapping:
                C D
       B ->
                                                                         B -> C D
       X \rightarrow \alpha \quad Y \quad \beta
                                                                         X \rightarrow \alpha \quad Y \quad \beta
       \mathsf{Follow}(\mathtt{C}) \ += (\mathsf{First}(\mathtt{D}) \setminus \{\epsilon\}) = \{\mathtt{f}\}
                                                                          Follow(D) += (First(\varepsilon) \ {\varepsilon}): \emptyset
       Follow(C) < - Follow(B), perché \varepsilon \in First(D)
                                                                          Follow(D) < - Follow(B), perché \beta = \epsilon
C -> e
Non ha mapping validi
C -> ε
Non ha mapping validi
D -> f
Non ha mapping validi
D -> ε
```

Per ogni non-terminale X, inizializza Follow(X) = \emptyset

Non ha mapping validi

Esercizio 2

Grammatica

S -> aA | bBc A -> Bd | Cc B -> e | ϵ C -> f | ϵ

	<u>FIRST</u>	FOLLOW
S:	a, b	\$
A:	e, d, f, c	\$
B:	e, ε	c, d
C:	f, ε	С

CALCOLO DEI FOLLOW (Omettiamo i mapping invalidi)

S -> aA

Ha un mapping:

S -> a A X -> α Y β Follow(Y) += (First(ϵ) \ { ϵ }): \emptyset

Follow(A) <- Follow(S), perché $\beta = \epsilon$

S -> bBc

Ha un mapping:

 $S \rightarrow b$ B c $X \rightarrow \alpha$ $Y \beta$ Follow(B) += (First(c) \ {\varepsilon} \ {\varepsilon} \) = {\varepsilon} \

A -> Bd

Ha un mapping:

A -> B d X -> α Y β Follow(B) += (First(d) \ { ϵ }) = {d}

A -> Cc

Ha un mapping:

 $A \rightarrow C C$ $X \rightarrow \alpha Y \beta$

Follow(C) += (First(c) \ $\{\epsilon\}$) = $\{c\}$