	H.W.O
<u>1</u>	Linear Regionian Problem with n-training points and d-features
	when n=d> the feature matrix becomes IR nxn where
	F has max singular value of and a very try min.
	singular value.
	Jor y= FW* +e
	$\hat{\omega}_{inv} = F^{-1}y = > \hat{\omega}_{inv} - \omega^* ^3 = 10^{16}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J
	Taking the Gradient Descent Approach, Because
	J(w) = 1 11 Y-FW112 F= VAV-1
	Starting from wo = 0
	$\omega_{E} = \omega_{E1} - \eta \left(F^{T} \left(F_{W_{H}^{-1}} \right) \right)$ Small Should
	Valve makes
	minimizing Wk-W*1/2 the real proced very large!
	d
	Show that: for £70, 11 WEllz < 11 WE-11/2 + 1 & 11/2
	So, we know that WE = WE-1- n FT(FW-y))
	(1) (1) (T (ETF)) (T) (T) (T) (T) (T) (T) (T) (T) (T)
	take norm (1-2) + by side
	take norm (L-2) on both sides,
-	WEII 2 = 11 WE-1 (I- 1 FTF) 2 + 1 FTY 2 WEII 2 = 11 WE-1 2 I I - 1 FTF 2 + 1 FTY 2
	Recall, for gradient descent to conneiges we need to look more closely at I/I+FTF 1/1

0	Of FERMAN then, F= VAVT where max (1) = d.
	And, FTF = (VAVT) T(VAVT)
	= VATVTVAVT where V= orthonormal
(Carried Control of Co	FTF = V 12VT
	1FTF112 = NILL112 = 1/112.
	so, II-FTFNIIZA
	11WEI12 < 11WE-1113 + 7 11=Tyll2
	11WEII 2 = 11WE-112 + 7 11VAVTILIYII,
	YWELLS & HWELLS + 1 & Hylla since max HUAVTH is
	hence shown! entries have ds.
2.	Show that
	ag min 11 y - XW 112 has the same solution
	V V
	as $\hat{W} = (XTX + \xi^{-1})^{-1}X^{T}Y - \hat{U}$.
	and $\hat{X} = \begin{bmatrix} X \\ \Gamma' \end{bmatrix}$, $\hat{Y} = \begin{bmatrix} Y \\ O_{\delta} \end{bmatrix}$
	$(u+g)\times g$ $(u+g)\times 1$
	from O, if we differentiate w.r.t. w,
	$2(\hat{y} - \hat{x}w) \cdot \hat{x}^{T} = 0.$
	XTXW = XTY
	$ \hat{X}^{T}\hat{X}W = \hat{X}^{T}\hat{Y} $ $ W = (\hat{X}^{T}\hat{X})^{-1} \hat{X}^{T}\hat{Y} $ $ NOW $ $ \left(\left[X^{T} \Gamma^{T} \right] \left[X \right] \right)^{-1} \left[X^{T} \Gamma^{T} \right] \left[Y \right] $ $ \partial X (n \times \partial) \times \partial X (n \times \partial) $ $ (n \times \partial) \times \partial X (n \times \partial) $
	now, (XT HT)(X)-1(XT HT)(Y)
	[Oxcuxo) [[] [dxuxo [O4]
	(WK9)X)

Performing block wise matrix multiplication, $ \hat{W} = (XTX + \Gamma T\Gamma)^{-1} [XTY + \Gamma T O_{\delta}] $ $ \hat{W} = (XTX + \xi_{\delta}^{-1})^{-1} [XTY + \tilde{O}] $ $ \hat{W} = (XTX + \xi_{\delta}^{-1})^{-1} XTY - hence proven. $
3. VECTOR CALCULUS
(a) show that 2 (XTC) = CT doc IXN DXI
$= \partial \left[X_1 X_2 \cdots X_n \right] \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix}$
= 2 [X14 + X2 (2 + X3 (3 + Xn CN] dre [1x1
Now, as $X \in \mathbb{R}^n$,
on [on [on] on
= [C1 (2 CN] = CT hence proven)
(b) $\frac{\partial}{\partial x} \ x \ _{2}^{2} = \frac{\partial}{\partial x} (x^{T} x)$ $= \frac{\partial}{\partial x} x^{T} x ^{2} + \cdots + \frac{\partial}{\partial x} x^{T} x ^{2}$ $= \frac{\partial}{\partial x} (x^{T} + x^{T} + x^{T} + \cdots + x^{T})$
$= \frac{3}{2} \left(\frac{1 \times n}{1 \times n} + \frac{1}{2} + \cdots + \frac{1}{2} \right)$
$= [2n_1, 2n_2, \cdots 2n_n]$
= 2 XT
hence proven.

4. RELU Elbow Update Under SUD.

$$f'(n) = W^{(2)} \overline{E}(W^{(1)}n + b)$$

$$|x| |xd | \partial x| |x| | \partial x|$$

(a) Streeting with ONE RELU: ~> 0 0 0 > output O(2, w, b)

 $\phi(n) = \{wntb | wntb>0$ $0 = \{wntb | wntb>0\}$ $0 = \{wntb | wntb>0\}$

(i) Location of the elbow e of the function where it transitions from 0 to samething else.

 $\phi(x) : 0 = \omega x + b$ $\chi = -\frac{b}{\omega}$

	©
0	
(ii)	20 { (O(n)-y) O(n) > 0
	δφ (ο · ω ·
(iii)	$\mathcal{L}(n, \omega, b) = \frac{1}{a} \ \phi(n) - y \ ^2.$
	$\frac{\partial Q}{\partial w} = \frac{\partial Q}{\partial w} \cdot \frac{\partial Q}{\partial w} = \left\{ (\mathcal{O}(n) - y) \cdot \mathcal{N} wn + 5 > 0 \right\}$
8	Ο 0.ω.
(iv)	$\frac{\partial e}{\partial b} = \begin{cases} (\sigma(x) - y) & \omega x + 5 > 0 \end{cases}$
	0° w.
6)	O(n)-y=1
	i) (b(x)=0 Gradient Descent:
	i) $O(x) = 0$ Gradient Descent: $W_t = W_{t-1} - 1(v_w t)$
	of $\phi(x) = 0 \Rightarrow \partial l = 0 \Rightarrow Gradient$
	Sf Ø(N) =0 => Ol =0 => Gradient remains unchanged.
	Su, slope elemais unchanged
	So, slope elemais unchanged and since of the no change in elbow either.
	cooler eight.

6	Homework Process 8 study Group.
(6)	sources => eecs 127_reada, polf > EECS 16B SUD Notes
(6)	worked Andividually
(c)	Number of hours => 5
All Control	