Solución del Examen - 17 de febrero de 2016.

Ejercicio 1.

a. Dados p, q, n, d y e en las hipótesis del criptosistema RSA y las funciones de cifrado $E(x) = x^e$ (mód n) y descifrado $D(y) = y^d$ (mód n). Probar que la función de descifrado funciona como tal; es decir, probar que:

$$D(E(x)) = x \pmod{n} \ \forall x \in \mathbb{Z}_n.$$

- **b**. Dados los primos p = 17, q = 19 y e = 11, calcular la función de descifrado D.
- **c**. Con los mismos datos que en (**b**) cifrar x = 170.

Solución:

- a. Ver notas teóricas (Proposición 5.3.1 de los apuntes de teórico).
- b. n = pq = 17(19) = 323; $\varphi(n) = 16(18) = 288$. La función de descifrado es $D(y) = y^d \pmod{n}$ siendo d tal que $ed \equiv 1 \pmod{\varphi(n)}$. Buscamos entonces d tal que $11d \equiv 1 \pmod{288}$. Realizando el algoritmo de Euclides extendido para 288 y 11 obtenemos que 11(131) 5(288) = 1 y por lo tanto $11(131) \equiv 1 \pmod{288}$ y entonces d = 131.
- c. Debemos calcular $y=E(170)=170^{11}$ (mód 323). Como 17 y 19 son coprimos, esto equivale a hallar y tal que

$$\left\{ \begin{array}{lll} y & \equiv & 170^{11} & (\bmod{\ 17}) \\ y & \equiv & 170^{11} & (\bmod{\ 19}). \end{array} \right.$$

Es decir

$$\left\{ \begin{array}{ll} y & \equiv & 0 \pmod{17} \\ y & \equiv & (-1)^{11} \pmod{19} \equiv -1 \pmod{19}, \end{array} \right.$$

y por lo tanto y = 170; es decir E(170) = 170

Ejercicio 2. Sea G un grupo y $g \in G$.

- **a**. Probar que $\langle g \rangle := \{ g^n : n \in \mathbb{Z} \}$ es un subgrupo de G.
- **b**. Probar que $|\langle g \rangle| = o(g)$
- **c**. Si G es finito, probar que $g^{|G|} = e_G$.

Solución: Ver notas teóricas (Proposición 3.7.4, 3.7.9 y parte (2) del Corolario 3.8.2).

Ejercicio 3.

- a. Hallar todas las soluciones módulo 61 de la ecuación $3x \equiv 10 \pmod{61}$.
- **b**. Sea la ecuación

$$4x \equiv 20 \pmod{100}. \tag{1}$$

- i) Hallar todas las soluciones módulo 100 de la ecuación (1).
- ii) Hallar todas sus soluciones módulo 50 y 25 de la ecuación (1).
- iii) ¿Cuántas soluciones módulo 1000 tiene la ecuación (1)?

Solución:

a. $3x \equiv 10 \pmod{61} \Leftrightarrow \exists y \in \mathbb{Z} : 3x - 61y = 10$. Realizando el algoritmo de Euclides extendido obtenemos que 3(41) - 61(2) = 1 y por lo tanto, 3(410) - 61(20) = 10. Por el teorema de ecuaciones diofánticas, como $\operatorname{mcd}(3,61) = 1$ tenemos que todas las soluciones de 3x - 61y = 10 son $(x,y) = (410 + 61k, 20 + 3k), k \in \mathbb{Z}$. Por lo tanto todas las solciones de la ecuación $3x \equiv 10 \pmod{61}$ son $x = 410 + 61k, k \in \mathbb{Z}$; es decir, hay una única solución módulo $61, x \equiv 410 \pmod{61} \equiv 44 \pmod{61}$.

Otra forma de resolverlo es, como $\operatorname{mcd}(3,61) = 1$, 3 es invertible módulo 61. Hallamos primero el inverso de 3 módulo 61: como 3(41) - 61(2) = 1 resulta que $3(41) \equiv 1 \pmod{61}$ y por lo tanto $3^{-1} \equiv 41 \pmod{61}$. Entonces $3x \equiv 10 \pmod{61} \Leftrightarrow x \equiv 10(41) \pmod{61} \equiv 410 \pmod{61} \equiv 44 \pmod{61}$.

Otra forma, es notando que $10 \equiv -51 \pmod{61} \equiv 3(-17) \equiv 44 \pmod{61}$ y como $\operatorname{mcd}(3,61) = 1$, podemos cancelar el 3 de la ecuación módulo 61. Es decir, $3x \equiv 10 \pmod{61} \Leftrightarrow 3x \equiv 3(-17) \pmod{61} \Leftrightarrow x \equiv (-17) \pmod{61} \equiv 44 \pmod{61}$.

b. Como $\operatorname{mcd}(4,100) = 4$ y 4 | 20, el teorema de ecuaciones con congruencias (Teorema 2.4.2 de los apuntes) nos dice que la ecuación tienen solución y además que hay exactamente $\operatorname{mcd}(4,100) = 4$ soluciones distintas módulo 100. Como $\operatorname{mcd}(4,100) = 4 \neq 1$ no se puede cancelar el 4 en la ecuación módulo 100; la cancelativa que podemos aplicar es la que dice que si $c \mid n$ entonces $ca \equiv cb \pmod{n} \Leftrightarrow a \equiv b \pmod{\frac{n}{c}}$ (ítem 2 de la Proposición 2.2.4 de los apuntes). Por lo tanto, cancelando el 4 obtenemos

$$4x \equiv 20 \pmod{100} \Leftrightarrow x \equiv 5 \pmod{25} \Leftrightarrow x = 5 + 25k, k \in \mathbb{Z}.$$

- i) Por lo dicho antes, hay 4 soluciones distintas módulo 100 y por la cuenta anterior tenemos que ellas son $x_1 = 5$, $x_2 = 5 + 25 = 30$, $x_3 = 5 + 2(25) = 55$ y $x_4 = 5 + 3(25) = 80$.
- ii) Como vimos antes, la ecuación es equivalente a $x \equiv 5 \pmod{25}$ y por lo tanto x = 5 es la única solución módulo 25. Como las soluciones son x = 5 + 25k, $k \in \mathbb{Z}$ tenemos que o x = 5 + 50k o x = 30 + 50k, $k \in \mathbb{Z}$; por lo tanto hay dos soluciones módulo 50, ellas son $x_1 = 5$ y $x_2 = 30$.
- iii) Como 1000=25(40), y las soluciones son de la forma $x=5+25k, k\in\mathbb{Z}$; las (40) soluciones obtenidas con $k=0,1,\cdots,39$ no son congruentes entre sí módulo 1000 (ya que la diferencia entre cualquier par de ellas es menor que 1000), y además, cualquier otra solución será congruente con una de éstas módulo 1000. Pues si x=5+25k y k=40q+r con $r\in\{0,1,\cdots,39\}$ entonces $x=5+25k=5+25(40q+r)=5+1000q+25r\equiv 5+25r$ (mód 1000). Por lo tanto hay exactamente 40 soluciones distintas módulo 1000.

Ejercicio 4.

- a. Probar que 2 es raíz primitiva módulo 59.
- b. Hallar el orden de 57 módulo 59.
- **c**. Encontrar todos los homomorfismos $f: U(59) \to S_3$.
- d. Hallar una raíz primitiva módulo 118.

Solución:

a. Como $\operatorname{mcd}(2,59) = 1$ y $\varphi(59) = 58 = 2 \times 29$, por la parte 3 (o 4) de la Proposición 4.1.4 de los apuntes, tenemos que 2 es raíz primitiva módulo 59 si y sólo si $2^2 \not\equiv 1 \pmod{59}$ y $2^{29} \not\equiv 1 \pmod{59}$.

Tenemos que $2^2 = 4 \not\equiv 1 \pmod{59}$ y que $2^4 = 16$, $2^8 = 16^2 = 256 \equiv 20 \pmod{59}$, $2^{16} \equiv 20^2 \pmod{59} \equiv 400 \pmod{59} \equiv 46 \pmod{59}$; por lo tanto $2^{29} = 2^{16} 2^8 2^4 2 \equiv 46 \times 20 \times 16 \times 2 \pmod{59} \equiv 58 \pmod{59} \equiv -1 \pmod{59} \not\equiv 1 \pmod{59}$. Por lo tanto 2 es raíz primitiva módulo 59.

b. Como | U(59) |= $58 = 2 \times 29$ y para todo $g \in U(59)$, o(g) divide a | U(59) |, tenemos que las posibilidades para o(57) son 1, 2, 29 y 58. Como $57 \not\equiv 1 \pmod{59}$ y $57^2 \equiv (-2)^2 \pmod{59} \equiv 4 \pmod{59} \not\equiv 1 \pmod{59}$, tenemos que $o(57) \not\equiv 1, 2$.

Por otro lado, $57^{29} \equiv (-2)^{29} \pmod{59} \equiv (-1)^{29}2^{29} \pmod{59} \equiv (-1)(-1) \pmod{59} \equiv 1 \pmod{59}$; por lo tanto, o(57) = 29.

- c. Por la parte a) tenemos que U(59) es cíclico y generado por 2. Por lo tanto, todo elemento de U(59) es de la forma 2^k , y entonces para dar un homomorfismo $f:U(59)\to S_3$, basta con dar la imagen de 2; ya que luego $g(2^k)=f(2)^k$. Por la proposición 3.9.9, para que el homorfimo esté bien definido, basta con dar $f(2)\in S_3$ tal que $o(f(2))\mid o(2)$; es decir f(2) tal que $f(2)\mid 58$. Como los elementos de S_3 tienen orden 1, 2 o 3, las posibilidades para o(f(2)) son 1 y 2. El único elemento de S_3 con orden 1, es el neutro e=Id; y los elementos de S_3 con orden 2 son $\tau_1=\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}$, $\tau_2=\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}$, $\tau_3=\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$. Entonces hay cuatro homomorfismos $f:U(59)\to S_3$; ellos son $f(2^k)=Id$, $f(2^k)=\tau_1^k$, $f(2^k)=\tau_2^k$ y $f(2^k)=\tau_3^k$.
- d. Como $118 = 2 \times 59$, 59 es primo, 2 es raíz primitiva módulo 59 y 2 es par; por el Lema 4.1.13 tenemos que 2 + 59 es raíz primitiva módulo 2×59 ; es decir que 61 es raíz primitiva módulo 118.

_