CS578: Blockchain Technology: A Software Engineering Perspective

Dr. Raju Halder

EDITOR'S PICK | 23,388 views | Apr 19, 2018, 11:09pm

Bitcoin's Energy Consumption Can Power An Entire Country --But EOS Is Trying To Fix That

Sherman Lee Contributor ①

I write about deep tech, crypto, and artificial intelligence.

Bitcoins Energy Consumption An Unsustainable Protocol That Must Evolve?

Estimated Electricity Cost Of Mining One Bitcoin By Country

The Bitcoin POW mechanism is so costly that it consumes the same amount of electricity it takes to power a country like Switzerland in one year. Bitcoin's current estimated annual electricity consumption is 61.4 TWh, which is also equivalent to 1.5% of the electricity consumed in the United States.

A Review of Blockchain Architecture and Consensus Protocols: Use Cases, Challenges, and Solutions

by L. Ismail and H. Materwala (Symmetry 2019, 11, 1198)

Proof of X

Proof of Stake

And others: Burn, Elapsed time, Capacity

Proof-of-X

• Proof-of-X (PoX) schemes is an umbrella term for systems that replace PoW with more useful and energy-efficient alternatives to Proof-of-Work (PoW).

Proof-of-Stake

Miner/Mining Vs. Validator/Minting or forged

- POS requires people to prove the ownership of a certain amount of currency
 - It is believed that people with more currencies would be less likely to attack the network.
 - If richest person attacks, currency value falls and it may be a loss for the attackers!
- Many blockchains adopt PoW at the beginning and transform to PoS gradually.
 - For instance, Ethereum is planning to move from Ethash (a kind of PoW) (Wood, 2014) to Casper (a kind of PoS) (Zamfir, 2015).

Proof-of-Stake

- PoS alternatives consume less energy and reach higher transactions per second.
- But they have also still to prove their attackresistance in real open public settings like PoW so far.
- Challenge for proof-of-stake systems is to keep track of the changing stakes of the stakeholders.

Proof-of-Stake

• Selection by account balance would result in undesirable centralization because the single richest member would have a permanent advantage as it gets richer.

• Different versions:

- random selection,
- age-based stake selection

Proof-of-Stake: Coin-Age (Peercoin (King and Nadal, 2012))

- Coin-Age=Number of Coins Staked * Number of Days Coins Staked.
- Example: 30 coins hold for 10 days will have coin age of 300 coin days.
- Forger with the maximum value of coin-age is selected to forge the block.
 - In order to participate in the process of forging, the coins must be staked for a minimum of 30 days (to avoid repetitive selection of a forger with a greater number of coins).
 - A malicious user may increase its probability of forging a block by holding the stake for a long period of time. To prevent this, the stakeholding period is capped at the maximum of 90 days.
- Once a block is created by a forger, the coin-age value of the coins staked by that forger becomes zero.

Proof-of-Stake: Randomized block selection method (Blackcoin (Vasin, 2014))

- A forger with a specific **hit value** is selected for forging the next block.
- Each forger encrypts the hash of the previous block using its private key. The encrypted value is hashed, and the first 8-bytes of the hashed output are converted into a number known as **hit value**.
- The forger with the hit value below a target value is selected for the process of forging. $Target = T_b * S * B_e$
 - T_b is the base target value calculated by multiplying the previous block target value and the amount of time that was required to forge that block,
 - S is the time elapsed since the last block forged and
 - B_e is the coins at stake.
- To make the selection based on the capability of miner, target value computation involves the number of coins staked by the miner.

Proof-of-Stake: Randomized block selection method (Blackcoin (Vasin, 2014))

• If the hit value of more than one forger is below the target value, then the forger with a high value of cumulative difficulty is selected

$$D_{cb} = D_{pb} + \frac{2^{64}}{T_b}$$

• where D_{pb} is the previous block's difficulty (the level of effort to create the previous block).

Delegated Proof-of-Stake

- The major difference between POS and DPOS is that POS is a direct democratic while DPOS is representative democratic.
- In DPoS, a group of nodes known as witnesses (also called delegates) are elected by the stakeholders based on a voting process (voting power is proportionately weighted based on the stake).
- The first N witnesses with the highest votes are then selected. N is selected such that 50% of the nodes have voted for these many witnesses.
- Each witness in the group mines a block in a round-robin fashion. Once all the witnesses in the group have had their turn, the list of witnesses is shuffled, and the round-robin continues.
- Users can also delegate their voting power to another user who will vote on their behalf.

Delegated Proof-of-Stake

• Higher Throughput: With significantly fewer nodes to validate the block, the block could be confirmed quickly, making the transactions confirmed quickly.

• Dishonest delegates could be voted out easily.

• Examples: Steem, BitShares, Cardano, Nano

Proof of Stake Velocity

- In PoS, coins held over time accumulate Coin Age linearly.
- PoSV introduces a non-linear coin-aging function in which Coin Age is accumulated more quickly in the first few days and weeks after a transaction than in later weeks.
- People who use their coins to stake regularly and sign blocks every 2 weeks or less are thereby able to earn up to 20% more rewards than people who keep their wallets offline for extended periods of time.
- This extra incentive to maintain an active wallet in turn increases the security by ensuring that larger numbers of coins are being actively staked.
- Reddcoin network by Larry Ren

Proof of Stake Velocity

• A trinomial function for the first 7 days of Coin Age accumulation, followed by an logarithmic function (exponential decay function) rate beyond 7 days.

Proof-of-Space

• Dziembowski et al. proposed proof of space (PoSpace) also known as proof of capacity.

• A miner with enough disk space wins the right to generate the next block in the chain.

• For example, Spacecoin, Chia, and Burstcoin.

• Two steps: *plotting* (generation of data blocks which is one time process) and *mining*

Proof-of-Space

PoSpace consumes less energy than PoW.

• Does not favor the rich always as in case PoS.

• Can be prone to malware attacks as the plot of hashes stored in the hard disk can be easily attacked and tampered with.

Proof-of-Deposit

- Miners 'lock' a certain amount of coins, which they cannot spend for the duration of their mining.
- One such system is Tendermint, where a miner's voting power is proportional to the amount of coins they have locked.
- Deposit could be revoked if they misbehaved.

Proof-of-Activity

- To combine the benefits of POW and POS, proof of activity (Bentov et al., 2014) is proposed.
- In proof of activity, a mined block (based on PoW) needs to be signed by N validators (PoS) to be valid.
- In that way, if some owner of 50% of all coins exists, he/she cannot control the creation of new blocks on his/her own.
- Since POA marries POW and POS, it draws criticism for its partial use of both.

Proof of Authority

- leverages identity instead of coins
- the PoA consensus algorithm is usually reliant upon:
 - valid and trustworthy identities: validators need to confirm their real identities.
 - difficulty to become a validator: a candidate must be willing to invest money and put his reputation at stake. A tough process reduces the risks of selecting questionable validators and incentivize a long-term commitment.
 - a standard for validator approval: the method for selecting validators must be equal to all candidates.
- Kovan and Rinkeby, the two Ethereum testnets, also use PoA as a consensus mechanism. Microsoft Azure is another example where the PoA is being implemented.

Proof-of-Burn

- Method for distributed consensus and an alternative to Proof of Work and Proof of Stake.
- Miners prove that they have destroyed a quantity of coins, for example by sending them to a irretrievable address, known as eater address
- Eater has a public key associated with no private key making it impossible to retrieve the coins from that account.
- Slimcode implemented this approach in 2014 but has recently been discontinued.

Proof-of-Burn

• Once the transactions are recorded, a burn hash for each transaction is calculated using SHA-256, and the miner with the least value of burn hash wins the mining right.

 $Burn \ hash = (Internal \ hash) \times Multiplier$

- The internal hash is calculated by hashing together the burned transaction hash value, the time elapsed after burning the coins and the current block number.
- The multiplier is inversely proportional to the burned coins, increasing the probability of a miner burning more coins to be selected.

 $Multiplier = \frac{e^{\frac{T_b}{T_d}}}{Burned\ coins}$

• where T_b is the time elapsed from the time the coins were burned and T_d is the time after which the coin will decay.

Proof-of-Elapsed-Time

- Often used on the permissioned blockchain networks.
- Each node in the blockchain network generates a random wait time and goes to sleep for that specified duration.
- The one to wake up first that is, the one with the shortest wait time wakes up and commits a new block to the blockchain, broadcasting the necessary information to the whole peer network
- The same process then repeats for the discovery of the next block.

Proof-of-Elapsed-Time

- The POET network consensus mechanism needs to ensure two important factors:
 - First, that the participating nodes genuinely select a time that is indeed random and not a shorter duration chosen purposely by the participants in order to win, and
 - Second, the winner has indeed completed the waiting time.

Proof-of-Elapsed-Time

• The POET concept was invented during early 2016 by Intel.

• It offers a readymade high tech tool to solve the computing problem of "random leader election."

Hyperledger Fabric: PBFT

• Practical byzantine fault tolerance (PBFT) is a replication algorithm to tolerate byzantine faults (Miguel and Barbara, 1999).

• Hyperledger Fabric (hyperledger, 2015) utilises the PBFT as its consensus algorithm since PBFT could handle up to 1/3 malicious byzantine replicas.

Ripple

- Ripple (Schwartz et al., 2014) is a consensus algorithm that utilises collectively-trusted subnetworks within the larger network.
- In the network, nodes are divided into two types: server for participating consensus process and client for only transferring funds.
- In contrast to that PBFT nodes have to ask every node in the network, each Ripple server has a Unique Node List (UNL) to query.

Ripple

- UNL is important to the server. When determining whether to put a transaction into the ledger, the server would query the nodes in UNL.
- If the received agreements have reached 80%, the transaction would be packed into the ledger.
- For a node, the ledger will remain correct as long as the percentage of faulty nodes in UNL is less than 20%.

Consensus: A Comparison

Table 2 Typical consensus algorithms comparison

Property	PoW	PoS	PBFT	DPOS	Ripple	Tendermint
Node identity	Open	Open	Permissioned	Open	Open	Permissioned
management						
Energy saving	No	Partial	Yes	Partial	Yes	Yes
Tolerated	<25%	< 51%	< 33.3%	< 51%	< 20%	< 33.3%
power	computing	stake	faulty	validators	faulty nodes	byzantine
of adversary	power		replicas		in UNL	voting power
Example	Bitcoin	Peercoin	Hyperledger	Bitshares	Ripple	Tendermint
			Fabric			

A COMPARISON OF SOME WELL-KNOWN BLOCKCHAIN SYSTEMS

Platform	Network Type	Purpose	Prog. Language	Consensus Mechanism	Hash Functions	Signatures	Application
Bitcoin	Public/ Private permission -less	B2B,B2C operations	Golang, C++	PoW	SHA256, RIPEMD160	ECDSA, Multi- Signature	Government, financial, audit trails etc.
Ehereum	Public/ Private permission -less	B2C business	Solidity, Serpent ,LLL	PoW(PoS- in future)	SHA256, Ethash, RIPEMD160	ECDSA	banking, commodity trade finance, supply chain mang., insurance etc.
Hyperledger Fabric	Private, permission ed	B2B business	Golang, Chaincode written in Kotlin, Java	PBFT	SHA 2	ECDSA	Supply chain for pharmaceuticals, trade financing, smart energy etc.
MultiChain	Private, permission ed	B2B operations	Python, C#, JavaScript, PHP,Ruby	PBFT	SHA256	ECDSA	Financial transactions, e-commerce etc.
Litecoin	Public/ Private permission -less	B2B,B2C operations	Golang, C++	PoW	SHA-256, SCrypt	ECDSA, Multi- Signature	Banking, financial services etc.
BigchainDB	Public/ Private permissionl ess	B2B operations	SQL, NoSQL	BFT, federation with voting permissions	SHA3-256	Ed25519, EdDSA	Intellectual property, human resources, identity verficatio, supply chain, land registry etc.
Quorum	Private permission ed	B2B operations	Golang, Solidity	Majority voting, on- demand creation	SHA3-512	ECDSA	Banking, financial, insurance services etc.

Proof of X: Attacks

- nothing-at-stake attack: A miners are incentivized to extend every potential fork. Since it is computationally cheap to extend a chain, in the case of forks, rational miners mine on top of every chain to increase the likelihood of getting their block in the right chain.
- grinding attack: A miner re-creates a block multiple times until it is likely that the miner can create a second block shortly afterwards.
- long-range attack: An attacker can bribe miners to sell their private keys. If these keys had considerable value in the past, then the adversary can mine previous blocks and re-write the entire history of the blockchain.