2022-2023 MP2I

DM 16, pour le mardi 09/05/2023

PROBLÈME Matrices semblables à leur inverse

Partie I. Matrices semblables

Soient $n \in \mathbb{N}^*$ et A, B deux matrices dans $\mathcal{M}_n(\mathbb{R})$. On rappelle que A est semblable à B si et seulement si :

$$\exists P \in \mathrm{GL}_n(\mathbb{R}) \ / \ A = P \times B \times P^{-1}.$$

- 1) Montrer que la relation « être semblable à » est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{R})$.
- 2) Quelles sont les matrices semblables à la matrice I_n ? On justifiera.
- 3) Vérifier que si A est semblable à B alors $I_n + A$ est semblable à $I_n + B$.
- 4) Prouver que si A est semblable à B et que B est inversible, alors A est inversible et A^{-1} est semblable à B^{-1} .
- 5) Montrer que si A est semblable à B, alors $\operatorname{tr}(A) = \operatorname{tr}(B)$. La réciproque est-elle vraie? On justifiera.

Partie II. Matrice d'un endomorphisme nilpotent en dimension 3

E désigne un \mathbb{R} espace vectoriel de dimension 3 et u un endomorphisme de E. On fixe \mathcal{B} une base de E et on pose $A = \operatorname{Mat}_{\mathcal{B}}(u)$ la matrice de u dans cette base.

- 6) Soient i et j deux entiers naturels. On note $w: \left\{ \begin{array}{ccc} \ker(u^{i+j}) & \to & E \\ x & \mapsto & u^j(x) \end{array} \right.$
 - a) Justifier que w est une application linéaire et que $\operatorname{Im}(w) \subset \ker(u^i)$.
 - b) Établir que $\dim(\ker(u^{i+j})) \leq \dim(\ker(u^i)) + \dim(\ker(u^j))$.
- 7) On suppose dans cette question que $u^3 = 0_{\mathcal{L}(E)}$ et que $\operatorname{rg}(u) = 2$.
 - a) En utilisant deux fois le résultat de la question précédente, prouver que $\dim(\ker(u^2)) = 2$.
 - b) En déduire qu'il existe un vecteur $e \in E$ tel que $u^2(e) \neq 0_E$, et prouver que la famille $(e, u(e), u^2(e))$ est une base de E.
 - c) Écrire la matrice de u dans cette base et justifier que A est semblable à cette matrice.
- 8) On suppose dans cette question que $u^2 = 0_{\mathcal{L}(E)}$ et que $\operatorname{rg}(u) = 1$.
 - a) Justifier que l'on peut trouver un vecteur $e \in E$ tel que $u(e) \neq 0_E$, et un vecteur $f \in \ker(u)$ tel que la famille (u(e), f) soit libre, puis prouver que la famille (e, u(e), f) est une base de E.
 - b) Écrire la matrice de u dans cette base et justifier que A est semblable à cette matrice.

Partie III. Matrices semblables à leur inverse

Soit $A \in \mathcal{M}_3(\mathbb{R})$ une matrice semblable à une matrice $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ avec $(\alpha, \beta, \gamma) \in \mathbb{R}^3$.

On se propose de prouver que A est alors semblable à son inverse A^{-1} . On pose :

$$N = T - I_3$$
 et $M = N^2 - N$.

- 9) Expliciter les matrices N et M et vérifier que $N^3 = M^3 = 0_{\mathcal{M}_3(\mathbb{R})}$.
- 10) En utilisant des opérations élémentaires sur les lignes/colonnes, montrer que $\operatorname{rg}(M) = \operatorname{rg}(N)$. On rappelle/admet que les opérations élémentaires sur les lignes/colonnes préservent le rang.
- 11) Vérifier que $\operatorname{rg}(N) = 2 \Leftrightarrow (\alpha \neq 0 \text{ et } \gamma \neq 0)$. Quelles sont les autres possibilités pour $\operatorname{rg}(N)$? On précisera à chaque fois une condition nécessaire et suffisante sur α, β, γ .
- 12) N et M sont semblables.
 - a) On suppose dans cette question que $\operatorname{rg}(N) = 2$. Soit $u \in L(\mathbb{R}^3)$ l'application linéaire canoniquement associée à N et $v \in L(\mathbb{R}^3)$ l'application linéaire canoniquement associée à M.
 - i) En utilisant la questions 6, montrer que N est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
 - ii) Montrer le même résultat pour M et en déduire que N et M sont semblables.
 - b) Montrer en utilisant un raisonnement similaire que pour les autres valeurs possibles de rg(N), on a encore N et M semblables.
- 13) Montrer que T est inversible et que $T^{-1} = I_3 + M$. En déduire que T est semblable à T^{-1} .
- 14) Conclure que la matrice A est inversible et que A est semblable à A^{-1} .
- 15) Réciproquement, toute matrice inversible semblable à son inverse est-elle semblable à une matrice de la forme T? On justifiera.