Report of MA678 Midterm Project

Yongrong Chai 11/30/2021

Abstract

Introduction

Companies that specializes in Big Data and Data Science are looking to hire data scientists, and they also provide some courses for their candidates. Although candidates have signed up for the training, some of them still want to leave for another new job. The company needs to know which of these candidates genuinely wants to work for the company after training or looking for a new job because it helps to cut costs and time while also improving the quality of training or course preparation and categorization. Candidates' demographics, education, and experience are all in the hands of those who sign up and enroll.

Method

Data Cleaning and Processing

Variable Description:

Variables	Description
enrollee_id	Unique ID for candidate
city	City code
city_development_index	Development index of the city (scaled)
gender	Gender of candidate
relevent_experience	Relevant experience of candidate

enrolled_university	Type of University course enrolled if any
education_level	Education level of candidate
major_discipline	Education major discipline of candidate
experience	Candidate total experience in years
company_size	No of employees in current employer's company
company_type	Type of current employer
last_new_job	Difference in years between previous job and current job
training_hours	Training hours completed
target	0-Not looking for job change, 1-Looking for a job change

Let's take a look at the data's head and tail:

Job Change of Data Scientists							
	enrollee_id	city	city_development_index	gender	relevent_experience	enrolled_university	edu
1	8949	city_103	0.920	Male	Has relevent experience	no_enrollment	Gra
2	29725	city_40	0.776	Male	No relevent experience	no_enrollment	Gra
3	11561	city_21	0.624		No relevent experience	Full time course	Gra
4	33241	city_115	0.789		No relevent experience		Gra
19155	31398	city_103	0.920	Male	Has relevent experience	no_enrollment	Gra

19156	24576	city_103	0.920	Male	Has relevent experience	no_enrollment	Gra
19157	5756	city_65	0.802	Male	Has relevent experience	no_enrollment	Hig
19158	23834	city_67	0.855		No relevent experience	no_enrollment	Pri

Missing data:

```
HR[HR == ""] = NA
colSums(is.na(HR))
```

##	enrollee_id	city c	ity_development_index
##	0	0	0
##	gender	relevent_experience	enrolled_university
##	4508	0	386
##	education_level	major_discipline	experience
##	460	2813	65
##	company_size	company_type	last_new_job
##	5938	6140	423
##	training_hours	target	
##	0	0	

```
#colSums(is.na(HR)) / nrow(HR)
```

Although the multilevel model I would use was not influenced by missing data. However, it is important to appreciate why they are missing when faced with missing data. In this case, candidates didn't provide their answers when they registered and enrolled, so the missing data was missing at random, deleting the instances with missing data does not lead to biased inference.

Data Selection: From a corporate perspective, gender discrimination is something to avoid when hiring and making decisions, so I don't include <code>gender</code> as one of my predictors. I chose numerical variables: <code>training_hours</code>, <code>city_development_index</code>, and <code>experience</code>; <code>categorical</code> variables: <code>education_level</code> and <code>company_size</code>.

```
HR <- read.csv("aug_train.csv", header = T)
HR$experience<-gsub(c(">","<"),"",as.character(HR$experience))
HR$experience<-gsub("<1","1",as.character(HR$experience))
HR$company_size<-gsub("/","-",as.character(HR$company_size))
HR$experience <- as.numeric(HR$experience)
#str(HR)

HR$education_level[HR$education_level == ""] <- "No_answer"
HR$company_size[HR$company_size == ""] <- "No_answer"</pre>
```

Explanatory Data Analysis

```
source(file = "Final_EDA.R")
p_2v
```

Target under different Family Status and company size

line1

Relationship between training hour & intention to leave by company size and education level

line2

Relationship between city development index & intention to leave by company size and education level

Model Fitting

The model I used is the multilevel logistic model with varying slope and varying intercept. Categorical predictors I used are <code>company_size</code> and <code>education_level</code> because they have higher ICC which measures reliability of ratings or measurements for clusters. Here is the model: glmer(formula = target ~ city_development_index + training_hours + experience + (1|education_level) + (1|company_size), family = binomial(link = "logit"), data = HR_data) summary(model2)

```
HR$training_hours = as.numeric(HR$training_hours)
model1 <- glmer(formula = target ~ city_development_index + training_hours + experien
ce + (1|company_size), family = binomial(link = "logit"), data = HR)

model2 <- glmer(formula = target ~ city_development_index + training_hours + experien
ce + (1|education_level), family = binomial(link = "logit"), data = HR)

model3 <- glmer(formula = target ~ city_development_index + training_hours + experien
ce + (1|education_level) + (1|company_size), family = binomial(link = "logit"), data
= HR)
summary(model2)</pre>
```

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
##
    Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: target ~ city development index + training hours + experience +
##
       (1 | education level)
##
     Data: HR
##
       AIC
##
                      logLik deviance df.resid
                 BIC
##
    19120.5 19159.8 -9555.3 19110.5
                                          19088
##
## Scaled residuals:
##
      Min
                10 Median
                               30
                                       Max
## -1.8304 -0.5077 -0.4027 -0.2709 3.9481
##
## Random effects:
##
   Groups
                   Name
                               Variance Std.Dev.
  education level (Intercept) 0.07941 0.2818
##
## Number of obs: 19093, groups: education level, 6
##
## Fixed effects:
##
                           Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                           3.3715884 0.1652870 20.398 < 2e-16 ***
## city development index -5.3883308 0.1425646 -37.796 < 2e-16 ***
## training_hours
                         -0.0009421 0.0003046 -3.093 0.00198 **
## experience
                         -0.0355314 0.0032118 -11.063 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
               (Intr) cty_d_ trnng_
## cty dvlpmn -0.639
## trainng hrs -0.127 0.014
## experience 0.061 -0.318 -0.002
## optimizer (Nelder Mead) convergence code: 0 (OK)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
```

```
anova(model1, model2, model3)
```

```
## Data: HR
## Models:
## model1: target ~ city_development_index + training_hours + experience + (1 | compa
## model2: target ~ city_development_index + training_hours + experience + (1 | educa
tion level)
## model3: target ~ city development index + training hours + experience + (1 | educa
tion_level) + (1 | company_size)
##
         npar
                AIC
                      BIC logLik deviance Chisq Df Pr(>Chisq)
## model1
           5 18334 18374 -9162.1
                                     18324
## model2
            5 19120 19160 -9555.3
                                     19110
                                              0.0
            6 17965 18012 -8976.3
## model3
                                     17953 1157.9 1 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#summ(model3)

Result

Model Coefficients

fixed effects:

	Est. S	.E. z	val.	р
(Intercept)	2.91	0.32	9.18	0.00
city_development_index	-5.60	0.15	-37.45	0.00
training_hours	-0.00	0.00	-2.68	0.01
experience	-0.03	0.00	-9.24	0.00

random effects:

Group P		arameter St	d. Dev.
company_size	(Intercept)		0.46
education_level	(Intercept)		0.61