浙江大学实验报告

专业:自动化 (控制)姓名:万晨阳学号:3210105327日期:2023.10.23

地点: 工控老楼 112

课程名称:	现代控制理论	_指导老师:	曹峥	实验类型:	
党队复数	斯克肤州的测量	出建		がわ	

一、实验目的

- (1) 掌握图形法即李沙育图, 测量典型环节的频率特性;
- (2) 根据所测量的频率特性,作出伯德图,并求出传递函数;
- (3) 讲一步掌握电子模拟线路的设计方法。

二、实验设备

- (1) 控制理论电子模拟试验箱一台;
- (2) 超低频慢扫描示波器一台;
- (3) 信号发生器一台。

三、实验原理

装

订

线

(1) 对于稳定的线性定常系统或环节,当其输入端加入一正弦信号 $X(t) = X_m \sin \omega t$ 。它的稳定输出是与输入信号同频率的正弦信号,但其幅值和相位将随着输入信号频率 ω 的变化而变化。

$$Y(t) = Y_m \sin(\omega t + \phi) = X_m |G(j\omega)| \sin(\omega t + \phi)$$

幅值比: $|G(j\omega)| = \frac{Y_m}{X_m}$, 相位差: $\phi(\omega) = arg G(j\omega)$ 。

(2) 李萨如图形法

以时间为参变量,逐点绘制输入输出波形采取逐点,形成一个椭圆(或直线)。频率特性可以通过测量椭圆上的相应参数获得。

$$\phi(\omega_i) = -(d_o*360^\circ/d)$$

X, Y 轴都以电压为参变量, 绘制输入输出的电压变化如下:

线

$$t=0, x(0)=0, y(0)=Y_m \sin(\phi(\omega))$$

 X_0 为椭圆和 X 轴交点间的长度的一半, Y_0 为椭圆和 Y 轴交点间的长度的一半,于是有

$$\begin{split} \phi(\omega) &= sin^{-1} \frac{2Y_0}{2Y_m} = sin^{-1} \frac{2X_0}{2X_m} (0to90^\circ) \\ |G(j\omega)| &= \frac{2Y_m}{2X_m}, \ L(\omega) = 20 \, lg \, |G(j\omega)| = 20 \, lg (\frac{2Y_m}{2X_m}) \end{split}$$

四、预习要求(选做)

无

五、实验内容

1、实验操作方法和步骤

(1) 惯性环节的特性测试

按下图连接电路,传递函数为 $G(s)=1/(0.5s+1)^{\circ}$

记录实验的信号频率 f 以及对应的 $_{2X_0}$, $_{2X_m}$, $_{2Y_0}$ 。计算相位差和幅值裕度,与实验所得进行比较。

(2) 二阶开环系统幅频特性

按下图连接电路,传递函数为
$$G(s) = -\frac{10}{(s+1)(0.1s+1)}$$
°

记录实验的信号频率 f 以及对应的 $_{2X_0}$, $_{2X_m}$, $_{2Y_m}$ 。计算相位差和幅值裕度,与实验所得进行比较。

Bode Diagram

2、实验数据记录和处理

(1) 惯性环节的特性测试

相频特性:

在各角频率下,利用示波器合成李沙育图形,判断光点的转向,测量 X_0 和 X_m ,根据图形的形状判断出 $|\phi|$ 的范围,并将以上信息记录至表中。数据处理时,首先根据光点转向判断出相位是超前的还是滞后的,然后再根据 $|\phi|$ 的范围选择相应的公式(如实验原理中表所示)计算得到 $|\phi|$ 的值,最后加上代表相位超前(滞后)的正(负)号,得到 ϕ 的值,一并记录至下表中。最终结果如下所示:

相频特性的测试

f(Hz)	0.2	2	10
ω(rad/s)	1.256	12.56	62.8
X ₀ (V)	0.8	1.40	1.28
$X_m(V)$	1.4	1.49	1.3

φ(°)	-34.86	-70.02	-79.9
理论φ(°)	-32.13	-80.95	-88.17

幅频特性

在各角频率下,利用示波器合成李沙育图形,测量 $2X_m$ 和 $2Y_m$,记录至表中。数据处理时,根据 $2X_m$ 和 $2Y_m$ 计算 $2Y_m$ /2 X_m 以及 $20\lg(2Y_m/2X_m)$,一并记录至下表中。最终结果如下所示:

幅频特性的测试

f(Hz)	0.2	2	10
ω(rad/s)	1.256	12.56	62.8
$2Y_{1m}(V)$	2.32	0.48	0.088
$2Y_{2m}(V)$	2.8	2.98	2.6
$2Y_{1m}/2Y_{2m}$	0.828	0.161	0.033
$20\lg(2Y_{1m}/2Y_{2m})$	-1.63	-15.8	-29.4
理论L	-1.44	-16.06	-29.94

(2) 二阶开环系统幅频特性

相频特性:

装

订

线

在各角频率下,利用示波器合成李沙育图形,判断光点的转向,测量 X_0 和 X_m ,根据图形的形状判断出 $|\phi|$ 的范围,并将以上信息记录至表中。数据处理时,首先根据光点转向判断出相位是超前的还是滞后的,然后再根据 $|\phi|$ 的范围选择相应的公式(如实验原理中表所示)计算得到 $|\phi|$ 的值,最后加上代表相位超前(滞后)的正(负)号,得到 ϕ 的值,一并记录至下表中。最终结果如下所示:

相频特性的测试

1822114 1-84044			
f(Hz)	0.2	2	10
ω(rad/s)	1.256	12.56	62.8
X ₀ (V)	1.15	0.97	0.14
$X_m(V)$	1.49	1.44	1.24
φ(°)	50.54	42.36	6.48
理论φ(°)	121.4	43	9.95

幅频特性

在各角频率下,利用示波器合成李沙育图形,测量 $2X_m$ 和 $2Y_m$,记录至表中。数据处理时,根据 $2X_m$ 和 $2Y_m$ 计算 $2Y_m/2X_m$ 以及 $20\lg(2Y_m/2X_m)$,一并记录至下表中。最终结果如下所示:

幅频特性的测试

f(Hz)	0.2	2	10
ω(rad/s)	1.256	12.56	62.8
$2Y_{1m}(V)$	18	1.14	0.08

$2Y_{2m}(V)$	2.98	2.88	2.48
$2Y_{1m}/2Y_{2m}$	6.04	0.39	0.03
$20\lg(2Y_{1m}/2Y_{2m})$	15.6	-8.05	-29.8
理论L	15.82	-6.12	-32.02

六、实验总结

1、实验结果与分析

(1) 惯性环节的特性测试

根据实验数据,作出开环的幅频和相频特性曲线以及幅频特性曲线的渐近线,如下图所示:

开环的幅频特性曲线:

开环的幅频特性曲线及其渐近线:

开环的相频特性曲线:

装

订

线

实测转折频率约为 2.09rad/s 通过渐近线可以估计实测的开环传递函数为:

$$G(s) = \frac{1}{\frac{1}{2.09}s + 1} = \frac{1}{0.48s + 1}$$

而理论转折频率为 2rad/s, 传递函数为:

$$G(s) = \frac{1}{\frac{1}{2}s+1} = \frac{1}{0.5s+1}$$

从数据上可以看到,实际测量的 L 略大于理论值,导致转折点后移,使得分母中 s 的系数偏小,与渐近线估计吻合。实测 L = $20\log(2Ym/2Xm)$,说明 2Ym/Xm 偏大,由于测试过程中 Xm 会产生一定的变化,无法对 Ym 的偏离程度进行定性分析。

可能原因:信号发生器输出信号幅值控制不够精准。导线接触不良导致信号出现较多的杂波, 从而导致图像线条较粗,给测量 Ym 带来一些误差。同时仪器本身精度也比较低。

(2) 二阶开环系统幅频特性

根据实验数据进行拟合,作出开环的幅频和相频特性曲线以及幅频特性曲线的渐近线。

开环的幅频特性曲线:

装

订

线

开环的幅频特性曲线及其渐近线:

开环的相频特性曲线:

可得实测转折频率约为约为 0.98rad/s 及 10.3rad/s 通过渐近线可以估计实测的开环传递函数为:

$$G(s) = -\frac{10}{(\frac{1}{0.98}s + 1)(\frac{1}{10.3}s + 1)} = -\frac{10}{(1.02s + 1)(0.0975s + 1)}$$

而理论转折频率为 为 1rad/s 及 10rad/s, 传递函数为: $G(s) = \frac{-10}{(s+1)(0.1s+1)}$

可以看到,和理论值相比,转折频率基本接近理论值,求出的系数略有差距,但是误差较小,可以接受。

同时我们也可以看到,在两组实验的数据中,相频特性与理论计算的差距是比较大的,但是幅频特性反而吻合的比较好。我认为主要的原因是示波器中的李萨如图形过小并且线条过粗、光标精度过低导致的数据误差。主要是仪器的原因。

2、讨论、心得

2.1 思考题:

1.相频特性时,若把信号发生器的正弦信号送入 Y 轴,而把被测系统的输出信号送入 X 轴,试问这种情况下如何根据旋转的光电方向来确定相位的超前与滞后。

答: 光点顺时针旋转则相位滞后, 逆时针旋转则相位超前。

2.2 心得

此次实验锻炼了我用 matlab 处理数据的能力,同时也让我对 Bode 图有了更深刻的理解。此次实验中 matlab 拟合图的绘制特别困难,同时又要在对数坐标轴之下绘制渐近线,对 matlab 的操作要求很高。我采用的是 cftool 进行拟合,并通过两点连线实现渐近线绘制。由于本次实验收到了使用仪器的限制,我们只测量了三组数据,所以在拟合的过程中遇到了不小的困难,因此在拟合曲线的过程我设定了有关函数的形式和参数搜索范围,以得到更符合理论预期的结果。