III. Parsing

Parsing é o processo pelo qual é possível determinar se um string pode ser gerado por uma gramática.

Grafo mais à esquerda de uma gramática

É um grafo dirigido onde os nós representam formas sentenciais de uma derivação e os arcos indicam a regra aplicada. Ele contém todas as derivações mais à esquerda possíveis de serem obtidas a partir de S.

Ex:
$$S \rightarrow aS \mid bB \mid \lambda$$

 $B \rightarrow aB \mid b$

Parsing Descendente (Top-Down)

Um algoritmo de parsing descendente busca derivações mais à esquerda que produzam o string examinado, a partir de S.

Parsing Descendente Por Profundidade

A partir da raiz S, cada nodo é expandido em profundidade, gerando um galho da árvore, até que seja encontrada uma folha correspondente ao string examinado, ou até que a expansão gere um nodo filho com prefixo diferente do string. Neste caso, o algoritmo deve retornar ao último nodo visitado que permita uma produção alternativa para a geração do string (backtracking). O processo termina quando o string é encontrado ou quando não houver nodos a serem expandidos;

Obs.: O processo pode não terminar caso a gramática possua recursão direta à esquerda.

Parsing Descendente Preditivo

Em uma forma particular do parsing descendente por profundidade, não há necessidade de retornar a vértices internos da árvore para se tentar um novo galho de derivação. Isto ocorre quando utilizamos gramáticas LL(1), que evitam a escolha de um caminho inútil. Neste caso, ou o string é derivado até o fim, ou ocorre um erro sintático. Parsers deste tipo são denominados "preditivos".

Uma GLC é dita LL(1) se durante o processo de parsing de cada um

dos strings da linguagem, a regra de produção a ser utilizada em cada passo de derivação puder ser determinada de forma única, através da leitura do próximo token (lookahead).

Conjuntos FIRST e FOLLOW

A construção de analisadores descendentes e ascendentes é auxiliada por duas funções, FIRST e FOLLOW, associadas a uma gramática G.

Para calcular o FIRST(X) de todos os símbolos X da gramática, aplique as seguintes regras até que não haja mais terminais ou ϵ que possam ser acrescentados a algum dos conjuntos FIRST.

- 1. Se X é um símbolo terminal, então FIRST(X) = $\{X\}$.
- 2. Se X é um símbolo não-terminal e $X \to Y_1Y_2 \cdots Y_k$ é uma produção para algum $k \ge 1$, então acrescente a a FIRST(X) se, para algum i, a estiver em FIRST(Y_i), e ϵ estiver em todos os FIRST(Y_i), ..., FIRST(Y_{i-1}); ou seja, $Y_1 \cdots Y_{i-1} \Rightarrow \epsilon$. Se ϵ está em FIRST(Y_i) para todo i = 1, 2, ..., i, então adicione ϵ a FIRST(i). Por exemplo, tudo em FIRST(i) certamente está em FIRST(i). Se i0 não derivar i0, então não acrescentamos mais nada a FIRST(i0, mas se i1 i2 i3, então adicionamos FIRST(i2), e assim por diante.
- 3. Se $X \to \epsilon$ é uma produção, então acrescente ϵ a FIRST(X).

Para calcular o FOLLOW(A) para todos os não-terminais A, aplique as seguintes regras até que nada mais possa ser acrescentado a nenhum dos conjuntos FOLLOW.

- 1. Coloque \$ em FOLLOW(S), onde S é o símbolo inicial da gramática, e \$ é o marcador de fim da entrada ou fim de arquivo.
- 2. Se houver uma produção $A \to \alpha B\beta$, então tudo em FIRST(β) exceto ϵ está em FOLLOW(B).
 - 3. Se houver uma produção $A \to \alpha B$, ou uma produção $A \to \alpha B\beta$, onde o FIRST(β) contém ϵ , então inclua o FOLLOW(A) em FOLLOW(B).

Tabela de Parsing Preditivo

É um dispositivo prático para se determinar se uma gramática é LL(1). Se a tabela possuir mais de uma regra em alguma de suas entradas, a gramática não será LL(1).

Algorithm 4.31: Construction of a predictive parsing table.

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \to \alpha$ of the grammar, do the following:

- 1. For each terminal a in FIRST(α), add $A \to \alpha$ to M[A, a].
- 2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A,b]. If ϵ is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to M[A,\$] as well.

Exemplo:

Mostre que a gramática abaixo é LL(1):

 $S \rightarrow aAb \mid bB \mid \lambda$

 $A \rightarrow Ba \mid bA$

 $B \rightarrow c \mid \lambda$

Exemplo:

Mostre que a gramática abaixo não é LL(1):

 $S \rightarrow ABc \mid a$

 $A \to \underline{b \mid \lambda}$

 $B \rightarrow a \mid b \mid cB \mid \lambda$

Parsing Ascendente (Bottom-Up)

Um algoritmo de parsing ascendente busca reduções mais à direita que transformem o string examinado no símbolo S. Uma redução é a substituição de uma seqüência de símbolos w pelo não terminal A, a partir de uma regra A →w. Neste caso, w é denominado handle. Os analisadores ascendentes incluem LR(0), SLR, LR(1) e o LALR.

O analisador sintático shift-reduce

O analisador sintático shift-reduce é uma forma de análise ascendente em que uma pilha contém símbolos da gramática e um buffer de entrada contém o restante da cadeia a ser reconhecida sintaticamente. Usamos o símbolo \$ para marcar o fundo da pilha e também o extremo direito da entrada.

- Inicialmente, a pilha está vazia, e a cadeia w representa a entrada.
- O analisador transfere símbolos da entrada para a pilha, até que uma cadeia de símbolos no topo da pilha possa ser reduzida para o lado esquerdo de uma produção.
- O analisador repete esse ciclo até detectar um erro ou até que a pilha contenha apenas o símbolo inicial e a entrada esteja vazia
- Durante o processo podem ocorrer conflitos quando o analisador n\u00e3o sabe se transfere ou reduz

Ex: string id * id

$$\begin{split} \mathsf{E} &\to \mathsf{E} + \mathsf{T} \mid \mathsf{T} \\ \mathsf{T} &\to \mathsf{T} * \mathsf{F} \mid \mathsf{F} \\ \mathsf{F} &\to (\; \mathsf{E} \;) \; \mid \mathsf{id} \end{split}$$

PILHA	Entrada	Ação
\$	$id_1 * id_2 $ \$	transfere
\$ id ₁	* id ₂ \$	reduz segundo $F \rightarrow id$
F	* id ₂ \$	reduz segundo $T \rightarrow F$
\$ T	* id ₂ \$	transfere
\$ T *	id_2 \$	transfere
$T * id_2$	\$	reduz segundo $F \rightarrow id$
T * F	\$	reduz segundo $T \rightarrow T * F$
\$ T	\$	reduz segundo $E \rightarrow T$
\$ E	\$	aceita

FIGURA 4.28 Configurações de um analisador shift-reduce sob a entrada $id_1 * id_2$.

Parsers LR(0) e SLR(1)

Itens e o autômato LR(0)

Para a construção do analisador ascendente precisamos determinar um conjunto de itens a partir das regras da gramática, que indicam o ponto do processo de reconhecimento.

Uma regra da forma $E \rightarrow E + T$ produzirá 4 itens:

 $E \rightarrow . E + T$

 $E \rightarrow E . + T$

 $E \rightarrow E + . T$

 $E \rightarrow E + T$.

A gramática a ser analisada precisa ser estendida com um novo símbolo inicial:

$$S' \rightarrow S$$

Definimos também 2 funções: o Fechamento de itens (closure) e a função de transição (GoTo).

Função de fechamento

Fechamento de conjuntos de itens

Se I é um conjunto de itens para uma gramática G, então CLOSURE(I) é o conjunto de itens construídos a partir de I pelas duas regras:

- 1. Inicialmente, acrescente todo item de I no CLOSURE(I).
- Se A → α·Bβ está em CLOSURE(I) e B → γ é uma produção, então adicione o item B → · γ em CLOSURE(I), se ele ainda não está lá. Aplique essa regra até que nenhum outro item possa ser incluído no CLOSURE(I).

Ex:

$$E' \rightarrow E$$

 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

Se um conjunto de itens contém o item $E' \to .$ E, então deverão ser acrescentados os itens:

$$E \rightarrow . E + T$$

 $E \rightarrow . T$
 $T \rightarrow . T * F$
 $T \rightarrow . F$
 $F \rightarrow . (E)$
 $F \rightarrow . id$

A função de transição

Representada por GOTO(I,X), onde I é um conjunto de itens e X é um símbolo da gramática. GOTO(I,X) é definido como o fechamento do conjunto de todos os itens [A \rightarrow aX.B] tais que [A \rightarrow a. XB] está em I.

Intuitivamente, a função de transição GOTO é utilizada para definir as transições no autômato LR(0) para urna gramática. Os estados do autômato correspondem aos conjuntos de itens, e GOTO(I,X) especifica a transição do estado I para um novo estado sob a entrada X.

Ex: Se I representa o conjunto [[E' \rightarrow E .],[E \rightarrow E . + T]] então GOTO(I,+) contém:

```
E \rightarrow E + . T

T \rightarrow . T * F

T \rightarrow . F

F \rightarrow . (E)

F \rightarrow . id
```

A coleção canônica de conjuntos de itens LR(0)

```
void itens(G') {
C = CLOSURE(\{[S' \rightarrow \cdot S]\});
repeat
for ( cada conjunto de itens I em C )
for ( cada símbolo de gramática X )
if ( GOTO(I, X) não é vazio e não está em C )
adicione GOTO(I, X) em C;
until nenhum novo conjunto de itens seja adicionado em C em uma rodada;}

FIGURA 4.33 Computação da coleção canônica de conjuntos de itens LR(0).
```

O autômato LR(0)

O estado inicial é dado por CLOSURE($[S' \to . S]$) . Cada conjunto de itens forma um estado e todos são finais.

As decisões entre shift-reduce podem ser feitas como a seguir: Estando no estado j, avance sob o próximo símbolo a da entrada se o estado possuir uma transição sob a. Caso contrário, escolha reduzir; os itens no estado j nos dirão qual produção utilizar.

Ex:

$$E' \rightarrow E$$

 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

FIGURA 4.31 Autômato LR(0) para a gramática da expressão (4.1).

O Algoritmo de análise LR

FIGURA 4.35 Modelo de um analisador sintático LR.

Estrutura da tabela de análise LR

A tabela de análise LR consiste em duas partes ACTION, uma função de ação de análise, e GOTO, uma função de transição.

- 1. A função ACTION recebe como argumentos um estado i e um terminal a ,ou \$. O valor de ACTION[i, a] pode ser:
- (a) Shift j, onde j é um estado. A ação tomada pelo analisador sintático efetivamente transfere a entrada *a* para a pilha, mas usa o estado j para representar *a*.
- (b) Reduce $A \rightarrow w$. A ação do analisador sintático efetivamente reduz w no topo da pilha para A.

- (c) Accept. O analisador sintático aceita a entrada e termina a análise.
- (d) Error. O analisador sintático descobre um erro em sua entrada.
- 2. Estendemos a função GOTO, definida sobre os conjuntos de itens, para estados: se GOTO[li , A] = lj , então GOTO também mapeia um estado i e um não-terminal A para o estado j.

Comportamento do analisador LR

É essencialmente o mesmo de um analisador sintático shift-reduce; a única diferença é que, em vez de símbolos da gramática, a pilha contém estados, a partir dos quais os símbolos da gramática podem ser recuperados.

O próximo movimento do analisador, a partir da configuração dada, é determinado pela leitura de *a*, o símbolo de entrada corrente, e *s*, o estado no topo da pilha, e então consultando a entrada ACTION [s,a] na tabela de ação de análise.

As movimentações possíveis são as seguintes:

- 1. Se ACTION[s,a] = shift p, o analisador empilha o próximo estado p e avança na entrada.
- 2. Se ACTION[s,a] = reduce A —> B, o analisador executa uma redução, removendo a representação de B da pilha e empilhando GOTO(topo,A).
- 3. Se ACTION[s,a] = accept, a análise está concluída.
- 4. Se ACTION[s,a] = error, o analisador sintático descobriu um erro.

Todos os analisadores sintáticos LR se comportam dessa maneira; a única diferença entre eles diz respeito à informação contida nos campos ACTION e GOTO da tabela de análise.

ALGORITMO 4.44: Algoritmo de análise LR.

ENTRADA: Uma cadeia de entrada w e uma tabela de análise LR com funções ACTION e GOTO para uma gramática G. **SAÍDA:** Se w está em L(G), os passos de redução de uma análise ascendente para w; caso contrário, uma indicação de erro. **MÉTODO:** Inicialmente, o analisador sintático possui w\$ no buffer de entrada e s_0 em sua pilha, onde s_0 representa o estado inicial. O analisador sintático, então, executa o algoritmo da Figura 4.36.

```
[PSEUDO]seja a o primeiro símbolo de w$;
while (1){ /* repita indefinidamente*/
seja s o estado no topo da pilha;
if (ACTION[s,a] = shift t) {
            empilha t na pilha;
            seja a o próximo símbolo da entrada;
        } else if (ACTION[s,a] = reduce A→β) {
            desempilha símbolos |β| da pilha;
            faça o estado t agora ser o topo da pilha;
            empilhe GOTO[t,A] na pilha;
            imprima a produção A → β;
        } else if (ACTION[s,a] = accept) pare; /* a análise terminou */
        else chame uma rotina de recuperação de erro;
    }
```

FIGURA 4.36 Algoritmo de análise LR.

Ex:

$$E \rightarrow E + T (1) | T (2)$$

 $T \rightarrow T * F (3) | F (4)$
 $F \rightarrow (E) (5) | id (6)$

							1				
		2	ACT	ON		4	С ото О в в в				
ESTADO	id	+	*	()	\$	E	T	F		
0	s5			s4			1	2	3		
1	hi h	s6				acc	and the state of				
2	9 334 1 337	r2	s7		r2	r2					
3		r4	r4		r4	r4					
4	s5			s4			8	2	3		
5		r6	r6		r6	r6	11.0				
6	s5			s4			THE STATE OF THE S	9	3		
7	s5			s4					10		
8		s6			s11	rio jedob					
9		r1	s7		r1	rl					
10	17 12 12 12 12 12 12 12 12 12 12 12 12 12	r1 r3	r3		r3	r3					
11		r5	r5		r5	r5	Line				

FIGURA 4.37 Tabela de análise para a gramática de expressão.

Os códigos para as ações são:

- 1. si significa avança na entrada e empilha o estado i na pilha,
- 2. ri significa reduce segundo a produção de número i,
- 3. acc significa accept,
- 4. entrada em branco significa error.

Para a entrada id * id + id, a seqüência de movimentos do analisador sintático mostrando o conteúdo de pilha e da entrada é dado por

	PILHA	SÍMBOLOS	ENTRADA	Ação
(1)	0		id * id + id \$	empilha 5 e avança
(2)	0 5	id	* id + id \$	reduz segundo $F \rightarrow id$
(3)	0 3	F	* id + id \$	reduz segundo $T \rightarrow F$
(4)	0 2	T	* id + id \$	empilha 7 e avança
(5)	0 2 7	T*	Id + id \$	empilha 5 e avança
(6)	0275	T*id	+ id \$	reduz segundo $F \rightarrow id$
(7)	0 2 7 10	T * F	+ id \$	reduz segundo $T \to T * F$
(8)	0 2	T	+ id \$	reduz segundo $E \rightarrow T$
(9)	0 1	E	+ id \$	empilha 6 e avança
(10)	0 1 6	E +	id \$	empilha 5 e avança
(11)	0 1 6 5	E + id	\$	reduz segundo $F \rightarrow id$
(12)	0 1 6 3	E + F	\$	reduz segundo $T \rightarrow F$
(13)	0169	E + T	\$	reduz segundo $E \rightarrow E + T$
(14)	0 1	E	\$	aceitar

FIGURA 4.38 Movimentos de um analisador LR para a entrada id * id + id.

A Construção de tabelas de análise SLR(1)

ALGORITMO 4.46: Construção de uma tabela SLR.

ENTRADA: Uma gramática estendida G'.

SAÍDA: As funções ACTION e GOTO da tabela de análise SLR para G'.

MÉTODO:

- 1. Construa $C = \{I_0, I_1, ..., I_n\}$, a coleção de conjuntos de itens LR(0) para G'.
- O estado i é construído a partir de I_i. As ações de reconhecimento sintático para o estado i são determinadas da seguinte forma:
 - (a) Se o item $[A \to \alpha \cdot a\beta]$ está em I_i e GOTO $(I_i, a) = I_j$, então defina ACTION[i, a] como "shift j". Aqui, a deve ser um terminal.
 - (b) Se o item $[A \to \alpha]$ está em I_i , então defina ACTION[i,a] como "reduce $A \to \alpha$ " para todo a em FOLLOW(A); aqui, A pode não pode ser S', o símbolo inicial da gramática.
- (c) Se o item $[S' \to S]$ estiver em I_i , então defina ACTION[i, \$] como "accept".
 - Se quaisquer ações de conflito resultar das regras anteriores, dizemos que a gramática não é SLR(1). O algoritmo deixa de produzir um analisador sintático nesse caso.
- 3. As transições **goto** para o estado i são construídas para todos os não-terminais A usando a regra: Se $GOTO(I_i, A) = I_j$ então GOTO[i, A] = j.
- 4. Todas as entradas não definidas pelas regras (2) e (3) caracterizam "error".
- 5. O estado inicial do analisador é aquele construído a partir do conjunto de itens contendo $[S' \rightarrow S]$.

Se para algum estado, a tabela apresentar mais de uma opção de shift e/ou reduce para o mesmo símbolo (entrada múltipla), a gramática não será SLR(1).

A Construção de tabelas de análise LR(0)

Segue o algoritmo usado para a geração de tabelas SLR, exceto no item 2(b). Sempre que houver um item da forma A→w. serão colocadas opções de redução em todas as colunas ACTION para aquele estado e não apenas para os símbolos em FOLLOW(A). A gramática não será LR(0) se houver mais de uma opção de shift e/ou reduce para o mesmo símbolo (entrada múltipla). Um parser LR(0) não necessita ler símbolos a frente para decidir entre ações de shift e reduce, pois o símbolo no topo da pilha é suficiente para isso.

Ex:

$$\mathsf{E} \to \mathsf{E} + \mathsf{T} \; (1) \; | \; \mathsf{T} \; (2)$$

$$T \rightarrow T * F (3) | F (4)$$

$$F \rightarrow (E) (5) \mid id (6)$$

É SLR, mas não LR(0).

							1		LVL L W			
9. 3 6 1 6 9 9		2	Acti	ON	V			С ото О по 1 по				
ESTADO	id	+	*	()	\$	Е	T	F			
0	s5			s4	3-7		1	2	3			
1	hi h	s6				acc	I TOUR					
2	319 1376	r2	s7		r2	r2						
3		r4	r4		r4	r4						
4	s5			s4			8	2	3			
5		r6	r6		r6	r6	113					
6	s5			s4			Ovitor .	9	3			
7	s5			s4					10			
8		s6			s11	ero period	4.0					
9		r1	s7		r1	r1	1.2					
10	De la Little	r1 r3	r3		r3	r3						
11	1	r5	r5		r5	r5						

FIGURA 4.37 Tabela de análise para a gramática de expressão.

Ex: Mostre que a gramática abaixo não é SLR:

$$S^{'} \to S$$

$$S \rightarrow aSa \mid Sa \mid b$$

Parsers LR(1) e LALR

O algoritmo do analisador sintático LR(1) - LR(1) canônico - é mais poderoso que o do analisador SLR. A maioria das linguagens de programação pode ser descrita por uma gramática livre de contexto e analisada por um analisador LR(1).

Para a regra $A \to \alpha$ é possível indicar exatamente quais símbolos de entrada podem se seguir após uma redução para A. A informação é incorporada ao estado pela redefinição dos itens, de forma que incluam símbolos terminais como um segundo componente.

A regra do símbolo inicial da gramática estendida produz o item:

$$S' \rightarrow .S, \$$$

Um item LR(1) formado pela regra de produção com um ponto e um símbolo da entrada (lookahead). A forma geral é $A \to \alpha.\beta$, a, onde $A \to \alpha\beta$ é uma regra de produção e a é um terminal ou \$. Um item da forma [$A \to \alpha.$, a] determina a redução $A \to \alpha$ somente se o próximo símbolo de entrada for a.

Para determinar os símbolos de entrada que farão parte do segundo componente, a função de fechamento utiliza o FIRST da forma sentencial seguinte ao ponto. Por exemplo, para $[A \to \alpha.B\beta, a]$, inserimos as regras de produção de B, pois o ponto está antes do não-terminal B. Para definir os terminais que fazem parte do segundo componente das regras de produção de B utilizamos o FIRST(βa).

A construção do autômato de itens LR(1) é semelhante à do LR(0), mas as funções de closure e goto são definidas como:

```
 \begin{array}{c} \textbf{SetOfItems CLOSURE}(I) \ \{ \\ \textbf{repeat} \\ \textbf{for} \ ( \ \text{each item} \ [A \rightarrow \alpha \cdot B\beta, a] \ \text{in} \ I \ ) \\ \textbf{for} \ ( \ \text{each production} \ B \rightarrow \gamma \ \text{in} \ G' \ ) \\ \textbf{add} \ [B \rightarrow \gamma, b] \ \text{to set} \ I; \\ \textbf{until no more items are added to} \ I; \\ \textbf{return} \ I; \\ \\ \textbf{SetOfItems GOTO}(I, X) \ \{ \\ \textbf{initialize} \ J \ \text{to be the empty set}; \\ \textbf{for} \ ( \ \text{each item} \ [A \rightarrow \alpha \cdot X\beta, a] \ \text{in} \ I \ ) \\ \textbf{add item} \ [A \rightarrow \alpha X \cdot \beta, a] \ \text{to set} \ J; \\ \textbf{return CLOSURE}(J); \\ \\ \\ \end{array}
```

A tabela LR(1) é construída da mesma forma que a LR(0) exceto na maneira de inserir as reduções. Quando há um item $[A \to \alpha., a]$ em um estado i, então deve-se inserir na linha i coluna a a redução da regra $A \to \alpha$.

Ex:

```
0. S' \to S$ 2. S \to E 4. V \to x 1. S \to V = E 3. E \to V 5. V \to *E
```


O parser LALR se baseia no LR(1), mas o autômato é simplificado através da união de estados que contenham os mesmos conjuntos de itens, exceto pelo lookahead. Isso reduz a memória exigida para o armazenamento da tabela, mas pode gerar conflitos que não existiam na tabela LR(1).

		×	*	=	\$	S	Е	V
LALR	1	s8	s6			g2	g5	g3
• diminui o	2				а			
número de	3			s4	r3			
estados	4	s8	s6				g9	g7
do LR(1)	5				r2			
 junta os estados 	6	s8	s6				g10	g7
idênticos	7			r3	r3			
em	8			r4	r4			
relação aos itens	9				r1			
	10			r5	r5			

Ex: Construa a tabela LR(1) e LALR para as seguintes gramáticas:

a)
$$S' \rightarrow S$$
\$

$$S \rightarrow CC$$

$$C \rightarrow cC \mid d$$

b)
$$S' \rightarrow S\$$$

$$S \rightarrow L = R \mid R$$

$$L \rightarrow \Box R \mid id$$

$$\mathsf{R}\to\mathsf{L}$$

Os parsers LALR são mais fracos que os LR(1), mas capazes de tratar a maioria das linguagens de programação. Desta forma, são considerados uma opção de compromisso para a escrita de compiladores.

Hierarquia das Gramáticas

