	Note	
	I II	
Name Vorname		
Name		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2	
	3	
Unterschrift der Kandidatin/des Kandidaten	4	
TECHNISCHE UNIVERSITÄT MÜNCHEN	5	
Fakultät für Mathematik	6	
Klausur	7	
MA9202 Mathematik für Physiker 2		
(Analysis 1)	8	
Prof. Dr. M. Keyl	9	
9. Februar 2016, 10:30 – 12:00 Uhr		
Hörsaal: Platz:	\sum	
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 9 Aufgaben	I Erstkorrektur	
Bearbeitungszeit: 90 min	II	
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt	Zweitkorrektur	
Nur von der Aufsicht auszufüllen:		
Hörsaal verlassen von bis		
Vorzeitig abgegeben um		
Besondere Bemerkungen:		

 $Musterl\ddot{o}sung \quad \ \ ({\rm mit\;Bewertung})$

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion, dass

- (a) $4^n + 5$ ist für alle $n \in \mathbb{N}_0$ durch 3 teilbar.
- (b) $4^n + 15n 1$ ist für alle $n \in \mathbb{N}_0$ durch 9 teilbar. *Hinweis:* Benutzen Sie Teil (a).

LÖSUNG:

- (a) Induktionsbeginn: $4^0 + 5 = 1 + 5 = 6$ ist ohne Rest durch 3 teilbar. [1] Induktionsschritt: $4^{n+1} + 5 = 4 \cdot 4^n + 5 = (4^n + 5) + 3 \cdot 4^n$ [1]. Der erste Summand ist nach Voraussetzung durch 3 teilbar, der zweite ist ein Vielfaches von 3. [1]
- (b) Induktionsbeginn: $4^0 + 15 \cdot 0 1 = 0$ ist ohne Rest durch 9 teilbar. [1] Induktionsschritt:

$$4^{n+1} + 15(n+1) - 1 = (4^n + 15n - 1) + 3 \cdot 4^n + 15 = (4^n + 15n - 1) + 3(4^n + 5)$$
. [2] (*)

Der erste Summand ist nach Voraussetzung durch 9 teilbar [1]. Nach Teil (a) ist $4^n + 5$ durch 3 teilbar. Also ist auch der zweite Summand in (*) durch 9 teilbar [1].

2. Komplexe Zahlen

[8 Punkte]

(a) Bestimmen Sie Real– und Imaginärteil von $\sqrt{8+6i}$

$$\operatorname{Re}\left(\sqrt{8+6i}\right) = 3 \qquad [2]$$

$$\operatorname{Im}\left(\sqrt{8+6i}\right) = 1 \qquad [2]$$

(b) Geben Sie Betrag und Argument von $\left(1 - \frac{\sqrt{3}}{i}\right)^{-1}$ an.

$$\left| \left(1 - \frac{\sqrt{3}}{i} \right)^{-1} \right| = \frac{1}{2} \quad [2]$$

$$\arg\left(\left(1-\frac{\sqrt{3}}{i}\right)^{-1}\right) = -\frac{\pi}{3} \quad [2]$$

LÖSUNG:

(a) Wir machen den Ansatz $(a+ib)^2=8+6i$. Also: $a^2-b^2+2iab=8+6i\Rightarrow a^2-b^2=8$ und ab=3. Offenbar ist $a\neq 0$ also: b=3/a und damit: $a^2-9/a^2=8\Rightarrow a^4-8a^2-9=0$. Dies führt zu den beiden Lösungen $a^2=9$ und $a^2=-1$. Da a reell ist muss $a=\pm 3$ gelten. Damit ist dann $b=\pm 1$ und wir erhalten $\sqrt{8+6i}=\pm (3+i)$.

(b) Es ist

$$\frac{1}{1 - \frac{\sqrt{3}}{i}} = \frac{1}{1 + \sqrt{3}i} = \frac{1}{4}(1 - i\sqrt{3})$$

Dies führt zu

$$\left| \frac{1}{1 - \frac{\sqrt{3}}{i}} \right| = \frac{1}{4}\sqrt{1 + 3} = \frac{1}{2}$$

und

$$\arg\left(\frac{1}{1-\frac{\sqrt{3}}{i}}\right) = \arctan(-\sqrt{3}) = -\frac{\pi}{3}$$

3	Konvergenz	von	Folgen	und	Reihen
υ.	TOHVELEGIIZ	VOII	roigen	unu	remen

[6 Punkte]

(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\ln(n^4+n^2)-4\ln(n)\right)$.

[2]

[2]

 $\square = -\infty$ $\square = 0$ $\square = \ln(2)$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$

(b) Gegen welchen Wert ist die Reihe $\sum_{n=1}^{\infty} \frac{n^n}{e^n}$ eigentlich oder uneigentlich konvergent?

 $\ \, \square \,\, \frac{1}{2} \quad \ \, \square \,\, 1 \quad \ \, \square \,\, 3 \quad \ \, \square \,\, 0 \quad \ \, \square \,\, \frac{3}{7} \quad \ \, \square \,\, \frac{4}{7} \quad \ \, \boxtimes \, \infty \quad \ \, \square \,\, \text{keiner der angegebenen Werte}$

(c) Die Reihe $\sum_{n=1}^{\infty} \frac{e^{in^2\pi}}{n(n+1)}$ ist

[2]

X konvergent

\(\text{absolut konvergent} \)

□ bestimmt divergent

□ undefiniert

LÖSUNG:

(a) Es ist:

$$\ln(n^4 + n^2) - 4\ln(n) = \ln(n^4 + n^2) - \ln(n^4) = \ln\left(\frac{n^4 + n^2}{n^4}\right) = \ln\left(1 + \frac{1}{n^2}\right)$$

Da $\lim_{n\to\infty} (1+n^{-2}) = 1$ folgt mit der Stetigkeit des Logarithmus $\lim_{n\to\infty} \ln(n^4+n^2) - 4\ln(n) = 0$

- (b) Für $n \ge 3$ is n/e > 1. Daher ist $\sum_{n=1}^{\infty} \left(\frac{3}{e}\right)^n$ eine divergente Minorante.
- (c) Wegen

$$\sum_{n=1}^{\infty} \left| \frac{e^{in^2 \pi}}{n(n+1)} \right| = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

ist die Reihe absolut konvergent, also auch konvergent.

4. Konvergenzkriterien

[10 Punkte]

Prüfen Sie mit dem Wurzel-, Quotienten- und Majorantenkriterium nach, ob die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^k}$ konvergiert.

LÖSUNG:

Wurzelkriterium: Wegen

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n \to \infty} \frac{1}{n} = 0 \qquad [2]$$

konvergiert die Folge nach dem Wurzelkriterium.

Quotietenkriterium: Es ist:

$$\frac{\frac{1}{(n+1)^{n+1}}}{\frac{1}{n^n}} = \left(\frac{n}{n+1}\right)^n \frac{1}{n+1} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \frac{1}{n+1}$$
 [3]

Der erste Faktor konvergiert gegen 1/e [1] der zweite gegen 0. Damit konvergiert die Reihe nach dem Quotientenkriterium [1].

Majorantenkriterium: Es gilt (z.B.) die Abschätzung:

$$\frac{1}{n^n} \le \frac{1}{2^n} \quad \forall n \ge 2$$
 [2]

Da die Reihe $\sum_n 2^{-n}$ konvergiert, konvergiert auch $\sum_{k=1}^\infty \frac{1}{k^k}.$ [1]

5. Grenzwerte von Funktionen, stetige Fortsetzbarkeit

[7 Punkte]

(a) Bestimmen sie den Grenzwert $\lim_{x\to\infty} \frac{\ln(\ln x)}{\sqrt{\ln(x)}}$. [4]

(b) Begründen Sie warum die Funktion $f: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R}, f(x) = \frac{x^2 + 3x + 2}{x^2 - 1}$ stetig ist und geben Sie mögliche stetige Fortsetungen in den Punkten ± 1 an.

LÖSUNG:

(a) Wir benutzen die L'Hospitalsche Regel:

$$\frac{d}{dx}\ln(\ln(x)) = \frac{1}{x\ln(x)} \qquad \frac{d}{dx}\sqrt{\ln(x)} = \frac{1}{2x\sqrt{\ln(x)}} \quad \textbf{[1+1]}$$

Also:

$$\lim_{x \to \infty} \frac{\ln(\ln(x))}{\sqrt{\ln(x)}} = \lim_{x \to \infty} \frac{2x\sqrt{\ln(x)}}{x\ln(x)} = \lim_{x \to \infty} \frac{2}{\sqrt{\ln(x)}} = 0 \quad [2]$$

Alternative Lösung: Da $\lim_{x\to\infty}\ln(x)=\infty$ reicht es $\lim_{x\to\infty}\frac{\ln(x)}{\sqrt{x}}$ zu betrachten. [1] Dann ist mit

$$\frac{d}{dx}\ln(x) = \frac{1}{x} \quad \frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}} \quad [1]$$

$$\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}} = \lim_{x \to \infty} \frac{2\sqrt{x}}{x} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0 \quad [2]$$

(b) Die Abbildung ist eine rationale Funktion und daher für alle $x \in \mathbb{R}$ stetig, solange x keine Nullstelle des Nennerpolynoms ist. Letztere sind ± 1 . Also ist f auf dem angegebenen Definitionsbereich stetig. [1] Wegen $x^2 + 3x + 2 = (x+2)(x+1)$ ist

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^2 - 1} = \lim_{x \to -1} \frac{x + 2}{x - 1} = -\frac{1}{2} \quad [1]$$

ist f in x = -1 durch f(-1) = -1/2 stetig fortsetzbar [1]. Bei x = 1 ist aber eine echte Polstelle.

6. Konvergenz von Funktionenfolgen

[7 Punkte]

Betrachten Sie die Funktionenfolge $f_n: \mathbb{R} \to \mathbb{R}, x \mapsto f_n(x) = \sin(\frac{x}{n}); n \in \mathbb{N}$ und zeigen Sie

- (a) $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise gegen $f:\mathbb{R}\to\mathbb{R}, x\mapsto f(x)=0$. Mit anderen Worten: $\forall x\in\mathbb{R}$ $\lim_{n\to\infty} f_n(x)=0$. [1]
- (b) Die Konvergenz ist auf $\mathbb R$ nicht gleichmäßig. $\sup_{x\in\mathbb R}|f_n(x)-f(x)|$ konvergiert also für $n\to\infty$ nicht gegen 0.
- (c) Schränken wir die f_n dagegen auf das kompakte Intervall I=[0,1] ein, ist die Konvergenz gleichmäßig. Mit anderen Worten: $\lim_{n\to\infty}\sup_{x\in I}|f_n(x)-f(x)|=0$. [3]

LÖSUNG:

- (a) Wegen der Stetigkeit von sin ist $\lim_{n\to\infty} \sin(x/n) = \sin(\lim_{n\to\infty} x/n) = \sin(0) = 0$.
- (b) Wir wählen $x_n = n\pi/2$ und erhalten

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \ge |f_n(x_n) - f(x_n)| = \sin(\pi/2) = 1$$

Also $\lim_{n\to\infty} \sup_{x\in\mathbb{R}} |f_n(x) - f(x)| \ge 1$.

(c) sin ist auf dem Intervall [0,1] streng monoton steigend. Daher ist für alle $n\in\mathbb{N}$

$$\sup_{x \in I} |f_n(x) - f(x)| = \sup_{x \in I} |\sin(x/n)| \le |\sin(1/n)|.$$

Also $\lim_{n\to\infty} \sup_{x\in I} |f_n(x) - f(x)| = 0.$

7. Taylorentwicklung

[6 Punkte]

Gegeben sei die Funktion $f:(-1,\infty)\to\mathbb{R},\,x\mapsto\sqrt{x+1}$.

(a) Bestimmen Sie die ersten vier Ableitungen von f.

- [2]
- (b) Bestimmen Sie das Taylorpolynom 4. Ordnung $T_4 f(x,0)$ um den Entwicklungspunkt 0. [2]
- (c) Benutzen Sie die bekannte Aussage $f(x) = Tf_4(x,0) + O(x^5), x \to 0$ um zu zeigen, dass

$$\frac{\sqrt{x+1}}{x} = \frac{1}{x} + \frac{1}{2} - \frac{x}{8} + \frac{x^2}{16} - \frac{5x^3}{128} + O(x^4), \quad x \to 0$$

gilt. [2]

LÖSUNG:

(a) Die Ableitungen sind:

$$f'(x) = \frac{1}{2\sqrt{x+1}} \quad f''(x) = \frac{-1}{4(x+1)^{3/2}} \quad f^{(3)}(x) = \frac{3}{8(x+1)^{5/2}} \quad f^{(4)}(x) = \frac{-15}{16(x+1)^{7/2}}$$

(b) Das Taylorpolynom ist

$$T_4 f(x,0) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128}$$

(c) Es gilt $f(x) = T_4 f(x, 0) + O(x^5)$, $x \to 0$. Dies bedeutet, dass Konstanten $C, \delta > 0$ existieren, so dass

$$|f(x) - T_4 f(x, 0)| \le C|x|^5 \quad \forall x \in \mathbb{R} \text{ mit } |x| < \delta$$

Daher:

$$\left| \frac{f(x)}{x} - \frac{T_4 f(x,0)}{x} \right| \le C|x|^4 \quad \forall x \in \mathbb{R} \text{ mit } |x| < \delta$$

Dies ist aber gerade die zu beweisende Aussage.

8. Stammfunktionen

[9 Punkte]

Gegeben Sie für die folgenden Funktionen Stammfunktionen an:

$$\int e^x x^2 dx = (x^2 - 2x + 2)e^x$$
 [3]

$$\int \frac{x \cos(x^2)}{\sin(x^2)} dx = \boxed{\frac{\ln(\sin(x^2))}{2}}$$
 [3]

$$\int \frac{dx}{x^2 - 1} = \frac{\ln(x - 1)}{2} - \frac{\ln(x + 1)}{2}$$
 [3]

LÖSUNG:

1. Integral. Doppelte partielle Integration:

$$\int e^x x^2 dx = e^x x^2 - 2 \int e^x x dx = e^x x^2 - 2 \left(e^x x - \int e^x dx \right) = (x^2 - 2x + 2)e^x$$

2. Integral. Wegen: $\frac{d}{dx}\sin(x^2)=2x\cos(x^2)$ führt die Substitution $g(x)=\sin(x^2)$ zu:

$$\int \frac{x \cos(x^2)}{\sin(x^2)} dx = \frac{1}{2} \int \frac{g'(x)}{g(x)} dx = \frac{1}{2} \ln(g(x)) = \frac{1}{2} \ln(\sin(x^2))$$

3. Integral. Partialbruchzerlegung ergibt:

$$\frac{1}{x^2 - 1} = \frac{a}{x + 1} + \frac{b}{x - 1} = \frac{a(x - 1) + b(x + 1)}{x^2 - 1} = \frac{(a + b)x + (b - a)}{x^2 - 1}$$

Also a + b = 0 und b - a = 1. Dies ergibt a = -1/2, b = 1/2. Somit

$$\int \frac{dx}{x^2 - 1} = \int \frac{dx}{2(x - 1)} - \int \frac{dx}{2(x + 1)} = \frac{1}{2} (\ln(x - 1) - \ln(x + 1))$$

9. Integration [7 Punkte]

Für welche Werte von $a, b \in \mathbb{R}$ konvergiert das Integral $\int_{-\infty}^{\infty} \frac{1}{(x-a)^2+b^2} dx$?

Bestimmen Sie im Konvergenzfall seinen Wert.

LÖSUNG:

Der Integrand konvergiert unabhängig von $a \in \mathbb{R}$ für $b \neq 0$ wie unten gezeigt wird. Für b = 0 ist das verhalten bei x = a von der Ordnung $\mathcal{O}(|x - a|^{-2})$, also nicht konvergent. [2] Der Ausdruck ist unabhängig vom Vorzeichen von b. Für b > 0 erhält man

$$\int_{-\infty}^{\infty} \frac{1}{(x-a)^2 + b^2} dx \stackrel{y=x-a}{=} \frac{1}{b^2} \int_{-\infty}^{\infty} \frac{1}{(\frac{y}{b})^2 + 1} dy \stackrel{x=\frac{y}{b}}{=} \frac{1}{b} \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx$$
$$= \frac{1}{b} \left[\arctan x \right]_{-\infty}^{\infty} = \frac{1}{b} \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) = \frac{\pi}{b}.$$
 [4]

Für b < 0 dreht sich das Vorzeichen um. Insgesamt also

$$\int_{-\infty}^{\infty} \frac{1}{(x-a)^2 + b^2} dx = \frac{\pi}{|b|}.$$
 [1]