Mathematik I Lineare Abbildungen & Matrizen

Prof. Dr. Doris Bohnet Sommersemester 2020

Zeitplan Vorlesung

		Datum	Bemerkung	Inhalt
Lineare Algebra	12	15.06.		Lineare Abbildungen
	13	22.06.		Eigenwerte und komplexe Zahlen
	14	23.06.		Eigenwerte
	15	29.06.		Lineare Algebra: Anwendung
	16	06.07.		Graphentheorie
	17	07.07.		Graphentheorie: Anwendung
	18	13.07.		Wiederholung

Lernziele

• Begriffe kennen:

- ✓ Lineare Abbildung
- ✓ Darstellungsmatrix
- √ Kern & Bild einer Abbildung (Wdhl.)
- ✓ Dimensionssatz
- nachweisen können, ob eine Abbildung linear ist
- Darstellungsmatrix einer linearen Abbildung bzgl. einer vorgegebenen Basis bestimmen können
- X Bild und Kern einer linearen Abbildung berechnen und deren Dimension angeben können

Wiederholung

15.06.2020

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 15

Wiederholung

Abbildung Freischen Gruppen

No Homomorphistus

(Structure haltende
Abbildung)

$$f: (Z_6, +) \longrightarrow (Z_2, +)$$
 $n \longrightarrow n \mod 2$
 $5 \longrightarrow 5 \mod 2$, also $f(5) = 1 \mod 2$
 $f(n + m) = f(n) + f(m)$
 $f(g \circ h) = f(g) * f(h)$
 $f(2 + 3) = f(2) + f(3)$

Homomorphisture

 $f(m) = f(2) + f(3)$
 $f(m) = f(3)$

Homomorphisture

 $f(m) = f(2) + f(3)$
 $f(m) = f(m)$
 $f(m) = f(m$

Lineare Abbildung - Definition

Seien V,W zwei K —Vektorräume. Eine Abbildung $f:V\to W$ heißt **linear** (oder <u>Vektorraum-Homomorphismus</u>), falls für alle $v_1,v_2\in V,\lambda,\mu\in K$ gilt:

$$f(\lambda v_1 + \mu v_2) = \lambda f(v_1) \oplus \mu f(v_2)$$

Ist eine lineare Abbildung $f: V \to W$ bijektiv, spricht man von einem **Isomorphimus** und schreibt $V \cong W$.

Beispiele: 1)
$$\forall dentitat: id: V \rightarrow V$$
, $\times \mapsto \times ist$ linear, $(X_1) \mapsto (X_1 + X_2) \mapsto (X_1 + X_2) \mapsto (X_1 + X_2)$

$$\lim_{x \to \infty} x, y \in \mathbb{R}^2 : x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \text{ und } \lambda, \mu \in \mathbb{R} \text{ gilt } : f(\lambda \times + \mu y) = 15.06.2020$$
Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 15
$$\lambda f(x) + \mu f(y) = 15.06.2020$$

Beispiele für lineare Abbildungen

$$f(\lambda \times + \mu y) = f\left(\frac{\lambda x_1 + \mu y_1}{\lambda x_2 + \mu y_2}\right) = \left(\frac{\lambda x_1 + \mu y_1 + \lambda x_2 + \mu y_2}{\lambda x_1 + \mu y_1 - \lambda x_2 = \mu y_2}\right)$$

$$\lambda f(x) + \mu f(y) = \lambda \left(\frac{x_1 + x_2}{x_1 - x_2}\right) + \mu \left(\frac{y_1 + y_2}{y_1 - y_2}\right) = \left(\frac{\lambda x_1 + \lambda x_2 + \mu y_1 + \mu y_2}{\lambda x_1 - \lambda x_2 + \mu y_1 - \mu y_2}\right)$$

$$f\left(\frac{x_1}{x_2}\right) = \left(\frac{x_1 + x_2}{x_1 - x_2}\right) \quad \text{also ist } f \quad \text{linear.}$$

3)
$$\int \frac{1}{2\pi} \frac{1}{$$

Lineare Abbildung - Matrix

Jede reelle (n imes m) — Matrix A erklärt eine lineare Abbildung $f_{\underline{A}} \colon \mathbb{R}^m o \mathbb{R}^n$ durch

$$f_A(v) = Av$$

Lineare Abbildung – Kern & Bild

Sei $f: V \to W$ eine lineare Abbildung zwischen zwei Vektorräumen V, W.

Wir bezeichnen die Menge

$$\ker(f) = \{v \in V | f(v) = 0\} = f^{-1}(\{0\})$$

als **Kern** von f und

$$Bild(f) = \{ w \in W | \exists v \in V \colon f(v) = w \} = f(V)$$

(m (f) fin image von f.

als **Bild** von f.

Es gilt: Der Kern einer linearen Abbildung $f: V \to W$ ist ein Untervektorraum von V und das Bild ein Untervektorraum von W.

Beispiele

A)
$$A = \begin{pmatrix} 7 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

$$f_{A}(v) = Av \quad v \in \mathbb{R}^{3}$$
Bild $(f_{A}) = \begin{cases} x \in \mathbb{R}^{2} \mid \exists v \in \mathbb{R}^{3} : Av = x \end{cases}$

$$= \int_{A} (\mathbb{R}^{6})$$

$$= \begin{cases} \begin{pmatrix} 7 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mid \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \in \mathbb{R}^{3} \end{cases}$$

$$= \begin{cases} \begin{pmatrix} 7 + x_{1} + 3x_{2} \\ -x_{1} + 2x_{3} \end{pmatrix} \mid x_{1}, x_{2}, x_{3} \in \mathbb{R} \end{cases}$$

$$= rg(A) = \begin{cases} \begin{pmatrix} 7 \\ -1 \end{pmatrix} x_{1} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} x_{2} + \begin{pmatrix} 0 \\ 2 \end{pmatrix} x_{3} \mid x_{1}, x_{2}, x_{3} \in \mathbb{R} \end{cases} = \mathbb{R}^{2}$$

15.06.2020

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 15

linear une bhangig

Dimensionssatz

Sei $f: V \to W$ eine lineare Abbildung zwischen zwei (endlichdimensionalen) Vektorräumen V, W.

Es gilt:

$$\dim(V) = \dim \ker(f) + \dim Bild(f)$$

Sei A
$$(m \times n)$$
 —Matrix mit Spaltenvektoren $v_1, \dots v_n$. Es gilt:
$$Bild(f_A) = span \ (v_1, \dots, v_n) \Rightarrow \dim Bild(f_A) = \dim span \ (v_1, \dots, v_n) = rg(A)$$

$$\int_A (v) = Av \qquad \qquad ker(f_A) = n - rg(A) \qquad \dim L = n - rg(A)$$

$$A = \begin{pmatrix} 7 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix}, \ rg(A) = 2 \qquad ker \int_A = 3 - 2 = 1$$

Beispiele

$$A = \begin{pmatrix} 7 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix} \qquad rg(A) = 2$$

$$ker J_A = \begin{cases} 1 & 0 & 0 \\ 1 & 0 & 0 \end{cases} \qquad Are = 0 \end{cases} = \begin{cases} -\frac{2}{14} \\ \frac{1}{3} \\ 1 & 0 \end{cases} \times x \times R \end{cases},$$

$$dim(her J_A) = 1 = 3 - 2 \text{ rg}(A)$$

$$Antall Unbelownie$$

$$Bild J_A = Span(f(\frac{7}{1}), (\frac{3}{0}), (\frac{2}{2})) \end{cases}$$

$$\Rightarrow dim Bild J_A = rg(A) = 2$$

$$Esp: A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad rg(A) = 1 \qquad f_A(\frac{x_1}{x_2}) = (\frac{x_1}{0})$$

Matrixtransformationen in der Ebene

$$\mathcal{J}_{\mathcal{A}}: \mathbb{R}^2 \to \mathbb{R}^2, v \mapsto Av$$

Beispiel:

Ae₁ =
$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Hohix

$$Ae_2 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$e_2$$

Readle dea

Ae₂ = $\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$
Readle dea

Hehix

$$e_2$$

MATRIX

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 15

Matrixtransformationen in der Ebene

Beispiel:

Aus zwei linear unabhängigen Vektoren werden linear abhängige Vektoren Die Spalten der Matrix sind linear abhängige Vektoren.

Matrixtransformationen in der Ebene

Beispiel:

Aus zwei linear
unabhängigen Vektoren
werden linear
unabhängige Vektoren

Die Spalten der Matrix sind zwei linear unabhängige Vektoren.

Darstellungsmatrix

Sei V ein Vektorraum mit geordneter Basis $\{v_1,\dots,v_n\}$, W ein Vektorraum mit der Standardbasis und $f\colon V\to W$ eine lineare Abbildung. Dann nennt man

$$A = [f(v_1) ... f(v_n)]$$

die Matrix, deren i-te Spalte das Bild des i-ten Basisvektors ist, die **Darstellungsmatrix** von f.

Es gilt dann

$$f(v) = Av, v \in V$$

Darstellungsmatrix

1)
$$J: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$

Douglellungono hix $d\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$d\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$d\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$d\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$d\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$d\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$d\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$