Zero-Shot Stance Detection: A Dataset and Model using Generalized Topic Representations

By李想

2020. 11. 4

Motivation

 Topic-specific stance: requires the existence of numerous, well-labeled training examples in order to build a classifier for a new topic

 Cross-target stance: require human knowledge about any new topic and how it is related to the training topics

Ability to generalize to a wide variety of topics

Motivation

- Zero-shot stance detection: A classifier is evaluated on a large number of completely new topics
- Few-shot stance detection: A classifier is evaluated on a large number of topics for which it has very few training examples

- Existing stance datasets:
 - Small number of topics & described in one way
 - Little linguistic variation in how topics are expressed and limited topics

Contribution

- A new dataset: VAST
 - For zero-shot & few-shot stance detection

- A new model: TGA Net
 - improves performance on a number of challenging linguistic phenomena
 - relies less on sentiment cues

Dataset: VAST

- A large range of topics covering broad themes
 - politics (e.g., 'a Palestinian state'), education (e.g., 'charter schools'), and public health (e.g., 'childhood vaccination')

- Includes a wide range of similar expressions
 - 'guns on campus' vs 'firearms on campus'

Dataset: VAST

Comment	ARC Stance	Topic	ℓ	Type	
Instead they have to work jobs	Immigration is	immigration	Con	Heur	(1)
(while their tax dollars are going to	really a problem	a problem ¬			
supporting illegal aliens) in order to		costs to	Con	List	(2)
put themselves through college [cont]		american citizens			
Why should it be our job to help out the	Not to tip	workplace ¬			(3)
owners of the restaurants and bars?		living wage	Pro	Corr	
If they were paid a living wage[cont]		restaurant owners	Con	List	$\overline{(4)}$
I like being able to access the internet	Medical websites	medical websites	Pro	Heur	(5)
about my health issues, and find I can	are healthful				
talk with my doctors [cont]		home schoolers	Neu		$\overline{(6)}$

Dataset: VAST

	#	%P	%C
Type Heur	4416	49	51
Type Corr	3594	44	51
Type List	11531	50	48
Neutral examples	3984	_	_
TOTAL examples	23525	40	41
Topics	5634	_	_

- Sematic & stance complexity
 - 4 topics/comment

- Great variety of topics
 - Few examples each topic (median 1, average 2.4)

Method

[CLS] get flu shot [SEP] mandatory vaccine [SEP]

Enc: Contextual conditional encoding

 GTR: Generalized Topic Representations

 TGA: Topic-Grouped Attention

Method: Contextual conditional encoding

- Embed a document and topic jointly with BERT (treat as a pair)
- Token embedding: $\bar{t}=t^{(1)},\ldots,t^{(m)}$ $\bar{d}=d^{(1)},\ldots,d^{(n)}$

Method: Generalized Topic Representations

- ullet Get v_d and v_t
 - 1) Embed the document and topic separately using BERT
 - 2) Weighted average over \bar{d} (\bar{t})
- $v_{dt} = [v_d; v_t]$ for hierarchical clustering

• r_{dt} : Centroid of the nearest cluster to example x = (d, t, y)

Method: Topic-Grouped Attention

Scaled dot-product attention

• c_{dt} : captures the relationship between t and related topics and documents

$$c_{dt} = \sum_{i} s_i t^{(i)}, \ s_i = \operatorname{softmax} \left(\lambda t^{(i)} \cdot (W_a r_{dt}) \right)$$

Method: Label prediction

 Combine output of TGA with document token embeddings

 Pass through a feed forward neural network (FFNN)

$$p = \text{softmax}(W_2(\tanh(W_1[\tilde{d}; c_{dt}] + b_1) + b_2))$$

	F1 All		F1 Zero-Shot			F1 Few-Shot			
	pro	con	all	pro	con	all	pro	con	all
СМај	.382	.441	.274	.389	.469	.286	.375	.413	.263
BoWV	.457	.402	.372	.429	.409	.349	.486	.395	.393
C-FFNN	.410	.434	.300	.408	.463	.417	.413	.405	.282
BiCond	.469	.470	.415	.446	.474	.428	.489	.466	.400
Cross-Net	.486	.471	.455	.462	.434	.434	.508	.505	.474
BERT-sep	.4734	.522	.5014	.414	.506	.454	.524	.539	.544
BERT-joint	.545	.591	.653	.546	.584	.661	.544	.597	.646
TGA Net	.573*	.590	.665	.554	.585	.666	.589*	.595	.663

Test Topic	Cluster Topics
drug addicts	war drug, cannabis, legalization, marijuana popularity, social effect, pot, colorado,
	american lower class, gateway drug, addiction, smoking marijauana, social drug
oil drilling	natural resource, international cooperation, renewable energy, alternative energy,
	petroleum age, electric car, solar use, offshore drilling, offshore exploration, planet
free college	tax break home schooling, public school system, education tax, funding education,
education	public service, school tax, homeschool tax credit, community, home schooling parent

Figure 2: Percentage (right y-axis) each model is best on the test set as a function of the number of *unique* topics in each cluster. Histogram (left y-axis) of unique topics shown in gray.

Figure 3: Percentage (right y-axis) each model is best on the test set as a function of the number of *examples per cluster*. Histogram of cluster sizes (left y-axis) shown in gray.

Experiments: Error analysis

		Imp	mlT	mlS	Qte	Sarc
BERT	I	.600	.610	.541	.625	.587
BERT joint	О	.710	.748	.713	.657	.662
TGA	Ι		.624			.637
Net	О	.713	.752	.725	.663	.667

- Imp: topic phrase not in document & not neutral label
- mlT: a document in examples with multiple topics
- mlS: a document in examples with diff & non-neutral label
- Qte: a document with quotations
- Sarc: sarcasm

Experiments: Error analysis

		BERT	TGA
		joint	Net
	M+	.73	.77
Pro	M-	.65	.68
P10 ·	$M+ \rightarrow M- (\downarrow)$.71→.69	.74→.67
	$M- \to M+ (\uparrow)$.71→.74	.71→.70
	M+	.74	.70
Con -	M-	.79	.80
	$M+ \rightarrow M- (\uparrow)$.76→.80	.70→.74
	$M- \to M+ (\downarrow)$.75→.71	.75→.74

 MPQA: pos/neg sentiment words

• M+: pos > neg

• M-: pos < neg

 Lies less on sentiment cues than other models

Thanks!

Q&A