Math 4580: Abstract Algebra I

Lecturer: Professor Michael Lipnowski

Notes by: Farhan Sadeek

Spring 2025

1 January 6, 2025

We didn't have any, but Dr. Lipnowski did post a module on <u>carmen</u> about the syllabus and the course. This semester we will be covering the first few chapters of the book *Abstract Algebra: Theory and Applications* by Thomas Judson.

Definition 1

Set: A collection of distinct objects, considered as an object in its own right.

Axioms: A collection of objects S with assumed structural rules is defined by axioms.

Statement: In logic or mathematics, an assertion that is either true or false.

Hypothesis and Conclusion: In the statement "If P, then Q", P is the hypothesis and Q is the conclusion.

Mathematical Proof: A logical argument that verifies the truth of a statement.

Proposition: A statement that can be proven true.

Theorem: A proposition of significant importance.

Lemma: A supporting proposition used to prove a theorem or another proposition.

Corollary: A proposition that follows directly from a theorem or proposition with minimal additional proof.

2 January 8, 2025

Professor Lipnowski discussed Sam Lloyd's 15 puzzle. Each lecture will include a mystery digit, contributing up to 5% bonus to the final grade based on correct guesses.

Certain course expectations:

- · All assignments (one every two weeks) and exams (one midterm and one final exam) will be take-home.
- · All the problems from the course textbook.
- Collaboration is encouraged, but the work should be your own.
- For the exams, we are not supposed to talk to other friends.

2.1 Functions

Definition 2

Let A and B be sets. A function $f: A \to B$ assigns exactly one output $f(a) \in B$ to every input $a \in A$.

- The set A is called the **domain** of f.
- The set *B* is called the **codomain** of *f*.

Fact 3

The domain A, codomain B, and the assignment of outputs f(a) to every input $a \in A$ are all part of the data defining a function. Just writing a formula like $f(x) = e^x$ does not determine a function, as the domain and codomain are not specified.

For example:

- $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x$.
- $f: \mathbb{Q} \to \mathbb{Q}, f(x) = e^x$.

Although these functions use the same formula, their meanings are completely different because their domains and codomains differ.

2.2 Graphs

A function $f: A \to B$ is often identified with its **graph** in $A \times B$:

$$graph(f) = \{(a, b) \in A \times B : b = f(a)\}.$$

Lemma 4

Let $f:A\to B$ be a function. Its graph, graph(f), passes the **vertical line test**: For every $a\in A$, $V_a:=\{(a,b)\in A\times B:b\in B\}$ intersects graph(f) in exactly one element.

Proposition 5

Let $G \subseteq A \times B$ be any subset passing the vertical line test, i.e., for all $a \in A$, $V_a \cap G$ consists of exactly one element. Then G = graph(f) for a unique function $f : A \to B$.

Proof. If $G = \{(a, b) \mid b \in B\}$ satisfies the vertical line test, define $f : A \to B$ by f(a) = b. Then G = graph(f).

Definition 6

A subset $R \subseteq A \times B$ is called a **relation**. The vertical line test distinguishes graphs of functions from more general relations.

2.3 Examples

- Let $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (the unit circle). This is a relation but not the graph of a function because it fails the vertical line test: The vertical line x = 0 intersects the circle at two points.
- Visual depiction of a unit circle:

- Let $A = \{1, 2, 3\}$, $B = \{4, 5\}$. The number of functions from A to B is $2^3 = 8$, corresponding to the 8 associated graphs in $A \times B$.
- The number of relations from A to B is $2^{|a|\cdot|b|}=2^{3\cdot 2}=64$, containing the 8 graphs of functions from A to B.

Fact 7

The notion of relation is much more permissive than the notion of functions.

2.4 Visualizing Functions as Directed Edges

A function $f: A \to B$ can be visualized as a collection of directed edges $(a, f(a)) \in A \times B$. Each element of A has exactly one outgoing edge in the graph.

3 January 10, 2025

3.1 Injection and Surjection

Let $f: A \to B$ be a function.

Definition 8 (Injectivity (One-to-One))

f is injective (one-to-one) if:

$$\forall x, y \in A, f(x) = f(y) \implies x = y$$

Equivalently:

$$x \neq y \implies f(x) \neq f(y)$$

Fact 9

Distinct inputs have distinct outputs.

Definition 10 (Surjectivity (Onto))

f is surjective (onto) if:

 $\forall b \in B, \exists a \in A \text{ such that } f(a) = b.$

Fact 11

Every $b \in B$ is an output of something through f."

Example 12

Here are a few examples of injectivity and surjectivity:

- Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$ and $f : A \to B$ with f(1), f(2), f(3) as elements of B. If B has only two elements, at least two of f(1), f(2), f(3) must coincide (e.g., f(1) = f(2)). Thus, f is not injective.
- Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$ and $f : A \to B$ where:

$$f(1) = 4$$
, $f(2) = 7$, $f(3) = 5$.

Distinct inputs have distinct outputs, so f is injective.

• Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$ and $f : A \to B$ where:

$$f(1) = 4$$
, $f(2) = 4$, $f(3) = 6$.

Here, $A = \{1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$ and f(1) = f(2) but $1 \neq 2$, so f is not injective.

- Let $f:A\to B$ where B has size 4 and f(1), f(2), f(3) are distinct elements of B. If $B\setminus \{f(1), f(2), f(3)\}$ is non-empty, then $b\neq f(a)$ for all $a\in A$, implying f is non surjective.
- Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$ and $f : A \to B$ with f(1) = 4, f(2) = 5, f(3) = 4. f is surjective.
- Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$ and $f : A \to B$ with f(1) = 4, f(2) = 4, f(3) = 4. f is not surjective.

3.2 Bijection and Range

Definition 13 (Bijectivity)

f is bijective if f is both injective and surjective.

Definition 14

Let $f: A \to B$ be a function. The range of f is the subset of B defined as:

$$range(f) := \{b \in B \mid b = f(a) \text{ for some } a \in A\}.$$

Thus, $f: A \to B$ is surjective \iff range(f) = B.

• Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$ and $f : A \to B$ where:

$$f(1) = 6$$
, $f(2) = 5$, $f(3) = 4$.

f is a bijection.

• Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$ and $f : A \to B$ where:

$$f(1) = 4$$
, $f(2) = 4$, $f(3) = 56$

f is neither injective nor surjective.

Question. Let A and B be finite sets of the same size. Prove that the following are equivalent:

- 1. $f: A \rightarrow B$ is injective.
- 2. $f: A \rightarrow B$ is bijective.
- 3. $f: A \rightarrow B$ is surjective.

Demonstrate that (1), (2), and (3) are not necessarily equivalent if $A = B = \mathbb{N}$.

Example 15

Let $f: \mathbb{N} \to \mathbb{Z}$ be defined as:

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ -\frac{(n+1)}{2} & \text{if } n \text{ is odd.} \end{cases}$$

is a bijection from \mathbb{N} to \mathbb{Z} .

Proof. **Injectivity:** Suppose $f(n_1) = f(n_2)$. Then:

• If $f(n_1) = f(n_2) > 0$, then n_1, n_2 must be even and

$$\frac{n_1}{2} = f(n_1) = f(n_2) = \frac{n_2}{2} \implies n_1 = n_2.$$

• If $f(n_1) = f(n_2) < 0$, then n_1, n_2 must both be odd and

$$-\frac{n_1+1}{2}=f(n_1)=f(n_2)=-\frac{n_2+1}{2} \implies n_1=n_2.$$

In all cases, $n_1 = n_2$.

It follows that f is injective.

Surjectivity: Let $n \in \mathbb{Z}$.

• If n > 0, then

$$n = f(2n)$$
.

• If n < 0, then

$$n = f(-2n - 1).$$

 \therefore f is surjective.

Theorem 16 (Taylor's Theorem)

Let f be a function that is n-times differentiable at a. Then for each x in the interval containing a, there exists a ξ between a and x such that

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Proof. By the mean value theorem, for each x in the interval containing a, there exists a ξ between a and x such that

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_{n+1}(x),$$

where $R_{n+1}(x)$ is the remainder term. The remainder term can be expressed as

$$R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Therefore, we have

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - a)^{n+1}.$$