Indian Statistical Institute

BSDS Ist Year

Academic Year 2024 - 2025: Semester I

Course: Probability Theory I

Instructor: Antar Bandyopadhyay

Assignment # 10

Date Given: November 06, 2024 Date Due: November 14, 2024 Total Points: 10

- **3.3.30** Let X_i be the last digit of D_i^2 , where D_i is a random digit between 0 and 9. For instance, if $D_i = 7$ then $D_i^2 = 49$ and $X_i = 9$. Let $\bar{X}_n := (X_1 + X_2 + \cdots + X_n)/n$ be the average of a large number n of such last digits, obtained from independent random digits D_1, D_2, \cdots, D_n .
 - (a) Predict the value of \bar{X}_n for large n.
 - (b) Find a number ε such that for n=10,000 the chance that your prediction is off by more than ε is about 1 in 200.
 - (c) Find approximately the least value of n such that your prediction of \bar{X}_n is correct to within 0.01 with probability at least 0.99.
 - (d) Which can be predicted more accurately for large n: the value of \bar{X}_n , or the value of $\bar{D}_n := (D_1 + D_2 + \cdots + D_n)/n$?
 - (e) If you just had to predict the first digit of \bar{X}_{100} , what digit should you choose to maximize your chance of being correct, and what is that chance?
- **4.1.2** Suppose X has density $f(x) = c/x^4$ for x > 1, and f(x) = 0 otherwise, where c is a constant. Find
 - (a) the constant c;
 - (b) $\mathbf{E}[X]$; and
 - (c) Var(X).
- **4.1.4** Suppose X with values in (0,1) has density $f(x) = cx^2 (1-x)^2$ for 0 < x < 1. Find
 - (a) the constant c;
 - (b) $\mathbf{E}[X]$; and
 - (c) Var(X).
- 4.5.2 Find and sketch the cumulative distribution functions (CDF) of

- (a) the Binomial (3,1/2) distribution; and
- (b) the Geometric (1/2) distribution;