Lemma 1. Let $M \in \Lambda$ -mod with $\underline{\dim} M = \mathbf{d}$, and let $x \in \operatorname{Rep}_{\mathbf{d}} \Lambda$ such that M corresponds to the G-orbit G.x. If $U \subseteq M$ is a submodule, then the direct sum $U \oplus M/U$ corresponds to a G-orbit contained in $\overline{G.x}$.

Proof. Let $\mathbf{d}' = \underline{\dim} U$. Then $\mathbf{d}'' = \mathbf{d} - \mathbf{d}' = \underline{\dim} M/U$, since $e_i(M/U) \cong e_i M/e_i U$ canonically.

For each $i \leq n$, choose an ordered K-basis for e_iU and supplement it to an ordered basis for e_iM .

Suppose $x = (x_{\alpha})_{\alpha \in Q_1}$. Since $\alpha U \subseteq U$ by hypothesis, the x_{α} have the following block format. If $\alpha : e_i \to e_j$ then

$$x_{\alpha} = \begin{bmatrix} A_{\alpha} & C_{\alpha} \\ 0 & B_{\alpha} \end{bmatrix}$$

where A_{α} is a $d'_i \times d'_i$ matrix and B_{α} is a $d''_i \times d''_i$ matrix.

For each $c \in K$, define an element $g(c) \in \prod_{1 \le i \le n} M_{d_i}(K)$ as follows:

$$g(c) = (g(c)_1, \dots, g(c)_n)$$

where

$$g(c)_i = \begin{bmatrix} cI_{d_i'} & 0\\ 0 & I_{d_i''} \end{bmatrix}$$

where I_m is the $m \times m$ identity matrix.

Clearly, $g(c) \in G = \prod_{1 \le i \le n} \operatorname{GL}_{d_i}(K)$ whenever $c \in K^{\times}$.

Now consider the morphism of varieties

$$\psi: K \longrightarrow \operatorname{Rep}_{\mathbf{d}}(\Lambda),$$

$$c \longmapsto \left(\begin{bmatrix} A_{\alpha} & cC_{\alpha} \\ 0 & B_{\alpha} \end{bmatrix} \right)_{\alpha \in O_{1}}.$$

Observe: for $c \in K^{\times}$, we have

$$\psi(c) = (g(c)_{\operatorname{end}(\alpha)} x_{\alpha} g(c)_{\operatorname{start}(\alpha)})_{\alpha \in O_1} = g(c).x \in G.x$$

Since ψ is Zariski-continuous, $\psi^{-1}(\overline{G.x})$ is closed in K, and thus $\psi^{-1}(\overline{G.x}) = K$.

In other words,

$$\psi(0) = \left(\begin{bmatrix} A_{\alpha} & 0 \\ 0 & B_{\alpha} \end{bmatrix} \right)_{\alpha \in Q_1} \in \overline{G.x},$$

but clearly the orbit of $\psi(0)$ in $\overline{G.x}$ represents the direct sum $U \oplus M/U$.