CPSC 8420 Advanced Machine Learning Week 5: Unsupervised Learning

Dr. Kai Liu

September 17, 2020

Learning Outcomes

Our goal for today's lecture is to understand:

- PCA and Projection
- K-means and its variations
- Non-negative Matrix Factorization (NMF) with solutions through Multiplicative Updating Algorithm (MUA)
- NMF with solutions via Alternating Minimization

PCA and **Projection**

Computing SVD

Assum we have $X \in \mathbb{R}^{n \times p}$, $[U, S, V] = svd(X^TX)$, then the complexity is $\mathcal{O}(p^3)$. And to construct X^TX , it will take $\mathcal{O}(p^2n)$, if $p \gg n$, then it is likely computationally demanding.

A More Efficient Way

Now consider XX^T , suppose u is its eigenvector: $XX^T u = \sigma u$, then $X^T XX^T u = \sigma X^T u$, then immediately we know $\frac{X^T u}{\|X^T u\|}$ is an eigenvector of $X^T X$ with eigenvalue of σ . We can therefore calculate the PCA solution by calculating the eigenvalues of XX^T instead of $X^T X$. The complexity is $\mathcal{O}(n^3)$ plus $\mathcal{O}(n^2 p)$, which is significantly more efficient.

A Perspective From Reconstruction Error

In 2D space, assume each example is of the form (x, x + y) where x is uniformly generated from [-1, 1] and y is sampled from Gaussian distribution with mean 0 and standard deviation of 0.1. Blue x's and red circles representing before and after reconstruction.

Principal Component Regression

TABLE 3.3. Estimated coefficients and test error results, for different subset and shrinkage methods applied to the prostate data. The blank entries correspond to variables omitted.

Term	LS	Best Subset	Ridge	Lasso	PCR	PLS
Intercept	2.465	2.477	2.452	2.468	2.497	2.452
lcavol	0.680	0.740	0.420	0.533	0.543	0.419
lweight	0.263	0.316	0.238	0.169	0.289	0.344
age	-0.141		-0.046		-0.152	-0.026
lbph	0.210		0.162	0.002	0.214	0.220
svi	0.305		0.227	0.094	0.315	0.243
lcp	-0.288		0.000		-0.051	0.079
gleason	-0.021		0.040		0.232	0.011
pgg45	0.267		0.133		-0.056	0.084
Test Error	0.521	0.492	0.492	0.479	0.449	0.528
Std Error	0.179	0.143	0.165	0.164	0.105	0.152

Projection

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

K-means and its Variations

Clutering with K-means

K-means Algorithm

```
input: \mathcal{X} \subset \mathbb{R}^n; Number of clusters k initialize: Randomly choose initial centroids \mu_1, \ldots, \mu_k repeat until convergence \forall i \in [k] \text{ set } C_i = \{\mathbf{x} \in \mathcal{X} : i = \operatorname{argmin}_j \|\mathbf{x} - \boldsymbol{\mu}_j\|\} (break ties in some arbitrary manner) \forall i \in [k] update \boldsymbol{\mu}_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}
```

K-means Objective

$$G(C_1,...,C_k) = \min_{\mu_1,...,\mu_k \in \mathbb{R}^n} \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \mu_i\|^2.$$

Think over the question that why the objective is monotonically non-increasing in each step within the loop?

Schrödinger's cat

Though the objective is monotonically non-increasing, there is no guarantee on the number of iterations the K-means algorithm needs in order to reach convergence. In fact, K-means might converge to a point which is not even a local minimum.

Given a data set $\{1,2,3,4\}$ with initial centers $\{2,4\}$ and K=2. We break ties in the definition of C_i by assigning i to be the smallest value in $argmin_j ||x-u_j||$.

K-means Variations

- The K-medoids objective function is similar to the K-means objective, except that it requires the cluster centroids to be members of the input set.
- The K-median objective function is quite similar to the K-medoids objective, except that the 'distortion' between a data point and the centroid of its cluster is measured by distance, rather than by the square of the distance.

Non-Negative Matrix Factorization

Disadvantage of PCA

Consider Error Construction formulation of PCA: $||x_i - U\lambda_i||^2$, $s.t.U^TU = I$, that each data point is approximately represented by a linear combination of U_i with coefficients $\lambda_i := U^Tx_i$, apparently it can be negative. However, in real-life, some operations are only additive, thus we may add non-negativeness constraint on the factor.

Another example is image processing, that each pixel should be within [0,255], negative pixel is meaningless. To enhance the interpretability, we introduce Non-negative Matrix Factorization.

Non-Negative Matrix Factorization

Non-Negative Matrix Factorization

$$\begin{bmatrix} 4.2 & 3.5 & 1 & 1.5 \\ 4 & 3.8 & 1.2 & 1.4 \end{bmatrix} \approx \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 0.9 & 0.8 & 0.1 & 0.2 \\ 0.1 & 0.2 & 0.9 & 0.8 \end{bmatrix}$$
$$\approx \begin{bmatrix} 1 & 4 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 0.1 & 0.2 & 0.9 & 0.8 \\ 0.9 & 0.8 & 0.1 & 0.2 \end{bmatrix}$$

MUA for NMF

Non-negative Matrix Factorization problem:

$$\min_{X,Y \ge 0} h(X,Y) = \frac{1}{2} \|Q - XY\|_F^2$$

5 images of 2 people

Multiplicative Updating Algorithm (MUA) (Lee & Seung, 2001):

$$Y_{ij} \leftarrow Y_{ij} \frac{(X^T Q)_{ij}}{(X^T X Y)_{ij}}, \ X_{ij} \leftarrow X_{ij} \frac{(QY^T)_{ij}}{(XYY^T)_{ij}}$$

Convergence and Majorize-Minimization

Minorize-Maximization

Alternating-Minimization

$$\min_{X,Y \ge 0} h(X,Y) = \frac{1}{2} \|Q - XY\|_F^2$$

- 1. The NMF objective is Nonconvex.
- 2. Convex w.r.t. each component (X, Y)

K-means v.s. NMF

K-means v.s. NMF

NMF	а	b	С	d
C1	0.9	0.15	0.8	0.25
C2	0.2	0.8	0.1	0.8

K-means	а	b	С	d
C1	1	0	1	0
C2	0	1	0	1