DESIGN ANEL DE RESSONANCIA

SEMANA 1 E 2

ESTUDO DE REFERENCIAS

GRÁFICOS TEÓRICOS

GRÁFICOS TEÓRICOS Transmissão All pass ring

GRÁFICOS TEÓRICOS Transmissão Add-drop ring

Especificações

FSR = 27.7 nm

MWHW = 0.88 nm

SOI in SiO2

Guia: 0.45/0.22 um

gap = 150 nm

Valores Teóricos

Comprimento total = 18.85 um

Comprimento de acoplamento = 5.74 um

Raio = 1.17 um

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação

DESIGN DE UM ANEL DE RESSONÂNCIA Sweep comprimento de acoplamento

DESIGN DE UM ANEL DE RESSONÂNCIA Sweep comprimento de acoplamento

DESIGN DE UM ANEL DE RESSONÂNCIA Usando L acoplamento = 3.0.5 um

SEMANA 3

DESIGN ANEL BANDA C

Especificações Centrado na banda C

FSR = 0.8 nm

MWHW = 0.2 nm

SOI in SiO2

Guia: 0.45/0.22 um

gap = 150 nm

Valores Teóricos

Comprimento total = 650.82 um

Comprimento de acoplamento = 15.13 um

Raio = 98.76 um

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação no Interconect

Analise do acoplamento

Solver usado: EME

