Метод чисел Фибоначчи.

Для первоначального разбиения используются свойства чисел ряда Фибоначчи:

$$0, 1, 1, 2, 3, 5, 8, 13, \dots, F_{n-1}, F_n$$

Ряд Фибоначчи — последовательность, каждый член которой, начиная с третьего, представляет собой сумму двух предыдущих.

Предел отношения $\mathbf{F_n} / \mathbf{F_{n-1}}$ при $n \to \infty$ равен золотому сечению.

Для первоначального разбиения задается п и используются 3 последних числа Фибоначчи:

$$x_1 = a + (b-a)*(F_{n-2}/F_n)$$

 $x_2 = a + (b-a)*(F_{n-1}/F_n)$

Точки x_1 и x_2 располагаются симметрично относительно середины отрезка **AB** (<u>ДОКАЗАТЬ!</u>)

Далее необходимо (n - 3) раз:

- 1. Вычислять значение функции в точках X_1 и X_2
- 2. Со стороны большего значения перемещать границу отрезка ${\bf AB}$ в соответствующую точку ${\bf X}$
- 3. **Если**

была перемещена точка ${\bf B}$, то точка ${\bf X}_2$ перемещается в точку ${\bf X}_1$, а точка ${\bf X}_1$ откладывается симметрично относительно середины нового отрезка ${\bf AB}$:

$$x_2=x_1$$

 $x_1=b-(x_2-a)$

иначе

точка X_1 перемещается в точку X_2 , а новая X_2 откладыватся от точки A:

$$x_1=x_2$$

$$x_2=a+(b-x_1)$$

Как видим, в отличие от метода золотого сечения, мы имеем цикл с заданным количеством итераций, поэтому он применяется в системах, где важно соблюсти точное время работы алгоритма.