Finite State Machine

Jia Chen jiac@ucr.edu

Recap: Combinational v.s. sequential logic

- Combinational logic
 - The output is a pure function of its current inputs
 - The output doesn't change regardless how many times the logic is triggered — Idempotent
- Sequential logic
 - The output depends on current inputs, previous inputs, their history

Sequential circuit has memory!

Recap: Theory behind each

- A Combinational logic is the implementation of a Boolean Algebra function with only Boolean Variables as their inputs
- A Sequential logic is the implementation of a Finite-State Machine

Preview: an example of sequential logic

Initial state

Count-down Timer

- What do we need to implement this timer?
 - Set an initial value/"state" of the timer
 - > "Signal" the design every second
 - The design changes its "state" every time we received the signal until we reaches "0" — the final state

Finite State Machines

State diagram

□FSM consists of

- Set of states
- Set of inputs, set of outputs
- 3. Initial state
- 4. Set of transitions
 - Only one can be true at a time

□FSM representations:

- 1. State diagram
- 2. State table

CurrentState	Next State Signal	
	0	1
10	10	9
9	9	8
8	8	7
7	7	6
6	6	5
5	5	4
4	4	3
3 2	3	2
2	2	1
1	1	0
0	0	0

State table

Outline

- Finite State Machines
- The Basic Form of Memory
- Clock

Finite-State Machines (cont.)

- A. 1
- B. 2
- C. 3
- D. 4
- E. None of the above

A. 1

B. 2

C. 3

D. 4

E. None of the above

- A. 1
- B. 2
- C. 3
- D. 4
- E. None of the above

A. 1

B. 2

C. 3

D. 4

E. None of the above

Life on Mars

- Mars rover has a binary input x. When it receives the input sequence x(t-2:t) = 001 from its life detection sensors, it means that the it has detected life on Mars and the output y(t) = 1, otherwise y(t) = 0 (no life on Mars).
- This pattern recognizer should have
 - A. One state because it has one output
 - B. One state because it has one input
 - C. Two states because the input can be 0 or 1
 - D. More than two states because

Life on Mars

- Mars rover has a binary input x. When it receives the input sequence x(t-2:t) = 001 from its life detection sensors, it means that the it has detected life on Mars and the output y(t) = 1, otherwise y(t) = 0 (no life on Mars).
- This pattern recognizer should have
 - A. One state because it has one output
 - B. One state because it has one input
 - C. Two states because the input can be 0 or 1
 - D. More than two states because

FSM for Life on Mars

1/0 == Input 1/Output 0

 Which of the following diagrams is a correct FSM for the 001 pattern recognizer on the Mars rover? (If sees "001", output "1")

FSM for Life on Mars

1/0 == Input 1/Output 0

 Which of the following diagrams is a correct FSM for the 001 pattern recognizer on the Mars rover? (If sees "001", output "1")

- (D) All are correct
- (E) None is correct

Alternative FSM for Life on Mars

If sees '001', output '1'

All the outputs of S3 are equal to S0!

Merge S3 into S0

FSM for Life on Mars

Before the merging

After the merging

Merge S3 into S0

State Transition Table of Life on Mars

	Next State	
CurrentState	Input	
	0	1
S0 — something else	S1, 0	S0, 0
S1 — 0	S2, 0	S0, 0
S2 — 00	S2, 0	S3, 1
S3 — 001	S1, 0	S0, 0

- Mars rover has a binary input x. When it receives the input sequence x(t-2:t) = 101 from its life detection sensors, it means that the it has detected life on Mars and the output y(t) = 1, otherwise y(t) = 0 (no life on Mars).
- What is the minimal number of states in the FSM of the pattern recognizer
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. None of the above

State Transition Table of Life on Mars

	Next State		
CurrentState	ln	Input	
	0	1	
S0 — something else	S0, 0	S1, 0	
S1 — 1	S2, 0	S1, 0	
S2 — 10	S0, 0	S3, 1	
S3 — 101	S2, 0	S1, 0	

- Mars rover has a binary input x. When it receives the input sequence x(t-2, t) = 101 from its life detection sensors, it means that the it has detected life on Mars and the output y(t) = 1, otherwise y(t) = 0 (no life on Mars).
- What is the minimal number of states in the FSM of the pattern recognizer
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. None of the above

1/0 == Input 1/Output 0

 Which of the following diagrams is a correct FSM for the "101" pattern recognizer? (If sees "101", output "1")

1/0 == Input 1/Output 0

 Which of the following diagrams is a correct FSM for the "101" pattern recognizer? (If sees "101", output "1")

1/0 == Input 1/Output 0

 Which of the following diagrams is a correct FSM for the "101" pattern recognizer? (If sees "101", output "1")

State Transition Table of FSM 111

	Next State	
CurrentState	Input	
	0	1
S0 — something else	S0, 0	S1, 0
S1 — 1	S0, 0	S2, 0
S2 — 11	S0, 0	S3, 1
S3 — 111	S0, 0	S3, 1