Homework 5

- 1. Calculate the differentials of the following 1-forms:
- a) xdx,
- b) xdy
- c) xdx + ydy,
- d)xdy + ydx,
- e) xdy ydx
- f) $x^4dy + 4x^3ydx$,
- g) xdy + ydx + dz,
- h) xdy ydx + dz.

For each 1-forms listed above find a function f (0-form) such that $df = \omega$, if possible. If it is not possible, explain why.

2 Consider one-form

$$\omega = \frac{xdy - ydx}{x^2 + y^2} \tag{1}$$

This form is defined in $\mathbf{E}^2 \setminus 0$.

Calculate differential of this form.

Write down this form in polar coordinates

Find a function f such that $\omega = df$.

Is this function defined in the same domain as ω ?

 $\mathbf{3}^*$ Let $\omega = a(x,y)dx + b(x,y)dy$ be a closed form in \mathbf{E}^2 , $d\omega = 0$.

Consider the function

$$f(x,y) = x \int_{0}^{1} a(tx,ty)dt + y \int_{0}^{1} b(tx,ty)dt$$
 (2)

Show that

$$\omega = df$$
.

This proves that an arbitrary closed form in ${\bf E}^2$ is an exact form.

Why we cannot apply the formula (2) to the form ω defined by the expression (1)?