

Question 20:

OP = OR = OQ = r

Let OQ and PR intersect at S

We know the diagonals of a rhombus bisect each other at right angle.

Therefore we have

$$OS = \frac{1}{2} \text{r and } ∠OSR = 90^{\circ}$$

∴ SR = $\sqrt{OR^2 - OS^2}$

:
$$SR = \sqrt{OR^2 - OS^2}$$

= $\sqrt{r^2 - \frac{r^2}{4}} = \frac{\sqrt{3}r}{2}$

Area of rhombus
$$=\frac{1}{2} \times OQ \times PR$$

$$= \frac{1}{2} \times r \times \sqrt{3}r = \frac{\sqrt{3}r^2}{2}$$

$$\therefore \frac{\sqrt{3}r^2}{2} = 32\sqrt{3} \Rightarrow r^2 = \frac{32\sqrt{3}}{\sqrt{3}} \times 2 = 64cm$$

$$r = 8 cm$$

Question 21: Diameter of the inscribed circle = Side of the square = 10 cm Radius of the inscribed circle = 5 cm

Diameter of the circumscribed circle

- = Diagonal of the square
- $=(\sqrt{2}\times10)$ cm

Radius of circumscribed circle = $5\sqrt{2}$ cm

(i) Area of inscribed circle =
$$\left(\frac{22}{7} \times 5 \times 5\right)$$
 = 78.57 cm^2

(ii) Area of the circumscribed circle =
$$\left(\frac{22}{7} \times 5\sqrt{2} \times 5\sqrt{2}\right) = 157.14 \text{ cm}^2$$

Question 22: Let the radius of circle be r cm

Then diagonal of square = diameter of circle = 2r cm Area of the circle = πr^2 cm²

Area of square =
$$\frac{1}{2} \times (\text{diagonal})^2$$

= $\frac{1}{2} \times 4r^2 = 2r^2 \text{ cm}$

Ratio =
$$\frac{\text{Area of circle}}{\text{Area of square}} = \frac{\pi r^2}{2r^2} = \frac{\pi}{2} = (\pi : 2)$$

******* END ********