

Newton's Method of (1-D) Optimization

We have the 1-D function F(x):

 It is natural to approximate this with a parabola. We thus truncate its Taylor series after the <u>quadratic</u> term, and use the approximation to get the next estimate of the critical point.

Newton's Method of (1-D) Optimization

•
$$F(x) = F(x_k) + (x - x_k)F'(x_k) + 0.5(x - x_k)^2F''(x_k) + ...$$

- We seek x^* where $F'(x^*) = 0$
- Thus, $x_{k+1} = x_k F'(x_k)/F''(x_k)$
- This is virtually identical to root solving via Newton's method.
- In fact it is root solving, just the root of F'(x)

Successive Parabolic Interpolation

- Successive Parabolic Interpolation is very similar to the secant method for root solving.
- Instead of using two points to get a line, we use three points to get a parabola!
- Thus if we have x_k , x_{k-1} , x_{k-2} we fit $y = ax^2 + bx + c$ to the points:

$$(x_k,F(x_k)), (x_{k-1},F(x_{k-1})), (x_{k-2},F(x_{k-2}))$$

- Once we have a,b and c, we seek the critical point: dy/dx = 0 = 2ax + b
- Thus, $x_{k+1} = -b/2a$

Successive Parabolic Interpolation

- We iterate forward, keeping the last three points.
- The rate of convergence is 1.324.
- This is superlinear, but not as fast as Newton's method (r=2).
- Both techniques go to critical points <u>either</u> maxima or minima – and have convergence problems if you don't start close enough to the correct answer!

Different types of critical points

- The Golden Search (modified Fibonacci search) is analogous to root finding using bisection.
- In this case rather than knowing some interval [a,b] where f(a)f(b)<0 as in bisection, here we require that the function F(x) be <u>unimodal</u> over [a,b].
- This means that (if we are looking for a minimum):

$$F'(x) = \begin{cases} < 0 & x < x^* \\ > 0 & x > x^* \end{cases}$$

- Note that F" may change sign in this interval!
- If F" = 0, then Newton's method (and successive parabolic interpolation) will <u>fail</u>, but the golden search is unaffected!
- An example of such a function:

$$F(x) = x^2 + a \cos((\omega x)^2)$$
 provided $\omega^2 a < 1$ there is only one critical point at $x^* = 0$.

- For large x, however, F" is both positive and negative.
- Unless Newton's method is started close to the minimum it will not converge!

- The golden search relies on evaluating the function at points within the interval [a,b] and determining in which part of the sub-interval the minimum lies.
- Suppose we have the interval [0,1] over which the function is unimodal, and which contains the minimum.
- We evaluate the function at two additional points in the interior (1 – r), r such that r > 0.5.

Figure 8.5

Choosing a subinterval for a one-dimensional bracketing search method

Figure 8.6

Dividing a line by the golden ratio

- Now if F(r) < F(1-r)
 then the minimum
 will lie in the interval
 [(1-r), 1] and if F(r) >
 F(1-r) then it will lie
 in the interval [0,r].
- We discard the balance of the original interval and do it again.
- The trick is to choose
 r so that in the next
 step we only need
 <u>one</u> new evaluation
 rather than two!

 This means that we want the point (1–r) on the <u>left side</u> of the original interval to map onto the point r on the right.

• Thus we require:
$$(1-r) = (r)(r)$$

Left hand Right interval point in hand point of sub-interval sub-interval r = $(sqrt(5) - 1)/2 = 0.6180$

Golden Ratio: 0.6180...

First iteration of the golden section search method

Second iteration of the golden section search method

- You get the same value of r if you discard the left side of the interval and map the old r.h.s. point onto the new left hand side point.
- Each iteration discards 38% of the current interval, thus:

$$|e_{i+1}|/|e_i| = 0.618$$

• So we have a <u>linear</u> rate of convergence, but c is higher than in bisection.

Q1: Matlab function bisectionmethod.m What is the purpose of the highlighted line of the code?

- A. Calculate the midpoint of the interval.
- B. Calculate the function evaluation at the midpoint.
- C. Test whether f(a)*f(m) < 0
- D. Choose the first half of the interval.
- E. Choose the second half of the interval.

Q2: Matlab function newtonsmethod.m What is the purpose of the highlighted line of the code? % Iterative solution scheme for i = 1:maxloops x1 = x0 - fx/fxderiv;[fx, fxderiv] = feval(func,x1); fprintf('%2d%5.4f%7.6f%7.6f\n',i,x1,fx,fxderiv); $if (abs(x1 - x0) \le tolx && abs(fx) < tolfx)$ break % Jump out of the for loop end x0 = x1;

end

- A. Calculate the next iteration using the Newtons Method formula.
- B. Calculate the function evaluation at x_i .
- C. Calculate the function derivative at x_i .
- D. Display the iteration number, current guess, function and derivative to the screen.
- E. Test whether the current accuracy is within the specified tolerance.

Q3: Matlab function secantmethod.m

What is the purpose of the highlighted line of the code?

```
% Iterative solution scheme
for i = 1:maxloops
    x2 = x1 - fx1*(x1 - x0)/(fx1 - fx0);
    fx2 = feval(func, x2);
    fprintf('%2d %5.4f %5.4f %5.4f %7.6f %7.6f \n', ...
      i,x0,x1,x2,fx0,fx1);
   if (abs(x2 - x1) <= tolx && abs(fx2) < tolfx)
       break % Jump out of the for loop
    end
    x0 = x1;
    x1 = x2;
    fx0 = fx1;
    fx1 = fx2;
end
```

- A. Calculate the next iteration using the Secant Method formula.
- B. Calculate the function evaluation at x_i .
- C. Test whether the current accuracy is within the specified tolerance.
- D. Save the previous two guesses, as the current two guesses.
- E. Save the previous two function evaluations, as the current ones.

Platelet Adhesive Dynamics Model for Platelet – Platelet Bridging

• GPIb α -vWF-GPIb α bonds treated as linear springs with two fixed endpoints.

Platelet Adhesive Dynamics (PAD) Model

Two **vWF sizes** modeled:

- •n-vWF: 175 x 28 nm (18 A1 binding sites) (Singh et al., 2006; Siedlecki et al., 1996)
- •L-vWF: 400 x 28 nm (34 A1 binding sites)

Slayter et al., JBC, 1985

Two **binding kinetics** tested

- Healthy or normal GPIbα-vWF-A1 binding kinetics
- Platelet-type Von Willebrand Disease (VWD): 5-fold higher affinity of A1 for GPIbα (Miura et al., 2000; Doggett et al., 2003).

$$k_{f,2-D} = k_{f,2-D}^{0} \exp\left(\sigma | \mathbf{x}_{b} - \lambda | \frac{\gamma - 0.5 | \mathbf{x}_{b} - \lambda |}{k_{b}T}\right)$$
 (Bell et al., 1984)

$$k_r = k_r^o \exp\left(\frac{\gamma F_b}{k_B T}\right); \mathbf{F}_b = \sigma(\mathbf{x}_b - \lambda) \text{ (Bell, 1978)}$$

$$k_r^o = 5.47 \,\mathrm{s}^{-1}; \gamma = 0.71 \,\mathrm{nm} \,(\text{Arya et al.}, 2005)$$

GPIbα-vWF Equilibrium Binding Governs Initial vWF Distribution on Platelet Surface

- Equivalent Site Hypothesis (ESH) Model for Multivalent Ligand/ Monovalent Receptor binding (Perelson, 1981)
- vWF-Platelet equilibrium binding behavior (K_D at 10,800 s⁻¹) governs simulation's initial conditions (Goto et al., 1995)
- Dissociation constant K_D determined to be 7.73×10^{-5} M

$$(1) C_{i,eq} = \left[\frac{f!}{i!(f-i)!} \right] K_x^{i-1} \frac{v}{f} \left(\frac{L_o}{K_D} \right) R_{eq}^i \quad (2) \quad R_T = R_{eq} \left[1 + v \left(\frac{L_o}{K_D} \right) (1 + K_x R_{eq})^{f-1} \right]$$

ullet: free GPIb α receptors

: GPIbα receptors bound to vWF

n-vWF L-vWF Platelet-type VWD

Simulated Platelet Binding Matched to Experiment: Estimation of $k^0_{f,2-D}$

Matching Simulation to Experiment

Shear	Binding Efficiency	Binding	
Rate	$\eta_{\rm b}$ (L-vWF)	Efficiency	$k^0_{ m f, 2-D}$
γ	Derived from	$\eta_{\rm b}$ (L-vWF)	
(s^{-1})	Experiment	Predicted by	(s^{-1})
	(Huang and	Platelet	
	Hellums, 1993;	Adhesive	
	Konstantopoulos	Dynamics	
	et al., 1997)	Simulations	
4500	0.041	0.041	0.33
5400	0.047	0.047	0.53
6300	0.091	0.090	1.06
7200	0.105	0.106	1.4
7700	0.191	0.184	2.5
8000	0.236	0.236	3.6

Exponential Dependence of $k_{f,2-D}^0$ on Fluid Shear Rate

Independent measurement of VWF conformational change under shear

Biophysical Journal Volume 96 March 2009 2313-2320

2313

Fluid Shear Induces Conformation Change in Human Blood Protein von Willebrand Factor in Solution

Indrajeet Singh,[†] Efrosyni Themistou,[†] Lionel Porcar,[‡] and Sriram Neelamegham[†]*

†Chemical and Biological Engineering, State University of New York, Buffalo, New York, and [‡]Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland

Platelet Aggregation is a Function of Ligand Size and Binding Kinetics

Shear rate = 8000 s⁻¹; $k^0_{f,2-D}$ (cross-linking bond formation rate constant)= 13 s⁻¹

L-vWF multimers initially bound to downstream platelet

n-vWF multimers initially bound to downstream platelet

- Life get <u>much</u> more complex for higher (N>1) dimensional optimization.
- In general, we start from a given point, pick a search direction, and do a 1-D search in that direction.
- Method of steepest descent: If we want to get to a minimum, it makes sense to go downhill.

Search direction = - grad(F)

Thus we solve the 1-D problem:

$$\min_{\alpha} F\{\mathbf{x}^{(k)} - \alpha \text{ grad}[F(\mathbf{x}^{(k)})]\}$$

to get:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_{opt} \operatorname{grad} F(\mathbf{x}^{(k)})$$

where α_{opt} is the desired minimum.

 This method tends to be rather slow. The gradient often does not point towards the minimum!

Let's work an example:

Let
$$F(\mathbf{x}) = x_1^2 + 10x_2^2 + 100x_3^2$$

• This has a global minimum of $x^* = 0$

$$(x_1^* = x_2^* = x_3^* = 0)$$

- Now grad $F = (2x_1, 20x_2, 200x_3)^T$
- Thus at each iteration we want to solve:

$$\min_{\alpha} F(\mathbf{x} - \alpha \text{ grad } F) =$$

 $\min_{\alpha} \{ (x_1 - 2\alpha x_1)^2 + 10(x_2 - 20\alpha x_2)^2 + 100(x_3 - 200\alpha x_3)^2 \}$

• We can actually get a linear equation for α for this particular problem.

$$\alpha = (x_1^2 + 10^2 x_2^2 + 10^4 x_3^2) / (2(x_1^2 + 10^3 x_2^2 + 10^6 x_3^2))$$

• After 180 iterations we get:

```
x^{(0)} = (1,1,1) \leftarrow \text{starting point}
x^{(180)} = (1.07 \times 10^{-4}, 0, 2.01 \times 10^{-6})
```

- Why? The problem has different curvature in different directions.
- You can think of the algorithm as wandering back and forth across a narrow river valley and slowly rolling down to the sea.