Learning-based Model Predictive Controller for Drink Dispensing Robotic Arm Relying on Multimodal Inputs

Team Members

Joseph Thapa Magar (THA076BEI011)

Ritu Ram Ojha (THA076BEI024)

Rupak Mani Sharma (THA076BEI027)

Sujan Bhattarai (THA076BEI037)

Supervised By:

Er. Dinesh Baniya Kshatri

Lecturer

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

October 8, 2023

Presentation Outline

- Motivation
- Objectives
- Scope of Project
- Project Applications

- Methodology
- Result and Analysis
- Remaining Tasks
- References

Motivation

Monotonous and Tired Bartender

Command Operated Drink Serving Arm

Objectives

- To model and simulate a drink dispensing robotic arm
- To instantiate the robotic arm and perform performance comparison between simulation and reality

Scope of Project

- Project Capabilities:
 - Voice-based human-machine interaction
 - Proper detection of glass, dispenser and customer
 - Precise and responsive control of robotic arm
 - Project limitations :
 - Language understanding limited to specific languages or vocabulary
 - Challenge in object recognition due to obstruction or poor visibility
 - Robotic arm movement constrained to 4 degree of freedom

Project Applications

- Medical and Healthcare
 - Surgical procedures, rehabilitation, diagnostics, prosthetics
- Aerospace and Defense
 - Aircraft assembly, space exploration, defense applications
- Manufacturing and Industrial Automation
 - Assembly, welding, pick and place operations, packaging
- Hazardous Environments
 - Nuclear power plants, deep-sea exploration, mining, disaster response

Methodology-[1] (Software and Hardware Requirements for Part-A)

- Fusion 360
 - CAD design of components.
- CoppeliaSim
 - Virtual Environment
 - Simulation Engine
- Deep Learning Framework
 - Pytorch was used.
 - Training vison and speech models.

- Audacity
 - Audio record and manipulation
- Python
 - Model integration with CoppeliaSim.
- Lua
 - Inverse Kinematics Implementation
- Google Collab GPU T4
 - Ram Usage: 3-12GB
 - Hardware resource for training

Methodology-[3] (Working Principle)

- Microphone takes raw voice input from users
- Transformer takes raw voice and provides the name of drinks
- If error in recognizing command, provides vocal feedback
- If not, provides control signal to vision model
- Vision sensor captures the current frame of environment
- The frames are then pass into YOLOv8 model
- Obtained coordinates are mapped into world coordinates

Methodology-[4] (Working Principle)

- Any problems related to vision are given as vocal feedback
- The world coordinates are used to set target position
- CoppeliaSim IK model calculates required joint angles
- Built-in Position Controller controls the joint angles of robot
- The dispenser system dispenses the requested drink
- Integration of all models in virtual environment of CoppeliaSim

Methodology-[5] (3D Design of Robot Arm and Dispenser)

drink container

Robot Design

Dispenser Design

Methodology-[6] (Virtual Environment)

Methodology-[7] (CAD to Simulation)

13

Methodology-[8] (Inverse Kinematics Simulation)

IK implemented in Lua script

```
function sysCall init()
    -- Take a few handles from the scene:
    simBase=sim.getObject('.')
    simTip=sim.getObject('
    simTarget=sim.getObject('
    ikEnv=simIK.createEnvironment()
    -- Prepare the 2 ik groups, using the convenience
    ikGroup undamped=simIK.createGroup(ikEnv)
    simIK.setGroupCalculation(ikEnv,ikGroup undamped,s
    simIK.addElementFromScene (ikEnv, ikGroup undamped, s
    ikGroup damped=simIK.createGroup(ikEnv)
    simIK.setGroupCalculation(ikEnv,ikGroup damped,sim
    simIK.addElementFromScene (ikEnv, ikGroup damped, siml
Ifunction sysCall actuation()
    if simIK.handleGroup(ikEnv,ikGroup undamped, {syncWe
        simIK.handleGroup(ikEnv,ikGroup damped, {syncWo
    end
end
function sysCall cleanup()
    simIK.eraseEnvironment(ikEnv)
end
```

Methodology-[9] (ZeroMQ)

Client Server Communication API

Status of ZeroMQ Server

Methodology-[11] (YOLOv8 Architecture (Backbone))

- C2f (Convolution to Fully Connect)
 - C2f enhances capacity without spatial modifications
 - It incorporates "shortcut" for skip connections
 - Preserves high-res details, captures abstract features
- SPPF (Spatial Pyramid Pooling with Fuse)
 - SPPF block captures multi-scale information in YOLO's backbone
 - It uses MaxPool2d layers with varying pooling sizes for dimension reduction
 - Different pooling sizes capture features at various scales
 - Concatenation combines multi-scale information into one feature map

Methodology-[12] (YOLOv8 Architecture)

Neck

- The neck refines backbone features in YOLO architecture
- Up sampling and concatenation increases spatial resolution and feature scale

Head

- The detection layer in YOLO has two sets of convolutions
- The first set captures spatial info
- The final Conv2d layer predicts class probabilities for each box

10/8/2023

18

Methodology-[13] (Data Augmentation for YOLOv8 Model)

Original Image

Cropped Image

Methodology-[14] (Data Augmentation for YOLOv8 Model)

Flipped Image

30-degree Rotated Image

Methodology-[15] (Object Counts Before and After Augmentation)

Total Images = 384 1200 400 200 Dispenser Nozzel Chair Obstacle Customer Gripper Object Classes

Object Counts Before Augmentation

Object Counts After Augmentation

Methodology-[16] (Coordinate Mapping)

Camera Coordinate System

Simulation Coordinate System

Methodology-[17] (Coordinate Mapping)

$$H = \begin{bmatrix} 9.69e - 06 & -5.75e - 03 & 1.63 \\ -5.97e - 03 & -3.37e - 08 & 1.06 \\ -6.63e - 07 & 4.47e - 04 & 1.00 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9.69e - 06 & -5.75e - 03 & 1.63 \\ -5.97e - 03 & -3.37e - 08 & 1.06 \\ -6.63e - 07 & 4.47e - 04 & 1.00 \end{bmatrix} \cdot \begin{bmatrix} 184 \\ 40 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.38 \\ -0.04 \\ 1 \end{bmatrix}$$

- (H) matrix is used to map camera coordinates into simulation coordinates
- Computing (H) matrix requires camera coordinates and its corresponding simulation coordinates
- Sample calculation shown for dispenser's nozzle

Methodology-[18] (Possible Vision Problems)

S.N.	Problem	Description	Remedy
1.	Path Obstruction	Objects obstruct the robotic arm's movement trajectory	Incorporate an alert feedback mechanism for detection
2.	Glass Unavailable	Empty glasses are not available	Prompt the user to place a glass in the designated area
3.	Drinking Glass Unreachable	The drinking glass is out of reach of the robotic arm	Alert the user that the glass is unreachable
4.	Vision Sensor Blockage	The vision sensor is obstructed, affecting accuracy.	Alert users to remove the blockage

Methodology-[20] (ASR Architecture)

- Spectrogram and positional embedding pass through Conv layers
- Next, it undergoes MHSA (Multi-Head Self-Attention) layer
- The output further passes through a Feed Forward layer
- Subsequently, it is processed by a Convolution layer
- Followed by another Feed Forward operation and Time Reduction
- Then, time recovery is applied
- Full transcription is achieved through an LSTM decoder

Methodology-[21 (Voice Recordings) 10/8/2023

Before Augmentation

After Augmentation

Methodology-[22] (Audio Augmentations for Female Voice)

Methodology-[23] (Background Noise Removal Using Band Pass Filter)

Methodology-[24] (Hamming window)

Parameters	Values	No of
		Samples
Sample rate	16000Hz	1600
Frame length	20ms	320
Frame shift	10ms	160

Methodology-[25] Commands and Feedbacks)

Drink	Variation 1	Variation 2	Variation 3
Water	Bring me a	Can I have a	A glass of
	glass of	glass of water?	water,
	water!		please.
Sprite	Can I have a	Fetch me a	Sprite,
	glass of	glass of sprite.	please.
	sprite?		
Orange	A glass of	I will have one	Orange
Juice	orange juice,	glass of	Juice for me.
	please.	Orange Juice.	
Coffee	I will have a	Brew me some	Can I have
	glass of	coffee	some coffee
	coffee.		

Case	Feedback	
No drink available	I'm sorry but we are currently out of that	
	drink, would you like something else	
Obstacle in the	There's an obstacle in the way. Please	
way	clear the path	
Incorrect	I'm sorry, I didn't understand your	
Command	command ,Please give me a drink	
	related command	
Target position out	The target is out of my reach	
of reach from arm		

Commands

Feedbacks

10/8/2023 31

Predicted Labels

10/8/2023 32

Methodology-[27] (Kinematics of Robotic Arm)

- Deals with the motion of robotic arm
- Doesn't consider forces and torques associated with it
- Provides the homogeneous transformation matrix
- Denavit-Hartenberg (D-H) parameters are used to find the transformation matrix

Methodology-[28] (D-H Parameters and Homogeneous Transformation Matrix)

$$H_4^0 = \begin{bmatrix} c_1 c_{234} & -c_1 s_{234} & s_1 & c_1 (a_4 c_{234} + a_2 c_2 + a_3 c_{23}) \\ c_{234} s_1 & -s_1 s_{234} & -c_1 & s_1 (a_4 c_{234} + a_2 c_2 + a_3 c_{23}) \\ s_{234} & c_{234} & 0 & a_4 s_{234} + a_2 c_2 + a_3 s_{23} + a_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Homogeneous Transformation Matrix

(P. 1)	Parameters			
n (link)	θ	α	r	d
1	θ_1	90°	0	a_1
2	θ_2	0	a_2	0
3	θ_3	0	a_3	0
4	$ heta_4$	0	a_4	0

D-H parameters can be used to derive the homogeneous transformation matrix

Methodology-[29] (Homogeneous Transformation Matrix)

$$H_4^0 = \begin{bmatrix} c_1 c_{234} & -c_1 s_{234} & s_1 & c_1 (a_4 c_{234} + a_2 c_2 + a_3 c_{23}) \\ c_{234} s_1 & -s_1 s_{234} & -c_1 & s_1 (a_4 c_{234} + a_2 c_2 + a_3 c_{23}) \\ s_{234} & c_{234} & 0 & a_4 s_{234} + a_2 c_2 + a_3 s_{23} + a_1 \\ 0 & 0 & 1 \end{bmatrix}$$

- Provides rotation matrix as well as displacement vector of end effector w.r.t base frame
- The first three elements of the third column provide equations for forward kinematics

- Relates the changes in joint angles with changes in end effector

- Until the tip reaches the target position, new set of joint angles are

Results and Analysis-[1] (Robotic Actions)

Robot Arm at Default Position

Results and Analysis-[2] (Robotic Actions)

$$H = \begin{bmatrix} 0.32 & -0.047 & -0.94 & 0.30 \\ -0.93 & 0.13 & -0.33 & -0.84 \\ 0.14 & 0.98 & 0 & 0.02 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H^* = \begin{bmatrix} 0.33 & -0.06 & -0.96 & 0.29 \\ -0.86 & 0.13 & -0.33 & -0.80 \\ 0.18 & 1 & 0 & 0.1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- H denotes the matrix derived manually
- H* is extracted from simulator

Robot arm grabbing empty glass

Results and Analysis-[3] (Robotic Actions)

$$H = \begin{bmatrix} 0.87 & -0.48 & 0.015 & 0.95 \\ 0.01 & 0 & -0.09 & 0.01 \\ 0.47 & 0.87 & 0 & 0.52 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H^* = \begin{bmatrix} 0.9 & -0.55 & 0.05 & 0.92 \\ -0.06 & -0.08 & -0.1 & 0.04 \\ 0.52 & 0.93 & 0 & 0.52 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Dispensing the Ordered Drink

Results and Analysis-[4] (Robotic Actions)

$$H = \begin{bmatrix} 0.52 & -0.47 & 0.71 & 0.62 \\ 0.53 & -0.46 & -0.72 & 0.62 \\ 0.67 & 0.75 & 0 & 0.66 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H^* = \begin{bmatrix} 0.61 & -0.52 & 0.70 & 0.70 \\ 0.45 & -0.44 & -0.65 & 0.54 \\ 0.66 & 0.68 & 0 & 0.60 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Robotic arm serving drink to client

- Maximum discrepancy between H and H* is 0.1
- Reason of discrepancy is due to lack of trajectory planning

and Analysis-[5] Training (loss)) Results (ASR

Epochs

Hyperparameter	Values
Batch Size	50
Epochs	30
Learning Rate	0.001
Dropout	0.1

Results and Analysis-[6] (ASR Training (CER, WER))

Results and Analysis-[7] (YOLOv8 Training (Losses))

3.5 3.0 Class Loss 0.0 1.5 1.0 0.5 50 10 20 60 70 80 30 Epoch

Box Loss vs Epoch

Class Loss vs Epoch

Results and Analysis-[8] (YOLOv8 Training (Accuracy Metrics))

Precision vs Epoch

Recall vs Epoch

Results and Analysis-[9] (YOLOv8 Training (Accuracy Metrics))

mAP50 vs Epoch

PR Curve

Results and Analysis-[10] (YOLOv8 Training (Confusion Matrix))

Results and Analysis-[11] (YOLOv8 Training (Detections))

Remaining Tasks

 Implementation of MPC controller in both software and in embedded platform

 3D printing of all components of 4-DOF robotic arm and building dispenser system

 Integration of whole system in embedded platform and testing its functionality

Perform performance comparison between simulation and reality

References-[1]

- [1] Voice Transformer Network: Sequence-to-Sequence Voice . https://www.isca-speech.org/archive_v0/Interspeech_2020/pdfs/1066.pdf
- [2] L. Dong, S. Xu and B. Xu, "Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition," 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 2018, pp. 5884-5888, doi: 10.1109/ICASSP.2018.8462506.
- [3] S. Revay and M. Teschke, "Multiclass Language Identification using Deep Learning on Spectral Images of Audio Signals," May 2019, [Online]. Available:

http://arxiv.org/abs/1905.04348

[4] L. Rafael Stefanel Gris and A. Candido Junior, "Automatic Spoken Language Identification using Convolutional Neural Networks." [Online]. Available: http://www.freesound.org

References-[2]

- [5] P. Kaur, Q. Wang, and W. Shi, "Fall Detection from Audios with Audio Transformers," Aug. 2022, [Online]. Available: http://arxiv.org/abs/2208.10659
- [6] A. A. Q. Mohammed, J. Lv, and M. D. S. Islam, "A deep learning-based end-to-end composite system for hand detection and gesture recognition," *Sensors (Switzerland)*, vol. 19, no. 23, Dec. 2019, doi: 10.3390/s19235282.
- [7] M. Musaev, I. Khujayorov, and M. Ochilov, "Image Approach to Speech Recognition on CNN," in *ACM International Conference Proceeding Series*, Association for Computing Machinery, Sep. 2019. doi: 10.1145/3386164.3389100.
- [8] Y. Gong, Y.-A. Chung, and J. Glass, "AST: Audio Spectrogram Transformer," Apr. 2021, [Online]. Available: http://arxiv.org/abs/2104.01778

References-[3]

[9] R. P. A. Petrick and M. E. Foster, "Planning for Social Interaction in a Robot Bartender Domain." [Online]. Available: www.aaai.org

[10] A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996. [Online].

Available: https://www.academia.edu/37486178/Signals and Systems 2nd Edition by Oppenhe im

[11] Ultralytics, "Ultralytics/ultralytics: Open-source deep learning inference & training on YOLOv3/YOLOv4/PyTorch," GitHub. [Online]. Available:

https://github.com/ultralytics/ultralytics