Configuration space

In path planning, a complete description of the geometry of a robot $\mathcal A$ and of a workspace $\mathcal W$ is provided.

The workspace $\mathcal{W}=\mathbb{R}^3$ is a static environment populated with obstacles. The goal is to find a collision-free path for \mathcal{A} to move from an initial position and orientation to a goal position and orientation.

A complete specification of the location of every point on the robot geometry, or a configuration q must be provided.

The configuration space or C-space $(q \in C)$ is the space of all possible configurations. C-space is a useful way to abstract planning problems in a unified way. The advantage of this is that a robot with a complex geometric shape is mapped to a single point in the C-space.

The number of DoF of a robot system is the dimension of the C-space, or a minimum number of parameters needed to specify a configuration.

Obstacle region

The closed set $\mathcal{O} \subset \mathcal{W}$ represent the obstacle region, usually expressed as a collection of polyhedra, 3-D triangles, or piecewise-algebraic surfaces.

The closed set $\mathcal{A}(\mathbf{q}) \subset \mathcal{W}$ denote the set of points occupied by the robot when at configuration $\mathbf{q} \in \mathcal{C}$. The C-space obstacle region is defined as:

$$\mathcal{C}_{\mathrm{obs}} = \{ \mathbf{q} \in \mathcal{C} \mid \mathcal{A}(\mathbf{q}) \ \cap \ \mathcal{O}
eq \emptyset \}$$

Free space

Since \mathcal{O} and $\mathcal{A}(\mathbf{q})$ are closed sets in \mathcal{W} , the obstacle region is a closed set in \mathcal{C}

The set of configurations that avoid collision are:

$$\mathcal{C}_{ ext{free}} = \mathcal{C} \, \setminus \, \mathcal{C}_{ ext{obs}}$$