

Christopher Mutschler

Overview

- Challenge #1: In real world problems, the state space can be large
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Robot arm: **infinite** number of states! (continuous)
- Problems with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually

http://ai.berkeley.edu/lecture_slides.html

https://www.youtube.com/watch?v=HT-UZkiOLv8

Challenge #2: Generalization across states

Let's say we discover through experience that this state is bad:

In naive Q-learning we know nothing about this state:

Or even this one:

Pieter Abbeel: CS 188 Introduction to Artificial Intelligence. Fall 2018

- Value Function Representations
- Exact:
 - A table with a distinct value for each case
 - V: one entry per s
 - Q: one entry for each (s, a) pair
- Approximate:
 - Approximate V or Q with a function approximator (e.g., NN, polynomials, RBF, ...)

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

 $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

- + We need only to store the approximator parameters
- Convergence properties do not hold anymore

- VFA: Describe a state using a vector of features
- Features are functions from states to real numbers that capture important properties of the state
- Example features for Pac Man:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts

• ...

Our goal is to learn good parameters w that approximate the true value function well:

$$C = \left(Q^+(s,a) - \hat{Q}^{\pi}(s,a;w)\right)^2$$
$$= \left(Q^+(s,a) - \phi(s,a)^T w\right)^2$$

$$\frac{\partial c}{\partial w} = -2 \phi(s, a)(Q^+(s, a) - \phi(s, a)^T w)$$

$$w \leftarrow w - \eta \frac{\partial c}{\partial w}$$

$$w \leftarrow w + 2 \eta \phi(s, a) \left(Q^{+}(s, a) - \hat{Q}^{\pi}(s, a; w) \right)$$

$$r + \gamma \max_{a'} Q(s', a')$$
 Q-Learning with Linear VFA
 $Q^+(s, a) = r + \gamma Q(s', a')$ SARSA with Linear VFA
 G_t MC with Linear VFA

• Our goal is to learn good parameters w that approximate the true value function well:

Policy Improvement: Generate $\pi' \ge \pi$ e.g., ϵ -greedy Policy Improvement

• Our goal is to learn good parameters *w* that approximate the true value function well:

Policy Improvement: Generate $\pi' \ge \pi$ e.g., ϵ -greedy Policy Improvement