

UNIVERSITÀ DEGLI STUDI DI UDINE

Corso di Laurea in Ingegneria elettronica

Dipartimento di (DPIA) Dipartimento Politecnico di Ingegneria e

Architettura

Tesi di Laurea

LORA AND IOT

Relatore:		Laureando:
Prof. Anto	nio Abramo	Enrico Tolotto
Correlatore: Prof.		
	Anno Accademico 2	016/2017.

Sommario

La richiesta di device dotati di una connessione wireless è in continuo aumento, seguendo il trend del $Internet\ delle\ cose(IoT)$. Questa continua crescita ha portato alla creazione di nuove tecnologie, le quali sono in competizione per aggiudicarsi la maggioranza del mercato. In questo campo le cosiddette (LPWAN) $Low\ Power\ Wide\ Area\ Networks$ sono in forte aumento, grazie alla loro connettività a lungo raggio sfruttando bande d frequenza libere. Questa tesi si focalizzerà sulla tecnologia $LoRa^{^{\mathsf{TM}}}$, implementata attraverso l'utilizzo del framework open-source Kura sviluppato da Eurotech .

Note

Completare e riscrivere
Aggiungere qualche altro esempio
Trovare termine per multipath
Riscrivere
Rivedere i vari punti e cambiare il linguaggio
Controllare header pacchetto
Aggiungere immagine e finire la spiegazione
Riguardare e aggiungere ultimo punto della documentazione pagina 14

Indice

In	dice																		V
\mathbf{E}	lenco	delle	fig	ur	e														vii
In	trod	uzion	e																ix
1	LP	WAN	e I	or	a														1
	1.1	LPW	ΆN																1
		Lora																	
		CSS																	
	1.4	LoRa	ιWA	N															6
\mathbf{B}	iblios	grafia																	9

vi INDICE

Elenco delle figure

1	Numero di dispositivi per anno i	Х
2	Comparazione tipologia di reti	X
3	Comparazione tipologia di reti	ζi
1.2	Comparazione simbolica dei vari SF	4
1.3	Struttura pacchetto Lora	5
1.4	Struttura interna ricevitore SX1301	6
1.5	Struttura rete a stella LPWAN	7
1.6	Stack del protocollo della rete LoRaWAN	8

Introduzione

L'Internet delle cose è un termine descrittivo per riassumere una visione di un futuro prossimo nel quale, sempre più dispositivi, riescano ad intercambiare informazione senza l'ausilio umano. "IoT verrà utilizzato" In questa visione di un futuro non troppo lontano, termini quali, inteligent system transport, smart home automation, precision agriculture[2], industrial automation, ecc.

Il mercato di questi *smart devices* è in rapida crescita con una stima di 8,3 miliardi di dispositivi connessi nel anno 2017, e di circa 20 miliardi per l'anno 2020 [1]. Andando ad creare un impatto economico compreso tra i 2.7 e i 14 trilioni di dollari. I mercati principali saranno quelli del healt care con un introito compreso tra i 1.1 e i 2.5 trilioni di dollari e il settore industriale con 2.3 a 11.6 trilioni di dollari.

Figura 1: Numero di dispositivi per anno

Questa rapida crescita ha portato alla ricerca è sviluppo di nuove soluzioni tecnologiche per supportare il carico di dispositivi simultaneamente connessi alla rete, senza avere un degrado evidente delle performance. Per non alterare il QoS Quality of Service della rete ed garantire costi non elevati tecnologie come LPWAN sono state ideate. I punti chiave per garantire tutto ciò sono

- Scalabilità: Dato l'elevato numero di devices connessi, scenari urbani ed industriali, la network tecnologi alla base dovrà essere estremamente adattabile, in maniera dinamica, al carico di dispositivi connessi.
- Costo unitario: Il costo del singolo modulo, dovrà essere basso per garantire la più ampia fetta di mercato.
- Durata della batteria: La maggior parte dei dispositivi sarà alimentata tramite batteria, e la durata media e stimata di anni.
- Costo computazionale: La modulazione alla base di queste nuove tipologie di rete, dovrà essere concepita in modo da non avere un costo computazionale elevato.
- **Distanza**: Un altro punto fondamentale è la possibilità di avere comunicazioni a lunga distanza.

La rete di tipo LPWAN è in grado di supportare tutti questi aspetti, le principali tecnologie che già supportano questo tipo di rete son SigFox $^{\top M}$, LoRaWAN $^{\top M}$, NB-IoT $^{\top M}$ e Weightless $^{\top M}$.

Figura 2: Comparazione tipologia di reti

Con questa tesi si è voluto studiare i casi applicativi della tecnologia Lora $^{\text{TM}}$ nel abito della agricoltura di precisione, utilizzando il framework open-source Kura $^{\text{TM}}$ messo

a disposizione da Eurotech $^{^{\intercal M}},$ and
ando a creare un applicativo $OSGI^{\circledR}$ installabile nel framework.

Figura 3: Comparazione tipologia di reti

Capitolo 1

LPWAN e Lora

Nel seguente capitolo si approfondirà il concetto di rete LPWAN e la sua struttura, andando ad analizzare i vari layer di cui è composta. In particolare si farà riferimento alla tecnologia Lora che implementa questo tipo di rete, andandone ad analizzare i vari componenti, quali

- layer fisico
- la composizione dei pachetti
- le classi di devices implementati

1.1 LPWAN

Tra le varie tipologie di rete emergenti per l'IoT, LPWAN sta riscuotendo sempre più interesse. Questo tipo di rete si basa sulla topologia a stella, la quale permette di avere un elevato numero di devices connessi ad una sola stazione base. Inoltre per la sua struttura LPWAN supporta comunicazioni a lungo raggio risultando adatta per i vari use-case del internet of things. I due principali concorrenti che implementano queste tecnologie sono Sigfox e Semtech possessore di Lora. L'implementazione proposta da Sigfox utilizza la Ultra Narrow Band tramite la quale è possibili inviare messaggi con payload lungo 12 byte in 6 secondi usando una frequenza di 100 [Hz]. Per via delle varie regolazioni, utilizzando la tecnologia Sigfox si ha un numero limitato di messaggi per giorno. Al contrario la tecnologia Lora, implementa spread spectrum Physical Layer (PHY) il quale permette una maggiore ricezione andando ad influire sul data-rate possibile

1.2 Lora

Lora è una tecnologia semi-proprietaria, sviluppata da Semtech. Lora è composta da un parte proprietaria detta Lora[3] la quale definisce il layer fisico, e una parte libera chiamata LoRaWAN[4].

Completare e riscrivere

1.3 CSS

Alla base del layer fisico troviamo la modulazione (CSS), questo tipo di modulazione della frequenza, utilizzata anche in altre applicazioni radio, esempio radar ecc... Questo tipo di modulazione ha numerosi vantaggi quali

Aggiungere qualche altro esempio

- Uno spettro idealmente rettangolare, il quale utilizza tutta la capacità del canale e fornisce un ottima densità spettrale di potenza rispetto agli atri tipi di trasmissione.
- Segnali di tipo Chirp possono essere sovrapposti in modo tale da poter variare il data-rate e l'energia per bit in modo adattativo per aumentare l'efficienza complessiva.
- Hanno guadagno programmabile, il quale permette di raggiungere distanze considerevoli mantenendo un buon SNR.
- Ottima risoluzione nel asse del tempo, quindi ottimi per coprire lunghe distanze.
- Immuni al effetto Doppler

Trovare termine per multipath • Immuni al degenerazioni per effetto di multipath

Un segnale di tipo *Chirp* assume valori compresi nella banda di frequenza $B = [f_0, f_1]$, il suo andamento è di tipo monotono, crescente o decrescente compreso tra le due frequenze f_0 e f_1 .

Riscrivere

Uno degli aspetti principali del layer fisico, è la possibilità di adattare il numero di bit codificati in un simbolo in base alle varie esigenze. Questa possibilità di adattamento permette a parità di potenza di riuscire a raggiunger distanze maggiori andando a variare, quello che nella documentazione ufficiale è chiamato *Spread Factor*. Tutto ciò significa che (SF) rappresenta 2^{SF} bits in un simbolo. Un differente SF implica anche un differente tempo di comunicazione secondo la formula

$$T_s = \frac{2^{\rm SF}}{B}.\tag{1.1}$$

1.3 CSS 3

(a) Segnale Chirp nel dominio della frequenza

(b) Simbolo codificato col metodo Chirp nel dominio del tempo

Dalla quale si evince che andando ad aumentare lo spread factor di una unità, mantenendo una lunghezza di banda fissa B, otteniamo un raddoppio nel tempo di trasmissione. Il fatto di avere messaggi più lunghi, conferisce un robustezza superiore alle interferenze e al rumore. In discapito a tutto ciò, il fatto di dover codificare il messaggio con un maggiore numero di simboli, aumenta la possibilità di errore alla ricezione.

Figura 1.2: Comparazione simbolica dei vari SF

Questa nuovo modo di trasmettere i vari dati porta con se molti vantaggi.

- La modulazione Lora è semplice da implementare nei dispositivi, quindi i moduli radio al loro interno saranno economici.
- Resistente alle interferenze in banda e fuori banda.
- Resistente all'effetto Doppler, in questo modo è possibili utilizzare cristalli non molto accurati al interno dei devices, in modo tale da abbattere i costi di produzione.
- Il modulo di ricezione è altrettanto semplice da costruire, quindi non molto costoso.

Analizzando lo spettrogramma di una comunicazione Lora è possibili fare delle osservazioni interessanti.

Le varie parti del pacchetto sono facilmente determinabili, infatti e facile vedere che il preambolo è codificato con una serie di *Up-chirp*, il quale finito

Rivedere i vari punti e cambiare il linguaggio 1.3 CSS 5

Figura 1.3: Struttura pacchetto Lora

inizia una serie di down-chirp i quali determinano il SFD o Header il quale contiene informazioni aggiuntive e possibilmente dei bit per il controllo e correzione degli errori.

Aggiungere immagine e finire la spiegazione

Controllare header pacchetto

Per quanto riguarda la struttura interna dei moduli radio, non si hanno molte informazioni dato che la tecnologia è proprietaria di Semtech. Nella documentazione ufficiale è presente uno schema a blocchi il quale illustra i vari blocchi presenti al interno dei moduli radio Come possiamo vedere, il gateway rimane in ascolto su 8 frequenze diverse, le quali permettono di coprire tutti i vari SF. Tutto ciò è possibili anche grazie al fatto che i vari SF sono quasi ortogonali fra di loro, perciò il ricevitore è in grado di ricevere pacchetti da SF diversi contemporaneamente .Questo tipo di ricevitore può demodulare fino ad un massimo di 8 pacchetti contemporaneamente. Inoltre questa topologia permette di avere vari vantaggi

Figura 1.4: Struttura interna ricevitore SX1301

- I vari nodi della rete, possono cambiare frequenza in ogni trasmissione in modo casuale, andando a migliorare di molto la robustezza del sistema alle varie interferenze.
- Non è necessario avere tabelle contenenti informazioni riguardanti il datarate dei vari nodi. Ogni data-rate viene demodulato contemporaneamente.

Riguardare e aggiungere ultimo punto della documentazione pagina 14

1.4 LoRaWAN

La parte non proprietaria del protocollo è chiamata LoRaWAN, in essa viene descritta la topologia di rete, la struttura dei pacchetti e le varie classi di device possibili.

La topologia di rete utilizzata, è una topologia a stella, nella quale molti dispositivi sono connessi e comunicano con uno o più base station. Le BS non sono altro che dei ponti per poter trasmettere i messaggi ricevuto dai vari devices all Network Server, tramite una connessione ethernet, 3G o 2G. Per come è strutturata la rete, un messaggi inviato da un singolo device, può essere ricevuto e inoltrato da più BS all Network Server.

Il NS ha il compito di interpretare e scartare i vari messaggi duplicati che arrivano, selezionare la BS più adatta per inviare il messaggio di downlink creando un database di tutti i vari devices presenti nella rete

Esistono tre classi di devices, le quali specificano i vari use-case per possibili.

• Class A è la modalità di funzionamento predefinita. In questa modalità il device si occupa solo di trasmettere i vari messaggi in maniera completamente asincrona. Eseguita la trasmissione, due finestre di ascolto

1.4 LoRaWAN 7

Figura 1.5: Struttura rete a stella LPWAN

vengono aperte nel end-device. La prima finestra rimane in ascolto nella stessa frequenza in cui il dato è stato comunicato, mentre la seconda rimane in ascolto su una frequenza nota a priori e comunicata tramite il MAC.

- Class B sono devices i quali sono sincronizzati con il NS tramite beacon packets. In questo modo hanno la possibilità di ricevere dati in un determinata finestra di tempo. In questa classe rientrano interruttori , attuatori ecc..
- Class C è riservata ai devices che hanno la possibilità di e essere alimentati direttamente dalla rete elettrica, quindi possono mantenere il ricevitore costantemente in ascolto.

Figura 1.6: Stack del protocollo della rete LoRaWAN

Bibliografia

- [1] Gartner. Gartner says 8.4 billion connected 'things' will be in use in 2017, up 31 percent from 2016. [Online], 2016. http://www.gartner.com/newsroom/id/3598917.
- [2] Remco Schrijver. Precision agriculture and the future of farming in europe. Scientific Foresight Study, 2016. http://www.europarl.europa.eu/RegData/etudes/STUD/2016/581892/EPRS_STU(2016)581892_EN.pdf.
- [3] Semtech. An1200.22 lora $^{\text{TM}}$ modulation basics. [Online], 2015. http://www.semtech.com/images/datasheet/an1200.22.pdf.
- [4] Semtech. Lorawan 101 a technical introduction. [Online], 2017. https://docs.wixstatic.com/ugd/eccc1a_20fe760334f84a9788c5b11820281bd0.pdf.