INSTITUTO DE COMPUTAÇÃO

MATA50 – Linguagens Formais e Autômatos – 2023.1 Professor: Roberto Freitas Parente Monitor: Fernando Franco de Lacerda Neto

Gabarito – Grupo 02

Exercício 1 (Entrega: 12/05/2023). Construa expressões regulares para as seguintes linguagens com alfabeto $\{a,b\}$:

1. A linguagem cujas palavras $w \in \Sigma^*$ são da forma w = xabbay, com $x, y \in \Sigma^*$.

Resposta. Uma expressão regular
$$\acute{e}: (a+b)^* + abba + (a+b)^*$$

2. A linguagem em que todo **a** é precedido por **bb**

Resposta. Uma expressão regular
$$\acute{e}: (b+bba)^*$$

3. O conjunto das palavras de a's e b's cujo número de a's é divisível por 5.

Resposta. Uma expressão regular
$$\acute{e}: (b+b^*ab^*ab^*ab^*ab^*ab^*)^*$$

Exercício 2 (Entrega: 12/05/2023). Utilizando os algoritmos visto em sala, faça o seguinte:

1. Transforme em expressão regular o AFD descrito pelo diagrama de transição da Figura 1

Figura 1: AFD do item (1)

Resposta. Reduzindo o AFD temos

Temos 3 possiveis casos

(a) Considerando A como estado final.

Podemos eliminar os estado B, C, D, E e \emptyset já que a partir deles não podem voltar para o A.

$$\operatorname{start} \longrightarrow A \longrightarrow \emptyset$$

C, D, E

E a expressão regular é: $\emptyset^* = \varepsilon$

(b) Considerando B como estado final.

Podemos eliminar os estado C, D, E e \emptyset já que a partir deles não podem voltar para o B.

E a expressão regular é: $(\emptyset + a\emptyset^*\emptyset)^*a\emptyset^* = \emptyset^*a\varepsilon = \varepsilon a = a$

(c) Considerando C, D, E como estado final.

Podemos eliminar o estado \emptyset já que a partir dele não pode voltar para o C, D, E.

Removendo o estado intermediário B temos:

E a expressão regular é: $(\emptyset + (b+ab)(a+b)^*\emptyset)^*(b+ab)(a+b)^* = (\emptyset + \emptyset)^*(b+ab)(a+b)^* = \varepsilon(b+ab)(a+b)^* = (b+ab)(a+b)^*$

Assim a expressão regular final do AFD é : $\varepsilon + a + (b + ab)(a + b)^*$

2. Converta o AFND em AFD e posteriormente em expressão regular o AFND descrito pelo diagrama de transição da Figura 2

Figura 2: NFA do item (2)

Resposta. Criando a tabela para converter em AFD escrevendo apenas os estado alcançaveis

	a	b
$\rightarrow^* \{q_0\}$	$\{q_1\}$	$\{q_{0}\}$
$\{q_1\}$	$\{q_1\}$	$\{q_0,q_1\}$
$*\{q_0,q_1\}$	$\{q_1\}$	$\{q_0,q_1\}$

Assim o AFD equivalente é:

Temos 2 possiveis casos:

• Considerando $\{q_0\}$ como estado final. Podemos eliminar $\{q_1\}$ e $\{q_0,q_1\}$ já que a partir deles não podemos chegar em $\{q_0\}$

E a expressão regular é: b^*

• Considerando $\{q_0,q_1\}$ como estado final.

Removendo o estado intermediário $\{q_1\}$

Assim a expressão regular é: $b^*a(a+bb^*a)^*bb^*b^* = b^*a(a+bb^*a)^*bb^*$

E a expressão regular final é: $b^* + b^*a(a + bb^*a)^*bb^*$

Exercício 3 (Entrega: 12/05/2023). Utilizando os algoritmos visto em sala, converta as seguintes expressões regulares em ε -AFND e posteriormente minimize o AFD equivalente:

1. $a(ab+a)^*$

Resposta.

Tabela de conversão para os estados alcançáveis:

	a	b
$\rightarrow \{q_0\} = A$	$\{q_1, q_2, q_3, q_4, q_6, q_{11}\}$	Ø
${}^*{q_1, q_2, q_3, q_4, q_6, q_{11}} = B$	$\{q_5, q_{10}, q_3, q_4, q_6, q_{11}, q_7, q_8\}$	Ø
${}^*{q_5, q_{10}, q_3, q_4, q_6, q_{11}, q_7, q_8} = C$	$\{q_5, q_{10}, q_3, q_4, q_6, q_{11}, q_7, q_8\}$	$\{q_9, q_{10}, q_{11}, q_3, q_4, q_6\}$
$*\{q_9, q_{10}, q_{11}, q_3, q_4, q_6\} = D$	$\{q_5, q_{10}, q_3, q_4, q_6, q_{11}, q_7, q_8\}$	Ø
Ø	Ø	Ø

Tabela de minimização

В	X	-	-	-
$\overline{\mathbf{C}}$	X	X	-	-
D	X		X	-
Ø	X	X	X	X
	A	В	С	D

AFD minimizado

2. $((a+b)^*)^*$

Resposta.

Tabela de conversão para os estados alcançáveis:

	a	b	
	${q_4, q_7, q_2, q_3, q_5, q_8, q_1, q_9}$	${q_6, q_7, q_2, q_3, q_5, q_8, q_1, q_9}$	
$*\{q_4, q_7, q_2, q_3, q_5, q_8, q_1, q_9\} = B$	${q_4, q_7, q_2, q_3, q_5, q_8, q_1, q_9}$	${q_6, q_7, q_2, q_3, q_5, q_8, q_1, q_9}$	
$\{q_6, q_7, q_2, q_3, q_5, q_8, q_1, q_9\} = C$	${q_4, q_7, q_2, q_3, q_5, q_8, q_1, q_9}$	$\{q_6, q_7, q_2, q_3, q_5, q_8, q_1, q_9\}$	
Ø	Ø	Ø	

Tabela de minimização

AFD minimizado

Exercício 4 (Entrega: 12/05/2023 - (2 pontos)). Baseado nos algoritmos vistos em sala, descreva como poderíamos utilizá-los para dada uma expressão regular α , encontrarmos a expressão regular $\bar{\alpha}$ tal que $L(\bar{\alpha}) = \overline{L(\alpha)}$. Aplique sua descrição para a expressão regular $\alpha = 01(1+0)^*$.

Resposta. Dada uma expressão α , os passos para criar $\bar{\alpha}$ baseado nos algoritmos visto em sala são:

- 1. Criar um ε -AFND A tal que $L(A) = L(\alpha)$.
- 2. Transformar ε -AFND N em AFD A' de forma que $L(A') = L(\alpha)$
- 3. Minimar A' gerando A'' temos que $L(A'') = L(\alpha)$ (opcional)
- 4. Gerar automato B que é o complementar de A" (visto em sala) tal que L(B) = L(A)
- 5. Gerar expressão regular a partir de B.

Sendo $\alpha = 01(1+)^*$ e aplicando os passos acima temos:

1. Criar um automato para α .

 $E L(A) = L(\alpha)$

2. Transformar o automato em AFD.

Tabela de conversão para os estados alcançáveis de A em A':

	0	1	
$\longrightarrow \{q_0\} = A$	$\{q_1,q_2\}$	Ø	
$\{q_1, q_2\} = B$	Ø	$\{q_3, q_4, q_5, q_6, q_8, q_{11}\}$	
$*\{q_3, q_4, q_5, q_6, q_8, q_{11}\} = C$	$\{q_9, q_{10}, q_5, q_6, q_8, q_{11}\}$	$\{q_7, q_{10}, q_5, q_6, q_8, q_{11}\}$	
$\{q_9, q_{10}, q_5, q_6, q_8, q_{11}\} = D$	$\{q_9, q_{10}, q_5, q_6, q_8, q_{11}\}$	$\{q_7, q_{10}, q_5, q_6, q_8, q_{11}\}$	
$\{q_7, q_{10}, q_5, q_6, q_8, q_{11}\} = E$	$\{q_9, q_{10}, q_5, q_6, q_8, q_{11}\}$	$\{q_7, q_{10}, q_5, q_6, q_8, q_{11}\}$	
Ø	Ø	Ø	

Sendo L(A) = L(A')

3. Minimizar o AFD obtido Tabela de minimização de A^\prime para $A^{\prime\prime}$

В	X	_	-	-	_
$\overline{\mathbf{C}}$	X	X	-	-	-
D	X	X		-	-
$\overline{\mathbf{E}}$	X	X			-
Ø	X	X	X	X	X
	A	В	С	D	E

Sendo que L(A') = L(A'')

4. Transformar em um AFD que aceita a linguagem complementar do que já temos Transformando $A^{\prime\prime}$ em B

Sendo que $L(B) = \overline{L(A'')}$

- 5. Transformar o AFD complemento em um expressão regular Para B temos 3 casos
 - Considerando A como o estado final, podemos eliminar os estados \emptyset, B e C, D, E para a construção da expressão regular.

$$\operatorname{start} \longrightarrow A$$

E a expressão regular é ε

• Considerando B como o estado final, podemos eliminar os estados \emptyset e C, D, E para a construção da expressão regular.

E a expressão regular é 0

• Considerando \emptyset como o estado final, podemos eliminar o estado C, D, E para a construção da expressão regular e, então, eliminando o estado intermediário B.

E a expressão regular é $(1+00)(0+1)^*$

Assim a expressão regular final é $\overline{\alpha} = \varepsilon + 0 + (1 + 00)(0 + 1)^*$ e $L(\overline{\alpha}) = L(B)$ e pela maneira com que a expressão regular $\overline{\alpha}$ foi construida temos que $L(\overline{\alpha}) = \overline{L(\alpha)}$

Exercício 5 (Entrega: 28/05/2023 – (4 pontos)). Prove que as seguintes linguagens não são regulares:

• $L_1 = \{0^n : n \notin um \ quadrado \ perfeito\}$

Resposta. Seja k > n constante do lema do bombeamento e $w = 0^{k^2}$, assim $y = 0^i$, com $i \le n$. A palavra xy^2z não pertence a linguagem pois

$$k^2 < |xy^2z| = k^2 + i \le k^2 + n < k^2 + 2k + 1 = (k+1)^2$$

assim $|xy^2z|$ não pode ser um quadrado perfeito.

• $L_2 = \{w1^n : w \in \{0,1\} \ e \ n = |w|\}$

Resposta. Seja n a constante do lema do bombeamento e $w = 0^n 1^n$, assim $y = 0^i$, com $i \le n$. A palavra xy^0z não pertence a linguagem pois

$$|xz| = 0^{n-i}1^n$$

 $e n - i \neq n$

• $L_3 = \{a^m b^n a^m : m, n \ge 0\}$

Resposta. Seja n a constante do lema do bombeamento e $w=a^nb^na^n$, assim $y=a^i$, com $i\leq n$. A palavra xy^0z não pertence a linguagem pois

$$|xz| = a^{n-i}b^n a^n$$

 $e n - i \neq n$

• $L_4 = \{0^n 1^m 2^{n-m} : n \ge m \ge 0\}$

Resposta. Seja n a constante do lema do bombeamento e $w = 0^n 1^n$, assim $y = 0^i$, com $i \le n$. A palavra xy^0z não pertence a linguagem pois

$$|xz| = 0^{n-i}1^n$$

e $n-i-n \neq 0$

Exercício 6 (Entrega: 28/05/2023). Prove o seguinte sobre linguagens regulares:

1. Se L é uma linguagem, e a um símbolo, então L/a, o quociente de L e a, é o conjunto das palavras w tais que wa estão em L. Ex: Se $L = \{a, aab, baa\}$, então $L/a = \{\varepsilon, ba\}$. Prove que se L é regular, então L/a é regular.

Resposta. Seja $A = (Q, \Sigma, \delta, q_0, F)$ o AFD associado a L já que ela é regular, podemos criar o AFD $B = (Q, \Sigma, \delta, q_0, F')$, sendo $F' = \{q \in Q | \delta(q, a) \in F\}$. Assim, uma palavra w chega em um estado final de B apenas quando wa chega em um estado final de A, i.e., B irá aceitar a palavra w apenas quando $wa \in L$, que é a definição de L/a, logo B é um AFD para L/a, ou seja, L/a é um linguagem regular. \square

2. Se L é uma linguagem, e a um símbolo, então $a \setminus L$ é o conjunto das palavras w tais que $aw \in L$. Ex: Se $L = \{a, aab, baa\}$, então $a \setminus L = \{\varepsilon, ab\}$. Prove que se L é regular, então $a \setminus L$ é regular.

Resposta. Seja $A = (Q, \Sigma, \delta, q_0, F)$ o AFD associado a L já que ela é regular, podemos criar o AFD $B = (Q, \Sigma, \delta, \delta(q_0, a), F)$. Logo $w \in L(B)$ se e somente se $\hat{\delta}(\delta(q_0, a), w) = \hat{\delta}(q_0, aw) \in F$, ou seja, é um AFD para $a \setminus L$, logo $a \setminus L$ é regular.

Dica: Comece com um AFD para L e considere o conjunto dos estados de aceitação.

Exercício 7 (Entrega: 28/05/2023 – (2 pontos)). Mostre que as linguagen regulares são fechadas sob as sequintes operações:

1. $\min(L) = \{w : w \in L, \text{ mas nenhum prefixo próprio de } w \text{ está em } L\}.$

Resposta. Para garantir que nenhum prefixo próprio de w está em L, basta garantir que se estamos em um estado final não passamos por outro.

Seja $A = (Q, \Sigma, \delta, q_0, F)$ o AFD assiciado a L. A partir de A construa $B = (Q, \Sigma, \delta', q_0, F)$, sendo $\delta' = \delta \setminus \{((q, a), p) \in (Q \times \Sigma) \times Q \mid q \in F\}$ (retiramos todas as transições que saem de um estado final). Seja $w \in L(B)$, suponha, por absurdo, que algum prefixo própio x de w pertence a L(B), isto é, $\hat{\delta}(q_0, x) \in F$. Além disso, sabemos que $\hat{\delta}(q_0, w) = \hat{\delta}(\hat{\delta}(q_0, x), y) \in F$, para um y tal que xy = w, isso é absurdo pois $\delta(\hat{\delta}(q_0, x), a)$, com $a \in \Sigma$, é o estado vazio que não é final. Logo B é um AFD para min(L).

2. $\max(L) = \{w : w \in L \ e, \ para \ nenhum \ x \neq \varepsilon, \ wx \in L\}.$

Resposta. Para $\max(L)$ basta garantir que a partir de um estado final não é possivel chegar em outro. Sejam $A = (Q, \Sigma, \delta, q_0, F)$ o AFD assiciado a L e o conjunto $I = \{q \in F | \exists w \in \Sigma^+ \ (\hat{\delta}(q, w) \in F)\}$, que é o conjunto de estados finais que você pode chegar em outro estado final a partir dele. A partir de A construa $B = (Q, \Sigma, \delta, q_0, F')$, sendo $F' = F \setminus I$. Então B aceita w se e somente se $\hat{\delta}(q_0, w) \in F$ e $\nexists x \in \Sigma^+ \ (\hat{\delta}(\hat{\delta}(q_0, w)x) = \hat{\delta}(q_0, wx) \in F)$, portanto B é um AFD para $\max(L)$.

 $m{Dica:}\ \ \acute{E}\ mais\ fácil\ começar\ com\ um\ AFD\ para\ L\ e\ executar\ uma\ construção\ para\ obter\ a\ linguagem\ desejada.$

Exercício 8 (Entrega: 28/05/2023). Mostre o que acontece quando tentamos aplicar o Lema do Bombeamento para a linguagem $L((00+11)^*)$.

Resposta. Como a linguagem é regular, o lema do bombeamento é valido para toda palavra pertencente a linguagem, ou seja, não poderemos encontrar uma contradição, que é a base da prova de não ser regular.