به نام خدا

پردازش تصویر

تمرین شماره ۳ آشنایی با پردازش تصویر در حوزه فرکانس

امین سخایی

9777.79

استاد درس

دكتر حامد آذرنوش

سوال شماره ۱:

ورودی برنامه تصویر Chest.tif است که به صورت خاکستری ۸ بیتی آنرا فراخوانی می کنیم.

بخش الف) با استفاده از توابع آماده تبدیل فوریه تصویر را محاسبه می کنیم و اندازه و فاز را نمایش می دهیم.

اندازه ی این تبدیل طیف بسیار وسیع با مقادیر بزرگی است. بنابراین برای نمایش بهتر جزئیات ، طیف اندازه را به شکل زیر تعریف می کنیم:

$magnitude\ spectrum = r \cdot * log(magnitude)$

این تابع به این صورت عمل می کند که مقدار زیاد را به مقدار زیاد و مقادیر کم را به مقدار کم کاهش می دهد.

به طور کلی فرکانس صفر تابع(DC) در گوشه سمت چپ و بالای تصویر وجود دارد و برای نمایش مناسب با استفاده از تابع fftshift آن را به مرکز منتقل می کنیم.

خروجي:

Input Image

Input Image Magnitude spectrum

Phase

بخش ب) در این بخش ابتدا فرکانسDC را با استفاده از fft.ishift به محل ابتدایی اش باز می گردانیم و سپس از آن تبدیل فوریه معکوس می گیریم.

خروجی:

بخش ج) برای آینه کردن تصویر حول مرکز، فاز تصویر را قرینه می کنیم و مانند بخش قبل برای نمایش تصویر تبدیل معکوس را محاسبه می کنیم.

خروجی:

سوال شماره ی ۲:

ورودی برنامه تصویر a.tif است که به صورت خاکستری ۸ بیتی آنرا فراخوانی می کنیم.

ابتدا تابع فیلتر را تعریف می کنیم که ورودی های آن تصویر، نوع فیلتر و پارامترهای فیلتر و خروجی آن تصویر فیلتر شده است. قبل از گرفتن تبدیل تبدیل فوریه تصویر را zero pad می کنیم تا اعوجاجی هنگام لغزش فیلتر ایجاد نشود.

zero pad

فيلتر ايده آل:

پایین گذر:

شعاع دریافتی مشخص کننده فرکانس قطع است. بنابراین ما در مرکز تصویر یک دایره فرض می کنیم و هر مقداری که خارج از دایره باشد را صفر در نظر می گیریم.

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \leq D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases} \quad D(u,v) = \left[(u - P/2)^2 + (v - Q/2)^2 \right]^{1/2}$$

Input Image

ILPF 50

ILPF 100

ILPF 200

همان طور که مشاهده می شود با افزایش شعاع جزئیات تصویر بهتر مشاهده می شود.

به دلیل اینکه نوسان حول محور افقی تا بی نهایت ادامه دارد تصویر دارای پدیده ی رینگینگ است.

بالاگذر:

شعاع دریافتی مشخص کننده فرکانس قطع است. بنابراین ما در مرکز تصویر یک دایره فرض می کنیم و هر مقداری که داخل دایره باشد را صفر در نظر می گیریم.

$$H(u,v) = \begin{cases} 0 & \text{if } D(u,v) \leq D_0 \\ 1 & \text{if } D(u,v) > D_0 \end{cases} D(u,v) = \left[(u - P/2)^2 + (v - Q/2)^2 \right]^{1/2}$$

Input Image

IHPF 50

IHPF 100

IHPF 200

همانند حالت قبل تصویر دارای پدیده رینگینگ می باشد و با افزایش شعاع تصویر شفاف تر شده و به سمت تیره شدن می رود.

فيلتر باترورث:

پایین گذر:

در فیلتر ایده آل هر مقداری که داخل دایره فیلتر قرار می گرفت مقدار آن عبور داده میشد و بلافاصله از یک مقدار زیاد به مقدار کم نزول می کردیم و در نتیجه در نمودار تصویر آن ضربه بوجود می آمد. برای از بین بردن پدیده رینگینگ از فیلتر باترورث استفاده می کنیم و سرعت نزول فرکانس را آهسته می کنیم.

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}} \qquad D(u,v) = [(u-P/2)^2 + (v-Q/2)^2]^{1/2}$$

مقدار n باید بزرگتر از صفر باشد. همچنین هر چقدر مقدار n افزایش یابد فیلتر lowpass تر و به فیلتر ایده آل نزدیک تر می شود.

Input Image

...a

BLPF 50,2

BLPF 100,2

با افزایش شعاع تصویر شفاف تر می شود.

بالا گذر:

$$H(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2n}} \qquad D(u,v) = [(u-P/2)^2 + (v-Q/2)^2]^{1/2}$$

Input Image BHPF 50,2 BHPF 100,2 BHPF 200,2

با افزایش شعاع تصویر شفاف تر می شود.

فیلتر گاوسی:

پایین گذر:

یکی دیگر از فیلتر هایی که برای از بین بردن پدیده رینگینگ استفاده می شود.

$$H(u, v) = e^{-D^2(u, v)/2D_0^2}$$
 $D(u, v) = [(u - P/2)^2 + (v - Q/2)^2]^{1/2}$

Input Image

BHPF 50,2

BHPF 100,2

BHPF 200,2

با افزایش شعاع تصویر شفاف تر می شود.

بالا گذر:

$$H(u, v) = 1 - e^{-D^2(u, v)/2D_0^2}$$
 $D(u, v) = \left[(u - P/2)^2 + (v - Q/2)^2 \right]^{1/2}$

Input Image

GHPF 50

GHPF 100

GHPF 200

مقايسه:

Input Image

ILPF 50

BLPF 50,2

GLPF 50

Input Image

IHPF 50

BHPF 50,2

GHPF 50

پدیده رینگینگ در فیلتر ایده آل همیشه و در فیلتر گاوسی هرگز دیده نمی شود. در فیلتر باترورث می تواند این پدیده وجود داشته باشد و یا نداشته باشد. با توجه به درجه فیلتر این اثر بوجود می آید.

سوال شماره ۳:

ورودی برنامه دو clown.tif و mandrill.tif هستند که آنها را فراخوانی کرده و پس از محاسبه ی تبدیل فوریه فاز آنهارا به دست می آوریم. سپس فاز دو تصویر را برعکس کرده و تبدیل فوریه معکوس را مشاهده می کنیم.

Input Image 1

Image back 1

Input Image 2

Image back 2

همانطور که مشاهده می شود جزئیات تصاویر با یکدیگر عوض شده و اثر هر تصویر دوم در تصویر اول کاملا مشهود است. در نتیجه جزئیات تصویر در فاز آن ذخیره شده است.