What does $O(\langle expr \rangle)$ mean?	What does $\Theta()$ mean?
What does $\Omega()$ mean?	What are the best, average and worst case complexities of Bubble Sort ?
What are the best, average and worst case complexities of Merge Sort?	Give pseudo code for merging 2 sorted lists, as part of merge sort.
$Give\ pseudo\ code\ for\ MergeSort(L).$	What are the best, average and worst case complexities of Quick Sort?

The complexity (i.e. space/running time) has the complexity proportional to $\langle expr \rangle$.

The complexity (i.e. running time/space) is bounded by the < expr >.

2

Best: O(n), Average: $O(n^2)$, Worst: $O(n^2)$

The complexity (i.e. running time/space) is at least by the < expr >.

4

```
\begin{aligned} & Merge(L_1,\, L_2) \\ & if \, L_1 = [] \ return \, L_2 \\ & if \, L_2 = [] \ return \, L_1 \\ & x_1 = L_1[0] \\ & x_2 = L_2[0] \\ & L_1' = L_1[1:|L_1|-1] \\ & L_2' = L_2[1:|L_2|-1] \\ & if \, x_1 \leq x_2 \\ & return \, [x_1] + Merge(L_1', L_2') \\ & return \, [x_2] + Merge(L_1', L_2') \end{aligned}
```

 $\begin{array}{c} \textit{Best: } O(n \log_2 n), \\ \textit{Average: } O(n \log_2 n), \\ \textit{Worst: } O(n \log_2 n) \end{array}$

Merge two sorted lists

6 5

 $\begin{aligned} & \textit{Best: } O(n \log_2 n), \\ & \textit{Average: } O(n \log_2 n), \\ & \textit{Worst: } O(n^2) \end{aligned}$

$$\begin{split} & \textit{MergeSort}(L) \\ & \textit{if } |L| \leq 1 \\ & \textit{return } L \\ & \textit{Split L into roughly equal halves, L_l and L_r} \\ & \textit{return Merge}(\textit{MergeSort}(L_l), \textit{MergeSort}(L_r)) \end{split}$$

MergeSort(L)

8

	T
What would the pseudo code be for Quick Sort?	Say that the input represents a positive integer, x , what is the size of n ?
What does it mean by $O(1)$?	What is the minimum time for any sorting algorithm that uses only number comparisons?
What would the pseudo code be for Euclid's algorithm?	What would the pseudo code be for Fast Modular Exponentiation?
What are some of the advantages of ElGamal encryption?	What is the basic procedure for an encryption and decryption using publik key cryptography if Alice wants to send a message to Bob?

```
if length of L \leq 1
                                                                                return\ L
                                                                            remove the first element, x, from L
 |\log_b x| + 1 Where b is the number representation,
                                                                            L_{\leq} := elements \ of \ L \ less \ than \ or \ equal \ to \ x
                  usually binary (so 2).
                                                                            L_{>}^{-} := elements of L greater than x
                                                                            L_l := quicksort(L_<)
                                                                            L_r := quicksort(\overline{L}_>)
                                                                            return L_l + [x] + L_r
                                                                                                 Quick Sort
                                                           10
                                                                                                                                     9
                                                                          It takes a constant time, no matter the amount of
                          n\log_2 n
                                                                                     data, to perform the operation.
                                                           12
                                                                                                                                   11
fme(a,b,k)
   d = a
                                                                        // Assume a >= b
    e = b
    s = 1
                                                                        hcf(a,b)
    While e > 0
                                                                            if b = 0
       if e is odd
                                                                                return a
           s = (s.d) mod k
                                                                            r = amodb
       d = d^2 mod k
                                                                            return \ hcf(b,r)
       e = \lfloor e/2 \rfloor
                                                                                             Euclid's algorithm
    return\ s
              Fast\ Modular\ Exponentiation
                                                           14
                                                                                                                                    13
Alice generates a private random integer a and Bob
         generates a private random integer b
                                                                                            Sender Verification
      Alice generates her public value g^a \mod p
Bob generates his public value g^b \mod p
                                                                                     Private key remains with owner
                                                                                     Public key is freely distributable
           Alice computes g^{ab} = (g^a)^b \mod p
Bob computes g^{ba} = (g^b)^a \mod p
                                                                                 No secret channel needed at any point
                                                                                       No need for pre-shared keys
Now they have a shared secret k since k = g^{ab} = g^{ba}
```

16

quicksort(L)

Describe public key generation in ElGamal encryption using p as the Prime Modulus and g as the Primitive root (as described in the COMP26120 lab)	Describe the encryption procedure used in the ElGamal cryptosystem given that person B wants to send message M to preson A
Describe the decryption process used in the ElGamal cryptosystem given that person A has received cyphertext (γ, δ) from person B, encrypted encrypted using the public key (p, g, g^a)	Consider the equation $a^x = y \mod p$. If a is a primitive root of modulo p , then for every $y(1 \le y < p)$, such an $x(1 \le x < p)$ exists. What is x ?
The is the inverse of exponentiation.	Why can a private key in the ElGamal cryptosystem not, in practice, be recovered using the public key when p is large?
What is one way you can argue correctness of Euclid's algorithm?	What would half the correctness proof be for Euclid's algorithm?

Obtain A's public key (p, g, g^a) Represent the message M as integers in the range 0, ..., p-1Select a random integer k from $1 \le k \le p-2$ Compute $\gamma = g^k \mod p$ and $\delta = m \cdot (g^a)^k$ Send ciphertext $c = (\gamma, \delta)$ to A Generate a large p and a g in $1 \le g < p$ Generate a random integer a in $1 \le a \le p-2$ Compute $g^a \mod p$. The public key is

 (p, g, g^a)

The private key is a

17

X is the **discrete logarithm** of y with base a, modulo p.

Use private key a to compute $(\gamma^{p-1-a}) \mod p$ $NOTE\ THAT: (\gamma^{p-1-a}) = \gamma^{-a} = g^{-ak}$ Recover the message M by computing $(\gamma^{-a} \cdot \delta \mod p)$ Note that this evaluates to $(g^{-ak} \cdot g^{ak} \cdot M \mod p)$ or $1 \cdot M \mod p$

20 19

To calculate a public key, y, a private key, x is needed. The equation for modular exponentiation can be used to generate the public key: $y = g^x \mod p$ where g is a primitive root of the modulus p. It is considered a one-way, or trapdoor function - easy to compute, hard to invert. For a large p, one of the few ways to figure out the private key x would be to calculate $g^x \mod p$ for every x in $1 \le x < p$ and find when one of these results matches y

The discrete logarithm is the inverse of exponentiation.

22 21

As $r = a \mod b$, $\exists q \text{ such that } a = bq + r$, $\therefore r = a - bq$. Suppose x is a factor of a and b, then $\exists y \text{ and } z \text{ such}$ that a = xy, b = xz. Hence: r = xy - xzq, r = x(y - zq). $\therefore x$ is a factor of r (and also of b and r).

Let r = amodb. hcf(a, b) = hcf(b, r) because all factors of a and b are also factors of b and r and vice versa. If they have the same factors, they have the same highest common factor.

24

(a.b)modk =	Let p be a prime number. What is meant by a primitive root modulo p?
What does saying that algorithm A runs in time g mean?	What is a permutation of a set?
What do we mean by a composition of two permutations?	What is the number of possible permutations on an n-element set?
In the context of a permutation, what do we mean by a transposition?	Convert this pair of simultaneous equations into matrix form $a_{1,1}x_1+a_{1,2}x_2=b_1\\a_{2,1}x_2+a_{2,2}x_2=b_2$ 32

The numbers r_x between 1 and p-1 that, when raised by the numbers between 1 and p-1 compute all the numbers between 1 and p-1 in some order with no repetitions.

(a.b)modk = (amodk.bmodk)modk

26

25

A 1-to-1 map of the set onto itself. In basic terms, it is a set mapped to another order of itself. i.e $[0,1,2,3,4] \mapsto [2,4,1,0,3]$

Given an input of size n, the number of operations executed by A is bounded above by g(n).

28

27

n!

The composition is the product of two permutations, α and β , on a set n, given by $\alpha \cdot \beta(n)$ or $\beta(\alpha(n))$

30

29

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

A transposition is a special kind of permutation where only 2 elements in a set are affected (they are swapped). On a set X a transposition $\sigma = (i, j)$ is given by

$$\sigma(k) = \begin{cases} j & \text{if } k = i \\ i & \text{if } k = j \\ k & \text{ow.} \end{cases}$$

What is the determinant of the matrix: $\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$	What is an upper triangular matrix and how do you calculate its determinant?
33	34

Which 4 operations have no effect on a matrix's determinant?

It is a matrix where all of its entries below the diagonal are zero.

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{pmatrix}$$

Its determinant is calculated by taking the product of the entries on the diagonal. i.e $a_{1,1} \cdot a_{2,2} \cdot ... \cdot a_{n,n}$

 $a_1a_4 - a_2a_3$ Often denoted as:

$$\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix}$$

The original system of equations to which the matrix corresponds only has a unique solution if the determinant is non-zero.

34

Transposing two rows
Transposing two columns
Adding a multiple of one row to another
Adding a multiple of one column to another
Also note that if all entries in any row or column
are 0 then the determinant is 0