定理背景: Schur分解

根据矩阵分解的理论,对于任意矩阵 $A \in M_{n \times n}(F)$,如果其特征多项式的根 (即特征值) 全部属于域 F ,则 A 在某个基下总可以表示为上三角矩阵形式。对角线上的元即为矩阵的特征值。

本题的关键是利用特征值的存在性和递归构造的方法,证明这种分解的存在性。

证明

1. 特征值的存在性

已知 $\operatorname{Char}_A(X) = \prod_{i=1}^n (X-\lambda_i)$,这说明 A 的特征多项式完全分解,因此 A 在域 F 上有 n 个特征值 ℓ 可能有重根 ℓ ,即 ℓ , ℓ , ℓ 。

2. 归纳法构造变换矩阵 (P)

(1) 基础情形: (n=1)

当 n=1 时,矩阵 A 是 1×1 矩阵,其形式为 $A=[\lambda_1]$ 。此时,矩阵 A 本身就是上三角矩阵,结论显然成立。

(2) 归纳假设: (n=k) 时成立

假设对于任意 $k \times k$ 矩阵 $B \in M_{k \times k}(F)$,如果 $\operatorname{Char}_B(X)$ 在 F 上分解为 $\prod_{i=1}^k (X - \mu_i)$,则存在可逆矩阵 $Q \in M_{k \times k}(F)$,使得: $Q^{-1}BQ = T$,其中 T 是上三角矩阵,且 T 的对角元依次为 μ_1, \ldots, μ_k 。

(3) **归纳步骤**: (n = k+1)

考虑
$$A \in M_{(k+1) imes (k+1)}(F)$$
 ,其特征多项式为: $\operatorname{Char}_A(X) = \prod_{i=1}^{k+1} (X - \lambda_i).$

我们分以下几步证明:

Step1. A 的特征值 λ_1 对应的特征向量

因为 λ_1 是 A 的特征值,存在非零向量 $v_1 \in F^{k+1}$ 满足: $Av_1 = \lambda_1 v_1$. 将 v_1 作为基向量之一。

Step2.构造不变子空间

令 $V_1 = \operatorname{span}\{v_1\}$)是由 v_1 张成的一维子空间。因为 A 的特征值全部属于 F ,

我们可以找到一个 A 的不变子空间 $V_1^\perp \subset F^{k+1}$,使得 $F^{k+1} = V_1 \oplus V_1^\perp$,且 A 在 V_1^\perp 上的限制是一个 $k \times k$ 矩阵。

换句话说,存在一个基变换矩阵
$$P_1$$
 ,使得 $P_1^{-1}AP_1$ 的形式为: $P_1^{-1}AP_1=\begin{bmatrix}\lambda_1 & * \\ 0 & B\end{bmatrix}$,

其中 $B \in M_{k \times k}(F)$ 是 A 在不变子空间 V_1^{\perp} 上的限制矩阵。

Step3.对 B 递归使用归纳假设

矩阵 B 是一个 $k \times k$ 矩阵, 其特征多项式为: $\operatorname{Char}_B(X) = \prod_{i=2}^{k+1} (X - \lambda_i),$

这是 $\operatorname{Char}_{A}(X)$ 去掉 $(X - \lambda_{1})$ 的部分。

根据归纳假设,存在一个可逆矩阵 $Q \in M_{k \times k}(F)$,使得:

 $Q^{-1}BQ = T$, 其中 T 是一个上三角矩阵, 且 T 的对角元依次为 $\lambda_2, \ldots, \lambda_{k+1}$ 。

Step4.构造最终的上三角矩阵

将矩阵 Q 嵌入到 $P_1^{-1}AP_1$ 的 B 部分,得到一个新的基变换矩阵 P ,使得:

$$P^{-1}AP = egin{bmatrix} \lambda_1 & * & * & \cdots & * \ 0 & \lambda_2 & * & \cdots & * \ 0 & 0 & \lambda_3 & \cdots & * \ dots & dots & dots & dots & \ddots & * \ 0 & 0 & 0 & \cdots & \lambda_{k+1} \end{bmatrix}$$
. 即 $P^{-1}AP$ 是一个上三角矩阵,且其对角元依次为 $\lambda_1,\ldots,\lambda_{k+1}$ 。