

Johann Radon Institute for Computational and Applied Mathematics (RICAM)

Austrian Academy of Sciences

Creative Telescoping on Multiple Sums

Elaine Wong (joint work with Christoph Koutschan)

September 16, 2020 CASC 2020

Our Problem

We would like to prove that

$$\max(k-m,0)$$

We would like to prove that
$$G_s(x) := \sum_{k=1}^{m+s-1} \left(\sum_{r=1}^s \binom{s}{r} \binom{k-1}{r-1} \frac{b-1}{(-b)^r} \sum_{i=0}^{r-1-c_m(k)} (-b)^i \binom{r-1}{i} \right) (bx)^k$$

is not positive for all $b, m, s \in \mathbb{N}$, $b \ge 2$, and $x \in [0, 1)$.

Our Strategy

We would like to prove that

$$\max(k-m,0)$$

We would like to prove that
$$G_s(x) := \sum_{k=1}^{m+s-1} \left(\sum_{r=1}^s \binom{s}{r} \binom{k-1}{r-1} \frac{b-1}{(-b)^r} \sum_{i=0}^{r-1-c_m(k)} (-b)^i \binom{r-1}{i} \right) (bx)^k$$

is not positive for all $b, m, s \in \mathbb{N}$, $b \ge 2$, and $x \in [0, 1)$.

- 1. We deduce a recurrence for $G_s(x)$. (HOLONOMICFUNCTIONS.M, C. Koutschan 2010)
- 2. We solve it and achieve a sign-equivalent closed form expression. (SIGMA.M, C. Schneider 2007)
- 3. We simplify our closed form and use it to deduce that $G_s(x) \leq 0$.

Multivariate Integration

[†] C. Lemieux, *Negative dependence, scrambled nets, and variance bounds.* Mathematics of Operations Research 43. (2017) 228–251.

^{*} J. Wiart and E.W., Walsh functions, scrambled (0, m, s)-nets, and negative covariance: applying symbolic computation to quasi-Monte Carlo integration. Mathematics and Computers in Simulation. (2020) To appear.

Result for Part 1.

We would like to deduce a recurrence for

$$\max(k-m,0)$$

$$G_s(x) := \sum_{k=1}^{m+s-1} \left(\sum_{r=1}^{s} {s \choose r} {k-1 \choose r-1} \frac{b-1}{(-b)^r} \sum_{i=0}^{r-1-c_m(k)} (-b)^i {r-1 \choose i} \right) (bx)^k$$

for all $b, m, s \in \mathbb{N}$, $b \ge 2$, and $x \in [0, 1)$.

Theorem (C. Koutschan, E.W.)

For $b, m, s \in \mathbb{N}, b \geqslant 2$ and $x \in [0, 1)$, G_s satisfies the recurrence

$$(s+2)(bx-1) \cdot G_{s+3}$$

$$+ (m(bx-1)(x-1) + bsx(x-2) + bx(x-3) - s(2x-3) - 3x + 5) \cdot G_{s+2}$$

$$- (x-1)(bmx + bsx + bx + mx - 2m + sx - 3s + x - 4) \cdot G_{s+1}$$

$$+ (x-1)^{2}(m+s+1) \cdot G_{s} = 0.$$

Creative Telescoping

$$\sum_{k}$$
 summand = ?

Creative telescoping outputs operators P and Q such that:

$$\sum_{\mathbf{k}} (\mathbf{P} - (\mathbf{S}_{\mathbf{k}} - 1) \cdot \mathbf{Q}) \cdot \mathsf{summand} = 0,$$

$$P \cdot \sum_{k=m}^{n} \text{summand} - \underbrace{\left(Q \cdot \text{summand} \left| \substack{k=n+1 \\ k=m} \right.\right)}_{=0} = 0,$$

$$P \cdot \sum_{k} \text{summand} = 0.$$

Understand: This is not some magic black box!

Understand: The above occurs under ideal circumstances.

Toy Example

$$SUM(n) := \sum_{k=5}^{n} \binom{n}{k}$$

Creative telescoping computes $P = S_n - 2$ and $Q = \frac{k}{k-n-1}$.

Conclusion: SUM(n) satisfies the recurrence

$$c(n+1)-2c(n)=0,$$

with the initial value c(5) = 1.

This is WRONG.

Toy Example

$$SUM(n) := \sum_{k=5}^{n} \binom{n}{k}$$

Creative telescoping computes $P = S_n - 2$ and $Q = \frac{k}{k-n-1}$.

Singularities in the certificates.

$$\sum_{k=5}^{n-1} (S_n - 2) \binom{n}{k} - \underbrace{\left(\frac{k}{k - n - 1} \binom{n}{k}\right)\Big|_{k=5}^{k=n}}_{\text{inhomogeneous part}} = 0$$

▶ Boundary limits depend on *n*.

$$(S_n - 2) \sum_{k=5}^{n} \binom{n}{k} - \frac{n - (\text{inhomogeneous part})}{\text{updated inhomogeneous part}} = 0$$

The operator for the recurrence corresponding to the "updated inhomogeneous part" can be computed pretty easily in this case.

Example

► Complicated inhomogeneous expressions require more manipulation.

$$-\frac{(b-1)(m+s+1)(bx)^{m+s+1}}{b^{2}x} \cdot {}_{2}F_{1} \begin{pmatrix} 1-s, -m-s & b-1 \\ 2 & b \end{pmatrix} + \frac{(b-1)(m+bs)(bx)^{m+s}}{b^{2}} \cdot {}_{2}F_{1} \begin{pmatrix} 1-s, 1-m-s & b-1 \\ 2 & b \end{pmatrix}$$
(1)
$$\frac{(b-1)(s+1)(bx-1)(bx)^{m+s}}{b} \cdot {}_{2}F_{1} \begin{pmatrix} -s, 1-m-s & b-1 \\ 2 & b \end{pmatrix}.$$

By observation, we see that selecting the operator

$$\frac{(b-1)(m+s+1)}{b^2x(bx)}S_m^2 - \frac{(b-1)(m+bs)}{b^2(bx)}S_m + \frac{(b-1)(s+1)(bx-1)}{b(bx)}S_s$$

and "applying" it to
$$(bx)^{m+s} \cdot {}_2F_1\left(\begin{array}{c|c} 1-s,2-m-s \\ 2 \end{array} \middle| \begin{array}{c} \frac{b-1}{b} \end{array}\right)$$
 gives (1).

View One: $G_s(x)$ as a Split Sum

$$\max(k-m,0)$$

$$G_s(x) := \sum_{k=1}^{m+s-1} \left(\sum_{r=1}^{s} {s \choose r} {k-1 \choose r-1} \frac{b-1}{(-b)^r} \sum_{i=0}^{r-1-c_m(k)} (-b)^i {r-1 \choose i} \right) (bx)^k$$

$$G_s(x) = G_s^{(1)} + G_s^{(2)}$$

$$G_s^{(1)} := -\sum_{k=1}^{m+s-1} \sum_{r=1}^{s} {s \choose r} {k-1 \choose r-1} \left(\frac{b-1}{b}\right)^r (bx)^k$$

$$G_s^{(2)} := \sum_{k=m+1}^{m+s-1} \sum_{r=1}^{s} {s \choose r} {k-1 \choose r-1} \frac{1-b}{(-b)^r} \sum_{i=r-(k-m)}^{r-1} (-b)^i {r-1 \choose i} (bx)^k$$

Impression Slide

Here is the operator corresponding to the recurrence for the inhomogeneous part of $G_s^{(2)}$:

```
(11m^6s + 6m^6 + 185m^5s + 78m^5 + 1199m^4s + 402m^4 + 3863m^3s +
1050m^3 + 6554m^2s + 1464m^2 + 5564ms + 1032m + 4916s^2 + 1848s +
288 + \cdots 920 \text{ terms} \cdots + 33b^2m^4s^5x^6 + 63b^2m^3s^6x^6 + 66b^2m^2s^7x^6 + \cdots
961b^2m^2s^6x^6 + 36b^2ms^8x^6 + 596b^2ms^7x^6 + 4174b^2ms^6x^6 + 8b^2s^9x^6 +
148b^2s^8x^6 + 1168b^2s^7x^6 + 5128b^2s^6x^6)S_c^2 + (3294m^3x - 2724bm^4x -
5934bm^3x - 7398bm^2x - 4860bmx - 1296bx + 1788m^4x + 3450m^2x +
1908mx + 432x + \cdots 1326 \text{ terms} \cdots - 272b^3m^2s^7x^7 - 32b^3s^9x^7 -
144b^3ms^8x^7 - 2464b^3ms^7x^7 - 608b^3s^8x^7 - 4920b^3s^7x^7 + 16b^2s^9x^7 +
140b^2m^2s^7x^7 + 72b^2ms^8x^7 + 1232b^2ms^7x^7 + 304b^2s^8x^7)S<sub>s</sub> + (6m^6x^2 + 1232b^2ms^7x^7 + 304b^2s^8x^7)
90m^5x^2 + 534m^4x^2 + 5325m^3sx^2 + 1566m^3x^2 + 9468m^2sx^2 + 2268m^2x^2 +
7344 \text{ msx}^2 + 1296 \text{ mx}^2 + 1296 \text{ sx}^2 + \cdots 904 \text{ terms} + 33 b^2 m^4 s^5 x^8 + \cdots
63b^2m^3s^6x^8 + 66b^2m^2s^7x^8 + 1035b^2m^2s^6x^8 + 36b^2ms^8x^8 + 636b^2ms^7x^8 +
4734b^2ms^6x^8 + 8b^2s^9x^8 + 156b^2s^8x^8 + 1296b^2s^7x^8 + 5976b^2s^6x^8
```

View Two: $G_s(x)$ as one Triple Sum

$$\sum_{k=1}^{m+s-1}\sum_{r=1}^{s}\sum_{i=0}^{r-1-(k-m)}\underbrace{\binom{s}{r}\binom{k-1}{r-1}\binom{r-1}{i}\frac{b-1}{(-b)^{r-i}}(bx)^k}_{\text{summand}}.$$

Factor in Summand	Nonzero Range	Summation Bounds
$\binom{s}{r}$	$0 \leqslant r \leqslant s$	$1 \leqslant r \leqslant s$
$\binom{k-1}{r-1}$	$r-1\leqslant k-1$	$1\leqslant k\leqslant m+s-1$
$\binom{r-1}{i}$	$i \leqslant r - 1$	$0\leqslant i\leqslant r-1-(k-m)$

View Two: $G_s(x)$ as one Triple Sum

$$\sum_{k=1}^{m+s-1} \sum_{r=1}^{s} \sum_{i=0}^{r-1-(k-m)} \underbrace{\binom{s}{r} \binom{k-1}{r-1} \binom{r-1}{i} \frac{b-1}{(-b)^{r-i}} (b\mathbf{x})^k}_{\text{summand}}.$$

Factor in Summand	Nonzero Range	Summation Bounds
$\binom{s}{r}$	$0 \leqslant r \leqslant s$	$1 \leqslant r \leqslant s$
$\binom{k-1}{r-1}$	$r-1\leqslant k-1$	$1\leqslant k\leqslant m+s-1$
$\binom{r-1}{i}$	$i \leqslant r - 1$	$0 \leqslant i \leqslant r - 1 - (k - m)$

Recall that $\Gamma(k)$ has an infinite number of poles at $k=0,-1,-2,\ldots$ We can use this to remove those troublesome nonzero terms.

View Two: $G_s(x)$ as one Triple Sum

$$\sum_{k=1}^{m+s-1} \sum_{r=1}^{s} \sum_{i=0}^{r-1-(k-m)} \underline{\text{summand}} \cdot \frac{\Gamma(k+\epsilon)}{\Gamma(k)} \cdot \frac{\Gamma(r-i-(k-m)+\epsilon)}{\Gamma(r-i-(k-m))} \, .$$

new summand

Summary of Results

	corrections	55 days
View 1	closure properties	30 hours
	substitution speedup	1.4 hours
View 2	corrections	9 minutes
	gamma insertion	30 seconds

Theorem (C. Koutschan, E.W.)

For $b, m, s \in \mathbb{N}, b \geqslant 2$ and $x \in [0, 1)$, G_s satisfies the recurrence

$$(s+2)(bx-1) \cdot G_{s+3} + (m(bx-1)(x-1) + bsx(x-2) + bx(x-3) - s(2x-3) - 3x + 5) \cdot G_{s+2} - (x-1)(bmx + bsx + bx + mx - 2m + sx - 3s + x - 4) \cdot G_{s+1} + (x-1)^{2}(m+s+1) \cdot G_{s} = 0.$$

Future Work

- 1. We believe all of these issues could (and should) be resolved automatically.
- 2. We believe there are other numerical applications out there of a similar nature that could benefit as a result.
- 3. For more information, please visit: HTTPS://WONGEY.GITHUB.IO/DIGITAL-NETS-WALSH/

Thank you!