Calculus II Integrals of the form
$$\int \frac{a}{bx^2+c} \mathrm{d}x$$
, $c>0$

Todor Miley

2019

Linear substitutions leading to blocks IIa and IIIa

Building block IIIa: $\int \frac{1}{u^2+1} du = \arctan u + C$.

Example

$$\int \frac{1}{x^2 + 2} dx = \int \frac{1}{2\left(\frac{1}{2}x^2 + 1\right)} dx$$

$$= \int \frac{1}{2\left(\left(\frac{x}{\sqrt{2}}\right)^2 + 1\right)} \sqrt{2} d\left(\frac{x}{\sqrt{2}}\right) \qquad \text{Set } \frac{x}{\sqrt{2}} = u$$

$$= \frac{1}{\sqrt{2}} \int \frac{1}{u^2 + 1} du$$

$$= \frac{1}{\sqrt{2}} \arctan(u) + C$$

$$= \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C$$

Linear substitutions leading to blocks IIa and IIIa

Building block IIIa: $\int \frac{1}{y^2+1} dx = \arctan x + C$. Let a > 0.

Example

$$\int \frac{1}{x^2 + a} dx = \int \frac{1}{a \left(\frac{1}{a}x^2 + 1\right)} dx$$

$$= \int \frac{1}{a \left(\left(\frac{x}{\sqrt{a}}\right)^2 + 1\right)} \sqrt{a} d\left(\frac{x}{\sqrt{a}}\right) \qquad \text{Set } u = \frac{x}{\sqrt{a}}$$

$$= \frac{1}{\sqrt{a}} \int \frac{1}{u^2 + 1} du$$

$$= \frac{1}{\sqrt{a}} \arctan(u) + C$$

$$= \frac{1}{\sqrt{a}} \arctan\left(\frac{x}{\sqrt{a}}\right) + C$$

Use $a = (\sqrt{a})^2$