[G6A] Certamen II pregunta 1

Vicente Marin

Ingeniería Civil Eléctrica
Universidad Técnica Federico Santa María
Valparaíso, Chile
vicente.marinq@sansano.usm.cl

José Gutiérrez Polanco
Ingeniería Civil Eléctrica
Universidad Técnica Federico Santa María
Valparaíso, Chile
jose.gutierrezpo@usm.cl

I. Introducción

El SEP presentado se entiende como una carga constante, desplazándose por una línea de 100[km] de parámetros conocidos y dependientes de la posición del tren.

Fig. 1. Esquema del SEP simplificado

II. FORMULACIÓN MATEMÁTICA DEL PROBLEMA

Se utiliza el modelo de línea corta dado que como máximo esta tendrá 100[km] de longitud. Para relacionar las variables se opta por la representación en la matriz ABCD de los parámetros, resultando la siguiente relación:

$$V_s = V_r A + I_r B \tag{1}$$

III. VARIACIÓN DE LA MAGNITUD DE TENSIÓN

Haciendo el análisis de línea corta para el problema, se tiene que:

$$V_S = V_R(x) + z \left(l - x\right) \frac{P_{carga}}{V_R(x)} \tag{2}$$

Despejando la tensión receptora, se adjunta función que describe el comportamiento a lo largo de la línea:

$$V_R(x) = \frac{V_S \pm \sqrt{V_S^2 - 4z(l-x)P_{carga}}}{2}$$
 (3)

Por formalidad matemática se deja el signo + en la ecuación, pero debería ser sólo el signo menos, dado que la tensión debería ser mínima en x=0. Donde la tensión receptora:

$$V_R(0) = 7.537 [kV] \tag{4}$$

IV. ESTABILIDAD TEÓRICA

Para calcular el límite de estabilidad, se recurrió a la fórmula Potencia máxima vista en clases. Se adjunta ecuación que describe el límite máximo en función a la distancia.

$$\hat{P} = \frac{V_S^2}{2|X|(100-x)} \tag{5}$$

En donde el Máximo sería $\hat{P}=7.7757\,|MW|$, y estaría en x=100. Y el Mínimo Sería $\check{P}=6.998\,|MW|$, y estaría en x=0.

V. COMPENSACIÓN SHUNT

A. Método alternativo

Conectando compensación reactiva estática en barras de inicio y destino del tren, logrando igualar la carga SIL a la del tren, que no interviene en dichos parámetros (Q=0).

B. Compensación dinámica

Presenta inconvenientes de control y sincronización de ambos convertidores, pues son variables. Se ajusta impedancia característica en C, igualando Carga SIL a carga del tren.

$$SIL = \frac{V_{nominal}^2}{\sqrt{\frac{L}{C}}} \tag{6}$$

Resultando:

$$C = \frac{SIL^2 \frac{Im[z]}{2\pi 16.6} (100 - x)}{V_{nimonal}^4}$$
 (7)