

bwNET2020+

Innovation im Landeshochschulnetz durch Verzahnung von Betrieb und Forschung

24. Januar 2023

Philipp Wolter

philipp.wolter@kit.edu

Betrieb

- Verlässlicher Betrieb hat absoluten Vorrang
- Weiterentwicklung eher inkrementell oder evolutionär
- Geringes Zeitbudget für neue Ideen
- Neueste Ansätze aus Forschung /Industrie nicht immer bekannt

Forschung

- Fokus auf Innovationen
- Offen für radikale oder disruptive Neuerungen
- Hohes Zeitbudget für neue Ideen
- Probleme des realen
 Netzbetriebs sind oft weit weg

Arbeitsfelder und Schlüsseltechnologien

- Sicherheit, Service-Function-Chaining, Monitoring und Hochleistungsdatentransfer
- SFC, P4, SDN, NFV

Self-Driving Networks

Human-Driven Automation

gestern

Standardbasierte Schnittstellen auf Netz und Daten

Provisionierung und Verwaltung zum Teil automatisiert Event-Driven Automation

heute

Aktionen werden regelund ereignisbasiert auf Basis von Monitoring und Observability ausgeführt Machine-Driven
Automation

bald

Maschinen treffen automatisch mit Hilfe vorprogrammierter Regeln und/oder autonom Entscheidungen. Self-Driving Network

irgendwann

Das Netzwerk konfiguriert sich adaptiv selbst auf Basis aller verfügbaren Daten.

Wenig bis keine menschliche Intervention.

Fragen? Viel Spaß mit unseren 3 Kurzvorträgen!

P4TG: 1 Tb/s Verkehrsgenerierung und Analyse für Ethernet/IP Netze

<u>Steffen Lindner</u>, Marco Häberle, Michael Menth

Motivation

- New protocols & network equipment needs to be tested with realistic traffic rates
- Traffic generators (TGs) used for this purpose
- The top 10 used TGs in the literature are all software-based!
 - iperf2
 - Netperf
 - Moongen
 - _____
- 100+ Gbit/s difficult to generate with software
 - Need hardware acceleration
 - Hardware based TGs very expensive (\$\$\$\$)

 Multi-Port (several 100 Gbit/s) testing for business-grade switches/routers not feasible with software TGs

Idea

- Traffic generation with P4 and Intel Tofino™ ASIC (< 8.000€)</p>
- Intel Tofino™ offers built-in capabilities for traffic generation
- We implement measuring functions and configuration in P4 + GUI
- Constant bit-rate & poisson traffic

Background (I)

- Intel Tofino™ ASIC
 - 3.2 Tbit/s or 6.2 Tbit/s P4 programmable switching ASIC (Gen. 1)
 - Our Edgecore Wedge supports 32x 100 Gbit/s ports
 - 12.8 Tbit/s P4 programmable switching ASIC with 32x 400 Gbit/s ports (Gen. 2)
 - 25.6 Tbit/s P4 programmable switching ASIC with 64x 400 Gbit/s ports (Gen. 3)
- Intel Tofino™ ASIC allows for internal traffic generation
 - Up to 8 different packet (byte) descriptions with periodic timer for packet generation

https://www.edge-core.com/productsInfo.php?id=335

Background (II)

- P4: Programming protocol-independent packet processors
 - High-level programming language to describe data planes
 - Target-specific compiler maps P4 program to hardware

```
control MyPipeline(inout headers hdr, inout metadata meta, inout
standard_metadata_t std_meta) {

   /* Declarations region */
   table ipv4_lpm { ... }
   action ipv4_forward(...) { ... }
   ...

apply {
    /* Control Flow */
    if(hdr.ipv4.isValid()){
        ipv4_lpm.apply();
    }
   }
}
P4 target
```

- P4 defines low level (packet processing) operations
- ⇒ Fully programmable data plane
 - Limited only by expressiveness and features of P4 (and not by vendor)

Background (III)

- P4-programmable
 - Ingress/Egress Parser
 - Ingress/Egress Control
 - Ingress/Egress Deparser

Match+action table used in ingress/egress control

Concept (I)

- Leverage internal traffic generator for packet generation
- Packet header rewrite (Ethernet & IPv4) for traffic randomization
- Up to 10x 100 Gbit/s traffic generation
- Measure several metrics directly in the data plane (P4)
 - L1/L2 TX & RX rates
 - Per stream TX & RX rates
 - TX & RX frame sizes and types (unicast, multicast, broadcast)
 - Packet loss, out of order, round-trip-time (RTT; sampled)
 - TX & RX inter-arrival times (sampled)

Concept (II)

- Measurements
 - 64-bit registers to store total TX & RX bytes per port
 - Hardware timestamps with nanosecond precision for rate calculation
 - Tcpdump timestamp accuracy ~ 100us
 - 64-bit registers to store # of lost and out-of-order packets
- Collected statistics are regularly polled by the control plane
 - Monitoring packets retrieve stored measurements
 - Including hardware timestamps

Configuration

REST-API may be used to automate tests (see next talk)

Traffic Generation (I)

Generated packets contain Ethernet, IPv4, UDP, P4TG header

- 32-bit sequence number for packet loss & out-of-order detection
- 48-bit timestamp for RTT calculation
- 8-bit stream identification

Traffic Generation (II)

"Demo"

P4TG

Dashboard

SETTINGS

Ports

Tables

↓†↓ Traffic Gen

Stream-ID	Frame Size		Rate		Mode	Options
1	256 ~	bytes	80	Gbps	Rate Precision V	
2	1280 ~	bytes	20	Gbps	Rate Precision V	

+ Add stream

TX Port	RX Port	Stream 1	Stream 2
1 (132)	2 (140)	☑ ◊	♥
2 (140)	1 (132)	❷ ♦	☑ ◊
3 (148)	4 (156)	☑ ♦	
4 (156)	3 (148)	☑ ♦	
6 (172)	8 (188)	☑ ♦	☑ ◊
7 (180)	Select RX Port ~	□ ◊	□ ◊
8 (188)	6 (172)	☑ ◊	♥
9 (56)	10 (48)	☑ ◊	♥
10 (48)	9 (56)	☑ ◊	

Dashboard

SETTINGS

Ports

Tables

↓†↓ Traffic Gen

← Logout

P4TG

✓ Save Seset

↓†↓ Traffic Gen

Ports

Tables

^{∤†} Traffic Gen

Σ **1** 799.44 Gbit/s (305 Mpps) **1** 799.44 Gbit/s (305 Mpps)

Summary 132->140 140->132 148->156 156->148 172->188 188->172 56->48 48->56

TX L1	RX L1	TX L2	RX L2
799.44 Gbit/s	799.44 Gbit/s	750.64 Gbit/s	750.64 Gbit/s

TX IAT	σ(TX IAT)	#TX IAT	RX IAT	σ(RX IAT)	#RX IAT
35.05 ns	29.89 ns	2841	32.15 ns	26.89 ns	4793

Lost Frames	Frame Loss Ratio	Out of Order	Average RTT	Minimum RTT	Current RTT	Maximum RTT	Jitter	#Rtts
0	0.00 %	0	1.16 us	1.1 us	1.16 us	1.2 us	13.13 ns	4783

Frame Type	TX Count	RX Count
Multicast	914.03 K	913.84 K
Broadcast	0	0
Unicast	9.27 B	9.27 B
Non-Unicast	914.03 K	913.84 K
Total	9.27 B	9.27 B

Frame Size	TX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.42 M	5.04%
> 1518	0	0%
Total	9.15 B	

Frame Size	RX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.39 M	5.04%
> 1518	0	0%
Total	9.15 B	

Ports

Tables

^{∤†} Traffic Gen

Σ **1** 799.44 Gbit/s (305 Mpps) **1** 799.44 Gbit/s (305 Mpps)

Summary 132->140 140->132 148->156 156->148 172->188 188->172 56->48 48->56

TX L1	RX L1	TX L2	RX L2
799.44 Gbit/s	799.44 Gbit/s	750.64 Gbit/s	750.64 Gbit/s

TX IAT	σ(TX IAT)	#TX IAT	RX IAT	σ(RX IAT)	#RX IAT
35.05 ns	29.89 ns	2841	32.15 ns	26.89 ns	4793

Lost Frames	Frame Loss Ratio	Out of Order	Average RTT	Minimum RTT	Current RTT	Maximum RTT	Jitter	#Rtts
0	0.00 %	0	1.16 us	1.1 us	1.16 us	1.2 us	13.13 ns	4783

Frame Type	TX Count	RX Count
Multicast	914.03 K	913.84 K
Broadcast	0	0
Unicast	9.27 B	9.27 B
Non-Unicast	914.03 K	913.84 K
Total	9.27 B	9.27 B

Frame Size	TX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.42 M	5.04%
> 1518	0	0%
Total	9.15 B	

Frame Size	RX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.39 M	5.04%
> 1518	0	0%
Total	9.15 B	

Ports

Tables

^{∤†} Traffic Gen

Σ **1** 799.44 Gbit/s (305 Mpps) **1** 799.44 Gbit/s (305 Mpps)

Summary 132->140 140->132 148->156 156->148 172->188 188->172 56->48 48->56

TX L1	RX L1	TX L2	RX L2	TX IAT	σ(TX IAT)	#TX IAT	RX IAT	σ(RX IAT)	#RX IAT
799.44 Gbit/s	799.44 Gbit/s	750.64 Gbit/s	750.64 Gbit/s	35.05 ns	29.89 ns	2841	32.15 ns	26.89 ns	4793

Lost Frames	Frame Loss Ratio	Out of Order	Average RTT	Minimum RTT	Current RTT	Maximum RTT	Jitter	#Rtts
0	0.00 %	0	1.16 us	1.1 us	1.16 us	1.2 us	13.13 ns	4783
Frame Type		TX Count		RX Count				

Frame Type	TX Count	RX Count
Multicast	914.03 K	913.84 K
Broadcast	0	0
Unicast	9.27 B	9.27 B
Non-Unicast	914.03 K	913.84 K
Total	9.27 B	9.27 B

Frame Size	TX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.42 M	5.04%
> 1518	0	0%
Total	9.15 B	

Frame Size	RX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.39 M	5.04%
> 1518	0	0%
Total	9.15 B	

Ports

Tables

^{∤†} Traffic Gen

Σ **1** 799.44 Gbit/s (305 Mpps) **1** 799.44 Gbit/s (305 Mpps)

Summary 132->140 140->132 148->156 156->148 172->188 188->172 56->48 48->56

TX L1	RX L1	TX L2	RX L2	TX IAT	σ(TX IAT)	#TX IAT	RX IAT	σ(RX IAT)	#RX IAT
799.44 Gbit/s	799.44 Gbit/s	750.64 Gbit/s	750.64 Gbit/s	35.05 ns	29.89 ns	2841	32.15 ns	26.89 ns	4793

Lost Frames	Frame Loss Ratio	Out of Order	Average RTT	Minimum RTT	Current RTT	Maximum RTT	Jitter	#Rtts
0	0.00 %	0	1.16 us	1.1 us	1.16 us	1.2 us	13.13 ns	4783
			TV 0			DV C		

Frame Type	TX Count	RX Count
Multicast	914.03 K	913.84 K
Broadcast	0	0
Unicast	9.27 B	9.27 B
Non-Unicast	914.03 K	913.84 K
Total	9.27 B	9.27 B

Frame Size	TX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.42 M	5.04%
> 1518	0	0%
Total	9.15 B	

Frame Size	RX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.39 M	5.04%
> 1518	0	0%
Total	9.15 B	

Ports

Tables

^{∤†} Traffic Gen

■ Stop

Σ **1** 799.44 Gbit/s (305 Mpps) **1** 799.44 Gbit/s (305 Mpps)

Summary 132->140 140->132 148->156 156->148 172->188 188->172 56->48 48->56

TX L1	RX L1	TX L2	RX L2	TX IAT	σ(TX IAT)	#TX IAT	RX IAT	σ(RX IAT)	#RX IAT
799.44 Gbit/s	799.44 Gbit/s	750.64 Gbit/s	750.64 Gbit/s	35.05 ns	29.89 ns	2841	32.15 ns	26.89 ns	4793

Lost Frames	Frame Loss Ratio	Out of Order	Average RTT	Minimum RTT	Current RTT	Maximum RTT	Jitter	#Rtts
0	0.00 %	0	1.16 us	1.1 us	1.16 us	1.2 us	13.13 ns	4783

Frame Type	TX Count	RX Count
Multicast	914.03 K	913.84 K
Broadcast	0	0
Unicast	9.27 B	9.27 B
Non-Unicast	914.03 K	913.84 K
Total	9.27 B	9.27 B

Frame Size	TX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.42 M	5.04%
> 1518	0	0%
Total	9.15 B	

Frame Size	RX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	8.69 B	94.96%
512 - 1023	0	0%
1024 - 1518	461.39 M	5.04%
> 1518	0	0%
Total	9.15 B	

Ports

Tables

^{∤†} Traffic Gen

■ Stop

Σ **1** 799.44 Gbit/s (305 Mpps) **1** 799.44 Gbit/s (305 Mpps)

Summary 132->140 140->132 148->156 156->148 172->188 188->172 56->48 48->56

TX L1	RX L1	TX L2	RX L2	TXIAT	σ(TX IAT)	#TX IAT	RX IAT	σ(RX IAT)	#RX IAT
799.44 Gbit/s	799.44 Gbit/s	750.64 Gbit/s	750.64 Gbit/s	35.05 ns	29.89 ns	2841	32.15 ns	26.89 ns	4793

Lost Frames	Frame Loss Ratio	Out of Order	Average RTT	Minimum RTT	Current RTT	Maximum RTT	Jitter	#Rtts
0	0.00 %	0	1.16 us	1.1 us	1.16 us	1.2 us	13.13 ns	4783

Frame Type	TX Count	RX Count
Multicast	914.03 K	913.84 K
Broadcast	0	0
Unicast	9.27 B	9.27 B
Non-Unicast	914.03 K	913.84 K
Total	9.27 B	9.27 B

Frame Size	TX Count	%	Frame Size	RX Count	%
0 - 63	0	0%	0 - 63	0	0%
64	0	0%	64	0	0%
65 - 127	0	0%	65 - 127	0	0%
128 - 255	0	0%	128 - 255	0	0%
256 - 511	8.69 B	94.96%	256 - 511	8.69 B	94.96%
512 - 1023	0	0%	512 - 1023	0	0%
1024 - 1518	461.42 M	5.04%	1024 - 1518	461.39 M	5.04%
> 1518	0	0%	> 1518	0	0%
Total	9.15 B		Total	9.15 B	

Ports

Tables

↓†↓ Traffic Gen

Σ **1** 799.44 Gbit/s (305 Mpps) **1** 799.44 Gbit/s (305 Mpps) Time: 0:0:22

132->140 140->132 148->156 156->148 172->188 188->172 56->48 48->56

Overview Stream 1 Stream 2

TX L1	RX L1	TX L2	RX L2
99.93 Gbit/s	99.93 Gbit/s	93.83 Gbit/s	93.83 Gbit/s

TX IAT	σ(TX IAT)	#TX IAT	RX IAT	σ(RX IAT)	#RX IAT
34.6 ns	29.34 ns	204	31.49 ns	26.01 ns	375

Lost Frames	Frame Loss Ratio	Out of Order	Average RTT	Minimum RTT	Current RTT	Maximum RTT	Jitter	#Rtts
0	0.00 %	0	1.18 us	1.12 us	1.18 us	1.2 us	14 ns	375

Frame Type	TX Count	RX Count
Multicast	0	0
Broadcast	0	0
Unicast	852.47 M	851.92 M
Non-Unicast	0	0
Total	852.47 M	851.92 M

Frame Size	TX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	802.04 M	94.96%
512 - 1023	0	0%
1024 - 1518	42.59 M	5.04%
> 1518	0	0%
Total	844.63 M	

Frame Size	RX Count	%
0 - 63	0	0%
64	0	0%
65 - 127	0	0%
128 - 255	0	0%
256 - 511	801.29 M	94.96%
512 - 1023	0	0%
1024 - 1518	42.55 M	5.04%
> 1518	0	0%
Total	843.83 M	

Conclusion

- P4TG offers traffic generation at high data rates (up to 100 Gbit/s per port)
 - Up to 400 Gbit/s with 2. / 3. Gen. Tofino
- Low-cost hardware TG
- Customizable for individual needs
 - Both data and control plane
- https://github.com/uni-tue-kn/P4TG

Evaluation von 100G Hardware & redundantes L4 Packet Filtering

Benjamin Steinert (TÜ/ZDV), Gabriel Paradzik (TÜ/ZDV), Philipp Wolter (KIT/SCC), Oleksandr Miroshkin (UULM/KIZ)

Gerätemarkt

- Hersteller fangen an programmierbare Chips in ihre Geräte zu bauen
 - AMD/Pensando P4 DSM ASIC in Aruba CX 10000
 - Juniper stellt programmierbares "Trio" Chipset auf SIGCOMM'22 vor
 - Intel Tofino P4 ASIC (z.B. Edgecore Wedge 100BF-32X)
 - Nvidia Mellanox Spectrum ASIC (z.B. in SN4410)
 - Cisco Silicon One P4 ASIC (z.B. Catalyst 9500)
- Mikrotik hat erstmals 100G Gerät rausgebracht (CCR2216)

→ Taugen die Geräte was?

Was können wir in die Finger bekommen?

- Aruba CX 10k mit AMD/Pensando P4 DSM ASIC
 - Verspricht 100G L4 stateful Firewalling
- Edgecore Wedge 100BF-32X mit Intel Tofino ASIC
 - Komplett programmierbar f
 ür 100G Packet Processing inkl. L4 Filtering
 - Géant RARE mit freeRtr Software verfügbar
- Mikrotik CCR2216
 - Hat bereits in dem einen oder anderen RZ Einzug gefunden
- → Start mit Aruba CX 10k Teststellung des Herstellers

Aruba CX 10000

Portdichte: 48x 1/10/25G + 6x 40/100G Ports

- Zwei verschiedene ASICs eingebaut
 - AMD/Pensando P4 DSM ASIC für 100G L4 stateful FW
 - Broadcom Trident 3 for Switching & Routing
- Zwei Softwares zur Steuerung der Chips
 - AOS-CX Software zur Steuerung von Broadcom Chip
 - Pensando Stateful Manager (PSM) Software zur Steuerung von Pensando Chip
 - Getrennte REST APIs für Automatisierungen

Evaluation von 100G Hardware

- Verschiedene Bereiche angeschaut:
 - Hardware & Software
 - Monitoring
 - Management & Automatisierung
 - Sicherheit
 - ____
- Zusammenarbeit verschiedener Standorte inkl. Einbeziehung "Externer"
 - Tübingen, Ulm, Karlsruhe, Stuttgart
 - Hohenheim

Testbett-Aufbau

Ausschnitt aus Erfahrungen

- Leistungsstarker Pensando P4 ASIC mit großem Potenzial
 - 100G Stateful Firewalling, weitere stateful Services sollen kommen
 - Nette Features (PSM Diagnostics Feature, Feingranulares RBAC mit LDAP- und RADIUS- Integration für PSM, ...)
 - PSM REST API intuitiv, gut benutzbar, und ordentlich dokumentiert
- Manches fühlt sich nicht 100% rund an
 - 2 Geräte in einem Chassis, dadurch erhöhte Komplexität mit gewisser Lernkurve
 - Flows können im Moment nicht unterbrochen werden (soll kommen)
 - Kein IPv6 (soll kommen)
 - AOS-CX REST API funktioniert anders als PSM REST API

Redundantes L4 Packet Filtering

Disclaimer

Gezeigte Ergebnisse werden im Nachgang zur Verfügung gestellt.

Redundantes L4 Packet Filtering bis 100G

- Problem: "Richtige" FWs teuer & aufwändig im Betrieb
- Lösung: Möglicherweise Einsatz von aktueller Hardware für "Basisschutz"
- Interessante Kernmetriken für FW / Packet Filtering (RFC 3511):
 - Max. Durchsatz & RTT abhängig von Paketgröße & Regelanzahl
 - Max. Durchsatz & RTT bei IMIX abhängig von Regelanzahl
 - Max. Connections per Second (CPS)
 - Max. Anzahl gleichzeitig aktiver Verbindungen
 - Control Plane Performanz Installationszeit für X Regeln

→ Reproduzierbare Messungen mit P4TG!

Control Plane Performanz

- Redundanz
 - 2x Aruba CX 10k
 - 3-Node PSM Cluster
- Automatisierte Installation neuer Regeln via PSM REST API

→ Wie lange dauert es bis Regeln auf beiden Geräten aktiv sind?

Control Plane Performanz

Durchsatz bei verschiedenen Paketgrößen

Methodik

- Je Messung eine feste Quell- und Ziel-IP
 - IP-Adressen ändern sich zwischen zwei Messungen
- Variiere Paketgrößen und die Anzahl der Firewall Regeln
 - Anzahl Regeln = 0, 10, 100, 1000, 10000, 24568
 - Paketgrößen = 64, 128, 256, 512, 1024, 1280, 1518
- Regeln werden zu Beginn der Messung geladen
- Der jeweilige P4TG-Verkehr besteht aus Paketen fester Größe
- Der angezeigte Durchsatz ist die höchste Bandbreite, welche nicht zu Paketverlusten führt

Durchsatz bei verschiedenen Paketgrößen

RTT bei verschiedenen Paketgrößen

Methodik

- Je Messung eine feste Quell- und Ziel-IP
 - IP-Adressen ändern sich zwischen zwei Messungen
- Variiere Paketgrößen und die Anzahl der Firewall Regeln
 - Anzahl Regeln = 0, 10, 100, 1000, 10000, 24568
 - Paketgrößen = 64, 128, 256, 512, 1024, 1280, 1518
- Die RTT wurde während der höchsten Bandbreite, welche keine Paketverluste aufweist, gemessen

Resultat

RTT beträgt ca. 5 μs für alle Konfigurationen (Jitter 10 ns)

RTT bei verschiedenen Paketgrößen - Überlast

Methodik

- Je Messung eine feste Quell- und Ziel-IP
 - IP-Adressen ändern sich zwischen zwei Messungen
- Variiere Paketgrößen und die Anzahl der Firewall Regeln
 - Anzahl Regeln = 0, 10, 100, 1000, 10000, 24568
 - Paketgrößen = 64, 128, 256, 512, 1024, 1280, 1518
- Die RTT wurde während der niedrigsten Bandbreite, welche Paketverluste aufweist, gemessen

RTT bei verschiedenen Paketgrößen - Überlast

Durchsatz/RTT bei IMIX

Methodik:

- Je Messung randomisierte Quell- und Ziel-IPs
 - P4TG generiert für jedes Paket zufällige IP-Adressen
- Variiere die Anzahl der Firewall Regeln:
 - Anzahl der Regeln = 0, 10, 100, 1000, 10000, 24568
- P4TG sendet IMIX Verkehr mit einer L1-Rate von 100G
- Die Bandbreite des IMIX Verkehrs besteht aus:
 - 12% 64 B Pakete
 - 54% 512 B Pakete
 - 34% 1518 B Pakete

Resultat

- Forwarding in Line Rate unabhängig von der Regelanzahl
- RTT ca. 2.5 μs (Jitter 15 ns)

CPS, Sessions, Regeln

- Herstellerangaben:
 - Max. 2M gleichzeitig aktive Verbindungen
 - Max. 800K neue Verbindungen pro Sekunde
 - Max. Regelanzahl 1M total, 24K pro Policy

Ausblick

- Messungen mit Mikrotik CCR2216
 - Inkl. Implementierung von Software zum automatisierten Verteilen von Regeln auf mehrere Geräte
- Messungen mit Intel Tofino
- → Report inkl. Vergleich der Geräte folgt

Bei Interesse an zukünftigen Evaluationen einfach bei uns melden!

Kontaktdaten

- Philipp Wolter <u>philipp.wolter@kit.edu</u>
- Steffen Lindner <u>steffen.lindner@uni-tuebingen.de</u>
- Benjamin Steinert <u>benjamin.steinert@uni-tuebingen.de</u>
- Gabriel Paradzik gabriel.paradzik@uni-tuebingen.de
- Oleksandr Miroshkin oleksandr.miroshkin@uni-ulm.de
- bwNET Projektmanagement <u>bwnet100-pmo@lists.uni-ulm.de</u>

BelWü Tech Day

24. Januar 2023

Daniel Nägele

naegele@belwue.de

Netflow bei BelWü

BelWü nutzt Netflow an Border Interfaces um verschiedene betriebliche Fragen zu beantworten:

- Gibt es neue Peerings die sich positiv auf die Auslastung an einem IX oder Transit Interface auswirken würden?
- Was ist eine geeignete BGP Flowspec Regel um einen laufenden DDoS Angriff zu mitigieren?
- Bei welchem Teilnehmer liegen die Adressen die Traffic zu Botnetzen haben?

Aktuelles Setup: flowpipeline

- Input von Netflow v9, IPFIX, NFv5, sFlow, PCAP, eBPF und Kafka
- Zusammenführung von verschiedenen Routern
- Anreicherung mit beliebigen Daten, insbesondere Kundennummern
- Kafka als Drehkreuz für alle erfassten Flows:
 - Support für Kunden-spezifische Streams
 - Support für Accounts, ACLs, und Kommunikation via TLS
 - Zugriff auf Informationen über eigene Flows die das BelWü verlassen

Details zur Software: Mein Talk bei der DENOG14 (30min)

Flow Processing Gesamtübersicht

Flow Processing als BelWü Kunde

Beispielsweise: Dashboard auf Prometheus Basis

Beispiel: Finden des DDoS Empfängers

Weitere Anwendungen

- Einstieg in das Thema Flow Monitoring ohne Hürden
 - Läuft auf dem eigenen Laptop mit Linux/MacOS/Docker
 - Einfache Konfiguration für schnelle Ergebnisse, "tcpdump-style"
 - Support für komplizierte Setups
 - Plugins erlauben zusätzliche Erweiterung in Go
- Ergänzung oder Aufbau eigener Flow Kollektoren
 - Software und Konfiguration wie bei BelWü möglich
 - Flowpipeline als einheitliche Flow Schnittstelle für das NOC

Danke für eure Aufmerksamkeit!

Weitere Fragen?

Daniel Nägele - naegele@belwue.de - @debugloop (on IRC & social)

Fragen? Vielen Dank für Ihre Aufmerksamkeit!

