abalone-categorical

In [1]:

import numpy as np
import pandas as pd

In [2]:

dataset = pd.read_csv(r"C:\Users\kotha\Downloads\Abalone_data.csv")

In [3]:

dataset

Out[3]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_we
0	М	70	53	18	45.1	19.9	9.7	.
1	F	106	84	27	135.4	51.3	28.3	4
2	М	88	73	25	103.2	43.1	22.8	;
3	- 1	66	51	16	41.0	17.9	7.9	
4	- 1	85	60	19	70.3	28.2	15.5	1
4171	F	113	90	33	177.4	74.0	47.8	4
4172	М	118	88	27	193.2	87.8	42.9	
4173	М	120	95	41	235.2	105.1	57.5	(
4174	F	125	97	30	218.9	106.2	52.2	
4175	М	142	111	39	389.7	189.1	75.3	(

4176 rows × 9 columns

localhost:8888/notebooks/K.Nithya (17UK1A0544) Asiignment-13 Abalone.ipynb

In [4]:

```
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4176 entries, 0 to 4175
Data columns (total 9 columns):
                     Non-Null Count
 #
     Column
                                     Dtype
                     -----
0
     Sex
                     4176 non-null
                                      object
 1
     Length
                     4176 non-null
                                      int64
 2
                                      int64
     Diameter
                     4176 non-null
 3
     Height
                     4176 non-null
                                      int64
 4
     Whole_weight
                     4176 non-null
                                      float64
 5
     Shucked_weight 4176 non-null
                                      float64
 6
     Viscera_weight 4176 non-null
                                      float64
 7
                     4176 non-null
                                      float64
     Shell_weight
 8
     Rings
                     4176 non-null
                                      int64
dtypes: float64(4), int64(4), object(1)
memory usage: 293.8+ KB
In [5]:
dataset["Sex"].unique()
Out[5]:
array(['M', 'F', 'I'], dtype=object)
In [6]:
dataset.isnull().sum()
Out[6]:
                  0
Sex
Length
                  0
Diameter
                  0
                  0
Height
Whole weight
                  0
Shucked_weight
                  0
Viscera_weight
                  0
Shell_weight
                  0
Rings
                  0
dtype: int64
In [7]:
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
dataset["Sex"] = le.fit_transform(dataset["Sex"])
```

In [8]:

```
dataset.head(5)
```

Out[8]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight
0	2	70	53	18	45.1	19.9	9.7	14.0
1	0	106	84	27	135.4	51.3	28.3	42.0
2	2	88	73	25	103.2	43.1	22.8	31.0
3	1	66	51	16	41.0	17.9	7.9	11.0
4	1	85	60	19	70.3	28.2	15.5	24.0

←

In [9]:

```
x = dataset.iloc[:,1:9].values
y = dataset.iloc[:,0:1].values
```

In [10]:

```
x
```

Out[10]:

```
array([[ 70. , 53. , 18. , ..., 9.7, 14. , 7. ], [106. , 84. , 27. , ..., 28.3, 42. , 9. ], [ 88. , 73. , 25. , ..., 22.8, 31. , 10. ], ..., [120. , 95. , 41. , ..., 57.5, 61.6, 9. ], [125. , 97. , 30. , ..., 52.2, 59.2, 10. ], [142. , 111. , 39. , ..., 75.3, 99. , 12. ]])
```

In [11]:

```
у
```

Out[11]:

```
array([[2],
[0],
[2],
...,
[2],
[0],
[2]])
```

```
In [12]:
```

```
from sklearn.preprocessing import OneHotEncoder
one = OneHotEncoder()
z = one.fit_transform(y[:,0:1]).toarray()
y = np.delete(y,0,axis=1)
y = np.concatenate((z,y),axis=1)
In [13]:
y.shape
Out[13]:
(4176, 3)
In [14]:
x.shape
Out[14]:
(4176, 8)
In [15]:
у
Out[15]:
array([[0., 0., 1.],
       [1., 0., 0.],
       [0., 0., 1.],
       [0., 0., 1.],
       [1., 0., 0.],
       [0., 0., 1.]])
In [16]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2, random_state = 0)
In [17]:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
```

In [18]:

```
from keras.models import Sequential
from keras.layers import Dense
Using TensorFlow backend.
C:\Users\kotha\anaconda3\lib\site-packages\tensorflow\python\framework\dtype
s.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type i
s deprecated; in a future version of numpy, it will be understood as (type,
(1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorflow\python\framework\dtype
s.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type i
s deprecated; in a future version of numpy, it will be understood as (type,
(1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorflow\python\framework\dtype
s.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type i
s deprecated; in a future version of numpy, it will be understood as (type,
(1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorflow\python\framework\dtype
s.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type i
s deprecated; in a future version of numpy, it will be understood as (type,
(1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorflow\python\framework\dtype
s.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type i
s deprecated; in a future version of numpy, it will be understood as (type,
(1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorflow\python\framework\dtype
s.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type i
s deprecated; in a future version of numpy, it will be understood as (type,
(1,)) / '(1,)type'.
  np_resource = np.dtype([("resource", np.ubyte, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorboard\compat\tensorflow_stu
b\dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of
type is deprecated; in a future version of numpy, it will be understood as
(type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorboard\compat\tensorflow_stu
b\dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of
type is deprecated; in a future version of numpy, it will be understood as
(type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorboard\compat\tensorflow_stu
b\dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of
type is deprecated; in a future version of numpy, it will be understood as
(type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorboard\compat\tensorflow_stu
b\dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of
type is deprecated; in a future version of numpy, it will be understood as
(type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
C:\Users\kotha\anaconda3\lib\site-packages\tensorboard\compat\tensorflow_stu
b\dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of
type is deprecated; in a future version of numpy, it will be understood as
(type, (1,)) / '(1,)type'.
```

_np_qint32 = np.dtype([("qint32", np.int32, 1)])

C:\Users\kotha\anaconda3\lib\site-packages\tensorboard\compat\tensorflow_stu
b\dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of
type is deprecated; in a future version of numpy, it will be understood as
(type, (1,)) / '(1,)type'.
 np_resource = np.dtype([("resource", np.ubyte, 1)])

In [19]:

```
model = Sequential()
```

WARNING:tensorflow:From C:\Users\kotha\anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

In [20]:

```
x.shape
```

Out[20]:

(4176, 8)

In [21]:

```
model.add(Dense(units = 8 ,activation = "relu", init = "random_uniform"))
```

C:\Users\kotha\anaconda3\lib\site-packages\ipykernel_launcher.py:1: UserWarn
ing: Update your `Dense` call to the Keras 2 API: `Dense(units=8, activation
="relu", kernel_initializer="random_uniform")`
 """Entry point for launching an IPython kernel.

In [22]:

```
model.add(Dense(units = 16 ,activation = "relu", init = "random_uniform"))
```

C:\Users\kotha\anaconda3\lib\site-packages\ipykernel_launcher.py:1: UserWarn
ing: Update your `Dense` call to the Keras 2 API: `Dense(units=16, activatio
n="relu", kernel_initializer="random_uniform")`
 """Entry point for launching an IPython kernel.

In [23]:

```
model.add(Dense(units = 32 ,activation = "relu", init = "random_uniform"))
```

C:\Users\kotha\anaconda3\lib\site-packages\ipykernel_launcher.py:1: UserWarn
ing: Update your `Dense` call to the Keras 2 API: `Dense(units=32, activatio
n="relu", kernel_initializer="random_uniform")`
 """Entry point for launching an IPython kernel.

In [24]:

```
model.add(Dense(units = 3 ,activation = "softmax", init = "random_uniform"))
```

C:\Users\kotha\anaconda3\lib\site-packages\ipykernel_launcher.py:1: UserWarn
ing: Update your `Dense` call to the Keras 2 API: `Dense(units=3, activation
="softmax", kernel_initializer="random_uniform")`
 """Entry point for launching an IPython kernel.

In [25]:

```
model.compile(optimizer = "adam",loss = "categorical_crossentropy",metrics = ["accuracy"])
```

WARNING:tensorflow:From C:\Users\kotha\anaconda3\lib\site-packages\keras\opt imizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.com pat.v1.train.Optimizer instead.

In [26]:

```
model.fit(x_train,y_train, epochs = 10000,batch_size = 32)
```

WARNING:tensorflow:From C:\Users\kotha\anaconda3\lib\site-packages\keras\b ackend\tensorflow_backend.py:517: The name tf.placeholder is deprecated. P lease use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From C:\Users\kotha\anaconda3\lib\site-packages\keras\b ackend\tensorflow_backend.py:4138: The name tf.random_uniform is deprecate d. Please use tf.random.uniform instead.

WARNING:tensorflow:From C:\Users\kotha\anaconda3\lib\site-packages\keras\b ackend\tensorflow_backend.py:3295: The name tf.log is deprecated. Please u se tf.math.log instead.

WARNING:tensorflow:From C:\Users\kotha\anaconda3\lib\site-packages\tensorflow\python\ops\math_grad.py:1250: add_dispatch_support.<locals>.wrapper (f rom tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From C:\Users\kotha\anaconda3\lib\site-packages\keras\b

In [27]:

```
y_pred = model.predict(x_test)
```

In [28]:

y_pred

Out[28]:

```
In [29]:
y_test
Out[29]:
array([[0., 0., 1.],
       [0., 1., 0.],
       [0., 1., 0.],
       [0., 1., 0.],
       [1., 0., 0.],
       [1., 0., 0.]])
In [30]:
yp = model.predict(sc.transform(np.array([[140,116,41,426,148.3,98,116,20]])))
In [31]:
ур
Out[31]:
array([[1.1121402e-02, 3.8313380e-04, 9.8849547e-01]], dtype=float32)
In [32]:
ypc = model.predict_classes(sc.transform(np.array([[140,116,41,426,148.3,98,116,20]])))
In [33]:
урс
Out[33]:
array([2], dtype=int64)
In [34]:
p = ypc[0]
In [35]:
р
Out[35]:
2
In [36]:
index =['F', 'I', 'M']
In [37]:
print(index[p])
Μ
```

In []:		