

Análisis de Señales

Representación de Señales

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Objetivos

- Repasar conceptos de espacios vectoriales
- Definir espacios vectoriales de señales
- Representar señales utilizando bases ortogonales.

Un espacio vectorial, es un conjunto de elementos sobre el que pueden realizarse las operaciones de adición entre elementos del espacio y multiplicación por elemento de un campo escalar.

- Al definir un espacio vectorial, no se especifica la naturaleza de los elementos ni se dice como se realizarán las operaciones entre ellos
- Pero si se exige que las operaciones posean ciertas propiedades tomadas como los axiomas de un espacio vectorial.

Sea **V** un conjunto no vacío, donde los elementos x, y y z pertenecen al conjunto $(x,y,z\in\mathbf{V})$, este se llamará espacio lineal o vectorial si al asociarse con un campo escalar **F** con elementos α y β pertenecientes al campo $(\alpha,\beta\in\mathbf{F})$, satisface los siguientes diez (10) axiomas.

Axiomas de clausura

i) Clausura respecto de la adición.

$$x+y=z$$

 ii) Clausura respecto de la multiplicación por números reales.

$$\alpha x = y$$

Axiomas para la adición

iii) Ley conmutativa.

$$x+y=y+x$$

iv) Ley asociativa.

v) Existencia del elemento nulo.

$$x+0=x$$

vi) Existencia del elemento opuesto.

$$x+(-x)=0$$

Axiomas para la multiplicación por números vii)Ley asociativa.

viii) Ley distributiva para la adición en V.

ix) Ley distributiva para la adición de números.

Para todo x de V y todo par de números complejos α y β , se tiene:

x) Existencia de elemento idéntico.

$$1x = x$$

Ejemplos de espacios vectoriales

- $V = \mathbf{R}$. Definiendo $x + y y \alpha x$ la adición y multiplicación de los números reales.
- $V = \mathbf{C}$. Definiendo $x + y y \alpha x$ la adición y multiplicación de los números complejos.
- V = El conjunto de todas las funciones continuas definidas en un intervalo dado. (espacio funcional)
- V = El conjunto de todos los polinomios. (espacio funcional)
- V = El conjunto de todos los polinomios de grado $\leq n$.
- V = El conjunto de los polinomios de grado n no lo es ¿Qué axiomas no cumple?

Conjuntos dependientes e independientes en un espacio vectorial

Un conjunto **S** de elementos de un espacio vectorial **V** se llama dependiente si existe un conjunto finito de elementos que pertenecen a **S**, $(x_1, x_2, ..., x_k)$ y un correspondiente conjunto de escalares $(c_1, c_2, ..., c_k)$ no todos cero, tales que:

$$\sum_{i=1}^{k} c_i x_i = 0$$

Si es no dependiente se llamará independiente

Bases en el espacio de las señales

- Un conjunto finito S de elementos de un espacio lineal V se llama base finita de V si S es independiente y genera V.
- El espacio V es de dimensión finita si tiene una base finita.
- La dimensión de un espacio vectorial se define como el mayor número posible de elementos linealmente independientes que pueden ser tomados para generar el espacio vectorial.

Espacio vectorial. Producto interno

Un espacio vectorial real o complejo **V** tiene producto interno si a cada par de elementos (*x*, *y*) de **V** corresponde un número real (o complejo) que satisface los siguientes axiomas:

Axiomas producto interno

Cualesquiera que sean (x, y, z) de V y para todos los escalares reales o complejos.

Conmutatividad o simetría.

$$(x,y)=(y,x)$$

Distributividad o linealidad.

Asociatividad u homogeneidad.

$$(x,y)=(c,xy)$$

Positividad

(xx) O six

Ejemplo de producto interiores

Si $x=(x_1,x_2)$ y $y=(y_1,y_2)$ son dos vectores, se define el producto interno como:

Con f y g funciones reales continuas en el intervalo (a,b).

Ortogonalidad en un espacio

En un espacio V, dos elementos se llaman ortogonales si su producto interior es cero:

$$(x,y)=0$$

De esta forma si ses un conjunto de elementos que conforma una base y que cumplen:

Entonces se dice que el conjunto S es una base ortogonal.

Ortonormalidad

Si además de cumplir con ortogonalidad, los elementos de la base cumplen:

Entonces se dice que el conjunto S es una base ortonormal, ya que el producto interior entre un mismo elemento es igual a uno (1), es decir, todos los elementos poseen norma igual a uno (1).

con la norma definida como $||x|| = \sqrt{(x, x)}$.

Representaciones ortogonales de señales

- Es conveniente representar señales como una suma ponderada de funciones ortogonales
- Es posible visualizar las señales como vectores en un sistema de coordenadas ortogonal en el que las funciones ortogonales representan los vectores unitarios

Conjunto Ortogonal

Un conjunto de señales φ_i, i=(...-3,-2,-1,0,1,2,3,...). Se denomina ortogonal en un intervalo (t₁, t₂), si:

$$\int_{t_{1}}^{t_{2}} \psi(t) \psi(t) dt = \begin{cases} E_{k}, l = k \\ 0, l \neq k \end{cases}$$

$$= E_{k}(l - k)$$

• Donde E_k es la energía de la señal y δ es el delta de Kroenecker

Conjunto Ortonormal

• Si E_k es igual a la unidad para todo k, se dice que el conjunto es orto**normal** en un intervalo (t_1, t_2) .

Ejemplo: ver que $\phi_i(t)$ =sen (mt) con m=1,2,3 forma un conjunto ortogonal en (- π , π), normalizarlo.

Método de ortogonalización de Gram-Schmidt

$$u_{1} = \phi_{1}$$

$$e_{1} = \frac{u_{1}}{\|u_{1}\|}$$

$$u_{2} = \phi_{2} - (\phi_{2}, u_{1})u_{1}$$

$$e_{2} = \frac{u_{2}}{\|u_{2}\|}$$

$$u_{3} = \phi_{3} - (\phi_{3}, u_{1})u_{1} - (\phi_{3}, u_{2})u_{2}$$

$$e_{3} = \frac{u_{3}}{\|u_{3}\|}$$

$$u_{i} = \phi_{i} - \sum_{k=1}^{i-1} (\phi_{i}, u_{k})u_{k}$$

$$e_{i} = \frac{u_{i}}{\|u_{i}\|}$$

$$\mathbf{u}_{1} = \mathbf{v}_{1}, \qquad \mathbf{e}_{1} = \frac{\mathbf{u}_{1}}{||\mathbf{u}_{1}||}$$

$$\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{u}_{1}} \mathbf{v}_{2}, \qquad \mathbf{e}_{2} = \frac{\mathbf{u}_{2}}{||\mathbf{u}_{2}||}$$

$$\mathbf{u}_{3} = \mathbf{v}_{3} - \operatorname{proj}_{\mathbf{u}_{1}} \mathbf{v}_{3} - \operatorname{proj}_{\mathbf{u}_{2}} \mathbf{v}_{3}, \qquad \mathbf{e}_{3} = \frac{\mathbf{u}_{3}}{||\mathbf{u}_{3}||}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{u}_{k} = \mathbf{v}_{k} - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}} \mathbf{v}_{k}, \qquad \mathbf{e}_{k} = \frac{\mathbf{u}_{k}}{||\mathbf{u}_{k}||}$$

Tomado de Wikipedia:

http://es.wikipedia.org/wiki/Proceso_de_ortogonalizaci%C3%B3n_de_ Gram-Schmidt

Para mas información ver:

http://www.kmels.net/wp-content/files/uvg/mm2002/gramschmidt/Gram-Schmidt.pdf

Representaciones ortogonales de señales

• Estos conjuntos ortogonales y Ortonormales, producen desarrollos en series de señales simples.

$$x(t) = \sum_{i=-\infty}^{\infty} c_i d(t)$$

Donde

Desarrollo en serie de Fourier generalizado de x(t)

 C_i son los coeficientes de Fourier con respecto al conjunto ortonormal $\phi_i(t)$

Referencias

- Señales y sistemas continuos y discretos, Soliman. S y Srinath. M. 2ª edición cap 2
- Señales y sistemas ,Oppenheim, alan cap 1
- Calculus calculo infinitesimal, segunda edición Michael Spivak.
- Apuntes de clase Prof. Sé Ramón Iglesias UPC
- http://es.wikipedia.org/wiki/Proceso_de_ortogonaliza ci%C3%B3n_de_Gram-Schmidt