Создания, которых вы зовете мышами, вовсе не таковы, какими кажутся вам. Вы замечаете лишь, так сказать, отпечаток в нашем измерении огромных сверхразумных панпространственных существ.

Дуглас Адамс, Автостопом по галактике

Проект по майнору "Биоинформатика"

Поиск и изучение участков генома, где H3K27me3 присутствует в местах образования ZDNA

Выполнили студенты:

Плечова Е.П. (human, SK-N-SH) Романченко П.М. (human, GM12878) Гудиев М.А. (human, H1)

Грачёв Д.В. (human, H7)

Булатова Е.В. (human, MCF-7) Анопренко М.В. (human, H1) Антонов Д.А. (mouse, C2C12) Сибагатова С.И. (mouse, MEL)

Введение

Н3К27me3 - гистоновая метка, отвечающая 3-метилированию 27-го лизина 3-го гистона. Регионь богатые метками Н3К27me3 могут выполнять функцию сайленсеров при хроматиновых взаимодействиях.

$$H_3$$
 H_3
 H_4
 H_2
 H_2
 H_3
 H_4
 H_5
 H_5
 H_5
 H_5
 H_7
 H_7
 H_7
 H_8
 H_8

Обзор исходных файлов

Фамилия	Организм	Тип клетки	Эксперимент вторичной структуры	Кол-во пиков метки	Кол-во пиков ZDNA	Кол-во пиков пересечения
Плечова	human	SK-N-SH	DeepZ	96017	19394	1515
Романченко	human	GM12878	DeepZ	41772	19394	837
Анопренко	human	H1	DeepZ	39125	19394	2404
Грачев	human	H7	DeepZ	83301	19394	2788
Гудиев	human	H1	ZHunt	53995	412600	13334
Булатова	human	MCF-7	ZHunt	79788	412600	9801
Сибагатова	mouse	MEL	mouse_1	72954	3258	42/19 (mm10/hg19)
Антонов	mouse	C2C12	mouse_2	82080	1651	12/6 (mm10/hg19)

Гистограммы длин пиков пересечений H3K27me3 и ZDNA

Pacположение intersect-пиков относительно аннотированных генов

DeepZ, SK-N-SH

Promoter (<=1kb) (59.08%)</p>

DeepZ, GM12878

Promoter (<=1kb) (62.84%)</p>

Promoter (1-2kb) (14.34%)

DeepZ, H1

Promoter (<=1kb) (62.27%)</p>

Promoter (1-2kb) (12.06%)

DeepZ, H7

Promoter (<=1kb) (63.45%)</p>

Promoter (1-2kb) (10.19%)

Promoter (2-3kb) (2.04%)

Техническая сторона того, что было сделано с исходными intersect-файлами

Объединили все файлы в один большой файл, после чего сгенерировали все возможные пересечения. Все самые интересные мы сохранили на гитхаб (в том числе всех, кроме мышей)

Пример конвертации мышей:

- 1. wget https://hgdownload.cse.ucsc.edu/goldenpath/mm10/liftOver/mm10ToHg19.over.chain.gz
- 2. liftOver H3K27me3_MEL.intersect_with_mouseZ-DNA1.bed mm10ToHg19.over.chain.gz H3K27me3_MEL_mm10tohg19.intersect_with_mouseZ-DNA1.bed _unmapped.txt

Как пересекались интерсект файлы:

- 1. По всем возможным подмножествам -- нашли, что ZHunt и DeepZ лучше рассматривать отдельно
- 2. Все без мышей -- вручную с помощью bedtools intersect

Приводим статистику того, сколько пиков получилось после тотально пересечения

После пересечения всего, кроме мышей -- 10 пиков

Круговые диаграммы расположения относительно аннотированных генов

Визуализация в геномном браузере

Визуализация в геномном браузере

Визуализация в геномном браузере

Количество пиков, которые удалось ассоциировать с генами

Эксперимент вторичной структуры	Исходное кол-во пиков	Кол-во проассоциированных генов	Кол-во уникальных генов			
DeepZ	264	98	74			
ZHunt	2781	271	158			
Мыши	0	0	0			

Наиболее значимые GO-категории для нашего списка генов

	Homo sapiens (REF)	Client Text Box Input (▼ Hierarchy NEW! ③)							
GO biological process complete	#	#	expected	Fold Enrichment	+/-	raw P value	FDR		
kidney development	282	8	.93	8.59	+	4.87E-06	7.70E-02		
<u> </u>	<u>291</u>	8	.96	8.33	+	6.09E-06	4.82E-02		

(на DeepZ)

	Homo sapiens (REF)	Client Text Box Input (Hierarchy) NEW! 19)					?)
GO biological process complete	#	#	expected	Fold Enrichment	+/-	raw P value	▲ FDR
anatomical structure development	<u>5330</u>	88	38.04	2.31	+	7.67E-18	6.06E-14
multicellular organism development	<u>4941</u>	<u>84</u>	35.27	2.38	+	1.40E-17	7.38E-14
system development	<u>4330</u>	<u>79</u>	30.91	2.56	+	4.73E-18	7.48E-14
developmental process	<u>5797</u>	91	41.38	2.20	+	3.67E-17	1.45E-13
multicellular organismal process	<u>6926</u>	98	49.44	1.98	+	4.87E-16	1.54E-12

(на ZHunt)

Выводы

- Методы ZHunt и DeepZ дают разные положения пиков, которые имеют очень маленькое пересечение. Методы слабо согласуются друг с другом. Пики в hg19 и mm10 также почти не имеют пересечений, согласования нет.
- 2. Для разных типов клеток в методе DeepZ преимущественно пики в пересечении со вторичной структурой находятся на промоторах. В ZHunt преобладает ассоциация с межгенным пространством.
- 3. В случае ZHunt наблюдается более сильная ассоциация вторичной структуры ДНК с пиками гистоновых меток, чем в случае DeepZ. Средняя доля пиков пересечения к общему числу пиков составляет 0.0325 для DeepZ и 0.185 для ZHunt.
- 4. Данный эффект консервативен по виду клеток.