#### Sequential Monte Carlo Methods for DSGE Models <sup>1</sup>

Ed Herbst\* Frank Schorfheide+

\* Federal Reserve Board

<sup>+</sup>University of Pennsylvania, PIER, CEPR, and NBER

February 6, 2018

<sup>&</sup>lt;sup>1</sup>Material at http://edherbst.net/teaching/indiana-minicourse.The views expressed in this presentation are those of the presenters and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System.

#### Some References

#### These lectures use material from our joint work:

- "Tempered Particle Filtering," 2016, PIER Working Paper, 16-017
- Bayesian Estimation of DSGE Models, 2015, Princeton University Press
- "Sequential Monte Carlo Sampling for DSGE Models," 2014, Journal of Econometrics

#### Some Background

- DSGE model: dynamic model of the macroeconomy, indexed by  $\theta$  vector of preference and technology parameters. Used for forecasting, policy experiments, interpreting past events.
- Bayesian analysis of DSGE models:

$$p(\theta|Y) = \frac{p(Y|\theta)p(\theta)}{p(Y)} \propto p(Y|\theta)p(\theta).$$

- Computational hurdles: numerical solution of model leads to state-space representation
   likelihood approximation => posterior sampler.
- "Standard" approach for (linearized) models (Schorfheide, 2000; Otrok, 2001):
  - Model solution: log-linearize and use linear rational expectations system solver.
  - Evaluation of  $p(Y|\theta)$ : Kalman filter
  - Posterior draws  $\theta^i$ : MCMC

## Sequential Monte Carlo (SMC) Methods

#### SMC can help to

#### Lecture 1

• approximate the posterior of  $\theta$ : Chopin (2002) ... Durham and Geweke (2013) ... Creal (2007), Herbst and Schorfheide (2014)

#### Lecture 2

- approximate the likelihood function (particle filtering): Gordon, Salmond, and Smith (1993) ... Fernandez-Villaverde and Rubio-Ramirez (2007)
- or both:  $SMC^2$ : Chopin, Jacob, and Papaspiliopoulos (2012) ... Herbst and Schorfheide (2015)

# Lecture 1

#### Sampling from Posterior

DSGE model posteriors are often non-elliptical, e.g., multimodal posteriors may arise

because it is difficult to

 disentangle internal and external propagation mechanisms;

 disentangle the relative importance of shocks.

- Economic Example: is wage growth persistent because
  - 1 wage setters find it very costly to adjust wages?
  - 2 exogenous shocks affect the substitutability of labor inputs and hence markups?

### Sampling from Posterior

- If posterior distributions are irregular, standard MCMC methods can be inaccurate (examples will follow).
- SMC samplers often generate more precise approximations of posteriors in the same amount of time.
- SMC can be parallelized.
- SMC = importance sampling on steroids ⇒ We will first review importance sampling.

#### Introduction

- Unfortunately, "standard" MCMC can be inaccurate, especially in medium and large-scale DSGE models:
  - disentangling importance of internal versus external propagation mechanism;
  - determining the relative importance of shocks.
- Previously: Modify MCMC algorithms to overcome weaknesses: blocking of parameters; tailoring of (mixture) proposal densities
- Now, we use sequential Monte Carlo (SMC) (more precisely, sequential importance sampling) instead:
  - Better suited to handle irregular and multimodal posteriors associated with large DSGE models.
  - · Algorithms can be easily parallelized.
- SMC = Importance Sampling on Steriods. We build on
  - Theoretical work: Chopin (2004); Del Moral, Doucet, Jasra (2006)
  - Applied work: Creal (2007); Durham and Geweke (2011, 2012)

## Importance Sampling

- Approximate  $\pi(\cdot)$  by using a different, tractable density  $g(\theta)$  that is easy to sample from.
- For more general problems, posterior density may be unnormalized. So we write

$$\pi(\theta) = \frac{p(Y|\theta)p(\theta)}{p(Y)} = \frac{f(\theta)}{\int f(\theta)d\theta}.$$

• Importance sampling is based on the identity

$$E_{\pi}[h(\theta)] = \int h(\theta)\pi(\theta)d\theta = \frac{\int_{\Theta} h(\theta)\frac{f(\theta)}{g(\theta)}g(\theta)d\theta}{\int_{\Theta}\frac{f(\theta)}{g(\theta)}g(\theta)d\theta}.$$

• (Unnormalized) importance weight:

$$w(\theta) = \frac{f(\theta)}{g(\theta)}.$$

# Importance Sampling

 $oldsymbol{0}$  For i=1 to  $oldsymbol{N}$ , draw  $heta^i \stackrel{iid}{\sim} g( heta)$  and compute the unnormalized importance weights

$$w^i = w(\theta^i) = \frac{f(\theta^i)}{g(\theta^i)}.$$

2 Compute the normalized importance weights

$$W^i = \frac{w^i}{\frac{1}{N} \sum_{i=1}^N w^i}.$$

An approximation of  $\mathbb{E}_{\pi}[h(\theta)]$  is given by

$$ar{h}_N = rac{1}{N} \sum_{i=1}^N W^i h( heta^i).$$

#### Illustration

If  $\theta^i$ 's are draws from  $g(\cdot)$  then

$$\mathbb{E}_{\pi}[h] pprox rac{rac{1}{N} \sum_{i=1}^{N} h( heta^i) w( heta^i)}{rac{1}{N} \sum_{i=1}^{N} w( heta^i)}, \quad w( heta) = rac{f( heta)}{g( heta)}.$$



#### Accuracy

• Since we are generating *iid* draws from  $g(\theta)$ , it's fairly straightforward to derive a CLT:

$$\sqrt{N}(\bar{h}_N - \mathbb{E}_{\pi}[h]) \Longrightarrow N(0,\Omega(h)), \quad \text{where} \quad \Omega(h) = \mathbb{V}_g[(\pi/g)(h - \mathbb{E}_{\pi}[h])].$$

• Using a crude approximation (see, e.g., Liu (2008)), we can factorize  $\Omega(h)$  as follows:

$$\Omega(h) pprox \mathbb{V}_{\pi}[h] ig( \mathbb{V}_{g}[\pi/g] + 1 ig).$$

The approximation highlights that the larger the variance of the importance weights, the less accurate the Monte Carlo approximation relative to the accuracy that could be achieved with an *iid* sample from the posterior.

Users often monitor

$$ESS = N rac{\mathbb{V}_{\pi}[h]}{\Omega(h)} pprox rac{N}{1 + \mathbb{V}_{g}[\pi/g]}.$$



## From Importance Sampling to Sequential Importance Sampling

- In general, it's hard to construct a good proposal density  $g(\theta)$ ,
- especially if the posterior has several peaks and valleys.
- Idea Part 1: it might be easier to find a proposal density for

$$\pi_n(\theta) = \frac{[p(Y|\theta)]^{\phi_n}p(\theta)}{\int [p(Y|\theta)]^{\phi_n}p(\theta)d\theta} = \frac{f_n(\theta)}{Z_n}.$$

at least if  $\phi_n$  is close to zero.

• Idea - Part 2: We can try to turn a proposal density for  $\pi_n$  into a proposal density for  $\pi_{n+1}$  and iterate, letting  $\phi_n \longrightarrow \phi_N = 1$ .

#### Illustration:

• Our state-space model:

$$y_t = [1 \; 1] s_t, \quad s_t = \left[ egin{array}{cc} heta_1^2 & 0 \ (1 - heta_1^2) - heta_1 heta_2 & (1 - heta_1^2) \end{array} 
ight] s_{t-1} + \left[ egin{array}{c} 1 \ 0 \end{array} 
ight] \epsilon_t.$$

- Innovation:  $\epsilon_t \sim iidN(0,1)$ .
- Prior: uniform on the square  $0 \le \theta_1 \le 1$  and  $0 \le \theta_2 \le 1$ .
- Simulate T=200 observations given  $\theta=[0.45,0.45]'$ , which is observationally equivalent to  $\theta=[0.89,0.22]'$

## Illustration: Tempered Posteriors of $\theta_1$



$$\pi_n(\theta) = \frac{[p(Y|\theta)]^{\phi_n}p(\theta)}{\int [p(Y|\theta)]^{\phi_n}p(\theta)d\theta} = \frac{f_n(\theta)}{Z_n}, \quad \phi_n = \left(\frac{n}{N_{\phi}}\right)^{\lambda}$$

#### Illustration: Posterior Draws



## SMC Algorithm: A Graphical Illustration



•  $\pi_n(\theta)$  is represented by a swarm of particles  $\{\theta_n^i, W_n^i\}_{i=1}^N$ :

$$ar{h}_{n,N} = rac{1}{N} \sum_{i=1}^N W_n^i h( heta_n^i) \stackrel{a.s.}{\longrightarrow} \mathbb{E}_{\pi_n}[h( heta_n)].$$

• C is Correction; S is Selection; and M is Mutation.

#### SMC Algorithm

- **1 Initialization.**  $(\phi_0 = 0)$ . Draw the initial particles from the prior:  $\theta_1^i \stackrel{iid}{\sim} p(\theta)$  and  $W_1^i = 1$ , i = 1, ..., N.
- **2 Recursion.** For  $n = 1, \ldots, N_{\phi}$ ,
  - **1** Correction. Reweight the particles from stage n-1 by defining the incremental weights

$$\tilde{\mathbf{w}}_n^i = \left[ p(\mathbf{Y} | \theta_{n-1}^i) \right]^{\phi_n - \phi_{n-1}} \tag{1}$$

and the normalized weights

$$\tilde{W}_{n}^{i} = \frac{\tilde{w}_{n}^{i} W_{n-1}^{i}}{\frac{1}{N} \sum_{i=1}^{N} \tilde{w}_{n}^{i} W_{n-1}^{i}}, \quad i = 1, \dots, N.$$
(2)

An approximation of  $\mathbb{E}_{\pi_n}[h(\theta)]$  is given by

$$\tilde{h}_{n,N} = \frac{1}{N} \sum_{i=1}^{N} \tilde{W}_{n}^{i} h(\theta_{n-1}^{i}). \tag{3}$$

Selection.

#### SMC Algorithm

- Initialization.
- **2 Recursion.** For  $n = 1, \ldots, N_{\phi}$ ,
  - Correction.
  - **2 Selection.** (Optional Resampling) Let  $\{\hat{\theta}\}_{i=1}^N$  denote N *iid* draws from a multinomial distribution characterized by support points and weights  $\{\theta_{n-1}^i, \tilde{W}_n^i\}_{i=1}^N$  and set  $W_n^i = 1$ . An approximation of  $\mathbb{E}_{\pi_n}[h(\theta)]$  is given by

$$\hat{h}_{n,N} = \frac{1}{N} \sum_{i=1}^{N} W_n^i h(\hat{\theta}_n^i). \tag{4}$$

**3 Mutation.** Propagate the particles  $\{\hat{\theta}_i, W_n^i\}$  via  $N_{MH}$  steps of a MH algorithm with transition density  $\theta_n^i \sim K_n(\theta_n|\hat{\theta}_n^i;\zeta_n)$  and stationary distribution  $\pi_n(\theta)$ . An approximation of  $\mathbb{E}_{\pi_n}[h(\theta)]$  is given by

$$\bar{h}_{n,N} = \frac{1}{N} \sum_{i=1}^{N} h(\theta_n^i) W_n^i.$$
 (5)

#### Remarks

- Correction Step:
  - reweight particles from iteration n-1 to create importance sampling approximation of  $\mathbb{E}_{\pi_n}[h(\theta)]$
- Selection Step: the resampling of the particles
  - (good) equalizes the particle weights and thereby increases accuracy of subsequent importance sampling approximations;
  - (not good) adds a bit of noise to the MC approximation.
- Mutation Step: changes particle values
  - adapts particles to posterior  $\pi_n(\theta)$ ;
  - imagine we don't do it: then we would be using draws from prior  $p(\theta)$  to approximate posterior  $\pi(\theta)$ , which can't be good!

### Theoretical Properties

- Goal: strong law of large numbers (SLLN) and central limit theorem (CLT) as  $N \longrightarrow \infty$  for every iteration  $n = 1, \dots, N_{\phi}$ .
- Regularity conditions:
  - proper prior;
  - bounded likelihood function;
  - $2 + \delta$  posterior moments of  $h(\theta)$ .
- Idea of proof (Chopin, 2004): proceed recursively
  - Initialization: SLLN and CLT for iid random variables because we sample from prior.
  - Assume that n-1 approximation (with normalized weights) yields

$$\sqrt{N}\left(rac{1}{N}\sum_{i=1}^N h( heta_{n-1}^i)W_{n-1}^i - \mathbb{E}_{\pi_{n-1}}[h( heta)]
ight) \Longrightarrow \mathcal{N}ig(0,\Omega_{n-1}(h)ig)$$

Show that

$$\sqrt{N}\left(rac{1}{N}\sum_{i=1}^N h( heta_n^i)W_n^i - \mathbb{E}_{\pi_n}[h( heta)]
ight) \Longrightarrow Nig(0,\Omega_n(h)ig)$$



#### Theoretical Properties: Correction Step

• Suppose that the n-1 approximation (with normalized weights) yields

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}h(\theta_{n-1}^{i})W_{n-1}^{i}-\mathbb{E}_{\pi_{n-1}}[h(\theta)]\right)\Longrightarrow N(0,\Omega_{n-1}(h))$$

Then

$$\sqrt{N} \left( \frac{\frac{1}{N} \sum_{i=1}^{N} h(\theta_{n-1}^{i}) [\boldsymbol{p}(\boldsymbol{Y}|\theta_{n-1}^{i})]^{\phi_{n}-\phi_{n-1}} W_{n-1}^{i}}{\frac{1}{N} \sum_{i=1}^{N} [\boldsymbol{p}(\boldsymbol{Y}|\theta_{n-1}^{i})]^{\phi_{n}-\phi_{n-1}} W_{n-1}^{i}} - \mathbb{E}_{\pi_{n}}[h(\theta)] \right) \\
\implies N(0, \tilde{\Omega}_{n}(h))$$

where

$$\tilde{\Omega}_n(h) = \Omega_{n-1}(v_{n-1}(\theta)(h - \mathbb{E}_{\pi_n}[h])) \quad v_{n-1}(\theta) = [p(Y|\theta)]^{\phi_n - \phi_{n-1}} \frac{Z_{n-1}}{Z_n}$$

• This step relies on likelihood evaluations from iteration n-1 that are already stored in memory.

## Theoretical Properties: Selection / Resampling

After resampling by drawing from iid multinomial distribution we obtain

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}h(\hat{\theta}_i)W_n^i-\mathbb{E}_{\pi_n}[h]\right)\Longrightarrow N(0,\hat{\Omega}(h)),$$

where

$$\hat{\Omega}_n(h) = \tilde{\Omega}(h) + \mathbb{V}_{\pi_n}[h]$$

- Disadvantage of resampling: it adds noise.
- Advantage of resampling: it equalizes the particle weights, reducing the variance of  $v_n(\theta)$  in  $\tilde{\Omega}_{n+1}(h) = \Omega_n(v_n(\theta)(h \mathbb{E}_{\pi_{n+1}}[h])$ .

### Theoretical Properties: Mutation

- We are using the Markov transition kernel  $K_n(\theta|\hat{\theta})$  to transform draws  $\hat{\theta}_n^i$  into draws  $\theta_n^i$ .
- To preserve the distribution of the  $\hat{\theta}_n^i$ 's it has to be the case that

$$\pi_n(\theta) = \int K_n(\theta|\hat{\theta})\pi_n(\hat{\theta})d\hat{\theta}.$$

- · It can be shown that the overall asymptotic variance after the mutation is the sum of
  - the variance of the approximation of the conditional mean  $\mathbb{E}_{K_n(\cdot|\theta_{n-1})}[h(\theta)]$  which is given by

$$\hat{\Omega}(\mathbb{E}_{K_n(\cdot|\theta_{n-1})}[h(\theta)]);$$

• a weighted average of the conditional variance  $\mathbb{V}_{K_n(\cdot|\theta_{n-1})}[h(\theta)]$ :

$$\int W_{n-1}(\theta_{n-1}) \mathsf{v}_{n-1}(\theta_{n-1}) \mathbb{V}_{K_n(\cdot|\theta_{n-1})}[h(\theta)] \pi_{n-1}(\theta_{n-1}).$$

• This step is *embarassingly parallelizable*, well designed for single instruction, multiple data (SIMD) processing.

### More on Transition Kernel in Mutation Step

- Transition kernel  $K_n(\theta|\hat{\theta}_{n-1};\zeta_n)$ : generated by running M steps of a Metropolis-Hastings algorithm.
- Lessons from DSGE model MCMC:
  - blocking of parameters can reduces persistence of Markov chain;
  - mixture proposal density avoids "getting stuck."
- Blocking: Partition the parameter vector  $\theta_n$  into  $N_{blocks}$  equally sized blocks, denoted by  $\theta_{n,b},\ b=1,\ldots,N_{blocks}$ . (We generate the blocks for  $n=1,\ldots,N_{\phi}$  randomly prior to running the SMC algorithm.)
- Example: random walk proposal density:

$$\vartheta_b|(\theta_{n,b,m-1}^i,\theta_{n,-b,m}^i,\Sigma_{n,b}^*) \sim N\Big(\theta_{n,b,m-1}^i,c_n^2\Sigma_{n,b}^*\Big).$$



# Adaptive Choice of $\zeta_n = (\Sigma_n^*, c_n)$

- Infeasible adaption:
  - Let  $\Sigma_n^* = \mathbb{V}_{\pi_n}[\theta]$ .
  - · Adjust scaling factor according to

$$c_n = c_{n-1} f(1 - R_{n-1}(\zeta_{n-1})),$$

where  $R_{n-1}(\cdot)$  is population rejection rate from iteration n-1 and

$$f(x) = 0.95 + 0.10 \frac{e^{16(x - 0.25)}}{1 + e^{16(x - 0.25)}}.$$

- Feasible adaption use output from stage n-1 to replace  $\zeta_n$  by  $\hat{\zeta}_n$ :
  - Use particle approximations of  $\mathbb{E}_{\pi_n}[\theta]$  and  $\mathbb{V}_{\pi_n}[\theta]$  based on  $\{\theta_{n-1}^i, \tilde{W}_n^i\}_{i=1}^N$ .
  - Use actual rejection rate from stage n-1 to calculate  $\hat{c}_n = \hat{c}_{n-1} f(\hat{c}_{n-1}(\hat{c}_{n-1}))$ .

## Adaption of SMC Algorithm for Stylized State-Space Model



*Notes:* The dashed line in the top panel indicates the target acceptance rate of 0.25.

## Convergence of SMC Approximation for Stylized State-Space Model



Notes: The figure shows  $N\mathbb{V}[\bar{\theta}_j]$  for each parameter as a function of the number of particles N.  $\mathbb{V}[\bar{\theta}_j]$  is computed based on  $N_{run}=1,000$  runs of the SMC algorithm with  $N_{\phi}=100$ . The width of the bands is  $(2\cdot 1.96)\sqrt{3/N_{run}}(N\mathbb{V}[\bar{\theta}_j])$ .

### More on Resampling

- So far, we have used multinomial resampling. It's fairly intuitive and it is straightforward to obtain a CLT.
- But: multinominal resampling is not particularly efficient.
- The Herbst-Schorfheide book contains a section on alternative resampling schemes (stratified resampling, residual resampling...)
- These alternative techniques are designed to achieve a variance reduction.
- Most resampling algorithms are not parallelizable because they rely on the normalized particle weights.

### Running Time – It's all about Mutation

- The most time consuming part of (any of) these algorithms, is **evaluating the likelihood function**, which occurs in the mutation step.
- But each particle is *mutated independently* of the other particles.
- This is extremely easy to parallelize.

How I do it – distributed memory parallelization in Fortran

- Use Message Passing Interface (MPI) to scatter particles across many processors (CPUs).
- Execute mutuation across processors.
- Use MPI to gather the newly mutated particles.

Could be better with more programming.



#### How well does this work?

- The extent to which HPC can help us is determined by the amount of algorithm that can be executed in parallel vs. serial.
- Suppose a fraction  $B \in [0,1]$  must executed in serial fashion for a particular algorithm.
- Amdahls Law: Theoretical gain from using N processors in an algorithm is given by:

$$R(N) = B + \frac{1}{N}(1-B)$$

Question: What is B for our SMC algorithm?
 Answer: about 0.1!

#### Gains from Parallelization



#### Application 1: Small Scale New Keynesian Model

- We will take a look at the effect of various tuning choices on accuracy:
  - Tempering schedule  $\lambda$ :  $\lambda = 1$  is linear,  $\lambda > 1$  is convex.
  - Number of stages  $N_{\phi}$  versus number of particles N.

# Effect of $\lambda$ on Inefficiency Factors InEff<sub>N</sub>[ $\bar{\theta}$ ]



*Notes:* The figure depicts hairs of  $InEff_N[\bar{\theta}]$  as function of  $\lambda$ . The inefficiency factors are computed based on  $N_{run}=50$  runs of the SMC algorithm. Each hair corresponds to a DSGE model parameter.

## Number of Stages $N_{\phi}$ vs Number of Particles N



Notes: Plot of  $\mathbb{V}[\bar{\theta}]/\mathbb{V}_{\pi}[\theta]$  for a specific configuration of the SMC algorithm. The inefficiency factors are computed based on  $N_{run}=50$  runs of the SMC algorithm.  $N_{blocks}=1,\ \lambda=2,\ N_{MH}=1.$ 

### Number of blocks $N_{blocks}$ in Mutation Step vs Number of Particles N



Notes: Plot of  $\mathbb{V}[\bar{\theta}]/\mathbb{V}_{\pi}[\theta]$  for a specific configuration of the SMC algorithm. The inefficiency factors are computed based on  $N_{run}=50$  runs of the SMC algorithm.  $N_{\phi}=100,\ \lambda=2,\ N_{MH}=1.$ 

### A Few Words on Posterior Model Probabilities

Posterior model probabilities

$$\pi_{i,T} = \frac{\pi_{i,0} p(Y_{1:T} | \mathcal{M}_i)}{\sum_{j=1}^{M} \pi_{j,0} p(Y_{1:T} | \mathcal{M}_j)}$$

where

$$p(Y_{1:T}|\mathcal{M}_i) = \int p(Y_{1:T}|\theta_{(i)}, \mathcal{M}_i) p(\theta_{(i)}|\mathcal{M}_i) d\theta_{(i)}$$

• For any model:

$$\ln p(Y_{1:T}|\mathcal{M}_i) = \sum_{t=1}^{T} \ln \int p(y_t|\theta_{(i)}, Y_{1:t-1}, \mathcal{M}_i) p(\theta_{(i)}|Y_{1:t-1}, \mathcal{M}_i) d\theta_{(i)}$$

• Marginal data density  $p(Y_{1:T}|\mathcal{M}_i)$  arises as a by-product of SMC.

## Marginal Likelihood Approximation

- Recall  $\tilde{w}_n^i = [p(Y|\theta_{n-1}^i)]^{\phi_n \phi_{n-1}}$
- Then

$$\frac{1}{N} \sum_{i=1}^{N} \tilde{w}_{n}^{i} W_{n-1}^{i} \approx \int [p(Y|\theta)]^{\phi_{n} - \phi_{n-1}} \frac{p^{\phi_{n-1}}(Y|\theta)p(\theta)}{\int p^{\phi_{n-1}}(Y|\theta)p(\theta)d\theta} d\theta 
= \frac{\int p(Y|\theta)^{\phi_{n}}p(\theta)d\theta}{\int p(Y|\theta)^{\phi_{n-1}}p(\theta)d\theta}$$

• Thus,

$$\prod_{n=1}^{N_{\phi}} \left( \frac{1}{N} \sum_{i=1}^{N} \tilde{w}_{n}^{i} W_{n-1}^{i} \right) \approx \int p(Y|\theta) p(\theta) d\theta.$$

## SMC Marginal Data Density Estimates

|       | $N_\phi=100$           |                    | $N_\phi=400$           |                     |  |
|-------|------------------------|--------------------|------------------------|---------------------|--|
| Ν     | $Mean(\ln \hat{p}(Y))$ | $SD(In\hat{p}(Y))$ | $Mean(\ln \hat{p}(Y))$ | $SD(\ln\hat{p}(Y))$ |  |
| 500   | -352.19                | (3.18)             | -346.12                | (0.20)              |  |
| 1,000 | -349.19                | (1.98)             | -346.17                | (0.14)              |  |
| 2,000 | -348.57                | (1.65)             | -346.16                | (0.12)              |  |
| 4,000 | -347.74                | (0.92)             | -346.16                | (0.07)              |  |

Notes: Table shows mean and standard deviation of log marginal data density estimates as a function of the number of particles N computed over  $N_{run}=50$  runs of the SMC sampler with  $N_{blocks}=4$ ,  $\lambda=2$ , and  $N_{MH}=1$ .

## Application 2: Estimation of Smets and Wouters (2007) Model

- Benchmark macro model, has been estimated many (many) times.
- "Core" of many larger-scale models.
- 36 estimated parameters.
- RWMH: 10 million draws (5 million discarded); SMC: 500 stages with 12,000 particles.
- We run the RWM (using a particular version of a parallelized MCMC) and the SMC algorithm on 24 processors for the same amount of time.
- We estimate the SW model twenty times using RWM and SMC and get essentially identical results.

## Application 2: Estimation of Smets and Wouters (2007) Model

- More interesting question: how does quality of posterior simulators change as one makes the priors more diffuse?
- Replace Beta by Uniform distributions; increase variances of parameters with Gamma and Normal prior by factor of 3.
- Motivation:
  - SW priors might be considered implausible because they seem to be informed by in-sample information.
  - Del Negro and Schorfheide (2008): inference about wage and price stickiness is very sensitive to priors.
  - Müller (2011) finds that posterior is sensitive to small shifts in prior mean.
  - Del Negro and Schorfheide (2013) report a strong effect of priors for steady state parameters on forecast performance.
  - Posterior odds in favor of specification with diffuse prior exp(28).

# SW Model with DIFFUSE Prior: Estimation stability RWH (black) versus SMC (red)



#### A Measure of Effective Number of Draws

ullet Suppose we could generate *iid*  $N_{eff}$  draws from posterior, then

$$\hat{\mathbb{E}}_{\pi}[ heta] \overset{\mathsf{approx}}{\sim} \mathsf{N}\left(\mathbb{E}_{\pi}[ heta], rac{1}{\mathsf{N}_{\mathit{eff}}}\mathbb{V}_{\pi}[ heta]
ight).$$

- We can measure the variance of  $\hat{\mathbb{E}}_{\pi}[\theta]$  by running SMC and RWM algorithm repeatedly.
- Then,

$$extstyle extstyle extstyle N_{ ext{eff}} pprox rac{\mathbb{V}_{\pi}[ heta]}{\mathbb{V}ig[\hat{\mathbb{E}}_{\pi}[ heta]ig]}$$

### Effective Number of Draws

| SMC            |       |           |           | RWMH  |           |           |
|----------------|-------|-----------|-----------|-------|-----------|-----------|
| Parameter      | Mean  | STD(Mean) | $N_{eff}$ | Mean  | STD(Mean) | $N_{eff}$ |
| $\sigma_{l}$   | 3.06  | 0.04      | 1058      | 3.04  | 0.15      | 60        |
| 1              | -0.06 | 0.07      | 732       | -0.01 | 0.16      | 177       |
| $\iota_{p}$    | 0.11  | 0.00      | 637       | 0.12  | 0.02      | 19        |
| ĥ              | 0.70  | 0.00      | 522       | 0.69  | 0.03      | 5         |
| Φ              | 1.71  | 0.01      | 514       | 1.69  | 0.04      | 10        |
| $r_{\pi}$      | 2.78  | 0.02      | 507       | 2.76  | 0.03      | 159       |
| $ ho_{b}$      | 0.19  | 0.01      | 440       | 0.21  | 0.08      | 3         |
| $\varphi$      | 8.12  | 0.16      | 266       | 7.98  | 1.03      | 6         |
| $\sigma_{m p}$ | 0.14  | 0.00      | 126       | 0.15  | 0.04      | 1         |
| $\xi_p$        | 0.72  | 0.01      | 91        | 0.73  | 0.03      | 5         |
| $\iota_{w}$    | 0.73  | 0.02      | 87        | 0.72  | 0.03      | 36        |
| $\mu_{m p}$    | 0.77  | 0.02      | 77        | 0.80  | 0.10      | 3         |
| $\rho_{w}$     | 0.69  | 0.04      | 49        | 0.69  | 0.09      | 11        |
| $\mu_{w}$      | 0.63  | 0.05      | 49        | 0.63  | 0.09      | 11        |
| ξ <sub>w</sub> | 0.93  | 0.01      | 43        | 0.93  | 0.02      | 8         |

#### A Closer Look at the Posterior: Two Modes

| Mode 1  | Mode 2                           |  |
|---------|----------------------------------|--|
| 0.844   | 0.962                            |  |
| 0.812   | 0.918                            |  |
| 0.997   | 0.394                            |  |
| 0.978   | 0.267                            |  |
| -804.14 | -803.51                          |  |
|         | 0.844<br>0.812<br>0.997<br>0.978 |  |

- Mode 1 implies that wage persistence is driven by extremely exogenous persistent wage markup shocks.
- Mode 2 implies that wage persistence is driven by endogenous amplification of shocks through the wage Calvo and indexation parameter.
- SMC is able to capture the two modes.

## A Closer Look at the Posterior: Internal $\xi_w$ versus External $\rho_w$ Propagation



# Stability of Posterior Computations: RWH (black) versus SMC (red)

