

CANDIDATE

z5496297

TEST

Quiz 6

Subject code	
Evaluation type	
Test opening time	27.03.2024 07:00
End time	03.04.2024 07:00
Grade deadline	
PDF created	13.08.2024 06:35

Question	Status	Marks	Question type
1.1	Correct	1/1	Multiple Response
1.2	Correct	1/1	True / False
1.3	Correct	1/1	Multiple Response
1.4	Correct	1/1	Multiple Response
1.5	Correct	1/1	Multiple Response
2.1	Correct	1/1	True / False
2.2	Correct	1/1	True / False
2.3	Correct	1/1	Multiple Response
2.4	Correct	1/1	Multiple Response
2.5	Correct	1/1	Multiple Response

1.1 Suppose you are trying to prove that the square of every natural number has remainder 0 or 1 on division by 4. If P(n) is the proposition:

$$P(n): \qquad n^2 =_{(4)} 0 \quad \text{or} \quad n^2 =_{(4)} 1$$

which of the following would be sufficient to prove the result by induction?

Select all that apply:

 \square P(0); and for all $k \in \mathbb{N}$ P(k^2) \Rightarrow P($(k+1)^2$)

|--|

- None of the other options
- \square P(0); P(1); and for all $k \in \mathbb{N}$ P(k) \Rightarrow P(k+4)
- \square P(0); for all $k \in \mathbb{N}$ P(k) \Rightarrow P(k+2); and for all $k \in \mathbb{N}$ P(k+1) \Rightarrow P(k+3)
- \square P(0); and for all $k \in \mathbb{N}$ P(k^2) \Rightarrow P(k^2+1)

- **1.2** Suppose $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is defined recursively as follows for all $m, n \in \mathbb{N}$:
 - f(0,m) = m
 - f(n+1,m) = 1 + f(n,m)

True or false:

f(m,n) = f(n,m) for all $m,n \in \mathbb{N}$

False

1.3 Let C(n) be the maximum number of elementary operations required to compute A+B where A and B are n×n matrices.

What can be said about the asymptotic behaviour of C(n)? Select all that apply

 \square C(n) \subseteq O(log n)

$C(n) \subseteq O(\log n)$	
$C(n) \subseteq O(n^3)$	
■ None of these options	
\square $C(n) \subseteq O(1)$	
\square $C(n) \in O(n)$	
$ ightharpoonup C(n) \in O(n^2)$	⊘

1.4 Consider the following code snippet:

myFunc(n):	myFunc(n):	
i = 1		
while i < n:		
j = n		
while j > 0:		
print('*')		
j = j/3		
i = i+2		

Which of the following hold with regard to the running time T(n) of this code (assume / is integer division)

Select all that apply

$ ightharpoonup T(n) \in O(n^2)$	•
$ ule{transformation} T(n) \in O(n \log n)$	•
$ T(n) \in O(\log n) $	
■ None of these options	
\Box T(n) \in O(n)	

1.5 Consider the following code snippet:

myFunc(n):	
if n==0:	
return 1	
i = 0	
x = 0	
while i < n:	
x = x + myFunc(0)	
i = i+1	
return x	

Which of the following hold with regard to the running time $\mathsf{T}(\mathsf{n})$ of this code Select all that apply

$ ightharpoonup T(n) \in O(2^n)$	•
$ ule{transformation} T(n) \in O(n \log n)$	•
$T(n) \in O(n)$	•
■ None of these options	
$ ightharpoonup T(n) \in O(n^2)$	•

- 2.1 Let EXP be as defined in Quiz 6, Question M3. That is:
 - \varnothing and \mathcal{U} are elements of EXP
 - X,Y,Z ∈ EXP
 - If $E \in EXP$, then:
 - ∘ (E) ∈ EXP
 - Ec ∈ EXP
 - If $E_1, E_2 \in EXP$, then:
 - \circ (E₁ \cap E₂) \in EXP
 - \circ (E₁ \cup E₂) \in EXP

Suppose we can show that the following holds for a proposition P:

- P(∅) holds
- $P(\mathcal{U})$ holds
- P(X), P(Y), and P(Z) hold
- If P(E) holds then P((E)) holds
- If P(E) holds then P(Ec) holds
- If P(E₁) and P(E₂) hold, then P((E₁ ∩ E₂)) holds
- If $P(E_1)$ or $P(E_2)$ hold, then $P((E_1 \cup E_2))$ holds

True or false: P(E) holds for all $E \in EXP$

Select one alternative:

False

- **2.2** Suppose $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is defined recursively as follows for all $m, n \in \mathbb{N}$:
 - f(0,m) = 0
 - f(n+1,m) = m + f(n,m)

True or false:

f(m,n) = f(n,m) for all $m,n \in \mathbb{N}$

False

2.3 Which of the following are true for all functions $f: \mathbb{N} \to \mathbb{N}$ with $f(n) \in \Theta(n)$? Select all that apply

$ ightharpoonup f \circ f \in O(n^2)$	•
${\color{red} leve{ }}$ $f \circ f \in \Omega(n)$	•
✓ f∘f ∈ O(n)	•

2.4 Consider the following code fragment that works on a (non-empty) array:

myFunc(A):
if length(A) <= 5:
return A[0]
i = 0
while i < length(A):
B = A[i, i+5) # Take the i - (i+4)th elements of A
C[i/5] = myFunc(B)
i = i+5
return myFunc (C)

If n = length(A), which of the following hold for T(n), the running time of the above code?

Select all that apply

- \square T(n) \subseteq O(log n)
- \Box T(n) \in O(1)
- None of these options

✓ T($(n) \in O(n^2)$	•
✓ T($(n) \in O(n \log n)$	•
✓ T($(n) \in O(n)$	•

2.5 Consider the following code snippet:

myFunc(n):
if n==0:
return 1
else:
return myFunc(n-1) + myFunc2(n-1)
myFunc2(n):
if n==0:
return 0
else:
return myFunc(n-1)

Which of the following hold with regard to the running time T(n) of this code **Select all that apply**

- \square T(n) \in O(n)
- \square T(n) \subseteq O(n²)
- $Arr T(n) \in O(2^n)$

- None of these options
- \square T(n) \subseteq O(log n)