体系结构Lab5

CPU

baseline核心代码:

```
C++ | 2 复制代码
     void gemm_baseline(float *A, float *B, float *C)
 3
         for (int i = 0; i < N; ++i)
 4 =
         {
             for (int j = 0; j < N; ++j)
 5
             {
 7
                 for (int k = 0; k < N; ++k)
 8 =
                      C[i * N + j] += A[i * N + k] * B[k * N + j];
 9
10
                 }
11
             }
         }
12
13
     }
```

AVX核心代码:

```
C++ | D 复制代码
     void gemm_avx(float *A, float *B, float *C)
 1
 2 * {
 3
         __m256 tmp;
         for (int i = 0; i < N; ++i)
 4
 5 =
             for (int j = 0; j < N; j += 8)
 6
 7 =
             {
                 tmp = _mm256_loadu_ps(C + i * N + j);
 8
 9
                 for (int k = 0; k < N; ++k)
                 {
10 -
                      tmp = _mm256_add_ps(tmp, _mm256_mul_ps(_mm256_broadcast_ss
11
     (A + i * N + k), _mm256_loadu_ps(B + k * N + j)));
12
                      _{mm256\_storeu\_ps(C + i * N + j, tmp);}
                 }
13
             }
14
         }
15
     }
16
```

```
C++ | 2 复制代码
     void gemm_avx_one_block(int i0, int j0, int k0, float *A, float *B, float
     *C)
2 * {
         __m256 tmp;
 3
         for (int i = i0; i < i0 + BLOCKSIZE; ++i)
 5 =
             for (int j = j0; j < j0 + BLOCKSIZE; j += 8)
 6
             {
 7 -
                 tmp = _mm256_loadu_ps(C + i * N + j); //取出16个float
8
9
                 for (int k = k0; k < k0 + BLOCKSIZE; ++k)
10 -
                 {
                     tmp = _mm256_add_ps(tmp, _mm256_mul_ps(_mm256_broadcast_ss
11
     (A + i * N + k), mm256 loadu ps(B + k * N + j));
12
13
                 _{mm256\_storeu\_ps(C + i * N + j, tmp);}
14
             }
         }
15
     }
16
17
     void gemm_avx_block(float *A, float *B, float *C)
18
19 - {
         for (int i = 0; i < N; i += BLOCKSIZE)
20
21 -
             for (int j = 0; j < N; j += BLOCKSIZE)
22
23 -
             {
                 for (int k = 0; k < N; k += BLOCKSIZE)
24
25 -
                     gemm_avx_one_block(i, j, k, A, B, C);
26
                 }
27
28
             }
         }
29
30
     }
```

不同规模矩阵结果

三种矩阵乘法实现见 cpu c 源文件。

```
C++ □ 复制代码
 1
    N=64, BLOCKSIZE=8
2
    0.00017
    0.00006 65.06%
4
    0.00003 79.52%
5
   N=128, BLOCKSIZE=8
   0.00145
6
7
    0.00036 75.12%
    0.00033 77.47%
8
   N=256, BLOCKSIZE=8
9
10
    0.01446
    0.00372 74.30%
11
12
    0.00341 76.39%
13
    N=512, BLOCKSIZE=8
    0.12085
14
15
    0.03496 71.07%
    0.01957 83.81%
16
N=1024, BLOCKSIZE=8
   2.14926
18
19
    0.53419 75.15%
    0.27251 87.32%
20
```

不难看出AVX和AVX_BLOCK都能显著提高矩阵乘法速率,且AVX_BLOCK比AVX更高效,但提升率并不完全与规模成正比,即N增大,提升率不一定增大。当然,上述数据可能明确说明AVX和AVX_BLOCK能提高效率,至于提升了多少,上面的数值由于存在较大误差,只能作为简单参考。

原因分析

在单次乘法中,AVX能够同时计算8个单精度或4个双精度浮点数,大大减少了计算的时间。因此,使用AVX指令集能够提高单次矩阵乘法的计算性能。

采用分块AVX算法可以进一步提高性能,原因是分块AVX算法将矩阵乘法划分为多个小矩阵,每个小矩阵使用AVX指令集进行计算,这种算法在计算时可以使用CPU缓存,因此可以大大减少访问内存的次数,从而进一步减少运算时间。同时,由于分块操作实现了更好的数据局部性,能够更好的使矩阵缓存,从而能够更快的进行计算,提高矩阵计算的速度。

不同分块大小结果

接下来,取 N=1<<8 ,分别取 BLOCKSIZE=1<

一方式的耗时及优化率如下所示: (注意,BLOCKSIZE不能小于8,否则将导致结果计算错误)

理论上,BLOCKSIZE参数只会影响第三种方式(AVX_BLOCK),但从下面的数据可以看出,即使N不变,前两种乘法方式的耗时依旧有变化,这是因为计算机内部的复杂机制造成的无法消除的误差,即使采用多次计算取平均值的做法依然只能小幅减少该误差。

即便有上述所述的误差影响,我们依旧能看出,BLOCKSIZE对乘法计算性能的影响不完全是正相关的。在一定范围内,BLOCKSIZE的增大能提高性能,但当BLOCKSIZE进一步增大时,性能反而降低。就本次实验而言,在 N=256 的情况下,当 BLOCKSIZE=32 时,程序性能最佳。

```
C++ | 2 复制代码
1
    N=256, BLOCKSIZE=8
2
    0.01430
   0.00374 73.85%
3
    0.00202 85.87%
4
5
    N=256, BLOCKSIZE=16
6
    0.01447
7 0.00233 83.93%
8
    0.00169 88.31%
9 N=256, BLOCKSIZE=32
10 0.01485
    0.00380 74.43%
11
12
    0.00249 83.23%
13
    N=256, BLOCKSIZE=64
14
    0.01537
15
   0.00226 85.27%
16
    0.00191 87.58%
17
    N=256, BLOCKSIZE=128
18
    0.01517
19
    0.00231 84.78%
20
    0.00236 84.47%
```

更改N的大小,发现在 N={1<<n,n={8,9,10} 时,都是取 BL0CKSIZE=32 可以取得最佳结果,当N 进一步增大时,耗时明显增大,实验成本增加,不在继续。不过目前测试结果已经表明, BL0CKSIZE=32 是一个不错的选择。

原因分析

当BLOCKSIZE 较小时,能够利用CPU缓存,减少了访问内存的频率,因此性能有所提高。但是,每个块中的计算量并不是特别稠密,所以它在利用AVX指令时也会浪费一些计算能力。

当BLOCKSIZE 适中时,采用的块的大小适中,可以利用一个256位向量并行计算32个乘积,显著提高了程序并行计算的效率。同时,块的大小也适合CPU缓存,可以更好的利用CPU缓存,从而减少了对内存的访问,同时具有较高的并行度和稠密的计算量,因此效果最好。

当BLOCKSIZE继续增加时,块中的计算量将变得更加稀疏,这样在利用AVX指令时也会浪费一些计算能力,同时由于块的数量减少,程序的并行度也会降低,因此性能并没有得到显著提升。

总之,BLOCKSIZE的取值太大也不能太小,但没有严格的确切数值可以保证BLOCKSIZE在该值时取得最佳结果,实际应用中,应采用实验测试的方式确定BLOCKSIZE的取值。

其它矩阵乘法优化方法

- 1. 预取数据。通过预取矩阵乘法中需要用到的数据到CPU缓存中,可以减少对内存的频繁访问,从而提高了程序的性能。
- 2. 循环重排序。通过调整循环顺序来优化空间访问局部性,从而提高效率
- 3. 循环展开。通过循环展开来加速循环过程。这一内容已在LAB4中详细探究
- 4. 使用多线程。对于特别大的数组,可以使用多线程计算分别计算各个部分,利用同步技术,互斥锁 技术等保证结果正确性即可。

GPU

baseline

核心代码:

```
Markdown | 🖸 复制代码
1 • __global__ void gemm_baseline(float *A, float *B, float *C, int N)
2 - {
         int idx x = blockIdx.x * blockDim.x + threadIdx.x;
 3
         int idx y = blockIdx.y * blockDim.y + threadIdx.y;
4
5
 6 =
         float sum = 0.f;
7
         if (idx_x < N \& idx_y < N)
8 =
             for (int kk = 0; kk < N; ++kk)
9
             {
10 -
                 sum += A[idx_y * N + kk] * B[kk * N + idx_x];
11 🔻
12
13 🕶
             C[idx_y * N + idx_x] = sum;
         }
14
    }
15
```

取 N={128,256,512,1024},SIZE=32,blockSize=(SIZE,SIZE,1),gridSize=(5,5,1) 时的结果如下:

•					Markdown 🗗 复制	訓代码
1 7 2	N=128 Time(%) Maximum		Instances	Average	Minimum	
3						
4	100.0 14816	14816 gemm_baseline	1	14816.0	14816	
	N=256 Time(%) Maximum	Total Time Name	Instances	Average	Minimum	
8						
9 •	29728	29728 gemm_baseline	1	29728.0	29728	
10	N=512 Time(%) Maximum		Instances	Average	Minimum	
12						
13 -	100.0	218142 gemm_baseline	1	218142.0	218142	
14 15	N=1024 Time(%) Maximum	Total Time Name	Instances	Average	Minimum	
16						
17	100.0	1714327 gemm_baseline	1	1714327.0	1714327	

矩阵规模越大,时间越长,这是显然的。

取 N=128, SIZE=32, blockSize=(B,B,1), B={8,16,32}, gridSize=(5,5,1) 结果如下:

•				Ŋ	Markdown 🖸 复制代码
1 * 2 3	SIZE=32,N= blockSIZE= Time(%) Maximum	(8,8,1) Total Time	Instances	Average	Minimum
4					
5 🕶		4128 gemm_baseline	1	4128.0	4128
6 7	SIZE=32,N= blockSIZE=				
8		Total Time	Instances	Average	Minimum
9					
10 -	100.0 5600	 5600 gemm_baseline	1	5600.0	5600
11	SIZE=32,N=				
12 13	blockSIZE= Time(%) Maximum	Total Time	Instances	Average	Minimum
14					
15	100.0 14880	 14880 gemm_baseline	1	14880.0	14880
16					

取 blockSize=(8,8,1) 时效果最佳。值得注意的时,该程序效率影响因子较多,当取不同的N和不同的gridSize时得到的结果不同。上述结果并不能说明在任何情况下都是取(8,8,1)最好。

仅对上述情况进行分析,当blockSize设置较大时,会导致单个线程块中的线程数变多,从而使线程数超过一个流处理器可容纳的最大线程数。这就会导致无法充分利用GPU资源,从而出现效率下降的情况。

取 N=128,blockSize=(32,32,1),gridSize=(G,G,1),G={6,7,8,9,10,11,12} 结果如下:

•					Markdown 日 复制代	が码
1 - 2	G=5 Time(%) Maximum		Instances	Average	Minimum	
3						
4 -		 14880 gemm_baseline	1	14880.0	14880	
5 6	G=6 Time(%) Maximum		Instances	Average	Minimum	
7						
8 🕶		 14880 gemm_baseline	1	14880.0	14880	
9 10		Total Time Name	Instances	Average	Minimum	
11						
12 🕶	15296	 15296 gemm_baseline	1	15296.0	15296	
13 14	G=8 Time(%) Maximum		Instances	Average	Minimum	
15						
16 🕶	15040	 15040 gemm_baseline	1	15040.0	15040	
17 18	g=9 Time(%) Maximum	Total Time Name	Instances	Average	Minimum	
19						
20 -						

21 22	100.0 14944 G=10	14944 gemm_baseline	1	14944.0	14944	
23		Total Time Name	Instances	Average	Minimum	
24 🕶						
25 26	100.0 14944 G=11	14944 gemm_baseline	1	14944.0	14944	
27	Time(%) Maximum		Instances	Average	Minimum	
28 -						
29 30	100.0 15360 G=12	15360 gemm_baseline	1	15360.0	15360	
31	Time(%)	Total Time Name	Instances	Average	Minimum	
32						
33	100.0 15455	15455 gemm_baseline	1	15455.0	15455	

分析可知,G=5和6时效率最高,而G=9和10时效率相同且高于上下的结果。可以发现,gridSize与效率并非完全正相关。实际使用过程过,应该结合N,SIZE,blockSize等的取值,灵活决定。

block

核心代码:

```
C++ □ 9 复制代码
 1 - __global__ void gemm_block(float *A, float *B, float *C, int N) {
2
         __shared__ float s_a[SIZE][SIZE];
 3
         __shared__ float s_b[SIZE][SIZE];
4
5
6
         int idx_x = blockIdx.x * blockDim.x + threadIdx.x;
7
         int idx_y = blockIdx.y * blockDim.y + threadIdx.y;
8
9
         float sum = 0.0;
         for (int bk = 0; bk < N; bk += SIZE) {
10 -
             s_a[threadIdx.y][threadIdx.x] = A[idx_y * N + bk + threadIdx.x];
11
12
             s_b[threadIdx.y][threadIdx.x] = B[(bk + threadIdx.y) * N + idx_x];
             __syncthreads();
13
14
15 -
             for (int i = 0; i < SIZE; ++i) {
                 sum += s_a[threadIdx.y][i] * s_b[i][threadIdx.x];
16
17
             }
             __syncthreads();
18
         }
19
20
21 =
         if (idx_x < N \& idx_y < N) {
22
             C[idx_y * N + idx_x] = sum;
         }
23
24
     }
```

取 N=512, SIZE={8,16,32}, blockSize=(32,32,1), gridSize=(5,5,1) 时结果如下: (SIZE>32将无法获得正确结果)

•					Markdown 口 复制代	;码
1 ~ 2		Total Time Name	Instances	Average	Minimum	
3						
4 🕶	100.0 18592 SIZE=16	 18592 gemm_block	1	18592.0	18592	
6		Total Time Name	Instances	Average	Minimum	
7						
8 🕶	100.0 17760 SIZE=32	 17760 gemm_block	1	17760.0	17760	
10		Total Time Name	Instances	Average	Minimum	
11						
12	100.0 39424	39424 gemm_block	1	39424.0	39424	

从上述结果可以发现,分块不能过大,一方面,分块过大可能导致计算速率降低,另一方面,当分块大于32时,计算结果将不在正确。

取 N=512,SIZE=32,blockSize=(SIZE,SIZE,1),gridSize=(G,G,1),G={4,8,10,12} 时,结果如下:

•					Markdown 少 复制	訓代码
	G=4 Time(%) Maximum		Instances	Average	Minimum	
3						
4 * 5		47211 gemm_block	1	47211.0	47211	
			Instances	Average	Minimum	
7						
8 🕶		38880 gemm_block	1	38880.0	38880	
10	Time(%)	Total Time Name	Instances	Average	Minimum	
11						
12 *	39168	39168 gemm_block	1	39168.0	39168	
13 14	G=12 Time(%) Maximum	Total Time Name	Instances	Average	Minimum	
15						
16	100.0 46431	46431 gemm_block	1	46431.0	46431	
17						

较大的gridSize会导致较大的内存带宽负载,从而降低性能。每个线程块都需要访问内存来读取和写入数据,当gridSize变大时,需要访问内存的频率也会随之增加,从而使内存成为性能瓶颈。故实际应用中gridSize不能取得过大。

较小的gridSize会导致无法有效利用GPU资源,同样会导致效率降低。

在上述条件下, gridSize=(8,8,1)时结果最佳。

取 N=512, SIZE=32, blockSize=(B,B,1), B={4,8,16,32}, gridSize=(5,5,1) 时结果如下:

•					Markdown 少 复記	制代码
1 * 2	B=4 Time(%) Maximum		Instances	Average	Minimum	
3						
4 -	100.0 7936 B=8	7936 gemm_block	1	7936.0	7936	
6			Instances	Average	Minimum	
7						
8 -		7808 gemm_block	1	7808.0	7808	
10		Total Time Name	Instances	Average	Minimum	
11						
12 -	100.0 13792 B=32	13792 gemm_block	1	13792.0	13792	
14		Total Time Name	Instances	Average	Minimum	
15						
16	100.0 39008	39008 gemm_block	1	39008.0	39008	

结果显示, blockSize=(8,8,1)时结果最佳。

blockSize过小,无法有效利用GPU资源,blockSize过大,线程块需要频繁地访问内存,从而导致内存带宽负载较高,使GPU的效率降低。