20 March 2019

7.3 Homework: Binomial distribution and review

 ${f 1a.}$ A discrete random variable ${f X}$ has the following probability distribution.

x	0	1	2	3
P(X=x)	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{2}{10}$	p

Find P. [3 marks]

1b. Find $\mathrm{E}(X)$.

2a. The random variable *X* has the following probability distribution, with $\mathrm{P}(X>1)=0.5$.

х	0	1	2	3
P(X = x)	p	q	r	0.2

Find the value of *r* . [2 marks]

2b. Given that $\mathrm{E}(X)=1.4$, find the value of p and of q .

[6 marks]

3a. The following diagram shows the graph of a function f. There is a local minimum point at A, where x>0.

The derivative of f is given by $f^{\prime}(x)=3x^2-8x-3$

Find the x-coordinate of A.

[5 marks]

3b. The y-intercept of the graph is at (0,6). Find an expression for f(x).

The graph of a function g is obtained by reflecting the graph of f in the g-axis, followed by a translation

of
$$\binom{m}{n}$$

[6 marks]

4a. Let L_x be a family of lines with equation given by $r=\left(rac{x}{rac{2}{x}}
ight)+t\left(rac{x^2}{-2}
ight)$, where x>0.

Write down the equation of L_1 .

4b. A line L_a crosses the y-axis at a point P.

Show that $P_{
m has\ coordinates}\left(0,\ rac{4}{a}
ight)$. [6 marks]

4c. The line L_a crosses the x-axis at $\mathrm{Q}(2a,\ 0)$. Let $d=\mathrm{PQ}^2$.

Show that $d=4a^2+rac{16}{a^2}$. [2 marks]

4d. There is a minimum value for d. Find the value of a that gives this minimum value. [7 marks]

5a. Part of the graph of $f(x) = ax^3 - 6x^2$ is shown below.

The point P lies on the graph of f . At P, x = 1.

Find f'(x). [2 marks]

5b. The graph of f has a gradient of f at the point P. Find the value of f a. [4 marks]

6a. In this question, you are given that $\cos \frac{\pi}{3} = \frac{1}{2}$, and $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$.

The displacement of an object from a fixed point, 0 is given by $s(t) = t - \sin 2t$ for $0 \leq t \leq \pi$.

Find s'(t) . [3 marks]

6b. In this interval, there are only two values of t for which the object is not moving. One value is $t=rac{\pi}{6}$.

Find the other value. [4 marks]

- **6c.** Show that s'(t) > 0 between these two values of t.
- **6d.** Find the distance travelled between these two values of *t* . [5 marks]
- **7a.** Consider the following sequence of figures.

Figure 1 contains 5 line segments.

Given that Figure n contains 801 line segments, show that n=200. [3 marks]

- **7b.** Find the total number of line segments in the first 200 figures. [3 marks]
- 8a. Let $x=\ln 3$ and $y=\ln 5$. Write the following expressions in terms of x and y.

 $\ln\left(\frac{5}{3}\right)$. [2 marks]

 $8b. \ln 45$.

9. Three consecutive terms of a geometric sequence are x-3, 6 and x+2.

Find the possible values of x. [6 marks]