Name:	EE-272L Digital Systems Design
Reg. No.:	Marks Obtained:

Lab Manual

DSD Lab Manual Evaluation Rubrics

Assessment	Total Marks	Marks Obtained	0-30%	30-60%	70-100%
Code Organization	ization 3		No Proper Indentation and descriptive naming, no code organization.	Proper Indentation or descriptive naming or code organization.	Proper Indentation and descriptive naming, code organization.
o i guindui o ii			Zero to Some understanding but not working	Mild to Complete understanding but not working	Complete understanding, and proper working
Simulation	5		Simulation not done or incorrect, without any understanding of waveforms	Working simulation with errors, don't cares's(x) and high impedance(z), partial understanding of waveforms	Working simulation without any errors, etc and complete understanding of waveforms
FPGA	2		Not implemented on FPGA and questions related to synthesis and implementation not answered.	Correctly Implemented on FPGA or questions related to synthesis and implementation answered.	Correctly Implemented on FPGA and questions related to synthesis and implementation answered.

Combinational Circuit Design using K-Maps

Task:

You are required to build a circuit to display different characters (0 to F) on one of the eight seven-segment displays.

Fig. 4.3: Lab Task Modular Diagram.

Deliverables

• Truth table (Cathodes):

	а	В	С	d	Α	В	С	D	E	F	G
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1	1
2	0	0	1	0	0	0	1	0	0	1	0
3	0	0	1	1	0	0	0	0	1	1	0
4	0	1	0	0	1	0	0	1	1	0	0
5	0	1	0	1	0	1	0	0	1	0	0
6	0	1	1	0	0	1	0	0	0	0	0
7	0	1	1	1	0	0	0	1	1	1	1
8	1	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	1	0	0
Α	1	0	1	0	0	0	0	1	0	0	0
В	1	0	1	1	1	1	0	0	0	0	0
С	1	1	0	0	0	1	1	0	0	0	1
D	1	1	0	1	1	0	0	0	0	1	0
E	1	1	1	0	0	1	1	0	0	0	0
F	1	1	1	1	0	1	1	1	0	0	0

• Truth table (Anodes):

	х	У	Z	s1	s2	s3	s4	s5	s6	s7	s8
0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1	1	1	1	1
2	0	1	0	1	1	0	1	1	1	1	1
3	0	1	1	1	1	1	0	1	1	1	1
4	1	0	0	1	1	1	1	0	1	1	1
5	1	0	1	1	1	1	1	1	0	1	1
6	1	1	0	1	1	1	1	1	1	0	1
7	1	1	1	1	1	1	1	1	1	1	0

Circuit diagram inferred by the Xilinx Vivado:

• Maximum combinational delay in Synthesis:

Maximum combinational delay in Implementation:

Resource Utilization Summary:

Slice Logic

Site Type	Used	Fixed	+ Available +	
Slice LUTs*	8	1 0		0.01
LUT as Logic	8	1 0	63400	0.01
LUT as Memory	0	1 0	19000	0.00
Slice Registers	0	1 0	126800	0.00
Register as Flip Flop	1 0	0	126800	0.00
Register as Latch	1 0	1 0	126800	0.00
F7 Muxes	1 0	0	31700	0.00
F8 Muxes	1 0	0	15850	0.00
+	+	+	+	++

4. IO and GT Specific

+		+-		+		+		+-		+
į	Site Type	į	Used	į	Fixed	į	Available	į	Util%	į
1	Bonded IOB	1	23	1	0	1	210	† 	10.95	†
1	Bonded IPADs	Ī	0	I	0	Ī	2	I	0.00	Ī
1	PHY_CONTROL	Ī	0	I	0	Ī	6	Ī	0.00	Ī
1	PHASER_REF	I	0	I	0	Ī	6	I	0.00	Ī
1	OUT_FIFO	I	0	I	0	I	24	I	0.00	I
-	IN_FIFO	I	0	I	0	I	24	I	0.00	I
-	IDELAYCTRL	I	0	I	0	I	6	I	0.00	I
-	IBUFDS	1	0	I	0	I	202	I	0.00	I
-	PHASER_OUT/PHASER_OUT_PHY	1	0	I	0	I	24	I	0.00	I
-	PHASER_IN/PHASER_IN_PHY	1	0	I	0	I	24	I	0.00	I
-	IDELAYE2/IDELAYE2_FINEDELAY	I	0	I	0	I	300	I	0.00	I
-	ILOGIC	I	0	I	0	I	210	I	0.00	I
-	OLOGIC	I	0	I	0	I	210	I	0.00	I
+		+-		+-		+		+-		+

• System Verilog code:

```
D:\Notepad++\Projects\Lab6.sv - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
🕞 🚽 🗎 🖺 🥦 🤚 🔏 | 🔏 🐚 🗋 | ス c | m 🦙 | 🤜 🤜 | 🚍 🖺 1 | 🎹 🗸 💹 🖷 🕖 🕒 💌 💌 🗷
🔚 Lab.sv 🗵 📙 Lab_tb.sv 🗵 📙 Lab6.sv 🗵 📙 Lab6_tb.sv 🗵
         module Lab6(a,b,c,d,x,y,z,DP,A,B,C,D,E,F,G,s1,s2,s3,s4,s5,s6,s7,s8);
  2
         input logic a,b,c,d,x,y,z;
  3
         output logic A,B,C,D,E,F,G,s1,s2,s3,s4,s5,s6,s7,s8,DP;
  4
         assign DP = 0;
  5
         assign A = (\sim c \mid d) & (\sim a \mid d) & (a \mid \sim c) & (\sim b \mid \sim c) & (c \mid d) & (a \mid \sim b \mid \sim d) & (\sim a \mid b \mid c) ;
  6
         assign B = (a|b) & (b|c) & (-a|b|d) & (a|-c|-d) & (-a|c|-d) & (a|c|d);
  7
         assign C = (c|^d) & (a|^b) & (^a|b) & (a|c) & (a|^d);
  8
         assign D = (-a|c) & (b|c|d) & (-a|b|-d) & (-b|c|-d) & (-b|-c|d) & (a|b|-c);
  9
         assign E = (\cdot c | d) & (\cdot a | \cdot b) & (\cdot a | \cdot c) & (\cdot a | d) & (b | c | d);
 10
         assign F = (-a|b) & (c|d) & (-a|-c) & (a|-b|c) & (-b|d);
 11
         assign G = (\sim c \mid d) & (\sim a \mid b) & (\sim a \mid \sim d) & (b \mid \sim c) & (a \mid \sim b \mid c);
 12
         assign s1 = (x|y|z);
 13
         assign s2 = (x|y|\sim z);
 14
         assign s3 = (x|\sim y|z);
 15
         assign s4 = (x|\sim y|\sim z);
 16
         assign s5 = (\sim x | y | z);
 17
         assign s6 = (\sim x |y| \sim z);
 18
         assign s7 = (\sim x | \sim y | z);
 19
         assign s8 = (\sim x \mid \sim y \mid \sim z);
 20
         endmodule
```