Algebra Lineare

SUPSI Dipartimento Tecnologie Innovative

Gianni Grasso

29 ottobre 2024

Classe: I1B

Anno scolastico: 2024/2025

Indice

1	Vet	ctori	3
	1.1	Operazioni fondamentali	3
		1.1.1 La somma	3
		1.1.2 Moltiplicazione scalare	3
	1.2		4
		1.2.1 Generare tutti i vettori di \mathbb{R}^2	4
			5
		1.2.3 CAS Geogebra	6
	1.3	Dipendenza e indipendenza lineare	7
		1.3.1 Interpretare i risultati	7
2	Geo	ometria vettoriale	8
	2.1	Coordinate polari	8
	2.2	-	9
		2.2.1 norma	9
		2.2.2 I versori	9
		2.2.3 Prodotto scalare x·y	9
		2.2.4 Teorema del prodotto scalare	0
		2.2.5 Applicazioni	0
	2.3	Il prodotto vettoriale	1
		2.3.1 Teorema	1
		2.3.2 Area del parallelogramma	1
	2.4	Il prodotto misto	2
		2.4.1 Proprietà	2
		2.4.2 Allineamento di 3 punti	2
		2.4.3 Complanarità di 4 punti	2
		2.4.4 Distanze	2
		2.4.5 Proiezione di un punto su un piano	3
	2.5	La retta	
		2.5.1 Equazioni parametriche	
		2.5.2 Posizioni reciproche di due rette in \mathbb{R}^3	

1 Vettori

Un vettore serve per rappresentare oggetti multidimensionali, ad esempio per le informazioni di un aereo potremmo avere un vettore con [velocità, direzione, altezza, potenza] o più semplicemente per descrivere una velocità potremmo usare $\vec{v} = [V_x, V_y]$.

1.1 Operazioni fondamentali

1.1.1 La somma

Quando sommiamo due vettori quello che facciamo effettivamente è la somma dei componenti, è importante che i due vettori abbiano la stessa dimensione, vale quindi:

$$x = [x_1, ..., x_n], y = [y_1, ..., y_n] \in \mathbb{R}^n \Rightarrow x + y = [x_1 + y_1, ..., x_n + y_n]$$

Le modalità di somma dei vettori da un punto di vista geometrico sono principalmente due:

1. Metodo del parallelogramma: AB + AC = AD

2. Metodo punta-coda: AB + BD = AD

1.1.2 Moltiplicazione scalare

È possibile moltiplicare un qualsiasi vettore con un numero reale k, il prodotto di tale operazione è un vettore kx che ha al suo interno il valore di ogni suo componente moltiplicato per k, ovvero:

$$x = [x_1, ..., x_n] \in \mathbb{R}^n, k \in \mathbb{R} \Rightarrow kx = [kx_1, kx_2, ..., kx_n]$$

Ecco un semplice esempio di una moltiplicazione di un vettore con un numero reale:

$$3 \begin{pmatrix} -4 \\ -3 \\ 3 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \cdot (-4) \\ 3 \cdot (-3) \\ 3 \cdot 3 \\ 3 \cdot (-5) \\ 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} -12 \\ -9 \\ 9 \\ -15 \\ 9 \end{pmatrix}$$

1.2 Combinazioni lineari

Si chiama combinazione lineare dei vettori $x_1, x_2, ..., x_m$ con coefficienti (numeri scalari) $c_1, c_2, ..., c_m$ il vettore

$$c_1x_1 + c_2x_2 + \dots + c_mx_m$$

Il risultato di questa somma apparterrà allo spazio vettoriale di partenza.

Facciamo un semplice esempio per rendere meglio l'idea, mettiamo caso che dati due vettori u = [5, -8, -5] e v = [-6, 5, -6], vogliamo trovare la combinazione lineare 2u - 3v:

$$2 \begin{pmatrix} 5 \\ -8 \\ -5 \end{pmatrix} - 3 \begin{pmatrix} -6 \\ 5 \\ -6 \end{pmatrix} = \begin{pmatrix} 28 \\ -31 \\ 8 \end{pmatrix}$$

Ora da un punto di vista geometrico cerchiamo di esprimere AE e AF come combinazioni lineari dei due vettori $\vec{a} = AB$ e $\vec{b} = AC$.

1.2.1 Generare tutti i vettori di \mathbb{R}^2

Teorema: se $\vec{u}, \vec{v} \in \mathbb{R}^2$ sono non paralleli, allora è possibile esprimere qualunque vettore \vec{w} di \mathbb{R}^2 come combinazione lineare di \vec{u} e \vec{v} in un unico modo.

Per rappresentare un vettore come combinazione lineare di altri due vettori occorre creare un sistema e separare le componenti. **Esempio:** esprimere $\vec{w} = [6,4]$ come CL dei vettori $\vec{u} = [3,1]$ e $\vec{v} = [1,2]$

$$\begin{pmatrix} 6\\4 \end{pmatrix} = h \begin{pmatrix} 3\\1 \end{pmatrix} + k \begin{pmatrix} 1\\2 \end{pmatrix} \rightarrow \begin{cases} 6 = 3h + k\\4 = h + 2k \end{cases}$$

Un sistema del genere avrà una soluzione solo se \vec{u} e \vec{v} non sono paralleli, in caso contrario $(\vec{u}||\vec{v})$ il risultato del sistema risulterà impossibile. In questo caso, sviluppando il sistema troviamo che $h = \frac{8}{5}, k = \frac{6}{5}$.

Esempio: esiste una combinazione lineare dei vettori $\vec{u} = [6, 4]$ e $\vec{v} = [9, 6]$ che dia il vettore $\vec{w} = [12, 10]$?

$$h \begin{pmatrix} 6 \\ 4 \end{pmatrix} + k \begin{pmatrix} 9 \\ 6 \end{pmatrix} = \begin{pmatrix} 12 \\ 10 \end{pmatrix} \rightarrow \begin{cases} 6h + 9k = 12 \\ 4h + 6k = 10 \end{cases}$$

Provando a risolvere il sistema si ottiene 8=10 (il sistema non ammette soluzioni), quindi non è possibile esprimere $\vec{w}=[12,10]$ come combinazione lineare dei vettori $\vec{u}=[6,4]$ e $\vec{v}=[9,6]$, ciò significa che \vec{u} e \vec{v} sono paralleli. In altre parole combinando linearmente questi due vettori si possono ottenere solo i vettori che hanno la stessa direzione di \vec{u} e \vec{v} . Graficamente risulta così:

1.2.2 Generare tutti i vettori di \mathbb{R}^3

Teorema: se $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ sono non complanari (non appartengono allo stesso piano e quindi nessuno di essi si può esprimere come combinazione lineare degli altri due), allora è possibile esprimere qualunque vettore \vec{z} di \mathbb{R}^3 come combinazione lineare di $\vec{u}, \vec{v}, \vec{w}$ in un unico modo.

In questo caso, utilizzando **due** vettori non paralleli, possiamo generare un piano su \mathbb{R}^3 , tuttavia in questo caso avendo una dimensione 3 e soltanto due vettori, siamo limitati a generare **solo** i vettori che si trovano sul piano dei due vettori.

Per generare tutti i vettori possibili occorrono quindi 3 vettori, possono essere vettori qualsiasi purché non siano complanari, ovvero nessuno di essi si possa esprimere come combinazione lineare degli altri.

In generale, per generare i vettori di \mathbb{R}^n sono necessari e sufficienti n vettori, purché nessuno di essi si possa esprimere come combinazione lineare degli altri.

1.2.3 CAS Geogebra

Abbiamo capito quindi che per determinare una combinazione lineare tra più vettori è importante riuscire a creare un sistema di equazioni. Per quanto riguarda però la risoluzione possiamo usare il CAS di Geogebra, tramite lo strumento Risolvi gli passiamo come parametri la lista di equazioni e le variabili di riferimento.

Risolvi(
$$\{2x+5y=8, 4x+5y=6\}, \{x,y\}$$
)
 $\rightarrow \{\{x=-1, y=2\}\}$

Il sistema ammette una sola soluzione

Risolvi(
$$\{2x+5y=8, 2x+5y=6\}, \{x,y\}$$
) $\rightarrow \{\}$

Il sistema non ammette soluzioni

Risolvi(
$$\{2x+5y=8, 4x+10y=16\}, \{x,y\}$$
)
 $\rightarrow \left\{ \left\{ x = \frac{-5}{2} \ y+4, y=y \right\} \right\}$

Il sistema ammette infinite soluzioni

SUPSI DTI Algebra Lineare Pagina 7 di 14

1.3 Dipendenza e indipendenza lineare

Si dice che i vettori $x_1, ..., x_m \in \mathbb{R}^n$ sono linearmente indipendenti (LI) se nessuno di essi si può esprimere come combinazione lineare degli altri, altrimenti si dicono linearmente dipendenti (LD).

Possiamo dire quindi che una base di \mathbb{R}^n è formata da n vettori linealmente indipendenti. Una base è una lista di vettori LI che generano \mathbb{R}^n .

Teorema. I vettori $x_1...x_m \in \mathbb{R}^n$ sono **linearmente indipendenti** se e solo se l'unica loro combinazione lineare che dà il vettore nullo 0 è la combinazione banale:

$$0x_1 + \ldots + 0x_m = 0$$

In questo modo occorre risolvere un solo sistema lineare **omogeneo** (con i termini noti tutti nulli).

Se ad esempio vogliamo stabilire se i vettori $a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, b \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, c \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$ sono LI o LD, diventa:

$$h\begin{pmatrix}1\\2\\3\end{pmatrix} + j\begin{pmatrix}4\\5\\6\end{pmatrix} + k\begin{pmatrix}7\\8\\9\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}$$

1.3.1 Interpretare i risultati

Una volta che abbiamo il sistema, possiamo inserirlo in Geogebra utilizzando la funzione **Risolvi** con la sintassi vista nel capitolo scorso. Se l'unico valore possibile dei coefficienti è 0 (ammette **solo** la soluzione banale), allora i vettori sono LI.

$$\begin{split} & \left| \text{Risolvi}(\{h+4j+7k=0,2h+5j+8k=0,3h+6j+8k=0\},\{h,j,k\}) \right| \\ & \rightarrow & \left. \{ \{h=0,j=0,k=0\} \right\} \end{split}$$

In caso contrario, significa che i vettori sono LD.

Risolvi({h+4j+7k=0,2h+5j+8k=0,3h+6j+9k=0},{h,j,k}

$$\rightarrow \{\{\mathbf{h} = \mathbf{k}, \mathbf{j} = -2 \mathbf{k}, \mathbf{k} = \mathbf{k}\}\}$$

Facciamo un esempio più pratico per notare qualche altro dettaglio. Proviamo a stabilire se i

vettori
$$a \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, b \begin{pmatrix} 5 \\ 6 \\ 7 \\ 8 \end{pmatrix}, c \begin{pmatrix} 9 \\ 10 \\ 11 \\ 12 \end{pmatrix}, d \begin{pmatrix} 13 \\ 14 \\ 15 \\ 16 \end{pmatrix}$$
 sono LI o LD.

$$\begin{aligned} & \text{Risolvi}(\{h+5j+9k+13l=0,2h+6j+10k+14l=0,3h+7j+11k+15l=0,4h+8j+12k+16l=0},\{h,j,k,l\}) \\ & \rightarrow & \left\{ \{\mathbf{h}=\mathbf{k}+2\ \mathbf{l},\mathbf{j}=-2\ \mathbf{k}-3\ \mathbf{l},\frac{\mathbf{k}=\mathbf{k},\mathbf{l}=\mathbf{l}}\} \right\} \end{aligned}$$

Notiamo per prima cosa che i vettori sono LD. Inoltre ci sono due variabili libere (k = k, l = l), ciò significa che ci sono solo 2 vettori LI (4 - 2 = 2), per verificare quali dovremmo vedere i singoli casi. Infine sappiamo che a, b, c, d generano un **sottospazio** di \mathbb{R}^4 di **dimensione** 2.

In generale, k vettori LI non nulli di \mathbb{R}^n generano un sottospazio di dimensione k.

2 Geometria vettoriale

2.1 Coordinate polari

- Coordinate cartesiane, P = (x, y) (ascissa, ordinata)
- Coordinate polari, $P = (r, \alpha)$ (norma, angolo)

Per passare da coordinate polari a coordinate cartesiane si utilizzano rispettivamente $cos(\alpha)$ e $sin(\alpha)$. Vale dunque:

$$\begin{cases} x = r \cos(\alpha) \\ y = r \sin(\alpha) \end{cases}$$

che graficamente appare:

$$y = r \sin(\alpha)$$

$$x = r \cos(\alpha)$$

Per passare invece da coordinate cartesiane a coordinate polari dobbiamo stabilire r e α . Abbiiamo quindi:

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \alpha = \begin{cases} \cos^{-1}(\frac{x}{r}) & y \ge 0 \\ -\cos^{-1}(\frac{x}{r}) & y < 0 \end{cases}$$

che graficamente appare:

$$y = r \sin(\alpha)$$

$$x = r \cos(\alpha)$$

2.2 Il prodotto scalare

2.2.1 norma

Dato il vettore x si chiama prodotto scalare di x per se stesso e si indica $x \cdot x$ il numero reale

$$\mathbb{R}^2$$
: $x \cdot x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 + x_2^2 = \|x\|^2$

dunque la norma è

$$||x|| = \sqrt{x \cdot x}$$

questo vale in qualsiasi dimensione (\mathbb{R}^n) .

La norma è un valore sempre maggiore o, nel caso il vettore fosse nullo, uguale a zero. Inoltre possiede due proprietà interessanti:

- disuguaglianza triangolare, $||x + y|| \le ||x|| + ||x||$
- omogeneità, ||hx|| = |h| + ||x||

La somma di due norme non è quindi uguale alla norma contenente la somma dei due vettori (disuguaglianza triangolare).

2.2.2 I versori

I versori sono vettori di norma 1, per fare diventare un vettore generico $\|x\|$ di norma 1 si può fare

$$\frac{1}{\|x\|}x$$
 questo vettore ha norma 1

Allo stesso modo se vogliamo farlo diventare, per esempio, di norma 7 possiamo scriverlo come

$$\frac{7}{\|x\|}x$$
 questo vettore ha norma 7

2.2.3 Prodotto scalare x·y

Dati i vettori
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$
, si chiama prodotto scalare di x e y , e si indica $x \cdot y$,

il numero reale

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Di base se prendiamo due vettori tramite l'agolo che generano possiamo determinare:

- se $\alpha > 90^{\circ}$ il prodotto scalare è negativo
- se $\alpha=90^\circ$ il prodotto scalare è 0
- se $\alpha < 90^{\circ}$ il prodotto scalare è positivo

2.2.4 Teorema del prodotto scalare

$$u \cdot v = ||u|| \, ||v|| \cos(\alpha)$$

dalla quale possiamo ricavare

$$cos(\alpha) = \frac{u \cdot v}{\|u\| \|v\|}$$

e quindi

$$\alpha = \cos^{-1}\left(\frac{u \cdot v}{\|u\| \|v\|}\right)$$

Nota: $\alpha rad = \frac{\pi}{180} \alpha^{\circ}$

2.2.5 Applicazioni

• Vettore bisecante: Dati due vettori \vec{a} e \vec{b} si vuole costruire un vettore \vec{c} che divide l'angolo tra \vec{a} e \vec{b} in due angoli uguali:

- 1. Si costruisce un vettore kache abbia la stessa norma di b
- 2. Un vettore che biseca l'angolo tra a e b, ad esempio ka+b

Esempio
$$a = \begin{bmatrix} 1 \\ 8 \\ 4 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

$$\|a\| = 7, \|b\| = 3 \Rightarrow \frac{1}{7}a \text{ ha norma } 1 \Rightarrow \frac{3}{7}a \text{ ha norma } 3$$

$$\frac{3}{7}a + b = \begin{bmatrix} 3/7 \\ 24/7 \\ 12/7 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 17/7 \\ 31/7 \\ 26/7 \end{bmatrix}$$

• Proiezione vettore su vettore: $pro(b,a)=\frac{b\cdot a}{a\cdot a}a$ dove $k=\frac{b\cdot a}{a\cdot a}$

• Proiezione punto su retta: H = A + AH = A + pro(b, a), restituisce un punto

Gianni Grasso

2.3 Il prodotto vettoriale

Il prodotto vettoriale è un operazione che esiste solo in \mathbb{R}^3 , dati due vettori \vec{a} e \vec{b} tramite il prodotto vettoriale è possibile definire un vettore \vec{c} ortogonale agli altri due. Di conseguenza se \vec{a} e \vec{b} sono LI si costruisce una base di \mathbb{R}^3 .

Dati due vettori $u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$, si definisce prodotto vettoriale tra i due, e si scrive $u \times v$, ...

il vettore

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_2 - x_2y_1 \end{bmatrix}$$

Nota: il prodotto vettoriale <u>non</u> è commutativo, $e_1 \times e_2 \neq e_2 \times e_1$

Ecco alcune proprietà:

$$egin{array}{lll} {\bf e}_1 imes {\bf e}_2 & {\bf e}_3 & {\bf e}_2 imes {\bf e}_1 & -{\bf e}_3 \ {\bf e}_2 imes {\bf e}_3 & {\bf e}_2 & -{\bf e}_1 \ {\bf e}_3 imes {\bf e}_1 & {\bf e}_3 imes {\bf e}_2 & -{\bf e}_2 \ \end{array}$$

$$\mathbf{e}_1 \times \mathbf{e}_1 = \mathbf{e}_2 \times \mathbf{e}_2 = \mathbf{e}_3 \times \mathbf{e}_3 = \mathbf{0}$$

- Se $u \times v > 0$ l'orientamento è anti orario
- Se $u \times v < 0$ l'orientamento è orario

2.3.1 Teorema

Se $u, v \in \mathbb{R}^3$ allora

$$v$$
 $\frac{|v||\cos\alpha}{|v||\cos\alpha}$
 v

 $||u \times v|| = ||u|| \, ||v|| \, sin(\alpha)$

2.3.2 Area del parallelogramma

- $\|v\|\sin(\alpha)$ è l'altezza del parallelogramma generato da u e v
- $\|u \times v\|$ è l'area del parallelogramma generato da u e v
- $\frac{1}{2} \|u \times v\|$ è l'area del triangolo generato da $u \in v$

$$sin(\alpha) = \frac{\|u \times v\|}{\|u\| \|v\|}$$

e quindi

$$\alpha = \sin^{-1} \left(\frac{\|u \times v\|}{\|u\| \|v\|} \right)$$

2.4 Il prodotto misto

Il prodotto misto si fa tra 3 vettori e ritorna uno scalare (un numero) e non un vettore.

$$(a \times b) \cdot c$$

che è uguale al **volume** del parallelepipedo generato da a, b, c.

- $(a \times b) \cdot c > 0 \Rightarrow a, b, c$ è una terna destrorsa
- $(a \times b) \cdot c < 0 \Rightarrow a, b, c$ è una terna sinistrorsa
- $(a \times b) \cdot c = 0 \Rightarrow a, b, c$ sono linearmente dipendenti

2.4.1 Proprietà

$$\mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = \mathbf{b} \times \mathbf{c} \cdot \mathbf{a} = \mathbf{c} \times \mathbf{a} \cdot \mathbf{b}$$
$$\mathbf{b} \times \mathbf{a} \cdot \mathbf{c} = \mathbf{c} \times \mathbf{b} \cdot \mathbf{a} = \mathbf{a} \times \mathbf{c} \cdot \mathbf{b}$$
$$\mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = -\mathbf{b} \times \mathbf{a} \cdot \mathbf{c}$$

$$k\mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = \mathbf{a} \times k\mathbf{b} \cdot \mathbf{c} = \mathbf{a} \times \mathbf{b} \cdot k\mathbf{c} = k(\mathbf{a} \times \mathbf{b} \cdot \mathbf{c})$$

 $(ha) \times (jb) \cdot (kc) = (hjk)(a \times b \cdot c)$

2.4.2 Allineamento di 3 punti

- Metodo 1: i punti A, B, C sono allineati se e solo se AC = kAB
- Metodo 2 (in \mathbb{R}^3): i punti A, B, C sono allineati se e solo se $AB \times AC = 0$

2.4.3 Complanarità di 4 punti

$$(AB \times AC) \cdot AD = 0$$

se $n = AB \times AC$ dà un vettore ortogonale al piano ABC, il punto D invece appartiene a questo piano se e solo se AD è ortogonale a n, ovvero se $n \cdot AD$ è nullo.

2.4.4 Distanze

- Dal punto P al punto A: $\sqrt{AP \cdot AP}$
- Dal punto P alla retta AB: $\frac{|AB \times AP|}{\|AB\|}$

• Dal punto P al piano ABC: $\frac{|AB \times AC \cdot AP|}{\|AB \times AC\|}$

2.4.5 Proiezione di un punto su un piano

- 1. $n = AB \times AC$
- 2. AK = proiezione di APsu n
- 3. H = P + PH = P + KA

Nota: possiamo usare qualsiasi vettore parallelo a n.

2.5 La retta

2.5.1 Equazioni parametriche

Dato un punto $A=(X_0,y_0,z_0)$ e un vettore direzione $v=\begin{bmatrix} a\\b\\c \end{bmatrix}$ non nullo, la retta r passante per A e parallela a v ha equazioni parametriche

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

Le equazioni parametriche di una retta sono infinite, basta prendere un punto qualsiasi nella retta e un vettore direzione parallelo.

2.5.2 Posizioni reciproche di due rette in \mathbb{R}^3

Due rette r:A,u e s:B,v nello spazio possono essere:

- Coincidenti
 - Geometricamente

$$\begin{split} u \parallel v \in A \in s \\ \Leftrightarrow B \in r \\ \Leftrightarrow \vec{AB} \parallel \vec{u} \\ \Leftrightarrow \vec{AB} \parallel \vec{v} \end{split}$$

- Algebricamente

$$\begin{aligned} u \times v &= \vec{0} \\ e \\ \vec{u} \times \vec{AB} &= \vec{0} \\ (\Leftrightarrow \vec{v} \times \vec{AB} &= \vec{0}) \end{aligned}$$

• Parallele

- Geometricamente

$$\begin{array}{c} u \parallel v \in A \notin s \\ \Leftrightarrow B \notin r \\ \Leftrightarrow \vec{AB} \nparallel \vec{u} \\ \Leftrightarrow \vec{AB} \nparallel \vec{v} \end{array}$$

- Algebricamente

$$\begin{aligned} u \times v &= \vec{0} \\ e \\ \vec{u} \times \vec{AB} &\neq \vec{0} \\ (\Leftrightarrow \vec{v} \times \vec{AB} \neq \vec{0}) \end{aligned}$$

• Incidenti

- Geometricamente

$$u \not \mid v \in r \cap s = \{p\}$$

- Algebricamente

$$\begin{aligned} u \times v &\neq \vec{0} \\ e \\ \vec{u} \times \vec{v} \cdot \vec{AP} &= 0 \\ (\Leftrightarrow \vec{u} \times \vec{v} \cdot \vec{BP} &= 0) \end{aligned}$$

• Sghembe

 $- \ \ Geometricamente$

$$u\not\parallel v \neq r\cap s = \{\}$$

- Algebricamente

$$u \times v \neq \vec{0}$$

$$e$$

$$\vec{u} \times \vec{v} \cdot \vec{AB} \neq \vec{0}$$