Débruitage d'images

BONBON Adam, HUNOT-MARTIN Alaric, JEAN Louis

Faculté des Sciences, Université de Montpellier

13 novembre 2024

Illustration des types de bruit

Figure: Image originale

Figure: Bruit sel et poivre

Figure: Bruit gaussien

- Bruit sel et poivre : pixels blancs et noirs aléatoires
- Bruit gaussien : ajoute des variations aléatoires suivant une distribution normale

• Filtre médian :

- Très efficace pour le bruit impulsionnel (sel et poivre)
- PSNR amélioré : de 20.1 dB à 33.1 dB pour le bruit sel et poivre

• Transformée en ondelettes de Haar :

- Décompose l'image en sous-bandes de fréquence pour un débruitage ciblé
- PSNR amélioré : de 20.1 dB à 26.0 dB pour le bruit gaussien

Variation totale :

- Minimise la variation globale tout en conservant les bords nets
- PSNR amélioré : de 20.1 dB à 29.6 dB pour le bruit gaussien

De gauche à droite : filtre médian, ondelettes de Haar, variation totale

- **Filtre moyenneur :** Effectue une convolution entre une image et un filtre moyenneur.
 - Réduit le bruit, mais introduit un flou dans l'image
 - PSNR amélioré : de 20.1 dB à 24.4 dB
- Transformée de Fourier avec filtre passe-bas gaussien :
 - Conserve uniquement les basses fréquences
 - PSNR amélioré : de 20.1 dB à 28.7 dB
- Filtre basé sur la densité de probabilité :
 - Pondère les pixels voisins selon une distribution normale
 - PSNR amélioré : de 20.1 dB à 24.2 dB

Test avec du **bruit gaussien** :

- Filtrage de Wiener :
 - Optimise le rapport signal/bruit tout en préservant les détails.
 - PSNR amélioré: de 20.1 dB à 28.93 dB.
- Non-Local Means (NLM) :
 - Exploite la redondance des motifs pour estimer les pixels.
 - PSNR amélioré : de 20.1 dB à 29.9 dB.
- BM3D (Block-Matching and 3D Filtering) :
 - Regroupe des blocs similaires pour le filtrage collaboratif.
 - PSNR amélioré : de 20.1 dB à 31.84 dB.

• Filtre guidé :

- Préserve les bords tout en lissant les régions homogènes.
- PSNR amélioré : de 20.1 dB à 25.20 dB.
- Filtre bilatéral non adaptatif :
 - Lisse tout en préservant les contours en utilisant une fenêtre locale.
 - **PSNR amélioré** : de 20.1 dB à 28.54 dB.
- Filtre bilatéral adaptatif :
 - Ajuste dynamiquement les paramètres en fonction des caractéristiques locales.
 - PSNR amélioré : de 20.1 dB à 28.70 dB.

Comparaison des méthodes classiques avec une courbe PSNR moyenne

- Filtre moyenneur :
 Amélioration modérée
- Transformée de Fourier : PSNR décroît avec
 l'augmentation du rayon
- Densité de probabilité :
 Amélioration très lente

Comparaison des méthodes classiques avec une courbe **PSNR** moyenne

- Filtre Wiener : PSNR optimal à demi-taille de fenêtre L=2
- Non-Local Means (NLM) : PSNR optimal pour h = 0.09
- BM3D : PSNR décroît avec l'augmentation de $\sigma_{\rm psd}$

Comparaison des méthodes classiques avec une courbe PSNR moyenne

- Filtre Guidé : PSNR optimal pour $\epsilon = 0.05$
- Filtre Bilatéral Simple : PSNR optimal pour $\sigma_{Color} = 60$

Première exploration de CGNet

- Utilisation de **CGNet** pour le débruitage basé sur un modèle d'apprentissage profond pré-entraîné.
- Dataset utilisé : SIDD (Smartphone Image Denoising Dataset).
- Principaux défis rencontrés :
 - Ressources limitées : Difficulté à entraîner le modèle localement.
 - Délais d'entraînement : Plus d'une semaine nécessaire pour obtenir des résultats concrets sur notre machine personnel sans modifier les paramètres.
- Perspectives : Ajuster et optimiser l'entraînement pour le rendre accessible et réduire les délais.

Réimplémentation basique du modèle CGNet

Objectif : Développer une version du modèle **CGNet** pour le débruitage d'images en utilisant le dataset **BSDS500**.

- Le modèle utilise des **convolutions profondes** pour capturer des informations contextuelles à différentes échelles.
- Utilisation de blocs résiduels partiels pour améliorer la propagation des gradients.
- Expérimentation avec des fonctions d'activation avancées pour optimiser la capture des caractéristiques.

Dataset utilisé : BSDS500

Présentation du dataset

- Dataset: BSDS500 (Berkeley Segmentation Dataset).
- Contient environ 200 images d'animaux, paysages et environnements naturels.
- Chaque image est annotée pour une meilleure compréhension des contours et des segments.

Pourquoi ce dataset ?

- Choisi pour sa **diversité** et sa compatibilité avec l'architecture CGNet.
- Garantit une variété de scènes et textures, utile pour un modèle de débruitage général.
- Contrairement à d'autres datasets thématiques, il évite de biaiser les résultats en offrant une meilleure diversité d'images.

Performances et résultats préliminaires

Résultats actuels :

- Amélioration du PSNR (Peak Signal-to-Noise Ratio) allant de 4 à 10 dB par rapport aux images bruitées initiales.
- En moyenne, le PSNR passe de 20 dB (image bruitée) à 28 dB (image débruitée).

Figure: Résultats sur un exemple du dataset BSDS500

PSNR bruité = 20.10 dB, PSNR débruité = 28.11 dB

Améliorations potentielles pour le réseau CGNet

Réseau encore en développement :

- L'entraînement du modèle n'est pas encore finalisé.
- Les **hyperparamètres** n'ont pas encore été entièrement optimisés pour des performances maximales.
- Potentiel d'amélioration avec un ajustement plus précis des paramètres d'apprentissage.

Features manquantes à implémenter prochainement :

- Cependant, il reste des différences par rapport à un CGNet complet :
 - Manque de modules contextuels pour l'agrégation d'informations à différentes échelles.
 - 2 Pas encore de **supervision multi-échelle** pour guider l'apprentissage.
 - Absence de convolutions dilatées, limitant la capacité à capturer des détails globaux.

Réécriture des méthodes classiques et premières comparaisons

Objectif : comparer notre implémentation de CGNet avec des méthodes classiques de débruitage

Méthodes réimplémentées (adaptées pour les images couleur) :

- Filtre médian
- Transformation en ondelettes de Haar
- BM3D

Pipeline de test :

- Bruitage d'une image (bruit gaussien, sel et poivre)
- Débruitage avec chaque méthode + CGNet
- Évaluation via PSNR

Observations:

- CGNet performant, mais améliorable
 - Filtre médian efficace pour le bruit sel et poivre
 - BM3D à revoir (performances inférieures)

Résultats de la comparaison (exemple avec lena.ppm)

Méthode	PSNR (dB)	
	Bruit gaussien	Bruit sel et poivre
CGNet	25.8	25
Filtre médian	25.9	30
Ondelettes de Haar	26	21
BM3D	20.2	18.1

Table: Comparaison du PSNR entre l'image originale et débruitée

Observations:

- Le filtre médian est le meilleur pour le bruit sel et poivre
- CGNet montre un potentiel prometteur même avec une implémentation basique

Développement de l'interface graphique

Objectif : simplifier l'utilisation des méthodes de débruitage

Fonctionnalités actuelles :

- Sélection d'images bruitées ou neutres
- Choix de la méthode de débruitage

Fonctionnalités à venir :

- Ajout d'options pour bruiter une image avec différents types de bruit
- Lancement du débruitage avec calcul des métriques (PSNR, SSIM, etc.)

Aperçu de l'application :

Conclusion

Merci pour votre attention!

Des questions?