1. Consider a hypothetical Fermi system with N particles in volume V and with the density of states $g(\varepsilon)$ given by

$$g(\varepsilon) = \begin{cases} 0 & \text{if} \quad \varepsilon < 0 \\ \alpha V & \text{if} \quad \varepsilon > 0 \end{cases},$$

where α is a constant.

- (a) Find the Fermi energy ε_F and the internal energy of the system at zero temperature.
- (b) Using the Sommerfeld expansion, find the chemical potential, the internal energy, and the specific heat at low temperatures.
- 2. The dimensionality plays a fundamental role in phase transitions and critical phenomena. Its importance also shows in the peculiar phenomenon of Bose-Einstein condensation. Show that there is no Bose-Einstein condensation in the one or two-dimensional ideal Bose gas with the dispersion relation $\varepsilon(p) = p^2/2m$ at any nonzero temperature. (At T = 0, of course, all particles are in the ground state.)
- 3. Find the behavior of the *isotherm compressibility*, κ_T , in as the critical temperature is approached *from above*, i.e., in the $T \to T_c + 0$ limit. This means that you should obtain an expression for κ_T as a function of $(T T_c)$ in the vicinity of the transition temperature. You should review the notes posted on LMS regarding the behavior of the Bose gas just above T_c . In particular, use

$$\mu(T) \approx -kT \left(\frac{3\zeta(3/2)}{4\sqrt{\pi}}\right)^2 \left(\frac{T - T_c}{T_c}\right)^2 \approx -kT_c \left(\frac{3\zeta(3/2)}{4\sqrt{\pi}}\right)^2 \left(\frac{T - T_c}{T_c}\right)^2$$

and

$$f_{3/2}^{-}(e^{-\alpha}) \approx \zeta(3/2) - 2\sqrt{\pi}\alpha^{1/2}$$
, where $\alpha = -\frac{\mu}{kT}$.

Also, you will need to employ the basic thermodynamic relation

$$-\left(\frac{\partial V}{\partial P}\right)_{N,T} = \frac{V^2}{N^2} \left(\frac{\partial N}{\partial \mu}\right)_{V,T}.$$

4. Consider the simple model for a one-dimensional solid consisting of N atoms of identical mass m along a chain. Atoms are connected only with nearest-neighbor atoms by "springs" with spring constant κ . The equilibrium separation between atoms (i.e., the lattice constant) is a. The springs are relaxed in equilibrium and we allow only for

longitudinal oscillations. For simplicity, use periodic boundary conditions, $u_{j+N} = u_j$, where u_j is the displacement of the j th atom, measured from its equilibrium position.

(a) Show that the equation of motion for the displacements is

$$m\ddot{u}_{i} = \kappa(u_{i+1} + u_{i-1} - 2u_{i}), \ j = 1, 2, ..., N.$$

(b) Solve the above set of equation by means of complex Fourier series, yielding the normal modes and the spectrum. In particular, show that the frequency – wave-number dispersion relation is given by

$$\omega(k) = 2\sqrt{\frac{\kappa}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|,$$

where $k = \frac{2\pi}{Na}n$, $n = -\frac{N}{2},...,\frac{N}{2}$ (assumed even N for simplicity).

(c) From the above dispersion relation it follows that for small k values we can use $\omega(k) = ck$, where c is the speed of longitudinal vibrations in this solid. Obtain the low-temperature behavior of the specific heat of this *one-dimensional* solid of size L = Na in the Debye approximation.

5. Obtain an estimate for the

- (a) Fermi energy and Fermi temperature in copper (assume one conduction or "free" electron per atom). For the mass density of copper use $\rho = 9 \frac{g}{cm^3}$, and the atomic mass is 63.5g/mol.
- (b) critical temperature for the Bose-Einstein condensation in an ideal He⁴ "gas" with density $\rho = 0.145 \frac{g}{cm^3}$. The atomic mass is 4g/mol.
- (c) Debye temperature in copper (use the parameters given in (a) and the effective sound velocity $c \approx 4000 \frac{m}{s}$).