comspec a program for calculation of turbulence statistics in complex terrain

Jakob Mann

November 19, 1999

1 Introduction

The program comspec calculates variances, spectra or cross-spectra of wind fluctuations in flat or complex terrain. For flat terrain the input is simple parameters such as the mean wind speed U, the roughness length z_0 and the height above the terrain z. In the case of complex terrain the input is files describing the upwind mean flow on a line starting at the point of interest. These files are produced by the mean flow calculation program LINCOM. Additional input regarding the preferred standard spectrum of the user is also needed as described below in section 2. All inputs are given in a file, and the name of this file is given as command line argument to the program comspec.

A 'sister' program windsimu, which uses similar input and simulates fields of wind fluctuations, will be described elsewhere.

The program is written in C++, but is basically C and uses only a few C++ features. It has been compiled with the Microsoft Visual C++ 5.0.

2 Input parameters

The first line in the input file is a word describing the general situation. It can either be basic, sea, land, or terrain. The following table gives the additional input in each of the four cases:

	Description
basic	The parameters $\alpha \varepsilon^{2/3}$, L and Γ , which describes the three-
	dimensional spectrum (the so-called spectral tensor) for flat ter-
	rain, are given directly. This is only valuable if the parameters
	for some reason are know in advance, or if isotropic ($\Gamma = 0$)
	statistics is wanted.
sea	Open sea. Mean wind speed U , the height above the sea surface
	z, and the spectrum type (see below) are given.
land	Flat, homogeneous land. Mean wind speed U , the height above
	the surface z , the roughness length z_0 , and the spectrum type
	are given.
terrain	Complex terrain. The name of the file containing output from
	LINCOM is given. The output from LINCOM is the flow char-
	acteristics along an upstream line. The next input is an integer
	specifying the height of interest in the LINCOM file. If there is
	only one this number should be 1. Thereafter two booleans are
	given (either True or False) determining whether the rough-
	ness perturbations and the orography perturbations have to be
	taken into account. The spectrum type is finally given.

The spectrum type mentioned above refers to the users preferred spectral shapes for flat terrain. These are

Spectrum type	Description
0	Kaimal, Wyngaard, Izumi and Coté's (1972) spectra.
1	Spectra from Simiu and Scanlan (1996).
2	Spectra from the standard organization ESDU, which for the
	<i>u</i> -spectrum is identical to the Danish standard DS410:1998

This table may at a later point in time also include the spectra from other standards.

3 Specification of the needed output

Now that we have specified the basic input parameters, we shall specify what we would like as output. The program gives three possibilities: spec, xspec, or sigma2, of which *one* has to be chosen:

	Description
	One point spectra.
xspec	Cross-spectra of wind fluctuations at different points.
sigma2	Variances or co-variances.

After one of these has been chosen we firstly specify all combinations of velocity components that we want. Secondly, if spectra or cross-spectra are wanted we have to specify the lowest wavenumber $k_{1,\mathrm{min}}$, the highest $k_{1,\mathrm{max}}$, and the logarithmic increment between the wavenumbers, where the spectra are calculated. Finally, if cross-spectra are calculated a transversal separation Δy and a vertical separation Δz have to be given. All this will be clarified by the examples below.

4 Examples of input and output

4.1 Example 1

A user would like to know the turbulence intensities $I_u = \sigma_u/U$, σ_v/U , and σ_w/U at z = 70 m over water at a mean wind speed of U = 30 m/s. He would like to compare all three spectrum types. He uses the input file

sea	Sea far away from land
30	Mean wind speed U
70	Height above the sea z
0	Spectrum type
sigma2	Wanted output is variance
3	Three variances are calculated as specified below
1 1	u
2 2	v
3 3	w

and two more with spectrum type 1 and 2, respectively (input files: spcExla.inp, spcExlb.inp, spcExlc.inp), . The reason for the duplicate numbers in the last three lines is that the program is capable of calculating the in load calculations rarely used covariances, e.g. $\langle uw \rangle$, which would have to be specified as 1 3. The output (sent to stdout) is

- 6.3419
- 3.23514
- 1.73254

To present the variances as turbulence intensities the WAsP Engineering shell should take the square root and divide by the mean wind speed U. The result is

	Sp	ectrum ty	ype
	0	1	2
I_u	0.084	0.086	0.103
I_v	0.060	0.062	0.070
I_w	0.044	0.046	0.048

4.2 Example 2

Calculate the u-spectrum at a site with complex roughness distribution with the wind coming from the North. The area used here is the south tip of Falster (Gedser) which is described in Mann (1999)

The input file is (spcEx2.inp)

terrain	Complex terrain calculation
P_01_000.dat	LINCOM output file
1	Use first height level in the LINCOM file
False	Effects of orography are not taken into account,
True	but effect of roughness changes are.
0	Spectrum type
spec	One-point spectra are calculated
1	One spectrum
1 1	and it is the u-spectrum
0.001	between $k_{1,\mathrm{min}}$
1.0001	and $k_{1,\max}$
0.2	with steps in the \log_{10} of k_1 of 0.2.

The output is

```
11.66
0.001
       559.622
0.00158489 480.077
0.00251189
            380.181
          275.573
0.00398107
0.00630958 182.799
0.01
      111.593
0.0158489 63.0693
0.0251189 33.1884
0.0398108 16.495
0.0630958 7.93773
0.1
     3.76579
0.158489
          1.77126
0.251189
          0.827268
0.398108
          0.384591
0.630958
          0.178222
   0.0824754
```

where the first line is the mean wind speed at the point of interest and the following lines are k_1 and $F_u(k_1)$.

4.3 Example 3

Calculate the u-coherence at a site with complex roughness distribution with the wind coming from the North with a purely transversal (horizontal) separation of 30 m

The input file is (spcEx3.inp)

```
terrain
                            Complex terrain calculation
P 01 000.dat
                            LINCOM output file
                            The first (and only) height in the LINCOM file.
False
                            Effects of orography are not taken into account,
True
                            but effect of roughness changes are.
                            Spectrum type
                            Cross-spectra are calculated
xspec
1
                            One cross-spectrum
1 1
                            and it is the u-spectrum
0.001 1.0001 0.2
                            Range and \log_{10}-step of k_1.
30
                            Transversal separation, \Delta y.
0
                            Vertical separation, \Delta z.
```

The output is

```
11.66
0.001
        559.636 559.636 459.515 2.47319e-005
0.00158489 480.072 480.072 378.444 -2.13489e-005
            380.172 380.172 278.741 9.94056e-006
0.00251189
0.00398107 275.559 275.559 178.072 3.85885e-006
0.00630958
           182.793 182.793 94.6485 2.35068e-006
       111.128 111.128 37.9158 -2.41613e-006
0.0158489 63.0613 63.0613 8.50936 2.27487e-007
0.0251189 33.1818 33.1818 -2.18252 -1.27923e-007
0.0398108
           16.4875 16.4875 -2.91517 2.08628e-008
0.0630958
           7.93433 7.93433 -1.09757 -1.16915e-008
0.1
      3.7646 3.7646 -0.116092 -3.97171e-010
          1.77093 1.77093 0.0218013 1.44123e-010
0.158489
0.251189
           0.827026 0.827026 0.0033104 2.26013e-010
0.398108
           0.384393 0.384393 5.58438e-005 3.132e-012
0.630958
           0.17815 0.17815 3.29385e-007 -3.52755e-013
    0.0824303 0.0824303 -1.1622e-007 -2.74871e-013
```

where the first line is the mean wind speed at the point of interest and the following lines are k_1 , the spectra at the two points (F_u for both points in this case) and the real, $\Re(\chi)$, and imaginary value, $\Im(\chi)$, of the cross-spectrum.

The squared coherence is now calculated as

$$coh_{uu}(k_1) = \frac{\Re^2(\chi) + \Im^2(\chi)}{F_u F_u} \tag{1}$$

5 Source and additional input files

adapint.cpp	Adaptive integration of a function of one variable.
adapint2.cpp	Adaptive integration of a function of two variables.
comspec.cpp	Main file handling input and output.
nrutilex.c	Extended version of nrutil.c from Numerical Recipes
specint.cpp	Various functions for the integration of the spectral tensor to
	obtain variances, spectra, cross-spectra etc.
ten.cpp	Functions for allocation and de-allocation of arrays of vectors
	etc.
tenbasic.cpp	The flat terrain spectral tensor and a function to get the tensor
	parameters from the mean wind speed, height above ground and
	roughness for the different spectrum types. Also simple matrix
	transformations such as the square root, simple strain distortion
	etc.
tencompl.cpp	Reading of the LINCOM file and calculation of the theoretical
	distortions of the flat terrain tensor.
ten.h	Header file defining various classes, constants and functions.
nr.h	Header file for the Numerical Recipes library.
nrutilex.h	Header file for nrutilex.c
nr.lib	The Numerical Recipes library (Press, Flannery, Teukolsky and
	Vetterling 1992).
tenparam.bin	Binary file containing a lookup table of tensor parame-
	ters. In the file tenbasic.cpp it is used assuming
	it is at the fixed position c:/users/mann/Wasp En-
	gng/ten/tenparam.bin or in the current directory. This
	has to be changed.
comspec.exe	The executable

These files and the example input files are all available via anonymous ftp to met-hp-2.risoe.dk in the directory dist/sofus

References

- Kaimal, J. C., Wyngaard, J. C., Izumi, Y. and Coté, O. R.: 1972, Spectral charcteristics of surface-layer turbulence, *Q. J. R. Meteorol. Soc.* **98**, 563–589.
- Mann, J.: 1999, Turbulence in complex terrain, European Wind Energy Conference and Exhibition.
- Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T.: 1992, *Numerical Recipes*, 2nd edn, Cambridge University Press.
- Simiu, E. and Scanlan, R. H.: 1996, Wind Effects on Structures, 3. ed., John Wiley & Sons.