- Show that in a synchronous machine, the phasor $\bar{V} + R\bar{I} + jX_a\bar{I}$ is aligned along the q axis of the machine.
- A salient-pole synchronous machine has a nominal apparent power of 300 MVA and the following parameters:

$$X_d=1.45$$
 $X_q=0.89$ $R_a=0.0065$, in per unit on the 300-MVA base.

Let i_f^o be the field current when the machine rotates at its nominal speed, with the stator opened, and a terminal voltage of 1 pu.

Let i_f be the field current when the machine operates at its nominal speed, at the values of P, Q and V given in the table below.

group	V (pu)	P (MW)	Q (Mvar)
Master EM	1.00	270	100
Master EL	0.95	285	50

Compute the ratio i_f/i_f^o .

Hint. Use Item (1) to determine θ_r^o .

- **3** Which mechanical power P_m is produced by the turbine (in MW) ?
- (Question for Master EL only)
 Use the formulae of slide # 33 (in per unit) to compute E_q and δ . Compare with the values obtained at Item (2).
- Consider the system of the lecture "Behaviour of synchronous machine during a short-circuit".

Using a simple equivalent circuit (constant emf behind equivalent reactance) of the machine compute :

group	
Master EL	the current in the machine (in pu)
Master EM	the terminal voltage of the machine (in pu)

at the beginning of the short-circuit.

Compare with the time evolutions shown in slide 14 (voltage) or 15 (current).

- Each group writes down and e-mail to me (t.vancutsem@ulg.ac.be) a report in PDF format no later than March 20 at noon.
- On March 24 (lecture # 7), you present your results using your PDF files.
- Use Matlab and append your Matlab code to the report.
 This is no substitute to the report; it is to check your derivations in case of problem...