Design of Wind Energy Systems Tutorial 4: Load Calculation and Design

Exercise 1:

 Definition of possible critical events to consider in the load calculation

Exercise 2:

 Definition of the number of cycles in a time series using the "rain flow" approach

Origin of design load cases

Assignment 1

Please fill the following table with the events or operations you think you should consider in the load calculation e.g. for wind speed/direction. Add also the relative consequences and the wind turbine component that would be most affected.

	Event/Operation	Consequence
Win d		
WT Syst em		
Envi ron men t		

Fatigue (I)

Ultimate loads are not enough to ensure the reliability of a component.

Loads much lower than the design loads may cause the collapse of a component when cyclically repeated a certain amount of times.

Microscopically small defects in components after cyclic loading may deteriorate to cracks which slowly grow until they lead to the fatigue failure of component.

Evaluation of the number of cycles per year:

- For each wind speed interval I_p a ten minutes series of the stresses relative to most loaded sections is recorded.
- Stress cycles are counted according to the cycle mean amplitude σ_{mi} and range σ_{rj} (note: sometimes only the range is taken into account)
- The number count of the same stress cycle $\sigma_{\mbox{\tiny mi,rj}}$ found for different wind conditions are added together
- From the probability density function of the wind speed the number of cycles per year
 n_{i,i} is estimated
- Stress cycles from operational loads are added to n_{i,i} (e.g. start, stop)

Fatigue (II)

Evaluation of the material lifetime from the Palmgren-Miner rule:

The damage D evaluated form the sum of the stress cycles $n_{tot,ij}$ given in the lifetime T, normalized with the number of cycles N_{ij} leading to failure for cyclic loading with the stresses σ_{mi} and range σ_{rj} found in the S-N curve or Wöhler curve of the considered material, has to be lower than 1.

$$D = \sum_{i,j} \frac{n_{tot}(\boldsymbol{\sigma}_{mi}, \boldsymbol{\sigma}_{rj})}{N_{ij}} = \sum_{i,j} \frac{T \cdot n_{ij}}{N_{ij}} < 1$$

By inverting the above equation it is possible to evaluate the lifetime T of the material:

$$T = \frac{1}{\sum_{i,j} \frac{n_{ij}}{N_{ij}}}$$

Fig. Hansen 2008

Rain-flow count method

Counts the stress cycles imaging that the peaks as well as the troughs of a time series rotated by 90 degree define the surface line of a pagoda roof where the rain is dropping from. Half cycles are counted when:

- a rain flow from a peak (trough) reaches the end of the time history or an other peak (trough)
- the considered peak (trough) is followed by a trough (peak) at least of the same amplitude

Algorithms

- 1. Reduce the time series to peaks and troughs
- **2.** Consider the first group of 4 data S_i , S_{i+1} , S_{i+2} S_{i+3}
- **3.** The pair range $|S_{i+1}-S_{i+2}|$ is counted as cycle and the relative data dismissed if the pair is totally included in within S_i and S_{i+3} otherwise the index i is increased by 1 (repeat till possible)
- **4.** The remaining ranges are considered individually as half cycles

Assignment 2

For the given data series defines the occurring range cycles and count their frequency according to the rain-flow method.

