Современные методы имитационного моделирования

Саргсян Арам Грачьяевич

Содержание

1	Введение	4
2	Основные методы моделирования 2.1 Дискретно-событийное моделирование 2.2 Системная динамика 2.3 Агентное моделирование	6 6 7 8
3	Сравнение методов	9
4	Выводы	12
5	Список литературы	13

Список таблиц

3.1	Таблица сравнения основных методов имитационного моделиро-	
	вания	9

1 Введение

Имитационное моделирование — это процесс создания моделей реальных систем или процессов с использованием компьютерных средств. Оно является одним из самых эффективных и популярных методов для исследования и оптимизации сложных систем, таких как промышленные производственные процессы, транспортные системы, финансовые рынки и т.д. Имитационное моделирование широко используется во многих областях, включая медицину и биологию, экономику и финансы. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику. Экспериментирование с моделью называется имитацией.

Её преимуществами являются возможность проводения эксперимента с моделью в безопасных условиях, сокращение времени и затрат, которые связаны с проведением реальных экспериментов, а также возможность анализирования данных, которые не могут быть получены в реальных экспериментах. Недостатками имитационного моделирования можно считать сложность создания моделей и необходимость в большом количестве входных данных. Имитационное моделирование является мощным инструментом анализа и оптимизации бизнес-процессов, систем и проектов.

Существует огромное количество методов имитационного моделирования, которые могут быть использованы для решения разных задач. Некоторые методы, такие как дискретно-событийное моделирование, подходят для моделирования процессов, которые происходят в дискретные моменты времени, например, в производственных процессах, а другие, как системная динамика, позволяют мо-

делировать динамику сложных систем, включая обратную связь, неравновесные процессы и адаптивное поведение.

Давайте рассмотрим некоторые из наиболее распространенных методов имитационного моделирования и их применение в различных областях. Также исследуем преимущества и недостатки каждого метода и сравним их для определения наилучшего подхода в различных ситуациях.

2 Основные методы моделирования

2.1 Дискретно-событийное моделирование

Дискретно-событийное моделирование — это метод моделирования динамики систем, которые могут быть описаны как последовательность дискретных событий. В данном методе модель системы строится из набора событий, которые могут изменять состояние системы, а также вызывать другие события.

Каждое событие моделируется как объект, который содержит информацию о том, когда это событие должно произойти, какие параметры должны быть изменены и какие действия должны быть выполнены. Кроме того, модель системы может содержать набор очередей, которые позволяют отслеживать, какие события должны быть обработаны в текущий момент времени.

Процесс моделирования начинается с инициализации системы и установки начального состояния. Затем, система переходит в режим ожидания следующего события, которое должно быть обработано. Когда событие происходит, модель изменяет состояние системы в соответствии с определенными правилами и добавляет новые события в очередь событий.

Система дискретно-событийного моделирования, кроме переменных, определяющих состояние системы, и логики, определяющей, что произойдет в ответ на какое-то событие, содержит следующие компоненты:

 часы — основной компонент системы, синхронизирующий изменения системы;

- список событий система должна содержать хотя бы один список событий моделирования;
- генераторы случайных чисел;
- статистика;
- условие завершения;

Дискретно-событийное моделирование может быть использовано для изучения поведения различных типов систем, включая производственные системы, транспортные системы, системы обслуживания клиентов и многие другие. Кроме того, данный метод позволяет проводить различные эксперименты с системой, изменяя параметры и оценивая их влияние на производительность и эффективность системы.

Системы дискретно-событийного моделирования чаще всего являются проблемно-ориентированныеми языками программирования или библиотеками для высокоуровневых языков. Наиболее известные: Arena, SIMSCRIPT, SLAM, SIMAN, GPSS.

Для наглядности можем рассмотреть простейший пример моделирования работы парикмахерской с использованием средства GPSS.

2.2 Системная динамика

Системная динамика — это метод, который используется для моделирования систем, где процессы происходят непрерывно и могут изменяться со временем. Данный метод используется для анализа сложных систем, таких как экономические системы и системы здравоохранения. Примером использования системной динамики может служить моделирование экономической системы для прогнозирования рыночных тенденций и разработки стратегий управления рисками.

Системно-динамическая модель состоит из набора абстрактных элементов, которые представляют свойства моделируемой системы. Можно выделить следующие типы элементов:

- уровни характеристика накопленных значений величин внутри системы;
- потоки скорости изменения уровней;
- вентили функции зависимости потоков от уровней;
- каналы информации, соединяющие вентили с уровнями;
- линии задержки (запаздывания) для имитации задержки потоков;
- вспомогательные переменные.

2.3 Агентное моделирование

Агентное моделирование — это метод, который используется для моделирования систем, где процессы зависят от поведения отдельных элементов системы, называемых агентами. Агенты могут иметь различные свойства и взаимодействовать друг с другом. Данный метод можно использовать для моделирования социальных систем, например для поведения групп людей или животных. Агентное моделирование включает в себя клеточные автоматы, элементы теории игр, сложных систем, мультиагентных систем и эволюционного программирования, методы Монте-Карло, использует случайные числа. Примером использования агентного моделирования может служить моделирование движения транспорта в городе для определения наиболее эффективных маршрутов и улучшения потока транспорта. В основе агентоориентированных моделей лежат такие идеи, как объектная ориентированность, обучаемость агентов (или их эволюция) и сложность вычислений. Основные свойства агентов:

- интеллектуальность
- наличие жизненной цели

3 Сравнение методов

В таблице 3.1 приведено краткое описание всех перечисленных методов моделирования.

Таблица 3.1: Таблица сравнения основных методов имитационного моделирования

		Преиму-	Недо-
Имя метода	Описание	щества	статки
дискретно-	основано на изменении состояния	очень	сложно
событийное	системы в ответ на дискретные	точное	моделиро-
моделиро-	события	моделиро-	вать
вание		вание	ситуации,
		ситуаций,	где
		где	события
		существует	происхо-
		множество	дят
		дискретных	непрерыв-
		событий	НО

		Преиму-	Недо-
Имя метода	Описание	щества	статки
системная	основано на анализе изменения	способ-	моделиро
динамика	системы во времени	НОСТЬ	вание на
		моделиро-	основе си
		вать	стемной
		сложные	динамики
		системы,	может
		учитывая	быть
		динамиче-	сложным
		ские	и требова
		факторы	тельным
			K
			ресурсам
агентное	основано на анализе взаимодействия	способ-	слож-
моделиро-	индивидуальных агентов	НОСТЬ	ность в
вание		моделиро-	моделиро
		вать	вании
		поведение	большого
		индивиду-	количе-
		альных	ства
		агентов, а	агентов
		также взаи-	
		модействия	
		между	
		ними	

		Преиму-	Недо-
Имя метода	Описание	щества	статки
гибридное	использование комбинации	способ-	требова-
моделиро-	различных методов для	НОСТЬ	ние
вание	моделирования системы	моделиро-	больших
		вать	ресурсов
		сложные	и сложно-
		системы,	СТИ В
		комбини-	реализа-
		руя	ции
		преимуще-	
		ства	
		различных	
		методов	

4 Выводы

Таким образом, я могу сказать, что имитационное моделирование — это мощный инструмент для исследования и оптимизации сложных систем. Существует множество различных методов имитационного моделирования, каждый из которых имеет свои преимущества и недостатки. Выбор метода зависит от конкретной системы, которую необходимо моделировать.

5 Список литературы