Supplementary examples of neural networks

These notes are meant to give a few concrete examples of tiny tiny neural networks where it's possible to more easily understand both the forward propagation (compute output prediction y from input features x) and the backward propagation (compute gradient of a loss function with respect to network parameters).

The notes contain a few comments on how these examples connect to convolution, max pooling and average pooling. However, these notes are by no means sufficient to understand those topics; refer to Bishop and the slides.

Neural networks

The purpose of going through the following examples is to explain the nature of how backpropagation computes a gradient, and to try to connect simple examples to the notation for δ_k and δ_j used in Bishop Chapter 5.

Example 1

Suppose we have a little 1-1-1 neural network with activation function $h(\cdot)$ and no bias parameters, just weights:

$$a = w_1 x$$
 $z = h(a)$
 $y = w_2 z$
 $\ell = \frac{1}{2} (y - t)^2$

Then the partial derivative of the loss ℓ with respect to the second-layer weight is:

$$egin{aligned} rac{\partial \ell}{\partial w_2} &= rac{\partial \ell}{\partial y} rac{\partial y}{\partial w_2} \ &= (y-t)z \ &= \delta_k z \end{aligned}$$

where in Bishop we used shorthand $\delta_k=\frac{\partial\ell}{\partial y}=(y-t)$ with symbol k implying an index over the **output** layer, which in this case just one value y.

$$\frac{\partial \ell}{\partial w_1} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial a} \frac{\partial a}{\partial w_1}$$
$$= (y - t)w_2 h'(a)x$$
$$= \delta_k w_2 h'(a)x$$
$$= \delta_j x$$

^

where as in Bishop we used shorthand $\delta_j = \frac{\partial \ell}{\partial a} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial a} = \delta_k w_2 h'(a)$ where again j indexes over the sole activation a.

Specific activation functions

If $h(a) = \sigma(a)$ then we would have $h'(a) = \sigma(a)(1 - \sigma(a)) = z(1 - z)$.

If $h(a) = \tanh(a)$ then we would have $h'(a) = 1 - \tanh^2(a) = 1 - z^2$.

$$\text{If } h(a) = \operatorname{ReLU}(\mathbf{a}) = \max(0,a) \text{ then we would have } h'(a) = \begin{cases} 0 & a < 0 \\ 1 & a > 0 \text{ , but in practice we can undefined} \end{cases}$$

just define $h'(0) \equiv 0$ and things work fine.

Example 2

Suppose we had a network two outputs in the final layer, rather than just one:

$$egin{aligned} a &= w_1 x \ z &= h(a) \ y_1 &= w_2 z \ y_2 &= w_3 z \ \ell &= rac{1}{2} (y_1 - t_1)^2 + rac{1}{2} (y_2 - t_2)^2 \end{aligned}$$

Then since ℓ is a function of only y_1 and y_2 by chain rule of partial differentiation the partial derivatives with respect to second layer weights w_2 and w_3 are

$$egin{aligned} rac{\partial \ell}{\partial w_2} &= rac{\partial \ell}{\partial y_1} rac{\partial y_1}{\partial w_2} + rac{\partial \ell}{\partial y_2} rac{\partial y_2}{\partial w_2} = (y_1 - t_1)(z) + (y_2 - t_2)(0) = \delta_{k_1} z \ rac{\partial \ell}{\partial w_3} &= rac{\partial \ell}{\partial y_1} rac{\partial y_1}{\partial w_3} + rac{\partial \ell}{\partial y_2} rac{\partial y_2}{\partial w_3} = (y_1 - t_1)(0) + (y_2 - t_2)(z) = \delta_{k_2} z \end{aligned}$$

where, trying to connect to Bishop's notation, we have used shorthand $\delta_{k_1}=(y_1-t_1)$ to denote the δ_k of the first output y_1 and $\delta_{k_2}=(y_2-t_2)$ to denote the δ_k of the second output y_2 .

Similarly the partial derivative for weight w_1

$$\begin{split} \frac{\partial \ell}{\partial w_1} &= \frac{\partial \ell}{\partial y_1} \frac{\partial y_1}{\partial w_1} + \frac{\partial \ell}{\partial y_2} \frac{\partial y_2}{\partial w_1} \\ &= \frac{\partial \ell}{\partial y_1} \frac{\partial y_1}{\partial z} \frac{\partial z}{\partial a} \frac{\partial a}{\partial w_1} + \frac{\partial \ell}{\partial y_2} \frac{\partial y_2}{\partial z} \frac{\partial z}{\partial a} \frac{\partial a}{\partial w_1} \\ &= \left(\frac{\partial \ell}{\partial y_1} \frac{\partial y_1}{\partial z} + \frac{\partial \ell}{\partial y_2} \frac{\partial y_2}{\partial z} \right) \frac{\partial z}{\partial a} \frac{\partial a}{\partial w_1} \\ &= \left((y_1 - t_1)w_2 + (y_2 - t_2)w_3 \right) h'(a)x \\ &= (\delta_{k_1} w_2 + \delta_{k_2} w_3) h'(a)x \\ &= \delta_j x \end{split}$$

where again we used shorthand $\delta_j=rac{\partial \ell}{\partial a}=\sum_krac{\partial \ell}{\partial y_k}rac{\partial y_k}{\partial a}=(\delta_{k_1}w_2+\delta_{k_2}w_3)h'(a).$

Example 3

Suppose we had a network one output but two hidden units, each connected to only one feature (so, the first layer is not "fully-connected").

$$egin{aligned} a_1 &= w_1 x_1 \ a_2 &= w_2 x_2 \ z_1 &= h(a_1) \ z_2 &= h(a_2) \ y &= w_3 z_1 + w_4 z_2 \ \ell &= rac{1}{2} (y-t)^2 \end{aligned}$$

Then since ℓ is a function of only y_1 and y_2 by chain rule of partial differentiation the partial derivatives with respect to second layer weights w_2 and w_3 are

$$\frac{\partial \ell}{\partial w_3} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial w_3} = (y - t)z_1 = \delta_k z_1$$

$$\frac{\partial \ell}{\partial w_4} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial w_4} = (y - t)z_2 = \delta_k z_2$$

where we use shorthand $\delta_k=\frac{\partial\ell}{\partial y}=(y-t)$ as usual. Now we have two weights in the final layer, each having a slightly different partial derivative (multiply δ_k by z_1 versus z_2).

Now taking the partial derivative of ℓ with respect to w_1 gives

$$\frac{\partial \ell}{\partial w_1} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial w_1}$$

$$= \frac{\partial \ell}{\partial y} \left(\frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial w_1} + \frac{\partial y}{\partial z_2} \frac{\partial z_2}{\partial w_1} \right) \text{ because } y \text{ is a function of } z_1 \text{ and } z_2$$

$$= \frac{\partial \ell}{\partial y} \left(\frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial a_1} \frac{\partial a_1}{\partial w_1} + \frac{\partial y}{\partial z_2} \frac{\partial z_2}{\partial a_2} \frac{\partial a_2}{\partial w_1} \right) \text{ by chain rule}$$

$$= (y - t) \left(w_3 h'(a_1) x_1 + w_4 h'(a_2)(0) \right)$$

$$= \delta_k w_3 h'(a_1) x_1$$

$$= \delta_{j_1} x_1$$

where we have used shorthand $\delta_{j_1}=rac{\partial\ell}{\partial a_1}$ to denote the "error" backpropagated to a_1 and likewise $rac{\partial\ell}{\partial w_2}=\delta_k w_4 h'(a_2)x_2=\delta_{j_2}x_2$

Convolutional neural networks

Example 1

Let's revisit Example 3 from neural networks, except this time we'll add an initial step in the first layer where we compute weights w_1 and w_2 from a single *shared* w in the first layer. This turns our first layer into a "convolutional" layer with "filter size 1" (i.e. activation a_j is connected directly to just one feature x_j)

$$egin{aligned} w_1 &= w \ w_2 &= w \ a_1 &= w_1 x_1 \ a_2 &= w_2 x_2 \ z_1 &= h(a_1) \ z_2 &= h(a_2) \ y &= w_3 z_1 + w_4 z_2 \ \ell &= rac{1}{2} (y-t)^2 \end{aligned}$$

The values of $\frac{\partial \ell}{\partial w_3}$ and $\frac{\partial \ell}{\partial w_4}$ are the same as for Exercise 3 earlier.

Since ℓ is dependent on (functions of) weights w_1 and w_2 , both of which are dependent on (functions of) shared weight w, then by the chain rule of partial differentiation we have

$$egin{aligned} rac{\partial \ell}{\partial w} &= rac{\partial \ell}{\partial w_1} rac{\partial w_1}{\partial w} + rac{\partial \ell}{\partial w_2} rac{\partial w_2}{\partial w} \ &= \left(\delta_{j_1} x_1
ight) \left(1
ight) + \left(\delta_{j_2} x_2
ight) \left(1
ight) & ext{from Exercise 3 of neural nets} \ &= \delta_{j_1} x_1 + \delta_{j_2} x_2 \end{aligned}$$

Since we could obviously have just eliminated w_1 and w_2 when writing the original problem, we're really computing the gradient for an equivalent "network":

$$egin{aligned} a_1 &= wx_1 \ a_2 &= wx_2 &\leftarrow ext{ shares same weight as } a_1! \ z_1 &= h(a_1) \ z_2 &= h(a_2) \ y &= w_3z_1 + w_4z_2 \ \ell &= rac{1}{2}(y-t)^2 \end{aligned}$$

where the gradient component for w is $\frac{\partial \ell}{\partial w}=\delta_{j_1}x_1+\delta_{j_2}x_2$. So, this is the gradient component for our little "filter" of length 1 that "scans" across the input features (all two of them $\textcircled{\textbf{}}$).

Using terminology from convolutional neural networks, this is a convolutional neural network with:

- a single convolutional layer (1 dimensional, 1 filter, filter size 1, no padding, no bias, activation h), and
- a single fully-connected layer (no bias).

Example 2

We revisit Example 1 except this time turn the final layer into a max pooling layer over all (both) of the inputs z_1 and z_2 .

$$egin{aligned} a_1 &= wx_1 \ a_2 &= wx_2 \ z_1 &= h(a_1) \ z_2 &= h(a_2) \ y &= \max(z_1,z_2) &\leftarrow ext{ only one contributes to } y! \ \ell &= rac{1}{2}(y-t)^2 \end{aligned}$$

Using terminology from convolutional neural networks, this is a convolutional neural network with:

- a single convolutional layer (1 dimensional, 1 filter, filter size 1, no padding, no bias, activation h), and
- a single max pooling layer (1 dimensional, pooling region size 2, no padding)

Since for any fixed input $\mathbf{x}=\begin{bmatrix}x_1 & x_2\end{bmatrix}$ we will have either $\max(z_1,z_2)=z_1$ or $\max(z_1,z_2)=z_2$, let's assume that $z_1>z_2$. Then for that particular \mathbf{x} the above network is equivalent to

$$egin{aligned} a_1 &= w x_1 \ a_2 &= w x_2 \ z_1 &= h(a_1) \ z_2 &= h(a_2) \ y &= z_1 \ \ell &= rac{1}{2} (y-t)^2 \end{aligned}$$

Then the gradient for this particular ${\bf x}$ is a special case of Example 1 above where you fix second layer weights $w_3=1$ and $w_4=0$. In other words, max pooling is like using a different "one-hot" weight encoding that

depends on the particular z used as input, which itself depends on the particular input features x. For another ${f x}$ we might have had $z_2>z_1$ and therefore it would be equivalent to setting $w_3=0$ and $w_4=1$.

Max operator

Max operator The
$$\max(\mathbf{z})$$
 operator applied over a vector of elements $\mathbf{z} = \begin{bmatrix} z_1, \dots, z_M \end{bmatrix}^T$ has the following gradient:
$$\nabla \max(\mathbf{z}) = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \text{ where the sole 1 entry is at index } j' = \arg\max_j z_j$$

Max pooling

Max pooling applies the max operator to individual subsets of the z_j , similar to convolution. This means that implementing backpropagation correctly requires us to remember which particular z_j was selected by each application of the \max operator; either that or we must re-compute the \max to figure out which z_j is the \max (and therefore relevant for computing the gradient).

Of course one *could* take the max over an entire layer (all z) but this is seldom done in convolutional neural networks.

Average pooling

In "average pooling", rather than taking the local max of the z_j we take their average. This is equivalent to a convolutional layer where all the weights are $\frac{1}{n}$ where n is the number of weights in each filter. In our example above with just z_1 and z_2 a single output y, an average pooling layer with would compute $y=rac{1}{2}z_1+rac{1}{2}z_2$