(Probabilités)

On the Independence of Multiple Stochastic Integrals With Respect to a Class of Martingales

Nicolas Privault

Abstract - We study via the chaotic calculus the independence of multiple stochastic integrals $I_n(f_n)$, $I_m(g_m)$ with respect to martingales $(M_t)_{t\in\mathbb{R}_+}$ that satisfy a deterministic structure equation. It is shown that if the integrals are independent and if a contraction denoted as $f_n \circ_1^0 g_m$ does not vanish on $A \in \mathcal{B}(\mathbb{R}_+)$, a.e., then the stochastic measure associated to $(M_t)_{t\in\mathbb{R}_+}$ is Gaussian on A. In the Poisson case, $I_n(f_n)$, $I_m(g_m)$ are independent if and only if $f_n \circ_1^0 g_m$ vanishes a.e.

Sur l'indépendance des intégrales multiples par rapport à une classe de martingales

Résumé - On étudie par le calcul chaotique l'indépendance des intégrales stochastiques multiples $I_n(f_n)$, $I_m(g_m)$ par rapport aux martingales $(M_t)_{t\in\mathbb{R}_+}$ qui satisfont à une équation de structure déterministe. Il est montré que si les intégrales sont indépendantes et si une contraction notée $f_n \circ_1^0 g_m$ ne s'annule pas sur $A \in \mathcal{B}(\mathbb{R}_+)$, p.p., alors la mesure stochastique correspondant à $(M_t)_{t\in\mathbb{R}_+}$ est gaussienne sur A. Dans le cas poissonien, $I_n(f_n)$, $I_m(g_m)$ sont indépendantes si et seulement si $f_n \circ_1^0 g_m$ s'annule p.p.

Version française abrégée - Soit $(M_t)_{t\in\mathbb{R}_+}$ une martingale satisfaisant une équation de structure déterministe de type (2). Soit $I_n(f_n)$ l'intégrale stochastique multiple par rapport à $(M_t)_{t\in\mathbb{R}_+}$ de la fonction symétrique de carré intégrable $f_n \in L^2(\mathbb{R}_+)^{\circ n}$, définie par (3). Soit $\nabla: L^2(\Omega) \to L^2(\Omega) \otimes L^2(\mathbb{R}_+)$ l'opérateur d'annihilation défini par (5) et soit $\nabla^*: L^2(\Omega) \otimes L^2(\mathbb{R}_+) \to L^2(\Omega)$ son adjoint. Si $f_n \in L^2(\mathbb{R}_+)^{\circ n}$ et $g_m \in L^2(\mathbb{R}_+)^{\circ m}$, on définit $f_n \circ_k^l g_m$, $0 \le l \le k \le n \land m$, comme étant la symétrisée en n + m - k - l variables de

$$(x_{l+1},\ldots,x_n,y_{k+1},\ldots,y_m) \mapsto \phi(x_{l+1})\cdots\phi(x_k)\int_0^\infty \cdots \int_0^\infty f_n(x_1,\ldots,x_n)g_m(x_1,\ldots,x_k,y_{k+1},\ldots,y_m)\lambda(dx_1)\cdots\lambda(dx_l).$$

Théorème Si les variables aléatoires $I_n(f_n)$ et $I_m(g_m)$ sont indépendantes et si pour presque tout x dans un ensemble $A \in \mathcal{B}(\mathbb{R})$,

$$\int_0^\infty \cdots \int_0^\infty |f_n(x, x_2, \ldots, x_n)g_m(x, y_2, \ldots, y_m)| dx_2 \cdots dx_n dy_2 \cdots dy_n > 0,$$

alors $(M_t)_{t\in\mathbb{R}_+}$ définit une mesure aléatoire gaussienne sur $(A, \mathcal{B}(A))$. Si $(M_t)_{t\in\mathbb{R}_+}$ est un processus de Poisson compensé alors $I_n(f_n), I_m(g_m)$ sont indépendantes si et seulement si $f_n(x_1, \ldots, x_n)g_m(x_1, y_2, \ldots, y_m) = 0$, p.p.

Ce théorème est prouvé en utilisant le résultat suivant.

Proposition (i) Si $I_n(f_n)I_m(g_m) \in L^2(\Omega)$, alors

$$h_{n,m,s} = \sum_{s < 2i < 2(s \land n \land m)} i! \binom{n}{i} \binom{m}{i} \binom{i}{s-i} f_n \circ_i^{s-i} g_m$$

est dans $L^2(\mathbb{R}_+)^{\circ n+m-s}$, $0 \le s \le 2(n \land m)$, et le développement chaotique de $I_n(f_n)I_m(g_m)$ est

$$I_n(f_n)I_m(g_m) = \sum_{s=0}^{2(n \wedge m)} I_{n+m-s}(h_{n,m,s}).$$

(ii) Inversement, si $f_n \in L^2(\mathbb{R}_+)^{\circ n}$ et $g_m \in L^2(\mathbb{R}_+)^{\circ m}$ sont telles que $f_n \circ_k^l g_m \in L^2(\mathbb{R}_+)^{\circ n+m-k-l}$, $0 \le l \le k \le n \land m$, alors $I_n(f_n)I_m(g_m) \in L^2(\Omega)$ et son développement chaotique s'écrit

$$I_n(f_n)I_m(g_m) = \sum_{k=0}^{k=n \wedge m} k! \begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} m \\ k \end{pmatrix} \sum_{l=0}^{l=k} \begin{pmatrix} k \\ l \end{pmatrix} I_{n+m-k-l}(f_n \circ_k^l g_m).$$

1 Introduction and preliminaries

The problem of obtaining conditions for the independence of Wiener multiple stochastic integrals $I_n(f_n)$ and $I_m(g_m)$ in terms of their symmetric deterministic kernels $f_n \in L^2(\mathbb{R}_+)^{\circ n}$, $g_m \in L^2(\mathbb{R}_+)^{\circ m}$, has been studied in [1], [2]. Let λ denote the Lebesgue measure on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$. A necessary and sufficient condition for this independence is that

$$\int_0^\infty f_n(x_1, \dots, x_n) g_m(x_1, y_2, \dots, y_m) dx_1 = 0 \quad \lambda^{\otimes n + m - 2} - a.e.$$
 (1)

In the one-dimensional case, note that it is proved in [3], [4] that for simple integrals $I_1(f)$, $I_1(g)$ with respect to a stationary stochastic measure X on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ with independent increments, the independence of the integrals is equivalent to fg = 0 X-a.e., except if X is Gaussian, in which case the condition is as in (1) for n = m = 1. Let $(M_t)_{t \in \mathbb{R}_+}$ be a martingale on (Ω, \mathcal{F}, P) satisfying the structure equation

$$d[M, M]_t = dt + \phi_t dM_t, \tag{2}$$

where $\phi: \mathbb{R}_+ \to \mathbb{R}$ is a measurable deterministic function. We know, cf. [5], that such martingales are normal, satisfy the chaotic representation property, and have independent increments, hence $(M_t)_{t \in \mathbb{R}_+}$ defines a stochastic measure on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$, cf. [6]. Let $L^2(\mathbb{R}_+)^{\circ n}$ denote the subspace of $L^2(\mathbb{R}_+)^{\otimes n}$ made of symmetric functions. If $f_n \in L^2(\mathbb{R})^{\otimes n}$, the multiple stochastic integral of f_n is defined as

$$I_n(f_n) = n! \int_0^\infty \int_0^{t_n^-} \cdots \int_0^{t_2^-} f_n(t_1, \dots, t_n) dM_{t_1} \cdots dM(t_n).$$
 (3)

We recall the isometry formula:

$$E[I_n(f_n)I_m(g_m)] = n!(f_n, g_m)_{L^2(\mathbb{R}_+)^{\otimes n}} 1_{\{n=m\}}, \quad f_n \in L^2(\mathbb{R}_+)^{\circ n}, g_m \in L^2(\mathbb{R}_+)^{\circ m}.$$
(4)

Any square integrable functional $F \in L^2(\Omega, \mathcal{F}, P)$ has a chaotic decomposition, expressed as

$$F = \sum_{n \ge 0} I_n(f_n), \quad f_k \in L^2(\mathbb{R}_+)^{\circ k}, k \ge 0.$$

Denote by C_n the chaos of order $n \in \mathbb{N}$, defined as $C_n = \{I_n(f_n) : f_n \in L^2(\mathbb{R}_+)^{\circ n}\}$. An annihilation operator $\nabla : L^2(\Omega) \to L^2(\Omega) \otimes L^2(\mathbb{R}_+)$ is defined by

$$\nabla I_n(f_n) = nI_{n-1}(f_n),\tag{5}$$

 $f_n \in L^2(\mathbb{R}_+)^{\circ n}, \ n \in \mathbb{N}^*$. This operator is closable, of domain $Dom(\nabla)$, and its adjoint $\nabla^* : L^2(\Omega) \otimes L^2(\mathbb{R}_+) \to L^2(\Omega)$ satisfies

$$\nabla^* I_n(f_{n+1}) = I_{n+1}(\hat{f}_{n+1}),$$

 $f_{n+1} \in L^2(\mathbb{R}_+)^{\circ n} \otimes L^2(\mathbb{R}_+)$, where \hat{f}_{n+1} is the symmetrization in n+1 variables of f_{n+1} , defined as

$$\hat{f}_{n+1}(t_1,\ldots,t_{n+1}) = \frac{1}{(n+1)!} \sum_{\sigma \in \Sigma_{n+1}} f_{n+1}(t_{\sigma(1)},\ldots,t_{\sigma(n+1)}),$$

 Σ_{n+1} being the set of all permutations of $\{1, \ldots, n+1\}$, cf. [7], [8]. Using the multiplication formula between the integrals $I_n(f_n)$ and $I_1(f_1)$, cf. [8], [9], one can easily show that

$$\nabla(FG) = F\nabla G + G\nabla F + \phi\nabla F\nabla G,\tag{6}$$

if $F, G, FG \in Dom(\nabla)$. Finally, we recall the following result, known as the Stroock formula, which is valid in general on Fock space and allows to express the chaotic decomposition of $F \in \bigcap_{n>1} Dom(\nabla^n)$ using the operator ∇ .

Proposition 1 If $F \in \bigcap_{n \in \mathbb{N}} Dom(\nabla^n)$, then $F = E[F] + \sum_{n \geq 1} \frac{1}{n!} I_n(E[\nabla^n F])$.

2 Independence of multiple stochastic integrals

We extend the results of [1], [4], to multiple stochastic integrals with respect to a process that does not necessarily have stationary increments. The result of [4] relies on the characteristic function of infinitely divisible laws, which is not available in the case of multiple stochastic integrals. We need here the following multiplication formula. If $f_n \in L^2(\mathbb{R}_+)^{\circ n}$ and $g_m \in L^2(\mathbb{R}_+)^{\circ m}$, define the function $f_n \circ_k^l g_m$, $0 \le l \le k$, to be the symmetrization in n + m - k - l variables of the function

$$(x_{l+1},\ldots,x_n,y_{k+1},\ldots,y_m) \mapsto \phi(x_{l+1})\cdots\phi(x_k)\int_0^\infty\cdots\int_0^\infty f_n(x_1,\ldots,x_n)g_m(x_1,\ldots,x_k,y_{k+1},\ldots,y_m)\lambda(dx_1)\cdots\lambda(dx_l).$$

Proposition 2 (i) If $I_n(f_n)I_m(g_m) \in L^2(\Omega)$, then the function

$$h_{n,m,s} = \sum_{s \le 2i \le 2(s \land n \land m)} i! \binom{n}{i} \binom{m}{i} \binom{m}{i} \binom{i}{s-i} f_n \circ_i^{s-i} g_m$$

is in $L^2(\mathbb{R}_+)^{\circ n+m-s}$, $0 \leq s \leq 2(n \wedge m)$, and the chaotic expansion of $I_n(f_n)I_m(g_m)$ is

$$I_n(f_n)I_m(g_m) = \sum_{s=0}^{2(n \wedge m)} I_{n+m-s}(h_{n,m,s}).$$
 (7)

(ii) Conversely, if $f_n \in L^2(\mathbb{R}_+)^{\circ n}$ and $g_m \in L^2(\mathbb{R}_+)^{\circ m}$ are such that $f_n \circ_k^l g_m \in L^2(\mathbb{R}_+)^{\circ n+m-k-l}$, $0 \le l \le k \le n \land m$, then $I_n(f_n)I_m(g_m) \in L^2(\Omega)$ and its chaotic decomposition can be written as

$$I_n(f_n)I_m(g_m) = \sum_{k=0}^{k=n \wedge m} k! \binom{n}{k} \binom{m}{k} \sum_{l=0}^{l=k} \binom{k}{l} I_{n+m-k-l}(f_n \circ_k^l g_m). \tag{8}$$

Proof. The first part can be found in [10] under a different formulation. If $I_n(f_n)I_m(g_m) \in L^2(\Omega)$, then it is in the sum $C_0 \oplus \cdots \oplus C_{n+m}$ of the chaos of orders lower than n+m since

$$E[I_n(f_n)I_m(g_m) \mid C_0 \oplus \cdots \oplus C_{n+m}] = I_n(f_n)I_m(g_m),$$

hence it belongs to $\bigcap_{n\geq 1} Dom(\nabla^n)$ and its chaotic decomposition can be obtained from Prop. 1. From (6), we have by induction for $r\geq 1$

$$\nabla_{t_1} \cdots \nabla_{t_r} (FG) =$$

$$\sum_{p=0}^{p=r} \sum_{q=r-p}^{q=r} \sum_{\{k_1 < \dots < k_p\} \cup \{l_1 < \dots < l_q\} = \{1, \dots, r\}} \nabla_{t_{k_1}} \dots \nabla_{t_{k_p}} F \nabla_{t_{l_1}} \dots \nabla_{t_{l_q}} G \prod_{i \in \{k_1 < \dots < k_p\} \cap \{l_1 < \dots < l_q\}} \phi(t_i),$$

and $\nabla^r(FG) \in L^2(\Omega) \otimes L^2(\mathbb{R}_+)^{\circ r}$ if $FG \in Dom(\nabla^r)$. Applying this formula to $F = I_n(f_n)$ and $G = I_m(g_m)$, we obtain

$$\nabla_{t_1} \cdots \nabla_{t_r} (I_n(f_n) I_m(g_m)) = \sum_{p=0}^{p=r} \sum_{q=r-p}^{q=r} \sum_{\{k_1 < \dots < k_p\} \cup \{l_1 < \dots < l_q\} = \{1, \dots, r\}} \frac{n!}{(n-p)!} \frac{m!}{(m-q)!} I_{n-p} (f_n(\cdot, t_{k_1}, \dots, t_{k_p})) I_{m-q} (g_m(\cdot, t_{l_1}, \dots, t_{l_q})) \prod_{i \in \{k_1 < \dots < l_q\}} \phi(t_i)$$

Define a function $h_{n,m,n+m-r} \in L^2(\mathbb{R}_+)^{\circ r}$ as

$$h_{n,m,n+m-r}(t_1,\ldots,t_r) = \frac{1}{r!} E[\nabla_{t_1} \cdots \nabla_{t_r} (I_n(f_n)I_m(g_m))]$$

$$= \frac{1}{r!} \sum_{p=0}^{p=r \wedge n} \sum_{q=r-p}^{q=r} 1_{\{n-p=m-q\}} \frac{n!}{(n-p)!} \frac{m!}{(m-q)!} (n-p)! a_{n,m,p,r} f_n \circ_{q+p-r}^{n-p} g_m(t_1,\ldots,t_r),$$

$$= \frac{1}{r!} \sum_{n-m+r \leq 2p \leq 2(n \wedge r)} \frac{n!m!}{(n-p)!} a_{n,m,p,r} f_n \circ_{m-r+p}^{n-p} g_m(t_1,\ldots,t_r),$$

where $a_{n,m,p,r}$ is the number of sequences $k_1 < \cdots < k_p$ and $l_1 < \cdots < l_q$ such that $\{k_1, \ldots, k_p\} \cup \{l_1, \ldots, l_q\} = \{1, \ldots, r\}$, with exactly m-r+p-(n-p) terms in common. This number is

$$a_{n,m,p,r} = \frac{r!}{(r-p)!p!} \frac{p!}{(m-n-r+2p)!(n+r-m-p)!}.$$

Hence

$$h_{n,m,n+m-r} = \sum_{n-m+r \le 2p \le 2(n \land r)} \frac{n!m!}{(r-p)!(m-n-r+2p)!(n+r-m-p)!(n-p)!} f_n \circ_{m-r+p}^{n-p} g_m$$

$$= \sum_{n+m-r \le 2i \le 2((n+m-r) \land n \land m)} \frac{n!}{(n-i)!} \frac{m!}{(m-i)!} \frac{1}{(2i-s)!} \frac{1}{(s-i)!} f_n \circ_i^{s-i} g_m$$

$$= \sum_{s < 2i < 2(s \land n \land m)} i! \binom{n}{i} \binom{m}{i} \binom{i}{s-i} f_n \circ_i^{s-i} g_m,$$

with s = n + m - r and i = p + m - r. The chaotic expansion (7) follows from Prop. 1, and this proves (i) and (ii). \square

Theorem 1 Let $f_n \in L^2(\mathbb{R}_+)^{\circ n}$ and $g_m \in L^2(\mathbb{R}_+)^{\circ m}$. If the random variables $I_n(f_n)$ and $I_m(g_m)$ are independent and if for λ -a.a. x in a set $A \in \mathcal{B}(\mathbb{R}_+)$,

$$\int_0^\infty \cdots \int_0^\infty |f_n(x, x_2, \ldots, x_n) g_m(x, y_2, \ldots, y_m)|^2 dx_2 \cdots dx_n dy_2 \cdots dy_n > 0,$$

then the stochastic measure induced by $(M_t)_{t \in \mathbb{R}_+}$ on $(A, \mathcal{B}(A))$ is Gaussian.

Proof. We follow the approach of [2]. If $I_n(f_n)$ and $I_m(g_m)$ are independent, then $I_n(f_n)I_m(g_m) \in L^2(\Omega, \mathcal{F}, P)$ and

$$(n+m)! \mid f_{n} \circ g_{m} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n+m}^{2} \geq n! m! \mid f_{n} \otimes g_{m} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n+m}^{2} = n! m! \mid f_{n} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n}^{2} \mid g_{m} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n}^{2} = E \left[I_{n}(f_{n})^{2} \right] E \left[I_{m}(g_{m})^{2} \right] = E \left[\left(I_{n}(f_{n}) I_{m}(g_{m}) \right)^{2} \right]$$

$$= \sum_{r=0}^{2(n \wedge m)} (n+m-r)! \mid h_{n,m,r} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n+m-r}^{2}$$

$$\geq (n+m)! \mid h_{n,m,0} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n+m}^{2} + (n+m-1)! \mid h_{n,m,1} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n+m-1}^{2}$$

$$\geq (n+m)! \mid f_{n} \circ g_{m} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n+m}^{2} + n m(n+m-1)! \mid f_{n} \circ_{0}^{1} g_{m} \mid_{L^{2}(\mathbf{R}_{+}) \otimes n+m-1}^{2}$$

from Prop. 2. This implies that $f_n \circ_1^0 g_m = 0$ $\lambda^{\otimes n+m-1}$ -a.e., hence $\phi = 0$ λ -a.e. on A, and the random measure defined by $(M_t)_{t \in \mathbb{R}_+}$ is Gaussian on A, from [5], Prop. 4. \square Consequently, $I_n(f_n)$ and $I_m(g_m)$ are independent if and only if

$$I_n(f_n)I_m(g_m) = I_{n+m}(f_n \circ g_m) = I_n(f_n) : I_m(g_m),$$

where ":" denotes the Wick product. Until the end of this paper we assume that $\phi \neq 0$ λ -a.e., hence $(M_t)_{t \in \mathbb{R}_+}$ is written as

$$M_t = \int_0^t \phi(s) d\tilde{N}_s, \quad t \in \mathbb{R}_+,$$

where $(\tilde{N}_t)_{t\in\mathbb{R}_+}$ is a compensated Poisson process of intensity $dt/\phi(t)^2$, cf. [5].

Corollary 1 If $\phi = 0$ a.e., then the multiple stochastic integrals $I_n(f_n), I_m(g_m)$ are independent if and only if

$$f_n(x_1, \dots, x_n)g_m(x_1, y_2, \dots, y_m) = 0, \quad \lambda^{\otimes n+m-1} - a.e.$$

This corollary can also be obtained for a Poisson measure on a metric space. Proceeding as in [1], [2], we note that two arbitrary families $\{I_{n_k}(f_{n_k}): k \in I\}$ and $\{I_{m_l}(g_{m_l}): l \in J\}$ of Poisson multiple stochastic integrals are independent if and only if $I_{n_k}(f_{n_k})$ is independent of $I_{m_l}(g_{m_l})$ for any $k \in I$, $l \in J$, and obtain the following corollaries.

Corollary 2 Let $f_n \in L^2(\mathbb{R}_+)^{\circ n}$, $g_m \in L^2(\mathbb{R}_+)^{\circ m}$, and

$$S_f = \{ f_n \circ_{n-1}^{n-1} h : h \in L^2(\mathbb{R}_+)^{\circ n-1} \}, \quad S_g = \{ g_n \circ_{m-1}^{m-1} h : h \in L^2(\mathbb{R}_+)^{\circ m-1} \}.$$

The following statements are equivalent.

- (i) $I_n(f_n)$ is independent of $I_m(g_m)$.
- (ii) For any $f \in S_f$ and $g \in S_g$, fg = 0 λ -a.e.
- (iii) The σ -algebras $\sigma(I_1(f): f \in S_f)$ and $\sigma(I_1(g): g \in S_g)$ are independent.

Corollary 3 If $F \in Dom(\nabla)$ and $G \in L^2(\Omega, \mathcal{F}, P)$ with $G = \sum_{m \geq 0} I_m(g_m)$, then F is independent of G if for any $m \in \mathbb{N}$,

$$g_m \circ_1^0 \nabla F = 0, \quad \lambda^{\otimes m} \otimes P - a.e.$$
 (9)

Acknowledgement. After the completion this work we learnt about the independent article [11] which in the Poisson case proved Prop. 2 in a different way and Corollary 1 under stronger assumptions.

References

- [1] A.S. Üstünel and M. Zakai. On the structure on independence on Wiener space. *J. Funct. Anal.*, 90(1):113–137, 1990.
- [2] A.S. Üstünel and M. Zakai. On independence and conditioning on Wiener space. *Ann. Probab.*, 17(4):1441–1453, 1989.
- [3] V. P. Skitovich. On characterizing Brownian motion. *Teor. Verojatnost. i. Primenen.*, 1:361–364, 1956.
- [4] K. Urbanik. Some prediction problems for strictly stationary processes. In *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, volume 2, pages 235–258, Berkeley, 1967. Univ. of California Press.
- [5] M. Émery. On the Azéma martingales. In Séminaire de Probabilités XXIII, volume 1372 of Lecture Notes in Mathematics, pages 66–87. Springer Verlag, 1990.
- [6] S. Kwapień and W. Woyczyński. Random Series and Stochastic Integrals: Single and Multiple. Birkäuser, 1992.
- [7] D. Nualart and J. Vives. Anticipative calculus for the Poisson process based on the Fock space. In *Séminaire de Probabilités XXIV*, volume 1426 of *Lecture Notes in Math.*, pages 154–165. Springer, Berlin, 1990.
- [8] J. Ma, P. Protter, and J. San Martin. Anticipating integrals for a class of martingales. *Bernoulli*, 4:81–114, 1998.
- [9] F. Russo and P. Vallois. Product of two multiple stochastic integrals with respect to a normal martingale. Stochastic Processes and their Applications, 73:47–68, 1998.
- [10] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semi-groups. Probability and Mathematical Statistics, 3:217–239, 1984.
- [11] C. Tudor. An anticipating calculus for square integrable pure jump Levy processes. *Random Oper. Stoch. Equ.*, 15(1):1–14, 2007.

Equipe d'Analyse et Probabilités, Université d'Evry Boulevard des Coquibus, 91025 Evry Cedex, France