37/62 37/16

צורים של כי לפת כלים רדרם וה

*6.70 MUR SHU BOIL CD. 71.2 EG. CIV.

- בווסף, היינו כי ניץ ליופין זו החוז הנדצית החלשה והחלך סוכולב וסוכולב החבוית.

 בנוסף, היינו כי ניץ ליופין זו החלך סוכולב הגחבות לי הקדה פוניה.
 - « دورد: دود. وردر رو (مع) على مدرد عا عمد درد.

([-1,1]) (s x,1) (2) (1) 2.

$$\varphi_{2k+1}(x) = Sin(\pi k x)$$
, $k=1,2,...$

If $I = \int_{-1}^{1} f(x) dx$

€ دری در هزادار بار از بارسواددان.

6×11/1:

מפונקציב אוראונותיב אי

1 (5 1917 | 11/6) = 0

= 0 Vk.1,2...

$$\langle \varphi_i, \varphi_j \rangle = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$$

$$\langle P_1, P_2 k \rangle^n = \int_{-1}^{1} \frac{1}{|K|} \cos(\pi k x) dx = \frac{1}{|K|} \cdot \lambda \int_{0}^{1} \cos(\pi k x) dx = \sqrt{1} \cdot \frac{\sin(\pi k x)}{|K|} \Big|_{x=0}^{1} \frac{1}{|K|} \left(\sin(\pi k x) - \sin(k) \right)$$

PLAINT WY CON

$$(oS(-x) = cos(x)$$

$$S(n(-x) = -S(n(x))$$

2010 of 11.47 d 100 onor,

$$\frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\cos(\pi x_1) \cos(\pi x_2) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\cos(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{\pi [t \cdot w_1]} \left[\frac{\sin(\pi x_1) \cos(\pi x_2)}{\sin(\pi x_1)} \right] = \frac{1}{1} \cdot \frac{1}{1} \cdot$$

תסרה: האו ע-פס נקוצת ובתני אן ויו סהתוט. ניין להואו שהדפו הוא נאחצים בנקוצה נצפות

(20 (20 La)

בוון של הזקה היא במצה קורמית לין היא הוא אול היא במצה לוראי של פינויי טרידיונה לי א האוטחון [י] הוא אולבינה וינאיי בתאויי יידרעי פון היא במציי לוראיי לא שירטחון ניים עוז אורכינדע וינאייר

$$P(x) = \sum_{k=1}^{N} p_k \varphi_k(x)$$

cade 18 (1,0] i- fred.

יר עפון, (וי ניהל גוורים וי) אדי עניהן ערכונים פן פסים פרוב בן ניים מחה

 $\sum_{m=1}^{n} P(X_m) W_{nm}(x) = P(x)$, $\forall x \in E_1 \cap J$

Wnm(x)= 1/2 2/3=1 (j(Xm) (j(x)

12 m=1,...,n, Xm=m/n

Carll:

7867

$$\overline{\Sigma}_{m_{z}}^{n}, P(X_{m}) W_{nm}(x) = \sum_{m_{z}}^{n} \sum_{k=1}^{N} b_{k} \varphi_{k}(X_{m}) \cdot \frac{1}{m} \sum_{j=1}^{n} e_{j}(X_{m}) \varphi_{j}(x)$$

$$\overline{P(X_{m})} \qquad \overline{W_{nm}(x)}$$

=
$$\sum_{k=1}^{N} b_{k} \cdot \sum_{j=1}^{n} \varphi_{j}(x) \cdot \frac{1}{n} \sum_{m=1}^{n} \varphi_{k}(x_{m}) \varphi_{j}(x_{m})$$

(3.1) [[1] [2] [2] [2] [3.1) [3.1] [3.1

K,jed1,...,n-i7 = = = bx = 6,(x) 1 1 1 = j4

$$N \leq n - 1 = \sum_{k=1}^{N} b_k \varphi_k(x) = P(x)$$

-X,..., X NFT, bis LEG On 9. (0,07) 239. (0,01 6) 1165 Pa,N(x) = \$\frac{1}{2}, \hat{c}_i \pa_j(x) 10 1/2 1/2 (6); c: - + 2 6; (xm) ٥٠ ([برنا) ع יישור אונא בי וגאו כן די און ארוא אבור אולדאי אבור אולדאי בין וגאו בין יישוא פין $\mathbb{E}_{\rho} \hat{c}_{j} = \mathbb{E}_{\rho} \stackrel{?}{\sim} \hat{\overline{c}}_{i} \rho_{j}(x_{m}) = \mathbb{E}_{\rho} \rho_{j}(x_{i}) = \int_{0}^{1} \rho_{j}(x_{i}) \rho(x_{i}) dx = \langle \rho_{j}, \rho_{j} \rangle = c_{j}$ $\operatorname{Var}_{\rho}(\hat{C}_{j}) = \frac{1}{n} \operatorname{Var}_{\rho}(\varphi_{j}(x_{1})) = \frac{1}{n} \left[\operatorname{E}_{\rho} \varphi_{j}^{*}(x_{1}) - \left(\operatorname{E}_{\rho} \varphi_{j}(x_{1}) \right)^{2} \right] = \frac{1}{n} \left(\int_{0}^{1} \varphi_{j}^{*}(x_{1}) \rho(x_{1}) dx - \left(\int_{0}^{1} \varphi_{j}^{*}(x_{1}) \rho(x_{1}) dx \right) dx - \left(\int_{0}^{1} \varphi_{j}^{*}(x_{1}) \rho(x_{1}) dx \right) dx$ @ הביט بر عاد אות ما (אות معلق בפוקנה عا ع :- زم -יم. [פינו כ- (מוֹז באוף HISE(W) = Ep ((pan(x) - px) dx = Ep (() (x) - 2 G(x) - 2 G(x)) dx = $\mathbb{E}_{\rho}\left\{\int_{0}^{\infty}\left(\hat{C}_{j}-C_{j}\right)\varphi_{j}(x)-\sum_{\lambda=N+1}^{\infty}C_{j}\varphi_{j}(x)\right\}^{2}dx$ =0 V4; DJ = Ep [(\(\frac{1}{2}(\hat{c}_{j}-c_{j})\phi_{j}(x)\)\d x - 2 Ep [\(\frac{1}{2}(\hat{c}_{j}-c_{j})\phi_{j}(x)\)\frac{1}{2} cj\phi_{k}(x)dx + [(] () (x) dx (I) $\mathbb{E}_{\rho} \int_{0}^{\infty} \overline{\hat{C}}_{j-1}(\hat{C}_{j}-c_{j})^{2} \varphi_{j}^{*}(x) dx = \overline{L}_{j-1}^{N} \mathbb{E}(\hat{C}_{j}-c_{j})^{2} \int_{0}^{\infty} \varphi_{j}^{*}(x) dx = \overline{L}_{j-1}^{N} \mathbb{E}(\hat{C}_{j}-c_{j})^{2}$

יש שישה אוניה הסימן. הכיו ני

$$\hat{J}(N) = \frac{1}{N-1} \sum_{j=1}^{N-1} \left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{N} (X_i) - (N+1) \hat{C}_{i}^{(1)} \right) \right) \right)$$

الديي وي احمار بر لا في الرسون.

: 15630 -107: THZ

Gorall:

$$E_{\rho} \hat{J}(N) = \frac{1}{n-1} \sum_{i=1}^{N} 2 \cdot \frac{1}{n} \sum_{i=1}^{N} E_{\rho} \hat{f}_{i}(X_{i}) - (n+1) \underbrace{E_{\rho} \hat{c}_{i}^{2}}_{Var_{\rho}} \underbrace{E_{\rho} \hat{c}_{i}^{2}(X_{i})}_{C_{j}^{2}} + \underbrace{E_{\rho} \hat{c}_{i}^{2}(X_{i})}_{C_{j}^{2}}$$

$$= \frac{1}{n-1} \sum_{j=1}^{N} 2 \mathbb{E}_{\rho} \varphi_{j}^{*}(x_{i}) - (n+1) \left[\frac{1}{n} \mathbb{E}_{\rho} \varphi_{j}^{*}(x_{i}) - \frac{1}{n} C_{j}^{*} + C_{j}^{*} \right] \frac{1}{(1-\frac{1}{n}) C_{j}^{*}} = \frac{n-1}{n} C_{j}^{*}$$

$$= \frac{1}{n-1} \sum_{j=1}^{N} (2 - \frac{n+1}{n}) E_{p} \varphi_{j}^{2}(x_{1}) 4 - \frac{n+1}{n} \cdot (n-1) C_{j}^{2}$$

 $\frac{\lambda}{2} \left(E_{p} e_{j}^{2}(x_{1}) - (N_{2}) c_{j}^{2} \right) = \frac{\lambda}{N} \frac{2}{2} \left(E_{p} e_{j}^{2}(x_{1}) - c_{j}^{2} - N_{c}^{2} \right)$ $= \frac{\lambda}{N} \frac{2}{2} \left(E_{p} e_{j}^{2}(x_{1}) - c_{j}^{2} \right) - \frac{\lambda}{N} \frac{2}{N} A c_{j}^{2} = \frac{1}{N} \frac{N}{N} A c_{j}$

=
$$\frac{1}{n}\sum_{j=1}^{N} (\mathbb{E}_{p} \varphi_{i}^{2}(x_{i}) - (n+1)C_{j}^{2}) = \frac{1}{n}\sum_{j=1}^{N} (\mathbb{E}_{p} \varphi_{i}^{2}(x_{i}) - C_{i}^{2}) - \sum_{j=1}^{N} C_{j}^{2}$$

$$= \frac{1}{n} \sum_{j=1}^{n} (\mathbb{E}_{p} (x_{j}^{2}(x_{j}) - c_{j}^{2}) + \sum_{j=N+1}^{\infty} c_{j}^{2} - \sum_{j=1}^{\infty} c_{j}^{2} - \sum_{j=1}^{\infty} c_{j}^{2})$$

US I DO EPJON ~N MILE(N) -L 100

HOSE , BIL>0 & PENMIBIT PAIN POIN CULTURE OF OCTIVE ON 1818 UN

Graff:

$$\varphi_{i}(x) = 1$$
(x) $\frac{1}{2} \cos(\pi_{i}(x))$
(x) $\frac{1}{2$

=)
$$Q_{1}^{2}(x) = Q_{1}(x)$$
 2 Cos(6)(cos(3) = cos(6-4)+cos(6+4)

(800)
$$\varphi_{i}^{2}(x) = (\sqrt{2} \cos(\pi_{i}x))^{2} = 0 \cdot \frac{1 + \cos(2\pi_{i}x)}{0} = 1 + \frac{1}{\sqrt{2}} (\varphi_{i}(x))$$

(odd)
$$\theta_{j}^{2}(x) = (\sqrt{12} \sin(\pi j x))^{2} = 0$$
. $\frac{1 - \cos(2\pi (j-1)x)}{2} = 1 - \frac{1}{\sqrt{12}} \theta_{2(j-1)}(x)$: $j > 1$

$$\Rightarrow E_{\rho} \varphi_{j}^{2}(x_{i}) = \begin{cases} 1 + \frac{1}{12} \sum_{i=1}^{n} E_{\rho} \varphi_{2(j-1)}(x_{i}) \\ 1 - \frac{1}{12} E_{\rho} \varphi_{2(j-1)}(x_{i}) \end{cases} = \begin{cases} 1 + \frac{1}{12} C_{2(j-1)}, \text{ jodd} \\ 1 - \frac{1}{12} C_{2(j-1)}, \text{ jodd} \end{cases}$$

$$=\frac{1}{n}\left(1+\left(1+\frac{1}{n}C_{4}\right)$$

(*) Lee + 100) 1000 NO. 14 (1) NA. 14/11 100 CIM ORGIN WIGH ON 1-COL COCK HISE(N) = 1 + 1 - 1 Can - 1 2 Co + PN

一でい = 一くらい、P> = 一(205(2TU(x)))p(x)dx \[
\left\) \text{ \(\alpha \times \text{ \(\alph

HISE(N) = N+ 1 - 1 2 C; + PN & N+1 + PN : Nayz

1001/ 24 (1/4) 26 Mer Grove come med c. 1250 Per 1001

1. 109. 11 10.0 yl

$$\Theta(\beta, Q) = \{0 \in L^2 : \sum_{j=1}^{n} a_j^2 o_j^2 \leq Q \}$$

$$Q = \frac{L^2}{\pi^2} \qquad ; \quad a_j = \int_{0}^{\beta} \int_{0}^{\beta} \int_{0}^{\beta} \int_{0}^{\beta} dd$$

 $\rho_{0} = \sum_{j=0}^{\infty} c_{j}^{2} \leq \sum_{j=0}^{\infty} c_{j}^{2} \cdot \left(\frac{a_{j}}{a_{j+1}}\right)^{2} \leq \frac{1}{a_{j+1}} \sum_{j=1}^{\infty} c_{j}^{2} a_{j}^{2} \leq N^{-2}\beta Q$ $\frac{1}{2} \sum_{j=0}^{\infty} c_{j}^{2} \leq \sum_{j=0}^{\infty} c_{j}^{2} a_{j}^{2} a_{j}^{2} \leq \sum_{j=0}^{\infty} c_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} \leq \sum_{j=0}^{\infty} c_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} \leq \sum_{j=0}^{\infty} c_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} \leq \sum_{j=0}^{\infty} c_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{2} a_{j}^{$ lq:

=> HISE(N) = N+1 +QN-18 12711 Nr= [cn 48] 170) HISE(N) < (+a) n=新++=0(n-共1)