Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

STP

Sprawozdanie z projektu nr 1

Paweł Grzankowski

Spis treści

1.	\mathbf{Wst}	ęp
2.	Obie	ekt
	2.1.	Reprezentacja transmitancji w przestrzeni stanu
	2.2.	Reprezentacja graficzna
	2.3.	Sprawdzenie wyników
3	Reg	ulator
٠.	_	
	3.1. 3.2.	Reprezentacja graficzna regulatora
	3.2.	Przebiegi symulacji
		3.2.1. Biegun wong $s_b = -1.3$
	2.2	
	3.3.	Komentarz
4.	Obse	erwator
 3. 	4.1.	Równania stanu
	4.2.	Reprezentacja graficzna
	4.3.	Reprezentacja graficzna obserwatora z regulatorem mierzonego stanu
	4.4.	Działanie obserwatora z regulatorem mierzonego stanu dla zerowych warunków
		początkowych
		4.4.1. Biegun wolny: $s_0 = -2$
		4.4.2. Biegun średni: $s_0 = -5$
		4.4.3. Biegun szybki: $s_0 = -10$
		4.4.4. Komentarz
	4.5.	Działanie obserwatora z regulatorem mierzonego stanu dla niezerowych warunków
 3. 		początkowych
		4.5.1. Biegun wolny: $s_0 = -2$
		4.5.2. Biegun średni: $s_0 = -5$
		4.5.3. Biegun szybki: $s_0 = -10$
		4.5.4. Komentarz
	4.6.	Obserwator wykorzystujący stan obserwowany
		4.6.1. Reprezentacja graficzna obserwatora
		4.6.2. Przebiegi symulacji dla niezerowych warunków początkowych
		4.6.3. Przebiegi symulacji dla zerowych warunków początkowych
		4.6.4. Komentarz

1. Wstęp

Rozpatrywany jest obiekt opisany transmitancją ciągłą:

$$G(s) = \frac{(s+0.5)(s+3.5)}{(s+6)(s+4)(s+5)}$$

Przeprowadzone zostaną eksperymenty mające na celu znalezienie optymalnego regulatora oraz obserwatora.

Paweł Grzankowski, Warszawa, kwiecień 2024

2. Obiekt

2.1. Reprezentacja transmitancji w przestrzeni stanu

Na podstawie transmitancji obiektu można wyznaczyć jego reprezentację w przestrzeni stanu. W tym celu wykorzystano poniższy skrypt w MATLABie.

```
num = [1 4 7/4];
den = [1 15 74 120];
[A, B, C, D] = tf2ss(num, den);
```

Wynikiem działania skryptu jest macierz A, wektor B, wektor C oraz skalar D. Macierze te mają postać:

$$A = \begin{bmatrix} -15 & -74 & -120 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 4 & 1.75 \end{bmatrix} \quad D = 0$$

Dzięki czemu można zapisać równanie stanu obiektu w postaci:

$$\dot{x}_1(t) = -15x_1(t) - 74x_2(t) - 120x_3(t) + u(t)
\dot{x}_2(t) = x_1(t)
\dot{x}_3(t) = x_2(t)
y(t) = x_1(t) + 4x_2(t) + 1.75x_3(t)$$

2.2. Reprezentacja graficzna

Dzięki operacjom przeprowadzonym w powyższym punkcie można w prosty sposób zaimplementować postać graficzną obiektu wykorzystując Simulink. Poniżej przedstawiono schemat blokowy obiektu.

Rys. 2.1. Schemat graficzny obiektu

2. Obiekt 4

2.3. Sprawdzenie wyników

Aby sprawdzić poprawność przeprowadzonych obliczeń, sprawdzono czy można otrzymać transmitancję obiektu na podstawie reprezentacji w przestrzeni stanu. W tym celu wykorzystano poniższy skrypt w MATLABie.

Wynikiem działania skryptu jest licznik num oraz mianownik den transmitancji obiektu. Wartości te wynoszą odpowiednio:

$$num = \begin{bmatrix} 1 & 4 & 1.75 \end{bmatrix} \quad den = \begin{bmatrix} 1 & 15 & 74 & 120.0000 \end{bmatrix}$$

Co potwierdza poprawność przeprowadzonych obliczeń.

3.1. Reprezentacja graficzna regulatora

Implementacja regulatora ze sprzężeniem od stanu (u(t) = -Kx(t)) w programie Simulink wygląda następująco:

Rys. 3.1. Schemat regulatora

3.2. Przebiegi symulacji

W celu sprawdzenia działania regulatora przeprowadzono symulację w programie Simulink. Poniżej przedstawiono przebiegi symulacji dla warunku początkowego obiektu $x(0) = [-1 \ 2 \ 1]^T$ oraz dla warunku końcowego $x(t_{konc}) = [0 \ 0 \ 0]^T$. Symulacje zostały przeprowadzoe na trzech różnych wartościach potrójnego bieguna: $s_b = [-1.3 \ -3.4 \ -5]$ odpowiednio wolnego, średniego i szybkiego.

3.2.1. Biegun *wolny* $s_b = -1.3$

Rys. 3.2. Przebieg sterowania $s_b = -1.3\,$

Rys. 3.3. Przebiegi zmiennych stanu dla $s_b=-1.3\,$

3.2.2. Biegun *średni* $s_b = -3.4$

Rys. 3.4. Przebieg sterowania dla $s_b = -3.4\,$

Rys. 3.5. Przebiegi zmiennych stanu dla $s_b = -3.4\,$

3.2.3. Biegun szybki $s_b = -5$

Rys. 3.6. Przebieg sterowania dla $s_b=-5\,$

Rys. 3.7. Przebiegi zmiennych stanu dla $s_b=-5\,$

3.3. Komentarz

Na podstawie zwizualizowanych przebiegów sterowania oraz zmiennych stanu modelu możemy zauważyć dwie zależności wynikające z wyboru bieguna. Im mniejszy jest biegun tym regulator jest szybszy natomiast zmiany sygnałów są gwałtowniejsze. Dlatego aby zapewnić kompromis między tymi czynnikami w dalszych eksperymentach wykorzystany zostanie regulator z biegunem $s_b=-3.4$.

W tej części przeprowadzone zostaną eksperymenty wykorzystujące obserwator. Jego równania stanu można wyznaczyć z poniższego wzoru:

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

4.1. Równania stanu

Stosując powyższą zależność powstały takie równania obserwatora:

$$\dot{\hat{x}}_1 = -15\hat{x}_1 - 74\hat{x}_2 - 120\hat{x}_3 + u + l_1(y - C\hat{x})
\dot{\hat{x}}_2 = \hat{x}_1 + l_2(y - C\hat{x})
\dot{\hat{x}}_3 = \hat{x}_2 + l_3(y - C\hat{x})$$
(4.1)

gdzie $C\hat{x} = \hat{x}_1 + 4\hat{x}_2 + 1.75\hat{x}_3$.

4.2. Reprezentacja graficzna

Rys. 4.1. Reprezentacja graficzna obserwatora

4.3. Reprezentacja graficzna obserwatora z regulatorem mierzonego stanu

Podłączając obserwator wcześniej zaprojektowanego modelu uzystkujemy poniższą konstrukcję:

Rys. 4.2. Reprezentacja graficzna obserwatora z regulatorem mierzonego stanu

4.4. Działanie obserwatora z regulatorem mierzonego stanu dla zerowych warunków początkowych

4.4.1. Biegun *wolny*: $s_0 = -2$

Rys. 4.3. Przebiegi rzeczywistych zmiennych stanu

Rys. 4.4. Przebiegi estymowanych zmiennych stanu

4.4.2. Biegun *średni*: $s_0 = -5$

Rys. 4.5. Przebiegi rzeczywistych zmiennych stanu

Rys. 4.6. Przebiegi estymowanych zmiennych stanu

4.4.3. Biegun *szybki*: $s_0 = -10$

Rys. 4.7. Przebiegi rzeczywistych zmiennych stanu

Rys. 4.8. Przebiegi estymowanych zmiennych stanu

4.4.4. Komentarz

Analizując przeprowadzone symulacje, łatwo zauważyć, że pomimo zmiany bieguna obserwatora zmienne stanu pozostają niezmienione, co jest zgodne z przewidywaniami. Biegun wpływa za to na zmienne estymowane, a dokładniej na szybkość ich zbiegania do pożądanej wartości oraz wielkość zmian sygnałów.

4.5. Działanie obserwatora z regulatorem mierzonego stanu dla niezerowych warunków początkowych

4.5.1. Biegun *wolny*: $s_0 = -2$

Rys. 4.9. Przebiegi rzeczywistych zmiennych stanu

Rys. 4.10. Przebiegi estymowanych zmiennych stanu

4.5.2. Biegun *średni*: $s_0 = -5$

Rys. 4.11. Przebiegi rzeczywistych zmiennych stanu

Rys. 4.12. Przebiegi estymowanych zmiennych stanu

4.5.3. Biegun szybki: $s_0 = -10$

Rys. 4.13. Przebiegi rzeczywistych zmiennych stanu

Rys. 4.14. Przebiegi estymowanych zmiennych stanu

4.5.4. Komentarz

W przypadku niezerowych warunków początkowych obserwator zaczyna od wartości różnych od zera, co wpływa na przebiegi zmiennych stanu. Warto zauważyć, że w przypadku bieguna wolnego przebiegi zmiennych stanu są bardziej zbliżone do siebie niż w przypadku bieguna szybkiego.

4.6. Obserwator wykorzystujący stan obserwowany

4.6.1. Reprezentacja graficzna obserwatora

Implementacja obserwatora stanu w programie Simulink wygląda następująco:

Rys. 4.15. Schemat obserwatora

4.6.2. Przebiegi symulacji dla niezerowych warunków początkowych

Biegun $wolny s_0 = -2$

Rys. 4.16. Przebieg sterowania dla obserwatora

Rys. 4.17. Przebiegi zmiennych stanu dla obserwatora

Biegun *średni* $s_0 = -5$

Rys. 4.18. Przebieg sterowania dla obserwatora $\,$

Rys. 4.19. Przebiegi zmiennych stanu dla obserwatora

Biegun szybki $s_0 = -10$

Rys. $4.20.\,$ Przebieg sterowania dla obserwatora

Rys. 4.21. Przebiegi zmiennych stanu dla obserwatora

4.6.3. Przebiegi symulacji dla zerowych warunków początkowych

Biegun $wolny s_0 = -2$

Rys. 4.22. Przebieg sterowania dla obserwatora

Rys. 4.23. Przebiegi zmiennych stanu dla obserwatora

Biegun szybki $s_0 = -5$

Rys. 4.24. Przebieg sterowania dla obserwatora

Rys. 4.25. Przebiegi zmiennych stanu dla obserwatora

Biegun szybki $s_0 = -10$

Rys. 4.26. Przebieg sterowania dla obserwatora

Rys. 4.27. Przebiegi zmiennych stanu dla obserwatora

4.6.4. Komentarz

Regulator działa znacznie lepiej dla zerowych warunków początkowych. Skoki sterowania są dużo mniejsze niż w przypadku niezerowych warunków początkowych, a czas regulacji jest krótszy. W przypadku niezerowych warunków początkowych widać też większą niestabilność, która objawia się kilkukrotnym skokom przed osiągnięciem wartości zadanej.