(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 19 February 2004 (19.02.2004)

PCT

(10) International Publication Number WO 2004/015139 A1

(51) International Patent Classification⁷:

C12Q 1/68

(21) International Application Number:

PCT/EP2003/008602

(22) International Filing Date: 1 August 2003 (01.08.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

102 36 406.0

2 August 2002 (02.08.2002) DE

(71) Applicant (for all designated States except US): EPIGE-NOMICS AG [DE/DE]; Kastanienallee 24, 10435 Berlin (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ADORJAN, Peter [HU/DE]; Dunckerstrasse 4, 10437 Berlin (DE). PIEPENBROCK, Christian [DE/DE]; Schwartzkoffstrasse 7 B, 10115 Berlin (DE). RUJAN, Tamas [HU/DE]; Hiddenseer Strasse 13, 10437 Berlin (DE). SCHMITT, Armin [DE/DE]; Hortensienstrasse 29, 12203 Berlin (DE).

(74) Agent: SCHUBERT, Klemens; Neue Promenade 5, 10178 Berlin-Mitte (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

004/015139 A1

(57) Abstract: The invention describes a method for amplifying nucleic acids, such as DNA with means of an enzymatic amplification step, such as a polymerase chain reaction, specified for template nucleic acids of low complexity, e.g. pre-treated DNA, like but not limited to DNA pre-treated with bisulfite is disclosed. The invention is based on the use of specific oligo-nucleotide primer molecules to solely amplify specific pieces of DNA. It is disclosed how to optimize the primer design for a PCR if the template DNA is of low complexity.

Method for amplification of nucleic acids of low complexity

The present invention relates to a method for the amplification of nucleic acids.

Description

- This invention relates to the fields of genetic engineering, molecular biology and computer science, and more specifically to the field of nucleic acid analysis based on specific nucleic acid amplification.
- The matter of the present invention is a method for amplifying nucleic acids, such as DNA by means of an enzymatic amplification step, such as a polymerase chain reaction, specified for template nucleic acids of low complexity, e.g. pre-treated DNA, like but not limited to DNA pre-treated with bisulfite. The invention is based on the use of specific oligo-nucleotide primer molecules to solely amplify specific pieces of DNA. It is disclosed how to optimize the primer design for a PCR if the template DNA is of unusually low complexity. Also, for the optimal primer design it was considered that the treated template DNA is single stranded.
 - The amplification of nucleic acids relies mainly on a method called polymerase chain reaction (PCR). The PCR is based on the activity of the enzyme DNA polymerase, which is elongating primer molecules, which bind to the template DNA by adding dNTPs and hereby copying the template sequence (Saiki RK, Gelfand DH, Stoeffel S, Scharf SJ, Higuchi R, Horn T, Mullis KB and Erlich HA (1988).
 - Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491). The

primer molecules are designed to specifically hybridize to those regions of the template DNA that define both ends of the amplificate. The forward primer binds to the 5' end of the sense strand of the amplificate, whereas the reverse primer binds to the 5' end of the reverse strand, hereby defining the starting points of the polymerase reaction and eventually determining the length of the amplificate.

5

25

30

35

10 Before the polymerase starts the template DNA gets denatured, this is usually done by a short cycle of heating the reaction mixture up to about 95°C, then cooling it down to the annealing temperature determined by the melting temperature of the primer molecules used and finally 15 allowing the polymerase to elongate the annealed primers at its ideal working temperature for some minutes. This cycle is repeated several times each starting with the denaturation step. The primer molecules hybridize to the single stranded DNA. The forward primer is the starting molecule for a copy of the sense strand and the reverse 20 primer is the starting molecule for a copy of the antisense strand.

These first copies will be of unspecific length, limited only by the polymerase's activity. However in the following cycle, the forward primer will also bind to the first copy of the anti-sense strand, the polymerase will take that copy as a template and will elongate the primer only as far as there is template DNA. Hereby the length of the second copy gets limited to the length defined by the first nucleotide of the second primer. In the following cycles more and more pieces of template DNA compete for the primer molecules and eventually the DNA amplificate of defined length will be the main product.

However, in the case of a bisulfite treated DNA the template DNA is single stranded. The bisulfite or similar treatment alters the original sequences on both strands such that these are not complementary to each other after the treatment. As a result no complementary strand to the target sequence exists. A first primer molecule binds to the one end of the single stranded target sequence. The polymerase elongates said primer and copies said target sequence. The second primer molecule cannot bind to the complementary, so called anti-sense strand, as it would in a standard PCR. Therefore the second primer molecule is designed to bind to the first copied sequence instead. More specifically it will bind to that part of the copied

3

PCT/EP2003/008602

WO 2004/015139

said target sequence.

5

10

15

20

25

30

35

The results of a PCR are highly depending on the choice of the ideal primer. The choice of a primer molecule must respect constraints permitting a correct amplification by PCR, fulfilling hybridization temperature conditions and auto- or hetero-hybridization prevention.

nucleic acid which is the complement to the other end of

In other words, as any PCR requires two primer molecules to amplify a specific piece of DNA in one reaction the melting temperatures of both primers need to be very similar in order to allow proper binding of both at the same hybridization temperature. That is why most primer design programs require the user to define a preferred melting temperature or a permitted range of melting temperatures. This requirement becomes the limiting factor when designing primers for a so called multiplex PCR, as all primer pairs in use need to have the same or at least very similar melting temperatures. Additionally primers have to be very specific, in order to only amplify those pieces of DNA that are the target.

By providing the means for designing extremely accurate primer pairs for DNA hybridization procedures this invention relates to the so called PCR primer design. More specifically the body of this invention relates to the specific requirements of primers and therefore of primer design when using template DNA that consists of essentially only three different nucleotides and is single stranded. This is the case when using bisulfite treated DNA as a template, as it contains no cytosine other than the methylated cytosines in a CG dinucleotide and a rest of insufficiently treated and therefore untransformed non-methylated cytosines. The invention relates specifically to the primer design when using bisulfite treated DNA as template.

15

20

10

5

It would be obvious to an individual skilled in the art that the use of the primers as specified in this invention are not limited to nucleic acid amplification. Said primers can be used for several purposes, such as amplification, but also for nucleic acid sequencing or as blocking oligonucleotides during analysis of bisulfite treated DNA. Therefore the use of said primers is not limited to nucleic acid amplification but extends to all standard molecular biological methods.

25

Pairs of these primers are used to specifically amplify DNA from a small amount of sample DNA that consists of bisulfite treated DNA originating from a limited source of DNA like a bodily fluid or tissue sample.

30

35

DNA can occur methylated or non-methylated at certain positions and this information is relevant for the status of a genes transcription. The methyl group is attached to the cytosine bases in CpG positions. The identification of 5-methylcytosine in a DNA sequence as opposed to unmethylated cytosine is of greatest importance for example

when studying the role of DNA methylation in tumorigenesis. But, because the 5-Methylcytosine behaves just as a stosine for what concerns its hybridization preference (a property relied upon for sequence analysis) its positions can not be identified by a normal sequencing reaction. Furthermore in a PCR amplification this relevant epigenetic information, methylated cytosine or unmethylated cytosine, will be lost completely.

5

PCT/EP2003/008602

WO 2004/015139

5

- This problem is usually solved by treating the genomic DNA with a chemical leading to a conversion of the cytosine bases, which consequently allows to differentiate the bases afterwards.
- A tool most useful for analyzing DNA methylation is the bisulfite conversion of DNA that converts cytosine bases into bases showing a hybridization behavior as thymin bases. Hereby the DNAs complexity is reduced by a fourth.
- Bisulfite conversion is the most frequently used method 20 for analyzing DNA for 5-methylcytosine. It is based upon the specific reaction of bisulfite with cytosine which, upon subsequent alkaline hydrolysis, is converted to uracil, whereas 5-methylcytosine remains unmodified under these conditions (Shapiro et al. (1970) Nature 227: 25 1047). However, in its base pairing behavior, uracil coresponds to thymine, that is, it hybridizes to adenine; whereas 5-methylcytosine doesn't change its chemical properties under this treatment and therefore still has the base pairing behavior of a cytosine, that is hybrid-30 izing with guanine. Consequently, the original DNA is converted in such a manner that methyl-cytosine, which originally could not be distinguished from cytosine by its hybridization behavior, can now be detected as the
- only remaining cytosine using "normal" molecular biological techniques, for example, by amplification and hy-

bridization or sequencing. All of these techniques are based on base pairing which can now be fully exploited. Comparing the sequences of the DNA prior to and after bisulfite treatment allows an easy identification of those bases that have been methylated.

5

10

20

25

30

35

In the scope of this invention when it says "a nucleotide (...) was converted by the treatment..." this conversion is meant to be able to differentiate between methylated and un-methylated cytosine bases within said sample, as for example the conversion of un-methylated cytosine bases to bases which hybridize to adenine by the treatment with bisulfite.

An alternative method is to use restriction enzymes that are capable of differentiating between methylated and unmethylated DNA, but this is restricted in its uses due to the selectivity of the restriction enzyme towards a specific sequence.

An overview of the further known methods of detecting 5-methylcytosine may be gathered from the following review article: Rein T, DePamphilis ML, Zorbas H, Nucleic Acids Res. 1998, 26, 2255.

In terms of sensitivity, the prior art is defined by a method, which encloses the DNA to be analyzed in an agarose matrix, thus preventing the diffusion and renaturation of the DNA (bisulfite reacts with single-stranded DNA only), and which replaces all precipitation and purification steps with fast dialysis (Olek A, Oswald J, Walter J (1996) A modified and improved method for bisulfite based cytosine methylation analysis. Nucleic Acids Res. 24: 5064-6). Using this method, it is possible to analyze individual cells, which illustrates the potential of the method.

To date, barring few exceptions (e.g., Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B (1997) A singletube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 5: 94-8) the bisulfite technique is only used in research. Always, however, short, specific fragments of a known gene are amplified subsequent to a bisulfite treatment and either completely sequenced (Olek A, Walter J (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 3: 275-6) or individual cytosine positions are detected by a primer extension reaction (Gonzalgo ML and Jones PA (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25 :2529-31; WO 95/00669) or by enzymatic digestion (Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25: 2532-4).

5

10

15

20

30

35

Another technique to detect hypermethylation is the so called methylation specific PCR (MSP) (Herman JG, Graff JR, Myohanen S, Nelkin BD and Baylin SB (1996), Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 93: 9821-6). The technique is based on the use of primers that differentiate between a methylated and a non-methylated

sequence if applied after bisulfite treatment of said DNA sequence. The primer either contains a guanine at the position corresponding to the cytosine in which case it will after bisulfite treatment only bind if the position was methylated. Or the primer contains an adenine at the corresponding cytosine position and therefore only binds to said DNA sequence after bisulfite treatment if the cytosine was unmethylated and has hence been altered by the

bisulfite treatment so that it hybridizes to adenine.

With the use of these primers amplicons can be produced specifically depending on the methylation status of a certain cytosine and will as such indicate its methylation state. The present invention, however, does preferably not include CpGs in the primer sequence.

Another new technique is the detection of methylation via Taqman PCR, also known as MethylLight (WO 00/70090). With this technique it became feasible to determine the methylation state of single or of several positions directly during PCR, without having to analyze the PCR products in an additional step.

In addition, detection by hybridization has also been described (WO 99/28498).

Further publications dealing with the use of the bisulfite technique for methylation detection in individual genes are:

20 Grigg G, Clark S (1994) Sequencing 5-methylcytosine residues in genomic DNA. Bioassays 16: 431-6; Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W (1997) Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing 25 method. Hum Mol Genet. 6: 387-95; Feil R, Charlton J, Bird AP, Walter J, Reik W (1994) Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 22: 695-6; Martin V, Ribieras S, Song-Wang X, Rio MC, Dante R (1995) Ge-30 nomic sequencing indicates a correlation between DNA hypomethylation in the 5' region of the pS2 gene and its expression in human breast cancer cell lines. Gene 157: 261-4; WO 97/46705; WO 95/15373; WO 97/45560

5

10

For all those methods mentioned above, which are based on PCR amplification of bisulfite treated DNA, the biggest challenge is to design primers that are specific.

5 THE PROBLEM AND ITS SOLUTION

There are a number of programs available on the market that offer to design primer pairs in order to amplify a piece of DNA in a PCR. Usually they require as input the template DNA sequence, the preferred melting temperature TM, the desired length of the amplificate and optionally the preferred length of the primer molecules.

However if a primer is required to bind specifically to bisulfite treated DNA, the design of the primer molecule is especially difficult and those tools known in the art are not competent to design primers that lead to specific products. The following problems occur when dealing with bisulfite treated DNA instead of standard DNA:

20

25

30

35

10

15

First, the sequence complexity of the bisulfite treated genome is reduced dramatically. Complexity in this context is meant to be a measure for the similarity of a given sequence to a random or stochastic sequence; the more complex a sequence is the more it is similar to a random sequence. A reduced complexity of the genome means there are less degrees of variation. Where there are essentially only three different nucleotides rather than four, the probability of a sequence to occur twice in a given length of sequence is much higher. For example, a primer molecule of 20 nucleotides in length is likely to be unique in the human genome, if it is not part of a repeat sequence: The human genome is known to consist of about 3 x 109 bases. There are 420 ≈ 1012 different ways to form sequences of a length of 20 nucleotides, assuming equidistribution of the bases, which makes multiple occurrences of a given 20-mer (oligonucleotide of 20 nucleotides) extremely unlikely. However since there are only $320 \approx 3 \times 109$ different 20-mers possible over a 3-letter alphabet, this multiple occurrence cannot be excluded. In addition a bisulfite treated sequence, enriched in thymine in the sense strand and enriched in adenine in the reverse complementary strand, will contain more repeats and regions of general low complexity.

10

PCT/EP2003/008602

WO 2004/015139

5

- 1.0 Another way to enhance or guarantee uniqueness of primer and/or oligo molecules is to estimate their expected frequency in the genome based upon a Markov model of order n for the human genome or to check their uniqueness explicitly by counting their exact occurrence. The estimation 15 based upon the Markov model relies upon the determination of the probabilities of all 4n n-mers (oligo molecules of n nucleotides) in the human genome or in all amplificates which are used in the hybridization and the conditional probabilities of all four bases given these n-mers. The primer pairs will be constructed from forward and reverse 20 oligos which lie within an appropriate distance to each other and which have minimal individual expected occurrence elsewhere in the genome.
- A second challenge in primer design for bisulfite treated DNA is that the melting temperature TM of a bisulfite DNA primer of a certain length is typically lower than the melting temperature TM of a standard primer containing cytosines. This is due to the fact that every cytosine in a bisulfite treated DNA is after amplification by PCR replaced by thymine. Cytosine binds its corresponding base guanine via three hydrogen bonds, whereas thymine binds its corresponding base adenine via two hydrogen bonds only, leading to a generally weaker binding, a lower TM.

A third problem arises from the fact that bisulfite treated sequences are not only lacking cytosines but are also thymine-rich. Thymine also hybridizes unspecifically with guanine. This makes mismatching (unspecific binding of a primer to a sequence not identical) of a primer designed for bisulfite treated DNA much more likely than mismatching of a standard primer consisting of four different nucleotides.

11

PCT/EP2003/008602

WO 2004/015139

5

It is the aim of this invention to overcome these problems, which are specific for primer based amplification of bisulfite treated DNA.

For a so called "multiplex PCR" it becomes especially difficult to design primer pairs. This expression is used 15 to describe an experiment in which several different pieces of DNA are amplified simultaneously, in one reaction vessel and at the same time. Obviously this saves a lot of effort and time and is as such a basic requirement 20 for high throughput assays based on PCR amplification. An overview on the state of the art concerning multiplex PCR is given by Henegariu et al. (Henegariu O, Heerema NA, Dlouhy SR, Vance GH and Vogt PH (1997) Multiplex PCR: Critical Parameters and Step-by-Step Protocol. BioTech-25 niques 23: 504-511), who offer a step-by-step protocol on how to tackle multiplex PCR problems. However, the possibility of a special primer design is not mentioned in this article.

To ensure that the multiplex PCR works and the multiple products are amplified indeed usually a gel electrophoresis of the reaction mixture is performed. The products get separated due to their different sizes. Unfortunately, the ability of agarose gel electrophoresis to distinguish the products is slightly limited. However, it is possible to test for different product sizes with the

means of a fragment analyzer, which is much more accurate and able to distinguish product sizes of one base difference. Hence different product sizes are no longer a requirement to be considered in the primer design for a

12

PCT/EP2003/008602

5 multiplex PCR.

10

15

20

25

WO 2004/015139

In patent WO 01/94634 a method for a multiplex PCR using at least two primer pairs is described that consists of basically a two step amplification procedure wherein one step is referred to as pre-amplification. After pre-amplification (by means of PCR) with a number of primer pairs the sample gets divided into as many portions as there are primer pairs. At least one (and preferably only one) of the previously used primer pairs is added. This method doesn't relate in any way to the selection or design of primer molecules described herein.

In an article by Shuber et al. (Shuber AP, Grondin VJ and Klinger KW (1995) A simplified procedure for developing multiplex PCRs. Genome Res 5 (5): 488-493) regarding multiplex PCR, the authors suggest to use primers, which contain a 3' region complementary to sequence specific recognition sites and a 5' region of a defined length of 20 nucleotides each. The authors claim that they could establish identical reaction conditions, cycling times and annealing temperatures for any PCR primer pair following those requirements.

In several recent papers successful multiplex PCRs have been established. For example, Becker et al. have reported the development of a multiplex PCR reaction for the detection of multiple staphylococcal enterotoxin genes, which uses individual primer sets for each toxin gene (Becker K, Roth R and Peters G (1998) Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplifica-

tion and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J. Clin. Microbiol. 36: 2548-2553). This has been developed even further by Monday and Bohach, by increasing the number of primer pairs applied in one reaction up to about 10 in order to have one assay to amplify all of the characterized enterotoxin genes. This still required a unique established primer pair for the detection of every individual gene (Monday SR and Bohach GA (1999) Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37: 3411-3414).

5

10

In another paper by Sharma et al. a method for a onevessel-multiplex PCR is described wherein each of six 15 chosen primer pair consists of one identical universal forward primer, based on a highly conserved region of those genes of interest and one reverse primer, specific for each individual gene. As such the assay leads to a rapid amplification of a family of genes, which all have 20 a conserved region in common. It is designed to detect presence or absence of certain genes in an unknown mixture. No further information is given about the primer design, apart from saying that they were designed by alignment of published DNA sequences. This is certainly 25 not the only requirement though, as one big limitation of the method is the need of getting PCR products of different sizes in order to identify those in the end (Sharma NK, Rees CED and Dodd CER (2000) Development of a singlereaction multiplex PCR toxin typing assay for Staphylo-30 coccus aureus strains. Applied and Environmental Microbiology 66 (4): 1347-1353).

In the patent application WO 01/36669 a method is described which uses a similar approach for the controllable amplification of a higher number of sequences in selecting one randomly chosen reverse primer that hybridizes unspecifically and a number of specific forward primers to amplify a group of sequences. As the reverse primer is labeled all products formed will be labeled as well. By hybridizing said amplicons towards immobilized detection oligos, which are able to differentiate the products, it will be easy to see which products have been amplified and herein the presence or absence of said sequences in

the mixture can be determined.

14

PCT/EP2003/008602

10

15

20

25

30

35

5

WO 2004/015139

The big disadvantage in all these methods is that every primer pair needs to be established individually first to ensure that a PCR product of the expected size was produced and that no additional or nonspecific products are generated. Once the specificity of the primer pairs had been determined, PCR conditions, buffers, and primer concentrations need to be optimized to establish conditions under which the primer molecules can be combined into one single PCR reaction without affecting the ability of the primer pairs to generate a gene specific amplicon.

A more recently published approach by Nicodeme and Steyaert describes the conditions required for multiplex PCR and suggests an algorithm to automatically select for primer pairs (Nicodeme P and Steyaert JM (1997) Selecting optimal oligonucleotide primers for multiplex PCR. Proc. Int. Conf. Intell Syst Mol Biol; 5 : 210-213). In this approach the conditions for pre-selecting primer pairs for a successful one locus amplification (singleplex PCR conditions) are rather broad. The three basic requirements are the pairing distance between a forward and a reverse primer, the condition of non-palindromicity of a primer, and the condition that the 3' end of a primer must not be reverse complementary to any of the other primers sequence. This selection is done with the help of a typical primer design program called PRIMER. However,

PRIMER is a two step program, and in this approach the new method to design primers for a multiplex PCR takes the output from step 1 as input, which is a list of possible forward and a list of possible reverse primers for

15

PCT/EP2003/008602

every amplificate.

WO 2004/015139

5

10

15

20

25

The only further selection criteria for the multiplex PCR primers are the absence of the reverse complementarity of their 3' end towards the other primer sequences in the experiment. A second critical factor considered here is the GC versus AT ratio. To some extent it is this ratio that determines the melting temperature of a primer pair. The authors suggest to limit the GC/AT ratio to be inside a given range which would enable the simultaneous hybridization of several primer pairs at one reaction temperature. The final requirement is the electrophoresis distance, determined by the tool that is used to differentiate the PCR products in, for example, a gel electrophoresis. This most common method requires the products to be of different sizes. The whole concept of this method also requires to have a pool of possible primer pairs for each amplicon.

The design of suitable primers for a multiplex PCR on bisulfite treated DNA is an even greater challenge. The low complexity of the DNA, being reduced to essentially three different bases rather than four different bases, requires an extra careful selection of primers to avoid mismatching and unwanted amplification.

30

35

In the scope of this invention the word "mismatching" corresponds to the situation when the alignment of two sequences which are essentially complementary reveals positions in one of the sequences where the nucleotide base does not align with its corresponding base but a different one. The corresponding or complementary base pairs are adenine and thymine, cytosine and guanine,

are adenine and thymine, cytosine and guanine, uracil and adenine. For example, a cytosine that aligns with a thymine in its otherwise complementary sequence creates a mismatch of one base or nucleotide.

5

Accordingly "base mismatches" refers to the situation of a base mismatching with another as explained above, respectively "one or more base mismatches" refers to one or more bases (in a given sequence) that cannot be aligned with their corresponding bases.

Also, when the alignment reveals single nucleotide gaps in one of the aligned sequences this is understood under the term "mismatch" in the scope of this invention.

15

20

25

10

A 'gap' is to be understood as follows: If an alignment reveals that, in order to get the highest number of corresponding base pairs aligned, some bases are lacking a corresponding base in its otherwise complementary sequence, this is called a gap. Such a gap can have a length of one or more nucleotides.

To solve the problems mentioned above we invented a method consisting of several steps that is applicable for the amplification of nucleic acids in singleplex as well as in multiplex PCR experiments.

SUMMARY OF THE INVENTION

The method is comprised of the following steps:

Firstly, the nucleic acid sample containing the region of interest, which is to be amplified, is isolated. Secondly, this nucleic acid sample is treated in a manner that differentiates between methylated and un-methylated cytosine bases within said sample. Thirdly, a reaction mixture is set up containing a) the treated template nu-

17

PCT/EP2003/008602

WO 2004/015139

5

35

cleic acids, carrying the region of interest (also called: target nucleic acid) that is to be amplified, b) specified oligo-nucleotide primers, c) an enzyme capable of amplifying said nucleic acids in a defined manner, d) the necessary nucleotides required for the nucleic acid synthesis and e) a suitable buffer.

Said specified oligo-nucleotide primers are characterized in that

- their sequences each reach a predefined measure of complexity (as described in detail below) every possible combination of two primer molecules in said reaction mixture has a melting temperature below a specified threshold temperature
- none of the possible combinations of two primer molecules in said reaction mixture leads to the amplification of an additional unwanted product as determined by virtual testing for amplification.
- In the last step of the method said amplified target nucleic acid is detected by means commonly used by one skilled in the art.
- The invention is composed of a method for the amplification of nucleic acids comprising the following steps of
 isolating a nucleic acid sample, treating said sample in
 a manner that differentiates between methylated and unmethylated cytosine bases within said sample, amplifying
 at least one target sequence, within said treated nucleic
 acid, by means of enzymatic amplification and a set of
 primer molecules, wherein said primer molecules are characterized in that
 - a) each primer molecule sequence reaches a predefined measure of complexity, b) every combination of any two primer molecules in the set has a melting temperature below a specified threshold temperature and c) every combi-

nation of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template and the last step of detecting said amplified target nucleic acid.

More detailed description of the method:

The method is comprised of the following steps:

In the first step of the method, the nucleic acid sample, which contains the region of interest that is to be amplified, must be isolated from tissue or cellular sources. Such sources may include at least one cell, but usually several cells, cell lines, histological slides, bodily fluids, or tissue embedded in paraffin.

In a preferred embodiment of this invention the nucleic acid sample is isolated from a bodily fluid, a cell culture, a tissue sample or a combination thereof.

For example a certain kind of organ sample from a patient or an animal can be used to extract genomic DNA by the usually applied methods. Preferably, in this invention 25 DNA is extracted from a tissue sample or a biological fluid like blood, serum, urine or other fluids. 'Bodily fluid' herein refers to a mixture of macromolecules obtained from an organism. This includes, but is not limited to, blood, blood plasma, blood serum, urine, sputum, ejaculate, semen, tears, sweat, saliva, lymph fluid, 30 bronchial lavage, pleural effusion, peritoneal fluid, meningal fluid, amniotic fluid, glandular fluid, fine needle aspirates, nipple aspirate fluid, spinal fluid, conjunctival fluid, vaginal fluid, duodenal juice, pancreatic juice, bile and cerebrospinal fluid. This also 35 includes experimentally separated fractions of all of the

preceding. 'Bodily fluid' also includes solutions or mixtures containing homogenized solid material, such as feces.

19

PCT/EP2003/008602

WO 2004/015139

5 The nucleic acids may include DNA or RNA. Isolation may be by means that are standard to one skilled in the art, this includes for example extraction of DNA with the use of detergent lysates, sonification and vortexing with glass beads. An example is the extraction of DNA from a piece of a plant, like a leave or fruit. Once the nucleic acids, like genomic double stranded DNA, have been extracted they are used in the analysis.

In a preferred embodiment of this invention the nucleic acid sample is comprised of plasmid DNA, BACs (bacterial artificial chromosomes), YACs (yeast artificial chromosomes) or genomic DNA.

In another especially preferred embodiment of this invention the nucleic acid sample is comprised of human genomic DNA. It is preferred that the nucleic acids are of human origin.

In the second step, this nucleic acid sample is treated
in a manner that differentiates between methylated and
un-methylated cytosine bases within said sample. Cytosine
bases which are unmethylated at the 5'-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior.

This will be understood as 'treatment' hereinafter. The
method most commonly used so far is the so called bisulfite treatment.

This step is of essential meaning to the process as it translates the methylation pattern of said nucleic acids into a pattern that is something like an imprint of the

PCT/EP2003/008602

WO 2004/015139

5

10

methylation status itself. It contains essentially the same information but the pre-treated nucleic acids are no longer sensitive to amplification via PCR. Amplification via PCR does not differentiate between methylated and unmethylated cytosines and therefore leads to the loss of this level of information. The original methylation status however can be deducted whenever the described pre-treatment had been performed prior to the amplification step. Hence any means suitable to differentiate between a methylated and an un-methylated cytosine base are applicable, as long as the modified bases are still capable of being amplified by enzymatic means after treatment.

It is a preferred embodiment of this invention that said sample is treated by means of a solution of a bisulfite, hydrogen sulfite or disulfite. A treatment of genomic DNA as described above is carried out with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in terms of base pairing behavior.

In the third step of this method, a reaction mixture is 25 set up containing a) the treated template nucleic acids, comprising the region of interest (also called target nucleic acid) that is to be amplified, b) specified oligonucleotide primers, c) an enzyme capable of amplifying said nucleic acids in a defined manner, for example a polymerase, d) the necessary nucleotides required for the 30 nucleic acid synthesis and e) a suitable buffer. The template nucleic acid contains at least one target nucleic acid, which is amplified in the reaction. One primer molecule of the at least one primer pair in the reaction mixture is capable of binding to the 3' end of one speci-35 fied target nucleic acid. The first primer binds to the

3' end of the target sequence, this primer is elongated and a complementary sequence to the target sequence is made. The polymerase stops to elongate unspecifically. The next cycle starts by thermally denaturing the now double stranded template nucleic acid into single stranded template nucleic acids. This is followed by the next phase of annealing when both primer molecules specifically bind to the target nucleic acid and its complementary strand. The second primer is identical to the 5' end of the target molecule. It doesn't bind to the target sequence itself but to said complementary nucleic acid to the target sequence, as soon as this is denatured from

21

PCT/EP2003/008602

The process is finished by the actual amplification phase at a slightly lower reaction temperature, during which the enzyme, for example the polymerase elongates the primer as a complementary sequence to the target nucleic acid. The polymerase elongates this second primer by using the first copy as template until the end of said copied nucleic acid is reached. That way an identical copy to the original single stranded target nucleic acid is created. Hence, the length of the amplificate is determined by choosing the two primers.

The elongation products, being complementary to each other and hereby building a double stranded version of the target nucleic acid, serve as additional targets for the primer molecules binding in the next cycle of ampli-

fication.

WO 2004/015139

the template.

5

10

25

30

35

Essentially step 3 of the method is comprised of amplifying at least one target sequence, within said treated nucleic acid, by means of enzymatic amplification and a set of primer molecules.

Said primer molecules used in said method are characterized in that they, in addition to fulfilling all the usual requirements towards a PCR primer as will be specified in more detail later, also fulfill the following requirements:

Firstly, the sequence of each primer molecule used in step 3 of this method reaches a predefined measure of complexity.

10

5

In a preferred embodiment of this method the primer molecules are reaching a certain value of linguistic complexity. A notion and a measure of linguistic complexity has been introduced by Trifonov in 1990 and has been used for 15 analysis of nucleotide sequences before (Trifonov, EN (1990) Making sense of the human genome. In Structure & Methods. Vol 1 pp 69-77 (eds. Sarma, RH and Sarma MH, Adenine Press, Albany, US). The linguistic complexity technique allows a calculation to be made of the structural complexity of any linear sequence of characters ir-20 respective of whether the text is cognized or presently undeciphered. The sequences are compared exclusively from the point of view of their structural complexity with no reference to the meaning of the texts. In 1997 Trifonov 25 published how the linguistic complexity of nucleosomal sequences is defined (Bolshoy, A; Shapiro, K; Trifonov, E and Ioshikhes I. (1997) Enhancement of the nucleosomal pattern in sequences of lower complexity. NAR 25 (16): 3248-3254). Quote: "The linguistic complexity measure exploits the major distinguishing feature between natural 30 nucleotide sequences and uniformly random ones: the repetitiveness of the natural sequences, i.e. the frequent repetition, not necessarily a tandem one, of some oligonucleotides ("words"), while others are avoided. (...) Complexity can be directly calculated as the extent to 35 which the maximal possible vocabulary (all word sizes

considered) is utilized in a given strength of sequence (...)."

23

PCT/EP2003/008602

WO 2004/015139

In another preferred embodiment of this method said meas-5 ure of complexity is set by the so called Shannon entropy (Shannon, C E, (1948) A Mathematical Theory of Communication, University of Illinois Press, Urbana). This is the most common measure to assess the information content (in a technical, non-semantic meaning) of linear information carriers. It attributes the maximal value (which can be 10 chosen to be 1 without restrictions) to sequences where all symbols (characters) occur at equal probability and a value of 0 to sequences consisting of just one repeated symbol (character, letter). A derived and more general 15 measure is the higher order Shannon entropy which attributes maximal value to sequences where all its subsequences occur at equal probability and a value of 0 or close to 0 to sequences consisting of periodic repetitions of short subsequences. The practical determination 20 of the (higher order) Shannon entropy however is limited by the finite lengths of sequences which often does not permit a precise estimation of the probability distribution of their constitutive symbols.

Further possible measures are for example the Lempel-Ziv complexity (Lempel, LB and Ziv, J (1976) On the complexity of finite sequences. IEEE Trans. Inf. Theory IT-22, 75-81), the grammar complexity (Ebeling, W; Jimenez-Montano, MA (1980) On Grammars, Complexity and Information Measures of Biologoical Macromolecules. Mathematical Bioscience 52, 53-71), the algorithmic complexity (Chaitin, 1990) and the conditial entropy.

Secondly, said primer molecules are also characterized in that every possible combination of any two primer molecules, in the set, has a melting temperature below a

specified threshold temperature. That way the accumulation of dimers caused by the binding of two primer molecules to each other in said reaction mixture is excluded. The number of primer pairs used in that step can be any between one and n, leading to one or n amplificates respectively (n being a natural number).

As mentioned in the text the word "dimer" refers to a secondary structure formed by the hybridization of two primer molecules to each other.

5

10

15

20

25

30

35

As referred to in the text 'melting temperature' refers to the temperature at which 50% of the nucleic acid molecules are in duplex and 50% are denatured under standard reaction solution conditions.

Some primer design tools disqualify a primer if, besides the target sequence, a second identical sequence can be found in the template. However, due to the higher probability of a bisulfite primer to mismatch with nonidentical bisulfite treated DNA, it is an embodiment of this invention that only those primers are allowed to be used in said amplification method, for which no sequence homology can be found, to the extent that even those sequences that are different and/or mismatching in several nucleotides are excluded. However, this would exclude primer molecules unnecessarily. Therefore they are only excluded if two primer molecules match to the template in a distance allowing for the amplification of an unwanted product. This test is performed by means as, for example, the Electronic PCR. Electronic PCR (e-PCR) is an in silico virtual PCR carried out in order to assess the suitability of primer molecules prior to in vitro PCR. In the scope of this invention this testing will be called 'virtual testing' and it will be referred to as "virtually tested" or "virtually testing".

Thirdly, the primers used in step 3 of this invention are characterized, in that every possible combination of two primer molecules, in said reaction mixture, does not lead to the amplification of an additional unwanted product, when virtually testing for amplification using the treated and the untreated nucleic acid sample as template, even under conditions allowing for at least one base but not more than 20% of the total number of bases per sequence mismatching per primer. In the scope of this invention it is to be understood that those primer molecules are considered to bind to the template for which a template sequence exists that is in at least 80% of its nucleotide sequence identical to the target sequence the primer originally has been designed for. For example, a primer molecule of 50 nucleotides length is considered to still hybridize to a template sequence that differs in less than 11 nucleotides (= is identical in at least 80% of its nucleotide sequence) from the according target sequence. If a match is considered to be possible it has to be tested whether this match would lead to the amplification of an unwanted product. This can be done with the use of a program similar to e-PCR (see below).

25

PCT/EP2003/008602

WO 2004/015139

5

10

15

20

Especially preferred is an embodiment of said method wherein the ability of said primer molecules to amplify an unwanted product is tested by means of in silico PCR, taking as template nucleic acid the coding strand of the treated sample, the non-coding strand of the treated sample and both of the strands of the untreated sample. It is especially preferred to perform the virtual testing with a tool like electronic PCR on the pretreated, preferably bisulfite treated, template sequence consisting of the treated sense and the treated anti-sense strand, and on the unconverted template.

Furthermore it is preferred that this treatment is bisulfite treatment and hence the nucleic acid template is the bisulfite converted coding strand of the human genome, the bisulfite converted non-coding strand of the human genome and both of the strands of the untreated human genome. Preferred is an embodiment of said method wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR, hereby taking as template nucleic acid the bisulfite converted coding strand of the human genome, the bisulfite converted non-coding strand of the human genome and both of the strands of the untreated human genome.

5

10

15

30

35

It is preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 20% of the number of nucleotides of the primer.

It is also preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 10% of the number of nucleotides of the primer.

It is especially preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 5% of the number of nucleotides of the primer.

It is a preferred embodiment of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than seven.

It is especially preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than five.

27

PCT/EP2003/008602

5

WO 2004/015139

It is another preferred embodiment of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than three.

10

It is especially preferred in the scope of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is one.

15

20

25

30

It is also included in the scope of this invention to consider such primer molecules as being sufficiently similar to facilitate their binding to the template sequence, for which a template sequence can be found that differs in the number of nucleotides but is otherwise identical to the target sequence. When the alignment of the primer and the template sequence leads to a gap of up to 20% of the nucleotides of one sequence, preferably of the primer sequence, this shall still be considered to be sufficient for binding and hence potentially leading to the amplification of an unwanted product. Therefore these primers also need to be tested with the means of virtual PCR (for example with a program like e-PCR). Only if this test reveals the virtual amplification of an unwanted product caused by the combination of two primers, the according primer pairs are excluded from the set of selected pairs.

It is preferred that the number of nucleotides creating one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 20% of the number of nucleotides of the primer mole-

28

PCT/EP2003/008602

5

10

25

30

35

WO 2004/015139

cule.

It is also preferred that the number of nucleotides creating one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 10% of the number of nucleotides of the primer molecule.

It is preferred that the number of nucleotides creating
one gap, in one of the sequences, when aligning the
primer molecule sequence with the template sequence, allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention
is less than 5% of the number of nucleotides of the
primer molecule.

Both of these situations, mismatching due to an alternative nucleotide or no-matching due to a missing nucleotide, are meant to be covered in the expression describing those primer molecules that will eventually be selected: "said primer molecules are characterized in that every combination of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template".

It is also preferred that the primer molecules that exceed a pre-specified melting temperature when binding to the template have to be virtually tested for amplification of unwanted products using the treated and the untrea-

ted sample nucleic acids as template according to step 3 c) of the method.

29

PCT/EP2003/008602

WO 2004/015139

5

25

35

The basic problem of finding a primer specific enough to give only one product on the little complex bisulfite DNA, is finally solved by testing each potential primer pair for hybridization across the whole bisulfite converted human genome. This requires translating the whole human genome sequence information virtually into its bi-10 sulfite treated version before performing a similarity search against the primer pairs, which is based on a method like the so called e-PCR (Schuler G.D. (1997) Sequence Mapping by electronic PCR. Genome Research 7(5): 541-550). However, as the bisulfite conversion results in two no longer complementary strands this virtual hybridi-15 zation test needs to be done against both bisulfite converted strands. In addition in most cases the template DNA is contaminated with unconverted genomic DNA. To also exclude unwanted amplification on the unconverted DNA as template, the same hybridization test has to be performed 20 a third time using the whole human genome sequence as a template.

Therefore it is a preferred embodiment of this invention that the ability of said primer molecules to amplify an unwanted product is tested by means such as electronic PCR.

In the last step of the method said amplified target nu-30 cleic acid gets detected by any means standard to one skilled in the art.

In a preferred embodiment of this method the set of primer molecules is comprised of at least two primer molecules but not more than 64 primer molecules, given

the number is a multiple of 2; in other words, the set is comprised of 1-32 primer pairs.

In another preferred embodiment of this method the set of primer molecules is comprised of between 2 and 32 primer molecules, given the number is a multiple of 2; in other words the set is comprised of 1-16 primer pairs.

5

20

In a preferred embodiment of this method, said primer

molecule comprises at least one nucleotide within the
last three nucleotides from the 3' end of the molecule,
wherein said nucleotide is complementary to a nucleotide
of the target sequence that, as a result of the treatment
performed in step 2) of the invention, changed its
hybridization behavior.

It is a preferred embodiment of this method, that said primer molecule comprises at least one nucleotide within the last three nucleotides from its 3' end that is complementary to a nucleotide of the target sequence that was converted by the treatment performed in step 2 of the method to another base exhibiting an alternative base pairing behavior.

- In an especially preferred embodiment said nucleotide is a cytosine prior to the treatment that converts unmethylated cytosines. In a preferred embodiment said treatment is bisulfite treatment. Said primer molecule comprises at least one nucleotide within the last three nucleotides from the 3' end of the molecule, wherein said nucleotide is complementary to a cytosine, that was converted by bisulfite treatment to another base exhibiting the base pairing behavior of thymine.
- This is to exclude binding of said primer molecules to the remaining untreated or un-sufficiently treated nu-

cleic acids, which might still serve as template nucleic acid in the PCR.

Furthermore it is a preferred embodiment of this invention that said primer molecules do not form loops or hairpins on their own or with each other.

In another preferred embodiment of the method said primer molecules do not form dimers with each other.

10

15

20

5

In the text the word 'hairpin' is taken to mean a secondary structure formed by a primer molecule when the 3' terminal region of said nucleic acid hybridizes to the 5' terminal region of said nucleic acid forming a double stranded stem structure and wherein only the central region of the primer is single stranded.

As described in the text the word 'loop' refers to a secondary structure formed by a primer molecule when two or more nucleotides of said molecule hybridize thereby forming a secondary structure comprising a double stranded structure one or more base pairs in length and further comprising a single stranded region between said double stranded region.

25

30

35

The binding of a primer molecules 3' end to any part of a second primer molecule in the set needs to be avoided. Otherwise the polymerase would extend the first primer using the second primer as template, which would lead to a new unwanted product, an extended primer, or rather a primer-hybrid, which would serve as the preferred template for the next round of the polymerase chain reaction and thereby prevent a sufficient amplification of the wanted product.

Therefore it is another preferred embodiment of this method that each of said primer molecules is characterized in that the last at least 5 bases at the 3' end of said primer molecule are not complementary to the sequence of any other primer molecule in the set.

5

10

15

20

30

35

It is also preferred that said primer molecules do not bind to nucleic acids which prior to treatment of step 2 contained a 5'-CG-3' site. This would lead to a binding of the primers to bisulfite treated nucleic acids, specifically depending on their cytosines methylation status. A CG corresponding primer would bind to the treated methylated version only, whereas a primer corresponding to TG would bind to the treated unmethylated version of these nucleic acids only. It is therefore preferred that said primer molecules do not contain nucleic acid sequences complementary or identical to nucleic acid sequences which prior to treatment of step 2 contained a 5'-CG-3' site.

In a preferred embodiment of this method said primer molecules are of a specified size range.

It is especially preferred that these primers are comprised of 16-50 nucleotides.

In a preferred embodiment of this method said primer molecules do not comprise sequences that are complementary to regions of the target nucleic acids that contained specified restriction enzyme recognition sites prior to the treatment that altered the unmethylated cytosines base pairing behavior. It is preferred that said primers are complementary to target sequences which prior to the treatment performed in step 2 of the invention did not contain specified restriction enzyme recognition sites.

By selecting for the right primer molecules also the amplificates sequence is determined. That is why it has to be taken into account to only use those primer molecules that lead to amplification of nucleic acids containing a reasonable high number of CpG sites to be analyzed. Due to the treatment of step 2 of this invention these CpG sites, depending on the methylation status of the cytosine, are converted and will therefore either appear as CG dinucleotides or as TG dinucleotides in the amplificate.

5 .

10

15

20

25

30

It is preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than eight 5'-CG-3' sites also referred to as CG dinucleotides.

It is also preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than six 5'-CG-3' sites also referred to as CG dinucleotides.

It is also preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than four 5'-CG-3' sites also referred to as CG dinucleotides and finally it is especially preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than two 5'-CG-3' sites also referred to as CG dinucleotides.

Said primer molecules lead to amplificates within a specified size range.

It is a preferred embodiment of this sequence that said primer molecules lead to amplificates which are comprised of at least 50 bp but not more than 2000 bp.

Especially preferred are primer molecules that lead to amplificates which are comprised of at least 80 bp but not more than 1000 bp.

Furthermore a method is preferred wherein said primer

molecules lead to amplificates of treated nucleic acids
which prior to the treatment which altered the unmethylated cytosines base pairing behavior did not contain restriction enzyme recognition sites. Said primer molecules
lead to amplificates that are amplified regions of the

treated nucleic acids which prior to the treatment performed in step 2) of the method did not contain specified
restriction enzyme recognition sites.

A further subject of this invention is a method on how to 20 produce said primer molecules. The main step of producing a primer molecule is determining its sequence. In the following the phrase "primer design" will be used instead of primer production, whenever it is referred to the step of determining said specific primer sequences. Designing primer molecules is a process which as such is well known 25 to scientists skilled in the art. The programs usually used for this purpose are such as PRIMER3 or OSP (Rozen S and Skaletsky H (2000) PRIMER3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365-386; Hillier L and Green P (1991) OSP: A computer 30 program for choosing PCR and DNA sequencing primers. PCR Methods and Applications 1: 124-128). Other primer design systems (like described in EP-A 1136932) are often based on those commonly known programs.

35

An embodiment of this invention takes advantage of using a program like PRIMER3 first, to then add a number of steps that finally result in an advanced method of designing primers that are specifically useful for amplifying sequences of low complexity.

35

PCT/EP2003/008602

WO 2004/015139

5

10

15

20

25

30

35

In the first step of this method for designing specific primer molecules for nucleic acids of low complexity, primer pairs that amplify single products are selected by applying standard tools of primer design known in the art, like for example the program PRIMER3 (Rozen, S and Skaletsky, H (2000) Methods Mol Biol 132: 365-386).

In the second step of the method said primer pairs are tested whether or not one of its primer molecules when hybridizing to any other primer molecule in the set exceeds a specified threshold melting temperature TM. If this is the case the primer pair that comprises of said primer is excluded from the set of potentially combined pairs.

In the third step of the method the number of previously selected primer pairs, is reduced to a smaller number by implementing as new criteria a measure for the primer sequence's complexity. Primer pairs that consist of a primer molecule which does not meet said criteria are excluded.

The basic problem of finding a primer specific enough to give only one product on the little complex bisulfite DNA, is finally solved by testing each potential primer pair for hybridization across the whole bisulfite converted human genome. This requires translating the whole human genome sequence information virtually (as in "in silico") into its treated, for example bisulfite treated, version before performing a similarity search against the

primer pairs, which is based on a method like the so called e-PCR (Schuler G.D. (1997) Sequence Mapping by electronic PCR. Genome Research 7(5): 541-550). However, as the bisulfite conversion results in two different versions of the double helix whose sense and anti-sense strands are no longer mutually complementary, this in silico amplification needs to be performed on both bisulfite converted versions of the genome. In addition in most cases the template DNA is contaminated with unconverted genomic DNA. It cannot be excluded that single cytosines or longer runs of DNA remain unconverted or are only converted incompletely by the bisulfite treatment. To also exclude unwanted amplification of the unconverted DNA as template, the same hybridization test has to be performed a third time using the whole human genome sequence as a template.

5

10

15

20

25

30

35

As this is quite some effort and requires time (CPU time) this is the fourth and last step of this design method, that is absolved prior to the final testing in a "wet", lab based, experiment.

In addition to improve the specificity of said primer molecules the stringency of the selection criteria is increased: Some standard primer design tools disqualify a primer if in the template sequence, a second identical sequence, besides the target sequence, can be found. That way mispriming at rather stringent hybridization conditions is avoided. This mispriming would not necessarily lead to an additional unwanted product, but would lead to the dilution of the primer molecules available for amplification. This selection has been performed in step one already (for example by PRIMER3). However, due to the higher probability of a bisulfite primer molecule to mismatch with non-identical bisulfite treated DNA, there is still a chance for said primer molecules to misprime even

when up to 20% of the nucleotides of the primer sequence differ. Therefore it is claimed in this invention to only use primer molecules for which not even a weak sequence homology can be found. However, this would exclude primer molecules unnecessarily. Therefore they are only excluded if two primer molecules match to the template and amplify an unwanted product. This test is performed by means as, for example, the Electronic PCR. Electronic PCR (e-PCR) is an in silico virtual PCR carried out in order to asses the suitability of primers prior to in vitro PCR.

37

PCT/EP2003/008602

WO 2004/015139

10

15

20

25

30

35

In the fourth step of the method on how to design these primers it is therefore tested whether there are any regions of the template nucleic acid, said template being comprised of the sense and the anti-sense strand of the treated and the untreated nucleic acids, that are identical in sequence with the primer molecule to more than 80% and if those primer molecules are able to amplify an unwanted product. If this is the case, the primer pair comprising said primer molecule is excluded from the selection.

The template nucleic acid is comprised of the treated template nucleic acid and the untreated template nucleic acid. The treated nucleic acid in itself is comprised of a two strands which after treatment are not complementary to each other anymore. This virtual testing for example can be performed as described by Gregory Schuler in his article (cited above) about sequence mapping by "Electronic PCR". The primer pairs remaining can be used to specifically amplify regions of nucleic acids of low complexity, which is the aim of this invention. Hence step 4 of the design method is the virtual testing of each possible primer pair combination, under pre-specified conditions at a stringency allowing for one or more base pair mismatches, as to whether no unwanted nucleic acids are

amplified. Said virtual testing is carried out upon both untreated and treated nucleic acids. The wording "possible combinations" refers to all combinations that are

38

PCT/EP2003/008602

possible within a set of primer pairs to be used in one amplification reaction vessel.

WO 2004/015139

10

30

In a preferred embodiment an additional step is added following the virtual testing, which is testing in a lab based single PCR assay all those pairs that remained, whether the desired amplificate can be obtained or not. If that is the case, the chosen pairs can be used to specifically amplify those regions of nucleic acids of low complexity according to the method as described before.

In a specially preferred embodiment the first step of the design method is characterized as selecting a pool of possible primer pairs per amplificate by means of a standard PCR primer design program using said nucleic acids as template that have been masked for repeats and SNPs considering the following factors:

length of amplificate, length of primer, melting temperature of the primer molecule, dimer formation parameters, loop formation parameters, exclusion of unidentified or ambiguous nucleotides in the primer sequence, exclusion of restriction enzyme recognition sites.

In a preferred embodiment of this invention this measure of complexity is a measure of linguistic complexity as defined by Bolshoy et al. (see above). Those primer pairs are excluded from the previously selected ones, which comprise of one primer that doesn't reach a set level of this linguistic complexity.

In another preferred embodiment of this invention this measure of complexity is a measure of Shannon entropy (as described before).

In an especially preferred embodiment of this design method, prior to performing step d) the additional step of excluding primer pairs from the remaining primer pairs which consist of a primer molecule that comprises of at least one CpG site, is carried out.

39

PCT/EP2003/008602

WO 2004/015139

5

10

15

20

35

In an especially preferred embodiment of this method according to the design of said primers, prior to performing step d) the additional step of excluding primer pairs from the remaining pairs when one of its primer molecules does not contain at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by bisulfite treatment, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step, of excluding primer pairs from the remaining primer pairs which amplify a nucleic acid that did not prior to treatment with bisulfite contain a minimum of two CpG sites, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding primer pairs from the remaining primer pairs when one of its primer molecules contains more than 5 bases at its 3' end that are complementary to any other primer molecules sequence in the set, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one

primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for a number of mismatching nucleotides of 20% of the number of nucleotides of the primer molecule, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for a number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, of up to 20% of the number of nucleotides of the primer molecule, is carried out.

20

25

5

10

15

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for four or less mismatching base pairs, is carried out.

30

35

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when

41

virtually testing according to step 3 c) of the amplification method under conditions allowing for two or less mismatching base pairs, is carried out.

5 The following example is intended to illustrate the invention:

Example

- Here we present experimental data that shows that multiplex PCRs designed with a tool according to this invention are more successful compared to multiplex PCRs not designed in this manner.
- 15 It is the aim of the experiment to amplify 40 different nucleic acids. The genomic regions of interest are given in the sequence protocol (SEQ ID 41-80). These genomic sequences were translated into their bisulfite converted versions and served as templates for amplification of specific regions with the primer sequences described as follows.

25

30

35

Primer molecule pairs used for single PCRs were originally designed with the use of the standard primer design program PRIMER3 (as mentioned in the description). The criteria used in that step will not be discussed in detail. This selection however provides several possible primer pairs per amplificate. Following the present invention these primer pairs were selected further, according to the following criteria:

 The restriction enzyme recognition site to be excluded from the genomic nucleic acid (which subsequent to bisulfite conversion becomes the template for the PCR amplification step) is: GTTTAAAC.

- The minimum length of the primer molecule is 18 nucleotides. The maximum length is 27 nucleotides. Ideally the primer consists of 22 nucleotides.
- The minimum required measure of linguistic complexity is 0.2.
 - The minimum melting temperature of a primer molecule is 54°C and the maximum melting temperature is 57°C. The ideal melting temperature however is 55°C.
 - The minimum length of an amplificate is 100 bp and the maximum length is 500 bp.
- The minimum number of CpG sites, that were present in the region of the nucleic acid, prior to bisulfite treatment, that was amplified is 4.
- The number of mismatch bases allowed for when virtu-20 ally testing the primer pairs according to the invention for amplification of an unwanted product with the help of e-PCR (Electronic PCR) is 2.
- The use of this invention, that is the use of either the design method, being the subject of the invention, and/or performing the steps of said method as described above (assuming a set size of 1) leads to the selection of the following 40 optimized primer molecule pairs:

30 TABLE 1:

		number	starting position of
		indicating	primer in the bisul-
amplificate	SEQ	primer	fite converted se-
identifier	1D	direction	quence of the ROI
2025	81	0	1816
2025	82	1	2138
	identifier 2025	identifier ID 2025 81	indicating amplificate SEQ primer identifier ID direction 2025 81 0

			number	starting position of
			indicating	primer in the bisul-
	amplificate	SEQ	primer	fite converted se-
primer sequence	identifier	ID	direction	quence of the ROI
GGATAGGAGTTGGGATTAAGAT	2044	83	0	2070
AAATCTTTTCAACACCAAAAT	2044	84	1	2483
AACCCTTTCTTCAAATTACAAA	2045	85	0	1340
TGATTGGGTTTTTAGGGAAATA	2045	86	1	1687
TTGAAAATAAGAAAGGTTGAGG	2106	87	0	1481
CTTCTACCCCAAATCCCTA	2106	88	1	1764
TGTTTGGGATTGGGTAGG	2166	89	0	2226
CATAACCTTTACCTATCTCCTCA	2166	90	1	2437
TTTTAGATTGAGGTTTTTAGGGT	2188	91	0	101
ATCCATTCTACCTCCTTTTTCT	2188	92	1	598
GGAGGGGAGAGGGTTATG	2191	93	0	133
TACTATACACACCCCAAAACAA	2191	94	1	506
TTTTGGGAATGGGTTGTAT	'2194	95	0	1628
CTACCCTTAACCTCCATCCTA	2194	96	1	1996
TTGTTGGGAGTTTTTAAGTTTT	2212	97	0	1711
CAAATTCTCCTTCCAAATAAAT	2212	98	1	2063
GTAATTTGAAGAAAGTTGAGGG	2267	99	0	1709
CCAACAACTAAACAAAACCTCT	2267	100	1	2004
GGAGTTGTATTGTTGGGAGA	2317	101	0	1110
TAAAACCCCAATTTTCACTAA	2317	102	1	1388
TTTGTATTAGGTTGGAAGTGGT	2383	103	0	1
CCCAAATAAATCAACAACAACA	2383	104	1	285
GATTTTTGGAGAGGAAGTTAAG	2387	105	0	789
AAAACTAAAAACCAAACCCATA	2387	106	1	1169
TGGGGTTAGTTTAGGATAGG	2391	107	0	1353
CTTAAAAACACTAAAACTTCTCAAA	2391	108	1	1750
TTTTTGTATTGGGGTAGGTTT	2395	109	0	547
CCCAACTATCTCTCTCTCTATAA	2395	110	1	1094
ATTAGAAGTGAAAGTAATGGAATTT	2401	111	0	381
TCAATTTCCAAAAACCAAC	2401	112	1	795

			number	starting position of
			indicating	primer in the bisul-
·	amplificate	SEQ	primer	fite converted se-
primer sequence	identifier	ID	direction	quence of the ROI
GGGATGGGTTATTAGTTGTAAA	2453	113	0	1867
CCTTCACACAAAACTACAAAAA	2453	114	1	2139
TAATTGAAGGGGTTAATAGTGG	2484	115	0	1861
AAAACCAAAACCAAAACTAAAA	2484	116	1	2252
AGTGGATTTGGAGTTTAGATGT	2512	117	0	1016
AACAAAATAAAAACTTCTCCCA	2512	118	1	1446
TAGGGGAAAAGTTAGAGTTGAG	2741	119	0	1413
CCCATTAACCCACAAAAA	2741	120	1	1888
ATTTTAGTTTGTGAAATGGGAT	2745	121	0	1685
TCTTAACCAATAACCCCTCAC	2745	122	1	2097
GTGGGTTTTGGGTAGTTATAGA	2746	123	0	1679
TAACCTCCTCTCCTTACCAA	2746	124	1	2163
TAGGATGGGGAGAGTAATGTTT	2747	125	0	972
ACAACTTATCCAACTTCCATTC	2747	126	1	1448
TCCCACAAAAACTAAACAATTA	2749	127	0	1370
AGGTTTTAGATGAAGGGGTTT	2749	128	1	1789
TTTGGAGGGTTTAGTAGAAGTTA	2751	129	0	88
CCCAATAATCACAAAATAAACA	2751	130	1	567
ATACAACCTCAAATCCTATCCA	2752	131	0	228
AGGGAGAAGGAAGTTATTTGTT	2752	132	1	712
GGAAGATGAGGAAGTTGATTAG	2755	133	0	1000
CCTACAACCCTATCCTCTAAAA	2755	134·	1	1371
TTAGTAGGGGTGTGAGTGTTTT	2831	135	0	1313
CAAACAAACTTCTATCTCAACC	2831	136	1	1499
TTATAGGGTTGAGTTTGGGAT	2850	137	0	2100
TAAACAAACAACAAATCTTCCA	2850	138	1 .	2400
TGAAAATGAAGGTATGGAGTTT	2852	139	0	1262
TTAAAACCATATAATCCCTCCA	2852	140	1	1583
TATGTTTGGTTTTGAGA	2859	141	0	1093
AACCCCATCACTTTTATTTCTT	2859	142	1	1491
				•

			number	starting position of
			indicating	primer in the bisul-
	amplificate	SEQ	primer	fite converted se-
primer sequence	identifier	ID	direction	quence of the ROI
GGGTGTAGAAGTGTTTAGGTTT	2861	143	0	2385
TTTCTCCCCTTACAACAATAAC	2861	144	1	2732
TCCCCTTCCAACTATATCTCTC	2864	145	0	884
TGAGAGTGTTTTAGGGAAGTTT	2864	146	1	1175
AAAACCAAAACATAAACCAAAA	2867	147	0	1312
GATTAGGAGGGTTTGTTGAGAT	2867	148	1	1701
AATGGTTGATGATTTTGGTTT	2961	149	0	2039
ACTCTCTTCCCTATACCCCTAA	2961	150	1	2311
AGTTAGAAGAGGAGTTAGGATGG	3511	151	0	1340
TAATTTTCCAATACCCATTTTC	3511	152	1	1711
TGTTAGTAGAGTTTTAGGGAGGTT	3532	153	0	1135
ACACTACCTATCCTTACCCCAC	3532	154	1	1592
TTTTTGTTTTTATGGGGTGTAT	3534	155	0	1909
TTAAATATCCCTTCCTTAACCA	3534	156	1	2385
TGGGTAGTATTTTTGTTGGTTT	3538	157	0	956
CCTAAAAACTCTCTCATCCTCA	3538	158	1	1414
AGTGGTTTAGGAGTATTTGGTTA	3540	159	0	659
AACTCCCTCCATCTACAATATC	3540	160	1	1064

These primer pairs lead to the amplification of specific regions (amplificates Seq IDs 1- 40) of the bisulfite converted sequences of the genomic ROIs (Seq IDs 41- 80) of interest. The ROIs can be identified by the four digit number that specifies the ROI and the corresponding amplificate - as indicated in the following table.

10 TABLE 2:

SEQ ID	Class	Identifier	Kind of DNA	SEQ ID	Class	ldentifier	Kind of DNA
			bisulfite se-				genomic se-
1	amplificate	2025	quence	41	ROI	2025	quence

SEQ ID	Class	Identifier	Kind of DNA	SEQ ID	Class	Identifier	Kind of DNA
			bisulfite se-	-			genomic se-
2	amplificate	2044	quence	42	ROI	2044	quence
			bisulfite se-				genomic se-
3	amplificate	2045	quence	43	ROI	2045	quence
			bisulfite se-				genomic se-
4	amplificate	2106	quence	44	ROI	2106	quence
			bisulfite se-				genomic se-
5	amplificate	2166	quence	45	ROI	2166	quence
	·		bisulfite se-		•		genomic se-
6	amplificate	2188	quence	46	ROI	2188	quence
			bisulfite se-				genomic se-
7	amplificate	2191	quence	47	ROI	2191	quence
			bisulfite se-				genomic se-
8	amplificate	2194	quence	48	ROI	2194	quence
			bisulfite se-				genomic se-
9	amplificate	2212	quence	49	ROI	2212	quence
			bisulfite se-				genomic se-
10	amplificate	2267	quence	50	ROI	2267	quence
			bisulfite se-				genomic se-
11	amplificate	2317	quence	51	ROI	2317	quence
ļ			bisulfite se-				genomic se-
12	amplificate	2383	quence	· 52	ROI	2383	quence
			bisulfite se-				genomic se-
13	amplificate	2387	quence	53	ROI	2387	quence
			bisulfite se-				genomic se-
14	amplificate	2391	· quence	54	ROI	2391	quence
			bisulfite se-				genomic se-
15	amplificate	2395	quence	55	ROI	2395	quence
			bisulfite se-				genomic se-
16	amplificate	2401	quence	56	ROI	2401	quence
			bisulfite se-	_			genomic se-
17	amplificate	2453	quence	57	ROI	2453	quence

SEQ ID	Class	ldentifler	Kind of DNA	SEQ ID	Class	ldentifier	Kind of DNA
			bisulfite se-			<u> </u>	genomic se-
18	amplificate	2484	quence	58	ROI	2484	quence
·			bisulfite se-				genomic se-
19	amplificate	2512	quence	59	ROI	2512	quence
			bisulfite se-				genomic se-
20	amplificate	2741	quence	60	ROI	2741	quence
			bisulfite se-				genomic se-
21	amplificate	2745	quence	61	ROI	2745	quence
			bisulfite se-				genomic se-
22	amplificate	2746	quence	62	ROI	2746	quence
			bisulfite se-				genomic se-
23	amplificate	2747	quence	63	ROI	2747	quence
			bisulfite se-				genomic se-
24	amplificate	2749	quence	64	ROI	2749	quence
			bisulfite se-				genomic se-
25	amplificate	2751	quence	65	ROI	2751	quence
			bisulfite se-				genomic se-
26	amplificate	2752	quence	66	ROI	2752	quence
			bisulfite se-				genomic se-
27	amplificate	2755	quence	67	ROI	2755	quence
			bisulfite se-			'	genomic se-
28	amplificate	2831	quence	68	ROI	2831	quence
			bisulfite se-				genomic se-
29	amplificate	2850	quence	69	ROI	2850	quence
			bisulfite se-				genomic se-
30	amplificate	2852	quence	70	ROI	2852	quence
			bisulfite se-				genomic se-
31	amplificate	2859	quence	71	ROI	2859	quence
			bisulfite se-				genomic se-
32	amplificate	∋ 2861	quence	72	ROI	2861	quence
	·		bisulfite se-				genomic se-
33	amplificate	e 2864	quence	73	ROI	2864	quence

SEQ ID	Class	Identifier	Kind of DNA		SEQ ID	Class	Identifier	Kind of DNA
			bisulfite se-					genomic se-
· 34	amplificate	2867	quence		74	ROI	2867	quence
			bisulfite se-					genomic se-
35 ·	amplificate	2961	quence		75	ROI	2961	quence
			bisulfite se-					genomic se-
36	amplificate	3511	quence		76	ROI	3511	quence
			bisulfite se-					genomic se-
37	amplificate	3532	quence		77	ROI	3532	quence
			bisulfite se-					genomic se-
38	amplificate	3534	quence		78	ROI	3534	quence
			bisulfite se-					genomic se-
39	amplificate	3538	quence	_	79	ROI	3538	quence
			bisulfite se-					genomic se-
40	amplificate	3540	quence		80	ROI	3540	quence

The second task in this example is to select from these 40 primer pairs those pairs which can be combined in five multiplex PCRs to amplify eight targets simultaneously.

The following steps, as disclosed in the invention, are performed for selection of those subsets:

10

 The melting temperature of any combination of two of those primer molecules hybridizing to each other taking part in one multiplex experiment must be below 20°C.

15

20

• The last seven nucleotides from the 3' end of every primer molecule in a subset is used to check if those are complementary and/or binding to any other primer molecules' sequence used in the set.

- The number of mismatch bases allowed for when virtually testing the primer pairs for amplification of an unwanted product is 2. For this step every possible combination of 16 primer molecules in one subset is checked for its ability to amplify an unwanted product. This is done by means of e-PCR (electronic PCR).
- Having performed all these steps results in the selection of three different optimized sets of primer molecule pairs that can be used in multiplex PCRs. These sets are in the following described as a set of numbers. Each number refers to a specific amplificate and therefore also to a single primer pair (out of the list given above) which proved to be able to specifically amplify said nucleic acid in a single PCR experiment.

TABLE 3:

5 ·

								
optimized se	t 1			·				
8plex1	2194	2191	2391	2025	2961	3540	2861	2188
8plex2	2484	2106	2401	2850	3532	2044	2512	2852
8plex3	2453	2741	2867	2755	2267	2387	2864	2317
8plex4	2859	2383	2752	2747	2751	3511	2212	2746
8plex5	3534	2395	2745	3538	2749	2166	2831	2045
optimized se	et 2				···			
8plex1	2166	2212	3511	2383	2745	2859	3534	2861
8plex2	2749	2191	2751	2395	2961	2512	2831	3538
8plex3	2850	2025	2188	2317	2391	2852	3540	2194
8plex4	2106	2387	2867	2864	2401	2747	2746	2453
8plex5	2044	2484	2267	2755	2752	2741	2045	3532
optimized s	et 3	,		,		,		
8plex1	2194	2391	2191	2749	2745	3538	2861	2961
8plex2	2166	2188	2859	2212	2864	2746	2383	2752
8plex3	2484	2401	2850	2852	2512	2755	2106	2044
8plex4	2867	2453	3532	2025	2741	2267	2317	2387
8plex5	3511	3534	2751	2747	2395	3540	2831	2045

Without the use of said invention, the selection would have been performed randomly and tested for successful application later. Three randomly chosen subsets are shown here.

TABLE 4:

							
2191	2194	2267	2741	3534	3511	2749	2747
2391	2484	2867	2852	2453	2512	2025	3538
2746	2212	2755	2045	2044	2188	2961	2864
2831	2383	3540	2859	2861	2395	2401	2317
2106	2751	2387	2745	2752	3532	2850	2166
2							
2045	2106	2212	2745	2044	2749	2752	2391
2025	2831	2401	3540	2395	2484	2453	2961
2194	2859	2746	2512	2267	2864	2861	2751
2383	2166	2747	2387	3532	. 2741	2867	2852
3534	2755	2850	2317	2191	3538	3511	2188
3							
2484	2850	2741	2747	2755	2745	2025	2746
2383	3534	2861	2751	2749	2391	. 2188	2191
2194	3538	2512	2961	. 2864	2867	2831	3532
3511	2045	2387	2212	2166	2267	3540	. 2401
2395	2317	2859	2453	2852	2106	2752	2044
	2191 2391 2746 2831 2106 2045 2025 2194 2383 3534 3 2484 2383 2194 3511	2191 2194 2391 2484 2746 2212 2831 2383 2106 2751 2045 2106 2025 2831 2194 2859 2383 2166 3534 2755 3 2484 2850 2383 3534 2194 3538 3511 2045	2191 2194 2267 2391 2484 2867 2746 2212 2755 2831 2383 3540 2106 2751 2387 2045 2106 2212 2025 2831 2401 2194 2859 2746 2383 2166 2747 3534 2755 2850 3 2484 2850 2741 2383 3534 2861 2194 3538 2512 3511 2045 2387	2191 2194 2267 2741 2391 2484 2867 2852 2746 2212 2755 2045 2831 2383 3540 2859 2106 2751 2387 2745 2025 2831 2401 3540 2194 2859 2746 2512 2383 2166 2747 2387 3534 2755 2850 2317 3 2484 2850 2741 2747 2383 3534 2861 2751 2383 3534 2861 2751 2383 3534 2861 2751 2383 3534 2861 2751 2383 3534 2861 2751 2194 3538 2512 2961 3511 2045 2387 2212	2191 2194 2267 2741 3534 2391 2484 2867 2852 2453 2746 2212 2755 2045 2044 2831 2383 3540 2859 2861 2106 2751 2387 2745 2752 2045 2106 2212 2745 2044 2025 2831 2401 3540 2395 2194 2859 2746 2512 2267 2383 2166 2747 2387 3532 3534 2755 2850 2317 2191 33 2484 2850 2741 2747 2755 2383 3534 2861 2751 2749 2194 3538 2512 2961 2864 3511 2045 2387 2212 2166	2191 2194 2267 2741 3534 3511 2391 2484 2867 2852 2453 2512 2746 2212 2755 2045 2044 2188 2831 2383 3540 2859 2861 2395 2106 2751 2387 2745 2752 3532 2045 2106 2212 2745 2044 2749 2025 2831 2401 3540 2395 2484 2194 2859 2746 2512 2267 2864 2383 2166 2747 2387 3532 2741 3534 2755 2850 2317 2191 3538 3484 2850 2741 2747 2755 2745 2383 3534 2861 2751 2749 2391 2194 3538 2512 2961 2864 2867 3511 2045 2387 2212 2166 2267	2191 2194 2267 2741 3534 3511 2749 2391 2484 2867 2852 2453 2512 2025 2746 2212 2755 2045 2044 2188 2961 2831 2383 3540 2859 2861 2395 2401 2106 2751 2387 2745 2752 3532 2850 2045 2106 2212 2745 2044 2749 2752 2025 2831 2401 3540 2395 2484 2453 2194 2859 2746 2512 2267 2864 2861 2383 2166 2747 2387 3532 2741 2867 3534 2755 2850 2317 2191 3538 3511 363 2484 2850 2741 2747 2755 2745 2025 2383 3534 2861 2751 2749 2391 2188 2194 3538 2512 2961 2864

The sequences of all of those amplificates and the according primers are given in the sequence protocol (primers SEQ IDs 81-160; amplificates SEQ IDs 1-40). SEQ IDs refer to the internal numbers used in these tables as is shown in TABLES 1 and 2.

To show if the use of the design method described herein was superior to the common method of selecting primers for simultaneous amplification randomly said multiplex PCRs were performed. This example hereby demonstrates the advantage of the method which is subject of the invention:

A total of 40 amplificates (with lengths ranging from 187 - 499 bp) were partitioned into five 8-plex PCRs using either of two strategies.

First: the grouping was based on the invention using said "optimised sets" ("designed group").

Second: the grouping was done without using the selection criteria established by this invention using the "random sets" ("control group").

Whether such grouping can improve the success rate of mPCRs was subsequently tested experimentally by comparing the number of true and false positives and false negatives for each of the two classes.

Each of the five mPCRs (multiplex PCRs) contained 8 primer pairs specific for 8 amplificates with one primer of each pair being labeled with a Cy-5 fluorescent tag. Only fragments that performed successfully in sPCR (singleplex PCR) using bisulfite-modified human DNA from whole blood were included in this study. Isomolar primer concentrations were used in a 20µl PCR reaction volume

25 titer plate thermocycler.

10

15

20

30

35

Group assignments for the "optimized" and "random" groups were done in triplicate and all mPCRs were run at the same time such as to minimize experimental variation in PCR performance.

and cycling was done for 42 cycles using a 96-well micro-

A mixture of the amplificates that were expected to be generated in a specific mPCR reaction but were generated in eight corresponding sPCR reactions was called sPCR-pool. Electrophoresis of sPCR-pool amplificates and mPCR amplificates was done simultaneously using the ALFexpress

WO 2004/015139 PCT/EP2003/008602 53

system (Amersham Pharmacia). In order to obtain the best comparability for mPCRs with their respective sPCR standard, these products were electrophoresed next to each other on the gels.

5

Figures 1 and 2 show examples of these results as electropherograms, given as ALFexpress output files.

Success or failure scoring for each mPCR was based on assessing the number of generated or absent fragments compared to their respective pool of sPCR fragments. Only fragments with peak areas equal or larger than 8% of the largest peak within one electropherogram were included into the analysis.

15

20

25

30

35

10

Figure 1 illustrates a result of an 8-plex PCR based on a primer combination from the "optimized set". The top graph in the figure shows peaks of size standards only. The second graph in the figure shows the electrophoresed mixture of the products from 8 singleplex PCRs. The third graph shows the products resulting from a multiplex PCR employing one of the optimized sets of primer combinations. By comparing these graphs it becomes visible that, in this specific example, there is only one false negative (FN) and three false positives (FP), whereas there are eight true positives (TP).

Figure 2, however, illustrates a result of an 8-plex PCR based on a primer combination from the "control set". The top graph in the figure shows peaks of size standards only. The second graph in the figure shows the electrophoresed mixture of the products from 8 singleplex PCRs. The third graph shows the products resulting from a multiplex PCR employing one of the randomly chosen sets, as is the state of the art. This graph clearly shows that, there are eight false negative and six false positive

peaks, whereas there is only one true positive. Hence, for this specific example we have demonstrated the superiority of the design method.

A more comprehensive view on the results is given in Figures 3 and 4.

By applying the Wilcoxon rank sum test for the determination of false positives or false negatives as follows, it becomes evident that the optimized set resulted in a more reliable amplification experiment:

data: False negatives (FN)

p-value = 0.02602 rejection of null hypothesis

null hypothesis (H0): true if median of designed set equal or greater than of control set alternative hypothesis (H1): true if median of designed set less than of control set

data: False positives (FP)

p-value = 0.06711 rejection of null hypothesis

null hypothesis (H0): true if median of designed set

equal or less than of control set

alternative hypothesis (H1): true if median of designed

set greater than of control set

data: True positives (TP)

p-value = 0.02146 rejection null hypothesis

null hypothesis (H0): true if median of designed set

equal or less than of control set

alternative hypothesis (H1): true if median of designed

set greater than of control set

Figure 3 illustrates a summary of several such comparisons (as described in detail above). Six diagrams are shown, that illustrate the numbers of false positives

WO 2004/015139 PCT/EP2003/008602 55

(FP), false negatives (FN) and true positives (TP) for a number of 18 experiments. In the top row of figure 3 the results for experiments that employed the design method are shown whereas in the lower row results from experiments are shown, that did use the conventional method of random selection.

At the x-axis the occurrence of an event (like a false positive) per 8plex is given whereas the values of the y-axis indicate the frequency of an event like this occurring within the number of experiments performed.

10

For example, in the diagram title FN, a y-value of 0 indicates that the event did not occur in a single experiment, a y-value of four indicates that the according number of occurrences given as the x-value was found in four experiments (out of the 18 experiments considered for these analyses). The x-value indicates what kind of occurrence is counted; a x-value of three in this diagram indicates the occurrence of three false negatives. A data point with an x-value of 0 and an y-value of 9 means, that in the set of mPCR results considered, nine experiments showed 0 false negatives.

- 25 Figure 4 gives all of the data from the 18 multiplex PCR experiments of this example in one table. The letter A, heading the four columns presented on the left side, is indicating the results from multiplex PCRs of the designed group using the five optimized sets of primer pairs that have been designed and selected according to the invention. The letter C is indicating the results from multiplex PCRs of the control group using the five randomized sets of primer pairs.
- The first column lists the identifying numbers of the experiments, the second column gives the numbers of true

positives (TP) within this experiment, the third column gives the numbers of false positives (FP) and the last column gives the numbers of false negatives (FN).

The average false negative rate (Ø FN) of the optimized group is significantly lower than in the control group. Complementary the average true positive rate (Ø TP) is significantly higher. The average false positive rates (Ø FP) of the two sets do not differ from each other significantly.

15

20

25

30

35

This is due to the high deviation of false positives observed between individual ALFexpress analysis runs. Those 36 sets of amplificates have been analyzed on two separate gel runs These runs were not designed to simply duplicate the results, but could be used to analyze whether the average TP, FP and FN rates are similar, independent of the run, and the sets chosen. Only three of those sets have been duplicated, as indicated by the letters a and b for sets 11, 21 and 23. It turned out that the rate of true positives as well as the rate of false negatives averaged over 18 sets per run were highly reproducible, 6.83 versus 7.33 and 1,44 versus 1.39 respectively. However, the rate of false positives was determined as 4.11 in the first run and 7.61 in the second run.

Taken together, it could be concluded that the overall success rate of amplifying 40 fragments within 5 groups of 8plex PCRs was significantly increased when the primer grouping was based on the method being subject of this invention compared to an arbitrary primer grouping. The improved success rate of only 11% failures versus 24% in the random control group clearly becomes relevant when much larger numbers of mPCRs have to be established as is the case in a high throughput laboratory.

15

20

Claims

- A method for the amplification of nucleic acids comprising the following steps
 - 1) isolating a nucleic acid sample,
- 2) treating said sample in a manner that differenti-10 ates between methylated and un-methylated cytosine bases within said sample,
 - 3) amplifying at least one target sequence, within said treated nucleic acid, by means of enzymatic amplification and a set of primer molecules, wherein said primer molecules are characterized in that
 - a) each primer molecule sequence reaches a predefined measure of complexity,
 - b) every combination of any two primer molecules in the set has a melting temperature below a specified threshold temperature,
- c) every combination of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template,

and

- 4) detecting said amplified target nucleic acid.
- 35 2. A method according to claim 1 wherein said primer molecules do not contain nucleic acid sequences com-

plementary or identical to nucleic acid sequences of the target sequence which prior to treatment of step 2 contained a 5'-CG-3' site.

- 3. A method according to claims 1 and 2 wherein said set is comprised of at least one but not more than 32 primer pairs.
- 4. A method according to claims 1 and 2 wherein said set is comprised of at least one but not more than 16 primer pairs.
 - 5. A method according to claims 1 to 4 wherein the primer molecules are reaching a specified value of linguistic complexity.

15

20

- 6. A method according to claims 1 to 4 wherein the primer molecules are reaching a specified value of Shannon entropy.
- 7. A method according to claims 1 to 6 wherein the nucleic acid sample is isolated from a bodily fluid, a cell culture, a tissue sample or a combination thereof.
 - 8. A method according to claims 1 to 7 wherein the nucleic acid sample is comprised of plasmid DNA, BACs, YACs or genomic DNA.
- 9. A method according to claims 1 to 7 wherein the nucleic acid sample is comprised of human genomic DNA
- 10. A method according to claims 1 to 9 wherein said sample is treated by means of a solution of a bisulfite, hydrogen sulfite or disulfite.

11. A method according to claims 1 to 10 wherein said primer molecule comprises of at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by the treatment performed in step 2) of claim 1.

5

- 12. A method according to claims 1 to10 wherein said

 primer molecule comprises of at least one nucleotide
 within the last three nucleotides from the 3' end of
 the molecule wherein said nucleotide is complementary
 to a nucleotide of the target sequence that was converted to a different nucleotide by bisulfite treatment.
 - 13. A method according to claims 1 to 12 wherein each of said primer molecules is characterized in that the last at least 5 bases at the 3' end of said primer molecule are not complementary to the sequence of any other primer molecule in the set.
- 14. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 20% of the number of nucleotides of the primer molecule.
- ber of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 20% of the number of nucleotides of the primer molecule.

- 16. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 10% of the number of nucleotides of the primer molecule.
- 17. A method according to claims 1 to 13 wherein the number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 10% of the number of nucleotides of the primer molecule.

5

10

20

- 18. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 5% of the number of nucleotides of the primer molecule.
 - 19. A method according to claims 1 to 13 wherein the number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 5% of the number of nucleotides of the primer molecule.
- 20. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than seven.
- 21. A method according to claim 20 wherein the number of mismatches allowed for is less than five.

- 22. A method according to claim 20 wherein the number of mismatches allowed for is less than three.
- 23. A method according to claim 20 wherein the number of mismatches allowed for is one.
- 24. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is determined by a pre-specified maximum melting temperature.
 - 25. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than eight 5'-CG-3' sites.

15

20

25

- 26. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than six 5'-CG-3' sites.
- 27. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than four 5'-CG-3' sites.
- 28. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than two 5'-CG-3' sites.
 - 29. A method according to claims 1 to 28 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR.

20

25

- 30. A method according to claims 1 to 28 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR, taking as template nucleic acid the coding strand of the treated sample, the non-coding strand of the treated sample and both of the strands of the untreated sample.
- 31. A method according to claims 1 to 28 wherein the
 ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR,
 taking as template nucleic acid the coding strand of
 the bisulfite converted human genome, the non-coding
 strand of the bisulfite converted human genome and
 both of the strands of the untreated human genome.
 - 32. A method according to claims 1 to 31 wherein said primer molecules are used to amplify nucleic acids which are comprised of at least 50 bp but not more than 2000 bp.
 - 33. A method according to claims 1 to 31 wherein said primer molecules are used to amplify nucleic acids which are comprised of at least 80 bp but not more than 1000 bp.
 - 34. A method according to claims 1 to 33 wherein said primer molecules are comprised of 16 50 nucleotides.
 - 35. A method according to claims 1 to 34 wherein said primer molecules do not form dimers with each other.
- 36. A method according to claims 1 to 35 wherein said primer molecules do not form loops or hairpin structures.

20

- 37. A method according to claims 1 to 36 wherein said primer molecules are complementary to target sequences which prior to the treatment performed in step 2) of claim 1 did not contain specified restriction enzyme recognition sites.
- 38. A method according to claims 1 to 37 wherein said primer molecules amplify regions of the treated nucleic acids which prior to the treatment performed in step 2) of claim 1 did not contain specified restriction enzyme recognition sites.
- 39. A method for designing primers according to claim 1, comprising the steps of
 - a) selecting a pool of possible primer pairs per amplificate by means of a standard PCR primer design program using said nucleic acids as template
 - b) excluding those primer pairs which comprise of a primer that in combination with another primer molecule in the same set exceeds a threshold melting temperature
 - c) excluding those primer pairs which comprise of a primer that does not reach a specified level of complexity
- d) excluding those primer pairs which comprise of a primer that in combination with another primer molecule in the same set, under conditions allowing for one or more base mismatches per primer, amplifies an unwanted product when virtually tested using the treated and the untreated sample nucleic acid as template.

25

30

- 40. A method for designing said primer molecules according to claim 1 and 43, adding the step of
- e) excluding from the remaining confirmed primer pairs those pairs which in said amplification step do not result in the amplification of the intended product when performing a single PCR experiment.
- 10 41. A method for designing primers according to claims 39 and 40, wherein said template nucleic acids are masked for repeats and SNPs before designing said primer molecules and wherein said standard PCR primer design program considers one or more of the following factors

length of amplificate, length of primer, melting temperature of the primers, dimer formation parameters, loop formation parameters, exclusion of unidentified or ambiguous nucleotides in the primer sequence, exclusion of restriction enzyme recognition sites.

- 42. A method according to claims 39 to 41 wherein said measure of complexity is a measure of linguistic complexity.
- 43. A method according to claims 39 to 41 wherein said measure of complexity is a measure of Shannon entropy.
- 44. A method according to claims 39 to 43 wherein the following step is carried out prior to performing step d)
- excluding from the remaining primer pairs those

20

25

30

35

pairs, which consist of a primer molecule that comprises of at least one CpG site.

- 45. A method according to claims 39 to 44 wherein the following step is carried out prior to performing step d)
- excluding from the remaining primer pairs those
 pairs, which consist of a primer molecule that does
 not contain at least one nucleotide within the last
 three nucleotides from the 3' end of the molecule
 wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a
 different nucleotide by the treatment performed in
 step 2) of claim 1.
 - 46. A method according to claims 39 to 45 wherein the following step is carried out prior to performing step d)
 - excluding from the remaining primer pairs those pairs, which consist of a primer molecule that contains more than 5 bases at its 3' end that are complementary to any other primer molecules' sequence in the set.
 - A method according to claim 39 to 46 wherein the following step is carried out prior to performing step
 d)
 - excluding from the remaining primer pairs those pairs, which amplify a nucleic acid that did not, prior to the treatment in step 2 of claim 1, contain at least two CpG sites

66

48. A method according to claim 39 to 47 wherein the following step is added before performing step d)

excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for a number of mismatching nucleotides of 20% of the number of nucleotides of the primer molecule.

5

10

15

20

25

35

49. A method according to claim 39 to 47 wherein the following step is added before performing step d)

excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for a number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, of up to 20% of the number of nucleotides of the primer molecule.

50. A method according to claim 39 to 47 wherein the following step is added before performing step d)

pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for four or less mismatching base pairs.

51. A method according to claim 39 to 47 wherein the following step is added before performing step d)

5

10

excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for two or less mismatching base pairs.

WO 2004/015139 PCT/EP2003/008602 1/112

Sequence listing

	<110> Epigenomics AG	
5	<120> Method for amplification of nucleic acids of low complexity	
•	<160> 160	
	<210> 1	
10	<211> 322	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
15	<223> 2025	
4. 0		
	<400> 1	
	•	
	aatcctccaa attctaaaaa cataaaaata acgcaaccca aaaacaaaaa acccctccgc	60
20	ccattaatta ctatacacta acgaaacttt cccgacccac aacgacgaaa ataaaaacaa	120
	tcgctaacgc taaaaaacat caaaaacact acccaaccca	180
	aaaactctac taaacgccgc cgccgccgct accaccgcct ctaatccaaa ccacctcccg	240
	ccaaataaac cccgaaatcc taactcaaat atatatctct ccctccctct ccctccattc	300
	gtcattttct cactcccttt cc	322
25		
	<210> 2	
	<211> 413	
	<212> DNA	
	<213> Artificial Sequence	
30		
	<220>	
	<223> :2044	
	<400> 2	
2 5	<400> 2	
35		
	ggataggagt tgggattaag attttcggtt agtttcgtat tttttcgtat tttttagtat	60

	cgtttcgtat ttttcgtatt tttttcggg ttattacgtt ttttatgtga ttcgtttggg	120
	taacgtcgaa tttagtcgcg tagcgttgta gtgaattttt tttttaaatt gtaataagtc	180
	gttttttaag gtaattacgt tttttttgtt tttttttaa aaaataaaaa taaaaaattt	240
	atagaaaaaa attcgcgagt ttagaaaaaa gaagtaattg gtagaaggtt ttaattaa	300
5	taaagagttg taaggcgaag ttaagaaaat gtaggtattt aaaaaatgta ggtaattttt	360
	ataagggttt ttggggagag gtatatagag ggattttggt gttgaaaaag att	413
	<210> 3	
	<211> 347	
LO	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> 2045	
15		
	<400> 3	
		50
	aaccettet teaaattaca aacettetta eetteaaace tegaeteeaa caccaateeg	60
	acaaaaaaac ccaatctaat aaaatacgct cccttcctac cattctctat tccattaacc	120
20	tatttcgtaa taaacgtaaa actaatcctc caaaattacc ttattaatta acttacatat	180
	ttattatcta tctatcccac caaaatacaa atttccgaaa aacaaaaatt taaaaaaatc	300
	tattttattc tatataattt tcccatacca aacaccgtac ccgacacaaa ctaaaatccc	347
	aatacacatc tcgaaacgaa aaaaccgtat ttccctaaaa cccaatc	347
2.5		
25	<210> 4 <21.1> 283	
	<212> DNA	
	<213> Artificial Sequence	
30	<220>	
	<223> 2106	
	<400> 4	
35	ttgaaaataa gaaaggttga ggtagagagg ataatatagt tttagtttat tttttagtat	60
	tttgttaatt tttttaatt tttagttata aattcgagat ataacgtttt tttttaaag	120

WO 2004/015139 PCT/EP2003/008602 3/112

	aggtcgcgtt ttttttgtgg tggtttttag ggattcgttt tagttttt	tt ttcgttttta	180
	gttttatata ttgggattat taggtattta agattttatt ttttaggt		240
	gtaggttgtt atttagtttt tttttaggga tttggggtag aag		283
E	, ,		
5	<210> 5		
	<211> 211		
	<212> DNA		
	<213> Artificial Sequence		
10	<220>		
	<223> 2166		
	<400> 5		
15	tgtttgggat tgggtagggt tatcggggtt gggggggggg	ggg taaggcgggc	60
	ggaggcgtgg atttttcgtt cgatgatagg gttggaggag gaagggg	cgg gttgaagaag	120
	gggaaggtgg gaagagttta gtcggggtta taaattgggt gaagcgt	tga ggttttagta	180
	ttttcgtttg aggagatagg taaaggttat g		211
	•		
20	<210> 6		
	<211> 497		
	<212> DNA		
•	<213> Artificial Sequence		
		1	
25	<220>		
	<223> 2188		
			•
	<400> 6		
30	ttttagattg aggttttagg gttaaaggat tattttttt tttagcg	ttg gttcgggaaa	60
	ggtaagtttc gggcgggagc gtacgtcgcg ttttcgaagt ttggttt	ttt cgttacgttt	120
	atttttgtt tttatttcgc gtttttttag gtttttttc ggtgaat	cgg atgttttgtt	180
	agtttttat tttgcgtttt cggtcgcggt tcgggttttt cgtaaag	tcg ttgttatttc	240
	ggagggttta gttagcgggt tttcggaggt tggtcgggta ggcgtgg	tgc gcggtaggag	300
35	ttgggcgcgt acggttatcg cgcgtggagg agatattgtt ttgtcgc	gat gggggttcgg	360

WO 2004/015139 PCT/EP2003/008602 4/112

	ttttttttt ttttttgtt gttgttgttt tgtatttagt tcgggggagg atagaagaaa	480
	aaggaggtag aatggat	497
	<210> 7	
5	<211> 373	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
LO	<223> 2191	
	<400> 7	
	ggaggggaga gggttatgcg attttatttt tggttagggt cggggaggtt tttgtttttc	60
15	gggagttttg ttcgggtttt ttggtcgtag ggttgttggg ttttaggtag gaacgagagg	120
	gtgaggttta tatgtggttc ggcggtttag ggcggtttgt agcgttttta ttgtttcggt	180
	tgttaggggt tgcggcgacg cggttagtta gtagcgagtt taggtcgcgt agattttatt	240
	gatgagtttt gatttttagt atttttttta agttaagaag agtttagcgt atttttcggt	300
	tgttttattt tagtttttt gttttagttt tttagtttta tttttttt	360
20	gggtgtgtat agt	373
•	<210> 8	
	<211> 368	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
	<223> 2194	
30	<400> 8	
	ttttgggaat gggttgtatc gagaggttcg attagtttta gggttttagt gagggggtag	60
	tggaatttag cgagggattg agagttttat agtatgtacg agtttgatgt tagagaaaaa	120
	gtcgggagat aaaggagtcg cgtgttatta aattgtcgtc gtagtcgtag ttatttaagt	180
35	gtcggatttg tgagtatttt gcgtttttag ttttcggata gaagttggag aatttttttg	240
	gagaattttt cgagttagga gacgagattt tttaataatt attattttt tttgcgtttt	300

WO 2004/015139 PCT/EP2003/008602

5/112

	ttatttgtcg 1	ttcgttggga	taaacgatag	ttatagtttt	tttgacgata	ggatggaggt	360
	taagggta						368
	<210> 9						
5	<211> 352						
	<212> DNA						
	<213> Artif.	icial Seque	nce				
	<220>						
10	<223> 2212						
		•					
	<400> 9						
	ttgttgggag	tttttaagtt	ttgtgagaat	tttgggagtt	ggtgatgtta	gattagttgg	60
15	gttatttgaa	ggttagtagt	tcgggtaggg	tttatcgaaa	gtttattcgt	atatattagg	120
	taatttaatt	ttttattttg	tgtgatagaa	gtagtaggaa	gtgagttgtt	tagaggtagg	180
	agggtttatt	ttttgttaaa	ggggggatta	gaatttttt	atgcgagttg	tttgaggatt	240
	gggatgtcga	gaacgcgagc	gattcgagta	gggtttgttt	gggtatcgtc	ggggtaggat	300
	tcggaacgta	ttcggaaggt	tttttgtaag	tatttatttg	gaaggagaat	tt	352
20							
	<210> 10						
	<211> 295						
	<212> DNA						
0.5	<213> Artif	ficial Seque	ence				
25	,						
	<220>						
	<223> 2267		•				
	<400> 10						
30	\400> 10						
30	ataatttaaa	~~~~~	~~~~~~ ~	202101111	attraktara	a	60
		gaaagttgag					60
		ttgttatttt					120
		tttttgagtg					180
35	_	gggttggttt		_			240

6/112

<210> 11 <211> 278 <212> DNA <213> Artificial Sequence 5 <220> <223> 2317 <400> 11 10 60 ggagttgtat tgttgggaga tttgggtgta gatgatgggg atgttaggat tattcgaatt 120 taaagttgaa cgtttaggta gaggagtgga gttttgggga attttgagtc ggtttaaagc 180 gtatttttt gtatatttat tcggtgttgg gcgtagggaa tttttgaaat aaaagatgta . taaagtattg aggtttgaga tttttggatt tcgaaatatt gagaatttat agttgtatat 240 15 278 tttagagttt atggtatttt agtgaaaatt ggggtttt <210> 12 <211> 285 <212> DNA 20 <213> Artificial Sequence <220> <223> 2383 25 <400> 12 tttgtattag gttggaagtg gtcgttagtt tttcgtgtaa ttttattttt tggaaaagtg 60 gaattagttg gtattgttta gcgtgatttg tgaggttgag ttttaatagt ttaaagaagt 120 180 aaatgggatg ttattttcgc ggggttcgtt tttcgcgagg tgtttatttc gtatttgtta 240 30 tgtaaaacga gggagcgtta ggaaggaatt cgttttgtaa agttattggt tttggttatt 285 agtttttatt taatgttttc gtgatgttgt tgttgattta tttgg <210> 13 <211> 380 35 <212> DNA

WO 2004/015139 PCT/EP2003/008602 7/1.12

<220>

<223> 2387

5 <400> 13

gattttgga gaggaagtta agtgttttt tgttttttt cggtattta tttaaggcga 60
ttagtttaga attggtttc ggaagcgtc gggtaaagat tgcgaagaag aaaagatatt 120
tggcggaaat ttgtgcgttt ggggcggtgg aattcgggga ggagagggag ggattagata 180
ggagagtggg gattatttt tttgtttta aattggggta gtttttggg ttttcgattt 240
ttttatttc gtgggtaaaa aattttgtt ttatcgggt tacgtaatt ttttaagggg 300
agaggaggga aaaatttgtg gggggtacga aaaggcggaa agaaatagtt attcgttat 360
atgggtttgg tttttagttt

15 <210> 14

<211> 397

<212> DNA

<213> Artificial Sequence

20 <220>

<223> 2391

<400> 14

25 tggggttagt ttaggatagg cgttcggggg acgcgtgttt ttattttacg gggacggtgg 60 aggagagtta gcgagggttc gaggggtagg tattttaacg aatggttttt ttggtgtttt 120 180 ttgcgtttcg tcggtttatt tttttttta taaaacgggt ttagttttta gtatttattt ttcgttatta attaggtatt tcgggagatt agttcgttcg aaagtttttg cgttatttcg 240 cgggtttttt taggtggttt ttttagtttc gttttttttc gggatgtttg ttgattattt 300 30 360 cgagttcgcg tggcgtaaga gtacgagcgt cgagttcgtg cgcgttaagg ttgcgtgggc gggtatcgat ttttttgaga agttttagtg tttttaa 397

<210> 15

<211> 547

35 <212> DNA

8/112

<220> <223> 2395 5 <400> 15 60 tttttgtatt ggggtaggtt tcggtaggtg tatgggagga agtacggaga atttataagt ttttcgattt tttagtttag acgttgttgg gtttttttcg ttggagatcg cgttttttt 120 aaatttttgt gagcgttgcg gaagtacgcg gggttcgggt cgttgagcgt tgtaagatag 180 10 gggagggagt cgggcgggag agggagggc ggcgtcgggg cgggttttga tatagagtag 240 gcgtcgcggg tcgtagtata gtcggagatc gtagttcgga gttcgggtta gggtttattt 300 360 gttttcgtag cgtcggttcg cgtttttttg tcgtagttat cggtgagtgt cgcggttttg 420 agattttcgg gtcggatgcg cggcggtttt agttttcgag cgtttgtttg tttcgttttg ggttgttcgg gttttttggg tttttcggcg gttgtacgga gttaaggcgt ttcgtttcgg 480 15 gcgtttttcg cgggtgtcga tttaggttgt tcggagttcg gagtttatag aggagagaga 540 547 tagttgg <210> 16 <211> 414 20 <212> DNA <213> Artificial Sequence <220> 25 <400> 16 attagaagtg aaagtaatgg aatttcgatg taaatataat attattttt tgtagagtta 60 120 ttttgagtat aataaatttg aattgtgtta atgttgggag aaaaaattta aaagaagaac 30 180 ggagcgaata gtagtttttt cgttcgttga ttagaaatag taggacgata tttttcgat 240 tggaggagag cgtttgcgtt cgtatttagt tggcgttcgt tttttttgttt ttttttagt

cgttttttt tttttttc gcgttttagt tattcgggaa ggtattgcgg tagttgggtt

ttgattggtt gttttgaaag tttacgggtt attcgattgg tgaattcggg gttttttagc

gcggtgagtt tgaaattgtt cgtatttggt tttaaagttg gtttttggaa attg

300

360

414

35

WO 2004/015139 PCT/EP2003/008602 9/112

<211> 272 <212> DNA <213> Artificial Sequence 5 <220> <223> 2453 <400> 17 10 gggatgggtt attagttgta aatcgtggaa ttttttttga tataatgaaa agatgagggt 60 gtataagttt tttagtaggg tgatgatata aaaagttatc ggagtatttt ataaggtata 120 aatttttaga gatagtagag tatataagtt tttaggataa gagttaggaa gaaattatcg 180 gaaggaatta ttttattgtg tgtaaatatg atttttaagt tggtcgtggt ttttttggta 240 gtttttttga tttttgtagt tttgtgtgaa gg 272 15 <210> 18 <211> 391 <212> DNA <213> Artificial Sequence 20 <220> <223> 2484 <400> 18 25 taattgaagg ggttaatagt ggaatttggt tgggtgtttg ttaaattttt ttttttggtt 60 ttgttttggg ttttttttt aagggatttt ttttcgtttt tgtaataaga ttttttataa 120 agtatagatt ttttatttta tttcgcggta tttgtatcgg gttttattgg ttttaggagt 180 240 30 ttttattacg atagtaattt aaaatgtttg ggaagatggt cgtgattttt ggagttttaa 300 atatattttg gataatgttt gtagtttgta agttattttt ttttatttgt tttaaatgtt 360 agtatttaat tttagttttg gttttggttt t 391

<210> 19 35 <211> 430

<212> DNA

. 10/112

<213> Artificial Sequence <220> <223> 2512 5 <400> 19 60 tttttgtaaa taaaatggta tatgtgatgt tttttttgt ttttttgtat ataaaataat 120 atttgttttt atttattatg tatttatgtt tttattttgt atgttaggag ttaagtattt 180 10 240 tgtatgtatt aatttatttt gtttttataa taatttttat atgtaggaat tattatagtt attttatgaa tgagtcgagg aaggtattga gacgttaagt aatttgttta aggttacgta 300 gttagtaagt ggtagagtaa gaattattat ggttttataa gtttaggaaa aagtttgaaa 360 gaattaaaat gttaatagcg gggattttaa ggaagtattg aagaggttat gggagaagtt 420 15 430 tttattttgt <210> 20 <211> 475 <212> DNA 20 <213> Artificial Sequence <220> <223> 2741 25 <400> 20 Laggggaaaa gttagagttg agaggttggg gcgcgacgag tttggatatc gggcggggat 60 120 ttaagttttt ttcgtttagt taataattgt gtttttttta ggaaggcgtg aggaaatgtt 180 ttaattaatt tttgtatttt ttttttggaa tttgggttgt attttttat ttattgtaaa 30 240 300 attagtgttg ttttttttt ttcgtaagat tgcgttttag ttttagtttt tttttcgcg 360 ggtgtttttt aaatcgtttt attattttcg ggtttaggga ggcggaatcg tgtttgtttt 420 tcggtttttt taagaggcgt cggttttatt ttttttagag tcgcggtttg acgcgagatg

atagtaacga gttcggtatg tttatgtaaa taagcgtttt tttgtgggtt aatgg

475

35

<210> 21

WO 2004/015139 PCT/EP2003/008602

<211> 412 <212> DNA <213> Artificial Sequence

5 <220>

<223> 2745

<400> 21

10 attttagttt gtgaaatggg atttaggatt taggtagagg tgcgttttcg gtttggggat 60 cgagtatttt gtgcgtttcg gtaacgtagg aagatagcgt tattgatatt ttagagatta 120 gcgggtatcg tttggaggcg tttttattat ttggcggttt cgggttcgcg ttttatcgcg 180 240 gcgcgtcgtt ttcggtaggg gcggaaagcg gaagtgtggg agggtttgcg gggcgggttt 300 15 aggaggttcg cgggaggatg gagtagtgag cgggtttggg cggttgttgg tagcgttatg 360 gagacggtat agttgaggaa ttcgtcgcgt cggtgagggg ttattggtta ag 412

<210> 22

<211> 484

20 <212> DNA

<213> Artificial Sequence

<220>

<223> 2746

25

<400> 22

gtgggttttg ggtagttata gaagttatcg cgttggcggg gaggagggg atcgatgcgg 60 tttatgtttc gggtagtttt attttttttg tttgcgaagg gtttttgttc ggcgggagga 120 30 gagaggcgcg ttttattcgg gttttttat atttgtcgtc gtttgggtcg atttcgcggg 180 tttcgttcgg cgttttagtc gattttcgtt tagtttcggg tttatgggcg cggttagtag 240 ggcgggttag ggcggcggg cgcgatattg ggaggaagtg cgggtcgttt gttcgggcgc 300 gttaaggaag ttgtttaaaa tgaggaagag tcgcgggttc ggcggttgag gttatttcgg 360 cggcggttgg agagcgagga ggagcgggtg gtttcgcgtt gcgttcgttt tcgttttatt 420 35 tggcgtaggt aggtgtggtc gcgtttttta ttcggtcggg attttttggt aaggagaga 480 ggtt 484

WO 2004/015139 PCT/EP2003/008602 12/112

	<210> 23	
	<211> 476	
	<212> DNA	
5 .	<213> Artificial Sequence	
	<220>	
	<223> 2747	
10	<400> 23	
	taggatgggg agagtaatgt tttcgagtag aatagggtgg ggtttttaga ttatttttt	60
	ttttttatag ttggttttat tttatcgatt ttattaaagt ttttttggga gtattttaga	120
	gaagagttac gtttaggtcg ggttttggtt gtttggttta cggcggaatt tttagtatta	180
15	cgtttcgtac gtcgggttta aagtatgttt agtgaaggag taggtattta ttgttagatg	240
	gagttatttt tttagatttg gggttttttt ataacgatgg ttatgtttgg tatggaagtt	300
	tttttagaag ttaatagtag gaaataaggg ttaatagtat ttaattgtgg agtaaggttt	360
	aaattttagt tttgttattt aatcgtttcg aatttgtttt tttattgtag aggcgaaaag	420
	gttaatatta ttttatttcg gagggttatc gtggagaatg gaagttggat aagttg	476
20		
	<210> 24	
	<211> 419	
	<212> DNA	
	<213> Artificial Sequence	
25		
	<220>	
	<223> 2749	
	<400> 24	
30 -		
	toccacaaaa actaaacaat tattacaaat toaaaaaaco oogaccaatt tttcaaaaat	60
	ttctcctcct cttttccccc taaaactcgt aatactttta ctctactttc aaaatacatt	120
	aaatctccta ctttataact actttaaaac caacaaatac tctaatatat ataattcaaa	186
	ttatacaaat ttcacgaata aatttaatct tatttttaa attaattaaa aaacaaataa	24
35	tatttaaaaa aatattaact tataattatt tcaccctttt tactttaaac atttttatta	30
	cttctcgacc ttttaactaa aatcaaatat atactttaaa catttttaa aataaaaata	36

13/112

	tccttttaat ttaataaaaa aacaaaattc tacataaaaa aaccccttca tctaaaacc	419
	<210> 25	
	<211> 479	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> 2751	
10	•	
	<400> 25	
	tttggagggt ttagtagaag ttattttagg ggagggttcg ataggaagga aggtaggttt	60
	gtcggagggg tatataggag ttttttttt cgttatagtg tttagggtta attgttttag	120
15	tttttaggtt gggttaatag gatgggatag tttaggcgga aggaaatttg tggggaggga	180
	tatttcgtag atagaagtag ggatatgggg tggggagagg taggaagagt tgtcgggttg	240
	ttgagttggc gtttttttag tagatttagg aggggcggtg ataggaggtt atttttttt	300
	tattttcgta gttttgggtt tttttggttt tggttaatag tattattatt attattattg	360
	ttgttgttcg ttagtttggg ttttagatat attagaaaaa aattatcgga agatacgtat	420
20	agtattggta gtttttaaaa gaattaattt tttttttgtg tttattttgt gattattgg	479
	<210> 26	
	<211> 484	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
	<223> 2752	
30	<400> 26	
	atacaacctc aaatcctatc caaaccccca aaacatcaca ctcgaaactt attctacata	60
	tttttacttt tacctcccac taatactaat tcttccgtaa aacaacctaa atcccttcaa	120
	atacttaata ttttttctca aatactacca taaaaccaaa tctccaccgt cttaaaacat	180
35	tcctttttaa aaataaaaaa tatatatcgc tccttttata taatttacat tctatcttaa	240
	ataatttaac catcaccgta attcattcaa atctatttaa atcctaccca tctcaacttc	300

WO 2004/015139 PCT/EP2003/008602

	aatccatttc attcttttaa atctaatcga caattacctc caacaacttc atcacaaatc	360
	actcacaaaa ataaccttaa tootaaaatt tatttacgaa aaacacactt actaaatata	420
	taacaaatat acaaaaaaca caaaataaaa caacaaatct aaaaacaaat aacttccttc	480
	tece	484
5		
	<210> 27	
	<211> 371	
	<212> DNA	
	<213> Artificial Sequence	
0	•	
	<220>	
	<223> 2755	
	<400> 27	
15		
	ggaagatgag gaagttgatt agatattaag gatgagcgga tgatttaata ggtttttttg	60
	ttaagatttg gttgggtagg tgaaagataa agtcgaggag tggttatggt gtggtataga	120
	agaagggtta gaggacggtt tttgttattt ttttatgttt gagttttttt ttttgtgaaa	180
	tggggataat aagagtcgtt atatagggaa ttgttgttag gattaaatga gataatgtat	240
20	gtgaaacgtt ttggttgtag gttttttagt aaatgggtac gatttgcgga gtggggattt	300
	gaatttacgt ttggcgggat gtttaagttg ttattttgat cgttagggag ttttagagga	360
	tagggttgta g	371
	<010> 20	
25	<210> 28 <211> 186	
23	<211> 100 <212> DNA	
	<213> Artificial Sequence	
	VZIJV MICILICIAL DOGICO	
	<220>	
30	<223> 2831	
	<400> 28	
	ttagtagggg tgtgagtgtt ttgattagaa ttatttttt ttgttagaat ttgatgtaat	60
35	tcgaatgttt ttatttttgt ttgaagggtt taaataataa attaggtttt gtcgtgttat	120
	tatgggggtg gttatatttt gtatttagga aataggtacg gtagggttga gatagaagtt	180

. 15/112

	ttgttt	186
	<210> 29	
	<211> 300	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> 2850	
10		
	<400> 29	
·		
	ttatagggtt gagtttggga tcgaggtgag agtcgtcggg ttgggagtga gggagatggg	60
	aataaggtcg tcggtgggcg agggagtcg agggaattcg ggggattggg aggtttgggg	120
15	cggcgcggtt tggtcgggtt gggatcggtt tttcggttta gacgttcgcg atgttggtat	180
	tttttgttat tttttatttg ggttttaggg gttcgttttt gggtagtttg gagtttttcg	240
	aggtgggagg atcgggcgga ggtggaggaa gtttttttt ggaagatttg ttgtttgt	300
	<210> 30	
20	<211> 321	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
. 25	<223> 2852	
•	<400> 30	
	·	
	tgaaaatgaa ggtatggagt ttggtgttaa aagaaatttt ttttaaaaat taaataataa	60
30	tattagagta aagtttttag ggcgagataa ggagttgtaa taaaataagc ggaaattcga	120
	gaagcgttaa tgttttaaag ggttaatgat tatatataat ttacgtagtt aacgtgttaa	180
	aatatattaa cgtattttt tttttaaat aaagtaggaa agcggatttt gtatgagggg	240
	cgggttgtcg atttagtagt ttttttcgga tagttcgttt tgatttttt tggttggtcg	300
	tggagggatt atatggtttt a	321
35	j	
	<210> 31	

<210> 31

WO 2004/015139 PCT/EP2003/008602 16/112

<211> 398 <212> DNA <213> Artificial Sequence 5 <220> <223> 2859 <400> 31 10 60 tatgtttggt tttgttttga gatagagttt cgttttgtcg tttaggttgg ttaaaagata 120 gggttttagt cgggtgcggt ggtttacgtt tgtaatttta gtattttggg aggtcgaggc gggcggatta tttgaggttc ggagttcgag attagtttgg gttaatatgg cgaaacgttg 180 tttttattaa aaataataaa aattatttag gcgtggtggc gcgtatttgt aattttagtt 240 300 attcgggagg ttgaggtagg agaattattt gaatttagga ggtagacgtt gtagtgagtc 15 gagatcgcgt tattgtattt tagtttgggc gatagaggga gatttcgttt taaaaaaagg 360 398 aaaaaaaaa aaaagaaaag aaataaaagt gatggggt <210> 32 <211> 347 20 <212> DNA <213> Artificial Sequence <220> <223> 2861 25 <400> 32 gggtgtagaa gtgtttaggt tttttttcgt tggggttggg agtttgggta ggttagtttt 60 120 attttttta agttcgtttt tggttttcgg gtttagtttc ggttattatg tttcgttaga 30 180 ttatttttgt gggttttagt tgtttggatt tgtggaggga aaagaatgat cggttcgttc gataggttaa ggtaatacgg ttgttggtat tttcggtttg tagttttaag atttttgaaa 240 300

agaaatgatt ggagaatgta ttttttgtta ttgttgtaag gggagaa

347

35 <210> 33 <211> 291

17/112

<212> DNA <213> Artificial Sequence <220> 5 <223> 2864 <400> 33 tccccttcca actatatctc tcacccaaaa ataacttcta actctcgtat tcatctaaaa 10 ctcctccttc catataccaa caattaacta taacccctcc aaaaacgctc catctccaaa 120 tatactccca catccaaacc acgaacccct cacccgatca catacttcat acacctataa 180 ctccgcactc cccaaatata cctctaacgt acaactatta ccccttcccc cgattataac 240 cctataactc gccacataca actataacta aaacttccct aaaacactct c 291 15 <210> 34 <211> 389 <212> DNA . <213> Artificial Sequence 20 <220> <223> 2867 <400> 34 25 aaaaccaaaa cataaaccaa aaaccaaact cgaaccgaaa acaataaccg caacgcccga 60 aaactaaacc cacgacgcgc taacaacgcg aaccgaacta cgaaaacgat cacgtcaacg 120 tecgttecaa accgaetaac aateteegtt etacattaac gteaacaete eegttaaaaa 180 240 taatacatct ctcccatacc aaaaaaactt aaatactact aaaaaccaac cctccgaata 300 ctaccaaacc gacgctcacc cgccaccttc atcttccctt ctcctttacc ccaaaacaac 30 cqaaaatata taattaaatt cccctaccc ataaaaaaac caaaaataaa aaactaacga 360 389 cctactcgat ctcaacaaac cctcctaat <210> 35

<211> 272

35 <212> DNA

WO 2004/015139 PCT/EP2003/008602 18/112

<220> <223> 2961 5 <400> 35 aatggttgat gattttggtt ttttttcgtc gtcggagagc ggtgtttcgg aggcggcgga 60 ggaggattcg gcggtcgttt ttttggttta gtaggagagc gagattgtag gtatagagaa 120 cgacgagggt ttcggggtat ttgtcggtag ttatgcggtt ttcgcgtagt cgggttttac 180 10 gagtggggt gagttagcgc ggggtttgga gaggggttta gggcgcgtat tcgggggatt 240 272 tcggtcgggg tttaggggta tagggaagag ag <210> 36 <211> 371 15 <212> DNA <213> Artificial Sequence <220> <223> 3511 20 <400> 36 agttagaaga ggagttagga tgggtttcgg gtagtttaat agtatagttg aagttttaat 60 tattatgtta atagtttttt ggttttatat attttatggg aagaggaaaa taaaaaggta 120 25 tttatttgta tatttttta tttttgatat aagaagtaga attttttta tatgatttat 180 gtttatttaa tacgttattt tgaaatttat taataaaatt ttttaagcgt tagaaaattg 240 300 ttagaaggtt gtcggaatag taaatattta ttgatatgtt ataattattg gaaaatgggt 360 371 attggaaaat t 30 <210> 37 <211> 457 <212> DNA

<220>

35

19/1.12

<223> 3532

<400> 37

5	tgttagtaga	gttttaggga	ggttttattt	tttattttta	tttaaagttt	tatttgttgg	60
	ggtgggggtt	ttgtttggaa	ggggaaggtt	taaggttgtt	tttagcgtgt	ttttttattt	120
	tgattgtttt	tggcggggcg	ggggtgtttt	tgttatttag	ttgtataacg	gttaggaagg	180
	gtttaaatta	tttttagggt	taatttaagg	tcgttttttg	ggtttgtata	tttttgtgtt	240
	gagtgcggat	cgggagaggt	tgttgaagat	aggagggat	aaatggggga	cgaaggggtt	300
10	cgagggaggg	gattgaagga	tttgggttaa	gtcgggagtt	ttcgagggcg	gagttaaaac	360
	gtatttggat	tttgttagtt	ttaaattttg	tttttattgt	tgtaagtttt	ttagatcgag	420
	gattttcggg	ttgagggtgg	ggtaaggata	ggtagtg			457

<210> 38 .

15 <211> 476

<212> DNA

<213> Artificial Sequence

<220>

20 <223> 3534

<400> 38

	tttttgtttt	tatggggtgt	atatttaagt	agttgaaata	gatagtgaat	aaataaaaaa	60
25	ggataataat	tttaaataat	aatgatgtta	tcggttaggt	gtggtggttt	atgtttataa	120
	ttttagtatt	ttgggaagtt	aagttaagcg	gattatttga	ggttaggagt	ttaagaatag	180
	tttggttagt	atggtgaaat	tttatttta	ttaaaaatat	aaaaattagt	tagatatggt	240
	ggtatatatt	tgtaatttta	gttatttggg	aggttgacgt	aggagaattg	tttgagttcg	300
	ggaggtggag	gttgtagtga	gttaagattt	gataggtttt	tagtattatt	gtattttaga	360
30	ttggttgata	gagcgagatt	ttgttaaaaa	aaaaaagtt	ataaatagat	tttaataggg	420
	taatatgata	gggagggagg	gataggggag	tagggtggtt	aaggaaggga	tattta	476

<210> 39

<211> 458

35 <212> DNA

WO 2004/015139 PCT/EP2003/008602 20/112

<220> <223> 3538 5 <400> 39 tgggtagtat ttttgttggt tttttttat attataaggt tacgtagagt tggcggaggg 60 ttatggtttt atttatgtta ggtgttttta atttggtaag gaaatgtaat ttacgtgaat 120 tttaataggt agtgaagtat cgttttttt tgattttagg tagggtgaag aaaatgggat 180 agtagtacgg ggtgcgggta taaacgtata attttgtttt tttagacgta gagttgtggg 240 10 gttgtgagaa tgttaggagg aggtaagaaa gggcggtttt atggggggtt tgtagggtgg 300 gataagttta agaggttttt atatttaggt ttggtggggg aggtgagttt ttggtttatc 360 gagggggttt ttttttgttt tcggaaatat tgtagttttt atttttatcg tttttcgtt 420 gcggggattt aggggcgtga ggatgagaga gtttttag 458 15 <210> 40 <211> 405 <212> DNA <213> Artificial Sequence 20 <220> <223> 3540 25 60 agtggtttag gagtatttgg ttattttcgg gaaaaatcgg tttggtaaag gttttttcga 120 gggtacgcgt ttttcggata gtgaggtagg atttaaattt tttcgttaat attatatttt 180 tcgtattttt gtagtgtttg tatttttagg ttttattatt ttttcgtatt ttttagggag 240 aagttttcga cgttttattt tttttggaag ggtgttgttt ttagagattt ttaggttaat ggtttaattt tagtgttttt aggggagagg ggggtgtaga aaaatagttt gggttataaa 300 30 agaggtgcga gggttgtgag atttcggagg tatcgacggg aagcgagacg gagaatagga 360 405 gggtaggacg ggttggaggt gggggatatt gtagatggag ggagt

<210> 41

35 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 41

agataccag tococageco cagattytta tteceteget gtagttaaga aggagagat 1: caattaagg catettagaa gttaggegt coogetgeet cetttgagea cggaggeac 1: caaccecta gggggaagag atgtaggegg aggaggggg gtegtgetaa gaaatteega 2: cgettetggg gactgaggaa aaaggteggg acaegacce ggggtacetg gagtteegtg 3: 10 actegegeea eggaeggaa acaegacce gggatgeege tetegeetea acaegacaag 4: cagegeegg aceggetgea geaaggee taatteetge tetgeetea acaegacaag 4: cagegeegg aceggetgea geagateege egetgeget tecaceggga gatggtggag 4: acgetgaaaa gettettet tgeeacteeg gacgetgtgg geggeaageg cettagteee 5: tacetetget gagetgaacg eteaggaca gtggaactga acecegggae gatggtggg 6: caggsttgat gaggteacge gtaattggg geggeaageg eetgaggtt 6: caggattga geageagg categtggg gtgatggag gegeetgtte gtgatgtgg 6: caggsttgat gaagteacge gtaattggg gtgatggag gegeetgtte gtgatgtgg 6: caggsttgat geageagg categtegg gagtagtgg gageactgt ggaggaac eetgagttg 6: caggattga geageagg categtegg gagtagtgg gageactgte ggaggaac 7: caggaggaa gettgggaca cgtttgagtg aacaecteaa gatactette tggecagtat 6: ctgttttta gtgtetgtga tteagagtg gacaetgttg ggagacaga atgggttgg gtgtgtgtaa atgagtttga ceggaageg gettgagga gettgaggag gettgaggag gettgaggag gettgaggag gettgaggag gettgaggag gettgaggag gettgaggag ggggagaggag getggggaggaggaggaggaggaggaggaggaggaggaggag								
caattaaggg catcitagaa gitaggggti cccgctgcct cctttgagca cggaggccac licaacccccta gggggaaga atgtagcgcg aggcaggggt gtcgtgctaa gaaatttcga 2. cqcttctggg gactgaggac aaaggtcgg acacgacccc ggggtacctg gagttccgtg 3. actcgcgcca cggacggcac acctaggggc taatttctgc tctgcctcaa agaacctcaa 3. gctagagtcc ttgcctccgc ccacagccc gggatgccgc tgctgcgct accgcacagg 4. cagcgccagg accggctgca gcagatcgc gcgtgcgct tccaccggga gatggtggag 4. acgctgaaaa gcttcttct tgccactctg gacgctggg gcggaagcg ccttagtccc 5. tacctctgct gagctgaacg ctcaggcaca gtggaactga aacccggttc tgcgggatgt 6. aaggttgat gcaagcaggt catcgcgtg ggggaactga gacggatgtg gcggaagcg ccttagtccc 5. cagggttgat gcaagcagg catcgcgtg ggggaactga gcggatgtg gagggatgt 6. aaggttgat gcaagcagg catcgcgtg gaggtgtg gaggacagac ccgagagac 7. caggaggcag gcttgggaca cgtttgagtg aacacctcag gatactctic tggccagtat 7. ctgttttta gtgctgtga tccagagtgg gcacatgttg gagagacaga atgggttgg gtgtgtgtaa atgggttgg accggagggg ggccagata atgggtttgg gtgtgtgtaa atgagttgg ccggaagcg gctttagtg gagagacaga ggccggaata agaactgtca gagacctgaa ggccggaata gaactgtca gagacctgaa ggccggaata gaactgtca ggccggaata gaactgtca ggccggaata gagaggggag ggccggaata ggccggaata gaatgtctct gggacacacc 2. 20 agcactgtca cacctgcctg ctctttagta gagagatgaa gtgcgggggg gggggaacgg 9. ggccggaata gaatgtctct gggacatctt ggcaaacaga agccggaagc aaaggggag gccagagga ggcccgaagc ctggaagga ggctcagaag ggtgcagagg ggcccgaagag ggcccgaagag ggtgaaggg ggccccctc tcacacatg aatggatcga ggaggaagag gccagagaga gctcagagag ggccccctc tcacacatg aatggactga aggagatccc cgggaagaga gccagagaga ggccccctcc tcacacatg aatggaccaa ggagatcta cagaatccc gggaacacc ggagaactt 12 gagattcgaa aagattccat ggagatctta cagaatcccc tgtgcggac aggaacatct 12 tgtagatccc tgcctactt gagcccagac gctgggctg ttctcaaat attccttcaa 13 gatgagattg tggtccccat tcaaagatg agacccagac cctctgtgg taataccaga 15 accatgaca agattcttg ggcccagaac cacccttag ggcattaac ctttaaaatc 15 tcacttgggc agggtctgg gatcagagt ggaggggg ggcgaggt caaaaccag cggactga 16 aggtgaaatt caccatgacg tcaaactgc ctcaaattcc cgctcacttt aagggcgta 17 cttgttggtg ccccacact ccccaccat ttccatcaat gaggtgacc a	5	ccagttccag	tcccgggtcc	tgtggccgcc	ctgccggcga	ccctgcggag	agcgagtctt	60
caacccccta gggggaaga atgtagogcg aggcaggggt gtogtgctaa gaaatttcga 2. cgettctggg gactgaggac aaaggtgcgg acacgacccc ggggtacctg gagttcogtg 33 actogogcca cggacggcac acctaggggc taatttctgc totgcotcaa agaacctcaa 3. gctagagtcc ttgcotcoge coacagcccc gggatgcogc tyctgogctc accgcacagg 4. cagogcccgg accggctgca gcagatcgcg gctgcggcgt tocaccggga gatggtggag 4. acgctgaaaa gcttctttct tgccactctg gacgctgtgg gcggcaagcg ccttagtccc 5. tacctctgct gagctgaacg ctcaggcaca gtggaactga aacccggttc tgcgggatgt 6. agagactgtt gaggtcacgg gtaattgggt gtgatggagg gcgctgttc gtggatgtgg 6. caggtttgat gcaagcaggt catcgtcgtg cgagtgtgg gatgcgacg cccgagagac 7. tcggaggcag gcttgggac cgtttgagtg gaacactcag gatactctc tggccagtat 7. ctgtttttta gtgtctgtga ttcagagtgg gcacatgttg gagacagaa atgggtttgg 8. gtgtgtgtaa atgagtgga ccggaagtgg gacactgttg gagacagaa atgggtttgg 8. gtgtgtgtaa atgagtgtga ccggaagtga ggagtgagett gatctaggca gggggacacac 9. ggccggaata gaatgtcct gggacatctt ggcaacaga ggcgggggg ggggggacag 2. ctggtgcaaac ggctcagga ggtgagtga ggagggagggggggggg		agatacccag	tccccagccc	cgagttgtta	ttccctcgct	gtagttaaga	aggaggagat	120
actotetggg gactgaggac aaaggtgcgg acacgaccc ggggtacctg gagttecgtg 31 actogcgcca cggacggcac acctaggggc taatttetge tetgeeteaa agaacctcaa 32 getagagtee ttgeeteege ceacagecce gggatgeege tgetgegete accgeacagg 42 cagegecegg accggetgea geagateege getgegegt tecacceggga gatggtggag 43 acgetgaaaa gettetttet tgecactetg gacgetgtggg geggeaageg cettagteee 53 tacctetget gagetgaacg etcaggeaca gtggaactga aacceggtte tgegggatgt 64 caggttgat gaggteacge gtaattgggt gtgatggaagg gegeetgte gtgatggtgg 64 caggtttgat geaagcaggt categtegtg gtgatggaagg gegeetgte gtgatggtgg 64 caggtttgat geaagcagg categtegtg gagtggagg gegeetgte gtgatggtgg 64 caggtttgat geaagcagg categtegtg gaatggagg gegeetgte gtgatggtgg 64 caggtttgat geaagcagg categtegtg gaatggagg gegeetgte gtgatggtgg 64 caggtttgat geaagcagg categtegtg gaatggaggg gegeetgte geggaggagg teggaggag getteggaa cegttagagtg gacacatgtg gagacagta atgggtttgg 64 ctgttttta gtgetetgga tecaggaggg geacatgttg gagacagta atgggtttgg 64 gtgtgtgtaa atgagttga ceggaaggag gtgaggagtt gagacagaa ggggggagggggggggg		caattaaggg	catcttagaa	gttaggcgtt	cccgctgcct	cctttgagca	cggaggccac	180
actogogoca oggacggoca cactaggggo taatttotgo totgoctoaa agaacctoaa gotagagtoc ttgoctocgo coacaagococ gggatgocgo tgotgogota accgocaaggg cagogocogg accgotgoa gcagatcgog ogotgogot tocaccggga gatggtggag acgotgaaaa gottottot tgocacctog gacgotgtgag goggaaaggo cottagtoco tacctotgot gagotgaacg otcaggaaca gtggaactga aaccoggtto tgogggatgt 66 caggttgat gaagotaacgo ctaaggaaca gtggaactga aaccoggtto tgoggatgt 66 caggtttgat gaagotaacgo gtaattggg gtgatggag gacgotgtto gtgatggtgg caggttgat gaagocaggt catcogtogog gatgatggg gatgogaacgo cocgagagac toggaggcag gottgggaca ogtttgagtg aacacotcaag gatactotto tggccagtat otgttttta gtgototga tocagaggag gtgagagct gatgagactg agggacaaca gtgtggtgaa atgagtgtga coggaagcga gtgtgagott gatctaggca ggggacacaca ggccogaata gaatgotet gggacatott ggcaaacagc agcoggaago gacgoggaacacac ggccogaata gaatgotet gggacatott ggcaaacaga gacggaago aaaggggag gccggaata gaatgotet gggacatott ggcaaacaga gacggaago aaaggggag cotggaaga gottocgcat otgtacottg caactcacco otcaggocaa gagggaago cotggatggag gottocgcat otgtacottg caactcacco otcaggocaa aggagaactot ggccocotco tocacacatg aatggatotg aagagatocc otgagogaacact tgtagatocc tgoctatotg gagaccaggo gotggggtt tocacaat attoctoca tgtagatcac acaaccagga attgggccaa otgtaattga actoctgtga aggtacatct tgtagatcco tgoctatotg aggaccagaa otgtaattga actoctgto aacaaagtt ttgtagatcac acaaccagga attgggccaa otgtaattga actoctgtot aacaaagtt ttgtoccaa otcogtotot tgtttoccac gagocctggo octotgtga agttacttga coatgatcac acaaccagga attgggccaa ocgaacctga occocttoggg baataccacc tcacttgggo aggggtotgg gatcagagtt ggaagagtoc octacaatcc ggaccettto coccaaaatcg tgaaaccagg ggtgagtgg ggcagggtt caaaaccag ocgaactgaa aggtgaaat caccatgacg tcaaactgc occaaattcc occaaatcc aaggggata cttgtggg occcacacat cocccacat ttccaaaatcc occaaatca aaaaccaag caaaccaagg stggaaggaa ggaggagaga occaaaccaagga aagggagaa gagggaagaa aagggagaa gagagagaaccaca scaccaatgaga accaccacaaccaaccaaccaaccaaccaaccaac		caacccccta	gggggaagag	atgtagcgcg	aggcaggggt	gtcgtgctaa	gaaatttcga	240
gctagagtcc ttgcctccgc ccacagccc gggatgccgc tgctgcgctc accgcacagg 4: cagcgcccgg accggtgca gcagacgc cgctgcgcgt tccaccggga gatggtggag acgctgaaaa gcttcttct tgccactctg gacgctgtgg gcggcaagcg ccttagtecc tacctctgct gagctgaacg ctcaggcaca gtggaactga aaccggttc tgcgggatgt 6: gagagctgtt gaggtcacgc gtaattgggt ggatggagg gcgcctgttc gtgatgtgt 6: caggttgat gcaagcaggt catcgtcgtg cgagtgtgg gatgcgaccg cccgagagac 7: ccgaggcag gcttgggaca cgtttgagtg aacacctcag gatactcttc tggccagtat 7: ctgttttta gtgtctgtga ttcagagtgg gcacatgttg gaggcacaga atgggtttgg 8: gtgtgtgtaa atgagttga ccggaagcga gtgtgagctt gatctaggca gggaccacac 9: ggccggaata gaatgtctc gggaacga gtgtgagctt gatctaggca gggaccacac 9: ggccggaata gaatgtctct gggacatctt ggcaaacaga gtgcgggggg gggggtacgg 9: ggccggaata gaatgtctct gggacatctt ggcaaacagc agcggaagc aaaggggag 1:0 ctgtgcaaac ggctcaggca ggtgatggat ggaagggtag gaagggggag gtccagagg 1:0 ctggatggag gcttccgcat ctgtaccttg caactcaccc ctcaggcca gcaggtcatc 1:1 ggcccctcc tcacacatgt aatggatctg aagagtaccc cgggaacgtc cggggagatg 1:2 gagattcgga aagtatccat ggaatctta cagaatcccc tgtgcggacc aggaaactct 1:2 tgtagatccc tgcctatctg aggccaaggc gctgggctgt ttctcacaat attccttcaa 1:3 gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 1:3 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtc aacaaagtc 1:4 ttgctcccag ctccgtctct tgtttccaca gagccctggc cctctgtgg baataccagc 1:5 acctggagc aggggtctgg gatcagagtt ggacgaggtc caaaccacc ctcaaaccac 1:5 tcacttgggc aggggtctgg gatcagagtt ggacgaggtc caaaccaccg cggacctttc 1:6 cgccaaatcg tgaaaccagg ggtgaggtgg ggcaggggtt caaaaccacag cggacctttc 1:6 cgccaaatcg tgaaaccagg ggtgaggtgg ggcaggggtt caaaaccacag cggaccttt 1:6 cgccaaatcg tgaaaccacga tcaaaccac ccccacctta agggcctta agggtgaatt caccatgacg ccccaccat tccaaattcc cgctcactt aagggcgtta 1:7 cttgttggtg ccccaccac cccccacat ttccatcaat gacctcaatc caaaccaggg 1:8 tgggacggtc ctgctggatc ctcccaccat tccaagtcg agggtgacc aacccagggg 1:8		cgcttctggg	gactgaggac	aaaggtgcgg	acacgacccc	ggggtacctg	gagttccgtg	300
cagegecegg aceggetgea geagategeg egetgegegt tecacegga gatggtggag acgetgaaaa gettettet tgecactetg gaegetgtgg geggeaageg cettagteee 5. tacctetget gagetgaaeg eteageaeg gtgaatggag geggeaageg eettagtee 5. gagagetgt gaggteaege gtaattgggt gtgatggagg gegeetgtte gtgatgttg 6. caggtttgat geageageg eategetgt gegatgtgtg gatgegaeeg eeegagaae 7. teggaggeag gettgggaea egtttgagtg gaacetga gagacagta atgggtttgg gtgttttttt gtgetetga tecagagtgg geacatgttg gagacagta atgggtttgg gtgttgtgtgaa atgagtttga eeegagagegg geacatgttg gagacagaa atgggtttgg gtgtgtgtaa atgagtttga eeegagagegggggageggagggagegggagegggageggggaaegggggg	10	actcgcgcca	cggacggcac	acctaggggc	taatttctgc	tctgcctcaa	agaacctcaa	360
acgetgaaaa gettetttet tgecaetetg gaegetgtgg geggeaageg cettagteee 5. tacetetget gagetgaacg etcaggeaca gtgaactga aacceggtte tgegggatgt 6. gagagetgtt gaggteacge gtaattgggt gtgatggag gegeetgtte gtgatgtgtg 6. caggtttgat geaageaggt categtegtg egagtgtgtg gatgegaeeg eeegaggaac 7. cetgttetta gettetggaa egtttgagtg aacaeeteag gataetette tggeeagtat etgttttta gtgetetgtg tteagagtgg geacatgttg gaggaeagta atgggttgg gtgtgtgtaa atggtttgg teegaagega gtgtgagett gatetaggea gggaeeacae 9. ggeeggaata gaatgtetet gggaacaett ggeaaacage ageeggaage gggeggaage gggeeggaata gaatgtetet gggaacaett ggeaaacage ageeggaag gggggaegg ggggaeagg gggeeggaat aaggggeag ggggaeaga gaggaeaga gaggeeggaag gaggeeggaag ggggaeagag ggggaeagag ggggaagag ggggaagag ggggaagag etgggaggag gggeeecetee teaacaetg aatggatetg aagagtaeee etggaagaega gggaeagae agggaagaega gggeeecetee teaacaetg aatggatetg aagagtaeee etggaagaega aaggagaaaetee 12 ggaeeetee tgeetatetg ggagaeetga getgggetgt tteteacaat atteetteaa 13 gatgagateg tggteeeeat tteaaagatg agtaeeetga geetetgtga agtaeetge 12 ceatgateae acaaccagga attgggeeaa etgaateee etgtegggaeaaetee 12 tegteecaa eteegtetet tgttteeeae gageeetgge eetetgtga agtaeetge 13 ceatgagate agaatteett ggeeeagae eeceettag gggeattaae etttaaaate 14 ttgeteecaa eteegtetet tgttteeeae gageeetgge eetetgtgg taataeeage 15 30 taetggagte agattettg ggeeeagae eeceettag gggeattaae etttaaaate 15 teaettggge agggtetgg gateagagt ggaagggt eaaaccagg eeggaetga 16 aggtgaaatt eaceatgaeg teaaactgee eteaaatee egeteaette aaggeegtta 17 ettgttggtg eeceeacaet eeceeacat tteeateat gaeeteaatg eaaataeaag 18 35 tgggaeggte etgetggate etgeeggte ttggaagea aaggggaagag 18		gctagagtcc	ttgcctccgc	ccacagcccc	gggatgccgc	tgctgcgctc	accgcacagg	420
tacctetyct gagetgaacg etcaggeaca gtggaactga aacceggtte tgegggatgt gagagetytt gaggteacge gtaattgggt gtgatggag gegeetytte gtgatgtytg caggtttgat geaageaggt eategtegtg egagtgtytg gatgegaecg eeegagagae teggaggag gettgggaa egtttgagtg aacaecteag gataetette tggeeagtat etgttttta gtgtetytga tteagagtg geaeatytt gggagaeagta atggyttgg gtgtytgtaa atgagtyta eeggaageag gtgtgagett gatetaggea gggaeeacae ggeeggaata gaatgtetet gggaeatett ggeaaacage ageeggggt ggggytaegg ggeeggaata gaatgtetet gggaeatett ggeaaacage ageeggaage aaaggggeag ettggaaae ggeteegea etgtaeettg eaaeteaeee eteaggeea gagagetate ggeeeetee teacaeaty aatggatetg aagagtaeee egggaeagee aggaaactet ggagattegga aagateeat ggagatetta eagaateeee etgggagatg 12 gagattegga aagateeat ggagatetta eagaateeee tggeggaeatee tg tgtagateee tgeetatetg aggeeagge getgggetyt tteteacaat atteetteaa gatgagatty tggteeeat tteaaagatg agtaeeetga geetetytga agtaettge ttgeeceetee tecetaetg ggeeeagge getgggetyt tteteacaat atteetteaa gatgagatty tggteeeat tteaaagatg agtaeeetga geetetytga agtaettge ttgeeceetee tgeteteet tgttteeeae gageeettge eetetytga agtaettge tegeteece eteetetet tgttteeeae gageeettge eetetytgg taataeeage teetetygge aggggtetyg gateagagte eaaeeegge getgagggtt eaaaaeeage teetetygge aggggtetyg gateagagte eaaeeegggggagggteeeeee teetetygge aggggtetyg gagegaggtt eaaaaeeage cegeeeette egeeaaateg tgaaaceagg ggtggagtgg ggegagggtt eaaaaeeage eggeeettte egeeaaateg tgaaaceagg ggtggagtgg ggegagggtt eaaaaeeage eggaeeettte egeeaaateg tgaaaceagg ggtggagtgg ggegaggtt eaaaaeeagg eeggaeettte egeeaaateg tgaaaeeagg ggtggagtgg ggegagggtt eaaaaeeagg eeggaeettte egeeaaateg tgaaaeeagg getgagaggt eeaaateee etcaeatee eegeeaaateee eegeeaaateee eegeeaaateee eegeeaaateeee eegeeaaateeeegeeaaateeeegeeaaateeeegeeaaateeeeeeee		cagcgcccgg	accggctgca	gcagatcgcg	cgctgcgcgt	tccaccggga	gatggtggag	480
agagactett gaggteacge gtaattgggt gtgatggagg gegeetgtte gtgatgtgtg 6 caggtttgat geaageaggt eategtegtg egagtgttg gatgegaceg eeegagagae 7 teggaggeag gettgggae egtttgagtg aacaceteag gatactette tggeeagtat etggtttttta gtgtetgtga tteagagtgg geacatgttg ggagacagta atgggtttgg 8 gtgtgtgtaa atgagttga eeggaageag gtgtgagett gatetaggea ggggaceacae 9 ggeeggaata atgagtttgg egagactgaa gtgtgtgtaa atgagtttga eeggaageag gtgtgagett gatetaggea gggggtaegg ggeeggaata gaatgetete gggaacaetet ggeaaacage ageeggaage aaaggggeag ggeeggaata gaatgetete gggacatett ggeaaacage ageeggaage aaaggggaag 10 etggatggag getteegeat etgtaeettg eaacteacee eteaggeea ggagacatet 11 ggeeeeetee teacacatgt aatggatetg aaggateee egggacagte eggggagatg 12 gagattegga aagtateeat ggagatetta eagaateeee tgtgeggaee aggaacetet 12 tgtagateee tgeetatetg aggeeeagge getgggetgt tteteacaat atteetteaa 13 gatgagattg tgggeeeete tteaaagatg agtaggeegg eetetgtga agttaettge 13 ecatgateae acaaceagga attgggeeaa etgaaatega geetetgtga agttaettge 13 ecatgateae acaaceagga attgggeeaa etgaacetga geetetgtga agttaettge 13 ecatgateae acaaceagga attgggeeaa etgaaattga acteetgte aacaaagtte 14 ttgeteecaa eagagtetgg gateagagtt ggaagagtee etettgtgg taataceage 15 tacetggge aggggtetgg gateagagtt ggaagagtee etacaateet ggaeeettte 16 egecaaateg tgaaaceagg ggtggagtgg ggegagggtt eaaaaceagg eeggaettgag 16 aggtgaaatt eaceatgaeg teaaactgee eteaaattee egeceettte 16 egecaaatee tgaaaceagg ggtggagtgg ggegagggtt eaaaaceagg eeggaettgag 16 aggtgaaatt eaceatgaeg teaaactgee eteaaattee egeteaett aagggegtta 17 ettgttggtg eeeecaacaa eeeeecaacaa tteeaatee gaeeteaatg eaaataeaag 18 tgggaagagte etgeeggaee eteecaacaa eeeeeagggg 18 eeggaagagte eeggaeettag 18 aggtgaaatt eaceacaacaa eeeeecaacaacaa eeeeecaacaacaa 18 tgggaaatt eaceacaacaa eeeeecaacaacaa eeeeecaacaacaa eeeeeacaacaaaca		acgctgaaaa	gcttctttct	tgccactctg	gacgctgtgg	gcggcaagcg	ccttagtccc	540
caggitigat gcaagcaggi catcgictg cgagtgitg gatgcgaccg cccgagagac tcggaggcag gcttgggac cgtttgagtg aacacctcag gatactette tggccagtat ctgtttttta gtgtctgtga ttcagagtgg gcacatgitg ggagacagta atgggttigg gtgtgtgtaa atgagtgiga ccggaagcag gtgtgagcit gatctaggca gggaccacac ggtgtgtgitaa atgagtgiga ccggaagcag gtgtgagcit gatctaggca gggaccacac ggccggaata gaatgctct gggacatctt ggcaaacagc agccggaagc aaaggggcag ggccggaata gaatgctct gggacatctt ggcaaacagc agccggaagc aaaggggcag 10 ctggatgaa ggctcagga ggtgatggat ggcagggtag gaccaggit atggatgga ggccccccc tcacacacgit aatggatcti caaaccacc ctcaggcca gcaggtcatc 11 ggccccctcc tcacacatgi aatggatcti caaactcacc ctcaggcca ggggagatg 12 gagatcgga aagtatccat ggagatctia cagaatccc tggtggagac aggaaactct 12 tgtagatccc tgcctatctig aggcccagge gctgggctgit ttctcacaat attccttcaa 13 gatgagatti tggtccccat ttcaaagatg agtacactga gcctctgtga agtacctgi 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtci aacaaagttc 14 ttgctcccag ctccgtctc tgtttcccac gagccctgc cctctgtgg taataccagc 15 tactggagc aggggtctgg gatcagagt ggaccagac ccacccttag gggcattaac ctttaaaatc 15 tcacttggc aggggtctgg gatcagagt ggaagagtc ctacaatcci ggacccttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaaaccag ggggagggtg ccacacact tcccacacac ttccaaatcc cgcccactt aagggcgtta 17 cttgttggtg ccccaccac cccccacact ttccaacac agggcactac aacccagggg 18		tacctctgct	gagetgaacg	ctcaggcaca	gtggaactga	aacccggttc	tgcgggatgt	600
teggaggeag gettgggaca egtttgagtg aacaceteag gatactette tggecagtat ctgttttta gtgtetgtga tteagagtgg geacatgttg ggagacagta atgggtttgg gtgtgtgaa atgagtgtga ceggaagega gtgtgagett gatetaggea ggggaceacace ggeceggaata gaatgtetet gggacatett ggeaaacage ageeggaggg gggggtaegg ggeceggaata gaetteetet gggacatett ggeaaacage ageeggaage aaaggggeag 10 ctggatggaa getteegeat etgtacettg eaacteacee eteaggeea geaggteate 11 ggeceectee teacacatgt aatggatetg agagateece egggacagte egggagatg gaaggtegga aagtateeat ggagatetta eagaateee etgtgeggaee aggaaactet 12 tgtagateee tgeetateetg aggeeeagge getgggetgt tteeteacaat atteetteaa 13 gatgagattg tggteeeat tteaaagatg agtacactga geetetgtga agttacettge 13 ccatgateae acaaceagga attgggeeaa etgtaattga acteetgte aacaaagtee 14 ttgeteecag eteegtete tgttteecae gageeetgge eetetgtgg taataceage 15 ccatgagate agatteettg ggeeeagaee eeceettag gggeattaae etttaaaate 15 teacttggge agaggtetgg gateagagtt ggaagagtee etacaateet ggaeettte teacttggge agggtetgg gateagagtt ggaagagtee etacaateet ggaeettte teacttggge agggtetgg gateagagtt ggaagagtee etacaateet ggaeettte teacttggge aggggtetgg gateagagtt ggaagagtee etacaateet ggaeettte 16 cgeeaaatee tgaaaceagg gtgggagtgg ggegagggtt eaaaaceagg eeggaettga 16 aggtgaaatt eaceatgaeg teaaactgee eteaaattee egeteactt aagggegta 17 cttgttggtg eeceeacaca eeceeacat tteeateaat gaeeteaatg eaaatacaag 18 tgggaeggte etgetggate eteesgate ttggaageag agggtgaegg aaceeacaggg aaceeacaggg 18	15	gagagctgtt	gaggtcacgc	gtaattgggt	gtgatggagg	gcgcctgttc	gtgatgtgtg	660
ctgttttta gtgtctgtga ttcagagtgg gcacatgttg ggagacagta atgggttgg gtgtgtgtaa atgagttga ccggaagcga gtgtgagctt gatctaggca gggacacacac ggagcactgta atgagtgtaa ccggaagcga gtgtgagctt gatctaggca ggggacacacac ggaccggaata cacctgcctg ctctttagta gaggactgaa gtgcgggggt gggggtacgg gggccggaata gaatgtctct gggacatctt ggcaaacagc agccggaagc aaaggggcag 10 ctgtgcaaac ggctcaggca ggtgatggat ggcagggtag gaagggggag gtccagaggt 10 ctggatggag gcttccgcat ctgtaccttg caactcacce ctcaggcca gcaggtcatc 11 ggccccctcc tcacacatgt aatggatctg aagagtacce cgggacagtc cggggagatg 12 gagattcgga aagtatccat ggagatctta cagaatccce tgtgcggacc aggaaactct 12 tgtagatccc tgcctatctg aggcccagge gctgggctgt ttctcacaat attccttcaa 13 gatgagattg tggtcccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctgc cctctgtgg taataccagc 15 tcacttgggc aggggtctgg gatcagagtt ggaagagtc ctacaatcct ggacctttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgc ctcaaattcc cgctcactt aagggcgtta 17 cttgttggtg ccccaccat cccccaccat ttccatcaat gacctcaatg caaatacaag 18 tgggacggt ctgggacgtc ctgcggtc ctccaggtc ctccaggtc ttggaagcatg agggtgacg aacccagggg 18		caggtttgat	gcaagcaggt	catcgtcgtg	cgagtgtgtg	gatgcgaccg	cccgagagac	720
gtgtgtgtaa atgagtgtga ccggaagcga gtgtgagctt gatctaggca gggaccacac 99 agcactgtca cacctgcctg ctctttagta gaggactgaa gtgcgggggt gggggtacgg 9 ggccggaata gaatgtctct gggacatctt ggcaaacagc agccggaagc aaaggggcag 100 ctgtgcaaac ggctcaggca ggtgatggat ggcagggtag gaagggggag gtccagaggt 100 ctggatggag gcttccgcat ctgtaccttg caactcaccc ctcaggccca gcaggtcatc 11 ggccccctcc tcacacatgt aatggatctg aagagtaccc cgggacagtc cgggagatg 12 gagattcgga aagtatccat ggagatctta cagaatccc tgtgcggacc aggaaactct 12 tgtagatccc tgcctatctg aggcccaggc gctgggctgt ttctcacaat attccttcaa 13 gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctc tgtttccaca ggccctggc cctctgtgg taataccagc 15 tactgggc agggtctgg gatcagagt ggaagagtc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaaactgc ctcaaattcc cgcccattta aagggcgtta 17 cttgttggtg cccccacat ccccaccat ttccatcaat gacctcaatg caaaaccagg cagactgag 18 tgggacggt ccccacacat ccccaccat ttccatcaat gacctcaatg caaaaccaag 18 tgggacggtc ctgcaccat ccccaccat ttccatcaat gacctcaatg caaaaccaag 18 tgggacggtc ctgcaccat ccccaccat ttccatcaat gacctcaatg caaaaccaag 18 tgggacggtc ctgcaccaccat ccccaccat ttccatcaat gacctcaatg caaaaccaag 18		tcggaggcag	gcttgggaca	cgtttgagtg	aacacctcag	gatactcttc	tggccagtat	780
agcactgtca cacctgcctg ctctttagta gaggactgaa gtgcggggt gggggtacgg ggccggaata gaatgtctct gggacatctt ggcaaacagc agccggaagc aaagggcag 10 ctgtgcaaac ggctcaggca ggtgatggat ggcaggtag gaagggggag gtccagaggt 10 ctggatggag gcttccgcat ctgtaccttg caactcaccc ctcaggccca gcaggtcatc 11 ggccccctcc tcacacatgt aatggatctg aagagtaccc cgggacagtc cggggagatg 12 gagattcgga aagtatccat ggagatctta cagaatccc tgtgcggacc aggaaactct 12 tgtagatccc tgcctatctg aggcccaggc gctgggctgt ttctcacaat attccttcaa 13 gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtgg taataccagc 15 tcacttgggc agggtctgg gatcagagt ggacgaggt caacaccagg ggcgaggtt caaaaccagg ccggacttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgc ctcaaattcc cgctcactt aagggcgtta 17 cttgttggtg cccccacat cccccaccat ttccatcaat gacctcaatg caaatacaag 18 tgggacggt ctggcggtc ctgctggatc ctgctgggt caacccagggg 18		ctgtttttta	gtgtctgtga	ttcagagtgg	gcacatgttg	ggagacagta	atgggtttgg	840
ggccggaata gaatgtctet gggacatctt ggcaaacagc agccggaagc aaagggcag 10 ctgtgcaaac ggctcaggca ggtgatggat ggcagggtag gaagggggag gtccagaggt 10 ctggatggag gcttccgcat ctgtaccttg caactcaccc ctcaggccca gcaggtcatc 11 ggccccctcc tcacacatgt aatggatctg aagagtaccc cgggacagtc cggggagatg 12 gagattcgga aagtatccat ggagatctta cagaatcccc tgtgcggacc aggaaactct 12 tgtagatccc tgcctatctg aggcccaggc gctgggctgt ttctcacaat attccttcaa 13 gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtgg taataccagc 15 tcacttgggc aggggtctgg gatcagagt ggaagagtc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat ccccaccat ttccatcat gacctcaatg caaatacaag 18 tgggacggtc ctgctggatc ctccaggtc ttggaagcatg agggtgacgc aacccagggg 18		gtgtgtgtaa	atgagtgtga	ccggaagcga	gtgtgagctt	gatctaggca	gggaccacac	900
ctgtgcaaac ggctcaggca ggtgatggat ggcagggtag gaagggggag gtccagaggt 10 ctggatggag gcttccgcat ctgtaccttg caactcacce ctcaggccca gcaggtcatc 11 ggccccctcc tcacacatgt aatggatctg aagagtacce cgggacagtc cggggagatg 12 25 gagattcgga aagtatccat ggagatctta cagaatccce tgtgcggacc aggaaactct 12 tgtagatccc tgcctatctg aggcccagge gctgggctgt ttctcacaat attccttcaa 13 gatgagattg tggtcccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtgg taataccagc 15 130 tactggagtc aggttctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgc ctcaaattcc cgctcactt aagggcgtta 17 cttgttggtg cccccaccat ccccaccat ttccatcaat gacctcaatg caaatacaag 18 135 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18	20	agcactgtca	cacctgcctg	ctctttagta	gaggactgaa	gtgcgggggt	gggggtacgg	960
ctggatggag gcttccgcat ctgtaccttg caactcaccc ctcaggccca gcaggtcatc 11 ggccccctcc tcacacatgt aatggatctg aagagtaccc cgggacagtc cggggagatg 12 gagattcgga aagtatccat ggagatctta cagaatcccc tgtgcggacc aggaaactct 12 tgtagatccc tgcctatctg aggcccaggc gctgggctgt ttctcacaat attccttcaa 13 gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtgg taataccagc 15 tcacttgggc aggggtctgg gatcagaat ccacccttag gggcattaac ctttaaaatc 15 tcacttgggc aggggtctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcactt aagggcgtta 17 cttgttggtg cccccaccat cccccaccat ttccatcaat gacctcaatg caaatacaag 18 15 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18		ggccggaata	gaatgtctct	gggacatctt	ggcaaacagc	agccggaagc	aaaggggcag	1020
ggccccctcc tcacacatgt aatggatctg aagagtaccc cgggacagtc cggggagatg 12 gagattcgga aagtatccat ggagatctta cagaatcccc tgtgcggacc aggaaactct 12 tgtagatccc tgcctatctg aggcccaggc gctgggctgt ttetcacaat attecttcaa 13 gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtgg taataccagc 15 tcacttgggc agatttcttg ggcccagaac ccacccttag gggcattaac ctttaaaatc 15 tcacttgggc aggggtctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat ccccaccat ttccatcaat gacctcaatg caaatacaag 18 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18		ctgtgcaaac	ggctcaggca	ggtgatggat	ggcagggtag	gaaggggag	gtccagaggt	1080
gagattegga aagtateeat ggagatetta eagaateeee tgtgeggace aggaaactet 12 tgtagateee tgeetatetg aggeeeagge getgggetgt tteteacaat atteetteaa 13 gatgagattg tggteeeat tteaaagatg agtacactga geetetgtga agttacttge 13 ccatgateae acaaceagga attgggeeaa etgtaattga acteetgtet aacaaagtte 14 ttgeteeeag eteegteet tgttteeeae gageeetgge eetetgtggg taataceage 15 tactggagte agatteettg ggeeeagaae eeaceettag gggeattaae etttaaaate 15 teaettggge aggggtetgg gateagagtt ggaagagtee etacaateet ggaeeettte 16 egeeaaateg tgaaaceagg ggtggagtgg ggegagggt eaaaaceagg eeggaetgag 16 aggtgaaatt eaceatgaeg teaaactgee etcaaattee egeteaett aagggegtta 17 ettgttggtg eeeecaceat eeeeaceat tteeateaat gaeeteaatg eaaatacaag 18 tgggaeggte etgetggate eteeaggtte tggaageatg agggtgaege aaceeagggg 18		ctggatggag	gcttccgcat	ctgtaccttg	caactcaccc	ctcaggccca	gcaggtcatc	1140
tgtagatccc tgcctatctg aggcccaggc gctgggctgt ttctcacaat attccttcaa 13. gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtggg taataccagc 15 tcacttgggc aggggtctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16. cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat cccccaccat ttccatcaat gacctcaatg caaatacaag 18 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18		ggccccctcc	tcacacatgt	aatggatctg	aagagtaccc	cgggacagtc	cggggagatg	1200
gatgagattg tggtccccat ttcaaagatg agtacactga gcctctgtga agttacttgc 13 ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtggg taataccagc 15 tcacttgggc agatttcttg ggcccagaac ccacccttag gggcattaac ctttaaaatc 15 tcacttgggc aggggtctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat cccccaccat ttccatcaat gacctcaatg caaatacaag 18 35 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18	25	gagattcgga	aagtatccat	ggagatctta	cagaatcccc	tgtgcggacc	aggaaactct	1260
ccatgatcac acaaccagga attgggccaa ctgtaattga actcctgtct aacaaagttc 14 ttgctcccag ctccgtctct tgtttcccac gagccctggc cctctgtggg taataccage 15 tactggagtc agattcttg ggcccagaac ccacccttag gggcattaac ctttaaaatc 15 tcacttgggc aggggtctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat ccccaccat ttccatcaat gacctcaatg caaatacaag 18 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18		tgtagatccc	tgcctatctg	aggcccaggc	gctgggctgt	ttctcacaat	attccttcaa	1320
ttgeteccag etecgtetet tgttteeeae gageeetgge eetetgtggg taataceage 15 taetggagte agatttettg ggeeeagaae eeaceettag gggeattaae etttaaaate 15 teaettggge aggggtetgg gateagagtt ggaagagtee etaeaateet ggaeeettte 16 egeeaaateg tgaaaceagg ggtggagtgg ggegagggtt eaaaaceagg eeggaetgag 16 aggtgaaatt eaceatgaeg teaaaetgee eteaaattee egeteaettt aagggegtta 17 ettgttggtg eeeeeaceat eeeeeacat tteeateaat gaeeteaatg eaaatacaag 18 tgggaeggte etgetggate eteeaggtte tggaageatg agggtgaege aaceeagggg 18		gatgagattg	tggtccccat	ttcaaagatg	agtacactga	gcctctgtga	agttacttgc	1380
tcacttggc agggtctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16 cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat ccccaccat ttccatcaat gacctcaatg caaatacaag 18 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18		ccatgatcac	acaaccagga	attgggccaa	ctgtaattga	actcctgtct	aacaaagttc	1440
tcacttggc agggtctgg gatcagagtt ggaagagtcc ctacaatcct ggaccctttc 16. cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16. aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat ccccaccat ttccatcaat gacctcaatg caaatacaag 18. 35 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18.		ttgctcccag	ctccgtctct	tgtttcccac	gagccctggc	cctctgtggg	taataccagc	1500
cgccaaatcg tgaaaccagg ggtggagtgg ggcgagggtt caaaaccagg ccggactgag 16 aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat ccccaccat ttccatcaat gacctcaatg caaatacaag 18 35 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18	30	tactggagtc	agatttcttg	ggcccagaac	ccacccttag	gggcattaac	ctttaaaatc	1560
aggtgaaatt caccatgacg tcaaactgcc ctcaaattcc cgctcacttt aagggcgtta 17 cttgttggtg cccccaccat cccccaccat ttccatcaat gacctcaatg caaatacaag 18 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18		tcacttgggc	aggggtctgg	gatcagagtt	ggaagagtcc	ctacaatcct	ggaccctttc	1620
cttgttggtg cccccaccat ccccaccat ttccatcaat gacctcaatg caaatacaag 180 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 180 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg		cgccaaatcg	tgaaaccagg	ggtggagtgg	ggcgagggtt	caaaaccagg	ccggactgag	1680
35 tgggacggtc ctgctggatc ctccaggttc tggaagcatg agggtgacgc aacccagggg 18		aggtgaaatt	caccatgacg	tcaaactgcc	ctcaaattcc	cgctcacttt	aagggcgtta	1740
		cttgttggtg	cccccaccat	ccccaccat	ttccatcaat	gacctcaatg	caaatacaag	1800
caaaggaccc ctccgcccat tggttgctgt gcactggcgg aactttcccg acccacagcg 19	35	tgggacggtc	ctgctggatc	ctccaggttc	tggaagcatg	agggtgacgc	aacccagggg	1860
		caaaggaccc	ctccgcccat	tggttgctgt	gcactggcgg	aactttcccg	acccacagcg	1920

WO 2004/015139 PCT/EP2003/008602 22/112

				_		
gcgggaataa	gagcagtcgc	tggcgctggg	aggcatcaga	gacactgccc	agcccaagtg	1980
tegeegeege	ttccacaggg	ctctgctgga	cgccgccgcc	gccgctgcca	ccgcctctga	2040
tccaagccac	ctcccgccag	gtgagccccg	agatcctggc	tcaggtatat	gtctctccct	2100
ccctctccct	ccattcgtca	ttttctcact	ccctttcctc	ctctccctct	ctctccgtta	2160
gtctcttcat	cagatagtct	ctgttagtcc	gcgatttata	ccaggctcgt	gccctaggtt	2220
ggatcggaca	gtctcaatcc	cccggctcgc	tcttcctgct	cggctgcgga	ctccagtctt	2280
actctctcgc	actgcacaca	ggcttaggcc	agtctcggga	cactcaggct	ccccagggac	2340
cgcgcacaga	gcctgaggca	agagaaactt	tccgcagacg	gtgcgatcag	ggacggcgtc	2400
tggagcccag	cagtcccagg	gaaattggtt	cagaacctgg	aacagagcgg	atgggtggca	2460
aataggcacg	acgactgagg	gacaagcagc	cctaaactgc	a		2501

<210> 42

5

10

<211> 2501

<212> DNA

15 <213> Homo Sapiens

<400> 42

agatttactc aaatttaaga atgagaatac aaatccacat cttgaagtgt ttcacagaaa 60 ggtctatctt aatgtctgga gtatatattt caatgaacat tcattttatt ttatttctct 120 20 ccattcctga atcaagcaat cttgaatcta aagttgctat gattagcact gaaaagacca 180 ctggactatt aattgtgtga ctttgggaca gtaactttct gcaccttagt ttgtttacat 240 gttatacatg aaggttgaag tctgattctg ctctgtgact atcattctaa acatctgatg 300 aaatcaaatt tcagtgtttg gaatggtagt acaataaatt tactaagaat aaataattca 360 ctgcaaaaac acattgattt ccaaatgatg taactgacag ttatattact gcagagggct 420 25 gataaataac aaaagaaatg aaagatgcac atggtgagaa ctgaaattat cctgacaagt 480 cttctacctg tttatcactt aaaatcaatg accatgctga atgcctacaa attacaaaat 540 ataaaagaaa tottataaat gogcatgtac aggagtotaa gttactaaaa gttttaaago 600 660 ataagtttaa accaaactaa tcaaagaagt tgagaggaaa aattggcttt catctttaat cactactgtt ttgaggtcct atgtttaata taattttcta agtagaggct tcagagagaa 720 30 gagttgtgag gatactttca tatttgtgta gaaggaaaag tttgccatcc attctagtat 780 ccctagtgtt atactgatgt gcaccttgga tttattttgt tcctattgta taaactcata 840 900 cttgacttca aagaaaagga aaatccaaag tccctctttt ctaaggggac agaaatcctt tgtgtcaact gtttgaccct tttctctgta aggtcctatt ggaaatcttt tgtaacacaa 960 tgcaggggac tcttccatgt gttgatgctg tttacacagt ggggtgggcc tgactgaaga 1020 35 aaaaaaatcg catatacgca tgaaagatta tggtcttatt tccggaaagc atgaaaggtg 1080 .

WO 2004/015139 PCT/EP2003/008602 23/112

	attgatactt	ccaagaagtc	cctgttactc	aggaaaatta	tcaaatattc	tactcagaga	1140
	tacttggaaa	gactgaagga	aaggaagaac	gaagaaagca	gaatctagac	ttatgtgggg	1200
	agagatttgt	ggcagaggaa	aagtattctc	tttgaatccg	acaagggatt	tgcctggggg	1260
	aatttcctgt	ccagcctttt	attaccaggg	tcttttgaag	ccgggctccc	cattgggcag	1320
5	ttccctggga	gtgcagtgg <u>g</u>	gaattcttac	actttccctc	taggtccccg	aaggatctcg	1380
	ttttctcagt	gtctctttca	ggttggcagg	agccttgagc	ctgacacttc	cctttgatgg	1440
	gacaggcaag	ctctgtgggc	gcgtaaacac	gctgtaacca	agttctttgc	tgattttaca	1500
	gttttgtgtg	ctcccgagaa	gaagtgatcg	tactcaattg	tctattgctg	gcctgccccc	1560
	taagagcctg	ggggctcctt	tcccctaacc	cagaactagc	tgcacggggg	gcggggaaat	1620
10	gggggtgggg	aaggagtggg	agggcagtgg	tttccgcgag	cagagcgatg	ttactgagtg	1680
	agtccctgaa	tggggagcgc	tgctgtcccc	aagccgattg	gtacttcttg	tcaggaagaa	1740
	acgccaagag	gtgggagtgc	ctggggaggg	aggcaggcgg	tecetacege	aggcgcgggg	1800
	agctgccttt	ccgccctcc	gcctgctttc	caagcctgga	ctcttaggag	tggctgaagc	1860
	tgcggagcgc	ttttggagcc	tgtgaatgaa	ccctcctcct	ctcctcctc	cttcttctcg	1920
15	ctgagtctcc	tcctcggctc	tgacggtaca	gtgatataat	gatgatgggt	gtcacaaccc	1980
	gcatttgaac	ttgcaggcga	gctgccccga	gcctttctgg	ggaagaactc	caggcgtgcg	2040
	gacgcaacag	ccgagaacat	taggtgttgt	ggacaggagc	tgggaccaag	atcttcggcc	2100
	agccccgcat	cctcccgcat	cttccagcac	cgtcccgcac	cctccgcatc	cttccccggg	2160
	ccaccacgct	tcctatgtga	cccgcctggg	caacgccgaa	cccagtcgcg	cagcgctgca	2220
20	gtgaattttc	ccccaaact	gcaataagcc	gccttccaag	gtaatcacgt	ttcttttgtt	2280
	cccccttaa	aaaacaaaaa	caaaaaactt	atagaaaaaa	acccgcgagc	ttagaaaaaa	2340
	gaagcaattg	gtagaaggct	ttaattaagg	caaagagctg	taaggcgaag	ttaagaaaat	2400
	gtaggcactt	aaaaaatgca	ggtaactttc	ataagggctt	ttggggagag	gcatacagag	2460
	ggaccttggt	gttgaaaaag	attcagacaa	aagaaaccca	g		2501
25				•			
	<210> 43						
	<211> 2501					·	
	<212> DNA						
0.0	<213> Homo	Sapiens					
30							
	<400> 43						
					_	gtggctcacg	60
	cctgtaatco	cagcactgtg	ggaggccgag	ccgggaggat	cacctgaggt	caggagttca	120
35	agaccagcct	gaccaacatg	gtgaaaccac	gtctctacta	aaaatacaaa	attagccggg	180

catagtcaca tgcctgtaat cccagctact gggtagcctg aggcaggaga atcgcttgaa

240

WO 2004/015139 PCT/EP2003/008602 24/112

		cccgggaggc	ggaggcggag	tttgcagtga	gccaagattt	cacaactgca	ctccagtctg	300
		ggccacaaga	gcgaaaaccc	gtctcaaaaa	aaaaaaaag	actaggattt	gacataaggc	360
		ctgaggggta	ttcttttgtt	ttgttttgcc	ttgttttcaa	gaggccaaaa	tcttcacagt	420
		tgaaaatttc	tgttgaacca	cagagatttg	aaccaactca	gtttagaaag	cctggggatt	480
	5	tgaacaacgg	tatggatcgg	aaatctcttc	atctgtcagt	tttcatcatt	ctaggcagta	540
		aaatagattt	ccctttagga	gcttttcacc	gtttggggtt	ctccagcagt	gggatgtggg	600
		gaatcaaccc	ttcttcgtct	ccacccaaac	attaggtggg	agcaaggggt	gggaagtaga	660
		gaaagtggat	agaggtctcc	agtggatatg	ggatctttgt	gtagaccagc	acagtcctca	720
		gaaatctcat	gcaagcaaca	taggtactgt	tatattttct	agtggccacc	ttttaaaaag	780
į	10	taaacaggtg	aggccgggcg	cggtcgtcac	gcctgtaatc	ccagcacttt	gggaggccca	840
		ggcgggcgga	tcacgaggtc	aagagatgga	gaccatcctg	gtcgacacgg	tgaaaccccg	900
		tctctactaa	aaatacaaaa	attagctggg	catggtgacg	cgcgactgta	gtcctagcta	960
		ctggggaggc	cgaggcagga	gaatcacttg	aaccctggag	gtggagg tt g	ccacgeteca	1020
		ctacactcca	gcctggcgac	agagtgagac	tccgtctcaa	aaaaaagaaa	gtaaacaggt	1080
	15	gaaattaatt	ttaataatat	attttgttta	acccaacgta	tccaaaatac	tatcatttga	1140
		aagtgtaatg	aatataaaaa	tattcatgag	atatttttca	ttctcatatc	catactgtct	1200
		tggactctaa	tgtgtatttt	acacttacag	cacaattaat	ttgggactag	ctacatttca	1260
		gctcaacaat	agccaatagc	atatgggata	gcgcaaataa	actctgcgtc	tctgttgctt	1320
	•	ctttgggtct	cggagacctc	aaccetttet	tcagattgca	aaccttcttg	ccttcaagcc	1380
	20	teggetecaa	caccagtccg	gcagaggaac	: ccagtctaat	gaggtacgct	cccttcctgc	1440
		cattctctat	tccattaacc	: tgtttcgtgg	taaacgtagg	actgatcctc	caaaattacc	1500
		ttattaatta	a gcttacatat	ttattatcta	tctgtcccac	cagaatgcag	gtttccggaa	1560
		ggcagggati	taaaaaaato	tgttttgttc	: tatgtgattt	tcccatacca	agcaccgtgc	1620
		ccggcacaa	g ctgggatccc	agtacacato	tcgggacgga	agaaccgtgt	ttccctagaa	1680
	25	cccagtcaga	a gggcagctta	a gcaatgtgtc	acaggtgggg	cgcccgcgtt	ccgggcggac	1740
		gcactggct	c cccggccgg	gtgggtgtg	g ggcgagtggg	tgtgtgcggg	gtgtgcgcgg	1800
		tagagcgcg	c cagcgagcc	ggagcgcgga	a gctgggagga	gcagcgagcg	ccgcgcagaa	1860
		cccgcagcg	c cggcctggca	a gggcagctc	g gaggtgggtg	ggccgcgccg	ccagcccgct	1920
		tgcagggtc	c ccattggcc	g cetgeegge	c gccctccgcc	caaaaggcgg	caaggagccg	1980
	30	agaggctgc	t tcggagtgt	g aggaggaca	g ccggaccgag	, ccaacġccgg	ggactttgtt	2040
		ccctccgcg	g aggggactc	g gcaactcgca	a gcggcagggt	ctggggccgg	cgcctgggag	2100
		ggatctgcg	c ccccactc	a ctccctage	t gtgttcccgd	cgcgccccgg	g ctagtctccg	2160
		gcgctggcg	c ctatggtcg	g cctccgaca	g cgctccggag	g ggaccggggg	g agctcccagg	2220
		cgcccgggt	g agtagccag	g cgcggctcc	c cggtccccc	gacccccgg	gccagctttt	2280
	35	gctttccca	g ccagggcgc	g gtggggttt	g tccgggcagt	c gcctcgagca	actgggaagg	2340
		ccaaggcgg	a gggaaactt	g gcttcgggg	a gaagtgcgat	cgcagccgg	g aggetteece	2400

25/112

	agccccgcgg gccgggt	gag aacaggtgg	c gccggcccg	a ccaggcgct	t tgtgtcgggg	2460
	cgcgaggatc tggagcg					. 2501
						.3002
	<210> 44					
5	<211> 2501					
	<212> DNA					
	<213> Homo Sapiens					
	<400> 44					
10						
	gatgtgaaaa gagaaata	at tgaaaaaga	c tggagtacat	: atactatcha	Cantatatatat	60
•	tttaaagaaa caacatto					120
	gcaccagtac ccctgagt					120
	tgaacattct gtcttcca					180
15	gtgttgtata cattaggg					240
	aaaaacactg gggagtga					300
	tatatatata tatatata					360
	tggaaaacgc tatttcca					420
	cttaaatcca tgctggct					480
20	aaacggagag gctaaaca					540
	tgcctgtgtt ctctgctt					600 660
	aactctgttg tggagaca					720
	catcttactc catgtctc					780
	ctaaaaacct aatgatga					840
25	aagctaccag gttaaatg					900
	gaaagggggc ccaatact	ga ataccaggaạ	gtcctatagt	aaatggaatg	tgactctatg	960
	tgggatccgg cgttccta	t tcatccgaat	gcatgtctgc	tgcttcagtg	adasadatad	1020
	ttgcacacca ggtaccca	t ccctggtgtc	atgtgctatg	cagtccaaag	acadaaccad	1080
	gaatggtgag cccatgag	c tgctggaccc	agcccctccq	aggtccggag	tracaaccar	
30	tgccgtattt ctagatcaa	a cctgaaccc	tcctacaggg	aaaagatttc	caggggattt	1140
	tgaaagttcc aacatttta	c agggaagaag	gaagataagc	aggatatgaa	agaagagtto	1200
	atgttataca gccctggct	t ccactgacgc	taacactgga	ttcagctttt	gacactgate	1260
	atctgttgcc accaaatgg					1320
	caacacaagg aacaagcag	a acattcttct	ctggaatctg	acataatooa	ctatechtte	1380
35	acagacagca ctgatgtta	g atgtacgtga	aataggctaa	actosassts	arazzarata	1440
	aggcagagag gataatata	g ctccagccta	teterranea	cottattaat	ttatata	1500
		,,,,,,,		cccyccaar	LLCCCTCAAC	1560

WO 2004/015139 · PCT/EP2003/008602 26/112

	ctccagccac	aaatccgaga	cacaacgctc	ttcctccaaa	gaggtcgcgc	cttctctgtg	1620
	gtggttctca	gggatccgcc	ccagctcctt	ctccgttccc	agccccacac	actgggatca	1680
	ccaggcaccc	aagatcccac	ctctcaggtg	gtatcttcag	cgcaggctgc	cactcagccc	1740
	ccctccaggg	atctggggca	gaaggcgaat	atcccagagt	ctcagagtcc	acaggagtta	1800
5	ctctgaaggg	cgaggcgcgg	gctgcatcag	tggaccccca	caccccaccc	gcaccccaag	1860
	cgctccaccc	tgggggcggg	gccgtcgcct	tccttccgga	ctcgggatcg	atctggaact	1920
	ccgggaattt	ccctggcccg	ggggctccgg	gctttccagc	cccaaccatg	cataaaaggg	1980
	gttcgcggat	ctcggagagc	cacagagccc	gggccgcagg	cacctcctcg	ccagctcttc	2040
	cgctcctctc	acagccgcca	gacccgcctg	ctgagcccca	tggcccgcgc	tgctctctcc	2100
10	gccgcccca	gcaatccccg	gctcctgcga	gtggcgctgc	tgctcctgct	cctggtagcc	2160
	gctggccggc	gcgcagcagg	tgggtaccgg	cgccctgggg	tccccgggcc	ggacgcggct	2220
	ggggtaggca	cccagcgccg	acageetege	tcagtcagtg	agtctcttct	tccctaggag	2280
	cgtccgtggc	cactgaactg	cgctgccagt	gcttgcagac	cctgcaggga	attcacccca	2340
	agaacatcca	aagtgtgaac	gtgaagtccc	ccggacccca	ctgcgcccaa	accgaagtca	2400
15	tgtaagtccc	gccccgcgct	gcctctgcca	ccgccggggt	cccagaccct	cctgctgccc	2460
	caaccctgtc	cccagcccga	cctcctgcct	cacgagattc	С		2501

<210> 45

<211> 2501

20 <212> DNA

<213> Homo Sapiens

<400> 45

25 ggcgacagag caagactccc tcttaaaaaa aaaaaaaaa aaagattctg agtcaaagtg 60 120 ctcaagttga atgcattttg tcatccacaa gacaaatcgt gttaacccct tgtggtttac 180 tttatctata aaatagagat aacaatagtt cctgcttcta gggttgttgt gggaattaaa 240 gacttagaat aatgttcagc ctctaatcag tgctgtcaca actgtctgat acaattgtat 300 tatatttgtg tactttgtag attgatatta aatcatactt ttaaaaatag gtgcttaatg 30 360 ttccactcaa ttaccttaaa acatgtttaa ttatgtctct atcctactct tataacactt ctataaaaac tttttacata tagcgtccac ttttggttca gtttcttagg aaaataactt . 420 tgagagtcag ctatctgaac caaagaaaca ttaacattac cagactatat tgggattttt 480 540 gagactggct tttatcaatt ctttagctac gggctcttgt catcatctct accagtgacc taagtgtcaa acccaaatgc cttgtatctg tcccattaaa gagatgcagc atctgctcct 600 35 660 ttcttactgt ttccatttcc tctgccatgc ctcctcttac aaccataaat atccaggtct 720 cttaggtttt aaacggggca tctctcaacc cccacattct tttccttggt tattcccttc

WO 2004/015139 PCT/EP2003/008602 27/112

	cctccaacag	ttcaattcac	ctagatcccc	acgcctgaaa	ttatcctaga	tgtcctagag	780
	gcgcctcatc	attacaatgg	tacattattc	tccactcctt	tacatgtcac	gccagctttc	840
	aaactgaaaa	tctgagcgtt	catccctggt	gcatcacctt	taaattccag	atctccaaaa	900
	tccagggtca	tgtaacctta	aaaaattttt	accctctctt	ctccactgcc	cttgttcagg	960
5	ccttatctct	tccagcagct	gttccaaagg	cctactctgt	tttcctttcg	gagtgctaac	1020
	ctccaccgaa	gcctccaccc	agttgccaat	tctgccccat	gcctgataat	ttgctcgtgc	1080
	gttgacatac	ataaaatttc	taagacaaaa	attttttaat	aatggtaaat	gaaccttggg	1140
	aactgcatac	agatcataca	gatccataat	aagagaaaag	gtcccagatt	aacacggaaa	1200
	actttccatt	taactaacat	ttgcactggt	aaacttcatc	aagcaagacc	ctacttaatc	1260
10	ccacattacc	ttctactgaa	gaggttgtgg	tcattctctg	gaaatatctg	aattcattcc	1320
	tacaagttag	agaaacagcg	ttactcgaaa	cattatccct	tgggctcgag	ctctaaggca	1380
	cctgacaaac	ggagcgctgt	gggtaggggt	gaggtgtttt	ctccagggct	gggactttgc	1440
	cctgggcgag	ggcgccgcag	ggcaaagacc	tcaccgggca	gcagaatccg	ggcagaaatc	1500
	agcaactggg	catacagaga	agcagaaaag	gggaatccag	tcggggccca	cccttcctgc	1560
15	cagcgcagac	cgcaagtctg	gccccatcct	ctcgccggga	gtcggcctgg	cgcgtcccgc	1620
	ccaggtaccc	cgaccgtggg	cagcctgcgc	ccgtttgggt	cccatcgccc	cggcccggca	1680
	gatacctgag	cggtggccag	ggcaggtccc	cgttcttgcc	gatgcccatg	ttctgggaca	1740
	cagcgacgat	gcagtttagc	gaaccaacca	tgacagcagc	gggaggacct	ccgagcccgc	1800
	tcgttacagc	agaacgcgcg	gtcaagtttg	gcgcgaaatt	gtggccgccc	cgccccctcg	1860
20	tccctatttg	tgcaggcgag	gccccgcccc	cccgccccgg	cgcacgcagg	gtcgcggcgt	1920
	gctcgcgccc	gcagacgcct	gggaactgcg	gccgcgggtt	cgcgctcctc	gccgggccct	1980
	gccgccgggc	tgccatcctt	gccctgccat	gtctcgccgg	aagcctgcgt	cgggcggcct	2040
	cgctgcctcc	agctcagccc	ctgcgaggca	agcggttttg	agccgattct	tccagtctac	2100
	gggaagcctg	aaatccacct	cctcctccac	aggtgcagcc	gaccaggtgg	accctggcgc	2160
25	tgcagcggcc	gcagcgcccc	cagcgcccgc	cttcccgccc	cagctgccgc	cgcacgtagt	2220
	aggttctgtc	tgggactggg	cagggccatc	ggggctgggg	gggcggggct	tgtgggtaag	2280
	gcgggcggag	gcgtggaccc	tccgcccgat	gatagggctg	gaggaggaag	gggcgggctg	2340
	aagaagggga	aggtgggaag	agcccagccg	gggctacaaa	ttgggtgaag	cgctgaggtt	2400
	ttagtacttc	cgtttgagga	gataggcaaa	ggttatgcag	gtttttaatg	gcaggcctga	2460
30	gacaggaact	caggtctcct	gactcccatt	ctgatgaggg	g		2501

<210> 46

<211> 1092

<212> DNA

35 <213> Homo Sapiens

28/112

<400> 46

	aagcttcccc	ttcatcatcc	aagaaggcat	tcaggtcttt	ctgtgctagg	ccccaggtaa	60
	agtgctggac	tacccagtaa	ttgggttcag	tagcaggatg	gcctcagatt	gaggtcccag	120
5	ggccaaagga	ccactcctct	cctcagcgct	ggtccgggaa	aggcaagctc	cgggcgggag	180
	cgcacgccgc	gcccccgaag	cctggctccc	tcgccacgcc	cacttcctgc	ccccatcccg	240
	cgcctttcca	ggtcttctcc	cggtgaaccg	gatgctctgt	cagtctccta	ctctgcgtcc	300
	teggeegegg	cccgggtccc	tcgcaaagcc	gctgccatcc	cggagggccc	agccagcggg	360
	ctcccggagg	ctggccgggc	aggcgtggtg	cgcggtagga	gctgggcgcg	cacggctacc	420
10	gcgcgtggag	gagacactgc	cctgccgcga	tgggggcccg	gggcgctcct	tcacgccgta	480
	ggcaagcggg	gcggcggctg	cggtacctgc	ccaccgggag	ctttcccttc	cttctcctgc	540
	tgctgctgct	ctgcatccag	ctcgggggag	gacagaagaa	aaaggaggta	gaatggatcc	600
	ccttggcctt	cccctgtggt	cgggggcggg	ccagggtggg	ccgcgttgcc	caggcagccc	660
	tgccgtgttg	ctaggcagcc	tggtcgccgg	cgtgggcgat	gccggcgctg	gggcgggagc	720
15	cgcgagggtg	ggaggccctg	gggcgtttcc	gggacgtgga	gttagcaggg	ttctgacttg	780
	aaaaacgacg	gcaaagcgtg	ttcttgactg	cttctgagca	cctcacacct	ttcagaccca	840
	gggcgccttt	attcccagct	ggaagcccag	cttagagcaa	tggtgccact	aaaaggggtg	900
	tgttggatgt	gaaaataccc	tttggaagta	tttataagcc	tgcaggaaat	atgttttcct	960
	tattttctta	ctctgctccc	ttcattaccc	atttcaagaa	gcaacagaac	ctgtgcagag	1020
20	tgtgttttaa	gttacactgt	atgtttattt	ttgtttatgt	tgaactcggt	gtatacttgt	1080
	gagaataago	tt t					1092

<210> 47

<211> 2501

25 <212> DNA

<213> Homo Sapiens

<400> 47

30	cgaaatgaaa	cctcgcccag	gaggccgcgg	acctggacac	ccggcgccac	ctccttcacc	60
	tctgacccag	gtttcctccc	ggcgctgcga	gctcccgggg	aagggttaga	gccggcagcc	120
	ctccccagcc	cggggagggg	agagggttat	gcgaccccac	ctctggctag	ggccggggag	180
	gcctttgctt	cccgggagcc	ctgcccgggc	tccttggtcg	cagggctgct	gggtcccagg	240
	caggaacgag	agggtgaggċ	ccacatgtgg	cccggcggcc	cagggcggct	tgcagcgtcc	300
35	tcactgtccc	ggctgccagg	ggctgcggcg	acgcggccag	tcagcagcga	gttcaggtcg	360
	cgcagatttt	attgatgagc	tctgactttc	agcactttcc	ctaagtcaag	aagagtctag	420

WO 2004/015139 PCT/EP2003/008602 29/112

	cgtacccttc ggctgcttca	tttcagcctc	cctgcctcag	ctcttcagcc	ctattccccc	480
	togocotgto otggggtgtg	tacagcagcc	caggccttcc	ttctccttcc	cggctccgtg	540
	gcccgaagcc gccgagagag					600
	tcaccttaac tgcaggctcc					660
5	tgcggcattc aacaaatgga	cttctggtgt	gtggtcagaa	gagaaaagcc	atttacttac	720
	tttcctcccc ggttttctgg	caacagctga	aggggagctg	cctccgtgga	ctgagcagac	780
	ccaggagagg gagtcgtggt	gcggagacac	acgcaccaca	cacagatgac	cggtggcaca	840
	cacgacacac gctgacatac	cgacatcgcc	agtgggacac	acacacacac	acacacacac	900
	acacacaca acacagagag	agagagagaa	tccctcccag	cattggtcat	ccgcccccc	960
10	acccaggett ccactecec	tcccctctta	tctcccctgg	cttcccctcc	tctcgggcgc	1020
	tgcgaaaagc agccgcactt	agtcaacaaa	tggcacgtgg	gagaagttgg	tgagtgtttg	1080
	gtgaggactc ttcagggctt	ttcacaagaa	ccctctgtac	acaaagtaag	tggcgtgttt	1140
	actegggeet etecageeag	agctgtgcct	ctgctccgct	gcgcaccgcg	gcttccgaaa	1200
	ggagaaagga gagaagaaag	ggcggggaga	gcggggtgga	ggatttggac	aggccctgga	1260
15	ggcttgggct ggggaggcct	ctggcctcgt	ttagttctcg	gcccggcaac	ctcctctcgg	1320
	cctaggcttc gccgcggcct	ccgcagctgg	aatggagctg	ccaggaccca	gtgacgctcc	1380
	cgcccctttc ctcttctcc	aaggggccag	gtgggctggg	gtgcggccgc	cgctgtgctc	1440
	tgtgtcttgg ggccccggct	gggatggggt	gggggcgggc	gggggcgggg	cggcaggcca	1500
	cgctgtcctg gagttggcaa	gaaaggacag	cacagaaact	tgcaccctcc	gaggactggg	1560
20	agtcccgagt ccagcttagg	gggagtgggg	gcgcgacccc	caacccagaa	accttcactt	1620
	gaccgctcaa gttcgcggca	gcagggcggg	ccgcgccgaa	tctcggcgtg	cgcggagcgg	1680
	ggagatgcag gcgagcgcca	gagcccgggc	tcgggggccc	tgcgccgggg	agaggagccg	1740
	ggacccaccg gcggagccga	aaacaagtgt	attcatattc	aaacaaacgg	accaattgca	1800
	ccaggcgggg agagggagca	tccaatcggc	tggcgcgagg	ccccggcgct	gctttgcata	1860
25	aagcaatatt ttgtgtgaga	gcgagcggtg	catttgcatg	ttgcggagtg	attagtgggt	1920
	ttgaaaaggg aaccgtggct	cggcctcatt	tecegetetg	gttcaggcgc	aggaggaagt	1980
	gttttgctgg aggatgatga	cagaggtcag	gcttcgctaa	tgggccagtg	aggagcggtg	2040
	gaggcgaggc cgggcgccgg	cacacacaca	ttaacacact	tgagccatca	ccaatcagca	2100
	taggtgtgct ggctgcagco	: acttccctca	cccacactct	ttatctctca	ctctccagcc	2160
30	gctgacagcc cattttatto	, tcaatctctg	tctccttccc	aggaatctga	gaattgctct	2220
	cacacaccaa cccagcaaca	tccgtggaga	aaactctcac	cagcaactco	: tttaaaacac	2280
	cgtcatttca aaccattgtg	g gtcttcaago	: aacaacagca	gcacaaaaaa	ccccaaccaa	2340
	acaaaactct tgacagaago	tgtgacaaco	: agaaaggatg	cctcataaag	gtgagtccgc	2400
	ttctttcttc tcgctttatt	: tttattgcaa	ı tattcagaca	ggtctcccc	ttcctcccc	2460
35	cttccttcct cccctctcg	c cggtcccctc	ccccactgct	a.		2501

WO 2004/015139 PCT/EP2003/008602 30/112

<210> 48 <211> 2501 <212> DNA

<213> Homo Sapiens

<400> 48

5

tgatggttgc acaactctga gtacatgaaa aatcaatgaa ctgatacttt gagtgagctg 60 tatgatactg gaattacacc tcaataaagc atggtaactg ttttaagata ggctggaaag 120 agaaagcctg aaaacaacaa taatgatatt aataaattag tttacttctc tagtctcata 180 10 tacttctgtg cccacacttg ctcctgttct attcataatg gtccccttgc agttgccata 240 ttatatcctg ccatttgatg cccggtgaac attctatacc tgcttcccag aattctcttt 300 acctttcctc tatctgccta acttccacat atctaaaatt aatcagagta aactatttac 360 tagaacaacc aactccaaat cctagtaacc taacatgata aaggtttgtt tctcactcat 420 atagcccctc cccagatgat cgaggggtcc aggctcctta cctctagtgg ctccccacc 15 480 ttctggagtc ttctgcattc tttatacatg gttgagataa actatgagtc attagcacag 540 ctagaccttg aggtcctaca agaaaatttg caaatcattc actctgtttt gaacaaggta 600 tatttaagat gatgttaaaa tacccaatgg tcttgggtca aatacagttt atgactgtgt 660 atctaaaata tatattgcaa tattcttccc tttttctact gacttcatga atttagcggg 720 gatccatttt ataagctcaa agataattac ttttcagact aagaatattt agggtaaaaa 780 20 gtactgttca acatctctac tgaggatgtt atgatgtagc acactgtata agctggagct 840 aaaggaaact ttccttaaag tgctatttac taaaaattgg aacacattcc ttaagacaaa 900 togaagtgtg gcacacaaca tocaaactto catcatagat acagaggtgt taccatctco 960 cactcccaaa tttctttgtc acgctgagga tactcaagag gagcaggaca tgttggtcgc 1020 agcaggagaa acttgaaagc attcactttt atggaactca taagggagag aatttcttat 1080 25 tttagtatcg tccttgatac atttattatt ttaaaagata atgtagccaa atgtcttcct 1140 1200 ctgtgttaaa tctttacaaa actgaaatct taaaatggtg acaaaaattc tacttctgat 1260 agaatctatt catttttcca attagatagg gcataattct taatttgcaa aacaaaacgt 1320 aatatgctta tgaggttcca tcccaaagaa cctgctattg agagtagcat tcagaataac 1380 gggtggaaat gccaactcca gagtttcaga tcctaccggt aattggggta gggagggct 30 1440 ttgggcgggg cctccctaga ggaggaggcg ttgttagaaa gctgtctggc cagtccacag 1500 ctgtcactaa tcggggtaag ccttgttgta tttgtgcgtg tgggtggcat tctcaatgag 1560 aactagette acttgteatt tgagtgaaat etacaaceeg aggeggetag tgeteeegea 1620 ctactgggat ctgagatctt cggagatgac tgtcgcccgc agtacggagc cagcagaagt 1680 ccgaccette etgggaatgg getgtaccga gaggteegae tagecceagg gttttagtga 35 gggggcagtg gaactcagcg agggactgag agcttcacag catgcacgag tttgatgcca 1740

1800 gagaaaaagt cgggagataa aggagccgcg tgtcactaaa ttgccgtcgc agccgcagcc acticaagtgc cggacttgtg agtactctgc gtctccagtc ctcggacaga agttggagaa 1860 1920 ctctcttgga gaactccccg agttaggaga cgagatctcc taacaattac tacttttct 1980 tgcgctcccc acttgccgct cgctgggaca aacgacagcc acagttcccc tgacgacagg 5 2040 atggaggeca agggeaggag etgaceageg eegeceteee eegeceeega eeeaggaggt 2100 ggagatecet eeggteeage cacatteaae acceaettte teeteeetet geeetatat tocogaaaco coctoctoct tocotttoc ctoctocotg gagacggggg aggagaaag 2160 gggagtccag tcgtcatgac tgagctgaag gcaaagggtc cccgggctcc ccacgtggcg 2220 2280 ggcggcccgc cctcccccga ggtcggatcc ccactgctgt gtcgcccagc cgcaggtccg 10 2340 ttcccgggga gccagacctc ggacaccttg cctgaagttt cggccatacc tatctccctg gacgggctac tcttccctcg gccctgccag ggacaggacc cctccgacga aaagacgcag 2400 2460 gaccagcagt cgctgtcgga cgtggagggc gcatattcca gagctgaagc tacaaggggt gctggaggca gcagttctag tcccccagaa aaggacagcg g 2501 15 <210> 49 <211> 2501 <212> DNA <213> Homo Sapiens 20 <400> 49 taccttcata aaaggatett tgacttggta agtgtgtgcg atgeataett tteatgttac 60 120 gccccctgac aggcttttaa aaggcccgga tgccaatgca cattccaaca ctatccacaa 180 25 aaaggagact ggagcagtgc tcttccctgc attgggcaag gagactctcc ctccctgcct 240 aaccacttgc ctgccctgtt ttgtgggaga attacaagta aatgctacag aggcagtgga 300 360 gaaaaaaggg tgttttaatt cctctccaga gtttccttta tttgatgtat gttgcatcct ttaaacaagt tgtgcaaaat ggctgcaggg tagattggct ctccctttta aagctctcca 420 tccggctggg tttatttgta aatactgcat ctatccttct tagtgtttta ggactggctg 480 30 540 gaaagactct tcttcctgta ggttgggtca gtgtgagaga tctaaaaaat cattttccct 600 taaaattact gtattttaat aaaaggattg ggcaggggct ggaatgagag aaaactggtc 660 cttcaaaatg taaaactgtc atacttaaac cagtttacaa aatatgcgtt taattatgtg 720 gtgggatgtg tgtaggtgta tgatgagaga ggcaaccaac atggctattt ggggtgcaag 780 gatgtgggaa caggcaagta attttcacat tggactttca tcctagggag ctgggttcta 35 840 gtcacagctc tgagctgtgt gaccttgggt aggtctcatc tccccggggt tttgtttcac 900 cagttgaaca gtatgaggat gagtcacagc taacatttgt tccatgatat ttacccagca

	ccatacaagt	gttatttctg	tcctcccagt	taacactgac	gtgggtagta	ttatatgccc	960
	attttacaga	tgaggaaact	gaagcctgaa	gaagttaaat	acttatccca	gaacacacag	1020
	ctggtaagtg	gcagacctgg	aattggaatc	tagttcägtt	tgattcccca	acccatgctc	1080
	ttgaccacta	tactgttttt	tcaagtccag	atctgaaatc	tcattttctg	tgtggctgtg	1140
5	tgtttgggac	aggggtaacc	aattcctgac	tactctatat	gctgcataga	acctggagag	1200
	gatttttcaa	agtaaatgaa	tctcgaaagc	tggattgcag	agcaaacgag	tgcagtcaat	1260
	tcagccaggg	gcttgcaaga	gggagaaaga	gaaaaagact	gtggaatgga	aagtttccca	1320
	acccaagcct	ttcccaaggg	gtagccattc	tctgttctac	agtttagggc	ttgcatgtgc	1380
	tttttctgga	gtggaaaaat	acataagtta	taaggaattt	aacagacaga	aaggcgcaca	1440
10	gaggaattta	aagtgtgggc	tggggggcga	ggcggtgggc	gggaggcgag	cgggcgcagg	1500
•	cggaacaccg	ttttccaagc	taagccgccg	caaataaaaa	ggcgtaaagg	gagagaagtt	1560
	ggtgctcaac	gtgagccagg	agcagcgtcc	cggctcctcc	cctgctcatt	ttaaaagcac	1620
	ttcttgtatt	gtttttaagg	tgagaaatag	gaaagaaaac	gccggcttgt	gcgctcgctg	1680
	cctgcctctc	: tggctgtctg	cttttgcagg	gctgctggga	gtttttaagc	tctgtgagaa	1740
15	tcctgggagt	tggtgatgtc	agactagttg	ggtcatttga	aggttagcag	cccgggtagg	1800
	gttcaccgaa	agttcactcg	catatattag	gcaattcaat	ctttcattct	gtgtgacaga	1860
	agtagtagga	agtgagctgt	tcagaggcag	gagggtctat	tctttgccaa	aggggggacc	1920
	agaattcccc	catgcgagct	gtttgaggac	tgggatgccg	agaacgegag	cgatccgagc	1980
	agggtttgto	c tgggcaccgt	cggggtagga	tccggaacgc	attcggaagg	ctttttgcaa	2040
20	gcatttactt	ggaaggagaa	cttgggatct	: ttctgggaac	ccccgccc	ggctggattg	2100
	gccgagcaaq	g cctggaaaat	ggtaaatgat	catttggato	aattacaggc	ttttagctgg	2160
	cttgtctgtc	c ataattcatg	attcggggct	: gggaaaaaga	a ccaacagcct	acgtgccaaa	2220
	aaaggggca	g agtttgatgg	agttgggtgg	g acttttctat	gccatttgcc	tccacaccta	2280
	gaggataag	c acttttgcag	acattcagt	g caagggagat	catgtttgac	tgtatggatg	2340
25	ttctgtcag	t gagtcctggg	caaatcctg	g atttctacad	c tgcgagtccg	tcttcctgca	2400
	tgctccagg	a gaaagctctc	: aaagcatgct	t tcagtggat	c gacccaaacc	: gaatggcagc	2460
	atcggcaca	c tgctcaatgt	aggtttatt	t ttttccctt	c t		2501

<210> 50 <211> 2501 <212> DNA

<213> Homo Sapiens

<400> 50

35

30

WO_2004/015139 PCT/EP2003/008602 33/112

	agaaaagcat	atggtgccaa	gagaacgtgt	aatacaagat	ctactcatgg	aggtgaggga	120
	aagcttgccc	atcaaagaag	ttatgattca	atccacgaag	accaggagtt	ggctgggtga	180
	agaaaaaaag	gtcagaggaa	ggaagtccac	actggggaag	gctctaagca	taaagggtag	240
	gaggattaca	gaggcatatt	cacgaaattt	ggagaaggct	ttcagtaagc	aaggagaagc	300
5	caaatgaaag	tttacgggag	agttggaggc	ttgaagacac	gttcaaggat	ctggttttta	360
	tcttctcttt	atctcaagag	cagtgggaag	ccattaaatg	attttaatca	gagggttggt	420
	ataactagtt	ttgtattttg	aaaagctgaa	ttcagctctc	gtttgagaaa	ctgagtgaaa	480
	gagcccagaa	cggccgtggc	tgagggtgac	tcgtgggaga	ctcctacaca	agccatggca	540
	gtggcatggg	ctggtggcag	aagagggaat	agggagaaga	tttggaactc	aatcttcctc	600
10	cattgacaaa	gtcactccag	ctttggcaag	gcaattaatt	ggtgggaaag	aagatgccta	660
	gccctcctga	tttcactgca	ctttctgcat	cttcaacatg	agtactggga	agtggcaaaa	720
	catccagagg	cagcttgggt	gctaggtgga	gcatgagtta	aaattccagg	atgaagcaaa	780
	tgaacactta	gaatgacagg	`aaagatttgg	gagttgggtt	tgggggaggg	ctatttacct	840
	ttattccctg	gagaccctgg	cacaaaccct	tgcctctgca	atcttcctct	caggtaaagg	900
15	aattcattaa	atgaattgct	agaagatcta	ctgaccagag	ggctgtacag	aatcatatct	960
	ttgagagtgg	gaagtaggtt	gatcacatag	tttattatcc	aatcaggaca	tatctgaaag	1020
	agaaaggggg	ttctattaat	atttaaacta	caaaacatgt	acaccaggaa	tgtcttgggc	1080
	aaatctggtt	gccctagcaa	gaaaggaaat	ttgaaagttt	atactgttct	gctcccatgt	1140
	taccccgttt	gcacatgaga	gggtaagtat	tctctttctt	cacctgcatt	aagggaataa	1200
20	aagcacaagc	attcaggtga	ctcccaaccc	acttttaatt	ttacagtttc	tgctatactc	1260
	tatacattct	gaaaattaca	tttcccacca	ctatcacttc	gtgataggtg	atcatttaca	1320
	attactcact	gactcagtcc	cgggaagagg	cggtgcaaaa	tgggacgctc	tatccaggtg	1380
	ctcattagaa	atgcagaatc	tctgcctgcc	tcctagacct	actgaattag	aatctgcatt	1440
	tttaaataag	atttccaggt	gatcaatatg	tacattaaaa	cttgagaaaa	acctctagac	1500
25	ttcgacctaa	agaaaaacat	tttacaactt	gacagtgtat	gcacatacat	acatgcatat	1560
	agacacaact	gaagcacaaa	tttaatgaag	tagaatttac	cgttactatt	ttatttggga	1620
	aagaaatgtg	ctcgcgactc	aatagattgg	agtattcact	cctggatctc	aacttgcaat	1680
	ttgaaaacgc	atctctaaag	cacctaggag	caatctgaag	aaagctgagg	ggaggcggca	1740
	gatgttctga	tctactaggg	aaaacgtgga	cgttttctgt	tgttactttg	tgaactgtgt	1800
30	gcacttagtc	attcttgagt	aaatacttgg	agcgaggaac	tcctgagtgg	tgtgggaggg	1860
	cggtgagggg	cagctgaaag	tcggccaaag	ctctcggagg	ggctggtcta	ggaaacatga	1920
	ttggcagcta	cgagagagct	: aggggctgga	cgtcgaggag	agggagaagg	ctctcgggcg	1980
	gagagaggtc	ctgcccagct	gttggcgagg	agtttcctgt	ttcccccgca	gcgctgagtt	2040
	gaagttgagt	gagtcactcg	, cgcgcacgga	gcgacgacac	ccccgcgcgt	gcacccgctc	2100
35	gggacaggag	ccggactcct	gtgcagcttc	cctcggccgc	cgggggcctc	cccgcgcctc	2160
	gccggcctcc	aggccccct	ctggctggcg	agcgggcgcc	acatctggcc	cgcacatctg	2220

WO 2004/015139 PCT/EP2003/008602 34/112

						•
cgctgccggc	ccggcgcggg	gtccggagag	ggcgcggcgc	ggaggcgcag	ccaggggtcc	2280
gggaaggcgc	cgtccgctgc	gctgggggct	cggtctatga	cgagcagcgg	ggtctgccat	2340
gggtcggggg	ctgctcaggg	gcctgtggcc	gctgcacatc	gtcctgtgga	cgcgtatcgc	2400
cagcacgatc	ccaccgcacg	ttcagaagtc	gggtgagtgg	tccccagccc	gggctcggcg	2460
gggcgccggg	ggtcttcctg	gggtccccgc	ctctccgctg	С		2501
•						
<210> 51						
<211> 2500						

5

<212> DNA

10 <213> Homo Sapiens

<400> 51

	ttcccatcaa	gccctagggc	tcctcgtggc	tgctgggagt	tgtagtctga	acgcttctat	. 60
15	cttggcgaga	agcgcctacg	ctcccctac	cgagtcccgc	ggtaattctt	aaagcacctg	. 120
	caccgccccc	ccgccgcctg	cagagggcgc	agcaggtctt	gcacctcttc	tgcatctcat	180
	tctccaggct	tcagacctgt	ctccctcatt	caaaaaatat	ttattatcga	gctcttactt	240
	gctacccagc	actgatatag	gcactcagga	atacaacaat	gaataagata	gtagaaaaat	300
	tctatatcct	cataaggctt	acgtttccat	gtactgaaag	caatgaacaa	ataaatctta	360
20	tcagagtgat	aagggttgtg	aaggagatta	aataagatgg	tgtgatataa	agtatctggg	420
	agaaaacgtt	agggtgtgat	attacggaaa	gccttcctaa	aaaatgacat	tttaactgat	480
	gagaagaaag	gatccagctg	agagcaaacg	caaaagcttt	cttccttcca	cccttcatat	540
	ttgacacaat	gcaggattcc	tccaaaatga	tttccaccaa	ttctgccctc	acagetetgg	600
•	cttgcagaat	tttccacccc	aaaatgttag	tatctacggc	accaggtcgg	cgagaatcct	660
25	gactctgcac	cctcctcccc	aactccattt	cctttgcttc	ctccggcagg	cggattactt	720
	gcccttactt	gtcatggcga	ctgtccagct	ttgtgccagg	agcctcgcag	gggttgatgg	780
	gattggggtt	ttcccctccc	atgtgctcaa	gactggcgct	aaaagttttg	agcttctcaa	840
	aagtctagag	ccaccgtcca	gggagcaggt	agctgctggg	ctccggggac	actttgcgtt	900
	cgggctggga	gcgtgctttc	cacgacggtg	acacgcttcc	ctggattggg	taagctcctg	960
30	actgaacttg	atgagtcctc	tctgagtcac	gggctctcgg	ctccgtgtat	tttcagctcg	1020
	ggaaaatcgc	tggggctggg	ggtggggcag	tggggactta	gcgagtttgg	gggtgagtgg	1080
	gatggaagct	tggctagagg	gatcatcata	ggagttgcat	tgttgggaga	cctgggtgta	1140
	gatgatgggg	atgttaggac	catccgaact	caaagttgaa	cgcctaggca	gaggagtgga	1200
	gctttgggga	accttgagco	ggcctaaagc	gtacttcttt	gcacatccac	ccggtgctgg	1260
35	gcgtagggaa	tccctgaaat	aaaagatgca	caaagcattg	aggtctgaga	cttttggatc	1320
	tcgaaacatt	gagaactcat	agctgtatat	tttagagccc	atggcatcct	agtgaaaact	1380

WO 2004/015139 PCT/EP2003/008602 35/112

	ggggctccat	tccgaaatga	tcatttgggg	gtgatccggg	gagcccaagc	tgctaaggtc	1440
	ccacaacttc	cggacctttg	tccttcctgg	agcgatcttt	ccaggcagcc	cccggctccg	1500
	ctagatggag	aaaatccaat	tgaaggctgt	cagtcgtgga	agtgagaagt	gctaaaccag	1560
	gggtttgccc	gccaggccga	ggaggaccgt	cgcaatctga	gaggcccggc	agccctgtta	1620
5	ttgtttggct	ccacatttac	atttctgcct	cttgcagcag	catttccggt	ttctttttgc	1680
	cggagcagct	cactattcac	ccgatgagag	gggaggagag	agagagaaaa	tgtcctttag	1740
	gccggttcct	cttacttggc	agagggaggc	tgctattctc	cgcctgcatt	tcttttctg	1800
	gattacttag	ttatggcctt	tgcaaaggca	ggggtatttg	ttttgatgca	aacctcaatc	1860
	cctccccttc	tttgaatggt	gtgccccacc	ccccgggtcg	cctgcaacct	aggcggacgc	1920
10	taccatggcg	tagacaggga	gggaaagaag	tgtgcagaag	gcaagcccgg	aggcactttc	1980
	aagaatgagc	atatctcatc	ttcccggaga	aaaaaaaaa	agaatggtac	gtctgagaat	2040
	gaaattttga	aagagtgcaa	tgatgggtcg	tttgataatt	tgtcgggaaa	aacaatctac	2100
	ctgttatcta	gctttgggct	aggccattcc	agttccagac	gcaggctgaa	cgtcgtgaag	2160
	cggaaggggc	gggcccgcag	gcgtccgtgt	ggtcctccgt	gcagccctcg	gcccgagccg	2220
15	gttcttcctg	gtaggaggcg	gaactcgaat	tcatttctcc	cgctgcccca	tctcttagct ·	2280
	cgcggttgtt	tcattccgca	gtttcttccc	atgcacctgc	cgcgtaccgg	ccactttgtg	2340
	ccgtacttac	gtcatctttt	tcctaaatcg	aggtggcatt	tacacacagc	gccagtgcac	2400
	acagcaagtg	cacaggaaga	tgagttttgg	cccctaaccg	ctccgtgatg	cctaccaagt	2460
	cacagaccct	tttcatcgtc	ccagaaacgt	ttcatcacgt			2500
20							
	<210> 52					,	
	<211> 286						
	<212> DNA						
	<213> Homo	Sapiens					
25							
	<400> 52						
	tttgcactac	g gctggaagtg	gccgccagto	ccccgtgcaa	ttccattctc	tggaaaagtg	60
	gaatcagcto	g gcattgccca	gcgtgatttg	, tgaggctgag	ccccaacagt	ccaaagaagc	120
30	aaatġggatġ	g ccacctccgc	ggggctcgct	cctcgcgagg	tgctcacccc	gtatctgcca	180
	tgcaaaacga	a gggagcgtta	ggaaggaat	cgtcttgtaa	agccattggt	cctggtcatc	240
	agcctctaco	c caatgctttc	gtgatgctg	tgctgatcta	tttggg		286

<210> 53

35 <211> 1400

<212> DNA

<213> Homo Sapiens

<220>

<221> unsure

5 <222> (1371)

<223> unknown base

<400> 53

10	ttccagctgt	caaaatctcc	cttccatcta	attaattcct	catccaacta	tgttccaaaa	60
	cgagaataga	aaattagccc	caataagccc	aggcaactga	aaagtaaatg	ctatgttgta	120
	ctttgatcca	tggtcacaac	tcataatctt	ggaaaagtgg	acagaaaaga	caaaagagtg	180
	aactttaaaa	ctcgaattta	ttttaccagt	atctcctatg	aagggctagt	aaccaaaata	240
	atccacgcat	cagggagaga	aatgccttaa	ggcatacgtt	ttggacattt	agcgtccctg	300
15	caaattctgg	ccatcgccgc	ttcctttgtc	catcagaagg	caggaaactt	tatattggtg	360
	acccgtggag	ctcacattaa	ctatttacag	ggtaactgct	taggaccagt	attatgagga	420
	gaatttacct	ttcccgcctc	tctttccaag	aaacaaggag	ggggtgaagg	tacggagaac	480
	agtatttctt	ctgttgaaag	caacttagct	acaaagataa	attacagcta	tgtacactga	540
	aggtagctat	ttcattccac	aaaataagag	tttttaaaa	agctatgtat	gtatgtgctg	600
20	catatagago	agatatacag	cctattaagc	gtcgtcacta	aaacataaaa	catgtcagcc	660
	tttcttaacc	ttactcgccc	cagtctgtcc	cgacgtgact	tectegacee	tctaaagacg	720
	tacagaccag	acacggcggc	ggcggcggga	gaggggattc	cctgcgcccc	cggacctcag	780
	ggccgctcag	, attcctggag	aggaagccaa	gtgtccttct	gccctcccc	ggtatcccat	840
	ccaaggcgat	cagtccagaa	ctggctctcg	gaagcgctcg	ggcaaagact	gcgaagaaga	900
25	aaagacatct	ggcggaaacc	tgtgcgcctg	gggcggtgga	actcggggag	gagagggagg	960
	gatcagacag	g gagagtgggg	actaccccct	ctgctcccaa	attggggcag	cttcctgggt	1020
	ttccgattt	t ctcatttccg	tgggtaaaa	accetgeee	: caccgggctt	: acgcaatttt	1080
	tttaagggg	a gaggagggaa	aaatttgtgg	ggggtacgaa	a aaggcggaaa	gaaacagtca	1140
	tttcgtcac	a tgggcttggt	tttcagtctt	ataaaaagga	a aggttctctc	ggttagcgac	1200
30	caattgtca	t acgacttgca	gtgagcgtca	a ggagcacgto	c caggaactco	tcagcagcgc	1260
	ctccttcag	c tccacagcca	gacgccctca	a gacagcaaa	g cctaccccc	g cgccgcgccc	1320
	tgcccgccg	c tgcgatgctd	gecegegee	c tgctgctgt	g cgcggtcct	g negeteagee	1380
	atacaggtg	a gtacctggc	J				1400

35 <210> 54 <211> 2501

<212> DNA <213> Homo Sapiens

<400> 54

5

. 60	cctcaagccc	ctcttgcagc	ttttgtgggc	tgcattctgc	tcatacaaga	gataatcttt	
120	tgagcggccc	cccagagcca	gccagaggag	gatccagtgg	tgtacacaat	ccatctgatt	
180	agaagaaaaa	gcaagtggaa	gtatcatgga	tgactgtcca	gaactatttc	atccctccaa	
240	ggaaggggag	agaaggagaa	tgaatgctgt	aagagcaaga	ttacttttcg	aaaaacccaa	
300	cattacctat	ttggatgaat	tcagatctgc	tccagaatct	gggtgccgat	ggagatggat	10
360	ctttctgcct	agaaactttt	atcaaccagt	gattttattc	acaagaatct	gatttgcggg	
420	cttttagagg	taccggtcat	cttaggaaca	aaacatgtgc	gaaatccaac	cccaacatct	
480	acacacacac	cgtaatacac	acactctttc	taactagaaa	acatattgag	cattttatat	
540	aaactgctgt	aagaaaagcg	actcccacgc	gtcatacaac	acaccatctt	acacacacac	
600	gtttaagtgc	gtcctgccag	gcagtcggga	gctgtttgca	taaacacttg	ttgatgaatg	15
660	ttatttggtc	gctgagatcc	ccctgcccgt	aggggtttcc	ggtgaacccc	taagatggga	
720	acagcagagg	gcgctggatc	gagcccgata	gcctcggagc	ctatgccctg	aagcttctac	
780	agctagagtc	aattccagga	agatgaatgg	catcccgaag	gctgacgtcc	gagcgaggcg	
840	ctaggcagcg	gacagaagca	agacttcaat	cttggagacc	gggacagtgg	atgctggctt	
900	tcaggagccg	cacctcgggt	atgtaaccca	acccacagaa	caatgtgtgc	gcactcatgg	20
960	agagagtaat	aataataggc	agggaaatac	gggaggaaaa	agaacgttta	aaaaatgaaa	
1020	atggttctgc	ctggagccag	gctgaagact	tctgtaaata	atgggtctgc	ttattactct	
1080	tgtttttcaa	gcacaaaaac	gcacgagtgg	acgttaagaa	aacaggagtc	aaattctcca	
1140	aaaattcgag	aagtttcctt	ggatacgagt	tgtggaaact	caatttggct	gacacaattt	
1200	ccccaagcgg	cgcacaccgc	gatgagaata	cgggcccctt	ctgtcctccc	tagaaagcag	25
1260	tggcagccgc	gtgggccccc	aggcgtctct	gcagcgggag	gagcgccgcg	ccggccgagg	
1320	ceggeceege	caccaacctg	gaacgcggcg	cagcgaaggc	ggcccgaagg	ggcaggaaag	
1380	aggcgctcgg	agctcaggac	gcgtggggcc	tccggggcgg	ctcacctccc	cgacgccgcg	
1440	cccgaggggc	tcagcgaggg	tggaggagag	acggggacgg	tcctcacccc	gggacgcgtg	
1500	atttttcttt	ccgtcggccc	cccctgcgcc	ctcttggtgt	acgaatggct	aggtacttta	30
1560	attccgggag	tcaaccaggc	cctctcgcca	ctagtatcca	ggcccagtct	ttacaaaacg	
1620	tctccccagc	tcctaggtgg	ccgcgggccc	ctgcgccacc	ccgaaagccc	atcagctcgc	
1680	agagtacgag	gcgtggcgca	ccccgagccc	ttgctgatca	ttcgggatgc	cccgtccctt	
1740	agaagttcta	gacttttctg	ggcgggcacc	aggctgcgtg	gtgcgcgcca	cgccgagccc	
1800	gcgcgccagg	ctggaaagtt	cactttctag	ccgccccctt	gccccgaccc	gtgctcccaa	35
1860	tgcccggccg	tcccgcttcc	ggcccccacc	agcccagact	cggagagagg	cagcgggggg	

WO 2004/015139 PCT/EP2003/008602 38/112

			,			arararata	1920
	ccgcccattg	gccggaggaa	tccccaggaa	tgcgagcgcc	CCCCCaaaag	egegeggete	1320
	ct.ccgccttg	ccagccgctg	cgcccgagct	ggcctgcgag	ttcagggctc	ctgtcgctct	1980
	ccaggagcaa	cctctactcc	ggacgcacag	gcattccccg	cgcccctcca	gccctcgccg	2040
	ccctcgccac	cgctcccggc	cgccgcgctc	cggtacacac	aggtaagtcg	ccccggcgg	2100
5	ccgccgagga	ccaaagctgc	ccgggacatc	cacctggagc	gctgaggctt	cagtccctct	2160
	ggtggacccc	ggaacctaca	ctctccccgc	tcgcctaccc	cagcccgctc	ctctcagccg	2220
	ctggaggact	cttcagggca	aggctccaga	gccatcctct	ccagccttga	ggttcacaaa	2280
	ccaactcatc	aggacacccc	aagatttcct	tactctctga	agtcctcctt	aagcctttgt	2340
	atcagcactc	cagggaagag	tctgtacttc	ccctgccctc	cctgcaaccc	caaactacag	2400
10	ttcctgatct	tgctcacctt	cgacttccca	aaagccccca	aattgttggt	cttgcgcccc	2460
	ccacacttta	aaaccagcat	ctctttcctc	cacctctctc	t		2501

<210> 55

<211> 7258

15 <212> DNA

<213> Homo Sapiens

<400> 55

20	ttcaatagga	agcaccaaca	gtttatgccc	taggactttg	ttcccacaat	cctgtaacat	60
	catatcacga	cacctaaccc	aatccttatc	aagccctgtc	aaaaacggac	tttaaaccaa	120
	gctgcaaatt	ttcagtaatc	tggccttgcc	tttccccctc	tgatagcacc	atcaaacaaa	180
	ccccttact	gccgaaagca	ataagcccgg	ctttgttcca	tccactggtt	gtgttggtga	240
	tatctgggga	ctgccactga	acagacgcac	agagggagcc	cctacaggca	ggggttttc	300
25	tgtctgtgct	tcttgggaga	gtatgtctcg	tacatttgtc	gcgtgatgaa	gacttcacag	360
		cgaccagact					420
		ttggggccca					480
		ctgggctgag					540
		ttgcactggg					600
30		tcgattcctc					660
						tgagcgctgc	720
						gccctgatat	780
						: cgggccaggg	840
						tgagtgccgc	900
35						ctgcctgccc	960
						aaggcgcccc	1020
	23222333					_	

WO 2004/015139 . PCT/EP2003/008602 . 39/112

	gtcccgggcg	tcccccgcgg	gtgccgatcc	aggctgcccg	gagtccggag	cccatagagg	1080
	agagagacag	ctggggagcc	tggtcaccgc	gggcatctcc	cctgcgctgc	agtcgcccgc	1140
	ctggcctgcc	ttcccgttcc	tccgcctctt	gccctgactt	ctccttcctt	tgcagagccg	1200
	ccgtctagcg	ccccgacctc	gccaccatga	gagccctgct	ggcgcgcctg	cttctctgcg	1260
5	tcctggtcgt	gagcgactcc	aaagtgagtg	cgctcttgct	ttgactgatg	ctgcccaagg	1320
	acctctgatc	agcaccaggg	gagaggaggg	gctgctcagg	gagctggggt	ctccggattc	1380
	catccacagc	agggccagac	tctccccagg	aaatgggaca	gggtggcagc	ggaggcttga	1440
	gaaccacggg	ggttggcact	ggctggcaag	ggaggaagag	ggccaccggg	actgccccag	1500
	cctgcgggca	tctggtagat	gaagcttaat	ccatttctcc	tggctggaaa	ccatggtctt	1560
10	ccatttgaga	actagatacg	aacagggtga	ggcgagaggg	agagggaaga	gtgggttttg	1620
	ggattggggc	cagtttaccc	tcaccctgga	tccctggagc	atgggacctt	tgatgaagcc	1680
	tcctcccgaa	tctcttccag	ggcagcaatg	aacttcatca	agttccatgt	gagtatccac	1740
	ccctacaaca	gttggctgca	cagacaagtt	gggaaggctt	caggggacac	tcccctccct	1800
	gccctctgct	gcagcgtgcg	ccacccctta	ccacttccac	tcccctcgc	ttaccccacc	1860
15	tttgttctct	ccagcgaact	gtgactgtct	aaatggagga	acatgtgtgt	ccaacaagta	1920
	cttctccaac	attcactggt	gcaactgccc	aaagaaattc	ggagggcagc	actgtgaaat	1980
	aggtatgggg	atctccactg	caactgggag	agaaatttgg	ggacagggag	ggatgggtgg	2040
	gaggcaagag	caggcaggag	ttaggagctg	gaggtägggt	gggtgacato	ttcatcccta	2100
	tgtgacaagc	ataaacacac	acacacgcto	acgaaacagt	ggccacacaa	atgtgaggtg	2160
20	gggttggaag	gagaccctgt	ccagtcttct	ggcaggtctg	aaacgacatc	tttaaaatgt	2220
	ccgttggcag	ccgggcatgg	tggctcacgc	ttgtaatccc	.agcattttga	gaggtcaagt	2280
	ttgagtggat	catttaggtc	aggagttcaa	gaccagcctg	gacaacatgg	tgtaaccctg	2340
	cctctactaa	aaatgcaaaa	atcagcctgg	catggtggtg	gatgcctgta	gtcccagcta	2400
	cttgggaggc	: tgaggcagga	gaattgcttg	, aacatgggag	gccagatcto	agtgagctga	2460
25	gatcacacca	ctgcactcca	actgggcgac	: agagcaagac	tccatctcaa	aaaaaaaaa	2520
	aaataaaagt	tagttggaat	gttcttctct	: ttctcatatt	ctctcatcct	cctgtcccct	2580
	tgtagataag	y tcaaaaacct	gctatgaggg	g gaatggtcac	: ttttaccgag	gaaaggccag	2640
	cactgacaco	atgggccggc	cctgcctgcc	ctggaactct	gccactgtco	ttcagcaaac	2700
	gtaccatgco	c cacagatete	atgctcttca	gctgggcctg	gggaaacata	attactgcag	2760
30	gtgaggtgg	g ggcaacaagg	g accaaaagco	ctccctacag	r cttcccagaa	accttgttac	2820
•	catcccctto	c tcccagaggg	g ctggccatao	g cacaagagaa	gtgcggcctd	tggttgagtc	2880
	ttccctgag	g ggaggaggca	a gggaaggcc	c totgggttgg	, aatgacatco	cctatcttc	2940
	tgtgttgtg	c caggaaccca	a gacaaccgga	a ggcgaccctg	g gtgctatgto	g caggtgggcc	3000
	taaagccgc	t tgtccaagaq	g tgcatggtgd	c atgactgcgc	agatggtgag	g catcactgac	3060
35	ctgctgatga	a caggtgggtg	g gaaggggaca	a aacttacato	g toccettatt	ccatcacagg	3120
	aggactgage	g aggtggggg	g tgcccgagag	g ggatgctttd	tcctacctg	ctccctaaga	3180

WO 2004/015139 PCT/EP2003/008602 40/112

	catccctctg tttgtcctcc aggaaaaaag ccctcctctc ctccagaaga attaaaattt	3240
	cagtgtggcc aaaagactct gaggccccgc tttaagatta ttgggggaga attcaccacc	3300
	atcgagaacc agccctggtt tgcggccatc tacaggaggc accggggggg ctctgtcacc	3360
	tacgtgtgtg gaggcagcct catgagccct tgctgggtga tcagcgccac acactgcttc	3420
5	atgtacggcc ctgggtttct cctcttcgac tcttctgccc caccccaagc acatcccttt	3480
	ctccttccca gcaaagtgtt ccgcctcatt tctccctcat ctgcccctgt ccatgcgccc	3540
	atggccttgg ggacaagtcg tgctttgagg cctctaggga gggaaggaag aagtggcatg	3600
	atttcatggg actaagctgt ttgatgggta tcttcttcca cagtgattac ccaaagaagg	3660
	aggactacat cgtctacctg ggtcgctcaa ggcttaactc caacacgcaa ggggagatga	3720
10	agtttgaggt ggaaaacctc atcctacaca aggactacag cgctgacacg cttgctcacc	3780
	acaacgacat tggtgagggg gaacgcccgc gactactgtg gccataatgg cttggggaga	3840
	gtgggaccca gggagagact ggagctgagt tgaagctgcc ggtggggcag gggtggggcg	3900
	agggaccttg aagcctcgat atacatgaca aaggatggca gggaagagtt ccatgaagtc	3960
	tgaggggcct ggtgctcctc tggagagacc ctgaatttcc ccaacaagta gccctcttgc	4020
15	gagtggaaac agccctgtgg gtatatggct tgggctggga aggccctgtt tatatgaatt	4080
	agaaaaagac acaccttcct ttgtgggatg cagcctctgt ctgtgctagg atatagaact	4140
	tggagaatgg agccttggga tggattccag cctaactacc tcagggggat cctctagagt	4200
	gcagctggga gtttttgcag aaacgacctg tacagctgta tgcagtggct ctggccatcc	4260
	aagcettttt caacacetgg aacaaageee ttggggeatg gggcagggga ggtttecagg	4320
20	tgataagega ceageagace teectggatg actgacetag ggataggeat agetaettee	4380
	teggeacttg gaggggacag atggggaceg cetaaceagt agtgatettt etectetgae	4440
	cctctgtcct ccccagcct tgctgaagat ccgttccaag gagggcaggt gtgcgcagcc	4500
	atcccggact atacagacca tctgcctgcc ctcgatgtat aacgatcccc agtttggcac	4560
•	aagctgtgag atcactggct ttggaaaaga gaattctagt aagtgacaat tgcgactgac	4620
25	ttagaaggtc ctgaggagtg ttttgacctg aaaatgagcc cagtgtgatc aagggaagac	4680
	tgcagagtta gaggtgggag cactgaggcg gtggcagatg ggtccaggga tggatgaaga	4740
	gtgttgttta gggagcgatg ggctgcaaag gtaaatagat ggtaggggct ataggtggag	4800
	gtaaatggct cagatttgca tggagagaga ataatgggcc tctccctggg tgatgatact	4860
	ttatggtgtc ccctctctgg cgagacgtcc cacgtggagg cagataaatc ttgatgcaaa	4920
30	cgcctccctg ttttctccac ctagccgact atctctatcc ggagcagctg aaaatgactg	4980
	ttgtgaaget gattteeeae egggagtgte ageageeeea etaetaegge tetgaagtea	5040
	ccaccaaaat gctgtgtgct gctgacccac agtggaaaac agattcctgc caggtgagtg	5100
	ttccaagcat ctctcccac ctcttccata tctccccaga gctcctgggc ttgttccagc	5160
	cagettaagg gtgtetetet etagecaaag eectaagtag eeagaateag gageteaggt	5220
35	ctttgagggt ttaaaccagt ccttatgtgt ttgccagaca ttaccaaaaa aatcccagct	5280
	ctgcgctagt cacttcagac tgggggcacg agatcctaga aagaggaaac agtaaaagac	5340

WO 2004/015139 PCT/EP2003/008602 41/1.12

	aatgtaactc	agtgcccagg	gtgtgttgtg	aactataaat	gatcaggtgt	tcaggagagg	5400
	gaggtgagtg	ccaacctgag	ggtcagggag	gggaggcttt	aaaggaaatg	tgacttgata	5460
	ggcatttgaa	gaggcagagg	gaagaaagga	aggtgtttca	gttgaaagat	acaaaactga	5520
	gaaggaggct	ggcatattcc	gggtggggag	gagaactagg	gtctgggagt	gtggatggaa	5580
5	tagtggcaga	tgacagggct	tttaaagcca	agcaggggat	tttccaactt	cgatgtggta	5640
	gaaatggggc	tgcgtcaggc	acagtggctc	atgcctgtaa	tcccagcatt	gggctaggcc	5700
	gtagtcgatg	gatcattgag	gccagagttg	agaccggcct	ggaccaacat	ggtgaaaccc	57,60
	tgtgtctact	aaaaaatgca	aaaaaaaaa	ttagccaggt	gtggtggtgc	ctgcctgtaa	5820
,	tcccagctaa	tçaggaggct	gagacatgga	atcgcttgag	cacaggaggc	aagtttgacg	5880
10	tgagctgaga	tcacgtcatt	gcacgccagc	ctgggcgaca	gagcgagatt	ctgtcctccc	5940
	gccgaaaaaa	gaaagaaaat	gggaagtcgc	taaggacttt	gactgggaaa	ctcttccctc	6000
	tctctggtat	ggttgggtga	tgggatcaga	aatcccctcc	tcacttctct	agggctcatc	6060
	ttttgtatct	ttggcgtcac	agggagactc	agggggaccc	ctcgtctgtt	ccctccaagg	6120
	ccgcatgact	ttgactggaa	ttgtgagctg	gggccgtgga	tgtgccctga	aggacaagcc	6180
15	aggcgtctac	acgagagtct	cacacttctt	accctggatc	cgcagtcaca	ccaaggaaga	6240
	gaatggcctg	gccctctgag	ggtccccagg	gaggaaacgg	gcaccacccg	ctttcttgct	6300
	ggttgtcatt	tttgcagtag	agtcatctcc	atcagctgta	agaagagact	gggaagatag	6360
	gctctgcaca	gatggatttg	cctgtgccac	ccaccagggt	gaacgacaat	agctttaccc	6420
	tcaggcatag	gcctgggtgc	tggctgccca	gacccctctg	gccaggatgg	aggggtggtc	6480
20	ctgactcaac	atgttactga	ccagcaactt	gtctttttct	ggactgaagc	ctgcaggagt	6540
	taaaaagggc	agggcatctc	ctgtgcatgg	gtgaagggag	agccagctcc	cccgacggtg	6600
	ggcatttgtg	aggcccatgg	ttgagaaatg	aataatttcc	caattaggaa	gtgtaacagc	6660
	tgaggtctct	tgagggagct	tagccaatgt	gggagcagcg	gtttggggag	cagagacact	6720
	aacgacttca	gggcagggct	ctgatattcc	: atgaatgtat	caggaaatat	atatgtgtgt	6780
25	gtatgtttgc	: acacttgtgt	gtgggctgtg	, agtgtaagtg	tgagtaagag	ctggtgtctg	6840
	attgttaagt	ctaaatattt	ccttaaactg	, tgtggactgt	gatgccacac	: agagtggtct	6900
	ttctggagag	gttataggtc	actcctgggg	cctcttgggt	ccccacgtg	acagtgcctg	6960
	ggaatgtact	tattctgcag	catgacctgt	gaccagcact	gtctcagttt	cactttcaca	7020
	tagatgtccc	tttcttggcc	agttatccct	tccttttagc	ctagttcato	caatceteac	7080
30	tgggtggggt	gaggaccact	ccttacacto	y aatatttata	tttcactatt	tttatttata	7140
	tttttgtaal	t tttaaataaa	agtgatcaat	: aaaatgtgat	ttttctgatg	g acaaatctcc	7200
	ctggtgctt	g tatgggaagg	agttggagta	a cataaaaagg	agaaaataac	aaaggtgg	7258

<210> 56

35 <211> 852

<212> DNA

WO 2004/015139 PCT/EP2003/008602 42/112

<213> Homo Sapiens

<400> 56

35

	<400> 56	
5	cagetgeget ggaggetgag geegattget tgageecagg atttggagge cageatgege	60
J		120
	aacataatga gacccagtct ctaaatgcat gcctctctat atattaaaat tctgatgtga	180
	aaatatttta aaatttaata catttcaaat gtttttaatt gtataataaa caaaatgtaa	
	ataataaaat aatttaatat taaattcaaa aatgaggtag aaacaaagca cagcgatata	240
4.0	aataataaat tttcctttac atttttgagg cggtcttttg agttttggat ttccttctta	300
10	ggtcactgaa atgtgctcct tggagccagc ccgcaaatca cgcatttaga aaaacataac	360
	tatacactcc taaccctaag tattagaagt gaaagtaatg gaatctcgat gtaaacacaa	420
	tatcactttt ttgtagagct attttgagta taataaattt gaactgtgcc aatgctggga	480
	gaaaaaattt aaaagaagaa cggagcgaac agtagcttcc tcgtccgctg actagaaaca	540
	gtaggacgac actctcccga ctggaggaga gcgcttgcgc tcgcactcag ttggcgcccg	600
15	ccctcctgct ttttctctag ccgccctttc ctctttcttt cgcgctctag ccacccggga	660
	aggcactgcg gtagctgggc tctgattggc tgctttgaaa gtctacgggc tacccgattg	720
	gtgaatccgg ggccctttag cgcggtgagt ttgaaactgc tcgcacttgg cttcaaagct	780
	ggctcttgga aattgagcgg agagcgacgc ggttgttgta gctcgctgcg gccgccgcgg	840
	aataataagc cg	852
20		
	<210> 57	
	<211> 2501 ·	
	<212> DNA	
	<213> Homo Sapiens	
25		
	<400> 57	
	tcttgtcact ccatgcactg tgttccgtat gctaaatagt ttgagaaacc caaatgggcc	60
	atgttcgcct acatttcatt gtcctgtact tcctgtcctg	120
30	tggtctttct tctcctcatt aacaataaag gtaacacttt tgatgttgtt tcttcagaaa	180
	accttcattc atcaaaactg cctcaaagat catgtttgtt tgattccaga acttcctgta	240
	attacctgtt attgtaacac tcatcactgt attttactta cttgtgtaac taattttcca	300
	tattctgcac tagacaacaa agtcctttaa gtcaggtact atatctattt acatagcatt	360
	Cattergene tagaonaona agreettaa geonggenot ataataatt ataagaat	

cacatctcct acaataaggg acattagcag ataaacaaca catattaaat gaataatgaa

gtttctgaaa tactacagtt gaaaactata ggagctacat tatatagaat aaacatttac

tttgctatag aattcagtgt aacccaggca ttattttatc ctcaagtctt aggttggttg

420

480

WO 2004/015139 PCT/EP2003/008602

	gagaaagata	acaaaaagaa	acatgattgt	gcagaaacag	acaaaccttt	ttggaaagca	600
	tttgaaaatg	gcattccccc	tccacagtgt	gttcacagtg	tgggcaaatt	cactgctctg	660
	tcgtactttc	tgaaaatgaa	gaactgttac	accaaggtga	attatttata	aattatgtac	720
	ttgcccagaa	gcgaacagac	ttttactatc	ataagaaccc	ttccttggtg	ctctttatct	780
5	acagaatcca	agacctttca	agaaaggtct	tggattcttt	tcttcaggac	actaggacat	840
	aaagccacct	ttttatgatt	tgttgaaatt	tctcactcca	tcccttttgc	tagtgatcat	900
	gggtcctcag	aggtcagact	tggtgtcctt	ggataaagag	catgaagcaa	cagtggctga	960
	accagagttg	gaacccagat	gctctttcca	ctaagcatac	aactttccat	tagataacac	1020
	ctccctccca	ccccaaccaa	gcagctccag	tgcaccactt	tctggagcat	aàacatacct	1080
10	taactttaca	acttgagtgg	ccttgaatac	tgttcctatc	tggaatgtgc	tgttctcttt	1140
	catcttcctc	tattgaagcc	ctcctattcc	tcaatgcctt	gctccaactg	cctttggaag	1200
	attctgctct	tatgcctcca	ctggaattaa	tgtcttagta	ccacttgtct	attctgctat	1260
	atagtcagtc	cttacattgc	tttcttcttc	tgatagacca	aactctttaa	ggacaagtac	1320
	ctagtcttat	ctatttctag	atcccccaca	ttactcagaa	agttactcca	taaatgtttg	1380
15	tggaactgat	ttctatgtga	agcacatgtg	ccccttcact	ctgttaacat	gcattagaaa	1440
	actaaatctt	ttgaaaagtt	gtagtatgcc	ccctaagagc	agtaacagtt	cctagaaact	1500
	ctctaaaatg	cttagaaaaa	gatttatttt	aaattacctc	cccaataaaa	tgattggctg	1560
	gcttatcttc	accatcatga	tagcatctgt	aattaactga	aaaaaaataa	ttatgccatt	1620
	aaaagaaaat	catccatgat	cttgttctaa	cacctgccac	tctagtacta	tatctgtcac	1680
20	atggtactat	gataaagtta	tctagaaata	aaaaagcata	caattgataa	ttcaccaaat	1740
	tgtggagctt	cagtatttta	aatgtatatt	aaaattaaat	tattttaaag	atcaaagaaa	1800
	actttcgtca	tactccgtat	ttgataagga	acaaatagga	agtgtgatga	ctcaggtttg	1860
	ccctgagggg	atgggccatc	agttgcaaat	cgtggaattt	cctctgacat	aatgaaaaga	1920
	tgagggtgca	taagttctct	agtagggtga	tgatataaaa	agccaccgga	gcactccata	1980
25	aggcacaaac	tttcagagac	agcagagcac	acaagcttct-	aggacaagag	ccaggaagaa	2040
	accaccggaa	ggaaccatct	cactgtgtgt	aaacatgact	tccaagctgg	ccgtggctct	2100
	cttggcagcc	ttcctgattt	ctgcagctct	gtgtgaaggt	aagcacatct	ttctgaccta	2160
	cagcgttttc	ctatgtctaa	atgtgatcct	tagatagcaa	agctattctt	gatgctttgg	2220
	taacaaacat	cctttttatt	cagaaacaga	atataatctt	agcagtcaat	taatgttaaa	2280
30	ttgaagattt	agaaaaaact	atatataaca	cttaggaaag	tataaagttt	gatcaatata	2340
	gatattctgc	ttttataatt	tataccatgt	agcatgcata	tatttaacgt	aaataagtaa	2400
	tttatagtat	gtcctattga	gaaccacggt	tacctatatt	atgtattaat	attgagttga	2460
	gcaaggtaac	tcagacaatt	ccactccttg	tagtatttca	t		2501

35 <210> 58 <211> 2501

WO 2004/015139 PCT/EP2003/008602 44/112

<212> DNA

<213> Homo Sapiens

<400> 58

5 60 attaattctg caaattttaa taaatgcttt attttaagct aaatgctgag atgaaaaaat 120 gaaaccatat gagttagcaa agtagaaaat ataggcatat taatcagtaa atgcagaatg ataaatgctc catcaatatg cacttgttgt agtgaggcca ccgaggaggg tgcaatcctc 180 240 tcaacctggg aggagcaggt aggacttcag atgtcatcca actcaaagat atagtgaggg 10 300 acttgatcaa acatttgcca agaccactat gagttaaatg aatagattag gcatttctcc 360 aatgttgcaa gcttcgaatc atatccaaac tcagaacaac atagcttggt cataatgatc 420 ccaaggatcc tattggccat tgtctttgag cctcaaagga acatattaaa actccataat 480 accettttga tetattetga agttaagtag tgaatttaca tgatgatgae acaaacaetg 540 taaaggacct ctgggttact tgtttataag ctagtatttc ctgaatcaat ttttctgatc 15 600 cctagatatt tggtaggtga agtcatacct atatatcccc acaccctaga acagcatctc 660 caacttattt ttccctcctt gtcttttagt gggagccaca tcagtatcca agaggagatc 720 cagaagcctc tccaaccagg tagggacagt tatagattcc agacctcagc tatggccttt 780 gttacagagt acaaatgtta tatagtacaa gtttattgta cacatcccat tgagtctctg 840 agctttagaa ttttcttgta gaatttaaca gttttttcat gccgtattta catattattg 20 900 ctagtattta gaattttctt ctccaaatgt ataacgttta ttattgcatt ttttgtatcc 960 actaagtgga aaatcatgca ttagatattg tagaagtaga tacaacaatg aacaagaact 1020 ggtcctgacc atgagaggaa ctgatgatcc aatgggggag atagacctgc acgtgtttaa 1080 taaaaggaag tggctattcc ggtttctttt tgatgggcaa gcattttgca aggccttggg 1140 ctatgtgtgt gcaaggctaa gccagttagt taattgggat ttttttaaaa aggcacttca 25 1200 ctggggggaa aaggaacata gagttggtta ttgtcccctt gcctataata aaaacctatt attittaatt tittaactgg gittgcggit aaatcicaca gcccaagaga titgccacti 1260 1320 cagatggatt ccatacactt gcatttaagt atgcaaaaaa attccaatta tccagcaatt 1380 taaccaaatt attggtaact tttctaaaac aaaaaaaaat tgtttccctt gttttggcag caatttcagt tacagtcctt tactttctac tcaagaaaat agtttcaaaa agttgatgtt 1440 30 1500 tgttgctaaa agaactattt ttatgaataa atataaaact aagaagttat ggtgtccctt 1560 ttttaaaaaa tgactcatca aaagaaataa ctttttcctt tctcttgtaa gagaaaaaaa 1620 ttaatctctt ttagaattgc aaacatattt ccttgatgga gaaaatcaat tcacatggca 1680 tagtcgttat ttatccagtt caaaaaccag agtagaattt actactctgt ctccattttt 1740 tetetececa eccettaac ecacattgga tteagaaage tteattetge aateageatt 35 1800 gtcctttatc tttccagtaa agatagcctt ttggagtcga agatgaggaa aagcctgtat tttatagtct tggaagtgtc ttcttttgcc aggacagaga gaggagcttc agcagtgaga 1860

WO 2004/015139 PCT/EP2003/008602 45/112

	gcaactgaag	gggttaatag	tggaacttgg	ctgggtgtct	gttaaacttt	tttccctggc	1920
	tctgccctgg	gtttcccctt	gaagggattt	ccctccgcct	ctgcaacaag	accctttata	1980
5 t i	aagcacagac	tttctatttc	actccgcggt	atctgcatcg	ggcctcactg	gcttcaggag	2040
	ctgaataccc	tcccaggcac	acacaggtgg	gacacaaata	agggttttgg	aaccactatt	2100
5	ttctcatcac	gacagcaact	taaaatgcct	gggaagatgg	tcgtgatcct	tggagcctca	2160
	aatatacttt	ggataatgtt	tgcagcttgt	aagttatttc	ccttcatctg	tttcaaatgt	2220
	tagcattcaa	ttttagccct	ggttttggct	tcagtcagtt	ttgcgatagt	agtgaagtaa	2280
	agacactagg	attttaaaca	gtaggaaaag	ttaatttagt	ctaactttta	atatgcaatt	2340
	gagttttgct	atataccatt	gtactgtcat	agttagagct	gaaaattgat	gtttttggta	2400
10	tcttttttc	caaaggcaat	tgagtaattt	ggattctgtc	tctagtcggt	ctgtctcttt	2460
	agtttcctat	acttgacaat	gaggtcaaac	ttagcaaata	a		2501
	<210> 59						

<211> 2501

15 <212> DNA

<213> Homo Sapiens

20	ataaaaaaag	acatgaaatg	aatcggggaa	aatatttgct	acataactaa	gaatgaaggc	60
		atctgtaaaa					120
,							
1	tgaattagaa	aaaagtgaca	atccaactaa	aaaatgaata	agggatataa	gcaatgtgtt	180
	tcacagaaaa	aataaaaatt	gacaatgaag	ttatgaaaaa	atgttcagtc	tccttagtaa	240
	ttgcacaaaa	caaactaaaa	caatgagaca	ttacccctaa	gattagtaaa	tgttaaagaa	300
25	aaataataat	tggtgagggt	gtggggaagt	gggcacttac	acctatgttt	ggaaatataa [.]	360
	attggtgcaa	ccttataggg	agagcaatct	cacaacattt	tccaaagact	tacatgcaca	420
	accctatggc	agagaaattt	attcctcttc	caggattttt	tttccttcaa	aaacagtgat	480
	gtggatgaaa	aacacatgtt	cactactgca	cagggtataa	cagctgaaaa	ctggaaacga	540
	taatactcac	attcccttca	gtaggggaat	ggttaaataa	attttacaag	ccatctggta	600
30	gataccaggc	atgagctaaa	agttagggtc	cagttagaga	tggaaagcac	accagtaatt	660
	tgaaagggaa	aatgtaatat	gaagaattat	taactagtaa	aagaaggcta	actgctaaag	720
	gtacaagagc	actcaagctg	tctgcagtca	gcaggccccg	gctggtgagc	aggaagctgc	780
	ccgctgggag	gctgccaaag	ttccctgaag	gtgagcacca	ctggttctac	aagctgctgg	840
	cagtcatggc	gttaagagca	ggaagagaag	caccagaacc	cggaagagaa	atccagtcct	900
35	ctgctaggcc	ttgcaccgtc	cctctggcgc	cctctactga	caaagccagt	aaaattgtgc	960
	cgctagcaaa	ggagatcttt	ttatgggatg	tagcttggtg	tcaccaaaga	gaacagagtg	1020

WO 2004/015139 PCT/EP2003/008602 46/112

	•	
	gacttggagc tcagatgcaa cacaatgatt gatactggca cagtatactt accctgcttt	1080
	tgtaaacaaa atggtatatg tgatgtctct ctttgtctct ctgtatataa aacaatattt	1140
	gtttctactt attatgtatt tatgtcttta ctctgcatgc caggagctaa gtattttgca	1200
	tgtattaact cattttgttc tcataataac cttcacatgc aggaatcatt atagctactt	1260
5	tatgaatgag ccgaggaagg cactgagacg ttaagtaact tgcccaaggt cacgcagcta	1320
	gtaagtggca gagcaagaat tactatggct ttataagcct aggaaaaagt ctgaaagaat.	1380
	caaaatgtta acagcgggga cctcaaggaa gcattgaaga ggccatggga gaagttttca	1440
	ctttgttaaa aaatcagtcc ttcaaataaa taaatacagt gaggcttccc cagaagcaga	1500
	tgtcactatg cttcctgtac agcctgtgga actgtgagcc agttaaacct cttttcttta	1560
10	taaattatcc agtcttaggt atttctttat aacagtgcta ggatgagctg atacagtttc	1620
	ctacactgta acctaaggca atgctttgca caaagggatg agccagattg cttagtaatt	1680
	aaaacgcaaa tacaaaccac aagcatatcc attcatgaat tggggggctg ctttgtgtgc	1740
	atagataagg tatattttt aaaaaaatta tttttccaag aagaaaataa accagttaat	1800
	aaacgacaac tcacagtgcc aggaagtgag aaacaagtgt gtgataaacg gtggagaatg	1860
15	ggagcactct ccgcagtggg cgggaggaga cgaggagggc gttccctggg gagtggcagt	1920
	ggttggagca aaggtttgga ggaggtaagt catgtgctct gagtttttgg tttctgtttc	1980
	accttgtgtc tgagctggtc tgaaggctgg ttgttcagac tgagcttcct gcctgcctgt	2040
	accccgccaa cagcttcaga agaaggtgac tggtggctgc ctgaggaata ccagtgggca	2100
	agagaattag catttctgga gcatctgctg tctgtgagat taagcactat gtatattgct	2160
20	ttattcactc cccacagcaa ccttaccaag cagttctttt ccacgtgaaa agatggaggc	2220
	tgggtggagc aaaaggaggt atttagagtc ctcagcaagt gagaggcaga gctgggattt	2280
	gaatccagat ctgcctgata ctgaagtcta ggctggttcc acctctccgg actgctttcc	2340
	agggagtaga agacagatat tttaccttag ctggctgctt ctagaagtct gaccctgctg	2400
	gctcaaaacg actttagttc cttgcccaga ggctgcgggc tgcgggtcaa gacatcagta	2460
25	gaaggagggc ccagccagag aggctgacat gggcttctac t	2501
	<210> 60	
	<211> 2501	
	<212> DNA	
30	<213> Homo Sapiens	
	<400> 60	
	•	

cgggcaggaa taatcactgc ctcccatccc cttaaacatg ccaagatgct ttatccctag

gatgaggtga cttactccag gtaactccta ttgcctaacc actgaccaat tactctgccc

tttagtcttt atgtcattaa atctgcatta agaatttcat ggaataggcc cggcatggtg

35

60

120

gctcatgcct gtaatcccag caccttggga gaccgaggtg ggaggatcac ttgaggtcag 240 cagttcgaga ccagcctgga caacatggcg aaaccccatc tctactaaaa acacaaaata 300 actagecagg tgtggtggtg ggcacctgta atcccagcta tttgggaagc tgaggcagca 360 ggagaatcgc ttgaactggg gaggcagagg ttgcagtgag tcgagatcgt gccagtgcac 420 5 tccagcctgg gcgacagagc gagactctgt ctcaaaaaaaa aaaaaaaaa aaactcaggg 480 aatggatagc agcattgatg aatattgcgt ctggagagat cagatcactt gtcacttgtt 540 600 tccaggcaca gggcttacca agaggcagat tccagattta aataattctg taacagcaaa gtccaagcta ttttcactgc tttggagaaa agacccagac ccagagcttg aacctcactt 660 720 10 gcacggtggt tcatgcctat aatcccagca ctttgggaag ccgaggggga aggatcgctt 780 840 gaggccagga gttcgaaacc agtctgggca acatggcaaa accccatctc tacaaaaaat acaaaaatta ggccagagtg gtggcgcgca cctgtagttc cagctacgtg agaggcggag 900 960 gtgggagaat cgcttgaacc cgggaggcag aggttgcaat gagctcagat cccgccactg 1020 cactccaggt tgggcgacag agcgataccc tgtgtgaaac ttttttttt ttctccaacg 15 ggctttccag agaagtgtgt gtatgtgcgt gtgtgtgcgc gagcgtgctt gcttgggctt 1080 aaactttctg tcgggccaca ctttcccaag tctttgcact ggctgtaggg tgggctttat 1140 cctcgggacg tcctcctccc caagtccage ctgcagctgg aagtcttcac tgatctccat 1200 ctctcctccc tgatctccgt ctctcctccc tgcccgcctc aggactggga ggccgatctc 1260 tetetetege ecteceetee accageettt tecagatgta tgtetgeeaa agaceeceea 1320 20 gtgcagagga tgatgaatga agatcctcga gccagcccgg tgggaaagtt tcgtcgccta 1380 caaaagcgag ggaaagggaa gggaagttgg gggtagggga aaagttagag ctgagaggct 1440 1500 ggggcgcgac gagtctggac accgggcggg gacccaagct ctctccgctc agccaataac tgtgcctccc ttaggaaggc gtgaggaaat gctccaatca atccctgcac tcctcccttg 1560 gaatttgggc tgtattttt tatttactgc aaaccccaca atccacccag gggtttcccc 1620 25 agtgtttgcc tccagcggtc ccggtgccca tttactagtg ctgctccctc tcttccgcaa 1680 gactgcgctc cagtcccagc ctccttctcc gcgggtgcct cccaaaccgt tctatcattc 1740 tcgggttcag ggaggcggaa tcgtgcctgc tctccggttc ctttaagagg cgtcggctcc 1800 acceptetea gagtegeggt etgacgegag atgacageaa egagtteggt atgtetatge 1860 aaataagcgc cctcttgtgg gccaatgggg agcggaggtg ccggaaccac ggaccaatgg 1920 30 ggcgggggcg ctggggctca ccatataagg agcggcctcg ccataaaagg aaacattgta 1980 tctctttata tggggggaag ggtcggggga tccctccgcc gccagcgcgt ggtcccggcc 2040 ccctccaccc gccgtctcgg ccgcggccag cagcccctgc cccccggggg acgctgacgg 2100 ccgcccggcg cgccgccta gcagacggac agggggcgct gcgcgcggcc tggggcaacc 2160 cgggccacag gggcaggaaa gtgagggccc aggtcggccc gggcgtgcag gggccccggg 2220 35 ttcgcagcgg cggccgcggc agcgatagcg gcactagcag cagcgggagt gccgggttga 2280 gccgggaagc cgatggcggc ggctgcggcg gctccgattc ctcgctgact gcccgtccgc 2340

WO 2004/015139 PCT/EP2003/008602 48/112

2400

cetectgeat egagegeeat gttacegace caagetgggg cegeggegge tetgggeegg

	ggctcggccc	tggggggcag	cctgaaccgg	accccgacgg	ggcggccggg	cggcggcggc	2460
	gugacacgcg	gggctaacgg	gggccgggtc	cccgggaatg	g		2501
5	<210> 61						
	<211> 2501						
	<212> DNA				•		
	<213> Homo	Sapiens					
10	<400> 61						
	ggaaccctct	gatagagagg	gctgactgta	tttattgaaa	acaaaacaaa	acaaaacaag	60
	ggttgtattg	gtggacccat	gcagctcaaa	cccttgttgt	tcccaggtca	actgtatatc	120
•	cagagcttat	aggaaaatac	ctctcccagt	aaccctgctc	accatttctc	tcttaagcta	180
15	ttattatgat	tagccacggt	ttgctattta	aatttaaatt	taaataaaaa	tgtggccttt	240
	cagttatgct	agccacattt	aaagtgctca	atagccatat	gtggctaatg	gttactattt	300
	cggacagcac	: atatttagaa	cattcccatc	atttcagaaa	ttttcattgg	gaacactctg	. 360
	cggaaaaagg	g gggccatcat	aatgtgagtc	catcttctgg	aaaaatcctg	ggaaggggac	420
	aaaggaggto	c tgtttggcat	tgtgtaatgg	taatttggta	tttaattttc	aaaaatgttt	480
20	acccaattco	tattcatcag	ccaggtgtgg	tggctcttgc	ctgtaatccc	agcactctgg	540
	gaggccgagg	g tgggaggact	gctgcagccc	aggagtttga	gaccagcctg	ggtaataata	600
	gggagatcct	t gtttctacaa	aacaccaaaa	acaaaacaac	: aactttgatg	ttgtggagtc	660
	aggacagtc	c tgggttaaaa	cctttgctct	ccttagctgt	gtaaaccgtg	ggtctcagct	720
	ttcttatct	g ttaacggtag	gtacttcttc	: ctagggctgt	tttgaggatt	aagtgaaagt	780
25	ccaagattg	t gtctggcaca	cagtagctto	: tcagcaaato	ttttcctcct	atgtcaggga	840
•	atggctcct	t tatcccgttt	: tgggcccatg	ggtggccctg	g aagggtgggt	gctcaggtgt	900
	taagttctg	t agatggcata	tccttgggaa	a aagcaaggca	a attaaaaaca	gtgagaggtt	960
	gctctggtt	a agttttctcc	tataacttto	cccatgggt	aattgggtag	aatctgccat	1020
	tttcctaat	a cttactgate	g gtagtggcat	tcggaagcad	c aatagctgaa	gccggagctc	1080
30	tgagtggag	a gaaaggtct	tttctcaggo	c ccaaaaagaq	g gttacacacc	catggctgtc	1140
	cagtttggt	g gtgcaggcc	c tgaaatcaga	a ccaaactgg:	a tttaaatccc	: caaacctata	1200
	ctctaagct	a tgtgacctt	g ggctagatad	c ttcacctctc	c tggccttatg	aagtaggaat	1260
	aataataat	a ccgtctagg	t tgttaggag	t attaaatga	g gtaaagcact	gaaaacgttt	1320
	agggactgt	g ttaaatcat	t aaataaata	a aaacgggga	t gacettateg	gcttgacaca	1380
35	ggggattaa	a tgagataat	a tatgaagac	a agtacacgg	c aaatgcttaa	ttaatgttgc	1440
	ttatttta	t gtctgcaaa	c tgacttaaa	g gggaggcct	t taagaaagad	agtggggcaa	1500

WO 2004/015139 PCT/EP2003/008602 49/112

	tttgcgcgtt	gatgcattgt	aggagaaaat	gtgcaggggg	cccgttggga	ccagagttca	1560
	accaggtaag	cggcagaaaa	ccacaaatac	ctccaggcgt	tcctggggca	gcgccgcctc	1620
	cccaaaatca	cgcaaaactt	ggtttgctaa	gaattgtcag	ctcttctaaa	ggaggcgctt	1680
	cacgcatctc	agtctgtgaa	atgggaccca	ggacccaggt	agaggtgcgt	tctcggcctg	1740
5	gggaccgagt	attttgtgcg	ctccggtaac	gcaggaagac	agcgccactg	acactctaga	1800
	gaccagcggg	caccgcctgg	aggcgccttc	accacttggc	ggttccgggt	ccgcgcccca	1860
	ccgcgccaca	agactcacgc	ccgaaccacg	tgatcagggc	cgtggctccg	ccccgctccc	1920
	gcgccgcgcg	ccgcttccgg	taggggcgga	aagcggaagt	gtgggagggt	ctgcggggcg	1980
	ggctcaggag	gtccgcggga	ggatggagca	gtgagcgggt	ctgggcggct	gctggcagcg	2040
10	ccatggagac	ggtacagctg	aggaacccgc	cgcgccggtg	aggggccact	ggctaagagg	2100
	acgggcatgg	ggtcagggga	agaaaaggcg	ggaactggtt	gaggggatac	acctgtgtgg	2160
	gagtccccgg	agctaagcga	cccagccgat	ggggcacctg	ctgagtgagg	ggggggacgt	2220
	ctggtgggtg	agggtccggc	tgaggggagc	atctgctaag	gaggttagac	ttgggaccgg	2280
	ttagagggag	cactcgctgt	ggtgagactg	tgctgaggaa	cgtggggaca	agttagggag	2340
15	agtacctgct	gaggccgggc	cactcggggg	aacgctatcc	aagcagggac	tcacggaggt	2400
	gggggcgaat	gctgaagcag	ggtgagaatc	tgtgagggat	ctctttaagg	gggtggatcg	2.460
	agaactggcc	aagaggaagg	ccgggtggac	tttctaaggg	t		2501
	<210> 62						
20	<211> 2501						
	<212> DNA						
	<213> Homo	Sapiens					
•	<400> 62						
25							
	gcatggtggc	tcacgcctgt	aatcccagca	ttttgggagg	ccaaggcagg	cagatcacga	60
	ggtcaggaga	a tcgagaccat	cctggcgaac	acggtgaaac	cccgtctcta	ctaaaaatac	120
	aaaaaattaq	g ccgggcatgg	tggcgggcgc	ctatagtccc	agctactcgg	gaggctgagg	180
	caggagaato	g gcgtgagccc	aggaggcaga	gcttgcggtg	agctgagatg	atcgggccac	240
30	tgtactccag	g cctgggcaac	agagtgaggc	: tccgtctcaa	aaaaaaaaa	aattactaca	300
	tgatactaaq	y taatgcggaa	ggtgactcaa	agggggaaag	gaacacagca	gtgtaaagga	360
	aggaggttgt	agatggatct	agaatttccc	cctcatttcc	: atcaggtgaa	agcctgagaa	420
	aactgcaato	c tttgtgcagg	, ctgggtttgc	: tttgtacaca	ctggtcccct	agtgttcatc	480
	tccaataat	g ctgacaacto	: tgaaaaccat	ctgtagacat	tctgcaggct	ccatctcagg	540
35	aacaatggc	t attttttcgc	g gtagttgaag	, caaaattaag	tccaatgata	agcaaatata	600
		a aaatattaa					660

accattatca aaatcttcca tttatgtttg ttaaagcaac ctaagtatga tctgagaagg 660

WO 2004/015139 PCT/EP2003/008602 50/112

	actctgtatt	ctatatttga	gtccttgtgg	atgaactgta	acctagctta	ataggcagac	720
	aagattgaaa	acctaattta	ggagtatgtg	cctttaacaa	tagctgagtc	ttggccaatc	780
	ccagtggcca	tacttcaacc	attcatacac	tgctgagtgt	tcaaactgtg	ttcaaagaag	840
	gcaaaagcca	acctgtaacc	aatccagttg	tttctctgcc	ttacctccaa	tttctgtatg	900
5	tcacttccct	ttttttgtct	ataaatatgt	tctgaccatg	aggcatccct	ggagtctctg	960
	aatccgctgt	gattctggaa	gctgcccat	tcgcaaatca	ttcattactc	aattaaactg	1020
	ctttaaattt	aattctgctg	aagttttctt	ttaacaggtt	tagaaaaaat	aàtggcaaaa	1080
	atgaatgaaa	atccaataac	cctggaagca	gaaaaggctg	ggggctccaa	taagtgtaaa	1140
	tagtcccatc	cctatatttt	ctccatggca	attacaatcc	agcacattat	atatatattt	1200
10	ttttgcttct	cgcattttgg	cttagggtaa	agctttttaa	aacaggcact	gccaaccagt	1260
	gttatcaaga	aggtctggat	gccgttttgt	gggaacattt	taaagaggaa	tgtccaaaag	1320
	gaaaaggggg	atgggttggg	agaagggtat	caggcgggta	tctcaaaacc	attcttaggg	1380
	ctataggttt	aatttatttg	gttgtggacg	tcagagccgt	catggtaaga	aggaagcaaa	1440
	gccttttgta	ataattaaag	ccttcagaag	cagcgtgccc	cattgcccac	tagtgcgccg	1500
15	tgaagtctgg	tgttcaccta	cagggtccct	ctcagcactg	cccaggcctc	ccgagtgctc	1560
	cagcacagta	gcttggagct	tgttggtttg	gtgaccaaga	tacactccag	ggaatatgcc	1620
	atgcagtgga	gtctcttccc	cggcactgca	tagcaaaagg	aaagggccgc	tgggtgtctg	1680
	tgggtcctgg	gcagtcacag	aagccaccgc	gctggcgggg	aggagggga	ccgatgcggt	1740
	ccatgtcccg	ggcagcccca	ctttctctgc	ctgcgaaggg	cccttgtccg	gcgggaggag	1800
20	agaggcgcgc	cccacccggg	ctcctctaca	cctgccgccg	cctgggccga	ttccgcgggc	1860
	ctcgcccggc	gcttcagccg	attcccgccc	agctccgggc	tcatgggcgc	ggtcagcagg	1920
	gcgggccagg	g geggegggge	gcgacactgg	gaggaagtgo	gggccgcctg	cccgggcgcg	1980
	ttaaggaagt	tgcccaaaat	gaggaagagc	: cgcgggcccg	gcggctgagg	ccaccccggc	2040
	ggcggctgga	a gagcgaggag	gagcgggtgg	ccccgcgctg	cgcccgccct	cgcctcacct	2100
25	ggcgcaggta	a ggtgtggccg	cgtcccctac	ccggccggga	ctttctggta	aggagaggag	2160
	gttacgggg	a acgacgcgct	gctttcatgo	cctttcttgt	tctaccttca	teggeegagg	2220
	taaaagtgc	t gaaaccatgt	gaataaaata	a caggtgggtt	ccgccagctt	. cgctcctgaa	2280
	cctacccgc	g ctcgggatco	: agaagctgc	g ccgggagaga	ggggctcagg	cctgggcgga	2340
	ggggacgga	g gtcagaccgt	gcggaaagt	g acccgggcad	cccagggcgc	ccaggccccc	2400
30	agggagcgc	g gaaagtgcgg	tcgcggccc	g gccctcggga	a gacgcgggat	tgggatcagg	2460
	cacagcgcg	a ggaagtcgat	cttggagct	a gaacatttt	СС		2501

<210> 63

<211> 2501

35 <212> DNA

<213> Homo Sapiens

	cccaaaagat	acaaaggggt	ataaggtgaa	aaattattct	aacccatccc	tcagtgacct	60
5	agttcccttc	ctctgaggtg	accaatttct	tgtgtatctt	tcctgagata	atctatacat	120
	atagcaccat	atacaagcaa	atgaaatatg	ttttatttat	ttttttgaga	ctgggtctca	180
	ctctatcacc	caggctggag	tgcagtgaca	ccatcttggc	tctccgcaac	ctctgcctcc	240
	tgggctcagg	tgatcctccc	accttaacct	ccagagtagc	tgggactaca	cgctcacacc	300
	accacaccca	cctaatttt	gtttttttgt	agagacgggg	tttcaccatg	ttgcccaggc	360
10	tggtctcaaa	ctcctgagtt	caagtgatct	gcccacctcg	gcctcccaaa	gtgctgagat	420
	tacaggcgtg	agcctccacg	cccggcccca	aaatctgttt	taaaagcaga	catttcttgg	480
	tgattctaat	aaagggggtt	ctcagacata	tttggaaaaa	tatatcccta	cttttatgcc	540
	agaccctgtg	ctgggtcccc	gggctgtgtg	acctgacact	gcacagtcct	gcttagaatg	600
	cttaaagaga	gttaataagg	taccaccttc	tatgccatag	gcggggagca	aaggggctcc	660
15	agtgggccct	gcctaggagg	cctgaagcta	gagctgctga	gggcagggct	gtgctgcaaa	720
	gaaaatgtct	gagagctgca	ggcgtttcat	cttctgtcat	cagctgtggc	acctggcaga	780
	cactggatag	gcttgtagac	aaagacctgg	taactcaagg	agctgcttgg	ccttcctgcc	840
	cagtcccatc	ccagaggcac	tgtacatctc	tggtttcttc	agggggccct	gtgtggaagt	900
	atcttttgtc	ttcctggtgt	cagggatatc	atcacgtgcc	tgttggctag	gcgagcccgg	960
20	cgcccagtct	cctaggatgg	ggagagtaat	gttcccgagc	agaacagggt	ggggctttca	1020
	gactactccc	tttcctttac	agctggcttc	attccatcga	cctcatcaaa	gccttcctgg	1080
	gagcacccta	gagaagagtt	acgtccaggc	cgggccctgg	ctgcctggtt	cacggcggaa	1140
	tccccagcac	cacgcctcgc	acgtcgggct	caaagcatgt	ttagtgaagg	agtaggtacc	1200
	tactgctaga	tggagccatc	tctctagact	tggggtttcc	ctataacgat	ggctatgttt	1260
25	ggcatggaag	cctctttaga	agtcaatagt	aggaaataag	ggctaacagc	acctaattgt	1320
	ggagtaaggt	tcaaatccta	gctctgccac	ttaaccgttc	cgaacctgtt	ccctcactgc	1380
	agaggcgaaa	aggctaacac	tatttcacct	cggagggtta	ccgtggagaa	tggaagctgg	1440
	acaagctgta	tcagttcagt	agtaaaacac	acacacacaa	gcgccccacc	cccaccccac	1500
	cccaccccag	gaatgaacac	acacacccgc	gcgcgcacat	acacctcagg	aatgaacaca	1560
30	cgcgcgtaca	cacacacgca	gccccccca	ggagtgaaca	cacacacaca	cgccccgttc	1620
	tgttgttccc	: aggaacacac	acagagacgo	acacactcgc	ccggttttgt	tttttccagg	1680
•	ctttttaact	ggggtctttc	actcggctta	gggcaccgct	gcctgaaaga	cctttctagg	1740
	ccagtcgggg	g teeggeacee	agttgacgag	acagegegge	gctttcagag	ctggggagag	1800
	gcgaaaacto	ttccggcccc	: ccgatcccc	ggccagccgc	ccccggcagc	tccttgccgc	1860
35	ctcccggcct	gggcccgccc	agccgttctc	ggcctgccgt	caggcgatct	cggcggccag	1920
	cccagccgcg	g atgtgacgco	gegegeeeeg	gggtcctcgg	cgcctgcgcc	ctctcctata	1980

WO 2004/015139 PCT/EP2003/008602 52/112

	aagcagacgc cgcgccgcgc tgcgacgctg tagtggcttc gtcttcggtt tttctcttcc	2040
	ttcgctaacg cctcccggct ctcgtcagcc tcccgccggc cgtctcctta acaccgaaca	2100
	ccgtgagtag ccgcccactg aactggaaag ggtcgtggct accggattgc gtgccggctg	2160
	gcctcaccgc tgcggtttgg gcctgcccgc ggcgggcggt gactgggcct ggccttcttt	2220
5	cgggcccggt ggatcgcgtt gtcgaccctg ttcttcggga gacactacca ggttccgttc	2280
	acctgccccg cccccgactc agcgaggcct cctctggccg ggcgtcctca cggcgctcca	2340
	taagtgagee gaaceeeggg etgggeette tetgeaeegg eegagegtea geeggegegg	2400
	agctcggctg caaggcccag gctgcggccg ggggcctctc ttggtcttaa gcctgctgtc	2460
	ccggggacca gggcggggt ggcggcgggg ttgtgaatgg g	2501
10		
	<210> 64	
	<211> 2501	
	<212> DNA	
	<213> Homo Sapiens	
15		
	<400> 64	
	gatctgacag gttaaaggtg tacacttatt ttctctgtaa gaagcgtcat ctggtaagat	60
	gatcaagaat ggtgcaaagc aggatgggga gtttaaaatt gtttccaaat gtgggaatgt	120
20	aaatgaatat aaacatgtaa gattttaata taccaaactg atcagattct gtgtaatttc	180
	caagtttctt ttttctttca aaactcctct gaaatctgac tgtccacaaa aacttacttt	240
	atagaatttt atgtgattta tttactcaga tattatactg acctcacatc cagtagtgaa	300
	aacagatttt attgtagaat ctggaaagat agagggccat ataggttgta ttttcagttt	360
2.5	tgtttatact aacacgtgtt tacaacccag tttaatttac accctgtatt gtattattgt	420
25	tgtcatatct ctgtatgcat gtaagtataa tatgtgttgg caaaggaaaa ttttgagtaa	480
	gaagaagete tetgatetat ttgatteaat atgtatttga gtgtetaaca gacactgttt	540
	tagacactgg tgatacaaca ctgaacggag caccaaatac tttacagcgt ctcctggagc	600 660
	tgttgtcaag acatactttc caaggggaat atttcagaat aggtgataac tagtcaacga	720
3.0	aggaaaagta ccttagtcat ctaggagagt tgtacttaga gtgaactgaa ataaactaag	780
30	ctcacgaaag acagagattt tttgtttggc ttttgtctgt tgcattcact actgtatctc	840
	cagggeecaa aatagtgete ggeteataat aagtatteag caaatatatg ttgttgattg	900
	gagtgtttgt tttgaatttc tgtaatcaaa cacatacctt ggtaaattat ctttacatct	200

tgctagttga aaattttatc tcagttgctt tgtttttaat gttaccttgc tttttgtttc

tacttgtgcc atacatcagg atgctggaaa agcttattaa tattgacagt catatggtta

tctgatattg aaaagaatag atttggaaag gaacctaaga ggtcatcttt tgttcagctt

cctgcctagg aaaactaagt aagatgatta ggtatgtata tttaattagt catttaaaaa

35

960

1020

1080

WO 2004/015139 PCT/EP2003/008602 53/112

	aaaaccagga	caacataatt	gagttccctc	ttgagaaaat	ggagaaaggt	acttaaccct	1200
	agctataaag	ggactaacct	ggaaatttta	gaacttctgt	gtgggaaagt	ggaaaaaaaa	1260
	aaaaagcaca	actaagctgc	tctttgttga	tatcagaaat	gggcctgtca	ttcattttgg	1320
	cattgaagca	tagcctccta	tctcggggca	ggactgggac	attttttcc	tcccacaaga	1380
5	gctggacagt	tattacaggt	tcaaaaagcc	ccgaccagtt	tttcaagagt	ttetectect	1440
	cttttccccc	tgaaactcgt	ggtgcttttg	ctctgctttc	aagatgcatt	aagtctcctg	1500
	ctttgtgact	gctttggagc	cagcagatac	tctgatatgt	ataattcaaa	ttatgcaggt	1560
	ttcacgagta	agtttaatct	tatttttaa	gttagttaaa	aggcaagtga	tatttagaaa	1620
	aatgttaact	tgtagttatt	tcaccctttt	tactttaagc	atttttattg	cttctcggcc	1680
10	ttttggctaa	gatcaagtgt	gtactttaag	cattttttaa	aataaaaata	tccttttaat	1740
	ttaataagaa	aacaaggttc	tacatagaaa	agccccttca	tctaagacct	gcacttttca	1800
	atttcttttg	agatgtcttt	gttgtaaaca	gtattcatat	gtcttttgaa	agccagttaa	1860
	ctaaacagtt	ttcttgagca	tctttttagt	tttactgaga	agtattttaa	attgagcttt	1920
	tctgagctcg	attgcttacg	tctgacacag	tctcaagttt	ccactgaatg	gtaacaaaga	1980
15	ctgtagaatg	ttgttggtac	tgcagtgaga	ggcatgcttc	cttagaccag	gtaagagaga	2040
	tcagtttgtt	tctcactgct	gggtgagttt	ttacagctct	tattttatat	tctttaagca	2100
	gcagcaatat	taaattgata	aatagccagg	agcacgctga	tttcaagacg	tccttgcttg	2160
	ttgcagacag	aaaaactaca	gggttatgta	tgggggttgg	ggtgggggg	gaggggaaga	2220
	attagtttat	tactcagtta	cttatataaa	ttaattaaaa	tgtgaaaata	attctggagc	2280
20	tcagttttct	taattcagga	actaaagcag	cagttgagga	aatcagtaat	tttaaaggta	2340
	cttcatggtt	attacttgtg	aaagcaattc	aaaggatagt	ttttactttc	attttttcc	2400
	ccagtagtta	ataaaataag	ctttgccctt	aactaaacat	tttttccact	tacgaaaact	2460
	tttaaattgc	caacagcaaa	atatacttcc	caaggatcct	t		2501
25	<210> 65						
	<211> 2501						
	<212> DNA						
	<213> Homo	Sapiens					
30	<400> 65						
	cacaagtcaa	gaccgctccc	tgcttcttag	cccgctgggg	agccaggcca	gcaggcccca	60
	cattcctgag	gaagggacag	ggttctggcc	tggagggtct	agcagaagcc	accccagggg	120
	agggcccgac	: aggaaggaag	gtaggcctgc	cggaggggca	tacaggagct	tcctctcccg	180
35	ccacagtgto	cagggccaac	tgctccagcc	ctcaggctgg	gtcaacagga	tgggacagcc	240
	caggcggaag	g gaaacctgtg	gggagggaca	ccccgcagac	agaagcaggg	acatggggtg	300

WO 2004/015139 PCT/EP2003/008602 54/112

	gggagaggca ggaagagctg	ccgggctgct	gagctggcgc	ctctccagca	gactcaggag	360
	gggcggtgac aggaggccat	tccctcctca	tccccgcagc	cctgggcctc	tctggtcctg	420
	gccaacagta ttactatcat	tattattgct	gttgttcgct	agcctgggcc	ttagatacat	480
	tagaaaaaa ccatcggaag	atacgcatag	cattggcagt	ttctaaaaga	attaattccc	540
5	ttcctgtgtt cattctgtga	ttactgggat	agaaatgcta	tttgcattac	cagcctttca	600
	ttcagttaca gagacgtgag	tgctcgaagg	agagacagtg	atttttgcct	taaattcagc	660
	ctgtccaaat cggataagat	ctccgatttg	ctttaagccc	cgttatcact	gccttcctct	720
	ccaacaacag ctgctgtgat	cacgcacaaa	cggccaaacg	ggggcaaatc	cgtgccaaag	780
	cagggccatg ggctttcctg	atcagaaggc	ctagccccag	ccccaggcg	cagcacacgg	840
10	gcggcttcct ttcagaaacc	cagcctgcct	cccaccagct	ggagtgggtg	ggtggggcgg	900
	tagtggtgcc agtttcaggg	aacggccggc	aaacccacct	ccaggcgtgc	tccagcggga	960
	gcctggagac cctaggagag	ccctccccac	aagcggcttc	caggcaggac	gcttccagag	1020
	gtcttggtcc aggggtgggg	gtgaggtggg	gtctaccttt	gaaacagcta	caatttaaac	1080
	ttcagctaca ccgagctcaa	actcgattcc	gcagccgagt	gtcggcgcca	gagaaggata	1140
15	aaaactcggg tctacggctc	cccaccacgc	ccctggtccg	gtcctctggg	cttccaggag	1200
	tcctcacgcc atcctctggg	ttgcccagga	ggaaggatgg	acadadcada	caggcgctgc	1260
	gggcgctgca gatggggagg	gcgagcccgc	ggcacggcgt	gagcggggga	gaggcgcgcg	1320
	agcaggtgtc ggctccgtga	cagggtcccc	catcccgcgc	cccagtgctc	cccgaggctt	1380
	agtgaggcaa aacccagcaa	atgcttcaga	aatgcagctc	agtcggtcac	cgggttctgc	1440
20	ttcctcatca gacgcgcaag	aggatggcgc	ttccaatgca	aatctcttgg	ctccggcccc	1500
	ttggctggca gccgccgcgt	ccccgcctg	cctggcgtcc	cgcccactcc	gtggcgggct	1560
	gagacgagge ceggegegga	ggggacgggg	cggagcgggc	atccctcccc	acccccacg	1620
	tggggetgge ceteegeagt	gcctgggcgc	gctgcagtcg	ccgcgcctcc	ccggccgcgg	1680
	caccgcctct ctaggcaggg	gcgggggacg	aggggcaagg	, agtgggcgag	gggtgggcga	1740
25	ggggcggggg gcgtcactca	atcaggtggc	ctctggagtt	cccggggca	gggcagaggg	1800
	aacacgctgc cggggattgt	gtacacgete	cactgacaco	agcttcacgc	tgccgggcag	1860
	tegeegatea egegtggeee	cgcgagccċa	ttggccggcg	g cctcacacac	ctttgccgtt	1920
	gattggccgg cctcaggctc	cgcccccacc	: cccgcccgcg	g gcgcggggca	ggctgagcgg	1980
	ctacctgaat ggggaggggg	cagacggcgc	: tgagcgcggd	ggcggcggga	gcggcgtcga	2040
30	gtgtctccgt gcgcccgtct	gtggccaago	agccagcago	c ctagcagcca	gtcagcttgc	2100
	cgccggcggc caagcagcca	accatgctca	acttcggtg	c ctctctccag	cagactgcgg	2160
	taagtcattt ggggatgcco	ctgtgcttcc	tcgcctggt	c ttgtctgggg	ggccaaaggg	2220
	ggcgcgaacc ccgagcccc	g gacatcagco	atgcctgaga	a attggggctg	cagcggagtc	2280
	gtggggaagg aaagggcttd	ctgcctgcag	g actatgggca	a ttagtgaggg	cgtgtgtgtt	2340
35	ggggaggggg tcgaaccag	g gggctgggat	t cttcagaca	g ggacaggggt	cttgctctag	2400
	atgtactgag gggaagggad	c aactccgcat	t ggagacccg	a gagggctggt	gaggaggagg	2460

55/112

	atgacgagcg	ggggaggagt	ggggaggggg	ccgttgccct	g		2501
	<210> 66						
	<211> 2501						
5	<212> DNA						
	<213> Homo	Sapiens					
	<400> 66						
10	ggggctgtag	aaatggcggc	cccatctccc	aacaacttgg	gcattgtgaa	tatcacctcc	60
	ttaaagggga	tctcctttgg	tcatcccgtc	tagagcagcc	accataactt	ctgagcgttt	120
	attgctagct	gatatatatc	agaaaaatac	aaattccaca	aaagcaggga	ctggtctgct	180
	tctctccctg	cagggcccag	gttctggcac	atagttggtg	cagaaagtgt	gcagcctcag	240
	gtcctatcca	agcccccagg	gcatcacact	cgggacttgt	tctgcatatt	tttacttttg	300
15	cctcccactg	gtactagttc	ttccgtggaa	cagcctgagt	cccttcagat	acttaatgtt	360
	ttttctcaag	tgctgccatg	aagccagatc	tccaccgtct	tggggcattc	ctttttaggg	420
	atgggaagta	tatgtcgctc	cttttatgtg	atttacattc	tatcttggat	aatttggcca	480
	tcaccgtagt	tcattcagat	ctgtttggat	cctgcccatc	tcagcttcag	tccatttcat	540
	tctťttaaat	ctgatcgaca	gttacctcca	acagcttcat	cacaaatcac	tcacaaaaat	600
20	ggccttaatc	ctgaagttta	tttacggaga	gcacacttgc	taggtgtgtg	gcagatatac	660
	aggaagcaca	agatgaggca	gcagatctag	aggcaaatga	cttccttctc	cctgcctagt	720
	ggtgactgcc	agcatcacgc	cctcccggga	gaggtgagaa	acccctccac	gcaagcactg	780
	gaaccttcac	agtcaagagt	ggcaacagct	ccggttactg	gacttgggcc	tgttgaattc	840
	taatactctg	tgactccaca	tctgggctga	atttttgctg	agtatgatgg	aatttacatg	900
25	cttcctccct	agcccctact	tgtctgtata	gttggaatat	ttggttgcct	cctctggagg	960
	gatctagtac	gtttagagtc	tagacgctgg	aactgtcaaa	gttcagagga	aagagctcca	1020
	gctgcaaagc	aagagaaatg	ggctggaatt	ctagcttcac	cccttaatga	atgcttctga	1080
	ttttttttt	tttttttt	ttgagacgta	gtctcactct	atcgcccagg	ctggattgca	1140
	gtggccacga	tctcagctca	ctgcaacctc	cgcctcccag	actcaagcga	ttctcgtgcc	1200
30	tgagcctcct	gagtagctgg	gattacaggc	gtgcgctacc	acgcccggct	aatttttgta	1260
	tttttagtag	agacagtttt	tggccatgtt	ggtcaggctg	gtcttgaact	catgacctca	1320
	agtgatctac	cttcctcggc	ctccgaaagt	gctgggatta	caggcccgag	ccaccgcgcc	1380
•	cagccgcttc	tgatcattaa	aaaaaaattt	tttttttggc	ggggggaacg	aagtgtccct	1440

ctgttgctca ggctggagtg cagtgcagtg atctcggctc actgcaatct ctgcctccca

ggttcaagcg attttcctgc ctcagcctcc tgagtagctg ggaatacggg tgcccccac

cacacccagc taatttttgc atttttagta gcgatggggt ttcgccatgt tggccaaggc

35

1500

1560

WO 2004/015139 PCT/EP2003/008602 56/112

	tggtctcgaa	cttctggcct	caggtgatct	gccttccttg	gcctcccaaa	gtgctgggat	1680
	tacaggcgtg	agccaccgtg	cctggccaaa	aaatttatgt	tttaaaaaga	ctagtcaagt	1740
	gcagtagtga	gaagggggga	aagagtagag	caaggagtta	tatctgttgc	ttctgaccat	1800
	tttgaacaag	ttacctaatt	ctctgaggac	aagctcggag	aatgggagag	acagttatct	1860
5	atttgcaggg	ttgttgggag	gaataagtga	catcatgagt	gtgtgccagg	tgtctgatta	1920
	cagaaggtgt	tcaattaatc	tgcaatcatt	aattaaccct	tcagtcgctg	gtattatttg	1980
	ccatccatcc	tccgagtgtt	gccaagttat	gggtgcgttc	tgccagcgtc	ctagcagtgg	2040
	taaggcttct	ggctgccagc	ggcgaacctc	tcccttcgag	tatttctcct	cttgctgaga	2100
	tgaaatgcga	ccgggtctct	ttaagggcca	ggcgccggga	tccaggcggc	gcccaacggc	2160
10	tggactagca	gtcgtccgcg	ccgactcgca	caagaaggaa	ccccgggcct	ctggatccgc	2220
	tcgcccggct	atgctgctgt	ggccgctgcg	gggctgggcc	gcccgggcgc	tgcgctgctt	2280
	tgggccggga	agtcgcggga	gcccggcctc	aggccccggg	ccgcggaggg	tgcagcgccg	2340
	ggcctggcct	cccggtaacg	cgcgtcttgg	tcccgcctcc	caggagcccc	tatgcgccca	2400
	cctactcccg	gecectegge	ttccggaacc	cgcccgagcc	cgaagcgcct	cttccgaggc	2460
15	gcgggatttc	ctcccggct	gcggctggga	cgggggcggc	С		2501

<210> 67

<211> 2501

<212> DNA

20 <213> Homo Sapiens

<400> 67

atggtctcga tttcctgacc tcatgatccg cccacctcgg cctcccaaag tgctgggatt 25 acaggcgtga gccactgtgc ccggcctcta tcagcatttt ctttctttt cttttcttt 120 ttttttttt gagacagagt ttagctcttg ttgcccaggc tgaagggcaa tggtgtgatc 180 240 teggeteact geaacttetg ceteceaagt teaagegatt eteetgeete ageeteetga 300 atagctggga ttacaggtgc ccaccaccat gcccagctaa tttttgcatt tttagtagag 360 acagggtttc accatgttgg ccagtctggt cttgaactcc tgacctcagg tgatccgccc 30 gcctccacct cccaaagtgc tgggattaca ggtgtgaaag agaccattcc cgatctcttt 420 cagcattttc atactgaatg tccacagctg ccctgtgagg aggcttttta cccatatttt 480 ctgactcaga gagaagcagc cacatgtccc ttggccatgg cagttaagac caactccatg 540 600 gagctgggtg tcttagctca catctgtaat cccagcactt tggaaagcca aggcaggatg 660 attgcttgag gccagaagtt caagaccagc ctgggcaaca tagccagacc ccatctctac 35 720 aaaaatttaa aaattagcca caaaatttaa aaattaacaa caaaagggcc gggtgcggtg gctcacgcct gtaatcccag cgctttggga gggtggatca cgaggtcagg agttcgagac 780

WO 2004/015139 PCT/EP2003/008602 57/112

	cagcctggcc	aagatggtga	aatcccatct	ctactaaaaa	tacaaaaatt	adccadacat	840
		gcctgttgtc					900
		gaggttgcag					960
		tccatcttaa					
5							1020
		gatgagcgga					1080
		agtcgaggag					1140
		cttcatgcct					1200
		ttgctgctag					1260
7.0	gcttctcagc	aaatgggcac	gacttgcgga	gtggggattt	gaattcacgt	ctggcgggat	1320
10	gtccaagctg	ctaccctgac	cgctagggag	cttcagagga	cagggctgca	ggtgatcagg	1380
	aagaggactg	gggcaggtgg	gcgaggaatg	cctcccagga	gtgaaggagg	gggaattcta	1440
	gtcagcagga	tggagtcggc	caggtagaaa	cgagggaaag	gagacaggac	cggatggaac	1500
	ggggaagcca	aagggcaggg	cgtcggaggg	ttgaatggtg	gccggtgcag	ctttgaacac	1560
	cgaggtgagg	acatgcagct	gtgtcctagg	gtcaggaccg	tacacgcctg	acccaattcc	1620
15	acagcacgga	ggggaactcc	aggatccggc	cgcgttgccc	acacacttcg	ctctccctcc	1680
	cgcctctcgc	aagcccctcc	cccgtctccg	tccaccgagt	gccagccaat	agcagaagcg	1740
	acagcgcatc	tgggtgccga	ctcagccaat	cgcggctgag	tgacgaatga	gccccaggac	1800
	caatgagagt	gccgccacca	tggcaaaaaa	aaaaaaatcc	aatggtgacg	agcagggaga	1860
	acagagcagc	tgccaatggg	cgtgtgcgtt	tcaggcggcc	aatgggagga	ggcgtctcgg	1920
20		gcagtagcta					1980
		ggtgagtctg					2040
		gggactggct					2100
		tccgatgccc			•		2160
		tggggggagg					2220
25		ttcaaagctg					2280
		cgaaagcccc					
							2340
		attaagcgct					2400
		agccttttga				argaggaaac	2460
30	caycaacacg	ggtggaagtg	acagcccctc	cacttccata	С		2501
30							

<210> 68

<211> 2455

<212> DNA

<213> Homo Sapiens

35

	ggagtgcaag	aacacagaac	taaaacagag	cttgaaactt	aaagaaaggg	agagacttgg	60
	gggaggagtg	gggtggagtg	acgtgatgtg	ctgctggaaa	ccagcagttg	gtggtttcct	120
	cttgtgcttc	ctcttctgtg	ggttttctcc	tgcttgtggg	agggcctttt	tctctcctcc	180
5	cgacagaaag	gctatctttg	gtgttcgttc	ccttgaactg	taacatcctg	taagggtatg	240
	attccatgcc	tctgtgtggg	tgtgaattcc	ctcatggtga	ccctcaaaat	ctgcacacag	300
	gaccccttcc	cattgagggg	aggggatcaa	aacaactcta	cttctcaggg	tcctctcctg	360
	ttccaactgg	tctgtgtcca	agagaagcct	taggtaaatg	gggccagctt	gaagatcaaa	420
	caggtttggc	agcctctccc	ggcctctctt	ttctctccta	cagctttata	gctacagctg	480
10	ccttgatatc	aatattgact	ttggctggct	ggcatgacta	cccacagggt	atcgtgcctt	540
	aatttaccag	gtgacaggca	acgctgccct	ctcctggaac	catccagcag	agccagggct	600
	gtacccccaa	atcctgcaac	agaggtttcc	ctccatctca	cctccctgtc	cctgcatttc	660
	tcctatctca	gtagctcctc	tttccctctc	tgggcttctc	tttccactcc	ctccccttcc	720
	tgggcttggt	aaactagtcc	ctaatctctt	cacaccccag	attggaaggt	gggtccctcc	780
15	ctgacactcc	ccagagctgt	caccaacctc	ctccaagttt	ctatagctcc	attgctcaac	840
	agatttgcca	ggggtaacca	ttaacccagc	ccttaactct	gttcccccac	ctttcttgct	900
	ggaggggatt	ttccaattac	tggttagcac	agctaggtca	tctcaccccc	accatctttc	960
	ctaacttctt	gggttggggg	gctggggagg	aatctcccca	tctcagggta	ctaggaacaa	1020
	agctggggag	g gatggtgcat	ttaaagggat	tatatatata	tatatatata	tttttttct	1080
20	ttctccctca	a taaccccacc	cccgcaacac	acacacacac	acacacacac	acacacacac	1140
	acacacacac	c agacgcacaa	ataagcttta	tggagcagtg	acttcattat	gttcaccgct	1200
	ttgagtccaa	a cccctggccc	: aaaataggca	ctaaatagtt	gccgaatgca	tgaatgatag	1260
	atacctctct	t gtcttcaggo	gtgtgtagaa	gtgcgaaggg	gtatgggcat	gtcccagtag	1320
	gggtgtgagt	t gttctgatca	a gaactactto	tctctgccag	aatttgatgt	aattcgaatg	1380
25	cttccaccto	c tgcttgaago	g gtttaaataa	taaattaggc	cctgtcgtg	cattatgggg	1440
	gtggtcata	c cctgtaccca	a ggaaacaggo	c acggtagggc	tgagacagaa	a gtcctgcttg	1500
	ettecgetta	a tttatttgaa	a acaccgctca	tttaggtctt	actttgtttg	g ccaggcactg	1560
	, ttctaagct	c tgtataaata	a ttaactcaga	a gggtacaaat	attaacttaa	a gagttgttgc	1620
	aggaaaaaa	a ataagcgcc	t ctggctctti	t aagtttggco	: tcccctcaa	a aacccccgca	1680
30	acggtccca	a accccttcc	a gggactggg	a ctacggacco	: tggtccgac	c ttctcgcggg	1740
	cttcccact	g cgccaatca	a atcccagaa	a cagtgagtgo	: tagaggccc	g gctgctaagc	1800
	aacggcaga	g ggcgggaag	t ttgaacgtt	c tggacccgcd	ccgaaggca	a ataggccaat	1860
	cagcgtcca	g actcttcag	c tacggcagt	c cgcttctcct	cctcgccct	g toggatotot	1920
	aggctggat	c cgggcctct	c caatcaaca	g cggctaggag	ggcggggcg	c gtgcgcgcgc	1980
35	acctcgctc	a cgcgccggc	g cgctccttt	t gcaggctcgt	ggcggtcgg	t cageggggeg	2040
	ttctcccac	c tgtagcgac	t caggttact	g aaaaggcgg	g aaaacgctg	c gatggcggca	2100

WO 2004/015139 · PCT/EP2003/008602 59/112

				59/112			
	gctggggag	gaggaagata	agcgcgtgag	gctggggtcc	tggcgcgtgg	ttggcagagg	2160
	cagagacata	agacgtgcac	gactcgcccc	acagggccct	cagacccctt	ccttccaaag	. 2220
	ggtaacctcc	gcgtgacagg	aatgagggtg	gggcgcgtgg	agtttcccac	aatctgtact	2280
	ttagttaaat	acccgagaat	tcacctcctg	tgtccacagc	tctccacgcc	cctcagccct	2340
5	gccccgcagc	cctgtagcag	aagtacttag	tgctttgcat	tctgcgcgcc	accctacccc	2400
	ggcctcctct	gtgaatcgtt	gcttccgaac	cgccctcact	ttttgcatcc	gcaga	2455
	<210> 69						
	<211> 2625						
10 .	<212> DNA						
	<213> Homo	Sapiens					
	<400> 69		•				
15	ttttaaacga	gaagtgatgt	ttccggagca	ttaaaactga	agtgatttca	aaaccatgtt	60
	gcactcacac	gaacaggtgt	gcacttaatg	gactaaacta	gttcagctga	catgtcttct	120
	tcattaggaa	cagtgtggag	actgaaaaac	taatttagcc	tagagcagct	atttaattgt	180
	aaagtctcct	ttctcaaata	ttgatttact	atgtgaggaa	atatttactt	tgtatagaag	240
	tgtgtggaat	tggacgaggg	ggttgaccta	cacatgtggt	ttggtataca	catatcctca	300
20	ttacagaggg	tgtaatgaag	atataggtgg	ttcagcacca	taggaaaggg	aaaaaagaaa	360
	aaaaaaagac	ggtagaggtg	gcctcccaag	catccactcc	cactcctctt	gttaatgatt	420
	cacaatttgt	tgttattgtt	gtcatttact	gttctccaca	cctttccaca	aggcctgtgt	480
	gctttgaaaa	aatatgtctc	tactccggat	agaagtgggg	cacacagggc	caggcgcggt	540
	ggctcacgcc	tgtaatccca	gcactttggg	aggccgaggc	aggcagatca	caaggtcagg	600
25	agttcgagat	cagcctggcc	aatatggtga	aaccccatct	ctactaaaaa	tacaaaaatt	660

agcctggcgt ggtggcacgt gcctgtagtc ccagatactt gggaggctga ggcagaagaa

tcacttgaac ccgggaggca gaggttgcag tgagccgaga tggtaccact gcactccagc

ctgggcgaga gtgcaatgag actccgtctc caaaaaaaaa aaaaaaaaga aaaaaagaaa

agtaagtggg gcacacgatt caggcctaag ctaaccagac caacctcatt cctgatggtt

gttaatgttt cagatacggg cccgcagccc tacgtagaga agaggccaag gtagaaaaca

tgaatctgag gtaaaaagaa atgaggtact tgtttgcctc atcaagcctc tcaattaaac

taaccttgaa gcctgtctta cctttggact tctagtgatg tcacccggta aagcccattt

gtttcaggac gtaagagttg ggttttctgt gacttggaac caaaaccatt ccaatttaca

aaatgagcaa ctttaatatt acccatgaga aatacttcat tggtatatgc tctttcctag

cgtttttgaa aactaaacta ggtgggtgaa aagtatatct ttgcatgaaa ctttttcatt

ccagaaaaca ttttgtcatc ttgataataa tggccaatgc tactatatcc aaatttttgt

30

35

720

780

840

900

960

1020

1080

1140

1200

1260

WO 2004/015139 PCT/EP2003/008602 60/112

	ctttttttt ttttgagaca gagtctcgct ctgccgctca ggtgtgatgg cgcgatctcg	1380
	gctcactgca acctctgcct ccctggttca agcgattctc ctgcctcagc ctccctgagt	1440
	agctgggatt acaggcatgc gccaccacac ctggctaatt tttgtatttt tactgtagac	1500
	ggggtttcac cattttggcc aggctggtct cgaactcccg acttccagtg atcctcctgc	1560
5	ctacctcaaa aagcaacttg ataaatccac aggctcggta tattttaaaa attcttttaa	1620
	atacagtata cttttctctt tttttccaga attaaccatg aatcgcacac acagccagag	1680
	gcttttaacc cgagaacgga caaaggggcc tgcttgtgca atacaattat ttttaatggt	1740
	taaacaaatt aatacataag accagcttta cctaatataa taataacgaa ccaaagttta	1800
	caacagacaa gaaaagcacc agctgtcccc gccaccccgg agcgatctcc aaggggacgc	1860
10	gggagagcgc cgcgggggac gcggaagtct gacgtcacag gaactggggg cgggggggg	1920
	aggcccgcac accctattgc gcatgctccc gcctccccgg ccgcggcctg gcgcagtgcg	1980
	cacgcgcgcg ggtgggcggg tttgactggc cgtagagtct gcgcagttgg tgaatggcgt	2040
	tggtggcggg aaagttgagt ctctcctgcg ccgagccttc ggggcgatgt gtagtgcctt	2100
	ccatagggct gagtctggga ccgaggtgag agccgccggg ttgggagtga gggagatggg	2160
15	aacaaggccg ccggtgggcg aggggagccg agggaacccg ggggattggg aggcttgggg	2220
	cggcgcggcc tggccgggct gggaccggcc tctcggccta gacgcccgcg atgctggcac	2280
	cetetgecae eteteacetg ggeeceaggg gteegeeet gggeageetg gagteeteeg	2340
	aggtgggagg accgggcgga ggtggaggaa gtctttcttt ggaagacttg ctgcctgccc	2400
	agatcgatat aacatacgag gtctctcctc ccaagagtta tggtctaaaa acccctcaca	2460
20	aattaactac cgttggaaat gtcaagctat gcaagaaaag ctagaaaagg ggaggggtcg	2520
	cccgttggag catttggagc ttttctggaa caggtggtgt ttgcggaggt tgcctcacct	2580
	ccctgtagcc cacgtgtctc tgcttagggc agctggccct cgcca	2625
	<210> 70	
25	<211> 2540	
	<212> DNA	
	<213> Homo Sapiens	
	<400> 70	
30		
	tagtcccagc tactcgggag gctgaggcag gagaattgct tgaacccagg aagcagaggt	60
	tgcagtgagc tgagattatg ccactgcact ccagcctggg caacagaggg agactccatc	120
	tcaaaaaaaa aaaaaatcat taaaatacag taattcaggt ttattaagtc attaccattg	180
	ggttacctca caaataaact aagtttagat gcgaactcaa agatactgag acactaatcc	240
35	atttcttaag ctgctaagtt agccttcttg aaacctcact tcgtagctct gcaaacaatg	300
		3.60

tacttttgac atcccaagct cacaggaata aaaaaccacc tgccagttgt ttccgttttc

WO 2004/015139 PCT/EP2003/008602 61/112

	cacctatgtc	taatttatgt	acttatattt	ataagaaaca	aatcactaag	tcttatttca	420
	tccttagtta	tgttgtgttt	ctatcgataa	cagcatgaag	atttcgggga	cctggacatt	48.0
	aaaataagtt	tgagtactgg	ctttacaatc	tactaggtgt	gatccgaggc	aagtcagtct	540
	cttcatgttt	cacttctttc	acttgtaaac	atctattcag	aagttgctgt	gaacttgata	600
5	tttccatgct	tataaactga	tttttgaaa	agagcctggt	acataggacg	tgataataaa	660
	tgaaagcatt	tgctactttt	ggaaaaacaa	gcatgacaag	atagtttata	tactgttgat	720
	cttaagcaca	gtatatgcat	cttatttta	gctagtctga	cagtgagata	ataaaaagag	780
	ttatctttga	cttgcactac	gagtagaaga	attcaacttc	agtttctaga	aagatgtata	840
	agaattaaga	gtggcagtct	tcctagtctc	aactgccatc	ttcccaccag	gtggtaaatt	900
10	cgtccagaga	agaaaatgaa	ttattgctat	atgggattct	gcagcaactt	ctgtgaacat	960
•	aggctcataa	tttttcacca	tggagactca	agctttttgg	agtcatagtt	gtttttgggt	1020
	ctatttgcag	gcatgcatcc	tttgtccaga	aatatacata	acatttggca	catggacctg	1080
	gaggtaaaag	aggaggaagg	cctgaggcta	gacaccactc	caataagtac	attaagctcc	1140
	tagaagggca	atccaccttt	gcagagaact	cttaactatt	aaaacctata	gcttgtaaag	1200
15	cagcattttc	aaagttaaga	gaagaaggtg	gaagggtctt	gagaggctac	tgactaaaca	1260
	gatgaaaatg	aaggtatgga	gtttggtgcc	aaaagaaact	cccccaaaa	atcaaacaat.	1320
	aacaccagag	taaagcccct	agggcgagat	aaggagttgc	aacaaaacaa	gcggaaactc	1380
	gagaagcgct	aatgcttcaa	agggtcaatg	accacacata	atctacgtag	ccaacgtgtt	1440
	aaaacacacc	aacgcatttt	tttttcctaa	acaaagtagg	aaagcggact	ttgcatgagg	1500
20	ggcgggctgc	cgacccagca	gtcttcctcg	gacagtccgt	cctgattctc	tctggttggc	1560
	cgtggaggga	ccacatggct	ccaaggcctc	tcagctccgg	gcccacacac	cccgggctgc	1620
	cgcacaaact	ccagccctag	tctagatcca	caaccccttc	tcgaagatca	accgcgacct	1680
	gggagcccca	cttcttacca	tagcgaggcc	ggcgatgccg	cagccacatc	accetteegg	1740
	ggctcaggcg	gaagaggctg	catgtcccgt	ctgcccttct	cgccctctcc	agccgtccgg	1800
25	ttgggcttgt	cacggcaccg	cctaccaaga	cgggcggtta	agacactagg	ataggctcct	1860
	ctccaccgga	aaaggcggga	tttagatcac	gtcccgcagg	ccggcggaag	tagctgatac	1920
	tctcattggt	tgcaaaacct	tgatctgtga	aagcgggcgt	tttggaagat	accggaagta	1980
	gagtcacgga	gaggtaggat	ccggaagtgg	ggctgcctct	ttaaataaca	aaaatctgag	2040
	gttctgttct	tttatcttt	ttgctttctt	tttaaaaaag	ttccctgcta	cttaccccta	2100
30	gaactccaca	atgcgagaat	cccctcaat	ttgtgagctc	ccgcgacttc	ctcttgtggg	2160
	cttttgggga	tgctagggtt	: ctcggcatta	tcctcagggt	gcgacctgtt	caccccttt	2220
	tcagtttctc	cgtttgcato	: tgagggattc	: ttgggaatgc	gaagcacttt	tgaaatgctc	2280
	tgtgttggtt	gtgggattg	g gaggacggtt	gaatccagag	ggtagtgttg	agtaggctgt	2340
	ttgagcattt	cccagcact	ggcctgtcct	; ttcaatcccc	agatattggt	aaactgtggg	2400
35	ttccaaccag	g gcatcgaggo	tgaaacgtac	: taggcaattt	gaggtcagga	aagaactttc	2460
	tgtggtaaco	c aatgggaagg	g aactgccgtt	: tgcggactgc	agcgattgat	taggtacttt	2520

	aaagagatca actggcaaġa	2540
	<210> 71	
	<211> 2610	
5	<212> DNA	
	<213> Homo Sapiens	
	<400> 71	
10	ctacaggete gtgtcaceae aetgggcaat acaaaaaata caaaaaaaaa attttgtatt	60
	ttttgtagag acgaggtctt gccatattgc ccaggctgga attcttacct ttgttactgt	120
	atttaacgta tctttttcct ccggccatct tcatggtttt ctctctgatt tccacagttt	180
	gaatacactg catgtgtcag gcaggggctc atatttatca agttttgtgt gtgctctgag	240
	ctcaggtctt tcattatttt gggaaaatta ttggtaattt tctcttcaaa cattttttat	300
15	gatttgttct ttcttcttct tttgggagtc ctattacatg catatgatat catttgatat	360
	tttcccacag ttcttggatg cttttttaa aaaaaaactt ttttcttct ttatttcca	420
	acgtgggtaa ttcctatttt tctcagctgt gttgatccta ctgctgcccc atcagaaaaa	480
	ttacctgtta tcagcgttct tcctttctta taatttgatg agtttcctcc tcatgcatat	540
	tgttcacctt tcgtacaaga gacctccaca tattaatcac agttaattta aatttccagc	600
20	ctgtttcaat ttctcgatca cctctgagtc tagtcctgtt aattgcttag tgttattttt	660
	tgtttttgaa acagggtctt gctctgttgc ccaggctgga gtgcagcggc gcgatctcag	720
	gctgttccct gagttcacac catcccctc aaccagcaga ttgcaaagtg tccgagtcgg	780
	gccgtgcagg agtctttgtg ggggtttcat ggactccgaa ttctcatttc tgctccatcc	840
	ccatctcatg aatccaaggc cccactctgt gcctcggctc ttcgtttgtg gtgctgaacg	900
25	tcatctacgt catctacgcc atctacgtaa tcaacacaat aaagacgcct gccgggaacg	960
	cggcccttcg gctgaatccc ttcggtggtt ccaaggccac tgccagagga tgcggacggg	1020
	tctccagggc ctctacttac ccaggacttt gaggcacatt agcttcgcct aggcactcgc	1080
	ttttacgaat tcttatgttt ggttttgttt tgagacagag tctcgctctg ccgcccaggc	1140
	tggttaaaag atagggtctc agccgggtgc ggtggctcac gcctgtaatc ccagcacttt	1200
30	gggaggccga ggcgggcgga tcacctgagg tccggagttc gagactagcc tgggccaaca	1260
	tggcgaaacg ctgtctctac taaaaataac aaaaatcatc caggcgtggt ggcgcgcacc	1320
	tgcaatccca gctactcggg aggctgaggc aggagaatca cctgaaccca ggaggcagac	1380
	gttgcagtga gccgagatcg cgccactgca ctccagcctg ggcgacagag ggagactccg	1440
	tctcaaaaaa aggaaaaaaa aaaaaaagaa aagaaacaaa agtgatgggg tctcgctctg	1500
35	ttgcccaggc tagtctggaa ttcctgggct caagcgaccc tccagcctcg gcctcccaaa	1560
	gcgctgggaa tacaggcgcg gctaccgcgc ggtctccggc tgccgaaaca ccgccctgcg	1620

WO 2004/015139 PCT/EP2003/008602 63/112

	cgcggaccgt	teggeegeeg	ggaggaacag	cggctgcccg	gagctcagag	gcgcgcgcgg	1680
	ctttgcgctc	cccgcggcgc	tctgagcctg	cctcggcttg	gttggccagg	tggtctcttc	1740
	aggaccaacc	ccagtcattc	ccggcaggaa	ccacgcttga	ggggcggcag	tctgcccgcg	1800
	cgagacgccc	ccgcggacta	caccgcggcg	gcaaagccaa	acgcaaaaac	tacctcaccg	1860
5	cgcgcaggcg	cctccccag	gaccaacatg	gccacgacgc	aaggcctcga	cctgaggggc	1920
	gtggcctggc	cgccgccagc	caacgggtgt	gcgcgcctgg	ccgcagccaa	taggaaggca	1980
	gcgcgggctc	gggcgcaggg	agccgccgcc	ggggctgtag	gcgccaaggc	catgtccgac	2040
	tcgtgggtcc	cgaactccgc	ctcgggccag	gacccagggg	gccgccggag	ggcctgggcc	2100
	gagctgctgg	gtaggtgggc	gcggcaggcc	gcgggagtgg	gcggcgtccg	gcccgggacg	2160
10	gtttcgccgg	ttccccgatc	ccttcccgcc	agagcctccg	ccggtcggat	ccccggacgc	2220
	cgcgcccggg	gggctgtgcg	gggtgggcgc	ccggctgggg	cggcgcggct	gcctcggacc	2280
	cggcccctcc	tgcgcctggg	cggacgccca	ccagaccgcc	gcccgcgggg	cgctcccttc	2340
	tttcccgaac	gccgcccccg	ccggccgccc	tgtcaggcgg	gcctggggtg.	cgcggcctgg	2400
	ggctcccctc	agcgcagagg	ccgcccctcg	ccagccgtcc	ccgggctccc	ctgcctcggg	2460
15	ccctcctggg	ccgtcttccc	cggcgtccgc	ggtggggccg	tctccgttag	tttcccgaga	2520
	cctgcgccct	ggggaggagc	cccggcccct	cttcgggagg	gtgtcgctgg	tgggtttctc	2580
	cgcggcgtcc	acctgcgcgt	cgggccgggg				2610
	<210> 72						
20	<211> 3076						
	<212> DNA						
	<213> Homo	Sapiens					
		•					
. -	<400> 72						
25	•						
		caggcataac					. 60
		atgccgagca					120
		ttttttt					180
2.0		: cactttgttg					240
30		ccctgagete.					300
		gccaccatgo.					360
		ccaggcaggt					420
		ctgggataac					480
0.5		: tgagttttgg					540
35		: aagtagtttc					600
	gtctcactct	gttactcagg	r ctggagggca	gtggtgtgat	catggctcac	tgcaacctgg	660

	aactcctagg	ctcaagggct	cctcccacct	cagcctccca	agtagctggg	tctacaggtg	720
	tgttattgtg	ccagggttaa	tgttttaaat	tttttgtaga	gataatgtct	ctacaaaaga	780
	caccatcttt	gttgcctagg	ctggtcttga	actcctggct	tcagggaatc	ctccagcctc	840
	agcctcccaa	agtgctggga	ttacagcatg	agccacatcc	agcctatgat	ttttcttctt	900
5	ttcttttctt	ttctttttt	ttttttttga	gatggagtct	cgctgttgcg	caggctggag	960
	tgcagtgggg	cgatctcggc	tcactgcagg	ctctggcccg	cggggttcac	gcctttctcc	1020
	tgcctcagcc	tcccgagtag	ctgggactac	aggcgcccgc	cacatcgccc	ggctaatttt	1080
	ttgtattttt	agtagagacg	gggtttcacc	gtgttagcca	tgatggtctc	gatctcctga	1140
	cctcgtgatc	cgcccgcctc	ggtctcccaa	agtgctggga	tcgcaggcgt	gagccacggc	1200
10	gcccggcccc	agcgtatgac	ttcttaatga	tgtctttgta	gtacaagagt	ttttaatttt	1260
	aataaagtta	acttttttt	aaattgtaca	agcttttagt	gctgtgtcta	acaacttgtt	1320
	gccaaaccca	aggtcataaa	gctgttctct	tacgttttct	tttttttt	tttttgagac	1380
	ggagtctcac	tctgtcaccc	aggctggagt	gcaatggcac	gatgtcggct	cactgcaacc	1440
	teegeeacee	gggttcaagc	gattcttccg	cctcagcctc	cggggtagct	gggattacag	1500
15	gcgcacgaca	ccacgccctg	ctaatttttg	tatttttgta	gagaaggttt	caccatgtta	1560
	gttaggctgc	tttacgtttt	cttttagaag	ttttatattt	ttggctctta	tatttagttt	1620
	gtgatccatt	gagttgattt	tatgtacgta	tgtatggtcg	cgttcttttc	tttcctgtct	1680
	tttttttt	ttttttttg	catatggata	ttcaattctc	ctagctccat	ttaatttgaa	1740
	atgattgggc	aggtactttt	gagcagtgca	agtacagago	ggcactgcca	gcagactaca	1800
20	cgcggtagaa	agccgacctt	ggtgagcgtg	ttggtgctcg	acagtgagca	gagaaaggat	1860
	ggacgattac	ggagcgccct	cgtctccagt	. taccgctttc	: tggaaacacc	atccgccggg	1920
	gcggagctgt	tecgeceegg	tgcggtacta	cgactcccag	catgcacctc	gcagtcggcc	1980
	ctcggtggaa	gegggaacce	aggaggacct	gggggtgtgg	cagcgaggaa	gggccgagcc	2040
	acggactgtg	gggccgaaac	tegetecege	ccaccctttc	: tcgaggctgt	ggcctccgcg	2100
25	agagccgago	gggccgcacc	geeggeegt	g cgactgccc	agtcagaçac	gaccccggct	2160
	tctagcccg	c ctaagcctgt	ttggggttg	tgactcgttt	cctccccgag	tttcccgcgg	2220
	gaactaacto	ttcaagagga	ccaaccgca	g cccagagett	cgcagacccg	gccaaccaga	2280
	ggcgaggtt	g agagcccggc	: gggccgcgg	g gagagagcgt	cccatctgtc	ctggaaagcc	2340
	tgggcgggt	g gattgggaco	ccgagagaaq	g caggggagct	cggcggggtg	cagaagtgcc	2400
30	caggcccct	c cccgctgggg	; ttgggagct	t gggcaggcca	a gcttcaccct	: tcctaagtcc	2460
	gcttctggt	c teegggeee	a gcctcggcca	a ccatgtccc	g ccagaccacc	: tctgtgggct	2520
	ccagctgcc	t ggacctgtg	g agggaaaag	a atgaccggc	t cgttcgacag	gccaaggtaa	2580
	cacggttgc	t ggcaccctc	g gtttgcagc	c tcaagatcc	c tgaaagcggg	tttgcagtgg	2640
	atttacccc	a acagatggg	g agggactga	g cttgaccaa	a gagccagaaa	a tgactggaga	2700
35	atgcatccc	t tgccactgc	t gcaagggga	g aaaaaagga	t tgatcctcag	g tgacaacccc	2760
	tccctcatg	t ągcaggtgg	c tcagaactc	c ggtctgact	c tgaggcgaca	a gcagttggct	2820

WO 2004/015139 PCT/EP2003/008602 65/112

		*,					0000
		tggaagggct					2880
	cccaggatgg	tcagttcccc	tcttccatag	ccagagaaac	atccgctcct	gcgtttttgg	2940
	gatcgatata	attactcggg	gcagggagtc	ctgtttaagg	cacagaggag	actggagtgg	3000
	aatcatcttt	gtacaggcaa	atccctctct	tccttacaca	ctcacagagt	ggcatttgaa	3060
5	aaatggtttc	caagat					3076
	<210> 73						
	<211> 2567						
	<212> DNA						
10	<213> Homo	Sapiens					
	<400> 73						
	cacaccatct	cttgctccgt	gagtatcttt	gtctctctag	ctcctcttct	tctctcagta	60
15	catgtccctc	cttgactccc	gcctctctgc	aaggtgtatt	tggctgcctc	agttggcctc	120
		catctctggg					180
	ggtgctcccc	ttccccccag	caggacagcg	gctcaggttc	acgcacccca	:: cggcgggccg	240
		cgcacgtcct				•	300
		agcgggggcg					360
20	gacgaagaag	agegeeagee	gctgctggca	ccacgcgtcg	aagaagcggc	tgaactcggc	420
	ccacgagaag	aaggcccgct	cccgcagctc	ctgctcctcc	tgccccgcag	ccgtgccggg	480
	tgggggctcc	ggccgctcca	tcctgggggc	ctgcgtggag	gaggggagaa	caggtggata	540
	tcagacccat	tcccacccgg	ggtatctcat	ctactccatt	cttggcctgc	cccgtcggtt	600
	gctggtgcct	ctatcgaggt	gggtagcccg	gggtcggacg	tgcctgtttt	tctccaaata	660
25	tataaatato	aacctccatc	ctatctttgg	cctcctccca	ccgccttatc	cctggttcac	720
	ttggagcctg	tcatcttgat	tcctaattcc	aactcgtctc	ctcctccgca	gatgtgaccc	780
	ttaggtacag	ttggaatctc	tcctcccaaa	atacgaccct	taagctcaga	tgttccttaa	840
•	ggacatetec	: tcaaatgtgt	tctcaaattc	cagctaaaac	ctcctcccct	tccagctgtg	900
	tctctcacco	: aagagtaact	tctaactctc	gtattcatct	ggaactcctc	cttccatgtg	960
30	ccaacagtto	gctgtaaccc	ctccaaagac	gctccatctc	cagatgtgct	cccacatcca	1020
		ccctcacccg					1080
		g gcgtgcagct					1140
		gctggggctt					1200
	-	gcttcgccta					1260
35		ttcacctgtg					1320
~ ~	J = = = = = = = = = = = = = = = = = = =		7	5 ~ 0 9 0	5 5 5 5 5 5 5 C C C C C C C C C C C C C		

gcccctcctc ccagttacat ccaccatccc ccgcaatatg catcttcgtt ctagacatgg

WO 2004/015139 . PCT/EP2003/008602 66/112

	cccctcgtcc	tcggatgggc	tccttcaccc	cagatgctcc	ccccacgtcc	agctgcgcgt	1440
	ctcccctcga	gcagccccat	ccagcccgct	cccgacgctc	ctactccccc	cctccccgcc	1500
	cgctgcggca	ccttccagcc	ccgccgtccc	acctagctgt	gcctctcccc	tccccaagat	1560
	gtgcaccctt	cccgcccctc	cccactcacc	tacccgcccc	ggagcggcgt	ccacctccca	1620
5	caatgccccg	cgcccaggcc	tggcccggcc	cttgctcccg	gġatgccccg	cgcggtctcc	1680
	cgcctctctt	cccgccgtgc	ctcgcggggg	cgcttccacc	gattcctcct	ctttccctgc	1740
	cagtcactcc	tcagaccctc	agccacaccc	gctcatccag	ggcgagggaa	agcgcgggca	1800
	ttttcccagt	gtgctctgcg	ggagggctcg	ccccacttca	cccctttcc	cgccctcctc	1860
	ccattcggga	gactacgact	cccagtgtcc	tccgcgcgac	ggcggcggtg	cggacggtgc	1920
10	ccaggtcccg	cccctaggct	ctgccccgcc	cccgcccgca	gacgtctgcg	cgcgaatgcc	1980
	gtggcgcgaa	cttgggactg	cagaggcgcg	cctggcggat	ctgagtgtgt	tgcccgggca	2040
	gcggcgcgcg	ggaccaacgc	aaggcaagtg	gggccgtccg	caagcagatg	ggaggcggag	2100
	ggcggcgggt	gcgccgaatg	cttggggcct	atgcttcgcc	atgtcggggt	gtctgcagag	2160
	gagtgggcgt	ggggacgctg	aggctgccga	gagcgcggtg	gagacggaag	agcgcgggct	2220
15	gcgggccgcc	ggagagtgca	gagaggtgtc	tcccagaggg	aggggggcca	ggtagagggt	2280
	agacgagaga	cagagacagt	tggacaggtc	ctctgagaag	aggccttgag	gtgcgagttc	2340
	acctggaagg	gggagaggcc	aaatggaact	gaggggcggg	gcgggggggg	ggaaaactgt	2400
	gtgggcgggg	ccagctggaa	atcggaaggc	cccccgaggg	ggcggggcta	tctgggaggg	2460
	ggaggggctg	, aagggagcta	aggggcgggg	ccggggaaaa	gattgcgtgt	gggcggggcc	2520
20	acctggaagg	gggaggtgcc	aagggtgggg	ctggctggga	accggaa		2567

<210> 74

<211> 2278

<212> DNA

25 <213> Homo Sapiens

	tcacagaagt	caaagctcag	gaaaagcccc	tcgagggttt	ttgtgcggca	gaggtgggtt	60
30 ·	gtggggtggg	attgtgcctg	ccacagtgga	ggggccctgc	agacccagat	aaaccttcaa	120
	gtggccagaa	gcgggggatg	gctctgctgg	gtgctggggc	tgccatgggc	cgtgggagcc	180
	agcagtgtgc	ccagctccct	cagggcccgt	cccctaggcc	cttccgtcca	ctgggccaag	240
	caccgtccct	gcccctccct	aggggcatgg	atctgacttg	agaggttgtg	agagcttaca	300
	ggcgctgggc	cgtcggggag	gcctcagaag	cgtaggacgg	ctgcgcactg	ccgggccgtg	360
35	ttcagccctg	gtctggcctc	ggcctctaga	ggaggctgcc	tgcgctccag	caggcccaac	420
	ccagaacgtg	ggcgagctcc	cttcagcatc	cctgggcgga	aagagggatg	ggggctctgc	480

WO 2004/015139 PCT/EP2003/008602

	tgcagaggca	gaatccgcgc	cgctccctcc	ttccttcccc	cgaccagcct	gtgacaaccc	540
	cggccagggg	cgggggcctc	cgcacaagcc	tggcgtccac	ttcctggata	aggactcccc	600
	ggcccactcc	ggaccagggc	tggggcggcc	tcccaggcgc	tcactccgct	ggcaccccac	660
	cggaaaacac	gtctgcggcc	cgcccctcc	cccaaagcac	gaccactccg	cccgggcccc	720
5	tcgaggatcc	actcaggttc	acgacgggcc	cgtcctctcg	gtggtctgac	caccggctgg	780
	tggagtgggc	tctggggccg	ccaggcgacc	agggcgcagg	cgggggcgga	cagctcattg	840
	ggaggggcgc	cggggcacag	tgcggggctc	gccccacçcc	caggtgcccc	ttccccgctc	900
	tcgcctcgca	ggcaccgcat	cgggcccggg	aatcggtccg	gacctggcgg	tgggcgctgg	960
	gaagaggatc	cacctccacg	tggcccgccc	cgccccgggg	gcgcagccag	ttcccggcgc	1020
10	tcactgcccc	ccttctcccg	gcttccgtcc	ccttctgcgc	aggcgccgct	ccgccccggt	1080
	cctaggggtg	cttccgtggt	cggcggctgc	tgggctccgc	gccggggtcc	gagtcccacg	1140
	aagccccggc	ccgagccgcc	ggatgcccgc	gcgcagcggg	gcccaggtga	gcgcgcgcct	1200
	cggccgcccc	gcggaacaga	cgcgcccacc	cccaggcgca	gcagcgagcg	cggccgcggg	1260
	agcgggagtg	ccggggacgg	gcgtagcgcc	caccgccccg	agggttcggg	gcagagccag	1320
15	agcataggcc	aagggccaag	ctcgggccga	gagcagtggc	cgcagcgccc	gggggctgaa	1380
	cccacggcgc	gctggcagcg	cgggccgagc	tgcggagacg	gtcacgtcag	cgtccgttcc	1440
	aggccgactg	gcagtctccg	ttctacatta	acgtcagcac	tcccgttaaa	aataatgcat	1500
	ctctcccatg	ccaggaggac	ttaggtgctg	ctaaagacca	gccctccggg	tgctgccagg	1560
	ccggcgctca	cccgccacct	tcatcttccc	ttctcctttg	ccccaggaca	gccgaggatg	1620
20	tgtggttagg	ttccccctac	ccatggggag	gccagaggtg	ggaggctggc	ggcctgctcg	1680
	gtctcagcag	accctcctag	tccctcagga	gaccttgcct	ttgccccact	tgctcgttat	1740
	ccagcctggg	ccatgaagca	gaggacagtt	agggaccctg	agcacgcggt	ggtcaccccg	1800
	gtgctcaccc	ctccctgtgt	gtccgacctt	ggccctgcta	agatcctgtg	ttttgaattc	1860
	tggcaagggt	tggatgaaag	ggcagggctc	cagaaaccag	ctcagacgtt	tgcttgggac	1920
25	ctgcatgatg	agtgggaatc	ggagggcacc	agccctgctg	tcccaggctc	aggcccccat	1980
	ctgctcccca	ggtcatgcag	cctgggcccc	catgccgtgc	agctcgcaca	tatgtggggc	2040
	agagcagcca	ccctgccccc	agcagcagcc	gtccatcgtc	agacgtgatc	atttcctgag	2100
	gcctcgagtg	tgtcagggtg	tttgtgcctc	ataacaaccc	acaggatggt	cacccccgct	2160
	ttgcagatga	agaaaccaaa	gcaggtggtc	agatccagtc	cttgcacttc	ctgagcctga	2220
30	ccttaccaca	cagctgtctc	ctattcggat	gcttatttat	ttttttccc	attacagt	2278

<210> 75

<211> 2401

<212> DNA

35 <213> Homo Sapiens

	tcatgcctgt aatcctaaca c	ctttgggaag	ccaaggtggg	aggactgctt	gaggccagga	60
•	gttcaatact agcctgggca a	acacagcaag	atctcatctc	taccaagaaa	aacaaaggat	120
5	agaggagtca actgaaaaag a	atcccagtga	ctaaagctcg	aacaatttta	gcaataaaat	180
	aaatacgcat gatataaata	catggctgaa	taaataaact	ggggagaata	gaaaaatatc	240
	ctgtgcagaa gaattccaag t	taacttatat	agatatttta	cctttacctt	caaggaagta	300
	gaacataact tttcattcct	tcccaggatg	ggctaggcat	gatgacttcc	ttccaaagag	360
	tacagaacgg aaacagggca	gggggattaa	cagtggagaa	acctgaccaa	cgctactgca	420
10	gctaggtgat caaggccaaa	acatcgacag	tgataaagca	tgctgagagc	acctttgatt	480
	tgatgtagtg aaaatcgtgc	tttacctctg	taatcttcct	gccaaaaacc	cataatccca	540
	gccccaatta tgagagaaac	attaggcaaa	tatcaattga	gaaatattct	acaaaatacc	600
	tgactggtac tcctgaaaac	tgtcaaggtc	accaaaaaca	ataaaagctc	aagaaactgt	660
	cacageceag aggaacetaa	gatgtgacta	ctaaatggca	tgtagtaccc	taaatgggat	720
15	cctggaacac aaaaagagta	tcaggtaaaa	actaagagaa	tcagaataaa	gaaaggactt	780
	ttgttaataa tagtgtatca	atattggttc	atcaattttg	acaagtgtac	catactaata	840
	atgcaaggtg ttaataagaa	acattcagca	tgagattttt	aggaattttc	tatattatct	900
	tcacaatttc ctgttaatct	aaatctctcc	taatgacaag	tttatttaaa	aagtaaaaca	960
·	aaacttgaag gagggaggaa	acaagaaggg	aggaaacatt	ggagacagaa	ccagcttggc	1020
20	aagttgacag ataaggtctg	agaagtaggc	aggggaaaga	tcattcattt	caggcaatat	1080
	ttttccattt tacctgtata	agaaccatat	gagccctatt	tttctttctt	tctttttct	1140
	ttctttcttt tcttttttt	ttttttttgt	agagatgaag	atttcactat	gttgaacagg	1200
	ctggtctcaa actcctggcc	tcaagcaatc	ctcccacctc	agcctcccaa	agcatgagcc	1260
	accatggtgg gcctgtatga	aggaactttt	taaaaaatgo	tacaagccgg	gtgcagtggc	1320
25	tcattacctg taatcccagc	attctgggag	gccaaggtaa	gaggatcact	tgggcccaga	1380
	agttcaagac catcctgaac	aacatagcaa	gaccctgttc	: tctgcttaaa	aaaaacaaaa	1440
	acaagctggg cgtggtggat	cacgcctgta	atcccagcac	: tttgggaggc	tgaggtgggc	1500
	agatcatgag gtcaggagtt	cgagaccaga	ctgaccaaca	tggtgaaacc	ccatctctac	1560
	taaaaataca aaaattagct	gggcacggtg	g gtgtgcgcct	gtgatcccag	ctactcagga	1620
30	ggctgaggca ggagaatcgc	ttgaacccgg	g gagacggagg	, ttgcagtgag	ctgagaaagc	1680
	agtgagctga gatagcacca	ctgtgctcta	a gcctgggaga	a cggagtgaga	ctctgtttca	1740
	aaaaaatcag cctgcccagt	cagagcgcct	cagegeegt	g ctcgggacat	cccgccctgc	1800
	ggccagcccc cgcgtgacgt	caccgcatto	c cggctccgct	t catacagaeg	g eggegeeege	1860
	accgcagtga cagccagccg	ggcccggtgd	c cggagaggaa	a gtgcggtccg	g cgccaagccc	1920
35	gtccccgccg acgccggctc	cccgcggct	c gggtgacag	gtcgcggccg	g ccggacgcag	1980
	cgcggggcag gcgcgggcag	agccgagcg	c agcggaggc	t ccggcggag	g cgcggggaaa	2040

WO 2004/015139 PCT/EP2003/008602 69/112

	atggctgatg	actttggctt	cttctcgtcg	tcggagagcg	gtgccccgga	ggcggcggag	2100	
	gaggacccgg	cggccgcctt	cctggcccag	caggagagcg	agattgcagg	catagagaac	2160	
	gacgagggct	tcggggcacc	tgccggcagc	catgcggccc	ccgcgcagcc	gggccccacg	2220	*
	agtgggggtg	agtcagcgcg	gggcctggag	aggggctcag	ggcgcgcacc	cgggggaccc	2280	
5	cggccggggc	ccaggggcac	agggaagaga	gcctgctcta	ggccacccgg	ggcaggagct	2340	
	gggagacgtg	gggaagaatc	ttcttggaga	tctccatgta	ggacttccga	gctggggatg	2400	
	a						2401	
	<210> 76							
10	<211> 2501							
	<212> DNA							
	<213> Homo	Sapiens						
Ω	<400> 76							
15								
	ccagcctggg	ccgcagagtg	agaccctgtc	tcaaaaaaag	aacctactag	tctacatacc	60	
	acacttcctc	atccccatct	gagactatat	atatttttc	taacatgagg	caatgccaaa	120	
	aagaggggct	ggtgagtgaa	agtaagaaca	gaaagacatg	gaggcaagtc	ttatagaata	180	
	atagccaaca	cttaaactta	cacttaacag	cgtgataggt	attgttccaa	acacattaaa	240	
20	ttcatttaat	ggtccttaca	tgtctatgta	tttggtgatt	attatcctta	ttattcacat	300	
	tgctgagtgt	attattctgt	tctcatgatg	ctgatagaga	catacccgag	actggataac	360	
	ttattaaaaa	aaaaaaggtt	taatggactc	acagttccac	gtggatgggg	agtcctcaca	420	
	atcatggtag	aaagcaaaag	acacgtctta	catggcagca	gggaagagag	agaaatgaga	480	
	accaaacaaa	aggggtttcc	ccttataaaa	ccatcagctc	tcatgcgact	tattcactac	540	
25	catgagaaca	gtatggggga	aaccaccccc	atgattcaat	gatctaccag	gtgcctccca	600	
	caacctgtgg	gaattatggg	agctacaatt	ccagatgaga	tttgggtggg	gacacagcca	660	
	aaccacatca	ctgaggaaac	tgagttatag	ggagattagt	aacgcccaac	acagctggta	720	
	•				tgaactgcat		780	
					tcccctacag		840	
30					aattaatttt		900	
	tcccaaattc	caacgtgcaa	atgcagcctt	atatacccta	attcatcttt	acctttagac	960	
					ccatgagatg		1020	
	agctgtaacc	atcatgaagt	gaatgaagaa	taatacctac	tactgtacaa	tagaattcca	1080	
	agagtataaa	taggagttat	ggctttctga	cttgaaacta	aatacttgat	acttgatttt	1140	
35	gctgtctgag	atcaatctga	aaagtaataa	taatcactaa	catttgttga	gcatcaattg	1200	
	tgggccaagt	gtcatttcaa	tcactctgta	catattaact	catttcatcc	tacaacaacc	1260	

WO 2004/015139 PCT/EP2003/008602 70/112

	cggtgaggca	agttctgtta	ttctgtttta	cagttgagga	aacagaggca	tagagagctt	1320
	aagtagtttg	cccagtagat	agccagaaga	ggagccagga	tgggtctcgg	gcagtttaac	1380
	agcacagctg	aagtcttaac	cactatgcca	acagcttttt	ggtcctacac	atcccatggg	1440
	aagaggaaaa	taaaaaggta	tctatttgta	taccttttta	tttctgatat	aagaagcaga	1500
5	attcctttca	catgacctat	gtctatttaa	tacgtcattt	tgaaacttac	caataaaatt	1560
	tcccaagcgc	cagaaaactg	ttagtggctt	tttccatttc	tctctatttt	tttttgtgct	1620
	actaattttg	cttctttccc	tcagaaggct	gccggaatag	taaacattca	ctgacatgtc	1680
	ataattactg	gaaaatgggc	actggaaaat	cacattgtaa	ttaattcaaa	gcatgttttc	1740
	caaatgtact	actttaaatt	ggagcttata	tcataatcca	aggaaacctt	tgtgtgtgta	1800
10	ctgttcccac	attgctcagc	ctgggatatc	caggagtaat	tcaccttgcg	cctgcctcca	1860
	gaccatcttc	catggaaggg	ggtgacccct	tgcctcttgg	caaccacțat	ttctaagctg	1920
	ccaacattac	tcttgcatta	tcaacattct	aacttcatgg	gaagggctgt	ggtgagtttc	1980
	tggaatgtga	ataggaagtt	gtttttctaa	acagcctgac	actgagggga	ggcagtgaga	2040
	ctgtaagcag	, tctgggttgg	gcagaaggca	gaaaaccagc	agagtcacag	aggagatggt	2100
15	gagtttattt	ttttctgcat	gggaagtggt	tgaagtgagt	tggagtggta	tggagtaaag	2160
	tcaggcaggt	aaaggttcag	aaagtgagga	acagcgatag	ccatggagtt	ttatgttgaa	2220
	ttgcctatta	a gattttgtga	gtactttaa	acttgctgtc	cactttgacc	ctcccaacac	2280
	ccttgtgagt	t tgaggttgct	atttctattt	tacaaataaa	gccatcgtgg	tttacagagg	2340
	ctgtgtttt	a tctaagctto	actgttaggc	: tacatgatgt	tgggatctgg	ggcctgtcct	2400
20	ctggctccg	c agctgctgtt	cctcctacta	gaatttatag	gggctctctg	, agaatagatc	2460
	atggtaaac	c tgtcacccca	ttttccaaga	ctgtacttct	: с		2501

<210> 77

<211> 2501

25 <212> DNA

<213> Homo Sapiens

30	cctgggtcct	ctcttccagc	tcccaaaatg	tactctattt	ttatctgttt	cacgaacgct	60
	ggtccagata	gtcttccatc	ccccactgac	tgttagaagt	gactctcagc	ttttgtccat	120
	ctcgaagttt	ctgtgctcag	tgtgcctctc	agactaaagg	cttcctttgg	gaagccccga	180
	ctctcgcttc	tcaggacaga	gatccagggg	ttgggggagg	aaaaggttga	ccagaagcca	240
	tagcggagca	gggagagaga	gtgtgaaaga	cagacccgcg	gccaggctcc	cagttctcca	300
35	gctcgtagag	ggcccaagtg	gccgctataa	tctgaaagag	cagatatcgt	aatcccatag	360
	tacttcctat	tggctgcagg	acacagttct	gtcctgacac	tgaaatttgg	gtgtgtcagg	420

	gttctgggaa	ttcacaacgc	tcacaacttg	tgaagcagct	gtggggtggg	ggatggggag	480
	ggtttcagca	gaggaagtga	ggtcagtcaa	taattgatgc	ctgtctgagc	ttttagccat	540
	tatctcccc	agcctctatt	cctgtcaaaa	ggtggggcgg	ggcaggagga	ggggtccctg	600
	gctcatcttg	tagaatcccc	atattagagt	aagacacctt	agaggtctac	tcctgcttct	660
5	aatacccacg	tctttccaag	tgtctctgag	gccaccccct	cccagcctt	ttcatttatt	720
	catttaatta	acgaacgcct	tcattgaggg	cctcctctga	gtcaggctca	gccagccagc	780
	atctttgcta	tgagctgaga	taagcatcat	ttccgtctat	tctcacaacc	accctatgag	840
	gctggcacgg	tttactatgc	ctatttagca	gatgggggac	tgaagcatgg	agaggtgtca	900
	ctagcctacg	gtaacacaac	cagcctgcat	tcctagtagg	tagtttgact	tcagagtctc	960
10	tgtggataac	caggaggcta	ggactaagac	cagagtcctg	caggtactta	gatggttgga	1020
	gcaaagcagg	gcagtgaggt	cagtgctccc	agcctgtgca	ggagcatcag	gaagagtctg	1080
	tgtcccctc	ccctgccggt	atgaagccat	tetgettece	tccccagctg	ccttgtgtca	1140
	gcagagttcc	agggaggctc	cattccccac	ctctatctaa	agctccattt	gctggggtgg	1200
	gggccctgcc	tggaagggga	aggtccaagg	ctgctcccag	cgtgtccctc	catcctgact	1260
15	gtccctggcg	gggcgggggt	gtctttgtca	cccagctgca	caacggccag	gaagggctca	1320
	aaccatcctc	agggctaacc	caaggccgtc	ctctgggcct	gtatacccct	gtgctgagtg	1380
	cggatcggga	gaggctgctg	aagacaggag	gggacaaatg	ggggacgaag	gggcccgagg	1440
	gaggggactg	aaggatttgg	gccaagtcgg	gagttcccga	gggcggagtc	aaaacgcatc	1500
	tggattttgc	tagccccaaa	ctctgccctc	attgctgcaa	gcctcctaga	ccgaggaccc	1560
20	ccgggctgag	ggtggggtaa	ggataggtag	tgtccctccc	cgtcccaccc	ccgcctgtcc	1620
	cttcctcggt	ggccccttcc	cggcgccccg	attccaggcg	gcccctccgc	tgctgccagc	1680
	cgatccccct	ctacccccac	ccactactcc	ggccgccaga	cgttgcctac	agtctcggct	1740
	ctgtctccca	cggctgtggg	tccggacccc	acgggacccc	tatgggaccc	ccacaggacc	1800
	cccacggcct	gagtccaagg	cccgccccct	cggggaggcg	gatgtgggag	gcccggcccg	1860
25	ggtgcgggcc	agcgacccgg	gagctgcggg	cggctgggag	gggaggccgc	cctgaggggc	1920
	tgggagcggc	gcgggggtgg	gtcccggtcc	tgcagcccca	gcgaggggcg	agcggcggcc	1980
	agtcggcgag	ctgggcaata	aggaaacggt	ttattaggag	ggagtggtgg	agctgggcca	2040
	ggcaggaaga	cgctggaata	agaaacattt	ttgctccagc	ccccatccca	gtcccgggag	2100
	gctgccgcgc	cagctgcgcc	gagcgagccc	ctccccggct	ccagcccggt	ccggggccgc	2160
30	gcccggaccc	cagcccgccg	tccagcgctg	gcggtgcaac	tgcggccgcg	cggtggaggg	2220
	gaggtggccc	cggtccgccg	aaggctagcg	ccccgccacc	cgcagagcgg	gcccagaggt	2280
	gagtcgaggt	ccgcggacgg	gaccgggtgg	cgggcggcct	gacccccgct	tcagtgggcc	2340
	cttccttcgg	gcggacccca	gagtcaccgc	agagtggtcg	cgggaggctc	agtcccagct	2400
	cattagaaag	gcaagctgct	cctggctgac	cacgcacagc	tcccatgacc	ctacctgaga	2460
35	cttggaggg	g aatggacgag	actggactgg	aaatcagaaa	С		2501

WO 2004/015139 PCT/EP2003/008602 72/112

<210> 78 <211> 2501 <212> DNA <213> Homo Sapiens

5

	tggctaattt	tttgtatttt	tagtagagac	ggggtttctc	catgttgagg	ctagtctcga	60
	actcctgacc	tcaggtgatc	tgcccgcctc	agcctcccaa	agtgctggga	ttacaggcgt	120
10	gagccaccac	gcctggccgc	taactacatg	tgttctatga	ggtgaggtcc	ttcccagacc	180
	ctggaatcag	gggttgcaat	tagggtccaa	ataatgaggt	tggactacag	ataacccatc	240
	tcctttctta	cctttgacta	gatccaagga	ctaaactcca	agaacccgag	catctgtccc	300
	caaaactgaa	aggattggac	tagtcacccc	ttgtttccct	acagccacat	cccaggcacc	360
	tggcccttgc	tttgtccaga	aattcagcta	taactccaca	catctgatgg	ccctttctgg	420
15	caagcaggca	tttccatcag	gaccctcagc	tgccagacac	atttactgga	ggtcacttat	480
	taaacctggg	ctcaatttcc	acacagggag	gctactgaag	catcacactg	ggtctcccag	540
	ccccttctca	tagaggaaag	atctctctgt	cctgcagggt	tggcagtcag	cgccaagtaa	600
	agggaattta	gctcttggcc	caagatccct	gcccaggaaa	ggtacttgcg	cctgctggaa	660
	actttgggct	gaagtatact	cctttccaaa	aactcaggtc	tgatatttac	acaaagtctg	720
20	aaattaatgo	agagaaaact	tccaagtgct	tggactggag	cagaaggctg	agaacaggaa	780
	ggggctggtc	cctggtacta	gttttggttt	tttggtggtt	tttttttc	ttgtttttc	840
	tcacagaaca	gggcaaagct	gagtgtccct	ggatgagtga	agcaggagga	ttaatcatgc	900
	ccagtgcttc	tccactttaa	actggttttc	ctgggaattt	gcaattgaga	gtggggaggg	960
	gtaagaatco	g tgggaaaagg	ctgatggtgt	tcagccaaat	tcatccttca	cgtgcccacc	1020
25	cttctacagg	g cacatgettt	ggggccatco	: acggctgcag	ccaccccatc	cttaggaagc	1080
	accactggc	ttcctttccg	g gtacctggad	tcagcatcac	tcccagcctc	ttggagatgc	1140
	agccttcatt	cagcacacag	g ctcagctctg	g agttctgttt	ttgtccctag	g atgtctctgg	1200
	ggtcacctac	tactccctgo	ttggtggcc	aggcccatcc	ttctccacto	ttgcacctct	1260
	tttagcagaa	a aaggagtgag	g aatggatatt	: tccatgggcc	gtgtgtgcad	tcccggctac	1320
30	ccctgacage	c tctactcaga	a gctaccctco	ctcctggggc	ttcttatgtg	g ttctaaggct	1380
	gaggcagga	a gactgtgaga	a tcaggtgaca	a ctcaacagtt	atgatcggto	ttaagattaa	1440
	cagtcctgg	c cgggcgcag	t ggctcacgc	c tgtaatccca	acactttgg	g aggccgaggc	1500
	aggcagacc	a cgagatcag	g agatcaaga	c catectgget	aacacagtga	a aaccccgtct	1560
	ctactaaaa	a tacaaaaaa	t tagccaggc	g tggtggcggg	cacctgtag	t cccagctact	1620
35	caggaggct	g aggcaggag	a atggcgtga	a cccaggaggo	ggagettge	a gtaagccaag	1680
	attgcgcca	c tgcactccc	g ggtgacaga	g cgagactccg	y totcaaaaa	a aaaaacaaca	1740

acaacaacaa aaagattaac actccttcta cttccaaacc taatacaaag ggacattgcc 1800 tagtgattaa gagaattcat tcattcaaca aatacttgit gagcacctac tatgtgccaa 1860 1920 gcactgttct aggcaccgga aatacagcag tgagaaaaac caaaaaaact ccctgccctc atggggtgta tattcaagta gctgaaacag acagtgaaca aacaaaaag gacaataatt 1980 5 tcaaataata atgatgctat cggccaggtg tggtggctca tgcctataat cccagcattt 2040 tgggaagcca agtcaagcgg attacctgag gtcaggagtt caagaacagc ctggccagca 2100 tggtgaaacc ccatctctac taaaaataca aaaattagcc agacatggtg gcacacacct 2160 2220 gtaatcccag ctacttggga ggctgacgca ggagaattgc ttgagcccgg gaggtggagg ttgcagtgag ccaagatctg acaggccttc agcaccactg cactctagac tggctgacag 2280 10 agcgagactc tgtcaaaaaa aaaaaagcta taaatagact ttaacagggt aacatgatag 2340 ggagggaggg ataggggagc agggtggtca aggaagggac atttaaacag gctagaatga 2400 caatggccag cgagggaaag atccagaagt gtgtgctgga agaagaaaga gcaagcacaa 2460 aacccttagg acaaaatcag ctcgtgtggt caaggcacag c 2501 15 <210> 79 <211> 2501 <212> DNA <213> Homo Sapiens 20 <400> 79 tgtttctgac ccctggctgc agcctaatgg gccgactgct ggacagcggt cctgagtcct 60 gtttgaattg gtgctgcccc gacatcctct gacctcagct aatgatcctg cctgccgagg 120 gcagacaggt ctctgcaacc ctatgggtgg taggggtggt gatgagagga gaggtagtct 180 25 cacttgcaca gattttggtg tatggttctg tcttttgcac tctttcaaca gaggtctgtc 240 cagtecetet tgcaagtgtg gggaggggt ggtgcaggae tatgaggtaa etgtgagaag 300 aggggctcca gcagaaccag ggtccaatgg ccttgaagag atggctgggg acagctggac 360 tcattacgtc tactcctaaa tggaggaaac gaccctcag ctacacagca cctgagccag 420 aatgtcacca tggtgctgct ccacaggatg acagctacct ggtttgtgag ggcccctatt 480 30 ctagggacag ctacttcatt ctgccctccc agagcagcaa gcaacaaccc tatgccagga 540 ggccaattgg cacgtcaagt gccagctcca atcgattgat agtagctgcc tggctctgaa 600 aggcagctgg gatcgattca ccatgctgcc agcacacaga tggacccagc ggtggtccca 660 gcagtgagtt cttgccttgg gccatttcat tttctttgtc ctggccaagg aatgattgga 720 tgaacacact ggactcccaa tatgggtgga taagacaaga gtgtctggtc acaccctcc 780 35 accactcata agcatggttg tgggcagttt ggttccccag gcggccttgg agaatgcaat 840 gagccgagga actggtcatc tccaggtgca tccagggcag gaaaggatga cagcatgcgt 900

74/112

	gagccagggt	cactggctaa	gaagtcatct	caggacctcc	ccctagaaaa	gcccactggg	960
	cagcatccct	gctggttccc	ccctacacca	caaggttacg	cagagctggc	ggagggtcat	1020
	ggtcccactc	atgtcaggtg	ctcttaatct	ggcaaggaaa	tgtaacctac	gtgaatctca	1080
	acaggcagtg	aagcaccgtt	tcttcctgac	tccaggtagg	gtgaagaaaa	tgggacagta	1140
5	gtacggggtg	cgggcataaa	cgcacaactc	tgcctcccca	gacgcagagc	tgtggggctg	1200
	tgagaatgcc	aggaggaggt	aagaaagggc	ggccccatgg	ggggcctgca	gggtgggaca	1260
	agcccaagag	gtctctacat	ccaggcctgg	tgggggaggt	gagcccctgg	tttaccgagg	1320
	gggtcccttc	ctgccctcgg	aaatactgca	gctcctacct	ccatcgtctc	cccgctgcgg	1380
	ggacccaggg	gcgtgaggat	gagagagccc	ccaggcccca	gggtcagacg	actgtgttca	1440
10	agcaagtgag	aacctctctg	aggctgtttc	ccaactgtaa	aatggggata	gcagcagaac	1500
	tctctctcgc	ggcttgcgtg	aagaatacaa	ttcgatgtcg	acaggaggga	gcggcgcgca	1560
	gcgcgcagcg	agtagcaggc	gctgaagaag	gatacctgtg	aactgggagt	ggtggcggag	1620
	gctacgcggc	cagagtccgg	ggaaggggcg	ccggctctgc	cagtccctgc	tcggggctgg	1680
	atggtcgggg	gatgttctcg	taagtcggct	gggagggagc	ggtcccgcgt	accctgccac	1740
15	cgccgccgca	gaggttcggg	caggtgcggg	gccgcggccc	ctccgcgagg	gggccggtca	1800
	tccgccggga	ctgacatccc	ggaggcccaa	tggcaagccg	tcatctccgc	gcatccgccc	1860
	aatcggcgcc	ggttgccgtg	ccgcgccggg	tctctcgacc	aatgggaaaa	tttgctgtca	1920
	gatggggcgg	ggcggagatt	cgcgtcgccg	gcccggtccg	ctttgcgcac	gggccgcgtg	1980
	agggcgggag	ggctggcccg	gggtctcggg	ttgcgcgctg	ggcctggagg	gagggggcgg	2040
20	ccccgcacc	ggtccgagtt	geggeegegt	ggactgcgac	cegegeegeg	ccgcaccgcg	2100
•	ccgcgccctg	ggaacgccgc	teceegegeg	ccaacggaco	: cggggaagcc	cttctggggt	2160
	ccgaggccgc	: gctgcggggc	: cgcccacgct	gegetecagg	, taagcctgag	ccagtgggcg	2220
	gggtgtggga	cccggggctg	gggcctcggg	teggageegg	gactgggggc	ggggctgcag	2280
	atatgggacg	g cattccgggc	ageggteegg	g acagggtcct	atccctggag	tegagateeg	2340
25	ggcgagggto	tgggccggad	gtcggagcca	atctccgccc	cacccgcgtc	: ttgtccgcgc	2400
	gctctgcggc	gtccgagaco	ccgggccggc	gggggcgggt	ctctttgtgc	gtggccttgg	2460
	ggecetacco	c tacccgtcc	g ggcgtcttgd	c actgagcact	c c		· 2501

<210> 80

30 <211> 2501

<212> DNA

<213> Homo Sapiens

tagtttgcag ggctccagga tcgttcctag atcctggtct tgcagccttg acaaggggaa 120 ggagggaggc agcagaagga gggcagaaca atccatgcca ggctgtgatt tgccaagtga 180 ccatctggga agaatgggct ctcagaccag ggacagggag cagaggcaag cccgcatctg 240 ccctggttgc agaacccgga ttcagactca gggccccgat ttctgcctgg atcgctccac 300 5 tgggcggagg agtgactgtg gacacatcca gggttctctc caagtcggct tcctcatctg 360 ccaaatagag accgcagacc accagctccc aggcaggtgc tactcttccg gcccctccca 420 aggcaggagg gccaggcgta ctcgagacac aggtgtgctg ggggcccagg tgggccagcc 480 agcagcatcc tgcagggtaa tgggagcagg tgggcacccc gaggctggca gtaaacactg 540 gctatctgcc cccaggctcc caggagggt cttgggcctc acctcctccg gccggaacag 600 10 gaaagcagct ccaggcagct gggtccacaa aaatctccgt tccctgaggt ctcagaggca 660 gtggcccagg agcatctggt caccttcggg aaaaaccggc ttggcaaagg ctcccccgag 720 ggcacgcgtt tcccggacag tgaggcagga cctaaactct tccgttaaca ctacattttt 780 egeatticing caginating activitizing cocaccatti cocceptate ettagggaga 840 agttctcgac gtcccacctc ccctggaagg gtgctgctcc cagagacctt caggccaatg 900 15 gcccaatctc agtgccctca ggggagaggg gggtgcagaa aaacagcctg ggtcacaaaa 960 gaggtgcgag ggctgtgaga tcccggaggc accgacggga agcgagacgg agaacaggag 1020 ggcaggacgg gctggaggtg ggggatactg cagatggagg gagccacggt gggggagggc 1080 gtggacctga ccgtcctggc acaaggcggt cgggtgcaga cctccaggcc ctccgggtta 1140 1200 aggtgccgcc cagagccctc aggccggggg cgcacggaaa ccacaggcag ggtgcgcgtg 20 gagggacggg gaaagcgggg cgggttgggg aaggcgcccc gggaacctga acctcccacc 1260 1320 cogceteagt etegaceact cettaagece caccegece caggtaagge geagtecace cccattccca gtagattaac gcacaggtgg gggcgcgctc gggacatagc tgcgctaggg 1380 gacagegege ceageceagt egeggggeg aggageaggg eggggeeeag eaggaaceea 1440 gettigtiag egatgeteee egigageeae gegeeaegeg taegegette eteaatgggg 1500 25 ccgggcgtgg agccgcccc tgcgcgattg gccaaacggg tggcccacga ttggctgaga 1560 1620 ccctggcccc cgcctcctcg gccccaggag ggtggggcgt gggtgtgggc tgcgcggcgc gtgctgcccc cggggatctt gcgcgcctcc cgaacagccg tgttgtcgcc agggccgcgc 1680 cttccctccc acagcgcgcg ctgcgcgtgc gaaggtctgg cggctcttgg gactggcggg 1740 gctgcgcgcg gggttagggt gggggtacgg gaaggctcaa cccaggacct gcgtaccttg 1800 30 ctttgggggc gcactaagca cctgccggga gcaggggggg caccgggaac tcgcagattt 1860 cgccagttgg gcgcactggg gatctgtgga ctgcgtccgg gggatgggct agggggacat 1920 1980 gcgcacgctt tgggccttac agaatgtgat cgcgcgaggg ggagggcgaa gcgtggcggg agggcgaggc gaaggaagga gggcgtgaga aaggcgacgg cggcggcgcg gaggagggtt 2040 2100 atctatacat ttaaaaacca gccgcctgcg ccgcgcctgc ggagacctgg gagagtccgg 35 ccgcacgcgc gggacacgag cgtcccacgc tccctggcgc gtacggcctg ccaccactag 2160 2220 gcctcctatc cccgggctcc agacgaccta ggacgcgtgc cctggggagt tgcctggcgg

76/112

	cgccgtgcca gaagccccct tggggcgcca cagttttccc cgtcgcctcc ggttcctctg	2280
	cctgcacctt cctgcggcgc gccgggacct ggagcgggcg ggtggatgca ggcgcgatgg	2340
	acggcggcac actgcccagg tccgcgcccc ctgcgccccc cgtccctgtc ggctgcgctg	2400
	cccggcggag acccgcgtcc ccggaactgt tgcgctgcag ccggcggcgg cgaccggcca	2460
5	ccgcagagac cggaggcggc gcagcggccg tagcgcggcg c	2501
`		
	<210> 81	
	<211> 22	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> primer	
15	<400> 81	
		22
	aatcctccaa attctaaaaa ca	22
	<210> 82	
20	<211> 20	
2.0	<212> DNA	
	<213> Artificial Sequence	
	· · · · · · · · · · · · · · · · · · ·	
	<22.0>	
25	<223> primer	
	<400> 82	
	aggaaaggga gtgagaaaat	20
30		
	<210> 83	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
35		

<220>

<220>

77/112

<223> primer <400> 83 5 22 ggataggagt tgggattaag at <210> 84 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 84 22 aaatcttttt caacaccaaa at <210> 85 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 85 22 aaccctttct tcaaattaca aa 30 <210> 86 <211> 21 <212> DNA <213> Artificial Sequence 35

<400> 86

5 tgattgggtt ttagggaaat a

21

<210> 87

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 87

ttgaaaataa gaaaggttga gg

22

<210> 88

20 <211> 19

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 88

cttctacccc aaatcccta

19

30

<210> 89

<211> 18.

<212> DNA

<213> Artificial Sequence

35

<400> 89

5 tgtttgggat tgggtagg

18

<210> 90

<211> 23

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 90

cataaccttt acctatctcc tca

23

<210> 91

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 91

ttttagattg aggttttagg gt

22

30

<210> 92

<211> 22

<212> DNA

<213> Artificial Sequence

35

<223> primer <400> 92

22 5

atccattcta cctcctttt ct

<210> 93

<211> 18 <212> DNA 10 <213> Artificial Sequence

<220> <223> primer

15 <400> 93

18 ggagggaga gggttatg

<210> 94 20 <211> 22 <212> DNA <213> Artificial Sequence

25 <223> primer

<400> 94

22 tactatacac accccaaaac aa

30 <210> 95 <211> 19 <212> DNA

<213> Artificial Sequence 35

<223> primer

<400> 95

5 19 ttttgggaat gggttgtat

<210> 96

<211> 21 <212> DNA

10

15

<400> 96

<213> Artificial Sequence

<220>

<223> primer

21 ctaccettaa cetecateet a

<210> 97

20 <211> 22 <212> DNA <213> Artificial Sequence

25 <223> primer

<400> 97

ttgttgggag tttttaagtt tt 22

30 <210> 98 <211> 22

<212> DNA <213> Artificial Sequence

	<223> primer			
	<400> 98		•	
5	caaattctcc ttccaaataa at			22
	<210> 99		~ 1 .	
	<211> 22			
	<212> DNA			
LO	<213> Artificial Sequence			
	<220>			
	<223> primer			
15	<400> 99			
	gtaatttgaa gaaagttgag gg			22
	<210> 100			
20	<211> 22			
	<212> DNA			
	<213> Artificial Sequence			
	<220>			
25	<223> primer			
	<400> 100	٠		
	ccaacaacta aacaaaacct ct			22
30	•			
	<210> 101			
	<211> 20			
	<212> DNA			
	<213> Artificial Sequence			
35				
	<220>			

<223> primer

<400> 101

5 20 ggagttgtat tgttgggaga

<210> 102

<211> 21 <212> DNA

10 <213> Artificial Sequence

<220> <223> primer

15 <400> 102

21 taaaacccca attttcacta a

<210> 103 20 <211> 22

<212> DNA <213> Artificial Sequence

<220> 25 <223> primer

<400> 103

22 tttgtattag gttggaagtg gt

30 . <210> 104 <211> 22

<212> DNA <213> Artificial Sequence

<400> 104

5 cccaaataaa tcaacaacaa ca

22

<210> 105

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 105

22

20 <211> 22

<212> DNA

<210> 106

<213> Artificial Sequence

gatttttgga gaggaagtta ag

<220>

25 <223> primer

<400> 106

22

aaaactaaaa accaaaccca ta

30

<210> 107

<211> 20

<212> DNA

<213> Artificial Sequence

35

<223> primer

-· . <400> 107

5 tggggttagt ttaggatagg 20

<210> 108 <211> 25

<212> DNA 10 <213> Artificial Sequence

<220> <223> primer

15 <400> 108

cttaaaaaca ctaaaacttc tcaaa 25

<210> 109

20 <211> 21 <212> DNA

<213> Artificial Sequence

25 <223> primer

<400> 109

tttttgtatt ggggtaggtt t 21

30 <210> 110

<211> 24 <212> DNA

<213> Artificial Sequence

WO 2004/015139		PCT/EP2003/008602
	86/112	

<223> primer <400> 110 24 cccaactatc tctctcctct ataa ' 5 <210> 111 <211> 25 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 111 25 attagaagtg aaagtaatgg aattt <210> 112 20 <211> 19 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 112. 19 tcaatttcca aaaaccaac 30 <210> 113 <211> 22 <212> DNA <213> Artificial Sequence

35

WO 2004/015139		PCT/EP2003/008602
	87/112	

<223> primer <400> 113 5 22 gggatgggtt attagttgta aa <210> 114 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 114 22 ccttcacaca aaactacaaa aa <210> 115 20 <211> 22 <212> DNA <213> Artificial Sequence 25 <223> primer <400> 115 22 taattgaagg ggttaatagt gg 30 <210> 116 <211> 22 <212> DNA

<213> Artificial Sequence

35

<400> 116

5 aaaaccaaaa ccaaaactaa aa

22

<210> 117

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 117

22

20 <211> 22

<212> DNA

<210> 118

<213> Artificial Sequence

agtggatttg gagtttagat gt

<220>

25 <223> primer

<400> 118

22

aacaaaataa aaacttctcc ca

30 .

<210> 119

<211> 22

<212> DNA

<213> Artificial Sequence

35.

<223> primer

<400> 119

5 taggggaaaa gttagagttg ag 22

<210> 120

<211> 18 <212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 120

cccattaacc cacaaaaa 18

·

20 <211> 22 <212> DNA

<210> 121

<213> Artificial Sequence

<220>

25 <223> primer

<400> 121

attttagttt gtgaaatggg at 22

<211> 21 <212> DNA

<213> Artificial Sequence
35

· <220>

<223> primer <400> 122 21 5 tcttaaccaa taacccctca c <210> 123 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 123 22 gtgggttttg ggtagttata ga <210> 124 20 <211> 20 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 124 20 taacctcctc tccttaccaa 30 <210> 125 <211> 22 <212> DNA <213> Artificial Sequence

35

WO 2004/015139	DCT/ED2002/000202
0 200 1/010109	PCT/EP2003/008602

91/112 <223> primer <400> 125 taggatgggg agagtaatgt tt 22 <210> 126 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 126 acaacttatc caacttccat tc 22 <210> 127 20 <211> 22 <212> DNA <213> Artificial Sequence 25 <223> primer <400> 127 tcccacaaaa actaaacaat ta 22 30 <21.0> 128 <211> 21 <212> DNA

<213> Artificial Sequence

35

	<223> primer	·
	<400> 128	
5	aggttttaga tgaaggggtt t	21
	<210> 129	
	<211> 23	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> primer	
15	<400> 129	
	tttggagggt ttagtagaag tta	23
	<210> 130	
20	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
2.5	<220>	
25	<223> primer	
	<400> 130	
	cccaataatc acaaaataaa ca	22
30		
	<210> 131	
	<211> 22	
	<212> DNA	
35	<213> Artificial Sequence	

<400> 131

5 atacaacctc aaatcctatc ca

22

<210> 132

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 132

agggagaagg aagttatttg tt

22,

<210> 133

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 133

ggaagatgag gaagttgatt ag

22

30

<210> 134

<211> 22

<212> DNA

<213> Artificial Sequence

35

35

<220>

<223> primer <400> 134 5 cctacaaccc tatcctctaa aa 22 <210> 135 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 135 ttagtagggg tgtgagtgtt tt 22 <210> 136 20 <211> 23 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 1.36 caaacaaaac ttctatctca acc 23 30 <210> 137 <211> 21 <212> DNA <213> Artificial Sequence

<400> 137

5 ttatagggtt gagtttggga t

<210> 138

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 138

taaacaaaca acaaatcttc ca

<210> 139

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 139

tgaaaatgaa ggtatggagt tt

30

<210> 140

<211> 22

<212> DNA

<213> Artificial Sequence

35

<220>

21

22

22

	<223> primer	
	<400> 140	
5	ttaaaaccat ataatccctc ca	22
	<210> 141	
	<211> 22	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> primer	
15	<400> 141	
	tatgtttggt tttgttttga ga	22
	<210> 142	
20	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> primer	
	<400> 142	
	aaccccatca cttttatttc tt	22
30		
	<210> 143	
	<211> 22	
	<212> DNA	

<213> Artificial Sequence

35

<400> 143

5 gggtgtagaa gtgtttaggt tt

22

<210> 144

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 144

tttctccct tacaacaata ac

22

<210> 145

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 145

teccetteca actatatete te

22

30

<210> 146

<211> 22

<212> DNA

<213> Artificial Sequence

35

	<223> primer	
	<400> 146	
5	tgagagtgtt ttagggaagt tt	22
	<210> 147	
	<211> 22	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> primer	
15	<400> 147	
	aaaaccaaaa cataaaccaa aa	22
	<210> 148	
20	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
0.5	<220>	
25	<223> primer	
	<400> 148	
	gattaggagg gtttgttgag at	22
30		
	<210> 149	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
35		

99/112 PC1/EP2003/008602

<223> primer

<400> 149

5 aatggttgat gattttggtt t 21

- anaggoogae gaccooggoo e

<210> 150 ·

<212> DNA

10 <213> Artificial Sequence

<211> 22

10 <213> Artificial Sequence

<220>
<223> primer

15 <400> 150

actotottoc otataccoot aa 22

<210> 151·

20 <211> 24 <212> DNA

<213> Artificial Sequence

<220>
25 <223> primer

<400> 151

tgttagtaga gttttaggga ggtt 24

30
<210> 152
<211> 22
<212> DNA

<212> DNA
<213> Artificial Sequence

<223> primer

<400> 152

15

<400> 153

22 5 acactaccta tccttacccc ac

<210> 153 <211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

tttttgtttt tatggggtgt at

22

<210> 154

20 <211> 22 <212> DNA <213> Artificial Sequence

<220>

25 <223> primer <400> 154

22 ttaaatatcc cttccttaac ca

30

<210> 155 <211> 23 <212> DNA

<213> Artificial Sequence 35

<223> primer

<400> 155

5 agttagaaga ggagttagga tgg 23

<210> 156

<211> 22

<212> DNA 10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 156

taattttcca atacccattt tc 22

<210> 157 20

<211> 22 <212> DNA <213> Artificial Sequence

<220> 25

<223> primer <400> 157

tgggtagtat ttttgttggt tt

22 30

<210> 158 <211> 22 <212> DNA

<213> Artificial Sequence 35

aactccctcc atctacaata tc

30

<223> primer <400> 158 5 cctaaaaact ctctcatcct ca 22 <210> 159 <211> 23 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 159 23 agtggtttag gagtatttgg tta <210> 160 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 160

22

Figure 1

Figure 2

Figure 3

Figure 4

Α				
	TP	FP .	FN	
11-a ; j	9 .	8	0	
J11-6	9	7	0	
12 · 24	7	9	0	
13	7	6	1	
14	9	11	1	
	7	5	1	
21-a	8	4	2	
21-b	8	4	0	
22	8	9	2	
23-a	フ	5	0	
23·b	7	10	1	
24	10	17	0	
25	8	0	0	
31	9	3	0	
32	4	7	4	
33	6	9	2	
34	8	3	0	
35	7	4	2	

:	TP:	FP	FN
Ø	7,67	6,72	0,89
STABW	1,37	3,86	1,13

С				
	TP	FP	FN	
.11-a	8	7	1	
11-b	8	4	1	
12,	7	6	1	
13	8	6	0	
14	6	6	2	
. 15	4	9	5	
21-a	7	3	0	
21-b 22, 23-a	8	. 4	0	
22	4	6	3	
23-a	6	4	3	
23-b	8	5	1	
24	8	10	4	
25	5	1	3	
31	7	2	1	
32	8	3	1	
33 · · ·	2	3	7	
.34	7	8	1	
35	6	3	1	

1000 被决定	TP	FP	FN
Ø	6,5	5	1,94
	1,76	2,45	1,89

INTERMITIONAL SEARCH REPORT

Internation Spelication No PCT/EP 03/08602

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 °C120

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, EMBASE, BIOSIS

L/O 1//	ternal, WPI Data, EMBASE, BIOSIS		
···•			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category •	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
X	WO 01 62960 A (BERLIN KURT ;E (DE); OLEK ALEXANDER (DE)) 30 August 2001 (2001-08-30) page 10, line 9 - line 12; c1 page 13, line 10 - line 29	1-51	
X	HERMAN J G ET AL: "METHYLATI PCR: A NOVEL PCR ASSAY FOR ME STATUS OF CPG ISLANDS" PROCEEDINGS OF THE NATIONAL ACA SCIENCES OF USA, NATIONAL ACA SCIENCE. WASHINGTON, US, vol. 93, 1 September 1996 (19 pages 9821-9826, XP002910406 ISSN: 0027-8424 cited in the application page 9821 -page 9823	THYLATION CADEMY OF DEMY OF	1-51
		-/	·
χ Furth	her documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.
 Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed 		 *T* later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention *X* document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an inventive and involve an inventive with one or modecument is combined with one or modecuments, such combination being obvious in the art. *&* document member of the same patent for the same paten	the application but cory underlying the laimed invention be considered to cument is taken alone laimed invention ventive step when the other such docu-
Date of the	actual completion of the international search	Date of mailing of the international sea	
10 December 2003		02/01/2004	
Name and n	nalling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Favre, N	

INTERMITIONAL SEARCH REPORT

PCT/EP 03/08602

Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
	appropriate production of the contract of the	Tiesevani to claim No.
X	US 5 786 146 A (HERMAN JAMES G ET AL) 28 July 1998 (1998-07-28) page 6, line 1 -page 7, line 6; claim 1	1-51
X	WO 01 44504 A (FOX JAYNE CATHERINE; HAQUE KEMAL (GB); LITTLE STEPHEN (GB); ASTRAZ) 21 June 2001 (2001-06-21) page 6, line 26 -page 8, line 7; figure 1	1-51
X	WO 98 56952 A (UNIV SOUTHERN CALIFORNIA) 17 December 1998 (1998-12-17) page 9, line 20 -page 10, line 2; claims 9,10	1-51
X	REIN ET AL: "Identifying 5-methylcytosine and related modifications in DNA genomes" NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 26, no. 10, 1998, pages 2255-2264, XP002143106 ISSN: 0305-1048 cited in the application abstract; figure 2	1-51
X	WO 00 70090 A (UNIV SOUTHERN CALIFORNIA) 23 November 2000 (2000-11-23) page 13, line 29 -page 14, line 34; claim 1	1-51
X	ZESCHNIGK M ET AL: "A SINGLE-TUBE PCR TEST FOR THE DIAGNOSIS OF ANGELMAN AND PRADER-WILLI SYNDROME BASED ON ALLELIC METHYLATION DIFFERENCES AT THE SNRPN LOCUS" EUROPEAN JOURNAL OF HUMAN GENETICS, KARGER, BASEL, CH, vol. 5, no. 2, 1997, pages 94-98, XP009011533 ISSN: 1018-4813 cited in the application abstract; figure 1	1-51
Α	GRIFFIN HG AND GRIFFIN AM (EDS.): "PCR TECHNOLOGY: Current Innovations" 1994, CRC PRESS, BOCA RATON XP008025537 page 5 -page 11	1-51
A	US 6 007 231 A (BISHOP ROBERT ET AL) 28 December 1999 (1999-12-28) the whole document	1-51
	-/	

INTERNATIONAL SEARCH REPORT

PCT/EP 03/08602

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
rrië me	Surraional Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. χ	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION sheet PCT/ISA/210
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This int	ernational Searching Authority found multiple inventions in this International application, as follows:
1. [As all required additional search fees were timely paid by the applicant, this International Search Report covers all
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Rema	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Insofar as they include the step of isolating a nucleic sample, i.e. a step which could be performed on the living human or animal body, claims 1-38 relate to a method of treatment and/or diagnostic performed on the living human or animal body, the search has been carried out and restricted on in vitro methods.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation Population No PCT/EP 03/08602

Patent document Ited in search report		Publication date		Patent family member(s)	Publication date
0 0162960	Α	30-08-2001	DE AU	10010282 A1 4227701 A	03-09-2001
			CA	2401233 AT	
			WO EP	0162960 A2 1257670 A2	
			JP	2003525041 T	26-08-2003
			US	2003157510 A	
JS 5786146	A	28-07-1998	CA	2257104 A	11-12-1997
			EP	0954608 A	
	•	•	IL	127342 A	25-07-2002
			JP	2000511776 T	12-09-2000
		•	MO	9746705 A	
			US	6200756 B	
			US	6265171 B	
			US 	6017704 A	25-01-2000
WO 0144504	Α	21-06-2001	AU	2194801 A	25-06-2001
			WO 	0144504 A	2 21-06-2001
WO 9856952	Α	17-12-1998	AU	7829398 A	30-12-1998
			US	6251594 B	26-06-2001
			WO	9856952 A	
			US	2002177154 A	
		·	US 	2003211473 A	1 13-11-2003
WO 0070090	Α	23-11-2000	US	6331393 B	
			AU	4712200 A	
			CA	2372665 A	
			EP JP	1185695 A 2002543852 T	
			WO	0070090 A	
			US	2002086324 A	
110 0007001					
US 6007231	Α	28-12-1999	AU	3632097 A	
			CA	2263731 A	
			EP WO	0925372 A	
	~			9806872 A	1 19-02-1998
WO 0049177	Α	24-08-2000	CA	2359645 A	
			EP	1153141 A	
			WO	0049177 A	
			US US	2003113886 A	
			US	6365376 B 2002127666 A	
US 2003068625	A1	10-04-2003	WO	03021259 A	13-03-2003
	, , <u>,</u>	10 01 2000	US	2003108919 A	
			US	2003100919 A	