

Al Research and Applications Forum: Bayesian Optimization

Bayesian Optimization

Johanna Menn, M.Sc. Institute for Data Science in Mechanical Engineering

INTERNET OF PRODUCTION

Slido
Join at slido.com
#AiForum
or visit
https://app.sli.do/event/d
dHceNA9PzG4YgyVSnJ
21F

Agenda

16:30 - 16:45 General introduction to the event series

16:45 - 17:30 Tutorial on Bayesian optimization

17:30 - 19:30 Poster session + networking with food and drinks

Al Research & Applications Forum: Providing Space for Exchange about Al

Tutorial on Bayesian Optimization

Questions in the end please ©

Motivation

Goal: Find the parameter setting that leads to the best product quality with a small number of experiments

Problem formulation

Goal: Find the parameter setting that leads to the best product quality with a small number of experiments

Formally: Find $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}[J(\theta)]$

We query experiments iteratively

Goal: Find $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}[J(\theta)]$

observed quality $y_i = J(\theta_i) + \epsilon_i$

Bayesian Optimization

View experiment as a black-box function

Goal: Find $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}[J(\theta)]$

observed quality $y_i = J(\theta_i) + \epsilon_i$

Bayesian Optimization

Model the black-box function over the parameter space with a probabilistic surrogate model

Use the model to suggest next parameters to query (acquisition function)

Main ingredients of Bayesian optimization

$$y = J(\theta) + \epsilon$$

1) Observations / evaluations / experiments

- Noisy evaluation as $J_i = J(\theta_i) + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \sigma_{\rm n}^2)$, iid
- **Data set** from observations: store all relevant information $\mathcal{D}_i = \{(\theta_1, J_1), \dots, (\theta_i, J_i)\}$

2) Probabilistic ML model

Model belief about the unknown function

3) Acquisition function

- Determine the next evaluation $\theta_{i+1} = \underset{\theta \in \Theta}{\operatorname{argmax}} \alpha(\theta \mid \mathcal{D}_i)$
- Expresses trade-off between exploration (test new solutions) and exploitation (use what is known to be "best")

Goal: Find $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}[J(\theta)]$

Main ingredients of Bayesian optimization

Black-box function

$$y = J(\theta) + \epsilon$$

Goal: Find $\theta^* = \operatorname{argmax} \mathbb{E}[J(\theta)]$

- 1) Observations / evaluations / experiments:
- Noisy evaluation as $J_i = J(\theta_i) + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \sigma_n^2)$, iid
- **Data set** from observations: store all relevant information $\mathcal{D}_i = \{(\theta_1, J_1), \dots, (\theta_i, J_i)\}\$

2) Probabilistic ML model

usually a Gaussian process

$$J(\theta) \sim \mathcal{GP}(m(\theta), k(\theta, \theta'))$$

3) Acquisition function

- Determine the next evaluation $\theta_{i+1} = \operatorname{argmax} \alpha(\theta \mid \mathcal{D}_i)$
- Expresses trade-off between exploration (test new solutions) and exploitation (use what is known to be "best")

Key take aways:

- GPs are distributions over functions

Key take aways:

- GPs are distributions over functions
- Defined by mean and covariance (kernel) function
- Kernel ↔ smoothness/structure of functions

Gaussian Process Regression

Likelihood describes our observation model, $y_i = J(\theta_i) + \epsilon_i, \epsilon \sim \mathcal{N}(0, \sigma_n)$

Key take aways:

- GPs are distributions over functions
- Defined by mean and covariance (kernel) function
- Kernel ↔ smoothness/structure
- Uncertainty low near data, high elsewhere

Main ingredients of Bayesian optimization

Black-box function

$$y = J(\theta) + \epsilon$$

Goal: Find $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}[J(\theta)]$

- 1) Observations / evaluations / experiments:
- Noisy evaluation as $J_i = J(\theta_i) + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \sigma_n^2)$, iid
- **Data set** from observations: store all relevant information $\mathcal{D}_i = \{(\theta_1, J_1), ..., (\theta_i, J_i)\}$

2) Probabilistic ML model

Model belief about the unknown function

usually a Gaussian process

- Determine the next evaluation $\theta_{i+1} = \underset{\theta \in \Theta}{\operatorname{argmax}} \alpha(\theta \mid \mathcal{D}_i)$
- Expresses trade-off between exploration (test new solutions) and exploitation (use what is known to be "best")

Let's look at the acquisition function in more detail!

Choosing the next sample location: The acquisition function

• To choose the next sample, we aim to solve $\theta_{i+1} = \operatorname{argmax} \alpha(\theta \mid \mathcal{D}_i)$

Uses **model** of $I(\theta)$, **not** true $I(\theta)$! Sampling and thus optimization is more straightforward!

There exist various acquisition functions:

This is also a global optimization problem. What have we gained?

1) Probability of Improvement [1]

$$\alpha_{\mathrm{PI}}(\theta \mid \mathcal{D}_t) = \mathbb{P}[J(\theta) > J(\theta_{\mathrm{best}})]$$

2) Expected Improvement [2]

$$\alpha_{\text{EI}}(\theta \mid \mathcal{D}_t) = \mathbb{E}[\max\{0, J(\theta) - J(\theta_{\text{best}})\}]$$

Bayesian optimization

- 3) Max-Value Entropy Search [3]
 - $\alpha_{\text{MES}}(\theta \mid \mathcal{D}_t) \stackrel{\cdot}{=} H(p(J|\mathcal{D}_t, \theta)) \mathbb{E}[H(p(J|\mathcal{D}_t, \theta, J^*))]$
- 4) Upper-Confidence-Bound [1,4]

$$\alpha_{\text{UCB}}(\theta \mid \mathcal{D}_t) = \mu_{\mathcal{D}_t}(\theta) + \beta_t^{1/2} \sigma_{\mathcal{D}_t}(\theta)$$

Acquisition function

- 1: $\mathcal{GP}(0,k), \Theta \in \mathbb{R}^d, \mathcal{D}_0 = \emptyset$
- 2: **for** i = 1, 2, ... to T **do**
- Train GP model with \mathcal{D}_{i-1}
- $\theta_i \leftarrow \text{QUERY}(\mathcal{D}_{i-1})$
- $J_i \leftarrow \text{Observation}(\theta_i)$
- $\mathcal{D}_i = \mathcal{D}_{i-1} \cup \{(\theta_i, J_i)\}$

^[3] Wang, Zi, and Stefanie Jegelka. "Max-value entropy search for efficient Bayesian optimization." International Conference on Machine Learning, 2017. [3] Srinivas, Niranjan, et al. "Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design." International Conference on Machine Learning, 2010

^[1] Kushner, H. J. "A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise." Journal of Basic Engineering 86.1, 1964.

^[2] Močkus, Jonas. "On Bayesian methods for seeking the extremum." Optimization Techniques IFIP Technical Conference Novosibirsk, 1975.

Bayesian optimization on a standard benchmark

Let's test BO on a standard benchmark!

Objective:

 Hartmann 6D – a six-dimensional objective function with six local minima

$$J(\theta) = \sum_{i=1}^{4} \alpha_i \exp\left(-\sum_{j=1}^{6} A_{ij}(\theta_j - P_{ij})^2\right)$$

Comparison:

- BO with Expected Improvement (EI)
- BO with UCB ($\beta = 2$)
- Random search

Setup:

- Feasible domain as $[0,1]^6$
- 6 initial points
- 50 iteration

Bayesian Optimization in Application

Bayesian Optimization in Application

observed quality

$$y = J(\theta) + \epsilon$$

BO Checklist:

- 1. Parameters θ
- 2. Parameter bounds 9
- 3. Objective $J(\theta)$
- 4. Experiment design
- 5. Experiment budget

Goal: Find $\theta^* = \operatorname{argmax} \mathbb{E}[J(\theta)]$ $\theta \in \Theta$

Bayesian Optimization in Application

Goal: Find $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}[J(\theta)]$

observed quality

$$y = J(\theta) + \epsilon$$

BO Checklist:

- 1. Parameters θ
 - \rightarrow 3 parameters $\theta = [\theta_1, \theta_2, \theta_3]$, continuous
- 2. Parameter bounds Θ
 - \rightarrow Lever settings from 0 (down) to 3 (up) $\Theta = [0,3]^3 \subset \mathbb{R}^3$
- 3. Objective $J(\theta)$
 - → surface quality measurement
- 4. Experimental design
 - → produce 4 parts per experiment and measure the average quality of the last 3 parts
- 5. Experiment budget

Extensions of Bayesian Optimization

Extensions of Bayesian Optimization

Challenge	BO Extension
High-dimensions	Local BO [1,2]
Experiments fail	Crash constraints [3,4]
Constraints	Constrained BO [5]
Safety requirements	Safe BO [6,7]
Something is changing	Time-varying/ Event-triggered BO [8,9]
Multiple experiments in parallel	Batch BO [10]
Non-measurable objective function	Preferential BO [11]
Information from multiple sources	Multi-fidelity BO [12]

^[1] Eriksson, David, et al. "Scalable global optimization via local Bayesian optimization." Advances in Neural Information Processing Systems 32, 2019.

^[12] Marco, Alonso, et al. "Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization." 2017 IEEE International Conference on Robotics and Automation, 2017.

^[2] Müller, Sarah, Alexander von Rohr, and Sebastian Trimpe. "Local policy search with Bayesian optimization." Advances in Neural Information Processing Systems 34, 2021.

^[3] Stenger, David, and Dirk Abel. "Benchmark of Bayesian optimization and metaheuristics for control engineering tuning problems with crash constraints." arXiv preprint arXiv:2211.02571, 2022

^[4] Marco, Alonso, et al. "Robot learning with crash constraints." IEEE Robotics and Automation Letters, 2021

^[5] Gardner, Jacob R., et al. "Bayesian optimization with inequality constraints." International Conference on Machine Learning, 2014.

^[6] Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause. "Safe controller optimization for quadrotors with Gaussian processes." IEEE International Conference on Robotics and Automation, 2016

^[7] Fiedler, Christian, et al. "On Safety in Safe Bayesian Optimization." Transactions on Machine Learning Research, 2024

^[8] Brunzema, Paul, Alexander Von Rohr, and Sebastian Trimpe. "On controller tuning with time-varying Bayesian optimization." IEEE Conference on Decision and Control, 2022.

^[9] Brunzema, Paul, et al. "Event-triggered time-varying Bayesian optimization." Transactions on Machine Learning Research, 2025.

^[10] González, Javier, et al. "Batch Bayesian optimization via local penalization." Artificial intelligence and statistics, 2016.

^[11] González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning, 2017.

High-dimensional multifidelity Bayesian Optimization

Event-Triggered Safe Bayesian Optimization

Summary

Three Ingredients of Bayesian Optimization

acquisition observations functions surrogate model

Bayesian Optimization in Application

BO Checklist:

- 1. Parameters θ
- 2. Parameter bounds 9
- 3. Objective $J(\theta)$
- 4. Experiment design
- 5. Experiment Budget

Extensions of Bayesian Optimization

Coming soon:

RWTHx: Learning-based control MOOC

Thanks to Paul Brunzema, for providing slides from this MOOC for this tutorial.

Already existing MOOC: RWTHx: Reinforcement Learning

https://www.edx.org/learn/computer-science/rwth-aachen-university-reinforcement-learning-2

Thank you for your attention and enjoy the poster session!

