Put G = Glz (Rp) and define other things as expected, W/ B standard Boxel and A standard maximal torus. let To be irred. smoth fin. tim. cep. of G. Then, G has tim I by Schve's lemma. This has the form T(g) = X(det g) for X a smooth chac. of Ryx, which we already know has an incanified part and a unitary part acising from Zp. let ω_1, ω_2 be (normalized) unitary char's of Qp and $s_{1,1}, s_2 \in C$. We have assoc. char's $\chi_1, \chi_2 = \omega_1$ $\chi_i(x) = \omega_i(x) |x|^{5i}$. So, $\chi = (\chi_1, \chi_2)$ extends to Boxel chac. via $\chi \left[\binom{a}{b} \binom{1x}{i} \right] = \chi_i(a) \chi_2(b)$. (Iscally constant) Normalized parabolic induction is V(X1, X2):= {f:G > C smooth (f((ab)(1))g) = x,(a)x2(b)) = 1/2/3/2/9 This is the principal series rep. of G induced from (X1, X2), W action given by right trans. [normalization by modular $[(g \cdot f)(x) := f(xg)]$ quasicharacter] Lenma: $V(\chi_1,\chi_2) \cong V(\chi_1^-,\chi_2^-)$.

[smooth contragredient]

Thm: $V(\chi_1,\chi_2)$ is admissible always and irred. unless $\chi_1\chi_2^{-1} = |\cdot|^{\pm 1}$. (a) $X_1X_2' = |\cdot| \Rightarrow V(X_1, X_2)$ contains irred. adm. subspace of cotin | < both called <u>special rep.</u> (
(b) $X_1X_2' = |\cdot|^{-1} \Rightarrow V(X_1, X_2)$ contains inv. |- dim subspace w) irred. quotient to second case) $\pi(\chi_1,\chi_2):= \begin{cases} V(\chi_1,\chi_2), & V(\chi_1,\chi_2) \text{ icred.} \\ \text{special cep. assoc. to } V(\chi_1,\chi_2), & \text{otherwise} \end{cases}$

Special rep.'s cure all of the form $\pi(\chi|\cdot|^1,\chi|\cdot|^{-1/2})$ for χ char. of $\mathbb{Q}_{\gamma}^{\times}$. $\chi \equiv 1$ gives Steinberg cep. St. We then identify $\pi(\chi|\cdot|^{1/2},\chi|\cdot|^{-1/2})$ w) tristed Steinberg cep. St $\otimes\chi$. More generally, given (π,V) cep. of $\mathbb{Q}_{\gamma}^{\times}$ on \mathbb

let (T,V) be infinite icced. adm. cep. of G.

Ex 3.1.6: (π, V) 1-tim rep. of $G \Rightarrow Tacquet mod.$ has tim O.

- . Jacquet mod. VN is adm. rep. of A my dim = 2
- , (π, V) is jaced principal series \iff dim $V_N = 2$.
- . (π, V) is special rep. \iff $\lim_{N \to 1} V_N = 1$.

 $K = GL_2(\mathbb{Z}_p)$. One way to build supercuspidal cap is is to take an iccep. of $GL_2(\mathbb{F}_p)$ and lift via $K \to GL_2(\mathbb{F}_p)$. This gives supercuspidal cap is of <u>Jepth 0</u>.

The following night only work for Glz. We have matrix coeffs. g > < \pi(g) v, v'> for v, v' \in V.

- . φ has compact support, if π is supercospidul.
- π supercuspidal (Hacish-Chandra)
 π is supercusp form—i.e., ∫ flg,ng2) dn = 0 ∀g,192 € G.

Thm: Let I be icced. adm. cep. of G. Then, I throw falls into one and only one of the following equiv. classes.

- (i) icced. principal series $\pi(\chi_1,\chi_2)$, w_1 only relation $\pi(\chi_1,\chi_2) \sim \pi(\chi_2,\chi_1)$;
- (ii) special cep. St⊗x, my St⊗x~St⊗x' ⇔ x=x';
- (iii) supercuspidal cep. ;
- (iv) I-din, w form Xodet.

This is an interesting classification. How do things change if we impose triviality of the central chac. or unitarizability?

Define PGL2 (ap):= G/Z. Then, rep.'s of PGL2(ap) (ap) is rep.'s of G w/ triv central char.

Ex: $\pi = \pi(\chi_1, \chi_2) \Rightarrow \omega_{\pi} = \chi_1 \chi_2$. π any cop. of $G \Rightarrow \omega_{\pi \otimes \chi} = \chi^2 \omega_{\pi}$.

CARRIED [Ex] Cor: Here's classification of irred. adm. rep.'s of PCL2 (Rp).

- (i) icced. principal series $\pi(\chi_1\chi^{-1})$.
- (ii) St & x w/ x2=1. [quad.tuist of Steinberg]
- (iii) superconspidal M wn =1.
- (iv) 1-dim, w/ from Xodet for X2=1.

lemma: $\chi \in \chi(\Omega_p^*)$ is unitary iff $\chi = \omega \cdot l^{ir}$ for $r \in \mathbb{R}$ and ω of finite order.

Thm: We classify icred adm. unitary rep!'s of G as follows.

[conjectiveally, these do not occur as

- (i) (cont. sectes) irred. principal sectes T(X1,X2) m/ X1,X2 unitary.

 [i) (cont. sectes) irred. principal sectes T(X1,X2) m/ X1,X2 unitary.
- (ii) (complementary series) irred. principal series $\pi(\chi, \chi^{-1})$ by $\chi = |\cdot|^{\sigma}$ for $0 < \sigma < 1$. cap: s.]
- (iii) special cep. W unitary certeal char.
- (iv) supercuspidal rep. w/ unitary central char.

Given n 20, define k(n) := { (ab) Ek : cep^2p 3.

Def: Let (TI,V) be infinite dim. icced. adm. cey. of G. Conductor c(TI):= inf { n 20: V k(n) + 0 }. π is <u>uncanified</u> if $c(\pi) = 0$ and <u>canified</u> otherwise.

Facts: , ν k(c(π)) has dim 1. - Vectors in V k(c(π)) are called new forms.

Thm: (i) $\pi * (\chi_1, \chi_2)$ icced principal series $\Rightarrow c(\pi(\chi_1, \chi_2)) = c(\chi_1) + c(\chi_2)$.

(ii) For special cep.'s, c(St⊗X) = { 1, X uncan. 2 c(X), X can.

(iii) π supercuspidal $\Rightarrow c(\pi) \ge 2$.

[This has important consequences for study of modular forms.]

(or: let (π, V) be as in the inition above. π is uncomified iff it is uncom. principal series (i.e., χ_1, χ_2 uncom.).

let's now discuss L- and e-factors. Let To be (infinite dim) irred. adm. cep. of G. Choose kirillar model K of

 $\pi = \pi(\chi_1, \chi_2) \text{ icred. principal series } \exists \{(s, \pi) := \{(1-\alpha_1 p^{-s})(1-\alpha_2 p^{-s})\}^{-1} \text{ for } \alpha_1 := \{0, \text{ otherwise } \}$

• $\pi = St \otimes \chi$ special cep. $\Rightarrow l(s,\pi) := (l-\alpha p^{-s})^{-1}$ for $\alpha := \begin{cases} \chi(p)|p|^{1/2} = p^{-1/2}\chi(p), \chi|\cdot|^{1/2} \text{ uncan.} \\ 0, & \text{otherwise.} \end{cases}$

. π supercuspidal $\Rightarrow L(s,\pi) := 1$.

let ψ be standard additive char. of Ω_{ϕ} and supprese ω_{π} have is trivial. Define $\varepsilon(s,\pi,\psi):=\varepsilon_{\phi}^{c}(\pi)(1/2-s)$ for

to e { ± 13. More specifically,

 $\zeta_0:=\begin{cases} \chi(-1), & \pi=\pi(\chi,\chi^{-1}) \text{ icced. principal series,} \\ -1, & \pi=\text{St}, \\ \chi(-1), & \pi\in\text{St}\otimes\chi \text{ for }\chi \text{ nontriv. quadratiz.} \end{cases}$