CHAPITRE 1- INTEGRALES GENERALISEES (fin)

- 1. INTRODUCTION
- 2. RAPPELS SUR LE CALCUL INTEGRAL
 - 2.1 INTEGRATION PAR PARTIES
 - 2.2 CHANGEMENT DE VARIABLE
- 3. INTEGRALES GENERALISEES
 - 3.1 NOTION DE FONCTION LOCALEMENT INTEGRABLE
 - 3.2 INTEGRALES DE REFERENCE
 - 3.3 PREMIERES PROPRIETES
 - 3.4 NOTION D'INTEGRABILITE
- 4. CAS DES FONCTIONS CONTINUES A VALEURS POSITIVES
 - 4.1 INTEGRABILITE DES FONCTIONS POSITIVES
 - 4.2 PROPRIETES
 - 4.3 AUTRES INTEGRALES DE REFERENCE
- 5. CAS DES FONCTIONS DE SIGNE QUELCONQUE
 - **5.1 INTEGRALES ABSOLUMENT CONVERGENTES**
 - **5.2 INTEGRALES SEMI-CONVERGENTES**
- 6. AUTRES PROPRIETES
- 7. CAS DES FONCTIONS A VALEURS COMPLEXES

5. CAS DES FONCTIONS DE SIGNE QUELCONQUE :

Nous avons vu, pour l'étude de la nature des intégrales impropres, les techniques suivantes :

- La définition ; inconvénient : calcul de l'intégrale de Riemann suivi d'un calcul de limite ;
- Les critères de fonctions « positives » (en réalité, il suffit que les fonctions soient de signe constant dans l'intervalle d'étude ou au voisinage de la borne qui présente un problème);
- Cas des fonctions de signe non constant : on peut considérer la valeur absolue de la fonction et se ramener ainsi au cas précédent, mais alors, a-t-on une <u>équivalence</u> entre la nature de l'intégrale de la valeur absolue de la fonction et l'intégrale de la fonction ? La réponse est NON!

5.1 INTEGRALES ABSOLUMENT CONVERGENTES:

DEFINITION 5.1:

Soit f une fonction définie, localement intégrable sur un intervalle réel [a,b[(b fini ou pas) et à valeurs dans \mathbb{R} .

On dit que l'intégrale impropre $\int_a^b f(x) dx$ est absolument convergente (ou encore converge absolument) lorsque $\int_a^b |f(x)| dx$ est convergente.

REMARQUE 5.1:

Cette définition ramène l'étude de la nature de l'intégrale impropre d'une fonction de signe quelconque à celle d'une fonction à valeurs positives.

Nous avons alors le résultat important suivant :

THEOREME 5.1:

Toute intégrale généralisée absolument convergente est convergente.

REMARQUE 5.2:

Le théorème 5.1 ci-dessus, signifie en d'autres termes :

ABSOLUMENT CONVERGENTE ⇒ CONVERGENTE

Attention, la réciproque est FAUSSE. C'est-à-dire, si $\int_a^b |f(x)| \, dx$ est divergente, on ne peut rien en conclure sur la nature de l'intégrale impropre $\int_a^b f(x) \, dx$.

EXEMPLE 5.1:

Les intégrales impropres suivantes sont absolument convergentes, elles sont donc convergentes :

$$I_1 = \int_1^{+\infty} \frac{\sin t}{t^2} dt$$

$$I_2 = \int_1^{+\infty} \frac{\cos t}{t^2} dt$$

Donnons à présent un contre-exemple, c'est-à-dire, une intégrale impropre convergente, mais non absolument convergente (cf TD3):

$$I_3 = \int_0^{+\infty} \frac{\sin t}{t} dt$$

On parle alors d'intégrale semi-convergente, on reviendra sur l'étude de cette intégrale dans le paragraphe ci-après.

5.2 INTEGRALES SEMI-CONVERGENTES:

DEFINITION 5.2:

On dit que l'intégrale $\int_a^b f(t)\,dt$ est semi-convergente lorsqu'elle est convergente mais non-absolument convergente.

C'est-à-dire:

$$\int_a^b f(t) dt$$
 est convergente et $\int_a^b |f(t)| dt$ est divergente

Donnons à présent l'énoncé d'un résultat important de convergence : le théorème d'Abel.

THEOREME 5.2:

Soient f et g deux fonctions localement intégrables sur l'intervalle réel $[a, +\infty[$. Si :

- f est positive, décroissante sur $[a, +\infty[$ et telle que $\lim_{x\to +\infty} f(x)=0$.
- Il existe une réel M > 0 tel que $\forall X \ge a$, $\left| \int_a^X g(x) \, dx \right| \le M$.

Alors l'intégrale $\int_{a}^{+\infty} f(x)g(x) dx$ est convergente.

EXEMPLE 5.2:

L'intégrale de Fresnel $\int_0^{+\infty} \frac{\sin t}{2\sqrt{t}} dt$ est semi-convergente.

6. AUTRES PROPRIETES :

PROPOSITION 6.1:

Soit *a* un réel strictement positif.

Soit f une fonction définie, continue sur l'intervalle $[a, +\infty[$.

- i) S'il existe un réel $\alpha > 1$ tel que $x^{\alpha}f(x)$ admette une limite finie quand x tend vers $+\infty$, alors f est intégrable sur $[a, +\infty[$.
- ii) S'il existe un réel $\alpha \le 1$ tel que $x^{\alpha}f(x)$ admette une limite non nulle quand x tend vers $+\infty$, alors f n'est pas intégrable sur $[a, +\infty[$.

3

Démonstration:

i) Si
$$\lim_{x\to +\infty} x^{\alpha} f(x) = l$$
, $l < \infty$

Alors il existe un réel X_0 tel que,

$$\forall x > X_0 ; 0 \le x^{\alpha} f(x) \le 2l$$

 $\Rightarrow 0 \le f(x) \le \frac{2l}{x^{\alpha}}$

Or, l'intégrale $\int_a^{+\infty} \frac{1}{x^{\alpha}} dx$ est une intégrale de Riemann convergente, puisque $\alpha > 1$. Par le critère de comparaison des fonctions positives, l'intégrale $\int_a^{+\infty} f(x) \, dx$ est aussi convergente.

7. CAS DES FONCTIONS A VALEURS COMPLEXES :

Soit f une fonction définie et continue sur un intervalle réel I, et à valeurs dans \mathbb{C} . On peut écrire :

$$f = \Re e(f) + \mathbf{i} \Im m(f)$$
 , $\mathbf{i}^2 = -1$

Où $\Re e$, $\Im m$ représentent les partie réelle et imaginaire de f, avec :

$$\mathcal{R}e(f)$$
, $\mathcal{I}m(f)$: $I \subset \mathbb{R} \to \mathbb{R}$

telles que:

$$\mathcal{R}e(f)(x) = \mathcal{R}e(f(x))$$

 $\mathcal{I}m(f)(x) = \mathcal{I}m(f(x))$

PROPOSITION 7.1:

Soit f une fonction définie et continue sur un intervalle réel I, et à valeurs dans $\mathbb C$. La fonction f est intégrable sur l'intervalle I si et seulement si les fonctions $\mathcal Re(f), \mathcal Im(f)$ sont toutes deux intégrables sur I.

Exemples (cf TD3)