

WHAT IS CLAIMED IS:

1. A data transmission device for generating a plurality of compressed/encoded data of different bit rates from a single video signal and simultaneously transmitting
5 the compressed/encoded data onto a network, comprising:
 - a synchronizing signal detection section for detecting a synchronizing signal from the video signal input thereto;
 - 10 a plurality of compressing/encoding sections for compressing/encoding the video signal to generate data streams of different bit rates, respectively;
 - 15 a timing control section for controlling said compressing/encoding sections in accordance with the detected synchronizing signal such that timings for starting compression/encoding processes in said compressing/encoding sections are shifted from one another in units of frame; and
 - 20 a multiplexing section for sequentially multiplexing the data streams generated respectively by said compressing/encoding sections and transmitting the multiplexed data onto the network.
2. The data transmission device according to claim 1, wherein the input video signal comprises an NTSC composite signal, and said synchronizing signal detection section detects a vertical synchronizing signal and a color synchronizing signal from the NTSC composite signal.
25

3. The data transmission device according to
claim 2, wherein said timing control section causes one of
said compressing/encoding sections to start the
compression/encoding process when frame start timing of the
5 video signal derived based on the vertical synchronizing
signal coincides with rise timing of a chrominance
subcarrier signal synchronized with the color synchronizing
signal, and causes a different one of said compressing/
encoding sections to start the compression/encoding process
10 when the frame start timing coincides thereafter with fall
timing of the chrominance subcarrier signal.

4. The data transmission device according to
claim 1, wherein said multiplexing section generates
15 fragmented packets carrying the individual data streams in
accordance with amounts of data generated per unit time by
said compressing/encoding sections, respectively, and
transmits the fragmented packets at equal intervals within
the unit time.

20

5. The data transmission device according to
claim 4, wherein said multiplexing section sets a reference
amount of data to be carried by one packet, and if an amount
of data generated by any one of said compressing/encoding
25 sections during a data generation period corresponding to
one frame exceeds n times (n is an integer greater than
zero) the reference amount, said multiplexing section

fragments and carries the generated data into $(n + 1)$ fragmented packets each having a data amount equal to or smaller than the reference amount and sequentially transmits the fragmented packets at equal intervals obtained by
5 equally dividing the data generation period by the number of the fragmented packets.

6. The data transmission device according to claim 5, wherein said reference amount can be set to a
10 desired value.

7. A data transmission method for generating a plurality of data streams of different bit rates by compressing/encoding a single video signal and for
15 simultaneously transmitting the data streams onto a network, comprising the steps of:

detecting a synchronizing signal from the input video signal;

20 shifting start timings for compression/encoding processes corresponding to the generation of the respective data streams from one another in units of frame in accordance with the detected synchronizing signal; and

25 generating fragmented packets carrying the individual data streams in accordance with amounts of data generated per unit time by the respective compression/encoding processes, and transmitting the fragmented packets onto the network at equal intervals within the unit time.