Per-Pixel Classification is Not All You Need for Semantic Segmentation

Bowen Cheng^{1,2*} Alexander G. Schwing² Alexander Kirillov¹

¹Facebook AI Research (FAIR) ²University of Illinois at Urbana-Champaign (UIUC)

Contribution

- mask classification模型可以同时解决语义分割和实例分割问题,并且我们发现这个模型 甚至不用做任何改动:包括模型结构(model architecture),训练的loss,以及训练方法。
- mask classification模型在语义分割上不仅比像素分类模型的结果更好,而且需要更少的参数和计算量。

MaskFormer

- MaskFormer employs a Transformer decoder [41] to compute a set of pairs, each consisting
 of a class prediction and a mask embedding vector.
- The mask embedding vector is used to get the binary mask prediction via a dot product with the per-pixel embedding obtained from an underlying fully-convolutional network.

MaskFormer

- MaskFormer employs a Transformer decoder [41] to compute a set of pairs, each consisting
 of a class prediction and a mask embedding vector.
- The mask embedding vector is used to get the binary mask prediction via a dot product with the per-pixel embedding obtained from an underlying fully-convolutional network.

MaskFormer

- The model contains three modules :
- 1) a pixel-level module that extracts per-pixel embeddings used to generate binary mask predictions;
- 2) a transformer module, where a stack of Transformer decoder layers [41] computes N persegment embeddings;
- 3) a segmentation module, which generates predictions $\{(p_i, m_i)\}_{i=1}^N$ from these embeddings.

Pixel-level module

 1) a pixel-level module that extracts per-pixel embeddings used to generate binary mask predictions;

backbone down-sample to 1/32.

decoder upsample 32.

此部分与大部分per-pixel classificationbased segmentation 是相同的。

Transformer module

• 2) a transformer module, where a stack of Transformer decoder layers [DERT] computes N per-segment embeddings;

input: features F (value) and N learnable positional embeddings (i.e., queries)

output: N per-segment embeddings $Q \in \mathbb{R}^{C_Q \times N}$

Transformer module

• 2) a transformer module, where a stack of Transformer decoder layers [DERT] computes *N* per-segment embeddings;

input: features F and N learnable positional embeddings (i.e., queries)

output: N per-segment embeddings $Q \in \mathbb{R}^{C_Q \times N}$

Transformer module

2) a transformer module, where a stack of Transformer decoder layers [DERT] computes N
per-segment embeddings;

input: features F and N learnable positional embeddings (i.e., queries)

output: N per-segment embeddings $Q \in \mathbb{R}^{C_Q \times N}$

we assume $N \ge N$ gt and pad the set of ground truth labels with "no object" tokens to allow one-to-one matching

Segmentation module

• 3) a segmentation module, which generates predictions $\{(p_i, m_i)\}_{i=1}^N$ from these embeddings.

Segmentation module

• 3) a segmentation module, which generates predictions $\{(p_i, m_i)\}_{i=1}^N$ from these embeddings.

Segmentation module

pixel

decoder

image features \mathcal{F}

backbone

 \mathcal{E}_{pixel}

per-pixel embeddings

3) a segmentation module, which generates predictions $\{(p_i, m_i)\}_{i=1}^N$ from these embeddings.

N mask predictions

 $N \times H \times W$

Loss

- for semantic and panoptic segmentation tasks:
- $\mathcal{L}_{\text{mask-cls}}$ a single classification loss per mask (cross entropy) and a per-pixel **binary** mask loss

$$\mathcal{L}_{\text{mask-cls}}(z, z^{\text{gt}}) = \sum\nolimits_{j=1}^{N} \left[-\log p_{\sigma(j)}(c_{j}^{\text{gt}}) + \mathbb{1}_{c_{j}^{\text{gt}} \neq \varnothing} \mathcal{L}_{\text{mask}}(m_{\sigma(j)}, m_{j}^{\text{gt}}) \right].$$

 $\mathcal{L}_{\text{mask}}$ The same as DETR: a focal loss and a dice loss

Mask-classification inference

- converts mask classification outputs $\{(p_i, m_i)\}_{i=1}^N$ to either panoptic or semantic segmentation output formats.
- For General inference :
- For Semantic inference :

MaskFormer--mask-classification inference

- converts mask classification outputs $\{(p_i, m_i)\}_{i=1}^N$ to either panoptic or semantic segmentation output formats.
- For General inference :

$$\arg\max_{i:c_i\neq\varnothing} p_i(c_i) \cdot m_i[h,w].$$

对pixel(h,w)遍历所有N masks,计算pixel(h,w)在每个图上的 $p_i(c_i) \cdot m_i[h,w]$,找到此值最大的那个masks,即为pixel(h,w)的实际label。

注: $p_i(c_i)$ 此时每个mask代表的类别为ci

 $c_i = \arg\max_{c \in \{1, \dots, K, \varnothing\}} p_i(c)$ is the most likely class label for each probability-mask pair i (N)

MaskFormer--mask-classification inference

- converts mask classification outputs $\{(p_i, m_i)\}_{i=1}^N$ to either panoptic or semantic segmentation output formats.
- For General inference :

$$\arg\max_{i:c_i\neq\varnothing} p_i(c_i)\cdot m_i[h,w].$$

- reduce false positive rates :
 - 1. **filter out** low-confidence predictions prior to inference
 - 2. **remove** predicted segments that have large parts of their binary masks (*mi* > 0:5) occluded by other predictions.

MaskFormer--mask-classification inference

- converts mask classification outputs $\{(p_i, m_i)\}_{i=1}^N$ to either panoptic or semantic segmentation output formats.
- For **Semantic inference**:

$$\arg\max_{c \in \{1,...,K\}} \sum_{i=1}^{N} p_i(c) \cdot m_i[h, w]$$

marginalization over probability-mask pairs yields better

对pixel(h,w) 求和其在N个mask上的 $p_i(c) \cdot m_i[h,w]$,即 $\sum_{i=1}^N p_i(c) \cdot m_i[h,w]$,找到此值最大的那个class。

- 注: $p_i(c)$ 此时每个mask代表的类别已经被淡化。这时候ci是由p*m一起决定的,而之前是只由p决定的。
- N==K

Experiments—Implementation details

Backbone

ResNet backbones and Transformer-based Swin-Transformer

Pixel decoder

for MaskFormer, we design a light-weight pixel decoder based on the popular FPN architecture.

Transformer decoder

the same Transformer decoder design as DETR,

The N query embeddings are initialized as zero vectors

- Loss:
- focal loss: dice loss = 20: 1
- MLP:
- 2 layer

Experiments--Training settings

Semantic segmentation

8 V100 GPUs

ADE20K:

512 \times 512, a batch size of 16 and train all models for 160k iterations

COCO-Stuff-10k:

640 imes 640, a batch size of 32 and train all models for 60k iterations

Panoptic segmentation.

COCO models are trained using 64 V100 GPUs

640 imes 640, a batch size of 32 and train all models for 60k iterations

ADE20K experiments are trained with 8 V100 GPUs and 720k iterations and 640 imes 640

We follow exactly the same architecture, loss, and training procedure as we use for semantic segmentation. The only difference is supervision: *i.e.*, category region masks in semantic segmentation *vs.* object instance masks in panoptic segmentation.

• Semantic segmentation on ADE20K val with 150 categories.

	method	backbone	crop size	mIoU (s.s.)	mIoU (m.s.)	#params.	FLOPs	fps
SS	OCRNet [50]	R101c	520×520	-	45.3	-	-	
oue	DeepLabV3+ [9]	R50c	512×512	44.0	44.9	44M	177G	21.0
CNN backbones		R101c	512×512	45.5	46.4	63M	255G	14.2
I Pa		R50	512×512	44.5 ±0.5	46.7 ± 0.6	41M	53G	24.5
ź	MaskFormer (ours)	R101	512×512	45.5 ± 0.5	47.2 ± 0.2	60M	73G	19.5
		R101c	512×512	46.0 ±0.1	48.1 ±0.2	60M	80G	19.0
	SETR [53]	ViT-L [†]	512×512	-	50.3	308M	-	-
Transformer backbones	Swin-UperNet [29, 49]	Swin-T	512×512	-	46.1	60M	236G	18.5
		Swin-S	512×512	-	49.3	81M	259G	15.2
		Swin-B [†]	640×640	-	51.6	121M	471G	8.7
		Swin-L [†]	640×640	-	53.5	234M	647G	6.2
orn.		Swin-T	512×512	46.7 ± 0.7	48.8 ± 0.6	42M	55G	22.1
Transf	MackFormer (ours)	Swin-S	512×512	49.8 ± 0.4	51.0 ± 0.4	63M	79G	19.6
	MaskFormer (ours)	Swin-B [†]	640×640	52.7 ± 0.4	53.9 ± 0.2	102M	195G	12.6
		Swin-L [†]	640×640	54.1 ±0.2	55.6 ± 0.1	212M	375G	7.9

• MaskFormer vs. per-pixel classification baselines on 4 semantic segmentation datasets.

_	ar.	-	ADE2014 (150 1)			(151 1)			
	Cityscapes (19 classes)		ADE20K (150 classes)		COCO-Stuff (171 classes)		ADE20K-Full (847 classes)		
	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ St	
PerPixelBaseline	77.4	58.9	39.2	21.6	32.4	15.5	12.4	5.8	
PerPixelBaseline+	78.5	60.2	41.9	28.3	34.2	24.6	13.9	9.0	
MaskFormer (ours)	78.5 (+0.0)	63.1 (+2.9)	44.5 (+2.6)	33.4 (+5.1)	37.1 (+2.9)	28.9 (+4.3)	17.4 (+3.5)	11.9 (+2.9)	

 PerPixelBaseline+ and MaskFormer differ only in the formulation: per-pixel vs. mask classification.

当类别越多的时候 mask classification 模型的提升越大

(a) PerPixelBaseline

(b) PerPixelBaseline+

Panoptic segmentation on COCO panoptic val with 133 categories.

	method	backbone	PQ	PQ^{Th}	PQ^{St}	SQ	RQ	#params.	FLOPs	fps
backbones	DETR [4]	R50 + 6 Enc	43.4	48.2	36.3	79.3	53.8	-	-	-
	MaskFormer (DETR)	R50 + 6 Enc	45.6	50.0 (+1.8)	39.0 (+2.7)	80.2	55.8	-	-	-
oac	MaskFormer (ours)	R50 + 6 Enc	46.5	51.0 (+2.8)	39.8 (+3.5)	80.4	56.8	45M	181G	17.6
CNN	DETR [4]	R101 + 6 Enc	45.1	50.5	37.0	79.9	55.5	-	-	-
	MaskFormer (ours)	R101 + 6 Enc	47.6	52.5 (+2.0)	40.3 (+3.3)	80.7	58.0	64M	248G	14.0
nes	Max-DeepLab [42]	Max-S	48.4	53.0	41.5	-	-	62M	324G	7.6
kbo		Max-L	51.1	57.0	42.2	-	-	451M	3692G	-
Transformer backbones		Swin-T	47.7	51.7	41.7	80.4	58.3	42M	179G	17.0
		Swin-S	49.7	54.4	42.6	80.9	60.4	63M	259G	12.4
	MaskFormer (ours)	Swin-B	51.1	56.3	43.2	81.4	61.8	102M	411G	8.4
		Swin-B [†]	51.8	56.9	44.1	81.4	62.6	102M	411G	8.4
Tra		Swin-L [†]	52.7	58.5	44.0	81.8	63.5	212M	792G	5.2

Ablation studies

(a) Per-pixel vs. mask classification.

	mIoU	PQ St
PerPixelBaseline+	41.9	28.3
MaskFormer-fixed	43.7 (+1.8)	30.3 (+2.0)

Number of queries.

	ADE20K		COCO-Stuff		ADE20	K-Full
# of queries	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ^{St}
PerPixelBaseline+	41.9	28.3	34.2	24.6	13.9	9.0
20	42.9	32.6	35.0	27.6	14.1	10.8
50	43.9	32.7	35.5	27.9	15.4	11.1
100	44.5	33.4	37.1	28.9	16.0	11.9
150	44.2	33.4	37.0	28.9	15.5	11.5
300	43.5	32.3	36.1	29.1	14.2	10.3
1000	35.4	26.7	34.4	27.6	8.0	5.8

Max-Deeplab

- Max-Deeplab中,一张图会有N(最后为100)个query,每个query对应一个Mask和一个C分类结果,然后通过C分类的得分,将不符合要求的mask弃置,达到定长预测变成变长结果的效果,从而完成全景分割。
- Max-Deeplab两个分支都用了transformer,模型大很多的重要原因。

(a) Overview of MaX-DeepLab

(b) Dual-path transformer block

相比Max-deeplab,maskformer更为简洁体量小一点。 Max-Deeplab两个分支都用了 transformer,而Maskformer其中一个 分支用了CNN。

auxiliary loss:

PQ-style loss
Instance discrimination
Mask-ID cross-entropy
Semantic segmentation