Precalculus Lecture 16 Factoring Polynomials

Todor Miley

https://github.com/tmilev/freecalc

2020

Factorization overview

- Factorization overview
- Polynomial division

- Factorization overview
- Polynomial division
- Factoring cubics with rational root

- Factorization overview
- Polynomial division
- Factoring cubics with rational root
- Polynomial inequalities

Lecture 16

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

$$2x^2 + 3x - 5 =$$

$$x^2 + 1 =$$

$$x^4 - 1 =$$

$$x^4 + 1 =$$

Recall that
$$i^2 = -1$$
, $\sqrt{-1} = i$.

$$2x^{2} + 3x - 5 = (?)$$
)(?)
 $x^{2} + 1 =$
 $x^{4} - 1 =$

$$x^4 + 1 =$$

Recall that
$$i^2 = -1$$
, $\sqrt{-1} = i$.

Example (Polynomial factorizations)

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1)$$
$$x^{2} + 1 =$$
$$x^{4} - 1 =$$

$$x^4 + 1 =$$

Lecture 16

Recall that
$$i^2 = -1$$
, $\sqrt{-1} = i$.

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = \frac{2}{2}(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 =$$

$$x^{4} - 1 =$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1)$$
$$x^{4} - 1 =$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2}$$
$$x^{4} - 1 =$$

$$x^4 + 1 =$$

Example (Polynomial factorizations)

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 =$$

$$x^4 + 1 =$$

Lecture 16

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 =$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 =$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

Example (Polynomial factorizations)

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

Lecture 16

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$x^4 + 1 =$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x + 1)(x - i)(x + i)$$

$$x^{4} + 1 = (x - 1)(x + 1)(x - i)(x + i)$$

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x + 1)(x - i)(x + i)$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

Recall that $i^2 = -1$, $\sqrt{-1} = i$.

Example (Polynomial factorizations)

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x + 1)(x - i)(x + i)$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$(x - (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

Todor Miley

Recall that $i^2 = -1$, $\sqrt{-1} = i$.

Example (Polynomial factorizations)

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x + 1)(x - i)(x + i)$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$(x - (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

Todor Miley

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n),$$

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n),$$

where x_1, \ldots, x_n are the (not necessarily different) roots of p(x).

Every pol. of deg. n can be factored as product of n linear factors.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n = a_0 (x - x_1) \dots (x - x_n),$$

where x_1, \ldots, x_n are the (not necessarily different) roots of p(x).

Every pol. of deg. n can be factored as product of n linear factors.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = \frac{a_0}{a_0}x^n + a_1x^{n-1} + \cdots + a_n = \frac{a_0}{a_0}(x - x_1) \dots (x - x_n),$$

where x_1, \ldots, x_n are the (not necessarily different) roots of p(x).

• Every pol. of deg. *n* can be factored as product of *n* linear factors.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n = a_0 (x - x_1) \dots (x - x_n),$$

- Every pol. of deg. n can be factored as product of n linear factors.
- $x_1, ..., x_n$ may be complex numbers. Reminder: complex numbers are of the form p + qi, where $i^2 = -1$ and $\sqrt{-1} = i$.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n = a_0 (x - x_1) \dots (x - x_n),$$

- Every pol. of deg. *n* can be factored as product of *n* linear factors.
- x_1, \ldots, x_n may be complex numbers. Reminder: complex numbers are of the form p + qi, where $i^2 = -1$ and $\sqrt{-1} = i$.
- While we can find $x_1, \ldots x_n$ with arbitrary precision, there may not exist a formula involving radicals for computing each x_1, \ldots, x_n .

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n = a_0 (x - x_1) \dots (x - x_n),$$

- Every pol. of deg. *n* can be factored as product of *n* linear factors.
- x_1, \ldots, x_n may be complex numbers. Reminder: complex numbers are of the form p + qi, where $i^2 = -1$ and $\sqrt{-1} = i$.
- While we can find $x_1, \ldots x_n$ with arbitrary precision, there may not exist a formula involving radicals for computing each x_1, \ldots, x_n .

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n),$$

where x_1, \ldots, x_n are the (not necessarily different) roots of p(x).

• x_1, \ldots, x_n may be complex numbers. Reminder: complex numbers are of the form p + qi, where $i^2 = -1$ and $\sqrt{-1} = i$.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n),$$

where x_1, \ldots, x_n are the (not necessarily different) roots of p(x).

• x_1, \ldots, x_n may be complex numbers. Reminder: complex numbers are of the form p + qi, where $i^2 = -1$ and $\sqrt{-1} = i$.

Corollary

Every real polynomial can be factored into a product of real linear terms and real quadratic terms with no real roots, i.e., factors of form

- \bullet (x-r), where r is real and
- $ax^2 + bx + c$ with $b^2 4ac < 0$ where a, b, c are real.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

=prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2\left(x - \left(-\frac{5}{2}\right)\right)(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

= prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
 real roots

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$(x - (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

=prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2\left(x - \left(-\frac{5}{2}\right)\right)(x - 1)$$
 real roots

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

= prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
 real roots

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$
 complex roots

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$(x - (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

= prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
 real roots

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$
 complex roots

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$(x - (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

= prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
 real roots
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$
 complex roots
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$
 mixed roots
$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

= prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
 real roots
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$
 complex roots
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$
 mixed roots
$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

= prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2\left(x - \left(-\frac{5}{2}\right)\right)(x - 1) \qquad \text{real roots}$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i) \qquad \text{complex roots}$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i)) \qquad \text{mixed roots}$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right) \qquad \text{complex roots}$$

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

= prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$
 real roots
$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i)$$
 complex roots
$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i))$$
 mixed roots
$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$
 complex roots

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

• Theory guarantees numerical approximations for roots x_1, \dots, x_n .

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- Theory guarantees numerical approximations for roots x_1, \ldots, x_n .
- Can we find algebraic formulas for x_1, \ldots, x_n ?

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- Theory guarantees numerical approximations for roots x_1, \ldots, x_n .
- Can we find algebraic formulas for x_1, \ldots, x_n ?
- No, if using finitely many operations $+, -, *, /, \sqrt[n]{}$.

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- Theory guarantees numerical approximations for roots x_1, \ldots, x_n .
- Can we find algebraic formulas for x_1, \ldots, x_n ?
- No, if using finitely many operations $+, -, *, /, \sqrt[n]{}$.
- First (advanced) proof by Norwegian Niels Henrik Abel(1824) based on work of Italian Paolo Ruffini(1799).

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- Theory guarantees numerical approximations for roots x_1, \ldots, x_n .
- Can we find algebraic formulas for x_1, \ldots, x_n ?
- No, if using finitely many operations $+, -, *, /, \sqrt[n]{}$.
- First (advanced) proof by Norwegian Niels Henrik Abel(1824) based on work of Italian Paolo Ruffini(1799).
- Yes, with extra operations. Difficult: google Galois Theory to get started.

What does factorization mean?

• Based on context, "to factor a polynomial" means one of:

These poly's are equal	Type of factorization
$x^4 + 1$	
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	

Todor Milev Lecture 16 Factoring Polynomials 2020

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no ⁿ/₂.

These poly's are equal	Type of factorization
$x^4 + 1$	factored over rationals
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	
$ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $ $ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $	

Todor Milev Lecture 16 Factoring Polynomials 2020

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no √/.

These poly's are equal	Type of factorization
$x^4 + 1$	factored over rationals
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	
$ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $ $ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $	

Todor Milev Lecture 16 Factoring Polynomials

2020

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no $\sqrt[n]{}$.
 - Factor the polynomial over the real numbers. Use radicals and/or numerical approximations, no use of $i = \sqrt{-1}$.

These poly's are equal	Type of factorization
$x^4 + 1$	factored over rationals
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	factored over the reals
$ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $ $ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $	

Todor Milev Lecture 16 Factoring Polynomials 2020

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no $\sqrt[n]{}$).
 - Factor the polynomial over the real numbers. Use radicals and/or numerical approximations, no use of $i = \sqrt{-1}$.

These poly's are equal	Type of factorization
$x^4 + 1$	factored over rationals
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	factored over the reals
$ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $ $ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $	

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no $\sqrt[n]{}$.
 - Factor the polynomial over the real numbers. Use radicals and/or numerical approximations, no use of $i = \sqrt{-1}$.
 - Fully factor the polynomial using complex numbers.

These poly's are equal	Type of factorization
$x^4 + 1$	factored over rationals
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	factored over the reals
	full complex factorization

Todor Milev Lecture 16 Factoring Polynomials

2020

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no $\sqrt[n]{}$.
 - Factor the polynomial over the real numbers. Use radicals and/or numerical approximations, no use of $i = \sqrt{-1}$.
 - Fully factor the polynomial using complex numbers.

These poly's are equal	Type of factorization
$x^4 + 1$	factored over rationals
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	factored over the reals
$ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $ $ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $	full complex factorization

Factorization over the rationals

• Suppose we want to factor a polynomial using only rational numbers (no 🎷 or numerical approximations).

Lecture 16

Factorization over the rationals

• Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

Factorization over the rationals

- Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).
- No guarantee to get:

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

• A factorization using rationals may have arbitrarily large factors.

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).
 - Methods based on finite fields.

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

No guarantee to get:

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).
 - Methods based on finite fields.
 - Lenstra-Lenstra-Lovász algorithm (Dutch, Dutch, Hungarian mathematicians, all contemporary).

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

No guarantee to get:

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).
 - Methods based on finite fields.
 - Lenstra-Lenstra-Lovász algorithm (Dutch, Dutch, Hungarian mathematicians, all contemporary).
- Above methods require computer; no rational roots assumption.

Todor Milev Lecture 16 Factoring Polynomials 20

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

No guarantee to get:

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).
 - Methods based on finite fields.
 - Lenstra-Lenstra-Lovász algorithm (Dutch, Dutch, Hungarian mathematicians, all contemporary).
- Above methods require computer; no rational roots assumption.
- If we assume rational roots there are practical algorithms by hand.

Todor Miley Lecture 16 Factoring Polynomials 202

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

No guarantee to get:

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).
 - Methods based on finite fields.
 - Lenstra-Lenstra-Lovász algorithm (Dutch, Dutch, Hungarian mathematicians, all contemporary).
- Above methods require computer; no rational roots assumption.
- If we assume rational roots there are practical algorithms by hand.
- We study those for cubics with the aid of scientific calculator.

Todor Milev Lecture 16 Factoring Polynomials 2020

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Todor Milev Lecture 16 Factoring Polynomials 2020

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$x - 1$$
 $x^3 + 2x^2 + 1$

Todor Milev Lecture 16

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$x - 1$$
 $x^3 + 2x^2 + 1$

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$x - 1$$
 $x^3 + 2x^2 + 1$

Divide x^3 by x.

Lecture 16

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\frac{x^2}{x-1} \quad \overline{x^3+2x^2 + 1}$$

Divide x^3 by x.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$x - 1$$
 x^{2} $x^{3} + 2x^{2} + 1$

Multiply x^2 by divisor.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Multiply x^2 by divisor.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^{2} \\
x - 1 \\
- \\
x^{3} + 2x^{2} \\
x^{3} - x^{2} \\
?
\end{array}$$

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c|cccc}
x^2 & ? \\
\hline
x - 1 & x^3 + 2x^2 & +1 \\
& x^3 - x^2 & \\
\hline
3x^2 & +1
\end{array}$$

Divide $3x^2$ by x.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Divide $3x^2$ by x.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^{2} + 3x \\
x - 1 \\
- \\
x^{3} + 2x^{2} \\
x^{3} - x^{2} \\
\hline
3x^{2} + 1 \\
?
?$$

Multiply 3x by divisor.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^{2} + 3x \\
x - 1 \\
- \\
x^{3} + 2x^{2} \\
x^{3} - x^{2} \\
3x^{2} + 1 \\
\underline{3x^{2} - 3x}
\end{array}$$

Multiply 3x by divisor.

Todor Milev

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{ccccc}
x - 1 & x^2 + 3x & ? \\
\hline
x^3 + 2x^2 & +1 \\
& x^3 - x^2 \\
& & 3x^2 & +1 \\
& & 3x^2 - 3x \\
& & 3x + 1
\end{array}$$

Divide 3x by x.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^2 + 3x + 3 \\
x - 1 \\
- \\
- \\
- \\
- \\
- \\
\frac{x^3 + 2x^2}{3x^2 + 1} \\
- \\
- \\
\frac{3x^2 - 3x}{3x + 1}
\end{array}$$

Divide 3x by x.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^2 + 3x + 3 \\
x - 1 \\
- \\
x^3 + 2x^2 \\
- \\
3x^2 + 1 \\
3x^2 - 3x \\
3x + 1 \\
?
?$$

Multiply 3 by divisor.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^2 + 3x + 3 \\
x - 1 \\
- \\
x^3 + 2x^2 \\
- \\
3x^2 + 1 \\
3x^2 - 3x \\
3x + 1 \\
3x - 3
\end{array}$$

Multiply 3 by divisor.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Quotient:
$$x^2 + 3x + 3$$

 $x - 1$ $x^3 + 2x^2 + 1$
 $x^3 - x^2$
 $x^3 - x^2$

(Dividend) = (Quotient) · (Divisor) + (Remainder)

$$(x^3 + 2x^2 + 1) = (x^2 + 3x + 3) · (x - 1) + 4$$

Todor Miley Lecture 16 Factoring Polynomials

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Quotient:
$$x^{2} + 3x + 3$$

 $x - 1$ $x^{3} + 2x^{2} + 1$
 $x^{3} - x^{2}$
 $x^{3} - x^{3}$
Remainder: $x^{3} - x^{2}$

(Dividend) = (Quotient) · (Divisor) + (Remainder)

$$(x^3 + 2x^2 + 1) = (x^2 + 3x + 3) \cdot (x - 1) + 4$$

Todor Miley Lecture 16 Factoring Polynomials 2020

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Lecture 16

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$2x-3$$
 $6x^3-19x^2+17x-3$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$2x - 3$$
 $6x^3 - 19x^2 + 17x - 3$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c}
? \\
2x - 3 \overline{6x^3 - 19x^2 + 17x - 3}
\end{array}$$

Divide $6x^3$ by 2x.

Todor Milev

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c|c}
3x^2 \\
2x - 3 & 6x^3 - 19x^2 + 17x - 3
\end{array}$$

Divide $6x^3$ by 2x.

Todor Milev

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c}
3x^2 \\
2x - 3 \overline{)6x^3 - 19x^2 + 17x - 3} \\
? ?
\end{array}$$

Multiply $3x^2$ by divisor.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 \\
2x - 3 \overline{)6x^3 - 19x^2 + 17x - 3} \\
\underline{6x^3 - 9x^2}
\end{array}$$

Multiply $3x^2$ by divisor.

Todor Milev Lecture 16 Factoring Polynomials 2020

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c}
3x^{2} \\
2x - 3 \\
- \\
6x^{3} - 19x^{2} + 17x - 3 \\
\underline{6x^{3} - 9x^{2}}$$
? ? ?

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^{2} \\
2x - 3 \\
- \\
6x^{3} - 19x^{2} + 17x - 3 \\
6x^{3} - 9x^{2} \\
- 10x^{2} + 17x - 3
\end{array}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c|c}
3x^2 & ? \\
\hline
2x - 3 & 6x^3 - 19x^2 + 17x - 3 \\
 & 6x^3 - 9x^2 \\
\hline
 & -10x^2 + 17x - 3
\end{array}$$

Divide $-10x^2$ by 2x.

Lecture 16

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \overline{\smash{\big)}6x^3 - 19x^2 + 17x - 3} \\
- 6x^3 - 9x^2 \\
\hline
- 10x^2 + 17x - 3
\end{array}$$

Divide $-10x^2$ by 2x.

Todor Milev Lecture 16

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c}
3x^2 - 5x \\
2x - 3 \\
- \\
6x^3 - 19x^2 + 17x - 3 \\
\underline{6x^3 - 9x^2} \\
-10x^2 + 17x - 3 \\
\underline{?}
\end{array}$$

Multiply -5x by divisor.

Todor Milev Lecture 16 Factoring Polynomials 2020

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \\
 - \\
 - \\
 6x^3 - 19x^2 + 17x - 3 \\
 \underline{6x^3 - 9x^2} \\
 - 10x^2 + 17x - 3 \\
 \underline{-10x^2 + 15x}
\end{array}$$

Multiply -5x by divisor.

Todor Milev Lecture 16 Factoring Polynomials 2020

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \overline{\smash{\big)}6x^3 - 19x^2 + 17x - 3} \\
- 6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
\underline{-10x^2 + 15x} \\
?
?$$

Subtract last two polynomials.

Todor Milev

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \overline{\smash{\big)}6x^3 - 19x^2 + 17x - 3} \\
- \underline{6x^3 - 9x^2} \\
- \underline{-10x^2 + 17x - 3} \\
\underline{-10x^2 + 15x} \\
2x - 3
\end{array}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c}
3x^2 - 5x \quad ? \\
6x^3 - 19x^2 + 17x - 3 \\
- 6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
- 10x^2 + 15x \\
2x - 3
\end{array}$$

Divide 2x by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x + 1 \\
6x^3 - 19x^2 + 17x - 3 \\
- 6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
- 10x^2 + 15x \\
\underline{- 10x^2 + 15x} \\
2x - 3
\end{array}$$

Divide 2x by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x + 1 \\
6x^3 - 19x^2 + 17x - 3 \\
6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
- 10x^2 + 15x \\
2x - 3 \\
?
\end{array}$$

Multiply 1 by divisor.

Lecture 16

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x + 1 \\
2x - 3 \\
- \\
6x^3 - 19x^2 + 17x - 3 \\
6x^3 - 9x^2 \\
- \\
10x^2 + 17x - 3 \\
- \\
10x^2 + 15x \\
2x - 3 \\
2x - 3
\end{array}$$

Multiply 1 by divisor.

Lecture 16

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Subtract last two polynomials.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Subtract last two polynomials.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x + 1 \\
2x - 3 \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 - \\
 -$$

Todor Milev

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Quotient:
$$3x^2 - 5x + 1$$

$$2x - 3 = 6x^3 - 19x^2 + 17x - 3$$

$$- 6x^3 - 9x^2$$

$$- 10x^2 + 17x - 3$$

$$- 10x^2 + 15x$$

$$- 2x - 3$$

$$- 2x - 3$$

(Dividend)=(Quotient) · (Divisor) + (Remainder)

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Todor Miley Lecture 16 Factoring Polynomials 2020

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Quotient:
$$3x^2 - 5x + 1$$

$$2x - 3 | 6x^3 - 19x^2 + 17x - 3$$

$$- 6x^3 - 9x^2$$

$$- 10x^2 + 17x - 3$$

$$- 10x^2 + 15x$$

$$- 2x - 3$$
Remainder: 0

(Dividend)=(Quotient) · (Divisor) + (Remainder)

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Todor Miley Lecture 16 Factoring Polynomials 2020

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(Dividend)=(Quotient) \cdot (Divisor) + (Remainder)$$

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Todor Milev Lecture 16 Factoring Polynomials 2020

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Todor Milev

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (2x - 3)$$

$$x_1, x_2 = ?$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (x - ?)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (x - ?)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$X_1, X_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^3 - 19x^2 + 17x - 3 = 0$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

No easy factorization of quadratic, so use formula:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)\left(\frac{2x - 3}{6}\right) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

Todor Milev

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

No easy factorization of quadratic, so use formula:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Todor Milev

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

No easy factorization of quadratic, so use formula:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Todor Miley

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s).

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the *x* axis at: ?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$?(x - ?$$

$$(x-?)(x-?)(x-?)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$(x-(-1.5))(x-(-1))(x-2)$$

Lecture 16

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x-(-1.5))(x-(-1))(x-2)$$

Lecture 16

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x-(-1.5))(x-(-1))(x-2)=(2x+3)(x+1)(x-2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x-(-1.5))(x-(-1))(x-2)=(2x+3)(x+1)(x-2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^2 + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^2 + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^2 + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

$$= 2x^{3} + x^{2} - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

$$= 2x^{3} + x^{2} - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$
$$(2x+3)(x+1)(x-2) = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^2 + 5x + 3)(x - 2) = (2x^3 + 5x^2 + 3x) - (4x^2 + 10x + 6)$$

$$= 2x^3 + x^2 - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

 $(2x+3)(x+1)(x-2) = 0$
 $x = -\frac{3}{2}$ or $x = -1$ or $x = 2$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

$$= 2x^{3} + x^{2} - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

Todor Milev

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,? ,3.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

$$x-3$$
 x^3-x^2-8x+6

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

$$x-3$$
 x^3-x^2-8x+6

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

$$x - 3$$
 $x^3 - x^2 - 8x + 6$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$x - 3$$
 $x^3 - x^2 - 8x + 6$

Divide x^3 by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$x-3$$
 x^2 x^3-x^2-8x+6

Divide x^3 by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

, 3. What are the two roots besides 3?

$$x-3$$
 x^2 x^3-x^2-8x+6

Multiply x^2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

, 3. What are the two roots besides 3?

$$\begin{array}{c}
x^2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
x^3 - 3x^2
\end{array}$$

Multiply x^2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x^2 \\
x - 3 \quad \overline{\smash{\big)}\ x^3 - x^2 - 8x + 6} \\
\underline{x^3 - 3x^2} \\
2x^2 - 8x + 6
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c|c}
x - 3 & x^2 ? \\
\hline
x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
2x^2 - 8x + 6
\end{array}$$

Divide $2x^2$ by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x^2 + 2x \\
x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
2x^2 - 8x + 6
\end{array}$$

Divide $2x^2$ by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

,3. What are the two roots besides 3?

$$\begin{array}{c}
x^{2} + 2x \\
x - 3 & \overline{x^{3} - x^{2} - 8x + 6} \\
\underline{x^{3} - 3x^{2}} \\
2x^{2} - 8x + 6
\end{array}$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

.3. What are the two roots besides 3?

$$\begin{array}{c}
x^{2} + 2x \\
x - 3 & x^{3} - x^{2} - 8x + 6 \\
\underline{x^{3} - 3x^{2}} \\
2x^{2} - 8x + 6 \\
\underline{2x^{2} - 6x}
\end{array}$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
\underline{2x^2 - 6x} \\
2x^2 - 6x
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
\underline{2x^2 - 6x} \\
\underline{-2x + 6}
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the x axis at:

.3. What are the two roots besides 3?

$$\begin{array}{c|cccc}
x - 3 & x^2 + 2x & ? \\
\hline
x^3 - x^2 - 8x + 6 \\
x^3 - 3x^2 \\
\hline
- & 2x^2 - 8x + 6 \\
\hline
2x^2 - 6x \\
\hline
- & 2x + 6
\end{array}$$

Divide -2x by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the x axis at:

.3. What are the two roots besides 3?

$$\begin{array}{c}
x - 3 \\
 - 3 \\
 - 3 \\
 - 3x^{2} \\
 - 3x^{3} - 3x^{2} \\
 - 2x^{2} - 8x + 6 \\
 - 2x^{2} - 6x \\
 - 2x + 6
\end{array}$$

Divide -2x by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the x axis at:

,3. What are the two roots besides 3?

Multiply -2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the x axis at:

,3. What are the two roots besides 3?

Multiply -2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the x axis at:

,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x - 2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
2x^2 - 6x \\
\underline{-2x + 6} \\
-2x + 6
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the x axis at:

,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x - 2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
2x^2 - 6x \\
- \quad \underline{-2x + 6} \\
0
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

$$\begin{array}{c}
x^2 + 2x - 2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
2x^2 - 6x \\
- 2x + 6 \\
\underline{-2x + 6} \\
0
\end{array}$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$
$$(x - 3)(x^{2} + 2x - 2) + 0 = 0$$

The graph appears to intersect the *x* axis at:

Quotient:	$x^2 + 2x - 2$
x-3	$x^3 - x^2 - 8x + 6$
_	$x^3 - 3x^2$
	$2x^2 - 8x + 6$
_	$2x^{2}-6x$
	-2x+6
_	-2x+6
	0

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$
$$(x - 3)(x^{2} + 2x - 2) + 0 = 0$$

The graph appears to intersect the *x* axis at:

Quotient:
$$x^2 + 2x - 2$$

 $x - 3$ $x^3 - x^2 - 8x + 6$
 $x^3 - 3x^2$
 $2x^2 - 8x + 6$
 $2x^2 - 6x$
 $2x + 6$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) = 0

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

Quotient:
$$x^2 + 2x - 2$$

 $x - 3$ $x^3 - x^2 - 8x + 6$
 $x^3 - 3x^2$
 $2x^2 - 8x + 6$
 $2x^2 - 6x$
 $2x + 6$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$
$$(x - 3)(x^2 + 2x - 2) = 0$$

$$x - 3 = 0$$
 or $x =$

The graph appears to intersect the *x* axis at:

Lecture 16

?

- ?
- ,3. What are the two roots besides 3?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) = 0

$$x - 3 = 0$$
 or $x =$

$$x = 3$$

The graph appears to intersect the *x* axis at:

?

- ?
- ,3. What are the two roots besides 3?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2}$$

The graph appears to intersect the x axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3}.$$

The graph appears to intersect the x axis at:

?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3}.$$

The graph appears to intersect the x axis at: $-\sqrt{3}-1$, $\sqrt{3}-1$, 3. What are the two roots besides 3? Final answer:

$$x = 3$$
 or $x = -1 - \sqrt{3}$ or $x = -1 + \sqrt{3}$.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, x = ?

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c} 2x^2 \\ x - \frac{1}{2} & 2x^3 + x^2 + 5x - 3 \end{array}$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c} 2x^2 \\ x - \frac{1}{2} & \boxed{2x^3 + x^2 + 5x - 3} \\ ? & ? \end{array}$$

Multiply $2x^2$ by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^2 \\
x - \frac{1}{2} \quad \overline{)2x^3 + x^2 + 5x - 3} \\
2x^3 - x^2
\end{array}$$

Multiply $2x^2$ by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} \\
x - \frac{1}{2} \\
- \\
2x^{3} + x^{2} + 5x - 3 \\
2x^{3} - x^{2} \\
2x^{2} + 5x - 3
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Divide $2x^2$ by x.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} + 2x \\
x - \frac{1}{2} \\
 - 2x^{3} + x^{2} + 5x - 3 \\
2x^{3} - x^{2} \\
 - 2x^{2} + 5x - 3
\end{array}$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} + 2x \\
x - \frac{1}{2} \\
 - 2x^{3} + x^{2} + 5x - 3 \\
2x^{3} - x^{2} \\
\hline
2x^{2} + 5x - 3 \\
?
?$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} + 2x \\
x - \frac{1}{2} \\
 - 2x^{3} + x^{2} + 5x - 3 \\
2x^{3} - x^{2} \\
2x^{2} + 5x - 3 \\
2x^{2} - x
\end{array}$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Divide 6x by x.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Divide 6x by x.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Multiply 6 by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Multiply 6 by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) + 0 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) + 0 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Quotient:
$$2x^{2} + 2x + 6$$

$$x - \frac{1}{2}$$

$$= 2x^{3} + x^{2} + 5x - 3$$

$$= 2x^{3} - x^{2}$$

$$= 2x^{2} + 5x - 3$$

$$= 2x^{2} - x$$

$$= 6x - 3$$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Quotient:
$$2x^2 + 2x + 6$$

 $x - \frac{1}{2}$
 $2x^3 + x^2 + 5x - 3$
 $2x^3 - x^2$
 $2x^2 + 5x - 3$
 $2x^2 - x$
 $6x - 3$

Remainder:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$\left(x - \frac{1}{2}\right) \left(2x^{2} + 2x + 6\right) = 0$$

$$x - \frac{1}{2} = 0$$
 or $x =$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) = 0$$

$$(x - \frac{1}{2}) = 0 \quad \text{or} \quad x =$$

$$x = \frac{1}{2}$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Lecture 16

Plot the left hand side of the equation with a graphing

calculator. Find all real solutions of the equation.
$$2x^3 + x^2 + 5x - 3 = 0$$
$$\left(x - \frac{1}{2}\right) \left(2x^2 + 2x + 6\right) = 0$$
$$x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$
$$x = \frac{1}{2}$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Lecture 16

Plot the left hand side of the equation with a graphing

calculator. Find all real solutions of the equation.
$$2x^{3} + x^{2} + 5x - 3 = 0 \\ (x - \frac{1}{2})(2x^{2} + 2x + 6) = 0 \\ x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$

$$x = \frac{1}{2}$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Plot the left hand side of the equation with a graphing

calculator. Find all real solutions of the equation.
$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$(x - \frac{1}{2}) (2x^{2} + 2x + 6) = 0$$

$$x - \frac{1}{2} = 0$$
or $x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$

$$x = \frac{1}{2}$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) = 0$$

$$x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$

$$x = \frac{1}{2} \qquad x = \frac{-2 \pm \sqrt{-44}}{2 \cdot 2}$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) = 0$$

$$-\frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$

$$x = \frac{1}{2} \quad x = \frac{-2 \pm \sqrt{-44}}{2 \cdot 2}$$

no real solution

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Polynomial inequalities 15/16

Example

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0$$

Polynomial inequalities 15/16

Example

Solve the inequality.

$$\begin{array}{ccc} 2x^2 + 3x - 5 & \geq & 0 \\ (? &)(? &) & \geq & 0 \end{array}$$

Polynomial inequalities 15/16

Example

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Lecture 16

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1.

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1.

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

	Interval	Factor signs	Final sign	
	$\left(-\infty,-\frac{5}{2}\right)$			
Ī				
Ī				

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$			

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(?)(?)		

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(?)		

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2}, 1 \right)$			
$(1,\infty)$	(+)(?)		

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

	Interval	Factor signs	Final sign	
ſ	$\left(-\infty,-\frac{5}{2}\right)$			
Ī	$(-\frac{5}{2},1)$			
	$(1,\infty)$	(+)(+)		

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2},1\right)$			
$(1,\infty)$	(+)(+)	?	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),(1,\infty).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Left hand side vanishes when $x=-\frac{5}{2}$ and when x=1. The two roots split the real line into three intervals: $(-\infty, -\frac{5}{2})$, $(-\frac{5}{2}, 1)$, $(1, \infty)$.

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$	(?)(?)		
$(1,\infty)$	(+)(+)	+	

Lecture 16

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$	(+)(?)		
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

	Interval	Factor signs	Final sign	
	$\left(-\infty,-\frac{5}{2}\right)$			
Ì	$(-\frac{5}{2},1)$	(+)(?)		
	$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

	Interval	Factor signs	Final sign	
	$\left(-\infty,-\frac{5}{2}\right)$			
ſ	$\left(-\frac{5}{2},1\right)$	(+)(-)		
	$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$	(+)(-)	?	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2},1\right)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(?)(?)		
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(?)		
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(?)		
$\left(-\frac{5}{2},1\right)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)		
$\left(-\frac{5}{2},1\right)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Lecture 16

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	?	
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Lecture 16

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

15/16

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	
$\left(-\frac{5}{2},1\right)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$2x^{2} + 3x - 5 \geq 0$$

$$(2x + 5)(x - 1) \geq 0$$
 $x \in ?$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$\begin{array}{ccc} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \\ x \in \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right) \end{array}$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$\begin{array}{ccc} 2x^2+3x-5 & \geq & 0 \\ (2x+5)(x-1) & \geq & 0 \\ x \in \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right) \end{array}$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Polynomial inequalities 16/16

Example

Plot the function
$$2x^3 - 5x^2 + x + 2$$
. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

Plot the function
$$2x^3 - 5x^2 + x + 2$$
. Solve the inequality.
 $2x^3 - 5x^2 + x + 2 > 0$

Lecture 16

16/16

$$2x^3 - 5x^2 + x + 2 > 0$$

$$2x^3 - 5x^2 + x + 2 > 0$$

$$(x -)(x -)(x -) > 0$$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality.

$$2x^3 - 5x^2 + x + 2 > 0$$

$$2x^3 - 5x^2 + x + 2 > 0$$
? $(x - ?)(x - ?)(x - ?) > 0$

Lecture 16

$$2x^3 - 5x^2 + x + 2 > 0$$

?
$$\left(x-\frac{1}{2}\right)(x-1)(x-2) > 0$$

$$2x^3 - 5x^2 + x + 2 > 0$$

?
$$(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

$$\frac{2}{3}x^3 - 5x^2 + x + 2 > 0$$

$$\frac{2}{2}(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2.

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-\frac{1}{2})(x-2) > 0$$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2.

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2.

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$		

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Interval	Factor signs	Final sign from plot
$\begin{pmatrix} (-\infty, -\frac{1}{2}) \\ (-\frac{1}{2}, 1) \end{pmatrix}$		

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Interval	Factor signs	Final sign from plot
$ \begin{pmatrix} (-\infty, -\frac{1}{2}) \\ (-\frac{1}{2}, 1) \\ (1, 2) \end{pmatrix} $		

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Interval	Factor signs	Final sign from plot
$ \begin{array}{c c} (-\infty, -\frac{1}{2}) \\ (-\frac{1}{2}, 1) \\ (1, 2) \\ (2, \infty) \end{array} $		

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$?	?
$\left(-\frac{1}{2},1\right)$?	?
(1,2)	?	?
$(2,\infty)$?	?

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2. The two roots split the real line into four intervals: $(-\infty, -\frac{1}{2})$, $(-\frac{1}{2}, 1)$, (1, 2), $(2, \infty)$.

 $x \in \mathbf{?}$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$$

$$x \in (-\frac{1}{2}, 1) \cup (2, \infty)$$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)^{-1}$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$$

 $x \in (-\frac{1}{2}, 1) \cup (2, \infty)$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)^{-1}$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+