

Implementing a groundwater module into CABLE

Mark Decker (m.decker@unsw.edu.au)

Outline

- 1) Overview of Hydrology
- 2) Infiltration, Surface, and Subsurface fluxes
 Parameterizations
- 3) Groundwater (aquifer)
 1D conceptual
 Explicit representation
- 4) Soil Moisture

 Vertical redistribution

1D Conceptual groundwater model

Simple bucket model of mass conservation:

$$\frac{d\Theta_{gw}}{dt} = q_{aquifer} - q_{sub}$$

Provides bottom boundary condition for Richards Equation Parameterize the fluxes using Z_{∇} , θ , K, and others

Limitations (of current implementation):

- No transfer between grid cells
- Subgrid scale fluxes from conceptual model
- Neglects groundwater coupling with
 - Stream flow
 - Flood plains
 - Anthropogenic removal

Australian Research Council

1) Definitions 2) LSMs 3) Soil Moisture 4) Horizontal Fluxes 5) Groundwater 6) Routing 7) Ice/Snow

Infiltration

Limit flux into soil based on state of soil Depends on surface layer moisture, ice, soil properties For through fall over unsaturated soils:

$$q_{\mathrm{infl,max}} = K_{\mathit{sat,srf}} F_{\mathrm{infl}} \left[\theta, \theta_{\mathit{sat}}, \frac{\partial \psi}{\partial \theta} \right]$$
. F_{infl} can be one of many functions $q_{\mathrm{infl,max}}$ is the maximum infiltration

Infiltration limited by

- 1) K_{sat} Hydraulic conductivity of the soil
- 2) θ relative to θ_{sat}
- 3) ψ (soil potential) changes

Surface Runoff

$$\boldsymbol{q}_{\mathrm{srf}} = \!\! \boldsymbol{F}_{sat} \, \boldsymbol{q}_{\mathrm{thr}} \! + \! \left(1 \! - \! \boldsymbol{F}_{\mathrm{sat}} \right) \! \left(\boldsymbol{q}_{\mathrm{thr}} \! - \! \boldsymbol{q}_{\mathrm{infl}}^{\mathrm{max}} \right)$$

Subsurface Runoff

$$q_{\mathrm{sub}} = G[z_{elv}]\Gamma[Z_{\nabla}]$$

Runoff Based on TOPMODEL concepts

Subsurface Runoff: Topographic gradients drive subsurface fluxes

$$q_{\text{sub}} = T_i \tan[B]$$

B: slope

T_i: Transmissivity (conductance)

Horizontal transmissivity (i.e. conductivity) declines exponentially with Z_{∇}

Simplified parameterization:

$$q_{\rm sub} = q_{max} e^{-fZ_{\nabla}}$$

 λ_{m} : Grid cell mean λ

 Z_{∇} : Grid cell mean water table depth

f: Tunable parameter (~0.2)

Alternative that combines the topographic index and \mathbf{K}_{sat} into \mathbf{q}_{max}

Many tunable parameters

- Subsurface Runoff
- Surface Runoff
- Groundwater

In the process of tuning the parameters to give a reasonable simulation

2D groundwater model: Explicit horizontal fluxes and Z_{∇} dynamics:

Model grid resolves topography driven fluxes

- Increasingly computationally viable
- Unknown aquifer and soil properties remain problematic

Common among hydrologists, used by at least 1 LSM Simplifying Assumptions (Dupuit-Forchheimer)

- Z_{∇} is relatively flat with a hydrostatic saturated zone
- Horizontal fluxes & K invariant with respect to z

Solves for the thickness of the saturated layer:

Darcy's Law: $q_{\mathrm{sub}} = -kh \nabla_{\mathrm{xy}}[h]$

h: thickness of saturated zone xy: horizontal direction

Conservation of
$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left[-kh \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[-kh \frac{\partial h}{\partial y} \right]$$

Simplified 2D simplified equation for groundwater dynamics (i.e. Z_{∇})

Explicit horizontal transport between grid cells

Computationally expensive compared to 1D models

Soil and groundwater properties are poorly constrained due to limited observations

