1 Klassische Kontinuumstheorie des Elektromagnetismus in materiellen Medien

1.1 Maxwellsche Gleichungen-Naturgesetze

$$\begin{array}{ll} \text{div } \vec{D} = \rho \\ \text{rot } \vec{E} = -\frac{\partial \vec{B}}{\partial t} & \text{"Faradaysches Induktionsgesetz"} \\ \text{div } \vec{B} = 0 \\ \text{rot } \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} & \text{"Ampère-Maxwellsches Gesetz"} \end{array}$$

\Rightarrow Elektrische Felder

- \bullet elektrische Ladungsverteilung ρ (quasi-statisch)
- schnell zeitveränderliches Magnetfeld $\frac{\partial \vec{B}}{\partial t}$ (magnetische Induktion)

 \Rightarrow Magnetische Felder

- \bullet elektrische Stromverteilung \vec{j} (quasi-statisch)
- schnell zeitveränderliches elektrisches Feld $\frac{\partial \vec{D}}{\partial t}$ ("elektrische Induktion" \simeq Verschiebungsstrom)

Außer bei rein statischen Feldern ($\frac{\partial \vec{B}}{\partial t} = 0$ und $\frac{\partial \vec{D}}{\partial t} = 0$) fasst man \vec{E} und \vec{H} zusammen als "elektromagnetisches Feld"

Materialgleichungen- phänomenologische Modellgleichungen

$$ec{D} = \epsilon ec{E}$$
 $ec{B} = \mu ec{H}$ $ec{j} = \sigma ec{E}$

1.2 Energie von elektromagnetischen Feldern

1.2.1 Elektrische Energiedichte

elektrische Energie W_{el} die im elektrischen Feld einer

• diskreten Ladungsverteilung gespeichert ist:

$$W_{el} = \frac{1}{2} \frac{1}{4\pi\epsilon} \sum_{\substack{i \neq k \ i,k=1}}^{N} \frac{q_k q_i}{|\vec{r}_k - \vec{r}_i|}$$

• kontinuierlichen Ladungsverteilung $\rho(r)$ gespeichert ist:

$$W_{el} = \frac{1}{2} \frac{1}{4\pi\epsilon} \int_{V} \int_{V} \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} d^{3}r \ d^{3}r'$$

kleine Änderung bei Ladungsdichte $\delta \rho(\vec{r})$ bewirkt kleine Änderung bei Feldenergie δW_{el} .

Es gilt
$$F(\alpha) := W_{el}[\rho + \alpha \delta \rho]$$

1. Variation von W_{el} bezüglich $\delta \rho$:

$$\delta W_{el}[\rho, \delta \rho] := \frac{d}{d\alpha} W_{el}[\rho + \alpha \delta \rho] \bigg|_{\alpha=0}$$

mit dem elektrostat. Potential $\phi(\vec{r}) = \frac{1}{4\pi\epsilon} \int_V \frac{\rho(\vec{r}')}{\vec{r}' - \vec{r}} d^3r'$ erhält man nach Umformungen:

$$\delta W_{el} = \int_V \phi(\vec{r}) \ \delta \rho(\vec{r}) \ d^3r$$

• div $\delta \vec{D} = \delta \rho$

Wegen

•
$$\vec{E} = -\nabla \phi$$

• $\delta\rho$ sei eingeschlossen in einer Kugel K $(\vec{0},R)$

folgt für
$$R \to \infty$$
:

$$\delta W_{el} = \int_{\mathbb{R}^3} \vec{E} \cdot \delta \vec{D} \ d^3 r$$

Es wird angenommen, dass das elektrische Feld eine Energiedichte $\omega_{el}(\vec{r})$ mit sich trägt für die gilt: $W_{el} = \int_{\mathbb{D}^3} \omega_{el}(\vec{r}) \mathrm{d}^3 r$

⇒ lokale differentielle Änderung der Energiedichte des elektrischen Feldes:

$$\delta\omega_{el} = \vec{E} \cdot \delta\vec{D}$$

 \Rightarrow (lokale) Energiedichte des elektrischen Feldes:

$$\omega_{el} = \int_{ec{0}}^{ec{D}} ec{E}(ec{D}') \cdot \mathrm{d}ec{D}'$$
Wegintegral im $ec{E} - ec{D} - \mathrm{Raum}$

 \Rightarrow Im Falle eines streng linearen Dielektrikum
s $\vec{D}=\epsilon\vec{E},\,\epsilon={\rm const.:}$

$$\omega_{el} = \frac{1}{2\epsilon} \vec{D}^2 = \frac{\epsilon}{2} \vec{E}^2 = \frac{1}{2} \vec{E} \cdot \vec{D}$$

1.2.2 Magnetische Energiedichte

Die magnetische Energie W_{mag} kann wegen des Verschiebungsstroms im Ampèreschem Gesetz nicht entkoppelt von W_{el} im \vec{D} -Feld betrachtet werden:

• diskrete Ladungen q_k auf Bahnkurve $\vec{r}_k(t)$ mit $v_k(t)$; Zufuhr elmagn. Leistung :

$$P_{elmag} = \sum_{k=1}^{N} q_k \vec{v}_k \cdot \vec{E}(\vec{r}_k) = -\text{mechanische Leistung}$$

• kontinuierliche Stromverteilung $\vec{j}(\vec{r}) = \rho(\vec{r})\vec{v}(\vec{r})$ mit Substitutionsregel:

$$P_{elmag} = -\int_{V} \vec{j}(\vec{r}) \cdot \vec{E}(\vec{r}) d^{3}r$$

Mit Hilfe des Ampèreschen Gesetzes kann \vec{j} eliminiert werden.

$$P_{elmag} = -\int_{V} rot \vec{H} \cdot \vec{E} d^{3}r + \int_{V} \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} d^{3}r$$

$$= \frac{dW_{el}}{dt} (\ddot{A}nderung des rein elektr. Energiegehalts)$$

$$\Rightarrow -\int\limits_V {{\rm rot}} \vec{H} \cdot \vec{E} {\rm d}^3 r = \frac{{\rm d}W_{el}}{{\rm d}t} +$$
 Energiefluss aus System durch Berandung $\partial {\bf V}$

$$\begin{split} \Rightarrow -\int\limits_V \mathrm{rot} \vec{H} \cdot \vec{E} \mathrm{d}^3 r &= \frac{\mathrm{d} W_{el}}{\mathrm{d} t} + \text{Energiefluss aus System durch Berandung } \partial \mathrm{V} \\ \text{Mit div } (\vec{E} \times \vec{H}) &= \nabla \cdot (\vec{E} \times \vec{H}) = -\frac{\partial \vec{B}}{\partial t} \cdot \vec{H} - \mathrm{rot} \vec{H} \cdot \vec{E} = \mathrm{rot} \ \vec{E} \cdot \vec{H} - \mathrm{rot} \vec{H} \cdot \vec{E} \ \mathrm{gilt:} \\ -\int\limits_V \mathrm{rot} \vec{H} \cdot \vec{E} \ \mathrm{d}^3 r &= \int\limits_V \frac{\partial \vec{B}}{\partial t} \cdot \vec{H} \ \mathrm{d}^3 r + \int\limits_{\partial V} (\vec{E} \times \vec{H}) \ \mathrm{d}\vec{a} \end{split}$$

Wählt man für V eine Kugel $K(\vec{0}, R)$ um den Ursprung mit Radius R, mit $R \to \infty$ gilt:

$$P_{elmag} = \underbrace{\frac{\mathrm{d}W_{el}}{\mathrm{d}t}}_{\text{Zeitableitung der elektr. Feldenergie}} + \underbrace{\frac{\mathrm{d}W_{mag}}{\mathrm{d}t}}_{\text{zeitliche Änderung der gesuchten magn. Feldenergie}} + \underbrace{\lim_{R \to \infty} \int\limits_{|\vec{r}|=R} (\vec{E} \times \vec{H}) \; \mathrm{d}\vec{a}}_{\text{|\vec{r}|=R}}$$
 Leistungsfluss durch Kugeloberfläche nach außen im Limes

für lokalisierte Ladungen/Ströme gilt für asymptotisches Verhalten der erzeugten Felder:

$$|\vec{E}| \sim \frac{1}{R^n} \text{ und } |\vec{H}| \sim \frac{1}{R^m} \text{ mit } \left\{ \begin{array}{l} n=2 \ \& \ m=3 \\ \\ n=m=1 \end{array} \right. \text{ im quasistatischen Fall}$$

Oberfläche von $\partial K(\vec{0}, R)$ wächst mit R^2 deshalb gilt:

$$\lim_{R \to \infty} \int_{|\vec{r}| = R} (\vec{E} \times \vec{H}) \, d\vec{a} = \begin{cases} 0 & \text{quasistatischer Fall} \\ \text{total abgestrahlte Leistung} & \text{dynamischen Fall} \end{cases}$$

Diff. Änderung der gesamten magn. Feldenergie beträgt $\delta W_{mag} = \int \vec{H}(\vec{r}) \cdot \delta \vec{B}(\vec{r}) d^3r$

$$\delta W_{mag} = \int_{\mathbb{R}^3} \vec{H}(\vec{r}) \cdot \delta \vec{B}(\vec{r}) \, d^3r$$

⇒ differentielle Änderung der Energiedichte des magnetischen Feldes:

$$\delta\omega_{mag} = \vec{H}\cdot\delta\vec{B}$$

Energiedichte des magnetischen Feldes:

$$\omega_{mag} = \underbrace{\int\limits_{\vec{0}}^{\vec{B}} \vec{H}(\vec{B}') \cdot d\vec{B}'}_{\text{Wegintegral im} \vec{H} - \vec{B} - \text{Raum}}$$

 \Rightarrow Im Falle eines streng linearen magnetisierteren Materials mit $\vec{B} = \mu \vec{H}, \mu = const.$:

$$\omega_{mag} = \mu \int_{\vec{0}}^{\vec{H}} \vec{H}' \cdot d\vec{H}' = \frac{\mu}{2} \vec{H}^2 = \frac{1}{2} \vec{H} \cdot \vec{B} = \frac{1}{2\mu} \vec{B}^2$$

1.2.3 Allgemeine Bilanzgleichung

extensive physikalische Größe X= Größe, die eine Volumendichte $x(\vec{r},t)$ besitzt, dass zu jedem beliebigen räumlichen Gebiet V der darin enthaltene Mengeninhalt $X(V) = \int\limits_V x(\vec{r},t) \,\mathrm{d}^3 r$ bestimmt werden kann.

Beispiele sind

Beispiere sina	
Größe X	Volumendichte x
Ladung Q	Ladungsdichte ρ_{el}
Masse M	Massendichte ρ_M
Teilchenzahl N	Konzentration n
Energie $W_{el,mag}$	Energiedichte $\omega_{el,mag}$

Die extensive Größe X besitzt eine

Stromdichte $\vec{J}_x(\vec{r},t)$.

Das Skalarprodukt $\vec{J}_x \cdot d\vec{a}$ gibt Menge von X an, die pro Zeiteinheit die Kontrollfläche $d\vec{a} = \vec{N} da \text{ in Normalrichtung passiert.}$

Das Flussintegral $\int\limits_{\partial V} \vec{J}_x \cdot \mathrm{d}\vec{a}$ aus Kontrollvolumen V durch geschlossene Oberfläche ∂V pro Zeiteinheit nach außen strömende Menge von X. Produktionsrate $\prod_x(\vec{r},t)$ gibt an welche Menge der Größe X pro Volumen- und Zeiteinheit erzeugt (> 0) oder vernichtet (< 0)wird.

X(V) kann sich nur ändern durch Zufluss/Abfluss durch Hüllfläche ∂V oder durch Erzeugung/Vernichtung innerhalb von V

$$\Rightarrow \text{ Bilanzgleichung in integraler Form: } \boxed{\frac{\mathrm{d}X(V)}{\mathrm{d}t} = \int\limits_{V} \frac{\partial x}{\partial t}(\vec{r},t) \ \mathrm{d}^3r = -\int\limits_{\partial V} \vec{J_x} \ \mathrm{d}\vec{a} + \int\limits_{V} \prod_{x} \ \mathrm{d}^3r}$$

$$\Rightarrow$$
 Bilanzgleichung in differentieller Form: $\boxed{\frac{\partial x}{\partial t} = -\text{div}\vec{J_x} + \prod_x}$

Wichtige Beispiele für Bilanzgleichungen:

- Ladungerhaltung
- Teilchenbilanz im Halbleiter
- Energiebilanz für das elektromagnetische Feld: $\left[\frac{\partial \omega_{elmag}}{\partial t} + \text{div } \vec{J}_{elmag} = \prod_{elmag}\right]$ mit
 - $-\omega_{elmag} = \omega_{el} + \omega_{mag} = \text{Energiedichte}$
 - $-\vec{J}_{elmag} =$ zugehörige Leistungsflussdichte
 - $-\prod_{elmag} =$ dem Feld zugeführte Leistungsdichte

mit der zugeführten Leistungsdichte : $\prod_{elmag} = -\vec{j} \cdot \vec{E}$ und Umformungen erhält man:

$$\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} + \text{div } \vec{J}_{elmag} = -\vec{j} \cdot \vec{E}$$

Aus den vorherigen Gleichungen lässt sich schließen, dass gilt: div $(\vec{E} \times \vec{H}) = \text{div } \vec{J}_{elmag}$ $\Rightarrow \vec{J}_{elmag} = \vec{E} \times \vec{H} + \vec{S}_0$ mit additivem quellenfreiem Vektorfeld \vec{S}_0 und div $\vec{S}_0 = 0$ Der Poynting-Vektor $\vec{S} = \vec{E} \times \vec{H}$ lässt sich als elektromag. Leistungsflussdichte interpretieren, wenn \vec{E} und \vec{H} , die miteinander gekoppelten Komponenten eines dyadischen elektromagnetischen Feldes bilden, das von einer dynamischen Quelle erzeugt wird, bei der dieselben bewegten Ladungen sowohl das \vec{E} -Feld als auch das \vec{H} -Feld erzeugen. (Typischerweise bei elektromagnetischen Wellen).

1.3 Potentialdarstellung des elektromagnetischen Feldes

1.3.1 Elektromagnetisches Vektor- und Skalarpotential

Vektorfeld $\vec{U}(\vec{r})$ besitzt ein Vektorpotential $\vec{V}(\vec{r})$, wenn es ein differenzierteres Vektorfeld $\vec{V}(\vec{r})$ gibt mit:

$$\vec{U}(\vec{r}) = \text{rot}\vec{V}(\vec{r}) \Rightarrow \text{div}\vec{U} = 0$$

In "sternförmigen" Gebieten gilt auch die Umkehrung (Satz von Poincaré):

Wenn $\vec{U}(\vec{r})$ stetig differenzierter ist mit div $\vec{U} = 0$, dann existiert ein Vektorpotential $\vec{V}(\vec{r})$ mit $\vec{U} = \text{rot} \vec{V}$.

Alle Vektorpotentiale zu $\vec{U} = \text{rot} \vec{V}$ haben die Form

$$\vec{V}' = \vec{V} - \operatorname{grad}\chi(\vec{r})$$

Überall definiertes Vektorfeld $\vec{A}(\vec{r},\vec{t})$ - das elektromagnetisches Vektorpotential - mit

$$\vec{B}(\vec{r},t) = \text{rot}\vec{A}(\vec{r},t)$$

Es existiert ein Skalarfeld $\Phi(\vec{r},t)$ - das elektromagnetisches skalares Potential - mit

$$\vec{E} + \frac{\partial \vec{A}}{\partial t} = -\mathrm{grad}\Phi$$

Wird das Vektorpotential gemäß $\vec{A}' = \vec{A} - \vec{\nabla} \chi$ "umgeeicht", so muss das skalare Potential transformiert werden. Daher muss gelten: $\boxed{\Phi'(\vec{r},t) = \Phi(\vec{r},t) + \frac{\partial \chi}{\partial t}(\vec{r},t)}$

1.3.2 Maxwellsche Gleichungen in Potentialdarstellung

Man hat nun ein 4-Komponentiges partielles Differenzialgleichungssystem für die Unbekannten (Φ, \vec{A}) bei gegebenen Quellen ρ und \vec{j}

$$\operatorname{div}(\epsilon \nabla \Phi) + \frac{\partial}{\partial t} \operatorname{div}(\epsilon \vec{A}) = -\rho$$

$$\mathrm{rot}(\frac{1}{\mu}\mathrm{rot}\vec{A}) + \epsilon\frac{\partial^2\vec{A}}{\partial t^2} + \epsilon\nabla(\frac{\partial\Phi}{\partial t}) = \vec{j}$$

Ziel ist die Entkopplung dieser Gleichungen bezüglich \vec{A} und Φ , indem man diese "Eichbedingungen" unterwirft, die durch passende Wahl der Eichfunktion χ erfüllt werden.

ϵ und μ seien(stückweise) räumlich konstant

- Lorenzeichung: $\operatorname{div} \vec{A} + \epsilon \mu \frac{\partial \Phi}{\partial t} = 0$
 - \Rightarrow Wellengleichung für das skalare Potential $\Phi: \Delta\Phi \epsilon\mu \frac{\partial^2\Phi}{\partial t^2} = -\frac{\rho}{\epsilon}$

$$\Phi: \ \Delta\Phi - \epsilon\mu \frac{\partial^2 \Phi}{\partial t^2} = -\frac{\rho}{\epsilon}$$

 \Rightarrow Wellengleichung für das Vektorpotential $\left| \, \vec{A} : \right. \Delta \vec{A} - \epsilon \mu \frac{\partial^2 \vec{A}}{\partial t^2} = - \mu \vec{j} \, \right|$

$$\vec{A}: \Delta \vec{A} - \epsilon \mu \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{j}$$

$$\Rightarrow \text{ Kompaktschreibweise: } \underbrace{(\Delta - \epsilon \mu \frac{\partial^2}{\partial t^2})}_{\text{Wellenoperator}} \begin{pmatrix} \Phi \\ \vec{A} \end{pmatrix} = - \begin{pmatrix} \frac{\rho}{\epsilon} \\ \mu \vec{j} \end{pmatrix}$$

- Coulombeichung (optische Eichung)zielt auf eine Zerlegung des elektrischen Feldern in eine quasistatische und eine hochfrequente wellenartige Komponente : $\operatorname{div} \vec{A} = 0$
 - \Rightarrow Poissongleichung: | div $(\epsilon \nabla \Phi) = -\rho(\vec{r}, t)$
 - $\Rightarrow \text{ Wellengleichung für Vektorpotential: } \left| \Delta \vec{A} \epsilon \mu \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \left(\vec{j} \epsilon \frac{\partial}{\partial t} (\nabla \Phi) \right) \right|$

mit div $\vec{A} = 0$ und transversaler Stromdichte $\vec{j}_t := \vec{j} - \epsilon \frac{\partial}{\partial t} (\operatorname{grad}\Phi) \vec{A}$

1.4 Feldverhalten an Materialgrenzen

1.4.1 Grenzflächenbedingung für die normalen Feldkomponenten

Das Vektorfeld \vec{U} erfülle in benachbarten Gebieten Ω_1 und Ω_2 aus zwei verschiedenen Materialien (1) und (2) die Differentialgleichung div $\vec{U} = \gamma$ mit Volumendichte $\gamma(\vec{r})$

An der Grenzfläche Σ existiert eine Grenzflächendichte $\nu(\vec{r})$. Es gilt für ein Kontrollvolumen

V, das die Grenzfläche schneidet:

$$\int\limits_{\partial V} \vec{U} \cdot \mathrm{d}\vec{a} = \int\limits_{V} \gamma \mathrm{d}^3 r + \int\limits_{V \cap \Sigma} \nu \mathrm{d}a$$

Für einen Punkt $\vec{r_0}$ auf der Grenzfläche sei $\vec{N}(\vec{r_0})$ die Oberflächeneinheitsnormale, die vom Material (1) zum Material (2) zeigt.

Z sei ein kleines zylinderförmiges Kontrollvolumen, dessen Stirnflächen A_1 und A_2 in Ω_1 und Ω_2 liegen. Der Abstand von A_1 und A_2 ist Δh = Höhe des Zylindermantels M.

Es gilt:

$$\int\limits_{A_1} \vec{U} \mathrm{d}\vec{a} + \int\limits_{A_2} \vec{U} \mathrm{d}\vec{a} + \int\limits_{M} \vec{U} \mathrm{d}\vec{a} = \int\limits_{Z} \gamma \mathrm{d}^3 r + \int\limits_{Z \cap \Sigma} \nu \mathrm{d}$$

Für den Flächeninhalt von $|A| = Z \cap \Sigma$ gilt: $|A| = |A_1| = |A_2|$.

Umformungen durch:

- Mittelwertsatz der Integralrechnung
- Für $\Delta h \to 0$ verschwinden: $\int\limits_M \vec{U} \mathrm{d}\vec{a}$ und $\int\limits_Z \gamma \mathrm{d}^3 r$
- $\vec{U}_j \cdot \vec{N}(\vec{r_0}) := \lim_{\vec{r} \to \vec{r_0}: \vec{r} \in \Omega_1} \vec{U}(\vec{r}) \cdot \vec{N}(\vec{r_0})$

Sprungbedingung:

$$\vec{U}_2 \cdot \vec{N} - \vec{U}_1 \cdot \vec{N} = \nu \text{ auf } \Sigma$$

Spezialfälle:

- $\vec{U} = \vec{D}$ (dielektrische Verschiebung) mit
 - $-\gamma = \rho = \text{Raumladungsdichte}$
 - $-\nu = \sigma_{int} = Grenzflächenladungsdichte$
 - \rightarrow wenn $\sigma_{int} = 0 \Rightarrow$ Normalkomponente von \vec{D} ist stetig
- $\vec{U} = \vec{B}$ (magnetische Induktion)
 - $-\gamma = \nu = 0 \rightarrow \text{Normalkomponente von } \vec{B} \text{ ist stetig}$

1.4.2 Grenzflächenbedingung für die tangentialen Feldkomponenten

Das Vektorfeld \vec{U} erfülle in benachbarten Gebieten Ω_1 und Ω_2 aus zwei verschiedenen Materialien ① und ② die Differentialgleichung rot $\vec{U} = \vec{J} + \vec{V}$ mit einer stetigen Flussdichte \vec{J} und einem beschränkten Vektorfeld \vec{V} .

An der Grenzfläche Σ existiert eine Grenzflächenflussdichte $\vec{\nu}(\vec{r})$. Es gilt für ein Kontrollfläche A mit positiv orientierter Randkurve $C = \partial A$, das die Grenzfläche schneidet:

$$\int\limits_{\partial A} \vec{U} \cdot \mathrm{d}\vec{r} = \int\limits_{A} \vec{J} \mathrm{d} \ \vec{a} + \int\limits_{A} \vec{V} \mathrm{d} \ \vec{a} + \int\limits_{A \cap \Sigma} \vec{\nu} \cdot \vec{n} \ \mathrm{d}a$$

Für einen Punkt $\vec{r_0}$ auf der Grenzfläche sei $\vec{N}(\vec{r_0})$ die Oberflächennormale, die vom Material ① zum Material ② zeigt und $\vec{t}(\vec{r_0})$ ein Tangentialvektor an Σ .

A sei eine kleine rechteckige Kontrollfläche, die auf der Tangentialebene senkrecht steht und $\vec{r_0}$ als Mittelpunkt hat. Für die Kanten $\gamma_1 = -\vec{t}\Delta l, \ \gamma_3 = \vec{t}\Delta l \ \text{und} \ \gamma_2 = -\vec{N}\Delta b, \ \gamma_4 = \vec{N}\Delta b.$ γ_2 und γ_4 verlaufen teilweise in Ω_1 und teilweise in Ω_2 .

Orientierte Oberflächennormale $\vec{n} = \vec{N} \times \vec{t}$

Es gilt:

$$\sum_{i=1}^{4} \int_{\gamma_{i}} \vec{U} d\vec{r} = \int_{A} (\vec{J} + \vec{V}) \cdot \vec{n} da + \int_{\Sigma \cap A} \vec{\nu} \cdot \vec{n} ds$$

Mit Umformungen erhält man:

Sprungbedingung:

$$\vec{U}_2 \cdot \vec{t} - \vec{U}_1 \cdot \vec{t} = \nu \cdot \vec{n}$$
 auf Σ

$$\vec{U}_2 \cdot \vec{t} - \vec{U}_1 \cdot \vec{t} = (\vec{\nu} \times \vec{N}) \cdot \vec{t}$$
 für jeden Tangentialvektor \vec{t}

Der Projektor auf die Tangentialebene lautet:

$$\Pi \vec{X} = -\vec{N} \times (\vec{N} \times \vec{X})$$

Es gelten die Äquivalenzen:

- $\vec{X} \cdot \vec{t} = 0$ für alle $\vec{t} \perp \vec{N}$, d.h. alle Tangentialvektoren
- $\Pi \vec{X} = 0 \Leftrightarrow \vec{N} \times (\vec{N} \times \vec{X}) = 0 \Leftrightarrow \vec{N} \times \vec{X} = 0$

Es folgt für $\vec{t} \perp \vec{N}$:

$$\vec{N} \times \vec{U}_2 - \vec{N} \times \vec{U}_1 = \vec{\nu} \text{ auf } \Sigma$$

Spezialfälle:

•
$$\vec{U} = \vec{E}$$
 (elektrisches Feld) mit

$$- \vec{J} = 0$$

$$-\vec{V} = -\frac{\partial \vec{B}}{\partial t}$$

$$-\vec{\nu}=0$$

•
$$\vec{U} = \vec{H}$$
 (Magnetfeld) mit

$$-\vec{J} = \vec{j}$$

$$-\vec{V} = -\frac{\partial \vec{D}}{\partial t}$$

$$-\vec{\nu} = i$$

1.5 Das Randwertproblem der Potentialtheorie

1.5.1 Randwertproblem der Elektrostatik: Rand-/Grenzflächenbedingungen

In einem dielektischen Medium gilt im elektrostatischen Fall die

Poissongleichung: div $(\epsilon \nabla \Phi) = -\rho(\vec{r}, t)$. Für die Eindeutigkeit der Lösung dieser partiellen

Differentialgleichung müssen auf dem Rand $\partial\Omega$

Rand- und Grenzflächenbedinungen formuliert werden:

- $\Phi(\vec{r}) = \text{const. auf Leitern}$
- $\bullet\,$ für das elektrische Potential an Materialgrenzen: $\boxed{\Phi}$ ist längs Materialgrenzen stetig
- für die Normalenableitung des Potentials: $\boxed{ \epsilon_1 \frac{\partial \Phi}{\partial n} |_1 \epsilon_2 \frac{\partial \Phi}{\partial n} |_2 = \sigma_{int} }$ auf Σ mit $\frac{\partial \Phi}{\partial n} |_j := \lim_{\vec{r} \to \vec{r_0}; \vec{r} \in \Omega_j} \vec{n}(\vec{r_0}) \cdot \nabla \Phi(\vec{r})$ (j=1,2)

- Sonderfälle:
 - Material ①= Leiter, ②= dielektrischer Isolator
 - zwei diel. Isolatoren (1) und (2)
- Material ①= Leiter, Material ②= dielektrischer Isolator:
 - E-Feld im Leiter verschwindet Tangentialkomponente: $\vec{E_1} \cdot \vec{t} = \vec{E_2} \cdot \vec{t} = 0$
 - einseitiger Grenzwert des Potentialgradienten hat nur eine Normalkomponente:

$$-\nabla\Phi\mid_{2}=\vec{E_{2}}\perp$$
Leiteroberfläche

- mit
$$\vec{D_2} \cdot \vec{n} = \sigma_{int}$$
 und $\vec{D_2} = -\epsilon_2 \nabla \Phi \Big|_2$ gilt: $\boxed{\epsilon_2 \frac{\partial \Phi}{\partial n} \Big|_2 = -\sigma_{int}}$ auf Σ

- \bullet Zwei dielektrische Isolatoren ① und ② grenzen aneinander, ohne dass eine Oberflächenladung auf Σ existiert:
 - Tangentialkomponente/Normalkomponente von \vec{E}/\vec{D} längs von Σ stetig:

$$\vec{E}_1 \cdot \vec{t} = \vec{E}_2 \cdot \vec{t} \text{ und } \vec{D}_1 \cdot \vec{n} = \vec{D}_2 \cdot \vec{n}$$

- $\text{ mit } \vec{D}_j = \epsilon_j \vec{E}_j \text{ gilt: } \boxed{\frac{1}{\epsilon_1} \cdot \frac{\vec{E}_1 \cdot \vec{t}}{\vec{E}_1 \cdot \vec{n}} = \frac{1}{\epsilon_2} \cdot \frac{\vec{E}_2 \cdot \vec{t}}{\vec{E}_2 \cdot \vec{n}}}$
- $-\ \alpha_1,\alpha_2$ sind Winkel zwischen Feldlinien und Oberflächennormalen: $\tan\alpha_j=\frac{\vec{E}_j\cdot\vec{t}}{\vec{E}_j\cdot\vec{n}}$
- Brechungsgesetz für elektrische Feldlinien: $\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\epsilon_1}{\epsilon_2}$

1.5.2 Klassifikation der Potential-Randwertprobleme

Randwertproblem= man sucht Lösungen Φ der Poissongleichung, die auf dem Rand $\partial\Omega$ bestimmte Randbedingungen erfüllen. Es gibt:

- Dirichlet-Problem = Vorgabe der Potentialwerte auf $\partial\Omega$
- Neumann-Problem = Vorgabe der Normalenableitung $\frac{\partial \Phi}{\partial n}$ auf $\partial \Omega$
- \bullet gemischtes Randwertproblem = Vorgabe einer Linearkombination von beiden

1.5.2.1 Dirichletsches Randwertproblem

Lösung Φ soll auf dem Rand $\partial\Omega$ einen vorgegebenen Verlauf $\Phi_D(\vec{r})$ für alle $\vec{r} \in \partial\Omega$ annehmen:

$$[\operatorname{Dir-RWP}] \quad \operatorname{div}(\epsilon \nabla \Phi) = -\rho \text{ auf } \overset{\circ}{\Omega}$$

Satz: Für $\epsilon \in C^1(\overline{\Omega})$ mit $0 < c_0 \le \epsilon(\vec{r}), \rho \in C(\overline{\Omega})$ und $\Phi_D \in C(\partial\Omega)$ hat [Dir-RWP] eine eindeutig bestimmte klassische Lösung $\Phi \in C^2(\Omega) \cap C^1(\overline{\Omega})$

1.5.2.2 Neumannsches Randwertproblem

Normalableitung der Lösung $\frac{\partial \Phi}{\partial n}(\vec{r}) := \vec{n} \cdot \vec{\nabla} \Phi(\vec{r})$ mit n = "außere Normale auf $\partial \Omega$ soll vorgegebenen Wert $F_N(\vec{r})$ annehmen:

[Neu-RWP]
$$\operatorname{div}(\epsilon \nabla \Phi) = -\rho \text{ auf } \overset{\circ}{\Omega} \text{ und } \frac{\partial \Phi}{\partial n}|_{\partial \Omega} = F_N$$

Satz: Für $\epsilon \in C^1(\overline{\Omega})$ mit $0 < c_0 \le \epsilon(\vec{r}), \rho \in C(\overline{\Omega})$ und $F_N \in C(\partial\Omega)$ mit $\int_{\partial\Omega} \epsilon F_N da$ hat [Neu-RWP] eine, bis auf eine additive Konst., eind. best. klassische Lösung $\Phi \in C^2(\Omega) \cap C^1(\overline{\Omega})$

1.5.2.3 Gemischtes Randwertproblem (Randbedingung 3.Art)

Auf dem Rand $\partial\Omega$ soll die Linearkombination $\alpha(\vec{r})\Phi(\vec{r}) + \beta(\vec{r})\frac{\partial\Phi}{\partial n}(\vec{r})$ für gegebene Koeffizientenfunktionen $\alpha(\vec{r})$, $\beta\vec{r}$ einen vorgegebenen Wert $F(\vec{r})$ annehmen mit $h \geq 0$ und $\sigma \geq 0$:

[Mix-RWP]
$$\operatorname{div}(\epsilon \nabla \Phi) = -\Pi \operatorname{auf} \stackrel{\circ}{\Omega} \operatorname{und} \left(\frac{\partial \Phi}{\partial n} + h \Phi \right) \Big|_{\partial \Omega} = F \operatorname{auf} \partial \Omega$$

Satz: Für $\sigma \in C^1(\overline{\Omega})$ mit $0 < c_0 \le \sigma(\vec{r}), \Pi \in C(\overline{\Omega}), h \in C(\partial\Omega)$ mit $h \ge 0, h \ne 0$ und $F \in C(\partial\Omega)$ hat [Mix-RWP] eine eindeutig bestimmte klassische Lösung $\Phi \in C^2(\Omega) \cap C^1(\overline{\Omega})$

Für Normalgebiete (beschränkte, zusammenhängende Gebiete mit glattem Rand) haben Eigenwerte und Eigenfunktionen folgende Eigenschaften:

- Spektrum $\{\lambda_{\nu}|\nu=1,\ldots,\infty\}$ ist diskret
- alle Eigenwerte sind positiv: $\lambda_{\nu} > 0$ und aufsteigende Folge: $0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \dots$
- Eigenfunktionen $\{b_{\nu}\}_{\nu\in\mathbb{N}}$ können orthonormal im Funktionenraum $L_2(\Omega)$ gewählt werden. Mit dem Skalarprodukt: $< f|g> := \int\limits_{\Omega} f(\vec{r}) * g(\vec{r}) \, \mathrm{d}^3 r$ erfüllen die orthonormierten Eigenfunktionen die Bedingungen:

$$\langle b_{\mu}|b_{\nu}\rangle = \int_{\Omega} b_{\mu}(\vec{r}) * b_{\nu}(\vec{r}) d^3r = \delta_{\mu\nu}$$
 (Kroneckersches Deltasymbol)

Eigenfunktionen sind vollständig, d.h. jede Funktion $\varphi \in L_2$ lässt sich bezüglich des Skalarproduktes nach b_1, b_2, b_3, \ldots entwickeln: $\varphi = \sum_{\nu=1}^{\infty} \alpha_{\nu} b_{\nu} \text{mit } \alpha_{\nu} = \langle b_{\nu} | \varphi \rangle$

Vollständigkeitsrelation: $\sum_{\nu=1}^{\infty} b_{\nu}(\vec{r}) b_{\nu}(\vec{r}')^* = \delta(\vec{r} - \vec{r}')$

www.latex4ei.de

1.5.3 Analytische Lösungsverfahren für die Poissongleichung

1.5.3.1 Orthogonalentwicklung nach Eigenfunktionen des Laplace-Operators (Spektraldarstellung)

$$\operatorname{div}(\epsilon \nabla \Phi) = -\rho \text{ in } \overset{\circ}{\Omega}$$

mit
$$\Phi|_{\partial\Omega^D} = \Phi_D$$
 und $\epsilon \frac{\partial\Phi}{\partial n}|_{\partial\Omega^{(N)}} = \sigma_N$
wobei $\partial\Omega = \partial\Omega^{(D)} \cup \partial\Omega^{(N)}, \ \partial\Omega^{(D)} \cap \partial\Omega^{(N)} = \emptyset$ und $\partial\Omega^{(D)} \neq \emptyset$

1. Lösungsschritt:

konstruiere Funktion $\Phi^{(0)} \in C^2(\Omega) \cap C^1(\overline{\Omega})$, welche die inhomogenen Randbed. erfüllt. Für die Lösung verwendet man den Ansatz: $\Phi = \Phi^{(0)} + \varphi$ ist eine Lösung des modifizierten RWP mit homogenen Rangbedingungen:

$$-f := \operatorname{div}(\epsilon \nabla \varphi) = -\rho - \operatorname{div}(\epsilon \nabla \Phi^{(0)})$$
 in Ω

$$\operatorname{mit} \varphi|_{\partial\Omega^{(D)}} = 0, \, \frac{\partial \varphi}{\partial n}|_{\partial\Omega^{(N)}} = 0$$

2. Lösungsschritt: Lösung φ des RWP kann man aus den Eigenfunktionen $b_{\nu}(\vec{r})$ und

Eigenwerten $\lambda_{\nu} \in \mathbb{C}$ von $-\text{div}(\epsilon \nabla$.) aufbauen:

$$-\mathrm{div}\ (\epsilon \nabla b_{\nu}) = \lambda_{\nu} b_{\nu} \ \mathrm{in} \ \overset{\circ}{\Omega}$$

mit
$$b_{\nu}|_{\partial\Omega^{(D)}}=0$$
 und $\frac{\partial b_{\nu}}{\partial n}|_{\partial\Omega^{(N)}}=0$

3. Lösungsschritt:

Poissongleichung in $\varphi = \sum_{\nu=1}^{\infty} \alpha_{\nu} b_{\nu}(\vec{r})$ einsetzen:

$$f \stackrel{!}{=} -\operatorname{div}(\epsilon \nabla \varphi) = \sum_{\nu=1}^{\infty} \alpha_{\nu} \underbrace{\left[-\operatorname{div}(\epsilon \nabla b_{\nu}) \right]}_{\lambda_{\nu} b_{\nu}}$$

Für α_{ν} erhält man: $\alpha_{\nu} = \frac{\langle b_{\nu} | f \rangle}{\lambda_{\nu}}$ und damit die Lösung des RWP:

$$\varphi(\vec{r}) = \sum_{\nu=1}^{\infty} \frac{\langle b_{\nu} | f \rangle}{\lambda_{\nu}} b_{\nu}(\vec{r}) = \int_{\Omega} \sum_{\nu=1}^{\infty} b_{\nu}(\vec{r}) \frac{1}{\lambda_{\nu}} b_{\nu}(\vec{r}) *f(\vec{r}') d^{3}r'$$

$$GreenfunktionG(\vec{r}, \vec{r}')$$

1.5.3.2 Lösung mittels Greenfunktion

Die Greendfunktion $G(\vec{r}, \vec{r}')$ ist definiert als Lösung des reduzierten RWP mit homogenen Randbedingungen und rechter Seite $f(\vec{r}) = \delta(\vec{r} - \vec{r}')$:

$$\operatorname{div}_{\vec{r}}(\epsilon(\vec{r})\nabla_{\vec{r}}G(\vec{r},\vec{r}')) = -\delta(\vec{r} - \vec{r}')$$

Mit
$$G(\vec{r},\vec{r}~'))=0$$
 für $\vec{r}\in\partial\Omega^{(D)}$ und $\frac{\partial G(\vec{r},\vec{r}~')}{\partial n}=0$ für $\vec{r}\in\partial\Omega^{(N)}$

Für unbeschränkte Gebiete muss die Summe durch ein Integral ersetzt werden, da das Spektrum der Eigenwerte eine kontinuierliche Menge bildet.

1.5.3.3 Konstruktion der Greenfunktion m.H. der Spiegelladungsmethode

Ausgangspunkt: Vakuum-Greenfunktion, Greenfunktion zur Poissongleichung im unbeschränkten homogenen Raum $\Omega = \mathbb{R}^3$:

$$G_{vac}(\vec{r}, \vec{r}') = \frac{1}{4\pi\epsilon} \frac{1}{|\vec{r} - \vec{r}'|}$$

Aus der Vakuum-Greenfunktion lässt sich die

Greenfunktion für den Halbraum mit ideal leitendem Rand konstruieren:

- Halbraum= dielektrisches Gebiet: $\Omega = H := \{\vec{r} = \vec{r}_{||} + n\vec{n}|\vec{r}_{||} \cdot \vec{n} = 0; \quad z > 0\}$
- Rand von der Ebene: $\partial H = \{\vec{r} = \vec{r}_{||} | \vec{r}_{||} \cdot \vec{n} = 0; \quad z = 0\}$
- \vec{n} = Normalenvektor der Ebene ∂H
- \bullet Permittivität ϵ sei im Halbraum H konstant
- Der unterhalb der Randfläche liegende Halbraum $z \leq 0$ sei ein (idealer) Leiter, der zusammen mit der Ebene ∂H ein Äquipotentialgebiet mit konstantem Potential bildet, das auf den Wert $\Phi(\vec{r}) = 0$ gesetzt werden kann
- Punkt \vec{r}_Q^* entsteht durch Spiegelung von Punkt \vec{r}_Q an der Ebene ∂H
- Spiegelung an der Ebene $\partial H =$ S: $\vec{r} = \vec{r}_{||} + z\vec{n} \to \vec{r}^* = S\vec{r} := \vec{r}_{||} z\vec{n}$

Um die Greenfunktion für den Halbraum zu bestimmen wird eine Punktladung Q an dem Ort $\vec{r}_Q \in H$ gesetzt und das erzeugte Potential bestimmt, aber man betrachtet ein Ersatzproblem, indem das Dielektrikum über ∂H hinaus nach unten fortgesetzt wird. Im virtuellen Dielektrikum wird am Punkt \vec{r}_Q^* eine virtuelle Gegenladung -Q platziert. Ladung und Gegenladung erzeugen im Halbraum H das elektrische Potential:

$$\Phi_H(\vec{r}) = \frac{Q}{4\pi\epsilon} \left[\frac{1}{|\vec{r} - \vec{r}_Q|} - \frac{1}{|\vec{r} - \vec{r}_Q^*|} \right] \text{ für } \vec{r} \in H$$

Um die Greenfunktion zu erhalten Q=1 und $\vec{r}_Q=\vec{r}'$ setzen:

$$G_H(\vec{r}, \vec{r}') = \frac{1}{4\pi\epsilon} \left[\frac{1}{|\vec{r} - \vec{r}'|} - \frac{1}{|\vec{r} - S\vec{r}'|} \right]$$

Für beliebige Ladungsverteilungen $\rho(\vec{r})$ ist: $\Phi(\vec{r}) = \int_H G_H(\vec{r}, \vec{r}') \rho(\vec{r}') \mathrm{d}^3 r'$ die Lösung des Potentialproblems in H

In analoger Weise lässt sich die Spiegelladungsmethode auf einen Viertelraum mit metallischer Begrenzung anwenden, bei dem zwei Halbebenen den Rand ∂W bilden, auf dem das Potential der Randbedingung $\Phi_{\partial W}=0$ genügen muss. Die reale Punktladung wird dreimal gespiegelt an die Punkte $S_1\vec{r}_Q, S_2\vec{r}_Q, S_3\vec{r}_Q$ mit der Ladung -Q, +Q, -Q. Potential zum Ersatzproblem lautet dann:

$$\Phi_W(\vec{r}) = \frac{Q}{4\pi\epsilon} \left[\frac{1}{|\vec{r} - \vec{r}_Q|} - \frac{1}{|\vec{r} - S_1 \vec{r}_Q|} + \frac{1}{|\vec{r} - S_2 \vec{r}_Q|} - \frac{1}{|\vec{r} - S_3 \vec{r}_Q|} \right] \text{ für } \vec{r} \in W$$

Um die Greenfunktion für den Winkelraum zu erhalten Q=1 und $\vec{r}_Q=\vec{r}'$ setzen:

$$G_W(\vec{r}, \vec{r}') = \frac{1}{4\pi\epsilon} \sum_{n=0}^{3} \frac{(-1)^n}{|\vec{r} - S_n \vec{r}'|}$$

Mit $S_0 \vec{r} = \vec{r}$

Stationäre elektrische Strömungen und das zugehörige RWP

1.5.4.1 Bilanz- und Transportgleichungen für elektrische Strömungsverteilungen

Grundlage für Theorie elektrischer Strömungen ist Ladungserhaltungsgleichung:

$$\operatorname{div}\vec{j} + \frac{\partial \rho}{\partial t} = 0$$

1. Annahme: elektr. Strömungsfeld aus K versch. Ladungsträgersorten zusammengesetzt:

spezifische Ladung q_{α} Beweglichkeit μ_{α} Partialstromdichte: $\vec{j} = \underbrace{|q_{\alpha}|n_{\alpha}\mu_{\alpha}\vec{E}}_{\text{Driftstrom}} - \underbrace{a_{\alpha}D_{\alpha}\nabla n_{\alpha}}_{\text{Diffusionsstrom}}$

2. Annahme: Keine Wirbelströme im $\vec{E}-{\rm Feld}\Rightarrow {\rm reines}$ Gradientenfeld: $\vec{E}=-\nabla\Phi$

Driftstrom im \vec{E} -Feld führt zum Ohmschen Gesetzt, ist in Metallen dominant

in Richtung des negativen Konzentrationsgradienten $-\nabla n_{\alpha}$, Intensität durch Diffusionskoeffizienten $D_{\alpha} = \frac{kT}{|q_{\alpha}| |\mu_{\alpha}|} > 0$ gegeben \rightarrow Ficksches Diffusionsgesetz

Mit dem elektrochemischen Potential: $\Phi_{\alpha} := \Phi + \frac{kT}{q_{\alpha}} \ln \frac{n_{\alpha}}{n_0}$ und $\sigma_{\alpha} := |q_{\alpha}| \mu_{\alpha} n_{\alpha}$ folgt:

$$\vec{j}_{\alpha} = -\sigma_{\alpha} \nabla \Phi_{\alpha} \quad \text{und} \quad \vec{j} = \sum_{\alpha=1}^{K} \vec{j}_{\alpha} \quad \Rightarrow \quad \rho = \sum_{\alpha=1}^{K} q_{\alpha} n_{\alpha}$$

Teilchen genügen einer Teilchenbilanzgleichung : $\left[\frac{\partial n_{\alpha}}{\partial t} = -\frac{1}{q_{\alpha}} \operatorname{div} \vec{j}_{\alpha} + G_{\alpha}\right]$ mit G_{α} = Generations-Rekombinationsrate der Spezies α und Teilchenstromdichte $\frac{1}{q_{\alpha}} \vec{j}_{\alpha}$

1.5.4.2 Stationäre Strömungsfelder im Drift-Diffusions-Modell

Bei stationären Strömungen gilt: $\frac{\partial n_\alpha}{\partial t}=0\Rightarrow {\rm div}(\sigma_\alpha\nabla\Phi_\alpha)=-q_\alpha G_\alpha$

1.5.4.3 Stationäre Strömungsfelder im Ohmschen Transportmodell

einfaches Ohmsches Gesetz: $\vec{j} = \sigma \vec{E} = -\sigma \nabla \Phi$

Annahme: konstante Leitfähigkeit σ und Permittivität ϵ

$$\frac{\partial \rho}{\partial t} = -\mathrm{div}\vec{j} = -\mathrm{div}\left(\frac{\sigma}{\epsilon}\vec{D}\right) = -\frac{\sigma}{\epsilon}\mathrm{div}\vec{D} = -\frac{\sigma}{\epsilon}\rho$$

Wird der Gleichgewichtszustand durch lokale Ladungsfluktuation $\Delta \rho(t, \vec{r})$ gestört

$$\rightarrow \Delta \rho(t, \vec{r}) = \Delta \rho(t_0, \vec{r}) e^{-\frac{t-t_0}{\tau_R}}$$
 mit dielektrischer Relaxationszeit $\tau_R := \frac{\epsilon}{\sigma}$

Bei Metall ist die Relaxationszeit so kurz, dass man die Ausbildung einer Raumladung meistens vernachlässigen \rightarrow quasistationäre Näherung: $\frac{\partial \rho}{\partial t} \approx 0$

1.5.4.4 Randwertproblem für stationäre Ohmsche Strömungsfelder

stationäres Strömungsproblem: $\operatorname{div} \vec{j} = 0 \to \operatorname{homogene}$ Poissongleichung: $\operatorname{div} (\sigma(\vec{r}) \nabla \Phi) = 0$ Der Rand $\partial \Omega$ mit potentialgesteuerten Kontakten (Klemmen) auf denen die Potentialwerte $\Phi|_{\partial \Omega_i} = V_j$ vorgegeben sind \Rightarrow homogene Neumannsche Randbedingung:

$$\frac{\partial \Phi}{\partial n} = 0 \quad \text{auf} \quad \partial \Omega \setminus \left(\bigcup_{j=1}^{N} \partial \Omega_j \right)$$

2 Modellierung elektromagnetischer Vorgänge in technischen Systemen mit Kompaktmodellen

2.1 Flusserhaltende Diskretisierung mit Kirchhoff. Netzwerken

Erfüllung der Erhaltungssätze für Ladung/Energie \rightarrow flusserhaltende Diskretisierung

2.1.1 Generelle Modellannahmen: Vorraussetzungen

- System besteht aus r\u00e4umlich begrenzten Funktionsbl\u00f6cken, die \u00fcber lokalisierte Schnittstellen miteinander wechselwirken
- 2. elektrische/magnetische Felder sind nur quasistationär zeitveränderlich → keine elektromagnetischen Wellenausbreitung in und zwischen den Funktionsblöcken.
 - Bedingung: Wellenlänge der EM-Welle $\lambda >>$ Abmessung des Systems d

2.1.2 Feldtheoretische Beschreibung der Quasistationarität

Wenn Ausbildung elektromagnetischer Wellen unterdrückt wird $(\epsilon \mu \frac{\partial^2}{\partial^2 t} \vec{A} = 0)$

 \Rightarrow Näherung des Verschiebungsstromes \Rightarrow magnetisch induzierter Anteil wird vernachlässigt

Alle Feldgrößen sind quasistationär:

 $\Phi, \vec{A}, \vec{E}, \vec{B}$ sind nur von momentanen zeitlichen Wert von ρ, \vec{j} abhängig

Wegen Coulomb-Eichung gilt: div $\vec{A}=0 \Rightarrow \boxed{\text{div } \vec{j}+\frac{\partial \rho}{\partial t}=0}$

2.1.3 Synthese von Netzwerkmodellen aus funktionalen Blöcken

Reale 3D Struktur durch Kirchhoff. Netzwerk darstellen (realitätsgetr. Klemmenverhalten)

2.1.3.1 Funktionale Blöcke

Annahme: Blöcke können als mehrpolige elektrische Bauelemente dargestellt werden

- Ladungsaustausch (Stromfluss) erfolgt über disjunkte, lokalisierte Randflächen (=Kontakte/Klemmen)
- Klemmen potentiale $\Phi_k = \Phi|_{A_k}$
- \bullet Bauelement als Ganzes elektrisch neutral \Rightarrow auslaufend gerichtete Klemmenströme:

$$I_k := \int_{A_k} \vec{j} \cdot d\vec{a} \quad \Rightarrow \quad \sum_{k=1}^N I_k = 0$$

• differential-algebraisches Gleichungssystem ("Kompaktmodell"):

$$\underline{F}(\underline{U}, \underline{I}, \underline{\dot{U}}, \underline{\dot{I}} = 0)$$

mit $\underline{U}=(\Phi_1-\Phi_0,\Phi_2-\Phi_0)=$ Klemmenspannungen, $\underline{I}=$ Klemmenströme, $\Phi_0=$ Bezugspotential

2.1.3.2 Erstellung eines Kirchhoffschen Netzwerkes

elektrische Verknüpfung der Kompaktmodelle der Bauelemente über Knoten und Zweige.

Erforderliche Eigenschaften von (physikalischen) Knoten:

- \bullet ideal leitende Verbindung zwischen M
 Kontakten mit Potentialwert Φ_K
- "echter Knoten" wenn $M \geq 3$
- $\mathcal{K} := \text{Menge aller Knoten im Netzwerk}$
- meist ladungsneutral, gespeicherte Ladung $Q_K = 0$
- "speichernde Knoten" (=Elektroden) mit $Q_K \neq 0$, wenn andere Elektroden die Gegenladung tragen: $\sum_{K \in K} Q_K = 0$

Erforderliche Eigenschaften von Zweigen:

- \bullet gerichtete Zweige bezeichnen möglichen Strompfad von K_1 zu K_2
- $\mathcal{Z} :=$ Menge aller Zweige im Netzwerk
- fließender Strom wird als gerichteter Zweigstrom $I(K_1, K_2)$ flusserhalten zwischen K_1 und K_2 transportiert
- Jedem Zweig ist anliegende, gerichtete Zweigspannung

$$U(K_1, K_2) := \int_{K_1}^{K_2} \vec{E} \cdot d\vec{r}$$

• induzierte Spannung hängt von Wahl des physikalischen Integrationsweges ab:

$$U_{ind}(K_1, K_2) := \int_{K_1}^{K_2} \vec{E}_{int} \cdot d\vec{r} = -\int_{K_1}^{K_2} \frac{\partial \vec{A}}{\partial t} \cdot d\vec{r}$$

• Ohne Induktionseffekt gilt: $U(K_1, K_2) = \Phi_{K_1} - \Phi_{K_2}$

2.1.3.3 Kirchhoffsche Knotenregel

• Kirchhoffsche Knotenregel für speichernde Knoten:

$$\sum_{K' \in \mathcal{N}(K)} I(K, K') = -\frac{\mathrm{d}Q_K}{\mathrm{d}t}$$

• Kirchhoffsche Knotenregel für nichtspeichernde Knoten:

$$\sum_{K' \in \mathcal{N}(K)} I(K, K') = 0$$

2.1.3.4 Kirchhoffsche Maschenregel

Masche/Schleife \mathcal{M} ist eine geschlossene Knotenfolge längs Zweigen im Netzwerk Linienintegral über \vec{E} mit $K_{N+1} := N_0$:

$$\sum_{j=0}^{N} \int_{K_j}^{K_{j+1}} \vec{E} \cdot d\vec{r} = \sum_{j=0}^{N} U(K_j, K_{j+1})$$

Kirchhoffsche Maschenregel mit eingeprägter (induktiver) Spannungsquelle:

$$\sum_{j=0}^{N} U(K_j, K_{j+1}) = U_{ind}(\mathcal{M})$$

!Nur sinnvoll, wenn $U_{ind}(\mathcal{M})$ durch konzentrierte Bauelemente (z.B. Spulen) erzeugt wird!

2.2 Kapazitive Speicherelemente

2.2.1 Mehrelektroden-Kondensatoranordnungen (Geometrie und RWP)

- 1. RWP lösen: V-RWP $\operatorname{div}(\epsilon \nabla \Phi) = 0$ in Ω und $\Phi|_{\partial \Omega_l} = V_l$
- 2. Konstruktion des Potential aus Grundlösung: Lösung zu $[V\mbox{-}RWP]$:

Linearkombination von N+1 Grundlösungen Φ_0 darstellen: $\Phi(\vec{r}) = \sum_{k=0}^{N} V_k \Phi_k(\vec{r})$

$$\operatorname{mit} \operatorname{div}(\epsilon \nabla \Phi_k) = 0 \quad \text{in} \quad \Omega \qquad \operatorname{und} \quad \Phi_k|_{\partial \Omega_l} = \delta_{kl} = \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases}$$

Maxwellsche Kapazitätsmatrix

2.2.2.1 Beziehung zwischen Elektrodenladungen und -potentialen

Auf Elektrode $\partial \Omega_k$ befindliche Ladung Q_k ergibt mit Gaußschem Satz $Q_k = \int \vec{D} \cdot n \vec{d} \vec{a}$:

$$Q_k = \sum_{l=0}^N C_{kl} V_l$$
 mit $C_{kl} := -\int_{\partial \Omega_k} \epsilon \vec{n} \cdot \nabla \Phi_l \, da = \text{Maxwellscher Kapazitätskoeffizient}$

Mit $d\vec{a} = -\vec{n} da$ und weiteren Umformungen folgt

$$C_{kl} = \int_{\partial \Omega} \Phi_k \epsilon \nabla \Phi_l \cdot d\vec{a} = \int_{\Omega} \operatorname{div}(\Phi_k \epsilon \nabla \Phi_l) d^3 = \int_{\Omega} \nabla \Phi_k \epsilon \nabla \Phi_l d^3 r$$

 \Rightarrow Matrix C_{kl} ist symmetrisch: $C_{kl} = C_{lk}$

2.2.2.2 Darstellung der gespeicherten elektrischen Energie

gespeicherte Energie:
$$W_{el} = \frac{1}{2} \sum_{k,l=0}^{N} V_l C_{lk} V_k = \frac{1}{2} \underline{V}^T \underline{\underline{C}} \underline{V} \ge 0$$

mit der Maxwellschen Kapazitätsmatrix:
$$\underline{\underline{C}} = C_{kl} = \begin{pmatrix} C_{00} & C_{01} & \cdots & C_{0N} \\ C_{10} & C_{11} & \cdots & C_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ C_{N0} & C_{N1} & \cdots & C_{NN} \end{pmatrix}$$

und Vektor der Klemmenpotentiale:
$$\underline{V} := \begin{pmatrix} V_0 \\ V_1 \\ \vdots \\ V_N \end{pmatrix}$$
 Kapazitätsmatrix $\underline{\underline{C}}$ ist positiv semi-definit: $\underline{\underline{C}} = \underline{\underline{C}}^T$ und $\underline{\underline{V}}^T \underline{\underline{C}} \ \underline{\underline{V}} \geq 0$

Mit dem Vektor der Elektrodenladungen:
$$\underline{Q} := \begin{pmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_N \end{pmatrix}$$
 gilt: $\underline{Q} = \underline{\underline{C}} \ \underline{V}$

44

Ausserdem:
$$\boxed{ \frac{\partial W_{el}}{\partial V_k} = Q_k \text{bzw.} \frac{\partial W_{el}}{\partial \underline{V}} = \underline{Q} } \text{ und } \boxed{ \frac{\partial^2 W_{el}}{\partial V_k \partial V_l} = C_k l \text{bzw.} \frac{\partial^2 W_{el}}{\partial \underline{V} \partial \underline{V}} = \underline{\underline{C}} }$$

Potentialvorgaben V und V + ce mit $e := (1, 1, ..., 1)^T$ dasselbe \vec{E} -Feld im

Dielektrikum $\Omega \to \text{Alle Zeilen/Spaltensummen von } \underline{C} \text{ sind Null}$

$$\Rightarrow$$
 Gesamtladung $Q_{tot} = \sum_{k=0}^{N} Q_k = 0$

$$\sum_{k=0}^{N} \Phi_k(\vec{r}) = 1$$

 \underline{C} ist nicht invertierbar deshalb:

• "reduzierte Kapazitätsmatrix":
$$\underline{\underline{\tilde{C}}} = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1N} \\ C_{21} & C_{22} & \cdots & C_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ C_{N1} & C_{N2} & \cdots & C_{NN} \end{pmatrix}$$

45

• reduzierter Ladungs/Spannungsvektor: $\underline{\tilde{Q}} = \begin{pmatrix} Q_1 \\ \vdots \\ Q_N \end{pmatrix}$ und $\underline{\tilde{U_0}} = \begin{pmatrix} U_{1,0} \\ \vdots \\ U_{N,0} \end{pmatrix} = \begin{pmatrix} V_1 - V_0 \\ \vdots \\ V_N - V_0 \end{pmatrix}$

Es gilt. $\underline{\tilde{Q}} = \underline{\underline{\tilde{C}}} \ \underline{U_0}$

2.2.2.3 Teilkapazitätskoeffizienten Mehrelektroden-Kondensatoranordnung kann als Netzwerk von kapazitiven Zweipolen (Eintoren) dargestellt werden mit den elektrischen Spannungen $U_{kl} := V_k - V_l$ zwischen den Elektroden $\partial \Omega_k$ und $\partial \Omega_l$.

Es gilt : $\sum_{l=0}^{N} C_{kl} U_{kl} = -Q_k \Rightarrow$ Teilchenkapazitätskoeffizient: $K_{kl} = -C_{kl}$

$$Q_k = \sum_{l=0}^{N} K_{kl} U_{kl}$$

2.3 Induktive Speicherelemente

2.3.1 Spulenanordnungen (Geometrie und Topologie)

Induktive Bauelemente bestehen aus fast geschlossenen stromdurchflossenen Leiterschleifen \rightarrow erzeugen zeitveränderliches Magnetfeld \rightarrow elektrische Spannung wird induziert \rightarrow induzierter Strom wird getrieben. Um magnetische Feldenergie zu konzentrieren, platziert man im Inneren der Leiterschleife ein magnetisierteres Material mit großer Permeabilität. Betrachtung von N ruhenden, drahtförmigen Leiterschleifen C_k , die orientierte Flächen S_k einschließen und durch die ein zeitveränderlicher Strom $i_k(t)$ fließt:

$$u_k(t) = -u_{ind,k}(t) + r_k i_k(t)$$

Spulenstrom erzeugt Magnetfeld im Spuleninneren: $B(t) = c \cdot i(t)$ mit c=konstant:

$$u(t) = L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

mit $L = w|S_0|c$ = Eigeninduktivität der Spule

• Spule als Generator: ideale Spule mit w Windungen, deren Inneres vom homogenen, zeitveränderlichen Magnetfeld $\vec{B}(t) = B(t)\vec{e}_z$ Spule stellt orientierte Leiterschleife C dar, die die Fläche S einschließt. Jede Windungsfläche S_0 wird vom magnetischen Fluss durchsetzt: $\Phi(S_0) = \int_{S_0} \vec{B} \cdot d\vec{a} = |S_0| \cdot B(t)$

In der Spule wird eine elektrische Spannung $u_{ind}(t)$ induziert:

$$u_{ind}(t) = -\frac{\mathrm{d}}{\mathrm{d}t}\Phi(S) = -w\frac{\mathrm{d}}{\mathrm{d}t}\Phi(S_0) = -w|S_0|\frac{\mathrm{d}B}{\mathrm{d}t}$$

Der Zählpfeil von $u_{ind}(t)$ gleichorientiert mit Umlaufsinn der Leiterschleife \Rightarrow Spule als (ideale) Spannungsquelle mit Ausgangsspannung $u_{ind}(t)$

• Spule als Verbraucher: Schließt man an die Spule eine äußere Spannungsquelle mit zeitveränderlicher Spannung u(t) an \to Strom i(t) fließt durch Spule. $u(t) = -u_{ind}(t)$. Spule als Verbraucher

2.3.2 Induktionskoeffizienten

vereinfachende Modellannahmen:

- a) Alle Spulen sind ortsfest (geometrischer Aufbau: starr & zeitunabhängig)
- b) Ruheinduktion (induzierte Sp. werden nur von Zeitableitung des $\vec{B}-$ Feldes verursacht)
- c) Spulenströme ändern sich so langsam, dass quasistationäre Näherung angewendet werden darf
- d) Antennenwirkung von Spulen und Wellenausbreitung werden vernachlässigt
- e) keine Retardierungseffekte

Stellt man das Magnetfeld \vec{H}_k über ein Vektorpotential $\vec{A}_k(\vec{r},t)$ mit $\vec{H}_k = \frac{1}{\mu} \text{rot} \vec{A}_k$ so genügt in Coulombeichung das Vektorpotential der Poissongleichung: $\Delta \vec{A}_k(\vec{r},t) = -\mu \vec{j}_k(\vec{r},t)$ mit

Hilfe der Vakuum-Greenfunktion kann man diese lösen und erhält:

$$\vec{A}_k(\vec{r},t) = \frac{\mu}{4\pi} \int_{\mathbb{R}^3} \frac{\vec{j}_k(\vec{r'},t)}{|\vec{r}-\vec{r'}|} d^3r'$$

Linienförmige Leiter C_k stellt man durch eine Ortskurve mit Parametrisierung $s\mapsto \vec{r}_k(s)$ mit Bogenlänge s. Überall konstante Querschnittsfläche a_k mit Einheitstangentenvektor $\vec{t}_k(s):=\frac{\mathrm{d}\vec{r}_k}{\mathrm{d}s}$. Für Stromdichte folgt: $\vec{j}_k=\vec{t}_k(s)\frac{i_k(t)}{a_k}\Rightarrow \vec{A}(\vec{r},t)=\frac{\mu}{4\pi}\int_{C_k}\frac{\mathrm{d}\vec{s}}{|\vec{r}-\vec{s}|}i_k(t)$ mit $\vec{t}_k\mathrm{d}s=\mathrm{d}\vec{s}_k$. Das von allen Spulen erzeugte Vektorpotential ergibt sich aus:

$$\vec{A}(\vec{r},t) = \sum_{k=1}^{N} \vec{A_k}(\vec{r},t)$$

Für induzierte Spannung gilt:

$$u_{ind,k}(t) = -\sum_{l=1}^{N} \underbrace{\frac{\mu}{4\pi} \int_{C_k} \int_{C_l} \frac{d\vec{s} \cdot d\vec{r}}{|\vec{r} - \vec{s}|}}_{:=L_{kl} = \text{Induktionskoeffizient}} \underbrace{\frac{d}{dt} i_l(t)}_{i}$$

Man erhält die Transformatorgleichung:

$$u_k(t) = r_k i_k(t) + \sum_{l=1}^{N} L_{kl} \frac{\mathrm{d}i_l}{\mathrm{d}t}$$

- Selbstinduktionskoeffizienten: L_{kk}
- Gegeninduktionskoeffizienten: L_{kl} mit $k \neq l$
- Es gilt: $L_{kl} = L_{lk}$
- \bullet Die Induktivitätsmatrix $\underline{\underline{L}}$ ist symmetrisch und positiv Defizit

2.3.3 Zusammenhang mit der magnetischen Feldenergie

Für die gespeicherte magnetische Energie mit quasistationärer Näherung gilt:

$$W_{mag} = \frac{1}{2} \int_{\mathbb{R}^3} \vec{j} \cdot \vec{A} d^3 r = \frac{1}{2} \sum_{k=1}^N \int_{C_k} \vec{A}(\vec{r}, t) \cdot d\vec{r} \cdot i_k(t) = \frac{1}{2} \sum_{k=1}^N \Phi(S_k) \cdot i_k$$

$$\Rightarrow W_{mag} = \frac{1}{2} \sum_{k,l=1}^{N} i_k L_{kl} i_l = \frac{1}{2} \underline{I}^T \underline{\underline{L}} \underline{I}$$

mit dem Vektor der Spulenströme $\underline{I} := (i_1, i_2, \dots, i_N)^T$

$$\Rightarrow \Phi(S_k) = \sum_{l=1}^{N} L_{kl} i_l$$

Für nicht-drahtförmige Schleifen gilt:
$$\boxed{\frac{\partial W_{mag}}{\partial i_k} = \sum\limits_{l=1}^{N} L_{kl} \cdot i_l} \boxed{\frac{\partial^2 W_{mag}}{\partial i_k \partial i_l} = L_{kl}}$$

Allgemeine Neumannsche Formel: Stromverteilung in jeder Schleife Ω_l : $\vec{j}_l(\vec{r},t) = \vec{s}_l(\vec{r}) \cdot i_l(t)$ mit der Formfunktion $\vec{s}_l(\vec{r})$ als Lösung des stationären Strömungsproblems: div $\vec{s}_l=0$ in Ω_l Randbedingung: Einheitsstrom fließt durch die Klemmen $A_l^{(in)}$ und $A_l^{(out)}$:

$$\int_{A^{(in)}} \vec{s_l} \cdot d\vec{a} = -1 \quad \text{und} \quad \int_{A^{(out)}} \vec{s_l} \cdot d\vec{a} = +1$$

Magnetische Feldenergie beträgt:

$$W_{mag} = \frac{1}{2} \sum_{k=1}^{N} \qquad \underbrace{\frac{\mu}{4\pi} \int_{\Omega_k} \int_{\Omega_l} \frac{\vec{s}_k(\vec{r}) \cdot \vec{s}_l(\vec{s})}{|\vec{r} - \vec{s}|} d^3r d^3s}_{\Omega_l} \qquad \cdot i_l(t) i_k(t)$$

 L_{kl} =Neumannscher Induktivitätskoeffizient