Two Results on Discontinuous Input Processing

Vojtěch Vorel

Charles University Prague, Czech Republic

DCFS 2016

General Jumping Finite Automaton

- *GJFA* is a triple $M = (Q, \Sigma, R, q_0, F)$:
 - Q ... finite set of states
 - Σ ... finite alphabet
 - R ... finite set of *rules* from $Q \times \Sigma^* \times Q$
 - q_0 ... the initial state
 - F ... the set of final states
- Step of computation:

General Jumping Finite Automaton

- *GJFA* is a triple $M = (Q, \Sigma, R, q_0, F)$:
 - Q ... finite set of states
 - Σ ... finite alphabet
 - R ... finite set of rules from $Q \times \Sigma^* \times Q$
 - q_0 ... the initial state
 - F ... the set of final states
- Initial configuration:

TAPE		
	W	
STATE		
q_0		

Accepting configuration:

TAPE empty

STATE

Example GJFA

$$\Sigma = \{D, C, F, S, (,), [,]\}$$

Accepts e.g.:

- DCFS () []
- (DCFS) [()]
- [DCFS()]()
- ...

Example GJFA

$$\Sigma = \{D, C, F, S, (,), [,]\}$$

Accepts e.g.:

- DCFS () []
- (DCFS) [()]
- [DCFS ()] ()

But not:

■ (DCFS [])

Models Related To GJFA

		states	context	axioms	end marks	lang. class notation
M.Z. (2012)	general jumping finite automata	YES	no	no	no	GJFA
4.K.R.V. (2010)	graph-controlled insertion systems	YES	YES	YES	no	$\mathrm{LStP}_*(\mathrm{ins}_*^{k,k})$
Păun (1990)	regular control semicontextual grammars without app. checking					$=C_k$
Păun (1998) Păun	insertion systems	no	YES	YES	no	INS^k_*
(1985)	grammars					$=\mathcal{J}_k$
Č.M. (2010)	clearing restarting automata	no	YES	no	YES	$\mathcal{L}(k ext{-cl-RA})$

M.Z.: Meduna, Zemek A.K.R.V.: Alhazov, Krassovitski, Rogozhin, Verlan Č.M.: Černo, Mráz

lang class

end

Models Related To GJFA

		states	context	axioms	marks	notation
M.Z. (2012)	general jumping finite automata	YES	no	no	no	GJFA
A.K.R.V. (2010)	graph-controlled insertion systems regular control	YES	YES	YES	no	$LStP_*(ins_*^{k,k})$
Păun (1990)	semicontextual grammars without app. checking					$=\mathcal{C}_k$

M.Z.: Meduna, Zemek A.K.R.V.: Alhazov, Krassovitski, Rogozhin, Verlan Č.M.: Černo, Mráz

lang class

end

Models Related To GJFA

		ctates	context	avione	enu	ialig. Class
		states	Context	алины	marks	notation
M.Z.	general jumping	YES	no	(YES)	no	GJFA
(2012)	finite automata	I L3	110	(123)	110	GJI A
A.K.R.V.	graph-controlled					$LStP_*(ins_*^{k,k})$
(2010)	insertion systems	YES	YES	YES	no	$LStP_*(IIIS_*)$
	regular control					
Păun	semicontextual					$=\mathcal{C}_{k}$
(1990)	grammars without					$=c_k$
	app. checking					

M.Z.: Meduna, Zemek A.K.R.V.: Alhazov, Krassovitski, Rogozhin, Verlan Č.M.: Černo, Mráz

Case of k=0

		states	context	axioms	end marks	lang. class notation
M.Z.	general jumping	YES		(YES)	no	GJFA
(2012)	finite automata	TLS		(123)	no	GJFA
A.K.R.V.	graph-controlled					$LStP_*(ins_*^{k,k})$
(2010)	insertion systems	YES		YES	no	$LStP_*(IIIS_*)$
	regular control					
Păun	semicontextual					_ C
(1990)	grammars without					$=\mathcal{C}_k$
	app. checking					

M.Z.: Meduna, Zemek A.K.R.V.: Alhazov, Krassovitski, Rogozhin, Verlan Č.M.: Černo, Mráz

General Jumping Finite Automaton

$JFA \subseteq GJFA$

■ R ... finite set of rules from $Q \times \Sigma^* \times Q$ —from $Q \times \Sigma \times Q$

The following are equivalent:

- *L* ∈ JFA
- L = perm(K) for $K \in REG$
- L can be expressed from Σ using:
 - union (binary)
 - shuffle (binary)
 - iterated shuffle (unary)

"alphabetic shuffle expressions"

- \blacksquare GJFA \subseteq CSL
 - Proof: L(M) is easily decidable in linear space
- JFA ⊈ CFL

- REG ⊈ GJFA
 - Example No. 1: $L = a^*b^*$
 - Example No. 2: $L = (ab)^*$
 - Lemma: If L ∈ GJFA, the first deleted (or last inserted) factor of w ∈ L can be moved anywhere!
- FIN ⊆ GJFA
- FIN ⊈ JFA
 - Proof: Each L ∈ JFA is permutation-closed

Figure by Meduna, Vrábel, Zemek

Closure Properties

	GJFA	JFA
Endmarking	_	_
Concatenation	_	_
Shuffle	_	+
Union	+	+
Complement	_	+
Intersection	_	+
Int. with regular languages	_	_
Kleene star	_	_
Reversal	+	+
Homomorphism	_	_
Inverse homomorphism	_	+

Complexity of GJFA Languages

- GJFA contains an NP-complete language
 - Example:

+ reduction from the EXACT COVER PROBLEM.

- \blacksquare JFA \subseteq P
 - Proof: Actually, JFA ⊂ NL

Complexity of GJFA Properties

- Universal word problem
 - NP-complete for JFA
 - NP-complete for GJFA
- Disjointness
 - NP-complete for JFA
 - Undecidable for GJFA
- Universality
 - Undecidable for GJFA New result

Proof Idea

- Take any CFG G on Σ in Greibach normal form
- Produce a 5-state *GJFA* on $\Gamma \supset \Sigma$ that:
 - accepts any $w' \in \Gamma$ in incorrect form
 - accepts $w' \in \Gamma$ in *correct form* iff it *encodes* $w \in L(G)$

Consequences of "Universality is Undecidable for GJFA"

- Undecidability of more general properties:
 - Inclusion
 - Equivalence

- Holds in equivalent models:
 - Graph-controlled insertion systems with zero contexts
 - Regular control semicontextual grammars without appearance checking with zero contexts

Clearing Restarting Automaton

- k-clearing restarting automaton is a pair $M = (\Sigma, I)$:
 - Σ ... finite alphabet
 - I ... finite set of *rules* of the form (u_L, v, u_R) :

$$-u_L \in \Sigma^k \cup c \Sigma^{k-1}$$
 ... left context

- $-v \in \Sigma^+$
- $-u_{\mathsf{R}} \in \Sigma^k \cup \Sigma^{k-1} \$ \dots$ right context
- Step of computation:

whenever $(u_L, v, u_R) \in I$ such that

- u_1 is a suffix of cw_1 ,
- u_R is a prefix of w_2 \$.

context

no

YES

axioms

no

YES

states

YES

YES

M.Z.

(2012)

(2010)

Păun

A.K.R.V.

lang. class

notation

CIEA

 $= \mathcal{C}_{k}$

 INS_*^k

 $=\mathcal{J}_k$

 $\mathcal{L}(k\text{-cl-RA})$

Models Related To Cl-RA

general jumping

finite automata

graph-controlled

insertion systems regular control semicontextual

i duii	Schilicontextual			
(1990)	grammars without			
	app. checking			
Păun (1998)	insertion systems	no	YES	YES
Păun	semi-contextual			
(1985)	grammars			
Č.M.	clearing restarting	no	YES	no
(2010)	automata	10	123	110
	M.Z.: Meduna, Zemek A.K.R.V.: Alhazov, Kras Č.M.: Černo. Mráz	sovitski, Ro	ogozhin, V	erlan

110	GJFA
no	LStP _* (ins _* ,
	1

end

marks

no

YES

Models Related To Cl-RA

states (context	axioms	end	lang. class
States	Context		marks	notation

Păun (1998) Păun (1985)	insertion systems semi-contextual grammars	no	YES	YES	no	$INS_*^k = \mathcal{J}_k$
Č.M. (2010)	clearing restarting automata	no	YES	no	YES	$\mathcal{L}(k\text{-cl-RA})$

M.Z.: Meduna, Zemek A.K.R.V.: Alhazov, Krassovitski, Rogozhin, Verlan Č.M.: Černo, Mráz

Models Related to Cl-RA

states c	ontext	t axioms	end	lang. class
States e	Context		marks	notation

Păun (1998)	insertion systems	no	YES	YES	no	INS_*^k
Păun	semi-contextual					$= \mathcal{J}_{k}$
(1985)	grammars					$= \mathcal{J}_k$
Č.M.	clearing restarting	no	YES	(YES)	YES	$\mathcal{L}(k\text{-cl-RA})$
(2010)	automata	110	TLS	(123)	TLS	$\mathcal{L}(K^{-CI-IGA})$

M.Z.: Meduna, Zemek A.K.R.V.: Alhazov, Krassovitski, Rogozhin, Verlan Č.M.: Černo, Mráz

- REG $\subseteq \mathcal{L}(\text{cl-RA})$ up to $\pmb{\varepsilon}$
 - Proof: Use pumping lemma to clear close to the beginning
- CFL $\nsubseteq \mathcal{L}(\text{cl-RA})$ even with ignoring ε
 - Example: $L = \{a^nbc^n \mid n \ge 0\}$
- $\mathcal{L}(1\text{-cl-RA}) \subseteq \mathsf{CFL}$
- $\mathcal{L}(2\text{-cl-RA}) \nsubseteq \mathbf{CFL}$
 - Černo, Mráz: example with $|\Sigma| = 6$
 - New result: example with $|\Sigma| = 2$

Proof Idea

$$\Sigma = \{0, 1\}$$

- A defect in $w \in \Sigma^*$ is a letter with equal neighbours: 000, 101, 010, 111.
- So, words without defects are of the form ...001100110011...

Define a Cl-RA on Σ generatively:

- Start with a short without defects (e.g., 00)
- Introduce defect at the beginning: (c, 10, 00)
- Move defect to the right but add two letters:
 - (01, <u>10</u>, 00) (01, 10, **0**0)
 - $(00, \underline{11}, 01)$ $(00, 11, \mathbf{01})$
 - $(11, \underline{00}, 10)$ (11, 00, 10)
 - $(10, \underline{01}, 11)$ (10, 01, 11)
- Make the defect disappear at the end: $(01, \underline{10}, 0\$)$

Proof Idea

Together, transforming a word without defect to another **triples** the length.

But:

- CFL are closed under intersection with $L = \{w \mid w \text{ has no defect}\}$
- Lengths of words in a CFL cannot grow exponentially

Open Questions

Closure properties of Cl-RA:

	Cl-RA
Endmarking	+
Concatenation	_
Shuffle	•
Union	_
Complement	•
Intersection	_
Int. with regular languages	_
Kleene star	⊕
Reversal	+
Homomorphism	_
Inverse homomorphism	⊕

GJFA:

- Expressiveness w.r.t. restricted lengths of labels
- NP-hardness w.r.t. restricted alphabets and lengths of labels
- Complexity of universality for JFA

Thank you for your attention!