Subspaces Linear Spaces

Definition: Let V be a vector space. A subset W of V is called a [Subspace] of V iff W is a vector space with respect to the operations of V, that is,

- (S1) $w_1 + w_2 \in W \ \forall w_1, w_2 \in W$ (closure under addition)
- (S2) $cw \in W \ \forall c \in F$ and $\forall w \in W$ (closure under scalar multiplication)

Remark: W is a subspace of V iff W is nonempty and W is closed under addition and scalar multiplication. All other axioms are inherited from the original vector space V.

Example: linear space $V=\mathbb{R}^2$, subspace $W=[\alpha\ 0]^T\in\mathbb{R}^2:\alpha\in\mathbb{R}$ Solution: Let $w_1=[\alpha_1\ 0]^T$ and $w_2=[\alpha_2\ 0]^T$ and $c\in\mathbb{R}$,

- (S1) $w_1=egin{bmatrix} lpha_1 \\ 0 \end{bmatrix}$ and $w_2=egin{bmatrix} lpha_2 \\ 0 \end{bmatrix}$ be two arbitrary elements of W. Then $w_1+w_2=egin{bmatrix} lpha_1+lpha_2 \\ 0 \end{bmatrix}\in W$
- (S2) $cw1=\begin{bmatrix} clpha_1 \ 0 \end{bmatrix}\in W$ for all $c\in\mathbb{R}.$ Hence W is a subspace of V.

Example: linear space $V=\mathbb{R}^2$, subspace $W=[\alpha\ 1]^T\in\mathbb{R}^2: \alpha\in\mathbb{R}$

Solution: Let $w_1 = [\alpha_1 \ 1]^T$ and $w_2 = [\alpha_2 \ 1]^T$

• (S1) $w_1=egin{bmatrix} \alpha_1\\1 \end{bmatrix}$ and $w_2=egin{bmatrix} \alpha_2\\1 \end{bmatrix}$ be two arbitrary elements of W. Then $w_1+w_2=egin{bmatrix} \alpha_1+\alpha_2\\2 \end{bmatrix}\notin W$

Remark: In \mathbb{R}^2 , a subspace is a line through the origin. Any line through the origin is a subspace of \mathbb{R}^2 .

In function spaces, an example can be given as follows:

Example: linear space $V = \text{set of all real-valued functions of a real variable } t \to f(t);$

subspace W_1 = set of all continuous functions [+]

subspace $W_2 = \mathsf{set}$ of all constant functions [+]

subspace $W_3=$ set of all functions periodic with π [+] subspace $W_4=$ set of all functions which are discontinuous at t=1 [-]

Remark: 0 vector is a subspace of any vector space, even subspace of itself, and it is the smallest subspace.

[+] W_1, W_2, W_3 are subspaces of V

 \square W_4 is not a subspace of V

Example: Show that Y + Z is a linear subspace of X, if Y and Z are also linear subspaces of X.

Proof: Let $w_1 + w_2 \in W$, with

$$w_1=y_1+z_1$$
 where $y_1\in Y,\ z_1\in Z$

$$w_2=y_2+z_2$$
 where $y_2\in Y,\ z_2\in Z$

then

$$w_1 + w_2 = y_1 + z_1 + y_2 + z_2 = (y_1 + y_2) + (z_1 + z_2)$$

 $y_1 + y_2 \in Y, z_1 + z_2 \in Z \Rightarrow w_1 + w_2 \in Y + Z$

Shows that Y + Z is closed under addition. (lemma 1)

Let $cw_1 \in W$, $orall c \in F$

$$cw_1 = c(y_1 + z_1) = (cy_1) + (cz_1)$$

 $cy_1 \in Y, cz_1 \in Z \Rightarrow cw_1 \in Y + Z$

Shows that Y + Z is closed under scalar multiplication. (lemma 2) Hence Y + Z is a linear subspace of X.

 $\underline{\mathsf{Example}} \text{: If } Y \text{ and } Z \text{ are subspaces of X, then } Y \cap Z \text{ is a subspace of } X.$

Proof:

• $0 \in Y$, $0 \in Z$ then by definition $0 \in Y \cap Z$

• for $u, w \in Y$ and $u, w \in Z \implies u, w \in Y \cap Z$

now we need to show that $u+w\in Y\cap Z$ (closure under addition)

- starting $u \in Y, w \in Y \implies u + w \in Y$
- similarly $u \in Z, w \in Z \implies u + w \in Z$
 - \circ hence $u+w\in Y\cap Z$

now we need to show that $cu \in Y \cap Z$ (closure under scalar multiplication)

- starting $u \in Y \implies cu \in Y$, $\forall c \in F$
- similarly $u \in Z \implies cu \in Z$, $\forall c \in F$
 - \circ hence $cu \in Y \cap Z$

Hence $Y \cap Z$ is a subspace of X.

 $\underline{\text{Example}}$: For Y and Z are subspaces of X, show that whether $Y \cup Z$ is a subspace of X or not.

Proof: Prove by contradiction.

- Assume $Y \cup Z$ is a subspace of X. Then $Y \cup Z$ is closed under addition and scalar multiplication.
- Let $Y = \{(y,0) : y \in \mathbb{R}\}$ and $Z = \{(0,z) : z \in \mathbb{R}\}.$
- Then $u_1 = (1,0) \in Y$ and $u_2 = (0,1) \in Z$.
- $u_1 + u_2 = (1,1) \notin Y \cup Z$.

Example: Is \mathbb{R}^2 a subspace of complex vector space \mathbb{C}^2 ?

<u>Proof:</u> Note that we consider complex vector space, so if $x \in \mathbb{R}^2$ then $x \in \mathbb{C}^2$.

• $i \in \mathbb{C}$ and $x \in \mathbb{R}^2$ then $ix \in \mathbb{R}^2$.

$$\circ$$
 $i(1,1)=(i,i)\notin\mathbb{R}^2$

Hence \mathbb{R}^2 is not a subspace of \mathbb{C}^2 .

Sums of Subspaces

Subspaces

Definition: Suppose $W_1, ..., W_m$ are subspaces of a vector space V. The sum of $W_1, ..., W_m$ is the set of all possible sums of elements of $W_1, ..., W_m$:

$$W_1+...+W_m=\{w_1+...+w_m:w_i\in W_i, i=1,...,m\}$$

Remark: $W_1 + ... + W_m$ is the smallest subspace of V containing $W_1, ..., W_m$.

Direct Sums

Definition: Suppose $W_1, ..., W_m$ are subspaces of a vector space V. The sum $W_1 + ... + W_m$ is called a direct sum if each element of $W_1 + ... + W_m$ can be written in one and only one way as a sum $w_1 + ... + w_m$ with $w_i \in W_i$.

Remark: if $W_1 + ... + W_m$ is a direct sum, then $W_1 \oplus ... \oplus W_m$ is used to denote the direct sum.

Example: Suppose U_j is a subspace of F^n of those vectors whose jth component is zero. As $U_2 = \{(0, x, ..., 0) \in F^n : x \in F\}$, Then.

$$U_1 \oplus ... \oplus U_n = F^n$$

Condition for Direct Sum: Suppose $W_1, ..., W_m$ are subspaces of a vector space V. Then $W_1 + ... + W_m$ is a direct sum iff the only way to write 0 as a sum $w_1 + ... + w_m$ with $w_i \in W_i$ is by taking $w_1 = ... = w_m = 0$. In other words, Suppose

W and U are subspaces of a vector space V. Then $W \oplus U$ is a direct sum iff $W \cap U = \{0\}$.

Proof: Proving the statements with iff is equivalent to proving the statements separately, in both directions.

 $W \oplus U \text{ is a direct sum } \iff W \cap U = \{0\}$