

What is the Final Verification of Engineering Requirements?

Eric Poole
"Systems Engineering" Session
Project Management Challenge 2010

Presentation Outline

- Requirements Development
 - > Definition
 - > Documentation
 - > Maintenance
- **❖** Implementation
- Requirements Verification
 - > Methods
 - > Verification Plan
 - > Process
- **❖ Final Verification Approach**

Requirements Definition

- Derived from higher level requirements (example shown next page)
 - > Program requirements drive mission requirements
 - > Mission requirements drive engineering solutions
 - > Engineering solutions drive system requirements
- ❖ Requirements should be driven by basic needs
 - Wants or 'desirements' should be treated differently than requirements
 - > Requirements should not specify engineering solutions
- ❖ Reviewed by both 'supplier' and 'customer'
 - > Entity with the need is 'customer'
 - > Entity that fulfills the need is 'supplier'
 - > Both equally responsible for defining requirements
 - > Iterative Process
 - > Modifications may drive contractual changes

Requirements Derivation

LAUNCH SERVICES PROGRAM

Program Goals

Mission Requirements

Instrument & System
 Requirements

Subsystem & Component
 Requirements

Drawings & Procedures

Requirements Documentation

- ❖ Requirements must have formal documentation, such as an Interface Control Document (ICD)
 - > For higher level systems, can take years to develop
 - > Approved by 'Supplier' and 'Customer'
- Only top level requirements are captured
 - Implementation and derived requirements are tracked internally by the supplier
 - > Relevant, but not required, data should be kept out of the control document.
- The control documentation has contractual implications
 - > Failure to meet the requirements is a breach of contract
 - Expansion of the requirements is a change in scope

Requirements Maintenance

- Need to agree upon a formal requirement change/deviation/ variance/waiver process
 - > Changes to track new direction or to fill in TBDs
 - Waivers, with rationale, to accept deviation from a stated requirement
 - > All parties who signed the original document must also review and sign changes/waivers
- Contractual and technical issues must have separate decision path
 - Implementation of new requirements may need additional funding
 - > If funding is not approved for a new requirement, engineering team should have an avenue to elevate the technical risk incurred

We have requirements, now what?

- Engineering team leads development of the implementation solution
 - > Starting from requirements, team designs the system
 - > Draws from experience, history of successful systems
 - > Seeks input from manufacturing and operations
- ❖ Final design is disseminated to other organizations
 - > Drawings sent to manufacturing for production of operational units (flight hardware, GSE)
 - > Procedures sent to operations for processing

Requirements-to-Operations Flow

LAUNCH SERVICES PROGRAM

Engineering

Verification

- Final operational system must satisfy original requirements
 - Systematic verification offers good protection against failure
 - Verification of system performance reduces unexpected system behavior
 - > A formal process is required to document the methods used
- Many verifications can be performed along the way to reduce schedule risk
 - Waiting until the system is operational to verify requirements is too late
 - Performing incremental verification reduces risk of performing the next step in the process

Verification Strategy

LAUNCH SERVICES PROGRAM

Program Review

Data Review

Integrated Systems Tests

System Level Testing

 Subsystem & Component Bench Testing

 Drawing & Procedure Reviews

Verification Methods

LAUNCH SERVICES PROGRAM

❖ Test

- Qualification testing verification of the design through testing to extremes of use environment
- Acceptance testing verification that a unit has been built per the design
- Lot Acceptance Test testing of a sampling of units to verify the entire lot is acceptable (ordnance)

Inspection

- > Review of documentation (drawings, procedures) to verify that requirements have been properly disseminated, or "flowed down"
- > Review of hardware to verify implementation is correct
 - ♦ Connectors
 - **♦ Tubing**
 - **♦ Etc.**

Spacecraft Bus Vibration Testing

John F. Kennedy Space Center

Verification Methods (continued)

LAUNCH SERVICES PROGRAM

❖ Analysis

- Calculation of predicted performance based on worst case scenario
- > Not a preferred method, but necessary in some cases (e.g. rocket flight trajectory)

Demonstration

- > Operation of an item to show that the item is capable of fulfilling its intended purpose
- > Can be used to verify hardware, software or procedures

FULL MOTION SEPARATION
TEST SERIES

PLA SEPARATION 25 AUGUST/2008

CAPTURE: 2,000 FPS REPLAY: 30 FPS APX CAMERA RAM

Verification Plan

- Once the requirements are documented, a plan for the specifics of verification is needed
 - Every requirement must be formally verified
 - > Methods specified
 - > Responsible organization specified.
 - Multiple verifications for one requirement is common
 - > Incremental verifications can be documented, but one final verification is sufficient.
- Verification plan is reviewed by all parties
 - > One party responsible for maintaining the plan
 - > Changes must be reviewed by all and documented

Verification Process

- **❖** The responsible party performs the verification
- ❖ A summary of the verification performed, along with supporting documentation, is distributed to all parties
- Reviewers clarify any questions
- ❖ Final verification documented and closed by each party

Midpoint Review

- In the beginning, there is an engineering team that develops a design solution
 - Team primarily composed of specialized, highly trained (expensive) personnel
 - > The end product of this team is a paper (electronic?) design
 - > The design gets passed on to other teams who are expert at the tasks of manufacturing and processing
 - > The completed system gets passed on to another team, tasked with operating the system
- In the end, we want a system that meets the mission objectives, and was completed on time and within the given budget

Cradle-to-Grave Engineering

VS.

Passing the Baton

Continuous Involvement

- Engineering team determines requirements, develops design solution
- When manufacturing begins, engineering team continues to follow the process
 - > Ensures parts are built as intended
 - > Allows engineers to spot unforeseen flaws in the design
- During final processing flow, engineering team follows the operations
 - > Ensures system operates as intended
 - Aides trouble shooting if problems arise during checkout
- During mission operations, engineering team on hand to help trouble-shooting

Continuous Involvement Flow

LAUNCH SERVICES PROGRAM

Engineering

Continuous Involvement Responsibility Table

John F. Kennedy Space Center

Event	Verification	Responsibility
Requirement Documentation	Documentation Review	Engineering
Implementation Design	Drawing, Procedure Review	Engineering
Component Manufacture	Receiving Inspection	M&P, Engineering
Systems Integration	As-run procedure	M&P, Engineering
System Test	Test results	M&P, Engineering

Mission Relay

- Engineering team determines requirements, develops design solution
- When manufacturing begins, engineering team hands off to the manufacturing center
 - > Parts built per drawing
 - > If questions arise, engineering team can be consulted
- During final processing flow, manufacturing center hands off to operations team
 - > Assembly and check out done per procedure
 - > If questions arise, engineering team can be consulted
- During mission operations, any of the above groups can be consulted for trouble shooting

Mission Relay Flow

LAUNCH SERVICES PROGRAM

Engineering

Mission Relay Responsibility Table

Event	Verification	Responsibility
Requirement Documentation	Documentation Review	Engineering
Implementation Design	Drawing, Procedure Review	Engineering
Component Manufacture	Receiving Inspection	M&P
Systems Integration	As-run procedure	M&P
System Test	Test results	M&P

Final Verification

- Final verification of the mission system occurs as an integrated system test, just before deploying the system in to the operations phase
 - > There is little disagreement that an integrated, systemlevel test should be performed
 - > Exercising the system significantly reduces implementation risk and often finds errors
- ❖ Debate is really over who performs the verification Should the original development team continue to follow process all the way through to operations?

Closing

- Mission Success is the main objective
 - >NASA missions are typically one-of-a-kind, never-been-done-before operations
 - >There is plenty of room for error and misunderstanding when passing off designs
 - > Personnel continuity through the phases increases the probability of mission success
- High cost is a major obstacle to receiving approval for missions
 - > Mission costs are strongly influenced by labor hours
 - Many aspects of space operations have been done before
 - > Experienced manufacturing and operations personnel can mitigate risk of misunderstanding

As Always, the Answer is . . .

