

보건복지부 질병관리본부	보	도 침	: 고	사 료
배 포 일	2020. 5. 7./ (총 9매)			
유전체연구과	과 장	김 봉 조	전 화	043-719-8870
#전세원구작 	담 당 자	김 영 진		043-719-8873
보건의료기술개발과	과 장	정 은 영		044-202-2920
	담 당 자	이 정 민		044-202-2923

동아시아인 당뇨병 유전적 원인 규명, 세계의 주목 받다!

- ◇ 국립보건연구원, 동아시아인 43만 명 대상 당뇨병 유전체연구 주도
- ◇ 한국인 맞춤형 당뇨병 고위험자 조기 발견 가능 및 임상 활용 기대
- ◇ 연구 결과, 세계 최고 학술지인 네이처(Nature) 2020년 5월 호 게재
- □ 질병관리본부(본부장 정은경) 국립보건연구원(원장 권준욱) 유전체센터는 **제2형** 당뇨병 발병에 영향을 주는 61개 신규 유전요인[®]을 발굴하여 이 분야 최고 학술지인 네이처(Nature, IF 43.07) 2020년 5월 호에 게재했다고 밝혔다. [붙임 1 참조]
 - * 유전요인: 부모로부터 물려받은 유전정보 중 질병 발생과 관련된 요인
 - 이는 국립보건연구원, 싱가포르 국립대학, 일본 이화학연구소 등이 주도하여 동아시아 3개국* 중심 약 43만 명 유전체정보를 분석하여 발표한 것이다.
 - * 한국(약 9.8만 명), 중국(약 9.6만 명), 일본(약 19만 명), 20개 연구그룹 약 5만 명
- □ 이번 연구는 **동아시아인 대상 연구로는 역대 최대 규모로**, 당뇨병 유전요인과 특성을 규명한 것이다.
 - 기존 유전체연구의 약 80%는 서양인 중심으로 수행되어, 동아시아인에 적용하는 경우 당뇨병 등 질병 예측의 정확도가 50% 수준까지 낮아지는 문제가 있었다.

- 이에 따라 동아시아인을 대상으로 하는 대규모 유전체연구의 필요성이 대두되었는데, 이번 연구는 규모면에서 서양인 대상 연구와 대등한 수준이다.
- 본 연구 결과 동아시아인 당뇨와 관련된 **61개의 유전요인을 새롭게 발굴**하였으며, 특히 알데히드 분해요소2*(ALDH2) 유전자는 남성 특이적으로 당뇨병에 영향을 주었다.
 - * 신체의 알코올 신진대사에 관련되어 있으며, 알코올(술)의 부산물인 아세트알데히드를 분해하는 효소
 - ALDH2는 알코올 분해효소로 남성에서 빈도가 높은 음주 등 생활습관과 상호작용하여 당뇨 발병 위험을 높이는 것으로 예상된다.
- □ 이러한 연구 결과는 미래의학인 환자 맞춤형 정밀의료* 기반 정보로 활용될 것으로 기대된다.
 - * 개인의 유전체·의료정보, 환경 및 생활 습관 등을 분석하여 환자 개인별 최적의 맞춤형 의료(예방, 진단, 치료) 서비스를 제공하는 것
 - (고위험자 조기 발견) 본 연구 결과를 국립보건연구원이 보유한 인구집단 코호트* 약 10만 명에 적용하였을 때, 유전적으로 당뇨병 발병 위험이 높은 상위 5%의 고위험자는 나머지 일반인에 비해서 당뇨 발병위험이 약 3배 높다**는 것을 확인하였다.
 - * 고대 로마 군대의 한 단위를 가리키던 말로, 어떤 특성을 공유하는 많은 사람들의 모임을 일컬음
 - ** 최근 연구를 통해 상위 약 5%의 인구집단은 당뇨 발병위험이 일반인에 비해약 2-3배 높다고 보고된 바 있다(Khera et al. Nature Genetics 2018).

- 유전정보는 태어나면서부터 가지게 되는 개인의 고유한 질병 위험인자이므로, 당뇨병 발생이 증가하는 40대 이전에 유전정보를 이용하여 당뇨병 고위험자를 조기에 발견할 수 있다.
- (맞춤형 치료) 유전적 고위험자는 조기 발견을 통해 생활습관 중재 등 맞춤형 치료를 통해 예방이 가능하다.
- □ 한편 본 연구는 국립보건연구원 유전체센터에서 2015년도 자체 개발한 한국인유전체칩과, 2001년부터 수집한 대규모의 코호트 기반 인체자원을 활용하였다.
 - * 한국인유전체칩: 한국인 특이적 유전체 정보를 반영하여 제작된 한국인 질병 유전체 연구에 최적화된 칩. 한국인에서 나타나는 유전변이 중 단백질 기능에 영향을 주는 유전변이 약 20만개와 한국인 유전체를 대표하는 유전 변이 약 60만개 이상으로 구성되어있음 [붙임 2 참조]
 - 보건복지부는 2014년부터 포스트게놈다부처유전체사업*의 일환으로 한국인유전체칩 개발과 유전체정보 생산을 위해 국립보건연구원에 연간 15~20억을 지원하고 있다.
 - * 개인별 맞춤의료 실현을 위해 유전체분석기술, 질병 진단·치료법 개발 등 7개 부처·청(미래창조과학부, 보건복지부, 산업통상자원부, 해양수산부, 농림축산 식품부, 농촌진흥청, 산림청)이 공동으로 추진하는 다 부처공동사업
 - 또한, 개발된 **한국인유전체칩을 이용하여** 국립중앙인체자원은행 (http://koreabiobank.re.kr)에 보관된 약 18만 명의 인체자원 대상으로 유전체정보를 생산하였으며,
 - 이 정보는 2019년 5월부터 국립중앙인체자원은행을 통해 **국내** 연구자들에게 분양하고 있다.

- 국립보건연구원은 2001년도부터 국립중앙인체자원은행을 운영하고 있으며 현재 약 42만 명분의 인체자원을 수집하여 보관하고 있다.
- 아울러, 2018년도부터는 국내 6개 사업체에 기술 이전하여 한국인유전체칩을 상용화하는 등 국내 유전체연구 기반 강화에 힘써왔다.
 - * 기술이전기업: ㈜디엔에이링크, ㈜테라젠이텍스 바이오연구소, ㈜마크로젠, ㈜클리노믹스. 중앙보훈병원. ㈜SCL헬스케어
- □ 국립보건연구원 권준욱 원장은 "이번에 국립보건연구원이 주도적으로 분석한 동아시아인 대상 당뇨병 유전체연구 성과는 국내 유전체연구가 한 단계 더 도약할 수 있는 기반을 마련하였으며, 그 학술적 가치를 세계적으로 인정받은 사례다"라고 전했다.
- <붙임> 1. 연구 결과 개요
 - 2. 한국인유전체칩 소개 자료

붙임 1

연구 결과 개요

- □ 동아시아인 43만 명 제2형 당뇨병 유전체연구
 - 참여 연구 그룹: 3개 바이오뱅크* 및 20개 연구 그룹
 - * 한국: 국립보건연구원, 중국: Kadoorie Biobank, 일본: Biobank of Japan
 - 역할: 각 연구 그룹은 해당 그룹의 유전체정보를 분석하고, 분석 통계치를 공유하여 핵심 분석그룹(국립보건연구원 유전체연구과, 싱가포르 국립대 등)에서 통합 통계분석, 연구 결과 정리 및 논문 작성 등 진행
 - 연구 대상자: 433,540명 (제2형 당뇨 77,418명, 정상군 356,122명)
 - * 한국: 국립보건연구원 97,676명, 중국: Kadoorie Biobank 96,030명, 일본: Biobank of Japan 191,764명, 그 외 연구그룹에서 약 5만 명
 - 주요 연구 결과
 - 동아시아 최대 규모의 제2형 당뇨병 유전체연구로, 기존에 보고된 서양인 최대 규모의 연구와 유사한 수준임
 - * 본 연구: **동아시아인 당뇨병 77,418명**, 기 보고된 서양인 당뇨병 유전체연구(Mahajan et al. Nature Genetics, 2018년): **서양인 당뇨병 74,124명**
 - 제2형 당뇨병 발병 영향 유전요인 183개를 발굴하였고, 그 중 61개를 새롭게 발굴하여 보고하였음 [표 1]
 - 신규 61개 요인을 제외한 122개 요인들은 서양인에서도 보고되었으며, 대부분 서양인과 동양인에서 당뇨병 발병 영향도가 유사하였음
 - 이중 SDX3 유전자는 동아시아인에서만 제2형 당뇨병에 영향을 미치는 것으로 확인되었으며, 서양인에서는 당뇨병에 영향이 없었음
 - * SIX3 눈 발달 등에 역할 하는 조절 유전자
 - 또한, ALDH2 유전자는 남성인 경우에만 당뇨 발병 위험을 증가 시키지만, 여성인 경우에는 당뇨병에 영향이 없었음
 - * ALDH2 알데히드 분해효소2, 신체의 알코올 신진대사에 관련되어 있으며, 알코올(술)의 부산물인 아세트알데히드를 분해하는 효소

<표 1. 발굴된 신규 61개 유전자 주요 기능>

번호	염색체 번호	유전자	주요 기능
1	1	VWA5B1	청각과 시각장애를 가지는 어셔증후군과 관련됨
2	1	MAST2	선천성 중배엽성 신종, 유방 점액성 암종과 관련됨
3	1	PGM1	글루코스 분해, 합성과 관련되어있는 효소
4	1	TSEN15	tRNA 이어맞추기(splicing) 엔도뉴클레아제의 서브유닛
5	1	MDM4	암 억제 유전자인 p53과 결합하여 p53 활동 저해
6	1	MYOM3	치매와 관련된 것으로 보고됨
7	2	SIX3	눈 발달 등에 역할하는 조절 유전자
8	2	IKZF2	림프구 발달 조절에 관련되어 있음
9	2	TSN	지방육종, 미분화 세포종과 관련됨
10	2	CPS1	요소회로(urea cycle)에 관련됨
11	3	ZBTB20	신경 발생, 포도당 항상성 등에서 전사억제물질로 역할
12	3	TFRC	적혈구 생성, 신경조직 발달에 필요한 수용체
13	5	RANBP3L	간엽계 줄기세포 분화 조절에 관련됨
14	5	PCSK1	호르몬 대사와 관련되어있으며 체질량지수(BMI)와 관련
15	6	REPS1	신호전달, 세포골격 변화 등에 관련된 단백질과 반응함
16	6	HIVEP2	성장, 발달, 전이에 관련된 유전자의 전자를 조절하는 역할
17	7	ZNF713	자폐증과 관련된 것으로 보고됨
18	7	STEAP1	세포간 접합 부위에 나타나는 항원
19	7	CALCR	칼슘 항상성 유지에 관련됨
20	7	PAX4	태아 발달과 암 성장에 관련됨
21	7	GRB10	티로신 키나아제와 신호전달 물질과 반응함
22	7	FOXK1	중추신경계 섬유육종과 관련된 것으로 보고됨
23	7	LMTK2	폐 대세포암종과 관련된 것으로 보고됨
24	8	ASAH1	다양한 암 발달에 관련된 것으로 보고됨
25	8	ZNF703	유밤암과 관련된 것으로 보고됨
26	8	FGFR1	배아 발달, 세포 증식, 분화와 이동 조절에 관련되어있음
27	8	KCNB2	이온 통로, 포타슘 통로에 관련됨
28	8	GDAP1	신경 발달 과정 중 신호전달에 관련됨
29	8	TRIB1	거핵아구성 백혈병, 가족성 고콜레스테롤혈증과 관련됨
30	8	EFR3A	G 단백질 연결 수용체 활동 조절 및 자폐증과 관련됨

31	9	DMRT2	성별 결정에 관련된 유전자	
32	9	PTCH1	배아 발달, 암 형성에 관련되어 있	
33	9	ABCA1	세포 내 지방 제거에 관련되어 있음	
34	10	PTF1A	포유류 췌장 발달에 관련되어 있음	
35	10	ARID5B	B 림프구 전구체의 세포 성장과 분화에 관련되어 있음	
36	10	JMJD1C	DNA 손상 반응 경로에 관련되어 있음	
37	10	ARHGAP19	세포 이동, 증식, 분화 등에 관련되어 있음	
38	10	BBIP1	바르데-비들 증후군, 학습장애와 관련된 것으로 보고됨	
39	11	BDNF	스트레스 반응 조절에 관련됨	
40	12	FAIM2	소뇌 발달에 관련됨	
41	12	ALDH2	신체 알코올 신진대사에 관련됨	
42	12	RBM19	리보솜 생성 조절에 관련됨	
43	12	PDE3A	혈소판 응집, 심혈관계 기능과 관련되어 있음	
44	12	IFT81	섬모형성에 필요한 단백질 생성	
45	13	FGF9	배아 발달, 세포 성장 등에 관련됨	
46	14	NYNRIN	핵산, 리보핵산에 접합하여 기능	
47	14	LRRC74A	류신이 풍부한(leucine-rich) 반복 단백질	
48	14	DLK1	지방세포 등 분화에 관련됨	
49	14	TRAF3	면역반응 활성화에 중요한 단백질 관련 세포전달에 관여됨	
50	14	NID2	기저막 구조 유지에 관련됨	
51	15	HERC2	피부, 머리카락, 눈 색과 관련됨	
52	15	MYO5C	선천성 설사와 관련된 것으로 보고됨	
53	15	RGMA	성인 신경계와 발달 관련 기능을 함	
54	15	IGF1R	세포 생존을 높여서 세포사멸 억제 역할	
55	16	PKD1L3	양이온 통로의 구성요소	
56	16	ZFHX3	근조직, 신경 분화 조절에 관련됨	
57	17	SUMO2	핵 수송, 전사조절, 세포사멸, 단백질 안정성에 관련됨	
59	19	ZNF799	전사조절 기능과 관련되어 있음	
59	20	LINC00851	단백질을 형성하지 않는 리보핵산 유전자, 전사 조절에 관련됨	
60	22	ZNRF3	부신암종에 관련된 것으로 보고됨	
61	22	WNT7B	종양 형성, 배아 형성에 관련됨	

붙임 2

한국인유전체칩 소개 자료

〈한국인 유전체연구에 최적화된 '한국인 맞춤형 유전체 칩'〉

- 1. **높은 한국인 유전체 대표성**: 빈도 5% 이상의 유전변이'의 경우 95% 이상, 1-5% 빈도의 경우 73% 이상을 대표함
- 2. <u>기능 유전변이</u>: 한국인유전체칩에는 약 20만개의 단백질 서열 변화 등 유전자의 기능에 관련된 유전변이 정보를 포함하고 있음
- 3. 높은 정확도: 한국인유전체칩은 기존 상용칩과 비교하였을 때, 99.5~99.9% 일치도를 보임
 - * 유전변이: 인간은 서로 간에 99% 이상 동일한 유전정보를 가지고, 약 1%는 서로 다른 정보를 가지고 있다. 이렇게 서로 다른 유전정보를 가지고 있는 것을 유전변이라고 하며, 머리카락, 눈동자 등 표현형과 다양한 질병에 영향을 주는 것으로 알려져 있음

□ 한국인유전체칩 콘텐츠

○ 한국인 염기서열정보 2.572명에서 추출된 유전변이 정보 반영

<표. 한국인유전체칩 주요 콘텐츠>

구분	콘텐츠 수(단위: 개)	연구 활용 방안	
한국인 유전체 대표 마커	595,957	전장유전체연관성 분석	
기능 유전변이	196,944	단백질 기능에 영향을 주는 유전 요인 발굴 연구	
유전자 발현 조절 유전변이	16,097	유전변이에 따른 유전자 발현 연구	
약물 영향 관련 유전변이	1,818	약물유전체연구	
기 보고된 질환 관련 유전변이	7,635	기 보고된 유전변이 검증 및 risk score 모델 연구	
면역 관련	8,100	Human Leukocyte Antigen(HLA), Killer immunoglobulin-like receptor (KIR) 등	
기타	1,232	미토콘드리아, Y성 염색체 등	
계	827,783		

□ 한국인유전체칩 상용화

- 한국인유전체칩 개발 노하우 및 콘텐츠는 기술이전을 통해 6개의 국내 병원 및 기업과 **통상실시권^{*} 계약을 체결함**
 - * 기술보유자가 본인을 포함하여 동시에 같은 내용의 기술을 1개 이상의 타사업체가 사용 할 수 있도록 하는 권리
- 경상실시료를 **매년 매출액의 3% 조건으로 실시**하고 있으며, 2019년 12월에 2개 기업에서 발생하는 **연간 실시료(약 7천만원)***는 **전액 국고에 납입 완료**
- * 실시료: 2019년 한국인유전체칩 약 3만 5천명 분의 유전체정보 생산 및 사용으로 발생

<그림. 한국인유전체칩 제품 사진: 한번에 96개 샘플을 분석 가능함>

