MATH 273 Assignment 4

Instructor: Thi Ngoc Dinh UCID: 30063828

Fall 2018

1 Prove the following using the definition of limit.

a If $\lim_{n\to\infty}(a_n)=2$ and $\lim_{n\to\infty}(b_n)=3$ then $\lim_{n\to\infty}(a_n+b_n)=5$.

Let $\lim_{n\to\infty}(a_n)=2, \lim_{n\to\infty}(b_n)=3$. Let $n\in\mathbb{Z}, \epsilon\in\mathbb{R}, \epsilon>0$. Because $\lim_{n\to\infty}(a_n)=2, \exists N_1\in\mathbb{R}$ so that $\forall n>N_1, |a_n-2|<\frac{\epsilon}{2}$. Because $\lim_{n\to\infty}(b_n)=3, \exists N_2\in\mathbb{R}$ so that $\forall n>N_2, |b_n-3|<\frac{\epsilon}{2}$. Let $N=\max(N_1,N_2), n>N$. Now:

$$\begin{aligned} |(a_n+b_n)-5| &= |(a_n-2)+(b_n-3)| \\ &\leq |a_n-2|+|b_n-3| \text{ (because of triangular inequlity)} \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \text{ (because } |a_n-2| < \frac{\epsilon}{2} \text{ and } |b_n-3| < \frac{\epsilon}{2}) \\ &= \epsilon \end{aligned}$$

Therefore $\lim_{n\to\infty} (a_n + b_n) = 5$.

b If $\lim_{n\to\infty}(a_n)=2$ and $\lim_{n\to\infty}(b_n)=3$ then $\lim_{n\to\infty}(a_nb_n)=6$.

Let $\lim_{n\to\infty}(a_n)=2$, $\lim_{n\to\infty}(b_n)=3$. Let $n\in\mathbb{Z}, \epsilon\in\mathbb{R}, \epsilon>0$. Because $\lim_{n\to\infty}(a_n)=2$, $\exists N_1\in\mathbb{R}$ so that $\forall n>N_1, |a_n-2|<\frac{\epsilon}{8}$. Because $\lim_{n\to\infty}(b_n)=3$, $\exists N_2\in\mathbb{R}$ so that $\forall n>N_2, |b_n-3|<1$, and $\exists N_3\in\mathbb{R}$ so that $\forall n>N_3, |b_n-3|<\frac{\epsilon}{4}$. Because $|b_n-3|<1$,

$$-1 < (b_n - 3) < 1$$

or $2 < b_n < 4$.

Let $N = \max(N_1, N_2, N_3), n > N$. Now:

$$\begin{aligned} |a_nb_n-6| &= |a_nb_n-2b_n+2b_n-6| \\ &= |b_n(a_n-2)+2(b_n-3)| \\ &\leq |b_n|\,|a_n-2|+|2|\,|b_n-3| \ \text{(because of triangular inequlity)} \\ &< b_n\frac{\epsilon}{8}+2\frac{\epsilon}{4} \ \text{(because } b_n>2 \ \text{and } |a_n-2|<\frac{\epsilon}{8} \ \text{and } |b_n-3|<\frac{\epsilon}{4}) \\ &< 4\frac{\epsilon}{8}+2\frac{\epsilon}{4} \ \text{(because } b_n<4) \\ &= \frac{\epsilon}{2}+\frac{\epsilon}{2} \\ &= \epsilon \end{aligned}$$

Therefore $\lim_{n\to\infty} (a_n b_n) = 6$.

c If $\lim_{n\to\infty}(a_n)=2$ and $\lim_{n\to\infty}(b_n)=3$ then $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{2}{3}$.

Let $\lim_{n\to\infty}(a_n)=2, \lim_{n\to\infty}(b_n)=3$. Let $n\in\mathbb{Z}, \epsilon\in\mathbb{R}, \epsilon>0$. Because $\lim_{n\to\infty}(a_n)=2, \exists N_1\in\mathbb{R}$ so that $\forall n>N_1, |a_n-2|<\epsilon$. Because $\lim_{n\to\infty}(b_n)=3, \exists N_2\in\mathbb{R}$ so that $\forall n>N_2, |b_n-3|<\epsilon$, and $\exists N_3\in\mathbb{R}$ so that $\forall n>N_3, |b_n-3|<1$. Because $|b_n-3|<1$,

$$-1 < (b_n - 3) < 1$$

or $2 < b_n < 4$.

Let $N = \max(N_1, N_2, N_3), n > N$. Now:

$$\left| \frac{a_n}{b_n} - \frac{2}{3} \right| = \left| \frac{3a_n - 2b_n}{3b_n} \right|$$

$$= \left| \frac{3a_n - 6 + 6 - 2b_n}{3b_n} \right|$$

$$= \left| \frac{3(a_n - 2) + 2(3 - b_n)}{3b_n} \right|$$

$$\leq \left| \frac{3(a_n - 2)}{3b_n} \right| + \left| \frac{2(3 - b_n)}{3b_n} \right| \text{ (because of triangular inequlity)}$$

$$= \frac{|a_n - 2|}{|b_n|} + \frac{|2(b_n - 3)|}{|3b_n|}$$

$$< \frac{|a_n - 2|}{2} + \frac{2|(b_n - 3)|}{3 \times 2} \text{ (because } b_n > 2)$$

$$< \frac{\epsilon}{2} + \frac{2\epsilon}{3 \times 2} \text{ (because } |a_n - 2| < \epsilon \text{ and } |b_n - 3| < \epsilon)$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{3}$$

$$= \frac{5\epsilon}{6}$$

$$< \epsilon$$

Therefore $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{2}{3}$.

2 Prove the following using the definition of limit.

a If $\lim_{n\to\infty}(a_n)=2$ then $\lim_{n\to\infty}(a_n^3)=8$.

Let $\lim_{n\to\infty}(a_n)=2$. Let $n\in\mathbb{Z},\epsilon\in\mathbb{R},\epsilon>0$. Because $\lim_{n\to\infty}(a_n)=2,\exists N_1\in\mathbb{R}$ so that $\forall n>N_1, |a_n-2|<\frac{\epsilon}{100}$, and $\exists N_2\in\mathbb{R}$ so that $\forall n>N_2, |a_n-2|<1$. Because $|a_n-2|<1$.

$$-1 < (a_n - 2) < 1$$

or
$$1 < a_n < 3$$
.

Let $N = \max(N_1, N_2), n > N$. Now:

$$|a_n^3 - 8| = |(a_n - 2)(a_n^2 + 2a_n + 4)|$$

$$= |(a_n - 2)| \times |(a_n^2 + 2a_n + 4)|$$

$$< \frac{\epsilon}{100} |(a_n^2 + 2a_n + 4)| \text{ (because } |a_n - 2| < \frac{\epsilon}{100})$$

$$= \frac{\epsilon}{100} ((a_n - 2)^2 + 6a_n)$$

$$< \frac{\epsilon}{100} (1^2 + 6 \times 3) \text{ (because } a_n < 3 \text{ and } a_n - 2 < 1)$$

$$= \frac{18\epsilon}{100}$$

$$< \epsilon$$

Therefore $\lim_{n\to\infty} (a_n^3) = 8$.

b If $\lim_{n\to\infty}(a_n)=4$ then $\lim_{n\to\infty}(\sqrt{a_n})=2$.

Let $\lim_{n\to\infty}(a_n)=4$. Let $n\in\mathbb{Z},\epsilon\in\mathbb{R},\epsilon>0$. Because $\lim_{n\to\infty}(a_n)=2,\exists N_1\in\mathbb{R}$ so that $\forall n>N_1,|a_n-4|<\epsilon$, and $\exists N_2\in\mathbb{R}$ so that $\forall n>N_2,|a_n-4|<3$. Because $|a_n-4|<3$.

$$-3 < (a_n - 4) < 3$$

or
$$1 < a_n < 7$$
.

Let $N = \max(N_1, N_2), n > N$. Now:

$$|\sqrt{a_n} - 2| = \left| \frac{(\sqrt{a_n} - 2)(\sqrt{a_n} + 2)}{\sqrt{a_n} + 2} \right|$$

$$= \frac{|a_n - 4|}{|\sqrt{a_n} + 2|}$$

$$< \frac{|a_n - 4|}{|1 + 2|} \text{ (because } a_n > 1 \text{ so } \sqrt{a_n} > 1)$$

$$< \frac{\epsilon}{3} \text{ (because } |a_n - 4| < \epsilon)$$

$$< \epsilon$$

Therefore $\lim_{n\to\infty}(\sqrt{a_n})=2$

c If $\lim_{n\to\infty}(a_n)=1$ then $\lim_{n\to\infty}(a_n^{1/3})=1$.

Let $\lim_{n\to\infty}(a_n)=1$. Let $n\in\mathbb{Z},\epsilon\in\mathbb{R},\epsilon>0$. Because $\lim_{n\to\infty}(a_n)=1,\exists N_1\in\mathbb{R}$ so that $\forall n>N_1,|a_n-1|<\epsilon$, and $\exists N_2\in\mathbb{R}$ so that $\forall n>N_2,|a_n-1|<1$. Because $|a_n-1|<1$.

$$-1 < (a_n - 1) < 1$$

or
$$0 < a_n < 2$$
.

Let $N = \max(N_1, N_2), n > N$. Now:

$$\left| a_n^{1/3} - 1 \right| = \left| \frac{(a_n^{1/3} - 1)(a_n^{2/3} + a_n^{1/3} + 1)}{(a_n^{2/3} + a_n^{1/3} + 1)} \right|$$

$$= \left| \frac{(a_n - 1)}{(a_n^{2/3} + a_n^{1/3} + 1)} \right|$$

$$< \frac{|a_n - 1|}{|0 + 0 + 1|} \text{ (because } a_n > 0, \text{ so } a_n^{1/3} > 0 \text{ and } a_n^{2/3} > 0)$$

$$= |a_n - 1|$$

$$< \epsilon \text{ (because } |a_n - 1| < \epsilon \text{)}$$

Therefore $\lim_{n\to\infty} (a_n^{1/3}) = 1$

3 Prove the following using the definition of limit.

a Let s be a positive real number. Prove by induction on n that $(1+s)^n > 1+ns$ for all integers $n \ge 2$.

Let $s \in \mathbb{R}, s > 0$, and $n \in \mathbb{Z}, n \geq 2$. Proof of $(1+s)^n > 1 + ns$ through induction on n: Base case: n = 2. Then,

$$(1+s)^n = (1+s)^2$$

= $s^2 + 2s + 1$
> $2s + 1$ (because $s > 0$, so $s^2 > 0$)
= $1 + ns$

Therefore $(1+s)^n > 1 + ns$ for n = 2. Inductive step: Assume $(1+s)^n > 1 + ns$ (IH). Proof that $(1+s)^{(n+1)} > 1 + (n+1)s$:

$$(1+s)^{(n+1)} = (1+s)(1+s)^n$$

> $(1+s)(1+ns)$ (from (IH))
= $ns^2 + ns + s + 1$
> $ns + s + 1$ (because $n > 0$ and $s > 0$, so $ns^2 > 0$)
= $1 + (n+1)s$

Therefore $(1+s)^{(n+1)} > 1 + (n+1)s$ if $(1+s)^n > 1 + ns$. Therefore $(1+s)^n > 1 + ns$ for n > 2.

b Let a be a real number so that a > 1. Prove that $\lim_{n \to \infty} (a^n) = \infty$.

Let $a \in \mathbb{R}, a > 1$, and $M \in \mathbb{R}, M > 0, N = \log_a M$, and $n \in \mathbb{Z}, n > N$. Then:

$$a^n > a^N$$
 (because $n > N$, and $a > 1$)
= $a^{\log_a M}$
= M

Therefore $\lim_{n\to\infty}(a^n)=\infty$ for a>1.

c Let a be a real number so that |a| < 1. Prove that $\lim_{n\to\infty} (a^n) = 0$.

Let $a \in \mathbb{R}, |a| < 1$, and $\epsilon \in \mathbb{R}, e > 0$. Case 1: a > 0. Let $N = \log_a \epsilon, n \in \mathbb{Z}, n > N$. Then:

$$\begin{aligned} |a^n - 0| &= a^n \\ &< a^N \text{ (because } n > N \text{, and } a < 1) \\ &= a^{\log_a \epsilon} \\ &= \epsilon \end{aligned}$$

Therefore $\lim_{n\to\infty}(a^n)=0$ for 0 < a < 1. Case 2: a=0. Let $N=1, n\in\mathbb{Z}, n>N$. Then:

$$|a^n - 0| = 0^n$$

= 0 (because $n > N = 1$, so $n \neq 0$)
 $< \epsilon$

Therefore $\lim_{n\to\infty}(a^n)=0$ for a=0. Case 3: a<0. Let s=-a, and $N=\log_c\epsilon, n\in\mathbb{Z}, n>N$. Then:

$$\begin{aligned} |a^n - 0| &= |a^n| \\ &= |a|^n \text{ (because } n \in \mathbb{Z}) \\ &= c^n \\ &< c^N \text{ (because } n > N, \text{ and } 0 < c < 1) \\ &= c^{\log_c \epsilon} \\ &= \epsilon \end{aligned}$$

Therefore $\lim_{n\to\infty}(a^n)=0$ for -1< a<0. Therefore $\lim_{n\to\infty}(a^n)=0$ for |a|<1.