南京邮电大学 2016/2017 学年第 一 学期

《 信号与系统 B 》期末试卷(B)

院(系)	班级	学号		姓名			-
题号 一二	三四五	六七	八	九	+	总分	
得分							
<i>at</i> A. 非线性时变非 C. 线性时不变非	因果系统	B. 非线性的 D. 线性时不	才不变因界	果系统			
$3. t^3 * \delta(t-2) = $	<u>C</u>	,					
A. t^3 B. $(t-2)^3 \delta(t)$ C. $(t-2)^3$ D $(t-2)^3 \delta(t-2)$							
	<i>n 2t</i> 的周期为 C . 2						
	. 2		取样时,	奈奎其	斤特取 相	羊频率	
为 <u> </u>	. 200Hz C. 400Hz	D. 800Hz			4	$H(\omega)$	
6. 系统函数如右图	1 所示。在输入信号 x($(t) = 1 + 2\cos$	$2t + 5\cos \theta$	s 4 t	-4	2 4	Ø
激励下的响应 y(t) 大 A. 2 + cos 2t	$\frac{D}{B. 4 + 4\cos 2t + 5\cos 2t}$	s 4t C. 1+2	cos 2t I). 4+·		图 1 t	
7. 已知 $F(s) = \frac{1}{s(s-s)}$	<u>4</u> +1)(s+2) , 则原函数 ∫	f(t)的终值 $f(c)$	0)为(3	.0	x 0	X → σ
	C. 4 D. 不				h	-1 2	4
8. 系统的零极点分	布如右图 2 所示,已知	H(0)=2, 系	统函数 H	(s)=	<u>B</u> .	图 2	

A.
$$\frac{2(s-2)}{(s+1)'s-4)}$$
 B. $\frac{4(s-2)}{(s+1)'s-4)}$ C. $\frac{4(s-2)}{(s+1)'s+4)}$ D. $12\frac{s-2}{(s+1)'s-4)}$ 9. $\overline{\varphi}$ $\frac{s}{2}$ $(-1)^n$ 的 Z $\overline{\varphi}$ $\overline{\varphi}$

得 分

四、带限信号x(t)的频谱如图(a)所示,该信号通过图(b)所示系统,图(b)

中两个子系统
$$H_1(\omega) = \begin{cases} K, |\omega| < 3 \\ 0, |\omega| > 3 \end{cases}$$
 $H_2(\omega) = \begin{cases} K, |\omega| > 4 \\ 0, |\omega| < 4 \end{cases}$

试画出 x(t)通过图(b) 系统时,系统中 A、B、C 各点的频谱密度。(9分)

得 分

五、某离散系统如下图所示,其中 $H_1(z) = \frac{z}{z-1}, H_2(z) = \frac{z}{z+2}, H_3(z) = \frac{1}{z}$,

(1) 试求描述该系统的系统函数 *H(z)*和系统差分方程;(2) 求出系统极点位置,并判定该系统是否为稳定系统。(10分)

(2) 极点, 3, = -2, 3, =1, 不稳定 (3,在单位图外).

$$H(3) = \left[H_{1}(3) - H_{1}(3) \right] H_{3}(3)$$

$$= \left(\frac{3}{3+2} - \frac{3}{3-1} \right) \frac{1}{3}$$

$$= \frac{-3\delta}{(3+2)(3-1)} \frac{1}{3}$$

$$= \frac{-3}{3^{2} + 3 - 2}$$

 $y_{(k+2)} + y_{(k+1)} - 2y_{(k)} = -3x_{(k)}$

六、某离散系统的差分方程为 y(k+2)+3y(k+1)+2y(k)=x(k),输入激励信号 $x(k)=3^k u(k)$,用Z变换法求系统零状态响应。(10分)

$$H(\delta) = \frac{1}{\delta^{2} + 3\delta + 2}, \quad \chi(\delta) = \frac{2}{2} \left[\chi(k) \right] = \frac{\delta}{\delta - 3}$$

$$\gamma(\delta) = H(\delta) \chi(\delta) = \frac{3}{(\delta + 1)(\delta + 2)(3 - 3)}$$

$$\frac{\gamma(\delta)}{\delta} = \frac{-\frac{1}{4}}{\delta + 1} + \frac{\frac{1}{5}}{\delta + 2} + \frac{\frac{1}{20}}{3 - 3}$$

$$\gamma(\delta) = -\frac{1}{4} \cdot \frac{3}{\delta + 1} + \frac{1}{5} \cdot \frac{3}{\delta + 2} + \frac{1}{20} \cdot \frac{3}{\delta - 3}$$

$$\gamma(\delta) = -\frac{1}{4} \cdot \frac{3}{\delta + 1} + \frac{1}{5} \cdot \frac{3}{\delta + 2} + \frac{1}{20} \cdot \frac{3}{\delta - 3}$$

$$\gamma(k) = \chi^{-1} \left[\gamma(\delta) \right] = \left[-\frac{1}{4} \left(-1 \right)^{k} + \frac{1}{5} \left(-2 \right)^{k} + \frac{1}{20} \left(3 \right)^{k} \right] \chi(k)$$
6. 已知连续时间系统函数为 $H(s) = \frac{5s + 10}{2}$, 面出该系统的 S. (4)

七、已知连续时间系统函数为 $H(s) = \frac{5s+10}{s^2+7s+12}$, 画出该系统的 S (复

频) 域的并联模拟图。(8分)
$$H(s) = \frac{ss+10}{s^2+7s+12} = \frac{-s}{s+3} + \frac{10}{s+4}$$

八、已知连续时间系统函数 $H(s) = \frac{s^2 + 4s + 5}{s^2 + 3s + 2}$, 输入激励 $x(t) = e^{-3t}u(t)$,

系统初始状态 $y(0^-)=1$, $y'(0^-)=1$, (1) 写出系统微分方程; (2) 求系统 零状态响应和零输入响应。(12分)

(1)
$$y''(t) + 3y'(t) + 2y(t) = \chi''(t) + 4\chi'(t) + 1x(t)$$

(1) 旅的电报扩展变换,得

自 觉 遵 规 则 内 不 信 考 要 绝 不 题

作

弊