Lab3 BCD 码

3220104119 冯静怡

一、 课内完成内容

1. 进制转换 (2/16 进制转换为 10 进制)

1	ORG 0000H	15	ADDC A,ACC ;相当于将原
2.	SJMP MAIN		BCD 码×2,并加上 CY 中的新数据
3	ORG 0080H	16	DA A ;将结果转换
4.			为BCD码
5	MAIN:	17	MOV 30H,A ;存储新的低
6.	MOV R0,#8H ;一共 8 位数据		二位 BCD 码
7	MOV 30H,#00H ;30H 存储结果的低	18	
	二位 BCD 码	19	MOV A, 31H ;31H 存储结
8	MOV 31H,#00H ;31H 存储结果的高		果的高一位 BCD 码(已经计算的部分)
	一位 BCD 码	20	ADDC A,ACC ;相当于将高
9			位数据×2
10	LOOP:	21	MOV 31H,A ;存储新的高
11	MOV A, R1 ;R1 存储的是待		一位 BCD 码
	转换的二进制码	22	
12	RLC A ;取出最高位,在	23	DJNZ RØ,LOOP ;循环 8 次
	CY中	24	
13	MOV R1,A	25	SJMP \$
14	MOV A,30H ;30H 存储结	26	
	果的低二位 BCD 码(已经计算的部分)	27	END

2. BCD 码加法

1	ORG 0000H		9	MOV R6, #60H ; R6 代表结果的起始
2.	SJMP START			位置
3	ORG 0030H		10	MOV R7,#00H ;R7代表进位
4			11	
5	START:		12	LOOP:
6	MOV R3, #10H	;R3代表BCD码最高	13	MOV A,@RO ;将第一个 BCD 码
	为 16 位			的值取出
7	MOV R0, #40H	;R0 代表第一个 BCD	14	ADD A,R7 ;加上进位
	码的起始位置		15	ADD A,@R1;加上第二个BCD码
8	MOV R1, #50H	;R1 代表第二个 BCD		的值
	码的起始位置		16	DA A ;十进制调整,此时
				的 A 的范围为#00H~#19H

17	SWAP A ;将 A 的高低四位进	27	MOV A,R6
Τ,	行交换	28	MOV RØ,A ;将 R6 的值存
10			入 RO
18			
	时存入 71 H	29	MOV @R0,72H ; 将未进位结
19	MOV R1,#30H		果存入 R0
20	MOV @R1,#00H ;将 30H 的值	30	MOV R0,70H ;将 R0 的值恢
	清零		复
21	XCHD A,@R1 ;将结果的进	31	
	位位存入 30H	32	MOV R7,30H ; 将进位位存
22	SWAP A ;将 A 的高低		入 R7
	四位进行交换,即将结果的未进位部分	33	INC RØ
	放入地位	34	INC R1
23	MOV R1,71H ;将 R1 的值例	₹ 35	INC R6
	复	36	DJNZ R3,LOOP ;循环
24		37	
25	MOV 70H, R0 ;将 R0 的值智	38	SJMP \$
	时存入 70H	39	
26	MOV 72H,A ;将结果的未	40	END
	进位值暂时存入 72H		-

关键点在于标黄部分的内容,也就是说进行相加的过程中要考虑加数 1 和加数 2 包括之前的进位,加法之后可以直接进行 DA 操作。由于个位数加法不会超过 100,所以不使用 DA 的 CY 改变来控制,而是增加 R7 作为进位标识符。

40	09	09	09	09	09	09	09	09	09	09	09	00	00	00	00	00
50	08	09	03	04	02	05	02	05	02	03	04	00	00	00	00	00
60	07	09	03	04	02	05	02	05	02	03	04	01	00	00	00	00

二、 课后作业一

BCD 码倒序排列:

1	ORG 0000H	9	SWAP A ;交换 A 的高低位,即					
2.	SJMP START		30H 的高低位互换					
3.	ORG 0030H	10	XCH A,@R1 ;将变换后的 30H 放到					
4.			31H 的位置,并将 31H 的值放到 A					
5	START:		中					
6.	MOV R0,#30H ;取出 30H 的值	11	SWAP ;再次交换 A 的高低位,					
7.	MOV R1,#31H ;取出 31H 的值		即 31H 的高低位互换					
8	XCH A, @RO ;交换 A 和 30H 的值	12	XCH A,@R0 ;将变换后的 31H 放到					
			30H 的位置					

三、 课后作业二

```
1 ORG 0000H
                                    19
                                       INC 42H;对于该数 80H,代表的是-
 2
   SJMP START
                                        128, 为负数
 3 ORG 0030H
                                       SJMP NEXT
                                    20
4
                                    21
 5 START:
                                    22
                                       NEQUAL:
   MOV R3,30H
                                    23
                                       JC POSITIVE ;若比 80H 小,则为正
   MOV RO,#31H ;数据指针
                                       数, CY=1, 则跳转
7
8
   MOV 41H,#00H
                                        INC 42H
                                                   ;CY=0,否则为负数
                                    24
   MOV 42H,#00H
                                       SJMP NEXT
9
                                    25
10
   MOV 43H,#00H
                                    26
11
                                    27
                                       POSITIVE:
12
   LOOP:
                                    28
                                        INC 41H
   CJNE @RO,#00H,NOTZERO;若不为 0
                                    29
13
   则跳转
                                    30
                                       NEXT:
   INC 43H
                                       INC R0
14
                                    31
15
   SJMP NEXT
                                    32
                                       DJNZ R3, LOOP
16
                                    33
17 NOTZERO:
                                    34
                                       SJMP $
18 CJNE @R0,#80H,NEQUAL
                          ;若不为
                                    35
    80H 则跳转
                                    36
                                        END
```

这是分支结构的运用, 若该数第7位为1则为负数, 即该数大于#80H则为负数。

30	08	00	20	04	03	AF	92	42	03	03	00
40	00	05	02	01	00	00	00	00	00	00	00

实验结果如上如所示

四、课后作业三

```
1 ORG 0000H
                                 MOV 33H,#36H
                                              ;存储数据 D
                               8
2 SJMP START
                               9
3 ORG 0030H
                              10
                                 MOV A,32H
                              11 CPL A ;对 C 取反
4
  START:
5 MOV 30H,#63H ;存储数据 A
                              12 ANL A,31H ;C 反 与 B 相与
                              13 XRL A,30H ;与A异或
  MOV 31H,#82H
6
               ;存储数据 B
7 MOV 32H,#0C5H ;存储数据 C
                              14 CPL A
                                           ;取反
```


在 HTOB 后的代码处设置断点,观察得到 40H 的值为:

88 05 02 01

,说明结果

为88。对十六进制数进行转二进制操作后,结果为:

储在 50H 为起始位置处, 且高位位于左边, 结果为 1000 1000 B, 符合 88H。