代数学 I 宿題 (1)

中野 竜之介 8310141H

2019年12月10日

Problem 1.

- 1. Binary operation \circ on G is a mapping from $G \times G$ to G.
- 2. (G, \circ) is a group if and only if it satisfies the following conditions:
 - (a) For all $a, b, c \in G$, $a \circ (b \circ c) = (a \circ b) \circ c$.
 - (b) There exists $e \in G$ such that, for every $a \in G$, $a \circ e = e \circ a = a$.
 - (c) For each $a \in G$, there exists $b \in G$ such that $a \circ b = b \circ a = e$. In correct, the conditions (b) and (c) should be united; there exists $e \in G$ such that, for every $a \in G$, $a \circ e = e \circ a = a$ and there exists $b \in G$ such that $a \circ b = b \circ a = e$.
 - (G, \circ) is an abelian group if and only if it satisfies the following conditions:
 - (a) (G, \circ) is a group.
 - (b) For all $a, b \in G$, $a \circ b = b \circ a$.

Problem 2.

- 1. Ring of rational integers \mathbb{Z} is an abelian group.
- 2. General linear group $GL(n,\mathbb{C})$ is a non-abelian group.