Sonar Sensor with the Implementation

CSE 315
Peripherals & Interfacing
Abdullah Al Omar
Lecturer, CSE, UAP

What is Sonar?

Sonar is a technique that uses sound propagation to navigate, communicate with or detect objects on or under the surface of the water.

Ultrasonic Sensor

An **Ultrasonic sensor** is a device that can measure the distance to an object by using sound waves.

Pin Configuration

VCC

• The Vcc pin powers the sensor, typically with +5V

Trig

• Trigger pin is an Input pin. This pin has to be kept high for 10us to initialize measurement by sending US wave.

Echo

• Echo pin is an Output pin. This pin goes high for a period of time which will be equal to the time taken for the US wave to return back to the sensor.

GND

• This pin is connected to the Ground of the system.

Features:

- Operating voltage: +5V
- Theoretical Measuring Distance: 2cm to 450cm
- Practical Measuring Distance: 2cm to 80cm
- Accuracy: 3mm
- Measuring angle covered: <15°
- Operating Current: <15mA
- Operating Frequency: 40Hz
- Trigger Input Pulse width: 10uS

Working principle

The transmitter (trig pin) sends a signal: a high-frequency sound.

When the signal finds an object, it is reflected and back toward the sensor

And the receiver(echo pin) receives/observed it.

Applications

Obstacles finding robots

biped robot, obstacle avoider robot, path finding robot etc.

Easy Control of Trash Collection Vehicles

Liquid Level Sensing

Water Depth Sensing with Ultrasonic and Wastewater Management

Vehicle Detection

Car Washes, Automotive Assembly, and Parking Garage Applications

Product for Blind people

Smart (gloves, white cane, shoe, hat) etc.

Mapping

150 ultrasonic projects

https://www.hackster.io/projects/tags/ultrasonic

Contd...

STANDARD APPLICATIONS

Contd....

Intelligent self balance robot

Smart White Cane

Wall follower robot

Trash level detection

Car parking

Diagram:

Code:

```
const int trigPin = 13
const int echoPin = 12
const int led = 11
void setup()
{ Serial.begin (9600);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
pinMode(led, OUTPUT);
void loop()
long duration, distance;
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
```

```
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = (duration/2) * 0.034;
if (distance < 10)
digitalWrite(led,HIGH);
else {
digitalWrite(led,LOW);
```

Distance= velocity * time

```
s= 343 m/s * (duration/2) [As the duration of time has been calculated for two ways]
s= 34300 cm/s * (duration/2)
s= 34300/1000000 cm/micro-sec * (duration/2)
s= 0.0343 cm/us * (duration/2)
```


pulseIn():Reads the echoPin, returns the sound wave travel time in microseconds. if value is HIGH, pulseIn() waits for the pin to go HIGH, starts timing

Distance = Speed × Time ; here universal speed of US wave at room conditions is 340m/s. convert to 0.034 cm/us.

Duration: divide the duration by 2 because the wave was sent, hit the object, and then returned back to the sensor.

THANK YOU Any Question?