Logical Aspects of Artificial Intelligence Tableaux for DLs & Undecidability

Stéphane Demri demri@lsv.fr https://cv.archives-ouvertes.fr/stephane-demri

September 28th, 2022

Plan of the lecture

- ► Tableaux calculus for checking *ALC* concept satisfiability.
- ► Tableaux calculus for checking ALC knowledge base consistency.
- Undecidability result with role axioms.
- Exercises session.

Recapitulation of the previous lecture(s)

ALC in a nutshell

$$C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C$$

- ▶ Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$.
- ▶ TBox $\mathcal{T} = \{C \sqsubseteq D, \ldots\}$.
- ► ABox $A = \{a : C, (b, b') : r, ...\}.$
- $\blacktriangleright \ \, \text{Knowledge base } \mathcal{K} = (\mathcal{T}, \mathcal{A}). \qquad \qquad \text{(a.k.a. ontology)}$
- Decision problems include concept satisfiability, knowledge base consistency, and other problems for classification.

A few properties about ALC

- Concept satisfiability problem is PSPACE-complete.
- Knowledge base consistency problem is EXPTIME-complete.
- ALC has many well-known fragments and extensions, some of them to deal with
 - inverse roles,
 - number restrictions,
 - properties on the role interpretations,
 - inclusions between the composition of roles,
 - etc..
- Reduction of decision problems for DLs to first-order logic.

(to modal logic

► Filtration construction leading to an NEXPTIME upper bound for the ALC knowledge base consistency problem.

Expansion rules for \mathcal{ALC} ABox consistency

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

$$A \longrightarrow A \cup \{a : C, a : D\}$$

 \sqcup -rule: If $a: C \sqcup D \in \mathcal{A}$ and $\{a: C, a: D\} \cap \mathcal{A} = \emptyset$ then

$$A \longrightarrow A \cup \{a : E\}$$
 for some $E \in \{C, D\}$

Expansion rules for \mathcal{ALC} ABox consistency

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

$$\mathcal{A} \longrightarrow \mathcal{A} \cup \{a : C, a : D\}$$

 \sqcup -rule: If $a: C \sqcup D \in \mathcal{A}$ and $\{a: C, a: D\} \cap \mathcal{A} = \emptyset$ then

$$A \longrightarrow A \cup \{a : E\}$$
 for some $E \in \{C, D\}$

 \exists -rule: If $a: \exists r.C \in \mathcal{A}$ and there is no b such that

$$\{(a,b):r,b:C\}\subseteq\mathcal{A}$$
 then

$$A \longrightarrow A \cup \{(a,c): r,c:C\}$$
 where c is fresh

Expansion rules for \mathcal{ALC} ABox consistency

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

$$\mathcal{A} \longrightarrow \mathcal{A} \cup \{a : C, a : D\}$$

 \sqcup -rule: If $a: C \sqcup D \in \mathcal{A}$ and $\{a: C, a: D\} \cap \mathcal{A} = \emptyset$ then

$$A \longrightarrow A \cup \{a : E\}$$
 for some $E \in \{C, D\}$

 \exists -rule: If $a: \exists r.C \in A$ and there is no b such that

 $\{(a,b):r,b:C\}\subseteq\mathcal{A}$ then

$$A \longrightarrow A \cup \{(a, c) : r, c : C\}$$
 where *c* is fresh

 \forall -rule: If $\{(a, b) : r, a : \forall r.C\} \subseteq A$ and $b : C \notin A$, then

$$A \longrightarrow A \cup \{b : C\}$$

Today's objectives

- Termination, soundness, completeness, blocking technique.
- Equivalences between
 - \blacktriangleright (\mathcal{T} , \mathcal{A}) is consistent (for \mathcal{ALC})
 - ▶ $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' (→ depends on \mathcal{T})
 - ▶ $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' derivable in at most $f(\text{size}(\mathcal{T}, \mathcal{A}))$ steps.

Example

$$\mathcal{A} = \{(a,b): s,(a,c): r\} \cup$$

 $\{a: A_1 \sqcap \exists s.A_5, a: \forall s.(\neg A_5 \sqcup \neg A_2), b: A_2, c: A_3 \sqcap \exists s.A_4\}$

Example

$$\mathcal{A} = \{(a,b): s, (a,c): r\} \cup \\ \{a: A_1 \sqcap \exists s. A_5, a: \forall s. (\neg A_5 \sqcup \neg A_2), b: A_2, c: A_3 \sqcap \exists s. A_4\} \\$$

$$\mathcal{A} \xrightarrow{*} \mathcal{A} \cup \{a: A_1, a: \exists s. A_5, a_{\text{new}}: A_5, (a, a_{\text{new}}): s \\ b: \neg A_5 \sqcup \neg A_2, a_{\text{new}}: (\neg A_5 \sqcup \neg A_2), b: \neg A_5, a_{\text{new}}: \neg A_2, \\ c: A_3, c: \exists s. A_4, c_{\text{new}}: A_4, (c, c_{\text{new}}): s\}$$
(is it complete?)

Example

$$\mathcal{A} = \{ (a, b) : s, (a, c) : r \} \cup \\ \{ a : A_1 \sqcap \exists s. A_5, a : \forall s. (\neg A_5 \sqcup \neg A_2), b : A_2, c : A_3 \sqcap \exists s. A_4 \}$$

$$\mathcal{A} \stackrel{*}{\rightarrow} \mathcal{A} \cup \{a : A_1, a : \exists s.A_5, a_{\mathsf{new}} : A_5, (a, a_{\mathsf{new}}) : s$$

$$b: \neg A_5 \sqcup \neg A_2, a_{\mathsf{new}}: (\neg A_5 \sqcup \neg A_2), b: \neg A_5, a_{\mathsf{new}}: \neg A_2,$$

$$c: A_3, c: \exists s. A_4, c_{\mathsf{new}}: A_4, (c, c_{\mathsf{new}}): s$$

(is it complete?)

Terminology: root vs. tree individuals

- ► Tree individuals are generated by application of the ∃-rule.
- ▶ If (a, b): r is added by application of the \exists -rule, b is an r-successor of a.
- ► Root individuals have no predecessors or ancestors.


```
Why "Tableaux"?
  (a, b): s
  (a, i): r
   4: A, 7 3s.As
```

a: 4s. (745 W7 42) b. 2 C: A3 17 35 A4 a: A1 a: 3s. As anow: 95 (a, a new): S 6:745N742 c: 3s. AL

Termination

▶ The \exists -weight of C is the number of its subconcepts of the form $\exists r.D$.

$$\mathbf{w}_{\exists}(C) \stackrel{\text{def}}{=} \operatorname{card}(\{\exists r.D \mid \exists r.D \in \operatorname{sub}(C)\})$$

 $\stackrel{\wedge}{\square}$ The definition assumes that C is in NNF.

$$ightharpoonup \mathsf{w}_\exists(\mathcal{A}) \stackrel{\mathsf{def}}{=} \sum_{a:C \in \mathcal{A}} \mathsf{w}_\exists(C).$$

Termination

▶ The \exists -weight of C is the number of its subconcepts of the form $\exists r.D$.

$$\mathsf{w}_\exists(C) \stackrel{\mathsf{def}}{=} \mathsf{card}(\{\exists r.D \mid \exists r.D \in \mathsf{sub}(C)\})$$

- $ightharpoonup w_{\exists}(\mathcal{A}) \stackrel{\text{def}}{=} \sum_{a:C \in \mathcal{A}} w_{\exists}(C).$
- ▶ The $\forall \exists$ -depth of C, written $d_{\forall \exists}(C)$, is the maximal number of imbrications of $\exists r$. and $\forall s$. in C.

- $d_{\forall \exists}(\exists r. \top \sqcup \forall r. \exists s. A) = 2$

Decorating individual names

- ▶ Let \mathcal{A} be an ABox with $\mathbf{W} = \mathbf{w}_{\exists}(\mathcal{A})$, $\mathbf{D} = \mathbf{d}_{\forall \exists}(\mathcal{A})$ and \mathbf{N} is the number of distinct individual names in \mathcal{A} .
- Let \mathcal{A}^0 be the variant of \mathcal{A} where a:C is replaced by $a^0:C$.

Decorating individual names

- ▶ Let \mathcal{A} be an ABox with $\mathbf{W} = \mathbf{w}_{\exists}(\mathcal{A})$, $\mathbf{D} = \mathbf{d}_{\forall \exists}(\mathcal{A})$ and \mathbf{N} is the number of distinct individual names in \mathcal{A} .
- Let \mathcal{A}^0 be the variant of \mathcal{A} where a : C is replaced by $a^0 : C$.

$$\sqcap$$
-rule: If $a^i:C\sqcap D\in\mathcal{A}$ and $\{a^i:C,a^i:D\}\not\subseteq\mathcal{A}$ then

$$\mathcal{A} \longrightarrow \mathcal{A} \cup \{a^i : C, a^i : D\}$$

$$\sqcup$$
-rule: If $a^i:C\sqcup D\in\mathcal{A}$ and $\{a^i:C,a^i:D\}\cap\mathcal{A}=\emptyset$ then

$$\mathcal{A} \longrightarrow \mathcal{A} \cup \{a^i : E\}$$
 for some $E \in \{C, D\}$

∃-rule: If
$$a^i$$
 : $\exists r. C \in A$ and there is no b^i such that $\{(a^i, b^j) : r, b^j : C\} \subseteq A$ then

$$A \longrightarrow A \cup \{(a^i, c^{i+1}) : r, c^{i+1} : C\}$$
 where *c* is fresh

$$\forall$$
-rule: If $\{(a^i, b^j) : r, a^i : \forall r.C\} \subseteq A$ and $b^j : C \notin A$, then

$$A \longrightarrow A \cup \{b^j : C\}$$

Quantities about $\mathcal{A}^0 \stackrel{*}{\rightarrow} \mathcal{A}'$

▶ If $a^i: C \in \mathcal{A}'$, then $i + d_{\forall \exists}(C) \leq \mathbf{D}$. Trees from individual names labelled by zero have depth at most \mathbf{D} .

Quantities about $\mathcal{A}^0 \stackrel{*}{\rightarrow} \mathcal{A}'$

- If aⁱ : C ∈ Aⁱ, then i + d_{∀∃}(C) ≤ D.
 Trees from individual names labelled by zero have depth at most D.
- $\begin{array}{l} \blacktriangleright \ \, a^j: C \in \mathcal{A}' \ \text{implies} \\ \ \, \operatorname{card}(\{(a^j,b^j) \mid (a^j,b^j): r \in \mathcal{A}'\}) \leq \mathbf{N} + \mathbf{W} \\ \\ \left(\text{nece} \qquad \qquad i=j=0 \ \text{or} \ j=i+1 \right) \end{array}$

The maximum branching degree of nodes in the trees is at most ${\bf N}+{\bf W}.$ (rough overapproximation)

Quantities about $\mathcal{A}^0 \stackrel{*}{\rightarrow} \mathcal{A}'$

- If aⁱ: C ∈ Aⁱ, then i + d_{∀∃}(C) ≤ D.
 Trees from individual names labelled by zero have depth at most D.
- $\begin{array}{l} \bullet \quad a^{j}: C \in \mathcal{A}' \text{ implies} \\ \operatorname{card}(\{(a^{j},b^{j}) \mid (a^{j},b^{j}): r \in \mathcal{A}'\}) \leq \mathbf{N} + \mathbf{W} \\ \\ \left(\text{nece} \qquad \qquad i=j=0 \text{ or } j=i+1 \right) \end{array}$

The maximum branching degree of nodes in the trees is at most $\mathbf{N} + \mathbf{W}$. (rough overapproximation)

▶ $a^i : C \in A'$ implies $C \in \text{sub}(A)$.

Quantities about $A^0 \stackrel{*}{\rightarrow} A'$

- If aⁱ: C ∈ Aⁱ, then i + d_{∀∃}(C) ≤ D.
 Trees from individual names labelled by zero have depth at most D.

The maximum branching degree of nodes in the trees is at most $\mathbf{N} + \mathbf{W}$. (rough overapproximation)

- ▶ a^i : $C \in A'$ implies $C \in \text{sub}(A)$.
- ▶ The length of the derivation $\mathcal{A}^0 \xrightarrow{*} \mathcal{A}'$ is at most

$$\mathbf{N} \times (\mathbf{N} + \mathbf{W})^{\mathbf{D}+1} \times \operatorname{card}(\operatorname{sub}(\mathcal{A}))$$

(why?)

Main algorithm

▶ We shall show that \mathcal{A} is consistent iff $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .

Main algorithm

- ▶ We shall show that \mathcal{A} is consistent iff $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .
- ightharpoonup Existence of \mathcal{A}' amounts to explore a finite tree of bounded depth and bounded degree.

The auxiliary function exp

- **Expansion function** $exp(A, \mathbf{R}, X)$ taking as arguments
 - \triangleright an ABox \mathcal{A} ,
 - an expansion rule R,
 - a subset X of A (with one or two elements) allowing the application of R
- ightharpoonup ... and returning the set of ABoxes obtained from $\mathcal A$ by applying the rule $\mathbf R$ with main assertions in $\mathcal X$.
- exp({a: E, a: C ⊔ D}, ⊔-rule, {a: C ⊔ D}) is equal to
 {{a: E, a: C ⊔ D, a: C}, {a: E, a: C ⊔ D, a: D}}

Algorithm for depth-first visit

```
1: procedure EXPAND(\mathcal{A})
```

2: **if** \mathcal{A} has a clash **then** return \emptyset

3: end if

4: **if** \mathcal{A} is clash-free and complete **then** return \mathcal{A}

5: end if

6: **for** applicable \mathbf{R} , X on A and $A' \in \exp(A, \mathbf{R}, X)$ **do**

7: **if** EXPAND(\mathcal{A}') $\neq \emptyset$ **then** return EXPAND(\mathcal{A}')

8: end if

9: **end for**

10: return ∅

11: end procedure

Soundness

▶ Let A be a finite ABox with at least one concept assertion, complete, clash-free and all the concepts in NNF. Then, A is consistent.

Soundness

- ▶ Let A be a finite ABox with at least one concept assertion, complete, clash-free and all the concepts in NNF. Then, A is consistent.
- ► For each individual name a occurring in A, we write $con_A(a)$ to denote the set $\{C \mid a : C \in A\}$.

Soundness

- Let A be a finite ABox with at least one concept assertion, complete, clash-free and all the concepts in NNF. Then, A is consistent.
- ▶ For each individual name a occurring in A, we write $con_A(a)$ to denote the set $\{C \mid a : C \in A\}$.
- ▶ Let us define $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ as follows.
 - $\blacktriangleright \ \Delta^{\mathcal{I}} \stackrel{\mathsf{def}}{=} \{ a \mid a : C \in \mathcal{A} \}.$
 - $ightharpoonup a^{\mathcal{I}} \stackrel{\text{def}}{=} a$ for all individual names a in \mathcal{A} .
 - ▶ $A^{\mathcal{I}} \stackrel{\text{def}}{=} \{a \mid A \in \text{con}_{\mathcal{A}}(a)\}$ for all concept names $A \in \text{sub}(\mathcal{A})$.
- Let us show that for all $a: C \in A$, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.

▶ The base case with concept assertions a : A is immediate by definition of $A^{\mathcal{I}}$.

- ▶ The base case with concept assertions a : A is immediate by definition of $A^{\mathcal{I}}$.
- ► The base case with concept assertions $a : \neg A$ is immediate by definition of $A^{\mathcal{I}}$ as \mathcal{A} is clash-free.

- ▶ The base case with concept assertions a : A is immediate by definition of $A^{\mathcal{I}}$.
- ► The base case with concept assertions $a : \neg A$ is immediate by definition of $A^{\mathcal{I}}$ as \mathcal{A} is clash-free.
- ▶ Case $a: C \sqcup D$ in the induction step.
 - ▶ As \mathcal{A} is complete, $a : C \in \mathcal{A}$ or $a : D \in \mathcal{A}$.
 - ▶ W.I.o.g., suppose $a: C \in A$. By (IH), $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
 - ▶ By definition of $^{\mathcal{I}}$, we conclude $\mathbf{a}^{\mathcal{I}} \in (C \sqcup D)^{\mathcal{I}}$.

- ▶ The base case with concept assertions a : A is immediate by definition of $A^{\mathcal{I}}$.
- ► The base case with concept assertions $a : \neg A$ is immediate by definition of $A^{\mathcal{I}}$ as \mathcal{A} is clash-free.
- ▶ Case $a: C \sqcup D$ in the induction step.
 - ▶ As \mathcal{A} is complete, $a : C \in \mathcal{A}$ or $a : D \in \mathcal{A}$.
 - ▶ W.I.o.g., suppose $a: C \in A$. By (IH), $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
 - ▶ By definition of $^{\mathcal{I}}$, we conclude $\mathbf{a}^{\mathcal{I}} \in (C \sqcup D)^{\mathcal{I}}$.
- ▶ Case $a : \exists r.C$ in the induction step.
 - ▶ As \mathcal{A} is complete, $\{(a,b): r,b:C\} \subseteq \mathcal{A}$ for some b.
 - ▶ By definition of $r^{\mathcal{I}}$, $(a, b) \in r^{\mathcal{I}}$.
 - ▶ By (IH), $b^{\mathcal{I}} \in C^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, we conclude $a^{\mathcal{I}} \in (\exists r.C)^{\mathcal{I}}$.

Concluding the soundness

➤ The cases in the induction step for ¬-concept assertions and ∀-concept assertions are similar.

Concluding the soundness

- ➤ The cases in the induction step for ¬-concept assertions and ∀-concept assertions are similar.
- ▶ If expand(\mathcal{A}) $\neq \emptyset$, then \mathcal{A} is consistent.

Concluding the soundness

- ▶ If expand(\mathcal{A}) $\neq \emptyset$, then \mathcal{A} is consistent.
- ▶ Indeed, expand(\mathcal{A}) ≠ \emptyset if there is some \mathcal{A}' with $\mathcal{A} \subseteq \mathcal{A}'$ such that \mathcal{A}' is complete and clash-free.
- ▶ Consistency of A' leads to the consistency of A.

Moving towards completeness

▶ If \mathcal{A} is consistent, then $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .

Moving towards completeness

- ▶ If \mathcal{A} is consistent, then $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .
- ▶ Let $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be such that $\mathcal{I} \models \mathcal{A}$.
- ▶ If A is complete, we are done.
- ▶ Otherwise, if \mathcal{A} is not complete, we show that there is \mathcal{A}' such that $\mathcal{A} \longrightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.

Moving towards completeness

- ▶ If \mathcal{A} is consistent, then $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .
- ▶ Let $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be such that $\mathcal{I} \models \mathcal{A}$.
- ▶ If A is complete, we are done.
- ▶ Otherwise, if \mathcal{A} is not complete, we show that there is \mathcal{A}' such that $\mathcal{A} \longrightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.
- ▶ As the length of a derivation from \mathcal{A} is bounded by an exponential in the size of \mathcal{A} , there is \mathcal{A}' such that $\mathcal{A} \stackrel{*}{\to} \mathcal{A}'$ and \mathcal{A}' is complete, clash-free (and consistent).

Single steps in the completeness proof

- ► It remains to prove that non-completeness implies the existence of one expansion preserving consistency.
- Guidance from the interpretations to choose disjuncts and tree individuals.
- ▶ If the \sqcup -rule is applicable on $a : C \sqcup D$, then there is $E \in \{C, D\}$ such that $\mathcal{I} \models \mathcal{A} \cup \{a : E\}$.
- $ightharpoonup \mathcal{A} \longrightarrow \mathcal{A} \cup \{a : E\} \text{ and } \mathcal{I} \models \mathcal{A} \cup \{a : E\}.$

Single steps in the completeness proof (II)

- ▶ If the \exists -rule is applicable on $a : \exists r.C$, then we use the fact that $a^{\mathcal{I}} \in (\exists r.C)^{\mathcal{I}}$.
- ▶ There is $\mathfrak{a} \in \Delta^{\mathcal{I}}$ such that $\mathfrak{a} \in C^{\mathcal{I}}$ and $(a^{\mathcal{I}}, \mathfrak{a}) \in r^{\mathcal{I}}$.
- Let \mathcal{I}' be equal to \mathcal{I} except that $\mathcal{I}'(c) = \mathfrak{a}$ for some fresh c.
- ▶ Then, $A \longrightarrow A \cup \{c : C, (a, c) : r\}$ and

$$\mathcal{I}' \models \mathcal{A} \cup \{c : C, (a, c) : r\}$$

Decision procedure of ABox consistency

- ▶ \mathcal{A} is consistent iff $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .
- ▶ Derivations $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ have length bounded by an exponential in size(\mathcal{A}).
- Existence of \mathcal{A}' amounts to explore a tree of bounded depth and bounded degree.

Adding a TBox – First properties

- $\blacktriangleright \ \mathcal{I} \models C \sqsubseteq D \text{ iff } \mathcal{I} \models \top \sqsubseteq \neg C \sqcup D.$
- $\blacktriangleright \ \mathcal{I} \models C \equiv D \text{ iff } \mathcal{I} \models \top \sqsubseteq (\neg C \sqcup D) \sqcap (\neg D \sqcup C).$
- ▶ In the sequel, GCIs are of the form $\top \sqsubseteq E$ with E in NNF.

Adding a TBox – First properties

- $\blacktriangleright \ \mathcal{I} \models C \sqsubseteq D \text{ iff } \mathcal{I} \models \top \sqsubseteq \neg C \sqcup D.$
- $\blacktriangleright \ \mathcal{I} \models C \equiv D \text{ iff } \mathcal{I} \models \top \sqsubseteq (\neg C \sqcup D) \sqcap (\neg D \sqcup C).$
- ▶ In the sequel, GCIs are of the form $\top \sqsubseteq E$ with E in NNF.

$$\sqsubseteq$$
-rule: If $a: C \in \mathcal{A}$, $\top \sqsubseteq D \in \mathcal{T}$ and $a: D \notin \mathcal{A}$, then

$$A \longrightarrow A \cup \{a : D\}$$

Adding a TBox – First properties

- $\blacktriangleright \ \mathcal{I} \models C \sqsubseteq D \text{ iff } \mathcal{I} \models \top \sqsubseteq \neg C \sqcup D.$
- $\blacktriangleright \ \mathcal{I} \models C \equiv D \text{ iff } \mathcal{I} \models \top \sqsubseteq (\neg C \sqcup D) \sqcap (\neg D \sqcup C).$
- ▶ In the sequel, GCIs are of the form $\top \sqsubseteq E$ with E in NNF.

$$\sqsubseteq$$
-rule: If $a: C \in \mathcal{A}$, $\top \sqsubseteq D \in \mathcal{T}$ and $a: D \notin \mathcal{A}$, then
$$\mathcal{A} \longrightarrow \mathcal{A} \cup \{a: D\}$$

► The termination argument for ABox consistency does not work anymore. ("Why?)

Termination with the blocking technique

▶ Given $\mathcal{A} \stackrel{*}{\rightarrow} \mathcal{A}'$, a is an **ancestor** of b in \mathcal{A}' iff

$$\{(a_1, a_2): r_1, \ldots, (a_k, a_{k+1}): r_k\} \subseteq \mathcal{A}'$$

with $a_1 = a$, $a_{k+1} = b$ and b is a tree individual.

Termination with the blocking technique

▶ Given $\mathcal{A} \stackrel{*}{\rightarrow} \mathcal{A}'$, a is an **ancestor** of b in \mathcal{A}' iff

$$\{(a_1,a_2): r_1,\ldots,(a_k,a_{k+1}): r_k\} \subseteq \mathcal{A}'$$

with $a_1 = a$, $a_{k+1} = b$ and b is a tree individual.

- The notion of ancestor assumes that one can distinguish the **root individuals** (individual names from A) from the **tree individuals** (those introduced by applying the \exists -rule).
 - ▶ An individual name b in A' is **blocked by** a if
 - a is an ancestor of b,
 - ▶ $con_{\mathcal{A}'}(b) \subseteq con_{\mathcal{A}'}(a)$.
 - An individual name b is **blocked in** A' iff it is blocked by some individual name or, one or more of its ancestors is blocked in A'.

b blocked by a

Expansion rules with blocking

- ¬-rule: If $a: C \sqcap D \in \mathcal{A}$, a is not blocked and a: C, a: D $\not\subseteq \mathcal{A}$ then $A \longrightarrow A \cup \{a: C, a: D\}$.
- ⊔-rule: If $a: C \sqcup D \in \mathcal{A}$, a is not blocked and $\{a: C, a: D\} \cap \mathcal{A} = \emptyset$ then $\mathcal{A} \longrightarrow \mathcal{A} \cup \{a: E\}$ for some $E \in \{C, D\}$.
- \exists -rule: If $a: \exists r.C \in \mathcal{A}$, a is not blocked and there is no b such that $\{(a,b): r,b:C\} \subseteq \mathcal{A}$ then
 - $A \longrightarrow A \cup \{(a,c): r,c:C\}$ where c is fresh
- \forall -rule: If $\{(a,b): r,a: \forall r.C\} \subseteq \mathcal{A}$, a is not blocked and $b: C \notin \mathcal{A}$, then $\mathcal{A} \longrightarrow \mathcal{A} \cup \{b:C\}$.
- \sqsubseteq -rule: If $a: C \in \mathcal{A}$, $\top \sqsubseteq D \in \mathcal{T}$, a is not blocked and $a: D \notin \mathcal{A}$, then $\mathcal{A} \longrightarrow \mathcal{A} \cup \{a: D\}$.

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq D$.
- ▶ N: number of root individuals in \mathcal{A} , M = card(sub(\mathcal{K})), W = w_∃(\mathcal{K}).

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq \mathcal{D}$.
- ▶ N: number of root individuals in \mathcal{A} , M = card(sub(\mathcal{K})), W = w_∃(\mathcal{K}).
- $\begin{array}{c} \boldsymbol{\mathcal{A}} \stackrel{*}{\rightarrow} \boldsymbol{\mathcal{A}}' \text{ and } \boldsymbol{a} : \boldsymbol{C} \in \boldsymbol{\mathcal{A}}' \text{ imply} \\ \\ \operatorname{card}(\{(\boldsymbol{a}, \boldsymbol{b}) \mid (\boldsymbol{a}, \boldsymbol{b}) : r \in \boldsymbol{\mathcal{A}}'\}) \leq \mathbf{N} + \mathbf{W} \end{array}$

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq \mathcal{D}$.
- ▶ N: number of root individuals in \mathcal{A} , $\mathbf{M} = \operatorname{card}(\operatorname{sub}(\mathcal{K}))$, $\mathbf{W} = \mathbf{w}_{\exists}(\mathcal{K})$.
- $\begin{array}{c} \boldsymbol{\nearrow} & \overset{*}{\mathcal{A}} \cdot \mathcal{A}' \text{ and } \boldsymbol{a} : \boldsymbol{C} \in \mathcal{A}' \text{ imply} \\ & \operatorname{card}(\{(\boldsymbol{a},\boldsymbol{b}) \mid (\boldsymbol{a},\boldsymbol{b}) : r \in \mathcal{A}'\}) \leq \mathbf{N} + \mathbf{W} \end{array}$
- $ightharpoonup \mathcal{A} \stackrel{*}{ o} \mathcal{A}'$ and $a: C \in \mathcal{A}'$ imply $C \in \mathsf{sub}(\mathcal{K})$. ("subconcept property")
- $\{(a_1, a_2) : r_1, \dots, (a_k, a_{k+1}) : r_k\} \subseteq \mathcal{A}'$ and a_2 is a tree individual imply $k \leq 2^{\mathbf{M}}$.

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq \mathcal{D}$.
- ▶ **N**: number of root individuals in \mathcal{A} , $\mathbf{M} = \operatorname{card}(\operatorname{sub}(\mathcal{K}))$, $\mathbf{W} = \mathbf{w}_{\exists}(\mathcal{K})$.
- $\begin{array}{c} \boldsymbol{\mathcal{A}} \stackrel{*}{\to} \boldsymbol{\mathcal{A}}' \text{ and } \boldsymbol{a} : \boldsymbol{C} \in \boldsymbol{\mathcal{A}}' \text{ imply} \\ \\ \text{card}(\{(\boldsymbol{a},\boldsymbol{b}) \mid (\boldsymbol{a},\boldsymbol{b}) : r \in \boldsymbol{\mathcal{A}}'\}) \leq \mathbf{N} + \mathbf{W} \end{array}$
- $ightharpoonup \mathcal{A} \stackrel{*}{ o} \mathcal{A}'$ and $a: C \in \mathcal{A}'$ imply $C \in \mathsf{sub}(\mathcal{K})$. ("subconcept property")
- $\{(a_1, a_2) : r_1, \dots, (a_k, a_{k+1}) : r_k\} \subseteq \mathcal{A}'$ and a_2 is a tree individual imply $k \leq 2^{\mathbf{M}}$.
- ▶ The length of the derivation $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ is at most

$$N \times (N + W)^{(2^M+1)} \times M$$

Soundness

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq D$.
- $ightharpoonup \mathcal{A} \stackrel{*}{ o} \mathcal{A}'$ with \mathcal{A}' complete and clash-free.
- We construct A" as the ABox made of the following assertions

$$\{a: C \mid a: C \in \mathcal{A}', a \text{ is not blocked}\} \cup$$

$$\{(a,b): r \mid (a,b): r \in \mathcal{A}', b \text{ is not blocked}\} \cup$$

 $\{(a,b'): r \mid (a,b): r \in \mathcal{A}', a \text{ is not blocked and } b \text{ is blocked by } b'\}$

Construction of A''

 $ightharpoonup \mathcal{A} \subseteq \mathcal{A}''$ as root individuals cannot be blocked and $\mathcal{A} \subseteq \mathcal{A}'$.

- $ightharpoonup \mathcal{A} \subseteq \mathcal{A}''$ as root individuals cannot be blocked and $\mathcal{A} \subseteq \mathcal{A}'$.
- ▶ None of the individual names occurring in A'' is blocked.

- $ightharpoonup \mathcal{A} \subseteq \mathcal{A}''$ as root individuals cannot be blocked and $\mathcal{A} \subseteq \mathcal{A}'$.
- ▶ None of the individual names occurring in A'' is blocked.
- For all a in \mathcal{A}'' , we have $con_{\mathcal{A}''}(a) = con_{\mathcal{A}'}(a)$.

(left as an exercise)

- $ightharpoonup \mathcal{A} \subseteq \mathcal{A}''$ as root individuals cannot be blocked and $\mathcal{A} \subseteq \mathcal{A}'$.
- ▶ None of the individual names occurring in A'' is blocked.
- For all a in \mathcal{A}'' , we have $\mathrm{con}_{\mathcal{A}''}(a) = \mathrm{con}_{\mathcal{A}'}(a)$. (left as an exercise)
- $ightharpoonup \mathcal{A}''$ is complete and clash-free.

Proof: A'' is complete

$$(\star) \operatorname{con}_{\mathcal{A}''}(a) = \operatorname{con}_{\mathcal{A}'}(a) \text{ for all } a \in \mathcal{A}''$$

Proof: A'' is complete

$$(\star) \operatorname{con}_{\mathcal{A}''}(a) = \operatorname{con}_{\mathcal{A}'}(a)$$
 for all $a \in \mathcal{A}''$

▶ Suppose $a : C \sqcap D \in \mathcal{A}''$.

By (\star) , $a: C \cap D \in \mathcal{A}'$.

As A' is complete, $\{a: C, a: D\} \subseteq A'$.

By (\star) , $\{a: C, a: D\} \subseteq \mathcal{A}''$.

Proof: A'' is complete

$$(\star) \operatorname{\mathsf{con}}_{\mathcal{A}''}(a) = \operatorname{\mathsf{con}}_{\mathcal{A}'}(a) \ \text{ for all } a \in \mathcal{A}''$$

Suppose a: C □ D ∈ A".
 By (*), a: C □ D ∈ A'.
 As A' is complete, {a: C, a: D} ⊆ A'.
 By (*), {a: C, a: D} ⊂ A".

Suppose that a: C ∈ A" and ⊤ ⊑ D ∈ T.
 By (*), a: C ∈ A'.
 As A' is complete, a: D ∈ A'.
 By (*), a: D ∈ A".

- Suppose that $a : \exists r.C \in \mathcal{A}''$. By (\star) , $a : \exists r.C \in \mathcal{A}'$ and a not blocked. By completeness of \mathcal{A}' , there is b such that $\{(a,b): r,b:C\} \subseteq \mathcal{A}'$.
- ▶ If *b* is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.

- Suppose that $a : \exists r.C \in \mathcal{A}''$. By (\star) , $a : \exists r.C \in \mathcal{A}'$ and a not blocked. By completeness of \mathcal{A}' , there is b such that $\{(a,b): r,b:C\} \subseteq \mathcal{A}'$.
- ▶ If *b* is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.
- As a is not blocked, if b is blocked, then b is blocked by b' in A' and b' is not blocked.

- Suppose that $a : \exists r.C \in \mathcal{A}''$. By (\star) , $a : \exists r.C \in \mathcal{A}'$ and a not blocked. By completeness of \mathcal{A}' , there is b such that $\{(a,b): r,b:C\} \subseteq \mathcal{A}'$.
- ▶ If *b* is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.
- As a is not blocked, if b is blocked, then b is blocked by b' in A' and b' is not blocked.
- ▶ By definition of \mathcal{A}'' , $(a, b') : r \in \mathcal{A}''$.

- Suppose that $a : \exists r.C \in \mathcal{A}''$. By (\star) , $a : \exists r.C \in \mathcal{A}'$ and a not blocked. By completeness of \mathcal{A}' , there is b such that $\{(a,b): r,b:C\} \subseteq \mathcal{A}'$.
- ▶ If *b* is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.
- As a is not blocked, if b is blocked, then b is blocked by b' in A' and b' is not blocked.
- ▶ By definition of \mathcal{A}'' , (a, b') : $r \in \mathcal{A}''$.
- ho con_{\mathcal{A}'}(b) \subseteq con_{\mathcal{A}'}(b') (blocking). By (\star), $C \in \operatorname{con}_{\mathcal{A}'}(b) \subseteq \operatorname{con}_{\mathcal{A}'}(b') = \operatorname{con}_{\mathcal{A}''}(b')$

So,
$$b': C \in A''$$
.

- Suppose that $a : \exists r.C \in \mathcal{A}''$. By (\star) , $a : \exists r.C \in \mathcal{A}'$ and a not blocked. By completeness of \mathcal{A}' , there is b such that $\{(a,b): r,b:C\} \subseteq \mathcal{A}'$.
- ▶ If *b* is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.
- As a is not blocked, if b is blocked, then b is blocked by b' in A' and b' is not blocked.
- ▶ By definition of \mathcal{A}'' , (a, b') : $r \in \mathcal{A}''$.
- lacksquare $\operatorname{con}_{\mathcal{A}'}(b)\subseteq\operatorname{con}_{\mathcal{A}'}(b')$ (blocking). By (\star) , $C\in\operatorname{con}_{\mathcal{A}'}(b)\subseteq\operatorname{con}_{\mathcal{A}'}(b')=\operatorname{con}_{\mathcal{A}''}(b')$ So, $b':C\in\mathcal{A}''$.
- ► Case with the V-rule left as an exercise.

More about the soundness proof

- ▶ $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ with \mathcal{A}' complete and clash-free and \mathcal{A}'' computed as above.
- ▶ Let us define $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ from \mathcal{A}'' as follows.

 - $ightharpoonup a^{\mathcal{I}} \stackrel{\text{def}}{=} a$ for all individual names a in \mathcal{A}'' .
 - ► $A^{\mathcal{I}} \stackrel{\text{def}}{=} \{a \mid A \in \text{con}_{\mathcal{A}''}(a)\}$ for all concept names $A \in \text{sub}(\mathcal{A}'')$.
 - $r^{\mathcal{I}} \stackrel{\text{def}}{=} \{(a,b) \mid (a,b) : r \in \mathcal{A}''\}.$ (previous construction with \mathcal{A}'' instead)
- ▶ One can show that for all $a: C \in A''$, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.

(left as an exercise.)

The final step about soundness

▶ It remains to check that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.

The final step about soundness

- ▶ It remains to check that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.
- ▶ One can show that for all $a : C \in A''$, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
- ▶ Consequently, $\mathcal{I} \models \mathcal{A}$ as $\mathcal{A} \subseteq \mathcal{A}''$.

The final step about soundness

- ▶ It remains to check that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.
- ▶ One can show that for all $a : C \in A''$, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
- ▶ Consequently, $\mathcal{I} \models \mathcal{A}$ as $\mathcal{A} \subseteq \mathcal{A}''$.
- ▶ Moreover, $\mathcal{I} \models \top \sqsubseteq C$ for all $\top \sqsubseteq C \in \mathcal{T}$.
- $ightharpoonup a \in \Delta^{\mathcal{I}}$
 - \rightarrow *a* : $C \in A''$ (A'' is complete)
 - $ightarrow \textbf{\textit{a}} \in \textbf{\textit{C}}^{\mathcal{I}}$ (see above)

▶ If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \stackrel{*}{\to} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .

- ▶ If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \stackrel{*}{\to} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .
- ▶ Let $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.
- \blacktriangleright If \mathcal{A} is complete, we are done.
- ▶ Otherwise (\mathcal{A} is not complete), we show there is \mathcal{A}' such that $\mathcal{A} \longrightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.

- ▶ If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \stackrel{*}{\rightarrow} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .
- ▶ Let $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.
- ▶ If A is complete, we are done.
- ▶ Otherwise (\mathcal{A} is not complete), we show there is \mathcal{A}' such that $\mathcal{A} \longrightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.
- As the length of a derivation from \mathcal{A} is bounded by a double-exponential in the size of \mathcal{A} , there is \mathcal{A}' such that $\mathcal{A} \stackrel{*}{\to} \mathcal{A}'$ and \mathcal{A}' is complete, clash-free (and consistent).

- ▶ If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \stackrel{*}{\rightarrow} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .
- ▶ Let $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.
- ▶ If A is complete, we are done.
- ▶ Otherwise (\mathcal{A} is not complete), we show there is \mathcal{A}' such that $\mathcal{A} \longrightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.
- ▶ As the length of a derivation from \mathcal{A} is bounded by a double-exponential in the size of \mathcal{A} , there is \mathcal{A}' such that $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ and \mathcal{A}' is complete, clash-free (and consistent).
- One can prove that non-completeness implies the existence of one expansion preserving consistency.

Complexity issues

- ► ALC concept satisfiability in PSPACE, knowledge base consistency in EXPTIME.
- The algorithm for ABox consistency runs in exponential space:
 - ▶ Because of the nondeterministic \(\percurrent{\pi-rule}\), exponentially many ABoxes may be generated.
 - Complete ABoxes may be exponentially large.
- ► PSPACE bound for ABox consistency can be regained by exploring the tree-like interpretations in a depth-first manner having only one path at a time.

Recapitulation:

Tableaux for ALC knowledge base consistency

- ► Tableaux-based algorithm to decide ALC knowledge base consistency.
- ▶ All other standard decision problems can be handled too.
- Termination is guaranteed thanks to the blocking technique.
- In the worst-case, exponential space is used but optimisations exist to meet the optimal upper bound EXPTIME.
- ► Tableaux can be extended to richer variants of \mathcal{ALC} (with inverses, nominals, number restrictions, etc.)

Undecidability with Role Inclusion Axioms

DLs: a playground to study extensions and fragments

- Many developments to extend ALC while preserving the decidability status / complexity of the main decision problems.
- Many developments to study fragments of ALC (or variants) to identify tractable fragments.
- It is also important to identify undecidable extensions.

Tiling system

- ▶ Tiling system: (T, H, V, t_0) where
 - T is a finite set of **tile types** and $t_0 \in T$,
 - $-H, V \subseteq T \times T$ are two relations referred to as the **horizontal**, resp. **vertical matching relation**.

Tiling system

- ightharpoonup Tiling system: (T, H, V, t_0) where
 - T is a finite set of **tile types** and $t_0 \in T$,
 - $-H, V \subseteq T \times T$ are two relations referred to as the **horizontal**, resp. **vertical matching relation**.

A set of tile types (a.k.a. tiles)

$$t_1 = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$
 $t_2 = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ $t_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $t_4 = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$

- ...with its matching relations
 - $H = \{(t_1, t_3), (t_1, t_4), (t_2, t_1), (t_3, t_2), (t_4, t_1)\}\$
 - $V = \{(t_1, t_2), (t_1, t_4), (t_2, t_3), (t_4, t_1), (t_4, t_2)\}$

A tiling for the ($[0,3] \times [0,2]$)-arena

tiling
$$\tau : [0,3] \times [0,2] \to T$$
 $0 \ 2 \ 2 \ 1 \ 1 \ 2 \ 0 \ 2 \ 1$
 $2 \ 1 \ 2 \ 0 \ 2 \ 1$
 $2 \ 1 \ 2 \ 0 \ 2 \ 1$
 $2 \ 1 \ 2 \ 0$
 $2 \ 1 \ 2 \ 0$
 $2 \ 1 \ 2 \ 0$
 $2 \ 1 \ 2 \ 0$
 $2 \ 1 \ 2 \ 0$
 $2 \ 1 \ 2 \ 0$
 $2 \ 1 \ 2 \ 0$

An undecidable tiling problem

► The $(\infty \times \infty)$ -tiling problem. Input: A tiling system (T, H, V, t_0) .

```
Question: Is there a tiling \tau: \mathbb{N} \times \mathbb{N} \to T such that for all i, j \in \mathbb{N}, (hori) if \tau(i, j) = t and \tau(i + 1, j) = t', then (t, t') \in H, (verti) if \tau(i, j) = t and \tau(i, j + 1) = t', then (t, t') \in V
```

▶ The $(\infty \times \infty)$ -tiling problem is undecidable.

Complexity about ALC problems

- Concept satisfiability problem is PSPACE-complete.
- ▶ PSPACE-hardness by reduction from $(n \times n)$ -tiling game problem.

Complexity about ALC problems

- Concept satisfiability problem is PSPACE-complete.
- ▶ PSPACE-hardness by reduction from $(n \times n)$ -tiling game problem.

EXPTIME-complete knowledge base consistency problem. EXPTIME-hardness from $(n \times \infty)$ -tiling game problem.

A standard undecidability result

▶ \mathcal{ALC} + role axioms $r \circ s \sqsubseteq q$ and $q \sqsubseteq r \circ s$ had undecidable knowledge base consistency problem.

(actually CBox consistency is undecidable)

▶ Reduction from $(\infty \times \infty)$ -tiling problem.

A standard undecidability result

▶ \mathcal{ALC} + role axioms $r \circ s \sqsubseteq q$ and $q \sqsubseteq r \circ s$ had undecidable knowledge base consistency problem.

(actually CBox consistency is undecidable)

- ▶ Reduction from $(\infty \times \infty)$ -tiling problem.
- ▶ \mathcal{ALC} + local role value maps $r \circ s \sqsubseteq q$ and $q \sqsubseteq r \circ s$ has undecidable *concept satisfiability problem*.

(not pre

An undecidable extension of ALC

▶ Let us consider the extension of \mathcal{ALC} in which we allow role axioms of the form

$$r \circ s \sqsubseteq q \quad q \sqsubseteq r \circ s,$$

$$\mathcal{I} \models r \circ s \sqsubseteq q \stackrel{\mathsf{def}}{\Leftrightarrow} r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq q^{\mathcal{I}} \quad \mathcal{I} \models q \sqsubseteq r \circ s \stackrel{\mathsf{def}}{\Leftrightarrow} q^{\mathcal{I}} \subseteq r^{\mathcal{I}} \circ s^{\mathcal{I}}$$

An undecidable extension of ALC

▶ Let us consider the extension of \mathcal{ALC} in which we allow role axioms of the form

$$r \circ s \sqsubseteq q \quad q \sqsubseteq r \circ s,$$

$$\mathcal{I} \models r \circ s \sqsubseteq q \stackrel{\mathsf{def}}{\Leftrightarrow} r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq q^{\mathcal{I}} \quad \mathcal{I} \models q \sqsubseteq r \circ s \stackrel{\mathsf{def}}{\Leftrightarrow} q^{\mathcal{I}} \subseteq r^{\mathcal{I}} \circ s^{\mathcal{I}}$$

▶ Role axioms $r \circ s \equiv s \circ r$ can be encoded by introducing a fresh role name q:

$$\{r \circ s \sqsubseteq q, q \sqsubseteq r \circ s, s \circ r \sqsubseteq q, q \sqsubseteq s \circ r\}$$

An undecidable extension of ALC

▶ Let us consider the extension of \mathcal{ALC} in which we allow role axioms of the form

$$r \circ s \sqsubseteq q \quad q \sqsubseteq r \circ s,$$

$$\mathcal{I} \models r \circ s \sqsubseteq q \stackrel{\mathsf{def}}{\Leftrightarrow} r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq q^{\mathcal{I}} \quad \mathcal{I} \models q \sqsubseteq r \circ s \stackrel{\mathsf{def}}{\Leftrightarrow} q^{\mathcal{I}} \subseteq r^{\mathcal{I}} \circ s^{\mathcal{I}}$$

► Role axioms $r \circ s \equiv s \circ r$ can be encoded by introducing a fresh role name q:

$$\{r \circ s \sqsubseteq q, q \sqsubseteq r \circ s, s \circ r \sqsubseteq q, q \sqsubseteq s \circ r\}$$

▶ Reduction from the $(\infty \times \infty)$ -tiling problem to knowledge base consistency for such an \mathcal{ALC} extension.

- ▶ Given a tiling system $T = (T, H, V, t_0)$, we introduce two role names r_x and r_y .
- ▶ We build a TBox $\mathcal{T}_{\mathbb{T}}$ such that \mathbb{T} is a positive instance of the $(\infty \times \infty)$ -tiling problem iff $\mathcal{T}_{\mathbb{T}}$ is consistent.

- ▶ Given a tiling system $T = (T, H, V, t_0)$, we introduce two role names r_x and r_y .
- ▶ We build a TBox $\mathcal{T}_{\mathbb{T}}$ such that \mathbb{T} is a positive instance of the $(\infty \times \infty)$ -tiling problem iff $\mathcal{T}_{\mathbb{T}}$ is consistent.
- ► Every individual has a horizontal and a vertical successor:

$$\top \sqsubseteq \exists r_x . \top \sqcap \exists r_y . \top$$

- ▶ Given a tiling system $T = (T, H, V, t_0)$, we introduce two role names r_x and r_y .
- ▶ We build a TBox $\mathcal{T}_{\mathbb{T}}$ such that \mathbb{T} is a positive instance of the $(\infty \times \infty)$ -tiling problem iff $\mathcal{T}_{\mathbb{T}}$ is consistent.
- Every individual has a horizontal and a vertical successor:

$$\top \sqsubseteq \exists r_x . \top \sqcap \exists r_y . \top$$

Every individual belongs to a unique tile type.

$$\top \sqsubseteq \bigsqcup_{t \in T} (t \sqcap \prod_{t' \neq t} \neg t')$$

- ▶ Given a tiling system $T = (T, H, V, t_0)$, we introduce two role names r_x and r_y .
- ▶ We build a TBox $\mathcal{T}_{\mathbb{T}}$ such that \mathbb{T} is a positive instance of the $(\infty \times \infty)$ -tiling problem iff $\mathcal{T}_{\mathbb{T}}$ is consistent.
- Every individual has a horizontal and a vertical successor:

$$\top \sqsubseteq \exists r_x . \top \sqcap \exists r_y . \top$$

Every individual belongs to a unique tile type.

$$\top \sqsubseteq \bigsqcup_{t \in T} (t \sqcap \prod_{t' \neq t} \neg t')$$

Tile types of adjacent individuals satisfy the matching relations:

$$\top \sqsubseteq \bigsqcup_{(t,t')\in H} (t\sqcap \forall r_x.t') \sqcap \bigsqcup_{(t,t')\in V} (t\sqcap \forall r_y.t')$$

The properties

► The set of $r_x r_y$ -successors is equal to the set of $r_y r_x$ -successors.

$$r_x \circ r_y \equiv r_y \circ r_x$$

The properties

► The set of $r_x r_y$ -successors is equal to the set of $r_y r_x$ -successors.

$$r_x \circ r_y \equiv r_y \circ r_x$$

 $ightharpoonup \mathcal{T}_T$ is made of the above GCIs and role axioms.

The properties

► The set of $r_x r_y$ -successors is equal to the set of $r_y r_x$ -successors.

$$r_X \circ r_Y \equiv r_Y \circ r_X$$

- $ightharpoonup \mathcal{T}_{\mathbb{T}}$ is made of the above GCIs and role axioms.
- ▶ $\mathcal{T}_{\mathbb{T}}$ is consistent iff \mathbb{T} is a positive instance.
- ▶ TBox consistency problem for \mathcal{ALC} augmented with role axioms of the form $r \circ s \sqsubseteq q$ and $q \sqsubseteq r \circ s$ is undecidable.

Correctness proof (or how to extract a grid)

- ▶ Let \mathcal{I} be an interpretation satisfying the TBox $\mathcal{T}_{\mathbb{T}}$.
- ▶ We define a map $\mathfrak{f}: \mathbb{N} \times \mathbb{N} \to \Delta^{\mathcal{I}}$ such that for all i, j
 - $\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{f}(i+1,j)) \in \mathit{r}_{\mathsf{x}}^{\mathcal{I}}$
 - $\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{f}(i,j+1)) \in \mathit{r}_{y}^{\mathcal{I}}$

Correctness proof (or how to extract a grid)

- ▶ Let \mathcal{I} be an interpretation satisfying the TBox $\mathcal{T}_{\mathbb{T}}$.
- ▶ We define a map $\mathfrak{f}: \mathbb{N} \times \mathbb{N} \to \Delta^{\mathcal{I}}$ such that for all i, j

$$\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{f}(i+1,j)) \in \mathit{r}_{x}^{\mathcal{I}}$$

$$\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{f}(i,j+1)) \in \mathit{r}_{y}^{\mathcal{I}}$$

▶ Then, we define $\tau : \mathbb{N} \times \mathbb{N} \to T$ from \mathfrak{f} as follows:

$$au(i,j) \stackrel{\mathsf{def}}{=} ext{ unique } t ext{ such that } \mathfrak{f}(i,j) \in t^{\mathcal{I}}$$

Correctness proof (or how to extract a grid)

- ▶ Let \mathcal{I} be an interpretation satisfying the TBox $\mathcal{T}_{\mathbb{T}}$.
- ▶ We define a map $\mathfrak{f}: \mathbb{N} \times \mathbb{N} \to \Delta^{\mathcal{I}}$ such that for all i, j

$$\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{f}(i+1,j)) \in \mathit{r}_{x}^{\mathcal{I}}$$

$$\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{f}(i,j+1)) \in r_y^{\mathcal{I}}$$

▶ Then, we define $\tau : \mathbb{N} \times \mathbb{N} \to T$ from \mathfrak{f} as follows:

$$\tau(i,j) \stackrel{\text{def}}{=} \text{ unique } t \text{ such that } \mathfrak{f}(i,j) \in t^{\mathcal{I}}$$

- ▶ Unicity of *t* guaranteed by $\mathcal{I} \models \top \sqsubseteq \bigsqcup_{t \in \mathcal{T}} (t \sqcap \prod_{t' \neq t} \neg t')$.
- ▶ Afterwards, easy to check τ is a tiling as $\mathcal{I} \models \mathcal{T}_{\mathbb{T}}$.

How to define f while maintaining properties?

• $\mathfrak{f}(0,0)$ is choosen arbitrarily in $\Delta^{\mathcal{I}}$ (non-empty).

How to define f while maintaining properties?

- $\mathfrak{f}(0,0)$ is choosen arbitrarily in $\Delta^{\mathcal{I}}$ (non-empty).
- As $\mathcal{I} \models \top \sqsubseteq \exists r_X. \top$, when $\mathfrak{f}(i,i)$ is already defined, pick $\mathfrak{a} \in \Delta^{\mathcal{I}}$ such that
 - $(\mathfrak{f}(i,i),\mathfrak{a}) \in r_{x}^{\mathcal{I}},$
 - $-\mathfrak{f}(i+1,i)\stackrel{\mathrm{def}}{=}\mathfrak{a}$

How to define f while maintaining properties?

- $\mathfrak{f}(0,0)$ is choosen arbitrarily in $\Delta^{\mathcal{I}}$ (non-empty).
- As $\mathcal{I} \models \top \sqsubseteq \exists r_x. \top$, when $\mathfrak{f}(i, i)$ is already defined, pick $\mathfrak{a} \in \Delta^{\mathcal{I}}$ such that
 - $-(\mathfrak{f}(i,i),\mathfrak{a})\in r_{\mathsf{x}}^{\mathcal{I}},$
 - $-\mathfrak{f}(i+1,i)\stackrel{\mathrm{def}}{=}\mathfrak{a}$
- ▶ As $\mathcal{I} \models \top \sqsubseteq \exists r_y . \top$, when $\mathfrak{f}(i+1,i)$ is already defined, pick $\mathfrak{b} \in \Delta^{\mathcal{I}}$ such that
 - $(\mathfrak{f}(i+1,i),\mathfrak{b}) \in r_y^{\mathcal{I}},$
 - $-\mathfrak{f}(i+1,i+1)\stackrel{\mathsf{def}}{=}\mathfrak{b}$

More cases for defining f

▶ As $\mathcal{I} \models r_x \circ r_y \equiv r_y \circ r_x$, when

$$f(i,j), f(i+1,j), f(i+1,j+1)$$

are defined and $\mathfrak{f}(i,j+1)$ undefined, pick $\mathfrak{a}\in\Delta^{\mathcal{I}}$ such that

$$\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{a}) \in r_{\mathsf{V}}^{\mathcal{I}}$$

$$(\mathfrak{a},\mathfrak{f}(i+1,j+1)) \in r_x^{\mathcal{I}}$$

$$f(i,j+1) \stackrel{\mathsf{def}}{=} \mathfrak{a}$$

$$\mathfrak{a} \stackrel{r_X}{\cdots} \mathfrak{f}(i+1,j+1)$$

$$\begin{array}{ccc}
r_y & & \uparrow \\
f(i,j) & \xrightarrow{r_X} & f(i+1,j)
\end{array}$$

More cases for defining f

▶ As $\mathcal{I} \models r_x \circ r_y \equiv r_y \circ r_x$, when

$$f(i,j), f(i+1,j), f(i+1,j+1)$$

are defined and $\mathfrak{f}(i,j+1)$ undefined, pick $\mathfrak{a} \in \Delta^{\mathcal{I}}$ such that

$$\blacktriangleright (\mathfrak{f}(i,j),\mathfrak{a}) \in r_y^{\mathcal{I}}$$

$$(\mathfrak{a},\mathfrak{f}(i+1,j+1)) \in r_x^{\mathcal{I}}$$

$$f(i,j+1) \stackrel{\mathsf{def}}{=} \mathfrak{a}$$

$$\mathfrak{a} \stackrel{r_X}{\leadsto} \mathfrak{f}(i+1,j+1)$$

$$\begin{array}{ccc}
r_y & & \uparrow \\
f(i,j) & \xrightarrow{r_X} & f(i+1,j)
\end{array}$$

▶ When f(i,j), f(i,j+1), f(i+1,j+1) are defined and f(i+1,j) undefined, pick $a \in \Delta^{\mathcal{I}}$ such that

$$(\mathfrak{f}(i,j),\mathfrak{a}) \in r_{\mathsf{x}}^{\mathcal{I}},$$

$$(\mathfrak{a},\mathfrak{f}(i+1,j+1)) \in r_y^{\mathcal{I}},$$

$$f(i+1,j) \stackrel{\text{def}}{=} \mathfrak{a}$$

$$f(i,j+1) \xrightarrow{r_X} f(i+1,j+1)$$

More cases for defining f

▶ As $\mathcal{I} \models r_x \circ r_y \equiv r_y \circ r_x$, when

$$f(i,j), f(i+1,j), f(i+1,j+1)$$

are defined and $\mathfrak{f}(i,j+1)$ undefined, pick $\mathfrak{a} \in \Delta^{\mathcal{I}}$ such that

$$(f(i,j), a) \in r_y^{\mathcal{I}} \qquad \qquad a \xrightarrow{r_x} f(i+1,j+1)$$

$$(a, f(i+1,j+1)) \in r_x^{\mathcal{I}} \qquad \qquad r_y \xrightarrow{h} f(i+1,j+1)$$

$$f(i,j+1) \stackrel{\text{def}}{=} a \qquad \qquad f(i,j) \xrightarrow{r_x} f(i+1,j)$$

▶ When f(i,j), f(i,j+1), f(i+1,j+1) are defined and f(i+1,j) undefined, pick $a \in \Delta^{\mathcal{I}}$ such that

$$\begin{array}{ccc}
 & (\mathfrak{f}(i,j),\mathfrak{a}) \in r_{X}^{\mathcal{I}}, & \mathfrak{f}(i,j+1) \xrightarrow{r_{X}} \mathfrak{f}(i+1,j+1) \\
 & (\mathfrak{a},\mathfrak{f}(i+1,j+1)) \in r_{y}^{\mathcal{I}}, & r_{y} & \uparrow \\
 & \mathfrak{f}(i,j) & \downarrow r_{\chi} & \uparrow \\
 & \mathfrak{f}(i,j) & \downarrow r_{\chi} & \uparrow \\
 \end{array}$$

▶ With these four cases, how to build \mathfrak{f} on $\mathbb{N} \times \mathbb{N}$?

Construction of the map f: a bit of organisation

The other direction (easy)

- Let $T = (T, H, V, t_0)$ be a tiling system and $\tau : \mathbb{N} \times \mathbb{N} \to T$ be a tiling.
- ▶ Interpretation $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$:

 - ▶ $t^{\mathcal{I}} \stackrel{\text{def}}{=} \{(n, m) \mid \tau(n, m) = t\}$ for every $t \in T$
- It is easy to check ${\cal I}$ satisfies all the GCIs and the role axioms from ${\cal T}_{\!\scriptscriptstyle T}.$

Interpretation \mathcal{I}

Conclusion

- Today lecture: tableaux for DLs.
 - Rules for checking concept satisfiability.
 - Rules for checking knowledge base consistency.
 - Termination, soundness, completeness.
 - Undecidability result with role axioms.

Next week lecture: reasoning about multiagent systems with ATL.

Other topics related to DLs

- More tableaux-style systems and complexity results for ALC extensions (e.g. for SROIQ, ALCIQ, ALCOI, etc.)
- More fragments with nice computational properties while retaining sufficient expressivity (e.g. ££, ££0, DL-Lite, etc.)
- Playing with ontologies, ontology editors, etc.....
- Query answering with respect to ontologies for large data sets.