

Knowledge Base Question Answering: A Semantic Parsing Perspective

Yu Gu, Vardaan Pahuja, Gong Cheng, Yu Su

Our Position

- ☐ We survey KBQA research based on semantic parsing (SP).
- ☐ We draw insights from neighboring tasks (e.g., text-to-SQL) in the broad literature of semantic parsing.

Main Content

- ☐ We survey KBQA models based on semantic parsing.
- ☐ We categorize existing SP-based models into three families, namely, ranking-based models, coarse-to-fine models, and generation-based models.
- ☐ We briefly review the literature of text-to-SQL and take inspirations from existing works.
- ☐ We point out several promising directions in KBQA.

Semantic Parsing in KBQA

☐ A question is mapped onto a logical form, which is further executed over the KB to retrieve final answers.

Existing Methods

☐ Existing SP-based KBQA models can be roughly group into the following three families.

High-level illustrations of the ideas of different families

Dataset	Top-1 $m{F}_1$	Top-1 Family
LC-QuAD	75.0[Zafar et al., 2018]	Ranking
KQA Proื	90.6[Lewis et al., 2020] [♡]	Generation
WEBQSP	76.5 [Cao et al., 2021] $^{\circ}$	Generation
ComplexWebQ $^{\clubsuit}$	$70.0[$ Das et al., $2021]$ $^{\circ}$	Coarse-to-fine
GRAPHQ	$31.8[Gu \text{ and } Su, 2022]^{\heartsuit}$	Generation
GRAILQA.	74.4[Ye et al., 2022] [♡]	Ranking

Empirical results on existing KBQA benchmarks

Literature in Semantic Parsing

- ☐ From pipeline methods to end-to-end methods
 - Pipeline methods: conventional rule-based algorithms like CCG parsing [Zettlemoyer and Collins., 2005]
 - End-to-end methods: encoder-decoder models like Seq2Seq, Seq2Tree [Dong and Lapata, 2016]
- ☐ Semantic parsing with pre-training
 - Joint encoding [Hwang et al., 2019]; Constrained decoding [Scholak et al., 2021]
 - Task-specific pre-training: Grappa [Yu et al., 2020]; Stru-G [Deng et al., 2021]
- ☐ Out-of-distribution generalization
 - Spider (cross-domain text-to-SQL) [Yu et al., 2018]

Trending Topics in KBQA

Type

Entity

-[r]

- ☐ Towards end-to-end KBQA
 - KBQA based on encoder-decoders
 - Joint entity linking and semantic parsing
- ☐ Towards KBQA with pre-training
 - Good practice of using pre-trained language models in KBQA
 - KBQA-specific pre-training
- ☐ Towards more generalizable KBQA
 - Cross-domain generalization
 - Cross-KB generalization
- ☐ Other Trends
 - Prompting
 - Interactive KBQA