RA Week 6

Concepts: Probabilistic method, probability amplification, Locasz local lemma, conditional probabilities.

Probabiltic Method:

- 1. Any ran. var. x assume ≥ 1 value $\geq E[x]$ and assume ≥ 1 value $\leq E[x]$.
- 2. If o chosen at random from U satisfies property p with non-zero probability, the there $\exists o \in U$ with property p.

Application: Max Cut

Thrm: For any grah G(V, E), |V| = n, |E| = m, there exist partition of V to A, B st.

$$|\{(u,v)|u\in A \land v\in B\}| > m/2$$

Consider assign $v \in V$ at random to A or B with 1/2 prob. \Rightarrow Prob $(u, v) = u \in A \land v \in B = 1/2$. By linarity of expectation we expect m/2 edges satisfying $p = (u, v) = u \in A \land v \in B$. $\Rightarrow \exists p$ satisfying the thrm by Probabilistic Method 2.

Not necessarily an efficient ran. alg., if prob. is miniscule.

Max-Sat:m clauses in cnf over n vars.

Problem: assign vars values st. max num. of cluase are satisfied.

Thrm 1: For any set of m clauses, there is a thruth assign. st var satisfy $\geq m/2$ clauses.

Proof: Ran assign var to 0,1 indp. and equiprob. For $1 \le i \le 1$, $Z_i = 1$ iff i'th clause satisfied. With k literals, $\mathbf{Pr}[\bar{Z}_i] = 2^{-k}$, since all literals must zero. $\Rightarrow \mathbf{Pr}(Z_i) = 1 - 2^{-k} \ge 1/2 \Rightarrow \forall i.E[Z_i] \ge 1/2$. By linarity of expectation

$$E[\sum_{i=1}^{m} Z_i \ge m/2$$

By probabilistic method 1. \exists assign. st $\sum_{i=1}^{m} Z_i \geq m/2$.

3/4-approx Max Sat.

 α -ran-approx alg: for instance I m.(I) max num of satif. clauses $E[M_A(I)]$ expected num of satisf. clause by \mathcal{A}

$$inf_{I \in \mathcal{I}} \frac{E[m_A(I)]}{m_{\cdot}(I)} = \alpha$$

Thrm 1 is $1 - 2^{-k}$ -approx alg if $\forall i | C_i | \ge k \Rightarrow k \ge 2$ Thrm $1 \ge 3/4$ -approx alg.

Issue k = 1 (1/2 approx)

Solution: New randomized rounding alg. Run both, return better.

Formulate problem as Linear programming relaxation and use randomize rounding.

Let $z_j \in \{0,1\}$ be ind. sat. C_j . For each var x_i let y_i be indp. st. $y_i = 1$ iff $x_i = TRUE$. C_j^+ be set pf indeces in C_j of vars in uncomplemented form and let C_j^- be indeces of complemented vars. Linear Program

$$\max \sum_{j=1}^{m} z_j \qquad y_i, z_j \in \{0, 1\}$$

subject to

$$\sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_i) \ge z_j$$

Relaxation: $y_i, z_j \in [0, 1.$ Let \hat{y}_i be relaxed y_i when solved. \hat{z}_j be val obt. for $z_j \Rightarrow \max \sum_j \hat{z}_j \ge \max \sum_i z_i$.

 $\max \sum_{j} z_{j}$. Show $E[Z] \geq (1 - 1/e) \sum_{j} \hat{z}_{j}$, then show best of two algs at least $3/4 \sum_{j} \hat{z}_{j}$. Let $\mathbf{Pr}[y_{i} = 1] = \hat{y}_{i}$ and

$$\beta_k = 1 - (1 - k^{-1})^k$$

Note $\beta_k \geq (1 - 1/e)$ for all $k \in \mathcal{Z}^+$.

Lemma 1: Let c_i be a clause with k literals. The prob that it is satis. by rand rounding is $\geq \beta_k \hat{z}_i$

RA Week 6

Proof: Focus on c_j and assume $c_j^+ = c_j$, assume $x_1 \vee ... \vee x_k$. By constraint $\hat{y}_1 + ... + \hat{y}_k \geq \hat{z}_j$. c_j remains unsatis if all y_i are rounded to zero.

 $\Pr[c_j = FALSE] = \prod_{i=1}^k (1 - \hat{y}_i)$ since ran rounding is indep.

Remain to show

$$1 - \prod_{i=1}^{k} (1 - \hat{y}_i) \ge \beta_k \hat{z}_j$$

LHS min when $\hat{y}_i = \hat{z}_j/k \Rightarrow$

$$1 - (1 - x/k)^k \ge \beta_k x$$

for $x \in [0,1]$. Note $g(x) = 1 - (1 - x/k)^k$ is concave, so it remains to show $f(0) \ge g(0)$ and $f(1) \ge g(1)$, for $f(x) = \beta_k x$. Simple calc gives g(0) = f(0) = 0 and $f(1) = g(1) = 1 - (1 - 1/k)^k$.

Thrm 3: Given instance I of Max-Sat. E[satisclauses] by a Linear Prog with randomized rounding is (1-1/e) times the max num of number clauses satisfyable on I.

Proof: Lemma 1 over all j with linearity of expectation. Thrm 4: Let n_1 be the expected of alg from thrm 1. Let n_2 be expected of alg from Thrm 2 then

$$\max(n_1, n_2) \ge 3/4 \sum_j \hat{z}_j$$

Proof: Suffice to show $(n_1 + n_2)/2 \ge 3/4 \sum \hat{z}_j$. Denote by S^k the set of clause c where |c| = k

$$n_1 = \sum_{k} \sum_{c_j \in S^k} (1 - 2^{-k}) \ge \sum_{k} \sum_{c_j \in S^k} (1 - 2^{-k}) \hat{z}_j$$

By lemma 1

$$n_2 \ge \sum_k \sum_{c_j \in S^k} \beta_k \hat{z}_j \Rightarrow$$

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{c_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \hat{z}_j$$

Since $\forall k.(1-2^{-k}) + \beta_k \geq 3/2 \Rightarrow$

$$\frac{n_1 + n_2}{2} \ge \frac{3}{4} \sum_{k} \sum_{c_i \in S^k} \hat{z}_j = \frac{3}{4} \sum_{j} \hat{z}_j$$

Expanding graph: number of any S is large than some constant times |S|, ie $|\tau(S)| \ge c|S|$. $\tau(S) = \{w \in V | \exists v \in S, (v, w) \in E\}$.

An (n, d, α, c) OR-concentrator is a bipartite multigraph G(L, R, E) with indp. set |L| = |R| = n st.

- 1. $\forall v \in L.deg(v) \leq d$
- 2. $\forall S \subseteq L \text{ st. } |S| \leq \alpha n$, there are $|\tau(S) \leq R| \geq c|S|$

Thrm 5: $\exists n_0 \text{ st. } \forall n > n_0 \text{ there is an } (n, 18, 1/3, 2) \text{ OR-concentrator.}$

Proof: Consider bipartite rand graph on vert. in L and R st $v \in L$ choose $\tau(v)$ by sampling d vertices indep and unif from R. $\Rightarrow \tau(v) \leq d$ since multi edges removed.

Let \mathcal{E}_s denote event that $\tau(S) < c|S|$ neighbors in R.

Bound $\mathbf{Pr}[\mathcal{E}_s]$ then $\sum_{s \in S: |S| \leq \alpha n} \mathbf{Pr}[\mathcal{E}_s]$ to upperbound prob that rand. graph fails to be OR-conctrator (n, d, α, c) as specified.

Fix $S \subseteq L$ st |S| = s and $T \subseteq R$ st |T| = cs. there are $\binom{n}{s}$ ways of choosing S, and $\binom{n}{cs}$ ways of choosing T.

 $\mathbf{Pr}[\tau(S) \subseteq T] = (cs/n)^{ds}$, since $\forall v \in S.\tau(v) \le d \Rightarrow \mathbf{Pr}[\mathcal{E}_S] \le \binom{n}{s} \binom{n}{cs} (cs/n)^{ds}$ Use $\binom{n}{k} \le (ne/k)^k$

$$\mathbf{Pr}[\mathcal{E}_s] \le (ne/s)^s (ne/cs)^{cs} (cs/n)^{ds} = \left[\left(\frac{s}{n} \right)^{d-c-1} e^{1+c} c^{d-c} \right]^s$$

RA Week 6

 $\alpha = 1/3$ and $s \leq \alpha n$

$$\mathbf{Pr}[\mathcal{E}_s] \le \left[\left(\frac{1}{3} \right)^{d-c-1} e^{1+d} c^{d-c} \right]^s$$
$$\le \left[\left(\frac{1}{3} \right)^d (3e)^{1+d} \right]^s$$

Using $c = 2 \wedge d = 18$

$$\mathbf{Pr}[\mathcal{E}] \le \left[\left(\frac{2}{3} \right)^{18} (3e)^3 \right]^s$$

let $r = (2/3)^{18}(3e)^3$ and note r < 1/2 Rightarrow

$$\sum \mathbf{Pr}[\mathcal{E}_s] \le \sum_{s \ge 1} r^s = \frac{r}{1 - r} < 1$$