Lecture 1

Review of Simple Linear Regression

Reading: ISLR 2021 Chapter 3.1

DSA 8020 Statistical Methods II

Simple Linear Regression

Parameter Estimation

iesiduai Ariaiysis

Intervals

Hypothesis Testing

Whitney Huang Clemson University

Agenda

Review of Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

- Simple Linear Regression
- Parameter Estimation
- Residual Analysis
- Confidence/Prediction Intervals
- Hypothesis Testing

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

Simple linear regression: The relationship between the response variable and the predictor variable is approximately linear

Review of Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Confidence/Prediction

y: response variable; x: predictor variable

 In SLR we assume there is a linear relationship between x and y:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- We need to estimate β_0 (intercept) and β_1 (slope) based on observed data $\{x_i, y_i\}_{i=1}^n$
- We can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship

Confidence/Prediction Intervals

- β_0 : E[y] when x = 0
- β_1 : E[Δy] when x increases by 1

Simple Linear Regression

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testing

In order to estimate β_0 and $\beta_1,$ we make the following assumptions about ε

- $E[\varepsilon_i] = 0$
- $Var[\varepsilon_i] = \sigma^2$
- $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$E[y_i] = \beta_0 + \beta_1 x_i$$
, and $Var[y_i] = \sigma^2$

The regression line $\beta_0 + \beta_1 x$ represents the **conditional mean curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

$$\ell(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

Solving the above minimization problem requires some knowledge from Calculus (see notes $LS_SLR.pdf$)

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{1}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 (2)

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2},\tag{3}$$

where

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \tag{4}$$

Review of Simple Linear Regression

Hegression

T dramotor Edimation

Confidence/Prediction Intervals

Simple Linear Regression

Parameter Estimation

Confidence/Prediction

Hypothesis Testin

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Ompute the estimates for the regression coefficients, $\hat{\beta}_0$ and $\hat{\beta}_1$, using Equations (1) and (2)
- ② Compute the fitted values $\{\hat{y}_i\}_{i=1}^n$ using Equation (4)
- **Outpute** The estimate for σ by applying the square root of Equation (3)

Residual Analysis

Intervals

nypothesis resting

```
> fit <- lm(MaxHeartRate ~ Age)</pre>
> summary(fit)
Call:
lm(formula = MaxHeartRate \sim Age)
Residuals:
    Min
            10 Median
                            30
                                   Max
<u>-8.9258 -2.5383</u> 0.3879 3.1867 6.6242
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
             -0.79773 0.06996 -11.40 3.85e-08 ***
Age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
```


Simple Linea Regression

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testin

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Residuals

 The residuals are the differences between the observed. and fitted values:

$$e_i = y_i - \hat{y}_i$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

 Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall

•
$$E[\varepsilon_i] = 0$$

•
$$Var[\varepsilon_i] = \sigma^2$$

•
$$Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$$

Regression

_

Residual Analysis

Confidence/Prediction Intervals

Interpreting Residual Plots

Figure courtesy of Faraway's Linear Models with R (2014, p. 74).

Review of Simple Linear Regression

Simple Linea Regression

Parameter Estimation

Residual Analysis

Diagnostic Plots in R

5

-5

-10

Residuals 0 Residuals vs Fitted

7.

• 8

Parameter Estimation

Confidence/Prediction

Hypothesis Testin

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

CLEMS N

Recall

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim N(0, \sigma^2) \Rightarrow y_i | x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$

$$\frac{\hat{\beta}_{1} - \beta_{1}}{\hat{SE}(\hat{\beta}_{1})} \sim t_{n-2}, \quad \hat{SE}(\hat{\beta}_{1}) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}
\frac{\hat{\beta}_{0} - \beta_{0}}{\hat{SE}(\hat{\beta}_{0})} \sim t_{n-2}, \quad \hat{SE}(\hat{\beta}_{0}) = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right)}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Regression

Parameter Estimation

Confidence/Prediction Intervals

Simple Linea Regression

Parameter Estimation

_

Hypothesis Testing

• Recall $\frac{\hat{\beta}_1 - \beta_1}{\hat{SE}(\hat{\beta}_1)} \sim t_{n-2}$, we use this fact to construct a **confidence interval (CI)** for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2, n-2}\hat{SE}(\hat{\beta}_1), \hat{\beta}_1 + t_{\alpha/2, n-2}\hat{SE}(\hat{\beta}_1)\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t distribution with n-2 degrees of freedom

• Similarly, we can construct a CI for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2,n-2}\hat{SE}(\hat{\beta}_0), \hat{\beta}_0 + t_{\alpha/2,n-2}\hat{SE}(\hat{\beta}_0)\right]$$

- We often interested in estimating the **mean** response for an unobserved predictor value, say, x_{new} . Therefore we would like to construct CI for $E[y_{new}]$, the corresponding **mean response**
- We need sampling distribution of $\widehat{E(y_{new})}$ to form CI:

$$\bullet \ \frac{\widehat{\mathrm{E}(y_{new})} - \mathrm{E}(y_{new})}{\widehat{\mathrm{SE}}(\widehat{\mathrm{E}(y_{new})})} \sim t_{n-2}, \quad \widehat{\mathrm{SE}}(\widehat{\mathrm{E}(y_{new})}) = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(x_{new} - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right)}$$

CI:

$$\left[\hat{y}_{new} - t_{\alpha/2, n-2} \hat{SE}(\widehat{\mathbf{E}(y_{new})}), \hat{y}_{new} + t_{\alpha/2, n-2} \hat{SE}(\widehat{\mathbf{E}(y_{new})})\right]$$

• Quiz: Use this formula to construct CI for β_0

- Suppose we want to predict the response of a future observation y_{new} given $x = x_{new}$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $y_{new} = E[y_{new}] + \varepsilon_{new}$)
- Replace $\hat{SE}(\widehat{E(y_{new})})$ by $\hat{SE}(\hat{y}_{new}) = \hat{\sigma}\sqrt{\left(1 + \frac{1}{n} + \frac{(x_{new} \bar{x})^2}{\sum_{i=1}^n (x_i \bar{x})^2}\right)}$ to construct CIs for Y_{new}

Assessing Normality Assumption on ε

The Q-Q plot is more effective in detecting subtle departures from normality, especially in the tails.

Simple Linear Regression

Parameter Estimation

Intervals

The maximum heart rate MaxHeartRate (HR_{max}) of a person is often said to be related to age Age by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Construct the 95% CI for β_1
- Compute the estimate for mean MaxHeartRate given Age = 40 and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

Review of Simple Linear Regression

Regression

Parameter Estimation

Hesiduai Anaiysis

itervais

- \bullet $H_0: \beta_1 = 0 \text{ vs. } H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{SE}(\hat{\beta}_1)} = \frac{-0.7977}{0.06996} = -11.40$
- **o** Compute *p*-value: $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **(a)** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between <code>MaxHeartRate</code> and <code>Age</code>

- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{SE}(\hat{\beta}_0)} = \frac{210.0485}{2.86694} = 73.27$
- **o** Compute *p*-value: $P(|t^*| \ge |t_{obs}|) \simeq 0$
- **1** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Regression

i didilietei Estillidioli

Confidence/Prediction Intervals

In this lecture, we reviewed

- Simple Linear Regression: $y = \beta_0 + \beta_1 x + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$
- Method of Least Squares for parameter estimation

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta} = (\beta_0, \beta_1)} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

- Residual analysis to check model assumptions
- Confidence/Prediction Intervals and Hypothesis Testing

object <- lm(formula, data) where the formula is specified via $y \sim x \Rightarrow y$ is modeled as a linear function of x

Summary of Fits and Diagnostic Plots

summary(object);plot(object)

Making Predictions and Their Intervals

predict(object, newdata, interval)

Confidence Intervals for Model Parameters

confint (object)

Regression

arameter Estimation