

The Patent Office Concept House Cardiff Road Newport South Wales NP10 800

REC'D **17 NOV 2003**WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

n Executiv

Signed

Dated

28 August 2003

Executive Agency of the Department of Trade and Industry

BEST AVAILABLE COPY

Patents Form 1/77

Patents Act 1977 (Rule 16)

The Patent

28 FEB 2003

LONGOR

28 FEB 2003

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office Cardiff Road Newport Gwent NP9 1RH

1. Your reference

RJE/JN/VB60112

2. Patent application number (The Patent Office will fill in his part)

0304672.9

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

Glaxo Group Limited Glaxo Wellcome House, Berkeley Avenue, Greenford, Middlesex UB6 0NN, Great Britain

473587003

United Kingdom see continuation sheet for further applicant(s)

4. Title of the invention

Vaccines

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Patents ADP number (if you know it)

Corporate Intellectual Property

GlaxoSmithKline Corporate Intellectual Property (CN9 25.1) 980 Great West Road

BRENTFORD Middlesex TW8 9GS 8072555006

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or each of these earlier applications and (if you know it) the or each application number

Country

Priority application number Date of filing (day / month / year) (if you know it)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form
Description
Claim(s)
Abstract
Drawings

10. If you are also filing any of the following, state how many against each item.

Priority Documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

11.

We request the grant of a patent on the basis of this application

Date 28-Feb-03

Signature_

12. Name and daytime telephone number of person to contact in the United Kingdom

R J Easeman 020 80474407

Warning

After an application for a Patent has beeen filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed tf it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission unless an application has been filed at least six weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be

Vaccine.

The present invention relates to novel treatments for atopic disorders, such as hayfever, contact allergies and atopic dermatitis. In particular the treatments comprise vaccination with an immunogen that is capable of raising an immune response against interleukin 13 (IL-13). Most preferably there is provided, use of an immunogen capable of generating an immune response against IL-13 in the manufacture of a vaccine for the treatment of atopic dermatitis.

Atopic disorders refers to a group of diseases that are hereditary and often occur together, including asthma, allergies such as hay fever, and atopic dermatitis. Atopic dermatitis is a chronic disease that affects the skin. In atopic dermatitis, the skin becomes extremely itchy and inflamed, causing redness, swelling, cracking, weeping, crusting, and scaling. Atopic dermatitis most often affects infants and young children, but it can continue into adulthood or first show up later in life. In most cases, there are periods of time when the disease is worse, called exacerbations or flares, followed by periods when the skin improves or clears up entirely, called remissions. Many children with atopic dermatitis will experience a permanent remission of the disease when they get older, although their skin often remains dry and easily irritated. Environmental factors can bring on symptoms of atopic dermatitis at any time in the lives of individuals who have inherited the atopic disease trait. Atopic dermatitis is often referred to as "eczema," which is a general term for the many types of dermatitis. Atopic dermatitis is the most common of the many types of eczema. Several have very similar symptoms.

The way the skin is affected by atopic dermatitis can be changed by patterns of scratching and resulting skin infections. Some people with the disease develop red, scaling skin where the immune system in the skin is becoming very activated. Others develop thick and leathery skin as a result of constant scratching and rubbing. This condition is called lichenification. Still others develop papules, or small raised bumps, on their skin. When the papules are scratched, they may open (excoriations) and become crusty and infected.

Many factors or conditions can make symptoms of atopic dermatitis worse, further triggering the already overactive immune system in the skin, aggravating the itch-scratch cycle, and increasing damage to the skin. These exacerbating factors can be broken down into two main categories: irritants (such as wool or synthetic fibers, rough or poorly fitting

clothing, soaps and detergents, some perfumes and cosmetics, chlorine, mineral oil, some solvents, dust or sand) and allergens (such as pollen, dog or cat dander, and dust mite allergens). Emotional factors and some infections can also influence atopic dermatitis.

If a flare of atopic dermatitis does occur, several methods can be used to treat the symptoms. Corticosteroids as topical creams are the most frequently used treatment, although systemic administration is also used in some severe cases. Sometimes over-the-counter preparations are used, but in many cases the doctor will prescribe a stronger corticosteroid cream or ointment. An example of a commonly prescribed corticosteroid is prednisone. Side effects of repeated or long-term use of topical corticosteroids can include thinning of the skin, infections, growth suppression (in children), and stretch marks on the skin. Antibiotics to treat skin infections may be applied directly to the skin in an ointment, but are usually more effective when taken by mouth. Phototherapy (treatment with light) that uses ultraviolet A or B light waves, or both together, can be an effective treatment for mild to moderate dermatitis in older children (over 12 years old) and adults. In adults, immunosuppressive drugs, such as cyclosporine, are also used to treat severe cases of atopic dermatitis that have failed to respond to any other forms of therapy. The side effects of cyclosporine can include high blood pressure, nausea, vomiting, kidney problems, headaches, tingling or numbness, and a possible increased risk of cancer and infections.

Because of the unmet medical need therefor and the side affects of existing therapies there is a need for alternative treatments for atopic diseases in general, and in particular for treatments for atopic dermatitis.

Recently vaccines raising immune responses against IL-13 for the treatment of asthma have been described (WO 02/07071). A role for IL-13 in the sensitisation of the skin to environmental allergens has also been recently described (Herrick *et al.*, *The Journal of Immunology*, 2003, 170:2488-2495).

The amino acid sequence of the mature form of human IL-13 is provided in SEQ ID No. 1.

GPVPPSTALRELIEELVNITQNQKAPLCNGSMV WSINLTAGMYCAALESLINVSGCSAIEKTQRML GGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLL LHLKKLFREGRFN*

The present invention provides novel treatments for atopic diseases, including atopic dermatitis, comprising an immunogen that is capable of generating an immune response in a vaccinee against IL-13.

The IL-13 immunogens and vaccines of the present invention are used in the manufacture of medicaments for the treatment of atopic diseases and in particular atopic dermatitis. Also provided by the present invention are methods to manufacture the vaccines for use in the medical treatments of the present invention. Methods for the treatment of atopic diseases, and particularly atopic dermatitis, comprising administering the IL-13 containing vaccines described herein to an individual suffering from an atopic disease (and in particular atopic dermatitis) and thereby raising an immune response against IL-13, are also provided by the present invention.

In all aspects of the present invention there is an immunogen that is capable of generating an immune response in a vaccinee against self IL-13. In the case of a human atopic dermatitis vaccine the immunogen is any immunogen that is capable, when formulated in vaccines of the present invention, of generating an anti-human IL-13 immune response. Preferably the immune response is an antibody response, and most preferably an IL-13 neutralising antibody response that neutralises the biological effects of IL-13 in atopic dermatitis.

As the vaccines of the present invention are to raise an immune response against a self-protein the immunogens of the present invention preferable comprise human IL-13, or immunogenic fragment thereof, which has been rendered immunogenic in a "self" situation (that is to say for use in vaccination of a human with a human protein sequence as the immunogen). A number of techniques have been designed with the aim of breaking "tolerance" to self antigen and thereby rendering them immunogenic in a "self" situation.

One technique involves chemically cross-linking the self-protein (or peptides derived from it) to a highly immunogenic carrier protein, such as keyhole limpet haemocyanin ("Antibodies: A laboratory manual" Harlow, E and Lane D. 1988. Cold Spring Harbor Press).

A variant on the carrier protein technique involves the construction of a gene encoding a fusion protein comprising both carrier protein (for example hepatitis B core protein) and self-protein (The core antigen of hepatitis B virus as a carrier for immunogenic peptides", Biological Chemistry. 380(3):277-83, 1999). The fusion gene may be administered directly as part of a nucleic acid vaccine. Alternatively, it may be expressed in

a suitable host cell *in vitro*, the gene product purified and then delivered as a conventional vaccine, with or without an adjuvant.

Another approach has been described by Dalum and colleagues wherein a single class II MHC-restricted epitope is inserted into the target molecule. They demonstrated the use of this method to induce antibodies to ubiquitin (Dalum et al, 1996, *J Immunol* 157:4796-4804; Dalum et al, 1997, *Mol Immunol* 34:1113-1120) and the cytokine TNF (Dalum et al, 1999, *Nature Biotech* 17:666-669). As a result, all T cell help must arise either from this single epitope or from junctional sequences. Such an approach is also described in EP 0 752 886 B1, WO 95/05849, and WO 00/65058.

Accordingly the immunogens for use in the vaccines of the present invention may comprise modified human IL-13 immunogens, wherein the human IL-13 sequence is modified to include foreign T-cell helper epitopes. The T-cell helper epitopes are preferably "foreign" with respect to human proteins.

Preferably the T-cell helper epitopes are small and are added to the IL-13 sequence by an addition or substitution event within or at the terminal ends of the IL-13 sequence by synthetic, recombinant or molecular biological means. Alternatively the T-cell helper epitopes may be added via chemical coupling of the IL-13 polypeptide to a carrier protein comprising the T-cell helper epitopes. The IL-13 sequences, or functionally equivalent fragments thereof, may also be associated with the T-cell helper epitopes in a fusion protein, wherein the two are recombinantly manufactured together, for example a Hepatitis B core protein incorporating IL-13 sequences.

In the aspects of the present invention where small T-cell helper epitopes are used, a "foreign T-cell helper epitope" or "T-cell epitope" is a peptide which is able to bind to an MHC molecule and stimulates T-cells in an animal species. Preferred foreign T-cell epitopes are promiscuous epitopes, ie. epitopes that bind to a substantial fraction of MHC class II molecules in an animal species or population (Panina-Bordignon et al, *Eur.J.Immunol.* 1989, 19:2237-2242; Reece et al, *J.Immunol.* 1993, 151:6175-6184).

In order for the immunogens of the present invention to be sufficiently clinically effective, it may be necessary to include several foreign T-cell epitopes. Promiscuous epitopes for use in the immunogens of the present invention can be naturally occurring human T-cell epitopes such as those from tetanus toxoid (e.g. the P2 and P30 epitopes, diphtheria toxoid, influenza virus haemagluttinin (HA), and P.falciparum CS antigen. The

most preferred T-cell epitopes for use in the present invention are P2 and P30 from tetanus toxoid.

A number of promiscuous T-cell epitopes have been described in the literature, including: WO 98/23635; Southwood et al., 1998, J. Immunol., 160: 3363-3373; Sinigaglia et al., 1988, Nature, 336: 778-780; Rammensee et al., 1995, Immunogenetics, 41: 4, 178-228; Chicz et al., 1993, J. Exp. Med., 178:27-47; Hammer et al., 1993, Cell 74:197-203; and Falk et al., 1994, Immunogenetics, 39: 230-242. The promiscuous T-cell epitope can also be an artificial sequence such as "PADRE" (WO 95/07707).

The foreign T-cell epitope is preferably selected from the group of epitopes that will bind to a number of individuals expressing more than one MHC II molecules in humans. For example, epitopes that are specifically contemplated are P2 and P30 epitopes from tetanus toxoid, Panina – Bordignon Eur. J. Immunol 19 (12), 2237 (1989). In a preferred embodiment the heterologous T-cell epitope is P2 or P30 from Tetanus toxin.

The P2 epitope has the sequence QYIKANSKFIGITE and corresponds to amino acids 830-843 of the Tetanus toxin.

The P30 epitope (residues 947-967 of Tetanus Toxin) has the sequence FNNFTVSFWLRVPKVSASHLE. The FNNFTV sequence may optionally be deleted. Other universal T epitopes can be derived from the circumsporozoite protein from Plasmodium falciparum – in particular the region 378-398 having the sequence DIEKKIAKMEKASSVFNVVNS (Alexander J, (1994) Immunity 1 (9), p 751-761). Another epitope is derived from Measles virus fusion protein at residue 288-302 having the sequence LSEIKGVIVHRLEGV (Partidos CD, 1990, J. Gen. Virol 71(9) 2099-2105). Yet another epitope is derived from hepatitis B virus surface antigen, in particular amino acids, having the sequence FFLLTRILTIPQSLD.

Another set of epitopes is derived from diphteria toxin. Four of these peptides (amino acids 271-290, 321-340, 331-350, 351-370) map within the T domain of fragment B of the toxin, and the remaining 2 map in the R domain (411-430, 431-450):

PVFAGANYAAWAVNVAQVI VHHNTEEIVAQSIALSSLMV QSIALSSLMVAQAIPLVGEL VDIGFAAYNFVESII NLFQV QGESGHDIKITAENTPLPIA

GVLLPTIPGKLDVNKSKTHI

(Raju R., Navaneetham D., Okita D., Diethelm-Okita B., McCormick D., Conti-Fine B. M. (1995) Eur. J. Immunol. 25: 3207-14.)

The methods of treatment of the present invention provide a method of treatment of atopic dermatitis comprising one or more of the following clinical effects:

- 1. A reduction in skin irritation
- 2. A reduction in itching and scratching
- 3. A reduction in the requirement for conventional treatment.
- 4. if applicable a reduction in the requirement for the use of topical corticosteroids. An ideal IL13 autovaccine could potentially make ICS steroid treatment redundant, although a reduction in the 'frequency of use' or 'dose required' of ICS is also envisaged as a valuable outcome.

In the aspect of the present invention where native self IL-13 is coupled to a T-helper epitope bearing immunogenic carrier, the conjugation can be carried out in a manner well known in the art. Thus, for example, for direct covalent coupling it is possible to utilise a carbodiimide, glutaraldehyde or (N-[γ-maleimidobutyryloxy] succinimide ester, utilising common commercially available heterobifunctional linkers such as CDAP and SPDP (using manufacturers instructions). After the coupling reaction, the immunogen can easily be isolated and purified by means of a dialysis method, a gel filtration method, a fractionation method etc.

The types of carriers used in the immunogens of the present invention will be readily known to the man skilled in the art. A non-exhaustive list of carriers which may be used in the present invention include: Keyhole limpet Haemocyanin (KLH), serum albumins such as bovine serum albumin (BSA), inactivated bacterial toxins such as tetanus or diptheria toxins (TT and DT), or recombinant fragments thereof (for example, Domain 1 of Fragment C of TT, or the translocation domain of DT), or the purified protein derivative of tuberculin (PPD). Alternatively the IL-13 may be directly conjugated to liposome carriers, which may additionally comprise immunogens capable of providing T-cell help. Preferably the ratio of IL-13 to carrer molecules is in the order of 1:1 to 20:1, and preferably each carrier should carry between 3-15 IL-13 molecules.

In an embodiment of the invention a preferred carrier is Protein D from *Haemophilus* influenzae (EP 0 594 610 B1). Protein D is an IgD-binding protein from *Haemophilus* influenzae and has been patented by Forsgren (WO 91/18926, granted EP 0 594 610 B1). In some circumstances, for example in recombinant immunogen expression systems it may be desirable to use fragments of protein D, for example Protein D 1/3rd (comprising the N-terminal 100-110 amino acids of protein D (GB 9717953.5)).

Another preferred method of presenting the IL-13, or immunogenic fragments thereof, is in the context of a recombinant fusion molecule. For example, EP 0 421 635 B describes the use of chimaeric hepadnavirus core antigen particles to present foreign peptide sequences in a virus-like particle. As such, immunogens of the present invention may comprise IL-13 presented in chimaeric particles consisting of hepatitis B core antigen. Additionally, the recombinant fusion proteins may comprise IL-13 and a carrier protein, such as NS1 of the influenza virus. For any recombinantly expressed protein which forms part of the present invention, the nucleic acid which encodes said immunogen also forms an aspect of the present invention.

The following provides preferred specific immunogens.

SEQ ID No 3 is a human IL-13 with P30 inserted into the protein (substituted for the looped region between alpha helices C and D of human IL13) this is an example of a human version of an IL13 autovaccine.

R T. C т Α G M Y Ν ь N N N F G G F С L Т R M Q L Η K S , **A** S R E G

In an alternative embodiment of the present invention the immunogens comprise foreign—helper epitopes and have a chimaeric IL-13 sequence. In this sense, in the case of a human IL-13 vaccine, the IL-13 immunogen will be based on an orthologous IL-13 sequence (such as the murine IL-13 sequence) wherein at least one, and preferably all, of the murine B-cell epitopes (surface exposed regions) are substituted for the equivalent human sequences SEQ ID NO.14

E L I E E L S N I F D L т Α G M С I N A I Y R T Q R I L H G F C P F G Q н к и

N

R D T <u>K I E V A H F I T K L L</u> L H <u>L</u> K K L F R E G R F

In a related embodiment the chimaeric IL-13 sequence is supplemented with a promiscuous T-cell epitope (P30) added either at the N-terminus of the chimaeric polypeptide. SEQ ID NO. 15

F Ν N T V S W L R V P K V S A S Η L E F F G P V P P Ε I S N Ι Т Q S T Α L K L \mathbf{E} E L v L Т A C G S W S I N G N Q K A P L N Μ Μ F V L S I C S I Y \mathbf{R} A D \mathbf{L} N V S G Α S S L R Ι L H G F C P Η K V S Α G Q F H I ${f T}$ V R D Т K Ι E V Α Η F K L L L Η L K K F R Ε G R F N L

SEQ ID NO. 16 is a human IL-13 sequence with a promiscuous T-cell epitope added within the IL-13 sequence, substituted into the C-D loop)

G P V P P S T A L R E L I E E L V N I T Q N Q K A P L C N G S M V W S I N L T A G M Y C A A L E S L I N V S G C S A I E K T Q R M L G G F C P H K F N N F T V S F W L R V P K V S A S H L E D T K I E V A Q F V K D L L L H L K K L F R E G R F N *

In certain aspects of the present invention immunogenic fragments of the native IL-13 sequence may be used, for example in the presentation of immunogenic peptides in Hepatitis B core particles or presentation of human B cell IL-13 epitopes in a non-human IL-13 backbone carrier. In these contexts immunogenic fragments of the human IL-13 sequences preferably contain the B-cell epitopes in the human IL-13 sequence, and preferably at least one, or more, of the following short sequences:

GPVPPSTA

ITQNQKAPLCNGSMVWSINLTAGM

INVSGCS

FCPHKVSAGQFSSLHVRDT

LHLKKLFREGRFN

The immunogens as described above form preferred vaccines of the present invention when they are formulated with adjuvants or adjuvant combinations selected from the group consisting of (a) a combination of a saponin and a non-toxic derivative of LPS, (b) an immunostimulatory oligonucleotide containing at least one unmethylated CG motif adsorbed to aluminium hydroxide, or (c) a combination of an immunostimulatory oligonucleotide containing at least one unmethylated CG motif and a saponin.

Saponins are taught in: Lacaille-Dubois, M and Wagner H. (1996. A review of the biological and pharmacological activities of saponins. Phytomedicine vol 2 pp 363-386). Saponins are steroid or triterpene glycosides widely distributed in the plant and marine animal kingdoms. Saponins are noted for forming colloidal solutions in water which foam on shaking, and for precipitating cholesterol. When saponins are near cell membranes they create pore-like structures in the membrane which cause the membrane to burst. Haemolysis of erythrocytes is an example of this phenomenon, which is a property of certain, but not all, saponins.

Saponins are known as adjuvants in vaccines for systemic administration. The adjuvant and haemolytic activity of individual saponins has been extensively studied in the art (Lacaille-Dubois and Wagner, *supra*). For example, Quil A (derived from the bark of the South American tree Quillaja Saponaria Molina), and fractions thereof, are described in US 5,057,540 and "Saponins as vaccine adjuvants", Kensil, C. R., *Crit Rev Ther Drug Carrier Syst*, 1996, 12 (1-2):1-55; and EP 0 362 279 B1. Particulate structures, termed Immune Stimulating Complexes (ISCOMS), comprising Quil A or fractions thereof, have been used in the manufacture of vaccines (Morein, B., EP 0 109 942 B1; WO 96/11711; WO 96/33739). The saponins QS21 and QS17 (HPLC purified fractions of Quil A) have been described as potent systemic adjuvants, and the method of their production is disclosed in US Patent No.5,057,540 and EP 0 362 279 B1. Other saponins which have been used in systemic vaccination studies include those derived from other plant species such as Gypsophila and Saponaria (Bomford *et al.*, Vaccine, 10(9):572-577, 1992).

It has long been known that enterobacterial lipopolysaccharide (LPS) is a potent stimulator of the immune system, although its use in adjuvants has been curtailed by its toxic effects. A non-toxic derivative of LPS, monophosphoryl lipid A (MPL), produced by removal of the core carbohydrate group and the phosphate from the reducing-end glucosamine, has

been described by Ribi et al (1986, Immunology and Immunopharmacology of bacterial endotoxins, Plenum Publ. Corp., NY, p407-419) and has the following structure:

A further detoxified version of MPL results from the removal of the acyl chain from the 3-position of the disaccharide backbone, and is called 3-O-Deacylated monophosphoryl lipid A (3D-MPL). It can be purified and prepared by the methods taught in GB 2122204B, which reference also discloses the preparation of diphosphoryl lipid A, and 3-O-deacylated variants thereof. A preferred form of 3D-MPL is in the form of an emulsion having a small particle size less than 0.2µm in diameter, and its method of manufacture is disclosed in WO 94/21292. Aqueous formulations comprising monophosphoryl lipid A and a surfactant have been described in WO9843670A2. Other purified and synthetic non-toxic derivatives of LPS have been described (US 6,005,099 and EP 0 729 473 B1; Hilgers et al., 1986, Int.Arch.Allergy.Immunol., 79(4):392-6; Hilgers et al., 1987, Immunology, 60(1):141-6; and EP 0 549 074 B1).

The non-toxic derivatives of LPS, or bacterial lipopolysaccharides, to be formulated in the adjuvant combinations of the present invention may be purified and processed from bacterial sources, or alternatively they may be synthetic. For example, purified monophosphoryl lipid A is described in Ribi et al 1986 (supra), and 3-O-Deacylated monophosphoryl or diphosphoryl lipid A derived from *Salmonella sp.* is described in GB

2220211 and US 4912094. Other purified and synthetic lipopolysaccharides have been described (US 6,005,099 and EP 0 729 473 B1; Hilgers et al., 1986,

Int.Arch.Allergy.Immunol., 79(4):392-6; Hilgers et al., 1987, Immunology, 60(1):141-6; and EP 0 549 074 B1). Particularly preferred bacterial lipopolysaccharide adjuvants are 3D-MPL and the $\beta(1-6)$ glucosamine disaccharides described in US 6,005,099 and EP 0 729 473 B1.

Accordingly, the LPS derivatives that may be used in the present invention are those immunostimulants that are similar in structure to that of LPS or MPL or 3D-MPL. In another aspect of the present invention the LPS derivatives may be an acylated monosaccharide, which is a sub-portion to the above structure of MPL.

A preferred disaccharide adjuvant, is a purified or synthetic lipid A of the following formula:

wherein R2 may be H or PO3H2; R3 may be an acyl chain or β -hydroxymyristoyl or a 3-acyloxyacyl residue having the formula:

CH2

CH-O

(CH2)
$$\gamma$$
 R⁴

CH3

wherein R⁴ = -C-(CH2) χ -CH3.

and wherein X and Y have a value of from 0 up to about 20.

A yet further non-toxic derivative of LPS, which shares little structural homology with LPS and is purely synthetic is that described in WO 00/00462, the contents of which are fully incorporated herein by reference.

Immunostimulatory oligonucleotides containing at least one unmethylated CG motif are well known adjuvants, and are disclosed in (WO96102555). Typical immunostimulatory oligonucleotides will be between 8-100 bases in length and comprises the general formula X_1 CpGX₂ where X_1 and X_2 are nucleotide bases, and the C and G are unmethylated.

The preferred oligonucleotides for use in vaccines of the present invention preferably contain two or more dinucleotide CpG motifs preferably separated by at least three, more preferably at least six or more nucleotides. The oligonucleotides of the present invention are typically deoxynucleotides. In a preferred embodiment the internucleotide in the oligonucleotide is phosphorodithioate, or more preferably a phosphorothioate bond, although phosphodiester and other internucleotide bonds are within the scope of the invention including oligonucleotides with mixed internucleotide linkages. e.g. mixed phosphorothioate/phophodiesters. Other internucleotide bonds which stabilise the oligonucleotide may be used. Methods for producing phosphorothioate oligonucleotides or phosphorodithioate are described in US5,666,153, US5,278,302 and WO95/26204.

Examples of preferred oligonucleotides have the following sequences. The sequences preferably contain phosphorothicate modified internucleotide linkages.

OLIGO 1: TCC ATG ACG TTC CTG ACG TT (CpG 1826)

OLIGO 2: TCT CCC AGC GTG CGC CAT (CpG 1758)

OLIGO 3: ACC GAT GAC GTC GCC GGT GAC GGC ACC ACG

OLIGO 4: TCG TCG TTT TGT CGT TTT GTC GTT (CpG 2006)

OLIGO 5: TCC ATG ACG TTC CTG ATG CT (CpG 1668)

Alternative CpG oligonucleotides may comprise the preferred sequences above in that they have inconsequential deletions or additions thereto.

The CpG oligonucleotides utilised in the present invention may be synthesized by any method known in the art (eg EP 468520). Conveniently, such oligonucleotides may be synthesized utilising an automated synthesizer. An adjuvant formulation containing CpG oligonucleotide can be purchased from Qiagen under the trade name "ImmunEasy". A murine adjuvant containing OLIGO 1 and aluminium hydroxide is described in Weeratna et al., Vaccine, 2000, 18, 1755-1762.

The specific adjuvant formulations which may be combined with the IL-13 immunogen to for vaccines of the present invention are selected from the following group:

(a) a combination of a saponin and a non-toxic derivative of LPS,

The preferred adjuvants within this subgroup preferably comprise the saponin QS21, and the non-toxic derivative of LPS which is 3D-MPL.

The QS21 and 3D-MPL can be simply admixed with the IL-13 immunogen (EP 0671 948 B, the entire contents of which are fully incorporated herein by reference), but preferably the adjuvants further comprise a carrier system. The QS21 is preferably associated with a sterol, such as cholesterol, containing liposome, whilst the 3D-MPL can either be associated within the liposome membrane or outside the liposome membrane (as described in EP 0 822 831 B, the entire contents of which are fully incorporated herein by reference)

The QS21 and 3D-MPL can also be associated with an oil in water emulsion comprising a metabolisable oil (WO 95/17210), with or without the presence of a sterol (WO 99/12565, the entire contents of which are fully incorporated herein by reference), and preferably at a low ratio of oil to QS21 (WO 00/11241). The entire contents of WO 95/17210, WO 99/12565 and WO 00/11241 are fully incorporated herein by reference.

The combination of a saponin and a non-toxic derivative of LPS may optionally further comprise an immunostimulatory oligonucleotide containing at least one unmethylated CG motif.

Most preferred adjuvants in this subgroup comprise a mixture of small unilamellar dioleoyl phosphatidyl choline liposomes comprising cholesterol and QS21 at a cholesterol:QS21 ratio of at least 1:1 w/w and preferably with excess cholesterol; and 3D-MPL in aqueous suspension; optionally further comprising an immunostimulatory oligonucleotide in aqueous suspension.

Another preferred adjuvant comprises an oil in water emulsion comprising an aqueous phase and an oil phase, wherein the oil phase comprises oil droplets of squalene and alphatocopherol and a stabilising detergent; optionally further comprising cholesterol; and the aqueous phase comprises QS21 and 3D-MPL, and optionally further comprising an immunostimulatory oligonucleotide.

(b) an immunostimulatory oligonucleotide containing at least one unmethylated CG motif adsorbed to aluminium hydroxide,

The preferred immunostimulatory oligonucleotides are described in OLIGOs 1, 2, 3, 4, or 5; the most preferred oligonucleotide is OLIGO 4. The immunostimulatory oligonucleotides and immunogen are adsorbed onto aluminium hydroxide, and preferably the immunogen and oligonucleotide are adsorbed onto different particles of aluminium hydroxide (WO 00/23105, the entire contents of which are fully incorporated herein by reference). Most preferably the weight:weight ratio's of immunostimulatory oligonucleotide: aluminium hydroxide is approximately 1:1, and preferably between 0.5:1 to 1:0.5.

or (c) a combination of an immunostimulatory oligonucleotide containing at least one unmethylated CG motif and a saponin.

Preferably the adjuvant contains a combination of CpG and saponin as described in WO 00/62800, the entire contents of which are fully incorporated herein by reference. Such adjuvant compositions are also described in WO 00/09159. The most preferred adjuvant combinations of this subgroup comprise QS21 and OLIGO 4. Most preferably the saponin, preferably QS21, is associated with cholesterol containing liposomes, and the, immunostimulatory oligonucleotide, preferably OLIGO 4, is in aqueous solution. Alternatively, the QS21 and immunostimulatory oligonucleotide is presented in an oil in water emulsion, wherein the oil droplets comprise squalene and alpha-tocopherol and a

stabilising detergent; the oil droplets optionally further comprising cholesterol (WO 99/12565).

In a related aspect of the present invention there are provided animal pharmaceutical products for the treatment of atopic dermatitis, for example canine or other veterinary species pharmaceutical products containing autologous IL-13 sequences.

For example, a murine IL-13 immunogen can be manufactured containing the human IL-13 sequence as a backbone, into which the murine IL-13 B-cell epitopes are substituted in place of the human B-cell epitopes.

In a protein vaccine, the amount of protein in each vaccine dose is selected as an amount which induces an immunoprotective response without significant, adverse side effects in typical vaccinees. Such amount will vary depending upon which specific immunogen is employed and how it is presented. Generally, it is expected that each dose will comprise 1-1000 µg of protein, preferably 1-500 µg, preferably 1-100µg, most preferably 1 to 50µg. An optimal amount for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in vaccinated subjects. Following an initial vaccination, subjects may receive one or several booster immunisation adequately spaced. Such a vaccine formulation may be either a priming or boosting vaccination regime; be administered systemically, for example *via* the transdermal, subcutaneous or intramuscular routes or applied to a mucosal surface via, for example, intra nasal or oral routes.

There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

It is possible for the vaccine composition to be administered on a once off basis or to be administered repeatedly, for example, between 1 and 7 times, preferably between 1 and 4 times, at intervals between about 1 day and about 18 months, preferably one month. This may be optionally followed by dosing at regular intervals of between 1 and 12 months for a period up to the remainder of the patient's life.

In an embodiment of the present invention the patient will receive the antigen in different forms in a prime/boost regime. Thus for example an antigen will be first administered as a DNA based vaccine and then subsequently administered as a protein adjuvant base formulation. Once again, however, this treatment regime will be significantly varied depending upon the size and species of animal concerned, the amount of nucleic acid vaccine and / or protein composition administered, the route of administration, the potency

and dose of any adjuvant compounds used and other factors which would be apparent to a skilled veterinary or medical practitioner.

Examples

1. Design of a vaccine against murine IL-13

IL-13 belongs to the SCOP (Murzin et al, 1995, *J Mol Biol* 247:536-540) defined 4-helical cytokines fold family. Individual members of this fold superfamily are related structurally, but are difficult to align at the sequence level. The 3D structure of IL-13 has not yet been determined, but structures have been generated for a number of other 4-helical cytokines. Protein multiple sequence alignments were generated for IL-13 orthologues, and also for a number of other cytokines exhibiting this fold where the structure of at least one member had been determined (IL-4, GM-CSF, IL-5 and IL-2). Secondary structure predictions were performed for the IL-13 protein multiple sequence alignment using DSC (King and Sternberg, 1996, *Prot Sci* 5:2298-2310), SIMPA96 (Levin, 1997, *Prot Eng* 7:771-776) and Pred2ary (Chandonia and Karplus, 1995, *Prot Sci* 4:275-285). The individual cytokine protein multiple sequence alignments were aligned to each other, using both the sequence information and the structural information (from the known crystal structures and from the secondary structure prediction).

Antigenic sites, specifically B-cell epitopes, were predicted for murine IL-13 using the Cameleon software (Oxford Molecular), and these were mapped onto the IL-4 structure (accession number 1RCB in the Brookhaven database) using the protein multiple sequence alignment to give an idea of where they might be located structurally on IL-13. From this analysis, exposed regions which were potentially both antigenic and involved in receptor binding were selected.

From this model, a chimaeric IL-13 sequence was designed in which the sequence of the predicted antigenic loops was taken from murine IL-13, and the sequence of the predicted structural (predominantly helical) regions was taken from human IL-13. The purpose of this design was to identify target epitopes from murine IL-13 against which neutralising

antibodies might be raised, and to present them on a framework which was structurally similar to the native protein, but yet contained sufficient sequence variation to the native (murine) protein to ensure that one or more CD4 T helper epitopes would be present. The nucleic acid and protein sequences selected for this example of a chimaeric IL-13 vaccine are shown in Figure 1. The underlined sequences correspond to sequences found in the human orthologue. TweIve amino acids were substituted to achieve the sequence in figure 1. It should be understood that the degeneracy of the genetic code allows many possible nucleic acid sequences to encode identical proteins. Furthermore, it will be appreciated that there are other possible chimaeric IL-13 vaccine designs within the scope of the invention, that have other orthologus mutations in non-exposed areas.

1.2 Preparation of chimaeric IL-13

Chimaeric IL-13 (cIL-13) DNA sequence was synthesised from a series of partially overlapping DNA oligonucleotides, with the sequences cIL-13-1 to cIL-13-6 shown in Table 1. These oligos were annealed, and cIL-13 DNA generated by a PCR with the cycle specification of 94°C for 1 minute followed by 25 cycles of 94°C for 30 seconds, 55°C for 1 minute and 72°C for 2minutes. Followed by 72°C for 7 minutes and cooling to 4°C when finished. The reaction product comprised a band of the expected size, 361 base pairs, which was subcloned into the T/A cloning vector pCR2.1 (Invitrogen, Groningen, Netherlands) to generate pCR2.1-cIL-13. A BamH1 and Xho1 cIL-13 digested fragment from pCR2.1-cIL-13 was then subcloned into the BamH1 and Xho1 sites in pGEX4T3 (Amersham Pharmacia, Amersham, Bucks, UK) generating pGEX4T3-cIL-13/1. On sequencing the pGEX4T3-cIL-13/1 construct we discovered an extra 39 base pairs of DNA sequence (derived from the pCR2.1 vector) between the sequence for GST and cIL-13. To correct this, we repeated the PCR for cIL-13 using pGEX4T3-cIL-13/1 and primers cIL-13Fnew and cIL-13R. The PCR product obtained was then cloned back into pGEX4T3 using BamH1 and Xho1 restriction sites, to generate the expression vector pGEX4T3-cIL-13. The sequence of this construct was verified by dideoxy terminator sequencing. This vector encodes a genetic fusion protein consisting of glutathione-S-transferase and cIL-13 (GST-cIL-13). The two moieties of the protein are linked by a short spacer which contains the recognition site for thrombin. The

fusion protein may be readily purified by glutathione sepharose affinity chromatography, and then used directly, or a preparation of free cIL-13 produced by cleavage with thrombin.

Table 1. Oligonucleotides used to construct chimaeric IL-13.

Oligo	Sequence (5'-3')
cIL-13-1R (SEQ	TGTGATGTTGACCAGCTCCTCAATGAGCTCCCTAAGGGT
ID NO 10)	CAGAGGGAGACACAGATCTTGGCACCGGCCC
cIL-13-2F (SEQ	AGGAGCTGGTCAACATCACACAAGACCAGACTCCCCTG
ID NO 11)	TGCAACGGCAGCATGGTATGGAGTGTGGACCTGGC
cIL-13-3R (SEQ	GCAATTGGAGATGTTGGTCAGGGATTCCAGGGCTGCAC
ID NO 12)	AGTACCCGCCAGCGCCAGGTCCACACTCCATAC
cIL-13-4F (SEQ	TGACCAACATCTCCAATTGCAATGCCATCGAGAAGACC
ID NO 13)	CAGAGGATGCTGGGCGGACTCTGTAACCGCAAGGC
cIL-13-5R (SEQ	AAACTGGGCCACCTCGATTTTGGTATCGGGGAGGCTGG
ID NO 14)	AGACCGTAGTGGGGGCCTTGCGGTTACAGAGTCC
cIL-13-6F	AAATCGAGGTGGCCCAGTTTGTAAAGGACCTGCTCAGC
(SEQ ID NO 15)	TACACAAAGCAACTGTTTCGCCACGGCCCCTTC
cIL-13F (SEQ	CGCGGATTCGGGCCGGTGCCAAGATCTG
ID NO 16)	
cIL-13R (SEQ	CTCCGCTCGAGTCGACTTAGAAGGGGCCGTGGCGAAA
ID NO 17)	
cIL-13Fnew	CGCGGATCCGGGCCGGTGCCAAGATCTG
(SEQ ID NO 18)	

The pGEX4T3-cIL-13 expression vector was transformed into E.coli BLR strain (Novagen, supplied by Cambridge Bioscience, Cambridge, UK). Expression of GST-cIL-13 was induced by adding 0.5 mM IPTG to a culture in the logarithmic growth phase for 4hrs at 37°C. The bacteria were then harvested by centrifugation and GST-cIL-13 purified from them by a method previously described for purification of a similar GST-human IL-13 fusion protein (McKenzie et al, 1993, *Proc Natn Acad Sci* 90:3735-3739).

- 1. Use of an immunogen capable of generating an immune response against IL-13 in the manufacture of a vaccine for the treatment of atopic dermatitis.
- 2. A vaccine as claimed in claim 1 wherein the immunogen is capable of generating an immune response against human IL13.
- 3. A vaccine as claimed in claim 2 wherein the immunogen comprises human IL-13 supplemented with foreign T-helper epitopes.
- 4. A vaccine as claimed in claim 2, wherein the immunogen comprises a non-human IL-13 backbone, substituted with human IL-13 B cell epitopes.

G	P		V	P	R	S	v	s	L	P	L	T	<u>L</u>	R	E	<u>L</u>	I	_E	E	<u>r</u>
GI																		GAG	TGT	GGAC
<u>v</u>				-+- T		D	-		P			N	G	s	M	v	W.	s	v	D
CJ	rgg	:CC	cgc																TTC	CAAT
							_						<u>L</u>					N	C	N
G(CCF	\T(CGA	.GAA	GAC	CCZ	AGAC	GAT	rgci	GGG	#CG0		CTC	TA7	4CC(ECA!	\GG(ccc	CCAC	N CTACG + T
G(<u>A</u>	CCF	YTO	CGA E	GAA -+- K	GAC T	Q	AGAG 1 R	GAT	rgcī L	G G	+G	BACT L	C C	GTA! N	ACC(ECA <i>I</i> K)DD4 A	P	CCAC T	CTACG
G(<u>A</u>	TC	ATO	CGA E	GAA -+- K	GAC T	Q Q CCG1	AGAC R R	GAT	GCT L	G G	-+ G 	EACT L	C	AGT	ACCO R TTG	ECA! K	AGG(P ACC	TGC	CTACG T T TCAGC
G(<u>A</u> G'	TC	TC	E CAG	GAA K	T T	Q Q CCG1	AGAC R R	GAT	GCT L	G G	-+ G 	BACT L	C	AGT	ACCO R TTG	ECA! K	AGG(P ACC	TGC	CTACG T T TCAGC
G' <u>A</u> G' V	TC	LTC	CAG	GAA K K CCT	GAC T TCCC	Q CCG2 D	AGAC R ATAC	GAT M CCAZ	L AAA	G G CGZ	V	EACT L	C C C C C C C C	AGT	ACCO R TTG'	ECA! K	AGG(P ACC	TGC	CTACG T T TCAGC