CHM129 Entropy and Gibbs Free Energy

- 1. Discuss with your neighbors whether the signs of ΔS for the following processes are expected to be positive or negative:
- a) ice melts

b) the temperature of a solid is lowered by 25°C.

c) water evaporates from a beaker

d) $HCl_{(g)}$ dissolves in water

e) 4 $NH_{3(g)}$ + 5 $O_{2(g)} \rightarrow 4 NO_{(g)}$ + 6 $H_{2}O_{(g)}$

f) $CaO_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)}$

g) $CH_3OH_{(g)} \rightarrow CH_3OH_{(1)}$

h) 2 $SO_{2(g)} + O_{2(g)} \rightarrow 2 SO_{3(g)}$

i) $CaCl_{2(s)} \rightarrow Ca^{2+}(aq) + 2 Cl^{-}(aq)$

2. Use ΔS_{surr}° and ΔS_{Rxn}° to determine the ΔS_{univ}° at 298 K. Is the process spontaneous?

$$2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_{2}O_{(g)}$$

	ΔH^{o}_{f} (kJ/mol)	S° (J/mol.K)
H ₂	0	+130.58
O ₂	0	+205.0
H ₂ O	-241.82	+188.83

$$\Delta S_{R^{\circ}} = Z n S_{pred}^{\circ} - Z m S_{reacf}^{\circ}$$

$$= (2 mol \times 188.83 \frac{J}{mol \cdot k}) - [(2 mol \times 130.58 \frac{J}{mol \cdot k}) + (1 mol \times 205.0 \frac{J}{mol \cdot k})]$$

$$\Delta S_{R^{\circ}} = -88.5 J/k$$

$$\Delta H_{R}^{\circ} = \sum_{n} \Delta H_{prid}^{\circ} - \sum_{m} \Delta H_{prid}^{\circ} - \sum_{m}$$