Functional Analysis

Rishabh Singhal

Monsoon 2020

Contents

1	Metric Spaces 5		
	1.0.1	Notes	5
	1.0.2	Metric Spaces	
	1.0.3	Examples of Metric Spaces	_
2	Examples of Metric Spaces 7		
	2.0.1	Some more Examples of Metric Spaces	7
	2.0.2	Some Problems	8
	2.0.3	Space of Bounded Functions	9
3	Inequalities		
	3.0.1	Some Inequalities	11
	3.0.2	Sequence Metric Space	13
4	Convergence, Cauchy Sequence and Completeness		
	4.0.1	Notes	15
	4.0.2	Some Definitions	15
5	Normed Linear Spaces		
	5.1 Vector	r Space	17
	5.2 Closed Set and Closure		18
	5.3 Vector	r Subspaces	19
6	Vector Basis		
	6.1 Incom	nplete Normed Space	21
	62 Finite	Dimensional Normed Space	21

4 CONTENTS

Metric Spaces

1.0.1 Notes

- "Soft Analysis" instead of "Hard Analysis"
- Harmonic Analysis Study of Fourier Series
- Hilbert Spaces and Banach Spaces
- Limit Function ? (Major topic for analysis of sequences)
- Spaces of function? It is a linear space equipped with a norm, akin to a vector.
- Complete Space (Limit actually exists)
- Spaces of functions can be infinite dimensional

1.0.2 Metric Spaces

- In Real Analysis, functions are defined on the Real Line \mathbb{R} .
- Limit and other functions use the distance function

$$d(x, y) = |x - y|$$

• For more general spaces, Real Line $\mathbb R$ is replaced with abstract set $\mathbb X$.

Definition 1.0.1 A **Metric Space** is defined as an ordered pair (X, d). Where d (distance function) follows following properties:

- 1. d is a real-valued, finite (can also be infinite, if two functions are infinitely placed) and non-negative function
- 2. d(x,y) = 0 iff x = y
- 3. d(x, y) = d(y, x)

4. Triangle Inequality: $d(x,y) \leq d(x,z) + d(z,y)$ or in general,

$$d(x_0, x_n) \le d(x_0, x_1) + d(x_1, x_2) + ... + d(x_{n-1}, x_n)$$

Definition 1.0.2 Suppose $\mathbb{Y} \subset \mathbb{X}$, the restriction of the Metric in \mathbb{X} to \mathbb{Y} is $\tilde{d} = d_{|YxY}$. Where \tilde{d} is the metric induced on \mathbb{Y} by d and the new metric space is (Y, \tilde{d})

1.0.3 Examples of Metric Spaces

- Some examples: Real Line \mathbb{R} , Euclidean Plane $\mathbb{R} \times \mathbb{R}$, Sequence Spaces, Unitary Spaces (Complex Numbers)
- Distance function for \mathbb{R}^n , $d = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$
- For \mathbb{C} (complex numbers), it is called n-dimensional unitary Space \mathbb{C}^n consisting of ordered n-tuple complex numbers, having form

$$\mathbf{v} = (x_1 + y_1 \mathbf{i}, x_2 + y_2 \mathbf{i}, ..., x_n + y_n \mathbf{i})$$
 and $d(\bar{x}, \bar{y}) = |\bar{x} - \bar{y}|$

Sequences

• Sequence Space l^{∞} , consisting of sequences which are bounded.

Definition 1.0.3 Let $\zeta_j \in l^{\infty}$ which is a **Bounded Sequence** then $\forall j$, $\left|\zeta_j\right| \leqslant c_x$ where c_x is a real number.

• Example : $\{1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, ...\}$, here $c_x = 1$ i.e. $|\zeta_i| \le 1$.

Definition 1.0.4 *Distance Function for sequences is defined as*

$$d(x,y) = \sup_{j \in \mathbb{N}} |\zeta_j - \eta_j|$$

where $x, y \in l^{\infty}$ with $\zeta_j \in x$ and $\eta_j \in y$. Also, \sup (supremum) is the least upper bound.

Claim. Distance function of a sequence can be defined as sup (supremum).

Proof 1 Let $x = {\{\zeta_i\}}$, $y = {\{\eta_i\}}$ and $z = {\{\gamma_i\}}$. Then using triangular inequality,

$$\left| \zeta_{j} - \eta_{j} \right| \leqslant \left| \zeta_{j} - \gamma_{j} \right| + \left| \gamma_{j} - \eta_{j} \right|$$

Taking supremum both sides,

$$= \sup_{j \in \mathbb{N}} |\zeta_j - \eta_j| \leq \sup_{j \in \mathbb{N}} |\zeta_j - \gamma_j| + \sup_{j \in \mathbb{N}} |\gamma_j - \eta_j|$$

= f(x,y) \le f(x,z) + f(z,y)

Hence proved.

Examples of Metric Spaces

2.0.1 Some more Examples of Metric Spaces

Definition 2.0.1 Function Space $\mathbb{C}[a,b]$. where \mathbb{C} suggests continuous. It contains the abstract set \mathbb{X} of functions which are based on a parameter t i.e. $\mathsf{f}(\mathsf{t})$ and distance function (d) is defined as,

$$d(x,y) = \max_{t \in J} |x(t) - y(t)|$$

where J is [a, b].

Proof 2 It satisfies all the first 3 properties of distance functions. So, let's prove **Triangular Inequality:**

$$|x(t) - y(t)| \le |x(t) - z(t)| + |z(t) - y(t)|$$

 $\le \sup |x(t) - z(t)| + \sup |z(t) - y(t)|$

as RHS is independent of t, take sup on both sides

$$d(x,y) = \sup |x(t) - y(t)| \leqslant d(x,z) + d(z,y)$$

Hence Proved.

• Note: Sometimes sup may exist but not max.

Definition 2.0.2 *Discrete Metric Space.* Consider any set X, the discrete metric d,

$$d(x, x) = 0$$

$$d(x, y) = 1, for (x \neq y)$$

Proof 3 Let a, b, c be three distinct points. It already follows first 3 properties of distance.

$$d(a,c) = 1$$
, $d(a,b) = 1$ and $d(b,c) = 1$ (2.1)

Therefore,

$$d(a,c) = 1 \le (d(a,b) = 1) + (d(b,c) = 1) = 2$$
(2.2)

Hence Proved.

- If we use the notion of circle i.e. all points which have equal distance from some single point. Then that circle varies according to the Space in consideration.
- Comparison test is to bound the series sum, and show that a particular series is convergent.

2.0.2 Some Problems

• **Problem 1:** Consider a distance function between two series $\tilde{x}, \tilde{y} \in l^{\infty}$:

$$d(\tilde{x}, \tilde{y}) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|x_j - y_j|}{1 + |x_j - y_j|}$$

Prove that it is a valid metric distance.

Proof 4 This function is bounded by $\sum_{j=1}^{\infty} \frac{1}{2^j} = 1$ Let $f(x) = \frac{x}{1+x}$, as $f'(t) = \frac{1}{1+t^2} > 0$ f is monotonically increasing

$$\begin{split} t_1 &< t_2 \\ f(t_1) &< f(t_2) \\ \textit{as,} \ |\alpha + b| \leqslant |\alpha| + |b| \\ f(|\alpha + b|) &\leqslant f(|\alpha| + |b|) \\ \frac{|\alpha + b|}{1 + |\alpha + b|} &\leqslant \frac{|\alpha| + |b|}{1 + |\alpha| + |b|} \\ &\leqslant \frac{|\alpha|}{1 + |\alpha| + |b|} + \frac{|b|}{1 + |\alpha| + |b|} \\ &\leqslant \frac{|\alpha|}{1 + |\alpha|} + \frac{|b|}{1 + |b|} \end{split}$$

Let $a = x_j - y_j$ and $b = y_j - z_j$, where $z = (z_j)$

$$a + b = x_j - z_j$$

$$\frac{|x_j - z_j|}{1 + |x_j - z_j|} \le \frac{|x_j - y_j|}{1 + |x_j - y_j|} + \frac{|y_j - z_j|}{1 + |y_j - z_j|}$$

Multiplying by $\frac{1}{2^{j}}$ on both sides and taking summation,

$$\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|x_{j} - z_{j}|}{1 + |x_{j} - z_{j}|} \leq \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|x_{j} - y_{j}|}{1 + |x_{j} - y_{j}|} + \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|y_{j} - z_{j}|}{1 + |y_{j} - z_{j}|}$$
$$d(x, z) \leq d(x, y) + d(y, z)$$

Hence Proved.

(Prob-7 ex-1.1, Kreyzig): If A is the sub-sequence l[∞] consisting of all sequences of 0's and 1's. What is the induced metric on A?
 Solution: It is the discrete metric distance.

Definition 2.0.3 Hamming Distance: The number of places two ordered tuples (let's of length 3) of 0's and 1's differs.

Proof 5 *Hint:* We can prove (if this is a valid distance metric) using enumeration for every possible bit possible i.e. 0 or 1.

2.0.3 Space of Bounded Functions

- Space of Bounded Functions is denoted by B(A).
- $d(x,y) = \sup_{t \in A} |x(t) y(t)|$

Definition 2.0.4 The l^p space where $p \geqslant 1$ is a fixed real number, is called **Hilbert Sequence Space**. l^p is a sequence space

$$\tilde{x} = (x_1, x_2, ..., x_n, ...)$$
 (2.3)

$$\begin{aligned} |x_1|^p + |x_2|^p + |x_3|^p + ... \ converges, \\ \sum_{j=1}^{\infty} |x_j|^p < \infty \\ d(x,y) = (\sum_{j=1}^{\infty} |x_j - y_j|^p)^{\frac{1}{p}} \end{aligned}$$

Definition 2.0.5 Hilbert Space, Hölder's Inequality:

$$\sum_{j=1}^{\infty} |x_j y_j| \leqslant \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{m=1}^{\infty} |y_m|^q\right)^{\frac{1}{q}}$$
(2.4)

where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

Inequalities

3.0.1 Some Inequalities

Definition 3.0.1 Young's Inequality

$$\alpha\beta \leqslant \frac{\alpha^{p}}{p} + \frac{\beta^{q}}{q} \tag{3.1}$$

Proof 6 *Let* $f : [0, \infty) \mapsto \mathbb{R}$

$$\begin{split} f(\alpha) &= \frac{\alpha^p}{p} + \frac{\beta^q}{q} - \alpha\beta \text{ for a fixed } \beta \\ f'(\alpha) &= \alpha^{p-1} - \beta = 0 \\ \alpha &= \beta^{\frac{1}{p-1}} \end{split}$$

now $\frac{1}{p} + \frac{1}{q} = 1$, therefore $\frac{q}{p} = \frac{1}{p-1}$

$$\alpha = \beta^{\frac{q}{p}}$$

$$f''(\alpha) = (p-1)\alpha^{p-2} > 0$$

 $f(\alpha) \text{ has a min at } \alpha = \beta^{\frac{q}{p}}.$

$$0 = f(\beta^{\frac{q}{p}}) \leqslant f(\alpha) = \frac{\alpha^{p}}{p} + \frac{\beta^{q}}{q} - \alpha\beta$$
$$\alpha\beta \leqslant \frac{\alpha^{p}}{p} + \frac{\beta^{q}}{q}$$

Hence Proved.

Definition 3.0.2 Hölder's inequality

Proof 7 Let $(x_n) \in l^p$ and $(y_n) \in l^q$. Then trivial case:

$$\sum_{k=1}^{\infty} |x_k|^p = 0 \text{ or } \sum_{k=1}^{\infty} |y_k|^q = 0$$
 (3.2)

Assume both these sums are not equal to 0, and set in Young's Inequality

$$\alpha = \frac{|x_k|}{(\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}}} \text{ and } \beta = \frac{|y_k|}{(\sum_{k=1}^{\infty} |y_k|^q)^{\frac{1}{q}}}$$
(3.3)

$$\alpha\beta = \frac{|x_k y_k|}{(\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} |y_k|^q)^{\frac{1}{q}}} \leqslant \frac{1}{p} \cdot \frac{|x_k|^p}{\sum_{k=1}^{\infty} |x_k|^p} + \frac{1}{q} \cdot \frac{|y_k|^q}{\sum_{k=1}^{\infty} |y_k|^q}$$

Sum both sides from 1 *to* ∞

$$\begin{split} \frac{\sum_{k=1}^{\infty}|x_ky_k|}{(\sum_{k=1}^{\infty}|x_k|^p)^{\frac{1}{p}}(\sum_{k=1}^{\infty}|y_k|^q)^{\frac{1}{q}}} \leqslant \frac{1}{p} \cdot \frac{\sum_{k=1}^{\infty}|x_k|^p}{\sum_{k=1}^{\infty}|x_k|^p} + \frac{1}{q} \cdot \frac{\sum_{k=1}^{\infty}|y_k|^q}{\sum_{k=1}^{\infty}|y_k|^q} \\ &= \frac{1}{p} + \frac{1}{q} = 1 \end{split}$$

Therefore,

$$\sum_{k=1}^{\infty} |x_k y_k| \leqslant (\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} |y_k|^q)^{\frac{1}{q}}$$

Hence Proved.

Definition 3.0.3 *Minkowski Inequality for sequences* p > 1, (x_n) *and* (y_n) *are both sequence in* l^p .

$$\left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{\frac{1}{p}} \tag{3.4}$$

Proof 8 Let $q = \frac{p}{p-1}$ and $\sum_{k=1}^{\infty} |x_k + y_k|^p \neq 0$,

$$\begin{split} \sum_{k=1}^{\infty}|x_k+y_k|^p &= \sum_{k=1}^{\infty}|x_k+y_k|^{p-1}|x_k+y_k|\\ &\leqslant \sum_{k=1}^{\infty}|x_k+y_k|^{p-1}|x_k| + \sum_{k=1}^{\infty}|x_k+y_k|^{p-1}|y_k| \text{ using triangle ineq.} \end{split}$$

From the Hölder's inequality $\sum_{m=1}^{\infty}|x_my_m|\leqslant (\sum_{m=1}^{\infty}|x_m|^p)^{\frac{1}{p}}(\sum_{m=1}^{\infty}|y_m|^q)^{\frac{1}{q}}$, taking $|x_k+y_k|^{p-1}$ as y_m and $|x_k|$ as x_m ,

$$\leqslant (\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} (|x_k + y_k|^{p-1})^q)^{\frac{1}{q}} + (\sum_{k=1}^{\infty} |y_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} (|x_k + y_k|^{p-1})^q)^{\frac{1}{q}}$$

As $\frac{1}{p} + \frac{1}{q} = 1$, therefore (p-1)q = p,

$$\begin{split} \leqslant (\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} |x_k + y_k|^p)^{\frac{1}{q}} + (\sum_{k=1}^{\infty} |y_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} |x_k + y_k|^p)^{\frac{1}{q}} \\ \leqslant ((\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} + (\sum_{k=1}^{\infty} |y_k|^p)^{\frac{1}{p}}) (\sum_{k=1}^{\infty} |x_k + y_k|^p)^{\frac{1}{q}} \\ (\sum_{k=1}^{\infty} |x_k + y_k|^p)^{1 - \frac{1}{q}} \leqslant (\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} + (\sum_{k=1}^{\infty} |y_k|^p)^{\frac{1}{p}} \end{split}$$

Therefore,

$$\left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{\frac{1}{p}} \tag{3.5}$$

Hence Proved.

3.0.2 Sequence Metric Space

Definition 3.0.4 l^p where $p \ge 1$ is a metric space where,

$$d(x,y) = (\sum_{j=1}^{\infty} |x_j - y_j|^p)^{\frac{1}{p}}$$
(3.6)

provided $\sum_{j=1}^{\infty} |x_j|^p < \infty$.

Proof 9 To prove triangle inequality $d(x,y) \le d(x,z) + d(z,y)$ for metric distance, i.e. to prove:

$$\left(\sum_{j=1}^{\infty}|x_{j}-y_{j}|^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{j=1}^{\infty}|x_{j}-z_{j}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{\infty}|z_{j}-y_{j}|^{p}\right)^{\frac{1}{p}}$$
(3.7)

Hint: Substitute $x_k = x_j - z_j$ and $y_k = z_j - y_j$ in Minkowski Inequality.

• (Ex - 1.2, Kreyzig): Consider a distance function between two series $\tilde{x}, \tilde{y} \in l^{\infty}$:

$$d(\tilde{x}, \tilde{y}) = \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|x_{j} - y_{j}|}{1 + |x_{j} - y_{j}|}$$

Prove that by replacing $\frac{1}{2^j}$ by $\mu_j > 0$, such that $\sum \mu_j$ converges, it is a metric space.

Proof 10 We need to show that these infinite terms converge. As $\sum \mu_j$ converges and the term multiplied is < 1 therefore, the series converge.

Convergence, Cauchy Sequence and Completeness

4.0.1 Notes

• As n increases the distance between the terms (at very large n) comes closer and closer.

4.0.2 Some Definitions

Definition 4.0.1 Limit of a sequence. A sequence in (X,d) is said to converge or a convergent sequence if \exists an $x \in X$ such that $\lim_{n \to \infty} d(x_n, x) = 0$. x is called the limit of the sequence. If x doesn't exist in X (the metric space) then limit does not exist.

Definition 4.0.2 *Bounded Set.* A non-empty set $M \subset X$ is said to be bounded if it's diameter is finite. Where diameter (δ) is -

$$\delta(M) = \sup_{x,y \in M} d(x,y) \tag{4.1}$$

Definition 4.0.3 *Bounded Sequence.* A convergent sequence in X is bounded if:

- 1. Its limit is unique.
- 2. If $x_n \to x$ (at ∞) and $y_n \to y$ then $d(x_n, y_n) = d(x, y)$

Definition 4.0.4 *Cauchy Sequence.* A sequence is a Cauchy Sequence in a metric space (X, d) if $\forall \varepsilon \exists$ an N such that $d(x_m, x_n) < \varepsilon \ \forall \ m, n > N$. *Note:* ε may not belong to the sequence and can be any arbitrarily small number.

Definition 4.0.5 *Complete Metric Space.* A metric space is complete if every Cauchy sequence converge.

Example 4.1: $\mathbb{X} = \mathbb{R} - \{a\}$ is an incomplete metric space because we can find any cauchy sequence which converges at a but $a \notin \mathbb{X}$.

Example 4.2: Real Numbers after removal of irrational numbers i.e. a set Q of rational numbers.

Example 4.3: (a, b) is not complete metric space because there can exist a cauchy sequence whose limit is a or b which are not included.

Note: d(x, y) = |x - y| is said to be **usual metric**.

Example 4.4: (0,1] with usual metric, and let the cauchy sequence be $x_n = \frac{1}{n}$ which converges to 0 and 0 does not exist in the metric space. So convergence is a property of metric space "more".

Lemma 1 Every convergent sequence is a cauchy sequence.

Proof 11 If $x_n \to x \ \forall \ \varepsilon > 0$ and $x_n > N$ the sequence converges.

$$\begin{split} &d(x_n,x)<\frac{\varepsilon}{2} \text{ where } n>N\\ &d(x_m,x_n)\leqslant d(x_m,x)+d(x_n,x)\\ &d(x_m,x_n)\leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \text{ where } n,m>N \end{split}$$

Problem 4.1: Prove that \mathbb{R}^n and \mathbb{C}^n are complete metric spaces.

Proof 12 *Hint:* Use the fact that \mathbb{R} is complete.

Problem 4.2: Show that the set X of all the integers with metric d defined as d(x,y) = |x-y| is a complete metric space.

Proof 13 To proof completeness,

1. **Find all cauchy sequence.** Note: 1,2,3,... is not a cauchy sequence. A constant sequence is a cauchy sequence or a sequence which eventually becomes a constant sequence is a cauchy sequence (these are the only cauchy sequence).

Note: Discrete Metric is a complete metric space, as the only cauchy sequence is the sequence of constants which is convergent.

Normed Linear Spaces

5.1 Vector Space

Definition 5.1.1 (Vector Space). A vector space (or linear space) over a field K is a non-empty set X of elements x, y, ... (called vectors) together with two algebraic operations. There operations are called vector addition and multiplication of vectors by scalars, that is, by elements of K.

Vector addition associates with every ordered pair (x,y) of vectors a vector x+y, called the sum of x and y, in such a way that the following properties hold. Vector addition is commutative and associative, that is for all vectors we have

$$x + y = y + x$$

 $x + (y + z) = (x + y) + z;$

furthermore, there exists a vector 0, called the zero vector, and for every x there exists a vector -x, such that for all vectors we have

$$x + 0 = x$$
$$x + (-x) = 0$$

Multiplication by scalars associates with every vector x and scalar α a vector αx (also written as $x\alpha$), alled the product of α and x, in such a way that for all vectors x, y and scalars α , β we have

$$\alpha(\beta x) = (\alpha \beta)x$$
$$1x = x$$

and the distributive laws

$$\alpha(x+y) = \alpha x + \alpha y$$
$$(\alpha + \beta)x = \alpha x + \beta x$$

Definition 5.1.2 *Field.* A field is a set F, containing at least two elements, on which two operations + and \cdot (called addition and multiplication, respectively) are defined so that for each pair of elements x, y in F there are unique elements x + y and $x \cdot y$ (often written as xy) in F for which the following conditions hold for all elements x, y, z in F:

- 1. x + y = y + x (commutativity of addition)
- 2. (x + y) + z = x + (y + z) (associativity of addition)
- 3. There is an element 0inF, called zero, such that x + 0 = x. (existence of an additive identity)
- 4. For each x, there is an element $-x \in F$ such that x + (-x) = 0. (existence if additive inverses)
- 5. xy = yx (commutativity of multiplication)
- 6. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ (associativity of multiplication)
- 7. $(x+y) \cdot z = x \cdot z + y \cdot z$ and $x \cdot (y+z) = x \cdot y + x \cdot z$ (distributivity)
- 8. There is an element $1 \in F$, such that $1 \neq 0$ and x = x (existence of a multiplicative identity)
- 9. Id $x \neq 0$, then there is an element $x^{-1} \in F$ such that $x \cdot x^{-1} = 1$ (existence of multiplicative inverses)

From the definition we see that vector addition is a mapping $X \times X \to X$, whereas multiplication by scalars is a mapping $K \times X \to X$.

K is called the **scalar field** (or coefficient field) of the vector space X, and X is called a **real vector space** if $K = \mathbb{R}$ (the field of real numbers), and a **complex vector space** if $K = \mathbb{C}$ (the field of complex numbers).

The use of 0 for the scalar 0 as well as for the zero vector should cause no confusion, in general. If desirable for clarity, we can denote the zero vector by θ .

Definition 5.1.3 Eigen Value of Transformation. Let $T(x) = \alpha x$ where T is transformation and x is vector then α is eigen value of transformation.

5.2 Closed Set and Closure

Definition 5.2.1 *Closed Set.* A set containing all of it's limit points is called closed set.

Definition 5.2.2 *Closure of a Set.* A set with all of it's limit points \bar{M} is called closed set.

If there is a set, then a sequence can always be constructed such that it's limit is some arbitrary limit point. For e.g. take a $x_i \in \text{Neighbour}(\text{dis}(\frac{1}{2^i}))$ for all $i \in \mathbb{N}$.

Lemma 2 A subspace M of a complete metric space X is itself complete iff M is closed.

19

5.3 Vector Subspaces

Definition 5.3.1 A subspace of a vector space X is a non-empty subset Y i.e. $Y \subset X$ if $\forall y_1, y_2 \in Y$, $\alpha y_1 + \beta y_2 \in Y$.

Definition 5.3.2 A span of **M** X is the set of all linear combination of vectors of M, i.e. $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n$.

Definition 5.3.3 A set of vectors is called linear independent iff $\alpha_1x_1 + \alpha_2x_2 + ... + \alpha_nx_n = 0 \implies \alpha_1 = \alpha_2 = ... = \alpha_n = 0$ where $\alpha_i s$ are scalars. So parallel vectors are not independent.

If the number of dimensions (or dim(X)) is n, then n + 1 vectors are surely linearly dependent.

Definition 5.3.4 Hamel Basis. If X is any vector space not necessarily finite dimensional and B is a linearly independent subset of X which spans X then B is called Hamel Basis. "Can be infinitely dimensional."

Definition 5.3.5 A **Normed Space** X is a vector space with a norm defined on it.

Note: Functional is different from Function.

Definition 5.3.6 A norm is a real valued function X whose value at any $x \in X$ is denoted by $\|\bar{x}\|$ with following properties:-

 $N_1 : ||\bar{x}|| \ge 0$

 $N_2: \|\bar{x}\| = 0 \iff \bar{x} = 0$

 $N_3: \|\alpha \bar{x}\| = \alpha \|\bar{x}\|$

 $N_4 : \|\bar{x} + \bar{y}\| \geqslant \|\bar{x}\| + \|\bar{y}\|$

where \bar{x}, \bar{y} are arbitrary vectors.

Definition 5.3.7 *The norm defines a metric* d *on* X.

$$d(x,y) = ||x - y|| \tag{5.1}$$

which is the metric induced by the norm $(X, \|\cdot\|)$.

Note: ||x|| is a generalisation of length of a vector ||x|| = |x|

Note: Normed and Banach spaces are metric spaces.

Some examples:

1.
$$\mathbb{R}^n$$
 with $||\mathbf{x}|| = (\sum_{j=1}^n |x_i|^2)^{\frac{1}{2}}$

2.
$$l^p$$
 with $||x|| = (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}}$

3.
$$l^{\infty}$$
 with $||x|| = \sup_{i} |x_{i}|$

4.
$$C[a, b]$$
 with $||x|| = \max_{t \in A} |x_t|$

Definition 5.3.8 A metric d induced by a norm in a normed space X satisfies

$$d(x + \alpha, y + \alpha) = d(x, y)$$
$$d(\alpha x, \alpha y) = |\alpha| d(x, y)$$

 $\forall x, y, \alpha \in X \text{ and every scalar } \alpha, as,$

$$d(x + a, y + a) = \|(x + a) - (y + a)\| = \|x - y\| = d(x, y)$$
$$d(\alpha x, \alpha y) = \|\alpha x - \alpha y\|$$
$$= |\alpha| \|x - y\| = |\alpha| d(x, y)$$

Definition 5.3.9 A subspace Y of a normed space X is a subspace of X considered as a vector space with the norm obtained by restricting the norm on X to the subset Y. The norm is the **induced norm**.

Problem 5.3.1: Describe the span of $M = \{(1, 1, 1), (0, 0, 2)\}$ in \mathbb{R}^3 .

Solution 5.3.1: Span of
$$M = \{\alpha \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} : \alpha, \beta \in \mathbb{R}\} = \begin{bmatrix} \alpha \\ \alpha \\ \alpha + 2\beta \end{bmatrix} : \alpha, \beta \in \mathbb{R}$$
. Or the subspace $x = y$.

Problem 5.3.2: Which of the subsets of \mathbb{R}^3 consists of a subspace of \mathbb{R}^3 . All: x with $x_1 = x_2 \& x_3 = 0$.

Solution 5.3.2: Let
$$x = \begin{bmatrix} x_1 \\ x_1 \\ 0 \end{bmatrix}$$
 and $y = \begin{bmatrix} y_1 \\ y_1 \\ 0 \end{bmatrix}$ where $x, y \in w$. Then $\alpha x + \beta y = \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_1 + \beta y_1 \\ 0 \end{bmatrix} \in w$.

Therefore, $\alpha x + \beta y \in w$ hence it is a subspace.

Vector Basis

Note: If a vector under study is ∞ dimensional, then the Hamel Basis is **uncountable.**

Definition 6.0.1 *Schauder Basis.* e₁, e₂, ... is an infinite basis.

6.1 Incomplete Normed Space

Definition 6.1.1 An incomplete normed space and its completion $L^2[a,b]$ (square integrable norm). The vector space of all continuous real-valued functions on [a,b] where the norm is defined as

$$\|\mathbf{x}\| = \{\int_{a}^{b} (\mathbf{x}(\mathbf{t}))^{2} d\mathbf{t} \}^{\frac{1}{2}}$$
 (6.1)

Distance induced by this norm

$$\|\mathbf{x}_{n} - \mathbf{x}_{m}\|^{2} = \int_{0}^{1} (\mathbf{x}_{n}(t) - \mathbf{x}_{m}(t))^{2} dt$$
 (6.2)

Note: Here basically prove that the given normed space is incomplete by finding a cauchy sequence which doesn't have a limit inside the metric space X. And then complete it using $L^p[\mathfrak{a},\mathfrak{b}]$.

6.2 Finite Dimensional Normed Space

Theorem 1 Let X be a finite dimensional linear space with basis $\{x_1, x_2, ..., x_n\}$. Then there is a constant m > 0 such that for every choice of scalars $\alpha_1, \alpha_2, ...$

$$m\sum_{j=0}^{n}|\alpha_{j}|\leqslant \left\|\sum_{j=1}^{n}\alpha_{j}x_{j}\right\| \tag{6.3}$$

Proof 14 If $\sum_{j=0}^{n} |\alpha_j| = 0$ then $|\alpha_j| = 0$ for all j = 1, 2, ..., n. Assume that $\sum_{j=0}^{n} |\alpha_j| \neq 0$. Let's prove the theorem for scalars $\{\alpha_1, \alpha_2, ...\}$ with the condition that $\sum_{j=1}^{n} |\alpha_j| = 1$. Let $A = \{(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{R}^n | \sum_{j=1}^{n} |\alpha_j| = 1\}$.

Define $f(\alpha_1, \alpha_2, ..., \alpha_n) = \left\| \sum_{j=1}^n \alpha_j x_j \right\|$. For any $(\alpha_1, \alpha_2, ..., \alpha_n)$ and $(\beta_1, \beta_2, ..., \beta_n)$ consider $|f(\alpha_1, \alpha_2, ..., \alpha_n) - f(\beta_1, \beta_2, ..., \beta_n)|$ which is

$$\begin{aligned} \left\| \left\| \sum_{j=1}^{n} \alpha_{j} x_{j} \right\| - \left\| \sum_{j=1}^{n} \beta_{j} x_{j} \right\| \right\| &\leq \left\| \sum_{j=1}^{n} \alpha_{j} x_{j} - \sum_{j=1}^{n} \beta_{j} x_{j} \right\| = \left\| \sum_{j=1}^{n} (\alpha_{j} - \beta_{j}) x_{j} \right\| \\ &\leq \sum_{j=1}^{n} \left\| (\alpha_{j} - \beta_{j}) x_{j} \right\| = \sum_{j=1}^{n} |\alpha_{j} - \beta_{j}| \left\| x_{j} \right\| \\ &\leq \max_{1 \leq j \leq n} \left\| x_{j} \right\| \sum_{j=1}^{n} |\alpha_{j} - \beta_{j}| \end{aligned}$$

Let $(\mu_1, \mu_2, ..., \mu_n) \in A$ be such that $f(\mu_1, \mu_2, ..., \mu_n) = \inf \{ f(\alpha_1, \alpha_2, ..., \alpha_n) | (\alpha_1, \alpha_2, ..., \alpha_n) \in A \}$. Let $m = f(\mu_1, \mu_2, ..., \mu_n)$. In case this minimum is 0.

$$\left\| \sum_{j=1}^{n} \mu_j x_j \right\| = 0 \implies \sum_{j=1}^{n} \mu_j x_j = 0$$

but $x_1, x_2, ...$ are linearly independent therefore $\mu_j = 0$ for all j = 1, 2, ..., n i.e. it is a zero vector also summation must have been 1, hence a contradiction. Therefore $0 < m \le f(\alpha_1, \alpha_2, ..., \alpha_n)$.

$$\left\| \sum_{j=1}^{n} \mu_{j} x_{j} \right\| \leqslant \left\| \sum_{j=1}^{n} \alpha_{j} x_{j} \right\|$$

Let $\alpha_1, \alpha_2, ..., \alpha_n$ be any collection of scalars, set $\beta = \sum_{j=1}^n |\alpha_j|$. Let $\beta > 0$, then $(\frac{\alpha_1}{\beta}, \frac{\alpha_2}{\beta}, ..., \frac{\alpha_n}{\beta}) \in A$ as

$$\frac{\alpha_i}{\beta} = \frac{\alpha_i}{\sum_{i=1}^n |\alpha_i|}$$

taking summation on both sides, gives 1 hence it is in A. Therefore,

$$f(\alpha_1, \alpha_2, ..., \alpha_n) = \left\| \sum_{j=1}^n \alpha_j x_j \right\|$$
(6.4)

$$= \left\| \sum_{j=1}^{n} \frac{\alpha_{j}}{\beta} x_{j} \right\| \beta \tag{6.5}$$

$$= \beta f(\frac{\alpha_1}{\beta}, \frac{\alpha_2}{\beta}, ..., \frac{\alpha_n}{\beta}) > m\beta$$
 (6.6)

Therefore,

$$m\beta = m\sum_{j=1}^{n} |\alpha_j| \le \left\| \sum_{j=1}^{n} \alpha_j x_j \right\|$$

Hence Proved.

Note: Unit sphere is $S(0) = \{x \in X : ||x|| = 1\}.$

Definition 6.2.1 A subset A of a vector space is said to be convex if for any $x, y \in A \implies M = \{z \in X : z = \alpha x + (1 - \alpha)y, 0 \le \alpha \le 1 \subset A$. M is a closed segment with boundary points x, y.

Definition 6.2.2 *Equivalence of Norm.* A norm $\|\cdot\|$ on a vector space X is said to be equivalent to $\|\cdot\|_0$ on X, if there are positive numbers α , β such that $\forall x \in X$ we have,

$$\alpha||x||_0\leqslant ||x||\leqslant b||x||_0$$