Package 'threshold4GPD'

October 26, 2016

Type Package

Title Determine Threshold by Independent Increments Structure of MLE
Version 0.8
Author Warren Jin, Data61, CSIRO Australia and Mengchen Zu, the Australian National University
Maintainer Warren Jin < Warren. Jin@csiro.au>
Description This is a package to determine threshold in extreme value analysis. Independent Increments Structure of MLE is used in this package to analyze the reasonable threshold for data set.
Imports ismev, mgcv, ADGofTest, dgof
License GPL-3
LazyData TRUE
RoxygenNote 5.0.1
Data_Randomization 2 E.Info.Mat 2 Expl.diag 3 Joint.MLE.Expl 4 Joint.MLE.NHPP 5 K.ForwardStop 6 K.StrongStop 6 KvsN 7 NHPP.diag 7 nhpp.nll 9 norm.LRT 10 Threshold_Generator_Density 11 Threshold_Generator_Uniform 11 Threshold_Randomization 12
Trador

2 E.Info.Mat

Data_Randomization

 $Data_Randomization$

Description

add the randomization of data to reduce the limitation of minimum measured value

Usage

```
Data_Randomization(x, random_digit = 2, round_digit = 4, seed = 1)
```

Arguments

```
x - data vector
```

random_digit - the precision of data vector

round_digit - the precision of return randomization data vector

seed - presetting random seed

Value

RandomData - randomization data vector

Examples

```
x <- rnorm(100)
x <- sort(x)
x <- round(x*10)/10
Data_Randomization(x)</pre>
```

E.Info.Mat

E.Info.Mat

Description

Calculates the numerically-integrated expected information matrix for an NHPP with specified parameters

Usage

```
E.Info.Mat(theta, u, M)
```

Arguments

```
theta - vector of parameters (mu,sigma, xi)
```

u - threshold for NHPP

M - number of superpositions or "blocks" / "years" the process corresponds to

Expl.diag 3

Value

EIM - expected information matrix

Errors - vector of errors from the numerical integration of the 6 unique components

Expl.diag	producing the exponential diagnostic plots	

Description

Function to produce diagnostic plots and test statistics for the rate / inverse rate parameter of the Exponential model

Usage

```
Expl.diag(x, u = NULL, k, q1, q2 = 1, nbs = 1000, alpha = 0.05, plots = c("LRT", "WN", "PS"), UseQuantiles = TRUE, param = "InvRate", pmar = c(5.5, 7, 3, 3), \ldots)
```

Arguments

X	- data vector
u	- optional; vector of candidate thresholds
k	- number of thresholds to consider (if u unspecified)
q1	- lowest quantile for the threshold sequence
q2	- upper quantile limit for the threshold sequence (q2 itself is not used as a threshold, but rather the uppermost
nbs	- number of simulations used to assess the null distribution of the LRT, and produce the p-value
alpha	- significance level of the LRT
plots	- which plots to produce; "LRT"= likelihood ratio test, "WN" = white noise, "PS" = parameter stability
UseQuantiles	- logical; use quantiles as the thresholds in the plot?
param	- character specifying "InvRate" or "Rate" for either inverse rate parameter / rate parameter, respectively
pmar	- vector of length 4 giving the arguments for the plot margins in $par(mar=c(*,*,*,*))$
	- other parameter

Joint.MLE.Expl

Value

```
MLE - MLEs from all thresholds
```

Cov - Joint asymptotic covariance matrix for xi

WN - values of the white noise process

LRT - values of the LT test statistic vs threshold

pval - p-value of the LR test

k - final number of thresholds used

thresh - threshold selected by the LR procedure

mle.u - MLE from selected threshold

Examples

```
library(mvtnorm)
xbvn<-rmvnorm(6000, sigma=matrix(c(1,0.7,0.7,1),2,2))
# Transform margins to exponential
xbvn.exp<- -log(1-pnorm(xbvn))
Expl.diag(apply(xbvn.exp,1,min), k=30, q1=0, param="Rate")
Expl.diag(apply(xbvn.exp,1,min), k=30, q1=0, param="InvRate")</pre>
```

Joint.MLE.Expl

Joint.MLE.Expl

Description

Calculates the MLEs of the rate parameter, and joint asymptotic covariance matrix of these MLEs over a range of thresholds as supplied by the user.

Usage

```
Joint.MLE.Expl(x, u = NULL, k, q1, q2 = 1, param)
```

Arguments

Χ	- vector of data
u	- vector of thresholds. If not supplied, then \boldsymbol{k} thresholds between quantiles (q1, q2) will be used
k	- number of thresholds to consider if u not supplied
q1	- lowest quantile for the threshold sequence
q2	- upper quantile limit for the threshold sequence (q2 itself is not used as a threshold, but rather the uppermost threshold will be at the (q2-1/k) quantile)
param	- character specifying "InvRate" or "Rate" for either inverse rate parameter / rate parameter, respectively

Joint.MLE.NHPP 5

Value

mle - vector of MLEs above the supplied thresholds cov - joint asymptotic covariance matrix of these MLEs

Joint.MLE.NHPP

joint maximum likelihood estimation Non-Homogeneous Poisson Process

Description

the MLEs of the parameters (mu,sigma,xi), and joint asymptotic covariance matrix of these MLEs over a range of thresholds as supplied by the user.

Usage

```
Joint.MLE.NHPP(x, u = NULL, k, q1, q2 = 1, par, M, MLE_model = "median")
```

Arguments

x	- vector of data
u	- vector of thresholds. If not supplied, then k thresholds between quantiles $(q1, \ q2)$ will be used
k	- number of thresholds to consider if u not supplied
q1	- lowest quantile for the threshold sequence
q2	- upper quantile limit for the threshold sequence (q2 itself is not used as a threshold, but rather the uppermost threshold will be at the $(q2-1/k)$ quantile)
par	- starting values for the optimization
М	 number of superpositions or "blocks" / "years" the process corresponds to (affects estimation of mu, sigma, but these can be changed post-hoc to correspond to any number)
MLE_model	- which model of maximum likelihood estimation is used; "median"= use the median data of 7 maximum likelihood estimation (not accurate enough but suitable for most data vector) "min"= use the min data of 7 maximum likelihood estimation (most accurate but not suitable for some small data vector) "second_min"= use the second min data of 7 maximum likelihood estimation (almost same as "min")

Value

mle - matrix of MLEs above the supplied thresholds; columns are (mu, sigma, xi)

Cov.all - joint asymptotic covariance matrix of all MLEs

Cov.mu - joint asymptotic covariance matrix of MLEs for mu

Cov.sig - joint asymptotic covariance matrix of MLEs for sig

Cov.xi - joint asymptotic covariance matrix of MLEs for xi

6 K.StrongStop

K.ForwardStop

K.ForwardStop

Description

calculate the cutoff k based on ForwardStop

Usage

```
K.ForwardStop(pvalues, alpha = 0.05)
```

Arguments

pvalues

- the p-values for each threshold in the threshold list

alpha

- the pre-specified significance level, usually take 0.01 or 0.05

Value

forward - if the given null hypothesis should be rejected. Take 0 as no rejection and 1 as make rejection

K.StrongStop

K.StrongStop

Description

calculate the cutoff k based on StrongStop

Usage

```
K.StrongStop(pvalues, alpha = 0.05)
```

Arguments

pvalues

- the p-values for each threshold in the threshold list

alpha

- the pre-specified significance level, usually take 0.01 or 0.05

Value

strong - if the given null hypothesis should be rejected. Take 0 as no rejection and 1 as make rejection

KvsN 7

Description

Function to determine an appropriate number of thresholds

Usage

```
KvsN(x, wetCuttingPoint = 0.1)
```

Arguments

```
x - data vectorwetCuttingPoint- the minimum precision which can be considered as "rain"
```

Value

ks - an appropriate number of thresholds

NHPP.diag

producing the Non-Homogeneous Poisson Process diagnostic plots

Description

Function to produce diagnostic plots and test statistics for the NHPP model

Usage

```
NHPP.diag(x, u = NULL, k, q1 = NULL, q2 = 1, par = NULL, M = NULL, nbs = 1000, alpha = 0.05, plots = c("LRT", "WN", "PS", "LRTEST", "KS", "AD"), UseQuantiles = TRUE, DEBUGing = FALSE, pmar = c(5.5, 7, 3, 3), head = 5, MLE_model = NULL, use_Data_Randomization = FALSE, use_Threshold_Randomization = FALSE, ...)
```

Arguments

```
    data vector
    optional; vector of candidate thresholds
    number of thresholds to consider (if u unspecified)
    lowest quantile for the threshold sequence
    upper quantile limit for the threshold sequence (q2 itself is not used as a threshold, but rather the uppermost threshold will be at the (q2-1/k) quantile)
```

NHPP.diag

par - starting values for the optimization

M - number of superpositions or "blocks" / "years" the process corresponds to (can

affect the optimization)

nbs - number of simulations used to assess the null distribution of the LRT, and

produce the p-value

alpha - significance level of the LRT

plots - which plots to produce; "LRT"= likelihood ratio "WN" = white noise "PS"

= parameter stability "LRTEST" = likelihood ratio test for assistance "KS" = Kolmogorov-Smirnov goodness-of-fit test for assistance "AD" = Anderson-Darling

test for assistance

UseQuantiles - logical; use quantiles as the thresholds in the plot?

DEBUGing - default as false, set to true if you want to debug

pmar - vector of length 4 giving the arguments for the plot margins in par(mar=c(*,*,*,*))

- number of thresholds inserted between the first threshold and the second thresh-

old temporary to reduce the variance at the begining of likelihood ratio statistic

test

MLE_model - which model of maximum likelihood estimation is used; "median"= use the

median data of 7 maximum likelihood estimation (not accurate enough but suitable for most data vector) "min"= use the min data of 7 maximum likelihood estimation (most accurate but not suitable for some small data vector) "second_min"= use the second min data of 7 maximum likelihood estimation (al-

most same as "min")

use_Data_Randomization

- whether or not use Data_Randomization to randomize the given data

use_Threshold_Randomization

- whether or not use Threshold_Randomization to randomize the thresholds

... - other parameter

Details

Function to produce diagnostic plots and test statistics for the NHPP model

Value

MLEall - MLEs from all thresholds

Cov.xi - Joint asymptotic covariance matrix for xi

WN - values of the white noise process

LRT - values of the LT test statistic vs threshold

pval - p-value of the LR test

k - final number of thresholds used

thresh - threshold selected by LR procedure

mle.u - MLE from selected threshold

nhpp.nll

Examples

```
## insert an easy example for test run
set.seed(1)
xnorm<-abs(rnorm(5000))</pre>
thresholds_xnorm <- Threshold_Generator_Uniform(xnorm, wetCuttingPoint=0.1)</pre>
ChangedThresholds_xnorm <- Threshold_Randomization(xnorm,thresholds_xnorm,seed = 1)</pre>
nhpp <-NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("LRT", "WN", "PS"))</pre>
##insert an example for test run
set.seed(1)
x <- rnorm(100000)
x \leftarrow x[x > quantile(x, probs = 0.9)]
x \leftarrow sort(x)
x <- Data_Randomization(x, seed = 1)</pre>
x \leftarrow sort(x)
thresholds_x <- Threshold_Generator_Uniform(x, wetCuttingPoint=0.1)</pre>
ChangedThresholds_x <- Threshold_Randomization(x,thresholds_x,seed = 1)</pre>
nhpp <-NHPP.diag(x, u= ChangedThresholds_x,</pre>
              M=365, nbs=1000, alpha=0.05, plots=c("LRT", "WN", "PS"), UseQuantiles=FALSE,
                 cex.lab=1.5, cex.axis=1.4, cex.main=2, mgp=c(4.2,1,0))
# View different plots for easy example:
# likelihood ratio plot only
NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("LRT"))
# white noise plot only
NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("WN"))
# parameter stability plot only
nhpp <-NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("PS"))</pre>
# likelihood ratio test for assistance plot only
NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("LRTEST"))
# Kolmogorov-Smirnov goodness-of-fit test for assistance plot only
NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("KS"))
# Anderson-Darling test for assistance plot only
NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("AD"))
# a showoff of all the plots
NHPP.diag(xnorm, u= ChangedThresholds_xnorm, plots=c("LRT", "WN", "PS", "LRTEST", "KS", "AD"))
```

nhpp.nll

Non-Homogeneous Poisson Process negative log-likelihood

Description

Negative log likelihood for the NHPP model, to minimize for MLEs

norm.LRT

Usage

```
nhpp.nll(theta, x, u, M)
```

Arguments

theta - parameter vector (mu, sigma, xi)

x - data vector u - threshold

M - number of superpositions or "blocks" / "years" the process corresponds to (af-

fects estimation of mu, sigma, but these can be changed post-hoc to correspond

to any number)

Value

negative log-likelihood value

norm.LRT

normal distribution likelihood ratio statistics

Description

Evaluates the likelihood ratio statistics for testing white noise

Usage

```
norm.LRT(x, u)
```

Arguments

x - vector of white noise process (WNP, usually normalized estimates of xi or the exponential rate paramter 1/eta)

u - vector of thresholds that are associated to the WNP

Value

v

likelihood ratio

Threshold_Generator_Density

Thershold_Generator_Density

Description

generate a candidate thresholds list for given data set based on variant distance among the distribution density

Usage

```
Threshold_Generator_Density(x, wetCuttingPoint = 0.1, ks = NULL, q = NULL)
```

Arguments

x - data vector

wetCuttingPoint

- the minimum precision which can be considered as "rain"

ks - number of candidate thresholds

q - presetting value to control the density (usually set between 1 and 2) (the bigger

q is, the more intensive thresholds in tail part)

Value

thresholds - candidate thresholds list

Examples

```
set.seed(1)
xnorm<-abs(rnorm(5000))
Threshold_Generator_Density(xnorm)</pre>
```

Threshold_Generator_Uniform

Thershold_Generator_Uniform

Description

generate a candidate thresholds list for given data set based on uniform distance among the distribution

Usage

```
Threshold_Generator_Uniform(x, wetCuttingPoint = 0.1, ks = NULL)
```

Arguments

```
x - data vector

wetCuttingPoint

- the minimum precision which can be considered as "rain"

ks - number of candidate thresholds
```

Value

thresholds - candidate thresholds list

Examples

```
set.seed(1)
xnorm<-abs(rnorm(5000))
Threshold_Generator_Uniform(xnorm)</pre>
```

Threshold_Randomization

Threshold_Randomization

Description

add the randomization of thresholds to increase the randomization of thresholds

Usage

```
Threshold_Randomization(x, thresholds, seed = 1)
```

Arguments

```
x - data vector
thresholds - thresholds vector
seed - presetting random seed
```

Value

thresholds - randomization thresholds vector

Examples

```
set.seed(1)
xnorm<-abs(rnorm(5000))
thresholds_xnorm <- Threshold_Generator_Uniform(xnorm)
thresholds_xnorm
Threshold_Randomization(xnorm, thresholds_xnorm, seed = 1)</pre>
```

Index

```
Data_Randomization, 2

E.Info.Mat, 2

Expl.diag, 3

Joint.MLE.Expl, 4

Joint.MLE.NHPP, 5

K.ForwardStop, 6

K.StrongStop, 6

KvsN, 7

NHPP.diag, 7

nhpp.nll, 9

norm.LRT, 10

Threshold_Generator_Density, 11

Threshold_Generator_Uniform, 11

Threshold_Randomization, 12
```