

Graph by Steve Jurvetson, extending a prior graph of Ray Kurzweil.

Problem Set 2 is due This Friday, Jan 31 (10pm)

Class 6: Finite Computation

University of Virginia cs3120: DMT2
Wei-Kai Lin

Recap: Boolean logical 'gates'

- OR(a, b): outputs 1 iff a=1 or b=1

- AND(a, b): outputs 1 iff a=1 and b=1

– NOT(b): outputs 1 iff b=0

Output 0 otherwise

Median using And/Or/N ot

Still a "math"-ish def/algorithm for 3-bit MED:

```
def MED(X[0],X[1],X[2]):
    firstpair = AND(X[0],X[1])
    secondpair = AND(X[1],X[2])
    thirdpair = AND(X[0],X[2])
    temp = OR(secondpair,thirdpair)
    return OR(firstpair,temp)
```

A formal programming language

- AON Straightline programs
 Python-like language

 - Define ___functions___ that take Boolean inputs
 - Use AND/OR/NOT within
 - Assign results of AND/OR/NOT to variables
 - The result of variables can be used later as inputs
 - Return some of the obtained result(s) as output

(PS2) More things to program

NAND

a b NAND(a, k			
0 0 1			
0 1 1			
1 0 1			
1 1 0			

C =	= AND (a,	6)
Pet	NOT(c)	

XOR

truth

•	a	b	XOR(a, b)
	0	0	0
	0	1	1
	1	0	1
	1	1	0

(AND(NOT (a), b), AND(a, NOT (b))

More things to program

• 1-bit addition (mod 2) XOR(4,6)

1-bit addition with carry

NAND Straightline Programs

- Like AON straightline programs
- Difference: we can only use NAND $\frac{AND}{V}$

NAND Straightline = AON Straightline

What does it even mean? How to prove it?

Equivalence of Computing Models?

- To show model 1 is "equivalent" to model 2
 Show any algorithms implemented with model 1
 - Show any algorithms implemented with model 1 can be converted to an equivalent algorithm written in model 2
 - Show any algorithms implemented with model 2 can be converted to an equivalent algorithm written in model 1

NAND Straightline ⇒ AON Straightline

Converting NAND to AON

NAND Straightline ← AON Straightline

Converting AON to NAND

NAND Straightline = AON Straightline

$$1(a) = 1$$

x= NAND(a,a) NAND(9,1

x = AND(a,b)

Becomes

temp= NAND(a,b)

x=NAND(temp,temp)

x = OR(a,b)

Becomes

t1 = NAND(a,a)

t2 = NAND(b,b)

x = NAND(t1,t2)

NAND Straightline = AON Straightline

What could be benefits of each of them?

Another approach: Boolean Circuits

Median with Boolean Circuits

Formal Definition of Boolean Circuits

- A Boolean circuit with n inputs, m outputs, and s gates is a directed acyclic graph
- Exactly n nodes have no in-neighbors (these are inputs, label them x[0], ..., x[n-1])
- All remaining s nodes have a label AND, OR, NOT. AND and OR gates have two in-neighbors, NOT gates have one in-neighbor
- Exactly m gates are denoted as outputs (label them y[0], ..., y[m-1])

Majority with Boolean Circuits

Computing with a Boolean Circuit

- Assign gates into layers such that gate x appears before gate y whenever x has an outgoing edge that's an incoming edge of y
- For each input node x[i], assign its value to be bit i in the input
- For each gate (considered in order of layers), assign as its value the result of its labelled operation applied to its inneighbor(s)
- The result is the bit-string given by the values of the output gates

→ AON straightline program

→ AON straightline program

Circuits equivalent to AON Straightline

- How do we show this?
 - Show how to convert any circuit to an AON straightline that computes the same function
 - Show how to convert any AON straightline to a circuit that computes the same function

Circuit to Straightline (saw an example) Topological Sort on gates of Circuit • Circuit inputs are straightline inputs already

- Each gate gets a variable
- Value of that variable is result of applying the operation of that gate to the variables of the in-neighbors
- Output is variable values of the output gates

Another example: XOR

Circuit

$$V2 = NOT(X(0))$$
 $V3 = NOT(X(1))$
 $V4 = AND(X(0), V3)$
 $V5 = AND(X(1), V2)$
 $ret OR(V4, U5)$

AON-Straightline to Circuit

- Straightline inputs become circuit inputs
- Each variable becomes a gate
- The type of gate is given by the RHS of the assignment in the AON program
- The in-neighbors of the gate are the gates represented by the operand variables
- The output gates are the ones represented by return variables

Observations (2nd one as important)

- Everything function computable by a circuit is also computable by a straightline program (and vice-versa)
- Every function computable by a straightline program with *s* variables is computable by a circuit with *s* gates (and the converse)

Universality

What does it mean for a Gate Set to be *Universal*?

Theorem 3.12 (NAND is a universal operation)

For every Boolean circuit C of s gates, there exists a NAND circuit C' of at most 3s gates that computes the same function as C.

Definition 3.20 (General straight-line programs)

Let $\mathcal{F}=\{f_0,\ldots,f_{t-1}\}$ be a finite collection of Boolean functions, such that $f_i:\{0,1\}^{k_i}\to\{0,1\}$ for some $k_i\in\mathbb{N}$. An \mathcal{F} program is a sequence of lines, each of which assigns to some variable the result of applying some $f_i\in\mathcal{F}$ to k_i other variables. As above, we use $\mathbf{x}[i]$ and $\mathbf{y}[j]$ to denote the input and output variables.

We say that \mathcal{F} is a *universal* set of operations (also known as a universal gate set) if there exists a \mathcal{F} program to compute the function NAND.

(Informal) Definition. We say a computation model is *universal* if for any finite function $f: \{0,1\}^n \to \{0,1\}^m$, there is an "instance" of the model that computes f.

Theorem:

AON circuits is universal.

Corollary:

NAND is universal.

Goal: Compute $f: \{0,1\}^n \to \{0,1\}^m$

- Let f_1, f_2, \dots, f_m be functions such that
 - $-f_i: \{0,1\}^n \to \{0,1\}$
 - $-f_i(x)$ is the *i*th bit of f(x)

Goal: Compute $f: \{0,1\}^n \rightarrow \{0,1\}$

(Also called "Boolean" functions) Dutput 1 bit

• Represent f as a string s_f :

$$s_f = b_0 b_1 \dots b_{2^n - 1}, \qquad b_i = f(i)$$

• We have $f(i) \neq s_f[i]$

- Can we implement "array" using AON gates?
- Want: LOOKUP(s, i) outputs s[i]

Gate: IF(cond, a, b)

- Output a if cond = 1
- Output b if cond = 0

	cond	а	b	IF(cond, a, b)
	0	0	0	0
	0	0	1	1
	0	1	0	Ö
	0	1	1	1
(1	9	0	0
	1	0	1	0
	1	1	0	1
	1	1	1	1

Array: LOOKUP_k(s, i)

- *k*: 1,2,3,...
- f s: 2^k -bit string, $s = b_0 b_1 \dots b_{2^k 1}$
- i: k-bit string, representing $0, 1, ..., 2^k 1$
- LOOKUP_k(s, i) outputs $\underline{s[i]} = b_i$

Circuit: LOOKUP₁(s, i)

k: 1,2,3,... $s = b_0 b_1 \dots b_{2^k - 1}$ i represent $0, 1, \dots, 2^k - 1$ outputs $s[i] = b_i$

• LOOKUP₁(s, i) = LOOKUP₁(b_0b_1 , i)

$$i=0$$
 $i=1$
 b_i
 $TF(cond_i, b_i, b_o)$

Circuit: LOOKUP₂(s, i)

k: 1,2,3,... $s = b_0 b_1 ... b_{2^k-1}$ i represent $0,1,...,2^k-1$ outputs $s[i] = b_i$

• LOOKUP₂(s, i) = LOOKUP₂($b_0b_1b_2b_3$, i)

Circuit: LOOKUP_k(s, i)

```
k: 1,2,3,...

s = b_0 b_1 ... b_{2^k-1}

i represent 0,1,...,2^k-1

outputs s[i] = b_i
```

- LOOKUP_k(s, i) = LOOKUP_k($b_0b_1 ... b_{2^k-1}$, i)
- Recurse!

Circuit: LOOKUP $_k$ (s, i)

```
k: 1,2,3,...

s = b_0 b_1 \dots b_{2^k - 1}

i represent 0, 1, \dots, 2^k - 1

outputs s[i] = b_i
```

LOOKUP $_k(s, i)$:

```
first_half = LOOKUP<sub>k-1</sub>(s[0:2<sup>k-1</sup>], i[1:k])
second_half = LOOKUP<sub>k-1</sub>(s[2<sup>k-1</sup>:2<sup>k</sup>], i[1:k])
return IF(i[0], second_half, first_half)
```

Theorem:

AON circuit is universal.

PS2: Autograder Updated

Test cases shall be public.

If you passed all tests in the notebook and on Gradescope, you are good.

Charge

Computation Model

AND, OR, NOT Universality

PS2: due this Friday 10:00pm

PS3: to be released today, due next Friday 10:00pm

PRR3: due next Monday 10:00pm