Kelompok 1

SEGMENTASI PELANGGAN PRODUK SARI ROTI DENGAN DBSCAN CLUSTERING ANALYSIS

ANGGOTA KELOMPOK

- 01 Muhammad Nouval Habibie (2211521020)
- 02 Nabil Rizki Navisa (2211522018)
- 03 Ilham Nofaldi (2211522028)
- 04 Mustafa Fathur Rahman (2211522036)
- O5 Syauqi Nabiih Marwa (2211523012)

DISTRIBUSI SARI ROTI

Perusahaan Distribusi Sari Roti adalah perusahaan yang melakukan proses bisnis mendistribusikan berbagai macam produk Sari Roti ke berbagai outlet. Perusahaan Distribusi Sari Roti kemudian membuat laporan penjualan produk Sari Roti di seluruh outlet yang berisi jumlah produk yang diletakkan pada outlet, jumlah produk yang terjual, dan jumlah produk yang tersisa, serta beberapa keterangan lain mengenai penjualan produk.

MASALAH

Tantangan muncul dalam mengelompokkan pelanggan berdasarkan pola pembelian karena data penjualan yang ada belum tersegmentasi dengan baik. Hal ini menyulitkan perusahaan dalam mengidentifikasi tren dan membuat prediksi permintaan yang akurat, berpotensi menyebabkan masalah stok dan ketidakpuasan pelanggan.

SOLUSI

Solusi yang diberikan untuk mengatasi masalah tersebut adalah penggunaan Algoritma DBSCAN, di mana:

- DBSCAN (*Density-Based Spatial Clustering of Applications with Noise*): Algoritma clustering yang digunakan untuk mengelompokkan data berdasarkan kepadatan titik-titik data dalam ruang.
- Fokus: Mengelompokkan outlet berdasarkan waktu pembelian dan jenis produk yang dibeli oleh pelanggan.

KENAPA DBSCAN?

Algoritma DBSCAN dipilih karena dapat mengidentifikasi cluster dengan bentuk arbitrer dan menangani data dengan noise. DBSCAN juga efektif untuk data dengan kepadatan berbeda, cocok untuk pola pembelian yang beragam di berbagai outlet Sari Roti. Keunggulan-keunggulan ini membuat DBSCAN ideal untuk mengelompokkan outlet berdasarkan waktu dan jenis produk yang dibeli.

DATASET

Dataset distribusi Sari Roti yang didapatkan dari laporan distribusi mulai dari tanggal 1 hingga 9 Juni 2022 .

SALESMAN ID SALESMAN NIK	SALESMAN NAME	DROPPING NUMBER	DROPPING DATE	OUTLET BRAND	OUTLET CODE OUTLET NAME	PRODUCT ID	PRODUCT CODE
71299205 13544187129920	5 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 19	FG101031
71299205 13544187129920	5 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 20	FG101032
71299205 13544187129920	5 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 137	FG101069
71299205 13544187129920	05 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 120	FG101074
71299205 13544187129920	05 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 166	FG101083
71299205 13544187129920	05 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 165	FG101084
71299205 13544187129920	05 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 126	FG203022
71299205 13544187129920	05 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 72	FG204001
71299205 13544187129920	05 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 153	FG206030
71299205 13544187129920	05 REZKI SAPUTRA	407134420522060115234830	2022-06-01	Sari Roti	1354390796 (HWK) ANDI KEC. PASAN	MAN 178	FG206032

DATASET (2)

SHORT NAME (QTY ESTIMASI QTY	Y DROPPING D	DROPPING CBP	DISC. DROPPING	DROPPING RBP	QTY RETUR BAIK	RETUR BAIK CBP	RETUR BAIK RBP D	ISC RETUR BAIK (TY RETUR BS	RETUR BS CBP F	RETUR BS RBP
RTSII	0	2	29000	2900	26100	0	0	0	0	0	0	0
RTGII	0	3	64500	6450	58050	0	0	0	0	0	0	0
SCK2	0	12	60000	6000	54000	0	0	0	0	0	0	0
SSM2	0	2	11000	1100	9900	0	0	0	0	0	0	0
RJTS2	0	1	18000	1800	16200	0	0	0	0	0	0	0
RJKU II	0	2	39000	3900	35100	0	0	0	0	0	0	0
SRM2	0	1	6000	600	5400	0	0	0	0	0	0	0
DIC	0	1	5500	550	4950	0	0	0	0	0	0	0
RKS II	0	1	10500	1050	9450	0	0	0	0	0	0	0
TOC II 5S	0	6	105000	10500	94500	0	0	0	0	0	0	0

DATASET (3)

DISC RETUR BS	INVOICE DATE	INVOICE NUMBER	ONE TIME ARRIVAL	TYPE OUTLET NAME
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI
0	2022-06-01	507134420522060115260592	2022-06-01 15:23:48	MR ROTI

Iterasi 1

=25.49

Pada iterasi I titik pusat awal ditentukan secara acak dengan demikian titik pusat adalah titik A dengan xp=8, yp=1, zp=2

AB =
$$\sqrt{(8-5)^2 + (1-1)^2 + (2-1)^2}$$
 AG = $\sqrt{(8-6)^2 + (1-37)^2 + (2-1)^2}$ = 3.16 = 36.06

AC = $\sqrt{(8-6)^2 + (1-43)^2 + (2-1)^2}$ AH = $\sqrt{(8-4)^2 + (1-6)^2 + (2-3)^2}$ = 42.05 = 6.48

AD = $\sqrt{(8-9)^2 + (1-26)^2 + (2-2)^2}$ AI = $\sqrt{(8-4)^2 + (1-1)^2 + (2-3)^2}$ = 4.12

AE = $\sqrt{(8-8)^2 + (1-38)^2 + (2-1)^2}$ = 37.01

AF = $\sqrt{(8-3)^2 + (1-26)^2 + (2-2)^2}$ AK = $\sqrt{(8-5)^2 + (1-3)^2 + (2-1)^2}$ = 3.74

Iterasi 1

Titik	Jarak
AB	3.16227766
AC	42.05948169
AD	25.01999201
AE	37.01351105
AF	25.49509757
AG	36.06937759
ΔН	6.480740698
ΔI	4.123105626
ΔJ	32.15587038
AK	3.741657387

Eps = 5

Titik	Name_Code	QTY SELLS	Date	Jarak Ke Titik A
Д	8	1	2	0
В	5	1	1	3.16227766
С	6	43	1	42.05948169
D	9	26	2	25.01999201
E	8	38	1	37.01351105
F	3	26	2	25.49509757
G	6	37	1	36.06937759
н	4	6	3	6.480740698
I	4	1	3	4.123105626
L	5	33	1	32.15587038
K	5	3	1	3.741657387

Iterasi 2

Pada iterasi II titik pusat didapat dari iterasi I yaitu titik G dengan xp=6, yp=37, zp=2.

Titik	Jarak
GΑ	36.06937759
GB	36.01388621
GC	6
GD	11.44552314
GE	2.236067977
GF	11.44552314
GG	0
GH	31.12876483
GI	36.11094017
GJ	4.123105626
GK	34.0147027

Titik	Name_Code	QTY SELLS	Date	Jarak Ke <u>Titik</u> G
А	8	1	2	36.06937759
В	5	1	1	36.01388621
С	6	43	1	6
D	9	26	2	11.44552314
E	8	38	1	2.236067977
F	3	26	2	11.44552314
G	6	37	1	0
н	4	6	3	31.12876483
I	4	1	3	36.11094017
J	5	33	1	4.123105626
K	5	3	1	34.0147027

Iterasi 3

Pada iterasi III titik pusat didapat dari iterasi II yaitu titik I dengan xp=4, yp=1, zp=3.

Titik	Jarak
IA	4.123105626
IB	2.236067977
IC	42.09513036
ID	25.51470164
IE	37.26929031
IF	25.03996805
IG	36.11094017
IH	5
П	0
IJ	32.07802986
IK	3

Titik	Name_Code	QTY SELLS	Date	Jarak Ke Titik I
Α	8	1	2	4.123105626
В	5	1	1	2.236067977
С	6	43	1	42.09513036
D	9	26	2	25.51470164
E	8	38	1	37.26929031
F	3	26	2	25.03996805
G	6	37	1	36.11094017
н	4	6	3	5
I	4	1	3	0
J	5	33	1	32.07802986
K	5	3	1	3

Iterasi

Pembagian cluster sementara dari core point yang berbeda. Syarat untuk menjadi 1 cluster penuh adalah min_samples = 5. untuk menghitung seluruh data maka diperlukan otomatisasi menggunakan pemrograman python DBSCAN

lterasi 1	lterasi 2	lterasi 3
AB	GE	IH
Al	GJ	
AK		

Penerapan Algoritma DBScan

Mengimport Library dan menampilkan data

```
import pandas as pd
import numpy as np
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import
Axes3D

data =
pd.read_excel('sarirotidata2.xlsx')
df = pd.DataFrame(data)
data.head(20)
```

Penerapan Algoritma DBScan

Date dipilih dari DataFrame dan diubah menjadi array numpy X. Objek DBSCAN kemudian dibuat dengan parameter eps=5 dan min_samples=5

```
X = df[['Name_Code', 'QTY SELLS', 'Date']].values
dbscan = DBSCAN(eps=5, min_samples=5)
clusters = dbscan.fit_predict(X)
df['Cluster'] = clusters
```

Penerapan Algoritma DBScan

Plot 3D dibuat menggunakan matplotlib

```
fig = plt.figure(figsize=(20, 7))
ax = fig.add_subplot(111, projection='3d')
scatter = ax.scatter(df['Name_Code'],
                                            df['QTY
SELLS'], df['Date'], c=df['Cluster'], cmap='magma')
ax.set_xlabel('Name_Code')
ax.set_ylabel('QTY_SELL')
ax.set_zlabel('Date')
ax.set_title('3D DBSCAN Clustering')
          = ax.legend(*scatter.legend_elements(),
legend1
title="Clusters")
ax.add_artist(legend1)
plt.show()
```

Penerapan Algoritma DBScan

Hasil visualisasi

Penerapan Algoritma DBScan

Defaultdict dari pustaka collections diimpor untuk membuat dictionary dengan nilai default berupa list.

```
from collections import defaultdict

dbscan = DBSCAN(eps=5, min_samples=5)
clusters = dbscan.fit_predict(X)

cluster_members = defaultdict(list)
for i, label in enumerate(clusters):
    cluster_members[label].append(i)

for label, members in
    cluster_members.items():
        if label != -1 and len(members) >= 5:
            print(f'Cluster {label}:
        {members}')
```

Penerapan Algoritma DBScan

Menampilkan jumlah anggota tiap klaster

```
cluster_counts = {label: len(members) for label, members in
cluster_members.items() if label != -1}
for label, count in cluster_counts.items():
    print(f'Cluster {label} memiliki {count} anggota')
```

Penerapan Algoritma DBScan

Hasil jumlah anggota tiap klaster

```
Cluster 0 memiliki 488 anggota
Cluster 1 memiliki 324 anggota
Cluster 2 memiliki 141 anggota
Cluster 3 memiliki 21 anggota
Cluster 4 memiliki 6 anggota
```

KESIMPULAN

Penelitian ini berhasil menerapkan algoritma DBSCAN untuk segmentasi pelanggan Sari Roti berdasarkan pola pembelian, mengungkapkan kelompok pelanggan dengan preferensi produk dan waktu pembelian yang berbeda. Informasi ini memungkinkan perusahaan untuk mengoptimalkan manajemen stok, distribusi, dan strategi pemasaran untuk meningkatkan efisiensi operasional dan kepuasan pelanggan.

THANKYOU