THE DATA SCIENCE LAB Introduction to Data Stream Processing

COM 490 – Spring 2022

Week 8

THIS CLASS WILL BE RECORDED

Agenda Spring 2022

^{*}Details on Moodle

Stream Processing Module

- Objectives
 - Review concepts of stream processing
 - Experiment with typical tools for
 - Data ingestion and processing
- Week 8
 - Concepts
 - Experiments
- Week 9
 - Advanced topics
 - Operations on streaming data (joins)
 - Time constraints
- Week 10
 - Analytics on data at rest and data in motion

Why Stream Processing?

- Reminder from module 2 (Big Data)
 - Batch vs Stream
 - Can wait until all information is available for a more accurate answer? batch
 - AKA: Data at rest
 - Operates on finite size data sets, and terminate when all data has been processed
 - You want an updated answer as more information becomes available? streams
 - AKA: Data in motion, or Fast data
 - Continuous computations that never stop, process "infinite stream" of data on the fly
 - Designed to keep size of in-memory state bounded, regardless of how much data is processed
 - Update the answer as more data becomes available
 - Operate on small time windows

Why Stream Processing?

Relevance (vs batch)

- Insight more valuable shortly after events happen
 - (Near) real-time: from milliseconds to seconds, or minutes
- It allows faster reaction
 - Detecting patterns, setting alerts
- Some data is naturally unbounded (e.g. sensor data)
- Resource constraints (storage and compute)
 - process large large volumes of data arriving at high velocities
 - Retain only what is useful
- Continuous processing

Applications of Stream Processing

- Computing
 - Log analysis,
 - Detection of DoS attacks,
 - Scaling service capacities
- Real-time monitoring
 - Fraud detection (credit cards),
 - Intrusion detection (surveillance)
- Sensor data processing
 - Weather,
 - Transportation
 - Traffic
 - Patient health
- Social media
 - Trend analysis

- Industry
 - Process optimization
 - Predictive maintenance
 - Logistics
- Advertising and promotions
 - Contextualized to user behavior or geolocation
- Financial trading
 - Algorithmic trading
 - Risk analysis
- ...

Constraints and challenges

- Inputs
 - Time constraints
 - Data elements
 - Unbound
 - Unordered
 - Uncomplete
- Outputs
 - Approximate answers

Sliding Window

- Event Time vs Processing Time
- Types of Windows
 - Sliding
 - Tambling
 - Time-based vs count-based
- Window Operations (transformations)
- Stateful / Stateless Operations (transformations)

Sliding Windows

Tumbling windows

Time-based windows

Count-based windows

- Window Operations (transformations)
 - Aggregations
 - Sums, averages, counts, maximum, ...
 - Filtering
 - By type, IDs, ...
 - ...

- Stateful vs Stateless Operations (Transformations)
 - Stateful: need to memorize records or partial results
 - e.g. Min, Max and average temperature of a sensor
 - Stateless: rely only on information within the window
 - e.g. Average temperature of sensor over last 5 minutes

Stream Processing - Tools

Stream Processing - Tools

Stream Processing - Tools

samza

Kafka

- Messaging system
 - Publish & Subscribe
- Distributed
- Fault tolerant
- Scalable (large data volumes)
- Real-time
- Low latency

Kafka

Concept of Publish/Subscribe messaging

Spark Streaming

- Extension to Spark
 - Integrated with Spark API
- Scalable, fault tolerant
- Can read from multiple sources
- Apply ML algorithms to data streams

Spark Streaming

- How it works
 - Micro-batches processing

- DStream: continuous stream of data
 - Created from inputs (e.g. Kafka) or derived from other Dstreams
 - Continuous series of RDDs
 - Supports (many) transformations similar to RDDs
 - (map, count, join, etc)

Exercises

- Documentation and Resources
 - Spark Streaming Programming Guide [1]
 - Kafka Documentation [2]

- Practical Exercise
 - https://dslab2022-renku.epfl.ch/projects/com490/lab-course
- [1] https://spark.apache.org/docs/latest/streaming-programming-guide.html
- [2] https://kafka.apache.org/documentation/

Exercises

1. Message queue

- Introduction to Apache Kafka
- Topics
 - Creation
 - Publish
 - Subscribe
- Synthetic example

Exercises

2. Next week

Stream Processing with Spark Streaming and Kafka

- How to properly setup Spark Streaming
- Resume synthetic exercise
- Connect to Kafka and consume stream
- Window operations
- Use actual live public stream

Start your engines

https://dslab2022-renku.epfl.ch/projects/com490/lab-course - week 9

Useful references

- [1] https://spark.apache.org/docs/latest/streaming-programming-guide.html
- [2] https://kafka.apache.org/documentation/