Artificial Intelligence

13. Planning, Part I: Framework

How to Describe Arbitrary Search Problems

Jörg Hoffmann

Summer Term 2014

Agenda

- Introduction
- 2 The History of Planning
- The STRIPS Planning Formalism
- The Complexity of (STRIPS) Planning
- The PDDL Language
- 6 Conclusion

Reminder: Classical Search Problems (Chapters 4 and 5)

- States: Card positions (position_Jspades=Qhearts).
- Actions: Card moves (move_Jspades_Qhearts_freecell4).
- Initial state: Start configuration.
- Goal states: All cards "home".
- Solution: Card moves solving this game.

Introduction

•0000000

Planning History STRIPS Planning Complexity PDDL Language Conclusion References

Planning

Introduction

0000000

Ambition:

Write one program that can solve all classical search problems.

Reminder: (Chapter 4)

- The **blackbox description** of a problem Π is an API (a programming interface) providing functionality allowing to construct the state space: InitialState(), GoalTest(s), . . .
 - \rightarrow "Specifying the problem" = programming the API.
- The declarative description of Π comes in a problem description language. This allows to implement the API, and much more.
 - \rightarrow "Specifying the problem" = writing a problem description.
 - \rightarrow Here, "problem description language" = planning language.

"Planning Language"?

Introduction

How does a planning language describe a problem?

- A *logical description* of the possible states (vs. Blackbox: data structures). E.g.: predicate Eq(.,.).
- A logical description of the initial state I (vs. data structures). E.g.: Eq(x,1).
- A logical description of the goal condition G (vs. a goal-test function). E.g.: Eq(x,2).
- A logical description of the set A of actions in terms of preconditions and effects (vs. functions returning applicable actions and successor states).
 - E.g.: "increment x: pre Eq(x,1), eff $Eq(x,2) \land \neg Eq(x,1)$ ".
- \rightarrow Solution (plan) = sequence of actions from A, transforming I into a state that satisfies G. E.g.: "increment x".

"Planning Language"?

Disclaimer:

- ightarrow Planning languages go way beyond classical search problems. There are variants for inaccessible, stochastic, dynamic, continuous, and multi-agent settings.
 - We focus on classical search for simplicity (combined with practical relevance).
 - For a comprehensive overview, see [Ghallab et al. (2004)].

Application: Natural Language Generation

- Input: Tree-adjoining grammar, intended meaning.
- Output: Sentence expressing that meaning.

Introduction

00000000

Decide CQ Approval

Application: Business Process Templates at SAP

Action name	precondition	effect		^
Check CQ Completeness	CQ.archiving:notArchived	CQ.completeness:complete OR	Y	\prec χ \gt
		CQ.completeness:notComplete		Approval: X
Check CQ Consistency	CQ.archiving:notArchived	CQ.consistency:consistent OR	Create CO	not Necessary
		CQ.consistency:notConsistent	Ordaic de	
Check CQ Approval Status	CQ.archiving:notArchived AND	CQ.approval:necessary OR		\
	CQ.approval:notChecked AND	CQ.approval:notNecessary		│
	CQ.completeness:complete AND			Submit CQ
	CQ.consistency:consistent		Check CO Check CO	I (GERMAN GER
Decide CQ Approval	CQ.archiving:notArchived AND	CQ.approval:granted OR	Completeness Consistency	\vdash
	CQ.approval:necessary	CQ.approval:notGranted		Mark CQ as Accepted
Submit CQ	CQ.archiving:notArchived AND	CQ.submission:submitted	— (+)	Accepted
	(CQ.approval:notNecessary OR		Y	Create Follow
	CQ.approval:granted)			Up for CQ
Mark CQ as Accepted	CQ.archiving:notArchived AND	CQ.acceptance:accepted	Check CQ Approval	
	CQ.submission:submitted		Status	Archive CO
Create Follow-Up for CQ	CQ.archiving:notArchived AND	CQ.followUp:documentCreated		Archive CQ
	CQ.acceptance:accepted			$\overline{}$
Archive CQ	CQ.archiving:notArchived	CQ.archiving:archived		()

- **Input:** SAP-scale model of behavior of activities on Business Objects, process endpoint.
- Output: Process template leading to this point.

Planning History STRIPS Planning Complexity PDDL Language Conclusion References

Application: Automatic Hacking

- Input: Network configuration, location of sensible data.
- Output: Sequence of exploits giving access to that data.

Jörg Hoffmann

Introduction

00000000

Planning History STRIPS Planning Complexity PDDL Language Conclusion References

Planning!

Introduction

Action name	precondition	effect	
Check CQ Completeness	CQ.archiving:notArchived	CQ.completeness:complete OF CQ.completeness:notComplete	
Check CQ Consistency	CQ.archiving:notArchived	CQ.consistency:consistent OR CQ.consistency:notConsistent	
Check CQ Approval Status	CQ.archiving:notArchived AND CQ.approval:notChecked AND CQ.completeness:complete AND CQ.comsistency:consistent	CQ.approval:notNecessary CQ.approval:notNecessary	
Decide CQ Approval	CQ.archiving:notArchived AND CQ.approval:necessary	CQ.approval:granted OR CQ.approval:notGranted	
Submit CQ	CQ.archiving:notArchived AND (CQ.approval:notNecessary OR CQ.approval:granted)	CQ.submission:submitted	
Mark CQ as Accepted	CQ.archiving:notArchived AND CQ.submission:submitted	CQ.acceptance:accepted	
Create Follow-Up for CQ	CQ.archiving:notArchived AND CQ.acceptance:accepted	CQ.followUpcdocumentCreate	
Archive CO	CO.archiving:notArchived	CO.archiving.archived	

Planning Domain Definition Language (PDDL) → Planning System

Jörg Hoffmann

Artificial Intelligence

Chapter 13: Planning, Part I

Reminder: General Problem Solving, Pros and Cons

- Powerful: In some applications, generality is absolutely necessary.
 (E.g. SAP)
- Quick: Rapid prototyping: 10s lines of problem description vs.
 1000s lines of C++ code. (E.g. language generation)
- Flexible: Adapt/maintain the description. (E.g. network security)
- Intelligent: Determines automatically how to solve a complex problem effectively! (The ultimate goal, no?!)
- Efficiency loss: Without any domain-specific knowledge about Chess, you don't beat Kasparov . . .
 - \rightarrow Trade-off between "automatic and general" vs. "manualwork but effective".

How to make fully automatic algorithms effective?

Jörg Hoffmann

References STRIPS Planning Complexity PDDL Language Conclusion

ps. "Making Fully Automatic Algorithms Effective"

Introduction

00000000

- n blocks, 1 hand.
- A single action either takes a block with the hand or puts a block we're holding onto some other block/the table.

blocks	states	blocks	states
1	1	9	4596553
2	3	10	58941091
3	13	11	824073141
4	73	12	12470162233
5	501	13	202976401213
6	4051	14	3535017524403
7	37633	15	65573803186921
8	394353	16	1290434218669921

 \rightarrow State spaces typically are huge even for simple problems.

 \rightarrow In other words: Even solving "simple problems" automatically (without help from a human) requires a form of intelligence. With blind search, even the largest super-computer in the world won't scale beyond 20 blocks!

Artificial Intelligence

Planning History STRIPS Planning Complexity PDDL Language Conclusion References

Our Agenda for This Chapter

- The History of Planning: How did this come about?
 - \rightarrow Gives you some background, and motivates our choice to focus on heuristic search.
- The STRIPS Planning Formalism: Which concrete planning formalism will we be using?
 - → Lays the framework we'll be looking at.
- The Complexity of (STRIPS) Planning: How complex are the different decision problems involved?
 - \rightarrow This is needed to distinguish different forms of planning, and serves as the basic tool to design heuristic functions.
- The PDDL Language: What do the input files for off-the-shelf planning software look like?
 - \rightarrow So you can actually play around with such software. (Exercises!)

Jörg Hoffmann

Introduction

0000000

Planning History STRIPS Planning Complexity PDDL Language Conclusion References

◆00000000 00000000 000000000 000

In the Beginning . . .

Introduction

... Man invented Robots:

"Planning" as in "the making of plans by an autonomous robot".

In a little more detail:

- Newell and Simon (1963) introduced general problem solving.
- ... not much happened (well not much we still speak of today) ...
- Stanford Research Institute developed a robot named "Shakey".
- They needed a "planning" component taking decisions.
- They took inspiration from general problem solving and theorem proving, and called the resulting algorithm "STRIPS".

And then:

Planning HistorySTRIPS PlanningComplexityPDDL LanguageConclusionReferences0●0000000000000000000000000000000

History of Planning Algorithms

Compilation into Logics/Theorem Proving:

- **Popular when:** Stone Age 1990.
- **Approach:** From planning task description, generate PL1 formula φ that is satisfiable iff there exists a plan; use a theorem prover on φ .
- Keywords/cites: Situation calculus, frame problem, . . .

Partial-Order Planning:

- **Popular when:** 1990 1995.
- Approach: Starting at goal, extend partially ordered set of actions by inserting achievers for open sub-goals, or by adding ordering constraints to avoid conflicts.
- **Keywords/cites:** UCPOP [Penberthy and Weld (1992)], causal links, flaw-selection strategies, . . .

History of Planning Algorithms, ctd.

GraphPlan:

Introduction

- **Popular when:** 1995 2000.
- Approach: In a forward phase, build a layered "planning graph"
 whose "time steps" capture which pairs of actions can achieve
 which pairs of facts; in a backward phase, search this graph starting
 at goals and excluding options proved to not be feasible.
- **Keywords/cites:** [Blum and Furst (1995, 1997); Koehler *et al.* (1997)], action/fact mutexes, step-optimal plans, . . .

Planning as SAT:

- **Popular when:** 1996 today.
- **Approach:** From planning task description, generate propositional CNF formula φ_k that is satisfiable iff there exists a plan with k steps; use a SAT solver on φ_k , for different values of k.
- **Keywords/cites:** [Kautz and Selman (1992, 1996); Rintanen *et al.* (2006); Rintanen (2010)], SAT encoding schemes, BlackBox, ...

Conclusion

References

History of Planning Algorithms, ctd.

Planning as Heuristic Search:

- Popular when: 1999 today.
- Approach: Devise a method \mathcal{R} to simplify ("relax") any planning task Π ; given Π , solve $\mathcal{R}(\Pi)$ to generate a heuristic function h for informed search.
- Keywords/cites: [Bonet and Geffner (1999); Haslum and Geffner (2000); Bonet and Geffner (2001); Hoffmann and Nebel (2001); Edelkamp (2001); Gerevini et al. (2003); Helmert (2006); Helmert et al. (2007); Helmert and Geffner (2008); Karpas and Domshlak (2009); Helmert and Domshlak (2009); Richter and Westphal (2010); Nissim et al. (2011); Katz et al. (2012); Keyder et al. (2012); Katz et al. (2013); Katz and Hoffmann (2013)], critical path heuristics, ignoring delete lists, relaxed plans, landmark heuristics, abstractions, ...

The International Planning Competition (IPC)

Competition?

Introduction

"Run competing planners on a set of benchmarks devised by the IPC organizers. Give awards to the most effective planners."

- 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014
- PDDL [McDermott and others (1998); Fox and Long (2003); Hoffmann and Edelkamp (2005); Gerevini et al. (2009)]
- $\bullet \approx 50$ domains, $\gg 1000$ instances, 74 (!!) planners in 2011
- Optimal track vs. satisficing track
- Various others: uncertainty, learning, . . .

http://ipc.icaps-conference.org/

"STRIPS" Planning

Introduction

STRIPS = Stanford Research Institute Problem Solver.

STRIPS is the simplest possible (reasonably expressive) logics-based planning language.

- STRIPS has only Boolean variables: propositional logic atoms.
- Its preconditions/effects/goals are as canonical as imaginable:
 - Preconditions, goals: conjunctions of positive atoms.
 - Effects: conjunctions of literals (positive or negated atoms).
- We use the common special-case notation for this simple formalism.
- I'll outline some extensions beyond STRIPS later on, when we discuss PDDL.
- \rightarrow **Historical note:** STRIPS [Fikes and Nilsson (1971)] was originally a planner (cf. Shakey), whose language actually wasn't quite that simple.

STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short planning task, is a 4-tuple $\Pi = (P, A, I, G)$ where:

- *P* is a finite set of facts (aka propositions).
- A is a finite set of actions; each $a \in A$ is a triple $a = (pre_a, add_a, del_a)$ of subsets of P referred to as the action's precondition, add list, and delete list respectively; we require that $add_a \cap del_a = \emptyset$.
- $I \subseteq P$ is the initial state.
- $G \subseteq P$ is the goal.

We will often give each action $a \in A$ a name (a string), and identify a with that name.

Note: We assume, for simplicity, that every action has cost 1. (Uniform costs, cf. Chapter 4.)

Planning History STRIPS Planning Complexity PDDL Language Conclusion References

"TSP" in Australia

 $[\to {\sf Strictly}\ {\sf speaking},\ {\sf this}\ {\sf is}\ {\sf not}\ {\sf actually}\ {\sf a}\ {\sf TSP}\ {\sf problem}\ {\sf instance};\ {\sf simplified/adapted}$ for illustration.]

Jörg Hoffmann Artificial Intelligence

STRIPS Encoding of "TSP"

- Facts $P: \{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Initial state I: {at(Sydney), visited(Sydney)}.
- Goal G: $\{at(Sydney)\} \cup \{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Actions $a \in A$: drive(x, y) where x, y have a road. Precondition pre_a : $\{at(x)\}.$ Add list add_a : { at(y), visited(y) }. Delete list del_a : $\{at(x)\}.$
- Plan: $\langle drive(Sydney, Brisbane), drive(Brisbane, Sydney), drive(Sydney, Adelaide),$ drive(Adelaide, Perth), drive(Perth, Adelaide), drive(Adelaide, Darwin), drive(Darwin, Adelaide), drive(Adelaide, Sydney).

STRIPS Encoding of Simplified "TSP"

- Facts $P: \{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane\}\}.$
- Initial state $I: \{at(Sydney), visited(Sydney)\}.$
- Goal G: $\{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane\}\}$. (Note: no "at(Sydney)".)
- Actions $a \in A$: drive(x, y) where x, y have a road.

```
Precondition pre_a: \{at(x)\}.
Add list add_a: \{at(y), visited(y)\}.
Delete list del_a: {at(x)}.
```

STRIPS Encoding of Simplified "TSP": State Space

 \rightarrow Is this actually the state space? No, only the reachable part. E.g., Θ_{Π} also includes the states $\{v(Sy)\}\$ and $\{at(Sy), at(Br)\}.$

Jörg Hoffmann

Introduction

Artificial Intelligence

Chapter 13: Planning, Part I

(Oh no it's) The Blocksworld

- Facts: on(x,y), onTable(x), clear(x), holding(x), armEmpty().
- Initial state: $\{onTable(E), clear(E), \ldots, onTable(C), on(D, C), \ldots, onTable(C), on(D, C), \ldots, onTable(C), on(D, C), \ldots, onTable(C), on(D, C), on(D$ clear(D), armEmpty().
- Goal: $\{on(E,C), on(C,A), on(B,D)\}.$
- Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).
- stack(x, y)? $pre : \{holding(x), clear(y)\}$ $add: \{on(x, y), armEmpty()\}$ $del: \{holding(x), clear(y)\}.$

Questionnaire

Question!

Introduction

Which are correct encodings of the STRIPS Blocksworld pickup(x)action schema?

- (A): $(\{onTable(x), clear(x), \}$ armEmpty(), $\{holding(x)\},\$ $\{onTable(x)\}\).$
- (C): $(\{onTable(x), clear(x), \}$ armEmpty(), $\{holding(x)\}, \{onTable(x),\}$ $armEmpty(), clear(x)\}$).
- (B): $(\{onTable(x), clear(x), \}$ armEmpty(), $\{holding(x)\},\$ $\{armEmpty()\}$).
- (D): $(\{onTable(x), clear(x), \}$ armEmpty(), $\{holding(x)\}, \{onTable(x),$ armEmpty()}).

Questionnaire

Question!

Introduction

Which are correct encodings of the STRIPS Blocksworld pickup(x) action schema?

```
(A): (\{onTable(x), clear(x), \}
                                      (B): (\{onTable(x), clear(x), \}
                                            armEmpty(),
     armEmpty(),
     \{holding(x)\},\
                                            \{holding(x)\},\
     \{onTable(x)\}\).
                                            \{armEmpty()\}).
(C): (\{onTable(x), clear(x), \}
                                      (D): (\{onTable(x), clear(x), \}
     armEmpty(),
                                            armEmpty(),
                                            \{holding(x)\}, \{onTable(x),
     \{holding(x)\}, \{onTable(x),\}
     armEmpty(), clear(x)\}).
                                            armEmpty()}).
```

 \rightarrow (A): No, must delete armEmpty(). (B): No, must delete onTable(x). (C), (D): Both yes: We can, but don't have to, encode the single-arm Blocksworld so that the block currently in the hand is not clear.

The Blocksworld is Hard?

В

D

The Blocksworld is Hard!

Initial State

Goal State

PDDL Quick Facts

Introduction

PDDL is not a propositional language:

- Representation is lifted, using object variables to be instantiated from a finite set of objects. (Similar to predicate logic)
- Action schemas parameterized by objects.
- Predicates to be instantiated with objects.

A PDDL planning task comes in two pieces:

- The domain file and the problem file.
- The problem file gives the objects, the initial state, and the goal state.
- The domain file gives the predicates and the operators; each benchmark domain has *one* domain file.

Jörg Hoffmann

The Blocksworld in PDDL: Domain File

The Blocksworld in PDDL: Problem File

Planning History STRIPS Planning Complexity PDDL Language Conclusion References

Summary

Introduction

- General problem solving attempts to develop solvers that perform well across a large class of problems.
- Planning, as considered here, is a form of general problem solving dedicated to the class of classical search problems. (Actually, we also address inaccessible, stochastic, dynamic, continuous, and multi-agent settings.)
- Heuristic search planning has dominated the International Planning Competition (IPC). We focus on it here.
- STRIPS is the simplest possible, while reasonably expressive, language for our purposes. It uses Boolean variables (facts), and defines actions in terms of precondition, add list, and delete list.
- Plan existence (bounded or not) is PSPACE-complete to decide for STRIPS. If we bound plans polynomially, we get down to NP-completeness.
- PDDL is the de-facto standard language for describing planning problems.

Jörg Hoffmann Artificial Intelligence Chapter 13: Planning, Part I 56/67

Artificial Intelligence

14. Planning, Part II: Algorithms

How to Solve Arbitrary Search Problems

Jörg Hoffmann

Summer Term 2014

Agenda

- Introduction
- 2 How to Relax
- The Delete Relaxation
- 4 The h^+ Heuristic
- **5** Approximating h^+
- 6 An Overview of Advanced Results
- Conclusion

Jörg Hoffmann

Reminder: Search

→ Starting at initial state, produce all successor states step by step:

 \rightarrow In planning, this is referred to as forward search, or forward state-space search.

Jörg Hoffmann

Search in the State Space?

 \rightarrow Use heuristic function to guide the search towards the goal!

Reminder: Informed Search

 \rightarrow Heuristic function h estimates the cost of an optimal path from a state s to the goal; search prefers to expand states s with small h(s).

Live Demo vs. Breadth-First Search:

http://qiao.github.io/PathFinding.js/visual/

Jörg Hoffmann

Artificial Intelligence

Reminder: Heuristic Functions

Definition (Heuristic Function). Let Π be a planning task with states S. A heuristic function, short heuristic, for Π is a function $h: S \mapsto \mathbb{N}_0^+ \cup \{\infty\}$ so that h(s) = 0 whenever s is a goal state.

 \rightarrow Exactly like our definition from Chapter 5. Except, because we assume uniform costs here, we use \mathbb{N}_0^+ instead of \mathbb{R}_0^+ .

Definition (h^* , Admissibility). Let Π be a planning task with states S. The perfect heuristic h^* assigns every $s \in S$ the length of a shortest path from s to a goal state, or ∞ if no such path exists. A heuristic function h for Π is admissible if, for all $s \in S$, we have $h(s) \leq h^*(s)$.

- \rightarrow Exactly like our definition from Chapter 5, except for path *length* instead of path *cost* (cf. above).
- \rightarrow In all cases, we attempt to approximate $h^*(s)$, the length of an optimal plan for s. Some algorithms guarantee to lower-bound $h^*(s)$.

Reminder: Greedy Best-First Search and A*

Duplicate elimination omitted for simplicity:

```
function Greedy Best-First Search [A*](problem) returns a solution, or failure node \leftarrow a node n with n.state = problem.InitialState frontier \leftarrow a priority queue ordered by ascending n [g+h], only element n loop do

if Empty?(frontier) then return failure

n \leftarrow Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action\ a in problem.Actions(n.State) do

n' \leftarrow ChildNode(problem,n,a)
Insert(n', h(n')\ [g(n') + h(n')],\ frontier)
```

- → Is Greedy Best-First Search optimal? No ⇒ satisficing planning.
- \rightarrow Is A* optimal? Yes, but only if h is admissible \Longrightarrow optimal planning, with such h.

Our Agenda for This Chapter

- How to Relax: How to relax a problem?
 - → Basic principle for generating heuristic functions.
- The Delete Relaxation: How to relax a planning problem?
 - ightharpoonup The delete relaxation is the most successful method for the *automatic* generation of heuristic functions. It is a key ingredient to almost all IPC winners of the last decade. It relaxes STRIPS planning tasks by ignoring the delete lists.
- The h^+ Heuristic: What is the resulting heuristic function?
 - $\rightarrow h^+$ is the "ideal" delete relaxation heuristic.
- Approximating h^+ : How to actually compute a heuristic?
 - \rightarrow Turns out that, in practice, we must approximate h^+ .
- An Overview of Advanced Results: And what else can we do?
 - \rightarrow This section gives a brief glimpse into the state of the art in the area as a whole.

Reminder: Heuristic Functions from Relaxed Problems

Problem Π : Find a route from Saarbruecken To Edinburgh.

Jörg Hoffmann

Artificial Intelligence

Reminder: Heuristic Functions from Relaxed Problems

Relaxed Problem Π' : Throw away the map.

Jörg Hoffmann

Artificial Intelligence

Reminder: Heuristic Functions from Relaxed Problems

Heuristic function h: Straight line distance.

Jörg Hoffmann

Artificial Intelligence

How to Relax

- You have a class $\mathcal P$ of problems, whose perfect heuristic $h_{\mathcal P}^*$ you wish to estimate.
- You define a class \mathcal{P}' of *simpler problems*, whose perfect heuristic $h_{\mathcal{P}'}^*$ can be used to *estimate* $h_{\mathcal{P}}^*$.
- You define a transformation the relaxation mapping \mathcal{R} that maps instances $\Pi \in \mathcal{P}$ into instances $\Pi' \in \mathcal{P}'$.
- Given $\Pi \in \mathcal{P}$, you let $\Pi' := \mathcal{R}(\Pi)$, and estimate $h_{\mathcal{P}}^*(\Pi)$ by $h_{\mathcal{P}'}^*(\Pi')$.

Relaxation in Route-Finding

- Problem class \mathcal{P} : Route finding.
- Perfect heuristic $h_{\mathcal{P}}^*$ for \mathcal{P} : Length of a shortest route.
- Simpler problem class \mathcal{P}' : Route finding on an empty map.
- Perfect heuristic $h_{\mathcal{P}'}^*$ for \mathcal{P}' : Straight-line distance.
- Transformation \mathcal{R} : Throw away the map.

How to Relax in Planning?

Another Example: "Logistics"

- Facts P: $\{truck(x) \mid x \in \{A, B, C, D\}\} \cup pack(x) \mid x \in \{A, B, C, D, T\}\}$.
- Initial state I: $\{truck(A), pack(C)\}$.
- Goal G: $\{truck(A), pack(D)\}.$
- Actions A: (Notated as "precondition \Rightarrow adds, \neg deletes")
 - drive(x, y), where x, y have a road: " $truck(x) \Rightarrow truck(y), \neg truck(x)$ ".
 - load(x): " $truck(x), pack(x) \Rightarrow pack(T), \neg pack(x)$ ".
 - unload(x): " $truck(x), pack(T) \Rightarrow pack(x), \neg pack(T)$ ".

Example "Only-Adds" Relaxation: Drop the preconditions and deletes!

"drive(x,y): $\Rightarrow truck(y)$ "; "load(x): $\Rightarrow pack(T)$ "; "unload(x): $\Rightarrow pack(x)$ ".

 \rightarrow Heuristic value for I is? 1: A plan for the relaxed task is $\langle unload(D) \rangle$.

How to Relax During Search: Overview

Attention! Search uses the real (un-relaxed) Π . The relaxation is applied (e.g., in Only-Adds, the simplified actions are used) **only within the call to** h(s)!!!

- Here, Π_s is Π with initial state replaced by s, i.e., $\Pi = (P, A, I, G)$ changed to (P, A, s, G): The task of finding a plan for search state s.
- A common student mistake is to instead apply the relaxation once to the whole problem, then doing the whole search "within the relaxation".
- The next slide illustrates the correct search process in detail.

Jörg Hoffmann

Artificial Intelligence

Chapter 14: Planning, Part II

16/78

Greedy best-first search: (tie-breaking: alphabetic)

Real problem:

- Initial state *I*: *AC*; goal *G*: *AD*.
- Actions A: pre, add, del.
- \bullet drXY, loX, ulX.

Relaxed problem:

- State s: AC; goal G: AD.
- Actions A: add.
- $h^{\mathcal{R}}(s) = 1$: $\langle ulD \rangle$.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

Jörg Hoffmann

AC

Greedy best-first search:

(tie-breaking: alphabetic)

Real problem:

- State s: BC; goal G: AD.
- Actions A: pre, add, del.
- $AC \xrightarrow{drAB} BC$.

Relaxed problem:

- State s: BC; goal G: AD.
- Actions A: add.
- $h^{\mathcal{R}}(s) = 2$: e.g. $\langle drBA, ulD \rangle$.

Greedy best-first search:

(tie-breaking: alphabetic)

Greedy best-first search:

(tie-breaking: alphabetic)

Real problem:

- State s: CC; goal G: AD.
- Actions A: pre, add, del.
- $BC \xrightarrow{drBC} CC$.

Relaxed problem:

• State *s*: *CC*; goal *G*: *AD*.

• Actions A: add.

• $h^{\mathcal{R}}(s) = 2$: e.g. $\langle drBA, ulD \rangle$.

Greedy best-first search:

(tie-breaking: alphabetic)

Greedy best-first search: (tie-breaking: alphabetic)

Real problem:

- State s: AC; goal G: AD.
- Actions A: pre, add, del.
- Duplicate state, prune.

Greedy best-first search:

(tie-breaking: alphabetic)

Real problem:

- State s: DC; goal G: AD.
- Actions A: pre, add, del.
- $CC \xrightarrow{drCD} DC$.

Greedy best-first search:

(tie-breaking: alphabetic)

Relaxed problem:

- State s: DC; goal G: AD.
 - Actions A: add.
- $h^{\mathcal{R}}(s) = 2$: e.g. $\langle drBA, ulD \rangle$.

Greedy best-first search:

(tie-breaking: alphabetic)

Real problem:

- State s: CT; goal G: AD.
- Actions A: pre, add, del.
- $CC \xrightarrow{loC} CT$.

Greedy best-first search:

(tie-breaking: alphabetic)

Relaxed problem:

- State s: CT; goal G: AD.
- Actions A: add.
- $h^{\mathcal{R}}(s) = 2$: e.g. $\langle drBA, ulD \rangle$.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

2
DC
DC
AC
BC
CC
CT

Real problem:

- State s: BC; goal G: AD.
- Actions A: pre, add, del.
- Duplicate state, prune.

BC

AC

Real problem:

- Initial state I: AC; goal G: AD.
- Actions A: pre, add, del.
- drXY, loX, ulX.

Note: Only-Adds is a "Native" Relaxation

Native Relaxations: Confusing special case where $\mathcal{P}' \subseteq \mathcal{P}$.

- Problem class P: STRIPS planning tasks.
- Perfect heuristic $h_{\mathcal{D}}^*$ for \mathcal{P} : Length h^* of a shortest plan.
- Transformation \mathcal{R} : Drop the preconditions and delete lists.
- Simpler problem class \mathcal{P}' is a special case of \mathcal{P} , $\mathcal{P}' \subseteq P$: STRIPS planning tasks with empty preconditions and delete lists.
- Perfect heuristic for \mathcal{P}' : Shortest plan for Only-Adds STRIPS task.

Questionnaire

Question!

Does Only-Adds yield a "good heuristic" (accurate goal distance estimates) in ...

(A): Freecell? (B): SAT? (#unsatisfied clauses)

(C): Blocksworld? (D): Path Planning?

Questionnaire

Question!

Does Only-Adds yield a "good heuristic" (accurate goal distance estimates) in ...

(A): Freecell? (B): SAT? (#unsatisfied clauses)

(C): Blocksworld? (D): Path Planning?

- \rightarrow (A): No: The heuristic value does take into account how many cards are already "home", but it is completely independent of the placement of all the other cards. In particular, dead-ends are essential in Freecell but the heuristic is completely unable to detect any of them.
- \rightarrow (B): No: Typically, it is easy to satisfy many clauses, but then satisfying the remaining ones involves re-doing the entire assignment. (Nevertheless, this heuristic is being used in local search for SAT!)
- \rightarrow (C): No: If we build a goal-tower of size 100 on top of a single block that still needs to move elsewhere, then the heuristic value is 1.
- ightarrow (D): No! The heuristic remains constantly 1 until we reach the actual goal state.

How The Delete Relaxation Changes the World

Relaxation mapping R saying that:

"When the world changes, its previous state remains true as well."

Relaxed world: (before)

How The Delete Relaxation Changes the World

Relaxation mapping R saying that:

"When the world changes, its previous state remains true as well."

Relaxed world: (after)

The Delete Relaxation

Definition (Delete Relaxation). Let $\Pi = (P, A, I, G)$ be a planning task. The delete-relaxation of Π is the task $\Pi^+ = (P, A^+, I, G)$ where $A^+ = \{a^+ \mid a \in A\}$ with $pre_{a^+} = pre_a$, $add_{a^+} = add_a$, and $del_{a^+} = \emptyset$.

 \rightarrow In other words, the class of simpler problems \mathcal{P}' is the set of all STRIPS planning tasks with empty delete lists, and the relaxation mapping \mathcal{R} drops the delete lists.

Definition (Relaxed Plan). Let $\Pi = (P, A, I, G)$ be a planning task, and let s be a state. A relaxed plan for s is a plan for $(P, A, s, G)^+$. A relaxed plan for I is called a relaxed plan for Π .

- \rightarrow A relaxed plan for s is an action sequence that solves s when pretending that all delete lists are empty.
- \rightarrow Also called delete-relaxed plan; "relaxation" is often used to mean "delete-relaxation" by default.

A Relaxed Plan for "TSP" in Australia

- **1** Initial state: $\{at(Sydney), visited(Sydney)\}.$
- **2 Apply** $drive(Sydney, Brisbane)^+$: $\{at(Brisbane), visited(Brisbane), at(Sydney), visited(Sydney)\}.$
- **3** Apply drive(Sydney, Adelaide)⁺: {at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane), at(Sydney), visited(Sydney)}.
- Apply drive(Adelaide, Perth)⁺: {at(Perth), visited(Perth), at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane), at(Sydney), visited(Sydney)}.
- ♠ Apply drive(Adelaide, Darwin)⁺: {at(Darwin), visited(Darwin), at(Perth), visited(Perth), at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane), at(Sydney), visited(Sydney)}.

A Relaxed Plan for "Logistics"

- Facts P: $\{truck(x) \mid x \in \{A, B, C, D\}\} \cup pack(x) \mid x \in \{A, B, C, D, T\}\}$.
- Initial state I: $\{truck(A), pack(C)\}$.
- Goal G: $\{truck(A), pack(D)\}$.
- Relaxed actions A^+ : (Notated as "precondition \Rightarrow adds")
 - $drive(x,y)^+$: " $truck(x) \Rightarrow truck(y)$ ".
 - $load(x)^+$: "truck(x), $pack(x) \Rightarrow pack(T)$ ".
 - $unload(x)^+$: " $truck(x), pack(T) \Rightarrow pack(x)$ ".

Relaxed plan:

$$\langle drive(A,B)^+, drive(B,C)^+, load(C)^+, drive(C,D)^+, unload(D)^+ \rangle$$

 \rightarrow We don't need to drive the truck back, because "it is still at A".

$PlanEx^{+}$

Definition (Relaxed Plan Existence Problem). By $PlanEx^+$, we denote the problem of deciding, given a planning task $\Pi = (P, A, I, G)$, whether or not there exists a relaxed plan for Π .

→ This is easier than PlanEx for general STRIPS!

Proposition (PlanEx⁺ is Easy). PlanEx⁺ is a member of \mathbf{P} .

Proof. The following algorithm decides PlanEx⁺:

```
\begin{split} F &:= I \\ \text{while } G \not\subseteq F \text{ do} \\ F' &:= F \cup \bigcup_{a \in A: pre_a \subseteq F} add_a \\ \text{(*) if } F' &= F \text{ then return "unsolvable" endif} \\ F &:= F' \end{split}
```

endwhile return "solvable"

The algorithm terminates after at most |P| iterations, and thus runs in polynomial time. Correctness: See slide 29.

Deciding PlanEx⁺ in "TSP" in Australia

Iterations on F:

- \bullet {at(Sydney), visited(Sydney)}
- $② \cup \{at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane)\}$
- $3 \cup \{at(Darwin), visited(Darwin), at(Perth), visited(Perth)\}$

Deciding PlanEx⁺ in "Logistics"

Iterations on F:

- \bullet {truck(A), pack(C)}

- $\bullet \cup \{pack(A), pack(B), pack(D)\}$

Deciding PlanEx⁺ in Unsolvable "Logistics"

Iterations on F:

- \bullet {truck(A), pack(C)}

- $\bullet \cup \{pack(T)\}$
- $\cup \{pack(A), pack(B)\}$
- **⑥** ∪ **∅**

Questionnaire

Question!

How does ignoring delete lists simplify Sokoban?

- (A): Free positions remain free.
- (C): A single action can push 2 stones at once.
- (B): You can walk through walls.
- (D): You will never "lock yourself in".

Questionnaire

Question!

How does ignoring delete lists simplify Sokoban?

- (A): Free positions remain free. (B): You can walk through walls.
- (C): A single action can push 2 (D): You will never "lock stones at once. yourself in".
- \rightarrow (A): Yes, when we move a stone into a free space, that space is still free afterwards.
- \rightarrow (B): No, we dont get any new moves in the relaxation.
- \rightarrow (C): Only if we give names to the stones. Within the relaxed problem, it may happen that two stones are in the same position, so in principle we can push them both. However, without distinguishing stone names, it is impossible to separate them again, so the two stones in fact become (behave in all relevant ways exactly like) a single stone.
- \rightarrow (D): Yes, that's because of (A).

- \mathcal{P} : STRIPS planning tasks; $h_{\mathcal{P}}^*$: Length h^* of a shortest plan.
- $\mathcal{P}' \subseteq \mathcal{P}$: STRIPS planning tasks with empty delete lists.
- \mathcal{R} : Drop the delete lists.
- Heuristic function: Length of a shortest *relaxed* plan $(h^* \circ \mathcal{R})$.

 \rightarrow PlanEx⁺ is not actually what we're looking for. PlanEx⁺ = relaxed plan *existence*; we want relaxed plan *length*.

h^+ : The Ideal Delete Relaxation Heuristic

Definition (Optimal Relaxed Plan). Let $\Pi = (P, A, I, G)$ be a planning task, and let s be a state. An optimal relaxed plan for s is an optimal plan for $(P, A, s, G)^+$.

 \rightarrow Same as slide 22, just adding the word "optimal".

Here's what we're looking for:

Definition (h^+). Let $\Pi = (P, A, I, G)$ be a planning task with states S. The ideal delete-relaxation heuristic h^+ for Π is the function $h^+: S \mapsto \mathbb{N}_0 \cup \{\infty\}$ where $h^+(s)$ is the length of an optimal relaxed plan for s if a relaxed plan for s exists, and $h^+(s) = \infty$ otherwise.

 \rightarrow In other words, $h^+ = h^* \circ \mathcal{R}$, cf. previous slide.

h^+ is Admissible

Lemma. Let $\Pi = (P, A, I, G)$ be a planning task, and let s be a state. If $\langle a_1, \ldots, a_n \rangle$ is a plan for (P, A, s, G), then $\langle a_1^+, \ldots, a_n^+ \rangle$ is a plan for $(P, A, s, G)^+$.

Proof Sketch. Show by induction over $0 \le i \le n$ that $appl(s, \langle a_1, \ldots, a_i \rangle) \subseteq appl(s, \langle a_1^+, \ldots, a_i^+ \rangle)$. (Exercises) \rightarrow "If we ignore deletes, the states along the plan can only get bigger."

Theorem. h^+ is Admissible.

Proof. Let $\Pi=(P,A,I,G)$ be a planning task with states S, and let $s\in S$. $h^+(s)$ is defined as optimal plan length in $(P,A,s,G)^+$. With the above lemma, any plan for (P,A,s,G) also constitutes a plan for $(P,A,s,G)^+$. Thus optimal plan length in $(P,A,s,G)^+$ can only be shorter than that in (P,A,s,G), and the claim follows.

h^+ in "TSP" in Australia

Planning vs. Relaxed Planning:

- Optimal plan: \(\langle drive(Sydney, Brisbane)\), \(drive(Brisbane, Sydney)\), \(drive(Sydney, Adelaide)\), \(drive(Adelaide, Perth)\), \(drive(Perth, Adelaide)\), \(drive(Adelaide, Darwin)\), \(drive(Darwin, Adelaide)\), \(drive(Adelaide, Sydney)\)\).
- Optimal relaxed plan: \(\langle drive(Sydney, Brisbane), drive(Sydney, Adelaide), drive(Adelaide, Perth), drive(Adelaide, Darwin) \(\rangle \).
- $h^*(I) = 8$; $h^+(I) = 4$.

Greedy best-first search:

(tie-breaking: alphabetic)

Real problem:

- Initial state I: AC; goal G: AD.
- Actions A: pre, add, del.
- \bullet drXY, loX, ulX.

Greedy best-first search: (tie-breaking: alphabetic)

Relaxed problem:

- State s: AC; goal G: AD.
- Actions A: pre, add.
- $h^+(s) = 5$: e.g. $\langle drAB, drBC, drCD, loC, ulD \rangle$.

Real problem:

- State s: BC; goal G: AD.
- Actions A: pre, add, del.
- $AC \xrightarrow{drAB} BC$.

Greedy best-first search: (tie-breaking: alphabetic)

Greedy best-first search: (tie-breaking: alphabetic)

Relaxed problem:

- State s: BC; goal G: AD.
- Actions A: pre, add.
- $h^+(s) = 5$: e.g. $\langle drBA, drBC, drCD, loC, ulD \rangle$.

Greedy best-first search:

(tie-breaking: alphabetic)

Real problem:

- State *s*: *CC*; goal *G*: *AD*.
- Actions A: pre, add, del.
- $BC \xrightarrow{drBC} CC$.

Greedy best-first search: (tie-breaking: alphabetic)

Relaxed problem:

- State s: CC; goal G: AD.
- Actions A: pre, add.
- $h^+(s) = 5$: e.g. $\langle drCB, drBA, drCD, loC, ulD \rangle$.

Greedy best-first search: (tie-breaking: alphabetic)

Real problem:

- State s: AC; goal G: AD.
- Actions A: pre, add, del.
- Duplicate state, prune.

Real problem: • State s:

- State s: DC; goal G: AD.
- Actions A: pre, add, del.
- $CC \xrightarrow{drCD} DC$.

Greedy best-first search: (tie-breaking: alphabetic)

Relaxed problem:

- State s: DC; goal G: AD.
- Actions A: pre, add.
- $h^+(s) = 5$: e.g. $\langle drDC, drCB, drBA, loC, ulD \rangle$.

Greedy best-first search: (tie-breaking: alphabetic)

Greedy best-first search: (tie-breaking: alphabetic)

Real problem:

- State s: CT; goal G: AD.
- Actions $A: pre, add, \frac{del}{del}$.
- $CC \xrightarrow{loC} CT$.

Greedy best-first search: (tie-breaking: alphabetic)

Relaxed problem:

- State s: CT; goal G: AD.
- Actions A: pre, add.
- $h^+(s) = 4$: e.g. $\langle drCB, drBA, drCD, ulD \rangle$.

Greedy best-first search: (tie-breaking: alphabetic)

Real problem:

- State s: BC; goal G: AD.
- Actions $A: pre, add, \frac{del}{del}$.
- Duplicate state, prune.

Real problem:

- Initial state I: AC; goal G: AD.
- Actions A: pre, add, del.
- \bullet drXY, loX, ulX.

h^+ in the Blocksworld

- Optimal plan: $\langle putdown(A), unstack(B, D), stack(B, C), pickup(A), stack(A, B) \rangle$.
- Optimal relaxed plan: $\langle stack(A,B), unstack(B,D), stack(B,C) \rangle$.

Question: What can we say about the "search space surface" at the initial state here? The initial state lies on a local minimum under h^+ : All neighbor states have a strictly higher heuristic value.

On the "Accuracy" of h^+

Reminder: Heuristics based on ignoring deletes are the key ingredient to almost all IPC winners of the last decade.

- ightarrow Why?
- ightarrow A heuristic function is useful if its estimates are "accurate".

How to measure this?

- Known method 1: Error relative to h^* , i.e., bounds on $|h^*(s) h(s)|$.
- Known method 2: Properties of the search space surface: Local minima etc.
- \rightarrow For h^+ , method 2 is the road to success:
- \rightarrow In many benchmarks, under h^+ , local minima *provably* do not exist! [Hoffmann (2005)]

A Brief Glimpse of h^+ Search Space Surfaces

 \rightarrow Graphs = state spaces, vertical height = h^+ :

"Gripper"

"Logistics"

On the side: I am happy Russel/Norvig included these pictures. I'm not so happy that the text reads as if these illustrations referred to computing the heuristic, rather than to finding a plan. (And no, the number of states within the relaxed problem is not the motivation for abstractions. And no, FF does not do iterative deepening, nor restarts.)

Jörg Hoffmann

Artificial Intelligence

Chapter 14: Planning, Part II

39/78

Introduction How to Relax Delete Relaxation The h⁺ Heuristic Approximating h⁺ Advanced Results Ov. Conclusion Referen

h^+ in (the Real) TSP

 $\rightarrow h =$ Minimum Spanning Tree

Jörg Hoffmann

Artificial Intelligence

Chapter 14: Planning, Part II

h^+ in Graphs

 h^+ (Graph-Distance) = real distance (shortest paths never "walk back")

Introduction How to Relax Delete Relaxation The h⁺ Heuristic Approximating h⁺ Advanced Results Ov. Conclusion Reference Occidence O

Questionnaire

Question!

In this domain, h^+ is equal to?

(A): Manhattan Distance. (B): Horizontal distance.

(C): Vertical distance. (D): h^* .

Introduction How to Relax Delete Relaxation The h⁺ Heuristic Approximating h⁺ Advanced Results Ov. Conclusion Referen

Questionnaire

Question!

In this domain, h^+ is equal to?

(A): Manhattan Distance. (B): Horizontal distance.

(C): Vertical distance. (D): h^* .

 \rightarrow (A): No, relaxed plans can't walk through walls. (B), (C): No, relaxed plans must move both horizontally and vertically. (D): Yes, optimal plan = shortest path = optimal relaxed plan (cf. previous slide).

How to Compute h^+ ?

Definition (PlanLen⁺). By PlanLen⁺, we denote the problem of deciding, given a planning task Π and an integer B, whether or not there exists a relaxed plan for Π of length at most B.

 \rightarrow By computing h^+ , we would solve PlanLen $^+$.

Theorem. PlanLen⁺ is **NP**-complete.

Proof. Membership: (Exercises). Hardness: By a polynomial reduction from SAT. Assume a CNF with m variables v_i and n clauses c_i .

- For each variable v_i , three facts v_i , $notv_i$, and $assignedv_i$; for each clause c_j in the CNF, one fact $satisfiedc_j$.
- Actions $assigntrue_i$: $(\emptyset, \{v_i, assigned_i\}, \emptyset)$ and $assignfalse_i$: $(\emptyset, \{notv_i, assigned_i\}, \emptyset)$.
- Actions $makesatisfiedc_j$: $(\{v_i\}, \{satisfiedc_j\}, \emptyset)$ where v_i appears positively in clause c_j ; $(\{notv_i\}, \{satisfiedc_j\}, \emptyset)$ where v_i appears negatively in clause c_j .
- Initial state \emptyset , goal $\{assigned_1, \dots, assigned_m, satisfiedc_1, \dots, satisfiedc_n\};$ B := m + n

Hold on a Sec - Where are we?

- \mathcal{P} : STRIPS planning tasks; $h_{\mathcal{P}}^*$: Length h^* of a shortest plan.
- $\mathcal{P}' \subseteq \mathcal{P}$: STRIPS planning tasks with empty delete lists.
- R: Drop the delete lists.
- Heuristic function: $h^+ = h^* \circ \mathcal{R}$, which is hard to compute.

 \rightarrow We can't compute our heuristic h^+ efficiently. So we approximate it instead.

Approximating h^{+} : h^{FF}

Definition (h^{FF}). Let $\Pi = (P, A, I, G)$ be a planning task with states S. The relaxed plan heuristic h^{FF} for Π is a function $h^{\text{FF}}: S \mapsto \mathbb{N}_0 \cup \{\infty\}$ returning the length of some, not necessarily optimal, relaxed plan for s if a relaxed plan for s exists, and returning $h^{\text{FF}}(s) = \infty$ otherwise.

Proposition. Let $\Pi = (P, A, I, G)$ be a planning task. Then $h^{\mathsf{FF}} \geq h^+$. $\to h^{\mathsf{FF}}$ is not admissible, i.e., $h^{\mathsf{FF}} > h^*$ can happen! Thus h^{FF} can be used for satisficing planning only, not for optimal planning.

Note: h^{FF} as per this definition is not unique. How do we find "some, not necessarily optimal, relaxed plan for (P, A, s, G)"?

- \rightarrow In what follows, we consider the following algorithm computing relaxed plans, and therewith (one variant of) h^{FF} :
 - Chain forward to build a relaxed planning graph (RPG).
 - 2 Chain backward to extract a relaxed plan from the RPG.

Computing h^{FF} : Relaxed Planning Graphs (RPG)

```
F_0 := s, \ t := 0 while G \not\subseteq F_t do A_t := \{a \in A \mid pre_a \subseteq F_t\} F_{t+1} := F_t \cup \bigcup_{a \in A_t} add_a if F_{t+1} = F_t then stop endif t := t+1 endwhile
```

 \rightarrow Does this look familiar to you? Could. It's the same algorithm we used to decide PlanEx⁺ (slide 25).

"Logistics" example: Blackboard (similar to slide 27).

Informations from the RPG: (min over an empty set is ∞)

- For $p \in P$: $level(p) := min\{t \mid p \in F_t\}$.
- For $a \in A$: $level(a) := min\{t \mid a \in A_t\}$.

Computing h^{FF} : Extracting a Relaxed Plan

```
M := \max\{level(p) \mid p \in G\}
If M = \infty then h^{\mathsf{FF}}(s) := \infty; stop endif
for t := 0, ..., M do
     G_t := \{ q \in G \mid level(q) = t \}
endfor
for t := M, \ldots, 1 do
     for all q \in G_t do
          select a, level(a) = t - 1, g \in add_a
          for all p \in pre_a do
               G_{level(p)} := G_{level(p)} \cup \{p\}
          endfor
     endfor
endfor
h^{\mathsf{FF}}(s) := \mathsf{number} \ \mathsf{of} \ \mathsf{selected} \ \mathsf{actions}
```

"Logistics" example: Blackboard.

RPG:

- $F_0 = \{at(Sydney), visited(Sydney)\}.$
- $A_0 = \{drive(Sydney, Adelaide), drive(Sydney, Brisbane)\}.$
- $F_1 = F_0 \cup \{at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane)\}.$
- A₁ = A₀∪ {drive(Adelaide, Darwin), drive(Adelaide, Perth), drive(Adelaide, Sydney), drive(Brisbane, Sydney)}.
- $F_2 = F_1 \cup \{at(Darwin), visited(Darwin), at(Perth), visited(Perth)\}.$

Inserting the goals:

- F_0 : at(Sydney), visited(Sydney).
- A_0 : drive(Sydney, Adelaide), drive(Sydney, Brisbane).
- F_1 : at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).
- A₁: drive(Adelaide, Darwin), drive(Adelaide, Perth), drive(Adelaide, Sydney), drive(Brisbane, Sydney).
- F_2 : at(Darwin), visited(Darwin), at(Perth), visited(Perth).

Supporting the goals at t = 2:

- F_0 : at(Sydney), visited(Sydney).
- A_0 : drive(Sydney, Adelaide), drive(Sydney, Brisbane).
- F_1 : at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).
- A₁: drive(Adelaide, Darwin), drive(Adelaide, Perth), drive(Adelaide, Sydney), drive(Brisbane, Sydney).
- F_2 : at(Darwin), visited(Darwin), at(Perth), visited(Perth).

Supporting the goals at t = 1:

- F_0 : at(Sydney), visited(Sydney).
- A_0 : drive(Sydney, Adelaide), drive(Sydney, Brisbane).
- F_1 : at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).
- A₁: drive(Adelaide, Darwin), drive(Adelaide, Perth), drive(Adelaide, Sydney), drive(Brisbane, Sydney).
- F_2 : at(Darwin), visited(Darwin), at(Perth), visited(Perth).

How Does it All Fit Together?

 \mathcal{P} : STRIPS planning tasks. $h_{\mathcal{P}}^*$: Length h^* of a shortest plan. \mathcal{P}' : STRIPS planning tasks with empty delete lists. \mathcal{R} : Drop the delete lists. $h^* \circ \mathcal{R}$: Length h^+ of a shortest relaxed plan.

- \rightarrow Use h^{FF} to approximate h^+ which itself is hard to compute.
- $\rightarrow h^+$ is admissible; h^{FF} is not.

Introduction How to Relax Delete Relaxation The h⁺ Heuristic Approximating h⁺ Advanced Results Ov. Conclusion Referen

Helpful Actions Pruning

Idea: In search, expand only those actions contained in the relaxed plan.

- \rightarrow Relaxed plan = "Go To Supermarket, Buy Milk, ..."
- \rightarrow Absolutely essential, used in all state-of-the-art satisficing planners.

Other Approximations of h^+

 h^{max} : Approximate the cost of fact set g by the most costly single fact $p \in g$

$$h^{\mathsf{max}}(s,g) := \left\{ \begin{array}{ll} 0 & g \subseteq s \\ \min_{a \in A, p \in add_a} 1 + h^{\mathsf{max}}(s, pre_a) & g = \{p\} \\ \max_{p \in g} h^{\mathsf{max}}(s, \{p\}) & |g| > 1 \end{array} \right.$$

ightarrow Admissible, but very uninformative (under-estimates vastly).

 h^{add} : Use instead the sum of the costs of the single facts $p \in g$

$$h^{\mathsf{add}}(s,g) := \left\{ \begin{array}{ll} 0 & g \subseteq s \\ \min_{a \in A, p \in add_a} 1 + h^{\mathsf{add}}(s, pre_a) & g = \{p\} \\ \sum_{p \in g} h^{\mathsf{add}}(s, \{p\}) & |g| > 1 \end{array} \right.$$

ightarrow Not admissible, and prone to over-estimation; h^{FF} works better.

Good lower bounds on h^+ : (cf. next section)

- Admissible landmarks [Karpas and Domshlak (2009)]
- LM-cut [Helmert and Domshlak (2009)].

Questionnaire

Question!

In the initial state of the Towers of Hanoi task with 5 discs, what is the value of h^+ ?

(A): 1 (B): 2 (C): 5 (D): 32

 \rightarrow (C): The discs always "remain stacked", so we can just clear the bottom disc and move it over. For n discs, this takes $h^+(I)=n$ steps.

