DAFTAR ISI

DAFTA	R ISI	i
BAB 1.	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Luaran	2
1.5	Manfaat	2
BAB 2.	TINJAUAN PUSTAKA	3
2.1.	Bibit Pohon	3
2.2.	NodeMCU	3
2.3.	Motor DC	3
2.4.	Motor Servo	4
2.5.	Baterai Li-Po	4
2.6.	Relay	4
2.7.	Bor Tanah	5
2.8.	Gearbox	5
BAB 3.	TAHAP PELAKSANAAN	6
3.1.	Waktu dan Tempat Pelaksanaan	6
3.2.	Alat dan Bahan	6
3.3.	Tahap Pembuatan	6
3.3	.1 Perancangan Desain 3D	6
3.3	.2 Perancangan Sistem Mekanik dan Elektrik	7
3.3	.3 Pembuatan Prototipe	8
3.4.	Cara Kerja	8
3.5.	Tahap Pengujian	8
BAB 4.	BIAYA DAN JADWAL KEGIATAN	9
4.1.	Anggaran Biaya	9
4.2.	Jadwal Kegiatan	9
DAFTA	R PUSTAKA	10
LAMPI	RAN	11

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan salah satu negara yang berada di daerah garis khatulistiwa. Hal tersebut menjadikan Indonesia memiliki iklim tropis dengan segala anugerah flora dan fauna yang beraneka ragam. Salah satu ciri dari negara tropis yaitu terdapat banyak hutan hujan yang tersebar luas. Hutan hujan yang luas tersebut memiliki peran yang sangat penting karena selain sebagai tempat tinggal berbagai satwa, hutan juga berfungsi sebagai pencegah bencana seperti banjir dan tanah longsor (Murdiyanto dan Gutomo, 2015).

Pada akhir-akhir ini luas hutan di Indonesia terus-menerus mengalami penurunan. Penurunan luas hutan ini terjadi karena beberapa faktor, baik karena faktor alam maupun ulah manusia. Saat ini sering muncul berita kebakaran hutan di Indonesia. Salah satu laman berita *detiknews* memberitahukan bahwa sepanjang tahun 2021 hutan yang terbakar di Riau telah mencapai luas 1.235 hektare. Lahan yang gundul di Indonesia dari tahun ke tahun semakin meluas. Data dari *Global Forest Watch* menunjukkan bahwa sepanjang tahun 2002-2020 Indonesia telah mengalami penggundulan hutan primer basah seluas 9,75 juta hektar. Penggundulan ini disebabkan banyak hal seperti pengalihan fungsi menjadi perkebunan, bencana kebakaran, bahkan tindakan ilegal seperti pencurian pohon dan penambangan ilegal. Hal ini jika dibiarkan tentu akan membuat hutan menjadi rusak dan akhirnya menjadi lahan gundul.

Salah satu cara yang dapat dilakukan untuk mengatasi lahan gundul adalah dengan reboisasi. Reboisasi menjadi langkah yang nyata untuk memulihkan hutan yang gundul dengan cara menanam kembali bibit-bibit pohon. Indonesia sebenarnya sudah melaksanakan program reboisasi sejak lama. Meskipun demikian, laju reboisasi di Indonesia masih sangat kurang. Menurut data dari *Forest Digest*, kemampuan pemerintah untuk merehabilitasi hutan gundul hanya 200.000 hektare per tahun, sementara laju deforestasi di Indonesia mencapai 450.000 hektare per tahun dengan luas lahan kritis masih mencapai 13,4 juta hektare (Susetyo, 2021). Hal ini harus segera ditangani agar laju reboisasi optimal sehingga dapat menyelamatkan lahan yang kritis. Reboisasi itu sendiri merupakan salah satu pokok pembahasan yang tercantum pada program *Suistainable Development Goals* (SDGs) 2030 sehingga program reboisasi ini menjadi sangat penting untuk dioptimalkan.

Dalam pelaksanaan reboisasi ada beberapa faktor yang menjadi penghambat. Salah satu faktor yang menghambat reboisasi yaitu kurangnya sumber daya manusia dalam mendukung dan bersama-sama melakukan reboisasi. Berkaitan dengan hal tersebut, peran pemerintah tidak cukup untuk memaksimalkan reboisasi tanpa adanya dukungan langsung dari masyarakat. Salah satu penyebab rendahnya partisipasi masyarakat yaitu karena kurangnya kesadaran diri tentang pentingnya reboisasi (Nento dan Tueno, 2019). Selain itu, pelaksanaan

reboisasi di Indonesia masih menggunakan cara manual dan peralatan sederhana sehingga laju reboisasi kurang optimal. Sistem reboisasi dengan cara manual seperti ini menjadi kurang efektif apabila jumlah sumber daya masyarakat yang berpartisipasi sedikit (Verhuliesov, 2021).

Dengan adanya permasalahan tersebut maka diperlukan inovasi dalam penerapan program reboisasi. Tim PKM-KC akan mengembangkan suatu alat penanam bibit pohon otomatis yang diharapkan dapat membantu meningkatkan laju reboisasi di Indonesia. Alat ini akan dirancang dengan inovasi sistem IoT sehingga dapat dikontrol dari jarak jauh. Penerapan sistem otomatis berbasis IoT ini akan memudahkan dalam proses reboisasi tanpa memerlukan banyak SDM. Alat tanam ini akan bergerak membawa beberapa bibit pohon dan akan menanamnya secara otomatis pada lahan yang telah ditentukan. Sistem otomatis akan diterapkan untuk dapat menentukan jarak tanam dengan akurat sesuai yang telah direncanakan. Kombinasi rancangan sistem mekanik dan elektrik akan membuat alat ini bekerja dengan cepat dan tepat. Dengan terwujudnya alat ini diharapkan dapat membantu menigkatkan laju reboisasi sehingga dapat mendukung penerapan *Suistainable Development Goals* (SDGs) 2030.

1.2 Rumusan Masalah

- 1. Bagaimana cara meningkatkan laju reboisasi di Indonesia?
- 2. Bagaimana cara kerja alat penanam bibit pohon otomatis berbasis IoT?
- 3. Bagaimana efektivitas alat penanam bibit pohon otomatis?

1.3 Tujuan

- 1. Menghasilkan alat penanam bibit pohon otomatis berbasis IoT yang dapat membantu meningkatkan laju reboisasi.
- 2. Merancang cara kerja alat penanam bibit pohon otomatis berbasis IoT.
- 3. Mengetahui efektivitas alat penanam bibit pohon otomatis.

1.4 Luaran

- 1. Laporan Kemajuan.
- 2. Laporan Akhir.
- 3. Prototipe berupa alat penanam bibit pohon otomatis berbasis IoT.

1.5 Manfaat

- 1. Membantu mengurangi luas hutan yang rusak dengan adanya inovasi alat penanam bibit pohon ini.
- 2. Menumbuhkan semangat mahasiswa untuk menghasilkan inovasi teknologi yang bermanfaat bagi lingkungan.
- 3. Memberikan referensi kepada masyarakat tentang perkembangan teknologi yang ada.
- 4. Menumbuhkan kesadaran masyarakat akan pentingnya reboisasi.

BAB 2. TINJAUAN PUSTAKA

2.1. Bibit Pohon

Bibit didefinisikan sebagai tumbuhan kecil (belum dewasa). Bibit merupakan salah satu faktor yang menentukan keberhasilan pertumbuhan tumbuhan. Menanam tumbuhan sebenarnya dimulai dengan pemilihan bibit tanaman yang baik. Hal ini dikarenakan bibit merupakan sasaran utama perkembangan pada proses pertumbuhan selanjutnya. Bibit juga membawa gen dari induknya yang menentukan karakteristik tanaman setelah produksi. Terdapat beberapa jenis bibit seperti bibit tanaman hias, tanaman pangan, dan bibit pohon reboisasi.

Gambar 2.1 Contoh Bibit Pohon Mahoni untuk Reboisasi.

2.2. NodeMCU

NodeMCU adalah sebuah *board* elektronik yang berbasis chip ESP8266 dengan kemampuan menjalankan fungsi mikrokontroler dan juga koneksi internet (*WiFi*). Perangkat keras ini merupakan sebuah platform IoT yang bersifat *opensource* dan terdapat beberapa pin *I/O* sehingga dapat dikembangkan menjadi sebuah aplikasi monitoring maupun *controlling* pada proyek IoT. NodeMCU ESP8266 dapat diprogram dengan *compiler*-nya Arduino menggunakan Arduino IDE, dan terdapat *port USB* (*mini USB*) sehingga akan memudahkan dalam pemrogramannya (Manullang, Saragih, dan Hidayat, 2021).

2.3. Motor DC

Motor listrik adalah mesin listrik yang mengubah energi listrik menjadi energi mekanis. Motor listrik umumnya bekerja karena interaksi antara medan magnet dan kuat arus listrik dalam kumparan untuk menghasilkan tenaga dalam bentuk gaya putar atau torsi yang terdapat pada *shaft* motor. Motor listrik DC memiliki dua terminal dan menggunakan tegangan arus searah atau DC (*Direct Current*) untuk dapat menggerakannya.

2.4. Motor Servo

Motor servo adalah alat atau aktuator putar (motor) yang dilengkapi dengan sistem kontrol *loop* tertutup (servo) yang dapat diatur atau disesuaikan untuk menentukan dan memberikan posisi sudut yang diinginkan dari poros *output* motor. Motor servo adalah perangkat yang terdiri dari motor DC, Serangkaian roda gigi, rangkaian kontrol, dan potensiometer. Serangkaian roda gigi yang terpasang pada poros motor DC dapat memperlambat putaran poros dan meningkatkan torsi motor servo. Di sisi lain, potensiometer mengubah resistansi saat motor berputar, dan berfungsi sebagai penentu batas posisi putaran servo (Rinaldy, Cristianti, dan Supriyadi, 2013).

Gambar 2.2 Motor Servo.

2.5. Baterai Li-Po

Baterai adalah perangkat untuk menyimpan energi yang ingin digunakan nantinya. Energi disimpan dalam bentuk energi kimia dan dapat diubah menjadi energi listrik. Baterai hanya dapat menggerakan elektron untuk jangka waktu tertentu, tergantung dengan berapa banyak energi yang disimpan di dalam baterai tersebut dan berapa banyak energi yang dibutuhkan. Baterai umumnya tidak dapat dapat diisi ulang dan beberapa baterai dapat diisi ulang.

Baterai Li-Po atau baterai *lithium-polymer* adalah baterai yang dapat diisi ulang dari teknologi *lithium-ion* menggunakan elektrolit polimer sebagai pengganti elektrolit cair. Polimer dengan konduktivitas tinggi membentuk elektrolit ini. Baterai ini memberikan energi yang lebih tinggi daripada jenis baterai litium lainnya.

2.6. Relay

Relay adalah saklar (*switch*) yang dioperasikan secara listrik dan merupakan komponen elektromekanikal yang terdiri dari 2 bagian utama yakni elektromagnet (*coil*) dan mekanikal (seperangkat kontak saklar/*switch*). Relay menggunakan prinsip elektromagnetik untuk menggerakkan kontak saklar sehingga dengan arus listrik yang kecil (*low power*) dapat menghantarkan listrik yang bertegangan lebih tinggi.

2.7. Bor Tanah

Bor tanah adalah alat pembuat lubang tanah untuk membuat lubang penyerapan air dan penanaman bibit pohon. Bor tanah ini memiliki model yang beragam dan diameter bor yang berbeda, disesuaikan dengan kebutuhan penggunanya. Bor tanah ini dapat dengan mudah membuat lubang di tanah dengan jumlah yang banyak dalam waktu singkat, serta dapat memudahkan pekerjaan manusia.

Gambar 2.3 Mata Bor Tanah.

2.8. Gearbox

Gearbox secara umum merupakan sebuah komponen yang dibutuhkan dalam industri atau permesinan. Gearbox tersusun dari kumpulan gear atau roda gigi yang bekerja dengan memindahkan daya pada suatu motor ke bagian penggerak lainnya. Daya yang dipindahkan akan disesuaikan sesuai torsi yang dibutuhkan. Rasio antar roda gigi akan menghasilkan torsi dan kecepatan putar sesuai apa yang dirancang pada sistem permesinan.

Gambar 2.4 Gearbox.

BAB 3. TAHAP PELAKSANAAN

3.1. Waktu dan Tempat Pelaksanaan

Program PKM-KC ini akan dilaksanakan selama empat bulan. Pelaksanaan program ini akan dilaksanakan secara *offline* dengan menerapkan segala protokol kesehatan yang berlaku. Pelaksanaan akan dilakukan di kampus Universitas Diponegoro Semarang dimulai dari tahap persiapan alat dan bahan, perancangan desain, pembuatan prototipe. Pengujian prototipe akan dilaksanakan di lahan terbuka sekitar kampus Universitas Diponegoro Semarang.

3.2. Alat dan Bahan

Pembelian alat dan barang akan dilakukan melalui *online shop* untuk alat dan bahan yang sulit dicari. Bahan yang berat atau besar akan dibeli langung di toko terdekat dengan memperhatikan protokol kesehatan. Alat dan bahan yang akan digunakan adalah nodeMCU esp8266, motor dc dan servo, baterai Li-Po, relay, plat galvanis, plat aluminium, batang besi, roda, *gearbox*, akrilik, bor listrik, gerinda potong, solder, avometer, pemotong akrilik, dan satu set *toolkit*.

3.3. Tahap Pembuatan

Dalam tahap ini ada langkah-langkah yang harus dikerjakan, yaitu:

3.3.1 Perancangan Desain 3D

Perancangan desain 3D diperlukan untuk mengetahui gambaran model yang akan dibuat. Gambaran model ini berguna untuk menentukan ukuran dan rancangan bentuk. Bentuk yang telah dibuat digunakan dalam menentukan sistem mekanik yang akan bekerja. Cara ini diharapkan untuk menghindari kesalahan ukuran dan sistem mekanik dalam pembuatan prototipe. Dalam desain 3D ini, tim PKM-KC menggunakan *software Solidworks* 2021.

Gambar 3.1 Desain Alat Penanam Otomatis.

3.3.2 Perancangan Sistem Mekanik dan Elektrik

Perancangan sistem mekanik dan elektrik sangat penting dilakukan agar alat dapat bekerja dengan optimal sesuai yang direncanakan. Hal ini terkait dengan sistem kerja alat yang akan dibuat. Kombinasi sistem mekanik dan elektrik yang tepat menjadikan alat ini mampu menanam bibit secara otomatis dan dapat dikontrol dari jarak jauh. Berikut prosedur perancangan:

Gambar 3.2 Diagram Alir Perancangan Mekanik & Elektrik.

3.3.3 Pembuatan Prototipe

Pembuatan prototipe akan langsung dilakukan secara *offline* di kampus Universitas Diponegoro Semarang dengan menerapkan segala protokol kesehatan yang ketat. Dalam tahap ini segala komponen yang telah disiapkan akan dirakit menjadi satu. Sistem mekanik dan elektrik akan langsung diterapkan pada rangkaian yang telah terbentuk. Tahap ini akan dilakukan secara teliti, fokus, dan memperhatikan keselamatan kerja.

3.4. Cara Kerja

Alat penanam bibit ini akan bekerja secara otomatis dan dapat dikendalikan dari jarak jauh melalui laptop. Sistem mekanik akan menggerakkan alat dengan menggunakan sistem empat roda. Sistem otomatis diterapkan agar alat dapat menentukan jarak tanam secara akurat dengan hanya satu perintah pemrograman. Jarak tanam yang akan diterapkan dapat diatur sesuai kebutuhkan yang direncanakan. Alat akan membawa beberapa bibit pohon dan tanah penimbun. Bibit pohon akan digerakan pada sistem wadah putar sehingga bibit dapat dijatuhkan untuk ditanam. Cara seperti ini ditujukan agar lebih cepat dalam menanam bibit pohon daripada menggunakan cara manual yang konvensional.

Gambar 3.3 Cara Kerja Alat.

3.5. Tahap Pengujian

Tahap pengujian dilakukan untuk memastikan prototipe yang sudah jadi dapat bekerja dengan baik sesuai yang telah direncanakan. Pengujian akan dilakukan di tanah terbuka sekitar kampus Universitas Diponegoro Semarang dengan menerapkan protokol kesehatan yang berlaku. Pengujian ini juga dilakukan untuk mengetahui efektivitas prototipe yang telah dibuat. Efektivitas akan dinilai dengan seberapa cepat alat tanam bibit pohon otomatis ini dapat menanam bibit pohon per satuan waktu.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Tabel 4.1 Anggaran Biaya.

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
1	D 1 II 1' D 1 '	Belmawa	4.000.000
1	Bahan Habis Pakai	Perguruan Tinggi	750.000
2	2 Sewa dan Jasa	Belmawa	950.000
2		Perguruan Tinggi	250.000
3	Transportasi Lokal	Belmawa	1.450.000
3		Perguruan Tinggi	300.000
4	Lain-Lain	Belmawa	600.000
4	Laiii-Laiii	Perguruan Tinggi	300.000
	Jumlah		Rp 8.600.000
		Belmawa	7.000.000
Rekap Sumber Dana		Perguruan Tinggi	1.600.000
		Jumlah	Rp 8.600.000

4.2. Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan.

No	Ionia Wagiatan		Bu	lan		Donon cover a Torrech
NO	Jenis Kegiatan	1	2	3	4	Penanggung Jawab
1	Perancangan dan Desain Alat					Syahrul Nur Hidayatulloh
2	Persiapan Alat dan Bahan					Ariya Permana Putra
3	Pembuatan Prototipe					Krisna Darmawan
4	Pengujian dan Evaluasi					Mohamad Fahrul Islami
5	Analisis Hasil Pengujian & Pembuatan Laporan					Muhammad Alief Rifaldi Alfiandry

DAFTAR PUSTAKA

- Ibama. 2021. *Kerusakan Hutan Hujan Primer Meningkat Sebesar 12% dari Tahun 2019 hingga Tahun 2020.* URL: https://www.globalforestwatch.org/blog/id/data-and-research/data-kehilangan-tutupan-pohon-global-2020/. Diakases tanggal 28 januari 2022.
- Manullang, A.B.P, Saragih, Y., dan Hidayat, R. 2021. Implementasi NodeMCU Esp8266 dalam Rancang Bangun Sistem Keamanan Sepeda Motor Berbasis IoT. *Jurnal Informatika dan Rekayasa Elektronika*. 4 (2):163-170.
- Murdiyanto & Gutomo, T. 2015. Bencana Alam Banjir dan Tanah Longsor dan Upaya Masyarakat dalam Penanggulangan. *Jurnal PKS*. 14 (4):437-452.
- Nento, F. dan Tueno, N.S. 2019. Faktor Penghambat Partisipasi Masyarakat adalam Pelaksanaan Program Reboisasi di Kecamatan Bulango Ulu Kabupaten Bone Bolango. *Jurnal Manajemen Sumber Daya Manusia dan Pelayanan Publik.* 6 (2):106-114.
- Rinaldy, Cristianti, R.F., dan Supriyadi, D. 2013. Pengendalian Motor Servo yang Terintegrasi dengan Webcam Berbasis Internet dan Arduino. *Jurnal Infotel*. 5 (2):17-23.
- Siregar, R. A. 2021. *Sudah 1235 Hektare Lahan di Riau Terbakar Sepanjang* 2021. URL: https://news.detik.com/berita/d-5670947/sudah-1235-hektare-lahan-di-riau-terbakar-sepanjang-2021. Diakses tanggal 28 januari 2022.
- Susetyo, P. D. 2021. *Sampai di Mana Rehabilitasi Hutan?* URL: https://www.forestdigest.com/detail/996/perbedaan-reforestasi-reboisasi-rehabilitasi-penghijauan. Diakses tanggal 11 Maret 2022.
- Verhuliesov D.V. 2021. THE NEW METHOD OF FORESTATION AUTOMATION WITH UAV AND THROUGH-THE-AIR SEEDLING DELIVERY TECHNIQUE BASED ON THE LIDAR GENERATED LAND SURFACE MODEL OPTIMIZATION. *Mathematical Machines and Systems*. 10 (3):126-132.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping Biodata Ketua

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Syahrul Nur Hidayatulloh
2	Jenis Kelamin	Laki – laki
3	Program Studi	S1 Teknik Mesin Universitas Diponegoro
4	NIM	21050119130110
5	Tempat dan Tanggal Lahir	Ngawi, 20 Desember 1999
6	Alamat E-mail	syahrunurh10@gmail.com
7	Nomor Telepon/HP	085773126594

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu Dan Tempat
1	KKN Tematik Undip	Peserta	Kelurahan Jabungan, 2022
2	LKMM-PD	Peserta	Universitas Diponegoro, 2019

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Pertamina Idea Competition	PT. Pertamina regional Jawa Tengah	2022
2	Penerima dana Hibah Penelitian Masyarakat (HPM)	Universitas Diponegoro	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai kestidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Semarang, 09-03-2022

Ketua Tim

Syahrul Nur Hidayatulloh

Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Ariya Permana Putra
2	Jenis Kelamin	Laki – laki
3	Program Studi	S1 Teknik Elektro Universitas Diponegoro
4	NIM	21060120120027
5	Tempat dan Tanggal Lahir	Semarang, 05 Mei 2001
6	Alamat E-mail	ariyapermanap@gmail.com
7	Nomor Telepon/HP	081477182205

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu Dan Tempat
1	UKM RnB Universitas	Manager External	Periode 2022-2023
	Diponegoro	Project	Undip
2	UPK Forum Studi	Staff Ahli Bidang	Periode 2022-2023
	Teknik Undip	Riset	Undip
3	RnB Startup	Koordinator Divisi	Sabtu, 23 Oktober
	Competition 2021	Acara	2021 via Ms.Teams

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Penerima dana Hibah Penelitian Mahasiswa	Universitas Diponegoro	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai kestidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Semarang, 09-03-2022

Anggota 1

(Ariya Permana Putra)

Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Mohamad Fahrul Islami
2	Jenis Kelamin	Laki – laki
3	Program Studi	S1 Informatika Universitas Diponegoro
4	NIM	24060120130074
5	Tempat dan Tanggal Lahir	Ngawi, 08 September 2001
6	Alamat E-mail	Islamifahrul985@gmail.com
7	Nomor Telepon/HP	082134423099

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu Dan Tempat
1	INFO HMIF Undip	Ketua Pelaksana	Tembalang, Semarang 2021
2	I-Care HMIF Undip	Dokumentasi	Gunung Pati, Semarang 2021
3	LKMM-PD	Peserta	Universitas Diponegoro, 2020

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai kestidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Semarang, 09-03-2022 Anggota 2

(Mohamad Fahrul Islami)

Biodata Anggota 3

A. Identitas Diri

1	Nama Lengkap	Muhammad Alief Rifaldi Alfiandry
2	Jenis Kelamin	Laki-laki
3	Program Studi	Biologi S-1
4	NIM	24020120120004
5	Tempat dan Tanggal Lahir	
6	Alamat E-mail	muhammadaliefrifaldiallf@gmail.com
7	Nomor Telepon/HP	085711247140

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	Senat Mahasiswa FSM Undip	Ketua Badan Legislasi	2022, Fakultas Sains dan Matematika
2.	International Asociation Agrikultur and Related Sains	Staf Departemen Sains and Technology	2022, Universitas Diponegoro
3.	Ikatan Mahasiswa Muhammadiyah Universitas Diponegoro	Sekretaris Bidang Sosial dan Ekonomi	2022, Universitas Diponegoro
4.	Seminar Nasional IAAS	Ketua Pelaksana	29 Mei 2021, Zoom Online
5.	Kegiatan Pelatihan, Penyusunan dan Pengajuan Produk Legislasi	Ketua Pelaksana	Februari 2022, Ms. Teams
6.	Praktikum Embriologi Hewan	Asisten Laboratorium	2022, Laboratorium Biostruktur Fungsi Hewan, Departemen Biologi

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Juara Harapan II Tingkat Naional, LKTIN IMATETANI	Ikatan Mahasiswa Tenik Pertanian Indonesia	2021
2.	Juara III Tingkat Nasional, Science Innovation Project, Universitas Udayan Bali	Himpunan Mahasiswa Kimia, Universitas Udayana Bali	2021
3.	Gold Medal BIOS Online Competition	Synbio Indonesia	2021
4.	Awardee Smart Scholarship	Yayasan Baitul Maal BRI (YBM BRI)	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai kestidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Semarang, 09-03-2022 Anggota 3

Muhammad Alief Rifaldi A)

Biodata Anggota 4

A. Identitas Diri

1	Nama Lengkap	Krisna Darmawan	
2	Jenis Kelamin	Laki – laki	
3	Program Studi	S1 Teknik Mesin Universitas Diponegoro	
4	NIM	21050119140144	
5	Tempat dan Tanggal Lahir	Depok, 31 Juli 2001	
6	Alamat E-mail	krsndrmwn319@gmail.com	
7	Nomor Telepon/HP	083818770128	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu Dan Tempat
1	Himpunan Mahasiswa Mesin (HMM)	Anggota	Semarang, 23 November 2019- sekarang
2	LKMMPD	Peserta	Semarang, 21-22 September 2019

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			31

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai kestidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Semarang, 09-03-2022

Anggota 4

Krisna Darmawan

Biodata Dosen Pendamping

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Norman Iskandar, S.T., M.T.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Mesin FT UNDIP
4	NIP/NIDN	198102212008121001/0021028107
5	Tempat dan Tanggal Lahir	Sragen, 21 Februari 1981
6	Alamat E-mail	norman.undip@gmail.com normaniskandar@lecturer.undip.ac.id
7	Nomor Telepon/HP	0813 2914 9090

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Masuk- Lulus
1	Sarjana (S1)	Teknik Mesin	Universitas Diponegoro	1999-2004
2	Magister (S2)	Teknik Mesin	Universitas Diponegoro	2009-2012
3	Doktor (S3)	Teknik Mesin	Universitas Diponegoro	2020-sekarang

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Metode numerik	Wajib	2
2	Perancangan proses produksi	Wajib	2
3	Metrologi Industri & Kontrol Kualitas	Wajib	2
4	CAD / CAM	Wajib	2
5	Penulisan teknik dan presentasi	Wajib	2
6	Menggambar Mesin	Wajib	3
7	Sistem Manufaktur	Wajib	2
8	Teknik Pelapisan	Wajib	2
9	Proses Manufaktur	Wajib	2
10	KKN	Wajib	3
11	Tugas Perancangan	Wajib	2
12	Teknik Pengukuran	Wajib	2
13	Tugas Praktek	Wajib	2
14	Manajemen Perawatan	Wajib	2
15	Teknologi Informasi	Wajib	2
16	Teknik Pelapisan	Pilihan	2
17	Lean Manufacturing	Pilihan	2

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Pengembangan Komposit Ramah	Ristekdikti	2020
	Lingkungan untuk Indutri Otomotif		2020
2	Pembuatan Pelet Berstandar Berbahan	Undip	2019
	Sekam Padi Menggunakan Mesin Flat Die		2017
	Pellet Mill Untuk Pengembangan Energi		
	Terbarukan		
3	Peningkatan Kualitas Pengelasan Logam	Ristekdikti	2019
	Tak Sejenis Aluminium dan Tembaga		300000000000000000000000000000000000000
	untuk Mendukung Pengembangan Mobil		
	Listrik		
4	Peningkatan Kualitas Pengelasan Logam	Ristekdikti	2018
	Tak Sejenis Aluminium dan Tembaga	2985	
	untuk Mendukung Pengembangan Mobil		
	Listrik		
5	Pengembangan Teknologi Pengerasan	Undip	2018
	Permukaan Pada Pisau Mesin Hammer	200.2	
	Mill dengan Metode Flame Hardening		
	Multi Nosel untuk Meningkatkan Daya		
	Saing IKM		
6	Karakterisasi Rocker Arm Orisinal Dan	Undip	2017
	Imitasi Lokal Pada Sepeda Motor Tipe		
	Sohc 110 Cc Secara Eksperimen Dan	*	
	Simulasi Fem Sebagai Upaya Perbaikan		
-	Kualitas Spare Part Lokal		
7	Pengembangan Material Tempa Komposit	Ristekdikti	2017
	Aluminium yang diperkuat Serbuk SiC		
0	untuk Komponen Otomotif		
8	Pengembangan Material Tempa Komposit	Ristekdikti	2016
	Aluminium yang diperkuat Serbuk SiC		
0	untuk Komponen Otomotif		
9	Pengaruh Tinggi Patahan Jalan Dan	Undip	2016
	Kecepatan Kendaraan Terhadap Potensi		
-	Cedera Tulang Belakang (Spinal Cord		
	Injury) Pada Pengendara Sepeda Motor		

Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Pendampingan proses Sertifikasi Halal untuk UKM katering pada Musim Pandemi Covid-19 di Pondok Aqiqah Kelurahan Jomblang Kecamatan Candisari Kota Semarang	Undip	2020
2	Sosialisasi Penggunaan Beriket Arang Tempurung Kelapa untuk Bahan Bakar pada IKM Alat Pertanian di Desa Krasak Kecamatan Mojotengah Kabupaten Wonosobo	Mandiri	2020
3	Penerapan IPTEK bagi desa binaan Undip untuk mewujudkan Desa Jetis Kecamatan Bandungan Kabupaten Semarang menjadi desa wisata unggulan baru berbasis kekayaan alam dan sumberdaya air	Undip	2018
4	Pemanfaatan Teknologi Tepat guna untuk Proses Penyaringan Sari kedelai di pabrik Tahu Sari Klaten Jawa Tengah	Undip	2018
5	Penguatan Ekonomi Kreatif Masyarakat kampung Batik Tegal Temu Kabupaten Temanggung	Ristekdikti	2017
6	IbM Kelompok Usaha Keripik Tempe Desa Wonolopo, Kecamatan Mijen, Kota Semarang, Jawa Tengah	Ristekdikti	2016

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Semarang, 16-03-2022 Dosen Pendamping,

(Norman Iskandar, S.T., M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
1	Bahan Habis Pakai			
	Plat Galvanis 1,2 mm	1	800.000	800.000
	Plat Aluminium 1mm	1	500.000	500.000
	Batang Besi	3	100.000	300.000
	Motor Servo Torque30kg	2	350.000	700.000
	Motor DC Torque50kg	2	200.000	400.000
	Bateri Li-Po 12v	2	200.000	400.000
	NodeMCU Esp8266 1set	1	150.000	150.000
	Akrilik	3	100.000	300.000
	ATK	1	50.000	50.000
	Baut dan Mur	50	1000	50.000
	Mata Bor Tanah	1	100.000	100.000
	Gearbox	1	400.000	400.000
	Roda 8inchi	4	150.000	600.000
	SUB TOTAL			4.750.000
2	Sewa dan Jasa			
	Sewa Gerinda dan Bor	1	100.000	100.000
	Sewa Elektronik Toolkit	1	50.000	50.000
	Jasa Pengelasan	1	850.000	850.000
	Jasa Bengkel	1	200.000	200.000
	SUB TOTAL			1.200.000
3	Transportasi Lokal	•		
	Observasi Komponen	8	50.000	400.000
	Pembelian Komponen	12	50.000	600.000
	Pembuatan Prototipe	10	50.000	500.000

	Kegiatan Pengujian	5	50.000	250.000
	SUB TOTAL			1.750.000
4	Lain-Lain			
	Tes Swab Antigen	5	120.000	600.000
	Masker 1 Box	1	110.000	110.000
	Sanitizer 1 botol	1	140.000	140.000
	Kuota Internet	1	50.000	50.000
SUB TOTAL				900.000
	GRAND TOTAL			Rp. 8.600.000

GRAND TOTAL (Terbilang Delapan Juta Enam Ratus Ribu Rupiah)

Lampiran 3. Susunan Organisasi Tim Pelaksana & Pembagian Tugas

No	Nama / NIM	Progra m Studi	Bidang Ilmu	Alokasi Waktu (jam/min ggu)	Uraian Tugas
1	Syahrul Nur Hidayatulloh / 210501191301 10	S1	Teknik Mesin	12	Perancangan desain dan mengatur segala jadwal kegiatan.
2	Ariya Permana Putra / 210601201200 27	S1	Teknik Elektro	12	Merancang dan menerapkan sistem elektrik pada prototipe.
3	Mohamad Fahrul Islami / 240601201300 74	S 1	Informatika	12	Merancang pemrograman sistem kontrol.
4	Muhammad Alief Rifaldi Alfiandry / 240201201200 04	S 1	Biologi	12	Menganalisis hasil pengujian dan pembuatan laporan.
5	Krisna Darmawan / 210501191401 44	S1	Teknik Mesin	12	Penyiapan bahan dan pembuatan prototipe.

Lampiran 4. Surat Pernyataan Ketua Pelaksana

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertandatangan di bawah ini:

Nama Ketua Tim	Syahrul Nur Hidayatulloh
Nomor Induk Mahasiswa	21050119130110
Program Studi	S1 Teknik Mesin
Nama Dosen Pendamping	Norman Iskandar
Perguruan Tinggi	Universitas Diponegoro

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul "Alat Penanam Bibit Pohon Otomatis Berbasis IoT sebagai Solusi Meningkatkan Laju Reboisasi Guna Mendukung Sustainable Development Goals (SDGs) 2030" yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Semarang, 10-03-2022 Yang menyatakan,

Syahrul Nur Hidayatulloh 21050119130110

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan

Bor tanah akan digunakan untuk menggali lubang.

akan berputar Bor dan bergerak menurun untuk membuat lubang pada tanah. Setelah lubang terbentuk, bor akan naik ke atas dan bibit tanaman siap untuk dimasukkan ke tanah penimbun beserta tanah bibit.

Bibit akan diletakkan pada tempat berbentuk silinder beserta tanah penimbun.

Ketika bor sudah membuat lubang dan terangkat ke atas, maka tempat bibit akan berputar untuk menjatuhkan bibit pada lubang dengan tepat beserta tanah yang digunakan untuk menimbun bibit tersebut.

Alat penanam ini menggunakan empat roda sebagai sistem penggeraknya. Hal ini dtujukan agar mampu menopang bibit pohon dan tanah penimbun dengan kuat dan stabil. Mata bor tanah akan dipasang pada motor listrik dengan rpm dan torsi besar sehingga dapat melubangi segala jenis kondisi tanah, baik tanah yang lunak atau yang keras. Perputaran wadah bibit pohon akan digerakkan oleh motor servo. Motor servo ini memiliki torsi yang besar dengan perputaran yang akurat karena dapat diatur sudut perputarannya.