Explicación lema de posets

Agustín Curto Francisco Nievas

> Lógica FaMAF - UNC

> > 2017

Lema a probar

Probaremos el siguiente lema:

Lemma

Sean (P, \leq) y (P', \leq') posets. Supongamos que f es un isomorfismo de (P, \leq) en (P', \leq') , entonces para $a, b \in P$, tenemos que $a \prec b$ si y solo si $F(a) \prec' F(b)$.

Antes de comenzar, enunciaremos y probaremos lo siguiente:

$$a < b \Rightarrow f(a) <' f(b)$$
 (†)

Prueba $a, b \in P, a \prec b$ si y solo si $F(a) \prec' F(b)$

Proof

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) < z' < f(b)

Ya que $a \prec b$, tenemos por definición que:

$$a \prec b \Leftrightarrow a < b \text{ y } \nexists z \text{ tal que } a < z < b \ (\star)$$

- Por la observación (†), este primer punto se cumple.
- ② Supongamos que $\exists z'$ tal que f(a) < z' < f(b). Luego, nuevamente utilizando (†), tenemos:

$$f^{-1}(f(a)) < f^{-1}(z') < f^{-1}(f(b))$$

 $a < f^{-1}(z') < b$

Prueba $a, b \in P, a \prec b$ si y solo si $F(a) \prec' F(b)$

Lo cual, contradice (*). El absurdo vino de suponer que $\exists z'$ tal que f(a) < z' < f(b), por lo tanto $\nexists z'$ tal que f(a) < z' < f(b).

Finalmente, dado que se cumplen los puntos (1) y (2), es decir, hemos probado:

- **1** f(a) <' f(b)
- 2 $\nexists z'$ tal que f(a) < z' < f(b)

se cumple también $f(a) \prec' f(b)$.

Prueba $a, b \in P, a \prec b$ si y solo si $F(a) \prec' F(b)$

Proof

 \Leftarrow Supongamos $F(a) \prec' F(b)$, veamos que $a \prec b$. Ya que $F^{-1}: (P, \leq) \to (P', \leq')$, por lo ya visto tenemos:

$$f^{-1}(f(a)) \quad \prec \quad f^{-1}(f(b))$$
$$a \quad \prec \quad b$$