

Pracownia Fizyczna Zdalna Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

TEMAT: Wyznaczanie wartości przyspieszenia ziemskiego metodą spadku swobodnego							
Wydział	Matematyki Stosowanej	Kierunek	Informatyka				
Grupa/Sekcja	2/C	Rok akademicki	2021				
Rok studiów	I	Semestr	2				
Oświa	Oświadczam, że niniejsze sprawozdanie jest całkowicie moim/naszym dziełem, że żaden						
z fragr	z fragmentów sprawozdania nie jest zapożyczony z cudzej pracy. Oświadczam, że jestem						
świadoma/świadom odpowiedzialności karnej za naruszenie praw autorskich osób trzecich.							
Lp.	Imię i nazwisko	Podpis					
1.	Grzegorz Koperwas						
2.							
3.							

Ocena poprawności elementów sprawozdania

	1						
data	wstęp i cel	struktura		rachunek		zapis	
oceny	ćwiczenia	sprawozdania	obliczenia	niepewności	wykres	końcowy	wnioski

Ocena końcowa

OCENA lub	
LICZBA PUNKTÓW	
DATA	
PODPIS	

1. Wstęp teoretyczny

Celem doświadczenia jest pomiar przyspieszenia grawitacyjnego poprzez pomiar czasu jaki potrzebuje ciało do upadku z danej wysokości.

Rysunek 1: Układ pomiarowy

Na ciało działa siła grawitacji $\vec{F_g}$, wprawiająca je w ruch z przyspieszeniem g, zatem ruch tego ciała jest jednostajnie przyspieszony. Mierzony jest czas t w jakim ciało pokonuje odległość H. Ciało na początku jest w spoczynku.

Równanie ruchu dla danego przypadku ma postać:

$$H = \frac{gt^2}{2}$$

Zatem $g=\frac{2}{m}$ gdzie m to współczynnik nachylenia prostej o równaniu:

$$t^2 = m \cdot H \tag{1}$$

2. Pomiary

Metoda pomiarowa

Pomiary były wykonywane inną metodą niż ta zalecona, zamiast aplikacji *PhysBox* wykorzystano program *Audacity*, którym manualnie analizowano nagrania z mikrofonu komputera. Czas upadku był wyznaczony jako odstęp czasu między środkiem pierwszego dźwięku (suwania się ciała z poziomicy) a dźwiękiem uderzenia ciała w podłogę.

Typowa długość pierwszego dźwięku została wyznaczona jako 0.08s, zatem niepewność czasu rozpoczęcia spadku swobodnego jest połową tej wartości. Jako iż dźwięk upadku ciała o podłogę jest dużo głośniejszy i upadek występuje na jego samym początku to jako nie pewność możemy użyć połowę okresu próbkowania mikrofonu czyli około $1.1\cdot 10^{-5}s$

Ostatecznie jako iż niepewność drugiego dźwięku jest znikoma w porównaniu do niepewności pierwszego¹, to za niepewność pomiaru przyjmujemy 0,04s.

Wyniki pomiarów:

$H [cm] \pm 0.1cm$	$t [s] \pm 0.04s$							
11 [CIII] ±0,1 <i>CIII</i>	1	2	3	4	5	6	7	8
52,4	0,31	0,29	0,31	0,30	0,27	0,28	0,28	0,36
75,0	0,36	0,31	0,31	0,37	0,35	0,37	0,50	0,36
85,0	0,43	0,43	0,43	0,42	0,42	0,42	0,45	0,38
111,3	0,46	0,42	0,49	0,50	0,49	0,43	0,49	0,48
148,6; 148,8	0,55	0,53	0,53	0,53	0,59	0,56	0,57	0,52

Tablica 1: Dane pomiarowe

Przy większych wartościach H nastąpił spadek precyzji miarki, zatem gdy dla innych wartości H nie występowały różne wartości, to dla ostatniego pomiaru wartość ta bywała różna.

3. Przetwarzanie danych oraz obliczone wartości

\bar{H} [cm]	\bar{t} [s]	Odch. Std. H	Odch. Std. T	u(H)	u(t)	t^2	$u(t^2)$
52,4	0,30	0,00	0,014	0,10	0,020	0,091	0,040
75,0	0,37	0,00	0,027	0,10	0,031	0,135	0,061
85,0	0,42	0,00	0,009	0,10	0,017	0,178	0,034
111,3	0,47	0,00	0,014	0,10	0,020	0,220	0,040
148,7	0,55	0,13	0,011	0,15	0,018	0,301	0,036

Tablica 2: Dane po przetworzeniu

 $^{^1}$ Jeśli dodamy te niepewności to otrzymamy wartość 0,040011s, która po zaokrągleniu do dwóch cyfr znaczących daje nam0,040s

Rysunek 2: Wykres t^2 od H

4. Wnioski

Z zależności $g=\frac{2}{m}$ i nachyleniu z wykresu 2 obliczamy g. Ostatecznie:

$$g = 9.19 \frac{m}{s^2}; u(g) = 0.54 \frac{m}{s^2}$$

Porównanie z wartością tablicową

$$|9,19 - 9,81| < 2 \cdot 0,54$$
$$0.62 < 1,08$$

Wartość obliczona g jest zgodna z wartością tablicową.

5. Sposoby na ograniczenie błędów

Głównym źródłem błędów była niemożliwość dokładnego ustalenia początku spadku swobodnego ciała, zastosowanie innej metody (na przykład kamery video) pozwoliłoby ograniczyć błędy. Metoda z kamerą pozwoliłaby również na precyzyjniejsze upuszczanie ciała.

Innym sposobem na ograniczenie niepewności była by zmiana ciała z końcówki klucza 10mm na kulkę stalową lub ołowianą.