MAT3007 Assignment 2

MAT3007 Assignment 2

A2.1

A2.2

A2.3

A2.4

(a)

(b)

(c)

(d)

...

A2.5

(a)

(b)

A2.1

Writing the LP in standard form,

min
$$z$$
 subject to $-x_1-2x_2-3x_3-8x_4=z$ $x_1-x_2+x_3+s_1=2$ $x_3-x_4+s_2=1$ $2x_2+3x_3+4x_4+s_3=8$ $x,s\geq 0.$

Tableau:

	x_1	x_2	x_3	x_4	s_1	s_2	s_3	$-z_0$
$-z_0$	-1	-2	-3	-8	0	0	0	0
s_1	1	-2	1	0	1	0	0	2
s_2	0	0	1	-1	0	1	0	1
s_3	0	2	3	$\boxed{4}$	0	0	1	8
$-z_0$	-1	2	3	0	0	0	2	16
s_1	1	-2	1	0	1	0	0	2
s_2	0	1/2	7/4	0	0	1	1/4	3
x_4	0	1/2	3/4	1	0	0	1/4	2
$-z_0$	0	0	4	0	1	0	2	18
x_1	1	-2	1	0	1	0	0	2
s_2	0	1/2	7/4	0	0	1	1/4	3
x_4	0	1/2	3/4	1	0	0	1/4	2

Hence the optimal value is 18, obtained at

$$(x_1, x_2, x_3, x_4) = (2, 0, 0, 2).$$

Rewriting the LP in standard form,

min
$$z$$
 subject to $x_1-x_2+x_3=z$ $-2x_1+x_2-x_3-s_1=1$ $x_1-x_2-x_3+s_2=4$ $x_2-x_4=0$ $x,s\geq 0.$

The auxiliary problem is then:

$$\begin{array}{ll} \min & \hat{z} \\ \text{subject to} & w_1+w_2+w_3=\hat{z} \\ & x_1-x_2+x_3=z \\ & -2x_1+x_2-x_3-s_1+w_1=1 \\ & x_1-x_2-x_3+s_2+w_2=4 \\ & x_2-x_4+w_3=0 \\ & x,s,w\geq 0. \end{array}$$

Tableau I:

	x_1	x_2	x_3	x_4	s_1	s_2	w	
$-\hat{z}_0$	1	-1	2	1	1	-1	*	-5
$-z_0$	1	-1	1	0	0	0	*	0
w_1	-2	1	-1	0	-1	0	*	1
w_2	1	-1	-1	0	0	1	*	4
w_3	0	1	0	-1	0	0	*	0
$-\hat{z}_0$	2	-2	1	1	1	0	*	-1
$-z_0$	1	-1	1	0	0	0	*	0
w_1	-2	1	-1	0	-1	0	*	1
s_2	1	-1	-1	0	0	1	*	4
w_3	0	1	0	-1	0	0	*	0
$-\hat{z}_0$	2	0	1	-1	1	0	*	-1
$-z_0$	1	0	1	-1	0	0	*	0
w_1	-2	0	-1	1	-1	0	*	1
s_2	1	0	-1	-1	0	1	*	4
x_2	0	1	0	-1	0	0	*	0
$-\hat{z}_0$	0	0	0	0	0	0	*	0
$-z_0$	-1	0	0	0	-1	0	*	1
x_4	-2	0	-1	1	-1	0	*	1
s_2	-1	0	-2	0	-1	1	*	5
x_2	-2	1	-1	0	-1	0	*	1

Already we see by selecting x_1 as the entering variable, all the ratios will be non-positive. This means we may increase x_1 arbitrarily without ever violating the constraints (simply elevate the existing basic variables accordingly). It follows that $z_{\min} = -\infty$. That is, z is unbounded from below.

A2.3

Notice that by subtracting the first two constraints, we have

$$7x_4=0,$$

which implies $x_4=0.$ And we may eliminate x_4 from the LP, as in

min
$$z$$
 subject to $2x_1 + 3x_2 - 2x_5 = z$ $x_1 + 3x_2 + x_5 = 2$ $-x_1 - 4x_2 + 3x_3 = 1$ $x \geq 0$.

The auxiliary problem:

$$\begin{array}{ll} \min & \hat{z} \\ \text{subject to} & w_1+w_2=\hat{z} \\ 2x_1+3x_2-2x_5=z \\ x_1+3x_2+x_5+w_1=2 \\ -x_1-4x_2+3x_3+w_2=1 \\ x,w\geq 0. \end{array}$$

Tableau I:

	x_1	x_2	x_3	x_5	\overline{w}	
$-\hat{z}_0$	0	1	-3	-1	*	-3
$-z_0$	2	3	0	-2	*	0
w_1	1	3	0	1	*	2
w_2	-1	-4	3	0	*	1
$-\hat{z}_0$	-1	-3	0	-1	*	-2
$-z_0$	2	3	0	-2	*	0
w_1	1	3	0	1	*	2
x_3	-1/3	-4/3	1	0	*	1/3
$-\hat{z}_0$	0	0	0	0	*	0
$-z_0$	1	0	0	-3	*	-2
x_2	1/3	1	0	1/3	*	2/3
x_3	1/9	0	1	4/9	*	11/9

Tableau II:

	x_1	x_2	x_3	x_5	
$-z_0$	1	0	0	-3	-2
x_2	1/3	1	0	1/3	2/3
x_3	1/9	0	1	4/9	11/9
$-z_0$	4	9	0	0	4
x_5	1	3	0	1	2
x_3	-1/3	-4/3	1	0	1/3

Hence the optimal value is -4, obtained at

$$(x_1,x_2,x_3,x_4,x_5)=(0,0,1/3,0,2).$$

A2.4

(a)

$$\beta > 0$$
.

(b)

$$\delta < 0; \alpha \leq 0; \beta \geq 0.$$

(c)

$$\delta \geq 0; \beta \geq 10.$$

(d)

$$\delta = \eta = \beta = 10^{100}$$
.

(e)

$$eta=0; \eta\geq 4; \delta+2lpha\geq 0.$$

A2.5

(a)

We start by writing the objective function as

$$f(x) = f(x^*) + \overline{c}_N^{ op} x_N$$

with $\overline{c}_N>0$ and N being the non-basic indices. Let y be any feasible solution other than x^* . We claim that $y_N\neq 0$. For, if $y_N=0$, then since y is feasible,

$$Ay = A_B y_B + A_N y_N = A_B y_B + A_N 0 = A_B y_B = b \implies y_B = A_B^{-1} b = x_B^*.$$

But then $y_N=x_N^*=0$ forces $y=x^*$, a contradiction. Therefore $y_N\neq 0$. It follows from the feasibility that $y_n>0$ for some non-basic index $i\in N$. Hence,

$$f(y) = f(x^*) + ar{c}_N^ op y_N \geq f(x^*) + ar{c}_i y_i > f(x^*),$$

from which we conclude x^* is the unique optimal solution.

(b)

Suppose otherwise. Then $\bar{c}_i \leq 0$ for some non-basic index i. Since x^* is nondegenerate, we may incorporate x_i into the basis by taking a sufficiently small step $\theta>0$ in the i-th basic direction d_i , so that $\tilde{x}:=x^*+\theta d_i$ is still feasible (Lecture 5; Slide 11). But then

$$f(ilde{x}) = c^ op ilde{x} = c^ op x^* + heta c^ op d_i = f(x^*) + heta ar{c}_i \leq f(x^*),$$

whence x^* is not the unique optimal solution, the desired contradiction.