

Number System Conversions Cheat Sheet

Converting between Binary, Decimal, and Hexadecimal number systems.

Binary to Decimal

Steps:

- 1. Starting from the rightmost bit of the binary number, assign positional values as powers of 2. The rightmost bit has value 2^0 , the next bit 2^1 , then 2^2 , and so on.
- 2. Multiply each binary digit by 2 raised to the power of its position value.
- 3. Add up all these products to get the decimal equivalent of the binary number.

Examples:

```
• 1011 (binary) \rightarrow 11 (decimal) – because 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 0 + 2 + 1 = 11.
• 110101 (binary) \rightarrow 53 (decimal) – 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 16 + 0 + 4 + 0 + 1 = 53.
• 10011010010 (binary) \rightarrow 1234 (decimal).
```

Decimal to Binary

Steps:

- 1. Divide the decimal number by 2 and record the remainder (0 or 1).
- 2. Use the quotient from each division to continue dividing by 2, each time recording the next remainder.
- 3. Repeat this process until the quotient becomes 0.
- 4. The binary result is the sequence of remainders read in reverse order (with the final remainder as the leftmost bit of the binary number).

Examples:

- 13 (decimal) \rightarrow 1101 (binary) 13 ÷ 2 = 6 R1; 6 ÷ 2 = 3 R0; 3 ÷ 2 = 1 R1; 1 ÷ 2 = 0 R1; reading remainders from last to first gives **1101**.
- 156 (decimal) → 10011100 (binary).
- 1000 (decimal) → 1111101000 (binary).

Hexadecimal to Decimal

Steps:

- 1. Assign positional values for the hex digits, starting with 16° for the rightmost digit, 16° for the next, 16° for the next, and so on.
- 2. Convert each hexadecimal digit to its decimal value: (0–9 as themselves, A=10, B=11, C=12, D=13, E=14, F=15).
- 3. Multiply each digit's decimal value by 16 raised to the power of its position value.
- 4. Sum all these products to obtain the decimal equivalent.

Examples:

```
• 1A (hex) \rightarrow 26 (decimal) – 1×16<sup>1</sup> + 10×16<sup>0</sup> = 16 + 10 = 26.

• 3E8 (hex) \rightarrow 1000 (decimal) – 3×16<sup>2</sup> + 14×16<sup>1</sup> + 8×16<sup>0</sup> = 768 + 224 + 8 = 1000.

• BEEF (hex) \rightarrow 48879 (decimal).
```

Decimal to Hexadecimal

Steps:

- 1. Divide the decimal number by 16.
- 2. Note the remainder for each division. If a remainder is 10 or greater, convert it to the corresponding hex digit $(10\rightarrow A, 11\rightarrow B, 12\rightarrow C, 13\rightarrow D, 14\rightarrow E, 15\rightarrow F)$.
- 3. Continue dividing the quotient by 16 until the quotient is 0, recording each remainder.
- 4. The hexadecimal result is the sequence of remainders read in reverse order (the final remainder gives the leftmost hex digit).

Examples:

- 10 (decimal) → A (hex) 10 ÷ 16 = 0 remainder 10, which is A in hex.
 26 (decimal) → 1A (hex) 26 ÷ 16 = 1 remainder 10 (A); 1 ÷ 16 = 0 remainder 1, so reading remainders upward gives 1A.
- 255 (decimal) \rightarrow FF (hex).
- 2748 (decimal) \rightarrow ABC (hex).

Hexadecimal to Binary

Steps:

- 1. Replace each hex digit with its 4-bit binary equivalent. (0 \rightarrow 0000, 1 \rightarrow 0001, ... 9 \rightarrow 1001, A \rightarrow 1010, B \rightarrow 1011, C \rightarrow 1100, D \rightarrow 1101, E \rightarrow 1111).
- 2. Concatenate all the 4-bit groups in the same order to get the full binary representation. (*If the leftmost group starts with 0s, you can drop those leading zeros for the final binary number.*)

Examples:

- A5 (hex) \rightarrow 10100101 (binary) A = 1010, 5 = 0101, so combined **10100101**.
- 2F (hex) → 101111 (binary) 2 = 0010, F = 1111, combined 0010 1111. Dropping leading zeros yields **101111**.
- ABC (hex) \rightarrow $\begin{bmatrix} 1010101111100 \end{bmatrix}$ (binary) A = 1010, B = 1011, C = 1100, so **101010111100**.

Binary to Hexadecimal

Steps:

- 1. Starting from the rightmost end of the binary number, group the bits into chunks of four. (Pad the leftmost group with leading 0s if needed to form a 4-bit group.)
- 2. Convert each 4-bit group into its hexadecimal equivalent (0000 \rightarrow 0, 0001 \rightarrow 1, ... 1001 \rightarrow 9, 1010 \rightarrow A, ... 1111 \rightarrow F).
- 3. Write down the hex digits for each 4-bit group in the same order to get the hexadecimal value.

Examples:

- 1010 (binary) \rightarrow A (hex).
- 11011110 (binary) \rightarrow DE (hex) group as 1101 and 1110: 1101 = D, 1110 = E, giving **DE**.
- 101011110001 (binary) → AF1 (hex) group as 1010, 1111, 0001: 1010 = A, 1111 = F, 0001 = 1, giving **AF1**.