Лекция 4. Полиномы Жегалкина. Теорема Жегалкина. Быстрый способ построения полинома Жегалкина. Полные системы.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Монотонные элементарные конъюнкции

Элементарная конъюнкция, не содержащая отрицаний переменных, называется монотонной (ЭК), или мономом, или одночленом.

Например, 1, x_2 , $x_1x_2x_4$ — монотонные ЭК.

Полиномом (или многочленом) Жегалкина длины $I, I \geqslant 1$, назовем сумму по модулю два I различных монотонных $\ni K$.

Полиномом (или **многочленом**) Жегалкина длины 0 назовем константу 0.

Другими словами, полиномом Жегалкина называется выражение вида

$$K_1 \oplus \ldots \oplus K_I$$
,

где K_j — различные монотонные ЭК, $I\geqslant 1$, или константа 0.

Например, 0, 1, $x_1x_2 \oplus x_1$, $x_2 \oplus x_3 \oplus 1$, $x_1x_2 \oplus x_1 \oplus x_3$ — полиномы Жегалкина.

Считаем, что два полинома Жегалкина совпадают, если они отличаются только порядком входящих в них монотонных ЭК.

Каждый полином Жегалкина с переменными x_1, \dots, x_n определяет какую-то функцию $f(x_1, \dots, x_n) \in P_{2g}^{(n)}$

Теорема 4.1 (И. И. Жегалкина). Каждая функция $f(x_1, ..., x_n) \in P_2$ может быть единственным образом представлена в виде полинома Жегалкина P_f .

Доказательство. 1. Существование. Применим полиномиальное разложение функции $f(x_1, \ldots, x_n)$ по всем n переменным:

$$f(x_1,\ldots,x_n)=\bigoplus_{\sigma\in E_2^n}x_1^{\sigma_1}\cdot\ldots\cdot x_n^{\sigma_n}\cdot f(\sigma).$$

Затем пользуясь тождеством $x^{\sigma}=x\oplus \sigma\oplus 1$ везде в правой части заменим выражение $x_i^{\sigma_i}$ на выражение $x_i\oplus \sigma_i\oplus 1$.

Далее по правилам коммутативности и ассоциативности & и \oplus и дистрибутивности вида $x(y \oplus z) = xy \oplus xz$ переменожим все скобки.

После этого приведем подобные слагаемые по правилам $x \oplus x = 0$, $x \oplus 0 = x$.

В итоге получим полином Жегалкина, который представляет исходную функцию f.

Доказательство. 2. Единственность. Покажем, что число полиномов Жегалкина над переменными x_1, \ldots, x_n совпадет с числом функций из $P_2^{(n)}$.

Монотонных элементарных конъюнкций над переменными x_1, \ldots, x_n всего найдется 2^n , т. к. каждая переменная x_i , $i=1,\ldots,n$, может либо входить, либо не входить в такую монотонную ЭК.

Далее, полиномов Жегалкина над переменными x_1, \ldots, x_n всего найдется 2^{2^n} , т. к. каждая из 2^n монотонных ЭК может либо входить, либо не входить в такой полином Жегалкина.

Значит, учитывая п. 1, каждая функция f из $P_2^{(n)}$ может быть представлена ровно одним полиномом Жегалкина над переменными x_1, \ldots, x_n .

Построение полиномов Жегалкина

По теореме Жегалкина для каждой функции $f \in P_2$ найдется единственный полином Жегалкина, который ее задает.

Если задана функция $f \in P_2$, то как можно построить ее полином Жегалкина?

Рассмотрим несколько способов построения:

- 1) метод из доказательства теоремы;
- 2) метод неопределенных коэффициентов;
- 3) быстрый способ.

Метод из доказательства теоремы

Пример. По методу из **доказательства теоремы** найдем полином Жегалкина для функции $f(x_1, x_2) = x_1 \lor x_2$:

x_1	x_2	f
0	0	0
0	1	1
1	0	1
1	1	1

Найдем полиномиальное разложение функции f по всем переменным:

$$f(x_1, x_2) = \bar{x}_1 x_2 \oplus x_1 \bar{x}_2 \oplus x_1 x_2.$$

Метод из доказательства теоремы

Пример (продолжение). Теперь везде заменим выражение \bar{x} на выражение $x \oplus 1$ и выполним преобразования:

$$f(x_1, x_2) = \bar{x}_1 x_2 \oplus x_1 \bar{x}_2 \oplus x_1 x_2 = = (x_1 \oplus 1) x_2 \oplus x_1 (x_2 \oplus 1) \oplus x_1 x_2 = = (x_1 x_2 \oplus x_2) \oplus (x_1 x_2 \oplus x_1) \oplus x_1 x_2 = = x_1 x_2 \oplus x_1 \oplus x_2.$$

Получаем полином Жегалкина функции f:

$$f(x_1,x_2)=x_1x_2\oplus x_1\oplus x_2.$$

Метод неопределенных коэффициентов

Пример. Методом неопределенных коэффициентов найдем полином Жегалкина для функции $f(x_1, x_2) = x_1 \lor x_2$:

<i>x</i> ₁	<i>X</i> ₂	f
0	0	0
0	1	1
1	0	1
1	1	1

Запишем ее полином Жегалкина с неопределенными коэффициентами:

$$f(x_1, x_2) = c_{1,2}x_1x_2 \oplus c_1x_1 \oplus c_2x_2 \oplus c_0,$$

где $c_{1,2}, c_1, c_2, c_0 \in E_2$ — неизвестные коэффициенты.

Метод неопределенных коэффициентов

Пример (продолжение). Подставляя поочередно все наборы из E_2^2 в левую и правую части полученного равенства, составляем систему линейных уравнений с неизвестными $c_{1,2}, c_1, c_2, c_0$:

$$\begin{cases} f(0,0) = c_0 = 0, \\ f(0,1) = c_2 \oplus c_0 = 1, \\ f(1,0) = c_1 \oplus c_0 = 1, \\ f(1,1) = c_{1,2} \oplus c_1 \oplus c_2 \oplus c_0 = 1. \end{cases}$$

Решаем полученную систему и находим:

$$c_{1,2}=1, \ c_1=1, \ c_2=1, \ c_0=0.$$

Получаем полином Жегалкина функции f:

$$f(x_1, x_2) = x_1 x_2 \oplus x_1 \oplus x_2.$$

Если $f \in P_2^{(n)}$, то ее полином Жегалкина P_f однозначно определяется своими коэффициентами при всех возможных монотонных ЭК над переменными x_1, \ldots, x_n .

Монотонные ЭК над x_1, \ldots, x_n

Набору $\alpha \in E_2^n$, $n \geqslant 2$, взаимно однозначно сопоставим монотонную ЭК над переменными x_1, \dots, x_n :

$$x^{\alpha} = \left\{ \begin{array}{ll} 1, & \alpha = (0, \dots, 0), \\ \prod_{\alpha_j = 1} x_j, & \alpha \neq (0, \dots, 0). \end{array} \right.$$

Будем говорить, что набор $\alpha \in E_2^n$ и монотонная ЭК x^{α} соответствуют друг другу.

Монотонные ЭК над x_1, \ldots, x_n

Если α пробегает по всем возможным наборам из E_2^n , то x^{α} перечисляет все возможные монотонные ЭК над x_1, \ldots, x_n .

Например, если n = 2, то

$$x^{\alpha} = \begin{cases} 1, & \alpha = (0,0), \\ x_2, & \alpha = (0,1), \\ x_1, & \alpha = (1,0), \\ x_1x_2, & \alpha = (1,1). \end{cases}$$

Коэффициенты полинома Жегалкина

Пусть $c_f(\alpha)$ обозначает коэффициент при мономе x^{α} , $\alpha \in E_2^n$, в полиноме Жегалкина функции $f \in P_2^{(n)}$.

Тогда

$$f(x_1,\ldots,x_n)=\bigoplus_{\alpha\in E_2^n}c_f(\alpha)\cdot x^{\alpha}.$$

Для нахождения полинома Жегалкина функции f нужно найти коэффициенты $c_f(\alpha)$ для всех $\alpha \in E_2^n$.

Вычисление коэффициентов при n=1

Если
$$f(x) \in P_2^{(1)}$$
, то

$$f(x) = \bar{x} \cdot f(0) \oplus x \cdot f(1) = (x \oplus 1) \cdot f(0) \oplus x \cdot f(1) = = x \cdot f(0) \oplus f(0) \oplus x \cdot f(1) = (f(0) \oplus f(1)) \cdot x \oplus f(0).$$

Поэтому

$$c_f(0) = f(0),$$

 $c_f(1) = f(0) \oplus f(1).$

Например, если $f(x) = \bar{x}$, то

$$c_f(0) = f(0) = 1,$$

 $c_f(1) = f(0) \oplus f(1) = 1 \oplus 0 = 1.$

Поэтому

$$\bar{x} = c_f(1) \cdot x \oplus c_f(0) \cdot 1 = x \oplus 1.$$

Теорема 4.2 (вычисление коэффициентов). Если $n\geqslant 1$, $f(y,x_1,\ldots,x_n)\in P_2^{(n+1)}$, $f_a(x_1,\ldots,x_n)=f(a,x_1,\ldots,x_n)$, где $a\in E_2$, то для каждого $\alpha\in E_2^n$ верны равенства:

$$c_f(0,\alpha_1,\ldots,\alpha_n)=c_{f_0}(\alpha),$$

$$c_f(1,\alpha_1,\ldots,\alpha_n)=c_{f_0}(\alpha)\oplus c_{f_1}(\alpha).$$

Доказательство. Применим полиномиальное разложение функции $f(y, x_1, \dots, x_n)$ по переменной y:

$$f(y,x_1,\ldots,x_n) = \bar{y}\cdot f(0,x_1,\ldots,x_n) \oplus y\cdot f(1,x_1,\ldots,x_n) = = \bar{y}\cdot f_0 \oplus y\cdot f_1 = (y\oplus 1)\cdot f_0 \oplus y\cdot f_1 = = y\cdot f_0 \oplus f_0 \oplus y\cdot f_1 = y\cdot (f_0 \oplus f_1) \oplus f_0.$$

Нο

$$\begin{array}{rcl} f_0 & = & \bigoplus_{\alpha \in E_2^n} c_{f_0}(\alpha) \cdot x^{\alpha}, \\ f_1 & = & \bigoplus_{\alpha \in E_2^n} c_{f_1}(\alpha) \cdot x^{\alpha}. \end{array}$$

Доказательство. Поэтому:

$$f = y \cdot \left(\bigoplus_{\alpha \in E_2^n} c_{f_0}(\alpha) \cdot x^{\alpha} \oplus \bigoplus_{\alpha \in E_2^n} c_{f_1}(\alpha) \cdot x^{\alpha} \right) \oplus \bigoplus_{\alpha \in E_2^n} c_{f_0}(\alpha) \cdot x^{\alpha}.$$

Значит,

$$f = \bigoplus_{\alpha \in E_2^n} (c_{f_0}(\alpha) \oplus c_{f_1}(\alpha)) \cdot y \cdot x^{\alpha} \oplus \bigoplus_{\alpha \in E_2^n} c_{f_0}(\alpha) \cdot x^{\alpha}.$$

Перепишем следующим образом:

$$f = \bigoplus_{(1,\alpha)\in E_2^{n+1}} (c_{f_0}(\alpha) \oplus c_{f_1}(\alpha)) \cdot (y^1 \cdot x^{\alpha}) \oplus \bigoplus_{(0,\alpha)\in E_2^{n+1}} c_{f_0}(\alpha) \cdot (y^0 \cdot x^{\alpha}).$$

Итак,

$$f = \bigoplus_{(1,\alpha) \in E_2^{n+1}} (c_{f_0}(\alpha) \oplus c_{f_1}(\alpha)) \cdot (y^1 \cdot x^{\alpha}) \oplus \bigoplus_{(0,\alpha) \in E_2^{n+1}} c_{f_0}(\alpha) \cdot (y^0 \cdot x^{\alpha}).$$

Из полученного выражения находим:

$$c_f(0,\alpha_1,\ldots,\alpha_n)=c_{f_0}(\alpha),$$

$$c_f(1,\alpha_1,\ldots,\alpha_n)=c_{f_0}(\alpha)\oplus c_{f_1}(\alpha).$$

Пример. Пользуясь формулами предыдущей теоремы, найдем полином Жегалкина функции $f(x_1, x_2, x_3)$:

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Пример (продолжение). На шаге 1 вычисляем коэффициенты полиномов Жегалкина всех подфункций $f_{\sigma}(x_3)$, $\sigma \in E_2^2$, функции $f(x_1,x_2,x_3)$ по переменным x_1,x_2 :

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f	1
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0
1	1	1	1	0

Пример (продолжение). На шаге 2, пользуясь полученными значениями на шаге 1, вычисляем коэффициенты полиномов Жегалкина всех подфункций $f_{\delta}(x_2,x_3)$, $\delta \in E_2^1$, функции $f(x_1,x_2,x_3)$ по переменной x_1 :

x_1	<i>x</i> ₂	<i>X</i> 3	f	1	2
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	0	1

Полиномы Жегалкина

Пример (продолжение). Наконец, на шаге 3, пользуясь полученными значениями на шаге 2, вычисляем коэффициенты полиномов Жегалкина функции $f(x_1, x_2, x_3)$:

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f	1	2	$3(c_f)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	1	0

Пример (продолжение).

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	f	1	2	$3(c_f)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	1	0

Получаем:

$$f(x_1, x_2, x_3) = x_2x_3 \oplus x_1x_3 \oplus x_1x_2.$$

Полная система

Пусть $A \subseteq P_2$. Множество A называется полной системой, если формулами над A можно выразить любую функцию алгебры логики.

Полнота системы $\{x \cdot y, x \oplus y, 1\}$

Предложение 4.1. *Система* $A = \{x \cdot y, x \oplus y, 1\}$ является полной.

Доказательство. Рассмотрим произвольную функцию $f \in P_2$.

- 1. Если f=0, то $f=x\oplus x$.
- 2. Если $f \neq 0$, то представим f ее полиномом Жегалкина.

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
- 2. Марченков С. С. Основы теории булевых функций. М.: Физматлит, 2014.
- 3. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- 4. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.