

SEQUENCE LISTING

<110> Paul B. Fisher and Ruoqian Shen
 <120> DEVELOPMENT OF DNA PROBES AND IMMUNOLOGICAL REAGENTS SPECIFIC FOR CELL SURFACE-EXPRESSED MOLECULES AND TRANSFORMATION-ASSOCIATED GENES
 <130> 0667/37590-C-PCT-US
 <140> 08/875,553
 <141> 1998-05-26
 <160> 43
 <170> PatentIn version 3.0
 <210> 1
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> misc_feature
 <222> ()..()
 <223> Primer

<400> 1
gagtctgaat agggcgactt

20

<210> 2
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> misc_feature
 <222> ()..()
 <223> Primer

<400> 2
agtcagtaca gctagatgcc

20

<210> 3
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> misc_feature
 <222> ()..()
 <223> Primer

<400> 3
agacacaggc caggtatttc aggtc

25

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 4
cacgatggtg tccttgatcc acttc

25

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 5
tcttaactcct tggaggccat g

21

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 6
cgtcttcacc accatggaga a

21

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 7
aagctgacgc ctcatttgca

20

<210> 8
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 8
aaccaccaat ggaactgggt 20

<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 9
agacacaggc caggtatttc aggtc 25

<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 10
cacgatggtg tccttgatcc acttc 25

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 11
tcttactcct tggaggccat g 21

<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 12
cgtcttcacc accatggaga a 21

<210> 13
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 13
cggcccgagc tcgtgccgaa ttcggcccga gagcgttaaa gtgtgatggc gtacatctt 59

<210> 14
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 14
ttttttttt ttgc 14

<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<222> ()..()
<223> Primer

<400> 15
accgacgtcg actatccatg aaca 24

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<221> misc_feature		
<222> ()..()		
<223> Primer		
<400> 16		
aactaagtgg aggaccgaac		20
<210> 17		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> ()..()		
<223> Primer		
<400> 17		
ccttgcatat taacataact cg		22
<210> 18		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> ()..()		
<223> Primer		
<400> 18		
aagtcgcccct attcagact		19
<210> 19		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> ()..()		
<223> Primer		
<400> 19		
ccttgcatat taacataact cgc		23
<210> 20		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> ()..()		

<223> Primer

<400> 20	aagtgc cc ctt attcagactc	20
<210> 21		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_feature		
<222> ()..()		
<223> Primer		
<400> 21	aactaactgg aggaccgaac	20
<210> 22		
<211> 2128		
<212> DNA		
<213> Human		
<400> 22	gtatacgaaa tcataaaatc tcatagatgt atcctgagta gggcg gggg cc cgtgaaaccc	60
	tctgaatctg cggccaccac ccggtaaggc taaatactaa tcagacaccc atagtgaact	120
	agtaccgtga gggaaaggtg aaaagaaccc gagaggggag tgaaatagat tctgaaacca	180
	tttacttaca agtggtccat ttacttacaa gtgtcagagc acgttaaagt gtgatggcgt	240
	acatcttgca gtatggccg gcgagttatg ttaatatgca aggttaagca gaaaaaaagcg	300
	gagccgtagg gaaaccgagt ctgaataggg cgacttttagt atattggcat atacccgaaa	360
	tcaggtgatc tatccatgag caggttgaag cttaggtaaa actaagtgga ggaccgaacc	420
	gtagtagcgt aaaaagtgcc cggatggact tgtggatagt ggtgaaattc caatcgaacc	480
	tggagatagc tggttctt cggaaatagct ttagggctag cgtatagttat tgttaatgg	540
	gggttagagca <u>ctgaatgtgg aatggcggca</u> tctagctgta ctgactataa tcaaactccg	600
	aataccatta aaattaagct atgcagtcgg aacgtggat caccattgtat atctcccttgt	660
	ggaaatttga gaccagcaag tactatgtga ctatcattga tgccccagga cacagagact	720
	ttatccaaaa catgattaca gggacctctc aggctgactg tgctgtccctg attgttgctg	780
	ctgggtttgg tgaatttggaa gctggtatct ccaagaatgg gcagacccga cagcatgcc	840
	ttctggctta cacactgggt gtgaaacaac taattgtcgg tgttaacaaa atggattcca	900
	ctgagccacc <u>ctacagccag aagagatatg aggaaattgt</u> taaggaagtgc agcacttaca	960
	ttaagaaaat tggctacaac cccgacacag tagcattgt gccatttct ggttggatg	1020

gtgacaacat	gctggagcca	agtgctaaca	tgccttggtt	caagggatgg	aaagtcaccc	1080
gtaaggatgg	caatgccagt	ggaaccacgc	tgcttgaggc	tctggactgc	atcctaccac	1140
caactcgcc	aactgacaag	cccttggcc	tgcctctcca	ggatgtctac	aaaattggtg	1200
gtattggta	cgttccctgtt	ggccgagtgg	agactggtgt	tctcaaacc	ggtatggtgt	1260
tcaccttcg	tccagtcaac	gttacaacgg	aagtaaaatc	tgtcgaaatg	caccatgaag	1320
cttgggtga	agctttcct	ggggacaatg	tgggcttcaa	tgtcaagaat	gtgtctgtca	1380
aggatgttcg	tcgtggcaac	gttgctggtg	acagaaaaaa	tgacccacca	atgaaaggcag	1440
ctggcttccc	tgctcaggtg	attatcctga	accatccagg	ccaaataaagc	gccggctatg	1500
cccctgtatt	ggattgccac	acggctcaca	ttgcatgcaa	gtttgctgag	ctgaaggaaa	1560
agattgatcg	ccgttctgg	aaaaagctgg	aagatggccc	taaattctt	aagtctggtg	1620
atgctgccat	tgttgatatg	gttcctggca	agcccatgtg	tgttgagagc	ttctcagact	1680
atccacctt	gggctgctt	gctgtcggt	atatgagaca	gacagttgcg	gtgggtgtca	1740
tcaaaggagt	ggacaagaag	gctgctggag	ctggcaaggt	caccaagtct	gcccgagaaag	1800
ctcagaaggc	taaatgaata	ttatccctaa	tacctcccac	cccactctta	atcagtggtg	1860
gaagaccggt	ctcagaactg	tttggttcaa	ttggccattt	aagtttagta	gtaaaagact	1920
ggtaatgat	aacaatgcat	cgtaaaacct	ttcagaagga	aaggagaatg	ttttgtggac	1980
cacgttggtt	ttctttttg	cgtgtggcag	tttaagtta	ttagttttt	aaatcagtac	2040
tttttaatgg	aaacaacttg	ccccccaaat	ttgtcacaga	attttgggac	ccattaaaaaa	2100
ggtaactgg	aaaaaaaaaa	aaaaaaaaaa				2128

<210> 23
 <211> 398
 <212> PRT
 <213> Human

 <400> 23

Met	Gln	Ser	<u>Glu</u>	<u>Arg</u>	<u>Gly</u>	Ile	Thr	Ile	Asp	Ile	Ser	Leu	Trp	Lys	Phe
1			5					10					15		
Glu	Thr	Ser	Lys	Tyr	Tyr	Val	Thr	Ile	Ile	Asp	Ala	Pro	Gly	His	Arg
			20				25						30		
Asp	Phe	Ile	Gln	Asn	Met	Ile	Thr	Gly	Thr	Ser	Gln	Ala	Asp	Cys	Ala
	35						40						45		
Val	Leu	Ile	Val	Ala	Ala	Gly	Val	Gly	Glu	Phe	Glu	Ala	Gly	Ile	Ser
	50					55				60					
Lys	Asn	Gly	Gln	Thr	Arg	Gln	His	Ala	Leu	Leu	Ala	Tyr	Thr	Leu	Gly
	65				70				75					80	
Val	Lys	Gln	Leu	Ile	Val	Gly	Val	Asn	Lys	Met	Asp	Ser	Thr	Glu	Pro

85	90	95
Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr		
100	105	110
Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro		
115	120	125
Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met		
130	135	140
Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser		
145	150	160
Gly Thr Thr Leu Leu Glu Ala Leu Asp Cys Ile Leu Pro Pro Thr Arg		
165	170	175
Pro Thr Asp Lys Pro Leu Gly Leu Pro Leu Gln Asp Val Tyr Lys Ile		
180	185	190
Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu		
195	200	205
Lys Pro Gly Met Val Val Thr Phe Arg Pro Val Asn Val Thr Thr Glu		
210	215	220
Val Lys Ser Val Glu Met His His Glu Ala Leu Gly Glu Ala Leu Pro		
225	230	240
Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val		
245	250	255
Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu		
260	265	270
Ala Ala Gly Phe Pro Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln		
275	280	285
Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile		
290	295	300
Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly		
305	310	320
Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala		
325	330	335
Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser		
340	345	350
Asp Tyr Pro Pro Leu Gly Cys Phe Ala Val Val Asp Met Arg Gln Thr		
355	360	365
Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala		
370	375	380
Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys		
385	390	395

<210> 24
<211> 462
<212> PRT

<213> Human

<400> 24

Met Gly Lys Glu Lys Thr His Ile Asn Ile Val Val Ile Gly His Val
 1 5 10 15

Asp Ser Gly Lys Ser Thr Thr Thr Gly His Leu Ile Val Lys Cys Gly
 20 25 30

Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu
 35 40 45

Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys
 50 55 60

Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe
 65 70 75 80

Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg
 85 90 95

Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala
 100 105 110

Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser
 115 120 125

Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly
 130 135 140

Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro
 145 150 155 160

Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr
 165 170 175

Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro
 180 185 190

Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met
 195 200 205

Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser
 210 215 220

Gly Thr Thr Leu Leu Glu Ala Leu Asp Cys Ile Leu Pro Pro Thr Arg
 225 230 235 240

Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile
 245 250 255

Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu
 260 265 270

Lys Pro Gly Met Val Val Thr Phe Ala Pro Val Asn Val Thr Thr Glu
 275 280 285

Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro
 290 295 300

Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val

305	310	315	320
Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu			
325	330	335	
Ala Ala Gly Phe Thr Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln			
340	345	350	
Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile			
355	360	365	
Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly			
370	375	380	
Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala			
385	390	395	400
Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser			
405	410	415	
Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr			
420	425	430	
Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala			
435	440	445	
Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys			
450	455	460	
<210> 25			
<211> 397			
<212> PRT			
<213> Human			
<400> 25			
Met Gln Ser Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe			
1	5	10	15
Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg			
20	25	30	
Asp Phe Ile Gln Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala			
35	40	45	
Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser			
50	55	60	
Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly			
65	70	75	80
Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro			
85	90	95	
Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr			
100	105	110	
Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro			
115	120	125	
Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met			
130	135	140	

Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser
 145 150 155 160
 Gly Thr Thr Leu Glu Ala Leu Asp Cys Ile Leu Pro Pro Thr Arg Pro
 165 170 175
 Thr Asp Lys Pro Leu Gly Leu Pro Leu Gln Asp Val Tyr Lys Ile Gly
 180 185 190
 Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu Lys
 195 200 205
 Pro Gly Met Val Val Thr Phe Gly Pro Val Asn Val Thr Thr Glu Val
 210 215 220
 Lys Ser Val Glu Met His His Glu Ala Leu Gly Glu Ala Leu Pro Gly
 225 230 235 240
 Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val Arg
 245 250 255
 Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu Ala
 260 265 270
 Ala Gly Phe Pro Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln Ile
 275 280 285
 Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile Ala
 290 295 300
 Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly Lys
 305 310 315 320
 Lys Leu Glu Asp Gly Pro Lys Phe Leu Asp Ser Gly Asp Ala Ala Ile
 325 330 335
 Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser Asp
 340 345 350
 Tyr Pro Pro Leu Gly Cys Phe Ala Val Arg Asp Met Arg Gln Thr Val
 355 360 365
 Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala Gly
 370 375 380
 Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys
 385 390 395

<210> 26
 <211> 1819
 <212> DNA
 <213> Human

<400> 26		
cgaccggagc tccgttgcattttgatgaatccatagtcaaattagcgagaacacgttgcga	60	
atggaaacatcttagtagcaacaggaaaagaaaataataatgatttcgtcagtagtgcc	120	
gagcgaaagc gaaagagccc aaacctgtaaagggggttggtaggacatcttacattgag	180	
ttacaaaattttatgatagttagaagaagttggaaagcttcaacatagaa ggtgatattc	240	

ctgtatacga aatcataaaaa tctcatagat gtatcctgag tagggcgcccc tacgtgaaac	300
cctgtctgaa tctgcccggg accaccgcgt aaggctaaata ctaatcagac accgatagtgc	360
aactagtacc gtgagggaaa ggtgaaaaga acccgagagg ggagtgaaat agattctgaa	420
accatTTact tacaagttagt cagagcacgt taaagtgtga tggcgtacat cttgcagtat	480
gggccggcga gttatgttaa tatgcaaggt taagcacgaa aaaagcggag ccgtaggaa	540
accgagtctg aatagggcga cttagtata ttggcatata cccgaaacca ggtgatcatc	600
catgagcagg ttgaagctta ggtaaaacta agtggaggac cgaaccgtac tacgctaaaa	660
agtgcggcga tgacttgtgg atagtggta aattccaatc gaacctggag atagctggtt	720
ctcttcgaaa tagctttagg gctagcgtat agtactgttt aatggggta gagcactgaa	780
tgtggaatgg cgccatctag ctgtactgac tataatcaa ctccgaatac cattaaaatt	840
aagctatgca gtcggAACGT gggtgataac gtccacgctc gcgaggaaa caacccagat	900
ccgtcagcta aggtccaaa aatgtgttaa gtgagaaagg ttgtggagat ttcataaaca	960
actaggaagt tggtttagaa gcagccacct tttaaagagt gcgtattgc tcactagtca	1020
agagatcttgcgccaataat gtaacgggac tcaaacadaa tacccaaatc acgggcacat	1080
tatgtgcgtt aggagagcgt tttaaatttcg ttgaagtcag accgtgagac ttgtggagag	1140
attaaaagtt cgagaatgcc ggcattgagta acgattcgaa gtgagaatct tcgacgccta	1200
ttgggaaagg tttcctggc aaggttctcc acccagggtt agtcagggcc taagatgagg	1260
cagaaatgca tagtcgatgg acaacaggtt aatattcctg tacttgtaa aagaatgatg	1320
gagtgacgaa aaaggatagt tctaccactt ccactatgtc ctatcaatag gagctgtatt	1380
tggcatcata ggaggcttca ttcactgatt tcccatttc tcaggctaca ccctagacca	1440
aacctacgccc aaaaatccatt tcactatcat attcatcgcc gtaaatctaa ctttcttccc	1500
acaacacttt ctcggcctat ccgaaatgac ccgacccgac gttactcgaa ctaccccgat	1560
gcatacacca catgaaacat cctatcatct gtaggctcat tcatttctct aacagcagta	1620
atattaataa ttttcatgtat ttgagaagcc ttcgccttcg aagcgaaaag tcctaataatgt	1680
agaagaaccc tccataaacc tggagtgact atatggatgc ccccacccctt cctcacattc	1740
gaagaacccg tatacataaa atctagacaa aaaaggaagg aagtgaacgc cccacaaaaaa	1800
aaaaaaaaaaaa aaaaaaaaaaa	1819

<210> 27
 <211> 1869
 <212> DNA
 <213> Human

<400> 27

aactaagtgg aggaccgaac cgtagtagc taaaaagtgc ccggatgact tgtggatagt	60
ggtcaaattc caatcgaaacc tggagatagc tggttcttt cgaaatacgctt tagggctag	120
cgtatagtat tgttaatgg gggtagagca ctgaatgtgg aatcggcgcc atctagctgt	180
actgactata atcaaactcc gaataccatt aaaattaagc tatgcagtcg gaacgtgggt	240
gataacctcc actctcgca gggaaacaac ccagatcgcc agctaaggc ccaaatttgt	300
gttaagttag aaaggttgtg agatttcata aacaactagg aagttggctt agaagcagcc	360
acctttaaa gagtgctaa ttgctacta gtcaagagat cttgcgc当地 taatgttaacg	420
ggactcaaacc acaataccga agctacggc acattatgtc ggtaggaga gcgtttat	480
ttcgttgaag tcagaccgtg agactgggtt agagattaaa agttcgagaa tgcccggcat	540
gagtaacgat tcgaagttag aatcttcgac gcctattggg aaaggtttcc tggcaaggt	600
tcgtccaccc agggtagtc agggcctaag atgaggcaga aatgcatacgat cgatggacaa	660
caggtaata ttccctgtact tggtaaaaaga atgatggagt gacgaaaaag gatagttcta	720
ccacttactg gattgtgggg taagcaacaa gagagttata taggcaaatc cgtatagcat	780
aatcttgagt tgtgatgcat agtgaagact tcggtcgagt aacgaattga atcgattca	840
tgtttccaag aaaagttctt agtgttaatt ttttatcaac ctgtaccgag aacgaacaca	900
cgttcccaag atgagtattc taaggcgagc gagaaaaacca atgttaagga actctgcaaa	960
ataaccccgta aagttcgca gaaggggcgc ctatTTAA taggccacag aaaatagggg	1020
ggcaactgtt tatcaaaaac acagctctt gctaagttgt aaaacgacgt atagagggtg	1080
aagcctgccc agtcccgaag ttAAACGGAG atgttagctt acgcaaagca ttAAAGTGA	1140
gcccgggtga acggcgcccg taactataac ggtcctaagg tagcgaatt ccttgtcaac	1200
taattattga cctgcacgaa aggcgcaatg atctccctac tgtctcaaca ttggactcgg	1260
tgaaattatg gtaccagtga aaacgcaggt tacccgcattc aagacgaaaa gaccccggtgg	1320
agctttacta taacttcgta ttgaaaattt gtttagcatg tgttaggatag gcgggagact	1380
ttgaagctgg gacgctagtt cttagtggagt caacccctt gaaataccaccct tgctaaatttg	1440
attttctaac ccgttccct tatctggaaag gagacagtgc gtgggtggta gtttactgg	1500
gcggtcgcct cctaaagtgt aacggaggcg ttcaaagcta cactcaatat ggtcagaaac	1560
catatgcaga gcacaaaggt aaaagtgtgg ttgactgcaa gacttacaag tcgagcaggt	1620
gcgaaaggcag gacttagtga tccggcggtt cattgtggaa tggccgtcgc tcaacggata	1680
aaagtccaccc cggggataac aggctaattt tcccccaagag atcacatcga cgggaaggtt	1740
tggcacctcg atgtcggctc atcgcatcct ggagctggag tcggttccaa gggtttgctg	1800
ttcgccaatt aaagcggtac gtgagctggg ttcagaacgt cgtgagacag ttcggtcctc	1860

cacttagtt

1869

<210>	28					
<211>	3850					
<212>	DNA					
<213>	Human					
<400>	28					
cggcacgagc	ggcacgagag	aagagactcc	aatcgacaag	aagctggaaa	agaatgtatgt	60
tgtccttaaa	caacctacag	aatatcatct	ataacccggt	aatcccgtt	gttggcacca	120
ttcctgatca	gctggatcct	ggaactttga	ttgtgatacg	tgggcatttt	cctagtgacg	180
cagacagatt	ccaggtggat	ctgcagaatg	gcagcagcgt	gaaacctcga	gccgatgtgg	240
ccttcattt	caatcctcgt	ttcaaaaggg	ccggctgcat	tgttgcaat	actttgataa	300
atgaaaaatg	gggacggaa	gagatcacct	atgacacgccc	tttcaaaaga	gaaaagtctt	360
tttagatcgt	gattatggtg	ctgaaggaca	aattccaggt	ggctgtaaat	ggaaaacata	420
ctctgctcta	tggccacagg	atcgccccag	agaaaaataga	cactctggc	atttatggca	480
aagtgaatat	tcactcaatt	ggttttagct	tcagctcgga	cttacaaagt	acccaagcat	540
ctagtctgga	actgacagag	atagtttag	aaaatgtcc	aaagtctggc	acgccccagc	600
ttagcctgcc	attcgctgca	aggttgaaca	ccccatggg	ccctggacga	actgtcgctg	660
ttcaaggaga	agtgaatgca	aatgc当地	gctttatgt	tgacctacta	gcaggaaaat	720
caaaggatat	tgctctacac	ttgaacccac	gcctgaatat	taaagcattt	gtaagaaatt	780
cttttcttca	ggagtcctgg	ggagaagaag	agagaaaat	taccttttc	ccatttagtc	840
ctgggatgta	ctttgagatg	ataattttt	gtgatgttag	agaattcaag	gttgcagtaa	900
atggcgtaca	cagcctggag	tacaaacaca	gattaaaga	gctcagcgt	attgacacgc	960
tggaaattaa	tggagacatc	cacttactgg	aagtaaggag	ctggtagcct	acctacacag	1020
ctgctacaaa	aaccaaata	cagaatggct	tctgtgatac	tggccttgct	gaaacgcac	1080
tcactggtca	ttcttattgtt	tatattgtt	aatgagctt	gtgcaccatt	aggcctgct	1140
gggtgttctc	agtccctgcc	atgacgtatg	gtgggtctca	gcactgaatg	gggaaactgg	1200
gggcagcaac	acttatagcc	agttaaagcc	actctgccct	ctctcctact	ttggctgact	1260
cttcaagaat	gccattcaac	aagtatttt	ggagtaccta	ctataataca	gtagctaaca	1320
tgtattgagc	acagatttt	tttggtaat	ctgtgaggag	ctaggatata	tacttggtga	1380
aacaaaccag	tatgtccct	gttcttttga	gcttcactc	ttctgtgcgc	tactgctgct	1440
cactgctttt	tctacaggca	ttacatcaac	tcctaagggg	tcctctggga	ttagttatgc	1500
agatattaaa	tcacccgaag	acactaactt	acagaagaca	caactccccc	cccagtgtatc	1560
actgtcataa	ccagtgtct	gccgtatccc	atcactgagg	actgatgtt	actgacatca	1620

ttttcttat cgtaataaac atgtggctct attagctgca agctttacca agtaattggc	1680
atgacatctg agcacagaaa ttaagccaaa aaaccaaagc aaaacaaata catggtgctg	1740
aaattaactt gatgccaagc ccaaggcagc tgatttctgt gtatttgaac ttacccgaaa	1800
tcagagtcta cacagacgcc tacagaagtt tcaggaagag ccaagatgca ttcaatttgt	1860
aagatattta tggccaacaa agtaaggtca ggatttagact tcaggcattc ataaggcagg	1920
cactatcaga aagtgtacgc caactaaggg acccacaaag caggcagagg taatgcagaa	1980
atctgttttgc ttcccattgaa atcaccatc aaggcctccg ttcttctaaa gattagtcca	2040
tcatcattag caactgagat caaagcactc ttccacttta cgtgattaaa atcaaacctg	2100
tatcagcaag ttaaatgggt ccatttctgt gatTTTCTA ttatttgagg ggagttggca	2160
gaagttccat gtatatggga tctttacagg tcagatcttgc ttacagggaa ttcaaagggt	2220
ttgggagtgg ggagggaaaa aagctcagtc agtgaggatc attccacatt agactggggc	2280
agaactctgc caggatttag gaatattttc agaacagatt ttagatatta ttcttatcca	2340
tatattgaaa aggaatacca ttgtcaatct tattttttta aaagtactca gtgtagaaat	2400
cgctagccct taattctttt ccagcttttc atattaatgt atgcagagtc tcaccaagct	2460
caaagacact ggTTGGGGT ggagggtgcc acagggaaag ctgtagaagg caagaagact	2520
cgagaatccc ccagagttat ctttctccat aaagaccatc agagtgccta actgagctgt	2580
tggagactgt gaggcattta gaaaaaaat agcccactca catcattcct tgtaagtctt	2640
aagttcattt tcattttacg tggaggaaaa aaatttaaaa agctatttagt atttattaaat	2700
gaattttact gagacatttc ttagaaatat gcacttctat actagcaagc tctgtctcta	2760
aaatgcaagt tggccttttgc cttgccacat ttctgcatta aacttctata ttagcttcaa	2820
aggctttaa tctcaatgcg aacattctac gggatgttct tagatgcctt taaaaagggg	2880
gcaagatcta attttatgg aaccctcaact ttccaacttt caccatgacc cagtactaga	2940
gattaggcata cttcaaagca ttgaaaaaaaaa tctactgata cttactttct tagacaagta	3000
gttcttagtt aaccaccaat ggaactgggt tcattctgaa tcctggagga gcttcctcgt	3060
gccacccagt gtttctgggc cctctgtgt agcagccagg tgtgagctgt tttagaagca	3120
gcgtgttgcc ttcatctctc ccgtttccca aaagaacaaa ggataaagggt gacagtacaca	3180
ctcctgggtt aaaaaaaagca ttccagaacc acttctctt atgggcacaa caacaaagaa	3240
gctaagttcg cctaccaaaa tggaaagttagg ctttacagtc aagtacttct gttgattgct	3300
aaataacttc attttcttga aatagagcaa ctttgagtga aatctgcaac atggataacca	3360
tgtatgtaaat atactgctgt acagaagagt taaggcttac agtgcaaatg aggcgtagc	3420
tttgggtgct aaaattaaca agtctaataat tattaccatc aatcaggaaag agataataaa	3480

tgtttaaaca aacacagcag tctgtataaa aatacgtgta tatttactct ttctgtgcac	3540
gctctatagc atagccagga gaggcttatg tggcagcaca agccaggtgg ggattttgta	3600
aagaagtgat aaaacatttg taagtaatcc aagtagggaga tattaaggca ccaaaggtaa	3660
catggcaccc aacacccaaa aataaaaata tgaaatatga gtgtgaactc tgagtagagt	3720
atgaaacacc acagaaaagtc ttagaaatag ctctggagtg gctctcccag gacagttcc	3780
agttggctga atagttttt ggcactgatg ttctacttct tcacattcat ctaaaaaaaaaa	3840
aaaaaaaaaa	3850

<210> 29
<211> 954
<212> DNA
<213> Human

<400> 29	
atgatgttgt ccttaaacaa cctacagaat atcatctata acccgtaat cccgtttgtt	60
ggcaccattc ctgatcagct ggatcctgga actttgattg tgatacgtgg gcatgttcct	120
agtgacgcag acagattcca ggtggatctg cagaatggca gcagcgtgaa acctcgagcc	180
gatgtggcct ttcatttcaa tcctcgtttc aaaagggccg gctgcattgt ttgcaatact	240
ttgataaatg aaaaatgggg acgggaagag atcacctatg acacgccttt caaaagagaa	300
aagtctttt agatcgtgat tatggtgctg aaggacaaat tccaggtggc tgtaaatgga	360
aaacatactc tgctctatgg ccacaggatc gcccccagaga aaatagacac tctggcatt	420
tatggcaaag tgaatattca ctcaatttgtt tttagctca gctcgactt acaaagtacc	480
caagcatcta gtctggaact gacagagata gttagagaaa atgttccaaa gtctggcacf	540
ccccagctt gcctgccatt cgctgcaagg ttgaacacccc ccatgggccc tggacgaact	600
gtcgtcggtc aaggagaagt gaatgcaaat gccaaaagct ttaatgttga cctactagca	660
ggaaaaatcaa aggatattgc tctacacttg aacccacgcc tgaatattaa agcatttgtt	720
agaaaattctt ttcttcagga gtcctgggga gaagaagaga gaaatattac ctcttccca	780
tttagtcctg ggtatgtactt tgagatgata atttattgtg atgttagaga attcaaggtt	840
gcagtaatg gcgtacacag cctggagtac aaacacagat ttaaagagct cagcagtatt	900
gacacgctgg aaattaatgg agacatccac ttactggaag taaggagctg gtag	954

<210> 30
<211> 317
<212> PRT
<213> Human

<400> 30

Met Met Leu Ser Leu Asn Asn Leu Gln Asn Ile Ile Tyr Asn Pro Val
 1 5 10 15

Ile Pro Phe Val Gly Thr Ile Pro Asp Gln Leu Asp Pro Gly Thr Leu
 20 25 30

Ile Val Ile Arg Gly His Val Pro Ser Asp Ala Asp Arg Phe Gln Val
 35 40 45

Asp Leu Gln Asn Gly Ser Ser Val Lys Pro Arg Ala Asp Val Ala Phe
 50 55 60

His Phe Asn Pro Arg Phe Lys Arg Ala Gly Cys Ile Val Cys Asn Thr
 65 70 75 80

Leu Ile Asn Glu Lys Trp Gly Arg Glu Glu Ile Thr Tyr Asp Thr Pro
 85 90 95

Phe Lys Arg Glu Lys Ser Phe Glu Ile Val Ile Met Val Leu Lys Asp
 100 105 110

Lys Phe Gln Val Ala Val Asn Gly Lys His Thr Leu Leu Tyr Gly His
 115 120 125

Arg Ile Gly Pro Glu Lys Ile Asp Thr Leu Gly Ile Tyr Gly Lys Val
 130 135 140

Asn Ile His Ser Ile Gly Phe Ser Phe Ser Ser Asp Leu Gln Ser Thr
 145 150 155 160

Gln Ala Ser Ser Leu Glu Leu Thr Glu Ile Val Arg Glu Asn Val Pro
 165 170 175

Lys Ser Gly Thr Pro Gln Leu Ser Leu Pro Phe Ala Ala Arg Leu Asn
 180 185 190

Thr Pro Met Gly Pro Gly Arg Thr Val Val Val Gln Gly Glu Val Asn
 195 200 205

Ala Asn Ala Lys Ser Phe Asn Val Asp Leu Leu Ala Gly Lys Ser Lys
 210 215 220

Asp Ile Ala Leu His Leu Asn Pro Arg Leu Asn Ile Lys Ala Phe Val
 225 230 235 240

Arg Asn Ser Phe Leu Gln Glu Ser Trp Gly Glu Glu Glu Arg Asn Ile
 245 250 255

Thr Ser Phe Pro Phe Ser Pro Gly Met Tyr Phe Glu Met Ile Ile Tyr
 260 265 270

Cys Asp Val Arg Glu Phe Lys Val Ala Val Asn Gly Val His Ser Leu
 275 280 285

Glu Tyr Lys His Arg Phe Lys Glu Leu Ser Ser Ile Asp Thr Leu Glu
 290 295 300

Ile Asn Gly Asp Ile His Leu Leu Glu Val Arg Ser Trp
 305 310 315

<210> 31
 <211> 46

<212> PRT
 <213> Human

<400> 31

Ala Glu Asp Leu Ala Leu His Ile Asn Pro Arg Phe Asp Ala His Gly
 1 5 10 15

Asp Gln Gln Ala Val Val Asn Asn Ser Phe Gln Gly Gly Asn Trp Gly
 20 25 30

Thr Glu Gln Arg Glu Gly Gly Phe Pro Phe Leu Gln Gly Glu
 35 40 45

<210> 32

<211> 46

<212> PRT
 <213> Human

<400> 32

Ser Thr His Leu Gly Leu His Phe Asn Pro Arg Phe Asn Ala His Gly
 1 5 10 15

Asp Ala Asn Leu Ile Val Cys Asn Ser Lys Lys Met Glu Glu Trp Gly
 20 25 30

Thr Glu Gln Arg Glu Thr Val Phe Pro Phe Gln Gln Gly Gln
 35 40 45

<210> 33

<211> 46

<212> PRT
 <213> Human

<400> 33

Ser Asn Asn Leu Cys Leu His Phe Asn Pro Arg Phe Asn Ala His Gly
 1 5 10 15

Asp Val Asn Leu Ile Val Cys Asn Thr Lys Glu Asp Gly Thr Trp Gly
 20 25 30

Thr Glu His Arg Glu Pro Ala Phe Pro Phe Gln Pro Phe Gln
 35 40 45

~~<210> 34~~

~~<211> 46~~

~~<212> PRT~~

~~<213> Human~~

<400> 34

Ser Asn Asn Leu Cys Leu His Phe Asn Pro Arg Phe Asn Ala His Gly
 1 5 10 15

Asp Ala Asn Thr Ile Val Cys Asn Ser Lys Asp Asp Gly Thr Trp Gly
 20 25 30

Thr Glu Gln Arg Glu Thr Ala Phe Pro Phe Gln Pro Gly Ser
 35 40 45

<210> 35
<211> 46
<212> PRT
<213> Human

<400> 35

Ser Asn Asn Leu Cys Leu His Phe Asn Pro Arg Phe Asn Ala His Gly
1 5 10 15

Asp Ala Asn Thr Ile Val Cys Asn Ser Lys Asp Gly Gly Ala Trp Gly
20 25 30

Thr Glu Gln Arg Glu Ala Val Phe Pro Phe Gln Pro Gly Ser
35 40 45

<210> 36
<211> 18
<212> PRT
<213> Human

<400> 36

Ser Asn Asn Leu Leu Gly Gly Ala Trp Gly Gln Glu Ala Val Phe Tyr
1 5 10 15

Phe Pro

<210> 37
<211> 27
<212> PRT
<213> Human

<400> 37

Ser Gly Lys Phe Asn Ala His Ser Gly Gly Ala Trp Gly Thr Glu Gln
1 5 10 15

Arg Glu Ala Val Phe Pro Phe Gln Pro Gly Ser
20 25

<210> 38
<211> 42
<212> PRT
<213> Human

<400> 38

Thr Asp Lys Leu Asn Leu His Phe Asn Pro Arg Phe Ser Gly Ser Thr
1 5 10 15

Ile Val Cys Asn Ser Leu Asp Gly Ser Asn Trp Gly Gln Glu Gln Arg
20 25 30

Glu Asp His Leu Cys Phe Ser Pro Gly Ser
35 40

<210> 39
<211> 17
<212> PRT
<213> Human

<400> 39

Thr Trp Gly Thr Glu Gln Arg Glu Asp His Leu Pro Phe Gln Pro Gly
1 5 10 15

Ser

<210> 40

<211> 46

<212> PRT

<213> Human

<400> 40

Gly Asn Asp Val Ala Phe His Phe Asn Pro Arg Phe Ser Glu Asn Asn
1 5 10 15

Phe Phe Val Val Ile Val Cys Asn Thr Lys Gln Asp Asn Asn Trp Gly
20 25 30

Lys Glu Glu Arg Lys Ser Ala Phe Pro Phe Glu Cys Gly Asn
35 40 45

<210> 41

<211> 45

<212> PRT

<213> Human

<400> 41

Gly Asn Asp Val Ala Phe His Phe Asn Pro Arg Phe Asn Glu Asn Asn
1 5 10 15

Arg Arg Val Ile Val Cys Asn Thr Lys Leu Asp Asn Asn Trp Gly Arg
20 25 30

Glu Glu Arg Gln Ser Val Phe Pro Phe Glu Ser Gly Lys
35 40 45

<210> 42

<211> 45

<212> PRT

<213> Human

<400> 42

Gly Asn Asp Val Ala Phe His Phe Asn Pro Arg Phe Asn Glu Asn Asn
1 5 10 15

Arg Arg Val Ile Val Cys Asn Thr Lys Leu Asp Asn Asn Trp Gly Arg
20 25 30

Glu Glu Arg Gln Ser Val Phe Pro Phe Glu Ser Gly Lys
35 40 45

<210> 43

<211> 43

<212> PRT

<213> Human

<400> 43

Arg Ala Asp Val Ala Phe His Phe Asn Pro Arg Phe Lys Arg Ala Gly
1 5 10 15

Cys Ile Val Cys Asn Thr Leu Ile Asn Glu Lys Trp Gly Arg Glu Glu
20 25 30

Ile Thr Tyr Asp Thr Pro Phe Lys Arg Glu Lys
35 40