

Asymmetric Valleys: Beyond Sharp and Flat Local Minima

Haowei He | Gao Huang | Yang Yuan

IIIS | Department of Automation, Tsinghua University

October 26, 2019

Background: Local Landscape

A good understanding of local landscape is important for

- 1. Designing better optimization method
- 2. Explaining when and how a deep network achieves good generalization performance

Previous Work & Our Proposal

So what is a good local landscape for generalization?

Sharp or Flat
 Flat minimum generalize better.*

- 2. Re-parameterization
- 3. Asymmetric Valley

Previous Work & Our Proposal

So what is a good local landscape for generalization?

1. Sharp or Flat

2. Re-parameterization
Flat and sharp minimum can convert

to each other.*

3. Asymmetric Valley

Previous Work & Our Proposal

So what is a good local landscape for generalization?

- 1. Sharp or Flat
- 2. Re-parameterization
- 3. Asymmetric Valley

Our work.*

Minimum with asymmetric direction. Biased solution generalize better.

^{*} Asymmetric Valleys: Beyond sharp and flat local minimum. NeurIPS, 2019.

What is asymmetric valley?

Intuitively illustration:

- 1. Loss grows fast on one side and slowly on the other side.
- 2. With a random shift between the empirical and population loss, the red star solution has lower population loss in expectation.

What is asymmetric valley?

Intuitively illustration:

- 1. Loss grows fast on one side and slowly on the other side.
- 2. With a random shift between the empirical and population loss, the red star solution has lower population loss in expectation.

What is asymmetric valley?

Two interesting implications:

- 1. converging to *which* local minimum may not be critical. However, it matters a lot *where* the solution locates.
- 2. the solution with lowest *a priori* generalization error is not necessarily the minimizer of the training loss.

Random shift assumption: assume a random symmetric horizontal shift between training loss and test loss with 0 expectation.

red dashed line has the best match

 δ : relative shift

 ξ_{δ} : loss difference with δ shift

Locally asymmetric assumption: assume locally asymmetric property

Locally asymmetric assumption: asymmetric valley in a 2D case (1 single neuron with its weight, bias and sigmoid activation)

Locally asymmetric assumption: asymmetric valley in Deep neural networks (DenseNet-100 on CIFAR10)

Locally asymmetric assumption: asymmetric valley in Deep neural networks (ResNet-164 on CIFAR100)

Theorem (informal)

Bias leads to better generalization

$$E_{\delta}L(\hat{w}^*) - E_{\delta}L(\hat{w}^* + c_0) > 0$$

where c_0 is a bias towards the flat side, \hat{w}^* is an empirical solution

Theorem (informal)

SGD averaging generates a bias

$$E[\overline{w}] > c_0 > 0$$

where c_0 is a bias towards the flat side, \overline{w} is SGD average

Thanks

Asymmetric Valleys: Beyond Sharp and Flat Local Minima

Haowei He | Gao Huang | Yang Yuan