

Sudoku is Hard

Eve Routledge

Durham University

NP complete

Reduction

karp reduction

- Sudoku
- Latin Square
- Triangulated Tripartite Graph
- 3SAT
- SAT

Levin Cooke Theorem

Sudoku \leq_p Latin Square

Lemma: Let S be a Sudoku problem with the following construction

$$S(i,j) = \begin{cases} 0 & \text{when } (i,j) \in S_l \\ ((i-1 \bmod n)n + \lfloor i-1/n \rfloor + j-1) \bmod n^2 + 1 & \text{otherwise} \end{cases}$$
 (1)

where $S_l = \{(i,j) | \lfloor i-1/n \rfloor = 0 \text{ and } (j \mod n) = 1\}$. Then there exists an augmentation S' to complete the sudoku puzzle if and only if the square L such that L(i,j/n) = (S'(i,j)-1)/n+1 for all $(i,j) \in S_l$ is a Latin square.

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	3	4	5	6	7	8	9	1
5	6	7	8	9	1	2	3	4
8	9	1	2	3	4	5	6	7
3	4	5	6	7	8	9	1	2
6	7	8	9	1	2	3	4	5
9	1	2	3	4	5	6	7	8
S(i,j), n	=3	i, b	lan	ks	rei	mo	ve

	2	3		5	6		8	9
	5	6		8	9		2	3
	8	9		2	3		5	6
2	3	4	5	6	7	8	9	1
5	6	7	8	9	1	2	3	4
8	9	1	2	3	4	5	6	7
3	4	5	6	7	8	9	1	2
6	7	8	9	1	2	3	4	5
9	1	2	3	4	5	6	7	8

1	4	7	1	2	
4	7	1	2	3	
7	1	4	3	1	
S_l	(i,	j)	L(i,j		

Latin Square \leq_p Triangulated Tripartite Graph

Triangulated Tripartite Graph \leq_p 3 SAT

3 SAT \leq_p SAT

Given a truth assignment t check each clause is satisfied, if all are satisfied return True else False, this algorithm is at most the length of C multiplied by the length of B. O(BC) is polynomial, a polynomial verifier exists.

Given a SAT instance with the input sets of B and C. C is in conjunctive normal form (every clause set can be converted to an equivalent set in CNF form [?]) such that $\forall c \in C$ and for some $b_1, ..., b_n \in B$, $c = b_1 \lor b_2 \lor ... \lor b_n$. For each $c \in C$ with more than 3 literals we can transform these to a new set of clauses of length 3.

For $c=b_1\vee b_2\vee\ldots\vee b_n$ we introduce a new literal: a_1 to give $b_1\vee b_2\vee a_1$, $\bar{b_1}\vee a_1$, $\bar{b_2}\vee a_1$ and $a_1\vee b_3\vee\ldots\vee b_n$. Then $a_1\vee b_3\vee\ldots\vee b_n$ becomes $b_3\vee b_4\vee a_2$, $\bar{b_3}\vee a_2$, $\bar{b_4}\vee a_2$ and $a_1\vee a_2\vee b_5\vee\ldots\vee b_n$. This continues at most n/2 times to give $a_1\vee\ldots\vee a_{n/2}$ or $a_1\vee\ldots\vee a_{n/2}\vee b_n$ if n is odd.

Because we can convert a clause larger than 3 into multiple clauses of at most 3 literals in linear time (O(n/2 + n/4 + ...) = O(n)) this means we can reduce SAT to 3SAT in polynomial time.

As SAT is NP-complete by the Cook-Levin Theorem, this proves 3SAT is NP-Complete. □

Stochastic Methods

References

https://www.example.com