ШМУ Углеродные материалы, Тамбов, ТГТУ

GRS-2025

СИСТЕМНОЕ R&D В ОБЛАСТИ НАНОУГЛЕРОДНЫХ КОМПОЗИЦИЙ

25 СЕНТЯБРЯ 2026

Георгий Молоканов

зам. директора НОЦ «Полимерные и композиционные материалы SmartTextiles» БФУ им. И. Канта

О СЕБЕ

- Образование: Кабардино-Балкарский гос. университет им. ХМ. Бербекова Санкт-Петербургский госу. университет пром. технологий и дизайна
- Проф.опыт: Центр прогрессивных материалов и аддитивных технологий КБГУ Лаборатория нанокомпозитов на основе промышленных полимеров НИФХИ им Л.Я Карпова НОЦ «Полимерные и композиционные материалы SmartTextiles» БФУ им. И. Канта
- 50+ публикаций
 5 патентов
 2 программы для ЭВМ
 2 Ноу-хау
 1 учебно-методическое пособие
- Участие в 4 мегапроектах (общим объемом финансирования более 1 млрд руб.) и 30+ заказных НИОКР
- 🛡 Разработка новых высокоэффективных полимерных материалов и технологий их производства в интересах:
 - Госкорпораций «Роскосмос» и «Росатом» 🔎 ПАО «Иркут» 🛑 ФГУП «ВИАМ» 🛑 ФИОП
 - ПАО «Сибур Холдинг» ЦНИИМАШ Фонда перспективных исследований
- Председатель орг.комитета 1 научной конференции (руководитель орг.комитета 3 научных конференций)
- 🖿 Ответственный редактор 3 научных изданий
- Эксперт форсайт-сессии бизнес-интенсива «Картирование индустрии «Малотоннажная химия».

12 000

ВОСХОДЯЩЕЕ РАЗВИТИЕ БФУ

БФУ - крупнейший образовательный, научный, культурный, просветительский центр самого западного региона России

400+

		12 000+	1400+		<i>7</i> 40	
	нституциональные зменения	студентов	сотрудников		научно-пед	агогических кадров
)	Создание образовательно-научных кластеров	30		236		38
	Проектная система управления	научных направлени	й	исследователей		лет — средний возраст исследователей
	Новая система управления образовательными продуктами					
3	R&D сопровождение	575 млн ₽	204 млн ₽		11	
		доход от науки	доход от индус	трии	проектов в ⁻ РФ	технологических программах

единиц оборудования на 2,6 млрд₽

14001

740

НОЦ «Полимерные и композиционные материалы SmartTextiles»

декабрь 2021 создание

20+ единиц высокоточной аппаратуры

3 технологические линии переработки полимеров

7 deeptech-стартапов в рамках федерального проекта ПУТП

3 инфраструктурных проекта с индустриальными партнерами по направлению нацпроекта «Новые материалы и химия»

2 технологических направления в инфраструктуре Неокампусе «Кантиана» в области разработки новых материалов для систем генерации, накопления и хранения энергии

магистратура «Материаловедение и технологии материалов» ДООП и программа ранней проф.ориентации школьников (7-10 класс) ДПО и проф.переподготовка по полимерным аддитивным технологиям

серийный запуск и быстрое прототипирование технологий

РАЗРАБАТЫВАЕМЫЕ ТЕХНОЛОГИИ

композитные полимерные мембраны для сепараторов Li-ion аккумуляторов

теплорассеивающие композиты для микроэлектроники и мобильных накопителей тока

технологии синтеза ПА66 для автомобильной и шинной промышленностей

композиты на основе суперконструкционных пластиков, в том числе для аддитивных технологий

полимерные композиты интерьерного и экстерьерного назначения для автопрома (в том числе электротранспорта)

Новые материалы и химия

ИНФРАСТРУКТУРА

7 усс **15** ВУЗов и НИИ 20 Индустриальных партнеров

Лабораторные и опытные линии полного цикла производства

ТГТУ

DEEPTECH ТЕХНОЛОГИИ

DeepTech (англ. deep technologies «глубокие технологии») — компании, чаще стартапы, цель которых — предложить глобальные технологические решения, требующие долгих научных исследований и больших инвестиций.

Решают фундаментальные проблемы

модернизация инфраструктуры, развитие чистой энергетики, формирование ответственного производства, развитие образования и системы здравоохранения и др.

Работают на стыке технологий

сочетают в себе хотя бы две разные технологии или работают с технологиями, которые сами запатентовали

Создают физические продукты, а не только программное обеспечение

интегрируют возможности технологий в материальный мир (material-based технологии)

Находятся в центре большой экосистемы

НИР совместно с университеты, грантовая поддержка, индустриальные партнеры

DEEP TECH MARKET (2025 - 2031)

\$714.6 billion by 2031
CAGR of 48.2% during 2024 - 2030

ОБЪЕМ ИНВЕСТИЦИЙ В DEEPTECH

BY BUSINESS MODEL

Market size is estimated to reach

- B2B (Business-to-Business)
- B2C (Business-to-Consumer)
- B2G (Business-to-Government)

BY TECHNOLOGY

- Artificial Intelligence

 (AI) & Machine
 Learning
- Quantum Computing
- Biotechnology & Life Sciences

BY APPLICATION

- Healthcare & Biotechnology
- Autonomous Vehicles
 Transportation
- Aerospace & Defense

TE3 *M* **C 1**

Работа ВУЗов все в большей степени оценивается с точки зрения экономически эффективного использования технологий и получения стратегических конкурентных преимуществ в долгосрочной перспективе

КОММЕРЦИАЛИЗАЦИЯ

процесс преобразования знаний в продукт, услугу или деятельность, которые могут быть использованы в целях получения прибыли

ФОРМЫ КОММЕРЦИАЛИЗАЦИИ РИД В ВУЗЕ

ДОВЕДЕНИЕ РАЗРАБОТКИ до промышленного ИСПОЛЬЗОВАНИЯ

Оценка стоимости объекта	- оценочная экспертиза
Маркетинг нового продукта	- маркетинговые исследования и мероприятия
Поиск источников финансирования	- формирование базы данных запросов предприятий на выполнение НИР и ОКР
Выведение на рынок нового продукта	- формирование проекторной команды для каждого нового продукта

TE3 IC 2

Наиболее эффективным способом продвижения НИОКР в практику является взаимовыгодное коммерческое взаимодействие всех участников превращения научного результата в рыночный товар

инвесторы

ученые

производители

разработчики

НИОКР ИЛИ СТАРТАП ЧТО ВЫБЕРЕТЕ ВЫ?

Параметр	НИОКР*	СТАРТАП
Тип взаимодействия	Заказчик-Исполнитель	Партнерство (вхождение в долю)
Срок реализации	12 мес.	3-6 мес.
Контроль достижения результатов	В конце работы	Контрольные точки подэтапов
Вариативность изменения направления работы, конечного продукта	Низкая, есть четко согласованное ТЗ	Высокая, Т3 корректируется по итогам кастедва (регулярный характер)

^{*} Оцениваются прикладные исследования, базирующиеся на глубоких фундаментальных исследованиях

TE3ИС 3

Платформенный подход - открытый формат инновационных процессов и совместного производства, соответствующий общей логике изменения взаимоотношений между институтами высшего образования, бизнесом и обществом

ОТ ИДЕИ ДО ЗАВОДА

Начало НИР в СПбГУПТД

и ИВС РАН

Получен эффект – электропроводящие нити из полимерных композитов Защита диссертации Попытка коммерциализации

Отсутствие ранних инвестиций для MVP и продвижения

2009

2012

2018

2019

2020

2021

2022

2023

Доклады на конференциях - 20 Научные стати - 17 Патент – 1

Гранты РФФИ, ФСИ

ОТ ИДЕИ ДО ЗАВОДА

Начало НИР в СПбГУПТД и ИВС РАН Получен эффект — электропроводящие нити из полимерных композитов Защита диссертации

ОСНОВАНИЕ СТАРТАПА НАЧАЛО НИОКР Запуск **+2 стартапов**Первое публичное
представление на
выставке
«Российский
промышленник»
в г. Санкт-Петербурге

Завершение лабораторных испытаний Изготовление образца греющей ткани Испытания индустриальным партнером Запуск +1 стартапа

Создание первых образцов одежды с применением греющих модулей, испытание куртки с греющими элементами на Эльбрусе

Запущено собственное производство греющих элементов Открытие завода в Калининградской области

Расширение производства. Работа над новыми применениями

2009

2012

2018

2019

2020

2021

2022

2023-

2024

Фонд инфраструктурных и образовательных программ

ТРАНСЭНЕРГОПЛАСТИК

Трансэнергопластики — это новейшие **композиционные материалы** на основе полимеров, позволяющие эффективно управлять электрической и тепловой энергией.

В соответствие с видом передаваемой энергии трансэнергопластики на основе ПКМ разделяются на два основных класса:

- Электропроводящие (антистатические, экранирующие, электрорассеивающие);
- Теплопроводящие (теплорассеивающие полимерные композиты -ТРПК).

Потенциальный рынок применения трансэнергопластиков:

широкий круг современных материалов, изделий в которых происходят интенсивные энергообменные процессы (экранирующие, антистатические, теплоотводящие, электропроводящие, теплообменные превращение электрической в тепловую энергию и т.д.).

Технический текстиль и текстиль со специальными свойствами: Спецодежда и обувь, обладающая антистатическими и экранирующими свойствами; Утеплители и прокладки; Геотекстиль; Агротекстиль (плёночные материалы); Дублирующие текстильные материалы;

Ленты и плёнки специального назначения; Чехлы для экранирования Электромагнитных полей

МАТЕРИАЛЫ

Наименование	Технический	Углеродные	Многостенные	Одностенные
показателя, единицы	углерод	Нановолокна	углеродные	углеродные
измерения	(ТУ)	(YHB)	нанотрубки,	нанотрубки,
			(МСУНТ)	(ОСУНТ)
Форма и размеры Наночастицы	Ø 80 HM	5 MKM WH 051	1-25 M/M WH (0PT)	1-10 MKM WH L-9
Осевое отнош.,	~1	~30	≤1000	> 350
отн. ед.	1	30	<u> </u>	7 330
Коэффициент				
теплопроводности,	$\lambda = 1,6$	$\lambda = 1200$		
Вт/(м·К)	,			
Уд. электрич. сопротивлен, Ом·м	~10-3	~ 10-4	~10-8-10-4	

ВНЕДРЕНИЕ

Стартап Тексайс

- технология создания композитного материала с регулируемыми теплоотводящими свойствами

1,5 млн ₽

УГТ 4

инвестиции стартап-студии БФУ текущий статус

~95.2 °C

Внешний вид

После 7-ми минут работы

Игольчатый радиатор на основе ПА для LED-освещения

Продукт прошел испытания:

ЭлектрикАрт

- производит комплексное освещение помещений любого формата и производство светодиодных светильников

АЙТИ-ТРЕЙД

- производит универсальные радиостанции под своим брендом «Shevron»

ФИРМА «РАДИАЛ»

- ведущий российский производитель базового антеннофидерного оборудования

ВОПРОСЫ

