USING THEOREMS ON CONVERGENT SEQUENCES §2.2

- (1) Which of the following implications about sequences hold in general? Either mention a relevant theorem or give a counterexample.
 - (a) monotone \implies convergent
- (d) increasing + convergent \implies bounded

(b) convergent \implies bounded

- (e) convergent \implies monotone
- (c) bounded + decreasing \implies convergent
- (f) bounded \implies convergent
- (2) Show¹ that the sequence $\left\{\frac{n^2-15\sqrt{n}\sin(n)}{3n^2}\right\}_{n=1}^{\infty}$ converges and determine to what number it converges.
- (3) Prove or disprove: If $a_n^2 < 4$ and $a_n < a_{n+1}$ for all n, then $\{a_n\}_{n=1}^{\infty}$ converges.
- (4) Prove that for any real number r, there exists a sequence of rational numbers that converges to r.

Hint: Show that there exists a sequence $\{a_n\}_{n=1}^{\infty}$ of rational numbers such that $r - \frac{1}{n} < a_n < r$.

- (5) Prove that if $\{a_n\}_{n=1}^{\infty}$ is a bounded sequence and $\{b_n\}_{n=1}^{\infty}$ converges to 0, then $\{a_nb_n\}_{n=1}^{\infty}$ converges to 0.
- (6) Prove or disprove: The sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = 1 + \frac{1}{2^3} + \cdots + \frac{1}{n^3}$ is convergent.
- (7) Prove or disprove: The sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ is convergent.

¹You can use any basic properties about the sine function from trig, like which values of $\sin(x)$ are equal to 0, 1, or -1, and that $-1 \le \sin(x) \le 1$.