Explainable AI: Shapley Values

A Unified Approach to Interpreting Model Predictions **Scott Lundberg**, Su-In Lee

https://colab.research.google.com/github/leexa90/ Explainable_AI_image_classification/blob/master/ colabs_script.ipynb

Background on myself

- Graduated from NUS science 2015
- Working in A*STAR Bioinformatics Institute in areas of computational biology (2015-17) and crop analytics (2018 onwards)
- Attempted machine learning in areas of work and greatly helped by Deep Learning Developer's course
- Hobbies: Deep Learning, keeping fit, church

Need for Explainable Al

https://github.com/slundberg/shap/blob/master/docs/presentations/NIPS %202017%20Talk.pptx

Need for Explainable Al

Some of the articles of GDPR can interpreted as requiring explanation of the decision made by a machine learning algorithm, when it is applied to a human subject.

UW Prof. Pedro Domingos, a leading Al researcher, started a firestorm with his tweet

Cognitive, Human-Like, Empathetic & Explainable Machine-Learning (CHEEM)

Complicated AI Model

Explainable model: Additive feature attribution model

M is the number of simplified input features, and $\phi_i \in \mathbb{R}$.

Additive feature attribution methods

LIME

Ribeiro et al. 2016

Shapley reg. values

Lipovetsky et al. 2001

DeepLIFT

Shrikumar et al. 2016

Relevance prop.

Bach et al. 2015

QII

Datta et al. 2016

Shapley sampling

Štrumbelj et al. 2011

Path expectations

Saabas 2014

Additive feature attribution methods

Why additive feature attribution methods may work

Complex models are inherently complex!

But a single prediction involves only a small piece of that complexity.

SHapley Additive exPlanation - (SHAP) values (1)

How did we get here?

SHapley Additive exPlanation (SHAP) values (2)

SHapley Additive exPlanation (SHAP) values (2)

SHapley Additive exPlanation (SHAP) values (3) – Computation

Train AI model

For each data point, containing 4 superpixels

```
Explain model =
\phi_{pink} + \phi_{blue} + \phi_{green} + \phi_{red}
```

 ϕ_i is the shapley value of X_i and X_i is a feature

SHapley Additive exPlanation (SHAP) values (4) – computation

$$\phi_{\text{pink}} = \text{weight_avg}(f() - f())$$
 $[f() - f()]/4 + [f() - f()]/12 + [f() - f()]/12$

Applying to Mnist (1)

- Mnist model with 4 convolutional layers and 2 dense layers.
- Accuracy is 99.6%
- for each test image {
 - Split image to 7*7 = 49 superpixels for shapley value computation
 - Sample 7367 combinations of pixels
 - ~ all -1 pixel images, ${}^{49}C_1 = 49$
 - \sim all -2 pixel images, $^{49}C_2 = 1176$
 - \sim 33% of -3 pixel images, $^{49}C_3/3 = 6142$
 - Calculate shapley values for each pixel using weighted regression

SHapley Additive exPlanation (SHAP) values (5) – solved using weighted linear regression

$$\phi = (X^T W X)^{-1} X^T W y$$

 X_i is the feature binary vector of X, $2^m * m$ matrix W is shapley kernel weights, m * m diagonal matrix Y is model output for each Y, Y column vector Y. Where Y refers to number of features

Another Example: VGG16

Applying to Mnist (1)

- Mnist model with 4 convolutional layers and 2 dense layers.
- Accuracy is 99.6%
- for each test image {
 - Split image to 7*7 = 49 superpixels for shapley value computation
 - Sample 7367 combinations of pixels
 - ~ all -1 pixel images, ${}^{49}C_1 = 49$
 - \sim all -2 pixel images, ${}^{49}C_{2} = 1176$
 - \sim 33% of -3 pixel images, $^{49}C_3/3 = 6142$
 - Calculate shapley values for each pixel using weighted regression

Applying to Mnist (2) – Global analysis

Applying to Mnist (3) – Individual analysis (a)

Applying to Mnist (3) – Individual analysis (b)

Applying to Mnist (3) – Individual analysis (c)

Drawbacks

- Computationally intensive, requires to compute 2^m Fink features intensive, requires to compute 2^m Fink features followed by inverse of the series matrix.
 - ~ I only sampled 10³ out of 10¹⁴ combinations
 - How do you appropriately remove a feature?

 Method does not explain inner workings, rather it is a model upon a model to explain the final output.

Summary

1.

2.

3. Intuition

$$g(z') = \sum_{i=1}^{M} \phi_i$$

$$\phi_{pink} =$$
weight_avg(f() - f())

4. Analysis of global predictions

5. Analysis of each prediction

6. Drawbacks

Another application: Transfer-learned Inception3 model

References

- Scotts slides https://github.com/slundberg/shap/blob/maste r/docs/presentations/NIPS%202017%20Talk.pptx
- A Unified Approach to Interpreting Model Predictions(2017), Scott Lundberg, Su-In Lee
- Analysis of regression in game theory approach (2001), Stan Lipovetsky, Michael Conklin