SYNTHESIS AND CHARACTERIZATION OF PURE AND Bi₂ O₃ DOPED BARIUM HEXA-FERRITES

A Tnesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

by H. KRISHNAN

to the

MATERIALS SCIENCE PROGRAMME

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

MAY, 1987

OENTE SE968

MSP-1907-M-KRI-SYN

TO MY BELOVED GRAND FATHER LATE SHRI A. KRISHNA IYER

		CONTENTS	Page
		# T	90
LIST OF TA	BLES		iv
LIST OF FI	GURES		v
ABSTRACT			vii
CHAPTER	1	THEORY OF HEXAGONAL FERRITES	
	1.1	Introduction	1
	1.2	Crystal Structure	2
	1.3	Magnetic Structure	4
:	1.4	Comparision of Hexagonal Ferrites with Spinel Ferrites	4
	1.5	Comparision of Hexagonal Ferrites with Metallic Magnets	5
:	1.6	Preparation	6
1.6	5.1	Oxide Method	6
1.6	5.2	Decomposition Method	7
1.6	5.3	Coprecipitation Method	8
1 .6	5.4	Electrolytic Coprecipitation	9
1.6	5.5	Hot Pressing	
1.6	5.6	Other Methods	9
1	7	Applications of Hard Ferrites	9
		References	11
CHAPTER 2		PROPERTIES OF HEXAGONAL FERRITES	
		ABSTRACT	
2		Magnetic Properties of Barium Hexaferrite	12

	2.1.1	Coercivity	12
	2.1.1(a)	Particle Size	12
	2.1.1(b)	Crystal Anisotropy	15
	2.1.1(c)	Strain Anisotropy	16
	2.1.1(d)	Shape Anisotropy	16
	2.1.2	Saturation Magnetization	16
	2.1.3	Remanent Magnetization	17
	2.1.4	Hysteresis	17
	2.1.5	Curie Temperature	17
	2.1.6	Magnetic Losses in Hard Ferrites	18
	2.2	Electrical and Dielectric Properties of Hexaferrites	18
	2.2.1	Dielectric Constant and Resistivity Hexaferrites	19
	2,3	Microwave Properties of Ferrites	24
	2.3.1	Ferromagnetic Resonance in Ferrites	25
	2.3.2	Line Width	26
		References	28
CHAPTER	3	SYNTHESIS, CHARACTERIZATION, RESULTS AND DISCUSSIONS	
	3.1	ABSTRACT .	29
	3.1.1	Experimental Part Synthesis of Hard Ferrite	29
	3.1.1 (a)	Principle	29
•	3.1.1(b)	Raw Materials	30
	3.1.1(c)	Synthesis Steps	30
	3.2	Characterization Techniques	32
	3.2.1	X-ray Diffraction Studies	32

	3.2.1	Ultimate Compressive Strength Measurements	33
	3.2.3	Density Measurements	33
	3.2.4	Electrical and Dielectric Measurements	34
	3.2.4(a)	AC Resistivity	34
	3.2.4(h)	Dielectric Constant and Dielectric Loss	35
	3.2.5	Magnetic Measurements	35
	3.2.5(a)	Specific Magnetization, Coercivity and Curie Temperature Measurement	35
	3.3	Results and Discussions	36
	3.3.1	Density Measurements	36
	3.3.2	Compressive Strength	39
	3.3.3	X-ray Measurements	39
	3.3.4	Electrical and Dielectric Behaviour	3 9
	3.3.4(a)	AC Resistivity as Function of Frequency	37
	3.3.4(b)	Dielectric relaxation	48
	3.3.5	Magnetic Measurements	62
		References	
CHAPTER	4	Conclusion	71

iii

LIST OF TABLES

TABLE	TITLE	PAGI
2.1	Magnetic Properties of Barium Hexaferrite	13
3.1	Results of X-ray Diffraction analysis for Various Ba Ferrite Samples	41
3.2	X-ray Diffraction Data for the Doped and Pure Samples sintered at 1 200°C for 12 hrs.	4 2
3.3 (a)	ASTM X-ray Diffraction Data for BaO.6Fe ₂ O ₃	44
3.3 (b)	ASTM X-ray Diffraction Data for Bapa	45
3.3 (c)	ASTM X-ray Diffraction data for Fe203	45
3.4	Frequency Dependence of Electrical and Dielectrical Parameters of Various Barium Ferrite Samples	49
3.5	Variation of Specific Saturation Magnetization, Remenance, Coercivity and (BH) with Sintering Temperature and Time	63

LIST OF FIGURES

Figure	Title	Page
1.1	SCHEMATIC REPRESENTATION OF BARIUM FERRITE STRUCTURE	3
2.1	POLYCRYSTALLINE STRUCTURE OF FERRITES DIELECTRIC STRUCTURE	20
3.2	SCHEMATIC DIAGRAM OF EXPERIMENTAL SET UP	31
3.2 (a)	VARIATION OF SINTERED DENSITY WITH SINTERING TIME	37
3.2 (b)	VARIATION OF lnD WITH 1/T	38
3.3	VARIATION OF COMPRESSIVE STRENGTH WITH SINTERING TIME	40
3.4 (a)	X- RAY DIFFRACTION PATTERN OF THE DOPED SAMPLE SINTERED AT 1 200°C FOR 1 2 Hrs. (B3)	46
3.4 (b)	X-RAY DIFFRACTION PATTERN OF THE PURE SAMPLE SINTERED AT 1 200°C FOR 1 2 Hrs. (Y3)	47
3.5 (a)	VARIATION OF AC RESISTIVITY WITH FREQUENCY FOR THE DOPED SAMPLES SINTERED AT 1100°C FOR 4,8, AND 12 HOURS	54
3.5 (b)	VARIATION OF AC RESISTIVITY WITH FREQUENCY FOR THE DOPED SAMPLE SINTERED AT 1 200°C FOR 4,8 AND 1 2 HOURS	55
3.5 (c)	VARIATION OF AC RESISTIVITY WITH FREQUENCY FOR THE PURE SAMPLE SINTERED AT 1100°C FOR 4,8 AND 12 HOURS	56
3.5 (d)	VARIATION OF AC RESISTIVITY WITH FREQUENCY FOR THE PURE SAMPLE SINTERED AT 1200° C 4,8, AND 12 HOURS	57
3.6 (a)	VARIATION OF DIELECTRIC CONSTANT AND LOSS RELAXATION WITH THE FREQUENCY OF THE FIELD FOR THE DOPED SAMPLE SINTERED AT 1 200°C FOR 1 2 HOURS (3)	58
3.6 (b)	VARIATION OF DIELECTRIC CONSTANT AND LOSS RELAXATION WITH THE FREQUENCY OF THE FIELD FOR THE PURE SAMPLE SINTERED AT 1 200°C FOR 1 2 HOURS (Y3)	59

3.7	(a)	VARIATION OF DISSIPATION WITH THE FREQUENCY OF THE FIELD FOR THE DOPED SAMPLE SINTERED AT 1 200°C FOR 1 2 HOURS(B3)	60
3.7	(b)	VARIATION OF DISSIPATION WITH THE FREQUENCY OF THE FIELD FOR THE PURE SAMPLE SINTERED AT 1 200°C FOR 1 2 HOURS (Y3)	61
3.8	(a)	MAGNETIZATION AND DEMAGNETIZATION CURVE OFTHE DOPED SAMPLE SINTERED 1300°C FOR 12 HOURS (C3)	64
3.8	(b)	MAGNETIZATION AND DEMAGNETIZATION CURVE OF THE DOPED SAMPLE SINTERED AT 1 200°C FOR 1 2 HOURS (B3)	65
3.8	(c)	MAGNETIZATION AND DEMAGNETIZATION CURVE OF THE PURE SAMPLE SINTERED AT 1300°C FOR 12 HOURS (Z3)	66
3.8	(d)	MAGNETIZATION AND DEMAGNETIZATION CURVE OF THE PURE SAMPLES SINTERED AT 1 200°C HOURS (Y3)	67
3.8	(e)	SATURATION MAGNETIZATION VS TEMPERATURE PLOT FOR THE DOPED SAMPLE SINTERED FOR 4 HOURS AT 1100°C	58

ABSTRACT

In the present study, pure and Bi₂O₃ doped Barium hexaferrite has been synthesized using ceramic method. The samples are prepared by sintering method. During this process, doped Bi₂O₃ promotes the liquid phase sintering and thereby reducing the sintering temperature. The samples has been characterized using techniques of x-ray diffraction, magnetization, mechanical deformation, electrical and dielectrical behaviour. The effect of sintering temperature and time on these properties have been discussed in detail.

The first chapter of the thesis deals about crystal structum magnetic structure, general method of synthesis and applications of ferrites.

In the second chapter the subject matter related to magnetic properties, electrical and dielectrical properties of ferrite
are described.

The third chapter describes the synthesis method, character ization and results of experimental observations.

Conclusions have been discussed in 4th Chapter.

THEORY OF HEXAGONAL FERRITES

ABSTRACT

In the present chapter an attempt is made to describe the classification of hard ferrites and their chemical, crystallographic and magnetic structures. Their method of preparation and uses are also presented.

1.1 Introduction:

The magnetic oxides possessing hexagonal structures are known as Hexaferrites. Most important of these is the well known material barium hexaferrite (BaO.6Fe₂O₃). This was first developed by Philips Research Laboratory and was called Ferroxdure [1]. The other important hexaferrite is strontium ferrite (Sr0.6Fe₂O₃). These ferrites remain permanently magnetized even after the removal of magnetic field due to its large magneto-crystalline anisotropy. These materials are therefore used as permanent magnets and they are also known as hard magnetic materials. A broad classification based on chemical constitution for ferrites under this class is given below [2].

Mo.6Fe₂O₃ M type BaO.2Mo.8Fe₂O₃ - W type $2(BaO.Mo.3Fe_2O_3) - Y$ type 3 BaO.2Mo.12Fe₂O₃ - Z type

Where M is a divalent metal ion. Out of these, barium bexaferrite is discussed in detail.

1.2 Crystal Structure :

The barium ferrite BaO.6Fe 2O3 and strontium ferrite SrO.6Fe₂O₃ materials are commercially important materials. They possesses the identical crystal structure as magnetoplumbite PbO.6[(Fe_{1.25}Mn_{0.6}Al_{0.8}Ti_{0.08})₂O₃][3]. In the case of pure Barium hexaferrite, Fe ions occupy the same positions as the mixtures of Fe, Mn, Al and Ti in the mineral magnetop bulite. Ba^{2+} and O^{2--} ions are both large and about the same size $(r_{B_0^2+} = 1.43 \text{Å}, r_{D_2-} = 1.32 \text{Å})$ [4]. They are stacked in a close packed fashion. The smaller Fe3+ ions are located in the interstice The barium hexaferrite unit cell is as shown in the figure (1.1), consists of 10 close packed layers having mixed hexagonal (h) and cubic (k) stacking. The stacking sequence this can be written as hhhkkhhhkk in Zhadnov symbol and as (111 2 111 2) in the Jagodzinsk: essentially consists of 4 blocks, two hexagonal (hhh) and two cubic (kk). The eight close packed layers consist of purely ${\rm O}_2$ ion, and remaining two (i.e., second and seventh hexagonal layer from the bottom of the cell) consists of three oxygen and one Barium ion. Each layer consists of 4 large ions. Thus the oxygen and barium ion close packed lattice consists of three types of interstitials namely, tetrahedral (surrounded by four 0, ions), hexagonal (surrounded by five oxygen ions, three on the bottom and two on the top) and octahedral (surrounded by eight oxygen ions). The unit cell as a whole has hexagonal symmetry with a = b = 5.88A and C = 23.2A, and it contains two barium hexaferrite molecules. The filling of interstitials in hexaferrite by Fe³⁺ ion is identical to those of spinels.

Fig. 1.1 Schematic representation of the barium ferrite structure.

1.3 Magnetic Structure:

In the case of barium ferrite, the only magnetic ions present is ${\rm Fe}^{3+}$ with a moment of 5 Bohr magneton ($\mu_{\rm B}$) and they are 24 in an unit cell. These are located in three crystallographically different kinds of sites (i.e.) 4 at tetrahedral site, 18 at octahedral sites and 2 at hexahedral site. The ${\rm Fe}^{3+}$ ions have their moments normal to the basal (a-b) plane of the oxygen layers, and thus parellel or anti-parellel to the c-axis (< 000.1>) of the hexagonal cell. The arrangement of 24 ${\rm Fe}^{3+}$ ions each with spin 5 $\mu_{\rm B}$ is given below with their spin directions [6].

Tetrahedral sites (4 nearest 0 $^{2-}$ neighbours), 4% Octahedral sites (b nearest 0 $^{2-}$ neighbours), 4% 14 ψ Hexagonal sites (5 nearest 0 $^{2-}$ neighbours) 2 ψ

This gives a magnetic moment $8 \times 5 = 40 \mu_{\rm B}$ per unit cell. The theoretical saturation magnetization M_S is then calculated as follows:

 M_s = Magnetic moment of the unit cell/volume of the unit cell

$$= \frac{40 \times 0.927 \times 10^{-20}}{694 \times 10^{24}} \text{ erg/Oc am}^3$$

 $= 538 \text{ emu/cm}^3$

1.4 Comparision of Hexagonal Ferrites with Spinel Ferrites:

Spinel materials are soft materials having high initial permiability, high saturation magnetization, low coercivity and low (BH) product. Hexagonal ferrites on the

otherhand possess high coercivity, high (BH) product, low saturation magnetization and low initial permiability [6]. The arrangement of cations are entirely different in these two ferrites. In spinel case there are 2 sites for cations, namely the tetrahedral sites and octahedral sites. But in hexagonal ferrites there are 3 sites, namely tetrahedral, octahedral and hexahedral. Curie temperature of hexa ferrites are low compared to spinel ferrites. However Curie temperature of hexaferrites are likely to get affected lesser by the metal ion substitution for Fe³⁺ ion. Hexaferrites are also grain oriented or anisotropic materials. Their commercial utility is based upon the strength coupling of magnetization to the axial direction. This characteristic strong coupling produces high anisotropic materials of the order of 10⁶ erg/cm³in contrast to 10⁴ to 10⁵ erg/cm³ of spinels. Due to this high anisotropy, hexaferrites are used as permanent magnets.

1.5 Comparision of Hexagonal Ferrites with Metallic Magnets:

In general hard magnetic materials are classified into two groups, one is metallic (alloys) and the other is ferrite magnet materials. Magnetic metals are more dense and they are capable of greater magnetic moments and Curie temperature (BH) product is all higher for magnetic metals as compared to ferrites. But they are of limited use because of their high electrical conductivity and high manufacturing cost. Alloying can decrease conductivity but it will affect mechanical and magnetic properties of the material. Hexagonal ferrites are hard ferrites and they are very stable and difficult to demagnetize either by external fields or by

mechanical shock they usually possess a negative temperature coefficient of remanence which may be of the order of 0.2% per deg. °C [7]. This volume is ten times greater than that of a metal alloy magnet and although this is often a disadvantage, it can occasionally be put to practical use. Ferrite magnets are resistant to demagnetization by heating, provided the Curie temperature is not approached too closely. Saturation magnetization of ferrite materials are low compared to metal magnets. Ferrite magnets are more economical due to its easy manufacturing processes. Raw materials of these ferrites are very cheap and very simple to synthesis.

1.6 Preparation:

Polycrystalline ferrites are usually formed by a kind of solid state reaction. A sintered polycrystalline body is not truely a solid but contains many pores. The quantity size, shape and distribution of both crystal grains and pores through the body, will vary with different synthesizing techniques, firing temperatures, atmosphere and times. As a result, numerous processes have been developed till date. They are presented below:

1.6.1 Oxide method:

High purity oxide materials are mixed in the stoichiometric proportions and made to react at high temperature (1200°C to 1300°C). The extent and rate of solid state reaction depend upon factors such as particle size, temperature, time, chemical nature and crystal structure and the reactants. mixing of starting

powders are often performed by wet milling for a long period in a rubber lined pot using stainless steel balls. Dry mixing of materials is unsuitable because sufficient dispersion will not be obtained. After milling, mixture is dried and pressed into pellets before presintering. Organic polymer such as polyvinyl alcohol is used as a binder. To obtain a higher degree of homogeneity, it is often necessary to crush the presintered pellets and then give final sintering at higher temperature after pelletization(desire shapes). During pelletization for final sintering, magnetic field is applied to orient the grains of the material in a particular direction. This magnetic treatment makes the material anisotropicand increases the (BH) _ sotropic ferrites do not undergo this magnetic treatment. Usually, low sintering temperature are preferred because high temperature sintering accentuates volatility and induces violent changes [8]. It also results in inhomogeneous surface layers that degrade the magnetic performance. High temperature sintering results in grain growth and consequent reduction in coercivity.

1.6.2 Decomposition method:

In this method, instead of using oxides as starting materials, one may use salts such as carbonates, nitrates and oxalates. These salts are mixed in the required proportions, then sintering in air is done. This produces the oxides by thermal decomposions. In other words, process is similar to the oxide method and yet relizes upon a mechanical process to produce the uniform dispersion of the constituents.

1.6.3 Coprecipitation Method [10]:

To avoid the lengthy milling processes involved in wet mixing, attempts have been made to simultaneously precipitate the required hydroxides from a solution, so that precipitate containing the required metals in correct proportions, which is obtained. are already intimately mixed, / Knowledge of the solubility product of the substance is essential in order to determine the pH value for complete precipitation. The mixed cations are precipitated out by a strong base (usually NaOH) in a soluble pH and dilution range. The pH is also related to solubility product. The most important feature of this method is the intimate mixing of ions on the atomic level, so that subsequent nucleation and crystallization can occur at low temperatures. This behaviour prevents grain growth and the particles are perfect in that they are free from stresdes and strains caused by particle diminution in milling. High coercivity thus can be expected from this method.

1.6.4 Electrolytic Co-precipitation [11]:

In this method, the composition is formed by electrolysis from the anode, which is made of metal. Type of metal would be dependent on the oxide required.

1.6.5 Hot Pressing [12]:

High quality permanent magnet materials are also prepared by pressing very fine ferrite powders at high temperatures. For this process, pressure, temperature are to be optimized to reduce particle size, so that coercivity of the

materials will be increased.

1.6.6 Other Methods:

Single crystals of pure and doped M.Fe $_2$ O $_3$ (M-Ba,Sr) have been grown from different solvents by spontaneous nucleation growth [13]. Strong improvement in crystal size was obtained using Na $_2$ O-Fe $_2$ O $_3$ flux. Thin film deposition methods are also employed for Ba ferrite [14].

1.7 Applications of Hard Ferrites:

Hard ferrite magnets have naturally first been used for purposes where their merits are outstanding and their defects are unimportant. For toys, novelties cheapness is important than great magnetic strength. Low magnetization and high coercivity of these materials makes these materials specially suitable for applications where large demangetizing fields are encountered. ferrite magnets are used in loud speakers circuits, magnets for focussing electron beams, for fixing one object to another. Also barium ferrite magnets are used for oil filters, electric generators and motors etc. Barium ferrites are also used as magnetic chucks to hold work piece during grinding, milling, plaining and turning. These ferrites found only limited use in recording surfaces, primarily because the high coercivity requires that the material of the writing head have a saturation flux density. However, the high coercivity of this material gives the recording surface a unique ability to withstand, high demagnetizing fields (erasing fields). property has been utilized specially for the two major applications

In the first application, master tapes are made from high coercivity hexaferrites which are used to transfer information to copy tapes by bringing two tapes (master and copy tapes) together in the presence of a magnetic field. The transfer field should be high enough so that the combination of transfer plus signal fields are enough to switch the information in the copy tape, yet it would be advantageous to see very high coercivity master tapes. The second application is in magnetic stripes on credit cards; and magnetic badges. Due to there high resistivity and large uniaxial magnetocrystalline energy, these ferrites are used in microwave communication and radar systems as high frequency resonant decles such as tunable filters, gyrators and isolators etc. Ferrite magnets are having very low eddy current losses due to its high resistivity and they are suitable for providing a polarizing field in inductors and transformers. Examples are unidirectional pulse transformers, polarized relays, microphones and telephone circuits.

REFERENCES :

- 1. J.J. Went, G.W. Ratheman, E.W. Gorter and G.W. Vanoosterhont "Ferroxdure, a class of new Permanent Magnet Materials", Philips Technical Review. Vol 13 (7) 194-208 [1951-52].
- 2. B.D. Culity, "Introduction to Magnetic Materials", Wesley Publishing Company, 1972.
- 3. K.J. Standley, "Oxide Magnetic Materials", Monographs on the Physics and Chemistry of Materials, 1962.
- 4. V.M. Goldschimit 'Tonic radii of Various Elements', p. 106 John Wiley and Sons, London, 1975.
- 5. P. Krishna, 'Characterization of Polytype Structures' (1976)
- 6. F. Bradley, "Materials for Magnetic Functions", Hyden Book Company, Inc. New York.
- 7. M.G. Say 'Magnetic Alloys and Ferrites', Whit Fuairy Press, 1954.
- 8. M.C.D. and J.C. Jeschkke, "Single domain properties in Hexagonal ferrites", Journal of Applied Physics 34,1271-1274 (1963).
- 9. K. Honeda, C. Miyahoma and H. Kojima, "Preparation of high Coercivity BaO.6Fe₂O₃", Journal of American Ceramic Society 57188 354-57 (1974).
- 10. N.K. Ghosh, M. Tech. Thesis Met. Engg. I.I.T. Kampur, 1981.
- 11. E.P. Wonlfarth, "Ferromagnetic Materials" Vol. (4) North-Holland Publishing Company.
- 12. T.M. Oron, 'Ba ferrites-hot pressing process for preparing high quality material from very fine powders", IEEE Trans. Mag. 1452-54 Sept. 75.
- 13. J.M. Desvigues, H. Le Call, M. Laberyrie, J. C. Mage, T.M. Cobinsion, 'Improvement of Hexaferrites, Crystal Growth Reproducibility and Characterization", Journal De Physique 46 p. 326-331, Sept. 1985.
- 14. Morisicko, A.M. Matsurroto and Minaoe, 'C-axis Orientation of Hexagonal films prepared by r.f. Sputtering', IEEE Trans. Magentics, 5PG4, 1981-82.
- 15. E.P. Wohlfarth, 'Ferromagnetic Materials," Vol. (3), North Holland Publishing Company (1982).

CHAPTER - 2

PROPERTIES OF HEXAGONAL FERRITES

ABSTRACT

The present chapter deals with electrical, dielectric, magnetic and microwave properties of hexaferrites.

2.1 Magnetic Properties of Barium Hexaferrites:

Several magnetic properties of the barium ferrites are presented in the table 2.1. Measurements of polycrystalline BaO.6Fe₂O₃ at liquid hydrogen temperature and in fields upto 26000 Cersteds give theoretical value of specific saturation magnetization 101 emu/gm [1], however at room temperature 20°C it was found to be 72 emu/gm. Various parameters like saturation magnetization, ramanance, hysteresis and coercivity of these materials are studied. The origin of these properties and their variations, depending on method of processing and other physical factors are discussed in the subsequent sections.

2.1.1 Coercivity:

The coercivity is defined as the field applied in reverse direction to demagnetize the magnetized specimen. Now we will see the various factors influencing the exercivity.

(a) Particle size:

Domains are formed in order to reduce the magnetostatic

Table 2.1 : Magnetic properties of barium hexaferrite

S.No	Property	Value	Reference
1.	Saturation magnetic moment per unit mass (σ_s)	70 gauss cm ³ /gm	[1]
2.	Remanent induction (Br)	2050 gauss	[1]
3.	Coercive force (H _C)	2400 Oe	[14]
4.	(BH) _{max}	0.85×10^6 .gauss Oersted	[14]
5.	Curie temperature (T _C)	450°C	[8]
6.	Anisotropy constant (K)	$3.3 \times 10^6 \text{ erg/cm}^3$	[14]
7.	Temperature Coefficient of remanent induction	-0.2%/C°	[14]
8.	Temperature coefficient of induction in working point	-0.1.5%/C°	[14]
9.	Working point	B 1000 gauss H -850 Oe	[14]

energy, size of the domains is a balance between the reduction of magnetostatic energy by the formation of domains and the increase in energy caused by increased domain wall per unit volume. However, when we decrease the material dimensions below some critical size, we encounter strikingly different behaviour associated with domain structures and magnetization processes unique to fine particles [2] Domain boundary motion ceases to play a significant role because the particle becomes too small to contain domain boundaries. Fadical changes in permiability and coercivity are then observed. A spherical particle of diameter a has an associated magnetostatic energy of a [2].

$$E_{\rm m} = \pi^2 d^3 M_{\rm s}^2 / 9$$
 (2.1)

This energy can be cut into half by dividing the particle into two domains seperated by a domain boundary and this introduces the domain boundary energy of \mathbf{E}_{b}^{1}

$$E_b^1 = \frac{\pi d^2 E_b}{4}$$
 (2.2)

where E'_b is equilibrium boundary energy. At large domain particle diameters, this boundary energy is negligible compared to magnetostatic energy and hence multidomain structure is energitically favoured. However, with deceasing particle size the magnetostatic energy falls off more rapidly than the boundary energy. Therefore, at some particle diameter the above two energies will exactly balance. This is the critical diameter for single domain particle. It pan be shown that critical diameter d_C [2].

$$d_{c} = 9 \left(\frac{kT_{c}K}{s} \right)^{1/2} n_{s}^{2}$$
 (2.3)

where T_C is the Curie temperature

k is Boltzmann constant

K is crystal anisotropy constant

a is interatomic distance

 ${\rm M}_{\rm S}$ is saturation magnetization

Domain boundary motion plays an important role in the magnetization of bulk materials. In the absence of domain boundaries (i.e.) for single domain particles, there are three general ways by which the particles can reverse their magnetization under the influence of demagnetization field.

- 1. By domain reaction
- 2. By changing the single domain structure (i.e.) nucleating and growing a reverse domain, which requires the introduction of domain boundary energy [1].
- 3. By fanning and curling [1]
- b. Crystal anisotropy :

In the absence of other influences, the magnetization vector of a spherical single domain particle is directed along an easy crystallographic direction to minimize the magneto crystalline anisotropy energy. To rotate the magnetization vector through a more difficult crystal direction requires the application of a reverse field $H_{\rm c}$ [1]

$$H_{C} = 2k/M_{C} \qquad (2.4)$$

where k is magnetocrystalline anisotropy energy constant.

C. Strain anisotropy:

It has been found that mechanical strain increases the coercive force of a single domain particle by $3\lambda V/M_S$ [2]. where ' λ ' is magneto-striction constant, and 'T' is applied stress.

This effect is quite similar to the effect of crystal anisotropy: in order to rotate the magnetization vector the particle must pass through a region of high anisotropy with respect to the stress.

d. Shape Anisotropy:

An elongated single domain particle free from crystal or strain anisotropy will direct its magnetization vector along major axis, where the demagnetizing factor is a minimum and magnetostatic energy is therefore lowest. This effect has been exploited in the case of metalic magnets like 'AlNiCo' and ESD magnets [3].

2.1.2 Saturation magnetization:

Saturation magnetization (M_S) is the maximum value of magnetization (where magnetization is total magnetic moment per unit volume and in Cgs system its unit is gauss) for a ferromagnetic or ferrimagnetic material [4]. We use the term σ_S for specific magnetization which is total magnetic moment per unit mass. Its unit is emygm or in cgs system gauss cm 3 /gm. Saturation magnetization decreases with increasing milling time of initial raw mixture, due to the formation of soft magnetic phase. It can

be overcome by annealing the sample (5.).

2.1.3 Remnant Magnetization:

Remnant magnetization is defined as the residual magnetization remaining in the sample even after magnetic field is removed: In the case of isotropic ferrites, the preferred directions of mangetization of the constituent particles are oriented at random, in that case remance is equal to half of the saturation magnetization value [6]. Remnance can be increased considerably by pressing the powder in a magnetic field before sintering it.

2.1.4 Hysteresis:

In an external magnetic field, the favourably oriented domains grow at the expense of those aligned unfavourably to the field. Finally at larger field soll domains are oriented parallel to the field due to rotation of magnetization-vectors. Upon the removal of external saturating magnetic field in reverse-direction, the same path will not be traced. This is due to irreversible domain wall movements, cousing the phase lag between external field and magnetization leads to an open loop. This is called hysteresis loop. The case with which the magnetization may be changed by a given magnetic field depends on the anisotropy and structural homogeneity of the material to a large induced magnetization for a given magnetic field [7].

2.1.5 Curie temperature :

It is the temperature at which spontaneous magnetization of

ferrite vanishes. Magnetization will cancel at Curie temperature.

Below the Curie temperature sublattice magnetization (hence net megnetization) changes with temperature because the ordering tendency of exchange energy is opposed by disordering effect of thermal energy [8].

2.1.6 Magnetic Losses in Hard Ferrites:

Ferrites can have electrical, magnetic and mechanical losses that must be considered individually for each set of operating conditions [9]. It is essential to attain low losses at the levels of any device. Since increased losses will results in excessive heating, decreased sensitivity and increased attenuation all of which will degrade the system (device) performance. Magnetic losses result due to (a) eddy current loss (b) hysteresis loss (c) losses due to domain wall relaxation and (d) losses due to domain rotation resonance. Residual loss depends on the frequency (f) but not on the field strength. Eddy current loss rises as the square of frequency (f) and is independent of field strength. Hysteresis loss is a function of both frequency (f) and field strength B_{max} .

2.2 Electrical and Dielectric Properties of Hexaferrites:

The electrical properties play an important part in many applications. Electrical conductivity promotes eddy currents and prevents high frequency fields penetrating appreciably below the surface (skin effect). The dielectric constant and corresponding

loss angle decides the applicability of ferrites to microwave applications. The underlying theory of ferrites is therefore presented below.

2.2.1 Dielectric Constant and Resistivity of Hexaferrites:

The dielectric properties of a polycrystalline ferrite may vary markedly, depending upon the heat treatment given to it during preparation. The oxygen dissociation pressure [10] over Fe₂O₃ of a Mo.6Fe₂O₃ increases rapidly over 1200°C. This may lead to the formation of some divalent iron (FeO). Owing to the presence of Fe³⁺ and Fe²⁺ ions on the same lattice grid leads to high electrical conductivity due to electron hopping mechanism. If the material is cooled in an oxygen atmosphere it may lead to formation of high resistivity thin film around grain boundaries. This occurs due to fast migration of oxygen ion through pores and grain boundary resulting to oxidation of divalent iron. As they have been fired and cooled in different ways, they differ in Fe²⁺ content. Hence they differ in dielectric constant and resistivity due to their inhomogeneous dielectric structure.

Koops [11] assumed that both the grains and boundaries can be represented by parallel R-C circuits. A series combination of these parallel circuits would then represent the behaviour of inhomogeneous dielectric as a whole. This is shown in Fig. [2.1] (a, b and c).

 $^{\mathrm{C}}_{\mathrm{p}}$ and $^{\mathrm{R}}_{\mathrm{p}}$ are the equivalent parallel capacitance and

F16.2.1 Polycrystalline Structure of Ferrites - Dielectric Structure.

and equivalent parallel resistance respectively in Fig. [2.1 (c)]. The admittance Y_p of the circuit is shown in Fig. [2.1(b)] is

$$Y_{p} = 1/R_{p} + jw_{p}$$
 (2.1)
where $R_{p} = \int_{p} d/A$ (2.1 (a))
 $C_{p} = c_{p} A/d$ (2.1 (b))

and p and p are the resistivity and dielectric constant of the ferrite. A is cross-sectional area of the specimen; 1 is the length between 2 electrodes.

When A.C. field is applied on dielectric material which does not have free charges, this causes periodic polarization. However polarized change, lag behind applied A.C. field. Under such circumstances losses in the capacitor are represented by a complex dielectric constant

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon}_{p}^{\prime}, \quad j \, \boldsymbol{\epsilon}_{p}^{\prime\prime}, \quad (2.2)$$

where $\boldsymbol{\epsilon}_{p}^{t}$ is real part of complex dielectric constant, $\boldsymbol{\epsilon}_{p}^{t}$ p is imaginary part of complex dielectric constant under experimental conditions. R_{p} is quite large and thus admittance is

$$Y_{p} = jwc_{p} = jw \in \frac{A}{1}$$

$$\therefore Y_{p} = jw \in \frac{A}{1} \left[e_{p} - j e_{p} \right]$$

$$(2.3)$$

Equating equations (2.1 with (2.4) we have

$$\frac{1}{R_p} + jwc_p = jw \in \underline{A} (E_p - j E_p)$$
 (2.5)

Comparing real and imaginary parts on both sides

$$\epsilon_{\rm p}^{\prime\prime} = \frac{1}{W \, \xi_{\rm A} \, R_{\rm p}} = \frac{1}{\omega \epsilon_{\rm p} f} = \frac{\sigma}{\omega \epsilon_{\rm p}} \quad (2.6)$$

It is imaginary component of complex dielectric constant, but it is real, usually called as dielectric loss,

It is a real component, known as dielectric constant. In the phase diagram, δ is the phase angle between ϵ_p and ϵ_p . Tan δC loss tangent, is the measure of dissipation C loss) and it can be expressed as

$$tan\delta = \epsilon_{p}^{"}/\epsilon_{p}^{'}$$
 (2.7)

After combining equations (2.2) to (2.6) it leads to

$$Tan\delta = \frac{1}{wc_p R_p} = \frac{\epsilon_p''}{\epsilon_p'} = \frac{1}{w \epsilon_0 \epsilon_p}$$
 (2.8)

Since loss tagent is (tamb) can be taken as D (Dissipation factor) directly from admittance bridge. Then quality factor of the ferrite can be given by:

$$Q = \frac{1}{\tan \delta} = \frac{1}{D} = WC_{p}R_{p} \qquad (2.9)$$

Quality factor tells about how much energy is dissipated in one complete cycle.

Determing the admittance using electric circuit from Fig. (2.1(b)) and equating with equation (2.1) with following assumptions

$$x = d_1/d_2$$

$$\rho_1 > \rho_2$$

$$\rho_1 > \rho_2$$

$$xp_1 > \rho_2$$
 by a reasonable factor
$$\rho_1 = \rho_2$$

where d₁ = grain boundary thickness

d₂ = grain size

 $x = \left(\frac{d_1}{d_2}\right)$ is the ratio of thickness of the grain boundary layer to the thickness of crystallites.

Koops arrived at

$$\rho_{\rm p} = \rho_2 + \frac{x \rho_1}{1 + c' p_1 \rho_2 w^2}$$
 (2.10)
where,

 ρ_1 and ρ_2 are resistivity of layers which are marked (a) and (2) in Fig. (b).

$$\epsilon_{\rm p} = c_2 + \frac{\epsilon_2 / x}{1 + c' \rho_2^2 / v_2^2}$$
 (2.11)

These 2 above equations tells low resistivity and dielectric constant relax with applied frequency.

If the relevant dimension d c a ferrite sample is larger than half as the wavelength inside the ferrite medium,

standing waves are set up which give rise to high magnetic and dielectric losses. This phenomenon is known as dimensional resonance

d
$$d > \pi_{\rm m} / 2 = C / 2f \frac{1}{\sqrt{M_{\rm r} \epsilon_{\rm p} / \epsilon_{\rm o}}}$$
 (2.12)

where $rac{1}{m}$ = wave length and $rac{1}{m}$ = relative permeability.

At low frequencies when relative permeability M_T and ϵ_p/ϵ_0 are both high, dimensional resonance may occur in a ferrite of ordinary dimensions.

So summarizing the relaxation effects, we have from equation (2.10) and (2.11):

f
$$\rightarrow$$
 0 $\rho \rightarrow x\rho_1$
(low frequency) $\epsilon \rightarrow \epsilon_1/x$
when f $\rightarrow \infty$ $\rho \rightarrow \rho_2$
(high frequency) $\epsilon \rightarrow \epsilon_2$

At low frequencies the impedance of the crystallite is negligible as compared to the boundary. At high frequencies the boundary capacitance short circuits the boundary resistance and bulk dielectric properties approach that of the crystallite.

2.3 Microwave Properties of Ferrites:

Ferrites play an important role in microwave technology. The parameters such as anisotropy, Line width, Saturation magnetization, Spin relaxation sine and losses at Gigahertz (GHZ) frequency range determines the applicability of ferrites for such applications. The important microwave parameters are discussed in preceeding sessions.

2.3.1 Ferromagnetic Resonance in Ferrites:

The basic phenomenon of ferromagnetic resonance in ferrites at microwave frequencies was first described by Land and Li (1935) [137. He based his explanation on gyromagnetic spin resonance taking place in the internal magnetic fields of crystals. Kittle [1948] further suggested that ferromagnetic quantum mechanical in nature, resonance, include the effects of magnetic anisotropy and the dependence of the induced resonance frequency on the shape of the specimen. Resonance is caused by the tendancy of electromagnetic field to align the spins in the material with the instantaneous direction of the magnetic field in the electromagnetic wave. When the energy of the incident field is sufficient, the spins in the material will precess and absorbs energy from the electromagneti This aligning tendancy will be countered by any external field and by anisotropy of the crystal, which binds the magnetization and results in a high resonance frequency [4]. This ferromagnetic resonance occurs at a frequency given by:

$$(w/r)^2 = [H_a (1-2\sin^2\theta) + H_{ext} \cos(\theta_0-\theta)] H_{ext}$$

$$(\sin \theta_0 / \sin \theta) (2.13)$$

and $Sin\theta Cos\theta/SinC\theta_0-\theta) = H_{ext}/H_a$

where w = resonance frequency

Alignment by an external magnetic field permits precession of the spins in only one direction resulting in a non-reciprocal property. For an instance, a wave in one direction can be attenuated as a result of resonance absorption whereas the wave in the opposite direction will propagate with only a normal reflection. This principle has become the basis of useful microwave ferrite systems. The propogation constants are also different for the forward and reverse direction. This behaviour is extremely useful in microwave devices to attenuate undesired (reflected) waves and to shift the phase of a transmitted wave relative to a reflected wave. Based on the principle, the gyrators, circulators and faraday rotation devices are employed.

2.32 Line Width :

It determines sensitivity or sharpness of the resonance in ferrites. This is of considerable importance both shown on theoretical viewpoint and also from application view point. It is a measure of the rate at which energy is transferred from the system of precessing spin dipoles to the lattice vibrations. A rapid transfer results in damping of the precessional magnetization vector, which yields a broad spectral line [15].

The line width arises from two major sources: (i) spinlattice interaction: It is due to transfer of energy (direct coupling) from uniform precession (all spins in phase) of the spins to lattice at a given thermal equalibrium between spin and lattice. However, this contribution to the ferrite line width is relatively small. The relaxation time for this spin-lattice process is approximately 10⁻⁷ second. (ii) Spin-spin interaction: In this case energy is coupled to the lattice by spin-spin relaxation of spin waves inside the ferrite. A spin wave is a nonuniform mode of magnetization precession in which the spins are out of phase. The relaxation time for this spin-spin processes 10⁻⁹ sec. to 10⁻¹⁰ sec.

REFERENCES :

- 1. B.D. Culity, "Introduction to Magnetic Materials", Wesley Publishing Co. 1972.
- 2. 'Magnetic Properties of Metals and Alloys', American Society of Metals, Cleveland (1959).
- 3. F. Kools, 'Factors governing the coercivity of Sintered anisotropy M.type ferrite', Journal De Physique, C6-(1985).
- 4. J. Smith and H.P.J. Wijin, "Ferrites", Philips Technical Library, Eindhoven (1959).
- 5. F.G. Brakman, "Magnetic Ceramics" A review and Status report, American Ceramic Society Bulletin 47, no. 1 186-94, Feb. (1968).
- 5. D. Hadfield, 'Permanent Magnets and Magnetism," London ILIFFE Books Ltd (1962).
- 7. R.M. Bozoroth 'Ferromagnetism', (1951).
- 3. G.W. Ratheman, "Curie temperature study of M type Hexaferrites" Proc. 3rd Euro Conf. on Hard Magnets. Mat., Amsterdom 7-16 (1974).
- . E.C. Snelling, Soft ferrites, London ILIFFE BOOKS LTD.
-). J.C. Hostetter H.S. Roberts, 'Note on the Dissociation of Ferric Oxide in Glass and its relation to colour of Iron Bearing Glasses', Journal of American Ceramic Society Vol. (4), p. 127 (1921).
- . C.G. Koops," Dispersion of Resistivity and Dielectric Constant of some Semiconductors at Audio Frequency", Phy. Rev. Vol. 83, p. 121, (1951).
- F.G. Brockman, P.H. Dowling and W.G. Steneck," Anomalous behaviour of Dielectric Constant of a Ferromagnetic Ferrite at a magnetic Curie point" Physics Rev. 75, 1440 (1949).
- . B. Nicolaas, "Magnetic Resonance in Ferrites," Proc. of the I.R.E. Vol. 44 (1956).
- E.P. Wohlfarth 'Ferromagnetic Materials' Vol. (3), North-Holland Publishing Company (1982).
- . C.D. Owens "Analysis of Measurements on Magnetic Ferrites Proc. of the I.R.E. Vch. 41 (1953).

CHAPTER - 3

SYNTHESIS, CHARACTERIZATION, RESULTS AND DISCUSSIONS

ABSTRACT

In this chapter, method of synthesizing pure and Bi₂O₃ oped barium hexaferrite is described. The results of experimental bservations using x-ray diffraction, metallographic, electrical nd magnetic measurements are presented and discussed.

.1 Experimental Part:

.1.1. Synthesis of Hard Ferrite:

The conventional methods of synthesizing hard ferrites are been presented in Chapter -1. The present work deals with he synthesis of pure and $\mathrm{Bi}_2\mathrm{O}_3$ doped barium hexaferrite by eramic method as described in the following sections.

.1.1 (a) Principle:

The metal carbonates are reduced to their oxides when new are heated at higher temperatures and subsequent heating sults in BaO-6Fe₂O₃ as final product. The formation of BaO.6Fe₂O₃ staking place after two intermediate steps [1] as shown slow:

Step I BaCO₃ + Fe₂O₃ T <
$$750^{\circ}$$
C BaO.Fe₂O₃ + CO₂ (3.1)

Step II Ba0.Fe₂
$$^{\circ}_3$$
 + 5Fe₂ $^{\circ}_3$ $\xrightarrow{T > 850^{\circ} \text{ C}}$ Ba0.6Fe₂ $^{\circ}_3$ (3.2)

In the present case, doping with Bi203 has been accomplished

by adding required amount of $Bi(NO_3)_2$ $5H_2O$ to the stoichiometric mixture of $BaCO_3$ and Fe_2O_3 , which can produce 2% (weight %) of Bi_2O_3 . Bismuth nitrate breaks into Bi_2O_3 and nitrogen oxide after heating above 250°C.

4Bi
$$(NO_3)_3 \cdot 5H_2O$$
 $\xrightarrow{250 \circ C}$ $2Bi_2O_3 + 12NO_2 + 2OH_2O + BO_2$ (3.3)

3.1.1 (b) Raw Materials:

The raw materials used in the present investigation for synthesis of hexaferrites are given below.

Material	Make	Quality
Fe ₂ O ₃ powder	Thomas Baker and Co Bombay	AR Grade
BaCO ₃	Thomas Baker and Co. Bombay	AR Grade
Bi(NO ₃) 2 5H ₂ O	SISCO research laboratories Bombay	AR Grade
Acetone	Ranbaxy Lab. Ltd., Punjab.	AR Grade

3.1.1 (c) Synthesis Steps:

Fe₂O₃ (ferric oxide), BaCO₃ powder and Bi(NO₃)₂ 5H₂O were taken in required amount and mixed well using acetone as wetting media. The mixture was placed in rotating steel lined down (planetary ball mill) with steel balls (2 :1 proportion by weight). After wet milling for 6 hrs, the slurry mixture was placed in a beaker at 100°C for 2 hours for drying. The dried flakes, were reground using mortor and pes tle, . Above powder was pressed into cylindrical specimens in a hydraulic press at about 2 tonnes/sq.i

Fig (3-1) Schematic Diagram of Experimental Setup

were presintered in air at 950°C for 4 hours in a coil furnace. The experimental setup is shown in the Figure (3.1). After presintering and cooling, pellets were again crushed into powder and pressed into pellets using hydraulic press of pressure 4 tonnes/sq. inch. Final sintering was carried in air at temperatures (1100°C, 1200°C and 1300°C) and for (4,8 and 12 hours). Experimental setup is same as presintering. During sintering the temperature was controlled within ± 1% of the full scale and samples were furnace cooled. The samples were labelled as follows:

Sample specification		Tempe	erature a	and ti	_me_				
	; 11c	00°C		12	200°C		13	300°C	Million process Assessed
	4 hrs	8 hrs	12 hrs	4 hrs	8 hrs	12 hrs	4 hrs	8 hrs	12 hr:
Pure Barium Ferrite	x1	X2	х3	Y1	Y2	Ұ 3	z1	z 2	Z 3
Bi ₂ 0 ₃ doped Barium Ferrite	д1	Α2	д З	B 1	В2	В3	C1	C2	C3

3.2 Characterisation Techniques:

The samples were characterized using electron metallography, X-ray diffraction, mechanical, electrical and magnetic measurements as described below.

3.2.1 X-ray Diffraction Studies:

The X-ray diffraction patterns were recorded with the

help of Siefert Iso-Debylflex diffractometer. For this, samples were crushed into fine powder and mounted on a specimen holder. The CrK filter radiation (λ = 2.291002Å) was used. The diffractometer, goniometer and tube settings fixed at the following values

Tube voltage = 40 kV

Tube current = 35 ma

Counts per second = 100 (CPS)

Time constant = 10 mm/ min

Scanning rate = 1.2 /min.

3.2.2 Ultimate compressive strength measurement:

Instron 1195 Instrument was used to determine the compressive strength of the sintered pellets. The load was applied over flat surfaces with head speed of 0.5 mm/min., Chart Speed of 20 mm./min and full scale load of 1000 Kg. to 2000 Kg. were used. The ultimate compressive strength was evaluated from the loads at which samples failed.

3.2.3 Density Measurements:

The sintered density determination was done by liquid immersion method with distilled water as medium. The samples were fried in an oven at 150°C in order to remove the moisture of any apped gaseous materials. The initial dry weights (4) of the less were taken with an electrical balance. The samples were summersed in a beaker containing distilled water and boiled to hours to allow the water to enter the pores of samples

by replacing the trapped air bubbles. The samples were removed and blotted gently with a tissue paper. The saturated weight (w_2) in air was taken. The samples were then suspended in water and their suspended weight (w_3) was taken. The sintered density was calculated from the following relation:

$$\rho_s = \frac{w_1}{w_2 - w_3}$$
 .. (3.4)

3.2.4 Electrical and Dielectric Measurements:

The sintered pellets (cylindrical) approximately of 1 cm. length and 0.9 cm diameter were given a thin uniform conducting coating of silver paint on opposite flat surfaces to establish ohmic contacts. The resistance (R), capacitance (c) and dissipation factor (Loss tangent-Tanó) of these samples were measured in parallel mode in the frequency ranges from about 100 Hz to 13 MHz by an impedance bridge (Model 1608A) supplied by General Radio Company of U.S.A. The electrical and Dielectrical parameters were determined as follows [2]:

3.2.4 (a) A.C. Resistivity:

The a.c. resistivity (ρ) were obtained by using the relation

$$\rho = R \times \frac{A}{1} \dots (3.5)$$

Where R, A and 1 represent the resistance, area of cross-section and the length of the samples respectively.

3.2.4 (b) Dielectric Constant and Dielectric Loss:

Measuring capacitance at different frequencies, the complex dielectric constants were determined by the relation :

$$C_p = \epsilon_0 \epsilon_{p \times \frac{A}{1}} \dots (3.6)$$

where ϵ_p are parallel capacitance and parallel dielectric constant respectively. Similarly knowing loss tangent (tano) or dissipation factor at different frequencies the dielectric loss (ϵ_p) as a function of frequency was calculated as follows:

$$tan\delta = \frac{1}{\omega_{C} R_{p} R_{p}} = \frac{\epsilon_{p}}{\epsilon_{p}} ... (3.7)$$

where $\omega = 2\pi f$

Thus dielectric loss
$$p = {\epsilon'' \atop p} * tan\delta$$
 ..(3.8)

3.2.5 Magnetic Measurements:

The magnetic properties such as specific magnetization (σ_s), coercivity ($^{\rm H}_{\rm C}$) and Curie temperature ($^{\rm T}_{\rm C}$) were investigated using the following techniques:

3.2.5 (a) Specific Magnetization : Coercivity and Curie Temperature Measurement:

Ferrite samples of approximate dimension $2.5 \times 2.5 \times 2$ mm were cut and polished for the above measurements. A parallel field vibrating magnetometer (Model 150A) supplied by the

Princeton Applied Research Corporation, New Jersy was employed for magnetization studies. The properties measured at room temperature were specific magnetization and coercive field. Curie temperature measurement was carried out for the Bi₂O₃ doped Ba ferrite sintered at 1100°C for 4 hrs at fixed magnetic field of 8 KOe. Ni-Cr vs Ni-Al Thermocouple and digital multimeter Model (8050 A) were used to measure the temperature.

3.3 Results and Discussions:

The results obtained in the present studies are discussed below.

3.3.1 Density Measurements:

The results of density measurements on sintered pure and doped barium ferrites are presented in Fig. (3.2(a)). It is observed that sintering density is increasing with sintering time and temperature. It is also observed that for doped samples density is higher than corresponding pure samples even at lower temperatures. This may be attributed by the following reason. The doped Bi₂O₃ melts at low temperature(\$00°C) and this molten bismuth oxide wets ferrite particles readily and promotes liquid phase sintering thereby greatly reducing the sintering temperature and enhanced the densification at lower temperatures itself [3]. For a given time of sintering lnD vs

T(sintering temp.) plotted as shown in the Fig. (3.2(b)) shows a straight line.

$$\frac{dD}{dt} = A \exp^{-Q/RT} \qquad ... (3.9)$$

Fig.3.2(a) Variation of sintered density with sintering time

Fig.3.2(b) Variation of $\ln \dot{D}$ with $\frac{1}{T}$

3.3.2 Compressive strength:

Results of compressive strength measurement as a function of sintering temperature and time are shown in Fig. (3.3). It is seen that compressive strength is increasing with sintering time and temperature. This might be due to higher sintering densitie at higher temperatures.

3.3.3 X-ray Measurements:

The results of X-ray diffraction studies of pure and doped samples are shown in the Table (3.1) . At lower sintering temperatures it can be seen that λ -Fe $_2^0$ 3 phases are also present. At high sintering temperatures intensity of ferrite lines are increasing and it shows the complete ferritization between 1 200°C to 1300°C. The observed 20, $d_{\rm c}I/I_{\rm c}$ and (h k l) values for doped and pure samples sintered at 1200°C for 12 hours are shown in the (3.2) and also X-ray graphs for these samples are Table shown in the Fig. (3.4(a) and (b)). The ASTM X-ray diffraction data for barium ferrite, BaO,Fe.203,BaCO3 are given in the table(3.3) (a),(b) (c) and(d). According to ASTM, the diffraction data for pure barium hexaferrites the most intense lines are $2.622 (I/I_0 = 100)$, 2.77 Å (I/I_O = 100), 1.625 (I/I_O = 50). However, for doped hexaferrites the relative intensities for these lines are 2.62A(I/Io=89) and 2.77A° ($I/I_0 = 100$). This may be due to the preferential alignment or due to substitution of bismuth ions for barium in the planes.

- 3.3.4 Electrical and Dielectric Behaviour:
- (a) A.c. Resistivity as Function of Frequency:

Fig. 3-3 Variation of compressive strength with sintering time

Table 3.1 : Results of X-ray diffraction analysis for various barium ferrite.samples.

Sample Specification	Results of x-ray analysis	Sample Specification	Results of x-ray analysis
A1	BaO.6Fe 203, small amount of -Fe 203 is also present	x1 it	Mostly BaO.6Fe ₂ O ₃ small amount of Fe ₂ O ₃ is also present.
A2	Only BaO.6Fe ₂ O ₃ lines present	X2	Only Ba ferrite lines
А3	Ba ferrite lines	Х3	Ba ferrite lines
B1	Ba ferrite lines	Y1	Ba ferrite lines
В2	Ba ferrite lines	Y 2	Ba ferrite lines
C1	Ba ferrite lines	z_1	Ba ferrite lines
C2	Ba ferrite lines	Z2	Ba ferrite lines
C 3	Ba ferrite lines	Z3	Ba ferrite lines

Table 3.2 : X-ray diffraction data for Bi₂O₃ doped Ba ferrite and pure Ba ferrite samples sintered at 1200°C for 12 hours⁺

	For doped sam	ple (B3)	
20 (in deg)	d A°	Relative intensity I/I _o	(hkl)
26.56	4.98	2	(101)
28.36	4.67	4	(102)
34.56	3.85	17	(006)
45.84	2.94	45	(110)
46.64	2.89	36 ·	(008)
47.00	2,80	2	(112)
48.76	2,77	100	(107)
51.68	2,62	. 89	(114)
56.44	2.42	17	(203)
61.66	2,23	22	(205)
65.14	2.12	22	(206)
72.00	1.94	1	(1.0.1)
78.34	1.81	1	(1.1.1)
04.206	1.47	. 21 ·	(220)

Table 3.2 : Contd.

	For pure samp	ole (Y3)	
20 (in deg)	d A°	Relative intensity I/I _o	(hkl)
26.68	4.96	4	(101)
28.54	4.64	9	(102)
34.60	3.85	11	(006)
45.88	2.93	64	(110)
46.68	2.89	23	(008)
47.44	2.84	6	(11 2)
18.80	2.77	93	(107)
51.88	2.61	100	(114)
56.52	2,41	66	(203)
51.80	2.23	40	(205)
65.24	2.11	25	(206)
72.16	1.94	11	(1.0.10)
78.60	1.80	7	(1.1.10)
02.36	1.47	65	(220)

⁺All lines are Barium ferrite lines

Table 3.3 (a) : X-ray diffraction data for BaO.6Fe₂O₃ (ASTM file no. 7-276)

20 (in deg.)	đ A°	Relative intensity I/I _o	(hkl)
26 .81 .	4.94	10	(101)
28.52	4.65	14	(102)
34.52	3.86	16	(006)
45.86	2.94	40	(110)
16.70	2.89	14	(008)
17.39	2.85	10	(112)
18.85	2.77	100	(107)
51 .85	2.62	100	(114)
56.50	2.42	40	(203)
51 .81	2.23	40	(205)
72.16	1.94	10	(1.0.11)
78.31	1.81	16	(1.1.10)
2.09	1.47	40	(220)

Table 3.3 (b): X-ray diffraction data for BaO (ASTM file no. 1-0746)

20 (in deg.)	d A°	Relative intensity I/I	(hkl)
11.95	3.20	100	(111)
19.23	2.75	. 88	(200)
71.95	1.95	75	(220)
37.26	1.66	50	(311)

Table 3.3 (c): X-ray diffraction data for $-\text{Fe}_2\text{O}_3$ (ASTM file no. 13-534)

20 (in deg.)	d _A •	Relati intensity I/I _O	(hkl)
36.47	3,66	25	(012)
50.40	2.69	100	(04)
54.30	2.51	50	(110)
85.34	1.69	60	(116)
01.04	1.48	35	(214)
04.16	1.45	35	(300)

Table 3.3 (d): X-ray diffraction data for $BaCO_3$ (ASTM file no. 11-697)

20 (in deg.)	d _A .	Relative intensity I/I _o	(hkl)
33.11	4.02	65	(111)
38.43	3.48	100	(200)
55.52	2.45	60	(220)
56.15	2.09	30	(311)

Fig. 3-4(a) X-Ray diffraction pattern of the doped sample sintered at 1200°C for 12 hrs (B3)

and pure samples sintered at 1100°C, 1200°C for different sintering temperatures are shown in Fig. 3.5(a),(b) (c) and (d). All these samples showed that resistivity decreases rapidly with increasing frequency. This is due to electromagnetic relaxation as a result of structural inhomogeneity. It is also observed that resistivity is increasing with sintering time. However, for the doped samples sintered at 1100°C for 4 hrs. is showing descrepancy i.e. resistivity and decreasing with sintering time. These samples exhibited the presence of Fe_2O_3 unlike others. The frequency dependence of electrical and dielectric parameters of various samples are shown in table (3.4)

- (b) Dielectric relaxation:

 The variation of dielectric constant ϵ_p (real part of complex dielectric constant), dielectric loss ϵ_p , with frequency of the samples sintered at 1200°C for 12 hrs for doped and pure samples are shown in Fig. (3.6 (a) and (b) respectively. These exhibit the following common features:
- (i) The dielectric constant (ϵ), and dielectric losses (ϵ) are decreasing with the increase of frequency. This may be attributed to the dielectric relaxation as a result of structural inhomogeneity as discussed in section (2.21).
- (ii) The doped samples exhibit high value of dielectric constant and losses in comparision to pure samples. This may be attributed to the enhanced local polarization associated with substitution of Pi 2+ ion in the ferrite lattice.
- (iii) Dielectric constant is decreasing with sintering time in both the cases. Dissipation factor given by tano is also plotted

Table 3.4 : Frequency dependence of electrical and dielectrical parameters of various barium ferrites samples.

Samp spec fica		Resis- tivity (ρ) Ω-cm	Dielectric constant (& ')	Dielectric losses (<'')	Dissipa tion factor
A1	100	0.55.1.6			$(tan\delta)$
11-	1KHz	0.55 _{x10} 6 0.28 _{x10} 6	111657.85	385219.58	3.45
			9531.76	14678.92	1.54
	10KHz	0.06x106	21 37 • 43	1774.06	0.83
	100KHz	0.01 _{x10} 6			
	1 MH $_{\rm Z}$	7216.12	851.05	784.15	2.92
	1 OMHZ	1471.42	263.62	247.80	2.42
	13MHz	1135,50	73.53	43.01	1.91
	- 311112		63.84	33.50	0.52
A2	100	0.13x106			
	1 KH $_{\rm Z}$	0.05 _{×10} 6	264761.1	531110.79	2.06
	10KHz	0.01 _{x10} 6	45607.08	6574.90	1.44
			9 241 .43	6746.24	0.73
	100KHz	²³⁹¹ •9 2	4416.68	259 2.59	0 - 58
	1 MH $_{\rm Z}$	983.13			
	1OMH_{Z}	517.93	2160.33	2657.20	1.23.
	13MHz	470.00	617.97	1106.17	0.52 2.06 1.44 0.73 0.58 1.23 1.79 1.79 1.99 1.93 1.36 0.59
-			513.43	919.05	1.79
A 3	100	56830.75			
	1 KH $_{\mathbf{Z}}$	25857.00	6117.10	1 2173.03	1.99
	10KHz	1 249 2 . 24	1346.83	25 99 . 39	1.93
	100KHz	21,99.56	197.46	268.55	1.36
			48.29	28 •49	0.59
	1MHz	483.16	26.82	19.58	0.73
	10MHz	261,21			
	13MHz	249.84	15.54	37.04	0.43
			16.63	46.45	0.34

sp a	mple acifi- F _{Hz}	ρ Ω – απ	ė,	É	D.F.
cat	tion ""Z	85- CIII		6 .	-
в1	100	43862.19	8765.25	18713.82	2.13
	$1 \mathrm{KH}_{\mathrm{Z}}$	13774.26	1 259 .30	1220.20	0.96
	$10 \mathrm{KHz}$	3385,85	396.28	297.21	0.75
	100KHz	536.35	157.04	73.81	0.47
	1 MH $_{\rm Z}$	96.95	99.07	53.20	0.53
	10MH _Z	54 • 24	199.61	1 203.65	6.03
	$13 \mathrm{MHz}$	53.01	595.36	7168.37	12.00
B2	100	182872.30	1650.86	2806.47	0.58
	1 KH $_{\mathbf{Z}}$	41703.19	291.31	191.60	1.48
	10KHz	4447.12	132.63	42.44	3.04
	100KHz	384.03	93.43	18.88	4.75
	1MH _Z	85.36	80.00	30.40	2.63
	10MHz	51 .45	52.41	25.12	1.92
	$13 \mathrm{MH}_{\mathrm{Z}}$	52.78	9,43	3.39	2.77
33	100	153056.11	1436.73	1724.07	0.83
	1 KH $_{\mathbf{Z}}$	16502.23	451.31	185,03	2.43
	$1\mathrm{OKH}_{\mathbf{Z}}$	1959.11	298.71	97.08	3.07
	100KHz	528.73	175.53	92.04	0.52
	$1 \mathrm{MH}_{\mathrm{Z}}$	1 29 .1 2	107.14	81.43	0.76
	$1\mathrm{OMH_Z}$	63.58	8,10	2.26	0.28
	13MHz	64.94	4.39	0.87	0.20

Sample		S8368				
spacif.		ρ _Ω -cm	E	· · ·	D.F.	
C1	100	87648.75	1675 46	The state of the s		
C	$1_{ m KH_Z}$	9367.31	4675.49		2,25	
	·10KHz	1198.96	794.20	252.29	0.36	
	100KHz		528.16	184.85	0.35	
	1 _{MHz}	378.70	28 2.65	167.54	0.59	
		82,92	162.84	122.13	0.75	
	10_{MHz}	34.25	9.24	2.03	0.17	
	13MHz	34.02	5.00	0.55	0.11	
C2	100	981 23 .89	2044.22	2269.00	1.11	
	1 KH $_{\rm Z}$	7809 .02	794.20	274.00	0.34	
	$10 \mathrm{KHz}$	2305.91	496.13	31 2.56		
	100KHz	462.00			0.63	
	$1_{ m MHz}$	74.32	192,88	94.51	0.49	
	10 MHz	1.55	1 29 .03	68.38	0.53	
	13 MHz		14.42	4 •09	0.28	
		1.56	11.00	4.01	0.19	
	100	99521.50	1182.00	1825.00	0.88	
	1_{KHz}	1 21 21 . 25		1010.11	0.75	
	$10 \mathrm{KHz}$	2100.60		743.21	0.62	
	100KHz	828.48		646.65	0.79	
	$1 \mathrm{MH}_{\mathbf{Z}}$	102.11	172.12			
	10MHz	55.21		225,08	0,65	
	13MHz	43.41	65.80 51.95	162 . 16 88 . 23	0.61	

specific- tion	F _{Hz}	ρ Qcm		11	tanô
X1	20KHz	206 26 2.75	77.91	13.94	0.17
	100KHz	21 569 .96	69.03	1 2.00	0.08
	$1 \mathrm{MHz}$	903.24	64.84	31.25	0.03
	13MHz	275.01	89.64	5.61	0.17
x2	5KHz	1088974.40	1.53	0.72	0.47
	10KHz	439699.10	1.26	0.37	0.30
	100KHz	19313.88	0.98	0.10	0.10
	$1 \mathrm{MH}_{\mathrm{Z}}$	1 21 2.25	0.89	0.61	0.68
	10MHz	10.88	0.53	0.01	0.1
	$13 \mathrm{MHz}$	19.51	1.00	0.31	0.01
хз	$11_{ m KHz}$	309797.38	0.99	0.17	0.18
	100KHz	13404.69	0.79	0.04	0.05
	1MHz	580.87	0.74	0.01	0.02
	10MHz	373.84	0.84	0.12	0.15
	13MHz	153.40	1.05	0.11	0.11
¥1	1 2KHz	89496.84	0.94	0.04	0.05
	100KHz	39483,89	0.89	0.02	0.02
	$1 \mathrm{MH}_{\mathbf{Z}}$	250.06	0.79	0,01	0.01
	$1\mathrm{OMH}_{\mathbf{Z}}$	381.67	0.82	0.21	0.26
	13MHz	167.41	1.05	0.13	0.12
Y 2	10KHz	352144.19	1.10	0.25	0.23
	$100 \mathrm{KH}_{\mathrm{Z}}$	14955 . 93 679 . 81	0.91 0.85	0.07	0.07
	10MHz	391.57	0.86	0.16	0.18
	1 2MU-	1 20 57	1 ^^	- 41	- A -

Sample spacifi- cation	F Hz	ρ Ωcm	,	,,	tanô
Y 3	11 KH $_{\rm Z}$	1 28 53 2. 21	1.20	0.31	0.35
	100KHz	89756.00	0.98	0.12	0.21
	$1 \mathrm{MHz}$	50222.00	0.83	0.09	0.12
	$10 \mathrm{MHz}$	620.21	0.56	0.12	0.24
	$1\mathrm{3MHz}$	118.75	0.91	0.08	0.20
z1	7KHz	265419.00	2,66	0.77	0.29
	$10KH_{\rm Z}$	89140.36	2.50	0.65	0.26
	100KHz	11675.33	1.88	0.23	0.12
	$1 \mathrm{MHz}$	653,81	1.66	0.09	0.06
	10.MHz	100,40	1.62	0.22	0.13
	13MHz	58.45	2.02	0.17	0.08
Z2	7KHz	369 298 . 20	2.99	1,25	0.42
	10KHz	277369.94	2.62	1.07	0.41
	100KHz	22189.50	1.59	0.30	0.19
	1MH _Z	879.65	1.35	0.09	0.06
	$1\mathrm{OMH}_{\mathbf{Z}}$	116.42	1.37	0.17	0.12
	13MHz	89,55	1.75	0,20	0.11
z 3	15KHz	389 21 2.50	3.01	2.89	0.56
	100KHz	110101.50	2.75	2.75	0,65
	1MHz	20195.00	1.65	2,00	0.71
	10MHz	4321.00	1.01	1,65	0.31
	13MHz	809.00	0.01	0.35	0,25

Fig. 3-5(a) Variation of AC resistivity with frequency for the doped samples sintered at 1100°C for 4, 8 and 12 hrs

Fig.3-5(b) Variation of AC resistivity with frequency for the doped samples sintered at 1200 °C for 4,8 and 12 hrs

Fig.3.5(c) Variation of AC resistivity with frequency for the pure samples sintered at 1100 °C for 4,8 and 12hrs

Fig. 3-5 (d) Variation of AC resistivity with frequency for the pure samples sintered at 1200 °C for 4,8 and 12 hrs

Fig. 3.6(a) Variation of dielectric constant and loss relaxation with the frequency of the field tor the doped sample sintered at 1200°C for 12 hrs (B3)

Fig.3.6(b) Variation of dielectric constant and loss relaxation with the frequency of the field for the pure sample sintered at 1200°C for 12 hrs (Y3)

Fig. 3-7(a) Variation of dissipation with the frequency of the field for the doped sample sintered at 1200°C for 12 hrs (B3)

Fig.3.7 (b) Variation of dissipation with the frequency of the field for the pure sample sintered at 1200 °C for 12 hrs (Y3)

with frequency for doped and pure samples sintered at $1\,200^{\circ}\,\text{C}/\,1\,2$. The plot between tanó against frequency exhibits cyclic behaviour Such behaviour has been observed by other workers [4]

3.3.5 Magnetic Measurements:

The result of specific saturation magnetization σ_s , remanence Br and coercivity H_C as a function of sintering time and temperature measured at room temperature are summarised in the Table (3.5). The variation of specific magnetisation with field are shown in Fig.(3.8 abc) for pure and doped samples sintered at $1200^{\circ}\text{C-}12 \text{ hrs.}$ $1300^{\circ}\text{C-}12 \text{ hrs.}$

From the Table, it can be seen that saturation magnetisatic is increasing with sintering time. However in very few cases $1200^{\circ}\text{C} - 4 \text{ hrs}(\text{Bl})$, the opposite trend was found. This may be due to inhomogeneity. The coercivity is found to be decreasing with sintering temperature. This may be attributed by the grain growth at higher sintering temperature. For the doped samples lower coercivity values were found. This may be attributed to the following reason. The effect of Bi_2O_3 on hexaferrites discussed by several workers (5). It seems that Bi_2O_3 changes the unit cell parameter (i.e.) increases 'a' parameter and decreases b' parameter (6) thereby it may induce changes in the magnetocystalline anisotropy in such a way that it decreases coercivity value. The remanent magnetization is decreasing with sintering temperature.

Curie temperature is found for a doped sample 1100°C- 4hrs. which comes out to be 4825°C. Specific magnetization vs temperature graph is shown in Fig. (3.8e). This is significantly higher than

Table 3.5 : Variation of saturation specific magnetization (σ_s), remanence (Br), coercivity (H_c), and (BH) max With sintering temperature and time.

Sample specification	Saturation specific magnetization (os) emu/qm	Remenant magnetization (Br) emu/gm	Coercive field (H _C) KOe	(BH) _{max}
A1	56.80	24.03	1.95	0.54
A2	56.97	25.00	2.00	0.59
АЗ	59.38	26.44	1.30	0.67
B1	59.70	20	1.07	0.37
B2	57.94	20.57	1.06	0.40
В3	56.59	19.90	1.05	0.38
C1	56.71	15.42	0,68	0.22
C2	56.75	18.08	0.86	0.31
C3	57.00	21.93	1.00	0.43
X1 .	57 . 80	32.18	3.39	0.93
x2	55.90	32.50	4.17	0.97
х3	56.68	32.38	4.50	0.98
Y1	56.10	33.23	4.59	0,99
У2	57.50	29.52	4.72	0.81
У 3	57.80	18.00	4.79	0.30
z1	57.89	21 , 30	2.49	0.40
Z2	57.92	25.74	2.55	0.61
Z 3	57.95	26,65	2,72	0.69 . *

Fig.3·8(b) Magnetization and demagnetization curve of the doped sample sintered at 1200 °C for 12 hrs (B3)

Fig. 3.8(c) Magnetization and demagnetization curve of the pure sample sintered at 1300 °C for 12hrs (Z3)

Fig. 3.8(d) Magnetization and demagnetization curve of the pure sample sintered at 1200 C for 12 hrs (Y3)

Fig.3.8(e) Saturation magnetization Vs. temperature plot for the doped sample sintered for 4 hrs at 1100 °C (A1)

that of pure sample ($T_c = 450 \, ^{\circ} \, \text{C}$). This change in T_c may again be attributed to the substitution effect of Bi $^{2+}$ ions for barium sites. Similar effect is known to occur in a Cudoped w-type hexagonal ferrite [7].

REFERENCES :

- 1. J. Bereketa and M.J. Ridge, "The Reaction between Iron (III) Oxide and BaCO3 in Vacuum, Journal of Chemical Society,p. 2463 (1968).
- 2. E.C. Snelling, "Properties of Ferrites in Relation to their applications, "Proc. Br. Ceramic Society, 2, 151, (1964).
- 3. F. Bradley, "Materials for Magnetic Functions; Hyden Book Compainc. New York.
- 4. J. Smith and H.P. J. Wijn, "Ferrites", Philips Technical Library, Eindhoven (1959).
- 5. P.P. Kirichok, N.B. Voroninia, O.F. Verezhok and V.Ya. Garmash "Effect of Additions of Praseodymium and Bismuth Oxides on the Properties of Barium Hexaferrites", Soviet Powder Metallurgy and Metal Ceramics, Vol. 24, no. 3(267) p. 229 Mar. (1985).
- 6. A. Laxi and Benjamin, "Stability of monovalent Cu in the W-type Hexagonal Ferrites", Journal of Magnetism and Magnetic Materials Vol. 61 p. 40, (1986).

CONCLUSION

The following conclusions may be drawn from the present studies.

- 1. The complete ferritization occurs in the range of 1200°C to 1300°C for pure and doped samples.
- 2. Densification is proportional to sintering time and temperature.
 In the case of doped ferrites the sintering temperature is lowered as a result of liquid phase sintering.
- 3. Evidently the ultimate compressive atrength for pure and doped ferrites are found to be proportional to sintering time and temperature. The doped samples invariably exhibit higher compressive strength Fig. (3.3).
- 4. At low frequencies, the resistivity increases with sintering time. The a.c. resistivity and dielectric constant of these ferrites decrease with increasing frequency. However, tanó (loss factor) shows approximately cyclic behaviour. At lower frequencies, the doped samples exhibits high resistivity in comparision to pure samples. The doped samples exhibits higher dielectric constant and dielectric losses.
- 5. Magnetic properties obtained for best sample one already given in Fig. (3.8). The doped samples exhibits higher Curie temperature. Coercivity of the pure and doped samples are decreasing with sintering time. It may be due to grain growth at higher temperatures.