9. Übungsblatt

- 1. Aufgabe. Stellen Sie folgende Funktionen graphisch dar:.
 - a) $y = 2\cos(2x)$,
 - b) $y = \frac{1}{2}\sin(x \pi)$,
 - c) $y = 3\sin(\frac{1}{2}x + \frac{\pi}{4})$.

Welche Perioden haben diese Funktionen?

- **2. Aufgabe**. Zeigen Sie: Wenn die Funktion y = f(x) die Periode T hat, so hat die Funktion $f\left(\frac{T}{2\pi}x\right)$ die Periode 2π .
- **3. Aufgabe**. Mithilfe der trigonometrischen Additionssätze stellen Sie die Funktionen
 - a) $\sin\left(x + \frac{\pi}{2}\right)$
 - b) $3\cos(\frac{1}{2}x \frac{\pi}{4})$

in Form $a\cos(\omega x) + b\sin(\omega x)$ dar.

- **4.** Aufgabe. Mithilfe der trigonometrischen Additionssätze und der bekannten Funktionswerte für $\sin(30^{\circ})$ und $\cos(30^{\circ})$ berechnen Sie die Funktionswerte $\sin(15^{\circ})$ und $\cos(15^{\circ})$.
- **5. Aufgabe**. Mithilfe der trigonometrischen Additionssätze faktorisieren Sie die folgenden Summen bzw. Differenzen (d.h., stellen sie als Produkte dar):
 - a) $\sin(x) + \sin(\frac{\pi}{3})$,
 - b) $\cos\left(\frac{1}{2}x\right) + \cos\left(\frac{\pi}{4}\right)$,
 - c) $\sin(x_1) \sin(x_2)$,
 - d) $\cos(\alpha) \cos(\beta)$.
- **6.** Aufgabe. Vereinfachen Sie folgende trigonometrische Terme:
 - a) $\sin^2(-\pi/4) \cdot \tan(-\pi/4) \cos(-\pi/4) \cdot \sin(3\pi/4) \cdot \tan(3\pi/4)$,
 - b) $\tan (3\pi/2 x) \cdot \tan (\pi + x) \cos (\pi/2 + x) \cdot \sin (\pi + x)$,
 - c) $2(\sin^6 x + \cos^6 x) 3(\sin^4 x + \cos^4 x)$,

d)
$$\frac{1 + \sin(2x) - \cos(2x)}{1 + \sin(2x) + \cos(2x)}.$$

- **7. Aufgabe**. Untersuchen Sie die Funktion $y = \cot(x) = \frac{\cos(x)}{\sin(x)}$ (Definitionsbereich, Wertebereich, Nullstellen, Symmetrieeigenschaften, Monotonieverhalten, Periodizität) und skizzieren ihren Graphen.
- 8. Aufgabe. Bestimmen Sie die folgenden Funktionswerte:

$$\arccos(-1)$$
, $\arccos\left(\frac{\sqrt{3}}{2}\right)$, $\arccos\left(-\frac{\sqrt{2}}{2}\right)$, $\arccos(0)$, $\arccos(1)$, $\arcsin(-1)$, $\arcsin\left(\frac{\sqrt{3}}{2}\right)$, $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$, $\arctan(-\sqrt{3})$, $\arctan(1)$, $\arctan(0)$.

9. Aufgabe. Lösen Sie die folgenden trigonometrischen Gleichungen:

$$\cos(2x) = 0, \quad \sin\left(\frac{x}{2}\right) = 1, \quad \sin(3x - 1) = \frac{\sqrt{3}}{2}, \quad \cos(x) = a \ (a \in [-1, 1]),$$
$$\sin(x^2 - 12) = \frac{3}{2}, \quad \sin\left(\frac{x}{2} + 3\right) = \frac{1}{5}, \quad \tan(3x) = 12, \quad \tan(2x + 5) = a \ (a \in \mathbb{R}).$$

10. Aufgabe. Für die Punkte $P_1(2,1)$, $P_2(2,-1)$, $P_3(-2,1)$, $P_4(-2,-1)$, $P_5(3,7)$, $P_6(3,-7)$, $P_7(-3,7)$, $P_8(-3,-7)$ berechnen Sie jeweils den Winkel zwischen der positiven x-Achse und der Geraden, die den Koordinatenursprung mit dem Punkt P_k , $k=1,2\ldots,8$ verbindet.