

Joint RL meeting

Gridworld implementation of Olivia's task (bis)

Andrea Pierré February 27th, 2023

Brown University

Outline

1. Implementation

2. Results & experiments

3. Summary

Outline

1. Implementation

2. Results & experiments

3. Summary

Composite state space

· Allocentric setting:

location	cue	
{0,,24}	North light	
	South light	
	Odor A	
	Odor B	

Egocentric setting

Composite state space

· Allocentric setting:

location	cue	
{0,,24}	North light	
	South light	
	Odor A	
	Odor B	

• Egocentric setting:

head direction [°]	cue
0	North light
90	South light
180	Odor A
270	Odor B
	0 90 180

Flattened state space – allocentric setting

	Pre odor - North light				
0	1	2	3	4	
5	6	7	8	9	
10	11	12	13	14	
15	16	17	18	19	
20	21	22	23	24	

Post odor - Odor A				
50	51	52	53	54
55	56	57	58	59
60	61	62	63	64
65	66	67	68	69
70	71	72	73	74

Pre odor - South light				
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

Post odor - Odor B			
76	77	78	79
81	82	83	84
86	87	88	89
91	92	93	94
96	97	98	99
	76 81 86 91	76 77 81 82 86 87 91 92	76 77 78 81 82 83 86 87 88 91 92 93

Flattened state space – egocentric setting

States & actions translation

 Wrapper environment to translate the human readable environment (composite states) into a suitable environment for the Q-learning algorithm (flat states)

```
state = {"location": 13, "cue": LightCues.South}
env.convert_composite_to_flat_state(state)
# => 38

state = 63
env.convert_flat_state_to_composite(state)
# => {"location": 13, "cue": <OdorID.A: 1>}
```

Machine & human friendly actions

```
action = 0
Actions(action).name
# => "UP"
```

States & actions translation

 Wrapper environment to translate the human readable environment (composite states) into a suitable environment for the Q-learning algorithm (flat states)

```
state = {"location": 13, "cue": LightCues.South}
env.convert_composite_to_flat_state(state)
# => 38

state = 63
env.convert_flat_state_to_composite(state)
# => {"location": 13, "cue": <OdorID.A: 1>}
```

Machine & human friendly actions

```
action = 0
Actions(action).name
# => "UP"
```

Algorithm troubleshooting

Subtle bug using ϵ -greedy when Q-values are identical:

Vanilla ϵ -greedy

Randomly choosing between actions with the same Q-values

Outline

1. Implementation

2. Results & experiments

3. Summary

Standard Q-learning – allocentric setting

Standard Q-learning – allocentric setting

Q-learning with function approximation – allocentric setting – without joint representation

Q-learning with function approximation – allocentric setting – without joint representation

Q-learning with function approximation – allocentric setting – with joint representation

Q-learning with function approximation – allocentric setting – with joint representation

Standard Q-learning – egocentric setting

Standard Q-learning – egocentric setting

Q-learning with function approximation – egocentric setting

Q-learning with function approximation – egocentric setting

Location occupancy - naive animal

ightarrow The locations around the ports are the most visited zones in the arena

Location occupancy – animal vs. agent

→ The naive agent explores the space more uniformly than a real animal

Location occupancy – allocentric vs. egocentric

ightarrow The egocentric agent spend more time along the walls, whereas the allocentric agent has a more homogeneous exploration of the space

-0.2

-0.2

-0.2

Outline

1. Implementation

2. Results & experiments

3. Summary

- Standard Q-learning can learn the task in ~90 episodes in the allocentric setting, and in ~400 episodes in the egocentric setting

- Standard Q-learning can learn the task in ~90 episodes in the allocentric setting, and in ~400 episodes in the egocentric setting
- Niloufar's results with function approximation in both allocentric/egocentric settings are reproducible:
 - The agent is not able to learn the task without having a place-odor joint representation
 - With a place-odor joint representation, the agent is able to learn the task in ~60 episodes in the allocentric setting, and in ~300 episodes in the egocentric setting

- Standard Q-learning can learn the task in ~90 episodes in the allocentric setting, and in ~400 episodes in the egocentric setting
- Niloufar's results with function approximation in both allocentric/egocentric settings are reproducible:
 - The agent is not able to learn the task without having a place-odor joint representation
 - With a place-odor joint representation, the agent is able to learn the task in ~60 episodes in the allocentric setting, and in ~300 episodes in the egocentric setting

- Standard Q-learning can learn the task in ~90 episodes in the allocentric setting, and in ~400 episodes in the egocentric setting
- Niloufar's results with function approximation in both allocentric/egocentric settings are reproducible:
 - The agent is not able to learn the task without having a place-odor joint representation
 - With a place-odor joint representation, the agent is able to learn the task in ~60 episodes in the allocentric setting, and in ~300 episodes in the egocentric setting

- A naive animal spends most of its time at the ports, whereas a naive agent has a more uniform exploration
- The egocentric agent spend more time along the walls, whereas the allocentric agent has a more homogeneous exploration

- A naive animal spends most of its time at the ports, whereas a naive agent has a more uniform exploration
- The egocentric agent spend more time along the walls, whereas the allocentric agent has a more homogeneous exploration

Main differences with Niloufar's model

- The environment is geometrically closer to the real experiment
 → ports are in the corners of the arena, not in the middle of the walls
- Code is clean, readable, and abstracted in high level functions/concepts

- · Implement Olivia's new version of the task?
- Try to reduce the feature space (Jason's suggestion)
 → need to fix function approximation algorithm?
- Replace the manually crafted features matrix by an artificial neural network, which should learn the necessary representations to solve the task from scratch
- NSGP seminar in ~1 month

- · Implement Olivia's new version of the task?
- Try to reduce the feature space (Jason's suggestion)
 - ightarrow need to fix function approximation algorithm ?
- Replace the manually crafted features matrix by an artificial neural network, which should learn the necessary representations to solve the task from scratch
- NSGP seminar in ~1 month

- · Implement Olivia's new version of the task?
- Try to reduce the feature space (Jason's suggestion)
 → need to fix function approximation algorithm?
- Replace the manually crafted features matrix by an artificial neural network, which should learn the necessary representations to solve the task from scratch
- NSGP seminar in ~1 month

- · Implement Olivia's new version of the task?
- Try to reduce the feature space (Jason's suggestion)
 → need to fix function approximation algorithm?
- Replace the manually crafted features matrix by an artificial neural network, which should learn the necessary representations to solve the task from scratch
- NSGP seminar in ~1 month

Questions ?