

RDA1846 Programming Guide

Contents

Document overview	4
Doc. A: Interface	5
1. I2C Interface	5
2 Three- wire SPI interface	7
3. Four- wire SPI interface	8
Doc. B: Programming guide	9
1. Setting frequency	9
2. Setting RF band	9
3. Reference clock	9
4. Setting Tx and Rx	10
5. Deep sleep	10
6. TX voice channel	10
7. TX Pa_bias output voltage	11
8. Subaudio	11
9. SQ	12
10. VOX	13
11. Eliminating tail noise	13
12. DTMF	13
13. Tx FM deviation	15
14. Rx voice range	16

15. TX and RX code	16
16. GPIO	16
17. INT	17
18. St_mode	18
19. Pre-emphasis/De-emphasis filter	20
20. Only read register	20
21. Flag	21
22. Initial process	21
23. Register introduction	21
Change List	
Disclaimer	26

Document overview

This programming guide has been restructured from previous revisions for clarity. This contains two documents for interface and programmer separately. Interface document contains I2C interface, 3 wire SPI interface and 4 wire SPI interface .Programmer document contains a complete programming guide for using any interface.

Doc. A: Interface

RDA1846 each register write is 24-bit long, including a r/W bit,7-bit register address, and 16-bit data (MSB is the first bit).

R/W	A[6:0]	D[15:0]
IV/ VV	Λ[0.0]	D[13.0]

Note

If register address is more than 7FH, first write 0x0001 to 7FH, and then write value to the address subtracted by 80H. Finally write 0x0000 to 7FH

Example: writing 85H register address is 0x001F.

Move 7FH 0x0001;

Move 05H 0x001F; 05H=85H-80H

Move 7FH 0x0000;

1. I2C Interface

RDA1846 enable software programming through I2C interface. Software controls chip working states, such as Txon or Rxon operation, and reads status register to get operation result through I2C interface.

It includes two pins: SCLK and SDIO.

A I2C interface transfer begins with START condition, a command byte and data bytes, each byte has a followed ACK (or NACK) bit, and ends with STOP condition. The command byte includes a 7-bit chip address and a r/w bit. The 7-bit chip address is 7'b0101110 when SEN is high, or is 7'1110001 when SEN is low. The ACK (or NACK) is always sent out by receiver. When in write transfer, data bytes is written out from MCU, and when in read transfer, data bytes is read out from RDA1846.

Figure 1. I²C Interface Write Timing Diagram

Figure 3 I²C Interface Write Combined Format

START	I2C CHIP ADDRESS	W	Α	REGISTER ADDRESS	A/ NA	START	I2C CHIP ADDRESS	R	Α	REGISTER BIT< 15:8>	Α	REGISTER BIT< 7:0>	NA	STOP
Figure 4 I ² C Interface Read Combined Format														
From master to slave A = acknowledge (SDA LOW) S= START condition														

NA = not acknowledge (SDA HIGH)

P= STOP condition

Table 2. I2C Timing Characteristics

From slave to master

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
SCLK Frequency	f_{scl}		0	-	400	KHz
SCLK High Time	t _{high}		0.6	-	-	μS
SCLK Low Time	t _{low}		1.3	-	-	μS
Setup Time for START Condition	t _{su:sta}		0.6	-	-	μS
Hold Time for START Condition	t _{hd:sta}		0.6	-	-	μS
Setup Time for STOP Condition	t _{su:sto}		0.6	-	-	μS
SDIO Input to SCLK↑ Setup	t _{su:dat}		100	-	-	ns
SDIO Input to SCLK↓ Hold	t _{hd:dat}		0	-	900	ns
STOP to START Time	t _{buf}		1.3	-	-	μS
SDIO Output Fall Time	t _{f:out}		20+0.1C _b	-	250	ns
SDIO Input, SCLK Rise/Fall Time	t _{r:in /} t _{f:in}		20+0.1C _b	-	300	ns
Input Spike Suppression	t _{sp}		-	-	50	ns
SCLK, SDIO Capacitive Loading	C _b		-	-	50	pF
Digital Input Pin Capacitance					5	pF

2 Three- wire SPI interface

RDA1846 enable software programming through three-wire(SPI) interface. Software controls chip working states, such as Txon or Rxon operation, and reads status register to get operation result through three-wire interface.

Three-wire interface is slave interface. It includes three pins: \overline{SEN} , SCLK and SDIO. \overline{SEN} and SCLK are input pins, SDIO are bi-direction pins.

RDA1846 samples command byte and data at posedge of SCLK. The turn around cycle between command byte from MCU and data from RDA1846 is a half cycle. RDA1846 samples command byte at posedge of SCLK, and output data also at posedge of SCLK.

Figure 5. Three-wire Interface Write Timing Diagram

Figure 6. Three-wire Interface Read Timing Diagram

Table 2. Three-wire Timing Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
SCLK Cycle Time	t _{CLK}		35			ns
SCLK Rise Time	t _R				50	ns
SCLK Fall Time	t _F				50	ns
SCLK High Time	t _{HI}		10		1	ns
SCLK Low Time	t _{LO}		10			ns
SDIO Input, SEN to SCLK↑ Setup	t _s		10	-	-	ns
SDIO Input, to SCLK↑ Hold	t _h		10		-	ns
SCLK↑ to SDIO Output Valid	t _{cdv}	Read	2	-	10	ns
SEN↑ to SDIO Output High Z	t _{sdz}	Read	2.	- \	10	ns
Digital Input Pin Capacitance					5	pF

3. Four-wire SPI interface

RDA1846 enable software programming through four-wire(SPI) interface. Software controls chip working states, such as Txon or Rxon operation, and reads status register to get operation result through four-wire interface.

Four-wire interface is slave interface. It includes four pins: \overline{SEN} , SCLK, SDI and SDO. \overline{SEN} , SCLK and SDI are input pins, SDO are bi-direction pins.

Figure 7. Four-wire Interface Write/Read Timing Diagram

Doc. B: Programming guide

1. Setting frequency

Bit	Name	Function	
29H[13:0]	freq<29:16>	Freq high value (unit 1khz/8)	
2aH[15:0]	freq<15:0>	Freq low value (unit 1khz/8)	1

Freq<29:0>= Binary (Freq(MHz)*1000*8)

Such as frequency is 409.75MHz, Freq<29:0>=409.75*1000*8=3278000= Binary (1100100000010010110000) so write 29H [15:0] =00000000000010010 and 2aH [15:0] = 0000010010110000.

2. Setting RF band

Bit	Name	Function
0fH[7:6]	band_select<1:0>	$00 = 400 \sim 520 \text{MHz}$
		10 =200~260MHz
		11 = 134~174MHz

3. Reference clock

RDA1846 takes 12MHz~14MHz or 24MHz~ 28 MHz crystals as its master reference clock. Setting 2bH[15:0], 2cH[15:0] and 04H[0] according different reference clock.

Bit	Name	Function
2bH[15:0]	xtal_freq<15:0>	Crystal clk freq (unit khz)
		12~14MHz:crystal freq*1000
		24~ 28MHz: (crystal freq/2)*1000
2cH[15:0]	adclk_freq<15:0>	Adc clk freq (unit khz)
		12~14MHz:(crystal freq/2)*1000
		24~ 28MHz: (crystal freq/4)*1000
04H[0]	clk_mode	12~14MHz:1
		24~ 28MHz:0

Such as 12.8M crystal (12MHz~14MHz)

2bH[15:0]= xtal_freq<15:0>=12.8*1000=12800 2cH[12:0] =adclk_freq<15:0>=(12.8/2)*1000=6400 04H[0]= clk_mode =1

26M crystal (24MHz~28MHz)

2bH[15:0]= xtal_freq<15:0>=(26/2)*1000=13000

2cH[15:0] =adclk_freq<15:0>=(26/4)*1000=6500

04H[0]= clk_mode =0

4. Setting Tx and Rx

Bit	Name	Function
30H[13:12]	channel_mode	11 = 25khz channel mode
		00 = 12.5khz channel mode
		10,01=reserved
30H[6]	tx_on	1 = on
		0 = off
30H[5]	rx_on	1 = on
		0 = off

5. Deep sleep

Bit	Name	Function
30H[2]	pdn_reg	The same as pdn pin
		1 = enable
		0 = disable

While Normal mode, pdn_reg and PDN pin must be high at the same time. Only one of pdn_reg and PDN pin is low ,which can turn into deep sleep.

6. TX voice channel

Bit	Name	Function
3cH[15:14]	voice_sel<1:0>	=00; Tx voice signal from MIC
		=01; Tx inner sine tone setted by tone2
		=10; Tx code from GPIO1 code_in (gpio1<1:0> must be
		set to 01)
		=11; not Tx any signal

7. TX Pa_bias output voltage

RDA1846 Pa_bias pin output voltage can be controlled by 0aH [5:0].

Bit	Name	Function
0aH [5:0]	pabias_voltage<5:0>	000000: 1.01V
		000001:1.05V
		000010:1.09V
		000100: 1.18V
		001000: 1.34V
		010000: 1.68V
		100000: 2.45V
		1111111:3.13V

8. Subaudio

Bit	Name	Function
45H[2:0]	c_mode<2:0>	Ctcss/cdcss mode sel
		x00=disable,
		001=inner ctcss en,
		010= inner cdcss en
		101= outter ctcss en,
		110=outter cdcss en
		others =disable
45H[3]	ctcss_sel	1 = ctcss_cmp/cdcss_cmp out via gpio
		0 = ctcss/cdcss sdo out vio gpio
45H[4]	cdcss_sel	24/23 bit cdcss code sel for both txon and rxon
		1 = 24 bit code
		0 = 23 bit code
45H[7]	neg_det_en	If 1,cdcss inverse code will be detected at the same
		time.
45H[11]	Pos_det_en	If 1, cdcss code will be detected.
45H[10]	css_det_en	If 1, sq detection will add ctcss/cdcss detect result,
		then 1846 control 1846 voice output on or off.
4aH[15:0]	ctcss_freq<15:0>	Ctcss/cdcss frequency setting
		Ctcss freq = ctcss_freq*2^16 khz
		It must be set to 134.4Hz when use standard cdcss
		mode
		When use ctcss/cdcss, this register must be set both

		in rx and tx state
4bH[7:0]	4bH[7:0]=cdcss_code<23:16>	Cdcss send/receive bit
4cH[15:0]	4cH[15:0]=cdcss_code<15::0>	Note that MSB will be transmitted first!!!
		See 'RDA1846 register table' CDCSS MSB
		When use cdcss, this register must be set both in rx
		and tx state

23/24 bit CDCSS can controlled by 45H [4] (CDCSS_sel). CDCSS_sel=1 is 24 bit code ,=0 is 23bit code. Such as TX 94.7Hz CTCSS :

4aH[15:0](ctcss_sentreg)=0.0974*(2^16) = 6383

Note: setting 45H [2:0]=000 when without subaudio

Add dcs_pos_det & dcs_neg_det register in 45H when use cdcss mode

9. SQ

Bit	Name	Function
30H[3]	sq_on	1 = on, then chip auto sq
		0 = off
45H[3]	ctcss_sel	1 = ctcss_cmp/cdcss_cmp out via gpio
		0 = ctcss/cdcss sdo out vio gpio
45H[10]	css_det_en	If 1, sq detection will add ctcss/cdcss detect result,
		then 1846 control 1846 voice output on or off.
48H[9:0]	th_h_sq<9:0>	Sq detect high th, rssi_cmp will be 1 when
	Sq open threshlod	rssi>th_h_sq, unit 1/8dB
		48H[9:3]=Binary (135+ Sq open threshlod)
49H[9:0]	th_l_sq<9:0>	Sq detect low th, rssi_cmp will be 0 when
	Sq shut threshold	rssi <th_l_sq &&="" 1="" 8="" db<="" delay="" meet,="" td="" time="" unit=""></th_l_sq>
		49H[9:3]=Binary (135+ Sq shut threshlod)
54H[7]	sq_out_sel	If 1, the output gpio6 is sq & css_cmp;
		Else, the outputp gpio is sq only.

Auto SQ set $30H [3]=1(sq_on)$.

If auto SQ and subaudio detected at the same time,45H [10]=1 must be set.

48H[9:0] is Sq detect high th,49H[9:0] is Sq detect low th.

Such as Sq open threshold=-120dBm and Sq shut threshold=-122dBm

So 48H[9:3]= Binary (135+(-120))=0001111, 48H[9:0]= 0001111000

49H[9:3]= Binary (135+(-122))=0001101, 49H[9:0]= 0001101000

10. VOX

Bit	Name	Function
30H[4]	vox_on	1 = on, then chip auto vox
		0 = off
41H[15:0]	th_h_vox<15:0>	th_h_vox<15:0>=225* (open threshold)
	Vox open threshold	When vssi > th_h_vox, then vox will be 1
		(unit mV)
42H[15:0]	th_l_vox<15:0>	th_1_vox<15:0>=225* (shut threshold)
	Vox Shut threshold	When vssi < th_l_vox && time delay meet, then vox
		will be 0
		(unit mV)

Such as vox open open threshold=2mV, vox shut threshold=2mV So 42H[15:0]=225*1(mV)= Binary (225)= 0000000011100001 41H[15:0]=225*2(mV)= Binary (450)= 0000000111000010

11. Eliminating tail noise

While setting 30H [11]=1 eliminates tail noise when Tx and Rx, note turning on Tx and Rx CTCSS operation. Tx CTCSS phase can be controlled by 45H[15:14].

Bit	Name	Function
30H[11] tail_elim_en		1 = tail elim enable
		0 = disable
45H[15:14]	shift_select<1:0>	Select ctcss phase shift when use tail eliminating
		function when TX
		00 = 120 degree shift
		01 = 180 degree shift
		10 = 240 degree shift
		11 = reserved

12. **DTMF**

Bit	Name	Function
63H[15:10]	others<5:0>	000000
63H[9:8]	Dtmf_mode<1:0>	11 =transmit or receive Dtmf single tone2
		01 =transmit or receive
		Dtmf dual tone1+tone2
		others = disable

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

63H[7:4]	dtmf_time1<3:0>	Time interval for dual tone transmission
(2)11(2,0)	1, 6, 2, 2, 2, 0	Time = dtmf_time1*5ms
63H[3:0]	dtmf_time2<3:0>	Time interval for dtmf idle state
2511115 01	1.6.150	Time = dtmf_time2*5ms
35H[15:0]	tone1_freq<15:0>	interval_v_reg=
24445.01	. 2.6 15.0	(Tone1 freq(kHz)* 2^12)
36H[15:0]	tone2_freq<15:0>	interval_c_reg=
		(Tone2 freq(kHz)* 2^12)
5cH[12]	dtmf_idle	Dtmf idle
66H[15:8]	dtmf_c0	697Hz
		66H[15:8]= 01100001 12.8MHz and 25.6MHz
		66H[15:8]= 01100001 13MHz and 26MHz
66H[7:0]	dtmf_c1	770Hz
		66H[7:0]=01011011 12.8MHz and 25.6MHz
		66H[7:0]=01011110 13MHz and 26MHz
67H[15:8]	dtmf_c2	852 Hz
		67H[15:8]=01010011 12.8MHz and 25.6MHz
		67H[15:8]= 01010111 13MHz and 26MHz
67H[7:0]	dtmf_c3	941 Hz
		67H[7:0]=01001011 12.8MHz and 25.6MHz
		67H[7:0]= 01001011 13MHz and 26MHz
68H[15:8]	dtmf_c4	1209 Hz
		68H[15:8]=00101100 12.8MHz and 25.6MHz
		68H[15:8]=00110001 13MHz and 26MHz
68H[7:0]	dtmf_c5	1336 Hz
		68H[7:0]=00011110 12.8MHz and 25.6MHz
		68H[7:0]=00011110 13MHz and 26MHz
69H[15:8]	dtmf_c6	1477 Hz
		69H[15:8]=00001010 12.8MHz and 25.6MHz
		69H[15:8]=00001111 13MHz and 26MHz
69H[7:0]	dtmf_c7	1633 Hz
		69H[7:0]=11110110 12.8MHz and 25.6MHz
		69H[7:0]=11111011 13MHz and 26MHz
6cH[10:5]	dtmf index<5:0>	<5:3>: tone1 detect index
		<2:0> : tone2 detect index, will be used when
		single tone mode
6cH [4]	dtmf_flag	Dtmf code not valid flag
		1 = not valid
6cH [3:0]	dtmf_code<3:0>	Dtmf code out
. []		Usually, F0~F7 is selected as 697, 770, 852, 941,
		1209, 1336, 1477, 1633 Hz (default)
	<u> </u>	,,, 1000 112 (0014011)

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

	F4	F5	F6	F7	
F0	1	2	3	A	
F1	4	5	6	В	
F2	7	8	9	C	
F3	E(*)	0	F(#)	D	

TX and RX DTMF set 63H [8]=1(DTMF_en), close DTMF set 63H [8]=0.

Setting DTMF frequency 35H[15:0] (tone1_freq) (35H) and 36H[15:0] (tone2_freq) .Unite is 1/2^12KHz

Such as : DTMF signal is 697Hz 和 1633Hz,

Tone1_freq<15:0> = round $(0.697 *2^12) = 2855$

Tone2_freq<15:0> = round $(1.633 *2^12) = 6689$

If tx single frequency signal, only setting tone2_freq and 63H [9:8]=11(single_tone), and 63H[7:4]=1111,63H[3:0]=0000.Or setting tone2_freq and 3CH[15:14]=01.

Rx DTMF:

Step1:set 66H,67H,68H,69H DTMF frequency according to reference clock

Step2: set DTMF_en=1 (63H[8]) if use INT mode, should set gpio2<1:0> to 01,

and set int_grp_en<6> to 1

Step3 read dtmf_idle every 10ms until dtmf_idle=1 (5cH[12]) or wait INT when use INT mode

Step4: read dtmf_code<3:0> (6cH[3:0]

Step5: read dtmf_idle every 10ms until dtmf_idle=0 (5cH[12]) or write 00H=0x1846 (to clear INT) when use

INT mode

Step6: jump to Step3

End of Rx DTMF, setting DTMF_en=0 and software jump out the circle Steps.

Tx DTMF:

Step1: setting DTMF sequence and the first DTMF frequency (ton1_freq and ton2_freq)

Step2: set DTMF_en=1 when needed (63H[8]) if use INT mode, should set gpio2<1:0> to 01,

and set int_grp_en<6> to 1

Step3: read dtmf_idle every 10ms until dtmf_idle=1 (5cH[12]) or wait INT when use INT mode

Step4: setting the next DTMF frequency (ton1 freq and ton2 freq) according DTMF sequence

Step5: read dtmf_idle every 10ms until dtmf_idle=0 (5cH[12]) or write 00H, 0x1846 (to clear INT) when use

INT mode

Step6: jump to Step3

End of Tx DTMF, setting DTMF_en=0 and software jump out the circle Steps.

13. Tx FM deviation

Bit	Name	Function
[15:13]	others	00
43H [12:6]	xmitter_dev<6:0>	Ctcss/cdcss + voice dev setting

43H [5:0]	c_dev<5:0>	Ctcss/cdcss dev setting

Adjusting 43H [12:6] (xmitter_dev) can change Tx FM deviation of voice and subaudio. Adjusting 43H [5:0] (c_dev) can only change Tx FM deviation of CTCSS and CDCSS.

14. Rx voice range

		The state of the s		
Bit	Name	Function		
44H[15:8]	others	00000000		
44H[7:4]	volume1<3:0>	(0000)-15dB~(1111)0dB, step 1dB		
44H[3:0]	volume2<3:0>	(0000)-15dB~(1111)0dB, step 1dB		

Adjusting 44H [3:0] and 44H [7:4] can change Rx voice range.

15. TX and RX code

Set code mode:

Step1: set 58H[1:0]=11 set voice hpf bypass

Step2: set 58H[5:3]=111 set voice lpf bypass and pre/de-emph bypass

Step3 set 3CH[15:14]=10 set code mode

Step4: set 1FH[3:2]=01 set GPIO code in or code out

TX code mode:

Step1: 45H[2:0] = 010

RX code mode:

Step1: set 45H[2:0]=001

Step2: set 4dH[15:10]=000001

16. **GPIO**

Register 1fh.

Bit	Name	Function
15:14	gpio7<1:0>	00 =hi-z
		01 = vox
		10 = low
		11 = high
13:12	gpio6<1:0>	00 =hi-z

		01 = sq,
		or =sq&ctcss/cdcss,when sq_out_sel=1
		10 = low
		11 = high
11:10	gpio5<1:0>	00 =hi-z
		$01 = txon_rf$
		10 = low
		11 = high
9:8	gpio4<1:0>	00 =hi-z
		01 = rxon_rf
		10 = low
		11 = high
7:6	gpio3<1:0>	00 =hi-z
		01 = sdo
		10 = low
		11 = high
5:4	gpio2<1:0>	00 =hi-z
		01 = int
		10 = low
		11 = high
3:2	gpio1<1:0>	00 =hi-z
		01 = code_out/code_in
		10 = low
		11 = high
1:0	gpio0<1:0>	00 =hi-z
		01 = css_out/css_in/css_cmp
		10 = low
		11 = high

17. INT

Register 2dh.

16' b0000_0000_0000

Bit	Name	Function
15:10	others <5:0>	000000
9:0	int_grp_en<9:0>	<9>:css_cmp_int enabl
		<8> : rxon_rf int enable
		<7>: txon_rf int enable
		<6> : dtmf_idle int enable

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

	<5> : ctcss phase shift detect int enable
	<4> : idle state time out int enable
	<3>: rxon_rf timerout int enable
	<2> : sq int enable;
	<1>: txon_rf time out int enable;
	<0>: vox int enable;

18. St_mode

Bit	Name	Function
30H[9:8]	st_mode<1:0>	11 = reserved
		10 = txon_rf & rxon_rf auto
		01 = rxon_rf auto, txon_rf manu
		00 = txon_rf & rxon_rf manu

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Tmier2 & Timer6

19. Pre-emphasis/De-emphasis filter

Bit	Name	Function
58H[3]	pre/de-emph	1=pre/de-emph bypass
		0=normal

20. Only read register

Bit	Name	Function	
5fH[9:0]	Rssi<9:0>	Received signal strength indication, unit 1/8dB	
60H[14:0]	Vssi<14:0>	Voice signal strength indication, unit mV	
6cH[10:5]	dtmf_index<5:0>	<5:3>: tone1 detect index	
		<2:0>: tone2 detect index	
6cH[3:0]	dtmf_code<3:0>	Dtmf code out	

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

	1:f0+f4, 2:f0+f5, 3:f0+f6, A:f0+f7,
	4:f1+f4, 5:f1+f5, 6:f1+f6, B:f1+f7,
	7:f2+f4, 8:f2+f5, 9:f2+f6, C:f2+f7,
	E(*):f3+f4, 0:f3+f5, F(#):f3+f6, D:f3+f7

Such as:

Read 5fH[9:0]= Binary (110100000)=Dec(416)

So Received signal strength =(416*0.125)-135=(416/8)-135=-83dBm

21. Flag

Bit	Name	Function
5cH[12]	dtmf_idle	Dtmf idle
5cH [10]	rxon_rf	If 1, rxon is enable
5cH[9]	txon_rf	If 1, txon is enable
5cH[7]	invert_det	Ctcss phase shift detected
5cH [2]	css_cmp	Ctcss/cdcss compared
5cH [1]	SQ	Sq final signal out from dsp
5cH [0]	VOX	Vox out from dsp

22. Initial process

Refer to the 'RDA18456 _register_table'

23. Register introduction

Register 30h.

Bit	Name	Function	Default
15:14	others	00	00
13:12	channel_mode	11 = 25khz channel mode	0
		00 = 12.5khz channel mode	
		10,01=reserved	
11	tail_elim_en	1 = tail elim enable	0
		0 = disable	
10	others	0	0
9:8	st_mode<1:0>	11 = reserved	00
		10 = txon_rf & rxon_rf auto	

0
0
0
0
0
0
P
0
reset 0

Register 04h.

Bit	Name	Function	Default
15:1	others	0000_1111_0001_000	
0	clk_mode	12~14MHz:1	1
		24~ 28MHz:0	

Register 0ah.

Bit	Name	Function	Default
15:6	others	0000_0100_00	
5:0	pabias_voltage<5:0>	See TX Pa_bias output voltage	10_0000

Register 0fh.

Bit	Name	Function	Default
15:8	others		00000000
7:6	band_select	See setting RF band	00
5:0	others		100100

Register 29h.

Bit	Name	Function	Default
15:14	others		00
13:0	freq_reg	See setting frequency	0000000110010

Register 2ah.

Bit	Name	Function	Default

4.50	c c c c c c c c c c			10010110000		
15:0	freq_reg		See setting frequency	00000	10010110000	
Register 2bh.						
Bit	Name	Function			Default	
15:0	xtal_freq	Se	e reference clock	00110	0011001000000000	
Register						
Bit	Name		Function		Default	
15:14	voice_sel<1:0>	-	See tx voice channel		00	
13:0	others	(00_1001_0101_1000			
Register	41h.					
Bit	Name		Function	I	Default	
15	others	0				
14:0	th_h_vox<14:0>	Se	ee vox	00_000	0_0100_0000	
Register	42h.					
Bit	Name		Function	I	Default	
15	others	0				
14:0	th_h_vox<14:0>	See vox 00_000		00_000	0_0011_1100	
Register	45h.		A			
Bit	Name		Function		Default	
15:14	shift_select<1:0>	4	See eliminating tail noise		00	
13:12	others				00	
11	Pos_det_en		See subaudio		1	
10	css_det_en		See subaudio/sq		0	
9:8	others				10	
7	neg_det_en		See subaudio		1	
6:5	others	M			00	
4	cdcss_sel		See subaudio		0	
3	others				0	
2:0	c_mode<2:0>		See subaudio		000	
Register 48h.						
Bit	Name		Function		Default	
15:10	others				000000	
9:0	Sq open threshold	Sq open threshold		See SQ		
Register 49h.						
Bit	Name		Function		Default	
15:10	others				000000	
9:0	Sq shut threshold		See SQ		0000111100	
7.0	1 1					
Register	_					

150				20110011001	
15:0	_ 1		ee Subaudio	000110	00110011001
Register 4bh.					
Bit	Name		Function		Default
15:8	others		Read as zeros		0000_0000
7:0	cdcss_code		See subaudio		0110_0101
Register					
Bit	Name				fault
15:0	cdcss_code	Sec	e subaudio 1101_100		0_0001_0110
Register					
Bit	Name		Function		Default
15:13	others		0001_0001		<u> </u>
7	sq_out_sel		See sq		0
6:0	others		100_1000	1	
Register	63h.				
Bit	Name		Function		Default
15:10	Reserved<5:0>		000000		0000
9	single_tone		See dtmf		0
8	dtmf_en		See dtmf		0
7:4	dtmf_time1<3:0>		See dtmf		1000
3:0	dtmf_time2<3:0>		See dtmf		1000
Register	66h	A			
Bit	Name		Function		Default
15:8	dtmf_c0		697Hz		0110_0001
7:0	dtmf_c1		770Hz		0101_1011
Register	67h.		<i>y</i>		
Bit	Name		Function		Default
15:8	dtmf_c2<7:0>		852Hz		0101_0011
7:0	dtmf_c3<7:0>		941Hz		0100_1011
Register 68h.					
Bit	Name		Function		Default
15:8	dtmf_c4<7:0>		1209Hz		0010_1100
7:0	dtmf_c5<7:0>		1336Hz		0001_1110
Register 69h.					
Bit	Name		Function		Default
15:8	dtmf_c6<7:0>		1477Hz		0000_1010
1 -					

1633Hz

7:0

 $dtmf_c7 < 7:0 >$

1111_0110

Change List

Rev	Date	Author	Change Description
0.1	2009-5-20	Liu Ge & Liu	Original draft
		ya nan	
1.1	2009-6-17	Liu Ge & Liu	
		ya nan	
1.1	2009-10-13	Liu Ge	Add register indroduction
1.2	2009-11-13	Liu Ge	Modify DTMF and RSSI indroduction

Disclaimer

The information provided here is believed to be reliable; RDA Microelectronics assumes no liability for inaccuracies and omissions. RDA Microelectronics assumes no liability for the use of this information and all such information should entirely be at the user's own risk. Specifications described and contained here are subjected to change without notice for the purpose of improving the design and performance. All of the information described herein shall only be used for sole purpose of development work of RDA1846, no right or license is implied or granted except for the above mentioned purpose. RDA Microelectronics does not authorize or warrant any RDA products for use in the life support devices or systems.

Copyright@2006 RDA Microelectronics Inc. All rights reserved

For technical questions and additional information about RDA Microelectronics Inc.:

Website: www.rdamicro.com Mailbox: info@rdamicro.com

RDA Microelectronics (Shanghai), Inc.

Tel: +86-21-50271108 Fax: +86-21-50271099 RDA Microelectronics (Beijing), Inc.

Tel: +86-10-63635360 Fax: +86-10-82612663