

Contenidos

• Variación de parámetros.

Una ecuación diferencial de orden n de la forma

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 x \frac{dy}{dx} + a_0 y = g(x),$$

donde los coeficientes $a_n, a_{n-1}, \ldots, a_0$ son constantes, es conocida como la Ecuación de Cauchy-Euler.

Observación 1 Note que en cada sumando se tiene que la potencia de x coincide con el orden de la derivada de $\frac{d^k y}{dx^k}$.

Primero comenzaremos a estudiar una ecuación de Cauchy-Euler de segundo orden homogenea:

$$ax^2\frac{d^2y}{dx^2} + bx\frac{dy}{dx} + cy = 0.$$

Las soluciones de orden superior se resolverán de manera análoga. También, resolveremos la ecuación nohomogenea

$$ax^2 \frac{d^2y}{dx^2} + bx \frac{dy}{dx} + cy = g(x).$$

1 Método de solución:

Probamos una solución de la forma $y = x^m$, donde m debe ser determinado. Cuando se sustituye x^m , cada término de la ecuación de Cauchy-Euler se convierte en un polinomio en m por x^m . En efecto se observa que

$$a_k x^k \frac{d^k y}{dx^k} = a_k x^k m(m-1)(m-2) \cdots (m-k+1) x^{m-k} = a_k m(m-1) \cdots (m-k+1) x^m.$$

Por ejemplo, sustituyendo $y = x^m$, la ecuación diferencial de segundo orden

$$ax^{2}\frac{d^{2}y}{dx^{2}} + bx\frac{dy}{dx} + cy = am(m-1)x^{m} + bmx^{m} + cx^{m} = (am(m-1) + bm + c)x^{m}.$$

Entonces $y = x^m$ es una solución de la ecuación diferencial cuando m es una solución de la ecuación auxiliar

$$am(m-1) + bm + c = 0$$
 o $am^2 + (b-a)m + c = 0$ (1)

Caso 1. Raíces reales distintas

Sean m_1 y m_2 denotan una raíz real de (??) tal que $m_1 \neq m_2$. Entonces $y_1 = x^{m_1}$ e $y_2 = x^{m_2}$ forman un conjunto fundamental de soluciones. Por lo tanto la solución general es

$$y = c_1 x^{m_1} + c_2 x^{m_2}$$

Ejemplo 1 Resolver la ecuación

$$x^{2}\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} - 4y = 0.$$

Solución: Reemplazamos $y = x^m$ en la ecuación:

$$\frac{dy}{dx} = mx^{-1}, \qquad \frac{d^2y}{dx^2} = m(m-1)x^{m-2}.$$

Sustituyendo se obtiene

$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} - 4y = x^{2} \cdot m(m-1)x^{m-2} - 2x \cdot mx^{m-1} - 4x^{m}$$

$$= x^{m}(m(m-1) - 2m - 4) = x^{m}(m^{2} - 3m - 4) = 0.$$

Las soluciones de $m^2 - 3m - 4 = 0$ son $m_1 = -1, m_2 = 4$ y por lo tanto la solución general es dada por

$$y = c_1 x^{-1} + c_2 x^4.$$

Caso 2: Raíces reales repetidas

Si las raíces de (??) son repetidas, es decir una raíz de multiplicidad 2, entonces obtenemos una única solución, digamos $y = x^{m_1}$. Cuando las raíces de la ecuación cuadrática

$$am^2 + (b-a)m + c = 0$$

son iguales, el discriminante es 0. Luego la raíz es dada por

$$m_1 = -\frac{(b-a)}{2a}.$$

Para construir una segunda solución y_2 , utilizamos la misma técnica dada en la clase de reducción de orden. Primero se escribe la ecuación de Cauchy-Euler en la forma

$$\frac{d^2y}{dx^2} + \frac{b}{ax} \cdot \frac{dy}{dx} + \frac{c}{ax^2}y = 0$$

e identificamos $P(x) = \frac{b}{ax}$ y $\int \frac{b}{ax} dx = \frac{b}{a} \ln(x)$. Entonces

$$y_2 = x^{m_1} \int \frac{e^{-\frac{b}{a}\ln(x)}}{x^{2m_1}} dx$$

$$= x^{m_1} \int x^{-b/a} x^{-2m_1} x^{-2m_1} dx$$

$$= x^{m_1} \int x^{-b/a} \cdot x^{(b-a)/a} dx$$

$$= x^{m_1} \int \frac{dx}{x} = x^{m_1} \ln(x).$$

Por lo tanto la solución general es dada por

$$y = c_1 x^{m_1} + c_2 x^{m_1} \ln(x).$$

Ejemplo 2 Resolver

$$4x^{2}\frac{d^{2}y}{dx^{2}} + 8x\frac{dy}{dx} + y = 0$$

Solución: Sustituyendo $y = x^m$ en la ecuación diferencial se obtiene

$$4x^{2}\frac{d^{2}y}{dx^{2}} + 8x\frac{dy}{dx} + y = x^{m}(4m(m-1) + 8m + 1) = x^{m}(4m^{2} + 4m + 1).$$

La ecuación auxiliar $4m^2 + 4m + 1 = 0$ tiene una única solución de multiplicidad 2, que es $m_1 = -\frac{1}{2}$. Por lo tanto la solución general de la ecuación diferencial es

$$y = c_1 x^{-1/2} + c_2 x^{-1/2} \ln(x)$$

Para ecuación de orden superior, si m_1 es una raíz de multiplicidad k, entonces se puede mostrar que

$$x^{m_1}$$
, $x^{m_1} \ln(x)$, $x^{m_1} (\ln(x))^2$,..., $x^{m_1} (\ln(x))^{k-1}$

son k soluciones linealmente independientes. Correspondientemente la ecuación general de la ecuación diferencial debe contener una combinación lineal de esas k soluciones.

Caso 3: Raíces complejas

Si las raíces de (??) son $m_1 = \alpha + i\beta$ y $m_2 = \alpha - i\beta$, entonces la solución es

$$y = C_1 x^{\alpha + i\beta} + C_2 x^{\alpha - i\beta}.$$

Observemos la identidad

$$x^{i\beta} = \left(e^{\ln(x)}\right)^{i\beta} = e^{i\beta\ln(x)}$$

lo cual, por la fórmula de Euler, corresponde a

$$x^{i\beta} = \cos(\beta \ln(x)) + i\sin(\beta \ln(x))$$

y de manera similar se tiene

$$x^{-i\beta} = \cos(\beta \ln(x) - i \sin(\beta \ln(x)))$$

Sumando y restando las dos últimas igualdades se obtiene

$$x^{i\beta} + x^{-i\beta} = 2\cos(\beta \ln(x))$$
 y $x^{i\beta} - x^{-i\beta} = 2i\sin(\beta \ln(x))$

respectivamente. Como

$$y = C_1 x^{\alpha + i\beta} + C_2 x^{\alpha - i\beta}.$$

podemos escoger C_1 y C_2 para obtener una solución particular, escogemos $C_1 = C_2 = 1$ y otra solución se obtiene por poner $C_1 = 1, C_2 = -1$, de manera de obtener las soluciones:

$$y_1 = x^{\alpha}(x^{i\beta} + x^{-i\beta})$$
 y $y_2 = x^{\alpha}(x^{i\beta} - x^{-i\beta})$

o

$$y_1 = 2x^{\alpha} \cos(\beta \ln(x))$$
 $y \quad y_2 = 2ix^{\alpha} \sin(\beta \ln(x))$

Como $W(x^{\alpha}\cos(\beta\ln(x))), x^{\alpha}\sin(\beta\ln(x)) = \beta x^{2\alpha-1} \neq 0, \beta > 0$ en el intervalo $]0, \infty[$, concluimos que

$$y_1 = x^{\alpha} \cos(\beta \ln(x))$$
 $y = y^{\alpha} \sin(\beta \ln(x))$

consituyen un conjunto fundamental de soluciones reales de la ecuación diferencial. Por lo tanto la solución general es

$$y = x^{\alpha}(c_1 \cos(\beta \ln(x)) + c_2 \sin(\beta \ln(x))).$$

Ejemplo 3 Resolver el problema de valor inicial

$$4x^2y'' + 17y = 0$$

Solución: Sustituimos $y = x^m$ y se obtiene

$$x^{m}(4m(m-1)+17) = x^{m}(4m^{2}-4m+17) = 0.$$

Entonces la ecuación auxiliar tiene como soluciones

$$m_1 = \frac{1}{2} + 2i, \qquad m_2 = \frac{1}{2} - 2i.$$

Por lo tanto veamos que la solución general de la ecuación diferencial es dada por

$$y = x^{1/2}(c_1 \cos(2\ln(x)) + c_2 \sin(2\ln(x))).$$

Por aplicar las condiciones iniciales $y(1) = 1, y'(1) = -\frac{1}{2}$, se obtiene que $c_1 = -1$ y $c_2 = 0$. Por lo tanto la solución es

$$y = -x^{1/2}\cos(2\ln(x)).$$

Ejemplo 4 Resolver la ecuación diferencial de tercer orden

$$x^{3}\frac{d^{3}y}{dx^{3}} + 5x^{2}\frac{d^{2}y}{dx^{2}} + 7x\frac{dy}{dx} + 8y = 0.$$

Solución: Las primeras 3 derivadas de $y = x^m$ son

$$\frac{dy}{dx} = mx^{m-1}, \quad \frac{d^2y}{dx^2} = m(m-1)x^{m-2}, \quad \frac{d^3y}{dx^3} = m(m-1)(m-2)x^{m-3},$$

entonces al reemplazar se obtiene

$$x^{3}m(m-1)(m-2)x^{m-3} + 5x^{2}m(m-1)x^{m-2} + 7xmx^{m-1} + 8x^{m}$$
$$= x^{m}(m^{3} + 2m^{2} + 4m + 8) = x^{m}(m+2)(m^{2} + 4) = 0.$$

Así observamos que las raíces son $m_1 = -2, m_2 = 2i, m_3 = -2i$. Por lo tanto la solución general es dada por

$$y = c_1 x^{-2} + c_2 \cos(2\ln(x)) + c_3 \sin(2\ln(x))$$

2 Reducción a coeficientes constantes

Una ecuación de Cauchy - Euler puede ser reescrita como una ecuación diferencial lineal con coeficientes constantes por hacer el cambio de variables $x = e^t$. Luego se puede resolver la ecuación en términos de la variable t y luego reemplazar $t = \ln(x)$.

Ejemplo 5 Resolver la ecuación diferencial

$$x^2y'' - xy' + y = ln(x)$$

Solución: Hacemos el cambio de variable $x = e^t$ o $t = \ln(x)$, se tiene por regla de la cadena que

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{x} \cdot \frac{dy}{dt}$$

así la segunda derivada es dada por

$$\frac{d^2}{dx^2} = \frac{1}{x} \frac{d}{dx} \left(\frac{dy}{dt} \right) + \frac{dy}{dt} \cdot \left(-\frac{1}{x^2} \right)$$
$$= \frac{1}{x} \left(\frac{d^2 y}{dt^2} \frac{1}{x} \right) + \frac{dy}{dt} \left(-\frac{1}{x^2} \right)$$
$$= \frac{1}{x^2} \left(\frac{d^2 y}{dt^2} - \frac{dy}{dt} \right)$$

Sustituyendo en la ecuación diferencial dada y reduciendo se obtiene

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = t$$

La ecuación auxiliar es dada por $m^2 - 2m + 1 = 0$. Por lo tanto

$$y_c = c_1 e^t + c_2 t e^t.$$

Por coeficientes indeterminados probamos una solución particular de la forma $y_p = A + Bt$. Sustituyendo se obtiene

$$-2B + A + Bt = t$$

y así A = 2 y B = 1. De esta manera se tiene

$$y = c_1 e^t + c_2 t e^t + 2 + t$$

y por lo tanto la solución de la ecuación diferencial original en el intervalo $]0,\infty[$ es

$$y = c_1 x + c_2 x \ln(x) + 2 + \ln(x)$$