

Discrete Mathematics MH1812

Topic 2.3 - Propositional Logic III Dr. Gary Greaves

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Determine whether or not an argument is valid.
- Apply basic inference rules.

Arguments: Valid Argument

An argument is a sequence of statements. The last statement is called the conclusion. All the previous statements are called premises (or assumptions/hypotheses).

A valid argument is an argument where the conclusion is true if the premises are all true.

Arguments: Valid Argument

A valid argument is an argument where the conclusion is true if the premises are all true.

- "If you pay up in full then I will deliver it"
- "You pay up in full"

"I will deliver it"

Premises

Conclusion

Arguments: Valid Argument

A valid argument is an argument where the conclusion is true if the premises are all true.

A series of statements form a valid argument if and only if "the conjunction of premises implying the conclusion" is a tautology.

((Premise) ∧ (Premise)) → Conclusion

Arguments: A Valid Argument Template

- By definition, a valid argument satisfies: "If the premises are true, then the conclusion is true".
- To check if the above argument is valid, we need to check that $((p \rightarrow q) \land p) \rightarrow q$ is a tautology.

Arguments: Valid Argument Template

- Critical rows are rows with all premises true.
- If in all critical rows the conclusion is true, then the argument is valid (otherwise it is invalid).

р	q	$p \rightarrow q$	$(p \rightarrow q) \land p$	$((p \to q) \land p) \to q$
Т	Т	Т	Т	Т
Т	F	F	F	to calculate T
F	Т	Т	F	to calca
F	F	Т	Nother	Т

Arguments: Counterexample

If in all critical rows the conclusion is true, then the argument is valid (otherwise it is invalid).

A critical row with a false conclusion is a counterexample.

A counterexample:

- Invalidates the argument (i.e., makes the argument not valid)
- Indicates a situation where the conclusion does not follow from the premises

Arguments: Invalid Argument Example

- "If it is falling and it is directly above me then I'll run"
- "It is falling"
- "It is not directly above me"

Premises

"I will not run"

Conclusion

$$S = (f \land a \rightarrow r);$$

$$f;$$

$$\neg a;$$

$$\therefore \neg r$$

Premises

Conclusion

Arguments: Invalid Argument Example

Arguments: Fallacy

A fallacy is an error in reasoning that results in an invalid argument.

Arguments: Fallacy 1 (Converse Error)

- If it is Christmas then it is a holiday.
- It is a holiday. Therefore, it is Christmas!

Arguments: Fallacy 2 (Inverse Error)

- If it is raining then I will stay at home.
- It is not raining. Therefore, I will not stay at home!

$$p \rightarrow q;$$

$$\neg p;$$

$$\therefore \neg q$$

Arguments: Invalid Argument, Correct Conclusion

An argument may be invalid, but it may still draw a correct conclusion (e.g., by coincidence).

Example

- If New York is a big city then New York has tall buildings.
- New York has tall buildings.
 - So, New York is a big city.

So, what happened?

- We have just made an invalid argument,
 i.e., converse error!
- But the conclusion is true (a fact true by itself).

Inference Rules: Definition

A rule of inference is a logical construct which takes premises, analyses their syntax and returns a conclusion.

We already saw...

$$p \rightarrow q;$$
 $p;$
 $\therefore q$

Modus Ponens
(Method of Affirming)

$$p \rightarrow q;$$
 $\neg q;$
 $\therefore \neg p$

Modus Tollens (Method of Denying)

Inference Rules: More Inference Rules

Conjunctive Simplification (Particularising)

```
p∧q;
∴ p
```

Disjunctive Syllogism (Case Elimination)

```
p ∨ q;
¬ p;
∴ q
```

Conjunctive Addition (Specialising)

Rule of Contradiction

$$\neg p \rightarrow C;$$

$$\therefore p$$

Disjunctive Addition (Generalisation)

Alternative Rule of Contradiction

$$\neg p \rightarrow F;$$
 $\therefore p$

Inference Rules: Dilemma

Dilemma (case by case discussions)

```
\begin{array}{c}
p \lor q; \\
p \to r; \\
q \to r; \\
\therefore r
\end{array}
```


Inference Rules: Hypothetical Syllogism

Hypothetical Syllogism

$$\begin{bmatrix}
 p \rightarrow q; \\
 q \rightarrow r; \\
 \therefore p \rightarrow r
 \end{bmatrix}$$

Alice

- If I do not wake up, then I cannot go to work.
- If I cannot go to work, then I will not get paid.
- Therefore, if I do not wake up, then I will not get paid.

Inference Rules: Proof Hypothetical Syllogism

$(p \rightarrow q) \land (q \rightarrow r)$	(Hypotheses; Assumed True)
$\equiv (p \rightarrow q) \land (\neg q \lor r)$	(Conversion Theorem)
$\equiv [(p \rightarrow q) \land \neg q] \lor [(p \rightarrow q) \land r]$	(Distributive)
$\equiv [((p \rightarrow q) \land \neg q) \lor (p \rightarrow q)] \land [((p \rightarrow q) \land \neg q) \lor r]$	(Distributive)
$\equiv (p \rightarrow q) \land [((p \rightarrow q) \land \neg q) \lor r]$	(Recall absorption law: a \vee (a \wedge b) \equiv a, hence $[((p \rightarrow q) \wedge \neg q) \vee (p \rightarrow q)] \equiv p \rightarrow q)$
$\equiv (p \rightarrow q) \land [((\neg p \lor q) \land \neg q) \lor r]$	(Conversion)
$\equiv (p \rightarrow q) \land [((\neg p \land \neg q) \lor (q \land \neg q)) \lor r]$	(Distributive)
$\equiv (p \rightarrow q) \land [((\neg p \land \neg q) \lor F) \lor r]$	(Contradiction)
$\equiv (p \rightarrow q) \land [(\neg p \land \neg q) \lor r]$	(Unity)
$\equiv (p \rightarrow q) \land [(\neg p \lor r) \land (\neg q \lor r)]$	(Distributive)
$\equiv [(p \rightarrow q) \land (\neg q \lor r)] \land (\neg p \lor r)$	(Commutative; Associative)
$\therefore (\neg p \lor r) \equiv p \rightarrow r$	(Conjunctive Simplification; Conversion)

Let's recap...

- Arguments:
 - Valid arguments
 - Invalid arguments
 - Counterexample
 - Fallacy
- Inference rules:
 - Derive conclusions from a bunch of information
 - Some basic inference rules

