## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-073412

(43) Date of publication of application: 12.03.2003

(51)Int.CI.

CO8F 4/625

CO8F 10/00

(21)Application number: 2002-178733

(71)Applicant: MITSUI CHEMICALS INC

(22)Date of filing:

19.06.2002

(72)Inventor: ISHII SEII 2HI

MIT: ANAMAKOTO

SAITO JUNJI

MATSUURA SADAHIKO MATSUKAWA NAOTO **TSURU KAZUTAKA FUJITA TERUNORI** 

(30)Priority

Priority number : 2001186459

Priority date: 20.06.2001

Priority country: JP

### (54) OLEFIN POLYMERIZATION CATALYST, METHOD FOR POLYMERIZING OLEFIN, ETHYLENIC POLYMER OBTAINED BY THE SAME AND ITS APPLICATION

#### (57) Abstract:

polymerization catalyst excellent in olefin polymerization activity and a method for polymerizing which produces a polymer having a low molecular weight with high polymerization activity in the polymerization using a transition metal compound. SOLUTION: An olefin is polymerized in the presence of a catalyst comprising the compound represented by the formula [wherein M is a transition metal atom of groups 4-5 in the periodic table; m is 1-4; R1 is H, a 1-5C linear hydrocarbon group, a bicyclic hydrocarbon group carrying at least one or more carbons or a 3-5 membered alicyclic hydrocarbon group; R2-R6 are each hydrogen, a halogen, a hydrocarbon group or the like; X is hydrogen, a halogen atom or the like and n is a number satisfying the number of valence of M] and at least one compound (B) selected from an organometallic compound (B-1), an organic aluminumoxy compound (B-2) and an ionized ionic compound (B-3).

PROBLEM TO BE SOLVED: To provide a novel olefin

#### **LEGAL STATUS**

[Date of request for examination]

01.10.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19) 日本国特許庁(JP)

# (12) 公開特許公報 (A)

(11)特許出願公開番号

# 特開2003-73412

(P2003-73412A)

(43) 公開日 平成15年3月12日(2003.3.12)

(51) Int. CI. 7

識別記号

FΙ

テーマコード (参考)

CO8F 4/625

·- 10/00

HHL/// 14C -

510

C08F 4/625

4J128

10/00

510

審査請求 未請求 請求項の数11 OL (全55頁)

(21) 出願番号

特願2002-178733 (P2002-178733)

(22) 出願日

平成14年6月19日(2002.6.19)

(31) 優先権主張番号

特願2001-186459 (P2001-186459)

(32) 優先日

平成13年6月20日(2001.6.20)

(33) 優先権主張国

日本 (JP)

(71) 出願人 000005887

三井化学株式会社

東京都千代田区霞が関三丁目2番5号

(72) 発明者 石 井 聖 一

千葉県袖ヶ浦市長浦580-32 三井化学株

式会社内

(72) 発明者 三 谷 誠

千葉県袖ヶ浦市長浦580-32 三井化学株

式会社内

(74) 代理人 100081994

弁理士 鈴木 俊一郎 (外1名)

最終頁に続く

(54) 【発明の名称】オレフィン重合用触媒、オレフィンの重合方法、該方法によって得られるエチレン系重合体および その用途

#### (57) 【要約】

【課題】 優れたオレフィン重合活性を有する新規オレフィン重合用触媒、および該遷移金属化合物を用いて 重合するに際し、高い重合活性で、低分子量のポリマー を生成する重合方法を提供する。

【解決手段】下記一般式で表される遷移金属化合物 [M; 周期律表第 4~5 族の遷移金属原子、m; 1~4、 R'; H、Ci~Cs 直鎖炭化水素基、少なくても 1 つ以上の炭素を共有する 2 環性炭化水素基、または 3~5 員環の脂環式炭化水素基、R²~R⁵;水素、ハロゲン、炭化水素基等、X;水素、ハロゲン原子等、n; Mの価数を満たす数〕と、有機金属化合物(B-1)、有機アルミニウムオキシ化合物(B-2) およびイオン化イオン性化合物(B-3) から選ばれる少なくとも 1 種の化合物(B) とから成る触媒の存在下にオレフィンを重合させる。

【化1】



#### 【特許請求の範囲】

【請求項1】(A)下記一般式(I)で表される遷移金属化合物からなることを特徴とするオレフィン重合用触媒。

$$\begin{array}{c|c}
R^1 \\
R^2 \\
R^3 \\
R^6 \\
R^6
\end{array}$$
(1)

(式中、Mは周期律表4~5族の遷移金属原子を示し、 mは、1~4の整数を示じ、

R<sup>1</sup>は、炭素数1~5の直鎖炭化水素基(C<sub>n</sub>· H<sub>2 n·+1</sub>, n<sup>′</sup> = 1 ~5)または水素原子を示し、

R<sup>7</sup>~R<sup>6</sup>は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含 20 有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、

また、mが 2以上の場合にはR<sup>1</sup>  $\sim R$ <sup>4</sup> で示される基のうち 2 個の基が連結されていてもよく、

nは、Mの価数を満たす数であり、

Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、ま 30 たはスズ含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

【請求項2】(A)下記一般式(II)で表される遷移金属化合物からなることを特徴とするオレフィン重合用触媒。

【化2】

$$\begin{array}{c|c}
R^{1} \\
R^{2} \\
N \\
R^{3}
\end{array}$$

$$\begin{array}{c}
MXn \\
(II)
\end{array}$$

(式中、Mは周期律表第4~5族の遷移金属原子を示し.

mは、1~4の整数を示し、

R¹は、1つまたは複数の置換基を有していてもよい3

~5員環の脂環式炭化水素基、

R<sup>2</sup>~R<sup>5</sup>は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、

また、mが 2以上の場合にはR<sup>1</sup>  $\sim R$ <sup>1</sup> で示される基のうち 2 個の基が連結されていてもよく、

10 nは、Mの価数を満たす数であり、

Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

【請求項3】(A)下記一般式(III)で表される遷移 金属化合物からなることを特徴とするオレフィン重合用 触媒。

#### [化3]

$$\begin{array}{c|c}
R^{2} & & \\
R^{2} & & \\
R^{3} & & \\
R^{5} & & \\
\end{array}$$
(III)

(式中、Mは周期律表第4~5族の遷移金属原子を示し、

mは、1~4の整数を示し、

R¹は、1つまたは複数の置換基を有していてもよい炭素数4~20の少なくとも1つ以上の炭素を共有する2環性炭化水素基を示し、

R<sup>2</sup> ~ R<sup>5</sup> は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、

また、mが 2以上の場合にはR<sup>1</sup>  $\sim$  R<sup>1</sup> で示される基のうち 2 個の基が連結されていてもよく、

nは、Mの価数を満たす数であり、

Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、ま50 たはスズ含有基を示し、nが2以上の場合は、Xで示さ

れる複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)

3

4)

【請求項4】 請求項1から3のいずれか1項に記載の 遷移金属化合物(A)と、(B)(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物 から選ばれる少なくとも1種の化合物とからなることを 特徴とするオレフィン重合用触媒。

【請求項5】 請求項1から4のいずれか1項に記載の 10 オレフィン重合用触媒の存在下において、オレフィンを 重合または共重合させることを特徴とするオレフィンの 重合方法。

【請求項6】 請求項1から4のいずれか1項に記載のオレフィン重合用触媒の存在下において、エチレンを単独重合またはエチレンと炭素数3~10の $\alpha$ -オレフィンを共重合させることによって得られ、(1)エチレンに由来する構造単位が81~100モル%、 $\alpha$ -オレフィンに由来する構造単位が0~19mol%の範囲にあり、

(2) G P C で測定した重量平均分子量 (Mw) が 7 0 0 0 以下であり、 (3) 分子量分布 (Mw/Mn) が 1.  $1 \le Mw/Mn \le 2$ . 5 であり、 (4) ビニルまたはビニリデン基を重合体主鎖末端に持ち、 H-NMRで測定したこれらの基の含有量が全片末端の 9 0 %以上である、ことを特徴とする低分子量エチレン系重合体。

【請求項7】 請求項6に記載の低分子量エチレン系重合体における、ビニルまたはビニリデン基をエポキシ化剤、スルホン化剤、無水マレイン酸およびその誘導体、ヒドロホウ素化剤、有機アルミニウム水素化物、シリル化剤、ハロゲン化剤から選ばれる少なくとも1種の化合物で処理することによって得られる、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、ハロゲン含有基またはスズ含有基を有する低分子量エチレン系重合体。

【請求項8】 請求項6または請求項7に記載の低分子量エチレン系重合体を含む塗料改質剤、艶出し剤、樹脂成型用離型剤、ゴム加工助剤、紙質向上剤、インキ用耐摩耗性向上剤、繊維加工助剤、ホットメルト添加剤、電気絶縁剤、天然ワックス用配合剤、ポリオレフィンフィルム用防曇剤。

【請求項9】 請求項6または7に記載の低分子量エチレン系重合体を含むトナー用離型剤、顔料分散剤、塩化ビニル樹脂用滑剤。

【請求項10】 請求項6または7に記載の低分子量エチレン系重合体をマクロモノマーとして、単独に重合、またはエチレンおよび炭素数3~10の $\alpha$ -オレフィンから選ばれる少なくても1種のオレフィンと共重合して得られるオレフィン重合体。

【請求項11】 請求項10に記載のオレフィン重合体を含む樹脂組成物。

#### 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は、オレフィン重合用 触媒、この触媒を用いたオレフィンの重合方法、該重合 方法によって得られる低分子量エチレン系重合体および これらの低分子量エチレン系重合体の用途に関し、さら に詳しくは高い重合活性を有する新規オレフィン重合用 触媒、この触媒を用いたオレフィンの重合方法、これに よって得られる分子量分布が狭く、主鎖末端位のビニル またはビニリデン基合有率の高い低分子量エチレン系重 合体およびこれらの変性体、ならびにこれらの用途に関 する。

#### [0002]

【従来の技術】従来からエチレン重合体、エチレン・αーオレフィン共重合体などのオレフィン重合体を製造するための触媒として、チタン化合物と有機アルミニウム化合物とからなるチタン系触媒、およびパナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒が知られている。

【0003】また、高い重合活性でオレフィン重合体を製造することのできる触媒としてジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)とからなるチーグラー型触媒が知られている。さらに最近新しいオレフィン重合触媒として、特開平11-315109号は、サリチルアルドイミン配位子を有する遷移金属化合物が記載され、この錯体は高いオレフィン重合活性を示すことが記載されている。さらに特開2001-2731号において、該遷移金属化合物を用いることによって製造できる、片末端に二重結合を含有する新規な低分子量エチレン系重合体、片末端二重結合の変性体、及びそれらの用途(トナー用離型剤、顔料分散剤、塩化ビニル樹脂用滑剤)について記載されている。

【0004】しかしながらこれらの用途においてより高い性能を発揮させる為、及び更に別の用途に使用する為には、重合体主鎖の片末端位の二重結合(以下の説明では、この二重結合のことを「片末端二重結合」と呼ぶことがある。)の含有率をより高くすることが求められていた。

#### 40 [0005]

【発明が解決しようとする課題】本発明は、優れたオレフィン重合活性を有する新規オレフィン重合用触媒、および該遷移金属化合物を用いて重合するに際し、高い重合活性で、低分子量のポリマーを生成する重合方法を提供する事を目的としている。さらに本発明は、高い割合で片末端二重結合を有する低分子量エチレン系重合体、及びその片末端二重結合を特定の変性剤と処理することによって得られる変性体、及びこれら低分子量エチレン系重合体と変性体の用途を提供することを目的としている。

50 る。

30

### [0006]

【課題を解決するための手段】本発明に係る第1のオレフィン重合触媒は、(A)下記一般式(I)で表される 遷移金属化合物からなることを特徴とする。

[0007]

#### 【化4】

$$\begin{array}{c|c}
R^{1} \\
R^{2} \\
N \\
N \\
MXn
\end{array}$$
(1)

【0008】式中、Mは周期律表4~5族の遷移金属原 子を示し、mは、1~4の整数を示し、R<sup>1</sup>は、炭素数1 ~5の直鎖炭化水素基 (C<sub>n</sub> H<sub>2 n + 1</sub>, n = 1 ~ 5) または水素原子を示し、R<sup>2</sup>~R<sup>6</sup>は、互いに同一でも異 なっていてもよく、水素原子、ハロゲン原子、炭化水素 基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、 ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有 基、ゲルマニウム含有基、またはスズ含有基を示し、こ れらのうちの2個以上が互いに連結して環を形成してい てもよく、また、mが2以上の場合にはR<sup>1</sup>~R<sup>6</sup>で示さ れる基のうち2個の基が連結されていてもよく、nは、 Mの価数を満たす数であり、Xは、水素原子、ハロゲン 原子、炭化水素基、酸素含有基、イオウ含有基、窒素含 有基、ホウ素含有基、アルミニウム含有基、リン含有 基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含 有基、ゲルマニウム含有基、またはスズ含有基を示し、 nが2以上の場合は、Xで示される複数の基は互いに同 ーでも異なっていてもよく、またXで示される複数の基 は互いに結合して環を形成してもよい。

【0009】上記第1のオレフィン重合用触媒においては、(A)前記一般式(I)で表わされる遷移金属化合物において、Mが周期表第4族の遷移金属原子であり、mが2であり、nが2であり、R'が炭素数1~5の直鎖炭化水素基(C。 $H_{2 \text{ a } \cdot \text{ b } \cdot \text{ b }}$  n のオレフィン重合用触媒においては、(A)前記一般式(I)で表わされる遷移金属化合物において、Mがジルコニウム原子であり、R'がメチル基、エチル基または水素原子であることが好ましい。

【0010】本発明に係る第2のオレフィン重合触媒は、(A)下記一般式(II)で表される遷移金属化合物からなることを特徴とする。

[0011]

【化5】

$$\begin{array}{c|c}
R^{1} \\
R^{2} \\
N \\
N \\
MXn
\end{array}$$
(II)

【0012】式中、Mは周期律表第4~5族の遷移金属 10 原子を示し、mは、1~4の整数を示し、R'は、1つ または複数の置換基を有していてもよい3~5員環の脂 環式炭化水素基、R'~R'は、互いに同一でも異なって いてもよく、水素原子、ハロゲン原子、炭化水素基、ヘ テロ環式化合物残基、酸素含有基、窒素含有基、ホウ素 . 含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲ ルマニウム含有基、またはスズ含有基を示し、これらの うちの2個以上が互いに連結して環を形成していてもよ く、また、mが2以上の場合にはR<sup>2</sup>~R<sup>6</sup>で示される基 のうち2個の基が連結されていてもよく、nは、Mの価 20 数を満たす数であり、Xは、水素原子、ハロゲン原子、 炭化水素基、酸素含有基、イオウ含有基、窒素含有基、 ホウ素含有基、アルミニウム含有基、リン含有基、ハロ ゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲ ルマニウム含有基、またはスズ含有基を示し、nが2以 上の場合は、Xで示される複数の基は互いに同一でも異 なっていてもよく、またXで示される複数の基は互いに 結合して環を形成してもよい。

【0013】上記第2のオレフィン重合用触媒においては、(A)前記一般式(II)で表わされる遷移金属化合物において、Mが周期表第4族の遷移金属原子であり、mが2であり、nが2であり、R'は、1つまたは複数の置換基を有していてもよい3~5員の脂環式炭化水素基であることが好ましい。また第2のオレフィン重合用触媒においては、(A)前記一般式(II)で表わされる遷移金属化合物において、Mがジルコニウム原子であり、R'が1つまたは複数の置換基を有していてもよい3~5員環の脂環式炭化水素基であることが好ましい。【0014】本発明に係る第3のオレフィン重合触媒は、(A)下記一般式(III)で表される遷移金属化合物からなることを特徴とする。

[0015]

【化6】

$$\begin{array}{c|c}
R^{1} \\
R^{3} \\
R^{5}
\end{array}$$

$$\begin{array}{c}
MXn \\
(III)
\end{array}$$

【0016】式中、Mは周期律表第4~5族の遷移金属 原子を示し、mは、1~4の整数を示し、R¹は、1つ または複数の置換基を有していてもよい炭素数4~20 の少なくとも1つ以上の炭素を共有する2環性炭化水素 基を示し、R'~R'は、互いに同一でも異なっていても よく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環 式化合物残基、酸素含有基、窒素含有基、ホウ素含有 基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマ ニウム含有基、またはスズ含有基を示し、これらのうち の2個以上が互いに連結して環を形成していてもよく、 また、mが2以上の場合にはR'~R'で示される基のう ち2個の基が連結されていてもよく、nは、Mの価数を 満たす数であり、Xは、水素原子、ハロゲン原子、炭化 水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ 素含有基、アルミニウム含有基、リン含有基、ハロゲン 含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマ ニウム含有基、またはスズ含有基を示し、nが2以上の 場合は、Xで示される複数の基は互いに同一でも異なっ ていてもよく、またXで示される複数の基は互いに結合 して環を形成してもよい。

【0017】上記第3のオレフィン重合用触媒においては、(A)前記一般式(III)で表わされる遷移金属化合物において、Mが周期表第4族の遷移金属原子であり、mが2であり、nが2であり、R'は、1つまたは複数の置換基を有していてもよい炭素数4~20の1つまたは2つの炭素を共有する2環性炭化水素基であることが好ましい。

【0018】また第3のオレフィン重合用触媒は、

(A) 前記一般式(III) で表わされる遷移金属化合物において、R'が1つまたは複数の置換基を有していてもよい、炭素数4~20の2つの炭素を共有する2環性炭化水素基であることが好ましい。また第3のオレフィン重合用触媒においては、(A) 前記一般式(III) で表わされる遷移金属化合物において、Mがジルコニウム原子であり、R'が1つまたは複数の置換基を有していてもよい、炭素数5~20の2つの炭素を共有する橋かけ2環性脂肪族炭化水素基であることがより好ましい。【0019】また、本発明のオレフィン重合用触媒は、

(A) 前記一般式(I)、(II)または(III)で表わされる遷移金属化合物と、(B) (B-1)有機金属化合物、(B-2)有 40機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物からなることが好ましい。

【0020】本発明のオレフィン重合方法は前記のようなオレフィン重合用触媒の存在下に、少なくとも1種以上のオレフィンを重合することを特徴としている。本発明で製造する低分子量エチレン系重合体は、片末端にビニル又はビニリデン型の二重結合を含み、エチレン単独、もしくはエチレンと炭素数3~10のα-オレフィ

ンからなる低分子量エチレン系(共)重合体である。本 発明に用いられる炭素数  $3\sim10$  の $\alpha$ -オレフィンとしては、例えば、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、1-ペンテン、1-ペンテン、1-ポリー (コープ・アン・カー・ペンテン、1-オクテン、1-デセン等が挙げられ、これらの中の 1 種又は 2 種以上が用いられる。この中でも特にプロピレン、1-ブテンが好ましい。

【0021】本発明の低分子量エチレン系重合体中の、 10 エチレンに由来する構造単位は81~100mol%、 好ましくは90~100mol%、特に好ましくは94 ~100mol%である。一方炭素数3~10のα-オ レフィンに由来する構造単位は、0~19mol%、好 ましくは0~10mol%、より好ましくは0~6mo l%である。

【0022】本発明の低分子量(共)重合体の135 ℃、デカリン中で測定した極限粘度(〔n〕)は、0. 39dl/g以下、好ましくは0.25dl/g以下である。本 発明の低分子量エチレン系重合体のゲルパーミエーショ 20 ンクロマトグラフィー(GPC)により測定した重量平 均分子量(Mw)が7000以下、好ましくは5000以下 である。

【0023】本発明の低分子量エチレン系重合体のゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)の比、すなわち分子量分布(Mw/Mn)は、1.1~2.5であり、好ましくは1.2~2.2の範囲にある。重量平均分子量(Mw)及び分子量分布(Mw/Mn)はミリポア社製GPC-150を用い以下のよう30にして測定した。分離カラムは、TSK GNH HTであり、カラムサイズは直径7.5mm、長さ300mmであり、カラム出度は140℃とし、移動相にはオルトジクロルベンゼン(和光純薬)及び酸化防止剤としてBHT(武田薬品)0.025重量%を用い、1.0ml/分で移動させ、試料濃度は0.1重量%とし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは東ソー社製を用いた。

【0024】本発明の低分子量エチレン系重合体中の、「H-NMRまたはIRで測定されたビニルまたはビニリデン型の二重結合の割合(以下の説明では、この割合を「二重結合含有率」または「片末端ビニル化率」と呼称する場合がある。)は、全片末端の90%以上であり、より好ましくは94%以上である。「H-NMRについては、測定サンプル管中で重合体を、ロック溶媒としての重水素化ベンゼンを少量含むオルトジクロルベンゼンに完全に溶解させた後、120℃において測定した。ケミカルシフトは、テトラメチルシランのピークを0ppmとして、他のピークのケミカルシフト値を決定した。

50 【0025】エチレンのみからなる低分子量重合体中の

二重結合含有率は、1H-NMRによって決定される。該 重合体の各水素のピークは、末端の飽和メチル基に基づ くピーク(A)が0.65~0.85ppm、ビニル基 に基づくピーク(B)および(C)が各々4.85~5. 0 p p m と 5. 5~5. 8 p p m に観測される。各ピー ク (A)、(B) および (C) のピーク面積を各々 S<sub>A</sub>、S<sub>B</sub>およびS<sub>c</sub>とすれば、二重結合含有率(U%) は、下記式にて算出される。

[0026]

【数1】

$$U (\%) = \frac{(S_B + S_C)/3}{S_A/3} \times 200$$

【0027】なお、上式において分子は、末端ビニル基 に基づくピークの面積量を示し、分母は末端メチル基に 基づくピークの面積量を示す。一方、エチレンとαーオ レフィンとからなる共重合体の末端ビニル基および末端 ビニリデン基は特開2001-2731号において開示 した方法によって定量される。本発明に係る低分子量工 チレン系共重合体は、重合体主鎖の片側末端ビニルまた 20 は末端ビニリデン基を、エポキシ化剤、スルホン化剤、 無水マレイン酸およびその誘導体、ヒドロホウ素化剤、 有機アルミニウム水素化物、シリル化剤、ハロゲン化剤 から選ばれる少なくとも1種の化合物で処理することに よって、酸素含有基、窒素含有基、ホウ素含有基、イオ ウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含 有基、ハロゲン含有基またはスズ含有基に変性すること が可能である。本発明で変性剤として用いるエポキシ化 剤としては、蟻酸一過酸化水素(H,O,)、mークロロ過 安息香酸等がある。スルボン化剤としては、硫酸-無水 30 酢酸がある。ヒドロホウ素化剤としては、ジボラン、ト リメチルボラン、9-ボランビシクロ[3.3.1]ノナン等 がある。有機アルミニウム水素化物としては、ジイソブ チルアルミニウムハイドライドがあげられる。シリル化 剤としてはトリエトキシシリルハイドライド/H<sub>2</sub>Pt Cl,、トリメトキシシシリルハイドライド/H,PtC 1,がある。ハロゲン化剤としては、臭化水素、塩化水 素、ヨウ化水素等があげられる。

【0028】これらの変性剤による具体的変性条件(温 度、時間、触媒種、触媒量等の詳細条件)については、 Die Makromolecular Chemie Makromolecular Symposia 48/49, 317-332, 1991に記載された条件に準拠すること 可能である。例えば、末端を無水マレイン酸で変性した 酸素含有基をもつオリゴマー、およびアミド基およびア ミン基を含有したオリゴマーなどは、チクソトロピー付 与などのための塗料添加剤および顔料分散剤に適する。 また、ケイ素含有基やスズ含有基などをもつオリゴマー は、ポリ塩化ビニル滑剤への用途およびエンジニアリン グプラスチックなどの滑剤、紙処理剤などに適する。

末端が変性されていてもよい低分子量エチレン系重合体 を含むものである。この塗料改質剤は、艶消し効果に優 れ、塗膜の耐摩耗性を向上させる。具体的には、木工塗 料に高級感を付与し、耐久性を向上させる。本発明に係 る艶出し剤は、上記のように末端が変性されていてもよ い低分子量エチレン系重合体を含むものである。この艶 出し剤は、光沢に優れ、塗膜物性を向上させる。具体的 にはカーワックス、フロアーポリッシュの性能を向上さ せる。

10 【0030】本発明に係る樹脂成型用離型剤は、上記の ように末端が変性されていてもよい低分子量エチレン系 重合体を含むものである。この離型剤は、熱可塑性樹 脂、熱硬化性樹脂への離型性を付与する。このため、樹 脂の成型サイクル向上を図ることが可能である。本発明 に係るゴム加工助剤は、上記のように末端が変性されて いてもよい低分子量エチレン系重合体を含むものであ る。この助剤は、離型性、流動性に優れ、フィラー及び 顔料の分散性を向上させる。具体的には、成型サイク ル、押出し特性を向上させる。

【0031】本発明に係る紙質向上剤は、上記のように 末端が変性されていてもよい低分子量エチレン系重合体 を含むものである。この紙質向上剤は、防湿性、光沢、 表面硬度、耐ブロッキング性、耐摩耗性を向上させる。 具体的には高級感を付与し、耐久性を向上させる。本発 明に係るインキ用耐摩耗性向上剤は、上記のように末端 が変性されていてもよい低分子量エチレン系重合体を含 むものである。この耐摩耗性向上剤は、インキ表面に耐 摩耗性、耐熱性を付与する。具体的には、インキの鮮度 を向上させる。

【0032】本発明に係る繊維加工助剤は、上記のよう に末端が変性されていてもよい低分子量エチレン系重合 体を含むものである。この助剤は、繊維の樹脂加工時に 柔軟性、滑性を付与する。具体的には、高速縫製性、引 裂強度を向上させる。本発明に係るホットメルト添加剤 は、上記のように末端が変性されていてもよい低分子量 エチレン系重合体を含むものである。この添加剤は、ホ ットメルト接着剤への耐熱性、流動性を付与する。具体 的には耐熱要求分野(自動車、建材)での品質を向上さ せる。

【0033】本発明に係る電気絶縁剤は、上記のように 末端が変性されていてもよい低分子量エチレン系重合体 を含むものである。この電気絶縁剤は、電気的性質に優 れ、軟化点を向上させる。具体的には、フィルムコンデ ンサーの電気絶縁特性を向上させる。本発明に係る天然 ワックスの配合剤は、上記のように末端が変性されてい てもよい低分子量エチレン系重合体を含むものである。 この配合剤は、表面硬度、軟化点を向上させる。具体的 には、クレヨン、ローソクの性能を向上させる。

【0034】本発明に係るポリオレフィンフィルムの防 【0029】本発明に係る塗料改質剤は、上記のように 50 曇剤は、上記のように末端が変性されていてもよい低分

子量エチレン系重合体を含むものである。この防曇剤は、樹脂との相溶性に優れ、樹脂表面へのブリードアウトを抑制する。具体的にはフィルムの耐久性を向上させる。本発明に係るトナー用離型剤は、上記のように末端が変性されていてもよい低分子量エチレン系重合体を含むものである。このトナー用離型剤は、定着ロールへの耐オフセット性を付与する。具体的には、画像鮮明性を向上させる。

【0035】本発明に係る顔料分散剤は、上記のように末端が変性されていてもよい低分子量エチレン系重合体 10を含むものである。この顔料分散剤は、各種顔料との濡れに優れ、持続性を向上させる。具体的には、高濃度のマスターバッチを可能にさせる。本発明に係る塩化ビニル樹脂用滑剤は、上記のように末端が変性されていてもよい低分子量エチレン系重合体を含むものである。この滑剤は、滑剤のバランスに優れ、持続性がある。具体的には、生産性を向上させ、消費電力の節減に繋がる。

【0036】さらにこのようにして合成した低分子量工 チレン系共重合体、またはその変性体は、マクロモノマ ーとして、単独に重合、またはエチレンおよび炭素数3 ~10のα-オレフィンから選ばれる少なくても1種の オレフィンと共重合が可能であり、またカップリング反 応に用いることもができる。この際に用いられる炭素数 3~10のα-オレフィンとしては、前記の低分子量工 チレン系重合体の製造時に使用されるαーオレフィンを 例示することができる。低分子量エチレン系重合体また はその変性体をマクロモノマーとして用いて得られる重 合体は新しい骨格を持つ新規ポリマーであり、これ自体 で、あるいはこれを含む樹脂組成物として様々な用途で 利用される。例えば、エチレンと共重合させることで、 分岐鎖数と分岐部分の分子量を自在に制御した長鎖分岐 型のポリエチレンを製造できる。さらに、エチレン/α オレフィンの共重合において非晶性重合体を製造する 際に、ポリエチレンのマクロモノマーを共重合すること で、ポリマー分子中に非晶性と結晶性部分を共存させる ことが可能となり、高性能の共重合体が製造できる。ま た、この共重合体はポリプロピレン樹脂用改質剤として 用いることもでき、ポリプロピレン樹脂に対して、たと えば1~30重量部の割合で配合することができる。

#### [0037]

【発明の実施の形態】以下、本発明におけるオレフィンの重合方法について具体的に説明する。なお、本明細書において「重合」という語は、単独重合だけでなく、共重合をも包含した意味で用いられることがあり、「重合体」という語は、単独重合体だけでなく、共重合体をも包含した意味で用いられることがある。

【0038】本発明に係るオレフィン重合触媒は、

(A) 前記一般式(I)、(III)、(III)で表される遷移金属化合物、あるいは、(A) 前記一般式(I)、(II)、(III)で表される遷移金属化合物と、(B) (B-1)有機金属

化合物、(B-2)有機アルミニウムオキシ化合物、および (B-3) 遷移金属化合物 (A) と反応してイオン対を形成 する化合物から選ばれる少なくとも1種の化合物とから形成されている。

#### (A) 遷移金属化合物

本発明に係る第一のオレフィン重合触媒を構成する (A) 遷移金属化合物は、下記一般式(I) で表される 化合物である。

[0039]

【化7】

$$\begin{array}{c|c}
R^1 \\
R^2 \\
N \\
R^5
\end{array}$$

$$\begin{array}{c}
MXn \\
(1)
\end{array}$$

【0040】 (なお、ここでN……Mは、一般的には配 20 位していることを示すが、本発明においては配位してい てもしていなくてもよい。)

一般式(I)中、Mは周期律表第4~5族の遷移金属を示し、具体的にはチタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタルであり、好ましくは4族の金属原子であり、具体的にはチタン、ジルコニウム、ハフニウムであり、より好ましくはジルコニウムである。

【0041】mは1~4の整数を示し、好ましくは1~2であり、特に好ましくは2である。R'は、炭素数1~5の直鎖炭化水素基(C, H<sub>2</sub>, H<sub>2</sub>, n =1~5)または水素原子を示す。R'の炭素数1~5の直鎖炭化水素基として具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基が挙げられる。これらの中では、メチル基、エチル基、n-プロピル基が好ましい。

【0042】 R'として、より好ましくは、メチル基、エチル基、及び水素原子である。 R'~ R'は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素40 含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、また、mが2以上の場合には R'~ R'で示される基のうち2個の基が連結されていてもよく、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。

【0043】炭化水素基として具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソプチル基、sec-ブチル基、 t-ブチル基、ネオ50 ペンチル基、n-ヘキシル基などの炭素原子数が1~3

0、好ましくは1~20の直鎖状または分岐状のアルキ ル基;ビニル基、アリル基、イソプロペニル基などの炭 素原子数が2~30、好ましくは2~20の直鎖状また は分岐状のアルケニル基;エチニル基、プロパルギル基 など炭素原子数が2~30、好ましくは2~20の直鎖 状または分岐状のアルキニル基;シクロプロピル基、シ クロブチル基、シクロペンチル基、シクロヘキシル基、 アダマンチル基などの炭素原子数が3~30、好ましく は3~20の環状飽和炭化水素基;シクロペンタジエニ ル基、インデニル基、フルオレニル基などの炭素数5~ 10 30の環状不飽和炭化水素基;フェニル基、ナフチル 基、ビフェニル基、ターフェニル基、フェナントリル 基、アントラセニル基などの炭素原子数が6~30、好 ましくは6~20のアリール基;トリル基、イソプロピ ルフェニル基、t-プチルフェニル基、ジメチルフェニル 基、ジ-t-ブチルフェニル基などのアルキル置換アリー ル基などが挙げられる。

【0044】上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル基、ペンタフルオロフェニル基、クロロフェニル基など 20の炭素原子数1~30、好ましくは1~20のハロゲン化炭化水素基が挙げられる。また、上記炭化水素基は、他の炭化水素基で置換されていてもよく、たとえば、ベンジル基、クミル基などのアリール基置換アルキル基などが挙げられる。

【0045】さらにまた、上記炭化水素基は、ヘテロ環 式化合物残基;アルコシキ基、アリーロキシ基、エステ ル基、エーテル基、アシル基、カルボキシル基、カルボ ナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無 水物基などの酸素含有基;アミノ基、イミノ基、アミド 30 基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ 基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エ ステル基、アミジノ基、ジアゾ基、アミノ基がアンモニ ウム塩となったものなどの窒素含有基;ボランジイル 基、ボラントリイル基、ジボラニル基などのホウ素含有 基;メルカプト基、チオエステル基、ジチオエステル 基、アルキルチオ基、アリールチオ基、チオアシル基、 チオエーテル基、チオシアン酸エステル基、イソチアン 酸エステル基、スルホンエステル基、スルホンアミド 基、チオカルボキシル基、ジチオカルボキシル基、スル 40 ホ基、スルホニル基、スルフィニル基、スルフェニル基 などのイオウ含有基;ホスフィド基、ホスホリル基、チ オホスホリル基、ホスファト基などのリン含有基、ケイ 素含有基、ゲルマニウム含有基、またはスズ含有基を有 していてもよい。

【0046】これらのうち、特に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソプチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1~30、好ましくは1~20の直鎖状または分岐状のアルキル基:フェニ

ル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数 6  $\sim$  3 0、好ましくは 6  $\sim$  2 0 のアリール基; これらのアリール基にハロゲン原子、炭素原子数 1  $\sim$  3 0、好ましくは 1  $\sim$  2 0 のアルキル基またはアルコキシ基、炭素原子数 6  $\sim$  3 0、好ましくは 6  $\sim$  2 0 のアリール基またはアリーロキシ基などの置換基が 1  $\sim$  5 個置換した置換アリール基などが好ましい。

【0047】酸素含有基、窒素含有基、木ウ素含有基、イオウ含有基、リン含有基としては、上記例示したものと同様のものが挙げられる。ヘテロ環式化合物残基としては、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1~30、好ましくは1~20のアルキル基、アルコキシ基などの置換基がさらに置換した基などが挙げられる。

【0048】ケイ素含有基としては、シリル基、シロキ シ基、炭化水素置換シリル基、炭化水素置換シロキシ基 など、具体的には、メチルシリル基、ジメチルシリル 基、トリメチルシリル基、エチルシリル基、ジエチルシ リル基、トリエチルシリル基、ジフェニルメチルシリル 基、トリフェニルシリル基、ジメチルフェニルシリル 基、ジメチル-t-ブチルシリル基、ジメチル(ペンタフ ルオロフェニル)シリル基などが挙げられる。これらの 中では、メチルシリル基、ジメチルシリル基、トリメチ ルシリル基、エチルシリル基、ジエチルシリル基、トリ エチルシリル基、ジメチルフェニルシリル基、トリフェ ニルシリル基などが好ましい。特にトリメチルシリル 基、トリエチルシリル基、トリフェニルシリル基、ジメ チルフェニルシリル基が好ましい。炭化水素置換シロキ シ基として具体的には、トリメチルシロキシ基などが挙 げられる。

【0049】ゲルマニウム含有基およびスズ含有基としては、前記ケイ素含有基のケイ素をゲルマニウムおよびスズに置換したものが挙げられる。次に上記で説明したR<sup>2</sup>~R<sup>5</sup>の例について、より具体的に説明する。アルコキシ基として具体的には、メトキシ基、エトキシ基、ハープロポキシ基、イソプロポキシ基、ローブトキシ基、イソプトキシ基、 t-ブトキシ基などが挙げられる。

【0050】アルキルチオ基として具体的には、メチルチオ基、エチルチオ基等が挙げられる。アリーロキシ基として具体的には、フェノキシ基、2.6-ジメチルフェノキシ基、2.46-トリメチルフェノキシ基などが挙げられる。アリールチオ基として具体的には、フェニルチオ基、メチルフェニルチオ基、ナフチルチオ基等が挙げられる。

基、n-ヘキシル基などの炭素原子数  $1 \sim 3.0$ 、好ましく 【0.0.5.1】アシル基として具体的には、ホルミル基、は  $1 \sim 2.0$ の直鎖状または分岐状のアルキル基;フェニ 50 アセチル基、ベンゾイル基、p-クロロベンゾイル基、

p-メトキシベンゾイル基などが挙げられる。エステル基として具体的には、アセチルオキシ基、ベンゾイルオキシ基、メトキシカルボニル基、フェノキシカルボニル基、p-クロロフェノキシカルボニル基などが挙げられる

15

【0052】チオエステル基として具体的には、アセチルチオ基、ベンゾイルチオ基、メチルチオカルボニル基、フェニルチオカルボニル基などが挙げられる。アミド基として具体的には、アセトアミド基、N-メチルアセトアミド基として具体的には、アセトイミド基、ベンズイミド基などが挙げられる。 アミノ基として具体的には、ジメチルアミノ基、エチルメチルアミノ基、ジフェニルアミノ基などが挙げられる。

【0053】イミノ基として具体的には、メチルイミノ基、エチルイミノ基、プロピルイミノ基、ブチルイミノ基、フェニルイミノ基などが挙げられる。スルホンエステル基として具体的には、スルホン酸メチル基、スルホン酸エチル基、スルホン酸フェニル基などが挙げられる。スルホンアミド基として具体的には、フェニルスルホンアミド基、N-メチルーP-トルエンスルホンアミド基などが挙げられる。

【0054】本発明では、R<sup>6</sup>としては特に、イソプロピル、イソプチル、sec-ブチル、tert-ブチル、ネオペンチルなどの炭素原子数が3~30、好ましくは3~20の分岐状アルキル基、より好ましくはこれらの基の水素原子を炭素原子数が6~20のアリール基で置換した基であるフェニルエチル基、ジフェニルメチル基、クミル基、ジフェニルエチル基、トリフェニルメチル基、更にアダマンチル、シクロプロピル、シクロブチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペキシルなどの炭素原子数が3~30、好ましくは3~20の環状飽和炭化水素基から選ばれる基であることが好ましく、あるいはフェニル、ナフチル、フルオレニル、アントラニル、フェナントリルなどの炭素原子数6~30、好ましくは6~20のアリール基、または炭化水素置換シリル基であることも好ましい。

【0055】 $R^2 \sim R^6$  は、これらのうちの2個以上の基、好ましくは隣接する基が互いに連結して脂肪環、芳香環または、窒素原子などの異原子を含む炭化水素環を形成していてもよく、これらの環はさらに置換基を有していてもよい。また、mが2以上の場合には、 $R^2 \sim R^6$ で示される基のうち2個の基が連結されていてもよい。さらに、mが2以上の場合には $R^1$ 同士、 $R^2$ 同士、 $R^3$ 同士、 $R^4$ 同士、 $R^5$ 同士、 $R^5$ 同士、 $R^5$ 同士、 $R^5$ 0十二、 $R^5$ 10十二、 $R^$ 

【0056】nは、Mの価数を満たす数であり、具体的には0~5、好ましくは1~4、より好ましくは1~3 の整数である。Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素 50

含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。なお、nが2以上の場合には、互いに同一であっても、異なっていてもよい。

【0057】ハロゲン原子としては、フッ素、塩素、臭 素、ヨウ素が挙げられる。炭化水素基としては、前記R <sup>2</sup>~R<sup>6</sup>で例示したものと同様のものが挙げられる。具体 的には、メチル基、エチル基、プロピル基、ブチル基、 ヘキシル基、オクチル基、ノニル基、ドデシル基、アイ コシル基などのアルキル基;シクロペンチル基、シクロ ヘキシル基、ノルボルニル基、アダマンチル基などの炭 素原子数が3~30のシクロアルキル基;ビニル基、プ ロペニル基、シクロヘキセニル基などのアルケニル基; ベンジル基、フェニルエチル基、フェニルプロピル基な どのアリールアルキル基;フェニル基、トリル基、ジメ チルフェニル基、トリメチルフェニル基、エチルフェニ ル基、プロピルフェニル基、ピフェニル基、ナフチル 基、メチルナフチル基、アントリル基、フェナントリル 基などのアリール基などが挙げられるが、これらに限定 されるものではない。また、これらの炭化水素基には、 ハロゲン化炭化水素、具体的には炭素原子数1~20の 炭化水素基の少なくとも一つの水素がハロゲンに置換し た基も含まれる。

【0058】これらのうち、炭素原子数が1~20のものが好ましい。ヘテロ環式化合物残基としては、前記R'~R'で例示したものと同様のものが挙げられる。酸素含有基としては、前記R'~R'で例示したものと同様のものが挙げられ、具体的には、ヒドロキシ基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコシキ基;フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基などのアリーロキシ基;フェニルメトキシ基、フェニルエトキシ基などのアリールアルコキシ基;アセトキシ基;カルボニル基などが挙げられるが、これらに限定されるものではない。

【0059】イオウ含有基としては、前記 R<sup>2</sup> ~ R<sup>6</sup>で例示したものと同様のものが挙げられ、具体的には、メチルスルフォネート基、トリフルオロメタンスルフォネート基、フェニルスルフォネート基、ベンジルスルフォネート基、p-トルエンスルフォネート基、トリメチルベンゼンスルフォネート基、トリイソブチルベンゼンスルフォネート基、ベンタフルオロベンゼンスルフォネート基などのスルフィネート基、ベンジルスルフィネート基、フェニルスルフィネート基、ベンジルスルフィネート基、ワートルエンスルフィネート基、トリメチルベンゼンスルフィネート基などのスルフィネート基;アルキルチオ基;アリールチオ基などが挙げられるが、これらに限定されるものではない。

【0060】窒素含有基として具体的には、前記R'~

17

R<sup>5</sup>で例示したものと同様のものが挙げられ、具体的には、アミノ基;メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジシクロヘキシルアミノ基などのアルキルアミノ基;フェニルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジナフチルアミノ基、メチルフェニルアミノ基などのアリールアミノ基またはアルキルアリールアミノ基などが挙げられるが、これらに限定されるものではない。

【0061】ホウ素含有基として具体的には、BR(Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられる。リン含有基として具体的には、トリメチルホスフィン基、トリブチルホスフィン基、トリシクロヘキシルホスフィン基などのトリアルキルホスフィン基まどのトリアリールホスフィン基;メチルホスファイト基、エチルホスファイト基、フェニルホスファイト基などのホスファイト基(ホスフィド基);ホスホン酸基;ホスフィン酸基などが挙げられるが、これらに限定されるものではない。

【0062】ケイ素含有基として具体的には、前記R<sup>2</sup> ~R<sup>6</sup>で例示したものと同様のものが挙げられ、具体的には、フェニルシリル基、ジフェニルシリル基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、トリナフチルシリル基、トリトリルシリル基、トリナフチルシリル基などの炭化水素置換シリル基;トリメチルシリルエーテル基などの炭化水素置換シリルエーテル基;トリメチルシリルメチル基などのケイ素置換アルキル基;トリメチルシリルフェニル基などの30ケイ素置換アリール基などが挙げられる。

【0063】ゲルマニウム含有基として具体的には、前記 $R^2 \sim R^6$ で例示したものと同様のものが挙げられ、具体的には、前記ケイ素含有基のケイ素をゲルマニウムに置換した基が挙げられる。スズ含有基として具体的には、前記 $R^2 \sim R^6$ で例示したものと同様のものが挙げられ、より具体的には、前記ケイ素含有基のケイ素をスズに置換した基が挙げられる。

【0064】ハロゲン含有基として具体的には、PF。、BF、などのフッ素含有基、CIO、、SbCl。などの塩素含有基、IO、などのヨウ素含有基が挙げられるが、これらに限定されるものではない。アルミニウム含有基として具体的には、AIR。(Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられるが、これらに限定されるものではない。

成する(A)遷移金属化合物は、下記一般式(II)で表される化合物である。

[0066]

【化8】

$$\begin{array}{c|c}
R^1 \\
R^2 \\
N \\
R^3 \\
R^6 \\
R^5
\end{array}$$
(II)

【0067】(なお、ここでN……Mは、一般的には配位していることを示すが、本発明においては配位していてもしていなくてもよい。)

一般式(II) 中、Mは周期律表第4~5族の遷移金属を示し、具体的にはチタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタルであり、好ましくは4族の金属原子であり、具体的にはチタン、ジルコニウム、20 ハフニウムであり、より好ましくはジルコニウムである。

【0068】mは1~4の整数を示し、好ましくは1~2であり、特に好ましくは2である。R'は、1つまたは複数の置換基を有していてもよい3~5員環の脂環式炭化水素基を示す。脂環式炭化水素基として具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基が挙げられる。

【0069】R¹の置換基としては特に制限はないが、水素原子、ハロゲン原子、炭化水素基、炭化水素置換シリル基、炭化水素置換シロキシ基、酸素含有基、イオウ含有基、窒素含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基から選ばれる基であるか、それらの基を含有する炭化水素基または炭化水素置換シリル基が挙げられる。

【0070】上記R'に有していても良い置換基として、具体的には、水素原子、メチル基、エチル基、プロビル基、メトキシメチル基、エトキシメチル基、ブトキシメチル基、フェノキシメチル基、エトキシエチル基、ジメチルアミノメチル基、ニトロメチル基、ニトロエチル基、シアノメチル基、シアノエチル基、トリメチルシリル基、トリエチルシリル基、などが挙げられる。

【0071】上記R'の置換基を2つ以上有する3~5 員環の脂環式炭化水素基においては、2つ以上の置換基 の位置に特に制限はない。R'~R'は、互いに同一でも 異なっていてもよく、水素原子、ハロゲン原子、炭化水 素基、ヘテロ環式化合物残基、酸素含有基、窒素含有 基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素 含有基、ゲルマニウム含有基、またはスズ含有基を示 し、これらのうちの2個以上が互いに連結して環を形成 していてもよく、また、mが2以上の場合にはR<sup>2</sup>~R<sup>5</sup>で示される基のうち2個の基が連結されていてもよく、 ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が 挙げられる。

【0072】炭化水素基として具体的には、メチル基、 エチル基、n-プロピル基、イソプロピル基、n-ブチル 基、イソブチル基、sec-ブチル基、 t-ブチル基、ネオ ペンチル基、n-ヘキシル基などの炭素原子数が1~3 0、好ましくは1~20の直鎖状または分岐状のアルキ ル基:ビニル基、アリル基、イソプロペニル基などの炭 10 素原子数が2~30、好ましくは2~20の直鎖状また は分岐状のアルケニル基:エチニル基、プロパルギル基 など炭素原子数が2~30、好ましくは2~20の直鎖 状または分岐状のアルキニル基;シクロプロピル基、シ クロブチル基、シクロペンチル基、シクロヘキシル基、・ アダマンチル基などの炭素原子数が3~30、好ましく は3~20の環状飽和炭化水素基;シクロペンタジエニ ル基、インデニル基、フルオレニル基などの炭素数5~ 30の環状不飽和炭化水素基;フェニル基、ベンジル 基、ナフチル基、ビフェニル基、ターフェニル基、フェ 20 ナントリル基、アントラセニル基などの炭素原子数が6 ~30、好ましくは6~20のアリール基;トリル基、 イソプロピルフェニル基、t-ブチルフェニル基、ジメチ ルフェニル基、ジ-t-プチルフェニル基などのアルキル 置換アリール基などが挙げられる。

【0073】上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル基、ペンタフルオロフェニル基、クロロフェニル基などの炭素原子数1~30、好ましくは1~20のハロゲン化炭化水素基が挙げられる。また、上記炭化水素基は、他の炭化水素基で置換されていてもよく、たとえば、ベンジル基、クミル基などのアリール基置換アルキル基などが挙げられる。

【0074】さらにまた、上記炭化水素基は、ヘテロ環 式化合物残基;アルコシキ基、アリーロキシ基、エステ ル基、エーテル基、アシル基、カルボキシル基、カルボ ナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無 水物基などの酸素含有基; アミノ基、イミノ基、アミド 基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ 基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エ 40 ステル基、アミジノ基、ジアゾ基、アミノ基がアンモニ ウム塩となったものなどの窒素含有基;ボランジイル 基、ボラントリイル基、ジボラニル基などのホウ素含有 基:メルカプト基、チオエステル基、ジチオエステル 基、アルキルチオ基、アリールチオ基、チオアシル基、 チオエーテル基、チオシアン酸エステル基、イソチアン 酸エステル基、スルホンエステル基、スルホンアミド 基、チオカルボキシル基、ジチオカルボキシル基、スル 木基、スルホニル基、スルフィニル基、スルフェニル基 などのイオウ含有基;ホスフィド基、ホスホリル基、チ 50

オホスホリル基、ホスファト基などのリン含有基、ケイ 素含有基、ゲルマニウム含有基、またはスズ含有基を有 していてもよい。

【0075】これらのうち、特に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1~30、好ましくは1~20の直鎖状または分岐状のアルキル基;フェニル基、ナフチル基、ピフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数6~30、好ましくは6~20のアリール基;これらのアリール基にハロゲン原子、炭素原子数1~30、好ましくは1~20のアルキル基またはアルコキシ基、炭素原子数6~30、好ましくは6~20のアリール基またはアリーロキシ基などの置換基が1~5個置換した置換アリール基などが好ましい。

【0076】酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基としては、上記例示したものと同様のものが挙げられる。ヘテロ環式化合物残基としては、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1~30、好ましくは1~20のアルキル基、アルコキシ基などの置換基がさらに置換した基などが挙げられる。

【0077】ケイ素含有基としては、シリル基、シロキ シ基、炭化水素置換シリル基、炭化水素置換シロキシ基 など、具体的には、メチルシリル基、ジメチルシリル 基、トリメチルシリル基、エチルシリル基、ジエチルシ リル基、トリエチルシリル基、ジフェニルメチルシリル 基、トリフェニルシリル基、ジメチルフェニルシリル 基、ジメチル-t-ブチルシリル基、ジメチル(ペンタフ ルオロフェニル)シリル基などが挙げられる。これらの 中では、メチルシリル基、ジメチルシリル基、トリメチ ルシリル基、エチルシリル基、ジエチルシリル基、トリ エチルシリル基、ジメチルフェニルシリル基、トリフェ ニルシリル基などが好ましい。特にトリメチルシリル 基、トリエチルシリル基、トリフェニルシリル基、ジメ チルフェニルシリル基が好ましい。炭化水素置換シロキ シ基として具体的には、トリメチルシロキシなどが挙げ られる。

【0078】ゲルマニウム含有基およびスズ含有基としては、前記ケイ素含有基のケイ素をゲルマニウムおよびスズに置換したものが挙げられる。次に上記で説明したR'~R'の例について、より具体的に説明する。アルコキシ基として具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソプトキシ基、 t-ブトキシ基などが挙げられる。

【0079】アルキルチオ基として具体的には、メチル

チオ基、エチルチオ基等が挙げられる。アリーロキシ基として具体的には、フェノキシ基、2.6-ジメチルフェノキシ基、2.4.6-トリメチルフェノキシ基などが挙げられる。アリールチオ基として具体的には、フェニルチオ基、メチルフェニルチオ基、ナフチルチオ基等が挙げられる。

【0080】アシル基として具体的には、ホルミル基、アセチル基、ベンゾイル基、p-クロロベンゾイル基、p-メトキシベンゾイル基などが挙げられる。エステル基として具体的には、アセチルオキシ基、ベンゾイルオキ 10シ基、メトキシカルボニル基、フェノキシカルボニル基、p-クロロフェノキシカルボニル基などが挙げられる。

【0081】チオエステル基として具体的には、アセチルチオ基、ベンゾイルチオ基、メチルチオカルボニル基、フェニルチオカルボニル基などが挙げられる。アミド基として具体的には、アセトアミド基、N-メチルアセトアミド基、N-メチルベンズアミド基などが挙げられる。イミド基として具体的には、アセトイミド基、ベンズイミド基などが挙げられる。

【0082】アミノ基として具体的には、ジメチルアミノ基、エチルメチルアミノ基、ジフェニルアミノ基などが挙げられる。イミノ基として具体的には、メチルイミノ基、エチルイミノ基、プロピルイミノ基、ブチルイミノ基、フェニルイミノ基などが挙げられる。スルホンエステル基として具体的には、スルホン酸メチル基、スルホン酸エチル基、スルホン酸フェニル基などが挙げられる。

【0083】スルホンアミド基として具体的には、フェ ニルスルホンアミド基、N-メチルスルホンアミド基、N-メチル-p-トルエンスルホンアミド基などが挙げられ る。本発明では、R<sup>f</sup>としては特に、イソプロピル、イ ソブチル、sec-ブチル、tert-ブチル、ネオペンチルな どの炭素原子数が3~30、好ましくは3~20の分岐 状アルキル基、より好ましくはこれらの基の水素原子を 炭素原子数が6~20のアリール基で置換した基である フェニルエチル基、ジフェニルメチル基、クミル基、ジ フェニルエチル基、トリフェニルメチル基、更にアダマ ンチル、シクロプロピル、シクロブチル、シクロペンチ ル、シクロヘキシルなどの炭素原子数が3~30、好ま 40 しくは3~20の環状飽和炭化水素基から選ばれる基で あることが好ましく、あるいはフェニル、ナフチル、フ ルオレニル、アントラニル、フェナントリルなどの炭素 原子数6~30、好ましくは6~20のアリール基、ま たは炭化水素置換シリル基であることも好ましい。

【0084】R<sup>2</sup>~R<sup>5</sup> は、これらのうちの2個以上の基、好ましくは隣接する基が互いに連結して脂肪環、芳香環または、窒素原子などの異原子を含む炭化水素環を形成していてもよく、これらの環はさらに置換基を有していてもよい。また、mが2以上の場合には、R<sup>2</sup>~R<sup>5</sup>

で示される基のうち 2 個の基が連結されていてもよい。 さらに、mが 2 以上の場合には  $R^1$  同士、  $R^2$  同士、  $R^3$  同士、  $R^4$  同士は、互いに同一でも 異なっていてもよい。

【0085】nは、Mの価数を満たす数であり、具体的には0~5、好ましくは1~4、より好ましくは1~3の整数である。Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。なお、nが2以上の場合には、互いに同一であっても、異なっていてもよい。

【0086】ハロゲン原子としては、フッ素、塩素、臭 素、ヨウ素が挙げられる。炭化水素基としては、前記R ~ R で例示したものと同様のものが挙げられる。具体 的には、メチル基、エチル基、プロピル基、ブチル基、 ヘキシル基、オクチル基、ノニル基、ドデシル基、アイ コシル基などのアルキル基;シクロペンチル基、シクロ 20 ヘキシル基、ノルボルニル基、アダマンチル基などの炭 素原子数が3~30のシクロアルキル基;ビニル基、プ ロペニル基、シクロヘキセニル基などのアルケニル基; ベンジル基、フェニルエチル基、フェニルプロピル基な どのアリールアルキル基;フェニル基、トリル基、ジメ チルフェニル基、トリメチルフェニル基、エチルフェニ ル基、プロピルフェニル基、ビフェニル基、ナフチル 基、メチルナフチル基、アントリル基、フェナントリル 基などのアリール基などが挙げられるが、これらに限定 されるものではない。また、これらの炭化水素基には、 30 ハロゲン化炭化水素、具体的には炭素原子数1~20の 炭化水素基の少なくとも一つの水素がハロゲンに置換し た基も含まれる。

【0087】これらのうち、炭素原子数が1~20のものが好ましい。ヘテロ環式化合物残基としては、前記R'~R'で例示したものと同様のものが挙げられる。酸素合有基としては、前記R'~R'で例示したものと同様のものが挙げられ、具体的には、ヒドロキシ基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコシキ基;フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基などのアリーロキシ基;フェニルメトキシ基、フェニルエトキシ基などのアリールアルコキシ基;アセトキシ基;カルボニル基などが挙げられるが、これらに限定されるものではない。

【0088】イオウ含有基としては、前記 R<sup>2</sup> ~ R<sup>5</sup> で例示したものと同様のものが挙げられ、具体的には、メチルスルフォネート基、トリフルオロメタンスルフォネート基、フェニルスルフォネート基、ベンジルスルフォネート基、p-トルエンスルフォネート基、トリメチルベンゼンスルフォネート基、p-クロルベンゼンスルフォネート基、ペン

タフルオロベンゼンスルフォネート基などのスルフォネ ート基;メチルスルフィネート基、フェニルスルフィネ ート基、ベンジルスルフィネート基、p-トルエンスルフ ィネート基、トリメチルベンゼンスルフィネート基、ペ ンタフルオロベンゼンスルフィネート基などのスルフィ ネート基:アルキルチオ基:アリールチオ基などが挙げ られるが、これらに限定されるものではない。

23

【0089】窒素含有基として具体的には、前記R'~ R<sup>6</sup>で例示したものと同様のものが挙げられ、具体的に は、アミノ基;メチルアミノ基、ジメチルアミノ基、ジ 10 エチルアミノ基、ジプロピルアミノ基、ジブチルアミノ 基、ジシクロヘキシルアミノ基などのアルキルアミノ 基;フェニルアミノ基、ジフェニルアミノ基、ジトリル アミノ基、ジナフチルアミノ基、メチルフェニルアミノ 基などのアリールアミノ基またはアルキルアリールアミ ノ基などが挙げられるが、これらに限定されるものでは ない。

【0090】ホウ素含有基として具体的には、BR 、(Rは水素、アルキル基、置換基を有してもよいアリ ール基、ハロゲン原子等を示す)が挙げられる。リン含 20 有基として具体的には、トリメチルホスフィン基、トリ ブチルホスフィン基、トリシクロヘキシルホスフィン基 などのトリアルキルホスフィン基;トリフェニルホスフ ィン基、トリトリルホスフィン基などのトリアリールホ スフィン基;メチルホスファイト基、エチルホスファイ ト基、フェニルホスファイト基などのホスファイト基 (ホスフィド基);ホスホン酸基;ホスフィン酸基など が挙げられるが、これらに限定されるものではない。 【0091】ケイ素含有基として具体的には、前記R<sup>2</sup> ~R<sup>6</sup>で例示したものと同様のものが挙げられ、具体的 には、フェニルシリル基、ジフェニルシリル基、トリメ チルシリル基、トリエチルシリル基、トリプロピルシリ ル基、トリシクロヘキシルシリル基、トリフェニルシリ ル基、メチルジフェニルシリル基、トリトリルシリル 基、トリナフチルシリル基などの炭化水素置換シリル 基;トリメチルシリルエーテル基などの炭化水素置換シ リルエーテル基;トリメチルシリルメチルなどのケイ素 置換アルキル基;トリメチルシリルフェニル基などのケ イ素置換アリール基などが挙げられる。

【0092】ゲルマニウム含有基として具体的には、前 40 記R'~R'で例示したものと同様のものが挙げられ、具 体的には、前記ケイ素含有基のケイ素をゲルマニウムに 置換した基が挙げられる。スズ含有基として具体的に は、前記R<sup>1</sup>~R<sup>6</sup>で例示したものと同様のものが挙げら れ、より具体的には、前記ケイ素含有基のケイ素をスズ に置換した基が挙げられる。

【0093】ハロゲン含有基として具体的には、P F<sub>6</sub>、BF<sub>6</sub>などのフッ素含有基、CIO<sub>6</sub>、SbCI<sub>6</sub>など の塩素含有基、IO、などのヨウ素含有基が挙げられる が、これらに限定されるものではない。アルミニウム含 50 有基として具体的には、AIR、(Rは水素、アルキル 基、置換基を有してもよいアリール基、ハロゲン原子等 を示す)が挙げられるが、これらに限定されるものでは

【0094】なお、nが2以上の場合は、Xで示される 複数の基は互いに同一でも異なっていてもよく、またX で示される複数の基は互いに結合して環を形成してもよ い。本発明に係る第三のオレフィン重合用触媒を構成す る(A)遷移金属化合物は、下記一般式(III)で表さ れる化合物である。

[0095]

【化9】

30

$$\begin{array}{c|c}
R^{1} \\
R^{2} \\
N \\
N \\
N \\
N \\
MXn
\end{array}$$
(III)

【0096】(なお、ここでN……Mは、一般的には配 位していることを示すが、本発明においては配位してい てもしていなくてもよい。)

一般式(III)中、Mは周期律表第4~5族の遷移金属 を示し、具体的にはチタン、ジルコニウム、ハフニウ ム、バナジウム、ニオブ、タンタルであり、好ましくは 4族の金属原子であり、具体的にはチタン、ジルコニウ ム、ハフニウムであり、より好ましくはジルコニウムで ある。

【0097】mは1~4の整数を示し、好ましくは1~ 2であり、特に好ましくは2である。R¹は、1つまた は複数の置換基を有していてもよい炭素数4~20の1 つ以上の炭素を共有する2環性脂肪族炭化水素基であ り、2環性脂肪族炭化水素基として具体的には、スピロ . [2. 2] ペンタン、スピロ [2. 3] ヘキサン、スピロ [2. 4] へ プタン、スピロ[2.5]オクタン、スピロ[3.3]ヘプタン、 スピロ[3.4]オクタン、スピロ[3.5]ノナン、スピロ[4. 4] ノナン、スピロ[4.5] デカン、スピロ[5.5] ウンデカ ン、ビシクロ[1.1.0]プタン、ビシクロ[2.1.0]ペンタ ン、ビシクロ[2.2.0] ヘキサン、ビシクロ[3.1.0] ヘキサ ン、ビシクロ[3. 2. 0] ヘプタン、ビシクロ[3. 3. 0] オクタ ン、ビシクロ[4.1.0]ヘプタン、ビシクロ[4.2.0]オクタ ン、ビシクロ[4.3.0]ノナン、ビシクロ[4.4.0]デカン、 ピシクロ[1.1.1]ペンタン、ビシクロ[2.1.1]ヘキサン、 ピシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2.]オクタ ン、ビシクロ[3.1.1]ヘプタン、ビシクロ[3.2.1]オクタ ン、ビシクロ[3.2.2]ノナン、ビシクロ[3.3.1]ノナン、 ビシクロ[3.3.2]デカン、ビシクロ[3.3.3]ウンデカン、 などが挙げられる。

【0098】好ましくは、R'は、1つまたは複数の置

換基を有していてもよい炭素数4~20の2つの炭素を 共有する2環性脂肪族炭化水素基であり、2環性脂肪族 炭化水素基として具体的には、ビシクロ[1.1.0]プタ ン、ビシクロ[2.1.0]ペンタン、ビシクロ[2.2.0]ヘキサ ン、ビシクロ[3.1.0] ヘキサン、ビシクロ[3.2.0] ヘプタ ン、ビシクロ[3.3.0]オクタン、ビシクロ[4.1.0]ヘプタ ン、ビシクロ[4.2.0]オクタン、ビシクロ[4.3.0]ノナ ン、ビシクロ[4.4.0] デカン、ビシクロ[1.1.1] ペンタ ン、ビシクロ[2.1.1] ヘキサン、ビシクロ[2.2.1] ヘプタ ン、ビシクロ[2.2.2.]オクタン、ビシクロ[3.1.1]ヘプ タン、ビシクロ[3.2.1]オクタン、ビシクロ[3.2.2]ノナ ン、ビシクロ[3.3.1] ノナン、ビシクロ[3.3.2] デカン、 ビシクロ[3.3.3]ウンデカン、などが挙げられる。

【0099】より好ましくは、R1は、1つまたは複数 の置換基を有していてもよい炭素数5~20の2つの炭 素を共有する橋かけ2環性脂肪族炭化水素基であり、2 環性脂肪族炭化水素基として具体的には、ビシクロ[1. 1.1] ペンタン、ビシクロ[2.1.1] ヘキサン、ビシクロ[2. 2.1] ヘプタン、ビシクロ[2.2.2.] オクタン、ビシクロ [3. 2. 2] ノナン、ビシクロ[3. 3. 1] ノナン、ビシクロ[3. 3. 2] デカン、ビシクロ[3. 3. 3] ウンデカン、などが挙げ られる。

【0100】特に好ましくは、R'は、1つまたは複数 の置換基を有していてもよいビシクロ[2.2.1]ヘプタン である。R¹の置換基としては特に制限はないが、水素 原子、ハロゲン原子、炭化水素基、炭化水素置換シリル 基、炭化水素置換シロキシ基、酸素含有基、イオウ含有 基、窒素含有基、リン含有基、ハロゲン含有基、ヘテロ 環式化合物残基から選ばれる基であるか、それらの基を 含有する炭化水素基または炭化水素置換シリル基が挙げ られる。

【0101】上記R1に有していても良い置換基とし て、具体的には、水素原子、メチル基、エチル基、プロ ピル基、メトキシメチル基、エトキシメチル基、ブトキ シメチル基、フェノキシメチル基、エトキシエチル基、 ジメチルアミノメチル基、ジメチルアミノエチル基、ニ トロメチル基、ニトロエチル基、シアノメチル基、シア ノエチル基、トリメチルシリル基、トリエチルシリル 基、などが挙げられる。

【0102】上記R1の置換基を2つ以上有する2環性 炭化水素基においては、2つ以上の置換基の位置に特に 制限はない。R'~R'は、互いに同一でも異なっていて もよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ 環式化合物残基、酸素含有基、窒素含有基、ホウ素含有 基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマ ニウム含有基、またはスズ含有基を示し、これらのうち の2個以上が互いに連結して環を形成していてもよく、 また、mが2以上の場合にはR'~R'で示される基のう ち2個の基が連結されていてもよく、ハロゲン原子とし 50 していてもよい。

ては、フッ素、塩素、臭素、ヨウ素が挙げられる。 【0103】炭化水素基として具体的には、メチル基、 エチル基、n-プロピル基、イソプロピル基、n-ブチル 基、イソプチル基、sec-ブチル基、 t-ブチル基、ネオ ペンチル基、n-ヘキシル基などの炭素原子数が1~3 0、好ましくは1~20の直鎖状または分岐状のアルキ ル基;ビニル基、アリル基、イソプロペニル基などの炭 素原子数が2~30、好ましくは2~20の直鎖状また は分岐状のアルケニル基;エチニル基、プロパルギル基 10 など炭素原子数が2~30、好ましくは2~20の直鎖 状または分岐状のアルキニル基;シクロプロピル基、シ クロブチル基、シクロペンチル基、シクロヘキシル基、 アダマンチル基などの炭素原子数が3~30、好ましく は3~20の環状飽和炭化水素基;シクロペンタジエニ ル基、インデニル基、フルオレニル基などの炭素数5~ 30の環状不飽和炭化水素基;フェニル基、ナフチル 基、ビフェニル基、ターフェニル基、フェナントリル 基、アントラセニル基などの炭素原子数が6~30、好 ましくは6~20のアリール基;トリル基、イソプロピ [3. 1. 1] ヘプタン、ビシクロ[3. 2. 1] オクタン、ビシクロ 20 ルフェニル基、t-ブチルフェニル基、ジメチルフェニル 基、ジ-t-ブチルフェニル基などのアルキル置換アリー ル基などが挙げられる。

> 【0104】上記炭化水素基は、水素原子がハロゲンで 置換されていてもよく、たとえば、トリフルオロメチル 基、ペンタフルオロフェニル基、クロロフェニル基など の炭素原子数1~30、好ましくは1~20のハロゲン 化炭化水素基が挙げられる。また、上記炭化水素基は、 他の炭化水素基で置換されていてもよく、たとえば、ベ ンジル基、クミルなどのアリール基置換アルキル基など が挙げられる。

> 【0105】さらにまた、上記炭化水素基は、ヘテロ環 式化合物残基;アルコシキ基、アリーロキシ基、エステ ル基、エーテル基、アシル基、カルボキシル基、カルボ ナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無 水物基などの酸素含有基:アミノ基、イミノ基、アミド 基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ 基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エ ステル基、アミジノ基、ジアゾ基、アミノ基がアンモニ ウム塩となったものなどの窒素含有基; ボランジイル 基、ボラントリイル基、ジボラニル基などのホウ素含有 基;メルカプト基、チオエステル基、ジチオエステル 基、アルキルチオ基、アリールチオ基、チオアシル基、 チオエーテル基、チオシアン酸エステル基、イソチアン 酸エステル基、スルホンエステル基、スルホンアミド 基、チオカルボキシル基、ジチオカルボキシル基、スル 木基、スルホニル基、スルフィニル基、スルフェニル基 などのイオウ含有基;ホスフィド基、ホスホリル基、チ オホスホリル基、ホスファト基などのリン含有基、ケイ 索含有基、ゲルマニウム含有基、またはスズ含有基を有

【0106】これらのうち、特に、メチル基、エチル 基、n-プロピル基、イソプロピル基、n-ブチル基、イソ ブチル基、sec-ブチル基、t-ブチル基、ネオペンチル 基、n-ヘキシル基などの炭素原子数1~30、好ましく は1~20の直鎖状または分岐状のアルキル基;フェニ ル基、ナフチル基、ビフェニル基、ターフェニル基、フ ェナントリル基、アントラセニル基などの炭素原子数6 ~30、好ましくは6~20のアリール基;これらのア リール基にハロゲン原子、炭素原子数1~30、好まし くは1~20のアルキル基またはアルコキシ基、炭素原 10 る。 子数6~30、好ましくは6~20のアリール基または アリーロキシ基などの置換基が1~5個置換した置換ア リール基などが好ましい。

【0107】酸素含有基、窒素含有基、ホウ素含有基、 イオウ含有基、リン含有基としては、上記例示したもの と同様のものが挙げられる。ヘテロ環式化合物残基とし ては、ピロール、ピリジン、ピリミジン、キノリン、ト リアジンなどの含窒素化合物、フラン、ピランなどの含 酸素化合物、チオフェンなどの含硫黄化合物などの残 が1~30、好ましくは1~20のアルキル基、アルコ キシ基などの置換基がさらに置換した基などが挙げられ

【0108】ケイ素含有基としては、シリル基、シロキ シ基、炭化水素置換シリル基、炭化水素置換シロキシ基 など、具体的には、メチルシリル基、ジメチルシリル 基、トリメチルシリル基、エチルシリル基、ジエチルシ リル基、トリエチルシリル基、ジフェニルメチルシリル 基、トリフェニルシリル基、ジメチルフェニルシリル 基、ジメチル-t-プチルシリル基、ジメチル(ペンタフ ルオロフェニル)シリル基などが挙げられる。これらの 中では、メチルシリル基、ジメチルシリル基、トリメチ ルシリル基、エチルシリル基、ジエチルシリル基、トリ エチルシリル基、ジメチルフェニルシリル基、トリフェ ニルシリル基などが好ましい。特にトリメチルシリル 基、トリエチルシリル基、トリフェニルシリル基、ジメ チルフェニルシリル基が好ましい。炭化水素置換シロキ シ基として具体的には、トリメチルシロキシ基などが挙 げられる。

【0109】ゲルマニウム含有基およびスズ含有基とし 40 ては、前記ケイ素含有基のケイ素をゲルマニウムおよび スズに置換したものが挙げられる。次に上記で説明した R'~R'の例について、より具体的に説明する。アルコ キシ基として具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソ ブトキシ基、 t-ブトキシ基などが挙げられる。

【0110】アルキルチオ基として具体的には、メチル チオ基、エチルチオ基等が挙げられる。アリーロキシ基 として具体的には、フェノキシ基、2,6-ジメチルフェノ

る。アリールチオ基として具体的には、フェニルチオ 基、メチルフェニルチオ基、ナフチルチオ基等が挙げら れる。

【0111】アシル基として具体的には、ホルミル基、 アセチル基、ベンゾイル基、p-クロロベンゾイル基、 p-メトキシベンゾイル基などが挙げられる。エステル基 として具体的には、アセチルオキシ基、ベンゾイルオキ シ基、メトキシカルボニル基、フェノキシカルボニル 基、p-クロロフェノキシカルボニル基などが挙げられ

【0112】チオエステル基として具体的には、アセチ ルチオ基、ベンゾイルチオ基、メチルチオカルボニル 基、フェニルチオカルボニル基などが挙げられる。アミ ド基として具体的には、アセトアミド基、N-メチルアセ トアミド基、N-メチルベンズアミド基などが挙げられ る。イミド基として具体的には、アセトイミド基、ベン ズイミド基などが挙げられる。

【0113】アミノ基として具体的には、ジメチルアミ ノ基、エチルメチルアミノ基、ジフェニルアミノ基など 基、およびこれらのヘテロ環式化合物残基に炭素原子数 20 が挙げられる。イミノ基として具体的には、メチルイミ ノ基、エチルイミノ基、プロピルイミノ基、ブチルイミ ノ基、フェニルイミノ基などが挙げられる。スルホンエ ステル基として具体的には、スルホン酸メチル基、スル ホン酸エチル基、スルホン酸フェニル基などが挙げられて る。

> 【0114】スルホンアミド基として具体的には、フェ ニルスルホンアミド基、N-メチルスルホンアミド基、N-メチル-p-トルエンスルホンアミド基などが挙げられ る。R'~R'は、これらのうちの2個以上の基、好ま しくは隣接する基が互いに連結して脂肪環、芳香環また は、窒素原子などの異原子を含む炭化水素環を形成して いてもよく、これらの環はさらに置換基を有していても よい。

【0115】また、mが2以上の場合には、R'~R'で 示される基のうち2個の基が連結されていてもよい。さ らに、mが2以上の場合にはR<sup>1</sup>同士、R<sup>2</sup>同士、R<sup>3</sup>同 士、R'同士、R'同士、R'同士は、互いに同一でも異 なっていてもよい。nは、Mの価数を満たす数であり、 具体的には0~5、好ましくは1~4、より好ましくは 1~3の整数である。

【0116】Xは、水素原子、ハロゲン原子、炭化水素 基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含 有基、アルミニウム含有基、リン含有基、ハロゲン含有 基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウ ム含有基、またはスズ含有基を示す。なお、nが2以上 の場合には、互いに同一であっても、異なっていてもよ い。

【0117】ハロゲン原子としては、フッ素、塩素、臭 素、ヨウ素が挙げられる。炭化水素基としては、前記R キシ基、2,4,6-トリメチルフェノキシ基などが挙げられ 50 '~R'で例示したものと同様のものが挙げられる。具体

的には、メチル基、エチル基、プロピル基、ブチル基、 ヘキシル基、オクチル基、ノニル基、ドデシル基、アイ コシル基などのアルキル基:シクロペンチル基、シクロ ヘキシル基、ノルボルニル基、アダマンチル基などの炭 素原子数が3~30のシクロアルキル基;ビニル基、プ ロペニル基、シクロヘキセニル基などのアルケニル基; ベンジル基、フェニルエチル基、フェニルプロピル基な どのアリールアルキル基;フェニル基、トリル基、ジメ チルフェニル基、トリメチルフェニル基、エチルフェニ ル基、プロピルフェニル基、ビフェニル基、ナフチル 基、メチルナフチル基、アントリル基、フェナントリル 基などのアリール基などが挙げられるが、これらに限定 されるものではない。また、これらの炭化水素基には、 ハロゲン化炭化水素、具体的には炭素原子数1~20の 炭化水素基の少なくとも一つの水素がハロゲンに置換し た基も含まれる。

【0118】これらのうち、炭素原子数が1~20のものが好ましい。ヘテロ環式化合物残基としては、前記R'~R'で例示したものと同様のものが挙げられる。酸素含有基としては、前記R'~R'で例示したものと同様のものが挙げられ、具体的には、ヒドロキシ基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコシキ基;フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基などのアリーロキシ基;フェニルメトキシ基、フェニルエトキシ基などのアリールアルコキシ基;アセトキシ基;カルボニル基などが挙げられるが、これらに限定されるものではない。

【0119】イオウ含有基としては、前記 R<sup>2</sup> ~ R<sup>6</sup> で例示したものと同様のものが挙げられ、具体的には、メチルスルフォネート基、トリフルオロメタンスルフォネー 30 ト基、フェニルスルフォネート基、ベンジルスルフォネート基、p-トルエンスルフォネート基、トリイソブチルベンゼンスルフォネート基、ペンタフルオロベンゼンスルフォネート基などのスルフォネート基;メチルスルフィネート基、フェニルスルフィネート基、ベンジルスルフィネート基、ロートルエンスルフィネート基、ドリメチルベンゼンスルフィネート基、ベンジルスルフィネート基、ロートルエンスルフィネート基、ドリメチルベンゼンスルフィネート基、ペンタフルオロベンゼンスルフィネート基などのスルフィネート基;アルキルチオ基;アリールチオ基などが挙げ 40 られるが、これらに限定されるものではない。

【0120】窒素含有基として具体的には、前記 R<sup>2</sup>~R<sup>3</sup>で例示したものと同様のものが挙げられ、具体的には、アミノ基;メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジシクロヘキシルアミノ基などのアルキルアミノ基;フェニルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジナフチルアミノ基、メチルフェニルアミノ

基などのアリールアミノ基またはアルキルアリールアミノ基などが挙げられるが、これらに限定されるものではない。

【0121】ホウ素含有基として具体的には、BR 、(Rは水素、アルキル基、置換基を有してもよいアリ ール基、ハロゲン原子等を示す)が挙げられる。リン含 有基として具体的には、トリメチルホスフィン基、トリ ブチルホスフィン基、トリシクロヘキシルホスフィン基 などのトリアルキルホスフィン基;トリフェニルホスフ 10. ィン基、トリトリルホスフィン基などのトリアリールホ スフィン基;メチルホスファイト基、エチルホスファイ ト基、フェニルホスファイト基などのホスファイト基 (ホスフィド基);ホスホン酸基;ホスフィン酸基など が挙げられるが、これらに限定されるものではない。 【0122】ケイ素含有基として具体的には、前記R<sup>2</sup> ~ R<sup>6</sup> で例示したものと同様のものが挙げられ、具体的 には、フェニルシリル基、ジフェニルシリル基、トリメ チルシリル基、トリエチルシリル基、トリプロピルシリ ル基、トリシクロヘキシルシリル基、トリフェニルシリ 20 ル基、メチルジフェニルシリル基、トリトリルシリル 基、トリナフチルシリル基などの炭化水素置換シリル 基;トリメチルシリルエーテル基などの炭化水素置換シ リルエーテル基;トリメチルシリルメチル基などのケイ 素置換アルキル基;トリメチルシリルフェニル基などの ケイ素置換アリール基などが挙げられる。

【0123】ゲルマニウム含有基として具体的には、前記 $R^2 \sim R^6$ で例示したものと同様のものが挙げられ、具体的には、前記ケイ素含有基のケイ素をゲルマニウムに置換した基が挙げられる。スズ含有基として具体的には、前記 $R^2 \sim R^6$ で例示したものと同様のものが挙げられ、より具体的には、前記ケイ素含有基のケイ素をスズに置換した基が挙げられる。

【0124】ハロゲン含有基として具体的には、PF<sub>6</sub>、BF<sub>4</sub>などのフッ素含有基、CIO<sub>4</sub>、SbCl<sub>6</sub>などの塩素含有基、IO<sub>4</sub>などのヨウ素含有基が挙げられるが、これらに限定されるものではない。アルミニウム含有基として具体的には、AIR<sub>4</sub>(Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられるが、これらに限定されるものではない。

【0125】なお、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。以下に、(A)上記一般式(I)、(II)、(III)で表される遷移金属化合物の具体的な例を示すが、これらに限定されるものではない。

[0126]

【化10】

$$\begin{array}{c|c}
 & \text{Me} \\
 & \text{N} \\
 & \text{$$

$$\begin{array}{c} \text{Me} \\ \text{N} \\ \text$$

$$\begin{array}{c} \text{Ne} \\ \text{Ne} \\$$

[0128]

【化12】

$$tBu \xrightarrow{\text{Ph}} 2rCl_2$$

$$0_{2}N \xrightarrow{\text{Me}} 0_{2}N \xrightarrow{\text{ZrCl}_{2}} 0_{2}N \xrightarrow{\text{Et}} 0_{2}N \xrightarrow{\text{ZrCl}_{2}} 0_{2}N \xrightarrow{\text{Et}} 0_{2}N \xrightarrow{\text{Et}}$$

【化13】

[0129]

$$\begin{array}{c} 37 \\ Ne \\ O_2N - \\ O_2 \\ Ad \end{array} \begin{array}{c} CrCI_2 \\ O_2N - \\ O_2N -$$

$$[0 \ 1 \ 3 \ 0]$$

$$[Ac] = \begin{bmatrix} Ac \ 1 \ 2 \end{bmatrix}$$

$$[Ac \ 1 \ 2 \end{bmatrix}$$

$$[A$$

[0131]

【化15】

39 ZrCI 2

[0133]

【化17】

[0134]

【化18】

[0135]

【化19】

.[0136]

【化20】

SiEt<sub>3</sub> SiMe<sub>3</sub> tBu tBu 0E t `tBu 【化21】 `tBu [0137]

[0138]

【化22】

[0139]

【化23】 40

[0141]

【化25】

【化26】

tBu

`tBu





# [0143]

【化27】

[0144]

【化28】

[0145]

40 【化29】

67 tBu t Bu tΒυ tBu t Bu

OMe Et0  $ZrCI_t$ 0Et tBu tBu ŞiEt, SiEt,

【0147】なお、上記例示中、Meはメチル基を、E tはエチル基を、n-Prはノルマルプロピル基を、i - Prはイソプロピル基を、n-Buはノルマルブチル

リーブチル基を、Adはアダマンチル基を、Phはフェ ニル基を示す。本発明では、上記のような化合物におい て、ジルコニウム金属をチタン、ハフニウムに置き換え 基を、i-Buはイソブチル基を、t-Buはターシャ 50 た遷移金属化合物を用いることもできる。このような遷 移金属化合物(A)の製造方法は、特に限定されること なく、たとえば以下のようにして製造することができ る。

【0148】まず、遷移金属(A)を構成する配位子 は、サリチルアルデヒド類化合物を、第1級アミン類化 合物(R¹-NH₂、R¹は前記と同義)、例えばアルキ ルアミン類化合物と反応させることにより得られる。具 体的には、両方の出発化合物を溶媒に溶解する。溶媒と、 しては、このような反応に一般的なものを使用できる が、なかでもメタノール、エタノール等のアルコール溶 10 媒、またはトルエン等の炭化水素溶媒が好ましい。次い で、室温から還流条件で、約1~48時間攪拌すると、 対応する配位子が良好な収率で得られる。配位子化合物 を合成する際、触媒として、蟻酸、酢酸、パラトルエン スルホン酸等の酸触媒を用いてもよい。また、脱水剤と して、モレキュラーシーブス、無水硫酸マグネシウムま たは無水硫酸ナトリウムを用いたり、ディーンスターク により脱水しながら行うと、反応進行に効果的である。

【0149】次に、こうして得られた配位子を遷移金属 M含有化合物と反応させることで、対応する遷移金属化 20 合物を合成することができる。具体的には、合成した配 位子を溶媒に溶解し、必要に応じて塩基と接触させてフ ェノキシド塩を調製した後、金属ハロゲン化物、金属ア ルキル化物等の金属化合物と低温で混合し、-78℃か ら室温、もしくは還流条件下で、約1~48時間攪拌す る。溶媒としては、このような反応に一般的なものを使 用できるが、なかでもエーテル、テトラヒドロフラン

(THF)等の極性溶媒、トルエン等の炭化水素溶媒な どが好ましく使用される。また、フェノキシド塩を調製 する際に使用する塩基としては、n-ブチルリチウム等 30 のリチウム塩、水素化ナトリウム等のナトリウム塩等の 金属塩や、トリエチルアミン、ピリジン等を例示するこ とができるが、この限りではない。

【0150】また、化合物の性質によっては、フェノキ シド塩調製を経由せず、配位子と金属化合物とを直接反 応させることで、対応する遷移金属化合物を合成するこ ともできる。さらに、合成した遷移金属化合物中の金属 Mを、常法により別の遷移金属と交換することも可能で ある。また、例えばR¹~R⁵の一つ以上が水素である場 合には、合成の任意の段階において、水素以外の置換基 40 を導入することができる。

【0151】また、遷移金属化合物を単離せず、配位子 と金属化合物との反応溶液をそのまま重合に用いること もできる。

### (B-1)有機金属化合物

本発明で用いられる(B-1) 有機金属化合物として、具体 的には下記のような周期表第1、2族および第12、1 3族の有機金属化合物が用いられる。

(B-1a) 一般式 R'.AI (OR')。H。X。

てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、Xはハロゲン原子を示し、mはOく  $m \le 3$ ,  $n \ne 0 \le n < 3$ ,  $p \ne 0 \le p < 3$ ,  $q \ne 0 \le q$ <3の数であり、かつm+n+p+q=3である。) で 表される有機アルミニウム化合物。

(B-1b) 一般式 M'AIR',

(式中、M'はLi、NaまたはKを示し、R'は炭素 原子数が1~15、好ましくは1~4の炭化水素基を示 す。) で表される周期表第1族金属とアルミニウムとの 錯アルキル化物。

(B-1c) 一般式 R'R'M3

(式中、R'およびR'は、互いに同一でも異なってい てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、M³はMg、ZnまたはCdであ る。) で表される周期表第2族または第12族金属のジ アルキル化合物。

【0152】前記(B-1a)に属する有機アルミニウム化合 物としては、次のような化合物などを例示できる。

一般式 R' Al (OR'),...

(式中、R'およびR'は、互いに同一でも異なってい てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、mは好ましくは1. 5≤m≤3の数 である。)で表される有機アルミニウム化合物、

一般式 R' A I X; ...

(式中、R' は炭素原子数が1~15、好ましくは1~ 4の炭化水素基を示し、Xはハロゲン原子を示し、mは 好ましくは0<m<3である。)で表される有機アルミ ニウム化合物、

一般式 R'. A I H, ...

(式中、R'は炭素原子数が1~15、好ましくは1~ 4の炭化水素基を示し、mは好ましくは2≦m<3であ る。)で表される有機アルミニウム化合物、

一般式 R'. AI (OR') X。

(式中、R'およびR'は、互いに同一でも異なってい てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、Xはハロゲン原子を示し、mはO< m≦3、nは0≦n<3、qは0≦q<3の数であり、 かつm+n+a=3である。)で表される有機アルミニ ウム化合物。

【0153】(B-1a)に属する有機アルミニウム化合物と してより具体的にはトリメチルアルミニウム、トリエチ ルアルミニウム、トリn-ブチルアルミニウム、トリプロ ピルアルミニウム、トリペンチルアルミニウム、トリヘ キシルアルミニウム、トリオクチルアルミニウム、トリ デシルアルミニウムなどのトリn-アルキルアルミニウ ム;トリイソプロピルアルミニウム、トリイソプチルア ルミニウム、トリsec-ブチルアルミニウム、トリ t-ブ チルアルミニウム、トリ2-メチルプチルアルミニウム、 トリ3-メチルブチルアルミニウム、トリ2-メチルペンチ (式中、R' およびR' は、互いに同一でも異なってい 50 ルアルミニウム、トリ3-メチルペンチルアルミニウム、

トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキ シルアルミニウム、トリ3-メチルヘキシルアルミニウ ム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐 鎖アルキルアルミニウム;トリシクロヘキシルアルミニ ウム、トリシクロオクチルアルミニウムなどのトリシク ロアルキルアルミニウム; トリフェニルアルミニウム、 トリトリルアルミニウムなどのトリアリールアルミニウ ム;ジイソプチルアルミニウムハイドライドなどのジア ルキルアルミニウムハイドライド:

(i-C4H9), Al, (C5H10),

(式中、×、y、zは正の数であり、z≥2xであ る。) などで表されるトリイソプレニルアルミニウムな どのトリアルケニルアルミニウム;イソブチルアルミニ ウムメトキシド、イソブチルアルミニウムエトキシド、 イソブチルアルミニウムイソプロポキシドなどのアルキ ルアルミニウムアルコキシド;ジメチルアルミニウムメ トキシド、ジエチルアルミニウムエトキシド、ジブチル アルミニウムブトキシドなどのジアルキルアルミニウム アルコキシド; エチルアルミニウムセスキエトキシド、 ブチルアルミニウムセスキブトキシドなどのアルキルア 20 ルミニウムセスキアルコキシド; R'2.5A I (OR') シ化されたアルキルアルミニウム;ジエチルアルミニウ ムフェノキシド、ジエチルアルミニウム (2,6-ジ-t-ブ チル-4-メチルフェノキシド)、エチルアルミニウムビ ス(2,6-ジ-t-ブチル-4-メチルフェノキシド)、ジイソ ブチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノ キシド)、イソプチルアルミニウムビス (2,6-ジ-t-ブ チル-4-メチルフェノキシド) などのジアルキルアルミ ニウムアリーロキシド;ジメチルアルミニウムクロリ ド、ジエチルアルミニウムクロリド、ジブチルアルミニ ウムグロリド、ジエチルアルミニウムプロミド、ジイソ ブチルアルミニウムクロリドなどのジアルキルアルミニ ウムハライド; エチルアルミニウムセスキクロリド、ブ チルアルミニウムセスキクロリド、エチルアルミニウム セスキプロミドなどのアルキルアルミニウムセスキハラ イド;エチルアルミニウムジクロリド、プロピルアルミ ニウムジクロリド、ブチルアルミニウムジブロミドなど のアルキルアルミニウムジハライドなどの部分的にハロ ゲン化されたアルキルアルミニウム;ジエチルアルミニ 40 ウムヒドリド、ジブチルアルミニウムヒドリドなどのジ アルキルアルミニウムヒドリド;エチルアルミニウムジ ヒドリド、プロピルアルミニウムジヒドリドなどのアル キルアルミニウムジヒドリドなどその他の部分的に水素 化されたアルキルアルミニウム; エチルアルミニウムエ トキシクロリド、ブチルアルミニウムブトキシクロリ ド、エチルアルミニウムエトキシブロミドなどの部分的 にアルコキシ化およびハロゲン化されたアルキルアルミ ニウムなどを挙げることができる。

とができ、たとえば窒素原子を介して2以上のアルミニ ウム化合物が結合した有機アルミニウム化合物を挙げる ことができる。このような化合物として具体的には、 (C<sub>1</sub>H<sub>5</sub>)<sub>1</sub>AIN (C<sub>2</sub>H<sub>5</sub>)AI (C<sub>1</sub>H<sub>5</sub>)<sub>1</sub> などを挙 げることができる。前記 (B-1b) に属する化合物として は、LiAl (C2H5)4、LiAl (C7H15)4 などを 挙げることができる。またその他にも、(B-1) 有機金属 化合物としては、メチルリチウム、エチルリチウム、プ ロピルリチウム、ブチルリチウム、メチルマグネシウム 10 プロミド、メチルマグネシウムクロリド、エチルマグネ シウムプロミド、エチルマグネシウムクロリド、プロピ ルマグネシウムブロミド、プロピルマグネシウムクロリ ド、ブチルマグネシウムブロミド、ブチルマグネシウム クロリド、ジメチルマグネシウム、ジエチルマグネシウ ム、ジブチルマグネシウム、ブチルエチルマグネシウム

【0155】また重合系内で上記有機アルミニウム化合 物が形成されるような化合物、たとえばハロゲン化アル ミニウムとアルキルリチウムとの組合せ、またはハロゲ ン化アルミニウムとアルキルマグネシウムとの組合せな どを使用することもできる。(B-1) 有機金属化合物のな かでは、有機アルミニウム化合物が好ましい。上記のよ うな(B-1) 有機金属化合物は、1種単独でまたは2種以 上組み合わせて用いられる。

などを使用することもできる。

【0156】(B-2) 有機アルミニウムオキシ化合物 本発明で用いられる(B-2) 有機アルミニウムオキシ化合 物は、従来公知のアルミノキサンであってもよく、また 特開平2-78687号公報に例示されているようなべ ンゼン不溶性の有機アルミニウムオキシ化合物であって 30 もよい。従来公知のアルミノキサンは、たとえば下記の ような方法によって製造することができ、通常、炭化水 素溶媒の溶液として得られる。

- (1) 吸着水を含有する化合物または結晶水を含有する 塩類、たとえば塩化マグネシウム水和物、硫酸銅水和 物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩 化第1セリウム水和物などの炭化水素媒体懸濁液に、ト リアルキルアルミニウムなどの有機アルミニウム化合物 を添加して、吸着水または結晶水と有機アルミニウム化 合物とを反応させる方法。
- (2) ベンゼン、トルエン、エチルエーテル、テトラヒ ドロフランなどの媒体中で、トリアルキルアルミニウム などの有機アルミニウム化合物に直接水、氷または水蒸 気を作用させる方法。
  - (3) デカン、ベンゼン、トルエンなどの媒体中でトリ アルキルアルミニウムなどの有機アルミニウム化合物 に、ジメチルスズオキシド、ジブチルスズオキシドなど の有機スズ酸化物を反応させる方法。

【0157】なお該アルミノキサンは、少量の有機金属 成分を含有してもよい。また回収された上記のアルミノ 【0 1 5 4】また(B-1a)に類似する化合物も使用するこ 50 キサンの溶液から溶媒または未反応有機アルミニウム化

合物を蒸留して除去した後、溶媒に再溶解またはアルミ ノキサンの貧溶媒に懸濁させてもよい。アルミノキサン を調製する際に用いられる有機アルミニウム化合物とし て具体的には、前記 (B-1a) に属する有機アルミニウム化 合物として例示したものと同様の有機アルミニウム化合 物を挙げることができる。

【0158】これらのうち、トリアルキルアルミニウ ム、トリシクロアルキルアルミニウムが好ましく、トリ メチルアルミニウムおよびトリイソブチルアルミニウム が特に好ましい。上記のような有機アルミニウム化合物 10 げられる。これらの中では、メチルポロン酸、n-ブチル は、1種単独でまたは2種以上組み合せて用いられる。

【0159】アルミノキサンの調製に用いられる溶媒と しては、ベンゼン、トルエン、キシレン、クメン、シメ ンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタ ン、オクタン、デカン、ドデカン、ヘキサデカン、オク タデカンなどの脂肪族炭化水素、シクロペンタン、シク ロヘキサン、シクロオクタン、メチルシクロペンタンな どの脂環族炭化水素、ガソリン、灯油、軽油などの石油 留分または上記芳香族炭化水素、脂肪族炭化水素、脂環 族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化 20 アルキルアルミニウムが好ましく、特にトリメチルアル 物などの炭化水素溶媒が挙げられる。さらにエチルエー テル、テトラヒドロフランなどのエーテル類を用いるこ ともできる。これらの溶媒のうち特に芳香族炭化水素ま たは脂肪族炭化水素が好ましい。

【0160】また本発明で用いられるベンゼン不溶性の 有機アルミニウムオキシ化合物は、60℃のベンゼンに 溶解するA | 成分がA | 原子換算で通常10%以下、好 ましくは5%以下、特に好ましくは2%以下であるも の、すなわち、ベンゼンに対して不溶性または難溶性で ウムオキシ化合物としては、下記一般式(IV)で表され るボロンを含んだ有機アルミニウムオキシ化合物を挙げ ることもできる。

[0161]

【化31】

【0162】式中、R<sup>1</sup>は炭素原子数が1~10の炭化 水素基を示す。R<sup>1</sup>は、互いに同一でも異なっていても よく、水素原子、ハロゲン原子、炭素原子数が1~10 の炭化水素基を示す。前記一般式(IV)で表されるボロ ンを含んだ有機アルミニウムオキシ化合物は、下記一般 式(V)で表されるアルキルボロン酸と有機アルミニウ ム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、 -80℃~室温の温度で1分~24時間反応させること により製造できる。

[0163]

【化32】

$$R^{7}-B-(OH)_{2} \qquad (V)$$

76

【0164】(式中、R'は前記と同じ基を示す。) 前記一般式(V)で表されるアルキルボロン酸の具体的 なものとしては、メチルボロン酸、エチルボロン酸、イ ソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボ ロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シ クロヘキシルボロン酸、フェニルボロン酸、3,5-ジフル オロボロン酸、ペンタフルオロフェニルボロン酸、3.5-ビス(トリフルオロメチル)フェニルボロン酸などが挙 ボロン酸、イソブチルボロン酸、3.5-ジフルオロフェユ ルボロン酸、ペンタフルオロフェニルボロン酸が好まし い。これらは1種単独でまたは2種以上組み合わせて用 いられる。

【0165】このようなアルキルボロン酸と反応させる 有機アルミニウム化合物として具体的には、前記(B-1a) に属する有機アルミニウム化合物として例示したものと 同様の有機アルミニウム化合物を挙げることができる。 これらのうち、トリアルキルアルミニウム、トリシクロ ミニウム、トリエチルアルミニウム、トリイソブチルア ルミニウムが好ましい。これらは1種単独でまたは2種 以上組み合わせて用いられる。

【0166】上記のような (B-2) 有機アルミニウムオキ シ化合物は、1種単独でまたは2種以上組み合せて用い られる。

(B-3) 遷移金属化合物と反応してイオン対を形成する化 合物

本発明で用いられる遷移金属化合物(A)と反応してイ あるものが好ましい。本発明で用いられる有機アルミニ 30 オン対を形成する化合物(B-3) (以下、「イオン化イオ ン性化合物」という。)としては、特開平1-5019 50号公報、特開平1-502036号公報、特開平3 -179005号公報、特開平3-179006号公 報、特開平3-207703号公報、特開平3-207 704号公報、USP-5321106号などに記載さ れたルイス酸、イオン性化合物、ボラン化合物およびカ ルボラン化合物などを挙げることができる。さらに、へ テロポリ化合物およびイソポリ化合物も挙げることがで きる。

> 【0167】具体的には、ルイス酸としては、BR; (Rは、フッ素、メチル基、トリフルオロメチル基など の置換基を有していてもよいフェニル基またはフッ素で ある。)で示される化合物が挙げられ、たとえばトリフ ルオロボロン、トリフェニルボロン、トリス(4-フルオ ロフェニル) ボロン、トリス (3,5-ジフルオロフェニ ル)ボロン、トリス(4-フルオロメチルフェニル)ボロ ン、トリス (ペンタフルオロフェニル) ポロン、トリス (p-トリル) ボロン、トリス (o-トリル) ボロン、トリ ス(3,5-ジメチルフェニル)ボロンなどが挙げられる。

**50 【0168】イオン性化合物としては、たとえば下記ー** 

般式(VI)で表される化合物が挙げられる。

[0169]

【化33】

$$R^{9} \bigoplus_{R} \frac{10}{10} \bigoplus_{R=13}^{R} R^{12} \qquad (VI)$$

【0170】式中、R°としては、H'、カルボニウム カチオン、オキソニウムカチオン、アンモニウムカチオ ン、ホスホニウムカチオン、シクロヘプチルトリエニル カチオン、遷移金属を有するフェロセニウムカチオンな どが挙げられる。R'0~R'3は、互いに同一でも異なっ ていてもよく、有機基、好ましくはアリール基または置 換アリール基である。

【0171】前記カルボニウムカチオンとして具体的に は、トリフェニルカルボニウムカチオン、トリ(メチル フェニル)カルボニウムカチオン、トリ(ジメチルフェ ニル) カルボニウムカチオンなどの三置換カルボニウム 20 カチオンなどが挙げられる。前記アンモニウムカチオン として具体的には、トリメチルアンモニウムカチオン、 トリエチルアンモニウムカチオン、トリプロピルアンモ ニウムカチオン、トリブチルアンモニウムカチオン、ト リ(n-ブチル)アンモニウムカチオンなどのトリアルキ ルアンモニウムカチオン; N, N-ジメチルアニリニウムカ チオン、N, N-ジエチルアニリニウムカチオン、N, N-2, 4, 6-ペンタメチルアニリニウムカチオンなどのN, N-ジアル キルアニリニウムカチオン;ジ(イソプロピル)アンモ ニウムカチオン、ジシクロヘキシルアンモニウムカチオ 30 ンなどのジアルキルアンモニウムカチオンなどが挙げら れる。

【0172】前記ホスホニウムカチオンとして具体的に は、トリフェニルホスホニウムカチオン、トリ(メチル フェニル)ホスホニウムカチオン、トリ(ジメチルフェ ニル)ホスホニウムカチオンなどのトリアリールホスホ ニウムカチオンなどが挙げられる。R¹としては、カル ポニウムカチオン、アンモニウムカチオンなどが好まし く、特にトリフェニルカルボニウムカチオン、N. N-ジメ チルアニリニウムカチオン、N, N-ジエチルアニリニウム 40 カチオンが好ましい。

【0173】またイオン性化合物として、トリアルキル 置換アンモニウム塩、N, N-ジアルキルアニリニウム塩、 ジアルキルアンモニウム塩、トリアリールホスフォニウ ム塩などを挙げることもできる。トリアルキル置換アン モニウム塩として具体的には、たとえばトリエチルアン モニウムテトラ(フェニル)ホウ素、トリプロピルアン モニウムテトラ (フェニル) ホウ素、トリ (n-ブチル) アンモニウムテトラ(フェニル)ホウ素、トリメチルア

78

モニウムテトラ (o-トリル) ホウ素、トリ (n-ブチル) アンモニウムテトラ(ペンタフルオロフェニル)ホウ 素、トリプロピルアンモニウムテトラ (o, p-ジメチルフ ェニル) ホウ素、トリ (n-プチル) アンモニウムテトラ (m, m-ジメチルフェニル) ホウ素、トリ (n-ブチル) ア ンモニウムテトラ (p-トリフルオロメチルフェニル) ホ ウ素、トリ(n-ブチル)アンモニウムテトラ(3,5-ジト リフルオロメチルフェニル) ホウ素、トリ (n-ブチル) アンモニウムテトラ(0-トリル)ホウ素などが挙げられ 10 る。

【0174】N、N-ジアルキルアニリニウム塩として具体 的には、たとえばN, N-ジメチルアニリニウムテトラ(フ ェニル)ホウ素、N. N-ジエチルアニリニウムテトラ(フ ェニル) ホウ素、N, N-2, 4, 6~ペンタメチルアニリニウム テトラ(フェニル)ホウ素などが挙げられる。ジアルキ ルアンモニウム塩として具体的には、たとえばジ(1-プ) ロピル) アンモニウムテトラ (ペンタフルオロフェニ ル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フ ェニル)ホウ素などが挙げられる。

【0175】さらにイオン性化合物として、トリフェニ ルカルベニウムテトラキス(ペンタフルオロフェニル) ボレート、N, N-ジメチルアニリニウムテトラキス(ペン タフルオロフェニル) ボレート、フェロセニウムテトラ **(ペンタフルオロフェニル)ボレート、トリフェニルカ** ルベニウムペンタフェニルシクロペンタジエニル錯体、 N, N-ジエチルアニリニウムペンタフェニルシクロペンタ ジエニル錯体、下記式 (VII) または (VIII) で表され るホウ素化合物などを挙げることもできる。

[0176] 【化34】

$$H^{\bigoplus} (0Et_2), B^{\bigoplus} (-1)_4$$
 (VII)

【0177】(式中、Etはエチル基を示す。) [0.178] 【化35】

$$Na^{\bigoplus} (OEt_2), B^{\bigoplus} (CF_3)$$

$$CF_3 \qquad (VII)$$

【0179】ボラン化合物として具体的には、たとえば デカボラン;ビス〔トリ(n-ブチル)アンモニウム〕ノ ナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デ カボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウ ンデカポレート、ビス〔トリ(n-ブチル)アンモニウ ム〕ドデカボレート、ビス〔トリ (n-ブチル) アンモニ ンモニウムテトラ (p-トリル) ホウ素、トリメチルアン 50 ウム) デカクロロデカポレート、ビス (トリ (n-ブチ

ル) アンモニウム〕ドデカクロロドデカボレートなどの アニオンの塩; トリ (n-ブチル) アンモニウムビス (ド デカハイドライドドデカボレート) コバルト酸塩 (II リ、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデ カハイドライドドデカボレート) ニッケル酸塩 (111) な どの金属ボランアニオンの塩などが挙げられる。

【0180】カルボラン化合物として具体的には、たと えば 4-カルバノナボラン、1,3-ジカルバノナボラン、 6, 9-ジカルバデカボラン、ドデカハイドライド-1-フェ メチル-1, 3-ジカルバノナボラン、ウンデカハイドライ ド-1, 3-ジメチル-1, 3-ジカルバノナボラン、7, 8-ジカル バウンデカボラン、2,7-ジカルバウンデカボラン、ウン デカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカ ボラン、ドデカハイドライド-11-メチル-2, 7-ジカルバ ウンデカボラン、トリ(n-ブチル)アンモニウム1-カル バデカボレート、トリ (n-ブチル) アンモニウム1-カル バウンデカボレート、トリ (n-ブチル) アンモニウム1~ カルバドデカボレート、トリ (n-ブチル) アンモニウム 1-トリメチルシリル-1-カルバデカボレート、トリ (n-ブチル) アンモニウムブロモ-1-カルバドデカボレー ト、トリ(n-ブチル)アンモニウム6-カルバデカボレー ト、トリ(n-ブチル)アンモニウム6-カルバデカボレー ト、トリ(n-ブチル)アンモニウム7-カルバウンデカボ レート、トリ(n-ブチル)アンモニウム7, 8-ジカルバウ ンデカボレート、トリ (n-ブチル) アンモニウム2, 9-ジ カルバウンデカボレート、トリ (n-ブチル) アンモニウ ムドデカハイドライド-8-メチル-7、9-ジカルパウンデカ ボレート、トリ(n-ブチル)アンモニウムウンデカハイ ドライド-8-エチル-7、9-ジカルバウンデカボレート、ト リ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル-7, 9-ジカルバウンデカポレート、トリ (n-ブチ ル) アンモニウムウンデカハイドライド-8-アリル-7, 9-ジカルバウンデカポレート、トリ (n-ブチル) アンモニ ウムウンデカハイドライド-9-トリメチルシリル-7,8-ジ カルバウンデカボレート、トリ (n-ブチル) アンモニウ ムウンデカハイドライド-4.6-ジブロモ-7-カルバウンデ カボレートなどのアニオンの塩;トリ (n-ブチル) アン モニウムビス (ノナハイドライド-1,3-ジカルバノナボ レート) コバルト酸塩(III)、トリ(n-ブチル) アンモ 40 ニウムビス (ウンデカハイドライド-7,8-ジカルバウン デカボレート) 鉄酸塩(III)、トリ(n-ブチル) アンモ ニウムビス(ウンデカハイドライド-7,8-ジカルバウン デカボレート) コバルト酸塩 (III)、トリ (n-ブチル) アンモニウムビス(ウンデカハイドライド-7,8-ジカル バウンデカボレート)ニッケル酸塩 (III)、トリ (n-ブ チル) アンモニウムビス (ウンデカハイドライド-7.8-ジカルバウンデカボレート) 銅酸塩 (III)、トリ (n-ブ チル)アンモニウムビス(ウンデカハイドライド-7.8-ジカルバウンデカボレート) 金酸塩 (III)、トリ(n-ブ 50 本発明で用いられる (C) 担体は、無機または有機の化

チル) アンモニウムビス (ノナハイドライド-7,8-ジメ チル-7.8-ジカルバウンデカボレート) 鉄酸塩 (111)、 トリ (n-プチル) アンモニウムビス (ノナハイドライド -7.8-ジメチル-7.8-ジカルバウンデカボレート) クロム 酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリ ブロモオクタハイドライド-7,8-ジカルバウンデカボレ ート) コバルト酸塩 (III)、トリス (トリ (n-ブチル) アンモニウム〕ビス(ウンデカハイドライド-7-カルバ ウンデカボレート)クロム酸塩 (III)、ビス〔トリ (n-ニル-1.3-ジカルパノナボラン、ドデカハイドライド-1- 10 ブチル) アンモニウム) ビス(ウンデカハイドライド-7 -カルバウンデカボレート) マンガン酸塩 (IV) 、ビス 〔トリ(n-ブチル) アンモニウム〕ビス(ウンデカハイ ドライド-7-カルバウンデカボレート)コバルト酸塩( 11)、ビス〔トリ(n-プチル)アンモニウム〕ビス(ウ ンデカハイドライド-7-カルバウンデカボレート)ニッ ケル酸塩(IV)などの金属カルボランアニオンの塩など が挙げられる。

> 【0181】ヘテロポリ化合物は、ケイ素、リン、チタ ン、ゲルマニウム、ヒ素および錫から選ばれる原子と、 20 パナジウム、ニオブ、モリブデンおよびタングステンか ら選ばれる1種または2種以上の原子からなっている。 具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ 素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリ コノモリブデン酸、リンモリブデン酸、チタンモリブデ ン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モ リブデン酸、リンタングステン酸、ゲルマノタングステ ン酸、錫タングステン酸、リンモリブドバナジン酸、リ ンタングストバナジンン酸、ゲルマノタングストバナジ ンン酸、リンモリブドタングストバナジン酸、ゲルマノ 30 モリブドタングストバナジン酸、リンモリブドタングス テン酸、リンモリブドニオブ酸、およびこれらの酸の 塩、例えば周期表第1族または2族の金属、具体的に は、リチウム、ナトリウム、カリウム、ルビジウム、セ シウム、ベリリウム、マグネシウム、カルシウム、スト ロンチウム、バリウム等との塩、トリフェニルエチル塩 等との有機塩が使用できるが、この限りではない。

【0182】上記のような (B-3) イオン化イオン性化合 物は、1種単独でまたは2種以上組み合わせて用いられ る。本発明に係る遷移金属化合物を触媒とする場合、助 触媒成分としてのメチルアルミノキサンなどの有機アル ミニウムオキシ化合物(B-2)とを併用すると、オレフィ ン化合物に対して非常に高い重合活性を示す。

【0183】また、本発明に係るオレフィン重合用触媒 は、上記遷移金属化合物 (A)、(B-1) 有機金属化合 物、(B-2) 有機アルミニウムオキシ化合物、および(B-3) イオン化イオン性化合物から選ばれる少なくとも1 種の化合物(B)とともに、必要に応じて後述するよう な担体(C)を用いることもできる。

(C) 担体

合物であって、顆粒状ないしは微粒子状の固体である。 【0184】このうち無機化合物としては、多孔質酸化 物、無機塩化物、粘土、粘土鉱物またはイオン交換性層 状化合物が好ましい。多孔質酸化物として、具体的には SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, MgO, ZrO, TiO<sub>2</sub>, B ,O1、CaO、ZnO、BaO、ThOなど、または これらを含む複合物または混合物を使用、例えば天然ま たは合成ゼオライト、SiO<sub>2</sub>-MgO、SiO<sub>2</sub>-Al<sub>2</sub>  $O_1$ ,  $SiO_2-TiO_2$ ,  $SiO_2-V_2O_5$ ,  $SiO_2-C$ r,O<sub>1</sub>、SiO<sub>2</sub>-TiO<sub>2</sub>-MgOなどを使用することが できる。これらのうち、SiOzおよび/またはAlzO ,を主成分とするものが好ましい。

【0185】なお、上記無機酸化物は、少量のNa<sub>2</sub>C O3, K2CO3, CaCO3, MgCO3, Na2SO4, Al<sub>2</sub>(SO<sub>4</sub>)<sub>1</sub>, BaSO<sub>4</sub>, KNO<sub>2</sub>, Mg(NO<sub>2</sub>)<sub>2</sub>, AI(NO<sub>3</sub>),、Na,O、K,O、Li,Oなどの炭酸 塩、硫酸塩、硝酸塩、酸化物成分を含有していてもさし つかえない。このような多孔質酸化物は、種類および製 法によりその性状は異なるが、本発明に好ましく用いら れる担体は、粒径が10~300μm、好ましくは20 ~200µmであって、比表面積が50~1000m<sup>2</sup> /g、好ましくは100~700m²/gの範囲にあ り、細孔容積が0.3~3.0cm³/gの範囲にある ことが望ましい。このような担体は、必要に応じて10 0~1000℃、好ましくは150~700℃で焼成し て使用される。

【0186】無機塩化物としては、MgCl<sub>2</sub>、MgB r,、MnCl,、MnBr,等が用いられる。無機塩化 物は、そのまま用いてもよいし、ボールミル、振動ミル により粉砕した後に用いてもよい。また、アルコールな 30 どの溶媒に無機塩化物を溶解させた後、析出剤によって 微粒子状に析出させたものを用いることもできる。本発 明で用いられる粘土は、通常粘土鉱物を主成分として構 成される。また、本発明で用いられるイオン交換性層状 化合物は、イオン結合などによって構成される面が互い に弱い結合力で平行に積み重なった結晶構造を有する化 合物であり、含有するイオンが交換可能なものである。 大部分の粘土鉱物はイオン交換性層状化合物である。ま た、これらの粘土、粘土鉱物、イオン交換性層状化合物 としては、天然産のものに限らず、人工合成物を使用す 40 ることもできる。

【0187】また、粘土、粘土鉱物またはイオン交換性 層状化合物として、粘土、粘土鉱物、また、六方細密パ ッキング型、アンチモン型、CdCl2型、Cdl2型な どの層状の結晶構造を有するイオン結晶性化合物などを 例示することができる。このような粘土、粘土鉱物とし ては、カオリン、ベントナイト、木節粘土、ガイロメ粘 土、アロフェン、ヒシンゲル石、パイロフィライト、ウ ンモ群、モンモリロナイト群、バーミキュライト、リョ イト、ディッカイト、ハロイサイトなどが挙げられ、イ オン交換性層状化合物としては、 $\alpha - Zr(HAsO_i)_i$ ·  $H_2O$ ,  $\alpha - Zr(HPO_4)_2$ ,  $\alpha - Zr(KPO_4)_2$ .  $3H_2O$ ,  $\alpha-Ti(HPO_4)_2$ ,  $\alpha-Ti(HAsO_4)_2$ ·  $H_2O$ ,  $\alpha - Sn(HPO_4)_2 \cdot H_2O$ ,  $\gamma - Zr(HP$  $O_4)_2$ ,  $\gamma - Ti(HPO_4)_2$ ,  $\gamma - Ti(NH_4PO_4)_2$ . H, Oなどの多価金属の結晶性酸性塩などが挙げられ

【0188】このような粘土、粘土鉱物またはイオン交 換性層状化合物は、水銀圧入法で測定した半径20Å以 上の細孔容積が0.1cc/g以上のものが好ましく、  $0.3 \sim 5 c c/g$ のものが特に好ましい。ここで、細 孔容積は、水銀ポロシメーターを用いた水銀圧入法によ り、細孔半径20~3000Åの範囲について測定さ れる。

【0189】半径20点以上の細孔容積が0.1cc/ gより小さいものを担体として用いた場合には、高い重 合活性が得られにくい傾向がある。本発明で用いられる 粘土、粘土鉱物には、化学処理を施すことも好ましい。 20 化学処理としては、表面に付着している不純物を除去す る表面処理、粘土の結晶構造に影響を与える処理など、 何れも使用できる。化学処理として具体的には、酸処 理、アルカリ処理、塩類処理、有機物処理などが挙げら れる。酸処理は、表面の不純物を取り除くほか、結晶構 造中のAI、Fe、Mgなどの陽イオンを溶出させるこ とによって表面積を増大させる。アルカリ処理では粘土 の結晶構造が破壊され、粘土の構造の変化をもたらす。 また、塩類処理、有機物処理では、イオン複合体、分子 複合体、有機誘導体などを形成し、表面積や層間距離を 変えることができる。

【0190】本発明で用いられるイオン交換性層状化合 物は、イオン交換性を利用し、層間の交換性イオンを別 の大きな嵩高いイオンと交換することにより、層間が拡 大した状態の層状化合物であってもよい。このような嵩 高いイオンは、層状構造を支える支柱的な役割を担って おり、通常、ピラーと呼ばれる。また、このように層状 化合物の層間に別の物質を導入することをインターカレ ーションという。インターカレーションするゲスト化合 物としては、TiCI4、ZrCI4などの陽イオン性無 機化合物、Ti(OR),、Zr(OR),、PO(OR);、 B(OR)。などの金属アルコキシド(Rは炭化水素基な ど)、[A I 13 O4 (O H) 24] \*\* 、[Z r4 (O H) 14] \*\* 、 [Fe,O(OCOCH,),] などの金属水酸化物イオンな どが挙げられる。これらの化合物は単独でまたは2種以 上組み合わせて用いられる。また、これらの化合物をイ ンターカレーションする際に、Si(OR)、AI(O R), Ge(OR), などの金属アルコキシド(Rは炭化 水素基など)などを加水分解して得た重合物、SiO などのコロイド状無機化合物などを共存させることもで クデイ石群、パリゴルスカイト、カオリナイト、ナクラ 50 きる。また、ピラーとしては、上記金属水酸化物イオン

を層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。

【0191】本発明で用いられる粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ペ 10クトライト、テニオライトおよび合成雲母である。

【0192】有機化合物としては、粒径が10~300 $\mu$ mの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~140 $\alpha$ -オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)として生成される(共)重合体、およびそれらの変成体を例示することができる。

【0193】本発明に係るオレフィン重合用触媒は、上 20 記遷移金属化合物(A)、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)、必要に応じて担体(C)と共に、必要に応じて後述するような特定の有機化合物成分(D)を含むこともできる。

### (D) 有機化合物成分

本発明において、(D)有機化合物成分は、必要に応じて、重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アル 30コール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、この限りではない。

【0194】アルコール類およびフェノール性化合物としては、通常、R''-OHで表されるものが使用され、ここで、R''は炭素原子数  $1 \sim 5$ 0の炭化水素基または炭素原子数  $1 \sim 5$ 0のハロゲン化炭化水素基を示す。アルコール類としては、R''がハロゲン化炭化水素のものが好ましい。また、フェノール性化合物としては、水酸基の $\alpha$ ,  $\alpha$ '-位が炭素数  $1 \sim 2$ 0の炭化水素で置換されたものが好ましい。

【0195】カルボン酸としては、通常、R<sup>15</sup>-COOHで表されるものが使用される。R<sup>15</sup>は炭素原子数1~50の炭化水素基または炭素原子数1~50のハロゲン化炭化水素基を示し、特に、炭素原子数1~50のハロゲン化炭化水素基が好ましい。燐化合物としては、P~O-H結合を有する燐酸類、P-OR、P=O結合を有するホスフェート、ホスフィンオキシド化合物が好ましく使用される。スルホン酸塩としては、下記一般式(IX)で表されるものが使用される。

【0196】 【化36】

【0197】式中、Mは周期表  $1 \sim 14$  族の元素である。  $R^{16}$  は水素、炭素原子数  $1 \sim 20$  の炭化水素基または炭素原子数  $1 \sim 20$  のハロゲン化炭化水素基である。 X は水素原子、ハロゲン原子、炭素原子数が  $1 \sim 20$  の炭化水素基、炭素原子数が  $1 \sim 20$  のハロゲン化炭化水素基である。 mは  $1 \sim 7$  の整数であり、 nは  $1 \leq n \leq 7$  である。

【0198】次に、本発明に係るオレフィン重合用触媒の調製工程を示す。重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。

- (1) 成分(A)を単独で重合器に添加する方法。
- (2) 成分(A)をおよび成分(B)を任意の順序で重合器に添加する方法。
  - (3) 成分(A)を担体(C)に担持した触媒成分、成分(B)を任意の順序で重合器に添加する方法。
  - (4) 成分(B)を担体(C)に担持した触媒成分、成分(A)を任意の順序で重合器に添加する方法。
  - (5) 成分(A)と成分(B)とを担体(C)に担持した 触媒成分を重合器に添加する方法。

【0199】上記(2) ~ (5) の各方法においては、各触 媒成分の少なくとも2つ以上は予め接触されていてもよ い。成分(B) が担持されている上記(4)(5)の各方法に おいては、必要に応じて担持されていない成分(B) を、任意の順序で添加してもよい。この場合成分(B) は、同一でも異なっていてもよい。

【0200】また、上記の成分(C)に成分(A)が担持された固体触媒成分、成分(C)に成分(A)および成分(B)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。本発明に係るオレフィンの重合方法では、上記のようなオレフィン重合用触媒の存在下に、オレフィンを重合また40 は共重合することによりオレフィン重合体を得る。

【0201】本発明では、重合は溶解重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施できる。液相重合法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘブタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物など

を挙げることができ、オレフィン自身を溶媒として用い ることもできる。

【0202】上記のようなオレフィン重合用触媒を用い て、オレフィンの重合を行うに際して、成分(A)は、 反応容積1リットル当り、通常10-12~10-2モル、 好ましくは10~10~10~3モルになるような量で用い られる。成分(B-1)は、成分(B-1)と、成分(A)中の全 遷移金属原子(M)とのモル比 ((B-1)/M)が通常0. 01~100000、好ましくは0.05~50000 となるような量で用いられる。成分(B-2)は、成分(B-2) 中のアルミニウム原子と、成分(A)中の全遷移金属 (M) とのモル比 ((B-2)/M) が、通常10~5000 00、好ましくは20~10000となるような量で 用いられる。成分(B-3)は、成分(B-3)と、成分(A)中 の遷移金属原子 (M) とのモル比 [(B-3)/M] が、通常 1~10、好ましくは1~5となるような量で用いられ ・る。

【0203】成分(D)は、成分(B)が成分(B-1)の 場合には、モル比〔(D)/(B-1)〕が通常0.01~1 0、好ましくは0.1~5となるような量で、成分 (B) が成分(B-2)の場合には、モル比〔(D)/(B-2)〕が通常0.01~2、好ましくは0.005~1と なるような量で、成分(B)が成分(B-3)の場合なは、 モル比(D)/(B-3))が通常0.01~10、好ましく は0.1~5となるような量で用いられる。

【0204】また、このようなオレフィン重合触媒を用 いたオレフィンの重合温度は、通常-50~+200 ℃、好ましくは0~170℃の範囲である。重合圧力 は、通常常圧~100kg/cm'、好ましくは常圧 ~50kg/cm² の条件下であり、重合反応は、回 分式、半連続式、連続式のいずれの方法においても行う ことができる。さらに重合を反応条件の異なる2段以上 に分けて行うことも可能である。

【0205】前述した本発明に係る低分子量エチレン系 重合体は、上記プロセスによって得られる。また、この 重合体における末端二重結合は変性されていてもよい。 本発明に係るトナー用離型剤は、本発明に係る末端が変 性されていてもよい低分子量エチレン系重合体からなる ものである。この離型剤は、結着樹脂(a)および着色 剤(b)、ならびに必要に応じて帯電制御剤などととも 40 に静電荷像現像用のトナーの成分として用いられる。こ の離型剤の数平均分子量は、300ないし2000範 囲、好ましくは400ないし1000の範囲である。

【0206】上記の結着樹脂(a)は、静電荷像の現像 材に一般的に配合される熱可塑性樹脂からなるものであ れば、いずれでもよく、特に制限されない。例えば、ス チレン樹脂、スチレンーアクリルエステル酸共重合体、 アクリル樹脂、スチレンーブタジエン樹脂、ケトン樹 脂、マレイン酸樹脂、ポリエステル樹脂、ポリ酢酸ビニ

脂、ポリウレタン、エポキシ樹脂、テルペン樹脂、ポリ ビニルブチラール、ポリブチルメタクリレート、ポリ塩 化ビニル、ポリエチレン、ポリプロピレン、ポリブタジ エン、エチレン-酢酸ビニル共重合体、ロジン樹脂等か らなるものが挙げられる。これらの中では、適当な軟化 点(90℃~120℃)で定着性が良いスチレンーアク リル酸エステル共重合体、ポリエステル芳香族樹脂、お よびエポキシ樹脂が特に好ましい。

86

【0207】上記(b)の着色剤は、静電荷像の現像材 に一般的に配合されるものであればいずれでもよく、特 に制限されない。例えば、カーボンブラック、フタロシ アニンブルー、アニリンブルー、アルコオイルブルー、 クロムイエロー、ウルトラマリンブルー、キノリンイエ ロー、ランプブラック、ローズベンガル、ジアゾイエロ ー、ローダミンBレーキ、カーミン6B、キナクリドン 誘導体等の顔料または染料が挙げられ、これらは1種単 独でも2種以上を組合せても用いられる。

【0208】本発明のトナー用離型剤の配合割合は、通 常、結着樹脂/着色剤/帯電制御剤/本発明の離型剤の 20 比が、重量比で100/1~10/0~5/0.5~4 0程度であり、好ましくは100/1~6/0.5~2 /10~20である。本発明に係る顔料分散剤は、本発 明に係る末端が変性されていてもよい低分子量エチレン 系重合体からなるものである。この分散剤は、顔料と混 合し、次に被着色樹脂と混合した後、押出機により混練 および造粒し、ドライカラー、カラーコンパウンドまた はマスターバッチとして使用される。上記顔料分散剤の 配合割合は、顔料100重量部に対して通常25ないし 200重量部、好ましくは50ないし150重量部の範 30 囲である。数平均分子量は、1000ないし5000の 範囲であり、好ましくは1500ないし3000の範囲 である。使用し得る被着色樹脂としては、ポリエチレ ン、ポリプロピレン、ポリブテン-1、ポリ4-メチルペン テン-1、エチレン-プロピレン共重合体、エチレン-酢 酸ビニル共重合体などのポリオレフィン系樹脂、ポリス チレン、ABSなどのスチレン系樹脂、ビスフェノール - Aとホスゲンから得られるポリカーボネート樹脂、ポ リエチレンテレフタレート、ポリプチレンテレフタレー トなどのポリエステル樹脂、ポリアミド樹脂、ポリフェ ニレンオキサイド樹脂、ポリ塩化ビニルなどの熱可塑性 樹脂およびフェノール樹脂、エポキシ樹脂などの熱硬化 性樹脂を挙げることができる。

【0209】特に、本発明の顔料分散剤は、熱可塑性樹 脂に対して好適に用いることができる。使用し得る顔料 は、従来から合成樹脂の着色に知られている全ての顔料 に使用することが出来る。顔料として具体的に例示する と、アルミニウム、銀、金など金属類;炭酸カルシウ ム、炭酸バリウムなどの炭酸塩; ZnO、TiOaなどの酸化 物;AlaOs·nHaO、FeaOs·nHaOなどの水酸化物;CaSO4、B ル樹脂、クマロン樹脂、フェノール樹脂、シリコーン樹 50 aSO, などの硫酸塩; Bi (OH), NO, などの硝酸塩; PbCl, な

40

どの塩化物; CaCrO、BaCrO、などのクロム酸塩; CoCrO、 などの亜クロム酸塩、マンガン酸塩および過マンガン酸 塩: Cu (BO), などの硼酸塩; Na, U, O, ・6H, 0などのウラン 酸塩; K, Co (NO, )。·3H, Oなどの亜硝酸塩; SiO, などの珪 酸塩; CuAsO<sub>1</sub>·Cu (OH) 1 などのひ酸塩および亜ひ酸塩; Cu (C2 H3 O2) 2 · Cu (OH) 2 などの酢酸塩; (NH4) 2 MnO2 (P2 O7) 2 な どの燐酸塩;アルミ酸塩、モリブデン酸塩、亜鉛酸塩、 アンチモン酸塩、タングステン酸塩セレン化物、チタン 酸塩、シアン化鉄塩、フタル酸塩、CaS、ZnS、CdSなど の無機顔料、コチニール・レーキ、マダー・レーキなど 10 の天然有機顔料、ナフトール・グリーンY、ナフトール ·グリーンBなどのニトロソ顔料;ナフトールエロー S、ピグメント・クロリン2Gなどのニトロ顔料;パー マネント・レッド4尺;ハンザエロー、ブリリアント・ カーミン68、スカーレット2Rなどのアゾ顔料;マラ カイン・グリーン、ローダミンBなどの塩基性染料レー キ、アシツド、グリーンレーキ、エオシン・レーキなど の酸性染料レーキ、アリザリン・レーキ、プルプリン・ レーキ、などの媒染染料レーキ、チオ・インジゴ・レッ ドB、インタンスレン・オレンジなどの建染染料顔料、 フタロシアニンブルー、フタロシアニングリーンなどの フタロシアニン顔料などの有機顔料などが挙げられる。 【0210】本発明の顔料分散剤は、ドライカラー法に よる着色、カラーコンパウンド法による着色またはマス ターバッチ法による着色のいずれかの方法による着色に も利用できるが、なかでもマスターバッチ法に特に好ま しく利用することができる。本発明に係るポリ塩化ビニ ル樹脂用滑剤は、本発明に係る末端が変性されていても よい低分子量エチレン系重合体からなるものである。本 発明の滑剤を用いたポリ塩化ビニル組成物において、滑 30 剤の配合割合はポリ塩化ビニル100重量部に対し、 0.05重量部ないし5重量部の範囲で、好ましくは 0. 1重量部ないし3重量部である。また、滑剤として 用いられる重合体は、数平均分子量が400ないし40 00重量部の範囲にあり、好ましくは500ないし10 00重量部の範囲であり、さらに、末端を変性した変性 体を用いる場合には、この変性体の酸価が2ないし70 の範囲にあり、好ましくは、酸価10から50の範囲で ある。変性体の酸価が70以上のときは、滑剤の初期滑 性が低下し、10以下では粘着性防止効果が低下する。 また、滑剤の数平均分子量が400以下では金属に対す る粘着性防止効果が劣り、4000以上では、初期およ び後期全般で滑性が低下する。また、滑剤の配合量割合 においては、0.05重量部以下では滑性効果が不足

【0211】上記の変性体を滑剤として使用するため に、本発明に係る低分子量エチレン系重合体の重合体鎖 の片側末端ピニル基またはピニリデン基含有オリゴマー を変性するモノマーとして、不飽和カルボン酸またはそ 50 沢、表面硬度、耐ブロッキング性、耐摩耗性を向上させ

し、5 重量部以上では滑性が過剰になり、組成物の可塑

化が困難になる。

の無水物が挙げられ、具体的には、アクリル酸、メタク リル酸、マレイン酸、無水マレイン酸、シトラコン酸、 無水シトラコン酸、フマル酸、イタコン酸、無水イタコ ン酸、3-シクロヘキセンカルボン酸、4-シクロヘキセン - カルボン酸、5-ノルボルネン-2・3-ジカルボン酸などを 挙げることが出来る。

【0212】本発明のポリ塩化ビニル樹脂添加剤を含む ポリ塩化ビニル樹脂は、ポリ塩化ビニル、またはポリ塩 化ビニルにポリエチレン、ポリプロピレン、ABS樹 脂、MBS樹脂、エチレン-酢酸ビニル共重合体、ポリ メチルメタアクリレートなどを混合したものであっても 差し使えない。また、これらの組成物には、さらに耐熱 安定剤を配合してもよい。

【0213】使用しうる耐熱安定剤としては、ポリ塩化 ビニル樹脂に対し安定化効果を示すものであれば何でも よく、例えば、鉛化合物、カドミウム化合物、バリウム 化合物、カルシウム化合物、亜鉛化合物、有機スズ化合 物、エポキシ化合物、キレーター等およびこれらの混合 物が使用される。本発明に係る滑剤を含むポリ塩化ビニ ル組成物は、さらに他の滑剤、充填剤、顔料、染料、可 塑剤、帯電防止剤、耐候安定剤を含んでいてもよい。

【0214】本発明に係る滑剤を含む組成物は、初期滑 性が優れるため、金属に対する粘着性が軽減され、安定 に成形でき、連続運転を長時間にわたって、行うことが できる。本発明に係る低分子量エチレン系重合体は、ワ ックスなどの公知の低分子量ポリエチレンが用いられる 用途に広く利用することができる。この際には、必要に 応じて種々の添加剤を添加して用いることもできる。

【0215】たとえば本発明に係る低分子量エチレン系 重合体を塗料改質剤として用いると、塗膜表面を改質す ることができ、たとえば艶消し効果に優れ、塗膜の耐摩 耗性を向上させることができ、木工塗料に高級感を付与 することができ、耐久性を向上させることができる。ま た本発明に係る低分子量エチレン系重合体をカーワック ス、フロアーポリッシュなどの艶出し剤として用いる と、光沢に優れ、塗膜物性を向上させることができる。 【0216】本発明に係る低分子量エチレン系重合体は 樹脂成形用離型剤として好適であり、熱可塑性樹脂ある いは熱硬化性樹脂に離型性を付与して成形サイクルを向 上させることができる。本発明に係る低分子量エチレン 系重合体はゴムとの相溶性に優れており、ゴムに離型性 を付与し、粘度調整をするゴム加工助剤として好適であ り、ゴム加工助剤として用いたときにはフィラーおよび 顔料の分散性を向上させ、ゴムに離型性、流動性を付与 するのでゴム成形時の成形サイクル、押出特性を向上さ せることができる。

【0217】本発明に係る低分子量エチレン系重合体は 紙の滑性、表面改質を改良する紙質向上剤として好適で あり、紙質向上剤として用いたときには、防湿性、光

ることができ、紙に高級感を付与し、耐久性を向上させることができる。本発明に係る低分子量エチレン系重合体はインキ用耐摩耗性向上剤として好適であり、耐摩耗性向上剤として用いたときには、インキ表面の耐摩耗性、耐熱性を向上させることができる。

【0218】本発明に係る低分子量エチレン系重合体は 繊維加工助剤として好適であり、繊維を樹脂加工する際 に繊維加工助剤として用いたときには、繊維に柔軟性、 滑性を付与することができる。本発明に係る低分子量エ チレン系重合体はホットメルト添加剤として好適であ り、ホットメルト接着剤に耐熱性、流動性を付与するこ とができる。自動車、建材などの耐熱性が要求される分 野でのホットメルト接着剤の品質を向上させることがで きる。

【0219】本発明に係る低分子量エチレン系重合体は電気絶縁剤として好適であり、たとえばフィルムコンデンサーの電気絶縁性、耐熱的を向上させることができる。本発明に係る低分子量エチレン系重合体はクレヨン、ローソクなどの天然ワックスへの配合剤として好適であり、表面硬度および軟化点を向上させることができ 20る。

【0220】本発明に係るオレフィンの重合方法により、良好な重合活性を示し、また分子量分布の狭い重合体を得ることができる。さらに、2種以上のオレフィンを共重合したときに、組成分布が狭いオレフィン共重合体を得ることができる。

## [0221]

【実施例】以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。なお、合成例で得られた化合物の構造は、270MHz 30

<sup>1</sup>H-NMR (日本電子 GSH-270)、FD-質量分析(日本電子 SX-102A)等を用いて決定した。

【0222】また、本実施例において、極限粘度([n])は、135 $^{\circ}$ 、デカリン中で測定した。

# (1) 配位子の合成

# 〔配位子L-1の合成〕 合成例

充分に乾燥、アルゴン置換した30mlの反応器に、3-t-ブ

### 【0226】 (配位子L-6の合成)

## 合成例

充分に乾燥、窒素置換した100m I の反応器に、3-クミル-5-メチルサリチルアルデヒド3. 8 9 g (1 5. 0 mm o I)、トルエン30 m I、メチルアミン チルサリチルアルデヒド2.02g(10.9mmol)、トルエン10ml、メチルアミン0.86g(40%水溶液、11.1mmol)を仕込み、室温で24時間攪拌した。この反応溶液を減圧濃縮して下記式 L-1で示される黄色オイル2.05g(収率99%)を得た。

'H-NMR (CDCI<sub>3</sub>): 1. 43 (s, 9H), 3. 46 (s, 3H), 6. 79 (t, 1 H), 7. 07-7. 32 (m, 2H), 8. 32 (s, 1H), 14. 1 (s, 1H)

### [0223]

### 0 【化37】

1-1

【0224】以下同様の方法で対応するフェノール化合物とアルキルアミン化合物より配位子L-2~L-5を合成した。

## 0 〔配位子L-2の合成結果〕

<sup>1</sup> H-NMR (CDCI<sub>1</sub>): 0. 95 (s, 2H), 0. 97 (s, 2H), 1. 42 (s, 9H), 2. 93 (m, 1H), 6. 79 (t, 1H), 7. 05-7. 29 (m, 2H), 8. 47 (s, 1H), 13. 3 (s, 1H)

## 〔配位子L-3の合成結果〕

 $^1$  H-NMR (CDC1, ) : 1. 47 (s, 9H), 1. 77–1. 94 (m, 2H), 2: 16–2. 3 3 (m, 2H), 2. 35–2. 41 (m, 2H), 4. 04–4. 16 (m, 1H), 6. 79 (t, 1 H), 7. 06–7. 32 (m, 2H), 8. 23 (s, 1H), 14. 2 (s, 1H)

### 〔配位子L-4の合成結果〕

<sup>1</sup> H-NMR (CDCI<sub>3</sub>): 1. 44 (s, 9H), 1. 65-1. 98 (m, 8H), 3. 73-3. 7 8 (m, 1H), 6. 79 (t, 1H), 7. 06-7. 31 (m, 2H), 8. 33 (s, 1H), 14. 1 (s, 1H)

### (配位子L-5の合成結果)

<sup>1</sup> H-NMR (CDCI<sub>3</sub>): 1. 18-1. 29 (m, 3H), 1. 48 (s, 9H), 1. 52-1. 6 2 (m, 2H), 1. 69-1. 79 (m, 1H), 1. 82-1. 89 (m, 1H), 2. 22-2. 39 (m, 2H), 3. 29-3. 32 (m, 1H), 6. 79 (t, 1H), 7. 08-7. 32 (m, 2H), 8. 29 (s, 1H), 14. 1 (s, 1H)

#### [0225]

### 【化38】



1. 75g(40%水溶液、22.5mmol)を仕込み、室温で5時間攪拌した。この反応溶液を減圧濃縮して、シリカゲルカラムクロマトグラフィーで精製することにより、下記式 L-6で示される黄色オイル3.87 50 g(収率97%)を得た。

1 H-NMR (CDC1,): 1. 69 (s, 6H), 2. 34 (s, 3H), 3. 33 (s, 3H), 6. 93-7. 29 (m. 7H), 8. 21 (s. 1H), 13. 5 (s. 1H)

[0227]

【化39】

【0228】以下同様の方法で対応するフェノール化合 物とアルキルアミン化合物より配位子L-7~L-10を合成 した。

### 〔配位子L-7の合成結果〕

<sup>1</sup> H-NMR (CDCl<sub>3</sub>): 1. 79 (s, 6H), 3. 38 (s, 3H), 7. 15 (t, 1H), 7.

# 【0230】(2) 遷移金属化合物の合成 [0231]

【合成例1】充分に乾燥、アルゴン置換した100mlの反 応器に、化合物L-1 1.52g (7.79mmol) とジエチルエー テル30mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム5. Oml (n-ヘキサン溶液、1. 56M、7. 80mmo 1)を5分かけて滴下し、そのままの温度で3時間攪拌し た後、ゆっくりと室温まで昇温し、室温でさらに2時間 攪拌してリチウム塩を調整した。この溶液を、-78℃に 冷却したZrCl (THF), 錯体1. 48g (3. 92mmol) を含むテト ラヒドロフラン溶液30mlに滴下した。滴下終了後、ゆっ くりと室温まで昇温しながら攪拌を続けた。さらに室温 で12時間攪拌した後、反応液を溶媒留去した。得られた 固体を塩化メチレン30mlに溶解し、不溶物をガラスフィ ルターで除去した。ろ液を減圧濃縮し、析出した固体を ジエチルエーテルで再沈させ、減圧乾燥することにより 下記式(1)で示される黄色粉末の化合物を1.54g(収率7 2%)を得た。

<sup>1</sup> H-NMR (CDCl<sub>3</sub>): 1.54 (s, 18H), 3.37 (s, 6H), 6.92 (t, 2H), 7. 18-7. 58 (m. 4H), 8. 15 (s. 2H)

FD-質量分析: 542

[0232]

【化41】

20-7. 40 (m, 4H), 7. 43 (t, 2H), 7. 61 (d, 2H), 7. 76 (d, 1H), 8. 3 7 (s. 1H), 13, 9 (s. 1H)

### 〔配位子L-8の合成結果〕

1 H-NMR (CDCI<sub>2</sub>): 1.59-2.35 (m, 8H), 1.73 (s, 6H), 2.35 (s, 3 H), 3. 62-3. 67 (m, 1H), 6. 92-7. 27 (m, 7H), 8. 23 (s, 1H), 13. 3 (s. 1H)

### 〔配位子L-9の合成結果〕

<sup>1</sup> H-NMR (CDCI<sub>3</sub>): 1. 12-2. 26 (m, 17H), 2. 32 (s, 3H), 3. 19-3. 23 (m, 1H), 6. 91-7. 25 (m, 7H), 8. 18 (s, 1H), 13. 1 (s, 1H)

### 〔配位子L-10の合成結果〕

<sup>1</sup> H-NMR (CDCI<sub>3</sub>): 1. 66 (s, 6H), 1. 70 (s, 6H), 3. 31 (s, 3H), 6. 98-7. 34 (m, 12H), 8. 21 (s, 1H), 13. 6 (s, 1H)

[0229]

【化40】

### [0233]

【合成例2】充分に乾燥、アルゴン置換した100mlの反 応器に、化合物L-2 1.25g(4.00mmol)とジエチルエー テル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム2.50ml (n-ヘキサン溶液、1.6M、4.00mmo 1)を5分かけて滴下し、そのままの温度で2時間攪拌し た後、ゆっくりと室温まで昇温し、室温でさらに3時間 攪拌してリチウム塩を調整した。この溶液を、-78℃に 冷却したZrCl4 (THF) 4 錯体0.76g (2.00mmol)のテトラヒ ドロフラン溶液20mlに滴下した。滴下終了後、ゆっくり と室温まで昇温しながら攪拌を続けた。さらに室温で12 時間攪拌した後、反応液を溶媒留去した。得られた固体 を塩化メチレン10mlに溶解し、不溶物をガラスフィルタ ーで除去した。ろ液を減圧濃縮し、析出した固体をジエ チルエーテルとヘキサンで再沈させ、減圧乾燥すること により下記式(2)で示される黄色粉末の化合物を0.88g (収率56%)を得た。

1 H-NMR (CDC1,): 0. 48-0. 98 (m, 8H), 1. 41 (s, 18H), 3. 25 (m, 2H), 6. 90 (t, 2H), 7. 19-7. 55 (m, 4H), 8. 49 (s, 2H)

FD-質量分析:594

50 [0234]

### [0235]

【合成例3】充分に乾燥、アルゴン置換した100mlの反 応器に、化合物L-3 1.26g(5.34mmol)とジエチルエー テル25mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム3.5ml (n-ヘキサン溶液、1.56M、5.46mmo 1)を5分かけて滴下し、そのままの温度で3時間攪拌し た後、ゆっくりと室温まで昇温し、室温でさらに2時間 攪拌してリチウム塩を調整した。この溶液を、-78℃に 冷却したZrCl4 (THF) a 錯体1.00g (2.66mmol)のテトラヒ ドロフラン溶液25mlに滴下した。滴下終了後、ゆっくり と室温まで昇温しながら攪拌を続けた。さらに室温で12 時間攪拌した後、反応液を溶媒留去した。得られた固体 を塩化メチレン20mlに溶解し、不溶物をガラスフィルタ ーで除去した。ろ液を減圧濃縮し、析出した固体を塩化 メチレンとヘキサンで再沈させ、減圧乾燥することによ り下記式(3)で示される黄色粉末の化合物を0.18g(収 率11%)を得た。

<sup>1</sup> H-NMR (CDCI<sub>3</sub>): 1. 43-2. 22 (m, 30H), 4. 52 (bs, 2H), 6. 93 (t, 2H), 7. 25-7. 64 (m, 4H), 8. 27 (s, 2H)

FD-質量分析: 622

[0236]

【化43】

$$\begin{array}{c}
\downarrow \\
0 \\
\downarrow \\
0
\end{array}$$

$$\begin{array}{c}
2 \text{rCl} \\
2
\end{array}$$
(3)

### [0237]

【合成例 4】充分に乾燥、アルゴン置換した50mlの反応器に、化合物L-4 0.99g (4.00mmol)とジエチルエーテル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム2.63ml (n-ヘキサン溶液、1.52M、4.00mmol)を5分かけて滴下し、そのままの温度で2時間攪拌した後、ゆっくりと室温まで昇温し、室温でさらに3時間攪拌してリチウム塩を調整した。この溶液を、-78℃に冷却したZrCl。(THF)、錯体0.76g (2.00mmol)のテトラヒドロフラン溶液20mlに滴下した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。さらに室温で12時間攪拌した後、反応液を溶媒留去した。得られた固体を塩化メチレン40mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体を塩化メチレン40mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体を塩化メチレン40mlに溶解し、不溶物をガラスフィルターで除去した。ろ次を減圧濃縮し、析出した固体を塩化メチレンとのませいで面かさせ、減圧的過することにと

り下記式(4)で示される黄色粉末の化合物を0.97g (収率75%)を得た。

<sup>1</sup> H-NMR (CDC1<sub>3</sub>): 1. 18-1. 65 (m, 34H), 2. 16 (bs. 2H), 6. 91 (t, 2H), 7. 18-7. 57 (m, 4H), 8. 28 (s, 2H)

FD-質量分析:650

[0238]

【化44】

#### [0239]

【合成例5】充分に乾燥、アルゴン置換した50mlの反応 器に、化合物L-5 1.10g(4.00mmol)とジエチルエーティ ル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブ チルリチウム2. 50ml (n-ヘキサン溶液、1.6M、4.00mmol) を5分かけて滴下し、そのままの温度で2時間攪拌した 後、ゆっくりと室温まで昇温し、室温でさらに3時間攪 拌してリチウム塩を調整した。この溶液を、-78℃に冷 却したZrCl。(THF)、錯体0.76g(2.00mmol)のテトラヒド ロフラン溶液20mlに滴下した。滴下終了後、ゆっくりと 室温まで昇温しながら攪拌を続けた。さらに室温で12時 間攪拌した後、反応液を溶媒留去した。得られた固体を 塩化メチレン20mlに溶解し、不溶物をガラスフィルター で除去した。ろ液を減圧濃縮し、析出した固体をジエチ ルエーテルとヘキサンで再沈させ、減圧乾燥することに より下記式(5)で示される黄色粉末の化合物を1.13g 30 (収率81%)を得た。

¹ H-NMR (CDCI<sub>3</sub>) : 0. 85-1. 87 (m, 34H), 2. 16-2. 28 (m, 4H), 3. 85-4. 12 (m, 2H), 6. 92 (t, 2H), 7. 19-7. 59 (m, 4H), 8. 32-8. 41 (m, 2H)

FD-質量分析:702

[0240]

【化45】

## [0241]

冷却したZrCl₁(THF)₁錯体0.76g(2.00mol)を含むテトラ ヒドロフラン溶液25mlに滴下した。滴下終了後、ゆっく りと室温まで昇温しながら攪拌を続けた。さらに室温で 12時間攪拌した後、反応液を溶媒留去した。得られた固 体を塩化メチレン50mlに溶解し、不溶物をガラスフィル ターで除去した。ろ液を減圧濃縮し、析出した固体をn-ヘキサンで再沈し、減圧乾燥することにより下記式 (1 1) で示される黄色粉末の化合物を1.10g (収率79%)を 得た。

<sup>1</sup> H-NMR (CDCl<sub>3</sub>): 0.86-1.91 (m, 18H), 2.35 (s, 6H), 6.92-7. 52 (m, 14H), 7. 78 (s, 2H)

FD-質量分析: 694

[0242] 【化46】

(11)

### [0243]

【合成例7】充分に乾燥、アルゴン置換した50mlの反応 器に、化合物L-7 1.38g(4.19mmol)とジエチルエーテ ル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブ チルリチウム2.64ml (n-ヘキサン溶液、1.59M、4.19mmo 1)を5分かけて滴下し、そのままの温度で2時間攪拌し た後、ゆっくりと室温まで昇温し、室温でさらに3時間 30 FD-質量分析:802 攪拌してリチウム塩を調整した。この溶液を、-78℃に 冷却したZrCl4 (THF) 4 錯体0. 79g (2. 09mmol)のテトラヒ ドロフラン溶液20mlに滴下した。滴下終了後、ゆっくり と室温まで昇温しながら攪拌を続けた。さらに室温で12 時間攪拌した後、反応液を溶媒留去した。得られた固体 を塩化メチレン60mlに溶解し、不溶物をガラスフィルタ ーで除去した。ろ液を減圧濃縮し、析出した固体をジエ チルエーテルで再沈し、減圧乾燥することにより下記式 (12) で示される黄色粉末の化合物を1.12g (収率65 %)を得た。

'H-NMR (CDCI<sub>3</sub>): 1.79 (s, 12H), 2.40 (s, , 6H), 6.90-7.80 (m, 24H), 7. 98 (s, 2H)

FD-質量分析:818 [0244]

【化47】

(12)

#### 10 [0245]

【合成例8】充分に乾燥、アルゴン置換した50mlの反応 器に、化合物L-8 1.35g(4.00mmol)とジエチルエーテ ル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブ チルリチウム2.56ml (n-ヘキサン溶液、1.56M、5.46mmo 1)を5分かけて滴下し、そのままの温度で2時間攪拌し た後、ゆっくりと室温まで昇温し、室温でさらに3時間 攪拌してリチウム塩を調整した。この溶液を、-78℃に 冷却したZrCl4 (THF) 3 錯体0.76g (2.00mmol)のテトラヒ ドロフラン溶液20mlに滴下した。滴下終了後、ゆっくり 20 と室温まで昇温しながら攪拌を続けた。さらに室温で12 . 時間攪拌した後、反応液を溶媒留去した。得られた固体 を塩化メチレン40mlに溶解し、不溶物をガラスフィルタ ーで除去した。ろ液を減圧濃縮し、析出した固体を塩化 ジエチルエーテルとn-ヘキサンで再沈し、減圧乾燥す ることにより下記式(13)で示される黄色粉末の化合物 を1.14g (収率71%)を得た。

<sup>1</sup> H-NMR (CDCI<sub>3</sub>): 0. 95-1. 81 (m, 16H), 1. 69 (s, 6H), 1. 90 (s, 6H), 2. 36 (s, 6H), 3. 54-3. 62 (m, 2H), 6. 95-7. 46 (m, 14H), 8. 02 (s, 2H)

[0246] 【化48】

(13)

### [0247]

40

【合成例9】充分に乾燥、アルゴン置換した50mlの反応 器に、化合物L-9 1.39g (4.00mmol) とジエチルエーテ ル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブ チルリチウム2.56ml (n-ヘキサン溶液、1.56M、4.00mmo 1)を5分かけて滴下し、そのままの温度で2時間攪拌し た後、ゆっくりと室温まで昇温し、室温でさらに3時間 攪拌してリチウム塩を調整した。この溶液を、-78℃に 50 冷却したZrCl<sub>4</sub> (THF) a 錯体0.76g (2.00mmol)のテトラヒ

ドロフラン溶液20mlに滴下した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。さらに室温で12時間攪拌した後、反応液を溶媒留去した。得られた固体を塩化メチレン40mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体をジエチルエーテルとnーヘキサンで再沈し、減圧乾燥することにより下記式(14)で示される黄色粉末の化合物を1.16g (収率68%)を得た。

<sup>1</sup> H-NMR (CDCI<sub>1</sub>): 0. 80-2. 41 (m, 40H), 3. 27-3. 32 (m, 2H), 6. 96-7. 45 (m, 14H), 8. 12 (s, 2H)

FD-質量分析:854 【0248】

【化49】

(14)

#### [0249]

【合成例10】充分に乾燥、アルゴン置換した100mlの 反応器に、化合物L-10 1.31g (3.50mmol)とジエチルエ ーテル20mlを仕込み、-78℃に冷却し攪拌した。これにn -ブチルリチウム2.38ml (n-ヘキサン溶液、1.59M、3.78m mol)を5分かけて滴下し、そのままの温度で2時間攪拌 した後、ゆっくりと室温まで昇温し、室温でさらに3時 間攪拌してリチウム塩を調整した。この溶液を、-78℃ に冷却したZrCl。(THF), 錯体0.66g (1.75mmol)のテトラ ヒドロフラン溶液20mlに滴下した。滴下終了後、ゆっく りと室温まで昇温しながら攪拌を続けた。さらに室温で 12時間攪拌した後、反応液を溶媒留去した。得られた固 体を塩化メチレン20mlに溶解し、不溶物をガラスフィル ターで除去した。ろ液を減圧濃縮し、析出した固体をジ エチルエーテルとn-ヘキサンで再沈し、減圧乾燥するこ とにより下記式(15)で示される黄色粉末の化合物を 0.22g (収率14%)を得た。

<sup>1</sup> H-NMR (CDCl<sub>3</sub>): 1. 57-2. 32 (m, 30H), 6. 94-7. 57 (m, 24H), 7. 77 (s, 2H)

FD-質量分析:902 【0250】 【化50】 98 CH<sub>3</sub> N 2 rcl<sub>2</sub> Ph

(15)

### 10 [0251]

【実施例1】充分に窒素置換した内容積500mlのガ ラス製反応器に、トルエン250mlを装入し、エチレ ン100リットル/hrで液相及び気相を飽和させた。そ の後、メチルアルミノキサンをアルミニウム原子換算で 1. 25 mmo I、引き続き、下記ジルコニウム化合物 (1)を0.00025mmol加え重合を開始した。 エチレンを100リットル/hrで連続的に供給し、常圧 . 下、25℃で5分間重合を行った後、少量のイソブタノ ールを添加することにより重合を停止した。重合終了 20 後、反応物を少量の塩酸を含む1リットルのメタノール 中に加えてポリマーを析出させた。メタノールで洗浄 後、80℃にて10時間減圧乾燥した。得られたポリエ チレンは、1. 31gであり、重合活性は62. 9kg /mmol-Zr・hrであり、Mw=2750、Mw **/Μn=1.65、極限粘度[η]は0.12dl/** g、片末端ビニル化率90.5mol%であった。

# [0252]

### 【化51】

30

$$\begin{array}{c}
\text{CH}_{3} \\
\text{N} \\
\text{TrCI}_{2} \\
\text{tBu}
\end{array}$$
(1)

#### [0253]

【実施例2】充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記ジルコニウム化合物(2)を0.0002mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で5分間重合を行った後、少量のイソプタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥した。得られたポリエチレンは、0.64gであり、極限粘度[η]は0.19dl/gであった。

### 50 [0254]

### [0255]

【実施例3】充分に窒素置換した内容積500mlのガ ラス製反応器に、トルエン250mlを装入し、エチレ 10 ン100リットル/hrで液相及び気相を飽和させた。そ ン100リットル/hrで液相及び気相を飽和させた。そ の後、メチルアルミノキサンをアルミニウム原子換算で 1. 25 mm o I、引き続き、下記ジルコニウム化合物 (3) を 0. 0 0 0 1 mm o I 加え重合を開始した。エ チレンを100リットル/hrで連続的に供給し、常圧 下、25℃で5分間重合を行った後、少量のイソブタノ ールを添加することにより重合を停止した。重合終了 後、反応物を少量の塩酸を含む1リットルのメタノール 中に加えてポリマーを析出させた。メタノールで洗浄 後、80℃にて10時間減圧乾燥した。得られたポリエ 20 チレンは、1.39gであり、極限粘度 [n] は0.1 チレンは、0.25gであり、極限粘度[n]は0.1 Od I/gであった。

[0256]

【化53】

### [0257]

【実施例4】充分に窒素置換した内容積500mlのガ ラス製反応器に、トルエン250mlを装入し、エチレ ン100リットル/hrで液相及び気相を飽和させた。そ の後、メチルアルミノキサンをアルミニウム原子換算で 1. 25mmol、引き続き、下記ジルコニウム化合物 (4) を 0. 0 0 0 1 mm o 1 加え重合を開始した。エ チレンを100リットル/hrで連続的に供給し、常圧 下、25℃で5分間重合を行った後、少量のイソブタノ ールを添加することにより重合を停止した。重合終了 後、反応物を少量の塩酸を含む1リットルのメタノール 中に加えてポリマーを析出させた。メタノールで洗浄 後、80℃にて10時間減圧乾燥した。得られたポリエ チレンは、0.97gであり、重合活性は116.4k g/mmol-Zr·hrであり、Mw=3800、Mw /Mn=1. 75、極限粘度 [η] は0. 15 d l / g、片末端ビニル化率92mol%であった。

[0258]

【化54】

t Bu

100

[0259]

【実施例5】充分に窒素置換した内容積500mlのガ ラス製反応器に、トルエン250mlを装入し、エチレ の後、メチルアルミノキサンをアルミニウム原子換算で 1. 25 mm o I、引き続き、下記ジルコニウム化合物 (5) を 0. 0 0 0 2 mm o l 加え重合を開始した。エ チレンを100リットル/hrで連続的に供給し、常圧 下、25℃で5分間重合を行った後、少量のイソブタノ ールを添加することにより重合を停止した。重合終了 後、反応物を少量の塩酸を含む1リットルのメタノール 中に加えてポリマーを析出させた。メタノールで洗浄 後、80℃にて10時間減圧乾燥した。得られたポリエ 7 d l/gであった。

[0260]

【化55】

[0261]

30

【比較例1】充分に窒素置換した内容積500m | のガ ラス製反応器に、トルエン250mlを装入し、エチレ ン100リットル/hrで液相及び気相を飽和させた。そ の後、メチルアルミノキサンをアルミニウム原子換算で 1. 25mmol、引き続き、下記ジルコニウム化合物 (6) を 0.005 mm o l 加え重合を開始した。エ チレンを100リットル/hrで連続的に供給し、常圧 下、25℃で5分間重合を行った後、少量のイソブタノ ールを添加することにより重合を停止した。重合終了 40 後、反応物を少量の塩酸を含む1リットルのメタノール 中に加えてポリマーを析出させた。メタノールで洗浄 後、80℃にて10時間減圧乾燥した。得られたポリエ チレンは、1.85gであり、重合活性は44.4kg /mmoi−Zr・hrであり、Mw=9500、Mw/Mn = 1. 85、極限粘度 [ŋ] は0. 41 d l / g、片末 端ビニル化率88mol%であった。

[0262]

【化56】

### [0263]

【比較例2】充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記ジルコニウム化合物(7)を0.005mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で30分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥した。得られたポリエチレンは、2.15gであり、極限粘度[η]は0.40dl/gであった。

### [0264]

### 【化57】

$$\begin{array}{c}
\text{tBu} \\
\text{N} \\
\text{1} \\
\text{N} \\
\text{2}
\end{array}$$

$$\begin{array}{c}
\text{2rCl}_{2} \\
\text{2}
\end{array}$$

$$\begin{array}{c}
\text{17}
\end{array}$$

### [0265]

【比較例3】充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記ジルコニウム化合物(8)を0.0005mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で30分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥した。得られたポリエチレンは、2.07gであり、極限粘度[η]は0.48dl/gであった。

[0266]

【化58】

[0267]

【比較例4】充分に窒素置換した内容積500mlのガ ラス製反応器に、トルエン250mlを装入し、エチレ ン100リットル/hrで液相及び気相を飽和させた。そ の後、メチルアルミノキサンをアルミニウム原子換算で 1. 25 mmol、引き続き、下記ジルコニウム化合物 (9) を 0. 0 0 0 2 mm o l 加え重合を開始した。エ チレンを100リットル/hrで連続的に供給し、常圧 下、25℃で30分間重合を行った後、少量のイソブタ ノールを添加することにより重合を停止した。重合終了 後、反応物を少量の塩酸を含む1リットルのメタノール 中に加えてポリマーを析出させた。メタノールで洗浄 後、80℃にて10時間減圧乾燥した。得られたポリエ 20 チレンは、1.09gであり、重合活性は65.4kg /mmol-Zr・hrであり、Mw=13800、Mw /Mn=1.87、極限粘度[η]は0.44dl/ g、片末端ビニル化率84mol%であった。

[0268]

【化59】

[0269]

30

【比較例5】充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記ジルコニウム化合物(10)を0.005mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で15分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥した。得られたポリエチレンは、2.47gであり、極限粘度[η]は0.61dl/gであった。

[0270]

【化60】

.

### [0271]

【実施例6】充分に窒素置換した内容積500mlのガ **,ラス製反応器に、トルエン250mlを装入し、エチレ** ン100リットル/hrで液相及び気相を飽和させた。 その後、メチルアルミノキサンをアルミニウム原子換算 で1.25mmol、引き続き、下記ジルコニウム化合 物(11)を0.00005mmol加え重合を開始 した。エチレンを100リットル/hrで連続的に供給 し、常圧下、25℃で5分間重合を行った後、少量のイ ソブタノールを添加することにより重合を停止した。重 合終了後、反応物を少量の塩酸を含む1リットルのメタ ノール中に加えてポリマーを析出させた。メタノールで 洗浄後、80℃にて10時間減圧乾燥した。得られたポ リエチレンは、0.40gであり、重合活性は960k 20 g/mmol-Zr·hrであり、Mw=2880、M w/Mn=1.65、 $[\eta]=0.15dl/g$ 、片末 端ビニル化率=94.3mol%であった。

#### [0272]

【実施例7】充分に窒素置換した内容積1000mlの ステンレス製オートクレーブに、ヘプタン500mlを 装入し、室温でエチレン100リットル/hrで15分 間、液相及び気相を飽和させた。続いて80℃に昇温し た後、エチレン8kg/cm²-Gに昇圧し、温度を維持 した。MMAO(東ソーファインケム社製)のヘキサン 30 溶液(アルミニウム原子換算1.00mmo | /m | ) 0.5ml(0.5mmol)を圧入し、ついで化合物 (11)のトルエン溶液(0.0003mmol/m I) 1ml(0.00003mmol)を圧入し、重合 を開始した。エチレンガスを連続的に供給しながら圧力 を保ち、80℃で15分間重合を行った後、5mlのメ タノールを圧入することにより重合を停止した。得られ たポリマー溶液を、少量の塩酸を含む3リットルのメタ ノール中に加えてポリマーを析出させた。メタノールで 洗浄後、80℃にて10時間減圧乾燥した。得られたエ 40 チレン重合体は9.73gであり、重合活性は1297 kg/mmol-Zr·hrであり、Mw=2720、 Mw/Mn=1.60、[ $\eta$ ] = 0.14d1/g、片 末端ビニル化率=94.0mol%であった。

### [0273]

【実施例8】充分に窒素置換した内容積2000mlのステンレス製オートクレーブに、室温でヘプタン1000mlを装入し、150℃に昇温した。続いてオートクレーブ内をエチレンで30kg/cm²G加圧し、温度を維持した。MMAO(東ソーファインケム社製)のへ50

104

キサン溶液(アルミニウム原子換算1.00mmol/ml)0.5ml(0.5mmol)を圧入し、次いで化合物(11)のトルエン溶液(0.0002mmol/ml)0.5ml(0.0001mmol)を圧入し、重合を開始した。エチレンガス雰囲気下、150℃で30分間重合を行った後、少量のメタノールを圧入することにより重合を停止した。得られたポリマー溶液を、少量の塩酸を含む3リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃10にて10時間減圧乾燥した。得られたエチレン重合体は18.8gであり、重合活性は376kg/mmol-Zr・hr、Mw=2230、Mw/Mn=1.52、[η]=0.12dl/g、片末端ビニル化率=94.2mol%であった。

# [0274]

【化61】

(11)

#### [0275]

### [0276]

【実施例10】下記ジルコニウム化合物(12)を0. 000003mmolmえた以外は実施例7と同様に重合をおこなった。得られたポリエチレンは、11.2gであり、重合活性は1490kg/mmol-Zr・hrであり、Mw=2350、Mw/Mn=1.63、極限粘度 [n] は0.12dl/g、片末端ビニル化率=96.0mol%であった。

### [0277]

【実施例11】下記ジルコニウム化合物(12)を0.0001mmolmえた以外は実施例8と同様に重合をおこなった。得られたポリエチレンは、18.9gであり、重合活性は378kg/mmol-Zr・hrであり、Mw=2050、Mw/Mn=1.52、極限粘度[η]は0.10dl/g、片末端ビニル化率=94.6mol%であった。

#### [0278]

【化62】

(12)

### [0279]

【実施例12】下記ジルコニウム化合物(13)を0. 000005mmol加えた以外は実施例6と同様に重 合をおこなった。得られたポリエチレンは、0.86g であり、重合活性は2069kg/mmol-Zr・h rであり、Mw=3120、Mw/Mn=1.68、極 限粘度 [n] は 0. 19 d l / g、片末端ビニル化率= 94.0mol%であった。

[0280] 【化63】

(13)

### [0281]

【実施例13】下記ジルコニウム化合物(14)を0. 00005mmol加えた以外は実施例6と同様に重合 . をおこなった。得られたポリエチレンは、0.75gで あり、重合活性は1793kg/mmol-Zr・hr であり、Mw=2850、Mw/Mn=1.78、極限 粘度 [η] は 0. 15 d l / g、片末端ビニル化率= 9 4. 5 m o l % であった。

[0282]

【化64】

(14)

[0283]

【実施例14】下記ジルコニウム化合物(15)を0.

106

0002mmol加えた以外は実施例6と同様に重合を おこなった。得られたポリエチレンは、0.16gであ り、重合活性は97kg/mmol-Zr·hrであ り、Mw=2850、Mw/Mn=1.78、極限粘度  $[\eta]$  は 0.13dI/g、片末端ビニル化率= 96.2mol%であった。

[0284] 【化65】

(15)

[0285]

【比較例6】充分に窒素置換した内容積500mlのガ 20 ラス製反応器に、トルエン250mlを装入し、エチレ ン100リットル/hrで液相及び気相を飽和させた。 その後、メチルアルミノキサンをアルミニウム原子換算 で1、25mmol、引き続き、下記ジルコニウム化合 物(16)を0.00001mmol加え重合を開始し た。エチレンを100リットル/hrで連続的に供給 し、常圧下、25℃で5分間重合を行った後、少量のイ ソブタノールを添加することにより重合を停止した。重 合終了後、反応物を少量の塩酸を含む1リットルのメタ ノール中に加えてポリマーを析出させた。メタノールで 30 洗浄後、80℃にて10時間減圧乾燥した。得られたポ リエチレンは、1.71gであり、重合活性は2057  $kg/mmol-Zr\cdot hr$ , Mw=9600,  $M\dot{w}/$ Mn=2.11、であり、極限粘度[n]は0.48d 1/g、片末端ビニル化率=86.2mol%であっ

[0286]

【実施例15】200mlのガラス製フラスコに、実施 例4で得られたポリエチレン0.5gと、n-デカン9 0 m l 、ジイソプチルアルミニウムヒドリドのヘプタン 40 溶液 (1. Ommol/ml) 1. 19ml (1. 09mmol)を加え、100℃ で7時間攪拌した。続いて100℃に保ったまま、乾燥 空気を100L/hで6時間流通した。反応生成物を少量の塩 酸を含むメタノール/アセトン混合溶液(1.5L/1.5L) に加えて生成物を析出させた。メタノールで洗浄後、8 0℃で10時間減圧乾燥した。末端ヒドロキシル化ポリ エチレンを得た。

### [0287]

【実施例16】300mlのガラス製フラスコに、実施 例7で得られたエチレン重合体5gと、トルエン100 50 mlを加え、窒素雰囲気下で110℃に昇温した。続い

てm-クロロ過安息香酸 O. 34gを加え3時間攪拌し た。反応後、生成物をメタノール800mlに加えて生 成物を析出させた。メタノールで洗浄後、80℃で10 時間減圧乾燥した。末端ヒドロキシル化ポリエチレンを 得た。

### [0288]

【実施例17】300mlのガラス製フラスコに、実施 例8で得られたエチレン重合体15gと、無水マレイン 酸2.7gを加え、窒素雰囲気下200℃で6時間反応 を行った。過剰の未反応無水マレイン酸を減圧(10mmHg) 下、1時間で取り除き、末端無水マレイン化ポリエチレ ンを得た。

### [0289]

【実施例18】300mlのガラス製フラスコに、実施 例11で得られたポリエチレン5gと、キシレン100 m I、硫酸1. 47g、無水酢酸3. 79gを加え10 0℃で3時間反応を行った。反応後、生成物をメタノー ル800mlに加えて生成物を析出させた。メタノール で洗浄後、80℃で10時間減圧乾燥した。末端スルホ ン化ポリエチレンを得た。

### [0290]

【実施例19】十分に窒素置換した内容積500mlの ガラス製反応器にメジチレン250ml、実施例12で 得られたポリエチレン4.5gを加え、エチレンを100L /hrで流通しながら常圧で140℃に昇温した。その 後、メチルアルミノキサンをアルミニウム原子換算で2. 5mmol、ジメチルシリル(1-(2-メチルー4, 5―ベンズイ ンデニル)) (9-(2, 7-ジtertプチルフルオレニル)ジル コニウムジクロリドを0.005mmol加えて重合を開始し した。続いて生成物をメタノール2000mlに加えて 生成物を析出させた。メタノールで洗浄後、80℃で1

0時間減圧乾燥した。得られた重合体は10.5gであ り、13C-NMR分析によると1000炭素中1.10個の長鎖分岐 が含まれていた。

### [0291]

【比較例7】4.5gのポリエチレンを用いなかった以 外は実施例19と同様に重合を行った。得られた重合体 は4.9gであり、13C-NMR分析によると1000炭素中長 鎖分岐は含まれていなかった。

[0292]

### 【化66】

(16)

#### 20 [0293]

【発明の効果】本発明の低分子量エチレン系重合体は、 重合体鎖の片側末端に反応性を有するビニル型またはビ ニリデン型の不飽和結合を有するため、各種変性手法に よって、任意の官能基を付与することができる。このよ うな低分子量エチレン系重合体およびその変性体は、高 温離型性が優れ、かつ低温定着性が優れたトナー離型剤 を提供することができる。また、前記低分子量エチレン 系重合体およびその変性体は、顔料分散性にすぐれた顔 料分散剤や初期滑性に優れたポリ塩化ビニル樹脂用滑剤 た。15分後、少量のイソブタノールを加えて反応を停止 30 を提供することができる。さらに、塗料改質剤、艶出し 剤など多くの有用な組成物を提供することができる。

#### フロントページの続き

(72) 発明者 斎 藤 純 治

千葉県袖ヶ浦市長浦580-32 三井化学株 式会社内

(72) 発明者 松 浦 貞 彦

千葉県袖ヶ浦市長浦580-32 三井化学株 式会社内

(72) 発明者 松 川 直 人

千葉県袖ヶ浦市長浦580-32 三井化学株 式会社内

(72) 発明者 津 留 和 孝

山口県玖珂郡和木町和木6-1-2 三井 化学株式会社内

(72) 発明者 藤 田 照 典

千葉県袖ヶ浦市長浦580-32 三井化学株 式会社内

Fターム(参考) 4J128 AA01 AB00 AB01 AC01 AC08

AC26 AC31 AC32 AC37 AE02 AE05 BA01B BB01B BC05B BC08B BC09B BC12B BC15B BC16B BC17B BC18B BC25B BC27B BC29B EB01 EB02 FA02 FA03 FA04 FA07 GA04 GA06 GB01