Rotate Image in C++

```
#include <iostream>
#include <vector>
using namespace std;
void rotate(vector<vector<int>>& matrix) {
  int n = matrix.size();
  int m = matrix[0].size();
  // Transpose the matrix
  for (int i = 0; i < n; i++) {
     for (int j = i; j < m; j++) {
       swap(matrix[i][j], matrix[j][i]);
  // Reverse each row
  for (int i = 0; i < n; i++) {
     int sp = 0;
     int ep = m - 1;
     while (sp < ep) {
       swap(matrix[i][sp], matrix[i][ep]);
       sp++;
       ep--;
  }
void print2DArray(const vector<vector<int>>& array)
  for (size_t i = 0; i < array.size(); i++) {
     for (size_t j = 0; j < array[i].size(); j++) {
       cout << array[i][j] << " ";
     cout << endl;
int main() {
  vector<vector<int>> matrix = {
     \{1, 2, 3\},\
     \{4, 5, 6\},\
     \{7, 8, 9\}
  cout << "Original matrix:" << endl;</pre>
  print2DArray(matrix);
  rotate(matrix);
  cout << "Rotated matrix:" << endl;</pre>
  print2DArray(matrix);
  return 0;
}
```

Input Matrix:

Original matrix:

123

456

789

Step 1: Transpose the matrix

Transposing means swapping matrix[i][j] with matrix[j][i] for j > i.

i	j	matrix[i][j]	matrix[j][i]	Action
0	1	2	4	$Swap \rightarrow 2 \leftrightarrow 4$
0	2	3	7	$Swap \rightarrow 3 \leftrightarrow 7$
1	2	6	8	$Swap \rightarrow 6 \leftrightarrow 8$

After transpose:

147

258

369

Step 2: Reverse each row

Reverse each row of the transposed matrix:

Row Before	Row After
1 4 7	7 4 1
2 5 8	8 5 2
3 6 9	963

∜ Final Output:

Rotated matrix:

741

852

963

Original matrix:

123

456

789

Rotated matrix:

741

852

963