WISJ Machine Learning Summer School 2025

LLMs and Foundation Models for Material Science

Indra Priyadarsini, Ph.D. Lisa Hamada, Ph.D.

Research Scientist
IBM Research - Tokyo

New materials are potentially high impact

but discovery is very difficult ...

Energy and climate solutions

Greener feedstocks

Sustainable semiconductor processing

Clean water & food supplies

Plastics recycling

Novel therapies

Finding a good suitable material is like finding a needle in a haystack

How do we guide experiments towards materials with desired properties?

Given desired material properties,

10⁶⁰ possible candidates!

Accelerated Discovery – Discovery Technology Foundations

Accelerating scientific workflows with AI foundation models, toolkits and discovery platform services

Foundation Model for Materials

Foundation Model for materials, chemistry, biology

Global Presence

3000

Researchers

79
Years

18
Sites

Members working on Foundation Model for Materials and Chemistry

AI is gaining focus in materials, but efforts are fragmented and limited

Uni-modal models for discrete chemical classes focus on limited tasks such as prediction of individual properties, de novo generation of molecules, or prediction of synthesis pathways, etc.

Limitations:

- Scale & data today's models are small & limited
 - Small parameter size : ~100M
 - Small ground-truth data: ~1M
 - Single modality
 - Few chemical classes
 - Limited tasks
- Performance today's models perform poorly
 - Insufficient accuracies
 - Heavy emphasis still on human-workflow
 - No synergies between models
- Many redundant efforts reinventing similar models

Greater impact can be achieved by centralizing global efforts to build a foundation model

A foundation model trained with multi-modal data sets can be applied to diverse classes of downstream application tasks.

Increase scale and grow data:

- Larger parameter models: 10B+
- More diverse data
- Multi-modality & multi-representation

Improve performance and impact:

- Richer representation by fusing data
- Higher accuracy in predictions
- Higher fidelity generation
- Integrated knowledge

(Answer) Here is the 1st candidate.

Overview of Model Architecture

Modality-specific Foundation Models

C1CCC... SMILES model Transformer

[C][C=][C]... SELFIES model

3D pos. model Transformer

Fingerprint encoder

Graph algorithm

The molecule is a jak inhibitor, immunomodulator, protein tyrosine kinase inhibitor, protein kinase inhibitor and belongs to the autoimmune disease treatment class of molecules.

Text model MolT5, Mistral, etc.

Fused Foundation Model(s)

Late fusion algorithms

- Mixture of Experts
- Dynamic fusion
- Contrastive learning

vectors

Downstream tasks

Powerful representation for predictions

- Feature selection
- Domain constraints

Cross-modal inferences

- GFlowNet
- Contrastive learning

Overview of Model Architecture

Modality-specific Foundation Models

Fused Foundation Model(s)

Downstream tasks

Cross-modal inferences

- GFlowNet
- Contrastive learning

(1) SMILES Model

Transformers-based encoder-decoder model pre-trained on 91 M samples curated from PubChem (4 billion molecular tokens). We also include a **Mamba-based** variant for faster

inference, and **Polymer SMILES** version.

Eduardo Almeida Soares

Open-released in July '24

Variety of models

Model	Num Parameters	Architecture	Input	Open- Source
Base	289M	Transformers	SMILES	Yes
Large	738M	Transformers	SMILES	No
XL	2.5B	Transformers	SMILES	No
MoE	8 X 289M	Transformers	SMILES	Yes
SSM	336M	SSM - Mamba	SMILES	In process
PSMILES	289M	Transformers	Polymers	No

Key Performance example (MoleculeNet and QM9)

Methods	BBBP	HIV	BACE	ClinTox	SIDER	TOX21	QM9
MolFM	72.9	78.8	78.8	79.7	64.2	77.2	-
MoLFormer	90.9	80.5	86.3	91.2	65.5	80.4	1.59
IBM.materials.smi- TED289M (Frozen)	91.4	80.5	85.6	93.5	66.01	81.5	7.49
IBM.materials.smi- TED289M (Fine-Tuned)	92.2	76.8	88.2	94.3	65.6	81.9	1.32

(2) SELFIES Model

BART model is trained with SELFIES strings in a self-supervised manner with/without masking tokens. **1 billion** training samples extracted from ZINC22 and PubChem are used.

Indra Priyadarsini

Variety of models

Model	Num Parameters	Dataset	Tokens	Samples Trained
Mini	2.2 M	ZINC 22	173	8 B
Base	354M	ZINC 22	173	1B
Base-mix	354M	ZINC + PubChem	3160	1B
Large	1 B	ZINC + PubChem	3160	100 M

Key Performance example

Model	BBBP	HIV	BACE	ClinTox	Sider	Tox21
ChemBERTa	64.3	62.2	79.9	73.3	-	72.8
MolFormer-ZINC	89.9	78.4	87.7	82.2	66.8	83.2
MolFormer-XL	93.7	82.2	88.2	94.8	69	84.7
SELFormer	90.2	68.1	83.2	-	74.5	65.3
SELF-BART (mini)	92.6	74.2	87	88.3	62.4	75.1
SELF-BART (base)	95.2	83	88.8	96.9	65	76.5

(3) Molecular Graph

Akihiro Kishimoto

Training
Production rule
sequence

"0, 3, 7, 1, 1, 2, 4, -1"

Can always generate *valid* molecules

Downstream task
Property prediction

• $\Delta E = 2.3 \text{ eV}$ • $T_{melt} = 150 \text{ } \circ \text{C}$

Kishimoto, Akihiro, et al. "<u>Autoencoder based</u> on Graph and Recurrent Neural Networks and <u>Application to Property Prediction</u>." *Materials Research Society (MRS) Fall Meeting*. 2023.

Kishimoto, Akihiro, et al. "MHG-GNN: Combination of Molecular Hypergraph Grammar with Graph Neural Network." Al4Mat Workshop @ NeurIPS (2023).

Example of MHG-GNN performance evaluation (R2 score ↑)

		Polymer Photoresist		resist	Chromophore	
Method	Density	Bulk Modulus	Refractive Index	Homo	Lumo	Λ_{max} on NIR
MHG-GNN	0.578	0.516	0.865	0.896	0.845	0.845
ECFP6	0.523	0.482	0.823	0.791	0.782	0.708
Modred	0.567	0.505	0.859	0.894	0.830	0.842

Decoder

MHG+RNN

NeurIPS '23 AI4Mat

(4) Topological distance descriptor

Algorithm based model for extracting topological distance between substructures pairs considering intramolecular interaction.

HO S N

- Can target any substructure without size limitations
- Can handle distances of more than five bonds (a limitation in GNN)
- Consider multiple exception handling scenarios

L. Hamada, *et al.* "Molecular Descriptors Accounting for Intramolecular Interactions and Application to Chemical Property Prediction." *American Chemical Society (ACS) Fall Meeting.* 2022.

Key Performance example (R² score)

Dataset	Cmp. (CHCl ₃)	Cmp. (CH ₃ OH)		
Structure	Lar	Large		Large		Medium
property	$\lambda_{abs.}^{max}$	$\lambda_{abs.}^{max}$ $\Delta\lambda$		Δλ		
MolFormer	0.83	0.56	0.87	0.45		
MolCLR	0.73	0.43	0.78	0.40		
Mordred	0.84	0.51	0.86	0.46		
Atom Pair	0.84	0.58	0.84	0.50		
Our method	0.94	0.77	0.93	0.72		

High explainability of Chemical Insight

Cmp. $(CH_3OH) \lambda_{abs.}^{max}$						Cmp. (<i>CH</i> ₃ <i>OH</i>)	$\Delta \lambda$
Rank	Sub1	Sub2	Rep. Mol.		Rank	Sub1	Sub2	Rep. Mol.
1 st		<u></u>	ာ Squarium		2 nd		1	Donor Acceptor
3 rd			DP DP		4 th	1		. \$ -8 .{.

(5) Spectrum

UV spectrum is limited data availability due to the experimental setting.

By implementing domain-specific knowledge into the model, the prediction performance has been increased.

Hajime Shinohara

Shinohara, Hajime, et al. "Pre-Treatment Methods for Machine Learning in Finer UV Spectrum Inference." Materials Research Society (MRS) Fall Meeting. 2023.

Domain-specific knowledge implementation of UV spectrum from organic molecules

Ex)
Peak position addition
Curvature limitation
Curriculum learning method

Key results example

By implementing domain-specific knowledge of UV spectrum from organic molecules, the prediction performance of the spectrum has increased in various models even with small dataset (~3k)

Model	FCN	LSTM	GRU	RNN
Baseline	0.1513	0.1712	0.1597	0.1733
Our model	0.1377	0.1451	0.1445	0.1716

(6) Text description - Molecule Captioning from SMILES

"Translating" between molecules encoded in SMILES strings and natural language.

Geeth De Mel

Data Sources

- PubChem
- Chemical Function (CheF)
- ChemFOnt

Models

- MolT5 Small/Base/Large 60M ~ 770M
- Multitask text and Chemistry Small/Base augm - 60M ~ 223M
- Meditron 7B
- Mistral 7B
- XGBoost-based molecule property predictor

Results

Molecule Type	Model	BLEU-2	ROUGE-L	METEOR
Has Predicted Props.	Multitask T5	82.15	60.20	87.05
rias riedicied riops.	LlaSMol _{Mistral}	82.66	60.54	87.70
No Props. Predicted	Multitask T5	43.12	50.67	51.87
	$LlaSMol_{Mistral}$	35.24	47.95	45.50

Translation metrics by molecular type on dev. set

Model	Overall Increase	Translation Metric Increase	Prop. Metric Increase	BLEU-2	BLEU-4	ROUGE-L	METOR	Overall Prop. F1
baselines	2000	1620	0/2251	546556	5655563	5-2000	553100055	60000
MolT5-Small	0.00	0.00	0.00	70.90	51.20	54.40	70.10	7.88
Meditron-7b	13.15	5.50	15.70	79.20	57.60	57.50	75.70	8.93
Multitask T5	15.31	5.23	18.67	78.22	56.73	57.28	76.27	19.10
LlaSMolssurat	10.59	4.68	12.56	78.84	57.17	56.50	74.87	15.35
Ensembled	15.21	5.52	18.44	78.70	57.04	57.51	76.72	19.09

Overall increase from MolT5-Small baseline and translation metrics results on dev. set

Overview of Model Architecture

Modality-specific Foundation Models

The molecule is a lak inhibitor

C1CCC...

Text model MoIT5, Mistral, etc.

Fused Foundation Model(s)

Late fusion algorithms

- Naïve concatenation
- Mixture of Experts
- Dynamic fusion
- Contrastive learning

Fused representation vectors

Downstream tasks

Powerful representation for predictions

- Feature selection
- · Domain constraints

Multi-modal feature representations improve downstream prediction accuracy

Single modality

Multi-modality

	BBBP	HIV	BACE	ClinTox	SIDER	Tox21
SELFIES (BART)	95.22	83.04	88.77	96.86	64.95	76.53
Graph (MHG)	93.54	82.89	89.53	87.46	66.93	79.32
SMILES (MolFormer-XL)	93.70	82.20	88.21	94.80	69.00	84.70
SELFIES + Graph	95.35	83.93	88.66	92.31	66.02	78.81
SELFIES + SMILES	96.42	83.99	89.80	99.82	64.41	80.48
SMILES + Graph	96.60	84.93	90.48	99.59	65.20	78.15
SELFIES + SMILES + Graph	96.06	85.28	90.00	99.94	65.65	79.19

Overview of Model Architecture

Modality-specific Foundation Models

SMILES model C1CCC... Transformer 3 SELFIES model [C][C=][C]... Graph model GNN + MHG

Text model MoIT5, Mistral, etc.

Fused Foundation Model(s)

Downstream tasks

Powerful representation for predictions

Cross-modal inferences

- GFlowNet
- Contrastive learning

Cross-Modal Inferences

Projectors/inverse-projectors are trained to align different modal representations on a common latent space so that modality-to-modality (cross-modal) inferences are achieved.

Seiji Takeda

Battery Materials Discovery Empowered by AI and Foundation Models

Young-Hye Na

Battery Materials

- Large design space and multivariable relationships
- Complexities at multiple-length scale

- ✓ Foundation Models (FM) are fine-tuned for domain specific tasks using labeled datasets derived from literature, simulations, or lab-experimentation
- ✓ Our fine-tuned FM models effectively map material structures, compositions, and device performance, predicting and optimizing the properties and performance of complex mixed materials (e.g., electrolyte formulations)
- ✓ **These models, along with our customized AI-workflows,** are currently being used to discover new electrolytes for our industrial partners

AI-assisted Electrolyte Discovery Workflow

Prediction of Battery Performance (LCE)

ChemChat Material Science and Data Visualization Assistant

Tim Erdmann

Molecules: Identification & description, Vendor check, Property calculations & predictions by cheminformatics, conventional AI

and FM models, PFAS determination after EPA & ECHA, Retrosynthesis prediction, Generation by target properties,

Locating molecules and substructure matches in patents

<u>Documents:</u> Querying 30M material and chemistry-focused patents, Querying user-defined collection of pdfs

<u>Visualizations:</u> 11 chart types incl. request for aggregations and interactive elements

The AI Alliance & Open Innovation

Build and support open technologies across software, models and tools.

Enable developers and scientists to understand, experiment, and adopt open technologies.

Advocate for open innovation with organizational and societal leaders, policy and regulatory bodies, and the public.

https://thealliance.ai/

IBM Research

WG4M – Working group for Materials and Chemistry

- Community development of open-source code and models
 - Defining target domains/use-cases (PFAS, polymer etc)
 - Rich model family of modalities and architectures
- Open-source of base models at https://github.com/IBM/materials (one model released, more planned)
- Sharing: model architecture and contact points for members, and workstream-based engagement approach
- 20+ materials company and worldwide researchers involved

Al Alliance Working Group for Materials & Chemistry (WG4M)

(1) Kick-off Technical Workshop

(16th May 2024, Tokyo)

(2) Social Gathering @ ICML AI4Science

(25th July 2024, Vienna)

Al Alliance Working Group for Materials & Chemistry (WG4M)

Community Development

- 20+ materials companies
- Bi-weekly calls with material companies
- Seeking co-chairs, topic leads

Model development

Open-source of base models at github.com/IBM/materials

- <u>SMILES Transformer model was released</u> on 25 July
- Other modalities models (SELFIES, Graph, etc.) will soon be released!

https://thealliance.ai/

Thank you

https://www.linkedin.com/in/indra-ipd/

Backup

Working Group for Materials (WG4M)

Vision

To build an open development community for Materials Informatics (MI) that transcends national and organizational boundaries, and to accelerate the speed of global materials development by creating a suite of MI tools and models that are accessible to everyone.

- 1. Open development and consumption of MI AI tools and models ?
- 2. Data sharing (to the extent possible)
- 3. Creation of benchmarks
- 4. Provision of platforms for information exchange and discussion
- 5. Development of talent in Materials x AI

