Projet 7 : Preuve de concept avec YOLOv7

Ali-higo Ebo Adou

November 4, 2022

Outline

- Introduction
- 2 Le jeu de données
- 3 Modèles de l'état de l'art à "deux passes"
- 4 La famille des modèles YOLO
- **6** Résultats du transfert d'apprentissage
- 6 Conclusion

Outline

- Introduction
- 2 Le jeu de données
- Modèles de l'état de l'art à "deux passes"
- 4 La famille des modèles YOLO
- **6** Résultats du transfert d'apprentissage
- 6 Conclusion

Détection d'objets en Computer Vision (CV)

- Classification
- Localisation

Métriques pour la localisation

• La localisation est correcte si IoU > 0.5

⇒ mAP : Moyenne des précisions moyennes.

Introduction | Le jeu de données | Modèles de l'état de l'art à "deux passes" | La famille des modèles YOLO | Résultats du transfert d'apprentissage | Conclusion | Conclusion

Outline

- Introduction
- 2 Le jeu de données
- 3 Modèles de l'état de l'art à "deux passes"
- 4 La famille des modèles YOLO
- 6 Résultats du transfert d'apprentissage
- 6 Conclusion

Stanford Dogs Dataset

- 120 races de chiens
- plus de 20 000 images (plus de 150 images par race)
 - → fichier d'annotations pour la localisation

Outline

- Introduction
- 2 Le jeu de données
- 3 Modèles de l'état de l'art à "deux passes"
- 4 La famille des modèles YOLO
- 6 Résultats du transfert d'apprentissage
- 6 Conclusion

- R-CNN a été le premier algorithme à appliquer le deep learning à la tâche de détection d'objets.
- Pour proposer des régions d'intérêts, les deux premiers modèles utilisent l'algorithme Selective Search.
- Faster R-CNN s'affranchit de ce dernier qui est chronophage.

Runtime à l'inférence (en secondes)

R-CNN Test-Time Speed

Outline

- Introduction
- 2 Le jeu de données
- Modèles de l'état de l'art à "deux passes"
- 4 La famille des modèles YOLO
- 6 Résultats du transfert d'apprentissage
- 6 Conclusion

Localisation

- L'image est découpée en une grille de taille $(S \times S)$
- Chaque cellule permet de générer plusieurs cadrages
- L'loU est calculée pour regrouper les cadrages qui détectent le même objet
- Non-max suppression pour cadrage final

Ali-higo Ebo Adou

Architecture d'un réseau "une passe"

- L'image en entrée est fournie à la première couche de la Backbone, et la partie Head ("Dense Prediction") retourne les détections sous forme de rectangle d'encrage.
- Le Neck a pour rôle d'extraire et combiner des features de différentes résolutions et complexités utiles à notre tâche de détection.

Performances à l'état de l'art

Outline

- Introduction
- 2 Le jeu de données
- Modèles de l'état de l'art à "deux passes"
- 4 La famille des modèles YOLO
- **5** Résultats du transfert d'apprentissage
- 6 Conclusion

Résultat : YOLOv5

Résultat : YOLOv7

Outline

- Introduction
- 2 Le jeu de données
- 3 Modèles de l'état de l'art à "deux passes"
- 4 La famille des modèles YOLO
- **6** Résultats du transfert d'apprentissage
- 6 Conclusion

Conclusion

Résultats

- YOLO aussi performant que VGG16 ou Xception pour les tâches de classification sur les 120 races
- Temps de calcul comparable entre les deux versions testées de YOLO: environ 6,5h pour 70 epochs.
- Application réussie sur vidéos.

Merci de votre attention.

