머신러닝 - 회귀

2021

1. 개요

❖ 분류 vs 회귀

❖ 회귀 유형

독립변수 개수	회귀 계수의 결합
1개: 단일 회귀	선형: 선형 회귀
여러 개: 다중 회귀	비선형: 비선형 회귀

❖ 아버지와 아들의 키

■ Galton's Hegitht Data(1885년) - 유전에 의하여 보통사람의 신장으로 회귀

※출처: 회귀분석의 유래 : 대체 왜 Regression(회귀)이라고 불릴까?

❖ 산점도와 선형 회귀선

■ 데이터 소스: http://www.randomservices.org/random/data/Galton.txt (단위: 인치)

■ 기울기: 0.4477

절편: 97.1776

■ 잔차 제곱(RSS):

17,556.60

❖ 선형 회귀선의 기울기와 절편

■ Numpy 최소자승법

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv('http://www.randomservices.org/random/data/Galton.txt', sep='\t')
df = df[df.Gender == 'M']
height = df[['Father', 'Height']].rename(columns={'Height': 'Son'})
height.Father = height.Father * 2.54
height.Son = height.Son * 2.54
A = np.vstack([height.Father, np.ones(len(height.Father))]).T
reg = np.linalg.lstsq(A, height.Son, rcond=None)
m, c = reg[0]
rss = reg[1][0]
print(f'기울기: {m:.4f}, 절편: {c:.4f}, 잔차제곱: {rss:.2f}')
plt.figure(figsize=(8,7))
plt.scatter(height.Father, height.Son)
plt.plot([150, 200], [m*150+c, m*200+c], 'r', lw=3)
plt.title('The height of Father and Son')
plt.xlabel("Father's height (cm)"); plt.ylabel("Son's height (cm)")
plt.grid(); plt.show()
```

❖ 선형 회귀선의 기울기와 절편

Scikit-Learn

```
from sklearn.linear_model import LinearRegression

X = height.Father.values.reshape(-1,1)
y = height.Son.values

lr = LinearRegression()
lr.fit(X, y)

weight, bias, rss = lr.coef_, lr.intercept_, lr._residues
print(f'기울기: {weight[0]:.4f}, 절편: {bias:.4f}, 잔차제곱: {rss:.2f}')

score = lr.score(X, y)
print(f'R_squared score: {score:.4f}')
```


$$RSS(w_0,w_1)=rac{1}{N}\sum_{i=1}^N (y_i-(w_0+w_1*x_i))^2$$
Residual Sum of Square 잔차(표본집단의 오차) 제곱 합

❖ 경사 하강법(Gradient Descent)

❖ 미분의 개념

- 순간 변화율의 의미
 - x 값의 변화량이 0에 가까울 만큼 아주 미세하게 변화했다면,
 - y 값의 변화 역시 아주 미세하게 변화했을 것
 - 순간 변화율은 '어느 쪽'이라는 방향성을 지니고 있으므로 이 방향에 맞추어 직선 을 그릴 수가 있음
 - 이 선이 바로 이 점에서의 '기울기'라고 불리는 접선

a에서의 순간 변화율은 곧 기울기

- ❖ 미분의 개념
 - 미분이란?
 - x 값이 아주 미세하게 움직일 때의 y 변화량을 구한 뒤,
 - 이를 x의 변화량으로 나누는 과정
 - 한 점에서의 순간 기울기
 - "함수 f(x)를 미분하라"는 $\frac{d}{dx}f(x)$ 라고 표기함.

$$\frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 ④ x 변화량의 차이를 ④ x 변화량으로 나눈 값(= 순간 변화율)을 구하라는 뜻! ② x의 변화량이 0에 가까울 만큼 작을 때 ① 함수 f(x)를 x로 미분하라는 것은

- ❖ 경사 하강법 개요
 - y = x² 그래프에서 x에 a₁, a₂

 그리고 m을 대입하여

 그 자리에서 미분하면

 그림처럼 각 점에서의 기울기가 그려짐
 - 기울기가 0인 점이 최소값
 - 따라서 우리가 할 일은 '미분 값이 0인 지점'을 찾는 것!

- ❖ 기울기가 0인 점을 찾는 방법
 - 1) a₁에서 미분값을 구한다.
 - 2) 구해진 기울기의 반대 방향으로 얼마간 이동시킨 a₂에서 미분값을 구한다.
 - 3) 위에서 구한 값이 0이 아니면a₂에서 2)번 과정을 반복한다.
 - 4) 그러면 그림처럼 이동 결과가 한 점으로 수렴함
- ❖ 경사 하강법은 이렇게 반복적으로 기울기 a를 변화시켜서 m의 값을 찾아내는 방법

기울기가 0인 점 m을 찾는 방법

❖ 학습률

- 기울기의 부호를 바꿔 이동시킬 때 적절한 거리를 찾지 못해 너무 멀리 이동시키면 a 값이 한 점으로 모이지 않고 위로 치솟아 버림
- 어느 만큼 이동시킬지를 정해주는 것
 → 학습률(Learning Rate)

학습률을 너무 크게 잡으면 한 점으로 수렴하지 않고 발산함

4. Scikit-Learn 단순 선형회귀

- ❖ 당뇨병 데이터셋 diabetes = sklearn.datasets.load_diabetes()
- make_regression()
 - 입력 파라미터
 - n_samples: 표본의 갯수(디폴트 100)
 - n_features: 독립변수(feature)의 갯수
 - n_targets: 종속변수(target)의 개수
 - bias: 절편
 - 리턴 값
 - X: [n_samples, n_features] 형상의 2차원 배열
 - y: [n_samples] 형상의 1차원 배열 또는
 [n_samples, n_targets] 형상의 2차원 배열

4. Scikit-Learn 단순 선형회귀

❖ 모델의 성능

- R-Squared(결정 계수)
 - 0 에서 1 사이의 값을 가짐
 - 1에 가까울수록 설명력이 높다.
 (모델이 데이터를 잘 설명해줌)

$$SST = SSR + SSE$$

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

- SSE가 잔차제곱합(RSS)
- r2_score()로 구함

SST: Sum of Square Total

SSR: Sum of Square Regression

SSE: Sum of Square Error

❖ LinearRegression 클래스

❖ 회귀 평가 지표

평가 지표	설명	수식
MAE	Mean Absolute Error(MAE)이며 실제 값과 예측값의 차이를 절 댓값으로 변환해 평균한 것입니다.	$\mathit{MAE} = rac{1}{n} \sum_{i=1}^n \mathit{Yi} - \hat{\mathit{Yi}} $
MSE	Mean Squared Error(MSE)이며 실제 값과 예측값의 차이를 제곱 해 평균한 것입니다.	$MSE = rac{1}{n} \sum_{i=1}^{n} \left(Yi - \hat{Y}i ight)^2$
RMSE	MSE 값은 오류의 제곱을 구하므로 실제 오류 평균보다 더 커지는 특성이 있으므로 MSE에 루트를 씌운 것이 RMSE(Root Mean Squared Error)입니다.	$RMSE = \sqrt{rac{1}{n}{\sum_{i=1}^{n}(Yi-\hat{Y}i)^2}}$
R ²	분산 기반으로 예측 성능을 평가합니다. 실제 값의 분산 대비 예측값의 분산 비율을 지표로 하며, 1에 가까울수록 예측 정확도가 높습니다.	$R^2 = rac{$ 예측값 $Variance}{$ 실제값 $Variance}$

평가 방법	사이킷런 평가 지표 API	Scoring 함수 적용 값
MAE	metrics.mean_absolute_error	'neg_mean_absolute_error'
MSE	metrics.mean_squared_error	'neg_mean_squared_error'
R^2	metrics_r2_score	'r2'

❖ 보스톤 주택 가격

- CRIM: 지역별 범죄 발생률
- ZN: 25,000평방피트를 초과하는 거주 지역의 비율
- INDUS: 비상업 지역 넓이 비율
- CHAS: 찰스강에 대한 더미 변수(강의 경계에 위치한 경우는 1, 아니면 0)
- NOX: 일산화질소 농도
- RM: 거주할 수 있는 방 개수
- AGE: 1940년 이전에 건축된 소유 주택의 비율
- DIS: 5개 주요 고용센터까지의 가중 거리
- RAD: 고속도로 접근 용이도
- TAX: 10.000달러당 재산세율
- PTRATIO: 지역의 교사와 학생 수 비율
- B: 지역의 흑인 거주 비율
- LSTAT: 하위 계층의 비율
- MEDV: 본인 소유의 주택 가격(중앙값)

❖ 산점도와 선형 회귀 직선

- ❖ 선형 회귀 결과
 - 절편: intercept_ 속성 40.99559517216412
 - 회귀 계수: coef_ 속성

```
[-0.1 \quad 0.1 \quad 0. \quad 3. \quad -19.8 \quad 3.4 \quad 0. \quad -1.7 \quad 0.4 \quad -0. \quad -0.9 \quad 0. \quad -0.6]
```

■ 회귀식

```
y = -0.1*CRIM + 0.1*ZN + 0*INDUS + 3*CHAS - 19.8*NOX + 3.4*RM + 0*AGE + -1.7*DIS + 0.4*RAD - 0*TAX - 0.9*PTRATIO + 0*B - 0.6*LSTAT + 41
```

❖ 다항 회귀

〈 주어진 데이터 세트에서 다항 회귀가 더 효과적임 〉

■ 2차식: $[x_1, x_2] \rightarrow [1, x_1, x_2, x_1^2, x_1x_2, x_2^2]$

❖ 과(대)적합/과소적합

❖ 편향-분산 트레이드오프

❖ 편향-분산 트레이드오프

7. 다양한 회귀

- ❖ 대표적인 선형회귀 모델
 - 일반 선형 회귀
 - Ridge 회귀 : 선형 회귀에 L2 규제 적용
 - Lasso 회귀 : 선형 회귀에 L1 규제 적용
 - ElasticNet 회귀 : L2, L1 규제를 결합한 모델
 - Logistic 회귀 : 분류에 사용되는 선형 모델

❖ 규제의 종류

- L2 규제 : 상대적으로 큰 회귀 계수 값의 예측 영향도를 감소시키기 위해 회귀 계수값을 더 작게 만드는 규제
- L1 규제 : 예측 영향력이 적은 feature의 회귀 계수를 0으로 만들어 회귀 예측시 피처가 선택되지 않도록 하는 것 Feature 선택 기능

8. 로지스틱 회귀

■ 선형 회귀 방식을 분류에 적용한 알고리즘

