Università di Genova

Macchine di Turing Quantistiche

Relatori

Elena Zucca Francesco Dagnino Candidato

Pietro Zignaigo

16-12-2024

Introduzione

Macchina di Turing quantistica

Funzioni calcolabili quantistiche

Conclusione

 Informazione in un computer quantistico = sovrapposizione di stati discreti

- Informazione in un computer quantistico = sovrapposizione di stati discreti
- Unità minima di informazione quantistica: qubit

$$1|\mathbf{0}\rangle + 0|\mathbf{1}\rangle$$
 $0|\mathbf{0}\rangle + 1|\mathbf{1}\rangle$

- Informazione in un computer quantistico = sovrapposizione di stati discreti
- Unità minima di informazione quantistica: gubit

$$1|\mathbf{0}\rangle + 0|\mathbf{1}\rangle$$
 $0|\mathbf{0}\rangle + 1|\mathbf{1}\rangle$

$$\frac{1}{\sqrt{2}}|\mathbf{0}\rangle + \frac{1}{\sqrt{2}}|\mathbf{1}\rangle \qquad \frac{1}{\sqrt{2}}|\mathbf{0}\rangle + i\frac{1}{\sqrt{2}}|\mathbf{1}\rangle$$

- Osservazione:
 - □ Si ottiene 1 o 0
 - □ Probabilità dipendente dai pesi
 - $\hfill\Box$ Collasso su $|{\bf 0}\rangle$ o su $|{\bf 1}\rangle$

- Osservazione:
 - □ Si ottiene 1 o 0
 - Probabilità dipendente dai pesi
 - \square Collasso su $|\mathbf{0}\rangle$ o su $|\mathbf{1}\rangle$
- Quantum advantage: per certi problemi, complessità temporale algoritmi quantistici < complessità temporale algoritmi classici

Spazi di Hilbert

lacksquare Spazio di Hilbert generato da ${\cal B}$

$$\ell^2(\mathcal{B}) = \left\{ \phi : \mathcal{B} \to \mathbb{C} \;\middle|\; \|\phi\|^2 = \sum_{\mathcal{C} \in \mathcal{B}} |\phi(\mathcal{C})|^2 < \infty \right\}$$

Spazi di Hilbert

lacksquare Spazio di Hilbert generato da ${\cal B}$

$$\ell^2(\mathcal{B}) = \left\{ \phi : \mathcal{B} \to \mathbb{C} \;\middle|\; \|\phi\|^2 = \sum_{\mathcal{C} \in \mathcal{B}} |\phi(\mathcal{C})|^2 < \infty \right\}$$

• Prendiamo in considerazione solo ℓ_1^2

$$\ell_1^2(\mathcal{B}) = \left\{ \phi \in \ell^2(\mathcal{B}) \mid \|\phi\|^2 = 1 \right\}$$

Operatori

■ Trasformazione stato quantistico = operatore lineare = matrice $\#\mathcal{B} \times \#\mathcal{B}$

Operatori

- Trasformazione stato quantistico = operatore lineare = matrice $\#\mathcal{B} \times \#\mathcal{B}$
- Possono essere usati solo operatori unitari
 - \square invertibili \rightarrow meccanica quantistica è reversibile
 - \square conservano la norma o per rimanere in $\ell_1^2(\mathcal{B})$

Operatori

- Trasformazione stato quantistico = operatore lineare = matrice $\#\mathcal{B} \times \#\mathcal{B}$
- Possono essere usati solo operatori unitari
 - \square invertibili \rightarrow meccanica quantistica è reversibile
 - \square conservano la norma \rightarrow per rimanere in $\ell_1^2(\mathcal{B})$
- Unitarietà in forma matriciale
 - □ Colonne con norma 1 (per conservare la norma)
 - Ogni coppia di colonne deve essere ortogonale

Macchina di Turing

■ Modello matematico per descrivere tutti gli algoritmi

Macchina di Turing

- Modello matematico per descrivere tutti gli algoritmi
- Funzioni calcolabili: Funzioni parziali $f: \mathbb{N} \to \mathbb{N}$ modellabili da una macchina di Turing

Configurazioni

Configurazione di una macchina di Turing

$$\langle \alpha, \mathbf{q}, \beta, \mathbf{i} \rangle \in \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z}$$

Configurazioni

Configurazione di una macchina di Turing

$$\langle \alpha, q, \beta, i \rangle \in \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z}$$

$$\mathfrak{C}_M = \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z} \times \mathbb{N}$$

Configurazioni

$$\mathfrak{C}_M = \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z} \times \mathbb{N}$$

Q-configurazioni

elementi di $\ell_1^2(\mathfrak{C}_M)=$ sovrapposizione di configurazioni

8 di 15

Pre-macchina di Turing quantistica

$$\textit{M} = \langle \Sigma \times \mathcal{Q} \times \mathcal{Q}_s \times \mathcal{Q}_t \times \delta \times \textit{q}_i \times \textit{q}_f \rangle$$

Pre-macchina di Turing quantistica

$$M = \langle \Sigma \times \mathcal{Q} \times \mathcal{Q}_s \times \mathcal{Q}_t \times \delta \times q_i \times q_f \rangle$$

Funzione di transizione

$$\delta: (\mathcal{Q} \backslash \mathcal{Q}_t) \times \Sigma \to \ell^2_1((\mathcal{Q} \backslash \mathcal{Q}_s) \times \Sigma \times \mathbb{D})$$

Operatore di transizione

lacksquare Definiamo U_M su ogni $|C\rangle$ con $C\in \mathfrak{C}_M$

Operatore di transizione

lacksquare Definiamo U_M su ogni $|C\rangle$ con $C\in \mathfrak{C}_M$

• Una pre-macchina di Turing quantistica è una macchina di Turing quantistica se U_M è unitario

Operatore di transizione

■ Definiamo U_M su ogni \ket{C} con $C \in \mathfrak{C}_M$

- Una pre-macchina di Turing quantistica è una macchina di Turing quantistica se U_M è unitario
- U_M unitario se δ rispetta certe condizioni

PPD e computazioni

■ Una Partial Probability Distribution (PPD) è una funzione $\mathcal{P}: \mathbb{N} \to \mathbb{R}_{[0,1]}$ tale che $\sum_{n \in \mathbb{N}} \mathcal{P}(n) \leq 1$ Una Probability Distribution (PD) è una PPD tale che $\sum_{n \in \mathbb{N}} \mathcal{P}(n) = 1$

- Una Partial Probability Distribution (PPD) è una funzione $\mathcal{P}: \mathbb{N} \to \mathbb{R}_{[0,1]}$ tale che $\sum_{n \in \mathbb{N}} \mathcal{P}(n) \leq 1$ Una Probability Distribution (PD) è una *PPD* tale che $\sum_{n \in \mathbb{N}} \mathcal{P}(n) = 1$
- A ogni $|\phi\rangle$ si può associare una PPD $\mathcal{P}_{|\phi\rangle}$ $\mathcal{P}_{|\phi\rangle}(n) =$ probabilità di $|\phi\rangle$ di collassare su una configurazione finale con n simboli 1 sul nastro

- lacksquare Una computazione $K^M_{|\phi
 angle}$ è una sequenza $|\phi_i
 angle$ tale che
 - 1. $|\phi_0\rangle = |\phi\rangle$ è una q-configurazione finale
 - $2. |\phi_i\rangle = U_M^i |\phi\rangle$

- lacksquare Una computazione $K^M_{|\phi
 angle}$ è una sequenza $|\phi_i
 angle$ tale che
 - 1. $|\phi_0\rangle = |\phi\rangle$ è una q-configurazione finale
 - 2. $|\phi_i\rangle = U_M^i |\phi\rangle$
- lacksquare A ogni computazione si associa una sequenza di PPD $\mathcal{P}_{|\phi_i
 angle}$

- lacksquare Una computazione $K^M_{|\phi
 angle}$ è una sequenza $|\phi_i
 angle$ tale che
 - 1. $|\phi_0\rangle=|\phi\rangle$ è una q-configurazione finale
 - 2. $|\phi_i\rangle = U_M^i |\phi\rangle$
- lacksquare A ogni computazione si associa una sequenza di PPD $\mathcal{P}_{|\phi_i
 angle}$
- La sequenza $\sum_{n \in \mathbb{N}} \mathcal{P}_{|\phi_i\rangle}(n)$ è crescente

Definizione

■ Prendiamo in considerazione funzioni di forma $f: \ell^2_1(\mathbb{N}) \to PPD$

Definizione

- Prendiamo in considerazione funzioni di forma $f: \ell_1^2(\mathbb{N}) \to PPD$
- $\mathcal{P} = \lim_{n \to \infty} \mathcal{P}_{|\phi_i\rangle}$ è l'output calcolato di M
- Scegliamo una codifica da $\ell^2_1(\mathbb{N})$ a $\ell^2_1(\mathfrak{C}^{init}_M)$

Definizione

- Prendiamo in considerazione funzioni di forma $f: \ell^2_1(\mathbb{N}) \to PPD$
- $\mathcal{P} = \lim_{n \to \infty} \mathcal{P}_{|\phi_i\rangle}$ è l'output calcolato di M
- Scegliamo una codifica da $\ell_1^2(\mathbb{N})$ a $\ell_1^2(\mathfrak{C}_M^{init})$
- Funzioni calcolabili quantistiche: Funzioni $f:\ell_1^2(\mathbb{N}) \to PPD$ modellabili da una Macchina di Turing quantistica

Categorie di terminazione

Una data computazione può

1. Produrre una PD in un numero di passi finito

Categorie di terminazione

Una data computazione può

- 1. Produrre una PD in un numero di passi finito
- 2. Non produrre una *PD* in un numero di passi finito, ma avere una *PD* come *PPD* limite

Categorie di terminazione

Una data computazione può

- 1. Produrre una PD in un numero di passi finito
- 2. Non produrre una *PD* in un numero di passi finito, ma avere una *PD* come *PPD* limite
- 3. Non avere una PD come PPD limite

Conclusione