ÜBUNGSBLATT 7

Aufgabe 1. Es sei $U := \mathbb{A}^1 \setminus \{p, q\}$ wobei $p, q \in \mathbb{A}^1$ zwei unterschiedliche Punkte sind. Man zeige $H^1(\mathbb{A}^1, \mathbb{Z}_U) \neq 0$.

Aufgabe 2. Sei \mathcal{F} eine quasi-kohärente Garbe auf einer Varietät X. Man zeige, dass für alle $x \in X$ eine offene Umgebung U und eine exakte Sequenz der Form

$$\mathcal{O}_X^{(J)}|_U \longrightarrow \mathcal{O}_X^{(I)}|_U \longrightarrow \mathcal{F}|_U \longrightarrow 0$$

existieren, wobei I und J Indexmengen sind.

Bemerkung: Gleiches gilt für \mathcal{F} kohärent, dann sind I und J endlich. Dies liefert eine alternative und allgemeinere Definition für quasi-kohärente bzw. kohärente Garben auf geringten Räumen.

Aufgabe 3. Sei $f: X \to Y$ ein Morphismus zwischen affinen Varietäten und \mathcal{F} eine quasi-kohärente Garbe auf X.

- (i) Man zeige, dass $f_{\star}\mathcal{F}$ quasi-kohärent ist.
- (ii) Man gebe ein Beispiel für $f: X \to Y$ und \mathcal{F} an, so dass \mathcal{F} kohärent ist, aber $f_{\star}\mathcal{F}$ nicht kohärent ist.

Aufgabe 4. Man betrachte den Einheitskreis $\mathbb{S}^1 \subset \mathbb{C}$ mit der euklidischen Topologie und die Überdeckung $\mathcal{U} = U_0 \cup U_1$ mit $U_0 := \mathbb{S}^1 \setminus \{+1\}$ und $U_1 = \mathbb{S}^1 \setminus \{-1\}$. Man beschreibe den Čech-Komplex $C^{\bullet}(\mathcal{U}, \mathbb{Z}_{\mathbb{S}^1})$ und zeige $\check{H}^i(\mathcal{U}, \mathbb{Z}_{\mathbb{S}^1}) = \mathbb{Z}$ für i = 0, 1.