Selbstudium 1

Florian Lüthi

September 29, 2012

Aufgabe 6.2(f)

Akzeptiere M_1 die Sprache $L_1 = \mathcal{L}(M_1) = \{x \in \{0, 1, a, b\}^* | x \text{ enthält das Teilwort 111}\}$:

Akzeptiere M_2 die Sprache $L_2=\mathcal{L}(M_2)=\{x\in\{0,1,a,b\}^*|x$ enthält das Teilwort $aba\}$:

M akzeptiert nun die Sprache $L = \mathcal{L}(M) = L_1 \cup L_2$. Darum ist

$$\begin{array}{lcl} Q_{M} & = & Q_{M_{1}} \times Q_{M_{2}} \\ & = & \{(q_{0},p_{0}),(q_{0},p_{1}),(q_{0},p_{2}),(q_{0},p_{3}),\\ & & (q_{1},p_{0}),(q_{1},p_{1}),(q_{1},p_{2}),(q_{1},p_{3}),\\ & & (q_{2},p_{0}),(q_{2},p_{1}),(q_{2},p_{2}),(q_{2},p_{3}),\\ & & (q_{3},p_{0}),(q_{3},p_{1}),(q_{3},p_{2}),(q_{3},p_{3})\} \end{array}$$

mit $Q_{M_1}=\{q_0,q_1,q_2,q_3\}$ und $Q_{M_2}=\{p_0,p_1,p_2,p_3\}$. Matrixmässig angeordnet sieht das so aus:

Nach Entfernung der unerreichbaren Zustände und Markierung der akzeptierenden Zustände

$$F_M = (F_{M_1} \times Q_{M_2}) \cup (Q_{M_1} \times F_{M_2})$$

erhalten wir:

Aufgabe 6.2(j)

Akzeptiere M_1 die Sprache $L_1 = \mathcal{L}(M_1) = \{x \in \{0,1\}^* | x \text{ enthält das Teilwort 0011}\}$:

Akzeptiere M_2 die Sprache $L_2 = \mathcal{L}(M_2) = \{x \in \{0,1\}^* | x \text{ enthält das Teilwort 110}\}$:

Es folgt die nämliche Konstruktion mit $L_M = \mathcal{L}(M) = L_1 \cup L_2$:

Und dito mit Endzuständen und ohne unerreichbare Zustände (interessanterweise sind nicht alle Endzustände erreichbar; dies liegt daran, dass beide Wörter je gegenseitige Präfix/Suffix-Kombinationen haben):

Aufgabe 6.3

Bauen wir M_1 :

Und dann bauen wir M_2 :

Und schnurstracks M_3 :

Um die gewünschte Verknüpfung zu erreichen, bauen wir zunächst einen intermediären Automaten M_{12} , für den gilt $\mathcal{L}(M_{12}) = L_1 \cap L_2$ und darum $F_{M_{12}} = (F_{M_1} \times Q_{M_2}) \cap (Q_{M_1} \times F_{M_2})$:

B

C

 (q_1, p_1)

Und verknüpfen nach dem bekannten Schema M_{12} und M_3 zu M, so dass $\mathcal{L}(M)=\mathcal{L}(M_{12})\cup\mathcal{L}(M_3)$:

Kontrollaufgabe 2(f)

Bauen wir noch ein paar Automaten mehr. M_1 akzeptiere L_1 :

 M_1^C akzeptiere $\{0,1\}^*-L_1$ (durch $F_{M_1^C}=Q_{M_1}-F_{M_1}$). Man könnte auch diesen Automaten durch modulare Konstruktion bauen, es wäre die Verknüpfung des "neutralen" Automaten $(\{p_0\},\{0,1\},p_0,\delta(p)=p,\{p_0\})$ mit M_1 , wobei die akzeptierenden Zustände $F_{M_1^C}=\{p_0\}\times(Q_{M_1}-F_{M_1})$ wären. Bringt ausser mehr Schreibarbeit nichts, darum lasse ich das bleiben. Hier darum direkt M_1^C :

 M_3 (mit $\mathcal{L}(M_3) = L_3$) brauchts natürlich auch:

Was bei der Konstruktion des finalen Automaten zu einer Matrix mit 28 (neuer Rekord!) Zuständen führt:

Entfernen wir alles Unerreichbare, und überlegen wir uns die akzeptierenden Zustände:

$$\mathcal{L}(M) = \mathcal{L}(M_3) - \mathcal{L}(M_1^C) \Rightarrow F_M = F_{M_3} \times (Q_{M_1^C} - F_{M_1^C})$$

Es wäre uns natürlich einiges an Kamalitäten erspart geblieben, wenn wir geschnallt hätten, dass

$$L_3 - (\{0,1\}^* - L_1) = L_3 \cap L_1$$