Analyzing the Philadelphia Data Science Scene with Python

Instructions

- The latest version of this notebook can always be found and viewed online here
 (here
 (https://nbviewer.ipython.org/github/mdbecker/daa_philly_2015/blob/master/DataPhilly_Analysis.ipynb). It's strongly recommended that you view the online version of this document.
- Instructions for setting up Jupyter Notebook and the required libraries can be found online here (https://github.com/mdbecker/daa philly 2015/blob/master/README.md).
- The repo for this project can be found and forked here (https://github.com/mdbecker/daa_philly_2015/).

DataPhilly

<u>DataPhilly (www.meetup.com/DataPhilly)</u> is a local data meetup group I started back in 2012. I had attended a few data science conferences and I was really disappointed about the lack of a local meetup group for people interested in data science. And so DataPhilly was born!

Jupyter Notebook

The Jupyter Notebook is a web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more.

Through Jupyter's kernel and messaging architecture, the Notebook allows code to be run in a range of different programming languages. For each notebook document that a user opens, the web application starts a kernel that runs the code for that notebook. Each kernel is capable of running code in a single programming language and there are kernels available in the following languages

- Python(https://github.com/ipython/ipython (https://github.com/ipython/ipython))
- Julia (https://github.com/JuliaLang/IJulia.jl (https://github.com/JuliaLang/IJulia.jl))
- R (https://github.com/takluyver/IRkernel (https://github.com/takluyver/IRkernel))
- Ruby (https://github.com/minrk/iruby (https://github.com/minrk/iruby))
- Haskell (https://github.com/gibiansky/IHaskell (https://github.com/gibiansky/IHaskell))
- Scala (https://github.com/Bridgewater/scala-notebook (https://github.com/Bridgewater/scala-notebook))
- node.js (https://gist.github.com/Carreau/4279371 (https://gist.github.com/Carreau/4279371))
- Go (https://github.com/takluyver/igo (https://github.com/takluyver/igo))

The default kernel runs Python code. The notebook provides a simple way for users to pick which of these kernels is used for a given notebook.

Jupyter examples and tutorials can be found in the Jupyter github repo https://github.com/jupyter/notebook/blob/master/docs/source/examples/Notebook/Examples%20and%20Tutorials%20

The task

The task I'll be walking you through today will demonstrate how to use Python for exploratory data analysis. The dataset I'll use is one I created by querying the Meetup API for the DataPhilly meetup. I'll walk you through using Jupyter notebook (The webapp we're using now), Pandas (an excel like tool for data exploration) and scikit-learn (a Python machine learning library) to explore the DataPhilly dataset. I won't go in depth into these tools but my hope is that you'll leave my talk wanting to learn more about using Python for exploratory data analysis and that you'll learn some interesting things about DataPhilly in the process.

Initializing our environment

First let's start off by initializing our environment

- %matplotlib inline initializes <u>matplotlib (http://matplotlib.org/)</u> so that we can display graphs and charts in our notebook.
- import seaborn as sns imports <u>seaborn (https://web.stanford.edu/~mwaskom/software/seaborn/)</u> a graphing library built on top of matplotlib.
- import pandas as pd imports pandas (http://pandas.pydata.org/) a tool I'll explain in the next section.

Hint: If you've installed Jupyter Notebook and you're running this on your machine, you can use the run button In the toolbar at the top of the page to execute each cell

Click on the cell above and the cell below. You'll notice that the cell above is <u>Markdown</u> (https://daringfireball.net/projects/markdown/). You can edit it by double clicking on it. The cell below contains Python code which can be modified and executed. If the code has any output it will be printed out below the cell with **Out [n]:** in front of it.

```
In [1]: %matplotlib inline
        import seaborn as sns
        import pandas as pd
        from matplotlib import rcParams
        # Modify aesthetics for visibility during presentation
        sns.set style('darkgrid', {'axes.facecolor': '#C2C2C8'})
        sns.set palette('colorblind')
        # Make everything bigger for visibility during presentation
        rcParams['figure.figsize'] = 20, 10
        rcParams['axes.titlesize'] = 'xx-large'
        rcParams['axes.labelsize'] = 'x-large'
        rcParams['xtick.labelsize'] = 'x-large'
        rcParams['ytick.labelsize'] = 'x-large'
        rcParams['legend.fontsize'] = 'xx-large'
        rcParams['lines.linewidth'] = 4.0
        rcParams['grid.linewidth'] = 2.0
        # Hide warnings in the notebook
        import warnings
        warnings.filterwarnings('ignore')
```

Pandas

Pandas is a library that provides data analysis tools for the Python programming language. You can think of it as Excel on steroids, but in Python.

To start off, I've used the <u>meetup API (http://www.meetup.com/meetup_api/docs/)</u> to gather a bunch of data on members of the <u>DataPhilly meetup group (http://www.meetup.com/DataPhilly/)</u>. First let's start off by looking at the events we've had over the past few years. I've loaded the data into a pandas <code>DataFrame</code> and stored it in the file <code>events.pkl</code>. A <code>DataFrame</code> is a table

similar to an Excel spreadsheet. Let's load it and see what it looks like:

DataPhilly events dataset

```
In [2]: events_df = pd.read_pickle('events.pkl')
    events_df = events_df.sort_values(by='time')
    events_df
```

Out[2]:

	created	name	rating	time	waitlist_count	yes_rsvp_count	id
0	1351948193000	Meet and greet	{u'count': 3, u'average': 5}	1352934000000	0	17	89769502
1	1357781071000	DataPhilly January 2013 Meetup - An Introducti	{u'count': 6, u'average': 4.17000007629}	1359588600000	0	61	98833672
2	1359732939000	DataPhilly February 2013 Meetup - Data Science	{u'count': 5, u'average': 5}	1361316600000	0	47	102502622
3	1361647778000	DataPhilly March 2013 Meetup - Data Analysis u	{u'count': 8, u'average': 5}	1364423400000	0	62	106043892
4	1362506708000	DataPhilly April 2013 Meetup - Machine Learnin	{u'count': 7, u'average': 4.57000017166}	1366151400000	2	54	107740582
5	1369104714000	DataPhilly June 2013 - Hadoop: BigSheets & Pig	{u'count': 4, u'average': 3}	1370471400000	5	41	120425212
6	1375999505000	DataPhilly August 2013 - Data Science with R	{u'count': 11, u'average': 4.55000019073}	1377037800000	0	77	133803672
7	1378332108000	DataPhilly September 2013 - Data Storytime	{u'count': 9, u'average': 5}	1380234600000	0	64	138415912

8	1381360216000	DataPhilly October 2013 - Data Science Tools a	{u'count': 11, u'average': 4.73000001907}	1382565600000	0	50	144769822
9	1383762778000	DataPhilly November 2013 - Data in Practice	{u'count': 3, u'average': 4.67000007629}	1384815600000	0	67	149515412
10	1389631621000	DataPhilly January 2014 - Two Hours of Lightni	{u'count': 6, u'average': 4.82999992371}	1391036400000	0	69	160323532
11	1393608501000	DataPhilly March 2014 - Interactive Data Visua	{u'count': 9, u'average': 4.67000007629}	1394661600000	0	69	168747852
12	1396956902000	DataPhilly April 2014: Art and Data	{u'count': 4, u'average': 4.75}	1397685600000	0	39	175993712
13	1400001749000	DataPhilly May 2014: Data Discovery	{u'count': 7, u'average': 5}	1400709600000	0	60	182860422
14	1410488369000	Explore All the Data!	{u'count': 2, u'average': 5}	1412719200000	0	44	206754182
15	1414103507000	Explore All the Data!	{u'count': 3, u'average': 4}	1415314800000	0	41	215265722
16	1417659431000	DataPhilly - December 2014	{u'count': 5, u'average': 5}	1418770800000	2	68	219055217
17	1421280214000	DataPhilly & GeoPhilly: Open Data Day Meetup	{u'count': 4, u'average': 4.5}	1424386800000	83	57	219840555
			{u'count': 3,				

	18		DataPhilly: March Meetup	u'average': 4.67000007629}	1426802400000	0	114	220526799
	19		DataPhilly: April; Philly Tech Week Edition	{u'count': 9, u'average': 5}	1429221600000	19	115	221245827
2	20	1442763491000	DataPhilly October	{u'count': 6, u'average': 4.82999992371}	1445551200000	7	139	225488147

You can access values in a DataFrame column like this:

```
In [3]: events_df['yes_rsvp_count']
Out[3]: 0
                17
                61
                47
                62
                54
                41
                77
                64
                50
                67
        10
                69
                69
        11
        12
                39
        13
                60
        14
                44
        15
                41
                68
        16
        17
                57
        18
               114
        19
               115
        20
               139
        Name: yes_rsvp_count, dtype: int64
```

You can access a row of a DataFrame using iloc:

```
In [4]: events_df.iloc[4]
                                                              1362506708000
Out[4]: created
                          DataPhilly April 2013 Meetup - Machine Learnin...
        name
                                   {u'count': 7, u'average': 4.57000017166}
        rating
        time
                                                              1366151400000
        waitlist_count
                                                                           2
        yes_rsvp_count
                                                                          54
        id
                                                                  107740582
        Name: 4, dtype: object
```

We can view the first few rows using the head method:

In [5]: events_df.head()

Out[5]:

	created	name	rating	time	waitlist_count	yes_rsvp_count	id
0	1351948193000	Meet and greet	{u'count': 3, u'average': 5}	1352934000000	0	17	89769502
1	1357781071000	DataPhilly January 2013 Meetup - An Introducti	{u'count': 6, u'average': 4.17000007629}	1359588600000	0	61	98833672
2	1359732939000	DataPhilly February 2013 Meetup - Data Science	{u'count': 5, u'average': 5}	1361316600000	0	47	102502622
3	1361647778000	DataPhilly March 2013 Meetup - Data Analysis u	{u'count': 8, u'average': 5}	1364423400000	0	62	106043892
4	1362506708000	DataPhilly April 2013 Meetup - Machine Learnin	{u'count': 7, u'average': 4.57000017166}	1366151400000	2	54	107740582

And similarly the last few using tail:

```
In [6]: events_df.tail(3)
```

Out[6]:

	created	name	rating	time	waitlist_count	yes_rsvp_count	id
18	1423955223000	DataPhilly: March Meetup	{u'count': 3, u'average': 4.67000007629}	1426802400000	0	114	220526799
19	1426720048000	DataPhilly: April; Philly Tech Week Edition	{u'count': 9, u'average': 5}	1429221600000	19	115	221245827
20	1442763491000	DataPhilly October	{u'count': 6, u'average': 4.82999992371}	1445551200000	7	139	225488147

We can see that the yes_rsvp_count contains the number of people who RSVPed yes for each event. First let's look at some basic statistics:

```
In [7]: yes_rsvp_count = events_df['yes_rsvp_count']
    yes_rsvp_count.sum(), yes_rsvp_count.mean(), yes_rsvp_count.min(), yes_rsvp_count.max()
```

Out[7]: (1355, 64.523809523809518, 17, 139)

When we access a single column of the DataFrame like this we get a Series object which is just a 1-dimensional version of a DataFrame.

```
In [8]: type(yes_rsvp_count)
```

Out[8]: pandas.core.series.Series

We can use the built-in describe method to print out a lot of useful stats in a nice tabular format:

```
In [9]: yes_rsvp_count.describe()
Out[9]: count
                  21.000000
                  64.523810
        mean
        std
                  28.212797
        min
                  17.000000
        25%
                  47.000000
        50%
                  61.000000
        75%
                  69.000000
                 139.000000
        max
        Name: yes_rsvp_count, dtype: float64
```

Next I'd like to graph the number of RSVPs over time to see if there are any interesting trends. To do this let's first sum the waitlist_count and yes_rsvp_count columns and make a new column called total_RSVP_count.

```
In [10]: events_df['total_RSVP_count'] = events_df['waitlist_count'] + events_df['yes_rsvp_count']
         events_df['total_RSVP_count']
Out[10]: 0
                17
                61
         1
         2
                47
                62
         3
                56
                46
         5
                77
         7
                64
         8
                50
         9
                67
                69
         10
         11
                69
         12
                39
         13
                60
         14
                44
         15
                41
         16
                70
         17
               140
         18
               114
         19
               134
         20
               146
         Name: total_RSVP_count, dtype: int64
```

We can plot these values using the plot method

In [11]: events_df['total_RSVP_count'].plot()

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1045c68d0>

The plot method utilizes the matplotlib library behind the scenes to draw the plot. This is interesting, but it would be nice to have the dates of the meetups on the X-axis of the plot.

To accomplish this, let's convert the time field from a unix epoch timestamp to a python datetime utilizing the apply method and a function.

In [12]: events_df.head(2)

Out[12]:

	created		name	rating	time	waitlist_count	yes_rsvp_count	id	total_RSVP_
C	135194819	93000	Meet and greet	{u'count': 3, u'average': 5}	1352934000000	0	17	89769502	17
1	13577810	71000	DataPhilly January 2013 Meetup - An Introducti	{u'count': 6, u'average': 4.17000007629}	1359588600000	0	61	98833672	61

In [13]: import datetime

def get_datetime_from_epoch(epoch):
 return datetime.datetime.fromtimestamp(epoch/1000.0)

```
In [14]: events_df['time'] = events_df['time'].apply(get_datetime_from_epoch)
         events df['time']
Out[14]: 0
              2012-11-14 18:00:00
              2013-01-30 18:30:00
             2013-02-19 18:30:00
              2013-03-27 18:30:00
            2013-04-16 18:30:00
              2013-06-05 18:30:00
              2013-08-20 18:30:00
              2013-09-26 18:30:00
              2013-10-23 18:00:00
              2013-11-18 18:00:00
             2014-01-29 18:00:00
              2014-03-12 18:00:00
         11
         12
              2014-04-16 18:00:00
         13
              2014-05-21 18:00:00
         14
              2014-10-07 18:00:00
         15
              2014-11-06 18:00:00
         16
              2014-12-16 18:00:00
              2015-02-19 18:00:00
         17
         18
             2015-03-19 18:00:00
             2015-04-16 18:00:00
         19
              2015-10-22 18:00:00
         20
         Name: time, dtype: datetime64[ns]
```

Next let's make the time column the index of the DataFrame using the set_index method and then re-plot our data.

```
In [15]: events_df.set_index('time', inplace=True)
    events_df[['total_RSVP_count']].plot()
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x109664550>

We can also easily plot multiple columns on the same plot.

```
In [16]: all_rsvps = events_df[['yes_rsvp_count', 'waitlist_count', 'total_RSVP_count']]
    all_rsvps.plot(title='Attendance over time')
```

Out[16]: <matplotlib.axes. subplots.AxesSubplot at 0x10993a890>

DataPhilly members dataset

Alright so I'm seeing some interesting trends here. Let's take a look at something different.

The Meetup API also provides us access to member info. Let's have a look at the data we have available:

Out[17]:

	anon_id	anon_name	bio	city	country	gender	hometown	joined	lat	lon	membership_cou
0	0	James	NaN	Philadelphia	us	male	Philadelphia	2015- 10-10 21:43:33	39.94	-75.23	0
1	1	Vijay	java software developer in center city philly	Philadelphia	us	male	Philadelphia	2013- 11-22 22:32:04	39.96	-75.20	0
2	2	Justin	NaN	Philadelphia	us	male	NaN	2015- 06-10 16:18:43	40.00	-75.14	63

You'll notice that I've anonymized the meetup member_id and the member's name. I've also used the python module SexMachine (https://pypi.python.org/pypi/SexMachine/) to infer members gender based on their first name. I ran SexMachine on the original names before I anonymized them. Let's have a closer look at the gender breakdown of our members:

Next let's use the hist method to plot a histogram of membership_count. This is the number of groups each member is in.

```
In [19]: members_df['membership_count'].hist(bins=20)
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x10b34a990>

Something looks odd here let's check out the value_counts:

In [20]: members_df['membership_count'].value_counts().head()

```
2 105
1 96
3 86
5 77
Name: membership_count, dtype: int64
```

124

Out[20]: 0

Okay so most members are members of 0 meetup groups?! This seems odd! I did a little digging and came up with the answer; members can set their membership details to be private, and then this value will be zero. Let's filter out these members and recreate the histogram.

```
In [21]: members_df_non_zero = members_df[members_df['membership_count'] != 0]
    members_df_non_zero['membership_count'].hist(bins=50)
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x10b534bd0>

Okay so most members are only members of a few meetup groups. There's some outliers that are pretty hard to read, let's try plotting this on a logarithmic scale to see if that helps:

```
In [22]: ax = members_df_non_zero['membership_count'].hist(bins=50)
    ax.set_yscale('log')
    ax.set_xlim(0, 500)
```

Out[22]: (0, 500)

Let's use a ${\tt mask}$ to filter out the outliers so we can dig into them a little further:

```
In [23]: all_the_meetups = members_df[members_df['membership_count'] > 100]
    filtered = all_the_meetups[['membership_count', 'city', 'country', 'state']]
    filtered.sort_values(by='membership_count', ascending=False)
```

Out[23]:

	membership_count	city	country	state
301	1838	Berlin	de	NaN
25	816	San Francisco	us	CA
141	651	Jerusalem	il	NaN
67	303	Philadelphia	us	PA
420	295	Baltimore	us	MD
1178	278	Princeton	us	NJ
257	241	New York	us	NY
223	207	Scarsdale	us	NY
150	197	Philadelphia	us	PA
174	166	Philadelphia	us	PA
86	166	West Chester	us	PA
449	146	Exton	us	PA
154	119	San Francisco	us	CA
1158	119	Philadelphia	us	PA
1022	113	Levittown	us	PA
868	106	Seattle	us	WA
987	102	San Francisco	us	CA

The people from Philly might actually be legitimate members, let's use a compound mask to filter them out as well:

Out[24]:

	membership_count	city	country	state
301	1838	Berlin	de	NaN
25	816	San Francisco	us	CA
141	651	Jerusalem	il	NaN
420	295	Baltimore	us	MD
1178	278	Princeton	us	NJ
257	241	New York	us	NY
223	207	Scarsdale	us	NY
86	166	West Chester	us	PA
449	146	Exton	us	PA
154	119	San Francisco	us	CA
1022	113	Levittown	us	PA
868	106	Seattle	us	WA
987	102	San Francisco	us	CA

That's strange, I don't think we've ever had any members from Berlin, San Francisco, or Jerusalem in attendance :-).

The RSVP dataset

Moving on, we also have all the events that each member RSVPed to:

In [25]: rsvps_df = pd.read_pickle('rsvps.pkl')
 rsvps_df.head(3)

Out[25]:

	102502622	106043892	107740582	120425212	133803672	138415912	144769822	149515412	160323532	16874785
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0

3 rows × 22 columns

We can utilize the pandas merge method to join our members DataFrame and our rsvps DataFrame:

Out[26]:

	anon_id	anon_name	bio	city	country	gender	hometown	joined	lat	lon	 206754182
0	4	Edward	NaN	Downingtown	us	male	Philadelphia	2015- 05-20 05:24:59		-75.71	 0
1	8	John	CTO as SnipSnap, the coupon app	Woodbury	us	male	NaN	2013- 01-29 22:49:12		-75.13	 0
2	11	John	Founder and CEO of Azavea, a firm that builds	Philadelphia	us	male	NaN	2012- 11-06 12:18:12		-75.16	 0

3 rows × 36 columns

```
In [27]: joined with rsvps df.columns
Out[27]: Index([
                        u'anon id',
                                          u'anon name',
                                                                     u'bio',
                           u'city',
                                            u'country',
                                                                  u'gender',
                                             u'joined',
                       u'hometown',
                                                                     u'lat',
                            u'lon', u'membership count',
                                                                   u'state',
                                            u'visited',
                         u'topics',
                                                               u'102502622',
                      u'106043892',
                                         u'107740582',
                                                               u'120425212',
                      u'133803672',
                                          u'138415912',
                                                               u'144769822',
                      u'149515412',
                                          u'160323532',
                                                               u'168747852',
                      u'175993712',
                                          u'182860422',
                                                               u'206754182',
                      u'215265722',
                                          u'219055217',
                                                               u'219840555',
                      u'220526799',
                                         u'221245827',
                                                               u'225488147',
                       u'89769502',
                                          u'98833672',
                                                               u'member id'],
              dtype='object')
```

Now we have a ton of data, let's see what kind of interesting things we can discover. Let's look at the some stats on male attendees vs. female attendees:

First we can use the isin method to make DataFrames for male and female members.

Out[28]:

	anon_id	anon_name	bio	city	country	gender	hometown	joined	lat	lon	 206754182	21526
578	1261	Tom	NaN	Philadelphia	us	male	NaN	2015- 10-06 17:50:59	39.96	-75.20	 0	0
579	1262	Daniel	NaN	Philadelphia	us	male	NaN	2015- 10-07 15:48:58	39.97	-75.17	 0	0
583	1271	Chris	NaN	Philadelphia	us	male	NaN	2015- 10-20 15:00:55	39.96	-75.20	 0	0

3 rows × 36 columns

Out[29]:

	anon_id	anon_name	bio	city	country	gender	hometown	joined	lat	lon	•••	206754182	2152
580	1265	Erin	NaN	Philadelphia	us	female	NaN	2015- 10-13 18:13:37	39.95	-75.16		0	0
581	1268	Anne	NaN	Philadelphia	us	female	Philadelphia	2015- 10-18 15:29:42	39.96	-75.20		0	0
582	1269	Stacey	NaN	Philadelphia	us	female	NaN	2015- 10-20 09:55:35	39.96	-75.20		0	0

3 rows × 36 columns

Next we can use the sum method to count the number of male and female attendees per event and create a Series for each.

Out[30]: 102502622 30 106043892 35 107740582 33 dtype: float64

We can then recombine the male and female Series' into a new DataFrame.

Out[31]:

	female	male
102502622	2	30
106043892	6	35
107740582	3	33

And then we can use merge again to combine this with our events DataFrame.

Out[32]:

	created	name	rating	waitlist_count	yes_rsvp_count	id	total_RSVP_count	f
time								
2012- 11-14 18:00:00	1351948193000	Meet and greet	{u'count': 3, u'average': 5}	0	17	89769502	17	1
2013- 01-30 18:30:00	1357781071000	DataPhilly January 2013 Meetup - An Introducti	{u'count': 6, u'average': 4.17000007629}	0	61	98833672	61	1
2013- 02-19 18:30:00	1359732939000	DataPhilly February 2013 Meetup - Data Science	{u'count': 5, u'average': 5}	0	47	102502622	47	2

The we can plot the attendance by gender over time

```
In [33]: gender_df = events_with_gender_df[['female', 'male']]
    gender_df.plot(title='Attendance by gender over time')
```

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x10c19f290>

This might be easier to interpret by looking at the percentage of females in attendance. We can use the div (divide) method to calculate this.

```
In [34]: female_ratio = gender_df['female'].div(gender_df['male'] + gender_df['female'])
female_ratio.plot(title='Percentage female attendance over time', ylim=(0.0, 1.0))
```

Out[34]: <matplotlib.axes. subplots.AxesSubplot at 0x10c8e5110>

The members DataFrame also has some other interesting stuff in it. Let's take a look at the topics column.

```
In [35]: members df['topics'].iloc[0]
Out[35]: [{u'id': 254, u'name': u'Poker', u'urlkey': u'poker'},
          {u'id': 21067, u'name': u'Collaboration', u'urlkey': u'collaboration'},
          {u'id': 15167, u'name': u'Cloud Computing', u'urlkey': u'cloud-computing'},
          {u'id': 10333, u'name': u'Parents', u'urlkey': u'parents'},
          {u'id': 553, u'name': u'Dungeons & Dragons', u'urlkey': u'dnd'},
          {u'id': 4377, u'name': u'Politics', u'urlkey': u'politics'},
          {u'id': 15992, u'name': u'Games', u'urlkey': u'games'},
          {u'id': 9696, u'name': u'New Technology', u'urlkey': u'newtech'},
          {u'id': 19585, u'name': u'Board Games', u'urlkey': u'board-games'},
          {u'id': 48471,
           u'name': u'Computer programming',
           u'urlkey': u'computer-programming'},
          {u'id': 19197, u'name': u'Activism', u'urlkey': u'activism'},
          {u'id': 226, u'name': u'Acting', u'urlkey': u'acting'},
          {u'id': 17558, u'name': u'Performing Arts', u'urlkey': u'performing-arts'}]
```

Let's see if we can identify any trends in member's topics. Let's start off by identifying the most common topics:

```
In [36]: from collections import Counter
         topic counter = Counter()
         for m in members df['topics']:
             topic counter.update([t['name'] for t in m])
         topic counter.most common(20)
Out[36]: [(u'Big Data', 528),
          (u'Data Analytics', 492),
          (u'Computer programming', 473),
          (u'New Technology', 450),
           (u'Open Source', 381),
          (u'Data Mining', 372),
          (u'Software Development', 366),
           (u'Startup Businesses', 359),
          (u'Technology', 314),
          (u'Python', 285),
          (u'Technology Startups', 278),
          (u'Web Development', 277),
          (u'Entrepreneurship', 265),
          (u'Data Visualization', 264),
          (u'Mobile Technology', 227),
          (u'Big Data Analytics', 210),
          (u'Predictive Analytics', 202),
          (u'Mobile Development', 190),
          (u'Web Design', 182),
           (u'Outdoors', 182)]
```

Next let's create a new DataFrame where each column is one of the top 100 topics, and each row is a member. We'll set the values of each cell to be either 0 or 1 to indicate that that member has (or doesn't have) that topic.

Out[37]:

	0	2	3	4	5	6	8	9	11	12	 1261	1262	1264	1266	1267	1268	1269	1271
20's & 30's Social	NaN	 NaN	1	NaN	NaN	NaN	NaN	NaN	NaN									
Adventure	NaN	NaN	NaN	1	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN						
Art	NaN	 NaN	NaN															

3 rows × 1088 columns

Okay for what I'm going to do next, I want the rows to be the members and the columns to be the topics. We can use the T (transpose) method to fix this.

In [38]: top_topic_df = top_topic_df.T
 top_topic_df.head(3)

Out[38]:

	20's & 30's Social	Adventure	Art	Bicycling	Big Data	Big Data Analytics	Board Games	Book Club	Business Intelligence	Business Strategy	 Watching Movies	Web Design	Web Deve
0	NaN	NaN	NaN	NaN	NaN	NaN	1	NaN	NaN	NaN	 NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	1	1
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN

3 rows × 100 columns

Next we can use the fillna method to fill in the missing values with zeros.

In [39]: top_topic_df.fillna(0, inplace=True)
 top_topic_df.head(3)

Out[39]:

	20's & 30's Social	Adventure	Art	Bicycling	Big Data	Big Data Analytics	Board Games	Book Club	Business Intelligence	Business Strategy	 Watching Movies	Web Design	Web Devel
0	0	0	0	0	0	0	1	0	0	0	 0	0	0
2	0	0	0	0	0	0	0	0	0	0	 0	1	1
3	0	0	0	0	0	0	0	0	0	0	 0	0	0

3 rows × 100 columns

Next let's use a <u>clustering algorithm (https://en.wikipedia.org/wiki/Cluster_analysis)</u> to see if there are any patterns in the topics members are interested in. A clustering algorithm groups a set of data points so that similar objects are in the same group. This is a classic type of <u>unsupervised machine learning (https://en.wikipedia.org/wiki/Unsupervised_learning)</u>. Below you can find visualisations of how different clustering algorithms perform on various kinds of data:

Kmeans clustering (http://scikit-learn.org/stable/modules/clustering.html#k-means) is quick and can scale well to larger datasets. Let's see how it performs on our dataset:

scikit-learn

We'll use a python machine learning library called scikit-learn to do the clustering.

```
In [40]: from sklearn.cluster import MiniBatchKMeans as KMeans
   X = top_topic_df.as_matrix()
   n_clusters = 3
   k_means = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10, random_state=47)
   k_means.fit(X)
   k_means.labels_
```

```
Out[40]: array([2, 1, 2, ..., 2, 0, 2], dtype=int32)
```

We've grouped our members into 3 clusters, let's see how many members are in each cluster

```
In [41]: Counter(list(k_means.labels_)).most_common()
Out[41]: [(2, 637), (1, 293), (0, 158)]
```

Next let's see which topics are most popular in each cluster:

```
In [42]: from collections import defaultdict
         cluster index map = defaultdict(list)
         for i in range(k means.labels .shape[0]):
             cluster index map[k means.labels [i]].append(top topic df.index[i])
         for cluster num in range(n clusters):
             print 'Cluster {}'.format(cluster num)
             f = top topic df[top topic df.index.isin(cluster index map[cluster num])].sum()
             f2 = f[f > 0]
             f3 = f2.sort values(ascending=False)
             print f3[:10]
             print
         Cluster 0
         Outdoors
                                     104
         Live Music
                                      98
         Dining Out
                                      93
         Hiking
                                      86
         Fitness
                                      84
         Travel
                                      77
         Watching Movies
                                      60
         Adventure
                                      58
                                      57
         New Technology
         Intellectual Discussion
                                      54
         dtype: float64
         Cluster 1
         Computer programming
                                  248
         Open Source
                                  236
         New Technology
                                  231
         Software Development
                                  231
         Technology
                                  214
         Web Development
                                  211
         Big Data
                                  190
         Startup Businesses
                                  177
         Data Analytics
                                  166
         Mobile Technology
                                  158
         dtype: float64
```

Cluster 2	
Big Data	291
Data Analytics	286
Data Mining	201
Computer programming	171
New Technology	162
Data Visualization	148
Startup Businesses	130
Python	130
Open Source	123
Big Data Analytics	115
dtype: float64	

So it looks like our biggest cluster (#2) contains members whose primary interest is data science.

The second biggest cluster (#1) contains members whose primary interests are technology, and data science just happens to be one of those interests.

The smallest cluster (#0) contains members whose primary interests are around socializing.

Based on this information we might be able to engage members in the "social" (#0) cluster by having more socially oriented events. We might be able to engaged with the members in cluster (#1) by having more events geared toward beginners.

Conclusion

Hopefully you learned a little bit about DataPhilly and doing exploratory analysis in Python. There's tons of extra data in our datasets that I don't even have time to get into today. If you feel like you missed anything and would like to revist it, you can find this Notebook and instructions for how to use it in my github repo http://github.com/mdbecker/ (http://github.com/mdbecker/). If you find something interesting in the data and you'd like to share it with me I'm @beckerfuffle (https://twitter.com/beckerfuffle) on Twitter, and you can always contact me (http://goo.gl/RvxB6J) through the DataPhilly Meetup page.