# Характер группоида

#### А. А. Владимиров

09.05.2022

#### Задача

Дан функтор  $\varkappa = (\varkappa_1, \varkappa_2) : \mathbf{Cat}(\Gamma) \to \mathbf{Vec}$ .

Найти  $\varkappa_2: (f: \Gamma_1 \to \Gamma_2) \mapsto (A_f: \varkappa_1(\Gamma_1) \to \varkappa_1(\Gamma_2))$ , если известно, что  $\varkappa_1: \Gamma \mapsto V$ , где V – пространство характеров, т.е.  $V = \{\chi: \operatorname{Hom} \Gamma \to \mathbb{C}: \chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)\}$ .

Таким образом задача сводится к нахождению линейного оператора  $A_f$  на коммутативной диаграмме



#### Решение

#### і. Группоид

**Определение 1.** [1] *Группоидом* назывется категория, в которой любая стрелка обратима.

Попытаемся вначале внести ясность в то, как группоид устроен. Под группоидом здесь и всюду далее будет подразумеваться связный группоид. Введем следующее

**Определение 2.** Элементарным группоидом будем называть группоид для любых двух вершин a и b которого существует одна и притом только одна стрелка  $f: a \to b$ . см. рис. 1.

Тот факт, что такие группоиды существуют доказывается непосредственно проверкой аксиом и представляется очевидным.

Заметим, что предъявление множества всех вершин и стрелок является *избы- точным* для задания элементарного группоида. Введем объект достаточный (и в некотором смысле минимальный) для определения элементарного группоида целиком.



Рис. 1: элементарный группоид

**Определение 3.** Пучком стрелок, исходящих из вершины a назовем совокупность стрелок  $f: a \to b, g: a \to c, \ldots$ , по одной в каждую из остальных вершин  $\mathrm{Obj}(\Gamma)/a$ .

**Утверждение 1.** Элементарный группоид задается пучком стрелок из произвольной вершины. Более точно: пусть  $\Gamma$  — элементарный группоид,  $\pi(a)$  — пучок стрелок из вершины  $a \in \mathrm{Obj}(\Gamma)$ , тогда минимальный по включению группоид, содержащий  $\pi(a)$  совпадает c  $\Gamma$ .

Доказательство. Доказательство представялется очевидным. см. рис. 2



Рис. 2: пучок стрелок в элементарном группоиде

Вернемся теперь к группоиду, не обязательно элементарному и обратим внимание на следующий факт

**Утверждение 2.** Для любых двух вершин  $a, b \in \mathrm{Obj}(\Gamma)$  справедливо

$$hom(a,b) = f \cdot hom(a,a), \tag{2}$$

где  $f \cdot A \doteqdot \{fh \mid \forall h \in A\}$ , и f — некоторая стрелка из а в b.



Рис. 3: группоид

**Определение 4.** назовем *пучком стрелок* исходящим из вершины a совокупность стрелок  $f: a \to b, g: a \to c, \ldots$ , по одной в каждую из остальных вершин  $\mathrm{Obj}(\Gamma)/a$ .

Определение 5. Назовем *остовом* группоида  $\Gamma$  с *основанием* a совокупность группы петель основания hom(a,a) и пучка исходящих из него стрелок (диаграмма (3)).



Ясно, что

Утверждение 3. группоид однозначно определяется своим остовом.

Доказательство. Действительно, пусть дан остов с основанием в вершине a, тогда множество объектов группоида определено и состовляет

$$\mathrm{Obj}(\Gamma) = a \cup \{b = \mathrm{codom}\, f : \mathrm{по} \ \mathrm{всем} \ f$$
 из пучка вершины  $a\}.$ 

Чтобы показать как остов определяет  $\text{Hom}(\Gamma)$  отметим следующие утверждения, справедливые в любом связном группоиде:

(a) для любых вершин a и b

$$hom(a,b) = f \cdot hom(a,a) = \{ f \cdot h \mid \forall h \in hom(a,a) \}, \tag{4}$$

где f — некоторая стрелка из a из b. Действительно, вложение правого множества в левое очевидно, ввиду аксиом композиции категории. Обратное вложение справедливо, т.к. для любого  $g \in \text{hom}(a,b)$  существует  $h \in \text{hom}(a,a)$ , такое что fh = g, а именно  $h = f^{-1}g$ .

(b)

(c)

Логично задаться вопросом: как конкретно определяется характер на фунадментальной группе? Для его решения попробуем задать характер на группе вообще.

### іі. Группа

Рассмотрим некоторую группу G, его фактор-группу G/G' по коммутанту G' и следующую диаграмму



Здесь  $\tau:g\mapsto gG'$  — канонический гомоморфизм;  $\chi,\ \chi_{ab}$  — характеры групп G и G/G' соответственно.

Оказывается, что

**Утверждение** 4. для любого  $\chi: G \to \mathbb{C}$  существует и при том единственный характер  $\chi_{ab}: G/G' \to \mathbb{C}$  такой, что диаграмма (5) коммутативна, т.е.

$$\chi = \chi_{ab} \circ \tau$$
.

Доказательство. Действительно, потребуем для любого  $g \in G$ 

$$\chi(g) = \chi_{ab} \circ \tau(g),$$

тогда

$$\chi(g) = \chi_{ab}(gG'),$$

и  $\chi_{ab}$  задан на G/G' однозначно.

Более того  $\chi_{ab}$  задан корректно, т.к. для  $\forall f \in gG' \ \exists h \in G' : f = gh$ , но по определению коммутанта существуют такие a и b, что  $h = aba^{-1}b^{-1}$ , откуда  $f = gaba^{-1}b^{-1}$ , и

$$\chi(f) = \chi(gaba^{-1}b^{-1}) = \chi(g) + \chi(a) + \chi(b) - \chi(a) - \chi(b) = \chi(g),$$

то есть,

$$\chi(f) = \chi(g)$$
, для любых  $f$  и  $g$  из одного смежного по  $G'$  класса. (6)

Очевидно, что  $\chi_{ab}$  — характер:

$$\chi_{ab}(gfG') = \chi(gf) = \chi(g) + \chi(f) = \chi_{ab}(gG') + \chi_{ab}(fG').$$

Замечание. Попутно доказано важное для понимания происходящего утверждение (6), показывающее, что факторизация группы по коммутанту G' разбивает ее также и на «области постоянства» характера (рис. 4). Становится ясно, что вместо рассмотрения характера  $\chi$  на всей группе, достаточно пронаблюдать лишь за его «действием с точностью до G'», т.е. за определяемым им на G/G' характере  $\chi_{ab}$ .



Рис. 4

Обратно,

**Утверждение 5.** характер  $\chi_{ab}$  однозначно задает  $\chi$ , как

$$\chi = \chi_{ab} \circ \tau$$

Утверждение представляется очевидным.

Так, построено взаимооднозначное отображение  $t: \chi_{ab} \mapsto \chi_{ab} \circ \tau = \chi$  между характерами группы и ее абелизации (т.е. фактор группы по коммутанту). Покажем, что отображение t является гомоморфизмом (а следовательно и изоморфизмом) линейных пространств.

Действительно, для любого  $g \in G$ 

$$t(c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(g) = (c_1\chi_{ab}^1 + c_2\chi_{ab}^2) \circ \tau(g) =$$

$$= (c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(gG') = c_1\chi_{ab}^1(gG') + c_2\chi_{ab}^2(gG') =$$

$$= c_1\chi_{ab}^1 \circ \tau(g) + c_2\chi_{ab}^2 \circ \tau(g) = c_1t(\chi_{ab}^1)(g) + c_2t(\chi_{ab}^2)(g).$$

Тем самым доказано следующее

**Утверждение 6.** Пространства характеров группы G и ее абелизации G/G' изоморфны. Конкретно, изоморфизм имеет вид:

$$t: G/G' \to G. \quad t: \chi_{ab} \mapsto \chi_{ab} \circ \tau,$$
 (7)

где au — канонический гомоморфизм G o G/G'.

Последнее утверждение позволяет нам свести задачу изучения характеров группы G к рассмотрению характеров на G/G' — группе, абелевой по определению.

### ііі. Абелева группа

Итак, пусть некоторая группа A — абелева. Как задать на ней характер? Нетрудно получить ответ в случае конечно-порожденных групп.

Известно, что для таких групп справедливо разложение 1

$$A \simeq \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n} \oplus \operatorname{Tor} A = \mathbb{Z}^{n} \oplus \operatorname{Tor} A,$$

где  $\mathbb{Z}^n$  — cвободная подгруппа,

 $\operatorname{Tor} A \ \ = \ \{a \in A : ma = 0 \ \text{для некоторого} \ m \in \mathbb{Z}, m \neq 0\} - noдгруппа \ \kappa ручения,$  причем

Tor 
$$A \simeq \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_s}$$
,

где  $\mathbb{Z}_{p_i}$  — циклическая группа порядка  $p_i$ .

<sup>&</sup>lt;sup>1</sup>см.[2] гл.9 §1

Отсюда

$$A = \{x_1 e_1 + \ldots + x_n e_n + x_{n+1} f_1 + \ldots + x_{n+s} f_s \mid x_i \in \mathbb{Z}\},\tag{8}$$

где  $\{e_i\}_{i=1}^n$  – базис свободной подгруппы,  $\{f_i\}_{i=1}^s$  – порождающие соответствующих циклических групп. Попутно введем обозначение  $|\dim|A=n$ .

Пусть теперь задан характер  $\chi:A\to\mathbb{C},$  тогда для любого  $a\in A,$  с учетом (8) верно

$$\chi(a) = \chi(\alpha_1 e_1 + \ldots + \alpha_n e_n + \alpha_{n+1} f_1 + \ldots + \alpha_{n+s} f_s) =$$

$$= \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n) + \alpha_{n+1} \chi(f_1) + \ldots + \alpha_{n+s} \chi(f_s),$$

но, так как порядок каждого элемента  $f_i$  конечен, то  $\chi(f_i)=0$  для всех i=1,...,s, и

$$\chi(a) = \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n). \tag{9}$$

Тем самым доказано

**Утверждение 7.** Для конечно-порожденной группы A пространство характеров  $X(A) = \{\chi : A \to \mathbb{C} : \chi(a+b) = \chi(a) + \chi(b)\}$  имеет размерность

$$\dim X(A) = \lfloor \dim \rfloor A. \tag{10}$$

## Список литературы

- [1] Маклейн С. «Категории для работающего математика». Изд-во ФизМатЛит, Москва, 2004.
- [2] Винберг Э. Б. «Курс алгебры». Изд-во МЦНМО, Москва, 2014.