Felix Lehmann, Jan Manhillen, Leo Kyster Oerter

Aufgabe 4 Interpretation von Histogrammen

Zur einfachen Rechnung seien die beiden folgenden 4×4 -Grauwertbilder $I_1 = [I_1(x,y)]$ und $I_2 = [I_2(x,y)]$ mit Intensitätspektrum $\{0,1,2,...,7\}$ gegeben:

$$\mathbf{I}_1 = \begin{bmatrix} 4 & 2 & 5 & 1 \\ 5 & 3 & 2 & 3 \\ \hline 4 & 2 & 6 & 2 \\ \hline 4 & 1 & 2 & 1 \end{bmatrix}$$

$$\mathbf{I}_2 = \begin{array}{|c|c|c|c|c|c|} \hline 2 & 1 & 2 & 1 \\ \hline 1 & 7 & 6 & 1 \\ \hline 0 & 6 & 6 & 2 \\ \hline 1 & 1 & 2 & 1 \\ \hline \end{array}$$

1. Berechnen Sie die unnormalisierten Intensitätshistogramme $h(\mathbf{I_1})$ sowie $h(\mathbf{I_2})$ und stellen Sie diese tabellarisch dar.

n _{l1}	h(I ₁)	n ₁₂	h(I ₂)
0	0	0	1
1	3	1	7
2	5	2	4
3	2	3	0
4	3	4	0
5	2	5	0
6	1	6	3
7	0	7	1

2. Berechnen Sie die normalisierten Intensitätshistogramme $p(\mathbf{I_1})$ sowie $h(\mathbf{I_2})$ und stellen Sie diese tabellarisch dar.

S = 4 Z = 4

S * Z = 16

p(I ₁)	p(I ₂)
0	1/16 = 0,0625
3/16 = 0,1875	7/16 = 0,4375
5/16 = 0,3125	4/16 = 0,25
2/16 = 0,125	0
3/16 = 0,1875	0
2/16 = 0,125	0
1/16 = 0,0625	3/16 = 0,1875
0	1/16 = 0,0625
	0 3/16 = 0,1875 5/16 = 0,3125 2/16 = 0,125 3/16 = 0,1875 2/16 = 0,125 1/16 = 0,0625

3. Berechnen Sie die Mittelwerte $m_{\mathbf{I_1}}$ und $m_{\mathbf{I_2}}$ sowie die mittl. quadr. Abreichungen $q_{\mathbf{I_1}}$ und $q_{\mathbf{I_2}}$.

$$m_{I} = \frac{1}{N} \sum_{I=0}^{I_{max}} I * N * p_{I}(I) = \sum_{I=0}^{I_{max}} I * p_{I}(I)$$
 $m_{I_{1}} = \sum_{I=0}^{7} I * p_{I}(I) = \frac{47}{16} = 2.9375$
 $m_{I_{2}} = \sum_{I=0}^{7} I * p_{I}(I) = \frac{40}{16} = 2.5$
 $q_{I} = \sum_{I=0}^{I_{max}} (I - m_{I})^{2} * p_{I}(I)$
 $q_{I_{1}} = \sum_{I=0}^{7} (I - m_{I_{1}})^{2} * p_{I}(I_{1}) = \frac{591}{256} \approx 2.31$
 $q_{I_{2}} = \sum_{I=0}^{7} (I - m_{I_{2}})^{2} * p_{I}(I_{2}) = 5$

4. Welche vergleichenden Aussagen sind über die Bilder $\mathbf{I_1}$ und $\mathbf{I_2}$ anhand ihrer Mittelwerte und mittl. quadr. Abreichungen ableitbar? Was ist bzgl. beider Werte für $\mathbf{I_2}$ kritisch zu bedenken?

Aufgabe 5 Lineare Histogrammspreizung

Zur einfachen Rechnung sei das folgende 4×2 -Grauwertbild $\mathbf{I} = [\mathbf{I}(\mathbf{x}, \mathbf{y})]$ mit Intensitätspektrum $\{0, 1, 2, ..., 7\}$ gegeben:

2	3	3	5
2	4	4	5

a) Berechnen Sie das unnormalisierte Intensitätshistogramm $h(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

nı	h(I)
0	0
1	0

2	2
3	2
4	2
5	2
6	0
7	0

b) Berechnen Sie das normalisierte Intensitätshistogramm $p(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

S = 4 Z = 2S * Z = 8

nı	p(I)
0	0
1	0
2	2/8 = 0,25
3	2/8 = 0,25
4	2/8 = 0,25
5	2/8 = 0,25
6	0
7	0

c) Berechnen Sie das kumulative Intensitätshistogramm $s(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

1)
,25
,5
,75

d) Wenden Sie nun die Histogrammlinearisierung T_H auf das obige 4×2 -Grauwertbild $\mathbf{I} = [\mathbf{I}(\mathbf{x},\mathbf{y})]$ an und geben Sie das so korrigierte neue Grauwertbild $\mathbf{I}' = T_H(\mathbf{I})$ wieder.

nı	T _H (I)
0	0
1	0
2	2
3	4

4	6
5	7
6	7
7	7

х	1	2	3	4
1	2	4	4	7
2	2	6	6	7

Aufgabe 6 Gamma-Korrektur

Zur einfachen Rechnung sei das folgende 4×2 -Grauwertbild I = [I(x,y)] mit Intensitätspektrum $\{0,1,2,...,7\}$ gegeben:

0	1	1	4
0	2	2	4

a) Berechnen Sie die Gamma-Korrektur für I=[I(x,y)] mit $\gamma=0.5$ und geben Sie das so korrigierte neue Grauwertbild $I'=T_{\gamma=0.5}(I)$ wieder.

nı	T _{y=0.5} (I)
0	0
1	3
2	4
3	5
4	6

X	1	2	3	4
1	0	3	3	6
2	0	4	4	6

b) Berechnen Sie die Gamma-Korrektur für $\mathbf{I}=[\mathrm{I}(\mathrm{x},\mathrm{y})]$ mit $\gamma=2.0$ und geben Sie das so korrigierte neue Grauwertbild $I'=T_{\gamma=2}(I)$ wieder.

nı	T _{y=2} (I)
0	0
1	0
2	1
3	1
4	3

х	1	2	3	4
1	0	0	0	3
1	0	1	1	3

c) Welche der beiden Gamma-Korrekturen ($\gamma=0.5,~\gamma=02.0$) ist angemessen? Begründen Sie Ihre Antwort einerseits mit der Qualität des Eingabebildes und andererseits mit der Eigenschaft der jeweiligen Gamma-Korrektur.

Das Eingabebild ist unterbelichtet, was man daran sieht, dass sich die meisten Intensitätswerte im niedrigen Bereich befinden, es gibt keine Intensitätswerte die größer als 4 sind.

Also ist die Gamma-Korrektur mit γ = 0.5 angemessen, da man Gamma-Korrekturen mit γ < 1 für unterbelichtete Bilder nutzt (so werden niedrige Intensitätswerte gespreizt und hohe Intensitätswerte gestaucht).

Bei Gamma-Korrekturen mit $\gamma > 1$ werden hohe Intensitätswerte gespreizt und niedrige gestaucht, was besser für überbelichtete Bilder ist.

Aufgabe 7 Histogrammlinearisierung bzw. Maximierung der Entropie

Zur einfachen Rechnung sei das folgende 4×2 -Grauwertbild $\mathbf{I} = [\mathbf{I}(\mathbf{x}, \mathbf{y})]$ mit Intensitätspektrum $\{0, 1, 2, ..., 7\}$ gegeben:

0	1	1	7
2	6	6	7

a) Berechnen Sie das unnormalisierte Intensitätshistogramm $h(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

nı	h(I)
0	1
1	2
2	1
3	0
4	0
5	0
6	2
7	2

b) Berechnen Sie das normalisierte Intensitätshistogramm $p(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

$$S = 4$$

 $Z = 2$
 $S * Z = 8$

nı	p(I)		
0	1/8 = 0,125		
1	2/8 = 0,25		
2	1/8 = 0,125		
3	0		
4	0		
5	0		
6	2/8 = 0,25		

c) Berechnen Sie das kumulative Intensitätshistogramm $s(\mathbf{I})$ und stellen Sie dies tabellarisch dar.

s(I)
0,125
0,375
0,5
0,5
0,5
0,5
0,75
1

d) Wenden Sie nun die Histogrammlinearisierung T_H auf das obige 4×2 -Grauwertbild $\mathbf{I} = [\mathbf{I}(\mathbf{x}, \mathbf{y})]$ an und geben Sie das so korrigierte neue Grauwertbild $\mathbf{I}' = T_H(\mathbf{I})$ wieder.

nı	T _H (I)
0	1
1	3
2	4
3	4
4	4
5	4
6	6
7	7

X	1	2	3	4
1	1	3	3	7
2	4	6	6	7