Bewegingen herkennen met een smartphone

Arne De Brabandere Menno Keustermans

Begeleiders: Wannes Meert Leander Schietgat

Doelstellingen

Welke activiteiten kunnen herkend worden?

- wandelen lopen
- trap op trap af
- fietsen
- ...

Kan een sequentie van bewegingen geclassificeerd worden?

+ Hoe nauwkeurig?

Probleemstelling

Probleemstelling: sequentie

Inhoud

Papers

- Gegevens opmeten
- Features
- Machine Learning technieken

Papers

Activity Recognition from Accelerometer Data Nishkam Ravi and Nikhil Dandekar and Preetham Mysore and Michael L.
Littman

Feature Processing and Modeling for 6D Motion
 Gesture Recognition -

Mingyu Chen, Ghassan AlRegib en Biing-Hwang Juang

 A Hybrid Discriminative & Generative Approach for Modeling Human Activities -

Jonathan Lester, Tanzeem Choudhury, Nicky Kern, Gaetano Borriello en Blake Hannaford

An introduction to inertial navigation -

Oliver J. Woodman

Features

ML-technieken

Papers

Activity Recognition from Accelerometer Data Nishkam Ravi and Nikhil Dandekar and Preetham Mysore and Michael L.
Littman

Feature Processing and Modeling for 6D Motion
 Gesture Recognition -

Mingyu Chen, Ghassan AlRegib en Biing-Hwang Juang

 A Hybrid Discriminative & Generative Approach for Modeling Human Activities -

Jonathan Lester, Tanzeem Choudhury, Nicky Kern, Gaetano Borriello en Blake Hannaford

An introduction to inertial navigation -

Oliver J. Woodman

HMM's

Papers

- Activity Recognition from Accelerometer Data Nishkam Ravi and Nikhil Dandekar and Preetham Mysore and Michael L.
 Littman
- Feature Processing and Modeling for 6D Motion
 Gesture Recognition -

Mingyu Chen, Ghassan AlRegib en Biing-Hwang Juang

 A Hybrid Discriminative & Generative Approach for Modeling Human Activities -

Jonathan Lester, Tanzeem Choudhury, Nicky Kern, Gaetano Borriello en Blake Hannaford

An introduction to inertial navigation -

Oliver J. Woodman

Gegevens opmeten

Bewegingen detecteren en normaliseren

Accelerometer

Detecteert versnelling in 3D (x, y, z)

Gyroscoop

Meet de hoeksnelheid in 3D (roll, pitch, yaw)

6D Bewegingsdetector: sensor fusion

Combinatie van gegevens van accelerometer en gyroscoop

Gegevens normaliseren:

beweging detecteren ongeacht de positie van de smartphone in de broekzak

Applicatie

Meet de versnelling en de rotatie van de smartphone aan 50 hz

= standaard sampling frequentie

Typische output: {"timestamp": ...,

"q": [..., ..., ..., ...],

"x": ..,"y": ...,"z": ...}

Parameters berekenen uit accelerometerdata

Berekend met behulp van tool: MotionFingerprint (door Wannes Meert)

Statistische variabelen

- Gemiddelde
- Standaardafwijking
- Correlatie

```
Berekend voor de versnelling:
in de z-richting
in het xy-vlak
```

Kurtosis

Maat voor "piekvormigheid" van een curve

Zero crossing rate

Aantal keer dat een signaal van teken verandert per tijdseenheid

Fourier-transformatie

Fourier-transformatie

Training set

Features

Gemiddelde z-versnelling	Standaardafwijking z-versnelling	Label
-0.023672044480712355	2.7266547308816724	wandelen
0.12217549673848728	2.9093965146597998	 wandelen
0.15819798154627865	2.5861038302560972	trap op

Machine Learning technieken

model berekenen om nieuwe gegevens te classificeren

(Beschikbaar in Weka) 17

Machine Learning technieken

Base-level classifiers:

- k-Nearest Neighbors (kNN)
- Naive Bayes
- Beslissingsbomen (C4.5)

Meta-level classifiers

k-Nearest Neighbors (kNN)

Voorbeeld: k=4

- 3 blauw
- 1 rood
- ⇒ geclassificeerd als blauw

k-Nearest Neighbors (kNN)

Voorbeeld: k=4

- 3 blauw
- 1 rood
- ⇒ geclassificeerd als blauw

Gebieden bepalen waartoe elk element behoort:
Voronoi-diagram berekenen

Naive Bayes

- = Probabilistische classifier
 - waarden voor features F₁, ..., F_n
 - label C

$$P(C|F_1, ..., F_n) = \frac{P(C)P(F_1, ..., F_n|C)}{P(F_1, ..., F_n)}$$
$$= \frac{P(C)P(F_1|C)...P(F_n|C)}{P(F_1, ..., F_n)}$$

Naive Bayes

Nieuwe meting met waarden voor features $(\mathbf{f_1}, ..., \mathbf{f_n})$

⇒ geclassificeerd als label **c** met de grootste kans:

classificeer
$$(f_1, ..., f_n)$$

= $\max_{c} P(C = c) P(F_1 = f_1 | C = c) ... P(F_n = f_n | C = c)$

Beslissingsbomen

Interne knoop: feature

Tak: test op feature

Bladknoop: label

Hoe opstellen?

⇒ C4.5 algoritme

Training set **T**:

z_stddev	corr_z_xy_e	Label
2.726	0.051	wandelen
2.909	0.063	wandelen
4.171	0.187	trap af
4.415	0.044	trap af

Kies een feature om T op te splitsen: 2 mogelijkheden

z_stddev:

≤ 2.909

z_stddev	corr_z_xy_e	Label
2.726	0.051	wandelen
2.909	0.063	wandelen

> 2.909

z_stddev	corr_z_xy_e	Label
4.171	0.187	trap af
4.415	0.044	trap af

Kies een feature om T op te splitsen: 2 mogelijkheden

corr_z_xy_e:

≤ 0.051

z_stddev	corr_z_xy_e	Label
4.415	0.044	trap af
2.726	0.051	wandelen

> 0.051

z_stddev	corr_z_xy_e	Label
2.909	0.063	wandelen
4.171	0.187	trap af

Welke feature F kiezen voor opsplitsing?

Bereken de entropy van elke deelverzameling T_i

$$entropy(T_i) = -\sum_{j=1}^{k} \frac{freq(C_j, T_i)}{|T_i|} \times log_2 \frac{freq(C_j, T_i)}{|T_i|}$$

- alle elementen van **T**_i zelfde label ⇒ entropy(T_i) = 0
- alle elementen van T₁ ander label ⇒ entropy(T₁) = 1

Welke feature F kiezen voor opsplitsing?

Bereken entropy_F van opsplitsing van T volgens F

$$entropy_F(T) = \sum_{i=1}^{n} \frac{|T_i|}{|T|} \times entropy(T_i)$$

hierin is

$$entropy(T_i) = -\sum_{j=1}^{k} \frac{freq(C_j, T_i)}{|T_i|} \times log_2 \frac{freq(C_j, T_i)}{|T_i|}$$

Welke feature **F** kiezen voor opsplitsing?

Kies de feature met hoogste gain

$$gain(F) = entropy(T) - entropy_F(T)$$

Kies een feature om T op te splitsen: 2 mogelijkheden

z_stddev:

gain(z_stddev) = 1

≤ 2.909

z_stddev	corr_z_xy_e	Label
2.726	0.051	wandelen
2.909	0.063	wandelen

> 2.909

z_stddev	corr_z_xy_e	Label
4.171	0.187	trap af
4.415	0.044	trap af

Kies een feature om T op te splitsen: 2 mogelijkheden

$$gain(corr_z_xy_e) = 0$$

≤ 0.051

z_stddev	corr_z_xy_e	Label
4.415	0.044	trap af
2.726	0.051	wandelen

> 0.051

z_stddev	corr_z_xy_e	Label
2.909	0.063	wandelen
4.171	0.187	trap af

De resulterende beslissingsboom:

Besluit

 Gegevens opmeten: accelerometer + gyroscoop

2. Features berekenen

Machine Learning
 training set ⇒ model ⇒ nieuwe gegevens classificeren

Vragen?