Lecture 4

Math 467

Quadratic Forms

 $Q \in \mathbb{R}^{n \times n}$

define the quadratic form:

$$f(x) = x^T Q x = \sum_{i,j=1}^n x_i Q_{ij} x_j$$

that is $f: \mathbb{R}^n \mapsto \mathbb{R}$

Remark:

We can assume that $Q^T = Q$. Note: $x^T Q x = \sum_{i,j=1}^n x_i Q_{ij} x_j = \sum_{i,j}^n x_i Q_{ji} x_j = x^T Q^T x$. Then put

$$\tilde{Q} = \frac{1}{2}(Q + Q^T)$$

evidently $\tilde{Q} = \tilde{Q}^T$ and

$$x^T\tilde{Q}x = \frac{1}{2}(x^TQx + x^TQ^Tx) = \frac{1}{2}(x^TQx + x^TQx) = x^TQx$$

Definition

- 1. We say f is positive definite if f(x) > 0 for all $x \neq 0$.
- 2. f is positive semidefinite if $f(x) \ge 0$ for all $x \in \mathbb{R}^n$
- 3. Similarly for negative (semi)definite

When is a quadratic form positive definite?

1. Sylvestri's Criterion:

Q is positive definite if determinants of all minors are positive (the minor in this $Q=\begin{bmatrix}A&b&c&\dots\\d&e&f&\dots\end{bmatrix}$ is A)

2. Theorem) $f(x) = x^T Q x$ is positive definite if and only if all eigenvalues are positive.

1

Proof) $Q=Q^T\to \text{all eigenvalues }\lambda_1,\lambda_2,...,\lambda_n\in\mathbb{R}.$ For simplicity, they are distinct. Then if $v_1,v_2,...,v_n$ are associated eigenvectors, they are orthogonal. Assume $||v_j||=1$. $\to v_1,v_2,...v_n$ are orthonormal basis. If

$$T = (v_1, v_2, ... v_n) \in \mathbb{R}^{n \times n}$$

T is orthogonal basis $\to T^T = T^{-1}$ (becase $T^T T = I). In the basis <math display="inline">(v_1, v_2, ..., v_n)$

$$\tilde{Q} = T^T Q T = \begin{bmatrix} \lambda_1 & \dots & 0 \\ 0 & \lambda_2 & \dots \\ \dots & \dots & \dots \\ 0 & 0 & \lambda_n \end{bmatrix}$$

let $x \in \mathbb{R}^n$. put $y = T^{-1}x = T^Tx$ (i.e $x = \sum_{j=1}^n y_j v_j$). Then x = Ty and $x^T = y^T T^T$.

$$\begin{split} f(x) &= x^T Q x = y^T T^T Q T y = \tilde{Q} \\ &= y^T \tilde{Q} y = \sum_{i,j}^n y_i \tilde{Q}_{ij} y_j \\ &= \lambda_i \delta_i j \\ &= \sum_{i=1}^n y_i y_i \lambda_i = \sum_{i=1}^n y_i^2 \lambda_i \end{split}$$

Now f is positive definite if and only if all $\lambda_i > 0$. Similarly f is positive semidefinite if and only if $\lambda_i \geq 0$ for all i.

Ex

$$Q = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}$$

Find eigenvalues:

$$P(\lambda) = \lambda^2 - 2\lambda + \frac{3}{4}$$

$$\lambda_1, 2 = 1 \pm \sqrt{\frac{1}{4}} = 1 \pm \frac{1}{2} = \begin{cases} \frac{3}{2} \\ \frac{1}{2} \end{cases}$$

$$\begin{split} \lambda_1, \lambda_2 > 0 \to f(x) &= x^T Q x \text{ is positive definite. In fact, for } f(x) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + x_2^2 + \frac{1}{2} x_1 x_2 + \frac{1}{2} x_1 x_2. & f(x) = x_1^2 + x_2^2 + x_1 x_2. \\ Ex \ 2 \ (trivial) \end{split}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

 $Ex \ 3(trivial)$

$$Q = \begin{bmatrix} 1 & \frac{1}{2} & 0\\ \frac{1}{2} & 1 & 0\\ 0 & 0 & 3 \end{bmatrix}$$

eigenvalues: one of them is (trivially) 3. The other 2 are the same as the 1st example.

Measuring Sizes of Matrices

Norms of Matrices

$$A \in \mathbb{R}^{n \times n}$$

(or $\in \mathbb{C}^n \times n$). $||\cdot||$ is a matrix norm if

- 1. $||A|| \ge 0$ and ||A|| = 0 if and only if A = 0
- 2. $||\alpha A|| = |\alpha| \cdot ||A||$ for $\alpha \in \mathbb{R}$ (or \mathbb{C})
- 3. $||A + B|| \le ||A|| + ||B||$ (triangle inequality)
- 4. $||A \cdot B|| \le ||A|| \cdot ||B||$

Frobenius norm

in $\mathbb{R}^{n \times n}$

$$||A||_F = \left(\sum a_{ij}^2\right)^{\frac{1}{2}}$$

Induced Norm

$$||A|| = \max_{||x||=1} ||Ax||$$

which means "if ||x|| = 1, then $||Ax|| \le ||A||$ ".

if $v \in \mathbb{R}^n$, ||v|| > 0, then put $x = \frac{v}{||v||}$. now ||x|| = 1. $||A\frac{v}{||v||}|| = \frac{1}{||v||}||Av|| \le ||A|| \to ||Av|| \le ||A|| \cdot ||v||$.

$$||A|| = \max_{v \neq 0} \frac{||Av||}{||v||}$$

 $A \in \mathbb{R}^{n \times n}, \, A : \mathbb{R}^n \mapsto \mathbb{R}^n.$

 $\boldsymbol{Theorem}$) The induced norm is a norm that also satisfies 4.

Proof

- 1. $||A|| \ge 0$ as $||Ax|| \ge 0$ for all $x \ne 0$. ||A|| = 0 if and only if ||Ax|| = 0 for all ||x|| = 1 (or A = 0)
- $2. \ ||\alpha A|| = \max_{||x||=1} ||\alpha Ax|| = |\alpha| \max_{||x||=1} ||Ax|| = |\alpha|||A||$

Homework

pg~40

3.17, 3.22