上海大学 2017 ~ 2018 学年冬季学期试卷 A

课程名: _____微积分2___ 课程号: _01014126_ 学分: _6_ 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》, 如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号 应试人所在院系

题号	_	11	111	四	五	六
得分						

评卷人 得分

一. 单项选择题 (5 小题, 每小题 3 分, 共 15 分)

- 1. 设向量a,b,c 满足关系式a+b+c=0,则必有 $a\times b=($

 - A. $a \times c$ B. $b \times c$
- C. $\overset{\mathsf{r}}{c} \times \overset{\mathsf{i}}{b}$ D. $\overset{\mathsf{i}}{b} \times \overset{\mathsf{r}}{a}$
- 2. 过点 (x_0, y_0, z_0) 的直线参数方程形式是().

A.
$$\begin{cases} x = x_0 + nt, \\ y = y_0 + mt, \\ z = z_0 + pt. \end{cases}$$

B.
$$\begin{cases} x = -x_0 + nt, \\ y = -y_0 + mt, \\ z = -z_0 + pt. \end{cases}$$

C.
$$\frac{x - x_0}{n} = \frac{y - y_0}{m} = \frac{z - z}{p}$$

C.
$$\frac{x-x_0}{n} = \frac{y-y_0}{m} = \frac{z-z_0}{p}$$
 D. $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$

- 3. 设z = f(x, y)在 (x_0, y_0) 处全微分存在,则下面结论**正确**的是().
 - A. f(x,y) 在 (x_0,y_0) 处偏导数未必存在;
 - B. f(x, y) 在 (x_0, y_0) 处偏导数连续;
 - C. f(x, y) 在 (x_0, y_0) 处沿任何方向的方向导数存在;
 - D. f(x, y) 在 (x_0, y_0) 处未必连续.

- 4. 设D是由y=x, x=1, y=0所围的平面区域,则 $\iint f(\sqrt{x^2+y^2})d\sigma$ 可表示为(
- A. $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r) dr$ B. $\int_0^{\frac{\pi}{4}} d\theta \int_0^{\sec \theta} f(r) dr$ C. $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r) r dr$ D. $\int_0^{\frac{\pi}{4}} d\theta \int_0^{\sec \theta} f(r) r dr$
- 5. 设 Σ 是曲面 $z = \sqrt{x^2 + y^2} (x^2 + y^2 \le 1)$,则曲面积分 $\iint_{\Sigma} (z \sqrt{x^2 + y^2} + 1) dS = ($
 - A. $\sqrt{2}\pi$
- B. 2π C. 4π

D. 0

苴 稿 得分 评卷人

二. 填空题 (5 小题, 每小题 3 分, 共 15 分)

- 6. 通过空间曲线 $\begin{cases} 2z = -(x^2 + y^2) \\ x + y + z = -1 \end{cases}$ 且母线平行于 z 轴的投影柱面方程为______
- 7. 函数 $f(x, y, z) = x^2 y^2 z$ 在 (1,1,1) 处的方向导数的最大值等于_______.
- 8. 函数 z = f(x, y) 关于 y 是奇函数,且 $D: x^2 + 4y^2 \le 4$,则 $\iint_D (f(x, y) + 1) dx dy = _____.$
- 9. 设曲线 L: y = f(x) ($0 \le x \le 1$),则第一类曲线积分 $\int_{L} \frac{1}{\sqrt{1 + (\frac{dy}{dx})^2}} ds = _____.$
- 10. 已知封闭曲线 L 取正向,且围成的面积为 1,则 $\oint_L y dx + 3x dy =$ ______.

得分	评卷人

三. 计算题 (4 小题, 每小题 6 分, 共 24 分)

11. 在曲面 $z = x^2 + y^2$ 上求一点,使这一点处的切平面与直线 $\frac{x}{2} = \frac{y}{-2} = \frac{z}{1}$ 垂直,并写出此切平面方程.

	_	
	1-	/,п
	稿	组
-	1101	

12. 求过直线 l_1 : $\begin{cases} x+y-3z-1=0 \\ x-y+z+1=0 \end{cases}$ 且与直线 l_2 : $\begin{cases} x-z-2=0 \\ y+z+3=0 \end{cases}$ 平行的平面方程.

草 稿 纸

13. 设 z = z(x, y) 是由方程 $z^5 - xz^4 + yz = 1$ 所确定的隐函数, 求 $\frac{\partial z}{\partial x}\bigg|_{(0,0)}$, $\frac{\partial z}{\partial y}\bigg|_{(0,0)}$.

14. 设 f(u,v) 具有连续的二阶偏导数,如果 $z = f(xy, x^2 - y^2)$,求 $\frac{\partial^2 z}{\partial x \partial y}$.

得分 评卷人

四. 计算题 (3 小题, 每小题 6 分, 共 18 分)

15. 计算二重积分 $I = \iint_{D} |y-x| d\sigma$, 其中 $D = \{(x,y) | 0 \le x^2 + y^2 \le 1\}$.

16. 计算累次积分 $I = \int_0^1 dx \int_0^x e^{(y-1)^2} dy$

17. 求 $I = \iiint_{\Omega} (x^2 + y^2 - yz) dv$,其中 Ω 是由曲线 $\begin{cases} z = x, \\ y = 0 \end{cases}$ 绕 z 轴旋转一周而成的曲面与 z = 1 所围成的立体.

得分	评卷人			

五. 计算题 (2 小题, 每小题 7 分, 共 14 分)

18 设有向曲线 L 方程为 $\begin{cases} x = a\cos t, \\ y = a\sin t, (0 \le t \le 1, a \ne 0), \ \text{问} \ a \ \text{为何值时}, \\ z = at. \end{cases}$

$$L(a) = \int_{\vec{L}} (y dx - x dy + z^2 dz)$$

取极小值。

19. 设f(x)为连续函数,且 $F(t) = \int_0^t f(u) du$ 。计算曲面积分

$$I = \iint_{\Sigma} (x^3 + F(x^2)) dydz + (y^3 + F(y^2)) dzdx + (z^3 + F(z^2)) dxdy,$$

其中 Σ 为曲面 $x^2 + y^2 + z^2 = 1$ 的外侧.

第6页 (共6页)						
得分 评卷人 六. 应用题 (2 小题, 每小题 7 分, 共 14 分)	草 稿 纸					
20.设 D 为曲线 $y=x^2$, $y=0$, $x=1$ 所围平面区域。试求 D 分别绕 y 轴,直线 $y=1$ 旋转一周所得 旋转体的体积.						
21. 设 $f(x,y,z) = \ln x + \ln y + 3\ln z$,在球面 $C: x^2 + y^2 + z^2 = 5r^2 (r > 0)$ 位于第一卦限上求一点,使函数 $f(x,y,z)$ 在此点取得最大值,并求最大值.						

上海大学 2018 ~ 2019 学年冬季学期试卷 A

课程名: __微积分2__ 课程号: _01014126_ 学分: _6_ 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》, 如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号 应试人所在院系

题号	_	11	111	四	五	六
得分						

得分 评卷人

一. 单项选择题 (5 小题, 每小题 3 分, 共 15 分)

- 1. 设 3 维实向量 $\vec{a} = \{1, 2, n\}, \vec{b} = \{2, m, 6\}$ 满足 $\vec{a} \times \vec{b} = \vec{0}$, 则 (n, m) = (
 - A. (3,4)
- B. (4,3)
- C. (3,3)
- D. (4,4)
- 2. 如果平面 x + y 6z = 1 与直线 $\frac{ax}{2} = \frac{y}{2} = 2z$ 平行,则 a = ().
 - A. 4

- B. 3
- C. 2
- D. 1
- 3. 设z = f(x, y) 在 (x_0, y_0) 处两个偏导数存在,则下面结论一定**正确**的是(
 - A. f(x, y) 在 (x_0, y_0) 处连续
- B. f(x, y) 在 (x_0, y_0) 处可微
- C. f(x, y) 在 (x_0, y_0) 处极限存在 D. $\lim_{x \to x_0} f(x, y_0)$ 与 $\lim_{y \to y_0} f(x_0, y)$ 都存在
- 4. 设 Ω 是由圆柱面 $x^2 + y^2 = 2y$ 以及平面z = 0, z = 1所围区域,则 $\iiint f(\sqrt{x^2 + y^2}, z) dv = 0$
 - A. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\sin\theta} r dr \int_{0}^{1} f(r,z) dz$ B. $\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} r dr \int_{0}^{1} f(r,z) dz$
 - C. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\sin\theta} dr \int_{0}^{1} f(r,z) dz$ D. $\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} dr \int_{0}^{1} f(r,z) dz$

- 5. 设 Σ 是 曲 面 $z = x^2 + y^2 + 1(x^2 + y^2 \le 1)$,则 曲 面 积 分 $\iint_{\Sigma} \frac{(z x^2 y^2 + x)}{\sqrt{1 + 4x^2 + 4y^2}} dS = ($
 - A. 2π
- B. 0
- C. 4π

得分 评卷人

二. 填空题 (5 小题, 每小题 3 分, 共 15 分)

- 6. 平行于 z 轴的动直线 L 延着空间曲线 C 运动所形成的曲面称为 C 在 xOv 平面上的
- 7. 函数 f(x,y) 在 (x_0,y_0) 处的最大方向导数值为此点处的梯度_
- 8. 设函数 f(x, y) 连续,平面区域 D 关于 y = x 对称,则 $\iint_{D} (f(x, y) f(y, x)) dx dy = _______$
- 9. 设光滑曲线 L: y = f(x) ($0 \le x \le 1$),则 $\int_L \frac{y f(x) + 2}{\sqrt{1 + (f'(x))^2}} ds = \underline{\hspace{1cm}}$.
- 10. 已知有向曲线弧 $L: y = x^2$ 的起点为原点,终点为(1,1),则 $\int_L y dx + x dy =$ ______.

草 稿 纸

得分	评卷人			

三. 计算题 (3 小题, 每小题 6 分, 共 18 分)

11. 若曲面 $z = x^2 + y^2$ 在点 P 处的切平面与平面 x + 2y - 2z = 1 和 x + y = 1 都垂直,求此切平面方程.

解

12. 设 z = z(x, y) 是由方程 $x^3 + y^3 + z^3 + xyz = 4$ 所确定的隐函数, 求 $\frac{\partial^2 z}{\partial x^2}\Big|_{(1,1)}$

解

13. 设 f(u,v) 具有连续的二阶偏导数,如果 z = f(x+y,x-y),求 $\frac{\partial^2 z}{\partial x \partial y}$.

解

得分 评卷人

四. 计算题 (3 小题, 每小题 6 分, 共 18 分)

14. 计算二重积分 $I = \iint_{D} \frac{(x+1)\sin(\pi(x^2+y^2))}{x+y+2} dxdy$,其中

$$D = \{ (x, y) | 1 \le x^2 + y^2 \le 4, x, y \ge 0 \}.$$

解

15. 计算累次积分 $I = \int_{-1}^{1} dx \int_{|x|}^{1} x^2 e^{-y^2} dy$

解

解

得分	评卷人			

五. 计算题 (3 小题, 每小题 6 分, 共 18 分)

17 设曲线 C 方程为 $\begin{cases} x^2 + y^2 + z^2 = 1, \\ x + y + z = 0. \end{cases}$, 求第一类曲线积分 $I = \int_C (xy + yz + zx) ds$.

解

18. 设f(x)具有连续导函数,计算曲面积分

$$I = \iint_{\Sigma} (x^3 + 2xf(xyz)) dydz + (y^3 - yf(xyz)) dzdx + (z^3 - zf(xyz)) dxdy,$$

其中 Σ 为上半球面 $z = \sqrt{1 - x^2 - y^2}$ 的上侧.

解

19. 设光滑有向曲线 C 的起点为原点,终点为(1,1). 如果函数 f(x) 在 \mathbb{R} 上具有连续导数,且 $\int_0^2 f(x) \mathrm{d}x = 2. \ \text{计算曲线积分} \ I = \int_C f(x^2 + y^2)(x \mathrm{d}x + y \mathrm{d}y).$

解

		第 5 页	(共5页)			
得分	评卷人	六. 应用题 (2 小题, 每小题 8 分, 共 16 分)		草	稿	纸
20.设 L 为	J曲线 $y = x^2$	在点 (x_0, y_0) 处法线,交 x 轴于点 $(3,0)$ 。 求由 L 、 x 轴、 $y = x^2$ 在第一象				
限所围平	面区域绕y	轴旋转一周所得旋转体的体积.				
解						
21 \7.74 =	= 2 . 2 .	2 2 左 上 10 (
21. 及球围	x + y + z	$x^2 = 3$ 在点 $P(x, y, z)(x > 0, y > 0, z > 0)$ 处的切平面交坐标轴的截距分别				
记为 A, B	,C,求点 F	P(x, y, z) 使得 $A + B + C$ 取值最小,并求最小值.				
解						