

Correction to "Activity Coefficients at Infinite Dilution for Hydrocarbons in Fatty Alcohols Determined by Gas—Liquid Chromatography"

Mehdia Boussaha, Kamel Khimeche, and Abdellah Dahmani*

J. Chem. Eng. Data 2011, 56 (4), 850-858. DOI: 10.1021/je1005517

In the original document (*J. Chem. Eng. Data*, **2011**, *56* (4), 850–858) on pages 851 and 852, the values tabulated in Tables 1 and 2 correspond to natural logarithm of the activity

The correct sentence (in second paragraph) of page 857 is "The values of *s* show their high polarity" instead of the incorrect sentence "The values of *s* show their weak polarity."

Table 3. Values of $\Delta H^{\rm E,\infty}$, $\Delta H^{\rm dis}$, and $\Delta H^{\rm vap}$ as Determined from Equations 8 to 10 in the Two Solvents

		octadecanol			literature		
-	$\Delta H^{\mathrm{E},\infty}$	$\Delta H^{ m dis}$	$\Delta H^{ m vap}$	$\Delta H^{\mathrm{E},\infty}$	$\Delta H^{ m dis}$	$\Delta H^{ m vap}$	$\Delta H_{ m vap}$
solute	kJ·mol ^{−1}	kJ·mol ^{−1}	kJ·mol ^{−1}	kJ·mol ^{−1}	kJ·mol ^{−1}	kJ·mol ^{−1}	kJ·mol ^{−1}
hexane	1.259	-29.127	30.387	0.926	-28.409	29.335	28.84 ^a
ethanol	0.590	-41.000	41.590	1.985	-37.744	39.728	39.33 ^b
tetrachloride	0.049	-30.352	30.400	0.982	-29.163	30.144	33.47^{b}
butyl acetate	0.810	-39.935	40.744	1.643	-39.003	40.647	43.89 ^c
toluene	0.258	-35.501	35.760	11.342	-23.919	35.262	33.43 ^a
diethyl ether	0.323	-25.007	25.330	0.528	-24.435	24.963	27.37^{c}
ac has	22 CD C	22					

^aReference 20. ^bReference 32. ^cReference 33.

Figure 2. Experimental activity coefficients at infinite dilution for the alkanes and olefins in the solvent Octadecanol as a function of temperature; ■, pentane; ●, hexane; ▲, octane; ▼, pentene; ←, heptene; —, linear regression.

coefficients at infinite dilution $(\ln \gamma^\infty)$ and not the values of γ^∞ . In consequence Tables 3 and 4 and Figures 2 to 18 given in the manuscript are not correct. The resulting correct tables and figures are reported below. As a consequence some sentences are also corrected in the text.

The sentence of page 855 which says in part, "The γ^{∞} values are relatively slight (< 1) in the two solvents"; is not correct. The correct sentence is "The γ^{∞} values are larger than unity (> 1) in the two solvents".

Figure 3. Experimental activity coefficients at infinite dilution for the alcohols in the solvent octadecanol as a function of temperature; \blacksquare , methanol; \bullet , ethanol; \blacktriangle , propanol; \blacktriangledown , butanol; ——, linear regression.

The correct sentence (in the last paragraph) of page 857 is "The Q_{12}^{∞} values are higher for octadecanol (Figure 18)..." instead of the incorrect sentence "Comparing the Q_{12}^{∞} values of octadecanol with eicosanol (Figure 18), the Q_{12}^{∞} values of octadecanol are almost twenty times higher."

In the caption of Figure 1, it should be "eicosanol " instead of "eicoanol".

The authors apologize for the mistakes.

Published: April 11, 2013

Table 4. Abraham Parameters for Solvents Studied at Different Temperatures^a

solvent	T/K	С	r	S	а	Ь	1	R^2
octadecanol	333.15	0.159	-0.751	1.361	2.699	-0.737	0.699	0.992
	338.15	0.146	-0.741	1.339	2.591	-0.736	0.679	0.992
	343.15	0.132	-0.728	1.316	2.484	-0.735	0.660	0.993
	348.15	0.120	-0.716	1.293	2.381	-0.734	0.642	0.993
	353.15	0.107	-0.703	1.271	2.280	-0.732	0.624	0.993
eicosanol	338.15	0.531	-1.373	2.035	2.535	-1.282	0.499	0.989
	343.15	0.482	-1.282	1.951	2.420	-1.215	0.492	0.986
	348.15	0.440	-1.207	1.873	2.318	-1.163	0.483	0.984
	353.15	0.402	-1.143	1.805	2.224	-1.120	0.475	0.981

 $^{a}R^{2}$ is the correlation coefficient.

Figure 4. Experimental activity coefficients at infinite dilution for the chloroalkanes in the solvent octadecanol as a function of temperature; ■, dichloromethane; ●, chloropropane; ♠, chlorobutane; ▼, chloroform; ♦, tetrachloromethane; —, linear regression.

Figure 5. Experimental activity coefficients at infinite dilution for the ketone and acetates in the solvent octadecanol as a function of temperature; ■, propanone; ●, ethyl acetate; ▲, butyl acetate; ▼, acetonitrile; —, linear regression.

Figure 6. Experimental activity coefficients at infinite dilution for the cycloalkane, aromatic and ethers in the solvent octadecanol as a function of temperature; ■, cyclohexane; ●, toluene; ▲, diethyl ether; ▼, THF; ——, linear regression.

Figure 7. Experimental activity coefficients at infinite dilution for the alkanes and olefins in the solvent eicosanol as a function of temperature;

■, pentane; ●, hexane; ▲, octane; ▼, pentene; ◄, heptene; —, linear regression.

Figure 8. Experimental activity coefficients at infinite dilution for the alcohols in the solvent eicosanol as a function of temperature; \blacksquare , methanol; \bullet , ethanol; \blacktriangle , propanol; \blacktriangledown , butanol; —, linear regression.

Figure 9. Experimental activity coefficients at infinite dilution for the chloroalkanes in the solvent eicosanol as a function of temperature; ■, dichloromethane; ●, chloropropane; ▲, chlorobutane; ▼, chloroform; ◄, tetrachloromethane; ——, linear regression.

Figure 10. Experimental activity coefficients at infinite dilution for the ketone and acetates in the solvent eicosanol as a function of temperature; ■, propanone; ●, ethyl acetate; ▲, butyl acetate; ▼, acetonitrile; —, linear regression.

Figure 11. Experimental activity coefficients at infinite dilution for the cycloalkane, aromatic and ethers in the solvent eicosanol as a function of temperature; ■, cyclohexane; ●, toluene; ▲, diethyl ether; ▼, THF; —, linear regression.

Figure 12. Variation of experimental activity coefficients for the solutes in the solvent octadecanol according to the carbon's atom numbers at T = 353.15 K. \square , alkanes; \bigcirc , olefins; \triangle , alcohols; ∇ , acetate; \triangleleft , chloroalkanes; \triangleright , aromatics and cycloalkane.

Figure 13. Variation of experimental activity coefficients for the solutes in the solvent eicosanol according to the carbon's atom numbers at $T = 353.15\,$ K. \Box , alkanes; \bigcirc , olefins; \triangle , alcohols; ∇ , acetate; \triangleleft , chloroalkanes; \triangleright , aromatics and cycloalkane.

Figure 14. Evolution of Abraham parameters with temperature for octadecanol. \blacksquare , r; \bullet , s; \blacktriangle , a; \blacktriangledown , b; \blacktriangleleft , l.

Figure 15. Evolution of Abraham parameters with temperature for eicosanol. \blacksquare , r; \bullet , s; \bullet , a; \blacktriangledown , b; \triangleleft , l.

Figure 16. Selectivity at infinite dilution for two solvents at different temperatures regarding the separation of cyclohexane from toluene: ■, in octadecanol; ●, in eicosanol; ——, linear regression.

Figure 17. Capacity at infinite dilution for two solvents at different temperatures regarding the separation of cyclohexane from toluene: ■, in octadecanol; ●, in eicosanol; ——, linear regression.

Figure 18. Quantity at infinite dilution for two solvents at different temperatures regarding the separation of cyclohexane from toluene: ■, in octadecanol; ●, in eicosanol; ——, linear regression.