Computational Thinking: Logic

Lecture 14: First-order Logic — Formal Syntax and Semantics

Barnaby Martin, 28 February 2021

Outline

- Syntax of first-order logic
- Semantics of first-order logic
- Parse trees
- Free and bound occurrences
- Parse trees

Every (well-formed) formula of first-order logic is constructed from atoms (or atomic formula). We completely define the syntax of first-order logic by defining what we mean by atoms and the constructions we are allowed to use.

Every (well-formed) formula of first-order logic is constructed from atoms (or atomic formula). We completely define the syntax of first-order logic by defining what we mean by atoms and the constructions we are allowed to use.

Atoms:

If P is a relation symbol of arity r and y_1, \ldots, y_r are (not necessarily distinct) variables or constant symbols, then $P(y_1, \ldots, y_r)$ is an atom with free variables from y_1, \ldots, y_r (this sequence can also contain constants and repeated items).

Every (well-formed) formula of first-order logic is constructed from atoms (or atomic formula). We completely define the syntax of first-order logic by defining what we mean by atoms and the constructions we are allowed to use.

Atoms:

- If P is a relation symbol of arity r and y_1, \ldots, y_r are (not necessarily distinct) variables or constant symbols, then $P(y_1, \ldots, y_r)$ is an atom with free variables from y_1, \ldots, y_r (this sequence can also contain constants and repeated items).
- If C and D are constant symbols and x and y are variables then C = D, C = x and x = y are all atoms with, respectively, set of free variables \emptyset , $\{x\}$, $\{x,y\}$.

Every (well-formed) formula of first-order logic is constructed from atoms (or atomic formula). We completely define the syntax of first-order logic by defining what we mean by atoms and the constructions we are allowed to use.

Atoms:

- If P is a relation symbol of arity r and y_1, \ldots, y_r are (not necessarily distinct) variables or constant symbols, then $P(y_1, \ldots, y_r)$ is an atom with free variables from y_1, \ldots, y_r (this sequence can also contain constants and repeated items).
- 2 If C and D are constant symbols and x and y are variables then C = D, C = x and x = y are all atoms with, respectively, set of free variables \emptyset , $\{x\}$, $\{x,y\}$.

(The signature of the formula is its finite set of predicate (relation) and constant symbols.)

Q Rational AUB union: [AS+[B] ANB: intersection: 2+

Constructions:

free(ψ), then

$$\phi \lor \psi, \phi \land \psi, \neg \phi$$

are formulae with, respectively, free variables free(ϕ) \cup free(ψ), free(ϕ) \cup free(ψ) and free(ϕ)

If ϕ is a formula with free variables free(ϕ) then

$$\exists x(\phi), \forall x(\phi)$$

are formulae, both with free variables free(ϕ) \ {x}. The occurrence of x in both formulae is a bound occurrence.

Constructions:

If ϕ and ψ are formulae, with free variables free (ϕ) and free (ψ) , then

$$\phi \lor \psi, \phi \land \psi, \neg \phi$$

are formulae with, respectively, free variables free(ϕ) \cup free(ψ), free(ϕ) \cup free(ψ) and free(ϕ)

If ϕ is a formula with free variables free(ϕ) then

$$\exists x(\phi), \forall x(\phi)$$

are formulae, both with free variables free(ϕ) \ {x}. The occurrence of x in both formulae is a bound occurrence.

If a formula has no free variables then it is called a sentence.

Parse trees

We can check that a formula is well-formed using a parse tree.

We illustrate with
$$\forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C))$$

A $\Rightarrow b$

A \Rightarrow

Semantics of first-order logic

An interpretation or a structure for a first-order formula ϕ is:

- a domain of discourse D,
- **a** value from *D* for every free variable of ϕ ,
- \blacksquare a relation over *D* for every relation symbol involved in ϕ ,
- **a** value from *D* for every constant symbol involved in ϕ .

```
D: Eall men in the world)

O(x): return True if x is a mother.

x must be a woman.

4xQ(x) => True Non sense

4xQ(x, 'Lucy')
```

Semantics of first-order logic

An interpretation or a structure for a first-order formula ϕ is:

- a domain of discourse D,
- \blacksquare a value from *D* for every free variable of ϕ ,
- **a** relation over *D* for every relation symbol involved in ϕ ,
- **a** value from *D* for every constant symbol involved in ϕ .

The semantics of a first-order formula in some interpretation is as follows:

- we interpret atoms as propositional variables,
- lacktriangle we interpret \wedge , \vee , and \neg as in propositional logic,
- we interpret $\forall x \phi$ as true if ϕ is true for all values for x,
- we interpret $\exists x \phi$ as true if there is at least one value for x making ϕ true.

An illustration

Consider a signature consisting of two binary relation symbols P and Q and one constant symbol C. Let ϕ be defined as

$$\forall x(\forall y(P(x,y)\Leftrightarrow \neg Q(x,y))) \land \exists x(P(C,x) \land \neg Q(x,C)).$$

In order to decide whether ϕ evaluates to true or not, we need an interpretation.

Consider the interpretation

$$\phi = \forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C)).$$

where:

- the domain of discourse is the set of natural numbers N
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u \leq v\}$
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.

P(7,1) > wie

P(2,3) > Follow

P(10,9) > The

Q(10,9) > The

Consider the interpretation

$$\phi = \forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C)).$$

where:

- lacktriangle the domain of discourse is the set of natural numbers $\mathbb N$
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u \leq v\}$
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.

So,

■ $(\mathbb{N}, P, Q, 0) \models \phi$ if and only if $(\mathbb{N}, P, Q, 0) \models \forall x \forall y (P(x, y) \Leftrightarrow \neg Q(x, y))$ and $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$

Consider the interpretation

$$\phi = \forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C)).$$

where:

- lacktriangle the domain of discourse is the set of natural numbers $\mathbb N$
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u \leq v\}$
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.

So,

- $(\mathbb{N}, P, Q, 0) \models \phi$ if and only if $(\mathbb{N}, P, Q, 0) \models \forall x \forall y (P(x, y) \Leftrightarrow \neg Q(x, y))$ and $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$
- if and only if for every $x, y \in \mathbb{N}$, $x \le y \Leftrightarrow x \not> y$, and there exists $x \in \mathbb{N}$, such that $0 \le x$ and $x \not> 0$.

Consider the interpretation

$$\phi = \forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C)).$$

where:

- \blacksquare the domain of discourse is the set of natural numbers $\mathbb N$
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u \leq v\}$ 07,0 Not 0 x7,0 N x +0 x7,0 N x +0
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.
- So.
 - \blacksquare (N, P, Q, 0) $\models \phi$ if and only if $(\mathbb{N}, P, Q, 0) \models \forall x \forall v (P(x, v) \Leftrightarrow \neg Q(x, v))$
 - if and only if for every $x, y \in \mathbb{N}$, $x \le y \Leftrightarrow x \not> y$,

and $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$

and there exists $x \in \mathbb{N}$, such that $0 \le x$ and $x \ne 0$.

Both conjuncts are true. Thus, $(\mathbb{N}, P, Q, 0)$ is a model of ϕ , i.e., $(\mathbb{N}, P, Q, 0) \models \phi$

y we: Fulse

Now consider the interpretation

$$\phi = \forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C)).$$

where:

- lacktriangle the domain of discourse is the set of natural numbers $\mathbb N$
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u < v\}$
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.

Now consider the interpretation

$$\phi = \forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C)).$$

where:

- lacktriangle the domain of discourse is the set of natural numbers $\mathbb N$
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u < v\}$
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.

So,

■ $(\mathbb{N}, P, Q, 0) \models \phi$ if and only if $(\mathbb{N}, P, Q, 0) \models \forall x \forall y (P(x, y) \Leftrightarrow \neg Q(x, y))$ and $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$

Now consider the interpretation

$$\phi = \forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists x (P(C,x) \land \neg Q(x,C)).$$

where:

- lacktriangle the domain of discourse is the set of natural numbers $\mathbb N$
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u < v\}$
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.

So,

- $(\mathbb{N}, P, Q, 0) \models \phi$ if and only if $(\mathbb{N}, P, Q, 0) \models \forall x \forall y (P(x, y) \Leftrightarrow \neg Q(x, y))$ and $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$
- if and only if for every $x, y \in \mathbb{N}$, $x < y \Leftrightarrow x \not> y$, and there exists $x \in \mathbb{N}$, such that 0 < x and $x \not> 0$.

Now consider the interpretation

$$\phi = \forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists x (P(C, x) \land \neg Q(x, C)).$$

where:

- the domain of discourse is the set of natural numbers N
- the relation $P = \{(u, v) : u, v \in \mathbb{N}, u < v\}$
- the relation $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- the constant $C = 0 \in \mathbb{N}$.

So,

- \blacksquare (N, P, Q, 0) $\models \phi$ if and only if
 - $(\mathbb{N}, P, Q, 0) \models \forall x \forall y (P(x, y) \Leftrightarrow \neg Q(x, y))$ and $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$
 - if and only if for every $x, y \in \mathbb{N}$, $x < y \Leftrightarrow x \not> y$, and there exists $x \in \mathbb{N}$, such that 0 < x and $x \not> 0$.

Now both conjuncts are false. Thus, $(\mathbb{N}, P, Q, 0)$ is not a model of ϕ , i.e., $(\mathbb{N}, P, Q, 0) \models \neg \phi$

A subtlety

Consider a signature consisting of two binary relation symbols P and Q and one constant symbol C. Let ϕ be defined as

$$\forall x (\forall y (P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists z (P(z,x) \land \neg Q(x,C)).$$

A subtlety

Consider a signature consisting of two binary relation symbols P and Q and one constant symbol C. Let ϕ be defined as

$$\forall x(\forall y(P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists z(P(z,x) \land \neg Q(x,C)).$$

This is a perfectly legal formula of first-order logic, even though the variable x appears "differently" in the formula:

- x appears bound in the first conjunct,
- x appears free in the second conjunct.

Consequently, it is more precise to speak of "free occurrences" or "bound occurrences" of variables rather than free or bound variables.

Another subtlety

Consider the formula χ defined as

$$\forall x(\forall y(P(x,y)\Leftrightarrow \neg Q(x,y))) \land \exists y(P(y,x) \land \neg Q(x,y)).$$

and the interpretation *I* for χ where:

- the domain $D = \{1, 2, 3\}$,
- $P = \{(1,3), (2,3), (3,1)\} \text{ and } Q = \{(1,1), (1,2), (2,1), (2,2), (3,2), (3,3)\},$
- x = 3.

Not only does *x* appear both free and bound but *y* appears bound but within the scopes of two different quantifications.

Another subtlety

Consider the formula χ defined as

$$\forall x(\forall y(P(x,y) \Leftrightarrow \neg Q(x,y))) \land \exists y(P(y,x) \land \neg Q(x,y)).$$

and the interpretation *I* for χ where:

- the domain $D = \{1, 2, 3\}$,
- $P = \{(1,3), (2,3), (3,1)\} \text{ and } Q = \{(1,1), (1,2), (2,1), (2,2), (3,2), (3,3)\},$
- x = 3.

Not only does x appear both free and bound but y appears bound but within the scopes of two different quantifications.

We clearly have that $I \models \chi$ as

- for every $(x, y) \in D \times D$, $(x, y) \in P$ if and only if $(x, y) \notin Q$,
- there exists a $y \in D$ such that $(y,3) \in P$ and $(3,y) \notin Q$, namely y = 1.

Another subtlety

Consider the formula χ defined as

$$\forall x(\forall y(P(x,y)\Leftrightarrow \neg Q(x,y))) \land \exists y(P(y,x) \land \neg Q(x,y)).$$

and the interpretation I for χ where:

- \blacksquare the domain $D = \{1, 2, 3\},\$
- $P = \{(1,3), (2,3), (3,1)\} \text{ and } Q = \{(1,1), (1,2), (2,1), (2,2), (3,2), (3,3)\},\$
- x = 3

Not only does *x* appear both free and bound but *y* appears bound but within the scopes of two different quantifications.

We clearly have that $I \models \chi$ as

- for every $(x, y) \in D \times D$, $(x, y) \in P$ if and only if $(x, y) \notin Q$,
 - there exists a $y \in D$ such that $(y,3) \in P$ and $(3,y) \notin Q$, namely y = 1.

If we amend the interpretation so that x is interpreted as x=2 then we have that $I \models \neg \chi$.

Consider the well-formed formula ϕ defined as $\forall x \exists y P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set $\mathbb Z$ of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

Consider the well-formed formula ϕ defined as $\forall x \exists y P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set \mathbb{Z} of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

So,

■
$$(\mathbb{Z}, P) \models \forall x \exists y P(x, y)$$

if and only if for every $x \in \mathbb{Z}, (\mathbb{Z}, P) \models \exists y P(x, y)$
if and only if for every $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ with $x > y$.

Consider the well-formed formula ϕ defined as $\forall x \exists y P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set \mathbb{Z} of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

So,

■ $(\mathbb{Z}, P) \models \forall x \exists y P(x, y)$ if and only if for every $x \in \mathbb{Z}, (\mathbb{Z}, P) \models \exists y P(x, y)$ if and only if for every $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ with x > y.

For any $x \in \mathbb{Z}$, if we take y = x - 1 then this value of y witnesses that x > y; hence, $(\mathbb{Z}, P) \models \phi$.

Consider the well-formed formula ϕ defined as $\forall x \exists y P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set $\mathbb Z$ of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

So,

■ $(\mathbb{Z}, P) \models \forall x \exists y P(x, y)$ if and only if for every $x \in \mathbb{Z}$, $(\mathbb{Z}, P) \models \exists y P(x, y)$ if and only if for every $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ with x > y.

For any $x \in \mathbb{Z}$, if we take y = x - 1 then this value of y witnesses that x > y; hence, $(\mathbb{Z}, P) \models \phi$.

If we restrict the domain to the natural numbers $\mathbb N$ and where $P = \{(u, v) : u, v \in \mathbb N, u > v\}$, i.e, we have the restriction of $(\mathbb Z, P)$ to $\mathbb N$, then $(\mathbb N, P) \models \neg \phi$.

Consider the well-formed formula ϕ defined as $\exists y \forall x P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set $\mathbb Z$ of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

Consider the well-formed formula ϕ defined as $\exists y \forall x P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set \mathbb{Z} of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

So,

■ $(\mathbb{Z}, P) \models \exists y \forall x P(x, y)$ if and only if there exists $y \in \mathbb{Z}$ such that $(\mathbb{Z}, P) \models \forall x P(x, y)$ if and only if there exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, x > y.

Consider the well-formed formula ϕ defined as $\exists y \forall x P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set \mathbb{Z} of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

So,

■ $(\mathbb{Z}, P) \models \exists y \forall x P(x, y)$ if and only if there exists $y \in \mathbb{Z}$ such that $(\mathbb{Z}, P) \models \forall x P(x, y)$ if and only if there exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}, x > y$. No matter which $y \in \mathbb{Z}$ we choose, putting x = y - 1 results in x < y.

Consider the well-formed formula ϕ defined as $\exists y \forall x P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set $\mathbb Z$ of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

So, There exist y, foral x. x > y

 $\blacksquare (\mathbb{Z}, P) \models \exists y \forall x P(x, y)$

if and only if there exists $y \in \mathbb{Z}$ such that $(\mathbb{Z}, P) \models \forall x P(x, y)$

if and only if there exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, x > y.

No matter which $y \in \mathbb{Z}$ we choose, putting x = y - 1 results in

 $x \leq y$.

Hence, $(\mathbb{Z}, P) \models \neg \exists y \forall x P(x, y)$.

永远线不到

Consider the well-formed formula ϕ defined as $\exists y \forall x P(x, y)$.

And consider the interpretation of ϕ where

- \blacksquare the domain of discourse is the set \mathbb{Z} of integers,
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}.$

So,

$$\blacksquare (\mathbb{Z}, P) \models \exists y \forall x P(x, y)$$

if and only if there exists $y \in \mathbb{Z}$ such that $(\mathbb{Z}, P) \models \forall x P(x, y)$

if and only if there exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, x > y.

No matter which $y \in \mathbb{Z}$ we choose, putting x = y - 1 results in $x \le y$.

Hence,
$$(\mathbb{Z}, P) \models \neg \exists y \forall x P(x, y)$$
.

Take care with the order of quantifiers.