DATA MINING PROJECT

Palestine Technical University – Kadoorie

College of Engineering and Technology

Department of Computer Systems Engineering

Project title:

CUSTOMER SEGMENTATION CLASSIFICATION

By:

Ruaa Qashoo - 201911196

Instructor:

Dr. Anas Melhem

INTRODUCTION

❖ PROBLEM DEFINITAION:

An automobile company has plans to enter new markets with their existing products (P1, P2, P3, P4, and P5). After intensive market research, they've deduced that the behavior of the new market is similar to their existing market.

In their existing market, the sales team has classified all customers into 4 segments (A, B, C, D). Then, they performed segmented outreach and communication for a different segment of customers. This strategy has worked exceptionally well for them. They plan to use the same strategy for the new markets and have identified 2627 new potential customers.

The goal of this project is to study and predict the right group of new customers for an automotive company, so the company can adopt the specific proven marketing strategy to each of them and be more successful in the business.

I decided to use Weka to analyze the problem and then solve it.

dataset description:

There is 8068 instances (customers) for training, and 2627 instance (new potential customers) for testing.

This dataset has 11 Variables (10 attributes & 1 class/target), divided as follows:

Link of The Dataset: <u>Customer Segmentation Classification | Kaggle</u>

VARIABLES	TYPE	<u>DEFINITION</u>
ID	numeric	Unique ID
GENDER	binary	Gender of the customer
EVER_MARRID	binary	Marital status of the customer
AGE	numeric	Age of the customer
GRADUATED	binary	Is the customer a graduate?
PROFESSION	nominal	Profession of the customer
WORK_EXPERIANCE	numeric	Work Experience in years
SPENDING	Ordinal	Spending score of the customer
FAMILY SIZE	numeric	Number of family members for the customer (including the customer)
VAR_1	nominal	Anonymized Category for the customer
SEGMANT	nominal	(target) Customer Segment of the customer

Problems with this data & how I solve it << Clean/Prepare the data >>

Missing Values:

after uploading the data set:

click open file ---- chose our training dataset ----- this information about each attribute will appear:

♣ NOTE: as we can see there is 4 colors in each chart

represent data from class A

represent data from class B

represent data from class C

represent data from class D

- There is no missing value in Segmentation attribute (class)

- There is no missing value in Gender attribute

- There is 144 missing value in Ever_Married attribute

There is no missing value in Age attribute

- There is 78 missing value in Graduated attribute

- There is 124 missing value in Profession attribute

- There is 829 missing value in Work_Experience attribute

There is no missing value in **Spending** attribute

- There is 335 missing value in Family_Size attribute

- There is 76 missing value in Var_1 attribute

#Missing Value processing

As above, we see that data contains some missing values. there are total of 8068 entries, but some columns have less than 8068 entries, which means they have missing values:

Columns "Family Size "and "Work Experience " have huge number of null values. Both are numeric attribute, so can be replaced with their mean values. But because each of these features represents an integer value (1,2,3......) and the mean of each respectively is (2.85, 2.64) which is not an integer.

Also replacing missing with the mean value may affect outliers.

So, I decided to replace the missing values in these columns with the median value of each one:

- Median of family_size = 3
- Median of work_Experience = 1

S R	Q	Р	0	N	М	L	K	J		Н	G	F	Е	D	С	В	Α
	-	,					Segmenta	Var 1	Family S	iz Spending_				Age			ID
							D	Cat 4		1 Low		Healthcare			No -	Male	46280
							Α	Cat 4		3 Average		Engineer	Yes	38	Yes	Female	46264
edian of family_Siz	e:	3					В	Cat 6		Low		Engineer		67	Yes	Female	46631
ian of work_Experi		1					В	Cat 6	2	2 High	0	Lawyer	Yes	67	Yes	Male	46173
							A	Cat 6	(6 High		Entertainm	Yes	40	Yes	Female	46266
							С	Cat 6	2	2 Average	0	Artist	No	56	Yes	Male	46131
							С	Cat 6		3 Low	1	Healthcare	Yes	32	No	Male	46015
							D	Cat_6		3 Low	1	Healthcare	Yes	33	No	Female	46434
							D	Cat_7	3	3 Low	0	Engineer	Yes	61	Yes	Female	46501
							С	Cat 6	4	Average	1	Artist	Yes	55	Yes	Female	46517
							A	Cat 6	3	3 Low	1	Engineer	Yes	26	No	Female	46404
							D	Cat_4	4	1 Low	4	Healthcare	No	19	No	Male	46494
							D	Cat_3		Low	0	Executive	No	19	No	Female	46123
							A	Cat_6		Low		Lawyer	No	70	Yes	Male	45957
							В	Cat_3		1 Low	0	Doctor	No	58	Yes	Female	46084
							С	Cat_1	2	2 Low	1	Healthcare	No	41	No	Female	46056
							D	Cat_3		Low	9	Homemake	No	32	No	Female	46686
							В	Cat_6	6	Low	1	Healthcare	No	31	No	Male	46164
							В	Cat_6	2	4 Average	1	Entertainm	Yes	58	Yes	Male	46677
							C	Cat_6		l High	0	Artist	Yes	79	Yes	Female	46429
							Α	Cat_3		Low	12	Homemake	Yes	49	Yes	Male	46608
							D	Cat_6		1 Low	3	Healthcare	No	18	No	Female	45967
							A	Cat_3		2 Low	13	Artist	Yes	33	Yes	Male	46560
							В	Cat_6	2	2 Low	5	Artist	Yes	36	No	Female	45916
							В	Cat_3	3	3 Average	1	Executive	No	58		Female	46102
							С	Cat_6	3	3 Average	1	Artist	No	56	Yes	Male	46508
							Α	Cat_4	8	3 Low	9	Healthcare	No	31	No	Male	46760

Replacing them in weka:

open the training dataset —— click Edit —— write click on attribute which needed to edit —— then choose set messing value to and enter the median value (that we calculated above):

We can see some of messing value

After replacing them we click " OK " to save the changes we made

Columns "Ever_Married", "Graduated", "Profession", "Var_1" have null values.

All of them either nominal or binary, so can be replaced with their **Mode** values.

<u>Note:</u> in weka there is 3 replacing filter I chose "ReplaceMissingValues" because this filter allow replacing the missing with Mode value.

Selected attribute Name: Gender Missing: 0 (0%) Selected attribute
Name: Ever_Married
Missing: 0 (0%)

Selected attribute
Name: Age
Missing: 0 (0%)

Selected attribute

Name: Graduated

Missing: 0 (0%)

Selected attribute
Name: Profession
Missing: 0 (0%)

Selected attribute
Name: Work_Experience
Missing: 0 (0%)

Selected attribute
Name: Spending_Score
Missing: 0 (0%)

Selected attribute
Name: Family_Size
Missing: 0 (0%)

Selected attribute
Name: Var_1
Missing: 0 (0%)

Now as we can see we replace all missing values (No missing values now)

Outlier/ extreme values:

Now we need to find if there are any outlier/ extreme values in our data set:

A common rule for identifying suspected outliers is to single out values falling at least 1.5×IQR above the third quartile or below the first quartile.

Finding them in weka:

*Note: First you must process the missing values as above

Filter → unsupervised → attribute → InterquartileRange (IQR)

After we apply this filter 2 new column added to dataset (Outlier, ExtremeValue):

Name: Outlie Missing: 0 (0%		Distinct: 1	Type: Nominal Unique: 0 (0%)
No.	Label	Count	Weight
1 no		8068	8068
2 yes		0	0

In our dataset there is no Outlier/Extreme

Note:

If there were outliers, we could solve them by using this filter which remove all instances that contain the outliers:

Filter →unsupervised → instance → <u>RemoveWithValue</u>.

After completion of the process, the variables (Extreme Values, outliers) deleted.

Note:

we can Remove column ID as it's not important to the model

Note:

Because we need to make clustering for data, All Numeric attributes should be transformed to a similar scale to be effective:

Filter →unsupervised → instance → <u>Normalize</u>.

We finish data preparation (fill in missing values and get rid of the extreme values and outliers (if there is)).

Now our dataset ready for applying data mining model

Data Mining Modeling

Classification:

Classification using Decision Tree:

Classify \rightarrow choose \rightarrow tree \rightarrow <u>j48</u>

We can see that the **correctly** classified instance is: 68.6292% We can see that the **incorrectly** classified instance is: 31.3708%

Classification using Naïve Bayes:

Classify → choose → bayes → <u>NaiveBayes</u>

We can see that the **correctly** classified instance is: 50.6693% We can see that the **incorrectly** classified instance is: 49.3307%

We can see that classification by using the first model (j84 Decision Tree) more accurate than classification by using the second model (naïve Bayes).

So, we chose the j48 Decision Tree for Classification

Clustring:

Simple K-Means

WERG EXPIONE			
Preprocess Classify C	uster Ass	ociate Select attribu	ites Visualize
Clusterer			
Choose SimpleKMeans	-init 0 -max-	-candidates 100 -period	ic-pruning 10000 -mir
Cluster mode			Clusterer output
Use training set			
Supplied test set	S	et	
Percentage split		% 66	
Classes to clusters evaluate	tion		
(Nom) Segmentation		~	
✓ Store clusters for visualiza	ation		
lanore	attributes		
ignore	. attributes		
Start		Stop	
Result list (right-click for option	ons)		
	attributes Visualize periodic-pruning 10000 -r		×
Preprocess Classify Cluster Associate Select Clusterer Choose SimpleKMeans; -init 0 -max-candidates 100 -p		weka.clusterers.SimpleKMeans	More Capabilities
Preprocess Classify Cluster Associate Select lusterer Choose SimpleKMeans -init 0 -max-candidates 100 - luster mode Use training set Supplied test set Set	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About	More
Preprocess Classify Cluster Associate Select Iusterer Choose SimpleKMeans -init 0 -max-candidates 100 - Iuster mode Use training set Supplied test set Percentage split Classes to clusters evaluation	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm.	More Capabilities
Preprocess Classify Cluster Associate Select lusterer Choose SimpleKMeans -init 0 -max-candidates 100 - luster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate	More Capabilities 100 2.0 10000
Preprocess Classify Cluster Associate Select dusterer Choose SimpleKMeans -init 0 -max-candidates 100 - luster mode Uset training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1	More Capabilities 100 2.0 10000 -1.25
Preprocess Classify Cluster Associate Select Ilusterer Choose SimpleKMeans -init 0 -max-candidates 100 - Iluster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation V Store clusters for visualization Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2	More Capabilities 100 2.0 10000
Preprocess Classify Cluster Associate Select Choose SimpleKMeans -init 0 -max-candidates 100 - Luster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation V Store clusters for visualization Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1	More Capabilities 100 2.0 10000 -1.25
Preprocess Classify Cluster Associate Select Choose SimpleKMeans -init 0 -max-candidates 100 - Luster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation V Store clusters for visualization Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug	More Capabilities 100 2.0 10000 -1.25 -1.0 False
Preprocess Classify Cluster Associate Select Susterer Choose SimpleKMeans -init 0 -max-candidates 100 -luster mode Use training set Supplied test set Set Percentage split % 66 Classes to clusters evaluation (Nom) Segmentation Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs	More Capabilities
reprocess Classify Cluster Associate Select Justerer Choose SimpleKMeans -init 0 -max-candidates 100 - Juster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation Jugnore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction	More Capabilities 100 2.0 10000 -1.25 -1.0 False Choose EuclideanDistance -R first-
reprocess Classify Cluster Associate Select usterer Choose SimpleKMeans; -init 0 -max-candidates 100 -uster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction doNotCheckCapabilities	More Capabilities 100 2.0 10000 -1.25 -1.0 False V False Choose EuclideanDistance -R first-
reprocess Classify Cluster Associate Select Justerer Choose SimpleKMeans -init 0 -max-candidates 100 - Juster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation Jugnore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction doNotCheckCapabilities dontReplaceMissingValues fastDistanceCalc initializationMethod	More Capabilities 100 2.0 10000 -1.25 -1.0 False Choose EuclideanDistance -R first-I False False False False False
reprocess Classify Cluster Associate Select Justerer Choose SimpleKMeans -init 0 -max-candidates 100 - Juster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation Jugnore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction doNotCheckCapabilities dontReplaceMissingValues fastDistanceCalc initializationMethod maxIterations	More Capabilities
Preprocess Classify Cluster Associate Select Susterer Choose SimpleKMeans -init 0 -max-candidates 100 -luster mode Use training set Supplied test set Set Percentage split % 66 Classes to clusters evaluation (Nom) Segmentation Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction doNotCheckCapabilities dontReplaceMissingValues fastDistanceCalc initializationMethod maxIterations numClusters	More Capabilities
Preprocess Classify Cluster Associate Select Ilusterer Choose SimpleKMeans -init 0 -max-candidates 100 - Iluster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation V Store clusters for visualization Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction doNotCheckCapabilities dontReplaceMissingValues fastDistanceCalc initializationMethod maxIterations numClusters numExecutionSlots	More Capabilities
Preprocess Classify Cluster Associate Select Ilusterer Choose SimpleKMeans -init 0 -max-candidates 100 - Iluster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation V Store clusters for visualization Ignore attributes Start Stop	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction doNotCheckCapabilities dontReplaceMissingValues fastDistanceCalc initializationMethod maxIterations numClusters numExecutionSlots preserveInstancesOrder	More Capabilities
Preprocess Classify Cluster Associate Select Clusterer Choose SimpleKMeans -init 0 -max-candidates 100 - Cluster mode Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) Segmentation Store clusters for visualization Ignore attributes	periodic-pruning 10000 -r	weka.clusterers.SimpleKMeans About Cluster data using the k means algorithm. canopyMaxNumCanopiesToHoldInMemory canopyMinimumCanopyDensity canopyPeriodicPruningRate canopyT1 canopyT2 debug displayStdDevs distanceFunction doNotCheckCapabilities dontReplaceMissingValues fastDistanceCalc initializationMethod maxIterations numClusters numExecutionSlots	More Capabilities

Decision

In this project we went through all the process from defining the business objective, knowing that dataset, clean and preparing the data exploring features and distributions, data modelling and presenting different algorithms to select the best to predict the Customer Segmentation, what will help the business adopt the best marketing strategies to each of them and bring more market share and revenue to the company.

The chosen model was j84 model since it's the most accurate, although it doesn't present a high accuracy. We could reach a more accurate model having more data about customers, it's something to explore and go deeper in the organization with the business team and the data engineer in order to explore if more relevant features are available.

The End