Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

bottom special symbol Appears at time 0

The States

stack

stack

stack

Empty Stack

The automaton HALTS No possible transition after q_2

A Possible Transition

Non-Determinism

PDAs are non-deterministic

Allow non-deterministic transitions

$$\lambda$$
 – transition

Example PDA: Basic Idea?

PDA M

$$L(M) = \{a^n b^n : n \ge 0\}$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Basic Idea:

Execution Example: Time 0

Input

Input

Input

Input

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is an accepting state

At the end of the computation, we do not care about the stack contents (the stack can be empty at the last state)

The input string aaabbb is accepted by the PDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the PDA:

Input

Input

Input

current $a, \lambda \to a$ $b, a \to \lambda$ state $b, a \to \lambda$ $a \to \lambda$ $b, a \to \lambda$

Input

Stack

reject

The input string aab is rejected by the PDA:

A string is rejected if there is **no** computation such that:

All the input is consumed AND

The last state is an accept state

At the end of the computation, we do not care about the stack contents

Another PDA example: Language?

PDA M

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Another PDA example

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

PDA M

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

Basic Idea:

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda, \$ \rightarrow$$

Input

$$(a, a \rightarrow \lambda)$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Stack

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

$$\begin{array}{c}
\lambda, \lambda \to \lambda
\end{array}$$

$$a, a \to \lambda$$

$$b, b \to \lambda$$

 λ , \$ \rightarrow \$

Input

 $\lambda, \lambda \rightarrow \lambda$

Guess the middle of string

 $a, \lambda \rightarrow a$ Stack $a, a \rightarrow \lambda$

$$b, \lambda \rightarrow b$$

 $b, b \rightarrow \lambda$

Input

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$\lambda$$
, \$ \rightarrow \$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Rejection Example:

Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

Input

Guess the middle of string

 $a, \lambda \rightarrow a$ Stack $a, a \rightarrow \lambda$

$$b, \lambda \rightarrow b$$

 $b, b \rightarrow \lambda$

 $\lambda, \lambda \rightarrow \lambda$

 $\lambda, \$ \rightarrow \$$

Input

Input

There is no possible transition.

Input is not consumed

 $a, a \rightarrow \lambda$

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

Another computation on same string:

Input

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda$$
, \$ \rightarrow \$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

No final state is reached

$a, \lambda \rightarrow a$

$$b, \lambda \rightarrow b$$

There is no computation that accepts string *abbb*

 $abbb \notin L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Another PDA example: Language?

Another PDA example

$$L(M) = \{w \in \{a,b\}^*:$$

in every prefix v , $n_a(v) \ge n_b(v)$

Execution Example: Time 0

Input

Input

Stack

Input

Input

Stack

accept

Rejection example: Time 0

Input

Input

Stack

Input

Input

Input

$$b, \$ \rightarrow \lambda$$

Halt and Reject

Pushing Strings

Example:

Another PDA example: Language?

PDA M

Another PDA example

$$L(M) = \{w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

PDA M

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

$$q_1$$

$$\lambda, \$ \rightarrow \$$$

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

Stack

Stack

current

state

$$\lambda, \$ \rightarrow \$$$

Input

Input

Stack

$$a, \$ \rightarrow 0\$$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

Input

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

Stack

PDAs: Formal Definition

$$\underbrace{q_1} \xrightarrow{a, b \to w} \underbrace{q_2}$$

Transition function:

$$\delta(q_1,a,b) = \{(q_2,w)\}$$

Transition function:

$$\delta(q_1,a,b) = \{(q_2,w), (q_3,w)\}$$

Formal Definition

Pushdown Automaton (PDA)

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

 $a, \lambda \rightarrow a$

Stack

 \boldsymbol{a}

 $q_0 \xrightarrow{\lambda, \lambda \to \lambda} q_1$

 $b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$ \qquad q_3$

 $b, a \rightarrow \lambda$

Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

 $a, \lambda \rightarrow a$

 $\underbrace{q_0}^{\lambda,\lambda\to\lambda}q_1$

$$b, a \rightarrow \lambda$$
 q_2
 $\lambda, \$ \rightarrow \$$
 q_3

 $b, a \rightarrow \lambda$

We write:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4

Time 5

A computation:

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

Formal Definition

Language L(M) of PDA M:

$$L(M) = \{w \colon (q_0, w, s) \succ (q_f, \lambda, s')\}$$
 Initial state Final state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

PDA M:

PDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

PDAM: