Երևանի պետական համալսարան

14 նանոմետրանոց տեխնիկական գործնթացում արագագործ ընդունիչ հանգույցում երկար գծերի համաձայնեցման դիմադրության կարգաբերման սխեմայի նախագծումը

Խումբ՝ **410**-Ս

Ուսանող՝ Շալիկո Արշակյան

Ղեկավար՝ տ.գ.թ Մանվել Գրիգորյան

Բովանդակություն

- > Ներածություն
- ➤ Խնդրի դրվածքը
- > Տեխնիկական առաջադրանք
- ➤ Տեսական դրույթներ
- ➤ Նախագծման գործընթաց
- ➤ Եզրակացություն
- ➤ Գրականության ցանկ

Ներածություն(1)

Փոխանցման գծերում անդրադարձումներից խուսափելու նպատակով գծի ալիքային դիմադրության, դրա վերջում՝ ընդունիչ հանգույցի մուտքային և սկզբում՝ հաղորդիչ հանգույցի ելքային դիմադրությունների արժեքները պետք է համաձայնեցվեն:

Ներածություն(2)

Արագագործ համակարգեր(serDes)

6 5 4 3 2 1

հաջորդական հաղորդակցում

զուգահեռ հաղորդակցում

զուգահեռ հաղորդակցում

Խնդրի դրվածքը

- > Ուսումնասիրել ընդունիչ հանգույցում համաձայնեցման դիմադրության արժեքը կարգաբերող սխեմայի կառուցվածքը,
- » SAED14նմ տեխնոլոգիական գործընթացով նախագծել ընդունիչ հանգույցում համաձայնեցման դիմադրության արժեքը կարգաբերող սխեմա, որը կբավարարի տեխնիկական առաջադրանքին:

Տեխնիկական առաջադրանք

> Տեխնոլոգիական գործընթաց՝

14 նմ

> Սնման լարում՝

0.8 Վ ±10%

> Աշխատանքի ջերմաստիճանային միջակայք՝

(-40 +125)°C

Ստացված դիմադրության արժեք՝

50 Օմ ± 10 %

Տեսական դրույթներ (2)

Տարածման հապաղման ժամանակ՝

Ալիքային դիմադրություն՝

$$Td = 2\pi * d * \sqrt{I} * \sqrt{c}$$

$$Z_0 = \sqrt{\frac{r_0 + j\omega L}{g_0 + j\omega C}}$$

Տեսական դրույթներ (3)

Դիմադրության առավելագույն արժեք – R Դիմադրության նվազագույն արժեք – 0.5R

Նախագծման գործնթաց (1)

Նախագծման գործնթաց (2)

Նախագծման գործնթաց (3)

Նախագծման գործնթաց (4)

Ֆիզիկական նախագիծ

Եզրակացություն

Բաղադրիչ	Նկարագրություն
Փոխանցման գիծ	Օգտագործվում է բարձր հաճախականությամբ ազդանշաններ փոխանցելու համար` պահանջելով ճիշտ մոդելավորում ու դիմադրությունների համաձայնեցում։
Անդրադարձում	Դիմադրությունների անհամաձայնեցման հետևանքով առաջացած ազդանշանի արտացոլում, որը կարող է հանգեցնել տվյալների փոխանցման սխալների:
Rtune սխեմա	Օգտագործվում է փոխանցման գծի ընդհանուր դիմադրությունը ճշգրիտ կարգավորելու համար` corner-ների տարբեր պայմաններում:
Կոդերի ազդեցություն	Ավելի շատ ակտիվացված կոդեր → ավելի փոքր ընդհանուր դիմադրություն → ավելի լավ համապատասխանություն փոխանցման գծի դիմադրությանը։
Rtune DC անալիզի արդյունքներ	DC անալիզի արդյունքում, Rtune դիմադրությունը փոխվել է $120\Omega \to 50\Omega$ միջակայքում՝ կոդերի ավելացման հետ՝ TT corner-ի դեպքում։

Գրականության ցանկ

- B. Razavi, Design of Analog CMOS Integrated Circuits, Tata McGraw-Hill ed., Tata McGraw-Hill, 2015, p.693
- ➤ R.Jacob Baker, Harry W. LI and David E. Boys, CMOS Circuit Design, Layout, and Simulation, 2nd edition, The institute of Electrical and Electronics Engineers, Inc., New York, 2005, p.1038
- > Sedra, A., & Smith, K. (2014). *Microelectronic Circuits* (7th ed.). Oxford University Press.
 - Magnusson P. C. et al. Transmission lines and wave propagation. CRC press, 2017.
- Texas Instruments R-2R Ladder Networks. https://www.ti.com
- IEEE Xplore Digital Library.

Շնորհակալություն

