Esercizio 1 – una possibile soluzione

La tabella di figura contiene un ciclo di tre stati. È pertanto necessario inserire uno stato ponte. Ad esempio, codificando gli stati come S0=00, S1=01, S2=10, è possibile usare S0 come stato ponte nelle transizioni S1-S2. La tabella modificata è la seguente (si notino le celle in grassetto):

X ₁ X ₀ z _{1z0}						
/	00	01	11	10		
S0		S1	SO	S2	11	
S1	S1	S1	SO	S0	01	
52	S2	S0	SO	S2	10	

\ X1	K 0				ا
y 1 y 0	00	01	11	10	z1z(
00		01	00	10	11
01	01	01	00	00	01
11					
10	10	00	00	10	10
a ₁ a ₀					

tabella di applicazione					
del latch SR					
	q	q'	S	r	
	0	0	0	-	
	0	1	1	0	
	1	0	0	1	
	1	1	-	0	

x ₁ x ₀						
y 1 y 0	00	01	11	10		
00		0-	0-	10		
01	0-	0-	0-	0-		
11						
10	-0	01	01	-0		
S ₁ Γ ₁						

$\sqrt{x_1x_0}$						
y ₁ y ₀	00	01	11	10		
00		10	0-	0-		
01	-0	-0	01	01		
11						
10	0-	0-	0-	0-		
s _o r _o						

$$\frac{\overline{s_1} = x_0 + y_0}{\overline{r_1} = \overline{x_0}} > s_1 = \overline{x_0 + y_0}$$

$$\frac{\overline{r_1} = \overline{x_0}}{\overline{s_0}} > r_1 = x_0$$

$$\frac{\overline{s_0} = x_1 + y_1}{\overline{r_0} = \overline{x_1}} > s_0 = \overline{x_1 + y_1}$$

Per quanto riguarda le uscite, si ha: $z_0 = \overline{y_1}$, $z_1 = \overline{y_0}$

Compito di Reti Logiche – 9/1/2018

Esercizio 2 - una possibile soluzione:

endmoduleendmodule