

Phase 5: Experiments and Evaluation (Some Short Long Term Ideas)

Direct Performance Test

Evaluate Student and Teacher Models on the task that was used for training the teacher.

Ablation Study

Turn features on and off to figure out which features were most influential. Potentially further simplify the L2D dataset and check whether distillation improvements hold.

Close

Embedding

Generalization of Embeddings

Use embeddings to train/test a model on additional tasks that they were not explicitly trained for.

Group episodes from the two datasets based on embedding distance and check for semantic proximity

No Distillation

Train and test the student model

without distillation as a baseline.

Clustering & Visualization

Close

Embedding

Analyze Transformer Attention Weights

Make some visualizations to understand which features were more influential.

Phase 2: Transformer for Node Embeddings Transformer takes in features and images (processed with some CNN?) for each individual node and makes an embedding for each, which will be used as node features.

Transformer

Phase 3: Teacher Model Training Distant **Embedding** Graph Embedding **Triplet Loss with** Same dataset **Embeddings**

- Training is done with more complex dataset (nuScenes)
- Loss is determined by downstream task
- Transformer (Phase 2) and GNN are jointly trained.
- Teacher model is frozen and final graph embeddings are stored

Phase 4: Student Model Training / Knowledge Distillation Distant **Embedding** Graph **Embedding Triplet Loss with Teacher Embeddings**

- Jointly train student GNN and Transformer with Triplet loss using the teacher embeddings
- Training is done with less complex dataset (L2D)
- Requires matching graphs (from the two datasets) based on semantic similarities from the Semantic tags and graph structure

OR

