随机过程大作业

张栩萌 519070910031

May 2022

1 实验目的

- 1. 通过计算机模拟布朗运动,观察布朗运动的特性
- 2. 通过计算机模拟随机微分方程解的轨道,探究不同参数对轨道的影响, 计算机模拟 X_1 的期望和方差
 - 3. 熟练 Python 编程建模操作

2 问题一:布朗运动

布朗运动的定义为: 若一个随机过程 $\{X(t), t \geq 0\}$ 满足

X(t) 是独立增量过程;

 $\forall s,t>0, X(s+t)-X(s)\sim N\left(0,c^2t\right)$, 即 X(t+s)-X(s) 是数学期望为 0,方 差为 c^2t 的正态分布;

X(t) 关于 t 是连续函数,

则称 $\{X(t), t \geq 0\}$ 是布朗运动或维纳过程. 当 c=1 时, 称 $\{X(t), t \geq 0\}$ 是标准布朗运动。

图 1为在 [0,1] 区间生成 100 个等距点,以 0.1 为时间间隔生成的标准布朗运动,图 2为同样的区间节点下生成的 c=10 时的布朗运动。

Figure 1: 多条标准布朗运动轨道

Figure 2: 当 c = 10 时多条布朗运动轨道

因为参数 c 影响布朗运动的增量正态分布的方差,所以我们看到当 c=10时布朗运动振荡的幅度明显大于标准布朗运动。

3 问题二:股票价值随机微分方程

设 $B = \{B_t; t \ge 0\}$ 为标准布朗运动, $X = \{X_t; t \ge 0\}$ 为如下随机微分方程的解:

$$\begin{cases} dX_t = \alpha (v - X_t) dt + \sigma dB_t \\ X_0 = x_0 \end{cases}$$

其中 α, v, σ, x_0 为常数。

接下来我们测试不同参数对轨道的作用。

在微分方程中, dB_t 是一个正态的扰动,前面的方程 $dX_t = \alpha (v-X_t) dt$ 表示了如果 X_t 不等于 v 的话, X_t 会以一定速度向 v 收敛。如果把 X_t 看作是函数的话这个微分方程的函数解是 $f = \frac{1}{\alpha} exp - \alpha t + v + C$ 所以 v 代表了 X_t 的稳态。而 α 就代表了收敛的速度。下面的实验对这些分析进行了验证

Figure 3: 参数 v 对随机微分方程 1 解的轨道影响

Figure 4: 参数 α 对随机微分方程 1 解的轨道影响

Figure 5: 参数 σ 对随机微分方程 1 解的轨道影响

Figure 6: 参数 x_0 对随机微分方程 1 解的轨道影响

图 4说明 α 越大收敛的速度越快;图 5说明 σ 越大噪声的振荡越大;图 4和图 4说明 v 决定 X_t 最终的稳态,而 x_0 决定 X_t 的初态。我们看到正如我们预期的一样,当 $\sigma=0, v=x_0$ 的时候,初态就是稳态,且没有噪声,轨道是一条直线。

我们现在用 Monte-Carlo 模拟查看不同参数下 X_t 稳态分布的期望与方差。下面的实验都是在控制单一变量的条件下进行的,控制的变量默认为 $\alpha=10,\ v=1,\ \sigma=1,\ x_0=0$ 。

Table 1: 不同参数下的 $E(X_1)$ 和 $D(X_1)$

Table 1. This \mathfrak{M} is $L(X_1)$ in $L(X_1)$									
α	$E(X_1)$	$D(X_1)$	v	$E(X_1)$	$D(X_1)$				
1	0.636873	0.004301	1	1.000939	0.000513				
5	0.995510	0.000966	2	2.000912	0.000513				
10	1.000939	0.000513	5	5.000832	0.000513				
100	0.999987	0.000101	10	10.000699	0.000513				
σ	$E(X_1)$	$D(X_1)$	x_0	$E(X_1)$	$D(X_1)$				
0.1	1.00007	5e-06	0	1.000939	0.000513				
1.0	1.000939	0.000513	2	1.000992	0.000513				
2.0	1.001904	0.00205	5	1.001071	0.000513				
5.0	1.004799	0.012815	10	1.001204	0.000513				

实验结果表明, v 与 $E(X_1)$ 正比, σ 的平方与 $D(X_1)$ 正比, α 和 x_0 与这

两个量无关。

4 问题三:股票价值与价格随机微分方程

设 $B = \{B_t; t \ge 0\}$ 与 $W = \{W_t; t \ge 0\}$ 为标准布朗运动, $X = (X_t, S_t)$ 为如下随机微分方程的解:

$$\begin{cases} dX_t = \alpha (v - X_t) dt + \sigma dB_t \\ dS_t = \theta (X_t - S_t) dt + \hat{\sigma}_1 dB_t + \hat{\sigma}_2 dW_t \\ X_0 = x_0, \ S_0 = s_0 \end{cases}$$

其中 $\alpha, v, \sigma, \theta, \hat{\sigma_1}, \hat{\sigma_2}, x_0, s_0$ 为常数。

这个方程中可以将 X_t 看作是股票价值, S_t 看作是股票价格。当价格高于价值是,市场会对股票有一种看衰的期望;股票价格也将会随之下降,当价格低于价值时,市场就会对股票看好,价格也将随之上升。股票价格的方程与上面的随机微分方程相同,所以我们看一看价值 S_t 方程的解的轨道。

Figure 7: 随机微分方程 2 解的多条轨道 S-T

我们看到 S_t 和 X_t 的曲线是十分相似的,所以我们初步推断 S_t 是受 X_t 影响,不断趋向 X_t ,最终区域稳态 v。

Figure 8: 随机微分方程 2 解的多条轨道 S, X-T

我们画出了价格与价值比值曲线随时间 T 的变化,可以看到他很快就趋于 1,然后受噪声和随机性的影响不断振荡。

Figure 9: 随机微分方程 2 解的多条轨道 S/X-T

接下来我们实验观察参数对轨道的影响。我们的所有实验都是在控制变量的条件下进行的,被控制的变量默认为 $\alpha=1,v=3,\sigma=1,\theta=100,\sigma_1=\sigma_2=1,x_0=s_0=2$ 。同样地, $d_t=0.01$,一共取 100 个个点,区间是 [0,1]。

Figure 10: 参数 α 对随机微分方程 2 解的轨道影响

首先, α 以与图 4相似的方式,通过影响价值曲线 X_t 的方式影响 S_t 。 α 决定了两者向稳态的收敛速率。

Figure 11: 参数 θ 对随机微分方程 2 解的轨道影响

 θ 同样决定了价格曲线 S_t 收敛的速率,当 θ 过小的时候收敛很慢,但是当 θ 过大的时候就会发生振荡,这是因为将 S_t 向 X_t 修正的时候,修正过大。

Figure 12: 参数 σ , σ_1 和 σ_2 对随机微分方程 2 解的轨道影响 σ_1 和 σ_2 同样还是印象正态分布噪音的方差

Figure 13: 参数 v 和初值对随机微分方程 2 解的轨道影响

v 代表了 S_t 和 X_t 最终的稳态,而 x_0 和 s_0 表示两条曲线的初值,我们可以发现 S_t 很快向 X_t 收敛,这里是因为 $\alpha\theta dt=1$ 的原因。

Table 2: 不同参数下的 $E(S_1)$ 和 $D(S_1)$

α	$E(S_1)$	$D(S_1)$	θ	$E(S_1)$	$D(S_1)$
1	2.636873	0.004301	1	3.000939	0.000513
5	2.99551	0.000966	10	3.000939	0.000513
10	3.000939	0.000513	100	3.000939	0.000513
100	2.999987	0.000101	1000000	3.000939	0.000513
σ , σ_1 , σ_2	$E(S_1)$	$D(S_1)$	v, x_0, s_0	$E(S_1)$	$D(S_1)$
1, 1, 1	3.000939	0.000513	3, 2, 2	3.000939	0.000513
1, 1000, 1	3.000939	0.000513	5, 2, 2	5.000885	0.000513
1, 1, 1000	3.000939	0.000513	3, 7, 2	3.004932	0.000513
10, 1, 1	3.009625	0.05126	3, 2, 7	3.004799	0.000513

我们看到 α 与 $D(S_1)$ 相关, θ 与期望和方差都不相关, σ 的平方与 $D(S_1)$ 成正比, σ_1 与 σ_2 与 $D(S_1)$ 成正比,v 在理想情况下等于 $E(S_1)$, x_0 与 s_0 没有直接关系,但是是在能够在迭代步数内收敛的情况下。

5 总结