TP1 - Scheduling

Sistemas operativos

Verano - 2010

 $\downarrow Qu\'e$ es una Tarea? (desde el punto de vista del TP)

¿Qué es una Tarea? (desde el punto de vista del TP)

Es un programa que se va a ejecutar

¿Qué es una Tarea? (desde el punto de vista del TP)

Es un programa que se va a ejecutar

Antes de simular conocemos:

- En que momento estará lista para ser ejecutada
- Cuanto tiempo de procesamiento utiliza

¿Qué es una Tarea? (desde el punto de vista del TP)

Es un programa que se va a ejecutar

Antes de simular conocemos:

- En que momento estará lista para ser ejecutada
- Cuanto tiempo de procesamiento utiliza

La simulación nos permitirá conocer:

- En que momento finalizó la tarea
- Cuanto tiempo de espera tuvo

- En el prompt, tipear: ./simulator
- Respuesta:

```
Usage: simulator <<scheduler_name>> <<task_set_name>> <<quantum>>
```

Resultados analisis del scheduling producido: tiempo de espera promedio: -1

URL to generate graph:

```
http://chart.apis.google.com/chart?chs=
1000x200&chbh=a&chxt=x&chd=t:11|33|22|11|11|
11&cht=bhs&chco=E8B9AF,AB9BB7,788E9D,AFB856,
E8B9AF,D5B77E&chm=tIDLE_TASK,000000,0,0,20|tP1,
000000,1,0,20|tP2,000000,2,0,20|tP3,000000,3,0,
20|tIDLE_TASK,000000,4,0,20|tP4,000000,5,0,
20&chxl=0:|0|4|8|12|16|20|24|28|32|36|40|44
```

Schedulers disponibles

- FCFS, SJF: Implementados por la cátedra
- RR, MFQ: Cáscaras para que completen Uds.

TaskSets disponibles

- ts1, ts2, ts3, ts4, ts5, ts6: Son los tasksets de la cátedra
- fcfs_1, fcfs_2: Para jugar con FCFS
- sjf_1, sjf_2: Idem con SJF
- test_1: Un taskset cuyos tasks llegan luego del instante inicial
- ej_1: Lo deben escribir Uds.

Qué es un Task Campos readonly

- name: Nombre del Task
- ptime (Processing time): time necessary to execute task on the processor without interruption
- rtime (Released time): Momento en el que la tarea esta lista para su ejecución

Estos campos no cambian a lo largo de la vida del Task.

Qué es un Task Campos para la simulación

- ttime (Task time): Tiempo de procesador usado por el task. Por defecto vale 0.
- ftime (Finalization Time): Tiempo de finalizacion de la tarea. Por defecto vale -1.
- wtime (Waiting Time): Tiempo de espera de la tarea. Por defecto vale 0.

Estos campos son modificados producto de la simulación.

TaskSet

- Alberga un conjunto de Tareas (Tasks)
- Las tareas no pueden tener un nombre repetido
- Ejemplo:

```
\label{eq:taskset1} \begin{split} & \mathsf{TaskSet} \; \mathsf{taskset1} = \mathsf{new} \; \mathsf{TaskSet}("\mathsf{taskset1}"); \\ & \mathsf{taskset1}. \mathsf{add} \; ( \; \mathsf{new} \; \mathsf{Task}("\mathsf{P1}", \, 15, \, 5 \, ) \; ); \\ & \mathsf{taskset1}. \mathsf{add} \; ( \; \mathsf{new} \; \mathsf{Task}("\mathsf{P2}", \, 10, \, 5 \, ) \; ); \\ & \mathsf{taskset1}. \mathsf{add} \; ( \; \mathsf{new} \; \mathsf{Task}("\mathsf{P3}", \, 05, \, 6 \, ) \; ); \end{split}
```

Scheduler

Es la clase abstracta que representa un planificador. Todos los schedulers extienden esta clase abstracta.

void init(TaskSet taskset)	Prepara al scheduler para la
	planificación del TaskSet
String next()	Avanza una unidad de tiempo. Retorna
	la tarea que está usando el procesador
	o bien <i>null</i> para marcar el fin
	de la planificación

FCFS init(TaskSet taskSet)

FOR EACH tarea IN TaskSet agregar a la lista de tareas preparadas de acuerdo a su orden de llegada y su rtime

FCFS next()

```
IF no hay mas tasks THEN Terminar()
current time++
IF (prox_tarea.rtime > current_time)
   RETURN IDLE TASK
IF (prox_tarea.ttime == prox_tarea.ptime) THEN
   prox_tarea.ftime := current_time
   IF no hay mas tareas THEN Terminar()
   FLSE
      prox_tarea := siguiente tarea preparada()
     IF prox_tarea.rtime > current_time
         RETURN IDLE_TASK
ENDIF
prox_tarea.ttime++
RETURN prox_tarea.name
```

SchedulerAnalyzer

Permite calcular estadísticas de la planificación. Esta clase es invocada una vez finalizada la planificación.

```
/**

* Retorna el waiting time promedio de

* una tarea.

*/
public int get_avg_wtime() {
    return -1;
}
```

Enunciado Trabajo Práctico Parte 1: Entrenamiento en el Simulador

- Definir un TaskSet que produzca una planificación particular en FCFS y en SJF
- Completar la clase SchedulerAnalyzer para que calcule el waiting time promedio de un TaskSet ya planificado

Enunciado Trabajo Práctico

Parte 2: Nonpreemptive Scheduling

- Usando los algoritmos provistos por la cátedra (FCFS y SJF) estudiar el comportamiento sobre los taskSet ts1,...,ts6.
 - Ejemplo: ¿Cómo la planificación del TaskSet ... el algoritmo ...? ¿Por qué?
- Calcular el waiting time promedio de cada tarea sobre cada algoritmo.

Enunciado Trabajo Práctico Parte 3: Preemptive Scheduling

- Implementar el algoritmo de RR y estudiar su comportamiento sobre los tasksets usando distintos quantums.
- Implementar el algortimo de MFQ
- Modificar el algoritmo de MFQ para que simule el bloqueo de procesos por operaciones de E/S