NASA CR-120823

STRESS CORROSION CRACKING AND FATIGUE CRACK GROWTH STUDIES PERTINENT TO SPACECRAFT AND BOOSTER PRESSURE VESSELS

(NASA-CR-120823) STRESS CORFOSION N73-21846
CRACKING AND FATIGUE CRACK GROWTH STUDIES
PERTINENT TO SPACECRAFT AND BOOSTER
PRESSURE VESSELS (Boeing Co., Seattle, Unclas
Wash.) 175 p HC \$10.75 CSCL 20K G3/32 68349

Prepared For
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS 3-12003 Gordon T. Smith, Project Manager

NASA CR-120873 Title and Subtitle Stress Corroation Cracking and F Pertinent to Spacecraft and Boo Author(s) L.R. Hall and R.W. Finger Performing Organization Name and Address The Boeing Company - Aerospace Research and Engineering Divisi Seattle, Washington Sponseling Agency Name and Address National Aeronautics and Space Lewis Research Center	Group		5. Report Date December 1972 6. Performing Organization Code 8. Performing Organization Report No. D180-15018-1 10. Work Unit No. 11. Contract or Grant No.
L.R. Hall and R.W. Finger Performing Organization Name and Address The Boeing Company - Aerospace Research and Engineering Divisi Seattle, Washington Sponseing Agency Name and Address National Aeronautics and Space Lewis Research Center			8. Performing Organization Report No. D180-15018-1 10. Work Unit No.
L.R. Hall and R.W. Finger Performing Organization Name and Address The Boeing Company - Aerospace Research and Engineering Divisi Seattle, Washington Sponseing Agency Name and Address National Aeronautics and Space Lewis Research Center			D180-15018-110. Work Unit No.
The Boeing Company - Aerospace Research and Engineering Divisi Seattle, Washington Sponwing Agency Name and Address National Aeronautics and Space Lewis Research Center			
The Boeing Company - Aerospace Research and Engineering Divisi Seattle, Washington Sponwing Agency Name and Address National Aeronautics and Space Lewis Research Center			11, Contract or Grant No.
Research and Engineering Divising Seattle, Washington Sponwing Agency Name and Address National Aeronautics and Space Lewis Research Center			11, Contract or Grant No.
National Aeronautics and Space Lewis Research Center			NAS3-12003
National Aeronautics and Space Lewis Research Center			13. Type of Report and Period Covered
Lewis Research Center	Ad-dadahan Adam		Contractor Report
Cleveland, Ohio	Administration		14. Sponsoring Agency Code
Supplementary Notes			
Project Manager, Gordon T. Smit NASA Lewis Research Center, Cle			on
Abstract.	,	7	
This experimental program v			
stress corrosion cracking i	in 2219-T87 alumin	um and 5A1-2.5 Sn	(ELI) titanium
alloy plate and weld metal	. Both uniform he	ight double canti	lever beam and
surface flawed specimens w	ere tested in envi	ronments normally	encountered during
the fabrication and operati	lon of pressure ve	ssels in spacecra	ift and booster
systems. The second part	studied compatabil	ity of material-e	nvironment
combinations suitable for h	high energy upper	stage propulsion	systems. Surface
flawed specimens having thi	icknesses represen	tative of minimum	gage fuel and
oxidizer tanks were tested	. Titanium allovs	5A1-2.5 Sn (ELI)	. 6A1-4V annealed.
and 6A1-4V STA were tested			
2219 in the T87 and T6E46		· ·	
mixture, and methane. Res			
		" Marii Modrired	
fracture mechanics paramete			
			Autorope in the first of the fi
	urface Flaws racture Mechanics	18. Distribution Statem Unclassified,	
Base Metals	To the season		

PREFACE

This report describes an investigation of stress corrosion cracking in metal tank materials performed by The Boeing Company from July 1968 to May 1971 under Contract NAS 3-12003. The work was administered by Mr. Gordon T. Smith of the NASA Lewis Research Center.

Boeing personnel who participated in the investigation include J. N. Masters, project leader; L. R. Hall, principal investigator; R. W. Finger, research engineer. Program support was provided by A. A. Ottlyk, non-hazardous environment testing; H. M. Olden, C. C. Mahnken and G. E. Vermilion, hazardous environment testing; L. Albertin, titanium welding; C. W. Bosworth, aluminum welding; E. C. Roberts, metallurgical support; and D. G. Good, technical illustrations and art work.

The information contained in this report is also released as Boeing Document D180-15018-1.

CONTENTS

			Page
ABSTRACT			· i
SYMBOLS			vi
SUMMARY			1
1.0	INTRO	DUCTION	3
2.0	INVES	TIGATION OF STRESS CORROSION CRACKING I	N 2219-T87 7
	ALUMI	NUM AND 5A1-2.5 Sn (ELI) TITANIUM ALLOY	S
	2.1	Materials	8
	2.2	Procedures	9
		2.2.1 Welding	9
		2.2.2 Specimen Preparation	10
		2.2.3 Testing	12
		2.2.4 Interpretation of Results	15
	2.3	Results and Discussion	16
		2.3.1 Discussion of Titanium Alloy R	esults 17
		2.3.2 Discussion of Aluminum Alloy R	esults 25
	2.4	Observations and Conclusions	30
3.0	COMP	TIBILITY STUDY OF MATERIAL/ENVIRONMENT	COMBINATIONS 33
	PERT	NENT TO HIGH ENERGY UPPER STATE PROPULS	ION SYSTEMS
	3.1	Materials	33
	3.2	Procedures	34
		3.2.1 Specimen Preparation	34
		3.2.2 Testing	35
	3.3	Results and Discussion	
		3.3.1 Proof Overload Tests	37
		3.3.2 Sustained Load Tests	38 +
	3.4	Conclusion	39
REFERENCE	ES		41
APPENDIX	A - T	ST DATA	43
APPENDIX	B - D	B SPECIMEN STUDIES	45
	Intr	duction	45
	Back	round	45
	Proc	dures	46
	Resu	ts and Discussion	47
	Pofe		

CONTENTS (Cont'd)

	Page
APPENDIX C - TEST SPECIMENS	53
APPENDIX D - WELDING PARAMETERS	55
1.00-Inch-Thick 2219-T87 Aluminum	55
0.35-Inch-Thick 5A1-2.5 Sn (ELI) Titanium	56
APPENDIX E - CLEANING PROCEDURES FOR FLUORINE ENVIRONMENTS	57
APPENDIX F - CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS	59

SYMBOLS AND ACRONYMS

K	Opening mode stress intensity factor
KIE	Fracture toughness obtained from tests of surface flawed specimens
KISCC	Threshold stress intensity factor below which stress corrosion cracking does not occur
K _{cr}	Critical stress intensity factor at which unstable crack propagation initiates
a	Crack depth of semi-elliptical surface flaw; crack length in double cantilever beam specimen; one-half crack length in center cracked specimen
a _i	Value of 'a' at beginning of test
a o	Experimentally determined crack length increment added to actual crack length in double cantilever beam specimens to account for the effect of arm rotation on compliance
a _f	Value of 'a' at termination of test
b	Specimen width for double cantilever beam specimens
b _n	Crack width in double cantilever beam specimen
2c	Crack length at specimen face for semi-elliptical surface flaw
E	Young's modulus
h	One half specimen depth of double cantilever beam specimen
1	Moment of inertia of double cantilever beam specimen arm = bh ³ /12

Load applied to test specimen

vi

P

SYMBOLS AND ACRONYMS (Con't.)

- Complete elliptical integral of the second kind corresponding to the modulus $k = \left[(c^2 a^2) / c^2 \right]^{-1/2}$
- σ Uniform tensile stress acting perpendicular to plane of crack
- Uniaxial tensile yield stress
- Q $\phi^2 0.212 (\sigma/\sigma_{ys})^2$
- t Gage area thickness of test specimen
- W Gage area width of test specimen
- μ Poisson's ratio
- ${
 m M}_{
 m K}$ Scalar factor depending on a/t and a/2c used to account for effect of stress free back specimen surface on stress intensity factor for surface flaws
- SCC Stress corrosion cracking
- WT Crack propagation directions (See Figure 2-16)
- SF Surface flaw

RT

- DCB Double cantilever beam
- TM Test medium
- MEK Methyl Ethyl Ketone
- MA Mill Annealed

LIST OF FIGURES

No.	<u>Title</u>	Page
2-1	Mechanical Properties for 2219-T87 Aluminum-One Inch (2.54 cm) Thick Plate	60
2-2	Mechanical Properties for 5A1-2.5 Sn (ELI) Titanium-0.35 Inch (0.89 cm) Thick Plate	61
2-3	Fracture Toughness Data for 1.0 Inch (2.54 cm) Thick 2219-T87 Aluminum Alloy Plate	62
2-4	Fracture Toughness Data for Alloys Used in SCC Tests	63
2-5	Pressure Cups Used to Detect Crack Breakthrough in Surface Flawed Specimens	64
2-6	Method of Loading DCB Specimens	65
2-7	Shape Parameter Curves for Surface and Internal Flaws	66
2-8	Results of Stress Corrosion Cracking Tests for Ti-5A1-2.5 Sn (ELI) 0.35-Inch (0.89 cm) Thick Plate (Excluding Nitrogen, Helium and Hydrogen Tests)	67
2-9	Results of Stress Corrosion Cracking Tests for 5A1-2.5 Sn (ELI) Titanium 0.35 Inch (0.89 cm) Thick Plate (Nitrogen, Helium, Hydrogen Tests)	68
2-10	Results of Stress Corrosion Cracking Tests for 5A1-2.5 Sn (ELI) Titanium 0.35 Inch (0.89 cm) Thick GTA Weld Centerlines (Excluding Hydrogen and Helium Tests)	69
2-11	Results of Stress Corrosion Cracking Tests for 5A1-2.5 Sn (ELI) Titanium 0.35 Inch (0.89 cm) Thick GTA Weld Centerlines (Hydrogen and Helium Tests)	70
2-12	Results of Stress Corrosion Cracking Tests for 2219-T87 Aluminum One Inch (2.54 cm) Thick Plate (Excluding Hazardous Environment Tests)	71
2-13	Results of Stress Corrosion Cracking Tests for 2219-T87 Aluminum One Inch (2.54 cm) Thick Plate (Hazardous Environment Tests)	72
2-14	Results of Stress Corrosion Cracking Test for 2219 Aluminum As-Welded GTA One Inch (2.54 cm) Thick Weld Centerlines (Excluding Hazardous Environment Tests)	73
2-15	Results of Stress Corrosion Cracking Tests for 2219 Aluminum As-Welded GTA One Inch (2.54 cm) Thick Weld Centerlines (Hazardous Environment Tests)	74

LIST OF FIGURES (Cont'd)

No.	<u>Title</u>	Page
2-16	Nomenclature for Denoting Crack Propagation Directions in Plate Material and Weld Centerlines	75
2-17	Summary of SCC Crack Growth Observed in Tests of 0.35 Inch (0.89 cm) Thick 5A1-2.5 Sn (ELI) Titanium Plate Material and GTA Weld Centerlines	76
2-18	Fracture Surfaces of 5A1-2.5 Sn (ELI) Titanium Alloy Specimens	77
2-19	Effect of Temperature and Volume Percentage of Water on Time to Failure for Smooth Titanium Foil Specimens (Ref. 10)	78
2-20	Schematic Representation of the Relationship Between Incubation Period, Crack Growth, and Time to Failure for Environmentally Induced Crack Growth	79
2-21	Generalized Velocity Versus Stress Intensity Relationship for Stress Corrosion Cracking	80
2-22	Effect of Specimen Thickness on SCC Susceptability of Ti-8A1-1Mo-1V (DA) and Ti-6A1-4V (MA) in 3.5% NaCl Solution (Ref. 15)	81
2-23	Results of SF Specimen Thickness Effect Tests	82
2-24	Surface Crack Depth Growth During Load-Unload and Sustained Load Tests in Air and Argon	83
2-25	Fracture Surfaces of 2219-T87 Aluminum Alloy DCB Specimens. Specimens S-2 and S-4 were Tested in Salt Water. Specimen 55 was Loaded then Immediately Unloaded in Air	84
2-26	Fracture Surfaces of 2219 Aluminum Alloy Weld Metal DCB Specimens Tested in Salt Water Showing Typical Nonuniform Initial Fatigue Cracks and Traces of Apparent SCC	85
2-27	Surface Flaw Depth Growth Observed During Tests of One Inch (2.54 cm) Thick 2219 GTA Weld Centerlines	8 6
2-28	Fracture Surfaces of 2219 Aluminum As-Welded SF Specimens Illustrating Crack Growth Due to Load-Unload Profile in Air and Sustained Load Profile in Salt Water	87
2-29	Fracture Surfaces of 2219-T87 Aluminum Alloy Base Metal Surface Flawed Specimens Showing Traces of Apparent SCC	88
2-30	Crack Growth During Rising Loads for 2219 As-Welded GTA Weld Centerline	89

LIST OF FIGURES (Cont'd)

No.	<u>Title</u>	Page
2-31	Effect of Outdoor Exposure and Stress Intensity on Stress-Corrosion Crack Velocity of Several High-Strength Aluminum Alloys (Ref. 16)	90
2-32	Typical V-K Curves for Some 2000-Series Alloys Obtained Using TR DCB Stress-Corrosion Specimens (Ref. 16)	91
2-33	Correlation of Solution Potential with Stress-Corrosion Performance of 2219-T87 Alloy Plate. In the Upper Plot, the Small Numbers Inside Circles Indicate the Number of Specimens Tested (Ref. 17)	92
3-1	Mechanical Properties for Materials Used in Compatibility Studies Pertient to High Energy Upper Stage Propulsion Systems	93
3-2	Pressure Cup Instrumentation Used for Detecting Surface Crack Penetration of Specimen Thickness	94
3-3	Example of Test Record Obtained from Instrumentation Shown in Figure 3-2 During Static Fracture Test of Surface Flawed Specimen	95
3-4	Loading Train and Cryostat for Upper Stage Material/ Environment Combination Tests	96
3-5	System Used for Testing Upper Stage Material/Environment Combinations in Methane	97
3-6	System Used for Testing Upper Stage Material/Environment Combinations in Fluorine and Flox	98
3-7	Results of -320F (78K) Proof Overload Tests for Aluminum and Titanium Alloy SF Specimens	99
в1	DCB Specimen and Instrumentation for Compliance Tests	100
B2	Deflection Measurements Between Outer Surfaces of DCB Specimen Arms	101
В3	Fracture Surfaces for 2219-T87 Aluminum DCB Specimens Used to Evaluate Effect of Groove Shape on Curvature of Fatigue Crack Front	102
C1	Surface Flawed Specimen for Aluminum Base Metal	103
C2	Surface Flawed Specimen for Aluminum Weld Metal	104
C3	Surface Flawed Specimen for Titanium Base Metal @ Room	105

LIST OF FIGURES (Cont'd)

No.	<u>Title</u>	Page
C4	Surface Flawed Specimens for Titanium Weld Metal @ Room Temperature	106
C5	Surface Flawed Specimen for Titanium Base Metal & Weld Metal @ -320F (78K)	107
C6	Surface Flawed Specimen for Titanium Rase Metal & Weld Metal @ -423F (20K)	108
C7	Titanium Base Metal Variable Thickness Test Specimens	109
C8	DCB Specimen Configurations	110
С9	5A1-2.5 Sn (ELI) Weld Metal Tensile Specimen	111
C10	Tensile Specimens	112
C11	Aluminum Sustained Load Surface Flawed Specimen	113
C12	Titanium Sustained Load Surface Flawed Specimen	114

LIST OF TABLES

No.	<u>Title</u>	Page
2-1	Test Program for Evaluating Stress Corrosion Cracking Resistance of 2219-T87 Aluminum Alloy Base and Weld Metal	115
2-2	Test Program for Evaluating Stress Corrosion Cracking Resistance of 5A1-2.5 Sn (ELI) Titanium Alloy Base and Weld Metal	116
2-3	Load-In-Environment Test Program for 2219-T87 Aluminum and 5A1-2.5 Sn (ELI) Titanium Base Metal DCB Specimens	117
2-4	Test Program for Evaluating Effect of Surface Flawed Specimen Thickness on Stress Corrosion Cracking Susceptibility of 5A1-2.5 Sn (ELI) Titanium Alloy	118
2-5	Chemical Compositions of Materials	119
2-6	Mechanical Properties of Materials	120
2-7	Fracture Toughness Data for Materials Used in Evaluating Stress Corrosion Cracking in 2219-T87 Aluminum and 5A1-2.5 Sn (ELI) Titanium	121
2-8	SCC Test Results for 5A1-2.5 Sn (ELI) Titanium Alloy Base and Weld Metal	122
2-9	Results of SF Specimen Thickness Effect Tests for RW Direction of Ti-5A1-2.5 Sn (ELI) Plate in Liquid Methanol at 72F	123
2-10	Results of Tests to Evaluate Surface Flaw Growth Characteristics During Rising and Monitonic Loads	124
2-11	Results of Tests to Evaluate Surface Flaw Growth During Rising Load at Cryogenic Temperatures	125
2-12	Surface Flaw Depth Growth Observed During Tests of 2219 Weld Centerlines	126
3-1	Test Program for Upper Stage Material/Environment Combinations	127
3-2	Results of -320F Proof Overload Tests for 2219 Aluminum Alloy Surface Flawed Specimens	128
3-3	Results of -320F Proof Overload Tests for Titanium Alloy Surface Flawed Specimens	129
3-4	Results of Sustained Load Tests of Upper Stage Material/ Environment Combinations	130

LIST OF TABLES (Cont'd)

No.		Page
A1	2219-T87 Aluminum Base Metal Stress Corrosion Data for Nonhazardous Environments	131
A2	2219-T87 Aluminum Base Metal Stress Corrosion Data for Hydrogen and Oxygen	133
A3	2219-T87 Aluminum Base Metal Stress Corrosion Data for Fluorine, Flox, and ${\rm OF}_2$	135
A4	2219 Aluminum Weld Metal Stress Corrosion Data for Nonhazardous Environments	137
A5	2219 Aluminum Weld Metal Stress Corrosion Data Hydrogen and Oxygen	139
A6	2219 Aluminum Weld Metal Stress Corrosion Data for Fluorine, Flox and ${\rm OF}_2$	141
A7a	5A1-2.5Sn (ELI) Titanium Base Metal Stress Corrosion Data for Nonhazardous Environments	143
A7b	5A1-2.5Sn (ELI) Titanium Base Metal Stress Corrosion Data for Nonhazardous Environments (Cont.)	145
AS	5A1-2.5Sn (ELI) Titanium Base Metal Stress Corrosion Data for Hydrogen and Helium	147
A9a	5A1-2.5Sn (ELI) Titanium Weld Metal Stress Corrosion Data for Nonhazardous Environments	149
А9Ъ	5A1-2.5Sn (ELI) Titanium Weld Metal Stress Corrosion Data for Nonhazardous Environments (Cont.)	151
A10	5A1-2.5Sn (ELI) Titanium Weld Metal Stress Corrosion Data for Hydrogen and Helium	153
A11	2219-T87 Aluminum Ease Metal Stress Corrosion Data for Nonhazardous Fluids Loaded in Environment	155
A12	5A1-2.5Sn (ELI) Titanium Base Metal Stress Corrosion Data Nonhazardous Fluids Loaded in Environment	157
B1	Compliance Data for 2219 Aluminum DCB Specimens	159
В2	Compliance Data for 5A1-2.5Sn (ELI) Titanium 0.375-Inch	160

LIST OF TABLES (Cont'd)

No.		Page
В3	Compliance Data for 5A1-2.5Sn (ELI) Titanium 0.350-Inch Thick DCB Specimens	160
В4	Comparison of Micrometer and Clip Gage Displacement Measurements for Aluminum Base Netal DCB Specimens	161
Cl	Summary of Test Specimens	162

SUMMARY

This experimental program is one in a series of programs undertaken to develop and refine methods for estimating minimum performance capabilities of metallic pressure vessels with emphasis being placed on aerospace applications. The resulting methods reflect the knowledge that crack-like defects in new structure can grow under the influence of loads and environment to a size sufficiently large to initiate failure, and are based on fracture strength and subcritical crack growth data from tests of pre-cracked specimens. Previous programs were devoted to studies of fatigue and sustained load subcritical crack growth in the environments of ambient air, liquid nitorgen, and liquid hydrogen. This program was directed to a study of stress corrosion cracking (SCC) in metallic alloys. Results were evaluated using modified linear elastic fracture mechanics parameters so that effects of SCC can be properly accounted for in estimates of minimum performance capabilities of metallic pressure vessels. The experimental work was divided into two parts.

The first part of this program was undertaken to evaluate SCC in both parent and weld metal 2219-T87 aluminum and 5A1-2.5 Sn (ELI) titanium alloys. Each alloy was tested in environments encountered during the fabrication and operation of aerospace pressure vessels including cleaners, dye penetrants, fuels, oxidizers, and pressurizing gases. Both uniform height double cantilever beam and surface flawed specimens were tested in most environments. The 5A1-2.5 Sn (ELI) titanium alloy was susceptible to SCC in a number of environments. The susceptibility was found to depend on crack propagation direction and loading procedure; the RW direction was less susceptible than the WR direction and specimens loaded in air prior to being placed in the test environment were less susceptible than were specimens that were loaded while the crack was exposed to the test environment. For the 2219-T87 aluminum alloy, test durations were not sufficiently long to allow strong indications of either the presence or lack of SCC to develop. However, some evidence of SCC was noticed in 3-1/2 percent Na Cl solution, trichloroethylene, and dye penetrant. There also was evidence that SCC can be more pronounced in surface flawed than in equal thickness through-the-thickness cracked speciments.

The second part of this program was a compatibility study for material/environment combinations suitable for high energy upper stage propulsion systems. Material/environment combinations tested included: 2219-T87 aluminum alloy in both liquid and gaseous fluorine, fluorine-oxygen mixture, and methane; 2219-T6E46 aluminum alloy in liquid and gaseous fluorine and fluorine-oxygen mixture; and titanium alloys 5A1-2.5 Sn (ELI), 6A1-4V annealed and 6A1-4V STA in both liquid and gaseous methane. All tests were conducted using surface flawed specimens having thicknesses representative of minimum gage fuel and oxidizer tanks. No evidence of SCC could be detected in any of the material/environment combinations with a SCC velocity detection sensitivity of 10^{-5} in/hr (7×10^{-8} cm/sec).

1.0 INTRODUCTION

Stress corrosion cracking (SCC) has been a contributing factor in numerous failures of aerospace structures. As a result, considerable effort is being directed to characterization of SCC in metallic alloys. Most investigations have used macroscopic experimental observations to investigate the phenomenology of SCC. Such observations have shown that SCC behavior can be related to the stress intensity factor that is defined by modified linear elastic fracture mechanics theory.

Pressure vessel design methods have been developed (1)* for assuring that crack-like defects will not grow sufficiently to initiate failure during the operational life of pressure vessels. Present design methods are most effective when applied to pressure vessels in which critical flaw sizes at proof stress levels are less than the thickness of the vessel wall. The methods become decreasingly effective as fracture toughness increases and/or thickness decreases. The approach is based on interpretation of results of a successful proof test combined with subcritical crack growth data obtained from tests of precracked laboratory specimens. Test data are correlated and related to full size structure behavior using modified linear elastic fracture mechanics parameters.

This program was initially directed to a study of SCC in metallic alloys with the intent of evaluating the results using linear elastic fracture mechanics parameters. By doing so, it was intended to establish methods whereby SCC could be properly accounted for in estimates of minimum possible pressure vessel lives within the framework of Reference 1. The program was later expanded to include long duration tests of material/environment combinations suitable for high energy upper stage propulsion systems.

^{*} Numbers in parenthesis refer to references at end of report.

This experimental program had two objectives. The first objective was to evaluate the combined effects of load and environment on SCC susceptibility of 2219-T87 aluminum and 5A1-2.5 Sn (ELI) titanium alloy base and weld metal. Each alloy was tested in environments encountered during fabrication and operation of pressure vessels in spacecraft and booster systems including cleaners, dye penetrants, fuels, oxidizers and pressurizing gases. Both uniform height double cantilever beam and surface-flawed specimens were tested under invariant loadings to determine ranges of threshold stress intensity values over which SCC would not be expected to cause significant crack growth.

The second objective was to study compatibility of material/environment combinations suitable for high energy upper stage propulsion systems. Material/environment combinations tested included: 2219-T87 aluminum alloy in both liquid and gaseous fluorine, fluorine/oxygen mixture, and methane; 2219-T6E46 aluminum alloy in liquid and gaseous fluorine and fluorine/oxygen mixture; and titanium alloys 5A1-2.5 Sn (ELI), 6A1-4V and 6A1-4V STA in both liquid and gaseous methane. All tests were conducted using surface-flawed specimens having thicknesses representative of minimum gage fuel and oxidizer tanks. Test durations ranged from 10 to 500 hours.

This experimental program is the fifth in a series of programs (2, 3, 4, 5) designed to provide methods and data for fracture control in metallic pressure vessels. Two initial programs (2, 3) defined methods for predicting minimum pressure vessel fatigue performance capabilities using tests of 2219-T87 aluminum, 2014-T62 aluminum, 5A1-2.5 Sn (ELI) titanium and 6A1-4V (ELI) titanium alloy surface-flawed specimens. The ensuing programs (4, 5) defined sustained load flaw growth characteristics of 2219-T87 aluminum and 5A1-2.5 Sn (ELI) titanium alloys in air, liquid nitrogen, and liquid hydrogen, and the effects of combined bending and tension stresses, weld-induced residual stresses, and stress fields adjacent to circular holes on fracture and fatigue growth of partially embedded flaws.

The remainder of this report is organized in two separate sections. Each section describes materials and procedures and presents results, discussions, and conclusions relating to a single phase of the program. Section 2 describes the investigation of stress corrosion cracking in 2219-T87 aluminum and 5A1-2.5 Sn (ELI) titanium alloys. Section 3 covers compatibility studies of material/environment combinations pertinent to high energy upper stage propulsion systems.

2.0 INVESTIGATION OF STRESS CORROSION CRACKING IN 2219-T87 ALUMINUM AND 5A1-2.5Sn(ELI) TITANIUM ALLOYS

The tests described in this section were undertaken to evaluate the combined effects of load and environment on stress corrosion cracking (SCC) susceptibility of 2219-T87 aluminum and 5A1-2.5Sn(ELI) titanium alloy base and weld metals. The test program for each alloy is summarized in Tables 2-1, 2-2 and 2-3. Each allow was tested in environments encountered during the fabrication and operation of pressure vessels in spacecraft and booster systems including cleaners, dve penetrants, fuels, oxidizers, and pressurizing gases. Both double cantilever beam (DCB) and surface flawed (SF) specimens were tested under invariant loads. The DCB specimen was tested because of the resultant economy and convenience. The SF specimen was tested because it is the best available model of a common failure origin in aerospace pressure vessels and it was desired to compare results of the SF specimen tests with the cheaper DCB specimen tests. Tests of SF specimens in room air, liquid nitrogen and liquid hydrogen were included to allow a direct comparison between the alloy heats tested in this program with those similarly tested in a previous program (4).

It was originally planned to test only the transverse direction for the aluminum alloy and the longitudinal direction for the titanium alloy, and to load all DCB specimens in air prior to exposing them to the test environment. During the performance of the tests outlined in Tables 2-1 and 2-2, it was discovered that the transverse direction of the titanium alloy was more susceptible to SCC than was the longitudinal direction, and that the procedure of loading DCB specimens in air inhibited subsequent SCC in other environments. Accordingly, the supplemental tests outlined in Table 2-3 were added to the program. In the supplemental tests, both the longitudinal and transverse directions were tested and all specimens were loaded in the test environment.

The effect of SF specimen thickness on SCC susceptibility of the 5Al-2.5Sn(ELI) titanium alloy was investigated by conducting the tests summarized in Table 2-4.

For each thickness (0.20, 0.10 and 0.05 inch or 0.51, 0.25 or 0.13 cm), three tests were performed. One load-unload test was conducted in argon gas to evaluate the effect on flaw growth of the loading ramp used to apply the sustained loads. Two subsequent sustained load tests were conducted in methanol to evaluate thickness effects on SCC susceptibility.

2.1 Materials

Both 2219-T87 aluminum and 5A1-2.5Sn(ELI) titanium alloys were tested. The 2219-T87 plate stock, 1.0 by 48.0 by 144.0 inches (2.5 x 121.9 x 365.8 cm), was purchased from a single heat lot in the T87 condition per BMS 7-105C (equivalent to MIL-A-8920 (ASG) specification). Specification limits on chemical composition and mechanical properties measured at The Boeing Company are listed in Tables 2-5 and 2-6, respectively. Mechanical properties are plotted against temperature in Figure 2-1. The 5A1-2.5Sn(ELI) plate stock, 0.375 by 36.0 by 72.0 inches (0.95 by 91.4 by 182.9 cm), was purchased in the mill annealed condition per MIL-T-9046E. The plates were reannealed in an argon atmosphere within enclosed retorts using a 1550F (1117K), 8 hour, retort cool treatment. The resulting mechanical properties measured at The Boeing Company are listed in Table 2-6 and plotted against temperature in Figure 2-2. Certified ingot composition is given in Table 2-5.

Both aluminum and titanium welds were prepared using the GTA process. Aluminum welds were tested in the as-welded condition. Titanium welds were stress relieved at 1250F (950K) for one hour in an inert atmosphere. Mechanical properties determined at The Boeing Company for both aluminum and titanium welds are listed in Table 2-6 and are plotted against temperature in Figures 2-1 and 2-2, respectively.

Fracture toughness values for the aluminum and titanium alloy plate and titanium welds are summarized in Table 2-7; data for the aluminum alloy plate are plotted in Figure 2-3 and for the titanium alloy plate and welds in Figure 2-4. None of the reported values were obtained per ASTM standards (6) for plane strain fracture toughness tests. It has been shown (5),

however, that SF specimen fracture data agree with plane strain fracture toughness data obtained from ASTM recommended tests for 2219-T87 aluminum alloy plates at temperatures ranging from 72F (295K) to -423F (20K), and for 5A1-2.5Sn(ELI) titanium alloy plate at -423F (20K). For 5A1-2.5Sn(ELI) titanium alloy plate at -320F, SF specimen fracture toughness values were found (5) to exceed plane strain fracture toughness values obtained in accordance with the ASTM methods (6).

The plate material tested in this program was obtained from the same heats and rolling batches as were materials tested in a companion program (5). Since SF fracture toughness values had been previously established, only a limited number of fracture toughness tests were conducted in this program. Data from both sources are included in Table 2-7. Fracture toughness values obtained from DCB specimen tests are less than those for SF specimens at least partially because of the anisotropy of the parent plate. Appendix B includes detailed descriptions of the DCB specimen tests.

2.2 Frocedures

2.2.1 Welding

All welds were prepared using the GTA welding process. Detailed weld settings are included in Appendix C and general procedures are described below.

2219-T87 Aluminum Procedures - Weld panels, 1.0 by 24 by 48 inches (2.5 by 61.0 by 121.9 cm) for SF specimens and 1.0 by 8 by 48 inches (2.5 by 20.3 by 121.9 cm) for DCB specimens, were prepared by joining two identical panel halves. The square butt faying edges were wiped clean with MEK, draw filed, scraped, and wrapped with aluminum foil. Panels were handled with lint free gloves throughout the preweld and welding operations. Time delay between weld preparation and welding was less than six hours. Panels were welded in the vertical position with a three pass procedure including one continuous tack pass and one penetration pass from each side. No remelt or repair passes were used. Radiographs showed that weld quality was excellent.

5Al-2.5Sn(ELI) Titanium Procedures - Weld panels, 0.35 by 12 by 36 inches (0.89 by 30.5 by 91.4 cm) for SF specimens and 0.35 by 3.5 by 36 inches (0.89 by 8.9 by 91.4 cm) for DCB specimens were prepared by joining two identical panel halves. One edge of each panel half was machined straight and parallel within ± 0.005 inch (± 0.013 cm) with a surface finish of RMS 63 or better, providing a square butt joint configuration. The top and bottom panel surfaces were scraped over a width of 0.5 inch (1.3 cm) from the faying plane just prior to welding, and the mating surfaces were wiped clean with MEK. Panels were welded in the downhand position in a controlled atmosphere weld chamber. After the panel components were aligned, the chamber was sealed, evacuated to a pressure of 1×10^{-5} mm Hg, and backfilled with welding grade argon gas to atmospheric pressure. Panels were then welded using a two pass procedure, including one penetration pass from each side. The first and second passes resulted in 100 and 90 percent penetration without any measurable underfill along the edges of the weld bead. Radiographs showed that weld quality was excellent.

2.2.2 Specimen Preparation

Double cantilever beam (DCB), surface-flawed (SF), and mechanical property specimens were used to accomplish program objectives. Specimen configurations used for each series of tests are summarized in Appendix C.

Loading holes in all specimens were drilled and reamed using jigs in which holes had been located to a tolerance of \pm 0.001 inch (\pm 0.025 mm). Grips were drilled using the same jigs in order to effect accurate fits between specimen and grip.

The surfaces of all SF specimens were machined flat and parallel after specimen blanks had been cut from plate stock or weld panels. Specimens containing welds were machined just enough to clean up the weld.

Various side groove geometries were used for DCB specimens in order to force the crack to grow in the original crack plane. Aluminum alloy base

metal specimens were fabricated with semicircular shaped grooves having a depth of 10 percent of the specimen thickness. All other specimens contained Vee shaped side grooves having a root radius of 0.01 inch (0.025 cm) and an included angle of 60 degrees. Side groove depths were equal to 10 and 15 percent of the specimen thicknesses for the aluminum weld and titanium alloy DCB specimens, respectively. Side groove geometries were selected on the basis of results of an initial series of tests directed to an evaluation of the effects of side grooves on crack growth in DCB specimens. Results of these tests are included in Appendix B.

All surface flaws were prepared by growing fatigue cracks from starter slots. Starter slots were produced using an electrical discharge machine and 0.06 inch (0.15 cm) thick circular electrodes; electrode tips were machined to a radius of 0.003 inch (0.008 cm) and an included angle of less than 20 degrees. Fatigue cracks were grown at 72F (295K) in room air using tension-tension fatigue cycles with an R value of 0.06, frequency of 1800 cpm (30 Hz), and peak stresses of 12 and 25 ksi (83 and 172 MN/m²) for the aluminum and titanium alloy specimens, respectively.

All DCB specimens were precracked by growing fatigue cracks from the ends of starter slots. The tips of the 0.125 inch (0.317 cm) wide milled starter slots were machined with an included angle of 60 degrees and a root radius of 0.903 inch (0.008 cm) using an electrical discharge machine. Fatigue cracks were grown to a length of about 0.10 inch (0.25 cm) using peak cyclic loads of 1500, 2000, and 2500 pounds (6672, 8896, and 11,120 N) for titanium, aluminum weld, and aluminum base metal DCB specimens, respectively.

All specimens were cleaned after having been precracked. Aluminum alloy specimens were vapor degreased and titanium alloy specimens were alkaline cleaned. All cleaned specimens were handled with white gloves and sealed in plastic bags until tested. Aluminum alloy specimens tested in fluorine or FLOX were further cleaned immediately prior to testing using the procedure detailed in Appendix E.

2.2.3 Testing

<u>Surface Flawed Specimens</u> - All specimens were tested in tensile test machines after the surface cracks had been flooded with the test medium and brought to the correct temperature.

Test media were contained either in small sealed cups clamped to the specimen over the crack cavity, or in enclosed cryostats surrounding the entire test specimen. All media except LN_2 , LH_2 , and GH_2 at -423F (20K) were contained in cups. A typical cup and clamping bar is shown in Figure 2-5. Teflon seals were used except in fluorine and FLOX where metal seals were used. The remaining environments were contained in cryostats surrounding the entire specimen.

Test temperatures were obtained by submerging the cups and/or test specimens in a medium at the desired temperature. Tests at 72F (295K) were conducted in an enclosed air conditioned laboratory. Tests in helium and hydrogen gas at ambient temperatures were conducted out of doors over a temperature range of 40 to 60F (278 to 289K). No measurement of specimen temperature was made. Tests at -320F (78K) and -423F (20K) were conducted in liquid nitrogen and liquid hydrogen baths at ambient pressure, respectively. Finally, tests in gaseous hydrogen at about -423F (20K) were performed by submerging the lower half of the specimen in liquid hydrogen within an enclosed cryostat. The liquid level was kept slightly more than 1 inch (2.5 cm) below the crack by an automatic liquid level control system triggered by liquid level sensors.

Several environments including GH_2 , GO_2 , He , F_2 , OF_2 and FLOX were obtained from pressurized bottles that were used as the source of both test medium and pressure. All other environments were pressurized with welding grade argon gas.

Specimens tested in environments other than those containing fluorine were exposed to the test medium prior to the application of load. For environments containing fluorine, the following procedure was used:

- Install specimen and environment chamber in the test machine and passivate with test medium at ambient temperature;
- 2) Purge and pressurize system with helium gas;
- 3) Load specimen to 70 percent of maximum test load;
- 4) Tighten pressure cups until leaks are halted;
- 5) Introduce test environment;
- 6) After environment is stabilized, load specimen to maximum test load.

At the conclusion of all sustained load tests, specimens were subjected to fatigue loadings to delineate the flaw periphery, and were then loaded to failure.

DCB Specimens - DCB specimens were loaded by forcing a pin-like wedge into the central loading hole of the DCB specimens as illustrated in Figure 2-6. The pins were inserted using a bench vise and the maximum stress intensity factors were controlled by micrometer measurements of deflection across the slotted end of the specimen using procedures described in Appendix B. For titanium specimens, a cap was used to prevent lateral deflection of the specimen arms during loading.

For tests listed in Tables 2-1 and 2-2, specimens were loaded in room air and placed in a test chamber that had been cleaned, then filled with the test medium prior to loading of specimens. For tests listed in Table 2-3, specimens were loaded with the crack tip submerged in the test environment. The chambers were sealed using a flanged top containing an 0-ring seal, then pressurized.

Test temperatures were controlled by submerging the test chambers in either air, liquid nitrogen, or liquid hydrogen at ambient pressure. Tests at 72F (295K) were conducted within an enclosed air conditioned laboratory in which specimens, environments, and test chambers were stored prior to testing.

Tests in hydrogen and helium gas at ambient temperatures were conducted out of doors over a temperature range of 40 to 60F (278 to 289K). Actual specimen temperatures were not monitored. Tests at -320F (78K) were conducted with the test chambers submerged in liquid nitrogen under ambient pressure. For tests in hydrogen gas, the test chambers were purged with helium gas, submerged in liquid nitrogen for fifteen minutes, then backfilled with hydrogen gas. For tests in F_2 , OF_2 , and FLOX, the chambers were purged with helium gas, passivated with the media in gaseous form, and then submerged in liquid nitrogen. The test media were added to the test chambers as required to maintain the desired pressure until the chambers were filled with liquid. Test duration was measured from the time at which the test chambers became filled with liquid. Tests in helium gas at -423F (20K) were conducted with the test chambers submerged in liquid hydrogen.

Three DCB specimens were simultaneously tested in each environment. For non-hazardous environments, specimens were individually removed from the test environment after successively longer periods of exposure ranging from about 20 to 250 hours. For hazardous environments, all specimens were removed at one time.

After each specimen had been removed from the test environment, the micrometer deflection across the slotted end of the specimen was remeasured, loading pins were removed, and the specimen was pin loaded in a test machine to the load required to effect the same micrometer deflection as that measured at the end of the test.

This load was used in the calculation of stress intensity factor at the time each test was terminated. The specimen was then subjected to fatigue cycles to delineate the crack front before being loaded to failure.

Mechanical Property Specimens - Tests were conducted using a strain rate of 0.005/minute until yield strength had been exceeded; the strain rate was then increased to 0.02/minute until failure.

2.2.4 Interpretation of Results

Crack growth was observed in all sustained load tests of both DCB and SF specimens. In some specimens, crack growth occurred only during the loading ramp of the sustained load profiles. In other specimens, crack growth occurred be during the loading ramp and subsequent sustained load. Hence, a procedure had to be developed to distinguish time dependent crack growth from crack growth that occurred during the loading process. In general, this could be accomplished by visual observations of the fracture surface, using a 30x microscope. When significant time dependent growth occurred, two distinct bands of crack growth were noted on the fracture surface. The first band was due to crack growth that occurred during the loading ramp; the second band was due to SCC that occurred during the sustained load period. In addition, the fracture surfaces of all sustained load specimens were compared to those of specimens that had been subjected only to the loading ramp of the sustained load profile.

Results were evaluated in terms of the stress intensity factor defined by linear elastic fracture mechanics theory. Stress intensity factors for DCB specimens were calculated using the semi-empirical equation

$$K_{1} = \frac{2P}{b} \left(\frac{b}{b_{n}}\right)^{1/2} \left[\frac{3(a + a_{0})^{2} + h^{2}}{(1 - \mu)^{2} h^{3}}\right]^{1/2}$$
 (1)

where P is applied load, b is specimen width, b_n is crack width, a is crack length, a_0 is an experimentally determined increment of crack length, 2h is the specimen height, and μ is Poisson's ratio. Values of a_0 were found to be 0.90 and 0.78 inch (2.29 and 1.98 cm) for aluminum and titanium alloy specimens, respectively. Methods and data used to evaluate a_0 are described in Appendix B.

Stress intensity factors for most SF specimens were calculated using the equation (Ref. 8).

$$K_{\tau} = 1.1\sigma \sqrt{\pi a/Q}$$
 (2)

where σ is a uniform tensile stress acting perpendicular to the plane of the crack; a and Q are defined in Figure 2-7. Equation 2 is applicable for elastic stress levels and surface cracks with depth to length (a/2c) and depth to plate thickness (a/t) ratios less than one-half (8). Equation 2 was used exclusively except for tests undertaken to evaluate the effect of SF specimen thickness on SCC susceptibility. In the excepted tests, flaw depths exceeded one-half the specimen thickness and stress intensity was calculated using the equation

$$K_{\mathbf{I}} = 1.1 \, M_{\mathbf{K}} \sigma \sqrt{\frac{\pi \, \mathbf{a}}{\mathbf{Q}}} \tag{3}$$

where $_{\rm K}^{\rm M}$ is a factor that accounts for the effect on stress intensity of the back specimen face. Values of $_{\rm K}^{\rm M}$ were taken from Figure 57 in Reference 9. The referenced $_{\rm K}^{\rm M}$ values were experimentally evaluated using tests of 0.20 inch (0.51 cm) thick Ti-5Al-2.5Sn(ELI) alloy SF specimens at -320F (78K) and -423F (20K).

2.3 Results and Discussion

Raw data for all environmental survey tests are included in Tables Al through Al2 in Appendix A. The raw data are summarized in Figures 2-8 through 2-15 which show the stress intensity factors at both the beginning and end of the longest duration sustained load test conducted in each test environment. The initial stress intensity factors are denoted by circles and the final stress intensity factors are denoted by triangles. When no SCC was observed in a given test, the stress intensity factors are represented by open symbols. When SCC was observed, solid symbols are used. Note that stress intensity factors decreased during DCB specimen tests since the specimens were subjected to constant opening mode deflections; stress intensity factors increased during SF specimen tests under constant applied loadings. Other test details are also summarized in Figures 2-8 through 2-15 including: test duration, crack propagation direction (see Figure 2-16), loading environment (either room air or test medium), specimen type (DCB or SF), and test environment.

2.3.1 Discussion of Titanium Alloy Results

Both 5A1-2.5Sn(ELI) titanium base metal and weld metal underwent SCC in several environments as noted in Figures 2-8 through 2-11. The severity of susceptibility to SCC was found to depend on environment, crack propagation direction, and loading environment (air or test medium). There were indications that susceptibility can also be influenced by material condition (plate or weld) and specimen type (SF or DCB).

Effects of Test Environment

The Ti-5A1-2.5Sn(ELI) plate and welds were susceptible to SCC in the environments of methanol, methanol plus two percent (by volume) distilled water, dye penetrant (ZL-2A), 3-1/2 percent sodium chloride solution (salt water), ethanol plus two percent (by volume) distilled water, and distilled water. metal underwent crack propagation in hydrogen gas at ambient temperatures. The weld metal was prone to SCC in methyl ethyl ketone and ethanol. No SCC was observed in either base or weld metal in the 72F (295K) environments of argon, air, acetone, and helium, or in the cryogenic environments of liquid nitrogen and liquid hydrogen. An indication of the relative aggressiveness of the environments that promoted SCC can be obtained from Figures 2-8 through 2-11 by comparing values of stress intensity factors at test termination in the various environments. For DCB tests, SCC susceptibility is inversely related to the value of the terminal stress intensity factor which is at or near the K value. For example, base metal DCB specimens that were loaded in the test medium (WR direction tests in Figure 2-8) show that methanol, dilute methanol, and salt water are equally aggressive environments. Dye penetrant, dilute ethanol, and discilled water were progressively less aggressive.

The absolute values of environmentally induced crack growth observed in each of the susceptible environments are summarized in Figure 2-17 and Table 2-8. Fracture faces of selected specimens are shown in Figure 2-18. The amounts of SCC observed in base metal DCB specimen tests were substantial in aggressive environments, e.g., 2.05 inches (5.21 cm) during 116 hours of exposure to salt water. Large amounts of SCC were also observed for base metal tests in the environments of dye penetrant, dilute methanol, and methanol.

The dilute alcohol environments were tested in view of prior test results (10) showing that addition of water to methanol in amounts exceeding about one percent by volume could markedly increase time to failure for smooth titanium foil specimens. Typical smooth specimen test results (10) are included in Figure 2-19 for pure titanium (CP35A), and Ti-6A1-4V. In the precracked specimen tests conducted in this program, the addition of two percent by volume of distilled water to methanol moderately reduced SCC susceptibility in both weld metal and base metal DCB tests (see RW direction/load-in-air tests in Figures 2-8 and 2-10). Base metal SF specimen test results were essentially identical in the pure and dilute methanol environments, whereas the rate of cracking in weld metal DCB tests was slowed by the addition of water. It remains to be seen whether additions of greater amounts of water would further inhibit SCC in precracked specimens. A synergistic effect was noted in both base and weld metal tests in the environment of dilute ethanol. For base metal, the effect was noted in DCB specimen tests (WR direction/loaded in test medium) in Figure 2-8; for tests having nearly equal durations, the dilute ethanol promoted more SCC than either of the pure ethanol or distilled water environments. A similar effect was noted in the SF specimen tests for the weld metal (Figure 2-10).

Cracking susceptibility of 5A1-2.5Sn(ELI) titanium base metal in ambient hydrogen gas environments was found to be pressure dependent, i.e., cracking was observed at 100 psig (689.5 kN/m² gage pressure) but not at 30 psig (689.5 kN/m² gage pressure) as shown in Figure 2-9. Williams (11) found that the cracking tendencies of Ti-5A1-2.5Sn(ELI) in hydrogen gas was dependent on both pressure and temperature. The tests conducted in this program were of short duration (24 hours for the DCB and 10 hours for the SF specimens) and there is a possibility that longer duration tests would have resulted in more cracking. Tests of precracked titanium alloy specimens in hydrogen gas have shown that for initial stress intensity factors less than the critical value, rapid cracking to failure occurs only after some finite time period or incubation period, as schematically illustrated in Figure 2-20. The test durations in this program may not have been sufficiently longer than the corresponding incubation periods to result in maximum cracking.

Results for tests in LN₂ and LH₂ are similar to those previously reported by Lorenz (3). In LH₂, Lorenz determined a threshold stress intensity factor from ten hour duration tests equal to or greater than 90 percent of the plane strain fracture toughness of 52 ksi $\sqrt{\text{in}}$ (57 MN/m^{3/2}). In this test program, the ten hour threshold stress intensity factor in LH₂ was greater than ninety percent of the corresponding fracture toughness of 70 ksi $\sqrt{\text{in}}$ (77 MN/m^{3/2}). In LN₂, Lorenz found that threshold stress intensity was sensitive to applied stress level. For stresses in excess of 85 percent of the tensile yield stress, the ten hour threshold stress intensity factor was 82 percent of the fracture toughness of 71 ksi $\sqrt{\text{in}}$ (78 MN/m^{3/2}); for stresses less than the above value, the threshold stress intensity was very nearly equal to the fracture toughness. In this investigation, sustained load tests were conducted at stress levels equal to seventy percent of the tensile yield stress and the ten hour threshold stress intensity factor was greater than ninety percent of the fracture toughness value of 84 ksi $\sqrt{\text{in}}$ (92 MN/m^{3/2}).

No attempt will be made to quote K values for any of the material/environment combinations tested in this program. Fundamentally oriented investigations of SCC in titanium alloys (12) have shown that true threshold stress intensity factors below which no SCC will occur do not appear to exist for many material/environment combinations. Rather, SCC progresses at continually decreasing rates at the lower stress intensity levels as schematically shown in Figure 2-21. It is yet to be determined what happens at very low stress intensity factors. There are some material/environment combinations for which there does appear to be a true K e.g., titanium alloys in aqueous solutions. Figure 2-21 also shows how stress intensity factor - SCC velocity relationships can be divided into three regions, one at low and one at high stress intensity factors (Regions I and III) in which velocity is strongly dependent on stress intensity factor, and an intermediate region (Region II) in which velocity is independent of stress intensity factor.

Effect of Crack Propagation Direction

Susceptibility of the 5A1-2.5Sn(ELI) titanium alloy plate was dependent on crack propagation direction. The WR direction (See Figure 2-16) was more susceptible than the RW direction in distilled water, dilute ethanol, dye penetrant (ZL-2A), salt water and dilute methanol. The WR direction was not tested in pure methanol.

In the salt water environment, cracking in the RW specimen deviated from the original crack plane and progressed in the WR direction. Similar results have been reported (12) for numerous other titanium alloys. Variations in SCC behavior with crack propagation direction are due to texturing (preferential grain orientation) in the plate materials (12). In α alloys, cracking occurs near the basal plane so that the lining up of the susceptible planes in the crystals increases SCC susceptibility. However, a pole figure for the 5A1-2.5Sn(ELI) plate material tested in this program showed no detectable texturing.

Effects of Loading Environment

The amount of cracking observed in the base metal tests was found to be strongly influenced by loading environment. Base metal DCB specimens that were loaded in laboratory air prior to being placed in the test medium were less susceptible to SCC than were specimens that were loaded and tested without removal from the test medium. This result was obtained from tests in distilled water, dilute ethanol, dye penetrant, salt water, and dilute methanol as shown in Figure 2-8. Similar results have been reported elsewhere (13,14) and are thought to be due to the very rapid oxidation of the fresh crack surfaces generated during the exposure to room air.

Comparison Between Base and Weld Metal Behaviors

The relative SCC resistance of 5Al-2.5Sn(ELI) titanium base and weld metal can be evaluated using the SF specimen test results as summarized in the upper part of Figure 2-17. In general, SCC velocities in the weld metal specimens tended to be less than those in the base metal specimens. For example, the base and weld metal specimens failed after 0.008 and 0.17 hours of exposure to salt water, respectively. Similar results were obtained in methanol and dilute methanol. On the other hand, there were two environments (ethanol and MEK) in which SCC was observed in the weld metal, but not in the base metal. On the basis of the foregoing observations, there did not seem to be a great deal of difference between SCC resistance of the weld and base metals tested in this program. The DCB specimen results shown in the lower part of Figure 2-17 show the weld metal to be superior to base metal in terms of SCC resistance. However, the SCC resistance of the weld metal in DCB specimens was probably enhanced by loading the specimens in room air.

On the basis of fundamental investigations of SCC in titanium alloys (12), it was concluded that 5A1-2.5Sn(ELI) titanium weld metal should have SCC resistance equal or superior to the base metal. Welding is a β process and since the 5A1-2.5 Sn(ELI) alloy contains iron (a β phase stabilizer), the weld metal could take on some of the superior SCC characteristics exhibited by β processed material. Furthermore, the grains should be more randomly oriented in a cast weld structure than in a hot rolled plate and this should improve SCC resistance since preferential grain orientation can have a strong detrimental effect on SCC resistance.

Effects of Specimen Type

Neither the base metal nor weld metal data allow a good comparison between SCC behavior determined from tests of SF and DCB specimens. It had been originally planned to test SF specimens using initial stress intensity factor values both slightly above and slightly below the $K_{\mbox{\scriptsize LSCC}}$ value determined from the DCB tests. The initial set of tests were conducted using DCB specimens loaded in air and very little SCC was observed. It was then decided to test the SF specimens at the highest stress intensity factor that could be generated under conditions in which the elastic stress intensity factor determined material behavior at the crack tip, i.e., about 65 ksi \sqrt{in} . It was later realized that both crack propagation direction and loading medium had a significant effect on SCC. There are some indications that SF specimens resulted in greater SCC susceptibility than did the DCB specimens for the material thickness tested. A comparison of average SCC velocities observed in DCB and SF specimens for the RW and RT directions of the 5A1-2.5Sn(ELI) plate material (using data in Figure 2-8) shows that the SCC velocities were much higher in SF specimens than in DCB specimens for the environments of dye penetrant and methanol. In dye penetrant, the average SCC velocity (crack growth/test duration) in the DCB specimen that was loaded in environment was 3×10^{-3} inches/hour (2.1 x 10^{-6} cm/sec) at an average stress intensity factor of 100 ksi $\sqrt{\text{in}}$. The corresponding velocity in the SF specimen was about $0.2 \text{ in/hr} (0.14 \times 10^{-3} \text{ cm/sec})$ at an average stress intensity factor of about 90 ksi $\sqrt{\text{in}}$. It is evident that the SCC velocity in the SF specimen was considerably greater than in the DCB specimen even though the applied stress intensity factors were lower. In dilute methanol, the average SCC velocities were 3×10^{-3} in/hr (2.8 x 10^{-6} cm/sec) and 4.8 x 10^{-2} in/hr (3.4 x 10^{-5} cm/sec) in the DCB and SF specimens, respectively; the corresponding average stress

intensity factors were 60 and 74 ksi $\sqrt{\text{in}}$, respectively. The average SCC velocities showed considerably better agreement in the dilute methanol than in the dye penetrant. Nevertheless, there did seem to be a tendency for SCC to be more pronounced in SF than in DCB specimens. Similar results were obtained in weld metal tests conducted in the environments of methyl ethyl ketone (MEK), salt water, methanol, and dilute methanol (see Figure 2-10). However, the weld metal results were not directly comparable since the DCB specimens were loaded in air and the SF specimens were loaded in the test medium.

It is reasonable to expect that differences in SCC susceptibility determined from tests of DCB and SF specimens could be observed. It has been previously demonstrated (15) that specimen thickness can have a marked effect on SCC susceptibility as determined from through-the-thickness cracked specimens. This is illustrated by the results included in Figure 2-22 for 6A1-4V and 8A1-1 Mo-1V titanium alloys. Thickness effects are believed to be due to changes in constraint to crack tip deformations as thickness changes, i.e., changes from plane stress to plane strain conditions. The SCC susceptibility increases as plane strain conditions are approached. Since less thickness is thought to be required to generate plane strain conditions in SF specimens than in through-the-thickness cracked specimens (5), there should be a range of thicknesses over which SF specimens would result in greater SCC velocities and lower apparent $K_{\mbox{ISCC}}$ values than would through-cracked specimens of equal thickness. The 0.375 inch thick 5A1-2.5Sn(ELI) titanium alloy plate tested in this program seemed to fall into this thickness range.

Surface Flawed Specimen Thickness Effects

Results of tests to investigate the effect of SF specimen thickness on SCC susceptibility are included in Figure 2-23 and Table 2-9. The impetus for these tests was provided by the observation that apparent threshold stress intensity values increase with decreasing through-the-thickness cracked specimen thickness as illustrated in Figure 2-22. In SF specimens, changes in constraint to crack tip deformations undoubtedly occur when specimen thickness is decreased to the extent that the ligament between crack tip and back specimen face becomes entirely enveloped by plastic deformations. It had been thought that decreased specimen thickness might decrease SCC susceptibility at surface cracks in a manner analogous to that observed for through-the-thick-

ness cracked specimens. As specimen thickness was decreased in the tests reported herein, the ratio of approximate maximum plane strain plastic zone dimension $[0.2~(\text{K}_{\text{I}}/\sigma_{\text{ys}})^2]$ to uncracked ligament depth (t-a) increased from 0.2 to 0.6 to 0.8 as specimen thickness decreased from 0.20 to 0.10 to 0.05 inch (0.51 to 0.25 to 0.13 cm). Hence, it was believed that if surface flaw specimen thickness was a significant factor in SCC susceptibility, the effect would be observed in these tests.

Tests were conducted using the 5A1-2.5Sn(ELI) titanium/methanol material/environment combination. For each of three specimen thicknesses (0.20, 0.10 and 0.05 inch or 0.51, 0.25 and 0.13 cm), three specimens were tested. Two specimens were sustain loaded in methanol to generate stress intensity factors at the crack tip both above and below 42 ksi $\sqrt{\text{in}}$ (46.2 MN/m^{3/2}), i.e., the minimum K level at which SCC was observed in the previously described DCB specimen tests (see Figure 2-8); one specimen was subjected in argon to a load-unload profile using the same loading ramp that was used in the prior sustained load tests.

In all tests, more crack depth growth was observed in the sustained load tests in methanol than in the load-unload tests in argon. Hence, it can be concluded that SCC occurred in all sustained load tests in methanol. A comparison of tests no. 3 and 5 in Figure 2-23 and Table 2-16 shows that significantly more crack depth growth was observed in the 0.10 inch (0.25 cm) thick specimen than in the 0.20 inch (0.51 cm) thick tests. For all thicknesses, considerable SCC was observed at initial stress intensity factors of 39 ksi $\sqrt{\text{in.}}$ Hence, these tests yielded no indications that SCC susceptibility decreased with decreasing SF specimen thickness.

Both crack tip blunting and plastic flow could influence relative SCC susceptibility as SF specimen thickness is varied. Crack tip blunting should decrease susceptibility to nucleation of stress corrosion cracks and increased plastic flow could enhance SCC. At the present time, the effects of blunting and plastic flow on SCC are not well understood. Hence, it is not possible to predict what the SF specimen thickness effect should be. These tests tended to indicate that SCC susceptibility was enhanced by decreasing specimen thickness which leads to the speculation that the effects of increased plastic flow predominated in these tests.

Other Crack Growth Observations

Observations of crack depth growth in most titanium alloy SF specimens led to the undertaking of tests to evaluate crack depth growth characteristics during both rising loads and early stages of sustained loadings. Four series of tests were conducted with each series consisting of three identical SF specimens loaded to a predetermined peak load level; one specimen was immediately unloaded and the other two specimens were unloaded after either one or twenty hour exposures to the peak load. Specimens were then subjected to low stress fatigue cycles to delineate any crack growth that occurred during the prior testing. Both base metal and weld metal were tested in room air and argon gas. Results are summarized in the lower half of Table 2-10 and crack depth growth is plotted against test duration in Figure 2-24.

Only insignificant amounts of crack depth growth were observed in the weld metal specimens and results were not influenced by test medium. Larger amounts of crack depth growth were observed in base metal tests and results were influenced by test medium. In argon, crack depth growth values of 0.014 ± 0.002 inch $(0.36 \pm 0.05 \text{mm})$ were noted regardless of test duration and it was concluded that crack growth occurred only during rising load in argon. In air, crack depth growth for the one and twenty hour duration tests averaged 0.025 inch (0.63 mm) as compared to the value of 0.006 inch (0.15 mm) for the load-unload test. Hence, it appeared that crack depth growth in air occurred during both rising load and the early part of the subsequent invariant load.

The only firm conclusion that can be drawn from the titanium alloy results in Figure 2-24 is that crack growth can occur during the loading ramp of a sustained load test and must be accounted for in interpreting sustained load test results. It is not clear why the air and argon results differed. Indications of transient crack growth followed by crack growth arrest were evident in the air results but not in the argon data. Previous observations (3, 21) of transient crack growth have been made in chemically inert environments and are thought to be due to mechanical factors. On the other hand, data scatter could have resulted in false indications of transient crack growth and the discrepancy between crack depth growth values in air and argon may not have been influenced by environmental factors.

Crack growth was observed in a number of titanium weld metal DCB specimens tested in gaseous hydrogen and helium at ambient temperatures. Results are included in Table AlO in Appendix A. The amount of crack growth ranged from 0.05 to 0.25 inch (1.3 to 6.4mm). Since similar results were obtained in both helium and hydrogen, it was postulated that the crack growth was not assisted by the test media. Rather, it is thought that the crack growth was accentuated by the temperature drop between loading and test environments. Specimens were loaded in an enclosed building at about 70F (295K) and were then tested at outdoor temperatures ranging from 40 to 60F (278 to 289K). The temperature drop could have resulted in a decrease in fracture toughness accompanied by crack propagation.

2.3.2 Discussion of Aluminum Alloy Results

Indications of SCC in 2219 aluminum were observed in three of the environments tested in this program. Both 2219-T87 plate (WR direction) and 2219 as welded weld metal underwent what appeared to be SCC in salt water at 72F (295K). Traces of apparent SCC were noted in the plate material in trichlorethylene and dye penetrant (ZL-4B). No evidence of SCC was observed in the ambient temperature environments of room air, argon gas, distilled water, hydrogen gas, flourine gas, gaseous oxygen diflouride, and a gaseous flourine-oxygen mixture. There was an absence of SCC in the -320F (78K) environments of liquid oxygen, gaseous hydrogen, liquid flourine, liquid oxygen diflouride, and liquid flourine-oxygen mixture, and in the -423F (20K) environments of gaseous and liquid hydrogen.

Indications of SCC

Indications of SCC in the 2219-T87 plate tested in salt water are pictured in Figure 2-25. Specimen 55 was loaded in air using the same loading procedures that were used for specimens S-2 and S-4; this specimen was then immediately unloaded; crack growth due to the loading process can be seen on the fracture face. Specimens S-2 and S-4 were loaded in air then immersed in salt water for 50 and 262 hours, respectively. Crack growth on the fracture face of specimen S-2 resembles that on the face of specimen 55, both in magnitude and shape. It was concluded that the crack growth noted in specimen S-2 was due to the loading

process and that no SCC had occurred. Crack growth on the fracture face of specimen S-4 was composed of four distinct areas including; the initial fatigue crack, crack growth due to loading, a band of crack growth that appears to be SCC, and fatigue crack growth induced to mark the crack periphery at test termination. The maximum width of the apparent SCC band was 0.12 inch (0.30 cm) at the center of the specimen and the average apparent SCC velocity (band width/ test duration) was 4.6×10^{-4} in/hr $(3.2 \times 10^{-7} \text{ cm/sec})$. Specimen S-4 was examined metallographically and it was observed that the crack growth in the apparent SCC band was intergranular. Intergranular growth is characteristic of SCC in aluminum alloys. There was no evidence of grain boundary corrosion in the grains lying adjacent to the crack surface. In order to determine if the apparent SCC growth in specimen S-4 might have been due to intergranular corrosion that was relatively independent of stress intensity, two additional base metal DCB specimens were tested in salt water. Test procedures were identical to those for specimen S-4 except that one specimen was subjected to an opening mode deflection equal to fifty percent of that used to load S-4, and the second specimen was tested in an unstressed condition. Both specimens were exposed to salt water for 260 hours. After being pulled to failure, the fracture surfaces yielded no evidence of apparent SCC. It was concluded that the apparent SCC growth observed in Specimen S-4 was dependent on stress intensity factor.

The fracture faces of two weld metal DCB specimens tested in salt water are pictured in Figure 2-26. Small bands of apparent SCC are shown along the fronts of the initial fatigue cracks. The width of the apparent SCC band for specimen WS-3 was 0.03 inch (0.76 mm) and the average apparent SCC velocity was 7.3 x 10^{-5} in/hr (5.2 x 10^{-8} cm/sec). The corresponding stress intensity factor was 31 ksi $\sqrt{\text{in}}$ (34 MN/m $^{3/2}$). Figure 2-26 also illustrates the nonuniform pre-cracks that were typical of the weld metal DCB specimens.

Crack growth was observed on the fracture faces of all 2219 weld metal SF specimens. The absolute amounts of crack growth are summarized in Tables 2-10 and 2-11, and are plotted as a function of test temperature Figure 2-27. The fracture faces of two 2219 weld metal SF specimens are shown in Figure 2-28. Specimen WDP-1A was subjected to the loading ramp of the sustained load profile used to conduct the ambient temperature sustained load tests, and

was then unloaded; the specimen was subjected to low stress fatigue cycles to outline the crack growth that occurred during the prior loading. The features of the fracture surface do not show up well in Figure 2-26, but the growth that occurred during the rising load of the loading ramp was clearly outlined on the fracture surface. Specimen WS-1 was subjected to an invariant loading in salt water for a period of 24 hours. The amount of crack growth that occurred during the test is visible as a dark area on the fracture surface. At 72F (295K) all specimens other than WS-1 yielded crack depth growth values ranging from 0.03 to 0.045 inch (7.6 to 11.4 mm). Specimen WS-1 underwent a crack depth growth of 0.075 inch (19.1 mm). This result is certainly an indication that SCC may have occurred in Specimen WS-1. However, the authors feel that one test is an insufficient basis on which to judge the SCC susceptibility of 2219 weld metal. Assuming that SCC resulted in crack depth growth somewhere between 0.03 and 0.045 inch (7.6 and 11.4 mm) in specimen WS-1, the corresponding average SCC velocities are 1.3 \times 10⁻³ and 1.9 \times 10⁻³ in/hr (0.9 and 1.3×10^{-6} cm/sec).

The fracture faces of two 2219-T87 aluminum base metal specimens pictured in Figure 2-28 also contained indications of SCC. Specimen AD-1 was tested in dye penetrant and specimen AT-1 in trichloroethylene. Both specimens contained zones of apparent SCC in the WR direction as outlined by the arrows in the figure. The extent of each zone was greater than comparable crack growth observed in any other 2219-T87 base metal SF specimen tested at 72F (295K).

It is believed that the evidence of SCC noted in the 2219 aluminum tests reported herein is insufficient to establish the susceptiblity of the alloy to SCC. Only very small amounts of crack growth were observed and well defined procedures for identifying the nature of such small amounts of growth were lacking. More tests of longer duration are required to either substantiate or refute the evidence of SCC in 2219 aluminum observed in these tests.

Other Crack Growth Observations

Crack growth was observed in all aluminum alloy SF specimens tested in this program. Typical examples of surface crack growth are included in Figures 2-28 and 2-29.

To evaluate the characteristics of surface crack growth both during and immediately after the application of sustained loadings, three series of tests were undertaken. Each test series included three tests of identical SF specimens that were loaded to a predetermined peak load level and then were unloaded after either a zero, one, or twenty hour exposure to the peak load; 2219-T87 base metal specimens were tested in both room air and welding grade argon gas and 2219 weld metal specimens were tested in room air. At the conclusion of each test, specimens were subjected to fatigue loadings at 72F (295K) to delineate any crack growth that occurred during the test run. Results are summarized in Table 2-10 and crack depth growth is plotted against test duration in Figure 2-24.

The test results indicate that crack growth occurred only during rising loads and not during invariant loadings in both the 2219-T87 base metal (WT direction) and 2219 as-welded weld metal. This conclusion was based on the observation that the amount of crack growth was independent of test duration (within limits of normal data scatter) in both test environments.

Crack depth growth observed in 2219 weld metal SF specimens is summarized in Table 2-12 and plotted in Figure 2-27. The fracture faces in Figure 2-28 illustrate the characteristics of the observed crack growth. The scatter bands in Figure 2-27 include all crack depth growth measurements for sustained load tests conducted at either 22 or 25 ksi (151.7 or 172.4 MN/m^2) uniform applied stress levels. The individual circular data points represent crack depth growth measurements for specimens that were loaded at the same rate as were the sustained load specimens, then immediately unloaded. For the 22 ksi (151.7 MN/m2) sustained load tests, consistent crack depth growth measurements were obtained in all environments except salt water. Because of this result, it was concluded that environments other than salt water did not promote SCC in the 2219 aluminum weld metal. The data points for the 22 ksi (151.7 MN/m^2) load-unload tests fall outside of the scatter band for the corresponding sustained load tests. This may have been due to data scatter. At -423F (20K), however, transient crack growth may have occurred after the loading process. Transient crack growth followed by crack growth arrest has been observed (3) during the early stages of sustained load tests of 2219-T87 base metal specimens. The low yield strength and high fracture toughness of 2219 aswelded weld metal should make it more prone to transient crack growth than base metal. At cryogenic temperatures, the sustained load tests yielded

significantly more crack depth growth than did the corresponding load-unload tests. It is believed that the additional crack growth observed in the sustained load tests was due to mechanical processes in the plastically deformed material at the crack tip and not SCC. It is difficult to believe that SCC would have occurred during the relatively short test durations in all cryogenic environments tested.

Crack growth during rising loads in 2219 as-welded GRA weld centerlines was found to be highly stress level dependent as illustrated in Figure 2-30 by data obtained from specimens loaded to various stress levels in ambient air. For stress levels above about 17 ksi (117 $\rm MN/m^2$), crack growth was very sensitive to peak stress level. The actual yield strength of the weld metal was not measured, but it is believed to be about 16 ksi (110 $\rm MN/m^2$) or less. Hence, all 2219 weld metal tests in this program were conducted using stress levels in excess of the true uniaxial weld metal yield stress. The data in Figure 2-30 show that rising loads to stress levels in excess of the actual yield strength can result in large amounts of crack extension.

Failure characteristics of cracked 2219 weld metal can be inferred from the data in Figure 2-30. It is evident that when failure stresses are well in excess of the yield stress, crack size does not undergo an abrupt instability at the failure load. Rather, crack dimensions start to increase once the yield stress is exceeded and continue to grow at an increasing rate until failure occurs. It is not clear whether failure is due to initiation of unstable crack propagation or to an exceedance of ultimate stress on the net section.

Comparison With Previously Reported Results

Other investigations have shown that 2219-T87 aluminum alloy plate is very resistant to SCC. The short transverse direction of one inch thick plate has been tested (16) both in an outdoor atmosphere and in a 3.5% NaCl solution with results shown in Figures 2-31 and 2-32. No SCC was detected in either set of tests with a detection sensitivity noted in the two figures. Figures 2-31 and 2-32 also include SCC velocity correlations for a number of 7000 and 2000 series aluminum alloys. When compared to the schematic SCC velocity-stress intensity factor correlation previously included in Figure 2-21, it can be seen that aluminum alloys do not exhibit Region III behavior. The plateau (Region II) velocities for the 2000 series alloys are all very close to 10^{-3} in/hr (7×10^{-7})

cm/sec), which agrees with the apparent SCC velocity observed for the WR direction of the 1.0 inch (2.5 cm) thick plate tested in this investigation. An electrochemical test has been developed for predicting the stress corrosion performance of 2219 aluminum in the T851 and T87 tempers (17). The test requires the measurement of the solution potential of an unstressed specimen in a mixture of absolute methyl alcohol and carbon tetrachloride. Changes in potential for 2219 alloy plate as it is artificially aged from the T37 to T87 temper are shown in Figure 2-33 along with smooth specimen stress corrosion data. These data also show 2219-T87 aluminum alloy plate to be very stress corrosion resistant.

Previously conducted SF specimen tests (3) for 1.0 inch (2.5 cm) thick 2219-T87 plate in the environments of air, LN, and LH, have shown that crack growth under sustained loads can occur in four stages including: (1) crack growth during rising load; (2) initial transient crack growth; (3) crack acceleration; and (4) unstable crack propagation or failure. The number of crack growth stages occurring in any test is primarily dependent on the magnitude of the stress intensity factor (K) applied to the crack tip. For low K values, no growth is observed; for intermediate K values, growth during loading and transient crack growth are observed followed by crack growth arrest; for high K values, all stages of crack growth are observed resulting in specimen failure. In this test program, crack growth during rising loads was observed in all 2219-T87 base metal SF specimens. However, there were no indications of transient crack growth for the WT direction at K levels equal to ninety percent of the fracture toughness. Previous tests (3) indicated that the K levels above which all four stages of crack growth could be expected to occur in the WR direction of 2219-T87 aluminum alloy SF specimens were 90, 81, and 87 percent of the corresponding fracture toughness in ambient air, LN2 and LH2, respectively. In this program, comparable ratios were found to be greater than 90 and 93 percent in ambient air and LH2, respectively.

2.4 Observations and Conclusions

This experimental program was undertaken to evaluate the combined effects of load and environment on the stress corrosion cracking (SCC) susceptibility of 2219-T87 aluminum and 5A1-2.5 Sn (ELI) titanium alloy plate and welds. The following observations were made during the course of the program.

Observations For 5A1-2.5 Sn (ELI) Titanium Alloy

- 1. The Ti-5Al-2.5 Sn (ELI) plate and welds were susceptible to SCC in the environments of methanol, methanol plus 2 percent (by volume) distilled water, dye penetrant (ZL-2A), 3 1/2 percent sodium chloride solution, ethenol plus two percent (by volume) distilled water, and distilled water. The base metal was susceptible to crack propagation in hydrogen gas at ambient temperature. The weld metal was prone to SCC in methyl ethyl ketone and ethanol. No SCC was observed in either base or weld metal in the 72F (295K) environments of argon, air, acetone and helium, or in the cryogenic environments of liquid nitrogen and liquid hydrogen.
- 2. Susceptibility to SCC of 5A1-2.5 Sn (ELI) titanium alloy plate was dependent on crack propagation direction with the WR direction more susceptible than RW direction.
- 3. There was not a great deal of difference between the SCC susceptibility of base and weld metal. In general, SCC velocities in weld metal tended to be less than in base metal specimens and there were two environments (ethanol and methyl ethyl ketone) in which SCC was observed in the weld metal but not in the base metal.
- 4. Specimens that were loaded in air prior to being subjected to the test environment were much less susceptible to SCC than were specimens that were loaded in the test environment.
- 5. There did seem to be a tendency for SCC to be more pronounced in surface-flawed than in double cantilever beam specimens. The test data did not permit a good evaluation of the effect of specimen type on SCC susceptibility.
- 6. Tests of Ti-5Al-2.5 Sn (ELI) base metal surface-flawed specimens in methanol where specimen thickness was varied from 0.35 to 0.05 inch (0.89 to 0.13 cm) revealed no trend of decreasing SCC susceptibility with decreasing specimen thickness.

Observations For 2219-T87 Aluminum Alloy

- 1. Indications of SCC was observed in three of the environments tested in this program. Both 2219-T87 plate (WR direction) and 2219 as-welded weld metal underwent what appeared to be SCC in salt water at 72F (295K). Traces of apparent SCC were noted in the plate material in trichloroethylene and dye penetrant (type ZL-4B). Test durations were not sufficiently long to allow strong indications of either the presence or absence of SCC to develop. No evidence of SCC was detected in any of the other test environments including, argon, air, distilled water, hydrogen, oxygen, fluorine, fluorine-oxygen mixture, and oxygen difluoride.
- 2. Stable crack growth was observed during rising loads in both base metal and weld metal surface flawed specimens.

The following conclusions were drawn on the basis of results obtained both from this program and from the literature:

- 1. Titanium alloy 5A1-2.5 Sn (ELI) plate and welds can be very susceptible to SCC in a number of environments. Accordingly, fabrication and operating environments should be closely controlled for successful use of this alloy.
- 2. Aluminum alloy 2219-T87 plate and as-welded welds are very resistant to SCC.
- 3. For thin materials, surface flawed specimen tests may indicate that a material is more susceptible to SCC than would tests of through the thickness cracked specimen types. Hence, results of SCC tests from through-cracked specimens should be checked using surface flawed specimens prior to use of a specific material/environment combination in engineering structures.
- 4. SCC tests should be conducted for a period of time sufficient to establish that crack growth rates have decreased to negligibly small values, or longer than the intended life of the structure for which the material/environment combination is under consideration, whichever is the shorter; SCC velocities ranging from 5×10^4 to 10^{-5} in/hr (35 to 7×10^{-9} cm/sec) have been observed in aluminum alloys. Aqueous environments usually promote SCC velocities ranging from about 10^{-2} to 10^{-5} in/hr (7×10^{-6} to 7×10^{-9} cm/sec).

3.0 COMPATIBILITY STUDY OF MATERIAL/ENVIRONMENT COMBINATIONS PERTINENT TO HIGH ENERGY UPPER STAGE PROPULSION SYSTEMS

Tests were undertaken to study the compatibility of material/environment combinations suitable for fuel and oxidizer tanks in high energy upper stage propulsion systems. Material/environment combinations tested included: 2219-T87 aluminum alloy in fluorine, fluorine-oxygen mixture, and methane; 2219-T6E46 aluminum alloy in fluorine and fluorine/oxygen mixture; and titanium alloys 5A1-2.5 Sn (ELI), 6A1-4V (ELI) and 6A1-4V (ELI) STA in methane. Tests were conducted in both gas and liquid phases at temperatures slightly above and slightly below the 20 psig boiling temperature of the test media.

The test program is summarized in Table 3-1. All tests were conducted using surface flawed specimens having thicknesses representative of minimum gage tanks, namely, 0.04 inch (1.02 mm) for the aluminum alloys and 0.032 inch (0.81 mm) for the titanium alloys. The longitudinal axis of the specimens coincided with the transverse direction of the parent plate. One flaw depth-to-length ratio of 0.10 was used and specimens were fabricated with the maximum flaw depth that could survive a proof overload at -320F (78K) to 100 percent and 90 percent of the guaranteed minimum yield stress for the aluminum and titanium alloys, respectively. That flaw depth was experimentally evaluated prior to the sustained load tests. The test sequence included a -320F (78K) proof overload followed by sustained load tests ranging in duration from 10 to 500 hours. Two tests were conducted at different stress levels for each combination of variables. Aluminum alloys were tested at $\sigma_y/1.1$ and $\sigma_y/1.2$ where σ_y is the guaranteed minimum -225F (131K) yield stress of the alloy (56 ksi (386 MN/m²) for the T87 condition and 43 ksi (296 MN/m²) for the T6E46 condition). Titanium alloys were tested at $\sigma_{\rm u}/1.4$ and 0.85 ($\sigma_{\rm u}/1.4$) where $\sigma_{\rm u}$ is the guaranteed minimum -225F (131K) ultimate tensile stress of the alloys (210 ksi (1448 MN/m 2), 173 ksi (1193 MN/m 2) and 133 ksi (917 MN/m^2) for the 6A1-4V STA, 6A1-4V annealed, and 5A1-2.5 Sn (ELI) alloys, respectively).

3.1 Materials

The 2219 alloy was tested in both the T87 and T6E46 conditions. All specimens were taken from a single 0.125 by 36.0 by 84.0 inches (0.32 by 91.4 by 213.4 cm) plate purchased in the T87 condition per Boeing Material Specification BMS 7-105C

(equivalent to MIL-A-8920 (ASG) specification). Part of the plate was brought to the T6E46 condition (a Boeing Company heat treatment) by successively solution treating at $995 \pm 10F$ ($808 \pm 6K$) for four hours, water quenching, natural aging for four days, artificial aging at $350 \pm 10F$ ($450 \pm 6K$) for twelve hours, and air cooling to room temperature. Specification limits on chemical content and mechanical properties measured by The Boeing Company are included in Tables 2-5 and 2-6, respectively. Mechanical properties are plotted as a function of temperature in Figure 3-1.

The 5Al-2.5 Sn (ELI) titanium alloy was tested in the mill annealed (MA) condition. All specimens were taken from a single 0.04 by 24.0 by 72.0 inches (0.10 by 61.0 by 182.9 cm) plate purchased in the MA condition per MIL-T-9046E, Type II, Composition B. Certified chemical content provided by the vendor and mechanical properties measured by The Boeing Company are included in Tables 2-5 and 2-6, respectively. Mechanical properties are plotted as a function of temperature in Figure 3-1.

The 6Al-4V (ELI) titanium alloy was tested in both the mill annealed (MA) and solution treated and aged (STA) conditions. All specimens were taken from a single 0.375 by 24.0 by 72.0 inches (0.95 by 61.0 by 182.9 cm) plate purchased in the MA condition per AMS 4911A, except that the interstitial content was specified not to exceed the following limits in percent by weight: C = 0.08, Fe = 0.25, $O_2 = 0.13$, $O_2 = 0.05$, $O_2 =$

3.2 Procedures

3.2.1 Specimen Preparation

Configurations for surface flawed and mechanical property specimens used in these tests are detailed in Figures C10, C11 and C12 in Appendix C. Surface flaws were prepared by growing fatigue cracks from starter slots. Slots were produced using an electrical discharge machine (EDM) and 0.06 inch (0.15 cm) thick circular electrodes with tips machined to a radius of 0.003 inch (7.6 mm) and an included

angle of 20 degrees. Fatigue cracks were grown to a depth of from three to five mils (0.08 to 0.10 mm) from the EDM slot using fatigue cycles having an R value of 0.06, frequency of 1800 cpm (30 Hz), and peak stresses of 12 and 25 ksi (82.7 and 172.4 MN/m^2) for the aluminum and titanium specimens, respectively.

The gage area of all specimens was cleaned with naphtha then blown dry with compressed air. Aluminum alloy specimens tested in fluorine and FLOX were cleaned immediately prior to testing using the procedure detailed in Appendix E.

3.2.2 Testing

Proof Overload Test Procedures - All proof overload testing was accomplished at -320F (78K) with the specimen completely submerged in liquid nitrogen. Each specimen was instrumented to detect the load at which the surface crack penetrated the parent specimen thickness. Instrumentation consisted of sealed pressurized chambers attached to the specimen as shown in Figure 3-2. The chamber on the flawed surface was pressurized with helium gas to 3-10 psig (34 to 69 MN/m² gage pressure) before load application. The chamber on the back specimen face was left unpressurized. Test records of pressure in both cups versus applied load were obtained using an X-Y recorder. A typical test record is included in Figure 3-3 where it can be seen that an abrupt change in pressure occurred in both cups at a well defined load. The pressure changes were due to penetration of the specimen thickness by the flaw.

For specimens tested to determine the maximum flaw depth that could survive a -320F (78K) proof overload without penetrating the specimen thickness, the following loading sequence was used: (1) specimens were loaded at a uniform rate to targeted peak stress levels of 182, 160, 128, 59, and 46 ksi (1254.9, 1103.2, 882.6, 40.7 and 31.7 MN/m²) for the 6Al-4V(ELI)STA, 6Al-4V(ELI), 5Al-2.5Sn(ELI), 2219-T87, and 2219-T6E46 alloys, respectively. The loading rate was such that the peak stress level was reached one minute after initiation of loading; (2) if the flaw penetrated the specimen thickness prior to the attainment of the targeted proof stress, the loading was continued until the specimen failed; (3) if the flaw had not penetrated the specimen thickness prior to the attainment of the targeted stress, the load was held constant at the proof stress for two minutes and was then increased until the specimen failed.

In order to prepare specimens for subsequent sustained load testing, each specimen was proof loaded at -320F (78K) using the procedures described in the preceding paragraph. If the crack had not penetrated the specimen thickness at the peak proof stress level, each specimen was immediately unloaded and used for sustained load testing.

<u>Sustained Load Test Procedures</u> - Four specimens were simultaneously tested in a single tensile test machine by loading the specimens in series as shown in Figure 3-4. The test media were contained in small pressure cups clamped to the faces of the specimen. The cups were similar to those shown in Figure 3-1 except that cups and clamping plates were integral. Virgin teflon seals were used in all tests. The specimen train and pressure cups were surrounded by a cryostat as shown in the left hand machine in Figure 3-4. The cryostat was filled with either liquid nitrogen or a mixture of gaseous and liquid nitrogen to cool the specimens to the test temperatures. A thermocouple was used to monitor the temperature and control a valve which mixed the liquid and gaseous nitrogen in the needed proportions. For tests at temperatures other than at -320F (78K), cool down time averaged about 2.5 hours after which the desired test temperature was controlled within ± 5F (± 3K). Pressurized bottles were used as the source of both test media and pressure. Schematic drawings of the test systems for test in methane and fluorine or FLOX are shown in Figures 3-5 and 3-6.

The initiation sequence for fluorine tests was different from that for methane tests. For tests in environments containing fluorine, the following sequence was used: (1) passivate system with test media at ambient temperature; (2) purge system with helium gas; (3) bring system to test temperature; (4) load specimens; and (5) introduce the test media. For tests in methane, steps 4 and 5 were reversed so that the specimens were loaded in the test environments rather than in helium gas.

At the completion of the sustained load tests, all specimens were loaded while instrumented with pressure cups to determine if the surface crack had grown through the specimen thickness during the sustained load test. Procedures were the same as those used in the proof overload tests.

Mechanical Property Test Procedures - Tests were conducted at a strain rate of 0.005/minute until yield strength had been exceeded. The strain rate was then increased to 0.02/minute until failure. Stress-strain curves were obtained using a 2.0 inch (5.08 cm) gage length extensometer.

3.3 Results and Discussion

Results of the proof overload and sustained load tests are separately discussed in the following two subsections.

3.3.1 Proof Overload Tests

Details and results for the proof overload tests are included in Tables 3-2 and 3-3. Specimen dimensions, initial flaw dimensions, targeted proof stress levels, and stress levels at which either crack growth penetrated the specimen thickness or failure of the specimen occurred are summarized. Stress levels at both breakthrough and failure conditions are plotted against initial crack dimensions in Figure 3-7.

For the 2219-T87 aluminum alloy, two specimens (A-5 and A-7) containing cracks having initial depths of 0.028 and 0.029 inch (0.071 and 0.074 cm) failed before the targeted proof stress of 59 ksi (406.8 MN/m²) was reached. A third specimen (A-4) containing a 0.026 inch (0.066 cm) deep crack withstood the 59 ksi (406.8 MN/m²) proof stress without undergoing flaw growth through the specimen thickness. A fourth specimen (A-8) containing a 0.024 inch (0.061 cm) deep crack was loaded to the proof stress level; the proof stress was sustained for 40 seconds at which time the flaw penetrated the specimen thickness; the stress was then increased until the specimen failed at 63 ksi (434.4 MN/m²). The foregoing results led to the selection of the following surface flaw dimensions for subsequent sustained load tests: a = 0.022 inch (0.56 mm) and 2c = 0.220 inch (5.59 mm).

The 2219-T6E46 alloy was very resistant to flaw growth during the proof load cycle. The maximum flaw depth tested (85 percent of the specimen thickness or 0.035 inch

(0.089 cm) in specimen AL-6 did not grow through the specimen thickness during the 46 ksi (317.2 MN/m^2) proof load. Since the distance between the flaw tip and back specimen face was only 0.006 inch (0.15 mm) in specimen AL-6, it was decided that further refinement of the maximum flaw dimension that could withstand the proof cycle was not practical. Accordingly, the following surface flaw dimensions were chosen for subsequent sustained load tests: a = 0.035 inch (0.89 mm) and 2c = 0.350 inch (8.89 mm).

Flaw growth through the specimen thickness was not observed in any Ti-5Al-2.5Sn(ELI) specimens. It was apparent that the maximum initial flaw dimensions that could withstand the proof test were somewhat greater than the 0.022 by 0.240 inch (0.56 by 6.10 mm) flaw dimensions in specimen 5T-5. Hence, the following surface flaw dimensions were chosen for the sustained load tests: a = 0.025 inch (0.64 mm) and 2c = 0.250 inch (6.35 mm).

For the 6A1-4V(ELI) titanium alloy, test results similar to those for the other alloys led to the selection of the following surface flaw dimensions for the sustained load tests: for the annealed condition, a = 0.020 inch (0.51 mm) and 2c = 0.200 inch (5.08 mm); and for the STA condition, a = 0.013 (0.33 mm) and 2c = 0.130 inch (3.30 mm).

3.3.2 Sustained Load Tests

Results of the longest duration tests in each environment are summarized in Table 3-4. The surface cracks did not grow through the specimen thickness during any of the sustained load tests summarized in Table 3-4. A visual examination of all fracture surfaces through a 30X microscope did not reveal any visible signs of Stress Corrosion Cracking (SCC).

The maximum possible SCC velocity (specimen thickness less initial crack depth divided by specimen duration) for any of the 500 hour duration tests was about 10^{-5} inches/hour (7 x 10^{-8} cm/sec). This velocity appears to be about an order of magnitude lower than any previously reported (12) SCC velocities for titanium alloys. Hence, it appears that SCC did not occur during any of the titanium alloy tests. For aluminum alloys, SCC velocities as low as 10^{-5} inches/hour (7 x 10^{-8}

cm/sec) have been reported (16) and it appears that SCC could progress at even slower velocities. Hence, the absence of SCC in the aluminum alloy tests cannot be inferred from maximum possible rate calculations.

After the 500 hour duration sustained load tests, aluminum alloy specimens that had been loaded to the higher stress level in the gas phase were subjected to fatigue loadings in room air to delineate the crack front. Visual observation of the fracture faces of these specimens revealed no evidence of flaw growth between the initial fatigue crack front and the fatigue crack growth induced at the end of the sustained load test. Other aluminum alloy specimens that had been tested for 500 hours were loaded to failure at -320F (78K). The failure loads for the 2219-T87 specimens were as high as those obtained from proof overload specimens that were loaded directly to failure. Hence, the failure data yielded no indications of SCC. A visual observation of the fracture faces of both 2219-T87 and -T6E46 specimens revealed no indications of SCC. Hence, the evidence strongly supports the conclusion that no SCC occurred during the sustained load aluminum alloy tests.

3.4 Conclusion

Minimum gage pressure vessels involving the material/environment combinations listed in Table 3-1 should not be prone to SCC problems after a proof test. The proof test cycle used in these tests consisted of a -320F (78K) load-unload cycle having a peak stress equal to 100 and 90 percent of the design yield strength for the aluminum and titanium alloys, respectively. The results obtained herein cannot be used to predict SCC behavior for other gages and proof test procedures using linear elastic fracture mechanics parameters since the plastic zones in the test specimen were not small relative to important specimen dimensions. However, moderate variations to the test details used in this program would not be expected to significantly increase SCC susceptibility of the material/environment combinations tested.

LIST OF REFERENCES

- 1. C.F. Tiffany, "Fracture Control of Metallic Pressure Vessels", NASA Space Vehicle Design Criteria (Structures) NASA SP-8040, May 1970.
- 2. C.F. Tiffany, P.M. Lorenz, and L.R. Hall, "Investigation of Plane Strain Flaw Growth in Thick-Walled Tanks", NASA CR-54837, February 1966.
- 3. C.F. Tiffany, P.M. Lorenz, and R.C. Shah, "Extended Loading of Cryogenic Tanks", NASA CR-72252, July 1967.
- 4. L.R. Hall, "Plane-Strain Cyclic Flaw Growth in 2014-T62 Aluminum and 6Al-4 V(ELI) Titanium", NASA CR-72396, November 1968.
- 5. L.R. Hall and R.W. Finger, "Investigation of Flaw Geometry and Loading Effects on Plane Strain Fracture in Metallic Structures", NASA CR-72659 August 1971.
- 6. ASTM Committee E-24, "Proposed Method of Test for Plane Strain Fracture Toughness of Metallic Materials", ASTM Standards Part 31, May 1969, pps. 1099-1114 (to be approved).
- 7. S. Mostovoy, P.B. Crosley, and E.J. Ripling, "Use of Crack-Line-Loaded Specimens for Measuring Plane Strain Fracture Toughness", Journal of Materials, Vol. 2, No. 3, September 1967.
- 8. G.R. Irwin, "Crack Extension Force for a Part-Through Crack in a Plate", Journal of Applied Mechanics, Vol. 29, Trans. ASME, Vol. 84, Series E, December 1962.
- 9. J.N. Masters, W.P. Haese, and R.W. Finger, "Investigation of Deep Flaws in Thin Walled Tanks", NASA CR-72606, December 1968.

LIST OF REFERENCES (Con't.)

- 10. E.G. Haney, and W.R. Wearmouth, "Effect of "Pure" Methanol on the Cracking of Titanium", Corrosion, Vol. 22, No. 2, 1959 p. 87.
- 11. D.P. Williams and H.G. Nelson, "Gaseous Hydrogen Induced Crack Propagation in Ti-5Al-2.5 SN", NASA Ames Research Center, (to be published).
- 12. M.J. Blackburn, J.A. Feeney, and T.R. Beck, "Stress Corrosion Cracking of Titanium Alloys", Boeing Scientific Research Laboratories, Document D1-82-1054, June 1970 (to be published by Plenum Press in Advances in Corrosion Science and Technology, edited by M.G. Fontana and R.W. Staehle).
- 13. H.P. Leckie, "Stress Corrosion Characteristics of a Ti-7Al-2Cb-lTa Alloy", Corrosion, Vol. 23, 1967.
- 14. M.H. Peterson, B.F. Brown, R.L. Newberger, and R.E. Grooves, "Stress corrosion Cracking of High Strength Steel and Titanium Alloys at Ambient Temperature", Corrosion, Vol. 23, 1967.
- 15. D.E. Piper, S.H. Smith, and R.V. Carter, "Corrosion Fatigue and Stress Corrosion Cracking in Aqueous Environments", ASM Metals Engineering Quarterly, Vol. 8, 1968.
- 16. M.V. Hyatt and M.O. Speidel, "Stress Corrosion Cracking of High Strength Aluminum Alloys", The Boeing Company Document D6-24840, June 1970.
- 17. R.L. Horst, Jr., E.H. Hollingsworth, and W. King, "A New Solution Potential Measurement for Predicting Stress-Corrosion Performance of 2219 Aluminum Alloy Products", Corrosion, Vol. 25, No. 5, May 1969.

APPENDIX A---TEST DATA

This appendix contains raw test data for all stress corrosion cracking tests conducted during the investigation of stress corrosion cracking in 2219-T87 aluminum and 5A1-2.5 Sn(ELI) titanium alloys. The aluminum alloy data are listed in Tables Al through A6. The titanium alloy data are listed in Tables A7 through A12.

APPENDIX B---DCB SPECIMEN STUDIES

INTRODUCTION

This appendix describes tests undertaken to explore crack growth behavior and compliance of side-grooved double cantilever beam (DCB) specimens. In DCB specimens, propagating cracks have a strong tendency to rotate from the original crack plane. This problem can be alleviated through the use of side grooves to restrict crack growth to the original crack plane. In this investigation, one specimen configuration and two side groove geometries were tested for each of two alloys. Specimen configuration is shown in Figure Bl. Both semi-circular and Vee-shaped grooves were tested. Groove depth was set at either ten or fifteen percent of the specimen thickness. Tests were conducted for the WR direction of 1.0 inch (2.5 cm) thick 2219-T87 aluminum alloy plate, and 0.38 inch (0.97 cm) or 0.35 inch (0.90 cm) thick 5A1-2.5 Sn(ELI) titanium alloy plates.

BACKGROUND

Approximate compliance (C) values and opening mode stress intensity factors (K_1) for DCB specimens can be obtained from the literature (1). Compliance can be expressed by the equation.

$$C = \frac{2}{3EI} [(a + a_0)^3 + h^2 a]$$
 (B1)

where E is Young's Modulus, 1 is the moment of intertia of one specimen arm, 'a' is crack length, a is an experimentally determined crack length increment to force agreement between experimentally measured compliance and Equation B1, and 2h is specimen height. Stress intensity factors for side grooved specimens are calculated from the expression

$$K_1 = \frac{2P}{b} \cdot (\frac{b}{b_n})^{1/2} \left[\frac{3(a + a_0)^2 + h^2}{(1 - \mu^2) h^3} \right]^{\frac{1}{2}}$$
 (B2)

where P is applied load, b is specimen width, b_n is crack width, and μ is Poisson's ratio.

PROCUMING PAGE BY ANK NOT FIT MED

PROCEDURES

Specimens were pin loaded in tensile test machines and clip gages were used to measure crack displacement. Load cell and clip gage output were connected to an X-Y recorder to obtain the load-displacement records from which compliance was determined.

Clip gages were spring loaded against integrally machined knife edges located at the end of the specimen rather than at the load line. Gage and load line locations are illustrated in Figure Bl. For the specimen configuration tested, the major portion of compliance is due to rotation of the specimen arms at the vertical line passing through the crack tip, and from shear forces in the specimen arms. Since these two deflections vary linearly with distance from the crack tip, it was concluded that it would be sufficiently accurate to calculate deflections at the load line by multiplying deflections measured at the end of the specimen by the ratio of distance from crack tip to load line to distance from crack tip to clip gage location: Calculations based on simple beam theory showed that this procedure results in a maximum error of about two percent in calculated stress intensity. To substantiate this approach, two specimens were pin loaded in a test machine and deflection measurements were made across the specimen width using a micrometer. The resulting deflections are plotted as a function of distance from the end of the specimen in Figure 32. Over a major portion of the crack length, the deflections increase linearly in the manner assumed in the foregoing approach.

Calculated load-line compliance values were substituted into Equation B1 to evaluate values of a_0 . A beam height (h) of 1.5 inches (3.81 cm) was used in the calculations rather than the net beam height of 1.45 inches (3.68 cm). This procedure results in negligible error in calculated stress intensity factors as long as both a_0 and stress intensity factors are calculated using the same beam height. The value of a_0 does, however, vary significantly with the value of beam height used in the calculations.

RESULTS AND DISCUSSION

Eight initial tests were conducted to determine the effect of side groove geometry and depth on the shape of propagating crack fronts, and on the direction of propagations for rapidly propagating cracks. Four 2219-T87 aluminum and four 5A1-2.5 Sn(ELI) titanium specimens were tested. Aluminum alloy specimens fabricated with either Vee or semicircular grooves having depths equal to ten and twenty percent of the specimen thickness were tested in laboratory air. Titanium alloy specimens fabricated with both Vee and semicircular grooves having depths equal to ten percent of the specimen thickness were tested at 72F (295K) and -320F (78K). Testing consisted of subjecting specimens to zero to tension loading profiles using peak cyclic loads of 1500 and 3000 pounds (6672 and 13,344 N), rollowed by a static loading to failure. The fracture surfaces showed that the fatigue crack fronts in all specimens with semicircular grooves were straight and uniform across the specimen width. In specimens having vee-shaped grooves, crack growth was accentuated in the vicinity of the junction of crack front and side grooves. This result is illustrated by full scale drawings of the aluminum alloy fracture faces in Figure B3. These results were interpreted to mean that variables affecting crack propagation were more uniform across the specimen width for semicircular grooves than for Vee grooves. When pulled to failure, the crack propagated along the grooves in all but one specimen, namely, the titanium specimen with semicircular grooves that was tested at room temperature.

Compliance tests were conducted to determine values of a_0 for use in the stress intensity factor Equation B2. Results of aluminum alloy compliance tests are summarized in Table B1. Specimens for which one compliance value is reported were pulled to failure and the slope of the straight line portion of the load deflection curve was used to compute compliance. Specimens for which multiple compliance values are reported were alternately subjected to fatigue and static loadings so that compliance values were obtained for several crack lengths. It is evident that values of a_0 were quite insensitive to all test variables. There was a tendency for a_0 to increase slightly with increased crack length. A value of $a_0 = 0.90$ inch (2.29 cm) was selected for use in calculating stress

intensity values for all aluminum alloy DCB specimen tests discussed in the main body of this report. It is of interest to note that the ratio of a_0/h was 0.60 which is the same value previously reported (1) for 7075-T6 aluminum alloy DCB specimens having thicknesses ranging from 0.25 inch (0.64 cm) to 1.00 inch (2.54 cm), and groove depths ranging from five to thirty-five percent of the specimen thickness.

Fracture toughness values were computed using Equation B1, the appropriate a value from Table B1, and loads corresponding to the intersection of test records and a five percent offset slope through the origin of the test record. The values are in reasonable agreement with previously reported (2) plane strain fracture toughness values of 29 and 35 ksi $\sqrt{\text{in}}$ (32 and 38 MN/m $^{3/2}$) for the WR direction of 1.0 inch (2.54 cm) thick 2219-T87 aluminum alloy plate at 72F (295K) and -320F (78K), respectively.

Results of the titanium alloy compliance tests are included in Tables B2 and B3. The data in Table B2 were obtained from tests of 0.38 inch (0.97 cm) inch thick specimens. Values of a appeared to be dependent on groove shape and test temperature. For example, Vee shaped grooves seemed to yield lower a values at 72F (295K) than did semicircular grooves. In addition, a values appeared to be more temperature sensitive for semicircular grooves than for Vee grooves. The data in Table B3 were obtained from tests of 0.35 inch (0.89 cm) thick specimens taken from the same plate stock as used for all titanium DCB tests reported in the main body of this report. The a values are quite insensitive to temperature and are the same for both parent and weld metal. An a value of 0.78 inch (1.98 cm) was used to calculate stress intensity factors for all titanium alloy DCB specimen tests described in the main body of this report.

Fracture toughness values for the titanium alloy were computed using Equation B2, a values from Table B3, and five percent offset loads obtained from the test records. One room temperature base metal base metal specimen (T-1) underwent a rather abrupt onset of crack instability. The test record was valid by ASTM E399-70T standards and yielded a fracture toughness value of

115 ksi $\sqrt{\text{in}}$ (126 MN/m^{3/2}). This value is in good agreement with other reported values of ambient temperature plane strain fracture toughness for the 5A1-2.5 Sn(ELI) titanium alloy ranging between 100 and 120 ksi $\sqrt{\text{in}}$ (110 and 132 MN/m^{3/2}). All other 72F (295K) base and weld metal tests yielded rounded load-displacement curves that showed no evidence of an abrupt crack size instability. Average plane strain fracture toughness values reported in (3) for the RW direction of a 0.25 inch (0.64 cm) thick rolled 5A1-2.5 Sn(ELI) plate were 49 ksi $\sqrt{\text{in}}$ (54 MN/m^{3/2}) at -423F (20K) and 56 ksi $\sqrt{\text{in}}$ (62 MN/m^{3/2}) at -320F (78K). Hence, the fracture toughness values obtained from the -320F (78K) and -423F (20K) DCB tests in this program are equivalent to plane strain fracture toughness values.

Comparisons made between crack opening displacements measured using both clip gage and micrometer are included in Table B4. Micrometer measurements were made between points A as shown in Figure B1 and clip gage measurements were made as previously described. Comparisons are shown for aluminum base metal DCB specimens both pin loaded in a test machine and wedge loaded in a vise. For the pin loaded test, the micrometer readings are consistently less than the clip gage readings with a maximum discrepancy of 0.0011 inch (0.028 mm). For the wedge loaded test, the micrometer measurements were again less than the clip gage measurements with a maximum difference of 0.0015 inch (0.038 cm). In view of the good agreement between the two different readings, it was concluded that micrometer measurements provided a sufficiently accurate method of controlling stress intensity factor during the wedge loading of DCB specimens.

LIST OF REFERENCES FOR APPENDIX B

- 1. S. Mostovoy, P.B. Crosley, and E.J. Ripling, "Use of Crack Line Loaded Specimens for Measuring Plane Strain Fracture Toughness", Journal of Materials, Vol. 2, No. 3, September 1967.
- 2. C.M. Carman, J.W. Forney, and J.M. Katlin, "Plane Strain Fracture Toughness of 2219-T87 Aluminum Alloy at Room and Cryogenic Temperatures", NASA CR-54297, August 1966.
- 3. R. Pyle, D.E. Schillinger, and C.M. Carman, "Plane Strain Fracture Toughness and Mechanical Properties of 2219-T87 Aluminum and 5A1-2.5 Sn(ELI) Titanium Alloy Weldments and One Inch Thick 5A1-2.5 Sn(ELI) Titanium Alloy Plate", NASA CR-72154, Semptember 1968.

APPENDIX C---TEST SPECIMENS

This appendix contains detailed drawings of all test specimens used in this investigation. Table C1 relates the specimen configurations to the particular series of tests for which they were used. Figures C1 through C12 contain detailed drawings of each specimen configuration.

APPENDIX D---WELDING PARAMETERS

Welding Parameters: 1.00 inch - 2219-T87 Aluminum

Surface Flawed Specimens:

First Side - First Pass First Side - Second Pass*

Current - 200 amps Current - 400 amps

Voltage - 12.5 volts Voltage - 12.0 volts

Travel - 15 ipm (6.3 mm/sec) Travel - 3 ipm (1.27 mm/sec)

Wire - None Wire - None

*Panel was turned over and the joint completed in one pass with these settings.

DCB Specimens:

First Side - First Pass First Side - Second Pass**

Current - 200 amps Current - 390 amps

Voltage - 12.5 volts Voltage - 12.0 volts

Travel - 15 ipm (6.3 mm/sec) Travel - 3.5 ipm (1.48 mm/sec)

Wire - None Wire - None

**Panel was turned over and the joint completed in one pass with these settings.

Both panel series were welded with a Linde HW-27 torch; a 5/32 inch (0.40 cm) diameter, 2% thoriated, tungsten electrode, rounded to 1/8 inch (0.32 cm) diameter ball nose over a 3/8 inch (0.95 cm) taper; and pure helium shielding gas at $110 \text{ CFH } (3.1 \text{ m}^3/\text{hr})$

Welding Parameters: 0.350 inch - 5Al-2.5Sn (ELI) Titanium Surface Flawed and DCB Specimens.

First Pass

Second Pass

Current - 215 amps

Current - 200 amps

Voltage - 14 volts

Voltage - 14 volts

Travel - 3 ipm (1.27 mm/sec)

Travel - 3 ipm (1.27 mm/sec)

Electrode: 2% thoriated tungsten, 1/8 inch (0.32 cm) diameter, 45° included

angle to 0.030 inch (0.076 cm) diameter end.

APPENDIX E---CLEANING PROCEDURE FOR FLUORINE ENVIRONMENTS

The cleaning procedure used for all of the specimens and test equipment (valves, tubing, etc.) exposed to fluorine environments (F_2 , F_2 and FLOX) is listed below:

- 1. Vapor degrease and trichloroethylene flush 10 minutes
- 2. Detergent flush 10-15 minutes
- 3. Cold water flush 10 minutes
- 4. Passivate with 50% nitric acid solution 5 minutes maximum
- 5. Flush with De-ionized water 10 minutes
- 6. Purge dry with hot nitrogen gas
- 7. Oven dry 1-2 Hours
- 8. Bag and seal in plastic

NOTE: Components with enclosed areas, such as valves, were vacuum baked for 1-2 hours instead of oven dried.

APPENDIX F --- CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

In the text of this report, all numerical values are given in U.S. customary units with corresponding SI units in parenthesis. Due to the complexity of the tables of results, only U.S. customary units are used therein. Conversion factors for converting U.S. customary to SI units are given in the following table:

To Convert From (U.S. Customary Unit)	Multiply by	To Obtain (SI Units)
in.	2.54 x 10 ⁻²	meter (m)
lbf	4.448	newton (n)
kip	4.448	kilonewton (kN)
ksi	6.895	meganewton/meter ² (MN/m ²)
ksi √in	1.099	$MN/m^{3/2}$
°F	5/9 (F + 459.67)	°K

Figure 2-1: MECHANICAL PROPERTIES FOR 2219-T87 ALUMINUM—ONE INCH (2.54 cm) THICK PLATE

Figure 2-2: MECHANICAL PROPERTIES FOR 5AI-2.5 Sn (ELI) TITANIUM-0.35 INCH (0.89 cm.) THICK PLATE

Figure 2-3: FRACTURE TOUGHNESS DATA FOR 1.0 INCH (2.54 cm.) THICK 2219-T87 ALUMINUM ALLOY PLATE

Figure 2-4: FRACTURE TOUGHNESS DATA FOR ALLOYS USED IN SCC TESTS

Figure 2-5: PRESSURE CUPS USED TO DETECT CRACK BREAKTHROUGH IN SURFACE FLAWED SPECIMENS.

Figure 2-6: METHOD OF LOADING DCB SPECIMENS

Figure 2-7: SHAPE PARAMETER CURVES FOR SURFACE AND INTERNAL FLAWS

			4	•			91	noitzeriQ WR viA ni bebeod MT ni bebeod	SF	2	2	0	7	Meth
			•		4		238	noitcetid WR	620	295	1	30	8	ž
			-	•			91	MT Direction	SF		П		П	+_
		•			-		611	MT ni bebeod		2	~	_	-	Methanol + 2% DW
		-					150	MI ni bebeo	DCB	23	72	30	8	ξX
		4	_				240	W Direction	10		П		1	Š
	*	0					10.0	MT ni bebsod	SF	Н	Н	Н	+	10
	-			•	_			MT Direction MT ni bebsod	+	3	2	0	1.	Sait Water
		4					911	MA Direction	88	295	72	9	20.	1 ie
	*	•					536	MA Direction		H	Н	Н	Н	S.
	•		_				8.0	MT ni bebsod	SF					53
	•	•		-			- bii	MR Direction MI ni bebeod		295	72	30	20.7	Dye Pen
		•	<u> </u>				+11	MT Direction	88	2	1	.,	2	3
	•	-					736	W Direction] _					
				4			91	MT ni bebeod	SF					+
		•	-	~			611	MT Direction MT ni bebso		2	2		1	lond
		•					150	MT ni bebeo	88	28	72	30	20.	Ethonol 2% DW
		4					540	MA Direction	70					E 2
		0		4			100	MT Direction MT ni bebeoJ	SF	\vdash	Н	Н	Н	
		• •		0			811	MT ni bebeod	105					Dist Water
		ā					$\overline{}$	MT ni bebeod	DCB	295	72	30	20.7	33
		40					811	MP Direction WR in A ni bebeod MP ni bebeod MP ni bebeod	4 5				"	Dis
		0		◁			738	RW Direction	14	⊢	H	H	Н	_
est	9			0			12	MT ni bebeo	SF	1			П	
£ 5	0	10					138	MT Direction MT ni bebsod	٦	295	2	30	7	¥
Stress Intensity Factor at Outset of Test Stress Intensity Factor at Termination o TM = Test Medium	Open Symbols Denote No SCC Solid Symbols Denote SCC Agraint Denotes Societies Failure	3					139	MT ni bebeo	38	N	_	3	20.	MEK
of	SC	8		_			238	MA ni bebaod						
n ir	Open Symbols Denote No. Solid Symbols Denote SCC	3		<u></u>			91	MT ni bebeod	SF	Г			П	
T er	Den	₹ Д					137	MT Direction MT ni bebso		2	l_		~	2
* *	slo	<u>¥</u>					138	MT ni bebaod	DCB	295	72	30	20.	Ethanol
ctor tor	看有	8					240	MA Direction	٦,	l			П	ш
F P P	SY			4			15	Loaded in TM	SF	+	\vdash	\vdash	Н	
ntensity Fact ntensity Fact Test Medium	ped Did	4		Ó			911	MR Direction MI ni besed Loaded in TR	100	١				ae .
tens at tens	0 %	' श्र					-	MT ni bebed AW	BCB	295	72	8	20.7	Acetone
ss in	S	40					115	MY Direction MI ni bebeol	4 ×				,	A
Stress Intensity Factor at Outset of Test Stress Intensity Factor at Termination of Test TM = Test Medium	NOTES	0					232	MW Direction	+-	⊢	⊢	H	Н	-
	ž			4			- 8	MT ni bebeoJ	SF	295	72	6	0	Air
0 0				0				RT Direction	10,	2	-	L	Ц	
				4			8	MT ni bebeoJ	SF	295	72	30	20.7	Argon
		_	-	0		1	(-)	RT Direction	100	2	L	Ľ	2	¥
140	120	100	80	9	40	20							Zm2	
-	-	-						c &		×	-	<u>8</u>	v N/m	E
			.niv	ksi			¥ S	iti oiti	Ape	-	_	-	Ľ	Medium
							0	bus	E	1	dus	900	Press	2
0	0			0	40	- 50	Test Duration (hrs)	Crack Propagation Direction and Loading Conditions	Specimen Type	1	=_		_	
160	140	8	. 6	8 09	4	2	Test	ck f	9				Suc	
		2	:/e ^w /!	NW			1-0	Cra	100			-) I	
				netal asen	100		7					Test	Conditions	
		20106	2 whise	oto! 2261	+2				_	L	!	- (_	

Figure 2-8: RESULTS OF STRESS CORROSION CRACKING TESTS FOR Ti-5AI-2.5 Sn (ELI) 0.35-INCH (0.89 cm.) THICK PLATE (Excluding Nitrogen, Helium and Hydrogen Tests)

					20	MT ni bebeoJ	SF	200	-423	0	3	L''2
		∇		/	01	MT ni bebeoJ	SF		2	1	+	
		δ,0			94	RW Direction		2	~-423			
		δ -			10	MT ni bebeo.J	SF	_	0	30	-	
		0 0			32	MW Direction	DCB	78	-320	E	20.7	GH ₂
		∇			01	MT ni bebec.J	SF	289	40 - 60	8		0
	•—	•			24	RW Direction	DCB	278-289	9	100	69	
t of SCC		δ 			12	MT Direction MT ni bebeod	SF	278-289	40 - 60	30	0,7	
nsity Factor at Outset of Test nsity Factor at Termination of Test t Medium Open Symbols Denote No SCC Solid Symbols Denote Occurrence of SCC	0				30	MM Direction	DCB	278	40	3	7	
insity Factor at Outset of Test insity Factor at Termination of it Medium Open Symbols Denote No SCC Solid Symbols Denote Occurrei		0			10	MT Direction	SF	20	23	00	7.0	GHe
ictor at 0 ictor at T im rmbols D rmbols D		0.0)		42	MM Direction	DCB		7	3	×	9
Stress Intensity Factor at Outset of Test ∆ Stress Intensity Factor at Termination of Test TM = Test Medium NOTE: Open Symbols Denote No SCC Solid Symbols Denote Occurrence o		4		,	12	MT Direction MT ni bebeod	SF	278-289	40 - 60	1,000	069	
Stress int Stress int TM = To NOTE:		δļο			10	MT ni bebeoJ	SF	278-289	40 - 60	0	.7	GHe
04	∇ $ $ 0				31	MW Direction Nebection Air	DCB	278	40	8	20.7	
		8			12	RT Direction Loaded in Env.	SF	78	-320	0	0	LN ₂
140	90	8 8 kai∧in.	94	8	(2)	on	8	¥	ı	psi	KN/m	Medium
					Test Duration (hrs)	ropegati n and Condit	Specimen Type		Lemp	Gage	Press	ž
160		C/E ^{W/NW}			Test	Crack Propagation Direction and Loading Conditions	Speci			Test	Conditions	
	Factor	ytienetal asent?	3				L	L		Ĕ	ŏ	

Figure 2-9: RESULTS OF STRESS CORROSION CRACKING TESTS FOR 5AI-2.5 Sn (ELI) TITANIUM 0.35 INCH (0.89 cm.)
THICK PLATE (NITROGEN, HELIUM, HYDROGEN TESTS)

•		9.0	Loaded in Air MT Direction MT ni bebeo.J	S SF	7.7	30	20.7	Methanol
*.			RW Direction	_	+	+	+	_
		\vdash	Loaded in Air RT Direction		13	7 8	30,7	Methanol +
*		-	MT ni bebsoJ		\dagger	+	+	+
•		\vdash	viA ni bebsoJ		795	7.7	30	Salt Water
←	•	47	MT Direction MT ni babsoJ	SF	+	+	-	en.
•—		<u> </u>	NA Direction	DCB	62	77	30	Dye Pen.
*		21	noitseriO TR MT ni bebsoJ	SF	92	2	0	×
δ		239	noitzeriO WR	DCB	28	1	8	MEK
-		12	MT Direction	SF	95	2	00	Ethanol +
<u>م</u> ٥		235	RW Direction	DCB	2			Etha
•		121	MT Direction	SF	96	72	30	Ethanol
 ○		738	RW Direction	DCB	2			1
∇		- 24	MT ni bebeoJ	SF	962	72	30	Dist Water
04		141	RW Direction	DCB		Ц		Dist
∇		- 8	RT Direction	R.	362	72	30	20.7
٥		237	RW Direction	+	Ц	Ц		+
Δ		- 2	RT Direction	+	Н	Н	H	7 0
1 1 0	<u> </u>	8	MT di babeo I	R.	58	72	-	20.7
120 KaliVin.	9 8	(£	stion	ed.	¥	u.	isd	M KN/m
1 1 1		tion (h	Propaga on and	nen Ty		I emp	Gege	Press
² /ε _{m/νιν} 8 8 8 8	20 40	Test	Crack F Directi Loadin	Specir			Test	Conditions
	2 8 8 8 9	20 KailVin. 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	20 - 150 - 0 - 100 - 0 - 0 - 0 - 0 - 0 - 0 - 0	120 We will be section (1rs) We will be se	120	120	120	120

RESULTS OF STRESS CORROSION CRACKING TESTS FOR 5AI-2.5Sn (ELI) TITANIUM 0.35 INCH (0.89 cm.) THICK GTA WELD CENTERLINES (EXCLUDING HYDROGEN AND HELIUM TESTS) Figure 2-10:

O Stress Intensity Factor at Outset of Test Δ. Stress Intensity Factor at Termination of Test TM = Test Medium NOTE: No SCC observed in Tests Summerized Below	1		4 4		24 15 10	MT ni bebeol	DCB SF SF	278-289 278-289	Γ	Γ	20,7 690	GHe
actor at Outset o actor at Termina m observed in Tests			♦		42 10	noissevid WR IA ni bebeoL Anoissevid TR MT ni bebeoL	DCB SF	8	-423	30	20.7	
f Test tion of Test Summerized Bel	8 —		8		33 9	MA Direction Loaded in Air MT nivection MT ni bebeo Loaded in TA	DCB SF	278-289	40 - 60	30	20.7	
wo	8		8		33	notraertion WR viA ni babao J notraertion TR	DC8 SF	278-289	40 - 60	8	69	
		♦			32 12	MY ni bebeod RW Direction Loaded in Air An Direction	DCB SF	78	-320	30		GH ₂
			8-		46	MT ni bebeol	BDCB :	2	~-423	0		
			8 −		12 9	MT ni bebaod MT Direction	SF SF		7	+	+	5

Figure 2-11: RESULTS OF STRESS CORROSION CRACKING TESTS FOR 5AI-2.5Sn (ELI) TITANIUM 0.35 INCH (0.89 cm.) THICK GTA WELD CENTERLINES (HYDROGEN AND HELIUM TESTS)

8	16	MT Direction Loaded in TM	SF	П				
8	8	MT ni bebeod		L .			7	ster
8	-6	MT Direction MT ni bebsoJ	DCB	295	72	30	8	Salt Water
1	262	WR Direction Loaded in Air						
•	16	MT Direction MT ni bebeoJ	SF	П				=
8	8	MT ni bebeoJ					7	Dye Pen. (ZL-48)
8	8	MT ni bebsoJ	DCB	295	72	30	20.	e Pen.
8	238	WR Direction Loaded in Air						٥
\	16	WT Direction Loaded in TM	SF					au.
	8	MT ni bebeoJ		2			7	ethyle
20 S	06	MT ni bebeoJ	DCB	295	72	30	20.	Trichloroethylene
Test missible T	407	WR Direction Loaded in Air						F
tion of the SCC Otte Power of Test	16	MT ni bebsoJ	SF					
ermina enote N ols Den	- 06	MT ni bebsoJ		2	_		7	Distilled Water
or at O	8	MT ni bebeoJ	DCB	295	72	30	20.7	Distille
nnsity Factor at Outset of Test nnsity Factor at Termination of Test at Medium Open Symbols Denote No SCC Solid Symbols Denote Possible Trace of SCC Solid Symbols Denote Occurrence of SCC OA OA OA OA OA	139	MY Direction						
Stress Intensity Factor at Outset of Test Stress intensity Factor at Termination of Test TM = Test Medium NOTES: Open Symbols Denote No SCC Half-Solid Symbols Denote Possible Solid Symbols Denote Occurrence o	50	MT Direction MT ni bebsod	SF	295	72	0	0	Air
0 4	01	MT Direction	SF	295	72	30	20.7	Argon
k#l√in. 3 & 8 5	irs)	rtion	ed.	¥		. DB	KN/m	Medium
	tion (t	Propega on and g Medis	Specimen Type		Temp	Gage	Press	Ň
Strees Intensity Factor Stress Intensity Factor Stress S	Test Duration (hrs)	Crack Propagation Direction and Loading Medium	Specin			Test	Conditions	

Figure 2-12: RESULTS OF STRESS CORROSION CRACKING TESTS FOR 2219-T87 ALUMINUM ONE INCH (2.54 cm.) THICK PLATE (EXCLUDING HAZARDOUS ENVIRONMENT TESTS)

٥	43	MR Divection	DCB	78	-320	30	20.7	LF ₂
4	33	NA Direction Loaded in Air	DCB	278-289	09-01	30	20,7	GF ₂
4	10	MT Direction MT ni bebeod	SF					
4	31	noitection NiA ni bebeod	DCB	78	-320	30	20.	LFLOX
4	10	MT Direction Loaded in TM	SF	68	00		1	×c
~ √	28	WR Direction Loaded in Air	DCB	278-289	40-60	30	20.	GFLOX
٥	10	MT Direction Loaded in TM	SF					2
4	32	NA ni bebeol	DCB	78	-320	30	20.7	LOF2
VO VO VO	=	MT Direction Loaded in TM	SF	68	30		7	2
₹	56	WR Direction Loaded in Air	DCB	278-289	40-60	30	20.7	GOF2
<u> </u>	90	MT Direction MT ni bebeoJ	SF	20	-423	0	0	LH2
O V O V	20	MT Direction MT ni bebeoJ	SF	~ 20	-423	0	0	
® <	20	MT Direction MT ni bebsod	SF		02	0	7.	
mariz	4	MR Direction Loaded in Air	DCB	78	-320	30	20.7	
to Test Ination of 1 Summari	10	MT Direction MT ni bebsoJ	SF	289	40-60	100	69	GH ₂
Outse	31	noitection viA ni bebeoJ	DCB	278-289	40	1		Ö
tor at tors at t	01	MT Direction MT ni bebeod	SF	289	40-60	0	20.7	
Stress Intensity Factor at Outset of Test Stress Intensity Factor at Termination of Test TM = Test Medium Note: No SCC Observed in Tests Summarized Below ODD ODD ODD ODD ODD ODD ODD ODD ODD OD	28	MR Direction Loeded in Air	DCB	278-289	40	3	×	
Intensi Intensi No SC	10	MT Direction MT ni bebeoJ	SF	78	2	30	20.7	LO2
O Stress I TM = Note:	22	MR Direction TiA ni bebsoJ	DCB	1	-320	3	2	2
0 4	12	MT Direction MT ni bebsoJ	SF	-289	09-0	0	0.7	GO2
4	32	MR Direction IA ni bebsoJ	DCB	278	4	6	L	
2 8 8 £ £		u 800		×	u	Dei	KN/m	En
	Test Duration (hrs)	opagatic n and Conditic	Specimen Type		dwa	Gage	Press	Medium
2, 2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Test	Crack Propagation Direction and Loading Conditions	Specim	ľ		-	Conditions	_
Stress Intensity Factor					Taet		3	

RESULTS OF STRESS CORROSION CRACKING TESTS FOR 2219-T87 ALUMINUM ONE INCH (2.54 cm.) THICK PLATE (HAZARDOUS ENVIRONMENT TESTS) Figure 2-13:

	1	240 24	notizertion Loaded in Air MT Direction MT ni bebeod	DC8 SF	230	72	30	20.7	Selt Water
	9	16	MT ni bebeod	SF	552	2	30	7.0	Dye Pen. (ZL-4B)
	₹	335	MM Direction	DCB	Z.	7	3	30	Dye Per
erent SCC	8	12	noitzeriO TR MT ni bebeoJ	SF	95	2	0	.7	ethylene
st of Test CC Trace of App	8	336	noisserid WR viA ni bebeod	DCB	295	7	30	20	Trichloroethylene
Stress Intensity Factor at Outset of Tast Stress Intensity Factor at Termination of Test TM = Test Medium NOTES: Open Symbols Denote No SCC Half-Solid Symbols Denote Trace of Apparent SCC Solid Symbols Denote Occurrence of SCC	₫	91	MT Direction	SF	5	2	0	7.	Distilled Water
nsity Factor ar nsity Factor ar Medium Open Symbols Half-Solid Sym Solid Symbols	8	407	MW Direction Loaded in Air	DCB	52	7.	30	20	Distille
O Stress Intensity Facts △ Stress Intensity Fact TM = Test Medium NOTES: Open Sym Half-Solid Solid Sym)	<u>4</u>	9	MT Direction MT ni bebsod	SF	78	-320	0	0	LN ₂
	8	91	MT Direction	SF	295	72	0	0	Air
- 64	ksiVin.	ion (hrs)	Crack Propagation Direction and Loading Medium	Specimen Type	¥	Temp	Gage psi	¥	1 2
50	Stress Intensity Factor Str _m /NM S	Test Duration (hrs)	Crack Propage Direction and Loading Medi	Specin			Test	Conditions	

RESULTS OF STRESS CORROSION CRACKING TESTS FOR 2219 ALUMINUM AS-WELDED GTA ONE INCH (2.54 cm) THICK WELD CENTERLINES (EXCLUDING HAZARDOUS ENVIRONMENT TESTS) Figure 2-14:

4	5	viA ni bebeoJ	DCB	78	320	30	2.7	F 2
▼	4	Loaded in Air NR Direction	$\overline{}$			-	7	7 7
ō	33	WR Direction	DCB	279-289	40-60	30	20.7	GF ₂
8	11	MT Direction Loaded in TM	SF	80	-320	30	.7	LFLOX
4	31	MR Direction	DCB	78	-3	3	20.7	LFL
4	10	MT ni bebsoJ	SF	588	09	0	.3	×o.
V	28	noitserid RW viA ni bebsoJ	DCB	278-289	40-60	30	20	GFLOX
4	10	MT Direction MT ni bebsoJ	SF	78	-320	0	20.7	LOF2
₫	32	WR Direction Loaded in Air	DCB	7	-3	67	20	2
4	10	MT Direction MT ni bebsoJ	SF	278-289	90	0	1.7	GOF2
ensity Factor at Outset of Test st st Medium No SCC Observed in Tests Summarized Below OA OA OA OA OA OA	26	MR Direction TiA ni bebeoJ	DCB	278	40-60	ē		
rizad	=	MT Direction MT ni bebeoJ	SF	8			0	LH ₂
Outset of Test Fermination of Test d in Tests Summarized Below	10	MT Direction MT ni babsoJ	SF	~ 20	~-423	0	0	
t of Te	10	MT Direction MT ni bebsoJ	SF	78	02	30	7.	
Outsel	4	noitceaid RW viA ni bebsod	DCB	7	-320	3	20,7	
tor at tor at O	15	MT Diraction MT ni bebsod	SF	289	9		0	GH ₂
yy Fac SCC C	30	MR Direction viA ni bebeoJ	DCB	278-289	40-60	100	69	
nternsit mternsit Next M	13	MT Direction MT ni bebeod	SF	-289	8		7	
O Stress Intensity Factor at Outset of Test A Stress Intensity Factor at Termination of Test TM = Test Medium NOTE: No SCC Observed in Tests Summari OA OA OA OA OA OA OA OA OA O	23	noitzeriG RW viA ni bebeoJ	DCB	278-289	40-60	30	20.7	
0 0 V	01	MT Direction MT ni bebeod	SF		2		1	2
<	20	MR Direction Loaded in Air	DCB	78	-320	30	20.7	102
₫	7	MT Direction MT ni bebaod	SF	289	9		-	2
	23	MR Direction Losded in Air	DCB	278	\$	3	20	00
20 30 40 50				¥	_	igo	KN/m*	Ε
kai Vin.	hrs)	odium dium	Type	L	L	╀	_	1 9
	Test Duration (hrs)	Crack Propagation Direction and Loading Medium	Specimen Type	L	Lemp	Gage	Press	Ĺ
^{Σ/ε} _{m/νм} β 8 8 5	Test	Crack Direct Loadii	Spec				Conditions	
Stress Intensity Factors					ļ	- (3	

RESULTS OF STRESS CORROSION CRACKING TESTS FOR 2219 ALUMINUM AS-WELDED GTA ONE INCH (2.54 cm) THICK WELD CENTERLINES (HAZARDOUS ENVIRONMENT TESTS) Figure 2-15:

Figure 2-16: NOMENCLATURE FOR DENOTING CRACK PROPAGATION DIRECTIONS IN PLATE MATERIAL AND WELD CENTERLINES

	T	T									WM Loaded in Air	68	9		T	~
	9 5	2	MT Direction						8	24	WR Direction BM Loaded in TM bebsod MW	278-2	40 - 6	8	69	GH ₂
-	21.4	71	noitæetion MT nibebeoJ		Base Metal (BM)	Weld Metal (WM)	Test Medium		238	138	WR Direction BM Loaded in MT ni WW Loaded in Air	295	72	30	20.7	MEK
	24	Q.	noitætid TR MT ni bebsod	Puegend	Bask	Wek	TM = Test		240	118	MR Direction BM Loaded MT ni WM Loaded in Air	295	72	30	20.7	Dist Water
=	0.083	0.083	ncitoeriO TR MT ni bebsoJ						144	114	MR Direction M8 bebsod M8 MT ni MW Loaded MW ni hi M ni	295	72	30	20.7	Dye Pen (ZL-2A)
	121	15	MT Direction						238	118	WR Direction BM Loaded MT ni bebeod MW ni A ni	295	72	30	20.7	Ethanol
	12	16	noitzeriG TR MT ni bebso.J						240	120	noispeni GWW bebso JWW MTni bebso JWW	295	72	30	20.7	Ethanol + 2% Dist Water
	9,0	0,06	noitsertion MT ni bebeoJ			•			89	238	M Direction bebsod M8 ni A ni ni bebsod MW viA	362	72	30	20.7	Methanol
=	2	2.2	MT Direction						166	118	WR Direction BM Loaded MT ni WM Loaded in Air	1	72	30	20.7	Methenol + 2% Dist Water
=		0,008							5	311	Debeod M8 bebeod M7 ni M7 ni bebeod MW Ni A ni	395	72	30	7.07	Salt Water
0.20 Inch	WW	L	pagetion and onditions		2.0		rbnl O		-	WW BM	\$ 7 E	×	L		2	4 2
Crack Depth Growth, △a.	Test	Duration (hrs)	Crack Propagation Direction and Loading Conditions	-	5.0	4	cm cm r			Furnation (hre)	Crack Propagation Direction and Loading Condition	-	Lemp	Gage	Conditions Press	Ĺ
stiuseR nen		dS	4S	ľ			271	useA rier	ni ၁e	dS	DCB			188	8	

Figure 2-17: SUMMARY OF SCC CRACK GROWTH OBSERVED IN TESTS OF 0.35 INCH (0.89 cm.) THICK 5AI-2.5 Sn (ELI)
TITANIUM PLATE MATERIAL AND GTA WELD CENTERLINES

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Figure 2-18: FRACTURE SURFACES OF 5AI-2.53n (ELI) TITANIUM ALLOY SPECIMENS

Figure 2-19: EFFECT OF TEMPERATURE AND VOLUME PERCENTAGE OF WATER ON TIME TO FAILURE FOR SMOOTH TITANIUM FO!L SPECIMENS (REF. 10)

SCHEMATIC REPRESENTATION OF THE RELATIONSHIP BETWEEN INCUBATION PERIOD, CRACK GROWTH, AND TIME TO FAILURE FOR ENVIRONMENTALLY INDUCED CRACK GROWTH Figure 2-20:

Crack-Tip Stress Intensity

Figure 2-21: GENERALIZED VELOCITY VERSUS STRESS INTENSITY RELATIONSHIP FOR STRESS CORROSION CRACKING

Figure 2-22: EFFECT OF SPECIMEN THICKNESS ON SCC SUSCEPTIBILITY OF Ti-8AI-1 Mo-1V (DA) and Ti-6AI-4V (MA) IN 3.5% NaCl SOLUTION (REF 15)

Figure 2-23: RESULTS OF SF SPECIMEN THICKNESS EFFECT TESTS

Figure 2-24: SURFACE CRACK DEPTH GROWTH DURING LOAD—UNLOAD AND SUSTAINED LOAD TESTS IN AIR AND ARGON

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Figure 2-25: FRACTURE SURFACES OF 2219-T87 ALUMINUM ALLOY DCB SPECIMENS.
SPECIMENS S-2 AND S-4 WERE TESTED IN SALT WATER. SPECIMEN 55
WAS LOADED THEN IMMEDIATELY UNLOADED IN AIR.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Figure 2-26: FRACTURE SURFACES OF 2219 ALUMINUM ALLOY WELD METAL DCB SPECIMENS TESTED IN SALT WATER SHOWING TYPICAL NONUNIFORM INITIAL FATIGUE CRACKS AND TRACES OF APPARENT SCC.

LEGEND

Sustained Load Tests at σ = 22 ksi (151.7 MN/m²)
All Environments Except Salt Water

Sustained Load Tests at σ = 25 ksi (172.4 MN/m²) All Cryogenic Environments

Sustained Load Test at σ = 22 ksi (151.7 MN/m²) in Salt Water

O Load—Unload Tests at $\sigma = 22$ ksi (151.7 MN/m²);

■ Load—Unload Tests at σ = 25 ksi (172.4 MN/m²)

Figure 2-27: SURFACE FLAW DEPTH GROWTH OBSERVED DURING TESTS OF ONE INCH (2.54 cm) THICK 2219 GTA WELD CENTERLINES

Sustained Load Specimen WS-1 (Tested in Salt Water) Medium: Salt Water K_{Ii}: 24 Ksi $\sqrt{\text{In}}$. (26MN/m³/2) Test Duration: 24 hrs.

- Marking Fatigue Growth During Loading-

Load-Unload Specimen WDP-1A (Tested in Air) Test Medium: Air K_{II}: 24 Ksi $\sqrt{1n}$. (26 MN/m^{3/2})

Figure 2-28: FRACTURE SURFACES OF 2219 ALUMINUM AS-WELDED SF SPECIMENS ILLUSTRATING CRACK GROWTH DUE TO LOAD-UNLOAD PROFILE IN AIR AND SUSTAINED LOAD PROFILE IN SALT WATER.

KEI KODOCIDIEITI OI III

-Initial Fatigue Crack - Apparent SCC Marking Fatigue -

Sustained Load Specimen AD-1 Test Medium: Dye Penetrant K_{Ii}: 37 Ksi√In. (41 MN/m³/²) Test Duration: 15 hrs. Apparent SCC

Sustained Load Specimen AT-1 Test Medium: Trichloroethylene Kli: 37 Ksi $\sqrt{\ln.}$ (41 MN/m³/²) Test Duration: 16.2 hrs.

Figure 2-29: FRACTURE SURFACES OF 2219-787 ALUMINUM ALLOY BASE METAL SURFACE. FLAWED SPECIMENS SHOWING TRACES OF APPARENT SCC.

Figure 2:30: CRACK GROWT!! DURING RISING LOADS FOR 2219 AS WELDED GTA WELD CENTERLINE

Figure 2-31: EFFECT OF OUTDOOR EXPOSURE AND STRESS INTENSITY ON STRESS-CORROSION CRACK VELOCITY OF SEVERAL HIGH-STRENGTH ALUMINUM ALLOYS (REF. 16)

Figure 2-32: TYPICAL V-K CURVES FOR SOME 2000-SERIES ALLOYS OBTAINED USING TR DCB STRESS-CORROSION SPECIMENS (REF. 16)

Figure 2-33: CORRELATION OF SOLUTION POTENTIAL WITH STRESS-CORROSION PERFORMANCE OF 2219-T87 ALLOY PLATE. IN THE UPPER PLOT, THE SMALL NUMBERS INSIDE CIRCLES INDICATE THE NUMBER OF SPECIMENS TESTED (REF. 17)

Figure 3-1: MECHANICAL PROPERTIES FOR MATERIALS USED IN COMPATIBILITY STUDIES PERTINENT TO HIGH ENERGY UPPER STAGE PROPULSION SYSTEMS

Figure 3-2: PRESSURE CUP INSTRUMENTATION USED FOR DETECTING SURFACE CRACK PENETRATION OF SPECIMEN THICKNESS

Figure 3-3: EXAMPLE OF TEST RECORD OBTAINED FROM INSTRUMENTATION SHOWN IN FIGURE 3-2 DURING STATIC FRACTURE TEST OF SURFACE FLAWED SPECIMEN

Figure 3-4: LOADING TRAIN AND CRYOSTAT FOR UPPER STAGE MATERIAL/ENVIRONMENT COMBINATION TESTS.

Figure 3-5: SYSTEM USED FOR TESTING UPPER STAGE MATERIAL/ ENVIRONMENT COMBINATIONS IN METHANE

Figure 3-6: SYSTEM USED FOR TESTING UPPER STAGE MATERIAL/ ENVIRONMENT COMBINATIONS IN FLUORINE AND FLOX

Figure 3-7: RESULTS OF -320F (78K) PROOF OVERLOAD TESTS FOR ALUMINUM AND TITANIUM ALLOY SF SPECIMENS

NOTE: MICROMETER MEASUREMENTS MADE BETWEEN POINTS A

ALL DIMENSIONS IN INCHES (CENTIMETERS)

Figure B1: DCB SPECIMEN AND INSTRUMENTATION FOR COMPLIANCE TESTS

Figure B2: DEFLECTION MEASUREMENTS BETWEEN OUTER SURFACES
OF DCB SPECIMEN ARMS

Figure B3: FRACTURE SURFACES FOR 2219-T87 ALUMINUM DCB SPECIMENS USED TO EVALUATE EFFECT OF GROOVE SHAPE ON CURVATURE OF FATIGUE CRACK FRONT

The state of the s

Figure C1: SURFACE FLAWED SPECIMEN FOR ALUMINUM BASE METAL

Figure C2: SURFACE FLAWED SPECIMEN FOR ALUMINUM WELD METAL

NOTE: All Dimensions In Inches (Cm)

Figure C3: SURFACE FLAWED SPECIMEN FOR TITANIUM BASE METAL @ ROOM TEMPERATURE

Figure C4: SURFACE FLAWED SPECIMENS FOR TITANIUM WELD METAL @ ROOM TEMPERATURE

Figure C5: SURFACE FLAWED SPECIMEN FOR TITANIUM BASE METAL & WELD METAL @ -320°F (78K)

Figure C6: SURFACE FLAWED SPECIMEN FOR TITANIUM BASE METAL & WELD METAL @ 423ºF (20ºK)

Figure C7: TITANIUM BASE METAL VARIABLE THICKNESS TEST SPECIMENS

. .

Figure C8: DCB SPECIMEN CONFIGURATIONS

Figure C9: 5AI-2.5Sn (ELI) WELD METAL TENSILE SPECIMEN

(a): Tensile specimen for 304 S.S., 5A I-2.5 Sn (ELI) titanium, 6A I-4V (ELI) annealed titanium, 2219-T87 aluminum and 2219-T6E46 aluminum

(b): Tensile specimen for 6A I-4V (ELI) STA titanium

Figure C10: TENSILE SPECIMENS

17.

Figure C11: ALUMINUM SUSTAIN LOAD SURFACE FLAWED SPECIMENS

. .

Figure C-12: TITANIUM SUSTAINED LOAD SURFACE FLAWED SPECIMEN

Table 2-1: TEST PROGRAM FOR EVALUATING STRESS CORROSION CRACKING RESISTANCE OF 2219-T87 ALUMINUM ALLOY BASE AND WELD METAL

TEST E	NVIRON	MENT		NUMBE BASE METAL∕ TES	WELD METAL TS
меріим	PHASE	TEMPERATURE, of (^o K)	GAGE PRESSURE, PSI (kN/m ²)	DCB SPECIMENS (1.0 INCH THICK) (2.54 cm THICK)	SP SPECIMENS (0.625 INCH THICK) (1.59 cm THICK)
Distilled Water (DW) DW + 3½% NaCl Trichloroethylene Dye Penetrant (ZL-4B) Room Air Nitrogen Hydrogen Hydrogen Hydrogen Hydrogen Oxygen Oxygen Oxygen Oxygen Diflouride Oxygen Diflouride FLOX (80% F2, 20% O2) FLOX (80% F2, 20% O2) Flourine Flourine	Liquid Liquid Liquid Gas Liquid Gas Gas Gas Gas Liquid Gas Liquid Gas Liquid Gas Liquid Gas Liquid Gas	72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 760 (288) 7320 (78) 760 (288) 7320 (78) 760 (288) 7320 (78) 760 (288) 7320 (78) 760 (288) 7320 (78)	30 (20.7)	3/3 3/3 3/3 0/0 0/0 3/3 3/3 3/3 3/3 3/3	2/2 2/2 2/2 2/2 3/2 0/2 1/1 1/1 2/2 3/5 3/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 0/0 0/0 3/0

NOTES:

- (1) Crack Planes Parallel to Rolling Direction in Base Metal Specimens
- (2) Cracks at Weld Centerline in Weld Metal Specimens
- (3) All DCB Specimens Loaded in Room Air
- (4) SF Specimens Loaded in Test Environment

Table 2-2: TEST PROGRAM FOR EVALUATING STRESS CORROSION CRACKING RESISTANCE OF 5AI-2.5 Sn (ELI) TITANIUM ALLOY BASE AND WELD METAL

TEST	ENVIRO	NMENT		NUMBE BASE METAL! TES	WELD METAL
МЕDIUМ	PHASE	TEMPERATURE, of (oK)	GAGE PRESSURE, PSI (kN/m ²)	DCB SPECIMENS, 0.375 INCH THICK (1.59 cm THICK)	SPECIMENS, 0.375 INCH THICK (1.59 cm THICK)
Distilled Water (DW) DW + 3½% NaCl Acetone Methanol (MA) MA + 2% DW Ethanol (EA) EA + 2% DW Methyl Ethyl Ketone Dye Penetrant (ZL-2A) Room Air Argon Helium Helium Helium Nitrogen Hydrogen Hydrogen Hydrogen Hydrogen	Liquid Liquid Liquid Liquid Liquid Liquid Liquid Liquid Gas Gas Gas Gas Liquid Gas Gas Gas	72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (295) 72 (296) 72 (298) ~60 (288) ~320 (78) ~60 (288) ~320 (78) ~423 (20)	30 (20.7) 30 (20.7) 30 (20.7) 30 (20.7) 30 (20.7) 30 (20.7) 30 (20.7) 30 (20.7) 30 (20.7) Ambient 30 (20.7) 30 (20.7) 30 (20.7) 1000 (689.5) Ambient 30 (20.7) 100 (69.0) 30 (20.7)	3/3 3/3 3/3 3/3 3/3 3/3 3/3 0/0 0/0 3/3 3/3	1/2 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

NOTES:

- (1) Crack Planes Perpendicular to Holling Direction in All Base Metal Specimens
- (2) Cracks at Weld Centerline in Weld Metal Specimens
- (3) All DCB Specimens Loaded in Room Air
- (4) All SF Specimens Loaded in Test Environment

Table 2-3: LOAD-IN-ENVIRONMENT TEST PROGRAM FOR 2219-T87 ALUMINUM AND 5AI-2.5 Sn (ELI)
TITANIUM BASE METAL DCB SPECIMENS

		TE	ST ENVI	RONMENT	NO		
ALLOY	TEMP (^O F)	PRESSURE (PSIG)	PHASE	МЕDIUМ	CRACK ORIENTATION	NUMBER OF TESTS	TEST DURATION (HRS)
				Distilled Water (DW)	WR RW	1	100 100
				DW + 3 ½% NaCl	WR RW	1	100 100
Ę				Acetone	WR RW	1	100 100
umin	72	Amb	Liquid	Methanol + 2% DW	WR RW	1	100 100
87 AI	, , _	7.111.0	Liquid	Methyl-Ethyl Ketone RW Ethanol RW	WR RW	1	100 100
2219-T87 Aluminum	·				WR RW	1	100 100
, i				Ethanol + 2% DW	WR RW	1	100 100
				Dye Penetrant (ZL-2A)	WR RW	1	100 100
[1]				Distilled Water (DW)	WR RW	1	100 100
Sn(E	70	A b	mt Liquid -	DW + 3 1/2% NaCl	WR RW	1	100 100
Ti-5Al-2.5Sn(ELi)	72	Amt		Liquid	Trichloroethylene	WR RW	1
Ti-5				Dye Penetrant (ZL-4B)	WR RW	1	100 100

Table 2-4: TEST PROGRAM FOR EVALUATING EFFECT OF SURFACE FLAWED SPECIMEN THICKNESS ON STRESS CORROSION CRACKING SUSCEPTIBILITY OF 5AI-2.5 Sn (ELI) TITANIUM ALLOY

MATERIAL	TEST ENVIRONMENT	SPECIMEN 7HICKNESS (IN.)	LOADING SEQUENCE	NO. OF TESTS
5AI-2.5 Sn (ELI)	ARGON GAS AT 72°F METHANOL LIQUID AT 72°F	0.20	LOAD-UNLOAD SUSTAINED LOAD	- 2
TITANIUM BASE METAL WITH CRACK PLANE PERPENDICULAR TO THE	ARGON GAS AT 72 ⁰ F METHANOL LIQUID AT 72 ⁰ F	0.10	LOAD-UNLOAD SUSTAINED LOAD	7 7
CONGITUDINAL ROLLING) DIRECTION	ARGON GAS AT 72°F METHANOL LIQUID AT 72°F	0.0 5 0.05	LOAD-UNLOAD SUSTAINED LOAD	2

Ţ

Table 2-5: CHEMICAL COMPOSITIONS OF MATERIALS

ELEMENT (% BY WEIGHT EXCEPT AS NOTED)	2219 ALUMINUM	PLATE	5AI-2.5Sn(ELI) TITANIUM SHEET (0.040 IN. THICK)	5AI-2.5Sn(ELI) TITANIUM PLATE (0.350 IN. THICK)	6AJ-4VELI) TITANIUM PLATE
	MIN	MAX			
COPPER	5.8	6.8	_	-	
SILICON	-	0.20	-	_	-
MANGANESE	0.20	0,40	0.003	<0.01	-
MAGNESIUM	-	0.02	-	_	-
IRON	-	0.30	0.07	0.19	0.06
CHROMIUM	_	-		-	-
ZINC	-	0.10	444		-
VANADIUM	0.05	0.15		_	4.0
ZIRCONIUM	0.10	0.25	_	_	
CARBON	-	-	0.015	0,02	0.023
NITROGEN (PPM)	-	_ '	120		90
OXYGEN (PPM)	-	-	800	940	1,110
HYDROGEN (PPM)	-		110	94	50
PHOSPHOROUS	-	-	-	-	-
SULFUR	-	-	-	-	-
TIN	-	_	2.7	2.5	
NICKEL	-	-		-	-
MOLYBDENUM	-	-	_	_	-
TITANIUM	0.02	0.10	EMAINDER	REM	REMAINDER
ALUMINUM	REM	INDER	5.9	5.1	5.9
OTHER	-	-	-		_
					1

Table 2-6: MECHANICAL PROPERTIES OF MATERIALS

ALLOY	ME	LOADING DIRECTION $\begin{bmatrix} T = Trans verse \\ L = Longitudinal \end{bmatrix}$	TEMPERATURE (^o F)	ULTIMATE TENSILE STRENGTH (KSI)	0.2 PERCENT OFFSET YIELD STRENGTH (KSI)	ELONGATION IN 2.0 INCH GAGE LENGTH (%)
AL	NECOLL 1.0 Inch T87 Plate	T	72 -320	99 86	0.2 55 66	8 2:0 GA
2219	0, 25 Inch T87 Plate	T T	-423 72 -320	101 69 87	69 55 67	11 10 12
Aluminum	1.0 Inch	T	72	40	20	8
	As-Welded	T	-320	56	25	9
	GTA Weld	T	-423	67	28	11
	0.125 Inch	T	72	66	48	12
	T6E46 Plate	T	-320	81	57	13
e	0.35 Inch Plate	L L L	72 -320 -423	119 190 209	114 179 196	13 9 5
5Al-2.5Sn(ELI)	0,04 Inch	T	72	117	112	14
Titanium	Sheet	T	-320	180	173	16
	0.35 Inch GTA Weld	T T T	72 -320 -423	126 192 224	117 184 204	11 9 7
6Al-4V (ELI	0.375 Inch	T	72	125	122	15
	Plate	T	-320	198	193	6
Titanium	0,375	T	72	162	150	9
	STA Plate	T	-3 20	225	214	4

Table 2-7: FRACTURE TOUGHNESS DATA FOR MATERIALS USED IN EVALUATING STRESS CORROSION CRACKING IN 2219-T87 ALUMINUM AND 5AI-2.5 Sn (ELI) TITANIUM

			-							-	
s.	ALUES	AVG. VALUE	32	38	I	115	59	51	1	82	89
MEN TEST	HNESS V. IT PROGR	RANGE OF VALUES	31.6-32.2	38.4-37.7		ſ			ŀ	-	1
DCB SPECIMEN TESTS	FRACTURE TOUGHNESS VALUES FROM PRESENT PROGRAM (KSIVIN.)	NUMBER RANGE OF TESTS VALUE	2	2		1	1	1	ļ	1	1
Q	FRACTU	TEST DIREC TION	WR	WR	1	RW	RW	RW		1	
	SHNESS	AVG. VALUE	40	43	47	1	84	70		84	0/
	FRACTURE TOUGHNESS VALUES* FROM PRESENT PROGRAM (KSIVIN.)	RANGE OF VALUES	38-43	1	1		-	İ	1	1	
STS	FRACTI	NUMBER RANGE OF TESTS VALUE	30	ļ	1		1	1	4	l.	l
SF SPECIMEN TESTS	ALUES*	AVG. VALUE	40	42	44	-	85	61	_	_e 58	75a
SF SPE(TURE TOUGHNESS VALUES* FROM REF (KSIVIN.)	RANGE OF VALUES	38-42	38-45	41-47	1	83-87	59-64	_	ı	
	FROM REF (KSIV/IN.)	IG NUMBER RANGE OF OF TESTS VALUE	4	8	8	-	2	8	-	J	١
	FRACT	LOADING DIREC- TION	Trans.	Trans.	Trans.	Long.	Long.	Long.	ı	1	1
	EMP (OF)		72	-320	.423	72	-320	-423	72	-320	-423
	וו∀ר	нэтам	2219-T87	· · ·	Base Metal	Ti.541.2 5cm	(ELI)	Base Metal		Ti-5AI-2.5Sn Weld Metal	

a Obtained From Ref

* $K_{IE} = 1.1 \sigma \sqrt{\pi a/Q}$; σ * Failure Stress

Table 2.8: SCC TEST RESULTS FOR 5AI-2.5 Sn (ELI) TITANIUM ALLOY BASE AND WELD METAL

ENVIRONMENT CRACK T GROWTH D (IN.) (IN.) (IN.)	ULTS ^{ac} TEST		- Pc	***************************************	*	L	
	<u> </u>	SF RESULTS DC		DCB RESULTS ~	TS er	SF RESULIS	LTS ~:
	(HRS)	CRACK GROWTH (IN.)	TEST DURATION (HRS)	CRACK GROWTH (IN.)	TEST DURATION (HRS)	CRACK GROWTH (IN.)	TEST DURATION (HRS)
	118	NIF	16	90:0	240	NF	24
SALT WATER 2.05	116	ס	0.0083	0.13	150	p	0.17
METHANOL 1.58	738	0.05	92	0.33	89	0.07	9.0
METHANOL + 2% DW 1.66	118	70	ιά	0.32	166	р	2.2
ETHANOL + 2% DW 1.62	120	90.0	16	N. L.	240	0.38	12
MEK	138	Ä	12	NL	238	ъ	21.4
DYE PENETRANT 1.13 (ZL-2A)	‡	ъ	0.083	1.12	144	70	0.083
HYDROGEN GAS 0.47 TEMP = AMB PRESS = 100 PSIG	24	į	01	II.	30	Z Z	o

WR DIRECTION NOTES:

WT DIRECTION
LOADED IN ENVIRONMENT
SPECIMEN FAILED
LOADED IN AIR
WELD CENTERLINE

Table 2-9: RESULTS OF SF SPECIMEN THICKNESS EFFECT TESTS FOR RW DIRECTION OF Ti-5AI-2.5 Sn (ELI) PLATE IN LIQUID METHANOL AT 72ºF

		CRACK DEI GROWTH, ⁽ (IN.)	0.009	0.022	0.016	0.011	0.057	0.009	0.012	0.016
		(KSI Ą <u>IM</u> ') OŁ TEST K [*] AT END	45	Se Se	45	40	RI		æ	œ
NG	IINN	K, AT BEGI OF TEST (KSI ŲIN.)	40	45	30	37	ස	40	47	88
		TIME AT (HRS)	0	23.1	15.9	0	15.6	0	20.5	16.5
	SS	(KSI) FEVEL PEAK STRES	75.0	80.0	70.0	75.0	80.0	75.0	80.0	70.0
	AFTER TEST	LENGTH (IN.)	0.410	0.400	0.400	0.290	0.273	0.182	0.178	0.186
ENSIONS	AFT	DEPTH (IN.)	0.083	0.102	0.094	0.059		0.044	æ	æ
CRACK DIMENSIONS	BEFORE TEST	LENGTH Sc (IN.)	0.410	0.400	0.400	0.290	0.273	0,182	0.178	0.186
	DEPTH (IN.)		0.074	0.080	0.078	0.048	0.047	0.035	0.038	0.035
	TEST ENVIRONMENT		ARGON	METHANOL	METHANCL	ARGON	METHANOL	ARGON	METHANOL	METHANOL
SPECIMEN		GAGE WIDTH (IN.)	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
SPEC		THICKNESS (IN.)	0.202	0.201	0.201	0.103	0.10	0.051	0.050	0.051
	٥١.	TEST N	-	7	က	4	'n	ဖ	,	~

a CRACK GREW THROUGH SPECIMEN THICKNESS $* K_{I} = 1.1 \, \text{MK} \, \sigma \sqrt{\frac{\pi a}{\Omega}}$; MK FROM REFERENCE 9

Table 2-10: RESULTS OF TESTS TO EVALUATE SURFACE FLAW GROWTH CHARACTERISTICS DURING RISING AND MONOTONIC LOADS

	ENVIRONMEN	MENT	SPECIM	SPECIMEN DETAILS	AILS	CR,	CRACK DIMENSIONS	NENSION	SI	APPLIED	APPLIED STRESS	RESULTS	ILTS
		эыг	NOIT		(°N1)	BEFORE TEST	ORE	AFTE TEST	AFTER TEST	=	SS		HT 6.4
MATERIAL	WEDINW	ЛЕМРЕВАТ((२ ⁰)	DENTIFICA	GAGE WIDTH (IN.)	THICKNESS CAGE	DEPTH ,	, HTDIW 2c (IN.)	DEPTH,	, HTGIW Sc (IN.)	MAGNITUDE (KSI)	TIME AT PEAK STRES (HRS)	K _I AT END OF TEST (KSI √IN.)	СВАСК DEP' СВОМТН, ∆ (IN.)
2219-T87 ALUMINUM	AIR	72	AR-2 AR-3	6.00 5.98	0.606	0.252	0.925	0,260	0,925	44.5 44.5	0	36.7 36.7	0.008
RASE METAI			AH-4	6.00	0.591	0.249	0.915	0,259	0.915	44.5	20	37.3	0.010
(WR DIRECTION)	ARGON	72	AA-1 AA-2	6.00	0.604	0,246	0.925	0.256	0,925 0,925	44.5	0	36.9 36.9	0.010
AI-2219 WELD METAL	AIR	72	WDF-1A WAP-2	6.00 5.99	0,904	0.430	1.475	0.475	1.475	22.0 22.0	0 16	23.9 23.9	0.045
Ti-5Al-2.5Sn	AIR	72	TAR-1A TAR-3	4.00	0.397	0.204	1,000	0.210	1,00	90.0	0	67.2 67.2	0.006
ELI BASE			IAH-4	4.00	0.399	0.164	0.930	0,186	0,935	86.0	20	66.0	0.022
METAL (RW DIRECTION)	VEGON	72	TAA-1	4.00	0,399	0.172	0.940	0.184	0,940	86.0	0	0.99	0.012
		!	TAA-3	4.00	0.399	0.168	0.925	0.182	0.930	86.0	39	65.5	0.014
			TAAW-1	3.25	0.334	0.182	0.950	0,182	0.950	86.0	0	929	0
Ti-5AI-2.5Sn	ARGON	72	TAAW-2	3.25	0,335	0.178	0.950	0.180	0.950	0.98	-	65.6	0.002
ELI WELD			TAAW-3	3.25	0.337	0.178	0.960	0.180	0.960	86.0	20	65.4	0.002
METAL	210	7.	TARW-3	3.25	0.334	0.175	0.945	0.175	0.945	86.0	-	64.8	0.002
			TARW-4	3.25	0.338	0.186	0.965	0.188	0,965	86.0	20	99.5	0.002

Table 2-11: RESULTS OF TESTS TO EVALUATE SURFACE FLAW GROWTH DURING RISING LOAD AT CRYOGENIC TEMPERATURES

	ENVIRONMENT	NMENT	35	SPECIMEN DETAILS	ETAILS		CRACK DI	CRACK DIMENSIONS		APPLIED STRESS	STRESS	RES	RESULTS
лАія			NOITA		S	BEFORE TEST)RE	AFTER TEST	R	DE	SS∃		HT q s∆
∃TAM	MEDINM	TEMP (3 ⁰)	IDENTIFIC	GAGE HTGIW (.NI)	GAGE (IN.)	DEPTH (IN.)	LENGTH (IN.)	DEPTH (IN.)	(IN.) Sc (ENGTH	MAGNITUI (KSI)	TIME AT PEAK STR (HRS)	K _I AT END OF TEST (KSIVIN.)	CHACK DE
AI-2219-T87 (WR DIRECTION)	rH ₂	-423	X-2	9.00	0.60≠	0.237	0.920	0.240	0.920	50.8	0	42,3	0.003
	02	-320	WS-1	6.00	0.933	0.430	1.46	0.465	1.46	25.0	0	27.3	0.035
	Н2	-320	WH-7	00.9	0.897	0.425	1.47	0.450	1.47	25.0	0	27.8	0.025
AI-2219	LN ₂	-320	WAN-2	9.00	0.915	0.422	1.49	0.467	1.49	25.0	0	27.5	0.045
WELD METAL	GH ₂	413	WH-10	9.00	0.909	0.417	1.47	0.460	1.47	25.0	0	26.9	0.045
			WH-2	00.9	0.900	0.420	1.48	0.430	1.48	22.0	0	23.2	0.011
Ti-5AI-2.5Sn													
(ELI),RW	GH ₂	413	TH-4	1.10	0.355	0.086	0.264	0.086	0.264	139.3	0	64.4	0
DIRECTION													

Table 2-12: SURFACE FLAW DEPTH GROWTH OBSERVED DURING TESTS OF 2219 WELD CENTERLINES

TEST TYPE	SPECIMEN IDENTIFICATION	MEDIUM	TEMPERATURE (^O F)	PEAK STRESS LEVEL (KSI)	TIME AT PEAK STRESS (KSI)	CRACK DEPTH GROWTH (△a) (IN.)
	WPP-1A	AIR	72	22.0	0	0.045
LOAD-UNLOAD	WH-7 WAN-2	GH ₂ LN ₂	-320 -320	25.0 25.0	0 0	0.02 5 0.045
LOAD-	WH-10 WH-2	GH ₂ GH ₂	-423 -423	25.0 22.0	0 0	0.0 45 0.011
	WS-1 WS-2	H ₂ O + 3.5% NaCl	72 72	22.0 22.0	24 15	0.075 0.030
	WDW-2 WT-2 WDP-2	DIST H ₂ O TcE DYE PEN	72 72 72	22.0 22.0 22.0	16 12 16	0.035 0.030 0.035
	WOF-1 WOF-3	GOF ₂	72	22.0	10	0.040
	WFX-1 WFX-2	GFLOX	72	22.0	7 10	0.030 0.040
D LOAD	WH-1 WH-3	GH ₂	72	22.0	15 10	0.035 0.030
SUSTAINED LOAD	WO-1 WO-2	60 ₂	72	22.0	14 10	0.035 0.035
ਡ	WOF-4 WOF-6	LOF ₂	-320	22.0	7 10	0.030 0.040
	WFX-3 WFX-4	LFLOX	-320	22.0	8 11	0.025 0.025
	WH-5 WO-3	GH ₂ LO ₂	-320	25.0	10	0.070 0.060
	WH-14 WH-8	GH ₂	-413	22.0 25.0	10	0.020 0.100
	WH-11 WO-4	WH-2	-423	22.0 25. 0	12 11	0.020 0.070

Table 3-1: TEST PROGRAM FOR UPPER STAGE MATERIAL/ENVIRONMENT COMBINATIONS

	E	NVIRONMENT	r	TEST D	TAILS
MATERIAL	МЕDIUМ	PHASE	TEMPERATURE (⁰ F)	TEST DURATION (HRS)	NUMBER OF TESTS
	FLUORING	GAS	-275	10	2
	PLOORINE	LIQUID	-320	10	2
ALUMINUM 2219-T6E46 BASE METAL	FLOX	GAS	-275	10 500	2 2
	20% O ₂)	LIQUID	-320	10 500	2 2
	FLUORING	GAS	-275	10	2
	FLUUKINE	LIQUID	-320	10	2
	ELOY	GAS	-275	10 5 0 0	2 2
ALUMINUM 2219-T87	r LUX	LIQUID	-320	10 500	2 2
BASE METAL		GAS	-225	10 40 500	2 2 2
	METHANE	LIQUID	-250	10 40 500	2 2 2
TITANIUM	METHANE	GAS	-225	10 40 500	2 2 2
5AI-2.5Sn (ELI) BASE METAL	METOANE	LIQUID	-250	10 40 500	2 2 2
TITANIUM	### ### ##############################	10 40 500	2 2 2		
6AI-4V STA BASE METAL	MEINANE	ORINE GAS -275	-250	10 40 500	2 2 2
TITANIUM	METHANE	GAS	-225	10 40 500	2 2 2
6AI-4V ANNEALED BASE METAL	MEINANE	LIQUID	-250	10 40 500	2 2 2

Table 3-2: RESULTS OF -320°F PROOF OVERLOAD TESTS FOR 2219 ALUMINUM ALLOY SURFACE FLAWED SPECIMENS

	NOTES	a NOT DETERMINED b DID NOT GROW THROUGH THICK- NESS AT PEAK STRESS c GREW THROUGH AFTER 40 SECONDS AT 59 KSI	CRACK DIMENSIONS SELECTED FOR SUSTAINED LOAD TEST	ALLOY a(IN.) 2c(IN.) TR7 0.022 0.220	46 0.035				
ED	(KSI) GBOSS STRESS AT	55.3 57.4 a 63.0			•	G	œ	G	
	GROSS STRESS AT WHIC FLAW GREW THROUGH SPECIMEN THICKNESS (а в 59.0°			۵	۵	۵	۵	
	TARGETED PEAK (KSI)	59.0 59.0 59.0			46.0	46.0	46.0	46.0	
FLAW	MIDTH, 2c (IN.)	0.315 0.276 0.255 0.240			0.210	0.255	0.300	0.373	
INITIAL FLAW	© CEPTH, © (IN.)	0.029 0.028 0.026 0.024			0.022	0.026	0.028	0.035	
	(IN') LHICKNESS	0.041			0.039	0.041	0.041	0.041	
SPECIMEN	HTQIW (.NI)	2.00			2.20	2.20	2.20	2.03	
	илмвек	A-5 A-7 A-8			AL-1	AL-2	AL-4	AL-6	
	ΑΡΓΓΟΑ	78T-61SS			91	7 39.	L-6	551	

Table 3-3: RESULTS OF -320°F PROOF OVERLOAD TESTS FOR TITANIUM ALLOY SURFACE FLAWED SPECIMENS

	-,	SPECIMEN		INITIAL	FLAW			сн	
JAIЯ∃TAM	ЯЗВМОМ	HTGIW (.NI)	(IN') LHICKNESS	DEPTH, a.	MIDTH, 2c (IN.)	TARGETED PEAK TARGETED PEAK	GROSS STRESS AT WHIC SPECIMEN THICKNESS (F	GROSS STRESS AT WHI	NOTES
	5T-2	1.200	0.0319	0.019	0.186	128.0	æ	ı	a - DID NOT GROW THRU AT 128.0 KSI
5AI-2.5Sn (ELI)	5T-3	1.200	0.0319	0.021	0.215		æ	ı	b — DID NOT GROW THRU PRIOR TO
TITANIUM	5T-4	0.998	0.0315	0.020	0.210		æ	l	CRACK DIMENSIONS SELECTED FOR SUSTAIN
	51-5	1.000	0.0314	0.022	0.240		۵	166.0	
	6AT-1	0.997	0.0326	0.018	0.182	160.0	158.5	161.5	- nip not GROW THRU AT 160.0
6AI-4V	6AT-2	0.997	0.0315	0.021	0.220		142.7	152.9	d - DID NOT GROW THRU PRIOR TO FAILURE
(ELI) TITANIUM	6AT-3	1.002	0.0315	0.017	0.172	-	ၓ	•	
ANNEALED	6AT-4	1.003	0.0315	0.017	0.166	·	ပ	194.0	CRACK DIMENSIONS SELECTED FOR SUSTAIN
	6AT-5	1.003	0.0315	0.021	0.255		g	170.0	LOAD TESTING a = 0.020", 2c * 0.200"
6Al-4V (ELI)	STA-1	0.833	0.0302	0.015	0.180	180.0	υ	171.5	e – DID NOT GROW THRU PRIOR TO FAILURE
TITANIUM	STA-2	0.833	0.0302	0.013	0.147	-	d)	196.0	CRACK DIMENSIONS SELECTED FOR
STA						, gil.			SUSTAIN LUAD TESTING a = 0.013", 2c = 0.130"

Table 3-4: RESULTS OF SUSTAINED LOAD TESTS OF UPPER STAGE MATERIAL/ENVIRONMENT COMBINATIONS

		FLAW	SIZE	T	EST COND	ITIONS			
ארוסא	THICKNESS (IN.)	DEPTH 8 (IN.)	LENGTH 2c (IN.)	мерілм	TEMP (^O F)	PROOF STRESS* (KSI)	SUSTAINED STRESS (KSI)	TEST DURATION (HRS)	RESULTS
2219-T6E46	0.04	0.033 0.033	0,3 6 0,39	GF ₂ LF ₂	-27 5 -3 2 0	46.0 46.0	39,0 38,9	10 10	
BASE METAL	0.04	0.032 0.033	0,37 0.40	GFLOX LFLOX	-275 -320	46,0 46,0	39,0 39.0	500 500	
		0.020 0.020	0.26 0.24	GF ₂ LF ₂	-275 -320	59.0 59.0	50.9 51.1	10 10	SURFACE FLAWS
2219-T87 BASE METAL	0.04	0.021 0.023	0.23 0.25	GFLOX LFLOX	-275 -320	59.0 59.0	51.1 51.0	500 500	DID NOT GROW THROUGH PARENT SPECIMEN THICKNESS IN ANY OF THESE SUSTAINED
	-	0.021	0.25 0.24	GCH ₄ LCH ₄	-225 -250	59.0 59.0	51.0 51.1	500 500	LOAD TESTS
TITANIUM 5AI~2.5Sn ELI	0.032	0.022 0.022	0.22 0.21	GCH ₄ LCH ₄	-225 -250	128.0 128.0	95.0 95.0	500 500	
TITANIUM 6AI-4V (ELI) STA	0.032	0.013 0.012	0.16 0.15	GCH ₄ LCH ₄	-225 -250	182.0 182.0	150.0 150.2	500 500	
TITANIUM 6AI-4V (ELI) ANNEALED	0.032	0.022 0.018	0.22 0.22	GCH ₄ LCH ₄	-225 -250	160.0 160.0	125.1 125.0	500 500	

^{*}ALL SPECIMENS PROOF LOADED AT -320°F BEFORE SUSTAINED LOAD TEST

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Table A1: 2219-T87 ALUMINUM BASE METAL STRESS COFFOR NONHAZARDOÙS ENVIRONMENTS

E	NVIRON	IMENT						DCB	SPECIM	EN D	ATA				1		
					SF	ECIMEN	DETAIL	S				TEST	DATA				SPEC
MEDIUM	PHASE	TEMPERATURE (^O F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS
ED + 13				S-2	IJ	0.993	0.785	1.50	1.70	R.T. AIR	0.031	49.5	1.72	4725			
DISTILLED WATER + 3.5% NaCI	LIQUID	AMB	30	S-3	U	0.978	0.776	4	1.70	4	4	71.6	1.77	4405	AS-1		0.5
DIS WA 3.5		• •		S-4	U	0.987	0.778		1.69			262.1	1.80	4505			
Q				DW-1	U	0.984	0.777		1.70			48.0	1.76	4710			
DISTILLED WATER	LIQUID	AMB	30	DW-2	U	0.984	0.778		1.73			71.1	1.82	4505	ÁW-1 AW-2		0.6
DISTILI				DW-3	U	0.990	0.780		1.69			139.2	1.77	4625			
و ہے				T-1	U	0.988	0.778		1,70			71.0	1.76	4550			
TRICHLORO- ETHYLENE	LIQUID	AMB	30	T-2	U	0.978	0.770		1.66			115.0	1.86	4335	AT-1 AT-2		0.5
TRIC	_	1		T-3	U	0.985	0.777		1.70			286.7	1.80	4400	1		
5	,	-		DP-1	U	0.990	0.783		1.70			66.1	1.76	4710		1	
TRA	LIQUID	АМВ	30	DP-2	υ	0.988	0.785		1,70			93.6	1.76	4530	AD-1 AD-2		0.6
DYE PENETRANT				DP-3	U	0.984	0.777	1.50	1.69	R.T.	0.031	237.8	1.76	4540			0.0

^{* 5.0} AND 10.0 HOUR SUSTAIN CYCLES

M BASE METAL STRESS CORROSION DATA
US ENVIRONMENTS

						SU	RFACE	FLAV	VED SPEC	IMEN D					
TA	·		S	PECIME	N DET	AILS					TE	ST DAT	<u> </u>		
LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CCNFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	!NITIAL F!_AW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
72	4725														
77	4405	AS-1		0.599	6.00	0.249	0.920		44.6	16.0	0.253	0.920	0.291	1.01	164.8
80	4505														
76	4710								44.6	16.0	0.263	0.925	0.291	1.00	170.2
.82	4505	AW-1 AW-2		0.600 0.605	6.00 6.00	0.255 0.246	0.925 0.925		44.6 44.6	27.1	0.251	0.925	0.300	1.00	176.0
.77	4625														
.76	4550								44.6	16.2	0.269	0.923	0.330	1.06	158.4
.36	4335	AT-1 AT-2		0.589 0.603	6.01 6.00	0.264 0.252	0.923 0.925	L Z	44.6	15.7	0.257	0.925	0.304	1.03	162.2
.8ū	4400			· .				NME							
.76	4710							ENVIRONMENT	44.6	15.0*	0.274	0.925	0.377	1.10	149.4
.76	4530	AD-1 AD-2		0.603 0.604	6.00 6.00	0.264 0.264	0.925 0.930	TEST E	44.6 42.0	16.1	0.269	0.930	0.304	1.03	168.0
.76	4540							F							

Table A2: 2219-T87 ALUMINUM BASE METAL STRESS CORRC FOR HYDROGEN AND OXYGEN

E	NVIRON	MENT					· · · · · · · · · · · · · · · · · · ·	DCB	SPECIM	EN DA	ATA						
				-	SP	ECIMEN	DETAIL					TEST	DATA			S	PECIME
МЕDIUМ	PHASE	TEMPERATURE (^O F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)
				H=1	U	0.990	0.780	1.50	1.68	R.T.	0.031	4.0	1.75	4870			
1	GAS	AMB	30	4.5	u	0.985	0,780	1	1.71		0.031	21.0	1.78	4650	H-1		0.601
ſ			Î I	H-3	U	0.978	0.775		1.69		0.031	28.0	1.76	4840			
1				H-4	U	0.986	0.775		1.74		0.031	7.0	1.79	4710			
	Grisi	AMB	100	H-5	U	0.978	0.775		1.74		0,031	23.5	1.78	4500	H-2		0.603
Z				H-6	U	0.985	0.775		1.73		0.032	30.7	1.81	4690			
HYDROGEN				H-7	U	0.984	0.775		1.74		0.035	43.8	1.80	5862	H-3		0.600
DR.	GAS	-320	30	H-8	U	0.985	0.775	1	1.70	R.T.	0.035	43.8	1.74	6250	H-4		0.600
主				H-9	U	0.982	0.775	1.50	1.69	AIR	0.035	43.8	1.72	6363			
															H-5		0.599
	GAS	-413	AMB												H-7		0.605
1														<u> </u>	H-10		0.600
								1			1				X-2		0.604
	LIQUID	-423	AMB	-											H-9	i	0.600
			-			0.005	0.775	1.50	1.70	R.T.	0.031	8.3	1.77	4650	H-8		0.598
				0-1	U	0.985	0.775	1.50	1.71	AIR.	0.031	23.8	1.81	4520	0-1		0.602
Z	GAS	AMB	30	0-2	U	0.981	0.770	1	1.71	1	0,031	32.3	1.76	4470	0-2		0.600
OXYGEN		1, 1		O-3	U	0.982	0.775	++-	1.70	+-	0.031	49.5	1.99	5021		 	
ő			}	0-4	U	0.987	0.775	1	1.70		0.035	49.5	1.85	5555	0-3		0.600
	LIQUID	-320	30	0-6	U	0.985	0.770	1.50		R.T.	0.035	49.5	1.87	5460	0-4		0.599
										AIR	L				İ	<u> </u>	

^{*}LOAD-UNLOAD

DECEDING PAGE BLAN" NOT FILMED

ASE METAL STRESS CORROSION DATA XYGEN

											-				
							RFACE	FLAV	VED SPEC	IMEN DA		ST DATA			
			SI	PECIME	N DET	AILS					16	SIDAIA	<u> </u>	<u>æ</u> . T	
(luch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
	4870														
\neg	4650	Н-1		0.601	6.00	0.243	0.920	1	44.6	10.0	0.246	0.920	0.320	1.05	162.0
-	4840														
	4710							H							
	4500	H-2		0.603	6.00	0.240	0.920		44.6	10.0	0.243	0.920	0.320	1.09	161.0
	4690	1								2.5					
	5862	1		0.600	5.00	0.242	0.920	П	47.0	1.0	0,248	0.920	0.323	1.03	161.0
	6250	H-3		0.600	6.00	0.242	0.920		47.0	20.1	0.267	0.920	0.320	1.03	161.0
	6363	H-4		0.000	0.00	0.201	0.520								1500
		H-5	 	0.599	6.00	0.240	0.910		50.8	20.0	0.246	0.910	0.365	1.09	156.0
		H-7		0.605	6.00	0,268	0.935		50.8	10.0	0.270	0.935	0.350	1.12	153.0
		H-10		0.600	6.00	0.243	0.970		45.1	1.0	0.243	0.970	0.332	1.07	156.5
		X-2	 	0.604	6.00	0.237	0.920	T	50.8	*	0.240	0.920	0.353	1.13	151.0
		H-9		0.600	6.01	0.243	0.940	5	50.8	20.0	0.249	0.940	0.340	1.13	153.0
:		н-8	· İ	0.598	6.00	0.252	0,925	量	50.8	1.0	0.258	0.925	0,330	1.08	154.5
7	4650	0-1		0.602	6.00	0.246	0.930	TEST ENVIRONMENT	44.6	10,0	0.255	0.930	0.315	1.08	162.0
1	4520	0-1		0.602	6.00	1	0.920	N N	44.6	12.0	0.258	0.920	0.343	1.11	159.0
6	4470	1 0-2		0.000	3.00			EN			ļ		 		
9	5021	0-3		0.600	6.00	0.252	0.925	EST	47.0	10.0	0.258	0.925	0.344	1.08	158.0
15	5555	0-4		0.599	6.00		0.920	-	47.0	10.0	0,261	0.920	0.365	1.14	150.4
37	5460	1 📉		0.555	0.50										

Table A3: 2219-T87 ALUMINUM BASE METAL STRESS COF FOR FLUORINE, FLOX, AND OF₂

	ENVIRO	MENT							005044					X, AND			
	ENVIRO	-MENI	T -		SI	PECIMEN	DETAIL		SPECIN	IEN D	ATA	TEST	DATA				PECIMEN
MEDIUM	PHASE	TEMPERATURE (°F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)
DE				OF-1	U	0.986	0.775	1.50	1.68	R.T. AIR	0.033	26.0	1.76	4910	OF-1		0.595
OXYGEN/DIFLUORIDE	GAS	АМВ	30	OF-2	U	0.987	0.780	1	1.71	1	0.031	26.0	1.76	4300	OF-3		0.596
J.F.L.				OF-3	U	0.986	0.775		1.70		0.031	26.0	1.78	4460	01 -3		0.550
EN/C				OF-4	U	0.986	0.775		1.69	Щ.	0.035	31,5	1.82	5718	OF-2		0.601
XYG	LIQUID	-320	30	OF-5	U	0.988	0.775		1.68		0.035	31.5	1.82	5718	OF-4		0.604
0				OF-6	U	0.989	0.780		1,71		0.035	31.5	1.82	5718	017		0.004
. :				FX-1	U	0.979	0,770	-	1.70		0.031	28.0	1.73	4650	X-1		0.602
	GAS	AMB	30	FX-2	U	0.990	0.775		1.67		0.031	28.0	1.72	4620	FX-2		0.598
FLOX				FX-3	U	0.983	0.775	<u> </u>	1.70		0.031	28.0	1.76	4550	FX-1		0.598
正		:		FX-4	U	0.989	0.775		1.69		0.035	31.0	1.83	5720	FX-3		0.597
	LIQUID	-320	30	FX-5	U	0.990	0.775		1.72		0.035	31,0	1.77	6005	FX-4		0.600
				FX-6	U	0.990	0.780		1.69		0.035	31.0	1.78	5982			0.000
				FL-1	U	0.985	0.775		1.70		0.031	33.0	1.75	4570			
Щ	GAS	AMB	30	FL-2	U	0.986	0.775		1.68		0.031	33.0	1.76	4410			-
FLUORINE				FL-3	U	0.986	0.775		1.69		0.031	33.0	1.75	4400			
FLU				FL-4	U	0.988	0.775		1.68		0.035	42.5	1.75	6183	٠		: · · · · · · · · · · · · · · · · · · ·
	LIQUID	-320	30	FL-5	U	0.981	0.770	<u> </u>	1.71	†	0.035	42.5	1.89	5319			
				FL-6	U	0.991	0.775	1.50	1.69	R.T. AIR	0.035	42.5	1.86	5500			

PRECEDING PAGE BLANK NOT FILMED

M BASE METAL STRESS CORROSION DATA OX, AND OF_2

						SU	RFACE	FLAW	ED SPEC	IMEN DA	ATA				
			SI	PECIME	N DET							ST DATA	1		
(inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2c _f (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
	4910	05.4		0.505	- 07	0.040	0.005	Å	44.6	11.0	0.249	0.925	0.320	1.01	158.4
	4300	OF-1		0.595	5.97	0.243	0.925			10.4	0.249	0.915	0.320	1.02	156.6
	4460	OF-3		0.596	6.00	0.243	0,915		44,6	10.4	0.243	0.515	0.02.0		
	5718				- 07				47.0	10.0	0.249	0.925	0.320	1.00	159.6
2	5718	OF-2		0.601	5.97	0.240	0.925		47.0 47.0	10.0	0.249	0.920	0.370	1.20	144.4
2	5718	OF-4		0.604	6.00	0.243	0.920		47.0	10.1	0.243	0.320	0.070		
3	4650	X-1		0.602	6.00	0.243	0.920		44.6	10.0	0.246	0.920	0.310	1.08	161.0
2	4620	FX-2		0.598	6.00	0.237	0.915		44.6	8.0	0.240	0.915	0.325	1.09	164.2
 5	4550	FX-1		0.598	6.00	0.240	0.915		44,6	0.3	0.246	0.915	0.370	1.34	142.4
 3	5720			0.507	0.00		0.000		47.0	8.0	0.240	0.920	0.345	1.08	162.2
7	6005	FX-3		0.597	6.00	0.237	0.920		47.0	10.1	0.249	0.920	0.365	1.07	157.8
В	5982	FX-4		0.600	6.00	0.246	0.920		47.0	10.1	J.2-10	0,020		<u> </u>	
5	4570														
6	4410							3.2							
5	4400							N		.			<u> </u>	<u> </u>	
5	6183							CT O							
9	5319	1						SEE SECTION 2.3.2							
6	5500							SE							
	1	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	ـــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>			ند جي پنجاب					100	

Table A4: 2219 ALUMINUM WELD METAL STRESS CORRESPONDED TO NONHAZARDOUS ENVIRONMENTS

•	ENVIRON	MENT						DCI	B SPECIM	EN D	ATA				<u> </u>			
					SI	ECIMEN	DETAIL					TEST	DATA			:	SPECIME	N I
МЕDIUМ	PHASE	TEMPERATURE (°F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WINTH
C + ED				WS-1	v	0.951	0.765	1.50	1.72	R. T. AIR	0.035	143.0	1.73	4570	WS-1		0.898	5
DISTILLED WATER + 3.5% NaCI	LIQUID	AMB	30	WS-2	v	0.951	0.765	A	1.76	A	0.035	239,5	1.77	4550	WS-2		0.902	5
. W D				WS-3	v	0.951	0.765		1.79		0.037	407.8	1.82	4710			0.002	
ED				WDW-1	v	0.954	0.765		1.78		0.035	143.0	1.78	4650	WDW-1		0.909	5
DISTILLED WATER	LIQUID	АМВ	30	WDW-2	v	0.951	0.760		1.86		0.035	239.3	1.86	4480	WDW-2		0.900	5
IQ 🕅				WDW-3	v	0.953	0.770		1.85		0.035	407.0	1.85	4550			0.000	
JRO- NE				WT-1	V,	0.952	0.765		1.85		0.035	71.5	1.85	4480	WT-1		0.901	E
TRICHLORO- ETHYLENE	LIQUID	AMB	30	WT-2	V	0.952	0.765		1.83		0.035	168.5	1.83	4400	WT-2		0.898	r ti
TR E	,			WT-3	v	0.953	0.765		1.83		0.034	336.1	1.83	4550			0.555	
TNF				WDP-1	V	0.952	0.765		1.74		0.035	71.0	1.78	4930	WDP-1		0.899	Ę
DYE PENETRANT	LIQUID	AMB	30	WDP-2	V	0.953	0.765		1.83		0.035	168.0	1.90	4720	WDP-1		0.900	
DYE				WDP-3	V	0.953	0.765	1.50	1 3 7 3 1	R. T. AIR	0.035	335.4	1.89	4680	VVDF-2		0.000	

SPECIMENS LOADED THAN UNLOADED IMMEDIATELY

PRECEDING PAGE BLANK NOT FILMED

WELD METAL STRESS CORROSION DATA

T					su	RFACE	FLAW	ED SPEC	IMEN DA	ATA				
		S	PECIME	N DET							ST DATA	\	· · · · · · · · · · · · · · · · · · ·	
LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c; (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2c _f (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
4570	WS-1		0.898	5.90	0.420	1.475	À	22.0	23.9	0.495	1.475	0.7 7 0	2.50	98.0
4550	WS-2		0.902	5.90	0.435	1,465		22.0	14.6	0.465	1.465	0.620	1.80	119.0
4710														
4650	WDW-1		0.909	5.90	0.415	1.475		21.0	\triangleright	0.457	1.475	0.690	2.08	1 05 .0
4480	WDW-2		0.900	5.90	0.420	1.475		22.0	15.8	0.455	1.475	0.620	1.85	114.6
4550				ļ										<u> </u>
4480	WT-1		0.901	5.90	0.430	1.475		18.0	\triangleright	0.440	1.475	0.710	2.05	104.0
4400	WT-2		0.898	5.90	0.425	1.480	MENT	22.0	12.0	0,455	1.480	0.770	2.35	100.0
4550							N N	<u> </u>		<u> </u>	ļ			
4930	WDP-1		0.899	5.90	0.425	1.465	TEST ENVIRONMENT	20.0	\triangleright	0.447	1.465	0.740	2.18	105.0
4720	WDP-2		0.900	5.90	0.430	1.460	TEST	22.0	16.0	0.463	1.460	0.580	1,80	116.0
4680			1								1	<u> </u>		

Table A5: 2219 ALUMINUM WELD METAL STRESS COR HYDROGEN AND OXYGEN

PHASE PHASE PRESSURE (0F)		CONFIGURATION (Figure Number)	THICKNESS
		CONFIGURATION (Figure Number)	THICKNESS
D T	io	1 T	
WH-1 V 0.952 0.770 1.50 1.75 AIR 0.036 6.8 1.75 518			
GAS AMB 30 WH-2 V 0.954 0.770 A 1.83 A 0.035 23.0 1.83 510	ю WH-1		0.90
WH-3 V 0.954 0.775 1.80 0.035 30.5 1.80 459	50		
WH-4 V 0.954 0.770 1.89 0.035 6.0 1.89 413	30		
GAS AMB 100 WH-5 V 0.954 0.770 1.78 0.035 22.8 1.78 450	WH-3		0.90
WH-6 V 0.953 0.765 1.87 0.035 30.3 1.87 447	0		
WH-7 V 0.952 0.770 1.89 0.035 43.7 1.89 427	75 WH-5		0.90
GAS -320 30 WH-8 ∨ 0.952 0.770 1.89 0.035 43.7 1.89 42.0 42		1 1	0.89
E WH-9 V 0.952 0.770 1.50 1.91 0.035 43.7 1.91 423	25		
	WH-8	1 1	0.89
	WH-14	1 . [0.91
GAS -413 AMB	WH-10	1 1	0.90
	W423-	2	0.90
	WH-9	+	0.90
GAS -423 AMB	WH-11		0.90
	WO-4	++	0.9
GAS AMB 30 WO-2 V 0.953 0.765 1.50 1.80 0.035 7.3 1.86 45			0.8
	WO-2		0.9
WO-3 V 0.952 0.770 1.78 0.035 30.8 1.78 45 WO-4 V 0.952 0.765 1.84 0.035 49.5 1.84 43		+-+	
O LIQUID -320 30 WO-5 V 0.952 0.766 V 1.90 V 0.035 49.5 1.90 42	WO-3		0.8
	50 WS-1		0.9

^{*} SPECIMENS LOADED TO INDICATED STRESS LEVEL THAN UNLOADED IMMEDIATELY

^{**} SPECIMEN FAILED 3 MINUTES AFTER MAXIMUM LOAD WAS OBTAINED

M WELD METAL STRESS CORROSION DATA

		i.				su	RFACE	FLAW	ED SPEC	IMEN DA	ATA				
ATA		/	S	PECIME	N DET		1					ST DATA			
LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
1,75	5150							A						4.50	124.0
1.83	5100	WH-1		0.908	5.90	0.440	1,500		22.0	13.4	0.475	1.500	0.490	1.52	134.0
1.80	4550														
1.89	4130								1			4 400	0.540	1,59	126.0
1.78	4500	WH-3		0.900	5.90	0.440	1.480		22.0	14.9	0.470	1.480	0.540	1.59	120.0
1.87	4470								ļ	ļ					
1.89	4275	WH-5		0.905	5.90	0.425	1.475) }-	25.0	10.0	0.536	1.475	0.570	1.80	114.5
1.86	4355	WH-7		0.897	5.90	0.425	1,470	TEST ENVIRONMENT	25.0	. *	0.450	1.470	0.540	1.67	122.0
1.91	4225			0.007				LŽ.			0.400	1.405	4.500	4 75	110.0
		WH-8		0.890	5.90	0.410	1.465	I.RC	25.0	10.0	0.480	1.465	0.590	1.75	111.0
		WH-14		0.913	5.88	0.400	1.480	2	22.0	10.0	0.420	1.480	0.630	1.78	
		WH-10		0.909	5.90	0.417	1.465	I	25.0		0.462	1.465	0.580	1.68	120.0
7		W423-2		0.900	5.90	0.420	1,480	H	22.0	*	0.431	1.480	0.640	1.82	112.0
	<u></u>	WH-9	<u> </u>	0.903	5.89	0.415	1.460	\sqcup	26.5	**0.05	<u> </u>			EN FAII	
		WH-11		0.902	5.90	0.433	1.475		22,0	12.3	0.453	1.475	0.630	1.80	111.6
		WO-4	<u> </u>	0.921	5.90	0.425	1.480		25.6	11.1	0.495	1.490	0.590	1.68	120.4
1.86	4560	WO-1	1	0.893	5.90	0.425	1,475		22.0	13.5	0.460	1.475	0.560	1.70	120.4
1.71	4950	WO-2		0.906	5.88	0.450	1.485		22.0	9.8	0.485	1,485	0.590	1.95	118.0
1.78	4540	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,000	J				<u> </u>		-				
1.84	4355	WO-3		0.895	5.90	0.410	1.485		25.0	10.0	0.470	1.485	0.570	1.72	118.0
1.90	4250	WS-1		0.903	5.90	0.430	1.460		25.0	*	0.465	1.460	0.710	2.20	100.0
1.90	4250	<u> </u>		5.555							<u> </u>	<u> L. </u>			
		7.			•			1. 1.							

Table A6: 2219 ALUMINUM WELD METAL STRESS CORROSION DA FLUORINE, FLOX AND OF 2

	ENVIRON	MENT							SPECIM	EN D	ATA	7505	0474				
]].]			<u> </u>	SP	ECIMEN	DETAIL	.S				TEST	DATA			<u> </u>	PECIME
MEDIUM	PHASE	TEMPERATURE (^{OF)}	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	เหเTIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)
				WOF-1	٧	0.954	0.750	1.50	1.78	R. T. AIR	0.035	26.0	1.78	4550	WOF-2		0.917
RIDE	GAS	AMB	30	WOF-2	V	0.953	0.755	4	1.84	1	0.035	26.0	1.84	4290	WOF-1		0.900
FLUO				WOF-3	V	0.954	0.760		1.90		0.035	26.0	1.90	4350	WOF-5		0.924
OXYGEN/DIFLUORIDE				WOF-4	V	0.950	0.755		1.82		0.035	31.5	1.82	4130	WOF-4		0.908
(YGE	LIQUID	-320	30	WOF-5	٧	0.954	0.760		1.96		0.035	31.5	1.96	4500			
6				WOF-6	٧	0.952	0.760		1.75		0.035	31.5	1.75	4470	WOF-6		0.898
, , , , , , , , , , , , , , , , , , ,				WFX-1	٧	0.953	0.770		1.76		0.035	28.0	1.77	4410	WFX-1		0.908
	GAS	АМВ	30	WFX-2	٧	0.951	0.775		1.80		0.035	28.0	1.84	3950	WFX-2		0,905
FLOX				WFX-3	٧	0.951	0.755		1.85		0.035	28.0	1.87	4050			
<u>"</u>			1	WFX-4	V	0.954	0.760		1.83		0.035	31.0	1.84	4420	WFX-3		0.910
	LIQUID	-320	30	WFX-5	V	0.953	0.755		1.84		0.035	31.0	1.87	4325	WFX-4		0.895
				WFX-6	V	0.953	0.755		1.82	\vdash	0.035	31.0	1.82	4420			
	CAS		20	WFL-1	V	0.952	0.750	 	1.82		0.035	33.0	1.82	4580			
H H	GAS	AMB	30	WFL-2	V	0.953	0.750	-	1.68	\vdash	0.035	33.0	1.68	4110			
FLUORINE				WFL-3	V	0.948 0.952	0.755 0.755		1.74	H	0.035	42.5	1.74	4825			
FLI	LIQUID	-320	30	WFL-4	V	0.952	0.760		1.80		0.035	42.5	1,80	4565			
	LIGOID	~320	30	WFL-5 WFL-6	V	0.954	0.770	1.50	1.81	R. T.	0.035	42.5	1.81	4525			
1]	WEL-0	l •	0.007	0,7,0			AIR	1 3.333					1	

RESS CORROSION DATA FOR

	, , , ,				SU	RFACE	FLAW	ED SPEC	IMEN D	AT/A				
Н	· · · · · · · · · · · · · · · · · · ·	S	PECIME	N DET	AILS					TE	ST DAT	4		
(spunod)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, aj (inch)	INITIAL FLA W LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
10	WOF-2		0.917	5.90	0,430	1,475		22.0	9.6	0,470	1.475	0.560	1.65	128.0
0	WOF-1		0.900	5.90	0.425	1.475	À	22.0	10.0	0,465	1.475	0.900	2.65	87.0
i0	WOF-5		0.924	5.90	0.425	1,480		22.0	10.1	0.465	1.480	0.720	2.15	104.2
BO	WOF-4		0.908	5.90	0.423	1.475		22.0	6.6	0.453	1,475	0.520	1.60	124.8
00	WOF-6		0.898	5.90	0.415	1.470		22,0	10.0	0.435	1,470	0.580	1,70	113.0
10	WFX-1		0.908	5.90	0.425	1.465		22.0	3.0	0.465	1,465	0.580	1.68	121.0
60	WFX-2		0.905	5.90	0.420	1.450		22.0	10.0	0.460	1.450	0.650	1.95	113.0
20	WFX-3		0.910	5.90	0.425	1.470		22.0	8.0	0.450	1.470	0.580	1.70	118.0
25 20	WFX-4		0.895	5.90	0.420	1.460		22.0	11,3	0.445	1.470	0.600	1.90	120.0
‡ 0														
30							3.2							
10														
25							SEE SECTION 2							
65 							SEES							,
25														

Table A7a: 5AI-2.5Sn (ELI) TITANIUM BASE METAL STRESS CORROSIO FOR NONHAZARDOUS ENVIRONMENTS

E	NVIRON	MENT						DCE	SPECIM	EN D	ATA							
					SP	ECIMEN	DETAIL	.s				TEST	DATA			S	PECIME	N C
MEDIUM	PHASE	TEMPERATURE (°F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM		TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH
DISTILLED WATER		,		TW-1	V	0.348	0,240	1.50	1.65	R. T AIR	0.058	74.2	1,73	5600				
DISTILI WATER	LIQUID	AMB	30	TW-2	٧	0,348	0.241	A	1.65		0.059	142.6	1.67	5650	TDW-1		0.398	4.
DIS]	TW-3	V	0.348	0.240		1.66	Ц	0.059	237.6	1.71	5750	<u> </u>	ļ		
DISTILLED WATER & C 3.5% NaCI				TS-1	٧	0,346	0.240		1,67		0.058	71.9	1.73	5410				
TIL TER % N.	LIQUID	AMB	30	TS-2	٧	0.346	0.240		1.66		0,058	136.8	1.72	5560	TS-1		0.399	4.
DIS WA 3.5				TS-3	٧	0.346	0.238		1,68		0.058	233.3	1.72	5680	<u> </u>			
NE				TA-1	v	0.348	0.238		1,66		0.059	72.6	1.68	5760				
ACETONE	LIQUID	AMB	30	TA-2	V	0.346	0.238	 	1.65		0.060	130.3	1.68	5730	TA-1		0.395	4.
AC				TA-3	٧	0.346	0.240		1.66	\coprod	0.059	232.9	1.71	5560				
METHYL ALCOHOL				TM-1	٧	CRACK	GREW O	μτοι	PLANE		0,059			2440				
돌형	LIQUID	AMB	30	TM-2	٧	0.348	0.240		1.64		0.049	136.9	2.42	3950	TM-1		0.399	4.
AL AL				TM-4	٧	0.348	0.233		1.76		0,049	237.5	3.30	1450		<u> </u>		L l
METHYL ALCOHOL (DILUTE)				TMD-1	V	0.344	0.236		1.64		0.057	90.3	1.73	5230			*.	
[£85]	LIQUID	AMB	30	TMD-2	٧	0.346	0.236		1.63	$oxed{oxed}$	0.059	162.2	1.72	5420	TMD-1		0.391	4.
₩4 <u>0</u>				TMD-3	V	0.349	0.240	igsqcut	1.63	Ш	0.059	258.3	1.72	5450	ļ			_
				TME-1	٧	0.346	0.240		1.66		0.058	70.0	1.70	5500			2.0	
METHYL ETHYL KETONE	רוסחום	AMB	30	TME-2	V	0.344	0.240		1.64		0.059	146.1	1.70	5600	TME-1		0.398	4
M T A				TME-3	٧	0.346	0.238	\coprod	1.65		0.060	237.6	1.73	5470				<u> </u>
0				TE-1	V	0.348	0.240		1.66		0.059	68.0	1.77	5350]			
ETHYL ALCOHOL	LIQUID	AMB	30	TE-2	V	0.346	0.238		1.64	11	0.059	143.8	1.66	5680	TE-1		0,395	4
A E				TE-3	V	0.348	0.240	1.50	1.64	R. T	0.059	235.6	1.67	5570				

SE METAL STRESS CORROSION DATA

 					SU	RFACE	FLA	WE	D SPEC	MEN DA	TA				
		92	ECIMEN	DET		1		T				ST DATA	\		
LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING	MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2c _f (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{ct} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
5600													TUDII	1.42	74.8
5650	TDW-1	.	0.398	4.00	0.156	0.930	Î		86.0	16.0	0.184	0,930	IHNU	1.43	74.0
5750							\vdash		<u></u>						
5410										0.04	- CDECIA	ICAL EAL	בו ה	ING	
5560	TS-1		0.399	4.00	0.156	0.935			86.0	0.01	SUSTA	NED LO	ADING	ING	
5680							H								
5760						0.040			96 N	12.1	i	0.945	THRU	1.41	76.2
	TA-1		0.395	4.00	0.157	0,940			0.00	16.1	0.100				
<u> </u>							\vdash								
 	7.4		0.200	4.00	0.166	0.935			86.0	16.2	0.214	1.100	THRU	1,72	65.0
	1 101-1		0,399	4.00	0.100	0.000									
ļ	ļ	-		 		 	1								
↓	TMD-1		0.391	4.00	0.152	0.870	١,		86.0	5.0	SPECI	MEN FA AINED L	ADING	RING	
5450								Ä.					<u> </u>		<u> </u>
5500							T	Ž							
5600	TME-1		0.398	4.00	0.166	0.940		Ž X	86.0	12.0	0.196	1.035	THRU	1,48	74.3
5470]							2 U		ļ <u> </u>	<u> </u>	ļ		<u> </u>	
5350							1 8	EST							700
5680	TE-1		0.395	4.00	0.170	0.950		-	86.0	14.5	0.200	0.960	THRU	1.37	76.6
5570							L					<u> </u>	<u></u>		
	5600 5650 5750 5410 5560 5680 5760 5730 5560 2440 3950 1450 5420 5420 5450 5600 5470 5350 5680	5600 5650 TDW-1 5750 5410 5560 TS-1 5680 5760 5730 TA-1 5560 2440 3950 TM-1 1450 5230 5420 TMD-1 5450 5500 5600 TME-1 5470 5350 TE-1	100	None Part The property of the property	SPECIMEN DETAILS SPECIMEN DE	The last state The	SPECIMEN DETAILS SPECIMEN S	Secondaria Sec	SPECIMEN DETAILS SPECIMEN DE	SPECIMEN DETAILS SPECIMEN DE	SPECIMEN DETAILS SPECIMEN DE	SPECIMEN DETAILS TEST DATA Second S	Secondary Seco		

Table A7b: 5Al-2.5Sn (ELI) TITANIUM BASE METAL STRESS CORROSION DA FOR NONHAZARDOUS ENVIRONMENTS (Cont.)

E	NVIRON	MENT						DCB	SPECIM	EN D	ATA							
					SF	ECIMEN	DETAIL	s				TEST	DATA.			5	PECIME	N DET
мертом	PHASE	TEMPERATURE (°F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)
O.E.				TED-1	٧	0.348	0.240	1.50	1.65	R.T. AIR	0.059	77.0	1.68	5650				
ALCOHOL (DILUTE)	רוסטום	АМВ	30	TED-2	٧	0.348	0.240	A	1.62	A	0.059	144.7	1.68	5615	TED-1		0.392	4.00
₹ 🔾				TED-3	٧	0.348	0.240		1.62		0.059	239.7	1.66	5620				
NŢ				TD-1	٧	0,344	0.238		1.64		0.059	69.0	1.76	5640				
PENETRANT	LIQUID	AMB	30	TD-2	٧	0.347	0.240	•	1.64		0.059	145.0	1.73	5880	TDP-1		0.396	4.00
PEN				TD-3	٧	0.346	0.240	1.50	1.59	R.T. AIR	0.059	236.3	1.69	5840				

BASE METAL STRESS CORROSION DATA (IRONMENTS (Cont.)

						SU	RFACE	FLAW	ED SPEC	IMEN D	ATA				
ATA			S	PECIME	N DE	TAILS					TE	ST DAT	A		
FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _ī (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFT∂R FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
1.68	სი30														
1.68	5615	TED-1		0.392	4.00	0.178	0.965	ENT	86.0	16.0	0.238	1.250	THRU	1.52	70.1
1.66	5620							ENVIRONMENT							
1.76	5640							ENVI							
1.73	5880	TDP-1		0.396	4.00	0.204	1.035	TEST	86.0	0.08	SPEC SUS	IMEN F.	AILED D	URING G	
1.69	5840							•							

Table A8: 5AI-2.5Sn (ELI) TITANIUM BASE METAL STRESS COR DATA FOR HYDROGEN AND HELIUM

	NVIRON	MENT						DCB	SPECIM	EN D	ATA						· · · · · · · · · · · · · · · · · · ·	
					SF	ECIMEN	DETAIL	.s				TEST	DATA				PECIME	NI
MEDIUM	PHASE	TEMPERATURE (^{OF)}	PƘ∷SSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIA <u>L</u> CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH
				TH-1	V	0.347	0.248	1.50	1.65	R. T.	0.059	6,0	1.76	5530	TH-9		0.399	4.
	GAS	AMB	30	TH-2	٧	0.347	0.244	1	1.67	1	0.059	21.0	1.72	5400				
				TH-3	٧	0.347	0.240		1.68		0.059	30.0	1.73	5520		ŀ		
				TH-4	>	0.347	0.244		1.67		0.059	6.5	1.73	5630	TAR-2		0.396	4.
	0.0	A 8 4 D	100	TH-5	٧	0.348	0.244		1.63		0.059	23.5	2.10	3980]			
7	GAS	AMB	100	TH-6	V	0.348	0.238		1.62		0.059	30.5	1.64	5290				
HYDROGEN				THE-5	٧	0.347	0.244		1.62		0.059	32.8	2.02	4780	<u> </u>		i	
)RO				TH-7	٧	0.347	0.248		1.63		0.031	31.8	1.65	3460	T320-4		0.357	2
Η	GAS	-320	30	8-HT	V	0.345	0.246		1.63		0.031	31.8	1.63	3525	T320-6		0.354	2
				TH-9	>	0.348	0.246		1.66		0.031	31.8	1.66	3415	L		<u></u>	
				TH-10	٧	0.343	0.240		1.66		0.027	46.0	1.66	2970	TH-1		0.355	1
	GAS	-413	AMB	TH-11	٧	0.345	0.244	1	1.66		0.027	46.0	1.72	2805	TH-2 TH-3		0,356 0,356	1
				TH-12	٧	0.350	0.346	1.50	1.65		0.027	46.0	1.65	3010	TH-4		0.355	1
	LIQUID	-423	AMD												TH-5		0.355	1
	LICOID	-423	AMB	:		<u> </u>									TH-6		0.355	1
				THE-1	V	0.348	0.248	1.50	1.69		0.059	6.0	1.72	5480	TAR-1		,0.398	4
	GAS	AMB	30	THE-2	٧	0.344	0.246	1	1.65		0.059	23.0	1.68	5500	1	}		
				THE-3	٧	0.347	0.250		1.66		0.059	30.5	1.69	5540				L
ΣΩ		- ·		THE-7	V	0.347	0.244		1.66		0.027	42.3	1,69	2885	THE-4		0.355	1
HELIUM	GAS	-423	30	THE-8	٧	0.345	0.244		1.61		0.027	42.3	1.62	3100]	-		
Ī				THE-9	٧	0.347	0.246	1.50	1.64		0.027	42.3	1.65	3010	<u> </u>			
	GAS	AMB	1000							R. T.					THE-2		0.395	4
	GAS	AIVID	1000							AIR					THE-3		0.388	4

^{*}LOAD-UNLOAD

FITANIUM BASE METAL STRESS CORROSION ROGEN AND HELIUM

_							SU	RFACE	FLAW	ED SPEC	MEN DA	ATA				
T I	DATA			s	PECIME	N DET							ST DAT	4		
(hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST BUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
	1.76	5530	TH-9		0.399	4.00	0.164	0.960	A	80.0	12.0	0.174	0.960	THRU	1.61	110.2
	1.72	5400				i I										
	1.73	5520														
	1.73	5630	TAR-2		0.396	4.01	0.168	0.940		80.0	10.0	0.181	0.940	THRU	1.63	108.3
;	2.10	3980		·						†						
i	1.64	5290														
3	2.02	4780				_					:	:				
3	1.65	3400	T320-4		0.357	2.50	0.121	0.525		126.0	10.0	0.126	0.525	THRU	0.950	79.8
3	1.63	3525	Т320-6		0.354	2.50	0.117	0.525		126.0	10.1	0.124	0.525	THRU	0.980	77.0
3	1.66	3415							_ _				<u></u>			
<u> </u>	1.66	2970	TH-1		0.355	1.10	0.087	0.261		139.3 139.3	1.0 20.0	0.087 0.084	0.261 0.255	0.140 0.097	0.325 0.275	43.4 44.9
0	1.72	2805	TH-2 TH-3		0.356 0.356	1.10 1.10	0.084 0.085	0.255 0.261		123.8	10.0	0.085	0.261	0.057	0.340	42.5
0	1.65	3010	TH-4		0.355	1.10	0.086	0.264		139.3		0.086	0.264	0.136	0.330	42.1
			TH-5		0.355	1.10	0.081	0.255		139.3	20.0	0.081	0.255	0.200	0.430	39.7
			TH-6		0.355	1,10	0.090	0.285		139,3	1.0	0.090	0.285	0.135	0.320	43.3
0	1,72	5480	TAR-1		0.398	4.00	0.178	0.950		80.0	10.0	0.188	0.950	THRU	1.50	114.8
.0	1.68	5500					 14.		EN					-		
.5	1.69	5540							Ž							
.3	1.69	2885	THE-4		0.355	1.10	0.089	0.264	ENVIRONMENT	139.3	10.0	0.089	0.264	0.123	0.285	44.3
.3	1.62	3100							EN							
.3	1.65	3010							TEST		<u> </u>					
			THE-2		0.395	4.00	0.166	0.970	"	80.0	12.0	0.191	0.970	THRU	1.42	116.7
			THE-3		0.388	4.00	0.174	0.950		80.0	12.0	0.189	0.950	THRU	1.40	117.0
	ــــــــــــــــــــــــــــــــــــــ															

Table A9a: 5AI-2.5Sn (ELI) TITANIUM WELD METAL STRESS CORROS FOR NONHAZARDOUS ENVIRONMENTS

: E	NVIRON	MENT						DCB	SPECIM	EN D	ATA						
					SP	ECIMEN	DETAIL	S				TEST	DATA				PECIME
MEDIUM NT	PHASE	TEMPERATURE (^O F)	PRESSURE (psig)	IDENTIFICA i'ION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEF ENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)
DYE PENETRA				TWD-1	٧	0.310	0.232	1.50	1.73	R. T. AIR	0.069	65.6	2.68	2810	TDPW-1		0.334
n H	LIQUID	AMB	30	TWD-2	V	0.316	0.220	1	1.68		0.070	144.0	2.80	2600	TDPW-2		0.338
P				TWD-3	٧	0.316	0.230		1.65		0.070	238.1	2.87	3050	<u> </u>		
Ei.				TWW-1	٧	0.317	0.228		1.65		0,071	71.6	1.73	5820			
금	riguid	AMB	30	TWW-2	٧	0.317	0.225		1.64	1	0.070	146.6	1.68	5680	TDWW-1		0.338
DISTILLED WATER + DISTILLED 3.5% NaCI WATER				TWW-3	V	0.317	0.227		1.65		0,070	237.5	1.76	5880			
<u> </u>				TWS-1	V	0.317					0.070						
E E E	LIQUID	AMB	30	TWS-2	V	0.317	0.225		1.67		0.071	148.6	1.82	5280	TSW-1		0.334
DISTILLEI WATER + 3.5% NaCI				TWS-3	٧	0.318	0.230		1.62		0.068	239.6	1.70	5420			· .
			<u> </u>	TWM-1	٧	0.317	0.226		1.67		0.059	236.0	2.08	3500			
구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구	LIQUID	AMB	30	TWM-2	٧	0.315	0.223		1.68		0.063	141.3	1.92	4450	TMW-1		0.329
METHYL ALCOHOL				TWM-3	٧	0.310	0.228		1.70		0.064	67.5	2.03	4250			
1200				TWMD-	V	0.313	0.231		1.68		0.071	71.3	1.95	5070			
¥ 555	LIQUID	AMB	30	TWMD-	2 V	0.316	0.233		1.75		0,071	166.5	2.07	4680	TMDW-	1	0.333
METHYL ALCOHOL (DILUTE)				TWMD-	3 V	0.317	0.224		1.70		0.071	234.7	1.97	4890	1		
Ш				TWA-1	V	0.317	0.228		1.72		0.069	70.7	1.72	5720			
ρ̈́	LIQUID	AMB	30	TWA-2	V	0.317	0.222		1.70		0.070	145.6	1.73	5510	TAW-1		0.333
ACETON				TWA-3	V	0.318	0.225	-	1.68	<u> </u>	0.070	236.6	1.79	5550	1		
			 	TWE-1	V	0.317	0.222		1.68	1	0.072	65.6	1.76	5760		 	
THYL	LIQUID	AMB	30	TWE-2	V	0.316	0.227	1	1.70		0.070	143.5	1.77	5560	TEW-1		0.327
ΙΞÖ			1	TWE-3	V	0.317	0.227	1.50	1.70	R. T.	0.072	237.7	1.81	5190	1	1	

VELD METAL STRESS CORROSION DATA IRONMENTS

	i	<u></u>				SU	RFACE	FLAW	ED SPEC	IMEN D	ATA				
ГА			S	PECIME	N DET	AILS					TE	ST DAT	4		
LENGTH, a _f (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
68	2810	FDPW-1		0.334	3.26	0.174	0.950	A	86.0	80,0	SPECIM	EN FAIL	ED DUR	NG SUS	TAINED
80	2600	CDPW-2		0.338	3.25	0.173	0.955	│	55.0	47.0	0.300	1.090	THRU	1.12	93.2
87	3050														
73	5820									ī					
68	5680	TDWW-1		0.338	3.25	0.176	0.950		86.0	24.0	0.179	0.950	THRU	1.29	80.6
.76	5880					·									
.82	5280	TSW-1		0.334	3.25	0.174	0.940		86.0	0.02	SPECIM	EN FAIL	IED DUR ADING	ING	
.70	5420														
.08	3500														
.92	4450	TMW-1		0.329	3.25	0.172	0.955		86.0	0.6	0.240	0.970	THRU	1.26	78.8
.03	4250														
.95	5070	 									SPECIM	EN FAIL	ED DUB	ING	
.07	4680	TMDW-		0.333	3.25	0.170	0.960		86.0	2.2	SUSTA	NED LO	ADING		
.97	4890	<u> </u>						L			<u> </u>		ļ		
.72	5720							ENVIRONMEN				0.000			
.73	5510	TAW-1		0.333	3.25	0.174	0.960	Į	86.0	18.2	0.177	0.960	THRU	1.37	74.2
.79	5550							<u> </u>					ļ		, , , , , , , , , , , , , , , , , , , ,
.76	5760												L		
1.77	5560	TEW-1		0.327	3.25	0.185	0.945	TEST	86.0	121.0	0.190	0.945	THRU	1.29	78.2
1.81	5190							F							

Table A9b: 5AI-2.5Sn (ELI) TITANIUM WELD METAL STRES FOR NONHAZARDOUS ENVIRONMENTS (Cont.)

٢	E	NVIRON	MENT						DCB	SPECIM	EN DA	ATA						
H	Ī					SP	ECIMEN	DETAIL	s				TEST	DATA				PECIM
	MEDIUM	PHASE	TEMPERATURE (°F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)
ľ) C				TWED-1	٧	0.317	0.225	1.50	1.66	R. T. AIR	0.071	71.8	1.73	5800			
	ALCOHOL DILUTE)	רוסחום	AMB	AMB	TWED-2	٧	0.316	0.225	A	1.68		0.071	167.0	1.75	5580	TEDW-	1	0.324
ľ	7 0				TWED-3	V	0.317	0.227		1.68		0.071	234.8	1.76	5540			
l					TWME-1	٧	0.316	0.248		1.66		0.071	60.8	1.73	5910			
	MEIHYL ETHYL KETONE	LIQUID	AMB	AMB	TWME-2	٧	0.318	0.238		1.71		0.070	145.1	1.76	5730	TMEW-	1	0.33
					TWME-3	V	0.317	0.234	1.50	1.70	R. T. AIR	0.069	239.1	1.78	5540			

PRICEDING PAGE BY ANK NOT FITMED

NIUM WELD METAL STRESS CORROSION DATA US ENVIRONMENTS (Cont.)

						SU	RFACE	FLAW	ED SPEC	IMEN D	ATA				
Ā			S	PECIME	N DET	AILS			-		TE	ST DATA	١	·	
(inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, a _f (inch)	FLAW LENGTH AFTER TEST RUN, Zcf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
3	5800									:			. !		
'5	5580	TEDW-1		0.324	3.26	0.172	0.945	RONMENT	86.0	12.0	0.210	0.970	THRU	1.21	78.9
7 6	5540	,			!			RON							
73	5910							ENVI			SP	ECIMEN	FAIL ED	DURING	
76	5730	TMEW-1		0.337	3.25	0.173	0.940	TEST	86.0	21.4	SU	STAINE	LOADI	NG _	
78	5540												<u> </u>		

Table A10: 5AI-2.5Sn (ELI) TITANIUM WELD METAL STRESS CORROSIC FOR HYDROGEN AND HELIUM

E	NVIRON	MENT						DCB	SPECIM	EN DA	ATA							_
1					SP	ECIMEN	DETAIL					TEST	DATA			S	PECIME	N
MEDIUM	PHASE	TEMPERATURE (°F)	PRESSIJRE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH
				TWH-1	V	0.316	0.228	1.50	1.66	R. T. AIR	0.070	8.8	1.74	5980				
	GAS	AMB	30	TWH-2	٧	0.318	0.224	1	1.68	1	0.070	23.5	1.80	5580	TWH- 1A		0.334	3.
				TWH-3	V	0.317	0.228		1.70		0.070	32.8	1.88	5460			_	_
Ì				TWH-4	٧	0.318	0.226		1.72		0.070	9.0	1.86	5380				
	GAS	AMB	100	TWH-5	٧	0.317	0.222		1.68		0.070	23.5	1.84	5310	TWH- 3A		0.344	3.
~				TWH-6	٧	0.316	0.226		1.68		0.070	2.8	1,81	5400] 3^			
GE				TWH-7	V	0.319	0.226		1.68		0.042	31.9	1.78	4125			0.331	2.
)RO	GAS	-320	30	TWH-8	V	0.319	0.228		1.68		0.042	31.9	1.79	4080	TWH-31		0.338	2.
HYDROGEN				TWH-9	٧	0.316	0.224		1.68		0.042	31.9	1.68	4200	TWH-35		0.338	2.
				TWH-10	٧	0.317	0.222		1.67		0.033	46.0	1.67	3310	TWH-1		0.339 0.338	1. 1.
	GAS	-413	AMB	TWH-11	V .	0.315	0.226	Ť	1.66		0.033	46.0	1.66	3320	TWH-2 TWH-3		0.338 0.337 0.335	11.
				TWH-12	٧	0.317	0.230	1.50	1,65		0.033	46.0	1.82	3180	TWH-4		0,335	1.
		400													TWH-5		0.331	1.
:	riguid	-423	AMB								İ		1		TWH-6		0.338	1.
				TWHE-1	٧	0.316	0.226	1.50	1.63		0.070	7.0	1.72	5900	TWHE-1		0.337	3.
	GAS	AMB	30	TWHE-2	V	0.318	0.218	1	1.67		0.070	23.5	1.86	5720	W-22		0.337	3,
				TWHE-3	٧	0.316	0.226		1.63		0.070	31.0	1.88	5500				
Σ		4.5.5		TWHE-4	V	0.318	0.223		1.67		0.033	42.3	1.72	3270	TWH-36		0.338	1.
HELIUM	GAS	-423	30	TWHE-5	٧	0.316	0.224	1	1.64	1	0.033	42.3	1.82	3180				
Ī				TWHE-6	V	0.315	0.224	1.50	1.66	R. T. AIR	0.033	42.3	1.74	3170				
	GAS	AMB	1000							Γ'''					W-23		0.341	3.
			1		İ			1		1				J	M 24	1	0 337	2

IIUM WELD METAL STRESS CORROSION DATA

							SU	RFACE	FLAW	ED SPEC	IMEN D	ATA				
EST	DATA			S	PECIME	N DET	TAILS					TE	ST DAT	Α		
(hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{ct} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LGAD (kips)
8	1.74	5980														
5	1.80	5580	TWH- 1A	:	0.334	3.25	0.176	0.955	4	80.0	9.0	0.176	0.955	THRU	1.24	85.8
8	1.88	5460			•											
0	1.86	5380														
5	1.84	5310	TWH- 3A		0.344	3.25	0.170	0.945		80.0	8.7	0.170	0.945	THRU	1.25	88.0
8	1,81	5400	34		,											
9	1.78	4125	TMIL 21		0,331	2.31	0.120	0.523		95.4	12.0	0.120	0.523	0.174	0.560	84.8
9	1.79	4080	TWH-31		0.338	2.30	0.120			95.4	12.0	0.132	0.530	0.174	0.620	81.2
9	1.68	4200	TWH-35		0.336	2.30	0.132	0.530		33.4	12.0	0.102	0.000	0.250	0.020	01.2
0	1.67	3310	TWH-1		0.339	1.10	0.095	0.270		124.0	0.5	0.099 0.090	0.270 0.264	0.212	0.450 0.336	39.1
0	1.66	3320	TWH-2 TWH-3		0.338 0.337	1.10 1.10	0.090 0.092	0.264 0.272		124.0 110.0	11.9 11.0	0.092	0.272	0.138 0.153	0.435	42.7 40.5
0	1.82	3180	TWH-4		0.335	1.10	0.092	0.264		124.0	_	0.092	0.264	0.152	0.425	40.2
			TWH-5		0.331	1.10	0.090	0.266		124.0	1.0	0.090	0.266	0.178	0.430	41.7
		<u> </u>	TWH-6		0.338	1.10	0.090	0.264		124.0	8.6	0.090	0.264	0.193	0.560	39.0
0	1.72	5900	TWHE-1		0.337	3.25	0.170	0.950		85.0	15.1	0.170	0.950	0.257	1.12	100.5
5	1.86	5720	W-22		0.337	3.25	0.176	0,940	-	86.0	10.0	0.182	0.940	0.294	1.04	99.3
0	1.88	5500			:				ME							
3	1.72	3270	TWH-36		0.338	1.10	0.090	0.255	NO.	124.0	10.0	0.090	0.255	0.174	0.347	42.8
3	1.82	3180				·		as in a ijala in	ENVIRONMENT						,	,
3	1.74	3170														
			W-23		0.341	3.25	0.170	0.950	TEST	86.0	10.0	0.180	0.950	0.234	0.98	109.5
			W-24		0.337	3.25	0.178	0.950	-	86.0	10.0	0.193	0.950	0.231	1.00	106.5

Table A11: 2219-T87 ALUMINUM BASE METAL STRESS CORROSION NONHAZARDOUS FLUIDS LOADED IN ENVIRONMENT

E	NVIRON	MENT						DCE	SPECIM	EN DA	ATA						
					SP	ECIMEN	DETAIL	S				TEST	DATA			S	PECIMEN
MEDIUM	PHASE	TEMPERATURE (°F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROOVE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)
% □				ST-1	٧	0.983	0.780	1.50	1.66		0.036	91.2	2.09	4160			
3.5% NaCl	LIQUID	AMB	AMB	SL-1	>	0.985	0.775	1	1.64		0.034	90.5	1.68	5600			
R R				DWT-1	v	0.984	0.775		1.65	IENT	0.036	90.3	2.08	3980			
DISTILLET WATER	LIQUID	AMB	AMB	DWL-1	v	0.983	0.780		1.65	RONMENT	0.034	90.2	1.72	4480			
- H				TT-1	٧	0.983	0.775		1.69	ENVI	0.034	89.8	2.14	4000			
TRICHLO- ROETHY- LENE	LIQUID	AMB	AMB	TL-1	v	0.978	0.780		1.65	TEST	0.035	89.6	1.66	4660			
		4445	AMB	DPT-1	v	0.983	0.775		1.63		0.033	89.2	1.97	4500		ļ	
DYE PENE- TRANT	LIQUID	AMB	AMB	DPL-1	v	0.983	0.775	1.50	1.65		0.034	89.1	1.71	5610			

NUM BASE METAL STRESS CORROSION DATA FOR S FLUIDS LOADED IN ENVIRONMENT

			- (i				SU	RFACE	FLAW	ED SPEC	IMEN D	ATA				
TEST	DATA		<u> </u>	S	PECIME	N DE1	···-						ST DAT	A		
DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
91.2	2.09	4160														
90.5	1.68	5600							1							
90,3	2.08	3980														
90.2	1.72	4480														
89,8	2,14	4000						-								
89.6	1.66	4660						E.								
89.2	1.97	4500														
89.1	1.71	5610														

Table A12: 5Al-2.5Sn (ELI) TITANIUM BASE METAL STRESS COR NONHAZARDOUS FLUIDS LOADED IN ENVIRONMEI

E	NVIRON	MENT						DCB	SPECIM	EN D	ATA						
					SP	ECIMEN	DETAIL	.s				TEST	DATA	y			SPE
МЕDIUM	PHASE	TEMPERATURE (^O F)	PRESSURE (psig)	IDENTIFICATION	GROOVE SHAPE	THICKNESS, b (inch)	NET THICKNESS AT GROO'YE, b _n (inch)	HEIGHT, h (inch)	INITIAL CRACK LENGTH, a _i (inch)	LOADING MEDIUM	JAW DISPLACEMENT (inch)	TEST DURATION (hours)	FINAL CRACK LENGTH, af (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	COLINATION
DISTIL	LED A	AMB	AMB	TWT-1	٧	0.325	0.232	1.50	1.61		0.059	118,0	1.63	5140			
WATER		Aivib	ZWID	TWL-1	٧	0.322	0.224		1.59		0.058	118,2	1.75	4950	l	-	ŀ
3.5%		AMB	АМВ	TST-1	٧	0.323	_				0.058	116.3					
NaCl		AIVIB	AIVID	TSL-1	٧	0.323	0.228		1,60		0.058	116.2	3.65	1250			
		AMD	АМВ	TAT-1	٧	0.322	0.236		1.62		0.058	115,3	1.66	5120			
ACETO	NE	AMB	AIVID	TAL-1	٧	0.321	0.236		1.63	EN L	0.058	114.8	1.65	5040			
DYE		AMB	АМВ	TDT-1	٧	0.322	0.228		1.60	ENVIRONM	0.058	114.0	1.90	4180			
PENET	RANT	AIVID	AWID	TDL-1	٧	0.323	0.240		1.61	VIR	0.059	113.8	2.74	2280]		
METHY	L.	ANAD	AMB	TMDT-1	٧	0.323	0.232		1.59		0.058	118.5	2.01	3800			
ALCOH (DILUT	E)	AMB	АМВ	TMDL-1	٧	0.324	0.226		1.61	EST	0.058	118.3	3.27	145C]		
METHY	<u>L</u>	AMB	АМВ	TMET-1	V	0.321	0.228		1.60		0.058	138.5	1.64	5400			
ALCOH KETON		AIVID	AIVIB	TMEL-1	٧	0.324	0.228		1.61		0.058	138.3	1.64	4990]		
ETHYL		AMB	АМВ	TET-1	٧	0.323	0.232		1.63		0.058	137,5	1.66	5320	1		
ALCOH (PURE)	UL.	AIVID	AIVID	TEL-1	٧	0.324	0.228		1.61		0.059	137.3	1.68	5180			
ETHYL	2 0	AMB	АМВ	TEDT-1	V	0.325	0.236	1	1.62		0.059	119.5	1.81	4800			
ALCOP (DILUT	OL OINOIN	AIVIB	AIVID	TEDL-1	٧	0.323	0.228	1.50	1.60		0.059	119.3	2.22	3250			

SUSTAINED GROWTH OUT OF PLANE

BASE METAL STRESS CORROSION DATA LOADED IN ENVIRONMENT

-					-				50,0050	MATERI D	A T A				
							RFACE	FLAW	ED SPEC	IMEN D		ST DAT	Λ		
TA			S	PECIME	N DE	AILS						SIDAIA	1	œ ,	
LENGTH, a _f (inch)	LOAD TO EFFECT JAW DISPLACEMENT (pounds)	IDENTIFICATION	CONFIGURATION (Figure Number)	THICKNESS (inch)	WIDTH (inch)	INITIAL FLAW DEPTH, a _i (inch)	INITIAL FLAW LENGTH, 2c _i (inch)	LOADING MEDIUM	GROSS STRESS (ksi)	TEST DURATION (hours)	FLAW DEPTH AFTER TEST RUN, af (inch)	FLAW LENGTH AFTER TEST RUN, 2cf (inch)	FLAW DEPTH AFTER FATIGUE MARKING, a _{cr} (inch)	FLAW LENGTH AFTER FATIGUE MARKING, 2c _{cr} (inch)	AMBIENT TEMP. FAILURE LOAD (kips)
.63	5140	;											. '		
.75	4950	÷													
1 65	-	:										. '			
.65	1250														
.66	5120					;				•					
.65	5040														
.90	4180											:			
.74	2280														
1.01	3800														
1.27	1450														
.64	5400														
.64	4990														
1.66	5320														
1.68	5180														-,-
1.81	4800						1,11								
2.22	3250														

Table B1: COMPLIANCE DATA FOR 2219 ALUMINUM DCB SPECIMENS

CONDITION	TEST TEMP	SPECIMEN	SIDE GRO	OOVE	CRACK LENGTH	COMPLIANCE	^a 0	(K _z) CRIT
COMPLICIA	(OF)	NUMBER	SHAPE	DEPTH	(IN.)	IN/LB X 10 ⁶	(IN.)	KSI VÎÑ.
	72	AR20-1	SEMI- CIRCULAR	0.10	1.77 2.00 2.26 2.52 2.77 3.00	5,00 6.45 8.27 10.68 12.94 15.67	0.86 0.89 0.90 0.95 0.94 0.97	32.2
BASE METAL		AR20-2	SEMI- CIRCULAR	0.10	1.75 2.00 2.25 2.50 2.80	4.86 6.64 8.28 10.42 13.26	0.85 0.90 0.91 0.94 0.94	
		AR20-2A	SEMI- CIRCULAR	0.10	1,70	4.66	0.86	31.6
	-320	AR20-3	SEMI- CIRCULAR	0.10	1.74	4.40	0.88	38.4
	-320	AR20-4	SEMI- CIRCULAR	0.10	1.75	4.29	0.81	37.7
		AW-1	VEE	0.10	1.65	4.70	0.90	-
WELD	72	AW-3	VEE	0.10	1.68	4.68	0.87	-
METAL		AW-2	VEE	0.10	1.62	4.60	0.89	
	-320	AW-5	VEE	0.10	1,65	4.48	0.90	-

NOTE: BASE METAL SPECIMENS 1.00 INCH THICK WELD METAL SPECIMENS 0.95 INCH THICK

Table B2: COMPLIANCE DATA FOR 5AI-2.5 Sn (ELI) TITANIUM 0.375-INCH THICK DCB SPECIMENS

CONDITION	TEST	SPECIMEN	SIDE GRO	OOVE	CRACK LENGTH	COMPLIANCE	a ₀	κ _α
CONDITION	TEMP (°F)	NUMBER	SHAPE	DEPTH	(IN.)	IN/LB X 10 ⁶	(IN.)	KSI V IN.
		TV20-1	VEE	0.038	1.77 2.00 2.25	7.80 9.92 12.45	0.75 0.75 0.75	_
BASE METAL	72	TR30-1	SEMI- CIRCULAR	0.056	1.77 2.05 2.30	8.12 10.71 13.48	0.79 0.79 0.79	
		TV30-1	VEE	0.056	1.66 1.94	6.49 9.54	0.69 0.77	-
	-320	TR30-2	SEMI- CIRCULAR	0.056	1.77 2.10	6.57 9.05	0.65 0.63	
		TV20-2	VEE	0.038	1.77	7.09	0.73	67.6

Table B3: COMPLIANCE DATA FOR SAI-2.5 Sn (ELI) TITANIUM 0.350-INCH THICK DCB SPECIMENS

CONDITION	TEST	SPECIMEN	SIDE GR	OOVE .	CRACK LENGTH	COMPLIANCE	a _O	K _Q
CONDITION	TEMP (°F)	NUMBER	SHAPE	DEPTH	(IN.)	IN/LB X 10 ⁶	(IN.)	KSIVIN.
		T-5	VEE	0.053	1.62 1.85 2.11	7.22 9.34 12.09	0.77 0.78 0.78	-
BASE METAL	72	T-1	VEE	0.053	1.60	7.18	0.79	115
		T-2	VEE	0.053	1.63	7.29	0.77	-
	-320	T-3	VEE	0.053	1,61	6.64	0.77	59
	-423	THE-4	VEE	0.053	1.65	7.00	0.80	51
		TW2	VEE	0.053	1.61	7.87	0.75	_
WELD	72	TW3	VEE	0.053	1.67	8.79	0.80	_
METAL	-320	TW1	VEE	0.053	1.66	7.46	0.72	81.7
	-423	TW4	VEE	0.053	1.67	7.43	0.78	58.0

Table B4: COMPARISON OF MICROMETER AND CLIP GAGE DISPLACEMENT MEASUREMENTS FOR ALUMINUM BASE METAL DCB SPECIMENS

LOAD	WHEN PIN LOA	DED IN TEST MACHINE	WHEN WEDGE LOADED IN VISE	ED IN VISE
(LBS)	CLIP GAGE REA	DINGMICROMETER READING (IN.)	CLIP GAGE READING (IN.)	MICROMETER READING (IN.)
0	0	0	0	0
1,000	0.0062	0.0057	0.0072	0.0068
2,000	0.0124	0.0117	0.0131	0.0121
3,000	0.0186	0.0176	0.0190	0.0178
4,000	0.0248	0.0237	0.0250	0.0235
0	0	0	0	0

Table C1: SUMMARY OF TEST SPECIMENS

PROGRAM PHASE	MATERIAL	TEST TYPE	TEMP (°F)	SPECIMEN TYPE	SPECIMEN CONFIG (FIGURE NO.)
	A1-2219-T87 BASE METAL	MECHANICAL PROPERTY SUSTAINED LOAD SUSTAINED LOAD	ALL ALL ALL	TENSILE DCB SF	C10a C8 C1
	A1-2219-T87 WELD METAL	MECHANICAL PROPERTY SUSTAINED LOAD SUSTAINED LOAD	ALL ALL ALL	TENSILE DCB SF	C10a C8 C2
1	Ti-5A1-2.55N BASE METAL	MECHANICAL PROPERTY SUSTAINED LOAD (SL) SUSTAINED LOAD (SL) SL VARIABLE THICKNESS SL VARIABLE THICKNESS SL VARIABLE THICKNESS	ALL ALL 72 72 72 -320 -423	TENSILE DCB SF SF SF SF	C9a C8 C3 C5 C6
	Ti-5A1-2.55N WELD METAL	MECHANICAL PROPERTY SUSTAINED LOAD SUSTAINED LOAD	ALL 72 -320 -423	TENSILE DCB SF SF SF	C9a C8 C4 C5 C6
	ALL ALUMINUM ALLOYS	MECHANICAL PROPERTY PROOF OVERLOAD SUSTAINED LOAD	ALL ALL ALL	TENSILE SF SF	C10a C11 C11
li ii	Ti-6A1-4V Ti-5A1-2.55N	MECHANICAL PROPERTY MECHANICAL PROPERTY	ALL ALL	TENSILE TENSILE	C10b C9
	ALL TITANIUM ALLOYS	SUSTAINED LOAD	ALL	SF	C12