PROBLEM STATEMENT:- TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF THE DATASET

IMPORTING THE ESSENTIAL LIBRARIES:-

In [2]: ► import numpy as np import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn import preprocessing,svm

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

import seaborn as sns

In [3]: ▶

df=pd.read_csv(r"C:\Users\ubinl\OneDrive\Documents\jupyter\rainfall2.csv")
df

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	(
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	3
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	1
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	1
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	2.
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	2
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	1
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	1.
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	1
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	1

4116 rows × 19 columns

DATA PREPROCESSING:-

df.head() In [96]: Out[96]: SUBDIVISION YEAR JAN **FEB** MAR **APR** MAY JUN JUL **AUG SEP** OCT **ANDAMAN &** 0 29.2 **NICOBAR** 1901 49.2 87.1 2.3 528.8 517.5 365.1 481.1 332.6 388.5 **ISLANDS ANDAMAN &** 1 **NICOBAR** 1902 0.0 159.8 12.2 446.1 537.1 228.9 753.7 666.2 197.2 **ISLANDS** ANDAMAN & 2 **NICOBAR** 1903 12.7 144.0 0.0 235.1 479.9 728.4 326.7 339.0 181.2 1.0 **ISLANDS ANDAMAN &** 502.0 3 **NICOBAR** 1904 9.4 0.0 202.4 304.5 495.1 160.1 820.4 222.2 14.7 **ISLANDS ANDAMAN &** 4 **NICOBAR** 1905 0.0 3.3 279.5 628.7 368.7 330.5 297.0 260.7 1.3 26.9 **ISLANDS** df.tail() In [97]: Out[97]: SUBDIVISION YEAR 00 JAN FEB MAR APR MAY JUN JUL **AUG SEP** 4111 LAKSHADWEEP 2011 5.1 2.8 3.1 85.9 107.2 153.6 350.2 254.0 255.2 117 4112 LAKSHADWEEP 2012 19.2 0.1 1.6 76.8 21.2 327.0 231.5 381.2 179.8 145 4113 LAKSHADWEEP 2013 26.2 34.4 37.5 5.3 88.3 426.2 296.4 154.4 180.0 72 4114 LAKSHADWEEP 53.2 169 2014 16.1 4.4 14.9 57.4 244.1 116.1 466.1 132.2 0.5 296.6 165 4115 LAKSHADWEEP 2015 2.2 3.7 87.1 133.1 257.5 146.4 160.4

```
    df.isnull().any()

In [98]:
    Out[98]: SUBDIVISION
                              False
               YEAR
                              False
               JAN
                                True
               FEB
                                True
                                True
               MAR
               APR
                                True
               MAY
                                True
               JUN
                                True
               JUL
                                True
                                True
               AUG
               SEP
                                True
               OCT
                                True
               NOV
                                True
               DEC
                                True
               ANNUAL
                                True
                                True
               Jan-Feb
               Mar-May
                                True
               Jun-Sep
                                True
               Oct-Dec
                                True
               dtype: bool
In [99]:
              df.fillna(method='ffill',inplace=True)
            df.isnull().sum()
In [100]:
   Out[100]: SUBDIVISION
                              0
               YEAR
                              0
                              0
               JAN
                              0
               FEB
               MAR
                              0
               APR
                              0
               MAY
                              0
               JUN
                              0
                              0
               JUL
                              0
               AUG
               SEP
                              0
               OCT
                              0
                              0
               NOV
                              0
               DEC
               ANNUAL
                              0
               Jan-Feb
                              0
               Mar-May
                              0
               Jun-Sep
                              0
               Oct-Dec
                              0
               dtype: int64
```

Out[101]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.
4							

In [102]: ► df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype			
0	SUBDIVISION	4116 non-null	object			
1	YEAR	4116 non-null	int64			
2	JAN	4116 non-null	float64			
3	FEB	4116 non-null	float64			
4	MAR	4116 non-null	float64			
5	APR	4116 non-null	float64			
6	MAY	4116 non-null	float64			
7	JUN	4116 non-null	float64			
8	JUL	4116 non-null	float64			
9	AUG	4116 non-null	float64			
10	SEP	4116 non-null	float64			
11	OCT	4116 non-null	float64			
12	NOV	4116 non-null	float64			
13	DEC	4116 non-null	float64			
14	ANNUAL	4116 non-null	float64			
15	Jan-Feb	4116 non-null	float64			
16	Mar-May	4116 non-null	float64			
17	Jun-Sep	4116 non-null	float64			
18	Oct-Dec	4116 non-null	float64			
<pre>dtypes: float64(17), int64(1), object(1)</pre>						
memory usage: 611.1+ KB						

```
In [103]: ▶ df.columns
```

```
In [104]:

▶ df.shape
   Out[104]: (4116, 19)

    df['ANNUAL'].value_counts()

In [105]:
   Out[105]: ANNUAL
              790.5
                         4
              770.3
                         4
              1836.2
                         4
              1024.6
                         4
              1926.5
                         3
              443.9
                         1
              689.0
                         1
              605.2
                         1
              509.7
                         1
              1642.9
                         1
              Name: count, Length: 3712, dtype: int64
In [106]:
            df['Jan-Feb'].value_counts()
   Out[106]: Jan-Feb
              0.0
                       238
              0.1
                        80
              0.2
                        52
              0.3
                        38
              0.4
                        32
              23.3
                         1
              95.2
                         1
              76.9
                         1
              66.5
                         1
              69.3
                         1
              Name: count, Length: 1220, dtype: int64
           df['Mar-May'].value_counts()
In [107]:
   Out[107]: Mar-May
                        29
               0.0
                        13
              0.1
                        11
              0.3
              8.3
                        11
              11.5
                        10
              246.3
                         1
              248.1
                         1
              151.3
                         1
              249.5
                         1
              223.9
                         1
              Name: count, Length: 2262, dtype: int64
```

```
    df['Jun-Sep'].value_counts()

In [108]:
    Out[108]: Jun-Sep
               434.3
                         4
               334.8
                         4
               573.8
                         4
               613.3
                         4
               1082.3
                         3
               301.6
                         1
               380.9
               409.3
                         1
               229.4
                         1
               958.5
                         1
               Name: count, Length: 3683, dtype: int64

    df['Oct-Dec'].value_counts()

In [109]:
    Out[109]: Oct-Dec
               0.0
                        16
               0.1
                        15
               0.5
                        13
               0.6
                        12
               0.7
                        11
               191.5
                         1
               124.5
               139.1
                         1
               41.5
                         1
               555.4
                         1
               Name: count, Length: 2389, dtype: int64
```

EXPLORATARY DATA ANALYSIS:-

LINEAR REGRESSION:-

9.650666612303553

```
Out[114]: coefficient

FEB 0.442278
```

0.1793580786264921

```
In [116]: ▶ predictions=reg.predict(X_test)
```

```
In [117]: ▶ plt.scatter(y_test,predictions)
```

Out[117]: <matplotlib.collections.PathCollection at 0x273d4306410>


```
In [119]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
```

Out[119]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

R2 Score: 0.1867699729364467

RIDGE MODEL:-

```
In [123]: ▶ features= df.columns[0:5]
target= df.columns[-5]
```

```
In [124]:
              x=np.array(df['JAN']).reshape(-1,1)
              y=np.array(df['FEB']).reshape(-1,2)
In [125]:

    | x = df[features].values

              y= df[target].values
              x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_st
              ridgeReg=Ridge(alpha=10)
              ridgeReg.fit(x_train,y_train)
              train_score_ridge=ridgeReg.score(x_train,y_train)
              test_score_ridge=ridgeReg.score(x_test,y_test)
              print("\n Ridge Model:\n")
              print("the train score for ridge model is{}".format(train_score_ridge))
              print("the test score for ridge model is{}".format(test_score_ridge))
               Ridge Model:
              the train score for ridge model is0.999999999874192
              the test score for ridge model is0.9999999998833
```

```
In [126]: ▶ lr=LinearRegression()
```


LASSO MODEL:-

APR

Lasso Model:

The train score for ls model is 0.9999207747038827 The test score for ls model is 0.9999206791315256

In [129]:
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar

Out[129]: <Axes: >

0.99999999999991

0.99999999999991

ELASTIC NET:-

```
In [132]:
           ▶ | from sklearn.linear model import ElasticNet
              regr=ElasticNet()
              regr.fit(x,y)
              print(regr.coef )
              print(regr.intercept_)
              print(el.score(x,y))
              [9.99098574e-01 0.00000000e+00 3.02728910e-05 0.00000000e+00
               0.0000000e+00]
              0.01625860696662329
              0.9999992160905338
In [133]:
           y_pred_elastic = regr.predict(x_train)
              mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
              print(mean_squared_error)
              NameError
                                                         Traceback (most recent call las
              t)
              Cell In[133], line 1
              ----> 1 y_pred_elastic = regr.predict(x_train)
                    2 mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
                    3 print(mean_squared_error)
              NameError: name 'regr' is not defined
```

CONCLUSION:-