Fractional 0-1 programming and Submodularity

Shaoning Han

Department of Industrial & Systems Engineering University of Southern California

shaoning@usc.edu

October, 2021

Collaborators

Andres Gomez University of Southern California

Oleg Prokopyev University of Pittsburgh

One motivating example

Assortment optimization

Search result of "Integer programming"

Optimization (The MIT

>Mykel J. Kochenderfer

Press)

Hardcover

\$52.28

<

Integer Programming >Laurence A. Wolsey Hardcover \$99.99

Optimization: Algorithms and Complexity (Dover Boo... > Christos H. Papadimitriou ★★★★☆ 69 Paperback

\$16.99

Integer Programming Wolsey ********* \$108.66

Production Planning by Mixed Integer Programming (Springer Series in Operations... > Yves Pochet ***** Hardcover

\$75.00

Optimization (Athena Scientific Series in Optimization and Neur... Dimitris Bertsimas ******68 Hardcover \$84.55

食食食食会7

Paperback

\$105.63

Page 1 of 2

One motivating example

Assortment optimization

Search result of "Integer programming"

How does a company decide which products to display?

\$16.99

\$75.00

\$84.55

- [n]: set of products offered to customers
- [m]: set of market segments
- *v*: preference weights
- r: revenue rates
- $x: x_i = 1 \text{ iff } i \in S$

$$q(i,S;v) = \frac{v_i}{v_0 + \sum_{j \in S} v_j}$$

- [n]: set of products offered to customers
- [m]: set of market segments
- v: preference weights
- r: revenue rates
- x: $x_i = 1$ iff $i \in S$

$$r_i q(i, S; v) = \frac{r_i v_i}{v_0 + \sum_{j \in S} v_j}$$

- [n]: set of products offered to customers
- [m]: set of market segments
- v: preference weights
- r: revenue rates
- x: $x_i = 1$ iff $i \in S$

$$r(S; v) = \sum_{i \in S} r_i q(i, S; v) = \frac{\sum_{i \in S} r_i v_i}{v_0 + \sum_{j \in S} v_j}$$

- [n]: set of products offered to customers
- [m]: set of market segments
- v: preference weights
- r: revenue rates
- x: $x_i = 1$ iff $i \in S$

$$\mathbb{E}_{v}[r(S;v)] \iff$$

$$\sum_{k \in [m]} p_k r(S; v^k) = \sum_{k \in [m]} p_k \sum_{i \in S} r_i q(i, S; v^k) = \sum_{k \in [m]} p_k \frac{\sum_{i \in S} r_i v_{ik}}{v_{0k} + \sum_{j \in S} v_{jk}}$$

- [n]: set of products offered to customers
- [m]: set of market segments
- v: preference weights
- r: revenue rates
- x: $x_i = 1$ iff $i \in S$

$$\max_{S \in \mathcal{F}} \mathbb{E}_{v}[r(S; v)] \iff$$

$$\max_{S \in \mathcal{F}} \sum_{k \in [m]} p_k r(S; v^k) = \sum_{k \in [m]} p_k \sum_{i \in S} r_i q(i, S; v^k) = \sum_{k \in [m]} p_k \frac{\sum_{i \in S} r_i v_{ik}}{v_{0k} + \sum_{j \in S} v_{jk}}$$

- [n]: set of products offered to customers
- [m]: set of market segments
- v: preference weights
- r: revenue rates
- x: $x_i = 1$ iff $i \in S$

$$\max_{S \in \mathcal{F}} \mathbb{E}_{v}[r(S; v)] \iff$$

$$\max_{S \in \mathcal{F}} \sum_{k \in [m]} p_k r(S; v^k) = \sum_{k \in [m]} p_k \sum_{i \in S} r_i q(i, S; v^k) = \sum_{k \in [m]} p_k \frac{\sum_{i \in S} r_i v_{ik}}{v_{0k} + \sum_{j \in S} v_{jk}}$$

$$= \max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} r_i v_{ik} x_i}{v_{0k} + \sum_{i \in [n]} v_{ik} x_i}$$

- [n]: set of products offered to customers
- [m]: set of market segments
- v: preference weights
- r: revenue rates
- $x: x_i = 1 \text{ iff } i \in S$

Multiple-ratio fractional 0-1 program

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i} \tag{1}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq \{0, 1\}^n$ is the feasible region

Multiple-ratio fractional 0-1 program

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i} \tag{1}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq \{0, 1\}^n$ is the feasible region

Assortment optimization problem (Méndez-Díaz et al. 2014)

Multiple-ratio fractional 0-1 program

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i} \tag{1}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq \{0, 1\}^n$ is the feasible region

- Assortment optimization problem (Méndez-Díaz et al. 2014)
- Facility location problem (Tawarmalani et al. 2002)

Multiple-ratio fractional 0-1 program

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i} \tag{1}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq \{0, 1\}^n$ is the feasible region

- Assortment optimization problem (Méndez-Díaz et al. 2014)
- Facility location problem (Tawarmalani et al. 2002)
- Minimum fractional spanning tree problem (Ursulenko et al. 2013)
- ...

One-to-one correspondence

$$x = \mathbb{I}_S := \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{o.w.} \end{cases} \leftrightarrow S = \{i : x_i = 1\}$$

One-to-one correspondence

$$x = \mathbb{I}_S := \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{o.w.} \end{cases} \leftrightarrow S = \{i : x_i = 1\}$$

Set-function optimization problem

$$\max_{S \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in S} a_{ki}}{b_{k0} + \sum_{i \in S} b_{ki}}, \tag{2}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq [n] \coloneqq \{1, 2, \dots, n\}$

One-to-one correspondence

$$x = \mathbb{I}_S := \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{o.w.} \end{cases} \leftrightarrow S = \{i : x_i = 1\}$$

Set-function optimization problem

$$\max_{S \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in S} a_{ki}}{b_{k0} + \sum_{i \in S} b_{ki}}, \tag{2}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq [n] \coloneqq \{1, 2, \dots, n\}$

Assumption: \mathcal{F} is downward closed, i.e. $S \in \mathcal{F} \Rightarrow T \in \mathcal{F} \ \forall \ T \subseteq S$

One-to-one correspondence

$$x = \mathbb{I}_S := \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{o.w.} \end{cases} \leftrightarrow S = \{i : x_i = 1\}$$

Set-function optimization problem

$$\max_{S \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in S} a_{ki}}{b_{k0} + \sum_{i \in S} b_{ki}}, \tag{2}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq [n] \coloneqq \{1, 2, \dots, n\}$

Assumption: \mathcal{F} is downward closed, i.e. $S \in \mathcal{F} \Rightarrow T \in \mathcal{F} \ \forall \ T \subseteq S$

• Unconstrained problem: $\mathcal{F} = 2^{[n]}$

One-to-one correspondence

$$x = \mathbb{I}_S := \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{o.w.} \end{cases} \leftrightarrow S = \{i : x_i = 1\}$$

Set-function optimization problem

$$\max_{S \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in S} a_{ki}}{b_{k0} + \sum_{i \in S} b_{ki}}, \tag{2}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq [n] \coloneqq \{1, 2, \dots, n\}$

Assumption: \mathcal{F} is downward closed, i.e. $S \in \mathcal{F} \Rightarrow T \in \mathcal{F} \ \forall \ T \subseteq S$

- Unconstrained problem: $\mathcal{F} = 2^{[n]}$
- Cardinality constraint: $\mathcal{F} = \{S \subseteq [n] : |S| \le p\}$

One-to-one correspondence

$$x = \mathbb{I}_S := \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{o.w.} \end{cases} \iff S = \{i : x_i = 1\}$$

Set-function optimization problem

$$\max_{S \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in S} a_{ki}}{b_{k0} + \sum_{i \in S} b_{ki}}, \tag{2}$$

where a > 0, b > 0 and $\mathcal{F} \subseteq [n] \coloneqq \{1, 2, \dots, n\}$

Assumption: \mathcal{F} is downward closed, i.e. $S \in \mathcal{F} \Rightarrow T \in \mathcal{F} \ \forall \ T \subseteq S$

- Unconstrained problem: $\mathcal{F} = 2^{[n]}$
- Cardinality constraint: $\mathcal{F} = \{S \subseteq [n] : |S| \le p\}$
- Capacity constraint: $\mathcal{F} = \{ S \subseteq [n] : \sum_{i \in S} w_i \le c \}, w > 0, c > 0 \}$

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i}$$

How hard is it?

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i}$$

• Single-ratio $+ \operatorname{conv}(\mathcal{F}) \Rightarrow \operatorname{polynomially}$ solvable (Megiddo et al. 1979)

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i}$$

- Single-ratio $+ \operatorname{conv}(\mathcal{F}) \Rightarrow \operatorname{polynomially}$ solvable (Megiddo et al. 1979)
- ullet General single-ratio + ${\cal F}$ \Rightarrow ${\cal NP}$ -hard as generalization of linear IP

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i}$$

- Single-ratio $+ \operatorname{conv}(\mathcal{F}) \Rightarrow \operatorname{polynomially}$ solvable (Megiddo et al. 1979)
- ullet General single-ratio $+ \mathcal{F} \Rightarrow \mathcal{NP}$ -hard as generalization of linear IP
- Unconstrained single-ratio + modular $\Rightarrow \mathcal{NP}$ -hard (Hansen et al. 1991)

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i}$$

- Single-ratio $+ \operatorname{conv}(\mathcal{F}) \Rightarrow \operatorname{polynomially}$ solvable (Megiddo et al. 1979)
- ullet General single-ratio $+ \mathcal{F} \Rightarrow \mathcal{NP}$ -hard as generalization of linear IP
- Unconstrained single-ratio + modular $\Rightarrow \mathcal{NP}$ -hard (Hansen et al. 1991)
- Unconstrained multi-ratio \Rightarrow no algorithm with a factor better than $\mathcal{O}(1/m^{1-\delta}) \ \forall \delta > 0$. (Rusmevichientong et al. 2014)

How hard is it?

$$\max_{x \in \mathcal{F}} \sum_{k \in [m]} \frac{\sum_{i \in [n]} a_{ki} x_i}{b_{k0} + \sum_{i \in [n]} b_{ki} x_i}$$

- Single-ratio $+ \operatorname{conv}(\mathcal{F}) \Rightarrow \operatorname{polynomially}$ solvable (Megiddo et al. 1979)
- ullet General single-ratio $+ \mathcal{F} \Rightarrow \mathcal{NP}$ -hard as generalization of linear IP
- Unconstrained single-ratio + modular $\Rightarrow \mathcal{NP}$ -hard (Hansen et al. 1991)
- Unconstrained multi-ratio \Rightarrow no algorithm with a factor better than $\mathcal{O}(1/m^{1-\delta}) \ \forall \delta > 0$. (Rusmevichientong et al. 2014)

Very challenging!

Definition

A set function f is *submodular* if it exhibits diminishing returns, i.e. for all $S \subseteq T$

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

Definition

A set function f is submodular if it exhibits diminishing returns, i.e. for all $S \subseteq T$

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

Goal: understand when a $h(x) := \frac{\sum_{i \in [n]} a_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i}$ is submodular

Definition

A set function f is *submodular* if it exhibits diminishing returns, i.e. for all $S \subseteq T$

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

Goal: understand when a $h(x) := \frac{\sum_{i \in [n]} a_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i}$ is submodular

When $a_i/b_i = r \forall i$, i.e. $a_i = rb_i$

Definition

A set function f is *submodular* if it exhibits diminishing returns, i.e. for all $S \subseteq T$

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

Goal: understand when a $h(x) := \frac{\sum_{i \in [n]} a_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i}$ is submodular

When $a_i/b_i = r \forall i$, i.e. $a_i = rb_i$

$$h(x) = r \frac{\sum_{i \in [n]} b_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i}$$

Definition

A set function f is *submodular* if it exhibits diminishing returns, i.e. for all $S \subseteq T$

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

Goal: understand when a $h(x) := \frac{\sum_{i \in [n]} a_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i}$ is submodular

When $a_i/b_i = r \ \forall i$, i.e. $a_i = rb_i$

$$h(x) = r \frac{\sum_{i \in [n]} b_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i} = rg \left(\sum_{i \in [n]} b_i x_i \right),$$

Definition

A set function f is *submodular* if it exhibits diminishing returns, i.e. for all $S \subseteq T$

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

Goal: understand when a $h(x) := \frac{\sum_{i \in [n]} a_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i}$ is submodular

When $a_i/b_i = r \ \forall i$, i.e. $a_i = rb_i$

$$h(x) = r \frac{\sum_{i \in [n]} b_i x_i}{b_0 + \sum_{i \in [n]} b_i x_i} = rg \left(\sum_{i \in [n]} b_i x_i \right),$$

where $g(t) = t/(b_0 + t)$ is concave; see, e.g. Benati and Hansen (2002)

Submodularity characterization of a single ratio

In general:

Theorem (Han et al. (2020))

Function $h(\cdot)$ is submodular over $\mathcal F$ if and only if

$$h(S \cup \{i\}) + h(S \cup \{j\}) \le \frac{a_i}{b_i} + \frac{a_j}{b_j}$$

for all $S \subseteq N$, and $i, j \notin S$ with $i \neq j$ such that $S \cup \{i\} \cup \{j\} \in \mathcal{F}$.

Submodularity characterization of a single ratio

In general:

Theorem (Han et al. (2020))

Function $h(\cdot)$ is submodular over $\mathcal F$ if and only if

$$h(S \cup \{i\}) + h(S \cup \{j\}) \le \frac{a_i}{b_i} + \frac{a_j}{b_j}$$

for all $S \subseteq N$, and $i, j \notin S$ with $i \neq j$ such that $S \cup \{i\} \cup \{j\} \in \mathcal{F}$.

In the context of assortment optimization:

Proposition (Han et al. (2020))

If

$$\frac{r_{\max} - r_{\min}}{r_{\max}} \le \min_{S \in \mathcal{F}} \frac{\mathbb{P}\left\{customer \ leave \ with \ no \ purchase; S\right\}}{\mathbb{P}\left\{customer \ make \ a \ purchase; S\right\}}$$

where $r_{\text{max}} = \max_i a_i/b_i$, $r_{\text{min}} = \min_i a_i/b_i$, then h(x) is submodular.

Monotonicity and submodularity

Definition

A set function h is monotone nondecreasing if $h(S) \le h(S \cup \{i\})$ for all S and i.

Definition

A set function h is monotone nondecreasing if $h(S) \le h(S \cup \{i\})$ for all S and i.

Definition

A set function h is monotone nondecreasing if $h(S) \le h(S \cup \{i\})$ for all S and i.

$$h(S) \leq h(S \cup \{i\})$$

Definition

A set function h is monotone nondecreasing if $h(S) \le h(S \cup \{i\})$ for all S and i.

$$h(S) \le h(S \cup \{i\}) \Leftrightarrow h(S \cup \{i\}) \le a_i/b_i$$

Definition

A set function h is monotone nondecreasing if $h(S) \le h(S \cup \{i\})$ for all S and i.

$$h(S) \le h(S \cup \{i\}) \Leftrightarrow h(S \cup \{i\}) \le a_i/b_i$$

$$\Rightarrow h(S \cup \{i\}) + h(S \cup \{j\}) \le \frac{a_i}{b_i} + \frac{a_j}{b_j}.$$

Does submodularity ⇒ monotonicity?

Does submodularity ⇒ monotonicity?

Example: Consider

$$h(x) = \frac{3x_1 + 2x_2 + x_3}{2 + x_1 + x_2 + x_3},$$

which is submodular.

Does submodularity ⇒ monotonicity?

Example: Consider

$$h(x) = \frac{3x_1 + 2x_2 + x_3}{2 + x_1 + x_2 + x_3},$$

which is submodular. However,

$$h({3}) = \frac{1}{3} < h({1,2,3}) = \frac{6}{5} < h({1,2}) = \frac{5}{4}$$

⇒ monotonicity fails to hold.

Does submodularity ⇒ monotonicity?

Example: Consider

$$h(x) = \frac{3x_1 + 2x_2 + x_3}{2 + x_1 + x_2 + x_3},$$

which is submodular. However,

$$h({3}) = \frac{1}{3} < h({1,2,3}) = \frac{6}{5} < h({1,2}) = \frac{5}{4}$$

⇒ monotonicity fails to hold.

Proposition (Han et al. (2020))

If h(x) is submodular over \mathcal{F} , then it is monotone nondecreasing over $\mathcal{F}_1 := \{S \in \mathcal{F} : n \in S\}$ and $\mathcal{F}_2 = \{S \in \mathcal{F} : n \notin S\}$, where $a_n/b_n = \min_{i \in [n]} a_i/b_i$.

Submodularity testing amounts to solving

$$\frac{a_i}{b_i} + \frac{a_j}{b_j} \ge t_{ij} := \max_{S \in \mathcal{F}} h(S \cup \{i\}; a, b) + h(S \cup \{j\}; a, b)$$

Submodularity testing amounts to solving

$$\frac{a_i}{b_i} + \frac{a_j}{b_j} \ge t_{ij} \coloneqq \max_{S \in \mathcal{F}} h(S \cup \{i\}; a, b) + h(S \cup \{j\}; a, b)$$

Testing algorithm for $\mathcal{F} = 2^{[n]}$:

• Sort $a_1/b_1 \ge a_2/b_2 \ge \cdots \ge a_n/b_n$

Submodularity testing amounts to solving

$$\frac{a_i}{b_i} + \frac{a_j}{b_j} \ge t_{ij} := \max_{S \in \mathcal{F}} h(S \cup \{i\}; a, b) + h(S \cup \{j\}; a, b)$$

Testing algorithm for $\mathcal{F} = 2^{[n]}$:

- Sort $a_1/b_1 \ge a_2/b_2 \ge \cdots \ge a_n/b_n$
- Check if monotonicity holds over $\mathcal{F}_1 = \{S \in \mathcal{F} : n \in S\}$ and $\mathcal{F}_2 = \{S \in \mathcal{F} : n \notin S\}$

Submodularity testing amounts to solving

$$\frac{a_i}{b_i} + \frac{a_j}{b_j} \ge t_{ij} := \max_{S \in \mathcal{F}} h(S \cup \{i\}; a, b) + h(S \cup \{j\}; a, b)$$

Testing algorithm for $\mathcal{F} = 2^{[n]}$:

- Sort $a_1/b_1 \ge a_2/b_2 \ge \cdots \ge a_n/b_n$
- Check if monotonicity holds over $\mathcal{F}_1 = \{S \in \mathcal{F} : n \in S\}$ and $\mathcal{F}_2 = \{S \in \mathcal{F} : n \notin S\}$
- Check if $t_{in} \le a_i/b_i + a_n/b_n$ holds for all $i \in [n-1]$

Implications in computations

How can we benefit from submodularity?

Implications in computations

How can we benefit from submodularity?

Submodular function maximization

Proposition (Nemhauser et al. (1978))

When the feasible region is given by a cardinality constraint, the greedy algorithm produces a solution with $(1 - e^{-1})$ approx factor for $\max_{S \in \mathcal{F}} f(S)$.

Implications in computations

How can we benefit from submodularity?

Submodular function maximization

Proposition (Nemhauser et al. (1978))

When the feasible region is given by a cardinality constraint, the greedy algorithm produces a solution with $(1 - e^{-1})$ approx factor for $\max_{S \in \mathcal{F}} f(S)$.

Decomposition and cutting plane methods

$$h(x) = \frac{a'x}{1 + b'x} = \left(h(x) + \alpha \frac{b'x}{1 + b'x}\right) - \left(\alpha \frac{b'x}{1 + b'x}\right).$$

- epigraph
 ⇔ Lovász extension
- hypograph ⇒ valid inequalities

Computational experiment

Atamtürk and Narayanan (2021) consider

$$\min \left\{ \frac{a'x}{1+b'x} - \Omega s'x : x \in \{0,1\}^n \right\}$$

Benchmark:

Computational experiment

Atamtürk and Narayanan (2021) consider

$$\min \left\{ \frac{a'x}{1+b'x} - \Omega s'x : x \in \{0,1\}^n \right\}$$

Benchmark:

Branch and Bound (B&B)

Computational experiment

Atamtürk and Narayanan (2021) consider

$$\min \left\{ \frac{a'x}{1+b'x} - \Omega s'x : x \in \{0,1\}^n \right\}$$

Benchmark:

- Branch and Bound (B&B)
- B&B + cuts from submodular-supermodular decomposition

Computational results

λ	0.00	0.2	0.60	0.8	1.0
Gap(%)	1326.80	856.80	347.10	178.70	44.00
Cgap(%)	90.80	61.50	21.50	9.60	0.00
Time(s)	83.30	117.20	261.40	84.50	40.80
Ctime(s)	44.10	88.90	71.10	12.30	0.00
#Nodes	3.1E+04	3.6E+04	5.7E+04	3.2E+04	2.4E+04
#Cnodes	1.6E+04	2.1E+04	2.2E+04	9.7E+03	0.0
#Cuts	27.60	27.80	23.20	23.40	22.00

All computations are done with Gurobi version 9.0 on a Xeon workstation

• Characterization of submodularity of a single ratio

- Characterization of submodularity of a single ratio
- Monotonicity ← submodularity

- Characterization of submodularity of a single ratio
- Monotonicity ← submodularity
- Membership testing

- Characterization of submodularity of a single ratio
- Monotonicity ← submodularity
- Membership testing

Our paper is available at: https://arxiv.org/abs/2012.07235

- Characterization of submodularity of a single ratio
- Monotonicity ← submodularity
- Membership testing

Our paper is available at: https://arxiv.org/abs/2012.07235

Thank You!

Reference

- Atamtürk, A. and Narayanan, V. (2021). Submodular function minimization and polarity. *Mathematical Programming*, pages 1–11.
- Benati, S. and Hansen, P. (2002). The maximum capture problem with random utilities: Problem formulation and algorithms. European Journal of Operational Research, 143(3):518–530.
- Han, S., Gómez, A., and Prokopyev, O. A. (2020). Fractional 0-1 programming and submodularity. arXiv preprint arXiv:2012.07235.
- Hansen, P., De Aragão, M. V. P., and Ribeiro, C. C. (1991). Hyperbolic 0–1 programming and query optimization in information retrieval. *Mathematical Programming*, 52(1-3):255–263.
- Megiddo, N. et al. (1979). Combinatorial optimization with rational objective functions. *Mathematics of Operations Research*, 4(4):414–424.
- Méndez-Díaz, I., Miranda-Bront, J. J., Vulcano, G., and Zabala, P. (2014). A branch-and-cut algorithm for the latent-class logit assortment problem. Discrete Applied Mathematics, 164:246–263.
- Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions—I. Mathematical Programming, 14(1):265–294.
- Rusmevichientong, P., Shmoys, D., Tong, C., and Topaloglu, H. (2014). Assortment optimization under the multinomial logit model with random choice parameters. *Production and Operations Management*, 23(11):2023–2039.
- Tawarmalani, M., Ahmed, S., and Sahinidis, N. V. (2002). Global optimization of 0-1 hyperbolic programs. Journal of Global Optimization, 24(4):385–416.
- Ursulenko, O., Butenko, S., and Prokopyev, O. A. (2013). A global optimization algorithm for solving the minimum multiple ratio spanning tree problem. *Journal of Global Optimization*, 56(3):1029–1043.