Lecture 9: Unsupervised Learning and Clustering

INFO 1998: Introduction to Machine Learning

Announcements

- Deep learning workshop this weekend (2-3pm)
- Final project due soon!

Recap: Supervised Learning

- The training data you feed into your algorithm includes desired solutions
- Two types you've seen so far: regressors and classifiers
- In both cases, there are definitive "answers" to learn from

Example 1: Regressor **Predicts value**

Example 2: Classifier **Predicts label**

Recap: Supervised Learning

Supervised learning algorithms we have covered so far:

- k-Nearest Neighbors
- Linear Regression
- Logistic Regression
- Perceptron / SVM
- Decision Trees / Random Forest

Which of these are classifiers? Which are regressors?

What are some limitations of supervised learning?

Today: Unsupervised Learning

- In unsupervised learning, the training data is unlabeled
- Algorithm tries to learn by itself

An Example: Clustering

Unsupervised Learning

Some types of unsupervised learning problems:

- Clustering
 k-Means, Hierarchical Cluster Analysis (HCA), Gaussian Mixture Models (GMMs), etc.
- Dimensionality Reduction
 Principal Component Analysis (PCA), Locally Linear Embedding (LLE)
- Association Rule Learning
 Apriori, Eclat, Market Basket Analysis
- ... More

Unsupervised Learning

Some types of unsupervised learning problems:

- 1 Clustering
 - k-Means, Hierarchical Cluster Analysis (HCA), Gaussian Mixture Models (GMMs), etc.
- Dimensionality Reduction
 Principal Component Analysis (PCA), Locally Linear F.
- Association Rule Learning
 Apriori, Eclat, Market Basket Analysis
- ... More

Cluster Analysis

Cluster Analysis

- Loose definition: Clusters have objects which are "similar in some way" (and "dissimilar to objects in other clusters)
- Clusters are latent variables (variables that are unknown)
- Understanding clusters can:
 - Yield underlying trends in data
 - Supply useful parameters for predictive analysis
 - Helpful exercise, take any arbitrary supervised task, pretend it's unsupervised and work backwards. We can then see based on clustering what features/latent variables cause the trends or classifications

Clustering Application

Finding Population Structure in Genetic Data

From 1,387 European samples

Clustering Application

Recommender Systems

Intuition: People who are "similar", will like the same things

Running Example: Recommender Systems

Use 1: Collaborative Filtering

- "People similar to you also liked X"
- Use other's rating to suggest content

Pros

If cluster behavior is clear, can yield good insights

Cons

Computationally expensive

Can lead to dominance of certain groups in predictions

Running Example: Recommend MOVIES

	Amy	Jef	Mike	Chris	Ken
The Piano	-	-	+		+
Pulp Fiction	_	+	+	-	+
Clueless	+		-	+	-
Cliffhanger	-	-	+	-	+
Fargo	-	+	+	-	+

Running Example: Recommender Systems

Use 2: Content filtering

- "Content similar to what YOU are viewing"
- Use user's watch history to suggest content

Pros

Recommendations made by learner are intuitive

Scalable

Cons

Limited in scope and applicability

Another Example: Cambridge Analytica

- Uses Facebook profiles to build psychological profiles, then use traits for target advertising
- Ex. has personality test measuring openness, conscientiousness, extroversion, agreeableness and neuroticism -> different types of ads

How do we actually perform this "cluster analysis"?

Defining 'Similarity'

- Remember from K Nearest Neighbors Discussion
- How do we calculate proximity of different data points?
- Euclidean distance:

$$E(x,y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$$

- Other distance measures:
 - Squared euclidean distance, manhattan distance

Popular Clustering Algorithms

Hierarchical Cluster Analysis (HCA)

k-Means Clustering Gaussian Mixture Models (GMMs)

Algorithm 1: Hierarchical Clustering

Two types:

- Agglomerative Clustering
 - Creates a tree of increasingly large clusters (Bottom-up)
- Divisive Hierarchical Clustering
 - Creates a tree of increasingly small clusters (Top-down)

Agglomerative Clustering Algorithm

- Steps:
 - Start with each point in its own cluster
 - Unite adjacent clusters together
 - Repeat
- Creates a tree of increasingly large clusters

Agglomerative Clustering Algorithm

How do we visualize clustering? Using dendrograms

- Each width represents distance between clusters before joining
- Useful for estimating how many clusters you have

Demo 1

Popular Clustering Algorithms

Hierarchical Cluster Analysis (HCA)

k-Means Clustering Gaussian Mixture Models (GMMs)

Algorithm 2: k-Means Clustering

Input parameter: k

- Starts with k random centroids
- Cluster points by calculating distance for each point from centroids
- Take average of clustered points
- Use as new centroids
- Repeat until convergence

Interactive Demo: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Algorithm 2: k-Means Clustering

- A greedy algorithm
- Disadvantages:
 - Initial means are randomly selected which can cause suboptimal partitions
 Possible Solution: Try a number of different starting points
 - Depends on the value of k

Demo 2

Popular Clustering Algorithms

Hierarchical Cluster Analysis (HCA)

k-Means Clustering Gaussian Mixture Models (GMMs)

Algorithm 3: Gaussian Mixture Models

Input parameter: k

- Starts with k Gaussian distributions
- Train on data to find the appropriate means and covariances for each cluster
- Compute probability of each test point lying inside each distribution and predict the one with the highest probability.

Demo 3

Coming Up

- Assignment 9:
 - <u>Due</u> next Wednesday, Apr 26th, 11:59PM
- Last Lecture:
 - Real-world applications of ML
- Final Project:
 - <u>Due</u> next Monday, May 1st, 11:59PM

