Los siguientes dos hechos son consecuencia inmediata: primero, como $T(\mathbf{v}_1 - \mathbf{v}_2) = T\mathbf{v}_1 - T\mathbf{v}_2$, se tiene que para todo \mathbf{v}_1 y \mathbf{v}_2 en V

$$||T\mathbf{v}_1 - T\mathbf{v}_2||_W = ||\mathbf{v}_1 - \mathbf{v}_2||_V$$

Segundo,

Teorema 7.5.6

Sea T: $V \rightarrow W$ una isometría. Entonces para todo \mathbf{v}_1 y \mathbf{v}_2 en V

$$\langle T\mathbf{v}_1, T\mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \tag{7.5.8}$$

Es decir, una isometría preserva los productos internos.

Demostración

La demostración del teorema 7.5.6 es idéntica a la prueba del teorema 7.5.2 con productos internos en Vy W en lugar de producto escalar en \mathbb{R}^n .

D

Definición 7.5.3

Espacios vectoriales isométricamente isomorfos

Se dice que dos espacios vectoriales V y W con el mismo conjunto de escalares son **isométricamente isomorfos** si existe una transformación lineal $T: V \to W$ que sea tanto isometría como isomorfismo.

Teorema 7.5.7

Cualesquiera dos espacios reales de dimensión n con producto interno son isométricamente isomorfos.

Demostración

Sean $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ y $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ dos bases ortonormales para V y W, respectivamente. Sea $T: V \to W$ la transformación lineal definida por $T\mathbf{u}_i = \mathbf{w}_i, i = 1, 2, \dots, n$. Si se puede demostrar que T es una isometría, entonces la demostración queda completa, ya que de acuerdo con el razonamiento del teorema 7.5.5 se llega a que T es también un isomorfismo. Sean \mathbf{x} y \mathbf{y} en V. Entonces existen conjuntos de números reales c_1, c_2, \dots, c_n y d_1, d_2, \dots, d_n tales que $\mathbf{x} = c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_n\mathbf{u}_n$ y $\mathbf{y} = d_1\mathbf{u}_1 + d_2\mathbf{u}_2 + \dots + d_n\mathbf{u}_n$. Como los \mathbf{u}_i son ortonormales, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle (c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_n\mathbf{u}_n), (d_1\mathbf{u}_1 + d_2\mathbf{u}_2 + \dots + d_n\mathbf{u}_n) \rangle = c_1d_1 + c_2d_2 + \dots + c_nd_n$. De manera similar, como $T\mathbf{x} = c_1T\mathbf{u}_1 + c_2T\mathbf{u}_2 + \dots + c_nT\mathbf{u}_n = c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + \dots + c_n\mathbf{w}_n$, se obtiene $\langle T\mathbf{x}, T\mathbf{y} \rangle = \langle (c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + \dots + c_n\mathbf{w}_n), (d_1\mathbf{w}_1 + d_2\mathbf{w}_2 + \dots + d_n\mathbf{w}_n) \rangle = c_1d_1 + c_2d_2 + \dots + c_nd_n$, porque los \mathbf{w}_i son ortonormales. Esto completa la prueba.

EJEMPLO 7.5.1 Una isometría entre \mathbb{R}^3 y $\mathbb{P}_2[0,1]$

El teorema 7.5.7 se ilustra mostrando que \mathbb{R}^3 y $\mathbb{P}_2[0, 1]$ son isométricamente isomorfos. En \mathbb{R}^3 se

usa la base estándar
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
. En \mathbb{P}_2 se usa la base ortonormal $\{1, \sqrt{3}(2x-1),$