Wir betrachten die lineare Abbildung $f: \mathbb{R}^4 \to \mathbb{R}^3$; $x \mapsto Ax$, welche (bezüglich der Standardbasen) gegeben ist durch die Matrix

$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 2 & 4 \\ 1 & -2 & -1 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 4}.$$

- a) Bestimmen Sie eine Basis von Kern(f) und eine Basis von Bild(f).
- b) Ist die Abbildung f injektiv? Ist die Abbildung f surjektiv?
- c) Wir betrachten die Basen

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right) \quad \text{und} \quad \mathcal{C} = \left(\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} \right)$$

von \mathbb{R}^4 bzw. \mathbb{R}^3 . Bestimmen Sie die darstellende Matrix $\mathcal{C}[f]_{\mathcal{B}}$ von f bezüglich dieser Basen.

Zu a): Wir berechnen

$$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 2 & 4 \\ 1 & -2 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & -1 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Die Lösungen der Gleichung Ax=0 sind also alle x mit $\begin{pmatrix} x_1\\x_2\\x_3\\x_4 \end{pmatrix}=\lambda \begin{pmatrix} -1\\-1\\1\\0 \end{pmatrix}+\mu \begin{pmatrix} -2\\-1\\0\\1 \end{pmatrix}$ mit $\lambda,\mu\in\mathbb{R}$

$$\mathbb{R}$$
. Damit ist zum Beispiel $\begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1 \end{pmatrix}$ eine Basis von $\operatorname{Kern}(f)$. Das Bild von f wird von

den Spaltenvektoren von A aufgespannt. Da der Kern zweidimensional ist, ist das Bild nach der Dimensionsformel ebenfalls zweidimensional. Obiger Rechnung entnimmt man, dass die ersten beiden

Spalten linear unabhängig sind. Damit ist zum Beispiel
$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}$ eine Basis von Bild (f) .

Zu b):

- Wegen $\dim(\operatorname{Kern}(f)) = 2$ ist $\operatorname{Kern}(f) \neq \{0\}$ und f somit nicht injektiv.
- Wegen $\dim(\operatorname{Bild}(f)) = 2$ ist $\operatorname{Bild}(f) \neq \mathbb{R}^3$ und f somit nicht surjektiv.

Zu c): Wir berechnen

$$A \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad A \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}, \quad A \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad A \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Damit ergibt sich als darstellende Matrix sofort

$$c[f]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Alternativer Lösungsweg: Man verwendet die Transformationsformel und berechnet die Transformationsmatrizen.

$$c[f]_{\mathcal{B}} = c[id]_{\mathcal{E}} \cdot \varepsilon[f]_{\mathcal{E}} \cdot \varepsilon[id]_{\mathcal{B}} = (\varepsilon[id]_{\mathcal{C}})^{-1} \cdot A \cdot \varepsilon[id]_{\mathcal{B}}$$

$$= \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & -3 \\ 1 & -2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 2 & 4 \\ 1 & -2 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 6 & -1 & -3 \\ 5 & -1 & -3 \\ 4 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Wir betrachten die folgende Matrix mit einem Parameter $a \in \mathbb{R}$,

$$A := \begin{pmatrix} 3a - 2 & 3 - 3a & a - 1 \\ 0 & 2 & 0 \\ 4 - 4a & 3a & 2 - a \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

- a) Zeigen Sie, dass $v={}^t \begin{pmatrix} -1 & 0 & 2 \end{pmatrix} \in \mathbb{R}^3$ stets ein Eigenvektor von A ist und geben Sie den dazugehörigen Eigenwert an.
- b) Bestimmen Sie alle Eigenwerte von A.
- c) Wir betrachten den Fall a=1. Zeigen Sie, dass A in diesem Fall diagonalisierbar ist. Geben Sie die zugehörige Diagonalmatrix an.
- d) Wir betrachten den Fall a=2 (**Zwischenergebnis:** In diesem Fall lautet das charakteristische Polynom $\chi_A=(2-\lambda)^3$). Zeigen Sie, dass A in diesem Fall nicht diagonalisierbar ist. Geben Sie die Jordannormalform von A an.

Zu a): Wir berechnen

$$Av = \begin{pmatrix} 3a - 2 & 3 - 3a & a - 1 \\ 0 & 2 & 0 \\ 4 - 4a & 3a & 2 - a \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -a \\ 0 \\ 2a \end{pmatrix} = a \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = av.$$

Somit ist v ein Eigenvektor von A zum Eigenwert a.

Zu b): Man sieht der Matrix sofort an, dass $\lambda_1 = 2$ ein Eigenwert ist, denn beim Entwickeln des charakteristischen Polynoms nach der zweiten Zeile erhält man den Faktor $(2 - \lambda)$. Nach dem ersten Aufgabenteil ist $\lambda_2 = a$ ein zweiter Eigenwert. Der dritte Eigenwert λ_3 ergibt sich aus der Eigenschaft, dass die Spur einer Matrix gleich der Summe aller Eigenwerte ist:

$$\operatorname{spur}(A) = \lambda_1 + \lambda_2 + \lambda_3 \implies \lambda_3 = \operatorname{spur}(A) - \lambda_1 - \lambda_2 = (2a+2) - 2 - a = a.$$

Die Eigenwerte sind also $\lambda_1 = 2$ und $\lambda_{2,3} = a$.

Alternative (Standard-) Lösung:

$$\chi_A = \det \begin{pmatrix} 3a - 2 - \lambda & 3 - 3a & a - 1 \\ 0 & 2 - \lambda & 0 \\ 4 - 4a & 3a & 2 - a - \lambda \end{pmatrix} = (2 - \lambda) \cdot \det \begin{pmatrix} 3a - 2 - \lambda & a - 1 \\ 4 - 4a & 2 - a - \lambda \end{pmatrix}$$
$$= (2 - \lambda) \cdot ((3a - 2 - \lambda)(2 - a - \lambda) - (a - 1)(4 - 4a))$$
$$= (2 - \lambda) \cdot (6a - 3a^2 - 3a\lambda - 4 + 2a + 2\lambda - 2\lambda + a\lambda + \lambda^2 - 4a + 4a^2 + 4 - 4a)$$
$$= (2 - \lambda) \cdot (a^2 - 2a\lambda + \lambda^2) = (2 - \lambda)(a - \lambda)^2.$$

Und man erhält wie oben die Eigenwerte $\lambda_1 = 2$ und $\lambda_{2,3} = a$.

Zu c): Im Fall a=1 besitzt A die Eigenwerte $\lambda_1=1$ und $\lambda_2=2$ mit algebraischen Vielfachheiten $a_A(1)=2$ und $a_A(2)=1$. Es ist nur zu zeigen, dass die geometrische Vielfachheit $g_A(1)$ des doppelten Eigenwertes $\lambda_1=1$ ebenfalls zwei ist:

$$\operatorname{Rang}(A - 1 \cdot E_3) = \operatorname{Rang} \begin{pmatrix} 3a - 3 & 3 - 3a & a - 1 \\ 0 & 1 & 0 \\ 4 - 4a & 3a & 1 - a \end{pmatrix} \stackrel{a=1}{=} \operatorname{Rang} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{pmatrix} = 1.$$

Es folgt

$$g_A(1) = \dim(\text{Kern}(A - 1 \cdot E_3)) = 3 - \text{Rang}(A - 1 \cdot E_3) = 3 - 1 = 2.$$

Damit ist A diagonalisierbar und die entsprechende Diagonalmatrix ist zum Beispiel $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Zu d): Im Fall a=2 besitzt A nur den Eigenwert $\lambda=2$ mit algebraischer Vielfachheit $a_A(2)=3$. Es ist nun zu zeigen, dass für die geometrische Vielfachheit gilt $g_A(2)\neq 3$:

$$\operatorname{Rang}(A - 2 \cdot E_3) = \operatorname{Rang} \begin{pmatrix} 3a - 4 & 3 - 3a & a - 1 \\ 0 & 0 & 0 \\ 4 - 4a & 3a & -a \end{pmatrix} \stackrel{a=2}{=} \operatorname{Rang} \begin{pmatrix} 2 & -3 & 1 \\ 0 & 0 & 0 \\ -4 & 6 & -2 \end{pmatrix} = 1.$$

Es folgt

$$g_A(2) = \dim(\text{Kern}(A - 2 \cdot E_3)) = 3 - \text{Rang}(A - 2 \cdot E_3) = 3 - 1 = 2.$$

Damit ist A nicht diagonalisierbar. Wegen $g_A(2) = 2$ gibt es zum Eigenwert 2 genau zwei Jordanblöcke und die entsprechende Jordannormalform (existiert, da χ_A in Linearfaktoren zerfällt, aber danach war

nicht gefragt) ist zum Beispiel
$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Wir betrachten die Bilinearform $\phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$; $\phi(x,y) = {}^t x A y$, welche (bezüglich der Standardbasis) gegeben ist durch die Matrix

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

- a) Zeigen Sie, dass die Bilinearform ϕ ein Skalarprodukt auf \mathbb{R}^3 ist.
- b) Wir arbeiten nun mit dem Skalarprodukt $\langle x|y\rangle:=\phi(x,y)$ im Euklidischen Vektorraum ($\mathbb{R}^3,\langle\ |\ \rangle$) und betrachten die Vektoren

$$v_1 = \begin{pmatrix} 1/\sqrt{3} \\ 0 \\ 0 \end{pmatrix}$$
 und $v_2 = \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$.

Zeigen Sie, dass diese jeweils die Länge 1 haben und orthogonal zueinander sind.

- c) Bestimmen Sie eine Orthonormalbasis \mathcal{B} für den Euklidischen Vektorraum ($\mathbb{R}^3, \langle | \rangle$).
- d) Geben Sie die Grammatrix $G_{\mathcal{B}}(\phi)$ der Bilinearform ϕ bezüglich der Orthonormalbasis \mathcal{B} an.

Zu a): Die Bilinearform ϕ ist symmetrisch, da die darstellende Matrix A symmetrisch ist. Die Bilinearform ϕ ist nach dem Hurwitz-Kriterium positiv definit, denn es gilt

$$\det (3) = 3 > 0 \quad , \quad \det \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} = 6 > 0 \quad , \quad \det \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 6 - 3 - 2 = 1 > 0.$$

Damit ist ϕ ein Skalarprodukt.

Zu b): Wir berechnen:

$$||v_1||^2 = \langle v_1 | v_1 \rangle = \phi(v_1, v_1) = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1\\ 0 & 2 & 1\\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{3}\\ 0\\ 0 \end{pmatrix} = 1$$

$$||v_2||^2 = \langle v_2 | v_2 \rangle = \phi(v_2, v_2) = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1\\ 0 & 2 & 1\\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0\\ 1/\sqrt{2}\\ 0 \end{pmatrix} = 1$$

$$\langle v_1 | v_2 \rangle = \phi(v_1, v_2) = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1\\ 0 & 2 & 1\\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0\\ 1/\sqrt{2}\\ 0 \end{pmatrix} = 0$$

Daraus ergibt sich, dass v_1 und v_2 jeweils die Länge 1 haben und orthogonal zueinander sind.

Zu c): Da v_1 und v_2 bereits orthogonal und normiert sind, fehlt nur noch ein v_3 . Dazu ergänzen wir (v_1, v_2) mit $w_3 = {}^t \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ zu einer Basis (v_1, v_2, w_3) des \mathbb{R}^3 . Dann orthogonalisieren wir

$$\widetilde{w_3} = w_3 - \phi(v_1, w_3)v_1 - \phi(v_2, w_3)v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{3}} \begin{pmatrix} 1/\sqrt{3} \\ 0 \\ 0 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/2 \\ 1 \end{pmatrix}$$

und schließlich normieren wir

$$v_3 = \frac{\widetilde{w_3}}{\sqrt{\phi(\widetilde{w_3}, \widetilde{w_3})}} = \sqrt{6} \begin{pmatrix} -1/3 \\ -1/2 \\ 1 \end{pmatrix}.$$

Damit ist $\mathcal{B} = (v_1, v_2, v_3)$ eine Orthonormalbasis von (\mathbb{R}^3, ϕ) .

Zu d): Das Skalarprodukt wird bezüglich einer Orthonormalbasis per Definition von 'Orthonormalbasis' immer durch die Einheitsmatrix dargestellt. Es gilt also

$$G_{\mathcal{B}}(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Kreuzen Sie an, ob die folgenden Aussagen wahr oder falsch sind. Begründungen sind in dieser Aufgabe nicht verlangt!

Амада до		falsch
Aussage	wahr	iaiscn
$\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid x=y\}\subset\mathbb{N}\times\mathbb{N} \text{ ist eine Äquivalenzrelation.}$	х	
Für $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \in S_3$ gilt $sgn(\sigma) = 1$.		x
$f: \mathbb{R}^2 \to \mathbb{R}; \; \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto x_2 \text{ ist eine lineare Abbildung.}$	Х	
Für $\lambda \neq 0$ und $A \in GL(n, \mathbb{R})$ gilt: $(\lambda \cdot {}^t A)^{-1} = {}^t (\frac{1}{\lambda} \cdot A^{-1})$	X	
$\{x \in \mathbb{R}^4 \mid x = 1\} \subset \mathbb{R}^4 \text{ ist ein Untervektorraum.}$		X
$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_2 = 1 \right\} \text{ ist ein Erzeugendensystem des } \mathbb{R}^3.$	х	
Für alle Untervektorräume $U,V\subset\mathbb{R}^n$ gilt:		X
$\dim(U+V) = \dim(U) + \dim(V)$		
Es ist möglich, dass sich zwei zweidimensionale Untervektorräume im \mathbb{R}^4 in genau einem Punkt schneiden.	X	
Die Matrix $\begin{pmatrix} i & i \\ i & -i \end{pmatrix}$ ist unitär.		х
Die Matrix $\begin{pmatrix} 0 & 3 \\ -3 & -1 \end{pmatrix}$ ist normal.		Х

Erklärungen zu Aufgabe 4

- Man überzeugt sich davon, dass $\{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x=y\} \subset \mathbb{N} \times \mathbb{N}$ in der Tat eine reflexive, symmetrische und transitive Relation ist, also eine Äquivalenzrelation.
- Die Permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \in S_3$ ist ungerade, denn sie besteht nur aus einer Transposition (nur 1 und 3 werden vertauscht) es gilt also $\operatorname{sgn}(\sigma) = -1$.
- Die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}; \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto x_2$ ist linear, sie wird bezüglich der Standardbasen zum Beispiel durch die Matrix $A = \begin{pmatrix} 0 & 1 \end{pmatrix}$ dargestellt.
- Für $\lambda \neq 0$ und $A \in GL(n, \mathbb{R})$ gilt nach den bekannten Rechenregeln: $(\lambda \cdot {}^t A)^{-1} = \frac{1}{\lambda} \cdot ({}^t A)^{-1} = \frac{1}{\lambda} \cdot {}^t (A^{-1}) = {}^t (\frac{1}{\lambda} \cdot A^{-1}).$
- $\{x \in \mathbb{R}^4 \mid ||x|| = 1\} \subset \mathbb{R}^4$ ist kein Untervektorraum, da zum Beispiel x = 0 nicht darin enthalten ist
- $\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_2 = 1 \right\}$ ist ein Erzeugendensystem des \mathbb{R}^3 , denn es liegen zum Beispiel die Vektoren $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ in dieser Menge und allein diese drei Vektoren spannen schon den ganzen \mathbb{R}^3 auf.
- Die Dimensionsformel für die Summe von Untervektorräumen lautet richtig:

$$\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$$

- Man betrachte zum Beispiel die Standardbasis (e_1, e_2, e_3, e_4) des \mathbb{R}^4 und dazu die beiden Untervektorräume $U_1 = \text{Lin}(e_1, e_2)$ und $U_2 = \text{Lin}(e_3, e_4)$: Sie sind zweidimensional und schneiden sich genau im Nullpunkt.
- Die Matrix $\begin{pmatrix} i & i \\ i & -i \end{pmatrix}$ ist nicht unitär, da zum Beispiel der erste Spaltenvektor nicht normiert ist.
- Die Matrix $A = \begin{pmatrix} 0 & 3 \\ -3 & -1 \end{pmatrix}$ ist nicht normal, denn es gilt $A \cdot {}^t A \neq {}^t A \cdot A$.