Nov 13,2023 Risk & Uncertainty I: indoor ceremony S: outdoor ceremony, sun R: outdoor ceremony, roun Sフェフル Actual Chorce Indoor vs. Outdoor cs or R) Choosing over Betterles In general, $X = \{x_1, \dots, x_n\}$ "consequences" or "prives" $X = \{x_1, \dots, x_n\}$ "consequences" $X = \{x_1, \dots, x_n\}$ "consequences" $X = \{x_1, \dots, x_n\}$ "consequences" x = {1, s, R} ouldoor Lin = (1, 0, 0)Indoor

Indoor Lout = (0,2/2,1/3)

If preferences are continuous, then we can represent them
using a continuous utility for U: L -> R
$L > L' \Leftrightarrow U(L) > U(L')$
Independence Axiom
\gtrsim catified independence if $\forall L, L', L'' \in L$ and all $\alpha \in (0,1)$,
all $\alpha \in (0,1)$
$L \gtrsim L' \Leftrightarrow \alpha L + (1-\alpha)L'' \geqslant \alpha L' + (1-\alpha)L''$
Fourth Outcome: Grown gets cold feet
$L_{NO} = (0,0,0,1)$
Lout > Lin \Rightarrow \frac{12}{12} \land \text{Lin}
1/2
Louis > Lin (>>)
100 V2 LND
Independence in normal" concumer theory
3c = (2 apples, 0 bananas)
$z' = (0a_1 2b)$
$x^{n} = (2a_{1} 2b)$
$\alpha = 1/2$
$X \geqslant x' \Rightarrow \underbrace{1}_{2} x + \underbrace{1}_{2} x'' \geqslant \underbrace{1}_{2} x' + \underbrace{1}_{2} x''$
2 2 2 2
$(2a, 1b) \gtrsim (1a, 2b)$
=> This does not have to be true. Does not note conserve to simpose all the time in general consumer theory.
some to simpose all the time in acrossal
consumer theory.
(I

	A utility function U: R -> 12 has expected ulitity from
	A utility function $U: k \rightarrow p$ has expected utility from if there are numbers $[u_1, \dots, u_n)$ s.t.:
	4 L E L
	$U(l) = \sum_{i=1}^{n} P_{i} u_{i}$
	Theorem (von Neumann-Morgenstein, 1947)
	A rational preference relation > on L & continous
	and catalize independence if to only if it admits
	A rational preference relation > on h is continous and catalogies independence if to only if it admits an expected utility representation, that is, I rumber
	(u, un) st
	$L \gtrsim L' \iff \underset{i=1}{\overset{2}{\approx}} P_i u_i \geq \underset{i=1}{\overset{2}{\approx}} P_i' u_i$
	for any $2 L = (P_1, P_n)$, $L' = (P_1', P_n')$
	Inhibon
	EU => independence so toival
	Independence (+ continuity) = EU & harder
	Take L, L' s.t. L~L'
	Independence says:
	$L \sim L' \Leftrightarrow \alpha L + (L \sim) L'' \sim \alpha L' + (1 - \alpha) L'$
	Set 1"=2
	$L \sim L' \iff L \sim \alpha L' + (1-\alpha)L$
- prus	Indifferent
1C, are	to L
Yarallel &	
unes	

	What if not parallel?
	Violates independence
	11+11" L~1 best
	$\frac{1}{2}C + \frac{1}{2}C'' + \frac{1}{2}C''$
	$u(x_1, x_2) = \alpha_1 x_1 + \alpha_2 x_2$
	- Stochight line ICs
	- Stochight line ICs - MU $\frac{\partial V}{\partial x} = x$
	For lotteries, "goods" are units of probability:
	$\alpha \left(\ell_{1}, \ldots, \ell_{n} \right) = \underset{i=1}{\overset{2}{\sim}} \ell_{i} \ u_{i}$
	or - wi
	Jurther properties of EU!
	A Whility Roman has Fix Come PCL it is live a
	4 utility function has EU from lift it is linear. It $(\stackrel{>}{\underset{k=1}{\sum}} \alpha_k L_k) = \stackrel{>}{\underset{k=1}{\sum}} \alpha_k U(L_k)$ for $\stackrel{>}{\underset{k=1}{\sum}} \alpha_k = 1$
2	EU is preserved only under increasing linear transformations.
	transformations.
	let U: L -> IR be an EU representation of >
	Then, V is another EV representation if 6 only if
	V(1) = \(\mu(1) + \beta \) for some \(\alpha > 0. \)
	EV is a cardinal property of whility

3	Cardinality matters for (u_1, \dots, u_n) say $(u_1, u_2, u_3) = (1, x, 0)$
	$L_1 = (1/2, 0, 1/2)$ $L_2 = (0, 1, 0)$
	$l_1 \gtrsim l_2! \frac{1}{2}(1) + \frac{1}{2}(0) \geq 2e$
	$u_1 < \frac{1}{2}$ $l_1 \geq l_2$
	u2>12: 1224
	fide Note! 2 normalizations for "free" (workspands to α, β)
	who set $u_i = 1$, $u_n = 0$ but this pine down: u_{n-1} exactly.
	uzg. g un-1 exactly.
*	of x is continuous, replace sums with integrals
	$U(f) = \int u(x) df(x) = \int u(x) f(n) dx$