ALGEBRA 1, Lista 2

Konwersatorium 9.10.2019 i Ćwiczenia 15.10.2019.

- 0S. Materiał teoretyczny: Działania dodawania i mnożenia modulo n. Pojęcie podgrupy, homomorfizmu grup i izomorfizmu grup. Notacja multyplikatywna i addytywna. Grupy permutacji i grupy macierzy. Grupy izometrii własnych prostokąta i trójkąta równobocznego, grupa czwórkowa Kleina K_4 . Izomorfizm grupy izometrii własnych trójkąta równobocznego i S_3 .
- 1S. Napisać tabelki działania i mnożenia modulo 6: $+_6$, \cdot_6 w zbiorze reszt modulo 6, to znaczy w zbiorze $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$
- 2S. Rozważmy bijekcję $f: \mathbb{Z}_6 \to \mathbb{Z}_6$ o następujących wartościach:

$$f(0) = 3$$
, $f(1) = 5$, $f(2) = 0$, $f(3) = 1$, $f(4) = 2$, $f(5) = 4$.

Niech * będzie działaniem indukowanym w zbiorze \mathbb{Z}_6 przez działanie $+_6$ poprzez funkcję f, zaś o działaniem indukowanym w zbiorze \mathbb{Z}_6 przez działanie \cdot_6 poprzez funkcję f. Sporządzić tabelki działań * i o.

- 3. Niech (G,\cdot) bedzie grupa i $A\subseteq G$. Dla poniższych (G,\cdot) i A sprawdzić, czy podzbiór A jest zamknięty na działanie ·. Jeśli tak, to sprawdzić czy A jest podgrupą grupy (G, \cdot) .
 - (a) S $G=(\mathbb{C},+);\,A=S^1=\{z\in\mathbb{C}\ |\ |z|=1\}$ (okrąg).
 - (b)S $G = (\mathbb{C} \setminus \{0\}, \cdot); A = (0, \infty)$ (dodatnie liczby rzeczywiste).

(b)
$$G = (\mathbb{C} \setminus \{0\}, \cdot); A = (0, \infty)$$
 (dodatnie liczby rz.)
(c) $S G = S_3; A = \left\{ id, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}.$
(d) $K G = (\mathbb{Z}_8, +_8); A = \{0, 2, 4, 6\}.$

- (e)K $G = (\mathbb{Z}, +); A = \mathbb{Z}_7.$
- (f) K $G=(\mathbbm{C}\setminus\{0\},\cdot);\,A=\{z\in\mathbbm{C}\mid z^n=1\}$ (n-te pierwiastki z 1).
- 4K. Niech G będzie grupą. Dla $k, l \in \mathbb{Z}$ i $g, h \in G$ udowodnić, że:
 - (a) $g^k g^l = g^{k+l}$;
 - (b) $(q^k)^l = q^{kl}$;
 - (c) jeśli gh = hg, to $(gh)^k = g^k h^k$.
 - 5. Wyznaczyć grupy izometrii własnych następujących figur płaskich. Które z tych grup są ze sobą izomorficzne? Które z tych grup są abelowe?

- 6. Dowieść, że w dowolnej grupie G dla dowolnych $a,b\in G$ mamy:
 - (a) $(ab)^{-1} = b^{-1}a^{-1}$.
- (b) $(a^{-1}ba)^k = a^{-1}b^ka$, gdzie k to dowolna liczba całkowita. 7. Załóżmy, że w grupie G mamy $a^2 = e$ dla wszystkich $a \in G$. Udowodnić, że G jest abelowa.
- 8. Udowodnić, że grupa G jest abelowa wtedy i tylko wtedy, gdy $(ab)^2=a^2b^2$ dla wszystkich $a, b \in G$.
- 9. Wskazać 6 różnych izomorfizmów między grupą izometrii własnych trójkąta równobocznego i grupą permutacji S_3 .