

TU Wien Institut für Logic and Computation Algorithms and Complexity Group

186.866 Algorithmen und Datenstrukturen VU 8.0 2. Test, 2019S 28. Juni 2019 Gruppe A

Machen Sie die folgenden	Angaben	in deutlie	cher Bloc l	kschrift:		
Nachname:			Vorname:			
Matrikelnummer:			Unterschr	rift:		
Sie dürfen die Lösungen rerhalten. Es ist nicht zul Benutzen Sie dokumenten Die Verwendung von Tasc ten, Büchern, Mitschrifte zulässig.	ässig, eve echte Sch chenrechn	entuell mi reibgeräte ern, Mobi	tgebrachte e (keine B ltelefonen	es eigenes leistifte!). , Tablets,	Papier z	zu verwenden. ameras, Skrip-
Kennzeichnen Sie bei Ank Sie Passagen, die nicht ge werden nicht gewertet.	_		0,			
	A1	A2	A3	A4	A5	Summe
Erreichbare Punkte:	21	21	20	25	13	100
Erreichte Punkte:						

Viel Erfolg!

- a) (12 Punkte) Seien A, B, C Ja/Nein-Probleme und n die Eingabegröße. Nehmen Sie an, es gibt
 - eine Reduktion von B nach A in Zeit $O(n^2)$,
 - eine Reduktion von A nach SAT in Zeit $O(n^3)$,
 - eine Reduktion von SAT nach A in Zeit O(n),
 - eine Reduktion von A nach C in Zeit $O(3^{2n})$.
 - (i) Kreuzen Sie in den folgenden Tabellen jeweils die zutreffenden Felder an: (je korrekter Zeile 1 Punkt, keine Minuspunkte)

C ist	Ja	Nein	Keine Aussage möglich
in NP			
NP-schwer			

A ist	Ja	Nein	Keine Aussage möglich
in NP			
NP-schwer			

B ist	Ja	Nein	Keine Aussage möglich
in NP			
NP-schwer			

- (ii) Welche der obigen Probleme A, B, C und SAT wären sicher in polynomieller Zeit lösbar, falls P = NP gelten sollte.
- (iii) Nehmen Sie nun an, C kann für Eingaben der Größe m in Zeit $O(m^2)$ gelöst werden. Welche engste obere Schranke können Sie aus den gegebenen Informationen für die Worst-Case Laufzeit eines optimalen Algorithmus für A schließen?

b)	(9 Punkte) Im Folgenden sind verschiedene Probleme mit verschiedenen Zertifikaten gegeben. Welche Zertifikate sind (gemeinsam mit einem geeigneten Zertifizierer) geeignet, um zu zeigen, dass das gegebene Problem in NP ist? Kreuzen Sie Zutreffendes an. Sie dürfen für diese Frage $P \neq NP$ annehmen.
	Es kann mehr als eine richtige Antwort geben.
	(je Unteraufgabe: alles korrekt: 3 Punkte, ein Fehler: 1 Punkt, sonst / kein Kreuz: 0 Punkte)
	i) Problem: Gegeben eine Menge U und eine Menge $S = \{S_1, S_2, \dots, S_m\}$ von Teilmengen von U . Gibt es ein Set Cover von U mit $\leq k$ Mengen?
	Zertifikat:
	☐ Ein leerer String.
	\square Ein Set Cover mit $\leq k$ Mengen.
	\square Eine Zahl m , so dass $m \leq k$ und es ein Set Cover mit m Mengen gibt.
	☐ Keines der Zertifikate ist geeignet.
	ii) Problem: Gegeben sei ein Graph G mit gewichteten Kanten. Gibt es einen Spanning Tree von G mit Gewicht $\leq k$?
	Zertifikat:
	☐ Ein leerer String.
	\square Ein Spanning Tree von G mit Gewicht $\leq k$.
	\square Alle möglichen Teilmengen von Kanten.
	\square Keines der Zertifikate ist geeignet.
	iii) Problem: Gegeben sei ein Graph G . Hat das $gr\"{o}\beta te$ Independent Set von G $genau\ k$ Knoten?
	Zertifikat:
	\Box Die Größe l des größten Independent Sets.
	\square Ein Independent Set mit $> k$ Knoten.
	\square Ein Independent Set mit k Knoten.
	\Box Keines der Zertifikate ist geeignet.

Aufgabe A2: Branch-and-Bound und Heuristische Verfahren (21 Punkte)

a) (7 Punkte) Branch-and-Bound wird zur Lösung eines Minimierungsproblems verwendet und erzeugt den unten abgebildeten Suchbaum. Jeder Knoten entspricht einer Teilinstanz mit einer lokalen unteren Schranke L' und einer lokalen oberen Schranke U'.

Geben Sie die Menge S der Nummern jener Teilinstanzen (repräsentiert durch Blattknoten) an, die nicht mehr weiter aufgespalten werden müssen.

S:		
----	--	--

Was ist die globale obere Schranke U?

U:

b) (2 Punkte) Was ist die Idee / das Prinzip der Lokalen Suche?

c) (2 Punkte) Nennen Sie einen Unterschied zwischen Heuristischen Verfahren und Approximationsalgorithmen, den Sie aus der Vorlesung kennen.

d) (7 Punkte) Auf dem folgenden Graphen wird eine obere und eine untere Schranke für die Größe eines kleinsten Vertex Covers berechnet.

(i)	Wenden	Sie	die	Greedy	-Heur	ristik,	die	jeweils	einen	Knoten	mit	höchstem
	Grad wä	hlt,	an u	ınd geb	en Sie	die d	labei	ausgev	vählte	Menge a	n Kr	noten an.

|--|--|

- (ii) Berechnen Sie ein nicht erweiterbares Matching und zeichnen Sie das Matching im Graphen ein.
- (iii) Für die Größe eines kleinsten Vertex Covers ist das eben berechnete nicht erweiterbare Matching . . .
 - \square ... eine obere Schranke.
 - \square ... eine untere Schranke.

(korrekt: 1 Punkte, inkorrekt: -1 Punkt, nicht beantwortet: 0 Punkte)

e) (3 Punkte) In welchen Fällen kann die Branch-and-Bound Suche für eine Teilinstanz bei einem Maximierungsproblem abbrechen? Kreuzen Sie Zutreffendes an.

(alles korrekt: 3 Punkte, ein Fehler: 1 Punkt, sonst / kein Kreuz: 0 Punkte)

- ☐ Globale untere Schranke ist größer als lokale obere Schranke.
- \Box Lokale untere Schranke ist größer als globale untere Schranke.
- \Box Lokale obere Schranke entspricht lokaler unterer Schranke.
- \square Lokale untere Schranke ist kleiner als globale untere Schranke.

a) (12 Punkte) Gewichtetes Vertex Cover auf Bäumen kann, analog zu gewichtetem Independent Set auf Bäumen, mittels dynamischer Programmierung gelöst werden.

Kreuzen Sie im nachfolgenden Pseudocode jene Codezeilen an, die ausgeführt werden müssen, um eine funktionierende Implementierung von folgendem Algorithmus für gewichtetes Vertex Cover auf Bäumen zu erhalten: der Algorithmus erhält einen Baum T=(V,E), bei dem jedem Knoten $v\in V$ ein positives Gewicht w_v zugewiesen ist und berechnet das minimale Gewicht eines Vertex Covers für T.

Je Block (grau hinterlegte Box) ist genau eine Auswahl korrekt.

(je Block: korrekt: 3 Punkte, falsch / mehrere Kreuze: -1 Punkt, kein Kreuz 0 Punkte. Zumindest 0 Punkte für diese Unteraufgabe)

Min-Weight-Vertex-Cover-In-A-Tree(T):

Wähle eine Wurzel r aus

foreach Knoten u von T do

$$A_{\text{out}} \leftarrow \infty; A_{\text{in}} \leftarrow \infty$$

- \square foreach Knoten u von T in Postorder do
- \square foreach Knoten u von T in Preorder do
- \square foreach Knoten u von T in Inorder do

if u ist ein Blatt then

$$\square \begin{cases} A_{\text{in}}[u] \leftarrow 0 \\ A_{\text{out}}[u] \leftarrow w_u \end{cases}$$

$$\square \begin{cases} A_{\rm in}[u] \leftarrow 1 \\ A_{\rm out}[u] \leftarrow 0 \end{cases}$$

$$\square \begin{cases} A_{\rm in}[u] \leftarrow w_u \\ A_{\rm out}[u] \leftarrow 0 \end{cases}$$

else

$$\Box \begin{cases}
A_{\text{in}}[u] \leftarrow 1 + \sum_{v \in \text{Nachfolger}(u)} A_{\text{in}}[v] \\
A_{\text{out}}[u] \leftarrow w_u + \sum_{v \in \text{Nachfolger}(u)} \min\{A_{\text{in}}[v], A_{\text{out}}[v]\}
\end{cases}$$

$$\Box \begin{cases}
A_{\text{in}}[u] \leftarrow w_u + \sum_{v \in \text{Nachfolger}(u)} \min\{A_{\text{in}}[v], A_{\text{out}}[v]\} \\
A_{\text{out}}[u] \leftarrow \sum_{v \in \text{Nachfolger}(u)} A_{\text{in}}[v]
\end{cases}$$

$$\square \begin{cases} A_{\text{in}}[u] \leftarrow w_u + \sum_{v \in \text{Nachfolger}(u)} \max\{A_{\text{in}}[v], A_{\text{out}}[v]\} \\ A_{\text{out}}[u] \leftarrow \sum_{v \in \text{Nachfolger}(u)} A_{\text{in}}[v] \end{cases}$$

$\square \ \mathbf{return}$	$\min\{A_{\rm in}[n]\}$	$[r], A_{\mathrm{out}}[r]]$
-----------------------------	-------------------------	-----------------------------

- \square return $A_{\rm in}[r] + A_{\rm out}[r]$
- \square return max{ $A_{\text{in}}[r], A_{\text{out}}[r]$ }

b)	$(8\ \mathrm{Punkte})$ Nehmen Sie an, dass gewichtetes Vertex Cover auf Bäumen in quadratischer Zeit gelöst werden kann.
	Kreuzen Sie an, ob die folgenden (voneinander unabhängigen) Aussagen wahr oder falsch sind.
	(je Unteraufgabe: korrekt: 2 Punkte, falsch: -2 Punkte, kein Kreuz: 0 Punkte. Zumindest 0 Punkte für diese Unteraufgabe)
	(i) Daraus folgt, dass gewichtetes Vertex Cover auf <i>Graphen</i> in quadratischer Zeit gelöst werden kann.
	\square Wahr \square Falsch
	(ii) Daraus folgt, dass <i>ungewichtetes</i> Vertex Cover auf Bäumen in quadratischer Zeit gelöst werden kann.
	\square Wahr \square Falsch
	(iii) Daraus folgt, dass gewichtetes Vertex Cover auf $Pfaden$ in quadratischer Zeit gelöst werden kann.
	\square Wahr \square Falsch
	(iv) Daraus folgt, dass gewichtetes Vertex Cover auf $Bin\ddot{a}rb\ddot{a}umen$ in quadratischer Zeit gelöst werden kann.
	\square Wahr \square Falsch

a) (9 Punkte) Betrachten Sie das aus der Vorlesung bekannte Rucksackproblem. Gegeben sei eine Instanz mit einer Kapazität G=5 und den folgenden fünf Gegenständen, die jeweils nur einmal vorhanden sind:

	Gegenstand						
	A	B	C	D	E		
Wert	1	3	2	4	6		
Gewicht	2	1	1	3	2		

Vervollständigen Sie die untenstehende Tabelle, sodass der Eintrag in Zeile i und Spalte g gerade dem Wert OPT(i,g) entspricht, der sich mit den ersten i Gegenständen und einem Rucksack der Kapazität g erreichen lässt.

			Kapazität								
		0	1	2	3	4	5				
	Ø	0	0	0	0	0	0				
e.	$\{A\}$	0	0	1							
Gegenstände	$\{A,B\}$	0	3								
Geger	$\{A,B,C\}$	0									
Ū	$\{A,B,C,D\}$	0									
	$\{A,B,C,D,E\}$	0									

Was ist der opti	male Wert einer Lösung für einen Rucksack mit Kapazit	at G = 3?			
Wert:					
Angenommen der Gegenstand E ist nicht mehr verfügbar. Welche Gegenständentsprechen nun einer optimalen Lösung bei Kapazität $G=5$?					
Gegenständ	le:				

b) (9 Punkte) Sei nun eine weitere Instanz des Rucksackproblems gegeben mit Kapazität G=6 und den folgenden sechs Gegenständen.

	Gegenstand						
	A	B	C	D	E	F	
Wert	2	5	3	1	6	9	
Gewicht	2	1	1	2	4	3	

Die Wertetabelle M nach Ausführung des Dynamischen Programms lautet wie folgt:

		Kapazität						
		0	1	2	3	4	5	6
Gegenstände	Ø	0	0	0	0	0	0	0
	$\{A\}$	0	0	2	2	2	2	2
	$\{A,B\}$	0	5	5	7	7	7	7
gen	$\{A,B,C\}$	0	5	8	8	10	10	10
Ğ	$\{A,B,C,D\}$	0	5	8	8	10	10	11
_	$\{A, B, C, D, E\}$	0	5	8	8	10	11	14
	$\{A, B, C, D, E, F\}$	0	5	8	9	14	17	17

- (i) Markieren Sie in der Tabelle all jene Felder, die der Algorithmus Find-Solution(M) aus der Vorlesung bei der Berechnung der Lösungsmenge S ausliest und verwendet.
- (ii) Geben Sie die Menge der Gegenstände in der Lösungsmenge S an.

_	
$S = \{$	}
٧ (J

- c) (7 Punkte) Gegeben ist ein gerichteter Graph G=(V,E) mit |V|=n Knoten. Die Kanten von G sind mit Kantengewichten $c_{vw} \in \mathbb{R}$ für alle Kanten $(v,w) \in E$ gewichtet, sodass es keine negative Kreise gibt.
 - (i) Ergänzen Sie Bellmans Rekursionsgleichungen für die Länge OPT(i, v) eines kürzesten v-t Pfades in G mit höchstens i Kanten, wobei $v \in V$ ein beliebiger Knoten ist und $t \in V$ ein fester Zielknoten.

(ii) Geben Sie den kleinsten Wert für die Kantenanzahl i an, sodass für jeden Graphen G, der die gegebenen Voraussetzungen erfüllt, Folgendes gilt:

$$OPT(i, v) = OPT(i + 1, v)$$
 für alle Knoten $v \in V$.

Der kleinste Wert ist i =

(iii) Geben Sie für Ihre Wahl der kleinsten Kantenanzahl i (aus Unterpunkt (ii)) eine kurze Begründung in 1–2 Sätzen an.

a) (6 Punkte) Angenommen A ist ein ε -Approximationsalgorithmus für ein Minimierungsproblem (d.h. $\varepsilon \geq 1$). Sei x eine Probleminstanz mit optimalem Lösungswert $C_{OPT}(x)$ und $C_A(x)$ der Wert der von A berechneten Lösung. Welche der folgenden Aussagen treffen in jedem Fall zu? Kreuzen Sie Zutreffendes an.

 $\square C_{OPT}(x) \le C_A(x)$

 $\square C_A(x) > C_{OPT}(x)$

 $\square C_A(x) \leq \varepsilon \cdot C_{OPT}(x)$

 $\square C_A \leq \frac{C_{OPT}(x)}{\varepsilon}$

Sei B ein Approximationsalgorithmus für das gleiche Problem mit Gütegarantie $\varepsilon/2$ und $C_B(x)$ der von B berechnete Lösungswert für die Instanz x. Welche der folgenden Aussagen sind in jedem Fall korrekt? Kreuzen Sie Zutreffendes an.

 $\square C_B(x) < \varepsilon \cdot C_{OPT}(x)$

 $\square C_A(x) + C_B(x) \le 3\varepsilon/2 \cdot C_{OPT}(x)$

(je Block: alles korrekt: 3 Punkte, ein Fehler: 1 Punkte, sonst / kein Kreuz: 0 Punkte)

b) (7 Punkte) Beim Gewichteten Independent Set Problem wird in einem Eingabegraphen nach einem Independent Set mit maximalem Gewicht gesucht (jedem Knoten ist ein Gewicht zugeordnet, das Gewicht eines Independent Set ist die Summe der Gewichte der darin enthaltenen Knoten). Zeigen Sie, dass ein Greedy-Algorithmus für Gewichtetes Independent Set, der wiederholt einen Knoten mit maximalem Gewicht zu einem bestehenden Independent Set hinzufügt, jede konstante Gütegarantie $\varepsilon \leq 1$ verletzt.