MI AO API

Version 2.06

REVISION HISTORY

Revision No.	Description	Date
2.03	Initial release	04/12/2018
2.04	Updated for accuracy	02/25/2019
2.05	Added description regarding audio algorithm	03/25/2019
2.06	Added MI_AO_SetChnParam and MI_AO_GetChnParam	03/30/2019

TABLE OF CONTENTS

		_	ORY	
			ENTS	
Ι.				
	1.1.		块 API	
	1.2.			
		1.2.1	MI_AO_SetPubAttr	
		1.2.2	MI_AO_GetPubAttr	
		1.2.3	MI_AO_Enable	
		1.2.4	MI_AO_Disable	
		1.2.5	MI_AO_EnableChn	
		1.2.6	MI_AO_CandEname	
		1.2.7	MI_AO_SendFrame	
		1.2.8	MI_AO_EnableReSmp	
		1.2.9	MI_AO_DisableReSmp	
		1.2.10	MI_AO_PauseChn	
		1.2.11	MI_AO_ClearChaRuf	
		1.2.12	MI_AO_ClearChnBuf	
		1.2.13	MI_AO_QueryChnStat	
		1.2.14		
		1.2.15	=	
			MI_AO_SetMute	
		1.2.17	MI_AO_GetMute MI_AO_ClrPubAttr	
		1.2.18 1.2.19	MI_AO_CIPUDALU MI_AO_SetVgeAttr	
		1.2.19	MI_AO_SetVqeAttrMI AO GetVqeAttr	
		_		
		1.2.21 1.2.22	MI_AO_EnableV(re	
			MI_AO_DisableVqe MI_AO_SetAdecAttr	
		1.2.23	MI_AO_SetAdecAttr	
			MI_AO_GetAdecattr	
		1.2.25 1.2.26	MI_AO_ENABLEAGECMI_AO_ENABLEAGEC	
		1.2.26	MI_AO_DISABleAdeC	
			MI_AO_SetChnParam	
2	40		MI_AO_GE(CIIIParaiii	
۷.	2.1.		DIO_DEV	
	2.1.	_	DIO_DEVDIO_DEVDIO_DEV	
	2.2.	_	_CHN	
	2.3. 2.4.		DIO SampleRate e	
	2.4.	_	DIO_Samplekate_e DIO_Bitwidth_e	
	2.5.	_	DIO_Bitwidin_e	
	2.6. 2.7.	_	DIO_Mode_e DIO_SoundMode_e	
	2.7.	_	DIO_SoundMode_e DIO_HpfFreq_e	
		_	DIO_npiFreq_e DIO_AdecType_e	
	۷.۶.	I.IT_WOF	♪1○_⊼ucc1ypc_c	

	2.10. MI_AUDIO_G726Mode_e	28
	2.11. MI_AUDIO_I2sFmt_e	28
	2.12. MI_AUDIO_I2sMclk_e	29
	2.13. MI_AUDIO_I2sConfig_t	29
	2.14. MI_AUDIO_Attr_t	30
	2.15. MI_AO_ChnState_t	31
	2.16. MI_AUDIO_Frame_t	32
	2.17. MI_AUDIO_AecFrame_t	32
	2.18. MI_AUDIO_SaveFileInfo_t	33
	2.19. MI_AO_VqeConfig_t	34
	2.20. MI_AUDIO_HpfConfig_t	34
	2.21. MI_AUDIO_AnrConfig_t	35
	2.22. MI_AUDIO_NrSpeed_e	36
	2.23. MI_AUDIO_AgcConfig_t	36
	2.24. AgcGainInfo_t	38
	2.25. MI_AUDIO_EqConfig_t	39
	2.26. MI_AO_AdecConfig_t	39
	2.27. MI_AUDIO_AdecG711Config_t	40
	2.28. MI_AUDIO_AdecG726Config_s	40
	2.29. MI_AUDIO_AlgorithmMode_e	41
	2.30. MI_AO_ChnParam_t	42
	2.31. MI_AO_ChnGainConfig_t	
3.	错误码	43

1. API 参考

1.1. 概述

音频输出(AO)主要实现启用音频输出设备、发送音频帧到输出信道等功能。

1.2. 功能模块 API

功能
设置 AO 设备属性
获取 AO 设备属性
启用 AO 设备
禁用 AO 设备
启用 AO 通道
禁用 AO 通道
发送音频帧
启用 AO 重采样
禁用 AO 重采样。
暂停 AO 通道
恢复 AO 通道
清除 AO 通道中当前的音频数据缓存
查询 AO 通道中当前的音频数据缓存状态
设置 AO 设备音量大小
获取 AO 设备音量大小
设置 AO 设备静音状态
获取 AO 设备静音状态
清除 AO 设备属性
设置 AO 的声音质量增强功能相关属性
获取 AO 的声音质量增强功能相关属性
使能 AO 的声音质量增强功能
禁用 AO 的声音质量增强功能
设置 AO 解码功能相关属性
获取 AO 解码功能相关属性。
使能 AO 解码功能。

API 名	功能
MI_AO_DisableAdec	禁用 AO 解码功能。
MI_AO_SetChnParam	设置 AO 通道属性
MI_AO_GetChnParam	获取 AO 通道属性

1.2.1 MI_AO_SetPubAttr

▶ 功能

设置 AO 设备属性。

▶ 语法

MI_S32 MI_AO_SetPubAttr(MI_AUDIO_DEV AoDevId, MI_AUDIO_Attr_t *pstAttr);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
pstAttr	AO 设备属性指针。	输入

▶ 返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

- 在设置属性之前需要保证 AO 处于禁用状态,如果处于启用状态则需要首先禁用 AO 设备。
- AO 设备主模式时,决定 AO 设备输出时钟的关键配置项是采样率、采样精度以及通道数目,采样精度 乘以通道数目即为 AO 设备时序一次采样的位宽。
- AO 设备属性结构体中其他项请参见 AI 模块中相关接口的描述。

▶ 举例

```
MI_S32 ret;
MI_AUDIO_Attr_t stAttr;
MI _AUDIO_DEV AoDevId = 0;
stAttr.eBitwidth = E_MI_AUDIO_BIT_WIDTH_16;
stAttr.eSamplerate = E_MI_AUDIO_SAMPLE_RATE_8000;
stAttr.eSoundmode = E MI AUDIO SOUND MODE MONO;
stAttr.eWorkmode = E_MI_AUDIO_MODE_I2S_SLAVE;
stAttr.u32FrmNum = 5;
stAttr.u32PtNumPerFrm = 160;
stAttr.u32ChnCnt = 2;
/* set ao public attr*/
ret = MI_AO_SetPubAttr(AoDevId, &stAttr);
if(MI OK != ret)
{
     printf("set ao %d attr err:0x%x\n", AoDevId, ret);
     return ret;
/* enable ao device*/
ret = MI_AO_Enable(AoDevId);
if(MI_OK != ret)
{
     printf("enable ao dev %d err:0x%x\n", AoDevId, ret);
     eturn ret;
```

}

1.2.2 MI_AO_GetPubAttr

▶ 功能

获取 AO 设备属性。

▶ 语法

MI_S32 MI_AO_GetPubAttr(MI_AUDIO_DEV AoDevId, MI_AUDIO_Attr_t *pstAttr);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
pstAttr	AO 设备属性指针。	输入

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ & \text{非 0} & \text{失败,} \\ \end{cases}$$
 %照错误码。

- 依赖
 - 头文件: mi_comm_aio.h、mi_ao.h
 - 库文件: libmi.a
- ※ 注意
 - ◆ 获取的属性为前一次配置的属性。
 - 如果从来没有配置过属性,则返回失败。
- ▶ 举例

```
MI_S32 ret;
MI_AUDIO_DEV AoDevId = 0;
MI_ AUDIO_Attr_t stAttr;
/* first enable ao device*/
ret = MI_AO_GetPubAttr(AoDevId, &stAttr);
if(MI_OK != ret)
{
    printf("get ao %d attr err:0x%x\n", AoDevId, ret);
    return ret;
}
```

1.2.3 MI_AO_Enable

▶ 功能

启用 AO 设备。

▶ 语法

MI_S32 MI_AO_Enable(MI_AUDIO_DEV AoDevId);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功}. \\ \\ & \text{ # 0 } \text{ 失败, 参照错误码.} \end{cases}$$

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● 必须在启用前配置 AO 设备属性, 否则返回属性未配置错误

● 如果 AO 设备已经处于启用状态,则直接返回成功。

▶ 举例

请参见 MI_AO_SetPubAttr 的举例。

1.2.4 MI_AO_Disable

▶ 功能

禁用 AO 设备。

▶ 语法

MI_S32 MI_AO_Disable(MI_AUDIO_DEV AoDevId);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入

▶ 返回值

返回值
$$\begin{cases} 0 & 成功。 \\ & & \\ #0 & 失败,参照错误码。 \end{cases}$$

依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● 如果 AO 设备已经处于禁用状态,则直接返回成功

● 禁用 AO 设备前必须先禁用该设备下已启用的所有 AO 通道

举例无

1.2.5 MI_AO_EnableChn

▶ 功能

启用 AO 通道

▶ 语法

MI_S32 MI_AO_EnableChn(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	支持的通道范围由AO设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定。	

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功}. \\ \\ & \text{ # 0 } \text{ 失败, 参照错误码.} \end{cases}$$

- ▶ 依赖
 - 头文件: mi_comm_aio.h、mi_ao.h
 - 库文件: libmi.a
- ※ 注意
 - 启用 AO 通道前,必须先启用其所属的 AO 设备,否则返回设备未启动的错误码
- ▶ 举例

无

1.2.6 MI_AO_DisableChn

▶ 功能

禁用 AI 通道

▶ 语法

MI_S32 MI_AO_DisableChn(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	

$${\it E}$$
返回值 $\left\{ egin{array}{ll} 0 & {\it K}$ 功。 $& \\ & & \\ \pm 0 & {\it E}$ 败,参照错误码。

依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

无

▶ 举例

无

1.2.7 MI_AO_SendFrame

▶ 功能

发送 AO 音频帧。

▶ 语法

MI_S32 MI_AO_SendFrame(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AUDIO_Frame_t *pstData, MI_S32 s32MilliSec);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	支持的通道范围由AO设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定。	
pstData	音频帧结构体指针。	输入
s32MilliSec	设置数据的超时时间	输入
	-1 表示阻塞模式,无数据时一直等待;	
	0 表示非阻塞模式,无数据时则报错返回;	
	>0表示阻塞s32MilliSec毫秒,超时则报错返回。	

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ & \text{ \sharp 0 } \\ \end{cases}$$
 失败,参照错误码。

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

- s32MilliSec 的值必须大于等于-1,等于-1 时采用阻塞模式获取数据,等于 0 时采用非阻塞模式获取数据,大于 0 时,阻塞 s32MilliSec 毫秒后,没有数据则返回超时并报错
- 调用该接口发送音频帧到 AO 输出时,必须先使能对应的 AO 通道。
- ▶ 举例

无

1.2.8 MI AO EnableReSmp

▶ 功能

启用 AO 重采样

▶ 语法

MI_S32 MI_AO_EnableReSmp(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AUDIO_SampleRate_e eInSampleRate);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输入通道号。 支持的通道范围由AO设备属性中的最大通道个数 u32ChnCnt 与声道模式eSoundmode 决定。	输入
eInSampleRate	音频重采样的输入采样率。	输入

返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

- 应该在启用 AO 通道之后,绑定 AO 通道之前,调用此接口启用重采样功能。
- 允许重复启用重采样功能,但必须保证后配置的重采样输入采样率与之前配置的重采样输入采率一样。
- 在禁用 AO 通道后,如果重新启用 AO 通道,并使用重采样功能,需调用此接口重新启用重采样。

▶ 举例

以 ADEC 到 AO 的解码回放 8K 到 32K 重采样为例,配置如下:

/* dev attr of ao */

MI_AUDIO_SampleRate_e eInSampleRate;

stAioAttr.u32ChnCnt = 2;

stAioAttr.eBitwidth = E_MI_AUDIO_BIT_WIDTH_16;

stAioAttr.eSamplerate = E_MI_AUDIO_SAMPLE_RATE_32000;

 $stAioAttr.eSoundmode = E_MI_AUDIO_SOUND_MODE_MONO;$

stAioAttr.u32FrmNum = 30;

stAioAttr.u32PtNumPerFrm = 320*4;

```
 eInSampleRate = E\_MI\_AUDIO\_SAMPLE\_RATE\_8000; \\ ret = MI\_AO\_EnableReSmp(AoDev, AoChn, eInSampleRate); \\ if (MI\_OK != ret) \\ \{ \\ printf("func(%s) line(%d): failed, ret:0x%x\n", __FUNCTION__, __LINE__, ret); \\ return ret; \\ \}
```

1.2.9 MI_AO_DisableReSmp

▶ 功能

禁用 AO 重采样

语法

MI_S32 MI_AO_DisableReSmp(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输入通道号。	输入
	支持的通道范围由AO设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定。	

返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● 不再使用 AO 重采样功能的话,应该调用此接口将其禁用。

▶ 举例

无

1.2.10 MI_AO_PauseChn

▶ 功能

暂停 AO 通道

▶ 语法

MI_S32 MI_AO_PauseChn(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输入通道号。	输入
	支持的通道范围由AO设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定。	

返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● AO 通道为禁用状态时,不允许调用此接口暂停 AO 通道。

▶ 举例

无

1.2.11 MI_AO_ResumeChn

▶ 功能

恢复 AO 通道。

▶ 语法

MI_S32 MI_AO_ResumeChn (MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输入通道号。	输入
	支持的通道范围由AO设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定。	

▶ 返回值

返回值
$$\left\{ egin{array}{lll} 0 & \hbox{成功} . \\ & & \\ \pm 0 & \hbox{失败,} \end{array} \right.$$

依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

- AO 通道暂停后可以通过调用此接口重新恢复。
- AO 通道为暂停状态或使能状态下,调用此接口返回成功;否则调用将返回错误。
- ▶ 举例

无

1.2.12 MI_AO_ClearChnBuf

▶ 功能

清除 AO 通道中当前的音频数据缓存。

▶ 语法

MI_S32 MI_AO_ClearChnBuf (MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输入通道号。	输入
	支持的通道范围由AO设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定。	

▶ 返回值

返回值
$$\left\{ \begin{array}{ll} 0 & \quad \hbox{成功} . \\ \\ & \\ \pm 0 & \mbox{失败,参照错误码}. \end{array} \right.$$

- ▶ 依赖
 - 头文件: mi_comm_aio.h、mi_ao.h
 - 库文件: libmi.a
- ※ 注意
 - AO 通道成功启用后再调用此接口。
- ▶ 举例

无

1.2.13 MI_AO_QueryChnStat

▶ 功能

查询 AO 通道中当前的音频数据缓存状态。

▶ 语法

MI_S32 MI_AO_QueryChnStat(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AO_ChnState_t *pstStatus);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。 支持的通道范围由AO设备属性中的最大通道个数 u32ChnCnt 与声道模式eSoundmode 决定。	输入
pstStatus	缓存状态结构体指针。	输出

▶ 返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● AO 通道成功启用后再调用此接口。

▶ 举例

无

1.2.14 MI_AO_SetVolume

▶ 功能

设置 AO 设备音量大小。

▶ 语法

MI_S32 MI_AO_SetVolume(MI_AUDIO_DEV AoDevId, MI_S32 s32VolumeDb);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
s32VolumeDb	音频设备音量大小(以dB为单位)。	输入

▶ 返回值

依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● AO 设备成功启用后再调用此接口。

▶ 举例

无

1.2.15 MI_AO_GetVolume

▶ 功能

获取 AO 设备音量大小。

▶ 语法

MI_S32 MI_AO_GetVolume(MI_AUDIO_DEV AoDevId, MI_S32 *ps32VolumeDb);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
ps32VolumeDb	音频设备音量大小指针	输入

▶ 返回值

▶ 依赖

头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● AO 设备成功启用后再调用此接口。

▶ 举例

无

1.2.16 MI_AO_SetMute

▶ 功能

设置 AO 设备静音状态。

▶ 语法

MI_S32 MI_AO_SetMute(MI_AUDIO_DEV AoDevId, MI_BOOL bEnable);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
bEnable	音频设备是否启用静音。	输入
	TRUE: 启用静音功能;	
	FALSE: 关闭静音功能。	

返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● AO 设备成功启用后再调用此接口。

● 调用此界面时,用户可以选择是否使用淡入淡出功能,如果不使用淡入淡出则将结构体指针赋为空可

▶ 举例

无

1.2.17 MI_AO_GetMute

▶ 功能

获取 AO 设备静音状态。

▶ 语法

MI_S32 MI_AO_GetMute(MI_AUDIO_DEV AoDevId, MI_BOOL *pbEnable);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
pbEnable	音频设备静音状态指针。	输出

▶ 返回值

▶ 依赖

• 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● AO 设备成功启用后再调用此接口。

▶ 举例

无

1.2.18 MI_AO_ClrPubAttr

▶ 功能

清除 AO 设备属性。

▶ 语法

MI_S32 MI_AO_ClrPubAttr(MI_AUDIO_DEV AoDevId);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入

▶ 返回值

依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● 清除设备属性前,需要先停止设备。

▶ 举例

无。

1.2.19 MI_AO_SetVqeAttr

▶ 功能

设置AO的声音质量增强功能相关属性。

▶ 语法

MI_S32 MI_AO_SetVqeAttr(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AO_VqeConfig_t *pstVqeConfig);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	
pstVqeConfig	音频输出声音质量增强配置结构体指针	输入

返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

- 启用声音质量增强功能前必须先设置相对应 AO 通道的声音质量增强功能相关属性。
- 设置 AO 的声音质量增强功能相关属性前,必须先使能对应的 AO 通道。
- 相同 AO 信道的声音质量增强功能不支持动态设置属性,重新设置 AO 通道的声音质量增强功能相关属性时,需要先关闭 AO 通道的声音质量功能,再设置 AO 通道的声音质量增强功能相关属性。
- 在设置声音质量增强功能属性时,可通过配置相应的声音质量增强功能属性来选择使能其中的部分功 能。
- Vqe 支持 8K 16K

▶ 举例

无。

1.2.20 MI_AO_GetVqeAttr

▶ 功能

获取 AO 的声音质量增强功能相关属性。

▶ 语法

MI_S32 MI_AO_GetVqeAttr(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AO_VqeConfig_t *pstVqeConfig);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstVqeConfig	音频输出声音质量增强配置结构体指针	输出

▶ 返回值

依赖

头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

● 获取声音质量增强功能相关属性前必须先设置相对应 AO 通道的声音质量增强功能相关属性

▶ 举例

无。

1.2.21 MI_AO_EnableVqe

▶ 功能

使能 AO 的声音质量增强功能。

▶ 语法

MI_S32 MI_AO_EnableVqe(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM)。	

▶ 返回值

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

- 启用声音质量增强功能前必须先启用相对应的 AO 通道。
- 多次使能相同 AO 通道的声音质量增强功能时,返回成功。
- 禁用 AO 通道后,如果重新启用 AO 通道,并使用声音质量增强功能,需调用此接口重新启用声音质量增强功能。
- Vqe 支持 8K 16K

▶ 举例

无。

1.2.22 MI_AO_DisableVqe

▶ 功能

禁用 AO 的声音质量增强功能。

▶ 语法

MI_S32 MI_AO_DisableVqe(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]	

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ \text{非 0} & \text{失败, 参照错误码} . \end{cases}$$

依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

- 不再使用 AO 声音质量增强功能时,应该调用此接口将其禁用。
- 多次禁用相同 AO 通道的声音质量增强功能,返回成功。

▶ 举例

1.2.23 MI_AO_SetAdecAttr

▶ 功能

设置 AO 解码功能相关属性。

▶ 语法

MI_S32 MI_AO_SetAdecAttr (MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AO_AdecConfig_t *pstAdecConfig);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	
pstAdecConfig	音频解码配置结构体指针	输入

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ \text{非 0} & \text{失败, 参照错误码} \end{cases}$$

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h ● 库文件: libmi.a libg711.a libg726.a

※ 注意

无。

➤ 举例无。

1.2.24 MI_AO_GetAdecAttr

▶ 功能

获取 AO 解码功能相关属性。

▶ 语法

MI_S32 MI_AO_GetAdecAttr (MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AO_AdecConfig_t *pstAdecConfig);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	
pstAdecConfig	音频解码配置结构体指针	输出

▶ 返回值

▶ 依赖

头文件: mi_comm_aio.h、mi_ao.h库文件: libmi.a libg711.a libg726.a

※ 注意

无。

▶ 举例

无。

1.2.25 MI_AO_EnableAdec

▶ 功能

使能 AO 解码功能。

▶ 语法

MI_AO_EnableAdec (MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	

▶ 返回值

返回值
$$\left\{ egin{array}{lll} 0 & \quad & \hbox{成功} . \\ & & & \\ & \pm 0 & \mbox{失败,参照错误码}. \end{array} \right.$$

▶ 依赖

头文件: mi_comm_aio.h、mi_ao.h库文件: libmi.a libg711.a libg726.a

※ 注意

无。

▶ 举例

无。

1.2.26 MI_AO_DisableAdec

▶ 功能

禁用 AO 解码功能。

▶ 语法

MI_AO_DisableAdec (MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ & \text{非 0} & \text{失败,} \\ \end{cases}$$
 %照错误码。

▶ 依赖

头文件: mi_comm_aio.h、mi_ao.h库文件: libmi.a libg711.a libg726.a

※ 注意

无。

▶ 举例

无。

1.2.27 MI_AO_SetChnParam

▶ 功能

设置音频通道参数。

▶ 语法

MI_S32 MI_AO_SetChnParam(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AO_ChnParam_t *pstChnParam);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	
pstChnParam	音频通道参数结构体指针	输入

▶ 返回值

依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

无。

▶ 举例

无。

1.2.28 MI_AO_GetChnParam

▶ 功能

获取音频通道参数。

▶ 语法

MI_S32 MI_AO_GetChnParam(MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AO_ChnParam_t *pstChnParam);

▶ 形参

参数名称	描述	输入/输出
AoDevId	音频设备号	输入
AoChn	音频输出通道号。 取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	输入
pstChnParam	音频通道参数结构体指针	输出

▶ 返回值

返回值 $\begin{cases} 0 & \text{成功} \\ \\ \\ \text{非 0} & \text{失败,} \\ \end{cases}$ %照错误码

▶ 依赖

● 头文件: mi_comm_aio.h、mi_ao.h

● 库文件: libmi.a

※ 注意

无。

▶ 举例

无。

2. AO 数据类型

AO 模块相关数据类型定义如下:

MI_AUDIO_DEV	定义音频输入/输出设备编号
MI_AUDIO_MAX_CHN_NUM	定义音频输入/输出设备的最大通道数
MI_AO_CHN	定义音频输出通道
MI_AUDIO_SampleRate_e	定义音频采样率
MI_AUDIO_Bitwidth_e	定义音频采样精度
MI_AUDIO_Mode_e	定义音频输入输出工作模式
MI_AUDIO_SoundMode_e	定义音频声道模式
MI_AUDIO_Attr_t	定义音频输入输出设备属性结构体
MI_AO_ChnState_t	音频输出通道的数据缓存状态结构体
MI_AUDIO_Frame_t	定义音频帧数据结构体
MI_AUDIO_AecFrame_t	定义回声抵消参考帧信息结构体
MI_AUDIO_SaveFileInfo_t	定义音频保存文件功能配置信息结构体
MI_AO_VqeConfig_t	定义音频输出声音质量增强配置信息结构体
MI_AUDIO_HpfConfig_t	定义音频高通滤波功能配置信息结构体
MI_AUDIO_HpfFreq_e	定义音频高通滤波截止频率
MI_AUDIO_AnrConfig_t	定义音频语音降噪功能配置信息结构体
MI_AUDIO_AgcConfig_t	定义音频自动增益控制配置信息结构体
MI_AUDIO_EqConfig_t	定义音频均衡器功能配置信息结构体
MI_AO_AdecConfig_t	定义解码功能配置信息结构体。
MI_AUDIO_AlgorithmMode_e	定义音频算法的运行模式
MI_AO_ChnParam_t	定义音频通道属性结构体
MI_AO_ChnGainConfig_t	定义音频通道增益设置结构体

2.1. MI AUDIO DEV

▶ 说明

定义音频输入/输出设备编号。

▶ 定义

typedef MI_S32 MI_AUDIO_DEV

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.2. MI_AUDIO_MAX_CHN_NUM

▶ 说明

定义音频输入/输出设备的最大通道数。

▶ 定义

#define MI_AUDIO_MAX_CHN_NUM 16

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.3. MI AO CHN

▶ 说明

定义音频输出通道。

▶ 定义

typedef MI_S32 MI_AO_CHN

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.4. MI_AUDIO_SampleRate_e

▶ 说明

定义音频采样率。

▶ 定义

```
typedef enum {
    E_MI_AUDIO_SAMPLE_RATE_8000 =8000, /* 8kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_16000 =16000, /* 16kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_32000 =32000, /* 32kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_48000 =48000, /* 48kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_INVALID,
}MI_AUDIO_SampleRate_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_SAMPLE_RATE_8000	8kHz 采样率
E_MI_AUDIO_SAMPLE_RATE_16000	16kHz 采样率
E_MI_AUDIO_SAMPLE_RATE_32000	32kHz 采样率
E_MI_AUDIO_SAMPLE_RATE_48000	48kHz 采样率

※ 注意事项

这里枚举值不是从0开始,而是与实际的采样率值相同。

▶ 相关数据类型及接口

MI_AUDIO_Attr_t。

2.5. MI_AUDIO_Bitwidth_e

▶ 说明

定义音频采样精度。

▶ 定义

```
typedef enum {
     E_MI_AUDIO_BIT_WIDTH_16 =0, /* 16bit width */
     E_MI_AUDIO_BIT_WIDTH_24 =1, /* 24bit width */
     E_MI_AUDIO_BIT_WIDTH_MAX,
}MI_AUDIO_BitWidth_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_BIT_WIDTH_16	采样精度为 16bit 位宽
E_MI_AUDIO_BIT_WIDTH_24	采样精度为 24bit 位宽

※ 注意事项

目前软件只支持 16bit 位宽。

▶ 相关数据类型及接口

无。

2.6. MI_AUDIO_Mode_e

▶ 说明

定义音频输入输出设备工作模式。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_MODE_I2S_MASTER, /* I2S master mode */
    E_MI_AUDIO_MODE_I2S_SLAVE, /* I2S slave mode */
    E_MI_AUDIO_MODE_TDM_MASTER, /* TDM master mode */
    E_MI_AUDIO_MODE_MAX,
}MI_AUDIO_Mode_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_MODE_I2S_MASTER	I2S 主模式
E_MI_AUDIO_MODE_I2S_SLAVE	I2S 从模式
E MI AUDIO MODE TDM MASTER	TDM 主模式

※ 注意事项

主模式与从模式是否支持会依据不同的使用场景而有区别。

▶ 相关数据类型及接口

 $MI_AUDIO_Attr_t {\scriptstyle \circ}$

2.7. MI_AUDIO_SoundMode_e

▶ 说明

定义音频声道模式。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_SOUND_MODE_MONO =0, /* mono */
    E_MI_AUDIO_SOUND_MODE_STEREO =1, /* stereo */
    E_MI_AUDIO_SOUND_MODE_BUTT,
}MI_AUDIO_SoundMode_e
```

▶ 成员

成员名称	描述
E_MI_AUDIO_SOUND_MODE_MONO	单声道。
E_MI_AUDIO_SOUND_MODE_STEREO	双声道。

※ 注意事项

对于双声道模式,只应对左声道(即编号小于设备属性中通道数 u32ChnCnt 一半的通道)进行操作,SDK 内部会自动对右声道也进行相应的操作。

➤ 相关数据类型及接口 MI_AUDIO_Attr_t。

2.8. MI_AUDIO_HpfFreq_e

▶ 说明

定义音频高通滤波截止频率。

▶ 定义

```
typedef enum
{
     E_MI_AUDIO_HPF_FREQ_80 = 80, /* 80Hz */
     E_MI_AUDIO_HPF_FREQ_120 = 120, /* 120Hz */
     E_MI_AUDIO_HPF_FREQ_150 = 150, /* 150Hz */
     E_MI_AUDIO_HPF_FREQ_BUTT,
} MI_AUDIO_HpfFreq_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_HPF_FREQ_80	截止频率为 80Hz。
E_MI_AUDIO_HPF_FREQ_120	截止频率为 120Hz。
E_MI_AUDIO_HPF_FREQ_150	截止频率为 150Hz。

※ 注意事项 无

▶ 相关数据类型及接口

 $MI_AO_VqeConfig_t$

2.9. MI_AUDIO_AdecType_e

▶ 说明

定义音频解码类型。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_ADEC_TYPE_G711A = 0,
    E_MI_AUDIO_ADEC_TYPE_G711U,
    E_MI_AUDIO_ADEC_TYPE_G726,
    E_MI_AUDIO_ADEC_TYPE_INVALID,
}MI_AUDIO_AdecType_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_ADEC_TYPE_G711A	G711A 解码。
E_MI_AUDIO_ADEC_TYPE_G711U	G711U 解码。
E_MI_AUDIO_ADEC_TYPE_G726	G726 解码。

※ 注意事项 无

➤ 相关数据类型及接口 MI_AO_AdecConfig

2.10. MI_AUDIO_G726Mode_e

▶ 说明

定义 G726 工作模式。

▶ 定义

```
typedef enum{
    E_MI_AUDIO_G726_MODE_16 = 0,
    E_MI_AUDIO_G726_MODE_24,
    E_MI_AUDIO_G726_MODE_32,
    E_MI_AUDIO_G726_MODE_40,
    E_MI_AUDIO_G726_MODE_INVALID,
}MI_AUDIO_G726Mode_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_G726_MODE_16	G726 16K 比特率模式。
E_MI_AUDIO_G726_MODE_24	G726 24K 比特率模式。
E_MI_AUDIO_G726_MODE_32	G726 32K 比特率模式。
E_MI_AUDIO_G726_MODE_40	G726 40K 比特率模式

※ 注意事项

无

▶ 相关数据类型及接口

MI_AO_AdecConfig_t

2.11. MI_AUDIO_I2sFmt_e

▶ 说明

I2S 格式设定。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_I2S_FMT_I2S_MSB,
    E_MI_AUDIO_I2S_FMT_LEFT_JUSTIFY_MSB,
}MI_AUDIO_I2sFmt_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_I2S_FMT_I2S_MSB	I2S 标准格式,最高位优先
E_MI_AUDIO_I2S_FMT_LEFT_JUSTIFY_MSB	I2S 左对齐格式,最高位优先

※ 注意事项

无

▶ 相关数据类型及接口

MI_AUDIO_I2sConfig_t

2.12. MI AUDIO I2sMclk e

▶ 说明

I2S MCLK 设定

▶ 定义

typedef enum{

E_MI_AUDIO_I2S_MCLK_0,

E_MI_AUDIO_I2S_MCLK_12_288M,

E_MI_AUDIO_I2S_MCLK_16_384M,

E_MI_AUDIO_I2S_MCLK_18_432M,

E_MI_AUDIO_I2S_MCLK_24_576M,

}MI_AUDIO_I2sMclk_e;

▶ 成员

成员名称	描述
E_MI_AUDIO_I2S_MCLK_0	关闭 MCLK
E_MI_AUDIO_I2S_MCLK_12_288M	设置 MCLK 为 12.88M
E_MI_AUDIO_I2S_MCLK_16_384M	设置 MCLK 为 16.384M
E_MI_AUDIO_I2S_MCLK_18_432M	设置 MCLK 为 18.432M
E_MI_AUDIO_I2S_MCLK_24_576M	设置 MCLK 为 24.576M

※ 注意事项

MCLK 由 AI 提供,需要设置为 E_MI_AUDIO_I2S_MCLK_0

▶ 相关数据类型及接口

MI_AUDIO_I2sConfig_t

2.13. MI_AUDIO_I2sConfig_t

▶ 说明

定义 I2S 属性结构体。

```
▶ 定义
```

```
typedef struct MI_AUDIO_I2sConfig_s
{
     MI_AUDIO_I2sFmt_e eFmt;
     MI_AUDIO_I2sMclk_e eMclk;
     MI_BOOL bSyncClock;
}MI_AUDIO_I2sConfig_t;
```

▶ 成员

成员名称	描述
eFmt	I2S 格式设置。 静态属性。
eMclk	I2S MCLK 时钟设,有 AI 提供,需设置为 E_MI_AUDIO_I2S_MCLK_0 静态属性。
bSyncClock	AO 同步 AI 时钟,若设置成 TRUR,必须工作于 Slave Mode 静态属性。

※ 注意事项

无。

▶ 相关数据类型及接口 MI_AUDIO_Attr_t

2.14. MI_AUDIO_Attr_t

▶ 说明

定义音频输入输出设备属性结构体。

▶ 定义

▶ 成员

成员名称	描述
eSamplerate	音频采样率。
	静态属性。
eBitwidth	音频采样精度(从模式下,此参数必须和音

成员名称	描述
	频 AD/DA 的采样精度匹配)。
	静态属性。
eWorkmode	音频输入输出工作模式。
eSoundmode	音频声道模式。
	静态属性。
u32FrmNum	缓存帧数目。
	取值范围: [2, MAX_AUDIO_FRAME_NUM]。
u32PtNumPerFrm	每帧的采样点个数。
	取值范围为: 128, 128*2, ···, 128*N。
	静态属性。
u32CodecChnCnt	支持的 codec 通道数目,即决定了 codec 到
	AIO的 I2S/PCM 时序(时分复用关系),取
	值范围 1、2、4、8、16(最大取值为
	MI_AUDIO_MAX_CHN_NUM)。与对接的 codec
	和 u32ChnCnt 相关,要求 u32CodecChnCnt
	大于等于 u32ChnCnt。
u32ChnCnt	支持的通道数目,实际可使能的最大通道
	数。取值: 1、2、4、8、16。(输入最多支
	持MI_AUDIO_MAX_CHN_NUM 个通道,输出最
	多支持2个通道)
MI_AUDIO_I2sConfig_t stI2sConfig;	设置 I2S 工作属性

※ 注意事项无。

➤ 相关数据类型及接口 MI_AO_SetPubAttr

2.15. MI_AO_ChnState_t

▶ 说明

音频输出通道的数据缓存状态结构体。

▶ 定义

▶ 成员

成员名称	描述
u32ChnTotalNum	输出通道总的缓存块数。
u32ChnFreeNum	可用的空闲缓存块数。
u32ChnBusyNum	被占用缓存块数。

※ 注意事项

无。

▶ 相关数据类型及接口 无。

2.16. MI_AUDIO_Frame_t

▶ 说明

定义音频帧结构体。

▶ 定义

▶ 成员

成员名称	描述
eBitwidth	音频采样精度
eSoundmode	音频声道模式。
pVirAddr[2]	音频帧数据虚拟地址。
u64TimeStamp	音频帧时间戳。
	以 μs 为单位
u32Seq	音频帧序号。
u32Len	音频帧长度。
	以 byte 为单位。
u32PoolId[2]	音频帧缓存池 ID。

※ 注意事项

- u32Len(音频帧长度)指单个声道的数据长度。
- 单声道数据直接存放,采样点数为 u32PtNumPerFrm,长度为 u32Len;立体声数据按左右声道分开存放, 先存放采样点为 u32PtNumPerFrm、长度为 u32Len 的左声道数据,然后存放采样点为 u32PtNumPerFrm, 长度为 u32Len 的右声道数据。
- ▶ 相关数据类型及接口

无。

2.17. MI_AUDIO_AecFrame_t

▶ 说明

定义音频回声抵消参考帧信息结构体。

3/30/2019

▶ 定义

```
typedef struct MI_AUDIO_AecFrame_s
{
     MI_AUDIO_Frame_t stRefFrame; /* aec reference audio frame */
     MI_BOOL bValid; /* whether frame is valid */
}MI_AUDIO_AecFrame_t;
```

▶ 成员

成员名称	描述
stRefFrame	回声抵消参考帧结构体。
bValid	参考帧有效的标志。 取值范围: TRUE:参考帧有效。 FALSE:参考帧无效,无效时不能使用此参 考帧进行回声抵消。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.18. MI_AUDIO_SaveFileInfo_t

▶ 说明

定义音频保存文件功能配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_SaveFileInfo_s
{
     MI_BOOL bCfg;
     MI_U8 szFilePath[256];
     MI_U32 u32FileSize; /*in KB*/
} MI_AUDIO_SaveFileInfo_t
```

▶ 成员

成员名称	描述
bCfg	配置使能开关。
szFilePath	音频文件的保存路径
u32FileSize	文件大小,取值范围[1,10240]KB。

※ 注意事项

无

▶ 相关数据类型及接口

MI_AI_SaveFile

2.19. MI_AO_VqeConfig_t

▶ 说明

定义音频输出声音质量增强配置信息结构体。

▶ 定义

```
typedef struct MI_AO_VqeConfig_s
    MI BOOL
                          bHpfOpen;
    MI BOOL
                          bAnrOpen;
                          bAgcOpen;
    MI_BOOL
                          bEqOpen;
    MI_BOOL
    MI_S32
                        s32WorkSampleRate;
    MI_S32
                        s32FrameSample;
    MI_AUDIO_HpfConfig_t stHpfCfg;
    MI_AUDIO_AnrConfig_t stAnrCfg;
    MI_AUDIO_AgcConfig_t stAgcCfg;
    MI_AUDIO_EqConfig_t
                           stEqCfg;
} MI_AO_VqeConfig_t;
```

▶ 成员

成员名称	描述
bHpfOpen	高通滤波功能是否使能标志。
bAnrOpen	语音降噪功能是否使能标志。
bAgcOpen	自动增益控制功能是否使能标志
bEqOpen	均衡器功能是否使能标志
s32WorkSampleRate	工作采样频率。该参数为内部功能算法工作 采样率。取值范围: 8KHz/16KHz。默认值为 8KHz。
s32FrameSample	VQE 的帧长,即采样点数目。只支持 128。
stHpfCfg	高通滤波功能相关配置信息。
stAnrCfg	语音降噪功能相关配置信息。
stAgcCfg	自动增益控制相关配置信息。
stEqCfg	均衡器相关配置信息。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.20. MI_AUDIO_HpfConfig_t

▶ 说明

定义音频高通滤波功能配置信息结构体。

▶ 定义

▶ 成员

成员名称	描述
eMode	音频算法的运行模式
eHpfFreq	高通滤波截止频率选择。 80: 截止频率为 80Hz; 120: 截止频率为 120Hz; 150: 截止频率为 150Hz。 默认值 150。

※ 注意事项

无。

➤ 相关数据类型及接口 MI_AO_VqeConfig_t

2.21. MI_AUDIO_AnrConfig_t

▶ 说明

定义音频语音降噪功能配置信息结构体。

▶ 定义

▶ 成员

成员名称	描述
eMode	音频算法运行模式 注: Anr 的模式选择将会在一定程度上影响 Agc 的功能
u32NrIntensity	降噪力度配置,配置值越大降噪力度越高,但同时也会带来细节音的丢失/损伤。 范围[0,30];步长1 默认值 20。
u32NrSmoothLevel	平滑化程度 范围[0,10];步长1 默认值10。
eNrSpeed	噪声收敛速度,低速,中速,高速 默认值中速。

※ 注意事项

在 Anr 和 Agc 都有使能的情况下,当 Anr 设定为 user mode 时,Agc 会对音频数据做频域处理,会评估出语音信号再做相应的增减,而当 Anr 设定为 default/music mode 时,Agc 会对音频数据做时域处理,对全频段的数据进行增减。

▶ 相关数据类型及接口

MI_AO_VqeConfig_t

2.22. MI_AUDIO_NrSpeed_e

▶ 说明

定义噪声收敛速度

▶ 定义

▶ 成员

成员名称	描述
E_MI_AUDIO_NR_SPEED_LOW	低速。
E_MI_AUDIO_NR_SPEED_MID	中速。
E_MI_AUDIO_NR_SPEED_HIGH	高速。

※ 注意事项

无

► 相关数据类型及接口 MI_AO_VqeConfig_t

2.23. MI_AUDIO_AgcConfig_t

▶ 说明

定义音频自动增益控制配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_AgcConfig_s
    MI_AUDIO_AlgorithmMode_e eMode;
    AgcGainInfo_t stAgcGainInfo;
    MI_U32
                u32DropGainMax;
    MI_U32
                u32AttackTime;
    MI_U32
                u32ReleaseTime;
    MI_S16
                s16Compression_ratio_input[5];
    MI_S16
                s16Compression_ratio_output[5];
    MI_S32
                s32TargetLevelDb;
    MI_S32
                s32NoiseGateDb;
```

$MI_U32 \qquad u32 Noise Gate Attenuation Db; \\ \} \ MI_AUDIO_Agc Config_t;$

▶ 成员

成员名称	描述
eMode	音频算法的运行模式
stAgcGainInfo	定义 AGC 增益的最大、最小和初始值
u32DropGainMax	增益下降的最大值,防止输出饱和 范围[0,60];步长1 默认值55。
u32AttackTime	增益下降时间区间长度,以 16 毫秒为 1 单位 范围[1,20];步长 1 默认值 0。
u32ReleaseTime	增益上升时间区间长度,以 16 毫秒为 1 单位 范围[1,20];步长 1 默认值 0。
s16Compression_ratio_input[5]	输入压缩比,必须配合 s16Compression_ratio_output 使用,与 u32CompressionRatio 相比,透过多个转折 点实现多斜率的曲线 范围[-80,0];步长1
s16Compression_ratio_output[5]	输出压缩比,必须配合 s16Compression_ratio_input 使用,与 u32CompressionRatio 相比,透过多个转折 点实现多斜率的曲线 范围[-80,0];步长1
s32TargetLevelDb	目标电平,经过处理后的最大电平门限 范围[-80,0]dB;步长1 默认值0。
s32NoiseGateDb	噪声底值 范围[-80,0];步长1 注: 当值为-80,噪声底值将不起作用 默认值-55。
u32NoiseGateAttenuationDb	当噪声底值起效果时,输入源的衰减百分比 范围[0,100];步长1 默认值0。

※ 注意事项

在 Anr 和 Agc 都有使能的情况下,当 Anr 设定为 user mode 时,Agc 会对音频数据做频域处理,会评估出语音信号再做相应的增减,而当 Anr 设定为 default/music mode 时,Agc 会对音频数据做时域处理,对全频段的数据进行增减。

而 s16Compression_ratio_input 和 s16Compression_ratio_output 则需要根据所需要的增益曲线来设定。如下面的折线图所示,在输入增益为-80~0dB 划分为四段斜率,-80dB~-60dB 范围内保持原来的增益,斜率为 1,-60dB~-40dB 范围内需要稍微提高增益,斜率为 1.5,-40dB~-20dB 范围内斜率为 1.25,-20dB~0dB 范围内斜率为 0.25。根据曲线的转折点对 s16Compression_ratio_input 和 s16Compression_ratio_output 设置,若不需要那么多段曲线,则将数组不需要的部分填 0。

➤ 相关数据类型及接口 MI_AO_VqeConfig_t

2.24. AgcGainInfo_t

▶ 说明

AGC 增益的取值

▶ 定义

▶ 成员

成员名称	描述
s32GainMax	增益最大值 范围[0,30];步长1 默认值 15。
s32GainMin	增益中间值 范围[-20,30];步长1 默认值 0。
s32GainInit	增益最小值 范围[-20,30];步长1 默认值 0。

※ 注意事项无

▶ 相关数据类型及接口

MI_AO_VqeConfig_t

2.25. MI_AUDIO_EqConfig_t

▶ 说明

定义音频均衡器功能配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_EqConfig_s {
    <u>MI_AUDIO_AlgorithmMode_e</u> eMode;
    MI_S16 s16EqGainDb[129];
} MI_AUDIO_EqConfig_t;
```

▶ 成员

成员名称	描述
eMode	音频算法的运行模式
s16EqGainDb[129]	均衡器增益调节取值,将当前采样率的频率范围分成 129 个频率范围来进行调节范围 $[-50,20]$; 步长 1 默认值 0 。 如:当前采样率为 16 K,对应的最高频率为 8 K, $8000 / 129 ≈ 62Hz,则单个调节的频率范围为 62Hz,将 0-8K 划分成 \{0-1*62Hz,1-2*62Hz,2-3*62Hz,…,128-129*62Hz \{0-62Hz,62-124Hz,124-186Hz,…,7938-8000Hz \},每段对应一个增益值$

- ※ 注意事项 无
- ▶ 相关数据类型及接口 MI_AO_VqeConfig_t

2.26. MI_AO_AdecConfig_t

▶ 说明

定义解码功能配置信息结构体。

▶ 定义

```
typedef struct MI_AO_AdecConfig_s
{
    MI_AUDIO_AdecType_e eAdecType;
    union
    {
        MI_AUDIO_AdecG711Config_t stAdecG711Cfg;
        MI_AUDIO_AdecG726Config_s stAdecG726Cfg;
    };
}MI_AO_AdecConfig_t;
```

▶ 成员

成员名称	描述
eAdecType	音频解码类型。
stAdecG711Cfg	G711 解码相关配置信息。
stAdecG726Cfg	G726 解码相关配置信息。

※ 注意事项

无

▶ 相关数据类型及接口

MI_AO_SetAdecAttr

2.27. MI_AUDIO_AdecG711Config_t

▶ 说明

定义 G711 解码功能配置信息结构体。

▶ 定义

typedef struct MI_AUDIO_AdecG711Config_s{
 MI_AUDIO_SampleRate_e eSamplerate;
 MI_AUDIO_SoundMode_e eSoundmode;
}MI_AUDIO_AdecG711Config_t;

▶ 成员

成员名称	描述
eSamplerate	音频采样率。
eSoundmode	音频声道模式。

※ 注意事项

无

▶ 相关数据类型及接口

MI_AO_SetAdecAttr

2.28. MI_AUDIO_AdecG726Config_s

▶ 说明

定义 G711 解码功能配置信息结构体。

▶ 定义

typedef struct MI_AUDIO_AdecG726Config_s{
 MI_AUDIO_SampleRate_e eSamplerate;
 MI_AUDIO_SoundMode_e eSoundmode;
 MI_AUDIO_G726Mode_e eG726Mode;
}MI_AUDIO_AdecG726Config_t;

▶ 成员

成员名称	描述
eSamplerate	音频采样率。
eSoundmode	音频声道模式。
eG726Mode	G726 工作模式。

※ 注意事项

无

▶ 相关数据类型及接口

MI_AO_SetAdecAttr

2.29. MI_AUDIO_AlgorithmMode_e

▶ 说明

音频算法运行的模式。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_ALGORITHM_MODE_DEFAULT,
    E_MI_AUDIO_ALGORITHM_MODE_USER,
    E_MI_AUDIO_ALGORITHM_MODE_MUSIC,
    E_MI_AUDIO_ALGORITHM_MODE_INVALID,
}MI_AUDIO_AlgorithmMode_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_ALGORITHM_MODE_DEF	默认运行模式 当使用该模式时,将使用算法的默认参数
AULT	
E_MI_AUDIO_ALGORITHM_MODE_USER	用户模式 当使用该模式时,需要用户重新设定所有参 数
E_MI_AUDIO_ALGORITHM_MODE_MUSI C	音乐模式 仅有 Anr 具有此模式,当为此模式时,Agc 不会进行 speech enhancment (语音增强) 处理

※ 注意事项

在 Anr 和 Agc 都有使能的情况下,当 Anr 设定为 user mode 时,Agc 会对音频数据做频域处理,会评估出语音信号再做相应的增减,而当 Anr 设定为 default/music mode 时,Agc 会对音频数据做时域处理,对全频段的数据进行增减。

▶ 相关数据类型及接口

MI AUDIO HpfConfig t MI AUDIO AnrConfig t MI AUDIO AgcConfig t MI AUDIO EqConfig t

2.30. MI_AO_ChnParam_t

▶ 说明

定义音频通道参数设置结构体。

▶ 定义

▶ 成员

成员名称	描述
stChnGain	音频通道增益设置结构体
u32Reserved	保留,不使用

※ 注意事项

无。

▶ 相关数据类型及接口

MI AO SetChnParam MI AO GetChnParam

2.31. MI_AO_ChnGainConfig_t

▶ 说明

定义音频通道增益设置结构体。

▶ 定义

```
typedef struct MI_AO_ChnGainConfig_s
{
    MI_BOOL bEnableGainSet;
    MI_S16 s16Gain;
}MI_AO_ChnGainConfig_t;
```

▶ 成员

成员名称	描述
bEnableGainSet	是否使能增益设置
s16Gain	增益

※ 注意事项

无。

▶ 相关数据类型及接口

MI AO ChnParam t

3. 错误码

AO API 错误码如表 3-1 所示:

表 3-1 AO API 错误码

宏定义	描述
MI_AO_ERR_INVALID_DEVID	音频输出设备号无效
MI_AO_ERR_INVALID_CHNID	音频输出信道号无效
MI_AO_ERR_ILLEGAL_PARAM	音频输出参数设置无效
MI_AO_ERR_NOT_ENABLED	音频输出设备或信道没有使能
MI_AO_ERR_NULL_PTR	输入参数空指标错误
MI_AO_ERR_NOT_CONFIG	音频输出设备属性未设置
MI_AO_ERR_NOT_SUPPORT	操作不支持
MI_AO_ERR_NOT_PERM	操作不允许
MI_AO_ERR_NOMEM	分配内存失败
MI_AO_ERR_NOBUF	音频输出缓存不足
MI_AO_ERR_BUF_EMPTY	音频输出缓存为空
MI_AO_ERR_BUF_FULL	音频输出缓存为满
MI_AO_ERR_SYS_NOTREADY	音频输出系统未初始化
MI_AO_ERR_BUSY	音频输出系统忙碌
MI_AO_ERR_VQE_ERR	音频输出 VQE 算法处理失败
MI_AO_ERR_ADEC_ERR	音频输出解码算法处理失败