BIKE-1,2,3

최승주

https://youtu.be/JGWT6dJ-ogQ

Contents

BIKE-1

BIKE-2

BIKE-3

부호 이론

BIKE(Bit Flipping Key Encapsulation)

 QC-MDPC(Quasi-Cyclic Moderate Density Parity-Check) 부호에 기반한 암호화 알고리즘

· Bit Flipping Decoding 방식을 이용해 복호화 진행

BIKE - 표기

 \mathbb{F}_2 : Finite field of 2 elements.

 \mathcal{R} : The cyclic polynomial ring $\mathbb{F}_2[X]/\langle X^r-1\rangle$.

|v|: The Hamming weight of a binary polynomial v.

 $u \stackrel{\$}{\leftarrow} U$: Variable u is sampled uniformly at random from set U.

 h_j : The j-th column of a matrix H, as a row vector.

★: The component-wise product of vectors.

Table 1: Notation

BIKE - 정의

선형 부호: 이진 선형부호 C(nxk)
 길이:n, 차원:k

- 생성자와 패리티 검사 행렬
 - 행렬 $G \in \mathbb{F}_2^{k imes n}$ 는 이진선형부호 C(nxk)로 부터 나온 생성자 행렬
 - 행렬 $H \in \mathbb{F}_2^{(n-k) imes n}$ 는 C의 패리티c = mG
 - 벡터 *m*과 *G*를 갖고 코드워크 생성:
- 벡터 e에 대한 신드롬 값: $s^T = He^T$

BIKE – Quasi-Cyclic Codes

. 순환행렬

- 행 벡터가 선행 행 벡터에 비례하여 오른쪽으로 하나만큼 이동한 행렬
- 첫번째 행에 의해 전체 행렬이 정의됨

. 블록순환행렬

- 동일한 크기의 순환 행렬로 구성
- 크기: order(주기)
- 한 행에 들어있는 순환행렬의 개수: index

BIKE – Quasi-Cyclic Codes

- 준순환부호
 - index n_0 와 order r인 이진 순환부호는 index n_0 및 order r의 블록 순환 행렬을 생성기 행렬로서 허용하는 선형 부호
 - (n_0,k_0) QC 부호는 index $\mathbf{n_0}$, 길이 $\mathbf{n_0}$ r 및 $\mathbf{k_0}$ r 차원으로 구성된 순환부호

$$G = \begin{array}{|c|c|c|} \hline \\ \hline \\ \hline \\ \hline \\ \end{array}$$

The rows of G span a (2,1)-QC code

The rows of G span a (3,1)-QC code

BIKE – QC-MDPC

- 이진 MDPC(Moderate Density Parity Check)
 - 주기 $O(\sqrt{n})$ 의 밀도를 갖는 페리티 검사 행렬을 사용하는 이진 선형 코드
 - 원격 통신에서 오류 정정을 위해 사용되는 LDPC(Low Density Parity Check)와 사용되는 것과 유사한 반복적인 디코더를 사용
 - t = $O(\sqrt{n} \log n)$ 만큼의 에러 수정 가능

BIKE – QC-MDPC

- (n₀, k₀) quasi-cyclic code
- · 길이 n = n_or
- · 차원 $k = k_0 r$
- 주기 r (index n₀)
- 무게 $\mathbf{w} = \mathbf{O}(\sqrt{n})$ 패리티 체크 행렬의 행 무게

Alice Bob

Alice Bob

1. 임시적으로 사용하는 QC-MDPC 키 쌍(sk, pk) 생성 - 개인키: sk, 공개키: pk

Alice

1. 임시적으로 사용하는 QC-MDPC 키 쌍(sk, pk) 생성 - 개인키: sk, 공개키: pk

2. 전송(pk)

- 3. 에러 백터 e 생성
- 4. 에러 백터 e로부터 세션키(대칭) K 추출

Bob

5. pk를 사용해 e 암호화 → 암호문 ct 생성

Alice Bob

1. 임시적으로 사용하는 QC-MDPC 키 쌍(sk, pk) 생성 - 개인키: sk, 공개키: pk

- 3. 에러 백터 e 생성
- 4. 에러 백터 e로부터 세션키(대칭) K 추출
- 5. pk를 사용해 e 암호화 → 암호문 ct 생성

- 6. 전송(ct)
- 7. sk를 사용해 ct를 복호화해서 e나 ⊥(실패 신호) 추출
- 8. 에러 백터 e로부터 세션키(대칭) K 추출

BIKE-1,2,3

- IND-CPA 보안성을 보장하는 3가지 BIKE 버전 존재
 - BIKE-1, BIKE-2, BIKE-3
- 메시지 교환시 일어나는 키 교환에서 임시 키 사용
 - Forward Secuiry 성취
 - 디코딩 실패 관찰을 이용한 공격에 대한 대비

*선택평문공격에 대한 비구별성(Indistinguishability under chosen plaintext attack; IND-CPA)

BIKE 1

- McEliece의 변형을 사용함으로서 빠르게 키 생성이 가능
- QC-MDPC McEliece와는 다르게 개인키인 순환 블록의 Inverse를 계산하지 않고 전체 개인 행렬에 곱하여 체계적인 형태를 얻어내는 연산을 하지 않음
 랜덤한 순환 블록을 개인 순환 행렬에 곱해 개인 코드 구조를 숨김
- 코드(code word)에 메시지를 포함하지 않고 오류벡터에 메시지를 포함하여 전송

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key(f₀, f₁)

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key(f₀, f₁)
- 0. λ 가 주어지면 r, w 설정

r: order, w: weight

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key(f₀, f₁)
- 0. λ 가 주어지면 r, w 설정
- 1. 개인키 h₀, h₁ 생성
- h₀, h₁ 무게 = w/2 → 홀수
- h₀과 h₁은 R로 부터 랜덤하게 선출

* \mathcal{R} : The cyclic polynomial ring $\mathbb{F}_2[X]/\langle X^r-1 \rangle$

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key(f₀, f₁)
- 0. λ 가 주어지면 r, w 설정
- 1. 개인키 h₀, h₁ 생성
- 2. g 생성
- g는 R로 부터 랜덤하게 선출
- 무게는 홀수(r/2)

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key(f₀, f₁)
- 0. λ 가 주어지면 r, w 설정
- 1. 개인키 h₀, h₁ 생성
- 2. g 생성
- 3. $gh_1, gh_0 \rightarrow f_0, f_1$

- Input: public key f₀, f₁
- Output: the encapsulated key K and the cryptogram c

- Input: public key f₀, f₁
- Output: the encapsulated key K and the cryptogram c
- 1. R^2 공간에서 e_0 과 e_1 벡터 선택 ($e_0 + e_1 = t$)

- Input: public key f₀, f₁
- Output: the encapsulated key K and the cryptogram c
- 1. R^2 공간에서 e_0 과 e_1 벡터 선택 ($e_0 + e_1 = t$)
- 2. R에서 랜덤하게 백터 m 생성

- Input: public key f₀, f₁
- Output: the encapsulated key K and the cryptogram c
- 1. R^2 공간에서 e_0 과 e_1 벡터 선택 ($e_0 + e_1 = t$)
- 2. R에서 랜덤하게 백터 m 생성
- 3. $c = (c_0, c_1) \leftarrow (mf_0 + e_0, mf_1 + e_1)$ 연산하여 암호문 생성

- Input: public key f₀, f₁
- Output: the encapsulated key K and the cryptogram c
- 1. R^2 공간에서 e_0 과 e_1 벡터 선택 ($e_0 + e_1 = t$)
- 2. R에서 랜덤하게 백터 m 생성
- 3. $c = (c_0, c_1) \leftarrow (mf_0 + e_0, mf_1 + e_1)$ 연산하여 암호문 생성
- 4. *K* ← **K**(e₀, e₁) e₀, e₁으로 세션키 생성
 - ***K**: SHA256 해시 함수

- Input: private key h₀, h₁ and cryptogram c
- Output: decapsulated key K or failure symbol ⊥

- Input: private key h₀, h₁ and cryptogram c
- Output: decapsulated key K or failure symbol ⊥
- 1. c를 c0과 c1으로 나누고 신드롬 값 연산 s ← c₀h₀ + c₁h₁

- Input: private key h₀, h₁ and cryptogram c
- Output: decapsulated key K or failure symbol ⊥
- 1. c를 c0과 c1으로 나누고 신드롬 값 연산 s ← c₀h₀ + c₁h₁
- 2. 에러 백터 e₀', e₁'을 추출하기 위해 s를 decode(Bit Flipping Decoding)

- Input: private key h₀, h₁ and cryptogram c
- Output: decapsulated key K or failure symbol ⊥
- 1. c를 c0과 c1으로 나누고 신드롬 값 연산 s ← c₀h₀ + c₁h₁
- 2. 에러 백터 e₀', e₁'을 추출하기 위해 s를 decode(Bit Flipping Decoding)
- 3. 만약 decode 해서 나온 (e_0', e_1') 가 t가 안되거나 decoding이 실패하면 실패 신호(\bot) 반환 후 정지

^{*}Encap: 1. R² 공간에서 e₀과 e₁ 벡터 선택 (e₀ + e₁ = t)

- Input: private key h₀, h₁ and cryptogram c
- Output: decapsulated key K or failure symbol ⊥
- 1. c를 c0과 c1으로 나누고 신드롬 값 연산 s ← c₀h₀ + c₁h₁
- 2. 에러 백터 e₀', e₁'을 추출하기 위해 s를 decode(Bit Flipping Decoding)
- 3. 만약 decode 해서 나온 (e_0', e_1') 가 t가 안되거나 decoding이 실패하면 실패 신호(\bot) 반환 후 정지
- 4. Decode 성공했다면 나온 e_0 '와 e_1 '을 갖고 $K \leftarrow K(e_0', e_1')$ 연산 해서 K획득

Bit Flipping Decoding

 Bit Flipping Decoding example

전송 메시지

X = 0000000

도착 메시지

Y = 0100100

 Bit Flipping Decoding example

전송 메시지 도착 메시지
$$X = 0000000 Y = 0100100$$

$$H = \begin{bmatrix} 1100000\\ 0110000\\ 0111100\\ 0001100\\ 0000110\\ 0000101 \end{bmatrix}$$

 Bit Flipping Decoding example

전송 메시지 도착 메시지 X = 0000000 Y = 0100100

 Bit Flipping Decoding example

전송 메시지 도착 메시지 X = 0000000 Y = 0100100

 Bit Flipping Decoding example

전송 메시지 도착 메시지 X = 0000000 Y = 0010100

 Bit Flipping Decoding example

전송 메시지 도착 메시지 X = 0000000 Y = 0010100

Bit Flipping Decoding Algorithm

Require: $H \in \mathbb{F}_2^{(n-k) imes n}$, $s \in \mathbb{F}_2^{n-k}$ Ensure: $eH^T = s$

Bit Flipping Decoding Algorithm

```
Require: H \in \mathbb{F}_2^{(n-k) 	imes n} , s \in \mathbb{F}_2^{n-k}
Ensure: eH^T = s
1: e \leftarrow 0
2: s' ← s
3: while s' \neq 0 do
4: T \leftarrow 미리 정의된 규칙에 의해 결정된 임계값
5: for j = 0,...,n-1 do
6: if |h_i * s'| \ge \tau |h_i| then
7: e_i \leftarrow e_i + 1 \mod 2
8: s' \leftarrow s - eH^T
9: return e
```

|h_i * s'| : j를 포함하는 검사되지 않은 패리티 방정식

Threshold Selection Rule

Threshold(T)

•
$$\pi_1 = \frac{|s| + X}{td}$$
 $\pi_0 = \frac{w|s| - X}{(n-t)d}$ $X = \sum_{\ell \text{ odd}} (\ell-1) \frac{r\binom{w}{\ell}\binom{n-w}{t-\ell}}{\binom{n}{t}}$

$$t \binom{d}{T} \pi_1^T (1 - \pi_1)^{d-T} \ge (n - t) \binom{d}{T} \pi_0^T (1 - \pi_0)^{d-T}$$

$$T = \left[\frac{\log \frac{n-t}{t} + d \log \frac{1-\pi_0}{1-\pi_1}}{\log \frac{\pi_1}{\pi_0} + \log \frac{1-\pi_0}{1-\pi_1}} \right]$$

Threshold Selection Rule

Threshold(*T*)

BIKE-1, 2

- security level 1: T = [13.530 + 0.0069722|s|]
- security level 3: T = [15.932 + 0.0052936|s|]
- security level 5: T = [17.489 + 0.0043536|s|]

BIKE-3

- security level 1: T = [13.209 + 0.0060515|s|]
- security level 3: T = [15.561 + 0.0046692|s|]
- security level 5: T = [17.061 + 0.0038459|s|]

BIKE 2

- Niederreiter 체계와 패리티 검사 행렬을 사용
- 길이 r의 단일 블록만을 이용함으로서 매우 작은 공식들 형성
- 다항식의 역(Inversion)이 필요함
 - 키 생성과정이 암호화에 비해 느릴 수 있음

BIKE 2

- Niederreiter 체계와 패리티 검사 행렬을 사용
- 길이 r의 단일 블록만을 이용함으로서 매우 작은 공식들 형성
- 다항식의 역(Inversion)이 필요함
 - 키 생성과정이 암호화에 비해 느릴 수 있음
 - 이를 해결하기 위해 집단 키 생성(Batch Key Generation)
 - → inverse 연산보다 3번의 곱셈 연산이 더 효율적이다는 가정
 - ex) 1. 다항식 x와 y 각각 inverse
 - 2. $tmp = xy \rightarrow inv = tmp^{-1} \rightarrow x^{-1} = y \cdot inv$ $y^{-1} = x \cdot inv$

BIKE-2 KeyGen

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key h
- 0. λ 가 주어지면 r, w 설정
- 1. 개인키 h₀, h₁ 생성
 - h₀, h₁ 무게 = w/2 → 홀수
 - h₀과 h₁은 R로 부터 랜덤하게 선출

BIKE-2 KeyGen

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key h
- 0. λ 가 주어지면 r, w 설정
- 1. 개인키 h₀, h₁ 생성
- 2. **h** ← h₁h₀-1 연산

- Input: public key h
- Output: the encapsulated key K and the cryptogram c

- Input: public key h
- Output: the encapsulated key K and the cryptogram c
- 1. R^2 공간에서 e_0 과 e_1 벡터 선택 ($e_0 + e_1 = t$)

- Input: public key h
- Output: the encapsulated key K and the cryptogram c
- 1. R^2 공간에서 e_0 과 e_1 벡터 선택 ($e_0 + e_1 = t$)
- 2. c ← e₀ + e₁**h** 연산

- Input: public key h
- Output: the encapsulated key K and the cryptogram c
- 1. R^2 공간에서 e_0 과 e_1 벡터 선택 ($e_0 + e_1 = t$)
- 2. c ← e₀ + e₁**h** 연산
- 3. $K \leftarrow \mathbf{K}(\mathbf{e}_0, \mathbf{e}_1)$
 - ***K**: SHA256 해시 함수

- Input: private key h₀, h₁ and cryptogram c
- Output: decapsulated key K or failure symbol ⊥
- 1. s ← ch₀ 연산
- 2. 에러 백터 e₀', e₁' 을 추출하기 위해 s를 decode
- 3. 만약 decode 해서 나온 (e_0', e_1') 가 t가 안되거나 decoding이 실패하면 실패 신호(\bot) 반환 후 정지
- 4. Decode 성공했다면 나온 e_0 '와 e_1 '을 갖고 $K \leftarrow K(e_0', e_1')$ 연산 해서 K획득

BIKE 3

- BIKE-1과 유사한 점
 - 빠른, Inverse 없는 키 생성
 - 공용 키와 데이터를 위한 두 개의 블록 활용
- Noisy 신드롬에 대한 복호 알고리즘을 사용한다는 점이 차별점

BIKE-3 KeyGen

- Input: λ , taget quantum security level
- Output: private key(h₀, h₁) and public key(f₀, f₁)
- 0. λ 가 주어지면 r, w 설정
- 1. 개인키 h₀, h₁ 생성
- 2. g 생성
- 3. $h_1 + gh_0, g \rightarrow f_0, f_1$

- Input: public key f₀, f₁
- Output: the encapsulated key K and the cryptogram c
- 1. R³ 공간에서 e, e_0 e₁ 벡터 선택 (e = t/2, e_0 + e_1 = t)
- 2. $c = (c_0, c_1) \leftarrow (e + e_1 f_0, e_0 + e_1 f_1)$ 연산하여 암호문 생성
- 3. $K \leftarrow K(e_0, e_1, e) e_0, e_1$ 으로 세션키 생성

***K**: SHA256 해시 함수

- Input: private key h₀, h₁ and cryptogram c
- Output: decapsulated key K or failure symbol ⊥
- 1. c를 c0과 c1으로 나누고 신드롬 값 연산 s \leftarrow c₀ + c₁h₀
- 2. 에러 백터 e₁', e¹', e'를 추출하기 위해 s를 decode
- 3. 만약 decode 해서 나온 (e_0', e_1') 가 t가 안되고 e가 t/2가 안되거나 decoding이 실패하면실패 신호(\bot) 반환 후 정지
- 4. Decode 성공했다면 나온 e_0 ', e_1 ', e_1 ' e_2 ' e_3 ' e_4 ', e_1 ', e_2 ', e_1 ', e_1 ', e_2 ' 연산 해서 e_2 부모 e_3 e_4 ', e_1 ', e_2 ' e_3 ', e_3 ', e_4 ', e_1 ', e_2 '

BIKE-1,2,3 Comparison

	BIKE-1	BIKE-2	BIKE-3
SK	(h_0, h_1) with $ h_0 = h_1 = w/2$		
PK	$(f_0, f_1) \leftarrow (gh_1, gh_0)$	$(f_0, f_1) \leftarrow (1, h_1 h_0^{-1})$	$(f_0, f_1) \leftarrow (h_1 + gh_0, g)$
Enc	$(c_0, c_1) \leftarrow (mf_0 + e_0, mf_1 + e_1)$	$c \leftarrow e_0 + e_1 f_1$	$(c_0, c_1) \leftarrow (e + e_1 f_0, e_0 + e_1 f_1)$
	$K \leftarrow \mathbf{K}(e_0, e_1)$		$K \leftarrow \mathbf{K}(e_0, e_1, e)$
Dec	$s \leftarrow c_0 h_0 + c_1 h_1 \; ; \; u \leftarrow 0$	$s \leftarrow ch_0 \; ; \; u \leftarrow 0$	$s \leftarrow c_0 + c_1 h_0 \; ; \; u \leftarrow t/2$
	$(e_0', e_1') \leftarrow \mathtt{Decode}(s, h_0, h_1, u)$		$(e_0', e_1', e') \leftarrow \mathtt{Decode}(s, h_0, h_1, u)$
	$K \leftarrow \mathbf{K}(e_0', e_1')$		$K \leftarrow \mathbf{K}(e'_0, e'_1, e')$

NTS-KEM

- · McEliece나 Niederreiter 와 같은 공개키 알고리즘의 종류
- NTS-KEM
 - 최근에는 메시지를 암호화해서 전송하는 쪽보다는 랜덤 키를 안전하게 전송하는 쪽으로 사용
- · McEliece와 마찬가지로 매개변수 3가지 버전을 제공함
 - NIST 요구 사항
- · Goppa 코드 사용

Q&A

