90/537511 PCT/JP03/15555

ाने तामी आणि

04.12.03

日本国特許广了Po3/15555

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年12月 5日

RECEIVED 0 3 FEB 2004

PCT

WIPO

出願番号 Application Number:

人

特願2002-354234

[ST. 10/C]:

[JP2002-354234]

出 願
Applicant(s):

浜松ホトニクス株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 1月15日

今井康

【書類名】

特許願

【整理番号】

2002-0574

【提出日】

平成14年12月 5日

【あて先】

特許庁長官殿

【国際特許分類】

B23K 26/00320

B23K 26/04

H01L 21/301

【発明者】

【住所又は居所】

静岡県浜松市市野町1126番地の1

浜松ホトニク

ス株式会社内

【氏名】

福世 文嗣

【発明者】

【住所又は居所】

静岡県浜松市市野町1126番地の1

浜松ホトニク

ス株式会社内

【氏名】

福満 憲志

【特許出願人】

【識別番号】

000236436

【氏名又は名称】 浜松ホトニクス株式会社

【代理人】

【識別番号】

100088155

【弁理士】

【氏名又は名称】

長谷川 芳樹

【選任した代理人】

【識別番号】

100089978

【弁理士】

【氏名又は名称】 塩田 辰也 【選任した代理人】

【識別番号】 100092657

【弁理士】

【氏名又は名称】 寺崎 史朗

【手数料の表示】

【予納台帳番号】 014708

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 レーザ加工装置

【特許請求の範囲】

【請求項1】 ウェハ状の加工対象物の内部に集光点を合わせてレーザ光を 照射し、前記加工対象物の内部に多光子吸収による改質領域を形成するレーザ加 工装置であって、

レーザ光源から出射されたレーザ光のビームサイズを拡大するビームエキスパンダと、

前記ビームエキスパンダを介して入射したレーザ光を前記加工対象物の内部に 集光する集光レンズと、

前記集光レンズを保持すると共に、前記集光レンズにレーザ光を入射させる第 1の光通過孔を有するレンズホルダとを備え、

前記ビームエキスパンダと前記第1の光通過孔とを結ぶレーザ光の光路上には、レーザ光を絞って通過させる第2の光通過孔を有する絞り部材が設けられ、その絞り部材は前記レンズホルダから離間していることを特徴とするレーザ加工装置。

【請求項2】 前記第2の光通過孔の径は前記第1の光通過孔の径以下であることを特徴とする請求項1記載のレーザ加工装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するためのレーザ加工装置に関する。

[0002]

【従来の技術】

従来から、レーザ光を加工対象物に照射することで溶断等の加工を行うレーザ 工装置がある。この種のレーザ加工装置は、レーザ光を加工対象物に向けて集光 するための集光レンズが設けられたレーザヘッドを有し、このレーザヘッドのレ ーザ光入射側には、集光レンズに入射するレーザ光の径を一定にするための入射

[0003]

【特許文献1】

特開平5-212571号公報

【特許文献2】

実開平3-18979号公報

[0004]

【発明が解決しようとする課題】

上述したようなレーザ加工装置においては、入射瞳径より大きいビームサイズのレーザ光がレーザヘッドの光通過孔に向けて照射されるので、光通過孔の周囲部分でカットされたレーザ光によってレーザヘッドが加熱され、これにより集光レンズも加熱されることになる。そのため、レーザヘッドや集光レンズが膨張するなどして、加工対象物に対するレーザ光の集光点の位置がレーザ加工中に変動してしまうおそれがある。

[0005]

そして、このような集光点の位置変動は、ウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するようなレーザ加工では、特にシビアな問題となる。その理由としては、例えば、厚さ 100μ m以下のシリコンウェハを加工対象物とする際には、レーザ光の集光点の位置制御が μ mオーダーで要求される場合があるからである。

[0006]

そこで、本発明は、このような事情に鑑みてなされたものであり、レーザ加工中におけるレーザ光の集光点の位置変動を小さく抑えることのできるレーザ加工装置を提供することを目的とする。

[0007]

【課題を解決するための手段】

上記目的を達成するために、本発明に係るレーザ加工装置は、ウェハ状の加工対象物の内部に集光点を合わせてレーザ光を照射し、加工対象物の内部に多光子

吸収による改質領域を形成するレーザ加工装置であって、レーザ光源から出射されたレーザ光のビームサイズを拡大するビームエキスパンダと、ビームエキスパンダを介して入射したレーザ光を加工対象物の内部に集光する集光レンズと、集光レンズを保持すると共に、集光レンズにレーザ光を入射させる第1の光通過孔を有するレンズホルダとを備え、ビームエキスパンダと第1の光通過孔とを結ぶレーザ光の光路上には、レーザ光を絞って通過させる第2の光通過孔を有する絞り部材が設けられ、その絞り部材はレンズホルダから離間していることを特徴とする。

[0008]

このレーザ加工装置においては、ビームエキスパンダによりビームサイズを拡 大されたレーザ光が絞り部材の第2の光通過孔に向けて照射されるため、第2の 光通過孔より大きいレーザ光の外周部分がカットされ、これにより、レーザ光は ビームサイズを絞られて第2の光通過孔を通過することになる。この第2の光通 過孔を通過したレーザ光は、集光レンズを保持するレンズホルダの第1の光通過 孔に向けて照射され、この第1の光通過孔を通過したレーザ光が集光レンズによ り集光される。そして、その集光点をウェハ状(すなわち、薄く平たい形状)の 加工対象物の内部に合わせることで、加工対象物の内部に多光子吸収による改質 領域を形成する。このようにビームエキスパンダと第1の光通過孔とを結ぶレー ザ光の光路上に絞り部材を設けることで、ビームエキスパンダによりビームサイ ズを拡大されたレーザ光をレンズホルダの第1の光通過孔に向けて直接照射させ る場合に比べ、第1の光通過孔の周囲部分によるレーザ光のカット量を減少させ ることができ、カットされたレーザ光によるレンズホルダの加熱を抑えることが 可能になる。しかも、絞り部材はレンズホルダから離間しているため、第2の光 通過孔の周囲部分でカットされたレーザ光によって絞り部材が加熱されても、絞 り部材からレンズホルダへの熱伝達が防止される。したがって、レーザ加工中に おけるレンズホルダの加熱を主原因としたレーザ光の集光点の位置変動を小さく 抑えることができ、ウェハ状の加工対象物の内部における所定の位置に精度良く 改質領域を形成することが可能になる。

[0009]

また、第2の光通過孔の径は第1の光通過孔の径以下であることが好ましい。 第2の光通過孔の径と第1の光通過孔の径とが同径の場合、絞り部材の第2の光 通過孔を通過したレーザ光の径は第1の光通過孔の径と同等になる。また、ビー ムエキスパンダを出射した光が平行光とならずビームが若干拡がる場合には、レ ーザ光の拡がり分を考慮して第2の光通過孔の径を第1の光通過孔の径より小さ くすることで、第1の光通過孔の周囲部分に入射するレーザ光をほとんどなくす ことができる。したがって、集光レンズの集光特性を最大限に発揮させつつ、第 1の光通過孔の周囲部分によるレーザ光のカット量をほとんどなくし、レンズホ ルダの加熱をより一層抑えることが可能になる。

[0010]

【発明の実施の形態】

以下、本発明に係るレーザ加工装置の好適な実施形態について、図面を参照して詳細に説明する。

[0011]

本実施形態に係るレーザ加工装置は、ウェハ状の加工対象物の内部に集光点を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成するものである。そこで、本実施形態に係るレーザ加工装置の説明に先立って、多光子吸収による改質領域の形成について説明する。

[0012]

材料の吸収のバンドギャップEGよりも光子のエネルギー h ν が小さいと光学的に透明となる。よって、材料に吸収が生じる条件は h ν > EGである。しかし、光学的に透明でも、レーザ光の強度を非常に大きくすると n h ν > EGの条件 $(n=2,3,4,\cdots)$ で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm²)で決まり、例えばピークパワー密度が 1×108 (W/cm²)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm²)で決まる。

このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について、図1~図6を参照して説明する。図1はレーザ加工中の加工対象物1の平面図であり、図2は図1に示す加工対象物1のIIーII線に沿った断面図であり、図3はレーザ加工後の加工対象物1の平面図であり、図4は図3に示す加工対象物1のIVーIV線に沿った断面図であり、図5は図3に示す加工対象物1のVーV線に沿った断面図であり、図6は切断された加工対象物1の平面図である。

[0014]

図1及び図2に示すように、加工対象物1の表面3には、加工対象物1を切断すべき所望の切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である(加工対象物1に実際に線を引いて切断予定ライン5としてもよい)。本実施形態に係るレーザ加工は、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して改質領域7を形成する。なお、集光点とはレーザ光Lが集光した箇所のことである。

[0015]

レーザ光Lを切断予定ライン5に沿って(すなわち矢印A方向に沿って)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3~図5に示すように改質領域7が切断予定ライン5に沿って加工対象物1の内部にのみ形成され、この改質領域7でもって切断予定部8が形成される。本実施形態に係るレーザ加工方法は、加工対象物1がレーザ光Lを吸収することにより加工対象物1を発熱させて改質領域7を形成するのではない。加工対象物1にレーザ光Lを透過させ加工対象物1の内部に多光子吸収を発生させて改質領域7を形成している。よって、加工対象物1の表面3ではレーザ光Lがほとんど吸収されないので、加工対象物1の表面3が溶融することはない。

[0016]

加工対象物1の切断において、切断する箇所に起点があると加工対象物1はその起点から割れるので、図6に示すように比較的小さな力で加工対象物1を切断することができる。よって、加工対象物1の表面3に不必要な割れを発生させることなく加工対象物1の切断が可能となる。

なお、切断予定部を起点とした加工対象物の切断には、次の2通りが考えられ る。1つは、切断予定部形成後、加工対象物に人為的な力が印加されることによ り、切断予定部を起点として加工対象物が割れ、加工対象物が切断される場合で ある。これは、例えば加工対象物の厚さが大きい場合の切断である。人為的な力 が印加されるとは、例えば、加工対象物の切断予定部に沿って加工対象物に曲げ 応力やせん断応力を加えたり、加工対象物に温度差を与えることにより熱応力を 発生させたりすることである。他の1つは、切断予定部を形成することにより、 切断予定部を起点として加工対象物の断面方向(厚さ方向)に向かって自然に割 れ、結果的に加工対象物が切断される場合である。これは、例えば加工対象物の 厚さが小さい場合には、1列の改質領域により切断予定部が形成されることで可 能となり、加工対象物の厚さが大きい場合には、厚さ方向に複数列形成された改 質領域により切断予定部が形成されることで可能となる。なお、この自然に割れ る場合も、切断する箇所において、切断予定部が形成されていない部位に対応す る部分の表面上にまで割れが先走ることがなく、切断予定部を形成した部位に対 応する部分のみを割断することができるので、割断を制御よくすることができる 。近年、シリコンウェハ等の加工対象物の厚さは薄くなる傾向にあるので、この ような制御性のよい割断方法は大変有効である。

[0018]

さて、本実施形態において多光子吸収により形成される改質領域としては、次の(1) \sim (3) がある。

[0019]

(1) 改質領域が1つ又は複数のクラックを含むクラック領域の場合

加工対象物(例えばガラスやLiTaO $_3$ からなる圧電材料)の内部に集光点を合わせて、集光点における電界強度が 1×1 O 8 (W/cm 2)以上で且つパルス幅が 1μ s以下の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせつつ加工対象物の表面に余計なダメージを与えずに、加工対象物の内部にのみクラック領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収による光学的損傷という現象が発生する。この光学的損傷

により加工対象物の内部に熱ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。電界強度の上限値としては、例えば 1×10^{12} (W $/ \text{cm}^2$) である。パルス幅は例えば $1 \text{ n s} \sim 200 \text{ n s}$ が好ましい。なお、多光子吸収によるクラック領域の形成は、例えば、第45回レーザ熱加工研究会論文集(1998年、12月)の第23頁~第28頁の「固体レーザー高調波によるガラス基板の内部マーキング」に記載されている。

[0020]

本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は次ぎの通りである。

[0021]

- (A) 加工対象物:パイレックス(登録商標)ガラス(厚さ700 μm)
- (B) レーザ

光源:半導体レーザ励起Nd:YAGレーザ

波長:1064nm

レーザ光スポット断面積:3.14×10-8cm²

発振形態:Qスイッチパルス

繰り返し周波数:100kHz

パルス幅:30ns

出力:出力< 1 m J / パルス

レーザ光品質:TEM₀₀

偏光特性:直線偏光

(C) 集光用レンズ

レーザ光波長に対する透過率:60パーセント

(D) 加工対象物が載置される載置台の移動速度:100mm/秒

[0022]

なお、レーザ光品質が TEM_{00} とは、集光性が高くレーザ光の波長程度まで集 光可能を意味する。

[0023]

図7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、

レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は1パルスのレーザ光により加工対象物の内部に形成されたクラック部分(クラックスポット)の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ中の黒丸で示すデータは集光用レンズ(C)の倍率が100倍、開口数(NA)が0.80の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ(C)の倍率が50倍、開口数(NA)が0.55の場合である。ピークパワー密度が1011(W/cm²)程度から加工対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに従いクラックスポットも大きくなることが分かる。

[0024]

次に、本実施形態に係るレーザ加工において、クラック領域形成による加工対象物の切断のメカニズムについて図8~図11を用いて説明する。図8に示すように、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して切断予定ラインに沿って内部にクラック領域9を形成する。クラック領域9は1つ又は複数のクラックを含む領域である。このクラック領域9でもって切断予定部が形成される。図9に示すようにクラック領域9を起点として(すなわち、切断予定部を起点として)クラックがさらに成長し、図10に示すようにクラックが加工対象物1の表面3と裏面17に到達し、図11に示すように加工対象物1が割れることにより加工対象物1が切断される。加工対象物の表面と裏面に到達するクラックは自然に成長する場合もあるし、加工対象物に力が印加されることにより成長する場合もある。

[0025]

(2) 改質領域が溶融処理領域の場合

加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が 1×10^8 (W/c m²) 以上で且つパルス幅が 1μ s 以下の条件でレーザ光を照射する。これにより加工対象物の内部は多光子吸収によって局所的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態

の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。電界強度の上限値としては、例えば 1×10^{12} (W/cm^2) である。パルス幅は例えば $1 ns \sim 200n$ sが好ましい。

[0026]

本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次の通りである。

[0027]

- (A) 加工対象物:シリコンウェハ (厚さ350 μm、外径4インチ)
- (B) レーザ

光源:半導体レーザ励起Nd:YAGレーザ

波長:1064nm

レーザ光スポット断面積:3.14×10-8cm²

発振形態:Qスイッチパルス

繰り返し周波数:100kHz

パルス幅:30ns

出力:20 µ J / パルス

レーザ光品質:TEM₀₀

偏光特性:直線偏光

(C) 集光用レンズ

倍率:50倍

N. A. : 0. 55

レーザ光波長に対する透過率:60パーセント

(D) 加工対象物が載置される載置台の移動速度:100mm/秒

図12は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域13の厚さ方向の大きさは100 μ m程度である。

[0029]

溶融処理領域 13 が多光子吸収により形成されたことを説明する。図 13 は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚さ t が 50 μ m、100 μ m、200 μ m、500 μ m、100 μ m の各々について上記関係を示した。

[0030]

例えば、Nd:YAGレーザの波長である1064nmにおいて、シリコン基板の厚さが 500μ m以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図12に示すシリコンウェハ11の厚さは 350μ mであるので、多光子吸収による溶融処理領域13はシリコンウェハの中心付近、つまり表面から 175μ mの部分に形成される。この場合の透過率は、厚さ 200μ mのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域13%シリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域13%多光子吸収により形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶接学会全国大会講演概要第66集(2000年4月)の第72頁~第73頁の「ピコ秒パルスレーザによるシリコンの加工特性評価」に記載されている。

[0031]

なお、シリコンウェハは、溶融処理領域でもって形成される切断予定部を起点 として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と 裏面とに到達することにより、結果的に切断される。シリコンウェハの表面と裏 面に到達するこの割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより成長する場合もある。なお、切断予定部からシリコンウェハの表面と裏面とに割れが自然に成長する場合には、切断予定部を形成する溶融処理領域が溶融している状態から割れが成長する場合と、切断予定部を形成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、どちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断面には、図12のように内部にのみ溶融処理領域が形成されている。加工対象物の内部に溶融処理領域でもって切断予定部を形成すると、割断時、切断予定部ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。

[0032]

(3) 改質領域が屈折率変化領域の場合

加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強度が1×10⁸(W/cm²)以上で且つパルス幅が1ns以下の条件でレーザ光を照射する。パルス幅を極めて短くして、多光子吸収を加工対象物の内部に起こさせると、多光子吸収によるエネルギーが熱エネルギーに転化せずに、加工対象物の内部にはイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率変化領域が形成される。電界強度の上限値としては、例えば1×10¹²(W/cm²)である。パルス幅は例えば1ns以下が好ましく、1ps以下がさらに好ましい。多光子吸収による屈折率変化領域の形成は、例えば、第42回レーザ熱加工研究会論文集(1997年、11月)の第105頁~第111頁の「フェムト秒レーザー照射によるガラス内部への光誘起構造形成」に記載されている。

[0033]

次に、本実施形態に係るレーザ加工装置について、図14及び図15を参照して説明する。

[0034]

図14に示すように、レーザ加工装置20は、ウェハ状の加工対象物1の内部 に集光点P1を合わせて加工用レーザ光L1を照射することで、加工対象物1の

[0035]

このレーザ加工装置 2 0 は、加工対象物 1 が載置されるステージ 2 1 を有しており、このステージ 2 1 は、上下方向を Z 軸方向として X 軸方向、 Y 軸方向、 Z 軸方向の各方向に移動可能となっている。ステージ 2 1 の上方には、加工用レーザ光 L 1 を発生するレーザ光源 2 2 等を収容した筐体 2 3 が配置されている。このレーザ光源 2 2 は、例えば N d: Y A G レーザであり、真下に位置するステージ 2 1 上の加工対象物 1 に向けてパルス幅 1 μ s 以下のパルスレーザ光である加工用レーザ光 L 1 を出射する。

[0036]

筐体23の下端面には電動レボルバ24が取り付けられており、この電動レボルバ24には、加工対象物1を観察するための観察用対物レンズ26と、加工用レーザ光L1を集光するための加工用対物レンズ27とが装着されている。各対物レンズ26,27の光軸は、電動レボルバ24の回転によって加工用レーザ光L1の光軸に一致させられる。なお、加工用対物レンズ27と電動レボルバ24との間には、ピエゾ素子を用いたアクチュエータ28が介在されており、このアクチュエータ28によって加工用対物レンズ27の位置が2軸方向(上下方向)に微調整される。

[0037]

図15に示すように、加工用対物レンズ27は円筒形状のレンズホルダ29を有し、このレンズホルダ29は、その内部において複数のレンズを組み合わせてなる開口数「0.80」の集光レンズ31を保持している。そして、レンズホルダ29の上端部には、集光レンズ31に対する加工用レーザ光L1の入射瞳として第1の光通過孔32が形成され、レンズホルダ29の下端部には加工用レーザ光L1の出射開口33が形成されている。このように構成された加工用対物レンズ27によって加工用レーザ光L1が集光され、集光レンズ31による集光点P

[0038]

また、筐体23内における加工用レーザ光L1の光軸上には、図14に示すように、レーザ光源22で発生したレーザ光L1のビームサイズを拡大するビームエキスパンダ34と、レーザ光L1の出力や偏光を調整するレーザ光調整光学系36と、レーザ光L1の通過又は遮断を行う電磁シャッタ37と、レーザ光L1のビームサイズを絞る絞り部材38とが上から下にこの順序で配置されている。

[0039]

図15に示すように、絞り部材38は、加工用対物レンズ27の第1の光通過孔32の上方に位置して筐体23に取り付けられており、加工用レーザ光L1の光軸上においてこのレーザ光L1を絞って通過させるアパーチャとしての第2の光通過孔39を有している。この第2の光通過孔39は、加工用対物レンズ27の第1の光通過孔32と同径に形成されており、第2の光通過孔39の中心軸線は、絞り部材38に設けられた調節ネジ35によって第1の光通過孔32の中心軸線に正確に一致させることができる。したがって、ビームエキスパンダ34によりビームサイズを拡大された加工用レーザ光L1は、絞り部材38によって第2の光通過孔39より大きいレーザ光L1の外間部分がカットされ、これにより、第2の光通過孔39を通過した加工用レーザ光L1の径は、加工用対物レンズ27の第1の光通過孔32の径と同等になる。なお、ビームエキスパンダ34を出射した光が平行光とならずビームが若干拡がる場合には、レーザ光の拡がり分を考慮して、第1の光通過孔32の周囲部分に入射するレーザ光をほとんどなくすように第2の光通過孔39の径を第1の光通過孔32の径より小さくする。

[0040]

さらに、レーザ加工装置20は、図14に示すように、加工用対物レンズ27 と加工対象物1の表面3との距離をレーザ加工中常に一定に保つべく、測距用レ ーザ光を発生するレーザダイオード等の測距用光源41と、フォトダイオードを 4等分してなる4分割位置検出素子42とを筐体23内に有している。

[0041]

すなわち、測距用光源41から出射された測距用レーザ光は、ピンホール43、ビームエキスパンダ44を順次通過した後、ミラー46、ハーフミラー47により順次反射されて、電磁シャッタ37と絞り部材38との間に配置されたダイクロイックミラー48に導かれる。このダイクロイックミラー48により反射された測距用レーザ光は、加工用レーザ光L1の光軸上を下方に向かって進行し、絞り部材38の第2の光通過孔39を通過した後、加工用対物レンズ27の集光レンズ31により集光されて加工対象物1に照射される。なお、加工用レーザ光L1はダイクロイックミラー48を透過する。

[0042]

そして、加工対象物1の表面3で反射された測距用レーザ光の反射光は、加工用対物レンズ27の集光レンズ31に再入射して加工用レーザ光L1の光軸上を上方に向かって進行し、絞り部材38の第2の光通過孔39を通過した後、ダイクロイックミラー48により反射される。このダイクロイックミラー48により反射された測距用レーザ光の反射光は、ハーフミラー47を通過した後、シリンドリカルレンズと平凸レンズとからなる整形光学系49により集光されて4分割位置検出素子42上に照射される。

[0043]

この4分割位置検出素子42上における測距用レーザ光の反射光の集光像パターンは、加工用対物レンズ27と加工対象物1の表面3との距離に応じて変化する。このレーザ加工装置20では、加工用対物レンズ27と加工対象物1の表面3との距離がレーザ加工中常に一定となるように、4分割位置検出素子42上の集光像パターンに基づいてアクチュエータ28をフィードバック制御し、加工用対物レンズ27の位置を上下方向に微調整する。

[0044]

さらに、レーザ加工装置20は、ステージ21上に載置された加工対象物1を 観察すべく、観察用可視光を発生する観察用光源51を筐体23外に有し、CC Dカメラ52を筐体23内に有している。

[0045]

すなわち、観察用光源51で発せられた観察用可視光は、光ファイバからなる

ライトガイド53により筐体23内に導かれ、視野絞り54、開口絞り56、ダイクロイックミラー57等を順次通過した後、絞り部材38と加工用対物レンズ27の第1の光通過孔32と間に配置されたダイクロイックミラー58により反射される。反射された観察用可視光は、加工用レーザ光L1の光軸上を下方に向かって進行し、電動レボルバ24の回転によって加工用レーザ光L1の光軸上に配置された観察用対物レンズ26を通過して加工対象物1に照射される。なお、加工用レーザ光L1、測距用レーザ光及びその反射光はダイクロイックミラー58を透過する。

[0046]

そして、加工対象物1の表面3で反射された観察用可視光の反射光は、観察用対物レンズ26内に再入射して加工用レーザ光L1の光軸上を上方に向かって進行し、ダイクロイックミラー58により反射される。このダイクロイックミラー58により反射された反射光は、ダイクロイックミラー57により更に反射されて、フィルタ59、結像レンズ61、リレーレンズ62を順次通過し、CCDカメラ52に入射することになる。

[0047]

このCCDカメラ52により撮像された撮像データは全体制御部63に取り込まれ、この全体制御部63によってTVモニタ64に加工対象物1の表面3等の画像が映し出される。なお、全体制御部63は、各種処理を実行すると共に、ステージ21の移動、電磁レボルバ24の回転、電磁シャッタ37の開閉、CCDカメラ52による撮像等の他、レーザ加工装置20の全体の動作を制御するものである。

[0048]

次に、上述したレーザ加工装置20によるレーザ加工手順について説明する。 まず、ステージ21上に加工対象物1を載置する。続いて、加工対象物1の改質 領域7の形成開始位置と加工用レーザ光L1の集光点P1とが一致するようにス テージ21を移動させる。なお、このときの加工用対物レンズ27と加工対象物 1の表面3との距離は、加工対処物1の厚さや屈折率に基づいて決定することが できる。

[0049]

続いて、レーザ光源22から加工用レーザ光L1を加工対象物1に向けて出射させる。このとき、加工用レーザ光L1の集光点P1は、加工対象物1の表面3から所定距離内側に位置しているので、改質領域7は加工対象物1の内部に形成される。そして、切断すべき所望の切断予定ラインに沿うようにステージ21をX軸方向やY軸方向に移動させて、加工対象物1の表面3に沿って延在する切断予定部8を改質領域7により形成する。

[0050]

この切断予定部8の形成中は、4分割位置検出素子42上における測距用レーザ光の反射光の集光像パターンに基づいて、加工用対物レンズ27と加工対象物1の表面3との距離が一定となるように、アクチュエータ28によって加工用対物レンズ27の位置が上下方向に微調整される。そのため、加工対象物1の表面3に面振れがあったり、ステージ21が振動したりしても、加工用対物レンズ27と加工対象物1の表面3との距離は一定に保たれることになる。したがって、加工対象物1の表面3から所定距離内側に精度良く切断予定部8を形成することができる。

[0051]

以上説明したようにレーザ加工装置20おいては、ビームエキスパンダ34とレンズホルダ29の第1の光通過孔32とを結ぶ加工用レーザ光L1の光路上に、第1の光通過孔32と同径の第2の光通過孔39を有する絞り部材38が配置されている。そのため、ビームエキスパンダ34によりビームサイズを拡大された加工用レーザ光L1は、絞り部材38によって第2の光通過孔39より大きいレーザ光L1の外周部分がカットされ、これにより、第2の光通過孔39を通過した加工用レーザ光L1の径は、レンズホルダ29の第1の光通過孔32の径と略同等になる。したがって、第1の光通過孔32の周囲部分によるレーザ光L1のカット量をほとんどなくすことができ、加工用レーザ光L1の照射によるレンズホルダ29の加熱を防止することが可能になる。しかも、絞り部材38はレンズホルダ29から離間しているため、第2の光通過孔39の周囲部分でカットされたレーザ光L1によって絞り部材38が加熱されても、絞り部材38からレン

[0052]

図16は、レーザ加工開始からの経過時間とレンズホルダの上昇温度との関係を示すグラフである。このグラフに示されるように、レーザ加工装置20においては、絞り部材39を設けることによって、絞り部材39を設けなかった場合に比べ、レーザ加工開始から30分の経過後におけるレンズホルダ29の上昇温度を1℃も抑えることができる。

[0053]

また、レーザ加工装置 2 0 においては、加工対象物 1 の内部に多光子吸収を起こさせるために、集光点 P 1 での加工用レーザ光 L 1 のピークパワー密度を 1 × 1 0 8 (W/c m²) 以上というように高くする必要があり、また、加工対象物 1 がウェハ状であるがために多光子吸収により発生する改質領域 7 を微小なものにする必要がある。このような改質領域 7 を形成するためには、例えば「0.80」といった開口数の大きい集光レンズ 3 1 を用いる必要があり、そのため、集光レンズ 3 1 の入射瞳径、すなわち第 1 の光通過孔 3 2 の径を大きくする必要がある。このレーザ加工装置 2 0 においては、ビームエキスパンダ 3 4 を設けることで、レーザ光源 2 2 で発生した加工用レーザ光 L 1 のビームサイズを、大型化された第 1 の光通過孔 3 2 の径に対応可能となるように十分に大きくすることができる。

[0054]

本発明に係るレーザ加工装置は上記実施形態に限定されない。例えば、絞り部材38の第2の光通過孔39は、レンズホルダ29の第1の光通過孔32の径と同径であるものに限らず、ビームエキスパンダ34によりビームサイズを拡大された加工用レーザ光L1を絞って通過させるものであれば、第1の光通過孔32の径より大きくてもよい。この場合にも、ビームエキスパンダ34により拡大された加工用レーザ光L1を第1の光通過孔32に向けて直接照射させる場合に比

[0055]

【発明の効果】

以上説明したように本発明に係るレーザ加工装置によれば、レーザ加工中におけるレンズホルダの加熱を主原因としたレーザ光の集光点の位置変動を小さく抑えることができ、ウェハ状の加工対象物の内部における所定の位置に精度良く改質領域を形成することが可能になる。

【図面の簡単な説明】

【図1】

本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の平面図である。

【図2】

図1に示す加工対象物のII-II線に沿った断面図である。

【図3】

本実施形態に係るレーザ加工方法によるレーザ加工後の加工対象物の平面図である。

【図4】

図3に示す加工対象物のIV-IV線に沿った断面図である。

【図5】

図3に示す加工対象物のV-V線に沿った断面図である。

【図6】

本実施形態に係るレーザ加工方法により切断された加工対象物の平面図である

【図7】

本実施形態に係るレーザ加工方法における電界強度とクラックスポットの大きさとの関係を示すグラフである。

【図8】

【図9】

本実施形態に係るレーザ加工方法の第2工程における加工対象物の断面図である。

【図10】

本実施形態に係るレーザ加工方法の第3工程における加工対象物の断面図である。

【図11】

本実施形態に係るレーザ加工方法の第4工程における加工対象物の断面図である。

【図12】

本実施形態に係るレーザ加工方法により切断されたシリコンウェハの一部における断面の写真を表した図である。

【図13】

本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。

【図14】

本実施形態に係るレーザ加工装置の概略構成図である。

【図15】

図14に示すレーザ加工装置の要部を示す拡大図である。

【図16】

図14に示すレーザ加工装置におけるレーザ加工開始からの経過時間とレンズ ホルダの上昇温度との関係を示すグラフである。

【符号の説明】

1…加工対象物、3…表面、5…切断予定ライン、7…改質領域、8…切断予定部、11…シリコンウェハ、13…溶融処理領域、20…レーザ加工装置、22…レーザ光源、29…レンズホルダ、31…集光レンズ、32…第1の光通過孔、38…絞り部材、39…第2の光通過孔、L, L1…レーザ光、P, P1…

集光点。

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図8】

【図9】

【図10】

出証特2003-3111897

【図16】

【要約】

【課題】 レーザ加工中におけるレーザ光の集光点の位置変動を小さく抑え得る レーザ加工装置を提供する。

【解決手段】 レーザ加工装置20では、ビームエキスパンダ34とレンズホルダ29の第1の光通過孔32とを結ぶレーザ光L1の光路上に、第1の光通過孔32と同径の第2の光通過孔39を有する絞り部材38が配置されている。よって、第1の光通過孔32の周囲部分によるレーザ光L1のカット量をほとんどなくし、レーザ光L1の照射によるレンズホルダ29の加熱を防止することができる。しかも、絞り部材38はレンズホルダ29から離間しているため、第2の光通過孔39の周囲部分でカットされたレーザ光L1により絞り部材38が加熱されても、絞り部材38からレンズホルダ29への熱伝達が防止される。したがって、レーザ加工中におけるレーザ光L1の集光点P1の位置変動を小さく抑えることができる。

【選択図】 図15

出願人履歴情報

識別番号

[000236436]

1. 変更年月日 [変更理由]

1990年 8月10日

住 所

新規登録

静岡県浜松市市野町1126番地の1

氏 名 浜松ホトニクス株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.