Prédiction de risque pour la leucémie myéloïde

Résultats d'examens biologiques

Evaluation du risque

Objectif:

Résultats d'examens biologiques

Evaluation du risque

Plan:

- 1. Analyse du problème
- 2. Approche choisie
- 3. Résultats
- 4. Conclusion

1.1 Définition du risque et métrique associée

- Risque défini de manière implicite par la métrique
- Métrique : IPCW-C-Index

1.1 Définition du risque et métrique associée

1.1 Définition du risque et métrique associée

- **Hypothèse forte** : Non informativité du temps de survie pour la censure

Validité varie d'un centre médical à l'autre

1.2 Données fournies

- Mesures biologiques continues
- Anomalies chromosomiques (encodage ISCN)
- Mutations moléculaires

Donnée complexe, et de très haute dimension

1.2 Données fournies

1.2 Données fournies

2.1 Architectures choisies

- Modèle non-paramétrique et peu d'hypothèses
- Résultats compétitifs
- Mécanique ensembliste qui induit une régularisation naturelle

2.1 Architectures choisies

Modèle de Cox linéaire pénalisé

Risque instantané

$$\lambda\left(t,X_{1},\cdots,X_{n}
ight)=\lambda_{0}\left(t
ight)\exp\left(\Sigma_{i=1}^{n}eta_{i}X_{i}
ight)$$

Pénalisation

$$\|\lambda_2\|eta\|^2 + \lambda_1\|eta\|_1$$

- Hypothèse forte, mais qui est parfois adaptée
- Résultats compétitifs

2.1 Architectures choisies

Modèle de Cox et AFT avec régression XGBoost

$$\lambda(t|\theta) = \lambda_0(t)\theta$$
 $\lambda(t|\theta) = \lambda_0(t\theta)\theta$

- Hypothèses fortes, mais qui sont parfois adaptées
- Résultats compétitifs
- Plus d'hypothèse de linéarité pour la régression

Variables continues

Données cytogénétiques

Données génétiques moléculaires

Variables continues

Normalisation

Imputation

Base

Données cytogénétiques

Données génétiques moléculaires

Données génétiques moléculaires

3.1 Résultats - Dépendance aux données

	Base	Cytogénétique	Moléculaire
RSF	0.664	0.673	0.690
Cox linéaire	0.653	0.655	0.663
Cox XGBoost	0.636	0.648	0.676
AFT XGBoost	0.630	0.645	0.673

3.2 Résultats - Méthodes d'imputation

	Moyenne	Médiane	Itérative (Ridge)	
RSF	0.690	0.698	0.694	
Cox linéaire	0.663	0.672	0.667	
Cox XGBoost	0.677	0.676	0.672	
AFT XGBoost	0.673	0.664	0.674	

3.3 Résultats - HPO?

3.4 Résultats - Classement officiel

Académique public

Rang	Date	Participant(s)	Score publi
1	15 mars 2025 21:31	I_b & jeremtti	0,7695
2	15 mars 2025 20:44	marcb & tessbreton	0,7656
3	14 février 2025 17:27	SullyCstr & matthieuml	0,7645
4	16 mars 2025 19:53	MoBenyahia & medraki	0,7640
5	15 mars 2025 17:42	gavite & JulienG	0,7634
6	16 mars 2025 19:59	@Sari & mounanaim	0,7630
7	12 mars 2025 14:23	Robenson & Yanis_Kahil	0,7599
8	16 mars 2025 12:44	sachabinder	0,7599
9	16 mars 2025 16:48	pcaucheteux & MANY0427	0,7596
10	7 mars 2025 19:53	flipflop45 & theodore.fougereux	0,7587
11	15 mars 2025 13:45	gilinca	0,7571

Académique privé

Rang	Date	Participant(s)	Score final (dat
1	7 mars 2025 19:53	flipflop45 & theodore.fougereux	0,7156
2	14 mars 2025 16:28	@Sari & mounanaim	0,7138
3	14 février 2025 17:27	SullyCstr & matthieuml	0,7137
4	15 mars 2025 21:31	I_b & jeremtti	0,7136
5	15 mars 2025 13:45	gilinca	0,7123
6	15 mars 2025 17:42	gavite & JulienG	0,7118
7	6 mars 2025 10:14	Werther14 & mathias-grau	0,7114
8	7 mars 2025 03:38	rateddany & bsaadi	0,7100
9	15 mars 2025 20:44	marcb & tessbreton	0,7096
10	13 mars 2025 15:18	MoBenyahia & medraki	0,7087
11	30 janvier 2025 18:19	Ishani	0,7083

4.1 Conclusion - Points clés

Intégration des données cytogénétiques et moléculaires

Pas d'overfitting

Choix du modèle

4.2 Conclusion - Améliorations potentielles ?

- Intégration des données cytogénétiques et moléculaires
 - Extraire plus de features du dataset, et les enrichir (Mitelman i.e.)
- Pas d'overfitting
 - Sélection des features par feature importance
- Choix du modèle
 - Modèles modélisant mieux les intéractions multiples (DL par exemple)

Questions?

