Линейная регрессия

пинеиная регрессия

Логистическая регрессия

Форма датасета

n	Площадь квартиры (x)	Реальная стоимость аренды (y_true)	Предсказанная стоимость аренды (y_pred)
1	50	60 000	58 654
2	28	25 000	23 634
N	35	28 000	31 634

п	Количество кликов (x)	Покупка (t)	Предсказанная вероятность (р)
1	50	1	0.85
2	5	0	0.28
Ν	67	1	0.64

Функция для минимизации

$$Loss(w_0, w_1) = \sum_{i=1}^{N} ig(y_{true \; i} - y_{pred \; i}ig)^2$$

$$y_{pred\ i} = w_0 + w_1 \cdot x$$

Линейная модель предсказывает целевую переменную

$$egin{aligned} Loss(w_0,w_1) &= -\sum_{i=1}^N \left(t_i \cdot ln(p_i) + \\ &+ (1-t_i) \cdot ln(1-p_i)
ight) \ ln\Big(rac{p_i}{1-p_i}\Big) &= w_0 + w_1 \cdot x \end{aligned}$$

Линейная модель предсказывает логарифм шансов быть объектом класса 1

Подбор коэффициентов осуществляется методом градиентного спуска.

Градиентный спуск - численный метод нахождения минимума функции

Чтобы лучше понять градиентный спуск, посмотри второе видео в плейлисте, посвящённом обучению нейронных сетей, от 3Blue1Brow. Длительность видео 21 минута.

- 1. Сперва коэффициенты w_0 и w_1 инициализируются случайным образом:
- $w_0 = w_0(0) \hspace{0.5cm} w_1 = w_1(0)$ 2. Считается тангенс наклона касательной вдоль направлений w_0 и w_1
- 3. Происходит обновление w_0 и w_1

$$w_1(1) = w_1(0) - \alpha \frac{\partial \ loss(w_0,w_1)}{\partial w_1} \Big|_{w_0(0),w_1(0)}$$

Метрики регрессии

Метрики классификации

Средняя абсолютная ошибка

$$MAE = \sum_{i=1}^{N} \left| y_{true \ i} - y_{pred \ i} \right|$$

Коэффициент множественной корреляции

$$R = corr(y_{true}, y_{pred})$$

Коэффициент детерминации -

квадрат коэффициента множественной корреляции. Можно показать, что:

$$\boxed{R^2 = 1 - \frac{\sum_{i=1}^{N} \left(y_{true\;i} - y_{pred\;i}\right)^2}{\sum_{i=1}^{N} \left(y_{true\;i} - \overline{y}\right)^2}}$$

Показывает, насколько модель работает лучше, чем предсказание среднего.

Если для каждого примера предсказывать среднее, то $R^2 = 0$. Если делать хорошие предсказания, то $R^2 -> 1$.

ROC AUC показывает вероятность того, что если взять один объект класса 0 и один объект класса 1, то score на классе 1 будет больше скора на класса 0. ROC AUC Random = 0.5.

Метрики для меток.

Пусть при определённом пороге принятия решения мы получили картинку:

По мнению нашего алгоритма: внутри круга находится class 1 снаружи круга находится class 0

Фундаментальные метрики классификатора

$$\begin{split} TPR &= \frac{TP}{TP + FN} \quad \begin{array}{l} (Sensitivity \ or \\ Recall \end{array}) \\ TNR &= \frac{TN}{TN + FP} \quad (Specifity) \end{split}$$

Любые другие метрики классификации выражаются через TPR, TNR и Prevalence

Посмотри это 20-минутное видео от 3Blue1Brown, чтобы лучше понять метрики классификации.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Логистическая регрессия (на 2 класса) (у) $z = w_0 + w_1 \cdot x$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Мульти-класс логистическая регрессия на 2 класса

Мульти-класс классификация

$$SM(z_i) = rac{e^{z_i}}{e^{z_1} + e^{z_2}}$$

Мульти-класс логистическая регрессия на 3 класса

Можно показать, что эти 2 подхода идентичны