HEAT AND THERMODYNAMICS

Thermometry

Heat

Heat is the form of energy which gives the sensation of hotness or coldness of a body. It is the physical cause of sensation of hotness or coldness.

Temperature

Degree of hotness or coldness of a body is temperature. It determines the direction of heat flow.

Thermometry is the technique for the quantitative determination of thermodynamic temperature

Different temperature Scale

Scale	LFP	UFP	n	Representation
Celsius	0°C	100°C	100	1°C
Fahrenheit	32 ⁰ F	212 ⁰ F	180	1 ⁰ F
Reaumer	0 ⁰ R	80 ⁰ R	180	1 ⁰ R
Kelvin	273 K	373 K	100	1 K

Conversion of temperature Scales

Let x be a facility / Reference Scale

$$\frac{x-x_{_{LFP}}}{x_{_{UFP}}-x_{_{LFP}}} = \frac{C-0}{100-0} \ = \frac{F-32}{212-32} = \frac{R-0}{80-0} \ \frac{K-273}{373-273}$$

$$\frac{x - x_{LFP}}{x_{UFP} - x_{LFP}} = \frac{C}{100} = \frac{F - 32}{180} = \frac{R}{80} \frac{K - 273}{180}$$

Relation between temperature scales

Celsius and Fahrenheit

$$\frac{C}{100} = \frac{F - 32}{180}$$

$$\frac{C}{5} = \frac{F - 32}{9}$$

$$F = \frac{9}{5} C + 32$$

Celsius and Kelvin

$$\frac{C}{100} = \frac{K - 273}{100}$$

$$C = K - 273$$
$$K = C + 273$$

No common Reading in Celsius and Kelvin

Since the no. of divisions in both the scales are same

Change in temperature in Celsius is equivalent to change in temperature Fahrenheit

$$F_1 = \frac{9}{5} C_1 + 32$$

$$F_2 = \frac{9}{5} C_2 + 32$$

$$[F_2 - F_1] = \frac{9}{5} [C_2 - C_1]$$

$$\frac{\Delta F = \frac{9}{5} \Delta C}{\Delta C = \frac{5}{9} \Delta F}$$

Common Reading in celsius and Fahrenheit is -40°

Fahrenheit and Kelvin

$$\frac{F-32}{180} = \frac{K-273}{100}$$

$$\frac{F-32}{9} = \frac{K-273}{5}$$

Common Reading in Fahrenheit and kelvin is 574.25

Note:-

As the no. of divisions in a temperature scale increases "size of the degree" decreases.

The zero value in Kelvin scale is known as "the absolute zero". It is 0 Kelvin or -273.15°C.

In modern temperature scales absolute zero and triple point of water are taken as fixed reference points.

<u>Triple point of water</u> 0.01° C or 273.16 K @ 4.58 mm Hg pressure or at pressure 6.11 × 10^{2} Pa or 6×10^{-3} atm

Thermometers

Devices used for the measurement of temperature

Principle: Linear variation of thermometric property with temperature

Eg: Pressure of a gas

Volume of a liquid

Resistance of metal

Light Intensity

Thermo emf, magnetic properties

Liquid Thermometers

Mercury and alcohol are thermometric liquids advantages of Hg

High conductivity, high boiling point, low specific heat, high visibility, high sensitivity to heat, high angle of contact

Gas Thermometers (Most Sensitive)

Constant Volume Gas Thermometers

 $P\alpha T$ Based on Gaylussac's law

Constant Pressure Gas Thermometers

 $V\alpha T$ Based on Charles law

Resistance Thermometers

Eg: Platinum Resistance Thermometer

Germanium Resistance Thermometer

To find unknown temp

Let α be a thermometric property

 x_0 = thermometric property at 0°C

 x_{100} = thermometric property at 100°C

x, = thermometric property at t°C

then unknown temp

$$t = \frac{x_t - x_0}{x_{100} - x_0} \times 100$$

for pressure

$$t = \frac{P_t - P_0}{P_{100} - P_0} \times 100$$

for resistance

$$t = \frac{R_t - R_0}{R_{100} - R_0} \times 100$$

Thermal Expansion

Expansion of Solids

Three types of Expansion is possible in solids

- 1) Linear Expansion (in length)
- 2) Areal Expansion (in area)
- 3) Volume Expansion (in volume)

	Linear	Areal	Cubical	
	Expansion	Expansion	Expansion	
	$\alpha o \text{linear}$	βo superficial	γo cubical	
	Expansivity	Expansivity	Expansivity	
Co-efficient	$\alpha = \frac{\Delta L}{L \Delta t}$	$\beta = \frac{\Delta A}{A \Delta t}$	$\gamma = \frac{\Delta V}{V \Delta t}$	
Change in value	$\Delta L = L\alpha \Delta t$	$\Delta A = \beta A \Delta t$	$\Delta V = V \gamma \Delta t$	
Fractional change	$\frac{\Delta L}{L} = \alpha \Delta t$	$\frac{\Delta A}{A} = \beta \Delta t$	$\frac{\Delta V}{V} = \gamma \Delta t$	
% change	$\frac{\Delta L}{L} \times 100 = \alpha \Delta t \times 100$	$\frac{\Delta A}{A} \times 100 = \beta \Delta t \times 100$	$\frac{\Delta V}{V} \times 100 = \gamma \Delta t \times 100$	
Final Value	$L' = L[1 + \alpha \Delta t]$	$A' = A [1 + \beta \Delta t]$	$V' = V[1 + \gamma \Delta t]$	

Application of Linear Expansion

Time loss/gain of a pendulum clock

we have time period

$$T\!=\!2\pi\sqrt{\ell\,/\,g}$$

$$T = \frac{2\pi}{\sqrt{g}} \ell^{1/2} T = k \ell^{1/2}$$

Fractional charge

$$\frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta \ell}{\ell}$$

Fractional change in T

$$\frac{\Delta T}{T} = \frac{1}{2} \alpha \ \Delta \theta$$

Change in time period $\frac{\Delta T}{T} = \frac{1}{2} \alpha \Delta \theta \times T$

Time loss/gain in a day T = 1 day = 24 hrs = 86400 s

$$\Delta T = \frac{1}{2} \alpha \ \Delta \theta \times 86400$$

<u>In summer</u> Temperature ↑ length ↑ time period ↑

Time loss clock will become slow

<u>In winter</u> Temperature \downarrow length \downarrow time period \downarrow

Time gain clock will become fast

Thermal Stress

When a metal rod is rigidly fixed at its both ends so that it is prevented from expansion or contraction. On heating stress will be developed due to thermal strain it is called thermal stress

Thermal strain = $\frac{\Delta I}{I} = \alpha \Delta t$

$$Y = \frac{Thermal stress}{Thermal strain}$$

Thermal stress $= Y \times Thermal strain$

 $= Y \alpha \Delta t$

 $Tension \ or force = Thermal \ stress \times Area$

 $= YA \alpha \Delta t$

Note: Thermal stress developed in a rod is depending on the material of rod and rise in temperature and is independent of length of the rod.

Expansion of Liquids

For heating a liquid, it has to be kept in a container. On heating the container will also expand.

Real Expansion of = Apparent Expansion of + Expansion of Liquid the container

$$\begin{aligned} \gamma_{\text{Real}} &= \gamma_{\text{apparent}} \, + \, \gamma_{\text{container}} \\ \gamma_{\text{Real}} &= \gamma_{\text{apparent}} \, + \, 3\alpha_{\text{vessel}} \end{aligned}$$

Anomalous Expansion Water

Volume of given amount of water decreases with increase in temperature from 0 to 4°C. But beyond 4°C water will normally expand. Water has the least volume and maximum density at 4°C

It plays an important role in the survival of aquaticf life in cold winter season in polar regions.

There is expansion of water above and below 4°C

Condition for two metal rods of different length and $\,\alpha\,$ to have same $\,$ difference in length at all temperature

For difference in length independent of temperature $\Delta\ell$ = constant $\Delta\ell_{\rm 1}$ = $\Delta\ell_{\rm 2}$

$$\ell_1 \alpha_1 \Delta t = \ell_2 \alpha_2 \Delta t$$

$$\ell_1 \alpha_1 = \ell_2 \alpha_2$$

$$\ell_1 \alpha_2 = \frac{\alpha_2}{\alpha_2}$$

The correct the reading of a metallic scale

Case 1: When scale is expanding

True reading = Scale reading $(1 + \alpha \Delta t)$

∆t → temp diff (temp at which measurement is taken and temperature at which scale is calibrated

Variation of density with temperature

$$density = \frac{mass}{volume}$$

$$\rho = \frac{m}{v}$$

as temp increases volume increases and density decreases

$$\rho' = \frac{m}{v'}$$

$$\rho' = \frac{m}{V[1 + \gamma \Delta t]} \qquad \qquad \rho' = \frac{\rho}{1 + \gamma \Delta t}$$

$$\rho' = \frac{\rho}{1 + \gamma \Delta t}$$

$$\rho' = \rho (1 - \gamma \Delta t)$$
 expanding binomially

Variation of upthrust with temperature

Apparent weight = Actual weight – Upthrust

At normal temperature

$$Upthrust \quad F_{_{\!B}} = V \rho_{_{\!L}} g$$

When temperature increases by At

Upthrust
$$F_B' = V' \rho_L' g$$

$$\dot{F_{B}} = V \left[1 + \gamma_{s} \Delta t\right] \times \frac{\rho L}{\left[1 + \gamma_{L} \Delta t\right]} g$$

$$F_{B}^{'} = V \rho_{L} g \left[\frac{1 + \gamma_{s} \Delta t}{1 + \gamma_{L} \Delta t} \right]$$

$$F_{\text{B}}^{'} = F_{\text{B}} \left[\frac{1 + \gamma_{\text{s}} \Delta t}{1 + \gamma_{\text{L}} \Delta t} \right]$$

$$\boxed{\frac{F_{B}^{'}}{F_{B}} = \frac{1 + \gamma_{s} \Delta t}{1 + \gamma_{L} \Delta t}}$$

In other way

$$F_{\rm B}' = F_{\rm B} [1 + (\gamma_{\rm s} - \gamma_{\rm L}) \Delta t]$$

Special Cases

- 1. When a metallic disc with an inner hole i heated the diameter of the hole will also increases.
- 2. When a metallic sphere with a cavity is heated size and volume of cavity increases.
- 3. When a broken ring with gap between ends is heated the gap will also increases.

4. For an anisotropic solids (shows different properties in different directions)

$$\gamma = \alpha_{x} + \alpha_{y} + \alpha_{z}$$

Calorimetry

Calorimetry deals with two types of heats

Specific heat and latent heat

Joules mechanical equivalent of heat (J)

Joule found that when mechanical work is converted into heat (Q) the ratio of W and Q is always a constant

$$\frac{W}{Q} = J$$
 or $W = JQ$

J → joules mechanical equivalent of heat (It is a conversion factor)

J = 4.186 Joule/ Calorie

Calorie

It is the amount of heat energy required to rise the temperature of 1 g water by 1°C (14.5°C to 15.5°C)

1 Calorie = 4.2 J

Principle of Calorimetry

Law of mixtures

Heat lost by hot body = heat gained by cod body

[when no heat is lost to the surroundings]

Specific heat capacity (C)

It is the amount of heat energy required to rise the temperature of unit mass (1 g on 1 kg) of any substance by 1° C or 1 K

for a given mass m

heat required is H = m

H is called heat capacity or thermal capacity for a given mass m and Δt rise in temperature

Amount of heat required

Unit of specific heat capacity

$$C = \frac{Q}{m\Delta t} = \frac{Joule}{kg \times K}$$

SI unit :
$$J Kg^{-1}K^{-1}$$

$$C = \frac{Q}{m\Delta t} = \frac{Calorie}{g \times {}^0C}$$

for water C = 4200 J
$$Kg^{-1}K^{-1}$$

for ice C = 2100 J $Kg^{-1}K^{-1}$

$$C = 1 \text{ Calg}^{-1} {}^{0}C^{-1}$$

 $C = 0.5 \text{ Calg}^{-1} {}^{0}C^{-1}$

Latent Heat

It is the amount of heat energy exclusively utilized for phase transition at certain fixed temperatures like melting point or boiling point etc

Latent heat of fusion (L,)

For solid — Liquid Transition @ melting point

Eg : 1 g ice @
$$0^{\circ}$$
C $\xrightarrow{L_f}$ 1 g water @ 0° C

$$L_f$$
 of ice = 80 cal/g

Latent heat of Vapourisation (L_v)

For liquid ——— Gas transition @ boiling point

Eg : 1 g water @
$$100^{\circ}$$
C $\xrightarrow{L_{\vee}}$ 1 g steam @ 100° C

$$L_{v}$$
 of water = 540 Cal/g

For a given mass m
$$Q = mL_v$$

Unit of Latent Heat Capacity

Q = mL S.I. Unit : Joule/kilogram

L = Q/m CGS Unit : Calorie/gram

Water Equivalent

It is the amount of water which has got the same heat capacity as that of a given substance

$$H = mC$$
 $mC = m_{\omega}C_{\omega}$

for water

$$H = m_{\omega} C_{\omega}$$
 $m_{\omega} = \frac{mC}{C_{\omega}}$

Water equivalent is numerically equal to heat capacity of the substance in CGS system

Temperature - Time Graph

Graph plotted with time along x axis and temperature along y axis

Phase Change	Increase in temperature			
dQ=mL	dQ=mcdT			
$p = \frac{dQ}{dt} = \frac{mL}{dt}$	$p = \frac{dQ}{dt} = \frac{mcdT}{dt}$			
$L = \left[\frac{P}{m}\right] dt$	$\frac{dT}{dt} = \left[\frac{P}{m}\right] \times \frac{1}{C}$			
L = a constant × dt	$\frac{dT}{dt}$ = a constant $\times \frac{1}{C}$			
Lαdt				
$L \alpha$ time interval	Slope $\alpha \frac{1}{C}$			
L $lpha$ change in x value	Cα 1 Slope			

P-T diagram

A graph between the temperature T and pressure P of the substance is called phase diagram or P-T diagram.

Phase Diagram

Note: for water melting point decreases with increase in pressure

Heating Curve

Regelation

Melting of ice at lower temperature due to increase in pressure and refreezing when pressure is with drawn is regelation

Heat Transfer

Transport of heat energy from one point to another can be done in 3 days

Conduction

Convection

Radiation

Conduction

Particle to particle heat transfer without actual transport of matter.

Its common to solids and mercury

Gravity has no effect in conduction

Metals are good conductors of heat

Heat Current (H)

Rate of flow of heat energy through a conductor

$$H = \frac{Q}{t}$$
 unit: Watt

Thermal Conductivity

The ability of a conductor to allow the passage of heat energy through it

Expression for Thermal conductivity

Consider a metallic rod with length ℓ , uniform cross sectional area A. Its both ends are maintained at two different temperature T_1 and $T_2(T_1 > T_2)$.

<u>Steady State</u> is a condition in which heat current through every cross section of the conduction become a constant. There is no further absorption of heat energy by molecules. Only effective method of heat transfer is conduction is steady state.

At Steady State

Rate of heat flow

$$H = \frac{Q}{t} \alpha$$
 area of cross section

$$\frac{\mathsf{Q}}{\mathsf{t}} \; \alpha \; \, \mathsf{temperature} \; \mathsf{gradient}$$

$$\frac{Q}{t} \; \alpha \; A \; \frac{Q}{t} \; \alpha \; \frac{T_{\scriptscriptstyle 1} - T_{\scriptscriptstyle 2}}{\ell} \label{eq:quantum_problem}$$

Temperature gradient =
$$\frac{\text{Temp diff}}{\text{length}}$$
$$= \frac{T_1 - T_2}{\ell}$$

$$\boxed{\frac{Q}{t} = KA \frac{(T_1 - T_2)}{\ell} \quad \boxed{\frac{Q}{t} = \frac{KA \Delta T}{\ell}}$$

Unit of thermal conductivity

$$H {=} \frac{K\,A\,\Delta T}{\ell}$$

$$K = \frac{H\ell}{A \Delta T} = \frac{Watt \times m}{m^2 \times Kelvin}$$

Unit of $K \rightarrow Watt m^{-1}K^{-1}$

Thermal Resistance (R_T)

It is the ability to oppose the flow of heat energy through a conduction

Heat Current = Temperature difference
Thermal Resistance

$$H = \frac{\Delta T}{R_{\tau}} \tag{1}$$

We have
$$H = \frac{K A \Delta T}{\ell}$$

$$H = \frac{\Delta T}{[\ell / KA]}$$
 (2)

Thermal Resistance $R_T = \ell / KA$

Unit of Thermal Resistance

$$H = \frac{\Delta T}{R_T}$$
; $R_T = \frac{\Delta T}{H} = \frac{Kelvin}{Watt}$

Convection

It is the transfer of heat energy along with actual transport of matter. Gravity plays an important role in natural convection.

Natural Convection

With the help of gravity.

In upward direction only

Eg: Sea breeze

Land breeze

Trade winds

Boiling water

Growth of ice ponds

Forced Convection

With some mechanical support

Possible in all directions

Eg: Human circulatory system

Automobile cooling system

House hold heating system

furnaces

Ice starts forming in a pond at sub zero temperature $-\theta^{\circ}$ C in winter season. To find time taken for growth of ice upto a thickness y, we will consider a small thickness dy

The heat energy released when ice of thickness dy is formed is dQ. Heat energy is transferred to the environment

$$dQ = \frac{KA[0 - \theta]dt}{v}$$

For melting $dQ = mL = \rho \times A \times dy \times L$

$$\frac{KA\theta}{y}dt = \rho A dy L$$

$$dt = \frac{\rho L}{\kappa \theta} y dy$$

for total time taken to grow from o to y

$$t = \int_{0}^{y} \frac{\rho L}{K \theta} y dy$$

$$t = \frac{\rho L}{K \theta} \int_{0}^{y} y \, dy$$

$$t = \frac{\rho L}{K \theta} \left[\frac{y^2}{2} \right]_0^y$$
 $\rho \rightarrow \text{density of ice}$

$$t = \frac{1}{2} \frac{\rho L}{K \theta} y^2$$
 L \rightarrow Latentheat of fusion

 $\theta \rightarrow$ Atmospheric temperature

 $K \rightarrow Thermal conductivity of ice$

y → Thickness of ice

Time taken by ice to grow up to thickness y, 2y and 3y from O is given by

$$\begin{array}{lll} \hline t_1:t_2:t_3=1:4:9 \\ \hline \\ t_1,t_2,t_3 \text{ are time taken by } & 0\rightarrow y & t_1\alpha\,y^2 \\ \hline \\ \text{ice to grow upto y,2y and } & 0\rightarrow 2y & t_2\alpha\,(2y)^2 \\ \hline \\ 3y \, \text{respectively } & 0\rightarrow 3y & t_3\alpha\,(3y)^2 \\ \hline \end{array}$$

$$t_1 \alpha y^2$$

 $t_2 \alpha 4y^2$
 $t_3 \alpha 9y^2$

Time taken by ice ice to grow from o to y y to 2y and 2y to 3y is

$$0 \rightarrow y$$
 $\Delta t_1 = t_1 - 0 = y^2 - 0 = y^2$
 $y \rightarrow 2y$ $\Delta t_2 = t_2 - t_1 = 4y^2 - y^2 = 3y^2$

$$2y \rightarrow 3y$$
 $\Delta t_3 = t_3 - t_2 = 9y^2 - 4y^2 = 5y^2$

$$\Delta t_1$$
: Δt_2 : $\Delta t_3 = 1$: 3:5

Radiation

Radiation is the fastest mode of heat transfer

Properties of heat radiations

It travels in straight lines

It is universal, invisible

All bodies above zero kelvin will emit radiations

It belongs to IR Region

It shows reflection, refraction, interference, diffraction and polarisation

They are em waves with speed 3 × 108 m/s

Let Q be total incident energy, then part of it may absorbed. Some part will be reflected and the rest is transmitted

$$Q = A + R + T$$

Absorptive Power (absorptance) [a]

$$a = \frac{Radiant\,energy\,absorbed}{Total\,incident\,\,energy}$$

$$a = \frac{A}{Q}$$
 Nounits and dimensions

for a perfect black body a = 1 for a non black body a < 1

Emissive Power [E]

Radiant energy emitted per unit area per unit time

$$E = \frac{Q}{At} = \frac{Energy}{area \times time} E = \frac{Power}{area}$$
 unit: Watt / m²

Emissive power × area = Power

Spectral Emissive Power (E_{λ})

Emissive power per unit

Wave length range at wavelength λ

$$E = \int_{0}^{\alpha} E_{\lambda} d\lambda$$
; $\frac{dE}{d\lambda} = E\lambda$

area of $E\lambda - \lambda$ graph = Emissive Power

Kirchoff's Law

for a given wavelength and temperature

$$\frac{\mathsf{E}}{\mathsf{a}} = \mathsf{Constant}$$

 $E\alpha a$

∴ A good absorber is a good emitterA bad absorber is a bad emitter

Emissivity / Relative Emittance (e)

 $e = \frac{\text{Emissive power of a body}}{\text{Emissive power of black body}}$

$$e = \frac{E}{E_B}$$
 $E = e \times E_B$

for a perfect black body e = 1 for a non black body e < 1

Stefan's Law

Emissive power of a blak body

$$E_B \alpha T^4$$
 $T \rightarrow absolute temperature$ $E_B = \sigma T^4$ $\sigma \rightarrow Stefan's constant$ $\sigma = 5.68 \times 10^{-8} \text{ wm}^{-2} \text{k}^{-4}$

Power
$$P = \frac{Q}{t} = \sigma AT^4$$

for a non black body

$$E = e\sigma T^4$$
 $e \rightarrow emissivity$ $P = e\sigma AT^4$

When temperature difference between body and surrounding is very large

Stefan - Boltzmann's Law

for black body $E_B = \sigma(T^4 - T_0^4)$

for non black body $E = e\sigma(T^4 - T_0^4)$

Wiens Displacement Law

"Wavelength corresponding to maximum spectral intensity is inversely proportional to absolute temperature"

$$\lambda_{m} \alpha \frac{1}{T}$$
 $\lambda T = b$ a constant $b = 0.29$ cm K

$$\lambda_1 T_1 = \lambda_2 T_2$$

As wavelength is inversely related to temperature a Blue Star is more hotter than a Red Star

Newton's Law of Cooling

When temperature difference between the surrounding is not very large, rate of cooling is proportional to temperature difference between body and surroundings

$$R\alpha \theta_{Body} - \theta_{Surroundings}$$

$$\begin{array}{ll} \frac{Q}{t} \; \alpha \left[\frac{\theta_1 + \theta_2}{2} \right] - \theta_0 & \theta_1 \to \text{Initial temperature of body} \\ \frac{mcd\theta}{t} \; \alpha \left[\frac{\theta_1 + \theta_2}{2} \right] - \theta_0 & \theta_2 \to \text{Final temperature of body} \\ \frac{mc(\theta_1 - \theta_2)}{t} \; \alpha \left[\frac{\theta_1 + \theta_2}{2} \right] - \theta_0 & \theta_0 \to \text{Surrounding temperature} \\ \frac{mc(\theta_1 - \theta_2)}{t} = \mathsf{K} \left[\frac{\theta_1 + \theta_2}{2} \right] - \theta_0 & t \to \text{time of cooling} \end{array}$$

$$\theta_1 \rightarrow$$
Initial temperature of body

$$\theta_2 \rightarrow$$
 Final temperature of body

$$\theta_0 \rightarrow Surrounding temperature$$

$$t \rightarrow time of cooling$$

To find time of cooling (t)

Newton's law of cooling

$$\frac{dT}{dt} = -k [T - T_0]$$

$$\frac{dT}{T - T_0} = - Kdt$$

$$\int_{T}^{T_2} \frac{dT}{T - T_0} = - K \int dt$$

$$\left[\ell n \left[T - T_0\right]\right]_{T_a}^{T_2} = - Kt$$

$$\ell n[T_2 - T_0] - \ell n[T_1 - T_0] = -Kt$$

$$\ell n \left[\frac{T_2 - T_0}{T_1 - T_0} \right] = -Kt$$

$$t = -\frac{1}{K} \ell n \left[\frac{T_2 - T_0}{T_1 - T_0} \right]$$

Solar Constant

It is the amount of solar radiant energy received by unit area of earth surface in unit time Solar constant

 $S = 1400 \text{ W/m}^2$

Graph of Newton's Law of Cooling

temp along y axis time along x axis

Graph connecting $\log_{\rm e} \left[\theta_2 - \theta_1\right]$ and time taken (t)

We have
$$-\frac{d\theta}{dt} = K[\theta_2 - \theta_1]$$

 $-mc\frac{d\theta}{dt} = K[\theta_2 - \theta_1]$
 $\frac{d\theta}{\theta_2 - \theta_1} = -Kdt$

Integrating

$$\log_{e}[\theta_{2} - \theta_{1}] = -Kt + C$$

y = mx + c

Graph: Straight line

Kinetic Theory of Gases

Postulates

- 1. Molecules in a gas are in a random irregular motion.
- 2. During the motion they collide with each other and also with the walls of the container.
- 3. These collisions are perfectly elastic in nature.
- 4. Size of the molecules is negligible compared to average separation between the molecules.
- 5. Molecules behave like perfect spheres.
- 6. Molecular dynamics is governed by Newton's Laws of motion

Pressure exerted by an ideal gas on the walls of the container is given by

$$P = \frac{1}{3} \rho C_{RMS}^{2}$$

 $\rho \rightarrow$ density of the gas

 $C_{RMS} \rightarrow Root mean square velocity$

Root mean Square Velocity (C_{RMS})

$$C_{\text{RMS}} = \sqrt{\frac{C_{\text{1}}^2 + C_{\text{2}}^2 + C_{\text{3}}^2 + ... + C_{\text{n}}^2}{n}}$$

We have
$$P = \frac{1}{3} \rho C_{RMS}^2$$

$$C_{\text{RMS}}^2 = \frac{3P}{\rho}$$

$$C_{RMS} = \sqrt{3P / \rho}$$

$$C_{\text{RMS}} = \sqrt{\frac{3P}{\text{M / V}}} \qquad \qquad C_{\text{RMS}} = \sqrt{\frac{3PV}{\text{M}}} \qquad \qquad C_{\text{RMS}} = \sqrt{\frac{3RT}{\text{M}}}$$

$$C_{RMS} = \sqrt{\frac{3PV}{M}}$$

$$C_{\text{RMS}} = \sqrt{\frac{3R \, / \, N_{\text{A}}}{M \, / \, N_{\text{A}}}} \qquad \qquad C_{\text{RMS}} = \sqrt{\frac{3 \, KT}{m}}$$

$$C_{RMS} \alpha \sqrt{T}$$

$$R/N_A = K$$
 Boltzmann's constant

$$K = 1.38 \times 10^{-23}$$

$$M/N_A = m$$
, mass of molecule

$$C_{RMS} = \sqrt{\frac{3RT}{M}}$$

Average Speed (C_{avg})

$$C_{avg} = \frac{C_1 + C_2 + C_3 + C_4 + ... + C_n}{n}$$

$$C_{\text{avg}} = \sqrt{\frac{8RT}{\pi M}} \qquad \qquad C_{\text{avg}} \; \alpha \; \; \sqrt{T}$$

$$C_{avg} \alpha \sqrt{T}$$

$$C_{avg} = \sqrt{\frac{8KT}{\pi m}}$$

Most Probable Velocity (Cmp)

Velocity possessed by maximum fraction of molecules

$$C_{mp} = \sqrt{\frac{2RT}{M}}$$

$$C_{mp} = \sqrt{\frac{2KT}{m}} \qquad \qquad C_{mp} \; \alpha \; \sqrt{T}$$

$$\mathsf{C}_{\mathsf{mp}}\,\alpha\,\sqrt{\mathsf{T}}$$

$$C_{\text{RMS}} : C_{\text{avg}} : C_{\text{mp}} = \sqrt{3} : \sqrt{\frac{8}{\pi}} : \sqrt{2}$$

Average Translational KE of an ideal gas

We have
$$P = \frac{1}{3} \rho C_{RMS}^2$$

$$P = \frac{1}{3} \frac{M}{V} C_{RMS}^2$$

$$PV = \frac{1}{3} M C_{RMS}^2$$

$$3PV = \frac{1}{2} \times 2M \ C_{RMS}^2$$

$$\frac{1}{2} \times MC_{RMS}^2 = \frac{3}{2} PV$$

$$KE = \frac{3}{2} PV = \frac{3}{2} RT$$

$$KE = \frac{3}{2} KT$$
 for a molecule

$$KE = \frac{3}{2} KT$$

Mean free path (λ)

It is average distance travelled by molecules between two successive collisions

$$\lambda = \frac{1}{\sqrt{2} \pi d^2 n}$$
$$\lambda = \frac{KT}{\sqrt{2} \pi d^2 P}$$

 $n \rightarrow no. of molecules / volume (no density)$

 $P \rightarrow Pr essure$

 $K \rightarrow Boltzmann's constant$

 $T \rightarrow Temperature$

Collision frequency (f)

$$f = \frac{C_{\text{RMS}}}{\lambda}$$

Specific Heat of Gases

Molar Specific Heat Capacity

It is the amount of heat energy required to rise the temperature of 1 mole of an ideal gas by 1°C. It can be supplied by two ways.

$$\overline{C_P - C_V = R}$$
 Mayers Relation

for n moles and dt rise in temperature

Ratio of Specific Heats (γ)

$$\gamma = \frac{C_{P}}{C_{V}}$$

$$\gamma = 1 + \frac{2}{f}$$

Monoatomic molecule

$$f = 3n - r = 3 \times 1 - 0 = 3$$
 (translational)

$$\gamma = 1 + \frac{2}{f} = 1 + \frac{2}{3} = \frac{5}{3}$$

$$\gamma = 1.67$$

$$C_P - C_V = R$$

dividing by C_v

$$\frac{C_P}{C_V} - \frac{C_V}{C_V} = \frac{R}{C_V}$$

$$\gamma - 1 = \frac{R}{C_{y}}$$

$$\boxed{C_{V} = \frac{R}{\gamma - 1}} \qquad \frac{C_{P}}{C_{V}} = \gamma \qquad \qquad C_{P} = \gamma C_{V}$$

$$\frac{C_P}{C_V} = \gamma$$

$$C_P = \gamma C$$

$$C_P = \frac{\gamma_R}{\gamma - 1}$$

for monoatomic gas

$$C_V = \frac{R}{\frac{5}{3} - 1} = \frac{R}{\frac{2}{3}} = \frac{3}{2} R$$

$$C_P = \gamma \times C_V = \frac{5}{3} \times \frac{3}{2} R = \frac{5}{2} R$$

Diatomic molecule

$$f = 3n - r = 3 \times 2 - 1 = 5$$

3 translational + 2 rotational

$$\gamma = 1 + \frac{2}{f} = 1 + \frac{2}{5} = \frac{7}{5}$$

$$\gamma = 1.4$$

for diatomic gas

$$C_v = \frac{R}{\frac{7}{5} - 1} = \frac{R}{\frac{2}{5}} = \frac{5}{2} R$$

$$C_{P} = \gamma \times C_{V} = \frac{7}{5} \times \frac{5}{2} R = \frac{7}{2} R$$

molecule	n	r	f	γ	C _V	C _P
monoatomic	1	0	3	5/3	3/2 R	5/2 R
diatomic gas	2	1	5	7/5	5/2 R	7/2 R

Law of Equipartition of Energy

An ideal gas divides its total energy equally among all degrees of freedom

KE of amolecule/degree of freedom =
$$\frac{1}{2}$$
 KT

TotalKE of a molecule=
$$f \times \frac{1}{2}KT$$

KE of n molecules =
$$n \times f \times \frac{1}{2}KT$$

KE of 1 mole / degree of freedome =
$$\frac{1}{2}$$
 RT

Total KE of 1 mole =
$$f \times \frac{1}{2}RT$$

Total KE of n moles =
$$n \times f \times \frac{1}{2}RT$$

Specific Heat of Solids

Consider 1 gram mole of a solid containing N_A (Avogadro No.)

Average energy associated with an atom due to its oscillation in one dimension = $2 \times \frac{1}{2}$ KT = KT

in 3 dimensions

$$U=3 \times KT$$

for 1 gram mole of solid

$$U=3KT \times N_A = 3RT$$

According to first law of thermodynamics

$$\Delta Q = \Delta U + \Delta W = \Delta U + P\Delta V$$

for solid ΔV is negligible

$$\Delta Q = \Delta U$$

$$C = \frac{\Delta Q}{\Lambda T} = \frac{\Delta U}{\Lambda T} = \frac{3RT}{T} = 3R$$

$$C = 3R$$
 $C = 3 \times 8.314 = 24.93 \text{ Jmol}^{-1} \text{ K}^{-1}$

Specific Heat Capacity of Water

We treat water like a solid made up of 3 atoms [2 Hydrogen + 1 Oxygen]

Total energy of 1 mole of water

$$U = 3 \times 3 KT \times N_A = 9 RT$$

$$C = \frac{\Delta U}{\Delta T} = \frac{9RT}{T} = 9R \qquad \begin{bmatrix} \because \Delta V = 0 \\ \Delta Q = \Delta U \end{bmatrix}$$

C=9R
$$C=9\times8.314$$
 $C=75.22 \text{ Jmol}^{-1}\text{K}^{-1}$

when n₁ molecules of an ideal gas is mixed with n₂ molecules of another gas

$$\begin{split} & M_{\text{mixture}} = \frac{n_{\text{1}} M_{\text{1}} + n_{\text{2}} \, M_{\text{2}}}{n_{\text{1}} + n_{\text{2}}} \\ & T_{\text{mixture}} = \frac{n_{\text{1}} T_{\text{1}} + n_{\text{2}} \, T_{\text{2}}}{n_{\text{1}} + n_{\text{2}}} \\ & C_{V_{\text{mixture}}} = \frac{n_{\text{1}} C_{V_{\text{1}}} + n_{\text{2}} \, C_{V_{\text{2}}}}{n_{\text{1}} + n_{\text{2}}} \\ & C_{P_{\text{mixture}}} = \frac{n_{\text{1}} C_{P_{\text{1}}} + n_{\text{2}} \, C_{P_{\text{2}}}}{n_{\text{1}} + n_{\text{2}}} \\ & \gamma_{\text{mixture}} = \frac{C_{P_{\text{mixture}}}}{C_{V_{\text{mixture}}}} \end{split}$$

Thermodynamics

Zero'th Law of Thermodynamics

It defined the existence of thermodynamic temperature. It states that "when two systems A and B are separately in thermal equilibrium with a third system C then the systems A and B will also be in thermal equilibrium with each other".

Consider 3 systems A, B and C

Case 1

Now walls are interchanged

Case 2

First Law of Thermodynamics

It is another form of "Law of conservation of Energy" It states that

Heat Energy (dQ)

When heat is added to a system dQ = +ve

When heat is removed from a system dQ = -ve

Internal Energy (du)

Internal energy is a state variable. It is independent of the path.

If initial and final points are same
$$\Delta U = 0$$
 In a cyclic process when a system returns to its initial status $du = 0$

If initial and final points are same / in a cyclic process when a system returns to its initial state du = 0

at constant volume dV = 0 pdV = 0 dW=0

$$du=nC_{v}dT$$

Eg:

Work done (W)

$$dW = pdV \qquad W = \int_{V_1}^{V_2} pdV$$

W = area of P-V diagram In a cyclic process

Work done = area of the cyclic loop = area of ABCDA

On cyclic process

Work done in clockwise direction = +ve

Work done in anticlockwise direction = -ve

Expansion

Volume increases

Work done by the system

$$W = +ve$$

Compression

Volume decreases

Work done on the system

$$W = -ve$$

Thermodynamic Process

Isobaric Process

Constant Pressure

$$V\alpha T = \frac{V}{T} = constant$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

fraction of energy for internal energy change

$$\frac{du}{d\theta} = \frac{nC_V dT}{nC_P dT} = \frac{C_V}{C_P} = \frac{1}{\gamma}$$

fraction of energy for work done

$$\frac{d\omega}{d\theta}=\!1\!-\!\frac{1}{\gamma}$$

$$dQ = nC_p dT$$

$$dU = nC_v dT$$

$$dW = p dV$$

P-V graph

P-T graph

Work done

$$W = P(V_2 - V_1)$$

 $W = nR(T_2 - T_1)$

Isochoric Process

Constant volume

Ρα Τ

$$\frac{P}{T}$$
 = constant

$$\frac{\mathsf{P}_1}{\mathsf{T}_1} = \frac{\mathsf{P}_2}{\mathsf{T}_2}$$

$$dQ = nC_{v}dT$$

$$du = nC_{v}dT$$

$$dw = 0$$

$$dQ\!=\!du$$

$$dV = 0$$

$$PdV = 0$$

Isothermal Process

Constant temperature dT = 0

$$du = nC_V dT$$
 $p\alpha \frac{1}{V}$

∴
$$du=0$$

$$P_1V_1 = P_2V_2$$

$$\frac{P_1}{P_2} = \frac{V_2}{V_1}$$

Slope of isothermal graph

$$du = 0$$

$$PdV + VdP = 0$$

$$dw = nRT \ \ell n \ \frac{V_2}{V_1}$$

$$PdV = -VdP$$

$$W = nRT \ell n \frac{P_1}{P_2}$$

$$\frac{dP}{dV} = -\frac{P}{V}$$

Specific heat capacity $=\alpha$

Slope =
$$-\frac{P}{V}$$

Adiabatic Process

$$dQ = 0$$

$$dQ = 0$$
 $PV^{\gamma} = constant$

$$du = -dw$$

$$du = -dw$$
 $TV^{\gamma} = constant$

$$W = \frac{nR}{\gamma - 1} [T_1 - T_2]$$

$$W = \frac{P_1 V_1 - P_2 V_2}{\gamma - 1}$$

$$dw = -du PV^{1-\gamma}T^{\gamma} = constant$$

Slope of Adiabatic Graph

$$\boxed{\frac{dP}{dV} = \gamma \times -\frac{P}{V}}$$

Specific heat capacity C = 0

Slope of adiabatic = γ× slope of isothermal

To find general equation for adiabatic process

In adiabatic process Q = 0

$$\Delta U = -W$$

$$W = -\Delta U$$

$$W = -n C_V dT$$
 (1)

$$dU = -dw = -PdV$$

$$nC_{V}\Delta T = -pdV \qquad (2)$$

$$d(PV) = d[nRT]$$
 :: $PV = nRT$

$$PdV + VdP = nRdT$$

$$ndT = \frac{PdV + vdP}{R}$$
 (3)

$$C_{V} \frac{[PdV + VdP]}{R} = -PdV$$

$$\frac{[C_{_V}+R]\,dV}{V}+\,C_{_V}\,\frac{dP}{P}=0$$

$$\left\lceil \frac{C_P}{C_V} \right\rceil \frac{dV}{V} + \frac{dP}{P} = 0$$

Integrating

$$\frac{C_{P}}{C_{V}} \ \ell n \ [V] + \ell n [P] = \ell n [C]$$

The ratio
$$\frac{C_P}{C_V} = \gamma$$

$$\ell n V^{\gamma} + \ell n P = a constant$$

$$\ell nPV^{\gamma} = a constant$$

$$PV^{\gamma} = a \text{ constant}$$

Work done in Isothermal process

$$P = \frac{nRT}{V} \qquad P_1V_1 = P_2V_2$$

$$W = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{nRT}{V} dV$$

$$= nRT \int_{V_{c}}^{V_{2}} \frac{dV}{V}$$

$$= nRT[\ell nV]_{V}^{V}$$

 $= nRT \big[\ell n \, V \big]_{V_1}^{V_2} \qquad \qquad PV = a \, constant$

$$= nRT \ell n \frac{V_2}{V_1} \qquad \qquad P_1 V_1 = P_2 V_2$$

$$\frac{V_2}{V_1} = \frac{P_1}{P_2}$$

$$W = 2.303 \text{ nRT log } \frac{V_2}{V_1}$$

W = 2.303 nRT log
$$\frac{P_1}{P_2}$$

Work done in Adiabatic Process

In adiabatic process

$$d\theta = 0$$

$$dW = -dU$$

$$dW = -nC_V dT$$

$$W = -n \frac{R}{\gamma - 1} [T_2 - T_1]$$

$$W = \frac{nR}{\gamma - 1} [T_1 - T_2]$$

$$W = \frac{P_1 V_1 - P_2 V_2}{\gamma - 1}$$

Comparison between Isothermal and Adiabatic

Adiabatic Curves of Different Gases

Heat Engines

Heat Engines are the devices that converts heat energy to mechanical work.

Essential Parts

- 1. Source A high temperature reservoir (T₁ Kelvin)
- 2. Sink A low temperature reservoir (T₁ Kelvin)
- 3. A working substance

Working substance absorbs an amount of heat energy Q_1 from the source and will undergoes a series of charges and will release an amount of heat energy Q_2 to sink.

Useful work is transferred to external environment. Since working substance undergo cyclic process.

$$du = 0$$

dQ=dW

$$W = Q_1 - Q_2$$

Thermal Efficiency (η)

$$\eta = \frac{\text{net work done / cycle}}{\text{heat absorbed from source / cycle}}$$

$$\eta = \frac{W}{Q_1}$$

$$\eta = \frac{Q_1 - Q_2}{Q_1}$$

$$\eta = 1 - \frac{Q_2}{Q_1}$$

Carnot's Heat Engine

It is an ideal heat engine designed by Zadi Carnot. According to Carnot's theorem "no reversible heat engine can claim more efficiency than a reversible Carnot's heat engine" working in the same temperature range.

From Carnot's theorem

$$\boxed{\frac{Q_2}{Q_1} = \frac{T_2}{T_1}}$$

Substitution in (1)

$$\eta = 1 - \frac{T_2}{T_1}$$

For $\eta = 1$ % of $\eta = 100\%$ $T_2 = 0$ Kelvin

It is practically unattainable

The value of α can never be unity

Carnot's Cycle

A Carnot's cycle involves 4 stages

- 1. Isothermal expansion
- 2. Adiabatic expansion
- 3. Isothermal compression
- 4. Adiabatic compression

AB (Isothermal Expanison)

Cylinder is placed on source. Gas expands slowly. Q_1 heat is absorbed. Temperautre is kept constant (T_1)

BC (Adiabatic Expansion)

Cylinder is placed on insulating pad. Gas expands further. No heat is absorbed. Temperature falls to T₂

CD (Isothermal Compression)

Cylinder is placed on the source. Gas is compressed slowly. Q₂ heat is rejected to the sink.

From Carnots we obtaine a result

From Carnots we obtain a result

$$Q_1 = \frac{T_1}{T_2}$$

Efficiency

$$\eta = 1 - \frac{T_2}{T_1}$$

DA (Adiabatic Compression)

Cylinder is again placed on insulating pad. Gas is compressed further. Reaches initial pressure and volume. Temperature of Gas raises to T₁

Refrigerator

It is an ideal heat engine working in reverse order. It is used for cooling

Second Law of Thermodynamics

It states that "It is impossible to design a self acting machine unaided by an external agency to transfer heat energy from a low temperature reservoir to a high temperature reservoir".

In refrigerator working substance absorbs an amount of heat energy Q_2 from sink and will release an energy Q_1 to the source. It is aided by an external work W.

Co-efficient of performance (β)

$$\beta \!=\! \frac{\text{heat removed from sink / cycle}}{\text{Energy spent / cycle}}$$

$$\beta = \frac{Q_2}{W}$$

$$\beta = \frac{Q_2}{Q_1 - Q_2}$$

$$\beta = \frac{T_2}{T_1 - T_2}$$

The value β can be α

Relation between η and β

$$\beta = \frac{1 - \eta}{\eta}$$