Quiz 2

Problem 1. Let R be a ring, I and ideal in R. Prove that factor ring R/I is commutative iff rs - sr is an element of I for all r, s in R.

Proof. Suppose R/I is commutative. Then rs + I = (r+I)(s+I) = (s+I)(r+I) = sr + I for all $r, s \in R$. But these two additive cosets are equal precisely when $rs - sr \in I$. Conversely, suppose that $rs - sr \in I$ for all $r, s \in R$. Then 0 + I = rs - sr + I and adding the coset sr + I to both sides gives sr + I = (rs - sr + I) + (sr + I) = rs - sr + sr + I = rs + I. Thus (r+I)(s+I) = (rs+I) = (sr+I) = (s+I)(r+I) for all $r, s \in R$ and R/I is commutative.

Problem 2. Let R be the ring of continuous functions from \mathbb{R} to \mathbb{R} (the reals to the reals). Let A be the set $A = \{f \in R \mid f(0) \text{ is an even integer}\}$. Show A is a subring of R but not an ideal of R.

Proof. Let $f,g \in A$. Then f(0) = 2n and g(0) = 2m for some integers n and m. Thus (f-g)(0) = f(0) - g(0) = 2(n-m) is also an even integer and A is closed under subtraction. Likewise (fg)(0) = f(0)g(0) = 2(2nm) is an even integer and A is closed under multiplication. The zero function shows that A is nonempty and thus A is a subring of B.

Now let h be the constant function 1/2 and f be the constant 2 function so that h(x) = 1/2 and f(x) = 2 for all $x \in \mathbb{R}$. It's clear that h is a member of R, f is a member of A, h(0) = 1/2 and f(0) = 2. But then (hf)(0) = h(0)f(0) = 1. Therefore A is not closed under left multiplication by elements from R and is not an ideal.