Lecture 12: Lgritic Regression

LDA:
$$S_{c}(x) = P(Y=c \mid X=x)$$
 $\propto P(X=x|Y=c)P(Y=c)$
 $N(\mu c, Z)$

The

ogritic Reg.:

 $\delta_{c}(x) = P(Y=c \mid X=x)$

Londal this directly

Binary Lgritic Regression $(K=2)$

We have $Y=0$ or 1

 $\delta_{c}(x) = P(Y=c \mid X=x) = [-P(Y=1 \mid X=x)=1-\delta_{c}(x)]$
 $\delta_{c}(x) = P(Y=1 \mid X=x) = ---=[-\delta_{c}(x)]$
 $\delta_{c}(x) = P(Y=1 \mid X=x) = ---=[-\delta_{c}(x)]$

Call $\rho(x) = \delta_{c}(x) = P(Y=1 \mid X=x)$

(all $\rho(x) = \delta_{c}(x) = P(Y=1 \mid X=x)$

Given
$$X = X$$
, $Y = 0$ or I .

I.e. $Y \mid X = X$ ~ Bern $(p(X))$

Game: model $p(X)$ in a reasonable way.

$$p(X) = \hat{\beta}^{T}X$$
 I.e. linear in X

$$1 + \frac{p(X)}{p(X)} \text{ above}$$

$$1 + \frac{p(X)}{p(X)} = \log \operatorname{istic}(\hat{\beta}^{T}X)$$

$$logit(X) = \log \operatorname{istic}(\hat{\beta}^{T}X)$$

$$logit(X) = \log \operatorname{istic}(X)$$

$$= \log \operatorname{istic}(X)$$

$$p(x) = (gistic(p^Tx))$$

$$= \frac{1}{1 + exp(p^Tx)}$$

$$= \frac{1}{1 + exp(-(p_0+p_0x_1+p_0x_2+-+p_0x_2))}$$

$$= \frac{1}{1 + exp(-(p_0+p_0x_1+p_0x_2+-+p_0x_2))}$$

$$= \frac{1}{1 + exp(-(p_0+p_0x_1+p_0x_2+-+p_0x_2+-+p_0x_2))}$$

$$= \frac{1}{1 + exp(-(p_0+p_0x_1+p_0x_2+-+p_0$$

For
$$k=1,..., k-1$$

$$= \prod_{n=1}^{N} p(x_n)^n (1-p(x_n))^{1-y_n} + p(x_n)^{1-y_n} (1-p(x_n))^{1-y_n} (1-p(x_n)$$

We	similarly estimate BR as the
	MLES.
Back	to Binay Lgristic Regr (12=2)
	$\log i + (\delta_i(\chi)) = \hat{\beta}^T \chi$
	Mear'-
) 	(git(x) classifier.
/2	
(
LDA	7 V. Logistic Regneration
	LDA Logistic Regression
() mo	dels P(XIY) and P(Y) (1) models YIX directly
USIN	(a nomality XI) makes no assurption about X (more general)
	O. tr mace (call
fi	moder for thirty much (2) relatively harder to fit
	(3) both livear
	7010