

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences
Third Year - Semester I Examination – June/July 2018

BIO 3206— EXPERIMENTAL DESIGN AND NONPARAMETRIC METHODS IN STATISTICS

Time: Two (02) hours

Answer ALL questions.

1. a) Write short notes on following

i. Principles of experimental designs

ii. Advantages of factorial experiments

(10 marks)

b) Give names and linear models of three conventional experimental designs.

(10 marks)

2. An experiment was conducted to study the effect of four rations (R1, R2, R3, R4) on weight gain of table fish. Twelve homogenous fish tanks were prepared and each ration was assigned to randomly selected three fish tanks. After the experimental period, weight gain of fish in each tank (in kg) was measured. The results are summarized in the following table.

Ration		Wight (l	kg)
R1	10.6	10.8	11.0
R2	8.1	8.8	8.5
R3	10.3	9.9	10.0
R4	6.0	6.6	6.1

a) Conduct an appropriate statistical test to find out whether the effects of rations on weight gain is different ($\alpha = 0.05$).

Note: Clearly indicate your null hypothesis, alternative hypothesis and conclusions
(20 marks)

b) Conduct a mean comparison using the least significant difference (LSD) test and discuss the results.

(10 marks)

3. Three laboratories were used in a study to find out the effect of two drugs (D1, D2) and two hormones (H1, H2) on antibody development of rats. The researcher is intended to eliminate the laboratory-to-laboratory variation. Hence the experiment was designed to replicate each treatment combination once in each lab (L1, L2, L3). The recorded antibody concentration under each combination is given in the following table.

			Antibody concentr	ation	
	L1	D1H1	D2H2	D1H2	D2H1
tory		25	14	8	9
Laboratory	L2	D2H2	D1H2	D2H1	D1H1
T		11	10	11	24
	L3	D 1H2	D2H1	D1H1	D2H2
		10	10	23	12

Conduct an appropriate statistical test to find out the effect of each factor and their interaction ($\alpha = 0.05$)

Note: Clearly indicate your null hypothesis, alternative hypothesis and conclusions
(30 marks)

4. An experiment was conducted to evaluate the taste of four sausage types (A, B, C, D). All types were given to each of six tasters and asked to indicate their preferences on a 0 to 100 scale. The data was analyzed using Minitab software and output is presented below.

Results for: 5_friedman.MTW

Friedman Test: scores versus type blocked by panelist (taster)

S = 16.00		DF = 3	P = 0.001
		Est	Sum of
type	N	Median	Ranks
A	6	62.59	19.0
В	6	77.22	23.0
C	6	32.97	7.0
D	6	45.59	11.0

Grand median = 54.59

a) Interpret the results using $\alpha = 0.05$. Clearly indicate your null hypothesis, alternative hypothesis and conclusions

(10 marks)

b) Explain the next step of this analysis to find out the most preferred sausage type (10 marks)

----END----

Table 2:

Upper percentage points of the F-distribution

V1, 1	
2	
0	
05	
0	
10	
O Samuelanian	
1	
1000000	
11	
The second liverage of the second	,
- greater	ı
-	
- In	
1	
1 3	ĺ
District	
STREET STREET	

-			_	_	_	-	_	_		_	-	_	_		_		_					_	_	_		-	_	_	_	_	_	_		
120	60	40	30	24	3	28	27	26	25	24	2 0	72	22	21	20	19		17	16	15	14	13	12	=	10	9	00	7	6	S	4	w	2	5/5
3.92	4.00	4.08	4.17	4.10	4 10	4.20	4.21	4.23	4.24	4.20	1.1.0	4 78	4.30	4.32	4.35	4.38	4.41	4,45	4.49	4.54	4,60	4.67	4.75	4.84	4,96	5,12	5,32	5,59	5,99	6,61	7.71	10.13	161.4 18.51	-
3.07	3.15	3.23	3,32	3,33	2 22	3,34	3.35	3,37	3.39	J (44)	2.40	3 47	3.44	3.47	3.49	3,52	3.55	3.59	3.63	3.68	3,74	3.81	3.89	3,98	4,10	4,26	4.46	4,74	5.14	5.79	6,94	9.6	199.5	1-
2.68	2.76	2.84	2.92	2,33	2 02	2.95	2.96	2.98	2.99	501	201	3 03	3.05	3.07	3,10	3.13	3.16	3.20	3.24	3.29	3 34	3.41	3.49	3,59	3.71	3,86	4.07	4,35	4 76	5.41	6,59	9.3	215.7 19.2	0
2.42					2 70	2.71	2,73	2.74	2.76	2.10	7 78	7 80	2.82	2.84	2.87	2 90	2.93	2.96	3.01	3.06	3:11	3.18	3.26	3,36	3.48	3,63	3 84	4.12	4.53	5.19	6.39	9 1	224.6 19.2	4
2.29	2.37	2,45	2,53	2,33	2 44	2.56	2,57	2,59	2.60	707	262	2 64	2 66	2.68	2.71	2.74	2.77	2.81	2.85	2.90	2.96	3.03	3.11	3.20	3.33	3.48	3.69	3.97	4,39	5 05	6.26	9.0	230.2 19.3	
2.17					にてい	2.45	2,46	2.47	2.49	10.7	2 51	2.53	2.55	2,57	2.60	2.63	2,66	2,70	2.74	2.79	2.85	2.92	3.00	3.09	3.22	3,37	3,58	3.87	4,28	4.95	6,16	8.9	234.0 19.3	. 0
2.09					225	2.36	2.37	2,39	2,40	4,44	242	2 44	2.46	2,49	2.51	2.54	2.58	2.61	2 66	2.71	2,76	2,83	2,91	3.01	3 14	3.29	3.50	3.79	4.21	4.88	6.09	8.9	236 8 19 4	,
2.01	2.10	2.18	2.27	2 40	3 3 2 2	2.29	2.31	2 32	2.34	4,00	2 36	2 37	2,40	2.42	2 45	2 48	2.51	2.55	2,59	2.64	2,70	2.77	2.85	2.95	3.07	3.23	3 44	3.73	4.15	4.82	6.04	8 8	238.9 19.4	0
1 96	2.04	2.12	2.21	444	222	2.24	2.25	2.27	2.28	7	230	2.32	2.34	2,37	2.39	2.42	2 46	2.49	2.54	2.59	2.65	2.71	2.80	2.90	3.02	3 18	3,39	3.68	4.10	4.77	6.00	8.8	240.5	,
1.83	1.99	2.08	2,16	2,10	2 18	2,19	2.20	2,22	2.24	1.60	225	2.27	2.30	2.32	2.35	2.38	241	2,45	2.49	2.54	2 60	2.67	2.75	2.85	2,98	3.14	3,35	3,64	4.06	4.74	5.96	00	241.9	
1.83	1.92	2.00	2.09	1	210	2.12	2.13	2.15	2.16	2,10	2 18	2.20	2.23	2.25	2,28	2.31	2.34	2.38	2 42	2.48	2,53	2.60	2.69	2.79	2.91	3 07	3 28	3.57	4 00	4.68	5.91	8.7	243.9 19.4	1.40
1.75 1.67	1.84	1,92	2,01	200	202	2.04	2.06	2.07	2.09	4	211	213	2.15	2.18	2,20	2.23	2.27	2,31	2,35	2,40	2,46	2.53	2,62	2.72	2,85	3 01	3.22	3.51	3,94	4.62	5.86	8.7	245.9	
1.66 1.57	1.75	1.84	1.93		1 04	1.96	1.97	1.99	2.01	1.00	203	2.05	2.07	2.10	2.12	2.16	2.19	2.23	2.28	2.33	2.39	2.46	2.54	2.65	2.77	2.94	3.15	3,44	3.87	4,56	5.80	8.7	248 0 19 4	400
1,60 1,51	1.70	1.79	1.89	1,70	1 90	191	1.93	1.95	1.96	1,00	1 98	2 01	2.03	2.05	2.08	2.11	2.15	2,19	2.24	2,29	2,35	2.42	2,51	2,61	2,74	2.90	3,12	3.41	3,84	4,53	5.77	8.6	249.1 19.5	
1.55 1.46	1.65	1.74	1.84	í, d	1 85	1.87	1.88	1.90	1.92		1 94	1.96	1.98	2.01	2.04	2.07	2,11	2,15	2.19	2,25	2.31	2.38	2,47	. 2.57	2,70	2.86	3.08	3 5 5 5 5 6 5 7 7 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7	3,81	4.50	5.75	8.6	250.1 19.5	1,50
1,50 1.39	1.59	1.69	1.79	1,01	1 81	1.82	1.84	1.85	1.87	1.07	1 89	1.91	1.94	1,96	1.99	2.03	2.06	2.10	2.15	2.20	2.27	2.34	2 43	2.53	2.66	2.83	3.04	3.34	3.77	4.46	5.72	8.6	251.I 19.5	
1.43 1.32	1.53	1.64	1.74		1 75	1.77	1.79	1.80	1.82		1.84	1.86	1.89	1.92	1.95	1.98	2.02	2.06	2.11	2.16	2.22	2,30	2.38	2.49	2.62	2.79	3.01	3,30	3.74	4.43	5,69	8.6	252.2 19.5	Š
1.35 1.22	1.47	1.58	1.68		1 70	1,71	1.73	1.75	1.77		1 79	1.8.1	1.84	1.87	1.90	1.93	1.97	2.01	2.06	2.11	2,18	2.25	2.34	2.45	2.58	2.75	2.97	3.27	3.70	4.40	5.66	8,55	253,25 19,49	1400

Students' distribution

Example: For 15 degrees of freedom, the t value that corresponds to an area of 0.05 in both tails combined is 2.131

Degrees of freedom	Area in Both Tails Combined							
Degrees of freedom	0.10	0.05	0.02	0.01				
1	6.314	12.706	31.821	63.657				
2	2.920	4.303	6.965	9.925				
3	2.353	3.182	4.541	5.841				
4	2.132	2.776	3.747	4.604				
5	2.015	2.571	3.365	4.032				
6	1.943	2.447	3.143	3.707				
7	1.895	2.365	2.998	3.499				
8	1.860	2.306	2.896	3.355				
9	1.833	2.262	2.821	3.250				
10	1.812	2.228	2.764	3.169				
11	1.796	2.201	2.718	3.106				
12	1.782	2.179	2.681	3.055				
13	1.771	2.160	2.650	3.012				
14	1.761	2.145	2.624	2.977				
15	1.753	2.131	2.602	2.947				
16	1.746	2.120	2.583	2.921				
17	1.740	2.110	2.567	2.898				
18	1.734	2.101	2.552	2.878				
19	1.729	2.093	2.539	2.861				
20	1.725	2.086	2.528	2.845				
21	1.721	2.080	2.518	2.831				
22	1.717	2.074	2.508	2.819				
23	1.714	2.069	0.431	2.807				
24	1.711	2.064	2.492	2.797				
25	1.708	2.060	2.485	2.787				
26	1.706	2.056	2.479	2.779				
27	1.703	2.052	2.473	2,771				
28	1.701	2.048	2.467	2.763				
29	1.699	2.045	2.462	2.756				
30	1.697	2.042	2.457	2.750				
40	1.684	2.021	2.423	2.704				
60	1.671	2.000	2.390	2.660				
120	1.658	1.980	2.358	2.617				
normal distribution	1.645	1.960	2.326	2.576				