User Info for LaMEM canonical - please update this document periodically -

Friday 27^{th} February, 2015

Contents

1	Inst	tallation and compilation	2		
	1.1	Installation on Mac	2		
		1.1.1 gcc compilers	2		
		1.1.2 mpich2	2		
		1.1.3 petsc	3		
	1.2	Installation on clusters	4		
	1.3	Get a local copy of LaMEM	5		
	1.4	Compilation of LaMEM	5		
	1.5	Running LaMEM	6		
2	Phy	ysics	6		
3	Input Parameters				
	3.1	General input parameters	7		
	3.2	Variable grid spacing	7		
	3.3	PETSc and solver options	7		
	3.4	Boundary Conditions	7		
	3.5	Pushing BC	7		
	3.6	Output	7		
	3.7	Scaling, characteristic values and units	9		
	3.8	Softening laws	10		
	3.9	Material parameters	10		
4	Mo	del Setup	13		
5	Vis	ualization	13		

1 Installation and compilation

Before you proceed with installation or re-installation remove/comment ALL PATH modifications related to valgrind/mpi/petsc in .bash_profile. Also comment PETSC_DIR, PETSC_ARCH environmental variables.

Important: Current version of LaMEM is compiled with petsc3.5.

All installation instructions can be found in LaMEM/doc/installation/.

1.1 Installation on Mac

1.1.1 gcc compilers

1. Install macports from:

```
http://www.macports.org/install.php
Use Mac OS X Package (.pkg) Installer:
sudo port -v selfupdate
```

2. Install compilers and debugger

```
sudo port install gcc47
sudo port install gdb
```

3. Create links

```
sudo ln -s /opt/local/bin/gcc-mp-4.7 /opt/local/bin/gcc
sudo ln -s /opt/local/bin/gfortran-mp-4.7 /opt/local/bin/gfortran
sudo ln -s /opt/local/bin/g++-mp-4.7 /opt/local/bin/g++
sudo ln -s /opt/local/bin/gdb /opt/local/bin/gdb
```

Your compiler commands will be:

```
gcc - C compilerg++ - C++ compilergfortran - Fortran compilergdb - GNU debugger
```

1.1.2 mpich2

1. Download:

```
curl http://www.mpich.org/static/tarballs/1.4.1p1/mpich2-1.4.1p1.tar.gz -o mpich2-1.4.1p1.tar.gz
```

2. Unpack:

```
tar xvzf mpich2-1.4.1p1.tar.gz cd mpich2-1.4.1p1
```

3. Configure and install

```
./configure \
CC=gcc \
CXX=g++ \
F77=gfortran \
FC=gfortran \
--prefix=/opt/mpich2 \
```

```
--enable-f77 \
--enable-fc \
--enable-cxx \
--enable-threads=runtime \
--enable-g=none \
--enable-fast=02 \
--with-thread-package=pthreads \
--with-pm=hydra

make
sudo make install
```

4. Set path in .bash_profile export PATH=/opt/mpich2/bin:\$PATH

tar xvzf petsc-3.5.0.tar.gz

sudo make install

1.1.3 petsc

Current version of LaMEM is compiled with petsc3.5.

1. Download:

```
\verb|curl|| \texttt{http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-3.5.0.tar.gz| -o | petsc-3.5.0.tar.gz| -o | petsc-3.0.tar.gz| -o | petsc-3.0
```

2. Unpack:

cd petsc-3.5.0

```
(a) Debug version
   ./configure \
   --prefix=/opt/petsc/petsc-3.5.0-int32-deb \
   --download-fblaslapack=1 \
   --with-debugging=1 \
   --COPTFLAGS="-g -00"
   --FOPTFLAGS="-g -00" \
   --CXXOPTFLAGS="-q -00" \
   --with-large-file-io=1 \
   --with-cc=mpicc \
   --with-cxx=mpicxx \
   --with-fc=mpif90 \
   --with-shared-libraries=0 \
   --download-metis=1 \
   --download-parmetis=1 \
   --download-ml=1 \
   --download-hypre=1 \
   --download-scalapack=1 \
   --download-mumps=1 \
   --download-superlu_dist=1 \
   --download-suitesparse=1
   make all
```

(b) Optimized version

```
./configure \
--prefix=/opt/petsc/petsc-3.5.0-int32-opt \
--with-blas-lapack-lib="-Wl,-framework, vecLib" \
--with-debugging=0 \
--COPTFLAGS="-03" \
--FOPTFLAGS="-03" \
--CXXOPTFLAGS="-03" \
--with-large-file-io=1 \
--with-cc=mpicc \
--with-cxx=mpicxx \
--with-fc=mpif90 \
--with-shared-libraries=0 \
--download-metis=1 \
--download-parmetis=1 \
--download-ml=1 \
--download-hypre=1 \
--download-scalapack=1 \
--download-mumps=1 \
--download-superlu_dist=1 \
--download-suitesparse=1
make all
sudo make install
```

3. Set paths in .bash_profile:

```
export PETSC_DEB=/opt/petsc/petsc-3.5.0-int32-deb
export PETSC_OPT=/opt/petsc/petsc-3.5.0-int32-opt
```

Note: No more PETSC_DIR and no more switching between the debug and optimized versions. Makefile is now supporting building both versions simultaneously.

1.2 Installation on clusters

If modules and/or paths to compilers and petsc are not provided, please refer to installation instructions found in LaMEM/doc/installation/.

Currently, just add these modules or paths to .bashrc (Gaia, Sith and Mogon) and logout/login for them to take effect.

Gaia and Sith:

```
Add this to .bashrc:

# PETSC 3.5.0

export PETSC_DEB=/opt/petsc/petsc-3.5.0-int32-deb

export PETSC_OPT=/opt/petsc/petsc-3.5.0-int32-opt
```

Mogon:

```
Add this to .bashrc:
```

```
# MODULES
module load gcc/4.8.2
module load mpi/platform_mpi_ce/9.1.2
module load acml/5.3.0/gfortran/gfortran64_fma4
module load software/petsc/3.5.1/gcc_4.8.2_platformmpi_9.1.2
```

1.3 Get a local copy of LaMEM

To get access to LaMEM repository, you should have an account on Gaia (if it does not work, contact Boris for account info):

```
ssh USERNAME@gaia.geo.uni-mainz.de
```

1. If you want to checkout a new LaMEM repository, use this command:

```
svn co svn+ssh://USERNAME@gaia.geo.uni-mainz.de/local/home/lkausb/svn/LaMEM/trunk ./LaMEM
```

2. If you have a version of LaMEM that you checked out previously already and are using, you don't have to delete that. Instead, go to the ./LaMEM directory and type

```
svn relocate svn+ssh://USERNAME@qaia.qeo.uni-mainz.de/local/home/lkausb/svn/LaMEM/trunk
```

If SVN complains that it doesn't know a 'relocate command', you have an older version of svn and we have to do two steps:

- (a) svn switch --relocate svn+ssh://USERNAME@musashi.ethz.ch/var/svn svn+ssh://USERNAME@gaia.geo.uni-mainz.de/local/home/lkausb/svn
- (b) svn switch svn+ssh://lkausb@gaia.geo.uni-mainz.de/local/home/lkausb/svn/LaMEM/trunk
- 3. If you are using the 'Versions' software, make a right-click on the 'bookmark' of your LaMEM directory, and select "Edit Bookmark". Then, change 'Location' to: svn+ssh://USERNAME@gaia.geo.uni-mainz.de/local/home/lkausb/svn/LaMEM/trunk and change your username and password to the ones on GAIA. After 'save', it should automatically relink it.

You can verify that everything is correct by typing: svn info in the LaMEM directory. It should have as URL:

URL: svn+ssh://username@gaia.geo.uni-mainz.de/local/home/lkausb/svn/LaMEM/trunk

1.4 Compilation of LaMEM

Once the compilers and pets have been installed, you can now compile LaMEM. Go to ./LaMEM/src directory and do the following:

```
debug mode: make mode=deb all or simply make all, mode=deb is the default to build everything in debug mode.
```

```
optimized mode: make mode=opt all to build everything in optimized mode.
```

Note: No more PETSC_DIR and no more switching between the debug and optimized versions with .bash_profile. Makefile is now supporting building both versions simultaneously.

1. SVN

Also it's not necessary to do svn updates explicitly.

make update to update to latest version, and to write a new Version.h file.

2. VIEW ENVIRONMENT

```
make mode=deb print
or
make mode=opt print
to view your environmental variables.
```

2 PHYSICS 6

3. TESTS (not yet in LaMEM canonical)

Running tests, type in the ./LaMEM/tests directory: make mode=deb check to perform tests in debug mode. make mode=opt check or (or simply make check, mode=opt is the default) to perform tests in optimized mode.

Note: Take care that mode=deb is the default for LaMEM, and mode=opt is the default for tests.

1.5 Running LaMEM

The LaMEM executable is located in /LaMEM/bin/deb/ for the debug version and /LaMEM/bin/opt/ for the optimized version. You can run LaMEM by typing (give the path to the right LaMEM executable):

mpiexec -n <no_cpu> LaMEM -ParamFile <input_file> <command_line_options>

2 Physics

3 Input Parameters

Examples of input files can be found in /LaMEM/input_models/PROJECTS_FDSTAG_CANONICAL/. In this sections, all possible input parameters are explained.

3.1 General input parameters

Setting Input Parameters in input file and/or from command line

The general command to run LaMEM is: mpiexec -n <no_cpu> LaMEM -ParamFile <input_file> <extra command line options>

NOTE:

In general, parameters can be specified in the input file or from the command line. The command line options need to have a "-" prefix (i.e. -L 10 -W 100 -H 90).

If multiple definitions of the same parameter, command line options overwrite input file options! Some input parameters are not needed anymore, such as: num_phases.

Table 1 lists all major parameters. Please add new LaMEM parameters or options to this table.

- 3.2 Variable grid spacing
- 3.3 PETSc and solver options
- 3.4 Boundary Conditions
- 3.5 Pushing BC
- 3.6 Output

Variable	Name	Type	Comments
nel_x	# of cells in x-dir	int	Negative number implies corresponding number of mesh segments for variable grid spacing
nel_y	# of cells in y-dir	int	same as for nel_x
nel_z	# of cells in z-dir	int	same as for nel_x
seg_x		scalar array	Array includes: 1. coordinates of the delimiters between the segments (n-1 points); 2. number of cells (n points); 3. bias coefficients (n points). See Variable grid spacing
seg_y		scalar array	same as for seg_x
seg_z		scalar array	same as for seg_x
DimensionalUnits	dimensional indicator	int	0 - non-dimensional, 1 - dimensional; See Scaling
L	length (y-dir)	scalar	domain size in y-dir
W	width (x-dir)	scalar	domain size in x-dir
H	height (z-dir)	scalar	domain size in z-dir
x_left	coord of left corner	scalar	the x-coords: (x_left:nel_x:x_left+W)
y_front	coord of front corner	scalar	the y-coords: (y_front:nel_y:y_front+L)
z_bot	coord of bottom corner	scalar	the z-coords: (z_bottom:nel_z:z_bottom+H)
msetup	model setup	string	See Model Setup
ParticleFilename	name of markers file	string	See (parallel and redundant input)
LoadInitialParticlesDirectory	name of directory	string	directory where the marker files are
NumPartX	# of markers/cell (x-dir)	int	$\min = 2$
NumPartY	# of markers/cell (y-dir)	int	$\min = 2$
NumPartZ	# of markers/cell (z-dir)	int	$\min = 2$
OutputFile	name of output file	string	
save_timesteps	save every # timesteps	int	example: save_timesteps = 10 will save output every 10 time steps
time_end	# of timesteps	int	the simulation will finish after $(0+time_end)$
save_breakpoints	save every # breakpoints	int	needed to restart simulation; example: save_breakpoints = 10 will save breakpoint files every 10 time steps
SaveParticles	save markers indicator	int	1 - save markers to file after every time step
-AddRandomNoiseParticles	flag for random noise	int	if TRUE, will add some random noise to marker distribution
-restart	restart flag	int	0-no restart; 1-restart simulation from the last saved breakpoint. If restart = 1, but no breakpoint files were found, it will start the simulation from beginning.
-SavePartitioning	proc partitioning flag	bool	if TRUE, the domain partitioning between processors will be printed to file. Warning: simulation will be stopped after the file was created.
CFL	Courant criterion	scalar	should be ; 1 (generally taken as 0.5)
dt_max	max. time step	scalar	time step is calculated internally with the CFL, but this is the maximum admisable
DII_ref	initial reference strain rate	scalar	needed for initial guess in non-linear solve
LowerViscosityCutoff	lower viscosity cutoff	scalar	min viscosity allowed in the simulation
UpperViscosityCutoff	upper viscosity cutoff	scalar	max viscosity allowed in the simulation
InitViscosity	initial reference viscosity	scalar	needed for initial guess in non-linear solve
<characteristic values=""></characteristic>	Scaling	struct	See Scaling
<boundaryconditions></boundaryconditions>	Boundary conditions	struct	See Boundary Conditions
<output></output>	Output	struct	See Output
<pushing></pushing>	Pushing BC	struct	See Pushing BC
<softening laws=""></softening>	Softening Laws	struct	See Softening Laws
<material properties=""></material>	Material parameters	struct	See Material Properties
<petscoptions></petscoptions>	Petsc and solver options	struct	See Petsc and Solvers
-use_quasi_harmonic_viscosity	flag	bool	flag to compute quasi-harmonic viscosities

Table 1: Major parameters to be set in input file/command line. Note, if you set them from the command line, every parameter name should have a "-" prefix (i.e. -L 10 -W 100 -H 90)

3.7 Scaling, characteristic values and units

The units in the input file should be consistent with the type of units requested.

To run a **non-dimensional setup** set these parameters in the input file:

```
DimensionalUnits = 0 units = none
```

To run a dimensional setup, set:

```
DimensionalUnits = 1 units = \sin \#  all input parameters are given in SI units
```

OR

```
DimensionalUnits = 1
units = geo # all input parameters are given in geological units
```

If DimensionalUnits = 1, the following parameters (characteristic values) **must** also be specified in input:

```
Characteristic.Length = 1 \# depends on domain size Characteristic.Viscosity = 1 \# Characteristic.Temperature = 1 \# Characteristic.Stress = 1 \#
```

Characteristic values are dependent on model setup (check how they are set in the examples in /LaMEM/input_models/). They are needed to perform the non-dimensionalization (scaling) of the model. For this, all input parameters, characteristic values and material parameters should have consistent units!

Table 2 shows in which units parameters should be given.

Note:

- 1. Degrees for angles are the preferred units, also for units = si.
- 2. Acceleration should be given in units of m/s^2 when dimensional (i.e. $g = 10 \text{ m/s}^2$).
- 3. Markers from file (redundant, parallel) should have consistent units for coordinates and temperature (see Table 2).

	units			
Parameter	none	si	geo	
mass	-	kg	kg	
time	-	\mathbf{s}	Myr	
length	-	\mathbf{m}	km	
temperature	-	K	\mathbf{C}	
force	-	N	N	
angle	-	\deg	\deg	
velocity	-	m/s	cm/yr	
acceleration	-	$\mathrm{m/s^2}$	$\mathrm{m/s^2}$	
stress	-	Pa	MPa	
strain rate	-	1/s	1/s	
heat flux	-	$\mathrm{W/m^2}$	$\mathrm{mW/m^2}$	
dissipation rate	-	$\mathrm{W/m^3}$	$\mathrm{W/m^3}$	
angular velocity	-	\deg/s	\deg/Myr	
density	-	${\rm kg/m^3}$	${\rm kg/m^3}$	
viscosity	-	Pa.s	Pa.s	
	Derive	d units		
gravity strength	= force/mass			
energy	= force*length			
power	= energy/time			
specific heat	= energy/mass/temperature			
conductivity	= power/length/temperature			
heat production	= power/mass			
expansivity	= 1/temperature			
pressure sensitivity	= temperature/stress			

Table 2: Setting dimensional units in input file.

3.8 Softening laws

Every softening law should be defined in the input file in a structure beginning with <SofteningStart> and ending with <SofteningEnd>, and should have a unique phase identifier (softID), a softening ratio (A), a start of softening (APS1) and an end of softening (APS2) such as below.

Each parameter is explained in Table 3. Maximum number of softening laws: 10 (this number can be changes in LaMEM.h - max_num_soft).

```
<SofteningStart>
  softID = 1
  A = 0.5
  APS1 = 1
  APS2 = 3
<SofteningEnd>
```

Parameters to define	Definition	Dimen. values	Comments
softID	soft law id	0 - 9	always set this parameter
A	softening ratio	[0,1]	A = 1 - a/a0, where a - is cohesion(or friction angle) after softening, and a0 is cohesion (or friction angle) before softening and specific for each material
APS1	weakening plastic strain (begin)		
APS2	weakening plastic strain (end)		

Table 3: List of parameters needed to define a softening law.

3.9 Material parameters

Setting Material Parameters in input file

Every material phase should be defined in the input file in a structure beginning with <MaterialStart> and ending with <MaterialEnd>, and should have a unique phase identifier (ID), such as below. The principle of setting material parameters, is that, if you specify it, it will be active; you don't specify it, it's not going to be active. All the material parameters and cases are listed in Table 4. Maximum number of phases: 32 (this number can be changes in LaMEM.h - max_num_phases).

```
<MaterialStart>
ID = 1
...
<MaterialEnd>
```

Examples:

1) Viscous falling block with 2 material phases (non-dimensional)

```
<MaterialStart>
ID = 0
rho0 = 1
eta = 1
<MaterialEnd>
```

```
<MaterialStart>
  ID = 1
  rho0 = 2
  eta = 1e3
<MaterialEnd>
2) Power-law material (non-dimensional)
<MaterialStart>
   ID = 0
  rho0 = 1
  Bn = 0.5
  n = 3
<MaterialEnd>
  OR.
<MaterialStart>
  ID = 0
  rho0 = 1
   eta0 = 1e3
  e0 = 1e-5
  n = 3
<MaterialEnd>
```

3) Defining a visco-elasto-plastic material phase with T-dependence (no strain weakening or radiogenic heat production)

```
<MaterialStart>
  ID
                 = 0
                          # phase id
  rho0
                 = 3000
                          # density [kg/m3]
  # creep
                 = 1e20
                          # ref.
                                   viscosity [Pa.s]
  eta
  eta0
                 = 1e18
                          # ref.
                                   viscosity [Pa.s]
  e0
                 = 1e-15
                          # ref.
                                   strain rate [1/s]
                 = 3
  n
                          # power-law exponent
  Ed
                 = 3e5
                          # activation energy [J/mol]
                 = 5.4e5 # activation energy [J/mol]
  Εn
  # elasticity
  shear
                 = 5e10
                          # elastic shear modulus [Pa]
  # plasticity
  cohesion
                 = 4e6
                          # cohesion [Pa]
  friction
                 = 30
                          # friction angle [deg]
  # temp
                                     of thermal expansion [1/K]
  alpha
                 = 1e-5
                          # coeff.
                          # heat capacity [J/kg/K]
                 = 1.2e3
  ср
  k
                 = 2.5
                          # thermal conductivity [W/m/K]
<MaterialEnd>
```

Errors related to material properties input:

- 1. Phase ID is not specified
- 2. If rho0 is not specified this is an essential parameter

- 3. If no creep law is specified (i.e. Bd, Bn, and Bp are all 0). Make sure you set parameters for at least one creep law!
- 4. Power-law:
 - (a) If specified (eta0, e0) or (Bn), but not n.
 - (b) If specified n, but not all/any (eta0, e0) or (Bn).
- 5. Peierls creep: if Bp is not defined, but any of the others Peierls parameters is.
- 6. Plasticity: if cohesion and friction are not defined together.
- 7. Temperature: if cp and k are not defined together.

5 VISUALIZATION 13

Case	Parameters to define	Definition	Dimen. values	Comments
constant density	rho0	reference density	$0 - 5000 \text{ kg/m}^3$	
linear viscous	eta	reference viscosity	1e-10 - 1e28 Pa.s	either define (eta) or (Bd);
(diffusion creep)	OR (not both)			if both eta and Bd are defined, Bd has priority
	Bd	diff. creep coeff.		Bd = 1/(2*eta)
	Ed	diff. creep activation energy	3.0e5 J/mol	(*T)
	Vd	diff. creep activation volume	${ m cm}^3/{ m mol}$	(*T)
power-law	eta0	ref. viscosity	1e-10 - 1e28 Pa.s	either define (eta0, e0, n) or
(dislocation creep)	e0	ref. strain rate	$1e-15 \text{ s}^{-1}$	(Bn, n); if all are defined, Bn has priority;
	n	power-law exponent	1 - 10	± 0 and n must be defined together
	OR (not both)			
	Bn	disl. creep coeff.		Bn = $(2 * eta0)^{-n} e0^{(1-n)}$
	En	disl. creep activation energy	5.4e5 J/mol	(*T)
	Vn	disl. creep activation volume	${ m cm}^3/{ m mol}$	(*T)
Peierls creep	Вр	pre-exponential con- stant	$\sim 5e11 \text{ s}^{-1}$	
	Ер	disl. creep activation energy	5.4e5 J/mol	(*T)
	Vp	disl. creep activation volume	${\rm cm}^3/{\rm mol}$	(*T)
	taup	scaling stress	\sim 1e 9-1e 10 Pa	more info - Kameyama et al. 1999
	gamma	approx. parameter	0.1	
	q	stress-dep. param.	2	
elasticity	shear	elastic shear modulus	$\sim 500 \text{ kbar}$	if not specified, no elasticity
	bulk	elastic bulk modulus	$\sim 500 \text{ kbar}$	
	Кр	pressure-dep. param		
plasticity	cohesion	cohesion	10 MPa	cohesion and friction must be
(Drucker-Prager)	friction	friction angle	$0 - 45[30^{\circ}]$	defined together; if not specified, no plasticity
	chSoftID	ID for softening law	< numSoft	Strain weakening parameter
	frSoftID	ID for softening law	< numSoft	Strain weakening parameter
temperature (*T)	alpha	coefficient of thermal expansion	10^{-5}K^{-1}	rho=rho0* (1-alpha (T-T0)); where T0 = $[0^{\circ}C, 273.15K]$
	ср	specific heat (capacity at ct. pressure)	$\mathrm{J/kg/K}$	
	k	thermal conductivity	$\mathrm{W/m/K}$	
	A	radiogenic heat production	10^{-8} - 10^{-8} W/m ³	

Table 4: List of material parameters that can be specified for a material phase. **Notes: 1.** (*T) Temperature-dependent constitutive laws are active only when 'energy' equation is coupled. **2.** Activation energy and volume can be specified for every creep law.

4 Model Setup

5 Visualization