Simulating Meth Production Networks

Carl A. B. Pearson¹ Burton H. Singer¹ David A. Bright²

Emerging Pathogens Institute, University of Florida¹
School of Social Sciences, University of New South Wales²

19 FEB 14

Supported by ARO Award #W911NF-11-1-0036Z

A SIMPLE LIST OF POINTS

- ► The Problem With Networks,
- two,
- see

NETWORKS ARE NOT1 THE PHENOMENA

- ▶ The Problem With Networks,
- two,
- see

INSERTING AN R-GENERATED FIGURE

Mosquito Abundance

INSERT ANOTHER PDF

Figure: Bicout et al. J. Med. Entomol. 43(5): 936-946 (2006)

SHOW SOME MATH

$$M(t) = C \sin(\omega t + \theta)$$

USE PREVIOUSLY GENERATING THING AS

SEVERAL EQUATIONS

$$E(t) = \begin{cases} \frac{M_{+}}{\Delta t} & t \in \Delta t \\ 0 & \text{otherwise} \end{cases}$$

$$E(\rho, t) = \begin{cases} \frac{2M_{+}}{\Delta t(2 - \rho)} & t \in \Delta t(1 - \rho) \\ \frac{2M_{+}}{\Delta t(2 - \rho)\rho} \left(1 - \frac{2|t|}{\Delta t}\right) & t \in \rho \Delta t \\ 0 & \text{otherwise} \end{cases}$$

$$(Modified Step)$$

$$E(t) = \frac{2M_{+}}{\Delta t} \sqrt{\frac{2}{\pi}} e^{-\frac{8t^{2}}{\Delta t^{2}}}$$

$$(Approximate \delta)$$

Modified Step (Trapezoid)

Modified Step (Triangle)

Approx. δ

USING COLUMNS EXAMPLE

TEXT LEFT, FIG RIGHT[1]

BIBLIOGRAPHY EXAMPLE (CITE ON PREV SLIDE)

Carl A B Pearson.

Reference title.

In Book Title, pages 1-1000. Springer, 1999.