

GENERAL APTITUDE

Trainer: Sujata Mohite

sujata.mohite@sunbeaminfo.com

- Work (Effort) = Manpower x time.
- If A can do a piece of work in x days then work done by A in one day is equal to 1/x of the entire work.
- If A is twice as good a workman as B then A will take half the time taken by B to do a same piece of work.
- If number of people to do a certain work is increased (or decreased) the time taken to do the same work will decrease (or increase)
- Total work = LCM
- Efficiency = (Total work)/(Total time)
- OR
- Total work = Efficiency x Total time

Q. A, B & C can complete a certain work in 10, 12 & 15 days respectively. If all of them work together in how many days will the work get completed?

Q. A, B & C can complete a certain work in 10, 12 & 15 days respectively. If all of them work together in how many days will the work get completed?

Soln:

We know, Total work = Days x units/day

$$LCM(10,12,15) = 60$$

In one day, A+B+C = 6+5+4 = 15units

So to complete TW = 60 units, days = ?

days = $\frac{60}{15}$ = 4. So 4 days are needed to complete the work.

Q. Two persons A & B can complete a work in 20 & 30 days respectively. If both of them start together but A stops after 10 days then how many days will the work last?

A.7 days

B. 8 days

C. 15 days

D. 10 days

Soln: LCM(20,30) = 60

A after 10 days, $3 \times 10 = 30$ units & B after 10 days = $2 \times 10 = 20$ units

Total units = 60, Remaining units = total - A + B(after 10 days)

Days needed to do 10 units work = $\frac{10}{2}$ = 5 days

So Total Duration = 10 + 5 = 15 days

Ans: C

Q. Two persons A & B can complete a work in 20 days, B & C can complete it in 24 days & C and A can complete it in 40 days. Find in how many days will B complete the work alone?

A.30 days

B. 40 days

C. 50 days

D. 60 days

• **Soln**: LCM(20,24,40) = 120

No of workers

$$2 \times (A+B+C) = 6+5+3 = 14$$
 i.e. $2(A+B+C)$'s 1 day work

$$A + B + C = 14/2 = 7$$

$$B = 7 - (A+C)$$

B alone =
$$7 - 3 = 4$$
 units/day

To find days needed by B =
$$\frac{\text{Total work}}{\text{units/day}} = \frac{120}{4} = 30 \text{ days}$$

So, 30 days are needed by B to complete the work alone.

Ans:A

Q. A & B can do a piece of work in 20 & 16 days respectively. If they work on alternate days each starting with A in how many days was the work completed?

A. 19 days

B. 18 days

C. 16 days

D. 30 days

• **Soln**: LCM(20,16) = 80

- Day 1, A = 4 units

Day2, day 1 work added

- B = 5 + 4 = 9units
- 9 units --- 2 days
- 80 units --- ?
- Days = $\frac{80 \times 2}{9} = \frac{160}{9} = 17.7777 = 17.78$ days
- Ans B

- Efficiency = capacity to do work
- Efficiency and time are inversely proportional
- Efficiency $\propto \frac{1}{T}$
- Efficiency and work are directly proportional
- Efficiency

 ✓ W

Q. A is twice as efficient as B and completes a certain work in 12 days less than B. In how many days will both of them complete the same work?

A. 6 days

B. 8 days

C. 7 days

D. 3 days

Soln:

A E

$$2x - x = 12$$

x = 12

As , Efficiency $\propto \frac{1}{T}$

A = 12 days and $\hat{B} = 2x = 2 \times 12 = 24$ days

• LCM(12,24) = 24

$$A + B = 2 + 1 = 3 \text{ units/day}$$

Days =
$$\frac{\text{TW}}{\text{units/day}} = \frac{24}{3} = 8 \text{ days}$$

Ans B

or

Days ratio is inversely proportional to efficiency ratio.

Eff (Ratio) Days (Ratio) **Days**

$$\frac{A}{2} \qquad \frac{B}{1}$$
1
2
x-12
$$x$$

$$\Rightarrow 2(x-12) = x$$

$$\Rightarrow x = 24 \text{ days}$$

$$\Rightarrow x - 12$$

$$\Rightarrow 24 - 12 = 12 \text{ days}$$

Q. A, B & C can complete a work in 10, 12 & 15 days respectively. All three together completed the work & they are paid Rs 6000. Find the share of C

A. 3000

B. 2400

C. 2000

D. 1600

• **Soln**: LCM(10,12,15) = 60

60(Total Work)

Together,

$$(A+B+C) = 6+5+4 = 15 \text{ units/day}$$

Total paid amount to (A+B+C) = 6000

$$C = \frac{4}{15} \times 6000$$

= Rs. 1600

Ans: D

Q. Two persons A & B can complete a work in 24 & 30 days respectively. If both of them start together .After how many days should B stop working so that A completes the remaining work in 6 days?

A.7 days

B. 8 days

C. 9 days

D. 10 days

Ans D

Q. Two persons A & B can complete a work in 20 days, B & C can complete it in 30 days while C & A can complete it in 24 days. Find in how many days will B complete the work alone?

A.36 days

B. 48 days

C. 56 days

D. 64 days

Q. A is thrice as good a workman as B and can finish a piece of work in 60 days less than B. Find the time to complete the work if both of them work together

A. 20 days B. 22.5 days C. 24.5 days D. 22 days

Q. 2 workers A & B can finish a job in 8 days and 12 days respectively, after the completion of work they were paid Rs.200. Find share of B.

A. Rs. 120 B. Rs. 80 C. Rs. 40 D. Rs. 60

Work & Time(Assignment)

Q. A, B & C can do a piece of work in 12, 20, & 30 days respectively. If A is assisted everyday alternately by B & C in how many days was the work completed?

A. 6 days

B. 8 days C. 7 days

D. 3 days

Work & Time(Assignment)

Q. A can do a piece of work in 10 days, B in 12 days and C in 15 days. They all start work together, but A leaves 2 days later and B leaves 3 days before completion of the work. In how many days was the work completed?

A.7 days

B. 5 days

C. 8 days

D. 10 days

Ans: A

Work & Time(Assignment)

Q. Apurva can do a job in 12 days. She and Amit completed the work together and were paid Rs.54 and Rs.81 respectively. How many days are needed to complete the job together?

A. 4.8 days

B.4.2 days

C. 4 days

D. 3.6 days

Ans: A

- A cistern may have inlet pipe or outlet pipe.
- Conventionally filling a tank is treated as positive work and emptying a tank as negative work.
- Net work done = (Sum of work done by inlets) (sum of work done by outlets)

Q. Two pipes A and B can fill a tank in 36 hours and 45 hours. If both pipes are opened simultaneously. How much time will it take to fill the tank?

Soln:

As both are opened, together, A+B=4+5=9 units/hr For tank to fill = $\frac{180}{9}$ = 20 hours.

Q. Two pipes can fill the reservoir in 10 hours and 12 hours respectively. While third pipe empties full tank in 20 hours. If all the three pipes operate simultaneously, how much time will the tank be filled?

Soln:

• LCM(10,12,20) = 60

60(Total Work)

units/hr 6 5 3
hrs 10 12 20
(A) (B) (C)
(+) (+) (-)

$$A+B = 6 + 5 = 11$$

As, C empties the tank so, 11 -3 =8 units/hr

Quantity filled in 1 hour if all the pipes are opened together

Time to fill =
$$\frac{\text{TW}}{\text{units/hr}} = \frac{60}{8} = 15/2 \text{ hrs}$$

Q. Two pipes A and B can fill a tank in 24 minutes and 32 minutes respectively. If both the pipes are opened simultaneously, after how much time should B be closed so that the tank is full in 18 minutes

A. 2 min

B. 4 min

C. 6 min

D.8 min

Soln: LCM(24,32) = 96 units/hr
96(Total Work)

hrs
24 32

WD = time x units/hr (B)

Work done by A alone = $18 \times 4 = 72$ units

Remaining work = Total units – work done by A = 96 - 72 = 24units

B should be closed after $=\frac{24}{3} = 8$ mins.

Ans: D

Q. A pump can fill a tank with water in 2 hours. Because of a leak, it took 2 1/3 hours to fill the tank. The leak can drain all the water of the tank in:

A. 4 1/3 hours

B. 7 hours

C. 8 hours D. 14 hours

• Soln:

- Work done = $\frac{XY}{Y-X}$ where, X = number of hrs to fill tank, Y = number of hrs to fill tank with leakage
- $2\frac{1}{3} = \frac{7}{3}$ Work done $=\frac{2 \times \frac{7}{3}}{\frac{7}{3} 2} = \frac{\frac{14}{3}}{\frac{1}{3}} = 14$
- Leak will empty the tank in 14 hours
- Ans: D

Pipes & Cisterns(Assignment)

Q. 12 buckets of water fill a tank when the capacity of each bucket is 13.5 litres. How many buckets will be needed to fill the same tank, if the capacity of each bucket is 9 litres?

A. 8

B. 15

C. 16

D. 18

Ans: D

Capacity of the tank = (12×13.5) litre

= 162 litres

Capacity of each bucket = 9 litres

Number of buckets needed = 162/9

= 18 buckets

Pipes & Cisterns(Assignment)

Q. There are 3 pipes attached to a tank A, B & C. A alone can fill the tank in 60 min, B can fill the tank in 45 min & C can empty the full tank in 30 min. If all three pipes are opened together in how much time will the tank be full?

A. 5 hrs

Ans: C

B. 4 hrs

C. 3 hrs

D. 2 hrs

Pipes & Cisterns(Assignment)

Q. Two pipes A and B can fill a cistern in $37\frac{1}{2}$ minutes and 45 minutes respectively. Both pipes are opened. The cistern will be filled in just half an hour, if B is turned off after:

A. 5 mins

B. 9 mins

C. 10 mins D. 15 mins

Pipes and Cisterns(Assignment)

Q. Two pipes A & B can fill the cistern in 20 min & 25 min respectively. Both are opened together but at the end of 5 min B is turned off. How much total time will the cistern take to fill up?

A. 5 min

B. 10 min

C. 12 min

D. 16 min

Ans: D

Pipes and Cisterns(Assignment)

Q. Two pipes A and B can fill a tank in 36 minutes and 45 minutes respectively. Another pipe C can empty the tank in 30 minutes. First A and B are opened. After 7 minutes, C is also opened. The tank is filled up in

A. 39 minutes

B. 46 minutes

C. 40 minutes

D. 45 minutes

Pipes and Cisterns(Assignment)

Q. Two pipes A and B can fill a tank in 15 minutes and 20 minutes respectively. Both the pipes are opened together but after 4 minutes, pipe A is turned off. What is the total time required to fill the tank?

A. 10 min. 20 sec.

B. 11 min. 45 sec.

C. 12 min. 30 sec.

D. 14 min. 40 sec.

Ans: D

- In earlier problems the rate of doing work of each person or pipe varied.
- In chain rule problems all entities are of the same efficiency or work capacity.
- The entities may be men, women, tractors, engines, pumps, horses, lawn mowers etc.
- Work Done = No. of Men x Days x Hrs/day
- W = MxDxH
- W1 = M1xD1xH1, W2=M2xD2xH2
- $\bullet \underline{\text{W1}} = \underline{\text{M1xD1xH1}}$ $\text{W2} \qquad \qquad \text{M2xD2xH2}$

Q. 18 men working for 5 hours per day can complete a job in 8 days. How many men working for 8 hours a day for 6 days will be required?

A. 24

B. 15

C. 16

D. 17

Men x Days x Hrs/day

= Work Done

Case 1

18 x 8 x 5

= 720 man-hrs

Case 2

M x 6 x 8

M x 6 x 8

M

= 720 man-hrs

 $= 18 \times 8 \times 5$

= 15

Q.36 men working for 12 hours a day can build a wall 45 mt long, 52 mt high & 63 mt broad in 91 days. In how many days will 80 men working for 9 hours a day build a wall 50 mt long, 72 mt high & 30 mt broad?

A. 24 days B. 35 days

Men x Days x Hrs/day

= Work Done (Volume of Wall)

Case 1

36 x 91 x 12

 $= 45 \times 52 \times 63$

Case 2

80 x D x 9

36 x 91 x 12

 $= 50 \times 72 \times 30$

45 x 52 x 63

40 days

Ans C

Q. 20 men or 40 women working for 9 hours a day can finish a work in 80 days. In how many days will 10 men & 10 women working together for 12 hours a day finish the work?

```
A. 60 days B. 70 days C. 80 days D. 90 days
```

```
Men x Days x Hrs/day = Work Done
```

Also 20 Men = 40 Women
$$\rightarrow$$
 1M = 2 W(convert to one unit i.e. women or children)

20 men ---- 40 women

1men -----? (2women)

Case 1

 $40W \times 80 \times 9 = work$

Case 2

$$(20W + 10W) \times D \times 12 = work$$

$$30W \times D \times 12 = 40W \times 80 \times 9$$

D = 80 days

Ans C

Q. 8 men or 12 women or 16 children working for 8 hours a day can finish a work in 52 days. In how many days will 1 man & 1 woman & 1 child working together for 8 hours a day finish the work?

• A. 180 days

B. 192 days

- C. 216 days D. 164 days

Men x Days x Hrs/day

= Work Done

- Also 8 Men = 16 children → 1M = 2 C
- And 12 Women = 16 children \rightarrow 1W = 4/3 C
- Case 1
- 16C x 52 x 8

= work

- Case 2
- (2C +4/3C+C) x D x 8

= work

• (2C +4/3C+C) x D x 8

 $= 16C \times 52 \times 8$

• 13C/3 x D x 8

 $= 16C \times 52 \times 8$

= 192 days

Q. 12 men and 16 boys can do a piece of work in 5 days. 13 men and 24 boys can do it in 4 days. The ratio of the daily work done by a man and a boy is -

A. 2:1

B. 3:1

C. 3:2

D. 5:4

Soln:

$$W = M \times D$$

and

 $W = M \times D$

$$W = (12m + 16b) \times 5$$

= 60m + 80b

 $W = (13m+24b) \times 4$

$$= 52m + 96b$$

As, work done is same, equating both sides, we get,

$$60m + 80b = 52m + 96b$$

$$60m - 52m = 96b - 80b$$

$$8m = 16b$$

$$m = 2b$$

$$m = 2b$$
 $m : b = 2 : 1$

Ans: A

Chain Rule(Assignment)

Q. 12 men & 18 women working together for 9 hours a day finish the work in 150 days. 30 men & 15 women working together for 10 hours a day finish the work in 81 days. In how many days will 12 men & 12 women working together for 12 hours a day finish the work?

A. 115 days B. 120 days C. 130 days D. 135 days

Ans: D

Chain Rule(Assignment)

Q. 24 workers working 8 hours a day can construct a wall in 5 days. In how many days can 45 workers working 4 hours a day construct 3 such walls?

A. 18 days

B. 16 days

C. 4 days

D. 7 days

Q. 24 workers working 5 hours a day can construct a bungalow in 8 days. In how many days can 40 workers working 8 hours a day construct 2 such bungalows?

A. 3 days

B. 6 days

C. 4 days

D. 8 days

Q. 32 painters working 5 hours a day can paint a building in 10 days. In how many days can 40 workers working 6 hours a day paint 3 such buildings?

A. 10 days

B. 16 days

C. 20 days

D. 28 days

Q. 8 men or 12 women can construct a wall in 33 days. In how many days can 10men and 21 women construct the wall.

A. 10 days

B. 11 days

C. 22 days

D. 15 days

Q. 12 men or 18 women can construct a wall in 33 days. In how many days can 20men and 24 women construct the wall.

A. 10 days

B. 11 days

C. 22 days

D. 15 days

Q. 12 men can do a piece of work in 24 days. How many days are needed to complete the work, if 8 men do this work?

A. 28 days

B. 36 days

C. 48 days

D. 52 days

- How likely an event is supposed to happen.
- Probability = $\frac{\text{Favourable outcome}}{\text{Total number of outcomes}}$
- AND → multiply(x) e.g:- 1green and 1 blue ball in a box
- OR → Add (+) e.g:- 1 red or 1 blue ball in a box
- 1 bag has 3 balls, what is the probability of you picking up 2 balls?

$$\cdot 3C_2 = \frac{3x \, 2}{1 \, x \, 2} = 3$$

Total no. of balls the bag contains

Out of which how many balls
We need to choose
(tells number of times 3 has to be reduces)

Probability =
$$\frac{\text{Favourable outcome}}{\text{Total number of outcomes}}$$

Points to Remember

- The **probability** of an event will not be less **than** 0.
- This is because 0 is impossible (sure that something will not happen).
- The **probability** of an event will not be **more than 1**. This is because **1** is certain that something will happen.
- The probability of an event is a number describing the chance that the event will happen.
- An event that is certain to happen has a probability of 1.
- An event that cannot possibly happen has a probability of 0.
- If there is a chance that an event will happen, then its probability is between 0 & 1.

- Atleast min to max
- Eg:- 2 bags out of 3 min max

So various probabilities to be done is 2 and 3

- Atmost max to min
- Eg:- 1 bag has 3 balls out of which probability to pick up 2 balls

atmost 2 \rightarrow max 2, 1, 0 (min)

Q. A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?

A. 10/21

B. 11/21

C. 2/7

D. 5/7

- · Soln-
- Total balls = 2+3+2=7 balls in the bag
- None = blue (neglect whichever color is written after none)
- Draw = 2 balls

• Probability =
$$\frac{\text{Favourable outcome}}{\text{Total number of outcomes}} = \frac{2R \text{ or } (1R \text{ and } 1 \text{ G}) \text{ or } 2G}{7c_2} = \frac{2C_2 + (2C_1 \times 31) + 3C_2}{7c_2} = \frac{10}{21}$$

Q. In a box, there are 8 red, 7 blue and 6 green balls. One ball is picked up randomly. What is the probability that it is neither red nor green?

A. 1/3

B. 3/4

C. 7/19

D. 8/21

E. 9/21

Soln:

- Total balls = 8+7+6 = 21 balls in the box
- Neither red nor green means only blue
- Draw =1 ball

• Probability =
$$\frac{\text{Favourable outcome}}{\text{Total number of outcomes}} = \frac{\text{1blue out of total 7}}{21C_1} = \frac{7C_1}{21C_1} = \frac{7}{21} = \frac{1}{3}$$

Q. What is the probability of getting a sum 5 from two throws of a dice?

A. 1/9

B. 1/8 C. 1/7 D. 1/6

Soln-

Dice =6 faces = 6 possibilities

So in two throws of dice, total possibilities = 6 x 6= 36

Sum =5,so favourable outcomes are - { (1,4), (4,1), (2,3), (3,2) }

Probability =
$$\frac{\text{Favourable outcome}}{\text{Total number of outcomes}} = \frac{4}{36} = \frac{1}{9}$$

Q. Three unbiased coins are tossed. What is the probability of getting utmost two heads?

A. 3/4

B. 1/4

C. 3/8

D. 7/8

· Soln-

• Total possibilities = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH}

Event of getting utmost 2 heads = max 2H or 1H or 0H

• Possibility of getting 2 H = {TTT, TTH,THT, HTT, THH, HTH, HHT}

• Probability = $\frac{\text{Favourable outcome}}{\text{Total number of outcomes}} = \frac{7}{8}$

Ans: D

Q. In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:

A. 21/46

B. 25/117

C. 1/50

D. 3/25

Soln:

- Total students = 15 + 10 = 25 students in a class
- Draw = 3 students

Probability =
$$\frac{\text{Favourable outcome}}{\text{Total number of outcomes}} = \frac{10C_1 \times 15C_2}{25C_3} = \frac{21}{46}$$

- A Standard deck of playing cards consist of 52 cards, among them there are 4 subgroups/suits –
- The four suits with there names, symbols and color –

1. The suit of Hearts

26 red cards

2. The suit of Diamonds

13 cards

3. The suit of Clubs

26 black cards

4. The suit of Spades

- King, Queen and Jack (or Knaves) are face cards. So, there are 12 face cards in the deck of 52 playing cards.
- Jokers are not normally considered to be face cards

- Aces
- There are 4 Aces in every deck, 1 of every suit.

Q. From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?

A. 1/15

B. 25/57

C. 35/256

D. 1/221

- · Soln-
- Total cards in a pack =52
- Total kings in a pack = 4
- Drawn =2

• Probability = $\frac{\text{Favourable outcome}}{\text{Total number of outcomes}} = \frac{4C_2}{52C_2} = \frac{1}{221}$

Ans: D

Q. Two dice are rolled. Find the probability of getting a sum of 8 or 11 on both the dices.

A. 5/36

B. 9/36

C. 7/36

D. 11/36

- Favorable outcomes for sum of 8 or 11 on both the dices are-
- (2,6),(3,5),(4,4),(5,3),(6,2),(5,6),(6,5)
- Number of favorable outcomes = 7
- Probability = $\frac{7}{36}$

A man tossed two dice. What is the probability that the total score is a prime number?

A. 5/12

B. 5/14

C. 5/20

D. 5/24

- · Soln-
- Dice =6 faces = 6 possibilities
- 2 Dice = $6 \times 6 = 36$ possibilities
- Sum = prime number
- So favourable outcomes are { (1,1), (1,2), (1,4), (1,6), (2,1), (2,3), (2,5), (3,2), (3,4), (4,1), (4,3), (5,2), (5,6), (6,5), (6,1) }
- Probability = $\frac{\text{Favourable outcome}}{\text{Total number of outcomes}} = \frac{15}{36} = \frac{5}{12}$

Q. A brother and sister appear for an interview against two vacant posts in an office. The probability of the brother's selection is 1/5 and that of the sister's selection is 1/3. What is the probability that one of them is selected?

A. 1/5

B. 2/5

C. 1/3

D) 2/3

Soln: -

(brother is selected and sister is not selected) OR (brother is not selected and sister is selected)

Probability =
$$\frac{1}{5} \times \frac{2}{3} + \frac{4}{5} \times \frac{1}{3}$$

= $\frac{6}{15}$

sister not selected = 1 – prob. of sister selected = 1- $\frac{1}{3}$ = $\frac{2}{3}$

 $=\frac{2}{5}$

Ans: B

brother not selected = 1 - prob. of brother selected = 1- $\frac{1}{5}$ = $\frac{4}{5}$

Q. Probability of occurrence of event A is 0.5 and that of event B is 0.2. the probability of occurrence of both A and B is 0.1. what is the probability that none of A and B occur?

A. 0.4

B. 0.5

C. 0.2

D. 0.1

Soln:

probability of sure event = 1

- Given P(A) = 0.5 and P(B) = 0.2
- $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) P(A \cap B)$ = 0.5 + 0.2 - 0.1 = 0.6
- And P(neither A nor B) = $P(A' \cap B') = 1 P(A \cup B) = 1 0.6 = 0.4$.

- Note: P(A∪B) = P(A) + P(B) P(A∩B)
- This is also known as the addition theorem of probability.

Q. A bag contains 4 white, 5 red and 6 blue balls. Three balls are drawn at random from the bag. The probability that all of them are red, is?

A. 1/22

B. 3/22

C. 2/91

D. 2/77

Q. What is the probability of getting a sum 9 from two throws of a dice?

A. 1/6

B. 1/8

C. 1/9

D. 1/12

Q. A bag contains 6 black and 8 white balls. One ball is drawn at random. What is the probability that the ball drawn is white?

A. $\frac{3}{4}$

B. 4/7

C. 1/8

D. 3/7

Q. A bag contains 6 blue balls, 3 white balls and 4 green balls. If two balls are drawn at random what is the possibility that they are not of the same color?

A. 6/13

B. 7/13

C. 9/13

D. 10/13

Q. One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a face card (Jack, Queen and King only)?

A. 1/13

B. 1/4

C. 3/13

D. 9/52

Q. One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is not a face card (Jack, Queen and King only)?

A. 5/13

B. 10/13

C. 1/13

D. 1/26

Q. A basket contains 6 apples ,4 pears and 3 oranges. If two fruits are picked up at random, what is the probability that both are pears?

A. 4/13

B. 1/13

C. 2/13

D. 3/26

