

planetmath.org

Math for the people, by the people.

		Ex
Username *	Password *	ne an C
Sign up for an account	Forgot password	Log in

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates

We begin by recognizing the familiar conversion from rectangular to spherical coordinates (http://planetmath.org/node/34491) (note that ϕ is used to denote the azimuthal angle (http://planetmath.org/node/34491), whereas θ is used to denote the polar angle (http://planetmath.org/node/34491))

$$x = r\sin(\theta)\cos(\phi), y = r\sin(\theta)\sin(\phi), z = r\cos(\theta), \tag{1}$$

and conversely (http://planetmath.org/node/39554) from spherical to rectangular coordinates (http://planetmath.org/node/36016)

$$r = \sqrt{x^2 + y^2 + z^2}, \theta = \arccos\left(\frac{z}{r}\right), \phi = \arctan\left(\frac{y}{x}\right).$$
 (2)

Now, we know that the <u>Laplacian (http://planetmath.org/node/33030)</u> in rectangular coordinates is defined 1 in the following <u>way (http://planetmath.org/node/31384)</u>

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$
 (3)

We also know that the <u>partial derivatives (http://planetmath.org/node/30841)</u> in rectangular coordinates can be <u>expanded (http://planetmath.org/node/40380)</u> in the following way by using the <u>chain rule</u> (http://planetmath.org/node/32561)

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial x} + \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x}, \tag{4}$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial y} + \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial y}, \tag{5}$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial r} \frac{\partial r}{\partial z} + \frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial z} + \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial z}.$$
 (6)

The next step is to convert the $\underline{\text{right (http://planetmath.org/node/36456)}}$ -hand $\underline{\text{side}}$

 $\frac{(\text{http://planetmath.org/node/41602)}}{\text{so that it only has partial derivatives in }\frac{\text{terms (http://planetmath.org/node/33376)}}{\text{terms (http://planetmath.org/node/33376)}} \text{ of } r, \theta \text{ and } \phi. \text{ We can do this by substituting the following values (which are easily derived from (2)) in their respective }\frac{\text{places (http://planetmath.org/node/36640)}}{\text{places (http://planetmath.org/node/36640)}} \text{ in the above three equations}$

$$\frac{\partial r}{\partial x} = \sin(\theta)\cos(\phi), \frac{\partial \theta}{\partial x} = \frac{1}{r}\cos(\theta)\cos(\phi), \frac{\partial \phi}{\partial x} = -\frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)},$$

$$\frac{\partial \, r}{\partial \, y} = \sin(\theta) \sin(\phi), \\ \frac{\partial \, \theta}{\partial \, y} = \frac{1}{r} \cos(\theta) \sin(\phi), \\ \frac{\partial \, \phi}{\partial \, y} = \frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)}$$

$$\frac{\partial r}{\partial z} = \cos(\theta), \frac{\partial \theta}{\partial z} = -\frac{1}{r}\sin(\theta), \frac{\partial \phi}{\partial z} = 0. \tag{7}$$

After the substitution (http://planetmath.org/node/41772), equation (4) looks like the following

$$\frac{\partial f}{\partial x} = \sin(\theta)\cos(\phi)\frac{\partial f}{\partial r} + \frac{1}{r}\cos(\theta)\cos(\phi)\frac{\partial f}{\partial \theta} - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)}\frac{\partial f}{\partial \phi}.$$
 (8)

Assuming that f is a sufficiently differentiable function (http://planetmath.org/node/32919), we can replace f by $\frac{\partial f}{\partial x}$ in the above equation and arrive at the following

$$\frac{\partial^2 f}{\partial x^2} = \sin(\theta)\cos(\phi)\frac{\partial}{\partial r}\left[\frac{\partial f}{\partial x}\right] + \frac{1}{r}\cos(\theta)\cos(\phi)\frac{\partial}{\partial \theta}\left[\frac{\partial f}{\partial x}\right] - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)}\frac{\partial}{\partial \phi}\left[\frac{\partial f}{\partial x}\right]. \tag{9}$$

Now the trick is to substitute equation (8) *into* equation (9) in <u>order (http://iplanetmath.org/node/31727)</u> to eliminate any partial derivatives with respect to x. The result is the following equation

$$\frac{\partial^2 f}{\partial x^2} = \sin(\theta)\cos(\phi)\frac{\partial}{\partial r}\left[\sin(\theta)\cos(\phi)\frac{\partial f}{\partial r} + \frac{1}{r}\cos(\theta)\cos(\phi)\frac{\partial f}{\partial \theta} - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)}\frac{\partial f}{\partial \phi}\right] +$$

$$\frac{1}{r}\cos(\theta)\cos(\phi)\frac{\partial}{\partial\theta}\left[\sin(\theta)\cos(\phi)\frac{\partial f}{\partial r} + \frac{1}{r}\cos(\theta)\cos(\phi)\frac{\partial f}{\partial\theta} - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)}\frac{\partial f}{\partial\phi}\right] - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)}\frac{\partial}{\partial\phi}\left[\sin(\theta)\cos(\phi)\frac{\partial f}{\partial r} + \frac{1}{r}\cos(\theta)\cos(\phi)\frac{\partial f}{\partial\theta} - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)}\frac{\partial f}{\partial\phi}\right].$$

In the hopes of simplifying the above equation, we operate the derivates on the operands and ge

$$\frac{\partial^{2} f}{\partial x^{2}} = \sin(\theta)\cos(\phi) \left[\sin(\theta)\cos(\phi) \frac{\partial^{2} f}{\partial r^{2}} - \frac{1}{r^{2}}\cos(\theta)\cos(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r}\cos(\theta)\cos(\phi) \frac{\partial^{2} f}{\partial r \partial \theta} + \frac{1}{r^{2}}\frac{\sin(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \phi} - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \phi \partial r} \right]$$

$$= \sin(\theta)\cos(\phi) \frac{\partial^{2} f}{\partial r \partial \theta} - \frac{1}{r}\sin(\theta)\cos(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r}\cos(\theta)\cos(\phi) \frac{\partial^{2} f}{\partial \theta^{2}} + \frac{1}{r}\frac{\sin(\phi)\cos(\theta)}{\sin^{2}(\theta)} \frac{\partial f}{\partial \phi} - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} \right]$$

$$= \frac{1}{r}\cos(\theta)\sin(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r}\cos(\theta)\cos(\phi) \frac{\partial^{2} f}{\partial \theta \partial \phi} - \frac{1}{r}\frac{\cos(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \phi} - \frac{1}{r}\frac{\sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}} \right]$$

After further simplifying the above equation, we arrive at the following form

$$\frac{\partial^2 f}{\partial x^2} = \left[\sin^2(\theta) \cos^2(\phi) \frac{\partial^2 f}{\partial r^2} - \frac{1}{r^2} \cos(\theta) \sin(\theta) \cos^2(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \cos(\theta) \sin(\theta) \cos^2(\phi) \frac{\partial^2 f}{\partial r \partial \theta} + \frac{1}{r^2} \sin(\phi) \cos(\phi) \frac{\partial f}{\partial \phi} - \frac{1}{r} \sin(\phi) \cos(\phi) \frac{\partial^2 f}{\partial \theta} - \frac{1}{r^2} \sin(\theta) \cos(\phi) \frac{\partial^2 f}{\partial \theta} - \frac{1}{r^2} \sin(\theta) \cos(\theta) \cos^2(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r^2} \cos^2(\theta) \cos^2(\phi) \frac{\partial^2 f}{\partial \theta^2} + \frac{1}{r^2} \frac{\sin(\phi) \cos(\phi) \cos^2(\theta)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} - \frac{1}{r^2} \frac{\cos(\theta) \sin(\phi) \cos(\phi)}{\sin(\theta)} \frac{\partial^2 f}{\partial \theta \partial \phi} \right]$$

$$\frac{1}{r} \sin(\phi) \cos(\phi) \frac{\partial^2 f}{\partial r \partial \phi} + \frac{1}{r^2} \frac{\cos(\theta) \sin^2(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} - \frac{1}{r^2} \frac{\cos(\theta) \cos(\phi) \sin(\phi)}{\sin(\theta)} \frac{\partial^2 f}{\partial \theta \partial \phi} + \frac{1}{r^2} \frac{\sin(\phi) \cos(\phi)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \frac{\sin^2(\phi)}{\sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2} \right]$$

Notice that we have derived the first term of the right-hand side of equation (3) (i.e. $\frac{\partial^2 f}{\partial x^2}$) in terms of spherical coordinates. We now have to do a <u>similar (http://planetmath.org/node/32278)</u> arduous <u>derivation (http://planetmath.org/node/42513)</u> for the rest of the two terms (i.e. $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial z^2}$). Lets do

After we substitute the values of (7) into equation (5) we get

$$\frac{\partial f}{\partial y} = \sin(\theta)\sin(\phi)\frac{\partial f}{\partial r} + \frac{1}{r}\cos(\theta)\sin(\phi)\frac{\partial f}{\partial \theta} + \frac{1}{r}\frac{\cos(\phi)}{\sin(\theta)}\frac{\partial f}{\partial \phi}.$$
 (10)

Again, assuming that f is a sufficiently differentiable function, we can replace f by $\frac{\partial f}{\partial y}$ in the above equation and arrive at the following

$$\frac{\partial^2 f}{\partial y^2} = \sin(\theta)\sin(\phi)\frac{\partial}{\partial r}\left[\frac{\partial f}{\partial y}\right] + \frac{1}{r}\cos(\theta)\sin(\phi)\frac{\partial}{\partial \theta}\left[\frac{\partial f}{\partial y}\right] + \frac{1}{r}\frac{\cos(\phi)}{\sin(\theta)}\frac{\partial}{\partial \phi}\left[\frac{\partial f}{\partial y}\right]. \tag{11}$$

Now we substitute equation (10) into equation (11) in order to eliminate any partial derivatives with respect to y. The result is the following

$$\frac{\partial^{2} f}{\partial y^{2}} = \sin(\theta) \sin(\phi) \frac{\partial}{\partial r} \left[\sin(\theta) \sin(\phi) \frac{\partial f}{\partial r} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \phi} \right] +$$

$$\frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial}{\partial \theta} \left[\sin(\theta) \sin(\phi) \frac{\partial f}{\partial r} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \phi} \right] +$$

$$\frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial}{\partial \phi} \left[\sin(\theta) \sin(\phi) \frac{\partial f}{\partial r} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \phi} \right].$$

Now we operate the operators (http://planetmath.org/node/31982) and ge

$$\frac{\partial^{2} f}{\partial y^{2}} = \sin(\theta) \sin(\phi) \left[\sin(\theta) \sin(\phi) \frac{\partial^{2} f}{\partial r^{2}} - \frac{1}{r^{2}} \cos(\theta) \sin(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial^{2} f}{\partial r \partial \theta} - \frac{1}{r^{2}} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial r \partial \phi} \right]$$

$$\cos(\theta) \sin(\phi) \frac{\partial f}{\partial r} - \frac{1}{r} \sin(\theta) \sin(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial^{2} f}{\partial \theta^{2}} - \frac{1}{r} \frac{\cos(\phi) \cos(\theta)}{\sin^{2}(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial^{2} f}{\partial \theta^{2}} - \frac{1}{r} \frac{\cos(\phi) \cos(\theta)}{\sin^{2}(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial^{2} f}{\partial \theta^{2}} - \frac{1}{r} \frac{\cos(\phi) \cos(\theta)}{\sin^{2}(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial^{2} f}{\partial \theta} + \frac{1}{r} \cos(\theta) \cos(\phi) \frac{\partial^{2} f}{\partial \theta} + \frac{1}{r} \cos(\phi) \frac{\partial^{2} f}{\partial \theta} + \frac{1}{r} \cos(\phi) \frac{\partial^{2} f}{\partial \theta} + \frac$$

$$\frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi}$$

$$\frac{1}{r} \cos(\theta) \cos(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \cos(\theta) \sin(\phi) \frac{\partial^{2} f}{\partial \theta \partial \phi} - \frac{1}{r} \frac{\sin(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r} \frac{\cos(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}$$

and after some simplifications

$$\frac{\partial^2 f}{\partial y^2} = \left[\sin^2(\theta) \sin^2(\phi) \frac{\partial^2 f}{\partial r^2} - \frac{1}{r^2} \sin(\theta) \cos(\theta) \sin^2(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \sin(\theta) \cos(\theta) \sin^2(\phi) \frac{\partial^2 f}{\partial r \partial \theta} - \frac{1}{r^2} \sin(\phi) \cos(\phi) \frac{\partial f}{\partial \phi} + \frac{1}{r} \sin(\phi) \cos(\phi) \frac{\partial f}{\partial r \partial \phi} \right]$$

$$= \frac{1}{r^2} \cos^2(\theta) \sin^2(\phi) \frac{\partial f}{\partial r} - \frac{1}{r^2} \sin(\theta) \cos(\theta) \sin^2(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r^2} \cos^2(\theta) \sin^2(\phi) \frac{\partial^2 f}{\partial \theta^2} - \frac{1}{r^2} \frac{\sin(\phi) \cos(\phi) \cos^2(\theta)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \frac{\cos(\theta) \sin(\phi) \cos(\phi)}{\sin(\theta)} \frac{\partial^2 f}{\partial \theta \partial \phi} \right]$$

$$= \frac{1}{r^2} \frac{\sin(\phi) \cos(\phi) \frac{\partial^2 f}{\partial r \partial \phi} + \frac{1}{r^2} \frac{\cos(\theta) \cos^2(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} + \frac{1}{r^2} \frac{\cos(\theta) \cos(\phi) \sin(\phi)}{\sin(\theta)} \frac{\partial^2 f}{\partial \theta \partial \phi} - \frac{1}{r^2} \frac{\sin(\phi) \cos(\phi)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \frac{\cos^2(\phi)}{\sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2} \right]$$

Now its time to derive $\frac{\partial^2 f}{\partial z^2}$. After our substitution of value in (7) into equation (6) we get

$$\frac{\partial f}{\partial z} = \cos(\theta) \frac{\partial f}{\partial r} - \frac{1}{r} \sin(\theta) \frac{\partial f}{\partial \theta}. \tag{12}$$

Once more, assuming that f is a sufficiently differentiable function, we can replace f by $\frac{\partial f}{\partial z}$ in the above equation which gives $\underline{\text{us (http://planetmath.org/node/42525)}}$ the following

$$\frac{\partial^2 f}{\partial z^2} = \cos(\theta) \frac{\partial}{\partial r} \left[\frac{\partial f}{\partial z} \right] - \frac{1}{r} \sin(\theta) \frac{\partial}{\partial \theta} \left[\frac{\partial f}{\partial z} \right]. \tag{13}$$

Now we substitute equation (12) into equation (13) in order to eliminate any partial derivatives with respect to z and we arrive at

$$\frac{\partial^2 f}{\partial z^2} = \cos(\theta) \frac{\partial}{\partial r} \left[\cos(\theta) \frac{\partial f}{\partial r} - \frac{1}{r} \sin(\theta) \frac{\partial f}{\partial \theta} \right] - \frac{1}{r} \sin(\theta) \frac{\partial}{\partial \theta} \left[\cos(\theta) \frac{\partial f}{\partial r} - \frac{1}{r} \sin(\theta) \frac{\partial f}{\partial \theta} \right].$$

After operating the operators we get

$$\frac{\partial^2 f}{\partial z^2} = \cos(\theta) \left[\cos(\theta) \frac{\partial^2 f}{\partial r^2} + \frac{1}{r^2} \sin(\theta) \frac{\partial f}{\partial \theta} - \frac{1}{r} \sin(\theta) \frac{\partial^2 f}{\partial r \partial \theta} \right] - \frac{1}{r} \sin(\theta) \left[-\sin(\theta) \frac{\partial f}{\partial r} + \cos(\theta) \frac{\partial^2 f}{\partial r \partial \theta} - \frac{1}{r} \cos(\theta) \frac{\partial f}{\partial \theta} - \frac{1}{r} \sin(\theta) \frac{\partial^2 f}{\partial \theta^2} \right]$$

and then simplifying

$$\frac{\partial^{2} f}{\partial z^{2}} = \left[\cos^{2}(\theta) \frac{\partial^{2} f}{\partial r^{2}} + \frac{1}{r^{2}} \cos(\theta) \sin(\theta) \frac{\partial f}{\partial \theta} - \frac{1}{r} \cos(\theta) \sin(\theta) \frac{\partial^{2} f}{\partial r \partial \theta}\right] + \left[\frac{1}{r} \sin^{2}(\theta) \frac{\partial f}{\partial r} - \frac{1}{r} \sin(\theta) \cos(\theta) \frac{\partial^{2} f}{\partial r \partial \theta} + \frac{1}{r^{2}} \sin(\theta) \cos(\theta) \frac{\partial f}{\partial \theta} + \frac{1}{r^{2}} \sin^{2}(\theta) \frac{\partial^{2} f}{\partial \theta^{2}}\right]$$

Now that we have all three terms of the right hand side (http://planetmath.org/node/37330) of equation

(3)(i.e. $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial z^2}$), we add them all together (because of equation (3)) to get the

$$\nabla^{2} f = \left[\sin^{2}(\theta) \cos^{2}(\phi) \frac{\partial^{2} f}{\partial r^{2}} - \frac{1}{r^{2}} \cos(\theta) \sin(\theta) \cos^{2}(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r} \cos(\theta) \sin(\theta) \cos^{2}(\phi) \frac{\partial^{2} f}{\partial r \partial \theta} + \frac{1}{r^{2}} \sin(\phi) \cos(\phi) \frac{\partial f}{\partial \phi} - \frac{1}{r} \sin(\phi) \cos(\phi) \frac{\partial^{2} f}{\partial \phi \partial r} \right]$$

$$\frac{1}{r} \sin(\theta) \cos(\theta) \cos^{2}(\phi) \frac{\partial^{2} f}{\partial r \partial \theta} - \frac{1}{r^{2}} \sin(\theta) \cos(\theta) \cos^{2}(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r^{2}} \cos^{2}(\theta) \cos^{2}(\phi) \frac{\partial^{2} f}{\partial \theta^{2}} + \frac{1}{r^{2}} \frac{\sin(\phi) \cos(\phi) \cos^{2}(\theta)}{\sin^{2}(\theta)} \frac{\partial f}{\partial \phi} - \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi) \cos(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} \right]$$

$$\frac{1}{r} \sin(\phi) \cos(\phi) \frac{\partial^{2} f}{\partial r \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin^{2}(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} - \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin^{2}(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} - \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin^{2}(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} - \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin^{2}(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} - \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin^{2}(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} - \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi) \cos(\phi)}{\sin(\phi)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \sin(\phi)}{\sin(\theta)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi)}{\sin(\phi)} \frac{\partial^{2} f}{\partial \theta \partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi)}{\sin(\phi)} \frac{\partial^{2} f}{\partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta) \cos(\phi)}{\sin(\phi)} \frac{\partial^{2} f}{\partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta)}{\sin(\phi)} \frac{\partial^{2} f}{\partial \phi} + \frac{1}{r^{2}} \frac{\cos(\theta)}{\sin(\phi)} \frac{\partial^{2} f}{\partial \phi} + \frac{1}{r^{2}} \frac{\partial^{$$

$$\frac{1}{r^2} \frac{\sin(\phi)\cos(\phi)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \frac{\sin^2(\phi)}{\sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2} \bigg]$$

$$\frac{1}{r^2} \sin(\theta)\cos(\theta)\sin^2(\phi) \frac{\partial f}{\partial \theta} + \frac{1}{r}\sin(\theta)\cos(\theta)\sin^2(\phi) \frac{\partial^2 f}{\partial r \partial \theta} - \frac{1}{r^2}\sin(\phi)\cos(\phi) \frac{\partial f}{\partial \phi} + \frac{1}{r}\sin(\phi)\cos(\phi) \frac{\partial^2 f}{\partial \theta} - \frac{1}{r^2}\sin(\phi)\cos(\phi) \frac{\partial f}{\partial \phi} + \frac{1}{r^2}\sin(\phi)\cos(\phi) \frac{\partial^2 f}{\partial \theta} - \frac{1}{r^2}\sin(\phi)\cos(\phi)\cos(\phi) \frac{\partial f}{\partial \phi} + \frac{1}{r^2}\sin(\phi)\cos(\phi)\sin^2(\phi) \frac{\partial f}{\partial \theta} - \frac{1}{r^2} \frac{\sin(\phi)\cos(\phi)\cos^2(\theta)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \frac{\cos(\theta)\sin(\phi)\cos(\phi)}{\sin(\theta)} \frac{\partial^2 f}{\partial \theta \partial \phi} - \frac{1}{r^2} \frac{\sin(\phi)\cos(\phi)\cos(\phi)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \frac{\cos(\phi)\cos^2(\phi)}{\sin(\theta)} \frac{\partial f}{\partial \theta} + \frac{1}{r^2} \frac{\cos(\phi)\cos(\phi)\sin(\phi)}{\sin(\theta)} \frac{\partial^2 f}{\partial \theta \partial \phi} - \frac{1}{r^2} \frac{\sin(\phi)\cos(\phi)}{\sin^2(\theta)} \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \frac{\cos^2(\phi)}{\sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2} - \frac{1}{r^2} \sin(\theta)\cos(\phi) \frac{\partial f}{\partial \phi} + \frac{1}{r^2} \sin^2(\theta) \frac{\partial^2 f}{\partial \phi^2} - \frac{1}{r^2} \sin^2(\theta) \frac{\partial^2 f}{\partial \phi} - \frac{1}{r^2} \sin^2(\theta) \frac{\partial^2 f}{\partial \phi^2} - \frac{1}{r^2} \sin^2(\theta) \frac{\partial^2 f}{\partial \phi^2} - \frac{1}{r^2} \sin^2(\theta) \frac{\partial^2 f}{\partial \phi} - \frac{1}{r^2} \sin^2(\theta) \frac{\partial^2 f}{\partial \phi}$$

It may be hard to believe but the truth is that the above expression (http://planetmath.org/node/40307)

after some miraculous simplifications of course, reduces to the following succinct form and we

finally arrive at the Laplacian in spherical coordinates!

$$\nabla^2 f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{1}{r^2} \frac{1}{\sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2} + \frac{2}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\cos(\theta)}{\sin(\theta)} \frac{\partial f}{\partial \theta}. \tag{14}$$

We can write the Laplacian in an even (http://planetmath.org/node/34703) more compact

(http://planetmath.org/node/30503) form as²

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial f}{\partial r} \right] + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left[\sin(\theta) \frac{\partial f}{\partial \theta} \right] + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2}. \tag{15}$$

Keywords:

laplacian, spherical, coordinates, partial derivatives

Type of Math Object:

Topic

Major Section:

Reference

Mathematics Subject Classification

53A45 no label found

Add a correction (/node/add/correction/39376)
Attach a problem (/problems/39376/attach)
Ask a question (/node/ask/question/39376)

(http://planetmath.org/crss/node/39376)