Homework

陈淇奥 21210160025

2021年11月29日

Exercise 1 (3.2.13). 如果 F 是由 G 生成的滤,则 F 是包含 G 的最小的滤,即 $G \subseteq F$ 并且如果 $F' \supseteq G$ 也是滤,则 $F \subseteq F'$

证明. 对任意 $x \in F$,存在 $g \in G$ 使得 $g \le b$ 。因为 F' 是包含 G 的滤, $g \in F'$,于是对于任意 $g \le b$ 都有 $b \in F'$,因此 $x \in F'$

Exercise 2 (3.2.16). 假设 $G \subseteq B$ 为非空子集,F 是由 G 生成的滤,则以下命 题等价

- 1. G 是单点集
- 2. F 是超滤
- 3. F 是主超滤

证明. 若 G 有有限交性质,F 是由 G 生成的主滤(书上这里写了主滤),则以下命题等价

- 1. G包含原子的单点集
- 2. F 是超滤
- 3. F 是主超滤

 $1 \to 2$ 。因为 G 有有限交性质,G 只包含一个原子 a,因为对任意 $b \in B$,或者 $a \le b$ 或者 $a \le -b$,因此 G 是超滤。

 $3 \rightarrow 2$ 。显然。

 $3 \to 1$ 。若 F 是主超滤,假设它由 $\{a\}$ 生成,则对于任意 $b \in B$, $a \le b$ 或者 $a \le -b$ 。因此 a 是原子且 $a \in G$ 。

$$2 \rightarrow 3$$
。显然。

Exercise 3 (3.2.18). 如果 $a \neq b$,则存在超滤 U, $a \in U$ 但 $b \notin U$

证明. 如果 a < b,则任何包含 a 的滤都包含 b

Exercise 4 (3.2.19). 令 F 是 \mathcal{B} 上的滤,令 ($\{0,1\},+,\cdot,-,0,1$) 为两个元素的 布尔代数。定义 $f: B \to \{0,1\}$ 为

$$f(b) = \begin{cases} 1 & b \in F \\ 0 & b \notin F \end{cases}$$

证明: F 是超滤当且仅当 f 是布尔代数 \mathcal{B} 到 $\{0,1\}$ 的同态映射

证明. 若 F 是超滤,则 f(0) = 0 且 f(1) = 1。因为 $a \cdot b \in F$ 当且仅当 $a \in F \land b \in F$,因此 $f(a \cdot b) = f(a) \cdot f(b)$ 。而 $a + b \in F$ 当且仅当 $a \in F \lor b \in F$,因此 f(a + b) = f(a) + f(b)。因此 f 是同态映射

若 f 是同态映射,于是有 $a \cdot b \in F \Leftrightarrow a \in F \land b \in F$ 且 $a + b \in F \Leftrightarrow a \in F \lor b \in F$ 。若 $a, -a \notin F$,则 $a + (-a) = 1 \notin F$,矛盾。因此 F 是超滤。 \Box *Exercise* 5 (3.2.33). 令 X 为任意集合。

- 1. 如果 X 是可数集合,则 $\mathcal{P}(X)$ 上的所有 \aleph_1 -完全滤都是主滤
- 2. 如果 X 不可数,则 $\{G \subset X \mid |G| \leq \aleph_0\}$ 是 $X \perp \aleph_1$ -完全的理想
- 3. 如果 $\kappa > \aleph_1$ 正则,而 $|X| \ge \kappa$,则 $I = \{G \subset S \mid |G| < \kappa\}$ 是 κ -完全的 理想

证明. 1.

2. 令 $I = \{G \subset X \mid |G| \leq \aleph_0\}$,因为可数集合的可数并依然可数,因此 $I \in \aleph_1$ -完全的。下证 I 是理想。首先 $\emptyset \in I$,对于任意 $X, Y \in I$, $|X \cap Y| \leq |X| \leq \aleph_0$,因此 $X \cap Y \in I$ 。若 $X \in I$ 且 $Y \subset X$,则 $Y \in I$

3. 对 I 的任意子集 I' 且 $|I'|=\gamma<\kappa$,有一个枚举 $I'=\{I_\alpha\mid\alpha<\gamma\}$,定义 Y_α 为

$$\begin{split} Y_0 &= \{I_0\} \\ Y_\alpha &= Y_\beta \cup \{I_\alpha\} \qquad \alpha = \beta + 1 \\ Y_\gamma &= \bigcup_{\alpha < \gamma} Y_\alpha \qquad \alpha 是极限序数 \end{split}$$

于是有

$$Y_0\subseteq Y_1\subseteq Y_2\subseteq\cdots$$

且对于任意 $\alpha<\gamma$, $|Y_{\alpha}|<\gamma$ 。因为 $I'=\bigcup_{\alpha<\gamma}Y_{\alpha}$,又因为 κ 正则,于 是 $|I'|<\kappa$,因此 $\bigcap I'\in I$,I 是 κ -完全的理想