Universidad Simón Bolívar
Departamento de Matemáticas
Puras y Aplicadas
Abril - Agosto 2002

Nombre:	
Carnet:	Sección:

MA-1116—Segundo Parcial —

- 1. En P_3 decida si los vectores: t, 1-t y $2t^2+t-6$ son linealmente independientes. (5 pts.)
- 2. Sea $H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in R^3 : 2x y + 3z = 0 \right\}$ (8 puntos.)
 - a) Demuestre que H es un subespacio de R^3 .
 - b) Halle una base para H.
 - c) Halle dim H
 - d) Complete la base de H hasta obtener una base de R^3 .
- 3. Dada la matriz (7 puntos)

$$A = \left(\begin{array}{rrr} 1 & -1 & 2 \\ 3 & -6 & 3 \\ 1 & -2 & 1 \end{array}\right)$$

a) Halle una base para el subespacio N_A de R^3 , donde:

$$N_A = \left\{ \vec{x} \in R^3 : A\vec{x} = \vec{0} \right\}$$

- b) Halle $v(A) = \dim N_A$.
- 4. Halle la distancia del origen a la recta de intersección de los planos de ecuaciones: $\pi_1: 2x-y+z=3; \ \pi_2: x+y+z=3$ (8 puntos)
- 5. Demuestre que si los vectores $\vec{v_1}$ y $\vec{v_2}$ de R^n son ortogonales y no nulos, entonces el conjunto $\{\vec{v_1}, \vec{v_2}\}$ es linealmente independiente. (7 puntos.)