

Software Engineering im Wintersemester 2021/2022

Prof. Dr. Martin Leucker, Malte Schmitz, Stefan Benox, Julian Schulz, Benedikt Stepanek, Friederike Weilbeer, Tom Wetterich

Übungszettel 4 (Lösungsvorschlag)

22.11.2021

Abgabe bis Donnerstag, 18. November um 23:59 Uhr online im Moodle.

Aufgabe 4.1: Sequenzdiagramm

4 Punkte, mittel

Gegeben ist folgendes Java-Programm zur Berechnung der Fibonacci-Zahlen mit Memoization, d.h. bereits errechnete Teilergebnisse werden zwischengespeichert. Zeichnen Sie ein Squenzdiagramm für den Aufruf der Methode main in der Klasse Fibonacci, dass folgende Objekte zeigt:

- Die statische Klasse Fibonacci.
- die Instanz calc von FibCalc und
- die Instanz mem von FibMem.

```
public class Fibonacci {
    public static void main(String[] args) {
        FibMem mem = new FibMem();
        FibCalc calc = new FibCalc(mem);
        calc.fib(3);
    }
}

public class FibCalc {
    private final FibMem mem;

    public FibCalc(FibMem mem) {
        this.mem = mem;
    }

    public int fib(int n) {
```

```
int v = mem.get(n);
        if (v < 0) {
            v = fib(n - 1) + fib(n - 2);
            mem.put(n, v);
        }
       return v;
    }
}
import java.util.HashMap;
import java.util.Map;
public class FibMem {
   private Map<Integer, Integer> map =
            new HashMap<>(Map.of(0, 0, 1, 1));
   public int get(int key) {
        return map.getOrDefault(key, -1);
   public void put(int key, int value) {
        map.put(key, value);
    }
}
```

▼ Lösungsvorschlag

Aufgabe 4.2: LTL über linearen Läufen

4 Punkte, mittel

Geben Sie für die folgenden Eigenschaften LTL-Formeln an, sodass geanu die Läufe, die die jeweilige Eigenschaft erfüllen auch Modell der zugehörigen Formel sind. Hierbei gilt für die Menge der Propositionen $\mathbf{AP}=\{a,b,c\}$ und für das Alphabet $\Sigma=2^{\mathbf{AP}}$.

1. An der vierten Position gilt *a*.

▼ Lösungsvorschlag

Die vierte Position im Wort kann durch dreifache Anwendung des Next-Operators beschrieben werden:

$$\mathcal{X}\mathcal{X}\mathcal{X}a$$

2. Nach der zweiten Position gilt a nie.

▼ Lösungsvorschlag

Die Proposition a gilt nie kann durch $\mathcal{G} \neg a$ ausgedrückt werden. Durch vorangestellte Next-Operatoren wird diese Eigenschaft erst ab der dritten Position eingefordert:

$$\mathcal{XXG}
eg a$$

3. Es muss so lange $oldsymbol{b}$ gelten, bis $oldsymbol{a}$ und $oldsymbol{b}$ gleichzeitig gelten.

▼ Lösungsvorschlag

Diese Eigenschaft entspricht genau dem Release-Operator:

$$a \mathcal{R} b$$

4. Das Wort ist in der Sprache Σ^{ω} .

▼ Lösungsvorschlag

Die Sprache Σ^{ω} enthält alle unendlichen Worte über dem Alphabet Σ , sodass die gesuchte LTL-Formel keine Worte ausschließt:

true

5. Im ersten Schritt muss $oldsymbol{a}$ gelten und es muss irgendwann $oldsymbol{b}$ gelten.

▼ Lösungsvorschlag

Aussagenlogische Formeln ohne Temporal-Operatoren beziehen sich jeweils nur auf die erste Position im Wort. Entsprechend prüft die Formel \boldsymbol{a} , ob in der ersten Position im Wort \boldsymbol{a} gilt. Der zweite Teil der Eigenschaft entspricht genau dem Finally-Operator. Die Konjunktion beider Eigenschaften kann direkt ausgedrückt werden:

$$a \wedge \mathcal{F} b$$

6. Das Wort ist in der Sprache **Ø**.

▼ Lösungsvorschlag

Die Sprache Ø ist leer. Wir suchen also eine kontradiktorische LTL-Formel, also eine, die für kein Wort erfüllt ist:

false

7. Immer wenn $oldsymbol{a}$ gilt muss ab dem nächsten Schritt so lange $oldsymbol{b}$ gelten bis $oldsymbol{c}$ gilt.

▼ Lösungsvorschlag

Es soll in jedem Schritt überprüft werden, ob a eine weitere Eigenschaft φ impliziert. Dies kann durch die Formel $\mathcal{G}(a \to \varphi)$ erfolgen. Nun soll nicht im gleichen Schritt, sondern im nächsten Schritt erfüllt sein, dass b gilt, bis c gilt:

$$\mathcal{G}(a o \mathcal{X}(b\,\mathcal{U}\,c))$$

8. Es darf höchstens zwei mal $m{a}$ gelten.

▼ Lösungsvorschlag

Wir können diese Eigenschaft in LTL beschreiben, indem wir verlangen, dass es nach dem ersten Vorkommen von a höchstens noch ein weiteres a gibt. Nach diesem weiteren a darf es dann kein weiteres a mehr geben.

$$\mathcal{G}(a o \mathcal{X} \, \mathcal{G}(a o \mathcal{X} \, \mathcal{G} \,
eg a))$$

Aufgabe 4.3: LTL und Transitionssysteme

4 Punkte, mittel

Gegeben sind ein Transitionssystem und folgende LTL-Formeln. Begründen Sie für jede Formel, ob diese auf *allen* möglichen Läufen des Transitionssystems erfüllt ist.

Quelltext des Diagramms

1. **a**

▼ Lösungsvorschlag

Nein. Die Formel beschreibt nur den ersten Zustand und dort gilt die Proposition \boldsymbol{a} nicht, also ist die Formel auf allen Läufen nicht erfüllt.

2. **X** d

▼ Lösungsvorschlag

Nein. Die Formel ist zum Beispiel auf allen Läufen nicht erfüllt, die mit $\{b\}\{a\}$ beginnen.

З. $\mathcal{G}\mathcal{F}a$

▼ Lösungsvorschlag

Ja. Die Formel ist auf allen Läufen erfüllt, denn in jedem möglichen Lauf sind unendlich viele Zustände enthalten, in denen $m{a}$ gilt.

4. $(\neg c) \mathcal{U} a$

▼ Lösungsvorschlag

Ja. Die ersten beiden Zustände sind entweder $\{b\}\{a,d\}$ oder $\{b\}\{a\}$ und in beiden Fällen gilt im zweiten Zustand a und bis dahin gilt $\neg c$, sodass diese Formel auf allen möglichen Läufen erfüllt ist.

5. $\mathcal{F} \mathcal{G}(a \vee c)$

▼ Lösungsvorschlag

Ja. In allen Zuständen außer dem ersten Zustand gilt $a \lor c$. In jedem Lauf ist der erste Zustand nur genau einmal ganz am Anfang enthalten, sodass nach dem ersten Zustand $a \lor c$ in jedem weiteren Zustand aller möglicher Läufe erfüllt ist. Damit ist die Formel auf allen möglichen Läufen erfüllt.

6. $b \wedge \mathcal{X}(\mathcal{G}(\neg c o \neg Xb))$

▼ Lösungsvorschlag

Nein. Ein Gegenbeispiel für diese Formel wäre ein Lauf, in dem auf einen Zustand, in dem $\neg c$ gilt, ein Zustand folgt, in dem b gilt. Das ist bei allen Läufen, die in $\{a,b\}^\omega$ enden, unendlich oft der Fall. Also ist diese Formel nicht auf allen Läufen erfüllt.

7. $\mathcal{X}((\mathcal{X}b)\mathcal{RF}c)$

▼ Lösungsvorschlag

Ja. In jedem Lauf gilt im dritten oder vierten Zustand c. Entsprechend ist $\mathcal{XF}c$ in jedem Lauf erfüllt, sodass auch die gegebene Formel in jedem Lauf erfüllt ist.

8. (\mathcal{G} true) $\vee \mathcal{X} b$

▼ Lösungsvorschlag

Ja. Die Formel \mathbf{true} ist immer erfüllt, also ist auch \mathcal{G} \mathbf{true} immer erfüllt. Damit ist auch die gegebene Formel immer erfüllt, auch wenn \mathcal{X} b auf keinem möglichen Lauf erfüllt ist.

Hinweise zum Erstellen der Diagramme

UML-Sequenzdiagramme lassen sich sehr elegant mit <u>PlantUML</u> erstellen, was in <u>CodiMD</u> (oder HedgeDoc) direkt eingebunden ist.

Quelltext des Diagramms