# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

## Лабораторная работа № 2.2.6 Определение энергии активации по температурной зависимости вязкости жидкости

Серебренников Даниил Группа Б02-826

**Цель работы:** 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязксоти жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром 1-2 мм).

#### 1 Теоретическая часть

#### 1.1 Энергия активации

Двойственный характер свойств жидкостей связан с особенностя- ми движения их молекул. В газах молекулы движутся хаотично, в их расположении отсутствует порядок. В кристаллических твердых телах частицы колеблются около определенных положений равновесия — узлов кристаллической решетки. В жидкостях, как и в кристал- лах, каждая молекула находится в потенциальной яме электрического поля, создаваемого окружающими молекулами. Молекулы колеблются со средней частотой, близкой к частоте колебаний атомов в кристаллических телах ( $\sim 10^{12}~\Gamma$ ц), и с амплитудой, определяемой размерами объема, предоставленного ей соседними молекулами. Глубина потенциальной ямы в жидкостях больше средней кинетической энергии колеблющейся молекулы, поэтому молекулы колеблются вокруг более или менее стабильных положений равновесия. Однако у жидкостей различие между этими двумя энергиями невелико, так что молекулы нередко выскакивают из «своей» потенциальной ямы и занимают место в другой.

Для того чтобы перейти в новое состояние, молекула должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно опистаь формулой

$$\eta \sim Ae^{W/kT}$$
(1)

#### 1.2 Формула Стокса

На всякое тело, двигающееся в вязкой жидкости, действует сила сопротивления. В общем случае величина этой силы зависит от многих факторов: от вязкости жидкости, от формы тела, от характера обтекания и т. д. Стоксом было получено строгое решение задачи о ламинарном обтекании шарика безграничной жидкостью. В этом случае сила сопротивления F определяется формулой

$$F = 6\pi\eta rv \tag{2}$$

#### 1.3 Рассчетная формула вязкости

Измеряя на опыте установившуюся скорость падения шариков v и величины  $r, \rho, \rho_0$ , можно определить вязкость жидкости по формуле

$$\eta = \frac{2}{9}gr^2\frac{\rho - \rho_0}{v} \tag{3}$$

### 2 Экспериментальная установка

Для измерений используется стеклянный цилиндрчиеский сосуд B, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда  $\approx 3$  см, длина  $\approx 40$  см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками с помощью линейки, а время падения с помощью секундомера, определяют скорость шарика vyct. Сам сосуд B помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате.

Схема прибора (в разрезе) показана на рис. 1.



Рис. 1: Установка для определения коэффициента вязкости жидкости.

#### 3 Модель экспермиента

- 1. Отберем 20 шариков различного диаметра и с помощью микроскопа измерим их средние диаметры
- 2. Измерим установившиеся скорости падения шариков и вычислим вязкость по формуле (3). Измерения выполним для 7 значений температуры в интервале от 25-55°C.
- 3. Для каждого из опытов вычислим значение числа Рейнольдса Re, оценим время релаксации  $\tau$  и путь релаксации S. Проанализируем применимость формулы Стокса в каждом эксперименте.
- 4. Построим график зависимости  $\ln \eta/\eta_0$  от 1/T.
- 5. По угловому коэффициенту прямой  $\ln \eta/\eta_0(1/T)$  определим энергию активации W.
- 6. Оценим погрешность полученных результатов.

# 4 Экспериментальные данные

В таблице 1 приведены параметры установки и случайные ошибки измерения величин, определяемых в ходе эксперимента.

Таблица 1: Некоторые параметры установки и ошибки измерений.

|                   | Температура                       | Диаметр шарика          | Плотность                 | Плотность                | Плотность                       |
|-------------------|-----------------------------------|-------------------------|---------------------------|--------------------------|---------------------------------|
|                   | $T = \frac{1}{V} \int_{V}^{V} dx$ | диаметр шарика<br>d, мм | глицерина                 | стекла                   | стали                           |
|                   | 1,11                              | $\alpha$ , with         | $ ho_0$ , кг $/	ext{m}^3$ | $ ho_1$ , кг $/{ m M}^3$ | $ ho_2$ , k $_{ m I}/_{ m M}^3$ |
| Величина          | 293,0                             | 1,50                    | 1260                      | 2500                     | 7800                            |
| Погрешность       | 0,1                               | 0,05                    | 0                         | 0                        | 0                               |
| $\varepsilon$ , % | 0,03                              | 3,3                     | 0                         | 0                        | 0                               |

В следующих таблицах 2 - 3 представлены результаты измерений и вычислений физических величин, значения которых необходимы для анализа прмиенимости формулы Стокса в каждом эксперименте.

Таблица 2: Стеклянный шарик.

| T, K  | $t_1$ , c | $t_2$ , c | d, mm | η, мПа∙с | $σ_η$ , м $\Pi$ a·c | Re     | $\tau$ , MC | S, mm |
|-------|-----------|-----------|-------|----------|---------------------|--------|-------------|-------|
| 297,8 | 26,16     | 52,72     | 2,06  | 770      | 40                  | 0,0063 | 0,8         | 2,9   |
| 303,3 | 23,06     | 46        | 2,06  | 660      | 30                  | 0,0085 | 0,94        | 3,8   |
| 308,2 | 17,69     | 34,4      | 2,08  | 490      | 20                  | 0,0159 | 1,2         | 7,3   |
| 313,2 | 11,68     | 23,25     | 2,04  | 326      | 16                  | 0,0340 | 1,8         | 15    |
| 318,2 | 9,56      | 17,06     | 2,2   | 245      | 11                  | 0,0754 | 2,7         | 36    |
| 328   | 4,38      | 8,74      | 2,1   | 129      | 6                   | 0,2356 | 4,7         | 108   |

Таблица 3: Железный шарик.

| T, K  | $t_1$ , c | $t_2$ , c | d, mm | η, мПа∙с | $\sigma_{\eta}$ , м $\Pi a \cdot c$ | Re     | $\tau$ , MC | S, mm |
|-------|-----------|-----------|-------|----------|-------------------------------------|--------|-------------|-------|
| 297,9 | 29,52     | 59,91     | 0,84  | 770      | 90                                  | 0,0022 | 0,4         | 1,3   |
| 303,3 | 22,08     | 43,94     | 0,92  | 660      | 70                                  | 0,0040 | 0,6         | 2,5   |
| 308,2 | 18,74     | 37,2      | 0,84  | 470      | 60                                  | 0,0061 | 7           | 3,5   |
| 313,2 | 12,43     | 25,36     | 0,9   | 380      | 40                                  | 0,0116 | 0,9         | 7,1   |
| 318,1 | 7,73      | 15,27     | 0,9   | 220      | 20                                  | 0,0343 | 1,6         | 21    |
| 323,1 | 5,72      | 11,3      | 0,88  | 155      | 18                                  | 0,0642 | 2,2         | 38    |
| 328,0 | 4,07      | 8,26      | 0,9   | 122      | 14                                  | 0,1120 | 2,9         | 68    |

На рис. 2 изображен график зависимости  $\ln \eta/\eta_0$  от 1/T, где  $\eta_0=1480$  м $\Pi a\cdot c$  - табличное значение вязкости глицерина при T=293 K.



Рис. 2: Зависимость  $\ln \eta/\eta_0$  от 1/T.

Наклоном графика (рис. 2) будет являться величина W/k. Значения экспериментальных точек и значение энергии активации представлены в таблицах 4 - 5.

Таблица 4: Стеклянный шарик.

| $1/T, K^{-1}$ | $\ln \eta/\eta_0$ | $\sigma_{\ln \eta/\eta_0}$ | W/k, K | W, зДж | $\sigma_W$ , зДж |
|---------------|-------------------|----------------------------|--------|--------|------------------|
| 0,00336       | -0,66             | 0,05                       |        |        |                  |
| 0,0033        | -0,81             | 0,05                       |        |        |                  |
| 0,00324       | -1,11             | 0,05                       | 6000   | 83     | 5                |
| 0,00319       | -1,51             | 0,05                       | 0000   | 00     | 9                |
| 0,00314       | -1,80             | 0,05                       |        |        |                  |
| 0,00305       | -2,44             | 0,05                       |        |        |                  |

Таблица 5: Железный шарик.

| $1/T, K^{-1}$ | $\ln \eta/\eta_0$ | $\sigma_{\ln \eta/\eta_0}$ | W/k, K | W, зДж | $\sigma_W$ , зДж |
|---------------|-------------------|----------------------------|--------|--------|------------------|
| 0,00336       | -0,65             | 0,12                       |        |        |                  |
| 0,0033        | -0,80             | 0,11                       |        |        |                  |
| 0,00324       | -1,15             | 0,12                       |        |        |                  |
| 0,00319       | -1,37             | 0,11                       | 6400   | 89     | 7                |
| 0,00314       | -1,91             | 0,11                       |        |        |                  |
| 0,0031        | -2,26             | 0,11                       |        |        |                  |
| 0,00305       | -2,50             | 0,11                       |        |        |                  |

#### 5 Обсуждение результатов

Обсуждение результатов хотелось бы начать с анализа формулы Стокса. В каждом опыте значение числа Рейнольдса Re было очень маленьким (меньше 0.5), поэтому можно считать, что обтекание шарика жидкостью действительно имело ламинарный характер и формула Стокса праведлива в данной лабораторной работе. Более того, время релаксации  $\tau < t_1$  и путь релаксации S < l в каждом из опытов, поэтому от второй до третьей отметки шарики однозначно двигались с установившейя скоростью. Значения вязкости в каждом из опытов или совпадают с табличными значениями в пределах погрешности, или незначительно отличаются. При  $T = 298 \mathrm{K}$  вязкость 99% водного раствора глицерина  $\eta = 772 \mathrm{~M}\Pi\mathrm{a}\cdot\mathrm{c}$ , а при  $T = 303 \mathrm{K}$  вязкость 100% водного раствора глицерина  $\eta = 662 \mathrm{~M}\Pi\mathrm{a}\cdot\mathrm{c}$ , исходя из этих данных, можно заключить, что у исследуемой нами жидкости весовой процент глицерина равен 99 - 100%.

Наибольший интерес представляет собой анализ конечного результата энергии активации W - энергии, приходящейся на одну молекулу глицерина для преодолевания потенциального барьера, препятствующего занять «соседнее положение равновесия». Рассчитаем энергию, приходящую на один моль глицерина  $w = W N_A$ . Для рассчета воспользуемся значением энергии активации, полученным при анализе графика зависимости  $\ln \eta/\eta_0$  от 1/T для стальных шариков  $w \approx 54$  кДж/моль. Можно предположить, что перемещение молекулы в «другую» потенциальную яму может произойти благодаря разрыву химических связей с соседними молекулами. Глицерин  $C_3H_5(OH)_3$  – простейший представитель трёхатомных спиртов, в которых естественным образом возникают межмолекулярные водородные связи. Действительно, следствием полярности связи О-Н и наличия неподеленных электронных пар на атоме кислорода является способность гидроксосоединений к образованию водородных связей. Среднее табличное значение энергии водородной связи  $O \cdots H w_0 = 20$ кДж/моль. Грубой оценкой  $w/w_0$  получается, что в среднем одна молекула глицерина образует 3 водородные связи. Однако, рассматривая пространственную структуру молекулы глицерина, можно сказать, что она может образовать больше 3 водородных связей. Является ли наше предположение о том, на что идёт энергия активация ошибочным? Конечно, нет. Ведь можно ожидать, что энергия активации молекулы близка к энергии кипения жидкости, приходящейся на одну молекулу, которая однозначно связана с разрывом водородных связей. Табличное значение  $\Delta H = 61$ кДж/моль, откуда следует, что на 1 молекулу глицерина в среднем приходится 3 водородные связи.

### Выводы

- Проверили справедливость закона Стокса в условиях эксперимента.
- Вычислили вязкость исследуемой жидкости по закону Стокса, например при  $T=298~{\rm K}~\eta=(770~\pm~40)~{\rm m}\Pi{\rm a\cdot c},$  что соотвествует табличному значению 99% раствора глицерина.
- Вычислили энергию активации глицерина  $W = (89 \pm 7)$  зДж.
- Оценили сколько в среднем водородных связей приходится на одну молекулу глицерина 3.