

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología II

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

Índice general

1. Relaciones de Ejercicios													5															
	1.1.	Conexión	por arcos	s .																								5

Topología II Índice general

1. Relaciones de Ejercicios

1.1. Conexión por arcos

Ejercicio 1.1.1. Muestra que cualquier esfera de \mathbb{R}^n , $n \ge 2$ es arcoconexa con la topología usual.

Es decir, queremos ver que \mathbb{S}^n es arcoconexa para $n \ge 1$. (notemos que $\mathbb{S}^0 = \{x \in \mathbb{R} : ||x|| = 1\} = \{-1, 1\}$ no es un conjunto arcoconexo).

Para ello, sea $n \ge 2$, sabemos que $\mathbb{S}^n \setminus \{p\}$ (con $p \in \mathbb{S}^n$) es homeomorfa a \mathbb{R}^{n-1} , que es un conjunto arcoconexo por ser convexo (es una espacio vectorial). Como la arcoconexión es una propiedad topológica, esta se conserva por homeomorfismo, luego $\mathbb{S}^n \setminus \{p\}$ es un conjunto arcoconexo, $\forall p \in \mathbb{S}^n$.

Tomando $N = (0, ..., 0, 1), S = (0, ..., 0, -1) \in \mathbb{S}^n$, podemos ver \mathbb{S}^n como unión de dos conjuntos arcoconexos:

$$\mathbb{S}^n = (\mathbb{S}^n \setminus \{N\}) \cup (\mathbb{S}^n \setminus \{S\})$$

no disjuntos:

$$(\mathbb{S}^n\setminus\{N\})\cap(\mathbb{S}^n\setminus\{S\})=\mathbb{S}^n\setminus\{N,S\}$$

Por lo que \mathbb{S}^n es un conjunto arcoconexo, $\forall n \geq 2$.

Ejercicio 1.1.2. Demuestra que si $\{A_i\}_{i\in I}$ es una familia de arcoconexos de X tales que todos intersecan a uno de ellos, es decir,

$$A_i \cap A_{i_0} \neq \emptyset, \quad \forall i \in I,$$

entonces $\bigcup_{i \in I} A_i$ es arcoconexo.

Sean $x, y \in \bigcup_{i \in I} A_i$, entonces existen $i, j \in I$ de forma que $x \in A_i$ y $y \in A_j$. Como $A_i \cap A_{i_0}, A_j \cap A_{i_0} \neq \emptyset$, podemos tomar $a \in A_i \cap A_{i_0}$ y $b \in A_j \cap A_{i_0}$.

- A_i es un conjunto arcoconexo con $x, a \in A_i$, por lo que existe un camino, α , que une x con a.
- A_j también es un conjunto arcoconexo con $y, b \in A_j$, por lo que existe un camino, β , que une y con b.
- Además, A_{i_0} es un conjunto arcoconexo con $a, b \in A_{i_0}$, por lo que existe un tercer camino, γ , que une a con b.

De esta forma, podemos tomar:

$$\sigma = \alpha * \left(\gamma * \tilde{\beta}\right)$$

Que es un camino que une x con y. Como x e y eran arbitrarios, podemos unir cualesquiera dos puntos de $\bigcup_{i\in I} A_i$, por lo que dicho conjunto es arcoconexo.

Figura 1.1: Forma de unir dos puntos cualesquiera.

Ejercicio 1.1.3. Sea X un conjunto, $x_0 \in X$, y consideramos la topología (del punto incluido) dada por

$$T = \{U \subset X : x_0 \in U\} \cup \{\emptyset\}$$

¿Es (X,T) arcoconexo?

Sí: sea $x \in X$, veamos que la aplicación $\alpha: [0,1] \to X$ dada por

$$\alpha(t) = \begin{cases} x & \text{si } t \in [0, \frac{1}{2}] \\ x_0 & \text{si } t \in [\frac{1}{2}, 1] \end{cases} \quad \forall t \in [0, 1]$$

es continua. Sea $U \in T$:

- Si $U = \emptyset$, entonces $\alpha^{-1}(U) = \emptyset \in \mathcal{T}_u|_{[0,1]}$.
- Si $x_0 \in U$ y $x \notin U$, entonces $\alpha^{-1}(U) =]1/2, 1] \in \mathcal{T}_u|_{[0,1]}$.
- Si $x_0, x \in U$, entonces $\alpha^{-1}(U) = [0, 1] \in \mathcal{T}_u|_{[0, 1]}$.

Como la preimagen de cualquier conjunto abierto es abierta, tenemos que α es continua, luego es un arco que une x con x_0 .

Ahora, si $x, y \in X$, tenemos que existen $\alpha, \beta : [0, 1] \to X$ de forma que α une x con x_0 y β une y con x_0 ; por lo que $\alpha * \tilde{\beta}$ es un arco que une x con y. Como x e y eran arbitrarios, concluimos que X es arcoconexo.

Ejercicio 1.1.4. Demustra que en \mathbb{R}^n con la topología usual, todo abierto conexo es arcoconexo. ¿Es cierto que todo cerrado conexo de \mathbb{R}^n es arcoconexo?

En teoría vimos que:

Un conjunto es arcoconexo
$$\iff$$
 $\left\{ \begin{array}{l} \text{Es conexo} \\ \text{Todo punto admite un entorno arcoconexo} \end{array} \right.$

Sea U un abierto conexo de $(\mathbb{R}^n, \mathcal{T}_u)$, falta ver que todo punto suyo admite un entorno arcoconexo en la topología inducida en U para ver que U es arcoconexo. Para ello, sea $x \in U$, como U es abierto existe $r \in \mathbb{R}^+$ de forma que $B(x,r) \subset U$. B(x,r) es un conjunto arcoconexo por ser convexo, luego es un entorno arcoconexo de x en U. Como x era un punto arbitrario de U, todo punto suyo admite un entorno arcoconexo, y como U era conexo, tenemos que U es arcoconexo.

Ahora, no es cierto que todo cerrado conexo de \mathbb{R}^n es arcoconexo, ya que si consideramos $f: \mathbb{R}^+ \to \mathbb{R}$ dada por:

$$f(x) = \operatorname{sen}\left(\frac{1}{x}\right) \qquad \forall x \in \mathbb{R}^+$$

Tenemos que

$$C = \overline{Gr(f)} = \overline{\{(x, f(x)) : x \in \mathbb{R}^+\}} = Gr(f) \cup (\{0\} \times [-1, 1])$$

es un conjunto cerrado y conexo (se vio en Topología I) pero que no es arcoconexo.

Figura 1.2: Dibujo de la adherencia de la gráfica de f(x).

No demsotraremos de forma rigurosa por qué no es arcoconexo, pero sí desarrollaremos la demostración lo suficiente como para que se aprecie la idea de la misma:

Sea $z \in \{0\} \times [-1,1]$, si tratamos de unir z = (0,u) para cierto $u \in [-1,1]$ con cualquier punto $a = (b,c) \in Gr(f)$ mediante una curva $\alpha : [0,1] \to Gr(f)$, tendremos que existen ciertas funciones $x, y : [0,1] \to \mathbb{R}$ de forma que:

$$\alpha(t) = (x(t), y(t)) \quad \forall t \in [0, 1]$$

siendo x e y funciones continuas. En dicho caso, como α une z con a, entonces x alcanzaría los valores 0 y b, y por el Teorema del Valor Medio, alcanzaría todos los valores del intervalo [0, b], donde llegamos a una contradicción.

Ejercicio 1.1.5. Prueba que la componente arcoconexa de un punto x_0 está contenida en la componente conexa de x_0 .

Sea (X,T) un espacio topológico, $x_0 \in X$ y C la componente arcoconexa de x_0 en X, en particular tenemos que C es un conjunto arcoconexo, luego es conexo, por lo que está contenida en la componente conexa de x, al ser esta el mayor conjunto conexo que contiene a x.

Ejercicio 1.1.6. En \mathbb{R} con la topología de Sorgenfrey, esto es, la topología que tiene como base

$$\mathcal{B}_S = \{ [a, b) \subset \mathbb{R} : a < b \},\$$

determina sus componentes arcoconexas.

Ejercicio 1.1.7. Sea $f: X \to Y$ un homeomorfismo entre espacios topológicos. Demuestra que $A \subset X$ es una componente arcoconexa de X si y solo si f(X) es una componente arcoconexa de Y. Deduce que el número de componentes arcoconexas es invariante por homeomorfismos.

Ejercicio 1.1.8. En $X = \mathbb{R} \times \{0,1\}$ se considera la topología que tiene por base

$$\beta = \{ |a, b| \times \{0, 1\} : a < b \}.$$

Demuestra que X es arcoconexo. ¿Es X homeomorfo a \mathbb{R} con la topología usual?

Ejercicio 1.1.9. En \mathbb{R}^3 con la topología usual, calcula las componentes arcoconexas de

$$X = \{x, y, z\} \in \mathbb{R}^3 : xyz = 1\}$$

Ejercicio 1.1.10. En \mathbb{R}^2 con la topología usual consideremos las rectas horizontales $A_n = \mathbb{R} \times \{1/n\}$, $B_n = \mathbb{R} \times \{-1/n\}$ y el eje de ordenadas menos el origen, esto es, $C = \{0\} \times (\mathbb{R} \setminus \{0\})$. Calcula las componentes conexas y arcoconexas de

$$X = \left(\bigcup_{n \in \mathbb{N}} A_n\right) \cup \left(\bigcup_{n \in \mathbb{N}} B_n\right) \cup C \cup \{(1,0)\}.$$