

GII TDRC

TEMA 3: Arquitecturas y Servicios de Redes Corporativas (Capa de Enlace) - Problemas Propuestos -

INSTRUCCIONES DE REALIZACIÓN Y ENTREGA

- La correcta resolución y entrega de estos ejercicios supondrá hasta 0,5 puntos de la nota final de la asignatura (parte de Teoría). Cada uno puntuará 0,25.
- La entrega se hará en un documento PDF, incluyendo las imágenes y el texto que cada cual estime oportuno. Se puede hacer manuscrito y posteriormente escaneado, pero debe generarse un único documento PDF.
- Incluya en el documento su nombre y apellidos.
- La realización de estos ejercicios debe ser individual. Cada estudiante deberá hacer una entrega por separado con su propia solución.
- En su realización se recomienda incluir las explicaciones pertinentes para demostrar que se sabe resolverlos.
- Los rangos de IPs a considerar son a elección libre. Hay millones de direcciones disponibles, por lo que <u>debería ser muy complicado que las resoluciones de dos estudiantes coincidan.</u>
- En caso de detectar copia/plagio en dos entregas, ambas pasarán a puntuar
 0 y se penalizará fuertemente a ambos estudiantes.

- 1) Dada la topología de la figura y suponiendo que las **Tablas ARP** de todos los nodos (hosts y router) están **vacías**. Las **Tablas de enrutamiento** están **completas** y todos los PCs tienen como Default Gateway a R1 (interfaz en su subred).
 - a) Asigne IPs de clase C públicas y MACs a todas las interfaces presentes.
 - b) Indique en una tabla (como la que se muestra) todas las **tramas ARP generadas** para poder realizar un envío de un paquete ICMP (ping) desde PC3 hasta PC4 y la respuesta. Incluya un número que indique el instante de tiempo en el que se producen (considere instantes numerados secuencialmente comenzando en 1).

Instante	Tipo Trama ARP	MAC origen	MAC destino	IP origen	IP destino

Añada más filas si las necesita.

2) Dada la siguiente topología, considere que STP está habilitado y **calcule el árbol de expansión** obtenido según ese protocolo, para ello **asigne nombre y BIDs** a su elección a los switches, de manera que SW7 sea el Root Bridge. **Determine los puertos RP, DP y Bloqueados (X)**. Considere que todos los enlaces son FastEthernet (100 Mbps).

