Нижегородский государственный университет имени Н.И. Лобачевского

Радиофизический факультет

Отчет по лабораторной работе

Преобразование лазерного излучения методами нелинейной оптики

Работу выполнили студенты 4M51 группы радиофизического факультата

Сарафанов Ф.Г., Леонов С.В.

Нижний Новгород, 20 ноября – 28 декабря 2020 г.

Содержание

Введение		
	0.1.	Метод обращения волнового фронта
	0.2.	Нелинейность жидких кристаллов 4
1.	Экс	перимент
		Зависимость мощности пучка от тока накачки 5
2.	Зад	ания
	2.1.	Время релаксации
		Коэффициент отражения 6
Заключение 9		

Введение

В данной работе исследуется преобразование структуры лазерного излучения. Рассматривается два метода: метод попутного двухволнового взаимодействия и обращения волнового фронта при четырехволновом смешении, основанные на интерференции монохроматических волн в нелинейной среде $\varepsilon(|\mathbf{E}|)$. В такой среде не выполняется принцип суперпозиции, а распространение волны в такой среде можно рассматривать как самодифракцию на периодической структуре ε , которая порождается распространяющимися в нелинейной среде волнами.

Установка. Для исследования ОВФ при четырёхволновом взаимодействии используется установка, общий принцип который заключается в разделении излучения основного лазера на опорное и сигнальное с помощью системы зеркал, поляризаторов, линз и направлении их с помощью фокусирующей линзы в НЖК-ячейку с зеркальным покрытием на обратной стороне, формирующим встречную волну накачки. В установке имеются два фотоприёмника, позволяющие измерить мощность опорного, сигнального и обращённого пучков.

0.1. Метод обращения волнового фронта

Суть метода ОВФ заключается в создании пучка с обращённой фазой. Это можно объяснить на следующем примере: пусть через неоднородную среду, дающую фазовые искажения, проходит пучок. Он исказится. Если за средой поставить обычное зеркало, то пройдя еще раз через нелинейную среду, пучок исказится еще сильнее: если же поставить ОВФ-зеркало, то при выходе из среды отражённый пучок будет не искажён.

Важной характеристикой ОВФ-зеркала является коэффициент отражения

$$ilde{r} = rac{ ilde{E}_{ ext{ofp}}^*}{ ilde{E}_{ ext{cut}}}$$

 $OB\Phi$ при взаимодействии четырех волн (обращённая, сигнальная и опорные волны) в среде с тепловым механизмом нелинейности (нематические жидкие кристаллы к ним относятся) описывается уравнениями поля

$$\Delta \bar{E} + k^2 \tilde{E} - i k^2 \frac{4\pi\sigma_0}{\varepsilon_0 \omega} \tilde{E} = -k^2 \frac{\delta \varepsilon}{\varepsilon_0} \tilde{E}$$

и диэлектрической проницаемости

$$\frac{\delta \varepsilon}{\tau_0} - \chi \Delta \delta \varepsilon = \frac{\sigma_0}{\rho_0 C_p} \cdot \left(\frac{\partial \varepsilon}{\partial T}\right)_p \overline{|\mathbf{E}|^2}^{(2\pi/\omega)}.$$

Здесь записаны уравнения для поля четырёх волн

$$\tilde{E} = \left[\tilde{E}_1 \exp(ik_x x) + \tilde{E}_3 \exp(-ik_x x)\right] \exp(-ik_z z) + \left[\tilde{E}_2 \exp(-ik_x x) + \tilde{E}_4 \exp(ik_x x)\right] \exp(ik_z z).$$

Не будем останавливаться на подробном исследовании этой системы уравнений, опишем только общую схему получения интересующего нас комплексного коэффициента отражения. Будем рассматривать случай, когда основной вклад в эффект ОВФ дают пропускающие

решетки, возникающие за счет попутных волн. При этом можно искать $\delta \varepsilon(z)$ в виде суммы ММА

$$\delta \varepsilon(z) \cong \delta \varepsilon''(z) + \left[\frac{1}{2} \delta \tilde{\varepsilon}(z) \exp(2ik_x x) + \text{ k.c.} \right].$$

Подставляя это выражение в уравнения поля, получим систему, которую можно привести к безразмерному виду и дополнить граничными условиями неравенства нулю полей всех волн, кроме обращённой, на границах среды, вызывающей ОВФ-эффект.

Далее следует принять приближение о том, что мощность накачки много больше мощности сигнала и обращённой волны и считать поля накачек заданными. Тогда система уравнений разделяется на независимые уравнения для сигнальной и обращённой волн. Такую систему оказывается возможно разрешить аналитически найдя первый интеграл и перейдя к неоднородному уравнению для КА сигнальной волны.

В итоге в приближении слабого поглощения средой и равноинтенсивных накачках выражение для коэффициента отражения по интенсивности

$$r^{2} = \operatorname{tg}^{2} \left(\frac{\sigma_{0} I_{0}}{4\varepsilon_{0} \rho_{0} C_{p}} \frac{\tau_{0}}{1 + 4\chi k_{x}^{2} \tau_{0}} \left(\frac{\partial \varepsilon}{\partial T} \right)_{p} \cdot L \right)$$

0.2. Нелинейность жидких кристаллов

В нашей работе в качестве нелинейной среды используются жидкие кристаллы в нематической фазе. Суть жидких кристаллов в наличии фазы, в которой сочетаются признаки жидкости (текучесть) и кристаллического вещества (анизотропия) – метафазы. Молекулы ЖК при этом вытянуты (или сплющены) и ориентируются определенным образом, что пораждает выделенное направление (присуще кристаллам) - директор. Такое состояние возможно не всегда: при повышении температуры ориентация исчезает, при понижении - вещество переходит в твердый кристалл.

Наибольший интерес в нашей работе вызывает тепловой механизм нелинейности ЖК. Фазу, в которой есть выделенное направление - называют нематической: для неё характерно

$$\frac{\partial \varepsilon}{\partial T} \approx (m_1 + m_2 \cdot h) \frac{\partial \rho}{\partial T} + m_2 \rho \frac{\partial h}{\partial T}.$$

При температурах вдали от температуры фазового перехода $\frac{\partial \varepsilon}{\partial T} \sim 10^{-4}~{\rm K},$ вблизи же за счет температурной зависимости параметра порядка h

$$h = h_0 + h_1 \cdot (T^{**} - T)^{\alpha}$$

коэффициент $\frac{\partial h}{\partial T}$ начинает давать вклад в производную. Это обеспечивает большую нелинейность НЖК, причем многие нелинейные явления удается наблюдать в маломощных полях, что удобно для лабораторных исследований.

1. Эксперимент

1.1. Зависимость мощности пучка от тока накачки

Была получена зависимость мощностей трёх пучков - опорного, сигнального и обращённого от тока накачки диодного лазера. При превышении током накачки порогового значения начинается лазерная генерация, и выходная мощность лазера начинает линейно зависеть от тока накачки.

В нашем случае можно считать ток и мощность пучка накачки линейно связанными.

Рис. 1. Мощность опорного пучка, сигнального и обращённого

2. Задания

2.1. Время релаксации

Рассчитаем теоретически время релаксации показателя преломления в пропускающей решетке по формуле

$$\tau_r = \frac{\tau_0}{1 + 4\chi k_x^2 \tau_0} = 7.11 \cdot 10^{-4} \text{ c.}$$

где $au_0=16\cdot 10^{-4}\ {
m c},\, \chi=10^{-7}\ {
m m}^2/{
m c},\, k_x=\frac{2\pi}{\lambda}\sin\frac{\theta}{2},\, \lambda=1064\cdot 10^{-9}\ {
m m},\, \theta\approx 5/330$ рад.

2.2. Коэффициент отражения

Считая $\sigma_0 \sim (1 \div 10) \cdot 10^{-10}$ Сименс/м (что в СГС порядка единицы), рассчитываем интенсивность из известных экспериментальных

условий как

$$I_0 = rac{2P_{
m oII}}{S_{
m \pi y^{
m qka}}},$$
 где $S_{
m \pi y^{
m qka}} = \pi igg(rac{d_{
m \pi y^{
m qka}}}{2}igg)^2.$

Здесь d=0.1 см, L приведено к безразмерному виду преобразованием $L'=L\cdot k^2/k_z\varepsilon_0$, и для разных входных мощностей (токов накачки) посчитаны значения коэффициента отражения $r^2=\operatorname{tg}^2(G\cdot l)$. В G взяты значения $\epsilon_0=\sqrt{n}=\sqrt{1.5},\, \rho_0 C_p\approx 10^7$ эрг/см $^3\mathrm{K},\, \left(\frac{\partial\varepsilon}{\partial T}\right)_p\approx 10^{-3}~\mathrm{K}^{-1}$. Полученные значения предоставлены на графике ниже.

Рис. 2. Коэффициент отражения

Как видно, теоретическое значение коэффициента растет с ростом накачки, что отвечает связи $r \sim \operatorname{tg} P$. Экспериментальные значения меньше. Во-первых, теоретическая формула получена в ряде приближений, например, слабого поглощения. В реальности поглощение может привести к уменьшению мощности сигнального пучка, и, соответственно, коэффициента ОВФ-отражения. Кроме того,

Сарафанов Ф.Г., Леонов С.В. Преобразование излучения лазера

могут быть экспериментальные особенности установки: например, возникновение при нагреве активной среды лазера тепловой линзы что приводит к появлению паразитных мод в лазере, увеличению угла расходимости лазернго пучка. Недостаточная термостабилизация элементов установки может привести к разбросу характеристик, таких как длина генерируемой волны, мощность пучка - и в итоге частично подавлять ОВФ-эффект.

Заключение

В настоящей работе мы изучили метод преобразования излучения четырехволновым взаимодействием, рассчитали коэффициент отражения ОВФ-зеркала, получили зависимости мощностей трех пучков от тока накачки. Качественно наблюдается рост коэффициента ОВФ-отражения при росте мощности накачки, хотя количественно в теории обращённый фронт мог бы быть более мощным: но за счет существенной неидеальности лабораторных условий, приводящих к возникновению побочных эффектов - таких, как искажение модового состава лазерного излучения, увеличение угла пучка излучения и так далее - практическое значение меньше теоретического.

Список литературы

[1] Миловский Н. Д., Мартынова О. В., Зиновьев А. П. Преобразование лазерного излучения методами нелинейной оптики: методическое пособие. – Нижний Новгород: Нижегородский государственный университет им. Н.И. Лобачевского, 2014. – 38 с.