функції: Archx= Pu(x+)x=1 Диференціюван d[f(x)]dx $\int f(x)dx$ Arshx = $\ln(x+\sqrt{x+1})$ 1. (const) = 0 Arthx=1- hit 2. $\int x^n dx = \frac{x^{n-1}}{n+1} + C \quad (n \neq -1) \quad \int dx = x + C$ 2. $(x^n)' = nx^{n-1}$ 3. $(\ln x)' = \frac{1}{x}$ 3. $\int_{-\infty}^{\infty} = \ln|x| + C \quad (x \neq 0)$ Arcthx=1 PAX+1 4. $(a^x) = a^x \ln a$ 4. $\int_{a}^{a} dx = \frac{a^{x}}{ma} + C \quad (a > 0, a \neq 1)$ $(a>0,a\neq 1)$ 5. $(e^x)' = e^x$ 5. $\int e^x dx = e^x + C \quad \forall x$ 6. $(\sin x)' = \cos x$ 6. $\int \sin x dx = -\cos x + C \quad \forall x$ 7. $\int \cos x dx = \sin x + C \quad \forall x$ $7. \left(\cos x\right)' = -\sin x$ $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$ $shx = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \dots$ 8. $(gx)' = \frac{1}{\cos^2 x}$ 8. $\int \frac{dx}{\cos^2 x} = igx + C \quad \text{(a TOVEREX HETERPRINDECTIF} \ f(x) = \frac{1}{\cos^2 x}$ 9. $\int \frac{dx}{\sin^2 x} = -c t g x + C \text{ (a TOTURK REGREPORMOCTI } f(x) = \frac{1}{\sin^2 x}$ 9. $(ctgx) = -\frac{1}{\sin^2 x}$ 10. $\int shx dx = chx + C \quad \forall x \quad shx = \frac{e^x - e^{-x}}{2}$ 10. (shx) -chx $chx = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$ $11. \left(chx \right) = shx$ 11. $\int shx dx = chx + C \quad \forall x \quad chx = \frac{e^x + e^{-x}}{2}$ 12. $(thx)' = \frac{1}{ch^2x}$ 12. $\int \frac{dx}{ch^2x} = thx + C \quad \forall x \quad thx = \frac{shx}{Chx}$ $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$ 13. $\int \frac{dx}{sh^2x} = -cthx + C \quad (x \neq 0) \quad cthx = \frac{chx}{shx}$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^{n-1} \frac{x^{2n-2}}{(2n-2)!} + \dots$ 14. $(arctgx)' = \frac{1}{1+x^2}$ 14. $\int \frac{dx}{1+x^2} = \arctan x + C = -\arctan x + C \forall x$ 15. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C \quad \forall x$ $(1+x)^{m} = 1 + \frac{m}{1!}x + \frac{m(m-1)}{2!}x^{2} + \frac{m(m-1)(m-2)}{3!}x^{3} + \dots$ 16. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ 16. $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C - \arccos x + C \quad (x < 1)$ $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^{n-1} x^n + \dots$ 17. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$ 17. $\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + C$ (|x| < a) $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ 18. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \frac{|x - a|}{|x + a|} + C \quad (|x| \neq a)$ $(\log_{e} x)' = (\log_{e} e)^{\frac{1}{e}}$ 19. $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C \quad (|x| > a)$ $arctgx = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)} + \dots$ (uv)'=u'v+uv'20. $\int \frac{dx}{\cos x} = \ln \left| \log \frac{x^2}{2} \right| + C \quad \text{(a Towass Hersepassocti} \quad f(x) = \frac{1}{\sin x} \text{)}$ 21. $\int \frac{dx}{\cos x} = \ln \left| \exp \left(\frac{x}{2} + \frac{x^2}{4} \right) \right| + C \quad \text{(a Towass Hersepassocti} \quad f(x) = \frac{1}{\cos x} \text{)}$ $\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \times x^5}{2^2 \cdot 2!} \frac{x^5}{5} + \frac{1 \times x^5}{2^3 \cdot 3!} \frac{x^7}{7} + \dots$ $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ $tgx = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + ... + \frac{2n-2}{(2n-1)!}x^{2n-1} + ...$ 22. $\int \sqrt{x^2 \pm a^2} \, dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2}| + C$ 23. $\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$ udv= uv - (vdu

Обержени Гіперболігні

$\sqrt{z} = \sqrt[n]{z'} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \varphi = \arg z, k = 0,1,,n - 1; z \neq 0$	0	f(t)	$F(p) = \int_{0}^{\infty} f(t)e^{-pt} dt$
$z=x+iy$ $e^z=e^x(\cos y+i\sin y)$	1	1	1 p
	2	e ^{at}	1 2 2
$\sin z = \frac{e^{iz} - e^{-iz}}{2i} \qquad \cos z = \frac{e^{iz} + e^{-iz}}{2}$	3	t	$\frac{p-a}{1}$
$sh z = -i sin i z = \frac{e^z - e^{-z}}{2}$ $ch z = cos i z = \frac{e^z + e^{-z}}{2}$	4	$\sin \omega t$	$\frac{p}{\omega}$
	5	$\cos \omega t$	$\frac{p^2 + \omega^2}{p}$
$\arcsin z = -i\operatorname{Ln}(iz + \sqrt{1 - z^2}) \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1})$	6	$\sh{\omega t}$	$\frac{p^2 + \omega^2}{\omega}$
Arctg $z = -\frac{i}{2} \operatorname{Ln} \frac{1+iz}{1-iz}$ Arctg $z = \frac{i}{2} \operatorname{Ln} \frac{z-i}{z+i}$	7	$\operatorname{ch} \omega t$	$\frac{p^2-\omega^2}{2}$
2 1-12 2 271	8	$e^{at} \cdot \sin \omega t$	$\frac{p^2 - \omega^2}{\omega}$
Функція-оригінал $f(t)$, $t \in (-\infty, +\infty)$ справджує умови: а. $f(t) = 0$. при $t < 0$.	9	$e^{at} \cdot \cos \omega t$	$\frac{(p-a)^2+\omega^2}{p-a}$
b. Існують сталі $S \ge 0$ та $M \ge 0$ такі, що $ f(t) < Me''$, $t > 0$	10	$e^{at} \cdot \sinh \omega t$	$(p-a)^2 + \omega^2$
с. На будь-якому відрізку $[0;T]$ функція може мати лише скінченну	11	eat · ch wt	$(p-a)^2-\omega^2$
кількість точок розриву І-го роду.	11	e · ch wt	$(p-a)^2-\omega^2$
Зображення оригінала $f(t)$ функція $F(p)$ комплексної змінної $p = s + i\tau$	12	t^n $(n$ — целое)	$\frac{n!}{n^{n+1}}$
$F(p) = \int_{p}^{\infty} e^{-pt} f(t) dt$	13	$e^{at} \cdot t^n$	n!
Перехід від оригіналу до зображення називають перетворенням Лапласа і			$\frac{(p-a)^{n+1}}{2\omega p}$
позначають двома символами:	14	$t \cdot \sin \omega t$	$(p^2+\omega^2)^2$
$f(t) \rightarrow F(p), f(t) + F(p)$	15	$t \cdot \cos \omega t$	$\frac{p^2 - \omega^2}{(2 - 2)^2}$
Функція Хевісайда 1) $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C};$			$(p^2 + \omega^2)^2$
$\eta(t) = \begin{cases} 1, t \ge 0 \\ 0, t < 0 \end{cases}$ 2) $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, z \in \mathbb{C};$	16	$t \cdot \sh{\omega t}$	$(p^2-\omega^2)^2$
Згортка функцій	17	$t \cdot \operatorname{ch} \omega t$	$\frac{p^2 + \omega^2}{(-2)^2}$
$f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t-\tau) d\tau$ 3) $\cos z = \sum_{i=1}^{\infty} (-1)^{ii} \frac{z^{2ii}}{(2n)!}, z \in \mathbb{C};$	18	$e^{at} \cdot t \cdot \sin \omega t$	$2\omega(p-a)$
Теорема Бореля	18	$e^{\omega t} \cdot t \cdot \sin \omega t$	$\overline{((p-a)^2+\omega^2)^2}$
1eopena bopena $f_i(t) * f_i(t) * F_i(p) - F_i(p)$ 4) $\ln(1+z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{n+1}}{n+1}, z < 1;$	19	$e^{at} \cdot t \cdot \cos \omega t$	$\frac{(p-a)^2-\omega^2}{(1-a)^2-(1-a)^2}$
Формула Дюамеля 5) $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, z < 1;$	20	$\frac{1}{2\sqrt{3}}(\sin \omega t - \omega t \cos \omega t)$	$((p-a)^2 + \omega^2)^2$
$\mu_1(p)\mu_2(p) \rightarrow j_1(t)j_2(0) + j_1(t) + j_2(t)$ = 1	S	Ζω	$(p^2 + \omega^2)^2$
Теорема запізнення оригінала 6) $\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, z < 1.$ $\eta(t-a) f(t-a) \to e^{-pt} F(p), a > 0$	21	$\frac{1}{2\omega^3}(\omega t \operatorname{ch} \omega t - \operatorname{sh} \omega t)$	$(p^2-\omega^2)^2$
Друга теорема розвинения	22	$\sin(\omega t \pm \varphi)$	$\frac{\omega\cos\varphi\pm p\sin\varphi}{n^2+\omega^2}$
$f(t) = \sum_{k=0}^{\infty} res(e^{h/t}F(p_k)) ,$	23	$\cos(\omega t \pm \varphi)$	$p\cos\varphi \mp \omega\sin\varphi$

де $p_1, p_2, ..., p_k$ - особливі точки F(p)