



## Quantum Eigenfaces:

Linear Feature Mapping and Nearest Neighbor Classification with Outlier Detection

Armando Bellante, William Bonvini, Stefano Vanerio, Stefano Zanero

IEEE International Conference on Quantum Computing and Engineering, Bellevue, WA, 21<sup>st</sup> September 2023

## Overview

### Quantum Eigenfaces-based classification w/ provable running time

### Motivation:

- Eigenfaces is a milestone in Computer Vision and Machine Learning;
- More generally, it is a linear feature mapping + nearest neighbor/centroid classification with outlier detection.

[1] Turk, Matthew, and Alex Pentland. "Eigenfaces for recognition." Journal of cognitive neuroscience 3.1 (1991): 71-86.

[2] Turk, Matthew A., and Alex P. Pentland. "Face recognition using eigenfaces." Proceedings. 1991 IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society, 1991.

Related work on nearest neighbor/centroid:

Seth Lloyd et al. - arXiv:1307.0411 (2013)

Nathan Wiebe et al. - Quantum Information & Computation 15.3-4 (2015): 316-356

# Eigenfaces









## Training the model

### **Training Data**



 $128 \times 128 = 16384$ 

 $\vec{x}_i \in [0,255]^{16384}$ 

### Training the model

### **Training Data**



 $128 \times 128 = 16384$ 

$$\vec{x}_i \in [0,255]^{16384}$$



We can express a face as a combination of some elementary faces

### Training the model

#### **Training Data**



$$128 \times 128 = 16384$$

$$\vec{x}_i \in [0,255]^{16384}$$



We can express a face as a combination of some elementary faces

$$\vec{u}_i = \vec{x}_i - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$
 Select top-k Principal Components 
$$\{\vec{v}_1, \cdots, \vec{v}_k\}$$
 Center the data

$$\vec{u}_i = \sum_{j \in [k]} w_j \vec{v}_j + \vec{\epsilon} = V^T \vec{w}_i + \vec{\epsilon}$$

### Training the model

### **Training Data**



 $128 \times 128 = 16384$   $\vec{x}_i \in [0,255]^{16384}$ 



We can express a face as a combination of some elementary faces

$$\vec{u}_i = \vec{x}_i - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$
 Select top-k Principal Components 
$$\{\vec{v}_1, \cdots, \vec{v}_k\}$$
 Center the data

$$\vec{u}_i = \sum_{j \in [k]} w_j \vec{v}_j + \vec{\epsilon} = V^T \underline{\vec{w}}_i + \vec{\epsilon}$$

$$\vec{c}_j \in \mathbb{R}^k$$

### Classification

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.



### Classification

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.

#### **Norm-based Outlier detection**







### Classification

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.

#### **Norm-based Outlier detection**









Textbook implementation O(mk + pk)

# Quantum algorithm

## Input data

### Main idea:

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.

Encode  $\{\vec{c}_1,\cdots,\vec{c}_p\}$ ,  $\vec{u}$  in quantum states and V in a unitary.

#### Norm-based Outlier detection

$$\frac{\|\overrightarrow{w}\|_2}{\|\overrightarrow{u}\|_2} > \gamma$$

## Data access

### Required oracles

Quantum access to the centroids/neighbors and their norms

$$U_C: |i\rangle |0\rangle \mapsto |i\rangle |\vec{c}_i\rangle$$

$$U_C: |i\rangle |0\rangle \mapsto |i\rangle ||\vec{c}_i||_2\rangle$$

Quantum access to the (mean centered) test data

$$U_u:|0\rangle\mapsto|\vec{u}\rangle$$

 $(\alpha,q,\epsilon_0)$ -Block-encoding access to V

$$U_V = \begin{bmatrix} \overline{V} \\ \overline{\alpha} \\ \cdot \end{bmatrix}$$

$$\text{s.t. } \|V - \overline{V}\|_2 \le \epsilon_0$$

$$\vec{x} = \begin{bmatrix} x_1 \\ \cdots \\ x_N \end{bmatrix} \longmapsto |\vec{x}\rangle = \frac{1}{\|\vec{x}\|_2} \sum_{i \in [N]} x_i |i\rangle$$

## Data access

### **Quantum Random Access Memory**

Assumption of a QRAM: Device that performs queries

 $U_{QRAM}: |i,0\rangle \mapsto |i,x_i\rangle$  in superposition, with  $x_i$  binary encoded, in time  $\widetilde{O}(1)$ .

#### Store classical data

i i + 1 i + 2 i + 3 i + 4

i + 5

 $x_{i}$   $x_{i+1}$   $x_{i+2}$   $x_{i+3}$   $x_{i+4}$   $x_{i+5}$ 

Perform quantum queries

$$U_{QRAM}: |i\rangle |0\rangle \mapsto |i\rangle |x_i\rangle$$

$$U_{QRAM}: \sum_{i=0}^{k} \alpha_i |i\rangle |0\rangle \mapsto \sum_{i=0}^{k} \alpha_i |i\rangle |x_i\rangle$$

Vittorio Giovannetti et al. - *Physical Review A*, 78(5), 052310 - *ITCS 2008* Connor T. Hang et al. - *PRX Quantum*, 2(2), 020311 - 2021

## Data access

### Implementing the oracles via QRAM

Assumption of a QRAM: Device that performs queries

 $U_{QRAM}: |i,0\rangle \mapsto |i,x_i\rangle$  in superposition, with  $x_i$  binary encoded, in time  $\widetilde{O}(1)$ .

#### Store classical data

| i     |  |
|-------|--|
| i + 1 |  |
| i + 2 |  |
| i + 3 |  |
| i + 4 |  |
| i + 5 |  |

 $x_{i}$   $x_{i+1}$   $x_{i+2}$   $x_{i+3}$   $x_{i+4}$   $x_{i+5}$ 

For a matrix  $A \in \mathbb{R}^{n \times m}$ 

- Preparation time/space:  $O(nm \log(nm))$
- Query time:  $O(\text{polylog}(nm, 1/\epsilon_0)) = \widetilde{O}(1)$

$$U_A: |i\rangle |0\rangle \mapsto |i\rangle |\vec{a}_i\rangle$$

$$U_{A'}: |i\rangle |0\rangle \mapsto |i\rangle |||\vec{a}_i||_2\rangle$$

$$(\mu(A), \lceil \log(n+m+1) \rceil, \epsilon_0)$$
-Block-encoding of  $A$ 

Iordanis Kerenidis and Anupam Prakash - *ITCS 2017* Iordanis Kerenidis and Anupam Prakash - *Physical Review A* 101.2 (2020): 022316 Shantanav Chakraborty et al. - ICALP 2019

## Linear mapping

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.

### Main idea:

Encode  $\{\vec{c}_1, \cdots, \vec{c}_p\}$ ,  $\vec{u}$  in quantum states and V in a unitary.

Algorithm 2 Quantum Eigenfaces-based classification

1: Prepare a state proportional to  $\vec{w}$ :

$$|\vec{w}\rangle = \frac{V\vec{u}}{\|V\vec{u}\|}$$

#### **Norm-based Outlier detection**

$$\frac{\|\overrightarrow{w}\|_2}{\|\overrightarrow{u}\|_2} > \gamma$$

### Linear mapping

State preparation for  $\vec{u}$   $(\alpha, q, \epsilon_0)$ -Block-encoding of V

$$U_u: |0\rangle \mapsto |\vec{u}\rangle$$

$$U_u:|0\rangle\mapsto |\vec{u}\rangle \qquad U_V = \begin{bmatrix} \overline{V} \\ \alpha \\ \cdot \end{bmatrix}$$

$$q = \begin{cases} |0\rangle: & & \\ |\cdots\rangle: & & \\ |0\rangle: & & \\ |0\rangle: & & \\ |\cdots\rangle: & & \\ |0\rangle: & & \\ |0\rangle: & & \\ \end{cases}$$

$$\begin{bmatrix} \overline{V} \\ \alpha \\ \cdot \end{bmatrix} = |0\rangle^{\otimes q} \frac{\overline{V}}{\alpha} |\vec{u}\rangle + |0^{\perp}\rangle$$

### Main idea:

Encode  $\{\vec{c}_1, \dots, \vec{c}_p\}$ ,  $\vec{u}$  in quantum states and V in a unitary.

Algorithm 2 Quantum Eigenfaces-based classification

1: Prepare a state proportional to  $\vec{w}$ :

$$|\vec{w}\rangle = \frac{V\vec{u}}{\|V\vec{u}\|}$$

### Distance estimation

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.

### Main idea:

Encode  $\{\vec{c}_1, \cdots, \vec{c}_p\}$ ,  $\vec{u}$  in quantum states and V in a unitary.

Algorithm 2 Quantum Eigenfaces-based classification

1: Prepare a state proportional to  $\vec{w}$ :

$$|\vec{w}\rangle = \frac{V\vec{u}}{\|V\vec{u}\|}$$

2: Perform Euclidean distance estimation in superposition:

$$|\varphi\rangle = \frac{1}{\sqrt{p}} \sum_{j \in [p]} |j\rangle \left| \|\vec{w} - \vec{c}_j\|_2^2 \right\rangle$$

#### **Norm-based Outlier detection**

$$\frac{\|\overrightarrow{w}\|_2}{\|\overrightarrow{u}\|_2} > \gamma$$

### Distance estimation

State preparation for  $\overrightarrow{w}$ 

$$U_w: |0\rangle \mapsto |\overrightarrow{w}\rangle$$

Quantum access to the centroids/ neighbors and their norms

$$U_C: |i\rangle |0\rangle \mapsto |i\rangle |\vec{c}_i\rangle$$

$$U_C': |i\rangle |0\rangle \mapsto |i\rangle |||\vec{c}_i||_2\rangle$$



$$P(1) = \frac{1 - \langle \overrightarrow{w} \mid \overrightarrow{c}_i \rangle}{2}$$

### Main idea:

Encode  $\{\vec{c}_1, \cdots, \vec{c}_p\}$ ,  $\vec{u}$  in quantum states and V in a unitary.

Algorithm 2 Quantum Eigenfaces-based classification

1: Prepare a state proportional to  $\vec{w}$ :

$$|\vec{w}\rangle = \frac{V\vec{u}}{\|V\vec{u}\|}$$

2: Perform Euclidean distance estimation in superposition:

$$|\varphi\rangle = \frac{1}{\sqrt{p}} \sum_{j \in [p]} |j\rangle \left| \|\vec{w} - \vec{c}_j\|_2^2 \right\rangle$$

 $\|\overrightarrow{w} - \overrightarrow{c}_j\|_2^2 = \|\overrightarrow{w}\|_2^2 + \|\overrightarrow{c}_j\|_2^2 - 2\|\overrightarrow{w}\|_2 \|\overrightarrow{c}_j\|_2 \langle \overrightarrow{w} | \overrightarrow{c}_j \rangle$ 

## Finding the minimum

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.

### Main idea:

Encode  $\{\vec{c}_1, \cdots, \vec{c}_p\}$ ,  $\vec{u}$  in quantum states and V in a unitary.

### Algorithm 2 Quantum Eigenfaces-based classification

1: Prepare a state proportional to  $\vec{w}$ :

$$|\vec{w}\rangle = \frac{V\vec{u}}{\|V\vec{u}\|}$$

2: Perform Euclidean distance estimation in superposition:

$$|\varphi\rangle = \frac{1}{\sqrt{p}} \sum_{j \in [p]} |j\rangle \left| \|\vec{w} - \vec{c}_j\|_2^2 \right\rangle$$

3: Find the minimum distance and index using a variant of Grover's search

4: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ; if  $\delta_1 < \overline{d} < \delta_2$ : similar element, output -1. if  $\overline{d} \geq \delta_2$ : not a similar element, output -2.

#### **Norm-based Outlier detection**

$$\frac{\|\overrightarrow{w}\|_2}{\|\overrightarrow{u}\|_2} > \gamma$$

## Norm-based outlier detection

### Block-encoding + amplitude estimation

State preparation for  $\vec{u}$   $(\alpha, q, \epsilon_0)$ -Block-encoding of V

$$U_u:|0\rangle\mapsto|\vec{u}\rangle$$

$$U_u: |0\rangle \mapsto |\vec{u}\rangle \qquad U_V = \begin{bmatrix} \overline{V} \\ \alpha \end{bmatrix}$$



$$q = \begin{cases} |0\rangle: & & & & & & & & & & & \\ |\cdots\rangle: & & & & & & & & & \\ |0\rangle: & & & & & & & & & \\ |0\rangle: & & & & & & & & \\ |\cdots\rangle: & & & & & & & & \\ |0\rangle: & & & & & & & & \\ \end{cases}$$

$$P(0) = \left(\frac{\|\overline{w}\|_2}{\alpha \|\vec{u}\|_2}\right)^2$$

## Norm-based outlier detection

### Block-encoding + amplitude estimation

State preparation for  $\vec{u}$   $(\alpha, q, \epsilon_0)$ -Block-encoding of V

$$U_u:|0\rangle\mapsto|\vec{u}\rangle$$

$$U_u: |0\rangle \mapsto |\vec{u}\rangle \qquad U_V = \begin{bmatrix} \overline{V} \\ \alpha \\ \vdots \end{bmatrix}$$

Estimate 
$$\frac{\|\overrightarrow{w}\|}{\|\overrightarrow{u}\|}$$
 and compare it to  $\gamma$ .

$$P(0) = \left(\frac{\|\overline{w}\|_2}{\alpha \|\vec{u}\|_2}\right)^2$$

Estimate: 
$$\left| \overline{t} - \frac{\|\overrightarrow{w}\|_2}{\|\overrightarrow{u}\|_2} \right| \le$$

$$O\left(\frac{\alpha}{\xi}\right)$$

$$O\left(\frac{\alpha}{\xi}\right)$$
 QRAM:  $\widetilde{O}\left(\frac{\mu(V)}{\xi}\right) = \widetilde{O}\left(\frac{\sqrt{k}}{\xi}\right)$ 

### Resulting complexity

#### Algorithm 1 Eigenfaces-based classification

1: Center the data point:

$$\vec{u} = \vec{x} - \frac{1}{N} \sum_{j \in [N]} \vec{x}_j$$

2: Compute the weights vector:

$$\vec{w} = V\vec{u}$$

3: Select the minimum distance between w and the stored weights:

$$d = \min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

4: Save the index of the closest weights vector:

$$j^* = \arg\min_{j \in [p]} \|\vec{w} - \vec{c}_j\|_2^2$$

5: Output: if  $d \leq \delta_1$ : same class of  $\vec{c}_{j^*}$ , output  $y_{j^*}$ ;

if  $\delta_1 < d < \delta_2$ : similar element, output -1.

if  $d \geq \delta_2$ : not a similar element, output -2.

### Main idea:

Encode  $\{\vec{c}_1, \cdots, \vec{c}_p\}$ ,  $\vec{u}$  in quantum states and V in a unitary.

### Algorithm 2 Quantum Eigenfaces-based classification

1: Prepare a state proportional to  $\vec{w}$ :

$$|\vec{w}\rangle = \frac{V\vec{u}}{\|V\vec{u}\|}$$

2: Perform Euclidean distance estimation in superposition:

$$|\varphi\rangle = \frac{1}{\sqrt{p}} \sum_{j \in [p]} |j\rangle \left| \|\vec{w} - \vec{c}_j\|_2^2 \right\rangle$$

3: Find the minimum distance and index using a variant of Grover's search

4: Output: if  $\overline{d} \leq \delta_1$ : same class of  $\overline{c}_{j^*}$ , output  $y_{j^*}$ ; if  $\delta_1 < \overline{d} < \delta_2$ : similar element, output -1. if  $\overline{d} \geq \delta_2$ : not a similar element, output -2.

#### **Norm-based Outlier detection**

$$\frac{\|\overrightarrow{w}\|_2}{\|\overrightarrow{u}\|_2} > \gamma \qquad O(mk + pk)$$

$$\widetilde{O}\left(\sqrt{p}\mu(A)\frac{\max_{i\in[p]}(\|\vec{c}_i\|_2)\|\vec{u}\|_2}{\epsilon}\right)$$

## Errors and uncertainties

### Expected time vs heuristic choice

Estimate: 
$$\left| \overline{t} - \frac{\|\overrightarrow{w}\|_2}{\|\overrightarrow{u}\|_2} \right| \leq \xi$$

Estimate: 
$$\left| \overrightarrow{d} - \|\overrightarrow{w} - \overrightarrow{c}_{j^*}\|_2^2 \right| \leq \epsilon$$





# Numerical experiments

## Goal and methodology

### Testing the allowable error and comparing running times

$$O(mk + pk) \qquad \widetilde{O}\left(\sqrt{p}\mu(A) \frac{\max_{i \in [p]}(\|\vec{c}_i\|_2)\|\vec{u}\|_2}{\epsilon}\right)$$

We run the classical algorithm, introducing uniformly sampled noise  $[-\epsilon, +\epsilon]$  in the distance estimation and norm ratio estimation ([-0.01, +0.01])

### Two tasks: Face recognition and image classification

### Face recognition

**ORL:** 



**Ext Yale B:** 



Image classification

MNIST + **Fashion MNIST:** 





### Two tasks: Face recognition and image classification

#### **Face recognition**

**ORL:** 



 $112 \times 92$ 

MNIST + Fashion MNIST:

### Image classification



 $28 \times 28$ 



 $28 \times 28$ 

**Ext Yale B:** 



 $192 \times 168$ 

| Dataset | # Labels | m     | Outliers | #Training (p) | k  | #Validation | #Test |
|---------|----------|-------|----------|---------------|----|-------------|-------|
| ORL     | 40       | 10304 | No       | 288           | 70 | 36          | 36    |
|         |          |       | Yes      |               |    | 54          | 54    |
| YALE    | 38       | 32256 | No       | 322           | 80 | 69          | 70    |
|         |          |       | Yes      |               |    | 149         | 134   |
| MNIST   | 10       | 784   | No       | 49000         | 60 | 10500       | 10500 |
|         |          |       | Yes      |               |    | 14000       | 14000 |

### Image classification - Hyperparameter tuning $\delta$

**Image classification** 

MNIST + Fashion MNIST:











### Image classification - Performances with $\epsilon$



## Results

### Summary of the numerical experiments

| Dataset | $\delta$ | Outliers | $\gamma$ | $\epsilon$ | Run. time         | Acc.  | Main Acc. | Recall |
|---------|----------|----------|----------|------------|-------------------|-------|-----------|--------|
| ORL     | $\infty$ | No       | _        | 0          | $7.41 \cdot 10^5$ | -     | 0.944     | _      |
|         | 74.38    | Yes      | _        | 0          | $7.41 \cdot 10^5$ | 0.870 | 0.833     | 0.944  |
|         | 74.38    | Yes      | 0.75     | 0          | $7.41 \cdot 10^5$ | 0.870 | 0.833     | 0.944  |
|         | 74.38    | Yes      | 0.75     | 15         | $3.12 \cdot 10^3$ | 0.849 | 0.829     | 0.888  |
| YALE    | $\infty$ | No       | _        | 0          | $2.61 \cdot 10^6$ | _     | 0.986     | _      |
|         | 232.0    | Yes      | _        | 0          | $2.61 \cdot 10^6$ | 0.888 | 0.900     | 0.875  |
|         | 232.0    | Yes      | 0.94     | 0          | $2.61 \cdot 10^6$ | 0.940 | 0.900     | 0.984  |
|         | 232.0    | Yes      | 0.94     | 100        | $2.84 \cdot 10^3$ | 0.910 | 0.866     | 0.959  |
| MNIST   | $\infty$ | No       | _        | 0          | $2.99 \cdot 10^6$ | _     | 0.975     | _      |
|         | 23.52    | Yes      | _        | 0          | $2.99 \cdot 10^6$ | 0.906 | 0.940     | 0.803  |
|         | 22.34    | Yes      | 0.75     | 0          | $2.99 \cdot 10^6$ | 0.927 | 0.940     | 0.885  |
|         | 22.34    | Yes      | 0.75     | 15         | $6.66 \cdot 10^3$ | 0.913 | 0.949     | 0.804  |

## Results

### Summary of the numerical experiments

| Dataset | $\delta$ | Outliers | $\gamma$ | $\epsilon$ | Run. time         | Acc.  | Main Acc. | Recall            |
|---------|----------|----------|----------|------------|-------------------|-------|-----------|-------------------|
| ORL     | $\infty$ | No       | _        | 0          | $7.41 \cdot 10^5$ | -     | 0.944     | -                 |
|         | 74.38    | Yes      | _        | 0          | $7.41 \cdot 10^5$ | 0.870 | 0.833     | $\mid 0.944 \mid$ |
|         | 74.38    | Yes      | 0.75     | 0          | $7.41 \cdot 10^5$ | 0.870 | 0.833     | $\mid 0.944 \mid$ |
|         | 74.38    | Yes      | 0.75     | 15         | $3.12 \cdot 10^3$ | 0.849 | 0.829     | 0.888             |
| YALE    | $\infty$ | No       | _        | 0          | $2.61 \cdot 10^6$ | _     | 0.986     | _                 |
|         | 232.0    | Yes      | _        | 0          | $2.61 \cdot 10^6$ | 0.888 | 0.900     | 0.875             |
|         | 232.0    | Yes      | 0.94     | 0          | $2.61 \cdot 10^6$ | 0.940 | 0.900     | 0.984             |
|         | 232.0    | Yes      | 0.94     | 100        | $2.84 \cdot 10^3$ | 0.910 | 0.866     | 0.959             |
| MNIST   | $\infty$ | No       | _        | 0          | $2.99 \cdot 10^6$ | _     | 0.975     | _                 |
|         | 23.52    | Yes      | _        | 0          | $2.99 \cdot 10^6$ | 0.906 | 0.940     | 0.803             |
|         | 22.34    | Yes      | 0.75     | 0          | $2.99 \cdot 10^6$ | 0.927 | 0.940     | 0.885             |
|         | 22.34    | Yes      | 0.75     | 15         | $6.66 \cdot 10^3$ | 0.913 | 0.949     | 0.804             |



<u>armando.bellante@polimi.it</u> @ikiga1