1 Week 1

1.1 Bhatt (Problems 1)

 $\mathbf{2}$

Let \mathcal{A} be an abelian category. Any category admits all colimits iff it admits coequalizers and all coproducts (easy exercise). Since \mathcal{A} is abelian it admits cokernels and therefore coequalizers and thus \mathcal{A} admits all colimits iff it admits all direct sums (coproducts).

3

- (a) the category of finite k-vector spaces has finite direct sums nut not countable direct sums. Likewise for countably generated vector spaces.
- (b) The opposite category of torsion abelian groups.
- (c)

4

Let \mathcal{C} be the category of torsion abelian groups. It is clear that \mathcal{C} is abelian as kernels and cokernels of torsion groups are torsion since subgroups and quotients are torsion. Furthermore all direct sums exist in \mathcal{C} because elements are zero all but finitely often and thus torsion since the nonzero entries are torsion.

Because \mathcal{C} has cokernels and all coproducts it has all colimits. Furthermore, filtered colimits in \mathbf{Ab} are exact so they are exact in \mathcal{C} as well. For a generator, consider,

$$X = \bigoplus_{n \in \mathbb{Z}^+} \mathbb{Z}/n\mathbb{Z}$$

Then for each element $a \in A$ for A a torsion abelian group we get a map $X \to A$ whose image contains a sending $\mathbb{Z}/n\mathbb{Z} \to 0$ unless n is the order of a in which case $1 \mapsto a$. Therefore we get a surjection,

$$X^{\oplus A} woheadrightarrow A$$

 $\mathbf{5}$

Let \mathcal{A} be Grothendieck abelian and I a category. Let $\mathcal{C} = \operatorname{Fun}(I, \mathcal{A})$ be the functor category. Clearly, \mathcal{C} is additive and admits kernels, cokernel, and infinite direct sums (constructed pointwise).

7

Let \mathcal{A} be an abelian category. Now $\mathbf{Ch}(\mathcal{A})$ is the subcategory of functors from \mathbb{Z} as a poset to \mathcal{A} such that the composition of sucessive maps is zero. (CAN WE REDUCE THIS TO PREVIOUS EXERCISE?)

11

Let \mathcal{A} be an abelian category and $\mathcal{A}^{\mathbb{N}} = \operatorname{Hom}(\mathbb{N}^{\operatorname{op}}, \mathcal{A})$ the category of projective systems. Assume that \mathcal{A} admits infinite direct sums and products.

- (a) Taking limits is right adjoint to the constant diagram functor $\Delta: \mathcal{A} \to \mathcal{A}^{\mathbb{N}}$ defined via $A \mapsto (n \mapsto A)$ with identity transition maps. Therefore $\lim: \mathcal{A}^{\mathbb{N}} \to \mathcal{A}$ preserves limits and thus is, in particular, left exact.
- (b) Note that given a projective system $\{X_n\} \in \mathcal{A}^{\mathbb{N}}$,

$$\lim X_n = \ker \left(\prod_{n \in \mathbb{N}} X_n \to \prod_{n \in \mathbb{N}} X_n \right)$$

where on the n^{th} factor the map is the difference of projection $\prod X_{n'} \to X_n$ and $f_n \circ (\prod X_{n'} \to X_{n+1})$ where $f_n : X_{n+1} \to X_n$ is the transition map. (FINISH THIS)

(c)

12

Fairly obvious.

13

Let \mathcal{A} be an abelian category and $f: K^{\bullet} \to L^{\bullet}$ be a map in $\mathbf{Ch}(\mathcal{A})$. Recall that,

$$C(f) = K[1] \oplus L$$

where the differential is,

$$\mathbf{d}_{C(f)} = \begin{pmatrix} \mathbf{d}_{K[1]} & 0\\ f[1] & \mathbf{d}_{L} \end{pmatrix}$$

Specifically, $C(f)^i = K^{i+1} \oplus L^i$ and d(x, y) = (-dx, dy + f(x)).

(a) Let $A^{\bullet} \in \mathbf{Ch}(\mathcal{A})$ be a complex. Consider,

$$g \in \operatorname{Hom}_{\mathbf{Ch}(\mathcal{A})} (C(f), A^{\bullet})$$

Then $g^i = (k^i, h^i)$ where $k^i : K^{i+1} \to A^i$ and $h^i : L^i \to A^i$ which satisfy,

$$g^{i+1} \circ \operatorname{d}_C^i = \operatorname{d}_A^{i+1} \circ g^i$$

Explicitly,

$$-k^{i+1} \circ d_K^{i+1}(x) + h^{i+1} \circ d_L^i(y) + h^{i+1} \circ f^{i+1}(x) = d_A^{i+1} \circ (k^i(x) + h^i(y))$$

Setting x = 0 we find that,

$$h^{i+1} \circ \mathrm{d}_L^i(y) = \mathrm{d}_A^{i+1} \circ h^i(y)$$

and therefore $h \in \operatorname{Hom}_{\mathbf{Ch}(\mathcal{A})}(L^{\bullet}, A^{\bullet})$. Setting y = 0 we find that,

$$h^{i+1} \circ f^{i+1}(x) = d_A^{i+1} \circ k^i(x) + k^{i+1} \circ d_K^{i+1}(x)$$

therefore k is a nullhomotopy of $h \circ f$ so we see that,

 $\operatorname{Hom}_{\mathbf{Ch}(\mathcal{A})}(C(f), -) = \{k : L^{\bullet} \to A^{\bullet} \text{ and } h : K^{\bullet + 1} \to A^{\bullet} \mid h \text{ is a nullhomotopy of } k \circ f\}$

(b) If L is acyclic then from the long exact sequence for the exact triangle,

$$K \xrightarrow{f} L \to C(f) \to K[1]$$

shows that $H^i(L) \to H^i(C(f))$ is an isomorphism.

(c)

1.2 Bhatt Lectures

2.4

Let \mathcal{C} be a category such that \mathcal{C} is enriched over \mathbf{Ab} with finite coproducts. Given $f, g : A \to B$ there exists a map $f + g : A \to B$. To show that being abelian is a property, we must describe f + g in terms of internal properties of the category. That is, there is a unique additive structure on any additive category.

Consider the map $A \to A \oplus A \to B$ defined by,

$$(f,g) \circ (\iota_1 + \iota_2) = (f,g) \circ \iota_1 + (f,g) \circ \iota_2 = f + g$$

Therefore, it suffices to show that $h = \iota_1 + \iota_2$ is internal to the category. There are zero maps $A \to 0$ (where 0 is the initial object) b/c $\operatorname{Hom}_{\mathcal{C}}(A,0)$ has an identity. Then $(\operatorname{id},0) \circ h = \operatorname{id} + 0 = \operatorname{id}$ and $(0,\operatorname{id}) \circ h = \operatorname{id}$. Call $\pi_1 = (\operatorname{id},0)$ and $\pi_2 = (0,\operatorname{id})$ then these make $A \oplus A$ a product and h the diagonal so h is unique.

To prove this consider $a: C \to A$ and $b: C \to B$ then $q = \iota_1 \circ a + \iota_2 \circ b$ satisfies $\pi_1 \circ q = a$ and $\pi_2 \circ q = b$. Furthermore, let $q': C \to A \oplus B$ be any map with this property. Then $q' = (\iota_1 \circ \pi_1 + \iota_2 \circ \pi_2) \circ q' = \iota_1 \circ a + \iota_2 \circ b$ because,

$$(\iota_1 \circ \pi_1 + \iota_2 \circ \pi_2) \circ \iota_i = \iota_i + 0 = \iota_i$$

and thus $(\iota_1 \circ \pi_1 + \iota_2 \circ \pi_2) = id$ because $A \oplus B$ is a coproduct.

Notice that this construction only relied on the choice of a zero map $A \to 0$. However, the identity of $0 : \operatorname{Hom}_{\mathcal{C}}(0,0)$ must be $\operatorname{id}_0 : 0 \to 0$ because 0 is initial so this set has a unique element. Therefore, for any $f : A \to 0$ we have $f = \operatorname{id}_0 \circ f = 0 \in \operatorname{Hom}_{\mathcal{C}}(A,0)$ because id_0 is the identity of the group and $-\circ f : \operatorname{Hom}_{\mathcal{C}}(0,0) \to \operatorname{Hom}_{\mathcal{C}}(A,0)$ is a group map. Therefore, $\operatorname{Hom}_{\mathcal{C}}(A,0)$ has a single element so there is no choice of zero map $A \to 0$.

Since there is a unique map $A \to 0$ we see that 0 is initial and final.

2.11

Solved in Bhatt problems 2,3.

2.20

- (a) Bhatt problems 7
- (b) Let \mathcal{A} be a Grothendieck abelian category. We construct the injective resolution inductively. First, $X \to (X \hookrightarrow I(X))$ is functorial. Assume there is a functorial assignment,

$$X \mapsto (X \hookrightarrow I^0(X) \to I^1(X) \to \cdots \to I^n(X))$$

Then consider

$$\operatorname{coker}\left(I^{n-1}(X)\to I^n(X)\right)\hookrightarrow I(\operatorname{coker}\left(I^{n-1}(X)\to I^n(X)\right))=I^{n+1}(X)$$

which is funtorial in X because cokernels and $C \mapsto I(C)$ is thus giving,

$$X \mapsto (X \hookrightarrow I^0(X) \to I^1(X) \to \cdots \to I^{n+1}(X))$$

2 Week 2

2.1 Bhatt (Problems 1)

15

(a) a

2.2 Bhatt (Problems 2)

6

7

8

9

2.3 Bhatt (Lectures)

2.25

6.12

6.13

2.4 Tsai (Problems)

1

2

3

3 Week 4

3.1 Bhatt (Problems 3)

1

Let \mathcal{D} be a triangulated category equiped with a t-structure. Let $X, Y \in \mathcal{D}^{\heartsuit}$. Recall that,

$$\operatorname{Ext}_{\mathcal{D}}^{-n}\left(X,Y\right) = \operatorname{Hom}_{\mathcal{D}}\left(X,Y[-n]\right)$$

Suppose that n > 0, since $Y \in \mathcal{D}^{\geq 0}$ we see that $Y[-n] \in \mathcal{D}^{\geq n} \subset \mathcal{D}^{\geq 1}$ and furthermore $X \in \mathcal{D}^{\leq 0}$ and therefore,

$$\operatorname{Ext}_{\mathcal{D}}^{-n}\left(X,Y\right) = \operatorname{Hom}_{\mathcal{D}}\left(X,Y[-n]\right) = 0$$

when n > 0.

 $\mathbf{2}$

Let X be a topological space and $K \in D(X)$,

(a) Consider $X = \mathbb{P}^1$ and $K = \mathcal{O}_X \oplus \mathcal{O}_X(-2)[1]$ Then we consider,

$$\operatorname{Hom}_{D(X)}(K|_{U}, K|_{U}) = \operatorname{Hom}_{D(X)}(\mathcal{O}_{U}, \mathcal{O}_{U}) \oplus \operatorname{Hom}_{D(X)}(\mathcal{O}_{U}, \mathcal{O}_{U}(-2)[1])$$

$$\oplus \operatorname{Hom}_{D(X)}(\mathcal{O}_{U}(-2)[1], \mathcal{O}_{U}) \oplus \operatorname{Hom}_{D(X)}(\mathcal{O}_{U}(-2)[1], \mathcal{O}_{U}(-2)[1])$$

$$= \Gamma(U, \mathcal{O}_{U}) \oplus H^{1}(U, \mathcal{O}_{U}(-2)) \oplus \Gamma(U, \mathcal{O}_{U})$$

which is not a sheaf because of the $H^1(U, \mathcal{O}_U(-2))$ term. We use,

$$\operatorname{Hom}_{D(X)}\left(\mathcal{O}_{U},\mathcal{O}_{U}(-2)[1]\right) = \operatorname{Ext}_{D(X)}^{1}\left(\mathcal{O}_{U},\mathcal{O}_{U}(-2)\right) = H^{1}(U,\mathcal{O}_{U}(-2))$$

(b) Suppose that $\operatorname{Ext}_{K|_U}^i(K|_U,=)0$ for all i<0 and open $U\subset X$.

Lemma 3.1.1. If the cohomology sheaves $H^i(K) = 0$ for all i < d then $U \mapsto \mathbb{H}^d(U, K)$ is a sheaf.

Proof. $K \cong \tau^{\geq d}K$ is an equivalent so we may assume K is zero in deg < d. Then choose a quis $K \xrightarrow{\sim} I$ for an injective resolution. Then,

$$\mathbb{H}^d(U,K) = \ker\left(I^d(U) \to I^{d+1}(U)\right)$$

and therefore $H^d(-,K) = \ker (I^d \to I^{d+1})$ is a sheaf.

Let L, K be complexes. Assume that $\operatorname{Ext}_{D(X)}^{i}(L|_{U}, K|_{U}) = 0$ for i < 0 and $U \subset X$ open. Now $H^{i}(\operatorname{RHom}(L, K))$ is the sheafification of,

$$U \mapsto \operatorname{Ext}_{D(U)}^{i}\left(L|_{U}, K|_{U}\right)$$

(c)

3

Let \mathcal{A} be an abelian category with enough projectives. Assume that $\operatorname{Ext}_{\mathcal{A}}^{2}(X,Y)=0$ for all $X,Y\in\mathcal{A}$.

- (a) Let $K \in D^b(\mathcal{A})$. Choose a projective resolution $P \to K$
- (b)

4

Let $D_f^b(k)$ be the derived category of bounded complexes of k-vector spaces with finitely generated cohomology.

Lemma 3.1.2. A t-structure is determined by $\mathcal{D}^{\leq 0}$.

Proof. We can recover

$$\mathcal{D}^{\geq 1} = \{ K \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}} \left(\mathcal{D}^{\leq 0}, X \right) \}$$

5

Let \mathcal{D} be a triangulared category with a t-structure. Let $K \in \mathcal{D}$ be a direct summand of $L \in \mathcal{D}^{\leq 0}$. Consider,

$$L=K\oplus F$$

We know $\tau^{\geq 1}(K \oplus F) = 0$ but $\tau^{\geq 1}$ is a left adjoint and thus preserves colimits so $\tau^{\geq 1}(K) \oplus \tau^{\geq 1}(F) = 0$ therefore $\tau^{\geq 1}(K) = 0$ so $K \in \mathcal{D}^{\leq 0}$.

6

4 Week 4

(DOOOOO THHHHIIIIIS!!!!!)

5 Week 7

5.1 Tsai (Problems 1)

4

5

6

5.2 Tsai (Problems 2)

1

Let $E \subset \mathbb{P}^2$ be an elliptic curve. Let $V \subset \mathbb{A}^3$ be the corresponding affine cover over E. Let o be the origin and $U := V \setminus \{o\}$ be the smooth locus of V. Wrtie $\iota : \{o\} \hookrightarrow V$ and $j : U \hookrightarrow V$ the embeddings. We want to compute $\iota^*Rj_*\mathbb{Q}_U$.

(DO THIISSS!!)

 $\mathbf{2}$

As in the last problem we want to show that $D_V \underline{\mathbb{Q}}_V[2] \ncong \underline{\mathbb{Q}}_V[2]$.

(DO THIS!!!!)

3

As in the last problem, we want to show that,

$$R\Gamma(V, \tau_{\leq -1}Rj_*\underline{\mathbb{Q}}_U[2]))$$

is dual to

$$R\Gamma_c(V, \tau_{\leq -1}(Rj_*\underline{\mathbb{Q}}_U[2]))$$

4

Let X be a smooth complete variety over \mathcal{C} and let $x \in X$ be a fixed point. Let $\iota_x : \{x\} \hookrightarrow X$ be the inclusion. We want to compute $\mathscr{F} = \mathrm{RHom} \iota_x \underline{\mathbb{Q}} \underline{\mathbb{Q}}_X$.