

IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): An optical waveguide circuit device comprising:
a substrate having a cleavage plane formed at least one of horizontally and
perpendicularly to an orientation flat;
a waveguide formed from a core on said substrate; and
an incision line constructed by a groove or/and a separating slit formed by crossing at
least one portion of the core of said waveguide;
wherein a face of said incision line is formed at an arbitrary angle with respect to set
to a face different from the cleavage plane of said substrate.

Claim 2 (Original): The core of the waveguide of the optical waveguide circuit
device according to claim 1 comprising:
one or more optical input waveguides arranged side by side;
a first slab waveguide connected to output ends of said optical input waveguides;
an arrayed waveguide connected to an output end of said first slab waveguide and
including a plurality of channel waveguides arranged side by side for transmitting light that
has traveled through said first slab waveguide, said channel waveguides having different
predetermined length;
a second slab waveguide connected to an output end of said arrayed waveguide; and
a plurality of optical output waveguides arranged side by side and connected to an
output end of said second slab waveguide;
wherein the incision line is a groove formed in a mode crossing at least said arrayed
waveguide.

Claim 3 (Original): The optical waveguide circuit device according to claim 2, wherein a half-wave plate is inserted into the groove crossing said arrayed waveguide.

Claim 4 (Currently Amended): The core of the waveguide of the optical waveguide circuit device according to claim 1, which is a core of an arrayed waveguide grating type optical multiplexer/demultiplexer comprising:

one or more optical input waveguides arranged side by side;
a first slab waveguide connected to output ends of said optical input waveguides;
an arrayed waveguide connected to an output end of said first slab waveguide and including a plurality of channel waveguides arranged side by side for transmitting light that has traveled through said first slab waveguide, said channel waveguides having different different predetermined length;
a second slab waveguide connected to an output end of said arrayed waveguide; and
a plurality of optical output waveguides arranged side by side and connected to an output end of said second slab waveguide;
wherein the incision line is set to a separating slit for separating at least one of said first and second slab waveguides.—The; the separating slit is formed to cross an optical path of at least one of said first and second slab waveguides;
a slide moving member slides and moves at least one side of the separating slab waveguide separated with this separating slit along said separating face depending on a temperature of AWG; and
a light transmission central wavelength of an arrayed waveguide grating type optical multiplexer/demultiplexer is shifted by a slide moving operation of said slide moving member depending on the temperature.

Claim 5 (New): An optical waveguide circuit device according to Claim 1, wherein:
said cleavage plane and the face of said incision line are formed so as to set an angle
therebetween to 20°.