Leaf ECU Manual (REV 1.8)

Черный разъём X1. Серый разъём X2. На разъёмах находиться нумерация пинов. Пины в ответный разъем контроллера можно вставлять сзади хаусинга не разбирая его, только перед этим достав желтый фиксатор спереди разъёма.

Powertrain

Важно!!! Все провода кан шины должны быть скручены в витую пару!

На данный момент, есть два варианта подключения устройств к линии 12в. 1) ECU, PDM, OBD, подключаются к аккумулятору 12в напрямую, а инвертор после замка зажигания. 2) Все устройства подключаются к аккумулятору 12в после замка зажигания. Рекомендуем подключать 2м вариантом, так как тогда исключен разряд аккумулятора 12в, но зарядка будет производиться только с включённым зажиганием. Скоро мы это исправим!

Мы это исправили)

Контроллеры 4й версии платы имеют новую схему питания. Обратите внимание, что зарядный порт Туре 1 от Leaf имеет резистор R5 прям возле розетки под резиновым чехлом, его нужно перенести, и подключить как на схеме ниже!

(схема для инвертора АZEO, для других распиновки разъёма ниже, подключение такое же)

На контроллер необходимо подавать постоянные 12в с аккумулятора, и отдельно 12в с замка зажигания. После выключения ключа зажигания контроллер еще остается включенным, пока мотор не остановиться, после чего выключает контактора батареи и выключается сам. Так же необходимо разорвать линию РР между PDM и зарядным портом. При вставленном пистолете в зарядный порт, контроллер включается и начинает процесс зарядки.

Leaf motor inverter gen 1

TRACTION MOTOR INVERTER

Pin #	Connection	Pin #	Connection	
2, 8	12v Ground	10, 4	+12v Key Switch	
12	CANH	19	CANL	
33	Always On 12v			

Leaf motor inverter gen 2

Connector No.	F13
Connector Name	TRACTION MOTOR INVERTER
Connector Color	BLACK

Terminal No.	Color of Wire	Signal Name
1	-	-
2	-	-
3	-	-
4		
5	-	-
6	-	-
7	-	-
8	-	-
9	-	-
10	-	-
11	-	-
12	-	-
13	-	-
14	L	EV SYSTEM CAN-H
15	G	EV SYSTEM CAN-L
16	-	-
17	Р	REZ_S2
18	L	REZ_S4
19	R	REZ_R1
20	В	REZ_S1

Terminal No.	Color of Wire	Signal Name
21	W	REZ_S3
22	-	-
23	-	-
24	-	-
25	_	_
26	-	-
27	G	REZ_R2
28	-	-
29	-	-
30	-	_
31	-	-
32	-	-
33	-	-
34	-	-
35	-	-
36	-	-
37	-	-
38	-	-
39	-	-
40	-	-
41	-	-
42	LG	IGN_SW
43	-	-
44	0	TMGND
45	Υ	TM
46	G	VB1
47	В	VBGND1
48	G	VB2
49	В	VBGND2

Распиновка разъёма инвертора.

Для подключения инвертора и пдм модуля лучше использовать заводскую проводку от лифа, с неё нужно удалить всё лишние, оставив разьем в инвертор, пдм, и на резольвер в моторе.

Пины 46 и 48 – питание входное постоянных 12в, пин 42 – 12в с замка зажигания.

47 и 49 - GND

Leaf motor inverter gen 3

Α	В	С	D	Е
	Gen2	color	Gen3	color
Can H	14	(L) Blue	5	(L) Blue
Can L	15	(G) Green	11	(G) Green
Resolver S2	17	(P) Pink	9	(P) Pink
Resolver S4	18	(L) Blue	3	(L) Blue
Resolver R1	27	(G) Green	16	(G) Green
Resolver R2	19	(R) Red	22	(R) Red
Resolver S1	21	(W) White	14	(W) White
Resolver S3	20	(B) Black	19	(B) Black
12V Ignition	42	(LG) Light Green	18	(LG) Light Green
Traction m temp	44	(O) Orange	20	(V) Violet
Traction m temp	45	(Y) Yellow	7	(Y) Yellow
12V	46	(G) Green	1	(G) Green
Ground	47	(B) Black	4	(B) Black
12V	48	(G) Green	6	(G) Green
Ground	49	(B) Black	10	(B) Black

OBD2 разъём

Для настройки и диагностики контроллера, необходимо установить OBD разъём, в него вставляется диагностическое устройство. Возможно использовать ELM 327 V1.5 Bluetooth, WI-FI, USB версии или OBDLink.

Распиновка OBD разъёма

PDM модуль

Connector No.	F23
Connector Name	PDM (POWER DELIVERY MODULE)
Connector Color	GRAY

Распиновка интерфейсного разъёма PDM модуля

На PDM пины 30 и 29 (зарядного порта) подключаются к двух пиновому разьему на самом порту. Белый провод к белому, зеленый к коричневому, при использовании проводки от лифа.

Корпус PDM модуля необходимо подключить на массу, так как его корпус минусовой виход из DC-DC.

Разъем зарядки Type 1, для использования Type 2 необходимо заменить резистор R5

Кнопки управления

Выбор направления движения (селектор), сейчас доступен в варианте кнопок, как на схеме выше, или оригиальный селектор от Nissan Leaf, по этому необходимо в конфураторе указать тип селектора.

Кнопки «Drive», «Revers» должны быть с фиксацией. Кнопка «Start», может быть с фиксацией или тактовой. Режим её работы можно настроить в конфигураторе.

При нажатии кнопки «Start» включаються контактора, инвертор готов к работе, селектор в положении нейтрали находиться. Для начала движения нужно нажать «Drive» или «Revers». Если на контроллер поступит одновременно сигнал с кнопки «Drive» и «Revers», контроллер перейдет в нейтраль. Для кнопки «Drive» и «Revers» нужно использовать 3х позиционный тумблер, в среднем положении будет «Neutral», а в крайних положениях «Drive» и «Revers».

Силовое реле

Силовые реле лучше брать с параметрами близкими как стоят в Nissan Leaf. КОНТАКТОРЫ ОТ ТЕСЛА НЕ ПОДХОДЯТ, так как имеют большой ток удержания катушки, и нуждаються в економайзере. Есть аналогичные контакторы, как в тесле, но уже с схемой снижения тока внутри себя.

Оранжевые провода 35кв мм. Синие провода 2.5кв мм. Зелёные провода 0.75кв мм.

Полярность подключения силовой батареи к PDM.

Сбоку модуля, находиться шпилька, это выход 12в с дс-дс преобразователя, корпус PDM служит GND для дс-дс преобразователя, поэтому он должен быть подключен к корпусу автомобиля.

Педаль акселератора

Сигнальный провод педаль акселератора подключается к пину B2 разъёма X1. На сигнальном проводе должно меняться напряжение в диапазоне 0 — 5В, проверьте это до подключения провода к контроллеру. C1 X1 — это выход +5в для педали акселератора. C2 X1 — это GND для педали акселератора.

Пин А2 разъёма X1 для второго датчика педали (в автомобильных педалях 2 датчика), пока он программно не используется, но если в вашей педали он есть, подключите его лучше сразу. В конфигураторе нужно настроить минимальное и максимальное напряжение педали акселератора

Педаль акселератора можно использовать как резистивную, так и на датчиках Холла. При подключении педали на датчиках Холла, нужно убедится какая полярность датчика, и где сигнальный выход, иначе можно сжечь датчик, или стабилизатор 5в в контроллере.

Распиновка педали акселератора Nissan Leaf. Педаль с таким же разъёмом стоит но многих других Nissan и Renault.

Nº	
1	СИГН. + ПОТЕНЦИОМЕТРА НАГРУЗКИ 2
6	- ПОТЕНЦИОМЕТРА НАГРУЗКИ 2
2	+ ПОТЕНЦИОМЕТРА НАГРУЗКИ 2
5	- ПОТЕНЦИОМЕТРА НАГРУЗКИ 1
4	СИГН. + ПОТЕНЦИОМЕТРА НАГРУЗКИ 1
3	+ ПОТЕНЦИОМЕТРА НАГРУЗКИ 1

Контроллер поддерживает работу с бмс от Chevrolet Volt Gen 1, Orion 2 и Leaf BMS.

Chevrolet Volt Gen 1:

BMS состоит из 4 модулей, на них есть маркировка 1, 2/3 (2шт), 4. Батарею можно разносить до 4х отдельных блоков за счёт сателлитов.

Обратите внимание, на сателлитах 2/3 есть перемычка, которая задает местоположение сателлита в батарее, без неё сателлит не работает.

(вид с стороны БМС)

9 - +5v 10 - CAN H

11 - CAN L

12 - GND

Чёрный разъем на сателлитах интерфейсный. Рекомендуем подключать кан шину и питание по схеме выше, так как в родной проводке вольта, провода идут транзитом через сателлиты, а это вызывает сложности в дальнейшем с диагностикой.

Оранжевые разъёмы на сателлитах нужны для подключения балансировочных проводов от ячеек и

термодатчиков. Термодатчики необходимо с данной бмс использовать NTC 10Kom

Разьемы есть двух типов, на 12 ячеек и 6 ячеек, справа распиновка на 12 ячеек. На сателлитах 2/3 разьемы только на 12 ячеек. На сателлитах 1 и 4 есть разъем на 6 ячеек.

(Разъем на 6 ячеек) ->

Pin	Function
1	Battery Module Temperature Signal
2	Low Reference
3-8	Not Used
9	Battery Voltage Signal (18)
10	Battery Voltage Signal (17)
11	Battery Voltage Signal (16)
12	Battery Voltage Signal (15)
13	Battery Voltage Signal (14)
14	Battery Voltage Signal (13)
15	Battery Voltage Signal (12)
16-21	Not Used

Pin	Function
1	Battery Module Temperature Signal
2	Low Reference
3	Battery Module Temperature Signal
4	Low Reference
5-8	Not Used
9	Battery Voltage Signal (12)
10	Battery Voltage Signal (11)
11	Battery Voltage Signal (10)
12	Battery Voltage Signal (9)
13	Battery Voltage Signal (8)
14	Battery Voltage Signal (7)
15	Battery Voltage Signal (6)
16	Battery Voltage Signal (5)
17	Battery Voltage Signal (4)
18	Battery Voltage Signal (3)
19	Battery Voltage Signal (2)
20	Battery Voltage Signal (1)
21	Low Reference

Последовательность размещения сателлитов может меняться, но тогда карта ячеек будет не корректно показывать расположение ячеек.

Nissan Leaf:

БМС от **Nissan Leaf** можно использовать от AZEO и ZEO (ZE1 на стадии тестов). БМС подключается по кан шине, A4 X1 - CAN H, B4 X1 - CAN L.

Так же, необходимо подключить родные термодатчики и датчик тока к бмс. Интерлоки можно не использовать. Ниже схема для БМС от AZEO, для других типов есть небольшие отличая.

D

Е

G

Н

Κ

Датчик тока

Датчик тока можно размещать в любом месте внутри батарее до силовых реле.

Pin out
Channel 2
Vcc
Gnd
Channel 1

Система охлаждения силовой установки

Для нормальной работы силовой установки, нужна жидкостная система охлаждения

Схема подключения помпы и вентилятора

Температуры включения помпы и вентилятора можно задать в конфигураторе.

Стоп-сигнал

Контроллер может включать стоп сигнал при рекуперативном торможении, для этого нужно поставить реле между жабкой педали тормоза и лампой стоп сигнала. На пин В8 X2 нужно подать сигнал с лампы стоп сигнала, чтоб контроллер мог отслеживать нажатие педали тормоза. При заданном токе рекуперации, контроллер может включать стоп сигнал.

Chademo

Используете пдм с чадемо портом, то можете использовать внутреннее силовые контактора (Chademo Power Relay + & -), отдельно выведя от них провода. Если пдм без порта чадемо, то нужно поставить дополнительно 2 силовых контактора. Реле (Enable Relay) нужно ставить дополнительно не зависимо от версии PDM.

Дисплей

Распиновка контроллера дисплея

- Х1 (Входы сигнальных ламп)
- 1 Поворот правый (IN 1)
- 10 Поворот левый (IN 2)
- 2 Габариты (IN 3)
- 11 Ближний свет (IN 4)
- 3 Дальний свет (IN 5)
- 12 Ручник (IN 6)
- 4 Ремень (IN 7)
- Х2 (Подключение дисплея)
- 1 TX
- 3 RX
- 2 5v out
- 4 GND
- ХЗ (Интерфейсный)
- 3 CAN H
- 7 CAN L
- 4 +12V
- 8 GND

Усилитель тормоза

Контроллер может управлять вакуумным насосом усилителя тормоза, для этого нужно подключить датчик разрежённости и вакуумный насос через реле к контроллеру по схеме:

В конфигураторе нужно настроить пороги напряжения датчика при которых будет включаться и выключаться насос.

Настройка контролера

Порядок запуска:

- 1. Подключение проводки
- 2. Подключение компьютера через ЕЛМ327 и программу конфигуратора к контроллеру
- 3. Настройка педали газа!
- 4. Настройка конфигурации контроллера
- 5. Проверка кнопок
- 6. Запуск

Для настройки и мониторинга параметров контроллера используется программа DDT4ALL, она работает на Windows, Linux. Карту ячеек и температуру батареи можно посмотреть через Android устройство в программе CanZE.

Настройка педали газа

Настройка педали настраивается параметрами в конфигураторе во вкладке INV.

«Мин. педали газа» – нужно записать значение параметра «положение педали газа» при котором мотор начнет вращаться.

«Макс. педали газа» - нужно записать значение параметра «положение педали газа» при котором мотор вращаться с максимальной мощностью.

«Положение отпущенной педали» - нужно записать значение параметра «положение педали газа» в момент полностью отпущенной педали.

«Момент в точке» - нужно записать % от максимального крутящего момента в точке калибровки.

«Положение педали в точке» - нужно записать значение параметра «положение педали газа» в точке калибровки.

«Момент холостого хода» - момент при включении D или R при не нажатой педали газа, Онм выкл.

Настройка конфигурации контроллера

После настройки педали акселератора, необходимо задать «Максимум крутящего момента».

Далее, зайти в экран Setting и проверить все параметры что там есть.

Параметр «Окружность колеса» задать в см.

Параметр «Тип инвертора» обязательно правильно выбрать инвертор который у вас установлен.

Параметр «Напряжения включения контакторов» задать в вольтах, этот параметр не даёт включать основной контактор, если напряжения на инверторе в момент пред заряда меньше заданного. Защита, от обрыва силового провода, или обрыва резистора пред заряда.

- нажать для обновления параметров один раз

- нажать для обновления циклично, частоту можно задать снизу страницы, параметром «Частота обновления».

Manual REV history:

- 1.7: add Leaf BMS info, fix error in 12v power scheme with charge port resistor, fix error in current sens scheme (pin A7 X1 change to C7 X1), add rev history.
- 1.8: add Volt BMS pinout.