SUCESIONES DE FUNCIONES MEDIBLES

JUAN FERRERA

Vamos a ver que la propiedad de ser medible se conserva por sucesiones. Ello nos va a permitir ver que hay muchas funciones medibles más allá de las funciones continuas que ya sabemos que son medibles. Como vamos a tomar límites, nos van a aparecer valores infinitos. Por ello va a ser útil admitir funciones que tomen valores infinitos. Es decir $f: A \to [-\infty, \infty]$. El conjunto de puntos donde la función tome valores reales lo llamaremos dominio de f, y denotaremos

$$dom f = \{x \in A : f(x) \in \mathbb{R}\}.$$

Definición: Sea $A \subset \mathbb{R}^n$, un conjunto medible. Diremos que una función $f: A \to [-\infty, +\infty]$ es medible si $f^{-1}(-\infty)$, $f^{-1}(+\infty)$ son conjuntos medibles y $f: dom f \to \mathbb{R}$ es una función medible.

Observación: Como $f^{-1}(-\infty)$ y $f^{-1}(+\infty)$ son conjuntos medibles, resulta que

$$dom f = A \setminus (f^{-1}(-\infty) \cup f^{-1}(+\infty))$$

también es medible.

Proposición: Si A es medible y $f_k: A \to [-\infty, \infty]$ es una sucesión de funciones medibles, entonces $f = \sup_k f_k$ es medible.

Demostración: $f^{-1}(-\infty)$ es medible porque es intersección numerable de conjuntos medibles, ya que

$$f^{-1}(-\infty) = \bigcap_{k=1}^{\infty} f_k^{-1}(-\infty)$$

 $f^{-1}(+\infty)$ es medible porque es intersección numerable de uniones numerables de conjuntos medibles, ya que

$$f^{-1}(+\infty) = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \{x : f_k(x) > m\}$$

Por último,

$$\{x \in dom f : f(x) \le \alpha\} = \bigcap_{k=1}^{\infty} \{x \in dom f_k : f_k(x) \le \alpha\}$$

Date: January 26, 2022 (1091).

y por tanto es medible (por ser interscción numerable de medibles) para todo $\alpha \in \mathbb{R}$. Concluimos que $f = \sup_k f_k$ es medible. \clubsuit

Corolario: Si A es medible y $f_k: A \to [-\infty, \infty]$ es una sucesión de funciones medibles, entonces $f = \inf_k f_k$ es medible.

Demostración: $f = -\sup_k (-f_k)$ y por tanto es medible, porque si una función es medible, entonces su opuesta también lo es. \clubsuit

Proposición: Si A es medible y $f_k: A \to [-\infty, \infty]$ es una sucesión de funciones medibles, entonces $f = \liminf_k f_k$ y $f = \limsup_k f_k$ son medibles.

Demostración:

$$\limsup_{k} f_{k} = \inf_{m} \left[\sup_{k \geq m} f_{k} \right]$$
$$\liminf_{k} f_{k} = \sup_{m} \left[\inf_{k \geq m} f_{k} \right]$$

Proposición: Si A es medible y $f_k: A \to [-\infty, \infty]$ es una sucesión de funciones medibles, entonces $A_0 = \{x : \lim_k f_k(x) \text{ existe }\}$ es medible y $f: A_0 \to [-\infty, +\infty]$ definida como $f(x) = \lim_k f_k(x)$ es medible.

Demostración: A_0 es el conjunto de puntos tales que $\liminf_k f_k(x) = \limsup_k f_k(x)$. Puedo escribirlo como $A_0 = A_\infty \cup D_0 \cup A^\infty$ donde

$$A_{\infty} = \{x : \liminf_{k} f_k(x) = \limsup_{k} f_k(x) = -\infty\}$$

$$A^{\infty} = \{x : \liminf_{k} f_k(x) = \limsup_{k} f_k(x) = +\infty\}$$

$$D_0 = \{x : \liminf_{k} f_k(x) = \limsup_{k} f_k(x) \in \mathbb{R}\}$$

Es inmediato que A_{∞} y A^{∞} son medibles, para ver que D_0 lo es, observamos que está contenido en la intersección de los dominios del límite superior y del límite inferior, que denoto por D. Si defino $g:D\to\mathbb{R}$ como $g=\limsup_k f_k-\liminf_k f_k$, entonces $D_0=\{x\in D:g(x)=0\}$ es medible y porque g es medible. Como si $x\in A_0$ $\lim_k f_k(x)=\limsup_k f_k(x)$, resulta que f es medible. \clubsuit

Ahora vamos a hablar de un concepto fundamental en Teoría de la Medida. Es el concepto **casi todo punto**. Decimos que una propiedad se cumple en casi todo punto (abreviado c.t.p, o también, en inglés,

a.e.) si se cumple en todos los puntos salvo como mucho en los de un conjunto de medida cero. Por ejemplo dos funciones f y g son iguales en casi todo punto (f = g c.t.p.) si el conjunto de puntos donde son distintas tiene media cero.

Observación: Si f = g c.t.p. y f es medible, entonces g es medible. Esto es consecuencia de la definición de función medible, porque la imagen inversa de un abierto a través de f y de g solo pueden diferir en un conjunto de medida 0, y los conjuntos de medida 0 son medibles.

Observación: Si $f = \lim_k f_k$ c.t.p. y f_k es medible para todo k, entonces f es medible.

Con todas las herramientas que hemos visto, podemos encontrar ejemplos de funciones medibles, no necesariamente continuas.

- (1) Si E es medible, la función característica de E, \aleph_E , es medible. Esto es consecuencia de que la imagen inversa de cualquier conjunto a través de la función característica es o \emptyset , E, E^c , o \mathbf{R}^n , todos ellos conjuntos medibles.
- (2) Si $E_1, \ldots E_m$ son conjuntos medibles y $\alpha_1, \ldots, \alpha_m \in \mathbf{R}$, entonces

$$\varphi = \sum_{i=1}^{m} \alpha_i \aleph_{E_i}$$

es medible. Ya que es suma de escalares por funciones medibles. A estas funciones las llamamos **funciones simples**.

(3) Toda función continua en casi todo punto es medible.

Veamos la última afirmación.

Proposición: Toda función $f: \mathbb{R}^n \to \mathbb{R}$ continua c.t.p. es medible.

Demostración: Si denoto $f_k = f \aleph_{B(0,k)}$ tengo que $f = \lim_k f_k$ y por tanto basta probar que f_k es medible. Es decir, puedo suponer que f está definida en un cubo $Q = [-N, N]^n$.

Para cada k dividimos Q en cubos semiabiertos de lado 2^{-k} , $(Q_j^k)_j$ de forma que son disjuntos dos a dos y que unen Q, llamamos a la familia de todos esos cubos \mathcal{R}_k . Obsérvese que los cubos de \mathcal{R}_{k+1} están contenidos en los cubos de \mathcal{R}_k . Denotamos

$$c_j^k = \inf_{x \in Q_j^k} f(x)$$
 y $\varphi_k = \sum_j c_j^k \aleph_{Q_j^k}$

Las funciones φ_k son medibles. Para ver que f es medible basta ver que si f es continua en x entonces $\lim_k \varphi_k(x) = f(x)$. Veámoslo.

Sea $\varepsilon>0$, existe $\delta>0$ tal que si $||y-x||<\delta$ entonces $|f(y)-f(x)|<\varepsilon$. Tomo k suficientemente grande para que exista Q_j^k satisfaciendo $x\in Q_j^k\subset B(x,\delta)$. Tenemos entonces que $|f(x)-c_j^k|<\varepsilon$ y por tanto $0\le f(x)-\varphi_k(x)<\varepsilon$. \clubsuit