Lead Scoring Case Study Summary:

Problem Description:

An education company named X Education sells online courses to industry professionals. Although X Education gets a lot of leads, its lead conversion rate is very poor and is around 30%.

X Education needs help with building a logistic regression model so as to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

Approach:

Reading & understanding the data:

- ✓ In this step we took a first look at the dataset and inspected the following:
- ✓ First few and last few rows
- ✓ Checked the shape of the data
- ✓ Data types for each column
- ✓ Got the descriptive statistics for the numerical columns
- ✓ Did basic research to get better understanding of the domain

Data Cleaning:

- ✓ Converted 'Select' values to null values.
- ✓ Missing value treatment:

Missing Value Treatment:

Feature Name	% of Nulls	How it was handled
How did you hear about X Education	78.5%	Dropped as missing values > 45%
Lead Profile	74.2%	Dropped as missing values > 45%
Lead Quality	51.6%	Dropped as missing values > 45%
Asymmetrique Profile Score	45.6%	Dropped as missing values > 45%
Asymmetrique Activity Score	45.6%	Dropped as missing values > 45%
Asymmetrique Activity Index	45.6%	Dropped as missing values > 45%
Asymmetrique Profile Index	45.6%	Dropped as missing values > 45%
City	39.7%	Dropped as as missing values ~40% and data skewed towards category Mumbai
Specialization	36.6%	Missing values imputed as Unknown
Tags	36.3%	Dropped as feature generated by Sales Team.
What matters most to you in choosing a course	29.3%	Dropped due to skewness towards a single category
What is your current occupation	29.1%	Replaced null values with Unknown to avoid skewing the data further
Country	26.6%	Dropped as as missing values ~40% and data skewed towards category India
Page Views Per Visit	1.5%	Imputed missing values to median, given presence of outliers and capped outliers with value at 99th percentile
TotalVisits	1.5%	Imputed missing values to median, given presence of outliers and capped outliers with value at 99th percentile
Last Activity	1.1%	Used mode email opened to impute the data and clubbed categories with lower frequency into 'Others'
Lead Source	0.4%	Converted category google to Google and also clubbed categories with lower frequency into 'Others'

- ✓ Further dropped columns with only one unique value:
- ✓ Dropped columns with unique values = 2, after confirming data imbalance of > 85%
- ✓ Checked for duplicates, none were found.

Exploratory Data Analysis:

- ✓ Did basic EDA and identified very interesting patterns in the data.
- ✓ Performed bivariate analysis on categorical columns to see how they vary w.r.t Converted column.
- ✓ Dropped the column 'Last Notable Activity' as the feature is sales team generated
- ✓ Performed bivariate analysis on numerical columns by plotting box plots.
- ✓ Also used a heat plot to identify highly correlated numerical columns.

Data Preparation:

- Created dummy variables the categorical columns with more than 2 categories using the pd.get dummies function
- ✓ Performed a 70-30 spilt the leads dataset into Train and Test respectively
- ✓ Performed feature scaling using the standard scaler.

Model Building:

- ✓ We shortlisted the top 15 features using the Recursive Feature Elimination (RFE) technique to build our first model.
- ✓ In the next few iterations, we further fine-tuned our model by eliminating features with p-values > 0.05 and (Variable Inflation Factor) vif values > 5. Using vif helps reduce the impact of multicollinearity in the data.
- ✓ Once this model was less complex with ~10 features, we predicted probabilities on the train set and created a new column predicted with 1 if probability is greater than .5 else 0.

Model Evaluation:

- ✓ We also calculated the metrics sensitivity, specificity, precision, and accuracy.
- ✓ To make predictions on the train dataset, optimum cut-off of 0.34 was found from the intersection of sensitivity, specificity and accuracy as shown in below figure.
- \checkmark We also plotted roc curve to find the area under the curve (0.87 for the train data set).
- ✓ We also tired getting the optimal cut-off using Precision vs. Recall Trade-off curve. However, the models sensitivity and precision went below the 75% mark and hence was not considered in as the final cut-off.

Model Accuracy : 80.8 %
Model Sensitivity : 74.5 %
Model Specificity : 84.7 %
Model Precision : 75.0 %

o Predictions on the Test Set:

✓ After finalizing the optimum cut-off of 0.34 and calculating the metrics on train set, we predicted the data on test data set. Below are the observations:

Final Observations:

Below are the predictor variables that we used in our final model and their relative importance:

