1 Uke 7

Oppgave 1. La $a_n = \arctan(n)\sin(\frac{n\pi}{2})$. Finn $\limsup_{n\to\infty} a_n$ og $\liminf_{n\to\infty} a_n$.

La $M_n = \sup \{a_k \mid k \geq n\}$ og $m_n = \inf \{a_k \mid k \geq n\}$. Ser at når k = 4l + 1 så er $\sin \left(\frac{k\pi}{2}\right) = \sin \left(2\pi k + \frac{pi}{2}\right) = 1$. Siden $\arctan(n)$ er en monotont voksende funksjon vil det si at det holder å se på ledd på formen $\arctan(k) \cdot 1$. Vet da at $\sup \{a_k \mid k \geq n\} = \sup \{\arctan(k) \mid k \geq n\} = \frac{\pi}{2} = M_n$.

Da blir $\limsup_{n\to\infty} a_n = \lim_{n\to\infty} M_n = \frac{\pi}{2}$. For \liminf må vi se på når $\sin\left(\frac{k\pi}{2}\right) = -1$, og av samme grunn får vi at $\liminf_{n\to\infty} a_n = \lim_{n\to\infty} m_n = -\frac{\pi}{2}$.