AMATH 301 Homework 2 Writeup

Jaiden Atterbury - Section B

01-16-2023

Problem 1:

Part (a):

Q: Record the values of x_1 , x_2 , x_3 , and x_4 you found in Coding problem 2 and rank them in order from smallest to largest.

A: As found in Coding problem 2, $x_1 = 1.8848368 \times 10^{-8}$, $x_2 = 0.0188705$, $x_3 = 0$, and $x_4 = 0$. Thus, in order from smallest to largest we have: x_4 , x_3 , x_1 , and x_2 .

Part (b):

Q: Discuss what you found in part (a). Why do you think some are larger than others? Are there any outliers to your conclusion?

A: In part (a), we see that there are two values that are exactly zero, and two values that are greater than zero. In particular, $x_1, x_2 > 0$ and $x_3, x_4 = 0$. Notice that even though x_1 and x_2 were found by using a for loop to sum the same term, we can see that $x_1 < x_2$. This happens because there are more iterations of the for loop in x_2 with the term we are summing staying the same for both x_1 and x_2 . In general, the more iterations of the for loop, the larger the total truncation error is going to be. However, x_3 and x_4 are major outliers to this theory because they have the same amount of iterations as x_2 , yet they are both zero while x_2 is not. The reason why x_2 is not exactly zero while x_3 and x_4 are, comes down to the fact that computers store information in base 2. The difference between x_2 and x_3, x_4 will be discussed further in part (c) and will shed some light on why the fact that computers store information in base 2 matters when it comes to truncation error.

Part (c):

Q: Which of your answers is exactly zero. Can you guess why that is the case?

A: As shown in part (a), the x_i 's that are exactly zero are x_3 and x_4 . In order to see why these x_i 's are exactly zero and the others aren't, we have to look at the corresponding term values that were added together in the for loop. The term value corresponding to x_3 is $0.25 = \frac{1}{4} = 2^{-2}$ and the term value corresponding to x_4 is $0.5 = \frac{1}{2} = 2^{-1}$. The reason why these term values being of the form 2^{-k} is important is because computers store information in base 2. Thus, computers can store the exact value of any decimal that can be represented as a fraction by $\frac{m}{2^k}$. Where m,k are any integer values.

Code Used:

```
# Part (a):
y1 = 0
term = 0.1
for k in range(100000):
    y1 += term
y2 = 0
y3 = 0
y4 = 0
```

```
term1 = 0.1

term2 = 0.25

term3 = 0.5

for k in range(100000000):

    y2 += term1

    y3 += term2

    y4 += term3

# Part (b):

x1 = abs(10000 - y1)

x2 = abs(y2 - 10000000)

x3 = abs(25000000 - y3)

x4 = abs(y4 - 50000000)
```

Problem 2:

Description:

Create a plot of cosine on the interval $[-\pi, \pi]$ and plot the Taylor-series approximations for n = 1, 3, 14.

Plot:

Code used:

```
def get_cos_taylor(array, order):
    y_values = np.zeros(100)
    for k in range(order + 1):
```

```
y_values += ((-1) ** k / np.math.factorial(2 * k)) * (array ** (2 * k))
    return y_values
x = np.linspace(-1 * np.pi, np.pi, 100)
# Part (i):
y = np.cos(x)
plt.plot(x, y, color="k", linewidth=2)
# Part (ii):
y = get_cos_taylor(x, 1)
plt.plot(x, y, color="b", linestyle="--", linewidth=2)
# Part (iii):
y = get_cos_taylor(x, 3)
plt.plot(x, y, color="r", linestyle="-.", linewidth=2)
# Part (iv):
y = get_cos_taylor(x, 14)
plt.plot(x, y, color="m", linestyle=":", linewidth=2)
# Part (v):
plt.xlabel("x-values", fontsize=14)
# Part (vi):
plt.ylabel("cos(x) approximations", fontsize=14)
# Part (vii):
plt.title("cos(x) and its Taylor approximations", fontsize=14)
# Part (viii):
plt.legend(("cos(x)", "n = 1 Taylor", "n = 3 Taylor", "n = 14 Taylor"))
plt.show()
```