19.

What is Claimed:

1.	A method for desalinating a solution containing sparingly soluble
solutes comp	rising the steps of:

- (a) introducing a solution having sparingly soluble solutes and nucleation crystals to the high pressure side of a first semi-permeable membrane barrier to produce a retentate stream on the high pressure side of the first semi-permeable membrane barrier, and a permeate stream on the low pressure side of the first semi-permeable membrane barrier having reduced concentrations of the sparingly soluble solutes;
- (b) introducing the permeate stream produced in step (a) to the high pressure side of a second semi-permeable membrane barrier to produce a second retentate stream on the high pressure side of the second semi-permeable membrane barrier, and a product stream on the low pressure side of the second semi-permeable membrane barrier with substantially lower concentrations of sparingly soluble and soluble solutes compared to the solution initially introduced in step (a); and
- (c) returning a majority fraction of the retentate stream rejected by the first semi-permeable membrane barrier containing a majority of the nucleation crystals to the solution that is introduced to the high pressure side of the first semi-permeable membrane barrier.
 - 2. The method of claim 1 further comprising the step:
- (d) returning a majority fraction of the second retentate stream rejected by the second semi-permeable membrane barrier to the solution that is introduced into the high pressure side of the first semi-permeable membrane barrier.
- 3. The method of claim 1 wherein the initial solution is a heated saline solution.
- 4. The method of claim 1 wherein a portion of the solution introduced to the high pressure side of the first semi-permeable membrane barrier in step (a) is bypassed around the first semi-permeable membrane

barrier and is introduced to the high pressure side of the second semipermeable membrane barrier.

4

5

3

2

2

3

2

3

ì

2

3

- 5. The method of claim 1 wherein a majority fraction of the retentate stream rejected by the first semi-permeable membrane barrier containing a majority of the nucleation crystals is desupersaturated before said stream is returned to the solution introduced to the high pressure side of the first semi-permeable membrane barrier.
- 6. The method of claim 1 wherein the first semi-permeable membrane barrier is a nanofiltration membrane.
- 7. The method of claim 1 wherein the second semi-permeable membrane barrier is a reverse osmosis membrane.
- 8. The method of claim 1 wherein the first semi-permeable membrane barrier is contained in tubular membrane modules.
- 9. The method of claim 1 wherein the second semi-permeable membrane barrier is contained in spiral-wound membrane elements.
- 10. The method of claim 1 wherein the sparingly soluble solutes in the initial solution include calcium, sulfate and silica.
- 11. The method of claim 1 wherein the nucleation crystals in the solution of step (a) which is added to the high pressure side of the first semi-permeable membrane barrier are added to the solution upon startup, and are selected from the group consisting of calcium sulfate, calcium carbonate, calcium phosphate, and silica.
- 12. The method of claim 1 wherein the initial solution is a saline solution comprised of water containing between 3,000 and 20,000 mg/L of total dissolved solids.
- 13. The method of claim 1 wherein the solution produced on the low pressure side of the second semi-permeable membrane barrier is water containing less than 500 mg/L of total dissolved solids.
- 14. The method of claim 1 wherein the water content of the product stream produced on the low pressure side of the second semi-permeable membrane barrier is greater than or equal to 80% of the water content of the

solution introduced to the high pressure side of the first semi-permeable membrane barrier.

- 15. The method of claim 1 wherein the solution introduced to the high pressure side of the first semi-permeable membrane barrier is agricultural drainage water.
- 16. The method of claim 1 wherein the solution introduced to the high pressure side of the first semi-permeable membrane barrier is groundwater.
- 17. The method of claim 1 wherein the solution introduced to the high pressure side of the first semi-permeable membrane barrier is a brine stream produced in a separate water treatment process.
- 18. A method of desalinating a saline solution containing sparingly soluble solutes comprising the steps of:
- (a) introducing a saline solution containing sparingly soluble solutes and nucleation crystals to the high pressure side of a first semi-permeable membrane barrier to produce a retentate stream on the high pressure side of the first semi-permeable membrane barrier, and a permeate solution on the low pressure side of the first semi-permeable membrane barrier containing reduced concentrations of the sparingly soluble solutes;
- (b) introducing the permeate solution produced on the low pressure side of the first semi-permeable membrane barrier to the high pressure side of a second semi-permeable membrane barrier to produce a second retentate stream on the high-pressure side of the second semi-permeable membrane barrier, and a product solution on the low pressure side of the second semi-permeable membrane barrier with substantially lower concentrations of sparingly soluble and soluble solutes compared to the saline solution initially introduced in step (a);
- (c) separating the retentate stream rejected by the first semipermeable membrane barrier into a majority fraction solution containing a majority of the nucleation crystals and a minority fraction solution containing a minority of the nucleation crystals;

21	(d) returning the majority fraction solution directly to the saline
22	solution that is introduced to the high pressure side of the first semi-permeable
23	membrane barrier;
24	(e) separating the minority fraction solution into: (i) a first-fraction
25	solution with a higher level of suspended solids, and (ii) a second-fraction
26	solution with a lower level of suspended solids;
27	(f) returning a portion of the first-fraction solution with a higher
28	level of suspended solids to the saline solution that is introduced to the high
29	pressure side of the first semi-permeable membrane barrier; and
30	(g) returning the second retentate stream to the saline solution that
31	is introduced to the high pressure side of the first semi-permeable membrane
32	barrier.
1	19. The method of claim 18 wherein the separation of the minority
2	fraction solution in step (e) is accomplished using a gravity settling tank,
3.	centrifuge, hydrocyclone or filter.
1	20. The method of claim 18 wherein the first-fraction solution with a
2	higher level of suspended solids is further split into (i) a discharge fraction and
3	(ii) a recovery fraction with the recovery fraction being returned and introduced
4	into the saline solution that is introduced into the high pressure side of the first
5	semi-permeable membrane barrier.
1	21. The method of claim 18 wherein the second-fraction solution with
2	a lower level of suspended solids is further split into (i) a discharge fraction and
3	(ii) recovery fraction with said recovery fraction being returned and introduced
4	into the saline solution that is introduced into the high pressure side of the first
5	semi-permeable membrane barrier.
1,	22. The method of claim 18 wherein a fraction of the discharge
2	fraction is combined with the product stream produced on the low pressure side
3	of the second semi-permeable membrane barrier to effect a reduction in the
4	agronomic sodium adsorption ratio of said solution.

The method of claim 18 wherein the initial saline solution is

23.

heated.

	•
1	24. The method of claim 18 wherein saline solution is introduced into
2	the high pressure side of the second semi-permeable membrane barrier which
3	does not pass through the first semi-permeable membrane barrier.
1	25. The method of claim 18 wherein the retentate stream rejected by
2	the first semi-permeable membrane barrier containing a majority of the
3	nucleation crystals is desupersaturated before the solution is returned to the
4	high pressure side of the first semi-permeable membrane barrier.
1	26. The method of claim 18 wherein the first semi-permeable
2	membrane barrier is selected from the class of nanofiltration membranes.
1	27. The method of claim 18 wherein the second semi-permeable
2	membrane barrier is selected from the class of reverse osmosis membranes.
1	28. The method of claim 18 wherein the first semi-permeable
2	membrane barrier is contained in tubular membrane modules.
1	29. The method of claim 18 wherein the second semi-permeable
2	membrane barrier is contained in spiral-wound membrane elements.
1	30. The method of claim 18 wherein the sparingly soluble solutes in
2	the initial saline solution are calcium sulfate and silica.
1	31. The method of claim 18 wherein the seed nucleation crystals
2	added upon startup are selected from the group of calcium sulfate, calcium
3	carbonate, calcium phosphate, and silica.
1	32. The method of claim 18 wherein the initial saline solution is
2	water containing between 3,000 and 20,000 mg/L of total dissolved solids.
1	33. The method of claim 18 wherein the solution produced on the lov
2	pressure side of the second semi-permeable membrane barrier is water
3	containing less than 500 mg/L of total dissolved solids.
1	34. The method of claim 18 wherein the water content of the
2	solution produced on the low pressure side of the second semi-permeable
3	membrane barrier is greater than or equal to 80% of the water content of the

initial saline solution.

1	35. The method of claim 18 wherein the initial saline solution is
2	agricultural drainage water.
1	36. The method of claim 18 wherein the initial saline solution is
2	groundwater.
1	37. The method of claim 18 wherein the initial saline solution is the
2	brine stream produced in a separate water treatment process.
1	38. A system for desalinating a solution containing soluble and
2	sparingly soluble solutes comprising:
3	(a) a first semi-permeable membrane barrier having a high-
4	pressure side and a low-pressure side for receiving a feed stream on the
5	high-pressure side and producing:
6	a permeate stream on the low-pressure side having reduced
7	concentrations of sparingly soluble solutes as compared to the
8	feed stream, and
9	a first retentate stream on the high-pressure side;
0	(b) a second semi-permeable membrane barrier having a low
1	pressure side and a high-pressure side in fluid communication with, and
2	downstream of, the first semi-permeable membrane for receiving the
3	permeate stream on the high-pressure side and producing:
4	a second retentate stream on the high-pressure side, and
.5	a product water stream on the low-pressure side having
.6	substantially lower concentrations of sparingly soluble and
.7	soluble solutes compared to the feed stream; and
8	(c) means for separating solids from the first retentate
9	stream into a first fraction solution having a higher level of suspended
20	solids and a second fraction solution with a lower level of suspended
21	solids, said solid separating means in fluid communication with the high
22	pressure side of the first semi-permeable membrane.
1	39. The system of claim 38 wherein said separating means is
2	selected from the group consisting of: a gravity settling tank, a centrifuge, a

hydrocyclone and a filter.

1	40. The system of claim 38 further comprising means for joining a
2	stream from the solid separating means and a stream from the high-pressure
3	side of the second semi-permeable membrane with the feed stream.
1	41. The system of claim 38 further comprising:
2	(d) means for separating the first retentate stream into a
3	majority fraction solution and a minority fraction solution upstream of said
4	solid-separating means, wherein said minority fraction solution is in fluid
5	communication with said solid separating means and said majority fraction
6	solution is in fluid communication with said high-pressure side of said first semi
7 -	permeable membrane barrier.
1	42. The system of claim 38 further comprising:
2	(d) means for passing a portion of the feed stream directly to
3	the high-pressure side of the second semi-permeable membrane.
1	43. The system of claim 38 further comprising:
2	(d) means for heating the feed stream.
1	44. The system of claim 38 further comprising means for splitting
2	said first fraction solution into a high-solid recycle stream and a high-solid
3	discharge stream.
1	45. The system of claim 38 including means for splitting said second
2	fraction solution ințo a low-solid recycle stream and a low-solid discharge
3	stream.
1	46. The system of claim 41 further including desupersaturating
2	means to receive said majority fraction solution and said second fraction
3	solution.
1	47. The system of claim 46 wherein said desupersaturating means is
2	a stirred vessel.
1	48. The system of claim 44 further including adjustment means for
2	controlling the agronomic sodium absorption ratio of said product water stream,
3	said adjustment means allowing a controlled amount of said high-solid
4	discharge stream to be added to said product water stream