Boston University ENG EC 414 Introduction to Machine Learning

Exam 2

Released on Wednesday, 11 November, 2020 (120 minutes, 41 points + 2 bonus points) Submit to Gradescope

- There are 6 problems plus 1 bonus one.
- Unless explicitly written, for each part you must clearly outline the key steps and provide proper justification for your calculations in order to receive full credit.
- You can use any material from the class (slides, discussions, homework solutions, etc.), but you cannot look for solutions on the internet. Also, be aware of the limited time.

Problem 2.1 [10pts] Consider the following 6 training feature vectors: $\mathbf{x}_A = (2,0)^{\mathsf{T}}, \mathbf{x}_B = (3,2)^{\mathsf{T}}, \mathbf{x}_C = (4,1)^{\mathsf{T}}, \mathbf{x}_D = (1,2)^{\mathsf{T}}, \mathbf{x}_E = (2,4)^{\mathsf{T}}, \mathbf{x}_F = (0,3)^{\mathsf{T}}$ with *class* labels +1, +1, +1, -1, -1, -1 respectively.

- (a) [2pts] Hand-plot the training set and properly label axes and key points.
- (b) [3pts] Compute the coordinates of the point in the convex hull of negative training feature vectors which is closest (in Euclidean distance) to the point \mathbf{x}_B .
- (c) [3pts] Hand-compute the parameters of the hard-margin SVM hyperplane for this training set in *canonical* form. Sketch the SVM hyperplane.
- (d) [2pts] Compute the size of the margin of the hard-margin SVM.

Problem 2.2 [4pts] (True/False) For each statement, say if it is true or false. No justification is necessary here.

- (i) [2pts] (SVM)
 - (a) The objective function of hard-margin SVM is convex.
 - (b) The hyperplane of an SVM \mathbf{w}_{SVM} is a linear combination of training samples in both hard- and soft-margin SVMs.
 - (c) If we run a soft-margin SVM on a linearly separable dataset, we always get training error zero.
 - (d) SVMs cannot be kernelized due to the nonlinear hinge loss term.
- (ii) [2pts] In polynomial regression with squared loss, as the degree increases, the *training* error:
 - (a) is non-decreasing
 - (b) is non-increasing
 - (c) increases first and then decreases
 - (d) decreases first and then increases

Problem 2.3 [4pts] Say if each statement is true or false and **explain your choices to get full credit**. Let $K(\mathbf{u}, \mathbf{v})$ a kernel, then:

- (a) *K* is symmetric, that is $K(\mathbf{u}, \mathbf{v}) = K(\mathbf{v}, \mathbf{u}), \forall \mathbf{u}, \mathbf{v}$
- (b) K is non-negative, that is $K(\mathbf{u}, \mathbf{v}) \ge 0$, $\forall \mathbf{u}, \mathbf{v}$
- (c) There exists a unique function ϕ such that $K(\mathbf{u}, \mathbf{v}) = \phi(\mathbf{u})^{\mathsf{T}} \phi(\mathbf{v})$
- (d) $K(\mathbf{u}, \mathbf{u}) \ge 0$, $\forall \mathbf{u}$.

Problem 2.4 [6pts] Let $\mathbf{x}_A = (2,0)^{\mathsf{T}}$, $\mathbf{x}_B = (-2,0)^{\mathsf{T}}$, and $\mathbf{x}_C = (0,2)^{\mathsf{T}}$ be three points in \mathbb{R}^2 . Compute and sketch the Voronoi-tessellation of \mathbb{R}^2 induced by the three points for **Euclidean** distance.

Problem 2.5 [7pts] A training set with points A, B, C in one class and D, E, F in another is shown in

the figure. To select a value of k for k-NN classification using **Euclidean** distance, we perform leave one out cross-validation (LOOCV). (i) For each training point, list all its 5 nearest neighbors in the order of increasing Euclidean distance. (ii) For k = 1, 3, 5, list the validation examples that will be misclassified and the corresponding LOOCV error. Identify the best value of k among these choices.

Problem 2.6 [10pts] For the dataset of 3 points A, B, C and initial mean vectors $\mu_1^{\text{initial}}, \mu_2^{\text{initial}}$ shown

in the figure, compute the clusters and mean vectors found by running the 2-means algorithm (Euclidean distance) until convergence. In particular, complete the following table:

Iteration number	Clusters	μ_1	μ_2
(Initialization)		$(0,1)^{T}$	$(1,3)^{T}$
	•••		•••

Problem 2.7 [Bonus, 2pts] Consider x, y integers where $x, y \le 100$. Show that $K(x, y) = \min(x, y)$ is a valid kernel finding the corresponding transformation ϕ . Hint: Consider $\phi : \mathbb{R} \to \mathbb{R}^{100}$.