

# COMP [56]630— Machine Learning

Lecture 7 – Logistic Regression



#### The basics

- Input: a set of inputs  $X = \{x_1, x_2, ... x_n\}$ , also called *features*
- Output: a set of expected outputs or *targets*  $Y = \{y_1, y_2, ..., y_n\}$
- Goal: to learn a function h: X → Y such that the function h(x<sub>i</sub>) is a good predictor of the corresponding value y<sub>i</sub>
  - h(x) is called the *hypothesis*
- If the target is continuous the problem setting is called *regression*.
- If the target is discrete or categorical, the problem is called *classification*.





#### Example

 Suppose we have a dataset giving the living areas and prices of 47 houses from Stillwater, OK

| Living area (ft <sup>2</sup> ) | # bedrooms                            | Price (1000\$s) | House Type  |
|--------------------------------|---------------------------------------|-----------------|-------------|
| 1643                           | 4                                     | 256             | Condo       |
| 1356                           | 3                                     | 202             | Apartment   |
| 1678                           | 3                                     | 287             | House       |
|                                |                                       |                 |             |
| 3000                           | 4                                     | 400             | House       |
|                                | · · · · · · · · · · · · · · · · · · · |                 |             |
|                                |                                       |                 |             |
| Features (X)                   |                                       |                 | Targets (Y) |



- Goal: formulate a hypothesis function h(x) which will model the 3-d input feature (size, # bedrooms, price) and produce the expected target value (type of home i.e. condo, apartment, house, etc.).
- Let us consider a 2-class problem i.e. a binary classifier that says whether the given home is a house or not a house.
  - Represent as 0 and 1
  - 0 → negative class
  - 1 → positive class

Discrete outputs!

• Given  $x^{(i)}$ , the corresponding  $y^{(i)}$  is also called the label for the training example.



 We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given some features x



- We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given some features x
  - Does not work all the time.
  - Does not make sense to have predictions greater than 1 or less then 0.
    - Since the categories are 1 and 0 and  $y \in \{0, 1\}$ .



- We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given some features x
  - Does not work all the time.
  - Does not make sense to have predictions greater than 1 or less then 0.
    - Since the categories are 1 and 0 and  $y \in \{0, 1\}$ .
- New hypothesis function:

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$



- We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given some features x
  - Does not work all the time.
  - Does not make sense to have predictions greater than 1 or less then 0.
    - Since the categories are 1 and 0 and  $y \in \{0, 1\}$ .
- New hypothesis function:

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$

• where 
$$g(z) = \frac{1}{1 + e^{-z}}$$
 Logistic

$$\theta^T x = \theta_0 + \sum_{j=1}^n \theta_j x_j$$



#### Logistic Function



- g(z) tends towards 1 as  $z \rightarrow \infty$
- g(z) tends towards 0 as  $z \rightarrow -\infty$ .

• What does this tell us?



#### Logistic Function



- g(z) tends towards 1 as  $z \rightarrow \infty$
- g(z) tends towards 0 as  $z \to -\infty$ .

- What does this tell us?
- g(z), and hence also h(x), is always bounded between 0 and 1.



- Gradient Descent!
- What do we need for gradient descent?
  - An objective function J(θ)
  - A Learning rate α
  - An initial "guess" for  $\theta$  called  $\theta_i$
- Then, update  $\theta_i$  until convergence as follows

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$



• Let us say that

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$
  

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

• Or, more concisely:

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$



• Given: 
$$p(y \mid x; \theta) = (h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}$$

• We want to estimate  $\theta$  that will capture the dependency between y and x. When we wish to explicitly view this as a function of  $\theta$ , we will instead call it the *likelihood function* that maximizes  $p(y|X;\theta)$  and is given by

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$



• Given: 
$$p(y \mid x; \theta) = (h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}$$

• We want to estimate  $\theta$  that will capture the dependency between y and x. When we wish to explicitly view this as a function of  $\theta$ , we will instead call it the *likelihood function* that maximizes  $p(y|X;\theta)$  and is given by

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}}$$



• Now, given this probabilistic model how can we get  $\theta$ ?



- Now, given this probabilistic model how can we get  $\theta$ ?
- The principal of *maximum likelihood* says that we should should choose  $\theta$  that makes the data as high probability as possible. i.e., we should choose  $\theta$  to maximize L( $\theta$ ).



- Now, given this probabilistic model how can we get  $\theta$ ?
- The principal of *maximum likelihood* says that we should should choose  $\theta$  that makes the data as high probability as possible. i.e., we should choose  $\theta$  to maximize L( $\theta$ ).
- Instead of maximizing L( $\theta$ ), we can also maximize any strictly increasing function of L( $\theta$ ). So we will maximize the log likelihood  $\ell(\theta)$ :

$$\ell(\theta) = \log L(\theta)$$



- Now, given this probabilistic model how can we get  $\theta$ ?
- The principal of *maximum likelihood* says that we should should choose  $\theta$  that makes the data as high probability as possible. i.e., we should choose  $\theta$  to maximize L( $\theta$ ).
- Instead of maximizing L( $\theta$ ), we can also maximize any strictly increasing function of L( $\theta$ ). So we will maximize the log likelihood  $\ell(\theta)$ :

$$\ell(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$



- Gradient Descent!
- Then, update  $\theta_i$  until convergence as follows

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

• So what is  $\frac{\partial}{\partial \theta_j} J(\theta)$ ?

$$l(0) = log(L(0)) \qquad h(x) = g(0^{T}x)$$



$$= \underbrace{ \left[ y \cdot log \left( h(x) \right) + \left( l-y \right) \cdot log \left( l-h(x) \right) \right] }$$

$$= \left[ \left[ y \cdot \log \left( g(\sigma^T x) \right) + (1-y) \cdot \log \left( 1 - g(\sigma^T x) \right) \right]$$

$$\frac{d lo)}{do} = \sum_{i=1}^{n} \frac{d}{do} \left[ y. log(g(o^{T}x)) + (1-y). log(1-g(o^{T}x)) \right]$$

For simplicity, ignore the summation

We know that 
$$\frac{d}{dz}(log(z)) = \frac{1}{z}$$



$$\frac{1}{d\theta} = \frac{y}{g(o^{T}x)} \cdot \frac{d}{do} \left( g(o^{T}x) \right) + \frac{1}{1 - g(o^{T}x)} \cdot \frac{d}{do} \left( 1 - g(o^{T}x) \right)$$

$$= \frac{y}{g(\bar{o}^{T}x)} + \frac{(-1) \cdot (1-y)}{1-g(\bar{o}^{T}x)} \cdot \frac{d}{do} \left(g(\bar{o}^{T}x)\right)$$

$$= \frac{y(1-g(o^{T}x)) - (1-y) \cdot g(o^{T}x)}{g(o^{T}x) \cdot (1-g(o^{T}x))} \cdot \frac{d}{do} \left(g(o^{T}x)\right)$$



= 
$$y - y \cdot g(o^{T}x) - g(o^{T}x) + y \cdot g(o^{T}x)$$
 d  $(g(o^{T}x))$   $do$   $g(o^{T}x)(1 - g(o^{T}x))$ 

= 
$$\frac{y-g(o^{T}x)}{g(o^{T}x).(1-g(o^{T}x))} \cdot \frac{d}{do} (g(o^{T}x))$$

we know that 
$$g(z) = \frac{1}{1+e^{-z}}$$



$$\frac{d g(z)}{dz} = \frac{d}{dz} \left( \frac{1}{1+e^{-z}} \right) = \frac{d}{dz} \left( 1 + e^{-z} \right)^{-1}$$

we know that 
$$\frac{d}{dz}(z^n) = n(z^{n-1})$$
  
 $\frac{d}{dz}(z^n) = n(z^{n-1})$   
 $\frac{d}{dz}(z^n) = \frac{1}{(1+e^{-z})^2} \cdot \frac{d}{dz}(1+e^{-z})$ 

we know that 
$$\frac{d}{dz}e^{z}-e^{z}$$

$$\frac{d}{dz} \left( g(z) \right) = \frac{1}{(1+e^{-z})^2} \cdot \left( -e^{-z} \right) = \frac{e^z}{(1+e^{-z})^2}$$

$$= \frac{1+e^{-2}-1}{(1+e^{-2})^2} = \frac{1+e^{-2}}{1+e^{-2}} \cdot \left(\frac{1}{1+e^{-2}}\right)$$

$$=$$
  $\left(1 - \frac{1}{1+e^{-2}}\right) \cdot \left(\frac{1}{1+e^{-2}}\right)$ 

$$\frac{d}{dz}(g(z)) = g(z).(1-g(z))$$



$$\frac{dlo}{do} = \frac{y - g(o^{T}x)}{g(o^{T}x) \cdot (1 - g(o^{T}x))} \left[ g(o^{T}x) \cdot (1 - g(o^{T}x)) \right] \cdot \frac{dc(o^{T}x)}{do}$$

$$\frac{dQ(0)}{d0} = \left[ y - g(0^T x) \right] \cdot x$$



- Gradient Descent!
- Then, update  $\theta_i$  until convergence as follows

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

• Hence our new update rule for logistic regression is

$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$



- Gradient Descent!
- Then, update  $\theta_i$  until convergence as follows

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

• Hence our new update rule for logistic regression is

Looks familiar?

$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$



- Gradient Descent!
- Then, update  $\theta_i$  until convergence as follows

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

• Hence our new update rule for logistic regression is

Looks familiar?

$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

**Identical to Linear Regression Update rule!** 







$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

- Although the update rule is similar it is not the same algorithm!
- We have a non-linear hypothesis function!
- Is this coincidence, or is there a deeper reason behind this?



$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

- Although the update rule is similar it is not the same algorithm!
- We have a non-linear hypothesis function!
- Is this coincidence, or is there a deeper reason behind this?

 Both are part of a family of models called Generalized Linear Models!



#### Generalized Linear Models

- Not to be confused with the term general linear model (GLM).
  - It usually refers to conventional linear regression models for a continuous response variable given continuous predictors
- The form is  $y_i \sim N(x_i^T \beta, \sigma^2)$ , where  $x_i$  contains known covariates and  $\beta$  contains the coefficients to be estimated. These models are fit by least squares and weighted least squares
- The term *generalized linear model* (GLIM or GLM) refers to a larger class of models popularized by McCullagh and Nelder (1982, 2nd edition 1989).
  - In these models, the response variable  $y_i$  is assumed to follow an exponential family distribution with mean  $\mu_i$ , which is assumed to be some (often nonlinear) function of  $x_i^T\beta$ .



#### Generalized Linear Models

- There are three components to any GLM:
- Random Component refers to the probability distribution of the response variable (Y); e.g. normal distribution for Y in the linear regression, or binomial distribution for Y in the binary logistic regression. Also called a noise model or error model. How is random error added to the prediction that comes out of the link function?
- **Systematic Component** specifies the explanatory variables  $(X_1, X_2, ... X_k)$  in the model, more specifically their linear combination in creating the so called *linear predictor*; e.g.,  $\beta_0 + \beta_1 x_1 + \beta_2 x_2$  as we have seen in a linear regression, or as we will see in a logistic regression in this lesson.
- **Link Function**,  $\eta$  or  $g(\mu)$  specifies the link between random and systematic components. It says how the expected value of the response relates to the linear predictor of explanatory variables; e.g.,  $\eta = g(E(Y_i)) = E(Y_i)$  for linear regression, or  $\eta = \log it(\pi)$  for logistic regression.



#### **Common Assumptions**

- The data  $Y_1, Y_2, ..., Y_n$  are independently distributed, i.e., cases are independent.
- The dependent variable Y<sub>i</sub> does NOT need to be normally distributed, but it typically assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, normal,...)
- GLM does NOT assume a linear relationship between the dependent variable and the independent variables, but it does assume linear relationship between the transformed response in terms of the link function and the explanatory variables; e.g., for binary logistic regression logit( $\pi$ )= $\beta_0$ + $\beta$ X.
- Independent (explanatory) variables can be even the power terms or some other nonlinear transformations of the original independent variables.
- The homogeneity of variance does NOT need to be satisfied. In fact, it is not even possible in many cases given the model structure, and *overdispersion* (when the observed variance is larger than what the model assumes) maybe present.
- Errors need to be independent but NOT normally distributed.



## Newton's Method for Estimating Theta



#### Newton's Method

- an iterative equation solver
  - Typically used to find the roots of a polynomial function
- Performs iterative updates as follows

$$\theta := \theta - \frac{f(\theta)}{f'(\theta)}$$

• Where  $f'(\theta)$  is the derivative.



#### Newton's Method

• Intuitively, we can think of it as approximating the function f via a linear function that is tangent to f at the current guess  $\theta$ , solving for where that linear function equals to zero, and letting the next guess for  $\theta$  be where that linear function is zero.



#### Newton's Method

• Intuitively, we can think of it as approximating the function f via a linear function that is tangent to f at the current guess  $\theta$ , solving for where that linear function equals to zero, and letting the next guess for  $\theta$  be where that linear function is zero.





#### Newton's Method

• Intuitively, we can think of it as approximating the function f via a linear function that is tangent to f at the current guess  $\theta$ , solving for where that linear function equals to zero, and letting the next guess for  $\theta$  be where that linear function is zero.

• Until 
$$x_n - x_{n+1} \approx 0$$
:  
•  $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ 





- In our case, we consider the log likelihood as the function for which we want to find the ideal  $\theta$
- But we want to maximize the log likelihood, whereas Newton's method gives us the point at which it is 0.
- How do we handle this?



- In our case, we consider the log likelihood as the function for which we want to find the ideal  $\theta$
- But we want to maximize the log likelihood, whereas Newton's method gives us the point at which it is 0.
- How do we handle this?
- Remember the maxima of  $\ell$  correspond to points where its first derivative  $\ell'(\theta)$  is zero. So, by letting  $f(\theta) = \ell'(\theta)$ , we can use the same algorithm to maximize  $\ell$ , and we obtain update rule:

$$\theta := \theta - \frac{\ell'(\theta)}{\ell''(\theta)}$$



- $\theta$  is vector-valued (multi-dimensional), so we need to generalize Newton's method to this setting.
- The generalization of Newton's method to this multidimensional setting is called the Newton-Raphson method is given by

$$\theta := \theta - H^{-1} \nabla_{\theta} \ell(\theta)$$

• Where  $\nabla_{\theta}\ell(\theta)$  is the vector of partial derivatives of  $\ell(\theta)$  w.r.t.  $\theta$  and H is a nxn matrix called the **Hessian** 

$$H_{ij} = \frac{\partial^2 \ell(\theta)}{\partial \theta_i \partial \theta_j}$$



- $\theta$  is vector-valued (multi-dimensional), so we need to generalize Newton's method to this setting.
- The generalization of Newton's method to this multidimensional setting is called the Newton-Raphson method is given by

$$\theta := \theta - H^{-1} \nabla_{\theta} \ell(\theta)$$

• Where  $\nabla_{\theta}\ell(\theta)$  is the vector of partial derivatives of  $\ell(\theta)$  w.r.t.  $\theta$  and H is a nxn matrix called the **Hessian** 

$$H_{ij} = \frac{\partial^2 \ell(\theta)}{\partial \theta_i \partial \theta_j}$$

The Hessian is a square matrix of second-order partial derivatives of order n x n



#### Newton's Method vs Gradient Descent

#### Advantages:

- Newton's method typically enjoys faster convergence than (batch) gradient descent
- It requires many fewer iterations to get very close to the minimum.

#### Disadvantages:

- One iteration of Newton's can, however, be more expensive than one iteration of gradient descent, since it requires finding and inverting an n-by-n Hessian; but so long as n is not too large, it is usually much faster overall.
- When Newton's method is applied to maximize the logistic regression log likelihood function  $\ell(\theta)$ , the resulting method is also called **Fisher scoring**.



# Multiclass predictions

Extending binary classification with Logistic Regression to multiple classes



### Binary vs Multi-class Classification

- More than two classes (binary) in our problem setting.
- Logistic regression returns a confidence score that scores the probability of whether an example is positive class or negative class.
- Binary classification requires only one classifier model.





#### One-vs-all

- Create the N-binary classifier models, one for each class in the data.
- The number of class labels present in the dataset and the number of generated binary classifiers must be the same.
- Also called one-vs-rest classification





### One-vs-one

- Create the N\* (N-1)/2 binary classifier models, one for each combination of classes in the data.
- Let us say there are three classes, A, B and C.
  - Create classifier for A-vs-B, A-vs-C, B-vs-C.
  - Each binary classifier predicts one class label.
  - Take the class with majority votes as final prediction





# Perceptron Algorithm



### The Perceptron

• Consider modifying the logistic regression method to "force" it to output values that are either 0 or 1 or exactly. To do so, it seems natural to change the definition of g to be the threshold function:

$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

• If we then let  $h(x) = g(\theta T x)$  as before but using this modified definition of g, and if we use the update rule

$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$



### Perceptron

- In the 1960s, this "perceptron" was argued to be a rough model for how individual neurons in the brain work.
- Note however that even though the perceptron may be cosmetically similar to the other algorithms we talked about, it is actually a very different type of algorithm than logistic regression.
  - The hypothesis in logistic regression provides a measure of uncertainty in the occurrence of a binary outcome based on a linear model.
  - The output from a step function can of course not be interpreted as any kind of probability.
  - Since a step function is not differentiable, it is not possible to train a perceptron using the same algorithms that are used for logistic regression.



# Multi-layer perceptrion

## Perceptron vs Multilayer Perceptron (MLP)

#### **Perceptron Input And Output**







## Perceptron vs Multilayer Perceptron (MLP)







### Why do we need more layers?

