On Mathematical modeling of erosion and sedimentation

Hamad El Kahza

New York Institute of Technology
Tanvi Patel
New York Institute of Technology
Pejman Sanaei

Department of Mathematics New York Institute of Technology

July 22, 2020

-rosion in the enviromental context: Illustrations

Different approaches in the litterature

- Computational Fluid Dynamics (CFD) tool.
 - CFD simulations are relatively inexpensive.
 - CFD simulations encouters limitation errors.
 - The accuracy of the simulation is only as good as the initial/boundary conditions provided for numerical model.
- Lattice-Boltzmann Methods (LBM).
 - LBM solved locally so it is easy to break the problem into calculations that can be done in parallel by multiple computer processors.
 - LBM is expensive to implement and requires high computation power.
- Pore network models (PNM).
 - PNM simplifies the system's geometry into pore spaces interconnected via the according inlet structure.
 - this technique achieves high-resolution accuracy running on small scale domains using, comparatively, lower computing costs.

Channels network

• Schematic showing a structure and channels with the pore radii A(X,Y,Z,T) and small-particle concentration C(X,Y,Z,T).

Our model based on the coupling of a Navier Stokes hydraulic model and an advection-diffusion solid transport model.

Stokes Equation modeling the flow behavior:

$$\nabla P = \mu \nabla^2 \mathbf{U}_{P}, \quad \nabla \cdot \mathbf{U}_{P} = 0, \quad 0 \le X \le D, \quad 0 \le R \le A,$$

where P and U_p are the pressure and flow channel velocity, respectively.

 The Stokes Equation are subjected to no penetration and no slip boundary conditions

$$\mathbf{U}_{\mathbf{p}} \cdot \mathbf{n} = \mathbf{U}_{\mathbf{p}} \cdot \mathbf{t} = 0$$
 at $R = A$,

• The B.C. on the pressure P(X,T) within the membrane are:

$$P|_{X=0} = P_0, \quad P|_{X=D} = 0.$$

 The total shear stress ∑ at the channel walls, exerted by the flow is given by

$$\Sigma = \mu \left(\nabla \mathbf{U}_{\mathrm{p}} + \nabla \mathbf{U}_{\mathrm{p}}^{T} \right) \mathbf{n} \cdot \mathbf{t} \Big|_{R=A(X,T)}.$$

Governing equations (eroded particles)

• The full advection-diffusion equation for the eroded particles C(R, X, T) is:

$$\frac{\partial C}{\partial T} + \nabla \cdot \mathbf{Q_c} = 0, \quad \mathbf{Q_c} = -\Xi \nabla C + \mathbf{u_p} C,$$

where Q_c is the flux of total particles, Ξ is the diffusion coefficient of particles. The boundary conditions are:

$$C(R, 0, T) = C_0, \quad \frac{\partial C}{\partial X}\Big|_{X=D} = 0, \quad \mathbf{Q_c} \cdot \mathbf{n} = -\frac{\Lambda}{2}C \quad \text{at} \quad R = A,$$

where Λ is the attraction coefficient between the channel wall and particles.

Erosion model

- The proposed erosion law is of the form of threshold laws:
 - If the tangential shield stress is greater than a critical stress $\Sigma_{\rm e}$, the interface erosion occurs according to the forces exerted by the fluid. The wall cannot withstand the stress exerted and greater than its optimal resistance.
 - Sedimentation occurs when the tangential stress at a given time is lower than the wall's critical shield stress $\Sigma_{\rm s}$.
- Therefore, the suggested model for erosion and sedimentation follows

$$V_{\rm n} = \left\{ \begin{array}{ll} -B_{\rm s}\,C\left(\Sigma_{\rm s}-\Sigma\right) & \text{ if } \quad \Sigma < \Sigma_{\rm s}, \\ \\ 0 & \text{ if } \quad \Sigma_{\rm s} \leq \Sigma < \Sigma_{\rm e}, \\ \\ B_{\rm e}(\Sigma - \Sigma_{\rm e}) & \text{ if } \quad \Sigma \geq \Sigma_{\rm e}, \end{array} \right. \label{eq:Vn}$$

where $B_{\rm s}$ and $B_{\rm e}$ are the sedimentation and erosion coefficient respectively, depending on the material of the channel.

• The channel wall normal velocity relates to the channel radius by

$$V_{\rm n} = \frac{\partial A}{\partial T} \left(1 + \left(\frac{\partial A}{\partial X} \right)^2 \right)^{-1/2}.$$

Model formulation

We make the following assumptions:

- Small aspect ratio (i.e. $\epsilon = W/D \ll 1$): the radial component of the flow velocity is negligible compared to the axial one.
- No angular dependencies: Axisymmetric geometry.
- The erosion causes a regression of the interface in the direction of \vec{n} causing a reconfiguration of the geometry.

Simulation assumptions

We use the following scalings to nondimensionalize our models

$$\mathbf{U}_{\mathrm{p}} = \frac{P_0 W^2}{\mu D} \mathbf{u}_{\mathrm{p}}, \quad X = Dx, \quad (A, R) = W(a, r), \quad P^* = P_0 p^*,$$

$$C^* = C_0 c^*, \quad (\Sigma, \Sigma_s, \Sigma_e) = \frac{W P_0}{D} (\tau, \tau_s, \tau_e), \quad T = \frac{D}{B_s C_0 P_0} t, \quad \epsilon = \frac{W}{D},$$

where $\mathbf{u}_{\rm p} = (\epsilon v_{\rm p}, 0, u_{\rm p})$ is the dimensionless channel velocity.

Solving for the pore velocity yield the leading orders

$$u_{\rm D}(r,x,t) = \frac{-1}{4a^4 \int_0^1 \frac{dx'}{a^4(x',t)}} (r^2 - a^2).$$

The wall shear stress is given by:

$$\tau(x,t) = \frac{\partial u_{\rm p}}{\partial r}\bigg|_{r=a(x,t)}.$$

We further simplify it by using the expressions for the axial channel velocity and pressure, u_p and p respectively, to

$$\tau(x,t) = \frac{1}{2a^{3}(x,t)\int_{0}^{1} \frac{dx}{a^{4}(x,t)}}.$$

Simulation Assumption

 At the leading order, we obtain the quasi-static nondimensional advection-diffusion equation

$$-\frac{1}{\hat{\mathrm{Pe}}}\frac{\partial^2 \overline{c}}{\partial x^2} + \left(\overline{u}_\mathrm{p} - \frac{2}{a\hat{\mathrm{Pe}}}a'(x)\right)\frac{\partial \overline{c}}{\partial x} + \frac{\lambda}{a}\overline{c} = 0, \quad \text{where} \quad \lambda = \frac{\Lambda \mu D^2}{P_0 W^3},$$

for the cross sectionally averaged particle concentration \bar{c} , subject to the boundary conditions

$$\bar{c}(0,t)=1, \quad \frac{\partial \bar{c}}{\partial x}\Big|_{x=1}=0.$$

- Note that when $\hat{Pe} \to \infty$ the second order derivatives trivialize resulting in a reduced **Advection-only** model
- Using our scalings, and at the leading order, we obtain the following erosion model:

$$\frac{\partial \mathbf{a}}{\partial t} = \begin{cases} -\overline{c}(\tau_{s} - \tau) & \text{if} \quad \tau < \tau_{s}, \\ 0 & \text{if} \quad \tau_{s} \le \tau < \tau_{e}, \end{cases} \quad \beta_{e} = \frac{B_{e}}{B_{s}C_{0}},$$

$$\beta_{e} (\tau - \tau_{e}) \quad \text{if} \quad \tau \ge \tau_{e},$$

with the initial condition

$$a(x,0)=a_0(x).$$

System summary

An interaction between the flow and the solid channel occurs as soon as there is sediment transport. The diagram above describes these interactions in a schematic diagram:

- The forces exerted by the flow, causing particles transport.
- This morphological evolution causes a change in the geometry of the cross section, hence, leading to a change in the flow regime.
- Output of the amount of sediment transported during this process.
- The particles carried away by the flow result in a morphological change given the erosion/sedimentation, The channel's radius responds by widening or narrowing.
- The pore's radius gets updated depending on the acting force at a given time.

Simulation: Parabolic initial radius

Simulation: Parabolic initial radius with higher Peclet Number

Simulation: Trigonometric initial radius

Trigonometric initial radius with higher erosion shear rate

Trigonometric initial radius with higher Peclet Number

Conclusions

- Erosion and deposition within geological structures and porous media always lead to channelization
- the final configuration is either completely clogged or completely eroded, because of the constant pressure drop
- We also showed that the final state of a channel altered by erosion and deposition crucially depends on the balance between specific values such as: shear stress, Péclet number.