The Badges Game

+ Naoki Abe

- Eric Baum

Background:

- Pre-registered attendees at the 1994 Machine Learning
 Conference received a name badge labeled with a "+" or "-"
- The label is based <u>only</u> upon the name
- There are 294 examples (210 positive and 84 negative)

What function was used to generate the +/- labeling?

Training Data

- + Naoki Abe
- Myriam Abramson
- + David W. Aha
- + Kamal M. Ali
- Eric Allender
- + Dana Angluin
- Chidanand Apte
- + Minoru Asada
- + Lars Asker
- + Javed Aslam
- + Jose L. Balcazar
- Cristina Baroglio

- + Peter Bartlett
- Eric Baum
- + Welton Becket
- Shai Ben-David
- + George Berg
- + Neil Berkman
- + Malini Bhandaru
- + Bir Bhanu
- + Reinhard Blasig
- Avrim Blum
- Anselm Blumer
- + Justin Boyan

- + Carla E. Brodley
- + Nader Bshouty
- Wray Buntine
- Andrey Burago
- + Tom Bylander
- + Bill Byrne
- Claire Cardie
- + John Case
- + Jason Catlett
- Philip Chan
- Zhixiang Chen
- Chris Darken

+ Naoki Abe
+ Kamal M. Ali
- Chidanand Apte
+ Javed Aslan
+ Timothy P. Barber
+ Peter Bartlett
- Shai Ben-David
+ Malini Bhandaru
- Avrim Blum
+ Carla E. Brodley
- Andrey Burago
- Claire Cardie
+ Jason Catlett
+ Mark Changizi
+ Wan P. Chiang
+ William Cohen
- Antoine Cornuejols
+ Lindley Darden
- Brian D. Davidson
- Scott E. Decatur
- Thomas G. Dietterich
+ Harris Drucker
- Thomas Ellman
+ Bob Evans
- Usana Fayyad
+ David Finton
+ Seth Flanders
+ Judy A. Franklin
+ Merrick L. Furst
+ Ricard Gavalda
+ David Gillman
+ Paul W. Goldberg
+ Geoffrey Gordon
+ William A. Greene
+ Tal Grossman
+ Earl S. Harris Jr.
+ Lisa Hellerstein
+ Haym Hirsh
+ Jiarong Hong
+ Masayuki Inaba
+ Jeff Jackson
- Klaus P. Jantke
+ Randolph Jones
+ Bala Kalyanasundaran
+ Michael Kearns
+ Dennis F. Kibler
- Jyrki Kivinen
+ Ron Kohavi
+ Daniel Kortenkamp

- Myriam Abramson	+ David W. Aha
- Eric Allender	+ Dana Angluin
+ Minoru Asada	+ Lars Asker
+ Haralabos Athanassiou	+ Jose L. Balcazar
+ Michael W. Barley	- Cristina Baroglio
- Eric Baum	+ Welton Becket
+ George Berg	+ Neil Berkman
+ Bir Bhanu	+ Reinhard Blasig
- Anselm Blumer	+ Justin Boyan
+ Nader Bshouty	- Wray Buntine
+ Tom Bylander	+ Bill Byrne
* Richard A. Caruana	+ John Case
+ Nicolo Cesa-Bianchi	- Philip Chan
+ Pang-Chieh Chen	- Zhixiang Chen
- Steve A. Chien	+ Jeffery Clouse
+ David Cohn	- Clare Bates Congdon
+ Mark W. Craven	+ Robert P. Daley
- Chris Darken	- Bhaskar Dasgupta
+ Michael de la Maza	- Olivier De Vel
+ Gerald F. DeJong	+ Kan Deng
+ Michael J. Donahue	+ George A. Drastal
- Chris Drummond	+ Hal Duncan
+ Tapio Elonaa	+ Susan L. Epstein
- Claudio Facchinetti	+ Tom Fawcett
+ Aaron Feigelson	+ Nicolas Fiechter
+ John Fischer	+ Paul Fischer
+ Lance Fortnow	- Ameur Foued
* Yoav Freund	+ Johannes Furnkranz
+ Jean Gabriel Ganascia	+ William Gasarch
+ Melinda T. Gervasio	+ Yolanda Gil
- Attilio Giordana	+ Kate Goelz
+ Sally Goldman	+ Diana Gordon
* Jonathan Gratch	+ Leslie Grate
+ Russell Greiner	+ Marko Grobelník
+ Margo Guertin	+ Tom Hancock
+ David Haussler	+ Matthias Heger
+ David Helmbold	+ Daniel Hennessy
+ Jonathan Hodgson	+ Robert C. Holte
- Chun-Nan Hsu	+ Kazushi Ikeda
- Drago Indjic	+ Nitin Indurkhya
+ Sanjay Jain	+ Wolfgang Janko
+ Nathalie Japkowicz	+ George H. John
+ Michael I. Jordan	+ Leslie Pack Kaelblin
- Thomas E. Kammeyer	- Grigoris Karakoulas
+ Neela Khan	+ Roni Khardon
+ Jorg-Uwe Kietz	- Efim Kinber
- Emanuel Knill	- Craig Knoblock
+ Pascal Koiran	+ Moshe Koppel
a second account of the	A

- Stefan Kramer

* Matevz Kovacic

+ Martinch Krikis - Stephen Kwek - Steffen Lange + Wee Sun Lee - Charles X. Ling - Phil Long + Rich Maclin + Yishay Mansour Oded Maron + Toshiyasu Matsushima - R. Andrew McCallum + Michael A. meystel + Tom M. Mitchell - Andrew W. Moore - Stephen Muggleton + Filippo Neri + Nikolay Nikolaev + Dan Oblinger + David W. Opitz - Ed Pednault + Aurora Perez - Krishnan Pillaipakkammatt + Lorien Y. Pratt - J. R. Quinlan - R. Bharat Rao + Michael Redmond + Ronald L. Rivest + Robert S. Roos + Dan Roth - Stuart Russell + William Sakas - Claude Sammut + Mark Schwabacher + Sebastian Seung + Daniel L. Silver + Mona Singh + David B. Skalak + Donna Slonim + Von-Wun Soo - Frank Stephan + Joe Suzuki - Irina Tchoumatchenko elbling + Tatsuo Unemi + Karsten Verbeurgt + Manfred Warmuth - Thomas Wengerek + Robert Williamson

+ Takefuni Yamazaki

- Thomas Seugmann

+ Martin Kummer + Wai Lam + Pat Langley + Moshe Leshno + Michael Littman + Wolfgang Maass - Sridhar Mahadevan + Mario Marchand + Maja Mataric - Stan Matwin - L. Thorne McCarty - Steven Minton + Dunja Mladenic + Johanne Morin + Patrick M. Murphy - Craig Nevill-Manning - Steven W. Norton + Jong-Hoon Oh + Sandra Panizza + Jing Peng + Bernhard Pfahringer + Roberto Piola - Armand Prieditis + John Rachlin - Priscilla Rassussen + Patricia J. Riddle + Huw Roberts + Justinian Rosca + James S. Royer + Lorenza Saitta + Marcos Salganicoff + Cullen Schaffer + Michele Sebag - Arun Sharma - Glenn Silverstein + Satinder Pal Singh + Sean Slattery + Carl H. Smith - Thomas G. Spalthoff * Mandayam T. Suraj - Prasad Tadepalli - Brian Tester - Lyle H. Ungar + Paul Vitanyi + Gary Weiss - Bradley L. Whitehall + Janusz Wnek + Holly Yanco + Jean-Daniel Zucker

- Eyal Kushilevitz + Ken Lang + Mary Soon Lee + Long-Ji Lin + David Loewenstern - Bruce A. MacDonald - J. Jeffrey Mahoney - Shaul Markovitch + David Mathias - Eddy Mayoraz - Alexander M. Meystel + Nina Mishra + David Montgomery + Hiroshi Motoda - Sreerama K. Murthy - Andrew Y. Ng + Joseph O'Sullivan - Arlindo Oliveira + Barak A. Pearlmutter + Fernando Pereira + David Pierce + Leonard Pitt + Foster J. Provost + Vijay Raghavan + Joel Ratsaby + Lance Riley + Dana Ron + John R. Rose + Ronitt Rubinfeld + Yoshifumi Sakai - Steven Salzberg + Robert Schapire + Garv M. Selzer + Jude Shavlik + Yoram Singer + Kimmen Sjolander + Robert Sloan + Sonya Snedecor + Mark Staley + Richard S. Sutton + Hiroshi Tanaka - Chen K. Tham + Paul Utgoff + Kuemei Wang - Sholom Weiss - Alma Whitten + Kenji Yamanishi + John M. Zelle + Darko Zupanic

Test Data

- ? Shivani Agarwal
- ? Chris Callison-Burch
- ? Eric Eaton
- ? Peter Stone
- ? Matthew Taylor

Labeled Test Data

- Shivani Agarwal
- Chris Callison-Burch
- Eric Eaton
- + Peter Stone
- + Matthew Taylor

What is Learning?

- The Badges Game is an example of a key learning protocol: supervised learning
- First question: Are you sure you got it? Why?
- Issues:
 - Which problem was easier: prediction or modeling?
 - Representation
 - Problem setting
 - Background Knowledge
 - When did learning take place?

Algorithm: can you write a program that takes this data as input and predicts the label for your name?

 We consider systems that apply an unknown function f() to input items x and return an output y = f(x).

 In (supervised) machine learning, our goal is to learn a function h() from examples that approximates f()

Supervised Learning: Training

• Give the learner examples in $\mathcal{D}^{\mathsf{train}}$

The learner returns a model h(x)

h(x) is the model we'll use in our application

Function Approximation

Problem Setting

- Set of possible instances \mathcal{X}
- Set of possible labels ${\mathcal Y}$
- Unknown target function $f: \mathcal{X} \to \mathcal{Y}$
- Set of function hypotheses $H = \{h \mid h : \mathcal{X} \to \mathcal{Y}\}$

Input: Training examples of unknown target function f $\{\langle \boldsymbol{x}_i, y_i \rangle\}_{i=1}^n = \{\langle \boldsymbol{x}_1, y_1 \rangle, \dots, \langle \boldsymbol{x}_n, y_n \rangle\}$

Output: Hypothesis $h \in H$ that best approximates f

Sample Dataset

- Columns denote features X_i
- Rows denote labeled instances $\langle \boldsymbol{x}_i, y_i \rangle$
- · Class label denotes whether a tennis game was played

		Response			
	Outlook	Temperature	Humidity	Wind	Class
$\langle oldsymbol{x}_i, y_i angle$	Sunny	Hot	High	Weak	No
	Sunny	Hot	High	Strong	No
	Overcast	Hot	High	Weak	Yes
	Rain	Mild	High	Weak	Yes
	Rain	Cool	Normal	Weak	Yes
	Rain	Cool	Normal	Strong	No
	Overcast	Cool	Normal	Strong	Yes
	Sunny	Mild	High	Weak	No
	Sunny	Cool	Normal	Weak	Yes
	Rain	Mild	Normal	Weak	Yes
	Sunny	Mild	Normal	Strong	Yes
	Overcast	Mild	High	Strong	Yes
	Overcast	Hot	Normal	Weak	Yes
	Rain	Mild	High	Strong	No

Supervised Learning: Testing

```
Labeled
Test Data
\mathcal{D}^{\text{test}}
(\mathbf{x'}_1, \mathbf{y'}_1)
(\mathbf{x'}_2, \mathbf{y'}_2)
...
(\mathbf{x'}_M, \mathbf{y'}_M)
```

Reserve some labeled data for testing

Supervised Learning: Testing

Supervised Learning: Testing

- Apply the model to the raw test data
- Evaluate by comparing predicted labels against the test labels

Can you use the test data otherwise?

Supervised Learning: Examples

- Disease diagnosis
 - x: Properties of patient (symptoms, lab tests)
 - f : Disease (or maybe: recommended therapy)
- Part-of-Speech tagging
 - x: An English sentence (e.g., The can will rust)
 - f: The part of speech of a word in the sentence
- Face recognition
 - x: Bitmap picture of person's face
 - f : Name the person (or maybe: a property of)
- Automatic Steering
 - x: Bitmap picture of road surface in front of car
 - f : Degrees to turn the steering wheel

Many problems that do not seem like classification problems can be decomposed into classification problems.

Key Issues in Machine Learning

Modeling

- How to formulate application problems as machine learning problems?
- How to represent the data?
- Learning Protocols (where is the data & labels coming from?)

Representation

- What functions should we learn (hypothesis spaces) ?
- How to map raw input to an instance space?
- Any rigorous way to find these? Any general approach?

Algorithms

- What are good algorithms?
- How do we define success?
- Generalization vs. overfitting
- The computational problem

Using Supervised Learning

- What is our instance space?
 - What kind of features are we using?
- What is our label space?
 - What kind of learning task are we dealing with?
- What is our hypothesis space?
 - What kind of functions (models) are we learning?
- What learning algorithm do we use?
 - How do we learn the model from the labeled data?
- What is our loss function/evaluation metric?
 - How do we measure success? What drives learning?

1. The Instance space $\boldsymbol{\mathcal{X}}$

Designing an appropriate instance space Xis crucial for how well we can predict y.

1. The Instance space $\boldsymbol{\mathcal{X}}$

- When we apply machine learning to a task, we first need to define the instance space $\boldsymbol{\mathcal{X}}$.
- Instances $x \in X$ are defined by features:
 - Boolean features:
 - Is there a folder named after the sender?
 - Does this email contains the word 'class'?
 - Does this email contains the word 'waiting'?
 - Does this email contains the word 'class' and the word 'waiting'?
 - Numerical features:
 - How often does 'learning' occur in this email?
 - What long is email?
 - How many emails have I seen from this sender over the last day/week/month?
 - Bag of tokens
 - Just list all the tokens in the input

Does it add anything?

What's \mathcal{X} for the Badges game?

Possible features:

- Gender
- Name's country-of-origin
- Length of their first or last name
- Does the name contain letter 'x'?
- How many vowels does their name contain?
- Is the n-th letter a vowel?
- Does the name have the same number of vowels and consonants?

$\boldsymbol{\mathcal{X}}$ as a Vector Space

- $\boldsymbol{\mathcal{X}}$ is an N-dimensional vector space (e.g. \Re^{N})
 - Each dimension = one feature.
- Each x is a feature vector (hence the boldface x).
- Think of $\mathbf{x} = [\mathbf{x}_1 \dots \mathbf{x}_N]$ as a point in \mathbf{X} :

Good Features are Essential

- The choice of features is crucial for how well a task can be learned
 - In many application areas (language, vision, etc.), a lot of work goes into designing suitable features
 - This requires domain expertise
- Think about the badges game what if you were focusing on visual features?

- We can't teach you what specific features to use for your task
 - But we will touch on some general principles

1. The Label space "/

 The label space y determines what kind of supervised learning task we are dealing with

Supervised Learning Task I

- - Binary classification: Two possible labels
 - Multi-class classification: k possible labels
 - Output labels y∈Y are structured objects (sequences of labels,
 - parse trees, etc.)
 - Structure learning

Supervised Learning Task II

- - Regression (linear/polynomial):
 - Labels are continuous-valued
 - Learn a linear/polynomial function f(x)
 - Ranking:
 - Labels are ordinal
 - Learn an ordering f(x₁) > f(x₂) over input

3. The Model h(x)

 We need to choose what kind of model we want to learn

A Learning Problem

Hypothesis Space

Complete Ignorance:

There are 2¹⁶ = 65536 possible functions over four input features.

We can't figure out which one is correct until we've seen every possible input-output pair.

After observing seven examples we still have 29 possibilities for f

Is Learning Possible?

Example	X 1	X 2	X 3	X4	l v
Example 1 2	0	0	0	0	?
2	0	0	0	1	?
	0	0	1	0	0

- There are |Y||X| possible functions f(x) from the instance space X to the label space Y.
- Learners typically consider only a subset of the functions from X to Y, called the hypothesis space H . H ⊆ |Y| |X|

```
1 1 0 1 ?
1 1 1 0 ?
16 1 1 1 1 ?
```

General Strategies for Machine Learning

- Develop flexible hypothesis spaces:
 - Decision trees, neural networks, nested collections.
 - Constraining the hypothesis space is done algorithmically
- Develop representation languages for restricted classes of functions:
 - Serve to limit the expressivity of the target models
 - E.g., Functional representation (n-of-m); Grammars; linear functions; stochastic models;
 - Get flexibility by augmenting the feature space
- In either case:
 - Develop algorithms for finding a hypothesis in our hypothesis space, that fits the data
 - And hope that they will generalize well

Key Issues in Machine Learning

Modeling

- How to formulate application problems as machine learning problems?
- How to represent the data?
- Learning Protocols (where is the data & labels coming from?)

Representation

- What functions should we learn (hypothesis spaces)?
- How to map raw input to an instance space?
- Any rigorous way to find these? Any general approach?

Algorithms

- What are good algorithms?
- How do we define success?
- Generalization vs. overfitting
- The computational problem