Лабораторная работа № 6

Тема: Численные методы многомерной условной минимизации.

Цель работы: Приобретение практических навыков для решения задач условной минимизации.

Постановка задачи

Требуется найти минимум функции многих переменных $y = f(x_1, \ldots, x_n)$, то есть такую точку $x^* \in U$, что $f(x^*) = \min_{x \in U} f(x)$, где множество точек U определяется ограничениями вида

$$g_j(x) = 0, \quad j = 1, \dots, m,$$

 $g_j(x) \le 0, \quad j = m + 1, \dots, p.$

Методы условной оптимизации

В данной лабораторной работе изучаются следующие методы решения задач условной оптимизации:

- 1. метод штрафных функций
- 2. метод барьерных функций
- 3. метод проекции градиента

Задание

- 1. Составить программу поиска минимума функции в соответствии с методами, указанными в таблице ниже (язык программирования выбрать самостоятельно, все лабораторные работы должны быть выполнены на одном языке).
- 2. Для решения вспомогательных задач, возникающих при решении исходной задачи условной оптимизации, в данной лабораторной работе необходимо воспользоваться методом градиентного спуска с постоянным шагом.
- 3. Найти координаты и значение функции в точке минимума заданным методом.
- 4. Сравнить сходимость методов по числу вычислений функции для двух различных начальных точек и для различных величин, характеризующих точность вычислений.
- 5. Проанализировать полученные результаты и сделать выводы по достигнутой точности и количеству вычислений функции. Результаты оформить в виде таблицы:

Начальная точка	Погрешность	Число итера- ций	Оптимальное решение	Оптимальное значение функции

6. По результатам проведённых исследований составить отчёт в формате Microsoft Word и загрузить его в LMS Canvas.

При загрузке работ в Canvas необходимо использовать следующий шаблон для названия файлов:

Лаб.X Bap.YY ZZZZZZZZ NNNNNNNN-V.docx

```
где X — номер лабораторной работы,
YY — номер варианта
ZZZZZZZZ — название группы
NNNNNNNN — фамилия студента
V — номер версии файла
Например: Лаб.1 Вар.1 БИВТ-19-1 Акманов-1.docx
```

Содержание отчёта

- 1. Титульный лист, который должен включать:
 - название учреждения, где выполнена работа;
 - номер лабораторной работы;
 - название лабораторной работы;
 - номер варианта;
 - Ф.И.О. студента, выполнившего работу;
 - изображение подписи рядом с фамилией;
 - номер учебной группы;
 - Ф.И.О. преподавателя;
 - год и место выполнения.
- 2. Цель работы.
- 3. Формулировка задачи с указанием номера варианта.
- 4. Графическое представление функции и области ограничений.
- 5. Листинги программ в виде текста (скриншоты программного кода вставлять не допускается).
- 6. Результаты вычислений.
- 7. Графическое представление траекторий движения к экстремуму, полученных соответствующим методом (выполнение этого пункта не обязательно, даёт дополнительные +2 балла).
- 8. Выводы.

Варианты заданий

<u>Nº</u>	Метод усл. опт.	Оптимизационная задача
1.	3	$\begin{cases} f(x) = x_1 - 2x_2^2 + 4x_2 \to \max\\ -3x_1 - 2x_2 = 6 \end{cases}$
2.	3	$\begin{cases} f(x) = -4x_1^2 - 8x_1 + x_2 + 3 \to \max \\ -x_1 - x_2 = 2 \end{cases}$
3.	3	$\begin{cases} f(x) = 4x_1^2 + 4x_1 + x_2^2 - 8x_2 + 5 \to \min\\ 2x_1 - x_2 = 6 \end{cases}$
4.	3	$\begin{cases} f(x) = -8x_1^2 + 4x_1 - x_2^2 + 12x_2 - 7 \to \max\\ 2x_1 + 3x_2 = -6 \end{cases}$
5.	3	$\begin{cases} f(x) = -8x_1^2 + 4x_1 - x_2^2 + 12x_2 - 7 \to \max\\ 2x_1 + 3x_2 = 6 \end{cases}$
6.	3	$\begin{cases} f(x) = x_1^3 + x_2^3 \to \min \\ x_1 + x_2 - 1 = 0 \end{cases}$
7.	1	$\begin{cases} f(x) = (x_1 - 6)^2 + (x_2 - 8)^2 \to \min \\ x_1^2 - x_2 \leqslant 0 \end{cases}$
8.	2	$\begin{cases} f(x) = \frac{1}{3}(x_1 + 1)^3 + x_2 \to \min \\ x_1 - 1 \ge 0, x_2 \ge 0 \end{cases}$
9.	2	$\begin{cases} f(x) = \frac{4}{x_1} + \frac{9}{x_2} + x_1 + x_2 \to \min \\ x_1 + x_2 \leqslant 6, & x_1 \geqslant 0, & x_2 \geqslant 0 \end{cases}$
10.	2	$\begin{cases} f(x) = (x_1 + 4)^2 + (x_2 - 4)^2 \to \min \\ 2x_1 - x_2 \leqslant 2, x_1 \geqslant 0, x_2 \geqslant 0 \end{cases}$
11.	3	$\begin{cases} f(x) = (x_1 + 4)^2 + (x_2 - 4)^2 \to \min \\ x_1 - 2x_2 \ge 2 \end{cases}$
12.	2	$\begin{cases} f(x) = (x_1 - 2)^4 + (x_1 - 2x_2)^2 \to \min \\ x_1^2 - x_2 \leqslant 0 \end{cases}$
13.	2	$\begin{cases} f(x) = x_1^2 + x_2^2 \to \min \\ 2x_1 + x_2 - 2 \le 0, -x_2 + 1 \le 0 \end{cases}$
14.	2	$\begin{cases} f(x) = (x_1 - 5)^2 + (x_2 - 3)^2 \to \min \\ x_1 + x_2 \leqslant 3, -x_1 + 2x_2 \leqslant 4 \end{cases}$

N⁰	Метод усл. опт.	Оптимизационная задача
15.	1	$\begin{cases} f(x) = (x_1 - 2)^4 + (x_2 - 2x_1)^2 \to \min \\ x_1^2 - x_2 + 1 \le 0 \end{cases}$
16.	3	$\begin{cases} f(x) = x_1^2 + 4x_2^2 - 8x_1 - 16x_2 \to \min \\ 0 \leqslant x_1 \leqslant 3, 0 \leqslant x_2 \leqslant 3 \end{cases}$
17.	1	$\begin{cases} f(x) = x_1^2 + 2x_2^2 \to \min \\ 4x_1 + x_2 \le 6, \ x_1 + x_2 = 3, \ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$
18.	3	$\begin{cases} f(x) = 5(x_1 - x_2)^2 + (x_1 - 2)^2 \to \min \\ x_1 + x_2 \leqslant 1 \end{cases}$
19.	1	$\begin{cases} f(x) = (x_1 - 2)^2 + (x_2 - 1)^2 \to \min \\ x_2 - x_1^2 \ge 0, x_1 + x_2 - 2 \le 0 \end{cases}$
20.	1	$\begin{cases} f(x) = x_1^2 + x_2^2 \to \min\\ x_1^2 + x_2^2 - 9x_2 + 4 = 0 \end{cases}$
21.	1	$\begin{cases} f(x) = 4x_1 - x_2^2 - 12 \to \min \\ x_1 \ge 0, x_2 \ge 0, 10x_1 - x_1^2 + 10x_2 - x_2^2 \ge 34 \end{cases}$
22.	2	$\begin{cases} f(x) = 4x_1^2 - 5x_1x_2 + x_2^2 \to \min \\ x_1 \ge 0, \ x_2 \ge 0, \ x_1^2 - x_2 + 2 \le 0, \ x_1 + x_2 - 6 \le 0 \end{cases}$
23.	2	$\begin{cases} f(x) = (x_1 - 6)^2 + (x_2 - 7)^2 \to \min \\ -3x_1 - 2x_2 + 6 \leqslant 0, -x_1 + x_2 - 3 \leqslant 0 \\ x_1 + x_2 - 7 \leqslant 0, 2x_1 - 3x_2 - 4 \leqslant 0 \end{cases}$
24.	3	$\begin{cases} f(x) = 2x_1^2 + 9x_2 \to \min\\ x_1 + x_2 \geqslant 4 \end{cases}$
25.	2	$\begin{cases} f(x) = \frac{1}{2}(x_1 - 3)^2 + (x_2 - 2)^2 \to \min \\ -2x_1 + x_2 \le 0, x_1 + x_2 \le 4, x_2 \ge 0 \end{cases}$
26.	2	$\begin{cases} f(x) = 2x_1^2 + x_2^2 - x_1x_2 - 2x_1 + x_2 \to \min \\ x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 12 \end{cases}$
27.	3	$\begin{cases} f(x) = -4x_1 - 2x_2 - x_1^2 + 2x_1^4 - 2x_1x_2 + 3x_2^2 \to \min \\ x_1^2 + x_2^2 - 1 \leqslant 0 \end{cases}$
28.	2	$\begin{cases} f(x) = x_1^2 - 2x_1 + x_2^2 + x_2 \to \min \\ x_1^2 - x_2 \leqslant 0, x_2 \leqslant 5 \end{cases}$

$N_{\overline{0}}$	Метод усл. опт.	Оптимизационная задача
29.	1	$\begin{cases} f(x) = (x_1 - 2)^2 + (x_2 - 1)^2 \to \min \\ x_1 - 2x_2 + 1 = 0, x_1^2 + 4x_2^2 \leqslant 4 \end{cases}$
30.	1	$\begin{cases} f(x) = e^{x_1} + e^{x_2} \to \min \\ x_1^2 + x_2^2 - 9 = 0, x_1 + x_2 - 1 \geqslant 0, \\ x_1 \geqslant 0, x_2 \leqslant 5 \end{cases}$
31.	1	$\begin{cases} f(x) = x_1 + x_2^3 \to \min \\ x_1^2 - x_2 \leqslant 2, x_2 \geqslant x_1 - 1 \end{cases}$
32.	2	$\begin{cases} f(x) = x_1^2 + x_2^2 + 4x_2 - 1 \to \min \\ x_1^2 + x_2 \le 0, x_1 - 2x_2 \le 8 \end{cases}$