MAC 주소

MAC 주소(Media Access Control Address)는 랜카드(NIC, Network Interface Card)의 고유 식별 주소를 말한다. 각 NIC 의 MAC 주소는 유일한 주소이기 때문에 LAN 상에서 통신을 하기 위한 주소로 사용되다.

MAC 주소 체계, OUI

MAC 주소는 48bit(6byte)의 길이를 가지고 바이트 단위를 콜론(:)으로 구분하는 16 진수 표기법으로 표현한다. 첫 24bit 는 NIC 의 제조사 고유 식별 번호가 들어가고 나머지 24bit 는 NIC 의 랜덤 숫자가 들어간다. IEEE 에서 할당한 제조회사의 식별 번호를 OUI 라고 한다.

Unicast / Multicast / Broadcast 범위

이더넷에서 항상 송신자의 MAC 주소의 첫 8bit 중 마지막 비트에 0 이 지정되 Unicast 로 지정된다. 그리고 이더넷에서는 항상 라우터로 구성한 broadcast domain 내의 모든 NIC 들에게 데이터를 전달하게 된다.

Unicast

수신자 MAC 주소의 첫 8bit 중 마지막 비트에 0 이 지정되 Unicast 로 설정되면 해당 MAC 주소를 가진 노드만 프레임을 받고 나머지 노드들은 폐기한다.
Unicast 는 A, B, C 클래스가 해당된다.

Multicast

수신자 MAC 주소의 첫 8bit 중 마지막 비트에 1 이 지정되면 Multicast 로 지정되어 해당 그룹의 MAC 주소를 가진 노드만 프레임을 받고 나머지 노드들은 폐기한다. 멀티캐스트 주소인 class D 224.0.0.0/4 를 MAC 주소로 변환 하면 01:00:5E:00:00:00:00:5E:7F:FF:0다.

Broadcast

수신자 MAC 주소의 모든 bit 에 1 을 설정해 ff: ff: ff: ff: ff : ff : ff 주소로 데이터를 보내면 Broadcast 로 프레임을 전달하게 되어 broadcast domain 내의 모든 노드들이 프레임을 받게 된다.

IP 주소

MAC 주소는 LAN 내에서 통신을 하기 위한 주소로 사용되지만, IP 주소는 LAN 에서 다른 LAN 으로 통신을 하기 위한 주소로 사용 된다. IP 주소는 IPv4, IPv6 두가지 버전이 있다.

IP 주소 체계

123.123.123 **32개夫자

IP 주소는 총 32bit 의 길이를 가지며 각 옥텟 마다 0 ~ 255 의 범위를 가진다. 우리가 일상생활에서 사용하는 전화번호에 지역번호, 국번 등으로 나누어 지듯이 IP 주소도 네트워크 주소(Prefix)와 호스트 주소(Suffix)로 나누어 진다. 네트워크 주소는 해당 PC 가 속한 네트워크의 주소를 말하고 호스트 주소는 해당 PC 에 할당된 주소를 말한다.

IP Class 분류

IP 를 class 별로 분류를 한 이유는 한정 되어 있는 IP 주소를 네트워크의 규모 별로 할당하여 좀 더 효율적으로 사용하고자 함에 있었다.

A 클래스 - 첫 bit 가 0 으로 시작하고 처음 8bit 가 네트워크 주소, 나머지 24bit 가 호스트 주소이다. 0.0.0.0~127.255.255.255

B 클래스 - 첫 bit 가 10 으로 시작하고 처음 16bit 가 네트워크 주소, 나머지 16bit 가 호스트 주소이다. 128.0.0.0~191.255.255.255

C 클래스 - 첫 bit 가 110 으로 시작하고 처음 24bit 가 네트워크 주소, 나머지 8bit 가 호스트 주소이다. 192.0.0.0~223.255.255

D 클래스 - 첫 bit 가 1110 으로 시작하고 나머지 bit 는 멀티캐스트를 위한 host group id 로지정했다. 224 . 0 . 0 . 0 ~ 239 . 255 . 255

E 클래스 - 첫 bit 가 11110 으로 시작하고 나중을 위해 예약된 주소 범위 이다. 240,0,0,0~255,255,255

구분	지정된 사설 네트워크
A Class	10 . 0 . 0 . 0 ~ 10. 255 . 255 . 255
B Class	172 . 16 . 0 . 0 ~ 172. 31 . 255 . 255
C Class	192 . 168 . 0 . 0 ~ 192. 168 . 255 . 255

SubnetMask

구분	Subnet Mask
A Class	255 . 0 .0 . 0
B Class	255 . 255 . 0 . 0
C Class	255 . 255 . 255 . 0

- IP 주소와 Subnet Mask 를 AND 연산하면 네트워크 주소를 구할 수 있다.
- 네트워크 주소와 호스트 주소를 구분하기 위해 사용
- 네트워크의 첫 번째 주소는 네트워크를 대표하는 주소로 쓰이고, 마지막 주소는 네트워크 방송용 주소로 쓰이기 때문에 할당하지 않는다.
- 0 . X . X . X 는 인터넷을 대표하는 주소로 쓰이기 때문에 사용할 수 없다.
- 127 . X . X . X 는 Loop Back 주소로 사용된다.
- DHCP 서버로부터 IP 를 할당받지 못할 경우 169. 254. X. X 로 자동 설정 된다.

Subnetting

- 네트워크를 쪼개는 것
- -1.0.0.0/8→2개의 네트워크로 나눠보자!
- 11111111 . 00000000 . 00000000 . 00000000 \rightarrow 255 . 0 . 0
- 00000001 . NHHHHHHH . HHHHHHHH . HHHHHHHH
- 11111111 . 10000000 . 00000000 . 00000000 \rightarrow 255 . 128 . 0 . 0
- N = 0 또는 1
- 00000001 . 0HHHHHHH . HHHHHHHHH . HHHHHHHH
- 1 . 0 . 0 . 0 ~ 1 . 127 . 255 . 255 / 9
- 00000001 . 1HHHHHHH . HHHHHHHH . HHHHHHHH
- 11111111 . 10000000 . 00000000 . 00000000 \rightarrow 255 . 128 . 0 . 0
- -1.128.0.0~1.255.255.255/9
- 1.127.200.129/9

00000001 . 01111111 . 11001000 . 11000000

1.128.100.222/9

00000001 . 10000000 . 01100100 . 110

Supernetting

- subnet mask 를 이용해 나눈 네트워크를 다시 하나로 합치는 것을 말한다.
- 합칠 subnet 의 네트워크 주소 중 공통을 제외한 부분을 합친다.

Unicast / Multicast / Broadcast 범위

Unicast

A, B, C Class 가 해당된다.

Multicast

classful 주소와 classless 주소 모두 class D 의 Multicasting 에 할당된 224.0.0.0/4 를 Multicast 블록으로 사용한다. 224.0.0.0 ~ 239.255.255 이다.

Broadcast

classful 주소에서 각 클래스의 마지막 주소는 broadcast 주소로 사용된다. classless 주소에서 broadcast 주소를 구하려면 먼저 subnetmask 를 이용해 네트워크 주소를 구한 후 broadcast 주소를 구해야 한다.

Classful vs Classless

IP를 class 로 나눈 이유는 규모 별로 IP 주소를 할당하여 주소를 효율적으로 사용하기 위함이라고 하였다. 하지만 네트워크의 많은 발달과 인터넷이 급속도로 보급되면서 다양한 규모의 네트워크가 형성이 되었고 class 로 나눈 IP 주소들은 이에 유연하게 대처하지 못해 심각한 주소가 낭비가 발생하게 되었다. 이러한 문제를 해결하기 위해 subnetmask 가 도입이되었고 네트워크 별로 다양하게 주소를 할당할 수 있게 되었다. 즉 클래스를 지키느냐 지키지 않느냐의 차이이고 classful 은 subnet 이 도입된 classless 만큼 효율적으로 IP 주소를 할당할 수 없다.

VLSM, CIDR

VLSM(Variable Length Subnet Mask)는 네트워크에서 다양한 길이의 subnet mask 를 사용하는 것을 말한다. 서로 다른 subnet 에서 동일한 네트워크 번호로 다른 subnet mask 를 지정할 수 있어서 subneting 을 했을 때 남는 ip 를 더욱 효율적으로 사용한다.

CIDR(Classless Inter-network Domain Routing)은 네트워크를 일정한 길이의 subnet mask 를 사용하여 나누는 것을 말한다.

즉 하나의 파이를 다양한 크기로 나누는 것을 VLSM, 일정한 크기로 나누는 것을 CIDR 이라 할수 있다.

Port 주소

MAC 주소와 IP 주소를 이용해 목적지 PC 까지 데이터를 전달할 수 있다. 하지만 그 이후 PC 내의 최종 목적지까지 전달할 수 없다. Port 주소는 PC 내의 해당 Application(프로세스)대 Application(프로세스) 통신을 위해 할당된 주소이다. 예를 들어 FTP로 데이터를 주고 받기를 원한다면 FTP에 할당된 포트 주소를 모르면 FTP 응용프로그램까지 데이터를 전달할 수 없다는 말이다.

Port 주소 분류 및 역할

Well-known ports - 0 ~ 1023 의 포트는 ICANN 에 의해 배정된다.

Registered ports - $1024 \sim 49151$ 의 포트는 ICANN 에 의해 배정되지 않지만 중복을 피하기 위해 ICANN 에 등록될 수 있다.

Dynamic ports - 49152 ~ 65535 의 포트는 등록되지 않는 포트다. 임시 포트 또는 개인 포트 번호로 사용될 수 있다.