Sohaila Ahmed Rabie

Innopolis University

Motion Planning of Autonomous Vehicles Course
s.hussein@innopolis.university

May 3, 2023

Introduction

Introduction

Definition of LQG Advantages of LQG

Mathematical

Foundations Kalman Filter

Linear Quadratic Regulator

Linear Quadratic Gaussian

Conclusion

- Definition of LQG.
- Advantages of LQG control.

Definition of LQG

Introduction
Definition of LQG
Advantages of LQG

Mathematical

Foundations

Kalman Filter Linear Quadrati

Linear Quadratic Gaussian

Conclusion

- LQG is a control strategy that uses feedback to adjust system behavior.
- It combines the Kalman filter and LQR to generate optimal control signals.

Figure: LQG block diagram

Advantages of LQG Control

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Linear Quadratic Regulator Linear Quadratic Gaussian

Conclusion

- Optimal Control: It provides optimal control signals that minimize a quadratic cost function. (LQR)
- **Robustness:** It can handle systems with measurement noise and disturbances. (Kalman Filter)
- Adaptability: It can be easily extended to handle nonlinear systems.

Mathematical Foundations

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter
Linear Quadratic
Regulator
Linear Quadratic Gaussian

Conclusion

- Kalman filter.
- Linear quadratic regulator.
- Linear quadratic Gaussian

Introduction

Definition of LQG Advantages of LQG

Mathematical Foundations

Kalman Filter Linear Quadratic

Regulator Linear Quadratic Gaussia

Conclusion

References

Kalman Filter: is a mathematical algorithm that uses a series of measurements to estimate the state of a system. It provides an optimal solution for the linear Gaussian problem, where the system is linear and noise is Gaussian.

Figure: State Estimator

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter

Linear Quadratic Regulator Linear Quadratic Gaussian

Conclusion

References

Given the motion model, measurement model, estimated error, and estimated measurement by:

$$\dot{x} = Ax + Bu + w_d \tag{1}$$

$$y = Cx + w_n \tag{2}$$

$$\varepsilon = \mathbf{X} - \hat{\mathbf{X}} \tag{3}$$

$$\hat{y} = C\hat{x} \tag{4}$$

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter

Regulator
Linear Quadratic Gaussian

Conclusion

References

we can express the derivative of the estimated state as:

$$\dot{\hat{x}} = A\hat{x} + Bu + K_f(y - \hat{y} + w_n)$$

$$\dot{\hat{x}} = A\hat{x} + Bu + K_fy - K_fC\hat{x} + K_fw_n$$

$$\dot{\hat{x}} = (A - K_fC)\hat{x} + \begin{bmatrix} B & K_f \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + K_fw_n$$
(5)

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter

Linear Quadratic Regulator

Linear Quadratic Gaussian

Conclusion

References

from (3)

$$\dot{\varepsilon} = \dot{x} - \dot{\hat{x}}
\dot{\varepsilon} = Ax + Bu + w_d - A\hat{x} - Bu - K_f Cx + K_f C\hat{x} - K_f w_n
\dot{\varepsilon} = A(x - \hat{x}) + K_f C(\hat{x} - x) - K_f w_n + w_d
\dot{\varepsilon} = A(x - \hat{x}) - K_f C(x - \hat{x}) - K_f w_n + w_d
\dot{\varepsilon} = (A - K_f C)\varepsilon - K_f w_n + w_d$$
(6)

Linear Quadratic Regulator

Introduction

Advantages of LQG

Mathematical Foundations Kalman Filter

Linear Quadratic

Conclusion

References

LQR: is a mathematical technique used to find the control signals that minimize a quadratic cost function. The cost function penalizes deviations from the desired system behavior and control effort.

$$J = \int_0^\infty \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{u}^T \mathbf{R} \mathbf{u} dt \tag{7}$$

where **Q** and **R** are weighting matrices.

Linear Quadratic Regulator

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter

line of Oreston de Conseil

Conclusion

References

The optimal control law that minimizes the cost function is given by:

$$\mathbf{u}^* = -\mathbf{K}\mathbf{x} \tag{8}$$

where **K** is the feedback gain matrix.

The optimal feedback gain matrix can be obtained by solving the algebraic Riccati equation:

$$\mathbf{A}^{T}\mathbf{P} + \mathbf{P}\mathbf{A} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{T} + \mathbf{Q} = 0$$
 (9)

where **P** is a positive semidefinite matrix, called the solution to the Riccati equation.

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter Linear Quadratic Regulator

Linear Quadratic Gaussian

Conclusion

References

Motion model:

$$\dot{x} = Ax + Bu + w_d \tag{10}$$

Measurement model:

$$y = Cx + w_n \tag{11}$$

Estimated error:

$$\varepsilon = X - \hat{X} \tag{12}$$

Control input:

$$u = -k_r x \tag{13}$$

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter

Linear Quadratic Gaussian

Conclusion

References

By substituting (13) in (10)

$$\dot{x} = Ax - BK_r \hat{x} + w_d \tag{14}$$

let

$$\hat{x} = x - (x - \hat{x}) \tag{15}$$

By substituting (15) in (14)

$$\dot{x} = Ax - BK_r x + BK_r (x - \hat{x}) + w_d$$

$$\dot{x} = (A - BK_r)x + BK_r \varepsilon + w_d$$
(16)

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations

Kalman Filter

Linear Quadratic Gaussian

Conclusion

References

Recall eq.(6)

$$\dot{\varepsilon} = (A - K_f C)\varepsilon + w_d - K_f w_n \tag{17}$$

$$\begin{bmatrix} \dot{x} \\ \dot{\varepsilon} \end{bmatrix} = \begin{bmatrix} A - BK_r & BK_r \\ 0 & A - K_f C \end{bmatrix} \begin{bmatrix} x \\ \varepsilon \end{bmatrix} + \begin{bmatrix} I & 0 \\ I & -K_f \end{bmatrix} \begin{bmatrix} w_d \\ w_n \end{bmatrix}$$
 (18)

Eq.(18) represents the **separation principle** in which **LQR** and **LQE** are independent; however, by obtaining their eigenvalues separately they can maintain a **stable** system.

Conclusion

Introduction

Definition of LQG Advantages of LQG Control

Mathematical Foundations Kalman Filter

Linear Quadratic Regulator Linear Quadratic Gaussian

Conclusion

References

Table: Comparison of LQR, LQG, and MPC

Feature	LQR	LQG	MPC
Control Objective	Quadratic cost	Quadratic cost	Finite-horizon cost
Observation Method	Open-loop	Closed-loop	Closed-loop
Controller Type	State-feedback	Optimal state- feedback	Optimal feedback and feedforward
Model Dependency	Accurate model	Accurate model	Model predictive con- trol
Robustness	Not robust	Robust	Robust
Computational Costs	Low	High	High
Online Adaptability	No	Yes	Yes
Nonlinear Systems	Not applicable	Not applicable	Applicable
Gaussian Noise Model	Yes	Yes	No

References I

Introduction

Advantages of LQG

Mathematical Foundations Kalman Filter

Regulator Linear Quadratic Gaussian

Conclusion

References

Steve Brunton

Control Bootcamp: Linear Quadratic Gaussian (LQG)

https:

//www.youtube.com/watch?v=H4_hFazBGxU&list= PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m&index=23.

