

## **Module D: SLAM& Pure Pursuit**

Part 1. Introduction to SLAM

Part 2: Particle Filter & SLAM

Part 3. Cartographer & Pure Pursuit

References:

https://f1tenth.org and UPenn ESE 680 Slides

https://google-cartographer.readthedocs.io/en/latest/

# Recall: Major SLAM Algorithms



☐ Three major SLAM algorithms:



- ☐ Typical SLAM procedures consist of multiple iterations through:
  - Localization and Mapping: by motion update and observation updates
  - Scan matching to sub-maps or data association to landmarks
  - Loop closure: build global map and register the re-entered scenes

## Math Formula of SLAM



### Definitions:

- $\bigstar$  History of robot states:  $\mathbf{X}_{0:k} = \{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_k\} = \{\mathbf{X}_{0:k-1}, \mathbf{x}_k\}$
- $\bullet$  History of control inputs:  $\mathbf{U}_{0:k} = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k} = {\mathbf{U}_{0:k-1}, \mathbf{u}_k}$
- **Set** of landmarks:  $\mathbf{m} = \{\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n\}$
- $\diamond$  Set of observations:  $\mathbf{Z}_{0:k} = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k\} = \{\mathbf{Z}_{0:k-1}, \mathbf{z}_k\}$

### Probabilistic Models

- $\diamond$  Observation model:  $P(\mathbf{z}_k|\mathbf{x}_k, \mathbf{m})$
- $\diamond$  Motion model:  $P(\mathbf{x}_k|\mathbf{x}_{k-1},\boldsymbol{u}_k)$
- \* Time update:  $P(\mathbf{x}_k, \mathbf{m} | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k}, \mathbf{x}_0) = \int P(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{u}_k) P(\mathbf{x}_{k-1}, \mathbf{m} | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k-1}, \mathbf{x}_0) d\mathbf{x}_{k-1}$
- \* Measurement update:  $P(\mathbf{x}_k, \mathbf{m} | \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0) = \frac{P(\mathbf{z}_k | \mathbf{x}_k, \mathbf{m}) P(\mathbf{x}_k, \mathbf{m} | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k}, \mathbf{x}_0)}{P(\mathbf{z}_k | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k})}$
- $\square$  SLAM solves for joint conditional probability:  $P(\mathbf{x}_k, \mathbf{m} | \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0)$





## EKF-SLAM



### □ EKF-SLAM formulation:

- **Motion model:**  $P(\mathbf{x}_k \mid \mathbf{x}_{k-1}, \mathbf{u}_k) \iff \mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_k) + \mathbf{w}_k$
- Observation model:  $P(\mathbf{z}_k \mid \mathbf{x}_k, \mathbf{m}) \iff \mathbf{z}(k) = \mathbf{h}(\mathbf{x}_k, \mathbf{m}) + \mathbf{v}_k$

### □ EKF-SLAM solution:

\* Time update (prediction):

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{f}(\hat{\mathbf{x}}_{k-1|k-1}, \mathbf{u}_k) 
\mathbf{P}_{xx,k|k-1} = \nabla \mathbf{f} \ \mathbf{P}_{xx,k-1|k-1} \nabla \mathbf{f}^T + \mathbf{Q}_k$$

\* Observation update (correction):

#### innovation

$$\begin{bmatrix} \hat{\mathbf{x}}_{k|k} \\ \hat{\mathbf{m}}_{k} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{x}}_{k|k-1} \\ \hat{\mathbf{m}}_{k-1} \end{bmatrix} + \mathbf{W}_{k} \left[ \mathbf{z}(k) - \mathbf{h}(\hat{\mathbf{x}}_{k|k-1}, \hat{\mathbf{m}}_{k-1}) \right]$$

$$\mathbf{P}_{k|k} = \mathbf{P}_{k|k-1} - \mathbf{W}_k \mathbf{S}_k \mathbf{W}_k^T$$

where

$$\mathbf{S}_k = \nabla \mathbf{h} \mathbf{P}_{k|k-1} \nabla \mathbf{h}^T + \mathbf{R}_k$$

Kalman Gain 
$$\mathbf{W}_k = \mathbf{P}_{k|k-1} \nabla \mathbf{h}^T \mathbf{S}_k^{-1}$$



Uncertainty/variance increases w/ time







# Challenges of EKF-SLAM



### Convergence:

- Convergence is measured by the determinant of covariance matrices. Monotonic convergence is shown in landmark locations.
- Computational Complexity:
  - The prediction step:  $O(N^2)$  with N dimension of states
  - The correction step:  $O(M^{2.8})$  with M dimension of landmarks
  - Other variants aiming to reduce complexity:
    - Unscented KF (UKF) SLAM: sparse EKF
    - Extended Information Filter (EIF)-SLAM

#### ☐ Data Association:

- Difficult to correctly associate observations to landmarks.
- Loop closure after a large traverse is particularly difficult.
- Nonlinearity and non-Gaussian distribution:
  - Nonlinear motion and observation models are linearized in EKF-SLAM → degrade the convergence and consistency dramatically.
  - ❖ Robot pose is typically non-Gaussian distribution → divergence.



The convergence in landmark uncertainty. A landmark is initially observed with uncertainty inherited from the robot location and observation, and the standard deviations will reduce monotonically over time.

Figure from: G. Dissanayake et. al. IEEE Trans. Robotics and Automation, 17(3):229-241, 2001.

# Why Particle Filter SLAM?



- ☐ Why particle filters are good for SLAM?
  - **Especially effective for non-Gaussian models**
  - In many indoor environment, map models:
    - Gaussian distribution: ~ 75%
    - Non-Gaussian single modal dist.: 10 20 %
    - Non-Gaussian multi-modal dist.: 5-10%
  - ❖ PF-SLAM uses particles to resample the non-Gaussian distributions.
- ☐ Types of particle filter SLAM:
  - MCL: Monte Carlo Localization: feature or grid based
  - \* FastSLAM: ver 1.0, 2.0, and grid-based FastSLAM



Different motion models and their sampling when the robot makes a 90 degree turn: noises in angular velocity and accelerometer measurements are Gaussian, but the resulting poses are non-Gaussian.

Figure from: S. Thrun et. al. Probablistic Robotics, 2005. Chapter 5.

## What is a Particle-Filter?



- ☐ What is a particle filter?
  - $\star$  Denote  $\tau(x)$  -- target distribution,  $\pi(x)$  -- proposal distribution
  - Samples of the proposal distribution are called particles, denoted as  $\chi_n = \{ x^{(1)}, x^{(2)}, \dots, x^{(J)} \}$
  - A particle filter is to obtain samples  $\chi_{\tau}$  for the target distribution from the samples  $\chi_{p}$  of the proposal distribution. This is achieved by sequential importance sampling (SIS): resample with replacement and their importance weights

$$w^{(j)} = \frac{\tau(x^{(j)})}{\pi(x^{(j)})}, \qquad j = 1, 2, ..., J$$

\* Importance weights are often calculated or derived from the relationship between  $\tau(x)$  and  $\pi(x)$ 

#### The PF algorithm consists of three steps:

- 1. Sample the proposal distribution
- 2. Compute importance weights
- 3. Resample by SIS

```
Psuedo-code: ParticleFilter(,,)
\chi_t = \chi = \emptyset
for j = 1 : J do
\text{sample } x^{(j)} \sim \pi(x)
\text{compute } w^{(j)}
\chi_t = \{X_t, [x^{(j)}, w^{(j)}]\}
endfor
%resampling
for j = 1 : J do
\text{draw } x^{(j)} \text{ with probability} \propto w^{(j)}
\text{add } x^{(j)} \text{ to } \chi
endfor
\text{return } \chi
```



# Particles and Importance Weights







# Particle Resampling





**Original Particles** 

Target Distribution

Importance Weights

Resampling

# Applying PF to SLAM



- □ SLAM is to solve for joint conditional probability:  $P(\mathbf{x_k}, \mathbf{m} | \mathbf{Z_{0:k}}, \mathbf{U_{0:k}}, \mathbf{x_0})$ 
  - Direct resampling is difficult due to high dimensions of robot states and landmarks
  - \* Factor the joint pdf into conditional pdf:

$$P(\mathbf{X}_{0:k}, \mathbf{m} \mid \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0)$$
  
=  $P(\mathbf{m} \mid \mathbf{X}_{0:k}, \mathbf{Z}_{0:k}) P(\mathbf{X}_{0:k} \mid \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0).$ 

- Use PF to sample the trajectory  $\mathbf{X}_{0:k}$  and compute their weights  $\{w_k^{(i)}, \mathbf{X}_{0:k}^{(i)}\}_i^N$
- Given trajectory particles, the landmarks are independent from each other (Rao-Blackwellisation).

$$P(\mathbf{m} \mid X_{0:k}^{(i)}, \mathbf{Z}_{0:k}) = \prod_{j=1}^{M} P(\mathbf{m}_{j} \mid X_{0:k}^{(i)}, \mathbf{Z}_{0:k})$$

→ reduce complexity by computing M low-dimensional EKFs



Rao-Blackwellisation: A graphical model of SLAM: if the history of pose states are known exactly, then the map state  $\mathbf{m}_i$  is independent from  $\mathbf{m}_j \rightarrow$  separate graph for each landmark.

Figure from: G. Dissanayake et. al. IEEE Trans. Robotics and Automation, 17(3):229-241, 2001.



# Hybrid MCL- used in simulator



- □ Proposal distribution:  $x_k^{(j)} \sim P(\mathbf{x}_k | \mathbf{x}_{k-1}, \boldsymbol{u}_k)$  motion model  $\rightarrow$  prediction step
- □ Importance weights:  $\mathbf{w}_k^{(j)} \propto P(\mathbf{z}_k | \mathbf{x}_k, \mathbf{m})$  observation model  $\rightarrow$  correction step Resample and store over time [0:k] to get sample of
- ☐ Compute map distribution by EKF. If applied to grid-maps:
  - Cell occupancies are independent from each other, occupied/empty prob. by log-likelihood ratio



From Thrun 2005 Chapter 5.



https://www.youtube.com/watch?v=h98sFFNrwa8



## Feature-Based FastSLAM



### ☐ FastSLAM 1.0:

- ❖ Proposal distribution:  $\mathbf{x}_k^{(j)} \sim P(\mathbf{x}_k | \mathbf{x}_{k-1}^{(j)}, \boldsymbol{u}_k)$  motion model with past trajectory particles
- \* Trajectory particles:  $\mathbf{X}_{0:k}^{(i)} \stackrel{\triangle}{=} \left\{ \mathbf{X}_{0:k-1}^{(i)}, \mathbf{x}_{k}^{(i)} \right\}$
- Importance weights:

$$\mathbf{w}_{k}^{(j)} \propto P\left(\mathbf{z}_{k} \middle| \mathbf{X}_{0:k}^{(j)}, \mathbf{Z}_{0:k}\right)$$

Can be derived from joint-pdf/motion-model Can be updated iteratively;

- Resample to keep the most probable trajectories.
- ❖ Performs well with feature based SLAM.

### ☐ FastSLAM 2.0:

Proposal distribution:

$$\mathbf{x}_k^{(i)} \sim \pi(\mathbf{x}_k \mid \mathbf{X}_{0:k-1}^{(i)}, \mathbf{Z}_{0:k}, \mathbf{u}_k)$$

motion model with past trajectory particles and observation history

Importance weights:

$$w_k^{(i)} = w_{k-1}^{(i)} \frac{P(\mathbf{z}_k \mid \mathbf{X}_{0:k}^{(i)}, \mathbf{Z}_{0:k-1}) P(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{u}_k)}{\pi(\mathbf{x}_k^{(i)} \mid \mathbf{X}_{0:k-1}^{(i)}, \mathbf{Z}_{0:k}, \mathbf{u}_k)}$$

### Updated iteratively

Resample to keep the most probable trajectories.

# Performance of FastSLAM 2.0





Figures are from Thrun 2005 Chapter 8.



# Grid-Based FastSLAM



### ☐ Need scan matching to align submaps



Grid-based PF SLAM example: https://youtu.be/eAqAFSrTGGY?t=1635





## References for Particle Filter SLAM



- S. Thrun, D. Fox, W. Burgard and F. Dellaert. "Robust Monte Carlo Localization for Mobile Robots." Elsevier Artificial Intelligence Journal. 2001. <a href="https://doi.org/10.1016/S0004-3702(01)00069-8">https://doi.org/10.1016/S0004-3702(01)00069-8</a>
- S. Thrun, W. Burgard, and D. Fox, "Probabilistic Robotics." MIT Press, 2005. Chapter 4 & 8.
- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. "Fast-SLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges," International Joint Conference on Artificial Intelligence, pp. 1151-1156, 2003.
- ❖ Dirk H¨ahnel, Wolfram Burgard, Dieter Fox, and Sebastian Thrun, "An Efficient FastSLAM Algorithm for Generating Mapsof Large-Scale Cyclic Environments from Raw Laser Range Measurements," IEEE International Conference on Robotics and Automation, 2003.
- A. Doucet and A. M. Johansen, "A Tutorial on Particle Filtering and Smoothing: Fifteen years later," <a href="https://www.stats.ox.ac.uk/~doucet/doucet\_johansen\_tutorialPF2011.pdf">https://www.stats.ox.ac.uk/~doucet/doucet\_johansen\_tutorialPF2011.pdf</a>
- C. Walsh, S. Karaman. "CDDT: Fast Approximate 2D Ray Casting for Accelerated Localization." Arxiv, 2017. <a href="http://arxiv.org/abs/1705.01167">http://arxiv.org/abs/1705.01167</a>