Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 5 punti nel primo esercizio (quesiti a risposta multipla).

C		_		١.,
Cognome,	nome	\mathbf{e}	matrico	ıa

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia φ la formula $\forall y \forall w [y = z \rightarrow g(y, w) = w]$.

2 punti

2 punti

- \bigcap \square Nessuna variabile occorre libera in φ .
- **b** L'insieme di verità di φ in $\langle \mathbb{R}, + \rangle$ è costituito da un solo elemento.

- (b) Sia X l'insieme degli abitanti di Genova e S la relazione binaria 2 punti su X definita da x S y se e solo se x abita a meno di 100 metri da y.
- \Box \Box S è una relazione transitiva.
- \blacksquare S è una relazione simmetrica.
- \square \square S è una relazione d'ordine.
 - S è una relazione riflessiva.
 - (c) La funzione $g: \mathbb{Q} \to \mathbb{R}$ definita da $g(t) = 3t^2 + 1$ è 2 punti Diettiva.
 - ☐ iniettiva ma non suriettiva.

 - □ suriettiva ma non iniettiva.
 - (d) Siano $B \in C$ due insiemi infiniti.
- Se B è numerabile e $C \subseteq B$, allora $|C| = |\mathbb{N}|$. $\square B \cap C$ deve anch'esso essere infinito.
- $\blacksquare B \cup C$ deve anch'esso essere infinito.
- \Box Se B è più che numerabile e $C \subseteq B$, anche C deve essere più che numerabile.

Punteggio totale primo esercizio: 8 punti

Esercizio 2 6 punti

Consideriamo le seguenti proposizioni:

 $R_0: (\neg D \wedge B) \vee (D \wedge \neg B)$

 $R_1: \qquad (\neg B \wedge C) \vee (B \wedge \neg C)$

 $R_2: \neg C \lor B \lor D$

Giustificando le proprie risposte, determinare se:

- 1. $R_0, R_1 \models R_2$;
- 2. $R_2 \models R_0 \wedge R_1$;
- 3. $R_2 \equiv R_1 \vee R_0$.

Soluzione:

$$Q_0, \ldots, Q_n \models R$$

se e solo se ogni interpretazione delle variabili proposizionali che compaiono in almeno una tra Q_0, \ldots, Q_n , R che rende vera tutte le formule Q_0, \ldots, Q_n , rende vera anche R.

$$Q \equiv R$$

se e solo se

$$Q \models R e Q \models R$$

se e solo se Q e R hanno la stessa tavola di verità.

Le tavole di verità delle tre formule mostrano che:

- 1. Ogni volta che R_0 e R_1 sono vere, lo è anche R_2 . Quindi $R_0, R_1 \models R_2$.
- 2. Se C e B sono vere, R_2 è vera mentre R_1 è falsa, quindi lo è anche $R_0 \wedge R_1$. Quindi $R_2 \not\models R_0 \wedge R_1$.
- 3. $R_1 \vee R_0$ e R_2 non hanno la stessa tavola di verità (per esempio se B e D sono false e C è vera si ha che R_2 è falsa, mentre $R_1 \vee R_0$ è vera), quindi non sono logicamente equivalenti.

Esercizio 3 6 punti

1. Formalizzare in $\mathbb N$ la frase

Il numero z divide il numero y.

utilizzando il linguaggio formato dal simbolo \cdot di moltiplicazione interpretato nella maniera usuale.

2. Utilizzando il linguaggio formato dai simboli 0, · interpretati nella maniera usuale, formalizzare in $\mathbb R$ la frase

Se 0 non divide un numero, quel numero è non nullo.

Soluzione:

1. Una possibile formalizzazione è

$$\exists w(w \cdot z = y).$$

2. Una possibile formalizzazione è

$$\forall y((\neg \exists w(w \cdot 0 = y)) \rightarrow \neg (y = 0)).$$

Esercizio 4 6 punti

Sia $L = \{Q\}$ con Q simbolo di relazione binaria. Sia φ l'enunciato

$$\forall y \exists z \neg Q(z,y).$$

- 1. Determinare se $\langle \mathbb{N}, \geq \rangle \models \varphi$.
- 2. Determinare se $\langle \mathbb{N}, \leq \rangle \models \varphi$.
- 3. L'enunciato φ è soddisfacibile? È valido?

Giustificare le proprie risposte.

Soluzione:

1. L'enunciato φ interpretato in $\langle \mathbb{N}, \geq \rangle$ afferma che

Per ogni numero naturale y esiste un numero naturale z tale che $z \not\geq y$ (ovvero tale che z < y).

Ma se y = 0, un tale z non può esistere (0 è il più piccolo tra i numeri naturali). Quindi $\langle \mathbb{N}, \geq \rangle \not\models \varphi$.

2. L'enunciato φ interpretato in $\langle \mathbb{N}, \leq \rangle$ afferma che

Per ogni numero naturale y esiste un numero naturale z tale che $z \not\leq y$ (ovvero tale che y < z).

Questo equivale a dire che ci sono numeri naturali arbitrariamente grandi, quindi $\langle \mathbb{N}, \leq \rangle \models \varphi$.

3. Per quanto visto ai punti precedenti, φ è soddisfacibile (è vero, ad esempio, in $\langle \mathbb{N}, \leq \rangle$) ma non valido (per esempio non è soddisfatto in $\langle \mathbb{N}, \geq \rangle$).

Esercizio 5 6 punti

Siano b e c due numeri naturali. Dimostrare che per ogni $n \geq 1$ vale la disuguaglianza

$$(b+c)^n \ge b^n + c^n.$$

Soluzione: Per induzione su $n \ge 1$.

Passo base (n=1). Si ha che $(b+c)^1=b+c=b^1+c^1$, dunque in particolare $(b+c)^1\geq b^1+c^1$.

Passo induttivo.

Ipotesi induttiva: $(b+c)^n \ge b^n + c^n$.

Tesi induttiva: $(b+c)^{n+1} \ge b^{n+1} + c^{n+1}$.

Utilizzando la definizione di esponenziale e il fatto che b + c, cb^n e bc^n sono tutti numeri maggiori o uguali a 0, si ottiene che

$$(b+c)^{n+1} = (b+c)^n \cdot (b+c)$$

$$\geq (b^n + c^n) \cdot (b+c)$$
 (per ipotesi induttiva)
$$= b^{n+1} + cb^n + bc^n + c^{n+1}$$

$$\geq b^{n+1} + c^{n+1},$$

come desiderato.