Relatório do projeto: Classificação de preços de residências

Richard André Satilite Carvalho

29 de janeiro de 2025

1 Introdução

O presente relatório apresenta a análise de informações e o desenvolvimento de um modelo para classificação de preços de residências, utilizando dados fornecidos pelo *dataset* da indicium. O trabalho descreve a abordagem adotada, incluindo métodos de análise, extração e filtragem dos dados, além do processo de treinamento do modelo. Também são detalhados os critérios para avaliar a precisão do modelo desenvolvido.

2 Análise exploratória de dados (AED)

Primeiramente, é realizado a disposição tabular dos dados para visualização com o uso da biblioteca de manipulação de dados *Pandas*, disponível na linguagem de programação *Python*. O *dataset* extraído é chamado de teste_indicium_precificacao.csv. A visualização permite aferir o tamanho do *dataset* em questão e os campos de atributos que cada residência contém.

id		host_id		bairro_group	bairro		room_type	price		disponibilidade_365
2595		2845		Manhattan	Midtown		Entire home/apt	225		355
:	:	:	:	:	:	:	:	:	:	:
36485609		30985759		Manhattan	Hell's Kitchen		Shared room	55		2
36487245		68119814		Manhattan	Harlem		Private room	150		365

Tabela 1: Dataset de tamanho 48894 linhas por 16 colunas.

A biblioteca Pandas permite uma sintetização das informações da dataframe bruto.

#	Column	Non-Null Count	Dtype
0	id	48894 non-null	int64
1	nome	48878 non-null	object
2	host_id	48894 non-null	int64
3	$host_name$	48873 non-null	object
4	bairro_group	48894 non-null	object
5	bairro	48894 non-null	object
6	latitude	48894 non-null	float64
7	longitude	48894 non-null	float64
8	room_type	48894 non-null	object
9	price	48894 non-null	int64
10	minimo_noites	48894 non-null	int64
11	$numero_de_reviews$	48894 non-null	int64
12	$ultima_review$	38842 non-null	object
13	$reviews_por_mes$	38842 non-null	float64
14	$calculado_host_listings_count$	48894 non-null	int64
15	$disponibilida de_365$	48894 non-null	int64

Tabela 2: Informações gerais sobre o conteúdo do dataset.

O resultado indica a existência de valores nulos que não devem ser consideradas para o treinamento do modelo e, portanto, devem ser removidos.

id	0
nome	16
host_id	0
host_name	21
bairro_group	0
bairro	0
latitude	0
longitude	0
room_type	0
price	0
minimo_noites	0
numero_de_reviews	0
ultima_review	10052
reviews_por_mes	10052
calculado_host_listings_count	0
$disponibilidade_365$	0

Tabela 3: Contagem de valores nulos em cada coluna.

Com os elementos nulos removidos, tona-se possível buscar relações das variávies do dataframe com o atributo de referência price.

#	Column	Non-Null Count	Dtype
0	id	38820 non-null	int64
1	nome	38820 non-null	object
2	$host_id$	38820 non-null	int64
3	host_name	38820 non-null	object
4	bairro_group	38820 non-null	object
5	bairro	38820 non-null	object
6	latitude	38820 non-null	float64
7	longitude	38820 non-null	float64
8	room_type	38820 non-null	object
9	price	38820 non-null	int64
10	$minimo_noites$	38820 non-null	int64
11	$numero_de_reviews$	38820 non-null	int64
12	ultima_review	38820 non-null	object
13	reviews_por_mes	38820 non-null	float64
14	$calculado_host_listings_count$	38820 non-null	int64
15	$disponibilidade_365$	38820 non-null	int64

Tabela 4: Informações sobre o dataframe sem elementos nulos.

Desta forma, o próximo processo consiste na filtragem e manipulação dos dados do dataframe, em especial sobre os dados não numéricos, que impossibilitam a interpretação estatística do modelo e que contém relevância sobre a decisão final na predição do preço. Os campos de nome, bairro, bairro_group e room_type não são numéricos e, como possuem relevância para a interpretação do preço, devem receber um tratamento antes de se realizar a divisão de treino e de teste.

2.1 Filtragem dos dados

Inicia-se a filtragem com a remoção de colunas que não contribuem significativamente com a métrica alvo price e que podem prejudicar o entendimento do modelo. São removidos os campos id, host_id, host_name e ultima_review.

Em seguida, é realizado um tratamentos dos campos que possuem conteúdos não numéricos mas que são relevantes. No caso, verifica-se a distribuição dos possíveis valores de cada campo com o método value_counts() do Pandas.

Bairro	Quantidade
Williamsburg	3163
Bedford-Stuyvesant	3141
Harlem	2206
Bushwick	1943
Hell's Kitchen	1531
•••	
Eltingville	2
New Dorp Beach	2
Richmondtown	1
Rossville	1
Willowbrook	1
Total	218

Tabela 5: Distribuição de registros por bairro.

Bairro_group	Quantidade
Manhattan	16628
Brooklyn	16444
Queens	4574
Bronx	876
Staten Island	314
Total	5

Tabela 6: Distribuição de registros por grupo de bairros.

Room Type	Quantidade
Entire home/apt	20327
Private room	17663
Shared room	846
Total	3

Tabela 7: Distribuição de registros por tipo de quarto.

nome	Quantidade
Home away from home	12
Loft Suite @ The Box House Hotel	11
Private Room	10
Brooklyn Apartment	9
New york Multi-unit building	8
Sunny Duplex in Brooklyn's Best Area	1
Private room in Charming, Cozy and	1
Sunny Apt	
2 Bedroom next to Prospect Park!	1
Lovely apartment as home	1
Cozy Private Room in Bushwick, Bro-	1
oklyn	
Total	38268

Tabela 8: Distribuição de registros por nome/descrição.

Baseado nos valores, o processo de encoding dos campos para valores numéricos depende da quantidade e do tipo informação que o campo carrega. No caso dos campos bairro_group e room_type, por se tratar de variações pequenas, o agrupamento via hot_encoding é suficiente e acarretará em um acréscimo de uma coluna para cada grupo, onde há um valor binário indicando se aquele registro percente ou não a um grupo, se pertence a um, não pertence aos demais. Para o campo bairro, dado o número elevado de variações, o método adequado será o target_encoding, que realizará um agrupamento médio entre todas as residências daquele bairro em específico, resultando em uma única coluna bairro_encoded.

nome		price		bairro_group_Bronx	bairro_group_Brooklyn
Skylit Midtown		225		0	0
i i	:	÷	:	i i	÷
1B-1B apartment		100		1	0
Cozy Private Room		30		0	1

	room_type_Entire home/apt	room_type_Private_room		bairro_encoded
	1	0		267.583164
:	:	:	:	:
	1	0		80.716981
	0	1		85.104478

Tabela 9: Dataset com encoding de tamanho 38836 linhas por 18 colunas dividido em duas partes.

Os dados tratados permitem uma visualização de relação entre os campos com o campo alvo price. Com o uso das bibliotecas matplotlib e seaborn é possível gerar um heatmap onde associa cada campo aos demais.

Figura 1: Heatmap da correlação entre os campos.

O gráfico indica que os campos disponibilidade_365 e minimo_noites possuem uma relação proporcional ao campo de price, embora o impacto destes campos não sejam tão altos quanto os campos referentes ao grupo de bairro localizado.

O campo nome possui uma alta variação de um para cada registro e, com isso, o método mais adequado se trata da filtragem do texto, com remoção de caracteres especiais e palavras que não contribuem com o contexto descrito (stopwords), aliado à geração da matriz **TF-IDF**, capaz de indicar o termo mais importante de um conteúdo. A biblioteca nltk oferece uma gama de tratamentos em linguagem e filtros como stopwords, e é possível utilizar-se da matriz **TF-IDF** para correlacionar uma palavra do campo nome ao campo price em ordem descrescente.

nome	correlação
room	0.158119
luxury	0.099038
private	0.084328
loft	0.069488
cozy	0.069446
br	0.069092
village	0.061624
duplex	0.055309
midtown	0.054979
west	0.054524
bushwick	0.049341
chelsea	0.041398

Tabela 10: 12 palavras do campo nome com maior correlação com o campo price.

Os conteúdos de nome relcionados ao tipo de residência e localização possuem uma maior interferência no campo alvo. Ao todo, a matriz **TF-IDF** contém 77 palavras únicas que devem ser contabilizadas para o treinamento do modelo.

Com a biblioteca seaborn, é possível realizar a distribuição dos preços das residências em relação às posições geográficas de latitude e longitude. Previamente, dado que a concentração dos valores do campo price estão no intervarlo (0, 300), um tratamento logarítmico, com uso da biblioteca Numpy, permite trazer os diferentes valores para uma faixa menor e com uma melhor visualização da distribuição.

Figura 2: Distribuição dos preços em escala logarítmica com relação à latitude e à longitude.

A distibuição dos preços em relação à localização geográfica é um indicador de quais regiões alguém interessando em adquirir um imóvel deve considerar, no caso de uma decisão baseada no preço, as residências de maiores valores se encontram na faixa de (40.65, 40.80) para latitude e (-74.0, -73.9) para longitude.

3 Treinamento do modelo

Se tratando de um modelo preditivo para preços de residências, no caso, valores contínuos, o problema se trata de uma **regressão**. Os processos de análise exploratória mostraram que as informações de preço estão sujeitas a variações complexas não lineares como a latitude, longitude e o tipo de residência. Um dos métodos adequados à relacionar essas features com o campo **price** é o Random Forest Regressor, disponível na biblioteca sklearn com o método de ensemble.

Para avaliar o desempenho do modelo, é realizado uma disivão dos dados de treino e de teste sobre o dataframe já filtrado. A divisão é realizada com o médodo $train_test_split$ da biblioteca sklearn. A razão da divisão seguirá a regra $\frac{80}{20}$, isto é, 80% do dataframe será destinado ao treinamento do modelo e 20% ao teste. O modelo não terá acesso ao dataset de teste durante o treinamento que será a usado para a avaliação de seu desempenho.

Para a correta normalização dos dados do dataset de treino e para evitar vazamento de dados, em especial em dados outliers, há um tratamento com o uso do método StandardScaler da biblioteca sklearn.

4 Resultados e validação cruzada

O resultado utilizando o método simples de Random Forest Regressor sobre o dataset de teste, com o número estimado de árvores de decisão igual a 100, foi de aproximadamente 65.29% de acurácia. Utilizando o método de valização cruzada GridSearchCV da biblioteca sklearn com os parâmetros n_esimators igual a [100, 200, 300], min_samples_split igual a [2, 4, 6, 8], max_depth igual a [None, 4, 8] e com um scoring sendo do tipo erro quadrático médio, o melhor resultado quase não apresentou diferença, com uma acurácia de aproximadamente 65.40%.