

Mini-Tarea 2

Profesor:

Pablo Guerrero

Auxiliar

Pablo Polanco

Alumno:

Gabriel Azócar C.

Fecha:

20 de Septiembre de 2016

Procedimiento de obtención del circuito combinacional

A continuación se presentan los pasos que se siguieron para obtener el circuito combinacional. En primer lugar, se nota que la salida arroja 1 si es que los tres bits leidos anteriormente son 1 - 0 - 1, en ese orden. Con esto, se puede hacer un diagrama de estado como el siguiente:

Figura 1: Diagrama de estados

Luego, codificando los estados como: $A=00,\,B=01,\,C=10,\,D=11,\,$ se obtiene una tabla de verdad que se muestra a continuación:

Tabla 1: Tabla de verdad a partir del diagrama de estados

E	q1	q0	X	d1	d0	У
Α	0	0	0	0	0	0
Α	0	0	1	0	1	0
В	0	1	0	1	0	0
В	0	1	1	0	1	0
С	1	0	0	0	0	0
С	1	0	1	1	1	0
D	1	1	0	1	0	1
D	1	1	0	0	1	1

Luego, encontramos el Mapa de Karnaugh para d_1,d_0 e y. Los resultados son los siguientes:

Para d_1 :

Tabla 2: Mapa de Karnaugh para $d_1\,$

x/q1q0	00	01	11	10
0	0	1	1	0
1	0	0	0	1

Para d_0 :

Tabla 3: Mapa de Karnaugh para d_0

x/q1q0	00	01	11	10
0	0	0	0	0
1	1	1	1	1

Para y:

Tabla 4: Mapa de Karnaugh para y

x/q1q0	00	01	11	10
0	0	0	1	0
1	0	0	1	0

De esta forma nos queda que:

1.
$$d_1 = \neg xq_0 + xq_1 \neg q_0$$

2.
$$d_0 = x$$

3.
$$y = q_1 q_0$$

Ahora se tiene todo lo necesario para implementar el circuito.

Implementación del circuito en Logisim

Se mostrará el circuito implementado a través de imagenes. Luego se ilustrará su funcionamiento a través de una captura de una simulación.

El circuito principal es el que se ilustra en la siguiente figura. Se puede notar que tiene dos componentes construidas como sub-circuitos, los cuales son el circuito combinacional y la componente de memoria, los cuales se muestran en la figura 3 y 4 respectivamente.

Figura 2: Circuito principal

Figura 3: Circuito combinacional

Figura 4: Componente de memoria

Se puede ver que la Figura 2 tiene un componente como sub-circuito. Este es el que determina el valor de d_1 . Su definición es la que sigue:

Figura 5: Circuito que determina el valor de d_1

A continuación se muestra el log obtenido al simular la situación descrita en el enunciado de esta Mini-Tarea. No es intuitivo leer y comparar, pero si se analiza, se extrae que el resultado es el esperado.

Entrada(170,90)	Salida(550,90)	Reloj(180,290)
0	0	
0	0	
0	0	1
0	0	0
0	0	1
0	0	0
1	0	0
1	0	1
1	0	0
0	0	0
0	0	1
0	0	0
1	0	0
1	1	1
1	1	0
0	1	0
0	0	1
0	0	0
1	0	0
1	1	1
1	1	0
1	0	1
1	0	0
1	0	1
1	0	0
0	0	0
0	0	1
0	0	0
1	0	0 6
1	1	1
1	1	0