Deep Learning for Computer Vision

Andrii Liubonko

Grammarly

Content

- Intro to Object Detection
 - Datasets
 - Metrics
- Two-stage detectors [RCNN Family]
- One-stage detectors
 - YOLO
 - Single Shot Detector [SSD]
- Proposal-free detection
- Summary

Visual Perception Problems

Classification + Localization

Object Detection

Semantic Segmentation

Instance Segmentation

Localization

[Score] dog: 0.98 cow: 0.01

[Bounding Box] (x,y,h,w)

The main assumption is that there is only **one** object in the image

Image Classification

Image Classification -> Classification + Localization

Image Classification -> Classification + Localization

Image Classification -> Classification + Localization

Localization [Training]

dog

human

Object Detection [Datasets]

Detect	train		validation		trainval		test	
Dataset	images	objects	images	objects	images	objects	images	objects
VOC-2007	2,501	6,301	2,510	6,307	5,011	12,608	4,952	14,976
VOC-2012	5,717	13,609	5,823	13,841	11,540	27,450	10,991	_
ILSVRC-2014	456,567	478,807	20,121	55,502	476,688	534,309	40,152	-
ILSVRC-2017	456,567	478,807	20,121	55,502	476,688	534,309	65,500	_
MS-COCO-2015	82,783	604,907	40,504	291,875	123,287	896,782	81,434	-
MS-COCO-2018	118,287	860,001	5,000	36,781	123,287	896,782	40,670	-
OID-2018	1,743,042	14,610,229	41,620	204,621	1,784,662	14,814,850	125,436	625,282

arXiv:1904.01569 VOC ILSVRC MS-COCO OID

How many selected items are relevant?

$$Precision = \frac{1}{1}$$

How many relevant items are selected?

$$Precision = \frac{tp}{tp + fp}$$

$$Recall = \frac{tp}{tp + fn}$$

$$IoU = \frac{A \cap B}{A \cup B}$$

A - ground truth (GT)

B - detector result (P)

The detection is *true positive* if *IoU* ≥ *threshold* @0.5

 B_1 - ground truth (GT)

B₂ - detector result (P)

The detection is *true positive* if *IoU ≥ threshold @0.5*

Precision? Recall?

Precision? Recall?

score	correct	Precision	Recall
1.0	True		

score	correct	Precision	Recall
1.0	True		
0.98	True		
0.97	False		

score	correct	Precision	Recall
1.0	True		
0.98	True		
0.97	False		
0.81	True		
0.77	True		
0.67	False		
0.53	True		
0.49	False		
0.33	False		
0.22	False		
0.11	False		

score	correct	Precision	Recall
1.0	True	1.00	0.25
0.98	True	1.00	0.5
0.97	False	0.66	0.5
0.81	True	0.75	0.75
0.77	True	0.80	1.00
0.67	False	0.66	1.00
0.53	True	0.63	1.00
0.49	False	0.57	1.00
0.33	False	0.50	1.00
0.28	False	0.44	1.00
0.14	False	0.4	1.00

score	correct	Precision	Recall
1.0	True	1.00	0.25
0.98	True	1.00	0.5
0.97	False	0.66	0.5
0.81	True	0.75	0.75
0.77	True	0.80	1.00
0.67	False	0.66	1.00
0.53	True	0.63	1.00
0.49	False	0.57	1.00
0.33	False	0.50	1.00
0.28	False	0.44	1.00
0.14	False	0.4	1.00


```
Average Precision (AP):
                        % AP at IoU=.50:.05:.95 (primary challenge metric)
  AP
  APIOU=.50
                        % AP at IoU=.50 (PASCAL VOC metric)
  APIOU=.75
                        % AP at IoU=.75 (strict metric)
AP Across Scales:
  APsmall
                        % AP for small objects: area < 32<sup>2</sup>
  APmedium
                        % AP for medium objects: 32^2 < area < 96^2
  Aplarge
                        % AP for large objects: area > 962
Average Recall (AR):
  △Rmax=1
                        % AR given 1 detection per image
   △Rmax=10
                        % AR given 10 detections per image
  ARmax=100
                        % AR given 100 detections per image
AR Across Scales:
  ARsmall
                        % AR for small objects: area < 32<sup>2</sup>
  ARmedium
                        % AR for medium objects: 32^2 < area < 96^2
  ARlarge
                        % AR for large objects: area > 962
```

Content

- Intro to Object Detection
 - Datasets
 - Metrics
- Two-stage detectors [RCNN Family]
- One-stage detectors
 - YOLO
 - Single Shot Detector [SSD]
- Proposal-free detection
- Summary

R-CNN: Regions with CNN features

- Extract possible objects using a region proposal method (the most popular one being Selective Search).
- Extract features from each region using a CNN.
- Classify each region with SVMs.

Object Detection [Region Proposal]

Bottom-up segmentation, merging regions at multiple scales Convert regions to boxes

Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

Fast R-CNN

- Use Selective Search to generate object proposals;
- Apply the CNN on the complete image and then used both Region of Interest (Rol) Pooling on the feature map;
- Use feed forward network for classification and regression;

Faster R-CNN (Overall architecture)

dog, score: 0.98

ball, score: 0.6

dog, score: 0.98

ball, score: 0.8

Faster R-CNN [Base Network]

Faster R-CNN [Anchors]

Anchors are fixed bounding boxes that are placed throughout the image with different sizes and ratios that are going to be used for reference when first predicting object locations.

- set of sizes (e.g. 64px, 128px, 256px)
- set of ratios between width and height \= 9
 of boxes (e.g. 0.5, 1, 1.5)

Faster R-CNN [Region Proposal Network]

RPN takes all the reference boxes (anchors) and outputs a set of good proposals for objects.

Faster R-CNN [Region Proposal Network]

RPN output:

score (object) = 0.9 score (background) = 0.1

 Δx center = 3 Δy center = 10 Δw = 10 Δh = 40

default anchor position and size: *Xa, Ya, Wa, Ha*

 $X = \Delta x center * Wa + Xa$ $Y = \Delta y center * Wa + Ya$ $W = Wa * exp(\Delta w)$ $H = Ha * exp(\Delta h)$ proposal box position and size: X, Y, W, H

Faster R-CNN [Region of Interest Pooling]

Fixed size feature maps are needed for the det.&class. part (R-CNN) in order to classify them into a fixed number of classes.

crop the convolutional features using each proposal and then resize to a fixed sized 14×14×D using interpolation (usually bilinear). After cropping, max pooling with a 2x2 kernel is used to get a final 7×7×D for each proposal.

Faster R-CNN [Region-based CNN]

Faster RCNN (normal)

FPN for Faster RCNN

Feature Pyramid Network (FPN)

Faster RCNN

Content

- Intro to Object Detection
 - Datasets
 - Metrics
- Two-stage detectors [RCNN Family]
- One-stage detectors
 - YOLO
 - Single Shot Detector [SSD]
- Proposal-free detection
- Summary

YOLO models detection as a regression problem. It divides the image into an S \times S grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an S \times S \times (B \times 5 + C) tensor $\underline{1506.02640}$

YOLO models detection as a regression problem. It divides the image into an S \times S grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an S \times S \times (B * 5 + C) tensor $\underline{1506.02640}$

SSD architecture

SSD architecture [Detector & classifier]

- # default boxes = 6
- 20 + 1 classes
- 4 numbers for each BB

- 126 = 21 x 6
- \bullet 24 = 4 x 6
- $150 = 5 \times 5 \times 6$

SSD architecture [Corrections]

P(background)=0.001

SSD architecture [Corrections]

5*5*6 = 150 boxes

Confidence threshold

SSD architecture

#detection pe class overall 7308

Final detection

Non-maximum Suppression (NMS)

Content

- Intro to Object Detection
 - Datasets
 - Metrics
- Two-stage detectors [RCNN Family]
- One-stage detectors
 - YOLO
 - Single Shot Detector [SSD]
- Proposal-free detection
- Summary

Proposal-based

CenterNet [architecture]

$$(\hat{x}_i + \delta \hat{x}_i - \hat{w}_i/2, \ \hat{y}_i + \delta \hat{y}_i - \hat{h}_i/2,$$

 $\hat{x}_i + \delta \hat{x}_i + \hat{w}_i/2, \ \hat{y}_i + \delta \hat{y}_i + \hat{h}_i/2)$

CenterNet (Objects as Points), arXiv: 1904.07850

CenterNet [inference]

CenterNet [Objects as Points]

Figure 6: Model diagrams. The numbers in the boxes represent the stride to the image. (a): Hourglass Network [30]. We use it as is in CornerNet [30]. (b): ResNet with transpose convolutions [55]. We add one 3×3 deformable convolutional layer [63] before each up-sampling layer. Specifically, we first use deformable convolution to change the channels and then use transposed convolution to upsample the feature map (such two steps are shown separately in $32 \to 16$. We show these two steps together as a dashed arrow for $16 \to 8$ and $8 \to 4$). (c): The original DLA-34 [58] for semantic segmentation. (d): Our modified DLA-34. We add more skip connections from the bottom layers and upgrade every convolutional layer in upsampling stages to deformable convolutional layer.

CenterNet (Objects as Points), arXiv: 1904.07850

Content

- Intro to Object Detection
 - Datasets
 - Metrics
- Two-stage detectors [RCNN Family]
- One-stage detectors
 - YOLO
 - Single Shot Detector [SSD]
- Proposal-free detection
- Summary

Object detection accuracy improvements

