SIMULATIONS OF INSTABILITIES IN ACCRETION DISK TORUS

Jung Lin (Doris) Lee (UC Berkeley)
Kengo Tomida (Princeton)
Jim Stone (Princeton)
USRP Final Presentation, 08/06/2015

ACCRETION DISKS IN ASTROPHYSICS

How does angular momentum get transported outward in an accretion disk?

- Example:
 - Protostellar discs
 - Supermassive Black Holes in AGNs
 - Mergers of neutron star binaries

TOOLS FOR SIMULATING ACCRETION DISK PHYSICS

- Athena ++, HLLC Solver
- Radial Log-gridding
- Static Mesh Refinement
- Spherical polar coordinates
- 24~768 cores, MPI, NERSC

PAPALOIZOU-PRINGLE INSTABILITY

- hydrodynamic, global instability
- constant angular momentum
- Corotation amplification mechanism

SIMULATION RESULTS

MODE GROWTH ANALYSIS

MAGNETOROTATIONAL INSTABILITY (MRI)

RUN-AWAY INSTABILITY

SIMULATION RESULTS

MRI MODE GROWTH ANALYSIS

MASS ACCRETION RATE HISTORY

SUMMARY

Papaloizou Pringle Instability	Magnetorotational Instability
Global, nonaxisymmetric, Hydrodynamical	Local, MHD
Constant Angular Momentum	Shearing $V_{ m inner} > V_{ m outer}$
m=1 mode dominant	higher order modes dominant
Provide angular momentum transport, but not as considerable as MRI.	Faster growth. More effective angular momentum transport .