priprema za 1. međuispit iz predmeta: UVOD U TEORIJU RAČUNARSTVA (teorijski dio)

TEORIJSKA PITANJA SA 1. KONTROLNH ZADAĆA IZ PREDMETA: AUTOMATI, FORMALNI JEZICI I JEZIČNI PROCESORI 1

1. Formalno definirati DKA i pripadnu funkciju $\hat{\delta}$.

dka =
$$(Q, \Sigma, \delta, q_0, F)$$

Q - konačan skup stanja;

 Σ - konačan skup ulaznih znakova;

δ - funkcija prijelaza Q × Σ → Q

 $q_0 \in Q$ - početno stanje;

 $F \subseteq Q$ - skup prihvatljivih stanja

funkcija $\hat{\delta}: Q \times \Sigma^* \to Q$

 Σ * - skup svih mogućih nizova ulaznih znakova, uključujući i prazni niz (ε)

- (1) $\hat{\delta}(q, \varepsilon) = q$, gdje je ε prazni niz;
- (2) za bilo koji niz ulaznih znakova w i za bilo koji ulazni znak a vrijedi:

$$\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$$
, gdje je $w \in \Sigma * i a \in \Sigma$

2. Opisati postupak pretvorbe ε –NKA u NKA.

$$\varepsilon \operatorname{-NKA} M = (\ Q, \ \Sigma, \ \delta, \ q_0, \ F) \to \operatorname{NKA} M' = (\ Q', \ \Sigma, \ \delta', \ q_0', \ F')$$

- (1) Q' = Q
- (2) $q_0' = q_0$
- (3) $F' = F \cup \{q_0\}$ ako ε –OKRUŽENJE (q_0) sadrži barem jedno stanje koje je $\in F$, inače F' = F
- (4) $\delta'(q, a) = \hat{\delta}(q, a), \forall a \in \Sigma \mid \forall q \in Q$

3. Navesti svojstva ε –NKA dobivenog postupkom konstrukcije iz regularnog izraza.

- (1) Broj stanja ε –NKA M nikad nije veći od broja 2 |r|, gdje je |r| broj znakova u regularnom izrazu r. U pojedinim koracima se ne stvara više od 2 stanja.
- (2) ε –NKA M= $(Q, \Sigma, \delta, i, \{f\})$ ima samo jedno završno stanje f. Za završno stanje f vrijedi da je $\delta(f, a) = \emptyset$, $\forall a \in (\Sigma \cup \{\varepsilon\})$
- (3) Skup $\delta(q,a)$ sadrži najviše jedno stanje za ulazni znak a iz skupa Σ , dok skup $\delta(q,\varepsilon)$ sadrži najviše dva stanja. Ima li čvor dvije izlazne grane, obje grane su označene ε -prijelazima.

4. Dokazati da su regularni jezici zatvoreni s obzirom na nadovezivanje.

Za regularni izraz r_1r_2 koji definira jezik $L(r_1r_2)=L$ (r_1) L (r_2) konstruira se ε –NKA M na sljedeći način. Pretpostavimo da su prethodno izgrađeni ε –NKA $M_1=(Q_1, \Sigma_1, \delta_1, i_1, \{f_1\})$ i $M_2=(Q_2, \Sigma_2, \delta_2, i_2, \{f_2\})$ takvi da vrijedi $L(M_1)=L$ (r_1) i $L(M_2)=L$ (r_2) i da nema prijelaza is stanja f_1 i f_2 niti za jedan ulazni znak (tj. $\delta_1(q_1, a)=\emptyset$, $\forall a\in (\Sigma_1\cup\{\varepsilon\})$ i $\forall b\in (\Sigma_2\cup\{\varepsilon\})$). Promjenom imena stanja u Q_1 i Q_2 postiže se da je $Q_1\cap Q_2=\{\}$. Konstruira se ε –NKA $M_1=(Q_1\cup Q_2, \Sigma_1\cup \Sigma_2, \delta, i_1, \{f_2\})$. Novo početno stanje jest i_1 , a novo prihvatljivo stanje jest f_2 . Stanje i_2 nije više početno stanje, te stanje f_1 nije više pirhvatljivo.

5. Opisati jednostavan algoritam pronalaženja istovjetnih stanja (1. algoritam).

Uvjeti se ispituju za sve parove stanja DKA. Neka se npr. ispituju stanja q_1 i q_3 nekog DKA M=($\{q_1, q_2, q_3\}$, $\{c,d\}$, δ , q_0 , F):

(1) Napravimo tablicu koja sa svaki ulazni znak ima zasebni stupac, izaberu se dva stanja, odnosno taj par označava redak:

$$q_1 i q_3$$
 c d

- (2) Uvjet podudarnosti ispituje se za sve parove novih stanja koji su zapisani u tablicu. Ako par stanja nije podudaran, onda par stanja označen u prvom retku nije istovjetan i algoritam se zaustavlja. Ako su stanja podudarna, odrede se novi parovi stanja za sve ulazne znakove.
- (3) Za novi par stanja u koraku (2) su tri mogućnosti:

Par stanja	Akcija
Ista stanja	Nema akcije
Različita stanja, za koje postoji zapis u nekom od prethodnih koraka	Nema akcije
Različita stanja, za koje ne postoji zapis u nekom od prethodnih koraka	Stvori novi redak u tablici i upiši u njega novi par stanja

(4) Ako se u koraku (3) ne zapiše novo redak, onda je par stanja iz 1. retka istovjetan, kao i svi parovi stanja u ostalim retcima.

Ako je zapisan novi redak, idemo na korak (2)

6. Opisati postupak pretvorbe NKA u DKA.

NKA
$$M=(Q, \Sigma, \delta, q_0, F) \rightarrow \text{DKA } M'=(Q', \Sigma, \delta', q_0', F')$$

- (1) $Q' = 2^Q$, skup svih podskupova skupa stanja NKA Q
- (2) $q_0' = [q_0]$
- (3) $F' = [p_1, p_2, ..., p_i] p_k \in F$.
- (4) $\delta'([p_1, p_2, ..., p_l], a) = [r_1, r_2, ..., r_j],$ ako i samo ako je $\delta'(\{p_1, p_2, ..., p_l\}, a) = \{r_1, r_2, ..., r_l\},$ gdje je $a \in \Sigma$

7. Opisati generator konačnog automata.

Generator konačnog automata ostvaruje cjelokupnu ili dio pretvorbe regularnih izraza u DKA.

8. Navesti rekurzivna pravila za regularne izraze te pravila asocijativnosti i prednosti za osnovne operatore koji se koriste u regularnim izrazima.

Rekurzivna pravila:

- (1) \emptyset jest regularni izraz i označava jezik $L(\emptyset) = \{\}$
- (2) ε jest regularni izraz i označava jezik $L(\varepsilon) = \{\varepsilon\}$
- (3) $\forall a \in \Sigma$, a jest regularni izraz i označava jezik $L(a) = \{a\}$
- (4) r i s regularni izrazi koji označavju jezike L (r) i L (s):
 - a) (r)+(s) jest regularni izraz koji označava jezik $L(r)+(s)=L(r)\cup L(s)$.
 - b) (r)(s) jest regularni izraz koji označava jezik L(r)(s) = L(r)L(s).
 - c) $(r)^*$ jest regularni izraz koji označava jezik $L(r)^* = L(r)^*$.

Pravila asocijativnosti:

- (1) Unarni operator * jest lijevo asocijativan i najveće je prednosti.
- (2) Operator nadovezivanja jest lijevo asocijativan i veće je prednosti od operatora +.
- (3) Operator + jest lijevo asocijativan i najmanje je prednosti.

9. Navesti definiciju nedohvatljivog stanja i napisati algoritam za pronalaženje nedohvatljivih stanja.

Stanje p DKA $M=Q, \Sigma, \delta, q_0, F$) jest nedohvatljivo ako ne postoji niti jedan niz $w \in \Sigma$ za koji vrijedi da je $p=\delta(q_0,w)$. Dohvatljiva stanja DKA $M=(Q,\Sigma,\delta,q_0,F)$ se određuju na sljedeći način:

- (1) U Listu DS upiše se q_0
- (2) Lista DS se proširi skupom stanja $\{p \mid p = \delta(q_0, a), \forall a \in \Sigma\}$
- (3) Za sva stanja $q_i \in DS$ proširi se lista skupom stanja $\{p \mid p = \delta(q_0, a), \text{ stanje } p \text{ se ne nalazi u listi, } \forall a \in \Sigma \}$

Stanja koja nisu u listi dohvatljivih stanja su nedohvatljiva stanja.

10. Dokazati da su regularni jezici zatvoreni s obzirom na operaciju komplementiranja.

Neka DKA M=(Q, Σ , δ , q_0 , F) prihvaća regularni jezik L (M). Za komplement jezika L (M) c moguće je izgraditi DKA M'=(Q, Σ , δ , q_0 , $Q \setminus F$) koji prihvaća jezik L (M')={ $w \mid \delta(q_0, w) \in (Q \setminus F)$ } = { $w \mid \delta(q_0, w) \notin F$ } = Σ *\ { $w \mid \delta(q_0, w) \notin F$ } = Σ *\ L (M) c

11. Opisati postupak ispitivanja nepraznosti regularnih jezika.

Neka DKA M prihvaća jezik L (M) i neka jezik DKA M ima n stanja; Regularni jezik L(M) jest neprazan ako i samo ako DKA M prihvaća niz z duljine manje od n, tj. $\mid z \mid < n$.

Za utvrđivanje da li je jezik L(M) koji privaća DKA M neprazan, proširuje se algoritam određivanja nedohvatljivih stanja. Ako je u skupu dohvatljivih stanja barem jedno prhvatljivo stanje, onda je regularni jezik L(M) neprazan.

12. Opisati postupak konstrukcije Mealyevog iz Mooreovog automata.

Mooreov automat $M = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$, istovjetni Mealyev automat $M = (Q, \Sigma, \Delta, \delta, \lambda', q_0)$ gradi se promjenom funkcije izlaza:

(1) $\lambda'(q, a) = \lambda(\delta(q, a))$, za sve q iz Q i za sve a iz Σ .

13. Navesti i objasniti načine programskog ostvarenja funkcije prijelaza.

Funkcija prijelaza ostvaruje se na dva načina: vektorski i listom.

VEKTORSKI PRISTUP definira za svako stanje KA jedan vektor. U vektoru je onoliko elemenata koliko je različitih ulaznih znakova. Osnovna prednost vektorskog pristupa jest brzina računanja novog stanja. Nedostatak vektorskog pristupa je neučinkovito korištenje memorije. Svi vektori su jednake veličine i broj elemenata u svim vektorima jednak je broju ulaznih znakova.

LISTOM se postiže učinkovito korištenje memorije. Za pojedine vektroe definira se lista parova ulaznih znakova i stanja u koje konačni automat prelazi za zadani znak. Računanje novog stanja je duže i računa se u dva koraka:

- (1) provjerava se da li je u listi zapis traženog ulaznog stanja, ako je onda se uzme podatak o novom stanju;
- (2) ako zapis nije u listi, onda je novo stanje ono koje je navedeno posljednje u listi.

14. Opisati algoritam za utvrđivanje beskonačnosti jezika L(M) kojega prihvaća DKA M.

Neka DKA M prihvaća jezik L(M) i neka jezik DKA M ima n stanja; Regularni jezik L(M) jest beskonačan ako i samo ako DKA M prihvaća niz duljine l, gdje je n < l < 2n.

Za utvrđivanje da li je jezik L(M) beskonačan, promatra se dijagram stanja DKA M. Izuzimanjem svih neprihvatljivih stanja, dobije se DKA M' koji prihvaća isti jezik L(M) = L(M)'. Ako je u dobivenom dijagramu stanja DKA M' barem jedna zatvorena petlja, onda je regularni jezik L(M) beskonačan.