인공지능을 위한 머신러닝 알고리즘

7. 역전파

CONTENTS

- 1 역전파 학습 방법
 - 2 활성함수의 미분값

학습 목표

■ 역전파 알고리즘을 이해하고 다층 퍼셉트 론의 파라미터 값을 계산할 수 있다.

■ 활성함수 미분값의 특징을 이해할 수 있다.

▮ 다층 퍼셉트론

다층 퍼셉트론의 적절한 가중치를 어떻게 찾을 수 있을까?

● 단층 퍼셉트론 모델에서 적절한 가중치를 찾기 위해 경사 하강법 (Gradient Descent)을 사용

$$\Delta \mathbf{w}_{ji} = (\mathbf{t}_j - \mathbf{y}_j) \mathbf{x}_i$$

▶ 다층 퍼셉트론

다층 퍼셉트론의 적절한 가중치를 어떻게 찾을 수 있을까?

- 위와 같이 여러 층을 갖는 다층 퍼셉트론에서 에러가 세번째 층에서만 계산된다면 처음 두 개의 층은 어떻게 가중치를 학습할까?
- \odot 입력층에서는 직접적인 에러 신호 $(t_i y_i)$ 가 존재하지 않음

- ▮ 기여도 할당 문제 (Credit Assignment Problem)
 - 전체 학습 모델을 구성하는데 관여하고 있는 모든 개별 요소들예>은닉유닛들)에 '기여도' 또는 '책임'을 할당하는 문제
 - 다층 신경망에서는 어떤 가중치들을 얼마큼, 어떤 방향으로 학습시켜야 하는지 관련됨
 - 앞부분 층의 가중치들이 최종 출력(또는 에러)에 얼마큼 영향을 미치는 결정하는 문제와 비슷
 - \odot 가중치 w_{ii} 가 에러에 미치는 영향을 계산해야 함

$$\frac{\partial E(t)}{\partial W_{ij}(t)}$$

- 역전파 (Backpropagation)
 - 다층 퍼셉트론에서 기여도 할당 문제에 대한 해결책

Rumelhart, Hinton and Williams (1986)

- 역전파는 두 단계로 나뉘어짐
 - 1. 앞먹임 단계
 - 2. 오류 후방 전파 단계

입력 값들을 사용하여 다층 퍼셉트론의 최종 출력을 계산

에러 값을 계산한 뒤, 최종 출력 유닛들부터 시작하여 네트워크의 후방으로 에러 값을 전

퍄

▮입력층 - 은닉층 = 출력층 구조를 갖는 다층 퍼셉트론의 모습

▮ 다층 퍼셉트론의 노드 활성 값 계산

$$z_i(t) = g(\sum_j v_{ij}(t)x_j(t)) \text{ at time t}$$

= $g(u_i(t))$

$$y_i(t) = g(\Sigma_j \ w_{ij}(t) z_j(t))$$
 at time t
= $g(a_i(t))$

- Bias는 추가 가중치로 여겨짐

▋ 역전파 = (1) 앞먹임 단계

1. 은닉 유닛들의 값 계산

$$u_{j}(t) = \sum_{i} v_{ji}(t) x_{i}(t)$$
$$z_{j} = g(u_{j}(t))$$

2. 출력 유닛들의 값 계산

$$a_k(t) = \sum_j w_{kj}(t) z_j$$
$$y_k = g(a_k(t))$$

- 역전파 (2) 오류 후방 전파 단계
 - ◉ 에러의 제곱의 합을 사용할 경우, 다음과 같은 손실 함수 식을 얻음

$$E(t) = \frac{1}{2} \sum_{k=1}^{\infty} (d_k(t) - y_k(t))^2$$

- E를 줄이기 위해 경사 하강법을 사용하여 가중치를 변경함

$$W_{ij}(t+1) - W_{ij}(t) \propto -\frac{\partial E(t)}{\partial W_{ij}(t)}$$

◉ 출력 유닛과 은닉 유닛 모두 적용

■ 역전파 - (2) 오류 후방 전파 단계

편미분 방정식은 체인물을 사용하여 두 개 항의 곱으로 나타낼 수 있음

$$\frac{\partial E(t)}{\partial w_{ij}(t)} = \frac{\partial E(t)}{\partial a_i(t)} \bullet \frac{\partial a_i(t)}{\partial w_{ij}(t)}$$

$$u_j(t) = \sum_i v_{ji}(t) x_i(t)$$

은닉유닛:
$$z_j = g(u_j(t))$$

출력 유닛:
$$a_k(t) = \sum_j w_{kj}(t) z_j$$
$$y_k = g(a_k(t))$$

출력 유닛과 은닉 유닛 모두 적용

Term A

i 번째 출력 유닛의 a; (t) 값에 대한 에러 값의 변화량

Term B

i 번째 출력 유닛에 연결되어있는 i 번째 가중치에 대한 $a_i(t)$ 의 변화량

▶ 역전파 - (3) 손실 함수의 미분

B항 $\frac{\partial u_i(t)}{\partial v_{ij}(t)} = x_j(t) \quad \frac{\partial a_i(t)}{\partial w_{ij}(t)} = z_j(t)$ 은닉유닛의경우 출력유닛의경우

은닉유닛:
$$u_{j}(t) = \sum_{i} v_{ji}(t)x_{i}(t)$$
$$z_{j} = g(u_{j}(t))$$

출력유닛:
$$a_k(t) = \sum_j w_{kj}(t) z_j$$
$$y_k = g(a_k(t))$$

$$\frac{\partial E(t)}{\partial u_i(t)}$$

$$\frac{\partial E(t)}{\partial a_i(t)}$$

출력 유닛의 경우

▶ 역전파 - (3) 손실 함수의 미분

각 출력 유닛에 대하여 아래의 식을 계산

$$\Delta_{i}(t) = \frac{\partial E(t)}{\partial a_{i}(t)} = g'(a_{i}(t)) \frac{\partial E(t)}{\partial y_{i}(t)}$$
$$\Delta_{i}(t) = -g'(a_{i}(t))(d_{i}(t) - y_{i}(t))$$

은닉유닛:
$$u_{j}(t) = \sum_{i} v_{ji}(t) x_{i}(t)$$
$$z_{j} = g(u_{j}(t))$$

손실 함수:
$$E(t) = \frac{1}{2} \sum_{k=1}^{\infty} (d_k(t) - y_k(t))^2$$

■ 역전파 - (3) 손실 함수의 미분

각 은닉 유닛에 대하여 체인를 사용
$$a_{j}(t) = \sum_{m} w_{jm}(t)g(u_{m}(t))$$

$$\delta_{i}(t) = \frac{\partial E(t)}{\partial u_{i}(t)} = \sum_{j} \frac{\partial E(t)}{\partial a_{j}(t)} \frac{\partial a_{j}(t)}{\partial u_{i}(t)}$$

$$\delta_{i}(t) = g'(u_{i}(t)) \sum_{j} w_{ji} \Delta_{j}$$

일 유닛:
$$z_j = g(u_j(t))$$

$$a_k(t) = \sum_j w_{kj}(t) z_j$$

출력 유닛: $y_k = g(a_k(t))$

손실 함수:
$$E(t) = \frac{1}{2} \sum_{k=1}^{\infty} (d_k(t) - y_k(t))^2$$

■ 역전파 - (4) 기여도 할당 문제의 해결

▶ 역전파 - (5) 가중치 업데이트

A와 B를 결합

$$\frac{\partial E(t)}{\partial V_{ij}(t)} = \delta_i(t) X_j(t)$$
$$\frac{\partial E(t)}{\partial W_{ij}(t)} = \Delta_i(t) Z_j(t)$$

$$\frac{\partial E(t)}{\partial v_{ij}(t)} = \frac{\partial E(t)}{\partial u_{i}(t)} \bullet \frac{\partial u_{i}(t)}{\partial v_{ij}(t)}$$

$$\frac{\partial E(t)}{\partial w_{ij}(t)} = \frac{\partial E(t)}{\partial a_{i}(t)} \bullet \frac{\partial a_{i}(t)}{\partial w_{ij}(t)}$$

E에 대한 경사 하강법을 하기 위해서 가중치를 다음과 같이 변경해야 함

$$v_{ij}(t+1)-v_{ij}(t) = \eta \delta_i(t) x_j(n)$$

$$w_{ij}(t+1)-w_{ij}(t) = \eta \Delta_i(t) z_j(t)$$

η은 학습률을 나타내는 파라미터 (**0 < η <=1**)

- ▶ 역전파 (5) 가중치 업데이트
 - ❖ 가중치 학습식

$$v_{ij}(t+1) - v_{ij}(t) = \eta \delta_i(t) x_j(t)$$
$$w_{ij}(t+1) - w_{ij}(t) = \eta \Delta_i(t) z_j(t)$$

- ▶ 역전파 (5) 가중치 업데이트
 - ❖ 출력 유닛

$$w_{ij}(t+1) - w_{ij}(t) = \eta \Delta_i(t) z_j(t)$$
 $= \eta (d_i(t) - y_i(t)) g'(a_i(t)) z_j(t)$
에러의 크기 활성함수의 미분값 입력의 크기

❖ 은닉 유닛

$$v_{ij}(t+1) - v_{ij}(t) = \eta \delta_i(t) x_j(t)$$
 $= \eta g'(u_i(t)) x_j(t) \sum_k \Delta_k(t) w_{ki}$

확성학수의 미부값 인력의 크기 상위층 유년들의 기여도를 가장

활성함수의 미분값 _ 입력의 크기 _ 상위층 유닛들의 기여도를 가중치에 따라 평균 낸 값

2. 활성함수의 미분값

▶ 활성함수에 대한 에러의 변화량

<u>활성함수가 에러의 변화량에 얼만큼</u> 영향을 미칠까?

$$\Delta_i(t) = (d_i(t) - y_i(t))g'(a_i(t))$$

$$\delta_i(t) = g'(u_i(t)) \sum_k \Delta_k(t) w_{ki}$$

Where:
$$g'(a_i(t)) = \frac{dg(a)}{da}$$

- ◉ 활성함수 g에 대한 미분을 계산해야 함
- ◉ 미분이 가능하기 위해서 활성함수는 'smooth'해야 함

2. 활성함수의 미분값

▮ 시그모이드 함수

$$g'(a_i(t)) = \frac{k \exp(-k a_i(t))}{[1 + \exp(-k a_i(t))]^2} = kg(a_i(t))[1 - g(a_i(t))]$$

since: $y_i(t) = g(a_i(t))$ we have: $g'(a_i(t)) = ky_i(t)(1 - y_i(t))$

2. 활성함수의 미분값

- ▮ 활성함수 미분값과 가중치의 관계
 - ❖ 가중치의 변화량은 활성함수 미분값의 비례

$$\Delta_i(t) = (d_i(t) - y_i(t))g'(a_i(t))$$
$$\delta_i(t) = g'(u_i(t))\sum_k \Delta_k(t)w_{ki}$$

- \odot 가중치의 학습은 유닛의 $a_i(t)$ 또는 $u_i(t)$ 값이 너무 크거나 작지 않을 경우 잘 됨
- ◉ 값이 너무 크거나 작을 때 미분값은 0에 가까워짐
- ⊙ 딥신경망이 학습이 잘 안되었던 이유

지금까지 [역전파]에 대해서 살펴보았습니다.

역전파 학습 방법

앞먹임 단계: 입력 값들을 사용하여 다층 퍼셉트론의 최종 출력을 계산 오류 후방 전파 단계: 에러값을 계산한 뒤, 최종 출력 유닛들부터 시작하여 네트워크의 후방으로 에러값을 전파

역전파 학습 방법

은닉 유닛의 가중치를 학습하기 위해서 체인물을 사용, 은닉 유닛의 출력 유닛들에 대한가중치들은 해당 은닉 유닛에 대한 '기여도' 또 는 '책임'을 부여하는 '정도'의 값으로 해석할 수 있음

활성함수의 미분값

시그모이드 함수의 미분 형태
$$g'(a_i(t)) = k(1 - \frac{1}{1 + e^{-k a_i(t)}}) \frac{1}{1 + e^{-k a_i(t)}}$$