11.1.6 Solving Equations

Diophantine Equations A *Diophantine equation* is an equation of the form

$$ax + by = c$$
,

where a, b, and c are constants and the values of x and y should be found. Each number in the equation has to be an integer. For example, one solution to the equation

$$5x + 2y = 11$$

is x = 3 and y = -2.

We can efficiently solve a Diophantine equation by using the extended Euclid's algorithm (Sect. 11.1.3) which gives integers x and y that satisfy the equation

$$ax + by = \gcd(a, b).$$

A Diophantine equation can be solved exactly when c is divisible by gcd(a, b). As an example, let us find integers x and y that satisfy the equation

$$39x + 15y = 12$$
.

The equation can be solved, because gcd(39, 15) = 3 and $3 \mid 12$. The extended Euclid's algorithm gives us

$$39 \cdot 2 + 15 \cdot (-5) = 3$$

and by multiplying this by 4, the equation becomes

$$39 \cdot 8 + 15 \cdot (-20) = 12$$

so a solution to the equation is x = 8 and y = -20.

A solution to a Diophantine equation is not unique, because we can form an infinite number of solutions if we know one solution. If a pair (x, y) is a solution, then also all pairs

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right)$$

are solutions, where k is any integer.

Chinese Remainder Theorem The *Chinese remainder theorem* solves a group of equations of the form

$$x = a_1 \bmod m_1$$
$$x = a_2 \bmod m_2$$

$$x = a_n \mod m_n$$