

Model Optimization and Tuning Phase Report

Date	08 August 2025
Skill Wallet ID	SWUID20250188325
Project Title	Predictive Pulse: Harnessing Machine Learning for Blood Pressure Analysis
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre># Logistic Regression Hyperparameter Tuning from sklearn.model_selection import GridSearchCV param_grid_lr = {</pre>	grid_lr.fit(X_train, y_train) print("Best Logistic Regression params:", grid_lr.best_params_) print("Best Logistic Regression score:", grid_lr.best_score_) Best Logistic Regression params: {'C': 10, 'max_iter': 500, 'solver': 'lbfgs'} Best Logistic Regression score: 0.9815068493150685
Random Forest	# Random Forest Hyperparameter Tuning param_grid_rf = { 'n_estimators': [50, 100, 200], 'max_depth': [None, 5, 10, 20], 'min_samples_split': [2, 5, 10] } grid_rf = GridSearchCV(RandomForestClassifier(random_state=42), param_grid_rf, cv=5, scoring='accuracy')	<pre>grid_rf.fit(X_train, y_train) print("Best Random Forest params:", grid_rf.best_params_) print("Best Random Forest score:", grid_rf.best_score_) Best Random Forest params: {'max_depth': None, 'min_samples_split': 2, 'n_estimators': 50} Best Random Forest score: 0.9986301369863014</pre>

Decision Tree	# Decision Tree Hyperparameter Tuning param_grid_dt = { "max_depth': [None, 3, 5, 10], "min_samples_split': [2, 4, 8, 16] } grid_dt = GridSearchCV(DecisionTreeClassifier(random_state=42), param_grid_dt, cv=5, scoring='accuracy')	<pre>grid_dt.fit(X_train, y_train) print("Best Decision Tree params:", grid_dt.best_params_) print("Best Decision Tree score:", grid_dt.best_score_) Best Decision Tree params: {'max_depth': None, 'min_samples_split': 8} Best Decision Tree score: 0.9986301369863014</pre>
Gaussian Navie Bayes	<pre># Gaussian Naive Bayes Hyperparameter Tuning param_grid_gnb = { 'var_smoothing': [1e-9, 1e-8, 1e-7, 1e-6] } grid_gnb = GridSearchCV(GaussianNB(), param_grid_gnb, cv=5, scoring='accuracy')</pre>	<pre>grid_gnb.fit(X_train, y_train) print("Best GaussianNB params:", grid_gnb.best_params_) print("Best GaussianNB score:", grid_gnb.best_score_) Best GaussianNB params: {'var_smoothing': 1e-09} Best GaussianNB score: 0.8945205479452056</pre>
Multinomial Navie Bayes	<pre># Multinomial Naive Bayes Hyperparameter Tuning param_grid_mnb = { 'alpha': [0.1, 0.5, 1.0, 2.0, 5.0] } grid_mnb = GridSearchCV(MultinomialNB(), param_grid_mnb, cv=5, scoring='accuracy')</pre>	grid_mnb.fit(X_train_mnb, y_train) print("Best MultinomialNB params:", grid_mnb.best_params_) print("Best MultinomialNB score:", grid_mnb.best_score_) Best MultinomialNB params: {'alpha': 0.1} Best MultinomialNB score: 0.8

Performance Metrics Comparison Report (2 Marks):

Model		Optimi	zed Metric		
	<pre>print(classification_report(y_test, y_pred_log)) print(confusion_matrix(y_test, y_pred_log))</pre>				
		recision			support
	0	0.99	0.96	0.98	139
	1	1.00	0.94		120
	4	0.87	1.00	0.93	46
Logistic	5	0.92	0.98	0.95	60
Regression					
	accuracy			0.96	365
	macro avg	0.95	0.97	0.96	365
	weighted avg	0.97	0.96	0.96	365
	[[134 0 0	5]			
	[0 113 7	0]			
	[0 0 46	0]			
	[1 0 0	59]]			

	<pre>print(classif</pre>	ication_r	report(y_	test, y_p	ored_rf))
	print(confusi	on_matrix	(y_test,	y_pred_r	rf))
	t	precision	recall	f1-score	support
	0	1.00			139
	1 4	1.00			120 46
	5	1.00	1.00		60
Random Forest					
	accuracy			1.00	365
	macro avg	1.00	1.00	1.00	365
	weighted avg	1.00	1.00	1.00	365
	[[139 0 0	0 1			
	[0 120 0	-			
	[0 0 46	-			
	[000	60]]			
					1 1033
		<pre>print(classification_report(y_test, y_pred_dt))</pre>			
	print(confusi	on_matrix	(y_test,	y_pred_d	it))
		precision	recall	f1-score	support
	0	1.00	1.00	4 00	
			1.00	1.00	139
Docicion Troo	1	1.00	1.00	1.00	
Decision Tree	4	1.00	1.00 1.00	1.00 1.00	120 46
Decision Tree			1.00	1.00	120
Decision Tree	4 5	1.00	1.00 1.00	1.00 1.00 1.00	120 46 60
Decision Tree	4 5 accuracy	1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	120 46 60 365
Decision Tree	4 5	1.00	1.00 1.00 1.00	1.00 1.00 1.00	120 46 60
Decision Tree	4 5 accuracy macro avg	1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	accuracy macro avg weighted avg [[139 0 0 [0 120 0	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0 [0 120 0 [0 0 46	1.00 1.00 1.00 0] 0]	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0 [0 120 0 [0 0 46	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0 [0 120 0 [0 0 46	1.00 1.00 1.00 0] 0]	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0 [0 120 0 [0 0 46	1.00 1.00 1.00 0] 0]	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0 [0 120 0 [0 0 46	1.00 1.00 1.00 0] 0]	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0 [0 120 0 [0 0 46	1.00 1.00 1.00 0] 0]	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365
Decision Tree	4 5 accuracy macro avg weighted avg [[139 0 0 [0 120 0 [0 0 46	1.00 1.00 1.00 0] 0]	1.00 1.00 1.00	1.00 1.00 1.00 1.00	120 46 60 365 365

	<pre>print(classif print(confusi</pre>	_			
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	139
	1	1.00		0.80	120
	4	0.53		0.70	46
Gaussian Navie Bayes	5	1.00	1.00	1.00	60
·	accuracy			0.89	365
	macro avg	0.88	0.92	0.87	365
	weighted avg	0.94	0.89	0.90	365
	[[139 0 0 [0 80 40 [0 0 46 [0 0 0	0] 0]			
	<pre>print(classif print(confusi</pre>	_			
		precision	recall	f1-score	support
	0	0.80	0.84	0.82	139
	1	0.85	1.00	0.92	120
	4	1.00	0.54	0.70	46
Multinomial Navie Bayes	5	0.58	0.52	0.55	60
Travic Bayes	accuracy			0.80	365
	macro avg	0.81	0.73	0.75	365
	weighted avg	0.81	0.80	0.79	365
	[0 120 0 [0 21 25	22] 0] 0] 31]]			

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest (RF)	Random Forest Model is used because it consistently delivers high predictive accuracy and demonstrates strong generalization on both training and test data. Random Forest is robust to overfitting due to its ensemble approach, which averages the results of multiple decision trees. It can effectively handle complex, non-linear relationships and is less sensitive to outliers and noise in the dataset. Additionally, Random Forest provides valuable insights into feature importance, helping to interpret which variables most influence predictions. Its overall performance and reliability make it an excellent choice for this classification problem.