Plot 2D

(%i1) wxplot2d ($\sin (x)$, [x, $-2 \cdot \%pi$, $2 \cdot \%pi$]);

(%t1)

(%o1)

(%i2) wxplot2d([$\sin(x)$, $\cos(x)$],[x, -2 · %pi, 2 · %pi]);

(%t2)

 $(\%i3) \ \ wxplot2d \ (\ sin \ (\ x \) \ , \ [\ x \ , -2 \cdot \%pi \ , \ 2 \cdot \%pi \] \ , \ [\ color \ , \ red \] \) \ ;$

(%t3)

(%o3)

 $(\%i4) \ \ wxplot2d \ (\ sin \ (\ x\)\ , \ [\ x\ , -2\cdot\%pi\ , 2\cdot\%pi\]\ , \ [\ color\ , \ blue\]\)\ ;$

(%t4)

(%o4)

 $(\% i5) \ \ wxplot2d \ (\ sin \ (\ x\)\ , \ [\ x\ , \ -\ 2\ \cdot\ \%pi\]\ , \ [\ color\ ,\ "\#00FFFF"\]\ , \ grid2d\ , \ [\ axes\ ,\ solid\]\)\ ;$

(%t5)

(%o5)

(%t19)

(%i9) wxplot2d([floor(x), signum(x)], [x, -5.5, 5.5], [y, -5.2, 5.2], [style, [points, 2, "#FF00FF", 4], [points, 2, "#00FF00", 3]]);

plot 2d: some values were clipped.

(%t9)

(%09)

(%i10) wxplot2d ([parametric, $2 \cdot \cos(t)$, $2 \cdot \sin(t)$, [t, -%pi, %pi]], [style, [points, 2, "#00FF00", 4]], [yx_ratio, 1]);

(%t10)

(%o10)

```
(%i11) wxplot2d ([discrete, [[1,2],[2,3],[3,4],[4,5],[5,6]]],[style,[points,5,2,3]]);
(%t11)
```


 $\label{eq:continuous} \begin{subarray}{ll} \end{subarray} \begin{subarray}{ll} \end{subarray} $(\%i12)$ wxplot2d (makelist (sin (n \cdot x) , n , 1 , 10) , [x , - \%pi , \%pi]) ; \\ \end{subarray}$

(%t12)

(%o12)

(%i13) with_slider (n , makelist (n / 10 , n , 1 , 20) , sin (n · x) , [x , - %pi , %pi]) ; /*for animations*/

 $(\%\mathrm{t}13)$

(%t14)

(%o14)

(%i15) wxplot2d ([parametric, 3 · cos(t), 2 · sin(t), [t, - %pi, %pi]]);

(%t15)

(%o15)

```
[ xtics , -2 , 0 . 5 , 2 ] , [ ytics , 0 , %e ^ -1 , %e ^ 2 ] , [ xlabel , "domain" ] , [ ylabel , "range" ] ) ;
```

(%t16)

(%o16)

Created with wxMaxima.