Empirical Processes: Theory and Application

Zhe Gao

School of Management University of Science and Technology of China

20, March, 2025

Outline

- Introduction
- 2 Glivenko-Cantelli Theorem
- Onsker's Theorem

Overview

- Empirical processes arise naturally in the study of statistics as a way to understand the behavior of sample data relative to the underlying population distribution.
- They are essential in fields that require robust, non-parametric methods where traditional parametric assumptions cannot be satisfactorily met.
- This presentation explores the theoretical foundations of empirical processes, their practical applications, and how they inform modern statistical practice.
- Understanding these concepts is crucial for professionals in data-intensive fields such as data science, biostatistics, and financial analytics.

Basic Concepts - Empirical Distribution Function

• Empirical Distribution Function (EDF): For a sample $X_1, X_2, ..., X_n$ from a distribution F, the EDF is defined as follows:

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I(X_i \le t),$$

where *I* is the indicator function, which equals 1 if the condition inside the parentheses is true, and 0 otherwise.

- EDF is a step function that jumps 1/n at each sample point.
- Properties:
 - Right-continuous
 - Converges pointwise to the CDF as $n \to \infty$

Basic Concepts - Glivenko-Cantelli Theorem

• The Glivenko-Cantelli Theorem, a fundamental result in the theory of empirical processes, states that the EDF converges uniformly to the true distribution function as the sample size increases:

$$\sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)| \to 0 \text{ almost surely as } n \to \infty.$$

- This theorem assures us that the empirical distribution function is a good estimator of the true distribution function in a very strong sense.
- The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, with applications to machine learning.

Cumulative Distribution Function

• The CDF F of a random variable X is defined as:

$$F(t) = P(X \le t),$$

- F is right-continuous with left limits and increases monotonically.
- Properties:
 - Bounded: $0 \le F(t) \le 1$
 - Non-decreasing: If $a \le b$, then $F(a) \le F(b)$

Toy Example

Empirical process

• The empirical process $\alpha_n(t)$ associated with \hat{F}_n is then given by:

$$\alpha_n(t) = \sqrt{n}(\hat{F}_n(t) - F(t))$$

- This process measures the fluctuation of the EDF around the true distribution F.
- The empirical process provides a mathematical framework for understanding and quantifying how sample data approximates its true distribution. It reveals large sample properties, especially in the context of nonparametric statistics.

Outline

- Introduction
- Glivenko-Cantelli Theorem
- 3 Donsker's Theorem

Introduction

- The Glivenko-Cantelli Theorem, also known as the "Fundamental Theorem of Statistics," is crucial for validating the empirical distribution function (EDF) as a consistent estimator of the cumulative distribution function (CDF).
- It guarantees that the EDF converges uniformly to the CDF across all points as the sample size increases indefinitely.

Glivenko-Cantelli Theorem

Theorem 2.1

For i.i.d. real-valued random variables $X_1, X_2, ..., X_n$ with distribution function F, we have almost sure convergence:

$$||F_n - F||_{\infty} = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \xrightarrow{a.s.} 0 \quad as \ n \to \infty$$

This implies uniform convergence of the EDF to the CDF over the entire real line.

Glivenko-Cantelli class

Definition 2.2

A class \mathcal{F} is called a Glivenko–Cantelli class with respect to a probability measure P if

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |P_n f - Pf| \to 0,$$

where $Pf = \int_{S} f d\mathbb{P}$.

If convergence is:

- Almost surely: Strong GC class;
- In probability: weak GC class.

The GC Theorem is a special case, with $\mathcal{F} = \{I(x \le t) : t \in \mathbb{R}\}.$

Proof Outline

• Concentration: with probability at least $1 - \exp(-2\epsilon^2 n)$,

$$||P-P_n||_G \le \mathbf{E} ||P-P_n||_G + \epsilon.$$

- Symmetrization: $\mathbf{E} \|P P_n\|_G \le 2\mathbf{E} \|R_n\|_G$, where we've defined the Rademacher process $R_n(g) = (1/n) \sum_{i=1}^n \epsilon_i g(X_i)$.
- Restrictions.

Proof - Concentration

• Fix $-\infty = x_0 < x_1 < \dots < x_{n-1} < x_n = \infty$ such that $F(x_j) - F(x_{j-1}) = \frac{1}{n}$ for $j = 1, \dots, n$. Now for all $x \in \mathbb{R}$ there exists $j \in \{1, \dots, m\}$ such that $x \in [x_{j-1}, x_j]$.

$$F_n(x) - F(x) \le F_n(x_j) - F(x_{j-1}) = F_n(x_j) - F(x_j) + \frac{1}{n}$$

$$F_n(x) - F(x) \ge F_n(x_{j-1}) - F(x_j) = F_n(x_{j-1}) - F(x_{j-1}) - \frac{1}{n}$$

Therefore,

$$||F_n - F||_{\infty} = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \le \max_{j \in \{1, \dots, n\}} |F_n(x_j) - F(x_j)| + \frac{1}{n}$$

Proof - Concentration

• Let $G = \{I[x \le t] : t \in \mathbf{R}\}$, then

$$||F_n - F||_{\infty} = ||P - P_n||_G = \sup_{g \in G} ||Pg - P_ng||.$$

• The concentration inequality implies that,

$$P(\|F_n - F\|_{\infty} \le \mathbf{E}[\|F_n - F\|_{\infty}] + \epsilon) \le 1 - \exp(-2\epsilon^2 n).$$

Proof - Symmetrization

We symmetrize by replacing Pg by $P'_ng = \frac{1}{n} \sum_{i=1}^n g(X'_i)$,

$$\mathbf{E}[\|P - P_n\|_G] = \mathbf{E}\left[\sup_{g \in G} \left| \mathbf{E}\left[\frac{1}{n} \sum_{i=1}^n \left(g\left(X_i'\right) - g\left(X_i\right)\right) \middle| X_1^n\right] \right|\right]$$

$$\leq \mathbf{E}\left[\mathbf{E}\left[\sup_{g \in G} \left|\frac{1}{n} \sum_{i=1}^n \left(g\left(X_i'\right) - g\left(X_i\right)\right) \middle| X_1^n\right]\right]\right]$$

$$= \mathbf{E}\left[\sup_{g \in G} \left|\frac{1}{n} \sum_{i=1}^n \left(g\left(X_i'\right) - g\left(X_i\right)\right) \middle| \right]\right]$$

$$= \mathbf{E}\left[\|P_n' - P_n\|_G\right].$$

Proof - Symmetrization

We symmetrize again: for any $\epsilon_i \in \{+1, -1\}$,

$$\mathbf{E}\left[\sup_{g\in G}\left|\frac{1}{n}\sum_{i=1}^{n}\left(g\left(X_{i}'\right)-g\left(X_{i}\right)\right)\right|\right]=\mathbf{E}\left[\sup_{g\in G}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}\left(g\left(X_{i}'\right)-g\left(X_{i}\right)\right)\right|\right]$$

Then we have

$$\mathbf{E}\left[\sup_{g\in G}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}\left(g\left(X_{i}^{\prime}\right)-g\left(X_{i}\right)\right)\right|\right]$$

$$\leq \mathbf{E}\left[\sup_{g\in G}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}g\left(X_{i}^{\prime}\right)\right|\right]+\mathbf{E}\left[\sup_{g\in G}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}g\left(X_{i}\right)\right|\right]$$

$$\leq 2\mathbf{E}\left\|R_{n}\right\|_{G},$$

where $R_n(g) = (1/n) \sum_{i=1}^n \epsilon_i g(X_i)$ is the Rademacher process.

Proof - Restrictions

Lemma 2.3

For $A \subseteq \mathbb{R}^n$ with $R = \max_{a \in A} ||a||_2$,

$$\mathbf{E}\sup_{a\in A}\langle\epsilon,a\rangle\leq\sqrt{2R^2\log|A|}.$$

Hence

$$\mathbf{E}\sup_{a\in A}|\langle \epsilon,a\rangle| = \mathbf{E}\sup_{a\in A\cup -A}\langle \epsilon,a\rangle \leq \sqrt{2R^2\log(2|A|)}.$$

Proof - Restrictions

For the class G of step functions, $R \le 1/\sqrt{n}$ and $|A| \le n+1$. Thus, with probability at least $1 - \exp(-2\epsilon^2 n)$,

$$||P - P_n||_G \le \sqrt{\frac{8\log(2(n+1))}{n}} + \epsilon$$

By Borel-Cantelli, $||P - P_n||_G \xrightarrow{as} 0$.

We define a loss function $l(\theta, z)$ which measures how bad it is to choose θ when the outcome is z. For $Z \sim P$, the risk is $L(\theta) = Pl(\theta, z)$.

- Pattern classification: $\theta: X \to \{0, 1\}, z = (x, y) \in X \times \{0, 1\},$ $\ell(\theta, (x, y)) = 1[\theta(x) \neq y]$. Then we aim to choose $\theta \in \Theta$ to minimize the probability of misclassification.
- Density estimation: p_{θ} is a density, $X \sim P, p_{\theta^*}, \ell(\theta, z) = -\log p_{\theta}(z)$. Then we aim to choose θ to minimize

$$\mathbf{E}\log\frac{p_{\theta^*}(X)}{p_{\theta}(X)} = D_{KL}(p_{\theta^*}||p_{\theta})$$

• Regression: $\theta \in \mathbb{R}^p$, z = (x, y), $\ell(\theta, (x, y)) = |\theta' x - y|$. Then we aim to choose θ to minimize expected absolute error.

Suppose $Z_1, ..., Z_n$ are i.i.d. according to P. Define the empirical risk as

$$L_n(\theta) = P_n \ell(\theta, Z) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, Z_i)$$

Empirical risk minimization chooses θ to minimize $L_n(\theta)$.

We are interested in controlling the excess risk,

$$L(\hat{\theta}) - \inf_{\theta \in \Theta} L(\theta) = L(\hat{\theta}) - L(\theta^*)$$

where θ^* minimizes L on Θ . We can decompose it as

$$L(\hat{\theta}) - L(\theta^*) = \left[L(\hat{\theta}) - L_n(\hat{\theta})\right] + \left[L_n(\hat{\theta}) - L_n(\theta^*)\right] + \left[L_n(\theta^*) - L(\theta^*)\right],$$

with approximation error and statistical error.

For statistical error, we have

$$L_n(\theta^*) - L(\theta^*) = \frac{1}{n} \sum_{i=1}^n \ell(\theta^*, Z_i) - P\ell(\theta^*, Z).$$

The law of large numbers shows that this term converges to zero. But more generally, we need to study the uniform laws of large numbers

$$L(\hat{\theta}) - L_n(\hat{\theta}) \le \sup_{\theta \in \Theta} |L(\theta) - L_n(\theta)| = \sup_{\theta \in \Theta} |P\ell_{\theta} - P_n\ell_{\theta}|.$$

We need to show ℓ_{θ} is a GC class (or prove a general form of GC Theorem).

Recall that

Definition 2.4

The Rademacher complexity of F is $\mathbf{E} ||R_n||_F$, where the empirical process R_n is defined as

$$R_n(f) = \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right|$$

where the $\epsilon_1, \dots, \epsilon_n$ are Rademacher random variables: i.i.d. uniform on $\{\pm 1\}$.

Note that this is the expected supremum of the alignment between the random $\{\pm 1\}$ -vector ϵ and $F(X_1^n)$, the set of *n*-vectors obtained by restricting F to the sample X_1, \ldots, X_n .

Uniform laws and Rademacher complexity

Theorem 2.5

For any F, $\mathbb{E} \|P - P_n\|_F \le 2\mathbb{E} \|R_n\|_F$. If $F \subset [0,1]^X$,

$$\frac{1}{2}\mathbf{E} \|R_n\|_F - \sqrt{\frac{\log 2}{2n}} \le \mathbf{E} \|P - P_n\|_F \le 2\mathbf{E} \|R_n\|_F$$

and, with probability at least $1 - 2\exp(-2\epsilon^2 n)$,

$$\mathbf{E} \|P - P_n\|_F - \epsilon \le \|P - P_n\|_F \le \mathbf{E} \|P - P_n\|_F + \epsilon$$

Thus,
$$\mathbf{E} \|R_n\|_F \to 0$$
 iff $\|P - P_n\|_F \xrightarrow{as} 0$.

The sup of the empirical process $P - P_n$ is concentrated about its expectation, and its expectation is about the same as the expected sup of the Rademacher process R_n .

Controlling Rademacher complexity

Control $\mathbf{E} \| R_n \|_F$:

- $|F(X_1^n)|$ small.
- For binary-valued functions: Vapnik-Chervonenkis dimension. Bounds rate of growth function. Can be bounded for parameterized families.
- Structural results on Rademacher complexity: Obtaining bounds for function classes constructed from other function classes.
- Covering numbers: Dudley entropy integral, Sudakov lower bound.
- For real-valued functions: scale-sensitive dimensions.

Extension: Glivenko-Cantelli Theorem of MDF

For $\forall \mathbf{u}, \mathbf{v} \in \mathcal{M}$, let

$$\delta(\mathbf{u}, \mathbf{v}, \mathbf{x}) = \prod_{k=1}^{K} I\left\{x_k \in \bar{B}\left(u_k, r_k\right)\right\} = \prod_{k=1}^{K} I\left\{x_k \in \bar{B}\left(u_k, d_k\left(u_k, v_k\right)\right)\right\}.$$

Definition 2.6 (Metric distribution function)

Given a probability measure μ , we define the metric distribution function $F_{\mu}^{M}(u,v)$ of μ on $\mathcal{M}: \forall \mathbf{u}, \mathbf{v} \in \mathcal{M}$,

$$F_{\mu}^{M}(\mathbf{u}, \mathbf{v}) = \mu \left[\prod_{k=1}^{K} \bar{B}(u_{k}, r_{k}) \right] = E[\delta(\mathbf{u}, \mathbf{v}, \mathbf{X})]$$

Extension: Glivenko-Cantelli Theorem of MDF

Suppose that $\{X_1, ..., X_n\}$ are iid samples generated from a probability measure μ on a product metric space $\mathcal{M} = \prod_{k=1}^K \mathcal{M}_k$. We define the empirical metric distribution function (EMDF) associated with μ by the following formula naturally:

$$F_{\mu,n}^{M}(\mathbf{u}, \mathbf{v}) = \frac{1}{n} \sum_{l=1}^{n} \delta(\mathbf{u}, \mathbf{v}, \mathbf{X}_{l})$$

Extension: Glivenko-Cantelli Theorem of MDF

we define the collection of the indicator functions of closed balls on \mathcal{M} : $\mathcal{F} = \{\delta(\mathbf{u}, \mathbf{v}, \cdot) : \mathbf{u} \in \mathcal{M}, \mathbf{v}\}.$

Theorem 2.7

Let $\mathcal{M} = \prod_{k=1}^K \mathcal{M}_k$ be a product space and μ be a probability measure on it. Suppose that $\{\mathbf{X}_1, \dots, \mathbf{X}_n\}$ is a sample of iid observations from μ . Define $\mathcal{F}(\mathbf{X}_1^n) := \{(f(\mathbf{X}_1), \dots, f(\mathbf{X}_n)) \mid f \in \mathcal{F}\}$. If μ satisfies that

$$\frac{1}{n}E_{\mathbf{X}}\left[\log\left(\operatorname{card}\left(\mathcal{F}\left(\mathbf{X}_{1}^{n}\right)\right)\right)\right]\to0$$

where $card(\cdot)$ is the cardinality of a set, we have the Glivenko-Cantelli property of our empirical metric distribution function:

$$\lim_{n\to\infty}\sup_{\mathbf{u}\in\mathcal{M}}\sup_{\mathbf{v}\in\mathcal{M}}\left|F_{\mu,n}^{M}(\mathbf{u},\mathbf{v})-F_{\mu}^{M}(\mathbf{u},\mathbf{v})\right|=0,\ a.s.$$

Remark

The conditions of Theorem are often satisfied in practice.

- The first example is $\mathcal{M} = \mathbb{R}^q$ with the ℓ_p -norm (where p is a positive integer or ∞), and μ is an arbitrary probability measure because the set of ℓ_p ball has a finite VC-dimension. Since the VC-dimension of closed balls in Euclidean space R^q is q+2, if $q=o\left(\frac{n}{\log n}\right)$ the Glivenko-Cantelli property still holds.
- The second example is that \mathcal{M} is a smooth regular curve in Euclidean space or a sphere in \mathbb{R}^q with the geodesic distance, and μ is an arbitrary probability measure.
- The third example is that \mathcal{M} is a set of polygonal curves in \mathbb{R}^d with the Hausdorff distance for the Fréchet distance and μ is an arbitrary probability measure.
- Another example is that \mathcal{M} is a separable Hilbert space with a probability measure μ with support on a finite-dimensional subspace because the set of balls on the support of μ has a finite VC-dimension.

Outline

- Introduction
- 2 Glivenko-Cantelli Theorem
- Onsker's Theorem

Introduction

- Donsker's Theorem is a fundamental result in the field of probability theory and statistical inference.
- It generalizes the central limit theorem (CLT) to the setting of stochastic processes.
- Often referred to as the "Invariance Principle" or "functional central limit theorem".

Donsker's Theorem

Theorem 3.1 (Donsker's Invariance Principle)

Let $X_1, X_2,...$ be i.i.d. random variables with $\mathbb{E}[X_i] = 0$ and $Var(X_i) = 1$. Define the empirical process

$$S_n(t) = \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} X_i,$$

for $t \in [0,1]$. Then as $n \to \infty$, the process $S_n(t)$ converges in distribution in D[0,1] to a standard Brownian motion W(t).

The central limit theorem asserts that $S_n(1)$ converges in distribution to a standard Gaussian random variable W(1) as $n \to \infty$. Donsker's invariance principle extends this convergence to the whole function $S_n(t)$.

Here we define a concept of tightness for collections of measures and random variables. Intuitively this ensures that a collection of measures does not have mass that escapes to infinity. Tightness is often used to prove weak convergence.

Definition 3.2

Let (S, S) be a measurable space. A collection of measures $\{\mu_i\}$ is tight if for all $\epsilon > 0$ there exists a compact set $K \in S$ such that $\sup_i \mu_i(K^c) < \epsilon$ for all i.

We say a random variable X is tight if for all $\epsilon > 0$ there is an M_{ϵ} such that

$$\mathbb{P}\left(\|X\| > M_{\epsilon}\right) < \epsilon$$

Definition 3.3

A set is relatively compact if its closure is compact.

Let Π be a family of probability measures on (S, S). We call Π relatively compact if every sequence of elements of Π contains a weakly convergent subsequence. Explicitly this means that if Π is relatively compact, then there exists a subsequence $(\mathbb{P}_{n_i}) \in \Pi$ and a probability measure Q, which need not be contained in (S, S), such that $\mathbb{P}_{n_i} \Rightarrow_i Q$.

Theorem 3.4

If Π is tight, then it is relatively compact.

Corollary 3.5

If (\mathbb{P}_n) is tight and each weakly convergent subsequence converges to \mathbb{P} , then the entire sequence converges weakly to \mathbb{P} .

Definition 3.6

A modulus of continuity of an arbitrary function x is defined by

$$w(x,\delta) := \sup_{|s-t| \le \delta} |x(s) - x(t)|$$

where $\delta \geq 0$.

Lemma 3.7

If

$$\left(X_{t_1}^n,\ldots,X_{t_k}^n\right) \Rightarrow_n \left(X_{t_1},\ldots,X_{t_k}\right)$$

holds for all t_1, \ldots, t_k , and if

$$\lim_{\delta \to 0} \limsup_{n \to \infty} P\left[w\left(X^{n}, \delta\right) \ge \epsilon\right] = 0$$

for each positive ϵ , then $X^n \Rightarrow_n X$.

Lemma 3.8

Suppose $0 = t_0 < t_1 < ... < t_k = 1$ and

$$\min_{1 < i < k} \left(t_i - t_{i-1} \right) \ge \delta$$

If we define $I_i := [t_{i-1}, t_i]$, then for arbitrary x,

$$w(x, \delta) \le 3 \max_{1 \le i \le k} \sup_{s \in I_i} |x(s) - x(t_{i-1})|$$

and, for arbitrary \mathbb{P} ,

$$\mathbb{P}[x:w(x,\delta)\geq 3\epsilon]\leq \sum_{i=1}^{k}\mathbb{P}\left[x:\sup_{s\in I_{i}}|x(s)-x(t_{i-1})|\geq \epsilon\right]$$

Proof Outline

- Show tightness of the sequence of processes.
- Demonstrate finite-dimensional convergence to those of the Brownian motion.
- Apply Prokhorov's theorem to conclude the weak convergence to Brownian motion.

Theorem 3.9

There exists on (C,C) a probability measure, \mathbb{W} , with the finite dimensional distribution specified by Wiener measure.

Define

$$S_n(t) := \frac{1}{\sqrt{n}} S_{\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor) \frac{1}{\sqrt{n}} X_{\lfloor nt \rfloor + 1}$$

at t. The function $X^n(w)$ is a linear interpolation (a linear mapping between points) between values at $S_i(t)/\sqrt{n}s$ at points i/n.

- The existence of the Wiener measure W is proven.
- Then

$$(S_n(s), S_n(t) - S_n(s)) \Longrightarrow_n (W_s, W_t - W_s)$$

which implies

$$(S_n(s), S_n(t)) \Longrightarrow_n (W_s, W_t)$$

Show the tightness

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \mathbb{P}\left[w\left(S_n, \delta\right) \ge \epsilon\right] = 0$$

to obtain

$$(S_n(t_1),\ldots,S_n(t_k)) \Longrightarrow_n (W_{t_1},\ldots,W_{t_k})$$

For lemma

$$\mathbb{P}\left[w\left(S_{n},\delta\right) \geq 3\epsilon\right] \leq \sum_{i=1}^{k} \mathbb{P}\left(\sup_{t_{i-1} \leq s \leq t_{i}} |S_{n}(s) - S_{n}(t_{i-1})| \geq \epsilon\right)$$

$$\leq \sum_{i=1}^{k} \mathbb{P}\left(\sup_{s < t_{i} - t_{i-1}} |S_{s}| \geq \epsilon \sqrt{n}\right)$$

$$\leq k \mathbb{P}\left(\max_{s \leq m} |S_{s}| \geq \epsilon \sqrt{n}\right).$$

• By Etemadi's inequality, we then see that

$$\mathbb{P}\left[w\left(S_{n},\delta\right)\geq3\epsilon\right]\leq3k\max_{s\leq m}\mathbb{P}\left[\left|S_{s}\right|\geq\frac{\epsilon\sqrt{n}}{3}\right]$$

• We can reformulate with Etemadi's inequality to be

$$\lim_{\lambda \to \infty} \limsup_{n \to \infty} \lambda^2 \max_{s \le n} \mathbb{P}\left[|S_s| \ge \lambda \sqrt{n} \right] = 0.$$

• First, for large s, we use the central limit theorem to show that the partial sum converges to the standard normal distribution. So, by the central limit theorem, if s_{λ} in the maximum is large enough and $s_{\lambda} \le s \le n$, then

$$\mathbb{P}\left[|S_s| \ge \lambda \sqrt{n}\right] < \frac{3}{\lambda^4}$$

• In the second case, for small $s \le s_{\lambda}$, we use Chebyshev's inequality to show that

$$\mathbb{P}\left[|S_s| \ge \lambda \sqrt{n}\right] < \frac{s_{\lambda}}{\lambda^2 n}.$$

Donsker Theorem

Theorem 3.10 (Donsker (1952))

Let F be continuous distribution function. Define the empirical process:

$$\mathbb{G}_n(t) = \sqrt{n}(F_n(t) - F(t))$$

Then \mathbb{G}_n converges weakly to a Brownian bridge G in the space $\mathcal{D}[0,1]$:

$$\mathbb{G}_n \leadsto G$$

where G is a Gaussian process with covariance function:

$$\mathbb{E}[G(s)G(t)] = F(s \wedge t) - F(s)F(t)$$

Definition and Properties

Definition

A **Brownian Bridge** is a stochastic process B(t), for $t \in [0, 1]$, defined by the conditional property that B(0) = B(1) = 0 given a standard Brownian motion W(t). It can be expressed as:

$$B(t) = W(t) - tW(1)$$

Key Properties

- Gaussian Process: B(t) has Gaussian increments with mean zero and covariance function given by min(s,t) st.
- Continuity: B(t) enjoys the continuity properties of Brownian motion, but it is "pinned" at the endpoints 0 and 1 to be zero.

Brownian Bridge

Theorem 3.11 (Mapping Theorem)

If h is continuous on C, then $X^n \Rightarrow W$ *implies* $h(X^n) \Rightarrow h(W)$.

We can find the limiting distribution of $h(X^n)$ if we can find the distribution of h(W), and we can in many cases find the distribution of h(W) by finding the limiting distribution of $h(X^n)$ in some simple special case and then using $h(X^n) \Rightarrow h(W)$ in the other direction.

• Our goal is to derive the limiting distribution of

$$M_n = \max_{0 \le i \le n} S_i$$

• Since $h(x) = \sup_t x(t)$ is a continuous function on C, it follows from $X^n \Rightarrow W$ and the mapping theorem that $\sup_t X^n_t \Rightarrow \sup_t W_t$. Obviously, $\sup_t X^n_t = M_n / \sigma \sqrt{n}$, and so

$$\frac{M_n}{\sigma\sqrt{n}} \Rightarrow \sup_t W_t$$

- For the easy special case, assume that the independent ξ_i take the values ± 1 with probability $\frac{1}{2}$ each, so that S_0, S_1, \ldots are the successive positions in a symmetric random walk starting from the origin.
- For each nonnegative integer a,

$$P[M_n \ge a] = 2P[S_n > a] + P[S_n = a].$$

Since

$$P[M_n \ge a] - P[S_n = a] = P[M_n \ge a, S_n < a] + P[M_n \ge a, S_n > a]$$

The second term on the right is just $P[S_n > a]$

• For reflection principle, we have

$$P[M_n \ge a, S_n < a] = P[M_n \ge a, S_n > a]$$

• Let $a_n = \lceil an^{1/2} \rceil$, then

$$P[M_n/\sqrt{n} \ge a] = 2P[S_n > a_n] + P[S_n = a_n].$$

- The second term here goes to 0.
- $P[S_n > a_n] \to P[N > \alpha]$ by the central limit theorem, and so $P[M_n/\sqrt{n}] \to 2P[N > a]$ for $a \ge 0$.
- The limit distribution become

$$P\left[\sup_{t} W_{t} \le a\right] = \frac{2}{\sqrt{2\pi}} \int_{0}^{a} e^{u^{2}/2} du, \quad a \ge 0$$

Application: Kolmogorov-Smirnov test

- The Kolmogorov-Smirnov (K-S) test is a nonparametric test used to determine whether two samples come from the same distribution.
- It compares the empirical distribution functions of two samples, or one sample with a theoretical distribution.
- It is particularly useful because it makes no assumption about the distribution of data.

The K-S Test Statistic

Definition

Given an empirical distribution function $F_n(x)$ for a sample and a theoretical distribution F(x), the K-S test statistic is defined as:

$$D_n = \sup_{x} |F_n(x) - F(x)|$$

where sup denotes the supremum of the set of absolute differences.

Interpretation

 D_n measures the maximum distance between the empirical distribution function of the sample and the theoretical distribution function.

Kolmogorov distribution

The Kolmogorov distribution is the distribution of the random variable

$$K = \sup_{t \in [0,1]} |B(t)|$$

where B(t) is the Brownian bridge. The cumulative distribution function of K is given by

$$\Pr(K \le x) = 1 - 2\sum_{k=1}^{\infty} (-1)^{k-1} e^{-2k^2 x^2} = \frac{\sqrt{2\pi}}{x} \sum_{k=1}^{\infty} e^{-(2k-1)^2 \pi^2 / (8x^2)}.$$

Thank You