

CS 4364/6364 Machine Learning

Fall Semester 9/21/2023 Lecture 9. Support Vector Machines

John Sipple jsipple@gwu.edu

Given a series of points $(x_1, y_1), (x_1, y_1), ..., (x_N, y_N)$, where y_1 =1 if +, and y_1 =-1 if -:

Which of the following is the best decision boundary?

Linear Decision Boundaries

Idea: Let's create the widest street between the two classes with as wide of a margin M as possible, and make the decision boundary the centerline.

Linear Decision Boundaries with Margin

Support Vector Decision Rule

Decision Rule:

Classify unknown point u as class + if

$$\boldsymbol{u}^\intercal \cdot \boldsymbol{\beta} + \beta_0 \geq 0$$

Otherwise, classify *u* as class -.

Define the + and - Margin Boundary

For the positive class:

$$egin{aligned} y_i(oldsymbol{x}_{i+}^\intercal\cdotoldsymbol{eta}+eta_0) &\geq 1 \ y_i(oldsymbol{x}_{i+}^\intercal\cdotoldsymbol{eta}+eta_0) - 1 \geq 0 \end{aligned}$$

And the negative class:

$$egin{aligned} y_i(oldsymbol{x}_{i-}^\intercal\cdotoldsymbol{eta}+eta_0) &\geq 1 \ y_i(oldsymbol{x}_{i-}^\intercal\cdotoldsymbol{eta}+eta_0) - 1 \geq 0 \end{aligned}$$

The same holds for both negative and positive classes in the "gutter":

$$y_i(oldsymbol{x}_i^\intercal\cdotoldsymbol{eta}+eta_0)-1=0$$

Evaluate the Width of the Margin

Maximizing the margin's width

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/\|\beta\|$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M\xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.

Since $\operatorname{width} = 2M$, implies $M = \frac{1}{||oldsymbol{eta}||}$ as illustrated in Figure 12.1

We would like to maximize $M=rac{1}{||oldsymbol{eta}||}$, which implies minimizing $||oldsymbol{eta}||$.

But, we can also choose to minimize a more convenient expression:

$$oldsymbol{eta}^* = rg\min_{oldsymbol{eta},eta_0} rac{1}{2} ||oldsymbol{eta}||^2$$

Which should look like L2 regularization.

Constrained minimization problem

Define a constrained minimization problem:

$$L_P = rac{1}{2}||m{eta}||^2 \ ext{subject to } y_i(m{x}_i^\intercal\cdotm{eta}+eta_0-1)=0$$

And in the Lagrange function:

$$L_P = rac{1}{2}||oldsymbol{eta}||^2 - \sum_{i=1}^N lpha_i \left[y_i(oldsymbol{x}_i^\intercal \cdot oldsymbol{eta} + eta_0) - 1
ight]$$

Next, we compute the gradient of L_P with respect to $\boldsymbol{\beta}$:

$$rac{\partial L_P}{\partial oldsymbol{eta}} = oldsymbol{eta} - \sum_{i=1}^N lpha_i y_i oldsymbol{x}_i = 0$$

This gives us a nice expression for β :

$$oldsymbol{eta} = \sum_{i=1}^N lpha_i y_i oldsymbol{x}_i$$

Note that β is a linear sum of the training sample.

Next, take the partial derivative of L_P with respect to eta_0 and set that to zero too:

$$rac{\partial L_P}{\partial eta_0} = -\sum_{i=1}^N lpha_i y_i = 0 \ \sum_{i=1}^N lpha_i y_i = 0$$

Combining terms and rewriting the Lagrangian

Next, let's plug in these terms into the Lagrange function:

$$L_P = rac{1}{2} ||oldsymbol{eta}||^2 - \sum_{i=1}^N lpha_i \left[y_i(oldsymbol{x}_i^\intercal \cdot oldsymbol{eta} + eta_0) - 1
ight]$$

becomes:

$$L_P = rac{1}{2} \Biggl(\sum_{i=1}^N lpha_i y_i oldsymbol{x}_i \Biggr)^{\sf T} \cdot \Biggl(\sum_{j=1}^N lpha_j y_j oldsymbol{x}_j \Biggr) - \Biggl(\sum_{i=1}^N lpha_i y_i oldsymbol{x}_i \Biggr)^{\sf T} \cdot \Biggl(\sum_{j=1}^N lpha_j y_j oldsymbol{x}_j \Biggr) - \sum_{i=1}^N lpha_i y_i eta_0 + \sum_{i=1}^N lpha_i y_i oldsymbol{x}_i \Biggr)$$

Simplifying, and evaluating the double summation results in Equation 12.13:

$$L_D = \sum_{i=1}^N lpha_i - rac{1}{2} \sum_{i=1}^N \sum_{j=1}^N lpha_i lpha_j y_i y_j oldsymbol{x}_i^{\intercal} oldsymbol{x}_j$$

Now, we can apply iterative gradiant ascent to maximize L_D .

Updated Decision Rule

The points in the training set whose α s are nonzero, are the **support vectors**.

The decision rule then depends entirely on the dot project of the unknown point u and the training sample $x_1, x_2 \dots x_N$.

$$\text{If } \sum_{i=1}^N \alpha_i y_i \boldsymbol{x}_i^\intercal \cdot \boldsymbol{u} + \beta_0 \geq 0 \text{ then } class = +$$

Source: https://en.wikipedia.org/wiki/Kernel_method

Nonlinear decision boundaries

We can use the dot product in the decisin rule and apply the "kernel trick":

Assuming that $h(m{x}): \mathbb{R}^p o \mathbb{R}^q$ and that q>p, we could maximize in training:

$$h(\boldsymbol{x}_i)^\intercal \cdot h(\boldsymbol{x}_j)$$

and then use

$$h(\boldsymbol{x}_i)^\intercal \cdot h(\boldsymbol{u})$$

to predict.

We don't even need to specify the form of the projection with a kernel function:

$$K(oldsymbol{x}_i, oldsymbol{x}_j) = h(oldsymbol{x}_i)^\intercal \cdot h(oldsymbol{x}_j)$$

Example Kernel Functions:

- ullet dth-Degree Polynomial: $K(oldsymbol{x}_i,oldsymbol{x}_j)=(1+oldsymbol{x}_i^{\intercal}\cdotoldsymbol{x}_j)^d$
- ullet Radial Basis Function: $K(oldsymbol{x}_i, oldsymbol{x}_j) = \exp(-\gamma ||oldsymbol{x}_i oldsymbol{x}_j||^2)$
- Neural Tangent: $K(m{x}_i, m{x}_j) = anh(\kappa_1 m{x}_i^\intercal \cdot m{x}_j + \kappa_2)$

Updated decision function:

$$\text{If } \sum_{i=1}^N \alpha_i y_i K(\boldsymbol{x}_i,\boldsymbol{u}) + \beta_0 \geq 0 \text{ then } class = +$$

Tuning the Support Vector Machine

The misclassification cost, C, is a bound placed on the α s, helping to trade off the margin size M and the misclassification rate.

- ullet For a **small** misclassification cost C, the margin M will be **large**.
- A large misclassification cost, C, the margin M will be small.

SVM Demo Colab

SVM Colab from Python Data Science Handbook by Jake VanderPlas

https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.07-Support-Vector-Machines.ipynb#scrollTo=gj4n6HtN1djQ

Readings

Goodfellow Chapter 6