Devoir surveillé n°06

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- · Les calculatrices sont interdites.

Problème 1

1 La trace est linéaire et donc pour tout $u \in \mathcal{L}(E)$, tr(-u) = -tr(u). Si u vérifie (C3) alors u = -u et donc tr(u) = -tr(u) et la trace est donc nulle.

Si
$$u$$
 vérifie (C3) alors $tr(u) = 0$

2 E étant de dimension 2, $\chi_u = X^2 - tr(u)X + det(u) = X^2 - \delta^2$. Ce polynôme annulant u (Cayley-Hamilton) on en déduit que $u^2 = \delta^2 \operatorname{Id}_E$.

Le spectre est l'ensemble des racines de χ_u et vaut ici $\{\delta, -\delta\}$. Ainsi u possède deux valeurs propres Or dim E=2 et les sous-espaces propres de u sont en somme directe, ils ne peuvent qu'être de dimension 1.

$$u^2 = \delta^2 \operatorname{Id}_{\mathcal{E}}, \operatorname{Sp}(u) = \{\delta, -\delta\}, \dim(\mathcal{E}_{\delta}(u)) = \dim(\mathcal{E}_{-\delta}(u)) = 1$$

Notons e_+ un vecteur propre pour δ et e_- un vecteur propre pour $-\delta$. Comme (e_+, e_-) est libre, $e_+ + e_- \neq 0_E$. Ainsi $D = \text{vect}(e_+ + e_-)$ est une droite. De plus, $u(D) = \text{vect}(\delta e_+ - \delta e_-) = \text{vect}(e_+ - e_-)$ car $\delta \neq 0$. Or (e_+, e_-) est libre, ce qui permet de prouver aisément que $e_+ - e_- \notin D$. Ainsi $u(D) \notin D$.

Posons $F = D = \text{vect}(e_+ + e_-)$ et $G = u(D) = \text{vect}(e_+ - e_-)$. La liberté de (e_+, e_-) permet aisémennt de montrer la liberté de $(e_+ + e_-, e_+ - e_-)$. Comme dim E = 2, $(e_+ + e_-, e_+ - e_-)$ est une base de E de sorte que $E = F \oplus G$. Enfin, u(F) = G et u(G) = F.

u est échangeur

4 Un calcul par blocs montre que

$$\begin{bmatrix} \mathbf{0}_n & \mathbf{B} \\ \mathbf{0}_{p,n} & \mathbf{0}_p \end{bmatrix}^2 = \begin{bmatrix} \mathbf{0}_n & \mathbf{0}_{n,p} \\ \mathbf{0}_{p,n} & \mathbf{0}_p \end{bmatrix} = \mathbf{0}_{n+p}$$

On montre de même que

$$\begin{bmatrix} \mathbf{0}_n & \mathbf{0}_{n,p} \\ \mathbf{A} & \mathbf{0}_p \end{bmatrix}^2 = \begin{bmatrix} \mathbf{0}_n & \mathbf{0}_{n,p} \\ \mathbf{0}_{p,n} & \mathbf{0}_p \end{bmatrix} = \mathbf{0}_{n+p}$$

$$M = \begin{bmatrix} 0_n & 0_{n,p} \\ A & 0_p \end{bmatrix} + \begin{bmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{bmatrix}$$
 est somme de deux matrices de carré nul

 $\boxed{\mathbf{5}}$ On vérifie par un calcul par blocs, par exemple, que $D^2 = I_n$. D est donc inversible et $D^{-1} = D$. Le calcul par blocs donne aussi

$$DMD^{-1} = DMD = \begin{bmatrix} 0_n & B \\ -A & 0_p \end{bmatrix} \begin{bmatrix} I_n & 0_{n,p} \\ 0_{p,n} & -I_p \end{bmatrix} = \begin{bmatrix} 0_n & -B \\ -A & 0_p \end{bmatrix} = -M$$

Par définition de la similitude,

M et –M sont semblables

1

6 $u(F) \subset G$ indique qu'il y a un bloc de 0 en haut à gauche. $u(G) \subset F$ indique qu'il y a un bloc de 0 en bas à droite. Finalement,

$$\text{il existe } (\mathbf{A},\mathbf{B}) \in \mathcal{M}_{p,n}(\mathbb{C}) \times \mathcal{M}_{n,p}(\mathbb{C}) \text{ tel que } \mathrm{mat}_{\mathcal{B}}(u) = \begin{bmatrix} \mathbf{0}_n & \mathbf{B} \\ \mathbf{A} & \mathbf{0}_p \end{bmatrix}$$

Supposons F et G non nuls. D'après la question précédente, il existe une base \mathcal{B} de E dans laquelle la matrice de u est $\begin{bmatrix} 0_n & \mathrm{B} \\ \mathrm{A} & 0_p \end{bmatrix}$. En notant a et b les endomorphismes dont les matrices dans la base \mathcal{B} sont respectivement $\begin{bmatrix} 0_n & 0_{n,p} \\ \mathrm{A} & 0_p \end{bmatrix}$ et $\begin{bmatrix} 0_n & \mathrm{B} \\ 0_{p,n} & 0_p \end{bmatrix}$, on a bien u = a + b, $a^2 = b^2 = 0$: u vérifie (C2). La question 5 montre de même que u et -u sont semblables : u vérifie (C3).

Si F est nul, alors G = E et $Im(u) = u(G) \subset F = \{0\}$. u est l'endomorphisme nul qui vérifie immédiatement (C2) et (C3). C'est la même chose si $G = \{0\}$ (travailler alors avec F = E).

8 Puisque $f^2 = 0$, $\text{Im}(f) \subset \text{Ker}(f)$. Par conséquent, $\dim \text{Im}(f) \subset \text{Ker}(f)$. D'après le théorème du rang,

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) \le 2\dim(\operatorname{Ker}(f))$$

On a donc

$$\operatorname{Im}(f) \subset \operatorname{Ker}(f) \operatorname{et} \dim(\operatorname{Ker}(f)) \ge \frac{\dim(E)}{2}$$

Soit $x \in \text{Ker}(a) \cap \text{Ker}(b)$. On a u(x) = a(x) + b(x) = 0 et comme u est injective x = 0. Ceci montre que Ker(a) et Ker(b) sont en somme directe.

De plus,

$$\forall x \in E, \ x = u(u^{-1}(x)) = a(u^{-1}(x)) + b(u^{-1}(x)) \in Ker(a) + Ker(b)$$

 $car a^2 = b^2 = 0$. Ainsi

$$E = Ker(a) \oplus Ker(b)$$

De plus $\operatorname{Im}(a) \subset \operatorname{Ker}(a)$ (car $a^2 = 0$) et $\operatorname{Im}(b) \subset \operatorname{Ker}(b)$ (car $b^2 = 0$). Ainsi $\operatorname{Im}(a) \cap \operatorname{Im}(b) \subset \operatorname{Ker}(a) \cap \operatorname{Ker}(b) = \{0_E\}$. $\operatorname{Im}(a)$ et $\operatorname{Im}(b)$ sont en somme directe.

De plus,

$$\forall x \in E, \ x = u(u^{-1}(x)) = a(u^{-1}(x)) + b(u^{-1}(x)) \in Im(a) + Im(b)$$

donc $E = Im(a) \oplus Im(b)$.

Ainsi

$$\dim E = \dim \operatorname{Im}(a) + \dim \operatorname{Im}(b) = \dim \operatorname{Ker}(a) + \dim \operatorname{Ker}(b)$$

d'ou

$$(\dim \operatorname{Ker}(a) - \dim \operatorname{Im}(a)) + (\dim \operatorname{Ker}(a) - \dim \operatorname{Im}(a)) = 0$$

Comme $\text{Im}(a) \subset \text{Ker}(a)$ et $\text{Im}(b) \subset \text{Ker}(b)$, il s'agit d'une somme de deux termes positifs. On en déduit que ces termes sont nuls. Ainsi dim $\text{Im}(a) = \dim \text{Ker}(a)$ et dim $\text{Im}(b) = \dim \text{Ker}(b)$. Par conséquent,

$$Im(a) = Ker(a) et Im(b) = Ker(b)$$

10 On a $u(\operatorname{Ker}(a)) \subset a(\operatorname{Ker}(a)) + b(\operatorname{Ker}(a)) = b(\operatorname{Ker}(a)) \subset \operatorname{Im}(b) = \operatorname{Ker}(b)$ et de même $u(\operatorname{Ker}(b)) \subset \operatorname{Ker}(a)$. Comme $\operatorname{Ker}(a)$ et $\operatorname{Ker}(b)$ sont supplémentaires,

11 Pour tout $k \in \mathbb{N}$, $\operatorname{Ker}(v^k) \subset \operatorname{Ker}(v \circ v^k) = \operatorname{Ker}(v^{k+1})$ donc

$$(\operatorname{Ker}(v^k))_{k\in\mathbb{N}}$$
 croît pour l'inclusion

L'ensemble {dim Ker(v^k), $k \in \mathbb{N}$ } est une partie de \mathbb{N} majorée par dim E. Elle admet donc un plus grand élément d. Il existe donc $p \in \mathbb{N}$ tel que Ker(v^p) = d. Pour $k \geq p$, Ker(v^p) ⊂ Ker(v^k). Ainsi $d = \dim \operatorname{Ker}(v^p) \leq \dim \operatorname{Ker}(v^k)$. Mais par définition de d, dim Ker(v^k) ≤ d de sorte que dim Ker(v^k) = dim Ker(v^p) = d puis Ker(v^k) = Ker(v^k). Ker(v^k).

clure que

$$\exists p \in \mathbb{N}, \ \forall k \ge p, \ \operatorname{Ker}(v^k) = \operatorname{Ker}(v^p)$$

Mais pour k < p, $Ker(v^k) \subset Ker(v^p)$ par croissance de la suite $(Ker(v^k))$. Finalement,

$$\ker(v^p) = \bigcup_{k \in \mathbb{N}} \ker(v^k)$$

Si p convient, tout entier plus grand que p convient aussi et on peut supposer p pair quitte à le changer en p + 1.

13 Par définition,

$$\operatorname{Ker}(v^{2p}) \subset \bigcup_{k \in \mathbb{N}} \operatorname{Ker}(v^k) = \operatorname{Ker} v^p$$

De plus, par croissance de la suite $(\mathrm{Ker}(v^k))_{k\in\mathbb{N}},\,\mathrm{Ker}(v^p)\subset\mathrm{Ker}(v^{2p}).$ Ainsi

$$E_{\lambda}^{c}(f) = \text{Ker}(v^{p}) = \text{Ker}(v^{2p})$$

Soit $x \in E_{\lambda}^{c}(f) \cap \operatorname{Im}(v^{p})$. Il existe y tel que $x = v^{p}(y)$ et $v^{2p}(y) = v^{p}(x) = 0$ montre que $y \in \operatorname{Ker}(v^{2p}) = \operatorname{Ker}(v^{p})$ et donc que $x = v^p(y) = 0$. On a donc $E_{\lambda}^c(f) \cap \operatorname{Im}(v^p) = \{0_E\}$. Par théorème du rang,

$$\dim \operatorname{Ker}(v^p) + \dim \operatorname{Im}(v^p) = \dim \operatorname{E}$$

Ainsi

$$E = Ker(v^p) \oplus Im(v^p) = E_{\lambda}^c(f) \oplus Im(v^p)$$

Enfin, $v^p = (f - \lambda \operatorname{Id}_E)^p$ et f appartiennent à l'algèbre commutative $\mathbb{K}[f]$. Comme $v^p = (f - \lambda \operatorname{Id}_E)^p$ et f commutent, $\operatorname{Ker}(v^p) = \operatorname{E}_{\lambda}^c(f)$ et $\operatorname{Im}(v^p)$ sont stables par f.

$$\mathrm{E}^{c}_{\lambda}(f)$$
 et $\mathrm{Im}(v^{p})$ sont des supplémentaires de E stables par f .

Supposons, par l'absurde, que λ soit valeur propre de $f_{|\operatorname{Im}(v^p)}$. Il existe alors $x \in \operatorname{Im}(v^p)$ non nul tel que $f(x) = \lambda x$ c'est à dire tel que $x \in \text{Ker}(v) \subset E^c_{\lambda}(f)$. Comme $E^c_{\lambda}(f)$ et $\text{Im}(v^p)$ sont en somme directe, x = 0 et ceci est contradictoire. Ainsi λ n'est pas valeur propre de $f_{|\operatorname{Im}(v^p)}$. $(X - \lambda)^p$ annule $f_{|\operatorname{E}^c_{\lambda}(f)}$ car $\operatorname{E}^c_{\lambda}(f) = \operatorname{Ker}(f - \lambda \operatorname{Id}_{\operatorname{E}})^p$. La seule valeur propre possible pour $f_{|\operatorname{E}^c_{\lambda}(f)}$ est donc λ .

$$\lambda \notin \operatorname{Sp}(f_{|\operatorname{Im}(v^p)}) \operatorname{et} \operatorname{Sp}(f_{|\operatorname{E}^c_{\lambda}(f)}) \subset \{\lambda\}$$

Si $E_{\lambda}^{c}(f)$ n'est pas réduit à $\{0\}$, alors $f_{|E_{\lambda}^{c}(f)}$ possède au moins une valeur propre car son polynôme caractéristque est scindé dans \mathbb{C} . Ainsi $Sp(f_{|\mathbb{E}_{1}^{c}(f)}) = {\lambda}$.

15 On sait qu'il existe deux entiers p et q tels que $E_{\lambda}^{c}(f) = \text{Ker}(f - \lambda \text{Id}_{E})^{p}$ et $E_{\mu}^{c}(f) = \text{Ker}(f - \lambda \text{Id}_{E})^{q}$. Comme $\lambda \neq \mu$, $(X - \lambda)^p$ et $(X - \mu)^q$ sont premiers entre eux et le lemme des noyaux nous dit alors que $E^c_{\lambda}(f)$ et $E^c_{\mu}(f)$ sont en somme

Les seules valeurs propres possibles de f sont λ et μ . Comme χ_f est scindé dans \mathbb{C} , il existe des entiers q et r tels que

$$\chi_f = (X - \lambda)^r (X - \mu)^s$$

D'après le théorème de Cayley-Hamilton,

$$E = \operatorname{Ker} \chi(f)$$

Comme $(X - \lambda)^r$ et $(X - \mu)^s$ sont premiers entre eux, le lemme des noyaux donne

$$E = Ker(f - \lambda Id_E)^q \oplus Ker(f - \mu Id_E)^r$$

Comme $\text{Ker}(f - \lambda \text{Id}_{\text{E}})^q \subset \text{E}^c_{\lambda}(f)$ et $\text{Ker}(f - \mu \text{Id}_{\text{E}})^r \subset \text{E}^c_{\mu}(f)$ par définition, on obtient

$$E = E_{\lambda}^{c}(f) \oplus E_{\mu}^{c}(f)$$

16 Tout d'abord,

$$u^2 = a^2 + a \circ b + b \circ a + b^2 = a \circ b + b \circ a$$

Ainsi

$$u^2 \circ a = a^2 \circ b + a \circ b \circ a = a \circ b \circ a$$

et

$$a \circ u^2 = a \circ b \circ a + b \circ a^2 = a \circ b \circ a$$

de sorte que

$$a \circ u^2 = u^2 \circ a$$

On montre de la même manière que

$$b \circ u^2 = u^2 \circ b$$

Comme a commute avec u^2 , il commute avec toutes les itérées de u^2 et donc avec u^p puisque p est pair. On en déduit que $G = \text{Im}(u^p)$ est stable par a. On montre de même que G est stable par a. Comme $a^2 = b^2 = 0$, on en déduit que

$$a_{\rm G}^2 = b_{\rm G}^2 = 0$$

18 Notons $F = E_0^c(u)$. F et G sont stables par u.

D'après la question 14, 0 est la seule valeur propre de l'endomorphisme u_F de F induit par u donc u_F est nilpotent.

Toujours d'après la question 14, 0 n'est pas valeur propre l'endomorphisme u_G de G induit par u donc u_G est inversible. D'après le résultat admis, il existe une décomposition $F = F_1 \oplus F_2$ telle que $u(F_1) \subset F_2$ et $u(F_2) \subset F_1$.

Avec la question précédente, u_G vérifie (C2) et comme c'est un automorphisme, la troisième partie s'applique. Il existe une décomposition $G = G_1 \oplus G_2$ telle que $u(G_1) \subset G_2$ et $u(G_2) \subset G_1$.

Comme F et G sont en somme directe, on montre aisément que F_1 et G_1 sont en somme directe de même que F_2 et G_2 . En posant $H_1 = F_1 \oplus G_1$ et $H_2 = F_2 \oplus G_2$, on a bien

$$E = F \oplus G = (F_1 \oplus F_2) \oplus (G_1 \oplus G_2) = (F_1 \oplus G_1) \oplus (F_2 \oplus G_2) = H_1 \oplus H_2$$

et

$$u(\mathbf{H}_1) = u(\mathbf{F}_1) + u(\mathbf{G}_1) \subset \mathbf{F}_2 + \mathbf{G}_2 = \mathbf{H}_2 \qquad \text{et} \qquad u(\mathbf{H}_2) = u(\mathbf{F}_2) + u(\mathbf{G}_2) \subset \mathbf{F}_1 + \mathbf{G}_1 = \mathbf{H}_1$$

$$u \text{ est \'echangeur}$$

19 Puisque $-u = \varphi \circ u \circ \varphi^{-1}$, on a également $-u \circ \varphi = \varphi \circ u$. On en déduit que

$$\varphi^2\circ u=\varphi\circ (\varphi\circ u)=-\varphi\circ u\circ \varphi=-(\varphi\circ u)\circ \varphi=u\circ \varphi^2$$

$$\varphi^2 \circ u = u \circ \varphi^2$$

Comme E est C-espace vectoriel, φ^2 possède une valeur propre λ . La question 13 donne $E = E_{\lambda}^c(\varphi^2) \oplus Im(v^p)$ où $v = \varphi^2 - \lambda \operatorname{Id}_E$ et $E_{\lambda}^c(\varphi^2) = \operatorname{Ker} v^p$ pour un bon entier p.

Notons $F = Ker(v^p)$ et $G = Im(v^p)$. F et G sont stables par φ puisque φ commute avec v^p . Comme u commute avec φ^2 et donc avec v^p , ils sont également stables par u.

Comme F et G sont stables par φ et u, on vérifie aisément que les endomorphismes u_F et u_G induits par u vérifient encore la condition (C3).

L'indécomposabilité de u indique alors que F ou G est nul. Comme λ est valeur propre de φ^2 , F n'est pas nul donc G = Im v^p l'est. On en déduit que $(X - \lambda)^p$ est un polynôme annulateur de φ^2 puis que λ est l'unique valeur propre de φ^2 . Comme φ est inversible, φ^2 l'est également et $\lambda \neq 0$.

Soit α une racine carrée (complexe) de λ . Puisque $\lambda \neq 0$, $\alpha \neq 0$. De plus, $(X^2 - \lambda)^p = (X - \alpha)^p (X + \alpha)^p$ annule φ donc $Sp(\varphi) \subset \{-\alpha, \alpha\}$.

$$Sp(\varphi) \subset \{\alpha, -\alpha\}$$
 avec $\alpha^2 = \lambda \neq 0$ unique valeur propre de φ^2

21 Comme $\alpha \neq -\alpha$ et $Sp(\varphi) \subset \{-\alpha, \alpha\}$, on peut appliquer la question **15** et obtenir

$$E = E_{\alpha}^{c}(\varphi) \oplus E_{-\alpha}^{c}(\varphi)$$

Montrons ensuite que $u(E^c_{\alpha}(\varphi)) \subset E^c_{-\alpha}(\varphi)$ et $u(E^c_{-\alpha}(\varphi)) \subset E^c_{\alpha}(\varphi)$. Notons que l'hypothèse (C3) donne $u \circ \varphi = -\varphi \circ u$ puis

$$u \circ (\varphi - \alpha \operatorname{Id}_{E}) = -(\varphi + \alpha \operatorname{Id}_{E}) \circ u$$

On montre alors aisément par récurrence que

$$\forall k \in \mathbb{N}, \ u \circ (\varphi - \alpha \operatorname{Id}_{E})^{k} = (-1)^{k} (\varphi + \alpha \operatorname{Id}_{E})^{k} \circ u$$

On sait qu'il existe $p \in \mathbb{N}$ tel que $E^c_{\alpha}(\varphi) = \operatorname{Ker}(\varphi - \alpha \operatorname{Id}_E)^p$. La relation précédente appliquée à k = p donne $u(E^c_{\alpha}(\varphi)) \subset E^c_{-\alpha}(\varphi)$. De même, en appliquant la relation précédente à k = q où $E^c_{-\alpha}(\varphi) = \operatorname{Ker}(\varphi + \alpha \operatorname{Id}_E)^q$, on obtient $u(E^c_{-\alpha}(\varphi)) \subset E^c_{\alpha}(\varphi)$.

u est échangeur

22 On procède par récurrence sur la dimension de l'espace.

Initialisation. On suppose que u est un endomorphisme d'un espace E de dimension 1 qui vérifie (C3). Comme dim E = 1, l'algèbre $\mathcal{L}(E)$ est commutative et la condition (C3) donne u = 0. On peut alors condidérer la décomposition $E = E \oplus \{0_E\}$ pour en conclure que u est échangeur.

Hérédité : supposons le résultat vrai jusqu'au rang n. Soit u un endomorphisme d'un espace E de dimension n+1 et qui vérifie (C3). Si u est indécomposable, il est échangeur avec ce qui précède.

Sinon, il existe une décomposition $E = F \oplus G$ avec F et G non nuls stables par G et tels que G vérifient (C3). L'hypothèse de récurrence s'applique à G et permet de décomposer G et G. Comme en question 18, on en déduit une décomposition de G qui montre que G est échangeur.

(C3) implique (C1)