6. Teorie polí (minimální pole, rozšíření pole, konečná pole a jejich konstrukce).

Minimální pole

Pole (K,+, 0,–, \cdot , 1) se nazývá **minimální**, pokud nemá žádná jiná podpole než sebe sama.

Každé pole má vždy jediné podpole, které je minimální.

Buď (R,+, 0,−, ·, 1) okruh s jednotkovým prvkem. Potom se definuje vztahem

$$\operatorname{char} R := \left\{ \begin{array}{ll} |\{n \cdot 1 \mid n \in \mathbb{Z}\}|, & \operatorname{pokud se jedn\'a o \ konečnou \ kardinalitu}, \\ 0 & \operatorname{jinak}. \end{array} \right.$$

charakteristika okruhu R (formálně: charR).

Buď o(1) řad prvku 1 v abelovské grupě (R,+). Potom platí

$$\operatorname{char} R = \left\{ \begin{array}{ll} \operatorname{o}(1), & \operatorname{pokud} \operatorname{o}(1) \in \mathbb{N}, \\ 0, & \operatorname{pokud} \operatorname{o}(1) = \infty. \end{array} \right.$$

Příklad:

- 1. Pro okruh zbytkových tříd ($\mathbb{Z}_{n,+}$, 0,–, ·, 1) platí char \mathbb{Z}_{n} = n (n $\in \mathbb{N}_{0}$).
- 2. $\operatorname{char} \mathbb{Z} = \operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$.

Buď (K,+, 0,-, ·, 1) pole takové, že char $K \in \mathbb{P}$ (char $K \in \mathbb{P}$ (char $K \in \mathbb{P}$ prvočíslo). Potom $\{n \cdot 1 \mid n \in \mathbb{Z}\}$ je minimální podpole pole K. V tomto případě tedy platí: minimální podpole pole K je izomorfní se \mathbb{Z}_m , kde M = Char K.

Každé minimální pole je izomorfní se \mathbb{Z}_p ($p \in \mathbb{P}$) nebo \mathbb{Q} .

Rozšíření pole

Je-li L nadpole pole K, potom je L také vektorovým prostorem nad K s operacemi

$$a + b \dots součet v L (a, b \in L),$$

 $\lambda a \dots součin v L (a \in L, \lambda \in K).$

Existuje proto báze vektorového prostoru L nad K. Vztahem dim_KL =: [L : K] definujeme tzv. **stupeň rozšíření** L **pole** K. Je-li [L : K] < ∞ , pak se L nazývá **konečné rozšíření** pole K.

Buď L nadpole pole K a $\alpha \in L$. α se nazývá **algebraický prvek** nad K : $\Leftrightarrow \exists f(x) \in K[x] \setminus \{0\} : f(\alpha) = 0$. α se nazývá **transcendentní prvek** nad K : $\Leftrightarrow \nexists f(x) \in K[x] \setminus \{0\} : f(\alpha) = 0$. Příklad:

- 1. $\sqrt{2}$ je algebraický prvek nad \mathbb{Q} (f(x) = x² 2, L = \mathbb{R}).
- 2. i je algebraický prvek nad \mathbb{R} (f(x) = x^2 + 1, L = \mathbb{C}).
- 3. e, π jsou transcendentní prvky nad \mathbb{Q} (bez důkazu).

Je-li L nadpole pole K a $S \subseteq L$, pak definujeme rozšíření K(S) pole K takto:

 $K(S) := \cap \{E \subseteq L \mid E \text{ je podpole pole L, které obsahuje } K \cup S\}.$

Je-li $S = \{u_1, \ldots, u_r\}$ konečné, pak píšeme $K(S) =: K(u_1, \ldots, u_r)$. Je-li speciálně $S = \{\alpha\}$ jednoprvkové, pak píšeme $K(S) =: K(\alpha)$ ("jednoduché rozšiření" pole K).

Konečná pole

Buď K konečné pole. Potom platí charK = $p \in P$ a minimální podpole P pole K je izomorfní se Zp. Protože K je vektorový prostor nad podpolem P, existuje báze $\{a1, \ldots, an\}$ vektorového prostoru K nad P ([K : P] = $n \in N$). Proto platí K = $\{\lambda 1a1 + ... + \lambda nan \mid \lambda i \in P\}$ a |K| = pn, neboť každý koeficient λi lze zvolit |P| = p způsoby.

Při určování konečného pole K takového, že $|K| = p_n$ ($p \in P$, $p \in N$), tj. při sestavování tabulek jeho operací, lze postupovat následujícícm způsobem:

- 1. Za minimální podpole pole K se vezme \mathbb{Z}_p .
- 2. Určí se normovaný ireducibilní polynom $q(x) \in \mathbb{Z}_p[x]$, kde grad q(x) = n (konečným počtem kroků).
- 3. Zkonstruuje se $\mathbb{Z}_p[x]$ / (q(x)), což je hledané pole K.

Platí, že $\alpha := x + (q(x))$ je (po vnoření Zp) kořenem polynomu q(x). Toto α však nemusí být vždy primitivním prvkem K. α je primitivní prvek $\Leftrightarrow \alpha^r \neq 1$ pro $0 < r < |K| - 1 = p^n - 1 \Leftrightarrow \alpha$ není kořenem $x^r - 1$ pro $0 < r < p^n - 1$ $\Leftrightarrow \alpha$ není kořenem $x^r - 1$ pro $0 < r < p^n - 1$.

Ireducibilní polynomy q(x) s touto vlastností se nazývají primitivní polynomy.

Příklad:

Určení $GF(9) = GF(3^2)$: Vezmeme $\mathbb{Z}_3 = \{0, 1, 2\}$ za minimální pole. Polynom $x^2 - x - 1 \in \mathbb{Z}_3[x]$ je ireducibilní, protože nemá v \mathbb{Z}_3 žádný kořen. Proto máme $\mathbb{Z}_3[x]/(x^2 - x - 1) \cong \mathbb{Z}_3(\alpha) = GF(9)$, přičemž platí $\alpha^2 = \alpha + 1$. Platí $[GF(9) : \mathbb{Z}_3] = 2$ a tím je zadaná báze $\{1, \alpha\}$. Spočítáme nyní v bázi $\{1, \alpha\}$ prvky GF(9) i s jejich souřadnicemi v bázi:

Prvky	Vyjádřenívsouřadnicích
0	(0,0)
$\alpha^0 = 1$	(1, 0)
$\alpha^1 = \alpha$	(0, 1)
$\alpha^2 = 1 + \alpha$	(1, 1)
$\alpha^3 = 1 + 2\alpha$	(1, 2)
$\alpha^4 = 2$	(2,0)
$\alpha^5 = 2\alpha$	(0, 2)
$\alpha^6 = 2 + 2\alpha$	(2,2)
$\alpha^7 = 2 + \alpha$	(2,1)
$\alpha^8 = 1$	(1,0)

Praktický postup:

- 1. Zvolíme normovaný ireducibilní polynom $q(x) \in \mathbb{Z}_p[x]$ stupně n. Nechť např. $q(x) = x_n a_{n-1}x_{n-1} ... a_1x a_0$, kde $a_i \in \mathbb{Z}_p$.
- 2. Položíme $q(\alpha) = 0$ a uvažujeme bázi $\{1, \alpha, \ldots, \alpha_{n-1}\}$ vektorového prostoru $GF(p_n)$ nad \mathbb{Z}_p . Spočítáme použitím $q(\alpha) = 0$ (tj. $\alpha_n = a_0 + a_1\alpha + \cdots + a_{n-1}\alpha_{n-1}$) mocniny α . Platí-li $\alpha^{(p^n)-1} = 1$ (tj., $\alpha^j \neq 1$ pro $1 \leq j < p^n 1$), je zvolený polynom q(x) primitivní. Jinak učiníme další pokus s novým polynomem q(x).