

Classifying MNIST Handwritings with Vanilla Recurrent Neural Network

Group 3: Antti Keurulainen, Julius Wang, Mika Juuti, Darshan Mallenahalli Shankara Lingappa

Department of Computer Science Aalto University, School of Science and Technology

October 20, 2016

References

- Our literature presentation: https: //mycourses.aalto.fi/mod/folder/view.php?id=157611
- Our implementation is available at: https://github.com/juliuswang0728/rnn_theano
- IMPLEMENTING A RNN WITH PYTHON, NUMPY AND THEANO: http://www.wildml.com/2015/09/ recurrent-neural-networks-tutorial-part-2-implementing-
- Other RNN implementation with Theano: https://github.com/gwtaylor/theano-rnn

RNN: Feedforward, Single Image

class probabilities


```
x = T.ftensor3('input') # (# of image, # of rows, # of columns) = (1, 28, 28)
sum_states = T.zeros((x.shape[0], self.output_dim), dtype='f')
states = T.zeros((x.shape[0], self.hidden_dim), dtype='f')
for step_idx in range(0, 28):
    o_t, states = step(x[:, step_idx, :], states)
    sum_states += o_t
mean_states = sum_states / 28
```


RNN: Feedforward, Mini-Batch

RNN: Computing Cost, Mini-Batch

cost = T.mean(T.nnet.categorical_crossentropy(mean_states, onehot_y)) batch x 1 crossonehot avg. cost ent batch x 10 batch x 10 avg. batch x 10 batch x 10 batch x 10 batch x 10 RNN RNN RNN RNN S₀ S28 step 1 step 2 step 3 step 28 batch x 28 batch x 28 batch x 28 batch x 28

RNN: Computing Gradient and Updates, Mini-Batch

for each minibatch of x and y: sgd_step(x, y, 0.01)

Some Reminders on Implementation

- Make sure that your initial state variables should be matrix filled with zeros whenever a mini-batch arrives
- We did not include bias term in our implementation

Accuracy vs Epoch for n_steps = 28

Accuracy vs RNN rows

