EE3005: Communication Systems

Problem Set 2: Fourier Analysis

- 1. Find and sketch the Fourier transforms for the following signals:
 - (a) $u(t) = (1 |t|)I_{[-1,1]}(t)$.
 - (b) $v(t) = \operatorname{sinc}(2t)\operatorname{sinc}(4t)$.
 - (c) $s(t) = v(t)\cos(200\pi t)$.
 - (d) Classify each of the signals in (a)-(c) as baseband or passband.
- 2. Use Parseval's identity to compute the following integrals:
 - (a) $\int_{-\infty}^{\infty} \operatorname{sinc}^2(2t)$.
 - (b) $\int_0^\infty \operatorname{sinc}(t) \operatorname{sinc}(2t)$.
- 3. (a) For u(t) = sinc(t)sinc(2t), where t is in microseconds, find and plot the magnitude spectrum |U(t)|, carefully labeling the units of frequency on the x axis.
 - (b) Now, consider $s(t) = u(t)\cos(200\pi t)$. Plot the magnitude spectrum |S(f)|, again labeling the units of frequency and carefully showing the frequency over which spectrum is non-zero.
- 4. Consider the tent signal $s(t) = (1 |t|)I_{[-1,1]}(t)$.
 - (a) Find and sketch the Fourier transform S(f).
 - (b) Compute the 99% energy containment bandwidth in KHz, assuming that the unit of time is milliseconds.
- 5. A wireless channel has impulse response given by $h(t) = 2\delta(t-0.1) + j\delta(t-0.64) 0.8\delta(t-2.2)$, where the unit of time is in microseconds.
 - (a) What is the delay spread and coherence bandwidth?
 - (b) Plot the magnitude and phase of the channel transfer function H(f) over the interval $[-2B_c, 2B_c]$, where B_c denotes the coherence bandwidth computed in (a). Comment on how the phase behaves when |H(f)| is small.
 - (c) Express |H(f)| in dB, taking 0 dB as the gain of anominal channel $h_{nom}(t) = 2\delta(t 0.1)$ corresponding to the first ray alone. what are the fading depths that you see with respect to this nominal?

Define the average channel power gain over [-W/2, W/2] as

$$\bar{G}(W) = \frac{1}{W} \int_{-W/2}^{W/2} |H(f)|^2 df$$

This is a simplified measure of how increasing bandwidth W can help compensate for frequency-selective fading: we hope that, as W gets large, we can average out fluctuations in |H(f)|.

(d) Plot $\bar{G}(W)$ as a function of W/B_c and comment on how large the bandwidth needs to be (as a multiple of B_c) to provide "enough averaging".

2-1