Electromagnetismo 1

S06 - Ley de Gauss

Josue Meneses Díaz

Universidad de Santiago de Chile

Ley de Gauss

Ley de Gauss

Queremos mostrar que la ley de Gauss

$$\Phi_E = \oiint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{\mathsf{in}}}{\epsilon_0}$$

donde $q_{\rm in}$ representa la carga neta en el interior de la superficie y \vec{E} es el campo eléctrico en cualquier punto de la misma.

2

Ángulo sólido

Antes de realizar la demostración de la ley de Gauss, tenemos que definir un tipo de ángulo especial, análogo al ángulo utilizado en 2D (rad).

Se define como $\acute{a}ngulo\ s\acute{o}lido\ a$ la razón entre un área proyectada S y la distancia al cuadrado entre la proyección y el centro:

$$\Omega = \frac{A}{r^2} \, [\mathrm{sr}]$$

La unidad del ángulo sólido en el SI es el **estereorradián** (sr, adimensional).

3

Flujo a través de una superficie cerrada con carga exterior

Flujo a través de una superficie cerrada más general con carga exterior

Flujo a través de una superficie genérica sin carga cerrada

Flujo a través de una superficie arbitraria con una carga puntual encerrada

Flujo a través de una superficie arbitraria con muchas cargas puntuales encerradas

Forma general de la ley de Gauss

Forma general de la ley de Gauss

Hemos visto que la ley de Gauss está definida por:

$$\iint_{S} \vec{\mathbf{E}} \cdot \hat{n} d\mathbf{A} = \frac{q_{\text{in}}}{\epsilon_{0}}$$

Ahora si consideramos la densidad de carga volumétrica de la carga encerrada:

$$q_{\rm in} = \int_V \rho d{\bf V}$$

La ley de Gauss de forma general queda determinada por:

$$\iint_{S} \vec{\mathbf{E}} \cdot \hat{n} d\mathbf{A} = \frac{1}{\epsilon_0} \int_{V} \rho d\mathbf{V}$$

9

Calcular el campo eléctrico que genera una carga puntual -Q a una distancia de R respecto a la carga. Gráficar \vec{E} en función de la distancia.

Una cable infinitamente larga de radio insignificante tiene una densidad de carga uniforme λ .

- a) Encontrar el flujo total sobre una superficie gaussiana cilindrica.
- b) Calcule el campo eléctrico a una distancia r del cable.
- c) Gráficar $ec{E}$ en función de la distancia.

Considere un placa no conductor infinitamente grande en el plano xy con una densidad de carga superficial uniforme σ .

Determinar:

- a) El flujo total sobre una superficie gaussiana cilindrica.
- b) El campo eléctrico en todo el espacio.
- c) Gráficar $ec{E}$ en función de la distancia.

Una cascaron esférico delgado de radio a tiene una carga +Q distribuida uniformemente sobre su superficie.

- a) Encontrar $ec{E}$ tanto dentro como fuera de la carcasa.
- b) Gráficar el campo en función de la distancia.

Úna carga eléctrica +Q se distribuye uniformemente a través de una esfera sólida no conductora de radio a.

- a) Determinar $ec{E}$ en todas partes dentro y fuera de la esfera.
- b) Gráficar $ec{E}$ en función de la distancia.

Dos planos paralelos infinitos no conductores que se encuentran en el plano xy están separados por una distancia d, con una carga uniforme superficial σ opuesta. Encontrar \vec{E} en todas partes del espacio.

Resumen

Resumen

La ley de Gauss establece que el flujo eléctrico a través de una superficie cerrada es proporcional a la carga eléctrica neta dentro de esa superficie

$$\iint_{S} \vec{\mathbf{E}} \cdot \hat{n} d\mathbf{A} = \frac{q_{\text{in}}}{\epsilon_{0}}$$

Si dentro de la superficie cerrada no hay carga, el flujo électrico es cero

Referencias

Freedman, Young, and S. Zemansky. 2009. "22 LEY DE GAUSS. 22.3 Ley de Gauss. 22.4 Aplicaciones de La Ley de Gauss." In *Física Universitaria*.

Serway, Raymond A., and John W. Jewett. 2005. "24 Ley de Gauss. 24.2 Ley de Gauss. 24.3 Aplicación de La Ley de Gauss a Varias Distribuciones de Carga." In *Física Para Ciencias e Ingeniería Con Física Moderna*, 7ma ed. Vol. 2. CENGAGE learning.