Forbidden pairs and the existence of a dominating cycle

Shuya Chiba^{1*} Michitaka Furuya^{2†} Shoichi Tsuchiya^{2‡}

¹Department of Mathematics and Engineering, Kumamoto University,

2-39-1 Kurokami, Kumamoto 860-8555, Japan

²Department of Mathematical Information Science, Tokyo University of Science,

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

A cycle C in a graph G is called dominating if every edge of G is incident with a vertex of C. For a set \mathcal{H} of connected graphs, a graph G is said to be \mathcal{H} -free if G does not contain any member of \mathcal{H} as an induced subgraph. When $|\mathcal{H}|=2$, \mathcal{H} is called a forbidden pair. In this paper, we investigate the set \mathbf{H} of pairs \mathcal{H} of connected graphs which satisfies that every 2-connected \mathcal{H} -free graph has a dominating cycle. In particular, we show that \mathbf{H} is a very small class of pairs of graphs and find some pairs of graphs which belong to \mathbf{H} .

Keywords: Hamilton cycles; Dominating cycles; Forbidden pairs

AMS Subject Classification: 05C38, 05C45

1 Introduction

A cycle C in a graph G is called *dominating* if every edge of G is incident with a vertex of C. In this paper, we investigate forbidden subgraphs which imply the existence of a dominating cycle. The origin of our research goes back to results on forbidden subgraphs implying the existence of a Hamilton cycle.

All graphs considered here are finite simple graphs. For standard graph-theoretic terminology not explained in this paper, we refer the readers to [7]. A graph G is said to be Hamiltonian if G has a $Hamilton \ cycle$, i.e., a cycle containing all vertices of G. The study on a Hamilton cycle is one of the most important and basic topics in graph theory. It is known that the problem of determining whether a given graph is Hamiltonian or not belongs to the class of NP-complete problems, that is, a difficult problem in a combinatorial sense. So, many researchers

E-mail address: schiba@kumamoto-u.ac.jp

†E-mail address: michitaka.furuya@gmail.com ‡E-mail address: wco.liew6.te@gmail.com

^{*}This work was partially supported by JSPS KAKENHI grant 23740087

Figure 1: The forbidden subgraphs

have studied sufficient conditions for Hamiltonicity of graphs, and there is a large amount of literature concerning conditions in terms of order, size, vertex degrees, independence number, forbidden subgraphs and so on (see a survey [2]).

Let \mathcal{H} be a set of connected graphs. A graph G is said to be \mathcal{H} -free if G does not contain H as an induced subgraph for all H in \mathcal{H} , and we call each graph H of \mathcal{H} a forbidden subgraph. If $\mathcal{H} = \{H\}$, then we simply say that G is H-free. We call \mathcal{H} a forbidden pair if $|\mathcal{H}| = 2$. When we consider \mathcal{H} -free graphs, we assume that each member of \mathcal{H} has order at least 3 because K_2 is the only connected graph of order 2 and connected K_2 -free graphs are only K_1 (here K_n denotes the complete graph of order n). In order to state results on forbidden subgraphs clearly, we further introduce several notations. For two graphs H_1 and H_2 , we write $H_1 \prec H_2$ if H_1 is an induced subgraph of H_2 , and for two sets \mathcal{H}_1 and \mathcal{H}_2 of connected graphs, we write $\mathcal{H}_1 \leq \mathcal{H}_2$ if for every graph H_2 in \mathcal{H}_2 , there exists a graph H_1 in \mathcal{H}_1 with $H_1 \prec H_2$. By the definition of the relation " \leq ", if $\mathcal{H}_1 \leq \mathcal{H}_2$, then \mathcal{H}_1 -free graph is also \mathcal{H}_2 -free.

The forbidden pairs that force the existence of a Hamilton cycle in 2-connected graphs had been studied in [5, 8, 16]. Eventually, a characterization of such pairs was accomplished in [1] as follows (here let P_n denote the path of order n, and the graphs $K_{1,3}$ (or claw), $B_{m,n}$ and $N_{l,m,n}$ are the ones that are depicted in Figure 1).

Theorem A (Bedrossian [1]) Let \mathcal{H} be a set of two connected graphs. Then every 2-connected \mathcal{H} -free graph is Hamiltonian if and only if $\mathcal{H} \leq \{K_{1,3}, P_6\}, \mathcal{H} \leq \{K_{1,3}, B_{1,2}\}, \text{ or } \mathcal{H} \leq \{K_{1,3}, N_{1,1,1}\}.$

On the other hand, Faudree, Gould, Ryjáček and Schiermeyer [10] proved that every 2-connected $\{K_{1,3}, Z_3\}$ -free graph of order at least 10 is Hamiltonian (here Z_n is the one that is depicted in Figure 1). In [12], the forbidden pairs for Hamiltonicity of 2-connected graphs have been completely determined even when we allow a finite number of exceptions.

Theorem B (Faudree and Gould [12]) Let \mathcal{H} be a set of two connected graphs. Then every 2-connected \mathcal{H} -free graph of sufficiently large order is Hamiltonian if and only if $\mathcal{H} \leq \{K_{1,3}, P_6\}$,

$$\mathcal{H} \leq \{K_{1,3}, Z_3\}, \ \mathcal{H} \leq \{K_{1,3}, B_{1,2}\}, \ \text{or} \ \mathcal{H} \leq \{K_{1,3}, N_{1,1,1}\}.$$

A 2-factor of a graph G is a spanning subgraph of G in which every component is a cycle. It is known that a 2-factor is one of the relaxed structures of a Hamilton cycle since a Hamilton cycle is a connected 2-factor. In fact, the sufficient conditions for the existence of a 2-factor have been extensively studied in order to investigate the difference between the existence of a Hamilton cycle and a 2-factor in graphs (see a survey [15]). As part of it, the forbidden pairs that imply a 2-connected graph has a 2-factor was characterized by J.R. Faudree, R.J. Faudree and Ryjáček [11].

Theorem C (J.R. Faudree, R.J. Faudree and Ryjáček [11]) Let \mathcal{H} be a set of two connected graphs. Then the following hold.

- (i) Every 2-connected \mathcal{H} -free graph has a 2-factor if and only if $\mathcal{H} \leq \{K_{1,3}, P_7\}$, $\mathcal{H} \leq \{K_{1,3}, Z_4\}$, $\mathcal{H} \leq \{K_{1,3}, B_{1,3}\}$, or $\mathcal{H} \leq \{K_{1,3}, N_{1,1,2}\}$.
- (ii) Every 2-connected \mathcal{H} -free graph of sufficiently large order has a 2-factor if and only if $\mathcal{H} \leq \{K_{1,3}, P_7\}, \ \mathcal{H} \leq \{K_{1,3}, Z_4\} \ \mathcal{H} \leq \{K_{1,3}, B_{1,4}\}, \ \mathcal{H} \leq \{K_{1,3}, N_{1,1,3}\}, \ \text{or} \ \mathcal{H} \leq \{K_{1,4}, P_4\}.$

On the other hand, one often try to find a dominating cycle in order to find a Hamilton cycle in a given graph (recall that a cycle C in a graph G is dominating if every edge of G is incident with a vertex of C). For example, if some longest cycle in a graph G is dominating and the independence number of G is at most its minimum degree, then G has a Hamilton cycle (the related results can be found in [4, 24]). It is also shown that the dominating cycle conjecture that "every cyclically 4-edge-connected cubic graph has a dominating cycle" by Fleischner [13] is equivalent to not only the well-known conjecture that "every 4-connected $K_{1,3}$ -free graph is Hamiltonian" by Matthews and Sumner [19] but also many other statements on Hamiltonicity of graphs (see a survey [3]). In this sense, a topic on a dominating cycle is one of important relaxations of a Hamilton cycle.

In this paper, our motivation is to investigate the difference between the existence of a Hamilton cycle and a dominating cycle of a 2-connected graph in terms of the forbidden pair.

Problem 1 Determine the set \mathbf{H} (resp., \mathbf{H}') of pairs \mathcal{H} of connected graphs which satisfy that every 2-connected \mathcal{H} -free graph (resp., every 2-connected \mathcal{H} -free graph of sufficiently large order) has a dominating cycle.

Concerning the above problem, we first show that \mathbf{H} and \mathbf{H}' are very small classes of pairs. Let $K_{1,3}^*$, W, W^* and K_4^- be the ones that are depicted in Figure 1, and set $\mathcal{H}_1 = \{K_{1,3}, Z_4\}$, $\mathcal{H}_2 = \{K_{1,3}, B_{1,2}\}$, $\mathcal{H}_3 = \{K_{1,3}, N_{1,1,1}\}$, $\mathcal{H}_4 = \{P_4, W\}$, $\mathcal{H}_5 = \{K_{1,3}^*, Z_1\}$, $\mathcal{H}_6 = \{P_5, W^*\}$ and $\mathcal{H}_7 = \{P_5, K_4^-\}$.

Theorem 1 Let \mathcal{H} be a set of two connected graphs. If there exists a positive integer $n_0 = n_0(\mathcal{H})$ such that every 2-connected \mathcal{H} -free graph of order at least n_0 has a dominating cycle, then $\mathcal{H} \leq \mathcal{H}_i$ for some i with $1 \leq i \leq 7$.

Theorem 1 implies that $\mathbf{H} \subseteq \mathbf{H}' \subseteq \{\mathcal{H} : |\mathcal{H}| = 2, \mathcal{H} \leq \mathcal{H}_i \text{ for some } i \text{ with } 1 \leq i \leq 7\} =: \mathbf{H}^*$ So, the remaining problem is that whether $\mathcal{H} \in \mathbf{H}$ or not $(\mathcal{H} \in \mathbf{H}' \text{ or not})$ when \mathcal{H} is a member of \mathbf{H}^* . We actually guess that the contrary of Theorem 1 holds.

Conjecture 2 Let \mathcal{H} be a set of two connected graphs. If $\mathcal{H} \in {\mathcal{H}_i : 1 \leq i \leq 7}$, then every 2-connected \mathcal{H} -free graph (of sufficiently large order) has a dominating cycle.

As a partial solution of Conjecture 2, in this article, we further show that \mathcal{H}_i is a member of \boldsymbol{H} ($\subseteq \boldsymbol{H}'$) for $1 \leq i \leq 4$ and that a pair \mathcal{H} of connected graphs with $\mathcal{H} \leq \mathcal{H}_5$ and $\mathcal{H} \neq \mathcal{H}_5$ is also a member of \boldsymbol{H} ($\subseteq \boldsymbol{H}'$) (here $K_{1,3}^{**}$ is the graph obtained from $K_{1,3}^{*}$ by deleting one leaf (see Figure 1) and $\mathcal{H}'_5 = \{K_{1,3}^{**}, Z_1\}$).

Theorem 3 Let \mathcal{H} be a set of two connected graphs. If $\mathcal{H} \in \{\mathcal{H}_i : 1 \leq i \leq 4\} \cup \{\mathcal{H}'_5\}$, then every 2-connected \mathcal{H} -free graph has a dominating cycle.

We prove Theorem 1 in Section 3, and slightly stronger statements than Theorem 3 in Section 4 (see Theorems 4–6).

Remark 1 By observing Theorems A, B and C, one may think that we always need an induced subgraph of a star in forbidden pairs for Hamiltonicity-like properties of graphs. In fact, as one of the approach to attack Matthews-Sumner conjecture, the forbidden pair containing $K_{1,3}$ for the existence of a Hamilton cycle in k-connected graphs ($k \geq 3$) have been also studied, e.g., see [14, 17, 18, 21]. However, when we consider the existence of a dominating cycle, the situation is a bit different from Theorems A, B and C, i.e., there exist forbidden pairs which contain no star and force the existence of a dominating cycle in 2-connected graphs (see Theorem 3).

2 Terminology and notation

In this section, we prepare terminology and notation which we use in subsequent sections.

Let G be a graph. We denote by V(G), E(G) and $\Delta(G)$ the vertex set, the edge set and the maximum degree of G, respectively. For $X \subseteq V(G)$, we let G[X] denote the subgraph induced by X in G, and let $G - X = G[V(G) \setminus X]$. Let v be a vertex of G. We denote by $N_G(v)$ and $d_G(v)$ the neighborhood and the degree of v in G, respectively. For $X \subseteq V(G) \setminus \{v\}$, we let $N_G(v;X) = N_G(v) \cap X$, and for $V, X \subseteq V(G)$ with $V \cap X = \emptyset$, let $N_G(V;X) = \bigcup_{v \in V} N_G(v;X)$. We often identify a subgraph F of G with its vertex set V(F) (for example, $N_G(v;V(F))$) is often denoted by $N_G(v;F)$). For a positive integer I, we define $V_I(G) = \{v \in V(G) : d_G(v) = I\}$. For

 $u, v \in V(G)$, $\operatorname{dist}_G(u, v)$ denotes the distance between u and v in G, and we define the $\operatorname{diam}(G)$ of G by $\operatorname{diam}(G) = \max\{\operatorname{dist}_G(u, v) : u, v \in V(G)\}$. When G has a cycle, we denote by c(G) the $\operatorname{circumference}$ of G, i.e., the length of the longest cycle of G. A path with end vertices u and v is denoted by a (u, v)-path.

We write a cycle (or a path) C with a given orientation by \overrightarrow{C} . If there exists no chance of confusion, we abbreviate \overrightarrow{C} by C. Let \overrightarrow{C} be an oriented cycle or a path. For $x,y\in V(C)$, we denote by $x\overrightarrow{C}y$ the (x,y)-path on \overrightarrow{C} . The reverse sequence of $x\overrightarrow{C}y$ is denoted by $y\overleftarrow{C}x$. For $u\in V(C)$, we denote the h-th successor and the h-th predecessor of u on \overrightarrow{C} by u^{+h} and u^{-h} , respectively, and let $u^{+0}=u$. For $X\subseteq V(C)$, we define $X^{+h}=\{x^{+h}:x\in X\}$ and $X^{-h}=\{x^{-h}:x\in X\}$, respectively. We abbreviate u^{+1},u^{-1},X^{+1} and X^{-1} by u^+,u^-,X^+ and X^- , respectively.

For two graphs G_1 and G_2 with $V(G_1) \cap V(G_2) = \emptyset$, let $G_1 \cup G_2$ denote the union of G_1 and G_2 , and let $G_1 + G_2$ denote the join of G_1 and G_2 , i.e., the graph obtained from $G_1 \cup G_2$ by joining each vertex in $V(G_1)$ to all vertices in $V(G_2)$. For a graph G and $I \geq 1$, let IG denote the union of I vertex-disjoint copies of G.

3 Proof of Theorem 1

We first prepare the following lemma concerning the property of a finite set of forbidden subgraphs that imply the existence of a dominating cycle.

Lemma 1 Let \mathcal{H} be a finite set of connected graphs, and suppose that there exists a positive integer $n = n(\mathcal{H})$ such that every 2-connected \mathcal{H} -free graph of order at least n has a dominating cycle.

- (i) Then \mathcal{H} contains a tree T with $\Delta(T) \leq 3$ and $|V_3(T)| \leq 1$.
- (ii) If $|\mathcal{H}| = 2$ and \mathcal{H} contains a graph with diameter at least 3, then the other one is an induced subgraph of $K_1 + 3K_2$, or isomorphic to K_4^- .

In order to prove Lemma 1, we define the following graphs A_s , A'_s and A''_s (see Figure 2). Note that each of A_s , A'_s and A''_s is 2-connected and contains no dominating cycle.

- For each $s \geq 2$, let A_s be the graph consisting of the union of three internally disjoint P_{s+2} 's that have the same two distinct end vertices.
- For each $s \geq 3$, let $A'_s = 2K_1 + sK_2$.
- For each $s \ge 2$, let $A_s'' = K_2 + (2K_2 \cup K_s)$.

Proof of Lemma 1. (i) Let $m = \max\{|V(H)| : H \in \mathcal{H}\}$, and let $n_1 = \max\{n, m\}$. Since A_{n_1} is a 2-connected graph of order at least $n_1 \in \mathcal{H}$ having no dominating cycle, it follows that there

Figure 2: The graphs A_s , A'_s and A''_s

exists a graph H in \mathcal{H} such that $H \prec A_{n_1}$. Observe that, by the definition of A_{n_1} , all cycles in A_{n_1} have $2n_1 + 2$ ($\geq 2m + 2$) vertices and the distance of two vertices with degree 3 in A_{n_1} is $n_1 + 1$ ($\geq m + 1$). These facts imply that H is a tree with $\Delta(H) \leq 3$ and $|V_3(H)| \leq 1$.

(ii) Write $\mathcal{H} = \{H_1, H_2\}$, and assume that $\operatorname{diam}(H_1) \geq 3$. Let $n_2 = \max\{n, 3\}$. Since $\operatorname{diam}(H_1) \geq 3$, we have $P_4 \prec H_1$, and hence A'_{n_2} does not contain H_1 as an induced subgraph because A'_{n_2} contains no P_4 as an induced subgraph. Similarly, we see that A''_{n_2} does not contain H_1 as an induced subgraph. On the other hand, both of A'_{n_2} and A''_{n_2} are 2-connected graphs of order at least n_2 ($\geq n$) having no dominating cycle. This implies that H_2 is a common induced subgraph of A'_{n_2} and A''_{n_2} . Hence it is easy to check that $H_2 \prec K_1 + 3K_2$ or $H_2 \cong K_4^-$. \square

We further define five graphs of 2-connected graphs having no dominating cycle as follows (see Figure 3).

- For each $s \geq 2$, let $A_s^{(1)}$ be the graph which consists of two vertex-disjoint triangles connected by three vertex-disjoint paths of orders s + 2, respectively.
- For each $s \geq 4$, let G_i $(1 \leq i \leq 3)$ be a complete graph of order s, and let $A_s^{(2)}$ be the graph obtained from $G_1 \cup G_2 \cup G_3$ by joining u_i to u_{i+1} and v_i to v_{i+1} for $1 \leq i \leq 3$, where u_i and v_i are distinct two vertices of G_i and $u_4 = u_1, v_4 = v_1$.
- For each $s \ge 4$, let $A_s^{(3)} = A_s^{(2)} \{u_i v_i : 1 \le i \le 3\}$.
- For each $s \geq 2$, let $A_s^{(4)}$ be the graph obtained from $K_2 + (K_2 \cup K_s)$ by subdividing the edge xy twice, where $\{x,y\}$ is the unique 2-cut set of $K_2 + (K_2 \cup K_s)$.
- For each $s \ge 3$, let $A_s^{(5)}$ be the graph defined by $V(A_s^{(5)}) = \{x_i, y_{i,j} : 1 \le i \le 2, 1 \le j \le s\}$ and $E(A_s^{(5)}) = \{x_1x_2\} \cup \{y_{1,j}y_{2,j} : 1 \le j \le s\} \cup \{x_iy_{i,j} : 1 \le i \le 2, 1 \le j \le s\}.$

By the definition of $A_s^{(j)}$, we can obtain the following lemma. (Since the proof is easy, we omit it.)

Lemma 2 (i) $A_s^{(1)}$, $A_s^{(2)}$ and $A_s^{(3)}$ are $K_{1,3}$ -free graphs. Furthermore, $A_s^{(1)}$ is K_4^- -free.

(ii) Every connected induced subgraph of $A_s^{(1)}$ with at most s vertices is also an induced subgraph of $N_{i,j,k}$ for some integers i, j and k. In particular, every induced subtree of $A_s^{(1)}$ with at most s vertices is a path.

Figure 3: The graph $A_s^{(j)}$

- (iii) Every induced subpath of $A_s^{(2)}$ has at most 6 vertices.
- (iv) $A_s^{(2)}$ contains neither $N_{1,1,2}$ nor $B_{1,3}$ as an induced subgraph.
- (v) $A_s^{(3)}$ contains no $B_{2,2}$ as an induced subgraph.
- (vi) $A_s^{(4)}$ is P_5 -free and $A_s^{(5)}$ is K_3 -free.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let \mathcal{H} be a set of two connected graphs, and suppose that there exists a positive integer $n_0 = n_0(\mathcal{H})$ such that every 2-connected \mathcal{H} -free graph of order at least n_0 has a dominating cycle. We show that $\mathcal{H} \leq \mathcal{H}_i$ for some i with $1 \leq i \leq 7$.

If \mathcal{H} contains P_3 , then $\mathcal{H} \leq \mathcal{H}_1$. Thus we may assume that \mathcal{H} does not contain P_3 . Write $\mathcal{H} = \{H_1, H_2\}$, and let $n = \max\{n_0, 4, |V(H_1)|, |V(H_2)|\}$. Then for each j with $1 \leq j \leq 5$,

$$H_1 \prec A_n^{(j)} \text{ or } H_2 \prec A_n^{(j)}$$
 (3.1)

because $A_n^{(j)}$ is a 2-connected graph of order at least $n \ (\geq n_0)$ having no dominating cycle.

We divide the proof into two cases according as \mathcal{H} contains $K_{1,3}$ or not.

Case 1. H_i is isomorphic to $K_{1,3}$ for some i with $i \in \{1, 2\}$.

We may assume that $H_1 \cong K_{1,3}$. Then it follows from Lemma 2 (i) and (3.1) that $H_2 \prec A_n^{(j)}$ for each $1 \leq j \leq 3$, i.e., H_2 is a common induced subgraph of $A_n^{(1)}$, $A_n^{(2)}$ and $A_n^{(3)}$. Since $n \geq |V(H_2)|$, it follows from Lemma 2 (ii) that H_2 is an induced subgraph of $N_{i,j,k}$ for some integers i, j and k. This together with Lemma 2 (iii) implies that H_2 is an induced subgraph of either Z_4 , $B_{1,3}$ or $N_{2,2,2}$. If $H_2 \prec Z_4$, then $\mathcal{H} \leq \mathcal{H}_1$; if $H_2 \prec B_{1,3}$, then by Lemma 2 (iv), either $H_2 \prec P_6$, $H_2 \prec Z_3$ or $H_2 \prec B_{1,2}$, and hence $\mathcal{H} \leq \mathcal{H}_1$ or $\mathcal{H} \leq \mathcal{H}_2$; if $H_2 \prec N_{2,2,2}$, then by Lemma 2 (iv) and (v), either $H_2 \prec P_6$, $H_2 \prec Z_2$, $H_2 \prec B_{1,2}$ or $H_2 \prec N_{1,1,1}$, and hence $\mathcal{H} \leq \mathcal{H}_1$, $\mathcal{H} \leq \mathcal{H}_2$ or $\mathcal{H} \leq \mathcal{H}_3$.

Case 2. H_i is not isomorphic to $K_{1,3}$ for $i \in \{1, 2\}$.

By Lemma 1 (i), we may assume that H_1 is a tree with $\Delta(H_1) \leq 3$ and $|V_3(H_1)| \leq 1$. Since $H_1 \not\cong P_3$ and $H_1 \not\cong K_{1,3}$ by the assumption of Case 2, we have $\operatorname{diam}(H_1) \geq 3$. Hence by Lemma 1 (ii), H_2 is an induced subgraph of $K_1 + 3K_2$ or isomorphic to K_4^- . In particular, this implies that H_2 has a triangle (note that if H_2 is a tree, then either $H_2 \cong K_{1,3}$ or $H_2 \cong P_3$, a contradiction). Therefore, it follows from Lemma 2 (vi) and (3.1) that $H_1 \prec A_n^{(5)}$. Combining this with the fact that $\Delta(H_1) \leq 3$ and $|V_3(H_1)| \leq 1$, we have $H_1 \prec K_{1,3}^*$.

We divide the proof of Case 2 into three cases according as $H_2 \prec K_1 + 3K_2$ and H_1 is not a path, $H_2 \prec K_1 + 3K_2$ and H_1 is a path, or $H_2 \cong K_4^-$.

Subcase 2.1. H_2 is an induced subgraph of $K_1 + 3K_2$ and H_1 is not a path.

Since H_1 is a tree which is not a path, H_1 is not an induced subgraph of $A_n^{(1)}$ by Lemma 2 (ii). This together with (3.1) implies that $H_2 \prec A_n^{(1)}$. Combining this with the assumption that H_2 is an induced subgraph of $K_1 + 3K_2$, we see that $H_2 \prec Z_1$. Since $H_1 \prec K_{1,3}^*$, $\mathcal{H} \leq \mathcal{H}_5$.

Subcase 2.2. H_2 is an induced subgraph of $K_1 + 3K_2$ and H_1 is a path.

If H_1 is a path of order at most 4, then $\mathcal{H} \leq \mathcal{H}_4$ (note that $K_1 + 3K_2 \cong W$). Thus we may assume that H_1 is a path of order 5 because $H_1 \prec K_{1,3}^*$. Then by Lemma 2 (vi) and (3.1), $H_2 \prec A_n^{(4)}$. Since $H_2 \prec K_1 + 3K_2$ and $A_n^{(4)}$ contains no $K_1 + 3K_2$ as an induced subgraph, H_2 is an induced subgraph of $K_1 + (K_1 \cup 2K_2)$. Thus $\mathcal{H} \leq \mathcal{H}_6$ (note that $K_1 + (K_1 \cup 2K_2) \cong W^*$).

Subcase 2.3. H_2 is isomorphic to K_4^- .

Then by Lemma 2 (i), (3.1) and the assumption of Subcase 2.3, we have $H_1 \prec A_n^{(1)}$. Since $H_1 \prec K_{1,3}^*$, H_1 is a path of order at most 5 by Lemma 2 (ii). Thus $\mathcal{H} \leq \mathcal{H}_7$.

This completes the proof of Theorem 1. \Box

4 Proof of Theorem 3

In this section, we prove Theorem 3. To prove this, we show that the following theorems hold, which immediately imply Theorem 3 (note that we actually prove slightly stronger statements.)

Theorem 4 If $\mathcal{H} \in \{\mathcal{H}_i : 1 \leq i \leq 3\}$, then every longest cycle of a 2-connected \mathcal{H} -free graph is a dominating cycle of the graph.

Theorem 5 Every longest cycle of a 2-connected $\{P_4, W\}$ -free graph is a dominating cycle of the graph.

Theorem 6 A longest cycle of a 2-connected $\{K_{1,3}^{**}, Z_1\}$ -free graph is a dominating cycle of the graph.

Figure 4: The graph F_i and $F_{s,s',t}$

We will prove Theorems 4 and 5 in Subsections 4.1 and 4.2, respectively, and we will prove Theorem 6 in Subsections 4.3–4.5.

4.1 $K_{1,3}$ -free graphs

In this subsection, we prove Theorem 4. In order to prove it, we use some concepts and known results.

In [22], Ryjáček introduced the concept of a closure for claw-free graphs as follows. Let G be a claw-free graph. For each vertex v of G, $G[N_G(v)]$ has at most two components; otherwise G contains a $K_{1,3}$ as an induced subgraph. If $G[N_G(v)]$ has two components, both of them must be cliques. In the case that $G[N_G(v)]$ is connected, we add edges joining all pairs of nonadjacent vertices in $N_G(v)$. The closure cl(G) of G is a graph obtained by recursively repeating this operation, as long as this is possible. In [22], it was shown that the closure of a graph has the following property.

Theorem D (Ryjáček [22]) If G is a claw-free graph, then the following hold.

- (i) cl(G) is well-defined, (i.e., uniquely defined).
- (ii) c(G) = c(cl(G)).

On the other hand, Brousek, Ryjáček and Favaron [6] characterized 2-connected $\{K_{1,3}, Z_4\}$ free graphs having no Hamilton cycle. Let F_1 , F_2 , F_3 and F_4 be the ones that are depicted in
Figure 4, and set $\mathcal{F} = \{F_1, F_2, F_3, F_4\}$. For each s, s' and t with $s' \geq s \geq 3$ and $1 \leq t \leq (s-1)/2$,
let $F_{s,s',t}$ be the graph which consists of vertex-disjoint K_s and $K_{s'}$ connected by 2t + 1 vertexdisjoint cycles of orders 3, respectively (see Figure 4), and set $\mathcal{F}' = \{F_{s,s',t} : s' \geq s \geq 3, 1 \leq t \leq (s-1)/2\}$.

Theorem E (Brousek, Ryjáček and Favaron [6]) Let G be a 2-connected $\{K_{1,3}, Z_4\}$ -free graph. If G is not Hamiltonian, then $G \in \mathcal{F}$ or $cl(G) \in \mathcal{F}'$.

Now we prove Theorem 4.

Proof of Theorem 4. Let $\mathcal{H} \in \{\mathcal{H}_i : 1 \leq i \leq 3\}$, and let G be a 2-connected \mathcal{H} -free graph. We show that every longest cycle of G is a dominating cycle of G. If G is Hamiltonian, then the

assertion clearly holds; thus we may assume that G is not Hamiltonian. Then by Theorem A, $\mathcal{H} \neq \mathcal{H}_2$ ($= \{K_{1,3}, B_{1,2}\}$) and $\mathcal{H} \neq \mathcal{H}_3$ ($= \{K_{1,3}, N_{1,1,1}\}$). Thus $\mathcal{H} = \mathcal{H}_1$ ($= \{K_{1,3}, Z_4\}$). Then it follows from Theorem E that $G \in \mathcal{F}$ or $cl(G) \in \mathcal{F}'$. Since each graph F in $\mathcal{F} \cup \mathcal{F}'$ has a longest cycle of order |V(F)| - 1, this together with Theorem D (ii) implies that the longest cycle of G has |V(G)| - 1 vertices; thus every longest cycle of G is a dominating cycle. \square

4.2 P_4 -free graphs

In this subsection, we prove Theorem 5. To prove this, we use the following lemma concerning the property of P_4 -free graphs. (In [23], a theorem which implies Lemma A was proved by Seinseche, and also see [9, 11].)

Lemma A Let G be a P_4 -free graph. If G is k-connected and $|V(G)| \ge 2k$, then there exists a partition $\{A, B\}$ of V(G) with $|A| \ge k$ and $|B| \ge k$ such that every vertex in A is adjacent to each vertex in B.

Now we prove Theorem 5.

Proof of Theorem 5. Let G be a 2-connected $\{P_4, W\}$ -free graph. We may assume that $|V(G)| \ge 4$ (otherwise, the assertion clearly holds). Then by applying Lemma A as k = 2, there exists a partition $\{A, B\}$ of V(G) with $|A| \ge 2$ and $|B| \ge 2$ such that every vertex in A is adjacent to all vertices in B. By symmetry, we may assume that $|A| \ge |B|$. Suppose that G has a longest cycle \overrightarrow{C} which is not a dominating cycle of G.

Claim 1 $B \subseteq V(C)$.

Proof. Suppose that $B \nsubseteq V(C)$, and let $u \in B \setminus V(C)$. Since $G[A' \cup B]$ is Hamiltonian for $A' \subseteq A$ with |A'| = |B|, we have $|V(C)| = c(G) \ge 2|B|$. Hence $|V(C) \cap A| = |V(C) \setminus B| = |V(C) \setminus (B \setminus \{u\})| \ge |V(C)| - (|B| - 1) \ge 2|B| - (|B| - 1) = |B| + 1$. Since C - B ($= C - (B \setminus \{u\})$) has at most |B| - 1 components, this implies that there exists a vertex x of C such that $x, x^+ \in A$. Then the cycle $x^+ \overrightarrow{C} x u x^+$ is a longer cycle than C, a contradiction. \square

Since C is not a dominating cycle of G, it follows from Claim 1 that there exist vertices $x_1, x_2 \in A \setminus V(C)$ with $x_1x_2 \in E(G)$. Moreover, by again Claim 1 and since $|B| \geq 2$, we can take distinct two vertices u_1 and u_2 in $B \cap V(C)$.

Claim 2
$$N_G(\{x_1, x_2\}; \{u_1^+, u_1^{+2}, u_2^+, u_2^{+2}\}) = \emptyset$$
. In particular, $\{u_1^+, u_1^{+2}, u_2^+, u_2^{+2}\} \subseteq A$.

Proof. If there exists a vertex u in $N_G(x_1; \{u_1^+, u_1^{+2}\})$, then $x_1 u \overrightarrow{C} u_1 x_2 x_1$ is a cycle which contains $(V(C) \setminus \{u_1^+, u_1^{+2}\}) \cup \{u, x_1, x_2\}$. This contradicts the maximality of |V(C)|. Thus $N_G(x_1, \{u_1^+, u_1^{+2}\}) = \emptyset$. By the symmetry of u_1 and u_2 , we also have $N_G(x_1, \{u_2^+; u_2^{+2}\}) = \emptyset$,

and hence by the symmetry of x_1 and x_2 , we have $N_G(x_2, \{u_1^+, u_1^{+2}, u_2^+, u_2^{+2}\}) = \emptyset$. In particular, since $\{x_1, x_2\} \subseteq A$, this implies that $\{u_1^+, u_1^{+2}, u_2^+, u_2^{+2}\} \subseteq A$. \square

Since $u_1 \in B$ and $\{x_1, x_2, u_1^+, u_1^{+2}, u_2^+, u_2^{+2}\} \subseteq A$ by Claim 2, we have that $G[\{u_1, x_1, x_2, u_1^+, u_1^{+2}, u_2^+, u_2^{+2}, u_2^{+2}\}]$ contains W as a subgraph. Since G is W-free, Claim 2 yields that $N_G(\{u_1^+, u_1^{+2}\}; \{u_2^+, u_2^{+2}\}) \neq \emptyset$. If $u_1^+ u_2^+ \in E(G)$, then $u_1^+ u_2^+ \stackrel{\frown}{C} u_1 x_1 u_2 \stackrel{\frown}{C} u_1^+$ is a longer cycle than C, a contradiction. If $u_1^+ u_2^{+2} \in E(G)$, then $u_1^+ u_2^{+2} \stackrel{\frown}{C} u_1 x_1 x_2 u_2 \stackrel{\frown}{C} u_1^+$ is a longer cycle than C, a contradiction again. Similarly, we have $u_1^{+2} u_2^+ \notin E(G)$, and hence we have $u_1^{+2} u_2^{+2} \in E(G)$. But, then $u_1^+ u_1^{+2} u_2^{+2} u_2^+$ is an induced path of G, which contradicts the assumption that G is P_4 -free.

This completes the proof of Theorem 5. \Box

4.3 Proof of Theorem 6

The proof of Theorem 6 is actually divided into two parts according as the graph contains a triangle or not. To do that, we use the following.

Lemma B (Olariu [20]) Let G be a connected Z_1 -free graph. If G contains a triangle, then G is a complete multipartite graph.

Theorem 7 A longest cycle of a 2-connected $\{K_{1,3}^{**}, K_3\}$ -free graph is a dominating cycle of the graph.

Here we prove Theorem 6 assuming Theorem 7. We will show Theorem 7 in Subsections 4.4 and 4.5.

Proof of Theorem 6. Let G be a 2-connected $\{K_{1,3}^{**}, Z_1\}$ -free graph. If G is K_3 -free, then by Theorem 7, G has a longest cycle which is a dominating cycle. Thus we may assume that G contains a triangle. Then by Lemma B, G is a complete multipartite graph. Let \overrightarrow{C} be a longest of G. Suppose that there exists an edge xy in G - V(C), and let $u \in V(C)$. If some vertex a in $\{x,y\}$ belongs to a different partite set from u and u^+ , then $uau^+\overrightarrow{C}u$ is a longer cycle than C, a contradiction. Thus we may assume that u and u belong to the same partite set, and u^+ and u belong to the same partite sets). Then $uyxu^+\overrightarrow{C}u$ is a longer cycle than u0, a contradiction again. Thus u1 is a dominating cycle of u2.

4.4 Preparation for the proof of Theorem 7

In this subsection, we prepare lemmas which will be used in the proof of Theorem 7.

Figure 5: Lemma 3

Now let G be a 2-connected graph. Let \overrightarrow{C} be a longest cycle of G, and let H be a component of G - V(C). (Note that $|V(C)| \ge 4$.) Then by the maximality of |V(C)|, we can easily obtain the following lemma.

Lemma 3 (i) $N_G(H;C) \cap N_G(H;C)^+ = \emptyset$ (see the left of Figure 5).

- (ii) If u and v are distinct two vertices in $N_G(H;C)$, then $E(G) \cap \{u^+v^+, u^-v^-\} = \emptyset$ (see the center of Figure 5).
- (iii) If u and v are distinct two vertices in $N_G(H;C)$ such that $|N_G(u;H) \cup N_G(v;H)| \ge 2$, then $E(G) \cap \{u^{+2}v^+, u^+v^{+2}, u^{-2}v^-, u^-v^{-2}\} = \emptyset$. In particular, $u^{+2} \ne v$ and $u^{-2} \ne v^-$ (see the right of Figure 5).

Moreover, we give the following lemma concerning $\{K_{1,3}^{**}, K_3\}$ -free graphs.

Lemma 4 Let $x \in V(H)$ and $u \in N_G(x; C)$. If G is $\{K_{1,3}^{**}, K_3\}$ -free and $|V(H)| \geq 2$, then $E(G) \cap \{u^{+2}u^-, u^{+2}x\} \neq \emptyset$ and $E(G) \cap \{u^{-2}u^+, u^{-2}x\} \neq \emptyset$.

Proof of Lemma 4. Since $|V(H)| \geq 2$, $N_H(x) \neq \emptyset$. Let $x' \in N_H(x)$. Then by Lemma 3 (i), $E(G) \cap \{u^+x, u^-x, u^+x', u^-x'\} = \emptyset$. By Lemma 3 (ii), $u^{+2}x' \notin E(G)$. Moreover, since G is K_3 -free, $E(G) \cap \{uu^{+2}, u^+u^-, ux'\} = \emptyset$. Therefore, if $E(G) \cap \{u^{+2}u^-, u^{+2}x\} = \emptyset$, then $G[\{u, u^+, u^{+2}, u^-, x, x'\}]$ is isomorphic to $K_{1,3}^{**}$, a contradiction. Thus $E(G) \cap \{u^{+2}u^-, u^{+2}x\} \neq \emptyset$. By the symmetry of \overrightarrow{C} and \overleftarrow{C} , we have that $E(G) \cap \{u^{-2}u^+, u^{-2}x\} \neq \emptyset$. \square

4.5 Proof of Theorem 7

In this subsection, we prove Theorem 7.

Proof of Theorem 7. Let G be a 2-connected $\{K_{1,3}^{**}, K_3\}$ -free graph, and we show that G has a longest cycle which is a dominating cycle of G. By way of a contradiction, suppose that every longest cycle of G is not a dominating cycle of G. For a cycle C of G, let $\mu(C) = \max\{|V(H)| : H \text{ is a component of } G - V(C)\}$. Then $\mu(C) \geq 2$ for every longest cycle C of G. For a cycle C of

Figure 6: Claim 3

G, we further define $\omega(C) = |\{H : H \text{ is a component of } G - V(C) \text{ such that } |V(H)| = \mu(C)\}|$. Let \overrightarrow{C} be a longest cycle of G. We choose C so that

- (C1) $\mu(C)$ is as small as possible, and
- (C2) $\omega(C)$ is as small as possible, subject to (C1).

Let H be a component of G-V(C) such that $|V(H)|=\mu(C)$ (≥ 2). Since G is 2-connected, there exist distinct two vertices u and v in C such that $N_G(u;H)\neq\emptyset$, $N_G(v;H)\neq\emptyset$, $|N_G(u;H)\cup N_G(v;H)|\geq 2$ and $N_G(H;u^+\overrightarrow{C}v^-)=\emptyset$. We choose the longest cycle C of G, the component H of G-V(C) with $|V(H)|=\mu(C)$, the vertices u and v so that

(C3) $|V(u^+\overrightarrow{C}v^-)|$ is as large as possible, subject to (C1) and (C2).

By Lemma 3 (i) and (iii), $|V(u\overrightarrow{C}v)| \ge 4$ and $|V(v\overrightarrow{C}u)| \ge 4$. Since $N_G(H; u^+\overrightarrow{C}v^-) = \emptyset$, it follows from Lemma 4 that $u^{+2}u^- \in E(G)$, and hence by Lemma 3 (ii) and (iii), $|V(u\overrightarrow{C}v)| \ge 6$.

Claim 3 $yu^{+3} \in E(G)$ for $y \in N_G(u^+; G - V(C))$.

Proof. Suppose that $yu^{+3} \notin E(G)$ for some vertex $y \in N_G(u^+; G - V(C))$. By the choice of u and $v, y \notin V(H)$. Let $x \in N_G(u; H)$. Since G is K_3 -free, $E(G) \cap \{yu, yu^{+2}, uu^{+2}, u^+u^{+3}\} = \emptyset$. Since $N_G(H; u^+\overrightarrow{C}v^-) = \emptyset$, $yu^{+3} \notin E(G)$ and $G[\{x, y, u, u^+, u^{+2}, u^{+3}\}] \ncong K_{1,3}^{**}$, these imply that $uu^{+3} \in E(G)$ (see Figure 6). However, $G[\{x, x', y, u, u^+, u^{+3}\}]$ is isomorphic to $K_{1,3}^{**}$ where $x' \in N_H(x)$ because $N_G(H; u^+\overrightarrow{C}v^-) = \emptyset$ and G is K_3 -free, a contradiction. \square

Claim 4 $N_G(u^{-2}; H) = \emptyset$.

Proof. Suppose that $N_G(u^{-2}; H) \neq \emptyset$, and let $x \in N_G(u; H)$. By Lemma 3 (iii), $N_G(u^{-2}; H) = \{x\}$. If there exists a vertex $y \in N_G(u^+; G - V(C))$, then by Claim 3, $yu^{+3} \in E(G)$, and hence $u^{-2}xuu^-u^{+2}u^+yu^{+3}\overrightarrow{C}u^{-2}$ is a longer cycle than C (note that by the choice of u and v, $y \notin V(H)$), a contradiction. Thus $N_G(u^+; G - V(C)) = \emptyset$. Then $D := u^{-2}xuu^-u^{+2}\overrightarrow{C}u^{-2}$ is a cycle in G such that $V(D) = (V(C) \setminus \{u^+\}) \cup \{x\}$. Since $N_G(u^+; G - V(C)) = \emptyset$, it follows

Figure 7: The insertible path $u_1u_2u_3$ of C

that u^+ is a component of G - V(D), and G - V(D) contains some components whose union is $H - \{x\}$, which contradicts the choice (C1) or (C2).

By Lemma 4 and Claim 4, we have $u^+u^{-2} \in E(G)$, and hence by Lemma 3 (ii) and (iii), $|V(v\overrightarrow{C}u)| \geq 6$. Moreover, by the maximality of |V(C)|, we can easily see that the following holds.

Claim 5 $E(G) \cap \{u^{-3}v^{-}, u^{-4}v^{-}\} = \emptyset.$

Proof. Let $x \in N_G(u; H)$ and $x' \in N_G(v; H)$ with $x \neq x'$, and let \overrightarrow{P} be an (x, x')-path in H. If v^- is adjacent to a vertex $z \in \{u^{-3}, u^{-4}\}$, then $zv^- \overleftarrow{C} u^+ u^{-2} \overrightarrow{C} ux \overrightarrow{P} x'v \overrightarrow{C} z$ is a longer cycle than C, a contradiction. Thus $E(G) \cap \{u^{-3}v^-, u^{-4}v^-\} = \emptyset$. \square

Let $w \in N_G(H; v\overrightarrow{C}u^-)$. We choose w so that $|V(w\overrightarrow{C}u)|$ is as small as possible. Note that by the choice of w, $N_G(H; w^+\overrightarrow{C}u^-) = \emptyset$ (possibly w = v). By Lemma 3 (i) and Claim 4, $w \notin \{u^-, u^{-2}\}$. Since $u^{-2}u^+ \in E(G)$, it follows from Lemma 3 (ii) that $w \neq u^{-3}$. Write $u^-\overrightarrow{C}w^+ = u_1u_2 \dots u_{s-1}u_s$ ($s \geq 3$). For an integer k with $1 \leq k \leq s-1$, we call $u_1 \overleftarrow{C} u_k$ ($u_1 \underbrace{C} u_2 \underbrace{C} u_1 \underbrace{C} u_2 \underbrace{C} u_1 \underbrace{C} u_2 \underbrace{C} u_2 \underbrace{C} u_1 \underbrace{C} u_1 \underbrace{C} u_2 \underbrace{C} u_1 \underbrace{C} u_1 \underbrace{C} u_2 \underbrace{C} u_1 \underbrace{C} u_1 \underbrace{C} u_1 \underbrace{C} u_2 \underbrace{C} u_1 \underbrace{C} u_$

- (I1) The vertices v_1, v_2, \ldots, v_k appear in this order along \overrightarrow{C} and $v_i \in V(u^{+2}\overrightarrow{C}v^{-2})$ for each i with $1 \le i \le k$.
- (I2) $\{u_i v_i, u_{i+1} v_i^+\} \subseteq E(G)$ for each i with $1 \le i \le k$.
- (I3) If $v_k \neq v^{-2}$, then $N_G(u_i; v_i^+ \overrightarrow{C} v^{-2}) = \emptyset$ for each i with $1 \leq i \leq k$.

For an insertible path $u_1 \overleftarrow{C} u_k$ of C, the vertices v_1, v_2, \dots, v_k satisfying the conditions (I1)–(I3) is called *bridging vertices* of $u_1 \overleftarrow{C} u_k$.

Claim 6 Let k and l be integers with $2 \le k \le s-1$ and $1 \le l \le k+1$. If $u_1 \overleftarrow{C} u_{k-1}$ is an insertible path of C, then $u_l v^- \notin E(G)$. In particular, if v_1, \ldots, v_{k-1} are bridging vertices of $u_1 \overleftarrow{C} u_{k-1}$, then $v_{k-1} \ne v^{-2}$.

Figure 8: The case of k-1=3 and l=5

Figure 9: The case of k-1=4 and l=6

Proof. By Lemma 3 (ii), (iii) and Claim 5, we may assume that $k \geq 4$ and $l \geq 5$. Let v_1, \ldots, v_{k-1} be bridging vertices of $u_1 \overleftarrow{C} u_{k-1}$. Suppose that $u_l v^- \in E(G)$. Let $x \in N_G(u; H)$ and $x' \in N_G(v; H)$ with $x \neq x'$, and let \overrightarrow{P} be an (x, x')-path in H. If l is odd, then by the condition (I2), $D := u_l v^- \overleftarrow{C} v_{l-2}^+ u_{l-1} u_{l-2} v_{l-2} \overleftarrow{C} v_{l-4}^+ u_{l-3} \ u_{l-4} v_{l-4} \overleftarrow{C} \dots v_3 \overleftarrow{C} u^{+2} u_1 u_2 u^+ u x \overrightarrow{P} x' v \overrightarrow{C} u_l$ is a cycle in G such that $V(D) = V(C) \cup V(P)$, which contradicts the maximality of |V(C)| (see Figure 8). If l is even, then $D := u_l v^- \overleftarrow{C} v_{l-2}^+ u_{l-1} u_{l-2} \ v_{l-2} \overleftarrow{C} v_{l-4}^+ u_{l-3} u_{l-4} v_{l-4} \overleftarrow{C} \dots v_2 \overleftarrow{C} u x \overrightarrow{P} x' v \overrightarrow{C} u_l$ is a cycle in G such that $V(D) = (V(C) \setminus \{u_1\}) \cup V(P)$, which contradicts the maximality of |V(C)| again (see Figure 9). \square

Claim 7 Let k be an integer with $2 \le k \le s - 1$. If $u_1 \overleftarrow{C} u_{k-1}$ be an insertible path of C, then $u_{k+1}u_{k-2} \notin E(G)$, where $u_0 = u$.

Proof. Let v_1, \ldots, v_{k-1} be bridging vertices of $u_1 \overleftarrow{C} u_{k-1}$. Suppose that $u_{k+1} u_{k-2} \in E(G)$, and let $\overrightarrow{D} = u_{k+1} u_{k-2} \overrightarrow{C} v_{k-1} u_{k-1} u_k v_{k-1}^+ \overrightarrow{C} u_{k+1}$. Then D is a cycle in G such that V(D) = V(C), and hence $\mu(D) = \mu(C)$ and $\omega(D) = \omega(C)$, in particular, H is also a component of G - V(D). Since $N_G(H; w^+ \overrightarrow{C} u^- \cup u^+ \overrightarrow{C} v^-) = \emptyset$, it follows from the definition of D that u and v are distinct two vertices in D such that $N_G(u; H) \neq \emptyset$, $N_G(v; H) \neq \emptyset$, $|N_G(u; H) \cup N_G(v; H)| \geq 2$ and $N_G(H; u^+ \overrightarrow{D} v^-) = \emptyset$. Since $|V(u \overrightarrow{D} v)| > |V(u \overrightarrow{C} v)|$, this contradicts the choice (C3).

Figure 10: $G[\{x, u, u_1, u_2, v_1, v_1^+\}]$

Claim 8 For each k with $1 \le k \le s - 1$, $u_1 \overleftarrow{C} u_k$ is an insertible path of C.

Proof. We first show that $u_1 \overleftarrow{C} u_1$ (= u_1) is an insertible path of C. Since $(u^-u^{+2} =) u_1 u^{+2} \in E(G)$ and $|V(u\overrightarrow{C}v)| \geq 6$, there exists a vertex v_1 in $N_G(u_1; u^{+2}\overrightarrow{C}v^{-2})$. We choose v_1 so that $|V(v_1\overrightarrow{C}v^{-2})|$ is as small as possible. By Lemma 3 (ii), (iii) and the choice of v_1 , we have $v_1 \in V(u^{+2}\overrightarrow{C}v^{-3})$ and $N_G(u_1; v_1^+\overrightarrow{C}v^-) = \emptyset$. Suppose that $u_2v_1^+ \notin E(G)$. Let $x \in N_G(u; H)$. Since $N_G(H; w^+\overrightarrow{C}u^- \cup u^+\overrightarrow{C}v^-) = \emptyset$ and G is K_3 -free, we have $E(G) \cap \{xu_2, xu_1, xv_1, xv_1^+, u_2u, u_2v_1, uv_1\} = \emptyset$. Hence $G[\{x, u, u_1, u_2, v_1, v_1^+\}] \not\cong K_{1,3}^{**}$ yields that $uv_1^+ \in E(G)$ (see Figure 10).

Let $x' \in N_H(x)$. Recall that $v_1 \in V(u^{+2}\overrightarrow{C}v^{-3})$. By again the fact that $N_G(H; w^+\overrightarrow{C}u^- \cup u^+\overrightarrow{C}v^-) = \emptyset$ and G is K_3 -free, we have that $E(G) \cap \{xu_1, xv_1^+, xv_1^{+2}, x'u_1, x'u, x'v_1^+, x'v_1^{+2}, uv_1^{+2}\} = \emptyset$. This together with the fact that $N_G(u_1) \cap V(v_1^+\overrightarrow{C}v^-) = \emptyset$ implies that $G[\{x, x', u, u_1, v_1^+, v_1^{+2}\}] \cong K_{1,3}^{**}$, a contradiction. Thus $u_2v_1^+ \in E(G)$, and hence $u_1\overleftarrow{C}u_1$ is an insatiable path of C.

We next show that for k with $2 \le k \le s-1$, $u_1 \overleftarrow{C} u_k$ is an insertible path of C. Suppose that there exists an integer k with $2 \le k \le s-1$ such that $u_1 \overleftarrow{C} u_k$ is not an insertible path of C. We choose k so that k is as small as possible. Then $u_1 \overleftarrow{C} u_{k-1}$ is an insertible path of C. Since $u_1 \overleftarrow{C} u_{k-1}$ is an insertible path of C, there exist bridging vertices v_1, \ldots, v_{k-1} of $u_1 \overleftarrow{C} u_{k-1}$. Note that by Claim 6, $v_{k-1} \in V(u^{+2} \overrightarrow{C} v^{-3})$, and hence by the condition (I3) and again Claim 6, we have

$$N_G(u_i; v_i^+ \overrightarrow{C} v^-) = \emptyset \text{ for } 1 \le i \le k - 1.$$

$$(4.1)$$

Since $v_{k-1} \in V(u^{+2}\overrightarrow{C}v^{-3})$, and since $u_k v_{k-1}^+ \in E(G)$ by the condition (I2), there exists a vertex v_k in $N_G(u_k; v_{k-1}^+ \overrightarrow{C}v^{-2})$. We choose v_k so that $|V(v_k \overrightarrow{C}v^{-2})|$ is as small as possible. Then the choice of v_k implies that $N_G(u_k; v_k^+ \overrightarrow{C}v^{-2}) = \emptyset$ if $v_k \neq v^{-2}$. Therefore, since $u_1 \overleftarrow{C} u_{k-1}$ is an insertible path of C and $u_1 \overleftarrow{C} u_k$ is not an insertible path of C, we have

$$u_{k+1}v_k^+ \notin E(G). \tag{4.2}$$

Since $u_1 \overleftarrow{C} u_{k-1}$ is an insertible path of C, it follows from Claim 7 that

$$u_{k+1}u_{k-2} \notin E(G), \tag{4.3}$$

Figure 11: Claim 8

where $u_0 = u$. Since G is K_3 -free, we also have that

$$E(G) \cap \{u_{k+1}u_{k-1}, u_{k+1}v_k, u_ku_{k-2}, u_kv_k^+\} = \emptyset.$$
(4.4)

If $k \geq 3$, then by combining (4.1)–(4.4), we have $G[\{u_{k+1}, u_k, u_{k-1}, u_{k-2}, v_k, v_k^+\}] \cong K_{1,3}^{**}$, a contradiction (see the left of Figure 11). Thus k = 2. Then by (4.1)–(4.4), and since $G[\{u_3, u_2, u_1, u, v_2, v_2^+\}] \not\cong K_{1,3}^{**}$, we have $E(G) \cap \{uv_2, uv_2^+\} \neq \emptyset$ (see the right of Figure 11).

Let $x \in N_G(u; H)$ and $x' \in N_H(x)$. If $uv_2^+ \in E(G)$, then since $N_G(H; w^+\overrightarrow{C}u^- \cup u^+\overrightarrow{C}v^-) = \emptyset$, it follows from (4.1) and (4.4) that $G[\{x, x', u, u_1, u_2, v_2^+\}] \cong K_{1,3}^{**}$, a contradiction. Thus $uv_2^+ \notin E(G)$, and hence $uv_2 \in E(G)$. Then since $N_G(H; w^+\overrightarrow{C}u^- \cup u^+\overrightarrow{C}v^-) = \emptyset$, it follows from (4.1) and (4.4) that $G[\{x, x', u, u_1, v_2, v_2^+\}] \cong K_{1,3}^{**}$, a contradiction. \square

By Claim 8, $u_1 \overleftarrow{C} u_{s-1}$ is an insertible path of C. Let v_1, \ldots, v_{s-1} be bridging vertices of $u_1 \overleftarrow{C} u_{s-1}$. Note that $v_i \in V(u^{+3} \overrightarrow{C} v^{-2})$ for each i with $2 \leq i \leq s-1$. Let $x \in N_G(u; H)$ and $x' \in N_G(w; H)$ (if possible, choose $x' \neq x$), and let \overrightarrow{P} be an (x', x)-path in H. Recall that $\{u_1 u^{+2}, u_2 u^+\} \subseteq E(G)$. If s is even, then $D := wx' \overrightarrow{P} xuu^+ u_2 u_1 u^{+2} \overrightarrow{C} v_3 u_3 u_4 v_3^+ \overrightarrow{C} v_5 u_5 u_6 v_5^+ \overrightarrow{C} \ldots v_{s-1} u_{s-1} u_s v_{s-1}^+ \overrightarrow{C} w$ is a cycle in G such that $V(D) = V(C) \cup V(P)$, a contradiction. Thus s is odd. Let $D = wx' \overrightarrow{P} xuu_1 u^{+2} \overrightarrow{C} v_2 u_2 u_3 v_2^+ \overrightarrow{C} v_4 u_4 u_5 v_4^+ \overrightarrow{C} \ldots v_{s-1} u_{s-1} u_s v_{s-1}^+ \overrightarrow{C} w$. Then D is a cycle in G such that $V(D) = (V(C) \setminus \{u^+\}) \cup V(P)$. Hence by the maximality of |V(C)|, $V(P) = \{x\}$, in particular, $w \neq v$. Moreover, if there exists a vertex y in $N_G(u^+; G - V(C))$, then by Claim $3, yu^{+3} \in E(G)$, and hence $(D - \{u^{+2}u^{+3}\}) + \{u^+u^{+2}, yu^+, yu^{+3}\}$ is a longer cycle than C (note that by Lemma 3 (i), $y \notin V(H)$), a contradiction. Thus $N_G(u^+; G - V(C)) = \emptyset$. Therefore, u^+ is a component of G - V(D), and G - V(D) contains some components whose union is $H - \{x\}$. This implies that either $\mu(D) < \mu(C)$, or $\mu(D) = \mu(C)$ and $\omega(D) < \omega(C)$ holds, which contradicts the choice (C1) or (C2).

This completes the proof of Theorem 7. \Box

References

- [1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for Hamiltonicity, Ph.D. Thesis, Memphis State University, 1991.
- [2] H.J. Broersma, On some intriguing problems in hamiltonian graph theory a survey, Discrete Math. **251** (2002) 47–69.
- [3] H.J. Broersma, Z. Ryjáček and P. Vrána, How many conjectures can you stand? A survey, Graphs Combin. **28** (2012), 57–75.
- [4] H.J. Broersma, J. van den Heuvel, B. Jackson and H.J. Veldman, Hamiltonicity of regular 2-connected graphs. J. Graph Theory **22** (1996) 105–124.
- [5] H.J. Broersma and H.J. Veldman, Restrictions on induced subgraphs ensuring Hamiltonicity or pancyclicity of $K_{1,3}$ -free graphs, in: R. Bodendiek, ed., Contemporary Methods in Graph Theory (Mannheim, 1990) 181–194.
- [6] J. Brousek, Z. Ryjáček and O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs, Discrete Math. **196** (1999) 29–50.
- [7] R. Diestel, Graph Theory, Fourth edition. Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2010.
- [8] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the hamiltonian theme, The theory and applications of graphs, 297–316, Wiley, New York, 1981.
- [9] Y. Egawa, J. Fujisawa, S. Fujita and K. Ota, On 2-factors in r-connected $\{K_{1,k}, P_4\}$ -free graphs, Tokyo J. Math. **31** (2008) 415–420.
- [10] R.J. Faudree, R.J. Gould, Z. Ryjáček and I. Schiermeyer, Forbidden subgraphs and pancyclicity, Congr. Numer. 109 (1995) 13–32.
- [11] J.R. Faudree, R.J. Faudree and Z. Ryjáček, Forbidden subgraphs that imply 2-factors, Discrete Math. **308** (2008) 1571–1582.
- [12] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45–60.
- [13] H. Fleischner, Cycle decompositions, 2-coverings, removable cycles and the four-color disease, In: J.A. Bondy and U.S.R. Murty (eds.), Progress in Graph Theory, Academic Press, New York (1984) 233–246.

- [14] J. Fujisawa, Forbidden subgraphs for Hamiltonicity of 3-connected claw-free graphs, to appear in J. Graph Theory.
- [15] R.J. Gould, Advances on the Hamiltonian problem–a survey, Graphs Combin. 19 (2003), 7–52.
- [16] R.J. Gould and M.S. Jacobson, Forbidden subgraphs and Hamiltonian properties of graphs, Discrete Math. 42 (1982), 189–196.
- [17] H.J. Lai, L. Xiong, H. Yan and J. Yan, Every 3-connected claw-free Z_8 -free graph is Hamiltonian, J. Graph Theory **64** (2010) 1–11.
- [18] T. Luczak and F. Pfender, Claw-free 3-connected P_{11} -free graphs are Hamiltonian, J. Graph Theory 47 (2004) 111–121.
- [19] M.M. Matthews and D.P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984) 139–146.
- [20] S. Olariu, Paw-free graph, Inform. Process. Lett. 28 (1988) 53–54.
- [21] F. Pfender, Hamiltonicity and forbidden subgraphs in 4-connected graphs, J. Graph Theory 49 (2005) 262–272.
- [22] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224.
- [23] D. Seinsche, On a property of the class of n-colorable graphs, J. Combin. Theory Ser. B **16** (1974) 191–193.
- [24] T. Yamashita, A degree sum condition for longest cycles in 3-connected graphs, J. Graph Theory 54 (2007) 277–283.