Corso di Laurea in Informatica Algebra. a.a. 2023-24. Canale 1.

Compito a casa del 27/11/2023

Esercizio 3. Sia $V = \mathbb{R}^3$ e si considerino i vettori

$$\underline{v}_1 = \left| \begin{array}{c} 1 \\ 2 \\ 2 \end{array} \right|, \ \underline{v}_2 = \left| \begin{array}{c} 3 \\ 1 \\ -1 \end{array} \right|, \ \underline{v}_3 = \left| \begin{array}{c} -1 \\ -1 \\ 0 \end{array} \right|$$

Abbiamo visto nel compito del 20/11 che questi 3 vettori formano una base di \mathbb{R}^3 . Determinare le coordinate del vettore $\underline{e}_2 = (0, 1, 0)$ in questa nuova base di \mathbb{R}^3 .

Esercizio 2. Sia $V = \mathbb{R}^3$ e si consideri il sottoinsieme

$$W := \{ x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0 \}$$

Verificare che W è un sottospazio, trovarne la dimensione e determinarne una base.

Esercizio 3. Consideriamo $\mathcal{S}_{nn}(\mathbb{R})$ e $\mathcal{A}_{nn}(\mathbb{R})$ i sottospazi di $M_{nn}(\mathbb{R})$ costituiti rispettivamente dalle matrici simmetriche e antisimmetriche. Dimostrare che

$$M_{nn}(\mathbb{R}) = \mathcal{S}_{nn}(\mathbb{R}) \oplus \mathcal{A}_{nn}(\mathbb{R})$$

Suggerimento: per dimostrare che $M_{nn}(\mathbb{R}) = \mathcal{S}_{nn}(\mathbb{R}) + \mathcal{A}_{nn}(\mathbb{R})$ osservate che se $A \in M_{nn}(\mathbb{R})$ allora $A = \frac{A+A^t}{2} + \frac{A-A^t}{2}$.

Esercizio 4. Sia $V = \mathbb{R}^3$. Consideriamo i sottospazi

$$U = \{ \underline{x} \in \mathbb{R}^3 \mid x_1 - x_2 - x_3 = 0 \}, \quad W = \{ \underline{x} \in \mathbb{R}^3 \mid x_1 + 2x_2 + x_3 = 0 \}.$$

Decidere se $\mathbb{R}^3 = U \oplus V$. Decidere se $U + W = \mathbb{R}^3$.

Esercizio 5. Consideriamo i sottospazi $U = \{\underline{x} \in \mathbb{R}^3 \mid x_1 - x_2 - x_3 = 0\}$ e $W = \mathrm{Span}((1,1,1))$. Decidere se $\mathbb{R}^3 = U \oplus V$.

Esercizio 6. Sia $W \subset \mathbb{R}^4$ il sottospazio $W = \{\underline{x} \in \mathbb{R}^4 \mid x_1 + x_3 + x_4 = 0\}.$

6.1. Determinando una base di W, verificare che dim W=3.

6.2. Determinare un supplementare di W (e cioè un sottospazio U di \mathbb{R}^4 tale che $W \oplus U = \mathbb{R}^4$; determinare U vuol dire qui dare U tramite una sua base.)

Determinare un secondo supplementare di W, U', distinto da U.

Suggerimento per 6.2: Che dimensione ci aspettiamo per U?

Preambolo all'esercizio 7. Se U è un sottospazio di \mathbb{R}^n dato come insieme delle soluzioni di un sistema omogeneo $A\underline{x} = \underline{0}$ e se W è un secondo sottospazio di \mathbb{R}^n dato come insieme delle soluzioni di un sistema omogeneo $B\underline{x} = \underline{0}$, allora $U \cap W$, che sappiamo essere un sottospazio, è dato dalle soluzioni del sistema omogeneo

$$C\underline{x} = \underline{0} \text{ con } C = \begin{vmatrix} A \\ B \end{vmatrix}.$$

Esercizio 7. In \mathbb{R}^4 sono dati $U = \{ \underline{x} \in \mathbb{R}^4 \mid A\underline{x} = \underline{0} \}$, $W = \{ \underline{x} \in \mathbb{R}^4 \mid B\underline{x} = \underline{0} \}$ con $A = \left| \begin{array}{ccc} -2 & 1 & 1 & 0 \\ 0 & -1 & 0 & 4 \end{array} \right|$, $B = \left| \begin{array}{ccc} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \end{array} \right|$. Stabilire se $\mathbb{R}^4 = U \oplus W$.

Esercizio 8. Consideriamo l'applicazione lineare $L_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definita dalla matrice

$$A = \left| \begin{array}{ccc} 1 & 3 & -1 \\ 2 & 1 & -1 \\ 2 & -1 & 0 \end{array} \right|$$

Scrivere l'espressione di L_A : $L_A \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \dots$ Determinare l'immagine tramite L_A dei vettori della base

canonica. Stabilire se ${\cal L}_A$ è iniettiva.

Svolgere gli esercizi 5.2, 5.3, 5.7, 5.8 del libro di testo. $^{\rm 1}$

 $^{^1\}mathrm{Alcuni}$ esercizi del libro di testo hanno risposte/soluzioni alla fine del libro.