Fair Learning aid by Amplifying Bias

Rui Hu

Motivation

多偏见

- 模型会学习多偏见,例如微笑分类任务,受到性别和年龄两种偏见属性影响
- 根据两种偏见属性可以将每个类别分为4个 群体,当偏见属性发生改变时,群体准确 率下降

无偏见标签

• 偏见标签获取成本大

现有方法

多偏见

有监督方法可以直接适用多偏见场景,比如GroupDRO,但是需要偏见标签,并且由于核心群体(比如男性老人)的数量过少,去偏效果有限

无偏见标签(无监督)

- 现有的无监督方法大多分为两个步骤
 - 1, 获取伪偏见标签(重要)
 - 2, 利用伪偏见标签去偏

- 获取伪偏见标签主流有两种做法
 - 1,使用早停的ERM作为偏见模型,基于的是easy-to-learning假设
 - 2,使用GCE训练偏见模型,有工作提出GCE损失可以让模型放大偏见

现有伪偏见标签获取方法的缺点

- 获取伪偏见标签主流有两种做法
 - 1,使用早停的ERM作为偏见模型,基于的是easy-to-learning假设
 - 2,使用GCE训练偏见模型,有工作提出GCE损失可以让模型放大偏见
- 问题: 随着训练的进行,模型对训练集逐渐拟合,
 - 使用早停的话,会引入超参数,且不稳定
 - 偏见模型同步训练的话,找出的偏见冲突样本越来越少

- 基于重要程度的样本重加权
 - · 从标签角度看:强bias的bias冲突样本是最重要的,弱bias的bias冲突 样本是次重要的,偏见对齐样本重要性是最低的
 - 从预测角度看:每次epoch后错误的样本是比较重要的,因为错误样本很可能是偏见冲突的 -> 将错误样本降低权重,避免模型学习它

具体做法:每个样本初始权重为1, 每个epoch后, bias模型分类错误 样本权重减半

- 减少了偏见冲突样本的权重,使得不 被过拟合
- 变相增强了偏见对齐样本里面easyto-learn样本的权重, 使得偏见模型 更加集中学习偏见

重要性 = 1 / 样本权重

Method	Group avg acc	Worst group acc	Gender gap	Age gap	Avg bias
ERM	75.8	44.0	-38.4	-6.4	-22.4
JTT	76.6	39.2	-38.4	-10.0	-24.2
LfF	77.8	63.2	-21.6	-1.6	-11.6
JM1	66.5	50.4	-29.0	-0.6	-14.8
DebiAN	77.4	43.2	-39.2	-12.8	-26.0
BAR	78.1	52.8	-31.4	-11.0	-21.2
FaLA	77.1	63.2	-9.4	-3.0	-6.4

偏见放大模型效果

