Движение тела, брошенного под углом к горизонту с учётом сопротивления воздуха

$$k := 0.2$$
 $\alpha := 50$ ° $steps := 20$ $v_0 := 20$ $m := 1$ $g := 9.8$ appVersion(3) = "1.2.9018"

Вариант 1

$$D(t, u) := \operatorname{stack}\left(u_{3}, u_{4}, -k \cdot \frac{u_{3}}{m}, -g - k \cdot \frac{u_{4}}{m}\right)$$

$$u_{0} := \operatorname{stack}\left(0, 0, v_{0} \cdot \cos\left(\alpha\right), v_{0} \cdot \sin\left(\alpha\right)\right)$$

$$u := \operatorname{rkfixed}\left(u_{0}, 0, 3, steps, D\right)$$

"rkfixed(cmd)
rkfixed(ode,y(x),xmax)
rkfixed(ode,y(x),xmax,steps)
rkfixed(ics,xmin,xmax,steps,D(x,y))"

u [1..rows(u)][2]3]

Вариант 2 Clear (t, u, x(t), y(t), vx(t), vy(t)) = 1

$$x(0) = 0 \quad y(0) = 0$$

$$vx(0) = v_0 \cdot \cos(\alpha)$$

$$vy(0) = v_0 \cdot \sin(\alpha)$$

$$x'(t) = vx(t)$$

$$y'(t) = vy(t)$$

$$vx'(t) = -k \cdot \frac{vx(t)}{m}$$

$$vy'(t) = -g - k \cdot \frac{vy(t)}{m}$$

 $u := rkfixed \begin{cases} x(t) \\ y(t) \\ vx(t) \end{cases}, 3, steps$ vy(t)

 $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ $var2str \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = "mat(x(~t), y(~t), 2, 1)"$

Вариант 3 Clear
$$(t, u, x(t), y(t), vx(t), vy(t)) = 1$$

$$\begin{cases} x(0) = 0 & y(0) = 0 \\ x'(0) = v_0 \cdot \cos(\alpha) \\ y'(0) = v_0 \cdot \sin(\alpha) \\ x''(t) = -k \cdot \frac{x'(t)}{m} \\ y''(t) = -g - k \cdot \frac{y'(t)}{m} \end{cases}$$

$$u := rkfixed \begin{cases} x(t) \\ y(t) \end{cases}$$
, 3, steps

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

$$var2str \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = "mat(x(~t), y(~t), 2, 1)"$$

Вариант 4 Clear (t, u, x(t), y(t), vx(t), vy(t)) = 1

$$ode := \begin{cases} x(0) = 0 \\ y(0) = 0 \\ x'(0) = v_0 \cdot \cos(\alpha) \end{cases}$$

$$y'(0) = v_0 \cdot \sin(\alpha)$$

$$x''(t) = -\frac{k \cdot x'(t)}{m}$$

$$y''(t) = -\frac{g \cdot m + k \cdot y'(t)}{m}$$

 $u := \text{rkfixed} \left[ode, \begin{cases} x(t), \\ y(t), \end{cases}, steps \right]$

$$t := \operatorname{col}(u, 1)$$

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
 var2str $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ = "mat(x(~t),y(~t),2,1)"