2017-2018 CORRIGE CHIMIE 1 – IE3 : 40 points

Question	Réponse	
I – Structi	ure cristalline du fer austénitique <mark>(7 points)</mark>	
	$\rho = \frac{4 \times M(Fe)}{N_A \times a^3} \qquad \rho = 8,57 \text{ g.cm}^{-3}$	
1	$N_A \times a^3$	
	$2R(Fe) = \frac{a\sqrt{2}}{2}$ R(Fe) = 124,1 pm	
2	$C = \frac{4 \times \left(\frac{4}{3} \pi R^3\right)}{3} = 0.74$	
2	$C = \frac{7}{a^3} = 0,74$	
	4A ₃	
	3A ₄ 6 A ₂	
	6A ₂	
3	1,1,1,1,1	
	cubique	
	Sites O: 1 au centre du cube, 1 au centre de chaque arête	
	$N_O = 1 + 12 \times \frac{1}{4} = 4$ sites O parmaille	
4	т	
	Sites T: 1 au centre d'un cube d'arête a/2	
	$N_T = 8sitesT \ parmaille$	
5	$2R_o + 2R(Fe) = a \text{ donc } R_o = 51,4 pm$	
6	$R(C) > R_O$ done pas d'insertion possible sans	
	déformation	
7	2R(C) + 2R(Fe) = a' donc a' = 4,022 Å	
	On cherche la formule de l'acier sous la forme : FeC _y	
	$0,0133 = \frac{y \times M(C)}{y \times M(C) + M(Fe)} \Rightarrow y = 0,0627$	
	$y \times M(C) + M(Fe)$	
8	On en déduit que si 4 atomes de Fe par maille, 0,25	
	atomes de C par maille	
	$\rho = \frac{4 \times M(Fe) + 0.25 \times M(C)}{N_A \times a^{13}} \rightarrow \rho = 7.80 \ g. \ cm^{-3}$	
	$N_A \times a^{13}$	
II Carra	sion de l'asieu enstéritions (4 maints)	
11 - Corro	sion de l'acier austénitique (4 points)	
1	$Fe^{2+} + 2e - \leftrightarrows Fe$ $(Fe^{2+} + comban a widdo at PO = VII + Fe + comban midwite at PO = 0)$	
	(Fe ²⁺ : espèce oxydée et DO = +II ; Fe : espèce réduite et DO = 0) $4H^{+}_{(aq)} + O_2 + 4e - \leftrightarrows 2H_2O$	
_	$(O_2: espèce oxydée et DO(O) = 0;$	
2	H_2O : espèce réduite et $DO(O) = 0$,	
	$2 H^{+}_{(aq)} + 2 e^{-} \Longrightarrow H_2$	

	$(H^+: espèce oxydée et DO = +I ; H_2: espèce réduite et DO = 0)$				
3	$2\text{Fe} + 4 \text{ H}^{+}_{(aq)} + \text{O}_2 \rightarrow 2\text{H}_2\text{O} + 2 \text{ Fe}^{2+}$				
	$Fe + 2 H^{+}_{(aq)} \rightarrow Fe^{2+} + H_2$				
	$_{19}\text{K}: 1\text{s}^2\ 2\text{s}^2\ 2\text{p}^6\ 3\text{s}^2\ 3\text{p}^6\ 4\text{s}^1$				
	L'élément K forme des ions K ⁺ qui présentent la				
4	configuration électronique du gaz noble le plus proche				
	dans la Classification Périodique (sous-couches				
	totalement remplies)				
5	Θ				
· ·	C ≡N				
6	Solide neutre électriquement : 3 ions K^+ et 6 ions $CN^- \rightarrow$				
	un ion Fe ³⁺				
7	un ion K ⁺ , 6 ions CN ⁻ , un ion Fe ³⁺ et un ion Fe ²⁺				

III - Étude de la structure cristalline du bleu de Prusse (résolue par Ludi en 1970) (4,25 points)

	4(centres des faces)×6× $\frac{1}{2}$ +6(en propre à l'int érieur)+2(arête)×12× $\frac{1}{4}$ =24		
	Ceci correspond bien avec la formule.		
3	Coordinence de 6 dans les 2 cas		

IV : Rayons X (10,5 points)

	1									
1.	Fe 1	s^22s^22	p ⁶ 3s ² 3p	6 3d 6 4s 2						
					n	1	j			
	-	K	1s	K	1	0	1/2			
	-	L	2s	L_1	2	0	1/2			
		•	2p	L_2	2	1	1/2			
		•	2p	L_3	2	1	3/2			
	-	M	3s	M_1	3	0	1/2			
2.		•	3p	M_2	3	1	1/2			
2.		•	3p	M_3	3	1	3/2			
		•	3d	M_4	3	2	3/2			
		•	3d	M_5	3	2	5/2			
		N	4s	N_1	4	0	1/2			
3.	Diagramme de Grotrian (avec E en ordonnée, et représentation du niveau limite à l'\infty avec la valeur E = 0).									
3.	Levée de dégénérescence due au couplage spin-orbite de									
4.	l'électron (nombre quantique j) $\Delta l = \pm 1, \Delta j = 0 ; \pm 1$									
7.	$L_1M_2, L_1M_3, L_2M_1, L_2M_4, L_3M_1, L_3M_4, L_3M_5$									
	soit 7 raies									
5.	Pour provoquer l'émission de la raie K-L ₃ , il faut au									
	préalable arracher un électron de la couche K de l'élément (Fer et Potassium).									
	$E_{\'elec}$	trons =	= e U ≥	$ E_K(Fe) $	r)	U ≥ 7	112 V			
6.	$\lambda_{K-L_3} = \frac{12400}{\Delta E_{KL_3}}$									
				3 eV						
	ΔE_{KI}	(Fe)	= 640	3,9 Ev <i>7</i>	λ_{K-L_3}	Fer)= 1	l,936 Å			
7.	Utili	ser un	élémer	nt comm	e filtre	e				
	Justi	ficatio	n:							
		-	schéma	1						

V : La chimie de l'azote (5,75 points)

1	$1s^2 2s^2 2p^3$ Electrons de valence : $2s^2 2p^3$					
2	groupe : 15 période : 2					
3	alcalino-terreux : Be (1s ² 2s ²) halogène : F (1s ² 2s ² 2p ⁵)					
4.a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

	HNO ₃				
	$NO_{2} \qquad O \qquad $				
	NO_2^+ $\bigcirc = N=\bigcirc$				
	$NO_{2} \qquad $				
4.b)	NO ₃ et HNO ₃ : AX3 : Trigonal plan				
4.c)	NO ₂ $\alpha = 115 \circ (<120 \circ)$ NO ₂ $\alpha = 132 \circ (>120 \circ)$ NO ₂ $\alpha = 180 \circ$				

VI : Les colorants azoïques (8,5 points)

p-nitroaniline (1) < aniline (4.6) < p-anisidine (5.4) 1) Si on compare les formes basiques de l'aniline et le pnitroaniline, l'effet mésomère attracteur de la fonction Nitro rend cette base moins réactive que l'aniline car le doublet de l'azote peut se délocaliser plus loin, sur l'oxygène. La pnitroaniline est donc une base moins forte que l'aniline : pKa (nitroaniline) < pKa (aniline) 1. 2) Si on compare les formes acides de l'aniline et de la panisidine, l'effet mésomère donneur du groupement méthoxy stabilise cet acide. Or une base est d'autant plus forte que son acide conjugué est stabilisé donc la p-anisidine est une base plus forte que l'aniline : pKa (anisidine) > pKa (aniline). m(naphtol) = 3.9 g (2CS)2.a) m(rouge de para) th = 7.9 g**2.b**) rdt = 89% \rightarrow m(rouge de para) exp = 7.0 g2.c) Les atomes sont coplanaires Libre rotation autour de la liaison α impossible

2.d)	
	1. sp2
	2. sp2 3. sp3
	5. sp5
2.e)	N = N - N - N - N - N - N - N - N - N -
	liaison triple liaison double
	$d(N-N) \sim 1,10 \text{ Å}$ < $d(N-N) \sim 1,25 \text{ Å}$