Hugo Marquerie 20/02/2025

Desigualdad de Jensen

Proposición 1 (Desigualdad de Jensen). $Sea\ \varphi \colon \mathbb{R} \longrightarrow \mathbb{R} \ una \ función \ convexa \ y \ \varphi, \varphi(X) \in \mathcal{L}^1(\mu_X) \ con \ X \colon \Omega \longrightarrow \mathbb{R} \ una \ variable \ aleatoria \implies \varphi\left(\mathbb{E}\left[X\right]\right) \leq \mathbb{E}\left[\varphi(X)\right].$

Demostración: Vamos a asumir que $\varphi \in \mathcal{C}^1$. Sea A la recta tangente a φ en $t_0 = \mathbb{E}[X]$. Como φ es convexa, $\forall t \in \mathbb{R} : A(t) \leq \varphi(t)$.

$$\mathbb{E}[\varphi(X)] = \int_{\Omega} \varphi(X(\omega)) \, d\mathbb{P}(\omega) \ge \int_{\Omega} A(X(\omega)) \, d\mathbb{P}(\omega) = \mathbb{E}[A(X)]$$
$$= \mathbb{E}[aX + b] = a \, \mathbb{E}[X] + b = A(\mathbb{E}[X]) = A(t_0) = \varphi(t_0) = \varphi(\mathbb{E}[X]).$$

Luego
$$\mathbb{E}[\varphi(X)] \ge \varphi(\mathbb{E}[X])$$
.

Referenciado en

• Desigualdad-holder