§34. Лабораторная работа № 7.1 Интерполяция экспериментальных данных

Ц е л ь р а б о т ы: изучить задачу интерполяции функции, составленную по экспериментальным данным; уметь реализовывать методы Лагранжа, Бернштейна.

С о д е р ж а н и е р а б о т ы: на основании опытных данных построить функцию, и найти значение функции в точке, не являющейся узлом интерполяции

Пример реализации метода Лагранжа на Python

Пусть функция f(x) задана таблицей

х	X _O	χ_1	 χ_n
у	yo	<i>y</i> ₁	 y_n

Интерполяционным многочленом Лагранжа называется многочлен

$$P_n(x) = \sum_{i=1}^n y_i * \frac{(x - x_1)(x - x_2)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_1)(x_i - x_2)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$

Объявляем функцию для организации вычислений по формуле интерполяционного многочлена Лагранжа

3 а д а ч а. Написать программу для вычисления значений интерполяционного многочлена Лагранжа для функции, заданной таблицей

X	2	5	-6	7	4	3	8	9	1	-2
f(x)	-1	77	-297	249	33	9	389	573	-3	-21

Решение

```
import numpy as np
import matplotlib.pyplot as plt
x=np.array([2,5,-6,7,4,3,8,9,1,-2], dtype=float)
y=np.array([-1,77,-297,249,33,9,389,573,-3,-21], dtype=float)
def lagranz(x,y,t):
    z=0
    for j in range(len(y)):
        p1=1; p2=1
```

```
for i in range(len(x)):
    if i==j:
        p1=p1*1; p2=p2*1
    else:
        p1=p1*(t-x[i])
        p2=p2*(x[j]-x[i])
    z=z+y[j]*p1/p2
    return z
xnew=np.linspace(np.min(x),np.max(x),100)
ynew=[lagranz(x,y,i) for i in xnew]
plt.plot(x,y,'o',xnew,ynew)
plt.grid(True)
plt.show()
```

Результат:

У к а з ан и е: для построения графика использовалась библиотека matplotlib

Варианты заданий к лабораторной работе № 7

Варианты № 1 – № 5

1. Функция z=z(x,y) имеет непрерывные производные всех порядков. Требуется найти ее значение в точке (1.01, 4.87) по ее значениям, приведенным в нижеследующей таблице, и оценить погрешность полученного результата, считая, что все производные по x ограничены числом 5, а все производные по y ограничены числом 6:

$Y \setminus X$	0.35	0.70	1.05	1.40	1.75	2.10	2.45	2.80	3.15
4.15	3.87	4.17	8.65	3.19	4.65	4.98	7.12	6.65	3.76
4.30	4.75	3.76	2.19	5.34	4.65	2.14	4.54	3.33	6.54
4.45	5.43	4.24	5.43	4.33	5.33	3.54	5.34	4.32	3.43
4.60	6.33	3.33	2.43	4.54	5.34	5.34	4.54	5.43	4.43
4.75	5.43	4.43	4.54	3.43	5.32	5.34	6.54	4.54	5.54
4.90	4.54	3.54	4.76	3.76	5.65	4.54	5.76	7.54	3.54
5.05	5.76	7.54	5.76	3.23	4.34	3.54	3.23	5.76	3.43

2. В нижеприведенной таблице заданы точки некоторой гладкой поверхности z=z(x,y). Требуется построить полином Бернштейна, аппроксимирующий заданную поверхность, и оценить погрешность аппроксимации:

х	2.31	2.65	3.12	3.67	3.99	4.34	4.89	5.34	5.87	6.88	7.13	7.45	7.89	8.41	8.95
у	7.34	5.54	6.24	3.76	4.98	3.67	8.35	7.55	4.45	3.54	5.34	5.76	7.43	5.65	6.34
z	3.98	4.54	3.76	3.45	4.34	5.34	3.45	2.34	4.54	4.34	3.76	4.34	3.34	5.76	4.56

Варианты № 6 – № 10

1. Функция z=z(x,y) имеет непрерывные производные всех порядков. Требуется найти ее значение в точке (1.27, 4.87) по ее значениям, приведенным в нижеследующей таблице, и оценить погрешность полученного результата, считая, что все производные по x ограничены числом 2, а все производные по y ограничены числом 3:

$Y \setminus X$	0.45	0.60	0.75	0.90	1.05	1.20	1.35	1.50	1.65
4.15	3.87	4.17	8.65	3.19	4.65	4.98	7.12	6.65	3.76
4.40	4.75	3.76	2.19	5.34	4.65	2.14	4.54	3.33	6.54
4.65	5.43	4.24	5.43	4.33	5.33	3.54	5.34	4.32	3.43
4.90	6.33	3.33	2.43	4.54	5.34	5.34	4.54	5.43	4.43
5.15	5.43	4.43	4.54	3.43	5.32	5.34	6.54	4.54	5.54
5.40	4.54	3.54	4.76	3.76	5.65	4.54	5.76	7.54	3.54
5.65	5.76	7.54	5.76	3.23	4.34	3.54	3.23	5.76	3.43

2. В нижеприведенной таблице заданы точки некоторой гладкой поверхности z=z(x,y). Требуется построить полином Бернштейна, аппроксимирующий заданную поверхность, и оценить погрешность аппроксимации:

х	3.31	3.67	4.12	4.67	5.99	6.34	6.89	7.34	7.87	7.88	8.13	8.45	8.89	9.41	9.95
у	2.34	3.54	3.94	4.76	5.13	5.67	6.35	6.55	7.45	3.54	5.34	5.76	7.43	5.65	6.34
z	5.98	5.54	4.76	3.45	8.34	4.34	3.45	2.34	4.54	4.34	3.76	4.34	3.34	5.76	4.56

Варианты № 11 – № 15

1. Функция z=z(x, y) имеет непрерывные производные всех порядков. Требуется найти ее значение в точке (0.98, 8.28) по ее значениям, приведенным в нижеследующей таблице, и оценить погрешность полученного результата, считая, что все производные по x ограничены числом 4, а все производные по y ограничены числом 2:

$Y \setminus X$	0.35	0.55	0.75	0.95	1.15	1.35	1.55	1.75	1.95
7.15	7.87	4.17	8.65	3.19	4.65	5.98	7.12	6.65	3.76
7.45	4.75	3.76	2.19	5.34	4.65	6.14	7.54	3.33	6.54
7.75	5.43	4.24	5.43	4.83	5.33	3.54	5.34	4.32	3.43
8.05	6.33	3.33	5.43	4.54	5.84	5.34	4.54	5.43	4.54
4.43	8.35	5.43	4.43	9.54	3.43	5.32	8.34	6.54	7.54
5.54	8.65	4.54	3.54	4.76	3.76	7.65	4.54	5.76	3.23
3.54	8.95	5.76	7.54	5.96	3.23	5.76	4.34	3.54	3.43

2. В нижеприведенной таблице заданы точки некоторой гладкой поверхности z=z(x,y). Требуется построить полином Бернштейна, аппроксимирующий заданную поверхность, и оценить погрешность аппроксимации:

x	4.31	4.65	5.12	5.67	6.99	7.34	7.89	8.34	8.87	9.11	9.23	9.33	9.49	9.54	9.99
y	7.94	1.54	6.24	4.76	5.98	3.67	8.35	6.55	4.45	3.54	5.34	5.76	7.43	5.65	6.34
Z	4.98	7.54	3.76	7.45	7.34	5.34	3.45	4.34	3.54	4.34	7.76	6.34	5.34	5.76	4.56

Варианты № 16 – № 20

1. Функция z=z(x,y) имеет непрерывные производные всех порядков. Требуется найти ее значение в точке (5.81, 4.27) по ее значениям, приведенным в нижеследующей таблице, и оценить погрешность полученного результата, считая, что все производные по x ограничены числом 7, а все производные по y ограничены числом 8:

Y\X	5.45	5.60	5.75	5.90	6.05	6.20	6.35	6.50	6.65
3.15	8.87	9.17	4.65	4.19	7.65	7.98	1.12	2.65	3.43
3.76	5.65	4.54	5.76	7.54	2.76	3.40	9.75	3.76	2.19
5.34	4.65	2.14	3.23	4.54	3.33	6.54	3.65	6.43	4.24
5.43	6.33	5.33	3.54	3.54	3.23	5.76	5.34	4.32	3.43
3.90	3.33	3.33	2.43	6.54	5.34	5.34	4.54	7.54	5.43
4.43	4.15	9.43	4.43	5.32	4.54	3.43	2.54	3.54	5.76
4.65	3.54	5.34	6.54	4.54	5.54	4.40	6.76	4.34	4.76

2. В нижеприведенной таблице заданы точки некоторой гладкой поверх-ности z=z(x,y). Требуется построить полином Бернштейна, аппроксимирующий заданную поверхность, и оценить погрешность аппроксимации:

										6.88					
у	7.34	5.54	6.24	3.76	4.98	3.67	8.35	7.55	7.45	6.54	4.34	6.76	3.43	2.65	4.34
z	8.98	8.54	8.76	8.45	4.34	5.34	3.45	9.34	9.54	9.34	3.76	4.34	3.34	5.76	4.56

Варианты № 21 – № 25

1. Функция z=z(x,y) имеет непрерывные производные всех порядков. Требуется найти ее значение в точке (3.46, 4.97) по ее значениям, приведенным в нижеследующей таблице, и оценить погрешность полученного результата, считая, что все производные по x ограничены числом 1, а все производные по y ограничены числом 8:

Y∖X	2.40	2.80	3.20	3.60	4.00	4.40	4.80	5.20	5.60
4.21	9.87	4.17	8.65	3.19	9.65	4.98	7.12	6.65	3.76
4.42	4.75	8.76	2.19	5.34	4.65	8.14	4.54	3.33	6.54
4.63	5.43	4.24	7.43	4.33	5.33	3.54	7.34	4.32	3.43
4.84	6.33	3.33	2.43	6.54	5.34	5.34	4.54	6.43	4.43
5.05	5.43	4.43	4.54	3.43	5.32	5.34	6.54	4.54	5.54
5.26	4.54	3.54	4.76	3.76	5.65	4.54	5.76	4.54	3.54
5.47	5.76	7.54	5.76	3.23	4.34	3.54	3.23	5.76	3.43

2. В нижеприведенной таблице заданы точки некоторой гладкой поверхности z=z(x,y). Требуется построить полином Бернштейна, аппроксимирующий заданную поверхность, и оценить погрешность аппроксимации:

X	1.31	1.65	2.12	2.67	2.99	4.34	4.89	5.34	5.87	7.88	8.13	8.45	8.89	9.41	9.95
y	6.34	9.54	4.24	8.76	5.98	3.67	8.35	7.55	4.45	3.54	5.34	5.76	7.43	5.65	6.34
Z	3.98	4.54	3.76	3.45	4.34	5.34	3.45	2.34	4.54	6.34	8.76	3.34	9.34	8.76	8.56

Варианты № 26 – № 30

1. Функция z=z(x,y) имеет непрерывные производные всех порядков. Требуется найти ее значение в точке (1.01, 4.87) по ее значениям, приведенным в нижеследующей таблице, и оценить погрешность полученного результата, считая, что все производные по x ограничены числом 5, а все производные по y ограничены числом 6:

$Y \setminus X$	0.35	0.70	1.05	1.40	1.75	2.10	2.45	2.80	3.15
4.15	3.87	4.17	8.65	3.19	4.65	4.98	7.12	6.65	3.76
4.30	4.75	3.76	2.19	5.34	4.65	2.14	4.54	3.33	6.54
4.45	5.43	4.24	5.43	4.33	5.33	3.54	5.34	4.32	3.43
4.60	6.33	3.33	2.43	4.54	5.34	5.34	4.54	5.43	4.43
4.75	5.43	4.43	4.54	3.43	5.32	5.34	6.54	4.54	5.54
4.90	4.54	3.54	4.76	3.76	5.65	4.54	5.76	7.54	3.54
5.05	5.76	7.54	5.76	3.23	4.34	3.54	3.23	5.76	3.43

2. В нижеприведенной таблице заданы точки некоторой гладкой поверхности z=z(x,y). Требуется построить полином Бернштейна, аппроксимирующий заданную поверхность, и оценить погрешность аппроксимации:

X	4.31	4.65	5.12	5.67	6.99	7.34	7.89	8.34	8.87	9.11	9.23	9.33	9.49	9.54	9.99
у	7.94	1.54	6.24	4.76	5.98	3.67	8.35	6.55	4.45	3.54	5.34	5.76	7.43	5.65	6.34
Z	4.98	7.54	3.76	7.45	7.34	5.34	3.45	4.34	3.54	4.34	7.76	6.34	5.34	5.76	4.56