Unidad 5 – Introducción al Cálculo Integral

Recordemos

DEFINICIÓN

Decimos que *F* es una *primitiva* de *f* sobre el conjunto *I* si $F'(x) = f(x) \ \forall x \in I$.

OBSERVACIÓN

- Si F es una primitiva de f entonces F+c es una primitiva de f.
- Si $F \vee G$ son dos primitivas de f, entonces G F = c o bien $G(x) = F(x) + c \ \forall x \in I$.

DEFINICIÓN

Llamamos integral indefinida de una función f al conjunto de todas las primitivas de f, y la notamos $\int f(x)dx$.

$$\int\limits_{\text{indica la}\atop \text{variable de}\atop \text{integral}} \overline{f(x)} \frac{dx}{dx} = \underbrace{F(x) + c}_{\text{familia de funciones que}\atop \text{constituyen la integral}}$$

1.2 REGLA DE SUSTITUCIÓN

Por regla de la cadena, la derivada de la composición de dos funciones es

$$[f(g(x))]' = f'(g(x))g'(x) \Longrightarrow \int f'(g(x))g'(x) dx = f(g(x)) + c$$

De lo anterior, surge el siguiente:

1.2 REGLA DE SUSTITUCIÓN

Por regla de la cadena, la derivada de la composición de dos funciones es

$$[f(g(x))]' = f'(g(x))g'(x) \Longrightarrow \int f'(g(x))g'(x) dx = f(g(x)) + c$$

De lo anterior, surge el siguiente:

TEOREMA

(Método de sustitución o cambio de variable) Sea f continua en I. Sea g una función derivable con derivada continua en I tal que $\text{Im}(g) \subset I$. Entonces

$$\int f'(g(x))g'(x)dx = \int_{t=g(x)} \int f(t)dt$$

donde dt = g'(x)dx.

Consideremos $f(x) = e^x$ y $g(x) = \alpha x$, entonces la integral $\int e^{\alpha x} dx = \int f(g(x)) dx$.

3/14

$$\int e^{\alpha x} dx$$

Consideremos $f(x) = e^x$ y $g(x) = \alpha x$, entonces la integral $\int e^{\alpha x} dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable $t = g(x) = \alpha x$ y multiplicamos y dividimos por $g'(x) = \alpha$, tendremos que

3/14

Consideremos $f(x) = e^x$ y $g(x) = \alpha x$, entonces la integral $\int e^{\alpha x} dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable $t = g(x) = \alpha x$ y multiplicamos y dividimos por $g'(x) = \alpha$, tendremos que

$$\int e^{\alpha x} dx = \frac{1}{\alpha} \int e^{\alpha x} \frac{\alpha}{\alpha} dx = \frac{1}{\alpha} \int f(g(x)) \frac{g'(x)}{g'(x)} dx = \frac{1}{\alpha} \int f(t) dt =$$

Consideremos $f(x) = e^x$ y $g(x) = \alpha x$, entonces la integral $\int e^{\alpha x} dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable $t = g(x) = \alpha x$ y multiplicamos y dividimos por $g'(x) = \alpha$, tendremos que

$$\int e^{\alpha x} dx = \frac{1}{\alpha} \int e^{\alpha x} \frac{\alpha}{\alpha} dx = \frac{1}{\alpha} \int f(g(x)) \frac{g'(x)}{g'(x)} dx = \frac{1}{\alpha} \int f(t) dt = \frac{1}{\alpha} \int e^{t} dt = \frac{1}{\alpha} (e^{t} + c') \stackrel{t=\alpha x}{=} \frac{1}{\alpha} e^{\alpha x} + c$$

 $\int (4x-2)^2 dx$.

Consideramos $f(x) = x^2$ y g(x) = 4x - 2, entonces $\int (4x - 2)^2 dx = \int f(g(x)) dx$.

4/14

$$\int (4x-2)^2 dx$$
.

Consideramos
$$f(x) = x^2$$
 y $g(x) = 4x - 2$, entonces $\int (4x - 2)^2 dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 4x - 2 y multiplicamos y dividimos por g'(x) = 4, tendremos que

 $\int (4x-2)^2 dx$.

Consideramos $f(x) = x^2$ y g(x) = 4x - 2, entonces $\int (4x - 2)^2 dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 4x - 2 y multiplicamos y dividimos por g'(x) = 4, tendremos que

$$\int (4x-2)^2 dx = \frac{1}{4} \int (4x-2)^2 4 dx = \frac{t-4x-2}{dt-4dx} \cdot \frac{1}{4} \int f(t) dt =$$

 $\int (4x-2)^2 dx$.

Consideramos $f(x) = x^2$ y g(x) = 4x - 2, entonces $\int (4x - 2)^2 dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 4x - 2 y multiplicamos y dividimos por g'(x) = 4, tendremos que

$$\int (4x-2)^2 dx = \frac{1}{4} \int (4x-2)^2 4 dx = \frac{t-4x-2}{dt-4dx} \cdot \frac{1}{4} \int f(t) dt =$$

$$= \frac{1}{4} \int t^2 dt = \frac{1}{4} \left(\frac{t^3}{3} + c' \right)^{t = 4x - 2} \frac{(4x - 2)^3}{12} + c$$

Consideramos $f(x) = \cos x$ y g(x) = 3x, entonces $\int \cos(3x) dx = \int f(g(x)) dx$.

 $\int \cos(3x)dx$.

Consideramos $f(x) = \cos x$ y g(x) = 3x, entonces $\int \cos(3x) dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 3x y multiplicamos y dividimos por g'(x) = 3, tendremos que

5/14

 $\int \cos(3x)dx$.

Consideramos $f(x) = \cos x$ y g(x) = 3x, entonces $\int \cos(3x) dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 3x y multiplicamos y dividimos por g'(x) = 3, tendremos que

$$\int \cos(3x)dx = \frac{1}{3} \int \cos(3x) \frac{1}{3} dx = \frac{1}{3} \int f(t) dt = \frac{1$$

 $\int \cos(3x)dx$.

Consideramos $f(x) = \cos x$ y g(x) = 3x, entonces $\int \cos(3x) dx = \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 3x y multiplicamos y dividimos por g'(x) = 3, tendremos que

$$\int \cos(3x)dx = \frac{1}{3} \int \cos(3x) \frac{3}{3} \frac{dx}{dt} = \frac{1}{3} \int f(t) \frac{dt}{dt} = \frac{1}{3} \int f(t) \frac{dt}{dt}$$

$$= \frac{1}{3} \int \cos(t) \, dt = \frac{1}{3} (\sin t + c') \stackrel{t=3x}{=} \frac{1}{3} \sin(3x) + c$$

Observemos primero que $\int \frac{3}{1+4x^2} dx = 3 \int \frac{1}{1+(2x)^2} dx$, ahora consideramos $f(x) = \frac{1}{1+x^2}$ y g(x) = 2x, entonces la integral $\int \frac{3}{1+4x^2} dx = 3 \int f(g(x)) dx$.

Observemos primero que $\int \frac{3}{1+4x^2} dx = 3 \int \frac{1}{1+(2x)^2} dx$, ahora consideramos $f(x) = \frac{1}{1+x^2}$ y g(x) = 2x, entonces la integral $\int \frac{3}{1+4x^2} dx = 3 \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 2x y multiplicamos y dividimos por g'(x) = 2, tendremos que

Observemos primero que $\int \frac{3}{1+4x^2} dx = 3 \int \frac{1}{1+(2x)^2} dx$, ahora consideramos $f(x) = \frac{1}{1+x^2}$ y g(x) = 2x, entonces la integral $\int \frac{3}{1+4x^2} dx = 3 \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 2x y multiplicamos y dividimos por g'(x) = 2, tendremos que

$$\int \frac{3}{1+4x^2} dx = \frac{3}{2} \int \frac{1}{1+(2x)^2} \frac{2dx}{2dt} = \frac{3}{2} \int f(t) dt =$$

Observemos primero que $\int \frac{3}{1+4x^2} dx = 3 \int \frac{1}{1+(2x)^2} dx$, ahora consideramos $f(x) = \frac{1}{1+x^2}$ y g(x) = 2x, entonces la integral $\int \frac{3}{1+4x^2} dx = 3 \int f(g(x)) dx$.

Luego si hacemos el cambio de variable t = g(x) = 2x y multiplicamos y dividimos por g'(x) = 2, tendremos que

$$\int \frac{3}{1+4x^2} dx = \frac{3}{2} \int \frac{1}{1+(2x)^2} \frac{2dx}{dt = 2dx} = \frac{3}{2} \int f(t) dt =$$

$$= \frac{3}{2} \int \frac{1}{1+t^2} \frac{dt}{dt} = \frac{3}{2} \left(\arctan t + c' \right) \stackrel{t=2x}{=} \frac{3}{2} \arctan(2x) + c$$

1.3 INTEGRACIÓN POR PARTES

Por el álgebra de derivadas, la derivada del producto de dos funciones es

$$[f(x)g(x)]' = f(x)g'(x) + f'(x)g(x) \implies \int (f(x)g'(x) + f'(x)g(x)) dx = f(x)g(x) + c$$

De aquí surge el siguiente:

TEOREMA

(Integración por partes) Sean f y g derivables con derivada continua en I. Entonces

$$\int f(x) g'(x) dx = f(x)g(x) - \int f'(x) g(x) dx$$

- - $m=1,\,\alpha\in\mathbb{R}$, buscamos primitivas de $\int x\,e^{\alpha x}\,dx$.

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean
$$f(x)=x$$
 y $g'(x)=e^{\alpha x}$, entonces serán $f'(x)=1$ y g una primitiva de g' o sea $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean
$$f(x)=x$$
 y $g'(x)=e^{\alpha x}$, entonces serán $f'(x)=1$ y g una primitiva de g' o sea $g(x)=rac{1}{a}e^{\alpha x}$, luego

$$\int x e^{\alpha x} dx = \frac{1}{\alpha} x e^{\alpha x} - \frac{1}{\alpha} \int e^{\alpha x} dx = \frac{1}{\alpha} x e^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c$$

EJEMPLO

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean f(x)=x y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=1 y g una primitiva de g' o sea $g(x)=\frac{1}{a}e^{\alpha x}$, luego

$$\int xe^{\alpha x} dx = \frac{1}{\alpha}xe^{\alpha x} - \frac{1}{\alpha}\int e^{\alpha x} dx = \frac{1}{\alpha}xe^{\alpha x} - \frac{1}{\alpha^2}e^{\alpha x} + c$$

• m = 2, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x^2 e^{\alpha x} dx$.

EJEMPLO

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean f(x)=x y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=1 y g una primitiva de g' o sea $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

$$\int xe^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha} \int e^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c$$

• m = 2, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x^2 e^{\alpha x} dx$.

Sean $f(x)=x^2$ y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=2x y $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

EJEMPLO

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean f(x)=x y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=1 y g una primitiva de g' o sea $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

$$\int xe^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha} \int e^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c$$

• m = 2, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x^2 e^{\alpha x} dx$.

Sean
$$f(x) = x^2$$
 y $g'(x) = e^{\alpha x}$, entonces serán $f'(x) = 2x$ y $g(x) = \frac{1}{\alpha}e^{\alpha x}$, luego

$$\int x^2 e^{\alpha x} dx = \frac{1}{\alpha} x^2 e^{\alpha x} - \frac{1}{\alpha} \int 2x e^{\alpha x} dx = \frac{1}{\alpha} x^2 e^{\alpha x} - \frac{2}{\alpha} \int x e^{\alpha x} dx =$$

EJEMPLO

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean f(x)=x y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=1 y g una primitiva de g' o sea $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

$$\int xe^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha} \int e^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c$$

• m = 2, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x^2 e^{\alpha x} dx$.

Sean
$$f(x)=x^2$$
 y $g'(x)=e^{\alpha x}$, entonces serán $f'(x)=2x$ y $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego
$$\int x^2 e^{\alpha x} dx = \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{1}{\alpha}\int 2x e^{\alpha x} dx = \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{2}{\alpha}\int x e^{\alpha x} dx =$$

$$= \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{2}{\alpha}\left[\frac{1}{\alpha}x e^{\alpha x} - \frac{1}{\alpha^2}e^{\alpha x} + c'\right] = \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{2}{\alpha^2}x e^{\alpha x} + \frac{2}{\alpha^3}e^{\alpha x} + c$$

EJEMPLO

- - $m = 1, \alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean f(x)=x y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=1 y g una primitiva de g' o sea $g(x)=\frac{1}{a}e^{\alpha x}$, luego

$$\int xe^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha} \int e^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c$$

• m = 2, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x^2 e^{\alpha x} dx$.

Sean
$$f(x)=x^2$$
 y $g'(x)=e^{\alpha x}$, entonces serán $f'(x)=2x$ y $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

$$\int x^{2} e^{\alpha x} dx = \frac{1}{\alpha} x^{2} e^{\alpha x} - \frac{1}{\alpha} \int 2x e^{\alpha x} dx = \frac{1}{\alpha} x^{2} e^{\alpha x} - \frac{2}{\alpha} \int x e^{\alpha x} dx =$$

$$= \frac{1}{\alpha} x^{2} e^{\alpha x} - \frac{2}{\alpha} \left[\frac{1}{\alpha} x e^{\alpha x} - \frac{1}{\alpha^{2}} e^{\alpha x} + c' \right] = \frac{1}{\alpha} x^{2} e^{\alpha x} - \frac{2}{\alpha^{2}} x e^{\alpha x} + \frac{2}{\alpha^{3}} e^{\alpha x} + c$$

• $m=3,\, \alpha\in\mathbb{R},\, \mathrm{siendo}\, f(x)=x^3\,\, \mathrm{y}\,\, g'(x)=e^{\alpha x},\, \mathrm{ser\'{a}n}\, f'(x)=3x^2\,\, \mathrm{y}\,\, g(x)=\frac{1}{\alpha}e^{\alpha x},\, \mathrm{luego}$

EJEMPLO

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean f(x)=x y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=1 y g una primitiva de g' o sea $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

$$\int xe^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha} \int e^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c$$

• m = 2, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x^2 e^{\alpha x} dx$.

Sean
$$f(x)=x^2$$
 y $g'(x)=e^{\alpha x}$, entonces serán $f'(x)=2x$ y $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego
$$\int x^2 e^{\alpha x} dx = \frac{1}{\alpha} x^2 e^{\alpha x} - \frac{1}{\alpha} \int 2x e^{\alpha x} dx = \frac{1}{\alpha} x^2 e^{\alpha x} - \frac{2}{\alpha} \int x e^{\alpha x} dx =$$

$$= \frac{1}{\alpha} x^2 e^{\alpha x} - \frac{2}{\alpha} \left[\frac{1}{\alpha} x e^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c' \right] = \frac{1}{\alpha} x^2 e^{\alpha x} - \frac{2}{\alpha^2} x e^{\alpha x} + \frac{2}{\alpha^3} e^{\alpha x} + c$$

• $m=3,\, \alpha\in\mathbb{R},\, \mathrm{siendo}\, f(x)=x^3\,\, \mathrm{y}\,\, g'(x)=e^{\alpha x},\, \mathrm{ser\'{a}n}\, f'(x)=3x^2\,\, \mathrm{y}\,\, g(x)=\frac{1}{\alpha}e^{\alpha x},\, \mathrm{luego}$

$$\int x^3 e^{\alpha x} dx = \frac{1}{\alpha} x^3 e^{\alpha x} - \frac{1}{\alpha} \int 3x^2 e^{\alpha x} dx = \frac{1}{\alpha} x^3 e^{\alpha x} - \frac{3}{\alpha} \int x^2 e^{\alpha x} dx =$$

EJEMPLO

- - m = 1, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x e^{\alpha x} dx$.

Sean f(x)=x y $g'(x)=e^{\alpha x}$, entonces serán f'(x)=1 y g una primitiva de g' o sea $g(x)=rac{1}{\alpha}e^{\alpha x}$, luego

$$\int xe^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha} \int e^{\alpha x} dx = \frac{1}{\alpha} xe^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + c$$

• m = 2, $\alpha \in \mathbb{R}$, buscamos primitivas de $\int x^2 e^{\alpha x} dx$.

Sean
$$f(x)=x^2$$
 y $g'(x)=e^{\alpha x}$, entonces serán $f'(x)=2x$ y $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego
$$\int x^2 e^{\alpha x} dx = \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{1}{\alpha}\int 2x e^{\alpha x} dx = \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{2}{\alpha}\int x e^{\alpha x} dx =$$

$$= \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{2}{\alpha}\left[\frac{1}{\alpha}x e^{\alpha x} - \frac{1}{\alpha^2}e^{\alpha x} + c'\right] = \frac{1}{\alpha}x^2 e^{\alpha x} - \frac{2}{\alpha^2}x e^{\alpha x} + \frac{2}{\alpha^3}e^{\alpha x} + c$$

• $m=3, \, \alpha \in \mathbb{R}$, siendo $f(x)=x^3$ y $g'(x)=e^{\alpha x}$, serán $f'(x)=3x^2$ y $g(x)=\frac{1}{\alpha}e^{\alpha x}$, luego

$$\int x^3 e^{\alpha x} dx = \frac{1}{\alpha} x^3 e^{\alpha x} - \frac{1}{\alpha} \int 3x^2 e^{\alpha x} dx = \frac{1}{\alpha} x^3 e^{\alpha x} - \frac{3}{\alpha} \int x^2 e^{\alpha x} dx =$$

$$= \frac{1}{\alpha} x^3 e^{\alpha x} - \frac{3}{\alpha} \left[\frac{1}{\alpha} x^2 e^{\alpha x} - \frac{2}{\alpha^2} x e^{\alpha x} + \frac{2}{\alpha^3} e^{\alpha x} + c' \right] = \frac{1}{\alpha} x^3 e^{\alpha x} - \frac{3}{\alpha^2} x^2 e^{\alpha x} + \frac{6}{\alpha^3} x e^{\alpha x} - \frac{6}{\alpha^4} e^{\alpha x} + c$$

② $\int x^m \cos(\alpha x) dx$ ó $\int x^m \sin(\alpha x) dx$ donde $m \in \mathbb{N}$ y $\alpha \in \mathbb{R}$.

- ② $\int x^m \cos(\alpha x) dx$ ó $\int x^m \sin(\alpha x) dx$ donde $m \in \mathbb{N}$ y $\alpha \in \mathbb{R}$.
 - $m = 1, \alpha = 1.$

Para calcular la integral $\int x \cos x dx$, ponemos f(x) = x y $g'(x) = \cos x$, serán f'(x) = 1 y $g(x) = \sin x$, luego

$$\int x \cos x dx = x \sin x - \int \sin x dx = x \sin x + \cos x + c$$

- ② $\int x^m \cos(\alpha x) dx$ ó $\int x^m \sin(\alpha x) dx$ donde $m \in \mathbb{N}$ y $\alpha \in \mathbb{R}$.
 - $m = 1, \alpha = 1.$

Para calcular la integral $\int x \cos x dx$, ponemos f(x) = x y $g'(x) = \cos x$, serán f'(x) = 1 y $g(x) = \sin x$, luego

$$\int x \cos x dx = x \sin x - \int \sin x dx = x \sin x + \cos x + c$$

y para la integral $\int x \sin x dx$, ponemos f(x)=x y $g'(x)=\sin x$, serán f'(x)=1 y $g(x)=-\cos x$, luego

$$\int x \sin x dx = -x \cos x + \int \cos x dx = -x \cos x + \sin x + c$$

EIEMPLO

- ② $\int x^m \cos(\alpha x) dx$ ó $\int x^m \sin(\alpha x) dx$ donde $m \in \mathbb{N}$ y $\alpha \in \mathbb{R}$.
 - $m = 1, \alpha = 1.$

Para calcular la integral $\int x \cos x dx$, ponemos f(x) = x y $g'(x) = \cos x$, serán f'(x) = 1 $y g(x) = \sin x$, luego

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + c$$

y para la integral $\int x \sin x dx$, ponemos f(x) = x y $g'(x) = \sin x$, serán f'(x) = 1 y $g(x) = -\cos x$, luego

$$\int x \sin x dx = -x \cos x + \int \cos x dx = -x \cos x + \sin x + c$$

• $m = 2, \alpha = 1.$

Para la integral $\int x^2 \cos x dx$, ponemos $f(x) = x^2$ y $g'(x) = \cos x$, serán f'(x) = 2x y $g(x) = \sin x$, luego

$$\int x^2 \cos x \, dx = x^2 \sin x - \int 2x \sin x \, dx = x^2 \sin x - 2 \int x \sin x \, dx =$$

② $\int x^m \cos(\alpha x) dx$ ó $\int x^m \sin(\alpha x) dx$ donde $m \in \mathbb{N}$ y $\alpha \in \mathbb{R}$.

• $m=1, \alpha=1$. Para calcular la integral $\int x \cos x dx$, ponemos f(x)=x y $g'(x)=\cos x$, serán f'(x)=1 y $g(x)=\sin x$, luego

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + c$$

y para la integral $\int x \sin x dx$, ponemos f(x)=x y $g'(x)=\sin x$, serán f'(x)=1 y $g(x)=-\cos x$, luego

$$\int x \sin x dx = -x \cos x + \int \cos x dx = -x \cos x + \sin x + c$$

• $m = 2, \alpha = 1.$

Para la integral $\int x^2 \cos x dx$, ponemos $f(x) = x^2$ y $g'(x) = \cos x$, serán f'(x) = 2x y $g(x) = \sin x$, luego

$$\int x^2 \cos x \, dx = x^2 \sin x - \int 2x \sin x \, dx = x^2 \sin x - 2 \int x \sin x \, dx =$$

$$= x^2 \sin x - 2(-x \cos x + \sin x + c') = x^2 \sin x + 2x \cos x - 2 \sin x + c$$

- $∫ sin(αx)e^{βx}dx$ ó $∫ cos(αx)e^{βx}dx$ donde α,β ∈ ℝ.
 - $\alpha=1,$ $\beta=1,$ para calcular $\int\sin x\,e^x\,dx,$ ponemos $f(x)=\sin x$ y $g'(x)=e^x,$ serán $f'(x)=\cos x$ y $g(x)=e^x,$ luego

- $∫ \sin(\alpha x) e^{\beta x} dx$ ó $∫ \cos(\alpha x) e^{\beta x} dx$ donde α, β ∈ ℝ.
 - $\alpha=1,$ $\beta=1$, para calcular $\int\sin x\,e^x\,dx$, ponemos $f(x)=\sin x$ y $g'(x)=e^x$, serán $f'(x)=\cos x$ y $g(x)=e^x$, luego

$$\int \sin x e^x dx = \sin x e^x - \int \cos x e^x dx =$$

- $\int \sin(\alpha x) e^{\beta x} dx$ ó $\int \cos(\alpha x) e^{\beta x} dx$ donde $\alpha, \beta \in \mathbb{R}$.
 - $\alpha=1,$ $\beta=1,$ para calcular $\int\sin x\,e^x\,dx,$ ponemos $f(x)=\sin x$ y $g'(x)=e^x,$ serán $f'(x)=\cos x$ y $g(x)=e^x,$ luego

$$\int \sin x e^x dx = \sin x e^x - \int \cos x e^x dx =$$

ahora, consideramos $f(x) = \cos x$ y $g'(x) = e^x$, serán $f'(x) = -\sin x$ y $g(x) = e^x$, luego

- - $\alpha=1$, $\beta=1$, para calcular $\int\sin xe^x\,dx$, ponemos $f(x)=\sin x$ y $g'(x)=e^x$, serán $f'(x)=\cos x$ y $g(x)=e^x$, luego

$$\int \sin x e^x dx = \sin x e^x - \int \cos x e^x dx =$$

ahora, consideramos $f(x)=\cos x$ y $g'(x)=e^x$, serán $f'(x)=-\sin x$ y $g(x)=e^x$, luego $=\sin x e^x-\left[\cos x e^x-\int (-\sin x)\,e^x\,dx\right]$

- - $\alpha=1, \beta=1$, para calcular $\int \sin x e^x dx$, ponemos $f(x)=\sin x$ y $g'(x)=e^x$, serán $f'(x)=\cos x$ y $g(x)=e^x$, luego

$$\int \sin x e^x dx = \sin x e^x - \int \cos x e^x dx =$$

ahora, consideramos $f(x) = \cos x$ y $g'(x) = e^x$, serán $f'(x) = -\sin x$ y $g(x) = e^x$, luego

$$= \sin x e^x - \left[\cos x e^x - \int (-\sin x) e^x dx\right]$$

Es decir que

$$\int \sin x e^x dx = \sin x e^x - \cos x e^x - \int \sin x e^x dx$$

- - $\alpha=1, \beta=1$, para calcular $\int \sin x e^x dx$, ponemos $f(x)=\sin x$ y $g'(x)=e^x$, serán $f'(x)=\cos x$ y $g(x)=e^x$, luego

$$\int \sin x e^x dx = \sin x e^x - \int \cos x e^x dx =$$

ahora, consideramos $f(x) = \cos x$ y $g'(x) = e^x$, serán $f'(x) = -\sin x$ y $g(x) = e^x$, luego

$$= \sin x e^x - \left[\cos x e^x - \int (-\sin x) e^x dx\right]$$

Es decir que

$$\int \sin x e^x dx = \sin x e^x - \cos x e^x - \int \sin x e^x dx$$

y por lo tanto

$$2\int \sin x e^x dx = \sin x e^x - \cos x e^x + c' \implies \int \sin x e^x dx = \frac{e^x}{2} (\sin x - \cos x) + c$$

- - $\alpha = 0, \beta = 1,$

- - $\alpha=0, \beta=1$, para la integral $\int \ln x \, dx$, ponemos $f(x)=\ln x$ y g'(x)=1, serán $f'(x)=\frac{1}{x}$ y g(x)=x, luego

- - $\alpha=0, \beta=1$, para la integral $\int \ln x \, dx$, ponemos $f(x)=\ln x$ y g'(x)=1, serán $f'(x)=\frac{1}{x}$ y g(x)=x, luego

$$\int \ln x \, dx = \int \ln x \cdot 1 \, dx = \ln x \cdot x - \int \frac{1}{x} x \, dx = x \ln x - x + c$$

- - $\alpha=0,\,\beta=1,$ para la integral $\int \ln x \, dx$, ponemos $f(x)=\ln x$ y g'(x)=1, serán $f'(x)=\frac{1}{x}$ y g(x)=x, luego

$$\int \ln x \, dx = \int \ln x \cdot 1 \, dx = \ln x \cdot x - \int \frac{1}{x} x \, dx = x \ln x - x + c$$

• $\alpha \neq -1, \beta \neq 0$,

- - $\alpha=0,$ $\beta=1,$ para la integral $\int \ln x \, dx$, ponemos $f(x)=\ln x$ y g'(x)=1, serán $f'(x)=\frac{1}{x}$ y g(x)=x, luego

$$\int \ln x \, dx = \int \ln x \cdot 1 \, dx = \ln x \cdot x - \int \frac{1}{x} x \, dx = x \ln x - x + c$$

• $\alpha \neq -1$, $\beta \neq 0$, para la integral $\int x^{\alpha} \ln(\beta x) dx$, ponemos $f(x) = \ln(\beta x)$ y $g'(x) = x^{\alpha}$, serán $f'(x) = \frac{1}{\beta x} \beta$ y $g(x) = \frac{x^{\alpha+1}}{\alpha+1}$, luego

- - $\alpha=0,$ $\beta=1,$ para la integral $\int \ln x \, dx$, ponemos $f(x)=\ln x$ y g'(x)=1, serán $f'(x)=\frac{1}{x}$ y g(x)=x, luego

$$\int \ln x \, dx = \int \ln x \cdot 1 \, dx = \ln x \cdot x - \int \frac{1}{x} x \, dx = x \ln x - x + c$$

• $\alpha \neq -1$, $\beta \neq 0$, para la integral $\int x^{\alpha} \ln(\beta x) dx$, ponemos $f(x) = \ln(\beta x)$ y $g'(x) = x^{\alpha}$, serán $f'(x) = \frac{1}{\beta x} \beta$ y $g(x) = \frac{x^{\alpha+1}}{\alpha+1}$, luego

$$\int \ln(\beta x) x^{\alpha} dx = \ln(\beta x) \frac{x^{\alpha+1}}{\alpha+1} - \int \frac{1}{x} \frac{x^{\alpha+1}}{\alpha+1} dx =$$

- - $\alpha=0,$ $\beta=1,$ para la integral $\int \ln x \, dx$, ponemos $f(x)=\ln x$ y g'(x)=1, serán $f'(x)=\frac{1}{x}$ y g(x)=x, luego

$$\int \ln x \, dx = \int \ln x \cdot 1 \, dx = \ln x \cdot x - \int \frac{1}{x} x \, dx = x \ln x - x + c$$

• $\alpha \neq -1$, $\beta \neq 0$, para la integral $\int x^{\alpha} \ln(\beta x) dx$, ponemos $f(x) = \ln(\beta x)$ y $g'(x) = x^{\alpha}$, serán $f'(x) = \frac{1}{\beta x} \beta$ y $g(x) = \frac{x^{\alpha+1}}{\alpha+1}$, luego

$$\int \ln(\beta x) x^{\alpha} dx = \ln(\beta x) \frac{x^{\alpha+1}}{\alpha+1} - \int \frac{1}{x} \frac{x^{\alpha+1}}{\alpha+1} dx =$$

$$= \frac{x^{\alpha+1}}{\alpha+1}\ln(\beta x) - \int \frac{x^{\alpha}}{\alpha+1} dx = \frac{x^{\alpha+1}}{\alpha+1}\ln(\beta x) - \frac{x^{\alpha+1}}{(\alpha+1)^2} + c$$

• $\int (4x-2)\sin x \, dx$. Consideramos f(x)=4x-2 y $g'(x)=\sin x$, entonces serán f'(x)=4 y $g(x)=-\cos x$. Luego

$$\int (4x-2)\sin x \, dx = (4x-2)(-\cos x) - \int 4(-\cos x) \, dx = -(4x-2)\cos x + 4\sin x + c$$

 $\ \, \int (4x-2)\sin x\,dx.$ Consideramos f(x)=4x-2 y $g'(x)=\sin x$, entonces serán f'(x)=4 y $g(x)=-\cos x.$ Luego

$$\int (4x-2)\sin x \, dx = (4x-2)(-\cos x) - \int 4(-\cos x) \, dx = -(4x-2)\cos x + 4\sin x + c$$

② $\int \cos x \sin x dx$. Consideramos $f(x) = \cos x$ y $g'(x) = \sin x$, entonces serán $f'(x) = -\sin x$ y $g(x) = -\cos x$. Luego

$$\int \cos x \sin x \, dx = \cos x (-\cos x) - \int (-\sin x)(-\cos x) \, dx = -\cos^2 x - \int \sin x \cos x \, dx + c'$$

luego

$$2\int \cos x \sin x dx = -\cos^2 x + c' \Rightarrow \int \cos x \sin x dx = -\frac{1}{2}\cos^2 x + c$$

 $\int e^x(x^2-5x+3)dx$.

Observemos primero que tanto la derivada como una primitiva de la función e^x es también e^x , luego para calcular $\int e^x(x^2-5x+3)dx$ podemos (por propiedad conmutativa del producto) considerar $f(x)=x^2-5x+3$ (que es la función que tenemos que derivar) y $g'(x)=e^x$ (que es la función que tenemos que integrar); entonces f'(x)=2x-5 y $g(x)=e^x$, luego la integral

 $\int e^x(x^2-5x+3)dx$.

Observemos primero que tanto la derivada como una primitiva de la función e^x es también e^x , luego para calcular $\int e^x(x^2-5x+3)dx$ podemos (por propiedad conmutativa del producto) considerar $f(x)=x^2-5x+3$ (que es la función que tenemos que derivar) y $g'(x)=e^x$ (que es la función que tenemos que integrar); entonces f'(x)=2x-5 y $g(x)=e^x$, luego la integral

$$\int e^x (x^2 - 5x + 3) dx = \int (x^2 - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5) e^x dx =$$

$$= (x^2 - 5x + 3) e^x - 2 \int x e^x dx + 5 \int e^x dx = (x^2 - 5x + 3) e^x + 5 e^x - 2 \underbrace{\int x e^x dx \dots (**)}_{A}$$

 $\int e^x(x^2-5x+3)dx.$

Observemos primero que tanto la derivada como una primitiva de la función e^x es también e^x , luego para calcular $\int e^x(x^2-5x+3)dx$ podemos (por propiedad conmutativa del producto) considerar $f(x)=x^2-5x+3$ (que es la función que tenemos que derivar) y $g'(x)=e^x$ (que es la función que tenemos que integrar); entonces f'(x)=2x-5 y $g(x)=e^x$, luego la integral

$$\int e^x (x^2 - 5x + 3) dx = \int (x^2 - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x - \int (2x - 5x + 3) e^x dx = (x^2 - 5x + 3) e^x + (x^2 - 5x + 3)$$

$$= (x^2 - 5x + 3)e^x - 2\int xe^x dx + 5\int e^x dx = (x^2 - 5x + 3)e^x + 5e^x - 2\underbrace{\int xe^x dx}_{A}(**)$$

Nos resta aún calcular $A=\int xe^xdx$, considerando ahora f(x)=x y $g'(x)=e^x$, siendo f'(x)=1 y $g(x)=e^x$ nuevamente aplicando partes, tendremos que

$$A = \int xe^{x} dx = xe^{x} - \int 1e^{x} dx = xe^{x} - e^{x} + c'$$

Volviendo a (**) tendremos

$$\int e^x (x^2 - 5x + 3) dx = (x^2 - 5x + 3)e^x + 5e^x - 2(xe^x - e^x + c') = (x^2 - 5x + 8)e^x - 2xe^x + 2e^x + c$$

O sea,

$$\int e^x (x^2 - 5x + 3) dx = e^x (x^2 - 7x + 10) + c$$