第四章 三角函数

§ 4.1 角、弧度及三角函数的概念

4.1.1 相关概念及公式

学习目标

- 1、理解角、弧度、象限角的概念
- 2、理解三角函数(正弦、余弦和正切)的定义及相关运算。
- 3、掌握特殊角的三角函数值。
- 4、掌握诱导公式

1. 角的概念

- (1) 以 Ox 轴为始边,反时针方向旋转所成的角叫<mark>正角、顺时针方向旋转的角叫负角、不旋转所成的角为零角。例如,图中的 $\alpha=240^\circ$, $\beta=-150^\circ$ 。</mark>
- (2) 终边位于第几象限,就称该角为第几象限的角,简称**象限角**。终边在坐标轴上的角称为**轴线角**。
 - (3) 一般地,与角 α 终边相同的角可写成 $\alpha+k\cdot360^{\circ}(k\in \mathbb{Z})$.

由上面对角的定义,我们有如下结论

- (1) 终边落在x轴上的角的集合 $\{\beta \mid \beta = k \cdot 180^\circ, k \in Z\}$;
- (2) 终边落在 y 轴上的角的集合 $\{\beta \mid \beta = k \cdot 180^{\circ} + 90^{\circ}, k \in \mathbb{Z}\}$
- (3) 终边落在坐标轴上的角的集合可以表示为 $\{\beta \mid \beta = k \cdot 90^\circ, k \in Z\}$

2. 弧度

在初中,我们学过角度制,规定周角的 $\frac{1}{360}$ 为 1° 。下面我们规定:长度等于半径的弧所对的圆心角叫做 1 弧度的角,记为1rad ,并规定正角的弧度数为<u>正数</u>,负角的弧度数为<u>负数</u>,零角的弧度数为零,在不至引起混淆的情况下,弧度的单位可以省略,比如1rad = 1,2.4 rad = 2.4 等等。

很明显,圆心角 α ,弧长l和圆半径r之间的关系为: $|\alpha| = \frac{l}{r}$

(1) 弧度与角度的换算:
$$360^{\circ} = 2\pi$$
 弧度; $180^{\circ} = \pi$ 弧度; $1^{\circ} = \frac{\pi}{180} (rad)$, $1(rad) = \frac{180^{\circ}}{\pi}$

(2) 弧长公式: $l = |\alpha|r$

(3) 扇形面积公式:
$$S = \frac{1}{2} lr = \frac{1}{2} |\alpha| r^2$$

3. 任意角的三角函数

在初中,我们用直角三角形定义了锐角三角函数,比如图一中的直角 $\triangle ABC$,相关边长如图 所示,则有

$$\sin A = \frac{y}{r}$$
, $\cos A = \frac{x}{r}$, $\tan A = \frac{y}{x}$; $\sin B = \frac{x}{r}$, $\cos B = \frac{y}{r}$, $\tan B = \frac{x}{y}$;

显然我们有 $\sin A = \cos B$,这是因为 $B = \frac{\pi}{2} - A$;

事实上,上面的定义可以作如下推广,同时,对任意的角 α ,我们都有

$$\sin(\frac{\pi}{2} - \alpha) = \cos \alpha, \cos(\frac{\pi}{2} - \alpha) = \sin \alpha$$
 (公式一)

设 α 是一个任意角,在角 α 的终边上任取一点P(x,y)(异于原点),它到原点的距离记为r(r>0),利用相似三角形的性质:不难发现 $\frac{y}{r},\frac{x}{r},\frac{y}{x}$ 三个分数的值不受P点位置的影响,

我们分别称其为角 α 的正弦、余弦和正切,分别用 $\sin \alpha$, $\cos \alpha$, $\tan \alpha$ 表示,即:

 $\sin \alpha = \frac{y}{r}, \cos \alpha = \frac{x}{r}, \tan \alpha = \frac{y}{x}$ 显然,它们都是以角为<u>自变量</u>,以比值为<u>函数值</u>的函数.

这里的 α 为锐角,事实上,上面的定义也适用于 α 为钝角的情况,如图三;

此外,对于轴线角,只要上面的定义有意义(分母不为0),仍然适用。

很明显,按照上面的定义,我们不难发现:

- (1) $\sin \alpha$ 、 $\cos \alpha$ 的定义域均为R;
- (2) $\tan \alpha$ 的定义域为: $\alpha \neq k\pi + \frac{\pi}{2} (k \in \mathbb{Z})$.

从三角函数的定义知:随着角 α 的变化,角 α 的正、余弦和正切与r没有半毛钱关系,只随 α 终边上的点 P(x,y) 的纵、横坐标 x,y 而变化,因此,不妨令 r 为常数。

$$\sin \alpha = \frac{y}{r}$$
, $\cos \alpha = \frac{x}{r}$, $\tan \alpha = \frac{y}{x}$

当 α 为第一象限角时,随着 α 的增大,y 增大, 从而 $\sin \alpha$ 增大,也即 $\sin \alpha$ 在第一象限是 增函数;

同样的分析知: $\cos \alpha$ 在第一象限为减函数; $\tan \alpha$ 在第一象限为增函数。

进一步,会发现:

 $\sin \alpha$ 在一、四象限递增;在二、三象限递减;

 $\cos \alpha$ 在一、二象限递减;在三、四象限递增;

4. 特殊角的三角函数值。

按照三角函数的定义,并结合几个特殊的直角三角形模型,我们不难得到下面几个特殊角的三角函数值

α (度)	30°	45°	60°	90°	120°	135°	150°
α (弧度)	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$
$\sin \alpha$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
$\cos \alpha$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
$\tan \alpha$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	无意义	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$

从上面的定义,我们不难发现:

(1) 对任意角
$$\alpha$$
 , 都有 $\sin^2\alpha + \cos^2\alpha = \frac{x^2 + y^2}{r^2} = 1$, 同时,如果 $x \neq 0$, 也即 $\cos\alpha \neq 0$ 时,有 $\tan\alpha = \frac{\sin\alpha}{\cos\alpha}$ 。

(2) $\sin \alpha$ 、 $\tan \alpha$ 均为奇函数, $\cos \alpha$ 是偶函数

事实上,如图,令 P(x,y) 为 α 的终边 OA 上任意一点(异于原点),因 $-\alpha$ 的终边 OA' 与 OA 关于 x 轴对称,故 P'(x,-y) 在 $-\alpha$ 的终边 OA' 上,且 OP = OP' = r ,由三角函数的定义知 $\sin \alpha = \frac{y}{r}, \cos \alpha = \frac{x}{r}, \tan \alpha = \frac{y}{x}$; $\sin(-\alpha) = -\frac{y}{r}, \cos(-\alpha) = \frac{x}{r}, \tan(-\alpha) = -\frac{y}{x}$,即

$$\sin(-\alpha) = -\sin \alpha$$

 $\cos(-\alpha) = \cos \alpha$ (公式二)
 $\tan(-\alpha) = -\tan \alpha$

(3) 结合角的定义和三角函数的定义,我们不难得到

$$\sin(2k\pi + \alpha) = \sin \alpha$$
, $(k \in Z)$
 $\cos(2k\pi + \alpha) = \cos \alpha$, $(k \in Z)$ (公式三)
 $\tan(2k\pi + \alpha) = \tan \alpha$, $(k \in Z)$

(4) 参看下图,如果角 α 和 β 的终边关于y轴对称,设P'(x,y)为 α 终边上的点,则P(-x,y)为 β 终边上的点,且 $\beta=\pi-\alpha$,于是我们到(公式四)

$$\sin(\pi - \alpha) = \sin \alpha$$

 $\cos(\pi - \alpha) = -\cos \alpha$ (公式四)
 $\tan(\pi - \alpha) = -\tan \alpha$

(5) **参看下图**,若角 α 和 β 的终边关于原点对称,设P(x,y)为 α 终边上的点,则P'(-x,-y)为 β 终边上的点,且 $\beta=\pi+\alpha$,于是我们到下面的(公式五)

$$\sin(\pi + \alpha) = -\sin\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

(公式五)

$$\tan(\pi + \alpha) = \tan \alpha$$

利用这些公式,以及 $\sin \alpha$ 是奇函数, $\cos \alpha$ 是偶函数的事实,我们有

$$\sin(\frac{\pi}{2} + \alpha) = \sin(\frac{\pi}{2} - (-\alpha)) = \cos(-\alpha) = \cos \alpha$$

$$\cos(\frac{\pi}{2} + \alpha) = \cos(\frac{\pi}{2} - (-\alpha)) = \sin(-\alpha) = -\sin\alpha$$

因此, 我们得到如下的(公式六)

$$\sin(\frac{\pi}{2} + \alpha) = \cos \alpha$$

$$\cos(\frac{\pi}{2} + \alpha) = -\sin \alpha$$
(公式六)

公式一到六均称为**诱导公式。**

4.1.2 典型例题

例1.如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为()

【解析】如图,设半径为r,则AD=1, $\angle AOD=0.5$

$$\pm AD = AO \sin \angle AOD \Rightarrow 1 = r \sin 0.5 \Rightarrow r = \frac{1}{\sin 0.5}$$

故,1弧度的圆心角所对的弧长为 $l = \theta r = 1 \times \frac{1}{\sin 0.5} = \frac{1}{\sin 0.5}$,选 A。

例 2.已知半径为 10 的圆 O中,弦 AB 的长为 10.

- (1)求弦 AB 所对的圆心角 α 的大小;
- (2)求 α 所在的扇形的弧长l 及弧所在的弓形的面积S

【解析】(1)由 $\odot O$ 的半径r=10=AB,知 $\triangle AOB$ 是等边三角形, $\alpha=\angle AOB=\frac{\pi}{3}$

(2)由(1)可知
$$\alpha = \frac{\pi}{3}$$
, $r = 10$, ∴弧长 $l = \alpha r = \frac{\pi}{3} \times 10 = \frac{10\pi}{3}$,

所以,
$$S_{\text{扇形}} = \frac{1}{2}lr = \frac{1}{2} \times \frac{10\pi}{3} \times 10 = \frac{50\pi}{3}$$

丽
$$S_{\triangle AOB} = \frac{\sqrt{3}}{4} \times 10^2 = 25\sqrt{3}$$
,故 $S_{\stackrel{?}{=}\cancel{10}} = S_{\stackrel{?}{\cancel{10}}\cancel{10}} - S_{\triangle AOB} = \frac{50\pi}{3} - 25\sqrt{3}$

例 3.已知扇形周长为 40, 当它的半径和圆心角取何值时, 才使扇形面积最大?

【解析】设圆心角是 θ , 半径是r, 则, $2r+r\theta=40$

$$S = \frac{1}{2}lr = \frac{1}{2}\theta r \cdot r = \frac{1}{2}r(40 - 2r) = r(20 - r) \le (\frac{20}{2})^2 = 100$$

当且仅当r=20-r,即r=10时, $S_{max}=100$

:: 当 $r=10,\theta=2$ 时,扇形面积最大,

即半径为10,圆心角为2弧度时,扇形面积最大.

【注意】本题中,我们用到了如下的基本不等式: $ab \le (\frac{a+b}{2})^2$

例 4. 角 α 与角 β 的终边互为反向延长线,则().

A.
$$\alpha = -\beta$$

B.
$$\alpha = 180^{\circ} + \beta$$

C.
$$\alpha = k \cdot 360^{\circ} + \beta(k \in \mathbb{Z})$$

D.
$$\alpha = k \cdot 360^{\circ} \pm 180^{\circ} + \beta(k \in \mathbb{Z})$$

【解析】角 α 与角 β 的终边互为反向延长线,则从基础角 $[0^{\circ},360^{\circ}]$ 范围来看, α 与 β 相差 180° ,故 $\alpha - \beta = k \cdot 360^{\circ} \pm 180^{\circ} (k \in \mathbb{Z})$, $\therefore \alpha = k \cdot 360^{\circ} \pm 180^{\circ} + \beta (k \in \mathbb{Z})$

例 5 (1) 点 $A(\sin 2011^\circ, \cos 2011^\circ)$ 在直角坐标平面上位于().

- A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限
- (2) 已知角 α 是第二象限角,试确定 2α , $\frac{\alpha}{2}$ 所在的象限.

【解析】(1) $2011^{\circ} = 5 \times 360^{\circ} + (180^{\circ} + 31^{\circ})$, $\therefore \sin 2011^{\circ} = \sin(180^{\circ} + 31^{\circ}) = -\sin 31^{\circ} < 0$ $\cos 2011^{\circ} = \cos(180^{\circ} + 31^{\circ}) = -\cos 31^{\circ} < 0$,

 \therefore 点A位于第三象限.

(2)
$$:: \alpha$$
 是第二象限角, $:: k \cdot 360^{\circ} + 90^{\circ} < \alpha < k \cdot 360^{\circ} + 180^{\circ}, k \in \mathbb{Z}$

$$\therefore 2k \cdot 360^{\circ} + 180^{\circ} < 2\alpha < 2k \cdot 360^{\circ} + 360^{\circ}, k \in \mathbb{Z}$$

 $\therefore 2\alpha$ 是第三、第四象限角或角的终边在 y 轴非正半轴上.

$$\exists k \cdot 180^{\circ} + 45^{\circ} < \frac{\alpha}{2} < k \cdot 180^{\circ} + 90^{\circ}, k \in \mathbb{Z} ,$$

故,当 $k = 2m(m \in \mathbb{Z})$ 时, $m \cdot 360^{\circ} + 45^{\circ} < \frac{\alpha}{2} < m \cdot 360^{\circ} + 90^{\circ}$, $\frac{\alpha}{2}$ 为第一象限角。

当 $k = 2m + 1 (m \in \mathbb{Z})$ 时, $m \cdot 360^{\circ} + 225^{\circ} < \frac{\alpha}{2} < m \cdot 360^{\circ} + 270^{\circ}$, $\frac{\alpha}{2}$ 为第三象限角。

例 6.下面 4 项:① $\sin(-1000^0)$;② $\cos(-2200^0)$;③ $\tan(-10)$;④ $(\sin\frac{7\pi}{10}\cos\pi)/\tan\frac{17\pi}{9}$ 。 其中符号为负的有(

A. (1)

B. (2)

C. (3)

D. (4)

【解析】注意角 α 与 α +n×360°(或 α +n×2 π)终边相同,其中n \in Z 。

 -1000° 与 -1000° + $3\times360^{\circ}$ = 80° 终边相同,为第一象限角,正弦为正

 -2200° 与 $-2200^{\circ}+6\times360^{\circ}=-40^{\circ}$ 终边相同,为第四象限角,余弦为正。

-10与 $-10+4\pi\in(\frac{\pi}{2},\pi)$ 终边相同,为第二象限角,正切为负。

 $\frac{7\pi}{10}$ 在第二象限; $\frac{17\pi}{9}$ 与 $-2\pi + \frac{17\pi}{9} = -\frac{\pi}{9}$ 终边相同,为第四象限角,其正切为负,而

 $\cos \pi = -1$

综上,选C。

例7、下列与 $\frac{9\pi}{4}$ 的终边相同的角的表达式中正确的是().

A. $2k\pi + 45^{\circ} (k \in \mathbb{Z})$

B. $k \cdot 360^{\circ} + \frac{9\pi}{4} (k \in \mathbb{Z})$

C. $k \cdot 360^{\circ} - 315^{\circ} (k \in \mathbb{Z})$ D. $k\pi + \frac{5\pi}{4} (k \in \mathbb{Z})$

【解析】与 $\frac{9\pi}{4}$ 的终边相同的角可以写成 $2k\pi + \frac{9\pi}{4}(k \in \mathbb{Z})$,但是角度制与弧度制不能混 用,所以只有答案 C 正确。

例 8 (1) 若 α 是第四象限的角,则 $\pi - \alpha$ 是(

A.第一象限的角

B.第二象限的角

C.第三象限的角 D.第四象限的角

(2) 已知 α 是第二象限角, $\tan \alpha = -\frac{1}{2}$,则 $\cos \alpha =$ _____.

【解析】(1) 由题意知 $2k\pi - \frac{\pi}{2} < \alpha < 2k\pi \Rightarrow -2k\pi < -\alpha < -2k\pi + \frac{\pi}{2}$

 $\Rightarrow \pi - 2k\pi < \pi - \alpha < -2k\pi + \frac{3\pi}{2}$ 属于第三象限

(2) 由题意及
$$\tan \alpha = -\frac{1}{2}$$
,可令 $y = 1, x = -2$,则 $r = \sqrt{5}$,故 $\cos \alpha = \frac{x}{r} = -\frac{2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$

例 9.设
$$\alpha$$
 角属于第二象限,且 $\left|\cos\frac{\alpha}{2}\right| = -\cos\frac{\alpha}{2}$,则 $\frac{\alpha}{2}$ 角属于()

A. 第一象限

B. 第二象限

C. 第三象限 D. 第四象限

【解析】:
$$\alpha$$
 角属于第二象限 $\frac{\pi}{2} + 2k\pi < \alpha < 2k\pi + \pi \Rightarrow \frac{\pi}{4} + k\pi < \frac{\alpha}{2} < k\pi + \frac{\pi}{2}$

易知: $\frac{\alpha}{2}$ 位于第一、三象限。

考虑到
$$\left|\cos\frac{\alpha}{2}\right| = -\cos\frac{\alpha}{2}$$
,知 $\cos\frac{\alpha}{2} \le 0$,故 $\frac{\alpha}{2}$ 角属于第三象限,选 C。

例 10.写出终边在直线 $y = \sqrt{3}x$ 上的角的集合;

【解析】特别注意:题目只说了终边在直线 $y = \sqrt{3}x$ 上,由于直线没有方向,所以如图所 示,终边可以是射线OA,也可以是射线OB,二终边在直线 $y = \sqrt{3}x$ 上的角的集合为

$$\left\{\alpha \mid \alpha = k\pi + \frac{\pi}{3}, k \in Z\right\}$$

例 11. 若角 θ 的终边与 $\frac{6\pi}{7}$ 角的终边相同,求在 $[0,2\pi)$ 内终边与 $\frac{\theta}{3}$ 角的终边相同的角;

【解析】
$$\theta = \frac{6\pi}{7} + 2k\pi(k \in \mathbb{Z})$$
 , $\theta = \frac{2\pi}{7} + \frac{2k\pi}{3}(k \in \mathbb{Z})$ 。

依題意得
$$0 \le \frac{2\pi}{7} + \frac{2k\pi}{3} < 2\pi \Rightarrow -\frac{3}{7} \le k < \frac{18}{7} (k \in \mathbb{Z})$$

$$\therefore k=0,1,2$$
 ,即在 $[0,2\pi)$ 内终边与 $\frac{\theta}{3}$ 相同的角为 $\frac{2\pi}{7},\frac{20\pi}{21},\frac{34\pi}{21}$ 。

例 12 (1) 已知
$$\sin \alpha = m$$
, ($|m| < 1$), $\frac{\pi}{2} < \alpha < \pi$, 那么 $\tan \alpha = ($).

A.
$$\frac{m}{\sqrt{1-m^2}}$$

B.
$$-\frac{m}{\sqrt{1-m^2}}$$

$$C. \pm \frac{m}{\sqrt{1-m^2}}$$

A.
$$\frac{m}{\sqrt{1-m^2}}$$
 B. $-\frac{m}{\sqrt{1-m^2}}$ C. $\pm \frac{m}{\sqrt{1-m^2}}$ D. $\pm \frac{\sqrt{1-m^2}}{m}$

(2) 已知角 α 的终边过点(-1,2),则 $\cos \alpha$ 的值为().

A.
$$-\frac{\sqrt{5}}{5}$$
 B. $\frac{2\sqrt{5}}{5}$

B.
$$\frac{2\sqrt{5}}{5}$$

C.
$$-\frac{2\sqrt{5}}{5}$$

D.
$$-\frac{1}{2}$$

【解析】(1) 由题意知 α 在第二象限,故 $\sin \alpha > 0$,从而知 m > 0

又因 α 在第二象限,故 $\tan \alpha < 0$,只能选B。

(2) 由三角函数的定义可知,
$$r = \sqrt{5}$$
 , $\cos \alpha = \frac{x}{r} = \frac{-1}{\sqrt{5}} = -\frac{\sqrt{5}}{5}$

例 13 (1) 已知角 θ 的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角 θ 终边上一

点,且
$$\sin \theta = -\frac{2\sqrt{5}}{5}$$
,则 $y =$ _____

(2) 已知角 θ 的终边经过点 $P(-\sqrt{3},m)(m \neq 0)$ 且 $\sin \theta = \frac{\sqrt{2}}{4}m$,试判断角 θ 所在的象 限, 并求 $\cos \theta$ 和 $\tan \theta$ 的值.

【解析】(1) 根据正弦值为负数且不为-1,判断角在第三、四象限,再加上横坐标为正,断 定该角为第四象限角,

∴
$$y < 0$$
, $\sin \theta = \frac{y}{\sqrt{16 + y^2}} = -\frac{2\sqrt{5}}{5}$, $\alpha = -8$.

(2) 由题意得,
$$r = \sqrt{3 + m^2}$$
, $\therefore \frac{m}{\sqrt{3 + m^2}} = \frac{\sqrt{2}}{4}m$;

$$\therefore m \neq 0$$
, $\therefore m = \pm \sqrt{5}$

当 $m = \sqrt{5}$ 时, $r = 2\sqrt{2}$,点P的坐标为 $(-\sqrt{3},\sqrt{5})$,故 θ 是第二象限角,

$$\therefore \cos \theta = \frac{x}{r} = \frac{-\sqrt{3}}{2\sqrt{2}} = -\frac{\sqrt{6}}{4} , \quad \tan \theta = \frac{y}{x} = \frac{\sqrt{5}}{-\sqrt{3}} = -\frac{\sqrt{15}}{3}$$

当 $m = -\sqrt{5}$ 时, $r = 2\sqrt{2}$,点 P 的坐标为 $(-\sqrt{3}, -\sqrt{5})$,故 θ 是第三象限角.

$$\therefore \cos \theta = \frac{x}{r} = \frac{-\sqrt{3}}{2\sqrt{2}} = -\frac{\sqrt{6}}{4} , \quad \tan \theta = \frac{y}{x} = \frac{-\sqrt{5}}{-\sqrt{3}} = \frac{\sqrt{15}}{3} .$$

例 14.已知角 α 终边经过点 $P(x,-\sqrt{2})(x\neq 0)$,且 $\cos\alpha=\frac{\sqrt{3}}{6}x$,求 $\sin\alpha$, $\tan\alpha$ 的值.

【解析】
$$:: P(x, -\sqrt{2})(x \neq 0)$$
, $:: P$ 到原点的距离 $r = \sqrt{x^2 + 2}$,

又
$$\cos \alpha = \frac{\sqrt{3}}{6} x$$
, $\therefore \cos \alpha = \frac{x}{\sqrt{x^2 + 2}} = \frac{\sqrt{3}}{6} x$, 解得: $x = \pm \sqrt{10}$, $r = 2\sqrt{3}$.

当
$$x = \sqrt{10}$$
 时, P 点坐标为 ($\sqrt{10}$, $-\sqrt{2}$) , 故 $\sin \alpha = -\frac{\sqrt{6}}{6}$, $\tan \alpha = -\frac{\sqrt{5}}{5}$;

当
$$x = -\sqrt{10}$$
 时, P 点坐标为 $(-\sqrt{10}, -\sqrt{2})$,故 $\sin \alpha = -\frac{\sqrt{6}}{6}$, $\tan \alpha = \frac{\sqrt{5}}{5}$

例 15. 已知 $\tan \alpha = \sqrt{3}$, $\pi < \alpha < \frac{3\pi}{2}$, 那么 $\cos \alpha - \sin \alpha$ 的值是(

A.
$$-\frac{1+\sqrt{3}}{2}$$
 B. $\frac{-1+\sqrt{3}}{2}$ C. $\frac{1-\sqrt{3}}{2}$ D. $\frac{1+\sqrt{3}}{2}$

B.
$$\frac{-1+\sqrt{3}}{2}$$

C.
$$\frac{1-\sqrt{3}}{2}$$

D.
$$\frac{1+\sqrt{3}}{2}$$

【解析】因 α 在第三象限,从而由 $\tan \alpha = \sqrt{3}$ 知 $\alpha = 240^{\circ}$,故

 $\cos \alpha - \sin \alpha = \cos 240^{\circ} - \sin 240^{\circ} = \cos(180^{\circ} + 60^{\circ}) - \sin(180^{\circ} + 60^{\circ})$

=
$$-\cos 60^{\circ} + \sin 60^{\circ} = -\frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{-1 + \sqrt{3}}{2}$$
, $\& B_{\circ}$

例 16.函数 $f(x) = \lg(\sin^2 x - \cos^2 x)$ 的定义域是(

$$A.\left\{x\left|2k\pi - \frac{3\pi}{4} < x < 2k\pi + \frac{\pi}{4}, k \in Z\right.\right\} \qquad B.\left\{x\left|2k\pi + \frac{\pi}{4} < x < 2k\pi + \frac{5\pi}{4}, k \in Z\right.\right\}$$

$$C.\left\{x\left|k\pi - \frac{\pi}{4} < x < k\pi + \frac{\pi}{4}, k \in Z\right.\right\} \qquad D.\left\{x\left|k\pi + \frac{\pi}{4} < x < k\pi + \frac{3\pi}{4}, k \in Z\right.\right\}$$

【解析】由 $\sin^2 x - \cos^2 x > 0$ 知| $\sin x$ |>| $\cos x$ |,故 $k\pi + \frac{\pi}{4} < x < k\pi + \frac{3\pi}{4} (k \in \mathbb{Z})$,选 D.

【巧解】取k=0,只有 D 选项 $\left\{x \middle| \frac{\pi}{4} < x < \frac{3\pi}{4} \right\}$ 合适,故选 D.

例 17.若关于 x 的函数 $f(x) = \frac{tx^2 + 2x + t^2 + x^2 \sin x}{x^2 + t} (t > 0)$ 的最大值为 M ,最小值为 N ,

且M+N=4,则实数t的值为()

C. 3

【解析】: $f(x) = \frac{t(x^2+t)+2x+x^2\sin x}{x^2+t} = t + \frac{2x+x^2\sin x}{x^2+t}$, 因 $\frac{2x+x^2\sin x}{x^2+t}$ 为奇函数,故

f(x) 图像关于点(0,t) 中心对称,故M+N=2t,从而t=2,选B。