Machine Learning Foundations

Chapter 6: Probability

Harish Guruprasad Ramaswamy
IIT Madras

Outline for Chapter 6: Probability

6.1 : Discrete Random Variables

- 6.2 : Continuous Random Variables
- 6.3 : Maximum Likelihood and other advanced topics

Outline for Chapter 6: Probability

6.1 : Discrete Random Variables

- 1. Probability space
- 2. Conditioning
- 3. Random variables
- 4. Expectation and Variance
- 5. Multiple Random Variables
- 6. Bernoulli, Binomial, Poisson and Geometric RVs
- 6.2 : Continuous Random Variables
- 6.3 : Maximum Likelihood and other advanced topics

Joint Distributions

$$X, y: SZ \rightarrow R$$

$$f_{XY}(x,y): P(X=x, Y=y)$$

$$: P(Sw6SZ: X/w)=x^{3} \cap Sw6SZ: Y(w): y^{3})$$

$$f_{XY}(x,y): P(X \leq x, Y \leq y)$$

DDTE, P(A)= 1A 36

= Absolute Value of difference 1/36 2/36 1/36 2/36 136 1/36 2/36 3 36 2/36 1/36 0 0 1/36 136 2/36

X : Result of first die

Marginal and Conditional Distributions

$$f_{\chi}(\chi) = P(\chi = \chi)$$

$$= U P(\chi = \chi, \gamma = y)$$

$$= \int_{\chi} f_{\chi \chi}(\chi, y)$$

DOTE

X: First face

DOTE

Y: Abs dift								
conditional: fxly (x/y)								
XX	0	1	2	3	4	5		
1	1/6	1/10	1/8	1/4	1/4	1/2		
2	1/6	2/10	1/8	1/6	1/4	0		
3	1/6	2/10	2/8	1/6	0	0		
4	1/6	2/10	2/8	1/4	0	0		
5	1/6	2/10	1/8	1/6	1/6	0		
6	1/6	1/10	Y	1/6	1/4	1/2		
	1	1	(()		

X: First face

£ f (x/g) x x/y -1

DDTE

X: First face<math>Y: Abs aiftConditional $f_{Y|X}(y|X)$

XX	0	1	2	3	4	5	
I							J
2							1
3							1
4							(
5							1
6							1

Independent Random Variables

$$X, Y: SZ \rightarrow R$$

$$f_{XY}(X,Y): f_{X}(X) \cdot f_{Y}(Y)$$

$$\iiint_{X} f_{X}(X) \cdot f_{Y}(Y) \cdot f_{Y}(Y)$$

$$E[g(x)h(y)] = E[g(x)] \cdot E[h(x)]$$

Independent Random Variables

$$\begin{split}
& \left[g(x) h(y) \right] \stackrel{!}{=} \left[\left[g(x) h(y) \right] \stackrel{!}{=} \left[\left[f(x) f_{x}(y) g(x) h(y) \right] \right] \\
& = \left[\left[f(x) f_{x}(y) g(x) h(y) \right] \\
& = \left[f(x) g(x) \right] \cdot \left[f(y) \right] \\
& = \left[f(y) \right] \cdot \left[f(y) \right]
\end{split}$$

DDTE

XX	0	1	2	3	4	5	f_{χ}
1	γ 36	1/36	36	36	36	36	γ_{b}
2	1/36	2/36	1/36	1/36	36	0	1/6
3	1/36	2/36	2/36	1/36	0	0	1/8
4	1/26	3/36	2/36	1/36	D	Э	4
5	1/26	2/36	7/36	1/36	1/36	0	1/6
6	1/36	1/36	36	36	1/36	36	6
f	6 36	<u>10</u> 36	8 36	$\frac{6}{36}$	4 36	2 36	

X: First face Y: Abs difference.

NOT

Independent.

Sum of Random Variables

$$X, Y: SZ \rightarrow IR$$
 are independent

 $Z = X + Y$
 $f_{Z}(g) = P(Z = g)$
 $f_{Z}(g) = P(X = X, Y = g - X)$
 $f_{Z}(g) = f_{X}(g)$
 $f_{Z}(g) = f_{X}(g)$
 $f_{Z}(g) = f_{X}(g)$

Conditional Expectation

$$X: SZ \rightarrow R$$
 $A \subseteq SZ$
 $E[XIA] defined$.

 $Y: SZ \rightarrow IR$
 $E[XIY] can be viewed as a function of $Y$$

Y: first die
$$E[X/Y] = Y+3.5$$

X: Sum of Diethrow

Covariance

$$X, Y: \Sigma \to \mathbb{R}$$
 $COV[X,Y] = E[(X-EX)(Y-EY)]$
 $COV[X,X] = Var[X]$
 $COV[X,Y] = 0 \iff X,Y \text{ are uncorrelated.}$

Covariance

$$cov [x,y] = E[(x-Ex)(y-Ey)]$$

$$= E[xy - (Ex)y - x \cdot Ey + Ex \cdot Ey]$$

DCTE:
$$52 = \xi HH, HT, TH, TTJ$$
 $X = \int (first foss is Heads)$
 $Y = \int (second foss is fails)$
 $f_{X}(x) = \xi \frac{1}{2} \quad \text{if } x = 0$
 $f_{X}(x) = \xi \frac{1}{2} \quad \text{if } x = 1$
 $f_{Y}(y) = \xi \frac{1}{2} \quad \text{if } y = 0$
 $f_{XY}(x,y) = \xi \frac{1}{2} \quad \text{if } y = 0$
 $f_{XY}(x,y) = \xi \frac{1}{2} \quad \text{if } y = 0$

$$X, Y = COV[X,Y] = D$$

But NOT Independent.

 $X = V_{1} = V_{2} = V_{3}$
 $X = V_{3} = V_{4} = V_{4}$
 $X = V_{4}$