Sequential Circuit

Flip Flops / Memory Components

Ver. 3

Professor: Yang Peng

Topics

- 1-Bit Memory Devices
 - Latches (event-driven devices)
 - SR Latch
 - JK Latch
 - D Latch
 - Flip-Flops (clock-driven devices)
 - JK Flip-Flop
 - D Flip-Flop

Burger Ch 4 and 5.

Null Ch 3.

Combinational vs. Sequential Circuit

Combinational

No state and time

Sequential

- Maintaining states
- States transiting along time with inputs and the current states

Asynchronous vs. Synchronous Logic

Event-driven (Asynchronous)

- States and outputs change with random events.
- 1-bit memory device: Latch
 - SR Latch
 - D Latch

Clock-driven (Synchronous)

- States and outputs change with periodic clock signals.
- 1-bit memory device: Flip-Flop
 - D Flip-Flop
 - JK Flip-Flop

CSS422 Lecture 11: Flip Flops 3

W

Characteristic Table

0	0	Q_n
0	1	0
1	0	1
1	1	_

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

SR Latch

When S=1 and R=1, the output will be in "race condition" (forbidden state)

CSS422

SR Latch

Active High (Textbook Spec.)

	-	
S	R	O
1000	27170	×/1+1

0	0	Q_n
0	1	0
1	0	1
1	1	_

SR Latch Application: Switch Debouncer

Once a state is set, bouncing repeats no change and set in Q

Clocks and Time

- The *clock* in a digital system is an electronic analog of the pendulum which synchronizes the circuits in a computer system
 - The master control signal
 - Changes occur on the rising or falling edges of a clock pulse
- Frequencies are the inverse of time (speed)

Clocks and Pulses

Clocks are continuous streams of pulses

- Duty cycle = $t_{PH} / (t_{PH} + t_{PL}) \times 100\%$
 - The clock signal shown above has a 50% duty cycle
 - The clock signal shown below has a 25% duty cycle
 - Period: The time to complete one clock cycle
 - Period = t_{cycle}
 - Frequency: The inverse of the period, f = 1/period

8

Clocked SR Latch and D Latch

Clocked SR Latch

- Prevent the latch from changing state except at certain specific time.
- When clock is 1, the latch is sensitive to S or R.

Clocked D Latch

- Avoid the SR latch's instability by giving R as the inverse of S.
- Stored value is available at Q
- To load the current value of D, give a positive pulse on the clock line.

Clocked JK Latch

- Avoid the SR latch's instability by preventing the inputs being 1 at the same time.
- In this case all possible combinations of input values are valid!

С	J	K	Q	Q
Ч	0	0	latch	latch
卜	0	1	0	1
口	1	0	1	0
了	1	1	toggle	toggle
Х	0	0	latch	latch
Х	0	1	latch	latch
Х	1	0	latch	latch
Х	1	1	latch	latch

Issue with Clock Signal

What if the input signal (J and K in JK Latch or D in D latch) gets changed when the clock is HIGH?

Creating an Edge

Rising-Edge Pulse Detector

Falling-Edge Pulse Detector

Using Pulse Detector in Circuit

Latch vs. Flip-Flop

	Latch	Flip-Flop
Similarities	 Basic components for sequential circuit design They are bi-state devices. It is in one of two states. Without inputs, they remain in that state. They have two outputs which are always the complements of each other. 	
Differences	Level triggered : State changes when the clock is active.	Edge triggered : State transition occurs when the clock transition from 0 to 1 or from 1 to 0.

D Flip-Flop and JK Flip-Flop

Set upon an up edge of the clock

$$0 = \frac{t}{D}$$

$$0 = \frac{t}{D}$$

$$\int k/if's \ cLk = \frac{D}{ff's \ cLk}$$

D Flip-Flop Application

Application 1: Data Register

Application 2: Shift Register

Characteristic Table for FF

Name	Graphical Symbol	Characteristic Table
S-R	$S Q$ $>Ck$ $R \overline{Q}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
J-K	J Q	$\begin{array}{c cccc} J & K & Q_{n+1} \\ \hline 0 & 0 & Q_n \\ 0 & 1 & 0 \\ 1 & 0 & \frac{1}{Q_n} \\ 1 & 1 & \overline{Q_n} \\ \end{array}$
D	D Q — >Ck — Q	$ \begin{array}{c cccc} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

CSS422 Lecture 11: Flip Flops 19

Summary

- Understand the difference between latches and flip-flops
- Understand the reason why
 - Transiting from SR to JK latches
 - Transiting from JK latch to master-slave JK flip-flop
- Understand what applications use SR latch and D flip-flop