VII - Applications linéaires

I - Applications linéaires

I.1 - Définitions

Définition 1 - Application linéaire

Soit $f: \mathbb{R}^n \to \mathbb{R}^p$. L'application f est une application linéaire si pour tout $u, v \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$,

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v).$$

L'ensemble des applications linéaires de \mathbb{R}^n dans \mathbb{R}^p est noté $\mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$.

- Les applications linéaires sont des *morphismes* entre espaces vectoriels.
- Les applications linéaires bijectives sont des *isomor-phismes*.
- Si n = p, on note $\mathcal{L}(\mathbb{R}^n) = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$. Ses éléments sont des *endomorphismes*.
- \bullet Les endomorphismes bijectifs sont des automorphismes.

Exemple 1 - Applications linéaires

- $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (3x + 2y, x + 2z, x + y + z)$ est un endomorphisme de \mathbb{R}^3 .
- $f: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (3x + 2y, x + 2y, x + y).$
- $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto 3x + 2y$.
- Id: $\mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto x$ est un automorphisme.

Proposition 1

Si $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$, alors $f(\overrightarrow{0_n}) = \overrightarrow{0_p}$.

Proposition 2 - Opérations sur les applications linéaires

- Soient $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $\alpha \in \mathbb{R}$. Alors, $\alpha \cdot f : x \mapsto \alpha \cdot f(x)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .
- Soit $f, g \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors, $f + g : x \mapsto f(x) + g(x)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .
- Soient $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathcal{L}(\mathbb{R}^q, \mathbb{R}^n)$. $f \circ g : x \mapsto f(g(x))$ est une application linéaire de \mathbb{R}^q dans \mathbb{R}^p .

Exemple 2 - Opérations sur les applications linéaires

• Si $f:(x,y,z)\mapsto (2x+y,x+y)$ et $g:(x,y,z)\mapsto (x+y+z,x-y-z)$, alors

$$f + g: (x, y, z) \mapsto (3x + 2y + z, 2x - z).$$

• Si $f:(x,y)\mapsto x+2y$ et $g:(x,y,z)\mapsto (x+z,y+z)$, alors

$$f \circ g : (x, y, z) \mapsto x + 2y + 3z.$$

I.2 - Noyau & Image

Définition 2 - Noyau, Image

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.

• Le noyau de f, noté Ker(f), est l'ensemble

$$\operatorname{Ker}(f) = \{ x \in \mathbb{R}^n ; f(x) = \overrightarrow{0_p} \}.$$

• L'image de f, notée Im(f), est l'ensemble

$$\operatorname{Im}(f) = \{ f(x), x \in \mathbb{R}^n \}.$$

Exemple 3 - Calculs de noyau et d'image

Soit $f:(x, y, z) \mapsto (2x + y, 4x + 2y)$.

• $(x,y,z) \in \operatorname{Ker} f$ si et seulement si f(x,y,z) = (0,0)

$$\Leftrightarrow \begin{cases} 2x + y = 0 \\ 4x + 2y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 0 \\ 0 = 0 \\ t_{2} \leftarrow L_{2} - 2L_{1} \end{cases}$$
$$\Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^{2} \text{ tel que } \begin{cases} x = -\frac{\lambda}{2} \\ y = \lambda \\ z = \mu \end{cases}$$

Ainsi,

$$\begin{aligned} \operatorname{Ker} f &= \{ (-\lambda/2, \lambda, \mu), \, \lambda, \, \mu \in \mathbb{R} \} \\ &= \operatorname{Vect} \left\{ (-1/2, 1, 0), (0, 0, 1) \right\}. \end{aligned}$$

• D'après la définition,

$$\operatorname{Im} f = \{(2x + y, 4x + 2y), x, y \in \mathbb{R}\}\$$
$$= \operatorname{Vect} \{(2, 4), (1, 2)\} = \operatorname{Vect} \{(1, 2)\}.$$

Proposition 3

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.

- Ker f est un sous-espace vectoriel de \mathbb{R}^n .
- Im f est un sous-espace vectoriel de \mathbb{R}^p .

Exemple 4

Soit $F = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + z = 0\}$. Posons $f : (x, y, z) \mapsto 2x + 3y + z$. Alors, $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$, donc F = Ker f est un sous-espace vectoriel de \mathbb{R}^3 .

Définition 3 - Forme linéaire

Les applications linéaires à valeurs dans $\mathbb R$ sont des formes linéaires.

Théorème 1 - Caractérisation des applications linéaires injectives

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Les propositions suivantes sont équivalentes.

- (i). f est injective.
- (ii). $\operatorname{Ker}(f) = \{\overrightarrow{0_n}\}.$

Exemple 5 - Une preuve d'injectivité

Soit $f \in \mathcal{L}(\mathbb{R}^n)$. On suppose qu'il existe $p \in \mathbb{N}$ tel que $f^p = \text{Id}$. Alors, f est injective.

En effet, si $x \in \text{Ker } f$, alors

$$f(x) = \overrightarrow{0_n}$$

$$f^{p-1}(f(x)) = f^{p-1}(\overrightarrow{0_n})$$

$$f^p(x) = \overrightarrow{0_n}$$

$$x = \overrightarrow{0_n}$$

Ainsi, Ker $f = {\overrightarrow{0_n}}$. L'application f est donc injective.

Théorème 2 - Théorème du rang (admis)

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors,

$$\dim(\operatorname{Ker} f) + \operatorname{Rg} f = \dim(\mathbb{R}^n).$$

Exemple 6 - Forme linéaire & Hyperplan

Soit f une forme linéaire non nulle. Comme $\operatorname{Im} f$ est un sous-espace vectoriel de \mathbb{R} , alors $\dim \operatorname{Im} f \in \{0,1\}$.

Comme f est non nulle, alors $\operatorname{Im} f \neq \{0\}$. Ainsi, $\dim \operatorname{Im} f = 1$ et $\operatorname{Im} f = \mathbb{R}$.

D'après le théorème du rang, dim Ker f=n-1 donc Ker f est un hyperplan de \mathbb{R}^n .

Proposition 4

Soit $f \in \mathcal{L}(\mathbb{R}^n)$. Les propositions suivantes sont équivalentes :

- f est bijective.
- f est injective.
- f est surjective.

Exemple 7 - Un exemple d'isomorphisme

Soit $f \in \mathcal{L}(\mathbb{R}^n)$. On suppose qu'il existe $p \in \mathbb{N}$ tel que $f^p = \mathrm{Id}$. D'après l'exemple précédent, f est injective. Ainsi, comme f est un endomorphisme, f est bijective.

II - Matrice d'une application linéaire

Dans toute la suite, F désigne un sous-espace vectoriel de dimension p de \mathbb{R}^n .

II.1 - Vecteurs, Applications linéaires, Matrices

Définition 4 - Matrice d'une famille de vecteurs dans une base

Soient m un entier naturel non nul, $\mathscr{B} = (e_1, \ldots, e_p)$ une base de F et v_1, \ldots, v_m des vecteurs de F. Pour tout $i \in [1, m]$, on note $v_i = \sum_{j=1}^p x_{ji}e_j$. La matrice des vecteurs (v_1, \ldots, v_m) dans la base \mathscr{B} est

$$\operatorname{Mat}_{\mathscr{B}}(v_1,\ldots,v_m) = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{p1} & \cdots & x_{pm} \end{pmatrix} \in \mathscr{M}_{p,m}(\mathbb{K}).$$

Exemple 8 - Matrice de vecteurs

Posons $e_1 = (1,1)$ et $e_2 = (1,2)$. La famille $\mathscr{B} = (e_1,e_2)$ est une base de \mathbb{R}^2 .

Soient $(x, y) \in \mathbb{R}^2$ et $a, b \in \mathbb{R}$ tels que $(x, y) = ae_1 + be_2$. Alors,

$$\begin{cases} a+b &= x \\ a+2b &= y \end{cases} \Leftrightarrow \begin{cases} a+b &= x \\ b &= y-x \end{cases} \Leftrightarrow \begin{cases} a &= 2x-y \\ b &= y-x \end{cases}$$

Soient $v_1 = (0, 1), v_2 = (1, 0)$ et $v_3 = (4, 5)$. Alors,

$$v_1 = -(1,1) + (1,2)$$

$$v_2 = 2(1,1) - (1,2)$$

$$v_3 = 3(1,1) + (1,2)$$

Ainsi,

55

$$\operatorname{Mat}_{\mathscr{B}}(v_1, v_2, v_3) = \begin{pmatrix} -1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}.$$

Définition 5 - Matrice d'une application linéaire dans deux bases

Soient $\mathscr{B} = (e_1, \ldots, e_n)$ une base de \mathbb{R}^n , $\mathscr{B}' = (f_1, \ldots, f_p)$ une base de \mathbb{R}^p et $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$. La matrice de l'application linéaire f dans les bases \mathscr{B} et \mathscr{B}' est la matrice $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \operatorname{Mat}_{\mathscr{B}'}(f(e_1), \ldots, f(e_n))$. Si n = p et $\mathscr{B} = \mathscr{B}'$, on note $\operatorname{Mat}_{\mathscr{B}}(f) = \operatorname{Mat}_{\mathscr{B}}(f)$.

Exemple 9 - Matrice d'applications linéaires

- Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de \mathbb{R}^n . Alors, pour tout $i \in [1, n]$, $\mathrm{Id}(e_i) = e_i$. Ainsi, $\mathrm{Mat}_{\mathscr{B}}(\mathrm{Id}) = I_n$.
- Soient $\mathscr{B} = (e_1, \dots, e_n)$ une base de \mathbb{R}^n et \mathscr{B}' une base de \mathbb{R}^p . En notant f l'application nulle de \mathbb{R}^n dans \mathbb{R}^p , alors pour tout $i \in [1, n]$, $f(e_i) = \overrightarrow{0_p}$. Ainsi, $\operatorname{Mat}_{\mathscr{B}\mathscr{B}'}(f) = 0_{p,n}$.
- On pose $e_1 = (1,1,1)$, $e_2 = (1,2,1)$, $e_3 = (0,0,1)$, $f_1 = (1,1)$, $f_2 = (1,2)$. On montre aisément que

 $\mathscr{B} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 et $\mathscr{B}' = (f_1, f_2)$ est une base de \mathbb{R}^2 . Soit $f : (x, y, z) \mapsto (2x + y, y - 3z)$. De plus, en utilisant l'exemple précédent,

$$f(e_1) = (3, -2) = 8(1, 1) - 5(1, 2)$$

$$f(e_2) = (4, -1) = 9(1, 1) - 5(1, 2)$$

$$f(e_3) = (0, -3) = 3(1, 1) - 3(1, 2)$$

Ainsi,
$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \begin{pmatrix} 8 & 9 & 3 \\ -5 & 5 & -3 \end{pmatrix}$$
.

• On note $\mathscr{C} = (\varepsilon_1, \varepsilon_2)$ la base canonique de \mathbb{R}^2 et $\mathscr{B} = (f_1, f_2)$ la base de \mathbb{R}^2 définie à l'exemple précédent. Alors,

$$Id(\varepsilon_1) = (1,0) = 2(1,1) - (1,2)$$
$$Id(\varepsilon_2) = (0,1) = -(1,1) + (1,2)$$

Ainsi,
$$Mat_{\mathscr{C},\mathscr{B}}(Id) = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
.

II.2 - Opérations usuelles

Proposition 5 - Évaluation

Soient \mathscr{B} une base de \mathbb{R}^n , \mathscr{B}' une base de \mathbb{R}^p , $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $u \in \mathbb{R}^n$. Alors,

$$\operatorname{Mat}_{\mathscr{B}'}(f(u)) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) \cdot \operatorname{Mat}_{\mathscr{B}}(u).$$

Théorème 3 - Addition et multiplication par un réel

Soient $f, g \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$, \mathcal{B} une base de \mathbb{R}^n , \mathcal{B}' une base de \mathbb{R}^p et $a \in \mathbb{R}$. Alors,

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(af+g) = a\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) + \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(g).$$

Proposition 6 - Composition & Produit matriciel

Soit \mathscr{B}_1 (resp. \mathscr{B}_2 , \mathscr{B}_3) une base de \mathbb{R}^n (resp. \mathbb{R}^p , \mathbb{R}^q), $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathscr{L}(\mathbb{R}^p, \mathbb{R}^q)$.

$$\operatorname{Mat}_{\mathscr{B}_1,\mathscr{B}_3}(g \circ f) = \operatorname{Mat}_{\mathscr{B}_2,\mathscr{B}_3}(g) \times \operatorname{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f).$$

Théorème 4 - Inverse & Matrices

Soient \mathscr{B}_1 et \mathscr{B}_2 deux bases de \mathbb{R}^n et $f \in \mathscr{L}(\mathbb{R}^n)$. L'application f est un isomorphisme si et seulement si $\mathrm{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f)$ est inversible. Alors $\left[\mathrm{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f)\right]^{-1} = \mathrm{Mat}_{\mathscr{B}_2,\mathscr{B}_1}(f^{-1})$.

Définition 6 - Morphisme canoniquement associé

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Notons \mathcal{C}_n (resp. \mathcal{C}_p) la base canonique de \mathbb{R}^n (resp. \mathbb{R}^p). Le morphisme canoniquement associé à A est l'application $f \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$ tel que $\mathrm{Mat}_{\mathcal{C}_n,\mathcal{C}_p}(f) = A$.

Exemple 10 - Endomorphisme canoniquement associé

Soient $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 0 \end{pmatrix}$ et f l'application linéaire canoniquement associée à A. Alors,

$$f(1,0,0) = 1 \cdot (1,0) + (-1) \cdot (0,1) = (1,-1)$$

$$f(0,1,0) = 2 \cdot (1,0) + 4 \cdot (0,1) = (2,4)$$

$$f(0,0,1) = 3 \cdot (1,0) + 0 \cdot (0,1) = (3,0)$$

Ainsi,

$$f(x,y,z) = xf(1,0,0) + yf(0,1,0) + zf(0,0,1)$$

= $(x + 2y + 3z, -x + 4y)$.

Corollaire 5 - Caractérisation des matrices inversibles

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Si $AB = I_n$, alors $BA = I_n$.

Exemple 11 - Une autre preuve d'inversibilité

Soient
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
 et $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
Si $AX = 0_{n,1}$, alors

$$\begin{cases} x + 2y + 3z &= 0 \\ -x + z &= 0 \\ 2y + z &= 0 \end{cases} \Leftrightarrow \begin{cases} x + 2y + 3z &= 0 \\ 2y + 4z &= 0 \\ 2y + z &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y + 3z &= 0\\ 2y + 4z &= 0\\ 3z &= 0 \end{cases} \Leftrightarrow X = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

Ainsi, en notant f l'endomorphisme canoniquement associé à A, alors pour tout $x \in \mathbb{R}^3$, $f(x) = \overrightarrow{0_3}$. Donc Ker $f = \{\overrightarrow{0_3}\}$. L'endomorphisme f est injectif et donc bijectif. Ainsi, A est inversible.

Corollaire 6 - Caractérisation des bases

Soient \mathscr{B} une base de \mathbb{R}^n et (f_1, \ldots, f_n) une famille de vecteurs de \mathbb{R}^n . La famille (f_1, \ldots, f_n) est une base de \mathbb{R}^n si et seulement si $\mathrm{Mat}_{\mathscr{B}}(f_1, \ldots, f_n)$ est inversible.

Exemple 12 - Une base

Soit $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On pose $v_1 = e_1 - 2e_2 + e_3, v_2 = -e_2 - e_3$ et $v_3 = e_3$ et $\mathscr{B}' = (v_1, v_2, v_3)$.

D'après la définition, $\operatorname{Mat}_{\mathscr{B}}(\mathscr{B}') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$. La matrice est

triangulaire supérieure et ses éléments diagonaux sont non nuls. Ainsi, la matrice est inversible et \mathscr{B}' est une base de \mathbb{R}^3 .

II.3 - Formules de changement de base

Définition 7 - Matrice de passage

Soient \mathscr{B}_1 , \mathscr{B}_2 deux bases de \mathbb{R}^n . La matrice de passage de \mathscr{B}_1 à \mathscr{B}_2 est la matrice $P_{\mathscr{B}_1}^{\mathscr{B}_2} = \operatorname{Mat}_{\mathscr{B}_1}(\mathscr{B}_2) = \operatorname{Mat}_{\mathscr{B}_2,\mathscr{B}_1}(\operatorname{Id}_E)$.

Exemple 13 - Suite de l'exemple précédent

La matrice
$$P_{\mathscr{B}}^{\mathscr{B}'} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

Proposition 7 - Inversibilité

Soit $P_{\mathscr{B}_1}^{\mathscr{B}_2}$ une matrice de changement de base. Alors, $P_{\mathscr{B}_1}^{\mathscr{B}_2}$ est inversible et $\left(P_{\mathscr{B}_1}^{\mathscr{B}_2}\right)^{-1} = P_{\mathscr{B}_2}^{\mathscr{B}_1}$

Exemple 14 - Suite de l'exemple précédent

En utilisant une des techniques précédentes,

Ainsi,
$$P_{\mathscr{B}'}^{\mathscr{B}} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -3 & -1 & 1 \end{pmatrix}$$
.

Proposition 8 - Changement de base d'un vecteur

Soient $u \in \mathbb{R}^n$ et \mathcal{B}_1 , \mathcal{B}_2 deux bases de \mathbb{R}^n .

Alors,
$$\operatorname{Mat}_{\mathscr{B}_2}(u) = \left(P_{\mathscr{B}_1}^{\mathscr{B}_2}\right)^{-1} \cdot \operatorname{Mat}_{\mathscr{B}_1}(u)$$
, soit

$$\operatorname{Mat}_{\mathscr{B}_1}(u) = P_{\mathscr{B}_1}^{\mathscr{B}_2} \cdot \operatorname{Mat}_{\mathscr{B}_2}(u).$$

Remarque. C'est la matrice de passage de l'ancienne base \mathcal{B}_1 à la nouvelle base \mathcal{B}_2 qui est facile à obtenir, mais c'est celle de \mathcal{B}_2 à \mathcal{B}_1 (donc son inverse) qui est utile pour calculer les nouvelles coordonnées du vecteur. On n'échappe donc pas au calcul de l'inverse!

Exemple 15 - Suite de l'exemple précédent

Soit $u = (1, 4, 3) \in \mathbb{R}^3$. Alors,

$$\operatorname{Mat}_{\mathscr{B}'}(u) = P_{\mathscr{B}'}^{\mathscr{B}} \operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -3 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -6 \\ -4 \end{pmatrix}$$

Ainsi, $u = v_1 - 6v_2 - 4v_3$.

Théorème 7 - Formules de changement de base

Soient \mathcal{B}_1 , \mathcal{B}'_1 deux bases de \mathbb{R}^n , \mathcal{B}_2 , \mathcal{B}'_2 deux bases de \mathbb{R}^p et $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors,

$$\operatorname{Mat}_{\mathscr{B}'_1,\mathscr{B}'_2}(f) = P^{\mathscr{B}_2}_{\mathscr{B}'_2} \cdot \operatorname{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f) \cdot P^{\mathscr{B}'_1}_{\mathscr{B}_1}.$$

En particulier, lorsque n = p, $\mathcal{B}_1 = \mathcal{B}_2$, $\mathcal{B}'_1 = \mathcal{B}'_2$,

$$\operatorname{Mat}_{\mathscr{B}'_1}(f) = \left(P_{\mathscr{B}_1}^{\mathscr{B}'_1}\right)^{-1} \operatorname{Mat}_{\mathscr{B}_1}(f) P_{\mathscr{B}_1}^{\mathscr{B}'_1}.$$

Remarque. Certains, comme moyen mnémotechnique, pourront voir dans la dernière formule une sorte de relation de Chasles.

Exemple 16 - Suite de l'exemple précédent

On pose $A=\begin{pmatrix} -1 & -1 & 0 \\ 3 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix}$ et f l'endomorphisme canoniquement associé à A. Alors,

$$\operatorname{Mat}_{\mathscr{B}'}(f) = \begin{pmatrix} P_{\mathscr{B}}^{\mathscr{B}'} \end{pmatrix}^{-1} \operatorname{Mat}_{\mathscr{B}}(f) P_{\mathscr{B}}^{\mathscr{B}'}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -3 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 0 \\ 3 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

On remarque alors qu'on peut écrire $A = PCP^{-1}$, soit $A^n = PC^nP^{-1}$. De plus, la matrice C^n est aisée à calculer à l'aide de la formule du binôme de Newton.

II.4 - Rang des matrices

Définition 8 - Noyau, Image & Rang d'une matrice

Soit $M \in \mathscr{M}_{n,p}(\mathbb{K})$.

- (i). L'image de M est le sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{K})$ engendré par ses vecteurs colonnes.
- (ii). Le rang de M, noté Rg M, est le rang des vecteurs colonnes de M.
- (iii). Le noyau de M est le sous-espace de $\mathcal{M}_{p,1}(\mathbb{K})$ engendré par les vecteurs X tels que $MX = 0_{p,1}$.

Chapitre VII - Applications linéaires

Proposition 9 - Rang des matrices & Applications linéaires

Soient \mathcal{B}_1 (resp. \mathcal{B}_2) une base de \mathbb{R}^n (resp. \mathbb{R}^p) et $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors, $\operatorname{Rg} f = \operatorname{Rg} \operatorname{Mat}_{\mathcal{B}_1, \mathcal{B}_2}(f)$.

Proposition 10 - Rang et Inversibilité

Soit $A \in \mathcal{M}_n(\mathbb{K})$. La matrice A est inversible si et seulement si $\operatorname{Rg} A = n$.

Exemple 17 - Calcul de rang

Soit $A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 4 & 2 \\ 2 & -3 & 0 \end{pmatrix}$. En utilisant l'algorithme du pivot de Gauss.

$$Rg(A) = Rg \begin{pmatrix} 3 & 1 & 2 \\ 0 & 11 & 4 \\ 0 & 11 & 4 \end{pmatrix} \qquad {}^{L_2 \leftarrow 3L_2 - L_1}_{L_3 \leftarrow 2L_1 - 3L_3}$$
$$= Rg \begin{pmatrix} 3 & 1 & 2 \\ 0 & 11 & 4 \\ 0 & 0 & 0 \end{pmatrix} \qquad {}^{L_3 \leftarrow L_3 - L_2}$$

La famille ainsi obtenue est échelonnée donc Rg(A) = 2. La matrice A n'est donc pas inversible.