Tabele de dispersie

SD 2020/2021

Continut

Tabele cu adresare directă

Tabele de dispersie

Dispersie externă

Funcții de dispersie

Dispersie internă

FII, UAIC Curs 11

Tabele de simboluri

- Tabela de simboluri S cu n înregistrări;
- Fiecare înregistrare are asociată o cheie (unică);
- ▶ Operații: cauta(S, k), insereaza(S, x), sterge(S, x);
- Cum poate fi organizată structura de date S?

Tabela cu adresare directă

- ▶ $U = \{0, 1, ..., m-1\}$ mulțimea univers a cheilor;
- ▶ Un tablou T[0..m-1]:

$$T[k] = \left\{ egin{array}{ll} x & \mathsf{daca} \ x \in S \ \mathrm{si} \ x.\mathit{cheie} = k \ \mathsf{NULL} & \mathsf{altfel}. \end{array}
ight.$$

- Fiecare poziție (slot) din tablou corespunde unei chei din universul *U*.
- ▶ Dacă |S| = n, atunci $n \le m$.

FII, UAIC Curs 11

Tabela cu adresare directă - Operații

Operații

```
Function cauta(T, k)
begin
   return T[k]
end
Procedure insereaza(T, x)
begin
   T[x.cheie] = x
end
Procedure sterge(T,x)
begin
   T[x.cheie] = NULL
end
```

Complexitatea timp a operaţiilor: Θ(1)

SD 2020/2021

Tabela cu adresare directă

- ▶ Spațiul de memorare: $\Theta(|U|)$.
- ► Probleme:
 - cheile pot să nu fie numere întregi;
 - domeniul de valori al cheilor este foarte mare:
 - numere pe 64 de biţi (18.446.744.073.709.551.616 chei diferite)
 - șiruri de caractere;
 - mulțimea de chei memorate este foarte mică relativ la U.
- Soluție: tabela de dispersie
 - o generalizare a noțiunii de tabelă cu adresare directă;
 - o structură de date eficientă pentru implementarea dicționarelor.

Conținut

Tabele cu adresare directă

Tabele de dispersie

Dispersie externă

Funcții de dispersie

Dispersie internă

FII, UAIC Curs 11

Tabela de dispersie

▶ Utilizează o funcție de dispersie (hash) h pentru a asocia cheilor din universul U o valoare din mulțimea $\{0, 1, \dots, m-1\}$.

- ▶ Un element cu cheia k are asociată poziția h(k) în tabela T.
- ► Funcția de dispersie reduce domeniul de valori a indicilor și implicit dimensiunea vectorului memorat.
- ► Coliziune: $\exists x_1, x_2 \in S$ astfel încât $h(x_1.cheie) = h(x_2.cheie)$

FII, UAIC Curs 11 SD 2020/2021 8 / 29

Conținut

Tabele cu adresare directă

Tabele de dispersie

Dispersie externă

Funcții de dispersie

Dispersie internă

FII, UAIC Curs 11

Rezolvarea coliziunilor prin înlănțuire (dispersie externă)

▶ Înregistrările care au asociate același slot vor fi memorate într-o listă liniară. T devine tablou de pointeri.

- Soluție simplă, dar necesită spațiu suplimentar de memorie.
- Cazul cel mai nefavorabil: toate cheile au asociate același slot
 - \triangleright timpul de acces: $\Theta(n)$.

4□ > 4個 > 4 분 > 4 분 > 분 99

FII, UAIC Curs 11 SD 2020/2021 10 / 29

Dispersie externă – Operații

```
Function cauta(T, k)
begin
   caută elementul cu cheia k în lista T[h(k)]
end
Procedure insereaza(T, x)
begin
   inserează x la începutul listei T[h(x.cheie)]
end
Procedure sterge(T, x)
begin
   sterge x din lista T[h(x.cheie)]
end
```

FII, UAIC Curs 11

Dispersie externă – analiza complexității

Căutare:

Complexitatea în cazul cel mai nefavorabil depinde de lungimea listei.

Inserare:

Complexitatea în cazul cel mai nefavorabil: O(1).

Ştergere:

O(1) dacă avem liste liniare dublu înlănțuite; dacă lucrăm cu liste liniare simplu înlănțuite, trebuie întâi să căutăm x și să reținem predecesorul acestuia pentru a putea reface legatura.

Dispersie externă – analiza complexității în cazul mediu

▶ Ipoteza dispersiei uniforme simple: fiecare cheie $k \in U$ are o probabilitate egală de a fi memorată în oricare locație din tabela T și independent de locațiile altor chei.

► Factorul de încărcare al tabelei *T* este

$$\alpha = n/m$$
,

unde n este numărul de chei (|S|), iar m numărul de locații (dimensiunea tabloului T).

ightharpoonup Timpul de calcul al funcției de dispersie este $\Theta(1)$.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · 夕久○·

FII, UAIC Curs 11 SD 2020/2021 13 / 29

Dispersie externă – analiza complexității în cazul mediu

Teoremă:

Considerând o tabelă de dispersie în care coliziunile sunt rezolvate prin înlănțuire, în ipoteza dispersiei uniforme simple, o căutare fără succes are complexitatea timp în cazul mediu $\Theta(1+\alpha)$.

Teoremă:

Într-o tabelă de dispersie în care coliziunile sunt rezolvate prin înlănțuire, în ipoteza dispersiei uniforme simple, o căutare cu succes are complexitatea timp în cazul mediu $\Theta(1+\alpha)$.

Corolar:

Dacă numărul de sloturi este cel puțin proporțional cu numărul de elemente (n = O(m) sau, echivalent, $\alpha = O(1)$), atunci operația de căutare are complexitatea, în medie, O(1).

FII, UAIC Curs 11 SD 2020/2021 14 / 29

Continut

Tabele de dispersie

Funcții de dispersie

Curs 11

Funcția de dispersie

- Deterministă: pentru o cheie k, funcția trebuie să furnizeze întotdeauna aceași valoare h(k).
- Aleatoare: vizează minimizarea coliziunilor.
- O funcție hash bună distribuie cheile uniform în locațiile tabelei.
- Ipoteza dispersiei uniforme simple este dificil de garantat, dar există tehnici euristice care funcționează bine în practică (atât timp cât deficiențele acestora pot fi evitate).

Funcții de dispersie – Metoda diviziunii

$$h(k) = k \mod m$$

- ▶ Presupunem că toate cheile sunt numere naturale.
 - dacă cheile nu sunt numere naturale, atunci trebuie gasită o modalitate de a le interpreta ca numere naturale;
 - Exemplu: presupunem un identificator de forma (112, 116); în baza 128, acesta devine $(112 \times 128) + 116 = 14452$.
- Nu se alege pentru m o valoare care are un divizor mic d. Preponderența cheilor congruente modulo d poate afecta în mod negativ uniformitatea.
- Dacă $m = 2^r$, atunci valoarea funcției depinde doar de ultimii r biții ai lui k.
 - Exemplu: k = 1011000111011010 și $r = 6 \mapsto h(k) = 011010$.
- ➤ Se alege *m* un numar prim care nu este apropiat de o putere a lui 2 sau 10.

FII, UAIC Curs 11 SD 2020/2021 17 / 29

Funcții de dispersie – Metoda înmulțirii

$$h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor$$

- $ightharpoonup A \in (0,1)$ este o constantă.
- Valoarea lui m nu este critică (de obicei o putere a lui 2).

$$h(k) = (kA \mod 2^w) rsh(w - r)$$

- $ightharpoonup m=2^r$, (mașină în care cuvintele sunt pe w-biți).
- ► A este un numar impar din intervalul $(2^{w-1}, 2^w)$.
- rsh este operatorul de deplasare la dreapta pe biti.

FII, UAIC Curs 11

Funcții de dispersie - Metoda înmulțirii

Exemplu: $m = 2^3$ și cuvinte pe w = 7 biți.

- Nu se alege A prea aproape de 2^{w-1} sau 2^w .
- ► Knuth: $A = (\sqrt{5} 1)/2$.
- ▶ Înmulțirea modulo 2^w este mai rapidă în comparație cu împărțirea; operatorul *rsh* este rapid.

- 4 □ ト 4 圖 ト 4 園 ト 4 園 ト 3 ■ 9 9 Q @

SD 2020/2021

Funcții de dispersie - Dispersia universală

$$h(k) = [(ak + b) \mod p] \mod m$$

- ightharpoonup p număr prim cu p > |U|;
- ▶ a, b numere aleatoare din $\{0, ..., p-1\}$.

 $k_1 \neq k_2, \ Pr_{a,b}\{h(k_1) = h(k_2)\} = 1/m.$

FII, UAIC Curs 11

Continut

Tabele de dispersie

Funcții de dispersie

Dispersie internă

Curs 11

Rezolvarea coliziunilor prin adresare deschisă

- ► Dispersie internă
- ► Toate elementele sunt memorate în interiorul tabelei *T*; nu este utilizat spațiu suplimentar de memorie, în afara tabelei de dispersie.
- Functia de inserare examinează tabela până când este găsită o locație liberă.
- Funcția de dispersie depinde atât de cheie cât și de numărul examinarii:

$$h: U \times \{0, 1, ..., m-1\} \mapsto \{0, 1, ..., m-1\}$$

- Secvența de examinări $< h(k,0), h(k,1), \cdots, h(k,m-1) >$ trebuie să fie o permutare a $\{0,1,...,m-1\}$.
- Dezavantaje: tabela se poate umple; ștergerea poate deveni dificilă.

Dispersie internă - Operații

```
Function cauta(T, k)
begin
    i \leftarrow 0
    repeat
       j \leftarrow h(k, i)
        if T[j] == k then
            return i
        else
            i \leftarrow i + 1
    until T[i] == NULL \ OR \ i == m;
    return NULL
end
```

FII, UAIC Curs 11 SD 2020/2021 23 / 29

Dispersie internă - Operații

```
Function insereaza(T, k)
begin
    i \leftarrow 0
    repeat
        j \leftarrow h(k, i)
        if T[j] == NULL then
             T[j] \leftarrow k
             return i
        else
            i \leftarrow i + 1
    until i == m;
    return -1
end
```

Dispersie internă – Strategii pentru examinare

Examinare liniară:

$$h(k,i) = (h'(k) + i) \mod m$$

- $\blacktriangleright h'(k)$ o funcție de dispersie uzuală.
- Pentru o cheie k, secvența de examinare este

$$h'(k), h'(k) + 1, h'(k) + 2, ..., m - 1, 0, 1, ..., h'(k) - 1.$$

- ► Avantaj: metodă simplă.
- ▶ Dezavantaj: grupare primară (*primary clustering*) se formează șiruri lungi de locații ocupate; crește timpul mediu de căutare.

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 釣۹で

SD 2020/2021

Dispersie internă – Strategii pentru examinare

Examinare pătratică:

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

- $\blacktriangleright h'(k)$ o funcție de dispersie uzuală.
- Pentru o cheie k, prima locație examinată este h'(k), iar următoarele poziții examinate sunt decalate cu cantități ce depind într-o manieră pătratică de poziția anterior examinată.
- ▶ Dezavantaj: grupare secundară dacă două chei au aceeași poziție de start a examinării, atunci secvențele de verificare coincid.
- Funcționează mai bine decât verificarea liniară.

FII, UAIC Curs 11 SD 2020/2021 26 / 29

Dispersie internă – Strategii pentru examinare

Dispersie dublă:

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m$$

- \blacktriangleright $h_1(k)$ si $h_2(k)$ două funcții de dispersie uzuale.
- Pentru o cheie k, prima locație examinată este $h_1(k)$, iar următoarele poziții examinate sunt decalate față de poziția anterioară cu $h_2(k)$ mod m.
- Această metodă produce în general rezultate foarte bune, cu condiția ca $h_2(k)$ să fie relativ prim cu m. O modalitate de a realiza acest lucru este să considerăm m o putere a lui 2 și să alegem $h_2(k)$ astfel încât să rezulte doar numere impare.

FII, UAIC Curs 11 SD 2020/2021 27 / 29

Dispersie internă – Analiza complexității

Ipoteza dispersiei uniforme: fiecare cheie poate avea, cu aceeași probabilitate, oricare din cele *m*! permutări ca secvență de examinare.

Teoremă:

Într-o tabelă de dispersie cu adresare deschisă, în ipoteza dispersiei uniforme, cu factor de încărcare $\alpha < 1$, numărul mediu de verificări este cel mult

- $ightharpoonup rac{1}{1-lpha}$ pentru operația de căutare fără succes, și
- $ightharpoonup rac{1}{\alpha} ln rac{1}{1-\alpha}$ pentru operația de căutare cu succes.

Corolar:

Daca α este constant, atunci accesarea unei tabele de dispersie cu adresare deschisă necesită în medie un timp constant, $\Theta(1)$.

FII, UAIC Curs 11 SD 2020/2021 28 / 29

Utilizări

- ► Tabelele de dispersie sunt folosite la indexarea în baze de date, compilatoare tabela de simboluri, *cache*, etc.
- ► Aplicații ale funcțiilor de dispersie: CRC, *Cryptographic hash functions*, etc.

FII, UAIC Curs 11 SD 2020/2021 29 / 29