I211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic 1/20

Contents

Aim

to learn how to write mathematical proofs

Contents

- 1 resolution principle
- 2 Gödel's Incompleteness Theorem
- 3 to conclude...

Schedule			
	propositional logic		predicate logic
4/13	syntax, semantics	5/11	syntax, semantics
4/18	normal forms	5/16	normal forms
4/20	examples	5/18	natural deduction I
4/25	natural deduction I	5/23	natural deduction II
4/27	natural deduction II	5/25	examples, properties
5/2	completeness	5/30	advanced topics
5/9	midterm exam	6/1	summary
		6/6	exam

Evaluation

midterm exam (40) + final exam (60)

I211E: Mathematical Logic 2/20

Resolution Principle

 I211E: Mathematical Logic
 3/20
 I211E: Mathematical Logic
 4/20

Validity via Unsatisfiability

Fact

- \blacksquare $\Gamma \vdash \phi$ if and only if $\Gamma \cup \{\neg \phi\}$ is unsatisfiable
- $lackrel{\phi}$ is unsatisfiable if and only if Skolem normal form of ϕ is unsatisfiable

Note

- this proof style is called refutational proof
- many automatic theorem provers adopt this approach

I211E: Mathematical Logic

5/20

Resolution

- axioms: all clauses in matrix of Skolem normal form
- inference rule 1:

$$\frac{C \vee L \quad C' \vee \neg L'}{C\theta \vee C'\theta} \text{ RESOLVE}$$

if θ is most general substitution with $L\theta = L'\theta$ (rename if necessary)

■ inference rule 2:

$$\frac{C}{C\theta}$$
 FACTORIZE

if σ is most general substitution that literals L and L' in C satisfy $L\theta = L'\theta$

Theorem (resolution principle)

sentence $\forall \vec{x}. \land \Gamma$ in Skolem normal form whose matrix is in CNF is unsatisfiable if and only if resolution derives \bot from Γ

I211E: Mathematical Logic

6/20

$$\begin{cases} X \nsubseteq Y \lor z \notin X \lor z \in Y \\ X \subseteq Y \lor \mathsf{f}(X,Y) \in X \\ X \subseteq Y \lor \mathsf{f}(X,Y) \notin Y \\ \mathsf{A} \subseteq \mathsf{B} \\ \mathsf{B} \subseteq \mathsf{C} \\ \mathsf{A} \nsubseteq \mathsf{C} \\ z \notin \mathsf{A} \lor z \in \mathsf{B} \\ z \notin \mathsf{B} \lor z \in \mathsf{C} \\ z \notin \mathsf{A} \lor z \in \mathsf{C} \\ \mathsf{f}(\mathsf{A},\mathsf{C}) \in \mathsf{A} \\ \mathsf{f}(\mathsf{A},\mathsf{C}) \notin \mathsf{C} \\ \mathsf{f}(\mathsf{A},\mathsf{C}) \in \mathsf{C} \\ \bot \end{cases}$$

8/20

thus, original claim is correct

Gödel's Incompleteness Theorem

I211E: Mathematical Logic

9/20

Aftermath

- proofs were formalized; natural deduction was introduced
- naive set theory was replaced by axiomatic set theories including ZFC
- now consistency of math seems to be recovered, but what about its proof?
- suppose that we adopt natural deduction for first-order logic with ZFC
- if **ZFC** is consistent, its consistency cannot be shown in **ZFC** (Gödel's second incompleteness theorem; Rosser's incompleteness theorem)
- if ZFC is inconsistent, consistency of ZFC can be shown in ZFC (sigh)

Is Mathematics Consistent?

Theorem (?)

-1 = 1

Proof (which of = is wrong?).

using Euler's formula $e^{i\theta} = \cos\theta + i\sin\theta$

$$-1 = e^{i\pi} = e^{i2\pi \cdot \frac{1}{2}} = (e^{i2\pi})^{\frac{1}{2}} = 1^{\frac{1}{2}} = 1$$

Theorem (Russell's Paradox 1902)

naive set theory is inconsistent, so -1 = 1

Proof.

for $A = \{X \mid X \notin X\}$ we have $A \in A$ iff $A \notin A$. contradiction

I211E: Mathematical Logic

10/20

To Conclude...

Final Exam

- closed book, written exam; about 90 min, at the lecture room
- about contents of lectures 8–14 and corresponding homework exercises
 - 1 soundness of propositional logic
 - 2 structures and models
 - 3 substitutions and variable capture
 - prenex/Skolem normal forms
- 5 natural deduction
- 6 equality reasoning
- 7 proof writing
- 8 encodings in logic
- exam questions are similar to examples of slides and homework exercises

I211E: Mathematical Logic 13/20

Samples of Exam Questions 2/2

- 5 Write proof trees (derivations):
 - $\blacksquare \vdash (\mathsf{P}(\mathsf{f}(x)) \land \forall x \mathsf{P}(x)) \to \forall x \, \mathsf{P}(\mathsf{f}(x)))$

 - **3** $\mathbf{Q} \vdash \neg (\mathsf{s}(0) + \mathsf{s}(0) \doteq 0)$
 - $\mathbf{PA} \vdash \forall x (0 + x \doteq x)$
- 6 Show the equation on sets: $\bigcup_{i\in\mathbb{N}}\{i,i+1\}=\mathbb{N}.$
- 7 We solve the following Killer Sudoku problem by using the SMT solver.

Encode the problem to a linear arithmetic constraint whose satisfying assignment results in a solution of the problem.

Samples of Exam Questions 1/2

- 1 Show that the inference rule for \vee_E in propositional logic is valid.
- 2 Consider the structure $\mathcal{A} = (\mathbb{N}, \overline{\mathsf{P}})$ with

$$\bar{\mathsf{P}} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a > b\}$$

Let $\phi = P(x, y) \land \forall x \exists y P(x, y)$.

- lacksquare Compute $\phi[y/x]$.
- **D** Does $\mathcal{A}, v \vDash \phi$ hold for $v = \{x \mapsto 1, y \mapsto 2\}$?
- Prove or disprove $\mathcal{A} \models \forall x \exists y \, \mathsf{P}(x,y)$.
- 3 Show that $\forall x \exists y R(x,y) \rightarrow \exists x \forall y R(x,y)$ is invalid
- 4 Compute a prenex normal form and a Skolem normal form of the formula:

$$P(x) \leftrightarrow \forall x \exists y Q(x,y)$$

5 Let ϕ be a sentence and θ a substitution. Show that $\phi\theta = \phi$.

I211E: Mathematical Logic

Reading/Writing Formulas and Proofs

■ two plus three makes five:

$$2 + 3 = 5$$

• every number $x \in \mathbb{R}$ satisfies $x^2 \geqslant 0$:

$$\forall x \in \mathbb{R}. \quad x^2 \geqslant 0$$

■ mathematical induction: P(n) holds for all $n \in \mathbb{N}$ if next conditions hold: (i) P(0), (ii) for every $k \in \mathbb{N}$ if P(k) then P(k+1):

$$(P(0) \land (\forall k \in \mathbb{N}. P(k) \rightarrow P(k+1))) \rightarrow \forall n \in \mathbb{N}. P(n)$$

Proposition

If p implies q and q implies r then p implies r. $((p \to q) \land (q \to r)) \to (p \to r)$

Proof.

Assume that p implies q and q implies r. Suppose that p holds. By the first assumption we have q. By the second assumption we have r. Therefore, p implies r.

I211E: Mathematical Logic 17/20

Map Coloring

Solving Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

1211E: Mathematical Logic

18/20

Goal of This Course

Goal

- able to **read and write** logical formulas
- able to **transform** formulas
- able to **prove/disprove** formulas

Ultimate Goal

develop skills to read textbooks and to write definitions/proofs in thesis