# ITCS-6156-00

# Naïve Bayes

Assignment 5 – Report

Archit Parnami 4/14/2017

# Implementing a Naive Bayes classifier



$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

# The BayesClassifier class

- The input to the BayesClassifier are:
  - Data points labelled with a class (X, Y)
    - Where X are the input features
    - Y is the output class
- To Train call Fit method with X and Y.
- To predict call predict method with test input Xt and it should return the classified labels.

# # BayesClassifier # number\_of\_examples : int # number\_of\_classes : int # number\_of\_attributes: int # cccurances : {int : {int : {int:int}}} # -initialize([[int]],[int]): void # - classify\_data([[int]], [int]) : {int : [[int]]} # - calculate\_occurances({int:[[int]]}) : : {int : {int : {int:int}}} # - calculate\_probability([int]) : [(int, float)] # - get\_class\_with\_max\_prob([(int, float)] : int # - classify([int]) : int # + fit([[int]], [int]) : void # + predict([[int]]) : [int]

#### <u>Dataset 1 - Optical Recognition of Handwritten Digits</u>

#### 1. Features

- Each feature in the dataset represents an element of 8x8 matrix used to describe an Image.
- Number of Features = 64
- Range of values of each feature is 0 to 16

#### 2. Output

• Number ranging from 0 to 9

#### **Distribution of Classes**

| Output Class | Frequency |
|--------------|-----------|
| 0            | 376       |
| 1            | 389       |
| 2            | 380       |
| 3            | 389       |
| 4            | 387       |
| 5            | 376       |
| 6            | 377       |
| 7            | 387       |
| 8            | 380       |
| 9            | 382       |

#### **Implementation Results**

The model was trained using the custom implementation of Bayes Classifier and the accuracy of **89.7** was achieved.

## The BayesGaussianClassifier class

- The input to the BayesGaussianClassifier are:
  - Data points labelled with a class (X, Y)
    - Where X are the input features
    - Y is the output class
- To Train call Fit method with X and Y.
- To predict call predict method with test input Xt and it should return the classified labels.
- It uses Gaussian probability density function to calculate the probability of the unseen samples.

```
BayesGaussianClassifier
+number_of_examples: int
+number of classes:int
+number_of_attributes: int
+means: {int: {int: float}}
+stddevs: {int: {int: float}}
+output_classes : [int]
+classified data: {int:[[int]]}
-initialize([[int]],[int]): void
- classify_data([[int]], [int]) : {int : [[int]]}
- calculate_mean({int: [[int]]}) : {int : {int : float}}
- calculate_stddev({int: [[int]]}, {int : {int : float}}) : {int : {int : float}}
- calculate_gaussian_probability([int]) : [(int, float)]
- get_class_with_max_prob([(int, float)] : int
- classify([int]) : int
+ fit([[int]], [int]): void
+ predict([[int]]) : [int]
```

The probability density of the normal distribution is:

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \ e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Where:

- μ is mean or expectation of the distribution (and also its median and mode).
- σ is standard deviation
- $\sigma^2$  is variance

#### <u>Dataset 2 - Amazon reviews sentiment Analysis</u>

- 1. Features
  - Product name and review
  - Number of features = 2
- 2. Output
  - Rating from 0 to 5
- 3. Number of Observations = **146824**

**Original Problem:** Given a review of a product predict the rating.

Modified Problem: Given a review of a product rate the product as good or bad.

## **Problem Solving Approach:**

- The polarity and subjectivity of a review is obtained by performing sentiment analysis with a 3<sup>rd</sup> party library called TextBlob.
- If a review has a rating < 3 then it is considered bad(-1).
- If a review has a rating >= 3 then it is considered good(1).
- Polarity & Subjectivity are then fed to a **BayesGaussianClassifier** as input features.
- While rating of -1 & 1 is used to represent negative & positive output respectively.

## **Implementation Steps**

- 1. Sentiment Analysis & Input Generation
  - Input File: amazon\_baby\_train.csv, amazon\_baby\_test.csv
  - Output File: Train-SentimentAnalysis.csv, Test-SentimentAnalysis.csv
  - Library used for finding the Sentiment Analysis: TextBlob



# Sample Input

| Name                     | Review                                       | Rating |
|--------------------------|----------------------------------------------|--------|
| Moby Wrap Original 100%  | Bought this for my daughter                  | 5      |
| Cotton Baby Carrier, Red |                                              |        |
| Child to Cherish         | It is very cute, and I got a lot of          | 4      |
| Handprints Tower Of Time | compliments                                  |        |
| Kit in Pink              |                                              |        |
| JJ Cole Lite Embroidered | This product is very pretty but does not fit | 1      |
| Bundleme, Pink, Infant   | the Graco Safe Seat                          |        |

# **Sample Output**

| Polarity | Subjectivity | Rating |
|----------|--------------|--------|
| 0.347    | 0.688        | 1      |
| 0.235    | 0.56         | 1      |
| 0.091    | 0.46         | -1     |

#### 2. Model Generation

• Input Files: Train-SentimentAnalysis.csv, Test-SentimentAnalysis.csv

#### Problem Statement

- Given the polarity, subjectivity and the rating of a review feed the data to BayesGaussianClassifier.
- o Use this BayesGaussianClassifier to predict the rating of new reviews

#### 3. Implementation Results

The model was trained using the custom implementation of Bayes Gaussian Classifier and the accuracy of **85.64** was achieved.