Honours Diary 2020

Jarvis Carroll

March 23, 2020

Notation

In this diary unless explicitly stated within a section, I have been using the notation specified by Nielsen and Chuang, with the following additions:

- Implicit quantifiers for index variables such as i, j, k. (Nielson and Chuang seem to do this actually, perhaps dropping more than I do)
 - $\{x_i\} = \{x_i \mid i \in I\}, \{|x_i\rangle\} = \{|x_i\rangle \mid i \in I\} \text{ etc.}$
 - $-(x_i) = (x_1, x_2, \dots, x_n)$
 - $-\sum_{i}$ in place of $\sum_{i\in I}$
 - $\forall i \text{ in place of } \forall i \in I$

March 13

Set up TeXstudio and basic document structure.

Exercise 2.1

Linear Dependence, show that (1,-1), (1,2) and (2,1) are linearly dependent.

$$(1,-1) + (1,2) - (2,1)$$

= $(1+1-2,-1+2-1)$
= $(0,0)$

Exercise 2.2

Matrix representations: Suppose V is a vector space with basis vectors $|0\rangle$ and $|1\rangle$, and A is a linear operator from V to V such that $A|0\rangle = |1\rangle$ and $A|1\rangle = |0\rangle$. Give a matrix representation for A, with respect to the input basis $|0\rangle$, $|1\rangle$, and the output basis $|0\rangle$, $|1\rangle$. Find input and output bases which give rise to a different matrix representation of A.

Equation 2.12 gives us the defining property of matrix representations:

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle$$

This gives us a pair of vector equations:

$$|1\rangle = A|0\rangle = A_{00}|0\rangle + A_{10}|1\rangle$$

$$|0\rangle = A|1\rangle = A_{01}|0\rangle + A_{11}|1\rangle$$

By linear independence of $|0\rangle$, $|1\rangle$, it follows that

$$A_{00} = 0$$
 $A_{01} = 1$ $A_{11} = 0$

i.e. A has the matrix representation:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

March 16

Exercise 2.3

$$A: V \to W$$

$$B: W \to X$$

$$V = span\{|v_i\rangle\} \ etc.$$

At this point we are already identifying A, B with their matrix representations. We would like to show equality between the function composition $B \circ A$ and the matrix product of the corresponding matrix representations, $B \times A$. Once we have done this we will be able to identify both of these concepts as simply the expression BA, but for now we will use the explicit operators \circ and \times .

Our goal then is to show that the matrix representation of $B \circ A$ is $B \times A$.

$$\sum_{i} (B \circ A)_{ij} | x_{i} \rangle \qquad \text{(arbitrary column of matrix } B \circ A)$$

$$= (B \circ A) | v_{j} \rangle \qquad \text{(Definition of matrix representation)}$$

$$= B(A|v_{j}\rangle) \qquad \text{(Definition of composition)}$$

$$= B\left(\sum_{k} A_{kj} | w_{k} \rangle\right) \qquad \text{(Matrix representation)}$$

$$= \sum_{k} A_{kj} \left(\sum_{i} B_{ik} | x_{i} \rangle\right) \qquad \text{(Matrix representation)}$$

$$= \sum_{k} \left(\sum_{i} B_{ik} | x_{i} \rangle\right) \qquad \text{(Matrix representation)}$$

$$= \sum_{i} \left(\sum_{k} B_{ik} A_{kj}\right) | x_{i} \rangle \qquad \text{(distribution)}$$

$$= \sum_{i} (B \times A)_{ij} | x_{i} \rangle \qquad \text{(matrix product)}$$

So by linear independence of $|x_i\rangle$ we know that $(B \circ A)_{ij} = (B \times A)_{ij}$ for arbitrary i, j, i.e. the matrix representation of $B \circ A$ is the matrix product $B \times A$.

Exercise 2.4

$$I:V \to V$$

$$I|x_i\rangle = |x_i\rangle$$

We would like to show that $I_{ij} = \delta_{ij}$.

$$\sum_{i} I_{ij} |x_{i}\rangle$$

$$= I|x_{j}\rangle$$

$$= |x_{j}\rangle$$

$$= \sum_{i} \delta_{ij} |x_{i}\rangle$$

Again by linear independence of $\{|x_i\rangle\}$ we have $I_{ij} = \delta_{ij}$.

Exercise 2.5

$$((y_i),(z_i)) = \sum_i y_i^* z_i$$

We need to prove 3 properties. First linearity, taking $|v\rangle = (v_j) = (v_1, v_2, \dots, v_n)$ and $|w_i\rangle = (w_{ij}) = (w_{i1}, w_{i2}, \dots, w_{in})$.

For this we define

$$|z\rangle = (z_j) = \sum_i \lambda_i |w_i\rangle$$

Then by the definitions of sum and scalar product in \mathbb{C}^n we observe

$$z_{j}$$

$$= \left(\sum_{i} \lambda_{i} |w_{i}\rangle\right)_{j}$$

$$= \sum_{i} (\lambda_{i} |w_{i}\rangle)_{j}$$

$$= \sum_{i} \lambda_{i} w_{ij}$$

With this linearity falls out.

$$(|v\rangle, |z\rangle)$$

$$= ((v_j), (z_j))$$

$$= \sum_j y_j^* z_j$$

$$= \sum_j y_j^* \left(\sum_i \lambda_i w_{ij}\right)$$

$$= \sum_i \lambda_i \left(\sum_j v_j^* w_{ij}\right)$$

$$= \sum_i \lambda_i ((v_j), (w_{ij}))$$

$$= \sum_i \lambda_i (|v\rangle, |w_i\rangle)$$

Next we prove conjugate symmetry.

$$(|w\rangle, |v\rangle)^*$$

$$= ((w_i), (v_i))^*$$

$$= \left(\sum_i w_i^* v_i\right)^*$$

$$= \sum_i w_i^{**} v_i^*$$

$$= \sum_i v_i^* w_i$$

$$= ((v_i), (w_i))$$

$$= (|v\rangle, |w\rangle)$$

Finally positivity:

$$(|v\rangle, |v\rangle)$$

$$= ((v_i), (v_i))$$

$$= \sum_i v_i^* v_i$$

$$= \sum_i |v_i|^2$$

Clearly this expression is at least 0, with equality when $v_i = 0 \ \forall i$, i.e. when $|v\rangle = (0, 0, \dots, 0)$.

Therefore the operator (\cdot, \cdot) is an inner product on the vector space \mathbb{C}^n .