Finding Candidates for Potentially Gravitationally-Bound Galaxies

Hanna Johnson and William Lee

Goal

 Create a process for confirming pairs of colliding galaxies using angular separation and intergalactic distances

Methodology

Calculate angular separation with spherical law of cosines

$$\cos(\gamma) = \cos(90^{\circ} - \delta_a)\cos(90^{\circ} - \delta_b) + \sin(90^{\circ} - \delta_a)\sin(90^{\circ} - \delta_b)\cos(\alpha_a - \alpha_b)$$
 $a = (\alpha_a, \delta_a)$
 $\alpha_a \to \text{Galaxy 1 right ascension}$
 $\alpha_b \to \text{Galaxy 1 right ascension}$

$$b = (\alpha_b, \delta_b)$$
 $\delta_a \rightarrow$ Galaxy 2 declination $\delta_b \rightarrow$ Galaxy 2 declination

2) Calculate intergalactic distance

$$c = \sqrt{a^2 + b^2 - 2ab(cos\gamma)}$$

 $c \rightarrow$ distance between two galaxies $a \rightarrow$ distance to galaxy 1 from Earth $b \rightarrow$ distance to galaxy 2 from Earth

3) Filter galactic distances < distance from Milky Way to Andromeda

Data

- Used subset of NGC Catalog
- Gathered RA and Dec for each galaxy
- Used pandas to perform calculations between each galaxy and every other galaxy
- Checked resulting filtered pairs to see if they were gravitationally-bound in real life

```
distances = {}
name dists = []
distances1 = []
count = 0
for i in np.arange(394):
    g1name = galaxies.loc[i, "Name"]
    d1 = galaxies.loc[i, "Distance"]
    for j in np.arange(394):
        count += 1
        g2name = transposed.loc["Name", j]
        d2 = transposed.loc["Distance", i]
        gamma = gamma vals[count - 1]
        one_distance_between = np.sqrt((d1**2) + (d2**2) - 2*d1*d2*np.cos(gamma))
        distances1.append(one_distance_between*3261.5637769443)
        name_dists.append((g1name, g2name))
distances = {distance_between: name for distance_between, name in zip(distances1, name dists)
distances
```

Results: The 15 pairs we generated

	Distance (ly)	G1	G2	Gamma
0	1.652946e+06	NGC 959	NGC 949	0.029644
1	1.432211e+06	NGC 693	NGC 676	0.009587
2	1.915582e+06	NGC 615	NGC 636	0.017550
3	2.289657e+06	NGC 205	NGC 292	1.998734
4	2.287100e+06	NGC 221	NGC 292	1.984090
5	2.288372e+06	NGC 224	NGC 292	1.991361
6	2.355140e+06	NGC 598	NGC 292	1.810007
7	1.163615e+06	NGC 547	NGC 538	0.005773
8	2.197333e+06	NGC 565	NGC 547	0.008744
9	3.509946e+04	NGC 221	NGC 205	0.015955
10	2.151365e+04	NGC 224	NGC 205	0.009779
11	6.084162e+05	NGC 598	NGC 205	0.267585
12	1.599827e+04	NGC 224	NGC 221	0.007272
13	5.764968e+05	NGC 598	NGC 221	0.253065
14	5.870424e+05	NGC 598	NGC 224	0.257863
15	1.839583e+06	NGC 508	NGC 515	0.005046

*Confirmed pairs with stellarium – many are within galaxy clusters

Problems

No RA and Dec error in data set, so could not calculate error

Future

- Incorporate mass to find total system energy of two galaxies to support distance calculations
- Cross-reference other catalogues
- Use larger data set