Docket No.: 1315-049 PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Byung Kee KIM : Confirmation No.

U.S. Patent Application No. **NOT YET ASSIGNED** : Group Art Unit:

Filed: **HEREWITH** : Examiner:

For: METHOD OF PRODUCING NANOPHASE W POWDER BY LOW-PRESSURE VAPOR PHASE REACTION

CLAIM OF PRIORITY AND TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

In accordance with the provisions of 35 U.S.C. 119, Applicant hereby claims, in the present application, the priority of Korean Patent Application No. 10-2002-0086722, filed December 30, 2002. The certified copy is submitted herewith.

Respectfully submitted,

LOWE HAUPTMAN GILMAN & BERNER, LLP

Allan M. Lowe

Registration No. 19,641

1700 Diagonal Road, Suite 310 Alexandria, Virginia 22314 (703) 684-1111 AML/pjc Facsimile: (703) 518-5499

Date: December 30, 2003

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 :

10-2002-0086722

Application Number

출 원 년 월 일 Date of Application 2002년 12월 30일

DEC 30, 2002

출 원 인 : Applicant(s)

한국기계연구원

KOREA INSTITUTE OF MACHINENRY & MATERIALS

²⁰⁰³ 년 ¹¹ 월 ¹² 일

특 허 청 COMMISSIONER

【서지사항】

【서류명】 명세서 등 보정서

【수신처】 특허청장

【제출일자】 2003.02.19

【제출인】

【명칭】 한국기계연구원

【출원인코드】 3-1999-902348-1

【사건과의 관계】 출원인

【대리인】

【명칭】 특허법인 원전

【대리인코드】 9-2000-100001-9

【지정된변리사】 임석재 ,최영민

【포괄위임등록번호】 2002-076103-3

【사건의 표시】

【출원번호】 10-2002-0086722

【출원일자】 2002.12.30

【심사청구일자】 2002.12.30

【발명의 명칭】 저압 기상반응법에 의한 나노 W 분말의 제조방법

【제출원인】

【접수번호】 1-1-02-0437069-27

 【접수일자】
 2002.12.30

【보정할 서류】 명세서등

【보정할 사항】

【보정대상항목】 별지와 같음

【보정방법】 별지와 같음

【보정내용】별지와 같음

【취지】 특허법시행규칙 제13조·실용신안법시행규칙 제8조의 규

정에의하여 위와 같 이 제출합니다. 대리인

특허법인 원전 (인)

【수수료】

【보정료】 0 원

【추가심사청구료】 0 원

【기타 수수료】 0 원

【합계】 0 원

【첨부서류】

1. 보정내용을 증명하는 서류_1통

【보정대상항목】 식별번호 23

【보정방법】 정정

【보정내용】

도1은, 본 발명에 따른 나노 W 분말의 제조공정도이고, 도2는, 상기 전구체를 기화시킨 후 W 성분을 분리하기 위한, 본 발명의 제조방법에 사용되는 나노 분말 제조장치의 일례를 나타내는 개략 구성도이다.

【보정대상항목】 청구항 4

【보정방법】 정정

【보정내용】

제1항에 있어서,

상기 텅스텐 성분 분리반응은 500~1500℃의 온도 하에서 이루어지는 것을 특징으로 하는 저압 기상반응법에 의한 나노 W 분말의 제조방법.

【보정대상항목】 청구항 5

【보정방법】 정정

【보정내용】

제1항에 있어서,

상기 분리된 텅스텐 성분을 영하의 냉각기 표면에 흡착시켜 응축시키는 것을 특징으로 하는 저압기상반응법에 의한 나노 W 분말의 제조방법.

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0002

【제출일자】 2002.12.30

【발명의 명칭】 저압 기상반응법에 의한 나노 W 분말의 제조방법

【발명의 영문명칭】 Process for manufacturing W powder by vaper reaction under

vacuum pressure

【출원인】

【명칭】 한국기계연구원

【출원인코드】 3-1999-902348-1

【대리인】

【명칭】 특허법인 원전

[대리인코드] 9-2000-100001-9

【지정된변리사】 임석재 ,민병호

【포괄위임등록번호】 2002-076103-3

【발명자】

【성명의 국문표기】 김병기

【성명의 영문표기】 KIM,Byoung Kee

【주민등록번호】 560220-1042011

【우편번호】 607-060

【주소】 부산광역시 동래구 온천동 럭키아파트 1동 105호

【국적】 KR

【발명자】

【성명의 국문표기】 김진천

【성명의 영문표기】 KIM, Jin Chun

【주민등록번호】 670505-1261410

【우편번호】 641-111

【주소】 경상남도 창원시 가음동 13-3 한국기계연구원 아파트 307호

【국적】 KR

【심사청구】 청구

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사 를 청구합니다. 대리인

특허법인 원전 (인)

【수수료】

【기본출원료】

【가산출원료】

【우선권주장료】

【심사청구료】

【합계】

【감면사유】

【감면후 수수료】

【첨부서류】

13 면 29,000 원

0 면

0 원

0 건

0 원

5 항

269,000 원

298,000 원

정부출연연구기관

149,000 원

1. 요약서·명세서(도면)_1통

【요약서】

【요약】

본 발명은 고강도, 내마모가 필요한 초경합금 등의 소재로 사용되는 나노 분말의 제조에 관한 것이며, 그 목적은 저압 기상반응법에 의해 텅스텐이 함유된 전구체를 사용하여 수십 nm 급의 W 분말을 제공함에 있다.

상기 목적 달성을 위한 본 발명에 따른 W 분말의 제조방법은, 상기 텅스텐을 함유한 전 구체를 준비하는 단계; 상기 전구체를 기화 또는 승화시켜 가스를 발생시키는 단계; 상기 가스 를 불활성분위기에 두고, 대기압 미만의 압력 하에 유지하여 텅스텐 성분을 분리하는 단계; 상 기 텅스텐 성분을 대기압 이하의 압력 하에서 응축하는 단계;를 포함하여 구성되는 것을 특징 으로 한다.

이렇게 제조된 나노 W 분말은 강도가 높고, 내마모성이 우수하여 초경공구 등의 초경합금이나, 내마모용 부품 또는 금형 소재의 원료로서 매우 적합하다.

【대표도】

도 1

【색인어】

₩, 초경합금, 나노, 기상반응, 진공, 불활성분위기

【명세서】

【발명의 명칭】

저압 기상반응법에 의한 나노 W 분말의 제조방법{Process for manufacturing W powder by vaper reaction under vacuum pressure}

【도면의 간단한 설명】

도1은, 본 발명에 따른 나노 ₩ 분말의 제조공정도이고,

도2는, 본 발명의 제조방법에 사용되는 나노 분말 제조장치의 개략 구성도이고,

도3은, 본 발명에 따라 제조된 나노 분말의 조직사진이고,

도4는, 본 발명에 따라 제조된 나노 분말의 FE-SEM 사진이고.

도5는, 본 발명에 따라 제조된 나노 분말의 X선 회절 분석결과이다.

<도면의 주요부분에 대한 부호의 설명>

1 ... 금속유기물 전구체, 2 ... 수송가스 공급파이프,

10 ... 기화기, 15... 반응로밸브.

20 ... 반응로, 21 ... 반응로조절기,

30 ... 응축기, 31 ... 냉각기.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 시간 본 발명은 고강도, 내마모가 필요한 초경합금이나 고강도 고속도공구강, 내열내식강 등의 소재로 사용되는 나노 분말의 제조에 관한 것으로서, 보다 상세하게는 저압 기상반응법에의해 텅스텐이 함유된 전구체로부터 수십 nm급의 W 분말을 제조하는 방법에 관한 것이다.
- 의반적으로 상용화되는 W 분말은 대부분 중정석(重晶石)에서 암모늄 파라텅스텐을 정제한 후, 이를 WO3으로 분해하여 다시 다단계환원하여 제조하거나, 회중석(灰重石)을 염산분해법혹은 탄산소오다법을 이용하여 WO3을 만든 후 이를 환원하여 제조한다. 그러나, 이러한 방법들은 다단계 정제 및 환원이라는 복잡한 공정을 거쳐야 하고, 또한 원료분말에서 첨가되는 Mo, Mn, Ca 등의 불순물의 혼입을 피하기가 매우 어렵다는 문제가 있다. 뿐만 아니라, 이런 방법으로는 0.1µm 이하의 극미세 분말을 제조하는데는 한계가 있다.

【발명이 이루고자 하는 기술적 과제】

<13> 본 발명의 목적은 저압 기상반응을 이용하여 보다 단순한 공정으로 약 20nm 이하의 W 초 경분말을 합성하는데 있다.

【발명의 구성 및 작용】

<14> 상기 목적을 달성하기 위하여 본 발명은, 텅스텐 함유 전구체로부터 W 분말을 제조하는 방법에 있어서,

- <15> 상기 텅스텐을 함유한 전구체를 준비하는 단계;
- <16> 상기 전구체를 기화 또는 승화시켜 가스를 발생시키는 단계;
- <17> 상기 가스를 불활성분위기에 두고, 대기압 미만의 압력 하에 유지하여 텅스텐 성분을 분리하는 단계;
- <18> 상기 텅스텐 성분을 대기압 이하의 압력 하에서 응축하는 단계;를 포함하여 구성되는 것을 특징으로 한다.
- <19> 이하, 본 발명을 상세히 설명한다.
- 본 발명은 텅스텐 함유 전구체를 직접 기화 또는 승화시킨 후, 이를 대기압 미만의 진공 압력 하에서 텅스텐 성분을 분리하고 이를 응축함으로써, 나노 크기의 목적 분말을 제조하는데 특징이 있다.
- <21> 상기 전구체는 텅스텐을 함유한 전구체이면 무방하며, 텅스텐 에톡사이드 용액(V 용액) 또는 텅스텐 클로라이드(WCl₆) 용액 등의 액상 전구체나, 텅스텐 헥사카보닐[W(CO)₆]과 같은 고상의 전구체를 사용할 수도 있다.
- <22> 본 발명에서는 상기 전구체를 기화 또는 승화시켜 가스로 만든 후, 가스 상태의 텅스텐 성분을 분리하여 응축시킨다.
- <23> 도1은, 본 발명에 따른 나노 W 분말의 제조공정도이고, 도2는, 상기 전구체를 기화시킨 후 침탄하기 위한, 본 발명의 제조방법에 사용되는 나노 분말 제조장치의 일례를 나타내는 개략 구성도이다.

- 도2에 도시된 바와 같이, 기상반응을 통한 나노 분말의 제조장치(100)는, 펌프(미도시)에 의하여 저장용기로부터 공급되는 전구체(1)를 기화시키는 기화기(10)와, 기화된 전구체를 가열하여 텅스텐 성분을 분리시키는 반응로(20)와, 상기 반응로(10)에 연결된 응축기(30)를 포함하여 구성된다.
- <25> 상기 기화기(10)에는 수송가스 공급파이프(2)와 기화된 전구체와 수송가스의 혼합가스가 배출되는 혼합가스 공급파이프(3)가 각각 연결되어 있어 반응로(10)로 혼합가스를 공급한다.
- 산 반응로(20)에는 반응로조절기(21)가 연결되어 있어 반응로의 온도를 조절할 수 있다. 그리고, 상기 기화기(10)와 반응로(20) 사이에는 반응로밸브(15)가 설치되어 있어 수송가스의 유량을 조절할 수 있도록 되어 있다.
- 본 발명의 주된 특징은, 이와 같이 분자수준의 기상(氣相)인 전구체 가스를 대기압 미만의 진공압력 하에서 분리반응시킴으로써, 분리반응속도가 빠를 뿐만 아니라, 분리반응이 종료되어 응축된 최종제품분말의 크기를 약 20nm 이하의 나노 수준으로 할 수 있다는 점에 있다. 상기 진공압력은 1.3★0⁻⁵atm 이상~1 atm 미만인 것이 바람직하다. 반응로(20)를 1.3★0⁻⁵ atm 미만의 초진공 상태로 유지하기에는 비용이 너무 많이 들기 때문이다.

- 상기 공급파이프(2,3)는 스테인레스, 동 등의 금속 또는 알루미나, 뮬라이트, 실리콘 카바이드 등의 세라믹, 테프론 등을 사용할 수 있으며, 전구체(1)의 기화온도인 100~300℃의 온도에서 견딜 수 있는 것이 적당하다. 또한, 기화기(10)도 전구체의 기화온도 이상 견딜 수 있는 한 쪽 끝이 막힌 스테인레스관, 알루미나관, 석영관, 파이렉스관 등을 사용할 수 있다.
- <30> 수송가스로는 불활성분위기를 형성할 수 있는 H₂, He, Ar, N₂ 및 이들의 혼합가스 중에서 선택된 적어도 하나를 사용할 수 있으며, 수송가스의 유량은 10~2000cc/min 정도가 적당하다.
- <31> 한편, 액상의 전구체를 사용할 경우에는, 전구체의 이송유량은 0.05~2cc/min 정도가 적당하다.
- *32> 반응로(20)는 수평 튜브로의 형식으로 스테인레스관, 석영관, 뮬라이트관, 알루미나관등이 사용가능하다. 상기 반응로(20)는 히터가 내장되어 있다.
- 본 발명에서는, 전구체 가스가 ₩ 성분과 그 외의 성분으로 분리될 수 있도록 반응로
 (20)의 온도를 유지하는 것이 중요하다. 바람직하게는, 반응로(20)의 온도는 500~1500℃의 온도범위로 유지되는 것이 좋으며, 더욱 바람직하게는 1000~1200℃에서 유지되는 것이 좋다.
 500℃ 이하에서는, 분해 반응이 활발하게 일어나지 않으며, 제품수율과 원가절감의 차원에서 그 상한선은 1500℃ 이하인 것이 좋다. 이 때, 반응로(20)의 분위기는 수송가스에 의하여 볼활성 분위기로 유지된다.
- *34> 반응로(20)에서 열 분해된 W 가스와 나머지 성분 가스들은 응축기(30)로 공급되고, 여기서 무거운 W 가스는 자연 침강하여 응축되거나, 응축기 내에 설치된 냉각기 표면에 흡착되어 응축되며, 나머지 가벼운 성분의 잔류가스들은 배출파이프(32)로 배출된다. 상기 냉각기 내에

는 냉각수, 액체질소 또는 액체헬륨 등의 영하의 냉매가 채워져 있어, 이른바 열 영동효과에 의하여 자연침강에 의한 응축보다 훨씬 빨리 흡착이 진행될 뿐 아니라, 이를 회전시키면 더 우수한 응축효율을 얻을 수 있다.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다. 그러나, 아래의 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 아래의 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.

<36> [실시예]

- <37> 기화온도가 120~170℃이고 부식성이 없는 고상의 전구체인 텅스텐 핵사카보닐을 준비하고, 이를 도2와 같은 장치에서 이송하면서 기화(기화기 온도 120℃)시켜 외경 약 40mm, 내경약 30mm인 알루미나관인 반응로 내로 이송하였다. 수송가스로는 Ar가스를 사용하였다. 또한, 반응로를 가열하여 약 1100℃에서 기화된 전구체를 ₩과 기타 성분으로 분해하였다.
- <38> 이렇게 하여 얻어진 W 분말을 응축 및 회수하고, 그 회수된 분말을 전자현미경으로 관찰하여, 그 결과를 도3 및 도4에 나타내었다.
- <39> 도3 및 도4에 나타난 바와 같이, 본 발명에 따라 제조된 W 분말은 그 입자가 약 20nm 이하의 크기를 보이고 있었다.
- 또한, 본 발명에 따라 제조된 W 분말은 도5에 도시된 것과 같은 피크(peak) 폭을 가지며, 이를 피크 폭과 입자크기의 관계를 나타내는 소정의 관계식에 대입하여 그 입자크기를 구해보면 역시 20nm 이하의 크기를 가지고 있음을 알 수 있다.

【발명의 효과】

생물한 바와 같이, 본 발명에 의하면 텅스텐 전구체를 기화 또는 승화시켜 기상의 텅스텐을 바로 분리하므로 공정이 간소하다는 장점이 있다.

또한, 저압 기상반응을 통하여 분자 수준의 기상을 진공 하에서 반응 및 응축시키므로 수십 nm급의 W 분말을 제공할 수 있으며, 이러한 나노 분말은 강도가 높고, 내마모성이 우수하 여 초경공구 등의 초경합금이나, 내마모용 부품 또는 금형 소재의 원료로서 매우 적합하다.

【특허청구범위】

【청구항 1】

텅스텐 함유 전구체로부터 ₩ 분말을 제조하는 방법에 있어서,

상기 텅스텐을 함유한 전구체를 준비하는 단계;

상기 전구체를 기화 또는 승화시켜 가스를 발생시키는 단계;

상기 가스를 불활성분위기에 두고, 대기압 미만의 압력 하에 유지하여 텅스텐 성분을 분리하는 단계;

상기 텅스텐 성분을 대기압 이하의 압력 하에서 응축하는 단계;를 포함하여 구성되는 것을 특징으로 하는 저압 기상반응법에 의한 나노 W 분말의 제조방법.

【청구항 2】

제1항에 있어서,

상기 전구체는 텅스텐 헥토사이드, 텅스텐 클로라이드 및 텅스텐 헥사카보닐 중에서 선택된 적어도 하나인 것을 특징으로 하는 저압 기상반응법에 의한 나노 W 분말의 제조방법.

【청구항 3】

제1항에 있어서.

상기 불활성분위기는 CO, CO₂, H₂, He, Ar, N₂, 및 이들의 혼합가스 중에서 선택된 적어도 하나를 사용하여 형성되는 것을 특징으로 하는 저압 기상반응법에 의한 나노 W 분말의 제조방법.

【청구항 4】

제1항에 있어서,

상기 침탄은 500~1500℃의 온도 하에서 이루어지는 것을 특징으로 하는 저압 기상반응법 에 의한 나노 W 분말의 제조방법.

【청구항 5】

제1항에 있어서,

상기 침탄된 가스는 영하의 냉각기 표면에 흡착시켜 응축되는 것을 특징으로 하는 저압 기상반응법에 의한 나노 W 분말의 제조방법.

【도면】

[도 2]

BEST AVAILABLE COPY