Графи

Определение

- Крайно непразно множество от точки, наречени върхове (или възли), свързани помежду си с линии, наречени ребра. Графът е нелинейна динамична структура от данни.
- Други имена
 - graph
- Пример
 - улици в квартал
 - □ химични формули

Основни понятия

- Степен на връх броят на ребрата, чрез които даден връх е свързан с другите върхове
- Изолиран връх връх от степен 0
- Примка дъга която свързва един и същи връх
- Паралелни ребра когато два върха са свързани с повече от едно ребра, те се наричат паралелни

Основни понятия

- Път редицата от дъги, която свързва два върха
- Дължина на пътя броят на дъгите, които свързват два върха
- Прост път ако не съдържа повтарящи се дъги
- Цикъл път, чиито начало и край съвпадат

Видове графи

- Неориентиран когато на ребрата не са указани посоки
- Ориентиран когато за дадено ребро се прави разлика кой връх е начален и кой краен
- Свързан ако за всяка двойка върхове съществува път между тях

матрицата на съседство:

състои от толкова реда и стълба, колкото е броят на върховете в графа. Ако има ребро между връх 1 и връх 2 то елементът на позиция [1][2] е 1, а ако няма ребро - 0

	вр.1	вр.2	вр.3	вр.4	вр.5
вр.1	0	1	1	0	0
вр.2	0	0	1	0	1
вр.3	0	0	0	1	0
вр.4	0	0	0	0	0
вр.5	0	0	0	1	0

матрицата на съседство:

когато графът е претеглен вместо единици можем да записваме теглото на ребрата

	вр.1	вр.2	вр.3	вр.4	вр.5
вр.1	0	10	9	0	0
вр.2	0	0	13	0	15
вр.3	0	0	0	24	0
вр.4	0	0	0	0	0
вр.5	0	0	0	8	0

матрицата на инцидентност:

> в нея редовете са върховете, а стълбовете - ребрата. Елементът на позиция [i][j] е:

- -1 ако реброто ј излиза от върха і
- 1 ако реброто ј влиза във върха і
- 0 в противен случай

	ребро 1	ребро 2	ребро 3	ребро 4	ребро 5	ребро 6
вр.1	-1	-1	0	0	0	0
вр.2	1	0	-1	-1	0	0
вр.3	0	1	1	0	-1	0
вр.4	0	0	0	0	1	1
вр.5	0	0	0	1	0	-1

списъци на съседство:

> при тях за всеки връх от графа има списък, в който се намират номерата на съседните му върхове

Приложение на графите

Теория на графите

- Кьонигсбергските мостове (Ойлер, 1736 г.)
- транспортните мрежи
- компютърни мрежи и Интернет
- социални мрежи
- изследване на електрическите вериги
- моделиране на кристали и структурата на молекулите
- в теорията на игрите и програмирането

Край