USN LECT

BMATS201

Second Semester B.E./B.Tech. Degree Examination, Nov./Dec. 2023

Mathematics – II for CSE Stream

Balamer 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Evaluate $\int_{-c}^{c} \int_{-b-a}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	7	L2	CO1
	b.	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates.	7	L2	CO1
	c.	Prove that $\beta(m,n) = \frac{\Gamma m - \Gamma n}{\Gamma m + n}$.	6	L2	CO1
		OR			
Q.2	a.	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$ by changing the order of integration.	7	L3	CO1
	b.	Prove that $\int_{0}^{\pi/2} \sqrt{\cot \theta} \ d\theta = \frac{\pi}{\sqrt{2}}$	7	L2	CO1
	c.	Using mathematical tools, write the code to find the area of an ellipse by double integration $A = 4 \int_0^a \int_0^{\frac{b}{\sqrt{a^2 - x^2}}} dy dx$	6	L3	CO5
		Module – 2			
Q.3	a.	Find div \vec{F} and curl \vec{F} , If $\vec{F} = \nabla (x^3 + y^3 + z^3 - 3xyz)$	7	L2	CO2
	b.	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at $(1, -2, -1)$ Along the direction of the vector $(2i - j - 2K)$.	7	L2	CO2
	c.	Prove that the spherical coordinate system is orthogonal.	6	L3	CO2
		OR			
Q.4	a.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	7	L3	CO2
	b.	Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)K$ is both solenoidal and irrotational	7	L2	CO2
	c.	Using the mathematical tools, write the codes to find the divergence of $\vec{F} = x^2yi + yz^2j + x^2z$ K.	6	L3	CO5

		Module – 3			
Q.5	a.	Prove that the subset $W = \{(x, y, z)/x - 3y + 4z = 0\}$ of the vector space R^3 is a subspace of R^3 .	7	L3	CO3
	b.	Determine whether the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$ is a linear combination of $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ in the vector space M_{22} of 2×2 matrices.	7	L2	CO3
	c.	Find the linear transformation $T: V_2(R) \to V_3$ (R) such that $T(1, 1) = (0, 1, 2), T(-1, 1) = (2, 1, 0).$	6	L2	CO3
		OR			
Q.6	a.	Determine whether the vectors $V_1 = (1, 2, 3)$, $V_2 = (3, 1, 7)$ and $V_3 = (2, 5, 8)$ are linearly dependent or linearly independent.	7	L2	CO3
	b.	Find the dimension and basis of the subspace spanned by the vectors $(2, 4, 2), (1, -1, 0), (1, 2, 1)$ and $(0, 2, 1)$ in $V_3(R)$	7	L2	CO3
	c.	Verify the rank-nullity theorem for the linear transformation $T: V_3(R) \rightarrow V_3(R)$ defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$.	6	L2	CO3
		Module – 4			
Q.7	a.	Find the root of the equation $xe^x = 2$ that lies between 0 and 1. Using Regula- Falsi method. Carryout Four iterations. Correct to 3 – decimal places.	7	L2	CO4
	b.	Use Newton's divided difference formula. Find f(q), given the data: x : 5 7 11 13 17 f(x) : 150 392 1452 2366 5202	7	L3	CO4
	c.	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $\frac{1}{3}^{rd}$ rule taking 4 equal parts. CMRIT LIBRARY RANGALORE - 560 037	6	L3	CO4
		OR			
Q.8	a.	Find the real root of the equation $3x - \cos x - 1 = 0$. Correct to 3-decimal places. Using Newton's Raphson method carryout 3 – iteration.	7	L2	CO4
	b.	Find $Tan(0.26)$ given that $Tan(0.10) = 0.1003$ $Tan(0.15) = 0.1511$, $Tan(0.20) = 0.2077$, $Tan(0.25) = 0.2553$, $Tan(0.30) = 0.3093$. Using Newton's Backward interpolation formula.	7	L2	CO4
	c.	Evaluate $\int_{4}^{5.2} \log x dx$ taking 6 equal parts. Using Simpson's $3/8^{th}$ rule.	6	L2	CO4

		Module – 5			
Q.9	a.	Employ Taylor's series method find y at $x = 0.1$ and 0.2 given that	7	L2	CO4
		$\frac{dy}{dx} = 2y + 3e^x$; $y(0) = 0$. Up to fourth degree terms.			
		dx			
			-	TA	004
	b.	Using Runge Kutta a method of forth order to find an approximate value of	7	L2	CO4
		$y(0.2)$ given that $\frac{dy}{dx} = (x^2 + y)$ with $y(0) = 1$. Taking h = 0.2.			
		dx			
		G: / (2) 1.1 1. (0) 0 (0.2) 0.02 (0.4) 0.0705	6	L2	CO4
	c.	Given $y' = (x - y^2)$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$,	U		204
	-	y(0.6)=0.1762. Compute $y(0.8)$ by Milne's method.			
		OR		1	
		1	7	L2	CO4
Q.10	a.	Using modified Euler method find y(0.1) given that $\frac{dy}{dx} = (x + y)$, with y(0)			
		= 1, Taking h = 0.1. Carryout 3-modification.			
		BANGALORE - 560 037			
	b.	Using Runge kutta method of fourth order, find the value of (0.2). Given	7	L2	CO4
		that $\frac{dy}{dx} = \left(3x + \frac{y}{2}\right)$ with $y(0) = 1$. Taking $h = 0.2$.			
		that $\frac{1}{dx} = (3x + \frac{1}{2})^{while} y(0) = 1$. Taking if 0.2 .			
	c.	Using Mathematical tools, write the code solve the differential equation	6	L3	CO
		$\frac{dy}{dx} = 3e^x + 2y$ with $y(0) = 0$, using the Taylor's series method at $x = 0.1$			
		dx			
		(0.1) 0.3.			
		Cy (S)			
		3 of 3			
		6-			
		3 of 3			
				100	
		a. a.			