

Representações Avançadas em Binário

Universidade Federal de Uberlândia Faculdade de Computação Prof. Dr. rer. nat. Daniel D. Abdala

Na Aula Anterior...

- Fundamentação dos sistemas Numéricos Posicionais
- Sistema Numéricos
 - Decimal
 - Binário
 - Octal
 - Hexadecimal
- Conversão de bases

Nesta Aula

- Representação de números negativos em binário;
- Representação de números reais em base binária;
- Conversão de bases de números reais;
- Complementos de 1 e 2;
- Extensão do sinal em complemento de 2;
- Notação de ponto flutuante;
- Motivação para Códigos Binários;
- Código BCD;
- Código Johnson;
- Código Excesso de 3;
- Código Gray;
- Código ASCII.

Números Inteiros Sinalizados

- Utiliza-se um tamanho fixo de palavra;
- Geralmente o bit mais significativo é reservado para o sinal do número;

Exemplos

- $1 0000001 \Rightarrow -1_{10}$
- $0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ +42_{10}$

Representações Alternativas para Números Inteiros Sinalizados

 Os números de magnitude com sinal são fáceis de entender, mas eles requerem demasiado hardware para adição e subtração. Isso tem levado ao uso amplo de complementos para aritmética binária.

- Existem dois tipos de complemento:
 - Complemento de 1
 - Complemento de 2

Complemento de 1

- O complemento de 1 é calculado pela inversão de cada um dos bit do número;
- Existe duas possíveis representações par o número 0.

$$0010 \Rightarrow +2_{10}$$
 $1101 \Rightarrow -2_{10}$

Decimal	Comp. 1
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000
-0	1111

Complemento de 2

 O complemento de 2 é calculado pela inversão de cada um dos bits do número. Subsequentemente somase 1 ao valor dos bits invertidos;

Decimal	Comp. 2
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Extensão de Sinal Positivo

Considere por exemplo a representação do número
 11

0 1011
$$\Rightarrow$$
 11₁₀

- No computador, por conveniência de arquitetura, o tamanho da palavra binária (número de bits) é sempre múltiplo de 2 (4, 8, 16, 32, 64, ...)
- Para acomodar um número de 5 bits em uma palavra de 8 bits, basta estender o sinal para os demais bits

$$0 0001011 \Rightarrow 11_{10}$$

Extensão de Sinal Negativo

Considere por exemplo a representação do número
 -11 em complemento de 2

- Se completarmos os bits restantes para uma palavra de 8 bits com zeros, o número deixará de ser o mesmo
- Em complemento de 2, basta que completemos os demais bits com o bit "1"

Números Reais em Binário

- Extensão simples do sistema posicional;
- A parte inteira fica inalterada, a parte fracionária utiliza potências negativas.

$$10,5_{10} \implies \frac{1}{10^{1}} \frac{0}{10^{0}} \frac{5}{10^{-1}}$$

				<i>,</i> ——	
2 ³	2 ²	2 ¹	2 °	2 ⁻¹	2 -2

Pot.	valor
2-1	0,5
2 ⁻²	0,25
2-3	0,125
2-4	0,0625
2 ⁻⁵	0,03125
2 ⁻⁶	0,015625
2 ⁻⁷	0,0078125
2-8	0,00390625

Conversão (Reais) Binário - Decimal

$$42,42_{10} \implies 42_{10} + 0,42_{10} \qquad 0,42$$

$$\begin{array}{c} x & 2 \\ \hline 0,84 \\ x & 2 \\ \hline 1,68 \\ x & 2 \\ \hline 1,36 \\ x & 2 \\ \hline 0,72 \\ \vdots \\ \end{array}$$

Um Exemplo Mais Simples

Conversão binário -> decimal

Notação em Ponto Flutuante

- Fundamentada na notação numérica científica; $42,42 = 42,42 \times 10^0 = 4,242 \times 10^1 = 0,4242 \times 10^2$
- Utilização otimizada do espaço de representação;
- Note que o sinal fracionário "flutua" dependendo do expoente associado a base;

$$+/_0$$
, mantissa× base $+/_e$ expoente

- A mantissa está contida no intervalo [0,1[
- É importante notar que a notação em ponto flutuante pode induzir à erros de arredondamento.

Padrões de Representação

IEEE Standard for Floating-Point Arithmetic, IEEE 754'2008

Precisão Simples

Precisão Dupla

Conversão (Precisão simples)

- Expoente possui um bias de 127 (01111111₂);
- Ao contrário da notação científica tradicional, que coloca todos os dígitos significativos a direita da vírgula, em ponto flutuante deixamos um '1' a esquerda da vírgula.

Exemplo

- $10,25_{10} \Rightarrow 1010,01_2 \Rightarrow 1,01001x2^3$
- sinal \rightarrow +
- expoente \rightarrow 127+3 = 130 \rightarrow (011111111+11) = 10000010

010010000000000000000000

Casos Especiais

Números (não normalizados)

Números Representáveis

- Em matemática, o conjunto dos números reais é infinito;
- Entre dois números reais quaisquer, há infinitos números reais;
- Para tal, infinitos dígitos devem ser potencialmente utilizados;
- A representação de números reais utilizando a notação de ponto flutuante, utiliza um número finito de bits;
- Por definição, apenas números racionais podem ser representados em ponto flutuante;

Números Representáveis

• $0.1_{10} \rightarrow 0.0001100110011 \dots$

$$Fra = \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{12}} + \frac{1}{2^{13}} + \cdots \to 0.1$$

• $s = 0 \mid m = 1.1001100110011 \dots e = -4$

- Convertendo de volta para decimal ...
- m = 0,100000001490116119384765625
- erro = 0,000000001490116119384765625

Exercícios

- Converta para representação em ponto flutuante (precisão simples)
- 42,42₁₀
 3,6₁₀

Códigos Binários

- O computador trabalha apenas com números;
- Estes números são sempre em binário, devido a aspectos de construção;
- Códigos binários fornecem uma forma de representar outros conceitos que não números, de maneira a serem mapeados diretamente para suas representações em binário, e desta forma, passíveis de serem processados pelo computador.

BCD 8421

- BCD significa "Binary Coded Decimal", ou seja,
- Representa números de 0-9 em binário;
- Utiliza quatro bits para cada dígito decimal;
- Para representar o número 10 por exemplo, são necessários oito bits em BCD 8421;
- 8421 referem-se as potências de cada uma das quatro casas do sistema de codificação.

BCD 8421

Decimal	Binário Puro	BCD 8421
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111

Decimal	Binário Puro	BCD 8421
8	1000	1000
9	1001	1001
10	1010	0001 0000
11	1011	0001 0001
12	1100	0001 0010
13	1101	0001 0011
14	1110	0001 0100
15	1111	0001 0101

Código de Johnson

 Muito utilizado na construção de circuitos contadores;

Dec	Johnson	Binário
0	00000	0000
1	00001	0001
2	00011	0010
3	00111	0011
4	01111	0100
5	11111	0101
6	11110	0110
7	11100	0111
8	11000	1000
9	10000	1001

Código Excesso de 3

Código simples, soma-se 11₂
 ao número binário puro;

 $0111_2 \Rightarrow 1010_{e3}$

Dec	Exc 3	Binário
0	0011	0000
1	0100	0001
2	0101	0010
3	0110	0011
4	0111	0100
5	1000	0101
6	1001	0110
7	1010	0111
8	1011	1000
9	1100	1001

Código Gray

- Sistema de numeração binário no qual dois valores sucessivos diferem em apenas 1 bit;
- Aplicado em correção de erros, controle de dispositivos eletromecânicos, etc.

Dec	Gray	Binário
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Prof. Dr. rer. nat . Daniel Duarte Abdala

Tabela ASCII

```
000
                               032 sp
                                         048 0
                                                  064 @
                                                           080 P
                                                                    096 `
                                                                             112 p
       (nul)
               016 ► (dle)
                               033 !
001
               017 ◄ (dc1)
                                         049 1
                                                  065 A
                                                           081 0
                                                                    097 a
                                                                             113 q
    0
      (soh)
                               034 "
                                                           082 R
002
    •
               018
                      (dc2)
                                         050 2
                                                  066 B
                                                                    098 b
                                                                             114 r
      (stx)
                               035 #
                                         051 3
                                                           083 S
003 🔻
       (etx)
               019
                    Ш
                      (dc3)
                                                  067 C
                                                                    099 c
                                                                             115 s
               020
                               036 $
                                         052 4
                                                  068 D
                                                           084 T
                                                                    100 d
                                                                             116 t
004
       (eot)
                    П
                      (dc4)
               021 §
                               037 %
                                         053 5
                                                  069 E
                                                           085 U
                                                                    101 e
                                                                             117 u
005
      (eng)
                      (nak)
006 🛦
               022 -
                               038 &
                                         054 6
                                                  070 F
                                                           086 V
                                                                    102 f
                                                                             118 v
      (ack)
                      (syn)
007
       (bel)
               023 🛊
                      (etb)
                               039 '
                                         055 7
                                                  071 G
                                                           087 W
                                                                    103 q
                                                                             119 w
008
               024 🕇
                               040
                                         056 8
                                                  072 H
                                                           088 X
                                                                    104 h
                                                                             120 x
       (bs)
                      (can)
009
               025 』
                               041 )
                                         057 9
                                                  073 I
                                                           089 Y
                                                                    105 i
                                                                             121 y
       (tab)
                      (em)
                               042 *
                                         058:
                                                           090 Z
                                                                             122 z
010
       (lf)
               026
                                                  074 J
                                                                    106 ј
                      (eof)
                               043 +
011 ਫ
      (vt)
               027 ← (esc)
                                         059 ;
                                                  075 K
                                                           091 [
                                                                    107 k
                                                                             123 {
                               044 ,
                                                           092 \
                                                                    108
                                                                             124
012
               028 L (fs)
                                         060 <
                                                  076 L
      (np)
013
               029 ↔ (qs)
                               045 -
                                         061 =
                                                  077 M
                                                           093 ]
                                                                    109 m
                                                                             125 }
       (cr)
                                         062 >
                                                           094 ^
                                                                    110
                                                                             126 ~
014
    Н
      (so)
               030 (rs)
                               046 .
                                                  078 N
015
    ≎
      (si)
               031 ▼ (us)
                               047 /
                                         063 ?
                                                  079 0
                                                           095
                                                                    111 o
                                                                             127 🗅
```

Tabela ASCII

```
128 Ç
         143 Å
                  158 ₺
                            172 4
                                     186 |
                                              200
                                                                 228 Σ
                                                                           242 ≥
                                                        214
                                                                 229 σ
         144
             É
                            173 ;
                                              201
                                                        215
                                                                           243 ≤
129
                  159 f
                                     187
                                     188
                                               202
                                                        216
                                                                 230 μ
130 é
         145 æ
                  160 á
                            174 «
                                                                           244
                                                        217
131
                  161 í
                            175 »
                                     189 🎚
                                              203
                                                                 231 τ
                                                                           245
         146
                  162 6
                            176
                                     190 ⅓
                                               204
                                                        218
                                                                 232 Ф
132
         147
                                                                           246
                                               205 =
                                                        219
                                                                 233 ⊚
133 à
         148 ö
                  163 ú
                            177
                                     191
                                                                           247
                                     192
                                              206
                                                        220
                                                                 234 Ω
                                                                           248
134
         149
                  164 ñ
                            178
             ò
                  165 Ñ
135
    Ç
         150 û
                            179
                                     193 <sup>±</sup>
                                              207
                                                        221
                                                                 235 δ
                                                                           249 •
                                              208
136
         151 ù
                  166 a
                            180
                                     194
                                                        222
                                                                 236 ∞
                                                                           250 •
         152 ÿ
                  167 °
                            181
                                     195
                                               209 =
                                                        223
                                                                 237 φ
                                                                           251 √
137
                            182
138
         153
             Ö
                  168 ;
                                     196 -
                                               210
                                                        224 \alpha
                                                                 238 ε
                                                                           252
139
   ï
         154 Ü
                  169 -
                            183 п
                                     197 +
                                               211
                                                        225
                                                                 239 N
                                                                           253^{2}
                                              212
140 î
         155 ¢
                  170 -
                            184
                                     198
                                                        226 Г
                                                                 240 ≡
                                                                           254
                            185 ╣
         156 £
                  171 1/2
                                               213
                                                        227 п
                                                                 241 \pm
                                                                           255
141 ì
                                     199
142 Ä
         157 ¥
```

Pro Lar

- Leitura: (Tocci) 6.2 (pgs. 254-259)
- Leitura: (Capuano) 1.2.3 até 1.2.3.4 (pgs. 22-27)
- Exercícios: (Capuano): E={1.2.3.1, 1.2.3,5}
- Leitura: (Tocci) 2.4-2.8 (pgs. 31-38)
- Leitura: (Capuano) 5.13 até 5.1.6 (pgs. 142-144)
- Exercícios: (Tocci): E={2.19 2.26}

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L.
 Sistemas Digitais – Princípios e Aplicações.
 11ª Ed. Pearson Prentice Hall, São Paulo,
 S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40º Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.