# CSE4009 CAPSTONE Project



AHMED SHMELS-18BCE2427 ROZA KEFELEGN-18BCE2431 KEMAL MUDIE -18BCE2433 CXRcovNet:COVID-19 detection from CXR images using transfer learning approaches.

Under the guidance of Dr. Rajkumar S

Associate Professor Grade 1

School of Computer Science & Engineering

03/06/2022

#### **OBJECTIVE**

The goal of our project

01

#### **MOTIVATION**

Why we chose this topic?

02

#### Data set

A brief preview of the working of the project

03

#### **RELATED WORK**

A background into the work of others in this topic

04

#### **PROPOSED METHOD**

What did we build?

05

# TABLE OF

CONTENTS

# 06

#### PERFORMANCE MATRIX

How to measure the accuracy of the project

# 07

# RESULTS AND COMPARISON

How good does our project perform when compared to others?

# 08

#### **CONCULUSION**

Summary and future scope of the project

# 09

#### **REFERENCES**

Resources that were referred to while building the project

## Introduction

RT-PCR is the most extensively utilized COVID-19 detection technology.

- ✓ PCR kits, are expensive and require 6-9 hours to confirm infection in the patient.
- ✓ It produces low sensitivity,
- ✓ It produces false-negative findings.

To tackle the limitation of PCR imaging tools such as chest X-rays and (CT) scan are utilized to identify and diagnose COVID-19. In our project Chest X-rays are preferred over CT scans.

- ✓ CXR machines are accessible in most hospitals.
- ✓ CXR machines are less expensive than CT scan devices.
- ✓ CXR emit less ionizing radiation than CT scans.
- ✓ COVID-19 reveals various radiological signatures that easily identified by using chest CXR.

DL-based techniques to automatic analysis of chest X-rays can be used, which may shorten the analysis time.

Hence, our motive is to develop an automated DL-based approach for the detection of COVID-19 in chest X-rays.

## Problem statement

- Our aim in this project is to create an image classification model that can predict Chest X-Ray scans with a reasonably high accuracy.
- The goal is to identify whether a patient can potentially be diagnosed with COVID-19.

In approach 1: Fine tune 3 pretrained CNN model and Identify the most suitable DL model for identify covid-19

# Objective

In approach 2: design and train our own new custom-designed CNN model (CXRcovNet) to detect Covid-19 and conduct a comparative performance analysis of our proposed methodology with other state-of-the-art approaches

# Application

- Used in hospitals to detect covid-19.
- it will substitute over PCR test, because X-ray machines are accessible in the majority of hospitals
- automate the examination of covid, shorten the analysis time and reduce Radiologist's work that helps to tackle covid spread.
- And the research finding will be additional input of knowledge in computer vision and image classification area.

# Literature survey

| Related<br>work                             | modularit<br>Y | Class | Data used             | Evaluation method       | model                                                                         | Performance            | Research gap                                                                                                                                                                            |
|---------------------------------------------|----------------|-------|-----------------------|-------------------------|-------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Jain et al.,<br>2021)                      | CXR            | 3     | 576, 4,273,<br>1,583  | Train: Test = 5467: 965 | Inception V3,<br>Xception,<br>ResNeXt                                         | 95.3% (+ / - 2.1%)     | Comparison of existing state-of-<br>the-art CNN models; Demonstrates<br>high accuracy, sensitivity and very<br>high specificity                                                         |
| (Apostolop<br>oulos &<br>Mpesiana,<br>2020) | CXR            | 3     | 224, 700,<br>504      | 5-fold cross validation | VGG 19, Mobile<br>Net v2,<br>Inception,<br>Xception,<br>Inception Resnet<br>v | 90.5% (± 6.97%)        | Comparison of existing state-of-<br>the-art CNN models; High on<br>accuracy and very high specifcity.<br>There seems to be some issues<br>mentioned in the reported<br>sensitivity data |
| (Hussain et<br>al., 2021)                   | CXR            | 4,3,2 | 500, 400,<br>400, 800 | 5-fold cross validation | novel CNN<br>model called<br>CoroDet                                          | 91.2% /94.2%/<br>99.1% | the model is not either under-fit or over-fit for 3,4 class                                                                                                                             |
| (Khan et<br>al., 2020)                      | CXR            | 4,32  | 284, 327,<br>330, 310 | Train test<br>split     | CoroNet (Xception) CoroNet uses Xception                                      | 89.6%/95 %/99 %        | The model has been trained and tested on a small dataset of few hundred images                                                                                                          |

# Literature survey

| Related<br>work             | Modul<br>arity | Clas<br>s | data used         | Evaluation method       | Classification model used                                                         | Performa<br>nce | Research gap                                                                                                                              |
|-----------------------------|----------------|-----------|-------------------|-------------------------|-----------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| (Ozturk et al., 2020)       | CXR            | 3         | 625,125,5<br>00   | 5-fold cross validation | New method -<br>DarkCovidNet                                                      | 98.08           | New method - DarkNet proposed.  Demonstrates very high accuracy, sensitivity and specificity. However, number of images used is quite low |
| (Wang et al., 2020)         | CXR            | 3         | 1300,538,<br>8066 | Train: test             | New method -<br>COVIDNet                                                          | 93.30           | New method - COV- IDNet proposed.  Demonstrates high accuracy, sensitivity and specifcity                                                 |
| (Das et al., 2021)          | CXR            |           | 1,006,538,<br>468 | 5-fold cross validation | New ensemble<br>method combining<br>InceptionV3,<br>Resnet50V2 and<br>Densenet201 | 91.62           | Unique ensemble-based technique proposed. Demonstrates high accuracy, sensitivity and specifcity                                          |
| (Mahmud<br>et al.,<br>2020) | CXR            | 4         | 610<br>,305,305   | 5-fold cross validation | tacked Multi-<br>Resolution CovXNet                                               | 90.2%           | New method - CovXNet proposed.  Demonstrates very high accuracy, sensitivity and specifcity. However, number of images used is quite low  |

# Literature survey

| Related work                | modularit<br>Y | class | data used                                                                                  | Evaluation method                                            | model                              | Performance         | the research gap summary                                                                                                                                                          |
|-----------------------------|----------------|-------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Chowdhury<br>et al., 2020) | CXR            | 3     | 423 COVID-19, 1485<br>viral pneumonia, and<br>1579 normal chest X-<br>ray images.          | Train test split                                             | VGG-19 CheXNet<br>ResNet-18        | 96<br>96.4<br>96.44 | The author tests for 2,3,4 with image augmentation and without augmentation  The model archived highest accuracy with augmented data                                              |
| (Saha et al.,<br>2021)      | CXR            | 3,2   |                                                                                            | 70% training set,<br>10% validation set,<br>and 20% test set | COV-VGX extracts distinct features | 98.91%<br>99.37%    | The model active high accuracy for covid class  And the author balanced the dataset for all class                                                                                 |
| (Li et al.,<br>2020)        | CXR            | 3     | Coronavirus = 1197<br>Normal = 10,192<br>Pneumonia = 7399                                  |                                                              | COVID-GATNet                       | 94.30%              | COVID-GATNet is created by combining DenseNet with Graph Attention Network (GAT). It employs the attention mechanism to optimize model parameters and classification performance. |
| (Toraman et al., 2020)      | CXR            | 3,2   | 231/1050/1050  COVID-19 images were increased from 231 to 1050 by data augmentation method | 10-fold cross validation                                     | Convolutional<br>CapsNet           | 84.22, 97.24        | propose a new network model with five conv layers. processing time slow                                                                                                           |

## Data sets

- Importing the from Kaggle [ publication ,public repository, Kaggle , GitHub]
- Importing Libraries
- Preparing Training and Test Sets
- Creating Custom Dataset
- Image Transformations
- Prepare Data Loader
- Data Visualization
- Creating the Model
- Training the Model
- Show the Predictions
- Saving the Model
- Inference on a Single Image

| Techniques             | Range                         |
|------------------------|-------------------------------|
| Rescale Factor         | 1/255                         |
| Shear range            | 0 to 0.1 Rad counterclockwise |
| Zoom range             | 0.9 to 1.1                    |
| Channel shift range    | 150                           |
| RandomHorizontalFlip   | True                          |
| RandomVerticalFlip     | True                          |
| Height shift range     | 10%                           |
| Rotation range         | -90 to 90                     |
| Train-test split ratio | 80%:20%                       |
| Width shift range      | 10%                           |
| Normalize              | Mean = 0.485, 0.456, 0.406,   |
|                        | STd= 0.229, 0.224, 0.225      |
| Shuffle                | True                          |
| Shuffle                | True                          |

# Hyperparameters and data set used

| Data source                                        | Name of class                              | Total<br>data<br>collected | Test<br>ing                                   | Modality        |
|----------------------------------------------------|--------------------------------------------|----------------------------|-----------------------------------------------|-----------------|
| (Rahman et al., 2021b)<br>(Chowdhury et al., 2020) | Infected - covid health Infected Pneumonia | 3616<br>10192<br>1335      | <ul><li>240</li><li>240</li><li>240</li></ul> | X-Ray<br>images |

| List of             | Setup                     |
|---------------------|---------------------------|
| hyperparameters     |                           |
| Input image Re size | 224x224x3                 |
| Batch size          | 32                        |
| Number of Epoch     | 22                        |
| activation function | Relu                      |
| Optimizer used      | Adam                      |
| Model               | Sequential                |
| Learning rate (LR)  | 0.003                     |
| Loss function used  | Categorical cross entropy |
| dropout probability | 0.5                       |

# Proposed methodology 1



# Proposed VGG-16 architecture



Proposed VGG-16 model summary

| Layer type                 | Output shape    | #Parma  |
|----------------------------|-----------------|---------|
| input_1 (InputLayer)       | 224 × 224 × 3   | 0       |
| block1_conv1 (Conv2D)      | 224 × 224 × 64  | 1792    |
| block1_conv2 (Conv2D)      | 224 × 224 × 64  | 36928   |
| block1_pool (MaxPooling2D) | 112 × 112 × 64  | 0       |
| block2_conv1 (Conv2D)      | 112 × 112 × 128 | 73856   |
| block2_conv2 (Conv2D)      | 112 × 112 × 128 | 147584  |
| block2_pool (MaxPooling2D) | 56 × 56 × 128   | 0       |
| block3_conv1 (Conv2D)      | 56 × 56 × 256   | 295168  |
| block3_conv2 (Conv2D)      | 56 × 56 × 256   | 590080  |
| block3_conv3 (Conv2D)      | 56 × 56 × 256   | 590080  |
| block3_pool (MaxPooling2D) | 28 × 28 × 256   | 0       |
| block4_conv1 (Conv2D)      | 28 × 28 × 512   | 1180160 |
| block4_conv2 (Conv2D)      | 28 × 28 × 512   | 2359808 |
| block4_conv3 (Conv2D)      | 28 × 28 × 512   | 2359808 |
| block4_pool (MaxPooling2D) | 14 × 14 × 512   | 0       |
| block5_conv1 (Conv2D)      | 14 × 14 × 512   | 2359808 |
| block5_conv2 (Conv2D)      | 14 × 14 × 512   | 2359808 |
| block5_conv3 (Conv2D)      | 14 × 14 × 512   | 2359808 |
| block5_pool (MaxPooling2D) | 7 × 7× 512      | 0       |
| flatten (Flatten)          | 25088           | 0       |
| dense (Dense)              | 64              | 1605696 |
| dropout (Dropout)          | 64              | 0       |
| dense_1 (Dense)            | 3               | 195     |

Total params: 16,320,579

Trainable params: 1,605,891

Non-trainable params: 14,714,688

# Proposed ResNet-50 architecture



Proposed ResNet-50 model summary 

# Proposed Efficient Net –B3 architecture



# Proposed Efficient Net -B3 model summary

| block7b_se_reshape (Reshape)    | (None, | 1, 1, 2304) | 0      | block7b_se_squeeze[0][0]                                    |
|---------------------------------|--------|-------------|--------|-------------------------------------------------------------|
| block7b_se_reduce (Conv2D)      | (None, | 1, 1, 96)   | 221280 | block7b_se_reshape[0][0]                                    |
| block7b_se_expand (Conv2D)      | (None, | 1, 1, 2304) | 223488 | block7b_se_reduce[0][0]                                     |
| block7b_se_excite (Multiply)    | (None, | 7, 7, 2304) | 0      | <pre>block7b_activation[0][0] block7b_se_expand[0][0]</pre> |
| block7b_project_conv (Conv2D)   | (None, | 7, 7, 384)  | 884736 | block7b_se_excite[0][0]                                     |
| block7b_project_bn (BatchNormal | (None, | 7, 7, 384)  | 1536   | block7b_project_conv[0][0]                                  |
| block7b_drop (Dropout)          | (None, | 7, 7, 384)  | 0      | block7b_project_bn[0][0]                                    |
| block7b_add (Add)               | (None, | 7, 7, 384)  | 0      | block7b_drop[0][0]<br>block7a_project_bn[0][0]              |
| top_conv (Conv2D)               | (None, | 7, 7, 1536) | 589824 | block7b_add[0][0]                                           |
| top_bn (BatchNormalization)     | (None, | 7, 7, 1536) | 6144   | top_conv[0][0]                                              |
| top_activation (Activation)     | (None, | 7, 7, 1536) | 0      | top_bn[0][0]                                                |
| max_pool (GlobalMaxPooling2D)   | (None, | 1536)       | 0      | top_activation[0][0]                                        |
| batch_normalization_3 (BatchNor | (None, | 1536)       | 6144   | max_pool[0][0]                                              |
| dense_6 (Dense)                 | (None, | 256)        | 393472 | batch_normalization_3[0][0]                                 |
| dropout_3 (Dropout)             | (None, | 256)        | 0      | dense_6[0][0]                                               |
| dense_7 (Dense)                 | (None, | 3)          | 771    | dropout_3[0][0]                                             |
|                                 | ====== |             |        |                                                             |

Total params: 11,183,922 Trainable params: 11,093,547 Non-trainable params: 90,375

# Proposed methodology 2



# CXRcovNet model summary

| Layer (type)                  | Output Shape | Param # |
|-------------------------------|--------------|---------|
| batch_normalization_6 (BN)    | 224, 224, 1  | 4       |
| conv2d_18 (Conv2D)            | 224, 224, 64 | 640     |
| max_pooling2d_18 (MaxPooling) | 112, 112, 64 | 0       |
| conv2d_19 (Conv2D)            | 112, 112, 64 | 36928   |
| max_pooling2d_19 (MaxPooling) | 56, 56, 64   | 0       |
| dropout_18 (Dropout)          | 56, 56, 64   | 0       |
| conv2d_20 (Conv2D)            | 54, 54, 32   | 18464   |
| max_pooling2d_20 (MaxPooling) | 27, 27, 32   | 0       |
| dropout_19 (Dropout)          | 27, 27, 32   | 0       |
| flatten_6 (Flatten)           | 23328        | 0       |
| dense_12 (Dense)              | 128          | 2986112 |
| dropout_20 (Dropout)          | 128          | 0       |
| dense_13 (Dense)              | 3            | 387     |

Total params: 3,042,535

Trainable params: 3,042,533

Non-trainable params: 2

# Performance matrix

## 1. Confusion metrics (CM)

#### 2. Receiver operating characteristics (ROC) and AUC

| Matric                | Formula                             | Interpretation                              |
|-----------------------|-------------------------------------|---------------------------------------------|
| Accuracy              | $\frac{TP + TN}{TP + TN + FP + FN}$ | Overall performance of a model              |
| Precision             | $\frac{TP}{TP + FP}$                | How accurate the positive predictions are   |
| Recall<br>Sensitivity | $\frac{TP}{TP + FN}$                | Coverage of the actual positive sample      |
| Specificity           | $\frac{TN}{TN + FP}$                | Coverage of the actual negative sample      |
| F1 score              | $\frac{2TP}{2TP + FP + FN}$         | Hybrid matric useful for unbalanced classes |

| Matric              | Formula              | Equivalent          |
|---------------------|----------------------|---------------------|
| True positive rate  | $\frac{TP}{TP + FN}$ | Recall, sensitivity |
| TPR                 |                      | ,                   |
| False positive rate | FP_                  | 1- Specificity      |
| FPR                 | $\overline{TN + FP}$ |                     |
|                     |                      |                     |

## Confusion matrix

**VGG-16: Confusion Matrix for 3 classes** 

**ResNet-50: Confusion Matrix for 3 classes** 



## Confusion matrix

# EffcientNet-B3: Confusion Matrix for 3 classes



#### **CXRcovNet: Confusion Matrix for 3 classes**



**VGG-16:Train loss vs validation loss** 

VGG-16: Tarin Acc vs Val accuracy



**ResNet-50:Train loss vs validation loss** 

**ResNET-50: Tarin Acc vs Val accuracy** 







**CXRcovNet :Train loss vs validation loss** 

**CXRcovNet : Tarin Acc vs Val accuracy** 



# **ROC** evaluation

VGG-16:AUC

ResNet-50:AUC





## **ROC** evaluation

**Efficient Net-B3:AUC** 

0.0

0.0

ROC for multi-class data

1.0

0.8

0.6

ROC curve of normal(AUC = 0.98)

ROC curve of other pneumonia(AUC = 0.99)

0.4

0.2

ROC curve of covid(AUC = 0.97)

False Positive Rate

0.6

0.8

1.0

#### **CXRcovNet:AUC**



# Predication/output

### **During training**



### After training



# Inference on a Single Image and its Predication/ out put



# Classification report summary

| Classificatio<br>n model | Class     | Precision % | Recall % | F1-score % | AUC % | Accurac<br>y % |
|--------------------------|-----------|-------------|----------|------------|-------|----------------|
|                          | Covid-19  | 97          | 100      | 98         | 98    |                |
| EfficientNet-            | Normal    | 99          | 93       | 96         | 99    | 97             |
| B3                       | Pneumonia | 96          | 98       | 97         | 97    |                |
|                          | Covid-19  | 97.5        | 100      | 98.7       | 99    |                |
| VGG-16                   | Normal    | 97.8        | 95.8     | 96.8       | 99    | 97.9           |
|                          | Pneumonia | 98.3        | 97.9     | 98.1       | 97    |                |
|                          | Covid-19  | 98.7        | 96       | 97         | 99    |                |
| ResNet-50                | Normal    | 96          | 98       | 97         | 98    | 97.6           |
|                          | Pneumonia | 98.7        | 98       | 98         | 98    |                |
| CXRcovNet                | Covid-19  | 96.2        | 96.2     | 94.8       | 97    |                |
|                          | Normal    | 94.3        | 93.9     | 94.1       | 96    | 95             |
|                          | Pneumonia | 94.6        | 95.0     | 94.8       | 96    |                |

|                     | Best      | BS | TrainLoss | TrainAcc | ValLoss | ValAcc |
|---------------------|-----------|----|-----------|----------|---------|--------|
| Model               | Epoc<br>h |    |           |          |         |        |
| VGG-16              | 22        | 32 | 0.083     | 0.964    | 0.089   | 0.973  |
| ResNet-50           | 22        | 32 | 0.005     | 0.99     | 0.157   | 0.969  |
| EfficientNe<br>t-B3 | 22        | 32 | 1.413     | 0.997    | 1.440   | 0.966  |
| CXRcovNet           | 22        | 32 | 0.045     | 0.984    | 0.106   | 0.972  |

# **Model Comparison**

| Related work                      | <b>Evaluation method</b>                                              | Performance                                                         |
|-----------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|
| (Ozturk et al., 2020)             | New method -DarkCovidNet                                              | 98.08                                                               |
| (Wang et al., 2020)               | New method - COVIDNet                                                 | 93.30                                                               |
| (Das et al., 2021)                | New ensemble method combining InceptionV3, Resnet50V2 and Densenet201 | 91.62                                                               |
| (Mahmud et al., 2020)             | tacked Multi-Resolution CovXNet                                       | 90.2%                                                               |
| (Jain et al., 2021)               | Inception V3, Xception, ResNeXt                                       | 95.3% (+/-2.1%)                                                     |
| (Apostolopoulos & Mpesiana, 2020) | VGG 19, Mobile Net v2, Inception, Xception, Inception Resnet v        | 90.5% (± 6.97%)                                                     |
| (Hussain et al., 2021)            | Novel CNN model called CoroDet                                        | 94.2%                                                               |
| (Khan et al., 2020)               | CoroNet (Xception)                                                    | 95 %                                                                |
| (Chowdhury et al., 2020)          | VGG-19 ,CheXNet , ResNet-18                                           | 96 ,96.4 ,96.44                                                     |
| (Saha et al., 2021)               | COV-VGX extracts distinct features                                    | 98.91%                                                              |
| (Li et al., 2020)                 | COVID-GATNet                                                          | 94.30%                                                              |
| (Toraman et al., 2020)            | Convolutional CapsNet                                                 | 84.22                                                               |
| In this study                     | A. VGG-16 B. ResNet-50 C. Efficient Net-B3 D. CXRcovNet               | 97.9 (VGG-16) 97.6 (ResNet-50) 97 (Efficient Net-B3) 95 (CXRcovNet) |

## Conclusion

- Our proposed pretrained (Efficient Net –B3 ,ResNet-50 and VGG-16) and CXRcovNet achieved promising results on a small prepared dataset which indicates that given more data, the proposed model can achieve better results with minimum pre-processing of data.
- Overall, the proposed model substantially advances the current radiology-based methodology and during COVID-19 pandemic, it can be very helpful tool for clinical practitioners and radiologists to aid them in diagnosis, quantification and follow-up of COVID-19 cases.

## Reference I:

- 1. Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. *Physical and Engineering Sciences in Medicine*, 43(2), 635–640. https://doi.org/10.1007/s13246-020-00865-4
- 2. Chowdhury, M. E. H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. Bin, Islam, K. R., Khan, M. S., Iqbal, A., Emadi, N. Al, Reaz, M. B. I., & Islam, M. T. (2020). Can Al Help in Screening Viral and COVID-19 Pneumonia? *IEEE Access*, 8, 132665–132676. https://doi.org/10.1109/ACCESS.2020.3010287
- 3. Das, A. K., Ghosh, S., Thunder, S., Dutta, R., Agarwal, S., & Chakrabarti, A. (2021). Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. *Pattern Analysis and Applications*, 24(3), 1111–1124. https://doi.org/10.1007/s10044-021-00970-4
- 4. Hussain, E., Hasan, M., Rahman, M. A., Lee, I., Tamanna, T., & Parvez, M. Z. (2021). CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. *Chaos, Solitons and Fractals*, 142. https://doi.org/10.1016/j.chaos.2020.110495
- 5. Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2021). Deep learning based detection and analysis of COVID-19 on chest X-ray images. *Applied Intelligence (Dordrecht, Netherlands)*, 51(3), 1690–1700. https://doi.org/10.1007/s10489-020-01902-1
- 6. Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. *Computer Methods and Programs in Biomedicine*, 196, 105581. https://doi.org/10.1016/J.CMPB.2020.105581

## Reference II:

- 7. Li, J., Zhang, D., Liu, Q., Bu, R., & Wei, Q. (2020). COVID-GATNet: A Deep Learning Framework for Screening of COVID-19 from Chest X-Ray Images. 2020 IEEE 6th International Conference on Computer and Communications (ICCC), 1897–1902. https://doi.org/10.1109/ICCC51575.2020.9345005
- 8. Mahmud, T., Rahman, M. A., & Fattah, S. A. (2020). CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. *Computers in Biology and Medicine*, 122. https://doi.org/10.1016/j.compbiomed.2020.103869
- 9. Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Rajendra Acharya, U. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. *Computers in Biology and Medicine*, 121(April), 103792. https://doi.org/10.1016/j.compbiomed.2020.103792
- 10. Saha, P., Sadi, M. S., Aranya, O. F. M. R. R., Jahan, S., & Islam, F.-A. (2021). COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning. *Informatics in Medicine Unlocked*, 26, 100741. https://doi.org/10.1016/j.imu.2021.100741
- 11. Toraman, S., Alakus, T. B., & Turkoglu, I. (2020). Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. *Chaos, Solitons and Fractals, 140*. https://doi.org/10.1016/j.chaos.2020.110122
- 12. Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. https://doi.org/10.1038/s41598-020-76550-z

• Thank you

