Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3207 К работе допущен

Студент Путинцев Д. Д Работа выполнена 1.05.2025

Преподаватель Терещенко Г.В Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.03

Определение удельного заряда электрона

Цель работы

Определить удельный заряд электрона методом магнетрона

Задачи, решаемые при выполнении работы

- 1. Провести измерения зависимости анодного тока I_a вакуумного диода от величины тока в соленоиде при различных значениях анодного напряжения.
- 2. Найти значения коэффициента связи между током соленоида и магнитным полем В внутри него.
- 3. Построить графики зависимостей I_a от B и определить по ним величины критических полей для каждого значения анодного напряжения.
- 4. По значениям критического поля найти величину удельного заряда электрона и оценить её погрешность.

Объект исследования

Анодный ток в вакуумном диоде под действием магнитного поля соленоидной обмотки.

Метод экспериментального исследования

Измерение анодного тока при измерении тока на соленоиде при различном напряжении на аноде.

Рабочие формулы и исходные данные

Радиус анода: $r_a = 3 \, MM = 0.003 \, M$ Диаметр катушки: $d = 37 \, MM = 0.037 \, M$ Длина катушки: $l = 36 \, MM = 0.036 \, M$ Число витков катушки: N = 1500

Удельный заряд электрона: $\frac{e}{m} = \frac{8 \, U}{B_c^2 \, r_a^2}$, где U — анодное напряжение, $r = r_a$ и B = B_c —

критическое значение магнитной индукции (только в таком случае траектнория электронов будет касательной к аноду).

Магнитное поле внутри соленоида конечной длины в СИ (μ = 1.256637 * 10⁻⁶ $\frac{H}{A^2}$):

$$B = \frac{\mu_0 I N}{\sqrt{d^2 + l^2}}$$

Измерительные приборы

710111	110111001111111111111111111111111111111							
№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора				
1	Мультиметр в режиме амперметра	Электронный	0 - 10 A	0.01 A				
2	Мультиметр в режиме амперметра	Электронный	0 - 2 мА	0.1 мкА				
3	Вольтметр	Электронный	9 - 13 B	0.1 B				

Схема установки

Рис. 6. Принципиальная электрическая схема измерительного стенда (цепь питания накала катода не показана)

Результаты прямых измерений и их обработки

Таблица 1: Зависимость напряжение U от тока в соленоиде

	Анодное напряжение								
№ Опыт а	U = 9 B		U = 10.5 B		U = 13.5 B				
	$I_L = 0 \text{ MA}$	I _a = 0.187 мА	I_a/I_L	$I_L = 0$ mA	I _a = 0.2335 мА	I_a/I_L	$I_L = 0$ mA	I _a = 0.328 MA	I_a/I_L
1	50	0.186	0.0037	50	0.2323	0.004646	50	0.3273	0.006546
2	100	0.186	0.00186	100	0.2326	0.002326	100	0.3277	0.003277
3	150	0.1864	0.00124	150	0.2338	0.001559	150	0.3296	0.002197
4	200	0.1767	0.00088	200	0.2232	0.001116	200	0.3239	0.00162
5	250	0.1208	0.00048	250	0.1515	0.000606	250	0.241	0.000964
6	300	0.0760	0.00025	300	0.103	0.000343	300	0.1666	0.00056
7	350	0.0512	0.00015	350	0.0711	0.000203	350	0.1232	0.000352
8	400	0.0371	0.000093	400	0.0522	0.000131	400	0.0898	0.000225
9	450	0.0285	0.000064	450	0.0412	0.000092	450	0.0704	0.000156
10	500	0.0245	0.000049	500	0.0339	0.000068	500	0.0587	0.000117

U, B	$I_{L_{\kappa ho}}$, мк A	В _{кр.} , мкТл	e/m, Кл/кг
9	0.1767	6451.92	1.921 * 10 ¹¹

10.5	0.2232	8149.8	1.4052 * 10 ¹¹
13.5	0.3239	11826.7	$0.85793 * 10^{11}$

$$\frac{e}{m_{cp}}$$
 = $(1.39471\pm0.2506)*10^{11}\frac{K_{\text{Л}}}{\kappa\text{Z}}$, относительная погрешность: $\frac{0.2506}{1.39471}*100\%$ = 17.96%

$$\frac{\Delta B_c^2}{\Delta U} = 1.1944 * 10^{11} \frac{K_A}{\kappa z}$$

Табличное значение удельного заряда электрона

$$\frac{e}{m} = 1.76 * 10^{11} \frac{Kn}{\kappa \epsilon}$$

Графики

График зависимости I_a / I_L om I_L

График зависимости В от анодного напряжения U

Выводы и анализ результатов работы

Экспериментальное значение удельного заряда электрона, полученное методом магнетрона, не совпадает с табличным, выходя за пределы доверительного интервала. Это расхождение, вероятно, вызвано эффектом пространственного заряда, который возникает из-за накопления электронов в диоде, как указано в методике. Наблюдается зависимость: при увеличении анодного напряжения экспериментальные данные приближаются к табличному значению. Это свидетельствует о том, что влияние пространственного заряда ослабевает при более высоких напряжениях.