Kompleksna eksponentna preslikava in kaos

Lenart Miklavič

Fakulteta za matematiko in fiziko

25. november 2024

Motivacija

Izberemo poljuben $x \in \mathbb{R}$

Izberemo poljuben $x \in \mathbb{R}$

 $\bullet\,$ Kaj se zgodi, če iteriramo funkcijo $\sin?$

Izberemo poljuben $x \in \mathbb{R}$

- ullet Kaj se zgodi, če iteriramo funkcijo \sin ?
- Kaj, če iteriramo funkcijo cos?

Izberemo poljuben $x \in \mathbb{R}$

- Kaj se zgodi, če iteriramo funkcijo sin?
- Kaj, če iteriramo funkcijo cos?
- Kaj se zgodi, če iteriramo eksponentno funkcijo e^x ?

Izberemo poljuben $x \in \mathbb{R}$

- Kaj se zgodi, če iteriramo funkcijo sin?
- Kaj, če iteriramo funkcijo cos?
- Kaj se zgodi, če iteriramo eksponentno funkcijo e^x ?
 - \circ za $x \in \mathbb{R}$?

Izberemo poljuben $x \in \mathbb{R}$

- Kaj se zgodi, če iteriramo funkcijo sin?
- Kaj, če iteriramo funkcijo cos?
- Kaj se zgodi, če iteriramo eksponentno funkcijo e^x ?
 - \circ za $x \in \mathbb{R}$?
 - \circ za $x \in \mathbb{C}$?

Nekaj definicij...

Definicije i

Naj bo $X\subseteq \mathbb{C}$, $f\colon X\to X$ preslikava in $z\in \mathbb{C}$.

Definicija

Preslikava, definirani z rekurzivno zvezo $f^0 := \text{Id in } f^{n+1} := f \circ f^n$, pravimo n-ta iteracija preslikave f.

Definicija (Orbita točke)

Zaporedju $a_n \coloneqq f^n(z)$ pravimo *orbita* točke z pod preslikavo f.

Definicija (Periodična točka)

Začetna točka z je periodična, če obstaja tak $n \in \mathbb{N}$, da je $f^n(z) = z$.

Definicije ii

Izrek

Za kompleksno eksponentno preslikavo $f(z)=e^z$ so naslednje množice goste podmnožice kompleksne ravnine.

- 1. Množica točk, katerih orbita divergira v neskončnost.
- 2. Množica točk, katerih orbita gosto pokrije kompleksno ravnino.
- 3. Množica periodičnih točk.

Definicija (Topološka tranzitivnost)

Zvezna preslikava f je topološko tranzitivna, če za vsaki odprti množici $U,V\subseteq\mathbb{C}$, ki sekata X obstaja tak $z\in U\cap X$ in $n\geq 0$, da je $f^n(z)\in V$.

Kaos

Definicija (Kaos po Devaneyu)

Naj bo $X\subseteq\mathbb{C}$ neskončna množica in $f\colon X\to X$ zvezna. Pravimo, da je f kaotična (po Devaneyu), če velja:

- 1. množica periodičnih točk je gosta v X;
- 2. funkcija f je topološko tranzitivna.

Kaos

Definicija (Kaos po Devaneyu)

Naj bo $X\subseteq\mathbb{C}$ neskončna množica in $f\colon X\to X$ zvezna. Pravimo, da je f kaotična (po Devaneyu), če velja:

- 1. množica periodičnih točk je gosta v X;
- 2. funkcija f je topološko tranzitivna.

Izrek

Kompleksna eksponentna preslikava $f(z) = e^z$ je kaotična.

Občutljivost na začetne pogoje

Definicija

Naj bo $X\subseteq\mathbb{C}$ in d metrika na X. Zvezna preslikava $f\colon X\to X$ je občutljiva na začetne pogoje, če obstaja tak $\delta>0$, da za vsako odprto množico $U\subseteq X$ obstajata $x,y\in U$, da velja $d(f^n(x),f^n(y))>\delta$ za nek $n\in\mathbb{N}$.

Občutljivost na začetne pogoje

Definicija

Naj bo $X\subseteq\mathbb{C}$ in d metrika na X. Zvezna preslikava $f\colon X\to X$ je občutljiva na začetne pogoje, če obstaja tak $\delta>0$, da za vsako odprto množico $U\subseteq X$ obstajata $x,y\in U$, da velja $d(f^n(x),f^n(y))>\delta$ za nek $n\in\mathbb{N}$.

Izrek

Naj bo X neskončen metrični prostor in $f\colon X\to X$ zvezna. Če ima f goste periodične točke in je topološko tranzitivna, potem je občutljiva na začetne pogoje.

Transcendentna dinamika

Definition

Naj bo $f\colon \mathbb{C} \to \mathbb{C}$ nekonstantna in nelinearna holomorfna preslikava. Zaprta množica J(f) na kateri je f občutljiva na začetne pogoje, je Juliajeva množica preslikave f. Njen komplement $F(f) = \mathbb{C} \setminus J(f)$ imenujemo Fatoujeva množica.

Transcendentna dinamika

Definition

Naj bo $f\colon \mathbb{C} \to \mathbb{C}$ nekonstantna in nelinearna holomorfna preslikava. Zaprta množica J(f) na kateri je f občutljiva na začetne pogoje, je Juliajeva množica preslikave f. Njen komplement $F(f) = \mathbb{C} \setminus J(f)$ imenujemo Fatoujeva množica.

Izrek

Juliajeva množica je vedno neštevno neskončna in $f^{-1}(J(f))=J(f)$. Preslikava $f\colon J(f)\to J(f)$ je kaotična.