Wochenbericht 09 - Praktikum "Verteilte Systeme": Abschluss MVP

David Dao

June 24, 2025

1 Mitglieder des Projektes

Mitglied des Projektes	Aufgabe	Fortschritt	Zeiteinsatz	Check
Manh-An David Dao	MVP	80%	2h	in review
Jannik Schön	MVP	80%	4h	in review
Marc Siekmann	ITS-Board View und RPC Übertragung	80%	5h	in progress
Philipp Patt	MVP	80%	6h	in progress

2 Zusammenfassung der Woche

3 Bearbeitete Themen und Schlüssel Erkenntnisse

3.1 ITS-Board View und RPC Übertragung

Auf dem ITS-Board wird das IO des Views implementiert. Dazu wurde ein Vorlage erstellt, die noch vervollständigt werden muss¹. Für RPC wurde sich folgendes überlegt und muss noch in das arc42 Dokument der Middleware übertragen werden:

- Ein UDP Paket hat eine Standardgröße von 512 Byte ². Daher wird pro Paket genau ein RPC-Aufruf durchgeführt. Das hat den Vorteil, dass jedes einzelnes Paket als vollständige Information gilt. Das Ziel Safety ist somit mit einem Zeitstempel oder eindeutigen Token realisierbar ³. Sollte der Zeitstempel bzw. Token ungültig sein, wird das Paket verworfen und dem User im UI mitgeteilt, dass ein Fehler vorliegt (Fehlertransparenz).
- Wir verwenden zunächst ein JSON Format, um die Daten vor dem Versenden zu Marshallen ⁴. Sollte das Paket zu groß sein, wird zusätzlich mit Base64 kodiert.
- Die Namensauflösung wird mit einem zentralen Server durchgeführt. Dies wird ebenfalls mit RPC durchgeführt. Der Client wartet dann auf eine Antwort. Diese ist ebenfalls ein RPC-Aufruf vom Nameserver mittels einer Callback-Funktion, mit der IP-Adresse:Port als Antwort. Um häufige Anfragen zu vermeiden, muss gecached werden.

3.2 MVP Abschluss

Der MVP ist kurz vor Abschluss ⁵. Der StateService, MoveAdapter und Controller wurden in einem neuen Baustein namens Core gruppiert. Die Kommunikation zwischen MVP-IO und Core wurde getestet. Die Anbindung der ActuatorController wurde vorerst gemockt und gilt es noch via grpc umzusetzen.

¹https://git.haw-hamburg.de/infwgi246/vs_praktikum-2025-sose/-/merge_requests/26

²Van Steen, Tanenbaum(2025): Distributed Systems; 4th Edition, S. 366

³https://www.rfc-editor.org/rfc/rfc5531#section-5

⁴https://github.com/scimbe/vs_script/blob/main/vs-script-first-v01.pdf S.124 Abschnitt Copy In, Copy out

⁵https://git.haw-hamburg.de/infwgi246/vs_praktikum-2025-sose/-/merge_requests/27

Nächste Schritte 4

- Gelerntes aus MVP in entsprechendes arc42 Dokument überführen
 Einrichtung eines REDIS Namensserver mit RPC, der eine hierarchische Namensauflösung beinhaltet
- MVP Komponenten miteinander verbinden und funktional testen $\,$