- Supplementary Materials for Intermediate levels of
- 3 asymptomatic transmission can lead to the highest epidemic
- 4 fatalities
- 6 Sang Woo Park¹, Jonathan Dushoff^{2,3,4}, Bryan T. Grenfell^{1,5}, Joshua S. Weitz^{6,7,8,*}
- ⁷ 1 Department of Ecology and Evolutionary Biology, Princeton University,
- 8 Princeton, NJ, USA
- ⁹ 2 Department of Biology, McMaster University, Hamilton, ON, Canada
- 3 Department of Mathematics and Statistics, McMaster University, Hamilton, ON,
- 11 Canada
- 4 M. G. DeGroote Institute for Infectious Disease Research, McMaster University,
- 13 Hamilton, ON, Canada
- 5 Princeton School of Public and International Affairs, Princeton University,
- 15 Princeton, NJ, USA
- 6 School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- 7 School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- 8 Institut de Biologie, École Normale Supérieure, Paris, France
- *Corresponding author: jsweitz@gatech.edu

20 Supplementary Tables

Parameter	Description	Assumed values
β_s	Symptomatic transmission rate	0.8/days
β_a	Asymptomatic transmission rate	$0.75\beta_s$
$\overline{1/\nu}$	Mean latent period	2 days
$1/\gamma_s$	Mean symptomatic infectious period	5 days
$1/\gamma_a$	Mean asymptomatic infectious period	5 days
\overline{p}	Proportion asymptomatic	0–1
\overline{f}	Fatality rate for symptomatic case	0.01
δ	Reduction in symptomatic transmission rate	0–1

Table S1: Parameter descriptions and values for the basic asymptomatic model.

Parameter	Description	Assumed values
β_s	Symptomatic transmission rate	See Materials and Methods
β_a	Asymptomatic transmission rate	See Materials and Methods
β_p	Presymptomatic transmission rate	See Materials and Methods
${1/\nu}$	Mean latent period	2 days
$1/\sigma$	Mean presymptomatic infectious period	2 days
$1/\gamma_s$	Mean symptomatic infectious period	3 days
$\frac{1/\gamma_a}{}$	Mean asymptomatic infectious period	3 days
\overline{p}	Proportion asymptomatic	0-1
\overline{f}	Fatality rate for symptomatic case	0.01
δ_s	Reduction in symptomatic transmission rate	0-1

Table S2: Parameter descriptions and values for the generalized asymptomatic model.

Parameter	Description	Assumed values
β_s	Symptomatic transmission rate	$0.8/\mathrm{days}$
β_a	Asymptomatic transmission rate	$0.75\beta_s$
${1/\nu}$	Mean latent period	2 days
$\frac{1/\gamma_s}{}$	Mean symptomatic infectious period	5 days
$\frac{1/\gamma_a}{}$	Mean asymptomatic infectious period	5 days
\overline{p}	Proportion asymptomatic	0–1
\overline{f}	Fatality rate for symptomatic case	0.01
δ	Reduction in symptomatic transmission rate	0–1
$\overline{\epsilon_i}$	Protection against infection	0-0.8
ϵ_s	Protection against symptoms	0-0.8
ϵ_d	Protection against deaths	0-0.8

Table S3: Parameter descriptions and values for the asymptomatic model with immunity.

21 Supplementary Figures

Figure S1: Simulations of a model with asymptomatic transmission and symptom-responsive transmission reduction for a wide range of asymptomatic transmissibility. Total deaths as a function of the proportion of asymptomatic infections p across a wide range scenarios for δ . We simulate the model for 365 days, assuming $\beta_s = 0.8/\text{day}$, $\nu = 0.5/\text{day}$, $\gamma_s = \gamma_a = 0.2/\text{day}$, and f = 0.01, and an initial exposed proportion of 10^{-4} . We allow the ratios between the asymptomatic transmission rate β_a and symptomatic transmission rate β_s to vary between 0.25 and 1. See Materials and Methods for model details and Supplementary Table S1 for parameter descriptions and values.

Figure S2: Simulations of a model with asymptomatic transmission and symptom-responsive transmission reduction for a wide range of asymptomatic transmissibility and a fixed \mathcal{R}_0 value at intermediate asymptomaticity. Total deaths as a function of the proportion of asymptomatic infections p across a wide range scenarios for δ . We simulate the model for 365 days, assuming $\nu = 0.5/\text{day}$, $\gamma_s = \gamma_a = 0.2/\text{day}$, and f = 0.01, and an initial exposed proportion of 10^{-4} . We allow the ratios between the asymptomatic transmission rate β_a and symptomatic transmission rate β_s to vary between 0.25 and 1. We also fix the basic reproduction number $\mathcal{R}_0 = 4$ when there are intermediate levels of asymptomaticity p = 0.5 and no reduction in symptomatic transmission rate $\delta = 0$. See Materials and Methods for model details and Supplementary Table S1 for parameter descriptions and values.

Figure S3: Schematic diagram and simulations of a model with presymptomatic and asymptomatic transmission and symptom-responsive transmission reduction. (A) S represents susceptible individuals; E represents exposed individuals; I_p represents pre-symptomatic individuals; I_a represents symptomatic individuals; I_s represents recovered individuals; and D represents deceased individuals. See Methods for model details. (B) Total deaths as a function of the proportion of non-symptomatic transmission ϕ across a wide range scenarios for δ_s and proportion of non-symptomatic transmission caused by the pre-symptomatic transmission, η (between 0% and 100%). See Materials and Methods for model details and Supplementary Table S2 for parameter descriptions and values.