Number Theory:

- Understand the concept of divisibility and the division algorithm.
- Understand how to use the Euclidean algorithm to find the greatest common divisor.
- Present an overview of the concepts of modular arithmetic.
- Discuss key concepts relating to prime numbers.
- Understand Fermat's and Euler's theorem.
- Understand theorem.
- Make a presentation on the topic of testing for primality.

Divisibility

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers.
- That is, b divides a if there is no remainder on division.
- The notation b|a is commonly used to mean b divides a.
- Also, if b|a, we say that b is a divisor of a.

Properties of Divisibility

- \rightarrow If a|1, then a = ± 1 .
- \rightarrow If a|b and b|a, then a = \pm b.
- If a | b and b | c, then a | c
 - e.g. 11 | 66 and 66 | 198 so 11 | 198
- ➤ If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n

- If b|g,then g is of the form g=b x g1 for some integers g1.
- If b|h, then h is of the form h=b x h1 for some integers h1.
- So $mg+nh=mbg1+nbh1=b \times (mg1+nh1)$
- Here b divides mg+nh

e.g.
$$b = 7$$
; $g = 14$; $h = 63$; $m = 3$; $n = 2$ $7|14$ and $7|63$

To show $7|(3 \times 14 + 2 \times 63)$, we have $(3 \times 14 + 2 \times 63) = 7(3 \times 2 + 2 \times 9)$ and it is obvious that $7|(7(3 \times 2 + 2 \times 9))$. hence 7|42+126=7|168

The Division Algorithm

- Given any positive integer n and any nonnegative integer a, if we divide a by n,
- we get an integer quotient q and an integer remainder r that obey the following relationship:

```
a = qn + r where 0 \le r \le n; q = floor(a/n)
```

- The above equation is referred to as the division algorithm.
- Example: $70 = (4 \times 15) + 10$

Modular Arithmetic

- Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer remainder r.
- In modular arithmetic we are only interested in the remainder (or residue) after division by some modulus.

The Modulus

 If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n. The integer n is called the modulus.

```
a = qn + r 0 \le r < n; q = \lfloor a/n \rfloor

a = \lfloor a/n \rfloor \times n + (a \mod n)
```

- 2 mod 12 = 2(remainder), 40 mod 12 = 4(remainder)
- if negative number
 i.e -18 mod 14 = 14 (18 mod 14) = 14 (4) = 10 (remainder)

congruent modulo N

- > Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n). This is written as
- \triangleright a \equiv b(mod n)
- \rightarrow a & b are **congruent** if: a mod n = b mod n
 - when divided by *n*, a & b have same remainder
 - eg. 100 mod 11 = 34 mod 11 so 100 is congruent to 34

Modular Arithmetic Operations

- $Z = Set of all integers = \{..., -2, -1, 0, 1, 2, ...\}$
- Z_n = Set of all non-negative integers less than n= {0, 1, 2, ..., n-1}

```
Ex: Z_2 = \{0, 1\}

Z_3 = \{0, 1, 2, 3, 4, 5, 6, 7\}
```

- Addition, Subtraction, Multiplication, and division can all be defined in Zn
- We can perform arithmetic operations within the confines of this set Z_n, and this technique is known as modular arithmetic.

For Example:

- $(5+7) \mod 8 = 4$
- $(4-5) \mod 8 = 7$
- $(5*5) \mod 8 = 1$

Modular arithmetic exhibits the properties.

- [(a mod n) + (b mod n)] mod n = (a + b) mod n
- [(a mod n) (b mod n)] mod n = (a b) mod n
- [(a mod n) x (b mod n)] mod n = $(a \times b) \mod n$

```
Here are examples of the three properties:
Given 11 mod 8 = 3; 15 mod 8 = 7
[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2
(11 + 15) \mod 8 = 26 \mod 8 = 2
[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4
(11 - 15) \mod 8 = -4 \mod 8 = 4
[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5
(11 \times 15) \mod 8 = 165 \mod 8 = 5
```

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

X	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Modular Arithmetic Properties

Property	Expression				
Commutative laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x \times w) \bmod n$				
Associative laws	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$ $[(w\times x)\times y] \bmod n = [w\times (x\times y)] \bmod n$				
Distributive law	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$				
Identities	$(0 + w) \bmod n = w \bmod n$ $(1 \times w) \bmod n = w \bmod n$				
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$				

Thank you