Feature Selection: A Data Perspective

Zachary Jacokes

DS7406

9/21/2022

General Overview

- High-dimensional data common in modern datasets
- Curse of dimensionality: p > n
 - Data become sparser in high-dim space
 - Algorithms less stable in high-dim space
 - More features = higher chance of overfitting training data
 - Storage requirements and computational costs
- Feature engineering can help
 - Feature extraction: project high-dim features to new low-dim space
 - Feature selection: directly select relevant features
- Trade-off between interpretability and feature relevance

Relevant, Redundant, Irrelevant Features

Removing f_2 and f_3 should not impact model performance

Feature Selection: Data Categorization

- Supervised
 - Class labels available
 - Best subset of features determined based on how effectively they discriminate between classes
- Unsupervised
 - No class labels
 - Clusters data based on criteria other than labels
- Semi-supervised
 - Combination of both
 - Real-world datasets commonly have labeled and unlabeled data

Feature Selection: Strategy

Wrapper method

- Check performance of model to evaluate quality of feature selection
- Search for subset of features, evaluate performance
- Repeat iteratively until desired performance achieved
- Rarely used: search space for d features is 2^d

Filter method

- Use characteristics of the data to determine feature importance
- Ranked based on various criteria, low-ranked features are filtered out
 - Discriminative ability, feature correlation, mutual information, manifold structure preservation, ability to reconstruct original data

Embedded method

- Combination of wrapper and filter methods
- Interaction between learning algorithm and feature importance
- Force feature coefficients to be small/zero
- Common embedding method: regularization (LASSO, ridge, elastic net)

Data Types

Feature Selection: Traditional Data

- Similarity-based methods
 - Ability to preserve similarity to original data structure
 - Struggles with feature redundancy; often selects highly-correlated features
 - Laplacian score, SPEC, Fisher score, Trace Ratio Criterion, ReliefF
- Information-theoretical-based methods
 - Maximize feature relevance, minimize feature redundancy/information shared
 - Relevance measured by correlation to class labels
 - Mostly used in supervised algorithms; data must be discrete/discretized
 - Mutual information maximization, conditional infomax feature extraction, joint mutual information, informative fragments
- Sparse-learning-based methods
 - Embedded feature selection; good interpretability
 - Heavy computational cost
 - REFS, \bar{l}_p -norm regularizer, $l_{p,q}$ -norm regularizer, nonnegative spectral analysis
- Statistical-based methods
 - Filter based; typically analyze features individually thus ignore feature redundancy
 - O Simple, low computational cost, sometimes used as a pre-processing step
 - Chi-square, Gini index, low-variance

Structured Features

Feature Selection: Structured Features

- Sometimes features are not independent; structure is important to quantify
- Three types:
 - Groups; i.e. genes with similar functions acting together
 - Trees; i.e. facial recognition, root = whole face, pixels = leaves, etc.
 - Graphs; i.e. natural language processing, word = feature, relationships = synonym/antonyms/etc., undirected graph
- Feature selection comparable to sparse-learning (regularization: LASSO)
 - Specific structure type taken into account as prior info
- Difficult task to automatically infer data structure
- Computationally expensive

Heterogeneous Data

Feature Selection: Heterogeneous Data

- Combined data from different sources
- Linked data
 - Social media: user-post interactions; biological systems: protein interactions
 - Handled similarly to graph feature selection
- Multi-source data
 - Features selected from original feature space; ignores correlations between sources
- Multi-view data
 - Features selected from all views simultaneously; exploits relationships from different sources

Streaming Data

Feature Selection: Streaming Data

- Streaming data is constantly refreshing
 - Data size unknown; sometimes infinite
 - Single snapshot of streaming data desired to save memory
- Twitter: newly created slang words = new potential features
- Feature streams
 - Instances are constant, candidate features arrive one by one
 - Algorithm either accepts or rejects newly arrived feature
 - Discards existing features to make room (sometimes)
- Data streams
 - Instances and candidate features arriving constantly
 - Algorithm accepts/rejects new instance
 - Discards existing data streams (sometimes)

Challenges

- Scalability
 - Most methods = quadratic/cubic time complexity; inefficient for large datasets
 - Some distributed frameworks exist, but more work needs to be done
- Stability
 - Defined as sensitivity of algorithm to fluctuations in training data
 - Affected by the underlying structure of datasets
 - Much easier to assess in labeled datasets
 - Clustering in streaming contexts can change entirely when presented with new data
- Model Selection
 - Must specify number of features to be selected, but optimal number is unknown
 - Grid search to assess accuracy at different feature numbers computationally expensive

Conclusions and Recommendation

- Effective preprocessing step for dimensionality reduction
- Essential for many ML applications
- Greater understanding about data characteristics = better features
 - Also introduces greater complexity into the process
- Authors provide a repository for many of the discussed algorithms
- Limited commentary on how to improve
- Lack of detail on deep learning/NN pruning, given the other papers