Introduction to IoT Final Project

ToF 山屋水情偵測

作者: B08901097 徐有齊

B08901132 任瑨洋

業師:廖書漢博士

夏維良 經理

I. 概要

本專案旨在使用 LoRa 技術開發一套便宜、低功耗且可靠之物聯網通信網絡,在缺乏網路設施之偏遠地區提供各種物聯網感測設備回傳資料,並即時將這些資料呈現在網際網路。作為示範,我們使用一 ToF 感測器量測山屋中儲水池之水位,回傳至伺服器後,即時於前端展示給使用者參考。

Ⅱ. 背景與發想

業師提供了我們一組體積小且功耗低的 ToF 單點測距模組,此模組特色為其可以測量透明物體,例如水位面。業師並提供我們「水位監測」這個概念作為發想,例如測量城市的下水道水位等。

我們以業師提供的想法進行延伸,以組員個人的登山經驗和觀察,決定以「山屋水情監測」作為題目,並結合課程所教授的 LoRa 技術,解決山區因通訊不良而導致登山客難以事先掌握環境資訊的窘境。由圖(一)中可以看到,國家公園內山屋水情回報日期參差不一,有些山屋的資料常常相當過時,因此我們希望設計一個裝置即時回報水情,給登山客更有參考價值的資訊。此外此類裝置還能提供求救功能,在便利之餘更能夠守護登山客的生命安全。

🐼 玉山園區各山屋水情現況

地點	水源類型	水情狀況	回報日期
排雲山莊	蓄水桶	充足	111.03.14
圓峰山屋	蓄水桶	無水 (須從排雲山莊備水)	111.03.10
樂樂山屋	水塔	尚可	111.02.20
中央金礦山屋	蓄水桶	尚可 (屋旁溪水充足)	111.02.20
白洋金礦山屋	溪水	充足 (取屋後溪水·水塔無水)	111.02.05
大水窟山屋	蓄水桶	低水量 (1個水塔有水)	111.02.03
轆轆谷山屋	蓄水桶	低水量 (1個水塔有水)	111.02.01
塔芬谷山屋	山澗	低水量 (1個水塔有水)	111.02.03
拉庫音溪山屋	溪水	充足 (水塔無水)	111.02.01
瓦拉米山屋	蓄水桶	充足	111.02.28
抱崖山屋	蓄水桶	充足	111.02.28
大分山屋	蓄水桶	充足	111.02.28
馬博山屋	蓄水桶	充足	111.03.09
馬利加南山屋	蓄水桶	充足	111.03.11
馬布谷山屋	蓄水桶	充足	111.03.11
庫哈諾辛山屋	蓄水桶	尚可	111.02.28

圖(一): 玉山國家公園管理處於 111/03/14 發布的水情資訊 [1],當下其中有幾筆資料的更新時間已經是一個月以上。下次發布的時間已經是111/12/08 [2],中間長達近 10 個月的時間皆沒有更新資料。

III.價值創造與分析

我們的解決方案有以下欲達成之目標:

- A. 我們希望可以幾乎即時監測山屋中的儲水槽水位。
- B. 水位資料將儲存於雲端。
- C. 使用者可以輕鬆的查詢儲水槽水位。

我們的解決方案預計客戶為登山者與國家公園管理單位,向這些需要 山屋水位資料的單位提供資料。

我們在市場上目前沒有明顯的競爭者,唯一可以討論的是會友熱心山友向國家公園管理處回報山屋水位。我們的解決方案比起熱心山友的被動回報,只需要付出極小的成本,便可以達成即時監測的目標,在利益權衡方面相當有優勢。

以下我們就兩個方面進行價值分析:

- A. 就經濟產值方面,根據中華民國健行登山會的統計 [1],臺灣每年 頻繁登山的有約 3 萬到 5 萬人次,曾經到過 3000 公尺以上的登山 客更達 50 萬人次。由此可以看出,登山在臺灣風氣盛行,此解決 方案有許多潛在客戶。
- B. 就登山客救援方面,我們的解決方案可以在山區中提供登山客手機信號、GPS 信號及無線電以外的通訊方案,可以在上述方案失效時試圖與登山客取得聯繫,提高遇到緊急狀況的人的生還機率。

IV.解決方案

A. 總覽

圖(二)為我們系統的總覽,主要分成兩個部分:山區中沒有網路通信的部分,以及山腳下至使用者端等有網路通訊的部分。

在山區中,我們將設計一個整合的模組,此模組可以測量山屋水位 後以 LoRa 回傳。若是一發 LoRa 訊號距離不足,可以透過多個整 合模組接力傳送。

山腳下有網路的地方,我們計劃放置一個 Gateway 模組,負責在接收 LoRa 訊號並處理後,以 HTTPS POST 的形式發至伺服器。伺服器接收資料後,會將資料送入資料庫儲存,並提供使用者前端頁面查詢水情資料。

í

i

i

i

ì

LoRa

Area with Internet access

Mountainous Area (No Internet access)

Batterv

ESP32

Button

TP4056

LoRa

ToF

圖(二):山屋水情監測解決方案系統總覽。以 draw.io 協助繪製。

Raspberry Pi

B. 硬體端與韌體端

以下介紹我們的解決方案中使用到的硬體內容。

MCU - ESP32

我們在微控制器的部分採用 ESP32,除了其成本低廉而計算效能強大外,其還有提供 deep sleep mode 功能,可以在不需要傳送資料的空窗期進入睡眠節電,功耗只需要 10 uA [4],非常省電。在這個專案中由於演示需求,每 10-20 秒更新一次水情資料,實務層面則只需要一小時以上,甚至到一天才更新一次資料即可。資料將會以在讀取後,使用 ArduinoJson 套件 [5]協助將資料變成 JSON 形式,再生成字串等待傳送。

LoRa - SX1278

LoRa 方面我們使用 SX1278 模組,並使用 Sandeep Mistry 所撰寫的 arduino-LoRa 套件 [6] 進行驅動。注意到 LoRa 適合遠距離的小規模少資料通訊,在郊區的直線通訊距離可以達到 15公里以上 [7],非常適合我們的專案。在這個專案中,我們使用亞洲地區不須登記的 433 MHz 頻段,傳輸功率 17 dB,展頻因子為 7,訊號頻寬為 125 kHz。

ToF - FSTOF2002C0D

此為虹晶科技所提供的 ToF 模組,可以透過 UART 或是 I2C 協定進行溝通,偵測距離在 10 cm 到 240 cm,且可以偵測水面高度 [8]。在這個專案中我們使用 UART 進行溝通,設定上為鮑率 9600 與 8N1。

Infrared - 2Y0A02

此為我們準備的備案方案,當 ToF 模組失效時可以透過該模組 偵測水面高度,惟其耗電量較高且準度較差。

Big Red Button - LA38

我們在整合模組上放置了一個大紅色按鈕,按下此按鈕會觸發一個 Rising Edge 給 MCU,將透過 LoRa 傳送一求救信號。

Battery - LiPo 18650

我們使用 18650 鋰電池作為我們模組的電源,其標準參考電壓為 3.7 V,滿電約為 4.1 V,容量約為 2200 mAh。

Charger - TP4056

由於我們希望此解決方案不需要頻繁照應,因此電池應有一充電方案,此為鋰電池充電模組,負責將其他電源降壓後充給鋰電池。

Solar Panel

我們的充電方案使用兩片 2.5 W 的太陽能板供電,透過充電模組項鋰電池充電。

RPi Zero W

原先我們打算也使用 ESP32 作為終端 Gateway 的 MCU,但後來發現使用 ESP32 發 HTTPS 協定會有一些設定上的困難,因此改用 RPi Zero W 加上 LoRa 模組 SX1278 作為終端回傳裝置。我們使用 PyLoRa 模組,並以 Python 進行開發,最終的裝置體積非常小巧,且使用非常容易,只要接上電源就會自動連上

WiFi 並接收 LoRa 訊息回傳伺服器。資料以 JSON 格式傳送。 此外,我們也有對我們的解決方案進行功耗的計算。偵測水位並傳 輸資料時,MCU 採用 modem sleep mode,功耗約為 3 mA (我 們有降 CPU 頻以更節省電量) [4],ToF 模組的耗電量約為 10 mA [8],LoRa 模組 SX1278 在發送訊息時的耗電量約為 93 mA [9]。 實務上測量電流時,由於工作時間實在太短,基本上都測到睡眠時 的電流量,整個模組在使用 ToF 模組偵測時,儀器量不到電流,只 能粗估耗電量約為 < 10 mA,如圖(三)—左所示。使用備用 Infrared 模組偵測時耗電量約為 20 mA,如圖(三)—右所示。

圖(三):左圖為使用 ToF 模組時的耗電實測,右圖則為備用模組的。

實測以 20s 回報一次的頻率擺放 12 小時候 (遮住太陽能板不充電),電池電壓由 4.036 V 掉至 4.002 V,由此估計由 4.1 V (滿電)掉到 3.7 V (約一半電)可使用 130 小時。

C. 軟體端

本專案的軟體部分係指監測設備終端回傳之伺服器,以及使用者瀏覽相關資訊的網頁。軟體部分之架構為經典的 MERN stack [10] 架構,即以 React [11] 作為前端框架,透過 Node.js [12] 和 Express [13] 運行伺服器,並以 MongoDB [14] 作為資料庫。

● 前端

我們使用 React 加上 TypeScript 進行開發,使用者介面主要使用的模組為 AntDesign [15],地圖部分則是使用 IgniteUI [16]的地圖模組,介面設計相當簡潔易懂,讓使用者可以直觀地檢視水情資料,並且若有人按下警急求救鈕,網頁也能夠立即顯示警急求救訊息。前端使用 Restful API 和 HTTPS 協定和伺服器溝通。

以下是前端的網址:https://iot-term-project.netlify.app/

備註:由於後端會自動休眠,因此第一次瀏覽時可能要花比較 久的時間等待後端回傳資料。

● 後端

我們用 NodeJS 加上 Express 架設伺服器,伺服器 API 設計如下:

Method	Route	Description
GET	/cabins	取得各個山屋的監測資料
GET	/devices	取得各個裝置的資料(如電量、上次活動時間等)
POST	/messages	由硬體裝置中的 Gateway 發送監測資料到伺服器的 API·本 route 設有一些檢查機制確認上傳的訊息是由我們核可的設備所發送。本 API 也用於接收警急求救訊息。

我們也把接收到的資料上傳到 MongoDB,因此這些資料都能受到更妥善的保護。

D. 實際演示

圖(四)為我們的解決方案中,山屋端會設置的模組內容。圖(五)則是 Gateway 模組的內容。

圖(四):實作山屋端整合模組成果。注意到 ToF 模組與天線並未入鏡。

圖(五):實作 Gateway 端整合模組成果,其中白色那顆是 RPi Zero W。 我們的程式碼可以在 Github 上存取,以下是連結:

https://github.com/MartianSheep/Intro2IoT_FinalPrj/blob/main/RaspberryPi/lora.py

以下連結則是我們的演示影片:https://youtu.be/0AY_9QcEsWU

V. 未來發展

A. LoRa 接力

由於一些偏遠山屋可能離山腳太遠,會導致一發 LoRa 打不到山腳。我們原本希望可以實現 LoRa 接力通訊與 Acknowledge 模式,然而由於使用的 sandeepmistry / arduino-LoRa 套件並不支援 LoRa 的 CAD (Channel Activity Detection) 模式,因此難以實現。未來希望使用其他套件加以實現。

B. 進階通訊

既然 LoRa 通訊網可以建立,則我們便可以加上一些基礎的文字通訊,包括文字輸入與顯示等,使救援隊更清楚目前緊急狀況為何,能夠規劃更完善的救援計畫,求救者也能即時得知救援情形。

C. 更多感測器

除了水位以外,有許多內容都是可以透過感測器測得後以 LoRa 傳輸,例如山屋的當前電力,或是山屋位址的溫溼度等。

D. 太陽能板

目前實作成果的太陽能板效力不是很足,希望未來可以使用效率更 好且更大的太陽能板。

E. 防水

山上多雨,所以此模組是否防水至關重要。在這次實作中我們已經 盡量把模組包起來,然而還是有一些地方尚待改進。

F. 夜晚情境

夜晚若遭遇緊急狀況,欲求救者可能不知道求救鈕在哪。因此在大 紅色按鈕上面塗上螢光塗料可能有幫助。

G. 關於水位量測

除了山屋儲水槽以外,此模組應該也可以量測其他水位,例如湖面或河流等。如此一來便可以透過河水水位高低警示山洪暴發。

H. 關於網頁

這次的專案中由於時間因素,我們並未製作手機板的頁面。此外網頁上也可以加入更多內容,例如登入儲存最關心的山屋,以及警示當前規劃的登山路線是否需要備水,又建議在何處備水等等。

VI.結論

我們針對此題目開發的成品品質符合我們的預期,可見一開始的構想 有足夠的可行性,不過若要實際應用,仍需要更多的測試證明其可靠 性和持久性。

VII. 分工

任瑨洋:

- 硬體製作
- ESP32 韌體程式碼
- 製作報告
- 採購

徐有齊:

- 軟體前後端與資料庫
- RPi 程式碼
- 製作報告
- 採購

VIII.參考資料

[1] 玉山國家公園,圓峰山屋蓄水池出水口日前因結冰導致管體爆裂,經山莊管理員修復完畢,惟目前無降兩呈枯水狀態,請近日前往後四峰的山友記得提前於排雲山莊備水前往。,玉山國家公園,

2022 · 網址:

https://www.ysnp.gov.tw/Announcement/C001000?ID=f085d 164-23cf-475c-a501-fc940ec3c296&PageType=1

- [2] 玉山國家公園 · *【進入旱季 · 行走山林 · 提早備水 】* · 玉山國家公園 · 2022 · 網址:
 - https://www.ysnp.gov.tw/Announcement/C001000?ID=cab61 50d-b2ea-477e-a987-f929a62b4aa3&PageType=1
- [3] 葉金川*· 台灣的登山運動*·中華民國健行登山會·2007·網址:
 http://www.alpineclub.org.tw/front/bin/ptdetail.phtml?Part=
- [4] Last Minute Engineers, *Insight Into ESP32 Sleep Modes & Their Power Consumption*, Last Minute Engineers, 2022, URL: https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/

- [5] ArduinoJson, URL: https://arduinojson.org/
- [6] Sandeep Mistry, *sandeepmistry / arduino-LoRa*, Github, 2022, URL: https://github.com/sandeepmistry/arduino-LoRa
- [7] Semtech, What are LoRa® and LoRaWAN®?, LoRa Developer Portal, URL: https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
- [8] Sharpsensoruser, *Application Guide for Foxconn*FSTOF2002C0D Time of Flight Sensor Module, Github, 2022,

 URL: https://github.com/sharpsensoruser/sharp-sensor-demos/wiki/Application-Guide-for-Foxconn-FSTOF2002C0D-Time-of-Flight-Sensor-Module
- [9] Nettigo, LoRa RA-02 SX1278 433MHz, Nettigo.eu, URL: https://nettigo.eu/products/lora-ra-02-sx1278-433mhz
- [10] MongoDB, MERN Stack Explained, MongoDB, URL:
 https://www.mongodb.com/mern-stack
- [11] React, URL: https://reactjs.org/
- [12] Node.js, URL: https://nodejs.org/en/
- [13] Express, URL: https://expressjs.com/
- [14] MongoDB, URL: https://www.mongodb.com/
- [15] AntDesign, URL: https://ant.design/
- [16] IgniteUI, URL: https://github.com/lgniteUI/igniteui-react