

Gradient Descent:

 $\min_{x \in \mathbb{R}^n} f(x) \qquad x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

convex (non-smooth)	smooth (non-convex)	smooth & convex	smooth & strongly convex (or PL)
$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$\ x^k - x^*\ ^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\kappa \log \frac{1}{\varepsilon}\right)$

Gradient Descent:

 $\min_{x \in \mathbb{R}^n} f(x) \qquad x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

convex (non-smooth)	smooth (non-convex)	smooth & convex	smooth & strongly convex (or PL)
$f(x^{k}) - f^{*} \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$	$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$	
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{arepsilon} \sim \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{arepsilon} \sim \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{arepsilon} \sim \mathcal{O}\left(\kappa\lograc{1}{arepsilon} ight)$

For smooth strongly convex we have:

$$f(x^k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k (f(x^0) - f^*).$$

Note also, that for any x

$$1 - x < e^{-x}$$

Gradient Descent:

smooth (non-convex)

$$\min_{x \in \mathbb{R}^n}$$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$ $\min_{x \in \mathbb{R}^n} f(x)$

	· · · · · · · · · · · · · · · · · · ·		
$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$\ x^k - x^*\ ^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\kappa \log \frac{1}{\varepsilon}\right)$

For smooth strongly convex we have:

Finally we have

$$f(x^k) - f^* \le \left(1 - \frac{\mu}{I}\right)^k (f(x^0) - f^*).$$

convex (non-smooth)

$$c - f($$

$$\varepsilon = f(x^{k_{\varepsilon}}) - f^* \le \left(1 - \frac{\mu}{L}\right)^{k_{\varepsilon}} \left(f(x^0) - f^*\right)$$

Note also, that for any
$$\boldsymbol{x}$$

$$\varepsilon = f(x)$$

smooth & convex

$$\leq \exp\left(-k_{\varepsilon}\frac{\mu}{L}\right)(f(x^0) - f^*)$$

Note also, that for any
$$x$$

$$1 - x < e^{-x}$$

$$\leq \exp\left(-k_{\varepsilon}\frac{\mu}{L}\right)(f(x^{0}) - f^{*})$$

$$k_{\varepsilon} \geq \kappa \log \frac{f(x^{0}) - f^{*}}{2} = \mathcal{O}\left(\kappa \log \frac{1}{L}\right)$$

smooth & strongly convex (or PL)

Gradient Descent:

 $f(x^k) - f^* \le \left(1 - \frac{\mu}{T}\right)^k (f(x^0) - f^*).$

 $1 - x < e^{-x}$

smooth (non-convex)

 $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$

convex (non-smooth)

 $f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$

Note also, that for any x

For smooth strongly convex we have:

$$\min_{x \in \mathbb{R}^n} f(x)$$

smooth & convex

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

 $\varepsilon = f(x^{k_{\varepsilon}}) - f^* \le \left(1 - \frac{\mu}{r}\right)^{\kappa_{\varepsilon}} (f(x^0) - f^*)$

 $\leq \exp\left(-k_{\varepsilon}\frac{\mu}{L}\right)(f(x^0)-f^*)$

 $k_{\varepsilon} \ge \kappa \log \frac{f(x^0) - f^*}{2} = \mathcal{O}\left(\kappa \log \frac{1}{2}\right)$

smooth & strongly convex (or PL)

 $\|x^k - x^*\|^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$

 $k_{arepsilon} \sim \mathcal{O}\left(\kappa\log\frac{1}{\epsilon}\right)$

 $\|\nabla f(x^k)\|^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$

 $f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{h}\right)$

 $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$

Finally we have

Question: Can we do faster, than this using the first-order information?

Gradient Descent:

 $f(x^k) - f^* \le \left(1 - \frac{\mu}{r}\right)^k (f(x^0) - f^*).$

 $1 - x < e^{-x}$

 $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$

Question: Can we do faster, than this using the first-order information? Yes, we can.

convex (non-smooth)

 $f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$

Note also, that for any x

For smooth strongly convex we have:

$$\min_{x \in \mathbb{R}^n} f(x)$$

smooth & convex

 $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$

Finally we have

smooth (non-convex)

 $\|\nabla f(x^k)\|^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$

 $f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{h}\right)$

 $\|x^k - x^*\|^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

 $\varepsilon = f(x^{k_{\varepsilon}}) - f^* \le \left(1 - \frac{\mu}{r}\right)^{\kappa_{\varepsilon}} (f(x^0) - f^*)$

smooth & strongly convex (or PL)

 $k_{\varepsilon} \sim \mathcal{O}\left(\kappa \log \frac{1}{\epsilon}\right)$

 $k_{\varepsilon} \ge \kappa \log \frac{f(x^0) - f^*}{2} = \mathcal{O}\left(\kappa \log \frac{1}{2}\right)$

 $\leq \exp\left(-k_{\varepsilon}\frac{\mu}{L}\right)(f(x^0) - f^*)$

convex (non-smooth)	smooth $(non-convex)^1$	smooth & convex ²	smooth & strongly convex (or PL)
$\frac{\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)}{k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)}$	$\mathcal{O}\left(\frac{1}{k^2}\right)$	$\mathcal{O}\left(\frac{1}{k^2}\right)$ $k \sim \mathcal{O}\left(\frac{1}{k^2}\right)$	$\mathcal{O}\left(\left(1-\sqrt{\frac{\mu}{L}}\right)^k\right)$ $k_{arepsilon}\sim\mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{arepsilon}\right)$
$-\frac{\kappa_{arepsilon} + \sigma \cdot \sigma \cdot \left(\frac{1}{arepsilon^2} \right)}{2}$	$k_{arepsilon} \sim \mathcal{O}\left(rac{1}{\sqrt{arepsilon}} ight)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$	$\frac{\kappa_{\varepsilon} + \sigma_{\varepsilon} + \sigma_{\varepsilon}}{\sigma_{\varepsilon}}$

¹Carmon, Duchi, Hinder, Sidford, 2017 ²Nemirovski, Yudin, 1979

 $f \to \min_{x,y,z}$ Lower bounds

How optimal is $\mathcal{O}\left(\frac{1}{k}\right)$?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of problem and this class of algorithms?

How optimal is $\mathcal{O}\left(\frac{1}{k}\right)$?

- Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of problem and this class of algorithms?
- The iteration of gradient descent:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k)$$

$$\vdots$$

$$= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i})$$

How optimal is $\mathcal{O}\left(\frac{1}{k}\right)$?

- Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of problem and this class of algorithms?
- The iteration of gradient descent:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k)$$

$$\vdots$$

$$= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i})$$

Consider a family of first-order methods, where

$$x^{k+1} \in x^0 + \operatorname{span}\left\{\nabla f(x^0), \nabla f(x^1), \dots, \nabla f(x^k)\right\}$$
 f - smooth $x^{k+1} \in x^0 + \operatorname{span}\left\{q_0, q_1, \dots, q_k\right\}$, where $q_i \in \partial f(x^i)$ f - non-smooth

 $f \to \min_{x,y,z}$ Lower bounds

(1)

Non-smooth convex case

i Theorem

There exists a function f that is $G ext{-Lipschitz}$ and convex such that any method 1 satisfies

$$\min_{i \in [1,k]} f(x^i) - \min_{x \in \mathbb{B}(R)} f(x) \ge \frac{GR}{2(1+\sqrt{k})}$$

for R>0 and $k\leq n$, where n is the dimension of the problem.

Non-smooth convex case

i Theorem

There exists a function f that is G-Lipschitz and convex such that any method 1 satisfies

$$\min_{i \in [1,k]} f(x^i) - \min_{x \in \mathbb{B}(R)} f(x) \ge \frac{GR}{2(1+\sqrt{k})}$$

for R > 0 and $k \le n$, where n is the dimension of the problem.

Proof idea: build such a function f that, for any method 1, we have

$$\operatorname{span}\left\{g_0,g_1,\ldots,g_k\right\}\subset\operatorname{span}\left\{e_1,e_2,\ldots,e_i\right\}$$

where e_i is the *i*-th standard basis vector. At iteration $k \le n$, there are at least n-k coordinate of x are 0. This helps us to derive a bound on the error.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha,\beta\in\mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

 $J \to \min_{x,y,z}$ Lower bounds

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha,\beta\in\mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

• The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2} ||x||_2^2$.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha, \beta \in \mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2} ||x||_2^2$.
- The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha, \beta \in \mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2} ||x||_2^2$.
- The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha, \beta \in \mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2}||x||_2^2$.
- ullet The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the subdifferential of f(x) at x:

$$\begin{split} \partial f(x) &= \partial \left(\beta \max_{i \in [1,k]} x[i] \right) + \partial \left(\frac{\alpha}{2} \|x\|_2^2 \right) \\ &= \beta \partial \left(\max_{i \in [1,k]} x[i] \right) + \alpha x. \\ &= \beta \mathsf{conv} \left\{ e_i \mid i : x[i] = \max_j x[j] \right\} + \alpha x. \end{split}$$

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha, \beta \in \mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2}||x||_2^2$.
- ullet The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the subdifferential of f(x) at x:

$$\begin{split} \partial f(x) &= \partial \left(\beta \max_{i \in [1,k]} x[i] \right) + \partial \left(\frac{\alpha}{2} \|x\|_2^2 \right) \\ &= \beta \partial \left(\max_{i \in [1,k]} x[i] \right) + \alpha x. \end{split}$$

$$= \beta \partial \left(\max_{i \in [1,k]} x[i] \right) + \alpha x.$$

$$= \beta \mathsf{conv} \left\{ e_i \mid i : x[i] = \max_i x[j] \right\} + \alpha x.$$

It is easy to see, that if $g \in \partial f(x)$ and $\|x\| \le R$, then

$$||g|| \le \alpha R + \beta$$

Thus, f is $\alpha R + \beta\text{-Lipschitz}$ on B(R).

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle returns

$$\alpha x + \gamma e_i$$

where i is the first coordinate for with $x[i] = \max_{1 \le j \le k} x[j]$.

• We ensure, that $||x^0|| \le R$ by starting from $x^0 = 0$.

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle returns

$$\alpha x + \gamma e_i$$

where i is the *first* coordinate for with $x[i] = \max_{1 \le j \le k} x[j]$.

- We ensure, that $||x^0|| \le R$ by starting from $x^0 = 0$.
- When the oracle is queried at $x^0 = 0$, it returns e_1 . Consequently, x^1 must lie on the line generated by e_1 .

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle returns

$$\alpha x + \gamma e_i$$

where i is the first coordinate for with $x[i] = \max_{1 \leq j \leq k} x[j]$.

- We ensure, that $||x^0|| \le R$ by starting from $x^0 = 0$.
- When the oracle is queried at $x^0=0$, it returns e_1 . Consequently, x^1 must lie on the line generated by e_1 .
- By an induction argument, one shows that for all i, the iterate x^i lies in the linear span of $\{e_1, \ldots, e_i\}$. In particular, for $i \le k$, the k+1-th coordinate of x_i is zero and due to the structure of f(x):

$$f(x^i) \ge 0.$$

എ റ ഉ

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -rac{eta}{lpha k} \quad ext{for } 1 \leq i \leq k, \qquad y[i] = 0 \quad ext{for } k+1 \leq i \leq n.$$

 $f \to \min_{x,y,z}$ Lower bounds

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -\frac{\beta}{\alpha k}$$
 for $1 \le i \le k$, $y[i] = 0$ for $k + 1 \le i \le n$.

• Note, that $0 \in \partial f(y)$:

$$egin{aligned} \partial f(y) &= lpha y + eta \mathsf{conv} \left\{ e_i \mid i : y[i] = \max_j y[j]
ight\} \ &= lpha y + eta \mathsf{conv} \left\{ e_i \mid i : y[i] = 0
ight\} \ 0 \in \partial f(y). \end{aligned}$$

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -\frac{\beta}{\alpha k}$$
 for $1 \le i \le k$, $y[i] = 0$ for $k + 1 \le i \le n$.

• Note, that $0 \in \partial f(y)$:

$$\begin{split} \partial f(y) &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i : y[i] = \max_j y[j] \right\} \\ &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i : y[i] = 0 \right\} \\ &0 \in \partial f(y). \end{split}$$

• It follows that the minimum value of $f = f(y) = f(x^*)$ is

$$f(y) = -\frac{\beta^2}{\alpha k} + \frac{\alpha}{2} \cdot \frac{\beta^2}{\alpha^2 k} = -\frac{\beta^2}{2\alpha k}.$$

 $f \to \min_{x,y,z}$ Lower bounds

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -\frac{\beta}{\alpha k}$$
 for $1 \le i \le k$, $y[i] = 0$ for $k + 1 \le i \le n$.

• Note, that $0 \in \partial f(y)$:

$$\begin{split} \partial f(y) &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i: y[i] = \max_j y[j] \right\} \\ &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i: y[i] = 0 \right\} \\ &0 \in \partial f(y). \end{split}$$

• It follows that the minimum value of $f = f(y) = f(x^*)$ is

$$f(y) = -\frac{\beta^2}{\alpha k} + \frac{\alpha}{2} \cdot \frac{\beta^2}{\alpha^2 k} = -\frac{\beta^2}{2\alpha k}.$$

• Now we have:

$$f(x^i) - f(x^*) \ge 0 - \left(-\frac{\beta^2}{2\alpha k}\right) \ge \frac{\beta^2}{2\alpha k}.$$

 $f \to \min_{x,y,z}$

We have: $f(x^i) - f(x^*) \geq \frac{\beta^2}{2\alpha k}$, while we need to prove that $\min_{i \in [1,k]} f(x^i) - f(x^*) \geq \frac{GR}{2(1+\sqrt{k})}$.

We have: $f(x^i) - f(x^*) \geq \frac{\beta^2}{2\alpha k}$, while we need to prove that $\min_{i \in [1,k]} f(x^i) - f(x^*) \geq \frac{GR}{2(1+\sqrt{k})}$.

Convex case

$$\alpha = \frac{G}{R} \frac{1}{1 + \sqrt{k}} \quad \beta = \frac{\sqrt{k}}{1 + \sqrt{k}}$$
$$\frac{\beta^2}{2\alpha} = \frac{GRk}{2(1 + \sqrt{k})}$$

Note, in particular, that $||y||_2^2 = \frac{\beta^2}{\alpha^2 h} = R^2$ with these

parameters

$$\min_{i \in [1,k]} f(x^i) - f(x^*) \ge \frac{\beta^2}{2\alpha k} = \frac{GR}{2(1+\sqrt{k})}$$

We have: $f(x^i) - f(x^*) \geq \frac{\beta^2}{2\alpha k}$, while we need to prove that $\min_{i \in [1,k]} f(x^i) - f(x^*) \geq \frac{GR}{2(1+\sqrt{k})}$.

Convex case

$$\alpha = \frac{G}{R} \frac{1}{1 + \sqrt{k}} \quad \beta = \frac{\sqrt{k}}{1 + \sqrt{k}}$$
$$\frac{\beta^2}{2\alpha} = \frac{GRk}{2(1 + \sqrt{k})}$$

Note, in particular, that $\|y\|_2^2 = \frac{\beta^2}{\alpha^2 k} = R^2$ with these parameters

$$\min_{i \in [1,k]} f(x^i) - f(x^*) \ge \frac{\beta^2}{2\alpha k} = \frac{GR}{2(1+\sqrt{k})}$$

Strongly convex case

$$\alpha=\frac{G}{2R}\quad\beta=\frac{G}{2}$$
 Note, in particular, that $\|y\|_2^2=\frac{\beta^2}{\alpha^2k}=\frac{G^2}{4\alpha^2k}=R^2$ with

Note, in particular, that $\|y\|_2^2 = \frac{p}{\alpha^2 k} = \frac{G}{4\alpha^2 k} = R^2$ with these parameters

$$\min_{i \in [1,k]} f(x^i) - f(x^*) \ge \frac{G^2}{8\alpha k}$$

Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies

$$\min_{i \in [1,k]} f(x^i) - f^* \ge \frac{3L||x^0 - x^*||_2^2}{32(1+k)^2}$$

Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies

$$\min_{i \in [1,k]} f(x^i) - f^* \ge \frac{3L||x^0 - x^*||_2^2}{32(1+k)^2}$$

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as $\mathcal{O}\left(\frac{1}{k^2}\right)$.

 $f \to \min_{x,y,z}$

Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies

$$\min_{i \in [1,k]} f(x^i) - f^* \ge \frac{3L||x^0 - x^*||_2^2}{32(1+k)^2}$$

- No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- The key to the proof is to explicitly build a special function f.

• Let n=2k+1 and $A \in \mathbb{R}^{n \times n}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Notice, that

$$x^{T}Ax = x[1]^{2} + x[n]^{2} + \sum_{i=1}^{n-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's simple to check $0 \prec A \prec 4I$.

⊕ ი (

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Notice, that

$$x^{T}Ax = x[1]^{2} + x[n]^{2} + \sum_{i=1}^{n-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's simple to check $0 \prec A \prec 4I.$

• Define the following *L*-smooth convex function

$$f(x) = \frac{L}{8}x^T A x - \frac{L}{4}\langle x, e_1 \rangle.$$

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Notice, that

$$x^{T}Ax = x[1]^{2} + x[n]^{2} + \sum_{i=1}^{n-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's simple to check $0 \preceq A \preceq 4I.$

Define the following L-smooth convex function

$$f(x) = \frac{L}{8}x^{T}Ax - \frac{L}{4}\langle x, e_1 \rangle.$$

• The optimal solution x^* satisfies $Ax^*=e_1$, and solving this system of equations gives

$$x^*[i] = 1 - \frac{i}{n+1},$$

Nesterov's worst function

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Notice, that

$$x^{T}Ax = x[1]^{2} + x[n]^{2} + \sum_{i=1}^{n-1} (x[i] - x[i+1])^{2},$$

and, from this expression, it's simple to check $0 \prec A \prec 4I.$

Define the following L-smooth convex function

$$f(x) = \frac{L}{8}x^{T}Ax - \frac{L}{4}\langle x, e_1 \rangle.$$

• The optimal solution x^* satisfies $Ax^*=e_1$, and solving this system of equations gives

$$x^*[i] = 1 - \frac{i}{n+1},$$

And the objective value is

$$f(x^*) = \frac{L}{8} x^{*T} A x^* - \frac{L}{4} \langle x^*, e_1 \rangle$$
$$= -\frac{L}{8} \langle x^*, e_1 \rangle = -\frac{L}{8} \left(1 - \frac{1}{n+1} \right).$$

Smooth case (proof)

TBD

Smooth case (proof)

TBD

Acceleration for quadratics

Acceleration for quadratics

Condition number

Condition number and convergence speed

Even with the optimal parameter choice, the error at the next step satisfies

$$||x_{k+1} - x^*||_2 \le q||x_k - x^*||_2, \quad \to \quad ||x_k - x^*||_2 \le q^k ||x_0 - x^*||_2,$$

where

$$q = \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{max}} + \lambda_{\text{min}}} = \frac{\kappa - 1}{\kappa + 1},$$

$$\kappa = \frac{\lambda_{\max}}{\lambda_{\min}}$$
 for $A \in \mathbb{S}^n_{++}$

is the condition number of A.

Let us do some demo. . .

 Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly

Consider non-hermitian matrix ${\cal A}$ Possible cases of gradient descent behaviour:

- Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly
- This is another reason why **condition number** is so important:

Consider non-hermitian matrix A

- Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly
- This is another reason why condition number is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.

Consider non-hermitian matrix A

- Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly
- This is another reason why condition number is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.

Consider non-hermitian matrix A

Possible cases of gradient descent behaviour:

convergence

- Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly
- This is another reason why condition number is so important: Besides the bound on the error in the solution, it also
- gives an estimate of the number of iterations for the iterative methods.

Consider non-hermitian matrix A

- convergence
- divergence

- Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly
- This is another reason why condition number is so important:
 Besides the bound on the error in the solution, it also

gives an estimate of the number of iterations for the

Consider non-hermitian matrix A

iterative methods

- convergence
- divergence
- almost stable trajectory

- Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly
- This is another reason why condition number is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods

Consider non-hermitian matrix A

- convergence
- divergence
- almost stable trajectory

- Thus, for ill-conditioned matrices the error of the gradient descent method decays very slowly
- This is another reason why condition number is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.

Consider non-hermitian matrix A

Possible cases of gradient descent behaviour:

- convergence
- divergence
- almost stable trajectory

 $\mathbf{Q} \text{:}\ \text{how can we identify our case } \mathbf{before}\ \text{running iterative}$ method?

Spectrum directly affects the convergence

One can still formulate a Lyapunov function ³

³Another approach to build Lyapunov functions for the first order methods in the quadratic case. D. M. Merkulov, I. V. Oseledets

Relation of the method matrix spectrum for the quadratic problem and convergence of methods⁴

Spectrum of iteration matrix for 5-dimensional strongly convex problem, $\mu = 1$, L = 100

⁴Another Approach to Build Lyapunov Functions for the First Order Methods in the Quadratic Case

Attempt 1: Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Attempt 1: Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

Attempt 1: Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

$$\nabla f(x_{k+1})^{\top} \nabla f(x_k) = 0$$

The convergence rate is the same as for the gradient descent!

Figure 1: Steepest Descent

Open In Colab 🐥

Attempt 2: Chebyshev acceleration

Another way to find α_k is to consider

$$||x_{k+1} - x^*|| = (I - \alpha_k A)||x_k - x^*|| = (I - \alpha_k A)(I - \alpha_{k-1} A)||x_{k-1} - x^*|| = \dots = p(A)||x_0 - x^*||,$$

where p(A) is a matrix polynomial (simplest matrix function)

$$p(A) = (I - \alpha_k A) \dots (I - \alpha_0 A),$$

and p(0) = I.

Optimal choice of time steps

The error is written as

$$e_{k+1} = p(A)e_0,$$

and hence

$$||e_{k+1}|| \le ||p(A)|| ||e_0||,$$

where p(0) = 1 and p(A) is a matrix polynomial.

To get better error reduction, we need to minimize

over all possible polynomials p(x) of degree k+1 such that p(0)=1. We will use $\|\cdot\|_2$.

Polynomials least deviating from zeros

Important special case: $A = A^* > 0$.

Then,
$$A = U\Lambda U^*$$
,

and

$$||p(A)||_2 = ||Up(\Lambda)U^*||_2 = ||p(\Lambda)||_2 = \max_i |p(\lambda_i)| \stackrel{!}{\leq} \max_{\lambda = i, i \leq \lambda \leq \lambda_{max}} |p(\lambda)|.$$

The latter inequality is the only approximation. Here we make a crucial assumption that we do not want to benefit from the distribution of the spectrum between λ_{\min} and λ_{\max} .

Thus, we need to find a polynomial $p(\lambda)$ such that p(0)=1, and which has the least possible deviation from 0 on $[\lambda_{\min}, \lambda_{\max}].$

Polynomials least deviating from zeros (2)

We can do the affine transformation of the interval $[\lambda_{\min}, \lambda_{\max}]$ to the interval [-1, 1]:

$$\xi = \frac{\lambda_{\max} + \lambda_{\min} - (\lambda_{\min} - \lambda_{\max})x}{2}, \quad x \in [-1, 1].$$

The problem is then reduced to the problem of finding the polynomial least deviating from zero on an interval [-1,1].

Exact solution: Chebyshev polynomials

The exact solution to this problem is given by the famous Chebyshev polynomials of the form

$$T_n(x) = \cos(n \arccos x)$$

1. This is a polynomial!

Acceleration for quadratics

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

3. $|T_n(x)| < 1$ on $x \in [-1, 1]$.

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

- 3. $|T_n(x)| \le 1$ on $x \in [-1, 1]$.
- 4. It has (n+1) alternation points, where the maximal absolute value is achieved (this is the sufficient and necessary condition for the **optimality**) (Chebyshev alternance theorem, no proof here).

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

- 3. $|T_n(x)| < 1$ on $x \in [-1, 1]$.
- 4. It has (n+1) alternation points, where the maximal absolute value is achieved (this is the sufficient and necessary condition for the **optimality**) (Chebyshev alternance theorem, no proof here).
- 5. The **roots** are just

$$n \arccos x_k = \frac{\pi}{2} + \pi k, \quad \to \quad x_k = \cos \frac{\pi (2k+1)}{2n}, \ k = 0, \dots, n-1$$

We can plot them...

Convergence of the Chebyshev-accelerated gradient descent

Note that $p(x) = (1 - \tau_n x) \dots (1 - \tau_0 x)$, hence roots of p(x) are $1/\tau_i$ and that we additionally need to map back from [-1,1] to $[\lambda_{\min},\lambda_{\max}]$. This results into

$$\tau_i = \frac{2}{\lambda_{\text{max}} + \lambda_{\text{min}} - (\lambda_{\text{max}} - \lambda_{\text{min}})x_i}, \quad x_i = \cos\frac{\pi(2i+1)}{2n} \quad i = 0, \dots, n-1$$

The convergence (we only give the result without the proof) is now given by

$$e_{k+1} \le Cq^k e_0, \quad q = \frac{\sqrt{\text{cond}(A) - 1}}{\sqrt{\text{cond}(A) + 1}},$$

which is better than in the gradient descent.

Convergence of the Chebyshev-accelerated gradient descent

Note that $p(x) = (1 - \tau_n x) \dots (1 - \tau_0 x)$, hence roots of p(x) are $1/\tau_i$ and that we additionally need to map back from [-1,1] to $[\lambda_{\min},\lambda_{\max}]$. This results into

$$\tau_i = \frac{2}{\lambda_{\text{max}} + \lambda_{\text{min}} - (\lambda_{\text{max}} - \lambda_{\text{min}})x_i}, \quad x_i = \cos\frac{\pi(2i+1)}{2n} \quad i = 0, \dots, n-1$$

The convergence (we only give the result without the proof) is now given by

$$e_{k+1} \le Cq^k e_0, \quad q = \frac{\sqrt{\text{cond}(A) - 1}}{\sqrt{\text{cond}(A) + 1}},$$

which is better than in the gradient descent.

Heavy ball

Heavy ball

Oscillations and acceleration

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1}$$

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1}$$

This can be rewritten as follows

$$\hat{x}_{k+1} = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1},$$

$$\hat{x}_k = \hat{x}_k.$$

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1}$$

This can be rewritten as follows

$$\hat{x}_{k+1} = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1},$$

$$\hat{x}_k = \hat{x}_k.$$

Let's use the following notation $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Therefore $\hat{z}_{k+1} = M\hat{z}_k$, where the iteration matrix M is:

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1}$$

This can be rewritten as follows

$$\hat{x}_{k+1} = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1},$$

$$\hat{x}_k = \hat{x}_k.$$

Let's use the following notation $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Therefore $\hat{z}_{k+1} = M\hat{z}_k$, where the iteration matrix M is:

$$M = \begin{bmatrix} I - \alpha \Lambda + \beta I & -\beta I \\ I & 0_d \end{bmatrix}.$$

Note, that M is $2d \times 2d$ matrix with 4 block-diagonal matrices of size $d \times d$ inside. It means, that we can rearrange the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix M denotes the same as in the notation above, except for the described permutation of rows and columns. We use this slight abuse of notation for the sake of clarity.

♥

Note, that M is $2d \times 2d$ matrix with 4 block-diagonal matrices of size $d \times d$ inside. It means, that we can rearrange the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix M denotes the same as in the notation above, except for the described permutation of rows and columns. We use this slight abuse of notation for the sake of clarity.

Figure 2: Illustration of matrix M rearrangement

$$\begin{bmatrix} \hat{x}_{k}^{(1)} \\ \vdots \\ \hat{x}_{k}^{(d)} \\ \hat{x}_{k-1}^{(1)} \\ \vdots \\ \hat{x}_{k-1}^{(d)} \end{bmatrix} \rightarrow \begin{bmatrix} \hat{x}_{k}^{(1)} \\ \hat{x}_{k-1}^{(1)} \\ \vdots \\ \hat{x}_{k}^{(d)} \\ \hat{x}_{k-1}^{(d)} \end{bmatrix} \quad M = \begin{bmatrix} M_{1} & & & \\ & M_{2} & & \\ & & & M_{d} \end{bmatrix}$$

where $\hat{x}_{i}^{(i)}$ is i-th coordinate of vector $\hat{x}_{k} \in \mathbb{R}^{d}$ and M_{i} stands for 2×2 matrix. This rearrangement allows us to study the dynamics of the method independently for each dimension. One may observe, that the asymptotic convergence rate of the 2d-dimensional vector sequence of \hat{z}_k is defined by the worst convergence rate among its block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.

For i-th coordinate with λ_i as an i-th eigenvalue of matrix W we have:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

For *i*-th coordinate with λ_i as an *i*-th eigenvalue of matrix W we have:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

The method will be convergent if $\rho(M) < 1$, and the optimal parameters can be computed by optimizing the spectral radius

$$\alpha^*, \beta^* = \arg\min_{\alpha, \beta} \max_i \rho(M_i) \quad \alpha^* = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \beta^* = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2.$$

 $f \to \min_{x,y,\cdot}$

♥ ೧ Ø

For *i*-th coordinate with λ_i as an *i*-th eigenvalue of matrix W we have:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

The method will be convergent if $\rho(M) < 1$, and the optimal parameters can be computed by optimizing the spectral radius

$$\alpha^*, \beta^* = \arg\min_{\alpha, \beta} \max_i \rho(M_i) \quad \alpha^* = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \beta^* = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2.$$

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so the distance to the optimum (in this case, $||z_k||$), generally, will not go to zero monotonically.

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

When α and β are optimal (α^*, β^*) , the eigenvalues are complex-conjugated pair $(1 + \beta - \alpha \lambda_i)^2 - 4\beta \le 0$, i.e. $\beta > (1 - \sqrt{\alpha \lambda_i})^2$.

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

When α and β are optimal (α^*, β^*) , the eigenvalues are complex-conjugated pair $(1 + \beta - \alpha \lambda_i)^2 - 4\beta \le 0$, i.e. $\beta \ge (1 - \sqrt{\alpha \lambda_i})^2$.

$$\operatorname{Re}(\lambda_1^M) = \frac{L + \mu - 2\lambda_i}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \operatorname{Im}(\lambda_1^M) = \frac{\pm 2\sqrt{(L - \lambda_i)(\lambda_i - \mu)}}{(\sqrt{L} + \sqrt{\mu})^2}; \quad |\lambda_1^M| = \frac{L - \mu}{(\sqrt{L} + \sqrt{\mu})^2}.$$

 $f \to \min_{x,y,z}$

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

When α and β are optimal (α^*, β^*) , the eigenvalues are complex-conjugated pair $(1 + \beta - \alpha \lambda_i)^2 - 4\beta \le 0$, i.e. $\beta > (1 - \sqrt{\alpha \lambda_i})^2$.

$$\operatorname{Re}(\lambda_1^M) = \frac{L + \mu - 2\lambda_i}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \operatorname{Im}(\lambda_1^M) = \frac{\pm 2\sqrt{(L - \lambda_i)(\lambda_i - \mu)}}{(\sqrt{L} + \sqrt{\mu})^2}; \quad |\lambda_1^M| = \frac{L - \mu}{(\sqrt{L} + \sqrt{\mu})^2}.$$

And the convergence rate does not depend on the stepsize and equals to $\sqrt{\beta^*}$.

i Theorem

Assume that f is quadratic μ -strongly convex L-smooth quadratics, then Heavy Ball method with parameters

$$\alpha = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}, \beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

converges linearly:

$$||x_k - x^*||_2 \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) ||x_0 - x^*||_2$$

Heavy Ball Global Convergence 5

i Theorem

Assume that f is smooth and convex and that

$$\beta \in [0,1), \quad \alpha \in \left(0, \frac{2(1-\beta)}{L}\right).$$

Then, the sequence $\{x_k\}$ generated by Heavy-ball iteration satisfies

$$f(\overline{x}_T) - f^* \le \begin{cases} \frac{\|x_0 - x^*\|^2}{2(T+1)} \left(\frac{L\beta}{1-\beta} + \frac{1-\beta}{\alpha}\right), & \text{if } \alpha \in \left(0, \frac{1-\beta}{L}\right], \\ \frac{\|x_0 - x^*\|^2}{2(T+1)(2(1-\beta) - \alpha L)} \left(L\beta + \frac{(1-\beta)^2}{\alpha}\right), & \text{if } \alpha \in \left[\frac{1-\beta}{L}, \frac{2(1-\beta)}{L}\right), \end{cases}$$

where \overline{x}_T is the Cesaro average of the iterates, i.e.,

$$\overline{x}_T = rac{1}{T+1} \sum_{}^{T} x_k.$$

⁵Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.

Heavy Ball Global Convergence ⁶

i Theorem

Assume that f is smooth and strongly convex and that

$$\alpha \in (0, \frac{2}{L}), \quad 0 \leq \beta < \frac{1}{2} \left(\frac{\mu \alpha}{2} + \sqrt{\frac{\mu^2 \alpha^2}{4} + 4(1 - \frac{\alpha L}{2})} \right).$$

where $\alpha_0 \in (0,1/L]$. Then, the sequence $\{x_k\}$ generated by Heavy-ball iteration converges linearly to a unique optimizer x^\star . In particular,

$$f(x_k) - f^* \le q^k (f(x_0) - f^*),$$

where $q \in [0, 1)$.

• Ensures accelerated convergence for strongly convex quadratic problems

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently was proved, that there is no global accelerated convergence for the method.

୍ ଚ ଚ

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently was proved, that there is no global accelerated convergence for the method.
- Method was not extremely popular until the ML boom

♥ດ

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently was proved, that there is no global accelerated convergence for the method.
- Method was not extremely popular until the ML boom
- Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex problems (neural network training)

Nesterov accelerated gradient

₩ 6

The concept of Nesterov Accelerated Gradient method

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \qquad x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta(x_k - x_{k-1}) \qquad \begin{cases} y_{k+1} = x_k + \beta(x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$$

♥ ೧ 0

The concept of Nesterov Accelerated Gradient method

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \qquad x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}) \qquad \begin{cases} y_{k+1} = x_k + \beta (x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$$

Let's define the following notation

$$x^+ = x - \alpha \nabla f(x)$$
 Gradient step $d_k = \beta_k (x_k - x_{k-1})$ Momentum term

Then we can write down:

$$x_{k+1}=x_k^+$$
 Gradient Descent $x_{k+1}=x_k^++d_k$ Heavy Ball $x_{k+1}=\left(x_k+d_k\right)^+$ Nesterov accelerated gradient

NAG convergence for quadratics

General case convergence

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ is convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is designed to solve the minimization problem starting with an initial point $x_0 = y_0 \in \mathbb{R}^n$ and $\lambda_0 = 0$. The algorithm iterates the following steps:

Gradient update:
$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

Extrapolation:
$$x_{k+1} = (1 - \gamma_k)y_{k+1} + \gamma_k y_k$$

Extrapolation weight:
$$\lambda_{k+1} = \frac{1 + \sqrt{1 + 4\lambda_k^2}}{2}$$

Extrapolation weight:
$$\gamma_k = \frac{1 - \lambda_k}{\lambda_{k+1}}$$

The sequences $\{f(y_k)\}_{k\in\mathbb{N}}$ produced by the algorithm will converge to the optimal value f^* at the rate of $\mathcal{O}\left(\frac{1}{1\cdot 2}\right)$, specifically:

$$f(y_k) - f^* \le \frac{2L||x_0 - x^*||^2}{k^2}$$

Nesterov accelerated gradient

General case convergence

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ is μ -strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is designed to solve the minimization problem starting with an initial point $x_0 = y_0 \in \mathbb{R}^n$ and $\lambda_0 = 0$. The algorithm iterates the following steps:

Gradient update:
$$y_{k+1} = x_k - \frac{1}{r} \nabla f(x_k)$$

Extrapolation:
$$x_{k+1} = (1 - \gamma_k)y_{k+1} + \gamma_k y_k$$

Extrapolation weight:
$$\gamma_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

The sequences $\{f(y_k)\}_{k\in\mathbb{N}}$ produced by the algorithm will converge to the optimal value f^* linearly:

$$f(y_k) - f^* \le \frac{\mu + L}{2} ||x_0 - x^*||_2^2 \exp\left(-\frac{k}{\sqrt{\kappa}}\right)$$

Nesterov accelerated gradient