Math201 PSet 1

[DF] = Dummit and Foote.

* = optional with extra credit.

P1 Let R be a ring and M be a left R-module.

- (a) Let $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ be an ascending chain of R-submodules in M. Prove that the union $\bigcup_{j=1}^{\infty} N_j$ is an R-submodule of M.
- (b) Let $R = \mathscr{C}(\mathbb{R})$ denote the ring of (real-valued) continuous functions on \mathbb{R} , with pointwise addition and multiplication (as in class). Define

$$\mathscr{C}_c(\mathbb{R}) = \{ f \in \mathscr{C}(\mathbb{R}) : \exists N = N(f) \in \mathbb{N} \text{ such that } f(x) = 0 \text{ for all } |x| > N \}$$

Prove that $\mathscr{C}_c(\mathbb{R})$ is an R-submodule of R. Is it a subring?

P2 Let M be a left R-module. The *annihilator* of M in R is defined as:

$$Ann_R(M) = \{r \in R : rm = 0 \text{ for all } m \in M\}.$$

- (a) Prove that $Ann_R(M)$ is a bilateral ideal of R.
- (b) If M_1 and M_2 are two left R-modules, prove that

$$Ann_R(M_1 \times M_2) = Ann_R(M_1) \cap Ann_R(M_2).$$

(c) Compute $Ann_R(M)$ when $R=\mathbb{Z}$ and $M=(\mathbb{Z}/112\mathbb{Z})^\times$ is the multiplicative abelian group of units in $\mathbb{Z}/112\mathbb{Z}$. (*Hint*. Use the Chinese remainder theorem and part (b).)