第六章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.1 无符号数和有符号数

一、无符号数

寄存器的位数

反映无符号数的表示范围

8位

 $0 \sim 255$

16 位

 $0 \sim 65535$

1. 机器数与真值

真值

带符号的数

+0.1011

-0.1011

+1100

-1100

机器数

符号数字化的数

0 1011

小数点的位置

1 1011

小数点的位置

0 1100

小数点的位置

1 1100

小数点的位置

(1) 定义

整数
$$[x]_{\mathbb{R}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^n - x & 0 \ge x > 2^n \end{cases}$$

x 为真值 n 为整数的位数

如
$$x = +1110$$
 $[x]_{\mathbb{R}} = 0$, 1110 用逗号将符号位和数值位隔开 $x = -1110$ $[x]_{\mathbb{R}} = 2^4 + 1110 = 1$, 1110 带符号的绝对值表示

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

x 为真值

如 x = +0.1101

$$[x]_{\mathbb{R}} = 0$$
, 1101

用小数点将符号位和数值位隔开

$$x = -0.1101$$

$$[x]_{\text{g}} = 1 - (-0.1101) = 1.1101$$

$$x = +0.1000000$$

$$[x]_{\mathbb{R}} = 0$$
 \uparrow 1000000

用 小数点 将符号 位和数值位隔开

$$x = -0.1000000$$

$$[x]_{\mathbb{R}} = 1 - (-0.1000000) = 1.1000000$$

(2) 举例 6.1

例 6.1 已知 $[x]_{\mathbb{R}} = 1.0011$ 求 x - 0.0011

解: 由定义得

 $x = 1 - [x]_{\text{if}} = 1 - 1.0011 = -0.0011$

例 6.2 已知 $[x]_{\mathbb{R}} = 1,1100$ 求 x - 1100

解:由定义得

 $x = 2^4 - [x]_{\text{in}} = 100000 - 1,1100 = -11000$

例 6.3 已知 $[x]_{\mathbb{R}} = 0.1101$ 求 x

6.1

解: 根据 定义 : [x]_原 = 0.1101

$$x = +0.1101$$

例 6.4 求 x=0 的原码

解: 设x = +0.0000 [+0.0000]_原 = 0.0000

x = -0.0000

 $[-0.0000]_{\text{\tiny \'{E}}} = 1.0000$

同理,对于整数

 $[+0]_{\text{\tiny \'e}} = 0.0000$

 $[-0]_{\text{\tiny \'e}} = 1,0000$

 $[+0]_{\mathbb{R}} \neq [\theta]_{\mathbb{R}}$

原码的特点:简单、直观

但是用原码做加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	E
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只做加法?

找到一个与负数等价的正数 来代替这个负数 就可使 减 —— 加

3. 补码表示法

(1) 补的概念

• 时钟

逆时针

顺时针

可见-3可用+9代替 减法——加法 称+9是-3以12为模的补数

$$-5 \equiv +7 \pmod{12}$$

时钟以12为模

结论

- >一个负数加上"模"即得该负数的补数
- 一两个互为补数的数 它们绝对值之和即为 模 数
 - 计数器(模16) 1011 → 0000?

$$\begin{array}{r}
 1011 \\
 -1011 \\
 \hline
 0000
 \end{array}$$

1011 + 0101 10000

可见-1011 可用 + 0101 代替

同理 $-011 \equiv +101$ (mod 2^3)

$$-0.1001 \equiv +1.0111 \pmod{2}$$

自然去掉

(2) 正数的补数即为其本身

6.1

```
+ 0101 \pmod{2^4}
两个互为补数的数
分别加上模
               + 10000
                             +10000
                +0101
结果仍互为补数
                           (mod 2^4)
      -1 + 0101 \equiv +0101
                                        丢掉
       +0101 \rightarrow +0101
      ? 0,0101 \rightarrow + 0101
        1,0101 \rightarrow -1011
         -1011 = 100000
                                    (mod
                   -1011
                               用逗号将符号位
                   1,0101
                               和数值位隔开
```

(3) 补码定义

整数

$$[x]_{n} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \end{cases}$$

$$[x]_{n+1} = \begin{cases} 2^{n+1} + x & 0 > x \ge 2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n为整数的位数

$$[x]_{\raisetar} = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$-1011000$$

$$1,0101000$$

x = -1011000

小数

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge 4 \pmod{2} \end{cases}$$

x 为真值

如
$$x = +0.1110$$
 $x = -0.1100000$

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} \begin{subarray}{l} [x]_{\begin{subarray}{l} \begin{subarray}{l} \begin{su$$

 一 0.1100000

 用 小数点 将符号位

1.0100000

和数值位隔开

(4) 求补码的快捷方式

又
$$[x]_{\mathbb{R}}=$$
 1,1010

当真值为负时,补码可用原码除符号位外 每位取反,末位加1求得

```
(5) 举例
```

例 6.5 已知 $[x]_{\stackrel{}{\text{$\mathbb{A}$}}} = 0.0001$ 求 x

解: 由定义得 x = +0.0001

例 6.6 已知 $[x]_{\stackrel{}{\text{\tiny h}}} = 1.0001$ 求 x

解:由定义得

$$x = [x]_{?} - 2$$

= 1.0001 - 10.0000
= -0.1111

 $[x]_{\hat{A}} \xrightarrow{?} [x]_{\hat{B}}$ $[x]_{\hat{A}} = 1.11111$ $\therefore x = -0.11111$

例 6.7 已知 $[x]_{i} = 1,1110$

求x

解: 由定义得

$$x = [x]_{3} - 2^{4+1}$$

= 1,1110 - 100000

$$= -0010$$

$$[x]_{\stackrel{?}{\wedge}} [x]_{\stackrel{}{\otimes}}$$

$$[x]_{\text{p}} = 1,0010$$

$$x = -0010$$

当真值为负时,原码可用补码除符号位外

每位取反,末位加1求得

真值	[x] _补	[x] _原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{?} = [-$	0.0000 0.0000	0.0000
x = -0.0000	0.0000	1.0000
x = -1.0000	1.0000	不能表示
由小数补码定义 [x]补	$= \begin{cases} x & 1 > x \\ 2+x & 0 > x \end{cases}$	$z \ge 0$ $z \ge -1 \pmod{2}$

 $[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$

(1) 定义

整数
$$[x]_{\mathbb{K}} = \begin{cases} 0, & x & 2^{n} > x \geq 0 \\ (2^{n+1} - 1) + x & 0 \geq x > -2^{n} \pmod{2^{n+1} - 1} \end{cases}$$
 x 为真值 n 为整数的位数
$$x = +1101 \qquad x = -1101$$

 $[x]_{\boxtimes} = 0.1101$ 用 逗号 将符号位

和数值位隔开

$$[x]_{\cancel{\boxtimes}} = (2^{4+1} - 1) - 1101$$

= 11111 - 1101
= 1,0010

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2 - 2^{-n}) + x & 0 \ge x > -1 \pmod{2 - 2^{-n}} \end{cases}$$

x 为真值

和数值位隔开

如

$$x = +0.1101$$
 $x = -0.1010$
$$[x]_{\overline{\mathbb{R}}} = 0.1101 \qquad [x]_{\overline{\mathbb{R}}} = (2-2^{-4}) - 0.1010$$

$$= 1.1111 - 0.1010$$

$$= 1.0101$$

(2) 举例 6.1

例 6.8 已知
$$[x]_{\overline{\mathbb{Q}}} = 0,1110$$
 求 x 解: 由定义得 $x = +1110$ 例 6.9 已知 $[x]_{\overline{\mathbb{Q}}} = 1,1110$ 求 x 解: 由定义得 $x = [x]_{\overline{\mathbb{Q}}} - (2^{4+1} - 1)$ $= 1,1110 - 11111$ $= -0001$ 例 6.10 求 0 的反码 解: 设 $x = +0.0000$ $[+0.0000]_{\overline{\mathbb{Q}}} = 0.0000$ $x = -0.0000$ $[-0.0000]_{\overline{\mathbb{Q}}} = 1.1111$ 同理,对于整数 $[+0]_{\overline{\mathbb{Q}}} = 0,0000$ $[-0]_{\overline{\mathbb{Q}}} = 1,1111$

三种机器数的小结

- →最高位为符号位,书写上用","(整数) 或"."(小数)将数值部分和符号位隔开
- ▶对于正数,原码=补码=反码
- ▶对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

例6.11 设机器数字长为8位(其中一位为符号位)6.1 对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数	原码对应	补码对应	反码对应
	对应的真值	的真值	的真值	的真值
00000000	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	+0	±0	+0
00000001		+1	+1	+1
00000010		+2	+2	+2
00000010 : 01111111	: 127	÷127	÷127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
:	: 253	:	:	:
11111101		-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例6.12 已知[y]** 求[-y]**

解: 设 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot y_n$

$$\langle \mathbf{I} \rangle \qquad [\mathbf{y}]_{\nmid h} = \mathbf{0}. \ \mathbf{y}_1 \mathbf{y}_2 \quad ... \mathbf{y}_n$$

[y]_补连同符号位在内,每位取反,末位加1即得[-y]_补

$$[-y]_{\nmid h} = 1\overline{y_1}\overline{y_2} \cdot ...\overline{y_n} + 2^{-n}$$

$$\langle \mathbf{II} \rangle \qquad [y]_{\not \uparrow \downarrow} = 1. \ y_1 y_2 \cdots y_n$$

[y]_补连同符号位在内,每位取反,末位加1即得[-y]_{*}

$$[-y]_{\nmid h} = 0.\overline{y_1}\overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

5. 移码表示法

6.1

补码表示很难直接判断其真值大小

如 十进制	二进制	补码
x = +21	+10101	0,10101 1,01011 大
x = -21	-10101	1,01011
x = +31	+11111	0,11111
x = -31	-11111	1,00001 大
$x + 2^5$		
	100000 = 11010	
-10101 +	100000 = 00101	1
+11111 +	100000 = 111111	1 大 工格
-11111 +	100000 = 00000	1

(1) 移码定义

6.1

$$[x]_{8} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

x为真值,n为整数的位数

移码在数轴上的表示

如 x=10100

$$[x]_{8} = 2^5 + 10100 = 1,10100$$

 $x = -10100$

$$[x]_{8} = 2^{5} - 10100 = 0,01100$$

用 逗号 将符号位 和数值位隔开

(2) 移码和补码的比较

设
$$x = +1100100$$
 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$ $[x]_{1} = 0,1100100$ 设 $x = -1100100$ $[x]_{1} = 2^{7} - 1100100 = 0,0011100$ $[x]_{1} = 1,0011100$ 补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

G	4
U	

真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-100000	100000	000000	0
- 11111	100001	000001	1
- 111110	100010	000010	2
:	::	:	:
- 00001	111111	011111	31
± 00000	000000	100000	32
+ 00001	000001	100001	33
+ 00010	000010	100010	34
:	::	:	:
+ 11110	011110	111110	62
+ 11111	011111	11111	63

(4) 移码的特点

当
$$x = 0$$
时 $[+0]_{8} = 2^{5} + 0 = 1,00000$
 $[-0]_{8} = 2^{5} - 0 = 1,00000$
 $[+0]_{8} = [-0]_{8}$

一当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 -100000 = 000000$

可见,最小真值的移码为全0

用移码表示浮点数的阶码能方便地判断浮点数的阶码大小

6.2 数的定点表示和浮点表示

小数点按约定方式标出

一、定点表示

小数点位置

定点机 小数定点机 整数定点机 原码
$$-(1-2^{-n}) \sim +(1-2^{-n})$$
 $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-2^n \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

二、浮点表示

```
N = S \times r^{j}
               浮点数的一般形式
S 尾数 j 阶码 r 基数 (基值)
计算机中 r 取 2、4、8、16等
                                  二进制表示
当 r=2 N=11.0101
            ✓=0.110101×2<sup>10</sup> 规格化数
              =1.10101\times2^{1}
              = 1101.01 \times 2^{-10}
            \checkmark = 0.00110101 \times 2^{100}
```

计算机中 S 小数、可正可负 j 整数、可正可负

1. 浮点数的表示形式

S_f 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_f和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

6.2

上溢 阶码 > 最大阶玛

下溢 阶码 < 最小阶码 按 机器零 处理

设
$$m=4$$
 $n=10$

练习 6.2

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

■ 15 位二进制数可反映±3 万之间的十进制数

$$2^{15}$$
 × $0.$ ××× · · · · · ××

 15 位

 $m = 4$ 、 5 、 6 · · · ·

满足 最大精度 可取 m=4, n=18

```
r=2 尾数最高位为1
```

r=4 尾数最高 2 位不全为 0

r=8 尾数最高3位不全为0

基数不同,浮点数的 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移 1 位, 阶码加 1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位,阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数 r 越大,可表示的浮点数的范围越大 基数 r 越大,浮点数的精度降低

例如: 设m=4, n=10

尾数规格化后的浮点数表示范围

10个1

三、举例 6.2

例 6.13 将 + 19/128 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设 $x = + \frac{19}{128}$

二进制形式 x = 0.0010011

定点表示 x = 0.0010011000

浮点规格化形式 x = 0.1001100000×2⁻¹⁰

定点机中 $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{Q}} = 0.0010011000$

浮点机中 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{36} = 1, 1110; 0.1001100000$

 $[x]_{\mathbb{R}} = 1, 1101; 0.1001100000$

例 6.14 将 -58 表示成二进制定点数和浮点数, 6.2 并写出它在定点机和浮点机中的三种机器数及阶码为移码, 尾数为补码的形式(其他要求同上例)。

二进制形式

定点表示

浮点规格化形式

x = -111010

x = -0000111010

 $x = -(0.1110100000) \times 2^{110}$

定点机中

 $[x]_{\text{\tiny \'e}} = 1,0000111010$

 $[x]_{3} = 1,1111000110$

 $[x]_{\mathbb{R}} = 1,1111000101$

浮点机中

 $[x]_{\text{g}} = 0,0110; 1.1110100000$

 $[x]_{3b} = 0,0110; 1.0001100000$

 $[x]_{\mathbb{R}} = 0,0110; 1.00010111111$

 $[x]_{\text{M}8}$ = 1, 0110; 1. 00011000000

例 6.15 写出对应下图所示的浮点数的补码 6.2 形式。设n=10, m=4, 阶符、数符各取 1位。

机器零

- ▶ 当浮点数 尾数为 0 时,不论其阶码为何值 按机器零处理
- 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值,按机器零处理

如
$$m=4$$
 $n=10$

当阶码和尾数都用补码表示时,机器零为

```
\times, \times \times \times \times; 0.00 ···0···
```

(阶码 = -16) 1, 0 0 0 0; ×.×× ··· ×·

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ······ 0

有利于机器中"判0"电路的实现

四、IEEE 754 标准

6.2

S	阶码	(含阶符)	尾	数
数符		小数	点位置	

尾数为规格化表示

非"0"的有效位最高位为"1"(隐含)

	符号位S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

6.3 定点运算

- 一、移位运算
 - 1. 移位的意义

15.米 = 1500. 厘米 小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位 (小数点不动)

在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
	原码	0
负数	े∤ा दत्त	左移添0
火 数	补 码	右移添1
	反 码	1

例6.16 6.3

设机器数字长为8位(含一位符号位),写出 A=+26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解: A = +26 = +11010 则 $[A]_{\mathbb{F}} = [A]_{\mathbb{A}} = [A]_{\mathbb{F}} = \mathbf{0,0011010}$

移位操作	机 器 数 [A] _原 =[A] _补 =[A] _反	对应的真值
移位前	0,0011010	+26
←1	0,011010 <mark>0</mark>	+52
← 2	0,1101000	+104
→ 1	0,0001101	+13
→2	0,0000110	+6

例6.17

设机器数字长为8位(含一位符号位),写出 A=-26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解: A = -26 = -11010

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
←1	1,011010 <mark>0</mark>	- 52
← 2	1,1101000	-104
→ 1	1, <mark>0</mark> 001101	-13
→ 2	1,0000110	-6

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
←1	1,1001100	- 52
← 2	1,0011000	-104
→ 1	1, <mark>1</mark> 110011	-13
→2	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
←1	1,1001011	-52
← 2	1,0010111	-104
→1	1,1110010	-13
→2	1,1111001	-6

3. 算术移位的硬件实现

→丢1

影响精度

6.3

正确

影响精度

影响精度

4. 算术移位和逻辑移位的区别

6.3

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110

算术左移 00100110

高位1移丢

 $C_y \leftarrow 0 1 0 1 0 0 1 1$

10110010

01011001

11011001 (补码)

10100110

逻辑右移

算术右移

二、加减法运算

- 1. 补码加减运算公式
 - (1) 加法

整数
$$[A]_{\stackrel{?}{\uparrow}_{1}} + [B]_{\stackrel{?}{\uparrow}_{1}} = [A+B]_{\stackrel{?}{\uparrow}_{1}} \pmod{2^{n+1}}$$

小数 $[A]_{\stackrel{?}{\uparrow}_{1}} + [B]_{\stackrel{?}{\uparrow}_{1}} = [A+B]_{\stackrel{?}{\uparrow}_{1}} \pmod{2}$

(2) 减法

$$A-B = A+(-B)$$

整数 $[A-B]_{\stackrel{}{\mathcal{H}}} = [A+(-B)]_{\stackrel{}{\mathcal{H}}} = [A]_{\stackrel{}{\mathcal{H}}} + [-B]_{\stackrel{}{\mathcal{H}}} \pmod{2^{n+1}}$ 小数 $[A-B]_{\stackrel{}{\mathcal{H}}} = [A+(-B)]_{\stackrel{}{\mathcal{H}}} = [A]_{\stackrel{}{\mathcal{H}}} + [-B]_{\stackrel{}{\mathcal{H}}} \pmod{2}$ 连同符号位一起相加,符号位产生的进位自然丢掉

```
2. 举例
                                                       6.3
  例 6.18 设 A = 0.1011, B = -0.0101
             验证
        解: [A]_{\stackrel{1}{\text{A}}} = 0.1011
                                                      0.1011
              +[B]_{3k} = 1.1011
                                                     -0.0101
                                                      0.0110
       [A]_{\stackrel{?}{\not=}} + [B]_{\stackrel{?}{\not=}} = 1 \ 0 \cdot 0 \ 1 \ 1 \ 0 = [A + B]_{\stackrel{?}{\not=}}
             A + B = 0.0110
  例 6.19 设 A = -9, B = -5
             求 [A+B]_{ik}
                                              验证
        解: [A]_{i} = 1,0111
                                                     -1001
              +[B]_{3b} = 1, 1011
                                                  +-0101
        [A]_{3h} + [B]_{3h} = 11, 0010 = [A + B]_{3h} - 1110
            A + B = -1110
```

例 6.20 设机器数字长为 8 位(含 1 位符号位) 6.3 且 A=15, B=24,用补码求 A-B

解:
$$A = 15 = 00011111$$
 $B = 24 = 0011000$
 $[A]_{\stackrel{}{\uparrow}} = 0,0001111$
 $+ [-B]_{\stackrel{}{\uparrow}} = 1,1101000$

$$[A]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{l}$$

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$ 用补码求 $x+y$
$$x+y=-0.1100=-\frac{12}{16}$$
 错

练习2 设机器数字长为8位(含1位符号位) 且A=-97, B=+41, 用补码求A-B 3. 溢出判断

6.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 中符号位的进位 = 1 溢出

如 1 ⊕ 0 = 1 } 有溢出 0 ⊕ 1 = 1 } 有溢出 0 ⊕ 0 = 0 } 无溢出 1 ⊕ 1 = 0 } 无溢出

$$[x]_{\dagger h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda h'} + [y]_{\lambda h'} = [x + y]_{\lambda h'} \pmod{4}$$

$$[x-y]_{\not= |x|} = [x]_{\not= |x|} + [-y]_{\not= |x|}$$
 (mod 4)

结果的双符号位 相同

未溢出

00, xxxxx

11, xxxx

结果的双符号位不同

溢出

10, ****

01, ****

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

A、X均n+1位 用减法标记 G_S 控制求补逻辑

三、乘法运算

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

 $A \times B = -0.10001111$ 乘积的符号心算求得

```
0.1101
× 0.1011
1101
```

1101

0000

1101

0.10001111

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

2. 笔算乘法改进

6.3

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

右移一位 =
$$0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

= $2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$

第一步 被乘数4+0

第二步 →1,得新的部分积

第三步 部分积 + 被乘数

(3)

第八步 → 1,得结果

8

3. 改进后的笔算乘法过程(竖式) 6.3

部分积	乘数	说 明
0.0000	1011	初态,部分积=0
0.1101	_	乘数为1,加被乘数
0.1101		
0.0110	1 1 0 <u>1</u>	→1,形成新的部分积
0.1101	_	乘数为1,加被乘数
1.0011	1	
0.1001	1110	→ 1,形成新的部分积
0.0000	=	乘数为 0,加 0
0.1001	11	
0.0100	111 <u>1</u>	→ 1,形成新的部分积
0.1101		乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1,得结果

小结 6.3

- ▶乘法运算 → 加和移位。n=4,加 4 次,移 4 次
- ▶由乘数的末位决定被乘数是否与原部分积相加, 然后─1形成新的部分积,同时乘数─1(末 位移丢),空出高位存放部分积的低位。
- ▶被乘数只与部分积的高位相加

硬件 3个寄存器,具有移位功能 一个全加器

4. 原码乘法

(1) 原码一位乘运算规则 以小数为例

设
$$[x]_{\mathbb{R}} = x_0.x_1x_2 \cdots x_n$$

$$[y]_{\mathbb{R}} = y_0.y_1y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0.x_1x_2 \cdots x_n)(0.y_1y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0).x^*y^*$$
式中 $x^* = 0.x_1x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0.y_1y_2 \cdots y_n$$
 为 y 的绝对值
乘积的符号位单独处理 $x_0 \oplus y_0$

聚积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

$$x^* \cdot y^* = x^* (0.y_1 y_2 \dots y_n)$$

$$= x^* (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$$

$$= 2^{-1} (y_1 x^* + 2^{-1} (y_2 x^* + \dots 2^{-1} (y_n x^* + 0) \dots))$$

$$z_0 = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*}+z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*}+z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*}+z_{n-1})$$

例6.21 已知x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 6.3

解: 数值部分	的运算,数	说 明
$egin{pmatrix} 0.0000 \ 0.1110 \ \end{bmatrix}$	1101	部分积 初态 $z_0 = 0$
0.1110	0 1 1 0	
$egin{array}{c} 0.0111 \ 0.0000 \ \end{array}$	0 1 1 0	→1 , 得 z ₁
$egin{array}{c} 0.0111 \ 0.0011 \end{array}$	0 1 0 1 1	──1 ,得 z ₂
$\begin{array}{r} 0.1110 \\ \hline 1.0001 \end{array}$	10	
逻辑右移 0.1000	1101	──1 ,得 z ₃
0.1110 逻辑右移 0.11110	110	
这 再石砂 0.1011	0110	——1, 得 z ₄

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- 2 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则 $[x \cdot y]_{\mathbb{R}} = 1.10110110$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

6.3

A、X、Q均n+1位

移位和加受末位乘数控制

(4) 原码两位乘

6.3

原码乘

符号位和 数值位 部分 分开运算

两位乘

每次用乘数的 2 位判断 原部分积 是否加和如何加被乘数

乘数y _{n-1} y _n	新的部分积
0 0	加"0"——2
0 1	加 1 倍的被乘数 ——2
10	加 2 倍的被乘数 —>2
11	加 3 倍的被乘数 ——2

先 减 1 倍 的被乘数 再 加 4 倍 的被乘数

(5) 原码两位乘运算规则

乘数判断位 $y_{n-1}y_n$	标志位 C_j	操作内容
0 0	0	$z \rightarrow 2, y^* \rightarrow 2, C_j$ 保持"0"
0 1	0	$z+x^*\rightarrow 2, y^*\rightarrow 2, C_j$ 保持"0"
10	0	$z+2x^*\rightarrow 2, y^*\rightarrow 2, C_i$ 保持"0"
11	0	$z-x^* \rightarrow 2, y^* \rightarrow 2$, 置"1" C_j
0 0	1	$z+x^* \rightarrow 2, y^* \rightarrow 2$, 置"0" C_j
0 1	1	$z+2x^*\rightarrow 2, y^*\rightarrow 2, \mathbb{Z}^*0$ " C_j
1 0	1	$z-x^*\rightarrow 2, y^*\rightarrow 2, C_j$ 保持"1"
11	1	$z \rightarrow 2, y \rightarrow 2, C_j$ 保持"1"

共有操作 $+x^*$ $+2x^*$ $-x^*$ $\longrightarrow 2$ 实际操作 $+[x^*]_{\mathring{+}}$ $+[2x^*]_{\mathring{+}}$ $+[-x^*]_{\mathring{+}}$ $\longrightarrow 2$ 补码移

例6.22 已知x = 0.1111111 y = -0.111001 求 $[x \cdot y]_{原}$ 6.3

解:数值部份	乘数	C_{j}	说明
000.00000	00.111001	0	初态 $z_0 = 0$
000.111111			$+x^*$, $C_j=0$
000.111111			
补 000.001111	11 001110	0	→ 2
码 001.111110			$+2x^*, C_j=0$
右 移 010.001101	11		
000.100011	$0111 \ 0011$	0	→ 2
111.000001			$-x^*$, $C_j=1$
111.100100	0111		
码 111.111001	000111 00	1	→ 2
右 000.111111			$+x^*$, $C_j=0$
移 000.111000	000111		

- ① 乘积的符号位 $x_0 \oplus y_0 = 0 \oplus 1 = 1$
- ② 数值部分的运算

 $x^* \cdot y^* = 0.111000000111$

则 $[x \cdot y]_{\mathbb{R}} = 1.111000001111$

特点 绝对值的补码运算

用移位的次数判断乘法是否结束

算术移位

(6) 原码两位乘和原码一位乘比较 6.3

	原码一位乘	原码两位乘
符号位	$x_0 \oplus y_0$	$x_0 \oplus y_0$
操作数	绝对值	绝对值的补码
移位	逻辑右移	算术右移
移位次数	n	$\frac{n}{2}(n$ 为偶数)
最多加法次数	n	$\frac{n}{2}+1$ (n 为偶数)

思考 n 为奇数时,原码两位乘 移?次 最多加?次

5. 补码乘法

6.3

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{\uparrow 1} = x_0.x_1x_2 ... x_n$ 乘数 $[y]_{\uparrow 1} = y_0.y_1y_2 ... y_n$

① 被乘数任意, 乘数为正

同原码乘 但加和移位按补码规则运算乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后 加[-x]_补,校正

③ Booth 算法(被乘数、乘数符号任意) 6.3

4 Booth 算法递推公式

$$\begin{split} &[z_0]_{\not \uparrow \downarrow} = 0 \\ &[z_1]_{\not \uparrow \downarrow} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\not \uparrow \downarrow} + [z_0]_{\not \uparrow \downarrow} \} \qquad y_{n+1} = 0 \\ &\vdots \\ &[z_n]_{\not \uparrow \downarrow} = 2^{-1} \{ (y_2 - y_1)[x]_{\not \uparrow \downarrow} + [z_{n-1}]_{\not \uparrow \downarrow} \} \end{split}$$

$$[x \cdot y]_{\nmid h} = [z_n]_{\nmid h} + (y_1 - y_0)[x]_{\nmid h}$$

最后一步不移位

如付	可	实	现
y_{i}	⊦1 ⁻	$-y_i$?

$y_i y_{i+1}$	$y_{i+1} - y_i$	操作
0 0	0	$\rightarrow 1$
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[-x]_{\nmid h} \rightarrow 1$
1 1	0	→1

例6.23 已知x = +0.0011 y = -0.1011 求[x:y] 6.3

(2) Booth 算法的硬件配置

6.3

A、X、Q 均 n+2 位 移位和加受末两位乘数控制

乘法小结

- ▶整数乘法与小数乘法完全相同可用 逗号 代替小数点
- 》原码乘 符号位 单独处理 补码乘 符号位 自然形成
- >原码乘去掉符号位运算 即为无符号数乘法
- 一不同的乘法运算需有不同的硬件支持

四、除法运算

1. 分析笔算除法

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001101 \\ \hline 0.00001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ? 心算上商
- ?余数不动低位补"0"减右移一位的除数
- ? 上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 -0.0000111

2. 笔算除法和机器除法的比较

6.3

笔算除法

商符单独处理 心算上商

余数 不动 低位补"0" 减右移一位 的除数

2 倍字长加法器上商位置 不固定

机器除法

符号位异或形成

|x| - |y| > 0上商 1

|x| - |y| < 0上商 0

余数左移一位低位补"0"减除数

1倍字长加法器

在寄存器最末位上商

3. 原码除法

以小数为例

$$[x_0]_{\mathbb{R}} = x_0.x_1x_2 \dots x_n$$

$$[y_0]_{\mathbb{R}} = y_0.y_1y_2 \dots y_n$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_0 \oplus y_0). \frac{x^*}{y^*}$$

式中
$$x^* = 0.x_1x_2 \cdots x_n$$
 为 x 的绝对值 $y^* = 0.y_1y_2 \cdots y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

(1) 恢复余数法

6.3

例6.24 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

P: $[x]_{\mathbb{F}} = 1.1011 \quad [y]_{\mathbb{F}} = 1.1101 \quad [y^*]_{\mathbb{F}} = 0.1101 \quad [-y^*]_{\mathbb{F}} = 1.0011$

(1)
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

2	被除数(余数)	商	说明
	0.1011	0.0000	
	1.0011		+[- <i>y</i> *] _补
	1.1110	0	余数为负,上商 0
	0.1101		恢复余数 +[y*] _补
\m_4H_4-74	0.1011	0	恢复后的余数
逻辑左移	1.0110	0	←1
	1.0011		+[-y*] _{*\}
VIIII AND A COMM	0.1001	0 1	余数为正,上商1
逻辑左移	1.0010	0 1	←1
	1.0011		$+[-v^*]_{\pm 1}$

6.3

商	说 明
011	余数为正,上商1
011	←1
	+[-y*] _*
0110	余数为负,上商 0
	恢复余数 + [y*] *
0110	恢复后的余数
0110	←1
	+[-y*] _*
01101	余数为正,上商1
	011 011 0110 0110 0110

$$\frac{x^*}{y^*} = 0.1101$$

$$\cdot \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

逻辑左

余数为正 上商1

上商5次

第一次上商判溢出

移 4 次

余数为负 上商 0,恢复余数

(2) 不恢复余数法(加减交替法)

6.3

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$ 余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

上商"1"
$$2R_i - y^*$$

上商"0" $2R_i + y^*$

加减交替

例6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

解:	0.1011	0.0000	
	1.0011		+[-y*]*
	1.1110	0	余数为负,上商0
	1.1100	0	←1
	0.1101		+[y*] _{*\}
逻	0.1001	0 1	余数为正,上商1
4	1.0010	0 1	← 1
舞左移	1.0011		+[- <i>y</i> *] _补
٠	0.0101	011	余数为正,上商1
	0.1010	011	←1
	1.0011		+[- <i>y</i> *] _补
	1.1101	0110	余数为负,上商 0
	1.1010	0110	←1
	0.1101		+[<i>y</i> *] _{ネト}
	0.0111	01101	余数为正,上商1

 $[x]_{\mathbb{R}} = 1.1011$

 $[y]_{\text{g}} = 1.1101$

 $[y^*]_{n} = 0.1101$

 $[-y^*]_{*} = 1.0011$

例6.25 结果

$$\textcircled{1} x_0 \oplus y_0 = 1 \oplus 1 = 0$$

2
$$\frac{x^*}{y^*} = 0.1101$$

$$[\frac{x}{y}]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移n次,加n+1次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

A、X、Q均n+1位用 Q_n控制加减交替

- (1) 商值的确定

$$x = 0.1011$$
 $[x]_{*+} = 0.1011$ $[x]_{*+} = 0.1011$ $x^* > y^*$ $y = 0.0011$ $[y]_{*+} = 0.0011$ $+[-y]_{*+} = 1.1101$ $[R_i]_{*+} = [y]_{*+}$ 同号 $[R_i]_{*+} = 0.1000$ "够减"

$$x = -0.0011$$
 $[x]_{\mbox{\tiny h}} = 1.1101$ $[x]_{\mbox{\tiny h}} = 1.1101$ $[x]_{\mbox{\tiny h}} = 1.1101$ $[x]_{\mbox{\tiny h}} = 1.1101$ $[x]_{\mbox{\tiny h}} = 0.1011$ $[x]_{\mbox{\tiny h}} = 0.1011$ $[x]_{\mbox{\tiny h}} = 0.1011$ $[x]_{\mbox{\tiny h}} = 0.1000$ "不够减"

x与y异号

$$x = 0.1011$$
 $[x]_{3/1} = 0.1011$
 $y = -0.0011$ $[y]_{3/1} = 1.1101$

$$x = -0.0011$$
 $[x]_{3/2} = 1.1101$
 $y = 0.1011$ $[y]_{3/2} = 0.1011$

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\begin{subarra$$

$$[x]_{\frac{1}{2}} = 1.1101$$

$$+ [y]_{\frac{1}{2}} = 0.1011$$

$$[R_i]_{\frac{1}{2}} = 0.1000$$

"不够减"

小结

$[x]_{^{}$ 补和 $[y]_{^{}$	求 $[R_i]$ 补	$[R_i]_{i}$ 与 $[y]_{i}$
同号	[x] _补 一[y] _补	同号,"够减"
异号	$[x]_{ ext{?}} + [y]_{ ext{?}}$	异号,"够减"

② 商值的确定 末位恒置"1"法

6.3

 $[x]_{\lambda}$ 与 $[y]_{\lambda}$ 同号 正商

 $[x]_{\lambda}$ 与 $[y]_{\lambda}$ 异号 负商

x.xxxx1

原码

按原码上商

"够减"上"1"

"不够减"上"0"

x.xxxx1

1. 反码 1

按反码上商

"够减"上"0"

"不够减"上"1"

小结

[x] _补 与 [y] _补	商	$[R_i]_{{ au}}$ 与 $[y]_{{ au}}$		商值
同号	正	够减 (同号) 不够减(异号)	1 0	原码上商
异号	负	够减 (异号) 不够减(同号)	0 1	反码上商

简化为

$[R_i]_{{ ext{ iny }}}$ 与 $[y]_{{ ext{ iny }}}$	商值
同 号	1
异 号	0

(2) 商符的形成

6.3

除法过程中自然形成

(3) 新余数的形成

加减交替

$[R_i]_{*}$ 和 $[y]_{*}$	商	新余数
同号	1	$2[R_i]_{\stackrel{?}{\uparrow}} + [-y]_{\stackrel{?}{\uparrow}}$
异号	0	$2[R_i]_{\stackrel{?}{\uparrow}} + [y]_{\stackrel{?}{\uparrow}}$

例 6.26 设 x = -0.1011 y = 0.1101 求 $[\frac{x}{y}]_{\text{A}}$ 并还原成真值

6.3

解: $[x]_{\begin{subarray}{ll} [x]_{\begin{subarray}{ll} [x]_{\begin{$

	* 11	
1.0101	0.0000	
0.1101		异号做加法
0.0010	1	同号上"1"
0.0100	1	← 1
1.0011		+[-y] _补
1.0111	10	异号上"0"
>0.1110	10	←1
0.1101		+[y] _补
1.1011	100	异号上"0"
1.0110	100	←1
0.1101		+[y] _补
0.0011	1001	同号上"1"
0 0110	10011	

逻辑左

末位恒置"1"

(4) 小结

6.3

- 补码除法共上商 n+1 次 (末位恒置 1) 第一次为商符
- 加n次 移n次
- 第一次商可判溢出
- 精度误差最大为 2-11

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 求阶差
$$\Delta j = j_{x} - j_{y} = \begin{cases} = 0 & j_{x} = j_{y} & \text{已对齐} \\ > 0 & j_{x} > j_{y} \begin{cases} x \cap y \text{ 看齐} & S_{x} \leftarrow 1, j_{x} - 1 \\ y \cap x \text{ 看齐} & \sqrt{S_{y} \rightarrow 1}, j_{y} + 1 \end{cases} \\ < 0 & j_{x} < j_{y} \begin{cases} x \cap y \text{ 看齐} & \sqrt{S_{x} \rightarrow 1}, j_{x} + 1 \\ y \cap x \text{ 看齐} & S_{y} \leftarrow 1, j_{y} - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 6.4 求 x+y

解: $[x]_{*} = 00,01;00.1101$ $[y]_{*} = 00,11;11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\hat{A}} = [j_x]_{\hat{A}} - [j_y]_{\hat{A}} = 00,01$$

+ 11,01
11,10

阶差为负 (-2) $\therefore S_x \rightarrow 2$ $j_x + 2$

② 对阶 $[x]_{*} = 00, 11; 00.0011$

2. 尾数求和

$$[S_x]_{\dot{\uparrow}'}$$
 = 00.0011 对阶后的 $[S_x]_{\dot{\uparrow}'}$ + $[S_y]_{\dot{\uparrow}_1}$ = 11.0110 11.1001 $[x+y]_{\dot{\uparrow}_1}$ = 00, 11; 11. 1001

3. 规格化

6.4

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

(2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	0.1×× ×·	真值	- 0.1×× ×⋅
原码	$0.1 \times \times \times \cdot$	原码	1.1×× ×·
补码	0.1×× *·	补码	1.0×× ×·
反码	0.1×× *·	反码	1.0×× ×

原码 不论正数、负数,第一数位为1

补码 符号位和第1数位不同

特例

6.4

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{3} = [1.1] 0 0 \cdots 0$$

 $\begin{bmatrix} -\frac{1}{2} \end{bmatrix}_{\uparrow}$ 不是规格化的数

$$S = -1$$

$$[S]_{3} = [1.0] 0 0 \cdots 0$$

- [−1] → 是规格化的数

(3) 左规

尾数一1, 阶码减1, 直到数符和第一数位不同为止

上例 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 11; 11.1001$ 左规后 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 10; 11.0010$ $\therefore x + y = (-0.1110) \times 2^{10}$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 01. ×× ×或 10. ×× ×时··

尾数→1, 阶码加1

例6.27 $x = 0.1101 \times 2^{10}$ $y = 0.1011 \times 2^{01}$ 6.4

x+y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:
$$[x]_{\uparrow \downarrow} = 00, 010; 00.110100$$
 $[y]_{\uparrow \downarrow} = 00, 001; 00.101100$

①对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $S_y \rightarrow 1, j_y + 1$
 $[y]_{\stackrel{?}{\Rightarrow}'} = 00,010;00.010110$

②尾数求和

$$[S_x]_{\stackrel{}{\uparrow}_1} = 00.110100$$
 $+ [S_y]_{\stackrel{}{\uparrow}_1} = 00.010110$ 对阶后的 $[S_y]_{\stackrel{}{\uparrow}_1}$ 足数溢出需右规

③ 右规 6.4

```
[x+y]_{3} = 00, 010; 01.001010
```

右规后

 $[x+y]_{*} = 00, 011; 00. 100101$

 $x+y=0.100101\times 2^{11}$

4. 舍入

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置"1"法

例 6.28 $x = (-\frac{5}{8}) \times 2^{-5}$ $y = (-\frac{7}{8}) \times 2^{-4}$

求 x-y (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:

$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{3} = 11,011;11.011000$$

$$[y]_{*} = 11, 100; 00. 111000$$

①对阶

$$[\Delta j]_{\stackrel{?}{\nmid h}} = [j_x]_{\stackrel{?}{\nmid h}} - [j_y]_{\stackrel{?}{\nmid h}} = 11,011$$

$$+ 00,100$$

$$11,111$$

阶差为
$$-1$$
 \vdots $S_x \rightarrow 1$, $j_x + 1$

$$[x]_{*} = 11, 100; 11.101100$$

② 尾数求和

$$[S_x]_{\frac{1}{7}} = 11.101100$$

+ $[-S_y]_{\frac{1}{7}} = 11.001000$
110.110100

③ 右规

$$[x+y]_{3} = 11, 100; 10.110100$$

右规后

$$[x+y]_{3} = 11, 101; 11.011010$$

$$x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

设机器数为补码, 尾数为规格化形式, 并假设阶符取 2 位, 阶码取 7 位, 数符取 2 位, 尾数取 n 位,则该补码在数轴上的表示为

6.4

二、浮点乘除运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 乘法

$$x \cdot y = (S_x \cdot S_y) \times 2^{j_x + j_y}$$

2. 除法

$$\frac{x}{y} = \frac{S_x}{S_y} \times 2^{j_x - j_y}$$

- 3. 步骤
 - (1) 阶码采用补码定点加(乘法)减(除法)运算
 - (2) 尾数乘除同 定点 运算
 - (3) 规格化
- 4. 浮点运算部件 阶码运算部件, 尾数运算部件

6.5 算术逻辑单元

一、ALU 电路

组合逻辑电路

 K_i 不同取值

 F_i 不同

四位 ALU 74181

M=0 算术运算

M=1 逻辑运算

 $S_3 \sim S_0$ 不同取值,可做不同运算

二、快速进位链

1. 并行加法器

6.5

进位链

传送进位的电路

串行进位链

进位串行传送

以 4 位全加器为例,每一位的进位表达式为

$$C_0 = d_0 + t_0 C_{-1} = \overline{d_0 \cdot t_0 C_{-1}}$$

$$C_1 = d_1 + t_1 C_0$$

$$C_2 = d_2 + t_2 C_1$$

设与非门的级延迟时间为t。

$$C_3 = d_3 + t_3 C_2$$

4位 全加器产生进位的全部时间为 8t,

n 位全加器产生进位的全部时间为 2nt,

3. 并行进位链(先行进位,跳跃进位)

6.5

n 位加法器的进位同时产生 以 4 位加法器为例

(1) 单重分组跳跃进位链

6.5

n 位全加器分若干小组,小组中的进位同时产生, 小组与小组之间采用串行进位 以 n = 16 为例

(2) 双重分组跳跃进位链

6.5

n 位全加器分若干大组,大组中又包含若干小组。每个大组中小组的最高位进位同时产生。大组与大组之间采用串行进位。

以 n = 32 为例

(3) 双重分组跳跃进位链 大组进位分析

6.5

以第8小组为例

$$C_{3} = d_{3} + t_{3}C_{2} = d_{3} + t_{3}d_{2} + t_{3}t_{2}d_{1} + t_{3}t_{2}t_{1}d_{0} + t_{3}t_{2}t_{1}t_{0}C_{-1}$$

$$= D_{8} + T_{8}C_{-1}$$

D₈ 小组的本地进位 与外来进位无关

T₈ 小组的传送条件 与外来进位无关 传递外来进位

同理 第 7 小组
$$C_7 = D_7 + T_7 C_3$$

第 6 小组 $C_{11} = D_6 + T_6 C_7$
第 5 小组 $C_{15} = D_5 + T_5 C_{11}$

进一步展开得

$$C_3 = D_8 + T_8 C_{-1}$$

 $C_7 = D_7 + T_7 C_3 = D_7 + T_7 D_8 + T_7 T_8 C_{-1}$
 $C_{11} = D_6 + T_6 C_7 = D_6 + T_6 D_7 + T_6 T_7 D_8 + T_6 T_7 T_8 C_{-1}$
 $C_{15} = D_5 + T_5 C_{11} = D_5 + T_5 D_6 + T_5 T_6 D_7 + T_5 T_6 T_7 D_8 + T_5 T_6 T_7 T_8 C_{-1}$

(4) 双重分组跳跃进位链的大组进位线路 6.5

(5) 双重分组跳跃进位链的小组进位线路 6.5

以第8小组为例 只产生低3位的进位和本小组的 D₈ T₈ D_8 ≥1 ≥1 & & & & &

(6) n=16 双重分组跳跃进位链

6.5

当 $d_i t_i$ 和 C_{-1} 形成后 经 2.5 t_y 产生 C_2 、 C_1 、 C_0 、 $D_5 \sim D_8$ 、 $T_5 \sim T_8$ 经 5 t_y 产生 C_{15} 、 C_{11} 、 C_7 、 C_3 经 7.5 t_y 产生 $C_{14} \sim C_{12}$ 、 $C_{10} \sim C_8$ 、 $C_6 \sim C_4$

串行进位链 经32tv 产生 全部进位

单重分组跳跃进位链 经10 ty 产生 全部进位

(7) n=32 双重分组跳跃进位链

当
$$d_i t_i$$
形成后 经 2.5 t_y 产生 C_2 、 C_1 、 C_0 、 $D_1 \sim D_8$ 、 $T_1 \sim T_8$
5 t_y 产生 C_{15} 、 C_{11} 、 C_7 、 C_3
7.5 t_y 产生 $C_{18} \sim C_{16}$ 、 $C_{14} \sim C_{12}$ 、 $C_{10} \sim C_8$ 、 $C_6 \sim C_4$ C_{31} 、 C_{27} 、 C_{23} 、 C_{19}