Symmetries and conservation laws

Exercise 1: Conservation of angular momentum

A spin $s = \frac{1}{2}$ particle decays into two particles with $s_1 = 0$ and $s_2 = \frac{3}{2}$.

- *i*) Find the possible values of the orbital angular momentum of the two particles in the final state.
- ii) Plot the angular distribution of the final state in the following two cases:
 - (a) The initial particle is polarized along the positive direction of the \hat{z} axis, i.e., the initial spin is $\left|\frac{1}{2},\frac{1}{2}\right\rangle$. What happens if parity is conserved?
 - (b) The initial particle is not polarized, i.e., we have a statistical mixture with equal proportion of $\left|\frac{1}{2},\frac{1}{2}\right\rangle$ and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle$.

Exercise 2: Parity violation in weak decays

A K^+ meson is a spin zero particle with the decay modes

$$K^+ \to \pi^+ \pi^0$$
 (21.0%), $K^+ \to \pi^+ \pi^+ \pi^-$ (5.5%).

Show that if the pion has $J_{\pi}^{P}=0^{-}$, in these decays parity is not conserved.

Exercise 3: Isospin violation in weak decays

The Σ^{\pm} baryons decay weakly through the non-leptonic channels

$$\Sigma^+ o p + \pi^0$$
, $\Sigma^+ o n + \pi^+$, $\Sigma^- o n + \pi^-$.

Suppose that the operator mediating these decays is the component of a tensor operator $T^{1/2}$ in isospin space and that the transition amplitude is $\mathcal{A}(i \to f) \propto \langle f | T_M^{1/2} | i \rangle$.

- *i)* Find the relation among the amplitudes of these three processes.
- *ii*) If the decay widths are proportional to the modulus squared of the corresponding amplitude, what will be the relation among the three widths?

The isospin $|t|t_3$ of the different particles involved in these processes is

$$\begin{split} |p\rangle &= \left| \frac{1}{2} \; \frac{1}{2} \right\rangle, & |n\rangle &= \left| \frac{1}{2} \; -\frac{1}{2} \right\rangle, \\ |\pi^{+}\rangle &= -\left| 1 \; 1 \right\rangle, & |\pi^{0}\rangle &= \left| 1 \; 0 \right\rangle, & |\pi^{-}\rangle &= \left| 1 \; -1 \right\rangle, \\ |\Sigma^{+}\rangle &= -\left| 1 \; 1 \right\rangle, & |\Sigma^{0}\rangle &= \left| 1 \; 0 \right\rangle, & |\Sigma^{-}\rangle &= \left| 1 \; -1 \right\rangle. \end{split}$$

Hint: Use the Wigner-Eckart theorem to write the matrix elements in terms of the reduced matrix elements $A_{2t} \equiv \langle t || T^{1/2} || 1 \rangle$, t = 1/2, 3/2.

Exercise 4: Time reversal and Kramers degeneracy

If the Hamiltonian H of a quantum system commutes with the time reversal operator Θ , the energy eigenstate $|n\rangle$ and Θ $|n\rangle$ will have the same energy eigenvalue

- i) Do $|n\rangle$ and $\Theta |n\rangle$ represent the same physical state?
- *ii*) Show that for systems with half-integer spin the two states do not coincide, something that is known as the *Kramers degeneracy*.
- *iii*) Show that the Kramers degeneracy disappears if we apply an external magnetic field \vec{B} .

Hint: \vec{B} , which does not change under a time reversal transformation, adds in the Hamiltonian a term proportional to $\vec{S} \cdot \vec{B}$.