HOMOTOPY THEORY

Problem Set 1

Daniel Halmrast

January 18, 2018

PROBLEM 1

Construct an explicit deformation retraction of $\mathbb{R}^n \setminus \{0\}$ to S^{n-1} .

Proof. The straight-line homotopy from v to $\frac{v}{\|v\|}$ satisfies the criteria for a deformation retract. Namely, the retract is given by

$$r: \mathbb{R}^n \setminus \{0\} \to S^{n-1}$$
$$r(v) = \frac{v}{\|v\|}$$

With homotopy

$$F: \mathbb{R}^n \setminus \{0\} \times I \to S^{n-1}$$
$$F(v,t) = (1-t)v + t \frac{v}{\|v\|}$$

Problem 2

Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

Proof. Let $f: X \to Y$ be a map, which is homotopic to a homotopy equivalence $g: X \to Y$ with homotopy inverse $h: Y \to X$. That is, $g \circ h \simeq \mathbb{1}_Y$ and $h \circ g \simeq \mathbb{1}_X$. Furthermore, let $F: X \times I \to Y$ be the homotopy between f and g.

First, let's consider the map $h \circ f : X \to X$. We wish to show $h \circ f \simeq \mathbb{1}_X$. To do so, let's consider the homotopy

$$h \circ F : X \times I \to X$$

This is the composition of two continuous functions, and so it is continuous. Furthermore, since F(0,x)=f(x) and F(1,x)=g(x), this is actually a homotopy between $h\circ f$ and $h\circ g$. Now, since $h\circ f\simeq h\circ g\simeq \mathbb{1}_X$ and homotopy equivalence is an equivalence relation, it follows immediately that $h\circ f\simeq \mathbb{1}_X$.

Now, consider the map $f \circ h : Y \to Y$. We wish to show $f \circ h \simeq \mathbb{1}_Y$. To do so, consider the homotopy

$$F \circ (h \times \mathbb{1}_I) : Y \times I \to Y$$

It is easy to see this is a homotopy between $f \circ h$ and $g \circ h$, and so we have that $f \circ h \simeq g \circ h \simeq \mathbb{1}_X$, and so $f \circ h \simeq \mathbb{1}_x$, as desired.