সৃষ্টি কলেজ অব টাঙ্গাইল

উচ্চতর গণিত ১ম পত্র অধ্যায়ঃ ০১ ম্যাট্রিক্স ও নির্ণায়ক লেকচার নোটঃ ০১ ০১ ০০১

০১. ইতিহাসঃ

নাম	জাতীয়তা	সন	অবদান
Seki	জাপানি	১৬৮৩	নির্ণায়ক বিষয়ক প্রাথমিক ধারনা প্রদান
জেম্স জোসেফ সিলভেস্টার	ইংরেজ	\$ \$\$\$0	ম্যাট্রিক্স এর ধারনা দেন।
আর্থার ক্যালি	-	১৮৫৩	ম্যাট্রিক্স এর জনক।
হাইজেনবার্গ	-	১৯২৫	কোয়ান্টাম বলবিদ্যায় ১ম ম্যাট্রিক্স ব্যবহার করেন।
গ্যাব্রিয়েল ক্রেমার	সুইস	১৭৫০	নির্ণায়কের সাহায্যে সমীকরণ জোটের সমাধান

০২. ম্যাট্রিক্স: উপাত্ত কে সারি ও কলাম আকারে সাজালে যে আয়তাকার বিন্যাস পাওয়া যায় তাকে ম্যাট্রিক্স বলে।

উদাহরণঃ
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 3 \\ 6 & 7 \end{bmatrix}$$

০৩. সাধারণ আকার $A=\left[a_{ij}
ight]_{m imes n}$ যেখানে m হলো সারি সংখ্যা n হলো কলাম সংখ্যা । a_{ij} কে i তম সারি j তম কলামের ভুক্তি বলে । ম্যাট্রিক্সকে বড় হাতের অক্ষর দ্বারা এবং ভুক্তি গুলিকে ছোট হাতের অক্ষর দ্বারা প্রকাশ করা হয় ।

০৪.
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 3 \\ 6 & 7 \end{bmatrix}$$
 হলো একটি ম্যাট্রক্স। এখানে 1,2,5,3,6,7কে ভুক্তি বলা হয়। 1 এর অবস্থান হলো প্রথম সারি ও প্রথম কলামে।

একইভাবে, প্রথম সারি ও দ্বিতীয় কলামের ভুক্তি $\therefore a_{12}=2$ দ্বিতীয় সারি ও প্রথম কলামের ভুক্তি $\therefore a_{21}=5$ দ্বিতীয় সারি ও দ্বিতীয় কলামের ভুক্তি $\therefore a_{22}=3$ তৃতীয় সারি ও প্রথম কলামের ভুক্তি $\therefore a_{31}=6$ তৃতীয় সারি ও দ্বিতীয় কলামের ভুক্তি $\therefore a_{32}=7$

- ০৫. আয়তাকারে উপাত্ত গুলিকে () ,[], || || চিহ্ন দ্বারা আবদ্ধ করে ম্যাট্রিক্স প্রকাশ কর হয়।
- ০৬. কোন ম্যাট্রিক্স এর মোট ভুক্তি সংখ্যা উহার সারি ও কলাম সংখ্যার গুনফলের সমান।
- ০৭. কোন ম্যাট্রিক্স এর সারি ও কলাম সংখ্যা সমান বা অসমান হতে পারে।
- ০৮.কোন ম্যাট্রিক্স এর সারি ও কলাম সংখ্যা সমান হলে উহাকে বর্গ ম্যাট্রিক্স বলে।
- ০৯. দুটি ম্যাট্রিক্স এর ক্রম সমান হলে উহাদের যোগফল ও বিয়োগফল নির্ণয় করা সম্ভব।
- ১০. দুটি ম্যাট্রিক্স গুণনযোগ্য হবে যদি ১ম ম্যাট্রিক্স এর কলাম সংখ্যা ২য় ম্যাট্রিক্স এর সারি সংখ্যার সমান হয় ।

ম্যাট্রিক্স এর প্রকারভেদঃ

ক্রম	নাম	উদাহরণ	বৈশিষ্ট্য
٥٥	সারি ম্যাট্রিক্স	[1 2 3]	একটি সারি থাকবে।
०२	কলাম ম্যাট্রিক্স	$\begin{pmatrix} 1\\4\\5 \end{pmatrix}$	একটি মাত্র কলাম থাকবে।
00	বর্গ ম্যাট্রিক্স	$\begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}$	সারি ও কলাম সংখ্যা সমান।
08	কর্ণ ম্যাট্রিক্স	$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$	প্রধান কর্ণের ভুক্তি ছাড়া বাকিরা শূন্য। $a_{ij} \neq 0$ যেখানে $i=j$
06	একক ম্যাট্রিক্স	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	প্রধান কর্ণের ভুক্তি গুলি 1 বা $a_{ij}=1$ যেখানে $i=j$
૦৬	শূন্য ম্যাট্রক্স	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	সকল ভুক্তি শূন্য।
०१	সমঘাতি ম্যাট্রিক্স	$A = \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix}$	$A^2=A$ হতে হবে।
оъ	অভেদঘাতি ম্যাট্রিক্স	$A = \begin{pmatrix} 4 & 4 \\ -4 & -4 \end{pmatrix}$	$A^2=I$ হতে হবে।
০৯	বিম্ব ম্যাট্রিক্স	$A = \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix} \rightarrow \begin{bmatrix} 4 & 12 \\ -1 & -3 \end{bmatrix} = A^{t}$	সারি গুলিকে কলাম বা কলাম গুলিকে সারিতে রুপান্তর করে প্রাপ্ত ম্যাট্রিক্স।
٥٥	প্রতিসম ম্যাট্রিক্স	$A = \begin{pmatrix} -2 & 3 & -1 \\ 3 & 4 & 6 \\ -1 & 6 & -5 \end{pmatrix}$	$A^t = A$ অর্থাৎ সারি গুলিকে কলাম বা কলাম গুলিকে সারিতে রুপান্তর করে প্রাপ্ত ম্যাট্রিক্সটি মূল ম্যাট্রিক্স। $a_{ij} = a_{ji}$
22	বিপ্রতিসম ম্যাট্রিক্স	$A = \begin{pmatrix} 0 & 3 & 4 \\ -3 & 0 & 7 \\ -4 & -7 & -0 \end{pmatrix}$	$A^t = -A$ হতে হবে। $a_{ij} = -a_{ji}$
> 2	ক্ষেলার ম্যাট্রিক্স	$A = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$	প্রধান কর্ণের ভুক্তি গুলি একই হতে হবে। অবশিষ্ট ভুক্তি গুলি শুন্য।