知识图谱及其推理

- 知识图谱概述
- 知识图谱中的知识表示
- 知识图谱的作用及构建
- 知识图谱中的知识推理

2020-3-16 Char2 pp.20

知识图谱中的知识推理

- □ 知识推理 (knowledge inference): 根据知识图谱中已 有的知识(事实或关系),推断出新的、未知的知识。
- □ 知识图谱需要推理,主要体现在两种任务上:
- 知识库补全:根据知识库中已有的知识预测出新知识。
- 知识库问答:通过对自然问句解析,从知识库中寻找答案。

(Tom, BornInCity, Paris) (Tom, LivedInCity, Lyon) (Tom, Nationality, France) (Tom, ClassMates, Bob) (Paris, CityLocatedInCountry, France) (Lyon, CityLocatedInCountry, France) (Bob, BornInCity, Paris) (Bob, Nationality, France)?

RDF图

三元组表

知识图谱中的知识推理

一个简单的家庭关系知识图谱问题:如何从知识图谱中推理得到

father(David, Ann)

如果能够学习得到这条规则,该有多好? (从具体例子中学习,这是归纳推理的范畴) 2020/3/16

- □ 可利用一阶谓词来表达刻画知识图谱中节点之间存在的关系,如图中形如 如 <James,Couple,David>的关系可用一阶逻辑的形式来描述,即 Couple(James, David)。
- Couple (x,y) 是一阶谓词, Couple是图中实体之间具有的 关系,x和y是谓词变量
- J 从图中已有关系可推知David是 Ann的父亲,但这一关系在图中 初始图(无红线)中并不存在,是 需要推理的目标。

归纳推理: 学习推理规则

□ 从知识库中自动学习谓词逻辑规则

```
(\forall x)(\forall y)(\forall z)(Mother(z,y) \land Couple(x,z)

\rightarrow Father(x,y))
```

- □ 规则学习方法
 - ➤ 归纳逻辑程序设计(Inductive Logic Programming)
 - ➤ 关联规则挖掘(Association Rule Mining)
 - ➤ 路径排序算法(Path Ranking Algorithm)
 - ➤ 马尔可夫逻辑网和概率软逻辑中的结构学习(structure learning)

■ 归纳逻辑程序设计(Inductive Log 使用一阶谓词逻辑来进行知识表示, 达式对现有知识归纳,完成推理任何

■ 给定:

- ▶ 目标谓词:例如 Father(x,y)
- > 目标谓词的正例集合
- 目标谓词的反例集合
- > 背景知识

■ 目标:

找到定义目标谓词的规则,使规则 覆盖所有正例而不覆盖任何反例。

Sibling(Ann, Mike)
背景知识
Couple(David, James)

样例集合
Mother(James, Ann)
Mother(James, Mike)

◆ILP的代表性方法: FOIL (First Order Inductive Learner) 通过序贯覆盖实现规则推理。

一个简单的家庭关系知识图谱

● 目标谓词: Father(x,y)

目标调词只有一个正例 Father(David,Mike)

反例在知识图谱中一般不会显 式给出,但可从知识图谱中构 造出来。

只能在已知两个实体的关系且确定其关系与目标谓词相悖时,才能将这两个实体用于构建目标谓词的反例,而不能在不知两个实体是否满足目标谓词的提下将它们来构造目标谓词的反例

一个简单的家庭关系知识图谱

背景知识样例集合

Sibling(Ann, Mike)
Couple(David, James)
Mother(James, Ann)
Mother(James, Mike)

 $(\forall x)(\forall y)(\forall z)(Mother(z,y) \land Couple(x,z) \rightarrow Father(x,y))$

前提约束谓词 (学习得到)

目标谓词(已知)

推理思路:逐步给目标谓词添加前提约束谓词,直到所构成的推理规则不覆盖任何反例。

归纳逻辑程序设计——FOIL (First Order Inductive Learner)

$$(\forall x)(\forall y)(\forall z)(Mother(z,y) \land Couple(x,z) \rightarrow Father(x,y))$$

前提约束谓词 (学习得到)

目标谓词(已知)

哪些谓词好呢? 可以作为目标 谓词的前提约 束谓词?

FOIL中信息增益值 (information gain) FOIL信息增益值计算方法如下:

$$FOIL_Gain = \widehat{m_+} \cdot \left(\log_2 \frac{\widehat{m_+}}{\widehat{m_+} + \widehat{m_-}} - \log_2 \frac{m_+}{m_+ + m_-} \right)$$

其中, m_+ 和 m_- 是增加前提约束谓词后所得新推理规则覆盖的正例和反例的数量, m_+ 和 m_- 是原推理规则所覆盖的正例和反例数量。

FOIL增益仅考虑正例的信息增益,并以新规则覆 盖的正例数为权重

$$(\forall x)(\forall y)(\forall z)(Mother(z,y) \land Couple(x,z) \rightarrow Father(x,y))$$

目标谓词(已知)

- Mother(·,·)
- Sibling(·,·)
- Couple(',')

依次将谓词加入到推理规则中作为前提约束谓词,

并计算所得到新推理规则的FOIL增益值。

基于计算所得FOIL增益值来选择最佳前提约束谓词。

推理規則			例数 正例 反例 作		FOIL 信息 増益值 信息増益値 FOIL_Gain	给定目标谓词,此时推 理规则只有目标谓词,	
Father(x,y)		Mother(x, Mother(x, Mother(y, Mother(y, Mother(z, Mother(z, Sibling(x, Sibling(x, Sibling(y, Sibling(y, Sibling(y, Sibling(z,	(z) (x) (x) (x) (y) (y) (z) (x)	$\hat{m}_{+} = 0$	 前。= 2 前。= 2 前。= 1 前。= 1 前。= 3 前。= 1 前。= 1 前。= 0 前。= 0 前。= 0 	NA NA NA NA NA O.32 NA NA NA NA NA NA	因此推理规则所覆盖的 正例和反例的样本数分 别是训练样本中正例和 反例的数量,即1和 4,因此,m ₊ =1, m ₋ =4
2020/3/16	背景知识 Co 样例集合 Mo Mo		oling(Ann, Mike) uple(David, James) other(James, Ann) other(James, Mike)		目标谓词 训练样例 集合	Father(David, Mike) ¬Father(David, James) ¬Father(James, Ann) ¬Father(James, Mike) ¬Father(Ann, Mike)	

2020/3/16

推理规则			能的正例和反 数	FOIL 信息 増益値
目标谓词	前提约束谓词	正例	反例	信息増益値
$Father(x,y) \leftarrow$	空集	$m_{+} = 1$	$m_{-} = 4$	FOIL_Gain
	Mother(x,y)	$\widehat{m_+} = 0$	$\widehat{m}_{\bullet} = 2$	NA
	Mother(x, z)	$\widehat{m_+} = 0$	$\widehat{m}_{-}=2$	NA
	Mother(y,x)	$\widehat{m_+} = 0$	$\widehat{m}_{-}=1$	NA NA
	Mother (y, z)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	
	Mother(z,x)	$\widehat{m_+} = 0$	$\widehat{m_*} = 1$	NA
	Mother(z,y)	$\widehat{m_+} = 1$	$\widehat{m}_{-} = 3$	0.32 NA NA NA NA
	Sibling(x, y)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	
	Sibling(x,z)	$\widehat{m_+} = 0$	$\widehat{m_*} = 1$	
Pathan(n n)	Sibling(y, x)	Sibling (y, x) $\widehat{m}_{+} = 0$	$\widehat{m}_{\bullet} = 0$	
$Father(x,y) \leftarrow$	Sibling(y,z)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 0$	
	Sibling(z,x)	$\widehat{m_+} = 0$	$\widehat{m}_{\bullet} = 0$	NA
	Sibling(z, y)	$\widehat{m_*} = 1$	$\widehat{m}_{\bullet} = 2$	0.74
-	Countries	A A	A .	NIA

将Mother(x,y)作为前提约束谓词加入,可得到推理规则 $Mother(x,y) \rightarrow Father(x,y)$

在背景知识中,Mother(x, y)有两个实例

- Mother (James, Ann) $\hat{m}_+ = 0, \hat{m}_- = 1$
- Mother(James, Mike)

对于Mother(James, Ann)这一实例, x = James, y = Ann, 将x和y代入 Father(x, y)得到Father(James, Ann), 可知在训练样本中 Father(James, Ann)是一个反例

Sibling(Ann, M 背景知识	Father(David, Mike) ¬Father(David, James) ¬Father(James, Ann) ¬Father(James, Mike) ¬Father(Ann, Mike)
------------------------	---

2020/3/16

推理规则		推理規則選查 例		FOIL 信息 增益值
目标谓词	前提约束谓词	正例	反例	信息増益値
$Father(x,y) \leftarrow$	空集	$m_{+} = 1$	$m_{-} = 4$	FOIL_Gain
	Mother(x,y)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 2$	NA
	Mother(x, z)	$\widehat{m_+} = 0$	$\widehat{m}_{\bullet} = 2$	NA
	Mother(y,x)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	NA NA
	Mother(y, z)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	
	Mother(z,x)	$\widehat{m_+} = 0$	$\widehat{m_*} = 1$	NA
	Mother(z,y)	$\widehat{m_+} = 1$	$\widehat{m}_{-} = 3$	NA NA NA NA
	Sibling(x, y)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	
	Sibling(x,z)	$\widehat{m_+} = 0$	$\widehat{m_{-}} = 1$	
Pathau(ww)	Sibling(y, x)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 0$ $\widehat{m}_{-} = 0$	
$Father(x,y) \leftarrow$	Sibling(y,z)	$\widehat{m_+} = 0$		
	Sibling(z, x)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 0$	NA
	Sibling(z, y)	$\widehat{m_+} = 1$	m_ = 2	0.74
Г	Countries and	A A		Fathor/Da
	Sibl	ing(Ann, Mike)	日标课词	Father(Da

将Mother(x,y)作为前提约束谓词加入,可得到推理规则 $Mother(x,y) \rightarrow Father(x,y)$

在背景知识中,Mother(x,y)有两个实例

- Mother (James, Ann) $\hat{m}_+ = 0, \hat{m}_- = 1$
- Mother (James, Mike) $\hat{m}_{+} = 0, \hat{m}_{-} = 1$

对于Mother(James, Mike)这一实例,x=James, y=Mike, 将x和y代入Father(x,y)得到Father(James, Mike),可知在训练样本中Father(James, Mike)是一个反例

| 背景知识 | Sibling(Ann, Mike) | 目标谓词 | 「Father(David, Mike) | 「Father(David, James) | 「Father(David, James) | 「Father(David, James) | 「Father(James, Ann) | 「Father(James, Mike) 「Father(James, Mike) 「Father(Ann, Mike) 「Father(Ann, Mike) 」」 「Father(Ann, Mike) | 「Father(Ann, Mike) 」 「Father(Ann, Mike) 」 「Father(Ann, Mike) 」 「Father(David, Mike) 「Father(David, Mike) 」 「Father(David, Mike) 」 「Father(David, Mike) 」 「Father(David, Mike) 」 「Father(David, James) 」 「Father(James, Ann) 」 「Father(James, Mike) 」 「Father(

推理規	推理規則選 (FOIL 信息 増益値		
目标谓词	前提约束谓词	正例	反例	信息増益値
$Father(x,y) \leftarrow$	空集	$m_{+} = 1$	m_ = 4	FOIL_Gain
	Mother(x,y)	$\widehat{m}_{+} = 0$	$\widehat{m}_{\bullet} = 2$	NA
	Mother(x, z)	$\widehat{m_+} = 0$	$\widehat{m}_{-}=2$	NA
	Mother(y,x)	$\widehat{m}_{+} = 0$	$\widehat{m}_{-} = 1$	NA
	Mother(y, z)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	NA
	Mother(z,x)	$\widehat{m_*} = 0$	$\widehat{m}_{-} = 1$	NA
	Mother(z,y)	$\widehat{m_+} = 1$	$\widehat{m}_{-} = 3$	0.32
	Sibling(x, y)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	NA
	Sibling(x,z)	$\widehat{m_+} = 0$	$\widehat{m}_{\bullet} = 1$	NA
Pathan(ww)	Sibling(y, x)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 0$	NA
$Father(x,y) \leftarrow$	Sibling(y,z)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 0$	NA
	Sibling(z,x)	$\widehat{m}_{+} = 0$	$\widehat{m}_{-} = 0$	NA
	Sibling(z, y)	$\widehat{m_+} = 1$	$\widehat{m}_{\bullet} = 2$	0.74

 $Mother(x, y) \rightarrow Father(x, y)$

覆盖正例和反例数量分别为0和2,即 $\widehat{m}_{+}=0$, $\widehat{m}_{-}=2$

由于 $\widehat{m_+} = 0$,代入 $FOIL_Gain$ 公 式时会出现负无穷的情况,此时 $FOIL_Gain$ 记为NA(Not Available)

背景知识 样例集合	Sibling(Ann, Mike) Couple(David, James) Mother(James, Ann) Mother(James, Mike)	目标谓词 训练样例 集合	Father(David, Mike) ¬Father(David, James) ¬Father(James, Ann) ¬Father(James, Mike) ¬Father(Ann, Mike)
--------------	--	--------------------	---

FOIL信息增益值计算方法如下:

$$FOIL_Gain = \widehat{m_+} \cdot \left(\log_2 \frac{\widehat{m_+}}{\widehat{m_+} + \widehat{m_-}} - \log_2 \frac{m_+}{m_+ + m_-} \right)$$

其中, $\widehat{m_+}$ 和 $\widehat{m_-}$ 是增加前提约束谓词后所得新推理规则覆盖的正例和反例的数量, m_+ 和 m_- 是原推理规则所覆盖的正例和反例数量。

ZUZUIUI IU

推理规则			推理規則選差的正例和反 例数			FOIL 信息 増益値	
目标准	词	前提约束调	词	正领	ij	反例	信息増益値
Father(x,	y) ←	空集		m ₊ =	1	m_ = 4	FOIL_Gain
背景知识 样例集合	Couple(Mother(Ann, Mike) David, James) (James, Ann) (James, Mike)	训练	标谓词 练样例 集合	¬Fa	ner(David, Mike ather(David, Jan ather(James, Anr ather(James, Mil ather(Ann, Mike	nes) n) (e)
	1	Swing(x,	4)	mi -	. 0	m 1	15/3
Father(x,		Sibling(y,	x)	$\widehat{m}_{+} =$	0	$\widehat{m}_{-} = 0$	NA
rather (x,	y)—	Sibling(y,	z)	$\widehat{m_+} =$	0	$\widehat{m}_{-} = 0$	NA
		Sibling(z,x)		$\widehat{m}_{+} =$	0	$\widehat{m}_{\bullet} = 0$	NA
		Sibling(z,	the first state of the latest state of the lat	1	$\widehat{m}_{-} = 2$	0.74	
		Couple(x,		0	$\widehat{m}_{\bullet} = 1$	NA	
		Couple(x,	z)		1	$\widehat{m}_{\bullet} = 1$	1.32
		Couple(y,	r)	m+ =	0	m_ =0	NA
		Couple(y,	z)	m_+ =	0	$\widehat{m}_{-} = 0$	NA
		Couple(z,	r)	m+ =	0	$\widehat{m}_{-}=2$	NA
		Couple(z,	y)	$\widehat{m_+} =$	0	$\widehat{m_*} = 1$	NA

如果将Couple(x,z)作为前提约束谓词加入,可得到如下推理规则 $Couple(x,z) \rightarrow Father(x,y)$

在背景知识中,Couple(x,z)只有一个实例Couple(David, James),即x=David, z=James,将其代入Father(x,y)得到Father(David, y)。

在训练样本中存在正例 Father (David, Mike)以及反例 \neg Father (David, James),即 Couple(x,z) \rightarrow Father (x,y)覆盖正例和反例数量分别为1和1。信息增益值为:

$$\widehat{m_{+}} \cdot \left(\log_{2} \frac{\widehat{m_{+}}}{\widehat{m_{+}} + \widehat{m_{-}}} - \log_{2} \frac{m_{+}}{m_{+} + m_{-}} \right)$$

$$= 1 \cdot \left(\log_{2} \frac{1}{1+1} - \log_{2} \frac{1}{1+4} \right)$$

$$= 1.32$$

推理規	M	推理規則選 f	FOIL 信息 堆益值	
目标请询	前提约束谓词	正例	反例	信息增益值
$Father(x,y) \leftarrow$	空集	$m_{+} = 1$	m_ = 4	FOIL_Gain
11-11-11	Mother(x,y)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 2$	NA
	Mother(x, z)	$\widehat{m_+} = 0$	m= 2	NA
	Mother(y,x)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	NA
	Mother(y, z)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	NA
	Mother(z,x)	$\widehat{m_*} = 0$	$\widehat{m_*} = 1$	NA
	Mother(z,y)	$\widehat{m_+} = 1$	m= 3	0.32
	Sibling(x, y)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 1$	NA
	Sibling(x,z)	$\widehat{m_+} = 0$	$\widehat{m_*} = 1$	NA
Pathan(u m)	Sibling(y, x)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 0$	NA
$Father(x,y) \leftarrow$	Sibling(y,z)	$\widehat{m_+} = 0$	$\widehat{m}_{-} = 0$	NA
	Sibling(z,x)	$\widehat{m}_{+} = 0$	$\widehat{m}_{-} = 0$	NA
	Sibling(z, y)	$\widehat{m_+} = 1$	$\widehat{m}_{\bullet} = 2$	0.74
	Couple(x,y)	$\widehat{m_*} = 0$	$\widehat{m}_{\bullet} = 1$	NA
	Couple(x,z)	$\widehat{m_+} = 1$	$\widehat{m_*} = 1$	1.32
	Couple(y,x)	$\widehat{m_+} = 0$	m_ =0	NA
	Couple(y,z)	$\widehat{m}_{+} = 0$	$\widehat{m}_{-} = 0$	NA
	Couple(z, x)	$\widehat{m_+} = 0$	$\widehat{m}_{-}=2$	NA
	Couple(z, y)	$\widehat{m_+} = 0$	$\widehat{m_*} = 1$	NA

- Couple(x,z)加入后信息增益最大
- 将 Couple(x,z) 加入推理规则,得到
 Couple(x,z) → Father(x,y)新推理规则
- 将训练样例中与该推理规则不符的样例去掉。
 这里不符指当Couple(x,z)中x取值为David时,
 与Father(David,)或¬Father(David,)无法匹配的实例。
- 训练样本集中只有正例Father(David, Mike)和
 负例¬Father(David, James)两个实例

Back-ground knowledge	Sibling(Ann, Mike) Couple(David, James) Mother(James, Ann) Mother(James, Mike)
Positive and negative samples	Father(David, Mike) ¬Father(David, James) ¬Father(James, Ann) ¬Father(James, Mike) ¬Father(Ann, Mike)

推理规则		500000	財活盖的 反例数	FOIL 信息增益值	
现有规则	拟加入前提 約束遭调	正例	反例	信息増益値	
Father(x,y)+	- Couple(x,z)	$m_{\star} = 1$	m_ = 1	1.32	
	\land Mother(x,y)	$\widehat{m_*} = 0$	m_ = 0	NA	
	\wedge Mother (x, z)	m+ = 0	<i>m</i> ₂ = 0	NA	
	\land Mother(y,x)	$\widehat{m_*} = 0$	fi_ = 0 fi_ = 0	NA	
	\land Mother (y, z)	$\widehat{m_i} = 0$		NA NA	
	\wedge Mother(z,x)	$\widehat{m_*} = 0$	$\widehat{m_{\star}} = 0$		
	$\land Mother(z, y)$	$\widehat{m_i} = 1$	$\widehat{m_*} = 0$	1	
Father(x,y) ← Couple(x,z)	Back-ground knowledge	Sibling(An Couple(Da Mother(Ja Mother(Ja	NA NA NA NA NA NA		
	Positive and negative	Father(David, Mike) —Father(David, James)		NA NA	
	samples	-Father(A	NA NA		

- Mother(z,y)加入信息增益最大
- 将Mother(z,y)加入,得到新推 理规则

 $Mother(z, y) \land Couple(x, z)$

\rightarrow Father (x, y)

 当x=David、y=Mike、z =James 时,该推理规则覆盖训练样本 集合中正例Father(David, Mike) 且不覆盖任意反例,因此算法 学习结束。

已知: Mother(James, Ann) Couple(David, James)

于是: Father(David, Ann)

 $(\forall x)(\forall y)(\forall z)(Mother(z,y) \land Couple(x,z) \rightarrow Father(x,y))$

前提约束谓词 (学习得到)

目标谓词(已知)

推理手段: positive examples + negative examples + background knowledge examples ⇒ hypothesis

Sibling(Ann, Mike) Couple(David, James) Mother(James, Ann) Mother(James, Mike)	目标谓词 训练样例 集合	Father(David, Mike) ¬Father(David, James) ¬Father(James, Ann) ¬Father(James, Mike) ¬Father(Ann, Mike)
--	--------------------	---

给定目标谓词,FOIL算法从实例(正例、反例、背景样例)出发,不断测试所得到推理规则是否还包含反例,一旦不包含负例,则学习结束,展示了"归纳学习"能力。

□ FOIL (First Order Inductive Learner) [Quinlan, 1990] 利用序贯覆盖实现规则的学习,其基本流程为:

	FOIL算法
输入:	目标谓词 P , P 的训练样例(正例集合 E^+ 和反例集合 E^-),其他背景知识
输出:	推导得到目标谓词P的推理规则
1	将目标谓词作为所学习推理规则的结论
2	将其他谓词逐一作为前提约束谓词加入推理规则,计算所得到推理规则的 FOIL信息增益值,选取最优前提约束谓词以生成新推理规则,并将训练样 例集合中与该推理规则不符的样例去掉
3	重复2过程,直到所得到的推理规则不覆盖任意反例

$$FOIL_Gain = \widehat{m}_+ \cdot \left(\log_2 \frac{\widehat{m}_+}{\widehat{m}_+ + \widehat{m}_-} - \log_2 \frac{m_+}{m_+ + m_-} \right)$$

知识图谱中的知识推理

知识图谱中的知识推理

- ■归纳推理: 学习推理规则
- > 归纳逻辑程序设计
- > 关联规则挖掘
- ➤ 路径排序算法(见吴飞教授的MOOC)
- ■演绎推理: 推理具体事实
- > 马尔可夫逻辑网
- > 概率软逻辑
- ■基于分布式表示的推理
- > 表示学习技术
- > 张量分解技术

符号推理: 在知识图谱中的实体和关系符号上直接进行推理。

https://www.icourse163.org/learn/ZJU1003377027?tid=1450309465#/l

earn/content?type=detail&id=12 14618868

数值推理:使用数值计算,尤其 是向量矩阵计算的方法,捕捉知 识图谱上隐式的关联,模拟推理 的进行。

- 实体关系表示(向量/矩阵/张量)
- · 打分函数定义(距离函数/相似 度函数)
- 表示学习(开放世界假设/封闭 世界假设)

基于分布式表示的推理

基于离散符号的知识表示

RDF, OWL, 各种Rule Language等

显式知识、强逻辑约束、易于解释、推理不易扩展

基于连续向量的知识表示

Tensor, 各种Embedding, 神经网络表示等

VS

隐式知识、弱逻辑约束、不易解释、对接神经网络

回顾: 词嵌入->知识图谱嵌入

- Word embedding -> knowledge graph embedding
- 为知识图谱中的每个实体和关系都学习一个向量表示
- 将离散的符号表示转换为连续的向量表示

```
C(king)- C(queen) ≈ C(man)-C(woman)
或 C(king)- C(man) +C(woman) ≈ C(queen)
其中,C(w)就是word2vec学习到的词向量表示
```

KG Embedding/知识图谱嵌入

Entity Vector & Relation Vectors/实体向量和关系向量

Distributed Representations/知识图谱的分布式表示

2020/3/16

TransE(Translating Embeddings for Modeling Multi-relational Data.

NIPS 2013)

关系向量r看作为头实体向量h和尾实体向量t之间的平移 也可以将r,看作从h到t,的翻译,因此tTransE也被称为翻译模型

TransE

关系向量r看作为头实体向量h和尾实体向量t之间的平移也可以将r,看作从h到t,的翻译,因此tTransE也被称为翻译模型

对每个三元组(h,r,t)的优化目标:

每个三元组的目标函数:

$$f_r(h,t) = ||h+r-t||_{L_1/L_2}$$

• TransE 损失函数

在模型的训练过程中, transE采用最大间隔方法, 最小化目标函数:

S是知识库中的三元组即训练集, S' 是负采样的三元组,通过替换 h 或 t 所得,是人为随机生成的

关于模型的参数:设一共有 |E| 个实体和 |R| 个关系,每个实体/关系的向量长度为d维,因此,一共有(|E|+|R|)*d 个参数。

- 测试三元组(h, r, t)
- 尾实体预测(h,r,?)
- 头实体预测(?, r, t)

更加细分的知识图谱技术要素

针对单关系问题的知识图谱问答系统

- > 下载知识图谱文件:
- 英文问答任务: 谷歌的Freebase知识图谱 (http://developers.google.com/freebase)
- 中文问答任务: NLPCC的中文知识图谱 (http://pan.baidu.com/s/1dEYcQXz)
- > 下载问答数据集:
- 中文问答任务: NLPCC-KBQA数据集
- > 实现问答方法:实体链接、关系分类

语义相似度建模工具包: DSSM

(http://www.microsoft.com/en-us/research/project/dssm/)

不断发展的知识图谱技术

Noisy Data

Unstructured Data

Structured Data

Multimedia

IoT Sensors

趋势一: 从离散的符号知识表示到连续的向量知识表示的发展变化

趋势二:融合强化学习、对抗学 习等实现弱监督、少样本的关系 发现与语义融合

趋势三: 在连续的向量空间实现 大规模的可微分推理

趋势四:将知识图谱作为先验知识融入深度学习模型,提升模型可解释性。