Regresión Múltiple para Negocios.

« Un esfuerzo mas y lo que iba a ser un fracaso se convierte en un éxito; no existe el fracaso si nos esforzamos cada vez mas y mas»

Marat

Agenda

- ➤Introducción a la Regresión Lineal.
- ➤ Diagrama de Dispersión.
- > Especificación e Interpretación del Modelo de Regresión Lineal.
- ➤ Bondad de Ajuste
- ➤ Validación del Modelo
- ➤ Significancia de Parámetros del Modelo
- ➤ Modelos de Regresión Penalizados
- > Regresión Ridge
- > Regresión Lasso

Regresión Lineal Simple y Múltiple

Introducción

- Determinar la ecuación de regresión sirve para:
 - Describir de manera concisa la relación entre variables.
 - Predecir los valores de una variable en función de la otra.
- Veremos EXCLUSIVAMENTE relaciones lineales.
- oLa regresión lineal simple estudia la relación entre sólo dos variables (el caso de relación más sencillo posible).

Introducción

DENOMINACIÓN D	DE LAS VARIABLES
X	Υ
Predictora, regresor	Criterio
Explicativa	Explicada
Predeterminada	Respuesta
Independiente	Dependiente
Exógena	Endógena
(Explica la variabilidad de otra variable)	(Su variabilidad es explicada por otra variable)

Diagrama de Dispersión

- A grandes rasgos, como paso previo, el diagrama de dispersión permite vislumbrar si:
 - Existe relación entre variables.
 - La relación es lineal o de otro tipo.
 - Intensidad de la relación (por la estrechez de la nube de puntos).
 - · Valores anómalos (Outliers) distorsionan la relación.
 - La dispersión de los datos es o no uniforme (homocedasticidad vs. heterocedasticidad).

Especificación del modelo de regresión lineal

$$Y = \alpha + \beta X + \varepsilon$$
 $Y = \hat{Y} + \varepsilon$
 $Y = \alpha + \beta X$
 $\hat{Y} = \alpha + \beta X$
 $\hat{S} = Y - \hat{Y}$

Supuestos del modelo

- Características estadísticas:
 - Linealidad.
 - Homocedasticidad: las varianzas de Y para cada valor de X son todas iguales.
 - Ausencia de autocorrelación: las variables Y son independientes entre sí (problema en estudios longitudinales).
 - Normalidad.
- Características como modelo descriptivo:
 - El modelo ha de estar correctamente especificado:
 - No se excluyen variables independientes relevantes.
 - No se incluyen variables independientes irrelevantes.
 - La variable independiente ha de haber sido medida sin error.

Estimación de Parámetros

- Para estimar los parámetros α y β usamos: mínimos cuadrados.
- En puntuaciones directas:

$$\hat{Y} = \alpha + \beta X$$

$$a = \overline{Y} - b\overline{X} \qquad b = r_{XY} \frac{S_Y}{S_X}$$

En el modelo teórico de regresión lineal

$$Y = a + bX + e$$

distinguimos los siguientes elementos:

 e → error de estimación o puntuaciones residuales, parte aleatoria; aquello no explicado por el modelo.

$$\hat{Y} = a + bX$$

- $Y \rightarrow$ puntuación estimada: valor promedio previsto para todos los sujetos que han obtenido en la variable X un valor de Xi.
- b → pendiente de la recta: cambio en Y por cada unidad de cambio en X.
- a → ordenada en el origen: valor medio de Y cuando X=0.

$$\hat{Y} = 600 + 300X$$

- Supongamos que tenemos la ecuación de regresión, donde X es el número de años de experiencia profesional, e Y es el sueldo mensual.
 - ✓ Interpreta a y b. Por cada año de experiencia, el sueldo aumenta en 300. Si no se tiene experiencia, el sueldo es de 600.
 - ✓ Una persona con 3 años de experiencia laboral, ¿qué sueldo mensual tendrá? Interpreta el resultado.
 - ✓ Si una persona con 3 años de experiencia laboral tiene un sueldo mensual de 1700 €, ¿cuál será su error asociado? Interpreta el resultado.

$$\hat{Y} = 600 + 300X$$

- ✓b=300 → Cambio en Y por cada unidad de cambio en X. Por cada año de experiencia laboral, el sueldo mensual aumenta 300 €.
- \checkmark a=600 \rightarrow Valor medio de Y cuando X=0. Sueldo medio de aquellas personas sin experiencia laboral.
- √Una persona con 3 años de experiencia laboral, ¿qué sueldo mensual tendrá? Interpreta el resultado.

$$X = 3 \Rightarrow \hat{Y} = 600 + 300 * 3 = 1500$$

 $\hat{Y} = 1500$

√ → Valor promedio previsto para todos los sujetos que han obtenido en la variable X un valor de Xi. Las personas con 3 años de experiencia tienen un sueldo promedio de 1500 €.

Si una persona con 3 años de experiencia laboral tiene un sueldo mensual de 1700
 €, ¿cuál será su error asociado? Interpreta el resultado.

$$e = Y - \hat{Y} = 1700 - 1500 = 200$$

✓ El modelo estimó un sueldo de 1500 € para una persona con 3 años de experiencia laboral. Si esta persona concreta tiene un sueldo de 1700 €, esta diferencia de 200 € es el error; aquello que el modelo no explica.

Componentes de variación

$$\sum_{i=1}^{N} (Y - \overline{Y})^{2} = \sum_{i=1}^{N} (\hat{Y} - \overline{Y})^{2} + \sum_{i=1}^{N} (Y - \hat{Y})^{2}$$

- ✓ Suma de cuadrados total = suma de cuadrados explicada + suma de cuadrados no explicada
- ✓ Variación Total = Variación Explicada + Variación No Explicada

 Lo que el modelo captura lo que el modelo no captura (no explica)

Bondad de ajuste

- o Coincide con el coeficiente de determinación.
- La proporción de variabilidad no explicada= 1-R²

$$\overline{R}^2 = 1 - \left(1 - R^2\right) \frac{n-1}{k-1}$$

Validación del modelo

Fuentes de variación	Sumas de cuadrados	gl	Varianza	F
Regresión o explicada	$\sum (\hat{Y} - \overline{Y})^2$	k	$S_{\rm exp}^2 = \frac{SC_{\rm exp}}{k}$	R^{2}
Residual o no explicada	$\sum \left(Y - \hat{Y}\right)^2$	N-k-1	$S_{res}^2 = \frac{SC_{res}}{N - k - 1}$	$\frac{S_{\text{exp}}^{2}}{S_{res}^{2}} = \frac{\frac{\frac{2 \cdot XY}{K}}{k}}{\frac{1 - R_{XY}^{2}}{N - k - 1}}$
Total	$\sum (Y - \overline{Y})^2$	N-1	$S_t^2 = \frac{SC_t}{N-1}$	N - K - 1

ANOVA

 $F > F_{(\alpha,k,N-k-1)} \to Se$ rechaza la Hipótesis nula. Las variables están relacionadas. El modelo

$$F \le F_{(\alpha,k,N-k-1)}$$

 $F \leq F_{(\alpha,k,N-k-1)}$ Se acepta la Hipótesis nula. Las variables no están relacionadas. El modelo richles independientes)

Regresión Lineal Múltiple

Regresión lineal múltiple

Se ha visto el tema del análisis de regresión simple:

Precio de la casa =
$$\beta_0 + \beta_1$$
(Área de la casa) + ϵ

- Pero en general, una variable dependiente depende de más de una variable independiente:
- Precio de la casa puede depender de:
 - Área
 - Antigüedad
 - > Número de baños
 - Área del garaje
 - > Etc.

Regresión lineal múltiple

▶Para tratar este tipo de problemas se requiere expandir el análisis de regresión:

Regresión Lineal Simple Una sola variable.

Regresión Lineal Múltiple Dos o más variables.

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

Modelo de Regresión Múltiple

Objetivo: Examinar la relación lineal entre una variable dependiente (y) y dos o más variables independientes (x_i)

Modelo poblacional:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \epsilon$$
From aleatorio

Modelo de regresión múltiple estimado:

Metodología para la construcción de modelos

Las 3 etapas:

> Especificación del modelo

- Especificación del modelo de regresión poblacional.
- Recolección de la data muestral.

> Formulación o construcción del modelo

- ➤ Cálculo de los coeficientes de correlación entre las distintas variables, dependientes e independientes.
- >Ajuste del modelo a la data. Estimación de la ecuación de regresión múltiple.

▶ Diagnóstico del modelo

- ▶Pruebas estadísticas para determinar la bondad de ajuste del modelo a la data.
- ➤ Verificación de los supuestos de regresión múltiple.

• Un distribuidor de pies (postres) desea evaluar los factores que se cree influyen en la demanda de sus productos, y si existen éstos factores cuantificar cual de éstos es el más importante.

• Diagrama de Dispersión.

• Especificación del Modelo

Un distribuidor de pies (postres) desea evaluar los factores que se cree influyen en la demanda

- ➤ Variable **Dependiente**: Ventas (unidades / semana)
- ➤ Variables **Independientes**: Precio (\$) y Publicidad (\$100)

Modelo de Regresión múltiple Poblacional:

Ventas =
$$\beta_0$$
 + β_1 (Precio) + β_2 (Publicidad) + ϵ

- Interpretación de los Coeficientes Estimados
- Pendientes (B_i)
 - Estiman el cambio en el valor promedio de "y" como b_i unidades por cada unidad de incremento en x_i manteniendo las otras variables constantes.
 - Ejemplo: Si $b_1 = -20$, entonces se espera que las ventas promedio (y) se reduzcan en 20 pies por semana por cada \$1 en que se incremente el precio (x_1) , manteniendo constante la variable publicidad (x_2) .
- Intercepto (B₀)
 - Estima el valor promedio de y cuando todas las variables x_i son iguales a cero (suponiendo que el valor cero está dentro de los rangos de valores que pueden tomar los x_i).

Sema- na	Venta de pies	Precio (\$)	Publicidad (\$100s)
	-		
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Modelo de Regresión Múltiple:

Ventas =
$$b_0 + b_1$$
 (Precio)
+ b_2 (Publicidad)

Matriz de correlación:

	Venta de pies	Precio	Publicidad
Venta de Pies	1		
Precio	-0.44327	1	
Publicidad	0.55632	0.03044	1

	Ventas de pies	Precio	Publicidad
Ventas de pies	1		
Precio	-0.44327	1	
Publicidad	0.55632	0.03044	1

- Ventas vs. Precio: r = -0.44327
 - Hay una asociación lineal negativa entre las ventas y el precio
- Ventas vs. Publicidad : r = 0.55632
 - Hay una asociación lineal positiva entre las ventas y la publicidad

Estadísticas de la	regresión	$\widehat{Ventas} = 3$	306.526-2	24.975(P	ræio) + 74	.131(Pul	dicidad
correlación múltiple	0.7221343		$R^2 =$	SSR _	29460.0	0.52148	
Coeficiente de determinación R^2	0.5214779			SST	56493.3	0.52146	
R^2 ajustado	0.4417243		EI 52.19	6 de la variaci	ón en las ventas	es explicada	_
Error típico	47.463413				s precios y la puk	•	
Observaciones	15		po : ia v		o provido y la par		
ANÁLISIS DE VARIAN						.1).	
ANALISIS DE VARIAN	Grados de	Suma de	Promedio de			المالية	
	libertad	cuadrados	los cuadrados	F	Valor crítico de F	3.00	
Regresión	2	29460.02687	14730.01343	6.53860679	0.012006372		
Residuos	12	27033,30647	2252.775539				
Total	14	56493.33333					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	
Intercepción	306.52619	114 2538935	2.682851182	0.01993159	57.58834426	555.464042	
Precio	-24.97509	10.83212512	-2.305650022	0.03978846	-48.5762627	-1.3739163	
Publicidad	74.130957	25.96731792	2.854779139	0.01449363	17.55303206	130.708883	

Ecuación estimada de regresión múltiple:

$$\hat{\text{Ventas}} = 306.526 - 24.975(\text{Pr}\hat{\text{e}}_{10}) + 74.131(\text{Publicidad})$$

Donde:

Ventas (número de pies por semana)

Precio (\$)

Publicidad (\$100's)

b₁ = -24.975: Las ventas decrecerán en promedio 24.975 pies por semana por cada \$1 incrementado en el precio, manteniendo constante la publicidad $\mathbf{b_2}$ = **74.131**: Las ventas crecerán en promedio 74.131 pies por semana por cada \$100 incrementado en publicidad, manteniendo constante el precio.

Diagnóstico del Modelo: Prueba F (Significancia General)

- oPrueba F para la significancia del modelo (General)
- Muestra si hay una relación lineal entre todas las variables x (consideradas en forma conjunta) e y
- OUsa el estadístico de prueba F
- oHipótesis:
 - $\blacksquare H_0$: $\beta_1 = \beta_2 = ... = \beta_k = 0$ (No hay relación lineal)
 - \blacksquare H_A: Al menos un β_i \neq 0 (Existe relación lineal entre (y) y al menos un x_i)

Diagnóstico del Modelo: Prueba F (Significancia General)

Estadísticas de la	regresión					State of the state	
Coeficiente de correlación múltiple	0.72213429		_ MSR	1473	30 O	3.00	nu.
Coeficiente de determinación R^2	0.52147794		$F = \frac{MSR}{MSE}$	- =	=6.3	5386	
R^2 ajustado Error típico	0.44172426 47.4634126		on 2 y 12 grados	de libertad	1 /		
Observaciones	15		ni z y iz grados	de libertau		Valor P par	a la
ANÁLISIS DE VARIAN	IZA					prueba	
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F	1	
Regresión	2	29460.02687	14730.01343	6.538606789	0.012006372		
Residuos	12	27033.30647	2252.775539				
Total	14	56493.33333					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	
Intercepción	306.526193	114.2538935	2.682851182	0.019931591	57.58834426	555.4640423	
Precio	-24.9750895	10.83212512	-2.305650022	0.039788461	-48.5762627	-1.373916335	
Publicidad	74.1309575	25.96731792	2.854779139	0.014493627	17.55303206	130.7088829	
<u> </u>							

Diagnóstico del Modelo: Prueba F (Significancia General)

Decisión: Como F = $6.53 > 3.89 = F_{0.05}$, entonces se rechaza H₀

Conclusión: Hay suficiente evidencia para concluir que el modelo de regresión explica parte de la variación en la venta de pies (al menos una de las pendientes de regresión no es cero)

Diagnóstico del Modelo: ¿Las Variables Individuales son Significativas?

 H_0 : $\beta_i = 0$ (No hay relación lineal)

 H_A : $\beta_i \neq 0$ (Existe relación lineal entre x_i e y)

Estadístico de prueba:

$$t = \frac{b_i - 0}{s_{b_i}}$$
 (gl = n - k - 1)

Diagnóstico del Modelo: ¿Las Variables Individuales son Significativas?

Decisión: Para cada variable se rechaza H₀

Conclusión: Hay evidencia suficiente para concluir que cada variable individual (Precio y Publicidad) afecta a la venta de pies, dada la presencia de la otra para α =0.05

DE LIMA

Predicciones

Predecir las ventas de una semana en la cual el precio es \$5.50 y la publicidad es \$350.

$$\widehat{\text{Ventas}} = 306.526 - 24.975(\text{Precio}) + 74.131(\text{Publicidad})$$

= 306.526 - 24.975(5.50) + 74.131(3.5)
= 428.62

La venta predecida es 428.62 pies

Nota: La publicidad está en \$100's, entonces $x_2 = 3.5$ significa \$350

