

COLLEGE OF ENGINEERING AND MINES DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

COURSE CODE		EE F102 F01 (CRN: 32862)						
COURSE NAME		INTRODUCTION TO ELECTRICAL AND COMPUTER ENGINEERING						
SEMESTER		SPRING	YEAR 2023		2023	023		
LABORATORY LOCATIO	DRATORY LOCATION JUB 331 (ELECTRONICS LAB)							
LAB SESSION DATE AND TIME	I MONDAY 30 JAN 2023							
TYPE OF SUBMISSION		LABORATORY REPORT N		NUMBER	2			
TITLE OF SUBMISSION	TLE OF SUBMISSION MEASURING VOLTAGE AND CURRENT							
METHOD OF SUBMISSION ONLINE VIA CANVAS								
DUE DATE OF SUBMISSION	MONDAY 06 FEB 2023 DUE TIME OF SUBMISSION 23:59					23:59		
STUDENT NAME								
MAKE THIS FORM A "COVER PAGE" FOR YOUR REPORT SUBMISSION.								
FOR THE TA USE ONLY REMARKS:								

Objective:

We will learn how to measure voltage and current using a multimeter and power supply. We will learn the difference between node voltage and differential voltage. We will characterize the output voltage regulator versus the input voltage and compare those mesurements to a simulation.

Circuits Diagram, Observations and Data Used in Lab:

Figure 1 shows the simulated voltage regulator circuit used in the lab. Figure 1 displays the voltage regulator, power supply, and 1 k Ω resistor. This simulated version of the circuit was used to learn how the voltage regulator works when given different voltage levels.

Figure 1: Voltage Regulator

Table 1 shows the voltage that was input from Node A and the Voltage output through Node B with the measured Differential Voltage and Current Measured. With the values that are here we can calculate the theoretical differential voltage along with the theoretical resistance.

Table 1: Voltage Regulator Voltages and Current Measurements

Node Voltage		Differential	Differential	Current	
Measured		Voltage	Voltage	Measured	Calculated Resistance
		Measured	Calculated	Through 1 kΩ	1 kΩ
V_A	V_{B}	V_{AB}	V _{AB}	I _o	R₁
[V]	[V]	[V]	[V]	[mA]	[Ω]
0.500	0.000	0.500	0.500	0.000	1000.000
1.000	0.000	1.000	1.000	0.000	1000.000
1.499	0.019	1.480	1.480	0.018	1038.889
1.998	0.684	1.314	1.314	0.686	997.085
2.496	1.149	1.347	1.347	1.152	997.396
2.995	1.625	1.370	1.370	1.628	998.157
3.494	2.108	1.386	1.386	2.114	997.162
3.993	2.595	1.398	1.398	2.602	997.310
4.493	3.085	1.408	1.408	3.093	997.414
4.993	3.575	1.418	1.418	3.585	997.211
5.492	4.064	1.428	1.428	4.077	996.811
5.992	4.533	1.459	1.459	4.548	996.702
6.491	4.920	1.571	1.571	4.937	996.557
6.991	5.018	1.973	1.973	5.037	996.228
7.491	5.019	2.472	2.472	5.039	996.031
7.990	5.021	2.969	2.969	5.040	996.230
8.489	5.022	3.467	3.467	5.041	996.231
8.989	5.023	3.966	3.966	5.043	996.034

Figure 2: Input Voltage vs Output Voltage of the class

Figure 2 shows how the voltage regulator effects the voltage output. As seen the voltage regulator keeps the output voltage to about 5V while the Input voltage may be higher the regulator will keep the voltage output to about 5 V regardless of this. The darker blue line is the measurements I took while all other lines are my classmates.

Figure 3: Simulation Input vs Output

Figure 3 displays the Input vs the Output with the axis the same as that of Figure 2. Figure 3 is the simulated version of the circuit compared. The graph is shows evidence of a more perfect environment compared to Figure 2 which shows imperfect values.

Conclusion:

As seen in Figure 2 and evidenced by the Table 1 the input voltage is much more linear than the output voltage due to the fact that the voltage regulator would keep the voltage output to a plateau at 5V. The simulation shown at Figure 3 shows this plateau clearly as there is no interference compared to the real world values of Figure 2.