Name:

3.1.86 Find numbers a and b such that the given function g is differentiable at 1.

$$g(x) = \begin{cases} ax^3 - 3x & \text{if } x \le 1\\ bx^2 + 2 & \text{if } x > 1 \end{cases}$$

- 3.1.88 A tangent line is drawn to the hyperbola xy = c at a point P as shown in the figure.
 - (a) Show that the midpoint of the line segment cut from this tangent line by the coordinate axes is P.
 - (b) Show that the triangle formed by the tangent line and the coordinate axes always has the same area, no matter where P is located on the hyperbola.

3.2.44 If
$$g(x) = \frac{x}{e^x}$$
, find $g^{(n)}(x)$

3.2.50 If
$$f(2) = 10$$
 and $f'(x) = x^2 f(x)$ for all x , find $f''(2)$.

3.2.58 Compute Q'(0), where $Q(x) = \frac{1+x+x^2+xe^x}{1-x+x^2-xe^x}$

Hint: Instead of finding Q'(x) first, let f(x) be the numerator and g(x) be the denominator of Q(x), and compute Q'(0) from f(0), f'(0), g(0) and g'(0).

3.3.46 Find the limit $\lim_{x\to 0} \frac{\sin(x)}{\sin(\pi x)}$.

3.3.62 Find the given derivative by finding the first derivatives and observing the pattern that occurs.

$$\frac{d^{35}}{dx^{35}}(x\sin(x))$$

3.3.66 A semicircle with diameter PQ sits on an isosceles triangle PQR to form a region shaped like a two-dimensional icecream cone, as shown in the figure. If $A(\theta)$ is the area of the semicircle and $B(\theta)$ is the area of the triangle, find $\lim_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$.

3.4.46 Find the derivative of the function $y = \sqrt{x + \sqrt{x + \sqrt{x}}}$.

3.4.48 Find the derivative of the function $y = 2^{3^{4^x}}$.

3.4.62 The curve $y = \frac{|x|}{\sqrt{2-x^2}}$ is called a *bullet-nose curve*. Find an equation of the tangent line to this curve at the point (1,1).

 $3.4.69\,$ A table of values for f,g,f' and g' is given.

\boldsymbol{x}	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

- (a) If h(x) = f(g(x)), find h'(1).
- (b) If H(x) = g(f(x)), find H'(1).

3.4.99 Let c be the x-intercept of the tangent line to the curve $y = b^x$ $(b > 0, b \neq 1)$ at the point (a, b^a) . Show that the distance between the points (a, 0) and (c, 0) is the same for all values of a.

