Approximation for Predicting Alloy Vibrational Mode Properties and Thermal Conductivity

Jason Larkin and Alan J. H. McGaughey

Department of Mechanical Engineering Carnegie Mellon University

http://ntpl.me.cmu.edu/

04/04/13

Virtual Crystal Approximation

$$k_{ph,\mathbf{n}} = \sum_{\kappa} \sum_{\nu} \frac{k_B}{V} D_{ph,\mathbf{n}} \binom{\kappa}{\nu}$$
$$D_{ph,\mathbf{n}} \binom{\kappa}{\nu} = v_{q,\mathbf{n}}^2 \binom{\kappa}{\nu} \tau \binom{\kappa}{\nu}$$

B. Abeles, Phys. Rev. 131, 19061911 (1963)

VC-ALD Diffusivities: Lifetimes

$$D_{ph,\mathbf{n}}(\mathbf{k}) = v_{g,\mathbf{n}}^2(\mathbf{k}) \tau(\mathbf{k})$$

Perturbation theory:

Matthiessen's Rule:

$$\frac{1}{\tau(\mathbf{k})} = \frac{1}{\tau_{p-p}(\mathbf{k})} + \frac{1}{\tau_{p-d}(\mathbf{k})}$$

¹Phys. Rev. B 27, 858866 (1983)

VC-ALD Diffusivities: Group Velocity

$$D_{ph,\mathbf{n}}(^{\kappa}_{\nu}) = v_{g,\mathbf{n}}^2(^{\kappa}_{\nu}) \, \tau(^{\kappa}_{\nu})$$

$$\mathbf{v}_{g,\mathbf{n}}(^{\boldsymbol{\kappa}}_{\nu}) = \frac{\partial \omega(^{\boldsymbol{\kappa}}_{\nu})}{\partial \boldsymbol{\kappa}}$$

VC-ALD: experimental accuracy

Density Functional Theory (DFT)

+ (VC-ALD)

PRL 106, 045901 (2011)

PRB 85, 184303 (2012)

Explicit disorder: VC vs Gamma

Explicit disorder: NMD

LJ Alloys, T=10 K

Normal Mode Decomposition (**NMD**): Molecular Dynamics (MD)-based

$$\tau({}^{\kappa}_{\nu}) = \int_0^{t^*} \frac{\langle E({}^{\kappa}_{\nu};t) E({}^{\kappa}_{\nu};0) \rangle}{\langle E({}^{\kappa}_{\nu};0) E({}^{\kappa}_{\nu};0) \rangle} dt$$

VC Diffusivities

LJ Argon and Alloys,
$$T = 10 \text{ K}$$

$$D_{ph,\mathbf{n}}(^{\kappa}_{\nu}) = v_{g,\mathbf{n}}^2(^{\kappa}_{\nu}) \, \tau(^{\kappa}_{\nu})$$

$$D_{HS} = \frac{1}{3}v_s a$$

AF Diffusivities

Allen-Feldman (AF) Theory:

$$k_{AF} = \sum_{\substack{\text{diffusons}}} \frac{k_B}{V} D_{AF,i}(\omega_i)$$

$$10^3 \qquad \qquad \text{OAF } c=0.5 \qquad \text{OAF amorphous}$$

$$10^2 \qquad \qquad 0 \qquad \text{OAF amorphous}$$

$$10^0 \qquad \qquad 10^1 \qquad \qquad 0 \qquad \qquad 10^1 \qquad \qquad 0 \qquad \qquad 0$$

Thermal conductivity

MD-based Green-Kubo (GK)

<u>High-scatter adjustment*:</u>

$$D_{ph}({}^{\kappa}_{\nu}) < D_{HS}$$

$$D_{ph}({}^{\kappa}_{\nu}) = D_{HS}$$

Thermal conductivity

MD-based Green-Kubo (GK)

<u>High-scatter adjustment*:</u>

$$D_{ph}({}^{\kappa}_{\nu}) < D_{HS}$$

$$D_{ph}({}^{\kappa}_{\nu}) = D_{HS}$$

Thermal conductivity spectrum

<u>Summary</u>

VC approximation underpredicts mode group velocities at high frequency.

VC-ALD underpredicts lifetimes at high-frequency.

Breakdown of VC-ALD method is likely for materials near HS limit.

This work was supported by AFOSR award FA95501010098 and by a grant of computer time from the DOD High Performance Computing Modernization Program at the US Army Engineer Research and Development Center. We thank Davide Donadio, Jivtesh Garg, Asad Hasan, Craig Maloney, and Zhiting Tian for helpful discussions.

Explicit disorder: Structure Factor

HS/IR Limit

$$D_{IR} = \frac{2\pi}{3} \frac{v_s^2}{\omega}.$$

P. Sheng and M. Zhou, Science 253, 539542 (1991)

Thermal conductivity: SW silicon alloy

NMD using VC modes

Phonon Spectrum: LJ Ar vs SW Si

