Pada projek ini saya melakukan penelitian mengenai sintesis Graphene Oxide dengan ZnO (GO/ZnO) dengan perbandingan GO/ZnO 50wt% dan GO/ZnO 85wt%, kemudian data hasil sintesis tersebut di analis menggunakan software Origin, X'Pert HighScore Plus, Image J, dan Pow DLL untuk mengetahui struktur kristal, ukuran partikel, tingkat absorbansi, dan Band gap energi.

A. Hasil data XRD menggunakan X'pert HighScore

Grafik di atas menunjukkan bahwa ketika GO-ZnO dengan perbandingan 50wt% di tambahkan/di doping dengan GO, memiliki puncak yang lebih terlihat pada bidang (002), sama halnya dengan grafik GO yang terlihat pada puncak (002), di bandingkan dengan GO-ZnO 85% yang tidak menunjukkan sama sekali puncak pada bidang (002), hal ini penujukkan dengan perbandingan 50% doping yang dihasilkan lebih baik, karena kedua material (GO dan ZnO) terdeteksi melalui puncak XRD tersebut.

Grafik Perbesaran XRD GO-ZnO 85wt% dan GO-ZnO 50wt%

Puncak tersebut dapat dilihat lebih jelas melalui grafik perbesaran diatas.

Berikut adalah tabel hasil parameter kristal dari masing-masing material yang digunakan dalam penelitian ini:

Parameter Kristal ZnO NPs

(1 ₂ h ₁)	2θ (°)	FWHM	d_{hkl}	a=b	c	c/a	Volume	Ukuran kristal	Micro
(khl)	20()	(°)	(Å)	(Å)	(Å)	(Å)	$(Å^3)$	(nm)	strain
(100)	31.62	0.30	2.82					25.54	0.553
(002)	34.29	0.30	2.61					26.32	0.496
(101)	36.11	0.30	2.48					26.75	0.464
(102)	47.40	0.31	1.91					27.49	0.348
(110)	56.46	0.32	1.62	3.25	5.21	1.602	47.82	26.87	0.303
(103)	62.72	0.33	1.47					28.62	0.258
(200)	66.24	0.34	1.40					31.33	0.224
(112)	67.81	0.34	1.38					29.92	0.230
(201)	68.95	0.34	1.36					30.33	0.224
Rata-ra	ata	·		·			·	28.13	0.344

Parameter Kristal Graphene Oxide

(khl)	2θ (°)	FWH M (°)	d _{hkl} (Å)	a=b (Å)	c (Å)	c/a (Å)	Volu me (ų)	Ukuran kristal (nm)	Micro strain
(002	11.97	1.69	7.42	14.1 5	14.1 5	14.1 5	2834. 35	19.76	0.171
Rata-rata									0.171

Parameter Kristal GO-ZnO 50wt%

(khl)	2θ (°)	FWH M (°)	$d_{hkl} \ (ext{Å})$	a=b (Å)	c (Å)	c/a (Å)	Volum e (ų)	Ukura n kristal (nm)	Micro strain
(002)	12.4 1	0.10	7.12	14.1 5	14.1 5	14.1	2834.3 5	14.57	0.329
(100)	31.6	0.25	2.82		5.21	1.60	47.82	31.21	0.171
(002)	34.3	0.25	2.60					32.57	0.210
(101)	36.1 6	0.25	2.48	3.25				32.92	0.209
(102)	47.4 5	0.26	1.91					33.93	0.178
(110)	56.5 0	0.27	1.62					33.71	0.148
(103)	62.7 7	0.28	1.47					34.50	0.142
(200)	66.2 8	0.28	1.40					36.47	0.193
(112)	67.8 5	0.28	1.38					38.42	0.166
Rata-ra	Rata-rata								

Parameter Kristal GO-ZnO 85wt%

								Ukura	Micr
(khl)	2θ (°)	FWH	d_{hkl}	a=b	c	c/a	Volume	n	0
(KIII)	20()	M (°)	(Å)	(Å)	(Å)	(Å)	$(Å^3)$	kristal	strai
								(nm)	n
(002)	12.38	0.10	7.14	14.1	14.1	14.1	2834.3	28.07	0.01
(002)	12.30	0.10	/.17	5	5	5	5	20.07	2
(100)	21.65	0.24	2.02					22.60	0.43
(100)	31.65	0.24	2.82					32.68	1
(002)	24.40	0.24	2.61					24.10	0.38
(002)	34.40	0.24	2.61					34.18	1
(101)	26.14	0.24	2.40	2 25	5.01	1.60	47.00	24.11	0.36
(101)	36.14	0.24	2.48	3.25	5.21	2	47.82	34.11	3
(102)	47.42	0.25	1.01					25.27	0.27
(102)	47.43	0.25	1.91					35.27	1
(110)	5(40	0.26	1.62					24.51	0.23
(110)	56.49	0.26	1.62					34.51	5

(103)	62.76	0.27	1.47					36.17	0.20
(200)	66.27	0.27	1.40					37.27	0.18
(112)	67.85	0.28	1.38					39.18	0.17
Rata-rata								34.60	0.25
									1

B. Distribusi Ukuran Partikel

Distribusi partikel (a) GO (b) GO-ZnO 50wt% (c) GO-ZnO 85wt%

Analisis distribusi ukuran partikel dilakukan dengan menggunakan *software ImageJ* dan Origin dengan mengambil 50 data diameter ukuran masing-masing partikel, hasil menunjukkan bahwa penambahan ZnO ke dalam *graphene oxide* membuat ukuran partikel menjadi lebih besar.

C. Spectroskopi UV-Vis

Spektrum Absorbansi GO-ZnO 85wt%, GO-ZnO 50wt% dan GO

Spectroskopi UV-Vis di analisis menggunakan software Origin, untuk mengetahui tingkat absorbansi, berdasarkan analisis, perbandingan GO/ZnO 50wt% memiliki tingkat absorbansi yang lebih tinggi.

D. Energi Celah Pita

Energi Celah Pita a) *Graphene Oxide* b) GO-ZnO 50wt% dan c) GO-ZnO 85wt%.

Data energi celah pita (bandgap energy) diperoleh menggunakan perangkat lunak Origin, kemudian dianalisis menggunakan metode Tauc Plot dengan cara menarik garis linear pada kurva hubungan antara $(\alpha h \nu)^2$ dan energi foton (hv) untuk menentukan nilai energi celah pita material. Hasil menunjukkan, semakin banyak GO yang di tambahkan, maka band gap energi semakin kecil.