Дискретная математика, 1 курс Артамкин

Формула оценки: $avg_i(\min(10, a_i))$, где a_i — количество задач, сданных из листка i (i = 1...5). Если через первый месяц сдано меньше трёх листков, то вместо этого ставится $0.7 \cdot avg_i(\min(10, a_i))$ (при этом i = 1...4).

Наивная теория множеств

Пусть мы можем определять множества из элементов с любым общим свойством. Тогда возникает *парадокс Рассела*:

Назовём множество A хорошим, если $A \notin A$. Рассмотрим Ω — множество всех хороших множеств. Тогда если $\Omega \in \Omega$, то оно плохое, но при этом хорошее, потому что все элементы Ω хорошее. А если $\Omega \notin \Omega$, то оно хорошее, но при этом не лежит в множестве всех хороших множеств. Противоречие.

Чтобы таких противоречий не было, была создана аксиоматика Цермело-Франкеля (ZF).

Разрешённые способы создания множеств

- Декартово произведение: если A, B множества, то $A \times B := \{(a,b) \mid a \in A, b \in B\}$ множество.
- Если A множество, то 2^A множество подмножеств A тоже множество. (Другие обозначения: $\mathcal{B}(A), \mathcal{P}(A)$)

Определение 1. Функция или отображение $f: A \to B$ — правило, которое каждому $a \in A$ сопоставляет один элемент $b \in B$, этот b называется образом a и обозначает f(a).

Определение 2. График функции $f - \Gamma_f = \{(x, y) \subset A \times B \mid y = f(x)\}.$

Определение 3. Инъекция — такая функция $f: A \to B$, что $f(x_1) = f(x_2) \implies x_1 = x_2$.

Определение 4. Сюръекция — такая функция $f:A\to B$, что $\forall b\in B\exists a\in A: f(a)=b.$

Определение 5. B^A — множество всех функций из A в B.

Несколько задач про B^A .

№1. Пусть $A \cap B = \emptyset$. Тогда между $X^A \cap B$ и $X^A \times X^B$ существует каноническая биекция.

№2. Между $(X^Y)^Z$ и X^{Y^Z} существует каноническая биекция.

№3. Между 2^A и $\{0,1\}^A$ существует каноническая биекция.

Доказательство. Построим такое отображение из 2^A в $\{0,1\}^A$. Пусть $X \in 2^A$. Рассмотрим такую функцию $\chi_X \in \{0,1\}^A$ — индикатор X, т.е.

$$\chi_X(c) = \begin{cases} 1, c \in X \\ 0, c \notin X. \end{cases}$$

Заметим, что:

- Если $X \neq Y \in 2^A$, то $X\delta Y \neq \emptyset$. Тогда если $a \in X\delta Y$, то $\chi_X(a) \neq \chi_Y(a)$. Значит, $X \to \chi_X$ инъекция.
- Если $f \in \{0,1\}^A$, то у f есть прообраз множество элементов, на которых f равна 1.

Следовательно, f биекция.