Esame di Ricerca Operativa del 03/07/18

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema

$$\begin{cases} \min 12 \ y_1 + 4 \ y_2 + 2 \ y_3 + 2 \ y_4 + 6 \ y_5 + 8 \ y_6 \\ 3 \ y_1 + y_2 - 2 \ y_3 - 2 \ y_4 - y_5 - 3 \ y_6 = 8 \\ y_1 - y_2 + y_3 - 3 \ y_4 + 3 \ y_5 + 4 \ y_6 = 5 \\ y \ge 0 \end{cases}$$

	Base	x	degenere	y	Indice entrante	Rapporti	Indice uscente
passo 1	{2,6}						
passo 2							

Esercizio 2. Una cooperativa di taxi deve garantire il servizio 24/24 ore al giorno. Ogni taxi lavora 8 ore consecutive ogni 24 ore. Il numero minimo di taxi in ogni fascia oraria é dato dalla seguente tabella:

Fascia oraria	Numero minimo	Fascia oraria	Numero minimo
2-6	3	14-18	7
6-10	8	18-22	12
10-14	10	22-2	4

Formulare un modello che trovi il numero minimo di taxi necessari ad espletare il servizio

variabili decisionali:

modello:								
COMANDI DI MATLAB								

c=	intcon=
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti sulla seguente rete (su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	1° iterazione	2° iterazione
Archi di T	(1,3) (1,4) (2,4) (4,6) (5,7) (6,5)	2 WOLWHOLD
Archi di U	(3,5)	
x		
degenere		
π		
degenere		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 14 \ x_1 + 5 \ x_2 \\ 16 \ x_1 + 10 \ x_2 \le 43 \\ 13 \ x_1 + 15 \ x_2 \le 40 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore del valore ottimo.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\begin{array}{c} \text{insieme} \\ Q \end{array}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Esercizio 6. Si consideri il problema di caricare un contenitore di volume pari a 571 decimetri cubici, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	21	17	18	11	8	12	24
Volumi	256	411	447	108	228	26	289

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =	$v_I(P) =$
--------------------	------------

b) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento = $v_S(P) =$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1 + 3x_2^2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 4 \le 0, \quad x_1 + (0.25)x_2^2 - 1 \le 0\}.$$

Soluzioni de	Soluzioni del sistema LKT			Massimo		Minimo	
x	λ	μ	globale	locale	globale	locale	

Esercizio 8. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1^2 - 4 \ x_1 x_2 - 4 \ x_2^2 - 9 \ x_1 + 3 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,3) , (3,0) , (4,2) e (-1,-1). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
				possibile		
$\left(\frac{11}{3}, \frac{4}{3}\right)$						

SOLUZIONI

Esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{2, 6}	(24, 20)	(0, 47, 0, 0, 0, 13)	1	$\frac{47}{15}, \frac{13}{4}$	2
2° iterazione	{1, 6}	$\left(\frac{8}{3}, 4\right)$	$\left(\frac{47}{15},\ 0,\ 0,\ 0,\ \frac{7}{15}\right)$	5	$\frac{47}{5}, \frac{7}{10}$	6

Esercizio 2.

COMANDI DI MATLAB

Esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,3) (1,4) (2,4) (4,6) (5,7) (6,5)	(1,3) (1,4) (2,4) (4,6) (5,7) (6,7)
Archi di U	(3,5)	(3,5)
x	(0, 4, 3, 5, 7, 0, 2, 0, 3, 0, 0)	(0, 4, 3, 5, 7, 0, 2, 0, 3, 0, 0)
degenere	SI	SI
π	(0, -4, 4, 4, 19, 11, 29)	(0, -4, 4, 4, 8, 11, 18)
degenere	NO	NO
Arco entrante	(6,7)	(3,5)
ϑ^+, ϑ^-	6,0	4,3
Arco uscente	(6,5)	(5,7)

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 14 \ x_1 + 5 \ x_2 \\ 16 \ x_1 + 10 \ x_2 \le 43 \\ 13 \ x_1 + 15 \ x_2 \le 40 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento = $\left(\frac{43}{16}, 0\right)$ $v_S(P) = 37$

b) Calcolare una valutazione inferiore del valore ottimo.

sol. ammissibile = (2,0) $v_I(P) = 28$

c) Calcolare un taglio di Gomory.

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		1 3 2		5		4	Į.	7	7	(;		
nodo 2	7	1	7	1	7	1	7	1	7	1	7	1	7	1
nodo 3	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 4	$+\infty$	-1	$+\infty$	-1	24	2	22	5	22	5	22	5	22	5
nodo 5	$+\infty$	-1	19	3	10	2	10	2	10	2	10	2	10	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	41	4	40	7	40	7
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	26	5	26	5	26	5	26	5
$\stackrel{\text{insieme}}{Q}$	2,	3	2,	5	4,	5	4,	7	6,	7	(5	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	7	(5, 7, 0, 5, 0, 7, 0, 0, 12, 0, 0)	12
1 - 2 - 4 - 6 - 5 - 7	4	(9, 7, 4, 5, 0, 7, 4, 0, 16, 4, 0)	16

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 6. Si consideri il problema di caricare un contenitore di volume pari a 571 decimetri cubici, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	21	17	18	11	8	12	24
Volumi	256	411	447	108	228	26	289

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(0, 0, 0, 1, 0, 1, 1)$$
 $v_I(P) = 47$

b) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento =
$$\left(\frac{37}{64}, 0, 0, 1, 0, 1, 1\right)$$
 $v_S(P) = 59$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

soluzione ottima = (1, 0, 0, 0, 0, 1, 1)

valore ottimo = 57

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1 + 3x_2^2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 4 \le 0, \quad x_1 + (0.25)x_2^2 - 1 \le 0\}.$$

Soluzioni del sister	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(1, 0)	(0,1)		NO	NO	SI	SI	NO
(-2, 0)	$\left(-\frac{1}{4},0\right)$		NO	NO	NO	NO	SI
(0, 2)	$\left(-\frac{13}{4},1\right)$		NO	NO	NO	NO	SI
(0, -2)	$\left(-\frac{13}{4},1\right)$		NO	NO	NO	NO	SI
$\left(-\frac{1}{6}, \ \frac{\sqrt{143}}{6}\right)$	(-3,0)		SI	SI	NO	NO	NO
$\left(-\frac{1}{6}, -\frac{\sqrt{143}}{6}\right)$	(-3,0)		SI	SI	NO	NO	NO

Esercizio 8.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{11}{3}, \frac{4}{3}\right)$	(2,-1)	$\begin{pmatrix} 1/5 & 2/5 \\ 2/5 & 4/5 \end{pmatrix}$	$\left(\frac{53}{3}, \frac{106}{3}\right) ((1,2)$	$\frac{1}{53} \left(\frac{1}{3} \right)$	$\frac{1}{53} (\frac{1}{3})$	(4, 2)