Preliminary

4Gb Q-die DDR3L SDRAM Olny x16 1.35V

96FBGA with Lead-Free & Halogen-Free (RoHS compliant)

CAUTION:

This document includes some items still under discussion in JEDEC Therefore, those may be changed without pre-notice based on JEDEC progress. In addition, it is highly recommended that you not send specs without Samsung's permission.

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

□2013 Samsung Electronics Co., Ltd. All rights reserved.

Preliminary Rev. 0.5 DDR3L SDRAM

K4B4G1646Q

Revision History

Revision No.	<u>History</u>	<u>Draft Date</u>	<u>Remark</u>	<u>Editor</u>
0.5	- Preliminary SPEC. Release	Apr. 2013	-	J.Y.Lee

Table Of Contents

4Gb Q-die DDR3L SDRAM Olny x16

1. Ordering Information	5
2. Key Features	5
Package pinout/Mechanical Dimension & Addressing 3.1 x16 Package Pinout (Top view) : 96ball FBGA Package	6
4. Input/Output Functional Description	8
5. DDR3 SDRAM Addressing	9
Absolute Maximum Ratings	10
7. AC & DC Operating Conditions	
8. AC & DC Input Measurement Levels 8.1 AC & DC Logic input levels for single-ended signals 8.2 V _{REF} Tolerances 8.3 AC & DC Logic Input Levels for Differential Signals 8.3.1. Differential signals definition 8.3.2. Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) 8.3.3. Single-ended requirements for differential signals 8.4 Differential Input Cross Point Voltage 8.5 Slew rate definition for Differential Input Signals 8.6 Slew rate definitions for Differential Input Signals	
9. AC & DC Output Measurement Levels 9.1 Single-ended AC & DC Output Levels. 9.2 Differential AC & DC Output Levels. 9.3 Single-ended Output Slew Rate 9.4 Differential Output Slew Rate 9.5 Reference Load for AC Timing and Output Slew Rate. 9.6 Overshoot/Undershoot Specification 9.6.1. Address and Control Overshoot and Undershoot specifications. 9.6.2. Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications. 9.7 340hm Output Driver DC Electrical Characteristics. 9.7.1. Output Drive Temperature and Voltage Sensitivity. 9.8 On-Die Termination (ODT) Levels and I-V Characteristics. 9.8.1. ODT DC Electrical Characteristics 9.8.2. ODT Temperature and Voltage sensitivity. 9.9 ODT Timing Definitions 9.9.1. Test Load for ODT Timings. 9.9.2. ODT Timing Definitions.	
10. IDD Current Measure Method	
11. 4Gb DDR3 SDRAM Q-die IDD Specification Table	42
13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 13.1 Clock Specification 13.1.1 Definition for tCK(avg) 13.1.2 Definition for tCK(abs) 13.1.3 Definition for tCH(avg) and tCL(avg) 13.1.4 Definition for note for tJIT(per), tJIT(per, Ick) 13.1.5 Definition for tJIT(cc), tJIT(cc, Ick) 13.1.6 Definition for tERR(nper) 13.2 Refresh Parameters by Device Density 13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin	
13.3.1. Speed Bin Table Notes	47

14. Timing Parameters by Speed Grade	48
14.1 Jitter Notes	
14.2 Timing Parameter Notes	
14.3 Address/Command Setup, Hold and Derating :	
14.4 Data Setup, Hold and Slew Rate Derating	60

1. Ordering Information

[Table 1] Samsung 4Gb DDR3L Q-die ordering information table

Organization	DDR3L-1066 (7-7-7)	DDR3L-1333 (9-9-9) ³	DDR3L-1600 (11-11-11) ²	Package
256Mx16	K4B4G1646Q-HYF8	K4B4G1646Q-HYH9	K4B4G1646Q-HYK0	96 FBGA

NOTE:

- 1. Speed bin is in order of CL-tRCD-tRP.
- 2. Backward compatible to DDR3L-1333(9-9-9), DDR3L-1066(7-7-7)
- 3. Backward compatible to DDR3L-1066(7-7-7)

2. Key Features

[Table 2] 4Gb DDR3 Q-die Speed bins

Connect	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	11
Speed	6-6-6	7-7-7	9-9-9	11-11-11	Unit
tCK(min)	2.5	1.875	1.5	1.25	ns
CAS Latency	6	7	9	11	nCK
tRCD(min)	15	13.125	13.5	13.75	ns
tRP(min)	15	13.125	13.5	13.75	ns
tRAS(min)	37.5	37.5	36	35	ns
tRC(min)	52.5	50.625	49.5	48.75	ns

- JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
- V_{DDQ} = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
- 400 MHz f_{CK} for 800Mb/sec/pin, 533MHz f_{CK} for 1066Mb/sec/pin, 667MHz f_{CK} for 1333Mb/sec/pin, 800MHz f_{CK} for 1600Mb/sec/pin
- 8 Banks
- Programmable CAS Latency(posted CAS): 5,6,7,8,9,10,11
- · Programmable Additive Latency: 0, CL-2 or CL-1 clock
- Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333) and 8 (DDR3-1600)
- · 8-bit pre-fetch
- Burst Length: 8 (Interleave without any limit, sequential with starting address "000" only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- · Bi-directional Differential Data-Strobe
- Internal(self) calibration: Internal self calibration through ZQ pin (RZQ: 240 ohm ± 1%)
- · On Die Termination using ODT pin
- Average Refresh Period 7.8us at lower than T_{CASE} 85°C, 3.9us at 85°C < T_{CASE} \leq 95 °C
- · Asynchronous Reset
- Package: 96 balls FBGA x16
- · All of Lead-Free products are compliant for RoHS
- · All of products are Halogen-free

The 4Gb DDR3 SDRAM Q-die is organized as a 32Mbit x 16 I/Os x 8banks, device. This synchronous device achieves high speed double-data-rate transfer rates of up to 1600Mb/sec/pin (DDR3-1600) for general applications.

The chip is designed to comply with the following key DDR3 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset .

All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and $\overline{\rm CK}$ falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and $\overline{\rm DQS}$) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a $\overline{\rm RAS}/\overline{\rm CAS}$ multiplexing style. The DDR3 device operates with a single 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V) power supply and 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V).

The 4Gb DDR3 Q-die device is available in 96ball FBGAs(x16).

NOTE: 1. This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in "DDR3 SDRAM Device Operation & Timing Diagram".

2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.

3. Package pinout/Mechanical Dimension & Addressing

3.1 x16 Package Pinout (Top view): 96ball FBGA Package

	1	2	3	4	5	6	7	8	9		
				ı						Г	
Α	VDDQ	DQU5	DQU7				DQU4	VDDQ	Vss		Α
В	Vssq	V DD	Vss				DQSU	DQU6	Vssq		В
С	VDDQ	DQU3	DQU1				DQSU	DQU2	VDDQ		С
D	Vssq	VDDQ	DMU				DQU0	Vssq	V DD		D
E	Vss	Vssq	DQL0				DML	Vssq	VDDQ		Е
F	VDDQ	DQL2	DQSL				DQL1	DQL3	Vssq		F
G	Vssq	DQL6	DQSL				VDD	Vss	Vssq		G
Н	VREFDQ	VDDQ	DQL4				DQL7	DQL5	VDDQ		Н
J	NC	Vss	RAS				СК	Vss	NC		J
K	ODT	V DD	CAS				CK	V DD	CKE		K
L	NC	cs	WE				A10/AP	ZQ	NC		L
М	Vss	BA0	BA2				NC	VREFCA	Vss		M
N	V DD	А3	A0				A12/BC	BA1	V DD		N
Р	Vss	A5	A2				A1	A4	Vss		Р
R	VDD	A7	A9				A11	A6	V DD		R
Т	Vss	RESET	A13				A14	A8	Vss		Т

Ball Locations (x16)

- Populated ball
- Ball not populated

Top view

(See the balls through the package)

3.2 FBGA Package Dimension (x16)

Units : Millimeters

BOTTOM VIEW

datasheet

4. Input/Output Functional Description

[Table 3] Input/Output function description

Symbol	Type	Function
CK, CK	Input	Clock: CK and $\overline{\text{CK}}$ are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of $\overline{\text{CK}}$. Output (read) data is referenced to the crossings of CK and $\overline{\text{CK}}$
CKE	Input	Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After V _{REFCA} has become stable during the power on and initialization sequence, it must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, \overline{CK} , ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
CS	Input	Chip Select: All commands are masked when \overline{CS} is registered HIGH. \overline{CS} provides for external Rank selection on systems with multiple Ranks. \overline{CS} is considered part of the command code.
ODT	Input	On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, \overline{DQS} and DM/TDQS, NU/ \overline{TDQS} (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT.
RAS, CAS, WE	Input	Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
DM (DMU), (DML)	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.
BA0 - BA2	Input	Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle.
A0 - A14	Input	Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions, see below) The address inputs also provide the op-code during Mode Register Set commands.
A10 / AP	Input	Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge) A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC	Input	Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be performed. (HIGH: no burst chop, LOW: burst chopped). See command truth table for details
RESET	Input	Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH. RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and 20% of V _{DD} , i.e. 1.20V for DC high and 0.30V for DC low.
DQ	Input/Output	Data Input/ Output: Bi-directional data bus.
DQS, (DQS)	Input/Output	Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended.
TDQS, (TDQS)	Output	Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.
NC		No Connect: No internal electrical connection is present.
V _{DDQ}	Supply	DQ Power Supply: 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
V _{SSQ}	Supply	DQ Ground
V _{DD}	Supply	Power Supply: 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
V _{SS}	Supply	Ground
V _{REFDQ}	Supply	Reference voltage for DQ
V _{REFCA}	Supply	Reference voltage for CA
ZQ	Supply	Reference Pin for ZQ calibration
· · · · · · · · · · · · · · · · · · ·		nput only pins (BA0-BA2, A0-A14, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.

5. DDR3 SDRAM Addressing

1Gb

Configuration	256Mb x 4	128Mb x 8	64Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A ₁₀ /AP	A10/AP	A ₁₀ /AP
Row Address	A0 - A13	A0 - A13	A0 - A12
Column Address	A0 - A9,A11	A0 - A9	A0 - A9
BC switch on the fly	A ₁₂ /BC	A12/BC	A12/BC
Page size *1	1 KB	1 KB	2 KB

2Gb

Configuration	512Mb x 4	256Mb x 8	128Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A ₁₀ /AP	A ₁₀ /AP	A ₁₀ /AP
Row Address	A0 - A14	A0 - A14	Ao - A13
Column Address	A0 - A9,A11	A0 - A9	A0 - A9
BC switch on the fly	A12/BC	A ₁₂ /BC	A ₁₂ /BC
Page size *1	1 KB	1 KB	2 KB

4Gb

Configuration	1Gb x 4	512Mb x 8	256Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A10/AP	A ₁₀ /AP	A10/AP
Row Address	A0 - A15	A0 - A15	A0 - A14
Column Address	A0 - A9,A11	A0 - A9	Ao - A9
BC switch on the fly	A ₁₂ /BC	A12/BC	A ₁₂ /BC
Page size *1	1 KB	1 KB	2 KB

8Gb

Configuration	2Gb x 4	1Gb x 8	512Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A ₁₀ /AP	A10/AP	A ₁₀ /AP
Row Address	Ao - A15	A0 - A15	A0 - A15
Column Address	A0 - A9,A11,A13	A0 - A9,A11	A0 - A9
BC switch on the fly	A12/BC	A ₁₂ /BC	A12/BC
Page size *1	2 KB	2 KB	2 KB

NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.

Page size is per bank, calculated as follows:

page size = 2 COLBITS * ORG+8

where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits

6. Absolute Maximum Ratings

6.1 Absolute Maximum DC Ratings

[Table 4] Absolute Maximum DC Ratings

Symbol	Parameter	Rating	Units	NOTE
V_{DD}	Voltage on V_{DD} pin relative to Vss	-0.4 V ~ 1.975 V	V	1,3
V_{DDQ}	Voltage on V _{DDQ} pin relative to Vss	-0.4 V ~ 1.975 V	V	1,3
V _{IN,} V _{OUT}	Voltage on any pin relative to Vss	-0.4 V ~ 1.975 V	V	1
T _{STG}	Storage Temperature	-55 to +100	°C	1, 2

NOTE:

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the
 device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
 for extended periods may affect reliability.
- 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
- 3. V_{DD} and V_{DDQ} must be within 300mV of each other at all times; and V_{REF} must be not greater than 0.6 x V_{DDQ} , When V_{DD} and V_{DDQ} are less than 500mV; V_{REF} may be equal to or less than 300mV.

6.2 DRAM Component Operating Temperature Range

[Table 5] Temperature Range

Symbol	Parameter	rating	Unit	NOTE
T _{OPER}	Operating Temperature Range	0 to 95	°C	1, 2, 3

NOTE

- Operating Temperature T_{OPER} is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.
- 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions
- 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
- a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
- b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0_b and MR2 A7 = 1_b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.

7. AC & DC Operating Conditions

7.1 Recommended DC operating Conditions

[Table 6] Recommended DC Operating Conditions

Symbol	Parameter	Operation Voltage		Rating		Units	NOTE
	Parameter	Operation Voltage	Min.	Тур.	Max.	Ullits	NOTE
V _{DD} S	Cumply Voltage	1.35V	1.283	1.35	1.45	V	1, 2, 3
V DD	Supply Voltage	1.5V	1.425	1.5	1.575	V	1, 2, 3
V	Supply Voltage for Output	1.35V	1.283	1.35	1.45	V	1, 2, 3
V_{DDQ}	Supply Voltage for Output	1.5V	1.425	1.5	1.575	V	1, 2, 3

NOTE :

- 1. Under all conditions $\rm V_{\rm DDQ}$ must be less than or equal to $\rm V_{\rm DD}$
- 2. V_{DDQ} tracks with V_{DD} . AC parameters are measured with V_{DD} and V_{DDQ} tied together.
- 3. $V_{DD}\ \&\ V_{DDQ}$ rating are determined by operation voltage.

8. AC & DC Input Measurement Levels

8.1 AC & DC Logic input levels for single-ended signals

[Table 7] Single-ended AC & DC input levels for Command and Address(1.35V)

Symbol	Parameter	DDR3L-800/10	066/1333/1600	Unit	NOTE
Symbol	Farameter	Min.	Max.	Onit	NOTE
		1.35V			
V _{IH.CA} (DC90)	DC input logic high	V _{REF} + 90	V _{DD}	mV	1
V _{IL.CA} (DC90)	DC input logic low	V _{SS}	V _{REF} - 90	mV	1
V _{IH.CA} (AC160)	AC input logic high	V _{REF} + 160	Note 2	mV	1,2,5
V _{IL.CA} (AC160)	AC input logic low	Note 2	V _{REF} - 160	mV	1,2,5
V _{IH.CA} (AC135)	AC input logic high	V _{REF} +135	Note 2	mV	1,2,5
V _{IL.CA} (AC135)	AC input logic lowM	Note 2	V _{REF} -135	mV	1,2,5
V _{REFCA} (DC)	Reference Voltage for ADD, CMD inputs	0.49*V _{DD}	0.51*V _{DD}	V	3,4

NOTE

- 1. For input only pins except \overline{RESET} , $V_{REF} = V_{REFCA}(DC)$
- 2. See "Overshoot and Undershoot specifications" section.
- 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).
- 4. For reference: approx. VDD/2 +/- 13.5 mV

[Table 8] Single-ended AC & DC input levels for Command and Address(1.5V)

Symbol	Parameter	DDR3-800/10	66/1333/1600	Unit	NOTE
Symbol	Faranieter	Min.	Max.	Oilit	NOIE
	1.5V				
V _{IH.CA} (DC100)	DC input logic high	V _{REF} + 100	V _{DD}	mV	1,5
V _{IL.CA} (DC100)	DC input logic low	V _{SS}	V _{REF} - 100	mV	1,6
V _{IH.CA} (AC175)	AC input logic high	V _{REF} + 175	Note 2	mV	1,2,7
V _{IL.CA} (AC175)	AC input logic low	Note 2	V _{REF} - 175	mV	1,2,8
V _{IH.CA} (AC150)	AC input logic high	V _{REF} +150	Note 2	mV	1,2,7
V _{IL.CA} (AC150)	AC input logic low	Note 2	V _{REF} -150	mV	1,2,8
V _{REFCA} (DC)	Reference Voltage for ADD, CMD inputs	0.49*V _{DD}	0.51*V _{DD}	V	3,4,9

NOTE:

- 1. For input only pins except \overline{RESET} , $V_{REF} = V_{REFCA}(DC)$
- 2. See "Overshoot and Undershoot specifications" section.
- 3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).
- 4. For reference: approx. VDD/2 +/- 15 mV.
- 5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)
- 6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)
- 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is referenced, VIH.CA(AC150) value is used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced, and VIH.CA(AC125) value is used when Vref + 0.125V is referenced.
- 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when Vref 0.175V is referenced, VIL.CA(AC150) value is used when Vref 0.150V is referenced, VIL.CA(AC135) value is used when Vref 0.135V is referenced, and VIL.CA(AC125) value is used when Vref 0.125V is referenced.
- 9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device

^{5.} These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V, the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIHL.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125)etc.) apply. The 1.5 V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC135), VIHL.CA(AC125)etc.) do not apply when the device is operated in the 1.35 voltage range.

datasheet

[Table 9] Single-ended AC & DC input levels for DQ and DM (1.35V)

Symbol	Parameter	DDR3L-8	300/1066	DDR3L-1	333/1600	Unit	NOTE
Syllibol	Farameter	Min.	Max.	Min.	Max.		NOTE
		1.3	5V				
V _{IH.DQ} (DC90)	DC input logic high	V _{REF} + 90	V _{DD}	V _{REF} + 90	V_{DD}	mV	1
V _{IL.DQ} (DC90)	DC input logic low	V _{SS}	V _{REF} - 90	V _{SS}	V _{REF} - 90	mV	1
V _{IH.DQ} (AC160)	AC input logic high	V _{REF} + 160	Note 2	-	-	mV	1,2,5
V _{IL.DQ} (AC160)	AC input logic low	Note 2	V _{REF} - 160	-	-	mV	1,2,5
V _{IH.DQ} (AC135)	AC input logic high	V _{REF} + 135	Note 2	V _{REF} + 135	Note 2	mV	1,2,5
V _{IL.DQ} (AC135)	AC input logic low	Note 2	V _{REF} - 135	Note 2	V _{REF} - 135	mV	1,2,5
V _{REFDQ} (DC)	Reference Voltage for DQ, DM inputs	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	V	3,4

NOTE :

- 1. For input only pins except $\overline{\text{RESET}}$, $V_{\text{REF}} = V_{\text{REFDQ}}(DC)$
- 2. See "Overshoot and Undershoot specifications" section.
- 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).
- 4. For reference: approx. VDD/2 +/- 13.5 mV.
- 5. These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V, the respective levels in JESD79-3 (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC175), VIH/L.DQ(AC135), etc.) apply. The 1.5 V levels (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135), etc.) do not apply when the device is operated in the 1.35 voltage range.

[Table 10] Single-ended AC & DC input levels for DQ and DM (1.5V)

Cumbal	Dovometer	DDR3-8	00/1066	DDR3-13	33/1600	Unit	NOTE
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	NOTE
		1	.5V				
V _{IH.DQ} (DC100)	DC input logic high	V _{REF} + 100	V _{DD}	V _{REF} + 100	V _{DD}	mV	1,5
V _{IL.DQ} (DC100)	DC input logic low	V _{SS}	V _{REF} - 100	V _{SS}	V _{REF} - 100	mV	1,6
V _{IH.DQ} (AC175)	AC input logic high	V _{REF} + 175	NOTE 2	-	-	mV	1,2,7
V _{IL.DQ} (AC175)	AC input logic low	NOTE 2	V _{REF} - 175	-	-	mV	1,2,8
V _{IH.DQ} (AC150)	AC input logic high	V _{REF} + 150	NOTE 2	V _{REF} + 150	NOTE 2	mV	1,2,7
V _{IL.DQ} (AC150)	AC input logic low	NOTE 2	V _{REF} - 150	NOTE 2	V _{REF} - 150	mV	1,2,8
V _{IH.DQ} (AC135)	AC input logic high	V _{REF} + 135	NOTE 2	V _{REF} + 135	NOTE 2	mV	1,2,7,10
V _{IL.DQ} (AC135)	AC input logic low	NOTE 2	V _{REF} - 135	NOTE 2	V _{REF} - 135	mV	1,2,8,10
V _{REFDQ} (DC)	Reference Voltage for DQ, DM inputs	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	V	3,4,9

NOTE

- 1. For input only pins except $\overline{\text{RESET}}$, $V_{\text{REF}} = V_{\text{REFDQ}}(DC)$
- 2. See "Overshoot and Undershoot specifications" section.
- 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).
- 4. For reference: approx. VDD/2 +/- 15 mV.
- 5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)
- 6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)
- 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135); VIH.DQ(AC175) value is used when Vref + 0.175V is referenced, VIH.DQ(AC150) value is used when Vref + 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced.
- 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135); VIL.DQ(AC175) value is used when Vref 0.175V is referenced, VIL.DQ(AC150) value is used when Vref 0.150V is referenced, and VIL.DQ(AC135) value is used when Vref 0.135V is referenced.
- 9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device
- 10. Optional in DDR3 SDRAM for DDR3-800/1066/1333/1600: Users should refer to the DRAM supplier data sheetand/or the DIMM SPD to determine if DDR3 SDRAM devices support this option.

8.2 V_{REF} Tolerances

The dc-tolerance limits and ac-noise limits for the reference voltages V_{REFCA} and V_{REFDQ} are illustrate in Figure 1. It shows a valid reference voltage V_{REFCA} as a function of time. (V_{REF} stands for V_{REFCA} and V_{REFDQ} likewise).

 $V_{REF}(DC)$ is the linear average of $V_{REF}(t)$ over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on page 11. Furthermore $V_{REF}(t)$ may temporarily deviate from $V_{REF}(DC)$ by no more than \pm 1% V_{DD} .

Figure 1. Illustration of V_{REF}(DC) tolerance and VREF ac-noise limits

The voltage levels for setup and hold time measurements $V_{IH}(AC)$, $V_{IH}(DC)$, $V_{IL}(AC)$ and $V_{IL}(DC)$ are dependent on V_{REF} .

"V $_{\mbox{\scriptsize REF}}$ shall be understood as $\mbox{\scriptsize V}_{\mbox{\scriptsize REF}}(\mbox{\scriptsize DC}),$ as defined in Figure 1 .

This clarifies, that dc-variations of V_{REF} affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for $V_{REF}(DC)$ deviations from the optimum position within the data-eye of the input signals.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V_{REF} ac-noise. Timing and voltage effects due to ac-noise on V_{REF} up to the specified limit (+/-1% of V_{DD}) are included in DRAM timings and their associated deratings.

8.3 AC & DC Logic Input Levels for Differential Signals

8.3.1 Differential signals definition

Figure 1. Definition of differential ac-swing and "time above ac level" tDVAC

8.3.2 Differential swing requirement for clock (CK - \overline{CK}) and strobe (DQS - \overline{DQS})

[Table 11] Differential AC & DC Input Levels

			DDR3-800/10	66/1333/1600			
Symbol Parameter		1.3	5V	1.9	5V	unit	NOTE
		min	max	min	max		
V_{IHdiff}	differential input high	+0.18	NOTE 3	+0.20	NOTE 3	V	1
V _{ILdiff}	differential input low	NOTE 3	-0.18	NOTE 3	-0.20	V	1
V _{IHdiff} (AC)	differential input high ac	2 x (V _{IH} (AC) - V _{REF})	NOTE 3	2 x (V _{IH} (AC) - V _{REF})	NOTE 3	V	2
V _{ILdiff} (AC)	differential input low ac	NOTE 3	2 x (V _{IL} (AC) - V _{REF})	NOTE 3	2 x (V _{IL} (AC) - V _{REF})	V	2

NOTE:

- Used to define a differential signal slew-rate.
- 2. for CK $\overline{\text{CK}}$ use $V_{\text{IH}}/V_{\text{IL}}(AC)$ of ADD/CMD and V_{REFCA} ; for DQS $\overline{\text{DQS}}$ use $V_{\text{IH}}/V_{\text{IL}}(AC)$ of DQs and V_{REFDQ} ; if a reduced ac-high or ac-low level is used for a signal group,
- nals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"

DDR3L SDRAM

[Table 12] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V)

		DDR3L-800/1	066/1333/1600		
Slew Rate [V/ns]	tDVAC [ps] @ V _{IH}	_{//Ldiff} (AC) = 320mV) = 320mV		
	min	max	min	max	
> 4.0	189	-	201	-	
4.0	189	-	201	-	
3.0	162	-	179	-	
2.0	109	-	134	-	
1.8	91	-	119	-	
1.6	69	-	100	-	
1.4	40	-	76	-	
1.2	note	-	44	-	
1.0	note	-	note	-	
< 1.0	note	-	note	-	

NOTE: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

[Table 13] Allowed time before ringback (tDVAC) for CK - $\overline{\text{CK}}$ and DQS - $\overline{\text{DQS}}$ (1.5V)

			DDR3-800/	1066/1333/1600					
Slew Rate [V/ns]		V _{IH/Ldiff} (AC) = 0mV	tDVAC [ps] @ 300	V _{IH/Ldiff} (AC) = 0mV		AC [ps] @ V _{IH/Ldiff} (AC) =270mV (DQS-DQS#)only(Optional)			
	min	max	min	max	min	max			
> 4.0	75	-	175	-	214	-			
4.0	57	-	170	-	214	-			
3.0	50	-	167	-	191	-			
2.0	38	-	119	-	146	-			
1.8	34	-	102	-	131	-			
1.6	29	-	81	-	113	-			
1.4	22	-	54	-	88	-			
1.2	note	-	19	-	56	-			
1.0	note	-	note	-	11	-			
< 1.0	note	-	note	-	note	-			

NOTE: Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become equal to or less than VILdiff(ac)

8.3.3 Single-ended requirements for differential signals

Each individual component of a differential signal (CK, DQS, DQSL, DQSU, \overline{CK} , \overline{DQS} , \overline{DQSL} , or \overline{DQSU}) has also to comply with certain requirements for single-ended signals.

CK and $\overline{\text{CK}}$ have to approximately reach V_{SEH} min / V_{SEL} max [approximately equal to the ac-levels { $V_{\text{IH}}(AC)$ / $V_{\text{IL}}(AC)$ } for ADD/CMD signals] in every half-cycle.

DQS, DQSL, DQSU, \overline{DQS} , \overline{DQSL} have to reach V_{SEH} min / V_{SEL} max [approximately the ac-levels { $V_{IH}(AC)$ / $V_{IL}(AC)$ } for DQ signals] in every half-cycle proceeding and following a valid transition.

Note that the applicable ac-levels for ADD/CMD and DQ's might be different per speed-bin etc. E.g. if $V_{IH}150(AC)/V_{IL}150(AC)$ is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and \overline{CK} .

Figure 2. Single-ended requirement for differential signals

Note that while ADD/CMD and DQ signal requirements are with respect to V_{REF} , the single-ended components of differential signals have a requirement with respect to $V_{DD}/2$; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach V_{SEL} max, V_{SEH} min has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

[Table 14] Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU

Symbol	Parameter	DDR3-800/10	66/1333/1600	Unit	NOTE
Symbol	raiailletei	Min	Max	Oilit	NOTE
V _{SEH}	Single-ended high-level for strobes	(V _{DD} /2)+0.175	NOTE3	V	1, 2
▼SEH	Single-ended high-level for CK, CK	(V _{DD} /2)+0.175	NOTE3	V	1, 2
V _{SEL}	Single-ended low-level for strobes	NOTE3	(V _{DD} /2)-0.175	V	1, 2
▼SEL	Single-ended low-level for CK, CK	NOTE3	(V _{DD} /2)-0.175	٧	1, 2

NOTE

- 1. For CK, $\overline{\text{CK}}$ use $V_{\text{IH}}/V_{\text{II}}$ (AC) of ADD/CMD; for strobes (DQS, $\overline{\text{DQS}}$, DQSL, $\overline{\text{DQSU}}$, DQSU, $\overline{\text{DQSU}}$) use $V_{\text{IH}}/V_{\text{II}}$ (AC) of DQs.
- 2. V_{IH}(AC)/V_{IL}(AC) for DQs is based on V_{REFDQ}; V_{IH}(AC)/V_{IL}(AC) for ADD/CMD is based on V_{REFCA}; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here
- 3. These values are not defined, however the single-ended signals CK, $\overline{\text{CK}}$, DQS, $\overline{\text{DQS}}$, DQSL, $\overline{\text{DQSL}}$, DQSU, $\overline{\text{DQSU}}$ need to be within the respective limits (V_{IH}(DC) max, V_{IL}(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"

DDR3L SDRAM

8.4 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, \overline{CK} and DQS, \overline{DQS}) must meet the requirements in below table. The differential input cross point voltage V_{IX} is measured from the actual cross point of true and complement signal to the mid level between of V_{DD} and V_{SS} .

Figure 3. VIX Definition

[Table 15] Cross point voltage for differential input signals (CK, DQS): 1.35V

Symbol	Parameter	DDR3L-800/10	66/1333/1600	Unit	NOTE
Symbol		Min	Max	Offic	NOTE
V _{IX}	Differential Input Cross Point Voltage relative to V _{DD} /2 for CK, CK	-150	150	mV	1
V _{IX}	Differential Input Cross Point Voltage relative to V _{DD} /2 for DQS, DQS	-150	150	mV	

NOTE:

[Table 16] Cross point voltage for differential input signals (CK, DQS): 1.5V

Symbol	Parameter	DDR3-800/100	66/1333/1600	Unit	NOTE
Syllibol	r al allielei	Min	Max	Oill	NOIL
V	Differential Input Cross Point Voltage relative to V/2 for CK CK	-150	150	mV	
VIX	V _{IX} Differential Input Cross Point Voltage relative to V _{DD} /2 for CK, CK	-175	175	mV	1
V _{IX}	Differential Input Cross Point Voltage relative to V _{DD} /2 for DQS, DQS	-150	150	mV	

NOTE:

The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix(Min) - VSEL ≥ 25mV VSEH - ((VDD/2) + Vix(Max)) ≥ 25mV

^{1.} Extended range for V_{IX} is only allowed for clock and if single-ended clock input signals CK and $\overline{\text{CK}}$ are monotonic, have a single-ended swing V_{SEL} / V_{SEH} of at least V_{DD}/2 ±250 mV, and the differential slew rate of CK- $\overline{\text{CK}}$ is larger than 3 V/ ns.

8.5 Slew rate definition for Differential Input Signals

See 14.3 "Address/Command Setup, Hold and Derating:" on page 50 for single-ended slew rate definitions for address and command signals. See 14.4 "Data Setup, Hold and Slew Rate Derating:" on page 56 for single-ended slew rate definitions for data signals.

8.6 Slew rate definitions for Differential Input Signals

Input slew rate for differential signals (CK, $\overline{\text{CK}}$ and DQS, $\overline{\text{DQS}}$) are defined and measured as shown in Table 17 and Figure 4.

[Table 17] Differential input slew rate definition

Description	Meas	ured	Defined by
Description	From	То	Defined by
Differential input slew rate for rising edge (CK-CK and DQS-DQS)	$V_{ILdiffmax}$	$V_{IHdiffmin}$	[V _{IHdiffmin} - V _{ILdiffmax] /} Delta TRdiff
Differential input slew rate for falling edge (CK-CK and DQS-DQS)	V _{IHdiffmin}	V _{ILdiffmax}	[V _{IHdiffmin} - V _{ILdiffmax]} / Delta TFdiff

NOTE:

The differential signal (i.e. $CK - \overline{CK}$ and $DQS - \overline{DQS}$) must be linear between these thresholds.

Figure 4. Differential Input Slew Rate definition for DQS, DQS, and CK, CK

9. AC & DC Output Measurement Levels

9.1 Single-ended AC & DC Output Levels

[Table 18] Single-ended AC & DC output levels

Symbol	Parameter	DDR3-800/1066/1333/1600	Units	NOTE
V _{OH} (DC)	DC output high measurement level (for IV curve linearity)	0.8 x V _{DDQ}	V	
V _{OM} (DC)	DC output mid measurement level (for IV curve linearity)	0.5 x V _{DDQ}	V	
V _{OL} (DC)	DC output low measurement level (for IV curve linearity)	0.2 x V _{DDQ}	V	
V _{OH} (AC)	AC output high measurement level (for output SR)	V _{TT} + 0.1 x V _{DDQ}	V	1
V _{OL} (AC)	AC output low measurement level (for output SR)	V _{TT} - 0.1 x V _{DDQ}	V	1

NOTE: 1. The swing of +/-0.1 x V_{DDQ} is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to V_{TT} = V_{DDQ} /2.

9.2 Differential AC & DC Output Levels

[Table 19] Differential AC & DC output levels

Symbol	Parameter	DDR3-800/1066/1333/1600	Units	NOTE
V _{OHdiff} (AC)	AC differential output high measurement level (for output SR)	+0.2 x V _{DDQ}	V	1
V _{OLdiff} (AC)	AC differential output low measurement level (for output SR)	-0.2 x V _{DDQ}	V	1

NOTE : 1. The swing of +/-0.2xV_{DDQ} is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to V_{TT} = $V_{DDQ}/2$ at each of the differential outputs.

9.3 Single-ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OL}(AC)$ and $V_{OH}(AC)$ for single ended signals as shown in Table 20 and Figure 5.

[Table 20] Single-ended output slew rate definition

Description	Meas	ured	Defined by
Description	From	То	Defined by
Single ended output slew rate for rising edge	V _{OL} (AC)	V _{OH} (AC)	[V _{OH} (AC)-V _{OL} (AC)] / Delta TRse
Single ended output slew rate for falling edge	V _{OH} (AC)	V _{OL} (AC)	[V _{OH} (AC)-V _{OL} (AC)] / Delta TFse

NOTE: Output slew rate is verified by design and characterization, and may not be subject to production test.

[Table 21] Single-ended output slew rate

Parameter	Symbol	Operation	DDR	3-800	DDR3	-1066	DDR3	-1333	DDR3	-1600	Units
	Symbol	Voltage	Min	Max	Min	Max	Min	Max	Min	Max	UIIIIS
Single ended output slew rate	SRQse	1.35V	1.75	5 ¹⁾	V/ns						
Chigle chied output siew rate	Ortese	1.5V	2.5	5	2.5	5	2.5	5	2.5	5	V/ns

Description: SR: Slew Rate

Q: Query Output (like in DQ, which stands for Data-in, Query-Output)

se : Single-ended Signals

For Ron = RZQ/7 setting

NOTE: 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.

- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.

Figure 5. Single-ended Output Slew Rate Definition

9.4 Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OLdiff}(AC)$ and $V_{OH-diff}(AC)$ for differential signals as shown in Table 22 and Figure 6.

[Table 22] Differential output slew rate definition

Description	Meas	ured	Defined by
Description	From	То	Defined by
Differential output slew rate for rising edge	V _{OLdiff} (AC)	V _{OHdiff} (AC)	[V _{OHdiff} (AC)-V _{OLdiff} (AC)] / Delta TRdiff
Differential output slew rate for falling edge	V _{OHdiff} (AC)	V _{OLdiff} (AC)	[V _{OHdiff} (AC)-V _{OLdiff} (AC)]/ Delta TFdiff

NOTE: Output slew rate is verified by design and characterization, and may not be subject to production test.

[Table 23] Differential output slew rate

Parameter	Symbol	Operation	DDR	3-800	DDR3	-1066	DDR3	-1333	DDR3	-1600	Units
	Syllibol	Voltage	Min	Max	Min	Max	Min	Max	Min	Max	UIIIIS
Differential autout alougate	SRQdiff	1.35V	3.5	12	3.5	12	3.5	12	3.5	12	V/ns
Differential output slew rate	SKQUIII	1.5V	5	10	5	10	5	10	5	10	V/ns

Description: SR: Slew Rate

Q: Query Output (like in DQ, which stands for Data-in, Query-Output)

diff : Differential Signals For Ron = RZQ/7 setting

Figure 6. Differential Output Slew Rate Definition

9.5 Reference Load for AC Timing and Output Slew Rate

Figure 7 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.

It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

Figure 7. Reference Load for AC Timing and Output Slew Rate

9.6 Overshoot/Undershoot Specification

9.6.1 Address and Control Overshoot and Undershoot specifications

[Table 24] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2. CS. RAS. CAS. WE. CKE, ODT)

Parameter.		Specifi	cation		1114
Parameter	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	Unit
	1.35V				
Maximum peak amplitude allowed for overshoot area (See Figure 8)	0.4	0.4	0.4	0.4	V
Maximum peak amplitude allowed for undershoot area (See Figure 8)	0.4	0.4	0.4	0.4	V
Maximum overshoot area above V _{DD} (See Figure 8)	0.67	0.5	0.4	0.33	V-ns
Maximum undershoot area below V _{SS} (See Figure 8)	0.67	0.5	0.4	0.33	V-ns
	1.5V				
Maximum peak amplitude allowed for overshoot area (See Figure 8)	0.4	0.4	0.4	0.4	V
Maximum peak amplitude allowed for undershoot area (See Figure 8)	0.4	0.4	0.4	0.4	V
Maximum overshoot area above V _{DD} (See Figure 8)	0.67	0.5	0.4	0.33	V-ns
Maximum undershoot area below V _{SS} (See Figure 8)	0.67	0.5	0.4	0.33	V-ns
(A0-A15, BA0-BA3, CS#	RAS# CAS# V	VF# CKF ODT)	1	·	

NOTE:

- 1. The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings
- 2. The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings

Figure 8. Address and Control Overshoot and Undershoot Definition

9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications

[Table 25] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, \overline{DQS} , DM, CK, \overline{CK})

Dovometer		Specif	ication		Unit
Parameter	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	Unit
	1.35V				
Maximum peak amplitude allowed for overshoot area (See Figure 9)	0.4	0.4	0.4	0.4	V
Maximum peak amplitude allowed for undershoot area (See Figure 9)	0.4	0.4	0.4	0.4	٧
Maximum overshoot area above V _{DDQ} (See Figure 9)	0.25	0.19	0.15	0.13	V-ns
Maximum undershoot area below V _{SSQ} (See Figure 9)	0.25	0.19	0.15	0.13	V-ns
	1.5V				
Maximum peak amplitude allowed for overshoot area (See Figure 9)	0.4	0.4	0.4	0.4	V
Maximum peak amplitude allowed for undershoot area (See Figure 9)	0.4	0.4	0.4	0.4	٧
Maximum overshoot area above V _{DDQ} (See Figure 9)	0.25	0.19	0.15	0.13	V-ns
Maximum undershoot area below V _{SSQ} (See Figure 9)	0.25	0.19	0.15	0.13	V-ns
(A0-A15, BA0-BA3, CS#	RAS# CAS# V	VF# CKE ODT)		!	

NOTE:

- 1. The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings
- 2. The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings

Figure 9. Clock, Data, Strobe and Mask Overshoot and Undershoot Definition

9.7 34ohm Output Driver DC Electrical Characteristics

A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ as follows:

RON₃₄ = RZQ/7 (Nominal 34.3ohms +/- 10% with nominal RZQ=240ohm)

The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows

RONpu =
$$\frac{V_{DDQ}^{-}V_{OUT}}{I \text{ lout } I}$$
 under the condition that RONpd is turned off
RONpd = $\frac{V_{OUT}}{I \text{ lout } I}$ under the condition that RONpu is turned off

Figure 10. Output Driver: Definition of Voltages and Currents

[Table 26] Output Driver DC Electrical Characteristics, assuming RZQ=240ohms; entire operating temperature range; after proper ZQ calibration

RONnom	Resistor	Vout	Min	Nom	Max	Units	Notes
		1.	.35V				
		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.6	1.0	1.15		1,2,3
	RON34pd	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.15		1,2,3
34Ohms		$V_{OHdc} = 0.8 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/7	1,2,3
34011115		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/I	1,2,3
	RON34pu	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.15		1,2,3
		$V_{OHdc} = 0.8 \times V_{DDQ}$	0.6	1.0	1.15		1,2,3
		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.6	1.0	1.15		1,2,3
	RON40pd	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.15		1,2,3
400hma		$V_{OHdc} = 0.8 \times V_{DDQ}$	0.9	1.0	1.45	D70/6	1,2,3
40Ohms		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/6	1,2,3
	RON40pu	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.15		1,2,3
		$V_{OHdc} = 0.8 \times V_{DDQ}$	0.6	1.0	1.15		1,2,3
Mismatch between Pu		V _{OMdc} = 0.5 x V _{DDQ}	-10		10	%	1,2,4
		1	.5V				
		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.6	1.0	1.1		1,2,3
	RON34pd	$V_{OMdc} = 0.5 \times V_{DDQ}$	0.9	1.0	1.1		1,2,3
34Ohms		$V_{OHdc} = 0.8 \times V_{DDQ}$	0.9	1.0	1.4	RZQ/7	1,2,3
340111118		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.9	1.0	1.4	RZQ/I	1,2,3
	RON34pu	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.1		1,2,3
		$V_{OHdc} = 0.8 \times V_{DDQ}$	0.6	1.0	1.1		1,2,3
		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.6	1.0	1.1		1,2,3
	RON40pd	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.1		1,2,3
40.Oh		$V_{OHdc} = 0.8 \times V_{DDQ}$	0.9	1.0	1.4	D70/0	1,2,3
40Ohms		$V_{OLdc} = 0.2 \times V_{DDQ}$	0.9	1.0	1.4	RZQ/6	1,2,3
	RON40pu	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.1		1,2,3
		V _{OHdc} = 0.8 x V _{DDQ}	0.6	1.0	1.1		1,2,3
Mismatch between Pu MMp	-	$V_{OMdc} = 0.5 \times V_{DDQ}$	-10		10	%	1,2,4

NOTE:

- 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity
- 2. The tolerance limits are specified under the condition that $V_{DDQ} = V_{DD}$ and that $V_{SSQ} = V_{SS}$
- 3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V_{DDQ}. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 X V_{DDQ} and 0.8 X V_{DDQ}
- 4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V_{DDQ} :

$$MMpupd = \frac{RONpu - RONpd}{RONnom} \times 100$$

Rev. 0.5

9.7.1 Output Drive Temperature and Voltage Sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 27 and Table 28.

 $\Delta T = T - T(@calibration); \quad \Delta V = V_{DDQ} - V_{DDQ} (@calibration); \quad V_{DD} = V_{DDQ}$

*dR_{ON}dT and dR_{ON}dV are not subject to production test but are verified by design and characterization

[Table 27] Output Driver Sensitivity Definition

	Min	Max	Units
RONPU@V _{OHDC}	0.6 - dR _{ON} dTH * ΔT - dR _{ON} dVH * ΔV	1.1 + dR _{ON} dTH * ΔT + dR _{ON} dVH * ΔV	RZQ/7
RON@V _{OMDC}	0.9 - dR _{ON} dTM * ∆T - dR _{ON} dVM * ∆V	1.1 + dR _{ON} dTM * ΔT + dR _{ON} dVM * ΔV	RZQ/7
RONPD@ _{VOLDC}	0.6 - dR _{ON} dTL * ΔT - dR _{ON} dVL * ΔV	1.1 + dR _{ON} dTL * ΔT + dR _{ON} dVL * ΔV	RZQ/7

[Table 28] Output Driver Voltage and Temperature Sensitivity

Speed Bin	800/106	800/1066/1333 1600			Units
	Min	Max	Min	Max	Offics
dR _{ON} dTM	0	1.5	0	1.5	%/°C
dR _{ON} dVM	0	0.15	0	0.13	%/mV
dR _{ON} dTL	0	1.5	0	1.5	%/°C
dR _{ON} dVL	0	0.15	0	0.13	%/mV
dR _{ON} dTH	0	1.5	0	1.5	%/°C
dR _{ON} dVH	0	0.15	0	0.13	%/mV

9.8 On-Die Termination (ODT) Levels and I-V Characteristics

On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.

ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.

A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as follows:

RTTpu =
$$\frac{V_{DDQ}-V_{OUT}}{I \text{ lout } I}$$
 under the condition that RTTpd is turned off}

RTTpd = $\frac{V_{OUT}}{I \text{ lout } I}$ under the condition that RTTpu is turned off}

Chip in Termination Mode ⊸ V_{DDQ} lpu lout=lpd-lpu RTT_{Pu} other circuitry → DQ like lout RCV. V_{OUT} lpd

Figure 11. On-Die Termination : Definition of Voltages and Currents

DDR3L SDRAM

9.8.1 ODT DC Electrical Characteristics

Table 29 provides and overview of the ODT DC electrical characteristics. They values for $RTT_{60pd120}$, $RTT_{60pu120}$, $RTT_{120pd240}$, $RTT_{120pu240}$, RTT_{40pd80} , RTT_{40pu80} , RTT_{30pu60} , RTT_{30pu60} , RTT_{30pu60} , RTT_{20pu40} , RTT_{20pu40} are not specification requirements, but can be used as design guide lines:

[Table 29] ODT DC Electrical Characteristics, assuming RZQ=240ohm +/- 1% entire operating temperature range; after proper ZQ calibration

D4 (40 40 40)		PEOISTON						
R1 (A9,A6,A2)	RTT	RESISTOR	Vout	Min	Nom	Max	Unit	Note
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ}	1,2,3
		RTT _{120pd240}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ}	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ}	1,2,3
(0,1,0)	120 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ}	1,2,3
		RTT _{120pu240}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ}	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ}	1,2,3
		RTT ₁₂₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /2	1,2,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /2	1,2,3
		RTT _{60pd120}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /2	1,2,3
			$V_{OH}(DC) 0.8XV_{DDQ}$	0.9	1.0	1.45	R _{ZQ} /2	1,2,3
(0,0,1)	60 ohm		$V_{OL}(DC) 0.2XV_{DDQ}$	0.9	1.0	1.45	R _{ZQ} /2	1,2,3
		RTT _{60pu120}	$0.5XV_{\mathrm{DDQ}}$	0.9	1.0	1.15	R _{ZQ} /2	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /2	1,2,3
		RTT ₆₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /4	1,2,
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /3	1,2,3
		RTT _{40pd80}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /3	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /3	1,2,3
(0,1,1)	40 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /3	1,2,3
		RTT _{40pu80}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /3	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /3	1,2,3
		RTT ₄₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /6	1,2,
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /4	1,2,3
		RTT _{30pd60}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /4	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /4	1,2,3
(1,0,1)	30 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /4	1,2,3
		RTT _{30pu60}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /4	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /4	1,2,3
		RTT ₃₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /8	1,2,
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /6	1,2,3
		RTT _{20pd40}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /6	1,2,3
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /6	1,2,3
(1,0,0)	20 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /6	1,2,3
		RTT _{20pu40}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /6	1,2,3
		·	V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /6	1,2,3
		RTT ₂₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /12	1,2,
iation of V _M w.r.t	\//2 \\/M			-5		5	%	1,2,5

1.5V												
MR1 (A9,A6,A2)	RTT	RESISTOR	Vout	Min	Nom	Max	Unit	Notes				
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ}	1,2,3,4				
		RTT _{120pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ}	1,2,3,4				
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ}	1,2,3,4				
(0,1,0)	120 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ}	1,2,3,4				
		RTT _{120pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ}	1,2,3,4				
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ}	1,2,3,4				
		RTT ₁₂₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /2	1,2,3, 1,				
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /2	1,2,3,4				
		RTT _{60pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /2	1,2,3,				
	RTT 120pd240 Vol (DC) 0.2XV DDQ 0.6 1.0 0.5XV DDQ 0.9 1.0 Vol (DC) 0.8XV DDQ 0.9 1.0 Vol (DC) 0.8XV DDQ 0.9 1.0 RTT 120pu240 Vol (DC) 0.8XV DDQ 0.9 1.0 RTT 120pu240 Vol (DC) 0.8XV DDQ 0.6 1.0 RTT 120pu240 Vol (DC) 0.8XV DDQ 0.6 1.0 RTT 120pu240 Vol (DC) 0.2XV DDQ 0.6 1.0 RTT 100pu240 Vol (DC) 0.2XV DDQ 0.6 1.0 RTT 100pu240 Vol (DC) 0.2XV DDQ 0.9 1.0 RTT 100pu240 Vol (DC) 0.2XV DDQ 0.9 1.0 RTT 100pu240 Vol (DC) 0.8XV DDQ 0.6 1.0 RTT 100pu240 Vol (DC) 0.8XV DDQ 0.6 1.0 RTT 100pu240 Vol (DC) 0.2XV DDQ 0.6 1.0 RTT 100pu240 Vol (DC) 0.2XV DDQ 0.9 1.0 Vol (DC) 0.8XV DDQ 0.9 1.0 Vol (DC) 0.8XV DDQ 0.9 1.0 Vol (DC) 0.8XV DDQ 0.9 1.0 RTT 100pu240 Vol (DC) 0.2XV DDQ 0.6 1.0 RTT 100pu240 Vol (DC) 0.2XV DDQ 0.9 1.0 Vol (DC) 0.2XV DDQ 0.6 1.0 Vol (DC) 0.2XV DDQ 0.	1.4	R _{ZQ} /2	1,2,3,								
(0,0,1)	60 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /2	1,2,3,				
		RTT _{60pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /2	1,2,3,				
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /2	1,2,3,				
		RTT ₆₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /4	1,2,5				
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /3	1,2,3,				
	40 ohm	RTT _{40pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /3	1,2,3,				
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /3	1,2,3,				
(0,1,1)			V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /3	1,2,3,				
		RTT _{40pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /3	1,2,3,				
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /3	1,2,3,				
		RTT ₄₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /6	1,2,5				
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /4	1,2,3,				
		RTT _{60pd240}		0.9	1.0	1.1	R _{ZQ} /4	1,2,3,				
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /4	degree 1,2,3,4				
(1,0,1)		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /4						
		RTT _{60pu240}		0.9	1.0	1.1	R _{ZQ} /4	1,2,3,				
				0.6	1.0	1.1	R _{ZQ} /4					
		RTT ₆₀		0.9	1.0	1.6	R _{ZQ} /8					
				0.6		1.1	R _{ZQ} /6					
		RTT _{60pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /6					
	20 ohm		V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /6					
(1,0,0)			V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /6					
. ,		RTT _{60pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /6					
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /6					
		RTT ₆₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /12					
viation of V _M w.r.t	V _{DDO} /2. ΛVM		7 1117 /	-5		5						

NOTE:

- 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity
- 2. The tolerance limits are specified under the condition that $V_{DDQ} = V_{DD}$ and that $V_{SSQ} = V_{SS}$
- $3. \ Pull-down \ and \ pull-up \ ODT \ resistors \ are \ recommended \ to \ be \ calibrated \ at \ 0.5 XV_{DDQ}. \ Other \ calibration \ schemes \ may \ be \ used \ to \ achieve \ the \ linearity \ spec \ shown \ above, e.g.$ calibration at $\rm 0.2XV_{DDQ}$ and $\rm 0.8XV_{DDQ}$
- 4. Not a specification requirement, but a design guide line
- 5. Measurement definition for RTT:

Apply $V_{IH}(AC)$ to pin under test and measure current $I(V_{IH}(AC))$, then apply $V_{IL}(AC)$ to pin under test and measure current $I(V_{IL}(AC))$ respectively

RTT =
$$\frac{V_{IH}(AC) - V_{IL}(AC)}{I(V_{IH}(AC)) - I(V_{IL}(AC))}$$

6. Measurement definition for V_M and ΔV_M : Measure voltage (V_M) at test pin (midpoint) with no load

$$\Delta V_{M} = \left(\frac{2 \times V_{M}}{V_{DDQ}} - 1\right) \times 100$$

9.8.2 ODT Temperature and Voltage sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to table below

$$\Delta T = T - T(@calibration); \quad \Delta V = V_{DDQ} - V_{DDQ} (@calibration); \quad V_{DD} = V_{DDQ}$$

[Table 30] ODT Sensitivity Definition

	Min	Max	Units
RTT	0.9 - $dR_{TT}dT * \Delta T $ - $dR_{TT}dV * \Delta V $	1.6 + dR _{TT} dT * ΔT + dR _{TT} dV * ΔV	RZQ/2,4,6,8,12

[Table 31] ODT Voltage and Temperature Sensitivity

	Min	Max	Units
dR _{TT} dT	0	1.5	%/°C
dR _{TT} dV	0	0.15	%/mV

NOTE: These parameters may not be subject to production test. They are verified by design and characterization.

Rev. 0.5 datasheet **DDR3L SDRAM**

9.9 ODT Timing Definitions

9.9.1 Test Load for ODT Timings

Different than for timing measurements, the reference load for ODT timings is defined in Figure 12.

Figure 12. ODT Timing Reference Load

9.9.2 ODT Timing Definitions

Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 32 and subsequent figures. Measurement reference settings are provided in Table 33.

[Table 32] ODT Timing Definitions

Symbol	Begin Point Definition	End Point Definition	Figure
tAON	Rising edge of CK - CK defined by the end point of ODTLon	Extrapolated point at V _{SSQ}	Figure 13
tAONPD	Rising edge of CK - CK with ODT being first registered high	Extrapolated point at V _{SSQ}	Figure 14
tAOF	Rising edge of CK - CK defined by the end point of ODTLoff	End point: Extrapolated point at V _{RTT_Nom}	Figure 15
tAOFPD	Rising edge of CK - CK with ODT being first registered low	End point: Extrapolated point at V _{RTT_Nom}	Figure 16
tADC	Rising edge of CK - $\overline{\text{CK}}$ defined by the end point of ODTLcnw, ODTLcwn4 of ODTLcwn8	End point: Extrapolated point at V _{RTT_Wr} and V _{RTT_Nom} respectively	Figure 17

[Table 33] Reference Settings for ODT Timing Measurements

Measured Parameter	RTT_Nom Setting	RTT_Wr Setting	V _{SW1} [V]	V _{SW2} [V]	NOTE
tAON	R _{ZQ} /4	NA	0.05	0.10	
IAON	R _{ZQ} /12	NA	0.10	0.20	
tAONPD	R _{ZQ} /4	NA	0.05	0.10	
IAONED	R _{ZQ} /12	NA	0.10	0.20	
tAOF	R _{ZQ} /4	NA	0.05	0.10	
IAOF	R _{ZQ} /12	NA	0.10	0.20	
tAOFPD	R _{ZQ} /4	NA	0.05	0.10	
IMOLED	R _{ZQ} /12	NA	0.10	0.20	
tADC	R _{ZQ} /12	R _{ZQ} /2	0.20	0.25	

Rev. 0.5

Figure 13. Definition of tAON

Figure 14. Definition of tAONPD

Figure 15. Definition of tAOF

datasheet

Figure 16. Definition of tAOFPD

Figure 17. Definition of tADC

10. IDD Current Measure Method

10.1 IDD Measurement Conditions

In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and IDDQ measurements.

- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all V_{DD} balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all V_{DDQ} balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents.

Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since V_{DD} and V_{DDQ} are using one merged-power layer in Module PCB.

For IDD and IDDQ measurements, the following definitions apply:

- "0" and "LOW" is defined as $V_{IN} \le V_{IL}AC(max)$.
- "1" and "HIGH" is defined as $V_{IN} >= V_{IH}AC(min)$.
- "FLOATING" is defined as inputs are $\rm V_{REF}$ = $\rm V_{DD}$ / 2.
- "Timing used for IDD and IDDQ Measured Loop Patterns" are provided in Table 34
- "Basic IDD and IDDQ Measurement Conditions" are described in Table 35
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 31 through Table 39.
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1);

Qoff = 0B (Output Buffer enabled in MR1);

RTT_Nom = RZQ/6 (40 Ohm in MR1);

 $RTT_Wr = RZQ/2$ (120 Ohm in MR2);

TDQS Feature disabled in MR1

- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
- Define D = $\{\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE}\} := \{HIGH, LOW, LOW, LOW\}$
- Define $\overline{D} = {\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE}} := {HIGH, HIGH, HIGH, HIGH}$
- RESET Stable time is: During a Cold Bood RESET (Initialization), current reading is valid once power is stable and RESET has been LOW for 1ms; During Warm Boot RESET(while operating), current reading is valid after RESET has been LOW for 200ns + tRFC

[Table 34] Timing used for IDD and IDDQ Measured - Loop Patterns

D		DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	1114	
Paramete	er Bin –	6-6-6	7-7-7	9-9-9	11-11-11	Unit	
tCKmin(IDD)		2.5	1.875	1.5	1.25	ns	
CL(IDD)		6	7	9	11	nCK	
tRCDmin(IDD)	6	7	9	11	nCK	
tRCmin(IDD)		21	27	33	39	nCK	
tRASmin(IDD)	15	20	24	28	nCK	
tRPmin(IDD)		6	7	9	11	nCK	
4E A)A//IDD)	x4/x8	16	20	20	24	nCK	
tFAW(IDD)	x16	20	27	30	32	nCK	
+DDD(IDD)	x4/x8	4	4	4	5	nCK	
tRRD(IDD)	x16	4	6	5	6	nCK	
tRFC(IDD) - 5	12Mb	36	48	60	72	nCK	
tRFC(IDD) - 1	Gb	44	59	74	88	nCK	
tRFC(IDD) - 2Gb		64	86	107	128	nCK	
tRFC(IDD) - 4Gb		104	139	174 208		nCK	
tRFC(IDD) - 8	Gb	140	187	234	280	nCK	

datasheet DDR3L SDRAM

Figure 18. Measurement Setup and Test Load for IDD and IDDQ Measurements

Figure 19. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.

[Table 35] Basic IDD and IDDQ Measurement Conditions

Symbol	Description
	Operating One Bank Active-Precharge Current
IDD0	CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; $\overline{\text{CS}}$: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 32 on page 31; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2, (see Table 32); Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: stable at 0; Pattern Details: see Table 32
	Operating One Bank Active-Read-Precharge Current
IDD1	CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling according to Table 33 on page 32; DM:stable at 0; Bank Activity: Cycling with one bank active at
	a time: 0,0,1,1,2,2, (see Table 33); Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0; Pattern Details: see Table 33
IDD2N	Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog-gling according to Table 34 on page 32; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0; Pattern Details: see Table 34
	Precharge Standby ODT Current
IDD2NT	CKE: High; External clock: On; tCK, CL: see Table 34 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 35 on page 33; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: toggling according to Table 35; Pattern Details: see Table 35
IDDQ2NT	Precharge Standby ODT IDDQ Current Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
	Precharge Power-Down Current Slow Exit
IDD2P0	CKE: Low; External clock: On; tCK, CL: see Table 34 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exi ³⁾
	Precharge Power-Down Current Fast Exit
IDD2P1	CKE: Low; External clock: On; tCK, CL: see Table 34 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;
	Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0; Pre-
	charge Power Down Mode: Fast Exit ³⁾
IDD2Q	Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0
	Active Standby Current
IDD3N	CKE: High; External clock: On; tCK, CL: see Table 34 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 32; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: stable at 0; Pattern Details: see Table 34
	Active Power-Down Current
IDD3P	CKE: Low; External clock: On; tCK, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; $\overline{\text{CS}}$: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0
IDD4R	Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 36 on page 33; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2, (see Table 7 on page 11); Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0; Pattern Details: see Table 36
IDDQ4R	Operating Burst Read IDDQ Current Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
	Operating Burst Write Current
IDD4W	CKE: High; External clock: On; tCK, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 37 on page 34; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2, (see Table 37); Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at HIGH; Pattern Details: see Table 37
	Burst Refresh Current
IDD5B	CKE: High; External clock: On; tCK, CL, nRFC: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling according to Table 38 on page 34; Data IO: FLOATING; DM: stable at 0; Bank Activity: REF command every nRFC (see Table 38);
	Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0; Pattern Details: see Table 38
IDD6	Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled ⁴⁾ ; Self-Refresh Temperature Range (SRT): Normal ⁵⁾ ; CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: FLOATING

[Table 33] Basic IDD and IDDQ Measurement Conditions

Symbol	Description
IDD7	Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 34 on page 32; BL: 8 ¹⁾ ; AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table 39 on page 35; Data IO: read data bursts with different data between one burst and the next one according to Table 39; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,7) with different addressing, see Table 39; Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: stable at 0; Pattern Details: see Table 39
IDD8	RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING

NOTE

- 1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
- 2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
- 3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
- 4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
- 5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
- 6) Read Burst type: Nibble Sequential, set MR0 A[3]=0B

[Table 36] IDD0 Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle	Command	<u>so</u>	RAS	CAS	WE	ТДО	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
			1,2	D, D	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	\overline{D} , \overline{D}	1	1	1	1	0	0	00	0	0	0	0	-
				repeat p	attern 1	4 until	nRAS -	1, trunca	ate if ned	cessary						
			nRAS	PRE	0	0	1	0	0	0	00	0	0	0	0	-
				repeat p	oattern 1	4 until	nRC - 1	, truncat	e if nece	essary						
			1*nRC + 0	ACT	0	0	1	1	0	0	00	0	0	F	0	-
			1*nRC + 1, 2	D, D	1	0	0	0	0	0	00	0	0	F	0	-
βL	ligh		1*nRC + 3, 4	$\overline{D}, \overline{D}$	1	1	1	1	0	0	00	0	0	F	0	-
toggling	Static High		repeat pattern 14 until 1*nRC + nRAS - 1, truncate if necessary													
유	Sta		1*nRC + nRAS	PRE	0	0	1	0	0	0	00	0	0	F	0	
			•••	repeat '	14 unti	I 2*nRC	- 1, trun	cate if ne	ecessary	′						
		1	2*nRC	repeat 9	Sub-Loo	p 0, use	BA[2:0]	= 1 inst	ead							
		2	4*nRC	repeat 9	Sub-Loo	p 0, use	BA[2:0]	= 2 inst	ead							
		3	6*nRC	repeat 9	Sub-Loo	p 0, use	BA[2:0]	= 3 inst	ead							
		4	8*nRC	repeat Sub-Loop 0, use BA[2:0] = 4 instead												
5																
		7	14*nRC	repeat 9	Sub-Loo	p 0, use	BA[2:0]	= 7 inst	ead							

DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
 DQ signals are MID-LEVEL.

[Table 37] IDD1 Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle Number	Command	SS	RAS	CAS	WE	ТДО	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
			1,2	D, D	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	\overline{D} , \overline{D}	1	1	1	1	0	0	00	0	0	0	0	-
				repeat patte	rn 14	until n	RCD- 1	, trunca	ate if ne	ecessar	у					
			nRCD	RD	0	1	0	1	0	0	00	0	0	0	0	00000000
				repeat patte	t pattern 14 until nRAS - 1, truncate if necessary RE											
			nRAS	PRE	0	0	1	0	0	0	00	0	0	0	0	-
				repeat patte	rn 14	until n	RC - 1,	trunca	te if ne	cessary						
			1*nRC+0	ACT	0	0	1	1	0	0	00	0	0	F	0	-
			1*nRC + 1, 2	D, D	1	0	0	0	0	0	00	0	0	F	0	-
) g	lgh		1*nRC + 3, 4	\overline{D} , \overline{D}	1	1	1	1	0	0	00	0	0	F	0	-
toggling	Static High		•••	repeat patte	rn nRC	+ 1,,	4 until	nRC +	nRCD	- 1, trui	ncate if	neces	sary			
유	Sta		1*nRC + nRCD	RD	0	1	0	1	0	0	00	0	0	F	0	00110011
				repeat patte	rn nRC	+ 1,,	4 until	nRC +	nRAS -	1, trun	cate if	necess	ary			
			1*nRC + nRAS	PRE	0	0	1	0	0	0	00	0	0	F	0	-
			•••	repeat patte	rn nRC	+ 1,,	4 until	2 * nR	C - 1, tı	uncate	if nece	ssary				
		1	2*nRC	repeat Sub-	Loop 0	, use B	A[2:0]	= 1 inst	ead							
		2	4*nRC	repeat Sub-	Loop 0	, use B	A[2:0]	= 2 inst	ead							
		3	6*nRC	repeat Sub-	Loop 0	, use B	A[2:0]	= 3 inst	ead							
		4	8*nRC	repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead												
		5	10*nRC	repeat Sub-	Loop 0	, use B	A[2:0]	= 5 inst	ead							
		6	12*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 6 inst	ead							
		7	14*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 7 inst	ead							

NOTE:

- 1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

[Table 38] IDD2 and IDD3N Measurement - Loop Pattern¹⁾

•			DZ ana ibbott measur													
CK/CK	CKE	Sub-Loop	Cycle	Command	SS	RAS	CAS	WE	TGO	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	D	1	0	0	0	0	0	00	0	0	0	0	-
			1	D	1	0	0	0	0	0	00	0	0	0	0	-
			2	D	1	1	1	1	0	0	00	0	0	F	0	-
			3	D	1	1	1	1	0	0	00	0	0	F	0	-
و	High	1	4-7	repeat Sub-	Loop 0	use E	BA[2:0]	= 1 ins	tead							
toggling	tic H	2	8-11	repeat Sub-	eat Sub-Loop 0, use BA[2:0] = 1 instead eat Sub-Loop 0, use BA[2:0] = 2 instead											
ţ	Static	3	12-15	repeat Sub-	Loop 0	, use E	BA[2:0]	= 3 ins	tead							
		4	16-19	repeat Sub-	peat Sub-Loop 0, use BA[2:0] = 3 instead peat Sub-Loop 0, use BA[2:0] = 4 instead											
		5	20-23	repeat Sub-	Loop 0	, use E	BA[2:0]	= 5 ins	tead							
		6	24-27	repeat Sub-	Loop 0	, use E	BA[2:0]	= 6 ins	tead							
		7	28-31	repeat Sub-	Loop 0	, use E	BA[2:0]	= 7 ins	tead							

- DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
 DQ signals are MID-LEVEL.

[Table 39] IDD2NT and IDDQ2NT Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle	Command	<u>S3</u>	RAS	CAS	WE	тао	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾	
		0	0	D	1	0	0	0	0	0	00	0	0	0	0	-	
			1	D	1	0	0	0	0	0	00	0	0	0	0		
			2	D	1	1	1	1	0	0	00	0	0	F	0		
			3	D	1	1	1	1	0	0	00	0	0	F	0		
D _C	High	1	4-7	repeat Sub-	Loop 0	, but OI	OT = 0	and B A	[2:0] =	1	•						
toggling	ic H	2	8-11	repeat Sub-	Loop 0	, but O I	DT = 1	and BA	[2:0] =	2							
ğ	Static	3	12-15	repeat Sub-	Loop 0	, but O l	DT = 1	and B A	[2:0] =	: 3							
		4	16-19	repeat Sub-	Loop 0	, but O I	OT = 0	and B A	[2:0] =	4							
		5	20-23	repeat Sub-	repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5												
		6	24-27	repeat Sub-	Loop 0	, but O I	DT = 1	and BA	[2:0] =	6							
		7	28-31	repeat Sub-	Loop 0	, but O I	DT = 1	and BA	[2:0] =	7							

[Table 40] IDD4R and IDDQ4R Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle	Command	<u>S2</u>	RAS	CAS	WE	ТДО	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	RD	0	1	0	1	0	0	00	0	0	0	0	00000000
			1	D	1	0	0	0	0	0	00	0	0	0	0	-
			2,3	$\overline{D},\overline{D}$	1	1	1	1	0	0	00	0	0	0	0	-
			4	RD	0	1	0	1	0	0	00	0	0	F	0	00110011
			5	D	1	0	0	0	0	0	00	0	0	F	0	-
ρ	High		6,7	$\overline{D},\overline{D}$	1	1	1	1	0	0	00	0	0	F	0	-
toggling	tic H	1	8-15	repeat Sub-	Loop 0	, but B	A[2:0] =	= 1								
\$	Static	2	16-23	repeat Sub-	Loop 0	, but B	A[2:0] =	= 2								
		3	24-31	repeat Sub-	Loop 0	, but B	A[2:0] =	= 3								
		4	32-39	repeat Sub-	repeat Sub-Loop 0, but BA[2:0] = 4											
		5	40-47	repeat Sub-Loop 0, but BA[2:0] = 5												
		6	48-55	repeat Sub-	Loop 0	, but B	A[2:0] =	= 6								
		7	56-63	repeat Sub-	Loop 0	, but B	A[2:0] =	= 7								

^{1.} DM must be driven Low all the time. DQS, \overline{DQS} are MID-LEVEL.

^{2.} DQ signals are MID-LEVEL.

[Table 41] IDD4W Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle	Command	<u>SS</u>	RAS	CAS	WE	ООТ	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	WR	0	1	0	0	1	0	00	0	0	0	0	00000000
			1	D	1	0	0	0	1	0	00	0	0	0	0	-
			2,3	$\overline{D},\overline{D}$	1	1	1	1	1	0	00	0	0	0	0	-
			4	WR	0	1	0	0	1	0	00	0	0	F	0	00110011
			5	D	1	0	0	0	1	0	00	0	0	F	0	-
ρ	ligh		6,7	$\overline{D},\overline{D}$	1	1	1	1	1	0	00	0	0	F	0	-
toggling	Static High	1	8-15	repeat Sub-	Loop 0	but B	A[2:0] =	= 1								
\$	Sta	2	16-23	repeat Sub-	Loop 0	, but B	A[2:0] =	= 2								
		3	24-31	repeat Sub-	Loop 0	, but B	A[2:0] =	= 3								
		4	32-39	repeat Sub-Loop 0, but BA[2:0] = 4												
		5	40-47	repeat Sub-Loop 0, but BA[2:0] = 5												
		6	48-55	repeat Sub-	Loop 0	but BA	A[2:0] =	= 6								
		7	56-63	repeat Sub-	Loop 0	, but B	A[2:0] =	= 7								

- 1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
 2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

[Table 42] IDD5B Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle	Command	<u>S2</u>	RAS	CAS	WE	ТДО	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	REF	0	0	0	1	0	0	00	0	0	0	0	-
		1	1,2	D	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	$\overline{D},\overline{D}$	1	1	1	1	0	0	00	0	0	F	0	-
			58	repeat cycle	s 14,	but BA	A[2:0] =	1			•					
g	High		912	repeat cycle	s 14,	but BA	\[2:0] =	2								
toggling	ii H		1316	repeat cycle	s 14,	but BA	A[2:0] =	: 3								
ğ	Static		1720	repeat cycle	s 14,	but B	A[2:0] =	: 4								
			2124	repeat cycle	s 14,	but B	A[2:0] =	5								
			2528	repeat cycle	s 14,	but BA	A[2:0] =	6								
			2932	repeat cycle	s 14,	but B	A[2:0] =	: 7								
		2	33nRFC - 1	repeat Sub-	Loop '	1, until	nRFC	- 1. Tru	ıncate,	if nece	ssary.					

NOTE:

- DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
 DQ signals are MID-LEVEL.

DDR3L SDRAM

[Table 43] IDD7 Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle Number	Command	SS	RAS	CAS	WE	ОБТ	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
			0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
			1	RDA	0	1	0	1	0	0	00	1	0	0	0	00000000
		0	2	D	1	0	0	0	0	0	00	0	0	0	0	-
				repeat abov	e D Co	mmano	d until r	RRD -	1		•		•	•	•	•
			nRRD	ACT	0	0	1	1	0	1	00	0	0	F	0	-
		1	nRRD + 1	RDA	0	1	0	1	0	1	00	1	0	F	0	00110011
		'	nRRD + 2	D	1	0	0	0	0	1	00	0	0	F	0	-
				repeat abov	e D Co	mmano	d until 2	*nRRD	-1		•		•	•		
		2	2 * nRRD	repeat Sub-	Loop 0	, but B	A[2:0] :	= 2								
		3	3 * nRRD	repeat Sub-	Loop 1	, but B	A[2:0] :	= 3								
		4	4 * ~DDD	D	1	0	0	0	0	3	00	0	0	F	0	-
		4	4 * nRRD	Assert and	repeat	above	D Cor	nmand	until r	FAW -	1, if n	ecessa	ry	•		•
		5	nFAW	repeat Sub-	Loop 0	, but B	A[2:0] :	= 4								
		6	nFAW+nRRD	repeat Sub-	Loop 1	, but B	A[2:0] :	= 5								
		7	nFAW+2*nRRD	repeat Sub-	Loop 0	, but B	A[2:0] :	= 6								
		8	nFAW+3*nRRD	repeat Sub-	Loop 1	, but B	A[2:0] :	= 7								
	ے	9	nFAW+4*nRRD	D	1	0	0	0	0	7	00	0	0	F	0	-
toggling	Static High	9	HEAWT4 HERD	Assert and	repeat	above	D Cor	nmand	until 2	2*nFAV	V - 1, if	neces	sary	•		
togg	tatic		2*nFAW+0	ACT	0	0	1	1	0	0	00	0	0	F	0	-
	S	10	2*nFAW+1	RDA	0	1	0	1	0	0	00	1	0	F	0	00110011
		10	2*nFAW+2	D	1	0	0	0	0	0	00	0	0	F	0	-
			Z III AVV+Z	Repeat abo	ve D C	omma	nd unt	il 2*nF	AW + n	RRD -	1					
			2*nFAW+nRRD	ACT	0	0	1	1	0	1	00	0	0	0	0	-
		11	2*nFAW+nRRD+1	RDA	0	1	0	1	0	1	00	1	0	0	0	00000000
		'' [2*nFAW+nRRD+2	D	1	0	0	0	0	1	00	0	0	0	0	-
			Z III AWTIINNDTZ	Repeat abo	ve D C	omma	nd unt	il 2*nF	AW + 2	*nRRD	- 1					
		12	2*nFAW+2*nRRD	repeat Sub-	Loop 1	0, but E	3A[2:0]	= 2								
		13	2*nFAW+3*nRRD	repeat Sub-	Loop 1	1, but E	BA[2:0]	= 3								
		14	2*nFAW+4*nRRD	D	1	0	0	0	0	3	00	0	0	0	0	-
		14	2 III AW+4 IIRRD	Assert and	repeat	above	D Cor	nmand	until 3	8*nFAV	V - 1, if	neces	sary			
		15	3*nFAW	repeat Sub-	Loop 1	0, but E	3A[2:0]	= 4								
		16	3*nFAW+nRRD	repeat Sub-	Loop 1	1, but E	3A[2:0]	= 5								
		17	3*nFAW+2*nRRD	repeat Sub-	Loop 1	0, but E	3A[2:0]	= 6								
		18	3*nFAW+3*nRRD	repeat Sub-	Loop 1	1, but E	3A[2:0]	= 7								
		19	3*nFAW+4*nRRD	D	1	0	0	0	0	7	00	0	0	0	0	-
		19	J III AVVT4 IIRRD	Assert and	repeat	above	D Cor	nmand	until 4	l*nFAV	√ - 1, if	neces	sary			

NOTE:

1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.

11. 4Gb DDR3 SDRAM Q-die IDD Specification Table

[Table 44] IDD Specification for 4Gb DDR3 Q-die

			256Mx16 (K	4B4G1646Q)				
Symbol	DDR3	-1066	DDR3	3-1333	DDR3	3-1600	Unit	NOTE
Symbol	7-7	7-7	9-9	9-9	11-1	1-11	Oill	NOTE
	1.35V	1.5V	1.35V	1.5V	1.35V	1.5V		
IDD0	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD1	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD2P0(slow exit)	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD2P1(fast exit)	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD2N	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD2NT	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDDQ2NT	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD2Q	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD3P	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD3N	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD4R	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDDQ4R	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD4W	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD5B	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD6	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD7	TBD	TBD	TBD	TBD	TBD	TBD	mA	
IDD8	TBD	TBD	TBD	TBD	TBD	TBD	mA	

NOTE: V_{DD} condition: 1.45V for 1.35V operation, 1.575V for 1.5V operation

12. Input/Output Capacitance

[Table 45] Input/Output Capacitance

Parameter	Symbol	DDR	3-800	DDR3	3-1066	DDR3	3-1333	DDR3	3-1600	Units	NOTE
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	NOTE
			1.3	5V							
Input/output capacitance (DQ, DM, DQS, \overline{DQS} , TDQS, \overline{TDQS})	CIO	1.4	2.5	1.4	2.5	1.4	2.3	1.4	2.2	pF	1,2,3
Input capacitance (CK and CK)	сск	0.8	1.6	0.8	1.6	0.8	1.4	0.8	1.4	pF	2,3
Input capacitance delta (CK and CK)	CDCK	0	0.15	0	0.15	0	0.15	0	0.15	pF	2,3,4
Input capacitance (All other input-only pins)	CI	0.75	1.3	0.75	1.3	0.75	1.3	0.75	1.2	pF	2,3,6
Input/Output capacitance delta (DQS and \overline{DQS})	CDDQS	0	0.2	0	0.2	0	0.15	0	0.15	pF	2,3,5
Input capacitance delta (All control input-only pins)	CDI_CTRL	-0.5	0.3	-0.5	0.3	-0.4	0.2	-0.4	0.2	pF	2,3,7,8
Input capacitance delta (all ADD and CMD input-only pins)	CDI_ADD_CMD	-0.5	0.5	-0.5	0.5	-0.4	0.4	-0.4	0.4	pF	2,3,9,10
Input/output capacitance delta (DQ, DM, DQS, \overline{DQS}, TDQS, \overline{TDQS})	CDIO	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	2,3,11
Input/output capacitance of ZQ pin	CZQ	-	3	-	3	-	3	-	3	pF	2, 3, 12
			1.8	5V							
Input/output capacitance (DQ, DM, DQS, \overline{DQS} , TDQS, \overline{TDQS})	CIO	1.4	3.0	1.4	2.7	1.4	2.5	1.4	2.3	pF	1,2,3
Input capacitance (CK and CK)	сск	0.8	1.6	0.8	1.6	0.8	1.4	0.8	1.4	pF	2,3
Input capacitance delta (CK and CK)	CDCK	0	0.15	0	0.15	0	0.15	0	0.15	pF	2,3,4
Input capacitance (All other input-only pins)	CI	0.75	1.4	0.75	1.35	0.75	1.3	0.75	1.3	pF	2,3,6
Input capacitance delta (DQS and DQS)	CDDQS	0	0.2	0	0.2	0	0.15	0	0.15	pF	2,3,5
Input capacitance delta (All control input-only pins)	CDI_CTRL	-0.5	0.3	-0.5	0.3	-0.4	0.2	-0.4	0.2	pF	2,3,7,8
Input capacitance delta (all ADD and CMD input-only pins)	CDI_ADD_CMD	-0.5	0.5	-0.5	0.5	-0.4	0.4	-0.4	0.4	pF	2,3,9,10
Input/output capacitance delta (DQ, DM, DQS, \overline{DQS}, \overline{TDQS})	CDIO	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	2,3,11
Input/output capacitance of ZQ pin	CZQ	-	3	-	3	-	3	-	3	pF	2, 3, 12

- 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
- 2. This parameter is not subject to production test. It is verified by design and characterization.

- 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
- 4. Absolute value of CCK-CCK
 5. Absolute value of CIO(DQS)-CIO(DQS)
- 6. CI applies to ODT, $\overline{\text{CS}}$, CKE, A0-A14, BA0-BA2, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, $\overline{\text{WE}}$.
- 7. CDI_CTRL applies to ODT, CS and CKE
- 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
- 9. CDI ADD CMD applies to A0-A14, BA0-BA2, RAS, CAS and WE
- 10. CDI_ADD_CMD=CI(ADD_CMD) 0.5*(CI(CLK)+CI(CLK))
- 11. CDIO=CIO(DQ,DM) 0.5*(CIO(DQS)+CIO(\overline{DQS}))
- 12. Maximum external load capacitance on ZQ pin: 5pF

The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)") with V_{DD} , V_{DDQ} , V_{SS} , V_{SSQ} applied and all other pins floating (except the pin under test, CKE, \overline{RESET} and ODT as necessary). $V_{DD} = V_{DDQ} = 1.5V$ or 1.35V, $V_{BIAS} = V_{DD}/2$ and ondie termination off.

Preliminary

13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600

13.1 Clock Specification

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3 SDRAM device.

13.1.1 Definition for tCK(avg)

tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge.

$$\left(\begin{array}{cc} \sum_{j=1}^{N} tCKj \end{array}\right) / N \qquad N=200$$

13.1.2 Definition for tCK(abs)

tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.

13.1.3 Definition for tCH(avg) and tCL(avg)

tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:

tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:

$$\left(\begin{array}{cc} \sum_{j=1}^{N} \ tCHj \end{array}\right) / N \ x \ tCK(avg) \qquad N=200 \qquad \left(\begin{array}{cc} \sum_{j=1}^{N} \ tCLj \end{array}\right) / N \ x \ tCK(avg) \qquad N=200$$

13.1.4 Definition for note for tJIT(per), tJIT(per, Ick)

tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}

tJIT(per) defines the single period jitter when the DLL is already locked.

tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.

tJIT(per) and tJIT(per,lck) are not subject to production test.

13.1.5 Definition for tJIT(cc), tJIT(cc, Ick)

tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}

tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.

tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.

tJIT(cc) and tJIT(cc,lck) are not subject to production test.

13.1.6 Definition for tERR(nper)

tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.

datasheet DDR3LSDRAM

13.2 Refresh Parameters by Device Density

[Table 46] Refresh parameters by device density

Parameter		Symbol	1Gb	2Gb	4Gb	8Gb	Units	NOTE
All Bank Refresh to active/refresh cmd time		tRFC	110	160	260	350	ns	
Average periodic refresh interval	tREFI	$0 ^{\circ}\text{C} \le T_{CASE} \le 85 ^{\circ}\text{C}$	7.8	7.8	7.8	7.8	μS	
Average periodic refresh interval	UNEFI	85 °C < T _{CASE} ≤ 95°C	3.9	3.9	3.9	3.9	μS	1

NOTE:

13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin

DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

[Table 47] DDR3-800 Speed Bins

	Speed		DC	DR3-800		
	CL-nRCD-nRP		6	- 6 - 6	Units	NOTE
Paran	neter	Symbol	min	max		
Internal read command to	first data	tAA	15	20	ns	
ACT to internal read or wri	te delay time	tRCD	15	-	ns	
PRE command period		tRP	15	-	ns	
ACT to ACT or REF comm	nand period	tRC	52.5	-	ns	
ACT to PRE command pe	riod	tRAS	37.5	9*tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,9,10
CL = 6	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3
Supported CL Settings				5,6	nCK	
Supported CWL Settings				5	nCK	

[Table 48] DDR3-1066 Speed Bins

	Speed		DDR3	3-1066		
CL-n	RCD-nRP		7 - 7	7 - 7	Units	NOTE
Parameter	•	Symbol	min	max		
Internal read command to first	data	tAA	13.125	20	ns	
ACT to internal read or write de	elay time	tRCD	13.125	-	ns	
PRE command period		tRP	13.125	-	ns	
ACT to ACT or REF command	period	tRC	50.625	-	ns	
ACT to PRE command period		tRAS	37.5	9*tREFI	ns	
Cl - E	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,5,9,10
CL = 5	CWL = 6	tCK(AVG)	Rese	erved	ns	4
CL = 6	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3,5
CL = 0	CWL = 6	tCK(AVG)	Rese	erved	ns	1,2,3,4
01 - 7	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 7	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,4,8
CI - 0	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 8	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3
Supported CL Settings			5,6	,7,8	nCK	
Supported CWL Settings			5	,6	nCK	

^{1.} Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material.

datasheet

[Table 49] DDR3-1333 Speed Bins

	Speed		DDR3	3-1333		
CL.	nRCD-nRP		9 -9) - 9	Units	NOTE
Paramete	er	Symbol	min	max		
Internal read command to firs	t data	tAA	13.5 (13.125) ⁸	20	ns	
ACT to internal read or write	delay time	tRCD	13.5 (13.125) ⁸	-	ns	
PRE command period		tRP	13.5 (13.125) ⁸	-	ns	
ACT to ACT or REF comman	d period	tRC	49.5 (49.125) ⁸	-	ns	
ACT to PRE command period	1	tRAS	36	9*tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,6,9,10
OL - 5	CWL = 6,7	tCK(AVG)	Rese	erved	ns	4
	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3,6
CL = 6	CWL = 6	tCK(AVG)	Rese	erved	ns	1,2,3,4,6
	CWL = 7	tCK(AVG)	Rese	erved	ns	4
	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 7	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,4,6
	CWL = 7	tCK(AVG)	Rese	erved	ns	1,2,3,4
	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 8	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,6
	CWL = 7	tCK(AVG)	Rese	erved	ns	1,2,3,4
CL = 9	CWL = 5,6	tCK(AVG)	Rese	erved	ns	4
OL - 9	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3,4,8
CL = 10	CWL = 5,6	tCK(AVG)	Rese	erved	ns	4
OL = 10	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3
Supported CL Settings			5,6,7,	8,9,10	nCK	
Supported CWL Settings			5,6	6,7	nCK	

datasheet

[Table 50] DDR3-1600 Speed Bins

	Speed		DDR	3-1600		
С	L-nRCD-nRP		11-1	11-11	Units	NOTE
Parame	eter	Symbol	min	max		
Internal read command to fi	irst data	tAA	13.75 (13.125) ⁸	20	ns	
ACT to internal read or write	e delay time	tRCD	13.75 (13.125) ⁸	-	ns	
PRE command period		tRP	13.75 (13.125) ⁸	-	ns	
ACT to ACT or REF comma	and period	tRC	48.75 (48.125) ⁸	-	ns	
ACT to PRE command peri	od	tRAS	35	9*tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,7,9,10
CL = 5	CWL = 6,7,8	tCK(AVG)	Res	erved	ns	4
	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3,7
CL = 6	CWL = 6	tCK(AVG)	Res	erved	ns	1,2,3,4,7
	CWL = 7, 8	tCK(AVG)	Res	erved	ns ns	4
	CWL = 5	tCK(AVG)	Res	erved	ns	4
01 7	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,4,7
CL = 7	CWL = 7	tCK(AVG)	Res	erved	ns	1,2,3,4,7
	CWL = 8	tCK(AVG)	Res	erved	ns	4
	CWL = 5	tCK(AVG)	Res	erved	ns	4
	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,7
CL = 8	CWL = 7	tCK(AVG)	Res	erved	ns	1,2,3,4,7
	CWL = 8	tCK(AVG)	Res	erved	ns	1,2,3,4
	CWL = 5,6	tCK(AVG)	Res	erved	ns	4
CL = 9	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3,4,7
	CWL = 8	tCK(AVG)	Res	erved	ns	1,2,3,4
	CWL = 5,6	tCK(AVG)	Res	erved	ns	4
CL = 10	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3,7
	CWL = 8	tCK(AVG)	Res	erved	ns	1,2,3,4
01 44	CWL = 5,6,7	tCK(AVG)	Res	erved	ns	4
CL = 11	CWL = 8	tCK(AVG)	1.25	<1.5	ns	1,2,3,8
Supported CL Settings	1	-	5,6,7,8	,9,10,11	nCK	
Supported CWL Settings			5,6	,7,8	nCK	

DDR3L SDRAM

13.3.1 Speed Bin Table Notes

Absolute Specification {T $_{OPER}$; $V_{DDQ} = V_{DD} = 1.35V(1.28V \sim 1.45V) & 1.5V(1.425V \sim 1.575V)$ };

NOTE

- 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
- 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog data and strobe output are synchronized by the DLL all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".
- 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
- 4. "Reserved" settings are not allowed. User must program a different value.
- 5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
- 6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- 7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- 8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
- 9. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.
- 10. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.

DDR3L SDRAM

14. Timing Parameters by Speed Grade

[Table 51] Timing Parameters by Speed Bin(Cont.)

Speed		DDR	3-800	DDR	3-1066	DDR	3-1333	DDR	3-1600	11-14-	NOTE
Parameter	Symbol	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Units	NOTE
Clock Timing		-	-							-	
Minimum Clock Cycle Time (DLL off mode)	tCK(DLL_OF F)	8	-	8	-	8	-	8	-	ns	6
Average Clock Period	tCK(avg)		•		See Speed	Bins Table	•			ps	
Clock Period	tCK(abs)	tCK(avg)min + tJIT(per)min	tCK(avg)max + tJIT(per)max	tCK(avg)min + tJIT(per)min	tCK(avg)max + tJIT(per)max	tCK(avg)min + tJIT(per)min	tCK(avg)max+ tJIT(per)max	tCK(avg)min + tJIT(per)min	tCK(avg)max+ tJIT(per)max	ps	
Average high pulse width	tCH(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)	
Average low pulse width	tCL(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)	
Clock Period Jitter	tJIT(per)	-100	100	-90	90	-80	80	-70	70	ps	
Clock Period Jitter during DLL locking period	tJIT(per, lck)	-90	90	-80	80	-70	70	-60	60	ps	
Cycle to Cycle Period Jitter	tJIT(cc)	2	00	1	80	1	60	1	40	ps	
Cycle to Cycle Period Jitter during DLL locking period	tJIT(cc, lck)	1	80	1	60	1	40	1:	20	ps	
Cumulative error across 2 cycles	tERR(2per)	- 147	147	- 132	132	- 118	118	-103	103	ps	
Cumulative error across 3 cycles	tERR(3per)	- 175	175	- 157	157	- 140	140	-122	122	ps	
Cumulative error across 4 cycles	tERR(4per)	- 194	194	- 175	175	- 155	155	-136	136	ps	
Cumulative error across 5 cycles	tERR(5per)	- 209	209	- 188	188	- 168	168	-147	147	ps	
Cumulative error across 6 cycles	tERR(6per)	- 222	222	- 200	200	- 177	177	-155	155	ps	
Cumulative error across 7 cycles	tERR(7per)	- 232	232	- 209	209	- 186	186	-163	163	ps	
Cumulative error across 8 cycles	tERR(8per)	- 241	241	- 217	217	- 193	193	-169	169	ps	
Cumulative error across 9 cycles	tERR(9per)	- 249	249	- 224	224	- 200	200	-175	175	ps	
Cumulative error across 10 cycles	tERR(10per)	- 257	257	- 231	231	- 205	205	-180	180	ps	
Cumulative error across 11 cycles	tERR(11per)	- 263	263	- 237	237	- 210	210	-184	184	ps	
Cumulative error across 12 cycles	tERR(12per)	- 269	269	- 242	242	- 215	215	-188	188	ps	
Cumulative error across n = 13, 14 49, 50 cycles	tERR(nper)					0.68ln(n))*tJl 0.68ln(n))*tJl				ps	24
Absolute clock HIGH pulse width	tCH(abs)	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)	25
Absolute clock Low pulse width	tCL(abs)	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)	26
Data Timing		•									
DQS, DQS to DQ skew, per group, per access	tDQSQ	-	200	-	150	-	125	-	100	ps	13
DQ output hold time from DQS, DQS	tQH	0.38	-	0.38	-	0.38	-	0.38	-	tCK(avg)	13, g
DQ low-impedance time from CK, $\overline{\text{CK}}$	tLZ(DQ)	-800	400	-600	300	-500	250	-450	225	ps	13,14, f
DQ high-impedance time from CK, $\overline{\text{CK}}$	tHZ(DQ)	-	400	-	300	-	250	-	225	ps	13,14, f
		•		•	•	1.35V		•			
	tDS(base) AC160	90	-	40	-	-	-	-	-	ps	d, 17
Data setup time to DQS, DQS referenced to	tDS(base) AC135	140	-	90	-	45	-	25	-	ps	
V _{IH} (AC)V _{IL} (AC) levels				!	!	1.5V		!	!		
	tDS(base) AC175	75	-	25	-	-	-	-	-	ps	d, 17
	tDS(base) AC150	125	-	75	-	30	-	10	-	ps	
						1.35V				•	
Data hold time from DQS, DQS referenced to	tDH(base) DC90	160	-	110	-	75	-	55	-	ps	d, 17
V _{IH} (DC)V _{IL} (DC) levels						1.5V					
	tDH(base) DC100	150	-	100	-	65	-	45	-	ps	d, 17
DQ and DM Input pulse width for each input	tDIPW	600	-	490	-	400	-	360	-	ps	28

datasheet

[Table 51] Timing Parameters by Speed Bin (Cont.)

[Table 51] Timing Parameters by Speed		DDR3	-800	DDR3-	1066	DDR3-1	1333	DDR3-	-1600		
Parameter	Symbol	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Units	NOTE
Data Strobe Timing											
DQS, DQS differential READ Preamble	tRPRE	0.9	Note 19	0.9	Note 19	0.9	Note 19	0.9	Note 19	tCK(avg)	13, 19, q
DQS, DQS differential READ Postamble	tRPST	0.3	Note 11	0.3	Note 11	0.3	Note 11	0.3	Note 11	tCK(avg)	11, 13, b
DQS, DQS differential output high time	tQSH	0.38	-	0.38	-	0.4	-	0.4	-	tCK(avg)	13, g
DQS, DQS differential output low time	tQSL	0.38	-	0.38	-	0.4	-	0.4	-	tCK(avg)	13, g
DQS, DQS differential WRITE Preamble	tWPRE	0.9	-	0.9	-	0.9	-	0.9	-	tCK(avg)	
DQS, DQS differential WRITE Postamble	tWPST	0.3	-	0.3	-	0.3	-	0.3	-	tCK(avg)	
DQS, DQS rising edge output access time from rising CK, CK	tDQSCK	-400	400	-300	300	-255	255	-225	225	ps	13,f
DQS, $\overline{\text{DQS}}$ low-impedance time (Referenced from RL-1)	tLZ(DQS)	-800	400	-600	300	-500	250	-450	225	ps	13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2)	tHZ(DQS)	-	400	-	300	-	250	-	225	ps	12,13,14
DQS, DQS differential input low pulse width	tDQSL	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)	29, 31
DQS, DQS differential input high pulse width	tDQSH	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)	30, 31
DQS, DQS rising edge to CK, CK rising edge	tDQSS	-0.25	0.25	-0.25	0.25	-0.25	0.25	-0.27	0.27	tCK(avg)	С
DQS, DQS falling edge setup time to CK, CK rising edge	tDSS	0.2	-	0.2	-	0.2	-	0.18	-	tCK(avg)	c, 32
DQS, DQS falling edge hold time to CK, CK rising edge	tDSH	0.2	-	0.2	-	0.2	-	0.18	-	tCK(avg)	c, 32
Command and Address Timing	ı	T						T		1	1
DLL locking time	tDLLK	512	-	512	-	512	-	512	-	nCK	
internal READ Command to PRECHARGE Command delay	tRTP	max (4nCK,7.5ns)	-	max (4nCK,7.5ns)	-	max (4nCK,7.5ns)	-	max (4nCK,7.5ns)	-		е
Delay from start of internal write transaction to internal read command	tWTR	max (4nCK,7.5ns)	-	max (4nCK,7.5ns)	-	max (4nCK,7.5ns)	-	max (4nCK,7.5ns)	-		e,18
WRITE recovery time	tWR	15	-	15	-	15	-	15	-	ns	е
Mode Register Set command cycle time	tMRD	4	-	4	-	4	-	4	-	nCK	
Mode Register Set command update delay	tMOD	max (12nCK,15ns)	-	max (12nCK,15ns)	-	max (12nCK,15ns)	-	max (12nCK,15ns)	-		
CAS to CAS command delay	tCCD	4	-	4	-	4	-	4	-	nCK	
Auto precharge write recovery + precharge time	tDAL(min)			WF	R + roundup (1	RP / tCK(AVG))			nCK	
Multi-Purpose Register Recovery Time	tMPRR	1	-	1	-	1	-	1	-	nCK	22
ACTIVE to PRECHARGE command period	tRAS		See "Spe	ed Bins and Cl	, tRCD, tRP,	tRC and tRAS f	or correspor	nding Bin"		ns	е
ACTIVE to ACTIVE command period for 1KB page size	tRRD	max (4nCK,10ns)	-	max (4nCK,7.5ns)	-	max (4nCK,6ns)	-	max (4nCK,6ns)	-		е
ACTIVE to ACTIVE command period for 2KB page size	tRRD	max (4nCK,10ns)	-	max (4nCK,10ns)	-	max (4nCK,7.5ns)	-	max (4nCK,7.5ns)	-		е
Four activate window for 1KB page size	tFAW	40	-	37.5	-	30	-	30	-	ns	е
Four activate window for 2KB page size	tFAW	50	-	50	-	45	-	40	-	ns	е
						1.35V					
	tIS(base) AC160	215	-	140	-	80	-	60	-	ps	b,16
Command and Address setup time to CK, $\overline{\text{CK}}$ referenced to $V_{\text{IH}}(\text{AC})$ / V_{II} (AC) levels	tIS(base) AC135	365	-	290	-	205	-	185	-	ps	b,16,27
ericed to V _{IH} (AC) / V _{IL} (AC) levels		1				1.5V		1			
	tIS(base) AC175	200	-	125	-	65	-	45	-	ps	b,16
	tIS(base) AC150	350	-	275	-	190	-	170	-	ps	b,16,27
						1.35V					
	tlH(base) DC90	285	-	210	-	150	-	130	-	ps	b,16
Command and Address hold time from CK, $\overline{\text{CK}}$ referenced to $V_{\text{IH}}(\text{DC})$ / V_{II} (DC) levels	D030					1.5V					
	tlH(base)										
1	tIH(base) DC100	275		200		140		120	-	ps	b,16
				I		600	_	560	_	l ne	28
Control & Address Input pulse width for each input	tIPW	900	-	780	-	620		300		ps	
Control & Address Input pulse width for each input Calibration Timing	tIPW	900	-	780	-	620		300		рз	
·	tIPW tZQinitI	900 512	-	780 512	-	512	-	512	-	nCK	
Calibration Timing							-		-		

[Table 51] Timing Parameters by Speed Bin

[Table 51] Timing Parameters by Spe	ea Bin										
Speed		DDR	3-800	DDR3	3-1066	DDR3	-1333	DDR3	-1600	Units	NOTE
Parameter	Symbol	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
Reset Timing											
Exit Reset from CKE HIGH to a valid command	tXPR	max(5nCK, tRFC + 10ns)	-								
Self Refresh Timing		1		•							
Exit Self Refresh to commands not requiring a locked DLL	tXS	max(5nCK,t RFC + 10ns)	-	max(5nCK,t RFC + 10ns)	-	max(5nCK,t RFC + 10ns)	-	max(5nCK,t RFC + 10ns)	-		
Exit Self Refresh to commands requiring a locked DLL	tXSDLL	tDLLK(min)	-	tDLLK(min)	-	tDLLK(min)	-	tDLLK(min)	-	nCK	
Minimum CKE low width for Self refresh entry to exit timing	tCKESR	tCKE(min)+ 1tCK	-	tCKE(min)+ 1tCK	-	tCKE(min)+ 1tCK	-	tCKE(min) + 1tCK	-		
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE)	tCKSRE	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-		
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit	tCKSRX	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-	max(5nCK, 10ns)	-		
Power Down Timing											
Exit Power Down with DLL on to any valid com- mand;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	max (3nCK, 7.5ns)	-	max (3nCK, 7.5ns)	-	max (3nCK,6ns)	-	max (3nCK,6ns)	-		
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL	tXPDLL	max (10nCK, 24ns)	-	max (10nCK, 24ns)	-	max (10nCK, 24ns)	-	max (10nCK, 24ns)	-		2
CKE minimum pulse width	tCKE	max (3nCK, 7.5ns)	-	max (3nCK, 5.625ns)	-	max (3nCK, 5.625ns)	-	max (3nCK,5ns)	-		
Command pass disable delay	tCPDED	1	-	1	-	1	-	1	-	nCK	
Power Down Entry to Exit Timing	tPD	tCKE(min)	9*tREFI	tCKE(min)	9*tREFI	tCKE(min)	9*tREFI	tCKE(min)	9*tREFI	tCK(avg)	15
Timing of ACT command to Power Down entry	tACTPDEN	1	-	1	-	1	-	1	-	nCK	20
Timing of PRE command to Power Down entry	tPRPDEN	1	-	1	-	1	-	1	-	nCK	20
Timing of RD/RDA command to Power Down entry	tRDPDEN	RL + 4 +1	-								
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRPDEN	WL + 4 +(tWR/ tCK(avg))	-	nCK	9						
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRAPDEN	WL + 4 +WR +1	-	WL + 4 +WR +1	-	WL + 4 +WR +1	-	WL + 4 +WR +1	-	nCK	10
Timing of WR command to Power Down entry (BC4MRS)	tWRPDEN	WL + 2 +(tWR/ tCK(avg))	-	nCK	9						
Timing of WRA command to Power Down entry (BC4MRS)	tWRAPDEN	WL +2 +WR +1	-	WL+2+WR +1	-	WL +2 +WR +1	-	WL +2 +WR +1	-	nCK	10
Timing of REF command to Power Down entry	tREFPDEN	1	-	1	-	1	-	1	-		20,21
Timing of MRS command to Power Down entry	tMRSPDEN	tMOD(min)	-	tMOD(min)	-	tMOD(min)	-	tMOD(min)	-		
ODT Timing		•		•							
ODT high time without write command or with write command and BC4	ODTH4	4	-	4	-	4	-	4	-	nCK	
ODT high time with Write command and BL8	ODTH8	6	-	6	-	6	-	6	-	nCK	
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)	tAONPD	2	8.5	2	8.5	2	8.5	2	8.5	ns	
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)	tAOFPD	2	8.5	2	8.5	2	8.5	2	8.5	ns	
RTT turn-on	tAON	-400	400	-300	300	-250	250	-225	225	ps	7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference	tAOF	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	tCK(avg)	8,f
RTT dynamic change skew	tADC	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	tCK(avg)	f
Write Leveling Timing											
First DQS/DQS rising edge after write leveling mode is programmed	tWLMRD	40	-	40	-	40	-	40	-	tCK(avg)	3
DQS/DQS delay after write leveling mode is programmed	tWLDQSEN	25	-	25	-	25	-	25	-	tCK(avg)	3
Write leveling setup time from rising CK, CK crossing to rising DQS, DQS crossing	tWLS	325	-	245	-	195	-	165	-	ps	
Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing	tWLH	325	-	245	-	195	-	165	-	ps	
Write leveling output delay	tWLO	0	9	0	9	0	9	0	7.5	ns	<u> </u>
Write leveling output error	tWLOE	0	2	0	2	0	2	0	2	ns	

datasheet

14.1 Jitter Notes

Specific Note a

Unit 'tCK(avg)' represents the actual tCK(avg) of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.

Specific Note b

These parameters are measured from a command/address signal (CKE, \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK/ \overline{CK}) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.

Specific Note c

These parameters are measured from a data strobe signal (DQS(L/U), $\overline{DQS}(L/U)$) crossing to its respective clock signal (CK, \overline{CK}) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.

Specific Note d

These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U), $\overline{DQS}(L/U)$) crossing.

Specific Note e

For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.

Specific Note f

When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper), act of the input clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)

For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = -172 ps and tERR(mper),act,max = +193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = -400 ps - 193 ps = -593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = +572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = -800 ps - 193 ps = -993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = +572 ps. (Caution on the min/max usage!)

Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where $2 \le n \le 12$, and tERR(mper),act,max is the maximum measured value of tERR(nper) where $2 \le n \le 12$.

Specific Note g

When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = -72 ps and tJIT(per),act,max = +93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(avg),act,min = 0.38 x tCK(avg),act,min = 0.38 x tCK(avg),act + tJIT(avg),act,min = 0.38 x tCK(avg),act + tJIT(avg),act,min = 0.38 x tCK(avg),act,min = 0.38 x tCK(avg),act,

14.2 Timing Parameter Notes

- 1. Actual value dependant upon measurement level definitions See "Device Operation & Timing Diagram Datasheet".
- 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
- 3. The max values are system dependent.
- 4. WR as programmed in mode register
- 5. Value must be rounded-up to next higher integer value
- 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
- 7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
- 8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
- 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
- 10. WR in clock cycles as programmed in MR0
- 11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing Diagram Datasheet.
- 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by 14.1-Jitter Notes on page 51
- 13. Value is only valid for RON34
- 14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
- 15. tREFI depends on TOPER
- 16. tlS(base) and tlH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals, V_{REF}(DC) = V_{REF}DQ(DC). For input only pins except RESET, V_{REF}(DC)=V_{REF}CA(DC). See Address/Command Setup, Hold and Derating: on page 56.
- 17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals, V_{REF}(DC)= V_{REF}DQ(DC). For input only pins except RESET, V_{REF}(DC)=V_{REF}CA(DC). See Data Setup, Hold and Slew Rate Derating: on page 63.
- 18. Start of internal write transaction is defined as follows;
 - For BL8 (fixed by MRS and on-the-fly): Rising clock edge 4 clock cycles after WL.
 - For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL
 - For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL
- 19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Data-sheet"
- 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations.
- 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
- 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
- 23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the 'Output Driver Voltage and Temperature Sensitivity' and 'ODT Voltage and Temperature Sensitivity' tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.

 One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:

where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.

For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:

$$\frac{0.5}{(1.5 \times 1) + (0.15 \times 15)} = 0.133 \approx 128 \text{ms}$$

- 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
- 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
- 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
- 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv 150 mV) / 1 V/ns].
- 28. Pulse width of a input signal is defined as the width between the first crossing of $V_{REF}(DC)$ and the consecutive crossing of $V_{REF}(DC)$
- 29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
- 30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
- 31. tDQSH, act + tDQSL, act = 1 tCK, act; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- 32. tDSH, act + tDSS, act = 1 tCK, act; with tXYZ, act being the actual measured value of the respective timing parameter in the application.

14.3 Address/Command Setup, Hold and Derating:

For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table 52) to the Δ tIS and Δ tIH derating value (see Table 54) respectively.

Example: tIS (total setup time) = tIS(base) + Δ tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{REF}(DC)$ and the first crossing of $V_{IH}(AC)$ min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{REF}(DC)$ and the first crossing of $V_{IL}(AC)$ max. If the actual signal is always earlier than the nominal slew rate line between shaded ' $V_{REF}(DC)$ ' to ac region', use nominal slew rate for derating value (see 20-Fegure Title on page Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS). If the actual signal is later than the nominal slew rate line anywhere between shaded ' $V_{REF}(DC)$ ' to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see 22-Fegure Title on page Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS).

Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{IL}(DC)$ max and the first crossing of $V_{REF}(DC)$. Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{IH}(DC)$ min and the first crossing of $V_{REF}(DC)$. If the actual signal is always later than the nominal slew rate line between shaded 'dc to $V_{REF}(DC)$ region', use nominal slew rate for derating value (see 21-Fegure Title on page Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH). If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to $V_{REF}(DC)$ region', the slew rate of a tangent line to the actual signal from the dc level to $V_{REF}(DC)$ level is used for derating value (see 23-Fegure Title on page Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH). For a valid transition the input signal has to remain above/below $V_{IH/IL}(AC)$ for some time tVAC (see Table 51).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached $V_{IH/IL}(AC)$ at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach $V_{IH/II}(AC)$.

For slew rates in between the values listed in Table 54, the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization.

[Table 52] ADD/CMD Setup and Hold Base-Values for 1V/ns (1.35V)

	[ps]	DDR3L-800	DDR3L-1066	DDR3L-1333	DDR3L-1600	reference	Note
	tlS(base) AC160	215	140	80	60	V _{IH/L(AC)}	1
DDR3L	tIS(base) AC135	365	290	205	185	V _{IH/L(AC)}	1,2
	tIH(base)-DC90	285	210	150	130	V _{IH/L(DC)}	1

NOTE:

- 1. AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-CK# slew rate
- 2. The tIS(base) AC135 specifications are adjusted from the tIS(base) AC160 specification by adding an additional 125 ps for DDR3L-800/1066 or 100ps for DDR3L-1333/1600 of derating to accommodate for the lower alternate threshold of 135 mV and another 25 ps to account for the earlier reference point [(160mv 135 mV) / 1 V/ns].

[Table 53] ADD/CMD Setup and Hold Base-Values for 1V/ns (1.5V)

	[ps]	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	reference
	tlS(base) AC175	200	125	65	45	V _{IH/L(AC)}
DDR3	tlS(base) AC150	350	275	190	170	V _{IH/L(AC)}
	tlS(base) AC100	275	200	140	120	V _{IH/L(DC)}

NOTE:

- 1.AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-CK# slew rate
- 2.The tlS(base) AC150 specifications are adjusted from the tlS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR3-1333/1600 of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv 150 mV) / 1 V/ns].

DDR3L SDRAM

[Table 54] Derating values DDR3L-800/1066/1333/1600 tlS/tlH-AC/DC based AC160 Threshold(1.35V)

	\triangle tlS, \triangle tlH Derating [ps] AC/DC based AC160 Threshold -> $V_{IH}(AC) = V_{REF}(DC) + 160 mV$, $V_{IL}(AC) = V_{REF}(DC) - 160 mV$																
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0 \	V/ns	3.0 \	V/ns	2.0	V/ns	1.8 \	V/ns	1.6	V/ns	1.4\	//ns	1.2\	//ns	1.0\	//ns
		∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tIH
	2.0	80	45	80	45	80	45	88	53	96	61	104	69	112	79	120	95
	1.5	53	30	53	30	53	30	61	38	69	46	77	54	85	64	93	80
OMD/	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	32	40	50
CMD/	0.9	-1	-3	-1	-3	-1	-3	7	5	15	13	23	21	31	31	39	47
Slew	0.8	-3	-8	-3	-8	-3	-8	5	1	13	9	21	17	29	27	37	43
rate V/ns	0.7	-5	-13	-5	-13	-5	-13	3	-5	11	3	19	11	27	21	35	37
V/113	0.6	-8	-20	-8	-20	-8	-20	0	-12	8	-4	16	4	24	14	32	30
	0.5	-20	-30	-20	-30	-20	-30	-12	-22	-4	-14	4	-6	12	4	20	20
	0.4	-40	-45	-40	-45	-40	-45	-32	-37	-24	-29	-16	-21	-8	-11	0	5

[Table 55] Derating values DDR3L-800/1066/1333/1600 tlS/tlH-AC/DC based - Alternate AC135 Threshold (1.35V)

	Table 35 Defaultig Values DDR3E-000/1000/1333/1000 ti3/tin-AC/DC based - Alternate AC 135 Tilleshold (1.35V)																
	∆tIS, ∆tIH Derating [ps] AC/DC based Alternate AC135 Threshold -> V _{IH} (AC) = V _{REF} (DC) + 135mV, V _{IL} (AC) = V _{REF} (DC) - 135mV																
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0 \	V/ns	3.0 \	V/ns	2.0 \	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2\	V/ns	1.0\	//ns
		∆tIS	∆tlH	∆tIS	∆tIH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH
	2.0	68	45	68	45	68	45	76	53	84	61	92	69	100	79	108	95
	1.5	45	30	45	30	45	30	53	38	61	46	69	54	77	64	85	80
CMD/	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	32	40	50
CMD/ ADD	0.9	2	-3	2	-3	2	-3	10	5	18	13	26	21	34	31	42	47
Slew	0.8	3	-8	3	-8	3	-8	11	1	19	9	27	17	35	27	43	43
rate V/ns	0.7	6	-13	6	-13	6	-13	14	-5	22	3	30	11	38	21	46	37
VIIIS	0.6	9	-20	9	-20	9	-20	17	-12	25	-4	33	4	41	14	49	30
	0.5	5	-30	5	-30	5	-30	13	-22	21	-14	29	-6	37	4	45	20
	0.4	-3	-45	-3	-45	-3	-45	6	-37	14	-29	22	-21	30	-11	38	5

[Table 56] Derating values DDR3-800/1066/1333/1600 tlS/tlH-AC/DC based AC175 Threshold(1.5V)

	\triangle tIS, \triangle tIH Derating [ps] AC/DC based Alternate AC175 Threshold -> $V_{IH}(AC) = V_{REF}(DC) + 175mV$, $V_{IL}(AC) = V_{REF}(DC) - 175mV$																
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0 \	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2\	//ns	1.0\	V/ns
		∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH
	2.0	88	50	88	50	88	50	96	58	104	66	112	74	120	84	128	100
	1.5	59	34	59	34	59	34	67	42	75	50	83	58	91	68	99	84
OMP	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
CMD/ ADD	0.9	-2	-4	-2	-4	-2	-4	6	4	14	12	22	20	30	30	38	46
Slew	0.8	-6	-10	-6	-10	-6	-10	2	-2	10	6	18	14	26	24	34	40
rate V/ns	0.7	-11	-16	-11	-16	-11	-16	-3	-8	5	0	13	8	21	18	29	34
V/115	0.6	-17	-26	-17	-26	-17	-26	-9	-18	-1	-10	7	-2	15	8	23	24
	0.5	-35	-40	-35	-40	-35	-40	-27	-32	-19	-24	-11	-16	-2	-6	5	10
	0.4	-62	-60	-62	-60	-62	-60	-54	-52	-46	-44	-38	-36	-30	-26	-22	-10

datasheet DDR3L SDRAM

[Table 57] Derating values DDR3-800/1066/1333/1600 tlS/tlH-AC/DC based AC150 Threshold (1.5V)

			Alte	rnate AC	C150 Thr		S, ∆tIH [-> V _{IH} (A	•				= V _{REF} (DC) - 15	0mV			
								CK,CK	Differe	ntial Sle	w Rate						
		4.0 \	V/ns	3.0	V/ns	2.0 \	V/ns	1.8 \	V/ns	1.6	V/ns	1.4\	//ns	1.2\	//ns	1.0\	//ns
		∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH
	2.0	75	50	75	50	75	50	83	58	91	66	99	74	107	84	115	100
	1.5	50	34	50	34	50	34	58	42	66	50	74	58	82	68	90	84
CMD/	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
CMD/ ADD	0.9	0	-4	0	-4	0	-4	8	4	16	12	24	20	32	30	40	46
Slew	0.8	0	-10	0	-10	0	-10	8	-2	16	6	24	14	32	24	40	40
rate V/ns	0.7	0	-16	0	-16	0	-16	8	-8	16	0	24	8	32	18	40	34
V/113	0.6	-1	-26	-1	-26	-1	-26	7	-18	15	-10	23	-2	31	8	39	24
	0.5	-10	-40	-10	-40	-10	-40	-2	-32	6	-24	14	-16	22	-6	30	10
	0.4	-25	-60	-25	-60	-25	-60	-17	-52	-9	-44	-1	-36	7	-26	15	-10

[Table 58] Required time t_{VAC} above $V_{IH}(AC)$ {blow $V_{IL}(AC)$ } for valid ADD/CMD transition

		1.3	35V			1.	5V	
Slow Poto[V/no]		DDR3L-800/1	066/1333/1600			DDR3-800/10	66/1333/1600	
Slew Rate[V/ns]	t _{VAC} @16	0mV [ps]	t _{VAC} @13	5mV [ps]	t _{VAC} @17	5mV [ps]	t _{VAC} @15	0mV [ps]
	min	max	min	max	min	max	min	max
>2.0	200	-	213	-	75	-	175	-
2.0	200	-	213	-	57	-	170	-
1.5	173	-	190	-	50	-	167	-
1.0	120	-	145	-	38	-	130	-
0.9	102	-	130	-	34	-	113	-
0.8	80	-	111	-	29	-	93	-
0.7	51	-	87	-	22	-	66	-
0.6	13	-	55	-	Note	-	30	-
0.5	Note	-	10	-	Note	-	Note	-
< 0.5	Note	-	10	-	Note	-	Note	-

NOTE: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

NOTE : Clock and Strobe are drawn on a different time scale.

Figure 20. Illustration of nominal slew rate and t_{VAC} for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock).

NOTE: Clock and Strobe are drawn on a different time scale.

Figure 21. Illustration of nominal slew rate for hold time t_{DH} (for DQ with respect to strobe) and t_{IH} (for ADD/CMD with respect to clock).

NOTE: Clock and Strobe are drawn on a different time scale.

Figure 22. Illustration of tangent line for setup time $t_{\rm DS}$ (for DQ with respect to strobe) and $t_{\rm IS}$ (for ADD/CMD with respect to clock)

NOTE : Clock and Strobe are drawn on a different time scale.

Figure 23. Illustration of tangent line for hold time t_{DH} (for DQ with respect to strobe) and t_{IH} (for ADD/CMD with respect to clock)

14.4 Data Setup, Hold and Slew Rate Derating :

For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see Table 59) to the Δ tDS and ΔtDH (see Table 55) derating value respectively. Example: tDS (total setup time) = tDS(base) + ΔtDS.

Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V_{REF}(DC) and the first crossing of V_{IH}(AC)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V_{REF}(DC) and the first crossing of V_{IL}(AC)max (see 24-Fegure Title on page Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS). If the actual signal is always earlier than the nominal slew rate line between shaded 'V_{REF}(DC) to ac region', use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere

between shaded 'V_{REF}(DC) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see 26-

Fegure Title on page Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS). Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V_{IL}(DC)max and the first crossing of V_{REF}(DC). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V_{IH}(DC)min and the first crossing of V_{REF}(DC) (see -Body on page). If the actual signal is always later than the nominal slew rate line between shaded 'dc level to V_{REF}(DC) region', use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to V_{REF}(DC) region', the slew rate of a tangent line to the actual signal from the dc level to V_{REF}(DC) level is used for derating value (see 27-Fegure Title on page Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH).

For a valid transition the input signal has to remain above/below V_{IH/IL}(AC) for some time tVAC (see Table 56).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V_{IH/IL}(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach V_{IH/II} (AC).

For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization.

[Table 59] Data Setup and Hold Base-Values

	[ps]	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	reference
	tDS(base) AC175	75	25	-	-	V _{IH/L} (AC)
DDR3	tDS(base) AC150	125	75	30	10	V _{IH/L} (AC)
	tDH(base) DC100	150	100	65	45	V _{IH/L} (DC)
	tDS(base) AC160	90	40	-	-	V _{IH/L} (AC)
DDR3L	tDS(base) AC135	140	90	45	25	V _{IH/L} (AC)
	tDH(base) DC90	160	110	75	55	V _{IH/L} (DC)

NOTE: AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate

[Table 60] Derating values DDR3L-800/1066 tDS/tDH-AC/DC based - AC160(1.35V)

						∆tD	-		j in [ps]								
			DQS,DQS Differential Slew Rate														
		4.0 \	V/ns	3.0 \	V/ns	2.0 \	2.0 V/ns 1.8 V			V/ns 1.6 V/ns		1.4V/ns		1.2V/ns		1.0V/ns	
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	2.0	80	45	80	45	80	45	-	-	-	-	-	-	-	-	-	-
	1.5	53	30	53	30	53	30	61	38	-	-	-	-	-	-	-	-
DO	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
DQ Slew	0.9	-	-	-1	-3	-1	-3	7	5	15	13	23	21	-	-	-	-
rate	0.8	-	-	-	-	-3	-8	5	1	13	9	21	17	29	27	-	-
V/ns	0.7	-	-	-	-	-	-	3	-5	11	3	19	11	27	21	35	37
7/110	0.6	-	-	-	-	-	-	-	-	8	-4	16	4	24	14	32	30
	0.5	-	-	-	-	-	-	-	-	-	-	4	-6	12	4	20	20
	0.4	ı	-	ı	-	ı	1	-	-	-	-	1	ı	-8	-11	0	5

NOTE: 1. Cell contents shaded in red are defined as 'not supported'.

[Table 61] Derating values for DDR3L-800/1066/1333/1600 tDS/tDH - AC135 (1.35V)

						∆tD	S, ∆tDH										
			DQS,DQS Differential Slew Rate														
		4.0 \	V/ns	3.0 '	V/ns	2.0	V/ns	1.8 \	V/ns	1.6	V/ns	1.4V/ns		1.2V/ns		1.0V/ns	
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	2.0	68	45	68	45	68	45	-	-	-	-	-	-	-	-	-	-
	1.5	45	30	45	30	45	30	53	38	-	-	-	-	-	-	-	-
DQ	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
Slew	0.9	-	-	2	-3	2	-3	10	5	18	13	26	21	-	-	-	-
rate	8.0	-	-	-	-	3	-8	11	1	19	9	27	17	35	27	-	-
V/ns	0.7	-	-	-	-	-	-	14	-5	22	3	30	11	38	21	46	37
V/110	0.6	-	-	-	-	-	-	-	-	25	-4	33	4	41	14	49	30
	0.5	-	-	-	-	-	-	-	-	-	-	29	-6	37	4	45	20
	0.4	1	-	-	-	-	-	-	-	-	-	-	-	30	-11	38	5

NOTE: 1. Cell contents shaded in red are defined as 'not supported'.

DDR3L SDRAM

[Table 62] Derating values DDR3-800/1066 tDS/tDH - AC175 (1.5V)

							∆tDS, ∆t	DH Dera	_											
DQS,DQS Differential Slew Rate																				
			4.0 V/ns		3.0 V/ns		2.0 V/ns		1.8 V/ns		1.6 V/ns		1.4V/ns		1.2V/ns		1.0V/ns			
			∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH		
		2.0	88	50	88	50	88	50	-	-	-	-	-	-	-	-	-	-		
		1.5	59	34	59	34	59	34	67	42	-	-	-	-	-	-	-	-		
DDR3	DQ	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-		
- DDK3	Slew	0.9	-	-	-2	-4	-2	-4	6	4	14	12	22	20	-	-	-	-		
800/	rate	0.8	-	-	-	-	-6	-10	2	-2	10	6	18	14	26	24	-	-		
1066	V/ns	0.7	-	-	-	-	-	-	-3	-8	5	0	13	8	21	18	29	34		
1.000	V/110	0.6	-	-	-	-	-	-	-	-	-1	-10	7	-2	15	8	23	24		
		0.5	-	-	-	•	-	-	-	-	•	-	-11	-16	-2	-6	6	10		
		0.4	-	1	ı	-	-	-	-	ı	1	-	-	1	-30	-26	-22	-10		

NOTE: 1. Cell contents shaded in red are defined as 'not supported'.

[Table 63] Derating values for DDR3-800/1066/1333/1600 tDS/tDH - AC150 (1.5V)

						∆tD			j in [ps]								
			DQS,DQS Differential Slew Rate														
		4.0 \	V/ns	3.0 \	V/ns	2.0	V/ns	1.8	1.8 V/ns		1.6 V/ns		1.4V/ns		1.2V/ns		//ns
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	2.0	75	50	75	50	75	50	-	-	-	-	-	-	-	-	-	-
	1.5	50	34	50	34	50	34	58	42	-	-	-	-	-	-	-	-
DQ	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
Slew	0.9	-	-	0	-4	0	-4	8	4	16	12	24	20	-	-	-	-
rate	0.8	-	-	-	-	0	-10	8	-2	16	6	24	14	32	24	-	-
V/ns	0.7	-	-	-	-	-	-	8	-8	16	0	24	8	32	18	40	34
77110	0.6	-	-	-	-	-	-	-	-	15	-10	23	-2	31	8	39	24
	0.5	-	-	-	-	-	-	-	-	-	-	14	-16	22	-6	30	10
	0.4	1	ı	ı	1	-	-	-	-	-	-	-	-	7	-26	15	-10

NOTE: 1. Cell contents shaded in red are defined as 'not supported'.

[Table 64] Required time t_{VAC} above $V_{IH}(AC)$ {blow $V_{IL}(AC)\}$ for valid DQ transition

		1.3	55V		1.5V							
Slew Rate[V/ns]	DDR3L-8 (AC		DDR3L-8 1333/1600	00/1066/ (AC135)	DDR3-80 (AC		DDR3-80 1333/1600		DDR3-800/1066/ 1333/1600 (AC135)			
	t _{VAC}	[ps]	t _{VAC}	t _{VAC} [ps]		[ps]	t _{VAC}	[ps]	t _{VAC} [ps]			
	min	max	min	max	min	max	min	max	min	max		
>2.0	165	-	113	-	75	-	105	-	113	-		
2.0	165	-	113	-	57	-	105	-	113	-		
1.5	138	-	90	-	50	-	80	-	90	-		
1.0	85	-	45	-	38	-	30	-	45	-		
0.9	67	-	30	-	34	-	13	-	30	-		
0.8	45	-	11	-	29	-	Note	-	11	-		
0.7	16	-	Note	-	Note	-	Note	-	Note	-		
0.6	Note	-	Note	-	Note	-	Note	-	Note	-		
0.5	Note	-	Note	-	Note	-	Note	-	Note	-		
<0.5	Note	-	Note	-	Note	-	Note	-	Note	-		

NOTE: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

NOTE : Clock and Strobe are drawn on a different time scale.

Figure 24. Illustration of nominal slew rate and t_{VAC} for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock).

NOTE: Clock and Strobe are drawn on a different time scale.

Figure 25. Illustration of nominal slew rate for hold time t_{DH} (for DQ with respect to strobe) and t_{IH} (for ADD/CMD with respect to clock).

NOTE: Clock and Strobe are drawn on a different time scale.

Figure 26. Illustration of tangent line for setup time $t_{\rm DS}$ (for DQ with respect to strobe) and $t_{\rm IS}$ (for ADD/CMD with respect to clock)

NOTE : Clock and Strobe are drawn on a different time scale.

Figure 27. Illustration of tangent line for hold time t_{DH} (for DQ with respect to strobe) and t_{IH} (for ADD/CMD with respect to clock)

