

2K x 8 Static RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
 - —15 ns
- · Low active power
 - -660 mW (commercial)
 - -688 mW (military-20 ns)
- · Low standby power
 - -110 mW (20 ns)
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- V_{IH} of 2.2V

Functional Description

The CY7C128A is a high-performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is

provided by an active LOW Chip Enable (\overline{CE}) , and active LOW Output Enable (\overline{OE}) and three-state drivers. The CY7C128A has an automatic power-down feature, reducing the power consumption by 83% when deselected.

 $\frac{\text{Writing to the device is } \underline{\text{acc}} \text{omplished when the Chip Enable}}{(\overline{\text{CE}}) \text{ and Write Enable } (\overline{\text{WE}}) \text{ inputs are both LOW}}.$

Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is written into the memory location specified on the address pins (A $_0$ through A $_{10}$).

Reading the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while Write Enable (\overline{WE}) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight I/O pins.

The I/O pins remain in high-impedance state when Chip Enable ($\overline{\text{CE}}$) or Output Enable ($\overline{\text{OE}}$) is HIGH or Write Enable ($\overline{\text{WE}}$) is LOW.

The CY7C128A utilizes a die coat to insure alpha immunity.

Selection Guide

		7C128A-15	7C128A-20	7C128A-25	7C128A-35	7C128A-45
Maximum Access Time (ns)		15	20	25	35	45
Maximum Operating	Commercial	120	120	120	120	120
Current (mA)	Military	-	125	125	125	125
Maximum Standby Current (mA)	Commercial	40	20	20	20	20
	Military	-	20	20	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage to Ground Potential

(Pin 28 to Pin 14) –0.5V to +7.0V

DC Voltage Applied to Outputs

in High Z State -0.5V to +7.0V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Military ^[1]	−55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[2]

				7C12	8A-15	7C12	8A-20	7C12	8A-25	7C128	A-35,45	
Parameter	Description	Test Conditi	ons	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$		2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} =	8.0 mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC}	2.2	V _{CC}	2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[3]			-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_CC$		-10	+10	-10	+10	-10	+10	-10	+10	μА
I _{OZ}	Output Leakage Current	$\begin{array}{l} GND \leq V_I \leq V_{CC} \\ Output\ Disabled \end{array}$		-10	+10	-10	+10	-10	+10	-10	+10	μА
I _{OS}	Output Short CircuitCurrent ^[4]	$V_{CC} = Max.,$ $V_{OUT} = GND$			-300		-300		-300		-300	mA
I _{CC}	V _{CC} Operating	V _{CC} = Max.	Com'l		120		120		120		120	mA
	Supply Current	I _{OUT} = 0 mA	Mil		-		125		125		125	
I _{SB1}	Automatic CE	Max. V _{CC} ,	Com'l		40		40		20		20	mA
	Power-Down Current	CE ≥ V _{IH,} Min. Duty Cycle = 100%	Mil		-		40		40		20	
I _{SB2}	Automatic CE Power-Down	$\frac{\text{Ma} \text{x. V}_{\text{CC}},}{\text{CE}_1 \ge \text{V}_{\text{CC}} - 0.3\text{V},}$	Com'l		40		20		20		20	mA
	Current	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	Mil		-		20		20		20	

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}\text{C}, f = 1 \text{ MHz}, $ $V_{CC} = 5.0\text{V}$	10	pF
C _{OUT}	Output Capacitance		10	pF

Notes:

- $T_{\mbox{\scriptsize A}}$ is the "instant on" case temperature.
- 2.
- See the last page of this specification for Group A subgroup testing information.

 V_{IL} (min.) = -3.0V for pulse durations less than 30 ns.

 Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[2, 6]

		7C128A-15		7C128A-20		7C128A-25		7C128A-35		7C128A-45		
Parameter	Description	Min.	Max.	Unit								
READ CYC	LE						ı	ı				
t _{RC}	Read Cycle Time	15		20		25		35		45		ns
t _{AA}	Address to Data Valid		15		20		25		35		45	ns
t _{OHA}	Data Hold from Address Change	5		5		5		5		5		ns
t _{ACE}	CE LOW to Data Valid		15		20		25		35		45	ns
t _{DOE}	OE LOW to Data Valid		10		10		12		15		20	ns
t _{LZOE}	OE LOW to Low Z	3		3		3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[7]		8		8		10		12		15	ns
t _{LZCE}	CE LOW to Low Z ^[8]			5		5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		8		8		10		15		15	ns
t _{PU}	CE LOW to Power-Up	0		0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		15		20		20		20		25	ns
WRITE CYC	CLE ^[9]											
t _{WC}	Write Cycle Time	15		20		20		25		40		ns
t _{SCE}	CE LOW to Write End	12		15		20		25		30		ns
t _{AW}	Address Set-Up to Write End	12		15		20		25		30		ns
t _{HA}	Address Hold from Write End	0		0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		15		20		20		ns
t _{SD}	Data Set-Up to Write End	10		10		10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[7]		7		7		7		10		15	ns
t _{LZWE}	WE HIGH to Low Z	5		5		5		5		5		ns

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. 6.

- t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1^[10, 11]

Read Cycle No. 2^[10, 12]

Write Cycle No. 1 (WE Controlled)^[9,]

Notes:

- 10. WE is HIGH for read cycle.
 11. Device is continuously selected. OE, CE = V_{IL}.
 12. Address valid prior to or coincident with CE transition LOW.
 13. Data I/O pins enter high-impedance state, as shown, when OE is held LOW during write.

Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)[9, 13, 14]

Notes:

14. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C128A-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-15VC	V13	24-Lead Molded SOJ	
	CY7C128A-15SC	S13	24-Lead (300-Mil) Molded SOIC	
20			24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-20VC	V13	24-Lead Molded SOJ	
	CY7C128A-20SC	S13	24-Lead (300-Mil) Molded SOIC	
	CY7C128A-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C128A-20LMB	L53	24-Pin Rectangular Leadless Chip Carrier	
25	CY7C128A-25PC P13		24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-25VC	V13	24-Lead Molded SOJ	
	CY7C128A-25SC	S13	24-Lead (300-Mil) Molded SOIC	
	CY7C128A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
35			24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-35VC	V13	24-Lead Molded SOJ	
	CY7C128A-35SC	S13	24-Lead (300-Mil) Molded SOIC	
	CY7C128A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
45	CY7C128A-45PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-45VC	V13	24-Lead Molded SOJ	
	CY7C128A-45SC	S13	24-Lead (300-Mil) Molded SOIC	
	CY7C128A-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C128A-45LMB	L53	24-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
l _{OZ}	1, 2, 3
Icc	1, 2, 3
I _{SB}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
t _{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

.330 .390

51-80031

Package Diagrams

24-Lead (300-Mil) CerDIP D14 MIL-STD-1835 D-9 Config.A PIN 1 -DIMENSIONS IN INCHES 245 310 <u>MIN.</u> MAX. 065 095 .005 MIN. BASE PLANE 1.230 .290 <u>.155</u> .200 320 1.280 015 060 .150 MIN. .009 .012 3° 15° .090 .045 .065 .110

24-Pin Rectangular Leadless Chip Carrier L53

015 020 SEATING PLANE

Package Diagrams (continued)

24-Lead (300-Mil) Molded DIP P13/P13A

24-Lead (300-Mil) Molded SOJ V13

Document Title: CY7C128A 2K x 8 Static RAM Document Number: 38-05028						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	106814	09/10/01	SZV	Change from Spec number: 38-00094 to 38-05028		