Tensor decomposition and completion

Yuxin Chen
Princeton University Fal

Princeton University, Fall 2018

Outline

- Tensor decomposition
- ullet Latent variable models & tensor decomposition
- Tensor power method
- Tensor completion

Tensor decomposition

Tensor

An order-d tensor $T=[T_{i_1,\cdots,i_d}]_{1\leq i_1,\cdots,i_d\leq n}$ is a d-way array

• a matrix is a tensor of order 2

Ubiquity of high-dimensional tensor data

computational genomics

— fig. credit: Schreiber et al. 19

dynamic MRI

— fig. credit: Liu et al. 17

Basics

ullet Rank-1 tensor: $T=x\otimes x\otimes x$ denotes a tensor such that

$$T_{i_1,\cdots,i_d}=x_{i_1}x_{i_2}\cdots x_{i_d}$$

• the inner product of two tensors T and A:

$$\langle \boldsymbol{T}, \boldsymbol{A} \rangle := \sum_{i_1, \cdots, i_d} T_{i_1, \cdots, i_d} A_{i_1, \cdots, i_d}$$

• the Frobenius norm of a tensor T:

$$\|oldsymbol{T}\|_{ ext{F}} := \sqrt{\sum_{i_1,\cdots,i_d} T_{i_1,\cdots,i_d}^2}$$

ullet the operator norm of an order-d tensor $oldsymbol{T}$:

$$\|T\| = \max_{\{u_i\}: \|u_i\|_2 = 1} \langle T, u_1 \otimes \cdots \otimes u_d \rangle$$

Tensor decomposition

Suppose we observe an order-d tensor

$$T = \sum_{i=1}^r \lambda_i m{u}_i \otimes m{u}_i \otimes \cdots \otimes m{u}_i$$
 = $m{+} \cdots m{+}$ true tensor rank-1 tensor

Question: can we recover $\{u_i\}$ and $\{\lambda_i\}$ given T?

- if d=2 (matrix case), it is often not recoverable; what if $d \geq 3$?
- this question arises in a number of latent-variable models

Latent variable models and tensor decomposition

Notation

• probability simplex

$$\Delta_n := \{ \boldsymbol{z} \in \mathbb{R}^n \mid z_i \ge 0, \forall i; \ \boldsymbol{1}^\top \boldsymbol{z} = 1 \}$$

ullet any vector $oldsymbol{w} \in \Delta_n$ represents a distribution (or probability mass function) over n objects

A simple topic model

Consider a collection of documents

- r: the number of distinct topics
- n: the number of distinct words in vocabulary

A simple topic model

Consider a collection of documents

- each time, draw 3 words as follows
 - o pick a topic h according to distribution $[w_1,\cdots,w_r]\in\Delta_r$ s.t. $\mathbb{P}\{h=j\}=w_j, \qquad 1\leq j\leq r$

 \circ given topic h, draw 3 independent words from this topic according to the distribution

$$\mu_h \in \Delta_n$$
 determined only by the topic

Goal: recover $\{\mu_i\}$ and $\{w_i\}$ from the collected samples

Moment method for the topic model

Denote the 3 words we draw as $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)} \in \mathbb{R}^n$:

$$oldsymbol{x}^{(i)} = oldsymbol{e}_j$$
 if the i th word is j

It is straightfoward to check

$$egin{aligned} oldsymbol{M}_2 &:= \mathbb{E}ig[oldsymbol{x}^{(1)} \otimes oldsymbol{x}^{(2)}ig] = \sum_{i=1}^r w_i oldsymbol{\mu}_i \otimes oldsymbol{\mu}_i \ oldsymbol{M}_3 &:= \mathbb{E}ig[oldsymbol{x}^{(1)} \otimes oldsymbol{x}^{(2)} \otimes oldsymbol{x}^{(3)}ig] = \sum_{i=1}^r w_i oldsymbol{\mu}_i \otimes oldsymbol{\mu}_i \otimes oldsymbol{\mu}_i \end{aligned}$$

- ullet M_2 , M_3 can be reliably estimated when we have many samples
- recovering $\{\mu_i\}$ and $\{w_i\}$ from M_2 , M_3 \iff tensor decomposition

Latent Dirichlet allocation (LDA)

More complicated topic models: mixed membership models, where each data might belong to multiple latent classes simultaneously

This means: the latent variable h is no longer an indicator of topics, but rather, a topic mixture $\pmb{h} \in \Delta_r$

Latent Dirichlet allocation (LDA)

- n: the number of distinct words in the vocabulary
- r: the number of distinct topics
- topic i has word distribution $\mu_i \in \Delta_n \ (1 \le i \le n)$
- each time, draw 3 words as follows
 - \circ draw topic mixture $oldsymbol{h} \in \Delta_r$ according to Dirichlet distribution

$$p_{\alpha}(\boldsymbol{h}) = \frac{\Gamma(\alpha_0)}{\prod_{i=1}^r \Gamma(\alpha_i)} \prod_{i=1}^r h_i^{\alpha_i - 1}$$

 \circ draw $x^{(1)}, x^{(2)}, x^{(3)} \in \mathbb{R}^n$ independently according to the *mixed distribution* $\sum_{i=1}^r h_i \mu_i$

Moment method for latent Dirichlet allocation

$$\begin{split} \boldsymbol{M}_{1} &:= \mathbb{E}[\boldsymbol{x}^{(1)}] \\ \boldsymbol{M}_{2} &:= \mathbb{E}[\boldsymbol{x}^{(1)} \otimes \boldsymbol{x}^{(2)}] - \frac{\alpha_{0}}{\alpha_{0} + 1} \boldsymbol{M}_{1} \otimes \boldsymbol{M}_{1} = \sum_{i=1}^{r} \frac{\alpha_{i}}{(\alpha_{0} + 1)\alpha_{0}} \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \\ \boldsymbol{M}_{3} &:= \mathbb{E}[\boldsymbol{x}^{(1)} \otimes \boldsymbol{x}^{(2)} \otimes \boldsymbol{x}^{(3)}] - \frac{\alpha_{0}}{\alpha_{0} + 2} \\ & \cdot \left(\mathbb{E}[\boldsymbol{x}^{(1)} \otimes \boldsymbol{x}^{(2)} \otimes \boldsymbol{M}_{1}] + \mathbb{E}[\boldsymbol{x}^{(1)} \otimes \boldsymbol{M}_{1} \otimes \boldsymbol{x}^{(2)}] + \mathbb{E}[\boldsymbol{M}_{1} \otimes \boldsymbol{x}^{(1)} \otimes \boldsymbol{x}^{(2)}] \right) \\ & + \frac{2\alpha_{0}^{2}}{(\alpha_{0} + 2)(\alpha_{0} + 1)} \boldsymbol{M}_{1} \otimes \boldsymbol{M}_{1} \otimes \boldsymbol{M}_{1} \\ &= \sum_{i=1}^{r} \frac{2\alpha_{i}}{(\alpha_{0} + 2)(\alpha_{0} + 1)\alpha_{0}} \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \end{split}$$

- estimate M_1 , M_2 , M_3 from samples (assuming α_0 is known)
- recover $\{\mu_i\}$ and $\{\alpha_i\}_{i\geq 1}$ from M_2 , M_3 (tensor decomposition)

Gaussian mixture model

- r Gaussian distributions $\mathcal{N}(\boldsymbol{\mu}_i, \sigma^2 \boldsymbol{I}_n)$ $(1 \leq i \leq r)$
- ullet a sample $oldsymbol{x} \in \mathbb{R}^n$ is drawn as follows
 - \circ the latent indicator variable h is generated according to distribution $[w_1,\cdots,w_r]\in\Delta_r$ s.t.

$$\mathbb{P}(h=i) = w_i, \qquad 1 \le i \le r$$

 \circ generate $oldsymbol{x}$ from $\mathcal{N}(oldsymbol{\mu}_h, \sigma^2 oldsymbol{I}_n)$

Moment method for Gaussian mixture model

$$egin{aligned} m{M}_2 &:= \mathbb{E}[m{x} \otimes m{x}] - \sigma^2 m{I} = \sum_{i=1}^r w_i m{\mu}_i \otimes m{\mu}_i \ m{M}_3 &:= \mathbb{E}[m{x} \otimes m{x} \otimes m{x}] \ &- \sigma^2 \sum_{i=1}^n \left(\mathbb{E}[m{x}] \otimes m{e}_i \otimes m{e}_i + m{e}_i \otimes \mathbb{E}[m{x}] \otimes m{e}_i + m{e}_i \otimes m{e}_i \otimes m{e}_i \otimes \mathbb{E}[m{x}]
ight) \ &= \sum_{i=1}^r w_i m{\mu}_i \otimes m{\mu}_i \otimes m{\mu}_i \otimes m{\mu}_i \end{aligned}$$

- ullet M_2 , M_3 and $\mathbb{E}[oldsymbol{x}]$ can all be reliably estimated when there are many samples
- recover $\{\mu_i\}$ and $\{w_i\}$ from M_2 , M_3 (tensor decomposition)

Main task

Given

$$egin{aligned} m{M}_2 &= \sum_{i=1}^r \lambda_i m{u}_i \otimes m{u}_i \ m{M}_3 &= \sum_{i=1}^r \lambda_i m{u}_i \otimes m{u}_i \otimes m{u}_i \end{aligned}$$

where $\lambda_i > 0$

Question: can we recover $\{\lambda_i\}$ and $\{u_i\}$ from M_2 and M_3 ?

An easier case: orthogonal decomposition

Given

$$egin{aligned} m{M}_2 &= \sum_{i=1}^r \lambda_i m{u}_i \otimes m{u}_i \ m{M}_3 &= \sum_{i=1}^r \lambda_i m{u}_i \otimes m{u}_i \otimes m{u}_i \end{aligned}$$

where $\lambda_i > 0$, $r \leq n$, and $\{u_i\}$ are orthonormal

Question: can we recover $\{\lambda_i\}$ and $\{u_i\}$ from M_2 and M_3 ?

Tensor power method

Define

$$oldsymbol{T}(oldsymbol{I},oldsymbol{x},\cdots,oldsymbol{x})\coloneqq \sum_{i=1}^r \lambda_i (oldsymbol{u}_i^ opoldsymbol{x})^{d-1}oldsymbol{u}_i$$

• if d = 2 (matrix case): T(I, x) = Tx

Algorithm 5.1 Tensor power method

- 1: **initialize** $x_0 \leftarrow \mathsf{random}$ unit vector
- 2: **for** $t = 1, 2, \cdots$ **do**
- 3: $oldsymbol{x}_t = oldsymbol{T}(oldsymbol{I}, oldsymbol{x}_{t-1}, \cdots, oldsymbol{x}_{t-1})$ (power iteration)
- 4: $x_t \leftarrow \frac{1}{\|x_t\|_2} x_t$ (re-normalization)

Convergence analysis

Theorem 5.1 (Convergence of tensor power method)

Suppose $\{u_i\}$ are orthonormal, $\lambda_i>0$ $(1\leq i\leq r)$, $r\leq n$, and d=3. Then for any $1\leq i\leq r$,

$$1 - \frac{\left(\boldsymbol{u}_i^{\top} \boldsymbol{x}_t\right)^2}{\|\boldsymbol{x}_t\|_2^2} \leq \lambda_i^2 \sum_{j:j \neq i} \lambda_j^{-2} \left(\frac{\lambda_j \boldsymbol{u}_j^{\top} \boldsymbol{x}_0}{\lambda_i \boldsymbol{u}_i^{\top} \boldsymbol{x}_0}\right)^{2^{t+1}}$$

- ullet tensor power method converges quadratically to some u_i
- ullet it converges to a point $oldsymbol{u}_i$ associated with the largest $\lambda_i oldsymbol{u}_i^ op oldsymbol{x}_0$
 - o both the eigenvalue and the initial point matter!

Proof of Theorem 5.1

Note that removing "re-normalization" steps does not affect $\frac{(u_i^{\top}x_t)^2}{\|x_t\|_2^2}$ at all. For simplicity, we assume

$$oldsymbol{x}_t = oldsymbol{T}(oldsymbol{I}, oldsymbol{x}_{t-1}, oldsymbol{x}_{t-1}) = \sum_{i=1}^r \lambda_i (oldsymbol{u}_i^ op oldsymbol{x}_{t-1})^2 oldsymbol{u}_i$$

Observe that

ullet since $oldsymbol{x}_1 = \sum_{i=1}^r \lambda_i (oldsymbol{u}_i^ op oldsymbol{x}_0)^2 oldsymbol{u}_i$, we have

$$\left(oldsymbol{u}_i^ op oldsymbol{x}_1
ight)^2 = \lambda_i^2 (oldsymbol{u}_i^ op oldsymbol{x}_0)^4$$

ullet since $oldsymbol{x}_2 = \sum_{i=1}^r \lambda_i (oldsymbol{u}_i^ op oldsymbol{x}_1)^2 oldsymbol{u}_i$, we have

$$\left(oldsymbol{u}_i^{ op}oldsymbol{x}_2
ight)^2 = \lambda_i^2(oldsymbol{u}_i^{ op}oldsymbol{x}_1)^4 = \lambda_i^6(oldsymbol{u}_i^{ op}oldsymbol{x}_0)^8$$

ullet since $oldsymbol{x}_3 = \sum_{i=1}^r \lambda_i (oldsymbol{u}_i^ op oldsymbol{x}_2)^2 oldsymbol{u}_i$, we have

$$\left(oldsymbol{u}_i^ op oldsymbol{x}_3
ight)^2 = \lambda_i^2 (oldsymbol{u}_i^ op oldsymbol{x}_2)^4 = \lambda_i^{14} (oldsymbol{u}_i^ op oldsymbol{x}_0)^{16}$$

Proof of Theorem 5.1 (cont.)

By induction, one has

$$(\boldsymbol{u}_{i}^{\top} \boldsymbol{x}_{t})^{2} = \lambda_{i}^{2^{t+1}-2} (\boldsymbol{u}_{i}^{\top} \boldsymbol{x}_{0})^{2^{t+1}}, \qquad 1 \leq i \leq r$$

This implies

$$\frac{\left(\boldsymbol{u}_{i}^{\top}\boldsymbol{x}_{t}\right)^{2}}{\|\boldsymbol{x}_{t}\|_{2}^{2}} = \frac{\left(\boldsymbol{u}_{i}^{\top}\boldsymbol{x}_{t}\right)^{2}}{\sum_{j=1}^{r}\left(\boldsymbol{u}_{j}^{\top}\boldsymbol{x}_{t}\right)^{2}} = \frac{\left(\lambda_{i}\boldsymbol{u}_{i}^{\top}\boldsymbol{x}_{0}\right)^{2^{t+1}}}{\sum_{j=1}^{r}\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{2}\left(\lambda_{j}\boldsymbol{u}_{j}^{\top}\boldsymbol{x}_{0}\right)^{2^{t+1}}}$$

and hence

$$1 - \frac{\left(\boldsymbol{u}_{i}^{\top}\boldsymbol{x}_{t}\right)^{2}}{\|\boldsymbol{x}_{t}\|_{2}^{2}} = \frac{\sum_{j:j\neq i} \left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{2} (\lambda_{j}\boldsymbol{u}_{j}^{\top}\boldsymbol{x}_{0})^{2^{t+1}}}{\sum_{j} \left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{2} (\lambda_{j}\boldsymbol{u}_{j}^{\top}\boldsymbol{x}_{0})^{2^{t+1}}}$$

$$\leq \frac{\sum_{j:j\neq i} \left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{2} (\lambda_{j}\boldsymbol{u}_{j}^{\top}\boldsymbol{x}_{0})^{2^{t+1}}}{(\lambda_{i}\boldsymbol{u}_{i}^{\top}\boldsymbol{x}_{0})^{2^{t+1}}}$$

$$= \lambda_{i}^{2} \sum_{j:j\neq i} \lambda_{j}^{-2} \left(\frac{\lambda_{j}\boldsymbol{u}_{j}^{\top}\boldsymbol{x}_{0}}{\lambda_{i}\boldsymbol{u}_{i}^{\top}\boldsymbol{x}_{0}}\right)^{2^{t+1}}$$

General case: reduction to orthogonally decomposable tensors

Suppose $r \leq n$, but $\{u_i\}$ are not orthonormal

Key idea: use M_2 to find a "whitening matrix" that allows us to orthogonalize $\{u_i\}$

General case: reduction to orthogonally decomposable tensor

Let $m{W}$ be a whitening matrix (e.g. $m{W} = m{U} m{\Lambda}^{-1/2}$) obeying

$$\boldsymbol{W}^{\top} \boldsymbol{M}_2 \boldsymbol{W} = \boldsymbol{I} \tag{5.1}$$

Then

$$egin{aligned} oldsymbol{M}_3(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}) &= \sum_{i=1}^r \lambda_i (oldsymbol{W}^ op oldsymbol{u}_i) \otimes (oldsymbol{W}^ op oldsymbol{u}_i) \otimes (oldsymbol{W}^ op oldsymbol{u}_i) \ &= \sum_{i=1}^r \lambda_i ilde{oldsymbol{u}}_i \otimes ilde{oldsymbol{u}}_i \otimes ilde{oldsymbol{u}}_i \end{array}$$

where $\{ ilde{u}_i\}$ become orthonormal vectors

ullet use the tensor power method to recover $\{ ilde{m{u}}_i\}$

Reference

- "Tensor decompositions for learning latent variable models,"
 A. Anandkumar, R. Ge, D. Hsu, S. Kakade, Journal of machine learning research, 2014.
- "Tensor decompositions and applications," T. Kolda, B. Bader, SIAM review, 2009.
- "Orthogonal tensor decompositions," T. Kolda, SIAM journal on matrix analysis and applications, 2001.
- "Spectral learning on matrices and tensors," M. Janzamin, R. Ge, J. Kossaifi and A. Anandkumar, Foundations and Trends in Machine Learning, 2019.
- "On the best rank-1 and rank- (R_1, R_2, \cdots, R_n) approximation of higher-order tensors," L. De Lathauwer, B. De Moor, J. Vandewalle, SIAM journal on matrix analysis and applications, 2000.

Reference

- "Spectral algorithms for tensor completion," A. Montanari, N. Sun, Communications on pure and applied mathematics, 2018.
- "Subspace estimation from unbalanced and incomplete data matrices: $\ell_{2,\infty}$ statistical guarantees," C. Cai, G. Li, Y. Chi, H. V. Poor, Y. Chen, Annals of Statistics, 2020.