1、软件介绍

本软件主要针对遥感产品的时空矛盾问题,采用时空非局部滤波融合方法(STNLFFM)对多源遥感数据的时空互补信息进行有效融合,从而生成兼具高时间和高空间分辨率特征的遥感定量产品。软件支持4种产品(地表反射率产品、地表温度产品、归一化指数类产品和土壤湿度产品)、3种模式(单时相辅助融合、双时相辅助融合和批处理融合)的融合处理,并内置常用数据产品融合所需的参数。界面简洁,操作方便,可满足不同用户群体的应用需求。本软件融合生成的多种高时空分辨率数据产品,可用于环境监测、生态保护、资源管理等领域的科学研究和决策支持,具有较为广阔的应用前景。

本软件相应算法详见 Q. Cheng, H. Liu, H. Shen, P. Wu, and L. Zhang, "A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method," IEEE Transactions on Geoscience and Remote Sensing, vol.55, no.8, pp. 4476–4488, 2017.。请使用本软件的单位或个人在研究成果中引用该文献。

2、使用环境

- ▶ 操作系统: Windows XP/7/8/10 32 位/64 位
- ▶ 内存配置:建议 4G 及以上

3、界面功能

本软件界面设计如图 1 所示。界面主要分为 3 个模块,分别是基本设置、输入和输出、模型参数。

图 1 多源遥感信息融合软件界面

3.1 基本设置

"基本设置"模块如图 2 所示,用于选择融合产品类型和融合模式。

融合产品: ☑ 反射率 □ 地表温度 □ 指数产品 □ 土壤湿度 融合模式: ☑ 单时相辅助融合 □ 双时相辅助融合 □ 批处理	基本设置					
融合模式: 🗹 单时相辅助融合 🔲 双时相辅助融合 📄 批处理	融合产品:	☑ 反射率	🔲 地表温度	■ 指数产品	🔲 土壤湿度	
	融合模式:	☑ 单时相辅助融合	🔲 双时相辅助融合	□ 批处理		

图 2 基本设置模块界面

融合产品:提供4种遥感参量产品类型选项,分别是地表反射率、地表温度、指数类产品和土壤湿度。不同类型产品因数值范围不同,程序处理模块存在细微差异。此外,不同产品类型所对应的模型参数不同,在勾选相应产品后,模型参数模块会自动变化为推荐参数(详见3.3节)。

融合模式:提供3种融合模式选项,分别为单时相辅助融合、双时相辅助融合和批处理。其中,单时相辅助融合以1组高/低空间分辨率数据为辅助;双时相辅助融合以2组高/低空间分辨率数据为辅助;批处理模式用于数据批量融合处理,其本质仍为上述两种融合模式。不同融合模式所需的输入文件存在差异。使用本软件时,勾选所需的融合模式,输入/输出模块将会激活需要输入的部分,禁用无需输入的部分。

3.2 输入/输出

"输入/输出"模块用于提供输入数据和输出数据的路径。本软件支持 GeoTiff、ENVI Standard 等数据格式,要求输入数据不存在无效值。不同融合模式下需要的输入见表 1。

融合模式	输入
	参考时相 T1 高分辨率数据路径
单时相辅助融合	参考时相 T1 低分辨率数据路径
	目标时相 TO 低分辨率数据路径
	参考时相 T1 高分辨率数据路径
	参考时相 T1 低分辨率数据路径
双时相辅助融合	参考时相 T2 高分辨率数据路径
	参考时相 T2 低分辨率数据路径
	目标时相 T0 低分辨率数据路径
批处理	批处理输入文件路径

表 1 不同融合模式下的输入

选择融合模式后,输入/输出模块会自动激活需要输入的部分,禁用无需输入的部分。 以双时相辅助融合模式为例,其对应的输入/输出模块界面如图 3 所示。点击相应的"浏览" 按钮,可指定输入/输出文件路径。

输入/输出	
参考时相T1高分辨率数据:	浏览
参考时相T1低分辨率数据:	浏览
参考时相T2高分辨率数据:	浏览
参考时相T2低分辨率数据:	浏览
融合时相TO低分辨率数据:	浏览
输出数据路径:	浏览
批处理输入文件路径:	浏览

图 3 双时相辅助融合模式下的输入/输出模块界面

"批处理"模式下,需要提供批处理输入文件。该文件用于指定多次融合过程的输入/输出文件路径,其格式要求如下:

- 1) 一次融合过程所需数据的路径写在一行内,不可分为多行;
- 2) 单时相辅助融合需指定 4 个文件路径,要求排列顺序为目标时相 T0 低分辨率数据路径、参考时相 T1 高分辨率数据路径、参考时相 T1 低分辨率数据路径、输出数据路径;双时相辅助融合需指定 6 个文件路径,要求排列顺序为目标时相 T0 低分辨率数据路径、参考时相 T1 高分辨率数据路径、参考时相 T1 低分辨率数据路径、参考时相 T2 高分辨率数据路径、参考时相 T2 高分辨率数据路径、参考时相 T2 低分辨率数据路径、参考时相 T2 低分辨率数据路径、输出数据路径。所有文件路径以英文格式的逗号","隔开,注意不包含空格。

3.3 模型参数

模型参数模块界面如图 4 所示,用于提供进行输入融合的相关参数值。本软件需由用户确定 7 个模型参数。参数及其作用见表 2。

图 4 模型参数模块界面

表 2 模型参数和含义

含义/作用			
限定相似像元搜索范围			
计算相似像元筛选阈值			
计算相似像元筛选阈值			
计算相似像元筛选阈值			
确定转换系数的求解方式。若勾选,则基于相似像元			
进行回归求解; 若不勾选, 则基于单点信息求解			
用于确定参与个体权重计算的图块大小			
用于计算个体权重			

用户可自行输入参数或通过调节框对参数进行调节。针对特定数据源下的 4 种遥感参量产品,本软件内嵌了用于融合处理的推荐参数(见表 3)。勾选产品类型后,模型参数部分

会自动变化为推荐参数。需要说明的是,软件提供的4组推荐参数仅对特定数据源适用,用户若使用其他数据源或其他参量产品,应对模型参数进行调试,以保证融合数据的精度。

产品	数据源	搜索	光谱	高分	低分	权重	滤波
类型	数据源	窗口	参数	误差	误差	图块	参数
地表反射率	Landsat/MODIS	51	0.01	0.005	0.005	1	0.15
地表温度	Landsat/MODIS	5	0.5	0.5	0.5	1	5
NDVI 指数	MODIS/AVHRR	51	0.01	0.005	0.005	1	0.15
土壤湿度	SMAP 9 km/	5	0.01	0.005	0.005	1	0.15
上、表他/支	SMAP 36 km	3	0.01	0.003	0.003	1	0.13

表 3 4 种遥感产品的推荐参数

3.4 其他

(1) 确定

在上述设置无误的情况下,点击"确定"按钮后,开始进行数据融合。融合完成后,界面上出现消息提示框,提示用户融合已完成,并告知融合过程耗费的时间。

(2) 帮助

点击"帮助"按钮后,弹出帮助文档(如图5所示)。

图 5 帮助文档界面

4、操作步骤

本软件无需进行安装,直接打开"多源遥感时空融合软件.exe",对相应模块进行设置。数据融合的操作流程如图 6 所示。

图 6 程序运行流程

以 Landsat 和 MODIS 地表反射率数据为例,分别对单时相辅助融合、多时相辅助融合和批处理融合的操作步骤进行演示。示例数据如下:

- 1) 2001 年 10 月 8 日的 Landsat 和 MODIS 数据,分别命名为"L_20011008.tif"和"M 20011008.tif";
- 2) 2001 年 11 月 2 日的 Landsat 和 MODIS 数据,分别命名为"L_20011102.tif"和"M 20011102.tif";
 - 3) 2001年10月17的MODIS数据,命名为"M_20011017.tif";

示例中,所有数据均存放在路径为"E:\data"的文件夹下。输出数据同样存储在该文件夹下。

4.1 单时相辅助融合

本例中,使用 2001 年 11 月 2 日的一组 Landsat/MODIS 数据和 2001 年 10 月 17 日的 MODIS 数据作为输入,融合产生 2001 年 10 月 17 日的 Landsat 数据(命名为"Output_20011017_OneRef.tif")。其操作过程如下。

(1) 设置产品类型和融合模式

如图 7 所示,"融合产品"模块中,勾选"反射率"选项。"融合模式"模块中,勾选"单时相辅助融合"选项。

图 7 融合产品和融合模式设置

(2) 指定输入/输出数据路径

如图 8 所示,无需输入的部分已被禁用。在需要输入的部分,分别指定对应输入/输出数据的路径。

多考时相T1高分辨率数据:	E:/data/L_20011102.tif	浏览
参考时相T1低分辨率数据:	E:/data/M_20011102.tif	浏览
参考时相T2高分辨率数据:		浏览
参考时相T2低分辨率数据:		浏览
融合时相TO低分辨率数据:	E:/data/M_20011017.tif	浏览
输出数据路径:	E:/data/output_20011017_OneRef. tif	浏览
批处理输入文件路径:		浏览

图 8 输入/输出设置

(3) 设置模型参数

本例中使用软件内置的推荐参数(如图 9 所示)。用户可根据需要对相应参数值进行修改,以获得更高的融合精度。

图 9 模型参数设置

(4) 开始运行

点击"确定"按钮,开始运行程序。完成后,界面上出现如图 10 所示的提示框,提示融合已完成,并显示融合过程耗费的时间。

图 10 融合完成后的提示框

(5) 查看输出结果

输出影像在指定的存储位置处,用户可自行查看。

4.2 双时相辅助融合

本例中,使用 2001 年 10 月 8 日和 2001 年 11 月 2 日的两组 Landsat/MODIS 数据和 2001 年 10 月 17 日的 MODIS 数据作为输入,融合产生 2001 年 10 月 17 日的 Landsat 数据(命名为"Output_20011017_TwoRef.tif")。其操作过程与单时相融合基本相同,主要差别在融合模式和输入/输出模块的设置(详细设置如图 11 所示)。

图 11 双时相辅助融合界面设置示例

融合完成后,软件弹出相关提示。输出影像存储在指定位置处,用户可自行查看。

4.3 批处理

本例使用批处理模式,对上述两次融合过程进行批量化处理。该模式下,用户需提供一个用于指定多次融合的输入/输出数据路径的文本文件。按照 3.2 节中的编写规则,文本文件(命名为"Batch.txt")内容如下:

E:\data\M_20011017.tif,E:\data\L_20011102.tif,E:\data\M_20011102.tif,E:\data\output_20011017. OneRef.tif

完成文本文件编写后,对软件界面进行相关设置。其操作过程与单时相融合基本相同,

主要差别在融合模式和输入/输出模块的设置(详细设置如图 12 所示)。

图 12 批处理融合界面设置示例

融合完成后,软件弹出相关提示。输出影像存储在指定位置处,用户可自行查看。