Regression - Victor Kitov

Regression

Victor Kitov

- 1 Linear regression
- 2 Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- Madaraya-Watson regression

Linear regression

- Linear model $f(x, \beta) = \langle x, \beta \rangle = \sum_{i=1}^{D} \beta_i x^i$
- Define $X \in \mathbb{R}^{N \times D}$, $\{X\}_{ij}$ defines the *j*-th feature of *i*-th object, $Y \in \mathbb{R}^n$, $\{Y\}_i$ target value for *i*-th object.
- Ordinary least squares (OLS) method:

$$\sum_{n=1}^{N} (f(x_n, \beta) - y_n)^2 = \sum_{n=1}^{N} \left(\sum_{d=1}^{D} \beta_d x_n^d - y_n \right)^2 \rightarrow \min_{\beta}$$

Solution

Stationarity condition:

$$2\sum_{n=1}^{N} x_n \left(\sum_{d=1}^{D} \beta_d x_n^d - y_n \right) = 0$$

In matrix form:

$$2X^T(X\beta - Y) = 0$$

SO

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

This is the global minimum, because the optimized criteria is convex.

 Geometric interpretation of linear regression, estimated with OLS.

Linearly dependent features

- Solution $\widehat{\beta} = (X^T X)^{-1} X^T Y$ exists when $X^T X$ is non-degenerate
- Using property $rank(X) = rank(X^T) = rank(X^TX) = rank(XX^T)$
 - problem occurs when one of the features is a linear combination of the other
 - example: constant unity feature c and one-hot-encoding $e_1, e_2, ... e_K$, because $\sum_k e_k \equiv c$
 - ullet interpretation: non-identifiability of \widehat{eta}
 - solved using:
 - feature selection
 - extraction (e.g. PCA)
 - regularization.

Analysis of linear regression

Advantages:

- single optimum, which is global (for the non-singular matrix)
- analytical solution
- interpretability algorithm and solution

Drawbacks:

- too simple model assumptions (may not be satisfied)
- X^TX should be non-degenerate (and well-conditioned)

- Linear regression
- 2 Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- Madaraya-Watson regression

Generalization by nonlinear transformations

Nonlinearity by x in linear regression may be achieved by applying non-linear transformations to the features:

$$x \to [\phi_0(x), \phi_1(x), \phi_2(x), \dots \phi_M(x)]$$

$$f(x) = \langle \phi(x), \beta \rangle = \sum_{m=0}^{M} \beta_m \phi_m(x)$$

The model remains to be linear in w, so all advantages of linear regression remain.

Typical transformations

$\phi_k(x)$	comments
$\left[\exp\left\{-\frac{\left\ x-\mu\right\ ^2}{s^2}\right\} \right]$	closeness to point μ in feature space
$x^i x^j$	interaction of features
ln x _k	the alignment of the distribution
	with heavy tails
$F^{-1}(x_k)$	conversion of atypical continious
	distribution to uniform ¹

¹why?

- 1 Linear regression
- Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- Madaraya-Watson regression

Regularization

• Variants of target criteria $Q(\beta)$ with regularization²:

$$\begin{array}{ll} \sum_{n=1}^{N} \left(x_{n}^{T} \beta - y_{n} \right)^{2} + \lambda ||\beta||_{1} & \text{Lasso} \\ \sum_{n=1}^{N} \left(x_{n}^{T} \beta - y_{n} \right)^{2} + \lambda ||\beta||_{2}^{2} & \text{Ridge} \\ \sum_{n=1}^{N} \left(x_{n}^{T} \beta - y_{n} \right)^{2} + \lambda_{1} ||\beta||_{1} + \lambda_{2} ||\beta||_{2}^{2} & \text{Elastic net} \end{array}$$

• Dependency of β from $\frac{1}{\lambda}$:

 $^{^2}$ Derive solution for ridge regression. Will it be uniquely defined for correlated features? $_{11/23}$

Linear monotonic regression

 We can impose restrictions on coefficients such as non-negativity:

$$\begin{cases} Q(\beta) = ||X\beta - Y||^2 \to \min_{\beta} \\ \beta_i \ge 0, \quad i = 1, 2, ...D \end{cases}$$

- Example: avaraging of forecasts of different prediction algorithms
- $\beta_i = 0$ means, that *i*-th component does not improve accuracy of forecasting.

- 1 Linear regression
- 2 Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Nadaraya-Watson regression

Non-quadratic loss functions³⁴

³What is the value of constant prediction, minimizing sum of squared errors?

⁴What is the value of constant prediction, minimizing sum of absolute errors?

Conditional non-constant optimization

• For $x, y \sim P(x, y)$ and prediction being made for fixed x:

$$\arg\min_{f(x)} \mathbb{E}\left\{ (f(x) - y)^2 \, \middle| \, x \right\} = \mathbb{E}[y|x]$$

$$\arg\min_{f(x)} \mathbb{E}\left\{ \left| f(x) - y \right| \mid x \right\} = \mathrm{median}[y|x]$$

- 1 Linear regression
- 2 Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- Madaraya-Watson regression

Weighted account for observations⁵

• Weighted account for observations

$$\sum_{n=1}^{N} w_n (x_n^T \beta - y_n)^2$$

- Weights may be:
 - increased for incorrectly predicted objects
 - algorithm becomes more oriented on error correction
 - decreased for incorrectly predicted objects
 - they may be considered outliers that break our model

⁵Derive solution for weighted regression.

Robust regression

- Initialize $w_1 = ... = w_N = 1/N$
- Repeat:
 - estimate regression $\hat{y}(x)$ using observations (x_i, y_i) with weights w_i .
 - for each i = 1, 2, ...N:
 - re-estimate $\varepsilon_i = \widehat{y}(x_i) y_i$
 - recalculate $w_i = K(|\varepsilon_i|)$
 - normalize weights $w_i = \frac{w_i}{\sum_{n=1}^N w_n}$

Comments: $K(\cdot)$ is some decreasing function, repetition may be

- predefined number of times
- until convergence of model parameters.

Robust classification

- Initialize $w_1 = ... = w_N = 1/N$
- Repeat:
 - estimate classifier disriminant functions $\{g_y(\cdot)\}_{y=1,...C}$ using observations (x_i, y_i) with weights w_i .
 - for each i = 1, 2, ...N:
 - re-estimate $M_i = g_{y_i}(x_i) \max_{y \neq y_i} g_y(x_i)$
 - recalculate $w_i = K(M_i)$
 - normalize weights $w_i = \frac{w_i}{\sum_{n=1}^N w_n}$

Comments: $K(\cdot)$ is some *increasing* function, repetition may be

- predefined number of times
- until convergence of model parameters.

- 1 Linear regression
- 2 Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Nadaraya-Watson regression

Nadaraya-Watson regression

- Names: local constant regression, kernel regression
- For each x assume $f(x) = const = \alpha, \alpha \in \mathbb{R}$.

$$Q(\alpha, X_{training}) = \sum_{i=1}^{N} w_i(x)(\alpha - y_i)^2 \to \min_{\alpha \in \mathbb{R}}$$

 Weights depend on the proximity of training objects to the predicted object:

$$w_i(x) = K\left(\frac{\rho(x, x_i)}{h}\right)$$

• From stationarity condition $\frac{\partial Q}{\partial \alpha} = 0$ obtain optimal $\widehat{\alpha}(x)$:

$$f(x,\alpha) = \widehat{\alpha}(x) = \frac{\sum_{i=1}^{N} y_i w_i(x)}{\sum_{i=1}^{N} w_i(x)} = \frac{\sum_{i=1}^{N} y_i K\left(\frac{\rho(x,x_i)}{h}\right)}{\sum_{i=1}^{N} K\left(\frac{\rho(x,x_i)}{h}\right)}$$

Comments

Under certain regularity conditions $g(x, \alpha) \stackrel{P}{\to} E[y|x]$ Typically used kernel functions⁶:

$$K_G(r) = e^{-rac{1}{2}r^2} - ext{Gaussian kernel}$$

 $K_P(r) = (1-r^2)^2 \mathbb{I}[|r|<1] - ext{quartic kernel}$

- The specific form of the kernel function does not affect the accuracy much
- h controls the adaptability of the model to local changes in data
 - how h affects under/overfitting?
 - h can be constant or depend on x (if concentration of objects changes significantly)

⁶Compare them in terms of required/computation.

Example

