Intuition 1

Training and Prediction 1.1

- In training stage, KNN simply memorizes the training data (effectively a NOP operation)
- In prediction stage, for each **test** image KNN finds the nearest training data (that it previously memorized)
- As number of training samples approaches infinity, KNN can represent any function (subject to many technical conditions)
 - However, this suffers from curse of dimensionality
 - For uniform coverage of training space, number of training points increases exponentially with dimension

1.2 **Distance Metrics**

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

ı	test image					training image				pixel-	
	56	32	10	18	-	10	20	24	17		
	90	23	128	133		8	10	89	100	_	
	24	26	178	200		12	16	178	170	=	
	2	0	255	220		4	32	233	112		

wise absolute value differences 46 12 14 1 82 13 39 33 → 456 12 30 10 2 32

Figure 1

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

Figure 2

Per-pixel calculations 2

- General mean $\mu = \frac{1+2+3+4}{1*2*2}$
- Pixel-wise mean $\mu_{ij} = \begin{bmatrix} \mu_{11} \\ \mu_{12} \end{bmatrix} = \begin{bmatrix} \frac{1+3}{2} \\ \frac{2+4}{2} \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Figure 3: $p^{(k_1)}$ and $p^{(k_2)}$

3 L2 Distance - Fully vectorised

$$d_2(A,B) = \sqrt{\sum_p (A_p - B_p)^2} ; \text{ Where } \boldsymbol{A} \text{ and } \boldsymbol{B} \text{ are vectors indexed via } p$$

$$= \sqrt{\sum_p \left\{ (A_p)^2 - 2(A_p \cdot B_p) + (B_p)^2 \right\}}$$

$$= \sqrt{\left\{ \sum_p (A_p)^2 \right\} - 2\left\{ \sum_p (A_p \cdot B_p) \right\} + \left\{ \sum_p (B_p)^2 \right\}}$$

$$= \sqrt{\left\{ \sum_p (A_p)^2 \right\} - 2\left\{ \boldsymbol{A} \boldsymbol{B}^T \right\} + \left\{ \sum_p (B_p)^2 \right\}}$$

$$= \sqrt{\left\{ \sum_p (A_p)^2 \right\} + \left\{ \sum_p (B_p)^2 \right\} - 2\left\{ \boldsymbol{A} \boldsymbol{B}^T \right\}}$$

3.1 Context

Figure 4

- Training = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, Test = $\begin{bmatrix} 7 & 8 & 9 \end{bmatrix}$
- We want to calculate the L2 distance between test image and every training image

3.1.1 One loop

1. Broadcast;
$$(Tr - Te)_{broadcast} = \begin{bmatrix} 1 - 7 & 2 - 8 & 3 - 9 \\ 4 - 7 & 5 - 8 & 6 - 9 \end{bmatrix} = \begin{bmatrix} -6 & -6 & -6 \\ -3 & -3 & -3 \end{bmatrix}$$

2. Square terms;
$$(Tr - Te)_{broadcast}^2 = \begin{bmatrix} 36 & 36 & 36 \\ 9 & 9 & 9 \end{bmatrix}$$

3. Sum along rows;
$$\sum_{rows} (Tr - Te)_{broadcast}^2 = \begin{bmatrix} 36 + 36 + 36 \\ 9 + 9 + 9 \end{bmatrix} = \begin{bmatrix} 108 \\ 27 \end{bmatrix}$$

4. Square root;
$$\sqrt{\sum_{rows} (Tr - Te)_{broadcast}^2} = \begin{bmatrix} \sqrt{108} \\ \sqrt{27} \end{bmatrix}$$

3.1.2 No loop

1. Square **elements of** training matrix;
$$Tr_{squared} = \begin{bmatrix} 1 & 4 & 9 \\ 16 & 25 & 36 \end{bmatrix}$$

1.1.
$$\sum_{row} Tr_{squared} = \begin{bmatrix} 1+4+9\\16+25+36 \end{bmatrix} = \begin{bmatrix} 14\\77 \end{bmatrix}$$

2. Square elements of test matrix; $Te_{squared} = \begin{bmatrix} 49 & 64 & 81 \end{bmatrix}$

2.1.
$$\sum_{row} Te_{squared} = [49 + 64 + 81] = [194]$$

3. Broadcast;
$$\left(\sum_{row} Tr_{squared} + \sum_{row} Te_{squared}\right)_{broadcast} = \begin{bmatrix} 14 + 194 \\ 77 + 194 \end{bmatrix} = \begin{bmatrix} 208 \\ 271 \end{bmatrix}$$

4.
$$2(\mathbf{TrTe}^T) = 2 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 100 \\ 244 \end{bmatrix}$$

5.
$$\left(\sum_{row} Tr_{squared} + \sum_{row} Te_{squared}\right)_{broadcast} - 2(TrTe^T)$$