Travail 3 - Circuits équivalents

Wats Raphaël

February 26, 2021

1 Schéma du circuit

2 Détail des calculs

• Calcul de la résistance équivalente vu par A et B

Il faut tout d'abord remplacer dans le circuit les sources de voltages par un court-circuit ainsi que les sources de courants par des trous. Pour obtenir R_e on devra simplifier le circuit jusqu'à n'obtenir plus qu'une seule et unique résistance. Comme R_1 est court-circuité et que R_6 et R_7 sont en circuit-ouvert ils n'interviennent pas dans le calcul de la résistance équivalente. On a alors $R_4 + (R_3//R_2) + R_5$ ce qui nous donne $R_e = 12 + 6 + 4 = 22\Omega$

• Calcul de la tension de Thévenin

$$I_1 = 2 ag{2.1}$$

$$V_B = GROUND = 0 ag{2.2}$$

$$I_1 = I_2 + I_3$$
 [2.3]

$$I_2 = (V_A - V_1)/R_3 = (V_A - 8)/8$$
 [2.4]

$$I_3 = (V_A - V_B)/R_2 = V_A/24$$
 [2.5]

$$I_1 = (V_A - 8)/8 + V_A/24 = 2$$
 [2.6]

$$V_A = 18V ag{2.7}$$

$$V_t = V_A - V_B = 18V ag{2.8}$$

$$I_n = V_t/R_e = 18/22 = 0,81818181818182A$$
 [2.9]

 V_t La tension de Thévenin est égale à la différence de tension entre les bornes A et B on peut alors obtenir le courant de Norton (I_n) grâce à la relation $I_n = V_t/R_e$.

3 Simulation

- Simulation du circuit ouvert vérifiant les valeur de $V_A et V_B$ pour la tension de Thévenin.

* D:\Clones\LINFO1140\T3 - Circuits équivalents\Circuit\T3.asc

-		·
-	Operating	Point
V(n003):	8	voltage
V(n004):	18	v oltage
V(a):	18	voltage
V(b):	0	v oltage
V(n001):	0	voltage
V(n002):	42	voltage
I(I1):	2	device current
I(R7):	2	device current
I(R6):	2	device current
I(R5):	0	device current
I(R4):	0	device current
I(R3):	1.25	device current
I(R2):	0.75	device current
I(R1):	2	device current
I(V1):	-2.75	device_current
		_

- Simulation du circuit fermé vérifiant la valeur R_test

* D:\Clones\LINFO1140\T3 - Circuits équivalents\Circuit\T3.asc			
Og	erating Poi	nt	
V(n003):	8	v oltage	
V(n004):	14.4	voltage	
V(a):	7.2	voltage	
V(b):	2.4	voltage	
V(n001):	0	v oltage	
V(n002):	38.4	v oltage	
I(I1):	2	device_current	
I(R_test):	0.6	device_current	
I(R7):	2	device_current	
I(R6):	2	device_current	
I(R5):	0.6	device_current	
I(R4):	-0.6	device_current	
I(R3):	0.8	device_current	
I(R2):	0.6	device_current	
I(R1):	2	device_current	
I(V1):	-3.2	device_current	

Ici on peut voir que $I(R_test)$ est égale à 0.6A et que V(a) - V(b) = 4.8V ces valeurs vont nous permettre de vérifier si dans les mêmes conditions de test, les équivalents de Thévenin et Norton produisent les mêmes résultats lors de leur simulation.

• Simulation du circuit équivalent de Thévenin:

Le courant de la résistance $I(R_test)$ est de 0.6A et la tension V(a) est de 4.8V corroborant les résultats obtenu précédemment.

• Simulation du circuit équivalent de Norton:

Le courant de la résistance $I(R_test)$ est de 0.6A et la tension V(a) est de 4.8V corroborant une fois de plus les résultats obtenu précédemment.

4 Conclusion

Les résultats obtenu sont en adéquation avec ceux obtenu lors de la simulation LTspice XVII.

- Une ou plusieurs résistances parcourues par le même courants sont dîtes en série et leur résistance équivalente sera égale à la somme de celles-ci.
- Une ou plusieurs résistance ayant la même différence de tension à leur bornes sont dîtes en parralèle et leurs résistance équivalente sera égale à l'inverse de la somme des inverses de celles-ci.
- On peut facilement passez d'un équivalent de Thévenin à un équivalent de Norton et réciproquement.
- Ces théorèmes s'utilisent pour convertir une partie d'un réseau linéaire complexe en un dipôle plus simple.