Praktikum 1 : DGL

Oliver Steenbuck, Karolina Bernat

31.10.2012

Inhaltsverzeichnis

1	Steife Differentialgleichungen						
	1.1	Gleichung					
	1.2	Iterationslgeichungen					
		1.2.1 Euler, explizit					
		1.2.2 Euler, implizit					
		1.2.3 Runge Kutta 2. Ordnung					
	1.3	Matlab Programme					
2	Van der Pol DGL 4						
	2.1	Gleichung					
	2.2	Gleichung als DGL 1. Ordnung					
	2.3	Euler Verfahren					
	2.4	Runge Kutta 2. Ordnung					
	2.5	Ergebnisse					
	2.6	Ergebnisse					
		2.6.1 h=0.001					
		2.6.2 h=0.02					
	2.7	Matlab Programme					
3	Lorenz Attraktor 12						
	3.1	Gleichung					
	3.2	RK2					
A	bbil	dungsverzeichnis					
	1	Stiff (h=0.001)					
	2	Stiff (h=0.002)					
	3	Stiff (h=0.003)					

MT,	Pareigis	Listings		Praktikun	n 1
4 5 6 7 8 9	Stiff (h=0.005) Van Der Pol DGL Van Der Pol DGL Van Der Pol DGL	Y1 h=0.001			8 9 9 10
List	ings				
1 2 3 4	Steife Differential VanDerPol GDL	gleichung			$\begin{array}{c} 4 \\ 11 \end{array}$
1 S	Steife Different	ialgleichungen			
1.1	Gleichung				
		y(0) = 1 $y' = 10 - 500 \cdot y + 5000 \cdot x$			(1) (2)
1.2	IterationsIgeichu	ngen			
1.2.1	Euler, explizit				
	$y(0)$ y_{j+1}	$= 1$ $= y_j + h \cdot (10 - 500 \cdot y_j + 5000 \cdot$	$x_j)$		(3) (4)
1.2.2	Euler, implizit				
Wob	•	: 1 $= y_j + h \cdot (10 - 500 \cdot y_{j+1} + 5000 \cdot y_{j+1})$ Newton Verfahren Approximiert v			(5) (6)

1.2.3 Runge Kutta 2. Ordnung

Es gelte $f(x) = 10 - 500 \cdot y + 5000 \cdot x$

$$y(0) = 1 \tag{7}$$

$$y_{j+1} = y_j + \frac{h}{2} \cdot (f(x_{j+1}, y_j) + f(x_{j+1}, h \cdot f(x_j, y_j)))$$
(8)

1.3 Matlab Programme

Listing 1: Stiff

```
function [] = stiff(h)
                 vec_ana_x = 0:h:0.2;
                 vec_ana_y = mtp0101_ana(vec_ana_x);
[vec_eulerexpl_x, vec_eulerexpl_y] = eulerE(@f, 0.2, h, [1]);
[vec_eulerimpl_x, vec_eulerimpl_y] = euler_impl(1, h, 0.2, @f);
[vec_runge_x, vec_runge_y] = rungeKutta(1, h, 0.2, @f);
               fh = figure('color','w');
screen_size = get(0, 'ScreenSize');
set(fh, 'Position', [0 0 screen_size(3) screen_size(4) ] );
a = subplot(1,2,1);
%set(gca,'fontName','Humor Sans111','fontSize',14,'lineWidth',3,'box','
off')
10
11
12
14
15
                 lw = 1;
16
17
               \label{eq:control_string} \begin{array}{lll} \text{\%annotation} \left( \text{fh} \, , '\text{textarrow'} \, , [0.38 \, 0.34] \, , [0.42 \, 0.55] \, , \ldots \right. \\ \text{\%} & | '\text{string'} \, , \text{sprintf} \left( '\text{analytische Loesung'} \, , \text{char} \left( 10 \right) \right) \, , '\text{headStyle'} \, , '\text{none} \leftarrow | ', '\text{lineWidth'} \, , 1.5 \, , \ldots \\ \text{\%} & | '\text{fontName'} \, , '\text{Comic Sans MS'} \, , '\text{fontSize'} \, , 14 \, , '\text{verticalAlignment'} \, , '\leftarrow | \text{middle'} \, , '\text{horizontalAlignment'} \, , '\text{left'} \right) \end{array}
19
20
21
                 hold on;
24
                 plot(vec_ana_x, vec_ana_y, 'r', 'lineWidth', lw);
plot(vec_eulerexpl_x, vec_eulerexpl_y, 'k', 'lineWidth', lw);
plot(vec_eulerimpl_x, vec_eulerimpl_y, 'g', 'lineWidth', lw);
25
26
27
                 plot(vec_runge_x, vec_runge_y, 'b', 'lineWidth', lw);
                 grid off;
title ('Approximation');
legend ('analytische Loesung', 'Expl Euler', 'Impl Euler', 'Runge-Kutta')↔
29
30
31
32
                 axis([0, 0.04, -1.5, 1.5]);
33
34
                %xkcdify(a)
35
36
37
                 subplot(1,2,2)
38
39
                 hold on;
                 plot(vec_eulerexpl_x , vec_eulerexpl_y.' - vec_ana_y , 'k'); plot(vec_eulerimpl_x , vec_eulerimpl_y - vec_ana_y , 'g');
41
42
43
                 plot (vec_runge_x , vec_runge_y - vec_ana_y , 'b');
```

Listing 2: Steife Differentialgleichung

```
function [ z ] = f( x,y )
z = 10-500*y+5000*x;
and
```

2 Van der Pol DGL

2.1 Gleichung

$$y(0) = 0 (9)$$

$$\dot{y}(0) = 1 \tag{10}$$

$$\ddot{y} = 6 \cdot (1 - y^2) \cdot \dot{y} - y \tag{11}$$

2.2 Gleichung als DGL 1. Ordnung

$$\dot{z} = 6 \cdot (1 - y^2) \cdot z - y \tag{12}$$

$$\dot{y} = z \tag{13}$$

2.3 Euler Verfahren

$$z_{1_{n+1}} = z_{1_n} + h \cdot (6 \cdot (1 - z_{2_n}^2) \cdot z_{1_n} - z_{2_n})$$
(14)

$$z_{2_{n+1}} = z_{2_n} + h * z_{1_n} (15)$$

2.4 Runge Kutta 2. Ordnung

Es gelte

$$g(t,y) = z \tag{16}$$

$$f(y,z) = 6 \cdot (1 - y^2) \cdot z - y \tag{17}$$

Generiert am: 27. Oktober 2012

Karolina Bernat, Oliver Steenbuck

4 / 13

Dann können wir durch einsetzen von (16) und (17) in Runge Kutta 2. Ordnung die Iterationsgleichungen erstellen:

$$y_{j+1} = y_j + \frac{h}{2} \cdot [g(t_j, y_j) + g(t_{j+1}, y_i h \cdot g(t_j, y_j))]$$
(18)

$$z_{j+1} = z_j + \frac{h}{2} \cdot [f(y_j, z_j) + f(y_{j+1}, z_j + h \cdot f(y_j, z_j))]$$
(19)

2.5 Ergebnisse

Im folgenden sind die Approximation durch alle 3 Verfahren mit Schrittweiten von (0.001 bis 0.005) grapthisch dargestellt. Deutlich erkennbar wird hier wie die expliziten Verfahren (Expliziter Euler, Runge Kutta 2. Ordnung) gegenüber dem impliziten Euler Verfahren bei wachsender Schrittweite an Genauigkeit verlieren, wie dies auch zu erwarten war.

Abbildung 1: Stiff (h=0.001)

Abbildung 2: Stiff (h=0.002)

Abbildung 3: Stiff (h=0.003)

Abbildung 4: Stiff (h=0.004)

Abbildung 5: Stiff (h=0.005)

2.6 Ergebnisse

2.6.1 h=0.001

Abbildung 6: Van Der Pol DGL Y1 h=0.001

Abbildung 7: Van Der Pol
 DGL Y2 h=0.001

Bei einer Schrittweite h von 0.001 ist zu erkennen das beide Approximationsverfahren (Expliziter Euler und Runge Kutta 2. Ordnung) mit der aus Simulink extrahierten Approximation (Dormand-Prince, Variable Step Size) übereinstimmen.

2.6.2 h=0.02

Abbildung 8: Van Der Pol
 DGL Y1 h=0.02

Abbildung 9: Van Der Pol DGL Y2 h=0.02

Bei einer Schrittweite h von 0.02 ist zu erkennen das das simplere Approximationsverfahren (Expliziter Euler) deutlich von der aus Simulink extrahierten Approximation (Dormand-Prince, Variable Step Size) abweicht während das komplexere Verfahren (Runge Kutta 2. Ordnung) auch hier noch sehr dicht an Simulink liegt.

2.7 Matlab Programme

Listing 3: VanDerPol GDL

```
function [ res ] = vdp( x, y )
% Van-Der-Pol-Gleichung zu Aufgabe 2

res = [y(2); 6 * (1 - y(1)^2) * y(2) - y(1)];
end
```

Listing 4: VanDerPol

Generiert am: 27. Oktober 2012

Karolina Bernat, Oliver Steenbuck

3 Lorenz Attraktor

3.1 Gleichung

$$\dot{x} = -10 \cdot (x - y) \tag{20}$$

$$\dot{y} = (40 - z) \cdot x - y \tag{21}$$

$$\dot{z} = x \cdot y - 2.67 \cdot z \tag{22}$$

$$x(0) = 0.01 (23)$$

$$y(0) = 0.01 (24)$$

$$z(0) = 0.0 (25)$$

3.2 RK2

Gegeben

$$f(t,x) = -10 \cdot (x - y) \tag{26}$$

$$g(t,y) = (40 - z) \cdot x - y \tag{27}$$

$$k(t, z) = x \cdot y - 2.67 \cdot z \tag{28}$$

So erhalten wir durch einsetzen in das Runge Kutta Verfahren 2. Ordnung folgende Iterationsgleichungen:

$$x_{j+1} = x_j + \frac{h}{2} \cdot (f(t_{j+1}, x_j) + f(t_{j+1}, h \cdot f(t_j, x_j)))$$
(29)

$$y_{j+1} = y_j + \frac{\bar{h}}{2} \cdot (g(t_{j+1}, y_j) + g(t_{j+1}, h \cdot g(t_j, y_j)))$$
(30)

$$z_{j+1} = z_j + \frac{h}{2} \cdot (g(t_{j+1}, z_j) + g(t_{j+1}, h \cdot g(t_j, z_j)))$$
(31)

Generiert am: 27. Oktober 2012

Karolina Bernat, Oliver Steenbuck

12 / 13