

Placa de prueba para block de energía

Autor:

Marcos Raul Dominguez Shocron

Director:

Nombre del Director (pertenencia)

Codirector:

John Doe (FIUBA)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar 5
2. Identificación y análisis de los interesados 6
3. Propósito del proyecto
4. Alcance del proyecto
5. Supuestos del proyecto
6. Requerimientos
7. Historias de usuarios ($Product\ backlog$)
8. Entregables principales del proyecto
9. Desglose del trabajo en tareas
10. Diagrama de Activity On Node
11. Diagrama de Gantt
12. Presupuesto detallado del proyecto
13. Gestión de riesgos
14. Gestión de la calidad
15. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	30 de abril de 2021

Acta de constitución del proyecto

Buenos Aires, 30 de abril de 2021

Por medio de la presente se acuerda con el Ing. Marcos Raul Dominguez Shocron que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Placa de prueba para block de energía", consistirá esencialmente en una placa de prueba para validar los desarrollos de la placa de control del block de energía, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$60000, con fecha de inicio 30 de abril de 2021 y fecha de presentación pública 15 de mayo de 2022.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Gillermo Gebhart Voltu Motors

Nombre del Director Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Un Block de Energía es un dispositivo de almacenamiento y gestión de energía que se crea como una alternativa a los grupos electrógenos. Estos dispositivos almacenan energía en baterías con autonomías superiores a los 7 [KWh] y la suministran cuando es necesario. Típicamente suministran la tensión de red cuando se corta el suministro principal de energía eléctrica. Para cumplir su función este dispositivo mide distintas señales del entorno y utiliza estos datos para tomar decisiones. Actualmente es muy complejo generar las condiciones de entorno para verificar que el equipo desarrollado reacciona como lo esperado. El sistema embebido a desarrollar debe generar las posibles señales, que el bloque de energía sensa, para corroborar que el equipo responde adecuadamente ante las posibles situaciones del entorno. El sistema actual reporta su estado general, las fallas y el estado de sus periféricos. Estos reportes se pueden utilizar para evaluar el comportamiento del equipo. Se espera que generando las señales que el equipo mide para tomar decisiones se pueda evaluar su respuesta. En la Figura 1 se puede observar cómo se integra la propuesta de sistema embebido con el block de energía. Adicionalmente se pueden observar las señales que se pretenden generar. Las señales enlistadas permiten tomar la mayoría de las decisiones al sistema de control. El sistema de control también toma decisiones en función del reporte, por comunicación serie, del sistema de gestión de batería (en inglés, Battery Management System, BMS). El proyecto actual no simulará la comunicación del BMS. Esto impacta sobre los ensayos y la forma de utilizar la placa de prueba. Se deberá contar con una batería en buenas condiciones para que el funcionamiento del equipo no sea alterado y que la prueba sea adecuada. Un dispositivo de estas características permite a los desarrolladores validar un cambio en el firmware, o una nueva funcionalidad, con sencillez y velocidad.

Figura 1. Diagrama en bloques del sistema

Como se introdujo anteriormente, se generará una serie de señales que permita simular las condiciones de entorno que mide la placa de control; De forma que se verificará si responde adecuadamente a las reglas establecidas. Como se representa en la Figura 1, se generarán 9 señales para realizar las pruebas. Las señales de tensión son efectivamente tensiones no escaladas, por lo que tienen valores de 220 V en alterna o alrededor de 400 V continua. Las señales de corrientes son medidas por un transductor que convierte el valor medido en tensión, por lo que el valor de señal a inyectar a la placa es una tensión en el rango de los +5 V a -5 V. Finalmente las temperaturas se miden con NTC, por lo que las señales 7, 8 y 9 deben ser en Ohms. Esto se realizará con el uso de potenciómetros digitales que cambian su valor para simular los cambios de temperatura. La placa de prueba será comandada por medio de una interfaz por computadora. En la primera versión el usuario podrá establecer las señales para generar y evaluar el comportamiento del equipo. Para lograr las señales de tensión el equipo deberá estar conectado a una alimentación de red, a una batería igual a la del equipo cargada y alimentada por el USB de comunicación. Este proyecto se vincula con el proceso de desarrollo

del block de energía de la empresa Voltu y será utilizado para testear los avances de desarrollo del equipo. Se espera también que permita realizar el control de los equipos en la etapa de producción.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Gillermo Gebhart	Voltu Motors	CEO
Impulsor	Gillermo Gebhart	Voltu Motors	CEO
Responsable	Marcos Raul Dominguez	FIUBA	Alumno
	Shocron		
Orientador	Nombre del Director	pertenencia	Director Trabajo final
Usuario final	Carlos Zalayeta	Voltu Motors	Desarrollador

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un dispositivo que permita evaluar de forma parcial el comportamiento de la placa de control, del Block de Energía, durante su desarrollo.

4. Alcance del proyecto

- Se realizará un prototipo que permita generar las 9 señales listadas en la Figura 1.
- No se simulara la comunicación con el BMS.
- No se analizará el comportamiento del equipo por software.
- Se desarrollará un prototipo sin embalaje y sin chasis.
- Solo dispondrá la electrónica y conectores necesarios.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que: Se asume que se dispondrá de al menos una PdC y una PdCOM funcional durante todo el desarrollo del sistema.

- Se dispondrá de al menos una Placa de Control funcional durante todo el desarrollo.
- Se dispondrá de al menos una Placa de Comunicación funcional durante todo el desarrollo.
- Se dispondrá de al menos una batería con su BMS completo y funcional durante todo el desarrollo.

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: çomo [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Figura 2. Diagrama en Activity on Node

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.