TLP

Contents

Build CFG for a given language	3
Reduce a CFG	3
Algoritmo para calcular símbolos co-accesibles	3
Algoritmo para calcular símbolos accesibles	3
Algorithm for:	3
CFG is finite	3
CFG is finite	4
CFG is empty	4
A word belongs to L(G)	4
CYK	4
Brute force	4
Normal Forms	4
Chomsky	4
Greibach	4
PDA	4
Deterministic PDA	4
LL(k) Grammars	5
CFG to NPDA	5
NPDA to CFG	5
Misc	6
Eliminate common prefixes	6
Ambiguity	6

List of Tables

List of Figures

Build CFG for a given language

Reduce a CFG

Dada una gramática G = (N, T, S, P):

- Un símbolo útil $\in N \cup T$ es aquel:
 - $X \in N \cup T$ accesible si: $S \Rightarrow^* \alpha X \beta$
 - $X \in N$ co-accesible si: $X \Rightarrow^* \omega, \omega \in T^*$
- El orden importa, primero calcular co-accesibles y luego accesibles.

Algoritmo para calcular símbolos co-accesibles

Símbolos co-accesibles: $S_{co} = \{ A \in N \mid A \to \alpha, \alpha \in T^* \}$

$$S_{co_i+1} = S_{\lceil}co_i]\{A \in N \mid A \to \alpha \in P, \alpha \in (S_{\lceil}co_i] \cup T)^*\}$$

STOP WHEN: $S_{co_i} = S_{co_i+1}$

Algoritmo para calcular símbolos accesibles

Se construye un grafo:

- Los nodos son símbolos(dependencias)
- $X \to Y$ si $X \to \alpha Y \beta \in P$

X es accesible si ∃ un camino de S hasta X.

Algorithm for:

CFG is finite

Given a CFG ...

CFG is finite

- 1. Reduce the grammar.
- 2. Transform into CNF.
- 3. Look for loops in the dependency graph.

CFG is empty

- 1. Calculate co-accesible symbols.
- 2. If $S \in S_c \to L(G) \neq \emptyset$ else $L(G) = \emptyset$

A word belongs to L(G)

CYK

Brute force

Normal Forms

Chomsky

Greibach

PDA

Deterministic PDA

 $PDA = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is deterministic if:

1.
$$|\delta(q, a, A)| \le 1, \forall q \in Q, a \in \Sigma, A \in \Gamma$$

2.
$$\delta(q, \lambda, A) \neq \emptyset, \delta(q, a, A) = \emptyset \forall A \in \Sigma$$

LL(k) Grammars

CFG to NPDA

For any context-free grammar in Greibach Normal Form we can build an equivalent nondeterministic pushdown automaton. This establishes that an npda is at least as powerful as a cfg. It will always produce a PDA with **three states**

1. Start state q_0 will serve as initialization.

$$(q_0, \lambda, z) \rightarrow \{(q_1, S_z)\}$$

2. State q_1 will contain the actual grammar computation.

3. Transition q_1 to q_f to accept the string

$$delta(q_1, \lambda, z) \rightarrow \{(q_f, z)\}$$

NPDA to CFG

1. Las transiciones del tipo $\delta(q_i,a,A)=(q_j,\lambda)$ se transforman en reglas gramaticas del tipo:

2. Las transiciones del tipo $\delta(q_i,a,A)=(q_j,BC)$ resultan en una multitud de reglas. Una para cada par de estados q_x,q_y en el NPDA, muchas unreachable pero las utiles definen la gramatica:

$$\delta(q_i, a, A) \rightarrow \{(q_j, BC)\}$$

$$[q_i A q_y] \rightarrow a[q_j B q_x][q_x C q_y]$$

Misc

Eliminate common prefixes

$$A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n$$

$$A \to \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_m$$

Transform into:

$$A \to A\prime$$

$$A\prime \to \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

Ambiguity