B529: Homework 1

Nathan Byers

Tuesday, February 03, 2015

Question 1

Please use the perceptron algorithm to manually find a weight vector $\mathbf{w} = [w0,w1,w2]^T$ for linear classification of 3 data points $(\mathbf{x}i,yi)$ satisfying sign $(\mathbf{w}^T\mathbf{x}i) = yi$. The input data is

$$\mathbf{x}1 = (1,2,2)^{\mathrm{T}} \text{ y}1 = +1$$

$$\mathbf{x}2 = (1,1,2)^{\mathrm{T}} \ y2 = +1$$

$$\mathbf{x}3 = (1,2,0)^{\mathrm{T}} \text{ y}3 = -1$$

The first element in vector \mathbf{x} is always $\mathbf{x}0=1$ (See slides in lecture 1).

In the first step of the perceptron algorithm, the initial assignment of \mathbf{w} is $[0,6,6]^{\mathrm{T}}$. Please provide the intermediate steps of the computation. (30 points)

Answer 1

- Step 1: $\mathbf{w} = [0,6,6]^{\mathrm{T}}$
- Step 2:

$$sign(\mathbf{w}^{T}\mathbf{x}_{1}) = sign\left(\begin{bmatrix} 0 & 6 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\2 \end{bmatrix}\right) = sign(24) = 1$$

$$sign(\mathbf{w}^{T}\mathbf{x}_{1}) = sign\left(\begin{bmatrix} 0 & 6 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\2 \end{bmatrix}\right) = sign(18) = 1$$

$$sign(\mathbf{w}^{T}\mathbf{x}_{1}) = sign\left(\begin{bmatrix} 0 & 6 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\0 \end{bmatrix}\right) = sign(12) \neq -1$$

$$\mathbf{w} = \mathbf{w} + y_{3}\mathbf{x}_{3} = \begin{bmatrix} 0\\6\\6 \end{bmatrix} + -1 \cdot \begin{bmatrix} 1\\2\\0 \end{bmatrix} = \begin{bmatrix} -1\\4\\6 \end{bmatrix}$$

• Step 2: iteration

$$sign(\boldsymbol{w}^{T}\boldsymbol{x}_{1}) = sign\left(\begin{bmatrix} -1 & 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}\right) = sign(19) = 1$$
$$sign(\boldsymbol{w}^{T}\boldsymbol{x}_{1}) = sign\left(\begin{bmatrix} -1 & 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}\right) = sign(15) = 1$$

$$sign(\mathbf{w}^{T}\mathbf{x}_{1}) = sign\left(\begin{bmatrix} -1 & 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}\right) = sign(7) \neq -1$$

$$\mathbf{w} = \mathbf{w} + y_{3}\mathbf{x}_{3} = \begin{bmatrix} -1 \\ 4 \\ 6 \end{bmatrix} + -1 \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 6 \end{bmatrix}$$