

ESTIMATING STOCK KEEPING UNIT USING ML

Model Selection Report

Goal:

To select the best-performing model for SKU-level demand prediction, based on validation metrics and deployment suitability.

Models Compared:

- Random Forest Regressor
- XGBoost Regressor

Comparison Metrics:

Model R² Score MAE

Random Forest 0.8169 13.63

XGBoost Regressor 0.8267 13.61

Qualitative Comparison:

- ✓ **Accuracy**: XGBoost showed higher R² and slightly lower MAE.
- ✓ **Speed**: XGBoost trained faster due to efficient boosting structure.
- ✓ **Scalability**: XGBoost supports distributed learning and handles large datasets well.
- ✓ **Robustness**: Both models handled outliers and variable importance effectively.

Final Model Chosen: XGBoost Regressor

Reasons for Selection:

- Best overall test set performance
- Slight improvement in MAE can significantly affect operational decisions in retail
- Supports regularization, which helps prevent overfitting
- Easier integration into lightweight deployment environments like Flask

Limitations:

- Slightly more complex to tune compared to Random Forest
- Requires careful feature scaling in certain use cases (not needed here)

Deployment Readiness:

- Model serialized using pickle
- Fully integrated with Flask backend
- Accepts 4 input fields and computes all required features for real-time prediction

This report confirms that the XGBoost model meets the project goals in accuracy, efficiency, and production-readiness.