Algebra I (ISIM), lista 7 (ćwiczenia 18.04.2024, deklaracje do godz. 11:00).

Teoria: (uogólniona) macierz Jordana. Twierdzenie Jordana o istnieniu (uogólnionej) bazy Jordana dla danego endomorfizmu (informacyjnie). Kompleksyfikacja rzeczywistej przestrzeni liniowej.

Zadania.

V,W oznaczają przestrzenie liniowe skończonego wymiaru, zaś $F,G\in End(V)$ (chyba że zaznaczono inaczej).

- 1. Niech $F: V \to W$.
 - (a) Czy jeśli $V = V_1 \oplus V_2$, to $Im(F) = F[V_1] \oplus F[V_2]$?
 - (b) Czy jeśli $W = W_1 \oplus W_2$, to $V = F^{-1}[W_1] \oplus F^{-1}[W_2]$?
 - (c) Czy jeśli $V = V_1 \oplus V_2$ i $F|_{V_1}, F|_{V_2}$ są 1-1, to F jest 1-1?
 - (d) Czy jeśli $W = W_1 \oplus W_2$ i $W_1, W_2 \subseteq Im(F)$, to F jest "na"?
- 2. Podać przykład podprzestrzeni $U,V,W<\mathbb{R}^4$ takich, że $\mathbb{R}^4=U\oplus V=V\oplus W=W\oplus U.$
- 3. Założmy, że u, v i u + v są wektorami własnymi F. Udowodnić, że u + 2v też jest wektorem własnym F.
- 4. Załóżmy, że $F:V\to V,$ $F^n=0$ oraz $V^i=KerF^i$ dla $i=0,1,\ldots,n$. Niech $q_i=dim(V_i)$ oraz $p_i=q_i-q_{i-1}$ dla $0< i\leqslant n$. Załóżmy, że $v\in V^n\setminus V^{n-1}$. Udowodnić, że:
 - (a) $p_1 \geqslant p_2 \geqslant \cdots \geqslant p_n$.
 - (b) Układ wektorów $v, F(v), \ldots, F^{n-1}(v)$ jest liniowo niezależny.
- 5. Na zbiorze macierzy $M_{n\times n}(\mathbb{R})$ określamy relację \sim :

$$A \sim B \iff A = CBC^{-1}$$
 dla pewnej macierzy odwracalnej C.

Gdy $A \sim B$, mówimy, że macierze A, B są podobne.

- (a) Udowodnić, że ∼ jest relacją równoważności.
- (b) Udowodnić, że macierze $m_B(F), m_C(F)$ endomorfizmu F w różnych bazach $\mathcal{B}, \mathcal{C} \subseteq V$ są podobne.
- 6. Na zbiorze End(V) określamy relację równoważności \sim : $F \sim G \iff \text{istnieje izomorfizm liniowy } H: V \to V \text{ taki, że } F = HGH^{-1}.$ Załóżmy, że $\mathcal B$ jest bazą V. Dowieść, że $F \sim G \iff \text{macierze } m_{\mathcal B}(F)$ i $m_{\mathcal B}(G)$ są podobne. W szczególności, \sim jest relacją równoważności na zbiorze End(V)
- 7. Na zbiorze macierzy $M_{n\times n}(\mathbb{R})$ określamy relację \approx wzorem: $A \approx C \iff A = BCD$ dla pewnych macierzy odwracalnych B, D.
 - (a) Udowodnić, że \approx jest relacją równoważności.
 - (b) Ile jest klas abstrakcji relacji ≈?

- 8. (a) Dany jest wielomian $W(X) \in \mathbb{C}[X]$ stopnia n > 0. Udowodnić, że w zbiorze macierzy $M_{n \times n}(\mathbb{C})$ z dokładnością do relacji podobieństwa jest tylko skończenie wiele macierzy A takich, że $\varphi_A(X) = W(X)$.
 - (b) To samo, co w (a), lecz nad \mathbb{R} zamiast \mathbb{C} .
- 9. Załóżmy, że $G^2=G$. Niech $U=Ker(G),\ W=Im(G)$. Udowodnić, że $V=U\oplus W$ i G jest rzutem na podprzestrzeń W wzdłuż podprzestrzeni U.
- 10. Załóżmy, że przekształcenie liniowe $F:\mathbb{R}^2\to\mathbb{R}^2$ ma dwie różne wartości własne.
 - (a) Opisać wszystkie F-niezmiennicze podprzestrzenie przestrzeni \mathbb{R}^2 .
 - (b)* Opisać wszystkie przekształcenia liniowe $G: \mathbb{R}^2 \to \mathbb{R}^2$, które komutują z F.
- 11. Załóżmy, że V jest przestrzenią liniową nad $\mathbb{C},\ V=W\oplus U,\ W$ jest F-niezmiennicza. Dowieść, że jeśli dim(U)>0, to istnieje $u\in U,\ u\neq 0$, taki że $F(u)\in Lin(W\cup\{u\})$. (wsk: rozważyć $\pi\circ F:U\to U$, gdzie $\pi:V\to V$ to rzut na U wzdłuż W).
- 12. Używając poprzedniego zadania udowodnić, że każda macierz zespolona jest podobna do macierzy górnotrójkątnej.