三大分布:

1,
$$\chi^2$$
 分布: $X_i \sim N(0,1^2), i = 1, 2, ..., n$, 则 $X_1^2 + X_2^2 + ... X_n^2 \sim \chi^2(n)$

2,
$$t$$
分布: $X \sim N(0,1^2), Y \sim \chi^2(n)$, 则 $\frac{X}{\sqrt{Y/n}} \sim t(n)$

3,
$$F$$
 分布: $X_1 \sim \chi^2(n_1), X_2 \sim \chi^2(n_2)$, 则 $\frac{X_1/n_1}{X_2/n_2} \sim F(n_1, n_2)$

四大定理:

设
$$X_1, X_2, ..., X_n$$
 是来自正态总体 $N\left(\mu, \sigma^2\right)$ 的样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2$

分别是样本均值和样本方差,则

1,
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1^2)$$

$$2, \quad \frac{\overline{X} - \mu}{s / \sqrt{n}} \sim t \left(n - 1 \right)$$

3,
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

4, 设 $X_1,X_2,...,X_n$ 是来自正态总体 $N\left(\mu_1,\sigma_1^2\right)$ 的样本, $Y_1,Y_2,...,Y_n$ 是来自正态总体

$$N(\mu_2, \sigma_2^2)$$
的样本,且两个样本相互独立, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S_x^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$ 以及

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}, S_{y}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$
 分别是两个样本均值和样本方差,则

$$\frac{S_x^2 / \sigma_1^2}{S_y^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

置信区间:

单正态总体

待估参数	条件	枢轴变量	分布	置信区间
μ	σ^2 已知	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$N(0,1^2)$	$\overline{X} \pm u_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
μ	σ^2 未知	$\frac{\overline{X} - \mu}{s / \sqrt{n}}$	t(n-1)	$\overline{X} \pm t_{\alpha/2} (n-1) \frac{s}{\sqrt{n}}$
σ^2	μ 未知	$\frac{(n-1)S^2}{\sigma^2}$	$\chi^2(n-1)$	$\left(\frac{\left(n-1\right)S^2}{\chi^2_{\alpha/2}\left(n-1\right)},\frac{\left(n-1\right)S^2}{\chi^2_{1-\alpha/2}\left(n-1\right)}\right)$

双正态总体

待估参 数	条件	枢轴变 量	分布	置信区间
σ_1^2/σ_2^2	μ ₁ ,μ ₂ 未知	$\frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2}$	$F(n_1-1,n_2-1)$	$\left[\frac{1}{F_{\alpha/2}(n_1-1,n_2-1)} \frac{S_1^2}{S_2^2}, \frac{1}{F_{1-\alpha/2}(n_2-1,n_1-1)} \frac{S_1^2}{S_2^2} \right]$

假设检验:

区久远远•	X 区 1 型 3 型 3 型 3 型 3 型 3 型 3 型 3 型 3 型 3 型							
H_{0}	$H_{_1}$	条件	统计量及分布	拒绝域				
$\mu = \mu_0$	$\mu \neq \mu_0$	σ^2 已知	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1^2)$	$ u > u_{\alpha/2}$				
$\mu = \mu_0$	$\mu \neq \mu_0$	σ^2 未知	$\frac{\overline{X} - \mu}{s / \sqrt{n}} \sim t \left(n - 1 \right)$	$ t > t_{\alpha/2} (n-1)$				
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	μ未知	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$	$\chi^2 < \chi^2_{1-\alpha/2}(n-1)$ 或 $\chi^2 > \chi^2_{\alpha/2}(n-1)$				
$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	μ ₁ , μ ₂ 未知	$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$	$F < F_{1-\alpha/2}(n_1-1,n_2-1)$ 或 $F > F_{\alpha/2}(n_1-1,n_2-1)$				

注: 最后一行双正态总体的假设检验