Up or Down? Adaptive Rounding for Post-Training Quantization

PMLR, 2020

597 citations

Qualcomm Al

02. **METHOD**

03. **EXPERIMENTS**

Rounding-to-Nearest

- Issues
 - When quantize NN, rounding-to-nearest is the predominant approach
 - This is not the best
- Objective
 - Provide a better weight rounding mechanism for post-training quantization

$$\mathbf{X}_{\mathrm{quant}} = \mathrm{round} \left(\mathrm{scale} \cdot \mathbf{X} + \mathrm{zeropoint} \right)$$

$$\mathbf{X}_{\mathrm{dequant}} = \frac{\mathbf{X}_{\mathrm{quant}} - \mathrm{zeropoint}}{\mathrm{scale}}$$

Motivation: rounding-to-nearest is not optimal

- We want to minimize the task loss after quantization
- (a): second order Taylor series expansion (approximate $L(x, y, w + \Delta w)$ using L(x, y, w))

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$$

a = w

 $x = w + \Delta w$

After quantization

$$\mathbb{E}\left[\mathcal{L}\left(\mathbf{x}, \mathbf{y}, \mathbf{w} + \Delta \mathbf{w}\right) - \mathcal{L}\left(\mathbf{x}, \mathbf{y}, \mathbf{w}\right)\right]$$

$$\stackrel{(a)}{\approx} \mathbb{E} \left[\Delta \mathbf{w}^T \cdot \nabla_{\mathbf{w}} \mathcal{L} \left(\mathbf{x}, \mathbf{y}, \mathbf{w} \right) \right]$$

$$+\left.rac{1}{2}\Delta\mathbf{w}^{T}\cdot
abla_{\mathbf{w}}^{2}\mathcal{L}\left(\mathbf{x},\mathbf{y},\mathbf{w}
ight)\cdot\Delta\mathbf{w}
ight]$$

$$= \Delta \mathbf{w}^T \cdot \mathbf{g}^{(\mathbf{w})} + \frac{1}{2} \Delta \mathbf{w}^T \cdot \mathbf{H}^{(\mathbf{w})} \cdot \Delta \mathbf{w}, \qquad (4)$$

Motivation: rounding-to-nearest is not optimal

• If the network is trained to convergence, gradient term will be close to 0

$$\Delta \mathbf{w}^T \mathbf{g}^{(\mathbf{w})} + \frac{1}{2} \Delta \mathbf{w}^T \cdot \mathbf{H}^{(\mathbf{w})} \cdot \Delta \mathbf{w},$$

If objective function using rounding-to-nearest is always the minimal value, it is optimal method

$\Delta \mathbf{w}^T \mathbf{g}^{(\mathbf{w})} + \frac{1}{2} \Delta \mathbf{w}^T \cdot \mathbf{H}^{(\mathbf{w})} \cdot \Delta \mathbf{w},$

Motivation: rounding-to-nearest is not optimal

• If the network is trained to convergence, gradient term will be close to 0

Example 1. Assume $\Delta \mathbf{w}^T = [\Delta w_1 \quad \Delta w_2]$ and

$$\mathbf{H}^{(\mathbf{w})} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix},$$

$$\Delta \mathbf{w}^T \cdot \mathbf{H}^{(\mathbf{w})} \cdot \Delta \mathbf{w} = \Delta \mathbf{w}_1^2 + \Delta \mathbf{w}_2^2 + \Delta \mathbf{w}_1 \Delta \mathbf{w}_2.$$

It is optimal considering the first two terms

Motivation: rounding-to-nearest is not optimal

- ImageNet validation accuracy
- 4-bit quantization of the first layer of ResNet18

Rounding scheme	Acc(%)
Nearest	52.29
Ceil	0.10
Floor	0.10
Stochastic	52.06±5.52
Stochastic (best)	63.06

Stochastic quantization (100)

$$\operatorname{Int}(x) = \begin{cases} \lfloor x \rfloor & \text{with probability } \lceil x \rceil - x, \\ \lceil x \rceil & \text{with probability } x - \lfloor x \rfloor. \end{cases}$$

Motivation: rounding-to-nearest is not optimal

- Set up two objective functions to solve the optimization problem: (13), (20)
- Re-design objective functions due to their complexity issues

$$\underset{\Delta \mathbf{w}^{(\ell)}}{\operatorname{arg\,min}} \quad \mathbb{E}\left[\Delta \mathbf{w}^{(\ell)}^T \mathbf{H}^{(\mathbf{w}^{(\ell)})} \Delta \mathbf{w}^{(\ell)}\right]. \tag{13}$$

$$= \underset{\Delta \mathbf{W}_{k,:}^{(\ell)}}{\min} \quad \mathbb{E}\left[\left(\Delta \mathbf{W}_{k,:}^{(\ell)} \mathbf{x}^{(\ell-1)}\right)^{2}\right], \tag{20}$$

$$\underset{\mathbf{V}}{\operatorname{arg\,min}} \quad \left\| \mathbf{W} \mathbf{x} - \widetilde{\mathbf{W}} \mathbf{x} \right\|_{F}^{2} + \lambda f_{reg} \left(\mathbf{V} \right), \quad (21)$$

Objective Function 1.

- Assume gradient term will be close to 0
- Assume a block diagonal $H^{(W)}$
 - Ignore the interactions among weights belonging to different layers
 - Per-layer optimization problem

$$\underset{\Delta \mathbf{w}^{(\ell)}}{\operatorname{arg\,min}} \quad \mathbb{E}\left[\Delta \mathbf{w}^{(\ell)}^T \mathbf{H}^{(\mathbf{w}^{(\ell)})} \Delta \mathbf{w}^{(\ell)}\right]. \tag{13}$$

$$\underset{\Delta \mathbf{w}^{(\ell)}}{\operatorname{arg \, min}} \quad \mathbb{E}\left[\Delta \mathbf{w}^{(\ell)}^T \mathbf{H}^{(\mathbf{w}^{(\ell)})} \Delta \mathbf{w}^{(\ell)}\right]. \tag{13}$$

Objective Function 2.

- (13) is an NP-hard optimization problem
- $H^{(W)}$ suffers from computational and complexity issues

For two weights in the same layer,

$$\frac{\partial^{2} \mathcal{L}}{\partial \mathbf{W}_{i,j}^{(\ell)} \partial \mathbf{W}_{m,o}^{(\ell)}} = \frac{\partial}{\partial \mathbf{W}_{m,o}^{(\ell)}} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{z}_{i}^{(\ell)}} \cdot \mathbf{x}_{j}^{(\ell-1)} \right]
= \frac{\partial^{2} \mathcal{L}}{\partial \mathbf{z}_{i}^{(\ell)} \partial \mathbf{z}_{m}^{(\ell)}} \cdot \mathbf{x}_{j}^{(\ell-1)} \mathbf{x}_{o}^{(\ell-1)},$$

Complexity issues are mainly caused by

$$\mathbf{H}^{(\mathbf{w}^{(\ell)})} = \mathbb{E}\left[\mathbf{x}^{(\ell-1)}\mathbf{x}^{(\ell-1)^T} \otimes \nabla_{\mathbf{z}^{(\ell)}}^2 \mathcal{L}\right],$$

 $z_i^{(l)}$: pre-activation for layer l

$$\underset{\Delta \mathbf{w}^{(\ell)}}{\operatorname{arg\,min}} \quad \mathbb{E}\left[\Delta \mathbf{w}^{(\ell)^T} \mathbf{H}^{(\mathbf{w}^{(\ell)})} \Delta \mathbf{w}^{(\ell)}\right]. \tag{13}$$

Objective Function 2.

 $\mathbf{H}^{(\mathbf{w}^{(\ell)})} = \mathbb{E}\left[\mathbf{x}^{(\ell-1)}\mathbf{x}^{(\ell-1)^T} \otimes \nabla_{\mathbf{z}^{(\ell)}}^2 \mathcal{L}\right],$

- Assume gradient term will be close to 0
- Assume $\nabla_{z^{(l)}}^2 L$ is a diagonal matrix
- Assume $\nabla^2_{z^{(l)}}L_{i,i}$ is a constant independent of the input data samples (strong assumption)

$$\underset{\Delta \mathbf{W}_{k,:}^{(\ell)}}{\operatorname{arg \, min}} \mathbb{E} \left[\nabla_{\mathbf{z}^{(\ell)}}^{2} \mathcal{L}_{k,k} \cdot \Delta \mathbf{W}_{k,:}^{(\ell)} \mathbf{x}^{(\ell-1)} \mathbf{x}^{(\ell-1)^{T}} \Delta \mathbf{W}_{k,:}^{(\ell)^{T}} \right] \\
\stackrel{(a)}{=} \underset{\Delta \mathbf{W}_{k,:}^{(\ell)}}{\operatorname{arg \, min}} \Delta \mathbf{W}_{k,:}^{(\ell)} \mathbb{E} \left[\mathbf{x}^{(\ell-1)} \mathbf{x}^{(\ell-1)^{T}} \right] \Delta \mathbf{W}_{k,:}^{(\ell)^{T}} \\
= \underset{\Delta \mathbf{W}_{k,:}^{(\ell)}}{\operatorname{arg \, min}} \mathbb{E} \left[\left(\Delta \mathbf{W}_{k,:}^{(\ell)} \mathbf{x}^{(\ell-1)} \right)^{2} \right], \tag{20}$$

 $z_i^{(l)}$: pre-activation for layer l

$$\mathbb{E}\left[\mathcal{L}\left(\mathbf{x}, \mathbf{y}, \mathbf{w} + \Delta \mathbf{w}\right) - \mathcal{L}\left(\mathbf{x}, \mathbf{y}, \mathbf{w}\right)\right]$$

- s: fixed scaling factor
- $f_{reg}(.)$: regularizer
- $h(.): \in [0,1]$ rectified sigmoid

$$\underset{\mathbf{V}}{\operatorname{arg\,min}} \quad \left\| \mathbf{W} \mathbf{x} - \widetilde{\mathbf{W}} \mathbf{x} \right\|_{F}^{2} + \lambda f_{reg} \left(\mathbf{V} \right), \quad (21)$$

$$\widetilde{\mathbf{W}} = \mathbf{s} \cdot clip\left(\left[\frac{\mathbf{W}}{\mathbf{s}}\right] + h\left(\mathbf{V}\right), \mathbf{n}, \mathbf{p}\right).$$

$$\mathbb{E}\left[\mathcal{L}\left(\mathbf{x}, \mathbf{y}, \mathbf{w} + \Delta \mathbf{w}\right) - \mathcal{L}\left(\mathbf{x}, \mathbf{y}, \mathbf{w}\right)\right]$$

AdaRound

$$\arg \min_{\mathbf{V}} \|\mathbf{W}\mathbf{x} - \widetilde{\mathbf{W}}\mathbf{x}\|_{F}^{2} + \lambda f_{reg}(\mathbf{V}), \quad (21)$$

$$\widetilde{\mathbf{W}} = \mathbf{s} \cdot clip\left(\left[\frac{\mathbf{W}}{\mathbf{s}}\right] + h(\mathbf{V}), \mathbf{n}, \mathbf{p}\right).$$

$$f_{reg}(\mathbf{V}) = \sum_{i,j} 1 - |2h(\mathbf{V}_{i,j}) - 1|^{\beta},$$

$$h(\mathbf{V}_{i,j}) = clip(\sigma(\mathbf{V}_{i,j}) (\zeta - \gamma) + \gamma, 0, 1),$$

Rectified sigmoid has non-vanishing gradients as h(V) approaches 0 or 1

METHOD

- Initial phase: higher β
- Layer phase: lower β

$$f_{reg}\left(\mathbf{V}\right) = \sum_{i,j} 1 - |2h\left(\mathbf{V}_{i,j}\right) - 1|^{\beta},$$

$$\begin{split} & h\left(\mathbf{V}_{i,j}\right) = \underset{clip(\sigma\left(\mathbf{V}_{i,j}\right)}{clip(\sigma\left(\mathbf{V}_{i,j}\right)\left(\zeta-\gamma\right)+\gamma,0,1)}, \end{split}$$

METHOD

- Initial phase: higher β
- Layer phase: lower β

$$f_{reg}(\mathbf{V}) = \sum_{i,j} 1 - |2h(\mathbf{V}_{i,j}) - 1|^{\beta},$$
1.1 -0.1

$$h\left(\mathbf{V}_{i,j}\right) = clip(\sigma\left(\mathbf{V}_{i,j}\right)(\zeta - \gamma) + \gamma, 0, 1),$$

METHOD

- (21) does not account for the quantization error introduced due to the previous layer
- In order to avoid the accumulation of quantization error for deeper network, use following formulation

$$\underset{\mathbf{V}}{\operatorname{arg\,min}} \left\| \mathbf{W} \mathbf{x} - \widetilde{\mathbf{W}} \mathbf{x} \right\|_{F}^{2} + \lambda f_{reg} \left(\mathbf{V} \right), \quad (21)$$

$$\underset{\mathbf{V}}{\operatorname{arg\,min}} \left\| f_{a} \left(\mathbf{W} \mathbf{x} \right) - f_{a} \left(\widetilde{\mathbf{W}} \hat{\mathbf{x}} \right) \right\|_{F}^{2} + \lambda f_{reg} \left(\mathbf{V} \right), \quad (25)$$

Settings

- Symmetric 4-bit weight quantization
- Layer-wise quantization
- Use pre-defined scaling factor $||\mathbf{W} \overline{\mathbf{W}}||_F^2$
- ResNet-18 (validation accuracy: 69.68%): Nvidia GTX 1080 Ti single GPU 10 minutes
- 1024 unlabeled image on ImageNet training dataset
- Batch size: 32, Iteration: 10,000

Ablation study

From task loss to local loss

$$\underset{\Delta \mathbf{w}^{(\ell)}}{\operatorname{arg\,min}} \quad \mathbb{E}\left[\Delta \mathbf{w}^{(\ell)}^T \mathbf{H}^{(\mathbf{w}^{(\ell)})} \Delta \mathbf{w}^{(\ell)}\right]. \tag{13}$$

$$= \underset{\Delta \mathbf{W}_{k,:}^{(\ell)}}{\operatorname{arg \, min}} \quad \mathbb{E}\left[\left(\Delta \mathbf{W}_{k,:}^{(\ell)} \mathbf{x}^{(\ell-1)}\right)^{2}\right],\tag{20}$$

$$\underset{\mathbf{V}}{\operatorname{arg\,min}} \quad \left\| \mathbf{W} \mathbf{x} - \widetilde{\mathbf{W}} \mathbf{x} \right\|_{F}^{2} + \lambda f_{reg} \left(\mathbf{V} \right), \quad (21)$$

Rounding	First layer	All layers
Nearest	52.29	23.99
$\mathbf{H}^{(\mathbf{w})}$ task loss (cf. (13))	68.62 ± 0.17	N/A
Local MSE loss (cf. (20))	69.39 ± 0.04	65.83 ± 0.14
Cont. relaxation (cf (21))	69.58 ± 0.03	66.56 ± 0.12

Ablation study

• Design choices for AdaRound

Rounding	First layer	All layers
Sigmoid $+ T$ annealing	69.31 ± 0.21	65.22 ± 0.67
Sigmoid + f_{reg}	69.58 ± 0.03	66.25 ± 0.15
Rect. sigmoid + f_{reg}	69.58 ± 0.03	66.56 ± 0.12

Ablation study

$$\underset{\mathbf{V}}{\operatorname{arg\,min}} \quad \left\| \mathbf{W} \mathbf{x} - \widetilde{\mathbf{W}} \mathbf{x} \right\|_{F}^{2} + \lambda f_{reg} \left(\mathbf{V} \right), \quad (21)$$

 $\underset{\mathbf{V}}{\operatorname{arg\,min}} \left\| f_a\left(\mathbf{W}\mathbf{x}\right) - f_a\left(\widetilde{\mathbf{W}}\mathbf{\hat{x}}\right) \right\|_{F}^{2} + \lambda f_{reg}\left(\mathbf{V}\right), \quad (25)$

Optimization Acc (%)

Layer wise
$$66.56\pm0.12$$

Asymmetric 68.37 ± 0.07

 68.60 ± 0.09

Asymmetric + ReLU

Ablation study

• Influence of quantization grid

Grid	Nearest	AdaRound
Min-Max	0.23	61.96±0.04
$\left\ \mathbf{W} - \overline{\mathbf{W}} ight\ _F^2$	23.99	68.60 ± 0.09
$\left\ \mathbf{W}\mathbf{x} - \overline{\mathbf{W}}\widehat{\mathbf{x}}\right\ _F^2$	42.89	68.62 ± 0.08

Ablation study

• Optimization robustness to data

Ablation study

- Different post-training quantization: channel-wise, do not quantize the first and the last layer
- AdaRound: layer-wise, 2048 samples, 20,000 iterations, activation quantization with Min-Max

Optimization	#bits W/A	Resnet18	Resnet50	InceptionV3	MobilenetV2
Full precision	32/32	69.68	76.07	77.40	71.72
DFQ (Nagel et al., 2019)	8/8	69.7	-		71.2
Nearest	4/32	23.99	35.60	1.67	8.09
OMSE+opt(Choukroun et al., 2019)	4*/32	67.12	74.67	73.66	
OCS (Zhao et al., 2019)	4/32	-	66.2	4.8	-
AdaRound	4/32	68.71 ± 0.06	75.23 ± 0.04	75.76 ± 0.09	$69.78{\pm}0.05^\dagger$
DFQ (our impl.)	4/8	38.98	52.84	_3	46.57
Bias corr (Banner et al., 2019)	4*/8	67.4	74.8	59.5	=
AdaRound w/ act quant	4/8	68.55 ± 0.01	75.01 ± 0.05	75.72 ± 0.09	$69.25{\pm}0.06^\dagger$

Ablation study

- Different post-training quantization: channel-wise, do not quantize the first and the last layer
- AdaRound: layer-wise, 2048 samples, 20,000 iterations, activation quantization with Min-Max

Optimization	#bits W/A	Resnet18	Resnet50	InceptionV3	MobilenetV2
Full precision	32/32	69.68	76.07	77.40	71.72
DFQ (Nagel et al., 2019)	8/8	69.7	-		71.2
Nearest	4/32	23.99	35.60	1.67	8.09
OMSE+opt(Choukroun et al., 2019)	4*/32	67.12	74.67	73.66	
OCS (Zhao et al., 2019)	4/32	-	66.2	4.8	-
AdaRound	4/32	68.71 ± 0.06	75.23 ± 0.04	75.76 ± 0.09	$69.78 {\pm} 0.05^{\dagger}$
DFQ (our impl.)	4/8	38.98	52.84	-3	46.57
Bias corr (Banner et al., 2019)	4*/8	67.4	74.8	59.5	=
AdaRound w/ act quant	4/8	68.55 ± 0.01	75.01 ± 0.05	75.72 ± 0.09	$69.25{\pm}0.06^{\dagger}$