Planning by Dynamic Programming

Ali Gooya

Reference for slides:

David Silver (Deep Mind)

Learning outcomes

- Understand how Dynamic Programming works for planning in MDPs
- Optimize the policy and value functions of a given MDP using policy and value iterations
- Apply above to sample problems

What is Dynamic Programming (DP)?

- Dynamic refers to sequential or temporal component of the problem
- Programming refers to optimizing
- DP solves for more complex problems by
 - Breaking them down into smaller subproblems (principle of optimality)
 - Solving subproblems
 - Combining solutions to subproblems
- DP is a general method and has been invented by Richard E. Bellman (1950).

Dynamic Programming applied to MDP

- Dynamic programming requires full knowledge of the MDP (states, actions, transition probabilities, rewards, discount factor).
- It is a model based and solves the problem of planning:

Prediction:

- Input an MDP $< S, A, P, R, \gamma >$ and policy π
- Output value function v_{π}

Control:

- Input MDP $< S, A, P, R, \gamma >$
- lacktriangle Output Optimal value function v_* and optimal policy π_*

Iterative Policy Evaluation (i)

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $ightharpoonup V_1
 ightharpoonup V_2
 ightharpoonup ...
 ightharpoonup V_{\pi}$
- Using synchronous backups,
 - \blacksquare At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - \blacksquare where s' is a successor state of s
- This solves for medium sized MDPs, where one step solution to Bellman equation is not feasible.

Iterative Policy Evaluation (ii)

$$egin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{m{\pi}} + \gamma \mathcal{P}^{m{\pi}} \mathbf{v}^k \end{aligned}$$

Evaluating random policy in a small grid world

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in Small Grid world (i)

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

 v_k for the Random Policy **Greedy Policy** w.r.t. v_k

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Iterative Policy Evaluation in Small Grid world (ii)

k = 10

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0

14.	-20.	-22.	
18.	-20.	-20.	
20.	-18.	-14.	

How to improve policy

- lacksquare Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$

■ Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \operatorname{greedy}(v_{\pi})$$
 $\pi'(s) = \operatorname{arg\,max}_{a} q_{\pi}(s, a)$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Why values improve?

- Consider a deterministic existing policy: $a = \pi(s)$
- With the new greedy policy

$$\pi'(s) = \operatorname*{argmax} q_{\pi}(s, a)$$
 $a \in \mathcal{A}$

lacktriangle The value of any state s is improved by one step following π'

$$q_{\pi}(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_{\pi}(s,a) \geq q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

Why values improve?

Hence:

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= R_{s}^{\pi'(s)} + \gamma \sum_{s'} P_{ss'}^{\pi'(s)} q_{\pi}(s', \pi(s'))$$

$$\leq R_{s}^{\pi'(s)} + \gamma \sum_{s'} P_{ss'}^{\pi'(s)} q_{\pi}(s', \pi'(s'))$$

• So if we follow π' in the successor states we only make the right hand side larger until a goal achieved.

• At that time we have essentially followed π' from state s to the end which means: $v_{\pi}(s) \leq v_{\pi'}(s)$

Policy improvement

If improvements stop,

$$q_{\pi}(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_{\pi}(s,a) = q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- Therefore $v_{\pi}(s) = v_{*}(s)$ for all $s \in \mathcal{S}$
- lacksquare so π is an optimal policy

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - \blacksquare e.g. ϵ -convergence of value function
- \blacksquare Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k=1
 - This is equivalent to *value iteration* (next section)

Deterministic Value Iteration

- Intuition: start from final rewards (goal states) and work backwards
- The idea of value iteration is to apply iterative update Bellman optimality equations

$$v_*(s) = \max_a \{\mathcal{R}_s^a + \gamma \sum_{s'} P_{ss'}^a v_*(s')\}$$

• If we know the solution of $v_*(s')$ from previous iteration, we can update the values.

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $ightharpoonup V_1
 ightharpoonup V_2
 ightharpoonup ...
 ightharpoonup V_*$
- Using synchronous backups
 - \blacksquare At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- \blacksquare Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Example: Shortest path

- The value at the goal (length of the path) is always zero, allowing us to update the values of other nodes
- Actions: n, s, w, e (no change of state in the edge)

$$v_*(s) = \max_a \{ \mathcal{R}_s^a + \gamma \sum_{s'} P_{ss'}^a v_*(s') \}$$

Can be rewritten as

$$v_{k+1}(s) \leftarrow -1 + \max_{s'} v_k(s')$$

Problem	
I TODICITI	

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
-			

$$V_2$$

V₃

0	-1	-2	-3
-1	-2	-3	-3
-2	ဒု	ය	-3
-3	-3	-3	-3

0	-1	-2	-3	
-1	-2	-3	-4	
-2	-3	-4	-4	
-3	-4	-4	-4	
V				

-1 -2 -3 -4	0	-1	-2	ဂု
	-1	-2	ဒု	-4
-2 -3 -4 -5	-2	-3	-4	-5
-3 -4 -5 -5	-3	-4	-5	-5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

Conclusions

- Dynamic Programming performs planning in the form of prediction and control
- Prediction is equivalent to policy evaluation
- Control is equivalent to policy optimization
- Planning is not learning and assumes a known MDP (environment)
- This will be addressed in the next lecture.