RNN

Name	Nathan Varghese
Identity Key	nava 3000

	Level	Completed
O	Beginner	8
	Intermediate	2
\Q	Advanced	0
(X)	Expert	0

Goal					
5722	10				

Total Completed					
0					

Recurrent Neural Network

CSCI 5722: Computer Vision

Fall 2024

Dr. Tom Yeh

Evolution to RNNs

CSCI 5722 Computer Vision

Linear transformation

+ non-linearity

y =
$$\Phi(Wyx.X + by)$$

+ hidden layer

- trainable parameters

Calculate an NN with a hidden layer

$$Y = \phi_2(W_2 \cdot \phi_1(W_1 \cdot X + b_1) + b_2)$$

size(W₁) =
$$3 \times 3$$

size(b₁) = 3×1
size(W₂) = 2×3
size(b₂) = 2×1

+ sequence

Calculate an NN for a batch of inputs

+ dependence on previous inputs

NN vs RNN: Math

$$h_t = \phi_1(W_{hx} \cdot X_t + bh)$$
$$Y_t = \phi_2(W_{yh} \cdot h_t + by)$$

$$h_{t} = \frac{\phi_{t} \left(W_{hx} \cdot X_{t} + W_{hn} \cdot h_{t-1} + b_{h} \right)}{Y_{t} = \frac{\phi_{2} \left(W_{gh} \cdot h_{t} + b_{y} \right)}{11}$$

NN vs. RNN: Graph

Φ<u>1</u> ≈

Counting Parameters

MLP Parameter Sizes

size(W₁) =
$$\frac{4 \times 4}{4 \times 1}$$

size(b₁) = $\frac{4 \times 1}{4 \times 1}$
size(W₂) = $\frac{3 \times 1}{4 \times 1}$

$$Y = \phi_2(W_2 \cdot \phi_1(W_1 \cdot X + b_1) + b_2)$$

✓ Calculate an RNN (t = 1)

This activity is standalone, not dependent on other activities.

$$|+5+1=7$$

 $|+7=8$
 $|-1=7$

Calculate an RNN (t = 2)

This activity is standalone, not dependent on other activities.

$$2+1+1=4$$
 $3+1=4$
 $-1+1-1=-1$
 $4+4=8$
 $4+1=5$

Calculate an RNN (t = 3)

This activity is standalone, not dependent on the previous one.

Variations of RNNs

CSCI 5722 Computer Vision

Many to Many

Many to One

One to Many

One to One

Advanced RNN Architectures

CSCI 5722 Computer Vision

Sequence to Sequence

Multilayer RNN

Identify links

Suppose we set some hidden states to zeros on purpose. Cross out the affected dependency links.

Add a skip connection

 $\phi^{1}, \phi^{2}, \phi^{3}$: ReLU X_{1} X_{2} X_{3} X_{3} X_{4} X_{2} X_{3} X_{4} X_{5} X_{1} X_{2} X_{3} X_{4} X_{5} X_{5} X_{7} X_{8} X_{1} X_{2} X_{3} X_{3} X_{4} X_{5} X_{5} X_{7} X_{8} X_{1} X_{2} X_{3} X_{3} X_{4} X_{5} X_{5}

 Φ^2

 $1\Phi_{3}$

 $|\Phi^2|$

Draw a new arrow to illustrate the skip connection from X₁.

Auto-Regressive RNN

Sequence to Sequence

Remove unwanted components to make it a seq-to-seq model 7

o _{2 :} Re	eLU	l															
000			/	h	5 5 4		h ₁	h ₁	9		h ₂	h ₂	7 15 10		h_3		
	1	0	0	1		ϕ_1			7	ф₁	7		8	ф₁	S		
	0	1	1	0	9	່≅	9		15	≈	15		25	≈	25		
	0	1	0	1	6		6		10		10		16		١٤		
		,					1			ı	1			1	1		_
			0	1	0	0	9	ф2	9		15	ф2	15		25	ф2	2
			1	0	0	1	7	≈	7		8	≈	8		9	≈	9

1+2+3-1=	5
1+3+1=5	

$$\begin{array}{c|cccc} \Phi_2 & & & 25 & \Phi_2 \\ \hline \approx & 8 & & 9 & \approx \end{array}$$

$$Y_2$$

$$Y_3$$

Counting Parameters (small)

$$size(X_t) = 3 \times 1$$

$$size(h_t) = 3 \times 1$$

$$size(y_t) = \underline{2 \times 1}$$

$$size(W_{hx}) = \frac{3 \times 3}{2}$$

$$size(b_h) = \underline{3 \times 1}$$

$$size(W_{hh}) = 3 \times 3$$

$$size(W_{yh}) = \underline{2 \times 3}$$

$$size(b_y) = 2 \times 1$$

Counting Parameters (large)

$$size(X_t) = 512 \times 1$$

$$size(h_t) = 128 \times 1$$

$$size(Y_t) = 256 \times 1$$

$$size(W_{hx}) = 512 \times 128$$

$$size(b_h) = \underline{\qquad (28 \times)}$$

$$size(W_{hh}) = 128 \times 128$$

$$size(W_{yh}) = 256 \times 128$$

$$size(b_y) = \underline{256 \times 1}$$

Adding Parameters

I copy pasted a screenshot

Suppose we increase the hidden state's dimension by 1.

What would be the new parameter sizes?

$$size(W_{hx}) = 4x3$$

$$size(b_h) = \underline{4x1}$$

$$size(W_{hh}) = \underline{4 \times 4}$$

$$size(b_v) = 2 \times 1$$

(Hint: You can try to draw the extra cells as visual aid)

Modeling Probabilities

CSCI 5722 Computer Vision

Output Values -> Probability Distribution

 ϕ = ReLU

54.58715

148.41316

55

148

$Y = \varphi(Z) =$

1 1 2 Z	Ψ
e^x	round
1	1
2.71828	3
7.38906	7
20.08554	20

Z		Υ	
2	·7		
Z		<u>Y</u>	
0			
1			
0			
Z		Υ	
1			
3			
2			
3			

Gradient of Softmax + CE Loss

$$\frac{\partial L}{\partial Z} =$$

$$\begin{array}{c|cccc}
1 & & .06 \\
\hline
3 & \approx & .4 \\
\hline
2 & .14 \\
\end{array}$$

Calculate the Gradient of Softmax + CE Loss

х	e^x	round
0	1	1
1	2.71828	3
2	7.38906	7
3	20.08554	20
4	54.58715	55
5	148.41316	148

Calculate the Gradient of Softmax + CE Loss

х	e^x	round
0	1	1
1	2.71828	3
2	7.38906	7
3	20.08554	20
4	54.58715	55
5	148.41316	148

2	E Loss =	-1 ZYi log	(4:)	$S(yi) = \frac{e^{yi}}{Ze^{yj}}$
	γ^{Target}		<u>θΖ</u>	J Zewi
	0	C	١٥. ر	2e° +3e'
	0	6	. 03	$+2e^{2}+1e^{3}+1e^{4}$
	0	_	0.55	20 1 10 110
	0	6	.03	=2(1)+3(3)
	1	c	5-01	•
	0	C).20	+2(7)+20+55
	0	6	70.0	100
	0	6	-67	= 100
	0	6	.62	

Model → Function

Function -> Conditional Probability Function

$$Y = f(X)$$

$$Y = f(X_1, X_2, X_3)$$

$$Y = f(Y_t \mid X_{t_1} X_{t-1_1} ... X_1)$$

Model → Conditional Probability Distributions

What conditional probability distributions could these two models estimate?

Model → Conditional Probability Distributions

What conditional probability distributions could this model learn to estimate?

P(Y₁ |

P(Y₂ |

P(Y₃ |

Model -> Conditional Probability Distributions

What conditional probability distributions could these two seq-toseq models estimate?

Identify "No Dependency" Links

Cross out the dependency links to match the matrix form.

