Image Classification of Forest Fires with Neural Networks

Sprint 2 Update

Rodrigo Becerra Carrillo

Problem Statement

According to the <u>BC government</u>, about 40% of forest fires are reported by the general public, in addition to other detection strategies such as:

- Air patrols
- Fire warden ground patrols
- Infrared technology
- Computer technology and predictive software
- Lookout towers

Census Canada gray areas are sparsely populated

Proposed Solutions Using Data Science

 There is an opportunity to use Deep Learning (DL) models for early automated detection of fires

 Image classification and segmentation architectures could be used to track and characterize fires

 Reported accuracy scores for DL models with this kind of classification task are 95% [1]

Figures adapted from https://doi.org/10.3390/fire6050192

Impacts of Proposed Solution

Having an early detection of fires can impact the response time and management before they become too large to control

The BC Wildfire Service uses a <u>ranking scale</u> based on visual indicators to describe fire behaviour

The financial burden on taxpayers could be reduced. In 2023 forest fires incurred an <u>over budget</u> of > \$700 M for the provincial government in BC.

Dataset and Preprocessing

Dataset 01: Fire Dataset

- 999 PNG images (75% fire/25% non-fire)
- Total size 406 MB
- On average 750 x 1180

Dataset 02: Forest Fire Dataset

- 1900 JPG images (50% fire/50% non-fire)
- Total size 149 MB
- All images 250 x 250 Same authors as Dataset_01 used in a publication

Dataset_03: The Wildfire Dataset

- 2700 PNG and JPG images 40% fire/60% non-fire
- Total size 11 GB, variable image size **Includes confounding elements:**

Preprocessing Steps

Before Modelling:

- Image cleaning (formatting, channels, resizing)
- Create annotations file (csv)

Before Training:

- Create Dataset (custom PyTorch class)
- Obtain statistics (mean, std) for train Dataset
- Define transformations
 - Resizing
 - Normalization (from $[0, 255] \rightarrow [-1,1]$)
- Create DataLoader
 - Specify batch size and shuffling

Findings from EDA

- Datasets are mostly balanced
- No significant quality issues
- Images were not mis-labelled

Important things to note:

- Images must be resized to the same shape to be used by PyTorch
- Datatypes are very important
 - PIL Images
 - uint8 tensors [0,255]
 - Un-normalized Tensor [0,1]
 - Normalized Tensor [-1,1]

Baseline Models and Evaluation Metrics

LeNet5

- Very simple CNN originally developed for MNIST Dataset
- Only works for 32 x 32 images

VGG19

- Same model used by Dataset_01 in a <u>publication</u>
- Intended for 224 x 224 images
- Suitable for transfer learning

ResNet18

- Uses residual connections to address vanishing gradients
- It has less trainable parameters compared to VGG
- Suitable for transfer learning

Note these values match well with what has been published

Next Steps

- 1. Train an image classifier with same-sized fire and non-fire images
 - ✓ Train VGG19 02_fire_dataset with transfer learning, using the same hyperparameters as <u>authors</u>.
 - ✓ Train ResNet18 with 02_fire_dataset using same hyperparameters as <u>authors</u>.
- 2. Investigate segmentation of images CANCELLED out of scope
- 3. Make a new version of the 03_the_wildfire_dataset with square images
- 4. Compare VGG19 and ResNet
 - What is the nature of False Positives and False Negatives?
 - What is the most important metric for real-world deployment of these models?
 - How do models perform doing predictions from images with confounding elements (smoke, sunlight)?
 - Can the models be re-trained with the 03_the_wildfire_dataset and still perform well on unseen data?