4. Funktionen: Inhalt

- Stetigkeit
- Grenzwerte von Funktionen
- Polynome und rationale Funktionen
- Exponentialfunktion
- Trigonometrische Funktionen
- Hyperbolische Funktionen
- Umkehrfunktionen
- Logarithmus
- Arcus- und Areafunktionen

Definition, Stetigkeit

Definition

Eine **Funktion** *f* ist eine Vorschrift, die jedem Element *x* aus einer Menge *D* genau ein Element *y* aus einer Menge *W* zuordnet:

$$x \xrightarrow{f} y \quad \text{oder} \quad y = f(x)$$
 (50)

Man nennt die Menge $D \subseteq \mathbb{R}$ Definitionsbereich und die Menge $W \subseteq \mathbb{R}$ Wertebereich.

Eine Funktion ist stetig, wenn sie keinen Sprung macht.

Stetigkeit

Eine reelle Funktion ist genau dann stetig in einem Punkt $x_0 \in D$, wenn gilt: Zu jedem $\epsilon > 0$ gibt es ein $\delta > 0$, so dass für alle $x \in D$ mit $|x - x_0| < \delta$ die Ungleichung $|f(x) - f(x_0)| < \epsilon$ erfüllt ist.

Stetigkeit und Unstetigkeit

Veranschaulichung der Stetigkeit

- Wähle ein $x_0 \in D$.
- ② Wähle ein beliebig kleines $\epsilon > 0$.
- 3 Bilde Bereich $|f(x) f(x_0)| < \epsilon$ auf der *y*-Achse (grau in den Abbildungen).
- Gibt es ein $\delta > 0$, so dass das Intervall $|x x_0| < \delta$ (rosa) vollständig in $|f(x) f(x_0)| < \epsilon$ abgebildet wird?

Ja $\implies f$ ist stetig in x_0 .

Nein $\implies f$ ist unstetig in x_0 .

Eigenschaften von stetigen Funktionen

Zwischenwertsatz

Ist f(x) eine stetige Funktion im Intervall $a \le x \le b$ und y eine beliebige Zahl zwischen f(a) und f(b), dann gibt es mindestens eine Zahl x in a < x < b mit f(x) = y.

Im speziellen Fall y=0 kann man aus dem Zwischenwertsatz folgern, dass die Funktion mindestens eine Nullstelle haben muss, wenn es mindestens einen Funktionswert > 0 und einen < 0 gibt.

Summe, Differenz und Produkt zweier stetigen Funktionen sind auch stetige Funktionen im Durchschnitt der Definitionsbereiche.

Für $\frac{f(x)}{g(x)}$ muss man zusätzlich die Punkte mit g(x) = 0 aus dem Definitionsbereich herausnehmen.

Grenzwerte

Häufungspunkt

Eine Zahl x_0 heißt **Häufungspunkt** einer Teilmenge D der reellen Zahlen, wenn in jeder ϵ -Umgebung von x_0 unendlich viele Zahlen aus D liegen. x_0 selbst muss kein Element von D sein.

Grenzwert

 x_0 sei Häufungspunkt des Definitionsbereichs D einer Funktion f(x). Die Funktion f(x) hat für x_0 den **Grenzwert** c, wenn gilt: Zu jedem $\epsilon > 0$ gibt es ein $\delta > 0$, so dass für alle $x \in D$ mit $|x - x_0| < \delta$ die Ungleichung $|f(x) - c| < \epsilon$ erfüllt ist.

Die Kurzform dafür ist: $\lim_{x \to x_0} f(x) = c$

Singularitäten und Asymptoten

Konvergenz

f(x) konvergiert gegen den Grenzwert c, wenn gilt:

$$\lim_{x\to x_0}f(x)=c$$

Die Funktion kann stetig fortgesetzt werden mit der zusätzlichen Definition $f(x_0) = c$.

Singularität

Ein Punkt x_0 mit $\lim_{x \to x_0} f(x) = \pm \infty$.

Asymptote

Näherungsgerade der Funktion für $x \to \pm \infty$.

Polynome

Definition

Ein Polynom ist eine Funktion der Form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{j=0}^n a_j x^j.$$
 (51)

Die höchste vorkommende Potenz *n* heißt Grad des Polynoms.

Eigenschaften:

- Polynome sind stetig.
- Ein Polynom hat höchstens so viele Nullstellen wie sein Grad.

Rationale Funktionen

Definition

Eine **rationale Funktion** lässt sich als Quotient zweier Polynome darstellen:

$$f(x) = \frac{\sum_{j=0}^{n} a_j x^j}{\sum_{k=0}^{m} b_k x^k}$$
 (52)

Sie ist für die Werte definiert, für die der Nenner nicht null ist.

Polstelle:

x-Wert, für den die Funktion gegen ∞ geht.

Asymptote:

Gerade, der sich die Kurve für große |x|-Werte beliebig nahe annähert.

Eine rationale Funktion kann Polstellen und Asymptoten haben, muss aber nicht.

Exponentialfunktion

Definition

Die Exponentialfunktion ist definiert durch

$$f(x) = e^x. (53)$$

Die Basis ist die eulersche Zahl *e* oder jede andere positive reelle Zahl.

Es gilt das Additionstheorem

$$e^{x+y} = e^x e^y \tag{54}$$

Die Exponentialfunktion ist stetig, überall positiv, monoton wachsend und geht für große x-Werte schneller gegen Unendlich als jedes Polynom.

Trigonometrische Funktionen

Definition

Bezüglich der Abbildung rechts sind die trigonometrischen Funktionen Sinus, Kosinus, Tangens und Kotangens wie folgt definiert:

$$\sin \alpha = \frac{y}{r} \qquad \qquad \cos \alpha = \frac{x}{r} \qquad (55)$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \qquad \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \quad (56)$$

Sinus und Kosinus

Nach Definition gilt:

$$\sin^2 \alpha + \cos^2 \alpha = \frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$$
 (57)

$$\sin(\alpha + n \cdot 2\pi) = \sin \alpha \quad (n \in \mathbb{Z})$$
 (58)

$$\cos(\alpha + n \cdot 2\pi) = \cos \alpha \quad (n \in \mathbb{Z})$$
 (59)

Additionstheoreme:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \tag{60}$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \tag{61}$$

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}$$
 (62)

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
 (63)

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} \tag{64}$$

Tangens und Kotangens

Periodische Funktionen mit Periode π .

Polstellen bei $\pi/2 + n\pi$ bzw. $n\pi$.

Additionstheoreme:

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$
 (65)

$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}$$
 (66)

Hyperbolische Funktionen

Definition

Hyperbolischer Sinus, Kosinus, Tangens und Kotangens sind Kombinationen der Exponentialfunktionen:

$$\sinh a = \frac{e^a - e^{-a}}{2}$$
 $\cosh a = \frac{e^a + e^{-a}}{2}$ (67)

$$tanh a = \frac{\sinh a}{\cosh a}$$

$$\coth a = \frac{\cosh a}{\sinh a} \quad (68)$$

Umkehrfunktion

Definition

Die **Umkehrfunktion** einer Funktion f ist eine Funktion g mit g(f(x)) = x. (69)

Man bezeichnet sie auch mit f^{-1} .

Verfahren

Die Umkehrfunktion $x = f^{-1}(y)$ von y = f(x) erhält man durch:

- Vertauschung von x und y.
- Auflösen nach y.

Geometrisch:

Spiegelung an der Winkelhalbierenden des ersten Quadranten. (Eventuell Wertebereich einschränken, um eine eindeutige Umkehrfunktion zu erhalten.)

Logarithmus

Definition

Der Logarithmus einer Zahl c zur Basis a ist die Potenz, mit der man a potenzieren muss, um c zu erhalten:

$$a^{\log_a c} = c \tag{70}$$

Logarithmen zur Basis e heißen natürliche Logarithmen.

Der Logarithmus ist eine stetige und monotone Funktion, die für x > 0 definiert ist.

Rechenregeln:

$$\ln(x \cdot y) = \ln x + \ln y \qquad \quad \ln \frac{x}{y} = \ln x - \ln y \tag{71}$$

$$\ln x^y = y \cdot \ln x \qquad \qquad \ln \sqrt[y]{x} = \frac{1}{y} \cdot \ln x \tag{72}$$

Arcusfunktionen

Die Arcusfunktionen Arcussinus, Arcuskosinus, Arcustangens und Arcuskotangens sind die Umkehrfunktionen der trigonometrischen Funktionen und geben die Bogenlänge im Einheitskreis an.

Funktion	D	W	Arcusfunktion	D	W
$y = \sin x$	\mathbb{R}	[-1;1]	$y = \arcsin x$	[-1;1]	$[-\frac{\pi}{2}; \frac{\pi}{2}]$
$y = \cos x$	\mathbb{R}	[-1;1]	$y = \arccos x$	[-1; 1]	$[0;\pi]$
$y = \tan x$	$\mathbb{R}\setminus\left\{n\pi+\frac{\pi}{2}\right\}$	\mathbb{R}	$y = \arctan x$	\mathbb{R}] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [
$y = \cot x$	$\mathbb{R}\setminus\{ extit{n}\pi\}$	\mathbb{R}	$y = \operatorname{arccot} x$	\mathbb{R}]0; π [

Areafunktionen

Die Areafunktionen Areasinus, Areakosinus, Areatangens und Areakotangens sind die Umkehrfunktionen der hyperbolischen Funktionen.

Funktion	D	W	Areafunktion	D	W
$y = \sinh x$	\mathbb{R}	\mathbb{R}	$y = \operatorname{arsinh} x$	\mathbb{R}	\mathbb{R}
$y = \cosh x$	\mathbb{R}	$y \ge 1$	$y = \operatorname{arcosh} x$	$x \ge 1$	$y \ge 0$
$y = \tanh x$	\mathbb{R}] — 1; 1[y = artanh x] - 1; 1[\mathbb{R}
$y = \coth x$	$\mathbb{R}\setminus\{0\}$	$\mathbb{R}\setminus[-1;1]$	$y = \operatorname{arcoth} x$	$\mathbb{R}\setminus [-1;1]$	$\mathbb{R}\setminus\{0\}$

