TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND

Matemaatika instituut Matemaatika eriala

Priit Lätt

Minkowski aegruumi geomeetriast

Bakalaureusetöö (6 EAP)

Juhendaja: Viktor Abramov

 Autor:
 "...."juuni 2013

 Juhendaja:
 "...."juuni 2013

TARTU 2013

Sisukord

1 Sissejuhatus

ja nii edasi.

Märgime, et töös kasutame summade tähistamisel Einstein'i summeerimiskokkulepet. See tähendab, kui meil on indeksid i ja j, mis omavad väärtusi $1, \ldots, n$ $(n \in \mathbb{N})$, siis kirjutame

$$x^{i}e_{a} = \sum_{a=1}^{n} x^{i}e_{i} = x^{1}e_{1} + x^{2}e_{2} + \dots + x^{n}e_{n},$$

$$\lambda^{i}{}_{j}x^{j} = \sum_{j=1}^{n} = \lambda^{i}{}_{1}x^{1} + \lambda^{i}{}_{2}x^{2} + \dots + \lambda^{i}{}_{n}x^{n},$$

$$\eta_{ij}u^{i}v^{j} = \eta_{11}u^{1}v^{1} + \eta_{12}u^{1}v^{2} + \dots + \eta_{1n}u^{1}v^{n} + \eta_{21}u^{2}v^{1} + \dots + \eta_{nn}u^{n}v^{n},$$
edasi

Vektori u pikkust tähistame edaspidi |u|.

2 Vajalikud eelteadmised

Selles peatükis toome välja definitsioonid ja tähtsamad tulemused, mida läheb tarvis töö järgmistes osades. Lihtsamad tulemused, millele on pööratud tähelepanu kursustes Algebra I või Geomeetria II, esitame seejuures tõestusteta.

2.1 ptk

3 Minkowski ruumi geomeetriline struktuur

3.1 Skalaarkorrutise definitsioon ja omadused

Olgu \mathbb{V} n-mõõtmeline vektorruum üle reaalarvude korpuse. Me ütleme, et kujutus $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ on bilineaarvorm, kui g on mõlema muutuja järgi lineaarne, see tähendab $g(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 g(u_1, v) + \alpha_2 g(u_2, v)$ ja $g(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 g(u, v_1) + \alpha_2 g(u, v_2)$ kus α_1 ja α_2 on suvalised reaalarvud ning u, u_1, u_2, v, v_1 ja v_2 on vektorruumi \mathbb{V} elemendid.

Olgu $u, v \in \mathbb{V}$. Bilineaarvormi g nimetatakse sümmeetriliseks, kui g(u, v) = g(v, u) ja mittekidunuks, kui u = 0 järeldub tingumusest iga $v \in \mathbb{V}$ korral g(u, v) = 0.

Definitsioon 3.1. Mittekidunud sümmeetrilist bilineaarvormi $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ nimetatakse skalaarkorrutiseks. Vektorite u ja v skalaarkorrutist tähistame sageli ka kujul $u \cdot v$.

Tänu skalaarkorrutise bilineaarsusele on kergesti tuletatavad järgmised omadused:

- $u \cdot 0 = 0 \cdot v = 0$ kõikide $u, v \in \mathbb{V}$ korral, sest bilineaarsuse ingumusest saame $0 \cdot v = (0 * 0) \cdot v = 0 * (0 \cdot v) = 0$,
- kui $u_1, u_2, \dots, u_n, u, v_1, v_2, \dots, v_n \in \mathbb{V}$, siis $(\sum_{i=1}^n u_i) \cdot v = \sum_{i=1}^n (u_i \cdot v)$ ja $u \cdot (\sum_{i=1}^n v_i) = \sum_{i=1}^n (u \cdot v_i)$,
- kui $\{e_1, e_2, \ldots, e_n\}$ on vektorruumi \mathbb{V} baas ning kui tähistame $\eta_{ij} = e_i \cdot e_j$, $i, j = 1, 2, \ldots, n$, siis $u \cdot v = \sum_{i=1}^n \sum_{j=1}^n \eta_{ij} u^i v^j = \eta_{ij} u^i v^j$, kus $u = u^i e_i$ ja $v = v^i e_i$.

Näide 3.1. Vaatleme ruumi \mathbb{R}^n . Olgu $u = (u^1, u^2, \dots, u^n)$, $v = (v^1, v^2, \dots, v^n) \in \mathbb{R}^n$. Lihtne on veenduda, et kujutus $g(u, v) = u^1v^1 + u^2v^2 + \dots + u^nv^n$ on skalaarkorrutis.

Näites 1 defineeritud skalaarkorrutis on positiivselt määratud, see tähendab iga $v \neq 0$ korral g(v,v) > 0. Kui g(v,v) < 0 kõikide $v \neq 0$ korral, siis ütleme, et g on negatiivselt määratud ja kui g pole ei positiivselt ega negatiivselt määratud, siis öeldakse, et g on määramata.

Definitsioon 3.2. Kui g on skalaarkorrutis vektorruumil \mathbb{V} , siis nimetame vektoreid u ja v g-ortogonaalseteks ($v\tilde{o}i$ lihtsalt ortogonaalseteks, kui g roll on kontekstist selge), kui g (u, v) = 0 . Kui $\mathbb{W} \subset \mathbb{V}$ on alamruum, siis ruumi \mathbb{W} ortogonaalne täiend \mathbb{W}^{\perp} on hulk $\mathbb{W}^{\perp} = \{u \in \mathbb{V} : \forall v \in \mathbb{W}g$ (u, v) = 0.

Definitsioon 3.3. Skalaarkorrutise g poolt määratud ruutvormiks nimetame kujutust $Q: \mathbb{V} \to \mathbb{R}$, kus $Q(v) = g(v, v) = v \cdot v$, $v \in \mathbb{V}$.

Lause 3.1. Olgu g_1 ja g_2 kaks skalaarkorrutist vektorruumil \mathbb{V} , mis rahuldavad tingimust $g_1(u, u) = g_2(u, u)$ iga $v \in \mathbb{V}$ korral. Siis kehtib $g_1(u, v) = g_2(u, v)$ kõikide $u, v \in \mathbb{V}$ korral, ehk teisi sõnu, $g_1 \equiv g_2$.

 $T\tilde{o}estus$. Olgu \mathbb{V} vektorruum ning olgu $u,v\in\mathbb{V}$ ja kehtigu võrdus $g_1(u,u)=g_2(u,u)$ iga u korral. Defineerime uue kujutuse

$$g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}, g(u,v) \mapsto g_1(u,v) - g_2(u,v).$$

Paneme esiteks tähele, et selliselt defineeritud g on sümmeetriline ja bilineaarne. Tõepoolest, olgu $u_1, u_2 \in \mathbb{V}$. Siis

$$g(\alpha u_1 + \beta u_2, v) = g_1(\alpha u_1 + \beta u_2, v) - g_2(\alpha u_1 + \beta u_2, v)$$

$$= \alpha g_1(u_1, v) + \beta g_1(u_2, v) - \alpha g_2(u_1, v) \beta g_2(u_2, v)$$

$$= \alpha (g_1(u_1, v) - g_2(u_1, v)) + \beta (g_1(u_2, v) - g_2(u_2, v))$$

$$= \alpha g(u_1, v) + \beta g(u_2, v) \text{ ja analoogiliselt}$$

$$g(u, \alpha v_1 + \beta v_2) = \alpha g(u, v_1) + \beta g(u, v_2).$$

Kujutuse g sümmeetrilisus on g_1 ja g_2 sümmeetrilisust arvestades ilmne. Tõestuse lõpetamiseks piisab nüüd näidata, et g = 0. Ühelt poolt paneme tähele, et

$$q(u+v, u+v) = q_1(u+v, u+v) - q_2(u+v, u+v) = 0.$$

Teisalt

$$g(u+v, u+v) = g(u, u+v) + g(v, u+v)$$
= $g(u, u) + g(u, v) + g(v, u) + g(v, v)$
= $g(u, u) + 2g(u, v) + g(v, v) = 2g(u, v)$.

Kokkuvõttes saime 2g(u,v) = 0 ehk g(u,v) = 0, mida oligi tarvis.

Teoreem 3.1. Olgu \mathbb{V} reaalne n-mõõtmeline vektorruum ning olgu $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ skalaarkorrutis. Vektorruumil \mathbb{V} leidub baas $\{e_1, e_2, \ldots, e_n\}$ nii, et $g(e_i, e_j) = 0$ kui $i \neq j$ ja $Q(e_i) = \pm 1$ iga $i = 1, 2, \ldots, n$ korral. Enamgi veel, baasivektorite arv, mille korral $Q(e_i) = -1$ on sama kõikide neid tingimusi rahuldavate baaside korral sama.

 $T\~oestus$. Arvestades $Gram^1$ -Schmidti ² algoritmi muutub teoreemi t $\~o$ estus ilmseks³.

 $[\]overline{^1\mathrm{J}\mathrm{ørgen}}$ Pedersen Gram (1850 – 1916) - taani matemaatik

²Erhard Schmidt (1876 – 1959) - Tartus sündinud saksma matemaatik

³Vaata Lisa 1, Märkus 4.1

Definitsioon 3.4. Vektorruumi V baasi teoreemist 4.2 nimetame ortonormeeritud baasiks.

Skalaarkorrutise g suhtses ortonormaalse baasi $\{e_1, e_2, \ldots, e_n\}$ vektorite arvu r, mille korral $Q(e_i) = -1, i \in \{1, 2, \ldots, n\}$, nimetame skalaarkorrutise g indeksiks. Edasises eeldame, et ortonormeeritud baasid on indekseeritud nii, et baasivektorid e_i , mille korral $Q(e_i) = -1$, paiknevad loetelu lõpus, ehk ortonormeeritud baasi

$$\{e_1, e_2, \dots, e_{n-r}, e_{n-r+1}, \dots, e_n\}$$

korral $Q(e_i) = 1$, kui i = 1, 2, ..., n - r, ja $Q(e_i) = -1$, kui i = n - r + 1, ..., n. Tähistades $u = u^i e_i$ ja $v = v^i e_i$ saame sellise baasi suhtes skalaarkorrutise g arvutada järgmiselt:

$$q(u,v) = u^{1}v^{1} + u^{2}v^{2} + \dots + u^{n-r}v^{n-r} - u^{n-r+1}v^{n-r+1} - \dots - u^{n}v^{n}.$$

Märkus 3.1. Vektorruumi V skalaarkorrutisega g, mille indeks r > 0 nimetatakse pseudoeukleidiliseks ruumiks.

3.2 Minkowski aegruumi mõiste

Definitsioon 3.5. Minkowski aegruumiks nimetatakse 4-mõõtmelist reaalset vektorruumi \mathcal{M} , millel on defineeritud mittekidunud sümmeetriline bilineaarvorm g indeksiqa 1.

Ruumi \mathcal{M} elemente nimetatakse sündmusteks ja kujutust g nimetatakse Lorentzi skalaarkorrutiseks ruumil \mathcal{M} .

Vahetult Minkowski ruumi definitsioonist selgub, et ruumil \mathcal{M} leidub baas $\{e_1, e_2, e_3, e_4\}$ järgmise omadusega. Tähistades $u = u^i e_i$ ja $v = v^i e_i$, siis

$$g(u, v) = u^{1}v^{1} + u^{2}v^{2} + u^{3}v^{3} - u^{4}v^{4}.$$

Olgugi $\{e_1, e_2, e_3, e_4\}$ või lühidalt $\{e_a\}$ ruumi \mathcal{M} ortonormeeritud baas. Kui $x = x^1e_1 + x^2e_2 + x^3e_3 + x^4e_4$, siis tähistame sündmuse x koordinaadid baasi $\{b_a\}$ suhtes (x^1, x^2, x^3, x^4) ja seejuures ütleme, et (x^1, x^2, x^3) on ruumikoordinaadid ning (x^4) on ajakoordinaat.

Kuna Lorentzi skalaarkorrutis g ei ole ruumil \mathcal{M} positiivselt määratud, siis leiduvad vektorid $u \in \mathcal{M}, u \neq 0$ nii, et g(u, u) = 0. Selliseid vektoreid nimetatakse nullvektoriteks. Osutub, et ruumis \mathcal{M} leidub koguni baase, mis koosnevad vaid nullvektoritest.

Näide 3.2. Üheks ruumi \mathcal{M} baasiks, mis koosneb vaid nullvektoritest on näiteks $\{e_1^0, e_2^0, e_3^0, e_4^0\}$, kus $e_1^0 = (1, 0, 0, 1)$, $e_2^0 = (0, 1, 0, 1)$, $e_3^0 = (0, 0, 1, 1)$ ja $e_4^0 = (-1, 0, 0, 1)$. Tõepoolest, süsteemi $\{e_1^0, e_2^0, e_3^0, e_4^0\}$ lineaarne sõltumatus on vahetult kontrollitav ja e_1^0, \ldots, e_4^0 on nullvektorid, sest

$$\begin{split} Q\left(e_1^0\right) &= 1^2 + 0 + 0 - 1^2 = 0, \\ Q\left(e_2^0\right) &= 0 + 1^2 + 0 - 1^2 = 0, \\ Q\left(e_3^0\right) &= 0 + 0 + 1^2 - 1^2 = 0, \\ Q\left(e_4^0\right) &= (-1)^2 + 0 + 0 - 1^2 = 0. \end{split}$$

Samas paneme tähele, et selline baas ei saa koosneda paarikaupa ortogonaalsetest vektoritest.

Teoreem 3.2. Olgu $u, v \in \mathcal{M} \setminus \{0\}$ nullvektorid. Vektorid u ja v on ortogonaalsed siis ja ainult siis, kui nad on paralleelsed, st leidub $t \in \mathbb{R}$ nii, et u = tv.

 $T\tilde{o}estus.$ Piisavus. Olgu $u, v \in \mathcal{M} \setminus \{0\}$ paralleelsed nullvektorid. Siis leidub $t \in \mathbb{R}$ nii, et u = tv. Seega

$$q(u, v) = q(tv, v) = tq(v, v) = 0$$

ehk vektorid u ja v on ortogonaalsed, nagu tarvis.

Tarvilikkus. Olgu $u, v \in \mathcal{M} \setminus \{0\}$ ortogonaalsed nullvoktorid, st g(u, v) = 0. Cauchy-Schwartz-Bunjakowski võrratuse⁴ $g^2(u, v) \leq g(u, u) g(v, v)$ põhjal $0 \leq g(u, u) g(v, v)$, sest u ja v on ortogonaalsed. Teisalt, et u ja v on nullvektorid, siis g(u, u) g(v, v) = 0 ja järelikult kehtib Cauchy-Schwartz-Bunjakowski võrratuses võrdud 0 = 0, mis tähendab, et u ja v on lineaarselt sõltuvad.

Võtame nüüd vaatluse alla kaks sellist sündmust $x, x_0 \in \mathcal{M}, x \neq x_0$, mida ühendav vektor on nullvektor, see tähendab $Q(x - x_0) = 0$. Seda asjaolu arvesse võttes saame, et kui $\{e_a\}$ ruumi \mathcal{M} ortonormaalne baas ja me tähistame $x = x^a e_a$, $x_0 = x_0^a e_a$, siis kehtib võrdus

$$Q(x - x_0) = (x^1 - x_0^1)^2 + (x^2 - x_0^2)^2 + (x^3 - x_0^3)^2 - (x^4 - x_0^4)^2 = 0.$$
 (3.1)

Kõigi selliste $x \in \mathcal{M}$ hulka, mille korral on tingimus (3.1) täidetud nimetatakse nullkoonuseks (või ka $valguse\ koonuseks$) punktis x_0 ja tähistatakse $\mathcal{C}_N(x_0)$. Seega $\mathcal{C}_N(x_0) = \{x \in \mathcal{M} : Q(x - x_0) = 0\}$. Kirjeldavalt võime öelda, et kõik hulga $\mathcal{C}_N(x_0)$ elemendid on ühendatavad sündmusega x_0 $valguskiire\ R_{x_0,x}$ abil, mille me defineerime kui $R_{x_0,x} = \{x_0 + t(x - x_0) : t \in \mathbb{R}\}$.

⁴Vaata Lisa 1, Teoreem 4.2

4 Lisa 1

4.1 Skalaarkorrutisega seotud abitulemused

Teoreem 4.1. Lõplikumõõtmelises skalaarkorrutisega g varustatud vektorruumis V leidub ortonormeeritud baas.

 $T\~oestus$. Esiteks märgime, et igas ühem $\~o$ otmelises vektorruumis eksisteerib ortonormeeritud baas, sest kui $\{b\}$ on mingi baas, siis $\left\{\frac{1}{|b|}b\right\}$ on ortonormeeritud baas. Eeldame nüüd, et igas (n-1)-m $\~o$ otmelises vektorruumis on olemas ortonormeeritud baas ning olgu $\mathbb V$ n-m $\~o$ otmeline vektorruum baasiga $\{b_1, b_2, \ldots, b_n\}$. Eelduse järgi on ruumis $\mathbb V$ ortonormeeritud süsteem $\{e_1, e_2, \ldots, e_{n-1}\}$, kusjuures

$$span\{e_1, e_2, \dots, e_{n-1}\} = span\{b_1, b_2, \dots, b_{n-1}\}.$$

Seega tarvitseb meil leida veel $a_n \in \mathbb{V} \setminus \{0\}$ omadusega

$$a_n \perp \text{span}\{e_1, e_2, \dots, e_{n-1}\},\$$

sest siis $\{e_1,e_2,\ldots,e_{n-1},\frac{1}{|a_n|}a_n\}$ on ruumi $\mathbb V$ ortonormeeritud baas. Otsime vektorit a_n kujul

$$a_n = b_n + \sum_{j=1}^{n-1} \alpha^j e_j, \text{ kus } \alpha^1, \dots, \alpha^{n-1} \in \mathbb{R}.$$

$$(4.1)$$

Paneme tähele, et kui a_n on sellisel kujul, siis $a_n \neq 0$, sest vastasel korral $b_n \in \text{span}\{b_1, b_2, \dots, b_{n-1}\}$, mis on vastuolus süsteemi $\text{span}\{b_1, b_2, \dots, b_{n-1}\}$ lineaarse sõltumatusega. Kui a_n on kujul (4.1), siis kõikide $k \in \{1, 2, \dots, n-1\}$ korral

$$a_n \perp e_k \iff a_n \cdot e_k = 0 \iff \left(b_n + \sum_{j=1}^{n-1} \alpha^j e_j\right) \cdot e_k = 0$$

Samas, kuna

$$\left(b_n + \sum_{j=1}^{n-1} \alpha^j e_j\right) \cdot e_k = b_n \cdot e_k + \sum_{j=1}^{n-1} \alpha^j \left(e_j \cdot e_k\right) = b_n \cdot e_k + \alpha_k,$$

siis $a_n \perp e_k \iff \alpha_k = -(b_n \cdot e_k)$. Järelikult võime võtta $a_n := b_n - \sum_{j=1}^{n-1} (b_n \cdot e_j) e_j$.

Märkus 4.1. Teoreemi 4.1 tõestuses antud algortimi ortonormeetirud baasi leidmiseks nimetatakse Gram-Schmidti algoritmiks või ortogonaliseerimisprotsessiks.

Teoreem 4.2 (Cauchy-Schwartz-Bunjakowski võrratus). Olgu \mathbb{V} vektroruum skalaarkorrutisega $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$. Sellisel juhul kehtib võrratus

$$g^{2}(u, v) \le g(u, u) g(v, v)$$
 (4.2)

kõikide $u, v \in \mathbb{V}$ korral. Seejuures võrdus kehtib parajasti siis, kui elemendid u ja v on lineaarselt sõltuvad.

 $T\~oestus$. Olgu $\mathbb V$ reaalne vektorruum skalaarkorrutisega g ning olgu $u,v\in\mathbb V$. Siis iga $\lambda\in\mathbb R$ korral

$$0 \leq g(u + \lambda v, u + \lambda v) = g(u, u) + 2g(u, \lambda v) + g(\lambda v, \lambda v) = g(u, u) + 2\lambda g(u, v) + \lambda^{2} g(v, v) \leq g(u, u) + 2\lambda |g(u, v)| + \lambda^{2} g(v, v).$$

Saime λ suhtes võrratuse

$$g(v, v) \lambda^2 + 2|g(u, v)|\lambda + g(u, u) \ge 0,$$

mille reaalarvuliste lahendite hulk on \mathbb{R} . Kui g(v,v)>0, siis on tegu ruutvõrratusega. Seega vastava ruutvõrrandi diskriminant $4|g(u,v)|^2-4g(u,u)\,g(v,v)\leq 0$, millest järeldub vahetult võrratus (4.1). Juhul g(v,v)=0 peab kõikide $\lambda\in\mathbb{R}$ korral kehtima $2|g(u,v)|\lambda+g(u,u)\geq 0$, mis on võimalik vaid siis, kui g(u,v)=0. Sellisel juhul on tingimuse (4.1) kehtivus aga ilmne.

Veendume veel, et tingimuses (4.1) kehtib võrdus parajasti siis, kui u ja v on lineaarselt sõltuvad.

Oletame esiteks, et vektorid u ja v on lineaarselt sõltuvad. Siis leidub $\alpha \in \mathbb{R}$ selliselt, et $u = \alpha v$. Seega

$$g^{2}(u, v) = g^{2}(\alpha v, v) = \alpha^{2}g^{2}(v, v) = \alpha^{2}g(v, v) g(v, v)$$

= $g(\alpha v, \alpha v) g(v, v) = g(u, u) g(v, v)$,

nagu tarvis.

Kehtigu nüüd tingimuses (4.1) võrdus. Veendume, et siis u ja v on lineaarselt sõltuvad. Üldistust kitsendamata võime eeldada, et $u \neq 0$ ja $v \neq 0$. Siis ka $g(u, u) \neq 0$ ja $g(v, v) \neq 0$. Paneme tähele, et

$$g^{2}(u,v) = g(u,u) g(v,v)$$

on eelnevat arvestades samaväärne tingimusega

$$\frac{g^{2}(u,v)g(v,v)}{g^{2}(v,v)} = g(u,u).$$

Tähistades $a := \frac{g(u,v)}{g(v,v)}$, saame, et $a^2g(v,v) = g(u,u)$ ehk g(av,av) = g(u,u), millest u = av.