Chapter 5

Relations

Discrete Structures for Computing on August 31, 2021

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations
Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen An Khuong, Le
Hong Trang
Faculty of Computer Science and Engineering
University of Technology - VNUHCM
trtanh@hcmut.edu.vn - htnguyen@hcmut.edu.vn

Contents

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

1 Properties of Relations

2 Combining Relations

3 Representing Relations

4 Closures of Relations

Course outcomes

	Course learning outcomes
L.O.1	Understanding of logic and discrete structures
	L.O.1.1 – Describe definition of propositional and predicate logic
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs
L.O.2	Represent and model practical problems with discrete structures
	L.O.2.1 – Logically describe some problems arising in Computing
	L.O.2.2 – Use proving methods: direct, contrapositive, induction
	L.O.2.3 – Explain problem modeling using discrete structures
L.O.3	Understanding of basic probability and random variables
	L.O.3.1 – Define basic probability theory
	L.O.3.2 – Explain discrete random variables
L.O.4	Compute quantities of discrete structures and probabilities
	L.O.4.1 – Operate (compute/ optimize) on discrete structures
	L.O.4.2 - Compute probabilities of various events, conditional
	ones, Bayes theorem

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Introduction

Function?

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

ВК

Let A and B be sets. A **binary relation** (quan hệ hai ngôi) from a set A to a set B is a set

$$R\subseteq A\times B$$

• Notations:

$$(a,b) \in R \longleftrightarrow aRb$$

Contents

Properties of Relations

Combining Relations
Representing Relations

presenting reduction

Closures of Relations

Types of Relations

• n-ary relations?

Example

Let $A = \{a, b, c\}$ be the set of students, $B = \{l, c, s, d\}$ be the set of the available optional courses. We can have relation R that consists of pairs (a, b), where a is a student enrolled in course b.

$$R = \{(a,l), (a,s), (a,g), (b,c), (b,s), (b,g), (c,l), (c,g)\}$$

R	l	c	s	g
\overline{a}	Х		Х	Χ
b		X	Χ	X
c	Х			Х

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

Functions as Relations

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

- Is a function a relation?
- Yes!
- $f: A \rightarrow B$

$$R = \{(a,b) \mid b = f(a)\}$$

Functions as Relations

- Is a relation a function?
- No

• Relations are a generalization of functions

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

BK TP.HCM

Contents

Properties of Relations

Combining Relations
Representing Relations

presenting reduce

Closures of Relations

Types of Relations

Definition

A relation on the set A is a relation from A to A.

Example

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R = \{(a,b) \mid a \text{ divides } b\}$ (a là ước số của b)?

Solution:

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

1	2	3	4
Х	Х	Х	Х
	X		X
		X	
			Х
	1 ×	хх	x x x

Properties of Relations

Reflexive	$xRx, \forall x \in A$
(phản xạ)	
Symmetric	$xRy \to yRx, \forall x, y \in A$
(đối xứng)	
Antisymmetric	$(xRy \land yRx) \rightarrow x = y, \forall x, y \in A$
(phản đối xứng)	
Transitive	$(xRy \land yRz) \rightarrow xRz, \forall x, y, z \in A$
(bắc cầu)	

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Example

Relations

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye An Khuong, Le Hong Trang

Contents

Properties of Relation

Representing Relations

Closures of Relations

Types of Relations

Combining Relations

Solution:

Reflexive: R₃

 $R_5 = \{(3,4)\}$

• Symmetric: R_2 , R_3

• Antisymmetric: R_4 , R_5

Consider the following relations on $\{1, 2, 3, 4\}$:

 $R_2 = \{(1,1), (1,2), (2,1)\},\$

 $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\},\$

 $R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\},\$

 $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\},\$

• Transitive: R_4 , R_5

Huvnh Tuong Nguyen Tran Tuan Anh. Nguye An Khuong, Le Hong Trang

Properties of Relation

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Example

What is the properties of the **divides** ($u\acute{o}c s\acute{o}$) relation on the set of positive integers?

Solution:

- $\forall a \in \mathbb{Z}^+, a \mid a$: reflexive
- $1 \mid 2$, but $2 \nmid 1$: not symmetric
- $\exists a, b \in \mathbb{Z}^+, (a \mid b) \land (b \mid a) \rightarrow a = b$: antisymmetric
- $a \mid b \Rightarrow \exists k \in \mathbb{Z}^+, b = ak; b \mid c \Rightarrow \exists l \in \mathbb{Z}^+, c = bl$. Hence, $c = a(kl) \Rightarrow a \mid c$: transitive

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Representing Relations

Closures of Relations

Properties of Relation

Combining Relations

Types of Relations

Example

What are the properties of these relations on the set of integers:

$$R_1 = \{(a, b) \mid a \le b\}$$

$$R_2 = \{(a, b) \mid a > b\}$$

$$R_3=\{(a,b)\mid a=b \text{ or } a=-b\}$$

Combining Relations

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Example

Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. List the combinations of relations $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ and $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$.

Solution: $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$ and $R_2 - R_1$.

Example

Let A and B be the set of all students and the set of all courses at school, respectively. Suppose $R_1 = \{(a,b) \mid a \text{ has taken the course } b\}$ and $R_2 = \{(a,b) \mid a \text{ requires course } b \text{ to graduate}\}$. What are the relations $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \oplus R_2$, $R_1 - R_2$, $R_2 - R_1$?

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Composition of Relations

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Definition

Let R be **relations** from A to B and S be from B to C. Then the **composite** ($h \not \circ p \ th \grave{a} n h$) of S and R is

$$S \circ R = \{(a,c) \in A \times C \mid \exists b \in B \ (aRb \wedge bSc)\}\$$

Example

$$R = \{(0,0), (0,3), (1,2), (0,1)\}$$

$$S = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$S \circ R = \{(0,0), (0,1), (1,1)\}$$

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Power of Relations

Definition

Let R be a relation on the set A. The **powers** ($l\tilde{u}y$ thừa) $R^n, n=1,2,3,\ldots$ are defined recursively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Example

Let
$$R = \{(1,1), (2,1), (3,2), (4,3)\}$$
. Find the powers $R^n, n = 2, 3, 4, \ldots$

Solution:

$$R^{2} = \{(1,1), (2,1), (3,1), (4,2)\}
R^{3} = \{(1,1), (2,1), (3,1), (4,1)\}
R^{4} = \{(1,1), (2,1), (3,1), (4,1)\}$$

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Representing Relations Using Matrices

Definition

Suppose R is a relation from $A = \{a_1, a_2, \dots, a_m\}$ to $B = \{b_1, b_2, \dots, b_n\}$, R can be represented by the **matrix** $\mathbf{M}_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{if } (a_i, b_j) \notin R \end{cases}$$

Example

R is relation from $A = \{1, 2, 3\}$ to $B = \{1, 2\}$. Let $R = \{(2, 1), (3, 1), (3, 2)\}$, the matrix for R is

$$\mathbf{M}_R = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} \right]$$

Determine whether the relation has certain properties (reflexive, symmetric, antisymmetric,...)

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Representing Relations Using Digraphs

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Definition

Suppose R is a relation in $A = \{a_1, a_2, \dots, a_m\}$, R can be represented by the **digraph** ($d\hat{o}$ thị có hướng) G = (V, E), where

$$V = A$$

$$(a_i, a_j) \in E \text{ if } (a_i, a_j) \in R$$

Example

Given a relation on $A=\{1,2,3,4\}$, $R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ Draw corresponding digraph.

Resulting digraph

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Closure

Definition

is the relation S that

ii. has property P

i. contains R

Huynh Tuong Nguyen Tran Tuan Anh. Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

S is the "smallest" relation satisfying (i) & (ii)

iii. is contained in any relation satisfying (i) and (ii).

The closure (bao $d\acute{o}ng$) of relation R with respect to property P

Reflexive Closure

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Example

Let
$$R = \{(a, b), (a, c), (b, d), (d, c)\}$$

The reflexive closure of R

$$\{(a,b),(a,c),(b,d),(d,c),(a,a),(b,b),(c,c),(d,d)\}$$

$R \cup \Delta$

where

$$\Delta = \{(a, a) \mid a \in A\}$$

diagonal relation (quan hệ đường chéo).

Reflexive Closure

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Symmetric Closure

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Example

Let
$$R = \{(a, b), (a, c), (b, d), (c, a), (d, e)\}$$

The symmetric closure of R

$$\{(a,b),(a,c),(b,d),(c,a),(d,e),(b,a),(d,b),(e,d)\}$$

$$R \cup R^{-1}$$

where

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}$$

inverse relation (quan hệ ngược).

Symmetric Closure

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Transitive Closure

Example

Let
$$R = \{(a, b), (a, c), (b, d), (d, e)\}$$

The transitive closure of R

$$\{(a,b),(a,c),(b,d),(d,e),(a,d),(b,e),(a,e)\}$$

$$\bigcup_{n=1}^{\infty} R^n$$

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Transitive Closure

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Equivalence Relations

Definition

A relation on a set A is called an **equivalence relation** (quan $h\hat{e}$ tương đương) if it is reflexive, symmetric and transitive.

Example (1)

The relation $R=\{(a,b)|a \text{ and } b \text{ are in the same provinces}\}$ is an equivalence relation. a is equivalent to b and vice versa, denoted $a\sim b$.

Example (2)

$$R = \{(a, b) \mid a = b \lor a = -b\}$$

 ${\cal R}$ is an equivalence relation.

Example (3)

$$R = \{(x, y) \mid |x - y| < 1\}$$

Is R an equivalence relation?

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations
Representing Relations

oresenting reductor

Closures of Relations

Example (Congruence Modulo m - Đồng dư modulo m)

Let m be a positive integer with m>1. Show that the relation

$$R = \{(a, b) \mid a \equiv b \; (\mathbf{mod} \; m)\}$$

is an equivalence relation on the set of integers.

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Equivalence Classes

Definition

Let R be an **equivalence relation** on the set A. The set of all elements that are related to an element a of A is called the **equivalence class** ($l\acute{o}p$ tuong duong) of a, denoted by

$$[a]_R = \{s \mid (a, s) \in R\}$$

Example

The equivalence class of "Thủ Đức" for the equivalence relation "in the same provinces" is $\{$ "Thủ Đức", "Gò Vấp", "Bình Thạnh", "Quận 10",... $\}$

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

closures of relations

Types of Relations

Example

What are the equivalence classes of 0, 1, 2, 3 for congruence modulo 4?

Solution:

$$[0]_4 = \{..., -8, -4, 0, 4, 8, ...\}$$

$$[1]_4 = \{..., -7, -3, 1, 5, 9, ...\}$$

$$[2]_4 = \{..., -6, -2, 2, 6, 10, ...\}$$

$$[3]_4 = \{..., -5, -1, 3, 7, 11, ...\}$$

Equivalence Relations and Partitions

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Theorem

Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent:

aRb

$$[a] = [b]$$

iii
$$[a] \cap [b] \neq \emptyset$$

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

Types of Relations

Example

Suppose that $S=\{1,2,3,4,5,6\}$. The collection of sets $A_1=\{1,2,3\}$, $A_2=\{4,5\}$, and $A_3=\{6\}$ forms a partition of S, because these sets are disjoint and their union is S

The equivalence classes of an equivalence relation R on a set S form a **partition** of S.

Every partition of a set can be used to form an equivalence relation.

Example

Divides set of all cities and towns in Vietnam into set of 64 provinces. We know that:

- there are no provinces with no cities or towns
- no city is in more than one province
- every city is accounted for

Definition

A partition of a Vietnam is a collection of non-overlapping non-empty subsets of Vietnam (provinces) that, together, make up all of Vietnam.

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

Relation in a Partition

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer An Khuong, Le Hong Trang

We divided based on relation

Contents

 $R = \{(a,b)|a \text{ and } b \text{ are in the same provinces}$

Representing Relations

Closures of Relations

- "Thủ Đức" is related (equivalent) to "Gò Vấp"
- "Dà Lạt" is not related (not equivalent) to "Long Xuyên"

Partial Order Relations

- Order words such that x comes before y in the dictionary
- ullet Schedule projects such that x must be completed before y
- Order set of integers, where x < y

Definition

A relation R on a set S is called a **partial ordering** ($c\acute{o}$ thứ tự bộ phận) if it is reflexive, antisymmetric and transitive. A set S together with a partial ordering R is called a partially ordered set, or **poset** ($t\hat{a}p$ $c\acute{o}$ thứ tự bộ phận), and is denoted by (S,R) or (S,\preccurlyeq) .

Example

- (\mathbb{Z}, \geq) is a poset
- Let S a set, $(P(S), \subseteq)$ is a poset

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations
Combining Relations

Representing Relations

Closures of Relations

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Totally Order Relations

Relations

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye An Khuong, Le Hong Trang

Properties of Relations

Closures of Relations

Types of Relations

Combining Relations

Representing Relations

Example

In the poset $(\mathbb{Z}^+, |)$, 3 and 9 are comparable (so sánh được), because $3 \mid 9$, but 5 and 7 are not, because $5 \nmid 7$ and $7 \nmid 5$.

→ That's why we call it partially ordering.

Definition

If (S, \preceq) is a poset and every two elements of S are comparable, S is called a totally ordered (có thứ tự toàn phần). A totally ordered set is also called a chain (dây xích).

Example

The poset (\mathbb{Z}, \leq) is totally ordered.

Maximal & Minimal Elements

Relations

Huvnh Tuong Nguyen Tran Tuan Anh. Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Closures of Relations

Representing Relations

Types of Relations

Definition

- a is maximal ($c\psi c \ dai$) in the poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$.
- a is **minimal** ($c\psi c$ $ti\hat{e}u$) in the poset (S, \preceq) if there is no $b \in S$ such that $b \prec a$.

Example

Which elements of the poset $(\{2,4,5,10,12,20,25\},|)$ are minimal and maximal?

Greatest Element& Least Element

Relations

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Definition

- a is the greatest element ($l\acute{o}n$ $nh\acute{a}t$) of the poset (S, \preccurlyeq) if $b \preccurlyeq a$ for all $b \in S$.
- a is the **least element** ($nh\delta nh\hat{a}t$) of the poset (S, \preccurlyeq) if $a \preccurlyeq b$ for all $b \in S$.

The greatest and least element are unique if it exists.

Example

Let S be a set. In the poset $(P(S),\subseteq)$, the least element is \emptyset and the greatest element is S.

Upper Bound & Lower Bound

Definition

Let $A \subseteq (S, \preccurlyeq)$.

- If u is an element of S such that $a \preccurlyeq u$ for all elements $a \in A$, then u is called an **upper bound** ($c\hat{q}n$ $tr\hat{e}n$) of A.
- If l is an element of S such that $l \preccurlyeq a$ for all elements $a \in A$, then l is called a **lower bound** $(c\hat{q}n \ du\acute{o}i)$ of A.

Example

- Subset A does not have upper bound and lower bound.
- The upper bound of B are 20,40 and the lower bound is 2.

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer An Khuong, Le Hong Trang

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

crosures or relations