

planetmath.org

Math for the people, by the people.

measurable function

Canonical name MeasurableFunction
Date of creation 2013-03-22 12:50:50
Last modified on 2013-03-22 12:50:50

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 18

Author CWoo (3771) Entry type Definition Classification msc 28A20

Synonym Borel measurable

Related topic ExampleOfFunctionNotLebesgueMeasurableWithMeasurableLevelSets

Related topic LusinsTheorem2
Related topic BorelGroupoid
Related topic BorelMorphism

Defines Borel measurable function

Let $(X, \mathcal{B}(X))$ and $(Y, \mathcal{B}(Y))$ be two measurable spaces. Then a function $f: X \to Y$ is called a *measurable function* if:

$$f^{-1}(\mathcal{B}(Y)) \subseteq \mathcal{B}(X)$$

where
$$f^{-1}(\mathcal{B}(Y)) = \{ f^{-1}(E) \mid E \in \mathcal{B}(Y) \}.$$

In other words, the inverse image of every $\mathcal{B}(Y)$ -measurable set is $\mathcal{B}(X)$ -measurable. The space of all measurable functions $f\colon X\to Y$ is denoted as

$$\mathcal{M}((X,\mathcal{B}(X)),(Y,\mathcal{B}(Y))).$$

Any measurable function into $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})$ is the Borel sigma algebra of the real numbers \mathbb{R} , is called a *Borel measurable function*.¹ The space of all Borel measurable functions from a measurable space $(X, \mathcal{B}(X))$ is denoted by $\mathcal{L}^0(X, \mathcal{B}(X))$.

Similarly, we write $\mathcal{\bar{L}}^{0}(X,\mathcal{B}(X))$ for $\mathcal{M}((X,\mathcal{B}(X)),(\bar{\mathbb{R}},\mathcal{B}(\bar{\mathbb{R}})))$, where $\mathcal{B}(\bar{\mathbb{R}})$ is the Borel sigma algebra of $\bar{\mathbb{R}}$, the set of extended real numbers.

Remark. If $f: X \to Y$ and $g: Y \to Z$ are measurable functions, then so is $g \circ f: X \to Z$, for if E is $\mathcal{B}(Z)$ -measurable, then $g^{-1}(E)$ is $\mathcal{B}(Y)$ -measurable, and $f^{-1}(g^{-1}(E))$ is $\mathcal{B}(X)$ -measurable. But $f^{-1}(g^{-1}(E)) = (g \circ f)^{-1}(E)$, which implies that $g \circ f$ is a measurable function.

Example:

• Let E be a subset of a measurable space X. Then the characteristic function χ_E is a measurable function if and only if E is measurable.

¹More generally, a measurable function is called *Borel measurable* if the range space Y is a topological space with $\mathcal{B}(Y)$ the sigma algebra generated by all open sets of Y.