數值分析 Newton polynomial

學號姓名: 00757025 何文豪

第一題

原圖

新月圖 moon

t1 = Chord-length, t2 = Uniform

第二題

Coefficients of t1 polynomials and t2 polynomials

t1 polynomials by using 55 points

t2 polynomials by using 41 points

t1, t2 分別對 x, y 的圖形(紫線為多項式產生的 x, y. 綠線是原本的 x, y)

第三題

A. 從第二題的 t1, t2 圖以及上一頁 t1, t2 分別對 x, y 的圖中可以看出來·t2 的圖更接近原圖。所以用 Uniform 的方式產生參數 t 更好。

原因:divided difference 的差別。在 x , y 值都相同的情況下,由於 t1 的參數範圍是從 0-53.4 · t2 的參數範圍是從 0-9 · 而且 t1 的參數之間距離不相同,導致由 t1 產生的 divided difference 數值差異很大。根據第二題 t1 產生的數值最小來到- $9.35*10^{-10}$ · 而 t2 最小只到- $1.6*10^{-5}$ 而已。因此 t1 polynomial 所產生的 x , y 會有較大的浮動(由上面的圖可以證明)。

新月圖 moon2

B. 是,範例點很重要。

Case1 (moon2)

我將原本 p0(9.5, 24)換成 p0(9.5, 50)·讓他與 p1, p8 的距離增加·故意 孤立 p0 這個點·上面三個圖為新的新月圖的一些數值。如此會導致 p0 到 p1 和 p8 到 p0 這兩段之間的誤差會變得很大·因為他們之間的距離太

大,也沒有點可以參考。若想要改進這個問題,就必須要在他們之中加入 更多的範例點才行。因此在取範例點時,必須小心太過邊緣的點,點與點 之間的距離越小或是取越多範例點,逼近出來的圖形會越接近原圖。

這邊還可以證明 3.A 小題所問的問題,用 Uniform 的方式產生參數 t 更好,即便有較極端的點,所產生的誤差也比 Chord-length 小很多,Chord-length 所產生的誤差是直接爆炸。

(圖在下一頁)

new t1 polynomials by using 41 points

new t1 polynomial (放大)

new t2 polynomials by using 41 points

新月圖 moon3

Case2 (moon3)

改變範例點的密集度·我將左邊 (3.5,20),(3,7) 這兩個點移除點·將右邊新增兩個點(5,14),(6,8)·讓右邊的弧更接近原圖。

結果就是逼近出來的圖形,右邊的弧會比較接近原圖,而左邊的弧會直接 炸裂。

new t1 polynomials by using 41 points

new t2 polynomials by using 41 points

