

#34: Graph Implementation

April 13 2018 · Wade Fagen-Ulmschneider

Graph Implementation #1: Edge List

- HashTable storage of our vertex set
- List storage of our edge set
- O(1) runtime: insertVertex
- O(m) runtime: removeVertex, areAdjacent, and incidentEdges

Graph Implementation #2: Adjacency Matrix

Vert.	Edges	Adj. Matrix
u	a	$\mathbf{u} \mid \mathbf{v} \mid \mathbf{w} \mid \mathbf{z}$
v	b	u
\mathbf{w}	c	$ \mathbf{v} $
Z	d	w
		Z

Operations on an Adjacency Matrix:

insertVertex(K key):

removeVertex(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

incidentEdges(Vertex v):

Graph Implementation #3: Adjacency List

Vertex List	Edges
u	a
v	b
w	c
Z	d

Operations on an Adjacency List:

insertVertex(K key): O(1)

removeVertex(Vertex v): O(deg(v))

areAdjacent(Vertex v1, Vertex v2): min(deg(v1), deg(v2))

incidentEdges(Vertex v): O(deg(v))

Running Times of Classical Graph Implementations

	Edge List	Adj. Matrix	Adj. List
Space	n+m	n+m n^2	n º m+n
insertVertex	1	n	1
removeVertex	m	n	deg(v)
insertEdge	1	1	1
removeEdge	1	1	1
incidentEdges	m	n	deg(v)
areAdjacent	m	1	min(deg(v), deg(w))

How do the algorithms compare?

...is one always better?

Graph Traversal

Objective: <u>Visit every vertex and every edge in the graph.</u> **Purpose:** Search for interesting sub-structures in the graph.

We've seen traversal before – this is only slightly different:

BST	Graph	

BST Graph Traversal

		-	A
Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	11 /2 /2	0+0
insertVertex(v)	1	n	1 (1)
removeVertex(v)	m	n	deg(v
insertEdge(v, w, k)	1	1	1
removeEdge(v, w)	1	1	1 (1)
incidentEdges(v)	m	n	deg(v)
areAdjacent(v, w)	m	1	min(deg(v), deg(w))

CS 225 – Things To Be Doing:

- 1. Topic list for Programming Exam C available; starts Tuesday 4/17
- 2. lab_puzzles ongoing; due Sunday, April 15th
 3. MP6 due on Monday, April 16th
- 4. Daily POTDs are ongoing!