Greedy Algorithms

Consider the *Activity-selection problem* from the book:

- Given set S of n activities.
 - $\triangleright s_i = \text{start time of activity } i.$
 - $\triangleright f_i = \text{finish time of activity } i.$
- Find max-size subset A of compatible activities.

Activity-selection problem (cont'd)

• Assume $f_1 \leq f_2 \leq \cdots \leq f_n$.

- Greedy approach: select the first activity to finish that is compatible with all previously selected activities $\Rightarrow \{1, 2, 5\}$.
- The greedy approach is optimal because the problem has
 - 1. Greedy-choice property.
 - 2. Optimal substructure.

Greedy choice-property

- Let $A \subseteq S$ be an optimal solution.
- If $f_1 \leq f_2 \leq \cdots$ then activity 1 is part of A.
- If the first activity in A is $k \neq 1$ (not greedy), then there is another optimal solution B that begins with 1.
- $B = A \{k\} \cup \{1\}.$
- Because $f_1 \leq f_k$, activity 1 is still compatible with A.
- |B| = |A|, so B is also optimal.

Optimal substructure

Once we make the first greedy choice the problem is

$$S' = \{i \in S : s_i \ge f_1\}$$

with optimal solution $A' = A - \{1\}$.

- Solution A' must be optimal.
- If B' solves S' with more activities than A', adding activity 1 to B' makes it bigger than A which is a contradiction.
- Therefore, a greedy choice yields an optimal solution.