An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

March 17, 2020

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Proble

The Challenge and the solution

The outline of our res

Data Extraction

Complexes, CDRs, Co

Number

Positivo Coros Nogatio

Positive Cores, Nega Cores

Basis Function Network(RBFN)

two cores

Cross Validation and testing

Applications of RBFN

Antibody as and antigen as

Table of contents

Introduction

Significance

The Problem

The Challenge and the solution

The outline of our research

Data Extraction

Complexes, CDRs, Contact Number Reduce Redundance Positive Cores, Negative Cores

Develop an Radial Basis Function Network(RBFN)

Define the distance between two cores Cross Validation and testing

Applications of RBFN

Antibody aa and antigen aa are different RBFN can predict the affinity

An Radial Basis Network to Describe The Antibody Antigen Interactions

$Liu\ Chuanxing$

Introduction

Significance

The Challenge and th

The outline of o

ta Extraction

Complexes, CDRs, Contac Number

Reduce Redundance Positive Cores, Negative

Positive Cores, Nega Cores

Basis Function letwork(RBFN)

Define the distance between two cores

Cross Validation and

Applications of RBFN

Antibody aa and antigen aa are different

Significance

Figure: An illustration of serum immunity

- Design therapeutic antibodies
- Design effective vaccines

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Significance

The Problem

Do similar B-cell epitopes interact with similar paratopes?

Here is a similar research about TCR and its epitopes

LETTER

doi:10.1038/nature22383

Quantifiable predictive features define epitopespecific T cell receptor repertoires

Prudyot Dash¹, Andrew J. Fiore - Gartland², Tomer Hertz^{2,1}, George C. Wingg⁴, Shalini Sharma⁵, Aisha Souquette¹, Jeremy Chase Crawford ¹, E. Iridie Chemer⁴, Thi H. O. Nguyen⁶, Katherine Kedzienska⁶, Nicole L. La Gruta^{5,2}, Phillip Beadley-38 & Paul G. Thomas¹

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significano

The Problem

he Challenge and the

The outline of our resea

ata Extraction

Complexes, CDRs,

Reduce Redundance

Positive Cores, Negat

Develop an Ra Basis Function Network(RBFN

Define the distance between

Cross Validation and testi

Applications o

Antibody aa and antigen aa

The Challenge

The interactions between B-cell epitopes and paratopes are conformational!

Figure: The interaction between Hemagglutinin and one of its antibodies

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Challenge and the

The outline of our research

ata Extraction

Jata Extraction

Number Reduce Redundance

Positive Cores, Nega Cores

Basis Function Jetwork(RBFN)

Define the distance between

two cores Cross Validation and testing

Applications of

RBFN

Antibody aa and antigen aa are different

Solution of the challenge

We solved the challenge by focusing on the key amino acids(hot spots). As long as the sequence is short enough, the hot spots are composed of continuous sequences.

Figure: The hot spots between Hen Egg Lysozym(HEL) and one of its antibodies cAB-Lys3

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introdu

Significance

The Challenge and

The Challenge and the solution

ata Extraction

Complexes, CDRs, Con

Reduce Redundance Positive Cores, Negative

Positive Cores, Negat Cores

Basis Function Network(RBFN)

Define the distance between

two cores Cross Validation and testing

pplications of

Antibody aa and antigen a

are different

The outline of our research

- Data extraction
- Develop an Radial Basis Function Network(RBFN)
- ► Use the RBFN to tell the difference between the antibody amino acids and the antigen amino acids.
- ► Use the RBFN to predict how a mutation can affect the affinity of an antibody-antigen complex.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance
The Problem

The outline of our research

ata Extraction

Complexes, CDRs, Conta Number

Reduce Redundance Positive Cores, Negative Cores

asis Function etwork(RBFN)

Define the distance between two cores

Cross Validation and testing

Applications of RBFN

Antibody aa and antigen aa are different

Complex, CDR, Interacting Pairs

- ▶ 1624 antibody-antigen complexes with resolution $\leq 3A$.
- ► The CDRs are defined as follows

	CDR1	CDR2	CDR3
Max-CDRL	24 to 41	50 to 64	90 to 108
Max-CDRH	26 to 38	51 to 72	100 to 130

Table: Locations of the CDRs

A and B are two amino acids, the contact number between A and B is defined as

$$CN(A,B) = \sum_{a \in A} \sum_{b \in B} \chi\{d(a,b) \le 4\}$$

 $a \in A$ means a is an atom in A and a is not a hydrogen atom.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduct

Significance

The Challenge ar

The outline of ou

Data Extraction

Complexes, CDRs, Contact Number

Reduce Redundance

Positive Cores, Negative Cores

Basis Function Betwork(RBFN)

Define the distance between two cores

Cross Validation and

Applications (RBFN

Antibody aa and antigen aa

Define distance

The redundance reduction was based on the similarity of the CDRs. Each light/heavy chain was an individual.

Scoring rules

$$S(a, a) = 1;$$
 $S(a, b) = 0;$ $S(a, -) = 0$

▶ Calculate the distance Concatenate the three CDRs. Suppose A and B are two concatenated CDRs of two light/heavy chains. D(A, B) = 1 - S(A, B)/N where N = min(Len(A), Len(B)).

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Challenge and the solution

The outline of our research

ata Extraction

mplexes, CDRs, Conta

Reduce Redundance

Positive Cores, Negative Cores

evelop an Radi

Jetwork(RBFN)

Define the distance between

Cross Validation and testin

Applications of

Applications of RBFN

Antibody aa and antigen aa are different

Select the cut-off distance

According to the Elbow Method, we chose 0.1 as the cut-off distance.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Challenge and the solution

The outline of our rese

ata Extraction

Complexes, CDRs, Contac Number

Reduce Redundance

Positive Cores, Negativ Cores

Develop an Radi

Define the distance between

Cross Validation and testin

Applications of

RBFN
Antibody aa and antigen a

are different RBFN can predict the

Select the representative from each cluster

Suppose A is the set of all the amino acids for a given light/heavy chain, and Ag is the set of all the amino acids in the corresponding antigen. The total contact number of A is defined as

$$TCN(A) = \sum_{a \in A} \sum_{b \in Ag} CN(a, b)$$

In each cluster, the chain with the largest TCN was selected as the representative.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Reduce Redundance

Positive cores and Negative cores

- Match-type was defined as the lengths of the interacting sequences. Match-type(2,3) means 2 consecutive antibody amino acids interacting with 3 consecutive antigen amino acids.
- ► For a light/heavy chain and a match-type(m,n), the core is defined as the interacting sequences of match-type(m,n), with the largest contact number.
- ► The negative cores were randomly generated sequences pairs which were not in the training set.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Positive Cores, Negative

What do we have?

- ▶ The training set of different match-types. For each match-type, the training set consists of the positive cores and the randomly generated negative cores.
- ► The testing set of different match-types. For each match-type, there are 10 different testing sets, generated by combining the positive testing set with the 10 independently generated negative cores.
- ▶ The label for the positive cores is 1 and the label for the negative cores is -1.

Here, the range of the match-type is

$$\{(m, n): m, n = 1, 2, 3\}$$

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Positive Cores, Negative Cores

The Substitution matrix

Substitution matrix
$$= BLOSUM62$$
 gap $= Hp_1$ extended gap $= Hp_2$

Here Hp_1 and Hp_2 were two hyperparameters. We use the complete BLOSUM62, not the truncated BLOSUM62 as Pradyot Dash did.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Define the distance between two cores

The distance between two cores

Suppose (Ab1, Ag1) and (Ab2, Ag2) are two cores of match-type(m,n). This distance between them is defined by the following steps.

$$S_{Ab} = \text{Aln}(\text{Ab}_1, \text{Ab}_2)$$

$$S_{Ag} = \text{Aln}(\text{Ag}_1, \text{Ag}_2)$$

$$S_{Ab}^+ = \frac{S_{\text{Ab}} + 4 \times m}{15 \times m}$$

$$S_{Ag}^+ = \frac{S_{\text{Ag}} + 4 \times n}{15 \times n}$$

$$S = S_{Ab}^+ \times S_{Ag}^+$$

$$D = 1 - S$$

D is the distance defined

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Challenge and the

The outline of our rese

ata Extraction

Number

Positive Cores, Negativ

Cores Develop an Radi

Network(RBFN) Define the distance between

two cores

Cross Validation and testing

A -- 1: -- +: -- - - £

Applications of RBFN

Antibody aa and antigen aa are different

Cross Validation

match-type	Hp_1	Hp_2	r	р	average AUC
(1,1)	-1	-1	0.0001	0.8	0.973
(1,2)	-1	-1	0.0001	8.0	0.860
(1,3)	-1	-1	0.0001	8.0	0.834
(2,1)	-1	-1	0.0001	8.0	0.870
(2,2)	-1	-1	0.0001	8.0	0.842
(2,3)	-1	-1	0.001	8.0	0.836
(3,1)	-1	-1	0.0001	8.0	0.867
(3,2)	-1	-1	0.001	8.0	0.862
(3,3)	-1	-1	0.001	8.0	0.862

Table: We did a 5 cross validation. The best parameter are the values corresponding to the highest average AUC.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Challenge and the solution

The outline of our researc

ta Extraction

Complexes, CDRs, Cont Number

Reduce Redundance Positive Cores, Negative Cores

etwork(RBFN)

efine the distance betwe

Cross Validation and testing

Applications of

Applications on RBFN

Antibody aa and antigen aa are different

Testing the model

Figure: For each match-type, the testing were run on 10 independent testing set. The average AUC were calculated.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

Digitilicano.

The Challenge and the

The outline of our res

ata Extraction

Complexes, CDRs, Contac Number

duce Redundance

Positive Cores, Negative Cores

Basis Function Network(RBFN)

Define the distance between

Cross Validation and testing

A--1:--+:------

RBFN

Antibody aa and antigen a are different

Testing the model

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significano

TI D 11

The Challenge and the

The outline of our research

ta Extraction

Complexes, CDRs, Con Number

Reduce Redundance

Positive Cores, Nega Cores

Basis Function Network(RBFN)

Define the distance between

Cross Validation and testing

Applications of RBFN

Antibody aa and antigen a

Antibody aa and antigen aa are different

Suppose (AbSeq, AgSeq) is of match-type(m,n). If there is no difference between AbSeq and AgSeq, then our model will not be able to tell the difference between (AgSeq, AbSeq) and a positive core of match-type(n,m).

To prove the above statement, the testing set for each match-type was constructed as follows.

$$\mathsf{TR}_{(n,m)} = \{ (AgSeq, AbSeq) : (AbSeq, AgSeq) \in \mathsf{T}_{(m,n)} \}$$

$$\mathsf{T} = \mathsf{TR}_{(n,m)} \cup \mathsf{T}_{(n,m)}$$

Here T is the testing set of match-type(n,m).

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduct

Significance

The Challenge and the solution

The outline of our re

ata Extraction

omplexes, CDRs, Contact lumber

duce Redundance

Positive Cores Cores

evelop an Ka asis Functior etwork(RBFI

lefine the distance between wo cores

Cross Validation and test

pplications of BFN

Antibody aa and antigen aa

Antibody aa and antigen aa are different

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significano

The Challenge and the

The outline of our research

ata Extraction

Complexes, CDRs, Cont Number

Reduce Redundance

Positive Cores, Negativ Cores

Develop an Radia Basis Function Network(RBFN)

Define the distance between two cores

Cross Validation and tes

Applications of

Antibody as and antigen as

Basic assumptions

Assumption: if a mutation changes the interacting sequences towards the direction of positive cores, then it increases the affinity.

We uses the RBFN on match-type(1,1) to make predictions

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Problem

solution

ata Extraction

Complexes, CDRs, Co Number

Reduce Redundance Positive Cores. Negati

Positive Cores, Nega Cores

Develop an Rad Basis Function Network(RBFN

Define the distance between

Cross Validation and testir

Applications of

Antibody aa and antigen a

are different

RBFN can predict the affinity

Predictable Pairs

Step 1: Find the contacting pairs for each mutation.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Proble

The Challenge and the

The outline of our res

ata Extraction

Complexes, CDRs, Contac Number

duce Redundance

Positive Cores, Negati Cores

Develop an Ra Basis Function Network(RRFN

Define the distance between

Cross Validation and testin

Applications of

Antibody as and antigen as

RBFN can predict the affinity

Predictable Pairs

Step 2: Generate all predictable pairs

Step 3: For each mutation, pick the one with the largest contact number from the all the predictable pairs.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

RBFN can predict the affinity

Make prediction

Suppose there are two mutations, Mut1, Mut2, in a antibody-antigen complex. (Mut1, Ag1) and (Mut2, Ag2) are two predicable pairs. (Wt1, Ag1) and (Wt2, Ag2) are corresponding wild-type pairs. Calculate the change of the returned values by our RBFN model:

$$\Delta = \frac{1}{2} \sum_{i=1,2} (RBFN(Muti, Agi) - RBFN(Wti, Agi))$$

If $\Delta>0,$ the affinity increases. If $\Delta<0$ the affinity decreases.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduct

Significance

The Challenge and the

The outline of our re

ata Extraction

ita Extraction

omplexes, CDRs, Cont umber

luce Redundance itive Cores. Negativ

ositive Cores, Nega lores

asis Function etwork(RBFN)

Define the distance betweer two cores

Cross Validation and

Applications of RBFN

Antibody as and antigen as

Results

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction

Significance

The Proble

The Challenge and the

The outline of our rese

ta Extraction

Complexes, CDRs, Conta Number

educe Redundan

Positive Cores, Negat Cores

Develop an Rad Basis Function Network(RBFN

Define the distance between

Cross Validation and testing

pplications of

RBFN

Antibody as and antigen as are different

RBFN can predict the affinity

Results

	$\Delta\Delta G < 0.5$	$\Delta\Delta G > 0$	$\Delta\Delta G > 0.5$	$\Delta\Delta G > 1$
CN	(0.43, 0.63)	(0.54, 0.66)	(0.53, 0.71)	(0.60, 0.80)
bASA	(0.44, 0.64)	(0.58, 0.69)	(0.57, 0.74)	(0.54, 0.80)
dfire	(0.45, 0.67)	(0.62, 0.73)	(0.63, 0.79)	(0.67, 0.84)
dDfire	(0.50, 0.71)	(0.57, 0.68)	(0.54, 0.70)	(0.57, 0.78)
Rosetta	(0.37, 0.68)	(0.57, 0.68)	(0.59, 0.76)	(0.67, 0.87)
STATIUM	(0.42, 0.63)	(0.57, 0.68)	(0.58, 0.75)	(0.68, 0.87)
D Studio	(0.48, 0.69)	(0.67, 0.77)	(0.70, 0.83)	(0.77, 0.92)
FoldX	(0.51, 0.71)	(0.69, 0.8)	(0.79, 0.91)	(0.86, 0.98)

Table: 95% confidence intervals constructed by Bootstrap. The iteration number is 10,000. D Studio is short for Discovery Studio.

An Radial Basis Network to Describe The Antibody Antigen Interactions

Liu Chuanxing

Introduction Significance

The Problem
The Challenge and the

The outline of our resea

ta Extraction

omplexes, CDRs, Cor

educe Redundance ositive Cores, Negative

Positive Cores, Negativ Cores

asis Function etwork(RBFN)

Vefine the distance between wo cores

pplications of

pplications of BFN

Antibody aa and antigen aa are different

RBFN can predict the affinity

