



A 19 Mary Contract of the street of the stre

## CORPS OF ENGINEERS, U. S. ARMY

MISSISSIPPI RIVER COMMISSION

CORRELATION OF SOIL PROPERTIES WITH GEOLOGIC INFORMATION

REPORT NO. 1

# SIMPLIFICATION OF THE LIQUID LIMIT TEST PROCEDURE



**TECHNICAL MEMORANDUM NO. 3-286** 

WATERWAYS EXPERIMENT STATION

VICKSBURG, MISSISSIPPI

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151

JUNE 1940



## CONTENTS

|                                                                                                                                                                                                                                              |      |   |   |   | Page                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---|---|------------------------------------|
| PREFACE                                                                                                                                                                                                                                      |      | • |   | • | i                                  |
| PART I: INTRODUCTION                                                                                                                                                                                                                         |      | • | • | • | 1                                  |
| PART II: PRESENT AND PROPOSED LIQUID LIMIT TEST PROCEDUR                                                                                                                                                                                     | ES . | • |   | ٠ | 3                                  |
| Present Test Procedure                                                                                                                                                                                                                       |      |   |   |   | 3                                  |
| PART III: DATA ANALYSIS AND RESULTS                                                                                                                                                                                                          |      | : |   |   | 5                                  |
| Conversion of Data  Methods Used in Analysis of Data  Nomenclature and Definitions  Analysis of Data with Respect to Geology  Analysis of Data with Respect to Geography  Analysis of Results  Recommended Simplified Liquid Limit Procedure |      | • |   |   | 5<br>6<br>7<br>9<br>10<br>12<br>19 |
| PART IV: CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                     |      |   |   |   | 21                                 |

TABLES 1-3

PLATES 1-22

#### PREMCE

In a memorandum to the President, Mississippi River Commission, dated 13 May 1946, ambject "Special Projects for the Fiscal Year 1949," the Waterways Experiment Station proposed an investigation entitled "Correlation of Soil Properties with Geologic Information." The project was approved in the 1st Memo Indorsement dated 14 June 1948. This report is the first of a series to be published on this investigation.

The concept upon which this report is based was contributed by Dr. A. Casagrande, whose valuable assistance is hereby acknowledged.

Acknowledgement is also made to the New Orleans, Vicksburg, and Memphis Districts, CE, for the use of their laboratory data files which aided materially in the accomplishment of the investigation.

The study was performed by the Embankment and Foundation Branch of the Soils Division, Waterways Experiment Station. Engineers connected with the study were Messrs. W. J. Turnbull, S. J. Johnson, A. A. Maxwell, S. Pilch and C. D. Burns. This report was prepared by Mr. Pilch.

CORRELATION OF COIL PROPERTIES WITH GFOLOGIC INFORMATION

## SIMPLIFICATION OF THE LIQUID LIMIT TEST PROCEDURE

#### PART I: INTRODUCTION

- 1. The general project of correlating soil properties with geologic information, one phase of which is described in this report, consists in comparing soil properties with soil types and with their geologic history and environment in order to determine what correlations are possible. The correlations are found to exist, it would be possible to reduce habbratory testing materially at sites where geologic information is available, and to obtain a better understanding of the behavior and properties of the soils. The purpose of this report is to present data and analyses from liquid limit tests, and correlations which may materially reduce the cost of performing this test.
- 2. Dr. Arthur Casagrande suggested that flow lines determined by included limit tests, plotting both water content and number of blows to a constitution of scale, might have a constant slope for soils of the same pologic origin. The basis for the idea that a logarithmic plot would give a constant flow-line slope, which the currently-used semilogarithmic plot does not, is as follows: On a semilogarithmic plot, flow lines or aigner liquid limit values have, in general, steeper slopes than flow lines or lower liquid limit values. However, a logarithmic plot reduces the slope of the higher liquid limit flow lines more than it does the lower, the scanding to make them equal as is clearly illustrated by figure 1.



14. STANDARD SEMI-LOGARITHMIC PLOT



Fig. 1. Semi-logarithmic and logarithmic liquid limit flow line plots

3. It was apparent that this suggested procedure had practical possibilities that could be explored rather rapidly. Since the liquid limit test is a desirable but costly type of classification test, it was decided to determine the reasibility of using the liquid limit test procedure simplification suggested by Dr. Casagrande.

4. This report describes the results of analyses of 767 liquid limit tests. The tests were performed by the New Orleans, Vicksburg and Memphis Districts, and the Waterways Experiment Station,

CE, in connection with various projects under the jurisdiction of the Mississippi River Commission and the Lower Mississippi Valley Division.

# PART II: PRESENT AND PROPOSED LIQUID LIMIT TEST PROCEDURES

#### Present Test Procedure

5. The Atterberg liquid limit test has been standardized as to procedure and equipment\*. The testing device consists essentially of a small brass dish which can be raised a distance of one centimotor by a can arrangement and allowed to drop on a hard rubber base. The soil specimen is placed in this dish and a groove is cut in the specimen with a special grooving tool. The dish is then dropped on the base at a rate of two drops, or "blows," per second until a 1/2-in. length of the groove is closed by the flowing together of the soil on each side of the proove. The liquid limit is the water content of the soil when the groove closes with 25 blows. It would be too time-consuming to adjust the water content of a soil specimen so that the groove would close at exactly 25 blows. Hence the test is made at several water contents, and the water content at 25 blows is found by straight-line interpolation on a graph, plotting the number of blows on a logarithmic scale and water content on an arithmetic scale; figure 1-a is a typical plot. The line determined by the plotting of number of blows versus water content is called a flow line.

### Proposed Method of Simplifying Test Procedure

6. It can be seen from figure 1-a that six points have been used to define a flow line on a semilogarithmic plot. If it can be shown

<sup>\*\*</sup> Caragrando, A., "Research on the Attorborg Limits of Soils," Public heads, Vol. 13, No. 8, October 1932.

4.

that the stope of the flow lines for soils in the same peologic formation is a constant on a logarithmic plot, then the liquid limit can be determined from one test point for each soil. The point can be plotted on logarithmic paper, and the flow line, with its predetermined stope, drawn through this point. The liquid limit would be the water content at the intersection of the flow line and the 25-blow line. A nomographic chart could also be made representing the relationship between the liquid limit, water content, and number of blows for a given flow line slope.

PART III: DATA ANALYSIS AND RESULTS

#### Sources of Data

- The soils for which liquid limit test data were analyzed fall into three main geographical groups: the Alluvial Valley of the Mississippi River, the West Gulf Coastal Plain, and the East Gulf Coastal Plain. A few project locations lie outside of these groups and are listed as Miscellaneous. Plate 1 shows the locations of the projects from which data were analyzed.
- 8. Geologically, the soils tested fall within the following major groups: Recent (alluvium, backswamp, natural levee, channel filling, marsh, and marine). Pleistocene, Tertiary, and glacial till. Tables 1 and 2 show the locations and geologic types of soils at the projects from which acta were used.
- characteristics. For this purpose, Casagrande's plasticity chart of liquid limit versus plasticity index was used (plate 2). The plasticity charts for all the projects and tests used are presented on plates 3 to 7. The plasticity charts were consolidated according to the three major geographic groupings, and these charts are shown by plates 8, 9 and 10. In general, the soils analyzed were medium to highly plastic inorganic clays, and a few silts and sandy clays.

## Conversion of Data

10. Data examined for this study were of the form shown on figure 1-a where the number of blows is plotted logarithmically and the water

content arithmetically. To determine the slope of a flow line on a fully locarithmic plot, it was not necessary to replot the data. The slope of a flow line on a logarithmic plot can be computed from the semilogarithmic plot by the following relationship:

$$\tan \beta = \frac{\log w_{10} - \log w_{30}}{\log 30 - \log 10} = \frac{\log \frac{w_{10}}{w_{30}}}{0.477}$$

where  $\tan \beta =$ the slope of the flow line on a logarithmic plot with reference to the horizontal,

wlo = the water content at 10 blows ) from flow line on ) semilogarithmic w30 = the water content at 30 blows ) plot

Ten and 30 blows were arbitrarily selected for convenience. This method is not theoretically exact, as a straight line (except a vertical or horizontal one) on a semilogarithmic plot will not be a straight line when plotted logarithmically. However, within the range in water contents and number of blows of a single flow line for the data utilized, the variation from a straight line is so small as to be of no consequence. Figure 1-b shows data from figure 1-a plotted logarithmically.

# Methods Used in Analysis of Data

- ll. All of the data examined were used except for a few tests in which it was obvious that the test points were so erratic that a reasonably precise flow line could not be determined. The data were also limited to tests for which the liquid limit was less than 150.
- 12. It should be noted that liquid limit test results depend to a considerable extent on individual technique; and since the tests analyzed were performed by many technicians, some degree of control over the data

was lost. However, it is believed that the methods used in the analysis give results which accommodate a large part of the variations in the data due to differences in technique.

13. The large number of tests utilized made it necessary to adopt methods to present the data in a concise, yet complete form. To fill this need, statistical methods were used in analysis of the data and presentation of results. The statistical methods and nomenclature used are those recommended by the American Society for Testing Materials.\*

## Nomenclature and Definitions

14. For purposes of clarity, the nomenclature and definitions used in this study are given below:

n: the number of observations.

f: the frequency, the number of observations for a given value, or interval, of  $\tan \beta$ .

 $\tan \beta$ : the arithmetic mean or average, referred to as the mean in this report.

 $\frac{\sum_{i=1}^{n} \tan \beta_{i}}{n}, \text{ where } \sum_{i=1}^{n} \tan \beta_{i} \text{ means the}$   $\text{sum of all the values of } \tan \beta \text{ from } \tan \beta_{1} \text{ to}$   $\tan \beta_{n}, \text{ inclusive.}$ 

<sup>\*</sup> A.S.T.M. Manual on "Presentation of Data," April 1945 (reprint).

o: the standard deviation, the most significant and efficient measure of dispersion of data about a mean. For a normal frequency curve, the mean plus and minus the standard deviation includes 68.3 per cent of the total.

number of observations.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (\tan \beta_i - \overline{\tan \beta})^2}{n}}.$$

v: the coefficient of variation, a measure of relative dispersion of data about a mean. Useful in comparing distributions with different means.

$$v\% = \frac{c}{\tan \beta} \times 100.$$

k: Hazen's coefficient of skewness, a measure of the non-symmetry of a distribution about a mean. A positive value of k generally means that the observed values extend farther to the right of the mean than to the left; a negative value of k, vice versa. For a symmetrical normal frequency curve k = zero.

$$k = \frac{\sum_{i=1}^{n} (\tan \beta_i - \overline{\tan \beta})^3}{n \sigma^3}.$$

Normal frequency curve: the curve defined by the equation

$$\Gamma = \frac{n}{\sigma \sqrt{2\pi}} \left( \frac{(\tan \beta)^2}{2\sigma^2} \right).$$

It is the familiar boll-shaped curve and represents to

Theoretically correct frequency distribution (see Figure 3, page 10).

## Analysis of Pata with Respect to Geology

- 15. The individual values of tan β were computed to the nearest thousandth by the method discussed in paragraph 10. To show (raphically the distribution of tan β for each geologic soil type within the projects, frequency histograms were plotted (plates 11-22). The frequency histograms have as their abscissas values of tan β grouped in classes with intervals of 15 thousandths, and as their ordinates, the frequency.
- 16. The mean tan β for each project was computed by the equation in paragraph 14. These means are listed in tables 1 and 2 and are plotted on the histograms; the means from all the various geologic types and projects range from 0.094 (White River Levee District, Recent alluvium, 25 tests) to 0.143 (Algiers Lock, Recent marine, 3 tests), a range of 0.049. The range of tan β within each geologic soil type averages about 0.1; maximum range 0.168 (Grenada Dam Tertiary, Eocene), minimum range 0.050 (Greenwood Protection Levee, Recent alluvium). The range of tan β within soil groups of the same geologic classification is greater than the range of the means of all geologic soil types. Also, an inspection of the means in tables 1 and 2 shows no tendency for each geologic type to group itself about a single mean tan β. From these observations it appears that, for the soil types studied, the slope of the riow line is not directly related to the geologic classification of the mount is an early related to the geologic classification of the root.

## Analysis of the Data with Respect to Geography

17. The data were also analyzed by grouping the tests according to their geographical location: Alluvial Valley of the Mississippi River, West Gulf Coastal Plain, and East Gulf Coastal Plain. Histograms showing the distribution of tan  $\beta$  for the tests from these areas are shown in figures 2, 3, and 4. These histograms have as their abscissas values of tan  $\beta$  grouped in classes with intervals of 15 thousandths and as their ordinates, per cent frequency. The mean tan  $\beta$ , standard deviation, coefficient of variation, and skewness were computed for these areas and the results are listed in table 3 in addition to the number of tests and ranges in tan  $\beta$  and plasticity. The means range from 0.115 to 0.130, or



Wig. P. Histogram of the Alluvial Valley of the Missinsippl River -- h3P tests



Fig. 3. Histogram of the West-Gulf Constal Plain -- 130 teats



Fig. 4. Histogram of the East Gull Coastal Plain -- 135 tests

curves are superimposed on the histograms of figures 2-4.

18. The means, standard deviations, coefficients of variation, and skewnesses were so close together for the three areas that it was believed that a more accurate representation of the data could be obtained by combining all 767 tests in one histogram, figure (a. This histogram contains, in addition to the tests from the Alluvial Valley

expressed in degrees of \$\beta\$ represent a range of 0.75 degrees. The standard deviations range from 0.028 to 0.035, and the coefficients of variation from 22.4 to 27.8 per cent. The skewnesses range from 40.42 to 40.55. All three histograms are skewed to the right, as indicated by the positive values of skewness.

Using the means and standard deviations, it was possible to compute normal frequency curves which best ritted the distributions, and these



Fig. 5. Histogram of all 767 tests

of the Mississippi River and the East and West Gulf Constal Flains, the tests from the two projects outside these three general areas: Garrison Pam, N.D., mean 0.123, and Blakely Mountain Dam, Ark., mean 0.123. The mean for all 767 tests is 0.121, the standard deviation 0.057, the coefficient of variation 26.4 per cent, and the skewness 40.42 (telde 3). The normal frequency curve was computed and superimposed on the histogram, figure 5. This histogram best fits its normal frequency curve, as a comparison with the histograms of figures 2-4 shows. This was to be expected because of the large number of tests used in its development. The fact that the skewness coefficient is lower for the histogram of all the tests than for any of the three principal geographic areas is also indicative of a better fit to the normal frequency curve.

#### Analysis of Results

Equation for the liquid limit on a logarithmic plot

19. It can be shown that the value for the liquid limit using a logarithmic plot and one point on the flow line is determined by the equation:

LL = 
$$w_N \left(\frac{N}{25}\right)^{\tan \beta}$$
,

whore LL = liquid limit,

w<sub>N</sub> = water content at N blows from the liquid limit device,

tan  $\beta$  = slope of the flow line on a logarithmic plot.

20. The method of differentials is applicable to measuring the effect of variations in tan F on the value of the liquid limit. The expression for per cent change in the liquid limit is derived as follows:

$$LL = w_H \left(\frac{N}{25}\right)^{\tan \beta} \times \ln \frac{N}{25} \times d \left(\tan \beta\right)$$

$$d (LL) = w_N \left(\frac{N}{25}\right)^{\tan \beta} \times \ln \frac{N}{25} \times d \left(\tan \beta\right)$$

$$\left(\ln \text{ refers to logarithms to the base e}\right)$$
and 
$$\frac{d (LL)}{LL} = \ln \frac{N}{25} \times d \left(\tan \beta\right).$$

This may also be written as:

$$\frac{\Lambda \text{ (LL)}}{\text{LL}} \beta = \ln \frac{N}{29} \times \Lambda \text{ (tan } \beta \text{ ) } \times 100,$$

in which  $\frac{\Lambda_{\rm LL}}{LL}$  % is the per cent change in the liquid limit for a change  $\Lambda_{\rm LL}$  (tan  $\beta$ ) in the slope of the flow line on a logarithmic plot. An inspection of this equation shows that the per cent change in the liquid limit is independent of the actual values of both the liquid limit and the slope of the flow line. It depends only on a given variation in the slope of the flow line and the number of blows. The above equation is plotted on figure 6 (page 14) for various values of N and  $\Lambda$  (tan  $\beta$ ).

### Comparison of mean slopes

The portinent results determined for the geographical areas are summarized on the following page (from table 3):



Fig. 6. Per cent change in liquid limit vs number of blows for changes in  $\tan \beta$ 

|                                                      | No.<br>Tests | Mean<br>tan 3 | Standard<br>Deviation | Coefficient of Variation (%) | Skew-<br>ness |
|------------------------------------------------------|--------------|---------------|-----------------------|------------------------------|---------------|
| Alluvial Valley of the<br>Mississippi River          | 432          | 0.115         | 0.032                 | 27.8                         | +0.55         |
| West Gulf Coastal Plain                              | 136          | 0.125         | 0.028                 | 22.4                         | 40.50         |
| East Gulf Coastal Plain                              | 135          | 0.130         | 0.035                 | 26.9                         | +0.44         |
| All tests (including 64 from the Miscellaneous roup) | <b>7</b> 67  | 0.121         | 0.032                 | 26.4                         | +0.42         |

The magnitude of the differences between the mean for all tests and for the three principal geographic areas is best understood by reference to the change in the liquid limit due to these variations. The mean of all the tests, 0.121, differs from the mean of the Mississippi River Alluvial Valley, 0.116, by 0.000. This would make a difference in the liquid limit determination of 0.3 per cent, using 15 blows, figure 6. This

illustrates that the differences between the means in the above table are of an extremely small magnitude when referred to the differences that they would make in computing liquid limits. The means of the West Gulf Coastal Plain and the East Gulf Coastal Plain, although from relatively small numbers of tests, differ from the mean of 0.121 by 0.004 and 0.009, respectively. The dispersion of data about the four individual means is least for the West Gulf Coastal Plain, as is seen by an inspection of the coefficients of variation and standard deviations. This is not necessarily conclusive, however, as the smaller number of tests involved means a greater probability for a narrower range in tan \$\(\textit{g}\), which in turn results in a smaller coefficient of variation. For practical purposes the measures of dispersion and skewness are essentially the same for all group-

ings. Based on the above factors it is believed that the histogram of all the tests, figure 5, with its mean of 0.121 best represents all the data studied, and the remainder of this report will be referred to this value.

Per cent error involved in liquid limit determinations using mean slope

22. The histogram and normal frequency curve for all 767 tests were plotted on arithmetic probability graph paper, figure 7. The ordinates of this graph are so spaced



Fig. 7. Arithmetic cumulative frequency curve -- 767 tests

that a normal frequency curve will plot as a straight line when cumulative per cent frequency is used as the ordinate and the quality being measured as the abscissa. An inspection of figure 7 shows that the plotted points generally lie above the normal frequency curve and tend to define a smooth curve rather than a straight line. Both of these facts are indicative of the skewness to the right of the distribution.

23. This cumulative frequency graph facilitates the calculation of the per cent error involved in liquid limit determinations for a given per cent of the tests. The standard deviation,  $\sigma$ , is defined so that, for a normal frequency curve, the mean  $\pm \sigma$  includes 68.3 per cent of the observations and the mean  $\pm 2 \sigma$  includes 95.5 per cent. The mean, ten  $\beta = 0.121$ ,  $\tan \beta \pm \sigma$ , and  $\tan \beta \pm 2 \sigma$ , ( $\sigma = 0.032$ ), were plotted on the cumulative frequency curve, figure 7, making it possible to pick off actual percentages of observations included within the ranges noted in the table below. The per cent error in the liquid limit for tests within the given ranges was obtained from figure 6 where per cent change in liquid limit also means per cent error in liquid limit, and  $\Delta$  (tan  $\beta$ ) is the variation of the mean slope from the true flow line slope. (Fifteen blows were used for the following table.)

| Range in tan          | P           | Percentages of Too<br>Observations Lyin<br>Within Given Range<br>(all 767 tests)<br>Theoretical Observation | ng Per Cent<br>es Error in<br>Liquid Limit                                            |
|-----------------------|-------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| tan A + o             | 0.089-0.153 | 68.3 67.                                                                                                    | less than ± 1.5                                                                       |
| tan β + 2 σ           | 0.057-0.185 | 95.5 95.                                                                                                    | l less than $\pm 3.3$                                                                 |
| min tan β - max tan f | 0.027-0.235 | 99.9 100.0                                                                                                  | less than + 4.8<br>(tan $\beta = 0.027$ )<br>less than -5.8<br>(tan $\beta = 0.235$ ) |

Factors affecting the liquid limit determination using a mean slope

24. An examination of Figure 6 shows that the per cent error in the liquid limit determination depends on the variation of the true alope from the mean slope and on the number of blows used to determine a point on the flow line. The preceding paragraph showed that the error due to variations in the slope of the flow line is small. To keep errors due to number of blows to a small magnitude, the desirability of keeping the number of blows as close as possible to 25 is readily apparent. For example, from the preceding table the error for  $\tan \beta \pm 2\sigma$  using 15 or 41 blows is less than 3.3 per cent for 95.1 per cent of the tests; if 20 or 31 blows were used the error would be reduced to less than 1.4 per cent. (41 and 31 blows give the same error as 15 or 20 blows respectively, figure 6.) The limiting of the number of blows to between 20 and 31 reduces the error to less than 2.5 per cent for all 767 tests as compared to less than 5.8 per cent for between 15 and 41 blows.

# Discussion

25. In the analyses of the data it was found that the values of the slopes of the flow lines on a logarithmic plot exhibited a definite tendency to group themselves about a central value, in a distribution which is approximated by a normal arithmetic frequency distribution. While this is satisfactory for analysis of the data, it is pointed out that theoretically a normal frequency distribution cannot represent the data because the values of tan  $\beta$  cannot extend to  $-\infty$  and to  $+\infty$ , but are limited to the range of 0 to  $+\infty$ . This in itself indicates that some skewness to the right in the observed distribution of values of tan  $\beta$ 



Fig. 8. Logarithmic cumulative frequency curve -- 767 tests

that the distribution may be better approximated by a logarithmically normal frequency distribution. As a check on this possibility, the data shown on figure 7 were plotted on logarithmic probability paper, figure 8 (identical to the arithmetic probability paper except for the substitution of a logarithmic scale for the arithmetic one). On this type of plot all the points, except those for tan 8 equal 0.025 and 0.040, lie on a straight line, in-

dicating that the distribution of values of tan f is logarithmically normal rather than arithmetically normal. However, for the purpose of this investigation it was considered that an arithmetically normal frequency distribution could be used.

26. The observed variations of tan  $\beta$  from the mean may be due to a natural distribution of tan  $\beta$  as a property of the soils studied. However, the variations from the mean may also be due, in part, to errors involved in performing the tests rather than to any property of the soil itself. All technicians in the soils laboratory of the Waterways Experiment Station are, at intervals, requested to perform the liquid limit test on the same material. Study of the results so obtained indicates a variation in values of both the liquid limit and tan  $\beta$ , with a grouping

of the test results in such a way as to suggest that they follow a natural error listribution; a distribution of the same form as the hornel frequency curve. However, this reject is not concerned with which explanation best described the observed variations, since the variations themselves are of limited significance.

not intended to apply to soils other than those tested, and no generalization to other soils is made. As regards the soils of the Alluvial Valley of the Mississippi River and the East and West Gulf Coastal Flains, however, surficient tests have been analyzed to warrant consideration of a simplified liquid limit test procedure for work in the laboratories of the Mississippi River Commission and Lower Mississippi Valley Division. For soils from other areas the procedure may be just as applicable, but the values of tan 8 should first be determined by preliminary tests. To take full advantage of the fact that, for the soils studied, the dispersion of the flow line slopes is of such small magnitude that errors arising from the use of a mean slope are negligible, the liquid limit test procedure outlined in the following paragraphs is presented.

#### Recommended Simplified Liquid Limit Procedure

26. The simplified liquid limit procedure is as follows:

)r3

i1

- a. The test should be run in a humid room if the air is dry. Mix the soil to be tested with water to a consistency as close to the liquid limit as possible. A technician can, with experience, judge this very closely. Extreme care should be taken in the mixing to obtain a uniform water content throughout the sample.
- b. Operate the Liquid limit device and determine the number of blows necessary to close a 1/2-in. Tength of the proove.

Take a 15-20 gm wet weight sample at the closed groove for a water content determination. Water content weights should be accurate to 0.01 gm.

- c. Add enough soil paste at the water content of step a to replace that removed, and remix the soil slightly in the liquid limit cup without the addition of water. Regroove and operate the device again. The number of blows necessary to close 1/2 in. of the groove should either be the same as before or not more than two blows different. (If it is not, it is a sign of insufficient mixing in step a, and the entire procedure should be repeated.) Take another sample at the closed groove for a water content determination.
- d. The liquid limit is determined from the equation:

$$LL = w_N \left(\frac{N}{25}\right)^{0.121}$$

where  $\mathbf{w}_{\mathbf{N}}$  is the water content at N blows. Figure 9 is

a nomographic chart useful in solving this equation. A straightedge laid on a given water content at a corresponding number of blows determines the liquid limit. Two initial liquid limit values should be computed using the data from steps b and c. The average of the two is the final liquid limit. The difference between the two initial values should be less than 2 per cent of their average to consider the test valid.

29. If the liquid limit is being used for classification purposes, the number of blows should be kept between 15 and 41, but if the liquid limit is being used for quantitative correlation with other tests, e.g., consolidation, it is desirable that the number of blows be kept between 20 and 31.

NUMBER OF BLOWS (N) + 40

id.

و• ئ



is

Ewo .c

.vial to

ios,

on



#### PART IV: CONCLUSIONS AND RECOMMENDATIONS

- 30. Fased on the data and analyses presented in this report, the following conclusions are warranted for the soils studied -- namely, medium to highly plastic inorganic clays with liquid limits less than 150 from the Alluvial Valley of the Mississippi River and the East and West Gulf Coastal Plain areas.
  - a. The slopes of liquid limit flow lines, when plotted to a logarithmic scale, tend to group around a central value which appears to be independent of soil type and geologic classification.
  - b. The variations of the slopes of the flow lines for the soils studied, without regard to geologic origin, satisfactorily approximate a normal frequency distribution.

    This result makes it possible to use the simplified liquid limit procedure.
  - c. Liquid limits computed using a mean flow line slope of 0.121 and one liquid limit test point give results well within the accuracy required in normal work.
  - d. It is recommended that the simplified liquid limit procedure described in paragraphs 28-29 be adopted for soils from the Alluvial Valley of the Mississippi River and the East and West Gulf Coastal Plain areas. This procedure will result in a substantial reduction in the cost of liquid limit determinations.



SUMMARY OF DATA FROM THE ALLUVIAL VALLEY OF THE MIGGIGGIET RIVER

|                                                                                                       |                                                                    |              |                |                                           |                | ign<br>juld    | Ranga<br>Planticii |                |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|----------------|-------------------------------------------|----------------|----------------|--------------------|----------------|--|
|                                                                                                       |                                                                    | No.          | Mean           | Range ton 8                               | 1.15           | n 1 1.         | Ind                | ^X             |  |
| Project and Location                                                                                  | Geologic Description                                               | Tests        | tan f          | Min Mix                                   | Min            | MAX            | Min                | Mu             |  |
| pper St. Francis Leveo District,<br>vicinity mi 900 AMP rt bank                                       | Recent alluvium                                                    | 40           | 0.112          | 0.027 0.193                               | 33             | 104            | 4                  | 71             |  |
| eelfoot Levee District,<br>vicinity mi 900 AMP lt bank                                                | Rocent alluvium                                                    | 30           | 0.122          | 0.071 0.176                               | 30             | 100            | 9                  | i.             |  |
| Tiptonville-Obion River Lovee<br>Extension, vicinity mi 850 AMP<br>1t bank                            | Recent alluvium                                                    | 25           | 0.107          | 0.061 0.130                               | 59             | 147            | 35                 | 9              |  |
| ower St. Francis Levee District,<br>vicinity mi 790 ANP rt bank                                       | Rocent allusium                                                    | 25           | 0.123          | 0.071 0.186                               | 34             | 94             | 7                  | 6              |  |
| pper Yazoo Leves District,<br>vicinity mi 700 AMP 1t bank                                             | Rocon's @21uvius                                                   | 25           | 0.122          | 0.063 0.176                               | 35             | 106            | 14                 | U              |  |
| hito River Tovee District,<br>victnity mi 650 AHP rt bank                                             | Recent alluvium                                                    | 25           | 0 <b>.0</b> /A | 0.005 0.130                               | 43             | 107            | 55                 | T              |  |
| oldwiter River Levee,<br>Coldwiter River, Mississippi                                                 | Yazoo River Busin,<br>recent alluvium                              | 15           | 0.097          | 0.069 0.130                               | 50             | 99             | 31                 | 7.             |  |
| reenwood Protection Lovee,<br>Greenwood, Mississippi                                                  | Yazoo River Insin, recent alluvium                                 | 13           | 0.098          | 0.072 0.122                               | 56             | 100            | JZ                 | 69             |  |
| rugere Lovee,<br>ricinity Natchez, Miss., rt bank                                                     | Recent alluvium                                                    | 22           | 0.101          | 0.074 0.129                               | 59             | 122            | 34                 | 86             |  |
| you Cocoirie,<br>ricinity Shaw, Louisiana                                                             | Lower Tenans Basin,<br>backswump and matural<br>loves deposits     | 23           | 0.128          | 0.097 0.185                               | 47             | 115            | 26                 | 8              |  |
| organna Floodway Area.<br>Atchafalaya River Basin, Is.                                                |                                                                    |              |                |                                           |                |                |                    |                |  |
| Payou Sorrel Lock,<br>approx 10 mi SW Plaquemino,<br>In.                                              | Inckswamp deposits                                                 | 13           | 0.121          | 0.037 0.192                               | 66             | 136            | 40                 | 90             |  |
| Tegna & Pacific RR Embankment<br>(Port Allen branch), runs NW<br>fm Morganza, IA., about 5 mi<br>long | Backswump deposits                                                 | 49           | 0.127          | 0.070 0.202                               | 28             | 122            | 6                  | 90             |  |
| N.O.T.& M. RR Emounkment, runs<br>between Krotz Springs &<br>Cortableau, la.                          | Backswamp doposits                                                 | 10           | 0.108          | 0.084 0.148                               | 34             | 103            | 11                 | 6              |  |
| Morganza Control Structure,<br>approx 5 mi north Morganza,<br>la.                                     | Backswump deposits<br>Channel filling<br>deposits                  | 55<br>13     |                | 0.063 0.222<br>0.080 0.228                | 30<br>30       | 117<br>115     | 3                  | 79<br>88       |  |
| terans Administration Hospital,<br>ow Orleans, Ja.                                                    | Recent marsh deposits Marine deposits Pleistocene-Prairie deposits | 8<br>12<br>8 | 0.115          | 0.084 0.132<br>0.070 0.180<br>0.038 0.212 | 60<br>24<br>59 | 82<br>83<br>82 | 35<br>9<br>35      | 54<br>54<br>54 |  |
| giors Lock,<br>icinity of Algiers, La.                                                                | Recent marsh deposits<br>Marine deposits                           | 18<br>3      |                | 0.070 0.171<br>0.128 0.154                | 58<br>54       | 99<br>66       | 37<br>38           | 72<br>44       |  |
| Alluvial Valle                                                                                        | ey of Mississippi River                                            | 432          | 0.115          | 0.027 0.228                               | 24             | 147            | 3                  | 97             |  |

BUMANS OF DATA FROM THE LAST AND WASH GUIL COACHAL PLATES AND MISCELLANGOED CHOOP

| <del></del>                                                           |                                                                | No.      | Mean           | Rungo tan F                | En ger<br>Liquid<br>Limit |          | Errogo<br>Planticit<br>Indox |                  |
|-----------------------------------------------------------------------|----------------------------------------------------------------|----------|----------------|----------------------------|---------------------------|----------|------------------------------|------------------|
| Project and Location                                                  | Geologic Description                                           | Testa    | tan H          | Min Prix                   | Min                       | Milk     | Min                          | Max              |
|                                                                       | WEST GULF COASTAL                                              | MARI     |                |                            |                           |          |                              |                  |
| Texarkana Ivas, Sulphur River, vicinity Texarkana, Ark.               | Pleistocene-Terraco<br>deposits                                | 100      | 0.177          | 0.073 0.1%                 | ,·*·                      | 11       | 9                            | 70               |
| Wallaco Lako Dum, Red River,<br>approx 15 mi south Shroveport,<br>La. | Rod River Valley, recent alluvium                              | 13       | 0.17           | 0.094 0.170                | 57                        | 81,      | 33                           | 50               |
| Red River Lateral Canal,<br>vicinity of Marksville, La.               | Red River Valley, recent alluvium                              | 10       | 0.120          | 0.074 0.212                | 30                        | 74       | 11                           | 1 <sub>4</sub> ઇ |
| Schooner Rayou, approx 18 mi south Abbeville, La.                     | Plejutocene-Prairie<br>deposits                                | 7        | 0.133          | 0.065 0.210                | 31                        | 83       | 5                            | 48               |
|                                                                       | Wont Gulf Constal Plain                                        | 136      | 0.125          | 0.065 0.212                | כיין                      | 90       | 5                            | 76               |
|                                                                       | FAST GULF COASTAL                                              | PIAIN    |                |                            |                           |          |                              |                  |
| Gronada Dum,<br>vicinity Gronada, Miss.                               | Yalobusha Rivor Valley<br>Tortiary (Eccone)<br>Recont alluvium | 69<br>25 |                | 0.067 0.235<br>0.069 0.192 | 17<br>29                  | 100      | 2<br>9                       | 73<br>94         |
| Minsinsippi River Basin Model,<br>Clinton, Miss.                      | Tortiary (Eccono)                                              | 41       | 0.128          | 0.073 0.179                | 32                        | 108      | 16                           | 67               |
|                                                                       | East Gulf Constal Plain                                        | 135      | 0.130          | 0.065 0.235                | 17                        | 121      | 2                            | 94               |
|                                                                       | MISCELLANEOU                                                   | 3        |                |                            |                           |          |                              |                  |
| Carrison Dam,<br>vicinity Carrison, N. D.                             | Missouri River Valley<br>Recent alluvium<br>Glacial till       | 42<br>7  | 0.121<br>0.138 | 0.063 0.197<br>0.100 0.207 | 30<br>26                  | 99<br>40 | 3<br>10                      | 76<br>22         |
|                                                                       | Average                                                        | 49       | 0.123          |                            |                           |          |                              |                  |
| Blakely Mountain Dam,<br>10 mi NW Hot Springs, Ark.                   | Ouachita Rivor Valley<br>Residual and Alluvial                 | 15       | 0.123          | 0.074 0.151                | 20                        | 33       | 5                            | 16               |
|                                                                       | Miscellaneous                                                  | 64       | 0.123          | 0.063 0.207                | 20                        | 99       | 3                            | 76               |

CONSOLTINATED DATA FROM THE PHURCIPAL GEOGRAPHIC AREAS

| -                                                    | No.   | Monn  | Standard<br>Rongo tan B Dovintio |       | Skownens | Confficient<br>of<br>Variation | Rango<br>Liquid<br>Limit |     | Ranga<br>Plasticity<br>Index |      |
|------------------------------------------------------|-------|-------|----------------------------------|-------|----------|--------------------------------|--------------------------|-----|------------------------------|------|
| Aron                                                 | Tinta | ton A | Min Max                          | (1)   | (k)      | (v 1)                          | Min                      | HIX | Min                          | ivez |
| Alluvial Valley of<br>Mississippi River<br>(Table 1) | 43.7  | 0.11% | 0.027 0.228                      | 0.032 | +0.55    | 27.8                           | 24                       | 147 | 13                           | n    |
| West Gulf Coastal Plain (Table 2)                    | 136   | 0.125 | 0.065 0.212                      | 0.028 | +0.52    | 22.4                           | 25                       | 99  | 5                            | 76   |
| Enst Gulf Constal Plain (Table 2)                    | 135   | 0.130 | 0.065 0.235                      | 0.035 | +0.44    | 26.9                           | 17                       | 121 | 5                            | (pla |
| Miscellaneous (Table 2)                              | 64    | 0.173 | 0.063 0.207                      | -     | •        | -                              | 50                       | 99  | 3                            | 76   |
| All Tests                                            | 767   | 0.121 | 0.027 0.235                      | 0.032 | +0.42    | 26.4                           | 17                       | 147 | 2                            | 91   |









PLATE 2



PLATE 3



PLATE 4



PLATE 5



PLATE 6



PLATE 7



PLATE 8



PLATE 9



PLATE 10









GREENWOOD PROTECTION LEVEE RECENT ALLUVIUM 13 TESTS



COLDWATER RIVER LEVEE RECENT ALLUVIUM 15 TESTS

HISTOGRAMS OF GEOLOGIC SOIL TYPES









VETERANS ADMINISTRATION HOSPITAL PLEISTOCENE PRAIRIE DEPOSITS 8 TESTS



VETERANS ADMINISTRATION HOSPITAL MARINE DEPOSITS 12 TESTS



VETERANS ADMINISTRATION HOSPITAL RECENT MARSH 8 TESTS

HISTOGRAMS OF GEOLOGIC SOIL TYPES









MISSISSIPPI BASIN MODEL-TERTIARY (EOCENE)
41 TESTS



GRENADA DAM-RECENT ALLUVIUM 25 TESTS



GRENADA DAM-TERTIARY (EOCENE) 69 TESTS

HISTOGRAMS OF GEOLOGIC SOIL TYPES





50

## RESEARCH CENTER LIBRARY



U. S. Army Engineer Waterways Experiment Station
CORPS OF ENGINEERS
Vicksburg, Mississippi