Recap:
Et electrophilic aromatic substin
EDG's: Ione pair on atom ON ring (0,N,S)
also R (hyperconjugation)
O/p-directors, activators
EWG's: T-bond w/ heteroatom
m-directors, deactivators
halogens: [[Br/I op-directors deactivators
SNAT · Addition/Elin — subst. of halide by strong Nu -> requires good EWG of
by strong Nu
-> requires good EWG Of
· Benzyne - strong (!) base
Tips: Drawing X X X X X X X X X X X X X X X X X X X

Molecular Orbitals of Aldehydes & Ketones

Draw molecular orbital diagrams for the following molecules and identify the HOMO and LUMO of each. In what ways are they similar; in what ways are they different?

Reading: Section 19.1 & 19.4

Irreversible Addition to Aldehydes & Ketones: Organometallic Reagents

Provide a curved-arrow mechanism and predict the product of the following reactions:

Reading: Section 19.9

Fate #1: protonation

Irreversible Addition to Aldehydes & Ketones:

Hydride Reducing Reagents

Reading: Section 19.8

21

Putting it Together: Synthesis

Starting from benzene, provide a synthesis of the following compound:

Reversible Addition to Carbonyls: pH-Dependence

Hydride reducing agents and organometallic reagents are both examples of *excellent*, strong nucleophiles. What happens if we treat a carbonyl compound with a *weaker* nucleophile?

Acid catalysts make an *electrophile more electrophilic;* base catalysts make a *nucleophile more nucleophilic.*

Reversible Addition to Carbonyls: Acidic Conditions

Provide complete curved-arrow mechanisms for the following reactions:

Why is the hydration of an aldehyde or ketone reversible?

all steps are reversible (incoming nucleophile good leaving group)³

July 16, 2014

Reversible Addition to Carbonyls:

Hydration Equilibria

Explain the observed ranking of equilibrium constants for carbonyl hydration:

The following compound has two carbonyl groups. Which one will become hydrated under aqueous conditions? Explain where $K_{rel} = 0.8$ i.e. significantly larger than for most unsubstituted ketones such as acetone (above).

Reversible Addition to Carbonyls: Basic Conditions

Provide complete curved-arrow mechanisms for the following reactions:

32

Going Backward: Oxidation of Alcohols

Provide curved-arrow mechanisms for each of the following oxidation reactions.

Reading: Sections 19.10 & 19.11

Reversible Addition to Carbonyls: Hemiacetals

Provide a complete curved-arrow mechanism for each of the following reactions:

Monosaccharides (glucose, fructose, etc.) all exist naturally as hemiacetals; we'll discuss more later...

Reversible Addition to Carbonyls: Acetals

Provide a complete curved-arrow mechanism for each of the following reactions:

Acetals -> make them under acidic conditions,

Reading: Section 19.10 STABLE to basic

35

Reversible Addition to Carbonyls:

Acetals as Protecting Groups

NU! RO" H (NOBHY) Hzo, RoH, R2NH

Week 4

July 16, 2014

Reversible Addition to Carbonyls:

Reversible Addition to Carbonyls:

Hydrolysis of Acetals, Iminium Ions, & Enamines

The hydrolysis of acetals & imines is simply the reverse of their formation! Provide a complete curved-arrow mechanism for each of the following reactions.

Reading: Section 19.10 and 19.11

pronounced" Vittig" 1979

Week 4 July 16, 2014

The Wittig Reaction:

Synthesizing Alkenes from Carbonyls

The Wittig reaction is a remarkably useful synthesis of alkenes. First, an alkyl halide is used to form a **phosphonium ylide.** Provide a curved-arrow mechanism.

Then the phosphonium ylide is added to an aldehyde or ketone to yield a new carbon-carbon **double** bond! Provide a mechanism.

^{**} The Wittig reaction tends to give cis alkenes when there is a choice. **