试题类型	单选题	
题目	甲、乙两人各向目标射击一发子弹,令事件 A={甲命中,乙	
	没命中},事件 A 的对立事件是 ()。	
目录	/概率论与数理统计 C/试卷 B	
难易度	中	
是否带[考研]标识		
正确答案	В	
解析	正确答案是 B。 由对立事件定义及德摩根律。	
A	甲没命中,乙命中	
В	甲没命中或者乙命中	
С	甲没命中	
D	甲与乙都命中	

<u>Z</u>	
试题类型	单选题
题目	对任意事件 A 和 B ,若 $P(B)>0$,则一定有()。
目录	/概率论与数理统计 C/条件概率
难易度	易
是否带[考研]标识	否
正确答案	A
解析	正确答案为 A. 条件概率是样本空间上的概率。
A	$P(A \mid B) + P(\overline{A} \mid B) = 1$
В	$P(A \mid B) + P(A \mid \overline{B}) = 1$
С	$P(A \mid B) + P(\overline{A} \mid \overline{B}) = 1$
D	以上结论都不一定成立。

试题类型	单选题	
题目	设随机变量 X 与 Y 的联合概率密度为	
	$A(x,y) = \int Ax^2 y, 0 \le x \le 1, 0 \le y \le 1$	
	$f(x,y) = \begin{cases} Ax^2 y, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & 其他 \end{cases}$	
	则系数 A 为 ()	
目录	概率与统计 A/试卷 1	
难易度	易	
是否带[考研]标识	否	
正确答案	С	
解析	正确答案是C	
	$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{1} \int_{0}^{1} Ax^{2} y dx dy = \frac{A}{6}$	
A	2	
В	3	
С	6	
D	4	

7	
试题类型	单选题
题目	设 $0 < P(A) < 1, 0 < P(B) < 1, P(A B) + P(\overline{A} \overline{B}) = 1$,则()
目录	概率与统计 A/试卷 1
难易度	难
是否带[考研]标识	否
正确答案	由
解析	正确答案是 D
	该条件等价于 $P(AB) = P(A)P(B)$, 即 A, B 独立
A	事件 A 与 B 互不相容
В	事件 A 与 B 互为对立事件
С	事件 A 与 B 不相互独立
D	事件 A 与 B 相互独立.

/_D संसं और को।	K / L HZ
试题类型	单选题
题目	设 $X \sim N(2, \sigma^2)$,且 $P(0 < X < 4) = 0.5$,则 $P(X > 0)$ 的值为()
→ →	
目录	概率与统计 A/试卷 1
难易度	中
是否带[考研]标识	否
正确答案	С
解析	正确答案是C
	由 $X \sim N(2, \sigma^2)$, $0.5 = P(-\frac{2}{\sigma} < \frac{X-2}{\sigma} < \frac{2}{\sigma})$, 得
	$\phi(\frac{2}{\sigma}) = 0.75$, $P(X > 0) = P(\frac{X - 2}{\sigma} > -\frac{2}{\sigma}) = \phi(\frac{2}{\sigma}) = 0.75$
A	0.65
В	0.45
С	0.75
D	0.25

试题类型	单选题	
题目	设 A,B 是两个相互独立的事件,且发生的概率都大于 0 。则	
	等于 <i>P</i> (<i>A</i> ∪ <i>B</i>) 的为 ()	
目录	概率与统计 A/试卷 1	
难易度	易	
是否带[考研]标识	否	
正确答案	В	
解析	正确答案是 B	
	由假设 A,B 相互独立 $\Rightarrow P(AB) = P(A)P(B)$,从而	
	$P(A \cup B) = P(A) + P(B) - P(A)P(B) = 1 - P(A)P(B)$	
A	P(A) + P(B)	
В	$1-P(\overline{A})P(\overline{B})$	

С	$P(\overline{A})P(\overline{B})$
D	$1-P(\overline{AB})$

试题类型	单选题	
题目	设 $X \sim \pi(\lambda)$ (泊松分布),则 $P\{X \ge 1\}$ 的值为()	
目录	概率与统计 A/试卷 1	
难易度	易	
是否带[考研]标识	否	
正确答案	A	
解析	正确答案是 A	
	$P(X > 1) = 1 - P(X = 0) = 1 - e^{-\lambda}$	
A	$1-e^{-\lambda}$	
В	$e^{-\lambda}$	
С	$e^{-2\lambda}$	
D	$1-e^{-2\lambda}$	

试题类型	单选题
题目	随机变量 X 的概率密度和分布函数分别为 $f(x)$ 和 $F(x)$,则一定
	有 ()。
目录	/概率论与数理统计(中欧)/随机变量及其分布
难易度	易
是否带[考研]标识	否
正确答案	В

解析	正确答案为B,考察分布函数和密度函数的性质。	
A	$0 \le f(x) \le 1$	
В	$0 \le F(x) \le 1$	
С	P(X=x) = f(x)	
D	P(X=x) = F(x)	

9.

7.	
试题类型	单选题
题目	设 $F(x,y)$ 分别为随机向量(X,Y)的分布函数,则 $P\{x>a,y>b\}$
	为()。
目录	概率论与数理统计 B/试卷 1
难易度	中
分值	2
正确答案	С
解析	正确答案为C
	$\therefore P\{x > a, y > b\} = P(\{x > a\} \cap \{y > b\})$
	$= P(\overline{\{x \le a\}} \cap \overline{\{y \le b\}}) = P(\overline{\{x \le a\}} \cup \{y \le b\})$
	$=1-P(\{x\leq a\}\cup\{y\leq b\})$
	$=1-[P\{x \le a\}+P\{y \le b\}-P\{x \le a, y \le b\}]$
	$=1-F(a,+\infty)-F(+\infty,b)+F(a,b)$
A	1-F(a,b)
В	$F(a,+\infty) + F(+\infty,b)$
С	$1 - F(a, +\infty) - F(+\infty, b) + F(a, b)$
D	$F(a,+\infty)+F(+\infty,b)-F(a,b)$

试题类型	单选题
题目	袋中有 n 张卡片,记为号码 1,2,, n。现
	从中有放回的抽出 k 张卡片, 随机变量 X 表
	示号码之和,则 E(X)=()
分值	2
难易度	易
正确答案	С
A	k
В	n+1
С	k(n+1)
D	不能确定
答案解析	解:
	$E(X) = E(X_1) + \cdots + E(X_k)$
	$=k \frac{1}{n}(1+2+\cdots+n)=\frac{k(n+1)}{2}.$

试题类型	单选题			
题目	设随机变量X的分布律为			
	X	-2	0	2
	p_i	0.4	0.3	0.3
	则 $E(X^2)$	= ()		
分值	2			
难易度	易			
正确答案	A			
A	2.8			
В	0			
С	4			
D	1			
答案解析	解:			
	$E(X^2) =$	$(-2)^2 \Box 0.4$	$+0^{2}\Box 0.3+$	$-2^2\square 2=2.8.$

试题类型	单选题
题目	设(X,Y)的概率密度为
	$f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1 \\ 0, & \text{!!} \dot{\Xi} \end{cases}$
	则 E (XY) = ()
分值	2
难易度	易
正确答案	A
A	0.5
В	1
С	0
D	0.25
答案解析	解:
	$E(XY) = \iint_D xy \Box f(x, y) dx dy$
	$E(XY) = \iint_D xy \Box f(x, y) dx dy$ $= \int_0^1 x dx \int_0^x y \Box 2y^2 dy = \frac{1}{2}.$

13	
试题类型	单选题
题目	设 $X \square N(1,2)$,Y服从参数为3的泊松分布,
	且 X 与 Y 独立,则 D(XY)=()
分值	2
难易度	易
正确答案	D
A	3
В	6
С	12
D	27
答案解析	解:由于 X 与 Y 独立,所以

$D(XY) = E(X^{2}Y^{2}) - [E(XY)]^{2}$
$= E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$ $= (D(X) + [E(X)]^{2})(D(Y) + [E(Y)]^{2}) - (1 \times 3)^{2}$ $= (2 + 1^{2})(3 + 3^{2}) - 9 = 27.$

单选题
设 X 服从参数为 2 的泊松分布, Y=3X-2, 则
cov (X,Y) = ()
2
易
A
6
3
2
1
解:
cov(X,Y) = cov(X,3X-2)
$= 3 \operatorname{cov}(X, X) - \operatorname{cov}(X, 2) = 3D(X) - 0 = 6.$

单选题
一颗骰子连续掷 4 次, 点数总和记为 X, 则
由切比雪夫不等式可得 P{10 <x<18}=()< td=""></x<18}=()<>
2
易
A
≥ 0.271
0.5
0
0.2
解:

$E(X_1) = \dots = E(X_4) = \frac{7}{2} \cdot E(X) = 14.$
$D(X_i) = \frac{35}{12}.D(X) = \frac{35}{3}.$
由切比雪夫不等式:
$P\{10 < X < 18\} = P\{ X - 14 < 4\}$ $= 1 - P\{ X - 14 \ge 4\} \ge 1 - \frac{35}{4^2} = \frac{13}{48} \approx 0.271.$

试题类型	单选题
题目	已知总体 X 服从 $[0,\lambda]$ 上的均匀分布(λ 未
	知), X_1, X_2, \dots, X_n 为 X 的样本, 则()
分值	2
难易度	易
正确答案	С
A	$\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{\lambda}{2}$ 是一个统计量
В	$\frac{1}{n}\sum_{i=1}^{n}X_{i}-E(X)$ 是一个统计量
С	$X_1 + X_2$ 是一个统计量
D	$\frac{1}{n}\sum_{i=1}^{n}X_{i}-D(X)$ 是一个统计量
答案解析	解: 由统计量定义可得。

试题类型	单选题
题目	设总体 $X \square N(0,1)$, X_1, X_2, X_3, X_4 为简单
	随机样本,则统计量 $\frac{X_1 - X_2}{\sqrt{X_3^2 + X_4^2}}$ 服从 ()

	分布。
分值	2
难易度	易
正确答案	A
A	t(2)
В	t(3)
С	t(4)
D	不能确定
答案解析	解:
	$X \square N(0,1)$
	$X_1 - X_2 \square N(0,2)$
	$X_3^2 + X_4^2 \square \chi^2(2)$
	$\frac{X_1 - X_2}{\sqrt{X_3^2 + X_4^2}} = \frac{\frac{X_1 - X_2}{\sqrt{2}}}{\sqrt{\frac{X_3^2 + X_4^2}{2}}} \square t(2).$

试题类型	单选题
题目	设总体 X 服从均匀分布 U(a,b),设
	X_1, X_2, \cdots, X_n 是它的一个样本,
	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i , \text{M} D(\overline{X}) = ()$
分值	2
难易度	易
正确答案	В
A	a+b
	2
В	$(b-a)^2$
	$\frac{(b-a)^2}{12n}$
С	$\frac{b-a}{2}$
D	
	$\frac{(b-a)^2}{2}$
	2
答案解析	解:

$$X \square U(a,b),$$

$$E(X) = \frac{a+b}{2}, D(X) = \frac{(b-a)^2}{12}.$$
所以:
$$D(\overline{X}) = D\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$$

$$= \frac{1}{n^2}\sum_{i=1}^n D(X_i) = \frac{(b-a)^2}{12n}.$$

试题类型	单选题
题目	对于一个参数分布的参数进行矩法估计,下
	列说法正确的是 ()
分值	2
难易度	难
正确答案	В
A	矩法估计适用于所有分布
В	矩法估计是相合估计
С	矩法估计一定是无偏的
D	以上都对
答案解析	解:
	矩法估计如果存在,一定是相合估计。

试题类型	单选题
题目	设 $X \sim U(-\theta, \theta)$,这里($\theta > 0$)。则 θ 的常用矩
	法估计是()
分值	2
难易度	难
正确答案	С
A	$\hat{\theta} = X_{(n)}$
В	$\hat{\theta} = \overline{X}$

С	$\hat{\theta} = \sqrt{3A_2}$,这里 A_2 是样本二阶原点矩
D	$\hat{\theta} = \sqrt{3B_2}$,这里 B_2 是样本二阶中心矩
答案解析	解: 矩法估计尽可能选用低阶矩。本题中因
	$E[X] = E[X^3] = 0$,故采用二阶矩。这里
	$\hat{\theta} = X_{(n)}$ 是最大似然估计,不是矩估计。

试题类型	单选题
题目	设 $X \sim N(\mu, \sigma^2)$, 其中 μ 未知。若 $X_1,, X_n$
	为简单样本,则 σ² 的最大似然估计为 ()
分值	2
难易度	难
正确答案	С
A	$\overline{\mathrm{X}}^{2}$
В	S ²
С	$\mathbf{B_2}$,这里 $\mathbf{B_2}$ 是样本二阶中心矩
D	不存在
答案解析	解 :
	$L(\mu,\sigma^2) = \left(\frac{_1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{j=1}^n \left(x_j - \mu\right)^2}{2\sigma^2}} \label{eq:loss} ,$
	最大似然方程为
	$0 = \frac{\partial \ln L}{\partial \mu} = \frac{\sum_{j=1}^n (X_j - \mu)}{\sigma^2}$
	$0 = \frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{\sum_{j=1}^n (X_j - \mu)^2}{2\sigma^4}$

解得 $(\widehat{\mu}, \widehat{\sigma^2})_{MLE} = (\overline{X}, \frac{1}{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \widehat{X}_{j} + \widehat{X}_{j} +$

试题类型	单选题
题目	关于假设检验问题 H_0 vs. H_1 ,下述哪一项
	是第一类错误的概率: ()
分值	2
难易度	难
正确答案	В
A	P(接受H ₀ H ₀)
В	P(拒绝H ₀ H ₀)
С	P(接受H ₀ H ₁)
D	P(拒绝 H ₀ H ₁)
答案解析	解: 两类错误的定义直接可知。

试题类型	单选题
题目	一药厂生产一种新止痛片。厂方期望新药服
	用后生效时间 μ_2 较老药生效时间 μ_1 要短,即
	检验 H: μ ₂ ≤ μ ₁ vs. K: μ ₂ > μ ₁ 。 设老药
	$X \sim N(\mu_1, \sigma_1^2)$ 与新药 $Y \sim N(\mu_2, \sigma_2^2)$ 相互独立,
	其中σ²以及σ² 已知。从老药抽取样本
	$X_1,,X_m$,新药抽取样本 $Y_1,,Y_n$,则显著性

	水平 $\alpha = 0.05$ 下,检验问题的拒绝域是()。
分值	2
难易度	难
正确答案	A
А	$\overline{Y} - \overline{X} \in \left(\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} u_{0.05}, \infty \right)$
В	$\overline{Y} - \overline{X} \in \left(S_w \sqrt{\frac{1}{m} + \frac{1}{n}} u_{0.05}, \infty\right), \ \ \sharp \oplus$
	$S_w^2 = \frac{m\sigma_1^2 + n\sigma_2^2}{m+n}$
С	$\overline{Y} - \overline{X} \in \left(\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}} \mathbf{t}_{0.05}(m+n), \infty\right)$
D	$\overline{Y} - \overline{X} \in \left(S_w \sqrt{\frac{1}{m} + \frac{1}{n}} t_{0.05}(m + n - 2), \infty\right)$
	这里 $S_{w}^{2} = \frac{(m-1)S_{X}^{2} + (n-1)S_{Y}^{2}}{m+n-2}$
答案解析	解:相互独立的双正态总体 $X \sim N(\mu_1, \sigma_1^2)$
	, $Y \sim N(\mu_2, \sigma_2^2)$ 的单边均值检验问题
	$H: \mu_1 \le \mu_2$ vs. $K: \mu_1 > \mu_2$ 的检验统计量为
	$\frac{\bar{x}-\bar{y}}{\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}} \sim N(0,1)$,相应的检验拒绝域为
	$W = \left(\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} u_{\alpha}, \infty\right)$

试题类型	单选题
题目	设 $X \sim N(\mu, 10^2)$, 抽取一个样本容量为 25 的

	简单样本,可得 $\bar{X}=10$ 。则 μ 的 0.95 双侧置
	信区间为()
分值	2
难易度	难
正确答案	В
A	$(10 - 2u_{0.05}, 10 + 2u_{0.05})$
В	$(10 - 2u_{0.025}, 10 + 2u_{0.025})$
С	$(10-2t_{0.05}(24),10+2t_{0.05}(24))$
D	$(10-2t_{0.025}(24), 10+2t_{0.025}(24))$
答案解析	解: 方差已知的正态分布均值置信问题的枢轴量
	为 $U = \sqrt{n}(\bar{X} - \mu)/\sigma \sim N(0,1)$ 。由此可得水
	平 $1-\alpha$ 的双侧置信区间为
	$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right)$

试题类型	单选题
题目	处理假设检验问题 H ₀ vs. H ₁ 的基本原则是
	()
分值	2
难易度	难
正确答案	A
A	确保检验犯第一类错误概率很小
В	确保检验犯第二类错误概率很小
答案解析	解:
	假设检验的基本原则是:确保第第一类错误
	很小的前提下,寻找检验统计量,使得其能
	尽可能的最小化第二类错误的概率。