Árvores

O que é uma árvore?

Estruturas lineares:

- Listas
- Pilhas
- Filas
- Listas encadeadas circulares
- Listas duplamente encadeadas

Estruturas não-lineares

- Estrutura em grafos
- •Estrutura em árvores

Estrutura em árvore: organização dos dados de forma não-linear, mantendo um relacionamento hierárquico entre os elementos

• Para qualquer árvore, cada nó é do tipo

```
typedef struct {
  int chave;
  char valor;
} INFO;
typedef struct NO {
  INFO info;
  struct NO *fesq;
 struct NO *fdir;
} NO;
typedef struct {
 NO *raiz;
} ARVORE_BINARIA;
```


Motivação/Vantagens:

- Representatividade no relacionamento entre os dados
- Favorece a extração de informação de forma eficiente
- Quem são os filhos de Maria?
- Onde está o capítulo de estrutura em árvores?
- •Quem é o diretor da seção de financeiro?

• -> Busca <-

Exemplo:

Variedade de árvores

Árvore estritamente binária

- Todos os nós possuem 0 ou 2 "filhos"
- Nós interiores sempre possuem 2 "filhos"

Árvore completamente binária

 Se o nó V tem alguma subárvore vazia, então V está no último ou penúltimo nível da árvore

Árvore binária cheia

- Se o nó V tem alguma subárvore vazia, então V está no último nível da árvore
- Uma árvore binária cheia é uma árvore binária completa e estritamente binária

Árvore binária balanceada

 Para cada nó, as alturas de suas duas subárvores diferem de, no máximo, 1

Árvore n-ária

Cada nó pode conter n "filhos"

Verificação de balanceamento

Árvores Balanceadas

Árvore Binária Balanceada

Árvore Binária Degenerada

Em uma árvore não balanceada com 10.000 nós, são necessários (no pior cenário) 5.000 comparações para efetuar uma busca, já uma árvore binária balanceada este número cai para 14.

Mecanismos de balanceamento

Rotação à esquerda

Rotação à direita

Exercício

Vocês terão que criar uma árvore e um menu com as seguintes opções:

- 1) Inserir
- 2)Remover
- 3)Mostrar

Exemplo de leitura Pré, Em e Pós Ordem da árvore:

PreOrdem (RED): F,B,A,D,C,E,G,I,H InOrdem (ERD): A,B,C,D,E,F,G,H,I PosOrdem (EDR): A,C,E,D,B,H,I,G,F
