Spark for Scientific Computing

A. Zonca - SDSC

What is Spark?

A distributed computing framework

Problem 1: Storage

- Big data
- Commodity hardware (Cloud)

Solution: Distributed File System

- redundant
- fault tolerant

Problem 2: Computation

- Slow to move data across network
- Computations fail

Solution: Hadoop Mapreduce / Spark

- Execute computation where data are located
- Rerun failed jobs

Problem 3: Communication

- Most of the times, need to summarize data to get a result
- Reduction phase in MapReduce
- Need data transfer across network

Solution: highly optimized Shuffle (All-to-All)

Spark and Hadoop

- Works within the Hadoop ecosystem
- Extends MapReduce
- Initially developed at UC Berkeley
- Now within the Apache Foundation
- ~400 and more developers

Key features of Spark

- Resiliency: tolerant to node failures
- Speed: supports in-memory caching
- Ease of use:
 - Python/Scala interfaces
 - interactive shells
 - many distributed primitives

	Hadoop MR Record	Spark Record	Spark 1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk throughput	3150 GB/s (est.)	618 GB/s	570 GB/s
Sort Benchmark Daytona Rules	Yes	Yes	No
Network	dedicated data center, 10Gbps	virtualized (EC2) 10Gbps network	virtualized (EC2) 10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min

Spark 100TB benchmark

HPC: Distributed TBs of data

- Fault-tolerant batch processing
- Data exploration with an interactive console
- SQL operations with Spark-SQL
- Iterative Machine Learning algorithms with Spark-MLlib

Comparison with MPI

MPI: describe computation and communication explicitly

 Spark: use a graph of high-level operators, the framework decides how and where to run tasks

Clone Github repository

- ssh to Comet
- git clone https://github.com/sdsc/sdsc-summer-institut e-2016

Interactive spark on Comet

- \$ cd
- ~/sdsc-summer-institute-2016/bigdata0_spark

- submit a spark job with:
- \$ sbatch spark.cmd
- check job status with
- \$ squeue -u \$USER

Connect via browser

comet-XX-XX.sdsc.edu:8888

IMPORTANT: add a password to your notebook configuration, see

http://jupyter-notebook.readthedocs.io/en/latest/public_server.html#securing-a-notebook-server

House prices

see house_price.ipynb

Resilient Distributed Dataset

Dataset

Data storage created from: HDFS, S3, HBase, JSON, text, Local hierarchy of folders

Or created transforming another RDD

Resilient Distributed Dataset

Distributed

Distributed across the cluster of machines

Divided in partitions, atomic chunks of data

Resilient Distributed Dataset

Resilient

Recover from errors, e.g. node failure, slow processes

Track history of each partition, re-run

Worker Nodes

Cluster Manager YARN/Standalone Provision/Restart Workers

Worker Nodes

Driver Program Spark **Spark** Cluster Context Context Manager

Worker Nodes

Spark Local

Computing Nodes on Comet **Python** Exec Master node **Python** JVM **Driver Program Python Exec Python** Spark **Spark** Standalo Context **Context** ne CM **Python** Exec **Python**

EC2 nodes on Amazon EMR **Python Exec** Master node Python **JVM Driver Program Python** Exec **Python Spark Spark YARN** Context **Context Python** Exec **Python**

House price with HDFS

see house_price_hdfs.ipynb

map

map: apply function to each element of RDD

Other transformations

- filter(func) keep only elements where function is true
- sample(withReplacement, fraction, seed) get a random data fraction
- coalesce(numPartitions) merge partitions
 to reduce them to numPartitions

filter

filter: keep only elements where func is true

coalesce

```
sc.parallelize(range(10), 4).glom().collect()
```

Out[]: [[0, 1], [2, 3], [4, 5], [6, 7, 8,

9]]

sc.parallelize(range(10),

4).coalesce(2).glom().collect()

Out[]: [[0, 1, 2, 3], [4, 5, 6, 7, 8, 9]]

coalesce

coalesce: reduce the number of partitions

RDD Partitions

Wide transformations

reduceByKey(func)

(K, V) pairs => (K, reduce V with func)

reducebyKey

Narrow

VS

Wide

reducebyKey(sum)

Wide transformations

- groupByKey: (K, V) pairs => (K, iterable of all V)
- reduceByKey(func): (K, V) pairs => (K, result of reduction by func on all V)
- repartition(numPartitions): similar to coalesce, shuffles all data to increase or decrease number of partitions to numPartitions

Shuffle

Shuffle

Global redistribution of data

High impact on performance

Shuffle

requests data over the network

writes to disk

Know shuffle, avoid it

. Which operations cause it?

Is it necessary?

Really need groupByKey?

groupByKey: (K, V) pairs => (K, iterable of all V)

if you plan to call reduce later in the pipeline, use reduceByKey instead.

groupByKey + reduce

reduceByKey

Extract data from RDD

- collect() copy all elements to the driver
- take(n) copy first n elements
- saveAsTextFile(filename) save to file
- reduce(func) aggregate elements with func (takes 2 elements, returns 1)

Cached RDD

- Generally recommended after data cleaning
- Reusing cached data: 10x speedup
- Great for iterative algorithms
- If RDD too large, will only be partially cached in memory

Directed Acyclic Graph Scheduler

Directed Acyclic Graphs

Directed Acyclic Graphs

Track dependencies!
(also known as lineage or provenance)

DAG in Spark

- nodes are RDDs
- arrows are Transformations

Narrow

VS

Wide

groupbyKey

Narrow

VS

Wide

groupbyKey

Spark DAG of transformations

House price JOIN

see house_price_join.ipynb

Thanks

Questions?

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0
International License.

Google Docs

https://docs.google.com/presentation/d/1Bu0w NMrqHw89CKf8ItBLEm9Au5hcwXymaNPk89u Ng0s/edit?usp=sharing

Andrea Zonca, zonca@sdsc.edu