Linear Algebra

Diego ROJAS

May 21, 2022

1 Introduction

Linear algebra is a discipline of mathematics that deals with linear equations, vectors, matrices and their transformations.

- 2 Systems of linear equations
- 3 Matrices
- 4 Solving systems of linear equations
- 5 Vector spaces

Definition: (Group): Given a set \mathcal{G} and an operation \otimes defined on \mathcal{G} . $G := (\mathcal{G}, \otimes)$ is a group if the following holds:

- Closure of \mathcal{G} under \otimes : $\forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- Associativity: $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- Neutral element: $\exists e \in \mathcal{G} \ \forall x \in \mathcal{G} : x \otimes e = x$

• Inverse element: $\forall x \in \mathcal{G} \ \exists y \in \mathcal{G} : x \otimes y = e \text{ where } e \text{ is the neutral element.}$

Definition: (Vector space): A real-valued vector space $V = (\mathcal{V}, +, \cdot)$ is a set \mathcal{V} with two operations + and \cdot defined where the following holds:

- $(\mathcal{V}, +)$ is an abelian group.
- Distributivity:
 - $\forall x, y \in \mathcal{V} \ \forall \lambda \in \mathbb{R} : \lambda(x + y) = \lambda x + \lambda y$
 - $\forall \boldsymbol{x} \in \mathcal{V} \ \forall \lambda, \psi \in \mathbb{R} : (\lambda + \psi)\boldsymbol{x} = \lambda \boldsymbol{x} + \psi \boldsymbol{y}$
- Associativity (outer operation)
- Neutral element (outer operation)

Definition: (Vector subspace): Let $V = (\mathcal{V}, +, \cdot)$ be a vector space and $\mathcal{U} \subseteq \mathcal{V}, \mathcal{U} \neq \emptyset$. Then $U = (\mathcal{U}, +, \cdot)$ is a vector subspace (or linear subspace) if U is a vector space restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathcal{U} \times \mathbb{R}$. We write $U \subseteq V$.

Rule: Given $U \subseteq V$, the following properties of V are passed to U.

- Abelian group, distributivity, associativity and neutral element properties
- $\mathcal{U} \neq \emptyset$, in particular: $\mathbf{0} \in \mathcal{U}$
- \bullet Closure of U
 - $\forall \lambda \in \mathbb{R} \ \forall x \in \mathcal{U} : \lambda x \in \mathcal{U}$
 - $\forall oldsymbol{x}, oldsymbol{y} \in \mathcal{U}: oldsymbol{x} + oldsymbol{y} \in \mathcal{U}$

Rule: Every subspace $U \subseteq (\mathbb{R}^n, +, \cdot)$ is the solution space of a homogeneous system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ for $\mathbf{x} \in \mathbb{R}^n$

6 Linear independence

Definition: (Linear combination): Consider a vector space V and a finite number of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$. Then every $\mathbf{v} \in V$ of the form:

$$\boldsymbol{v} = \sum_{i=1}^{k} \lambda_i \boldsymbol{x}_i \in V \tag{1}$$

with $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ is a linear combination of the vectors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k$.

Definition: (Linear independence): Given a vector space V and $k \in \mathbb{N}$. Vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$ are said to be linearly independent if there exists no non-trivial solution to $\mathbf{0} = \sum_{i=1}^k \lambda_i \mathbf{x}_i$ with at least one $\lambda_i \neq 0$. Otherwise they're linearly dependent.

Rule:

- If at least one of the vector x_i is 0 then they are linearly dependent.
- The vectors $\{x_1, \ldots, x_k : x_i \neq 0, i = 1, \ldots, k\}, k \geqslant 2$ are linearly dependent, if and only if, at least one of them is a linear combination of the others.
- To check whether $x_1, \ldots, x_k \in V$ are linearly independent we can use Gaussian elimation: write all vectors as columns of a matrix A and perform Gaussian elimination until the matrix is in row-echelon form.
 - Non-pivot columns can be expressed as linear combinations of vectors on their left.
 - Pivot columns are linearly independent from vectors on their left.

If all columns are pivots, the vectors are linearly independent.

Rule: Given m linear combinations over k linearly independent vectors $b_1, \ldots, b_k \in V$.

$$egin{aligned} oldsymbol{x}_1 &= \sum_{i=1}^k \lambda_{i1} oldsymbol{b}_i \ oldsymbol{x}_m &= \sum_{i=1}^k \lambda_{im} oldsymbol{b}_i \end{aligned} \tag{2}$$

We can write, with $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_k]$, the following:

$$\boldsymbol{x}_{j} = \boldsymbol{B}\boldsymbol{\lambda}_{j}, \quad \boldsymbol{\lambda}_{j} = \begin{bmatrix} \lambda_{1}j \\ \vdots \\ \lambda_{k}j \end{bmatrix}, \quad j = 1, \dots, m$$
 (3)

We can test whether x_1, \ldots, x_m are linearly independent using:

$$\sum_{j=1}^{m} \psi_j \boldsymbol{x}_j = \sum_{j=1}^{m} \boldsymbol{B} \boldsymbol{\lambda}_j = \boldsymbol{B} \sum_{j=1}^{m} \psi_j \boldsymbol{\lambda}_j$$
 (4)

Which means that $\{x_1, \ldots, x_k\}$ is linearly independent if the column vectors $\{\lambda_1, \ldots, \lambda_m\}$ are linearly independent.

Rule: In a vector space V, m linear combinations of $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k$ are linearly independent if m > k.

7 Basis and rank

In a vector space V, we are interested in a set of vectors \mathcal{A} that posess the property that any vector $\mathbf{v} \in V$ can be obtained through a linear combination of vectors in \mathcal{A} .

7.1 Generating Set and Basis

Definition: (Generating Set and Span): Given a set of vectors $\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A} , \mathcal{A} is called a *generating set* of \mathcal{V} . The set of all linear

combinations of vectors in \mathcal{A} is called the span of \mathcal{A} . We write $V = \operatorname{span}[A]$ or $V = \operatorname{span}[\boldsymbol{x}_1, \dots, \boldsymbol{x}_k]$.

Definition: (Basis): Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and $\mathcal{A} \subseteq \mathcal{V}$. A generating set \mathcal{A} of \mathcal{V} is called *minimal* if there exists no smaller set $\tilde{\mathcal{A}} \subsetneq \mathcal{A} \subseteq \mathcal{V}$ that spans \mathcal{V} . Every linearly independent generating set of V is minimal and is called a *basis* of V.

Rule: Given $\mathcal{B} \subseteq \mathcal{V}, \mathcal{B} \neq \emptyset$. Then the following statements are equivalent:

- \mathcal{B} is a basis of V
- \mathcal{B} is a minimal generating set.
- \mathcal{B} is a maximal linearly independent set of vectors in V such that adding any vector to the set \mathcal{B} would make it linearly dependent.
- Every vector $x \in V$ is a linear combination of vectors from \mathcal{B} , and every combination is unique, i.e., with

$$\boldsymbol{x} = \sum_{i=1}^{k} \lambda_i \boldsymbol{b}_i \tag{5}$$

Rule: Every vector space V possesses a basis B. There can be many bases for V, all have the same number of elements, the basis vectors.

Rule: A basis of a subspace $U = span[\boldsymbol{x}_1, \dots, \boldsymbol{x}_k] \subseteq \mathbb{R}^n$ by:

- ullet Write the spanning vectors as columns of a matrix $oldsymbol{A}$
- ullet Determine the row-echelon form of $oldsymbol{A}$
- \bullet The spanning vectors associated with the pivots columns are a basis of U.

7.2 Rank

Definition: (Rank): The number of linearly independent columns of a matrix $A \in \mathbb{R}^{m \times n}$ equals the number of linearly independent rows and is called the rank. We write rk(A)

Rule:

- $\operatorname{rk}(\boldsymbol{A}) = \operatorname{rk}(\boldsymbol{A}^{\top})$.i.e column rank equals row rank
- The columns of $\mathbf{A} \in \mathbb{R}^{m \times n}$ span a subspace $U \subseteq \mathbb{R}^m$ with $\dim(U) = \operatorname{rk}(\mathbf{A})$. This subspace is called the *image* or *range*. A basis of U can be found by applying Gaussian elimination to \mathbf{A} . Same goes for the rows, given a subspace $W \in \mathbb{R}^n$.
- For all $\mathbf{A} \in \mathbb{R}^{n \times n}$ it holds that \mathbf{A} is regular (invertible) if and only $\operatorname{rk}(\mathbf{A}) = n$.
- For all $A \in \mathbb{R}^{m \times n}$ and all $b \in \mathbb{R}^m$ it holds that the linear equation system Ax = x can be solved only and if rk(A) = rk(A|b)
- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have full-rank if $\operatorname{rk}(\mathbf{A}) = \min(m, n)$. Otherwise, it is rank-deficient.

8 Linear mappings

Definition: (Linear mapping): For vector spaces V, W, a mapping $\Phi: V \to W$