Sammanfattning av SG1113 Mekanik, fortsättningskurs

Yashar Honarmandi yasharh@kth.se

6 september 2018

Sammanfattning

Detta är en sammanfattning av SG1113 Mekanik, fortsättningskurs.

Innehåll

1	Accelererande referensramar															1							
	1.1 Kinematik												1										
	1.2	Dynamik															3						
2	Par	Partikelsystem												4									
3	Stela kroppar															7							
	3.1	Dynamik																				7	
	3.2	Dynamik																				Q	

1 Accelererande referensramar

1.1 Kinematik

Vi vill betrakta en referensram S' som rör sig relativt en inertialram S. S' rör sig med hastighet $\mathbf{v}_{O'}$ och roterar med vinkelhastighet ω kring en given axel (dessa två kommer slås i hop till en enda rotationsvektor ω).

Transformation av vektorstorheter Betrakta en godtycklig vektorstorhet A. Denna kan skrivas i båda koordinatsystem, vilket ger likheten

$$\mathbf{A} = A_x \hat{\mathbf{e}}_x + A_y \hat{\mathbf{e}}_y + A_x \hat{\mathbf{e}}_y$$
$$= A_x' \hat{\mathbf{e}}_x' + A_y' \hat{\mathbf{e}}_y' + A_z' \hat{\mathbf{e}}_z'.$$

Vi beräknar nu tidsderivatan och får

$$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = \frac{\mathrm{d}A_x}{\mathrm{d}t}\hat{\mathbf{e}}_x + \frac{\mathrm{d}A_y}{\mathrm{d}t}\hat{\mathbf{e}}_y + \frac{\mathrm{d}A_z}{\mathrm{d}t}\hat{\mathbf{e}}_y
= \frac{\mathrm{d}A_x'}{\mathrm{d}t}\hat{\mathbf{e}}_x' + \frac{\mathrm{d}A_y'}{\mathrm{d}t}\hat{\mathbf{e}}_y' + \frac{\mathrm{d}A_z'}{\mathrm{d}t}\hat{\mathbf{e}}_z' + A_x'\frac{\mathrm{d}\hat{\mathbf{e}}_x'}{\mathrm{d}t} + A_y'\frac{\mathrm{d}\hat{\mathbf{e}}_y'}{\mathrm{d}t} + A_z\frac{\mathrm{d}\hat{\mathbf{e}}_z'}{\mathrm{d}t}.$$

Vi inför nu den nya operatorn

$$\mathring{\mathbf{A}} = \frac{\mathrm{d}A_x'}{\mathrm{d}t} \hat{\mathbf{e}}_x' + \frac{\mathrm{d}A_y'}{\mathrm{d}t} \hat{\mathbf{e}}_y' + \frac{\mathrm{d}A_z'}{\mathrm{d}t} \hat{\mathbf{e}}_z',$$

som låter oss skriva om de tre första termerna i sista raden. Vi kan vidare visa att tidsderivatorna av enhetsvektorerna har belopp som ges av $\left|\frac{\mathrm{d}\hat{\mathbf{e}}_i'}{\mathrm{d}t}\right| = \omega \sin \alpha_i$, där α_i är vinkeln som bildas mellan rotationsvektorn ω och den givna enhetsvektorn, samt att varje tidsderivata av en enhetsvektor är normal på ω och själva enhetsvektoren. Därmed kan vi skriva $\frac{\mathrm{d}\hat{\mathbf{e}}_i'}{\mathrm{d}t} = \omega \times \hat{\mathbf{e}}_i'$, och slutligen

$$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = \mathring{\mathbf{A}} + \boldsymbol{\omega} \times \mathbf{A} \tag{1}$$

Mer om vinkelhastighet Definitionen av vinkelhastighet ges av

$$\boldsymbol{\omega} = \left(\frac{\mathrm{d}\hat{\mathbf{e}}_{y'}}{\mathrm{d}t} \cdot \hat{\mathbf{e}}_{z'}\right) \hat{\mathbf{e}}_{x'} + \left(\frac{\mathrm{d}\hat{\mathbf{e}}_{z'}}{\mathrm{d}t} \cdot \hat{\mathbf{e}}_{x'}\right) \hat{\mathbf{e}}_{y'} + \left(\frac{\mathrm{d}\hat{\mathbf{e}}_{x'}}{\mathrm{d}t} \cdot \hat{\mathbf{e}}_{y'}\right) \hat{\mathbf{e}}_{z'}.$$

För att visa att dessa är additiva, inför tre system S_0, S_1, S_2 , vinkelhastigheten $\omega_{1,0}$ av S_1 relativt S_0 och derivatan

$$\left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t}\right)_0 = \left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t}\right)_1 + \boldsymbol{\omega}_{1,0} \times \mathbf{A}.$$

Vid att använda derivationssambanden 1-2, 1-0, 2-0 får man

$$\left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t}\right)_2 + \boldsymbol{\omega}_{2,1} \times \mathbf{A} + \boldsymbol{\omega}_{1,0} \times \mathbf{A} = \left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t}\right)_2 + \boldsymbol{\omega}_{2,0} \times \mathbf{A},$$

vilket implicerar

$$\omega_{2,0} = \omega_{2,1} + \omega_{1,0}.$$

Det gäller speciellt att

$$\omega_{2,1} = -\omega_{1,2}.$$

Vi betraktar vidare vinkelaccelerationen, och inför

$$\boldsymbol{\alpha}_{1,0} = \left(\frac{\mathrm{d}\boldsymbol{\omega}_{1,0}}{\mathrm{d}t}\right)_0.$$

Vid att tidsderivera additionssambandet för vinkelhastigheter får man

$$\begin{aligned} \boldsymbol{\alpha}_{2,0} &= \left(\frac{\mathrm{d}\boldsymbol{\omega}_{1,0}}{\mathrm{d}t}\right)_0 + \left(\frac{\mathrm{d}\boldsymbol{\omega}_{2,1}}{\mathrm{d}t}\right)_0 \\ &= \boldsymbol{\alpha}_{1,0} + \left(\frac{\mathrm{d}\boldsymbol{\omega}_{2,1}}{\mathrm{d}t}\right)_1 + \boldsymbol{\omega}_{1,0} \times \boldsymbol{\omega}_{2,1} \\ &= \boldsymbol{\alpha}_{1,0} + \boldsymbol{\alpha}_{2,1} + \boldsymbol{\omega}_{1,0} \times \boldsymbol{\omega}_{2,1}, \end{aligned}$$

alltså är vinkelaccelerationer allmänt ej additiva. Man kan dock visa att

$$\alpha_{2,1} = -\alpha_{1,2}$$
.

Hastighet Ortsvektorn till en punkt kan skrivas som

$$\mathbf{r} = \mathbf{r}_{O'} + \mathbf{r}',$$

där \mathbf{r} är ortsvektorn i S, \mathbf{r}' är ortsvektorn i S' och $\mathbf{r}_{O'}$ är ortsvektorn till origo i S' relativt S. Vi tidsderiverar och får

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{r}_{O'}}{\mathrm{d}t} + \frac{\mathrm{d}\mathbf{r}'}{\mathrm{d}t}.$$

Vi känner igen hastigheten i S och hastigheten till ramen S'. Vid att använda det härledda sambandet för transformation av vektorstorheter får man

$$\mathbf{v} = \mathbf{v}_{O'} + \mathring{\mathbf{r}'} + \boldsymbol{\omega} \times \mathbf{r}'.$$

Vi känner även igen hastigheten till punkten i S', vilket ger

$$\mathbf{v} = \mathbf{v}_{O'} + \mathbf{v}' + \boldsymbol{\omega} \times \mathbf{r}'.$$

För att tolka detta resultatet, inför vi systempunkten, som är en materiell punkt i S' som sammanfaller med punkten vi betraktar i ögonblicket vi betraktar. Denna punkten är fix relativt S', vilket ger den hastighet i S lika med $\mathbf{v}_{O'} + \boldsymbol{\omega} \times \mathbf{r}'$. Vi kan då skriva

$$\mathbf{v} = \mathbf{v}_{\rm sp} + \mathbf{v}',$$

där \mathbf{v}_{sp} är systempunktens hastighet.

Acceleration För att beräkna accelerationen, tidsderiverar vi hastigheten, och får

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{v}_{O'}}{\mathrm{d}t} + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}' + \boldsymbol{\omega} \times \frac{\mathrm{d}\mathbf{r}'}{\mathrm{d}t} + \frac{\mathrm{d}\mathbf{v}'}{\mathrm{d}t}.$$

Vi använder ekvation 1 på storheterna i S' för att få

$$\frac{d\mathbf{v}}{dt} = \frac{d\mathbf{v}_{O'}}{dt} + \frac{d\boldsymbol{\omega}}{dt} \times \mathbf{r}' + \boldsymbol{\omega} \times (\mathring{\mathbf{r}'} + \boldsymbol{\omega} \times \mathbf{r}') + \mathring{\mathbf{v}'} + \boldsymbol{\omega} \times \mathbf{v}'$$
$$= \frac{d\mathbf{v}_{O'}}{dt} + \frac{d\boldsymbol{\omega}}{dt} \times \mathbf{r}' + \boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}' + \boldsymbol{\omega} \times (\mathring{\mathbf{r}'} + \mathbf{v}') + \mathring{\mathbf{v}'}.$$

Vi känner igen accelerationen mätt i S, accelerationen till ramen S' och hastigheten mätt i S', och får

$$\mathbf{a} = \mathbf{a}_{O'} + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}' + \boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}' + 2\boldsymbol{\omega} \times \mathbf{v}' + \mathbf{a}'$$

För att tolka detta, inför vi igen systempunkten. Eftersom denna är fix relativt S', ger de två sista termerna inget bidrag till dennas acceleration, vilket ger $\mathbf{a}_{\rm sp} = \mathbf{a}_{O'} + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}' + \boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}'$. Den sista termen känner vi även igen som punktens acceleration S'. Dock återstår en sista term, som döps Coriolisaccelerationen $\mathbf{a}_{\rm cor}$. Vi får då

$$\mathbf{a} = \mathbf{a}_{\mathrm{sp}} + \mathbf{a}_{\mathrm{cor}} + \mathbf{a}'.$$

1.2 Dynamik

När vi nu tillämpar Newtons andra lag i S, får man

$$\mathbf{F} = m\mathbf{a} = m\left(\mathbf{a}_{\mathrm{sp}} + \mathbf{a}_{\mathrm{cor}} + \mathbf{a}'\right).$$

Vi definierar nu två tröghetskrafter: systempunktskraften $\mathbf{F}_{\rm sp} = -m\mathbf{a}_{\rm sp}$ och Corioliskraften $\mathbf{F}_{\rm cor} = -m\mathbf{a}_{\rm cor}$. Detta ger oss

$$m\mathbf{a}' = \mathbf{F} + \mathbf{F}_{\text{sp}} + \mathbf{F}_{\text{cor}} = \mathbf{F}_{\text{rel}}.$$

Från detta drar vi slutsatsen att partikeldynamiken kan översättas till accelererande system om

- alla absoluta storheter och tidsderivator ersätts med motsvarande relativa storheter och derivator.
- de fysiska krafterna kompletteras med de två tröghetskrafterna.

Vi kan nu undersöka termerna systempunktskraften består av. Dessa är

- en translatorisk kraft $\mathbf{F}_{\mathrm{tl}} = -m\mathbf{a}_{O'}$.
- en transversell kraft $\mathbf{F}_{\mathrm{tv}} = -m\mathbf{a}_{\mathrm{tv}} = -m\frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}'$.
- en centrifugalkraft $\mathbf{F}_{\mathrm{c}} = -m\mathbf{a}_{\mathrm{c}} = -m\boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}'$.

2 Partikelsystem

Ett partikelsystem är en samling av N partiklar med (konstanta) massor m_i och total massa m som samverkar. Varje partikel påverkas av yttre krafter med summa \mathbf{F}_i samt inre krafter \mathbf{f}_{ij} med alla andra partikler i systemet.

Vi antar att alla inre krafter verkar parallellt med linjen mellan partiklerna. Newtons andra lag ger $\mathbf{f}_{ij} = -\mathbf{f}_{ji}$, vilket även implicerar $\mathbf{f}_{ii} = \mathbf{0}$.

Vi definierar kraftsummorna

$$\mathbf{F} = \sum_{i} \mathbf{F}_{i}, \ \mathbf{f} = \sum_{i} \sum_{j} \mathbf{f}_{ij}.$$

Vi får

$$\mathbf{f} = \sum_{i} \sum_{j} \mathbf{f}_{ij} = \sum_{j} \sum_{i} \mathbf{f}_{ij} = -\sum_{j} \sum_{i} \mathbf{f}_{ji} = -\mathbf{f},$$

och därmed $\mathbf{f} = \mathbf{0}$.

Masscentrum Vi kommer ihåg att masscentrum för ett partikelsystem definieras som

$$\mathbf{r}_G = \frac{1}{\sum m_i} \sum m_i \mathbf{r}_i.$$

Rörelsemängd Systemets totala rörelsemängd ges av

$$\mathbf{p} = \sum m_i \mathbf{v}_i = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum m_i \mathbf{r}_i \right) = \frac{\mathrm{d}m \mathbf{r}_G}{\mathrm{d}t} = m \mathbf{v}_G.$$

Kraftekvationen för ett partikelsystem Kraftekvationen för en enda partikel ger

$$m_i \frac{\mathrm{d}^2 \mathbf{r}_i}{\mathrm{d}t^2} = \mathbf{F}_i + \sum_i \mathbf{f}_{ij}.$$

Om vi adderar alla dessa ekvationer, får man

$$\sum m_i \frac{\mathrm{d}^2 \mathbf{r}_i}{\mathrm{d}t^2} = \sum \mathbf{F}_i + \sum_i \sum_j \mathbf{f}_{ij},$$
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(\sum m_i \mathbf{r}_i \right) = \mathbf{F} + \mathbf{f},$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(m \mathbf{v}_G \right) = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \mathbf{F},$$

vilket är kraftekvationen som vi känner den. Med konstant massa kan detta även skrivas som

$$m\mathbf{a}_G = \mathbf{F}.$$

Energilagen för ett partikelsystem Arbetet som görs på en partikel i ett parikelsystem under en infinitesimal rörelse ges av

$$dU_i = \mathbf{f}_i \cdot dr_i + \mathbf{F}_i \cdot dr_i = dU_i^{(i)} + dU_i^{(e)}.$$

Det totala arbetet som görs på partikelsystemet ges av

$$dU = \sum dU_i^{(i)} + dU_i^{(e)} = dU^{(i)} + dU^{(e)},$$

där vi har infört arbetet som görs av inre och yttre krafter. Vi kan från detta integrera för att få

$$U_{0-1} = T_1 - T_0,$$

där T nu är hela systemets kinetiska energi och U är det totala arbetet som görs av alla krafter.

Tolkning av kinetisk energi Vi undersöker vidare partikelsystemets kinetiska energi. För att göra detta, introducerar vi en masscentrumsram med origo i masscentrum och axlar som inte ändrar riktning. Hastighetssambandet ger

$$\mathbf{v}_i = \mathbf{v}_G + \mathbf{v}_G' + \boldsymbol{\omega} \times \mathbf{r}_i',$$

där apostrofen indikerar storheter i masscentrumsramen. Eftersom systemet inte roterar, förenklas detta till

$$\mathbf{v}_i = \mathbf{v}_G + \mathbf{v}_i'$$

Den kinetiska energin ges då av

$$T = \frac{1}{2} \sum m_i v_i^2$$

= $\frac{1}{2} \sum m_i v_G^2 + \sum m_i \mathbf{v}_i' \cdot \mathbf{v}_G + \frac{1}{2} \sum m_i v_i'^2$
= $\frac{1}{2} \sum m_i v_G^2 + \mathbf{v}_G \cdot \sum m_i \mathbf{v}_i' + \frac{1}{2} \sum m_i v_i'^2$.

Det gäller att

$$\sum m_i \mathbf{r}_i' = \mathbf{0}$$

eftersom systemets masscentrum är i origo. Derivation med avseende på tiden ger

$$\sum m_i \mathbf{v}_i' = \mathbf{0},$$

vilket ger

$$T = \frac{1}{2}mv_G^2 + T'.$$

Bidragen till den kinetiska energin är alltså masscentrumsrörelse och partiklernas rörelse relativt masscentrum.

Momentekvationen Systemets totala rörelsemängdsmoment med avseende på punkten O ges av

$$\mathbf{H}_O = \sum \mathbf{r}_i \times m_i \mathbf{v}_i.$$

För att härleda kraftekvationen, utgår vi från kraftekvationen

$$m_i \mathbf{a}_i = \mathbf{F}_i + \sum \mathbf{f}_{ij}.$$

Multiplicera med ortsvektorn från vänster och summera över alla partikler för att få

$$\sum \mathbf{r}_i \times m_i \mathbf{a}_i = \sum \mathbf{r}_i \times \mathbf{F}_i + \sum \sum \mathbf{r}_i \times \mathbf{f}_{ij}.$$

Vi har att

$$\frac{\mathrm{d}\mathbf{H}_O}{\mathrm{d}t} = \sum \frac{\mathrm{d}\mathbf{r}_i}{\mathrm{d}t} \times m_i \mathbf{v}_i + \sum \mathbf{r}_i \times m_i \frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = \sum \mathbf{r}_i \times m_i \mathbf{a}_i$$

eftersom vektorerna i första termen är lika varandra. Vi har vidare att

$$\mathbf{r}i \times \mathbf{f}_{ij} + \mathbf{r}j \times \mathbf{f}_{ii} = \mathbf{f}_{ij} \times (\mathbf{r}i - \mathbf{r}j) = \mathbf{0},$$

då den inre kraften är parallell med linjen mellan partiklerna. Den återstående termen är det totala momentet till de yttre krafterna, och vi får

$$\frac{\mathrm{d}\mathbf{H}_O}{\mathrm{d}t} = \mathbf{M}_O.$$

Rörelsemängdsmoment med avseende på olika punkter Betrakta rörelsemängdsmomentet kring två punkter A, B. Det gäller att

$$\begin{aligned} \mathbf{H}_{A} &= \sum \mathbf{r}_{A,i} \times m_{i} \mathbf{v}_{i} \\ &= \sum \left(r_{AB} + r_{B,i} \right) \times m_{i} \mathbf{v}_{i} \\ &= \mathbf{r}_{AB} \times \sum m_{i} \mathbf{v}_{i} + \sum r_{B,i} \times m_{i} \mathbf{v}_{i} \\ &= \mathbf{r}_{AB} \times m \mathbf{v}_{G} + \mathbf{H}_{B}. \end{aligned}$$

Tolkning av rörelsemängdsmomentet Betrakta rörelsemängdsmomentet med avseende på en fix punkt O och masscentrum G. Sambandsformelen ger

$$\mathbf{H}_O = \mathbf{r}_G \times m\mathbf{v}_G + \mathbf{H}_G.$$

Rörelsemängdsmomentet med avseende på masscentrum ges av

$$\mathbf{H}_G = \sum \mathbf{r}_i' \times m_i \mathbf{v}_i.$$

För att skriva denna enbart med storheter i masscentrumsystemet, tidsderiverar man relationen

$$\mathbf{r}_i = \mathbf{r}_G + \mathbf{r}_i'$$

och får

$$\frac{\mathrm{d}\mathbf{r}_i}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{r}_G}{\mathrm{d}t} + \frac{\mathrm{d}\mathbf{r}_i'}{\mathrm{d}t},$$
$$\mathbf{v}_i = \mathbf{v}_G + \frac{\mathrm{d}\mathbf{r}_i'}{\mathrm{d}t}.$$

För att derivera den sista termen, använder vi
 ekvation 1 i fallet $\boldsymbol{\omega} = \mathbf{0}$ för att få

$$\mathbf{v}_i = \mathbf{v}_G + \mathbf{v}_i'.$$

Detta ger

$$\mathbf{H}_{G} = \sum_{\mathbf{r}'_{i}} \mathbf{r}'_{i} \times m_{i} \mathbf{v}_{G} + \sum_{\mathbf{r}'_{i}} \mathbf{r}'_{i} \times m_{i} \mathbf{v}'_{i}$$

$$= \left(\sum_{i} m_{i} \mathbf{r}'_{i}\right) \times \mathbf{v}_{G} + \sum_{i} \mathbf{r}'_{i} \times m_{i} \mathbf{v}'_{i}$$

$$= \sum_{i} \mathbf{r}'_{i} \times m_{i} \mathbf{v}'_{i}$$

$$= \mathbf{H}'_{G}$$

enligt definitionen av masscentrum och dens ortsvektor i ett masscentrumssystem. Vi har nu explicit skrivit att rörelsemängdsmomentet i ett masscentrumssystem endast beror av storheter som är relativa det systemet. Detta ger slutligen relationen

$$\mathbf{H}_O = \mathbf{H}_G' + \mathbf{r}_G \times m\mathbf{v}_G.$$

Den första termen är rörelsemängdsmomentet relativt masscentrum, och den andra termen är banrörelsemängdsmomentet som uppstår från masscentrums rörelse.

Rörelsemängdsmomentlagen för en rörlig punkt $\,$ Jämför rörelsemängdsmomenten relativt en fix punkt $\,$ O och relativt en annan punkt $\,$ A. Vårt samband ger

$$\mathbf{H}_O = \mathbf{H}_A + \mathbf{r}_{OA} \times m\mathbf{v}_G.$$

Tidsderivation ger

$$\begin{split} \frac{\mathrm{d}\mathbf{H}_{O}}{\mathrm{d}t} &= \frac{\mathrm{d}\mathbf{H}_{A}}{\mathrm{d}t} + \frac{\mathrm{d}\mathbf{r}_{OA}}{\mathrm{d}t} \times m\mathbf{v}_{G} + \mathbf{r}_{OA} \times m\frac{\mathrm{d}}{\mathrm{d}\mathbf{v}_{G}} \\ &= \frac{\mathrm{d}\mathbf{H}_{A}}{\mathrm{d}t} + \mathbf{v}_{OA} \times m\mathbf{v}_{G} + \mathbf{r}_{OA} \times m\mathbf{a}_{G} \\ &= \frac{\mathrm{d}\mathbf{H}_{A}}{\mathrm{d}t} + \mathbf{v}_{OA} \times m\mathbf{v}_{G} + \mathbf{r}_{OA} \times \mathbf{F} \\ &= \frac{\mathrm{d}\mathbf{H}_{A}}{\mathrm{d}t} + \mathbf{v}_{OA} \times m\mathbf{v}_{G} - \mathbf{r}_{AO} \times \mathbf{F}. \end{split}$$

Vi skriver om och använder rörelsemängdsmomentlagen för att få

$$\frac{\mathrm{d}\mathbf{H}_A}{\mathrm{d}t} + \mathbf{v}_{OA} \times m\mathbf{v}_G = \mathbf{M}_O + \mathbf{r}_{AO} \times \mathbf{F}.$$

Högersiden ger förflytningen av momentet till en ny punkt, som vi såg i grundkursen (ja, jag blev också chockad över att den fanns kvar), och vi får

$$\frac{\mathrm{d}\mathbf{H}_A}{\mathrm{d}t} + \mathbf{v}_{OA} \times m\mathbf{v}_G = \mathbf{M}_A.$$

3 Stela kroppar

En stel kropp är en massbelagd domän så att avståndet mellan två godtyckliga punkter är konstant.

3.1 Dynamik

En stel kropp kan ha translationshastighet eller rotationshastighet. Translationshastighet karakteriseras av att $\mathbf{v}_A = \mathbf{v}_B$ för alla A, B. Rotationshastighet karakteriseras av att det finns ett C som är stelt förenad med kroppen så att $\mathbf{v}_C = \mathbf{0}$ momentant.

För att beskriva rörelsen till en stel kropp, bilda en referensram med axlerna fixa relativt kroppen. betrakta två punkter A,B i kroppen, där origo i den nya referensramen är A. Då gäller det att

$$\mathbf{v}_B = \mathbf{v}_{B,\mathrm{sp}} + \mathbf{v}_{B,\mathrm{rel}}.$$

Eftersom axlerna är fixa relativt kroppen, ger andra termen inget bidrag, vilket ger

$$\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AB}$$

och bekräftar vårt påstående om att all rörelse för en stel kropp är antingen translation eller rotation.

Betrakta vidare kroppens acceleration, som ges av

$$\mathbf{a}_B = \mathbf{a}_{B,\mathrm{sp}} + \mathbf{a}_{B,\mathrm{cor}} + \mathbf{a}_{B,\mathrm{rel}}.$$

Fixa axler relativt kroppen ger att de två sista termerna ej bidrar och

$$\mathbf{a}_B = \mathbf{a}_A + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}_{AB} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{AB}),$$

där den första termen är ett translatoriskt bidrag och de två andra är rotationsbidrag.

Plan rörelse Plan rörelse för en stel kropp karakteriseras av att hastigheten i alla punkter är parallellt med ett och samma fixa plan. Om rörelsen är i xy-planet, kommer ω peka längs med z-axeln.

Om en stel kropp roterar under plan rörelse, finns det alltid en punkt C med $\mathbf{v}_C = \mathbf{0}$, som kallas momentancentrum. Denna punkt uppfyller $\mathbf{v}_A = -\boldsymbol{\omega} \times \mathbf{r}_{AC}$. För att hitta den, multiplicera med $\boldsymbol{\omega}$ på båda sidor för att få

$$\boldsymbol{\omega} \times \mathbf{v}_A = -\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{AC})$$
$$= -(\boldsymbol{\omega} \cdot \mathbf{r}_{AC}) \boldsymbol{\omega} + \omega^2 \mathbf{r}_{AC}.$$

Eftersom rörelsen är plan, behöver vi bara betrakta ett snitt av kroppen i rörelsesplanet, vilket gör att den första skalärprodukten blir 0. Detta ger då positionen till momentancentrumet enligt

$$\mathbf{r}_{AC} = \frac{1}{\omega^2} \boldsymbol{\omega} \times \mathbf{v}_A.$$

Vi studerar vidare accelerationssambandet för plan rörelse, som ger

$$\mathbf{a}_B = \mathbf{a}_A + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}_{AB} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{AB}).$$

Vi skriver ut termerna och får

$$\mathbf{a}_B = \mathbf{a}_A + \alpha \hat{\mathbf{e}}_z \times \mathbf{r}_{AB} + (\boldsymbol{\omega} \cdot \mathbf{r}_{AB}) \boldsymbol{\omega} - \omega^2 \mathbf{r}_{AB}.$$

Eftersom rörelsen är plan, blir skalärprodukten 0, och man får slutligen

$$\mathbf{a}_B = \mathbf{a}_A + \alpha \mathbf{\hat{e}}_z \times \mathbf{r}_{AB} - \omega^2 \mathbf{r}_{AB}.$$

3.2 Dynamik

Energilagen Definiera effekten

$$P_{ij} = \mathbf{f}_{ij} \cdot \mathbf{v}_i + \mathbf{f}_{ji} \cdot \mathbf{v}_j = \mathbf{f}_{ij} \cdot (\mathbf{v}_i - \mathbf{v}_j).$$

Vi använder att $\mathbf{v}_j = \mathbf{v}_i + \boldsymbol{\omega} \times (\mathbf{r}_j - \mathbf{v}_i)$ och får

$$P_{ij} = -\mathbf{f}_{ij} \cdot \boldsymbol{\omega} \times (\mathbf{r}_j - \mathbf{v}_i) = 0$$

eftersom \mathbf{f}_{ij} verkar längs linjen mellan partikel i och j. Därmed gör de indre krafterna inget arbete, och

$$U_{0-1}^{(e)} = T_1 - T_0.$$