Calculus I Lecture 6 Inverse Functions Review

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Inverse Functions
 - One-to-one Functions
 - The Definition of the Inverse of f

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Inverse Functions One-to-one Functions 5/15

One-to-one Functions

Definition (One-to-one Function)

A function f is a one-to-one function if it never takes on the same value twice; that is,

$$f(x_1) \neq f(x_2)$$
 whenever $x_1 \neq x_2$.

← This function is not one-to-one.

Todor Miley

Inverse Functions One-to-one Functions 6/15

Question: How can we tell from the graph of a function whether it is one-to-one or not?

Answer: Use the horizontal line test.

The Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects it more than once.

The Definition of the Inverse of f

Definition (f^{-1})

Let f be a one-to-one function with domain A and range B. Then the inverse of f is the function f^{-1} that has domain B and range A and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

- Only one-to-one functions have inverses.
- f^{-1} reverses the effect of f.
- domain of f^{-1} = range of f.
- range of $f^{-1} = \text{domain of } f$.

Example $(f(x) = x^3)$

The inverse of $f(x) = x^3$ is $f^{-1}(x) = \sqrt[3]{x}$. This is because if $y = x^3$, then

$$f^{-1}(y) = \sqrt[3]{y} = \sqrt[3]{x^3} = x.$$

The inverse of f is denoted as f^{-1} . This notation is one of the most frequent causes of student confusion. WARNING:

$$f^{-1}(x)$$
 does not mean $(f(x))^{-1} = \frac{1}{f(x)}$.

The notations are different: the superscript -1 has different positions.

- f^{-1} is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of f(x).
- $f^2(x)$ is an abbreviation for $(f(x))^2$, $f^3(x)$ is an abbreviation of $(f(x))^3$, and so on.
- However, $f^{-1}(x)$ is not the abbreviation of $(f(x))^{-1}$ and does not follow this pattern.

$$f^n(x) = \left\{ egin{array}{ll} ext{stands for } (f(x))^n & ext{when } n=1,2,3,\dots \\ ext{stands for inverse of } f ext{ applied to } x & ext{when } n=-1 \\ ext{should be avoided} & ext{when } n
eq -1,1,2,3,\dots \end{array}
ight.$$

To reduce confusion, if possible, use $\frac{1}{f(x)}$ instead of $(f(x))^{-1}$.

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

Switch the roles of x and y:

$$f^{-1}(x) = y \qquad \Leftrightarrow \qquad f(y) = x.$$

Therefore

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(y) = x.$$

Inverse Functions The Definition of the Inverse of f 10/1

How to Find the Inverse of a One-to-one Function

- Write y = f(x).
- Solve this equation for x in terms of y (if possible).

Example

If $f(x) = x^3 + 2$, find a formula for $f^{-1}(y)$.

$$y = x^3 + 2$$
$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Therefore $x = f^{-1}(y) = \sqrt[3]{y-2}$. Sometimes we relabel x and y and write $f^{-1}(x) = \sqrt[3]{x-2}$. Whenever in doubt, do not relabel anything.

Todor Milev

Example (Guess and Check)

If $f(x) = 2x + \sin 2x + e^{\frac{x}{2}}$, find $f^{-1}(1)$. You do not need to show that f has an inverse.

$$f(\) = 2(\) + \sin 2(\) + e^{\frac{(\)}{2}}$$
=
= 1.

Therefore $f^{-1}(1) =$

Interchanging x and y suggests relation between the graphs of f^{-1} and f:

- Suppose (a, b) is on the graph of f.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.
- Then (b, a) is on the graph of f^{-1} .
- (b, a) is the reflection of (a, b) in the line y = x.
- Thus the graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

Example

Sketch the graph of $f(x) = \sqrt{-x-1}$ and its inverse function.

- Draw the graph of $y = \sqrt{x}$.
- $y = \sqrt{-x}$ is the reflection of $y = \sqrt{x}$ in the *y*-axis.
- $y = f(x) = \sqrt{-(x+1)} = \sqrt{-x-1}$ is the shift of $y = \sqrt{-x}$ one unit to the left.
- $y = f^{-1}(x)$ is the reflection of y = f(x) across the line y = x.

Example (

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \ge -\frac{2}{3}$. Find $f^{-1}(x)$.

Final answer, relabelled:

$$f^{-1}(x) = -\frac{2}{3} + \frac{\sqrt{25 + 3x}}{3}$$

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \ge -\frac{2}{3}$, therefore

$$\dot{x} = -\frac{2}{3} + \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Todor Miley

Example (What if we change the problem to $x \le -\frac{2}{3}$?)

Given: $f(x) = 3x^2 + 4x - 7$ with domain $x \le -\frac{2}{3}$. Find $f^{-1}(x)$.

Final answer, relabelled:

$$f^{-1}(x) = -\frac{2}{3} - \frac{\sqrt{25 + 3x}}{3}$$

$$3x^2 + 4x - 7 = y$$
$$3x^2 + 4x + (-7 - y) = 0$$

That's a quadratic equation in x. Solve:

$$\frac{-4\pm\sqrt{4^2-4\cdot3\cdot(-y-7)}}{2\cdot3}$$

$$= -\frac{2 \pm \sqrt{25 + 3y}}{3} = -\frac{2}{3} \pm \frac{\sqrt{25 + 3y}}{3}$$

We are given $x \le -\frac{2}{3}$, therefore

$$X = -\frac{2}{3} - \frac{\sqrt{25+3y}}{3} = f^{-1}(y).$$

Lecture 6

Example

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer: $f^{-1}(x) = \frac{x+1}{x-1}$, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

What does it mean for f to be its own inverse? Graph of f is symmetric across y = x.