Assignment 1

Gunnam Sri Satya Koushik CS22BTECH11026

12.13.1.12 Question: Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that

(i) the youngest is a girl (ii) at least one is a girl?

Answer : $(i)^{\frac{1}{2}} (ii)^{\frac{1}{3}}$

Solution : Lets us define events B_i and G_i where $i \in 1, 2$ as follows

1	A_i	ith child is a boy	$Pr(B_i)=0.50$
ĺ	B_i	ith child is a girl	$Pr(G_i)=0.50$

Part (i): The required probability is the conditional probability that both the children are girls given that the youngest is a girl i.e, $Pr((G_1.G_2)|G_2)$

$$Pr((G_1.G_2)|G_2)$$
=\frac{\text{Pr}(G_1.G_2.G_2)}{\text{pr}G_2}
=\frac{\text{Pr}(G_1.G_2)}{\text{pr}G_2}
=\frac{\text{Pr}(G_1) \cdot \text{Pr}(G_2)}{\text{Pr}(G_2)}
= \text{Pr}(G_1)
=\frac{1}{2}

Part (ii): The required probability is the conditional probability that both the children are girls given that at least one a girl i.e, $Pr(G_1.G_2|(G_1 + G_2))$

$$Pr(G_1.G_2|(G_1 + G_2))$$

$$= \frac{Pr(G_1.G_2)}{Pr(G_1) + Pr(G_2) - Pr(G_1.G_2)}$$

$$= \frac{Pr(G_1) \cdot Pr(G_2)}{Pr(G_1) + Pr(G_2) - Pr(G_1) Pr(G_2)}$$

$$= \frac{\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} + \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2}}}{\frac{1}{3}}$$

$$= \frac{1}{3}$$