Tuyển tập các bài luyện toán lớp 10 CT trường THPT chuyên Lê Hồng Phong TP.HCM

Ngày 5/9/05

<u>Bài I</u>: Cho a, b, c, d là các số thực thay đổi thỏa : $a^2 + b^2 + c^2 + d^2 \le 1$. Tìm giá trị lớn nhất của biểu thức : $F = (a+b)^4 + (a+c)^4 + (a+d)^4 + (b+c)^4 + (b+d)^4 + (c+d)^4$.

<u>Bài II :</u> Cho tứ giác lồi ABCD có O là giao điểm hai đường chéo, đường thẳng d qua O và cắt các đường tròn (OAB), (OBC), (OCD), (ODA) theo thứ tự tại M, N, P, Q khác O . Chứng minh rằng luôn có MN = PQ .

<u>Bài III</u>: Một bảng 5x5 ô vuông bằng nhau, trong mỗi ô vuông người ta đặt một con bọ, ở mỗi thời điểm tất cả các con bọ đều bò sang ô bên cạnh (ô vuông có một cạnh chung). Chứng minh rằng khi đó trong bảng có ít nhất một ô trống.

<u>Bài IV</u>: Cho tam giác ABC nội tiếp trong đường tròn (O). Mộ đường thẳng song song với BC cắt cung nhỏ AB của (O) tại D và cắt cạnh AB tại E. Biết AB = 86 và độ dài AE, DE là các số nguyên. Hãy tính độ dài đoạn DE?

Bài V : Cho tam giác ABC có góc B không nhọn . Chứng minh rằng :

$$\frac{1}{BC} + \frac{2\sqrt{2}}{BA} \ge \frac{3\sqrt{3}}{CA}$$

Ngày 20/10/05.....

<u>Bài I</u>: Cho phương trình : $x+3(m-3x^2)^2=m$. Hãy giải phương trình trong trường hợp m=1 . Tìm điều kiện của m để phương trình có nghiệm .

<u>Bài II :</u> Tam giác ABC nhọn có hai đường cao BE, CF . Trên nửa đường tròn đường kính BC không chứa E, F lấy một điểm M bất kỳ . Gọi H, I, K là hình chiếu vuông góc của M xuống đường thẳng BC, CE, EB . Lấy P trên BC sao cho góc BMP = góc EMC .

- a) Chứng minh rằng $\frac{BP}{MH} = \frac{CE}{MI}$.
- b) Tìm vị trí của M để biểu thức $S = \frac{BC}{MH} + \frac{CE}{MI} + \frac{EB}{MK}$ là nhỏ nhất .

Bài III : Cho (x_1, y_1) , (x_2, y_2) là nghiệm của hệ : $\begin{cases} x - 3y - 3 = 0 \\ x^2 + y^2 - 2x - 2y - 9 = 0 \end{cases}$ Hãy tính giá trị của biểu thức : $M = (x_1 - x_2)^2 + (y_1 - y_2)^2$ <u>Bài IV</u>: Tam giác ABC có đường tròn nội tiếp (O) tiếp xúc với các cạnh BC, CA, AB tại D, E, F, đường tròn bàng tiếp góc A (O') tiếp xúc cạnh BC và phần kéo dài canh AB, canh AC tai điểm P, M, N.

- a) I và K thuộc đoạn MN sao cho CK song song AB, BI song song với AC. Gọi H là trung điểm BC, chứng minh rằng các cặp điểm P, D; I, E; K, F đối xứng nhau qua H.
- b) Chứng minh rằng đường tròn qua ba điểm I, K, P tiếp xúc với các đường thẳng BC, BI, CK.

Bài V: Tìm m, n nguyên thỏa: $2m^2n+m+n+1=n^2+2m^2+mn$.

Ngày 27/10/05.....

Bài I : Cho ba số thực dương x, y, z thỏa x+y+z=xyz . Hãy tính giá trị của biểu thức : $\sum \frac{\sqrt{(1+x^2)(1+y^2)}-\sqrt{1+x^2}-\sqrt{1+y^2}}{xy}$

<u>Bài II</u>: Cho dãy số không âm $x_0, x_1, x_2, ..., x_n, ...$ thỏa $x_1 = 1$, và với mọi m, n nguyên không âm , $m \ge n$ thì $x_{m+n} + x_{m-n} = \frac{1}{2}(x_{2m} + x_{2n})$. Hãy tính số hạng x_{2005} .

<u>Bài III:</u> Cho tam giác ABC. Hãy tìm qũy tích những điểm M ở trong tam giác sao cho khoảng cách từ M đến một cạnh của tam giác bằng tổng khoảng cách từ M đến hai canh còn lai.

<u>Bài IV</u>: Hãy tìm một số có 10 chữ số $\overline{a_0a_1a_2...a_9}$ biết rằng số này có đúng a_0 chữ số 0, có đúng a_1 chữ số 1, có đúng a_2 chữ số 2, ..., có đúng a_3 chữ số 9.

Ngày 10/11/05.....

<u>Bài I</u>: Giả sử x, y dương thỏa $x^3 + y^3 = x - y$. Chứng minh rằng : $x^2 + y^2 < 1$.

<u>Bài II:</u> Tam giác Abc vuông tại A, có đường cao AH. Phân giác góc BAH cắt BH tại E. Đường thẳng qua C song song với AE cắt đường thẳng AH tại F. Chứng minh rằng EF đi qua trung điểm M của đoạn AB.

<u>Bài III</u>: Một số nguyên dương N có đúng 12 ước $d_1, d_2, ..., d_{11}, d_{12}$ thỏa $d_1 = 1 < d_2 < ... < d_{11} < d_{12} = N$, và với $k = d_4 - 1$ thì d_k cũng là một ước của N và $d_k = (d_1 + d_2 + d_3 + d_4).d_8$. Hãy tìm số N?

<u>Bài IV</u>: Để tuyển chọn học sinh tham dự kì thi Olympic 4 môn: Toán, Lý, Hóa và Tiếng Anh, lớp A1 cử 9 học sinh (hs), A2 cử 8 hs, A3 cử 7hs, ..., A8 cử 2 hs, A9 cử 1 hs và A10 không có hs nào. Ban tổ chức chọn phòng 1 là các hs dự thi cả bốn môn,

3 phòng hs phải thi toán và hai trong ba môn còn lại, 3 phòng hs thi toán và một trong ba môn còn lại, và ba phòng hs thi một trong 3 môn Lý, Hóa, Anh.

- a) Hãy giúp ban tổ chức xếp danh sách từng lớp vào phòng thi sao cho mỗi phòng một lớp, và số lượng hs thi mỗi môn là như nhau (chỉ ra mà không cần giải thích).
- b) Gọi số hs tham gia th mỗi môn là k, hãy tìm giá trị lớn nhất và nhỏ nhất của k.

Ngày 1/12/05.....

<u>Bài I:</u> Ghi các số: 1, 2, 3, ..., 1000 theo thứ tự đó trên một đường tròn . Ta đánh dấu các số từ số 1, theo quy luật: 1, 16, 31, 46, 61 ... Cách đánh dấu này tiến hành cho tới khi gặp một số đã được đánh dấu thì dừng lại . Hỏi có bao nhiều số không được đánh dấu?

<u>Bài II</u>: Cho tứ giác lồi ABCD. Chứng minh rằng: $AB^2 + BC^2 + CD^2 > \frac{1}{3}DA^2$. \odot

<u>Bài III :</u> Với mỗi số α đều có số k thỏa hệ thức : $\sin^2 \alpha + k \cos^2 \alpha = \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} - 2$. Hãy tìm giá trị nhỏ nhất của k ? \odot

<u>Bài IV</u>: Cho dãy số $a_1, a_2, ..., a_n, ...$ liên hệ bởi $a_{n+2} = \frac{a_{n+1} + 1}{a_n}$, biết $a_{20} = 20$, $a_4 = 4$. Hãy tính số hạng a_{2005}, a_{2006} ?

Ngày 8/12/05.....

<u>Bài I</u>: Giả sử trên hệ trục tọa độ Descartes vuông góc có đồ thị hàm số $y = \frac{1}{8x}$. Trên các hệ trục không có ghi đơn vị. Chỉ dùng compa hãy nên cách dựng điểm A có tọa độ (1, 1) và chứng minh cách dựng đó. 3

Bài II: Cho hàm số $f(x) = ax^2 + bx + c$ với a, b, c dương thỏa a+b+c=1.

- a) Chứng minh rằng với x, y dương thì $f(x).f(y) \ge (f(\sqrt{xy}))^2$. \odot
- b) Chứng minh rằng với $x_1, x_2, ..., x_2$ dương thỏa $x_1x_2...x_n = 1$ thì $f(x_1).f(x_2)...f(x_n) \ge 1$. \odot

<u>Bài IV</u>: Trên một hòn đảo có 13 quỉ tóc bạc, 15 quỉ tóc xám và 17 quỉ tóc đỏ. Cứ 2 quỉ khác màu tóc gặp nhau lập tức tóc biến thành màu thứ ba . Hỏi có một lúc nào đó tất cả quỉ trên đảo cò cùng một màu tóc không? Giải thích tại sao? \odot

Ngày 12/1/06.....

Bài I : Tìm tất cả các số nguyên tố x, y thỏa : $[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+...+[\sqrt{n^2-1}]=y$, trong đó $[\alpha]$ là số nguyên lớn nhất không vượt quá α . \odot

Bài II : Tứ giác nội tiếp ABCD có giao điểm hai đường chéo AC, BD là O . Giả sử giao điểm thứ hai của hai đường tròn ngoại tiếp tam giác ABO và CDO là K . Lấy điểm L sao cho tam giác BLC đồng dạng với tam giác AKD . Chứng minh rằng nếu tứ giác BLCK là tứ giác lồi thì nó là tứ giác ngoại tiếp một đường tròn . \odot

<u>Bài III</u>: Chứng minh rằng $\sqrt{3}\cos A + 2\cos B + 2\sqrt{3}\cos C \le 4$ với A, B, C là ba góc của một tam giác . Đẳng thức xảy ra khi nào ? \odot

Ngày 21/1/06.....

<u>Bài I</u>: Giả sử mỗi phương trình sau đều có đúng 4 nghiệm phân biệt trong khoảng $(0,2\pi)$:

$$\cos 2x + a\cos x + 2 = 0$$
$$\cos 2x + b\cos x + 2 = 0$$

Chứng minh rằng phương trình : $\cos 2x + (a+b)\cos x + 5 = 0$ vô nghiệm . ©

<u>Bài II :</u> Giả sử tgA, tgB, tgC là những số nguyên dương , vớ A, B, C là ba góc của một tam giác . Hãy tính tgA, tgB, tgC . ©

<u>Bài III:</u> Từ một điểm P ở ngoài đường tròn (O), kẻ hai tiếp tuyến PB, PC sao cho BPC tù. Trên cung nhỏ BC lấy một điểm A, tiếp tuyến tại A với (O) cắt PB tại K, PC tại L. Chứng minh rằng diện tích tam giác PKL nhỏ hơn diện tích tam giác ABC.

Ngày 16/2/06

Bài I: Giải hệ phương trình:

$$\begin{cases} x^{2}(y+z)^{2} = (3x^{2} + x + 1)y^{2}z^{2} \\ y^{2}(z+x)^{2} = (4y^{2} + y + 1)z^{2}x^{2} \\ z^{2}(x+y)^{2} = (5z^{2} + z + 1)x^{2}y^{2} \end{cases}$$

<u>Bài II :</u> Cho hai đường tròn (O,R) và (O,r) với R>r. Cho tam giác ABC nội tiếp trong (O,r). Tia BC, CA, AB kéo dài cắt (O,R) tại A', B', C' tương ứng . Chứng minh rằng tỉ số giữa diện tích tam giác A'B'C' và diện tích tam giác ABC lớn hơn hoặc bằng bình phương tỉ số giữa R và r . ©

<u>Bài III</u>: Cho dãy số nguyên 1, 2, 3, 4, ...n. Mỗi một số được tô bởi một trong hai màu xanh hoặc đỏ. Hãy tìm n nhỏ nhất để với mọi cách tô màu đều tồn tại ba số cùng màu và lập thành một cấp số cộng (một cấp số cộng là một dãy số mà mọi số đứng giữa đều bằng trunng bình cộng của hai số đứng kề bên nó). \odot

© © © (To be updated...)

Typed by **marsu** diendantoanhoc.net Ngày 22 tháng 2 năm 2006