COMP4211

Machine Learning

Larry128

A summary notes for revision

Fall 2024-2025

Contents

1	Linear Regression		
	1.1	Basic Ideas of Regression	2
	1.2	Linear Regression Function	2
	1.2	Loss Function	2

1 Linear Regression

1.1 Basic Ideas of Regression

- 1. Given a training set $S = \{(x^{(l)}, y^{(l)})\}_{l=1}^N$ of N labelled examples of input-output pairs.
- 2. A **Regression Function** $f(\mathbf{x}; \mathbf{w})$ uses S such that the predicted output $f(\mathbf{x}^{(1)}; \mathbf{w})$ for each input \mathbf{x}^l such that $f(\mathbf{x}^{(l)}; \mathbf{w}) \approx \mathbf{y}^l$.
- 3. (multi-output regression) When the output y is a vector, it's a multi-output regression.
- 4. We denote the output by y if the output is univariate.
- 5. The input $\mathbf{x} = (x_1, \dots, x_d)^T$ is d-dimensional.

1.2 Linear Regression Function

1. If the regression function is linear, then

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

$$= \begin{bmatrix} w_0 & w_1 & \dots & w_d \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$= \mathbf{w}^T \tilde{\mathbf{x}}$$

$$= \tilde{\mathbf{x}}^T \mathbf{w}$$

- 2. w_0 is the bias term which serves as an offset.
- 3. The learning problem is to find the best \mathbf{w} according to performance measure on S.

1.3 Loss Function

- 1. A common way to learn the parameter w of $f(\mathbf{x}; \mathbf{w})$ is to define a loss function $L(\mathbf{w}; S)$
- 2. The most common loss function is the **squared loss**

$$L(\mathbf{w}; S) = \sum_{l=1}^{N} (f(\mathbf{x}^{(l)}; \mathbf{w}) - \mathbf{y}^{(l)})^{2}$$
$$= \sum_{l=1}^{N} (w_{0} + w_{1}x_{1}^{(l)} + \dots + w_{d}x_{d}^{(l)} - y^{(l)})^{2}$$

3. We may also define the loss function by **mean** rather than the sum

$$L(\mathbf{w}; S) = \frac{1}{N} \sum_{l=1}^{N} (f(\mathbf{x}^{(l)}; \mathbf{w}) - \mathbf{y}^{(l)})^2$$

4. A special case (d = 1) Squared loss:

$$L(\mathbf{w}; S) = \sum_{l=1}^{N} (w_0 + w_1 x_1^{(l)} - y^{(l)})^2$$

We can find the unique optimal solution $\tilde{\mathbf{w}} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$ that minimizes $L(\mathbf{w}; S)$ using the method of least squares.

First, we take the derivatives of $L(\mathbf{w}; S)$ with respect to w_0 and w_1 and set them to 0.

$$\frac{\partial L}{\partial w_0} = 2\sum_{l=1}^{N} (w_0 + w_1 x_1^{(l)} - y^{(l)}) = 0 \iff \sum_{l=1}^{N} (w_0 + w_1 x_1^{(l)}) = \sum_{l=1}^{N} y^{(l)} \iff N w_0 + \sum_{l=1}^{N} w_1 x_1^{(l)} = \sum_{l=1}^{N} y^{(l)}$$

$$\frac{\partial L}{\partial w_1} = 2\sum_{l=1}^{N} (w_0 + w_1 x_1^{(l)} - y^{(l)}) x_1^{(l)} = 0 \iff w_0 \sum_{l=1}^{N} x_1^{(l)} + w_1 \sum_{l=1}^{N} (x_1^{(l)})^2 = \sum_{l=1}^{N} x_1^{(l)} y^{(l)}$$

Then, we have a system of linear equations of two unknown w_0 , w_1 . We can write it in matrix form.

$$\mathbf{A}\mathbf{w} = \begin{bmatrix} N & \sum_{l} x_1^l \\ \sum_{l} x_1^l & \sum_{l} (x_1^l)^2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} \sum_{l} y^{(l)} \\ \sum_{l} x_1^{(l)} y^{(l)} \end{bmatrix} = \mathbf{b}$$

Assuming A is invertible, the least squares estimate is

$$\tilde{\mathbf{w}} = \mathbf{A}^{-1}\mathbf{b}$$

- 5. General case $(d \ge 1)$
 - (a) (First approach) We express the input and output of N examples as follows

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^l & \cdots & x_d^1 \\ 1 & x_1^2 & \cdots & x_d^2 \\ \vdots & & & \\ 1 & x_1^N & \cdots & x_d^N \end{bmatrix}, \qquad \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Then we can express the matrix form as follows (proof skipped)

$$\mathbf{A}\mathbf{w} = \mathbf{X}^{\mathbf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathbf{T}}\mathbf{y} = \mathbf{b}$$

Therefore, the least squares estimate is

$$\tilde{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

, assuming $\mathbf{X}^{\mathbf{T}}\mathbf{X}$ is invertible

(b) (Second approach) First write Xw - y as

$$\mathbf{Xw} - \mathbf{y} = \begin{bmatrix} 1 & x_1^l & \cdots & x_d^1 \\ 1 & x_1^2 & \cdots & x_d^2 \\ \vdots & & & \\ 1 & x_1^N & \cdots & x_d^N \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ y_d \end{bmatrix} - \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$
$$= \begin{bmatrix} w_0 + w_1 x_1^{(1)} + \cdots + w_d x_d^1 - y^{(1)} \\ w_0 + w_1 x_1^{(2)} + \cdots + w_d x_d^2 - y^{(2)} \\ \vdots \\ w_0 + w_1 x_1^{(N)} + \cdots + w_d x_d^N - y^{(N)} \end{bmatrix}$$

Then the squared loss is just the square of L-2 norm of Xw - y

$$L(\mathbf{w}; S) = ||\mathbf{X}\mathbf{w} - \mathbf{v}||^2$$

We can further write the squared loss as

$$L(\mathbf{w}; S) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||^{2}$$

$$= (\mathbf{X}\mathbf{w} - \mathbf{y})^{T}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{T}\mathbf{X}^{T} - \mathbf{y}^{T})(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{w} - 2\mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}$$

After that, we can take the derivative with respect to \mathbf{w}

$$\frac{\partial L}{\partial \mathbf{w}} = 2\mathbf{X}^{\mathbf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathbf{T}}\mathbf{y} = 0$$

$$\iff \mathbf{X}^{\mathbf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathbf{T}}\mathbf{y}$$

$$\iff \tilde{\mathbf{w}} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{y}$$

(c) Complexity considerations

To compute $\tilde{\mathbf{w}}$, we need to invert $\mathbf{X}^{\mathbf{T}}\mathbf{X} \in \mathbb{R}^{(d+1)\times(d+1)}$. LeGall is the fastest algorithm to compute that with $O(n^{2.3728639})$, instead of $O(n^3)$ for Cholesky, LU, Gaussian elimination.