AMENDMENTS TO THE CLAIMS

1. (Original) An imaging method including the following steps:

emitting at least two successive pulses along the same line of view into an object body;

receiving reflection (P1, P2) or matter excitation (MR1, MR2) signals, generated by the object body in response to said two pulses;

combining together said two response signals (P1, P2; MR1, MR2) and transforming the combined signal into image data related to the transmission view line of the pulses emitted into the object body, characterized in that the following steps are provided:

combining the response signals relating to the two successive pulses by a weight function (WEIGHT) which, by comparing corresponding samples of the two echo signals (P1, P2, MR1, MR2), assumes values in a range between a maximum value and a minimum value depending on the mutual correlation measure between said corresponding samples of the two signals;

combining the weight function thereby obtained with the combination of the two echo signals (P1, P2; MR1, MR2) and transforming the resulting signal into image data, i.e. image points (pixels, voxels).

2. (Currently Amended) A method as claimed in claim 1, characterized in that wherein the weight function has two predetermined maximum and minimum values which are assumed when the corresponding components of the two successive

response signals (P1, P2; MR1, MR2) have equal or opposite signs (equal or opposite phases) respectively, whereas in case of partly unrelated signal samples, the function assumes intermediate values.

- 3. (Currently Amended) A method as claimed in claim 1 or 2, characterized in that wherein the correlation weight function has a continuous development or is a function having discrete values depending on the occurrence of specific phase conditions.
- 4. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the response signals (P1, P2; MR1, MR2) are sampled before processing.
- 5. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the at least two successive response signals (P1, P2; MR1, MR2) related to the two successive identical pulses are filtered before being combined with each other and/or with the weight function and/or after being combined with each other and/or with the weight function.
- 6. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein one or more signal amplitude thresholds (A, B) are determined, wherewith the two response signals (P1, P2; MR1, MR2) are compared, a threshold function being defined which assumes predetermined values depending on the response signals (P1, P2; MR1, MR2) being above or below said one or more thresholds, said function being combined

Amendment Response Serial No. 09/939,082 Group Art Unit 2625 Atty. Docket No. 8240-10 Page 4 of 21 with the signal defined by the combination of the weight function and by the combination of the response signals (P1, P2; MR1, MR2).

- 7. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the weight function is an EXNOR function applied to the signs of the two successive response signals (P1, P2; MR1, MR2) and which assumes the value 0 when the two echo signals (P1, P2; MR1, MR2) have opposing phases and the value 1 when the two echo signals (P1, P2; MR1, MR2) are in-phase, whereas said function assumes intermediate values for any dephasing intervening between a 180° dephasing and the 0° phase.
- 8. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the weight function is further averaged based on a plurality of successive pairs of response signals (P1, P2; MR1, MR2) generated by a plurality of pairs of successively transmitted signals.
- 9. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the weight function is averaged by low-pass filtering.
- 10. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the weight function is averaged by integration.

- 11. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the threshold function is applied by accounting for the most significant N bits on the sampling vectors of the two received response signals (P1, P2; MR1, MR2).
- 12. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the threshold function is a NOR logic function and assumes the discrete values 0 and 1.
- 13. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim

 1, wherein the one or more thresholds are determined based on the most significant N and M bits of the two response signals P1, P2; MR1, MR2 being considered for the application of the threshold function.

14. canceled.

- 15. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the two response signals (P1, P2; MR1, MR2) related to the two successive identical pulses are combined together by addition or subtraction or multiplication or division or by a combination function.
- 16. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the magnitude of one the two response signals is

only considered in the computation of the threshold function.

- 17. (Currently Amended) A method as claimed in one or more of the preceding claims, characterized in that claim 1, wherein the pulses transmitted to the object body are ultrasonic pulses, said method being provided in combination with a B Mode imaging technique, wherein the amplitude information of all echo signals (P1, P2) having the fundamental transmission frequency is used to determine the brightness of a corresponding pixel and the reception times are used to define the spatial position of pixels in the image corresponding to the line of view.
- 18. (Currently Amended) A method as claimed in one or more of the preceding claims 1 to 16, characterized in that claim 1, wherein the pulses transmitted to the object body are ultrasonic pulses, said method being provided in combination with ultrasound imaging methods which use echo signals components at the second or higher harmonic of the fundamental transmission frequency (Harmonic Imaging).
- 19. (Currently Amended) A method as claimed in claim 18, characterized in that wherein it is provided in combination with a Pulse Inversion imaging method, wherein one of the two successive transmission signals (P1, P2) is inverted in phase or sign.
- 20. (Currently Amended) A method as claimed in claim 18, characterized in that wherein it is provided in combination with an imaging method, wherein subtraction is

performed between the two received echoes (P1, P2).

21. (Currently Amended) A method as claimed in one or more of the preceding claims 17 to 20, characterized in that claim 17, wherein it includes the following steps:

emitting at least two successive ultrasonic pulses along the same line of view;

receiving the reflected signals (V1, V2) for said two pulses;

sampling said signals to provide two reception vectors (P1 and P2);

combining together said two signals (vectors) (P1, P2) and transforming the combined signal into image data related to the transmission line of view of the pulses emitted into the object body;

combining the echo signals relating to the two successive ultrasonic pulses by a weight function which, by comparing corresponding samples of the two echo signals (P1, P2), assumes values in a range between a maximum value and a minimum value depending on the mutual correlation measure between said corresponding samples of the two signals; combining the weight function thereby obtained with the combination of the two echo signals (P1, P2) and transforming the resulting signal into image data, i.e. image points (pixels, voxels).

22. (Currently Amended) A method as claimed in one or more of the preceding claims 1 to 16, characterized in that claim 1, wherein the emitted pulses are electromagnetic excitation pulses for Nuclear Magnetic Resonance imaging, the received signals being electromagnetic pulses emitted

Amendment Response Serial No. 09/939,082 Group Art Unit 2625 Atty. Docket No. 8240-10 Page 8 of 21 by the matter when it relaxes from the excited state caused by said excitation pulses.

23. (Currently Amended) A method as claimed in claim 21, characterized in that it which further includes the following steps:

acquiring data with the normal procedure to form at least two images of the same section;

separating data into real part and imaginary part; combining these data by a weight function which, by comparing respective samples or real and imaginary parts, assumes values in a range between a maximum value and a minimum value depending on the mutual correlation between said samples corresponding to the two response signals (MR1, MR2);

combining real and imaginary part data with the weight function

recomposing signals into real part and imaginary part; reconstructing the image.

24. (Currently Amended) An imaging system for implementing the method as claimed in one or more of the preceding claims, of claim 1 comprising:

means for generating a succession of pulses and means for emitting said pulses towards the object body;

means for receiving the response signals deriving from emitted pulses;

means for processing the response signals and transforming them into image points related to the information contained in the response signal regarding their position and luminous intensity or color said set of

points forming a linear, two-dimensional or threedimensional image;

characterized in that it additionally comprises:
 means for successively repeating at least once an
identical pulse, to generate at least two successive
related and theoretically identical response signals;

means (7, 13, 18) for weighting the received signals based on the mutual correlation of identical or corresponding components of the at least two response signals (P1, P2; MR1, MR2) corresponding to the at least two identical transmission pulses successively emitted along the same line of view.

- 25. (Currently Amended) An imaging system as claimed in claim 24, characterized in that wherein it is a Nuclear Magnetic Resonance imaging system.
- 26. (Currently Amended) An imaging system as claimed in claim 24, characterized in that wherein it is an ultrasound imaging system.
- 27. (Original) An ultrasound imaging system as claimed in claim 26, comprising:

at least one transducer for transforming electric signals into ultrasonic pulses, preferably a geometrically and numerically predetermined transducer array (1);

at least one receiving transducer, the same as the transmitting transducer or separate therefrom, preferably a geometrically and numerically predetermined receiving transducer array, which may be the same as the transmitting transducer array or separate therefrom (1);

means (2) for controlling the transmitting and receiving transducers (1) for alternate transmission and reception activation;

means (3) for focusing ultrasonic beams in a certain propagation direction, i.e. along a predetermined line of view by synchronized activation of the transmitting transducers, when a transmitting transducer array (1) is provided;

means (3) for focus reconstruction relative to the received echo signals, when a receiving transducer array (1) is provided, by resettling synchronization relative to the signals received by the individual transducers;

means for sampling the received echo signals;

means (12) for combining together two successive received echo signals (12);

means for processing the received echo signals (P1, P2) to remove the undesired signal components;

means (9) for transforming the processed echo signals into image signals related to at least one point or one line of a three- o two-dimensional image formed by a set of points (pixels or voxels) or by a set of lines;

the means for processing the received echo signals to remove the undesired signal components comprising means (7, 13, 18) for weighting the received signals based on the mutual correlation of identical or corresponding components of two echo signals (P1, P2) corresponding to two identical transmission pulses successively emitted along the same line of view.

28. (Currently Amended) A system as claimed in claim 27, characterized in that wherein the means for removing

Amendment Response Serial No. 09/939,082 Group Art Unit 2625 Atty. Docket No. 8240-10 Page 11 of 21 undesired signal components are provided in a processing chain parallel to the processing chain (12) designed for combining the two successive echo signals (P1, P2).

- 29. (Currently Amended) A system as claimed in claim 27 or 28, characterized in that <u>27, wherein</u> there are provided means (16) for combining the output signals of the two parallel processing chains (12, 13, 14).
- 30. (Currently Amended) A system as claimed in one or more of the preceding claims 24 to 29, characterized in that claim 24, wherein the means for removing the undesired signal components (13) comprise, in the form of particular hardware or of programmable elements, a phase comparator and a logic circuit for executing logic interpretation functions on the phase comparator output, which provides a signal having predetermined levels depending on certain phase conditions between two echo signals (P1, P2) provided to the phase comparator.
- 31. (Currently Amended) A system as claimed in claim 30, characterized in that wherein the logic circuit comprises means for executing a logic phase comparison function, e.g. EXNOR.
- 32. (Currently Amended) A system as claimed in one or more of the preceding claims 24 to 31, characterized in that claim 24, wherein the means (12) for combining echo signals (P1, P2) consist of a summer or subtractor, and/or multiplier and/or divider circuit.

- 33. (Currently Amended) A system as claimed in one-or more of the preceding claims 24 to 32, characterized in that claim 24, wherein the output of the means (12) for combining echo signals (P1, P2) and the output of the means for removing the undesired signal components (13) are connected to the inputs of a combination circuit (16).
- 34. (Currently Amended) A system as claimed in claim 33, characterized in that wherein the combination circuit is a multiplier (16).
- 35. (Currently Amended) A system as claimed in one or more of claims 24 to 34, characterized in that claim 24, wherein it provides passband filters in the form of depth adaptive filters or extraction filters.
- 36. (Currently Amended) A system as claimed in one or more of the preceding claims 24 to 35, characterized in that claim 24, wherein at least one of the processing chains has a delay circuit (15) for time synchronization of the outputs of the individual processing chains.
- 37. (Currently Amended) A system as claimed in one or more of the preceding claims 24 to 36, characterized in that claim 24, wherein it additionally comprises a third parallel processing chain having a logic circuit (18) for determining thresholds, comparing them with each pair of echo signals (P1, P2) and determining an output signal having signal levels corresponding to predetermined relation conditions between the threshold/s and the echo

signals (P1, P2).

- 38. (Currently Amended) A system as claimed in claim 37, characterized in that wherein the circuit (18) of the third processing chain comprises a logic circuit for executing a threshold function, e.g. a NOR.
- 39. (Currently Amended) A system as claimed in claim 37 or 38, characterized in that 37, wherein it has means (20) for combining the output of the third processing chain (18) with the two additional chains respectively comprising the means (12) for combining the two echo signals (P1, P2) and the means (13) for removing the undesired components of echo signals (P1, P2).
- 40. (Currently Amended) A system as claimed in one or more of claims 37 to 39, characterized in that claim 37, wherein the means (20) for combining the third processing chain (18) consist of a signal multiplier.
- 41. (Currently Amended) A system as claimed in one or more of the preceding claims 37 to 40, characterized in that claim 37, wherein the means (20) for combining the third processing chain (18) with the two previous ones (12, 13) are provided downstream from the means (16) for combining the two processing chains (12, 12') designed for combining together the echo signals (P1, P2) and (13) for removing the undesired signal components.

42. (canceled)

- 43. (New) A method as claimed in claim 2, wherein the correlation weight function has a continuous development or is a function having discrete values depending on the occurrence of specific phase conditions.
- 44. (New) An imaging method including the following steps:

emitting at least two successive pulses along the same line of view into an object body;

receiving two reflection signals that are generated by the object body in response to said two successive pulses;

combining said two reflection signals into a combined signal;

transforming said combined signal into image data related to the transmission view line of the pulses emitted into the object body;

said imaging method further comprising the following steps:

combining said two reflection signals by a weight function wherein by comparing corresponding samples of said two reflection signals, the weight function assumes values in a range between a maximum value and a minimum value depending on the mutual correlation measure between said corresponding samples of the two reflection signals;

combining the weight function thereby obtained with the combination of the two reflection signals into a resulting signal; and

transforming said resulting signal into image data in the form of image points.

45. (New) An imaging method including the following steps:

emitting at least two successive pulses along the same line of view into an object body;

receiving two matter excitation signals that are generated by the object body in response to said two successive pulses;

combining said two matter excitation signals into a combined signal;

transforming said combined signal into image data related to the transmission view line of the pulses emitted into the object body;

said imaging method further comprising the following steps:

combining said two matter excitation signals by a weight function wherein by comparing corresponding samples of said two matter excitation signals, the weight function assumes values in a range between a maximum value and a minimum value depending on the mutual correlation measure between said corresponding samples of the two matter excitation signals;

combining the weight function thereby obtained with the combination of the two matter excitation signals into a resulting signal; and

transforming said resulting signal into image data in the form of image points.

46. (New) A method according to claim 13, comprising the following steps:

defining two vectors (P1", P2" MR1", MR2") by applying the magnitude function (abs function) to the two response

signals (P1, P2; MR1, MR2);

carrying out a threshold determination by applying the threshold function to the said two vectors;

the threshold function having component values 1 when among the most significant N bits in the sample vectors of the response signals (P1, P2; MR1, MR2) at least one bit is equal to 1 and having component values 0 in all the other cases.