$$V_{D_1} = e(t) - \lambda o$$

$$V_{D_2} = -\lambda S - e(t)$$

=>
$$e(t) - 10 < 0,6$$
 et $-15 - e(t) < 0,6$
>> $e(t) < 10,6 \lor$
 $e(t) > -15,6 \lor$

3) D, passante pour
$$e(t) > 10,6 \text{ U}$$
D2 bloquée pour $e(t) > -15,6 \text{ U}$
 $e(t) > 10,6 \text{ U}$

Da	OFF /	Do OFF	75,6VL e(+) L 10,6V	u(t) = e(t)
\mathcal{D}_{λ}	on [De OFF	e(+) > 10,6 U	u(t)=10,6V
\mathcal{D}_{λ}	of f	D2 0N	e(+) <-15,6 V	m(t)=-15,64

