Statistical inference links data and theory in network science

10th SINM edition

SINM 1st edition

Opportunities:

1. Model selection

2. Tradeoffs between general and specific models

Trade-offs between general and specific models

general -

specific

Trade-offs between general and specific models

general <

specific

More likely to get a science/nature paper Good to raise awareness of Network Science Doesn't really solve any actual problems

Trade-offs between general and specific models

More likely to get a "high-impact" paper Good to raise awareness of Network Science Doesn't really solve any actual problems

We need to be going more in this direction This is where the real heroes will be

Network science allows us to analyse systems as a whole!

THEORY

APPLICATION

*Dramatic oversimplification

What we'd like to know

What we'd like to know

Errors and Omissions

What we'd like to know

Errors and Omissions

Indirect observations

Thresholds and approximations

What we observe

What we observe

Three Zachary Karate club club trophy winners

enter a Zoom...

This scene never actually happened, its a reconstruction!

 Observations/ measurements

1. Observations/ measurements

2. Network representation

- Observations/ measurements

- 2. Network representation

Network analysis

1. Observations/ measurements

2. Network representation

3. Network analysis

Obscured quality of data

1. Observations/ measurements

2. Network representation

3. Network analysis

Obscured quality of data

1. Observations/ measurements

2. Network representation

3. Network analysis

Obscured quality of data

1. Obscured quality of data

Zachary's Karate Club

Zachary's Karate Club

Individual Number

Zachary's Karate Club

Does this edge exist?

Assessing experimentally derived interactions in a small world

Debra S. Goldberg and Frederick P. Roth*

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115

Edited by Lawrence A. Shepp, Rutgers, The State University of New Jersey-New Brunswick, Piscataway, NJ, and approved February 10, 2003 (received for review September 27, 2002)

Experimentally determined networks are susceptible to errors, yet important inferences can still be drawn from them. Many real networks have also been shown to have the small-world

negative errors (24, 25). Here we consider in detail a network of protein-protein interactions derived from high-throughput, error-prone yeast two-hybrid (Y2H) studies (26, 27). These data

Assessing experimentally derived interactions in a small world

Debra S. Goldberg and Frederick P. Roth*

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115

Edited by Lawrence A. Shepp, Rutgers, The State University of New Jersey-New Brunswick, Piscataway, NJ, and approved February 10, 2003 (received for review September 27, 2002)

Experimentally determined networks are susceptible to errors, yet important inferences can still be drawn from them. Many real networks have also been shown to have the small-world

negative errors (24, 25). Here we consider in detail a network of protein-protein interactions derived from high-throughput, error-prone yeast two-hybrid (Y2H) studies (26, 27). These data

Link prediction

Rest of network science

Errors in network data create systematic biases...

Errors in network data create systematic

biases...

We don't know if the network represents the system

True Network

Reconstructed Network

$$P(\boldsymbol{A}|\boldsymbol{D}) = \frac{P(\boldsymbol{D}|\boldsymbol{A})P(\boldsymbol{A})}{P(\boldsymbol{D})}$$

Bayesian inference

True Network

Reconstructed Network

This is NOT fine

11. Choice of representation

What are the nodes and what are the edges?

What are the nodes and what are the edges?

Zachary's Karate Club

How does the network generate data?

(a) True network

Correlation "networks"

(a) True network

t = 0.09t = 0.12t = 0.15

Correlation "networks"

(a) True network

Correlation "networks"

(a) True network

(a) True network (b) Graphical LASSO

Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-441 (2008).

(a) True network (b) Graphical LASSO (c) Bayesian inference

Peixoto, T. P. Network Reconstruction and Community Detection from Dynamics. Phys. Rev. Lett. 123, 128301 (2019).

"I see networks!"

III. Suitability of the methods

Summary descriptors used out of context

Shortest path of a correlation network?

Maximum modularity of a network?

What to vary, what to keep the same?

What to vary, what to keep the same?

Assortativity of node labels for different null models

What to vary, what to keep the same?

Assortativity of node labels for different null models

Null models and testing hypotheses

Null models and testing hypotheses

Reject the null hypothesis

Rejecting the null hypothesis does not test the alternative...

Accounting for reconstruction uncertainty

IV. Outlook

Eat our own dog food. More focus on collaborations, less on individuals

Eat our own dog food. More focus on collaborations, less on individuals

Break down walls. Strengthen the link between theory and application.

Eat our own dog food. More focus on collaborations, less on individuals

Break down walls. Strengthen the link between theory and application.

Better modelling. Generative models + statistical inference. Focus on more specific models. Solve real problems.

Observations/ measurements

Obscured quality of data

Network representation

Network analysis

These steps are interdependent

Observations/ measurements

Network representation

Network analysis

Obscured quality of data

Download the paper!

Peel, L., Peixoto, T.P. & De Domenico, M. Statistical inference links data and theory in network science. *Nat Commun* 13, 6794 (2022).

Contact:

@PiratePeel

I.peel@maastrichtuniversity.nl

