

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Data Sheets

Nuclear Data Sheets 167 (2020) 1-35

www.elsevier.com/locate/nds

Nuclear radius parameters (r₀) for even-even nuclei from alpha decay

Sukhjeet Singh,^{1,*} Sushil Kumar,¹ Balraj Singh,² and A.K. Jain^{1,3}

¹Department of Physics, Akal University, Talwandi Sabo-151302, India ²Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1 ³Amity Institute of Nuclear Science and Technology, Amity University, Noida, UP-201313, India (Received 25 July 2018; revised received 2 March 2020; accepted 12 July 2020)

The decay data for 186 even-even alpha emitters have been analyzed, and used as input in the ALPHAD code to extract nuclear radius parameters (r₀) for the daughter nuclides. The ALPHAD code employs Preston's spin-independent formalism to calculate alpha decay probabilities. A suite of databases available at the website of the National Nuclear Data Center (NNDC), Brookhaven National Laboratory was consulted to ensure the completeness and reliability of available experimental data pertaining to alpha decays of all the even-even nuclides in the entire nuclear landscape. The literature available up to June 2020 has been consulted. In addition to updating Q_{α} values, half-lives, and other relevant quantities for all the even-even alpha emitters, 26 new even-even alpha emitters, and 164 references published since 1997, mostly in primary nuclear physics journals, have been added to the previous evaluation by Y.A. Akovali [1] in 1998, with a literature cutoff date of January 1997. We also present systematics of r₀ parameters for even-even nuclides, and find that the radius parameters in an isotopic chain exhibit a regular pattern as a function of parent neutron number, showing a minimum at major closed shells, e.g. at N=126, increasing sharply above the closed shells, followed by a smoothly decreasing trend towards the next shell closure. The r₀ parameters for even-even nuclides can be used as input parameters to calculate hindrance factors for the alpha decay of odd-A and odd-odd nuclides. We have also modified the original ALPHAD code so that the r_0 parameters for the odd-A and the odd-odd nuclei can be automatically calculated using the present data file for r₀ parameters of even-even daughter nuclides.

1

2

3

3

3

3

15

17

CONTENTS

I. INTRODUCTION

II. METHODOLOGY AND RESULTS

- III. DISCUSSION
- IV. ALPHAD_RadD CODE
- V. CONCLUSIONS

Acknowledgments

References

VI. EXPLANATION AND POLICIES OF TABLE II

I. INTRODUCTION

Preston's spin-independent formulation of 1947 [2] is one of the original theoretical frameworks proposed to explain and quantify alpha radioactivity. This model was formulated by considering a preformed alpha particle inside a nucleus having a rectangular potential well of depth V_0 , where $V_0 = \text{constant for } r < r_0$, r is the distance from the center of the daughter nucleus and r_0 is the radius of the daughter nucleus [2]. The field beyond an effective nuclear radius was assumed to be generated by a Coulomb potential $(2Ze^2/r)$, where Z is the atomic number of the daughter nucleus and e is the elementary charge) between the alpha particle and the daughter nucleus. The radius parameter calculated in the present study is related to nuclear radius $R = r_0 A^{1/3}$; however, this calculated value of r₀ parameter lies in the range of 1.4-1.6 fm, which is different from the generally accepted value of 1.2 fm. The difference may be due to constraining the alpha hindrance factor of 1.0 for the ground-state to ground-state alpha transitions in even-even nuclei [1].

Accessibility of high-performance computing resources and refinements in the nuclear potential has led to various macroscopic approaches, such as cluster models [3–7], generalized liquid drop model [8, 9], unified fission

^{*} sukhjeet.dhindsa@gmail.com

model [10], density dependent M3Y effective interaction [11-14], etc., which have been employed to calculate theoretical half-lives for alpha emitters in various mass regions, all the way up to the heaviest nuclei experimentally discovered so far. Additionally, some microscopic approaches based on the shell model and fission models [13–17] have also been used to analyze alpha decay data. Semi-empirical formulations proposed by Viola and Seaborg [18], Royer [19, 20], Parkhomenko and Sobiczewski [21], and others [22–27] have been successfully employed to analyze alpha-decay energies to reproduce experimental α -decay half-lives of heavy and superheavy nuclei. The calculated alpha-decay energies (Q_{α}) and theoretical half-lives $(T_{1/2})$ using above-mentioned approaches generally depend on the fitting procedures, tuning of the nuclear potential, and associated adjustable parameters; hence, we do not prefer these theoretical Q_{α} and $T_{1/2}$ values in the present analysis of nuclear radius parameters (r_0) .

Rasmussen [28] derived a more realistic potential using optical model analysis of elastic scattering data, and calculated barrier penetration factors by numerical integration in the WKB approximation. The model potential includes centrifugal barrier effects but ignores the non-central component of nuclear interactions. This approach is adopted by many researchers to deduce experimental reduced α -decay widths relative to the ground state to ground state α -transitions in even-even and odd-A nuclei [29–31]. These reduced widths exhibit similar patterns at major shell closures as shown by the nuclear radius parameters obtained by us (see e.g., Fig. 1). Although alpha decay widths deduced from Rasmussen's approach [28] exhibit the same pattern as shown by the radius parameters, the validity of this approach depends upon the nature of the potential (beyond the outermost turning point) [32] and range of mean lifetime (τ) [32, 33], which prompted us to keep Preston's spin-independent formulation [2], as in the previous review by Y.A. Ako-

The r_0 parameters calculated in the present study can further be used to deduce the hindrance factors (HFs) - the ratio of experimental to theoretical partial half-lives of given alpha transitions. The alpha transitions for which HFs lie between 1 and 4 are called favored transitions, and take place between nuclear states having similar configurations, and hence, these HFs can be used to ascertain spin-parity assignments for a given daughter (parent) state if those of the parent (daughter) are known [34]. Additionally, the systematics of alpha-decay HFs can be used to deduce a variety of quantities such as total alpha branching, intensities of unobserved alpha groups, excitation energy of the level fed in daughter nucleus, and nuclear structure characteristics, but such a study is outside the scope of the present work.

II. METHODOLOGY AND RESULTS

In the present study, the spin-independent part of Preston's equations [2] are used for the alpha decay probabilities. This formalism contains the radius of the daughter nuclide, r_0 , as a free parameter $[2,\ 35].$ By setting HF=1 for the ground-state to ground-state alpha branch for an even-even nuclide [1], the radius parameter for the daughter nuclide can be extracted.

In order to deduce ro parameters, the Evaluated Nuclear Structure Data File (ENSDF) analysis code AL-PHAD [36] was used, which also calculates theoretical half-lives and Hindrance Factors(HFs) for excited states α -branches by assuming HF=1.0 for ground-state to ground-state α transitions [2]. The experimental quantities required to calculate r₀ parameter using this program are: energy available for α -decay (Q_{α}), half-life $(T_{1/2})$ of the parent nuclide, branching ratio (\%\alpha) for alpha-decay mode, and alpha intensity (I_{α}) for groundstate to ground-state α -transition. The ENSDF, eXperimental Unevaluated Nuclear Data List (XUNDL), Nuclear Science References (NSR), and NUBASE-2016 databases [37–39] were consulted to ensure that, in our input data files, we have covered all the relevant and available experimental data for the quantities listed above to current date.

The deduced r₀ parameters for 186 even-even alpha decays (ground state to ground state) are presented in Table I, including 26 new even-even alpha emitters added to the previous evaluation [1], while the details of the evaluated quantities and deduced radius parameters are provided in Table II. It should be pointed out that for the reported 104 Te alpha decay [40] to 100 Sn, the $T_{1/2}$ (< 18 ns) is given as an upper limit, with no estimate of a lower bound, so the calculated radius parameter for the upper limit $T_{1/2} = 18$ ns is > 1.77 fm. Moreover, a recent experimental study [41] casts doubt on the existence of this decay mode as they could assign only two tentative events to the $^{108}\mathrm{Xe} \to ^{104}\mathrm{Te} \to ^{100}\mathrm{Sn}$ decay chain in their experiment, and $\mathrm{T}_{1/2}$ (< 4 ns) for $^{104}\mathrm{Te} \alpha$ decay. For the $^{198}\mathrm{Hg}$ and the $^{106}\mathrm{Sn}$ daughter nuclides, the values of $\%\alpha$ $= 7.6 \mathrm{x} 10^{-4} \ [42] \ (\mathrm{for}^{\ 106} \mathrm{Sn}) \ \mathrm{and} < 1 \ [43] (\mathrm{for}^{\ 198} \mathrm{Hg}) \ \mathrm{are}$ not experimental values, and calculated radius parameters $1.604(41) \ fm$ for $^{106}{\rm Sn}$ and $1.510 \ fm$ for $^{198}{\rm Hg}$ are based on $\%\alpha=7.6\mathrm{x}10^{-4}$ and $\%\alpha=1$, respectively. Due to the tentative nature of the deduced radius parameters for these three nuclei, these values are not included in Table I, Table II, and the systematics presented in Fig. 1 and Figs. 2-6.

Global systematics of r_0 parameters with neutron number of parents for different nuclides are presented in Fig. 1, and by Z number of parents in Figs.2-6. These figures show that the radius parameters lie on fairly smooth curves with exceptions at major and minor shell closures. In other words, the calculated r_0 parameters for all the daughter nuclides decrease gradually with increasing parent neutron number between neighboring closed shells, exhibiting a minimum at N(parent)=126 (a major shell

closure), and increase thereafter, decreasing again toward the next major shell. Fig. 1 clearly shows that there is a shallow minimum at N(parent)=152, which indicates a minor shell closure, consistent with the recent mapping of N=152 shell effects in Ref. [42].

III. DISCUSSION

It is appropriate to discuss the behavior of the deformed actinides from Th to Cf parent nuclei, as shown in Fig. 7. Thorium isotopes touch N(parent)=126 on the extreme left and show a sharp dip at N(parent)=126, as expected. However, the behavior of these nuclides from Th to Cf after N(parent)=126 is different and interesting. These isotopic chains display a sequence of minima, not all of them accessible in each chain of the isotopes. But the Th, U and Pu isotopes display two minima, which keep shifting by two neutrons to the right. These minima lie at N=134 and 140 for Th, at N=136 and 142 for U, and at N=138 and 144 for Pu. Due to large error bars at N=138 minimum of Pu (Fig. 7), this minimum is questionable but N=144 is a definite minimum. Thereafter, Pu and Cm have a minimum at N=150, and Fm, Cf at N=152. It is, therefore, clear that the much discussed N=152 minimum is also a transient minimum. This behavior of shifting minima for these heavy nuclides is interesting and, in our view, has not yet been explored in the literature and explained on the basis of theoretical considerations.

For light lead isotopes, whether Z=82 is a good magic number or not remains an open question in the literature [3, 30, 43, 44]. On the basis of shell model calculations, Wauters et al. [30] showed that Z=82 is a good magic number, but on the other hand Buck et al. [3, 43] and Brown [44] suggested the disappearance of Z=82 shell closure. In order to investigate the magicity of Z=82 proton shell closure, we present in Fig. 8 the systematics of the r₀ parameter as a function of parent proton number for six isotonic chains with parent neutron numbers N=102, 104, 106, 108, 110 and 112. This figure shows that the isotonic chains with N=104, 106 and 112 exhibit a minimum at Z=82, which indicates the role of Z=82 proton shell closure, consistent with the shell model prediction of Wauters et al. [30]. However, the shell effect at Z=82 disappears for the isotonic chains with N=102, 108 and 110 as suggested by Buck et al. [3, 43] and Brown [44]. Further calculations are required to elucidate the issue of the Z=82 proton shell closure.

IV. ALPHAD_RadD CODE

As discussed above, in the present study, radius parameters of even-even alpha emitters were calculated using Preston's formula for alpha decay transition probabilities [2, 35] and using the analysis code ALPHAD [36]. The evaluated radius parameters from Table I can further

be used to deduce r_0 parameters of odd-A and odd-odd nuclides by interpolation or extrapolation as discussed by M.J. Martin [45]. The evaluated radius parameters can be used to deduce hindrance factors for alpha-fed excited states in even-even nuclides and for alpha-fed ground and excited states in odd-A and odd-odd nuclides, all relative to HF=1 for the even-even ground-state alpha branch, which provide tools to extract spectroscopic information about spins and parities of nuclear states, as well as rotational band structures in deformed nuclei.

The original program ALPHAD [36] has been extended to automatically deduce the radius parameters and calculate the corresponding hindrance factors for the odd-A and odd-odd nuclides using the $\rm r_0$ values from Table I. The new program is ALPHAD_RadD [46]. Additionally, the code provides an option of inputting a user-supplied radius parameter.

V. CONCLUSIONS

We present an updated evaluation of nuclear radius parameters of 186 even-even nuclides lying in the region Z = 50 - 116 and N = 52 - 174 ($^{102}Sn - ^{290}Lv$) from the analysis of all the even-even alpha emitters. This includes 26 new even-even alpha emitters, and 164 additional references published since the previous such evaluation by Y.A. Akovali [1] in 1998. Plots of systematics reveal that the nuclear radius parameter of isotopic chains decreases gradually with increasing parent neutron number between neighboring closed shells, exhibiting a minimum at N(parent)=126 (a major shell closure), and increases thereafter, decreasing again toward the next major shell. Another interesting behavior regarding "shifting minimum" in Th, U, Pu, Cm, Cf and Fm isotopes, which indicates the transient nature of the N=152 shell closure, is also identified. An issue pertaining to the disappearance of Z=82 proton shell closure in neutron deficient lead isotopes is also discussed. We believe that the present work on updated r_0 parameters for even-even nuclei and the revised ALPHAD_RadD code will facilitate the evaluation of alpha decay data sets for the ENSDF database, through an automatic calculation of the radius parameters and hindrance factors for all the α emitters.

ACKNOWLEDGMENTS

Work in India was supported by DAE-BRNS, Govt. of India (Sanction No. 36(6)/14/60/2016-BRNS/36145) and Nuclear Data Section of the International Atomic Energy Agency (IAEA)-Vienna, Austria. We thank J. Cubiss (University of York, UK) for sending results of their recent experiments on alpha decays of ¹⁸⁰Pt and ¹⁷⁸Pt prior to publication. We are grateful to Dr. M. Martin (ORNL) for a comprehensive review of this work, and providing a number of constructive comments and suggestions.

FIG. 1. (Color online) Systematics of r_0 parameters as a function of parent neutron number for different Z chains listed in Table I.

FIG. 2. (Color online) Systematics of r_0 parameter with parent neutron number for Te, Xe, Gd, Dy, Yb and Hf nuclides. The overall uncertainties in r_0 is indicated with error bars and determined by propagating all the relevant uncertainties within the operation of the ALPHAD code [36].

FIG. 3. (Color online) Same as Fig. 2 but for W, Os, Pt and Hg nuclides.

FIG. 4. (Color online) Same as Fig. 2 but for Pb, Po, Rn and Ra nuclides. The major shell closure at N=126 is indicated with an arrow.

FIG. 5. (Color online) Same as Fig. 2 but for Th, U, Pu and Cm nuclides. The major shell closure at N=126 is indicated with an arrow.

FIG. 6. (Color online) Same as Fig. 2 but for Cf, Fm, No and Hs nuclides. The minor shell closure at N=152 is indicated with an arrow.

FIG. 7. (Color online) Same as Fig. 1 but for deformed actinides from Th to Cf. The Th, U and Pu nuclides exhibit shifting of minimum by two neutrons and the transient minimum at N=152 [42] is indicated by an arrow.

FIG. 8. (Color online) Systematics of r_0 parameter as function of parent proton number for N(parent)=102, 104, 106, 108, 110 and 112 isotones. The major shell closure at Z=82, wherever observed, is indicated with an arrow.

TABLE I: List of extracted radius parameters (r_0) for even-even daughter nuclei. The quoted uncertainty is in the last significant digits.

	1						- 0	
Paren				Daugh				Daughter r_0
Element	Z	N	Α	Element	Z	N	A	(fm)
Te	52	54	106	Sn	50	52	102	1.684(49)
	52	56	108		50	54	104	1.660(13)
Xe	54	54	108	Te	52	52	104	1.65(19)
	54	56	110		52	54	106	1.655(47)
	54	58	112		52	56	108	1.671(75)
Ba	56	58	114	Xe	54	56	110	1.700(47)
Nd	60	84	144	Се	58	82	140	1.5986(81)
Sm	62	84	146	Nd	60	82	142	1.5930(74)
2111	62	86	148	1.0	60	84	144	1.586(12)
Gd	64	84	148	Sm	62	82	144	1.5695(23)
Gu	64	86	150	OIII	62	84	146	1.5748(86)
	64	88	152		62	86	148	1.5740(66) $1.5741(45)$
Dy	66	84	150	Gd	64	82	146	1.5616(12)
Бу	66	86	152	Gu	64	84	148	1.5796(54)
						1		
17	66	88	154	D	64	86	150	1.541(36)
Er	68	84	152	Dy	66	82	148	1.5667(27)
	68	86	154		66	84	150	1.550(16)
3.71	68	88	156	-	66	86	152	1.541(26)
Yb	70	84	154	Er	68	82	150	1.5574(12)
	70	86	156		68	84	152	1.596(12)
	70	88	158		68	86	154	1.529(41)
Hf	72	84	156	Yb	70	82	152	1.5532(31)
	72	86	158		70	84	154	1.5614(31)
	72	88	160		70	86	156	1.549(16)
	72	90	162		70	88	158	1.5842(77)
	72	102	174		70	100	170	1.4833(91)
W	74	84	158	Hf	72	82	154	1.557(10)
	74	86	160		72	84	156	1.5562(63)
	74	88	162		72	86	158	1.5710(61)
	74	90	164		72	88	160	1.565(19)
	74	92	166		72	90	162	1.516(21)
	74	94	168		72	92	164	1.580(35)
Os	76	86	162	W	74	84	158	1.5597(29)
	76	88	164		74	86	160	1.5477(44)
	76	90	166		74	88	162	1.5663(32)
	76	92	168		74	90	164	1.5642(59)
	76	94	170		74	92	166	1.5611(60)
	76	96	172		74	94	168	1.583(13)
	76	98	174		74	96	170	1.540(34)
	76	110	186		74	108	182	1.486(29)
Pt	78	88	166	Os	76	86	162	1.554(17)
1 0	78	90	168	Os	76	88	164	1.554(17) $1.5568(29)$
	78	92	170		76	90	166	
		94	!			92		1.5636(19)
	78		172		76	1	168	1.5578(40)
	78	96	174		76	94	170	1.5551(32)
	78	98	176		76	96	172	1.5597(42)
	78	100	178		76	98	174	1.5708(31)
	78	102	180		76	100	176	1.5468(62)
	78	104	182		76	102	178	1.5539(68)
	78	106	184		76	104	180	1.542(27)
	78	108	186		76	106	182	1.536(30)
	78	110	188		76	108	184	1.4648(74)
_	78	112	190		76	110	186	1.4651(16)
Hg	80	90	170	Pt	78	88	166	1.526(64)
	80	92	172		78	90	168	1.5567(30)
	80	94	174		78	92	170	1.548(12)
	80	96	176		78	94	172	1.5457(75)
	80	98	178		78	96	174	1.5409(29)
	80	100	180		78	98	176	1.5324(24)

				inuation of				
Parer	ıt Nı	ıclide	Э	Daugh	ter N	Vucli	de	Daughter r ₀
Element	Z	N	A	Element	\mathbf{Z}	N	A	(fm)
Hg	80	102	182	Pt	78	100	178	1.5176(41)
	80	104	184		78	102	180	1.5120(81)
	80	106	186		78	104	182	1.500(17)
	80	108	188		78	106	184	1.480(15)
Pb	82	96	178	Hg	80	94	174	1.545(35)
	82	98	180		80	96	176	1.5184(43)
	82	100	182		80	98	178	1.5093(64)
	82	102	184		80	100	180	1.504(11)
	82	104	186		80	102	182	1.486(10)
	82	106	188		80	104	184	1.4885(32)
	82	108	190		80	106	186	1.4923(55)
	82	110	192		80	108	188	1.5005(86)
	82	112	194		80	110	190	1.437(24)
	82	128	210		80	126	206	1.449(21)
Po	84	102	186	Pb	82	100	182	1.488(19)
	84	104	188		82	102	184	1.4868(76)
	84	106	190		82	104	186	1.5114(26)
	84	108	192		82	106	188	1.5137(13)
	84	110	194		82	108	190	1.5113(39)
	84	112	196		82	110	192	1.5126(28)
	84	114	198		82	112	194	1.4962(19)
	84	116	200		82	114	196	1.4803(16)
	84	118	202		82	116	198	1.4720(20)
	84	120	204		82	118	200	1.4625(22)
	84	122	206		82	120	202	1.4547(10)
	84	124	208		82	122	204	1.42967(74)
	84	126	210		82	124	206	1.408790(38)
	84	128	212		82	126	208	1.52177(18)
	84	130	214		82	128	210	1.539616(24)
	84	132	216		82	130	212	1.54117(28)
-	84	134	218	_	82	132	214	1.53788(19)
Rn	86	108	194	Po	84	106	190	1.590(11)
	86	110	196		84	108	192	1.585(15)
	86	112	198		84	110	194	1.5455(27)
	86	114	200		84	112	196	1.5205(93)
	86	116	202		84	114	198	1.5106(49)
	86	118	204		84	116	200	1.5026(13)
	86	120	206		84	118	202	1.4917(27)
	86	122	208		84	120	204	1.4755(52)
	86	124	210		84	122	206	1.4568(22)
	86		212		84	124		1.4343(25)
	86	128	214		84	126	210	1.5340(25)
	86	130	216		84	128	212	1.5658(59)
	86	132	218		84	130	214	1.56062(74)
	86	134	220		84	132	216	1.55548(10)
D.	86	136	222	D	84	134	218	1.54863(17)
Ra	88	114	202	Rn	86	112	198	1.573(15)
	88	116	204		86	114	200	1.525(14)
	88	118	206		86	116	202	1.5287(42)
	88	120	208		86	118	204	1.5029(36)
	88	122	210		86	120	206	1.4861(29)
	88	124	212		86	122	208	1.4718(31)
	88	126	214		86 86	124	210	1.4557(12)
	88	128	216		86	126	212	1.5433(36)
	88	130	218		86	128	214	1.5655(13)
	88	132	220		86 86	130	216	1.5539(57)
	88	134	222		86 86	132	218	1.5492(18)
	88 88	136 138	224 226		86 86	134 136	220 222	$ \begin{vmatrix} 1.542177(86) \\ 1.53945(26) \end{vmatrix} $
Th	90		210	Ra	88		206	
T 11	90	140	410	Ita	00	1110	200	1.001(11)

		(Cont	inuation (of Ta	ible l	[
Parer	ıt Nı	ıclide	е	Daugh	ter N	Vucli	de	Daughter r ₀
Element	\mathbf{Z}	N	Α	Element	Z	N	A	(fm)
Th	90	122	212	Ra	88	120	208	1.5058(26)
	90	124	214		88	122	210	1.4986(56)
	90	126			88	124		1.4695(14)
	90	128	218		88	126		1.5487(30)
	90	130	220		88	128	216	1.6051(43)
	90	132	222		88	130		1.5571(17)
	90	134	224		88	132		1.5385(27)
	90	136			88	134	222	1.53749(45)
	l					136		
	90	138	228		88	l		1.53389(32)
	90	140			88	138		1.5332(11)
TT	90	142	232	mi	88	140	228	1.5370(14)
U	92	124	216	Th	90	122	212	1.486(33)
	92	126			90	l	214	1.512(14)
	92	130	222		90	128	218	1.529(15)
	92	132	224		90	130	220	1.5514(30)
	92	134	226		90	132		1.5394(34)
	92	136	228		90	134	224	1.5237(51)
	92	138	230		90	136	226	1.53197(29)
	92	140	232		90	138	228	1.52885(29)
	92	142	234		90	140	230	1.52224(49)
	92	144	236		90	142	232	1.52595(66)
	92	146			90	144		1.5350(17)
Pu	94	134	228	U	92	132		1.480(42)
1 4	94	136	230		92	134	226	1.5375(56)
	94	138	232		92	136		1.487(50)
	94	140			92	138		1.518(27)
	94	142	236		92	140		* . * .
	1	l			l	l	232	1.51022(22)
	94	144	238		92	142		1.50745(13)
	94	146			92	144		1.51631(11)
	94	148	242		92	146	238	1.51448(75)
	94	150		ъ	92	148	240	1.50549(82)
Cm	96	142	238	Pu	94	140		1.4805(90)
	96	144	240		94	142	236	1.4947(17)
	96	146			94	144	238	1.501258(57)
	96	148	244		94	146		1.498180(88)
	96	150	246		94	148		
	96	152	248		94	150	244	
Cf	98	142		Cm	96	140		
	98	144	242		96	142	238	1.4986(78)
	98	146	244		96	144		
	98	148	246		96	146	242	1.49528(88)
	98	150			96	148	244	1.4851(24)
	98	152	250		96	150	246	1.48260(30)
	98	154	252		96	152		1.50113(23)
	98	156	254		96	154		1.517(24)
Fm	100	146	246	Cf	98	144	242	1.506(12)
1 111	100	148	248	01	98	146	244	1.4945(65)
	100	150			98	148	246	1.4789(48)
	100	152	252		98	150	248	1.46703(81)
	l				l			
	100	154	254		98	152	250	1.48871(75)
N.T.	100	156	256	П	98	154		1.4989(35)
No	102	150	252	Fm	100	148		1.4787(75)
	102	152	254		100	150	250	1.4672(33)
	102	154			100	152	252	1.4762(19)
Rf	104	152	256	No	102	150	252	1.466(26)
	104	154	258		102	152	254	1.470(18)
Sg	106	154		Rf	104	l		1.4562(75)
$_{\mathrm{Hs}}$	108	156		Sg	106	l	260	1.485(24)
	108	158			106	156	262	1.481(12)
	108	160	268		106	158	264	1.458(48)

	Continuation of Table I								
Parent Nuclide				Daughter Nuclide			Daughter r ₀		
Element	Z	N	A	Element	Z N A		A	(fm)	
Hs	108	162	270	Sg	106	160	266	1.471(27)	
Ds	110	160	270	Hs	108	158	266	1.472(12)	
Fl	114	172	286	Cn	112	170	282	1.441(15)	
	114	174	288		112	172	284	1.476(10)	
Lv	116	174	290	Fl	114	172	286	1.486(28)	
	116	176	292		114	174	288	1.516(18)	
Og	118	176	294	Lv	116	174	290	1.461(24)	

- Y. A. Akovali, "Review of alpha-decay data from doublyeven nuclei," Nucl. Data Sheets 84, 1 (1998).
- [2] M. A. Preston, "The theory of alpha-radioactivity," Phys. Rev. 71, 865 (1947).
- [3] B. Buck, A. C. Merchant, and S. M. Perez, " α decay calculations with a realistic potential," Phys. Rev. C 45, 2247 (1992).
- [4] B. Buck, A. C. Merchant, and S. M. Perez, "Half-lives of favored alpha decays from nuclear ground states," AT. DATA NUCL. DATA TABLES 54, 53 (1993).
- [5] C. Xu and Z. Ren, "Global calculation of α-decay halflives with a deformed density-dependent cluster model," Phys. Rev. C 74, 014304 (2006).
- [6] J. C. Pei, F. R. Xu, Z. J. Lin, and E. G. Zhao, "α-decay calculations of heavy and superheavy nuclei using effective mean-field potentials," Phys. Rev. C 76, 044326 (2007).
- [7] Y. Qian, Z. Ren, and D. Ni, "Calculations of α-decay half-lives for heavy and superheavy nuclei," PHYS. REV. C 83, 044317 (2011).
- [8] H. Zhang, W. Zuo, J. Li, and G. Royer, "α decay half-lives of new superheavy nuclei within a generalized liquid drop model," Phys. Rev. C 74, 017304 (2006).
- [9] J. Dong, H. Zhang, Y. Wang, W. Zuo, and J. Li, "Alphadecay for heavy nuclei in the ground and isomeric states," Nucl. Phys. A 832, 198 (2010).
- [10] J. Dong, W. Zuo, J. Gu, Y. Wang, and B. Peng, " α -decay half-lives and Q_{α} values of superheavy nuclei," Phys. Rev. C **81**, 064309 (2010).
- [11] D. N. Basu, "Role of effective interaction in nuclear disintegration processes," Phys. Lett. B 566, 90 (2003).
- [12] P. R. Chowdhury, D. N. Basu, and C. Samanta, " α decay chains from element 113," Phys. Rev. C **75**, 047306 (2007).
- [13] P. R. Chowdhury, C. Samanta, and D. N. Basu, "Nuclear half-lives for α -radioactivity of elements with $100 \le Z \le 130$," At. Data Nucl. Data Tables **94**, 781 (2008).
- [14] C. Samanta, P. R. Chowdhury, and D. N. Basu, "Predictions of alpha decay half lives of heavy and superheavy elements," Nucl. Phys. A 789, 142 (2007).
- [15] K. Harada, "Alpha-particle reduced widths in heavy nuclei," PROG. THEOR. PHYS. 26, 667 (1961).
- [16] K. Varga, R. G. Lovas, and R. J. Liotta, "Absolute alpha decay width of ²¹²Po in a combined shell and cluster model," Phys. Rev. Lett. 69, 37 (1992).
- [17] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, "Heavy-particle radioactivity of superheavy nuclei," Phys. Rev. Lett. 107, 062503 (2011).

- [18] V. E. Viola Jr and G. T. Seaborg, "Nuclear systematics of the heavy elements-II lifetimes for alpha, beta and spontaneous fission decay," J. INORG. NUCL. CHEM. 28, 741 (1966).
- [19] G. Royer, "Analytic expressions for alpha-decay half-lives and potential barriers," Nucl. Phys. A 848, 279 (2010).
- [20] G. Royer, "Alpha emission and spontaneous fission through quasi-molecular shapes," J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).
- [21] A. Parkhomenko and A. Sobiczewski, "Phenomenological formula for alpha-decay half-lives of heaviest nuclei," ACTA PHYS. Pol. B. 36, 3095 (2005).
- [22] Y. Ren and Z. Ren, "New geiger-nuttall law for α decay of heavy nuclei," Phys. Rev. C 85, 044608 (2012).
- [23] Y. Qian and Z. Ren, "Predictions on properties of α decay and spontaneous fission in superheavy odd-Z nuclei," Phys. Rev. C **90**, 064308 (2014).
- [24] M. Bao, Z. He, Y. M. Zhao, and A. Arima, "Simple relations for α -decay energies of neighboring nuclei," Phys. Rev. C **90**, 024314 (2014).
- [25] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, "Simple relationships for α-decay half-lives," J. Phys. G: Nucl. Part. Phys. 39, 015105 (2011).
- [26] Z. Y. Wang, Z. M. Niu, Q. Liu, and J. Y. Guo, "Systematic calculations of α-decay half-lives with an improved empirical formula," J. Phys. G: Nucl. Part. Phys. 42, 055112 (2015).
- [27] H. C. Manjunatha, "Alpha decay properties of superheavy nuclei Z=126," Nucl. Phys. A 945, 42 (2016).
- [28] J. O. Rasmussen, "Alpha-decay barrier penetrabilities with an exponential nuclear potential: even-even nuclei," Phys. Rev. 113, 1593 (1959).
- [29] K. Toth, Y. A. Ellis-Akovali, C. R. Bingham, D. M. Moltz, D. C. Sousa, H. K. Carter, R. L. Mlekodaj, and E. H. Spejewski, "Evidence from α decay that Z=82 is not magic for light Pb isotopes," Phys. Rev. Lett. **53**, 1623 (1984).
- [30] J. Wauters, N. Bijnens, P. Dendooven, M. Huyse, H. Y. Hwang, G. Reusen, J. von Schwarzenberg, P. Van Duppen, R. Kirchner, and E. Roeckl, "Fine structure in the alpha decay of even-even nuclei as an experimental proof for the stability of the Z=82 magic shell at the very neutron-deficient side," Phys. Rev. Lett. 72, 1329 (1994).
- [31] R. D. Page, P. J. Woods, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, and A. C. Shotter, "Radioactivity of neutron deficient isotopes in the region $N \le 82 \le Z$," Phys. Rev. C **53**,

- 660 (1996).
- [32] S. Mahadevan, P. Prema, C. S. Shastry, and Y. K. Gambhir, "Comparison of S-matrix and WKB methods for half-width calculations," Phys. Rev. C 74, 057601 (2006).
- [33] C. S. Shastry, S. Mahadevan, and K. Aditya, "Unified approach to alpha decay calculations," PRAMANA 82, 867 (2014).
- [34] M. J. Martin, "Guidelines for Evaluators." Appendix A, page 52 (October 2019). To be published as an Oak Ridge National Laboratory report.
- [35] R. B. Firestone, "Table of isotopes, 8th Ed." V.S. Shirley, C.M. Baglin, S.Y.F. Chu, J. Zipkin Eds., John Wiley and Sons, Inc., New York Vol. II (1996).
- [36] T. W. Burrows, "ALPHAD code: A program to calculate alpha hindrance factors and theoretical half-lives, version V2d ." available through www nds.iaea.org/public/ensdf_pgm/ (2018).
- [37] "Evaluated Nuclear Structure Data File (ENSDF), experimental Unevaluated Nuclear Data List (XUNDL), Nuclear Science References (NSR) databases maintained by National Nuclear Data Center (NNDC), Brookhaven National Laboratory (BNL), Upton, New York, USA." available at www.nndc.bnl.gov.
- [38] G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, "The *NUBASE*2016 evaluation of nuclear properties," CHIN. PHYSICS C 41, 030001 (2017).
- [39] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, "The AME2016 atomic mass evaluation (II). tables, graphs and references," Chin. Phys. C 41, 030003 (2017).
- [40] K. Auranen, D. Seweryniak, M. Albers, A. Ayangeakaa, S. Bottoni, and others., "Superallowed decay to doubly magic ¹⁰⁰Sn," Phys. Rev. Lett. 121, 182501 (2018).
- [41] Y. Xiao, S. Go, R. Grzywacz, R. Orlandi, A. Andreyev, M. Asai, et al., "Search for decay of ¹⁰⁴Te with a novel recoil-decay scintillation detector," Phys. Rev. C 100, 034315 (2019).
- [42] E. M. Ramirez, D. Ackermann, K. Blaum, et al., "Direct mapping of nuclear shell effects in the heaviest elements," Sci. 337, 1207 (2012).
- [43] B. Buck, A. C. Merchant, and S. M. Perez, "New look at α decay of heavy nuclei," Phys. Rev. Lett. **65**, 2975 (1990).
- [44] B. A. Brown, "Simple relation for alpha decay half-lives," Phys. Rev. C 46, 811 (1992).
- [45] M. J. Martin, "Guidelines for Evaluators." Appendix E, page 73 (October 2019). To be published as an Oak Ridge National Laboratory report.
- [46] S. Singh, S. Kumar, and B. Singh, "ALPHAD_RadD code: A program to calculate radius parameter(r₀) and hindrance factors of even-even, odd-A and odd-odd alpha emitters." available through www nds.iaea.org/public/ensdf_pgm/ (2018).

VI. EXPLANATION AND POLICIES OF TABLE II

Alpha Decay: The parent and daughter nuclides involved in a given alpha decay are listed in the first column of the table. Nuclei are listed with increasing atomic number; various isotopes are grouped together and placed with increasing mass number within the same group.

 \mathbf{Q}_{α} : Energy available for alpha decay in units of keV, adopted from M. Wang *et al.* [Chinese Physics C 41, 030003 (2017)] and in some cases where \mathbf{Q}_{α} values, are derived from recent precise measurements of \mathbf{E}_{α} , are indicated with appropriate comments.

 $\%\alpha$: Alpha-decay branching from the ground state of the parent adopted from the ENSDF database supplemented by data from literature available up to June 2020. The decay branchings listed as approximate values in the literature are taken as exact values with appropriate overlap of uncertainties.

 $T_{1/2}$: Half-life of parent nuclide from the ENSDF database, supplemented by data from recent literature available up to June 2020. For cases where $T_{1/2}$ values are re-evaluated, appropriate comments are given. The most current value(s), from the same lab and the same experimental group using the same method, is adopted, when reported by authors in different papers over time. Ia: Alpha intensities per 100 decays of the parent nuclei. These are adopted from the ENSDF database or from more recent literature, with listing of source reference(s), when required. Whenever alpha intensities appeared with \approx , <, >, \leq or \geq signs, the uncertainties in these cases are assigned as:

- (a) When only one alpha branch is seen or when $I\alpha$ is \approx 100, then $I\alpha$ is assumed as 100 for deduction of radius parameter.
- (b) For approximate values, we assumed 25% uncertainty e.g., for 196 Po alpha decay, for $I\alpha_1 = 99.978(6)$ and $I\alpha_2 = 0.022, 25\%$ uncertainty assumed for the latter.

(c) For the nuclides having $I\alpha$ < a certain value, we assumed a value overlapping 0 and the limit e.g., for $I\alpha$ < 1 for 174 Pt alpha decay, $I\alpha = 0.5(5)$ was used.

r₀: Radius parameter for daughter nuclides extracted from alpha decay with the most current values of Q_{α} , $\%\alpha$, $T_{1/2}$ and $I\alpha$.

For cases with large (>30\% or so) uncertainties either in half-lives or alpha branches, we executed ALPHAD for three values of input quantities, i.e., mean value, mean value + upper limit and mean value - lower limit. In cases where uncertainties are large in both the half-life as well as $\%\alpha$ branch, we obtained the mean value, then ran two cases, one with the maximum $\%\alpha$ branch (value + uncertainty) and the minimum half-life (value - uncertainty); the other with the minimum $\%\alpha$ branch (value - uncertainty) and the maximum half-life (value + uncertainty). The final value of r_0 in such procedures generally results in asymmetric uncertainties, where we adopt the final uncertainty in r_0 as an arithmetic average of the upper and lower uncertainties, since the ALPHAD and ALPHAD-RadD codes can handle only symmetric uncertainty in the r_0 parameter.

Rounding of uncertainties: In the averaging procedure, final uncertainty is not lower than the lowest experimental uncertainty in a dataset that is being averaged.

References: References are listed in terms of NSR keynumbers, and extracted from the NSR database.

Abbreviations

ENSDF: Evaluated Nuclear Structure Data File: www.nndc.bnl.gov/ensdf/

XUNDL: eXperimental Unevaluated Nuclear Data List: www.nndc.bnl.gov/xundl/

UWA: Unweighted Average

WA: Weighted Average

NRM: Weighted Average by Normalized Residuals Method [M.F James *et al.* Nucl. Instrum. Methods A 313, 277 (1992).]

TABLE II: Table of evaluated input quantities, and deduced r_0 parameters for daughter nuclides.

Alpha Decay	Input Parameters	r ₀ (fm)
$^{106}\text{Te} \rightarrow ^{102}\text{Sn}$	$Q_{\alpha} = 4290(9)$. $\%\alpha = 100$, $I_{\alpha} = 100$ (2009DE21). $T_{1/2} = 73 \ \mu s$ (+20-10).	1.684(49)
	$T_{1/2}$: WA of 70 μs (+20-15) (2016CA33), 80 μs (+25-15) (2005JA03), 60 μs (+40-20)	
	(1994PA11) and 60 μs (+30-10) (1981SC17).	
$^{108}\mathrm{Te} \rightarrow ^{104}\mathrm{Sn}$	$Q_{\alpha} = 3420(8)$. $\%\alpha = 51(6)$. $T_{1/2} = 2.1 \ s$ (1), $I_{\alpha} = 100 \ (2007BL18)$.	1.660(13)
	$\%\alpha$: WA of 49(4) (1994PA11) and 68(12) (1978RO19).	
$^{108}\mathrm{Xe} \rightarrow ^{104}\mathrm{Te}$	$Q_{\alpha} = 4600(200)$. $\%\alpha = 100$, $T_{1/2} = 0.06$ ms (+11-2) (2018AU04). $I\alpha = 100$.	1.65(19)
	Q_{α} : From 2018AU04, based on $E_{\alpha} = 4400 \text{ keV } (200)$.	
$^{110}\mathrm{Xe} \rightarrow ^{106}\mathrm{Te}$	$Q_{\alpha} = 3872(9)$. $\%\alpha = 64(35)$, $T_{1/2} = 93$ ms (3) (2012GU09). $I\alpha = 100$ (2008DE09).	1.655(47)
	$T_{1/2}$: 95 ms (+25-20) (2016CA33), 105 ms (+35-25)(2005JA03) and 160 ms (+290-60)	
	(2002MA19) are imprecise, thus not considered here.	
$^{112}\mathrm{Xe} \rightarrow ^{108}\mathrm{Te}$	$Q_{\alpha} = 3330(6), \%\alpha = 1.2(8), T_{1/2} = 2.7 s$ (8) (2015LA02). $I_{\alpha} = 100$ (2000BL21).	1.671(75)
$^{114}\mathrm{Ba} \rightarrow ^{110}\mathrm{Xe}$	$Q_{\alpha} = 3592(19)$. $T_{1/2} = 410 \ ms$ (+190-110). $\%\alpha = 0.9(3)$, $I_{\alpha} = 100$ (2012GU09).	1.700(47)
	$T_{1/2}$: WA of 380 ms (+190–110) (2016CA33) and 430(+300–150) ms (1997JA12).	·

	Continuation of Table II	
Alpha Decay	Input Parameters	r_0 (fm)
$^{144}\mathrm{Nd} \rightarrow ^{140}\mathrm{Ce}$	$Q_{\alpha} = 1903.2(16)$. % $\alpha = 100$, $I_{\alpha} = 100$ (2018NI16). $T_{1/2} = 2.40 \times 10^{15}$ y (30).	1.5986(81)
	$T_{1/2}$: WA of 2.65 $y \times 10^{15}$ (37) (1987AL28), 2.4 $y \times 10^{15}$ (3) (1961MA05) and 2.1 $y \times 10^{15}$ (4) (1965IS01).	
$^{146}\mathrm{Sm} \rightarrow ^{142}\mathrm{Nd}$	$Q_{\alpha} = 2528.8(28)$. $\%\alpha = 100$, $T_{1/2} = 6.8 \times 10^7 \ y$ (7) (2016KH07). $I\alpha = 100$ (2011JO05).	1.5930(74)
$^{148}\mathrm{Sm} \rightarrow ^{144}\mathrm{Nd}$	$Q_{\alpha} = 1986.8(4)$. $T_{1/2} = 6.4 \times 10^{15} \ y \ (+12\text{-}13) \ (2016\text{CA}43)$. $\% \alpha = 100 \ (2014\text{NI}05)$. $I_{\alpha} = 100 \ (2001\text{SO}16)$.	1.586(12)
$^{148}\mathrm{Gd} \rightarrow ^{144}\mathrm{Sm}$		1.5695(23)
$^{150}\mathrm{Gd} \rightarrow ^{146}\mathrm{Sm}$	$Q_{\alpha} = 2807(6)$. $\%\alpha = 100$, $T_{1/2} = 1.79 \times 10^6$ y (8), $I_{\alpha} = 100$ (2016KH07).	1.5748(86)
150 Dy \rightarrow 146 Gd	$Q_{\alpha} = 4351.3(15)$. $\%\alpha = 33.6(18)$, $I_{\alpha} = 100$ (2016KH07). $T_{1/2} = 7.175$ min (25). $T_{1/2}$: WA of 7.17 min (5) (1973BI06) and 7.3 min (1) (1982BO04).	1.5616(12)
$^{152}\mathrm{Gd} \rightarrow ^{148}\mathrm{Sm}$	$Q_{\alpha} = 2204.4(10)$. $\%\alpha = 100$, $T_{1/2} = 1.08 \times 10^{14} \ y$ (8), $I_{\alpha} = 100$ (2014NI05).	1.5741(45)
$^{152}\mathrm{Dy} \rightarrow ^{148}\mathrm{Gd}$	$Q_{\alpha} = 3727(4)$. $\%\alpha = 0.100(7)$, $T_{1/2} = 2.38 \ h$ (2), $I_{\alpha} = 100$ (2014NI05).	1.5796(54)
$^{152}\text{Er} \rightarrow ^{148}\text{Dy}$	$Q_{\alpha} = 4934.3(16)$. $\%\alpha = 91(4)$, $T_{1/2} = 10.3 \ s$ (1), $I\alpha = 100 \ (2014\text{NI}05)$.	1.5667(27)
154 Dy \rightarrow 150 Gd	$Q_{\alpha} = 2945(5)$. $\%\alpha = 100$, $T_{1/2} = 3.0 \times 10^6$ y (15), $I_{\alpha} = 100$ (2013BA31).	1.541(36)
$^{154}\text{Er} \rightarrow ^{150}\text{Dy}$	$Q_{\alpha} = 4279.7(26)$. $\%\alpha = 0.47(13)$, $T_{1/2} = 3.73 \ min (9)$, $I\alpha = 100 \ (2013BA31)$.	1.550(16)
$^{154}\text{Yb} \rightarrow ^{150}\text{Er}$	$Q_{\alpha} = 5474.3(17)$. $\%\alpha = 92.6(12)$, $T_{1/2} = 0.409 \ s$ (2), $I\alpha = 100$ (2013BA31).	1.5574(12)
156 Fr $\rightarrow 152$ Dy	$Q_{\alpha} = 3481(25)$. $\%\alpha = 5.0x10^{-6}(2)$ (1995KAZS), $T_{1/2} = 19.5$ min (10), $I_{\alpha} = 100$	
ы→ Бу	(2013MA77). $\%\alpha$: 5.0x10 ⁻⁶ (2) (1995KAZS), 1.2x10 ⁻⁵ (3) (1996BYZY), 5x10 ⁻⁶ (2) (1992KAZP), 1.0x10 ⁻⁴ (2002KAZR) and corresponding radius parameter comes out as 1.541 fm (26), 1.588 fm (30), 1.541 fm (26) and 1.704 fm (27), respectively. From systematics of radius parameter values in adjacent nuclides (r_0 = 1.5661 fm (28) and 1.550 fm (16) for ¹⁴⁸ Dy and ¹⁵⁰ Dy), the most likely value for ¹⁵² Dy is the one resulting from $\%\alpha$ = 5.0x10 ⁻⁶ (2) (1995KAZS).	1.941(20)
$^{156}\mathrm{Yb} \rightarrow ^{152}\mathrm{Er}$	$Q_{\alpha} = 4810(4)$. % $\alpha = 10(2)$, $T_{1/2} = 26.1 \text{ s (7)}$, $I_{\alpha} = 100 \text{ (2013MA77)}$.	1.596(12)
$^{156}\mathrm{Hf} \rightarrow ^{152}\mathrm{Yb}$	$Q_{\alpha} = 6029(4)$. $\%\alpha = 100$, $T_{1/2} = 23 \text{ ms (1)}$, $I\alpha = 100 \text{ (2013MA77)}$.	1.5532(31)
$^{158}\text{Yb} \rightarrow ^{154}\text{Er}$	$Q_{\alpha} = 4170(7)$. $\%\alpha = 0.0021(12)$, $T_{1/2} = 1.49$ min (13) (2017NI05). $I_{\alpha} = 100$ (2009RE14).	
$^{158}\mathrm{Hf} \rightarrow ^{154}\mathrm{Yb}$	$Q_{\alpha} = 5404.8(27)$. $\%\alpha = 44.3(19)$, $T_{1/2} = 2.85 \ s$ (7) (2017NI05). $I\alpha = 100$ (2009RE14).	1.5614(31)
$^{158}\mathrm{W} \rightarrow ^{154}\mathrm{Hf}$	$Q_{\alpha} = 6613(3)$. $\%\alpha = 100$, $T_{1/2} = 1.25 \ ms$ (21) (2017NI05). $I\alpha = 100$ (2009RE14).	1.557(10)
$^{160}\mathrm{Hf} \rightarrow ^{156}\mathrm{Yb}$	$Q_{\alpha} = 4901.9(26)$. $\%\alpha = 0.7(2)$, $T_{1/2} = 13.6 \ s$ (2), $I\alpha = 100$ (2012RE18).	1.549(16)
$^{160}\mathrm{W} \rightarrow ^{156}\mathrm{Hf}$	$Q_{\alpha} = 6066(5)$. $\%\alpha = 87(8)$, $T_{1/2} = 91 \text{ ms } (5)$, $I_{\alpha} = 100 \text{ (2012RE18)}$.	1.5562(63)
$^{162}\mathrm{Hf} \rightarrow ^{158}\mathrm{Yb}$	$Q_{\alpha} = 4416(5)$. $\%\alpha = 0.008(1)$, $T_{1/2} = 39.4 \ s$ (9), $I\alpha_1 = 99.77(23)$, $I\alpha_2 = 0.23(23)$ (2017NI05).	
$^{162}\mathrm{W} \rightarrow ^{158}\mathrm{Hf}$	$Q_{\alpha} = 5678.3(24)$. $\%\alpha = 45(2)$. $T_{1/2} = 1.19 \ s$ (12), $I_{\alpha} = 100$ (2017NI05). $\%\alpha$: WA of 46(4) (1981HO10), 49(4) (1989WO02) and 44(2) (1996PA01).	1.5710(61)
$^{162}\mathrm{Os} \rightarrow ^{158}\mathrm{W}$	$Q_{\alpha} = 6767(3)$. $\%\alpha = 100$, $T_{1/2} = 2.1$ ms (1), $I_{\alpha} = 100$ (2017NI05).	1.5597(29)
$^{164}\mathrm{W} \rightarrow ^{160}\mathrm{Hf}$	$Q_{\alpha} = 5278.3(20)$. $\%\alpha = 3.8(12)$, $T_{1/2} = 6.3 \text{ s}$ (2) (2018SI01). $I\alpha = 99.5(5)$ (2005RE18).	1.565(19)
$^{164}\mathrm{Os} \rightarrow ^{160}\mathrm{W}$	$Q_{\alpha} = 6479(5)$. $\%\alpha = 96(+4-5)$, $T_{1/2} = 21 \text{ ms (1) (2018SI01)}$. $I_{\alpha} = 95(5)$ (2005RE18).	1.5477(44)
$^{166}\mathrm{W} \rightarrow ^{162}\mathrm{Hf}$	$Q_{\alpha} = 4856(4)$. $\%\alpha = 0.035(12)$, $T_{1/2} = 19.2 \ s$ (6) (2008BA14). $I_{\alpha} = 100$ (2007RE16).	1.516(21)
$^{166}\mathrm{Os} \rightarrow ^{162}\mathrm{W}$	$Q_{\alpha} = 6143(3)$. $\%\alpha = 83(4)$. $T_{1/2} = 213 \ ms$ (5) (2008BA14). $I_{\alpha} = 100$ (ENSDF updates Feb2016). $\%\alpha$: WA of 72(13) (1981HO10) and 84(4) (2008BI15).	1.5663(32)
$^{166}\text{Pt} \rightarrow ^{162}\text{Os}$	$Q_{\alpha} = 7286(15)$. $T_{1/2} = 0.280~ms~(+100\text{-}60)$. $\%\alpha = 100~(2008\text{BA}14)$. $I_{\alpha} = 100~(2007\text{RE}16)$. $T_{1/2}$: WA of 0.260 $ms~(+100\text{-}60)~(2019\text{HI}06)$ and 0.3 $ms~(1)~(1996\text{BI}07)$.	1.554(17)
$^{168}\mathrm{W} \rightarrow ^{164}\mathrm{Hf}$	$Q_{\alpha} = 4500(11)$. $\%\alpha = 0.0032(10)$, $T_{1/2} = 50.9 \ s$ (19), $I_{\alpha} = 97.7(23)$ (2018SI01).	1.580(35)
$^{168}\mathrm{Os} \rightarrow ^{164}\mathrm{W}$	$Q_{\alpha} = 5815.6(27)$. $\%\alpha = 43(4)$, $T_{1/2} = 2.1 \ s$ (1), $I\alpha = 97(3)$ (2018SI01).	1.5642(59)
$^{168}\mathrm{Pt} \rightarrow ^{164}\mathrm{Os}$	$Q_{\alpha} = 6990(3)$. $\%\alpha = 99.3(7)$, $T_{1/2} = 2.02 \text{ ms (10)}$, $I_{\alpha} = 100 \text{ (2018SI01)}$.	1.5568(29)
$^{170}\mathrm{Os} \rightarrow ^{166}\mathrm{W}$	$Q_{\alpha} = 5536.9(27)$. $\%\alpha = 9.5(10)$, $T_{1/2} = 7.37$ s (18) (2018BA41). $I\alpha = 97(3)$	
•	(2008BA14).	

	Continuation of Table II	
Alpha Decay	Input Parameters	r ₀ (fm)
$^{170}\text{Pt} \rightarrow ^{166}\text{Os}$	$Q_{\alpha} = 6707(3)$. $\%\alpha = 98(2)$ (2018BA41). $T_{1/2} = 13.93$ ms (24), $I_{\alpha} = 100$ (2008BA14).	1.5636(19)
$^{170}\text{Hg} \rightarrow ^{166}\text{Pt}$	$Q_{\alpha} = 7773(30)$. $\%\alpha = 100$, $T_{1/2} = 0.08$ ms (+40-4) (2019HI06). $I_{\alpha} = 100$.	1.526(64)
9	Q_{α} : From 2019HI06, based on $E_{\alpha} = 7590 \text{ keV } (30)$.	,
$^{172}\mathrm{Os} \rightarrow ^{168}\mathrm{W}$	$Q_{\alpha} = 5224(7)$. % $\alpha = 1.4(3)$ (2004GOZZ). $T_{1/2} = 19.2~s$ (9) (1995HI02). $I_{\alpha} = 95(5)$ (2010BA27).	1.583 (13)
$^{172}\text{Pt} \rightarrow ^{168}\text{Os}$	$Q_{\alpha} = 6463(4)$. $\%\alpha = 94(6)$ (2004GOZZ). $T_{1/2} = 97.5$ ms (13). $I_{\alpha} = 98(2)$ (2010BA27). $T_{1/2}$: WA of 97.6 ms (13) (2003DA06), 104 ms (7) (2002RO17) and 96 ms (3) (1996PA01).	1.5578(40)
$^{172}\mathrm{Hg} \rightarrow ^{168}\mathrm{Pt}$,	1.5567(30)
$^{174}{\rm Hf} \rightarrow ^{170}{\rm Yb}$	$Q_{\alpha} = 2449.5(23) \ (2017 Wa10). \ T_{1/2} = 7.0 x 10^{16} \ y \ (12) \ (2020 CA15).$ The value of E_{α} is not given in 2020 CA15. $\%\alpha = 100, \ I_{\alpha} = 100 \ (2018 BA41).$ $Q_{\alpha} = 2559(31) \ (\text{from } E_{\alpha} = 2500(30) \ keV) \ \text{and } T_{1/2} = 2.0 x 10^{15} \ y \ (4) \ \text{from } 1961 MA05$ gives radius parameter of 1.552 (51) fm , but these data are not used here as the half-life is about 35 times shorter than in 2020 CA15, and the deduced Q_{α} is not in good	
$^{174}\mathrm{Os} \rightarrow ^{170}\mathrm{W}$	agreement with the value recommended in 2017WA10. $Q_{\alpha} = 4871(10)$. $T_{1/2} = 44 \text{ s}$ (5). $\%\alpha = 0.020(10)$, $I_{\alpha} = 100$ (2018BA41).	1.540(34)
174	$T_{1/2}$: WA of 45 s (5) (1973BE67) and 42 s (6) (1972BE89).	
$^{174}\text{Pt} \rightarrow ^{170}\text{Os}$	$Q_{\alpha} = 6183(3)$. $T_{1/2} = 0.868 \ s$ (9). $\%\alpha = 75(4)$, $I_{\alpha_1} = 99.5(5)$, $I_{\alpha_2} < 1$ (2018BA41). $T_{1/2}$: WA of 0.7 s (2) (1966SI08), 0.80 s (5) (1981DE22), 0.90 s (1) (1982EN03), 0.890 s (20) (1996PA01), 0.857 s (5) (2004GOZZ) and 0.93 s (3) (2014PE02).	1.5551(32)
$^{174}\text{Hg}\rightarrow^{170}\text{Pt}$	$Q_{\alpha} = 7233(6)$. $T_{1/2} = 1.9 \ ms \ (+4-3), \% \alpha = 99.7(3), I_{\alpha} = 100 \ (2018BA41)$.	1.548(12)
$^{176}\text{Pt} \rightarrow ^{172}\text{Os}$	$Q_{\alpha} = 5885.1(21)$. $\%\alpha = 40(3)$. $T_{1/2} = 6.33~s$ (15) (1973GA08). $I\alpha_1 = 99.74(13)$, $I\alpha_2 = 0.26(13)$ (1979HA10). $\%\alpha$: WA of 42(4) (1996PA01), 38(3) (1979HA10) and 42(4) (1970HA18).	1.5597(42)
$^{176}\mathrm{Hg}\! ightarrow^{172}\mathrm{Pt}$	$Q_{\alpha}=6897(6)$. $\%\alpha=91(9)$. $T_{1/2}=20.8~ms$ (20). $I\alpha=100$ (ENSDF updates private communication 2018). $T_{1/2}$: Weighted average of 20 ms (3) (2009AN20), 22 ms (1) (2004GOZZ; uncertainty is taken as doubled in averaging procedure so that it is not weighted by more than 50%), 20 ms (2) (2002RO17), 21 ms (3) (2001JU09, 1998MU25), 20 ms (3) (1999TO11) and 21 ms (4) (1999PO09). The value 18 ms (10) (1996PA01) is not considered because of its comparatively large uncertainty. $\%\alpha$: 1999PO09 give $\%\alpha=94(12)$, which has been adjusted here to 91(9) as the maximum alpha branch cannot exceed 100%.	
$^{178}\mathrm{Pt} \rightarrow ^{174}\mathrm{Os}$	$\begin{array}{l} {\rm Q}_{\alpha}=5573.0(22).~\%\alpha=7.7(3)~(2009{\rm AC}01).~{\rm T}_{1/2}=20.8~s~(8).~{\rm I}\alpha_{1}=96.7(4),~{\rm I}\alpha_{2}=3.3(4)~(2019{\rm HAAA}).\\ {\rm T}_{1/2}:~{\rm WA~of~20~s~(1)~(2000KO16),~22~s~(2)~(1993{\rm ME}13),~21~s~(1)~(1982{\rm BO}04),~19~s~(2)~(1970{\rm HA}18),~21.2~s~(8)~(1968{\rm DE}01)~{\rm and~21.3~s~(15)~(1966SI08).} \end{array}$	
$^{178}{ m Hg} ightarrow ^{174}{ m Pt}$	$\begin{array}{l} Q_{\alpha} = 6577.3(30). \%\alpha = 89(4) \ (2012 \text{VE}04). T_{1/2} = 266.6 \ ms \ (23). \text{I}\alpha = 98(2) \\ (1999 \text{BR}24). \\ T_{1/2} : \text{WA of } 283 \ ms \ (23) \ (2004 \text{GOZZ}), 269 \ ms \ (3) \ (2002 \text{RO}17), 262 \ ms \ (4) \ (200 \text{KO}01), \\ 287 \ ms \ (23) \ (1996 \text{PA}01), \ 250 \ ms \ (25) \ (1991 \text{SE}01), \ 260 \ ms \ (30) \ (1979 \text{HA}10) \ \text{and} \ 260 \\ ms \ (30) \ (1976 \text{HOZD}). \end{array}$	1.5409(29)
$^{178}\text{Pb} \rightarrow ^{174}\text{Hg}$	$Q_{\alpha} = 7790(14)$. $\%\alpha = 100 (2009 \text{AC}01)$. $T_{1/2} = 0.21 \text{ ms } (+21-8)$, $I\alpha = 100 (2016 \text{BA}60)$.	1.545(35)
$^{180}\text{Pt} \rightarrow ^{176}\text{Os}$	$Q_{\alpha} = 5277(5)$. $T_{1/2} = 56 \ s$ (3) (2015MC03). $\%\alpha = 0.52(5)$ (2020CU02). $I\alpha_1 = 97.8(2)$, $I\alpha_2 = 2.2(2)$ (2019CUBB). Q_{α} : From 2020CU02, based on $E_{\alpha} = 5160$ (5) keV (30)	, ,
$^{180}\mathrm{Hg} \rightarrow ^{176}\mathrm{Pt}$	$Q_{\alpha} = 6258.5(24)$. $\%\alpha = 48(2)$, $T_{1/2} = 2.59 \text{ s}$ (1) (2015MC03). $I\alpha_1 = 99.87(3)$, $I\alpha_2 = 5.4 \times 10^{-2}(9)$, $I\alpha_3 = 7.9 \times 10^{-2}$ (2006BA16).	1.5324(24)
$^{180}\text{Pb} \rightarrow ^{176}\text{Hg}$	$Q_{\alpha} = 7419$ (5). $\%\alpha = 100$, $T_{1/2} = 4.1 \ ms$ (3) (2015MC03). $I_{\alpha} > 96$ (2006BA16). $I_{\alpha} : 98(2)$ used to deduce radius parameter.	1.5184(43)
$^{182}\text{Pt} \rightarrow ^{178}\text{Os}$	$Q_{\alpha} = 4951(5)$. $\%\alpha = 0.038(2)$, $T_{1/2} = 2.67$ min (12) (2015SI18). $I_{\alpha} = 91(9)$ (2009AC01).	1.5539(68)
$^{182}{ m Hg}{ ightarrow}\ ^{178}{ m Pt}$	$Q_{\alpha} = 5996(5)$. $\%\alpha = 13.8(9)$, $T_{1/2} = 10.83$ s (6) (2015SI18). $I\alpha_1 = 99.2(1)$, $I\alpha_2 = 0.57(10)$, $I\alpha_3 = 0.24$ (6) (2009AC01). $I\alpha_1$: Uncertainty deduced by authors using values of $I\alpha_2$ and $I\alpha_3$.	1.5176(41)
$^{182}\text{Pb} \rightarrow ^{178}\text{Hg}$	$Q_{\alpha} = 7066(6)$. $\%\alpha = 99(1)$ (2015SI18). $T_{1/2} = 59$ ms (6). $I_{\alpha} = 94(6)$ (1998AK04). $T_{1/2}$: WA of 55 ms (5) (1999TO11) and 68 ms (7) (2000JE09).	1.5093(64)
$^{184}\mathrm{Pt} \rightarrow ^{180}\mathrm{Os}$	$Q_{\alpha} = 4599(8)$. $\%\alpha = 0.0017(7)$, $T_{1/2} = 17.3 \ min \ (2)$, $I_{\alpha} = 94(6) \ (2015 MC03)$.	1.542(27)
$^{184}\text{Hg} \rightarrow ^{180}\text{Pt}$	$Q_{\alpha} = 5662(4)$. $\%\alpha = 1.26(20)$, $T_{1/2} = 30.87 \ s$ (26), $I\alpha_1 = 99.44(10)$, $I\alpha_2 = 0.40(8)$,	
	$I\alpha_3 = 0.16(3) \text{ (2015MC03)}.$	

	Continuation of Table II	
Alpha Decay	Input Parameters	r ₀ (fm)
$^{184}\text{Pb} \rightarrow ^{180}\text{Hg}$	$Q_{\alpha} = 6774(3)$. $\%\alpha = 80(15)$, $T_{1/2} = 490 \text{ ms } (25) (2015\text{MC}03)$. $I\alpha = 91(9) (1998\text{AK}04)$.	
$^{186}\text{Os} \rightarrow {}^{182}\text{W}$	$Q_{\alpha} = 2821.2(9)$. $\%\alpha = 100$, $T_{1/2} = 2.0 \times 10^{15} y$ (11), $I_{\alpha} = 97.5(25)$ (2015SI18).	1.486(29)
$^{186}\mathrm{Pt} \rightarrow ^{182}\mathrm{Os}$	$Q_{\alpha} = 4320(18)$. $T_{1/2} = 2.08 \ h$ (5). $\%\alpha = 0.00018(10)$, $I_{\alpha} = 94(6)$ (2015SI18).	1.536(30)
	$T_{1/2}$: WA of 2.10 h (5) (1991BE25), 2.0 h (1) (1972FI12) and 2.0 h (2)(1963GR08).	
	$\%\alpha:\approx 0.00014\%$ was deduced by 1963GR08 by assuming that neighboring mass nuclei	
	were produced in equal quantities and their reported branching is estimated to be	
	correct within a factor of 2. Therefore, the probable branching i.e. $\%\alpha = 0.00014$,	
	0.00028 and 0.00007 gives radius parameters as $r_0 = 1.518$ fm, $r_0 = 1.574$ fm, $r_0 =$	
	1.485 fm, respectively (2015SI18). The adopted value of $\%\alpha$ is 0.00018(10).	
$^{186}\mathrm{Hg} \rightarrow ^{182}\mathrm{Pt}$	$Q_{\alpha} = 5204(10)$. $\%\alpha = 0.016(5)$, $T_{1/2} = 1.38 \ min\ (6)$, $I\alpha = 94(6)\ (2015SI18)$.	1.500(17)
$^{186}\mathrm{Pb} \rightarrow ^{182}\mathrm{Hg}$	$Q_{\alpha} = 6470(6)$. $\%\alpha = 40(8)$, $T_{1/2} = 4.82 \ s$ (3), $I\alpha_1 = 99.6(2)$, $I\alpha_2 = 0.20(5)$, $I\alpha_3 < 0.20(5)$	1.486(10)
86D . 182D1	0.16 (2015SI18).	1.400(10)
. ⁸⁶ Po→ ¹⁸² Pb	$Q_{\alpha} = 8501(14)$. % $\alpha \approx 100$ (2015SI18). $T_{1/2} = 28~\mu s$ (+16–6) (2013AN13). $I_{\alpha} = 100$.	1.488(19)
$^{188}\text{Pt} \rightarrow ^{184}\text{Os}$	$Q_{\alpha} = 4007(5)$. $T_{1/2} = 10.2 \ d$ (3). $\%\alpha = 2.6 \text{x} 10^{-5}(3)$, $I_{\alpha} = 95(5)$ (2010BA05).	1.4648(74)
10 / 05	$T_{1/2}$: WA of 10.5 d (10) (1963KA17), 10.2 d (3) (1963GR08), 10.0 d (3) (1955SM42)	1.1010(11)
	and 10.3 d (4) (1954NA25).	
$^{188}\mathrm{Hg} \rightarrow {}^{184}\mathrm{Pt}$	$Q_{\alpha} = 4707(16)$. $\%\alpha = 3.7 \text{x} 10^{-5}(8)$, $T_{1/2} = 3.25 \ min \ (15) \ (2018 \text{KO} 15)$. $I\alpha = 96(4)$	1.480(15)
118 / 11	(2010BA05).	11100(10)
$^{.88}\text{Pb} \rightarrow ^{.184}\text{Hg}$	$Q_{\alpha} = 6109 (3)$. $\%\alpha = 8.5 (5)$, $T_{1/2} = 25.5 s (1) (2018KO15)$. $I\alpha_1 = 99(1)$, $I\alpha_2 = 0.095$,	1.4885(32)
O .	$I\alpha_3 \approx 1 \text{ (2010BA05)}.$	
$^{188}\text{Po}\rightarrow^{184}\text{Pb}$	$Q_{\alpha} = 8082(15)$. $T_{1/2} = 275 \ \mu s$ (30) (2003VA16). $\% \alpha \approx 100$, $I_{\alpha_1} = 80(4)$, $I_{\alpha_2} = 20(4)$	1.4868(76)
905, 1860	(2010BA05).	1 4051(10)
$^{90}\text{Pt} \rightarrow ^{186}\text{Os}$	$Q_{\alpha} = 3268.6(6)$. $T_{1/2} = 4.97 \times 10^{11} \ y \ (16) \ (2017 BR04)$. $\% \alpha = 100$, $I_{\alpha} = 100 \ (2003 BA44)$.	
$^{90}\text{Pb}\rightarrow^{186}\text{Hg}$	$Q_{\alpha} = 5698(5)$. $\%\alpha = 0.40(4)$, $T_{1/2} = 71 \ s$ (1), $I\alpha_1 = 99.90(2)$, $I\alpha_2 = 0.084(15)$, $I\alpha_3 = 0.014(3)$	1.4923(55)
	0.014(6) (2003BA44).	
$^{90}\text{Po}\rightarrow^{186}\text{Pb}$	$I\alpha_1$: Uncertainty deduced by authors using values of $I\alpha_2$ and $I\alpha_3$.	1 5114(96)
Po→ToPb	$Q_{\alpha} = 7693(7)$. $T_{1/2} = 2.46 \text{ ms } (5)$. $\%\alpha = 100$, $I\alpha_1 = 96.4(4)$, $I\alpha_2 = 3.3(4)$, $I\alpha_3 = 3.3(4)$, $I\alpha_{1/2} = 3.3(4)$,	1.5114(26)
	0.3(1) (2003BA44).	
	$T_{1/2}$: WA of 2.5 ms (1) (2003VA05), 2.45 ms (5) (2000AN14, 2001AN07) and 2.53 ms (33) (1999AN22).	
$^{192}\text{Pb} \rightarrow ^{188}\text{Hg}$	$Q_{\alpha} = 5221(5)$. $\%\alpha = 0.0059(10)$. $T_{1/2} = 3.5 \ min \ (1) \ (2012BA36)$. $I_{\alpha} = 100$	1.5005(86)
10 / 11g	$\chi_{\alpha} = 5221(5)$. $\gamma_{\alpha} = 0.0005(10)$. $\Gamma_{1/2} = 0.5$ min (1) (2012B/160). $\Gamma_{\alpha} = 100$ (2018KO15).	1.5005(00)
	$\%\alpha$: WA of 0.0057(10) (1979TO06) and 0.0061(11) (1992WA14).	
$^{192}\text{Po} \rightarrow ^{188}\text{Pb}$	$Q_{\alpha} = 7320(3)$. $\%\alpha = 99.5(5)$, $T_{1/2} = 32.2 \text{ ms } (3) (2012BA36)$. $I_{\alpha_1} = 98.57(15)$, $I_{\alpha_2} = 7320(3)$.	1.5137(13)
10 / 15	= 1.43(15) (2018KO15).	1.0101(10)
$^{194}\text{Pb} \rightarrow ^{190}\text{Hg}$	$Q_{\alpha} = 4738(17)$. $\%\alpha = 7.3 \times 10^{-6} (29)$, $T_{1/2} = 10.7 \ min \ (6) \ (2006 \text{SI}17)$. $I_{\alpha} = 99.9(1)$	1 437(24)
10, 116	(2003SI05).	1.101(21)
$^{.94}\text{Po} \rightarrow ^{.190}\text{Pb}$	$Q_{\alpha} = 6987(3)$. $\%\alpha = 93(7)$ (1993WA04). $T_{1/2} = 0.392$ s (4) (2006SI17). $I\alpha_1 = 0.392$	1.5113(39)
	$99.71(6)$, $I\alpha_2 = 0.24(3)$. $I\alpha_3 = 0.05(5)$ (2003SI05).	
$^{.94}\mathrm{Rn} \rightarrow ^{190}\mathrm{Po}$	$Q_{\alpha} = 7862(10)$. $T_{1/2} = 0.78$ ms (16) (2006AN36). $\%\alpha = 100$, $I_{\alpha} = 100$ (ENSDF)	1.590(11)
	updates Jan2014).	
$^{196}\text{Po} \rightarrow ^{192}\text{Pb}$	$Q_{\alpha} = 6658.1(24)$. $\%\alpha = 94(5)$, $T_{1/2} = 5.60 \text{ s}$ (8), $I\alpha_1 = 99.978$, $I\alpha_2 = 0.022$, $I\alpha_3 < 9.000$	1.5126(28)
	0.0065 (2012BA36).	, ,
$^{.96}\mathrm{Rn} \rightarrow ^{192}\mathrm{Po}$	$Q_{\alpha} = 7617(9)$. $T_{1/2} = 4.4 \text{ ms (+13-9) (2001KE06)}$. $\%\alpha = 99.80(20)$, $I_{\alpha} = 100$	1.585(15)
	(2012BA36).	,
$^{.98}\text{Po} \rightarrow ^{194}\text{Pb}$	$Q_{\alpha} = 6309.7(14)$. $\%\alpha = 57(2)$, $T_{1/2} = 1.760 \ min \ (24) \ (2016 HU04)$. $I\alpha_1 = 99.9987(3)$,	1.4962(19)
	$I\alpha_2 = 0.00133(24) (2006SI17).$	·
$^{98}\text{Rn} \rightarrow ^{194}\text{Po}$	$Q_{\alpha} = 7349(4)$. $T_{1/2} = 65 \text{ ms } (3) (2016HU04)$. $\%\alpha = 99.4(6)$, $I\alpha_1 = 99.93(2)$, $I\alpha_2 = 99.4(6)$	1.5455(27)
	0.07(2) (2006SI17).	, ,
$^{196}\text{Po} \rightarrow ^{196}\text{Pb}$	$Q_{\alpha} = 5981.6(18)$. $\%\alpha = 11.1(3)$ (2007KO42). $T_{1/2} = 11.5$ min (1), $I_{\alpha} = 100$	1.4803(16)
	(2007HU13).	·
^{196}Po	$Q_{\alpha} = 7043.4(21)$. $\%\alpha = 91(9)$, $T_{1/2} = 1.03 \ s \ (+20-11) \ (2007\text{KO}42)$. $I\alpha_1 = 99.986(3)$,	1.5205(93)
	$I\alpha_2 = 0.006(2), I\alpha_3 = 0.0081(7) (1998AK04).$	` ´
$^{198}\text{Po} \rightarrow ^{198}\text{Pb}$	$Q_{\alpha} = 5701.0(17)$. % $\alpha = 1.92(7)$, $T_{1/2} = 44.6 \ min (4)$, $I_{\alpha} = 100 \ (2016 HU04)$.	1.4720(20)
$^{202}\mathrm{Rn} \rightarrow ^{198}\mathrm{Po}$	$Q_{\alpha} = 6773.8(18)$. $\%\alpha = 78(8)$, $T_{1/2} = 9.7 \ s$ (1), $I\alpha_1 = 99.9982(6)$, $I\alpha_2 < 0.018$, $I\alpha_3 = 0.018$	1.5106(49)
	0.0018(6) (2016HU04).	
$^{202}\mathrm{Ra} \rightarrow ^{198}\mathrm{Rn}$	$Q_{\alpha} = 7880(7)$. $T_{1/2} = 3.8 \text{ ms } (+13-8) (2014 \text{KA} 23)$. $\% \alpha = 100$, $I_{\alpha} = 100 (2016 \text{HU} 04)$.	1.573(15)
$^{204}\text{Po} \rightarrow ^{200}\text{Pb}$	$Q_{\alpha} = 5484.9(14)$. $\%\alpha = 0.67(3)$, $T_{1/2} = 3.519 \ h$ (12) (2010CH02). $I\alpha = 100$	1.4625(22)
	(2007KO42).	

	Continuation of Table II	
Alpha Decay	Input Parameters	r_0 (fm)
204 Rn $\rightarrow 200$ Po	$Q_{\alpha} = 6546.7(18)$. % $\alpha = 72.4(9)$, $T_{1/2} = 74.5 s$ (14) (2010CH02). $I_{\alpha} = 100$ (2007KO42).	\ /
$^{204}\text{Ra} \rightarrow ^{200}\text{Rn}$	$Q_{\alpha} = 7637(7)$. % $\alpha = 12.4(5)$, $1_{1/2} = 74.6 \text{ s}$ (14) (2010CH02). It = 100 (2007IK042). $Q_{\alpha} = 7637(7)$. % $\alpha = 100$ (2010CH02). $T_{1/2} = 54 \text{ ms}$ (+19-11) (2005UU02). $I_{\alpha} = 100$	
	(2007KO42).	
$^{206}\text{Po} \rightarrow ^{202}\text{Pb}$	$Q_{\alpha} = 5327.0(13)$. $\%\alpha = 5.45(5)$, $T_{1/2} = 8.8 \ d$ (1) (2008KO21). $I_{\alpha} = 100$ (2008ZH05).	1.4547(10)
$^{206}\mathrm{Rn} \rightarrow ^{202}\mathrm{Po}$	$Q_{\alpha} = 6383.7(16)$. $\%\alpha = 62(3)$, $T_{1/2} = 5.67$ min (17) (2008KO21). $I_{\alpha} = 100$ (2008ZH05).	1.4917(27)
$^{206}\mathrm{Ra} \rightarrow ^{202}\mathrm{Rn}$	$Q_{\alpha} = 7415(4)$. $\%\alpha = 99.3(7)$. $T_{1/2} = 0.24 \ s$ (2) (2008KO21). $I_{\alpha} = 100$ (2008ZH05)	1.5287(42)
	$%α$: Based on theoretical $T_{1/2}(α) = 0.20 \ s$ and $T_{1/2}(β^+) = 11.93 \ (s)$, which gives $%ε + %β^+ ≈ 1.5 \ (2019MO01)$ or $%α = 99.3(7)$.	, ,
$^{208}\text{Po} \rightarrow ^{204}\text{Pb}$	$\begin{array}{l} Q_{\alpha}=5215.4(13).\ \%\alpha=99.9960(4)\ (2007\text{MA45}).\ T_{1/2}=2.898\ y\ (2), I\alpha_{1}=99.99976(7),\\ I\alpha_{2}=0.00024(7)\ (2010\text{CH02}). \end{array}$	1.42967(74)
$^{208}\mathrm{Rn} \rightarrow ^{204}\mathrm{Po}$	$\begin{array}{l} Q_{\alpha}=6260.7(17). \ \%\alpha=62(7), \ T_{1/2}=24.35 \ min\ (14), \ I\alpha_{1}=99.953(4), \ I\alpha_{2}=0.047(4)\\ (2010CH02). \end{array}$	1.4755(52)
208 Ra $\rightarrow ^{204}$ Rn	,	1.5029(36)
ita itii	$T_{1/2}$: 1.1 s (+21-5) and 0.41 s (+75-16) (2015MA37) are not considered due to	1.5029(50)
$^{210}\text{Pb} \rightarrow ^{206}\text{Hg}$	comparatively large uncertainties. $Q_{\alpha} = 3792(20)$. $\%\alpha = 1.9 \times 10^{-6} (4)$, $T_{1/2} = 22.20 \ y$ (22) (2014BA41). $I_{\alpha} = 100$	1.440(91)
	(2008KO21).	
$^{210}\text{Po} \rightarrow ^{206}\text{Pb}$	$Q_{\alpha} = 5407.53(7)$. $\%\alpha = 100$, $T_{1/2} = 138.376 \ d$ (14) (2014BA41). $I\alpha_1 = 99.99885(9)$, $I\alpha_2 = 0.00115(9)$ (2018SH12).	1.408790(38)
	$T_{1/2}$: Uncertainty of 0.002 d quoted in 2014BA41 evaluation increased to 0.014 d, as	
	per guidelines for half-life evaluations for ENSDF, accepted at the 2015 NSDD meeting.	
	$T_{1/2} = 138.43 \ d$ (21) (2015ZH41) and 140.6 d (15) (2014PO01) are imprecise, thus not	
	considered here.	
	$I\alpha_1$: Uncertainty is deduced by authors using values of $I\alpha_2$.	
$^{210}\mathrm{Rn} \rightarrow ^{206}\mathrm{Po}$	$Q_{\alpha} = 6159.0(22)$. $\%\alpha = 96(1)$, $T_{1/2} = 2.4\ h$ (1) (2014BA41). $I\alpha_1 = 99.9944(3)$, $I\alpha_2 = 0.0056(3)$ (2008KO21).	1.4568(22)
$^{210}\text{Ra} \rightarrow ^{206}\text{Rn}$	$Q_{\alpha} = 7151(3)$. $\%\alpha = 95(5)$. $T_{1/2} = 3.9 \ s$ (1). $I_{\alpha_1} = 99.97$, $I_{\alpha_2} = 0.03$ (2008KO21).	1.4861(29)
	$T_{1/2}$: WA of 3.8 s (2) (1967VA22), 3.6 s (2) (1968LO15) and 4.0 s (1) (2008HA12).	· /
	$T_{1/2}$: 6.6 ms (+317-30) and 1.4 s (+67-6) (2015MA37) are not considered due to	
	comparatively large uncertainties.	
	$\%\alpha$: Based on theoretical $T_{1/2}(\alpha) = 3.7 \ s$ and $T_{1/2}(\beta) = 68.9 \ (s)$, which gives $\%\beta =$	
	5% (2019MO01) and allowing 100% uncertainty gives $\%\beta < 10\%$ or $\%\alpha = 95(5)$.	
$^{210}\mathrm{Th} \rightarrow ^{206}\mathrm{Ra}$	$Q_{\alpha} = 8069(6)$. $T_{1/2} = 16.0 \text{ ms } (36) (2010 \text{HE}25)$. $\%\alpha \approx 100$, $I_{\alpha} = 100 (2008 \text{KO}21)$.	1.507(11)
$^{212}\text{Po} \rightarrow ^{208}\text{Pb}$	$Q_{\alpha} = 8954.20(11)$. $T_{1/2} = 0.2956 \ \mu s \ (10)$. $\% \alpha = 100$, $I_{\alpha} = 100 \ (2007 \text{MA}45)$.	1.52177(18)
	$ T_{1/2} $: WA of 0.2939 μs (12) (2017AP03), 0.309 μs (11) (1981BO29), 0.296 μs	` /
	(2) (1975SA06), 0.304 μs (8) (1972MC29), 0.305 μs (5) (1963AS02), 0.304 μs (4)	
	$(1949BU09)$, 0.2947 μs (10) (2013BE31) and 0.299 μs (2) (2010AS03).	
212 Rn $\rightarrow ^{208}$ Po	$Q_{\alpha} = 6385.1(26)$. $\%\alpha = 100$, $T_{1/2} = 23.9$ min (12), $I\alpha_1 = 99.950(5)$, $I\alpha_2 = 0.050(5)$ (2007MA45).	1.4343(25)
$^{212}\text{Ra} \rightarrow ^{208}\text{Rn}$	$Q_{\alpha} = 7031.7(17)$. $\%\alpha = 94(6)$. $T_{1/2} = 13.0 \text{ s } (2)$, $I\alpha_1 = 99.95$, $I\alpha_2 = 0.05 (2007\text{MA45})$.	1.4718(31)
100 / 1011	$T_{1/2}$: 9.9 s (+46-24) (2014YA19) is not considered due to comparatively large uncer-	1.10(01)
	tainty.	
	$\%\alpha$: Based on theoretical $T_{1/2}(\alpha)=2.9~s$ and $T_{1/2}(\beta)>100~(s)$, which gives $\%\beta<$	
	3% (2019MO01) but using experimental $T_{1/2}(\alpha) = 13.0 \ s$ gives $\%\beta < 12\%$ or $\%\alpha = 13.0 \ s$	
	94(6).	
$^{212}\text{Th} \rightarrow ^{208}\text{Ra}$	$Q_{\alpha} = 7958(5)$. $T_{1/2} = 31.7 \ ms \ (13) (ENSDF updates Dec2015)$. $\% \alpha = 99.7(3)$, $I_{\alpha} = 99.7(3)$	1.5058(26)
	98.8(12) (2007MA45).	- (~)
	$T_{1/2}$: 22 ms (+22-7) and 28 ms (+51-11) (2015MA37) are not considered due to	
	comparatively large uncertainties.	
$^{214}\text{Po} \rightarrow ^{210}\text{Pb}$	$Q_{\alpha} = 7833.54(6)$. $T_{1/2} = 163.47 \ \mu s$ (4). $\% \alpha = 100$, $I\alpha_1 = 99.9895(6)$, $I\alpha_2 = 0.0104(6)$,	1.539616(24)
	$I\alpha_3 = 6x10^{-5}(2) (2014BA41).$	()
	$T_{1/2}$: WA of 163.46 μs (4)(2016AL28), 163.58 μs (31)(2013BE31) and 164.2 μs	
	$(6)(2012SU11)$. The values 169.5 μs (94) (2015AL27) and 163.8 μs (30) (2013BE20)	
	are imprecise, thus not considered here.	
$^{214}\text{Rn} \rightarrow ^{210}\text{Po}$	$Q_{\alpha} = 9208(9)$. $T_{1/2} = 259 \ ns$ (3) (2019PA45). $\%\alpha = 100$, $I_{\alpha} = 99.95(5)$ (2014BA41).	1.5340(25)
	$T_{1/2}$: 0.27 s (2) (1970VA13) is not considered due to comparatively large uncertainty.	()

	Continuation of Table II	
Alpha Decay	Input Parameters	r_0 (fm)
$^{214}\text{Ra} \rightarrow ^{210}\text{Rn}$	$Q_{\alpha} = 7272.6(26)$. $\%\alpha = 99.941(4)$ (2009WU02). $T_{1/2} = 2.44 \ s$ (4). $I\alpha_1 = 99.84(3)$,	
	$I\alpha_2 = 0.16(3) \text{ (2014BA41)}.$,
	$T_{1/2}$: WA of 2.36 s (6) (2015KH09) and 2.46 s (3)(1973BE33).	
$^{214}\mathrm{Th} \rightarrow ^{210}\mathrm{Ra}$	$Q_{\alpha} = 7827(5)$. $\%\alpha = 99.90(10)$, $T_{1/2} = 87$ ms (10) (2014BA41). $I\alpha = 99.5(5)$	1.4986(56)
	(1998AK04).	
	$T_{1/2}$: 68 ms (+93-25) and 67 ms (+322-31) (2015MA37) are not considered due to	
216- 212	comparatively large uncertainties.	
$^{216}\text{Po} \rightarrow ^{212}\text{Pb}$	$Q_{\alpha} = 6906.4(5)$. $\%\alpha = 100$, $T_{1/2} = 144.0 \text{ ms } (6) (2017\text{NA}22)$. $I\alpha_1 = 99.9981(3)$, $I\alpha_2 = 100.0016(3) (2017\text{NA}22)$.	1.54117(28)
	= 0.0019(3) (2005BR03).	
	$T_{1/2}$: 136 ms (6) (2018BA44), 175 ms (+13-11) (2012BE14), 144 ms (8) (2003DA24)	
$^{216}\mathrm{Rn} \rightarrow ^{212}\mathrm{Po}$	and 145 ms (2) (1963DI05) are not considered due to comparatively large uncertainties. $Q_{\alpha} = 8197(6)$. $\%\alpha = 100$, $T_{1/2} = 45 \ \mu s$ (5) (2007WU02). $I\alpha = 99.6(4)$ (2005BR03).	1.5658(59)
1t11→ 10	$Q_{\alpha} = 6197(0)$. $70\alpha = 100$, $1_{1/2} = 45 \ \mu s$ (3) (2007 W 002). $1\alpha = 99.0(4)$ (2003D1003).	1.5056(59)
$^{216}\mathrm{Ra} \rightarrow ^{212}\mathrm{Rn}$	$Q_{\alpha} = 9526(8)$. % $\alpha = 100 \ (2007WU02)$. $T_{1/2} = 172 \ ns \ (10)$. $I_{\alpha} = 99.97(3)$	1.5433(36)
	(2005BR03).	
	$T_{1/2}$: WA of 161 ns (11) (2019PA45) and 182 ns (10)(1973NO09).	
$^{216}\mathrm{Th} \rightarrow ^{212}\mathrm{Ra}$	$Q_{\alpha} = 8072(4)$. % $\alpha = 100$, $T_{1/2} = 26.0 \text{ ms}$ (2) (2007WU02). $I\alpha_1 = 99.6(1)$, $I\alpha_2 = 100$	1.4695(14)
	0.4(1) (2005KU31).	` ,
	$ T_{1/2} $: 29 ms (+13-7) (2014YA19) is not considered due to comparatively large	
	uncertainty.	
$^{216}\mathrm{U} \! ightarrow ^{212}\mathrm{Th}$	$Q_{\alpha} = 8531(26)$. $T_{1/2} = 4.7 \ ms \ (+47-16) \ (2015MA37)$. $\%\alpha = 100$, $I_{\alpha} = 100 \ (ENSDF)$	1.486(33)
	updates Dec2015).	
	$T_{1/2}$: 3.8 ms (+88-32) (2015DE22) is not considered due to comparatively large	
$^{218}\text{Po} \rightarrow ^{214}\text{Pb}$	uncertainty.	1 59500(10)
Po→ Pb	$Q_{\alpha} = 6114.75(9)$. $T_{1/2} = 3.098 \ min \ (12) \ (2006\text{JA03})$. $\%\alpha = 99.980(2)$,	1.53788(19)
$^{218}\text{Rn} \rightarrow ^{214}\text{Po}$	$ \Omega_1 = 99.9989(11), \Omega_2 = 0.0011 $ (ENSDF updates Feb2015). $ Q_{\alpha} = 7262.5(19). T_{1/2} = 33.75 $ ms (15) (2012SU11). $ \% \alpha = 100, \Omega_1 = 99.87(1), \Omega_2 = 100, \Omega_3 = 100, \Omega_4 = 100, \Omega_5 = 100,$	1 56062(74)
111-7 10	$Q_{\alpha} = 7202.5(19)$. $1_{1/2} = 55.79$ ms (15) (25125011). $76\alpha = 100$, $1\alpha_1 = 95.87(1)$, $1\alpha_2 = 0.127(10)$ (2009WU02).	1.50002(74)
218 Ra \rightarrow 214 Rn	$Q_{\alpha} = 8540(4)$. $\%\alpha = 99.88(6)$ (2019PA45). $T_{1/2} = 25.91 \ \mu s$ (14). $I\alpha = 99.5$ (5)	1.5655(13)
	(2009WU02).	
	$T_{1/2}$: WA of 25.99 μs (10) (2019PA45), 25.2 μs (3) (2001Ku07), 26 μs (2) (1992WI14)	
	and 25.6 μs (11) (1986TO02).	
	Q_{α} : WA of $Q_{\alpha} = 8538 \text{ keV}$ (4) based on $E_{\alpha} = 8810 \text{ keV}$ (13) (2019PA45), $Q_{\alpha} = 8546$	
313	$\text{keV }(6) \text{ based on } E_{\alpha} = 8385 \text{ keV }(10) \text{ (1970VA13) and } Q_{\alpha} = 8392 \text{ keV }(8) \text{ (1970TO07)}.$	
$^{218}\mathrm{Th} \rightarrow ^{214}\mathrm{Ra}$	$Q_{\alpha} = 9849(9)$. $\%\alpha = 100 (2006\text{JA03})$. $T_{1/2} = 122 \text{ ns (5)}$. $I_{\alpha} = 100 (2009\text{WU02})$.	1.5487(30)
	$T_{1/2}$: NRM WA of 169 ns (+73-40) (2018BR13), 160 ns (40) (2015KH09), 96 ns (7)	
	(1973NO09, 1973HI06), 122 ns (8) (1973HA32) and 125 ns (5) (1982CH29). The NRM	
	method is preferred, as in 2019SI39 evaluation, because regular weighted average gives	
$^{218}U \rightarrow ^{214}Th$	reduced χ^2 of 3.7 as compared to critical $\chi^2 = 2.4$. $Q_{\alpha} = 8775(9)$. $T_{1/2} = 0.51 \text{ ms (+17-10) (2006JA03)}$. $\%\alpha = 100$, $I_{\alpha} = 100 \text{ (2009WU02)}$.	1 519/14)
$0 \rightarrow 1 \text{ n}$	$R_{\alpha} = 8775(9)$. $R_{1/2} = 0.51 \text{ ms (+17-10) (20003 A03)}$. $R_{\alpha} = 100$, $R_{\alpha} = 100$ (2009 W CO2). $R_{1/2} = 1.15 \text{ s (+158-42)(2015MA37)}$ is not considered due to comparatively large	1.312(14)
	uncertainty.	
²²⁰ Rn→ ²¹⁶ Po	$Q_{\alpha} = 6404.74(10)$. $\%\alpha = 100$, $T_{1/2} = 55.6 \text{ s}$ (1) (2011BR05). $I\alpha_1 = 99.886(17)$, $I\alpha_2 = 100$	1 55548(10)
101 / 10	0.114(17) (2007WU02).	1.00040(10)
	$T_{1/2}$: The values 58 s (4) (2018BA44) and 64 s (+19-12) (2012BE14) are imprecise,	
	thus not considered here.	
220 Ra \rightarrow ²¹⁶ Rn	$Q_{\alpha} = 7592(6)$. % $\alpha = 100$, $T_{1/2} = 18$ ms (2) (2011BR05). $I\alpha_1 = 99.0(4)$, $I\alpha_2 = 1.0(4)$	1.5539(57)
	(2007WU02).	
	$I\alpha: 3^{rd}$ alpha branch is also reported in 2007WU02, not considered here because of its	
222	highly tentative nature.	
$^{220}\mathrm{Th} \rightarrow ^{216}\mathrm{Ra}$	$Q_{\alpha} = 8973(13)$. $T_{1/2} = 10.2 \ \mu s$ (4). $\% \alpha = 100$ (2011BR05). $I_{\alpha} = 99.3(7)$ (2007WU02).	1.6051(43)
	$T_{1/2}$: WA of 10.4 μs (4) (2019PA45) and 9.7 μs (6) (1973HA32).	
	Q_{α} : Based on $E_{\alpha} = 8810 \text{ keV}$ (13) obtained from WA of $E_{\alpha} = 8818 \text{ keV}$ (13)	
	$(2019PA45)$ and $E_{\alpha} = 8790 \text{ keV } (30) (1973HA32).$	

	Continuation of Table II	
Alpha Decay	Input Parameters	r_0 (fm)
Alpha Decay ²²² Rn→ ²¹⁸ Po ²²² Ra→ ²¹⁸ Rn	The Parameters $Q_{\alpha} = 5590.4(3)$. $T_{1/2} = 3.8222\ d$ (9). %α = 100, $I_{\alpha_1} = 99.92(1)$, $I_{\alpha_2} = 0.078(1)$, $I_{\alpha_3} \approx 0.0005\ (2006\text{JA}03)$. $T_{1/2}$: WA of 3.82146 d (85) (2015BE07, quoted uncertainty of 0.00017 d increased to 0.00085 d , to have a maximum relative weight of 50%); 3.8195 d (30) (2004SC04, reanalysis of 2004SC04 data by 2018PO01 gave 3.825 d (5)); 3.8224 d (18) (1995CO34); 3.82351 d (170) (1972BU33, quoted uncertainty of 0.00034 d increased to 0.00170 d as in 1990HO28 evaluation); 3.83 d (3) (1958SH69); 3.82290 d (170) (1956MA64, quoted uncertainty of 0.00027 d increased to 0.00170 d as in 1990HO28); 3.825 d (5) (1956RO31, quoted uncertainty of 0.004 d increased to 0.005 d as in 1990HO28); 3.825 d (6) (1955TO07,1951TO25, quoted uncertainty of 0.005 d increased to 0.006 d as in 1990HO28); 3.823 d (3) (1924CU01, quoted uncertainty of 0.002 d increased to 0.003 d as in 1990HO28) and 3.825 d (4) (1923BO01). $Q_{\alpha} = 6678(4)$. $T_{1/2} = 33.6\ s$ (4) (2012PO13). %α = 100, $I_{\alpha_1} = 96.9(1)$, $I_{\alpha_2} = 3.05(5)$,	1.54863(17)
	$I\alpha_3 = 0.0041(1), I\alpha_4 = 0.0041(2), I\alpha_5 = 0.0042(1)$ (2006JA03).	
$^{222}\mathrm{Th}{ ightarrow}^{218}\mathrm{Ra}$	$Q_{\alpha}=8127(5)$. $\%\alpha=100$ (2011SI24). $T_{1/2}=1.964$ ms (2), $I\alpha_{1}=98.16(5)$, $I\alpha_{2}=1.81(1)$, $I\alpha_{3}=1.8x10^{-2}(3)$, $I\alpha_{4}=1.4x10^{-2}(4)$ (2016PA28).	1.5571(17)
$^{222}\mathrm{U} \rightarrow ^{218}\mathrm{Th}$	$Q_{\alpha} = 9480(50)$. $\%\alpha = 100$, $T_{1/2} = 4.7 \ \mu s$ (7) (2015KH09). $I_{\alpha} = 100$. Q_{α} : Based on $E_{\alpha} = 9.31 \ \text{MeV}$ (5) (2015KH09).	1.529(15)
224 Ra \rightarrow ²²⁰ Rn	$Q_{\alpha} = 5788.92(15)$. $\%\alpha = 100$, $T_{1/2} = 3.6319 \ d$ (23) (2015SI19). $I\alpha_1 = 94.92(5)$, $I\alpha_2 = 5.06(5)$, $I\alpha_3 = 0.0071$, $I\alpha_4 = 0.0076(11)$, $I\alpha_5 = 0.0030(5)$ (2011BR05).	1.542177(86)
$^{224}\mathrm{Th} \rightarrow ^{220}\mathrm{Ra}$	$Q_{\alpha} = 7299(6)$. $\%\alpha = 100$, $T_{1/2} = 1.04$ s (2) (2015SI19). $I\alpha_1 = 79(2)$, $I\alpha_2 = 19(2)$, $I\alpha_3 = 1.2(4)$, $I\alpha_4 = 0.3(1)$ (2011BR05).	1.5385(27)
$^{224}\mathrm{U}$ \rightarrow $^{220}\mathrm{Th}$	$Q_{\alpha} = 8628(7)$. $\%\alpha = 100$ (2015SI19). $T_{1/2} = 396 \ \mu s$ (17), $I\alpha_1 = 96.6(8)$, $I\alpha_2 = 3.4(8)$ (ENSDF updates Nov2014).	1.5514(30)
226 Ra \rightarrow 222 Rn	$Q_{\alpha} = 4870.70(25)$. $\%\alpha = 100$, $T_{1/2} = 1600 \ y$ (7) (2011SI24). $I\alpha_1 = 94.07$ (1), $I\alpha_2 = 5.93$ (1), $I\alpha_3 = 0.0059(15)$ (2017MA22). $I\alpha_4 = 0.0010(1)$, $I\alpha_5 = 0.00027(5)$ (2011SI24).	1.53945(26)
²²⁶ Th→ ²²² Ra	$\begin{array}{c} Q_{\alpha}=6452.5(10). \ \%\alpha=100 \ (2011SI24). \ T_{1/2}=30.83 \ min \ (1). \ I\alpha_{1}=75.39(10), \\ I\alpha_{2}=22.93(9), \ I\alpha_{3}=1.266(7), \ I\alpha_{4}=0.181(4), \ I\alpha_{5}=0.230 \ (5) \ (2012MA30). \ I\alpha_{6}=0.00023(2), \ I\alpha_{7}=0.00034(4), \ I\alpha_{8}=0.00017(4) \ (2011SI24). \\ T_{1/2}: \ WA \ of \ 30.70 \ min \ (3) \ (2012PO13) \ , \ 30.57 \ min \ (10) \ (1987MI10) \ and \ 30.83 \ min \ (1) \ (1995KO54). \end{array}$	1.53749(45)
²²²⁶ U→ ²²² Th	$\begin{array}{l} Q_{\alpha}=7701(4). \ T_{1/2}=267 \ ms \ (9). \ \%\alpha=100, \ I\alpha_{1}=85(5), \ I\alpha_{2}=15(5) \ (2011SI24). \\ T_{1/2}: \ WA \ of \ 258 \ ms \ (13) \ (2002CAZZ), \ 260 \ ms \ (20) \ (2001KU07), \ 281 \ ms \ (9) \\ (2000HE17), \ 260 \ ms \ (10) \ (1999GR28, \ 1998GR19) \ and \ 200 \ ms \ (50) \ (1990AN22). \\ I\alpha_{1}: \ 2001Ku07 \ give \ I\alpha_{1}=85(11), \ which \ has \ been \ adjusted \ here \ as \ 85(5) \ from \ I\alpha_{1}=100\text{-}I\alpha_{2}. \end{array}$	1.5394(34)
$^{228}\mathrm{Th}{ ightarrow}^{224}\mathrm{Ra}$	$\begin{array}{l} Q_{\alpha} = 5520.15(22). \ \%\alpha = 100, \ T_{1/2} = 1.9125 \ y \ (9), \ I\alpha_{1} = 73.4(5), \ I\alpha_{2} = 26.0(10), \ I\alpha_{3} \\ = 0.408(14), \ I\alpha_{4} = 0.218(8), \ I\alpha_{5} = 0.036(6), \ I\alpha_{6} = 1.0x10^{-5}(3), \ I\alpha_{7} = 2.4x10^{-5}(5), \\ I\alpha_{8} = 1.7x10^{-5}(3), \ I\alpha_{9} \approx 4.6x10^{-6} \ (2015SI19). \end{array}$	1.53389(32)
$^{228}\mathrm{U} \! ightarrow^{224}\mathrm{Th}$	$Q_{\alpha} = 6804(10)$. $\%\alpha = 97.5(25)$, $T_{1/2} = 9.1$ min (2), $I\alpha_1 = 70(4)$, $I\alpha_2 = 29(4)$, $I\alpha_3 = 0.66(11)$, $I\alpha_4 = 0.56(20)$ (2015SI19). $I\alpha : I\alpha_3$ and $I\alpha_4$ branches are questionable.	1.5237(51)
228 Pu \rightarrow 224 U	$Q_{\alpha} = 7940(18)$. % $\alpha = 100$, $T_{1/2} = 1.1 \ s$ (+20-5) (2015SI19). $I_{\alpha} = 100$ (1998AK04).	1.480(42)
²³⁰ Th→ ²²⁶ Ra	$Q_{\alpha} = 4769.9(15)$. $\%\alpha = 100$, $T_{1/2} = 7.54 \times 10^4 \ y$ (3) (2012BR12). $I\alpha_1 = 76.3(3)$, $I\alpha_2 = 23.4(1)$, $I\alpha_3 = 0.151(12)$, $I\alpha_4 = 0.030(15)$, $I\alpha_5 = 9.7 \times 10^{-4}(13)$, $I\alpha_6 = 8.0 \times 10^{-6}$ (20), $I\alpha_7 = 1.03 \times 10^{-5}(22)$, $I\alpha_8 \approx 3.4 \times 10^{-6}$, $I\alpha_9 = 1.4 \times 10^{-6}$ (1998AK04).	1.5332 (11)
²³⁰ U→ ²²⁶ Th	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$^{230}{\rm Pu} \rightarrow ^{226}{\rm U}$	$Q_{\alpha}=7181(7).\ \%\alpha=100,\ T_{1/2}=102\ s$ (10) (2012BR12). $I\alpha_{1}=81(4),\ I\alpha_{2}=19(4).$ (ENSDF updates March-2014).	
$^{232}\mathrm{Th} \rightarrow ^{228}\mathrm{Ra}$	$\begin{array}{l} Q_{\alpha} = 4081.6(14). \ \%\alpha = 100, \ T_{1/2} = 1.40 \times 10^{10} \ y \ (1), \ I\alpha_1 = 78.2(13), \ I\alpha_2 = 21.7(13), \\ I\alpha_3 = 0.069(13) \ (2014 \text{AB04}). \end{array}$	1.5370(14)
$^{232}\mathrm{U} \! ightarrow^{228}\mathrm{Th}$	$\begin{array}{l} Q_{\alpha} = 5413.63(9). \ \%\alpha = 100, \ T_{1/2} = 68.9 \ y \ (4), \ I\alpha_1 = 68.15(23), \ I\alpha_2 = 31.55(23), \ I\alpha_3 \\ = 0.30(2), \ I\alpha_4 = 0.00616(8), \ I\alpha_5 = 5.1 \times 10^{-5}(5), \ I\alpha_6 = 4.8 \times 10^{-5}(4), \ I\alpha_7 = 5.6 \times 10^{-5}(3), \ I\alpha_8 = 2.1 \times 10^{-5}(2), \ I\alpha_9 = 3.9 \times 10^{-6}(9) \ (2014 \text{AB04}). \end{array}$	1.52885(29)
232 Pu \rightarrow ²²⁸ U	$Q_{\alpha} = 6716(10)$. $\%\alpha = 11(9)$ (1952OR03, 1973JA06). $T_{1/2} = 33.8 \ min$ (7) (2006BR19). $I\alpha_1 = 67(5)$, $I\alpha_2 = 33(5)$ (2014AB04).	1.487(50)

	Continuation of Table II	/c \
Alpha Decay $^{234}U\rightarrow^{230}Th$	Input Parameters	r ₀ (fm)
$^{234}\text{U}\rightarrow^{230}\text{Th}$	$Q_{\alpha} = 4857.5(7)$. $\%\alpha = 100$, $T_{1/2} = 2.455 \times 10^5$ y (6), $I\alpha_1 = 71.38(16)$, $I\alpha_2 = 28.42(9)$,	1.52224(49)
234-5 230	$I\alpha_3 = 0.20(1), I\alpha_4 = 4x10^{-5}(1), I\alpha_5 = 2.6x10^{-5}(9), I\alpha_6 \approx 0.7x10^{-5} (2012BR12).$	
234 Pu \rightarrow ²³⁰ U	$Q_{\alpha} = 6310(5)$. $\%\alpha = 6(3)$, $T_{1/2} = 8.8 \ h \ (1)$, $I\alpha_1 = 68$, $I\alpha_2 = 32$, $I\alpha_3 = 0.4 \ (2012BR12)$.	1.518(27)
	$I\alpha_{1,2}$: Authors assigned 50% uncertainty to $I\alpha_2$ i.e. 32(16), which gives $I\alpha_1 = 68(16)$	
$^{236}\text{U} \rightarrow ^{232}\text{Th}$	and used these values for the calculations of radius parameter.	1 50505(00)
200 U→202 Th	$Q_{\alpha} = 4572.9(9)$. $\%\alpha = 100$, $T_{1/2} = 2.342 \times 10^7$ y (4) (2006BR19). $I\alpha_1 = 74.20(5)$, $I\alpha_2 = 25.69(5)$. $I\alpha_3 = 0.122(5)$, $I\alpha_4 = 0.122(5)$, $I\alpha_4 = 0.122(5)$, $I\alpha_5 = 0.12$	1.52595(66)
$^{236}\text{Pu} \rightarrow ^{232}\text{U}$	$= 25.68(5), I_{\alpha_3} = 0.123(5) (2014MA14)$	1 51000(00)
ru→ U	$Q_{\alpha} = 5867.15(8)$. $\%\alpha = 100$, $T_{1/2} = 2.858 \ y(8)$, $I_{\alpha_1} = 69.1(3)$, $I_{\alpha_2} = 30.8(3)$, $I_{\alpha_3} = 10.23 \ J_{\alpha_3} = 10.23 $	1.31022(22)
	= 0.23, $I\alpha_4 = 1.85 \times 10^{-3}$, $I\alpha_5 = 1.3 \times 10^{-5}$ (2), $I\alpha_6 = 2.6 \times 10^{-4}$ (1), $I\alpha_7 = 5.8 \times 10^{-4}$ (10), $I\alpha_8 = 1.3 \times 10^{-5}$ (1), $I\alpha_9 = 2.46 \times 10^{-6}$, $I\alpha_{10} = 6 \times 10^{-7}$, $I\alpha_{11} = 1.21 \times 10^{-5}$ (6), $I\alpha_{12} = 1.3 \times 10^{-5}$ (1)	
	$1\alpha_8 = 1.3310^{-1}$ (1), $1\alpha_9 = 2.40310^{-1}$, $1\alpha_{10} = 0310^{-1}$, $1\alpha_{11} = 1.21310^{-1}$ (0), $1\alpha_{12} = 1.33310^{-5}$, $1\alpha_{13} = 1.53310^{-5}$ (2006BR19).	
$^{238}\mathrm{U} \rightarrow ^{234}\mathrm{Th}$	$Q_{\alpha} = 4269.9(21)$. $\%\alpha = 100$, $T_{1/2} = 4.468 \times 10^9$ y (6) (2004SC03). $I\alpha_1 = 77.01(10)$,	1.5350(17)
U→ 111	$I_{\alpha_2} = 4209.9(21)$. $I_{\alpha_3} = 100$, $I_{1/2} = 4.408 \times 10^{-9}$ (b) (20045C05). $I_{\alpha_1} = 77.01(10)$, $I_{\alpha_2} = 22.92(10)$, $I_{\alpha_3} = 0.068(10)$ (2014PO02).	1.0500(17)
	$T_{1/2}$: 4.456x10 ⁹ y (21) (2018PA45) is a preliminary result, thus not considered here.	
$^{238}\text{Pu} \rightarrow ^{234}\text{U}$	$Q_{\alpha} = 5593.27(19)$. $\%\alpha = 100$, $T_{1/2} = 87.7$ y (1) (2015BR06). $I_{\alpha_1} = 70.91(10)$, $I_{\alpha_2} = 100$	1.50745(13)
1 u-7 0	$28.98(10)$, $I\alpha_3 = 0.105(5)$, $I\alpha_4 = 0.0030(1)$, $I\alpha_5 = 6.8x10^{-6}(4)$, $I\alpha_6 = 2.2x10^{-5}$, $I\alpha_7 = 0.0030(1)$	1.50745(15)
	$[5x10^{-5}, I\alpha_8 = 0.9x10^{-7}(4), I\alpha_9 = 5.93x10^{-6}(23), I\alpha_{10} = 1.2x10^{-5}, I\alpha_{11} = 2.5x10^{-7}(8), I\alpha_{10} = 1.2x10^{-5}, I\alpha_{11} = 2.5x10^{-7}(8), I\alpha_{11} = 2.5x10^{-7}(8), I\alpha_{12} = 2.5x10^{-7}(8), I\alpha_{13} = 2.5x10^{-7}(8), I\alpha_{14} = 2.5x10^{-7}(8), I\alpha_{15} = 0.0000000000000000000000000000000000$	
	$ I_{\alpha_{12}} \le 1.3 \times 10^{-7}, I_{\alpha_{13}} = 1.2 \times 10^{-6} (2), I_{\alpha_{14}} \approx 1.1 \times 10^{-6} (2007 \text{BR}04).$	
²³⁸ Cm→ ²³⁴ Pu	$Q_{\alpha} = 6670(10)$. $\%\alpha = 3.84$ (18), $T_{1/2} = 2.2$ h (4) (2015BR06). $I\alpha_1 = 69.5(8)$, $I\alpha_2 = 1.2$	1.4805(90)
Om / Tu	30.5(8) (2007BR04).	1.4000(00)
²⁴⁰ Pu→ ²³⁶ U	$Q_{\alpha} = 5255.82(14)$. $\%\alpha = 100$, $T_{1/2} = 6561$ y (7)(2008SI25). $I\alpha_1 = 72.70(7)$, $I\alpha_2 = 100$	1.51631(11)
14 / 0	$27.21(7)$, $I\alpha_3 = 0.085(4)$, $I\alpha_4 = 0.00097(9)$, $I\alpha_5 = 1.72 \times 10^{-6}(7)$, $I\alpha_6 = 0.000032(5)$	1.01001(11)
	$ \begin{array}{c} 27.21(7), \ 1\alpha_3 = 0.0003(4), \ 1\alpha_4 = 0.00037(5), \ 1\alpha_5 = 1.12x10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	$<5x10^{-8}$ (2006BR20).	
$^{240}\mathrm{Cm} \rightarrow ^{236}\mathrm{Pu}$	$Q_{\alpha} = 6397.8(6)$. $\%\alpha > 99.5$, $T_{1/2} = 27 \ d$ (1) (2008SI25). $I\alpha_1 = 71.1(8)$, $I\alpha_2 = 28.9(8)$,	1.4947(17)
	$I\alpha_3 = 0.052, I\alpha_4 = 0.014 (2006BR20).$	111011(11)
	$\%\alpha$: Given as > 99.5 in 2008SI25 but authors used 99.75(25) to conserve total alpha	
	branching.	
$^{240}\mathrm{Cf} \rightarrow ^{236}\mathrm{Cm}$	$Q_{\alpha} = 7711(4)$. $\%\alpha = 98.5(23)$ (2010KH06). $T_{1/2} = 0.96$ min (15) (2008SI25).	1.5027(72)
	$I\alpha_1 = 68(3), I\alpha_2 = 32(3) (2006BR20).$	
$^{242}\text{Pu} \rightarrow ^{238}\text{U}$	$Q_{\alpha} = 4984.2(10)$. $T_{1/2} = 3.75 \times 10^5 \ y$ (2) (1989HO24). $\% \alpha = 100$, $I\alpha_1 = 76.5(6)$, $I\alpha_2$	1.51448(75)
	= $23.4(6)$, $I\alpha_3 = 0.0304(14)$, $I\alpha_4 = 6.20x10^{-4}(3)$ (2015BR06).	
$^{242}\text{Cm} \rightarrow ^{238}\text{Pu}$	$Q_{\alpha} = 6215.63(8)$. $T_{1/2} = 162.84 \ d$ (7). $\%\alpha = 100$, $I\alpha_1 = 74.08(7)$, $I\alpha_2 = 25.92(6)$, $I\alpha_3 = 100$	1.501258(57)
	$= 0.035(2), I\alpha_4 = 0.0046(5), I\alpha_5 = 2x10^{-5}, I\alpha_6 = 2.5x10^{-4}(5), I\alpha_7 = 1.26x10^{-5}(24),$	
	$I\alpha_8 = 2.2 \times 10^{-7}(3), I\alpha_9 = 3.6 \times 10^{-5}(7), I\alpha_{10} = 1.13 \times 10^{-6}(21), I\alpha_{11} = 1.7 \times 10^{-6}(4),$	
	$ I\alpha_{12} \le 2x10^{-7}, I\alpha_{13} = 3.7x10^{-6}(8), I\alpha_{14} = 3.1x10^{-7}(8), I\alpha_{15} = 5.5x10^{-7}(15), I\alpha_{16} = I\alpha_{12} \le 2x10^{-7}, I\alpha_{13} = 3.7x10^{-6}(8), I\alpha_{14} = 3.1x10^{-7}(8), I\alpha_{15} = 5.5x10^{-7}(15), I\alpha_{16} = I\alpha_{12} \le 2x10^{-7}, I\alpha_{13} = 3.7x10^{-6}(8), I\alpha_{16} = I\alpha_{16} \le 2x10^{-7}, I\alpha_{16$	
	$5.2 \times 10^{-7} (15) (2015 BR06).$	
	$T_{1/2}$: WA of 162.5 d (20) (1950HA14), 162.46 d (27) (1954GL37), 163.0 d (18)	
	(1954HU32), 163.2 d (2) (1975KE02), 163.1 d (4) (1965FL02), 162.76 d (4) (1977DI04),	
	163.02 d (11) (1979CH41), 161.35 d (10) (1981US03), 163.00 d (11) (1982AG02) and	
	163.0 d (2) (1984WI14) is obtained by omitting 161.35(10) (1981US03) as an outlier	
²⁴² Cf→ ²³⁸ Cm	and inflating the uncertainty in 1977DI04 to 0.06 to bring its weight down to 50%.	1 4000(70)
Z12C1→200Cm	$Q_{\alpha} = 7517(4)$. $\%\alpha = 61(3)$ (2011VE03). $T_{1/2} = 3.7 \text{ min } (5)$ (2002AK06). $I\alpha_1 \approx 80$,	1.4986(78)
	$ \alpha_2 \approx 20 \text{ (2015BR06)}.$	
$^{244}\text{Pu} \rightarrow ^{240}\text{U}$	$I\alpha_{1,2}$: Authors assigned 50% uncertainty to $I\alpha_2$ i.e. 17(9), which gives $I\alpha_1 = 83(9)$ and	
	used these values for the calculations of radius parameter.	1 505/0(82)
Janu → Tanu	used these values for the calculations of radius parameter. $Q_{\alpha} = 4665.6(10)$. $\%\alpha = 99.877(6)$, $T_{1/2} = 8.13 \text{x} 10^7 \ y \ (3) \ (2017 \text{NE} 10)$. $I\alpha_1 = 80.6(8)$,	1.50549(82)
	used these values for the calculations of radius parameter. $Q_{\alpha} = 4665.6(10)$. $\%\alpha = 99.877(6)$, $T_{1/2} = 8.13 \times 10^7 \ y$ (3) (2017NE10). $I\alpha_1 = 80.6(8)$, $I\alpha_2 = 19.4(8)$ (2008SI25).	
$ \begin{array}{c} \text{Pu} \rightarrow \text{V} \\ \hline \text{244} \text{Cm} \rightarrow \text{240} \text{Pu} \end{array} $	used these values for the calculations of radius parameter. $\begin{aligned} &Q_{\alpha} = 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \text{x} 10^7 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 80.6(8), \\ &I\alpha_2 = 19.4(8) \ (2008 \text{SI} 25). \end{aligned}$ $Q_{\alpha} = 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 18.11 \ y \ (3) \ (2017 \text{NE} 10). \end{aligned}$	
	used these values for the calculations of radius parameter. $\begin{aligned} &Q_{\alpha} = 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \text{x} 10^7 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 80.6(8), \\ &I\alpha_2 = 19.4(8) \ (2008 \text{SI} 25). \end{aligned}$ $&Q_{\alpha} = 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 23.1(1), \ I\alpha_3 = 0.0204(15), \ I\alpha_4 = 0.00352(18), \ I\alpha_5 = 4 \text{x} 10^{-5}, \ I\alpha_6 = 5.6 \text{x} 10^{-5}(5), \ I\alpha_7 = 10.00352(18), \ I\alpha_8 = 10.00352(18), \ I\alpha$	
$^{244}\mathrm{Cm} \rightarrow ^{240}\mathrm{Pu}$	used these values for the calculations of radius parameter. $\begin{aligned} &Q_{\alpha}=4665.6(10), \ \%\alpha=99.877(6), \ T_{1/2}=8.13x10^7 \ y \ (3) \ (2017\text{NE}10). \ I\alpha_1=80.6(8), \\ &I\alpha_2=19.4(8) \ (2008\text{SI}25). \end{aligned}$ $&Q_{\alpha}=5901.60(3), \ \%\alpha=100, \ T_{1/2}=18.11 \ y \ (3) \ (2017\text{NE}10). \ I\alpha_1=76.9(1), \ I\alpha_2=23.1(1), \ I\alpha_3=0.0204(15), \ I\alpha_4=0.00352(18), \ I\alpha_5=4x10^{-5}, \ I\alpha_6=5.6x10^{-5}(5), \ I\alpha_7=4x10^{-6}(3), \ I\alpha_8=1.49x10^{-4}(16), \ I\alpha_9=5.0x10^{-5}(5) \ (2008\text{SI}25). \end{aligned}$	1.498180(88)
	used these values for the calculations of radius parameter. $\begin{aligned} Q_{\alpha} &= 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \times 10^7 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 80.6(8), \\ I\alpha_2 &= 19.4(8) \ (2008 \text{SI}25). \end{aligned}$ $Q_{\alpha} &= 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 23.1(1), \ I\alpha_3 = 0.0204(15), \ I\alpha_4 = 0.00352(18), \ I\alpha_5 = 4 \times 10^{-5}, \ I\alpha_6 = 5.6 \times 10^{-5}(5), \ I\alpha_7 = 4 \times 10^{-6}(3), \ I\alpha_8 = 1.49 \times 10^{-4}(16), \ I\alpha_9 = 5.0 \times 10^{-5}(5) \ (2008 \text{SI}25). \end{aligned}$ $Q_{\alpha} &= 7329.0(18). \ \%\alpha = 75(6), \ T_{1/2} = 19.3 \ min \ (12) \ (2018 \text{KO}05). \ I\alpha_1 = 75(8), \ I\alpha_2 = 1.00 \times 10^{-5}(6), \ I\alpha_3 = 1.00 \times 10^{-5}(6), \ I\alpha_4 = 1.00 \times 10^{-5}(6), \ I\alpha_5 = 1.00 \times 10^{-5}(6$	1.498180(88)
$^{244}\mathrm{Cm} \rightarrow ^{240}\mathrm{Pu}$	used these values for the calculations of radius parameter. $\begin{aligned} Q_{\alpha} &= 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \text{x} 10^7 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 80.6(8), \\ I\alpha_2 &= 19.4(8) \ (2008 \text{SI} 25). \end{aligned}$ $Q_{\alpha} &= 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 23.1(1), \ I\alpha_3 = 0.0204(15), \ I\alpha_4 = 0.00352(18), \ I\alpha_5 = 4 \text{x} 10^{-5}, \ I\alpha_6 = 5.6 \text{x} 10^{-5}(5), \ I\alpha_7 = 4 \text{x} 10^{-6}(3), \ I\alpha_8 = 1.49 \text{x} 10^{-4}(16), \ I\alpha_9 = 5.0 \text{x} 10^{-5}(5) \ (2008 \text{SI} 25). \end{aligned}$ $Q_{\alpha} &= 7329.0(18). \ \%\alpha = 75(6), \ T_{1/2} = 19.3 \ min \ (12) \ (2018 \text{KO05}). \ I\alpha_1 = 75(8), \ I\alpha_2 = 25(8) \ (2008 \text{SI} 25). \end{aligned}$	1.498180(88)
$^{244}\mathrm{Cm} \rightarrow ^{240}\mathrm{Pu}$	used these values for the calculations of radius parameter. $\begin{aligned} Q_{\alpha} &= 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \text{x} 10^7 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 80.6(8), \\ I\alpha_2 &= 19.4(8) \ (2008 \text{SI} 25). \end{aligned}$ $Q_{\alpha} &= 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE} 10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 23.1(1), \ I\alpha_3 = 0.0204(15), \ I\alpha_4 = 0.00352(18), \ I\alpha_5 = 4 \text{x} 10^{-5}, \ I\alpha_6 = 5.6 \text{x} 10^{-5}(5), \ I\alpha_7 = 4 \text{x} 10^{-6}(3), \ I\alpha_8 = 1.49 \text{x} 10^{-4}(16), \ I\alpha_9 = 5.0 \text{x} 10^{-5}(5) \ (2008 \text{SI} 25). \end{aligned}$ $Q_{\alpha} &= 7329.0(18). \ \%\alpha = 75(6), \ T_{1/2} = 19.3 \ min \ (12) \ (2018 \text{KO} 05). \ I\alpha_1 = 75(8), \ I\alpha_2 = 25(8) \ (2008 \text{SI} 25). \end{aligned}$ $\%\alpha : 75(+12-6) \text{ is used in the calculation of radius parameter as reported alpha branch-}$	1.498180(88)
$^{244}\mathrm{Cm} \rightarrow ^{240}\mathrm{Pu}$ $^{244}\mathrm{Cf} \rightarrow ^{240}\mathrm{Cm}$	used these values for the calculations of radius parameter. $Q_{\alpha} = 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \times 10^7 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 80.6(8), \\ I\alpha_2 = 19.4(8) \ (2008 \text{SI}25). \\ Q_{\alpha} = 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 23.1(1), \ I\alpha_3 = 0.0204(15), \ I\alpha_4 = 0.00352(18), \ I\alpha_5 = 4 \times 10^{-5}, \ I\alpha_6 = 5.6 \times 10^{-5}(5), \ I\alpha_7 = 4 \times 10^{-6}(3), \ I\alpha_8 = 1.49 \times 10^{-4}(16), \ I\alpha_9 = 5.0 \times 10^{-5}(5) \ (2008 \text{SI}25). \\ Q_{\alpha} = 7329.0(18). \ \%\alpha = 75(6), \ T_{1/2} = 19.3 \ min \ (12) \ (2018 \text{KO}05). \ I\alpha_1 = 75(8), \ I\alpha_2 = 25(8) \ (2008 \text{SI}25). \\ \%\alpha : 75(+12-6) \ \text{is used in the calculation of radius parameter as reported alpha branching is somewhat higher than 75\%(6) \ (2018 \text{KO}05).}$	1.498180(88) 1.498(60)
$^{244}\mathrm{Cm} \rightarrow ^{240}\mathrm{Pu}$	used these values for the calculations of radius parameter. $Q_{\alpha} = 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \times 10^7 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 80.6(8), \ I\alpha_2 = 19.4(8) \ (2008 \text{SI}25).$ $Q_{\alpha} = 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 23.1(1), \ I\alpha_3 = 0.0204(15), \ I\alpha_4 = 0.00352(18), \ I\alpha_5 = 4 \times 10^{-5}, \ I\alpha_6 = 5.6 \times 10^{-5}(5), \ I\alpha_7 = 4 \times 10^{-6}(3), \ I\alpha_8 = 1.49 \times 10^{-4}(16), \ I\alpha_9 = 5.0 \times 10^{-5}(5) \ (2008 \text{SI}25).$ $Q_{\alpha} = 7329.0(18). \ \%\alpha = 75(6), \ T_{1/2} = 19.3 \ min \ (12) \ (2018 \text{KO}05). \ I\alpha_1 = 75(8), \ I\alpha_2 = 25(8) \ (2008 \text{SI}25).$ $\%\alpha : 75(+12-6) \text{ is used in the calculation of radius parameter as reported alpha branching is somewhat higher than 75\%(6) \ (2018 \text{KO}05). Q_{\alpha} = 5475.1(9). \ \%\alpha = 99.97385(7), \ T_{1/2} = 4706 \ y \ (40) \ (2011 \text{BR}11). \ I\alpha_1 = 79.08(22),$	1.498180(88) 1.498(60)
$^{244}\mathrm{Cm} \rightarrow ^{240}\mathrm{Pu}$ $^{244}\mathrm{Cf} \rightarrow ^{240}\mathrm{Cm}$	used these values for the calculations of radius parameter. $Q_{\alpha} = 4665.6(10). \ \%\alpha = 99.877(6), \ T_{1/2} = 8.13 \times 10^7 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 80.6(8), \\ I\alpha_2 = 19.4(8) \ (2008 \text{SI}25). \\ Q_{\alpha} = 5901.60(3). \ \%\alpha = 100, \ T_{1/2} = 18.11 \ y \ (3) \ (2017 \text{NE}10). \ I\alpha_1 = 76.9(1), \ I\alpha_2 = 23.1(1), \ I\alpha_3 = 0.0204(15), \ I\alpha_4 = 0.00352(18), \ I\alpha_5 = 4 \times 10^{-5}, \ I\alpha_6 = 5.6 \times 10^{-5}(5), \ I\alpha_7 = 4 \times 10^{-6}(3), \ I\alpha_8 = 1.49 \times 10^{-4}(16), \ I\alpha_9 = 5.0 \times 10^{-5}(5) \ (2008 \text{SI}25). \\ Q_{\alpha} = 7329.0(18). \ \%\alpha = 75(6), \ T_{1/2} = 19.3 \ min \ (12) \ (2018 \text{KO}05). \ I\alpha_1 = 75(8), \ I\alpha_2 = 25(8) \ (2008 \text{SI}25). \\ \%\alpha : 75(+12-6) \ \text{is used in the calculation of radius parameter as reported alpha branching is somewhat higher than 75\%(6) \ (2018 \text{KO}05).}$	1.498180(88) 1.498(60) 1.49412(62)

	Continuation of Table II	
Alpha Decay	Input Parameters	r_0 (fm)
$^{246}\text{Fm} \rightarrow ^{242}\text{Cf}$	$Q_{\alpha} = 8377(8)$. $\%\alpha = 93.2(6)$, $T_{1/2} = 1.54 \ s$ (4) (2011BR11). $I\alpha_1 = 80(20)$, $I\alpha_2 = 1.54 \ s$	1.506(12)
	20(20) (2002AK06).	,
	r_0 : Calculated radius parameter is based on systematically deduced I α values.	
$^{248}\text{Cm}\rightarrow^{244}\text{Pu}$	$Q_{\alpha} = 5161.81(25)$. $\%\alpha = 91.61(16)$, $T_{1/2} = 3.48 \times 10^5$ y (6), $I\alpha_1 = 81.89(41)$, $I\alpha_2 = 81.89(41)$	1.49627(74)
	$ 18.03(19), I\alpha_3 = 0.076(12), I\alpha_4 \le 0.01 \text{ (2017NE10)}.$	
$^{248}\text{Cf} \rightarrow ^{244}\text{Cm}$	$Q_{\alpha} = 6361(5). \ \%\alpha = 99.9971 \ (3), \ T_{1/2} = 333.5 \ d \ (28), \ I\alpha_1 = 80.0(10), \ I\alpha_2 = 19.6(10),$	1.4851(24)
	$I\alpha_3 = 0.4(2) \text{ (2017NE10)}.$,
248 Fm \rightarrow 244 Cf	$Q_{\alpha} = 7995(8)$. $\%\alpha = 95(5)$. $T_{1/2} = 34.5 s$ (12), $I_{\alpha_1} = 80(10)$, $I_{\alpha_2} = 20(10)$ (2017NE10).	1.4945(65)
	$I\alpha_{1,2}$: Uncertainties assumed as 10 units.	, ,
$^{250}\mathrm{Cf} \rightarrow ^{246}\mathrm{Cm}$	$Q_{\alpha} = 6128.51(19)$. $\%\alpha = 100$, $T_{1/2} = 13.08(9)$ y, $I\alpha_1 = 82.60(11)$, $I\alpha_2 = 17.11(11)$,	1.48260(30)
	$ I\alpha_3 = 0.283(15), I\alpha_4 = 0.007(2)$ (2011BR11).	, ,
250 Fm \rightarrow 246 Cf	$Q_{\alpha} = 7557(8)$. $\%\alpha > 90$, $T_{1/2} = 30 \ min \ (2)$, $I\alpha_1 = 83(3)$, $I\alpha_2 = 17(3) \ (2011BR11)$.	1.4789 (48)
	$\%\alpha$: Authors used $\%\alpha = 95(5)$ in the calculations of radius parameter.	
$^{252}\text{Cf} \rightarrow ^{248}\text{Cm}$	$Q_{\alpha} = 6216.95(4)$. $\%\alpha = 96.908(8)$, $T_{1/2} = 2.645 \ y \ (8)$, $I\alpha_1 = 84.1(4)$, $I\alpha_2 = 15.0(9)$,	1.50113(23)
	$I\alpha_3 = 0.25(12), I\alpha_4 = 0.0020, I\alpha_5 \approx 6x10^{-5} (2014MA86).$	
252 Fm \rightarrow ²⁴⁸ Cf	$Q_{\alpha} = 7152.7(20)$. $\%\alpha = 99.9977(2)$ (2005NI22). $T_{1/2} = 25.39 \ h$ (4), $I_{\alpha_1} = 84.0(5)$, $I_{\alpha_2} = 25.39 \ h$ (5), $I_{\alpha_2} = 25.39 \ h$	1.46703(81)
	$= 15.0(2), I\alpha_3 = 0.97(4), I\alpha_4 = 0.023(5) (2014MA86).$	` ′
$^{252}\text{No}{\rightarrow}^{248}\text{Fm}$		1.4787(75)
	$T_{1/2}$: WA of 2.44 s (4) (2001OG08), 2.46 s (5) (2006LE29), 2.42 s (6) (2007SU19),	
	$2.47 \ s \ (2) \ (2011\text{GA}19) \ \text{and} \ 2.43 \ s \ (13) \ (2012\text{SU}22).$	
	$I\alpha_{1,2}$: Authors assigned 50% uncertainty to $I\alpha_2$ i.e. 25(13), which gives $I\alpha_1 = 75(13)$	
	and used these values for the calculations of radius parameter.	
$^{254}\text{Cf} \rightarrow ^{250}\text{Cm}$	$Q_{\alpha} = 5927(5)$. $\%\alpha = 0.31(16)$ (1968BE21). $T_{1/2} = 60.5$ d (2) (1963PH01).	1.517(24)
	$I\alpha_1 = 83(1), I\alpha_2 = 17(2) (2001AK11).$	
254 Fm \rightarrow ²⁵⁰ Cf	$Q_{\alpha} = 7307.5(19)$. $T_{1/2} = 3.240 \ h$ (2) (1967FI03). $\%\alpha = 99.9408$ (3) (2019SI11). $I\alpha_1$	1.48871(75)
	$= 85.0(5), I\alpha_2 = 14.2(3), I\alpha_3 = 0.82(6), I\alpha_4 = 0.0066(8) (2001AK11).$	
$^{254}\text{No}{\rightarrow}^{250}\text{Fm}$	$Q_{\alpha} = 8226(8)$. $\%\alpha = 90$ (4) (1988TU07). $T_{1/2} = 51.2 \ s$ (4) (2006HE19). $I\alpha_1 = 86(2)$	1.4672(33)
	$I\alpha_2 = 14 \ (2) \ (1998AK04).$	
256 Fm \rightarrow 252 Cf	$Q_{\alpha} = 7027(5)$. $\%\alpha = 8.1(3)$, $T_{1/2} = 157.1$ min (13) (2017SI08). $I\alpha_1 = 85(5)$, $I\alpha_2 = 85(5)$	1.4989(35)
	15(3) (2005NI22).	
	r_0 : Calculated radius parameter is based on systematically deduced $I\alpha$ values.	
256 No \rightarrow ²⁵² Fm	$Q_{\alpha} = 8582(5)$. $\%\alpha = 99.47(6)$, $T_{1/2} = 2.91 \ s$ (5) (2017SI08). $I\alpha_1 = 87(2)$, $I\alpha_2 = 13(2)$	1.4762(19)
	(2005NI22).	
256 Rf \rightarrow ²⁵² No	$Q_{\alpha} = 8926(15)$. $\%\alpha = 0.32(17), T_{1/2} = 6.67 \text{ ms } (10)(2017\text{SI}08)$. $I\alpha \approx 100 \text{ (1997HE29)}$.	1.466(26)
	$I\alpha$: Only one alpha branch has been reported by 1997HE29. Based on systematics,	
	2005 NI22 suggested $84(4)\%$ branch to g.s. and $16(4)\%$ to the first 2^+ state, which gives	
250 . 254	$r_0 = 1.459(25).$	
258 Rf \rightarrow ²⁵⁴ No	$Q_{\alpha} = 9190(30)$. $\%\alpha = 4.9(16)$, $T_{1/2} = 12.0 \text{ ms } (12) (2017\text{SI}20)$. $I_{\alpha} = 85(15) (2019\text{SI}11)$.	1.470(18)
	$I\alpha: 15(15)\%$ is tentatively assigned to the alpha branch to the first 2^+ state in 254 No,	
	based on observation of one event in 2008GA08.	
260 0 256 7 4	r ₀ : 1.476(17) if 100% branch to the g.s. and none to the excited states.	
260 Sg \rightarrow ²⁵⁶ Rf	$Q_{\alpha} = 9901(10)$. $\%\alpha = 29(3)$, $T_{1/2} = 4.95$ ms (33), $I\alpha_1 = 83(10)$, $I\alpha_2 = 17(10)$	1.4562(75)
26411 260 a	(2017S108).	1 105(01)
$^{264}\text{Hs} \rightarrow ^{260}\text{Sg}$	$Q_{\alpha} = 10591(20)$. $\%\alpha = 83(17)$, $T_{1/2} = 0.61~ms$ (+47-19) (2011SA41). $I\alpha = 100$.	1.485(24)
	$\%\alpha$: 83(17) is based on 5 alpha decay events observed in 2011Sa41 and 1 event for	
26611 . 262 g	fission.	1 401/10)
$^{266}\text{Hs} \rightarrow ^{262}\text{Sg}$	$Q_{\alpha} = 10346(16)$. $\%\alpha = 76(9)$, $T_{1/2} = 2.97$ ms (+78-51) (2012AC04). $I_{\alpha} = 100$.	1.481(12)
$^{268}\text{Hs} \rightarrow ^{264}\text{Sg}$	$Q_{\alpha} = 9623(16)$. $\%\alpha = 100$. $T_{1/2} = 0.38 \ s \ (+180\text{-}17) \ (2010\text{NI}14)$. $I_{\alpha} = 100$.	1.458(48)
$^{270}\mathrm{Ds} \rightarrow ^{266}\mathrm{Hs}$	$Q_{\alpha} = 11117(28)$. $\%\alpha = 100$ (2019SI12). $T_{1/2} = 0.20$ ms (+7-4) (2012AC04). $I_{\alpha} = 100$	1.472(12)
27011 266	100.	1 471/07
²⁷⁰ Hs→ ²⁶⁶ Sg	$Q_{\alpha} = 9070(40), \%\alpha = 75(25), T_{1/2} = 7.6 s (+49-22) (2013OG03). I_{\alpha} = 100.$	1.471(27)
286 Fl \rightarrow ²⁸² Cn	$Q_{\alpha} = 10370(30)$. $\%\alpha = 60(11)$ (2017OG01). $T_{1/2} = 166$ ms (+40-27) (2016HO09). Ia	1.441(15)
288 204	= 100.	1 150(15)
²⁸⁸ Fl→ ²⁸⁴ Cn	$Q_{\alpha} = 10072(13)$. $\%\alpha = 100$, $T_{1/2} = 0.64$ s (+14-10) (2016HO09). $I\alpha = 100$.	1.476(10)
290 Lv \rightarrow ²⁸⁶ Fl		1.486(28)
202_ 200	100.	
$^{292}\text{Lv}\rightarrow^{288}\text{Fl}$	$Q_{\alpha} = 10774(15)$. $\%\alpha = 100$, $T_{1/2} = 12.8 \text{ ms (+70-33) (2016HO09)}$. $I_{\alpha} = 100$.	1.516(18)

Continuation of Table II		
Alpha Decay	Input Parameters	r_0 (fm)
$^{294}\mathrm{Og} \rightarrow ^{290}\mathrm{Lv}$	$Q_{\alpha} = 11860(30)$. $\%\alpha = 100 (2016HO09)$. $T_{1/2} = 0.58 \ ms (+44-18) (2018BR13)$. $I_{\alpha} = 0.58 \ ms (+44-18) (2018BR13)$	1.461(24)
	100.	
	Q_{α} : Based on $E_{\alpha} = 11700 \text{ keV } (30) (2018BR13).$	

REFERENCES FOR TABLE II

1923 Bo 01	W.Bothe - Z.Physik 16, 266 (1923).
	Eichmethoden fur Emanationselektrometer.
1924Cu01	I.Curie, C.Chamie - J.Phys.Radium 5, 238 (1924).
	Sur la Constante Radioactive du Radon.
1949Bu 09	D.E.Bunyan, A.Lundby, W.Walker - Proc.Phys.Soc.(London) 62A, 253 (1949).
	Experiments with the Delayed Coincidence Method, Including a Search for Short-Lived Nuclear Isomers.
1950Ha 14	G.C.Hanna, B.G.Harvey, N.Moss - Phys.Rev. 78, 617 (1950).
	The Half-Life of Cm^{242} .
1951 To 25	J.Tobailem - Compt.Rend. 233, 1360 (1951).
	Mesure Precise de la Periode de Quelques Radioelements.
1952 Or 03	D.A.Orth - Thesis, Univ.California (1952); UCRL-1059 (Rev.) (1952).
	Isotopes of Neptunium and Plutonium.
1954Gl37	K.M.Glover, J.Milsted - Nature 173, 1238 (1954).
	$Half$ - $Life\ of\ Curium$ -242.
1954 Hu32	W.P.Hutchinson, A.G.White - Nature 173, 1238 (1954).
	Comment on $1954Gl37$.
1954Na 25	R.A.Naumann - Phys.Rev. 96, 90 (1954).
	Identification of Platinum-188.
1955 Sm 42	W.G.Smith, J.M.Hollander - Phys.Rev. 98, 1258 (1955).
	Radiochemical Study of Neutron-Deficient Chains in the Noble Metal Region.
1955 To 07	J.Tobailem - J.Phys.Radium 16, 48 (1955).
	Mesures Precises de Periodes Radioactives.
1956Ma 64	P.C.Marin - Brit.J.Appl.Phys. 7, 188 (1956).
40800 04	Measurement of the Half-Life of Radon with a Curie-Type Ionization Chamber.
1956 Ro 31	J.Robert - J.Phys.Radium 17, 605 (1956).
40,500,00	Mesure de la Periode du Radon (²²² Rn) par Calorimetrie.
1958Sh69	N.S.Shimanskaia - Pribory i Tekh.Ekspt. No.2, 95 (1958); Instr.Exptl. Techniques No.2, 283 (1958).
100134 05	Determination of the Half-Life Periods of Radioactive Isotopes with the Help of a Double Static Calorimeter.
1961Ma05	R.D.Macfarlane, T.P.Kohman - Phys.Rev. 121, 1758 (1961).
1009 4 -00	Natural Alpha Radioactivity in Medium-Heavy Elements.
1963 As 02	G.Astner, I.Bergstrom, L.Eriksson, U.Fagerquist et al Nucl. Phys. 45, 49 (1963).
1002D:05	A Hindered E2 Ground State Transition in Po ²⁰⁷ .
1963Di05	H.Diamond, J.E.Gindler - J.Inorg.Nucl.Chem. 25, 143 (1963). <i>Alpha Half-Lives of</i> ²¹⁶ <i>Po</i> , ²¹⁷ <i>At and</i> ²¹⁸ <i>Rn</i> .
10620-09	
1963 Gr 08	G.Graeffe - Ann.Acad.Sci.Fennicae, Ser. A VI, No.128 (1963); Priv.Comm. (1963).
1963Ka17	On the Alpha Activity of Platinum Isotopes. M.Karras, G.Andersson, M.Nurmia - Arkiv Fysik 23, 57 (1963).
19051Xa17	Search for Alpha Activity in Neutron Deficient Isotopes of Pb, Tl, Hg, Pt, and Te.
1963Ph01	L.Phillips, R.C.Gatti, R.Brandt, S.G.Thompson - J.Inorg.Nucl.Chem. 25, 1085 (1963).
19001 1101	Spontaneous Fission Half Lives of $C_1^{p_{25}}$, $F_2^{p_{25}}$, and $C_2^{p_{25}}$.
1965Fl02	K.F.Flynn, L.E.Glendenin, E.P.Steinberg - Nucl.Sci.Eng. 22, 416 (1965).
19001102	Half-Life Determinations by Direct Decay.
1965Is01	A.Isola, M.Nurmia - Z.Naturforsch. 20a, 541 (1965).
13001501	Alpha Activity of Natural Neodymium.
1966Si08	A.Siivola - Nucl.Phys. 84, 385 (1966).
10000100	Alpha-Active Platinum Isotopes.
1967Fi03	P.R.Fields, H.Diamond, A.M.Friedman, J.Milsted et al Nucl. Phys. A96, 440 (1967).
100,1100	Some New Properties of 254 Es and 255 Es.
1967Va22	K.Valli, W.Treytl, E.K.Hyde - Phys.Rev. 161, 1284 (1967).
1001 (0.22	On-Line Alpha Spectroscopy of Neutron-Deficient Radium Isotopes.
1968Be 21	C.E.Bemis, Jr., J.Halperin - Nucl.Phys. A121, 433 (1968).
10002021	The Alpha Decay of 253 Cf and 254 Cf.
1968 De01	A.G.Demin, T.Fenyes, I.Mahunka, V.G.Subbotin, L.Tron - Nucl. Phys. A106, 337 (1968).
	New Mercury Isotopes.
1968Lo15	Y.V.Lobanov, V.A.Durin - Yadern.Fiz. 8, 849 (1968); Soviet J.Nucl.Phys. 8, 493 (1969).
	Properties of the Isotopes $Ra^{214-206}$.
1970Ha18	P.G.Hansen, H.L.Nielsen, K.Wilsky, M.Alpsten et al Nucl. Phys. A148, 249 (1970).
10.011010	Studies of the α -Active Isotopes of Mercury, Gold, and Platinum.
1972Be89	E.E.Berlovich, Y.S.Blinnikov, P.P.Vaishnis, V.D.Vitman et al Izv.Akad.Nauk SSSR, Ser.Fiz. 36, 2490
	(1972); Bull.Acad.Sci.USSR, Phys.Ser. 36, 2165 (1973).
	Short-Lived Osmium Isotopes.
1972 Bu33	D.K.Butt, A.R.Wilson - J.Phys.(London) A5, 1248 (1972).

	101 1010 1010 111111 11 (0011111011)
	A Study of the Radioactive Decay Law.
1972Fi12	M.Finger, R.Foucher, J.P.Husson, J.Jastrzebski et al Nucl.Phys. A188, 369 (1972).
	Properties of Low-Lying Levels in the Even Platinum Nuclei (182 < A < 192).
1972 Mc29	G.W.McBeth, R.A.Winyard - Int.J.Appl.Radiat.Isotop. 23, 527 (1972).
	Isotope Identification and Radioassay by Time Interval Analysis.
1973Be33	C.E.Bemis, Jr., R.J.Silva, D.C.Hensley et al Phys.Rev.Lett. 31, 647 (1973).
	X-Ray Identification of Element 104.
1973Be 67	E.E.Berlovich, P.P.Vaishnis, V.D.Vitman, Y.V.Elkin et al Izv.Akad.Nauk SSSR, Ser.Fiz. 37, 1052 (1973);
	Bull.Acad.Sci.USSR, Phys.Ser. 37, No.5, 122 (1974).
	Spectroscopic Studies of Short-Lived Neutron-Deficient Nuclei Using the Synchrocyclotron at the Leningrad
	Institute for Nuclear Physics.
1973Bi06	C.R.Bingham, D.U.O'Kain, K.S.Toth, R.L.Hahn - Phys.Rev. C7, 2575 (1973).
	Measurement of α -Decay Branching Ratios for 150 , 151 Dy and 149 m Tb.
1973Ga 08	H.Gauvin, R.L.Hahn, Y.Le Beyec, M.Lefort, J.Livet - Nucl. Phys. A208, 360 (1973).
	Reactions of 40 Ar with 159 Tb, 142 Nd and 144 Sm; New α -Activities from 189 Bi, 173 Pt and 177 Au.
1973 Ha32	O.Hausser, W.Witthuhn, T.K.Alexander, A.B.McDonald et al Phys.Rev.Lett. 31, 323 (1973).
	Short-Lived α Emitters of Thorium; New Isotopes ^{218–220} Th.
1973 Hi06	K.Hiruta, T.Nomura, T.Inamura, M.Odera - Phys.Lett. 45B, 244 (1973).
	Alpha-Particle Decay of ²¹⁸ Th, a New Isotope.
1973 Ja06	U.Jager, H.Munzel, G.Pfennig - Z.Phys. 258, 337 (1973).
	The Decay of the Neutron Deficient Plutonium Isotopes 232, 233 and 234.
1973 No 09	T.Nomura, K.Hiruta, T.Inamura, M.Odera - Nucl. Phys. A217, 253 (1973).
	Ground-State α -Decay of $N=128$ Isotones ²¹⁶ Ra, ²¹⁷ Ac and ²¹⁸ Th.
1975 Ke 02	W.J.Kerrigan, C.J.Banick - J.Inorg.Nucl.Chem. 37, 641 (1975).
	Calorimetric Measurement of Alpha Half-Life of ²⁴² Cm.
1975Sa06	S.Sanyal, R.K.Garg, S.D.Chauhan, S.L.Gupta, S.C.Pancholi - Phys.Rev. C12, 318 (1975).
	Half-Life Measurement of the ²¹² Po Ground State.
1976 HoZD	P.Hornshoj, P.G.Hansen, E.Hagberg, B.Jonson et al Proc.Int.Conf.Nuclei Far from Stability, 3rd, Cargese,
	France, R.Klapisch, Ed., CERN-76-13, p.171 (1976).
10550.04	Alpha Decay of Neutron-Deficient Isotopes Studied at 'ISOLDE', CERN.
1977Di04	H.Diamond, W.C.Bentley, A.H.Jaffey, K.F.Flynn - Phys.Rev. C15, 1034 (1977).
1070D - 10	Half-Lives of ²³⁸ Pu and ²⁴² Cm.
1978Ro19	E.Roeckl, R.Kirchner, O.Klepper, G.Nyman et al Phys.Lett. 78B, 393 (1978).
	A New Island of α -Emission: α -Decay Energies and Widths of Neutron Deficient Tellurium, Iodine and Xenon
1979Ch41	Isotopes. Chang Huan-Qiao, Xu Jin-Cheng, Wen Tong-Qing - Chin.J.Nucl.Phys. 1, 21 (1979).
137301141	Determination of the Half-Lives of α Disintegration and Spontaneous Fission of ^{242}Cm .
1979Ha10	E.Hagberg, P.G.Hansen, P.Hornshoj, B.Jonson et al Nucl. Phys. A318, 29 (1979).
101011010	Alpha Decay of Neutron-Deficient Mercury Isotopes and their Daughters.
1979To06	K.S.Toth, M.A.Ijaz, C.R.Bingham, L.L.Riedinger et al Phys.Rev. C19, 2399 (1979).
10101000	Anomalous α -Decay Rate of ¹⁹² Pb.
1981Bo29	H.Bohn, E.Endres, T.Faestermann, P.Kienle - Z.Phys. A302, 51 (1981).
10012020	Spectroscopy of Excited States in ²¹² Po, ²¹⁰ Pb, and ²¹³ At Empolying ¹⁸ O Induced Few-Nucleon Transfer Reac-
	tions.
1981 De22	S.Della Negra, C.Deprun, D.Jacquet, Y.Le Beyec - Z.Phys. A300, 251 (1981).
	Alpha Decay Characteristics of Neutron Deficient Isotopes of Pt Isotopes Produced in ⁶³ Cu Induced Reactions
	on ¹¹² Sn and ¹¹³ In Targets.
1981Ho10	S.Hofmann, G.Munzenberg, F.Hessberger, W.Reisdorf et al Z.Phys. A299, 281 (1981).
	New Neutron Deficient Isotopes in the Range of Elements Tm to Pt.
1981 Pr 06	R.J.Prestwood, D.B.Curtis, J.H.Cappis - Phys.Rev. C24, 1346 (1981).
	$Half$ -Life of ^{148}Gd .
1981Sc17	D.Schardt, T.Batsch, R.Kirchner, O.Klepper et al Nucl.Phys. A368, 153 (1981).
	Alpha Decay of Neutron-Deficient Isotopes with $52 \le Z \le 55$, Including the New Isotopes ¹⁰⁶ Te $(T_{1/2} = 60)$
400477.00	μs) and 110 Xe.
1981 Us 03	S.Usuda, H.Umezawa - J.Inorg.Nucl.Chem. 43, 3081 (1981).
10001 00	Half-Life of ²⁴² Cm.
1982 Ag 02	S.K.Aggarwal, A.V.Jadhav, S.A.Chitambar, A.R.Parab et al Radiochem.Radioanal.Lett. 54, 99 (1982).
1000D 04	Half-Life of ²⁴² Cm.
1982Bo04	J.D.Bowman, R.E.Eppley, E.K.Hyde - Phys.Rev. C25, 941 (1982).
100001-00	Alpha Spectroscopy of Nuclides Produced in the Interaction of 5 GeV Protons with Heavy Element Targets.
1982Ch29	A.Chevallier, J.Chevallier, S.Khazrouni, L.Kraus et al J.Phys.(Paris) 43, 1597 (1982).
	Low-Lying Yrast States in ²¹⁸ Th.

1982 En 03	H.A.Enge, M.Salomaa, A.Sperduto, J.Ball et al Phys.Rev. C25, 1830 (1982).
	Neutron Deficient Platinum and Osmium Isotopes Produced in the $^{32}S+^{144}Sm$ Fusion Reaction.
1984Wi14	R.A.P.Wiltshire - Nucl.Instrum.Methods 223, 535 (1984).
	$Alpha\ Spectrometry\ -\ A\ Tool\ for\ Nuclear\ Data\ Measurements.$
1986 To 02	K.S.Toth, H.J.Kim, M.N.Rao, R.L.Mlekodaj - Phys.Rev.Lett. 56, 2360 (1986).
	218 Ra α Reduced Width and Its Consequences for α Clustering in the Heavy Elements.
1987Al28	B.Al-Bataina, J.Janecke - Radiochim.Acta 42, 159 (1987).
	Half-Lives of Long-Lived Alpha Emitters.
1987Mi10	G.J.Miller, J.C.McGeorge, I.Anthony, R.O.Owens - Phys.Rev. C36, 420 (1987).
	Half-Lives of the Actinide Nuclei ²²⁵ Th, ²²⁶ Th, ²²³ Ac, and ²²⁶ Ac.
1988 Tu 07	A.Turler, H.W.Gaeggeler, D.T.Jost, P.Armbruster et al Z.Phys. A331, 363 (1988).
	Determination of the Partial Electron Capture- and Spontaneous-Fission Half-Lives of ²⁵⁴ No.
1989 Ho24	N.E.Holden - Pure Appl.Chem. 61, 1483 (1989).
	Total and Spontaneous Fission Half-Lives for Uranium, Plutonium, Americium and Curium Nuclides.
1989Wo02	P.J.Woods, S.J.Bennett, M.Freer, B.R.Fulton et al Nucl.Instrum.Methods Phys.Res. A276, 195 (1989).
	A Detection System for the Study of Alpha and Proton Radioactivity on the Daresbury Recoil Mass Separator.
1990An22	A.N.Andreev, D.D.Bogdanov, V.I.Chepigin, A.P.Kabachenko et al Z.Phys. A337, 231 (1990).
100011 00	The New Nuclide ²³⁰ Pu.
1990Ho28	N.E.Holden - Pure Appl.Chem. 62, 941 (1990).
1001D 05	Total Half-Lives for Selected Nuclides.
1991Be 25	A.Ben Braham, C.Bourgeois, P.Kilcher, F.Le Blanc et al Nucl. Phys. A533, 113 (1991).
10010-01	Structure of Low-Spin States in ¹⁸⁶ Ir.
1991Se01	P.J.Sellin, P.J.Woods, R.D.Page, S.J.Bennett et al Z.Phys. A338, 245 (1991). The Limit of Stability of Proton-Rich Thallium Isotopes: A search forthe decay of 177 Tl.
1992KaZP	V.G.Kalinnikov, Sh.Zh.Zaparov, S.V.Evtisov, E.V.Kulikov et al Program and Thesis, Proc.42nd
1992IXaZ1	Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Alma-Ata, p.80 (1992).
	Alpha-Decay of ^{156}Er .
1992Wa14	J. Wauters, P.Dendooven, P.Decrock, M.Huyse et al Z.Phys. A342, 277 (1992).
1332 Wal4	The Alpha-Branching Ratios of the ¹⁸⁸ , ¹⁹⁰ , ¹⁹² Pb Isotopes.
1992Wi14	M.Wieland, J.Fernandez Niello, B.von Fromberg, F.Riess et al Phys.Rev. C46, 2628 (1992).
1332 W114	Search for the $I(\pi) = 1^-$ State in ^{218}Ra .
1993Me13	F.Meissner, H.Salewski, WD.Schmidt-Ott, U.Bosch-Wicke et al Phys.Rev. C48, 2089 (1993).
100011010	Excited States in Neutron-Deficient Iridium Nuclei Populated in Radioactive Decays of ^{177–181} Pt.
1993Wa04	J.Wauters, P.Dendooven, M.Huyse, G.Reusen et al Phys.Rev. C47, 1447 (1993).
1000 11401	α -Decay Properties of Neutron-Deficient Polonium and Radon Nuclei.
1994Pa11	R.D.Page, P.J.Woods, R.A.Cunningham, T.Davinson et al Phys.Rev. C49, 3312 (1994).
	Alpha Radioactivity above ¹⁰⁰ Sn Including the Decay of ¹⁰⁸ I.
1995Co34	R.Colle - Radioact. Radiochem. 6, 16 (1995).
	A Precise Determination of the 222 Rn Half-Life by 4π - $\alpha\beta$ Liquid Scintillation Measurements.
1995Hi02	T.Hild, WD.Schmidt-Ott, V.Kunze, F.Meissner et al Phys.Rev. C51, 1736 (1995).
	α and β Decays of $^{169-173}Os$ and the Nuclear Structure of the Daughter Isotopes.
1995 KaZS	V.G.Kalinnikov, B.P.Osipenko, F.Prazak, A.A.Solnyshkin et al Proc.Intern.Conf. on Exotic Nuclei and
	Atomic Masses, Arles, France, June 19-23, 1995, p.D22 (1995).
	The Isomeric State of $^{156\text{m}}$ Ho $(T_{1/2}=9.5\text{ s})$.
1995 Ko 54	A.Koua Aka, V.Barci, G.Ardisson, R.Righetti et al Radiochim Acta 68, 155 (1995).
	Reinvestigation of Decay Properties of Nuclei Belonging to the ²³⁰ U Series using Continuous Radiochemical
4000D10=	Separations.
1996Bi07	C.R.Bingham, K.S.Toth, J.C.Batchelder, D.J.Blumenthal et al Phys.Rev. C54, R20 (1996).
1006D 77V	Identification of ¹⁶⁶ Pt and ¹⁶⁷ Pt.
1996ByZY	V.A.Bystrov, I.N.Izosimov, V.G.Kalinnikov, N.Yu.Kotovsky et al Program and Thesis, Proc.46th
	Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Moscow, p.71 (1996). Alpha-Decay of ¹⁵⁶ Er and ¹⁵⁷ Tm. Energy of Beta-Decay of ¹⁵⁶ Ho.
1996Le09	M.Leino, J.Uusitalo, R.G.Allatt, P.Armbruster et al Z.Phys. A355, 157 (1996).
1990Le09	Alpha Decay Studies of Neutron-Deficient Radium Isotopes.
1996Pa01	R.D.Page, P.J.Wood, R.A.Cunningham, T.Davinson et al Phys.Rev. C53, 660 (1996).
10001 401	Radioactivity of Neutron Deficient Isotopes in the Region $N > 82 > Z$.
1997 He 29	F.P.Hessberger, S.Hofmann, V.Ninov, P.Armbruster et al Z.Phys. A359, 415 (1997).
-5515-0	Spontaneous Fission and Alpha-Decay Properties of Neutron Deficient Isotopes ^{257–253} 104 and ²⁵⁸ 106.
1997Ja12	Z.Janas, A.Plochocki, J.Szerypo, R.Collatz et al Nucl.Phys. A627, 119 (1997).
	Decay Studies of the Neutron-Deficient Isotopes ^{114–118} Ba.
1998Ak04	Y.A.Akovali - Nucl.Data Sheets 84, 1 (1998).
-	Review of Alpha-Decay Data from Doubly-Even Nuclei.
	· · ·

	102 2021020 1010 11222 11 (0011211022)
1998Gr19	P.T.Greenlees, N.Amzal, P.A.Butler, K.J.Cann et al J.Phys.(London) G24, L63 (1998). First Observation of Excited States in ²²⁶ U.
1998Mu25	M.Muikku, J.F.C.Cocks, K.Helariutta, P.Jones et al Phys.Rev. C58, R3033 (1998).
1999Ak02	Probing the Shape of ¹⁷⁶ Hg Along the Yrast Line. Y.A.Akovali - Nucl.Data Sheets 87, 249 (1999).
10004 00	Nuclear Data Sheets for $A = 248,252,256,260,264$.
1999An22	A.N.Andreyev, N.Bijnens, M.Huyse, P.Van Duppen et al J.Phys.(London) G25, 835 (1999). α -Decay Characteristics of Neutron-Deficient ^{190,192} Po Nuclei and Alpha Branching Ratios of ^{186,188} Pb Iso-
1999Br24	topes. E.Browne, J.Huo - Nucl.Data Sheets 87, 15 (1999).
1999Gr28	Nuclear Data Sheets for A = 174. P.T.Greenlees, P.Kuusiniemi, N.Amzal, A.Andreyev et al Eur.Phys.J. A 6, 269 (1999).
1999Po09	Fine Structure in the Alpha Decays of ²²⁶ U and ²³⁰ Pu. G.L.Poli, C.N.Davids, P.J.Woods, D.Seweryniak et al Phys.Rev. C59, R2979 (1999).
1000FD 11	Proton and α Radioactivity below the $Z=82$ Shell Closure.
1999To11	K.S.Toth, C.R.Bingham, J.C.Batchelder, L.T.Brown et al Phys.Rev. C60, 011302 (1999). α -Decay Rates of $^{180,182,184}Pb$ and the $Z=82$ Shell Closure.
2000An14	A.N.Andreyev, M.Huyse, P.Van Duppen, L.Weissman et al Nature(London) 405, 430 (2000). A Triplet of Differently Shaped Spin-Zero States in the Atomic Nucleus ¹⁸⁶ Pb.
2000Bl21	J.Blachot - Nucl.Data Sheets 91, 135 (2000). Nuclear Data Sheets for $A = 108$.
$2000 \mathrm{He}{17}$	F.P.Hessberger, S.Hofmann, D.Ackermann, V.Ninov et al Eur.Phys.J. A 8, 521 (2000); Erratum Eur.Phys.J. A 9, 433 (2000).
2000Je09	Decay Properties of Neutron-Deficient Nuclei in the Region Z = 86-92. D.G.Jenkins, M.Muikku, P.T.Greenlees, K.Hauschild et al Phys.Rev. C62, 021302 (2000).
2000Ko16	First Observation of Excited States in ¹⁸² Pb. F.G.Kondev, M.P.Carpenter, R.V.F.Janssens, I.Wiedenhover et al Phys.Rev. C61, 044323 (2000).
	High-Spin Collective Structures in ¹⁷⁸ Pt.
2001Ak11	Y.A.Akovali - Nucl.Data Sheets 94, 131 (2001).
2001An07	Nuclear Data Sheets for $A = 250,254,258,262,266$. A.N.Andreyev, M.Huyse, P.Van Duppen, L.Weissman et al Nucl. Phys. A682, 482c (2001).
2001111101	The Discovery of a Prolate-Spherical Shape Triple of Spin 0 ⁺ States in the Atomic Nucleus ¹⁸⁶ Pb.
2001Ju09	R.Julin, K.Helariutta, M.Muikku - J.Phys.(London) G27, R109 (2001). Intruder States in Very Neutron-Deficient Hg, Pb and Po Nuclei.
$2001 {\rm Ke}06$	H.Kettunen, J.Uusitalo, M.Leino, P.Jones et al Phys.Rev. C63, 044315 (2001).
2001Ku07	α Decay Studies of the Nuclides ¹⁹⁵ Rn and ¹⁹⁶ Rn. P.Kuusiniemi, J.F.C.Cocks, K.Eskola, P.T.Greenlees et al Acta Phys.Pol. B32, 1009 (2001).
200111107	Studies of ^{225,226} U Alpha Decay Chains.
2001 Og 08	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin et al Phys.Rev. C64, 054606 (2001).
	Measurements of Cross Sections for the Fusion-Evaporation Reactions ^{204,206,207,208} Pb + ⁴⁸ Ca and ²⁰⁷ Pb + ³⁴ S: Decay properties of the even-even nuclides ²³⁸ Cf and ²⁵⁰ No.
2002Ak06	Y.A.Akovali - Nucl.Data Sheets 96, 177 (2002).
	Nuclear Data Sheets for $A = 242$.
2002 CaZZ	P.Cagarda, S.Antalic, D.Ackermann, F.P.Hessberger et al GSI 2002-1, p.15 (2002).
2002KaZR	New Isotopes ²³³ Cm and ²³⁴ Cm. V.G.Kalinnikov, I.N.Izosimov, J.Adam, Yu.A.Vaganov et al Program and Thesis, Proc.52nd
2002110210	Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Moscow, p.83 (2002). Mass of ¹⁵⁶ Ho, ¹⁵⁶ Er and ¹⁵⁸ Er Nuclides.
2002Ma19	C.Mazzocchi, Z.Janas, L.Batist, V.Belleguic et al Phys.Lett. 532B, 29 (2002). Alpha Decay of ¹¹⁴ Ba.
2002Ro17	M.W.Rowe, J.C.Batchelder, T.N.Ginter, K.E.Gregorich et al Phys.Rev. C65, 054310 (2002). Decay of ¹⁷⁸ Tl.
2003Ba44	C.M.Baglin - Nucl.Data Sheets 99, 1 (2003).
2003Da06	Nuclear Data Sheets for A = 186. M.Danchev, D.J.Hartley, F.G.Kondev, M.P.Carpenter et al Phys.Rev. C 67, 014312 (2003).
2003Da24	In-beam γ-ray spectroscopy of ¹⁷² Pt. F.A.Danevich, A.Sh.Georgadze, V.V.Kobychev, B.N.Kropivyansky et al Phys.Rev. C 68, 035501 (2003).
2003Fu10	Search for 2β decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment. Zs.Fulop, L.Bartha, Gy.Gyurky, E.Somorjai et al Nucl.Phys. A718, 688c (2003).
2003Si05	The half-life of ¹⁴⁸ Gd. B.Singh - Nucl.Data Sheets 99, 275 (2003).
20000100	Nuclear Data Sheets for $A = 190$.

2003 Va05	K.Van de Vel, A.N.Andreyev, R.D.Page, H.Kettunen et al Eur.Phys.J. A 17, 167 (2003).
2003Va16	In-beam γ-ray spectroscopy of ¹⁹⁰ Po: First observation of a low-lying prolate band in Po isotopes. K.Van de Vel, A.N.Andreyev, D.Ackermann, H.J.Boardman et al Phys.Rev. C 68, 054311 (2003).
2004 GoZZ	Fine structure in a α decay of 188,192 Po. J.TM.Goon - Thesis, University of Tennessee, Knoxville (2004).
2004Sc03	Alpha and Gamma-ray Spectroscopic Studies of Au, Pt, and Ir Nuclei Near the Proton Dripline. R.Schon, G.Winkler, W.Kutschera - Appl.Radiat.Isot. 60, 263 (2004).
	A critical review of experimental data for the half-lives of the uranium isotopes ²³⁸ U and ²³⁵ U.
2004Sc04	H.Schrader - Appl.Radiat.Isot. 60, 317 (2004). Half-life measurements with ionization chambers - A study of systematic effects and results.
2005Bh12	A.Bhagwat, N.J.Thompson, J.K.Tuli - Nucl.Data Sheets 105, 959 (2005). Nuclear Data Sheets for $A=254$.
$2005 \mathrm{Br} 03$	E.Browne - Nucl.Data Sheets 104, 427 (2005).
2005Ja03	Nuclear Data Sheets for $A = 212$. Z.Janas, C.Mazzocchi, L.Batist, A.Blazhev et al Eur.Phys.J. A 23, 197 (2005).
20053405	Measurements of ¹¹⁰ Xe and ¹⁰⁶ Te decay half-lives.
2005Ku31	P.Kuusiniemi, F.P.Hessberger, D.Ackermann, S.Hofmann et al Eur.Phys.J. A 25, 397 (2005). Decay studies of $^{215-217}$ Th using ER- γ - α - γ coincidences.
2005 Ni22	N.Nica - Nucl.Data Sheets 106, 813 (2005).
	Nuclear Data Sheets for $A=252$.
2005Re18	C.W.Reich - Nucl.Data Sheets 105, 557 (2005).
2005Uu02	Nuclear Data Sheets for $A = 160$. J.Uusitalo, M.Leino, T.Enqvist, K.Eskola et al Phys.Rev. C 71, 024306 (2005).
2005 O u02	α decay studies of very neutron-deficient francium and radium isotopes.
2006An36	A.N.Andreyev, S.Antalic, M.Huyse, P.Van Duppen et al Phys.Rev.C 74, 064303 (2006). α decay of the new isotopes $^{193,194}Rn$.
2006Ba16	M.S.Basunia - Nucl.Data Sheets 107, 791 (2006). Nuclear Data Sheets for $A = 176$.
2006Br19	E.Browne - Nucl.Data Sheets 107, 2579 (2006).
2006Br20	Nuclear Data Sheets for $A = 232$. E.Browne, J.K.Tuli - Nucl.Data Sheets 107, 2649 (2006).
2006He19	Nuclear Data Sheets for A = 236. R.D.Herzberg, P.T.Greenlees, P.A.Butler, G.D.Jones et al Nature(London) 442, 896 (2006).
20061-02	Nuclear isomers in superheavy elements as stepping stones towards theisland of stability.
2006Ja03	A.K.Jain, B.Singh - Nucl.Data Sheets 107, 1027 (2006). Nuclear Data Sheets for $A=218$.
$2006 \mathrm{Le}29$	AP.Leppanen, J.Uusitalo, P.T.Greenlees, RD.Herzberg et al Eur.Phys.J. A 28, 301 (2006). Recoil-fission tagging of the transfermium nucleus ²⁵² No.
2006Si17	B.Singh - Nucl.Data Sheets 107, 1531 (2006).
	Nuclear Data Sheets for $A = 194$.
2007Bl18	J.Blachot - Nucl.Data Sheets 108, 2035 (2007).
$2007 \mathrm{Br}04$	Nuclear Data Sheets for $A = 104$. E.Browne, J.K.Tuli - Nucl.Data Sheets 108, 681 (2007).
	Nuclear Data Sheets for $A = 234$.
2007Hu13	X.Huang - Nucl.Data Sheets 108, 1093 (2007).
20071/-01	Nuclear Data Sheets for $A = 196$. E.C. Kondey, J.Ahmed, J.D. Croene, M.A. Kellett, A.J. Nichele, Appl. Redict Leat, 65, 225 (2007).
2007 Ko 01	F.G.Kondev, I.Ahmad, J.P.Greene, M.A.Kellett, A.L.Nichols - Appl.Radiat.Isot. 65, 335 (2007). Measurements of the half-life of 246 Cm and the α -decay emission probabilities of 246 Cm and 250 Cf.
2007Ko42	F.G.Kondev, S.Lalkovski - Nucl.Data Sheets 108, 1471 (2007).
	Nuclear Data Sheets for $A = 200$.
2007Ma 45	M.J.Martin - Nucl.Data Sheets 108, 1583 (2007).
9007D -16	Nuclear Data Sheets for $A = 208$.
2007Re16	C.W.Reich - Nucl.Data Sheets 108, 1807 (2007). Nuclear Data Sheets for $A = 162$.
2007 Su19	B.Sulignano, S.Heinz, F.P.Hessberger, S.Hofmann et al Eur.Phys.J. A 33, 327 (2007).
	Identification of a K isomer in 252 No.
2007Wu 02	SC.Wu - Nucl.Data Sheets 108, 1057 (2007).
2008Ba14	Nuclear Data Sheets for $A = 216$. C.M.Baglin - Nucl.Data Sheets 109, 1103 (2008).
2000Da14	Nuclear Data Sheets for $A = 166$.
2008Bi15	L.Bianco, R.D.Page, D.T.Joss, J.Simpson et al Nucl.Instrum.Methods Phys.Res. A597, 189 (2008).
	α -Decay branching ratios measured by γ -ray tagging.

```
D.De Frenne, A.Negret - Nucl.Data Sheets 109, 943 (2008).
2008 De09
                Nuclear Data Sheets for A = 106.
                J.M.Gates, M.A.Garcia, K.E.Gregorich, Ch.E.Dullmann et al. - Phys.Rev. C 77, 034603 (2008).
2008Ga08
                Synthesis of rutherfordium isotopes in the ^{238}U(^{26}Mq, xn)^{264-x}Rf reaction and study of their decay properties.
                K.Hauschild, A.Lopez-Martens, A.V.Yeremin, O.Dorvaux et al. - Phys.Rev. C 77, 047305 (2008); Erratum
2008Ha12
                 Phys.Rev. C 79, 019902 (2009).
                Half-life and excitation energy of the I^{\pi} = 13/2^{+} isomer in ^{209}Ra.
2008 \text{Ko} 21
                F.G.Kondev - Nucl.Data Sheets 109, 1527 (2008).
                Nuclear Data Sheets for A = 206.
2008Si25
                B.Singh, E.Browne - Nucl.Data Sheets 109, 2439 (2008); Erratum Nucl.Data Sheets 110, 1689(2009).
                Nuclear Data Sheets A = 240.
                S.Zhu, F.G.Kondev - Nucl. Data Sheets 109, 699 (2008).
2008Zh05
                Nuclear Data Sheets for A = 202.
2009 Ac01
                E.Achterberg, O.A.Capurro, G.V.Marti - Nucl.Data Sheets 110, 1473 (2009).
                Nuclear Data Sheets for A = 178.
                A.N.Andreyev, S.Antalic, D.Ackermann, T.E.Cocolios et al. - Phys.Rev. C 80, 054322 (2009).
2009An20
                \alpha \ decay \ of ^{180,181}Pb.
                D.De Frenne - Nucl.Data Sheets 110, 1745 (2009).
2009De21
                Nuclear Data Sheets for A = 102.
2009Re14
                C.W.Reich - Nucl.Data Sheets 110, 2257 (2009).
                Nuclear Data Sheets for A = 154.
                M.Sandzelius, E.Ganioglu, B.Cederwall, B.Hadinia et al. - Phys.Rev. C 79, 064315 (2009).
2009Sa27
                First observation of excited states in <sup>172</sup>Hg.
                S.-C.Wu - Nucl.Data Sheets 110, 681 (2009).
2009Wu02
                Nuclear Data Sheets for A = 214.
                A.Astier, P.Petkov, M.-G.Porquet, D.S.Delion, P.Schuck - Eur.Phys.J. A 46, 165 (2010).
2010 As 03
                Coexistence of "a + {}^{208}Pb" cluster structures and single-particle excitations in {}^{212}84Po128.
                C.M.Baglin - Nucl.Data Sheets 111, 275 (2010).
2010Ba05
                Nuclear Data Sheets for A = 184.
2010Ba27
                C.M.Baglin - Nucl.Data Sheets 111, 1807 (2010).
                Nuclear Data Sheets for A = 168.
2010Ch02
                C.J.Chiara, F.G.Kondev - Nucl.Data Sheets 111, 141 (2010).
                Nuclear Data Sheets for A = 204.
2010 He25
                J.A.Heredia, A.N.Andreyev, S.Antalic, S.Hofmann et al. - Eur.Phys.J. A 46, 337 (2010).
                The new isotope <sup>208</sup> Th.
                J.Khuyagbaatar, F.P.Hessberger, S.Hofmann, D.Ackermann et al. - Eur.Phys.J. A 46, 59 (2010).
2010Kh06
                The new isotope <sup>236</sup>Cm and new data on <sup>233</sup>Cm and <sup>237,238,240</sup>Cf.
                K.Nishio, S.Hofmann, F.P.Hessberger, D.Ackermann et al. - Phys.Rev. C 82, 024611 (2010).
2010Ni14
                Nuclear orientation in the reaction <sup>34</sup>S+<sup>238</sup>U and synthesis of the new isotope <sup>268</sup>Hs.
2010Si30
                G.Sibbens, S.Pomme, T.Altzitzoglou, E.Garcia-Torano et al. - Appl.Radiat.Isot. 68, 1459 (2010).
                Alpha-particle emission probabilities in the decay of <sup>240</sup>Pu.
2011 Br 05
                E.Browne, J.K.Tuli - Nucl. Data Sheets 112, 1115 (2011).
                Nuclear Data Sheets for A = 220.
                E.Browne, J.K.Tuli - Nucl.Data Sheets 112, 1833 (2011).
2011 Br 11
                Nuclear Data Sheets for A = 246.
2011Ga19
                J.M.Gates, Ch.E.Dullmann, M.Schadel, A.Yakushev et al. - Phys.Rev. C 83, 054618 (2011).
                First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element
                  114 in the ^{244}Pu(^{48}Ca,3-4n) reaction.
                T.D.Johnson, D.Symochko, M.Fadil, J.K.Tuli - Nucl.Data Sheets 112, 1949 (2011).
2011 Jo05
                Nuclear Data Sheets for A = 142.
2011Sa41
                N.Sato, H.Haba, T.Ichikawa, D.Kaji et al. - J.Phys.Soc.Jpn. 80, 094201 (2011).
                Production and Decay Properties of <sup>264</sup>Hs and <sup>265</sup>Hs.
                S.Singh, A.K.Jain, J.K.Tuli - Nucl.Data Sheets 112, 2851 (2011).
2011Si24
                Nuclear Data Sheets for A = 222.
                M. Venhart, F.P. Hessberger, D. Ackermann, S. Antalic et al. - Eur. Phys. J. A 47, 20 (2011).
2011 Ve03
                Decay study of <sup>246</sup>Fm at SHIP.
                D.Ackermann - Prog. Theor. Phys. (Kyoto), Suppl. 196, 255 (2012).
2012Ac04
                Superheavy Elements - A Probe for Nuclear Matter at the Extremes.
2012 Ba36
                C.M.Baglin - Nucl.Data Sheets 113, 1871 (2012).
                Nuclear Data Sheets for A = 192.
2012 Be14
                P.Belli, R.Bernabei, R.S.Boiko, V.B.Brudanin et al. - Phys.Rev. C 85, 044610 (2012).
                Search for double-\beta decay processes in <sup>106</sup>Cd with the help of a <sup>106</sup>CdWO<sub>4</sub> crystal scintillator.
```

2012Br12	E.Browne, J.K.Tuli - Nucl.Data Sheets 113, 2113 (2012). Nuclear Data Sheets for $A=230$.
2012Gu09	G.Gurdal, F.G.Kondev - Nucl.Data Sheets 113, 1315 (2012).
2012Ma30	Nuclear Data Sheets for $A = 110$. M.Marouli, S.Pomme, J.Paepen, R.Van Ammel et al Appl.Radiat.Isot. 70, 2270 (2012).
2012Po13	High-resolution alpha-particle spectrometry of the ²³⁰ U decay series. S.Pomme, G.Suliman, M.Marouli, R.Van Ammel et al Appl.Radiat.Isot. 70, 1913 (2012).
2012Re18	Measurement of the ²²⁶ Th and ²²² Ra half-lives. C.W.Reich - Nucl.Data Sheets 113, 2537 (2012).
2012Su11	Nuclear Data Sheets for A = 156. G.Suliman, S.Pomme, M.Marouli, R.Van Ammel et al Appl.Radiat.Isot. 70, 1907 (2012).
2012Su22	Measurements of the half-life of ²¹⁴ Po and ²¹⁸ Rn using digital electronics. B.Sulignano, Ch.Theisen, JP.Delaroche, M.Girod et al Phys.Rev. C 86, 044318 (2012).
2012Ve04	Investigation of high-K states in ²⁵² No. M.Venhart, A.N.Andreyev, S.Antalic, L.Bianco et al Eur.Phys.J. A 48, 101 (2012).
2013An13	Determination of α -decay branching ratios for ^{178,179} Hg. A.N.Andreyev, M.Huyse, P.Van Duppen, C.Qi et al Phys.Rev.Lett. 110, 242502 (2013).
2013Ba31	Signatures of the $Z=82$ Shell Closure in α -Decay Process. S.K.Basu, A.A.Sonzogni - Nucl.Data Sheets 114, 435 (2013).
2013Be20	Nuclear Data Sheets for A = 150. V.A.Belov, E.V.Brakhman, O.Ya.Zeldovich, A.K.Karelin et al Phys.Atomic Nuclei 76, 397 (2013); Yad.Fiz.
2015De20	76, 434 (2013).
2013Be31	Measurement of the ²¹⁴ Po Half-Life by the DEVIS Track Setup. G.Bellini, for the Borexino Collaboration - Eur.Phys.J. A 49, 92 (2013).
2013Ma77	Lifetime measurements of ²¹⁴ Po and ²¹² Po with the CTF liquid scintillator detector at LNGS. M.J.Martin - Nucl.Data Sheets 114, 1497 (2013).
2013Og03	Nuclear Data Sheets for A = 152. Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, S.N.Dmitriev et al Phys.Rev. C 87, 034605 (2013).
2014Ab04	Synthesis and study of decay properties of the doubly magic nucleus ²⁷⁰ Hs in the ²²⁶ Ra + ⁴⁸ Ca reaction. K.Abusaleem - Nucl.Data Sheets 116, 163 (2014).
2014Ba41	Nuclear Data Sheets for A=228. M.S.Basunia - Nucl.Data Sheets 121, 561 (2014).
2014Ka23	Nuclear Data Sheets for $A = 210$. Z.Kalaninova, S.Antalic, A.N.Andreyev, F.P.Hessberger et al Phys.Rev. C 89, 054312 (2014).
2014Ma14	Decay of ^{201–203} Ra and ^{200–202} Fr. M.Marouli, S.Pomme, V.Jobbagy, R.Van Ammel et al Appl.Radiat.Isot. 87, 292 (2014).
2014Ma86	Alpha-particle emission probabilities of ²³⁶ U obtained by alpha spectrometry. M.J. Martin - Nucl.Data Sheets 122, 377 (2014).
2014Ni05	Nuclear Data Sheets for $A = 248$. N.Nica - Nucl.Data Sheets 117, 1 (2014).
2014Pe02	Nuclear Data Sheets for $A = 148$. P.Peura, C.Scholey, D.T.Joss, S.Juutinen et al Phys.Rev. C 89, 024316 (2014).
	Quasiparticle alignments and α -decay fine structure of ^{175}Pt .
2014Po01	P.Poml, F.Belloni, E.D'Agata, E.Colineau et al Phys.Rev. C 89, 024320 (2014). Comparison of the α-decay half-life of ²¹⁰ Po implanted in a copper matrix at 4.2 and 293 K.
2014Po02	S.Pomme, E.Garcia-Torano, M.Marouli, M.T.Crespo et al Appl.Radiat.Isot. 87, 315 (2014). High-resolution alpha-particle spectrometry of ²³⁸ U.
2014Ya19	H.Yang, L.Ma, Z.Zhang, L.Yu et al J.Phys.(London) G41, 105104 (2014). Experiment for synthesis of neutron-deficient protactinium isotopes.
2015Al27	J.B.Albert, for the EXO-200 Collaboration - Phys.Rev. C 92, 045504 (2015). Measurements of the ion fraction and mobility of α - and β -decay products in liquid xenon using the EXO-200
$2015 \mathrm{Be}07$	detector. E.Bellotti, C.Broggini, G.Di Carlo, M.Laubenstein, R.Menegazzo - Phys.Lett. B 743, 526 (2015). Precise measurement of the ²²² Rn half-life: A probe to monitor thestability of radioactivity.
2015Br06	E.Browne, J.K.Tuli - Nucl.Data Sheets 127, 191 (2015). Nuclear Data Sheets for $A = 238$.
2015De22	H.M.Devaraja, S.Heinz, O.Beliuskina, V.Comas et al Phys.Lett. B 748, 199 (2015).
2015Kh09	Observation of new neutron-deficient isotopes with Z≥92 in multinucleon transfer reactions. J.Khuyagbaatar, A.Yakushev, Ch.E.Dullmann, D.Ackermann et al Phys.Rev.Lett. 115, 242502 (2015). New Short Lived Isotope 221 H and the Mass Surface Near N = 106
2015La02	New Short-Lived Isotope 221 U and the Mass Surface Near $N=126$. S.Lalkovski, F.G.Kondev - Nucl.Data Sheets 124, 157 (2015). Nuclear Data Sheets for $A=112$.

	REFERENCES FOR TABLE II (CONTINUED)
2015Ma37	L.Ma, Z.Y.Zhang, Z.G.Gan, H.B.Yang et al Phys.Rev. C 91, 051302 (2015).
201775 00	α -decay properties of the new isotope ^{216}U .
2015 Mc03	E.A.McCutchan - Nucl.Data Sheets 126, 151 (2015). Nuclear Data Sheets for $A = 180$.
2015Si18	B.Singh - Nucl.Data Sheets 130, 21 (2015).
201 FG:10	Nuclear Data Sheets for $A = 182$.
2015Si19	S.Singh, B.Singh - Nucl.Data Sheets 130, 127 (2015). Nuclear Data Sheets for $A = 224$.
$2015\mathrm{Zh}41$	Q.Z.Zhao, X.M.Wang, W.Wang, M.He et al Phys.Rev. C 92, 054616 (2015).
2016Al28	Determination of the α-decay half-life of ²¹⁰ Po based on film and slice bismuth samples at room temperature. E.N.Alexeyev, Yu.M.Gavrilyuk, A.M.Gangapshev, V.V.Kazalov et al Physics of Part.and Nuclei 47, 986 (2016).
	Results of a search for daily and annual variations of the ²¹⁴ Po half-life at the two year observation period.
2016Ba60	H.Badran, C.Scholey, K.Auranen, T.Grahn et al Phys.Rev. C 94, 054301 (2016). Confirmation of the new isotope ¹⁷⁸ Pb.
2016Ca33	L.Capponi, J.F.Smith, P.Ruotsalainen, C.Scholey et al Phys.Rev. C 94, 024314 (2016).
	Direct observation of the $^{114}Ba \rightarrow ^{110}Xe \rightarrow ^{106}Te \rightarrow ^{102}Sn$ triple α -decay chain using position and time
2016Ca43	correlations. N.Casali, A.Dubovik, S.Nagorny, S.Nisi et al J.Low Temp.Physics 184, 952 (2016).
	Cryogenic Detectors for Rare Alpha Decay Search: A New Approach.
2016Ho09	S.Hofmann, S.Heinz, R.Mann, J.Maurer et al Eur.Phys.J. A 52, 180 (2016). Review of even element super-heavy nuclei and search for element.
2016Hu04	X.Huang, M.Kang - Nucl.Data Sheets 133, 221 (2016).
	Nuclear Data Sheets for $A = 198$.
2016Kh07	Yu.Khazov, A.Rodionov, G.Shulyak - Nucl.Data Sheets 136, 163 (2016). Nuclear Data Sheets for $A = 146$.
2016Pa28	E.Parr, J.F.Smith, P.T.Greenlees, M.Smolen et al Phys.Rev. C 94, 014307 (2016).
201.45 .01	Identification of the $J^{\pi} = I^{-}$ state in ²¹⁸ Ra populated via α decay of ²²² Th.
2016So01	A.H.M.Solieman, M.Al-Abyad, F.Ditroi, Z.A.Saleh - Nucl.Instrum.Methods Phys.Res. B366, 19 (2016). Experimental and theoretical study for the production of ⁵¹ Cr using p, d, ³ He and ⁴ He projectiles on V, Ti
	and Cr targets.
2017 Ap 03	E.Aprile, for the XENON Collaboration - Phys.Rev. D 95, 072008 (2017). Results from a calibration of XENON100 using a source of dissolved radon-220.
2017Br04	M.Braun, Y.M.Georgiev, T.Schonherr, H.Wilsenach, K.Zuber - Phys.Lett. B 768, 317 (2017).
	A new precision measurement of the α -decay half-life of 190 Pt.
2017Ma22	M.Marouli, S.Pomme, R.Van Ammel, E.Garcia-Torano et al Appl.Radiat.Isot. 125, 196 (2017). Direct measurement of alpha emission probabilities in the decay of ²²⁶ Ra.
2017Na22	L.J.Nadderd, K.M.Subotic, Yu.S.Tsyganov, J.M.Puzovic et al Nucl.Instrum.Methods Phys.Res. A868, 119
	(2017).
2017Ne10	Measurement of the life-times distribution of ²¹⁶ Po. C.D.Nesaraja - Nucl.Data Sheets 146, 387 (2017).
201,11010	Nuclear Data Sheets for $A=244$.
2017Ni05	N.Nica - Nucl.Data Sheets 141, 1 (2017). Nuclear Data Sheets for $A=158$.
2017Og01	Y.T.Oganessian, A.Sobiczewski, G.M.Ter-Akopian - Phys.Scr. 92, 023003 (2017).
_	Superheavy nuclei: from predictions to discovery.
2017Si08	B.Singh - Nucl.Data Sheets 141, 327 (2017). Nuclear Data Sheets for $A=256$.
2017Si20	B.Singh - Nucl.Data Sheets 144, 297 (2017).
	Nuclear Data Sheets for $A = 258$.
2017Su18	M.D.Sun, Z.Liu, T.H.Huang, W.Q.Zhang et al Phys.Lett. B 771, 303 (2017). New short-lived isotope 223 Np and the absence of the $Z=92$ subshell closure near $N=126$.
2017Wa10	M.Wang, G.Audi, F.G.Kondev, W.J.Huang et al Chin.Phys. C 41, 030003 (2017).
	The AME2016 atomic mass evaluation.
2018Ba41	C.M.Baglin, E.A.McCutchan, S.Basunia, E.Browne - Nucl. Data Sheets 153, 1 (2018). Nuclear Data Sheets for $A=170$.
2018Ba44	A.S.Barabash, P.Belli, R.Bernabei, F.Cappella et al Phys.Rev. D 98, 092007 (2018).
	Final results of the Aurora experiment to study 2β decay of 116 Cdwith enriched 116 CdWO ₄ crystal scintillators.
2018Br13	N.T.Brewer, V.K.Utyonkov, K.P.Rykaczewski, Yu.Ts.Oganessian et al Phys.Rev. C 98, 024317 (2018). Search for the heaviest atomic nuclei among the products from reactions of mixed-Cf with a ⁴⁸ Ca beam.
2018Ko05	J.Konki, B.Sulignano, P.T.Greenlees, Ch.Theisen et al Phys.Rev. C 97, 024306 (2018).
	In-beam spectroscopic study of ²⁴⁴ Cf.

2018Ko 15	F.G.Kondev, S.Juutinen, D.J.Hartley - Nucl.Data Sheets 150, 1 (2018).
	Nuclear Data Sheets for $A=188$.
2018Ni16	N.Nica - Nucl.Data Sheets 154, 1 (2018).
	Nuclear Data Sheets for $A=140$.
2018Pa45	T.Parsons-Davis, J.Wimpenny, C.B.Keller, K.Thomas et al J.Radioanal.Nucl.Chem. 318, 711 (2018).
	New measurement of the 238 U decay constant with inductively coupled plasma mass spectrometry.
2018Po01	S.Pomme, G.Lutter, M.Marouli, K.Kossert, O.Nahle - Astropart. Phys. 97, 38 (2018).
	On the claim of modulations in radon decay and their association with solar rotation.
2018Sh12	A.Shor, L.Weissman, O.Aviv, Y.Eisen et al Phys.Rev. C 97, 034303 (2018).
	Branching ratio to the 803 keV level in 210 Po α decay.
2018Si01	B.Singh, J.Chen - Nucl.Data Sheets 147, 1 (2018).
	Nuclear Data Sheets for $A=164$.
2019Hi06	J.Hilton, J.Uusitalo, J.Saren, R.D.Page et al Phys.Rev. C 100, 014305 (2019).
	α -spectroscopy studies of the new nuclides ^{165}Pt and ^{170}Hg .
2019 Mo 01	P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers - At.Data Nucl.Data Tables 125, 1 (2019).
	Nuclear properties for astrophysical and radioactive-ion-beam applications (II).
2019Pa45	E.Parr, J.F.Smith, P.T.Greenlees, K.Auranen et al Phys.Rev. C 100, 044323 (2019).
	α -decay spectroscopy of the N=130 isotones ²¹⁸ Ra and ²²⁰ Th: Mitigation of α -particle energy summing with
	implanted nuclei.
2019Si11	B.Singh - Nucl.Data Sheets 156, 1 (2019).
	Nuclear Data Sheets for $A=254$.
2019Si12	B.Singh - Nucl.Data Sheets 156, 70 (2019).
	Nuclear Data Sheets for $A=266,270,274,278,282,286,290,294,298$.
2019Si39	B.Singh, M.S.Basunia, M.Martin, E.A.McCutchan et al Nucl.Data Sheets 160, 405 (2019).
	Nuclear Data Sheets for $A=218$.
$2020\mathrm{Cu}02$	J.G.Cubiss, R.D.Harding, A.N.Andreyev, N.Althubiti et al Phys.Rev. C 101, 014314 (2020).
	α -decay branching ratio of 180 Pt.
2019 HaAA	R.D. Harding, paper in preparation (2019), and priv. comm. (Dec 12, 2019).
2019 CuBB	J. G. Cubiss et al., paper in preparation (2019), and priv. comm. (Dec 12, 2019).
2020 Ca15	V.Caracciolo, S.S.Nagorny, P.Belli, R.Bernabei et al Nucl.Phys. A 1002, 121941 (2020).
	Search for α decay of naturally occurring Hf-nuclides using a Cs_2 HfCl ₆ scintillator.