UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE ENGENHARIA ELÉTRICA ELT 311 - ELETRÔNICA II PROFESSORA KÉTIA SOARES MOREIRA

Nome:	Matrícula:	Turma:

Aula 0

ROTEIRO DE AULA PRÁTICA - Simulação Resposta em Frequência de um Amplificador. Amplificador TBJ

OBJETIVOS:

- Verificar a faixa de frequência de amplificação de um transistor bipolar polarizado por divisor de tensão;

PARTE TEÓRICA

- 1- Calcular o ponto quiescente do circuito ICQ e VCEQ.
- 2- Calcular os parâmetros AC para o circuito. (Zi, Zo, AV e AVS)
- 3- Determinar a frequência de corte inferior e superior para o circuito utilizando os parâmetros da prática (Cbe = 36 pF, Cbc = 4 pF, Cce = 1 pF, Cwi = 6 pF e Cwo = 8 Pf)
- 4- Traçar a curva de Bode e suas assíntotas para f X Av/Avmed (dB).
- 5- Marcar sobre a curva de resposta em frequência os pontos de frequência de corte inferior e superior.
- 6- Qual a largura da faixa de passagem do amplificador?
- 7- O que se entende por Efeito Miller?

PARTE SIMULAÇÃO

1- Faça a simulação do circuito abaixo e preencha as tabelas.

(Cbc, Cbe e Cce são capacitância internas e não precisam ser colocadas dependendo do simulador usado))

4	T .		1	•	• ,
- 1	- Tensĉ	10 C	do	CITC	Other P
	- 101130	$\mathcal{L}_{\mathcal{S}} \subset \mathcal{L}_{\mathcal{L}}$	uo		uiw.

VRE	VR2	IC
	VRE	VRE VR2

2- Aplicar ao circuito um sinal senoidal VS = 1mV pico e F=5kHz e preencher a tabela abaixo: Verifique a saída, caso haja saturação diminua ou aumente o sinal de entrada.

F (Hz)	VS (mV)	$V_{O}\left(mV\right)$	A_{VS}	A_V/A_{Vmed}	A _V /A _{Vmed} (dB)
5 k					
10 k					
50 k					
100 k					
200 k					
300 k					
400 k					
500 k					
600 k					
650 k					
700 k					
750 k					
800 k					
850 k					
900 k					
950 k					
1M					
2M					
5M					
10M					
20M					

F (Hz)	VS (mV)	$V_{O}\left(mV\right)$	Avs	A_V/A_{Vmed}	A _V /A _{Vmed} (dB)
1k					
800					
700					
600					
500					
450					
400					
350					
300					
350					
200					
150					

100			
80			
70			
50			
30			
10			

- 2. Traçar a curva de Bode e suas assíntotas para f X A_V/A_{Vmed} (dB).
- 3. Marcar sobre a curva de resposta em frequência os pontos de frequência de corte inferior e superior.
- 4. Verificar a redução de 3 dB no ganho. Conclua.
- 5. Qual a largura da faixa de passagem do amplificador experimentalmente?
- **6.** Quais são as principais capacitâncias que limitam a resposta do amplificador em alta e baixa frequência?
- 7. Coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 8. Conclua seus resultados e observações.

Obs: Altere parâmetros de transiente para conseguir visualizar resultados.

