Noțiuni de matematică

Vector

Vector - Entitate geometrică abstractă care reprezintă deplasarea dintre două puncte (ex. 10m spre sud)

Coordonatele unui vector - set de numere reale folosite pentru a specifica un vector (utilizând un sistem de coordonate)

Vector

Geometrie:

săgeată

Algebră:

sir de numere

$$\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Vector

Un vector este descris prin lungime și direcție

Reprezintă un deplasament

Doi vectori sunt **egali** dacă au aceeași **lungime** și **direcție**

$$v_1 = v_2 = v_3$$

Operații cu vectori

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_x + v_x \\ u_y + v_y \end{bmatrix}$$

$$A \mathbf{u} = \begin{bmatrix} A u_x \\ A u_y \end{bmatrix}$$

Proprietățile operațiilor

Adunare:

- comutativitate: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- asociativitate: u + (v + w) = (u + v) + w
- elemental zero: 0 + u = u + 0 = u
- inversa: u + (- u) = 0

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_x \\ u_y \end{bmatrix} + \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} u_x + v_x \\ u_y + v_y \end{bmatrix}$$

Proprietățile operațiilor

Înmulțirea cu un scalar:

- asociativitate: (kp)u=k(pu)
- element identitate: 1 · u = u

 adunarea este distributivă față de înmulțirea cu un scalar: (k + p)u = ku + pu

$$A \mathbf{u} = \begin{bmatrix} A u_x \\ A u_y \end{bmatrix}$$

Operații cu vectori

$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_X - y \\ u_Y - v_Y \end{bmatrix}$$

Combinații liniare/afine

Combinație liniară:

• $u = a_1u_1 + a_2u_2 + ... + a_ku_k$

Combinație afină:

•
$$u = a_1u_1 + a_2u_2 + ... + a_ku_k$$

•
$$a_1 + a_2 + ... + a_k = 1$$

Dependență liniară

Independență liniară:

•
$$a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + ... + a_k\mathbf{u}_k = 0$$

•
$$a_1 = a_2 = ... = a_k = 0$$

Dependență liniară:

•
$$a_1u_1 + a_2u_2 + ... + a_ku_k = 0$$

• *a*₁, *a*₂, ..., *a*_k nu toți nuli

Spaţiu vectorial

Baza (unui spațiu vectorial)

- set de vectori liniar independenți
- fiecare vector din acel spaţiu poate fi definit ca o combinaţie liniară a vectorilor bază

Oricare spațiu vectorial poate avea mai multe baze (cu același număr de elemente)

Numărul elementelor din baza unui sistem vectorial este denumită dimensiunea spațiului vectorial

Coordonatele unui vector

Oricare vector dintr-un spațiu vectorial poate fi exprimat printr-un set de coordonate unice **C**i

$$\mathbf{v} = \sum_{i} c_i \mathbf{b}_i$$

În R2, oricare vector [a b] poate fi exprimat astfel:

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a\mathbf{x} + b\mathbf{y}$$

În **R³**, avem un set similar de vectori (bază) folosiți pentru a exprima oricare vector [a b c]^T:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = a\mathbf{x} + b\mathbf{y} + c\mathbf{z}$$

Coordonatele vectorilor

$$\mathbf{v} = 4\mathbf{x} + 3\mathbf{y}$$

$$\mathbf{v} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

$$\mathbf{v} = [\mathbf{x} \quad \mathbf{y}] \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Puncte vs Vectori

- Punctele reprezintă locații
- Vectorii reprezintă deplasamentul necesar pentru a ajunge de la un punct la un alt punct

Operații cu puncte și vectori

Scăderea dintre două puncte (rezultatul este un vector orientat de la Pspre Q)

$$Q - P = \mathbf{v}$$

Adunarea între un vector și un punct (rezultatul este un nou punct)

$$P + \mathbf{v} = Q$$

Operația de însumare a două puncte nu este definită

Sistem de coordonate

(O; **b**₁, **b**₂, ..., **b**_n) - sistem de coordonate

- O originea
- b₁, b₂, ..., b_n vectorii bază

Diferite sisteme de coordonate pot fi construite variind originea şi/sau vectorii bază

Coordonatele unui punct:

- P-O = $\lambda_1 \mathbf{b_1} + \lambda_2 \mathbf{b_2} + \dots + \lambda_n \mathbf{b_n}$
- λ₁, λ₂, ...,λ_n reprezintă coordonatele unui punct P față
 de sistemul de coordonate (O; b₁, b₂, ..., b_n)

Coordonatele punctelor

Considerați un sistem de coordonate definit de vectorii bază **x** și **y** și originea (0,0)

$$P = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 3\mathbf{x} + 3\mathbf{y}$$

Considerați un sistem de coordonate definit de vectorii bază **x** și **y** și originea (1.5, 2)

$$P = \begin{bmatrix} 1.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 2 \end{bmatrix} + 1.5\mathbf{x} + 1\mathbf{y}$$

Lungimea unui vector

Este egală cu radical din suma pătratelor elementelor vectorului

Pentru un vector 2D:

$$length(\mathbf{v}) = \|\mathbf{v}\| = \sqrt{x^2 + y^2}$$

Vectorul nul

$$|| v || = 0$$

Vectorul identitate

$$|| v || = 1$$

Normalizarea

Convertește un vector într-un vector unitate

Cum? Împărțind vectorul (coordonatele sale) la lungimea sa

$$\mathbf{v}_{unit} = |\mathbf{v}|$$

Produs scalar (dot product)

$$\hat{l} n 2D: u \cdot v = u_x v_x + u_y v_y$$

$$\hat{l}n 3D$$
: $u \cdot v = u_x v_x + u_y v_y + u_z v_z$

Returnează o valoare dependentă de lungimea vectorilor și cosinusul unghiului dintre ei

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

Produs scalar (dot product)

Asociativ și distributiv

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

$$(k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v}) = k\mathbf{u} \cdot \mathbf{v}$$

Într-un sistem de coordonate Cartezian:

$$\mathbf{x} \cdot \mathbf{x} = \mathbf{y} \cdot \mathbf{y} = 1$$
$$\mathbf{x} \cdot \mathbf{y} = 0$$

Produs scalar

Calcularea lungimii unui vector

$$length(\mathbf{v}) = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

Calcularea distanței dintre două puncte P și Q

$$\mathbf{v} = Q - P$$
, $distance(P, Q) = length(\mathbf{v}) = /|\mathbf{v}|/ = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

Ortogonalitate

$$\mathbf{u} \cdot \mathbf{v} = 0$$

Unghiul dintre doi vectori

$$\theta = \cos^{-1} \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

$$\mathbf{u} \cdot \mathbf{v} > 0 \Longrightarrow \theta < 90^{\circ}$$

$$\mathbf{u} \cdot \mathbf{v} = 0 \Longrightarrow \theta = 90^{\circ}$$

$$\mathbf{u} \cdot \mathbf{v} < 0 \Longrightarrow \theta > 90^{\circ}$$


```
detected = FALSE
enemy_to_player_direction = player_position - enemy_position
distance_to_player = distance(enemy_to_player_direction)
if distance_to_player <= DETECTABLE_DISTANCE
  normalize(enemy_to_player_direction)
angle = acos(dot_product(enemy_direction, enemy_to_player_direction)) if
  abs(angle) <= FOV / 2
                                                                   Player position
  detected = TRUE
                                                                   Player direction
                                                                      Enemy to player direction
                                                   Enemy direction
```

Enemy position

Unghiul vectorului directie cu axa Ox

Produs vectorial (Cross product)

Produsul vectorial a doi vectori are ca rezultat un **vector ortogonal** pe cei doi vectori

Direcția vectorului rezultat este dictată de regula mâine drepte

Lungimea vectorului rezultat depinde de lungimile vectorilor și sinusul unghiului dintre cei doi vectori:

$$\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$$

$$\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \times \begin{bmatrix} w_x \\ w_y \\ w_z \end{bmatrix} = \begin{bmatrix} v_y w_z - v_z w_y \\ v_z w_x - v_x w_z \\ v_x w_y - v_y w_x \end{bmatrix}$$

Produs vectorial

Regula mainii drepte

Regula şurubului

Produs vectorial

Regula şurubului

Produs vectorial (Cross product)

$$\mathbf{u} = \mathbf{v} \times \mathbf{w} = \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{bmatrix}$$

$$\mathbf{u} = \mathbf{e_1} \begin{vmatrix} v_y & v_z \\ w_y & w_z \end{vmatrix} - \mathbf{e_2} \begin{vmatrix} v_x & v_z \\ w_x & w_z \end{vmatrix} + \mathbf{e_3} \begin{vmatrix} v_x & v_y \\ w_x & w_y \end{vmatrix}$$

$$\mathbf{u} = (v_y w_z - v_z w_y) \mathbf{e_1} + (v_z w_x - v_x w_z) \mathbf{e_2} + (v_x w_y - v_y w_x) \mathbf{e_3}$$

$$\mathbf{u} = (v_y w_z - v_z w_y) \begin{bmatrix} 1\\0\\0 \end{bmatrix} + (v_z w_x - v_x w_z) \begin{bmatrix} 0\\1\\0 \end{bmatrix} + (v_x w_y - v_y w_x) \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} v_y w_z - v_z w_y \\ v_z w_x - v_x w_z \\ v_x w_y - v_y w_x \end{bmatrix}$$

Proprietăți

Anticomutativ:

$$\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$$

Distributiv față de operațiile de adunare și înmulțire cu un scalar:

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

$$\mathbf{a} \times (k\mathbf{b}) = k(\mathbf{a} \times \mathbf{b})$$

Vector normală

n = e₁ x e₂, unde e₁ și e₂ sunt doi vectori definiți de două muchii consecutive ale unui poligon

Vectorul normală este orientat în **exteriorul** obiectului

Sens trigonometric (counterclockwise) de parcurgere la vârfurilor, ex. v₁, V₂, V₃, V₄

Vectorul normală este orientat spre **interiorul** obiectului

Sens antitrigonometric (clockwise) de parcurgere la vârfurilor, ex. v₁, v₄, v₃, v₂

Aria unui triunghi

$$\mathbf{v} = \mathbf{v_1} \times \mathbf{v_2} = \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} \\ x_1 & y_1 & 0 \\ x_2 & y_2 & 0 \end{bmatrix}$$

$$\mathbf{v} = (x_1y_2 - x_2y_1)\mathbf{e_3}$$

Aria unui triunghi

$$\frac{1}{2}(x_1 - x_2)(y_1 + y_2) + \frac{1}{2}(x_2 - x_0)(y_2 + y_0) + \frac{1}{2}(x_0 - x_1)(y_0 + y_1)$$

$$\frac{1}{2}(x_0y_1 - x_1y_0 + x_1y_2 - x_2y_1 + x_2y_0 - x_0y_2)$$

$$S = \frac{1}{2}(x_1y_2 - x_2y_1) = \frac{1}{2} \|\mathbf{v_1} \times \mathbf{v_2}\|$$

Aria unui poligon

$$\frac{1}{2}(x_0-x_1)(y_0+y_1) + \frac{1}{2}(x_1-x_2)(y_1+y_2) + \dots + \frac{1}{2}(x_n-x_0)(y_n+y_0) =$$

$$\frac{1}{2}(x_0y_0+x_0y_1-x_1y_0-x_1y_1 + x_1y_1+x_1y_2-x_2y_1-x_2y_2 + \dots + x_ny_n+x_ny_0-x_0y_n-x_0y_0)$$

$$S = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i)$$
$$S = \frac{1}{2} \sum_{i=0}^{n-1} ||\mathbf{v_i} \times \mathbf{v_{i+1}}||$$

Poligon convex / concav

Poligon convex / concav (2D)

 Se calculează vectorii de muchie în sens trigonometric (counterclockwise)

$$e_k = V_{k+1} - V_k$$

- Se setează pentru fiecare vector de muchie componenta z egală cu 0
- Pentru fiecare pereche de vectori de muchie consecutivi se calculează produsul vectorial (cross product)
- Dacă poligonul este convex atunci toate componentele z ale vectorilor rezultați în urma aplicării produsului vectorial vor avea același semn (> 0)
- Dacă poligonul este concav atunci unele dintre componentele z ale vectorilor rezultați în urma aplicării produsului vectorial vor avea semn diferit

$$(\mathbf{e_0} \times \mathbf{e_1})_z > 0$$
$$(\mathbf{e_1} \times \mathbf{e_2})_z < 0$$
$$(\mathbf{e_2} \times \mathbf{e_3})_z > 0$$

Produs scalar/vectorial

Ecuația unei drepte

"Slope-intercept"

- y = mx + b
- unde *m* este panta și punctul (0,b) este punctul de intersecție cu axa y
- nu se pot exprima linii verticale și nu se poate extinde în 3D

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Ecuația implicită

Vectorul **n** este perpendicular pe dreaptă (se numește **un vector normală**)

Dacă X este un punct de pe dreaptă atunci

$$(X - P) \cdot \mathbf{n} = 0$$

Ecuația implicită are forma

$$F(X) = (X - P) \cdot \mathbf{n}$$

Ecuația implicită

Calcularea unui vector normal la o dreaptă:

$$\mathbf{v} = Q - P = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} -v_y \\ v_x \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{n} = \mathbf{z} \times \mathbf{v} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ 0 & 0 & 1 \\ v_x & v_y & 0 \end{bmatrix}$$

Ecuația parametrică a unei drepte

$$\mathbf{P} = \mathbf{P_1} + t(\mathbf{P_2} - \mathbf{P_1})$$
 (bazată pe vectori)

$$\mathbf{P} = (1 - t)\mathbf{P_1} + t\mathbf{P_2}$$
 (bazată pe combinația afină a doua puncte)

Ecuația parametrică a unei drepte

$$\mathbf{P} = (1 - t)\mathbf{P_1} + t\mathbf{P_2}$$

 $\mathbf{P} = (1-t)\mathbf{P_1} + t\mathbf{P_2}$ (bazată pe combinația afină a doua puncte)

Intersecția a două drepte

$$\mathbf{P} = (1 - t)\mathbf{P_1} + t\mathbf{P_2}$$
$$\mathbf{P} = (1 - s)\mathbf{Q_1} + s\mathbf{Q_2}$$

Ecuația trebuie să aibă soluție pentru s și t:

$$(1-t)\mathbf{P_1} + t\mathbf{P_2} = (1-s)\mathbf{Q_1} + s\mathbf{Q_2}$$

Extindem pentru cele două coordonate:

$$(1-t)\mathbf{P_{x_1}} + t\mathbf{P_{x_2}} = (1-s)\mathbf{Q_{x_1}} + s\mathbf{Q_{x_2}}$$
$$(1-t)\mathbf{P_{y_1}} + t\mathbf{P_{y_2}} = (1-s)\mathbf{Q_{y_1}} + s\mathbf{Q_{y_2}}$$

Discuție în funcție de valorile **s** și **t**: t<0, s<0, P înaintea punctelor P₁ și Q₁ 0<t<1 și 0<s<1, P₁P₂ intersectează Q₁Q₂ t>1, s>1, P după punctele P₂ și Q₂

Intersecția a două drepte

$$X = (1 - t)P + tQ$$

$$(X - S) \cdot \mathbf{n} = 0$$

$$((1 - t)P + tQ - S) \cdot \mathbf{n} = 0$$

$$(P + t(Q - P) - S) \cdot \mathbf{n} = 0$$

$$((P - S) + t(Q - P)) \cdot \mathbf{n} = 0$$

$$\mathbf{u} = Q - P \quad \mathbf{v} = P - S$$

$$t\mathbf{u} \cdot \mathbf{n} + \mathbf{v} \cdot \mathbf{n} = 0$$

$$t = \frac{-\mathbf{v} \cdot \mathbf{n}}{\mathbf{v}}$$

Ordinea punctelor

Ordinea în care trei puncte P, Q, și R sunt exprimate poate fi determinată cu **semnul** următorului

$$D = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{vmatrix}$$

D > 0 sens trigonometric (counterclockwise)

D = 0 puncte coliniare

D < 0 sens antitrigonometric (clockwise)</p>

Relația dintre un punct și un triunghi

În interiorul triunghiului

sign(Det(A, B, P)) = sign(Det(B, C, P)) = sign(Det(C, A, P))

Relația dintre un punct și un triunghi

În exteriorul triunghiului

 $sign(Det(A, B, P)) \neq sign(Det(B, C, P)) \neq sign(Det(C, A, P))$

Relația dintre un punct și un poligon

P se găsește în interiorul poligonului

- Suma unghiurilor este 360°
 - $^1 + ^2 + ^3 + ^4 + ^5 = 360^\circ$
- P este în interiorul unuia dintre triunghiurile care aproximează poligonul
 - ΔABD, ΔBDC, ΔDEA, P € ΔABD
- Numărul de intersecții dintre o dreaptă orientată care pornește din punctul P și poligon
 - Număr impar de intersecții: P1, P2, P3

Triangularizare

- Input circular list: IL = A, B, C, D, E
 Output list of triangles: OL
- 2. IL = A, B, C, D, E, OL = \emptyset ,
 Analyze \triangle ABC, \triangle ABC \subset P
 OL \leftarrow \triangle ABC, cut off B from IL
- 3. IL = A, C, D, E, OL = \triangle ABC, analyze \triangle CDE, \triangle CDE \neq P OL \leftarrow \emptyset
- 4. IL = A, C, D, E, OL = \triangle ABC, Analyze \triangle ACD, \triangle ACD \subset P OL \leftarrow \triangle ACD, cut off C from IL
- 5. IL = A, D, E, OL = \triangle ABC, \triangle ACD Analyze \triangle ADE, \triangle ADE \subset P OL \leftarrow \triangle ADE, cut off D from IL
- 6. IL = A, E, then stop $OL = \Delta ABC, \Delta ACD, \Delta ADE$

Ecuația unui plan

Plane defined by 3 points:

$$Ax + By + Cz + D = 0$$

$$\begin{vmatrix} x & y & z & 1 \\ x1 & y1 & z1 & 1 \\ x2 & y2 & z2 & 1 \\ x3 & y3 & z3 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} x1 & z1 & 1 \\ y2 & z2 & 1 \\ y3 & z3 & 1 \end{vmatrix}$$

$$\begin{vmatrix} x1 & y1 & 1 \\ y3 & z3 & 1 \end{vmatrix}$$

$$\begin{vmatrix} x1 & y1 & 1 \\ x3 & y3 & 1 \end{vmatrix}$$

$$\begin{vmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ x3 & y3 & 1 \end{vmatrix}$$

$$\begin{vmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ x3 & y3 & 1 \end{vmatrix}$$

$$\begin{vmatrix} x1 & y1 & 1 \\ x2 & y2 & 22 \\ x3 & y3 & 23 \end{vmatrix}$$

$$y1 \ z1 \ 1$$
 $A = y2 \ z2 \ 1$
 $y3 \ z3 \ 1$

$$C = \begin{bmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ x3 & y3 & 1 \end{bmatrix}$$

Ecuația implicită a unui plan

Planul este definit de punctele A, B și C

Vectorul normală: $\mathbf{n} = (B - A) \times (C - A)$

Pentru fiecare punct de pe plan: $\mathbf{n} \cdot (P - A) = 0$

Ecuația implicită a planului: $f(P) = \mathbf{n} \cdot (P - A) = 0$

Relația dintre un punct și un plan

Dacă f(P) = 0 atunci punctul P este pe plan

Dacă f(P) > 0 atunci punctul P este de aceeași parte cu **n**

Dacă f(P) < 0 atunci punctul P este de cealaltă parte față de **n**

Relația dintre un punct și obiect

The point P(xp,yp,zp) is located as follows:

- 1. If at least one function gives F(P)>0, then P outside of Ω
- Else if one function gives F_k(P)=0, then P on the k polygonal face
- 3. Else if two functions give $F_k(P) = F_q(P) = 0$, then P on the edge between the k and q polygonal faces
- 4. Else if r functions give F_{k1}(P)= F_{k2}(P)= ..=F_{kr}(P)= 0, then P on the vertex between the k1, k2,...,kr polygonal faces
- 5. Else if all functions give $F_k(P) < 0$, then P inside of Ω
- Otherwise error

Obiect 3D concav/convex

Obiect 3D concav/convex

Obiect 3D concav/convex

Obiect 3D