

Ciclo trigonométrico

Resumo

Considere uma circunferência de raio = 1 e centro (0,0). Essa circunferência é chamada de ciclo trigonométrico.

- Convencionou-se como sentido positivo dos arcos o sentido anti-horário.
- Os eixos coordenados dividem o ciclo trigonométrico em 4 quadrantes:

• Cada número real x $(0 \le x \le 2\pi)$ está associado a um ponto x da circunferência, que será a sua imagem.

Determinação principal

Quando marcamos um arco AB no ciclo, sabemos que o arco tem origem no ponto A e a extremidade no ponto B, mas não temos certeza da quantidade de voltas que foram dadas no ciclo para que, saindo da origem, cheguemos ao ponto B.

Neste caso, AB = 30°. Porém, podemos dizer que AB = 30° + 360° = 390°. Ou então, que AB = 30° - 360° = -330°. Desta forma, dizemos que o arco AB possui infinitas determinações:

Onde 30° é a primeira determinação positiva.

Arcos côngruos

São arcos que possuem as extremidades num mesmo ponto. Para que isso ocorra, a diferença entre as suas medidas deve ser uma quantidade inteira de voltas, ou seja, ser múltiplo de 360°_{0} ou 2π radianos.

Ex.: acima, vimos que 30° e 390° são arcos côngruos.

Podemos deduzir uma expressão geral dos arcos côngruos:

AB =
$$\alpha$$
 + 2 π K; α em radianos. ($K \in Z$)
AB = α + 360° . K; α em graus.

Linhas trigonométricas no ciclo

Á partir do ciclo trigonométrico, definem-se as principais linhas trigonométricas: seno, cosseno e tangente, da seguinte maneira:

Percebemos que o sinal do seno, cosseno e tangente de um ângulo mudam de acordo com o quadrante em que o ângulo se encontra.

	1ºQ	2ºQ	3ºQ	4ºQ
seno	+	+	_	_
cosseno	+	-	-	+
tangente	+	-	+	-

Observe que
$$\begin{cases} -1 \leq sen\alpha \leq 1 \\ -1 \leq cos\alpha \leq 1 \end{cases}$$
 e

	$^{0}/_{2\pi}$	$\pi/2$	π	$^{3\pi}/_{2}$
se	0	1	0	-1
n				•
СО	1	0	-1	0
S		,	-	
tg	0	∄	0	∄

Relações Trigonométricas

Analisando o ciclo, podemos deduzir algumas relações:

$$sen^2\alpha + cos^2\alpha = 1$$
 (Relação fundamental)
 $tg^2\alpha + 1 = sec^2\alpha$
 $cotg^2\alpha + 1 = cossec^2\alpha$

Relembrando:

$$\frac{\text{seno}}{\text{tangente} = \frac{\text{cosseno}}{\text{cosseno}}}$$

cotangente =
$$\frac{1}{\text{tangente}} = \frac{\cos s}{\sin s}$$

$$\frac{1}{\text{cossecante} = \frac{Seno}{S}}$$

$$\frac{1}{\text{cosseno}}$$

Quer ver este material pelo Dex? Clique aqui

Exercícios

- 1. Nos X-Games Brasil, em maio de 2004, os skatista brasileiro Sandro Dias, apelidado "Mineirinho" conseguiu realizar a manobra denominada "900", na modalidade skate vertical, tornando-se o segundo atleta no mundo a conseguir esse feito. A denominada "900" refere-se ao número de graus que o atleta gira no ar em torno de seu próprio corpo, que, no caso, corresponde a
 - a) uma volta completa.
 - b) uma volta e meia.
 - c) duas voltas completas.
 - d) duas voltas e meia.
 - e) cinco voltas completas.
- 2. A rosa dos ventos é uma figura que representa oito sentidos, que dividem o círculo em partes iguais.

Uma câmera de vigilância está fixada no teto de um shopping e sua lente pode ser direcionada remotamente, através de um controlador, para qualquer sentido. A lente da câmera está apontada inicialmente no sentido Oeste e o seu controlador efetua três mudanças consecutivas, a saber:

- 1ª mudança: 135° no sentido anti-horário;
- 2ª mudança: 60° no sentido horário;
- 3ª mudança: 45° no sentido anti-horário.

Após a 3^a mudança, ele é orientado a reposicionar a câmera, com a menor amplitude possível, no sentido Noroeste (NO) devido a um movimento suspeito de um cliente.

Qual mudança de sentido o controlador deve efetuar para reposicionar a câmera?

- a) 75° no sentido horário.
- b) 105° no sentido anti-horário.
- c) 120° no sentido anti-horário.

- d) 135° no sentido anti-horário.
- e) 165° no sentido horário.
- 3. Na figura a seguir, estão representados o ciclo trigonométrico e um triângulo isósceles OAB.

Qual das expressões abaixo corresponde à área do triângulo OAB em função do ângulo lpha ?

- a) $tg\alpha \times sen\alpha$
- **b)** $\frac{1}{2}tg\alpha \times \cos\alpha$
- c) $sen\alpha \times \cos \alpha$
- **d)** $\frac{1}{2}tg\alpha \times sen\alpha$
- e) $tg\alpha \times \cos\alpha$
- 4. Considerando os valores de θ , para os quais a expressão $\frac{-\frac{1}{\cos \theta}}{\cos \sec \theta} + \frac{1}{\sec \theta}$ é definida, é CORRETO afirmar que ela está sempre igual a
 - **a)** 1
 - **b)** 2
 - **c)** sen θ
 - d) $\cos \theta$
- **5.** Considere dois ângulos agudos cujas medidas a e b, em graus, são tais que a + b = 90° e 4sen(a) 10sen(b) = 0. Nessas condições é correto concluir que
 - a) tg a = 1 e tg b = 1.
 - **b)** tg a = 4 e tg b = 1/4.
 - **c)** tg a = 1/4 e tg b = 4.
 - **d)** tg = 2/5 e tg = 5/2.
 - **e)** tg = 5/2 e tg b = 2/5.

- **6.** Assinale a alternativa correta:
 - a) sen(1000°) < 0
 - **b)** $sen(1000^\circ) > 0$
 - c) $sen(1000^\circ) = cos(1000^\circ)$
 - **d)** $sen(1000^\circ) = -sen(1000^\circ)$
 - **e)** $sen(1000^\circ) = -cos(1000^\circ)$
- 7. O seno de um arco de medida 2340° é igual a:
 - **a)** -1
 - **b)** -1/2
 - **c)** 0
 - d) ½
- 8. Sobre os ângulos 150°, $\frac{\pi}{3}$ e $\frac{16\pi}{9}$ e, é correto afirmar que suas tangentes possuem valores, respectivamente:
 - a) negativo, positivo, negativo.
 - b) positivo, positivo, negativo.
 - c) negativo, negativo, negativo.
 - d) negativo, positivo, positivo.
 - e) positivo, negativo, negativo.
- **9.** Se sen(x) cos(x) = 1/2, o valor de sen(x).cos(x). é igual a:
 - a) $-\frac{3}{16}$
 - **b)** $-\frac{3}{8}$
 - c) $\frac{3}{8}$
 - $\frac{3}{2}$
 - d)

- $\frac{3}{2}$
- $\textbf{10.} \quad \text{No ciclo trigonom\'etrico da figura abaixo, acrescentou-se as retas r, s, t e z.}$

Nestas condições, a soma das medidas dos três segmentos em destaque, AT, TP e PB, pode ser calculado, como função de lpha , por

- a) $\sec \alpha$
- b) $\cos \sec \alpha$
- c) $tg\alpha + \cot \alpha$
- d) $\cos \sec \alpha + \sec \alpha$

Gabarito

1. D

Como 900° = 2.360° + 180°, segue que o atleta girou duas voltas e meia.

2. E

Considerando *NO* a origem e o sentido anti-horário o dos arcos positivos, tem-se que inicialmente a posição da câmera é 45°. Desse modo, após as três mudanças, a câmera estará na posição 45°+135°-60°+45° = 165°. Em consequência, a resposta é 165° no sentido horário.

3. C

$$\mathsf{A}_{\mathsf{tri\hat{a}ngulo}} = \frac{\mathsf{base} \times \mathsf{altura}}{2} \Rightarrow \mathsf{A}_{\mathsf{tri\hat{a}ngulo}} = \frac{2\mathsf{sen}\alpha \times \mathsf{cos}\alpha}{2} \Rightarrow \mathsf{A}_{\mathsf{tri\hat{a}ngulo}} = \mathsf{sen}\alpha \times \mathsf{cos}\alpha \ .$$

4. A

$$x = \frac{\operatorname{sen} \theta}{\operatorname{cossec} \theta} + \frac{\operatorname{cos} \theta}{\operatorname{sec} \theta}$$

Temos que:

•
$$\csc \theta = \frac{1}{\sec \theta}$$

•
$$\sec \theta = \frac{1}{\cos \theta}$$

Substituindo

$$x = \frac{\sin \theta}{\cos \sec \theta} + \frac{\cos \theta}{\sec \theta}$$

$$x = \frac{\sin \theta}{\left(\frac{1}{\cos \theta}\right)} + \frac{\cos \theta}{\left(\frac{1}{\cos \theta}\right)}$$

$$x = \operatorname{sen} \theta \times \frac{\operatorname{sen} \theta}{1} + \operatorname{cos} \theta \times \frac{\operatorname{cos} \theta}{1}$$

$$x = \operatorname{sen} \theta \times \operatorname{sen} \theta + \cos \theta \times \cos \theta$$

$$x = \sin^2\theta + \cos^2\theta$$

Pela relação fundamental temos que:

$$\sin^2 \theta + \cos^2 \theta = 1$$
 para qualquer θ

Então, concluímos que

X=1

5. E

$$a+b=90^{\circ}==> senb=cosa\ e\ cosb=sena$$

 $senb=sen(90^{\circ}-a)=sen90cosa-cos90sena=cosa$
 $4sena-10senb=0$
 $2sena=5cosa$
 $sena/cosa=5/2==>tga=5/2$
 $senb/cosb=2/5==>tgb=2/5$

6. A

Note que $1000^{\circ} = 2 \cdot 360^{\circ} + 280^{\circ}$. Por conseguinte, sendo 280° um arco do quarto quadrante, vem que $sen(1000^{\circ}) = sen(280^{\circ}) < 0$.

7. C

$$2340^{\circ} = 360^{\circ} \cdot 6 + 180^{\circ}$$

Sem $2340^{\circ} = \text{sem } 180^{\circ} =$

8. A

Pelo ciclo trigonométrico temos que os ângulos estão representados respectivamente :

9. C

Elevando os dois lados ao quadrado temos:

$$(sen \ x - cos \ x)^2 = (1/2)^2$$

Desenvolvendo:

$$(sen x)^2 - 2.sen x.cos x + (cos x)^2 = 1/4$$

 $sen^2x - 2sen x.cos x + cos^2x = 1/4$
 $(sen^2x + cos^2x) - 2sen x.cos x = 1/4$

Logo podemos concluir, utilizando do teorema fundamental:

$$\begin{array}{l} 1-2sen\ x.cos\ x=1/4\\ 1=(1/4)+2sen\ x.cos\ x\\ 2sen\ x.cos\ x=1-(1/4)\\ 2sen\ x.cos\ x=(4/4)-(1/4)\\ 2sen\ x.cos\ x=(4-1)/4\\ 2sen\ x.cos\ x=3/4\\ 4*2sen\ x.cos\ x=3\\ 8*sen\ x.cos\ x=3 \end{array}$$

$$\operatorname{gue} sen \ x.cos \ x = \frac{3}{8}$$

10. A

Sabendo que o raio da circunferência é igual a 1 (ciclo trigonométrico) e considerando F o ponto de interseção da reta s com o eixo u, pode-se escrever:

Raio = OP = 1
$$AT = AF - TF \Rightarrow AT = 1 - tg\alpha$$

$$PT = OT - OP = OB - 1 \Rightarrow PT = \sec\alpha - 1$$

$$PB = OP \cdot tg\alpha \Rightarrow PB = tg\alpha$$

$$AT + PT + PB = 1 - tg\alpha + \sec\alpha - 1 + tg\alpha \Rightarrow AT + PT + PB = \sec\alpha$$