Multiple Choice 1 point $((y, \hat{y}) = |y - \hat{y}| = |y - w^Tx|$

Suppose we are using squared loss $I(y, y-hat) = (y - y-hat)^2$ in a regression problem with a linear prediction model: v-hat = $\mathbf{w}^{\mathsf{T}}\mathbf{x}$.

What is the derivative of the absolute loss w.r.t. \mathbf{w} for a single example with feature vector \mathbf{x} and true label v?

Note: Because the absolute loss is not differentiable at zero, you can assume that y is not equal to y-hat in this problem. Note that the sign function for a real valued input x (where x is not zero) is defined as sign(x) = +1 for x > 0 and sign(x) = -1 for x < 0

- $x (w^T x v)$
- \mathbf{x} (v softmax($\mathbf{w}^{\mathsf{T}}\mathbf{x}$))
- \mathbf{x} (softmax($\mathbf{w}^{\mathsf{T}}\mathbf{x}$) \mathbf{v})
- $\mathbf{x} (\mathbf{v} \mathbf{w}^{\mathsf{T}} \mathbf{x})$

- Vw ly-wxl
 - $= -x \cdot (sign(w^{7}x-b))$

Multiple Choice 1 point

Suppose in a classification problem, the true label y and the predicted label y-hat are both hard labels. Which of the following correctly describes the nature of the cross-entropy loss in this special case?

It is zero

It is +infinity

- [= \(\frac{1}{2} \frac{1}{2} \right| \frac{1}{2} \frac{1}{2} \]
- It is 0 if y is equal to y-hat and +infinity otherwise
- It is 0 if y is equal to y-hat and 1 otherwise
- $y_{i}=1, y_{i}=0 \implies -(-\infty)$

那么为一般 约二1,分地方分二0一种

因而2要1/a地(不相同,一定在1=100;否则(=0

 $|(y,\hat{y})| = \xi - \chi_i |n \hat{y}_i| = -|n \hat{y}_{\alpha}|$

Recall that cross-entropy loss I(y, y-hat) is defined as the sum of $-y_j \log(y-hat_j)$ over j. What is the partial derivative of cross-entropy loss w.r.t. $y-hat_j$?

- -y_i / y-hat_i
- softmax(y-hat)_j y_j
- -y-hat_j/y_j
- softmax(y)_j y-hat_j

Multiple Choice 1 point

Suppose y-hat = softmax(o) and I send o_1 , the first component of o, off to +infinity (plus infinity) while keeping other components unchanged. What happens to y-hat₁, the first component of y-hat?

- It goes to -infinity
- It goes to +infinity
- O It goes to 1
- O It goes to 0

Suppose **y**-hat = softmax(\mathbf{o}) and I send o₁, the first component of \mathbf{o} , off to -infinity minus infinity) while keeping other components unchanged. What happens to \mathbf{y} -hat₁, the first component of \mathbf{y} -hat?

- It goes to -infinity
- It goes to +infinity
- O It goes to 0
- It goes to 1

Multiple Choice 1 point

Suppose I have a uniform distribution on N outcomes. What is the entropy (in bits) of this distribution?

- $\log_2(1/N)$
- 1/N log₂(N)
- 1/N log₂(1/N)

The name "Jupyter" includes a references to 3 major programming languages for	data
science. Which of the following is one of them?	

0	R
	Java
	JavaScript
	Ruby