Zadanie: WAL Walki robotów

XXXII OI, etap I. Plik źródłowy wal.* Dostępna pamięć: 256 MB.

14.10-18.11.2024

Uwaga: W tym zadaniu poznasz wynik punktowy swoich zgłoszeń zaraz po tym, jak Twoje programy zostaną ocenione przez system.

W Bajtocji odbywa się właśnie Wielki Coroczny Turniej Robotów, w którym startuje n robotów, ponumerowanych od 1 do n. Robot i-ty jest opisany dwoma parametrami, s_i oraz z_i ($1 \le s_i, z_i \le n$), które oznaczają, odpowiednio, jego siłę i zwinność. Liczby s_i są parami różne. Liczby z_i także są parami różne.

Turniej składa się z kolejnych pojedynków. W każdym z nich biorą udział dwa roboty, które nie zostały jeszcze wyeliminowane. W pojedynku, w którym i-ty robot walczy z j-tym robotem, ten pierwszy wyeliminuje tego drugiego, gdy jest od niego silniejszy lub zwinniejszy, tj. gdy $s_i > s_j$ lub $z_i > z_j$. Podobnie, ten drugi wyeliminuje tego pierwszego gdy $s_i < s_j$ lub $z_i < z_j$. Zauważmy, że oznacza to, że być może oba roboty zostaną wyeliminowane w tym samym pojedynku. Jeśli któryś robot nie zostanie wyeliminowany w pojedynku, to może brać udział w kolejnych.

Transmisja z turnieju cieszy się największą oglądalnością, gdy finalnie wszystkie roboty zostają wyeliminowane. Twoim zadaniem jest sprawdzenie, czy da się dobrać kolejne pojedynki, aby tak właśnie się stało.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita n ($1 \le n \le 200\,000$). W kolejnych n wierszach znajdują się opisy robotów. Opis i-tego robota (dla $1 \le i \le n$) składa się z dwóch liczb s_i, z_i ($1 \le s_i, z_i \le n$). Możesz założyć, że liczby s_1, s_2, \ldots, s_n są parami różne. Możesz także założyć, że liczby z_1, z_2, \ldots, z_n są parami różne.

Wyjście

W pierwszym i jedynym wierszu wyjścia należy wypisać słowo TAK, jeśli da się tak dobrać kolejne pojedynki, aby ostatecznie wszystkie roboty zostały wyeliminowane. W przeciwnym wypadku należy wypisać słowo NIE.

Przykład

Dla danych wejściowych:

4 TAK

1 4
2 2
3 3
4 1

Wyjaśnienie do przykładu. Mamy $s_1 = 1$, $z_1 = 4$, $s_2 = 2$, $z_2 = 2$, $s_3 = 3$, $z_3 = 3$, $s_4 = 4$, $z_4 = 1$. Jeśli np. w pierwszym pojedynku wezmą udział pierwsze dwa roboty, a w drugim kolejne dwa roboty, to wszystkie roboty zostana wyeliminowane.

Natomiast dla danych wejściowych:

poprawnym wynikiem jest:

NIE

1 1

. .

2 2

Testy przykładowe: Testy 0a i 0b to testy z przykładów powyżej. Poza tym:

locen: n = 8, $s_i = i$ oraz $z_i = n - i + 1$ dla każdego $1 \le i \le n$. Odpowiedź TAK.

20cen: n=20 oraz istnieje robot, który może pokonać każdego innego robota oraz żaden robot nie może go pokonać. Odpowiedź NIE.

3ocen: n=500 oraz wszystkie roboty można połączyć w pary tak, aby roboty z każdej pary wyeliminowały się wzajemnie. Odpowiedź TAK.

Olimpiada Informatyczna (oi.edu.pl)

1/2

4ocen: $n=200\,000,\,s_i=i$ i $z_i=i$ dla $1\leq i\leq \frac{n}{2},\,$ a także $s_i=i$ i $z_i=\frac{3n}{2}-i+1$ dla $\frac{n}{2}< i\leq n.$ Odpowiedź

TAK

5ocen: n=5, mały test poprawnościowy. Odpowiedź TAK.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Ograniczenia	Punkty
1	$n \leq 8$	10
2	$n \le 20$	10
3	$n \le 1000$	30
4	brak dodatkowych ograniczeń	50