Tarefa 4 - Métodos Numéricos 2

Caio de Freitas Oliveira 501375 Matheus Ribeiro Alencar 494711

1 O problema

A região $U \in xy$ é $U = (x,y) \in \frac{x^2}{1600} + \frac{y^2}{1600} \leq 1$

2 Solução

2.1 Passo 1: Mudança de variável 1

$$\begin{pmatrix} x(\alpha,\beta) \\ y(\alpha,\beta) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} x_p \\ y_p \end{pmatrix} = \alpha \begin{pmatrix} a \cdot \cos(\beta) \\ a \cdot \sin(\beta) \end{pmatrix} = \begin{pmatrix} \alpha \cdot a \cdot \cos(\beta) \\ \alpha \cdot b \cdot \sin(\beta) \end{pmatrix}$$

Pela inequação sabemos que a=40 e b=40. Substituindo na fórmula acima temos que:

$$\begin{pmatrix} \alpha \cdot a \cdot \cos(\beta) \\ \alpha \cdot b \cdot \sin(\beta) \end{pmatrix} = \begin{pmatrix} 40\alpha \cdot \cos(\beta) \\ 40\alpha \cdot \sin(\beta) \end{pmatrix}$$

Sabemos que:

$$dA = |J| \cdot d\Omega$$

Onde |J| é o determinante da matriz Jacobiana, e $d\Omega$ é o elemento de área infinitesimal do sistema (α, β) , isto é

$$|J| = \det \begin{pmatrix} \frac{\partial x}{\partial \alpha} & \frac{\partial x}{\partial \beta} \\ \frac{\partial y}{\partial \alpha} & \frac{\partial y}{\partial \beta} \end{pmatrix} = \begin{pmatrix} 40 \cdot \cos(\beta) & -40\alpha sen(\beta) \\ 40 \cdot sen(\beta) & 40\alpha cos(\beta) \end{pmatrix}$$

Calculando o determinante da matriz acima, temos que:

$$det\begin{pmatrix} 40 \cdot cos(\beta) & -40\alpha sen(\beta) \\ 40 \cdot sen(\beta) & 40\alpha cos(\beta) \end{pmatrix} = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) - (40 \cdot sen(\beta) \cdot -40\alpha sen(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) - (40 \cdot sen(\beta) \cdot -40\alpha sen(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) + (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) + (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) + (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) + (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) + (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) + (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) = (40 \cdot cos(\beta) \cdot 40\alpha cos(\beta)) + (40 \cdot co$$

$$= (1600\alpha cos^2(\beta)) + (1600\alpha sen^2(\beta)) = 1600\alpha (cos^2(\beta) + sen^2($$

Sabemos ainda que: $d\Omega = d\alpha d\beta$

Assim, fazendo-se as mudanças de variáveis, a área da elipse pode ser calculada como

$$\begin{split} A &= \int_S dS = \int_U (\sqrt{\frac{\partial f(x,y)}{\partial x}^2 + \frac{\partial f(x,y)}{\partial y}^2 + 1}) dA \\ &= \int_0^1 (\int_0^{2\pi} (\sqrt{(0.4(40\alpha \cdot \cos(\beta)))^2 + (-0.4(40\alpha \cdot \sin(\beta)))^2 + 1}) \cdot |J| d\alpha) d\beta \\ &= \int_0^1 (\int_0^{2\pi} (\sqrt{(16\alpha \cdot \cos(\beta))^2 + (-16\alpha \cdot \sin(\beta))^2 + 1}) 1600\alpha d\alpha) d\beta \end{split}$$

2.2 Passo 2: Mudança de variável 2

Iremos fazer uma mudança de variável para s e t.

$$\alpha - > x(s,t)$$

$$\beta - > y(s,t)$$

A quadratura de Gauss-Legendre necessita de uma mudança de coordenadas dadas pela expressão:

$$\begin{pmatrix} x(s,t) \\ y(s,t) \end{pmatrix} = \begin{pmatrix} \frac{0+2\pi}{2} + \frac{2\pi-0}{2}s \\ \frac{0+1}{2} + \frac{1-0}{2}t \end{pmatrix} = \begin{pmatrix} \pi + \pi s \\ \frac{1}{2} + \frac{t}{2} \end{pmatrix}$$

Assim,

$$|J_2| = \det \begin{pmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{pmatrix} = \det \begin{pmatrix} \pi & 0 \\ 0 & 1/2 \end{pmatrix} = \pi/2$$

Ao aplicarmos a mudança de variável acima, teremos:

$$\begin{split} &= \int_{-1}^{1} (\int_{-1}^{1} (\sqrt{(16x(s,t) \cdot cos(y(s,t)))^{2} + (-16x(s,t) \cdot sen(y(s,t)))^{2} + 1} \cdot 1600 \frac{\pi}{2} x(s,t)) ds) dt \\ &= \int_{-1}^{1} (\int_{-1}^{1} (\sqrt{(16(\pi + \pi s) \cdot cos(\frac{1}{2} + \frac{t}{2}))^{2} + (-16(\pi + \pi s) \cdot sen(\frac{1}{2} + \frac{t}{2}))^{2} + 1} \cdot 1600 \frac{\pi}{2} (\pi + \pi s)) ds) dt \\ &= \int_{-1}^{1} (\int_{-1}^{1} (\sqrt{256(\pi + \pi s)^{2} \cdot cos^{2}(\frac{1}{2} + \frac{t}{2}) + 256(\pi + \pi s)^{2} \cdot sen^{2}(\frac{1}{2} + \frac{t}{2}) + 1} \cdot 1600 \frac{\pi}{2} (\pi + \pi s)) ds) dt \\ &= \int_{-1}^{1} (\int_{-1}^{1} (\sqrt{256(\pi + \pi s)^{2}(cos^{2}(\frac{1}{2} + \frac{t}{2}) + sen^{2}(\frac{1}{2} + \frac{t}{2})) + 1} \cdot 1600 \frac{\pi}{2} (\pi + \pi s)) ds) dt \\ &= \int_{-1}^{1} (\int_{-1}^{1} (\sqrt{256(\pi + \pi s)^{2}(1) + 1} \cdot 1600 \frac{\pi}{2} (\pi + \pi s)) ds) dt \\ &\approx \int_{-1}^{1} (\int_{-1}^{1} (16(\pi + \pi s) \cdot 1600 \frac{\pi^{2}}{2} (1 + s)) ds) dt \\ &\approx \int_{-1}^{1} 1600 (\frac{64\pi^{3}}{3}) dt \\ &\approx 2116640 \end{split}$$

2.3 Passo 3: Quadratura de Gauss-Legendre com 3 pontos em cada direção

Resolvendo por Gauss-Legendre, teríamos o seguinte:

$$\sum_{i=1}^{3} \sum_{j=1}^{3} (w_i w_j (16(\pi + \pi s)1600 \cdot \frac{\pi^2}{2} (1+s))) \approx 2490004.48$$

A forma final na equação acima indica que os termos entre parênteses têm de ser calculados nos nove pares ordenados (s_j, t_i) .

Sabemos que para 3 pontos temos os seguintes termos presentes na Quadratura de Gauss-Legendre:

$$x_0 = 0; x_1 = \frac{3}{5}; x_2 = -\frac{3}{5}$$

 $w_0 = \frac{8}{9}; w_1 = w_2 = \frac{5}{9}$

Na forma tabular temos:

(s_j,t_i)	w_j, w_i	$g(s,t) = (16(\pi + \pi s) \cdot 1600\frac{\pi^2}{2}(1+s))$	$w_i w_j g(s,t)$
$(-\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}})$	$\frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$	20164.16	3.8896
	9 9 81	20104.10	3.0030
$(0, -\sqrt{\frac{3}{5}})$	$\frac{8}{9} \cdot \frac{5}{9} = \frac{40}{81}$	396883.2	195990.24
$(\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}})$	$\frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$	1249852.8	385756.96
$(-\sqrt{\frac{3}{5}},0)$	$\frac{5}{9} \cdot \frac{8}{9} = \frac{40}{81}$	20164.16	9957.6
(0,0)	$\frac{8}{9} \cdot \frac{8}{9} = \frac{64}{81}$	396883.2	313584.32
$(\sqrt{\frac{3}{5}},0)$	$\frac{5}{9} \cdot \frac{8}{9} = \frac{40}{81}$	1249852.8	617211.2
$\left(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}\right)$	$\frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$	1249852.8	385756.96
$(0,\sqrt{\frac{3}{5}})$	$\frac{8}{9} \cdot \frac{5}{9} = \frac{40}{81}$	396883.2	195990.24
$(\sqrt{\frac{3}{5}},\sqrt{\frac{3}{5}})$	$\frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$	1249852.8	385756.96
			2490004.48