Abstract

The system and method of the present invention is to drive a slave axis (S_A) with a value which indicates to said slave axis that the guide axis (L_A) has already rotated further than is actually the case. This can be achieved by adding a correction angle (ϕ_{corr}) to the measured angle (ϕ_{L_meas}) of the guide axis. In order to configure the virtual onward rotation in such a way that a lag error of the slave axis is just compensated as a result, guide axis angles (ϕ_{L_meas}) are increased by respective correction angles (ϕ_{corr}) which are proportional to the angular velocity (ω_L) of the guide axis and weighted with the data propagation time (T_T) of the position measured value (ϕ_{L_meas}) of the guide axis and the delay (T_R) of the position control system of the slave axis, said correction angles (ϕ_{corr}) preferably being dimensioned in accordance with $\phi_{corr} = \omega_L * (T_T + T_R)$.