Collaboration haptique étroitement couplée pour la déformation moléculaire interactive

Jean SIMARD

Université de PARIS-Sud

CNRS-LIMSI

1er février 2012

Sommaire

- Introduction
- 2 Shaddock
- 3 Étude du travail collaboratif
- 4 Aide au travail collaboratif
- 5 Conclusion

Définition

Docking moléculaire

ou amarrage moléculaire, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Illustration de l'amarrage moléculaire

Déroulement

Figure: Processus de déformation moléculaire

Travaux existants

Sélection moléculaire

- Logiciels de visualisation [Humphrey-1996, Delano-2002]
- Solution de réalité virtuelle [Polys-2004]
- Manipulation moléculaire interactive [Delalande-2010]

Figure: Plateforme **FVNANO**

Problématique

■ Pas d'exploration collaborative dans un environnement moléculaire temps-réel

La plate-forme

Figure: Illustration de la plate-forme expérimentale

- Configuration colocalisée et synchrone
- SIMARD Outil de déformation de la place de la contra del contra de la contra del la contra del

Objectif principal

Observer les contraintes liées au travail collaboratif et souligner les avantages

- 1 Amélioration des performances en binôme
 - Comparer les performances en collaboration et seul
 - Valider le contexte de travail (tâche complexe)
- 2 Stratégies de travail dépendantes de la personnalité
 - Identifier et caractériser les stratégies de travail
 - Identifier les conflits de coordination et de communication
- 3 Bonne utilisabilité de la plate-forme
 - Évaluer les outils proposés
 - Identifier les faiblesses

Travaux existants

Déformation moléculaire

- Tissus cellulaires [Peterlik-2009]
- Sculpture sur glaise [Muller-2006, Gorlatch-2009]

Problématique

■ Pas de déformation collaborative dans un environnement moléculaire temps-réel

Figure: Déformation de tissus cellulaires

Objectif principal

Proposer une tâche suffisamment complexe pour quantifier et qualifier les conflits de coordination

- Amélioration des performances en binôme pour la déformation
 - Coordination étroitement couplée
- 2 Binômes plus performants sur les tâches complexes
 - Tâches de difficulté variable
 - Identifier les tâches nécessitant une collaboration
- 3 Évaluation du travail collaboratif par les sujets
 - Questionnaire pour valider les améliorations de la plate-forme
 - Évaluation de la configuration de travail collaboratif

Travaux existants

Dynamique de groupe

- facilitation sociale [Ringelmann-1913]
- paresse sociale [Roethlisberger-1939]
- brainstorming [Osborn-1963, Tuckman-1965]

Problématique

 Aucune étude de dynamique de groupe sur des tâches avec une interaction étroitement couplée

Objectif principal

Observer la dynamique de groupe lors d'une coordination étroitement couplée

- 1 Amélioration des performances en quadrinôme
 - Variation de la taille d'un groupe
 - Quantification des conflits dans des groupes
- 2 Émergence d'un meneur
 - Observer la dynamique des groupes
 - Caractériser les différents rôles
- 3 Le brainstorming améliore les performances
 - Période pour organiser le travail
 - Limiter les conflits a priori

Synthèse des études effectuées et solutions

Figure: Synthèse des problématiques

Objectif principal

Proposer et évaluer des outils haptiques pour assister la coordination

- 1 Performances améliorées par l'assistance haptique
 - Rapidité d'exécution
 - Qualité de la solution atteinte
- L'assistance haptique améliore la communication
 - Temps de réaction réduits
 - Meilleure compréhension des intentions de chacun
- 3 Les experts sont satisfaits des outils proposés
 - Évaluer les outils proposés
 - Identifier les faiblesses

Conclusion

Questions

Merci pour votre attention

Références

