Worksheet 11 for November 10th and 12th

1. a. Compare
$$\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and the "row flipped" determinant $\det \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$.

a. Compare
$$\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and the "row flipped" determinant $\det \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$.

b. If $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$, what is $\det(A)$?

c. If $A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 & 5 \\ 3 & 3 & 6 \end{bmatrix}$, what is $\det(A)$?

d. If $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix}$, what is $\det(A)$?

e. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, find $\det(A)$ by expanding along the last column.

c. If
$$A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 & 5 \\ 3 & 3 & 6 \end{bmatrix}$$
, what is $\det(A)$?

d. If
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix}$$
, what is $\det(A)$?

e. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
, find $det(A)$ by expanding along the last column

Solution.

a. We have:

$$\det \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right) = 1 \cdot 4 - 2 \cdot 3 = -2$$

and,

$$\det \begin{pmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} \end{pmatrix} = 3 \cdot 2 - 4 \cdot 1 = 2$$

So, $\det \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{pmatrix} = -\det \begin{pmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} \end{pmatrix}$.

b. We transform A into an upper triangular matrix using row operations:

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R1 \leftrightarrow R5, R2 \leftrightarrow R4} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Since we swap rows twice, we have:

$$\det(A) = -(-\det(\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix})) = 1$$

Tutoring Room (443 Altgeld Hall): Mon 4-6 PM, Tue 5-7 PM, Wed 6-8 PM

Midterm Date: November 19 7-8:15 PM, Conflict November 20, 8-9.20AM and 9:30-10:50AM, Conflict sign up deadline: November 13

Final Date: December 17 8-11AM, Conflict December 15, 8-11AM. You are allowed to take the conflict exam if you have more than two examination within 24 hours. Conflict sign up deadline: November 30

c. We transform A into an upper triangular matrix using row operations:

$$A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 & 5 \\ 3 & 3 & 6 \end{bmatrix} \xrightarrow{R2 \to R2 - 2R1, R3 \to R3 - 3R1} \begin{bmatrix} 1 & 1 & 4 \\ 0 & 0 & -3 \\ 0 & 0 & -6 \end{bmatrix}$$

Since the row operations that we used do not change the value of the determinant, we have:

$$\det(A) = \det(\begin{bmatrix} 1 & 1 & 4 \\ 0 & 0 & -3 \\ 0 & 0 & -6 \end{bmatrix}) = 1 \cdot 0 \cdot (-6) = 0$$

d. We transform A into an upper triangular matrix using row operations:

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix} \xrightarrow{R2 \to R2 - 2R1, R3 \to R3 - 3R1} \begin{bmatrix} 1 & 4 & 5 \\ 0 & -3 & -3 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{R3 \to R3 - 2R2} \begin{bmatrix} 1 & 4 & 5 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the row operations that we used do not change the value of the determinant, we have:

$$\det(A) = \det\left(\begin{bmatrix} 1 & 4 & 5\\ 0 & -3 & -3\\ 0 & 0 & 0 \end{bmatrix}\right) = 0$$

e. We have:

$$\det(A) = 3\det\left(\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}\right) - 1\det\left(\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}\right) + 3\det\left(\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}\right) = 3 \cdot 1 - 1 \cdot (-1) + 3 \cdot (-4) = -8$$

- 2. True or False? Justify your answers!
 - **a.** Let Q be a 3×3 orthogonal matrix. Then det(Q) = 1.
 - **b.** If det(A) = det(B) = 0 then det(A + B) = 0.
 - **c.** Let A be a 3×3 matrix so that det(A) = 0. Then $A\mathbf{x} = \mathbf{b}$ has exactly one solution for each vector \mathbf{b} .
 - **d.** Let A be a 3×3 matrix so that det(A) = 9. Then det(2A) = 18.
 - **e.** Let R be a 2×3 matrix. Then $det(R^T R) = 0$.
 - **f.** Let R be a 2×3 matrix. Then $det(RR^T) = 0$.

Solution. **a.** False, we have $QQ^T = I$ so $\det(Q) \det(Q^T) = \det(Q)^2 = \det(I) = 1$. Hence, $\det(Q) = 1$ or -1 but it is not necessarily equal to 1 or necessarily equal to -1. Consider the following examples:

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- **b.** False, consider $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
- **c.** False, we have that \ddot{A} is invertible if and only if $A\mathbf{x} = \mathbf{b}$ has exactly one solution for each vector \mathbf{b} .
- **d.** False, $det(2A) = 2^3 det(A) = 72$.

e. Let
$$R = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$
. Write $\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Then
$$R^T R = \begin{bmatrix} \boldsymbol{a} & \boldsymbol{b} \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} (a_1 \boldsymbol{a} + b_1 \boldsymbol{b}) & (a_2 \boldsymbol{a} + b_2 \boldsymbol{b}) & (a_3 \boldsymbol{a} + b_3 \boldsymbol{b}) \end{bmatrix}.$$

Therefore the columns of $R^T R$ are in span $(\boldsymbol{a}, \boldsymbol{b})$. Since $R^T R$ has three columns, they have to be linearly dependent. Hence $R^T R$ is not invertible and $\det(R^T R) = 0$.

- **f.** False, consider $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Then $RR^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and therefore $\det(RR^T) = 1$. Therefore the statement is not true.
- 3. True or False? Justify your answers!
 - **a.** We say A and B (n × n matrices) are similar if $A = DBD^{-1}$ for an invertible matrix D. Let A and B be similar matrices, then det(A) = det(B).
 - **b.** Let A and B be 3×3 matrices. If det(A) = det(B) then A and B are similar. [Note: number of pivots in DBD^{-1} is equal to the number of pivots in B. (Why?) Use this fact to find a counter example.]
 - **c.** Someone tells you that the zero vector is an eigenvector of a 2×2 matrix A. Is this possible?
 - **d.** An $n \times n$ matrix A always has n distinct eigenvalues.

Solution. a. True, we have:

$$\det(A) = \det(DBD^{-1}) = \det(D)\det(D)\det(B)\det(D^{-1}) = \det(D)\det(B)\frac{1}{\det(D)} = \det(B)$$

b. False, consider $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then the number of pivots in

 DBD^{-1} is 1 but the number of pivots in A is equal to 2. Thus, it is not possible to find D so that $A = DBD^{-1}$.

- ${\bf c.}$ This is false. By convention, the zero vector is ${\bf never}$ an eigenvector.
- **d.** False, the $n \times n$ identity matrix I_n (where $n \ge 2$) has only one eigenvalue $\lambda = 1$. This eigenvalue occurs with multiplicity n.
- **4.** For each of the following matrices, determine the characteristic polynomial $p(\lambda)$ of the matrix, determine the eigenvalues of the matrix and for each eigenvalue, determine (a basis for) the eigenspace that is associated to that eigenvalue.

a.
$$\begin{bmatrix} 4 & 0 & -2 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix},$$
b.
$$\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix},$$
c.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Solution.

a. We have:

$$p(\lambda) = \det \begin{bmatrix} 4 - \lambda & 0 & -2 \\ 1 & 1 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda)(1 - \lambda)(4 - \lambda)$$

Hence, the eigenvalues of A are 2,4, and 1. For $\lambda = 2$:

$$\begin{bmatrix} 2 & 0 & -2 \\ 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R2 \to R2 - 1/2R1, R1 \to 1/2R1, R2 \to -R2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 1\\3\\1 \end{bmatrix} \right\}$.

For $\lambda = 4$:

$$\begin{bmatrix} 0 & 0 & -2 \\ 1 & -3 & 2 \\ 0 & 0 & -2 \end{bmatrix} \xrightarrow{R2 \to R2 + R3, R1 \to R1 - R3, R3 \to -1/2R2} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 3\\1\\0 \end{bmatrix} \right\}$.

For $\lambda = 1$:

$$\begin{bmatrix} 3 & 0 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2 \to R2 - 2R3, R1 \to R1 + 2R3, R1 \to R1 - 3R2} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.

b. We have:

$$p(\lambda) = \det \begin{bmatrix} 3 - \lambda & 4 \\ 4 & -3 - \lambda \end{bmatrix} = (3 - \lambda)(-3 - \lambda) - 16 = \lambda^2 - 25 = (\lambda - 5)(\lambda + 5)$$

Hence, the eigenvalues of A are 5 and -5. For $\lambda = 5$:

$$\begin{bmatrix} -2 & 4 \\ 4 & -8 \end{bmatrix} \xrightarrow{R2 \to R2 + 2R1, R1 \to -1/2R1} \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$.

For $\lambda = -5$:

$$\begin{bmatrix} 8 & 4 \\ 4 & 2 \end{bmatrix} \xrightarrow{R2 \to R2 - 1/2R1, R1 \to 1/8R1} \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$.

c. We have:

$$p(\lambda) = \det \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} = (1 - \lambda)((1 - \lambda)(1 - \lambda) - 1) - (-\lambda) + (1 - (1 - \lambda))$$
$$= (1 - \lambda)(-\lambda)(2 - \lambda) + 2\lambda = -\lambda((1 - \lambda)(2 - \lambda) - 2) = \lambda^{2}(3 - \lambda)$$

Hence, the eigenvalues of A are 0 and 3. For $\lambda = 0$:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{R2 \to R2 - R1, R3 \to R3 - R1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$.

For $\lambda = 3$:

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \xrightarrow{R1 \leftrightarrow R3, R2 \to R2 - R1, R3 \to R3 + 2R1, R3 \to R3 + 2R1, R3 \to R3 + R2} \begin{bmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R2 \to -1/3R2, R1 \to R1 - R2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$.

- **5.** Let A be an $n \times n$ -matrix with eigenvalue λ . Which of the following statements are true:
 - **a.** λ^2 is an eigenvalue of A^2 .
 - **b.** λ^{-1} is an eigenvalue of A^{-1}
 - **c.** $\lambda + 1$ is an eigenvalue of A + I.

Solution. All three statements are correct. For \mathbf{a} , let \mathbf{v} be an eigenvector of A to the eigenvalue λ . Then

$$A^2 \mathbf{v} = A(A\mathbf{v}) = A(\lambda \mathbf{v}) = \lambda A\mathbf{v} = \lambda \lambda \mathbf{v} = \lambda^2 \mathbf{v}.$$

So v is an eigenvector of A^2 to eigenvalue λ^2 . So λ^2 is an eigenvalue of A^2 .

For **b.**, let **v** be an eigenvector of A to the eigenvalue λ . Then

$$A^{-1}(\lambda \mathbf{v}) = A^{-1}(A\mathbf{v}) = (A^{-1}A)\mathbf{v} = \mathbf{v} = \lambda^{-1}(\lambda \mathbf{v}).$$

Hence $\lambda \mathbf{v}$ is an eigenvector of A^{-1} to eigenvalue λ^{-1} . So λ^{-1} is an eigenvalue of A^{-1} . For \mathbf{c} , let \mathbf{v} be an eigenvector of A to the eigenvalue λ . Then

$$(A+I)(\mathbf{v}) = A\mathbf{v} + \mathbf{v} = \lambda\mathbf{v} + \mathbf{v} = (\lambda+1)\mathbf{v}.$$

Hence $(\lambda + 1)\mathbf{v}$ is an eigenvector of A + I to eigenvalue $\lambda + 1$. So $\lambda + 1$ is an eigenvalue of A+I.

- **6.** Let A, B be two $n \times n$ -matrices such that AB = BA.
 - **a.** Suppose v is an eigenvector of A with eigenvalue λ . Is Bv an eigenvector of A? If so, what is the eigenvalue of that eigenvector?

- **b.** Suppose A has eigenvectors v_1, \ldots, v_n with distinct eigenvalues $\lambda_1 \neq \ldots \neq \lambda_n$. Is each v_i also an eigenvector of B? (This question is a bit tricker. Hint: Note that each of the eigenspaces of A has dimension 1 and then use your answer to a.).
- Solution. **a.** We first must consider the case that $B\mathbf{v} = 0$, in which case $B\mathbf{v}$ cannot be an eigenvector. In the other case, consider $A(B\mathbf{v}) = (AB)\mathbf{v}$, and since AB = BA, this is the same as $(BA)\mathbf{v} = B(A\mathbf{v}) = B(\lambda\mathbf{v}) = \lambda(B\mathbf{v})$ (as \mathbf{v} is an eigenvector of A with eigenvalue λ), so since $A(B\mathbf{v}) = \lambda B\mathbf{v}$, $B\mathbf{v}$ is an eigenvector of A with eigenvalue λ . So overall either $B\mathbf{v} = 0$ or $B\mathbf{v}$ is an eigenvector of A with eigenvalue λ_i .
 - b. Take the *i*-th eigenvalue v_i of A. Since there are n distinct eigenvalue, v_1, \ldots, v_n form a basis of \mathbb{R}^n . Thus the eigenspace of A for eigenvalue λ_i is $\mathrm{span}(v_i)$. Since v_i is an eigenvector of A with eigenvalue λ_i , we $\mathrm{get} A v_i = \lambda_i v_i$. Then by a. either $B v_i = 0$ or $B v_i$ is an eigenvector of A to the eigenvalue λ_i . If $B v_i = 0$, then v_i is eigenvector of A with eigenvalue A. So it is left to consider the case that $B v_i$ is an eigenvector of A to the eigenvalue A. Then $B v_i$ is in the eigenspace of A of the eigenvalue A. Then $B v_i$ is in the span of v_i . Therefore $B v_i$ is a multiple of v_i . Hence v_i is an eigenvector of A.

7. Let
$$A = \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}$$
, $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto A \begin{bmatrix} x \\ y \end{bmatrix}$, and $\mathcal{B} = \{\begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \}$.

a. If
$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, what is $\mathbf{v}_{\mathcal{B}}$?

b. If
$$\mathbf{v}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, what is \mathbf{v} ?

c. What is
$$T_{\mathcal{B},\mathcal{B}}$$
?

Solution. Let \mathcal{E} be the standard basis of \mathbb{R}^2 . Note that $T_{\mathcal{E},\mathcal{E}} = A$. The bases change matrix $I_{\mathcal{B},\mathcal{E}}$ is $I_{\mathcal{E},\mathcal{B}}^{-1}$. We know that

$$I_{\mathcal{E},\mathcal{B}} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix}.$$

This matrix is orthogonal, therefore

$$I_{\mathcal{B},\mathcal{E}} = I_{\mathcal{E},\mathcal{B}}^{-1} = I_{\mathcal{E},\mathcal{B}}^T = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix}.$$

a. Using the base change matrix, we get

$$m{v}_{\mathcal{B}} = egin{bmatrix} rac{1}{\sqrt{5}} & rac{2}{\sqrt{5}} \ rac{2}{\sqrt{5}} & rac{7}{\sqrt{5}} \end{bmatrix} egin{bmatrix} 2 \ 3 \end{bmatrix} = egin{bmatrix} rac{8}{\sqrt{5}} \ rac{1}{\sqrt{5}} \end{bmatrix}.$$

b. Here

$$oldsymbol{v} = I_{\mathcal{E},\mathcal{B}} oldsymbol{v}_{\mathcal{B}} = egin{bmatrix} rac{1}{\sqrt{5}} & rac{2}{\sqrt{5}} \ rac{2}{\sqrt{5}} & rac{7}{\sqrt{5}} \end{bmatrix} egin{bmatrix} 3 \ 2 \end{bmatrix} = egin{bmatrix} rac{7}{\sqrt{5}} \ rac{4}{\sqrt{5}} \end{bmatrix}.$$

c. We calculate

$$T_{\mathcal{B},\mathcal{B}} = I_{\mathcal{B},\mathcal{E}} T_{\mathcal{E},\mathcal{E}} I_{\mathcal{E},\mathcal{B}} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}.$$

8. Let
$$\mathcal{B} := \{b_1, b_2\}$$
 and $\mathcal{C} := \{c_1, c_2\}$ be two bases of \mathbb{R}^2 such that $b_1 = 6c_1 - 2c_2$ and $b_2 = 9c_1 - 4c_2$.

Determine $I_{\mathcal{C},\mathcal{B}}$ and $I_{\mathcal{B},\mathcal{C}}$!

Solution. $I_{\mathcal{C},\mathcal{B}}$ is the matrix representing the identity transformation I with input basis \mathcal{B} and output basis \mathcal{C} . Since

$$b_1 = 6c_1 - 2c_2$$
 and $b_2 = 9c_1 - 4c_2$,

we get that $I(b_1)_{\mathcal{C}} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$ and $I(b_2)_{\mathcal{C}} = \begin{bmatrix} 9 \\ -4 \end{bmatrix}$. Therefore we have that

$$I_{\mathcal{C},\mathcal{B}} = \begin{bmatrix} 6 & 9 \\ -2 & -4 \end{bmatrix}.$$

Now $I_{\mathcal{B},\mathcal{C}}$ will be the inverse of this matrix, that is it represents the identity transformation with input basis \mathcal{B} and output basis \mathcal{C} . Thus we invert the previous matrix to get $\begin{bmatrix} \frac{2}{3} & \frac{3}{2} \\ \frac{-1}{3} & -1 \end{bmatrix}$.

- **9.** Let A be a $n \times n$ -matrix and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation such that $T(\mathbf{v}) = A\mathbf{v}$ for all \mathbf{v} in \mathbb{R}^n . Let \mathcal{E} be the standard basis of \mathbb{R}^n . True or false?
 - **a.** Let $\mathcal{B} := \{b_1, \dots, b_n\}$ be a basis of \mathbb{R}^n . All b_i 's are eigenvectors of A if and only if $T_{\mathcal{B},\mathcal{B}}$ is diagonal.
 - **b.** The matrix A is invertible if and only if there is a basis $C := \{c_1, \dots, c_n\}$ of \mathbb{R}^n such that $T_{C,\mathcal{E}} = I_{n \times n}$.
- Solution. **a.** This is true. Suppose all the \mathbf{b}_i 's are eigenvectors of A. Then $T(\mathbf{b}_i) = \lambda_i \mathbf{b}_i$, where λ_i is the eigenvalue corresponding to \mathbf{b}_i . Thus the matrix $T_{\mathcal{B},\mathcal{B}}$ is diagonal with entries λ_i down the diagonal. Suppose $T_{\mathcal{B},\mathcal{B}}$ is diagonal, with entry λ_i in column i. Then let \mathbf{e}_i be the vector with 1 in the i-th row and 0 elsewhere. Then $T_{\mathcal{B},\mathcal{B}}\mathbf{e}_i = \lambda_i \mathbf{e}_i$. Recalling the definition of T, this means that $A\mathbf{b}_i = \lambda_i \mathbf{b}_i$, and thus \mathbf{b}_i is an eigenvector of A with eigenvalue λ_i .
 - **b.** Suppose the matrix A is invertible. Then set $C = \{Te_1, \ldots, Te_n\}$. This then will have $T_{C,\mathcal{E}} = I_{n \times n}$. Suppose that there is a basis $C = \{c_1, \ldots, c_n\}$ such that $T_{C,\mathcal{E}} = I_{n \times n}$. Then $Ae_i = c_i$ for each i. However Ae_i is the i-th column of A. Thus the columns of A are linearly independent, so since A is also square, A is invertible.

7