Some for exsertion 1:

If V and W share vector other than the \widetilde{U} rectange then $\widetilde{U} = \widetilde{V} + \widetilde{\omega}$ can be written the $\widetilde{U} = \widetilde{U} + \widetilde{U}$ and $\widetilde{U} = \widetilde{V} + \widetilde{U}$ where $\widetilde{V} = \widetilde{U}$.

This means \widetilde{U} could be written as $\widetilde{V} + \widetilde{U}$ in a non-onique of $\widetilde{V} = \widetilde{U}$.

A stunce $\widetilde{V} = \widetilde{U}$, $\neq 0 = \widetilde{X}$

Assume $\vec{V}_1 = \vec{\omega}_1 \neq 0 = \vec{x}$ $\vec{U} = \vec{V}_1 + \vec{\omega}_1$, $\vec{U} = \vec{X} + \vec{X} = 2\vec{x}$ $\vec{U} = \vec{V} + \vec{\omega}$ is not unique if $\vec{U} = \vec{V}_1 + \vec{V}_2 = \vec{U}_1 + \vec{V}_2 = \vec{V}_1 + \vec{V}_2 =$

Assertion 2: Shae V # W for all verso except D V and W may not share away coexpectents/baris vectors. Proof:

Assure V= 5pan (x, xz, x3, x4 --- xn) Assure W= 5pan (xm, xm1, xm+3... Man)

If V and W share morablish basis vector Xm, one could set all other basises to the Q' rector, and set Xm to 1xm.
Then I' would be equal to is which is a contradiction.

If we therefore define V as $Span(X_1, X_2,..., X_n)$ and W ar $Span(Y_1, Y_2,..., Y_n)$ where $X \neq Y_1$ and $Span(Y_1, Y_2,..., Y_n)$ where $X \neq Y_2$ and $Span(Y_1, Y_2,..., Y_n)$ where $X \neq Y_1$ and $Span(Y_1, X_2,..., Y_n)$ and $Span(Y_1, X_2,..., X_n)$ and $Span(Y_1, X_2,..., Y_n)$ where $X \neq Y_1$ and $Span(Y_1, X_2,..., Y_n)$ and $Span(Y_1, X_2,..., Y_n)$ and $Span(Y_1, X_2,..., Y_n)$ and $Span(Y_1, X_2,..., Y_n)$ where $X \neq Y_1$ and $Span(Y_1, X_2,..., Y_n)$ and $Span(Y_1, X_1,..., Y_n)$ and $Span(Y_$