Métodos Numéricos - Clase 7

Ulises Bussi- Javier Portillo

1° cuatrimestre 2020

Ajustes de curvas: Validación

Validación

Validación: Ejemplo

Ajustes de Curvas

Ajustes de curvas: Validación

Validación: Ejemplo

Validación de Ajuste

¿Cómo elegimos modelo? Dado un conjunto de datos, ¿cuál los representa mejor?.

¿Por qué? Existen muchos modelos, vamos tratar de usar el mejor.

Validación de Ajuste

¿Cómo elegimos modelo? Dado un conjunto de datos, ¿cuál los representa mejor?.

¿Por qué? Existen muchos modelos, vamos tratar de usar el mejor.

Ajustes de Curvas

Ajustes de curvas: Validación

Validación

Validación: Ejemplo

Validación

Dado un conjunto de pares ordenados $(x_i, y_i) \forall i = 1...n$ Vamos a crear dos subconjuntos disjuntos de datos $(x_i, y_i)_{\text{train}}$ y $(x_i, y_i)_{\text{validation}}$.

Realizaremos los ajustes sobre el conjunto de train. y calcularemos el r^2 sobre el otro conjunto.

Supongamos que tenemos el conjunto de datos:

Supongamos que tenemos el conjunto de datos:

Primero debemos separar nuestro set de datos

Supongamos que tenemos el conjunto de datos:

Primero debemos separar nuestro set de datos

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: $A \underbrace{c}_{\text{coeficientes}} = E$

donde podemos escribir

$$\begin{bmatrix} n & \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} & \sum x_{i}^{6} \\ \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} & \sum x_{i}^{6} & \sum x_{i}^{7} \\ \sum x_{i}^{4} & \sum x_{i}^{5} & \sum x_{i}^{6} & \sum x_{i}^{7} & \sum x_{i}^{8} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum y_{i}x_{i} \\ \sum y_{i}x_{i}^{2} \\ \sum y_{i}x_{i}^{3} \\ \sum y_{i}x_{i}^{3} \\ \sum y_{i}x_{i}^{4} \end{bmatrix}$$

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: $A \underbrace{c}_{\text{coeficientes}} = b$

donde podemos escribir

$$\begin{bmatrix} n & \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} \\ \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} & \sum x_{i}^{6} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum y_{i} x_{i} \\ \sum y_{i} x_{i}^{2} \\ \sum y_{i} x_{i}^{3} \end{bmatrix}$$

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: $A \underbrace{c}_{\text{coeficientes}} = b$

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \\ \sum y_i x_i^2 \end{bmatrix}$$

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: A coeficientes donde podemos escribir

$$\begin{bmatrix}
n & \sum x_i \\
\sum x_i & \sum x_i^2
\end{bmatrix}$$

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix}$$

Una vez hallados los coeficientes para cada caso, es posible dibujar los distintos ajustes:

Si bien parecentodos similares miremos r^2

Una vez hallados los coeficientes para cada caso, es posible dibujar los distintos ajustes:

Si bien parecen todos similares miremos r^2

Los coeficientes de determinación

Conclusión: El mejor ajuste parece ser el cuadrático.

Los coeficientes de determinación

Conclusión: El mejor ajuste parece ser el cuadrático.

