Билет 10

Магнитные взаимодействия. Магнитное поле электрического тока. Вектор индукции магнитного поля, линии магнитной индукции. Закон Био-Савара-Лапласа. Магнитное поле прямого и кругового тока.

Магнитное поле постоянного тока

Магнитное поле — особый вид материи, посредством которого осуществляется взаимодействие между движущимися заряженными частицами.

Магнитное поле создается движущимися электрическими зарядами.

Взаимодействие магнитной стрелки с проводником на малом расстоянии открыл Г.Х. Эрнест в 1820 году.

При замыкании цепи магнитная стрелка отклонялась.

Свойства магнитного поля:

- 1. Магнитное поле материально: оно существует независимо от нас, от наших знаний о нем
- 2. Магнитное поле обладает определенными свойствами, которые могут быть найдены экспериментально

Силовая характеристика магнитно поля — вектор магнитной индукции \vec{B} , $[B] = T_{\mathcal{I}}$.

Направление вектора магнитной индукции — направление нормали к поверхности, где расположена рамка с током, то есть в сторону поступательного движения правого буравчика при вращении по направлению тока в рамке.

Это же направление покажет северный полюс магнитной стрелки.

В магнитном поле прямолинейного проводника с током устанавливается по касательной к окружности с центром в проводнике. В данном случае буравчик должен двигаться в направлении тока, а вращение покажет направление вектора магнитной индукции.

Значение модуля момента магнитной индукции получено опытным путем: $B = k \frac{M_{max}}{LS}$,

где M_{max} - максимальный момент силы.

Принцип суперпозиции

Если в данной точке пространства различные токи создают магнитные поля, то результирующая магнитная индукция в этой точке равна векторной сумме магнитных индукций всех токов.

Линии магнитной индукции — линии, касательные к которым в каждой точке сонаправлены с вектором магнитной индукции.

Свойства линий магнитной индукции:

- 2. Касательные в любой точке характеризуют направление $\, B \,$
- 3. Направление индукции магнитного моля и силы тока связаны правилом буравчика.
- 4. Плоскость силовых линий перпендикулярна проводнику, по которому течет ток.
- 5. Силовые линии симметрично охватывают проводник.

Магнитный поток вектора магнитной индукции через поверхность dS - скалярная физическая величина, численно равная произведению модуля вектора магнитной индукции на площадь dS и косинус угла между векторами α

$$\vec{B}$$
 и \vec{n} . $d\Phi = B \cdot dS \cdot \cos \alpha$

Поток магнитной индукции через замкнутую поверхность равен 0, т. к. количество силовых линий, входящих внутрь поверхности, равно числу линий, выходящих из нее.

$$[\Phi] = T_{\mathcal{I}} \cdot M^2 = B\delta$$

<u> 1 Вебер</u> — магнитный поток, создаваемый магнитным полем с индукцией $1 \, T \pi$ через поверхность площадью $1 \, m^2$

Закон Био-Савара-Лапласа

Рассмотрим малый участок dl . Здесь \vec{dl} - вектор, направленный по току в проводнике. Элемент тока: $I\cdot \vec{d}l$. Каждый такой элемент создает поле в точке A.

Элементарная индукция магнитного поля: $d \, \vec{B} = k \, ' \cdot \frac{[I \, \vec{dl} \cdot \vec{r}\,]}{r^3}$, \vec{r} - вектор от элементарного участка до точки А

$$k' = \frac{\mu_0}{4\pi} = 10^{-7} \frac{H}{A^2}$$
 - магнитная проницаемость, $\mu_0 = 4\pi \cdot 10^{-7} \frac{H}{A^2}$ - магнитная постоянная.

По принципу суперпозиции результирующее поле равно векторной сумме элементарных.

$$\vec{B} = \int d\vec{B}$$

Применение теоремы для прямого проводника

$$d\vec{B} = \frac{\mu \mu_0}{4\pi} \cdot \frac{[I \, dl \cdot \vec{r}]}{r^3} \rightarrow |d\vec{B}| = dB = \frac{\mu \mu_0}{4\pi} \cdot \frac{I \, dl \cdot \sin \alpha}{r^2}$$

$$r = \frac{R}{\sin \alpha} \qquad \xrightarrow{x} = \sin d\alpha \implies x \approx r \cdot d\alpha$$

$$|\vec{d}l| = \frac{r \cdot d\alpha}{\sin \alpha} \qquad dl = \frac{x}{\sin \alpha} = \frac{r \cdot d\alpha}{\sin \alpha}$$

$$dB = \frac{\mu \mu_0}{4\pi} \cdot \frac{I \sin \alpha}{R} d\alpha$$

$$B = \int_0^{\pi} dB = \frac{\mu \mu_0}{4\pi} \frac{I}{R} \cdot \int_0^{\pi} \sin \alpha \, d\alpha = \frac{\mu \mu_0}{2\pi} \frac{I}{R}$$

Применение теоремы для кругового проводника

$$|d\vec{B}| = dB = \frac{\mu \mu_0}{4 \pi} \cdot \frac{I \, dl \cdot \sin \alpha}{r^2}$$

$$B = \int_0^{2\pi R} dB = \frac{\mu \mu_0}{4 \pi} \frac{I}{R^2} \cdot \int_0^{2\pi R} dl = \frac{\mu \mu_0}{2} \frac{I}{R}$$

