Job Shop Scheduling

Praktische Arbeit

Problem Solving and Search in Al

Sommersemester 2017

Unser Programm

- Sprache: Python
- Zusätzliche Bibliotheken:
 - matplotlib.pyplot →
- → graphische Ausgabe

- Numpy

→ mathematische Berechnungen

Unser Programm

- Sprache: Python
- Zusätzliche Bibliotheken:
 - matplotlib.pyplot

→ graphische Ausgabe

- Numpy

→ mathematische Berechnungen

Repräsentation der Daten

```
Machine_count (int)
```

• [job₁, job₂, ...]

```
→ job; = [
    (machineNr, length),
    (machineNr, length), ...
]
```

[machine_job₁, machine_job₂, ...]

Algorithmus

```
→ machine_job; = [
(begin, length, jobNr),
(begin, length, jobNr),
...
]
```

ASP

- Modellieren der Problemstellung
- Subjobs in Jobs mit zusätzlichen Indizes
- Constraints:
 - nur ein Subjob zu einem Zeitpunkt
 - Subjob muss vor Nachfolger beendet werden
 - → vorheriger Index < nachfolgender Index</p>
 - Startzeitpunkt + Länge >= Startzeitpunkt des Folgejob

Evolutionary Algorithm

Evolutionary Algorithm

- Startpopulation: Mutationen aus sequentieller Lösung
- Mutation: Vertauschen zweier Subjobs oder Verschieben eines Jobs innerhalb der Maschin

- Variante 1: Länge der Lösung
- Variante 2: Aufsummierte Starts der Subjobs
 - → bei bisherigen Tests gleich gut

Demo

Probleme

ASP

Optimierung bzw. Minimierung von Lösungen

- Evolutionärer Algorithmus
- Performance
- Rekombination Funktion