# Digital surfaces in DGtal Topology module (since 0.5)

Jacques-Olivier Lachaud

DGtal Meeting, june 2012





UMR 5127

### Package Topology, available in DGtal 0.4

- 1. classical digital topology (à la Rosenfeld)
  - ightharpoonup Arbitrary adjacencies in  $\mathbb{Z}^n$ , but also in subdomains
  - Digital topology = couple of adjacencies (Rosenfeld)
  - ► Object = Topology + Set
  - Operations: neighborhoods, border, connectedness and connected components, decomposition into digital layers, simple points



Adjacencies

thinning in (6,26)

# Package Topology, available in DGtal 0.4

- 1. classical digital topology (à la Rosenfeld)
- 2. cubical cellular topology + algebraic topology
  - cells, adjacent and incident cells, faces and cofaces
  - signed cells, signed incidence, boundary operators





J.-O. Lachaud

# Package Topology, available in DGtal 0.4

- 1. classical digital topology (à la Rosenfeld)
- 2. cubical cellular topology + algebraic topology
- 3. digital surface topology (à la Herman)
  - surfels, surfel adjacency, surfel neighborhood
  - surface tracking (normal, fast), contour tracking in nD





Introduction Principles and uses

# Package Topology, new in DGtal 0.5

### Digital Surface

- surfels / signed n-1-cells
- + adjacencies between surfels
- kind of "dual" graph
- kind of manifold



Principles and uses

# Package Topology, new in DGtal 0.5

### Digital Surface

```
surfels / signed n-1-cells \bullet kind of "dual" graph \bullet adjacencies between surfels \bullet kind of manifold
```

- High-level DigitalSurface class for representing any kind of digital surface
- 2. Many container classes for digital surfaces
  - boundary of digital shape
  - boundary of implicitly defined shape
  - ▶ set of surfels
  - implicitly defined set of surfels
  - light containers
- 3. a DigitalSurface is a graph
- 4. a DigitalSurface is a combinatorial surface (with umbrellas)

### Direct applications

- marching cubes algorithm
- tracking implicit polynomial surfaces
- representing boundary of regions and frontier between regions
- breadth-first visiting on surfaces
- estimating normals on surfaces











# Necessary concepts and classes for digital surfaces One must choose

- the representation of cellular grid space: model of CCellularGridSpaceND
   e.g. KhalimskySpaceND
   N, int >, Z2i::KSpace, Z3i::KSpace
- ullet the kind of adjacency between surfels, SurfelAdjacency< N>
- the kind of surface container: model of CDigitalSurfaceContainer

### Concrete instanciations for digital surfaces

Then, the chosen types are instantiated. Here digital surface = boundary of two intersecting balls

### Using the digital surface (displays 518):

```
cout << "-⊔nb⊔surfels/vertices⊔=⊔"

<digSurf.size() << endl;
```

# How to use digital surfaces (I)

Just enumerating its elements...

```
QApplication application( argc, argv);
Viewer3D viewer; // QGL viewer
viewer.show();
for( MyDigSurf::ConstIterator it = digSurf.begin(),
itend = digSurf.end(); it != itend; ++it)
viewer << *it;
viewer << Viewer3D::updateDisplay;
return application.exec();
```



8/8

### Package description

### Should contain

- ullet classical digital topology  $ilde{A}$  la Rosenfeld
- cartesian cellular topology
- ullet digital surface topology  $ilde{A}$   $\,\,$   $\,$   $\,$   $\,$   $\,$   $\,$   $\,$   $\,$  Herman
- must be the base block of geometric algorithms

### Examples

- adjacencies, connected components, simple points, thinning
- cells, boundary operators, incidence, opening, closing
- contours, surfel adjacency, surface tracking
- topological invariants

#### Location

- {DGtal}/src/DGtal/topology
- {DGtal}/src/DGtal/helpers
- {DGtal}/tests/topology