

CONFIGURABLE NEUROMORPHIC PROCESSOR ARCHITECTURE FOR SPIKING NEURAL NETWORKS

ME420 -MECHANICAL ENGINEERING RESEARCH PROJECT -PROGRESS EVALUATION 2023

INTRODUCTION

In our quest to harness the extraordinary potential of Spiking Neural Networks (SNNs) for artificial intelligence applications, this research project introduces a Configurable Neuromorphic Processor architecture. Tailored for SNNs, our design prioritizes flexibility, configurability, and power efficiency, providing a dynamic framework for adapting hardware to diverse neural network models. Utilizing a Network on Chip (NoC) driven by RISC-V cores, our approach optimizes communication and data flow, enhancing both performance and energy efficiency.

NEUROMORPHIC COMPUTING

Approach to computing that uses hardware and software inspired by the principles of the human brain

- Energy efficiency
- Fast Processing
- Robustness
- Efficient use of memory

OUR APPROACH

- Network on chip Architecture
- RISC V Pipelined Corers
- Energy efficiency
- Fast Processing
- Robustness
- Efficient use of memory
- Configurable and Flexible
- Easy to uses

METHODOLOGY

- Multiple numbers of neurons are assigned to each RISCV processing core within the neural network. These neurons function in an event-driven manner, mirroring the processes found in the human brain.
- In the neural network, these neurons work collectively to process information efficiently,

PROGRASS SO FAR

- Each node consist with Processing element, Router Network interface and local memory
- At first stage RISC V CPU was implemented
- And Started implementing the NoC

IMPLMENTATION

I implemented the RISC-V datapath and all associated components using Verilog HDL. I verified the functionality through rigorous testing with test benches and subsequently deployed the design onto an FPGA for hardware execution. Additionally, I created a desktop application to effectively demonstrate the CPU and the Network-on-Chip (NoC) in action.

R.M.T.N.K Rathnayaka

E/17/286

Supervised by

Dr Isuru Nawinne and J.C Rajaguru