Week	Lecture Dates		Lecture topic	Assessment
	Tue session	Thu session		(Due dates)
1	3/9/2024	5/9/2024	Introduction	
2	10/9	12/9	Logic and Proof	
3	17/9	19/9	Basic Structures	
4	24/9	26/9	Algorithms	
5	1/10 P.H.	3/10	Induction and Recurrsion	Assignments
	0/10	10/10	Cauntina	and their duedates: Pleaserefer to
6	8/10	10/10	Counting	
7	15/10	17/10	Graphs I	
8	22/10	24/10	Graphs II	
9	29/10	31/10	Graphs III: Flow Networks	announcement
				on blackboard
10	5/11	7/11	Trees I	
11	12/11	14/11	Trees II	
12	19/11	21/11	Boolean Algebra and	
			Circuits	
13	26/11	28/11	Revision	

Assessment

• Continuous Assessment: 60%

• To be announced soon

• Final Exam*: 40%

Final exam

Coursework (60%)

Assignments (30%)

- Assignment 1 (15%)
- Assignment 2 (15%)
- Participation (5%): could be in form of e.g. pre-class activities, and/or in-class exercises
- Mid-term Test (25%)

Week6: Assignment 1 (Due: 13 Oct 2024, 23:59)

Week 8: Mid-term test: 26 Oct 2024, 14:00-15:00, @Z207

Week11: Assignment 2 (Due: 17 Nov 2024, 23:59)

Quantifier 量词 ∃,∀

Proposition 有对错的句子。

Lecture 3

Cartesian product

序列从 1 开始

increasing / decreasing 都是非严格的

binary relation

Relation on a set (二自己自己: Reflexive自己 对称 传递

等价 equivalence relation: 以上三个都满足

equivalence class: 分成每类 是个划分

部分顺序 Partial orderings:不对称 剩下两个满足

Hasse diagram 哈斯图 有序片续集

Lecture 5 归纳

Strong induction ->> 就需要前缀对就行。

Recursive

Lecture 6 计数

Combinatorial proof 组合证明

The Binomial theorem 二项式定理

The Principle of Inclusion-Exclusion 容斥原理

Lecture 7 图

isomorphic 同构

Vertex connectivity 点联通度 最小的点去掉使得不联通

Cut Vertex 割点 - Cut Edge 割边

Lecture 8

Euler paths Circuits 路径 / 回路

Ore theorem 任意不相邻的点对都有度数加起来 $\geq n$ 就会有哈密顿回路

平面图

区域 f = e - v + 1 (+1包不包含复现多)

- v > 3,边数 < 3v 6
- 如果点数 > 3 并且没有 3 元环, 小于等于 2v 4
- 度数 < 5 的点一定能找到

图染色

chromatic number χ 最小染色数

Lecture 9 图 3

Lecture 10 Tree I

level: 到根距离

Balanced

post order

Lecture 11 Tree II

circuit 回路

Lecture 12 Boolean Algebra & Circuits

1+1=1,取反优先级高 (注意布尔表达式 01,Logic 最好 TF..)

幂等律 (idempotent law) :自己加自己乘 = 自己

Domination laws: 乘 0 或者 + 1, 自己没用了。

Double complement law: 两次取反

Associative laws: 结合律

De Morgan's laws: 一起补裂开分开补换

Absorption laws 吸收 (y) 没用了 $x + x \cdot y$, x * (x + y)

duality:

swap 0,1 和 +,*, 注意顺序不能变(可以先加括号

Number of different Boolean functions:

定义两个函数本质相同就是对于任意输入输出都一样的两个函数(他没说)这样 2^n 种变量,每一种我可以选择 0,1 作为输出,所以是 2^{2^n}