P3DFFT 库初始化

任广智

December 13, 2019

实空间和谱空间的转换

$$(N_x, \frac{N_y}{M_1}, \frac{N_z}{M_2}) \sim (\frac{N_x + 2}{2M_1}, \frac{N_y}{M_2}, N_z)$$
 (1)

转换到我们定义的变量即为

$$(N_z, \frac{N_y}{M_2}, \frac{N_x}{M_1}) \sim (\frac{N_z + 2}{2M_2}, \frac{N_y}{M_1}, N_x)$$
 (2)

所以,单进程下,当我们定义实空间网格数为 (64,256,256) 时,相应的谱空间网格数应该为 (33,256,256) 为了方便比较,我们定义谱空间网格数为 (64,256,256),则相应的实空间网格数为 (126,256,256)。可以测试输出:

rank=	0 is	alive.		nrint* '
		X	у	Z
real space	:	256	256	126
spectral space	:	256	256	64

Figure 1:

那么考虑 MPI 并行化之后的情况,首先考虑 2 核的情况。假如系统中给出的并行方案是沿 x 方向并行,则预测实空间输出为 (128,256,126),而谱空间输出为 (256,128,64)。测试输出:

rank= — — — rank= © En.py		 aliv aliv	200	J. G.	or outline line
h5_con.py		X		у	use z od_gri
real space		128		256	use 126 d_con
spectral space		256		128	use 64 d_mpi
		X		У	Z
real 🗋 mspace		128		256	imp 126 it no
spectral space	niod	256	139	128	real 64 ind=8

Figure 2:

可以看到两个进程的存在,而且网格划分符合预期。我这里是从谱空间开始的,即并行化方案根据 (y-z) 的网格来给出。所以这里两个进程实际上为谱空间中 y 方向上的网格划分,即 (2) 式中 $M_1=2, M_2=1$,所以,当转换到实空间的时候,就变成了在 x 方向上的网格划分。这验证了 (2) 式的正确性。

进一步地,定义实空间中 MPI 二维并行化之后的网格数为 (N_z,N_y,p,N_x,p) ,谱空间中并行化的方案为 (K_z,p,K_y,p,N_x) ,我们可以通过 8 核运算来验证之前的结论。

Figure 3:

可以看出,实空间谱空间的网格划分均符合我们的预期。

需要注意的是,以上的例子都是无论在实空间还是谱空间中,经过划分的网格大小在每个进程当中都是一样的,当出现总网格数不能整除这个维度上的进程数的时候,P3DFFT 库会自动采取另外的划分方案,即进程中的网格数不一定一致,使用时要注意。

所以,回到 P3DFFT 库的初始化上,初始如果在实空间采取 2 维 MPI 的并行方案,则 dim_xy(0)为径向进程数,dim_xy(1)为极向进程数,则 P3DFFT 库的初始化应该为

当在谱空间采用 2 维并行化方案时,则 dim_yz 代表极向和环向的进程数,则 P3DFFT 库初始化应 该为:

在上述两进程的例子中,如果我们使用了错误的初始化,即进程数在两个维度上给反的情况时,则上述分析不一定能成立,除非 M1=M2。