A Distributed Greedy Heuristic for Computing Voronoi Tessellations With Applications Towards Peer-to-Peer Networks

Brendan Benshoof Andrew Rosen
Anu G. Bourgeois Robert W. Harrison
Department of Computer Science, Georgia State University

May 12, 2015

ckground DGVH Experiments Conclusion

Outline

Background

Motivation Related Work

DGVH

Our Heuristic Peer Management Algorithm Analysis

Experiments

Conclusion

Distributed Hash Tables

Abstractly, a DHT is a mechanism for maintaining a large state in a decentralized network.

Experiments

- ▶ In practice, the state is a large number of key, value records.
- A Distributed hash table assigns those records to servers and routes request for those records to those servers
- Current incarnations of Distributed hash tables assign servers and records locations in an arbitrary metric space.
- DHTs currently use a variety metric spaces.

Background

- ▶ P2P file sharing is by far the most prominent use of DHTs. The most well-known application is BitTorrent [?].
- Distributed Domain Name Systems (DNS) have been built upon DHTs [?] [?]. Distributed DNSs are much more robust that DNS to orchestrated attacks, but otherwise require more overhead.
- Distributed machine learning [?].
- ▶ Many botnets are now P2P based and built using well established DHTs [?]. This is because the decentralized nature of P2P systems means there's no single vulnerable location in the botnet

Extant Varieties of DHT

- Ring Based DHTs
 - Chord
 - Pastry
 - Tapestry
- ► Tree Based DHTs
 - CAN
 - Kademlia

The different topologies DHTs utilize present optimization tradeoffs (lookup latency, number of lookup hops, network robustness, availability, processing overhead)

Conclusion

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶