AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the subject application:

Listing of Claims

- (Original) A method comprising:
- 2 in response to a data read request for requested data:
- allocating an area of memory to the requested data, the memory
- area being divided into at least one memory chunk;
- 5 writing a seed value to one or more of the at least one memory
- 6 chunk; and
- 7 in response to completion of at least one write transaction
- 8 corresponding to the data read request, for each of the one
- 9 or more memory chunks having a seed value, validating the
- integrity of each of the at least one write transaction based,
- at least in part, on the seed value.
 - 2. (Currently Amended) The method of claim 1, wherein said validating the
- integrity of a given one of the at least one write transaction comprises, for
- 3 a given memory chunk:
- 4 determining if the memory chunk includes the seed value; and

5		if the memory chunk includes the seed value, determining that <u>a</u>
6		transmission error occurred the given write transaction is invalid.
1	3.	(Original) The method of claim 2, wherein said determining if the memory
2		chunk includes the seed value comprises determining if the memory
3		chunk includes the seed value at specified bits of the memory chunk.
1	4.	(Currently Amended) The method of claim 2, additionally comprising
2		modifying the seed value if it is determined that a transmission error
3		occurred the write transaction is determined to be invalid.
1,	5 .	(Original) The method of claim 1, wherein the size of the seed value is
2		based on a specified error rate of the device.
1	6.	(Original) An apparatus comprising:
2		circuitry capable of responding to a data read request for requested data
3		by:
4		allocating an area of memory to the requested data, the memory
5		area being divided into at least one memory chunk;
6		writing a seed value to one or more of the at least one memory
7		chunk; and
8		responding to completion of at least one write transaction
9		corresponding to the data read request by, for each of the
10		one or more memory chunks having a seed value, validating
Γi		the integrity of each of the at least one write transaction

12

based,	at	least	in	part,	on	the	seed	value.
24044				,				

- 7. (Currently Amended) The apparatus of claim 6, wherein said circuitry
 2 capable of validating the integrity of a given one of the at least one write
 3 transaction is capable of, for a given memory chunk:
- determining if the memory chunk includes the seed value; and
- if the memory chunk includes the seed value, determining that <u>a</u>

 transmission error occurred the given write transaction is invalid.
- 1 8. (Original) The apparatus of claim 7, wherein said circuitry capable of
 2 determining if the memory chunk includes the seed value is capable of
 3 determining if the memory chunk includes the seed value at specified bits
 4 of the memory chunk.
- 9. (Currently Amended) The apparatus of claim 7, wherein said circuitry is additionally capable of modifying the seed value if it is determined that a transmission error occurred the write transaction is determined to be invalid.
- 1 10. (Original) The apparatus of claim 6, wherein the size of the seed value is 2 based on a specified error rate of the device.
- 1 11. (Currently Amended) A system comprising:
- a PCI-E (Peripheral Component Interconnect Enhanced) (Peripheral

 Component Interconnect Express) bus;

Docket No.: P18323 Application No.: 10/799.964

4		a buffer communicatively coupled to the PCI-E bus, the buffer being
5		divided into at least one memory chunk; and
б		circuitry capable of responding to a data read request for requested data
7		by:
8		allocating the buffer to the requested data, the buffer being divided
9		into at least one memory chunk;
10		writing a seed value to one or more of the at least one memory
11		chunk; and
12		responding to completion of at least one write transaction
13		corresponding to the data read request by, for each of the
14		one or more memory chunks having a seed value, validating
15		the integrity of each of the at least one write transaction
16		based, at least in part, on the seed value.
1	12.	(Currently Amended) The system of claim 11, wherein said circuitry
2		capable of validating the integrity of a given one of the at least one write
3		transaction is capable of, for a given memory chunk:
4		determining if the memory chunk includes the seed value; and
5		if the memory chunk includes the seed value, determining that \underline{a}
6		transmission error occurred the given write transaction is invalid.

1	13.	(Original) The system of claim 12, wherein said circuitry capable of
2		determining if the memory chunk includes the seed value is capable of
3		determining if the memory chunk includes the seed value at specified bits
4		of the memory chunk.
1	14.	(Currently Amended) The system of claim 12, wherein said circuitry is
2		additionally capable of modifying the seed value if it is determined that a
3		transmission error occurred the write transaction is determined to be
4		invalid.
1	15.	(Original) The system of claim 11, wherein the size of the seed value is
2		based on a specified error rate of the device.
1	16.	(Original) An article comprising a machine-readable medium having
2		machine-accessible instructions, the instructions when executed by a
3		machine, result in the following:
4		responding to a data read request for requested data by:
5		allocating an area of memory to the requested data, the memory
6		area being divided into at least one memory chunk;
7		writing a seed value to one or more of the at least one memory
8		chunk; and
9		responding to completion of at least one write transaction
0		corresponding to the data read request by, for each of the
1		one or more memory chunks having a seed value, validating

12		the integrity of each of the at least one write transaction
13		based, at least in part, on the seed value.
1	17.	(Currently Amended) The article of claim 16, wherein said instructions that
2		result in validating the integrity of a given one of the at least one write
3		transaction comprise instructions that result in, for a given memory chunk:
4		determining if the memory chunk includes the seed value; and
,5		if the memory chunk includes the seed value, determining that a
6		transmission error occurred the given write transaction is invalid.
1	18.	(Original) The article of claim 17, wherein the instructions that result in
2		determining if the memory chunk includes the seed value comprise
3		instructions that result in determining if the memory chunk includes the
4		seed value at specified bits of the memory chunk.
1	19.	(Currently Amended) The article of claim 17, additionally comprising
2		instructions that result in modifying the seed value if it is determined that a
3		transmission error occurred the write transaction is determined to be
4		invalid.
1	20.	(Original) The article of claim 16, wherein the size of the seed value is
2		based on a specified error rate of the device.