AWARD NUMBER: W81XWH-14-1-0376

TITLE: Acute Pancreatitis as a Model to Predict Transition of Systemic Inflammation to Organ Failure in Trauma and Critical Illiness

PRINCIPAL INVESTIGATOR: David C. Whitcomb

CONTRACTING ORGANIZATION: UNIVERSITY OF PITTSBURGH, THE PITTSBURGH, PA 15213-3320

REPORT DATE: October 2016

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE	2. REPORT TYPE	3. DATES COVERED
October 2016	Annual	30 Sep 2015 - 29 Sep 2016
A TITLE AND SUBTITLE Acute Pancreatitis as a Model to	5a. CONTRACT NUMBER	
Inflammation to Organ Failure in	n Trauma and Critical Illiness	5b. GRANT NUMBER
č		W81XWH-14-1-0376
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
David C. Whitcomb and	Annette S. Wilson	
		5e. TASK NUMBER
E-Mail: whitcomb@pitt.edu ar	nd aswilson@pitt.edu	5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(,	8. PERFORMING ORGANIZATION REPORT
UNIVERSITY OF PITTSBURGH,	THE	NUMBER
3520 FIFTH AVENUE PITTSBURGH, PA 15213-3320		
FIIISBURGH, FA 13213-3320		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
U.S. Army Medical Research and M	ateriel Command	
Fort Detrick, Maryland 21702-5012		11. SPONSOR/MONITOR'S REPORT
, , , , , , , , , , , , , , , , , , ,		NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Trauma, extensive burns, bacterial infections, and acute pancreatitis (AP) are common conditions of tissue injury and immune system activation that can result in the systemic inflammatory response syndrome (SIRS). Surprisingly, about half of the patients with SIRS quickly recover, while the others develop a multiorgan dysfunction syndrome (MODS). SIRS and MODS do not occur immediately: SIRS evolves over a 4-12 hour period, while MODS evolves over 12-24 hours. Vascular leak syndrome (VLS) is a critical component of the transition from SIRS to MODS. Understanding the mechanism by which SIRS triggers VLS and progresses to MODS is critical to correctly model disease course thereby aiding in treatment of patients. In this report, we analyzed the serum samples for proteins that will help to understand a mechanism for cytotoxicity to endothelial cells. The results demonstrate elevated cytokine and Ang-2 levels in serum samples from patients with severe AP. Also, initial mass spectrometry findings show potential biomarkers that will be explored.

15. SUBJECT TERMS

Pancreatitis, systemic, inflammation, vascular leak, multiple organ dysfunction, biomarkers, endothelium, viability

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON USAMRMC
a. REPORT	b. ABSTRACT	c. THIS PAGE	Unclassified	21	19b. TELEPHONE NUMBER (include area code)
Unclassified	Unclassified	Unclassified	Cholacomoa	21	

TABLE OF CONTENTS

		<u>Page</u>
1.	Introduction	4
2.	Keywords	4
3.	Accomplishments	4
4.	Impact	12
5.	Changes/Problems	13
6.	Products	15
7.	Participants & Other Collaborating Organizations	18
8.	Special Reporting Requirements	19
9.	Appendices	20

1. INTRODUCTION: Narrative that briefly (one paragraph) describes the subject, purpose and scope of the research.

The problem being addressed is the unknown mechanism(s) in patients with acute pancreatitis, multiple trauma, severe burn, or sepsis responsible for the unpredictable progression of systemic inflammation to the vascular leak syndrome (VLS), which in turn leads to multi-organ dysfunction syndrome (MODS). Our experimental approach is designed to understand and predict progression from systemic inflammation to MODS. The primary observation is that serum or plasma from patients with severe acute pancreatitis (AP) or trauma with VLS is toxic to endothelial cells.

2. KEYWORDS: Provide a brief list of keywords (limit to 20 words).

Pancreatitis, systemic, inflammation, vascular leak, multiple organ dysfunction, biomarkers, endothelium, viability

3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain prior written approval from the awarding agency grants official whenever there are significant changes in the project or its direction.

What were the major goals of the project?

List the major goals of the project as stated in the approved SOW. If the application listed milestones/target dates for important activities or phases of the project, identify these dates and show actual completion dates or the percentage of completion.

- **Aim 1.** Define the clinical setting in which SIRS progresses, and fails to progress, to VLS and MODS using molecular and clinical measures. (months 4-36)
- Aim 2. Determine the effect of serum from patients with SIRS \pm VLS as well as Ang-2 and other target molecules (identified in Aim 3) on human organ-derived endothelial cells in terms of morphology, gene activation, and mode of cell death. (months 4-36)
- **Aim 3.** Identify serum molecule(s) that best predict specific in vitro changes in endothelial cells (Aim 2) as well as which molecule(s) and endothelial cell changes best predict clinical progression to MODS (Aim 1). (months 6-36)

What was accomplished under these goals?

For this reporting period describe: 1) major activities; 2) specific objectives; 3) significant results or key outcomes, including major findings, developments, or conclusions (both positive and negative); and/or 4) other achievements. Include a discussion of stated goals not met. Description shall include pertinent data and graphs in sufficient detail to explain any significant results achieved. A succinct description of the methodology used shall be provided. As the project progresses to completion, the emphasis in reporting in this section should shift from reporting activities to reporting accomplishments.

The *first specific objective* under **Aim 1** is to consent and enroll subjects into the study. There were 8 subjects enrolled into the study year 2. There were a total of 11 subjects in the study at the end of year 2. The *second objective* is to collect demographics, physiologic data, and pertinent medical information related to disease. The information from case report forms were entered into a secure database using Research Electronic Database Capture (REDCap) that can readily be converted into tabular format (Tables 1 and 2). This allows us to easily pull de-identified data compiled from case report forms and medical records for evaluation and statistical comparisons.

Table 1 & 2. Clinical Information (select)

Record ID	Age	Gender	Etiology	BMI	Temp at admission	Heart rate	Resp rate at admission	Pain score at	WBC at admission
					(Celcius)	admission (beats/min)	(breaths/min)	admission	(cells/µl)
001	68	Male	Idiopathic	33.4	36.8	102	20		16,000
002	52	Female	Idiopathic	40.9	37	100	24	10	18,100
003	39	Male	Hypertriglyceridemia	37.0	36.7	95	20	10	8,200
004	68	Male	Idiopathic	36.1	37	117	16	9	26,200
005	24	Male	Hypertriglyceridemia	32.3	36.9	123	18	8	21,500
006	48	Male	Alcoholic	23.8	36.7	102	18	10	15,100
007	79	Female	Gallstones	33.3	35.1	91	21	10	15,400
800	25	Female	Gallstones	29.9	37	72	19	10	15,400
009	37	Male	Alcoholic	23.3	36.6	93	18	10	15,600

Record ID	Hematocrit (%) at admission	BUN (mg/dL) at admission	Creatinine (mg/dL) at admission	Glucose (mg/dL) at admission	AST (U/L) at admission	Pancreatic necrosis	SIRS score at admission	Ranson score at admission	Apache II score
001	48.3	38	4.1	223	457	Yes	2	3	13
002	47.9	17	0.7	362	17	Yes	3	2	5
003	47.1	9.2	0.7	384	27	Yes	1	1	2
004	49.8	24	1.6	223	57	Yes	2	3	15
005	56.9	9	0.5	165	23	No	2	1	10
006	40.6	11	0.7	100	16	Yes	2	0	3
007	48.3	37	2	241	472	No	4	3	16
008	42.8	8	0.8	124	400	No	1	1	3
009	42.1	29	0.9	122	29	No	2	0	4

Pain score -1 - 10 (10 is worst); SIRS score -0 to 4 depending on number of criteria met; Ranson score -0 to 5 depending on number of criteria met; Apache II scores -0 to 16 depending on criteria met

The *third objective* of Aim 1 is to analyze the serum samples for candidate toxic factors and determine if they correlate with severity. Protein measurements were performed using the Meso Scale Discovery (MSD) technology. MSD technology enables measurement of biomarker levels using electrochemiluminescense detection. This process is initiated at carbon electrodes located in the bottom of the microplates. Biological reagents can be attached to the carbon simply by passive adsorption and retain a high level of biological activity. Light at 620 nm is emitted by labels following electrochemical stimulation. Multiple excitation cycles amplify the signal to enhance detection and improve sensitivity. Cytokines well-known to be involved in the SIRS early in AP were measured including interleukin-1 β (IL-1 β), interleukin-6 (IL-6), interleukin-8 (IL-8), Tumor Necrosis Factor- α (TNF- α), chemokine Monocyte Chemotactic Protein-1 (MCP-1), and the protein angiopoietin 2 (Ang-2). Briefly, serum samples and appropriate reagents were a d d e d t o 96-well plates. Protein concentrations were measured by a MSD Sector Imager 6000. All samples were analyzed in duplicates with a maximum tolerated coefficient of variation of 20%. Table 3 shows the specific protein concentrations in each sample. The values that are colored red indicate amounts outside of the normal ranges for each protein.

In addition to the analysis of cytokines, chemokines, and Ang-2, activin was analyzed in acute pancreatitis and matching control samples in the lab of Dr. Barbara Jung at University of Illinois Chicago. Activin is a cytokine that is a member of the TGF- β family. After ligand binding to its

type II receptors (AVCR2A or ACVR2B) activin type I receptors (ACVR1 or ACVR1B) are activated through dimerization and phosphorylation, which subsequently leads to the activation of canonical SMAD- dependent and non-canonical SMAD-independent pathways. In inflammation, activin has been reported to have both pro- and anti-inflammatory functions ex vivo, resulting in either up or down regulation of a number of key inflammatory cytokines, including IL-6, IL-1β, or IL-10 in various human and murine cell types. In vivo, activin's reported actions are primarily pro-inflammatory. It increases very early in the inflammatory response and plays a central role in such diverse inflammatory conditions as IBD, asthma and viral infections. Activin concentrations were measured in a total of 30 cases with 10 cases of mild, moderate and severe pancreatitis respectively (as per revised Atlanta criteria) and 30 healthy controls. The mild and moderate cases were

Table 3. MSD Analyses of Cytokines/Chemokines and Angiopoietin 2

Record ID	Sample ID	Day of Pain	IL-1β (pg/ml)	IL-6 (pg/ml)	IL-8 (pg/ml)	TNF-α (pg/ml)	MCP-1 (pg/ml)	Ang-2 (pg/ml)
DOD001	DD900	1	19.57	4,938.88	8,217.97	8,217.97	28.37	9,558.39
DOD001	DD800	2	6.08	4,777.34	1,913.78	1,913.78	14.32	3,668.20
DOD001	DD1000	3	2.72	1,807.01	691.87	691.87	6.47	3,470.63
DOD001	DD600	4	0.61	258.52	105.43	105.43	5.16	1,951.39
DOD001	DD700	5	0.64	142.79	75.49	75.49	3.85	1,661.93
DOD001	DD500	6	0.67	451.95	78.21	78.21	4.14	1,811.51
DOD002	DD2000	1	0.29	24.75	28.48	28.48	2.38	410.56
DOD002	DD1900	2	0.20	15.01	19.42	19.42	1.85	318.60
DOD002	DD1800	3	0.25	5.53	38.72	38.72	2.13	259.44
DOD002	DD1700	4	0.12	4.49	20.86	20.86	2.56	471.60
DOD003	DD1500	1	0.72	76.18	43.63	43.63	1.75	1,100.93
DOD003	DD1400	2	0.92	103.98	27.98	27.98	1.38	1,025.82
DOD003	DD1300	3	0.57	35.37	33.92	33.92	2.15	540.97
DOD003	DD1200	4	1.14	81.06	102.06	102.06	3.39	710.20
DOD003	DD3200	5	1.21	69.87	98.40	98.40	3.12	766.57
DOD003	DD2200	6	0.97	73.29	81.56	81.56	3.20	541.84
DOD004	DD2400	1	2.24	148.26	62.56	62.56	2.32	702.49
DOD004	DD2300	2	1.30	231.22	61.27	61.27	2.53	656.86
DOD004	DD3000	4	0.94	104.21	35.02	35.02	2.27	510.11
DOD004	DD2700	5	0.69	54.11	41.14	41.14	2.45	515.40
DOD004	DD2800	7	1.25	44.41	43.03	43.03	2.77	460.93
DOD005	DD3300	3	0.42	9.41	5.85	5.85	0.99	NaN
DOD005	DD3700	4	0.36	7.01	6.39	6.39	1.96	229.87
DOD005	DD3800	5	0.44	8.07	5.88	5.88	2.72	309.56
DOD005	DD3900	7	0.22	2.76	9.86	9.86	3.74	266.30
DOD006	DD300	1	0.38	16.27	10.85	10.85	1.92	420.46
DOD006	DD4300	2	0.54	56.23	13.90	13.90	1.56	323.53
DOD006	DD3600	3	0.50	180.51	37.52	37.52	2.08	456.64
DOD006	DD3400	4	3.12	74.84	28.17	28.17	1.97	418.94
DOD006	DD4200	5	0.18	48.76	35.16	35.16	2.67	644.44
DOD006	DD4000	6	0.63	15.95	47.15	47.15	3.28	605.84
DOD006	DD5200	7	0.66	26.33	16.21	16.21	2.17	394.66
DOD007	DD100	1	0.42	32.62	58.68	58.68	4.02	866.78
DOD007	DD3500	2	2.60	320.86	187.61	187.61	14.34	1,103.75
DOD007	DD2600	3	1.13	323.82	113.40	113.40	8.72	950.52
DOD007	DD5400	4	0.66	101.70	62.39	62.39	4.23	726.21
DOD007	DD4800	5	0.82	60.04	49.50	49.50	4.27	615.29
DOD007	DD4600	6	1.12	42.00	46.26	46.26	4.34	523.76
DOD008	DD4500	2						
DOD009	DD5700	2	0.15	59.66	13.68	13.68	1.59	563.53
DOD009	DD5000	3	0.16	37.09	8.06	8.06	1.92	341.74
DOD009	DD5900	4						

Normal levels reported in the literature:

IL-1 β - 0.7-1.1 pg/ml

IL-6 - 1.0-4.8 pg/ml

IL-8 - 5.0-11.3 pg/ml

 $TNF-\alpha - 0.6-7.1 \text{ pg/ml}$

MCP-1 - 5.0-10.4 pg/ml

Ang-2 $- 1,075 \pm 228.2$ pg/ml

obtained from the retrospective cohort study - Pancreatitis-associated Risk of Organ Failure or PROOF. The severe cases are those enrolled in this study. Serum was collected as close to hospital admission as possible, and on each of two subsequent days. Activin from human samples was measured utilizing the activin A Quantikine ELISA (R&D Systems) following the manufacturer's instructions. All samples were run in duplicates after a 1:4 dilution in PBS. Overall, serum activin levels were increased in acute pancreatitis samples when compared to controls (0.965 ng/ml versus 0.462 ng/ml, p<0.0001) (Figure 1A). When grouped by severity, we observed an increase in moderate and severe AP, but not in mild disease (p<0.0001 for difference in between groups, p<0.05 for moderate versus controls, p<0.0001 for severe versus controls, mild versus controls n.s.) (figure 1). This effect was seen both in samples at admission and when comparing all samples from AP cases. Activin levels from subsequent blood draws were not statistically different from first activin measurements. Importantly, high activin levels at admission were predictive of a longer hospital stay when compared to intermediate or low activin levels (median 26 versus 8 versus 5 days, p<0.05, figure 2) and even more notably longer stay in the intensive care unit (ICU) (median 23 versus 0 versus 0 days, p<0.05, figure 1). Also, activin levels at admission displayed a good distinguishing power between mild and severe disease with an AUC of .8200 (figure 1). At the time of the second blood draw, the predictive power was even higher with an AUC of 0.8900.

Figure 1: Activin is increased in moderate and severe AP and is correlated with worse prognosis: A)

Activin is increased in samples from patients suffering from AP when compared to samples from healthy controls (upper left panel, p<0.05). B) Stratification by severity demonstrates that activin is specifically upregulated in moderate and severe AP, but not in mild AP (upper right panel). C) Furthermore, activin levels at admission are predictive for longer ICU stay (lower left panel). D) ROC analysis demonstrates that serum activin at admission is a good marker for distinguishing cases which subsequently develop mild or severe AP (lower right panel AUC 0.820)

Figure 2: Activin levels at admission may be indicator of length of hospital stay: Higher activin levels were predictive of longer hospital stay according to small subset of cases.

The *fourth objective* was to perform proteomic analyses of the serum samples. Methods for the global determination of proteins in serum samples collected from patients diagnosed with severe acute pancreatitis enrolled in the study were being developed and tested. A serum sample from a normal healthy volunteer and subject DD002 (when screened for toxicity to the vascular endothelial cells using Molecular Probes Live/Dead Viability/Toxicity Assay (Life Technologies) showed low cell viability) were first fractionated by gel filtration chromatography on a column packed with Superdex 200 (GE Healthcare) (1.0 cm x 15 cm) using a low pressure chromatography system (Biologic LP System, Bio-Rad), UV wavelength 280 nm. The mobile phase contained 50 mM sodium phosphate and 0.15 M sodium chloride buffer, pH 7.5. This chromatography method prevents the denaturation of the proteins and allows an increased resolution of the serum protein separation leading to more robust cell culture viability experiments using the fractions collected from the chromatography column (figure 3). A more targeted mass spectrometric analysis will then be possible utilizing these "active" fractions. The peaks from the column were collected using a fraction collector and the eluted fractions dried using a Labconco CentriVap Centrifugal Concentrator. The fractions were then reconstituted in 1 ml of water and total protein in each fraction quantitated using the BCA Protein Assay (Thermo Fisher Scientific/Pierce). One ug of total protein per peak was then loaded and run on a 4-12% Bis-Tris SDS-PAGE mini-gel (Thermo Fisher Scientific) at 150V using an Invitrogen XCell SureLock Electrophoresis System to visualize the potential number of proteins in each peak. The gel was stained with SimplyBlue Safe Stain (Thermo Fisher Scientific) and specific bands of higher molecular weight excised from the gel. The samples were digested with trypsin and tryptic peptides analyzed by nano reverse phase HPLC interfaced with a mass spectrometer at the University of Pittsburgh Biomedical Mass Spectrometry Center. The tandem mass spectra (MS/MS) were analyzed by the MASCOT (Matrix Science) search engine and identified peptides and proteins further statistically validated with the Scaffold software.

Figure 3: Separation of samples on a Superdex 200 packed column (1.0 cm x 15 cm). A) DD002, B) normal healthy volunteer, and C) Gel Filtration Standard (Thyroglobulin (bovine) = 674,000 daltons, γ-globulin (bovine) = 158,000 daltons, Ovalbumin (chicken) = 44,000 daltons, Myoglobin (horse) = 17,000 daltons, Vitamin $B_{12} = 1,350$ daltons).

Figure 4: Separation of proteins on 4-12% Bis-Tris SDS-PAGE mini-gel showing the protein bands for the corresponding chromatography peaks. First column contains the molecular weight ladder with corresponding Kda to the left. Bands outlined with black boxes were excised for mass spectrometric analysis.

DATABASE SEARCHING-- Tandem mass spectra (MS/MS) were extracted. Charge state deconvolution and deisotoping were not performed. All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 2.4.1). Mascot was set up to search the Uniprot Human BGAL PhosB 20131212 database (unknown version, 88,505 entries) assuming the digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance of 0.80 Da and a parent ion tolerance of 1.4 Da. Carbamidomethyl of cysteine was specified in Mascot as a fixed modification. Oxidation of methionine and acetyl of the n-terminus were specified in Mascot as variable modifications. CRITERIA FOR PROTEIN IDENTIFICATION-- Scaffold (version Scaffold 4.4.8, Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications. Peptide identifications were accepted if they could be established at greater than 90.0% probability by the Peptide Prophet algorithm (Keller, A et al Anal. Chem. 2002;74(20):5383-92). Protein identifications were accepted if they could be established at greater than 99.0% probability and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii, Al et al Anal. Chem. 2003;75(17):4646-58). Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Some proteins identified that are unique to the SAP patient serum in gel bands 1, 2 and 3 (figure 4) are alpha-1-antichymotrypsin, ceruloplasmin, desmoglein 1, hornerin, desmoplakin, carboxypeptidase N subunit, suprabasin. In another batch of serum samples, normal, mild AP, and severe AP serum samples were fractionated and analyzed by mass spectrometry. The gel separations are shown in Figures 5 (low MWCO) and 6 (high MWCO). Bands in Figure 6 were excised and analyzed. Unique proteins to the severe AP serum were dermcidin (MW 11KDa), thioredoxin (MW 12KDa), caspase-14 (28 KDa). Proteins not

Figure 5: Separation of proteins on 4-12% Bis-Tris SDS-PAGE mini-gel showing the protein bands for the serum fractions < 100 KDa. Total amount of protein added to each lane was 1 μg. First lane contains the molecular weight ladder with corresponding KDa to the left. The bands at the approximate molecular weight of 50 KDa may correspond with albumin (66 KDa) and Ang-2 (66 KD).

Figure 6: Separation of proteins on 3-8% Tris-Acetate SDS-PAGE mini-gel showing protein bands for MWCO ≥ 300 KDa and MWCO of 100-300 KDa. First lane contains molecular weight ladder with corresponding KDa to the left. Bands in boxes have been excised from the gels and submitted to the University of Pittsburgh Biomedical Mass Spectrometry Center for analysis.

found in the normal serum include desmoplakin (332 KDa), hornerin (282 KDa), desmoglein (114 KDa), and annexin A2 (39 KDa). These are potential biomarkers.

The specific objective under **Aim 2** was to isolate and characterize human organ-specific endothelial cells for use in the project. This will be an important ongoing process throughout the project in order to meet the goals of this study. Human intestinal microvascular endothelial cells (HIMEC) were isolated from waste surgical specimens collected directly from the operating room in order to keep the tissue viable. The cells were isolated utilizing mechanical and enzymatic processes and purified using magnetic bead selection as described previously in the January 2015 quarterly report.

What opportunities for training and professional development has the project provided? If the project was not intended to provide training and professional development opportunities or there is nothing significant to report during this reporting period, state "Nothing to Report."

Describe opportunities for training and professional development provided to anyone who worked on the project or anyone who was involved in the activities supported by the project. "Training" activities are those in which individuals with advanced professional skills and experience assist others in attaining greater proficiency. Training activities may include, for example, courses or one-on-one work with a mentor. "Professional development" activities result in increased knowledge or skill in one's area of expertise and may include workshops, conferences, seminars, study groups, and individual study. Include participation in conferences, workshops, and seminars not listed under major activities.

Nothing to report.
How were the results disseminated to communities of interest?
If there is nothing significant to report during this reporting period, state "Nothing to Report."
Describe how the results were disseminated to communities of interest. Include any outreach activities that were undertaken to reach members of communities who are not usually aware of these project activities, for the purpose of enhancing public understanding and increasing interest in learning and careers in science, technology, and the humanities.
Nothing to report.

What do you plan to do during the next reporting period to accomplish the goals?

If this is the final report, state "Nothing to Report."

Describe briefly what you plan to do during the next reporting period to accomplish the goals and objectives.

Patient recruitment/enrollment into the project will be a priority. Serum will be tested for effect on endothelial cell viability. In upcoming experiments, methods to define mode of cell death (Aim 2) will be performed. The mass spectrometry findings are very interesting to date. All of the patient samples will be analyzed by mass spectrometry to determine potential biomarkers (Aim 3). Finally, recombinant Ang-2 effects on the endothelial cells will be studied and known blockers of Ang-2 will be studied to reverse the toxicity to the endothelial cells.

4. IMPACT: Describe distinctive contributions, major accomplishments, innovations, successes, or any change in practice or behavior that has come about as a result of the project relative to:

What was the impact on the development of the principal discipline(s) of the project? If there is nothing significant to report during this reporting period, state "Nothing to Report."

Describe how findings, results, techniques that were developed or extended, or other products from the project made an impact or are likely to make an impact on the base of knowledge, theory, and research in the principal disciplinary field(s) of the project. Summarize using language that an intelligent lay audience can understand (Scientific American style).

What was the impact on other disciplines?
If there is nothing significant to report during this reporting period, state "Nothing to Report."
Describe how the findings, results, or techniques that were developed or improved, or other products from the project made an impact or are likely to make an impact on other disciplines.
Nothing to report

What was the impact on technology transfer?

Nothing to report.

If there is nothing significant to report during this reporting period, state "Nothing to Report."

Describe ways in which the project made an impact, or is likely to make an impact, on commercial technology or public use, including:

- transfer of results to entities in government or industry;
- instances where the research has led to the initiation of a start-up company; or
- adoption of new practices.

Nothing to report.			

What was the impact on society beyond science and technology?

If there is nothing significant to report during this reporting period, state "Nothing to Report."

Describe how results from the project made an impact, or are likely to make an impact, beyond the bounds of science, engineering, and the academic world on areas such as:

- improving public knowledge, attitudes, skills, and abilities;
- changing behavior, practices, decision making, policies (including regulatory policies), or social actions; or
- improving social, economic, civic, or environmental conditions.

Nothing to report.		

5. CHANGES/PROBLEMS: The PD/PI is reminded that the recipient organization is required to obtain prior written approval from the awarding agency grants official whenever there are significant changes in the project or its direction. If not previously reported in writing, provide the following additional information or state, "Nothing to Report," if applicable:

Nothing to report.		

Actual or anticipated problems or delays and actions or plans to resolve them Describe problems or delays encountered during the reporting period and actions or plans to resolve them.
The recruitment of patients into the study has been slow in the second half of this year. This is due in part to the loss of our Research Nurse Coordinator in April. We are in the process of hiring a replacement. In addition, we will begin ecruitment at another local, nearby UPMC branch in Shadyside. We are hopeful that enrollment will increase with he new Research Nurse Coordinator and the additional site for recruitment.

Changes that had a significant impact on expenditures

Describe changes during the reporting period that may have had a significant impact on expenditures, for example, delays in hiring staff or favorable developments that enable meeting objectives at less cost than anticipated.

The loss of our Research Nurse Coordinator in April and Research Technician in September has lowered our expenditures of salaries. We plan to replace both of these positions in the coming year.

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents

Describe significant deviations, unexpected outcomes, or changes in approved protocols for the use or care of human subjects, vertebrate animals, biohazards, and/or select agents during the reporting period. If required, were these changes approved by the applicable institution committee (or equivalent) and reported to the agency? Also specify the applicable Institutional Review Board/Institutional Animal Care and Use Committee approval dates.

Significant changes in use or care of human subjects

Nothing to report.			

Significant changes in use or care of vertebrate animals

Not applicable.
Significant changes in use of biohazards and/or select agents
Not applicable.
6. PRODUCTS: List any products resulting from the project during the reporting period. If there is nothing to report under a particular item, state "Nothing to Report."
• Publications, conference papers, and presentations Deposit only the major publication(s) resulting from the work under this award
Report only the major publication(s) resulting from the work under this award.
Journal publications. List peer-reviewed articles or papers appearing in scientific, technical, or professional journals. Identify for each publication: Author(s); title; journal; volume: year; page numbers; status of publication (published; accepted, awaiting publication; submitted, under review; other); acknowledgement of federal support (yes/no).
Nothing to report.

Books or other non-periodical, one-time publications. Report any book, monograph, dissertation, abstract, or the like published as or in a separate publication, rather than a periodical or series. Include any significant publication in the proceedings of a one-time conference or in the report of a one-time study, commission, or the like. Identify for each one-time publication: author(s); title; editor; title of collection, if applicable; bibliographic information; year; type of publication (e.g., book, thesis or dissertation);

Nothing	g to report.
publicati status of (internat	ablications, conference papers and presentations . Identify any other cons, conference papers and/or presentations not reported above. Specify the the publication as noted above. List presentations made during the last year ional, national, local societies, military meetings, etc.). Use an asterisk (*) if the produced a manuscript.
Digestive Systemic Annette Georgio Whitcon Americ Transit PhD, W Papachr	ets for presentations at meetings: The Disease Week Sunday May 21, 2016: Is Endothelial Cell Injury the Link between the Inflammatory Response Syndrome and Multiorgan Dysfunction Syndrome?; Wilson PhD, Weiping DeBlasio RN, William Rivers BS, Efstratios Koutroumpakis Now Spapachristou MD PhD, Stephen O'Keefe MD MSc, David G Binion MD, David C Comb MD, PhD; Poster an College of Gastroenterology Tuesday, October 18, 2016: A Model to Predict ion of Systemic Inflammation to Organ Failure in Acute Pancreatitis; Annette William Rivers BS, Efstratios Koutroumpakis MD, Georgios istou MD PhD, Stephen O'Keefe MD MSc, David G Binion MD, David C Whitcomb D; Poster
List the activities	(s) or other Internet site(s) URL for any Internet site(s) that disseminates the results of the resear A short description of each site should be provided. It is not necessary the publications already specified above in this section.
Nothing	g to report.

Technologies or techniques

status of publication (published; accepted, awaiting publication; submitted, under review; other); acknowledgement of federal support (yes/no).

11011	ing to report.
Inve	ntions, patent applications, and/or licenses
	ify inventions, patent applications with date, and/or licenses that have resulted from
	esearch. Submission of this information as part of an interim research performance
_	ress report is not a substitute for any other invention reporting required under the sand conditions of an award.
CITT	tana conautons of an awara.
Noth	ing to report.
	er Products
Ideni	ify any other reportable outcomes that were developed under this project.
Ideni Repo	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product,
Ideni Repo scien	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include:
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections; audio or video products;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections; audio or video products; software;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections; audio or video products; software; models;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections; audio or video products; software; models; educational aids or curricula;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections; audio or video products; software; models; educational aids or curricula; instruments or equipment;
Ideni Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections; audio or video products; software; models; educational aids or curricula; instruments or equipment; research material (e.g., Germplasm; cell lines, DNA probes, animal models);
Ident Repo scien unde	ify any other reportable outcomes that were developed under this project. rtable outcomes are defined as a research result that is or relates to a product, tific advance, or research tool that makes a meaningful contribution toward the rstanding, prevention, diagnosis, prognosis, treatment and /or rehabilitation of a se, injury or condition, or to improve the quality of life. Examples include: data or databases; physical collections; audio or video products; software; models; educational aids or curricula; instruments or equipment; research material (e.g., Germplasm; cell lines, DNA probes, animal models); clinical interventions;

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project?

Name: David C. Whitcomb, MD

Project Role: PI

Nearest person month(s) worked: 2.4 months

Contribution to Project: Dr. Whitcomb oversaw all research in this project. Weekly research meetings were held to disseminate progress. In addition, Dr. Whitcomb wrote the IRB application and interviewed candidates for the Nurse Research Coordinator position.

Name: David G. Binion, MD Project Role: Co-Investigator

Nearest person month(s) worked: 1.2 months

Contribution to Project: Dr. Binion provided assistance with experiments in this project and participates in research meetings. In addition, Dr. Whitcomb wrote the IRB application and intervious described for the Nurse Personal Coordinates position.

interviewed candidates for the Nurse Research Coordinator position.

Name: Annette S. Wilson, PhD **Project Role:** Laboratory Manager

Nearest person month(s) worked: 8.4 months

Contribution to Project: Dr. Wilson coordinated the experiments and performed imaging and data analysis. She participates in the weekly research meetings. In addition, Dr. Wilson assisted Sr.

Whitcomb with writing the IRB application.

Name: Weiping DeBlasio, RN

Project Role: Research Nurse Coordinator Nearest person month(s) worked: 2 months

Contribution to Project: Mrs. DeBlasio has consented all patients currently in the study. She has transported the blood samples to the research lab and assisted in processing, aliquotting, and storing samples. She attends the weekly research meetings. In addition, Mrs. DeBlasio coordinated renewal of the IRB proposal for this study.

Name: William M. Rivers

Project Role: Research Technician

Nearest person month(s) worked: 6 months

Contribution to Project Mr. Rivers was responsible for endothelial cell isolation, cell maintenance,

and set up of experiments.

	since the last reporting period?
	Nothing to Report.
	What other organizations were involved as partners?
	Nothing to Report.
8.	SPECIAL REPORTING REQUIREMENTS
	COLLABORATIVE AWARDS: For collaborative awards, independent reports are required from BOTH the Initiating Principal Investigator (PI) and the Collaborating/Partnering PI. A duplicative report is acceptable; however, tasks shall be clearly marked with the responsible PI and research site. A report shall be submitted to https://ers.amedd.army.mil for each unique

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel

9. APPENDICES: Attach all appendices that contain information that supplements, clarifies or supports the text. Examples include original copies of journal articles, reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys, etc.

should be updated and submitted with attachments.

QUAD CHARTS: If applicable, the Quad Chart (available on https://www.usamraa.army.mil)

award.

Is endothelial cell injury the link between systemic inflammatory response syndrome and multiorgan dysfunction syndrome?

Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA Annette Wilson, Weiping DeBlasio, William Rivers, David Binion, George Papachristou, Stephen O'Keefe, David Whitcomb

ntroduction

evolves over a 4-12 hour period while MODS evolves over 12-24 hours. Vascular leak syndrome (VLS) is a critical component of the transition from SIRS to MODS. Understanding quickly recover, while others develop multiorgan dysfunction syndrome (MODS). SIRS inflammatory response syndrome (SIRS). Surprisingly, about half of the patients with SIRS conditions of tissue injury and immune system activation that can result in the systemic model disease course thereby aiding in treatment of patients. the mechanism by which SIRS triggers VLS and progresses to MODS is critical to correctly Trauma, extensive burns, bacterial infections, and acute pancreatitis (AP) are common

Our experimental approach is designed to understand and predict progression from systemic inflammation to MODS. The primary observation is that serum from patients with severe acute pancreatitis or trauma with VLS is toxic to endothelial cells.

Severity categories f	Severity categories following the revision of Atlanta Classification
Acute pancreatitis severity	Organ failure and local or systemic complications
	- No organ failure
Mild acute pancreatitis	 No local or systemic complications
	 Transient organ failure (resolves in 48 hours)
Moderately severe acute pancreatitis	 Local or systemic complications without persistent organ failure
Severe acute pancreatitis	Persistent organ failure (single or multiple)

Methods

- Subjects diagnosed with severe acute pancreatitis (SAP) are enrolled into study.
- Inclusion/exclusion criteria are followed (see table). Blood was collected on days 1, 2, 3, 4, 5, 6, and 7.
- The effect of the serum on the endothelial cell viability was studied using 2 different assays = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazollum bromide (MTT) and Molecular Probes Live/Dead Viability/Toxicity Kit. The number of live and dead cells was determined using ImageJ image analysis software (NIH) and microplate reader.
- The endothelial cells were treated with 10% of the serum samples or 1 μ g/ml total protein of fractionated serum (gel filtration into fractions \geq 100 KDa and < 100 KDa) added to the growth medium for 48 hours.

Inclusion criteria Patients 18 years of age or older Inclusion and exclusion criteria Exclusion criteria

- (c) Characteristic signs on abdominal imaging Evidence of SIRS defined by 2 or more of the following Diagnosis of acute pancreatitis
 (a) History of sudden onset abdominal pain
 (b) Elevation of amylase or lipase > 3 times normal upper mm Hg (d) WBC < 4,000 or >12,000 cell/mm 3 or > 10% immature (a) Heart rate over 90 bpm
 (b) Body Temp < 36 or > 38 °C
 (c) Tachypnea > 20 breaths per minute or PaCO₂ < 32 clinical limits Pre-existing immune deficiency
 Pre-existing pulmonary disease
 Pre-existing cardiovascular disease
 Pancreatic cancer and any other forms of cancer Pre-existing liver disease Pre-existing chronic renal insufficiency requiring Time elapse between initial AP symptoms and collection of first serum sample > 48 hrs Patients with chronic pancreatitis and pancreatic insufficiency based on clinical history
 - % Live Cells ■≥ 100 KDa ■< 100 KDa

MTT Assay - Endothelial cells treated with SAP serum fractions

Live/Dead Cell Assay - Endothelial cells treated with SAP serum fractions

Results

neutrophils (bands)

with life expectancy < 6 months

C
linical
inical data on acute pancreatitis patients
acut
e panc
reatit
is pa
tients
3,

(c) (Calaba) (Deallar) (Peanlar) (Pe			AGA	Gender	Etinlony	RM		HB G	HB Resorate Pain WRC HAT AST RIN	Pain	Dam a	ם מו	AST Da				_	Pancreatic	Pancreatic SIRS
68 M Idopathic 33.4 98.8 102 20 16.000 48.3 457 52 F Idopathic 40.9 37 100 24 10 18.100 47.9 17 39 M IHTG 37.0 38.7 95 20 10 8.200 47.1 27 68 M Idopathic 30.1 37 117 16 9 26.200 49.8 57 24 M IHTG 32.3 36.9 1123 18 8 21.500 56.9 23 48 M Abcholsen 23.8 36.9 123 18 8 21.500 56.9 23 78 F Galistones 33.3 35.1 91 21 10 15.400 48.8 472 25 F Galistones 26.9 37 72 19 10 15.400 42.8 400		Patient no.	€.8	Gender	Etiology	BM	Temp (Celsius)	(beats/ min)	Resp rate (breaths/ min)	Pain score	WBC (cells/	(%) Hct	(U/L)	₽. B. B. B.		Glucose (mg/dL)	Glucose Pancreatic (mg/dL) necrosis		Pancreatic necrosis
62 F Idiopathic 40.9 37 100 24 10 18,100 47,9 17 39 M HTG 37.0 38.7 95 20 10 8,200 47,1 27 68 M Idiopathic 36.1 37 117 16 9 26,200 49.8 57 24 M HTG 32.3 38.9 12.3 18 8 21,500 56.9 23 48 M Alcoholism 23.8 38.7 102 18 8 21,500 56.9 23 79 F Galistomes 33.3 35.1 91 21 10 15,400 48.3 472 25 F Galistomes 23.9 37 72 19 10 15,400 42.8 400	1000000	_	68	Z	Idiopathic			102	20		16,000	48.3	457	38		223	223 Yes	-	Yes
99 M HTG 37.0 36.7 95 20 10 8.200 47.1 27 68 M Idopathic 36.1 37 117 16 9 26.200 49.8 57 24 M HTG 32.3 38.9 123 18 8 21.500 56.9 23 68 M Alcoholson 23.8 36.7 102 18 10 15.100 40.6 16 79 F Galistones 33.3 35.1 91 21 10 15.400 48.3 472 25 F Galistones 29.9 37 72 19 10 15.400 42.8 400		22	52	п	Idiopathic			100	24	6	18,100	47.9	17	17		362	362 Yes		Yes
88 M Idopathic 36.1 37 117 16 9 26.200 49.8 57 24 M HTG 32.3 36.9 123 18 8 21.500 56.9 23 48 M Abcotolism 23.8 36.7 102 18 10 15.100 40.6 16 79 F Galisbries 33.3 35.1 91 21 10 15.400 48.3 472 25 F Galisbries 29.9 37 72 19 10 15.400 42.8 400		ω	39	M	нтс	37.0		95	20	6	8,200	47.1	27	9.2		384	-	384	384 Yes
24 M HTG 32.3 36.9 123 18 8 21.500 56.9 23 48 M Alcoholism 23.8 36.7 102 18 10 15,100 40.6 16 79 F Galisbrines 33.3 35.1 91 21 10 15,400 48.3 472 25 F Galisbrines 29.9 37 72 19 10 15,400 42.8 400		4	68	Z	Idiopathic		37	117	16	9	26,200	49.8	57		24	24 223	-	223	223 Yes
48 M Abdholism 23.8 36.7 102 18 10 15.100 40.6 16 79 F Galisbnes 33.3 35.1 91 21 10 15.400 48.3 472 25 F Galisbnes 29.9 37 72 19 10 15.400 42.8 400		5	24	M	НТС	32.3		123	18	80	21,500	56.9	23		9	9 165		165	165 No
79 F Galistones 33.3 35.1 91 21 10 15.400 48.3 472 25 F Galistones 29.9 37 72 19 10 15.400 42.8 400		6	48	Z	Alcoholism	23.8		102	18	10	15,100	40.6	6		⇉	11 100	-	100	100 Yes
25 F Gallstones 29.9 37 72 19 10 15,400 42.8		7	79	F	Gallstones			91	21	10	15,400	48.3	472	- 1	37	37 241		241	241 No
		8	25	F	Gallstones			72	19	10	15,400	42.8	400	- 1	8	8 124		124	124

Acknowledgements

This research was funded by the U.S. Department of Defense (Award No. W81XWH-14-1-0376)

cells treated with SAP serum

Live/Dead Cell Assay -Endothelial

Conclusions

- SAP serum decreases % endothelial cell viability compared to serum from normal healthy volunteers.
- SAP serum contains proteins greater or equal to 100 KDa that decrease % endothelial cell viability.

Annette Wilson, Weiping DeBlasio, William Rivers, Efstratios Koutroumpakis, Georgios Papachristou, Stephen O'Keefe A model to predict transition of systemic inflammation to organ failure in acute pancreatitis

David G. Binion, David C. Whitcomb

critical to correctly model disease course thereby aiding in treatment of mechanism by which SIRS triggers VLS and progresses to organ failure is a critical component of the transition from SIRS to MODS. Understanding the while organ failure evolves over 12-24 hours. Vascular leak syndrome (VLS) is about half of the patients with SIRS quickly recover, while others develop common conditions of tissue injury and immune system activation that can multiorgan dysfunction failure (MODS). SIRS evolves over a 4-12 hour period result in the systemic inflammatory response syndrome (SIRS). Surprisingly, Trauma, extensive burns, bacterial infections, and acute pancreatitis (AP) are

VLS is toxic to endothelial cells. is that serum from patients with severe acute pancreatitis or trauma with Our experimental approach is designed to understand and predict progression from systemic inflammation to MODS. The primary observation

Severity categories fol	Severity categories following the revision of Atlanta Classification
Acute pancreatitis severity	Organ failure and local or systemic complications
	- No organ failure
Mild acute pancreatitis	 No local or systemic complications
	 Transient organ failure (resolves in 48 hours)
	 Local or systemic complications without persistent organ
Moderately severe acute pancreatitis	failure
Severe acute pancreatitis	 Persistent organ failure (single or multiple)

Methods

Probes Live/DeadViability/Toxicity Kit (Life Technologies). enriched fractions on the endothelial cells was assessed using the Molecular to isolate the active fraction(s) based on molecular weight. The effect of the cells grown in a monolayer using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylcompared the effect of mild and severe acute pancreatitis patient and normal amylase, specific cytokines/chemokines and angiopoietin 2 (Ang 2). We samples were characterized for markers of acute pancreatitis including lipase Demographic and phenotypic data were collected on the patients. The serum tetrazolium bromide (MTT) assay. The serum samples were then fractionated healthy control serum samples on the viability of human vascular endothelial

Inclusion and exclusion criteria	on criteria
Inclusion criteria	Exclusion criteria
Patients 18 years of age or older	
Diagnosis of acute pancreatitis	 Time elapse between initial AP symptoms and
(a) History of sudden onset abdominal pain	collection of first serum sample > 48 hrs
(b) Elevation of amylase or lipase > 3 times normal upper - Patients with chronic pancreatitis and	 Patients with chronic pancreatitis and
clinical limits	pancreatic insufficiency based on clinical
(c) Characteristic signs on abdominal imaging	history
Evidence of SIRS defined by 2 or more of the following	 Pre-existing chronic renal insufficiency
features:	requiring dialysis
(a) Heart rate over 90 bpm	 Pre-existing liver disease
(b) Body Temp < 36 or > 38°C	 Pre-existing immune deficiency
(c) Tachypnea > 20 breaths per minute or PaCO ₂ < 32	 Pre-existing pulmonary disease
mm Hg	 Pre-existing cardiovascular disease
(d) WBC < 4,000 or >12,000 cell/mm³ or > 10% immature Pancreatic cancer and any other forms of	 Pancreatic cancer and any other forms of
neutrophils (bands)	cancer with life expectancy < 6 months

Results

	Patient no.	_	2	ω	4	5	6	7	8	9	HTG: H
	Age (y)	68	52	39	68	24	48	79	25	37	/pertrig
	Gender	Z	П	Σ	Μ	Μ	Μ	п	FI	Μ	glycerider ng on nur
	Etiology	Idiopathic	Idiopathic	НТС	diopathic	ЭТН	Alcoholism	Gallstones	Sandslies	Alcoholism	HTG. Hypetriglyceridemia; HR; Heart rate; Hct: Hematocrit; Pain score – 1 to 10 (10 is worst); S 0 to 5 depending on number of criteria met; Apache II scores – 0 to 16 depending on criteria met
	ВМІ	33.4	40.9	37.0	36.1	32.3	23.8	33.3	29.9	23.3	rt rate; ia met
Clin	Temp (Celsius)	36.8	37	36.7	37	6.98	36.7	35.1	37	9.6	Hct: Hema Apache III :
ical d	HR (beats/ min)	102	100	95	117	123	102	91	72	93	tocrit; Pai scores – (
Clinical data on acute pancreatitis patients	Resp rate (breaths/ min)	20	24	20	16	18	18	21	19	18	in score – 1 0 to 16 depe
acut	Pain score		10	10	9	8	10	10	10	10	to 10 (1 inding o
e pan	(pi /silleo) ABM	16,000	18,100	8,200	26,200	21,500	15,100	15,400	15,400	15,600	0 is worst n criteria r
crea	Hct	48.3	47.9	47.1	49.8	6.95	40.6	48.3	42.8	42.1); SIRS
titis	AST (U/L)	457	17	27	57	23	16	472	400	29	score -
patie	dL) (mg/ NUB	38	17	9.2	24	9	11	37	8	6	-0 to 4 c
nts	Glucose (mg/dL)	223	362	384	223	165	100	241	124	122	depending .
	Pancreatic necrosis	Yes	Yes	Yes	Yes	N	Yes	8	No	No	HTG: Hyperfighjoerklemis; HR: Heart rate; Hct: Hematorit; Pain score – 1 to 10 (10 is worst); SIRS score – 0 to 4 depending on number of criteria met; Ranson score 0 to 5 depending on number of criteria met; Apache II scores – 0 to 16 depending on criteria met
	SIRS	2	ω	_	2	2	2	4	1	2	criteria
	Ranson's score	3	2	_	3	1	0	3	1	0	met; Ranso
	Apache II score	13	Oi	2	15	10	з	16	3	4	n score –

Conclusions

SAP serum contains proteins greater or equal to 100 KDa that decrease % normal healthy volunteers.

SAP serum decreases % endothelial cell viability compared to serum from

- endothelial cell viability.
- Ang 2 levels are extremely elevated in patients with severe acute pancreatitis
- MCP-1, IL-6 and IL-8 are elevated in severe acute pancreatitis and remain elevated at the later time points.

Acknowledgements

This research was funded by the U.S. Department of Defense (Award No. W81XWH-14-1-0376).

Live/Dead Cell Assay -Endothelial cells treated with SAP serum

Endothelial cells treated with SAP serum fractions MTT Assay -

SAP Day 2 Serum	**************************************	100% Dead
SAP Day 5 Serum		Normal Serum

mma	tory ma	200	04010	1 00	nte pa	110160	2	פים
Amylase (U/L)	Lipase (U/L)	TG (mg/dL)	CRP (mg/dL)	IL-16 (pg/mL)	(pg =		IL-8 (pg/mL)	
230	439	N/A	N/A	19.57	4,9	39	39 8,218	_
				0.67	4	52	52 78.2	
803	822	210	31.55	0.29	N	4.8	4.8 28.5	_
				0.12	_	1.49	1.49 20.9	
NA	798	5,242	20.7	0.72		76.2	76.2 43.6	
				0.97		73.3	73.3 81.6	
N/A	557	91	35.55	2.24		148	148 62.6	
				1.25		44.4	44.4 43.0	-
N/A	N/A	N/A	N/A	0.42		9.41	9.41 5.85	\rightarrow
				0.22	\neg	2.76	2.76 9.86	\rightarrow
2,548	10.073	N/A	N/A	0.38	\neg	16.3	16.3 10.9	-
				0.66		26.3	26.3 16.2	
1,325	3,190	N/A	N/A	0.42		32.6	32.6 58.7	
				1.12		42.0	42.0 46.3	
441	4,026	46	4.048	0.15		59.7	59.7 13.7	-
			15.048	I	T	37.1	37 1 8 06	+
	Amylasse (U/L) 230 803 803 803 803 803 803 803 803 803 8	ANYJASE LIPAS (U/L) (U/L) 230 439 803 822 803 822 NVA 798 NVA 798 NVA 10073 2.548 10073 1,325 3,180	Annylase Lupase (mg/dL) 230 439 NA 230 439 NA 822 210 NA 788 5.242 NA 557 91 NA 557 91 NA NA NA 1,325 3,190 NA 441 4,026 46	MAN NA N	MAA 798 5.242 20.7 0.72 NAA 798 5.242 20.7 0.72 NAA 9557 91 35.55 2.24 NAA 10073 NA NA 0.42 2.548 10.073 NA NA 0.42 1.325 3.180 NA NA 0.42	MAN SS7 91 35.55 2.24 148 NA N	NAA 798 5.242 20.7 0.72 76.2 43.6 82.6 NAA NAA 0.422 2.76 9.462 9.44 4.30 NA NA 0.42 2.76 9.461 1.325 0.190 NA NA 0.42 2.76 9.461 1.325 0.190 NA NA 0.42 2.76 9.462 0.863 0.190 NA NA 0.42 2.76 9.462 0.863 0.190 NA NA 0.42 2.76 9.46 9.46 9.46 0.190 NA 0.42 2.76 9.46 9.46 9.46 9.46 0.15 9.47 9.48 9.48 9.48 9.48 9.48 9.48 9.48 9.48	Lipane To