vPF_RING User Guide

High Speed Packet Capture On Virtual Machines

Version 1.0.0 July 2011

1.Table of Contents

Introduction	3
What's New with vPF_RING User's Guide?	3
Welcome to vPF_RING	3
vPF_RING Installation	5
Host side	5
Installation Prerequisites	5
Patched QEMU Installation	5
Guest side	5
vNPlug Kernel Module Installation	6
vPF_RING Library Installation	6
Using vPF_RING	7
Checking PF_RING Device Configuration	7
Libpfring and Libpcap	7

2. Introduction

vPF_RING is a high speed packet capture framework that turns a Virtual Machine running on a commodity PC into an efficient network measurement box.

2.1. What's New with vPF_RING User's Guide?

- Release 1.0 (July 2011)
 - Initial vPF_RING users guide.

3. Welcome to vPF_RING

vPF_RING's architecture is depicted in the figure below.

The main building blocks from the bottom are:

- Specialized PF_RING-aware drivers (optional) (host side) that allow to further enhance packet capture by efficiently copying packets from the driver to PF_RING without passing through the kernel data structures. For further information please refer to the PF_RING User's Guide.
- The standard PF_RING kernel module (host side).

- The vPF_RING backend (host side), that interacts with the standard PF_RING module on the host side, and the user-space library on the guest side by means of the vNPlug Framework.
- The vNPlug Framework (host and guest side), that provides a direct mapping of the PF_RING memory structures on the guest and a reliable communication channel. This framework comes as a QEMU patch on the host side, and a kernel module on the guest side.
- The user-space vPF_RING library that provides transparent PF_RING-support to user-space applications on the VM.

Incoming packets are copied by the kernel module on the host side into a memory ring allocated at creation time, and directly read by the user-space applications on the VM.

Applications can issue standard PF_RING API calls, described in the PF_RING User's Guide.

4. vPF_RING Installation

Download vPF_RING as explained in http://www.ntop.org/products/pf ring/vpf ring

The vPF_RING source code layout is the following:

- README
- quest/
- host/

4.1. Host side

Installation Prerequisites

The vPF_RING installation expects that PF_RING is compiled and installed on the host system.

host \$ cd <PF_RING>/kernel host \$ make host # make install host # insmod pf_ring.ko host \$ cd <PF_RING>/userland/lib host \$./configure host \$ make host # make install

Note: if you want to use a PF_RING-aware drivers with transparent_mode or other settings, please refer to the PF_RING User's Guide.

Patched QEMU Installation

Compile and install the patched QEMU.

host \$ cd <VPF_RING>/host host \$./configure host \$ make host # make install

4.2. Guest side

In order to run the VM with vNPlug/vPF_RING support use the "-device vnplug" parameter. Remember to enable the Virtualization support in your BIOS (required by KVM).

```
host # modprobe kvm_intel
host # /usr/local/kvm/bin/qemu-system-x86_64 \
-hda ubuntu-amd64.img \
-boot c \
-m 512 \
-vnc 0.0.0.0:0 \
-device vnplug
```

Note: when using the preconfigured VM, you can skip the next sub-sections.

vNPlug Kernel Module Installation

In order for the vNPlug framework to work properly, you should load the acpiphp kernel module (hotplug support), otherwise it won't be able to dynamically map ring memory. guest # modprobe acpiphp

Compile and install the vNPlug kernel module.

guest \$ cd <VPF_RING>/guest/kernel guest \$ make guest # make headers_install guest # insmod vnplug.ko

vPF_RING Library Installation

Copy the VPF_RING user-space module.

guest \$ cp libpfring_mod_virtual_XXX.a <PF_RING>/userland/lib/libs/guest \$ cp pfring_mod_virtual.h <PF_RING>/userland/lib/

Compile and install the PF_RING library with VPF_RING support

guest \$ cd <PF_RING>/userland/lib guest \$./configure guest \$ make guest # make install

Example: compile and run pfcount

guest \$ cd <PF_RING>/userland/examples guest \$ make pfcount guest #./pfcount -i host:eth0

5.Using vPF_RING

Before using any PF_RING application the pf_ring kernel module should be loaded on the host side.

host # insmod <PF_RING>/kernel/pf_ring.ko

Note: if you want to use a PF_RING-aware drivers with transparent_mode or other settings, please refer to the PF_RING User's Guide.

On the guest side both the standard hotplug module and the vnplug module should be loaded.

guest # modprobe acpiphp guest # insmod vnplug.ko

5.1. Checking PF_RING Device Configuration

As with standard PF RING, when a ring is activated a new entry /proc/net/pf ring is created on the host.

host # cat /proc/net/pf_ring/info

Version : 4.7.1 Ring slots : 4096 Slot version : 13

Capture TX : Yes [RX+TX]

IP Defragment : No
Socket Mode : Standard
Transparent mode : Yes (mode 0)

Total rings : 0
Total plugins : 2

5.2. Libpfring and Libpcap

As vPF_RING results in a standard PF_RING module which is hidden by the PF_RING API, both libpfring and libpcap can be compiled and used as described in the PF_RING User's Guide.

Note: in order to indicate to the library to use the vPF_RING module, you need to prepend 'host:' to the device name (e.g. host:ethX@Y).