Ungraded Lab: Training a Deep Neural Network with Time Series Data

In this lab, you will build upon the previous exercise and add more dense layers to your network. You will also look at a technique to tune the model's learning rate to make the weights converge faster. This is a useful tip so you can avoid guessing the learning rate before training.

The initial steps will be identical to the previous lab so you can run the next cells until the Build the Model section. That's where the discussions begin.

Imports

```
In [1]: import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
```

Utilities

```
In [2]: def plot_series(time, series, format="-", start=0, end=None):
            Visualizes time series data
            Args:
              time (array of int) - contains the time steps
              series (array of int) - contains the measurements for each time step
              format - line style when plotting the graph
             label - tag for the line
              start - first time step to plot
              end - last time step to plot
            # Setup dimensions of the graph figure
            plt.figure(figsize=(10, 6))
            if type(series) is tuple:
              for series_num in series:
                # Plot the time series data
                plt.plot(time[start:end], series_num[start:end], format)
              # Plot the time series data
              plt.plot(time[start:end], series[start:end], format)
            # Label the x-axis
            plt.xlabel("Time")
            # Label the y-axis
            plt.ylabel("Value")
            # Overlay a grid on the graph
            plt.grid(True)
            # Draw the graph on screen
            plt.show()
        def trend(time, slope=0):
            Generates synthetic data that follows a straight line given a slope value.
              time (array of int) - contains the time steps
              slope (float) - determines the direction and steepness of the line
            series (array of float) - measurements that follow a straight line
            # Compute the linear series given the slope
```

```
series = slope * time
   return series
def seasonal_pattern(season_time):
   Just an arbitrary pattern, you can change it if you wish
     season_time (array of float) - contains the measurements per time step
     data pattern (array of float) - contains revised measurement values according
                                  to the defined pattern
   # Generate the values using an arbitrary pattern
   data_pattern = np.where(season_time < 0.4,</pre>
                    np.cos(season_time * 2 * np.pi),
                    1 / np.exp(3 * season_time))
   return data_pattern
\label{lem:def_def} \mbox{def seasonality(time, period, amplitude=1, phase=0):}
   Repeats the same pattern at each period
     time (array of int) - contains the time steps
     period (int) - number of time steps before the pattern repeats
     amplitude (int) - peak measured value in a period
     phase (int) - number of time steps to shift the measured values
     data_pattern (array of float) - seasonal data scaled by the defined amplitude
   # Define the measured values per period
   season_time = ((time + phase) % period) / period
   # Generates the seasonal data scaled by the defined amplitude
   data_pattern = amplitude * seasonal_pattern(season_time)
   return data_pattern
def noise(time, noise_level=1, seed=None):
    """Generates a normally distributed noisy signal
     time (array of int) - contains the time steps
     noise level (float) - scaling factor for the generated signal
     seed (int) - number generator seed for repeatability
    noise (array of float) - the noisy signal
   # Initialize the random number generator
   rnd = np.random.RandomState(seed)
   # Generate a random number for each time step and scale by the noise level
   noise = rnd.randn(len(time)) * noise_level
   return noise
```

Generate the Synthetic Data

```
In [3]: # Parameters
    time = np.arange(4 * 365 + 1, dtype="float32")
    baseline = 10
    amplitude = 40
    slope = 0.05
    noise_level = 5

# Create the series
    series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude)
```

```
# Update with noise
series += noise(time, noise_level, seed=42)
# Plot the results
plot_series(time, series)
```


Split the Dataset

```
In [4]: # Define the split time
    split_time = 1000

# Get the train set
    time_train = time[:split_time]
    x_train = series[:split_time]

# Get the validation set
    time_valid = time[split_time:]
    x_valid = series[split_time:]
```

Prepare Features and Labels

```
In [5]: # Parameters
   window_size = 20
   batch_size = 32
   shuffle_buffer_size = 1000
```

```
In [6]: def windowed_dataset(series, window_size, batch_size, shuffle_buffer):
    """Generates dataset windows

Args:
    series (array of float) - contains the values of the time series
    window_size (int) - the number of time steps to average
    batch_size (int) - the batch size
    shuffle_buffer(int) - buffer size to use for the shuffle method

Returns:
    dataset (TF Dataset) - TF Dataset containing time windows
"""

# Generate a TF Dataset from the series values
dataset = tf.data.Dataset.from_tensor_slices(series)
```

```
# Window the data but only take those with the specified size
dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True)

# FLatten the windows by putting its elements in a single batch
dataset = dataset.flat_map(lambda window: window.batch(window_size + 1))

# Create tuples with features and Labels
dataset = dataset.map(lambda window: (window[:-1], window[-1]))

# Shuffle the windows
dataset = dataset.shuffle(shuffle_buffer)

# Create batches of windows
dataset = dataset.batch(batch_size)

# Optimize the dataset for training
dataset = dataset.cache().prefetch(1)

return dataset

In [7]: # Generate the dataset windows
dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size)
```

Build the Model

You will use three dense layers in this exercise as shown below. As expected, the number of trainable parameters will increase and the model summary shows that it is more than tenfold of the previous lab.

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 10)	210
dense_1 (Dense)	(None, 10)	110
dense_2 (Dense)	(None, 1)	11

Total params: 331 (1.29 KB)

Trainable params: 331 (1.29 KB)

Non-trainable params: 0 (0.00 B)

Train the Model

You will then compile and train the model using the same settings as before. Observe how the loss is decreasing because you will revisit it later in this lab.

```
In [9]: # Set the training parameters
    model_baseline.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=1e-6, momentum=0.9))
In [10]: # Train the model
    model_baseline.fit(dataset,epochs=100)
```

Epoch 1/100	
31/31 —————————— Epoch 2/100	1s 1ms/step - loss: 2351.6575
•	0s 798us/step - loss: 155.3569
Epoch 3/100 31/31	0s 815us/step - loss: 130.4013
Epoch 4/100	
31/31 ————————————————————————————————————	0s 804us/step - loss: 122.3813
31/31	0s 814us/step - loss: 114.3685
Epoch 6/100 31/31 ——————	0s 796us/step - loss: 107.1536
Epoch 7/100	
31/31 —————— Epoch 8/100	0s 751us/step - loss: 100.5600
31/31 ————————————————————————————————————	0s 768us/step - loss: 94.3103
31/31	0s 786us/step - loss: 88.5674
Epoch 10/100 31/31	0s 768us/step - loss: 83.2706
Epoch 11/100 31/31	0s 777us/step - loss: 79.5736
Epoch 12/100	
31/31 ——————————————————————————————————	0s 760us/step - loss: 77.1859
	0s 725us/step - loss: 75.4830
Epoch 14/100 31/31 ——————	0s 771us/step - loss: 74.0826
Epoch 15/100 31/31 ——————	0s 1ms/step - loss: 72.8971
Epoch 16/100	
Epoch 17/100	0s 816us/step - loss: 71.8665
31/31 ——————————————————————————————————	0s 795us/step - loss: 70.9468
31/31	0s 2ms/step - loss: 70.1109
Epoch 19/100 31/31 ——————	0s 797us/step - loss: 69.3312
Epoch 20/100 31/31	0s 801us/step - loss: 68.6132
Epoch 21/100	
31/31 ——————— Epoch 22/100	0s 727us/step - loss: 67.9577
31/31 ——————————————————————————————————	0s 759us/step - loss: 67.3332
31/31	0s 851us/step - loss: 66.7305
Epoch 24/100 31/31 ——————	0s 785us/step - loss: 66.1574
Epoch 25/100 31/31	0s 748us/step - loss: 65.6074
Epoch 26/100	•
31/31 ————————————————————————————————————	0s 802us/step - loss: 65.0767
31/31 ——————————————————————————————————	0s 815us/step - loss: 64.5773
31/31 ————	0s 737us/step - loss: 64.0883
Epoch 29/100 31/31 ——————————————————————————————————	0s 721us/step - loss: 63.5898
Epoch 30/100 31/31 ——————	0s 743us/step - loss: 63.0795
Epoch 31/100	
31/31 ————————————————————————————————————	0s 749us/step - loss: 62.6389
31/31	0s 744us/step - loss: 62.2439
Epoch 33/100 31/31 ——————————————————————————————————	0s 727us/step - loss: 61.8715
Epoch 34/100 31/31 ——————————————————————————————————	0s 762us/step - loss: 61.5256
Epoch 35/100	
Epoch 36/100	0s 690us/step - loss: 61.1892
31/31 ——————— Epoch 37/100	0s 712us/step - loss: 60.8602
31/31	0s 786us/step - loss: 60.5383
Epoch 38/100 31/31 ——————————————————————————————————	0s 853us/step - loss: 60.2251
Epoch 39/100 31/31 ——————————————————————————————————	0s 847us/step - loss: 59.9147
,	1000. 00104T/

Epoch 40/100	0-	002 (-1		1	E0 6427
31/31 —————— Epoch 41/100	05	802us/step	-	1055:	59.612/
31/31 ————————— Epoch 42/100	0s	812us/step	-	loss:	59.3118
	0s	790us/step	-	loss:	59.0277
31/31	0s	760us/step	-	loss:	58.7444
Epoch 44/100 31/31	0s	758us/step	-	loss:	58.4784
Epoch 45/100 31/31	95	760us/step	_	loss:	58.2529
Epoch 46/100					
31/31	05	828us/step	-	1055:	58.0228
31/31 ——————— Epoch 48/100	0s	791us/step	-	loss:	57.7747
31/31 ————————— Epoch 49/100	0s	754us/step	-	loss:	57.5495
	0s	797us/step	-	loss:	57.3034
31/31	0s	710us/step	-	loss:	57.0824
Epoch 51/100 31/31 ——————	0s	736us/step	-	loss:	56.8500
Epoch 52/100 31/31	0s	755us/step	_	loss:	56.6434
Epoch 53/100 31/31	0s	783us/step	_	loss:	56.4470
Epoch 54/100		809us/step			
Epoch 55/100					
Epoch 56/100		727us/step			
31/31 ——————— Epoch 57/100	0s	753us/step	-	loss:	55.7678
31/31 —————————— Epoch 58/100	0s	715us/step	-	loss:	55.5608
31/31 ——————— Epoch 59/100	0s	733us/step	-	loss:	55.3953
31/31 ————	0s	792us/step	-	loss:	55.2357
	0s	797us/step	-	loss:	55.0553
Epoch 61/100 31/31 ——————	0s	714us/step	-	loss:	54.8524
Epoch 62/100 31/31 ——————	0s	707us/step	-	loss:	54.6543
Epoch 63/100 31/31	0s	716us/step	_	loss:	54.4846
Epoch 64/100 31/31	۵s	734us/step	_	lossi	54 2926
Epoch 65/100					
Epoch 66/100		808us/step			
31/31 ——————— Epoch 67/100	0s	742us/step	-	loss:	53.9096
31/31 ————————————————————————————————————	0s	693us/step	-	loss:	53.7129
31/31 ———————— Epoch 69/100	0s	709us/step	-	loss:	53.5236
	0s	724us/step	-	loss:	53.3442
31/31	0s	745us/step	-	loss:	53.1781
	0s	777us/step	-	loss:	53.0205
Epoch 72/100 31/31 ——————	0s	804us/step	-	loss:	52.8631
Epoch 73/100 31/31	0s	809us/step	_	loss:	52.7307
Epoch 74/100 31/31	0s	744us/step	_	loss:	52.5706
Epoch 75/100		822us/step			
Epoch 76/100					
Epoch 77/100		809us/step			
Epoch 78/100		804us/step			
31/31	0s	772us/step	-	loss:	51.9327

Epoch 79/100 31/31
Epoch 80/100 31/31
Epoch 81/100 31/31
31/31
Epoch 82/100 31/31
31/31
Epoch 83/100 31/31
31/31
Epoch 84/100 31/31
31/31
Epoch 85/100 31/31
31/31
Epoch 86/100 31/31
31/31
Epoch 87/100 31/31
31/31
Epoch 88/100 31/31
31/31
Epoch 89/100 31/31
31/31
Epoch 90/100 31/31
31/31
Epoch 91/100 31/31
31/31 —
Epoch 92/100 31/31
31/31
Epoch 93/100 31/31
31/31
31/31 —
Epoch 95/100 31/31 ——————————————————————————————————
31/31 — 0s 820us/step - loss: 49.7526 Epoch 96/100
Epoch 96/100
·
31/31 Os 819us/step - loss: 49.6338
Epoch 97/100
31/31 Os 790us/step - loss: 49.5286
Epoch 98/100
31/31 Os 760us/step - loss: 49.4137
Epoch 99/100
31/31 — Os 737us/step - loss: 49.3103
Epoch 100/100
31/31 — 0s 781us/step - loss: 49.1988

Out[10]: <keras.src.callbacks.history.History at 0x77df521c8c90>

You can then get some predictions and visualize it as before. Since the network is deeper, the predictions might go slower so you may want to minimize unnecessary computations.

In the previous lab, you might remember the model generating predictions using the entire series data. That resulted in 1,441 points in the forecast list then you sliced the 461 points that aligns with the validation set using forecast = forecast[split_time - window_size:].

You can make this process faster by just generating 461 points right from the start. That way, you don't waste time predicting points that will just be thrown away later. The code below will do just that. It will just get the points needed from the original series before calling the predict() method. With that, all predictions will align with the validation set already and the for-loop will run for only 461 times instead of 1,441.

In the next lab, you'll see an even faster way to generate these predictions.

You can then get the MSE and MAE for reference.

```
In [12]: # Compute the metrics
    print(tf.keras.metrics.mse(x_valid, results).numpy())
    print(tf.keras.metrics.mae(x_valid, results).numpy())

55.582363
```

Tune the learning rate

5.558003

You saw that the training went well with the initial learning rate that you chose (i.e. 1e-6). However, you're not yet sure if it is the best setting for this particular model. It might seem inconsequential in this simple model but when you have more complex ones, spending some time to tune the learning rate can lead to better training results. You will see how to do that in this section.

First, you will build the same model architecture you just used.

Next, you will declare a learning rate scheduler callback. This will allow you to dynamically set the learning rate based on the epoch number during training. As shown below, you will pass a lambda function to declare the value of the learning rate. It will start at 1e-8 at

epoch 0 and is scaled by 10**(epoch / 20) as the training goes on.

You will then compile the model. Just to note a subtle difference with the lecture video, you don't have to set the learning_rate argument of the optimizer here before compiling. You can just leave the default (i.e. 0.01 for SGD) and allow the learning rate scheduler to set it dynamically.

You will pass in the lr_schedule callback in the callbacks parameter of the fit() method. As you run the training below, you will see the learning rate at a particular epoch denoted by lr in the console output. Notice that it is increasing as expected based on the lambda function you used.

```
In [16]: # Train the model
history = model_tune.fit(dataset, epochs=100, callbacks=[lr_schedule])
```

```
Epoch 1/100
31/31 •
                           0s 1ms/step - loss: 2506.3940 - learning_rate: 1.0000e-08
Epoch 2/100
31/31
                           0s 1ms/step - loss: 1711.6510 - learning_rate: 1.1220e-08
Epoch 3/100
31/31 -
                           0s 880us/step - loss: 1014.9673 - learning_rate: 1.2589e-08
Epoch 4/100
31/31
                           0s 884us/step - loss: 564.4791 - learning_rate: 1.4125e-08
Epoch 5/100
31/31
                           0s 1ms/step - loss: 325.7703 - learning_rate: 1.5849e-08
Epoch 6/100
31/31
                           0s 978us/step - loss: 229.4801 - learning_rate: 1.7783e-08
Epoch 7/100
31/31 •
                           0s 2ms/step - loss: 200.7849 - learning_rate: 1.9953e-08
Epoch 8/100
31/31
                           0s 867us/step - loss: 193.7678 - learning_rate: 2.2387e-08
Epoch 9/100
31/31
                           0s 920us/step - loss: 191.5480 - learning_rate: 2.5119e-08
Epoch 10/100
31/31
                           0s 844us/step - loss: 190.1009 - learning_rate: 2.8184e-08
Epoch 11/100
31/31
                           0s 859us/step - loss: 188.6523 - learning_rate: 3.1623e-08
Epoch 12/100
                           0s 823us/step - loss: 187.0106 - learning_rate: 3.5481e-08
31/31
Epoch 13/100
31/31
                          0s 943us/step - loss: 185.1621 - learning rate: 3.9811e-08
Epoch 14/100
                           0s 781us/step - loss: 182.9980 - learning_rate: 4.4668e-08
31/31
Epoch 15/100
31/31
                          0s 820us/step - loss: 180.4625 - learning_rate: 5.0119e-08
Epoch 16/100
31/31
                           0s 841us/step - loss: 177.4736 - learning_rate: 5.6234e-08
Epoch 17/100
31/31
                          0s 869us/step - loss: 174.0313 - learning rate: 6.3096e-08
Epoch 18/100
31/31
                           0s 791us/step - loss: 170.1685 - learning_rate: 7.0795e-08
Epoch 19/100
31/31
                          0s 825us/step - loss: 165.6645 - learning_rate: 7.9433e-08
Epoch 20/100
31/31
                           0s 810us/step - loss: 160.8548 - learning_rate: 8.9125e-08
Epoch 21/100
31/31
                          0s 813us/step - loss: 156.3339 - learning_rate: 1.0000e-07
Epoch 22/100
31/31
                           0s 741us/step - loss: 152.3166 - learning_rate: 1.1220e-07
Epoch 23/100
                           0s 763us/step - loss: 148.4946 - learning_rate: 1.2589e-07
31/31
Epoch 24/100
31/31
                           0s 800us/step - loss: 144.7556 - learning_rate: 1.4125e-07
Epoch 25/100
31/31
                           0s 791us/step - loss: 141.2598 - learning_rate: 1.5849e-07
Epoch 26/100
31/31 •
                           0s 765us/step - loss: 137.9148 - learning_rate: 1.7783e-07
Epoch 27/100
31/31
                           0s 785us/step - loss: 134.7648 - learning_rate: 1.9953e-07
Epoch 28/100
31/31
                           0s 835us/step - loss: 131.9390 - learning_rate: 2.2387e-07
Epoch 29/100
31/31
                           0s 795us/step - loss: 129.3246 - learning_rate: 2.5119e-07
Epoch 30/100
31/31
                           0s 1ms/step - loss: 126.7800 - learning_rate: 2.8184e-07
Epoch 31/100
31/31
                           0s 839us/step - loss: 124.2571 - learning_rate: 3.1623e-07
Epoch 32/100
31/31
                           0s 809us/step - loss: 121.7981 - learning_rate: 3.5481e-07
Epoch 33/100
31/31
                           0s 806us/step - loss: 119.4434 - learning_rate: 3.9811e-07
Epoch 34/100
31/31
                           0s 804us/step - loss: 117.0431 - learning_rate: 4.4668e-07
Epoch 35/100
                           0s 785us/step - loss: 114.6313 - learning_rate: 5.0119e-07
31/31
Epoch 36/100
31/31
                           0s 848us/step - loss: 112.0312 - learning_rate: 5.6234e-07
Epoch 37/100
31/31
                           0s 907us/step - loss: 109.0710 - learning_rate: 6.3096e-07
Epoch 38/100
31/31
                          0s 802us/step - loss: 105.5530 - learning_rate: 7.0795e-07
Epoch 39/100
31/31
                           0s 760us/step - loss: 101.8160 - learning_rate: 7.9433e-07
```

	40/100	0-	700 / - +		1	00 2700		1	0.012507
31/31 Epoch	41/100	05	796us/step	-	1055:	90.2700	-	learning_rate:	8.9125E-07
31/31 Epoch	42/100	0s	828us/step	-	loss:	95.0784	-	learning_rate:	1.0000e-06
31/31		0s	816us/step	-	loss:	92.1468	-	<pre>learning_rate:</pre>	1.1220e-06
31/31	43/100	0s	779us/step	-	loss:	89.4083	-	learning_rate:	1.2589e-06
Epoch 31/31	44/100	0s	790us/step	_	loss:	86.8263	_	learning_rate:	1.4125e-06
Epoch 31/31	45/100	۵s	783us/sten	_	lossi	84 3977	_	learning rate:	1 5849e-06
Epoch	46/100							<u>-</u>	
	47/100							learning_rate:	
31/31 Epoch	48/100	0s	917us/step	-	loss:	79.6247	-	learning_rate:	1.9953e-06
31/31 Epoch	49/100	0s	830us/step	-	loss:	76.9839	-	<pre>learning_rate:</pre>	2.2387e-06
31/31 Enoch	50/100	0s	1ms/step -	10	oss: 74	4.1391 -	16	earning_rate: 2.	.5119e-06
31/31		0s	882us/step	-	loss:	71.1085	-	<pre>learning_rate:</pre>	2.8184e-06
31/31		0s	862us/step	-	loss:	69.0980	-	learning_rate:	3.1623e-06
Epoch 31/31	52/100	0s	813us/step	-	loss:	67.7431	-	learning_rate:	3.5481e-06
Epoch 31/31	53/100	0s	867us/step	_	loss:	66.5331	_	learning_rate:	3.9811e-06
Epoch 31/31	54/100	95	879us/sten	_	loss:	64.4961	_	learning_rate:	4.4668e-06
Epoch	55/100								
-	56/100							learning_rate:	
31/31 Epoch	57/100	0s	884us/step	-	loss:	58.1354	-	learning_rate:	5.6234e-06
31/31 Epoch	58/100	0s	818us/step	-	loss:	55.7164	-	learning_rate:	6.3096e-06
31/31 Epoch	59/100	0s	848us/step	-	loss:	54.2430	-	<pre>learning_rate:</pre>	7.0795e-06
31/31 Epoch	60/100	0s	786us/step	-	loss:	52.9646	-	learning_rate:	7.9433e-06
31/31		0s	836us/step	-	loss:	51.3713	-	learning_rate:	8.9125e-06
31/31		0s	890us/step	-	loss:	49.6853	-	learning_rate:	1.0000e-05
31/31		0s	801us/step	-	loss:	48.4218	-	learning_rate:	1.1220e-05
Epoch 31/31	63/100	0s	860us/step	-	loss:	47.3145	-	learning_rate:	1.2589e-05
Epoch 31/31	64/100	0s	891us/step	_	loss:	46.8813	_	learning_rate:	1.4125e-05
Epoch 31/31	65/100	0s	889us/step	_	loss:	46.7744	_	<pre>learning_rate:</pre>	1.5849e-05
Epoch 31/31	66/100							learning_rate:	
Epoch	67/100								
-	68/100							learning_rate:	
31/31 Epoch	69/100	0s	871us/step	-	loss:	48.1848	-	learning_rate:	2.2387e-05
31/31 Epoch	70/100	0s	788us/step	-	loss:	48.0257	-	<pre>learning_rate:</pre>	2.5119e-05
31/31 Epoch	71/100	0s	877us/step	-	loss:	47.8003	-	learning_rate:	2.8184e-05
31/31		0s	860us/step	-	loss:	45.3325	-	learning_rate:	3.1623e-05
31/31		0s	800us/step	-	loss:	45.9972	-	learning_rate:	3.5481e-05
31/31		0s	793us/step	-	loss:	52.0766	-	learning_rate:	3.9811e-05
Epoch 31/31	74/100	0s	784us/step	-	loss:	68.5569	-	learning_rate:	4.4668e-05
Epoch 31/31	75/100 	0s	847us/step	_	loss:	62.8288	_	learning_rate:	5.0119e-05
Epoch 31/31	76/100							learning_rate:	
Epoch	77/100							- learning_rate:	
Epoch	78/100								
31/31		ØS	809us/step	-	TOSS:	3/06.650	25	- learning_rate	e: /.0/95e-05

```
Epoch 79/100
31/31 -
                           0s 773us/step - loss: 2132.3281 - learning_rate: 7.9433e-05
Enoch 80/100
31/31
                           0s 809us/step - loss: 1995.7946 - learning_rate: 8.9125e-05
Epoch 81/100
31/31 •
                          - 0s 817us/step - loss: 1830.6075 - learning_rate: 1.0000e-04
Epoch 82/100
31/31 •
                           0s 823us/step - loss: 1670.4083 - learning_rate: 1.1220e-04
Epoch 83/100
31/31 •
                          - 0s 872us/step - loss: 1511.8896 - learning_rate: 1.2589e-04
Epoch 84/100
31/31 •
                          - 0s 843us/step - loss: 1357.6378 - learning_rate: 1.4125e-04
Epoch 85/100
31/31 •
                          - 0s 836us/step - loss: 1210.4045 - learning_rate: 1.5849e-04
Epoch 86/100
31/31 •
                          - 0s 786us/step - loss: 1073.0750 - learning_rate: 1.7783e-04
Epoch 87/100
31/31
                          - 0s 781us/step - loss: 949.6134 - learning_rate: 1.9953e-04
Epoch 88/100
31/31
                          - 0s 814us/step - loss: 843.4919 - learning_rate: 2.2387e-04
Epoch 89/100
31/31
                          - 0s 800us/step - loss: 742.2322 - learning_rate: 2.5119e-04
Epoch 90/100
                           0s 824us/step - loss: 663.6880 - learning_rate: 2.8184e-04
31/31
Epoch 91/100
31/31
                          - 0s 765us/step - loss: 600.6215 - learning_rate: 3.1623e-04
Epoch 92/100
31/31
                          - 0s 817us/step - loss: 544.2760 - learning_rate: 3.5481e-04
Epoch 93/100
31/31 •
                          - 0s 840us/step - loss: 516.4283 - learning_rate: 3.9811e-04
Epoch 94/100
31/31 -
                          - 0s 828us/step - loss: 491.8518 - learning_rate: 4.4668e-04
Epoch 95/100
31/31
                          - 0s 790us/step - loss: 543.3735 - learning rate: 5.0119e-04
Epoch 96/100
31/31 -
                          - 0s 824us/step - loss: 466.6510 - learning_rate: 5.6234e-04
Epoch 97/100
31/31
                          - 0s 863us/step - loss: 459.3431 - learning_rate: 6.3096e-04
Epoch 98/100
31/31
                           0s 862us/step - loss: 490.7321 - learning_rate: 7.0795e-04
Epoch 99/100
31/31
                          0s 852us/step - loss: 456.8626 - learning_rate: 7.9433e-04
Epoch 100/100
                           0s 862us/step - loss: 456.3004 - learning_rate: 8.9125e-04
31/31
```

Next step is to plot the results of the training. You will visualize the loss at each value of the learning rate.

Out[17]: (1e-08, 0.001, 0.0, 300.0)

```
In [17]: # Define the Learning rate array
lrs = 1e-8 * (10 ** (np.arange(100) / 20))

# Set the figure size
plt.figure(figsize=(10, 6))

# Set the grid
plt.grid(True)

# Plot the loss in log scale
plt.semilogx(lrs, history.history["loss"])

# Increase the tickmarks size
plt.tick_params('both', length=10, width=1, which='both')

# Set the plot boundaries
plt.axis([1e-8, 1e-3, 0, 300])
```


The generated graph above shows the values of the range of learning rates that leads to lower losses (i.e. sloping downward) and also which ones cause the training to become unstable (i.e. jagged edges and pointing upwards). In general, you will want to pick a point in a downward slope. That means the network is still learning at that point and is stable. Choosing close to the minimum point of the graph will make the training converge to that loss value quicker, as will be shown in the next cells.

First, you will initialize the same model architecture again.

You will then set the optimizer with a learning rate close to the minimum. It is set to 4e-6 initially but feel free to change based on your results.

You can then compile and train the model as before. Observe the loss values and compare it to the output of the baseline model you had before. Most likely, you will have met the final loss value of the model_baseline within the first 50 epochs of training this model_tune. You will also likely have a lower loss after all 100 epochs are done.

```
In [20]: # Set the training parameters
    model_tune.compile(loss="mse", optimizer=optimizer)

# Train the model
history = model_tune.fit(dataset, epochs=100)
```

Fnoch	1/100					
31/31		0s	898us/step	_	loss:	975.9979
-	2/100		, , , , , , ,			
31/31		0s	845us/step	-	loss:	130.1490
Epoch	3/100					
31/31		0s	870us/step	-	loss:	108.0213
	4/100	_	/ .			
31/31 Enoch		0s	746us/step	-	loss:	98.0994
31/31	5/100	0s	722us/step	_	1055.	89 3026
	6/100	03	/22u3/3ccp		1033.	03.3020
31/31		0s	732us/step	-	loss:	81.3792
Epoch	7/100					
31/31		0s	862us/step	-	loss:	74.3936
-	8/100					
31/31 Enoch		0s	730us/step	-	loss:	68.4266
31/31	9/100	95	710us/step	_	loss:	63.9003
	10/100	0.5	, 10u3, 5ccp		1055.	03.3003
31/31		0s	733us/step	-	loss:	60.6785
	11/100					
		0s	778us/step	-	loss:	58.5977
	12/100	Q.c	765us/step	_	1000	57 2478
-	13/100	03	703u3/3cep	_	1033.	37.2476
31/31		0s	845us/step	-	loss:	56.1566
Epoch	14/100					
		0s	765us/step	-	loss:	55.1828
	15/100	0-	762/-+		1	F2 224F
31/31 Enoch	16/100	05	763us/step	-	1055:	53.3245
31/31		0s	845us/step	_	loss:	52.3851
	17/100		т, т т т р			
31/31		0s	789us/step	-	loss:	51.6984
	18/100					
31/31		0s	798us/step	-	loss:	51.1562
31/31	19/100	۵c	836us/step	_	1000	50 6879
	20/100	03	030и3/3сср		1033.	30.0073
31/31		0s	863us/step	-	loss:	50.2550
Epoch	21/100					
31/31		0s	745us/step	-	loss:	49.8760
	22/100	0.0	92645/5+02		10001	40 5402
31/31 Enoch	23/100	03	836us/step	_	1033.	49.5402
		0s	792us/step	-	loss:	49.2372
Epoch	24/100					
31/31		0s	804us/step	-	loss:	48.9542
Epoch 31/31	25/100	0.0	75445/5+00		10001	49,6007
-	26/100	05	754us/step	-	1055:	48.6997
31/31		0s	780us/step	_	loss:	48.4794
	27/100					
31/31		0s	828us/step	-	loss:	48.2743
-	28/100	0 -	744/		1	40, 0070
-	29/100	05	711us/step	-	1055:	48.0870
31/31		0s	778us/step	-	loss:	47.9087
	30/100					
		0s	826us/step	-	loss:	47.7412
31/31	31/100	۵c	880us/step	_	1000	<i>1</i> 7 5815
	32/100	0.5	ооошэ, эсср		1055.	.,,5023
31/31		0s	786us/step	-	loss:	47.4306
	33/100			_		
31/31 Enoch		0s	2ms/step -	10	oss: 47	7.2909
31/31	34/100	95	867us/step	_	loss:	47.1574
	35/100		то то, тор			
31/31		0s	812us/step	-	loss:	47.0299
-	36/100	_	1/	,		. 0003
31/31 Enoch	37/100	υS	1ms/step -	T(JSS: 46	כלשל.
31/31		0s	737us/step	_	loss:	46.7897
	38/100		F			
31/31		0s	811us/step	-	loss:	46.6740
Epoch 31/31	39/100	ar	799us/step	_	10551	<i>16</i> 5590
J1/ J1		J3	. , , , u s , s t e p		1000.	

Epoch 40		ac.	729us /s+on		1000	16 1E27
31/31 — Epoch 41		05	728us/step	-	1055:	40.4527
31/31 — Epoch 42		0s	730us/step	-	loss:	46.3457
31/31 — Epoch 43		0s	766us/step	-	loss:	46.2488
31/31 —		0s	807us/step	-	loss:	46.1518
Epoch 44 31/31 —		0s	772us/step	_	loss:	46.0560
Epoch 45 31/31 —		0s	787us/step	_	loss:	45.9627
Epoch 46 31/31 —	/100		•			
Epoch 47	/100		820us/step			
31/31 — Epoch 48		0s	818us/step	-	loss:	45.7860
31/31 — Epoch 49		0s	863us/step	-	loss:	45.6988
31/31 — Epoch 50		0s	816us/step	-	loss:	45.6170
31/31 —		0s	753us/step	-	loss:	45.5363
Epoch 51 31/31 —		0s	819us/step	-	loss:	45.4563
Epoch 52 31/31 —		0s	794us/step	-	loss:	45.3782
Epoch 53 31/31 —		0s	758us/step	_	loss:	45.3044
Epoch 54 31/31 —		05	788us/step	_	loss:	45.2271
Epoch 55	/100		•			
Epoch 56	/100		776us/step			
31/31 — Epoch 57	/100		824us/step			
31/31 — Epoch 58		0s	806us/step	-	loss:	44.9999
31/31 — Epoch 59		0s	738us/step	-	loss:	44.9253
31/31 — Epoch 60		0s	724us/step	-	loss:	44.8546
31/31 — Epoch 61		0s	727us/step	-	loss:	44.7787
31/31 — Epoch 62		0s	771us/step	-	loss:	44.7110
31/31 —		0s	752us/step	-	loss:	44.6379
Epoch 63 31/31 —		0s	734us/step	-	loss:	44.5689
Epoch 64 31/31 —		0s	726us/step	_	loss:	44.5044
Epoch 65 31/31 —		0s	803us/step	_	loss:	44.4321
Epoch 66 31/31 —	/100		789us/step			
Epoch 67	/100		•			
31/31 — Epoch 68	/100		859us/step			
31/31 — Epoch 69		0s	751us/step	-	loss:	44.2266
31/31 — Epoch 70		0s	812us/step	-	loss:	44.1580
31/31 — Epoch 71		0s	868us/step	-	loss:	44.0849
31/31 — Epoch 72		0s	793us/step	-	loss:	44.0188
31/31 —		0s	776us/step	-	loss:	43.9486
Epoch 73 31/31 —		0s	747us/step	-	loss:	43.8778
Epoch 74 31/31 —		0s	779us/step	-	loss:	43.8061
Epoch 75 31/31 —		0s	802us/step	-	loss:	43.7364
Epoch 76 31/31 —		0s	729us/step	-	loss:	43.6702
Epoch 77 31/31 —	/100		788us/step			
Epoch 78	/100		799us/step			
J1/ J1		J3	, , , , , , , , ceh		1033.	-J-J-J2

```
Epoch 79/100
31/31
                           0s 819us/step - loss: 43.4810
Epoch 80/100
31/31
                           0s 846us/step - loss: 43.4217
Epoch 81/100
31/31 -
                           0s 880us/step - loss: 43.3639
Epoch 82/100
31/31 -
                           0s 763us/step - loss: 43.3047
Epoch 83/100
31/31 -
                          - 0s 764us/step - loss: 43.2465
Epoch 84/100
31/31 -
                          - 0s 873us/step - loss: 43.1893
Epoch 85/100
31/31 -
                          - 0s 863us/step - loss: 43.1329
Epoch 86/100
31/31 •
                          - 0s 782us/step - loss: 43.0766
Epoch 87/100
                          - 0s 845us/step - loss: 43.0227
31/31
Epoch 88/100
                          - 0s 861us/step - loss: 42.9705
31/31 •
Epoch 89/100
                           0s 732us/step - loss: 42.9146
31/31 •
Epoch 90/100
                           0s 804us/step - loss: 42.8554
31/31 •
Epoch 91/100
                          - 0s 808us/step - loss: 42.7959
31/31 •
Epoch 92/100
31/31 -
                          • 0s 808us/step - loss: 42.7379
Epoch 93/100
31/31 -
                          - 0s 736us/step - loss: 42.6788
Epoch 94/100
31/31 -
                          • 0s 724us/step - loss: 42.6196
Epoch 95/100
                          - 0s 788us/step - loss: 42.5644
31/31
Epoch 96/100
                           0s 746us/step - loss: 42.5096
31/31 -
Epoch 97/100
31/31 -
                          • 0s 696us/step - loss: 42.4555
Epoch 98/100
31/31
                           0s 716us/step - loss: 42.4051
Epoch 99/100
31/31
                           0s 720us/step - loss: 42.3556
Epoch 100/100
31/31
                          - 0s 711us/step - loss: 42.3045
```

You can plot the loss values by getting it from the History object returned by the fit() method. As you can see, the model is still trending downward after the training.

```
In [21]: # Plot the loss
    loss = history.history['loss']
    epochs = range(len(loss))
    plt.plot(epochs, loss, 'b', label='Training Loss')
    plt.show()
```



```
In [22]: # Plot all but the first 10
    loss = history.history['loss']
    epochs = range(10, len(loss))
    plot_loss = loss[10:]
    plt.plot(epochs, plot_loss, 'b', label='Training Loss')
    plt.show()
```


You can get the predictions again and overlay it on the validation set.

Finally, you can compute the metrics and you should arrive at similar figures compared to the baseline. If it is much worse, then the model might have overfitted and you can use techniques you know to avoid it (e.g. adding dropout).

```
In [24]: print(tf.keras.metrics.mse(x_valid, results).numpy())
    print(tf.keras.metrics.mae(x_valid, results).numpy())
45.806854
```

Wrap Up

4.9200997

This concludes the exercise on using a deep neural network for forecasting. Along the way, you did some hyperparameter tuning, particularly on the learning rate. You will be using this technique as well in the next labs. Next week, you will be using recurrent neural networks to build your forecasting model. See you there and keep it up!