

Stack Overflow Annual Developer Survey.

The Tasks:

- · How many developers participated in this survey?
- Find the top 10 countries participating devs are from.
- · How many are from Nigeria?
- What's the average age the Nigerian dev wrote their first code?
- What's the average age of the Nigerian dev?
- · What are the kinds of employment they are in?
- · What's the gender distribution?
- What majors did they study in school?
- · What languages have they worked with?
- · What's the average number of languages they have worked with?
- · What's the average number of years of experience of the Nigerian developer?

Kicker:

- How many devs are women, age below 25 and earn a living from dev?
- What are the 10 most popular languages among Naija devs?

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter

# Load data
Var_def = pd.read_csv("survey_results_schema.csv")
data = pd.read_csv("survey_results_public.csv")

import warnings
import matplotlib.cbook
warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) #to
ignore unnecessary worry I encountered
```

In [2]: Var_def.head()

Out[2]:

	Column	QuestionText
0	Respondent	Randomized respondent ID number (not in order
1	MainBranch	Which of the following options best describes
2	Hobbyist	Do you code as a hobby?
3	Age	What is your age (in years)? If you prefer not
4	Age1stCode	At what age did you write your first line of c

In [3]: data.head()

Out[3]:

	Respondent	MainBranch	Hobbyist	Age	Age1stCode	CompFreq	CompTotal	ConvertedCom
0	1	I am a developer by profession	Yes	NaN	13	Monthly	NaN	Nal
1	2	I am a developer by profession	No	NaN	19	NaN	NaN	Nal
2	3	l code primarily as a hobby	Yes	NaN	15	NaN	NaN	Nal
3	4	I am a developer by profession	Yes	25.0	18	NaN	NaN	Nal
4	5	I used to be a developer by profession, but no	Yes	31.0	16	NaN	NaN	Nal

5 rows × 61 columns

In [4]: data.shape

Out[4]: (64461, 61)

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 64461 entries, 0 to 64460
Data columns (total 61 columns):

υaτa #	Columns (total 61 columns):	Non-Null Count	Dtype
0	Respondent	64461 non-null	int64
1	MainBranch	64162 non-null	object
2	Hobbyist	64416 non-null	object
3	Age	45446 non-null	float64
4	Age1stCode	57900 non-null	object
5	CompFreq	40069 non-null	object
6	CompTotal	34826 non-null	float64
7	ConvertedComp	34756 non-null	float64
8	Country	64072 non-null	object
9	CurrencyDesc	45472 non-null	object
10	CurrencySymbol	45472 non-null	object
11	DatabaseDesireNextYear	44070 non-null	object
12	DatabaseWorkedWith	49537 non-null	object
13	DevType	49370 non-null	object
14	EdLevel	57431 non-null	object
15	Employment	63854 non-null	object
16	Ethnicity	45948 non-null	object
17	Gender	50557 non-null	object
18	JobFactors	49349 non-null	object
19	JobSat	45194 non-null	object
20	JobSeek	51727 non-null	object
21	LanguageDesireNextYear	54113 non-null	object
22	LanguageWorkedWith	57378 non-null	object
23	MiscTechDesireNextYear	42379 non-null	object
24	MiscTechWorkedWith	40314 non-null	object
25	NEWCollabToolsDesireNextYear	47287 non-null	object
26	NEWCollabToolsWorkedWith	52883 non-null	object
27	NEWDevOps	42686 non-null	object
28	NEWDevOpsImpt	41732 non-null	object
29	NEWEdImpt	48465 non-null	object
30	NEWJobHunt	42286 non-null	object
31	NEWJobHuntResearch	41022 non-null	object
32	NEWLearn	56156 non-null	object
33	NEWOffTopic	50804 non-null	object
34	NEWOnboardGood	42623 non-null	object
35	NEWOtherComms	57205 non-null	object
36	NEWOvertime	43231 non-null	object
37	NEWPurchaseResearch	37321 non-null	object
38	NEWPurpleLink	54803 non-null	object
39	NEWSOSites	58275 non-null	object
40	NEWStuck	54983 non-null	object
41	OpSys	56228 non-null	object
42	OrgSize	44334 non-null	object
43	PlatformDesireNextYear	50605 non-null	object
44	PlatformWorkedWith	53843 non-null	object
45	PurchaseWhat	39364 non-null	object
46	Sexuality	43992 non-null	object
47	SOAccount	56805 non-null	object
48	SOComm	56476 non-null	object
49	SOPartFreq	46792 non-null	object
50	SOVisitFreq	56970 non-null	object
51	SurveyEase	51802 non-null	object
	-		-

```
52 SurveyLength
                                  51701 non-null object
 53 Trans
                                  49345 non-null object
54 UndergradMajor
                                  50995 non-null object
55 WebframeDesireNextYear
                                  40024 non-null object
56 WebframeWorkedWith
                                  42279 non-null
                                                 object
57 WelcomeChange
                                  52683 non-null object
58 WorkWeekHrs
                                  41151 non-null float64
59 YearsCode
                                  57684 non-null object
60 YearsCodePro
                                  46349 non-null object
dtypes: float64(4), int64(1), object(56)
memory usage: 30.0+ MB
```

Data Preprocessing

Convert Age1stCode, YearsCode and YearsCodePro to float

```
In [6]: #replace the words to figures to be able to convert to float

    data.replace({"Age1stCode": {'Younger than 5 years': '5', 'Older than 85': '8
    5'}}, inplace = True)
    data.replace({"YearsCode": {'Less than 1 year': '1', 'More than 50 years': '5
    0'}}, inplace = True)
    data.replace({"YearsCodePro": {'Less than 1 year': '1', 'More than 50 years':
    '50'}}, inplace = True)

In [7]: #convert to float
    cols = ['Age1stCode', 'YearsCode', 'YearsCodePro']
    for col in cols:
        data[col] = pd.to_numeric(data[col])
```

Treating missing values. Fill the float type with 0.0 and object type with "No Response"

```
In [9]: data.isnull().sum()
Out[9]: Respondent
                               0
        MainBranch
                               0
        Hobbyist
                               0
        Age
                               0
        Age1stCode
                               0
        WebframeWorkedWith
                               0
        WelcomeChange
                               0
        WorkWeekHrs
                               0
        YearsCode
        YearsCodePro
         Length: 61, dtype: int64
```

To clean up the data a bit, summarize some sentences

```
In [10]:
         data.loc[data['MainBranch'].str.contains ('by profession'), ['MainBranch']] =
         'Professsional'
         data.loc[data['MainBranch'].str.contains ('student'), ['MainBranch']] = 'Stude
         data.loc[data['MainBranch'].str.contains ('part of'), ['MainBranch']] = 'Part_
         data.loc[data['MainBranch'].str.contains ('hobby'), ['MainBranch']] = 'Hobbyis
         data.loc[data['MainBranch'].str.contains ('no longer'), ['MainBranch']] = 'For
         mer Professional'
         data.loc[data['Employment'].str.contains ('self-employed'), ['Employment']] =
         'Self-employed'
         data.loc[data['Gender'].str.contains ('queer'), ['Gender']] = 'Genderqueer'
         data.loc[data['Gender'].str.contains ('Woman; Man'), ['Gender']] = 'Transgende'
         data.loc[data['EdLevel'].str.contains ('Bachelor's'), ['EdLevel']] = 'Bachelor
         data.loc[data['EdLevel'].str.contains ('Master's'), ['EdLevel']] = 'Masters'
         data.loc[data['EdLevel'].str.contains ('study without'), ['EdLevel']] = 'Colle
         ge without degree'
         data.loc[data['EdLevel'].str.contains ('Secondary'), ['EdLevel']] = 'Secondary
         school'
         data.loc[data['EdLevel'].str.contains ('Associate'), ['EdLevel']] = 'Associate
         degree'
         data.loc[data['EdLevel'].str.contains ('doctoral'), ['EdLevel']] = 'Doctorate'
         data.loc[data['EdLevel'].str.contains ('elementary'), ['EdLevel']] = 'Elementa
         data.loc[data['EdLevel'].str.contains ('Professional'), ['EdLevel']] = 'Profes
         sional degree'
         data.loc[data['EdLevel'].str.contains ('never'), ['EdLevel']] = 'No formal edu
         cation'
         data.loc[data['UndergradMajor'].str.contains ('Computer'), ['UndergradMajor']]
         = 'Computer science'
         data.loc[data['UndergradMajor'].str.contains ('engineering'), ['UndergradMajo']
         r']] = 'Engineering discipline'
         data.loc[data['UndergradMajor'].str.contains ('Information'), ['UndergradMajo
         r']] = 'Information systems'
         data.loc[data['UndergradMajor'].str.contains ('natural'), ['UndergradMajor']]
         = 'Natural science'
         data.loc[data['UndergradMajor'].str.contains ('Mathematics'), ['UndergradMajo
         r']] = 'Math/Stat'
         data.loc[data['UndergradMajor'].str.contains ('Web'), ['UndergradMajor']] = 'W
         eb development'
         data.loc[data['UndergradMajor'].str.contains ('humanities'), ['UndergradMajor'
         ]] = 'Humanities discipline'
         data.loc[data['UndergradMajor'].str.contains ('social science'), ['UndergradMa
         jor']] = 'Social science'
         data.loc[data['UndergradMajor'].str.contains ('Fine arts'), ['UndergradMajor'
         ]] = 'Fine arts'
         data.loc[data['UndergradMajor'].str.contains ('health science'), ['UndergradMa
         jor']] = 'Health science'
         data.loc[data['UndergradMajor'].str.contains ('business discipline'), ['Underg
         radMajor']] = 'Business discipline'
```

```
In [11]: #visualization function for bar chart for the columns with multiple selections
         def bar chart multifeature(df, feature, position, label):
             var split = df[feature].str.split(';')
             var concat = np.concatenate(var split.values)
             var list = var concat.tolist()
             count = Counter(var_list)
             df = pd.DataFrame.from dict(count, orient='index').reset index()
             df.columns=["Feature","Count"]
             df=df.sort_values("Count", ascending=False).reset_index()
             if position=='highest':
                 df = df.head(10)
             elif position=='lowest':
                 df = df.tail(10)
             elif position==None:
                 df = df
             else:
                 raise NameError('Please indicate \'highest\', \'lowest\' or None in th
         e third positional argument')
             plt.figure(figsize=(13, 6))
             plt.title("A bar chart representing the " + label, fontsize=20)
             ax = sns.barplot(x="Count", y="Feature", data=df, color="b")
         #visualization function for pie chart
         def pie chart(df, feature, position, label):
             plt.subplots(figsize=(14,8))
             df = pd.DataFrame(data[feature].value counts())
             if position=='highest':
                 df = df.head(10)
                 plt.title("A pie representing the top 10 " + label, fontsize=20)
             elif position=='lowest':
                 df = df.tail(10)
                 plt.title("A pie representing the last 10 " + label, fontsize=20)
             elif position==None:
                 df = df
                 plt.title("A pie representing the " + label, fontsize=20)
             else:
                 raise NameError('Please indicate \'highest\', \'lowest\' or None in th
         e third position argument')
             labels = df.index
             df = df[::1]
             plt.pie(df, shadow=True, autopct='%1.1f%%', startangle=90)
             plt.legend(title=feature, labels=labels)
             plt.axis('equal') # Set aspect ratio to be equal so that pie is drawn as a
         circle.
             plt.show()
         #visualization function for histogram
         def hist(df, feature, label):
             plt.figure(figsize=(12,5))
             df=df[df[feature].values > 0].reset index(drop=True)
             n,bins,patch = plt.hist(df[feature],bins=40, range=(5, 60), color='Purple'
         )
             plt.title("A histogram showing the frequency distribution of the " + label
         + " with a mean of " +
                        str(round(df[feature].mean(), 0)), fontsize=15)
             plt.xlabel(label, fontsize=15)
```

How many developers participated in this survey

```
In [12]: print("There are a total of " + str(len(data["Respondent"])) + " developers th
    at participated in the survey")
```

There are a total of 64461 developers that participated in the survey

Find the top 10 countries participating devs are from

```
In [13]: pie_chart(data, "Country", "highest", "Countries")
```


How many are from Nigeria?

```
In [14]: Nig_data=data[data.Country=="Nigeria"].reset_index(drop=True)
print("There are a total of " + str(len(Nig_data["Respondent"])) + " Nigerian
developers that participated in the survey")
```

There are a total of 593 Nigerian developers that participated in the survey

What's the average age the Nigerian dev wrote their first code?

What's the average age of the Nigerian dev?

What are the kinds of employment they are in?

In [17]: bar_chart_multifeature(Nig_data, "DevType", None, "type of developer")
 pie_chart(Nig_data, "MainBranch", None, "type of employment")

What's the gender distribution?

In [18]: pie_chart(Nig_data, "Gender", None, "gender")

What majors did they study in school?

```
In [19]: pie_chart(Nig_data, "UndergradMajor", None, "undergraduate studies")
pie_chart(Nig_data, "EdLevel", None, "education level")
```

A pie representing the undergraduate studies

A pie representing the education level

What languages have they worked with?

```
In [20]: bar_chart_multifeature(Nig_data, "LanguageWorkedWith", None, "language worked
   with")
   bar_chart_multifeature(Nig_data, "LanguageDesireNextYear", None, "language the
   y desire next year")
```


What's the average number of languages they have worked with?

```
In [21]: var_split = Nig_data["LanguageWorkedWith"].str.split(';')
    var_concat = np.concatenate(var_split.values)
    var_list = var_concat.tolist()
    count = Counter(var_list)
    df = pd.DataFrame.from_dict(count, orient='index').reset_index()
    df.columns=["Feature","Count"]
    avg = (df["Count"]).sum()/len(Nig_data["Respondent"])
    print("There are an average of " + str(round(avg, 0)) + " languages Nigerian d
    evelopers have worked with")
```

There are an average of 4.0 languages Nigerian developers have worked with

What's the average number of years of experience of the Nigerian developer?

A histogram showing the frequency distribution of the number of years of experience with a mean of 5.0

Kicker

How many devs are women, age below 25 and earn a living from dev?

There are a total of 496 women, age below 25 that are earning a living as dev elopers

What are the 10 most popular languages among Naija devs?

In []: