ONE-FACTOR ANALYSIS MODELS AND ESTIMATORS

Chapter 3-5, 8

LEARNING OBJECTIVES

- Explain conditional distribution
- Write cell-means, effects, and polynomial regression models
- Identify which model is appropriate by identifying type of factor
- Derive expected value and standard error of a linear estimator
- Define estimability

NOTATION INDICES AND VARIABLES

- Single factor under study that has t unique levels
 - Index levels by i = 1, ... t
- Observe $r_i \geq 1$ responses for level i
 - lacktriangle Allow r_i to depend on i, so may not be equal # observations
 - Index responses for given i by $j = 1, ..., r_i$
 - If $r_i = 1$ for all i
- y_{ij} : represents j-th response under factor level i
 - \blacksquare A realization of the random variable, Y_{ij}
- \mathbf{x}_{ij} : factor level for y_{ij} ($x_{i1} = x_{i2} = \cdots = x_{ir_i}$)

NOTATION INDICES AND VARIABLES

- Used for both observational studies and designed experiments
- Smoking study design has factor with t=2
 - x_{1i} = "Smoking"
 - x_{2i} = "Non-Smoking"
- If equal # of subjects in two groups, $r_1 = r_2 = r$
- Ignore smoking factor and consider Age as a factor?
 - Probably many unique values (large t)
 - $r_i = 1$ for many *i* (many 18 year olds but few 77 year olds)

CATEGORICAL AND NUMERIC VARIABLES

- Categorical factor: takes on a finite number of values that may or may not be ordered
 - Ordinal → values have natural ordering but differencing the values doesn't make sense (think rankings)
 - Nominal → no obvious order
- Numeric factor: discrete or continuous but values can be ordered and differences make sense
 - Count data
 - Temperature
 - Age
- Type of factor influences your analysis!

CONDITIONAL DISTRIBUTIONS

- **Distribution** of Y_{ij} dictates how the y_{ij} are generated
- **Analysis goal**: does the Y_{ij} distribution change if the factor levels change?
- Asking about the conditional distribution of Y_{ij} given/conditioned on x_{ij}
- If conditional distributions all the same, then no relationship between Y_{ij} and x_{ij}

CONDITIONAL DISTRIBUTIONS EXPECTED VALUE

- Lots of ways the conditional distribution can change
 - Mean (i.e. Expected value)
 - Variance
- Focus solely on changes in expected value
- Represent this dependence mathematically as

$$E(Y_{ij}) = \mu_i \qquad Var(Y_{ij}) = \sigma^2$$

PRACTICE SOAP EXPERIMENT

- Factor with 3 levels: Regular, Deodorant, Moisturizing
 - Relabel as 1, 2, 3
- Response is weight loss (g)
- 4 cubes per soap type, 1 measurement each
- Draw pictures of distributions assuming normality:

$$\mu_1 = 0, \mu_2 = 2.5, \mu_3 = 2$$

$$\sigma = 0.25$$

CELL-MEANS MODEL CATEGORICAL FACTORS

Cell-means model has different mean for each i

$$Y_{ij} = \mu_i + E_{ij}$$

- $\blacksquare Y_{ij}$ depends on x_{ij} through μ_i
- Randomness of response comes from error E_{ij} having mean 0 and variance σ^2
 - lacktriangle Assume E_{ij} are independent and normally distributed
- **Analysis goal:** are the μ_i equal or different?
- If at least one μ_i is different from rest then the conditional distribution changes

CELL-MEANS AND EFFECTS MODEL CATEGORICAL FACTORS

- Cell-means model doesn't clearly state the effect of the treatment, only that means are different
- Rewrite $\mu_i = \mu + \tau_i$
 - $lacktriangleq \mu$: overall, constant effect on expected value
 - τ_i : effect specific to x_{ij} (really just i)
- Entire effects model is written as

$$Y_{ij} = \mu + \tau_i + E_{ij}$$

$$i = 1, ..., t$$

$$j = 1, ..., r_i$$

$$E_{ij} \sim^{iid} N(0, \sigma^2)$$

iid = independent, identically distributed

VISUALIZING MODELS CELL MEANS

Recall soap experiment:

- x_{ij} = "Regular", "Deodorant", "Moisturizing"
- Y_{ij} = weight loss (in grams)

$$E(Y_{ij}) = \mu = 1.5$$
?

Probably not. We expect points to be fairly symmetric about their expected value

VISUALIZING MODELS CELL MEANS

Recall soap experiment:

- x_{ij} = "Regular", "Deodorant", "Moisturizing"
- Y_{ij} = weight loss (in grams)

$$\mu_1 = 2.70$$
 $\mu_2 = 1.99$
 $\mu_3 = -0.04$

Looks pretty good!

VISUALIZING MODELS EFFECTS MODEL

Recall soap experiment:

- x_{ij} = "Regular", "Deodorant", "Moisturizing"
- Y_{ij} = weight loss (in grams)

$$\tau_1 = 1.20$$
 $\tau_2 = 0.49$
 $\tau_3 = -1.54$
 $\mu_1 = 2.70$
 $\mu_2 = 1.99$
 $\mu_3 = -0.04$

 $\mu = 1.50$

Same as before!

VISUALIZING MODELS EFFECTS MODEL

Recall soap experiment:

- x_{ij} = "Regular", "Deodorant", "Moisturizing"
- Y_{ij} = weight loss (in grams)

$$\mu = 0.00$$
 $\tau_1 = 2.70$
 $\tau_2 = 1.99$
 $\tau_3 = -0.04$

$$\mu_1 = 2.70$$
 $\mu_2 = 1.99$
 $\mu_3 = -0.04$

Wait....same as before?

OVERPARAMETERIZED MODELS

- lacktriangle Cell-means model has t unique x_{ij} 's and t μ_i
- Effects model has t unique x_{ij} 's but t+1 parameters
 - Say it is overparameterized
- To make the model parameters uniquely identifiable, you must impose side conditions such as

$$\mu = 0 \qquad \qquad \tau_t = 0 \qquad \qquad \sum_i \tau_i = 0 \qquad \qquad \sum_i r_i \tau_i = 0$$

Avoid this and talk about estimability later on

SIMPLE LINEAR REGRESSION MODEL NUMERIC FACTORS

- If x_{ij} is numeric then can use the cell-means or effects model but not recommended
- **Reason:** t is usually large and $r_i = 1$ so there are many parameters that we need to estimate
- Simple linear regression proposes a simple relationship using only two parameters

$$\mu_i = \beta_0 + \beta_1 x_{ij}$$

- Again assume $x_{i1} = x_{i2} = \cdots = x_{ir_i}$
- Mean increases/decreases linearly as x_{ij} increases

VISUALIZING MODELS CELL MEANS FOR NUMERIC

- Bean-soaking experiment: packaging says to soak mung bean seed sprouts overnight but no specific time is given
 - $x_{ij} = 12, 18, 24, 30 \text{ hours}$
 - Y_{ii} = sprout length (mm) after 48 hours

Cell-means model could be

$$\mu_1 = 5.94$$
 $\mu_2 = 18.41$
 $\mu_3 = 19.53$
 $\mu_4 = 21.29$

VISUALIZING MODELS SIMPLE LINEAR REGRESSION

- Bean-soaking experiment: packaging says to soak mung bean seed sprouts overnight but no specific time is given
 - $x_{ij} = 12, 18, 24, 30 \text{ hours}$
 - Y_{ii} = sprout length (mm) after 48 hours

Regression model could be

$$\mu_i = \beta_0 + \beta_1 x_{ij}$$

$$\beta_0 = 0 \ \beta_1 = 1$$

Probably not. Poor mean for $x_i = 30$

VISUALIZING MODELS SIMPLE LINEAR REGRESSION

- Bean-soaking experiment: packaging says to soak mung bean seed sprouts overnight but no specific time is given
 - $x_{ij} = 12, 18, 24, 30 \text{ hours}$
 - Y_{ii} = sprout length (mm) after 48 hours

$$r_i = 17$$

Regression model could be

$$\mu_i = \beta_0 + \beta_1 x_{ij}$$

$$\beta_0 = -0.217 \quad \beta_1 = 0.786$$

Looks better, but is still poor

POLYNOMIAL REGRESSION MODEL

- A linear relationship may be too simplistic
- The quadratic regression model allows for curvature

$$\mu_i = \beta_0 + \beta_1 x_{ij} + \beta_2 x_{ij}^2$$

A polynomial regression model is of the form

$$\mu_{i} = \beta_{0} + \beta_{1} x_{ij} + \beta_{2} x_{ij}^{2} + \dots + \beta_{p} x_{ij}^{p}$$

These are still linear models because we never take any nonlinear functions of the parameters

VISUALIZING MODELS QUADRATIC REGRESSION

- Bean-soaking experiment: packaging says to soak mung bean seed sprouts overnight but no specific time is given
 - $x_{ij} = 12, 18, 24, 30 \text{ hours}$
 - Y_{ij} = sprout length (mm) after 48 hours

$$r_i = 17$$

Regression model could be

$$\mu_i = \beta_0 + \beta_1 x_{ij} + \beta_2 x_{ij}^2$$

$$\beta_0 = -29.66 \quad \beta_1 = 3.91$$

$$\beta_2 = -0.07$$

Better than linear!

CELL-MEANS VERSUS POLYNOMIALS NUMERIC FACTORS

Cell-mean models

- Capture complicated relationships but require many parameters
- Can't predict for unobserved factor values

Polynomial models

- Approximate relationships fairly well with fewer parameters
- Can predict for unobserved factor values
- Do not extrapolate predictions outside of the observed values!

What do we do after we decide on a model?

STATISTICAL INFERENCE

- Statistical models involve unknown parameters
- Use observed data to infer what the parameters are
- An estimator of a parameter is a function of the data that informs us about the parameter
- Where do these estimators come from?
- How to compare competing estimators?

MEAN SQUARED ERROR

Let $\hat{\mu}_i$ denote some estimator for μ_i

$$\blacksquare MSE(\hat{\mu}_i) = E[(\hat{\mu}_i - \mu_i)^2]$$

- Want this difference to be as small as possible
- Has the following decomposition

$$MSE(\hat{\mu}_i) = Var(\hat{\mu}_i) + Bias(\hat{\mu}_i)^2$$
 $Bias(\hat{\mu}_i) = E(\hat{\mu}_i - \mu_i)$

- If $E(\hat{\mu}_i) = \mu_i$ then $Bias(\hat{\mu}_i) = 0$
- lacksquare Call $\hat{\mu}_i$ an unbiased estimator

PARAMETER ESTIMATION USING LEAST-SQUARES

Least-squares (LS) estimators minimize

$$\sum_{i}\sum_{j}(Y_{ij}-\hat{\mu}_{i})^{2}$$

Fact: LS estimators can be represented by

$$\sum_{i} \sum_{j} h_{ij} Y_{ij}$$

- Estimators of this form are called linear estimators
 - Linear combination of Y_{ij}

STATISTICAL PROPERTIES OF LINEAR ESTIMATORS

Expected value always distribute over sums

$$E\left(\sum_{i}\sum_{j}h_{ij}Y_{ij}\right) = \sum_{i}\sum_{j}E(h_{ij}Y_{ij})$$

Distribute over constants (non-random)

$$\sum_{i} \sum_{j} E(h_{ij}Y_{ij}) = \sum_{i} \sum_{j} h_{ij}E(Y_{ij}) = \sum_{i} \sum_{j} h_{ij}\mu_{i}$$

lacksquare Since μ_i doesn't have a j subscript we can simplify to

$$\sum_{i} \sum_{j} h_{ij} \mu_{i} = \sum_{i} h_{i} \cdot \mu_{i} \qquad \qquad h_{i} \cdot = \sum_{j} h_{ij}$$

Result: linear estimator is unbiased for some linear combination of μ_i

STATISTICAL PROPERTIES OF LINEAR ESTIMATORS

■ A linear combination, $\sum_i c_i \mu_i$, is estimable if there exists a linear, unbiased estimator:

$$E\left(\sum_{i}\sum_{j}h_{ij}Y_{ij}\right) = \sum_{i}c_{i}\mu_{i}$$

- From before we must have $h_i = c_i$
- \blacksquare Extract the c_i from given expression
 - μ_1 has $c_1 = 1$ and $c_2 = \cdots = c_t = 0$
 - $\mu_1 \mu_2 = \mu_1 + (-\mu_2)$ has $c_1 = 1$, $c_2 = -1$, $c_3 = \cdots c_t = 0$
- A contrast is a $\sum_i c_i \mu_i$ where $\sum_i c_i = 0$

LEAST-SQUARES ESTIMATORS CELL-MEANS MODEL

■ For cell-means model we have

$$\hat{\mu}_i = \sum_j \frac{1}{r_i} Y_{ij} = \frac{1}{r_i} \sum_j Y_{ij} = \frac{1}{r_i} Y_i = \overline{Y}_i.$$

Average of the responses for value i

$$\blacksquare E(\overline{Y}_i.) = \mu_i \quad Var(\overline{Y}_i.) = \sigma^2/r_i$$

Design impact: if you increase r_i you decrease variance of your estimator

LEAST-SQUARES ESTIMATORS SIMPLE LINEAR REGRESSION

For simple linear regression

$$\widehat{\beta}_0 = \overline{Y}..-\widehat{\beta}_1 \overline{x}..$$

$$\widehat{\beta}_1 = \frac{\sum_i \sum_j (x_{ij} - \overline{x}..)(Y_{ij} - \overline{Y}..)}{\sum_i \sum_j (x_{ij} - \overline{x}..)^2}$$

$$E(\hat{\beta}_0) = \beta_0 \quad Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}..^2}{\sum_i \sum_j (x_{ij} - \bar{x}..)^2} \right)$$

$$E(\hat{\beta}_1) = \beta_1 \qquad Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i \sum_j (x_{ij} - \bar{x}..)^2}$$

- $= n = \sum_i r_i$ is the total number of observations
- **Design impact:** if you increase $\sum_i \sum_j (x_{ij} \bar{x}..)^2$ the variance decreases for BOTH parameters

LEAST-SQUARES ESTIMATORS EFFECTS MODEL

- Remember that identifiability issue? Tells us that the individual parameters may not be estimable
- Every estimable function of the form

$$\sum_i c_i \mu_i = \sum_i c_i (\mu + \tau_i) = \mu \sum_i c_i + \sum_i c_i \tau_i$$

- For μ to be estimable by itself we need to pick c_i so that $\sum_i c_i \tau_i = 0$ for every possible τ_i (does not exist)
 - lacktriangle Can't estimate individual au_i either
- What functions are estimable?
 - $\blacksquare \mu_i = \mu + \tau_i$
 - Contrasts: $\sum_i c_i \tau_i$ where $\sum_i c_i = 0$ (e.g. $\tau_i \tau_i$)

LEAST-SQUARES ESTIMATORS EFFECTS MODEL

- Even though parameters aren't estimable we still have least-squares estimators for them
 - An infinite number of them and none of them are unbiased
 - Different software give different estimators
- Still use these estimators for estimable functions
 - lacksquare Say we have estimators $\widehat{\mu}$ and $\widehat{ au}_i$
 - Least-squares estimators for estimable functions are then

$$\sum_{i} \widehat{c_i \tau_i} = \sum_{i} c_i \widehat{\tau}_i$$
 and $\widehat{\mu + \tau_i} = \widehat{\mu} + \widehat{\tau}_i$

Important: estimable function estimator same regardless of the chosen $\hat{\mu}$ and $\hat{\tau}_i$

LEAST-SQUARES ESTIMATORS EFFECTS MODEL

Simplifications for this model, but not generally

$$\widehat{\mu} + \widehat{\tau}_i = \overline{Y}_i. \qquad Var(\overline{Y}_i.) = \frac{\sigma^2}{r_i}$$

- Design impact: increasing r_i for all treatments in a given contrast decreases variance of that contrast
- lacksquare If equally interested in all contrasts then maximize r_i
 - Why equal replication is recommended!

LEARNING OBJECTIVES REVIEW

- Explain a conditional distribution
- Write cell-means, effects, and polynomial regression models
- Identify when which model is appropriate by identifying type of factor
- Derive expected value and standard error of a linear estimator
- Define estimability

APPENDIX: MORE ON NOTATION

- Subscripts i=1,...,t and $j=1,...,r_i$ are necessary tools for framework that applies to many analyses
- Linear combinations involve real numbers h_{ij} indexed by i and j in table
- Think of arranging these numbers in a table
 - **Example:** i = 1, ..., 3 with $r_1 = 5, r_2 = 3, r_4 = 9$

j

	1	2	3	4	5	6	7	8	9
1	h_{11}	h_{12}	h_{13}	h_{14}	h_{15}				
2	h_{21}	h_{22}	h_{23}						
3	h_{31}	h_{32}	h_{33}	h_{34}	h_{35}	h_{36}	h_{37}	h_{38}	h_{39}

APPENDIX: MORE ON NOTATION

- The sums for each row are denoted by $\sum_j h_{ij} = h_i$.
- Previous example:
 - $h_1 = h_{11} + h_{12} + h_{13} + h_{14} + h_{15}$
 - $h_2 = h_{21} + h_{22} + h_{23}$
- lacksquare The sums for each column are denoted by $\sum_i h_{ij} = h._j$
- Previous example:
 - $h._1 = h_{11} + h_{21} + h_{31}$
 - h_4 . = $h_{14} + h_{34}$ (why is h_{24} missing from here?)
- The overall sum is $\sum_i \sum_j h_{ij} = h$...

APPENDIX: MORE ON NOTATION

The overall sum can be expressed in two other ways

$$h.. = \sum_i h_i$$
.

$$h.. = \sum_{j} h._{j}$$

Practice notation with the following table

j

_		1	2	3	4	5	6	7	8	9
	1	1	1	2	2	10				
	2	0.5	-0.5	0						
	3	1	2	3	4	5	6	7	8	9

$$h_1 = 16$$
 $h_2 = 2.5$ $h_9 = 9$ $h_4 = 16 + 0 + 45 = 61$