

Bab 2: Pengantar Model Relasional

Konsep-konsep Sistem Basis Data,

Edisi 7.

©Silberschatz, Korth dan Sudarshan Lihat <u>www.db-book.com</u> untuk mengetahui ketentuan tentang penggunaan ulang

Garis hasar

- Struktur Basis Data Relasional
- Skema Basis Data
- Kunci
- Diagram Skema
- Bahasa Kueri Relasional
- Aljabar Relasional

Contoh Relasi Instruktur Relation

Atributte

- Himpunan nilai yang diizinkan untuk setiap atribut disebut domain dari atribut
- Nilai atribut (biasanya) harus berbentuk atom; yaitu, tidak dapat dibagi-bagi
- Nilai khusus *null* adalah anggota dari setiap domain.
 Menunjukkan bahwa nilai tersebut "tidak diketahui"
- Nilai nol menyebabkan komplikasi dalam definisi banyak operasi

Hubungan Tidak Teratur

- Urutan tupel tidak relevan (tupel dapat disimpan dalam urutan yang berubah-ubah)
- Contoh: relasi instruktur dengan tupel yang tidak terurut

ID	name dept_name		salary	
22222	Einstein	Physics	95000	
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Kim Elec. Eng.		
76766	Crick Biology		72000	
10101	Srinivasan Comp. Sci.		65000	
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	
33456	Gold	Physics	87000	
76543	Singh	Finance	80000	

Skema Basis Data

- Skema basis data adalah struktur logis dari basis data.
- Instance database adalah cuplikan data dalam database pada waktu tertentu.
- Contoh:
 - skema: instruktur (ID, nama, nama_departemen, gaji)
 - Contoh:

ID	name	dept_name	salary	
22222	Einstein	Physics	95000	
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Elec. Eng.	80000	
76766	Crick	Biology	72000	
10101	Srinivasan	Comp. Sci.	65000	
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	
33456	Gold	Physics	87000	
76543	Singh	Finance 80000		

Kunci

- Misalkan K ⊂ R
- K adalah superkey dari R jika nilai-nilai untuk K cukup untuk mengidentifikasi tuple unik dari setiap relasi yang mungkin r(R)
 - Contoh: {ID} dan {ID, nama} keduanya merupakan superkey dari instruktur.
- Superkey K adalah kunci kandidat jika K minimal Contoh: {ID} adalah kunci kandidat untuk Instruktur
- Salah satu kunci kandidat dipilih untuk menjadi kunci utama.
 - yang mana?
- Batasan kunci asing: Nilai dalam satu relasi harus muncul di relasi lainnya
 - Hubungan referensi
 - Relasi yang direferensikan

 Contoh - dept_name di instruktur adalah kunci asing dari instruktur departemen referensi

Diagram Skema untuk Basis Data atabase

Bahasa Kueri Relasional ges

- Prosedural versus non-prosedural, atau deklaratif
- Bahasa yang "murni":
 - Aljabar relasional
 - Kalkulus relasional tuple
 - Kalkulus relasional domain
- 3 bahasa murni di atas memiliki daya komputasi yang setara
- Kita akan berkonsentrasi pada bab ini pada aljabar relasional
 - Tidak setara dengan mesin bubut
 - Terdiri dari 6 operasi dasar

Aljabar Relasional

- Bahasa prosedural yang terdiri dari sekumpulan operasi yang mengambil satu atau dua relasi sebagai masukan dan menghasilkan relasi baru sebagai hasilnya.
- Enam operator dasar
 - pilih: σ
 - proyek: ∏
 - penyatuan: ∪
 - mengatur perbedaan: -
 - Produk Kartesius: x
 - ganti nama: ρ

Pilih Operasi

- Operasi pilih memilih tupel yang memenuhi predikat yang diberikan.
- Notasi: $\sigma_p(r)$
- p disebut predikat seleksi
- Contoh: pilih tupel-tupel relasi instruktur di mana instruktur berada di departemen "Fisika".
 - Pertanyaan

Hasil

ID	name	dept_name	salary	
22222	Einstein	Physics	95000	
33456	Gold	Physics	87000	

Pilih Operasi (Lanjutan)

Kami mengizinkan perbandingan menggunakan

dalam predikat seleksi.

Kita bisa menggabungkan beberapa predikat menjadi predikat yang lebih besar dengan menggunakan kata penghubung:

$$\wedge$$
 (dan), \vee (atau), \neg (tidak)

 Contoh: Temukan instruktur di bidang Fisika dengan gaji lebih besar dari \$90.000, kami tulis:

$$\sigma_{dept\ name = "Fisika"} \land_{qaji} > 90.000 (instruktur)$$

- Kemudian pilih predikat dapat menyertakan perbandingan antara dua atribut.
 - Contoh, temukan semua departemen yang namanya sama dengan nama gedungnya:
 - $\sigma_{dept\ name = membangun^{(departemen)}}$

Operasi Proyek

- Operasi unary yang mengembalikan relasi argumennya, dengan atribut tertentu yang tidak disertakan.
- Notasi:

$$\prod_{A1,A2,A3,...Ak} r$$

di mana A_1 , A_2 adalah nama atribut dan r adalah nama relasi.

- Hasilnya didefinisikan sebagai relasi k kolom yang diperoleh dengan menghapus kolom yang tidak terdaftar
- Baris duplikat dihapus dari hasil, karena relasi adalah set

Operasi Proyek (Lanjutan)

- Contoh: hilangkan atribut dept_name dari instruktur
- Pertanyaan:

• Hasil:

ID	name	salary
10101	Srinivasan	65000
12121	Wu	90000
15151	Mozart	40000
22222	Einstein	95000
32343	El Said	60000
33456	Gold	87000
45565	Katz	75000
58583	Califieri	62000
76543	Singh 8000	
76766	Crick	72000
83821	Brandt	92000
98345	Kim	80000

Komposisi Operasi Relasional

- Hasil dari operasi aljabar relasional adalah relasi dan oleh karena itu operasi aljabar relasional dapat disusun bersama menjadi ekspresi aljabar relasional.
- Pertimbangkan kueri -- Temukan nama semua instruktur di departemen Fisika.

```
\Pi_{nama}(\mathbf{O}_{nama\_departemen = "Fisika"}(instruktur))
```

 Alih-alih memberikan nama relasi sebagai argumen operasi proyeksi, kita memberikan sebuah ekspresi yang mengevaluasi sebuah relasi.

Operasi Produk-Kartesius

- Operasi hasil kali Kartesius (dilambangkan dengan X) memungkinkan kita untuk menggabungkan informasi dari dua relasi.
- Contoh: produk Kartesius dari *instruktur* relasi dan *mengajar* ditulis sebagai:

instruktur X mengajar

- Kita membangun sebuah tuple hasil dari setiap pasangan tuple yang mungkin: satu dari relasi instruktur dan satu dari relasi pengajar (lihat slide berikutnya)
- Karena ID instruktur muncul di kedua relasi, kita membedakan kedua atribut ini dengan melampirkan nama relasi dari mana atribut tersebut berasal.
 - instruktur.ID
 - teaches.ID

Instruktur x mengajarkan

Instructor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2017
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2017
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2017
***	***	***	***	***	***	***	***	***
•••	***	***	***	•••	***	***	***	•••
12121	Wu	Finance	90000	10101	CS-101	1	Fall	2017
12121	Wu	Finance	90000	10101	CS-315	1	Spring	2018
12121	Wu	Finance	90000	10101	CS-347	1	Fall	2017
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018
12121	Wu	Finance	90000	15151	MU-199	1	Spring	2018
12121	Wu	Finance	90000	22222	PHY-101	1	Fall	2017
•••	•••	•••	•••		•••	•••	•••	•••
•••	•••	•••		•••		•••	•••	
15151	Mozart	Music	40000	10101	CS-101	1	Fall	2017
15151	Mozart	Music	40000	10101	CS-315	1	Spring	2018
15151	Mozart	Music	40000	10101	CS-347	1	Fall	2017
15151	Mozart	Music	40000	12121	FIN-201	1	Spring	2018
15151	Mozart	Music	40000	15151	MU-199	1	Spring	2018
15151	Mozart	Music	40000	22222	PHY-101	1	Fall	2017
***	•••	•••	•••	•••	***	•••	•••	•••
•••	***	•••	***	•••	•••	•••	***	•••
22222	Einstein	Physics	95000	10101	CS-101	1	Fall	2017
22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2018
22222	Einstein	Physics	95000	10101	CS-347	1	Fall	2017
22222	Einstein	Physics	95000	12121	FIN-201	1	Spring	2018
22222	Einstein	Physics	95000	15151	MU-199	1	Spring	2018
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017
•••	***	•••	***	***	***	•••	***	•••
***	***	***	***	(***	***	•••	***	***

Bergabung dengan Operasi

Produk-Kartesius

instruktur X mengajar

mengasosiasikan setiap tupel instruktur dengan setiap tupel mengajar.

- Sebagian besar baris yang dihasilkan memiliki informasi tentang instruktur yang TIDAK mengajar mata kuliah tertentu.
- Untuk mendapatkan hanya tupel-tupel "instrukturX mengajar" yang berkaitan dengan instruktur dan kursus yang mereka ajarkan, kita menulis:

```
σ <sub>instruktur.id = mengajar.id</sub> (instruktur x mengajar))
```

- Kami hanya mendapatkan tupel "instruktur X mengajar" yang berkaitan dengan instruktur dan kursus yang mereka ajarkan.
- Hasil ekspresi ini, ditunjukkan pada slide berikutnya

Operasi Bergabung (Laniutan)

Tabel yang sesuai dengan:

σ _{instruktur.id} = mengajar.id</sub> (instruktur x mengajar))

Instructor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fa11	2017
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2017
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018
15151	Mozart	Music	40000	15151	MU-199	1	Spring	2018
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017
32343	E1 Said	History	60000	32343	HIS-351	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-101	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-319	1	Spring	2018
76766	Crick	Biology	72000	76766	BIO-101	1	Summer	2017
76766	Crick	Biology	72000	76766	BIO-301	1	Summer	2018
83821	Brandt	Comp. Sci.	92000	83821	CS-190	1	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-190	2	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-319	2	Spring	2018
98345	Kim	Elec. Eng.	80000	98345	EE-181	1	Spring	2017

Operasi Bergabung (Laniutan)

- Operasi gabungan memungkinkan kita untuk menggabungkanoperasi pilih danoperasi Cartesian-Productoperasi.
- Pertimbangkan hubungan r (R) dan s (S)
- Biarkan "theta" menjadi predikat pada atribut dalam skema R "union"
 S. Operasi penggabungan r_⋈ □ s didefinisikan sebagai berikut:

$$r \bowtie \theta s = \sigma \theta (r \times s)$$

Den

gan $\sigma_{instruktur.id = mengajar.id}$ (instruktur x mengajar))

demi

kian

Secara ekuivalen dapat ditulis sebagai

instruktur ⋈ _{Instruktur.id = mengajar.id} mengajar.

Operasi Serikat

- Operasi gabungan memungkinkan kita untuk menggabungkan dua relasi
- Notasi: $r \cup s$
- Agar $r \cup s$ valid.
 - 1. r, s harus memiliki arity yang sama (jumlah atribut yang sama)
 - 2. Domain atribut harus **kompatibel** (contoh: kolom ^{ke-2} dari *r* berhubungan dengan jenis nilai yang sama seperti halnya kolom ^{ke-2 dari} *s*)
- Contoh: untuk menemukan semua mata kuliah yang diajarkan pada semester Musim Gugur 2017, atau pada semester Musim Semi 2018, atau pada keduanya

$$\Pi course_id$$
 ($\sigma_{semester = "Fall" \land tahun = 2017}(bagian)$) \cup

$$\Pi course_id$$
 ($\sigma_{semester = "Musim Semi" \land tahun = 2018}(bagian)$)

Operasi Serikat Pekerja

Hasil dari:

$$\Pi course_id$$
 ($\sigma_{semester = "Fall" \land tahun = 2017}(bagian)$) \cup
 $\Pi course_id$ ($\sigma_{semester = "Musim Semi" \land tahun = 2018}(bagian)$)

course_id
CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Operasi Set-Interaksi

- Operasi set-intersection memungkinkan kita untuk menemukan tupel yang berada di kedua relasi input.
- Notasi: $r \cap s$
- Asumsikan:
 - r, s memiliki aritas yang sama
 - atribut r dan s kompatibel
- Contoh: Temukan kumpulan semua mata kuliah yang diajarkan pada semester Musim Gugur 2017 dan Musim Semi 2018.

$$\Pi course_id$$
 ($\sigma_{semester = "Fall" \land tahun = 2017}(bagian)$) \cap
 $\Pi course_id$ ($\sigma_{semester = "Musim Semi" \land tahun = 2018}(bagian)$)

Hasil

course_id CS-101

Mengatur Operasi

- Operasi set-difference memungkinkan kita untuk menemukan tupel yang berada dalam satu relasi tetapi tidak berada dalam relasi lainnya.
- Notasi r s
- Perbedaan yang ditetapkan harus diambil di antara hubungan yang kompatibel.
 - r dan s harus memiliki arity yang sama
 - domain atribut r dan s harus kompatibel
- Contoh: untuk menemukan semua mata kuliah yang diajarkan pada semester Musim Gugur 2017, tetapi tidak pada semester Musim Semi 2018

$$\Pi course_id$$
 ($\sigma_{semester = "Fall" \land tahun = 2017}(bagian)$) -
$$\Pi course_id$$
 ($\sigma_{semester = "Musim Semi" \land tahun = 2018}(bagian)$)

course_id

CS-347

PHY-101

Operasi Penugasan

- Kadang-kadang lebih mudah untuk menulis ekspresi aljabar relasional dengan menetapkan bagian dari ekspresi tersebut ke variabel relasi sementara.
- Operasi penugasan dilambangkan dengan ← dan berfungsi seperti penugasan dalam bahasa pemrograman.
- Contoh: Temukan semua instruktur di departemen "Fisika" dan Musik.

Fisika
$$\leftarrow \sigma_{dept_name = "Fisika"}$$
 (instruktur)

Musik $\leftarrow \sigma_{dept_name = "Musik"}$ (instruktur)

Fisika \cup Musik

 Dengan operasi penugasan, kueri dapat ditulis sebagai program berurutan yang terdiri dari serangkaian penugasan yang diikuti oleh ekspresi yang nilainya ditampilkan sebagai hasil dari kueri.

Operasi Ganti Nama

- Hasil dari ekspresi aljabar relasional tidak memiliki nama yang dapat kita gunakan untuk merujuknya. Operator ganti nama,
 ρ , disediakan untuk tujuan itu
- Ekspresi:

$$\rho_X(E)$$

mengembalikan hasil dari ekspresi E dengan nama x

Bentuk lain dari operasi ganti nama:

$$\rho \mathbf{x} \left(_{A1, A2, \dots An}(E)\right)$$

Kueri Setara ueries

- Ada lebih dari satu cara untuk menulis kueri dalam aljabar relasional.
- Contoh: Temukan informasi tentang mata kuliah yang diajarkan oleh instruktur di departemen Fisika dengan gaji lebih dari 90.000
- Pertanyaan 1

$$\sigma_{dept_name = "Fisika"} \land gaji > 90.000 (instruktur)$$

Pertanyaan 2

$$\sigma_{dept\ name = "Fisika"}(\sigma_{gaji > 90.000}(instruktur))$$

 Kedua kueri ini tidak identik; namun, keduanya setara - keduanya memberikan hasil yang sama pada basis data apa pun.

Kueri Setara ueries

- Ada lebih dari satu cara untuk menulis kueri dalam aljabar relasional.
- Contoh: Temukan informasi tentang mata kuliah yang diajarkan oleh instruktur di departemen Fisika
- Pertanyaan 1

```
odept name = "Fisika" (instruktur ⋈ instructor.ID = teaches.ID mengajar)
```

Pertanyaan 2

```
(<sub>odept name = "Fisika"</sub> (instruktur)) ⋈ <sub>instructor.ID = teaches.ID</sub> mengajar
```

 Kedua kueri ini tidak identik; namun, keduanya setara - keduanya memberikan hasil yang sama pada basis data apa pun.

Akhir Bab 2 ter 2