18.100A Assignment 12

Octavio Vega

June 19, 2023

Problem 1

(a)

Proof. Suppose $\exists c \in [a,b]$ such that f(c)>0. Since f is continuous, $\exists \delta>0$ such that if $|x-c|<\delta$, then $|f(x)-f(x)|<\frac{f(c)}{2}$, i.e. $\frac{f(c)}{2}< f(x)$. We compute

$$0 > \int_{a}^{b} f \tag{1}$$

$$=\frac{f(c)}{2}(b-a)\tag{3}$$

$$>0,$$
 (4)

i.e. $0 > 0 \ (\Rightarrow \Leftarrow)$, which is cleary a contradiction.

Therefore
$$f(x) = 0 \ \forall x \in [a, b].$$

(b)

Proof. Let $E = \int_a^b (u')^2 dx$. Then $E \ge 0$ since $(u')^2 \ge 0$. Using integration by parts, we have

$$E = \int_{a}^{b} u'u' dx \tag{5}$$

$$= uu' \Big|_a^b - \int_a^b uu'' \mathrm{d}x \tag{6}$$

$$= u'(b)u(b) - u'(a)u(a) - \int_{a}^{b} u(Vu)dx$$
 (7)

$$= -\int_{a}^{b} V u^2 \mathrm{d}x. \tag{8}$$

But $V(x) \ge 0$ and $u^2 \ge 0$, so $-(Vu^2) \le 0$, hence $E \le 0$. Thus E = 0, which must mean that

$$\int_{a}^{b} (u')^2 \mathrm{d}x = 0, \tag{9}$$

and by part (a), this implies that $(u')^2 = 0 \ \forall x \in [a, b]$. Hence u'(x) = 0 for all x, and since u(a) = 0, then u remains constant at 0; i.e. u = 0 everywhere. \square