Министерство образования Республики Беларусь Учреждение образования

Белорусский государственный университет информатики и радиоэлектроники

Кафедра ИТАС

Лабораторная работа №5
«Решение задач оптимизации в классе моделей нелинейного программирования»
Вариант №8

Проверила: Выполнила:

Протченко Е.В. ст.гр.820605

ОИФ

Условие:

Составляется план производства двух химических реактивов (Р1 и Р2). Минимально необходимый объем выпуска реактива Р1 — B_1 тонн, реактива Р2 — B_2 тонн. Прибыль от продажи одной тонны реактива Р1 составляет C_1 тыс. ден.ед., реактива Р2 — C_2 тыс. ден.ед. Чтобы выпуск реактивов был экономически выгодным, необходимо, чтобы общая прибыль от продажи реактивов составила не менее D млн ден.ед.

Производство реактивов связано с загрязнением окружающей среды. Количество опасных отходов (в граммах), выделяемых в окружающую среду при производстве реактивов, приближенно описывается следующей формулой:

$$E = K_1X_1 + K_2X_2 + K_3X_1^2 + K_4X_2^2$$
,

где X_1 , X_2 - объем выпуска реактивов Р1 и Р2 (в тоннах).

Требуется найти объемы производства реактивов, при которых загрязнение окружающей среды будет минимальным.

Значения параметров задачи приведены в таблице.

B ₁	B ₂	C ₁	<i>C</i> ₂	D	<i>K</i> ₁	K ₂	<i>K</i> ₃	<i>K</i> ₄
120	200	10	4	8	5	8	0,1	0,1

Решение:

Математическая модель:

$$X_1 \ge 120$$

 $X_2 \ge 200$
 $10X_1 + 4X_2 \ge 8000$
 $X_1, X_2 \ge 0$
 $E = 5X_1 + 8X_2 + 0.1X_1^2 + 0.1X_2^2 \rightarrow min$

Решим задачу, используя метод Франка-Вульфа.

Градиент целевой функции:

grad
$$E = \left(\frac{\partial E}{\partial X_1}, \frac{\partial E}{\partial X_2}\right) = (5 + 0.2X_1, 8 + 0.2X_2).$$

Найдём начальное допустимое решение.

Для этого исключим из целевой функции все нелинейные элементы и решим полученную задачу линейного программирования симплекс-методом.

	X ₁	<i>X</i> ₂			
Решение	720	200			
Целевая					
функция	5	8	5200	->	min
	10	4	8000	>=	8000
Ограничения	1	0	720	>=	120
	0	1	200	>=	200

Начальное допустимое решение:

$$X_1^{(0)} = 720 \text{ T}, X_2^{(0)} = 200 \text{ T}$$

$$E^{(0)} = 61040 \text{ r.}$$

Зададим требуемую точность решения задачи: $\varepsilon = 0.5 \; (\Gamma)$.

Решим задачу, используя итерационный алгоритм.

Итерация 1

Определим антиградиент целевой функции в точке ОДР, соответствующей текущему решению:

$$-grad\ E(X^{(0)}) = (-149; -48).$$

Определим угловую точку ОДР, соответствующую предельно допустимому перемещению от текущего решения в направлении антиградиента. Для этого решим задачу с исходной системой ограничений и целевой функцией, коэффициентами которой являются координаты антиградиента:

	X ₁ *	X ₂ *			
Решение	120	1700			
Целевая функция (W)	-149	-48	-99480	->	max
	10	4	8000	>=	8000
Ограничения	1	0	120	>=	120
	0	1	1700	>=	200

Решение этой задачи следующее: $X_1^*=120~\mathrm{T}, X_2^*=1700~\mathrm{T}$. Это означает, что поиск нового решения будет осуществляться от точки $X^{(0)}=(720;200)$ к точке $X^*=(120;1700)$.

Составим уравнения для перехода к новому решению:

$$X_1^{(1)} = X_1^{(0)} + \lambda \left(X_1^* - X_1^{(0)} \right) = 720 - 600\lambda;$$

$$X_2^{(1)} = 200 + 1500\lambda.$$

, где λ — коэффициент, задающий величину перемещения от текущего решения к новому решению в направлении точки X^* .

Подставим полученные уравнения в целевую функцию.

$$E = 5(720 - 600\lambda) + 8(200 + 1500\lambda) + 0.1(720 - 600\lambda)^{2} + 0.1(200 + 1500\lambda)^{2} = 261000\lambda^{2} - 17400\lambda + 61040.$$

Экстремум:

$$\frac{dE}{d\lambda} = 522000\lambda - 17400 = 0.$$

$$\lambda = 0.0(3).$$

Определим новое решение:

$$X_1^{(1)} = 720 - 600 * 0,0(3) = 700 \text{ т};$$

 $X_2^{(1)} = 200 + 1500 * 0,0(3) = 250 \text{ т}.$
 $E^{(1)} = 60750 \text{ г}.$

Проверим условие окончания поиска решения. Для этого определим разность значений целевой функции для нового и предыдущего решения:

$$\Delta E = |E^{(1)} - E^{(0)}| = |60750 - 61040| = 290 (r).$$

Т.к. $\Delta E < \varepsilon$, условие окончания поиска решения не выполняется.

Итерация 2

Определим антиградиент целевой функции в точке ОДР, соответствующей текущему решению:

$$-grad\ E(X^{(1)}) = (-145; -58).$$

Определим угловую точку ОДР, соответствующую предельно допустимому перемещению от текущего решения в направлении антиградиента. Для этого решим задачу с исходной системой ограничений и целевой функцией, коэффициентами которой являются координаты антиградиента:

	X ₁ *	X ₂ *			
Решение	120	1700			
Целевая функция (W)	-145	-58	-116000	->	max
	10	4	8000	>=	8000
Ограничения	1	0	120	>=	120
	0	1	1700	>=	200

Составим уравнения для перехода к новому решению:

$$X_1^{(2)} = X_1^{(1)} + \lambda \left(X_1^* - X_1^{(1)} \right) = 700 - 580\lambda;$$

 $X_2^{(2)} = 250 - 1450\lambda.$

Подставим полученные уравнения в целевую функцию.

$$E^{(2)} = 5(700 + 580\lambda) + 8(250 - 1450\lambda) + 0,1(700 + 580\lambda)^{2} + 0,1(250 - 1450\lambda)^{2} = 243890\lambda^{2} + 60750.$$

Экстремум:

$$\frac{dE}{d\lambda} = 487780\lambda^2 = 0.$$

$$\lambda = 0.$$

Определим новое решение:

$$X_1^{(2)} = 700 + 20 * 0 = 700 \text{ T};$$

 $X_2^{(2)} = 250 - 50 * 0 = 250 \text{ T}.$
 $E^{(2)} = 60750 \text{ r}.$

Проверим условие окончания поиска решения. Для этого определим разность значений целевой функции для нового и предыдущего решения: $\Delta E = \left|E^{(2)} - E^{(1)}\right| = \left|60750 - 607500\right| = 0 \; (\Gamma).$

Так как $\Delta E \leq \varepsilon$, оптимальное решение найдено:

$$X_1 = 700$$
 т, $X_2 = 250$ т, $E = 60750$ г.

Решение с помощью табличного процессора Excel:

	<i>X</i> ₁	X ₂			
Решение	700	250			
Целевая					
функция (Е)	5	8	60750	->	min
	10	4	8000	>=	8000
Ограничения	1	0	700	>=	120
	0	1	250	>=	200