Objective:

Design a BCD to 7-Segment Decoder using Logisim to create a digital circuit that takes Binary Coded Decimal (BCD) input and converts it into the corresponding output to drive a 7-segment display. Demonstrate the ability to use logical gates and components effectively to achieve accurate BCD to 7-segment decoding, showcasing a clear understanding of digital circuit design principles and the functionality of 7-segment displays.

Truth Table of Ripple Counter:

0<1<2<3<4<5<6<7<8<9<10<11<12<13<14<15

Figure 1: Truth Table of 4 bit Ripple Counter

K map of ALL Flip Flops input output:

0,00	a'a'	a,a,	0,00	10,00
0302	00	01	10	10
03'02'00	0		3	2
03/02 01	4	5		6
	X			X 14
0302 10	X g	X 9	× "	X 10
J3: Q				
0302 a/c	6 aic	a a	00	2,001
13Q2			1	10

apo	a/a6	a, 00	a, a,	0,00
0302	00	GI	11	10
0302 00	×	X	* 3	X
03/02 01	1× 4	X	X	X
9392 11	X 12	13	119	14
0302 10	8	9	v	10

K3: 020,00

0,02	9/9%	9,00	Q,Q0	1	0,00
0,00 00	0	,	T	3	2
QgQ2 01	X 4	X 5	X	7	× 6
0302 10	X 12	X 13	X	15	X 14
039/10	8	9	1	11	10

J2: 0,00

V	00	01	14	10
00	×	×	X3	× 2
01	4	5	1 7	6
. II	12	13	1 5	A
10	× 5	X	XIII	X 19

0302	Q,'Q,'	01	9,00	0,00
03/01/00		1	Y	X
03/02 01	4	1 5	X	X 6
9302 11	12	1 13	X 15	X 14
0,02 10	8	11	X	X

J.: Q0

(0,00	0,00	0,00	0,00	0,00
0302	00	01	11	10
03'92' 00	X o	X	1 3	2
Q'Q2 01	× 4	X 5	1 ,	6
Q3Q2 11	X 12	X 13	1 1	5 A
Q3Q2 10	X	X	1	10

k1: 00

0,00	0100	Q'a	0,00	0,06
0302	00	01	11	10
03'02' 00	1 0	Χ ,	× 3	1 9
0302 01	1 4	Y 5	× +	1
0302 11	1 12	γ 13	X 15	1 4
Q202' 10	11 0	X	× ,,	11,

Jo: 1

0,00	Q', Q'	0,00	0,001	0,001
0302	00	01	11	10
0,000	1× °	1 ,	1 3	X ,
0302 01	× +	1 5	1 7	× 6
Q3 Q2 11	X 12	1 12	1 15	×
020/10	X.	١.	1	X

Ko: 1

