# **Syntactic analysis**

• Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string symbols, either in natural language, computer language or data structures, based on the rules of the formal grammar.

### There are two types of parser:

- Top-down parser:
  - starts at the root of derivation tree and fills in
  - picks a production and tries to match the input
  - may require backtracking
  - some grammars are backtrack-free (*predictive*)
- *Bottom-up parser:* 
  - starts at the leaves and fills in
  - starts in a state valid for legal first tokens
  - as input is consumed, changes state to encode possibilities (*recognize valid prefixes*)
  - uses a *stack* to store both state and sentential forms

# **Bottom-up parser**

# Simple precedence Parsing

The context free grammar is called the grammar of simple precedence if:

- doesn't contain ε productions,
- Doesn't contain the productions given in the following form:
- $A \rightarrow \alpha$ ,  $B \rightarrow \alpha$  (the same right side)
- between two neighbors symbols from the string there is just one precedence relation.

# Relations of simple precedence

This method of analysis was proposed by the Wirth  $\dot{s}$ i Weber and supposed that between two symbols  $x_1$  and  $x_2$  exist the following relations:

- 1)  $x_1 < x_2$
- 2)  $x_1 < x_2$
- 3)  $x_1=x_2$

# The algorithm for constructing the set FIRST (A)

- 1<sup>st</sup> step: For all productions
- FIRST(A)= $\{x|A \rightarrow x\alpha\}$
- $2^{nd}$  step: For all productions FIRST(A) if we have  $B \in FIRST(A)$  and  $B \in V_N$  then:
  - $\circ$  FIRST(A)= FIRST(A)  $\cup$ FIRST(B).
- 3<sup>rd</sup> step: repeat 2<sup>nd</sup> step until we have changes.
- 4<sup>th</sup> step: Stop.

# The algorithm for constructing the set LAST (A)

**1**st **step**: For all productions  $A \rightarrow \alpha$  y,  $\alpha \in (V_T \cup V_N)^*$ 

we have

 $LAST(A) = \{y | A \rightarrow \alpha y\}$ 

**2<sup>nd</sup> step**: For all elements from LAST(A) if we have

 $B \in LAST(A)$  and  $B \in V_N$ , than:

 $LAST(A) = LAST(A) \cup LAST(B)$ .

**3<sup>rd</sup> step**: repeat 2<sup>nd</sup> step until we have changes.

4th step: Stop.

# **Example:**

```
G = (V_N, V_T, S, P):

V_N = \{ E, T, F \}; S = \{ E \}

V_T = \{ +, *, (,), a \},

P = \{ E \rightarrow E + T/T

T \rightarrow T * F/F

F \rightarrow a | (E) \}
```

|                  | FIRST           | LAST                   |
|------------------|-----------------|------------------------|
| $\boldsymbol{E}$ | E,T,F,a, (      | T,F,a,)                |
| $\boldsymbol{T}$ | <i>T,F,a,</i> ( | <i>F</i> , <i>a</i> ,) |
| $\boldsymbol{F}$ | <i>a</i> ,(     | <i>a</i> ,)            |

# Algorithm for constructing the simple precedence relations

Step 1. If  $U \rightarrow \alpha_1 x_1 x_2 \alpha_2$  is the production from P, then  $x_1 = x_2$ .

Step 2. If  $U \rightarrow \alpha_1 x_1 Y$   $\alpha_2$  is the production from P,  $Y \in V_N$ ,  $x_1 \in (V_T \cup V_N)$  then  $x_1 < x_2$  for  $x_2 \in FIRST(Y)$ .

Pasul 3. There are two cases:

- a) If  $U \rightarrow \alpha_1 Y x_2 \alpha_2$  is the production from  $P, Y \in V_N, x_2 \in V_T$  then  $x_1 > x_2$  for  $x_1 \in LAST(Y)$ .
  - b) If  $U\rightarrow\alpha_1YZ\alpha_2$  is the production from P,

$$Y,Z \in V_N$$
, then  $x_1 > x_2$  for  $x_1 \in LAST(Y)$ ,

$$x_2 \in FIRST(z) \cap V_T$$
.

Pasul 4.  $\$ < x_1$ , if  $x_1 \in FIRST$  (\$)

Pasul 5.  $x_2 > \$$ , if  $x_2 \in LAST (\$)$ 

Pasul 6. Stop.

# Example 1:

$$G = (V_N, V_T, S, P)$$
:  
 $V_N = \{ E, T, F \}; S = \{E\}$   
 $V_T = \{+, *, (,), a\},$ 

$$P = \{E \rightarrow E + T/T \\ T \rightarrow T * F/F \\ F \rightarrow \alpha | (E) \}$$

|                  | E            | T        | F        | + | * | a | (        | ) | \$ |
|------------------|--------------|----------|----------|---|---|---|----------|---|----|
| $\boldsymbol{E}$ |              |          |          | = |   |   |          | = |    |
| T                |              |          |          | ^ | = |   |          | > | >  |
| $\boldsymbol{F}$ |              |          |          | ^ | > |   |          | ^ | >  |
| +                |              | <b>=</b> | <b>\</b> |   |   | < | ٧        |   |    |
| *                |              |          | П        |   |   | < | ٧        |   |    |
| a                |              |          |          | ^ | > |   |          | ^ | >  |
| (                | <b>&lt;=</b> | <        | <        |   |   | < | <b>\</b> |   |    |
| )                |              |          |          | ^ | > |   |          | > | >  |
| \$               | <            | <        | <        |   |   | < | <b>\</b> |   |    |

**Example 2:** it is necessary to build the matrix of simple precedence, to analyze the string  $\langle ab - a^*ab^* - \rangle$  string and to build the derivation tree.

$$G = (V_N, V_T, S, P):$$

$$V_N = \{ S, A, D, Z \};$$

$$V_T = \{ -, *, a, b \},$$

$$P = \{ S \rightarrow D,$$

$$A \rightarrow DZ,$$

$$D \rightarrow b,$$

$$Z \rightarrow -,$$

$$D \rightarrow DA,$$

$$D \rightarrow a,$$

$$Z \rightarrow * \}$$

a) Building the sets FIRST and LAST

|   | FIRST  | LAST          |
|---|--------|---------------|
| S | D, a,b | D,A,a,b,Z,*,- |
| D | D,a,b  | A,a,bZ,*,-    |
| A | D,a,b  | Z,*,-         |

| Z | *,- | *,- |
|---|-----|-----|
|---|-----|-----|

- b) Building the matrix of precedence relations
  - 1.  $x_1=x_2$  D $\rightarrow$ DA

$$D \rightarrow DA$$
  $D=A$   
 $A \rightarrow DZ$   $D=Z$ 

2.  $x_1 < x_2$ 

$$B \rightarrow \alpha_1 x_1 A \alpha_2, x_1 \in V_T \cup V_{N, A} \in V_N, x_1 < FIRST(A)$$
  
 $D \rightarrow DA \quad D < FIRST(A) = \{D, a, b\}$   
 $A \rightarrow DZ \quad D < FIRST(Z) = \{*, -\}$ 

- 3.  $x_1 > x_2$ 
  - $B \rightarrow \alpha_1 A x_2 \alpha_2, x_2 \in V_T, A \in V_N$ , LAST(A)> $x_2$ .
  - $B \rightarrow \alpha_1 A C \alpha_2$ ,  $A, C \in V_N$ , LAST(A)>FIRST(C)  $\cap V_T$

D
$$\rightarrow$$
DA LAST(D)>FIRST(A)  $\cap V_T$   
{A,a,b,z,\*,-}>{a,b}  
A $\rightarrow$ DZ LAST(D)>FIRST(Z)  $\cap V_T$   
{A,a,b,z,\*,-}>{\*,-}

|   | S | A | D | Z | a | b | * | - | \$ |
|---|---|---|---|---|---|---|---|---|----|
| S |   |   |   |   |   |   |   |   |    |
| A |   |   |   |   | > | > | > | > |    |
| D |   | П | < | = | < | < | < | < |    |
| Z |   |   |   |   | > | > | ^ | > |    |
| a |   |   |   |   | > | > | ^ | > |    |
| b |   |   |   |   | > | > | ^ | > |    |
| * |   |   |   |   | > | > | ^ | > |    |

| ı  |  |  | > | > | > | > |  |
|----|--|--|---|---|---|---|--|
| \$ |  |  |   |   |   |   |  |
| ф  |  |  |   |   |   |   |  |

$$x_1$$

 $x_1 \in FIRST(S)$ 

 $x_2 > \$$ 

 $x_2 \in LAST(S)$ 

c) Analysis of string <ab-a\*ab\*->

$$<$$
D $<$ D $<$ b $>*>->$ 

$$<\!\!D\!\!<\!\!D\!\!<\!\!D\!\!<\!\!*\!\!>\!\!-\!\!>$$

$$< D < D < ->$$

$$<$$
D $<$ D $=$ Z $>$ 

$$<$$
D $=$ A $>$ 

 $\langle D \rangle$ 

S

d) Building the derivation tree



zsTop-Down Parsing

Predictive parsers, that is, recursive-descent parsers without backtracking, can be constructed for the LL(1) class grammars.

The first "L" stands for scanning input from left to right. The second "L" for producing a leftmost derivation. The "1" for using one input symbol of look-ahead at each step to make parsing decisions.

A top-down parser starts with the root of the parse tree, labeled with the start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse tree matches the input string

- 1. At a node labeled A, select a production  $A \rightarrow \alpha$  and construct the appropriate child for each symbol of  $\alpha$
- 2. When a terminal is added to the fringe that doesn't match the input string, backtrack
- 3. Find the next node to be expanded (must have a label in  $V_n$ )

The key is selecting the right production in step 1

 $\Rightarrow$  should be guided by input string.

# LL(1) grammar:

A context free grammar is **LL(1) grammar**, if for any production we have satisfied the following rules:

- There is no left recursion.
- There is no ambiguity.
- The grammar is left factoring.
- But some grammars that satisfies these conditions can be no LL(1) grammars.

To build the parser table, it should be obtained the FIRST and FOLLOW sets for the grammar.

### Left factoring

Left factoring is a process by which the grammar with common prefixes is transformed to make it useful for Top down parsers.

In left factoring:

- It is used one production for each common prefixes.
- The common prefix may be a terminal or a non-terminal or a combination of both.

If  $\alpha \neq \epsilon$  then replace all of the A productions

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n$$

with

$$\begin{array}{l} A \rightarrow \alpha \ A' \\ A' \rightarrow \beta_1 \ | \ \beta_2 \ | \ \dots \ | \ \beta_n \end{array}$$

where A' is a new non-terminal symbol.

# **Example:**

Present the given the grammar in the LL(1) grammar form  $G=(V_N, V_T, S, P), V_N = \{S, A, B\}, V_T = \{a, b\},$ 

```
P = \{S \rightarrow AB;
      A \rightarrow bA/bB/a;
      B \rightarrow A/Aa/b.
Solution:
It is applied left factoring and it is obtained
P'=\{S \rightarrow AB:
      A \rightarrow bX/a
      X \rightarrow A/B
      B \rightarrow AY/b
      Y \rightarrow \varepsilon/a }
```

#### FIRST sets

For a production  $A \rightarrow a\beta$  is defined the FIRST(A) as: - the set of terminal symbols that begin strings derived from  $\alpha$ :  $\{ a \in V_t | A \rightarrow a\beta \}$ - If  $A \rightarrow \varepsilon$  then  $\varepsilon \in FIRST(A)$ 

# Algorithm to build FIRST(*A*):

- 1. If  $A \rightarrow a$ ,  $a \in V_t$ , then FIRST(A) = { a }
- 2. If  $A \to \varepsilon$  then add  $\varepsilon$  to FIRST(A)
- 3. It is given the production  $A \rightarrow Y_1 Y_2 \dots Y_k$ 
  - a) if  $Y_1 \in V_N$  then put FIRST $(Y_1) / \{\epsilon\}$  in FIRST(A)
  - b) if  $Y_1 \in V_N$  and  $Y_1 \rightarrow \varepsilon$ Put FIRST( $Y_2$ ) /{ $\varepsilon$ } in FIRST(A)  $\forall i$ :  $1 < i \le k$ , if  $\varepsilon \in \text{FIRST}(Y_1) \cap ... \cap \text{FIRST}(Y_{i-1})$ then put FIRST $(Y_i)$  /  $\{\epsilon\}$  in FIRST(A)
  - c) If  $\varepsilon \in FIRST(Y_1) \cap ... \cap FIRST(Y_k)$ , then put  $\varepsilon$  in FIRST(A)

Repeat until no more additions can be made.

# **Example:**

Determine the FIRST set for the given grammar:

$$G = (V_N, V_T, S, P), V_N = \{S, A, B, C\}, V_T = \{a, b, d\},$$

```
P = \{ S \rightarrow AB \\ A \rightarrow BCd \\ B \rightarrow a \mid \varepsilon \\ C \rightarrow b \mid \varepsilon \}
Solution:
FIRST(S) = FIRST(A) / \{\varepsilon\} = \{a, b, d\}
FIRST(A) = FIRST(B) / \{\varepsilon\} \cup FIRST(C) / \{\varepsilon\} = \{a, b, d\}
FIRST(B) = \{a, \varepsilon\}
FIRST(C) = \{b, \varepsilon\}
```

#### **FOLLOW** sets

For a non-terminal A, define FOLLOW(A) represents: the set of terminals that can appear immediately to the right of A in some sentential form.

A terminal symbol has no FOLLOW set.

### Algorithm to build FOLLOW(A):

- 1. If \$ is the input end marker and *S* is the start symbol then \$ ∈ FOLLOW (*S*).
- 2. If  $A \rightarrow \alpha B\beta$  then:
  - a)  $FIRST(\beta) / \{\epsilon\} \subseteq FOLLOW(B)$ , or  $FOLLOW(B) = FIRST(\beta) / \{\epsilon\}$ .
  - b) If  $\beta = \varepsilon$  (i.e.,  $A \to \alpha B$ ) or  $\varepsilon \in FIRST(\beta)$  (i.e.,  $\beta \to \varepsilon$ ) then FOLLOW(A)  $\subseteq$  FOLLOW(B)

Repeat until no more additions can be made

# **Example:**

Determine the FOLLOW set for the given grammar:

$$G = (V_N, V_T, S, P), V_N = \{S, A, B, C\}, V_T = \{a, b, d\},$$
  
 $P = \{S \rightarrow AB$   
 $A \rightarrow BCd$ 

```
B \rightarrow a \mid \varepsilon
      C \rightarrow b \mid \varepsilon \rangle
Solution:
Applying the given rules are obtained:
FOLLOW(S) = \{\$\} (1^{st} rule)
FOLLOW(A)=FIRST(B) / \{\epsilon\} = \{a\} (2.a rule)
FOLLOW(S) \subseteq FOLLOW(A) (2.b rule)
FOLLOW(S) \subseteq FOLLOW(B) (2.b rule)
FOLLOW(B)=FIRST(C)=\{b\}(2.a rule)
FOLLOW(B) = \{d\}(2.b \text{ rule})
FOLLOW(C)=\{d\}(2.a rule)
The FOLLOW sets are:
FOLLOW(S) = \{\$\}
FOLLOW(A) = \{\$, a\}
FOLLOW(B) = \{\$, b, d\}
FOLLOW(C) = \{d\}
```

# Construction of a predictive parsing table

The following rules are used to construct the predictive parsing table:

- 1. If it is given the production  $A \to \alpha$ , then for each terminal a in FIRST( $\alpha$ ), add  $A \to \alpha$  to matrix M[A, a]
- 2. If it is given the production  $A \to \alpha$  and  $\varepsilon$  is in FIRST( $\alpha$ ), then for each terminal b in FOLLOW(A), add  $A \to \alpha$  to matrix M[A,b].

# Predictive parsing algorithm

- Set input pointer (ip) to the first token a.
- Push \$ and start symbol to the stack.
- Set X to the top stack symbol.
  while (X!=\$) { /\*stack is not empty\*/
  if (X is token a) pop the stack and advance ip;
  else if (X is another token) error();
  else if (M[X,a] is an error entry) error();
  else if (M[X,a] = X → Y₁Y₂...Yk) {
  output the production X → Y₁Y₂...Yk;

### **Example:**

```
Analize the word ab-a*ab*- using theLL(1) parse : G = (V_N, V_T, S, P), V_N = \{S, A, D, Z\}, V_T = \{a, b, -, *\}, P = \{S \rightarrow D \\ A \rightarrow DZ \\ D \rightarrow b/DA/a \\ Z \rightarrow -/*
```

The given grammar should be transformed to the LL(1) grammar and it should be removed the left recursion.

```
P' = \{ S \rightarrow D \\ A \rightarrow DZ \\ D \rightarrow bD' | aD' \\ D' \rightarrow AD' | \varepsilon \\ Z \rightarrow - | *
```

Construction of the FIRST ald FOLLOW sets

```
FIRST(S) =FIRST(D)={a, b}

FIRST(A)=FIRST(D) ={a, b}

FIRST(D)={a, b}

FIRST(D')=FIRST(A)={a, b} \cup {\varepsilon}

FIRST(Z) = {-, *}

FOLLOW(S) ={$}

FOLLOW(S) \subseteq FOLLOW(D)

FOLLOW(A)\subseteq FOLLOW(Z)
```

FOLLOW(D) $\subseteq$  FOLLOW(D') FOLLOW(D') $\subseteq$  FOLLOW(A) FOLLOW(D)= FIRST(Z) FOLLOW(A)= FIRST(D')

|                  | FIRST                   | FOLLOW               |
|------------------|-------------------------|----------------------|
| S                | { <i>b</i> , <i>a</i> } | <b>{\$}</b>          |
| $\boldsymbol{A}$ | { <i>b</i> , <i>a</i> } | $\{a, b, -, *, \$\}$ |
| D                | { <i>b</i> , <i>a</i> } | {-, *, \$}           |
| D                | $\{a, b, \varepsilon\}$ | {-, *, \$}           |
| Z                | {-, *}                  | { a, b, -, *, \$}    |

# Construction of a predictive parsing table

| Non-<br>terminal | Input symbol |     |   |   |    |  |  |  |
|------------------|--------------|-----|---|---|----|--|--|--|
|                  | a            | b   | * | 1 | \$ |  |  |  |
| S                | D            | D   |   |   |    |  |  |  |
| A                | DZ           | DZ  |   |   |    |  |  |  |
| D                | aD'          | bD' |   |   |    |  |  |  |
| D'               | AD'          | AD' | 3 | 3 | 3  |  |  |  |
| Z                |              |     | * | • |    |  |  |  |

# Analysis of the word *ab-a\*ab\*-*

| Stack              | Input              | Output   |
|--------------------|--------------------|----------|
| S\$                | ab-a*ab*-\$        | D        |
| D\$                | ab-a*ab*-\$        | aD'      |
| <i>aD</i> '\$      | ab-a*ab*-\$        | terminal |
| <i>D</i> '\$       | b-a*ab*-\$         | AD'      |
| AD'\$              | <i>b-a*ab*-</i> \$ | DZ       |
| DZD'\$             | <i>b-a*ab*-\$</i>  | bD'      |
| bD'ZD'\$           | b-a*ab*-\$         | terminal |
| D'ZD'\$            | -a*ab*-\$          | 3        |
| ZD'\$              | -a*ab*-\$          | -        |
| -D'\$              | -a*ab*-\$          | terminal |
| <i>D</i> '\$       | a*ab*-\$           | AD'      |
| AD'\$              | a*ab*-\$           | DZ       |
| DZD'\$             | a*ab*-\$           | aD'      |
| aD'ZD'\$           | a*ab*-\$           | terminal |
| D'ZD'\$            | *ab*-\$            | 3        |
| ZD'\$              | *ab*-\$            | *        |
| ZD '\$<br>*D '\$   | *ab*-\$            | terminal |
| D' $$$             | ab*-\$             | AD'      |
| AD'\$              | ab*-\$             | DZ       |
| DZD'\$             | ab*-\$             | aD'      |
| aD'ZD'\$           | ab*-\$             | terminal |
| D'ZD'\$            | <i>b</i> *-\$      | AD'      |
| AD'ZD'\$           | <i>b*-\$</i>       | DZ       |
| DZD'ZD'\$          | <i>b*-\$</i>       | bD'      |
| bD'ZD'ZD'\$        | b*-\$              | terminal |
| <i>D'ZD'ZD'</i> \$ | *-\$               | 3        |
| ZD'ZD'\$           | *-\$               | *        |
| *D 'ZD '\$         | *-\$<br>-\$<br>-\$ | terminal |
| D'ZD'\$            | -\$                | 3        |

| <i>ZD</i> '\$ | -\$ | -        |
|---------------|-----|----------|
| -D'\$         | -\$ | terminal |
| <i>D</i> '\$  | \$  | 3        |
| \$            | \$  | Accepted |

### **Practical Tasks**

1. Convert the given grammar  $G = (V_N, V_T, S, P)$  to the LL(1) grammar

- 
$$V_N = \{A\}; V_T = \{q\};$$
  
 $P = \{A \to qB/qC\}$   
-  $V_N = \{S, T, U, V\}; V_T = \{+, *, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$   
 $P = \{P = \{S \to T + S/T\}$   
 $T \to U * T/U$   
 $U \to (S)/V$   
 $V \to 0/1/.../9\}$   
-  $V_N = \{S, A, B\}; V_T = \{a, b\}$   
 $P' = \{S \to AB;$   
 $A \to Aa/a$   
 $B \to aA/a/b\}$ 

2. Determine the FIRSTand FOLLOW sets for the given grammar:

- 
$$G = (V_N, V_T, S, P), V_N = \{S, A, B, C\}, V_T = \{a, b, d\},$$
  
 $P = \{S \rightarrow AB$   
 $A \rightarrow BCd \mid \varepsilon$   
 $B \rightarrow a \mid \varepsilon$   
 $C \rightarrow b \mid \varepsilon\}$   
-  $G = (V_N, V_T, S, P), V_N = \{S, A, B, C\}, V_T = \{a, b\},$   
 $P = \{S \rightarrow CB$   
 $A \rightarrow BCa \mid \varepsilon$   
 $B \rightarrow a \mid \varepsilon$   
 $C \rightarrow b \mid \varepsilon\}$ 

3. For the given grammar build the LL(1) parse table and analyze the given string:

```
- G = (V_N, V_T, S, P), V_N = \{S, A, B, D\}, V_T = \{a, b, c, d\},

P = \{S \rightarrow dA

A \rightarrow B/BcA

B \rightarrow bD

D \rightarrow a/aD\}

String: \mathbf{dbaacbaaa}

- G = (V_N, V_T, S, P), V_N = \{C, T, L, A, B\}, V_T = \{d, e, i, v, x, y\},

S = \{C\}.

P = \{C \rightarrow Ti

T \rightarrow veB

B \rightarrow Ld

L \rightarrow A/LrA

A \rightarrow x/y \}

String: \mathbf{vexryrxrxdi}
```