ELEC522 - Fall 2022

Project 1- Xilinx Vitis Model Composer / Nvidia CUDA Tutorial Assignment

By

Hsuan-You (Shaun) Lin

Rice University, Houston, TX Sep. 16, 2022

Supervised by

Dr. Joseph R. Cavallaro

Contents

Contents	2
List of Figures	3
List of Tables	4
Xilinx Lab:	5
Lab1: Introduction to Vitis Model Composer HDL Library	5
Lab1_1:	5
Lab1_2:	6
Lab1_3:	7
Lab1_4: (Part 1: Designing with Floating-Point Data Types)	8
Lab1_4: (Part 2: Designing with Fixed-Point Data Types)	9
Lab2: Importing Code into a Vitis Model Composer HDL Design	11
Lab2_1:	11
Lab2_2:	13
Lab3: Timing and Resource Analysis	14
Lab3_1:	14
Lab3_2:	14
CLIDA Lab	16

List of Figures

Figure 1.	5
Figure 2.	5
Figure 3.	6
Figure 4.	6
Figure 5.	7
Figure 6.	7
Figure 7.	8
Figure 8.	8
Figure 9.	8
Figure 10.	9
Figure 11.	9
Figure 12.	10
Figure 13.	10
Figure 14.	12
Figure 15.	12
Figure 16.	13
Figure 17.	13
Figure 18.	14
Figure 19.	14
Figure 20.	15
Figure 21.	16
Figure 22	17

List of Tables

Table 1. array	Size $10 \sim 1250$	performance resul	t16
----------------	---------------------	-------------------	-----

Xilinx Lab:

Lab1: Introduction to Vitis Model Composer HDL Library

Step 1: Creating a Design in an FPGA

Lab1 1:

(a) Screen capture of spectrum plots of the initial waveforms

Figure 1.

(b) Screen capture of spectrum plots after adding Digital FIR Filter block

Figure 2.

(c) Screen capture of resource utilization output

Figure 3.

(d) Screen capture of final block diagram

Figure 4.

(e) Compare your results with the tutorial results and note any differences or if the same.

My answer: No differences, I got the same results with the tutorial results.

Step 2: Creating an Optimized Design in an FPGA

Lab1 2:

(a) Screen capture of resource utilization output for higher frequency in Generate step

Figure 5.

(b) Compare your results with the tutorial results and note any differences or if the same.

My answer: I got the differences results with the tutorial results, but it seems like the tutorial results is wrong, because the title of the resource utilization output is "Lab1_4_1_sol" with the tutorial results not "Lab1_2".

Step 3: Creating a Design using Discrete Components Lab1_3:

(a) Screen capture of final block diagram using discrete components

Figure 6.

(b) Screen capture of spectrum plots

Figure 7.

(c) Screen capture of resource utilization output

Figure 8.

(d) Compare your results with the tutorial results and note any differences or if the same.

My answer: No differences, I got the same results with the tutorial results.

Step 4: Working with Data Types

Lab1_4: (Part 1: Designing with Floating-Point Data Types)

Figure 9.

(b) Screen capture of **floating-point** resource utilization output

Figure 10.

(c) Compare your results with the tutorial results and note any differences or if the same.

My answer: No differences, I got the same results with the tutorial results.

Lab1_4: (Part 2: Designing with Fixed-Point Data Types)

(d) Screen capture of scope results for **fixed-point** version – initial version

Figure 11.

(e) Screen capture of scope results for **fixed-point** version – after changing reinterpret and convert blocks

Figure 12.

(f) Screen capture of **fixed-point** resource utilization output

Figure 13.

(g) Compare your results with the tutorial results and note any differences or if the same.

My answer: No differences, I got the same results with the tutorial results.

Lab2: Importing Code into a Vitis Model Composer HDL Design Step 1: Modeling Control with M-Code

Lab2 1:

```
(a) state machine.m code:
```

```
function matched = state machine(din)
persistent state, state = xl state(0, {xlUnsigned, 3, 0});
switch state
   case 0
      if din == 1
         state = 1;
      else
         state = 0;
      end
      matched = 0;
   case 1
      if din == 0
         state = 2;
      else
         state = 1;
      end
      matched = 0;
   case 2
      if din == 1
         state = 3;
      else
         state = 0;
      end
      matched = 0;
   case 3
      if din == 1
         state = 4;
      else
         state = 2;
      matched = 0;
   otherwise
      if din == 1
         state = 1;
      else
          state = 0;
      end
      matched = 1;
end
```

(b) Screen capture of final block diagram

Figure 14.

(c) Screen capture of output waveform

Figure 15.

(d) Compare your results with the tutorial results and note any differences or if the

My answer: No differences, I got the same results with the tutorial results.

Lab2 2:

Step 2: Modeling Blocks with HDL

Lab2_2:

(a) Screen capture of final block diagram

Figure 16.

(b) Screen capture of final output waveform

Figure 17.

(c) Compare your results with the tutorial results and note any differences or if the same.

My answer: No differences, I got the same results with the tutorial results.

Lab3: Timing and Resource Analysis

Step 1: Timing Analysis in Vitis Model Composer

Lab3 1:

(a) Screen capture of timing analyzer results – realize that the Kintex -3 part will have less timing error than the Zynq Artix -1 part

Pear Symmen Triming Partie: Citicing on an instance name highlights corresponding obcidioublystem in the model										
Violation type: _entip ▼										
Slack (ns)	Delay (ns)		Logic Delay (ns)	Routing Delay (ns)	Levels of Logic	Source	Destination	Source Clock	Destination Clock	Path Constraints
1	-3.2050	5.2900	4,4810	0.809	14	Lab3/subsystem1/Mult	Lab3/bubsystem1/AddSub2	ck	ck	create_clack -name clk -period 2 (get_ports clk)
2	-0.0300	2.0840	2,3850	0.47%		LabStaddr_genRegister4	Lab3/sddr_gen/Register	ck	ck	create_clock -name cfk -period 2 (get_ports cfk)
3	-0.4450	2,4550	1,6940	0.761		Lst3tadd_gesRegister10	Lat3/edd_ges/Relational1	ck	ck	create_clock -name clk -period 2 (get_ports clk)
4	-0.2780	2.3030				Leb3leddr_genflegister	Leb3/eddr_gen/AddSub1	dk	ck	create_clock -name clk -period 2 [get_ports ch]
5	-0.2160	1,6820				Leb3subsystem1(coef	Leb3/subsystem1/Mult	ck	ck	create_clock -name clk -period 2 (get_ports clk)
6	-0.1430	1,3180				Lab3/Delay4	Lab3/subsystem1/coef	dk	ck	create_clock -name clk -period 2 [get_ports clk]
7	-0.0910	1.8380				Lab3/Delay7	Lab3/Register	dk	ck	create_clock -name clk -period 2 [get_ports clk]
8	0.4170	1.0170	1.0170	1		Lab3/Delay3	Lab3/Delay3	ck	ck	create_clock -name clk -period 2 [get_ports clk]
9	0.4480	1.5770				Lab3/addr_gen/Register	Lab3/addr_gen/Register	ck	ck	create_clack -name clk -period 2 [get_ports clk]
10	0.7100	1.2830				Lab3/Delay7	Lab3/Register1	ck	ck	create_clock -name clk-period 2 [get_ports clk]
11	0.0360	9.8940	0.4780	0.416	0	Lab3/Delay3	Lab3/Delay/	ck	ck	create_clock -name clk -period 2 (get_ports clk)
12	0.8490	0.8520				Lat3ladd_genRelational1	Lat/3/Delay/3	ck	ck	create_clock -name cfk -period 2 [get_ports cfk]
13	0.8530	0.8760				Leb3/eddr_gen/AddSub1	Leb3/ledd/_gen/Register10	ck	ck	create_clock -name clk -period 2 [get_ports clk]
14	0.8530	0.8760				Leb3/eddr_gen/EddSub1	Leb3/leddr_geo/flegister3	ck	ck	create_clock -name clk -period 2 [get_ports clk]
15	0.8660	0.8630				Lab3/subsystem1@dd9ub2	Lab3/Delay2	dk	ck	create_clock -name clk -period 2 [get_ports clk]
16	0.8770	0.8520		0.334		Lab3iaddr_gen/Register3	Lab3/Delay4	ck	ck	create_clock -name clk -period 2 [get_ports clk]
17	0.0770	0.0520	0.5180	0.334		Lab3/Delay4	Lab3/Delay4	ck	ck	create_clock name clk-period 2 (get_perts clk)
18	0.8770	0.8520	0.5180	0.334		Lab3/Delay2	Lab3/Register	ck	ck	create_clack -name clk -period 2 [get_ports clk]

Figure 18.

(b) Modify latency in various blocks in order to pass timing. This may be different than the suggestion in the tutorial. Explain your process.

My answer:

After I changed the latency from 1 to 2, I still got a bunch of errors, but I thought it was because the Zedboard couldn't handle so many calculations, so I changed the board to Zynq UltraScale+ and it passed.

(c) Screen capture of timing analyzer results – passing – after modifications

Post Synthesis Timing Paths:	Clicking on an instance nam	e highlights corresponding block/subsys	tem in the model						
Violation type : Sclup ▼									▼ Select Columns 8tatus : PASSE
Slack (ns)	Delay (ns)	Logic Delay (ns)	Routing Delay (ns)	Levels of Logic	Source	Destination	Source Clock	Destination Clock	Path Constraints
1	0.9310	1.0500	0.5880	0.4520	8 Lab3/Delay3	Lab3/subsystem1/Add9ub2	cik	cik	create_clock -name clk -period 2 (get_ports clk
2	1.0580	0.8840	0.8949	0	2 LabShubsystem1Mult	Lab Strubeystern 1 Mult	clk	ck	create_clock -name clk -period 2 [get_ports clk
3	1.1260	0.5140	0.2139	0.3010	0 Leb3/subsystem1/coef	Leb3/subsystem1/Mult	cik	ok	create_clock -name clk -period 2 [get_ports clk
4	1.1930	0.7800	0.4009	0.3860	2 Lab3/addr_geniAddSub1	Lab 3/addr_gen/Relational 1	clk.	dk	create_clack -name clk -period 2 [get_ports cli
5	1.2930	0.6890	0.4749	0.2140	5 Lab3/addr_genRegister	Lab3/addr_gen/Register	clk	ck	create_clock -name clk -period 2 [get_ports clk
6	1.3270	0.6270	0.3020	0.2350	0 Lab3/Dsiay3	Lab 3/Delay 3	cik	ck	create_clock -name clk -period 2 (get_ports clk
7	1 3500	0.2720	0.0779	0.1950	9 Lab3/Delay4	Lab3/subsystem1/coef	dk	clk	create_clock -name clk -period 2 [get_ports clk
8	1.4040	0.5770	0.3879	0.1900	3 Lab3/addr_gen/Register5	Leb3/eddr_gen/AddSub1	cik	ck	create_clock -name clk -period 2 [get_ports clk
9	1.4680	0.4270	0.1309	0.2970	1 Leb3/Delay7	Lob 31Register	clk.	clk	create_clack -name clk -period 2 [get_ports cli
10	1.6500	0.3310	0.0770	0.2540	0 Lab3/Driay3	Lab 3/Delay?	cit	ck	create_clock -name clk -period 2 [get_ports clk
11	1.0530	0.2550	0.0769	0.1700	0 Lab3/addr_gen/Relational1	Lab3/Delay3	cik	clk	create_clock -name clk -period 2 [get_ports clk
12	1.7050	0.2760	0.0790	0.1970	0 Lab3laddr_genlAddSub1	Lab3/addr_gen/Register19	dk	dk	create_clock -name clk -period 2 [get_ports clk
13	1.7050	0.2760	0.0790	0.1970	0 LatGladtr_genlAddSub1	Leb3/addr_gen/Register3	dk	ck	create_clock -name clk -period 2 [get_ports clk
14	1.7150	0.2680	0.1309	0.1380	1 Leb3/Delay7	Lab 31Register 1	clk	clk	create_clock -name clk -period 2 [get_ports clk
15	1.7170	0.2640	0.0790	0.1950	0 Lab3/subsystem1/Add8ub2	Lab 3/subsystem 1/AddSub2	cit	ck	create_clock -name clk -period 2 (get_ports clk
16	1.7190	0.2620	0.0770	0.1950	0 Lab3/bubsystem1/Add9ub2	Lab 3/Delay2	cik	clk	create_clock -name clk -period 2 [get_ports clk
17	1.7190	0.2620	0.0770	0.1850	0 Lab3laddr_gen/Register3	Lab3/Delay4	dk	dk	create_clock -name clk -period 2 [get_ports clk]
18	1.7190	0.2620	0.0779	0.1950	0 Leb3/Deley4	Leb 3/Delay 4	c/k	ok	create_clock -name clk -period 2 [get_ports clk]
19	1.7190	0.2620	0.0779	0.1950	0 Lab3/Delay2	Lab3/Recister	clk	dk	create clock-name clk-period 2 lost ports clk)

Figure 19.

Step 2: Resource Analysis in Vitis Model Composer

Lab3 2:

(a) Screen capture of resource analyzer results for the Zynq Artix chip

Figure 20.

(b) Compare your results with the tutorial results and note any differences or if the same.

My answer: Basically no differences, there are just a few slightly different in the registers, I got almost the same results with the tutorial results.

CUDA Lab:

- <Experiments with the Project 1 CUDA program>
- (1) Screen capture of debug results window for arraySize = 10, threads = size, blocks = 1 initial parameters.

```
## Microsoft Visual Studio Debug Console

Performance= 0.2959 Mops/s, Time= 0.0338 msec, Size= 10 Ops
Workgroup Size: Threads= 10, Blocks= 1, Total Threads= 10

Vector length is 10

First 8 values {1, 2, 3, 4, 5, 6, 7, 8} + {10, 20, 30, 40, 50, 60, 70, 80} = {11, 22, 33, 44, 55, 66, 77, 88}

Final 2 values of vector {9, 10} + {90, 100} = {99, 110}

F:\Rice MECE - HsuanYou\2022 Fall Course\ELEC 522 - ADVANCED VLSI DESIGN\Assignment\Project1\CUDA\Cuda_Example2_2\x64\Debug\Cuda_Example2_2.exe (process 3500) exited with code 0.

Press any key to close this window . . .
```

Figure 21.

(2) Include table of results for all of the arraySize values listed in the problem: 100, 200, 500, 750, 1000, 1250, 1500, 2000, 5000, 10000, 25000, and 64000. Table should record: Performance in Mops/s, Time, Size, Threads, Blocks, and Total Threads.

Table 1. arraySize $10 \sim 1250$ performance result	Table 1.	arraySize	$10 \sim 1$	1250	performance	result
--	----------	-----------	-------------	------	-------------	--------

arraySize	Performance	Time	Size	Threads	Blocks	Threads
urruj zize	(Mops/s)	(msec)	(Ops)	(Set)	(Set)	(Total)
10	0.2959	0.0338	10	10	1	10
100	3.6295	0.0276	100	100	1	100
200	6.7495	0.0296	200	200	1	200
500	20.4248	0.0245	500	500	1	500
750	26.1579	0.0287	750	750	1	750
1000	37.5601	0.0266	1000	1000	1	1000
1250	50.7965	0.0246	1250	1024	2	2048
1500	54.2535	0.0276	1500	1024	2	2048
2000	69.7545	0.0287	2000	1024	2	2048
5000	195.5570	0.0256	5000	1024	5	5120
10000	338.9371	0.0295	10000	1024	10	10240
25000	915.8852	0.0273	25000	1024	25	25600
64000	2040.8164	0.0314	64000	1024	63	64512

(3) What happens at arraySize = 1250 with the original threads and blocks value? Explain. My answer:

It will show "Maximum threads/block is 1024. Increase block size and reduce threads/block", as the result in Figure 1. This is because the maximum number of threads per block is 1024 in the CUDA specifications, if we set arraySize = 1250, it

will exceed that value, after which there is no register space to save thread state and to limit memory and synchronization contention.

(4) Screen capture of the Debug results for arraySize = 25000

```
| No. | Section | Section
```

Figure 22.

(5) Final two values of variable c at 64000 with minimum threads and blocks set for 25000. How did you fix these values.

My answer:

If we used the minimum threads and blocks size for the arraySize = 25000, which means threads = 1024 and blocks = 25, then increase the arraySize = 64000 will shows that the final 2 values of vector $\{63999,64000\} + \{639990,640000\} = \{0,0\}$, this means you start blocks with thread count that is not divisible by the warp size, the hardware will simply execute the last warp with some of the threads "masked out" (i.e. they do have to execute, but without any effect on the state of the GPU/memory).

The easiest solution is increasing the number of blocks, let threads*blocks >= arraySize, in this case we set blocks = 63, which means we'll have total 64512 threads as shown in *Table1*.

(6) Analyze your table for the percentage increase in performance, time, and size. My answer:

From *Table1*, we can see that as the arraySize increases, performance also increases, which means performance and size has the proportional relationship. In contrast, time is almost unchanged, because parallel threads to execute on the GPU, so time and size are irrelevant.