Serie numeriche

Andrea Canale

May 20, 2025

Contents

1	Introduzione	2
2	Serie numerica	2
	2.1 Esempi	2
3	Successione delle somme parziali	2
	3.1 Osservazione	3
	3.2 Osservazione	3
	3.3 Esempi	3
4	Serie geometriche	4
5	Condizione necessaria per la convergenza	5
	5.1 Dimostrazione	5
	5.2 Controesempio	6
6	Serie armonica generalizzata	6
7	Criterio del confronto	7
	7.1 Esempio	7
8	Criterio del confronto asintotico	7
	8.1 Esempio	7
9	Criterio di convergenza assoluta	8
	0.1 Convergence accolute	Q

1 Introduzione

Lo scopo delle serie numeriche è quello di chiederci se somme di infiniti numeri danno sempre ∞ .

Ad esempio:

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = ?$$

Possiamo intuitivamente dire che questa sommatorie è uguale a 2 perchè i numeri stanno diventando sempre più piccoli.

2 Serie numerica

Data una successione $\{a_n\}$, definiamo il termine serie numerica:

$$\sum_{n=0}^{+\infty} a_n = a_0 + a_1 + a_2 + \dots$$

Questa sommatoria viene detta serie di termini a_n

2.1 Esempi

$$a_n = \frac{1}{a_n}$$

$$\sum_{n=0}^{+\infty} \frac{1}{a_n}$$

* * *

$$a_n = (-1)^n$$

$$\sum_{n=0}^{+\infty} (-1)^n$$

3 Successione delle somme parziali

La successione $\{S_N\}$ definita come

$$S_N = \sum_{n=0}^{N} a_n$$

è detta successione delle somme parziali

Notiamo che

$$\sum_{n=0}^{+\infty} a_n = \lim_{n \to +\infty} S_N$$

se il limite esiste.

Da ciò possiamo ricavare 3 casi per definire una serie numerica:

- Convergente se questo limite esiste ed è finito
- Divergente se il limite è infinito
- Indeterminata se il limite non esiste

3.1 Osservazione

Se $a_n \geq 0 \ \forall n$, allora a_n si dice una **serie a numeri positivi**, allora la successione $\{S_N\}$ è monotona crescente(infatti la somma di numeri positivi dà sempre un risultato più grande se ci aggiungo un numero positivo), dunque il limite esiste finito o infinito. La serie non può essere indeterminata

3.2 Osservazione

Se ad una serie sommiamo un numero finito di termini, ha lo stesso comportamento della serie di partenza. Questo deriva dall'algebra dei limiti.

$$\lim_{n \to \infty} S_N = \lim_{n \to \infty} S_{N+K}$$

3.3 Esempi

Per capire il carattere(divergenza, convergenza, indeterminazione) di una serie, dobbiamo studiare il limite della successione.

Ipotizziamo la successione $a_n=1,$ si ha $S_N=a_0+\ldots+a_n=n+1,$ allora $\lim_{N\to\infty}S_N=+\infty$

* * *

Ipotizziamo $a_n = \frac{1}{2^n}$ che si può riscrivere come $q^n = (\frac{1}{2})^n$, questa è la serie geometrica di ragione q. Abbiamo tre casi:

- $q = 0 \implies q^n = 0$
- $q=1 \implies q^n=1$

Studiamo ora il caso generale:

$$S_N = \sum_{k=0}^{N} q^k = 1 + q + q^2 + \dots + q^n$$

Moltiplichiamo q in entrambi i membri ed otteniamo:

$$qS_N = q(1+q+q^2+\dots q^n)$$

Facendo i conti otteniamo:

$$S_N - qS_N = 1 - q^{N+1}$$

da cui ricaviamo

$$S_N = \frac{1 - q^{N+1}}{1 - q}$$

Studiando il limite abbiamo tre casi:

- Otteniamo $\frac{1}{1-q}$ se |q| < 1
- $+\infty$ se $q \ge 1$
- \nexists se $q \le 1$

4 Serie geometriche

Generalizzando l'esempio di prima, otteniamo che

$$\sum_{n=0}^{+\infty} q^n$$

ha 3 possibili risultati:

- Diverge a $+\infty$ se $q \ge 1$. In questi casi l'indice di partenza n non influenza il carattere della serie
- Converge a $\frac{1}{1-q}$ se |q| < 1. Anche in questi casi l'indice n non influenza il carattere della serie.
- Indeterminata se $q \leq -1$

Questa serie geometrica generalizzata ci permette di studiare l'andamento di alcuni tipi di serie come ad esempio $4^n, (-3)^n, ...$

Le serie geometriche possono essere usate per la scrittura di numeri periodici. Ad esempio:

$$1, \overline{5} = 1,5555... = 1 + \frac{5}{10} + \frac{5}{100} + \frac{5}{1000} + ...$$

Riscrivendo usando una serie, otteniamo:

$$1, \overline{5} = 1 + 5(\sum_{n=0}^{+\infty} \frac{1}{10^n} - 1)$$

Usiamo -1 perchè la serie partirebbe da n=1 ma questo dà problemi con il limite.

Adesso risolviamo il limite associato alla serie ed otteniamo che questo numero come frazione si può scrivere come

$$\frac{14}{9}$$

Nel caso di $1, \overline{57}$, usiamo come serie $\frac{57}{100} + \frac{57}{100^2} + \frac{57}{100^3} + \dots$ Nel caso di $1, 4\overline{5}$, usiamo come serie $\frac{5}{100} + \frac{5}{1000} + \dots$ Le costanti $1 + \frac{4}{10}$ restano ferme nella somma.

5 Condizione necessaria per la convergenza

Possiamo capire se una serie converge o diverge senza studiare il limite.

Data la successione $\{a_n\}$, se la serie associata $\sum a_n$ è convergente, allora

$$\lim_{n \to +\infty} a_n = 0$$

Non vale il viceversa.

Infatti se la serie è convergente allora i numeri della successione devono diventare sempre più infinitesimali per dare un numero finito.

5.1 Dimostrazione

Si ha per ipotesi

$$\lim_{N \to \infty} S_N = S$$

Dunque

$$\lim_{N \to \infty} \left(S_{N+1} - S_N \right) = 0$$

, infatti per l'algebra dei limiti, se lo stesso limite.

D'altra parte

$$S_{N+1} - S_N = (a_0 + \ldots + a_{N+1}) - (a_0 + \ldots + a_N) = a_{N+1}$$

Da cui $\lim_{n\to\infty} a_{N+1} = 0$ e quindi $\lim_{n\to\infty} a_N = 0$

5.2 Controesempio

Questa è una condizione necessaria ma non sufficiente, prendiamo come esempi la serie armonica definita come

$$\sum_{n=1}^{+\infty} \frac{1}{n}$$

Ha come limite all'infinito 0, tuttavia possiamo notare che

$$S_1 = 1$$

$$S_2 = 1 + \frac{1}{2}$$

$$S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

notiamo che $\frac{1}{3} + \frac{1}{4} > \frac{1}{2}$

$$S_8 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

Notiamo che quest'ultima parte è $> \frac{1}{2}$. Se iteriamo il processo per induzione notiamo che la serie sta continuando a crescere fino a divergere verso infinito.

Possiamo concludere che se a_n tende a 0 velocemente, allora la serie converge. Se tende a 0 lentamente allora diverge.

6 Serie armonica generalizzata

La serie armonica generalizzata ci permette di studiare successioni di questo tipo:

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

E capire la divergenza/convergenza:

- diverge se $0 < \alpha \le 1$
- converge se $\alpha > 1$

7 Criterio del confronto

Per capire la convergenza e la divergenza di una serie, esistono altre condizioni sufficienti. Una di queste è il teorema del confronto.

Siano $\{a_n\}$ e $\{b_n\}$ due successioni tali che $a_n, b_n > 0 \ \forall n \text{(oppure } n \to \infty)$ e valga anche $a_n < b_n \ \forall n$.

Allora valgono due proprietà:

- Se $\sum_{n=0}^{\infty} b_n$ converge, allora $\sum_{n=0}^{\infty} a_n$ converge
- Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $\sum_{n=0}^{\infty} b_n$ diverge

7.1 Esempio

Questo criterio può essere usato nello studio delle serie. Ad esempio data

$$(b_n)\sum_{n=0}^{\infty}\frac{1}{n}$$

Possiamo confrontarla con

$$(a_n) \sum_{n=0}^{\infty} \frac{1}{n^{\alpha}} \text{ con } \alpha < 1$$

Infatti $\frac{1}{n}$, $\frac{1}{n^{\alpha}} \ge 0$ e $n^{\alpha} < n$. Per il secondo caso del teorema del confronto, dato che a_n diverge, anche b_n diverge.

8 Criterio del confronto asintotico

Siano $\{a_n\}$ e $\{b_n\}$ due successioni tali che $a_n, b_n \geq 0 \ \forall n \text{ (o def. per } n \to \infty)$ Supponiamo anche che $a_n \sim b_n$ per $n \to \infty \text{ (cioè } \lim_{n \to +\infty} \frac{a_n}{b_n} = 1)$, allora valgono le seguenti proprietà:

- $\sum_{n=0}^{\infty} a_n$ converge $\leftrightarrow \sum_{n=0}^{\infty} b_n$ converge
- $\sum_{n=0}^{\infty} a_n$ diverge $\leftrightarrow \sum_{n=0}^{\infty} b_n$ diverge

8.1 Esempio

Data

$$\sum_{n=0}^{\infty} \frac{1}{3^n} + \sqrt{n}$$

Notiamo che può essere riscritta come:

$$\sum_{n=0}^{\infty} \frac{1}{3^n \left(1 + \frac{\sqrt{n}}{3^n}\right)}$$

Ma per $n \to \infty$, $\frac{\sqrt{n}}{3^n} \to 0$, quindi

$$\left(\frac{1}{3^n} + \sqrt{n}\right) \sim \frac{1}{3^n}$$

Ma questa è la serie geometrica con $q = \frac{1}{3}$ cioè $\left(\frac{1}{3}\right)^n$ che converge. Per confronto asintotico anche la serie di partenza converge.

In questi casi, raccogliamo sempre il termine di grado più grande e studiamo la successione per $n \to \infty$

In altri casi(ad esempio $\frac{n+3}{\sqrt[3]{n+1}}$), per trovare una successione asintotica, possiamo rimuovere i termini noti che non influenzano il carattere della serie(ad esempio somme di numeri finiti. Possiamo poi verificare questa cosa calcolando il limite). Altre volte, ad esempio $\frac{1}{n^2+n^4+1}$ si dice che comanda il termine con l'esponente più alto quindi $\frac{1}{n^2+n^4+1} \sim \frac{1}{n^4}$

Notiamo che tutti i criteri che abbiamo visto, valgono solo per serie a termini non negativi

9 Criterio di convergenza assoluta

Questo criterio viene usato per le serie a segno variabile, cioè serie dove il segno della successione cambia al variare di n. Ad esempio

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n^{\alpha}}$$

In questo caso la successione $\grave{\mathrm{e}} > 0$ se n pari, < 0 altrimenti.

9.1 Convergenza assoluta

Diciamo che $\sum_{n=0}^{\infty}a_n$ converge assolutamente se converge la serie dei valori assoluti

$$\sum_{n=0}^{\infty} |a_n|$$

Se $\sum_{n=0}^{\infty} |a_n|$ converge, allora $\sum_{n=0}^{\infty} a_n$ converge.

O alternativamente se $\sum_{n=0}^{\infty} a_n$ converge assolutamente, $\sum_{n=0}^{\infty} a_n$ converge.