

"A matemática requer uma pequena dose, não de genialidade, mas de liberdade de imaginação, que em uma dose maior, seria insanidade" (Angus K. Rodgers).

Álgebra de Boole

Paulo Ricardo Lisboa de Almeida

Álgebra de Boole

Na Álgebra de Boole variáveis e constantes podem assumir apenas os valores **verdadeiro** ou **falso**.

Relação direta com circuitos lógicos.

George Boole (02/11/1815 - 08/12/1864) foi um matemático, filósofo e lógico britânico, criador da álgebra booleana, fundamental para o desenvolvimento da computação moderna.

en.wikipedia.org/wiki/George_Boole

Álgebra de Boole

Uma variável booleana geralmente é denotada por uma letra maiúscula (A, B, C, ...).

Pode assumir um dos dois valores da Álgebra de Boole.

Você vai encontrar esses valores denotados de diversas formas:

- Falso e Verdadeiro
- FeV
- 0 e 1
- FeT
- desligado e ligado
- baixo e alto
- ..

Princípios Básicos

Dois princípios fundamentais:

Princípio da não contradição: Uma proposição não pode ser, simultaneamente, verdadeira e falsa;

Princípio do terceiro excluído: Uma proposição só pode assumir um dos dois valores possíveis: verdadeira ou falsa, excluindo-se uma terceira hipótese.

Álgebra de Boole

Três operações básicas:

Negação.

Conjunção → e lógico.

Disjunção → ou lógico.

Negação

A negação de uma variável X nega o seu estado.

Se X é 0, sua negação deve ser 1.

Se X é 1, sua negação deve ser 0.

Negação

```
A negação de uma variável X nega o seu estado.
```

Se X é 0, sua negação deve ser 1.

Se X é 1, sua negação deve ser 0.

Algumas representações possíveis.

 $\overline{\chi}$

 $\neg \chi$

nāo X

not X

Tabela verdade

Para determinado conjunto de variáveis, uma **tabela verdade** representa todas as combinações possíveis dessas variáveis, e a resposta gerada por cada combinação.

Tabela verdade da negação

Х	X
0	1
1	0

Conjunção

Considerando duas variáveis X e Y, a **conjunção**.

Resulta em 1 se X **e** Y forem 1.

Resulta em 0 nos demais casos.

Comumente chamamos a conjunção de *e lógico*.

Conjunção

Considerando duas variáveis X e Y, a conjunção.

Resulta em 1 se X **e** Y forem 1.

Resulta em 0 nos demais casos.

Comumente chamamos a conjunção de *e lógico*.

Algumas representações possíveis:

X.Y

XeY

X and Y

 $X \wedge Y$

Tabela verdade

A tabela verdade para a negação tinha duas linhas, mostrando todas as combinações possíveis de uma variável (0 ou 1).

Mas e com duas variáveis, quantas combinações temos?

Х	Υ	X.Y
•••	•••	••

Tabela verdade da conjunção

Х	Υ	X.Y
0	0	0
0	1	0
1	0	0
1	1	1

Tabelas verdade

E para o caso geral, com n variáveis, quantas combinações existem em uma tabela verdade?

A	В	C	:
	:		:

Tabelas verdade

E para o caso geral, com n variáveis, quantas combinações existem em uma tabela verdade?

A tabela terá 2ⁿ linhas (combinações).

A	В	U	:
	:		••

Disjunção

Considerando duas variáveis X e Y, a disjunção.

Resulta em 1 se X ou Y, ou ambos forem 1.

Resulta em O caso contrário.

Comumente chamamos a conjunção de *ou lógico*.

Disjunção

Considerando duas variáveis X e Y, a disjunção.

Resulta em 1 se X ou Y, ou ambos forem 1.

Resulta em O caso contrário.

Comumente chamamos a conjunção de *ou lógico*.

Algumas representações possíveis:

X + Y

X ou Y

X or Y

 $X \vee Y$

Tabela verdade da disjunção

Х	Υ	Х+Ү
0	0	0
0	1	1
1	0	1
1	1	1

Expressões

Podemos combinar as operações, formando expressões lógicas.

Expressões

Podemos combinar as operações, formando expressões lógicas.

Como na álgebra convencional, precisamos respeitar a precedência dos operadores.

A precedência é, da maior prioridade para a menor:

Parêntesis ()

Negação

Conjunção

Disjunção

Exemplo

Qual é o valor lógico de F na expressão a seguir?

$$F = \overline{0} + 0.\overline{0}$$

Qual o valor lógico das expressões a seguir?

$$F = 1+0.1$$

$$G = 0.1 + 0$$

$$H = 0 + \overline{0.1}$$

$$| = 0 + \overline{0+1}$$

Cuidado! A negação está negando 0.1 simultaneamente, então você vai precisar resolver 0.1 primeiro, para depois negar.

Qual o valor lógico das expressões a seguir?

$$F = 1 + 0.1 = 1$$

$$G = 0.1 + 0 = 0$$

$$H = 0 + \overline{0.1} = 1$$

$$1 = 0 + \overline{0+1} = 0$$

Funções

Como na álgebra convencional, podemos definir uma função com variáveis.

Exemplo:

$$F(X,Y) = \overline{X}.Y + X.\overline{Y}$$

Qual o resultado da função F quando X = 1 e Y = 0?

Funções

Como na álgebra convencional, podemos definir uma função com variáveis.

Exemplo:

$$F(X,Y) = \overline{X}.Y + X.\overline{Y}$$

Qual o resultado da função F quando X = 1 e Y = 0?

$$F = \overline{1.0} + 1.\overline{0} = 1$$

Tabelas verdade de funções

É possível avaliar **todos os resultados possíveis** de uma função utilizando uma **tabela verdade**.

Exemplo para $F(X,Y) = \overline{X}.Y + X.\overline{Y}$

Tabelas verdade de funções

É possível avaliar **todos os resultados possíveis** de uma função utilizando uma **tabela verdade**.

Exemplo para $F(X,Y) = \overline{X}.Y + X.\overline{Y}$

X	Υ	X.Y	X. Y	F
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Tabelas verdade de funções

É possível avaliar todos os resultados possíveis de uma função utilizando uma tabela verdade.

Exemplo para $F(X,Y) = \overline{X}.Y + X.\overline{Y}$

Colocar resultados intermediários na tabela verdade pode ajudar.

Х	Υ	$\sqrt{X.Y}$	$\left[X.\overline{Y} \right]$	F
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Disjunção Exclusiva

Considerando duas variáveis X e Y, a disjunção exclusiva, ou *ou exclusivo*, ou ainda *xor*.

Resulta em 1 se X ou Y é um, mas ambos não podem ser 1 ao mesmo tempo.

Resulta em 0 caso contrário.

A disjunção exclusiva pode ser expressa via operações básicas: $F(X,Y) = \overline{X}.Y + X.\overline{Y}$

Algumas representações possíveis:

χ⊕γ

X xor Y

Tabela verdade da disjunção exclusiva

Х	Υ	χ⊕γ
0	0	0
0	1	1
1	0	1
1	1	0

Precedência

Precedência, da maior prioridade para a menor:

Parêntesis ()

Negação

Conjunção

Disjunção

Disjunção exclusiva

Faça a tabela verdade para $F(A,B,C) = A + \overline{B}.C$

Faça a tabela verdade para $F(A,B,C) = A + \overline{B}.C$

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Tente determinar a função F que gera a seguinte tabela verdade:

Х	Υ	F
0	0	1
0	1	0
1	0	0
1	1	1

Tente determinar a função F que gera a seguinte tabela verdade.

Notou que a tabela é a negação de um **xor**?

Х	Υ	F
0	0	1
0	1	0
1	0	0
1	1	1

Х	Υ	χ⊕γ
0	0	0
0	1	1
1	0	1
1	1	0

 $F(X,Y) = \overline{X \oplus Y}$

xnor

A negação de um xor também tem um nome especial.

Chamamos de **xnor** (negação da disjunção exclusiva).

A negação da disjunção exclusiva pode ser expressa via operações básicas: $F(X,Y) = X.Y + \overline{X}.\overline{Y}$

Representação:

 $\overline{\chi \oplus \gamma}$

Exercícios

- Faça as tabelas verdade para as seguintes funções:
 - a. $(A + B).(\overline{B} + C)$
 - b. $A + B.C + \overline{D}$
 - c. $\overline{A}.B \oplus A.B$
- 2. Uma forma de se provar a equivalência entre funções booleanas é criando uma tabela verdade para cada função.

Se ambas funções gerarem o mesmo resultado para todas as possibilidades, elas são equivalentes.

Sabendo disso, prove se as seguintes expressões são equivalentes ou não:

- a. A.(B+C) = A.B + A.C -> Se você provar isso, demonstrará que a distributiva para duas variáveis também é válida na Álgebra de Boole
- b. $\overline{A} + \overline{B} = \overline{A} + \overline{B}$

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Widmer. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

