

IR2131

3 HIGH SIDE AND 3 LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
 Fully operational to +600V
 Tolerant to negative transient voltage
 dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for all channels
- Over-current shutdown turns off all six drivers
- Independent 3 high side & 3 low side drivers
- Matched propagation delay for all channels
- Outputs out of phase with inputs

Description

The IR2131 is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A current trip function which terminates all six outputs can be derived from an external current sense resistor. A shutdown input is provided for a customized shutdown function. An open drain FAULT signal is provided to indicate that any of the shutdowns has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts.

Product Summary

Voffset	600V max.
l _O +/-	200 mA / 420 mA
V _{OUT}	10 - 20V
t _{on/off} (typ.)	1.3 & 0.6 µs
Deadtime (typ.)	700 ns

Packages

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional Information is shown in Figures 7 through 10.

	Parameter	Va		
Symbol	Definition	Min.	Max.	Units
V _{B1,2,3}	High Side Floating Supply Voltage	-0.3	525	
V _{S1,2,3}	High Side Floating Offset Voltage	V _{B1,2,3} - 25	$V_{B1,2,3} + 0.3$	
V _{HO1,2,3}	High Side Floating Output Voltage	V _{S1,2,3} - 0.3	$V_{B1,2,3} + 0.3$	
V_{CC}	Low Side and Logic Fixed Supply Voltage	-0.3	25	V
V_{SS}	Logic Ground	V _{CC} - 25	$V_{CC} + 0.3$	V
V _{LO1,2,3}	Low Side Output Voltage	-0.3	$V_{CC} + 0.3$	
V_{IN}	Logic Input Voltage (HIN1,2,3, LIN1,2,3, FLT-CLR, SD & ITRIP)	V _{SS} - 0.3	$V_{CC} + 0.3$	
V_{FLT}	FAULT Output Voltage	V _{SS} - 0.3	$V_{CC} + 0.3$	
dV _S /dt	Allowable Offset Supply Voltage Transient	_	50	V/ns
P_{D}	Package Power Dissipation @ T _A ≤ +25°C (28 Lead DIP)	_	1.5	
	(28 Lead SOIC)	_	1.6	W
	(44 Lead PLCC)	_	2.0	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (28 Lead DIP)	_	83	
	(28 Lead SOIC)	_	78	°C/W
	(44 Lead PLCC)	_	63	
T_J	Junction Temperature	_	150	
T _S	Storage Temperature	-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)	_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM. The V_S offset rating is tested with all supplies biased at 15V differential.

	Parameter	Va		
Symbol	Definition	Min.	Max.	Units
V _{B1,2,3}	High Side Floating Supply Voltage	V _{S1,2,3} + 10	V _{S1,2,3} + 20	
V _{S1,2,3}	High Side Floating Offset Voltage	Note 1	600	
V _{HO1,2,3}	High Side Floating Output Voltage	V _{S1,2,3}	V _{B1,2,3}	
V _{CC}	Low Side and Logic Fixed Supply Voltage	10	20	V
V_{SS}	Logic Ground	-5	5	V
V _{LO1,2,3}	Low Side Output Voltage	0	V _{CC}	
V _{IN}	Logic Input Voltage (HIN1,2,3, LIN1,2,3, FLT-CLR, SD & ITRIP)	V_{SS}	V _{SS} + 5	
V_{FLT}	FAULT Output Voltage	V _{SS}	V _{CC}	
T _A	Ambient Temperature	-40	125	°C

Note 1: Logic operational for V_S of -5V to +600V. Logic state held for V_S of -5V to -V_{BS}.

IR2131

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, $V_{BS1,2,3}$) = 15V, $V_{S1,2,3}$ = V_{SS} = COM, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 4 through 5.

Parameter		Value				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	0.6	1.3	2.0	μs	
t _{off}	Turn-Off Propagation Delay	0.2	0.6	1.0	μο	$V_{IN} = 0 \& 5V$
t _r	Turn-On Rise Time	_	80	150		$V_{S1,2,3} = 0 \text{ to } 600V$
t _f	Turn-Off Fall Time	_	40	100		
t _{itrip}	ITRIP to Output Shutdown Propagation Delay	400	700	1000		V_{IN} , $V_{ITRIP} = 0 & 5V$
t _{bl}	ITRIP Blanking Time	_	400		V _{ITRIP} = 1V	
t _{flt}	ITRIP to FAULT Indication Delay	400	700	1000	ns	V_{IN} , $V_{ITRIP} = 0 & 5V$
t _{flt,in}	t _{flt.in} Input Filter Time (All Six Inputs)		310			V _{IN} = 0 & 5V
t _{fltclr}	FLT-CLR to FAULT Clear Time	400	700	1000	$V_{IN}, V_{IT}, V_{FC} = 0$	
t _{sd}	SD to Output Shutdown Propagation Delay	400	700	1000		$V_{IN}, V_{SD} = 0 \& 5V$
DT	Deadtime	400	700	1200		V _{IN} = 0 & 5V

Static Electrical Characteristics

 $V_{BIAS}\left(V_{CC},V_{BS1,2,3}\right)=15V,V_{S1,2,3}=V_{SS}=COM \text{ and } T_{A}=25^{\circ}C \text{ unless otherwise specified.} \\ \frac{1}{100} T_{A}=15V,V_{S1,2,3}=V_{SS}=COM \text{ and } T_{A}=25^{\circ}C \text{ unless otherwise specified.} \\ \frac{1}{100} T_{A}=15V,V$ parameters are referenced to COM and V_{S1,2,3} and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Parameter			Value			
Symbol					Units	Test Conditions
V _{IH}	Logic "0" Input Voltage (OUT = LO)	2.2	_	_		
V _{IL}	Logic "1" Input Voltage (OUT = HI)	<u> </u>	_	0.8		
$V_{FCLR,IH}$	Logic "0" Fault Clear Input Voltage	2.2	_	_	V	
V _{FCLR,IL}	Logic "1" Fault Clear Input Voltage	_	_	0.8	V	
V _{SD,TH+}	Shutdown Input Positive Going Threshold	1.2	1.8	2.1		
V _{SD,TH} -	Shutdown Input Negative Going Threshold	0.9	1.5	1.8		
$V_{IT,TH+}$	ITRIP Input Positive Going Threshold	250	485	600		
V _{IT,TH-}	ITRIP Input Negative Going Threshold	200	400	550	mV	
V _{OH}	High Level Output Voltage, V _{BIAS} - VO	_	_	100	IIIV	$V_{IN} = 0V, I_{O} = 0A$
V_{OL}	Low Level Output Voltage, VO	_	_	100		$V_{IN} = 5V, I_{O} = 0A$
I_{LK}	Offset Supply Leakage Current	_	_	50	μA	$V_{B} = V_{S} = 600V$
I_{QBS}	Quiescent V _{BS} Supply Current	_	30	100	μΛ	$V_{IN} = 0V \text{ or } 5V$
I _{QCC}	Quiescent V _{CC} Supply Current	_	3.0	4.5	mA	$V_{IN} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" Input Bias Current (OUT = HI)	_	190	300		$V_{IN} = 0V$
I _{IN-}	Logic "0" Input Bias Current (OUT = LO)	_	50	100	μΑ	$V_{IN} = 5V$
I _{ITRIP+}	"High" ITRIP Bias Current	_	75	150		ITRIP = 5V
I _{ITRIP-}	"Low" ITRIP Bias Current	_	_	100	nA	ITRIP = 0V
I _{FCLR+}	Logic "1" Fault Clear Bias Current	_	125	250		FLT-CLR = 0V
I _{FCLR} -	Logic "0" Fault Clear Bias Current	_	75	150	μA	FLT-CLR = 5V
I _{SD+}	Logic "1" Shutdown Bias Current		75	150		SD = 5V
I _{SD-}	Logic "0" Shutdown Bias Current	_		100	nA	SD = 0V

Static Electrical Characteristics -- Continued

 V_{BIAS} (V_{CC}, V_{BS1,2,3}) = 15V, V_{S1,2,3} = V_{SS} = COM and T_A = 25°C unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six logic input leads: $\overline{HIN1,2,3}$ & $\overline{LIN1,2,3}$. The V_O and I_O parameters are referenced to COM and V_{S1,2,3} and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Parameter			Value			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	8.2	8.7	9.2		
V _{BSUV} -	V _{BS} Supply Undervoltage Negative Going Threshold	7.8	8.3	8.8	V	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	8.2	8.7	9.2	V	
V _{CCUV}	V _{CC} Supply Undervoltage Negative Going Threshold	7.8	8.3	8.8		
R _{on,FLT}	FAULT Low On-Resistance	_	55	75	Ω	
I _{O+}	Output High Short Circuit Pulsed Current	200	250	_	mA	$V_{O} = 0V, V_{IN} = 0V$ PW \le 10 \mus
I _{O-}	Output Low Short Circuit Pulsed Current	420	500	_	IIIA	$V_{O} = 15V, V_{IN} = 5V$ PW \le 10 \mus

Lead Assignments

Functional Block Diagram

Lead Definitions

Le	ad			
Symbol	Description			
HIN1,2,3	Logic inputs for high side gate driver outputs (HO1,2,3), out of phase			
LIN1,2,3	Logic inputs for low side gate driver output (LO1,2,3), out of phase			
FLT-CLR	Logic input for fault clear			
SD	Logic input for shutdown			
FAULT	Indicates over-current or undervoltage lockout (low side) has occurred, negative logic			
Vcc	Low side and logic fixed supply			
ITRIP	Input for over-current shutdown			
Vss	Logic ground			
V _{B1,2,3}	High side floating supplies			
HO1,2,3	High side gate drive outputs			
V _{S1,2,3}	High side floating supply returns			
LO1,2,3	Low side gate drive outputs			
СОМ	Low side return			

Device Information

Process &	Process & Design Rule		HVDCMOS 4.0 µm		
Transistor Count			700		
Die Size			167 X 141 X 26 (mil)		
Die Outline					
Thickness	of Gate Oxide		800Å		
Connection	ıs	Material	Poly Silicon		
	First	Width	4 μm		
	Layer	Spacing	6 μm		
	•	Thickness	5000Å		
		Material	AI - Si (Si: 1.0% ±0.1%)		
	Second	Width	6 µm		
	Layer	Spacing	9 µm		
	•	Thickness	20,000Å		
Contact Ho	le Dimension		8 μm X 8 μm		
Insulation L	.ayer	Material	PSG (SiO ₂)		
	•	Thickness	1.5 µm		
Passivation	1	Material	PSG (SiO ₂)		
		Thickness	1.5 µm		
Method of S	Saw		Full Cut		
Method of I			Ablebond 84 - 1		
Wire Bond		Method	Thermo Sonic		
		Material	Au (1.0 mil / 1.3 mil)		
Leadframe	Leadframe		Cu		
		Material Die Area	Ag		
		Lead Plating	Pb : Sn (37 : 63)		
Package	Package Types Materi		28 Lead PDIP & SOIC / 44 Lead PLCC		
			EME6300 / MP150 / MP190		
Remarks:					

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definitions

Figure 5. Deadtime Waveform Definitions

Figure 6. Shutdown Waveform Definitions

Figure 7. IR2131 T_J vs. Frequency (IRF820) $R_{GATE} = 33\Omega, V_{CC} = 15V$

50

Figure 8. IR2131 T_J vs. Frequency (IRF830) $R_{GATE} = 20\Omega$, $V_{CC} = 15V$

Figure 9. IR2131 T_J vs. Frequency (IRF840) R_{GATE} = 15Ω , Vcc = 15V

Figure 10. IR2131 T_J vs. Frequency (IRF450) $R_{GATE} = 10\Omega, V_{CC} = 15V$