

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Задача быстродействия для линейных систем»

Студент 315 группы К.И. Салихова

Руководитель практикума к.ф.-м.н., доцент П. А. Точилин

Часть I

Теоретическая часть

1 Постановка задачи

Задана линейная система обыкновенных дифференциальных уравнений:

$$\dot{x}(t) = Ax(t) + Bu(t) + f, \quad t \in [t_0, +\infty),$$

где $x(t),\ u(t),\ f\in\mathbb{R}^2,\ A\in\mathbb{R}^{2\times 2},\ B\in\mathbb{R}^{2\times 2}$. На значения управления u(t) наложено ограничение: $u(t)\in\mathcal{P}$.

Множество допустимых управлений имеет вид:

$$\mathcal{P} = \left\{ (x,y) : \begin{array}{cccc} \alpha \mid x - p_1 \mid & + \ \delta \ (y - p_2)^2 \leq \gamma, & \text{при } x \geq p_1 \\ \beta \mid x - p_1 \mid & + \ \delta \ (y - p_2)^2 \leq \gamma, & \text{при } x \leq p_1 \end{array} \right\}, \quad \alpha > 0, \ \beta > 0, \ \gamma > 0, \ \delta > 0.$$

Начальное множество значений фазового вектора: \mathcal{X}_0 - квадрат со стороной длины k и центром в точке x_0 (стороны квадрата параллельны осям координат).

Целевое множество значений фазового вектора: $\mathcal{X}_1 = \{x_1\}$.

Необходимо написать программу, которая по заданным параметрам $A, B, f, t_0, p_1, p_2, \alpha, \beta, \gamma, \delta, k, x_0, x_1$ определяет, разрешима ли задача быстродействия. Если задача разрешима, то необходимо найти минимальное время $T=(t_1-t_0)>0$, за которое можно перевести систему из множества \mathcal{X}_0 во множество \mathcal{X}_1 .

Так как множество \mathcal{X}_0 по своей структуре сложнее, чем множество \mathcal{X}_1 , для решения поставленной задачи будет удобнее «повернуть время вспять», т.е. решать задачу быстродействия из множества \mathcal{X}_1 во множество \mathcal{X}_0 . При этом, не ограничивая общности (т. к. система является автономной и линейной), можно считать, что $t_0 = 0$.

2 Принцип максимума Понтрягина

Решение задачи опирается на принцип максимума Понтрягина для линейных систем.

Теорема 1 (Принцип максимума Понтрягина). Пусть $(x^*(t), u^*(t))$ — оптимальная пара, t_1^* — соответствующее ей время перемещения. Тогда существует дифференцируемая по $t \in [t_0, t_1^*]$ функция $\psi(t) \not\equiv 0$, которая является решением сопряженной системы $\dot{\psi}(t) = -A^T \psi(t)$, и для которой выполнено:

- 1. $\langle \psi(t), Bu^*(t) \rangle = \rho(\psi(t) \mid B\mathcal{P})$ dis normu beex $t \in [t_0, t_1^*];$
- 2. $\langle \psi(t_0), x^*(t_0) \rangle = \rho(\psi(t_0) | \mathcal{X}_0);$
- 3. $\langle -\psi(t_1^*), x^*(t_1^*) \rangle = \rho(-\psi(t_1^*) | \mathcal{X}_1).$

Из линейности скалярного произведения и положительной однородности опорной функции следует, что если функция $\psi(t)$ удовлетворяет условиям теоремы, то функция $\alpha\psi(t),\ \forall \alpha>0$ также будет удовлетворять условиям теоремы. Поэтому можно рассматривать только такие $\psi(t),\ \text{что}\ \|\psi(t_0)\|=1.$

Перебирая по единичному кругу параметр $\psi(t_0)$, найдем все возможные траектории и управления, удовлетворяющие Принципу максимума Понтрягина, а потом среди них будем искать оптимальные.

Для проверки пунктов теоремы необходимо вычислить опорные функции множеств $\mathcal{X}_0, \ \mathcal{X}_1, \ \mathcal{P}$, которые можно найти аналитически.

3 Вычисление опорных функций множеств $\mathcal{X}_0, \ \mathcal{X}_1, \ \mathcal{P}$

В этом разделе приведено аналитическое вычисление опорных функций для начального, целевого множества и множества допустимых управлений.

Так как \mathcal{X}_1 - одна точка:

$$\rho(l \mid \mathcal{X}_1) = \langle l, x_1 \rangle.$$

Опорный вектор:

$$x^* = x_1.$$

Чтобы вычислить опорную функцию множества \mathcal{X}_0 , представим \mathcal{X}_0 в виде суммы двух множеств:

$$\mathcal{X}_0 = \left\{ (x, y) : |x| \le \frac{k}{2} \\ |y| \le \frac{k}{2} \right\} + \{x_0\}.$$

Тогда, зная вид опорной функции для квадрата с центром в начале координат, запишем опорную функцию для множества X_0 , воспользовавшись свойством линейности опорной функции по второму аргументу:

$$\rho(l \mid \mathcal{X}_0) = \frac{k}{2}(|l_1| + |l_2|) + \langle l, x_0 \rangle$$

Множество всех опорных векторов X^* для \mathcal{X}_0 имеет вид

$$X^*(l) = \underset{x \in \{ (\pm \frac{k}{2}, \pm \frac{k}{2}) \}}{\operatorname{Argmax}} \langle l, x \rangle + x_0,$$

причем, если l перпендикулярен одной из сторон, то $X^*(l)$ состоит из всех точек этой стороны, а если l не перпендикулярен ни одной из сторон, то $X^*(l)$ состоит только из одной точки. Множество $\mathcal P$ является пересечением двух парабол различной кривизны:

$$\mathcal{P} = \left\{ (x,y): \quad \begin{array}{l} \alpha |x-p_1| \ + \ \delta \ (y-p_2)^2 \leq \gamma, \ \text{при} \ x \geq p_1 \\ \beta |x-p_1| \ + \ \delta \ (y-p_2)^2 \leq \gamma, \ \text{при} \ x \leq p_1 \end{array} \right\}, \quad \alpha > 0, \ \beta > 0, \ \gamma > 0, \ \delta > 0.$$

Для простоты вычислений сделаем сдвиг множества \mathcal{P} на $(-p_1, -p_2)$:

$$\mathcal{P} = \{(p_1, p_2)\} + \mathcal{P}_0$$

На рисунке изображено симметричное относительно оси абсцисс множество \mathcal{P}_0 при значениях параметров $\alpha=2,\ \beta=5,\ \gamma=5,\ \delta=3.$ Найдем опорную функцию множества \mathcal{P}_0 сначала в случае $l_1>0.$ Тогда активное ограничение:

$$\alpha x + \delta y^2 - \gamma = 0.$$

Используя функцию Лагранжа, найдем условный экстремум. Пусть $z_1=\alpha x,\ z_2=\sqrt{\delta y}.$ Тогда $z_1+z_2^2-\gamma=0$ и $z_1=\gamma-z_2^2.$

$$L = l_1(\gamma - z_2^2) + l_2 z_2,$$

$$\frac{\partial L}{\partial z_2} = -2l_1 z_2 + l_2 = 0,$$

$$z_2^* = \frac{l_2}{2l_1}, \ z_1^* = \gamma - \frac{l_2^2}{4l_1^2}.$$

Если $l_1 > 0$, то $z_1^* \ge 0$, то есть:

$$\frac{l_2^2}{4l_1^2} \ge \gamma,$$

$$|l_2| \le 2\sqrt{\gamma}|l_1|.$$

При $|l_2|>2\sqrt{\gamma}|l_1|$ и $l_2\geq 0$ опорным вектором (по геометрическим соображениям) является вектор: $(0,\sqrt{\frac{\gamma}{\delta}}).$

При $|l_2| > 2\sqrt{\gamma}|l_1|$ и $l_2 < 0$ опорным вектором является вектор: $(0, -\sqrt{\frac{\gamma}{\delta}})$.

Аналогично при $l_1=0$ и $l_2\geq 0$ ($l_2<0$) опорными векторами являются: $(0,\sqrt{\frac{\gamma}{\delta}})$ ($(0,-\sqrt{\frac{\gamma}{\delta}})$).

Теперь рассмотрим случай, когда $l_1 < 0$. Тогда активное ограничение:

$$-\beta x + \delta y^2 - \gamma = 0.$$

Рассуждая аналогично и объединяя все вышесказанное, получим:

$$\rho(l \mid \mathcal{P}_0) = \begin{cases}
\frac{l_1}{\alpha} \left(\gamma - \frac{l_2^2}{4l_1^2}\right) + \frac{l_2^2}{2\sqrt{\delta}l_1}, & |l_2| \le 2\sqrt{\gamma}|l_1| \text{ и } l_1 > 0, \\
\frac{l_1}{\beta} \left(-\gamma + \frac{l_2^2}{4l_1^2}\right) - \frac{l_2^2}{2\sqrt{\delta}l_1}, & |l_2| \le 2\sqrt{\gamma}|l_1| \text{ и } l_1 < 0, \\
\sqrt{\frac{\gamma}{\delta}} \mid l_2 \mid, & |l_2| > 2\sqrt{\gamma}|l_1| \text{ или } l_1 = 0.
\end{cases} \tag{1}$$

Тогда опорная функция множества \mathcal{P} имеет вид:

$$\rho(l \mid \mathcal{P}) = \begin{cases} \langle l, (p_1, p_2) \rangle + \frac{l_1}{\alpha} (\gamma - \frac{l_2^2}{4l_1^2}) + \frac{l_2^2}{2\sqrt{\delta}l_1}, & |l_2| \leq 2\sqrt{\gamma} |l_1| \text{ и } l_1 > 0, \\ \langle l, (p_1, p_2) \rangle + \frac{l_1}{\beta} (-\gamma + \frac{l_2^2}{4l_1^2}) - \frac{l_2^2}{2\sqrt{\delta}l_1}, & |l_2| \leq 2\sqrt{\gamma} |l_1| \text{ и } l_1 < 0, \\ \langle l, (p_1, p_2) \rangle + \sqrt{\frac{\gamma}{\delta}} |l_2|, & |l_2| > 2\sqrt{\gamma} |l_1| \text{ или } l_1 = 0. \end{cases}$$
 (2)

А общий вид опорного множества:

$$X^*(l) = \begin{cases} (\frac{\gamma}{\alpha} - \frac{l_2^2}{4\alpha l_1^2}, \ \frac{l_2}{2l_1\sqrt{\delta}}), & |l_2| \leq 2\sqrt{\gamma}|l_1| \text{ if } l_1 > 0, \\ (-\frac{\gamma}{\beta} + \frac{l_2^2}{4\beta l_1^2}, \ -\frac{l_2}{2l_1\sqrt{\delta}}), & |l_2| \leq 2\sqrt{\gamma}|l_1| \text{ if } l_1 < 0, \\ (p_1, p_2) + (0, \sqrt{\frac{\gamma}{\delta}}), & |l_2| > 2\sqrt{\gamma}|l_1| \text{ if } l_2 \geq 0, \\ (p_1, p_2) + (0, -\sqrt{\frac{\gamma}{\delta}}), & |l_2| > 2\sqrt{\gamma}|l_1| \text{ if } l_2 < 0, \\ (p_1, p_2) + (0, \sqrt{\frac{\gamma}{\delta}}), & |l_1 = 0 \text{ if } l_2 \geq 0, \\ (p_1, p_2) + (0, -\sqrt{\frac{\gamma}{\delta}}), & |l_1 = 0 \text{ if } l_2 < 0. \end{cases}$$

$$(3)$$

4 Аппрокисмация множества \mathcal{X}_0

Для проверки выполнения 3-его условия Принципа максимума нам понадобится вычислять нормаль к опорной гиперплоскости в некоторой точке множества \mathcal{X}_0 . Поскольку \mathcal{X}_0 не является множеством с гладкой границей, нормаль не будет определена однозначно (в углах квадрата).

Для решения этой проблемы аппроксимируем множество \mathcal{X}_0 множеством \mathcal{X}_0' - квадратом с мягкими углами:

$$\mathcal{X}_0' = \mathcal{X}_0 + B_{\varepsilon}(0).$$

Тогда опорная функция множества \mathcal{X}_0' будет иметь вид:

$$\rho(l \mid \mathcal{X}'_0) = \rho(l \mid \mathcal{X}_0) + \rho(l \mid B_{\varepsilon}(0)) = \frac{k}{2} (|l_1| + |l_2|) + \langle l, x_0 \rangle + \varepsilon ||l||.$$

И соответсвующие опорные векторы:

$$X^*(l) = \underset{x \in \{ (\pm \frac{k}{2}, \pm \frac{k}{2}) \}}{\operatorname{Argmax}} \langle l, x \rangle + x_0 + \varepsilon \frac{l}{\|l\|},$$

причем, если l перпендикулярен одной из сторон, то $X^*(l)$ состоит из всех точек этой стороны, а если l не перпендикулярен ни одной из сторон, то $X^*(l)$ состоит только из одной точки.

5 Замена переменных

Как уже говорилось выше, так как целевое множество \mathcal{X}_1 представляет собой точку, удобно ввести обратное время. Так как заданная система автономна, можем сделать следующую замену переменных:

$$y(s) = x(-t), \ v(s) = u(-t)$$

 $s_0 = -T, \ s_1 = -t_0$

Тогда в новых переменных поставленная задача примет вид:

$$y(s) = -Ay(s) - Bv(s) - f, \quad s \in [s_0, s_1],$$
$$y(s_0) = x_1, \quad y(s_1) \in \mathcal{X}_0, \quad v(s) \in \mathcal{P},$$
$$s_1 - s_0 \to inf.$$

Часть II

Практическая часть

1 Описание алгоритма

Для того, чтобы найти оптимальную траекторию движения, будем осуществлять перебор функций, удовлетворяющих Принципу максимума. Эти функции запараметризованы числом $\psi(0)$, которое, как было показано выше, удовлетворяет условию: $|\psi(0)| \leq 1$.

Ниже приведены шаги алгоритма вычисления субоптимального управления и траектории.

Шаг 1. Используем первый пункт ПМП.

Создаем равномерную сетку значений параметра $\psi(0)=\psi^0$. Далее, с помощью функции Matlab ode45, решаем следующую задачу Коши для всех значений параметра ψ^0 :

$$\begin{cases} \dot{\psi}(t) = -A^T \psi(t), \ t \in [0, 1], \\ \psi(0) = \psi^0 \end{cases}$$
 (4)

Далее, используя первое условие Принципа максимума, в каждом узле сетки вычислим значение u(t), которое является опорным вектором множества $\mathcal P$ по направлению $B^T\psi(t)$. На этом шаге следует заметить, что матрица B является невырожденной. Если это не так, то будем следовать следующему алгоритму:

- 1. С помощью функции jordan(B) найдем жорданову форму J и матрицу собственных векторов V матрицы B. Тогда $B = VJV^{-1}$.
- 2. С помощью функции ${\rm diag}(J)$ определим индексы нулевых собственных значений матрицы B и увеличим элементы с этими индексами на малое $\varepsilon>0$. Получим матрицу J'.
- 3. Перейдем к матрице $B' = VJ'V^{-1}$ с ненулевым определителем.

Также из Принципа максимума следует, что $\psi(t) \not\equiv 0$. Таким образом, $B^T \psi(t) \not\equiv 0$.

Шаг 2. Используем второй пункт ПМП.

Вычислим значение x(0), которое является опорным вектором множества \mathcal{X}_0 по направлению ψ^0 . После того, как мы выполним замену переменных, начальным множеством станет множество \mathcal{X}_1 , состоящее из одной точки. Значит, $y(0) = x_1$. Теперь, зная u(t)и x^0 , можем решить задачу Коши:

$$\begin{cases} \dot{y}(s) = -Ay(s) - Bu(s) - f, \ s \in [0, 1], \\ y(0) = x_1 \end{cases}$$
 (5)

Таким образом, мы нашли y(s).

Шаг 3. Проверка попадания в \mathcal{X}_0 .

Теперь, зная пару (y(s),u(s)) для всех ψ^0 , нужно проверить, попадает ли траектория во множество \mathcal{X}_0 . Для этого, учитывая, что \mathcal{X}_0 - квадрат с центром в точке x_0

и со стороной длины k, будем проверять условие:

$$x \in \mathcal{X}_0 \Leftrightarrow \begin{cases} |(x - x_0)(1)| \le \frac{k}{2}, \\ |(x - x_0)(2)| \le \frac{k}{2} \end{cases}$$

$$(6)$$

Как только траектория достигнет множества \mathcal{X}_0 , будем фиксировать время s_1^* . Если последующие траектории за время s_1^* не достигнут множества \mathcal{X}_0 , значит эти траектории не являются оптимальными, и мы должны исключить их из рассмотрения. Если какая-либо из последующих траекторий достигнет целевого множества быстрее, чем за s_1^* , то мы можем обновить значение s_1^* . Таким образом, в конце перебора s_1^* - оптимальное время, а соответствующая этому времени траектория искомая оптимальная траектория.

Шаг 4. Если ни одна из траекторий не попала в \mathcal{X}_0 .

Продолжим траектории на отрезок [1, 2] и повторим Шаг 3.

Будем продолжать вычисления до тех пор, пока $s \leq t_{max}$, где t_{max} — заранее заданный параметр алгоритма. Если к этому времени ни одна из траекторий не достигла \mathcal{X}_0 , считаем, что задача не имеет решения.

2 Проверка условия трансверсальности

Для оценки точности полученного решения будем проверять выполнение 3-его пункта Принципа максимума.

Условие трансверсальности означает, что конечная точка траектории является опорным вектором для множества \mathcal{X}_0' по направлению $y^*(s_1^*)$, где $y^*(s)$ - найденная оптимальная траектория.

Найдем опорную гиперплоскость в точке $y_1 = y^*(s_1^*)$ и нормаль к ней. Создадим единичную сетку для перебора значения l и выберем его так, чтобы на нем минимизировалась разность:

$$|\langle l, y_1 \rangle - \rho(l \mid \mathcal{X}'_0)|.$$

Если условие трансверсальности выполнено, то вектор $\frac{\psi(s_1^*)}{\|\psi(s_1^*)\|}$ совпадает с вектором l. Поэтому для оценки точности решения будем смотреть на величину угла между этими векторами:

$$\phi = \arccos\langle \frac{\psi(s_1^*)}{\|\psi(s_1^*)\|}, -l \rangle.$$

3 Локализация и уточнение вычислений

Если ошибка в условии трансверсальности получилась большой, то будем поступать следующим образом:

- 1. На следующей итерации будем перебирать параметр ψ^0 не по всему кругу, а только в окрестности оптимального значения этого параметра на прошлой итерации.
- 2. Измельчим разбиение в указанной окрестности и снова запустим алгоритм.
- 3. Будем повторять эти действия до тех пор, пока ошибка в условии трансверсальности не станет достаточно маленькой.

4 Примеры

Пример 1.

$$A = \frac{1}{10} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \ B = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}, \ f = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

 \mathcal{X}_0 - квадрат со стороной длины k=2 и центром в точке $x_0=\begin{bmatrix} 7\\4 \end{bmatrix}, \quad \mathcal{X}_1=\left\{x_1=\begin{bmatrix} -5\\4.8 \end{bmatrix}\right\},$

$$\mathcal{P} = \left\{ (x,y) : \quad \begin{array}{l} 2|x| \ + \ y^2 \leq 1, \ \text{при} \ x \geq 0 \\ \frac{1}{2}|x| \ + \ y^2 \leq 1, \ \text{при} \ x \leq 0 \end{array} \right\}.$$

За одну итерацию работы программы получаем значение $t_1^*=0.5510,$ а ошибка условия трансверсальности $7.2000^{\circ}.$

После второй итерации получаем $t_1^*=0.5490,$ и ошибку условия трансверсальности $2.0571^{\circ}.$

Пример 2. Теперь рассмотрим матрицу A с комплексными собственными значениями.

$$A = \begin{bmatrix} -1 & -3 \\ 3 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}, \ f = \begin{bmatrix} 2 \\ -2 \end{bmatrix},$$

 \mathcal{X}_0 - квадрат со стороной длины k=3 и центром в точке $x_0=\begin{bmatrix} -2\\2 \end{bmatrix}, \quad \mathcal{X}_1=\Big\{x_1=\begin{bmatrix} 5\\-1 \end{bmatrix}\Big\},$ $\mathcal{P}=\Big\{(x,y): \quad \begin{aligned} |x-1|\ +\ (y-1)^2 \leq 1, & \text{при } x \geq 1\\ 3|x-1|\ +\ (y-1)^2 \leq 1, & \text{при } x \leq 1 \end{aligned}\Big\}.$

За одну итерацию работы программы получаем значение $t_1^*=2.2210,$ и сразу небольшую ошибку условия трансверсальности $0.0758^\circ.$

Пример 3. Исследование непрерывности зависимости времени от входных параметров.

Для исследования непрерывности зависимости времени от входных параметров, выберем матрицу A так, чтобы она имела комплексные собственные значения с положительной действительной частью. Тогда получим «раскручивающуюся» траекторию - неустойчивый фокус в точке (0,0).

$$A = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}, \ B = \frac{1}{5} \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}, \ f = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

 \mathcal{X}_0 - квадрат со стороной длины k=2 и центром в точке $x_0=egin{bmatrix} -3.3\\2 \end{bmatrix}$, $\mathcal{X}_1=egin{bmatrix} 1\\1 \end{bmatrix}$,

$$\mathcal{P} = \left\{ (x,y) : \quad \begin{array}{l} 2|x-1| \ + \ (y-1)^2 \leq 1, \text{ при } x \geq 1 \\ \frac{1}{2}|x-1| \ + \ (y-1)^2 \leq 1, \text{ при } x \leq 1 \end{array} \right\}.$$

За одну итерацию работы программы получаем значение $t_1^*=0.7336$. Посмотрим на графики траекторий и перебора управлений:

Теперь рассмотрим аналогичный пример, только лишь немного сдвинем множество \mathcal{X}_0 . Пусть теперь \mathcal{X}_0 - квадрат со стороной длины k=2 и центром в точке $x_0=\begin{bmatrix} -3.4\\2 \end{bmatrix}$. После первой итерации работы программы получим знаечение $t_1^*=2.6850$:

Видим, что при небольшом изменении входных параметров, время изменяется скачком. Значит, зависимость результирующего времени быстродействия от входных параметров разрывная.

Список литературы

[1] Рублев И.В. Лекции по оптимальному управлению. ВМК МГУ, 2019.