Package 'Phi2rho'

December 6, 2023

Type Package
Title Owen's T Function and Bivariate Normal Integral
Version 1.0.1
Date 2023-12-06
Depends R ($>= 3.5.0$), stats
Imports Rmpfr
Description Computes the Owen's T function or the bivariate normal integral using one of the following: modified Euler's arctangent series, tetrachoric series, or Vasicek's series. For the methods, see Komelj, J. (2023) <doi:10.4236 ajcm.2023.134026=""> (or reprint <arxiv:2312.00011> with better typography) and Vasicek, O. A. (1998) <doi:10.21314 jcf.1998.015="">.</doi:10.21314></arxiv:2312.00011></doi:10.4236>
License GPL-2 GPL-3
NeedsCompilation no
Author Janez Komelj [aut, cre]
Maintainer Janez Komelj <jkomelj@siol.net></jkomelj@siol.net>
Repository CRAN
Date/Publication 2023-12-06 21:10:06 UTC
R topics documented:
Phi2rho-package
Index 1

2 Phi2rho-package

Phi2rho-package

Owen's T Function and Bivariate Normal Integral

Description

Computes the Owen's T function or the bivariate normal integral.

Details

The DESCRIPTION file:

Package: Phi2rho Type: Package

Title: Owen's T Function and Bivariate Normal Integral

Version: 1.0.1 Date: 2023-12-06

Authors@R: person("Janez", "Komelj", role = c("aut", "cre"),

email = "jkomelj@siol.net") Depends: R (>= 3.5.0), stats

Imports: Rmpfr

Description: Computes the Owen's T function or the bivariate

normal integral using one of the following: modified Euler's arctangent series, tetrachoric series, or Vasicek's series. For the methods,

see Komelj, J. (2023) <doi:10.4236/ajcm.2023.134026> (or reprint <arXiv:2312.00011> with better typography) and Vasicek, O. A. (1998) <doi:10.21314/JCF.1998.015>.

License: GPL-2 | GPL-3

Author(s)

Janez Komelj

Maintainer: Janez Komelj <jkomelj@siol.net>

References

Komelj, J. (2023): The Bivariate Normal Integral via Owen's T Function as a Modified Euler's Arctangent Series, *American Journal of Computational Mathematics*, **13**, 4, 476–504, doi:10.4236/ajcm.2023.134026 (or reprint https://arxiv.org/pdf/2312.00011.pdf with better typography).

Owen, D. B. (1956): Tables for Computing Bivariate Normal Probabilities, *The Annals of Mathematical Statistics*, **27**, 4, 1075–1090, doi:10.1214/aoms/1177728074.

Owen, D. B. (1980): A table of normal integrals, *Communications in Statistics – Simulation and Computation*, **9**, 4, 389–419, doi:10.1080/03610918008812164.

Vasicek, O. A. (1998): A series expansion for the bivariate normal integral, *The Journal of Computational Finance*, **1**, 4, 5–10, doi:10.21314/JCF.1998.015.

OwenT 3

Examples

```
OwenT(2, 0.5)
OwenT(2, 0.5, fun = "mOwenT") # modified arctangent series (default)
OwenT(2, 0.5, fun = "tOwenT") # tetrachoric series
OwenT(2, 0.5, fun = "vOwenT") # Vasicek's series

rho <- 0.6
a <- rho/sqrt(1 - rho^2)
OwenT(0.3, a)
OwenT(0.3, a, fun = "tOwenT")
OwenT(c(-1, 0.5, 4), a, fun = "vOwenT")

OwenT(2, c(-1, -0.5, 0, 0.5, 1), fun = "vOwenT")

Phi2xy(2, 1.3, 0.5)
Phi2xy(-2, 0.5, -0.3, fun = "tOwenT")
Phi2xy(c(1, 2, -1.5), c(-1, 1, 2.3), 0.5, fun = "vOwenT")
Phi2xy(1, 2, c(-1, -0.5, 0, 0.5, 1))
Phi2xy(c(1, 2), c(-1, 3), c(-0.5, 0.8))</pre>
```

0wenT

Owen's T Function

Description

Computes Owen's T function using the modified Euler's arctangent series, tetrachoric series or Vasicek's series.

Usage

```
OwenT(h, a, opt = TRUE, fun = c("mOwenT", "tOwenT", "vOwenT"))
```

Arguments

h	Numeric scalar or vector.
a	Numeric scalar or vector.
opt	If TRUE, an optimized calculation is performed.
fun	The name of the internal function being used.

Details

If h and a are both vectors, they must be of the same length. If one of h and a is a vector and the other is a scalar, the latter is replicated to the length of the former. The calculation is performed component-wise.

The parameter fun specifies which series is used:

"mOwenT": modified Euler's arctangent series (default).

4 OwenT

```
"tOwenT": tetrachoric series.
"vOwenT": Vasicek's series.
```

The opt parameter enables checking the results in the submitted article and may be dropped later.

If fun = "mOwenT" and opt = TRUE, the external arctangent function is used, otherwise all necessary values are calculated on the fly, but usually more iterations are needed.

If fun = "tOwenT" or fun = "vOwenT", and opt = TRUE, then the parameters transformation is performed when it makes sense, which significantly reduces the number of iterations.

Value

The value of computed function is returned, scalar or vector. The attribute 'nIter' of returned value means the number of iterations.

Note

Function is ready to work with the **Rmpfr** package, which enables using arbitrary precision numbers instead of double precision ones. Assuming **Rmpfr** is loaded, it is sufficient to be called with parameters 'h' and 'a', which have class 'mpfr' and the same precision.

Author(s)

Janez Komelj

References

Komelj, J. (2023): The Bivariate Normal Integral via Owen's T Function as a Modified Euler's Arctangent Series, *American Journal of Computational Mathematics*, **13**, 4, 476–504, doi:10.4236/ajcm.2023.134026 (or reprint https://arxiv.org/pdf/2312.00011.pdf with better typography).

Owen, D. B. (1956): Tables for Computing Bivariate Normal Probabilities, *The Annals of Mathematical Statistics*, **27**, 4, 1075–1090, doi:10.1214/aoms/1177728074.

Owen, D. B. (1980): A table of normal integrals, *Communications in Statistics – Simulation and Computation*, **9**, 4, 389–419, doi:10.1080/03610918008812164.

See Also

```
Phi2xy
```

Examples

```
OwenT(2, 0.5)
OwenT(2, 0.5, fun = "mOwenT") # modified arctangent series (default)
OwenT(2, 0.5, fun = "tOwenT") # tetrachoric series
OwenT(2, 0.5, fun = "vOwenT") # Vasicek's series

rho <- 0.6
a <- rho/sqrt(1 - rho^2)
OwenT(0.3, a)
OwenT(0.3, a, fun = "tOwenT")</pre>
```

```
OwenT(c(-1, 0.5, 4), a, fun = "vOwenT")
OwenT(2, c(-1, -0.5, 0, 0.5, 1), fun = "vOwenT")
function (h, a, opt = TRUE, fun = c("mOwenT", "tOwenT", "vOwenT"))
    chkArgs1(h = h, a = a, opt = opt)
    if (length(h) < length(a))</pre>
        h <- rep(h, length(a))</pre>
    if (length(a) < length(h))</pre>
        a <- rep(a, length(h))
    z <- h
    n \leftarrow rep(0, length(z))
    z[a == 0] <- 0
    z[is.na(a)] \leftarrow NA
    i <- a != 0 & !is.na(a)
    if (any(i)) {
        h \leftarrow h[i]
         a \leftarrow a[i]
         ph <- pnorm(h)</pre>
         fun <- match.arg(fun)</pre>
         if (fun == "mOwenT")
             j <- abs(a) > 1
         if (fun == "tOwenT")
             j \leftarrow opt & abs(a) > 1
         if (fun == "vOwenT")
             j <- opt & abs(a) < 1
         pah <- h
         if (any(j))
             pah[j] \leftarrow pnorm(a[j] * h[j])
         pah[is.nan(pah)] <- 0</pre>
         w <- eval(call(fun, h, a, ph, pah, opt))</pre>
         z[i] \leftarrow w
         n[i] <- attr(w, "nIter")</pre>
    }
    attr(z, "nIter") <- n
    return(z)
  }
```

Phi2xy

Bivariate Normal Integral

Description

Computes the bivariate normal integral Phi2(x, y, rho).

Usage

```
Phi2xy(x, y, rho, opt = TRUE, fun = c("mOwenT", "tOwenT", "vOwenT"))
```

Arguments

X	Numeric scalar or vector.
у	Numeric scalar or vector.
rho	Numeric scalar or vector.
opt	If TRUE, an optimized calculation is performed.
fun	The name of the internal function being used

Details

The parameter 'rho' (or at least one of its components) must be from the interval [-1,1].

Vector parameters must be of the same length, and any scalar parameters are replicated to the same length. The calculation is performed component-wise.

The parameter fun specifies which series is used:

"mOwenT": modified Euler's arctangent series (default).

"tOwenT": tetrachoric series.
"vOwenT": Vasicek's series.

The opt parameter enables checking the results in the submitted article and may be dropped later.

If fun = "mOwenT" and opt = TRUE, the external arctangent function is used, otherwise all necessary values are calculated on the fly, but usually more iterations are needed.

If fun = "tOwenT" or fun = "vOwenT", and opt = TRUE, then the parameters transformation is performed when it makes sense, which significantly reduces the number of iterations.

Value

The value of computed function is returned, scalar or vector. The attribute 'nIter' of returned value means the number of iterations.

Note

Function is ready to work with the **Rmpfr** package, which enables using arbitrary precision numbers instead of double precision ones. Assuming **Rmpfr** is loaded, it is sufficient to be called with parameters 'x', 'y' and 'rho', which have class 'mpfr' and the same precision.

Author(s)

Janez Komelj

References

Komelj, J. (2023): The Bivariate Normal Integral via Owen's T Function as a Modified Euler's Arctangent Series, *American Journal of Computational Mathematics*, **13**, 4, 476–504, doi:10.4236/ajcm.2023.134026 (or reprint https://arxiv.org/pdf/2312.00011.pdf with better typography).

Owen, D. B. (1956): Tables for Computing Bivariate Normal Probabilities, *The Annals of Mathematical Statistics*, **27**, 4, 1075–1090, doi:10.1214/aoms/1177728074.

Owen, D. B. (1980): A table of normal integrals, *Communications in Statistics – Simulation and Computation*, **9**, 4, 389–419, doi:10.1080/03610918008812164.

See Also

OwenT

Examples

```
Phi2xy(2, 1.3, 0.5)
Phi2xy(-2, 0.5, -0.3, fun = "tOwenT")
Phi2xy(c(1, 2, -1.5), c(-1, 1, 2.3), 0.5, fun = "vOwenT")
Phi2xy(1, 2, c(-1, -0.5, 0, 0.5, 1))
Phi2xy(c(1, 2), c(-1,3), c(-0.5, 0.8))
function (x, y, rho, opt = TRUE, fun = c("mOwenT", "tOwenT",
    "v0wenT"))
    chkArgs2(x = x, y = y, rho = rho, opt = opt)
    fun <- match.arg(fun)</pre>
    sgn <- function(x) {</pre>
        y \leftarrow sign(x)
        y[y == 0] <- 1
        return(y)
    frx <- function(x, y, rho) {</pre>
        rx <- (y - rho * x)/(x * sqrt(1 - rho^2))
        rx[is.nan(rx)] <- 0
        return(-abs(rx) * sgn(y - rho * x) * sgn(x))
    fprx <- function(r, x) {</pre>
        u <- r * x
        j <- !is.nan(u)</pre>
        if (fun == "mOwenT")
             j <- j \& abs(r) > 1
        if (fun == "tOwenT")
             j \leftarrow j \& opt \& abs(r) > 1
         if (fun == "vOwenT")
             j \leftarrow j \& opt \& abs(r) < 1
        u[j] <- pnorm(u[j])</pre>
        u[is.nan(u)] <- 0
        return(u)
    }
    fz <- function(x, y, rho, rx, ry, px, py) {</pre>
        n \leftarrow rep(0, length(x))
        i \leftarrow rho != 0 \& abs(rho) < 1 \& (x != 0 | y != 0)
        z <- x
        if (any(!i)) {
             z[rho == 0] \leftarrow px[rho == 0] * py[rho == 0]
             z[rho == +1] \leftarrow pmin(px[rho == +1], py[rho == +1])
             z[rho == -1] \leftarrow pmax(px[rho == -1] + py[rho == -1] -
                 1, 0)
             j <- rho != 0 & abs(rho) < 1
             if (any(j))
                 z[j] <- 1/4 + asin(rho[j])/(2 * pi)
        }
```

```
if (any(i)) {
         prx <- fprx(rx[i], x[i])</pre>
         pry <- fprx(ry[i], y[i])</pre>
         zz <- eval(call(fun, c(x[i], y[i]), c(rx[i], ry[i]),</pre>
              c(px[i], py[i]), c(prx, pry), opt, TRUE))
         n[i] <- attr(zz, "nIter")</pre>
         z[i] \leftarrow (px[i] + py[i])/2 + zz
         j \leftarrow i \& (x * y < 0 | x * y == 0 \& x + y < 0)
         z[j] <- z[j] - 1/2
    attr(z, "nIter") <- n
    return(z)
dim <- max(length(x), length(y), length(rho))</pre>
if (isa(x, "mpfr")) {
    pi <- Rmpfr::Const("pi", Rmpfr::getPrec(x))</pre>
    z <- mpfrArray(NA, dim = dim, precBits = Rmpfr::getPrec(x))</pre>
}
else z <- array(NA, dim = dim)</pre>
n \leftarrow array(0, dim = dim)
px <- pnorm(x)</pre>
py <- pnorm(y)</pre>
if (length(x) < dim)
    x \leftarrow rep(x, dim)
if (length(y) < dim)
    y \leftarrow rep(y, dim)
if (length(rho) < dim)</pre>
    rho <- rep(rho, dim)</pre>
if (length(px) < dim)
    px <- rep(px, dim)</pre>
if (length(py) < dim)
    py <- rep(py, dim)</pre>
k <- !is.na(rho) & abs(rho) <= 1
x \leftarrow x[k]
y \leftarrow y[k]
rho <- rho[k]
px \leftarrow px[k]
py \leftarrow py[k]
q \leftarrow (x^2 - 2 * rho * x * y + y^2)/(2 * (1 - rho^2))
phi \leftarrow exp(-q)/(2 * pi * sqrt(1 - rho^2))
phi[is.nan(phi)] <- 0</pre>
i <- phi > 1
j \leftarrow rho[i] < 0
n1 <- length(rho[i])</pre>
n2 <- length(rho) - n1
dim < -2 * n1 + n2
if (isa(x, "mpfr"))
    xx <- mpfrArray(0, dim = dim, precBits = Rmpfr::getPrec(x))</pre>
else xx <- rep(0, dim)
yy <- xx
rr <- xx
pxx <- xx
pyy <- xx
```

```
if (n1 > 0) {
    r <- rho[i]
    u \leftarrow x[i]
    v <- y[i] * sgn(r)</pre>
    w \leftarrow (u - v)/sqrt(2 * (1 - abs(r)))
    r \leftarrow -sqrt((1 - abs(r))/2)
    i1 <- 1:(2 * n1)
    xx[i1] <- c(w, -w)
    yy[i1] \leftarrow c(v, u)
    rr[i1] <- c(r, r)
    pw <- pnorm(w)</pre>
    pv <- (1 - sgn(rho[i]))/2 + sgn(rho[i]) * py[i]</pre>
    pxx[i1] <- c(pw, 1 - pw)
    pyy[i1] <- c(pv, px[i])</pre>
if (n2 > 0) {
    i2 <- (2 * n1 + 1):(2 * n1 + n2)
    xx[i2] <- x[!i]
    yy[i2] \leftarrow y[!i]
    rr[i2] <- rho[!i]
    pxx[i2] <- px[!i]</pre>
    pyy[i2] <- py[!i]</pre>
}
rx <- frx(xx, yy, rr)</pre>
ry <- frx(yy, xx, rr)</pre>
zz <- fz(xx, yy, rr, rx, ry, pxx, pyy)</pre>
nn <- attr(zz, "nIter")</pre>
if (n1 > 0) {
    s \leftarrow zz[1:n1] + zz[(n1 + 1):(2 * n1)]
    s[j] \leftarrow px[i][j] - s[j]
    z[k][i] \leftarrow s
    n[k][i] \leftarrow nn[1:n1] + nn[(n1 + 1):(2 * n1)]
if (n2 > 0) {
    z[k][!i] <- zz[i2]
    n[k][!i] <- nn[i2]
attr(z, "nIter") <- n
return(z)
```

Index

```
* Owen's T function
    OwenT, 3
    Phi2rho-package, 2
* Vasicek's series
    Phi2rho-package, 2
* bivariate normal integral
    Phi2rho-package, 2
    Phi2xy, 5
* package
    Phi2rho-package, 2
* tetrachoric series
    Phi2rho-package, 2
OwenT, 3, 7
Phi2rho (Phi2rho-package), 2
Phi2rho-package, 2
Phi2xy, 4, 5
```