Closest Pair Problem

- Given *n* points in *d*-dimensions, find two whose mutual distance is smallest.
- Fundamental problem in many applications as well as a key step in many algorithms.

- A naive algorithm takes $O(dn^2)$ time.
- Element uniqueness reduces to Closest Pair, so $\Omega(n \log n)$ lower bound.
- We will develop a divide-and-conquer based $O(n \log n)$ algorithm; dimension d assumed constant.

1-Dimension Problem

- 1D problem can be solved in $O(n \log n)$ via sorting.
- Sorting, however, does not generalize to higher dimensions. So, let's develop a divide-and-conquer for 1D.
- Divide the points S into two sets S_1, S_2 by some x-coordinate so that p < q for all $p \in S_1$ and $q \in S_2$.
- Recursively compute closest pair (p_1, p_2) in S_1 and (q_1, q_2) in S_2 .

• Let δ be the smallest separation found so far:

$$\delta = \min(|p_2 - p_1|, |q_2 - q_1|)$$

1D Divide & Conquer

- The closest pair is $\{p_1, p_2\}$, or $\{q_1, q_2\}$, or some $\{p_3, q_3\}$ where $p_3 \in S_1$ and $q_3 \in S_2$.
- Key Observation: If m is the dividing coordinate, then p_3, q_3 must be within δ of m.
- In 1D, p_3 must be the rightmost point of S_1 and q_3 the leftmost point of S_2 , but these notions do not generalize to higher dimensions.
- How many points of S_1 can lie in the interval $(m \delta, m]$?
- By definition of δ , at most one. Same holds for S_2 .

1D Divide & Conquer

- \bullet Closest-Pair (S).
- If |S| = 1, output $\delta = \infty$. If |S| = 2, output $\delta = |p_2 - p_1|$. Otherwise, do the following steps:
 - 1. Let m = median(S).
 - **2.** Divide S into S_1, S_2 at m.
 - 3. $\delta_1 = \mathbf{Closest} \mathbf{Pair}(S_1)$.
 - 4. $\delta_2 = \mathbf{Closest-Pair}(S_2)$.
 - 5. δ_{12} is minimum distance across the cut.
 - 6. Return $\delta = \min(\delta_1, \delta_2, \delta_{12})$.
- Recurrence is T(n) = 2T(n/2) + O(n), which solves to $T(n) = O(n \log n)$.

2-D Closest Pair

- We partition S into S_1, S_2 by vertical line ℓ defined by median x-coordinate in S.
- Recursively compute closest pair distances δ_1 and δ_2 . Set $\delta = \min(\delta_1, \delta_2)$.
- Now compute the closest pair with one point each in S_1 and S_2 .

• In each candidate pair (p,q), where $p \in S_1$ and $q \in S_2$, the points p,q must both lie within δ of ℓ .

2-D Closest Pair

• At this point, complications arise, which weren't present in 1D. It's entirely possible that all n/2 points of S_1 (and S_2) lie within δ of ℓ .

- Naively, this would require $n^2/4$ calculations.
- We show that points in P_1, P_2 (δ strip around ℓ) have a special structure, and solve the conquer step faster.

Conquer Step

• Consider a point $p \in S_1$. All points of S_2 within distance δ of p must lie in a $\delta \times 2\delta$ rectangle R.

- How many points can be inside R if each pair is at least δ apart?
- In 2D, this number is at most 6!
- So, we only need to perform $6 \times n/2$ distance comparisons!
- We don't have an $O(n \log n)$ time algorithm yet. Why?

Conquer Step Pairs

• In order to determine at most 6 potential mates of p, project p and all points of P_2 onto line ℓ .

- Pick out points whose projection is within δ of p; at most six.
- We can do this for all p, by walking sorted lists of P_1 and P_2 , in total O(n) time.
- The sorted lists for P_1, P_2 can be obtained from pre-sorting of S_1, S_2 .
- Final recurrence is T(n) = 2T(n/2) + O(n), which solves to $T(n) = O(n \log n)$.

d-Dimensional Closest Pair

- Two key features of the divide and conquer strategy are these:
 - 1. The step where subproblems are combined takes place in one lower dimension.
 - 2. The subproblems in the combine step satisfy a sparsity condition.
 - 3. Sparsity Condition: Any cube with side length 2δ contains O(1) points of S.
 - 4. Note that the original problem does not necessarily have this condition.

The Sparse Problem

- Given n points with δ -sparsity condition, find all pairs within distance $\leq \delta$.
- Divide the set into S_1, S_2 by a median place H. Recursively solve the problem in two halves.
- Project all points lying within δ thick slab around H onto H. Call this set S'.
- S' inherits the δ -sparsity condition. Why?.
- Recursively solve the problem for S' in d-1 space.
- The algorithms satisfies the recurrence

$$U(n,d) = 2U(n/2,d) + U(n,d-1) + O(n).$$

which solves to $U(n,d) = O(n(\log n)^{d-1})$.

Getting Sparsity

- Recall that divide and conquer algorithm solves the left and right half problems recursively.
- The sparsity holds for the merge problem, which concerns points within δ thick slab around H.

• If S is a set where inter-point distance is at least δ , then the δ -cube centered at p contains at most a constant number of points of S, depending on d.

Proof of Sparsity

- Let C be the δ -cube centered at p. Let L be the set of points in C.
- Imagine placing a ball of radius $\delta/2$ around each point of L.
- No two balls can intersect. Why?
- The volume of cube C is $(2\delta)^d$.
- The volume of each ball is $\frac{1}{c_d}(\delta/2)^d$, for a constant c_d .
- Thus, the maximum number of balls, or points, is at most c_d4^d , which is O(1).

Closest Pair Algorithm

- Divide the input S into S_1, S_2 by the median hyperplane normal to some axis.
- Recursively compute δ_1, δ_2 for S_1, S_2 . Set $\delta = \min(\delta_1, \delta_2)$.
- Let S' be the set of points that are within δ of H, projected onto H.
- Use the δ -sparsity condition to recursively examine all pairs in S'—there are only O(n) pairs.
- The recurrence for the final algorithm is:

$$T(n,d) = 2T(n/2,d) + U(n,d-1) + O(n)$$

$$= 2T(n/2,d) + O(n(\log n)^{d-2}) + O(n)$$

$$= O(n(\log n)^{d-1}).$$

Improving the Algorithm

- If we could show that the problem size in the conquer step is $m \leq n/(\log n)^{d-2}$, then $U(m, d-1) = O(m(\log m)^{d-2}) = O(n)$.
- This would give final recurrence T(n,d) = 2T(n/2,d) + O(n) + O(n), which solves to $O(n \log n)$.
- Theorem: Given a set S with δ -sparsity, there exists a hyperplane H normal to some axis such that
 - 1. $|S_1|, |S_2| \ge n/4d$.
 - 2. Number of points within δ of H is $O(\frac{n}{(\log n)^{d-2}})$.
 - **3.** H can be found in O(n) time.

Sparse Hyperplane

- We prove the theorem for 2D. Show there is a line with $\alpha\sqrt{n}$ points within δ of it, for some constant α .
- For contradiction, assume no such line exists.
- Partition the plane by placing vertical lines at distance 2δ from each other, where n/8 points to the left of leftmost line, and right of rightmost line.

Sparse Hyperplane

• If there are k slabs, we have $k\alpha\sqrt{n} \leq 3n/4$, which gives $k \leq \frac{3}{4\alpha}\sqrt{n}$.

- Similarly, if there is no horizontal line with desired properties, we get $l \leq \frac{3}{4\alpha}\sqrt{n}$.
- By sparsity, number of points in any 2δ cell is some constant c.

Sparse Hyperplane

- This gives that the num. of points inside all the slabs is at most ckl, which is at most $\left(\frac{3}{4\alpha}\right)^2 cn$.
- Since there are $\geq n/2$ points inside the slabs, this is a contradiction if we choose $\alpha \geq \frac{\sqrt{18c}}{4}$.
- So, one of these k vertical of l horizontal lines must satisfy the desired properties.
- Since we know δ , we can check these k+l lines and choose the correct one in O(n) time.

Optimal Algorithm

- Actually we can start the algorithm with such a hyperplane.
- The divide and conquer algorithm now satisfies the recurrence T(n,d) = 2T(n/2,d) + U(m,d-1) + O(n).
- By new sparsity claim, $m \leq n/(\log n)^{d-2}$, and so $U(m, d-1) = O(m(\log m)^{d-2}) = O(n)$.
- Thus, T(n,d) = 2T(n/2,d) + O(n) + O(n), which solves to $O(n \log n)$.
- Solves the Closest Pair problem in fixed d in optimal $O(n \log n)$ time.