

Pflicht: Sie bearbeiten pro Teil jeweils eine Aufgabe.

Wahl: Zur Vertiefung und Festigung stehen ihnen die übrigen Aufgaben zur Verfügung.

Teil 1: Markieren Sie die Wendestelle sowie den dazugehörigen Wendepunkt im Graphen und geben Sie an, um welchen Typ von Wendepunkt es sich handelt.

Markieren Sie zudem die Intervalle, in denen der Graph der Funktion f(x) linksgekrümmt bzw. rechtsgekrümmt ist.

Teil 2: Ermitteln Sie die Wendepunkte und geben Sie die Intervalle an, in denen der Graph von f(x) eine Linkskurve bzw. eine Rechtskurve ist.

Kontrollieren Sie ihr Ergebnis mit GeoGebra.

(I)
$$f(x) = -x^2 + 2x + 4$$

(II)
$$f(x) = x^5 - x^4 + x^3$$

(III)
$$f(x) = x^3(\frac{1}{20}x^2 + \frac{1}{4}x + \frac{1}{3})$$

Teil 3: Begründen oder widerlegen Sie folgende Aussagen:

- Der Graph einer ganzrationalen Funktion vom Grad 4 kann drei Wendepunkte haben.
- Der Graph einer Ganzrationalen Funktion von Grad 5 hat immer 4 Extremstellen.
- Der Graph einer ganzrationalen Funktion von ungeradem Grad hat immer den Ursprung als Wendepunkt

Teil 4: Untersuchen Sie die Funktionen im Hinblick auf Wendestellen.

(I)
$$f(x) = x^3 - 2x^2 - 3x$$
 (II) $f(x) = \frac{1}{4}x^4 - \frac{1}{4}x^3 - 2x^2 + 3x$ (III) $f(x) = -x^6 + 6x^4 - 9x^2 + 4$

Zusatzaufgabe

Teil 5: Von der Funktion $f(x) = \frac{1}{4}x^4 - x^3 - 9x^2 + 40x - \frac{3}{2}$ kennen Sie bereits den Tiefpunkt TP(5|4,75).

- a) Bestimmen Sie zunächst weitere Extrempunkt
- b) Untersuchen Sie die Funktion auf Wende- bzw. Sattelpunkte.
- c) Ermitteln Sie das Symmetrieverhalten, das Globalverhalten sowie die Achsenschnittpunkte.
- d) Skizzieren Sie den Graphen der Funktion.