HORIZONTAL TAIL PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT H-Tail Data

Hidden Area --> Preliminary Mapping of imported Data

Hidden Area --> Import and preliminary mapping of OTHER Excel Data

INPUT H-TAIL PARAMETERS LIST

Input parameters

 $b_H = 11.217 \ m$

 $\Lambda_{H\ LE} = 35\ deg$

 $\xi_{tmax_H}\!=\!0.4$

 $\eta_H = 0.95$

 $\Gamma_H = 0 \, deg$

 $i_H = -2 \, deg$

 $c_{H_r}\!=\!3.322\; \pmb{m}$

 $t_over_c_{H_r}\!=\!0.11$

 $\alpha_{0l_H_r}\!=\!0$

 $C_{l\alpha_H_r}\!=\!6.016$

 $C_{m_ac_H_r}\!=\!-0.07$

 $\xi_{ac_H_r}\!=\!0.25$

 $M_{cr_H_2D_r}\!=\!0.75$

 $c_{H_t} = 1.219 \ {\it m}$

 $t_over_c_{H_t}\!=\!0.11$

 $\alpha_{0l_H_t} = 0$

 $C_{l\alpha_H_t}\!=\!6.016$

 $C_{m_ac_H_t}\!=\!-0.07$

 $\xi_{ac_H_t}\!=\!0.25$

 $M_{cr_H_2D_t}\!=\!0.75$

 $\varepsilon_{H\ t} = 0$

 $\eta_{e_in} = 0$

 $\eta_{e_out}\!=\!0.989$

 $c_e = 0.671 \ m$

Imported parameters

 $M_1 = 0.696$

 $X_{ac_W} = 3.928 \ m$

 $MAC_W = 3.642 \ m$

 $c_{W r} = 5.243 \ m$

 $S_W = 87.62 \ m^2$

 $K_{MAC4\ WH} = 0.707$

 $\Delta X_HT_{LE}_W_{LE} = 16.73 \ \boldsymbol{m}$

 $\Delta X_HT_{LE}_Nose = 27.86$ m

HTAIL PARAMETERS CALCULATIONS

H-Tail basic parameters

$$\lambda_H \coloneqq \frac{c_{H_t}}{c_{H_r}} = 0.367$$

$$S_H \coloneqq \frac{b_H}{2} \cdot c_{H_r} \cdot \left(1 + \lambda_H\right) = 25.47 \ \boldsymbol{m}^2$$

$$AR_{H} := \frac{{b_{H}}^{2}}{S_{H}} = 4.94$$

$$MAC_{H} := \frac{2}{3} \cdot c_{H_r} \cdot \left(\frac{1 + \lambda_{H}^{2} + \lambda_{H}}{1 + \lambda_{H}} \right) = 2.433 \ m$$

$$X_{MAC_LE_H} \coloneqq \frac{b_H}{6} \cdot \frac{\left\langle 1 + 2 \cdot \lambda_H \right\rangle}{\left\langle 1 + \lambda_H \right\rangle} \cdot \tan \left\langle \Lambda_{H_LE} \right\rangle = 1.66 \ \textit{m}$$

$$Y_{MAC_H} \coloneqq \frac{b_H}{6} \cdot \frac{1 + 2 \cdot \lambda_H}{1 + \lambda_H} = 2.371 \text{ m}$$

$$Z_{MAC\ H} := Y_{MAC\ H} \cdot \tan \langle \Gamma_H \rangle = 0 \ \boldsymbol{m}$$

$$\lambda_H = 0.367$$

$$S_{H} = 25.47 \; \boldsymbol{m}^{2}$$

$$AR_{H} = 4.94$$

$$MAC_{H} = 2.433 \ m$$

$$X_{MAC\ LE\ H} = 1.66\ m$$

$$Y_{MAC\ H} = 2.371\ m$$

$$Z_{MACH} = 0 \, \boldsymbol{m}$$

H-Tail, sweep angles

$$_{\mathrm{f}}\Lambda\left(x\,,\Lambda_{le}\,,AR\,,\lambda\right)\coloneqq\operatorname{if}\left(AR=0\,,\Lambda_{le}\,,\operatorname{atan}\left(\operatorname{tan}\left(\Lambda_{le}\right)-rac{4\cdot x\cdot (1-\lambda)}{AR\cdot (1+\lambda)}
ight)
ight)$$

$$\Lambda_{H\ LE} := {}_{\mathrm{f}}\Lambda\left(0\,,\Lambda_{H\ LE}\,,AR_{H}\,,\lambda_{H}\right) = 0.611$$

$$\Lambda_{H\ TE} := {}_{f}\Lambda \langle 1, \Lambda_{H\ LE}, AR_{H}, \lambda_{H} \rangle = 0.314$$

$$\boldsymbol{\Lambda_{H_c4}} \coloneqq {}_{\mathrm{f}}\boldsymbol{\Lambda} \left(0.25\,,\boldsymbol{\Lambda_{H_LE}}\,,\boldsymbol{AR_H}\,,\boldsymbol{\lambda_H}\right) = 0.545$$

$$\Lambda_{H_c2} := {}_{\mathrm{f}}\Lambda \left(0.5, \Lambda_{H_LE}, AR_H, \lambda_H\right) = 0.474$$

$$\boldsymbol{\Lambda_{H_tmax}} \coloneqq {}_{\mathrm{f}}\boldsymbol{\Lambda} \left(\boldsymbol{\xi_{tmax_H}}, \boldsymbol{\Lambda_{H_LE}}, \boldsymbol{AR_H}, \boldsymbol{\lambda_H}\right) = 0.503$$

• Sweep angle function

$$\Lambda_{H_LE} = 35 \; deg$$

$$\Lambda_{H\ TE} = 18.015\ deg$$

$$\Lambda_{H_c4} = 31.235 \; deg$$

$$\Lambda_{H_c2} = 27.145 \; deg$$

$$\Lambda_{H_tmax} = 28.82$$
 deg

Hidden Area --> H-Tail, linear laws coefficients

H-Tail, linear laws defined over the whole semi-spar

$$_{\mathrm{f}}\mathbf{c}_{\mathrm{H}}(y) \coloneqq A_{c_H} \cdot y + B_{c_H}$$

$$_{\mathrm{f}}$$
t_over_ $_{\mathrm{c}_{\mathrm{H}}}(y) \coloneqq A_{tc_H} \cdot y + B_{tc_H}$

$$_{\mathrm{f}}\varepsilon_{\mathrm{g}_{-}\mathrm{H}}(y) \coloneqq A_{\varepsilon_{-}H} \cdot y + B_{\varepsilon_{-}H}$$

$$_{\mathrm{f}}\alpha_{0\mathrm{l_H_2D}}(y) \coloneqq A_{\alpha0_H} \cdot y + B_{\alpha0_H}$$

$$_{\mathrm{f}}\mathbf{C}_{\mathrm{l}\alpha} _{\mathrm{H}}(y) \coloneqq A_{Cl\alpha} _{H} \cdot y + B_{Cl\alpha} _{H}$$

$$_{\mathrm{f}}\mathbf{C}_{\mathrm{m_ac_2D_H}}(y) \coloneqq A_{Cm0_H} \cdot y + B_{Cm0_H}$$

$$_{\mathrm{f}}\xi_{\mathrm{ac_2D_H}}(y) \coloneqq A_{\xi ac_H} \cdot y + B_{\xi ac_H}$$

$$_{\mathrm{f}}\mathbf{M}_{\mathrm{cr}_{\mathrm{H}}_{\mathrm{2D}}}(y) \coloneqq A_{Mcr_{\mathrm{H}}} \cdot y + B_{Mcr_{\mathrm{H}}}$$

H-Tail, 2D mean quantities

$$t_over_c_{H_mean} \coloneqq \frac{2}{S_H} \cdot \int\limits_0^{b_H} {}_{\mathrm{f}} \mathrm{c_H}(y) \cdot {}_{\mathrm{f}} \mathrm{t_over_c_H}(y) \, \mathrm{d}y = 0.11$$

$$t_over_c_{H_mean} = 0.11$$

$$C_{m_ac_H_mean} \coloneqq rac{2}{S_H \cdot MAC_H} \cdot \int\limits_0^{rac{b_H}{2}} {}_{
m f} {
m c_H(y)}^2 \cdot {}_{
m f} {
m C_{m_ac_2D_H}(y)} \, {
m d}y = -0.07$$

$$C_{m_ac_H_mean}\!=\!-0.07$$

$$C_{l\alpha_H_mean} \coloneqq \frac{2}{S_H} \cdot \int\limits_0^{\frac{b_H}{2}} {}_{\mathrm{f}} \mathrm{c_H}(y) \cdot {}_{\mathrm{f}} \mathrm{C}_{\mathrm{l}\alpha_H}(y) \, \mathrm{d}y = 6.016$$

$$C_{l\alpha_H_mean}\!=\!0.105~\textbf{deg}^{^{-1}}$$

$$lpha_{0l_H_mean} \coloneqq rac{2}{S_H} \cdot \int\limits_0^{rac{b_H}{2}} {}_{1} {
m c_H}(y) \cdot {}_{1} \! lpha_{0l_H_{
m 2D}}(y) \, {
m d} y = 0 \; m{rad}$$

$$\alpha_{0l_H_mean} = 0$$
 deg

H-Tail, 3D alpha-zero-lift

$$\alpha_{0L_H} = 0$$
 deg

MISCELLANEOUS DATA CALCULATIONS

Induced drag factors, only due to geometric effects

$$e_{H_alt} \coloneqq \frac{2}{2 - AR_H + \sqrt{4 + A{R_H}^2 \, \left(1 + \tan \left(\Lambda_{H_tmax}\right)^2\right)}} = 0.657$$

$$e_{H_alt_A0} \coloneqq 1.78 \cdot \left(1 - 0.045 \cdot AR_H^{0.68}\right) - 0.64 = 0.903$$

$$e_{H_alt_A} \coloneqq 4.61 \cdot \left(1 - 0.045 \cdot A R_H^{0.68}\right) \cdot \cos \left(\varLambda_{H_LE} \right)^{0.15} - 3.1 = 0.778$$

$$e_{H_alt}\!=\!0.657$$

- Alternative formula: valid for unswept wings
- Alternative formula: valid for swept wings

3d critical Mach number at mean aerodynamic chord

$$M_{cr_H_3D_@MAC_H} \coloneqq \frac{{}_{\mathrm{f}}\mathrm{M}_{\mathrm{cr_H}_2D} \left(Y_{MAC_H}\right)}{\cos \left(\varLambda_{H_LE}\right)} = 0.916$$

$$M_{cr_H_3D_@MAC_H} = 0.916$$

Elevator inner and outer stations and area

$$y_{e_in} \coloneqq \eta_{e_in} \cdot \frac{b_H}{2} = 0 \; m{m}$$

$$y_{e_out} \coloneqq \eta_{e_out} \cdot \frac{b_H}{2} = 5.547 \; m$$

$$c_{H_mean_@e} \coloneqq {}_{\mathbf{f}}\mathbf{c}_{\mathbf{H}} \left(\frac{y_{e_in} + y_{e_out}}{2} \right) = 2.282 \ \mathbf{m}$$

$$S_e \coloneqq 2 \cdot c_e \cdot (y_{e_out} - y_{e_in}) = 7.439 \text{ m}^2$$

$$y_{e_in} = 0$$
 \boldsymbol{m}

$$y_{e_out} = 5.547 \ m$$

$$c_{H mean @e} = 2.282 \, \mathbf{m}$$

$$S_e = 7.439 \ m^2$$

@Aerodynamic Database ---> (control surface) tau e vs c control surface over c horizontal tail

$$\tau_e = 0.5$$

@Aerodynamic Database ---> (control surface) C h alpha vs flap chord over airfoil chord

$$C_{h \alpha e} = -0.007$$

$$C_{h_\alpha_e} = -1.174 \cdot 10^{-4} \, deg^{-1}$$

@Aerodynamic Database ---> (control_surface)_C_h_delta_vs_flap_chord_over_airfoil_chord

$$C_{h_\delta_e} = -0.013$$

$$C_{h_\delta_e} = -2.211 \cdot 10^{-4} \ deg^{-1}$$

H-TAIL LIFT CURVE SLOPE

H-Tail Lift Curve Slope, function definitions

 ${}_{\mathrm{f}}\mathbf{C}_{\mathrm{L}\alpha_{-}\mathrm{H}}\left(\!M\,,k_{P}\,,\!AR\,,\!\Lambda_{\!c2}\,,\!C_{l\alpha@MAC}\,,\!\Lambda_{\!L\!E}\!\right)\coloneqq\mathrm{if}\ k_{P}\!\neq\!100$

• General Formula for Lift Curve Slope
$$\begin{split} & \text{if } k_P \neq 100 \\ & \parallel \text{return} \\ & \parallel \text{return} \\ & \parallel \\ & 2 + \sqrt{||\frac{AR^2 \cdot (1 - M^2)}{k_P^2}|} \left[1 + \frac{\tan{(\Lambda_{c2})}}{(1 - M^2)}\right]| + 4 \right] \\ & \parallel \\ & 2 + \sqrt{||\frac{AR^2 \cdot (1 - M^2)}{k_P^2}|} \left[1 + \frac{\tan{(\Lambda_{c2})}}{(1 - M^2)}\right]| + 4 \right] \\ & \text{else} \\ & \parallel \\ & a_0 \leftarrow \frac{C_{l\alpha@MAC}}{\sqrt{1 - (M \cdot \cos{(\Lambda_{LE})})^2 + \left(\frac{a_0 \cdot \cos{(\Lambda_{LE})}}{\pi \cdot AR}\right)^2} + \frac{a_0 \cdot \cos{(\Lambda_{LE})}}{\pi \cdot AR} \end{split}$$

H-Tail Lift Curve Slope, classic formula

$$C_{L\alpha_H_classic} \coloneqq \frac{C_{l\alpha_H_mean}}{\sqrt{1 - {M_{1}}^{2}}} + \frac{C_{l\alpha_H_mean}}{\pi \cdot AR_{H} \cdot e_{H_alt}} = 4.6$$

 $C_{L\alpha_H_classic} = 0.08 \; deg^{-1}$

H-Tail Lift Curve Slope, general formula for inner/outer panel and whole wing

 $k_{Polhamus_H} \coloneqq {}_{\mathrm{f}}\mathbf{k}_{\mathrm{Polhamus}} \left(M_1 \,, M_{cr_H_3D_@MAC_H} \,, \Lambda_{H_LE} \,, \lambda_H \,, AR_H \right) = 100$

 $k_{Polhamus_H}\!=\!100$

 $C_{l\alpha_H_@MAC_H} \coloneqq {}_{\mathrm{f}}\mathrm{C}_{\mathrm{l}\alpha_\mathrm{H}} \left(Y_{MAC_H}\right) = 6.016$

 $C_{l\alpha\ H\ @MAC\ H} = 0.105\ deg^{-1}$

 $C_{L\alpha_H_@M0} \coloneqq {}_{\mathrm{f}}\mathrm{C}_{\mathrm{L}\alpha_H} \left(0 \,, k_{Polhamus_H} \,, AR_{H} \,, \Lambda_{H_c2} \,, C_{l\alpha_H_@MAC_H} \,, \Lambda_{H_LE} \right)$

 $C_{L\alpha H @M0} = 3.606 \ rad^{-1}$

 $C_{I\alpha H} = 4.634 \ rad^{-1}$

 $C_{L\alpha \ H \ @M0} = 0.063 \ deg^{-1}$

 $C_{L\alpha\ H} \coloneqq {}_{\mathrm{f}}\mathrm{C}_{\mathrm{L}\alpha_\mathrm{H}} \left(M_1\,, k_{Polhamus_H}\,, AR_H\,, \Lambda_{H_c2}\,, C_{l\alpha_H_@MAC_H}\,, \Lambda_{H_LE} \right)$

 $C_{I_{OH}} = 0.081 \text{ deg}^{-1}$

H-Tail lift coefficient at initial conditions

$$C_{L0_H}\!\coloneqq\!C_{L\alpha_H}\!\cdot\!\left(i_H\!-\!\alpha_{0L_H}\!-\!\varepsilon_{0_W}\right)\!=\!-0.214$$

Induced drag factor, due to both geometric and aerodynamic effects

$$\begin{split} _{\mathbf{f}^{\mathbf{e}}}\left\langle C_{L\alpha},AR,\lambda,\Lambda_{LE}\right\rangle \coloneqq & \parallel \lambda_{e} \leftarrow \frac{AR \cdot \lambda}{\cos\left(\Lambda_{LE}\right)} \\ & \parallel R \leftarrow 0.0004 \cdot \lambda_{e}^{-3} - 0.008 \cdot \lambda_{e}^{-2} + 0.0501 \cdot \lambda_{e} + 0.8642 \\ & \parallel \text{return } \mathbf{if} \left\{AR = 0\,,0\,,\frac{1.1 \cdot C_{L\alpha}}{R \cdot C_{L\alpha} + (1-R)\,\pi \cdot AR}\right\} \end{split}$$

 Function for calculating wing induced drag factor, icluding aerodynamic and geometric effects

$$e_H := {}_{\mathrm{f}} \mathbf{e} \left(C_{L\alpha \ H}, AR_H, \lambda_H, \Lambda_{H \ LE} \right) = 0.965$$

 $e_H = 0.965$

H-TAIL AERODYNAMIC CENTER - GRAPHICAL METHOD (DATCOM/NAPOLITANO)

@Aerodynamic Database ---> (x_bar_ac_w)_k1_vs_lambda

 $K1_{ac\ H\ Datcom} = 1.361$

@Aerodynamic Database ---> (x_bar_ac_w)_k2_vs_L_LE_(AR)_(lambda)

 $K2_{ac\ H\ Datcom} = 0.516$

@Aerodynamic Database ---> (x_bar_ac_w)_x'_ac_over_root_chord_vs_tan_(L_LE)_over_beta_(AR_times_tan_(L_LE))_(lambda)

 $X_{ac}_over_c_{r_H_Datcom}\!=\!0.709$

Aerodynamic center positions

$$\xi_{ac_H} \coloneqq K1_{ac_H_Datcom} \cdot (X_{ac_over_c_{r_H_Datcom}} - K2_{ac_H_Datcom}) = 0.264$$

$$X_{ac_H} := \xi_{ac_H} \cdot MAC_H + X_{MAC_LE_H} = 2.302 \ \boldsymbol{m}$$

$$x_{ac\ H} \coloneqq X_{ac\ H} - X_{MAC\ LE\ H} = 0.642$$
 m

$$X_{ac_H} = 2.302 \ m$$

$$x_{ac_H} = 0.642 \; m$$

H-Tail Volume Ratio based on aerodynamic centers distance

$$\Delta X_HT_{ac}_W_{ac} \coloneqq \Delta X_HT_{LE}_W_{LE} - X_{ac}_W + X_{ac}_H = 15.104~\textbf{\textit{m}}$$

$$VolumeRatio_{H_ac} \coloneqq \frac{S_{H}}{S_{W}} \cdot \frac{\Delta X_HT_{ac}_W_{ac}}{MAC_{W}} = 1.206$$

SHRENK'S METHOD FOR BASIC AND ADDITIONAL H-TAIL LOADING

Loading function definitions and remarkable values

$${}_{\mathrm{f}}\mathbf{c}_{\mathrm{eff}}(y) \coloneqq \frac{{}_{\mathrm{f}}\mathbf{c}_{\mathrm{H}}(y) \cdot {}_{\mathrm{f}}\mathbf{C}_{\mathrm{l}\alpha_{-}\mathrm{H}}(y)}{C_{l\alpha_{-}H_mean}}$$

$$c_{ell_0} \coloneqq \frac{4 \cdot S_H}{\pi \cdot b_H} \qquad \qquad {}_{\mathrm{f}} c_{\mathrm{ell}}(y) \coloneqq c_{ell_0} \cdot \sqrt{1 - \left(\frac{y}{b_H}\right)^2}$$

$${}_{\mathbf{f}}\!\alpha_{\mathbf{b}}(y)\!\coloneqq\!\alpha_{0L_H}\!-\!\left\langle{}_{\mathbf{f}}\!\alpha_{0l_H_2\mathbf{D}}(y)\!-\!{}_{\mathbf{f}}\!\varepsilon_{\mathbf{g}_H}(y)\right\rangle$$

$${}_{\mathrm{f}}\mathrm{cC}_{\mathrm{l}_{-\mathrm{b}}}(y)\!\coloneqq\!\frac{1}{2}\boldsymbol{\cdot}_{\mathrm{f}}\mathrm{c}_{\mathrm{H}}(y)\boldsymbol{\cdot}_{\mathrm{f}}\mathrm{C}_{\mathrm{l}\alpha_{-\mathrm{H}}}(y)\boldsymbol{\cdot}_{\mathrm{f}}\!\alpha_{\mathrm{b}}(y)$$

$${}_{\mathrm{f}}\mathrm{cC}_{\mathrm{l}_{-}\mathrm{a}}(y) \coloneqq \frac{1}{2} \boldsymbol{\cdot} \left({}_{\mathrm{f}}\mathrm{c}_{\mathrm{eff}}(y) + {}_{\mathrm{f}}\mathrm{c}_{\mathrm{ell}}(y) \right)$$

$${}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}}(y)\coloneqq{}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{b}}}(y)+{}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{a}}}(y)$$

$$C_{L_{_b}} \coloneqq \frac{2}{S_W} \cdot \int_{0}^{b_H} {}_{
m f} {
m cC}_{
m l_{_b}}(y) \, {
m d}y = 0$$

$$C_{L_a} \coloneqq rac{2}{S_W} \cdot \int\limits_0^{b_H} {}_{
m f} {
m cC_{l_a}}(y) \, {
m d}y = 0.291$$

- Effective chord distribution function
- Elliptic chord distribution function
- "Basic" angle of attack function
- Basic wing loading
- Additional wing loading function
- Wing loading function
- REMARK: the effects of wing sweep angle are neglected

Spanwise loading curve plots

3D PITCHING MOMENT COEFFICIENT ABOUT H-TAIL AERODYNAMIC CENTER

Exact formulation

 $_{\mathbf{f}}\mathbf{x}_{\mathbf{b}_{-}\mathbf{H}}(y) \coloneqq X_{ac_{-}H} - \left(y \cdot \tan\left(\Lambda_{H_{LE}}\right) + {}_{\mathbf{f}}\mathbf{c}_{\mathbf{H}}(y) \cdot {}_{\mathbf{f}}\boldsymbol{\xi}_{\mathbf{ac}_{2\mathbf{D}_{-}\mathbf{H}}}(y)\right)$

 Moment arm from section's aerodynamic center to wing 3D aerodynamic center

$$C_{M_ac_H_b}\!=\!0$$

$$C_{M_ac_H_a} \coloneqq rac{2}{S_H \cdot MAC_H} \cdot \int\limits_0^{t_H} {}_{\mathrm{f}} \mathrm{C}_{\mathrm{m_ac_2D_H}}(y) \cdot {}_{\mathrm{f}} \mathrm{c}_{\mathrm{H}}(y) ^2 \mathrm{~d} y = -0.07$$

$$C_{M\ ac\ H\ a} = -0.07$$

$$C_{M_ac_H}\!:=\!C_{M_ac_H_b}\!+\!C_{M_ac_H_a}\!=\!-0.07$$

$$C_{M_ac_H} = -0.07$$

Approximated formulation (Roskam)

$$C_{M_ac_H_b_Roskam} \!=\! 0$$

$$C_{M_ac_H_Roskam}\!:=\!C_{M_ac_H_b_Roskam}\!+\!C_{M_ac_H_a}\!=\!-0.07$$

$$C_{M_ac_H_Roskam} = -0.07$$

DOWNWASH

Lifting Line Theory

$$_{\mathbf{f}}\varepsilon_{\alpha,\mathrm{LLT_H}}\left(C_{L\alpha},AR,e,M\right)\coloneqq \mathbf{if}\left(AR=0\,,0\,,2\cdot\frac{C_{L\alpha}}{\pi\cdot AR\cdot e}\cdot\frac{1}{\sqrt{1-M^{2}}}\right)$$

• Downwash gradient according to linear theory

$$\varepsilon_{\alpha_LLT_@M0_H} \coloneqq {}_{\rm f}\varepsilon_{\alpha_LLT_H} \left< C_{L\alpha_H}, AR_H, e_H, 0 \right> = 0.619$$

$$\varepsilon_{\alpha_LLT_H} \coloneqq {}_{\mathrm{f}} \varepsilon_{\alpha_LLT_H} \left(C_{L\alpha_H}, AR_H, e_H, M_1 \right) = 0.862$$

$$\varepsilon_{0_LLT_H} \coloneqq \varepsilon_{\alpha_LLT_H} \cdot \langle i_H - \alpha_{0L_H} \rangle = -0.03$$

$$\varepsilon_{\alpha_LLT_@M0_H}\!=\!0.619$$

$$\varepsilon_{\alpha_LLT_H}\!=\!0.862$$

$$\varepsilon_{0_LLT_H} = -1.725 \; deg$$

$$_{\mathrm{fK}_{\mathrm{AR}}}(AR) \coloneqq \frac{1}{AR} - \frac{1}{1 + (AR)^{1.7}}$$

 $\varepsilon_{0_H}\!:=\!\varepsilon_{\alpha_H}\!\cdot\!\left\langle i_H\!-\!\alpha_{0L_H}\!\right\rangle\!=\!-0.009$

$$\begin{split} K_{M}\left\langle M\,,C_{L\alpha_@M0}\,,C_{L\alpha}\right\rangle \coloneqq &\text{if }M\leq 0.7\\ &\parallel \text{return }\sqrt{1-M^{^{2}}}\\ &\text{else}\\ &\parallel \text{return }\frac{C_{L\alpha}}{C_{L\alpha_@M0}} \end{split}$$

$$_{\mathrm{f}}\mathrm{K}_{\lambda}(\lambda) \coloneqq \frac{10 - 3 \cdot \lambda}{7}$$

$$_{\mathrm{f}}\mathbf{K}_{\mathrm{MAC4}}\left(\Delta Z',\Delta X',b\right)\coloneqq\frac{1-\frac{\Delta Z'}{b}}{\sqrt[3]{2\cdot\frac{\Delta X'}{b}}}$$

 $\varepsilon_{0_H}\!=\!-0.495~{\it deg}$

MISCELLANEOUS PARAMETERS PLOT

WING-BODY-HTAIL PLANFORM

MAPPING AND OUTPUT CREATION

Includi << ../Default_Map_HTail.mcdx

Excel Writing

 $First_Row_{H\ 1} := 4$

 $Block_{H\ 1} := {}_{f}map_matrix_transform ({}_{m}HTail_Data_Map_{imported})$

 $Excel_Output_{H_1} \coloneqq_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{H_1} \,, \, n_{sheet} \,, First_Row_{H_1} \right)$

 $First_Row_{H_1} := First_Row_{H_1} + rows (Block_{H_1}) + 2 = 20$

 $Block_{H_2} := {}_{f}map_matrix_transform ({}_{m}HTail_Data_Map_{input})$

 $Excel_Output_{H_2} := fwrite_full_output (sOutput_Excel_File, Block_{H_2}, n_{sheet}, First_Row_{H_2})$

 $First_Row_{H_3} \coloneqq First_Row_{H_2} + rows \left(Block_{H_2}\right) + 2 = 58$

 $Block_{H_3} := {}_{f}map_matrix_transform ({}_{m}HTail_Data_Map)$

 $Excel_Output_{H_3} \coloneqq_{\text{f}} \text{write_full_output} \left({_{s}Output_Excel_File} \right., \\ Block_{H_3}, n_{sheet}, First_Row_{H_3} \right)$

 $First_Row_{H_4} := First_Row_{H_3} + rows (Block_{H_3}) + 2 = 143$

 $Block_{H_4} \coloneqq {}_{\mathsf{f}} \mathsf{map_matrix_transform} \left({}_{m} HTail_Data_Map_{LLCoeffs} \right)$

 $Excel_Output_{H_4} \coloneqq_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File \;, Block_{H_4} \;, n_{sheet} \;, First_Row_{H_4} \right)$

 $First_Row_{H_5} \coloneqq First_Row_{H_4} + \operatorname{rows}\left(Block_{H_4}\right) + 2 = 178$

 $Block_{H\ 5} := {}_{f}map_matrix_transform ({}_{m}HTail_Data_Map_{Misc})$

 $Excel_Output_{H\ 5} := {}_{\mathrm{f}}write_full_output ({}_{s}Output_Excel_File\ , Block_{H\ 5}\ , n_{sheet}\ , First_Row_{H\ 5})$

CSV Tabs Writing

$$_{m}CSV_{H_1} \coloneqq \operatorname{augment}\left(_{v}y,_{v}c_{ell},_{v}c_{eff},_{v}cC_{l_a},_{v}cC_{l_b}\right) \cdot \frac{1}{m}$$

$${}_{m}CSV_{H_2} \coloneqq \operatorname{augment}\left({}_{v}y \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}x_{b_H} \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}IC_{M_ac_H_b} \cdot \frac{1}{\textit{\textbf{m}}^2}, {}_{v}IC_{M_ac_H_b_Roskam} \cdot \frac{1}{\textit{\textbf{m}}^2}\right)$$

 $CSV_Output_{H_2} \coloneqq \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \text{csv''}, \\ {}_{m}CSV_{H_2}) = \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \text{csv''}, \\ {}_{m}CSV_{H_2}) = \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \\ \text{CSV} = \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \\ \text{CSV} = \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \\ \text{CSV} = \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M$

$${}_{m}CSV_{H_3} \coloneqq \operatorname{augment} \left({}_{v}\boldsymbol{y} \boldsymbol{\cdot} \frac{1}{\boldsymbol{m}}, {}_{v}\boldsymbol{c}_{H} \boldsymbol{\cdot} \frac{1}{\boldsymbol{m}}, {}_{v}\boldsymbol{\alpha}_{0l_2D}, {}_{v}\boldsymbol{\varepsilon}_{g}, {}_{v}\boldsymbol{C}_{l\boldsymbol{\alpha}_H}, {}_{v}\boldsymbol{C}_{m_ac_2D_H}, {}_{v}\boldsymbol{\xi}_{ac_2D_H} \right)$$

 $CSV_Output_{H\ 3} \coloneqq \text{WRITECSV} \ (\text{``.} \ \text{Output} \ \text{`H-TAIL_linear_laws} \ (y, c, alphazl, epsilon, Clalpha, Cmac, Csiac). csv", {}_{m}CSV_{H\ 3})$

$$_{m}CSV_{H_{-4}} := \operatorname{augment} \left(_{v}X_{H}, _{v}Y_{H}\right) \cdot \frac{1}{m}$$

 $CSV_Output_{H_4} \coloneqq \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_planform} (X_H, Y_H).\text{csv''}, {}_{m}CSV_{H_4})$

TeX Macro writing on .tex

$$\label{eq:complete_macros} \begin{split} &_{v} complete_macros_{H} \coloneqq \operatorname{stack} \left(Block_{H_{-1}}^{\ \ (2)}, Block_{H_{-2}}^{\ \ (2)}, Block_{H_{-3}}^{\ \ (2)}, Block_{H_{-4}}^{\ \ (2)}, Block_{H_{-5}}^{\ \ (2)} \right) \\ &_{v} tex_{H} \coloneqq _{f} \operatorname{write_matrix} \left(\text{``.} \setminus \operatorname{Output} \setminus \operatorname{HTAIL_Tex_Macros.tex''}, _{v} complete_macros_{H}, \text{``'} \right) \end{split}$$