

GABARITO DIAGNÓSTICO

TURMA IME-ITA

2023

QUÍMICA

Questão 1

Você trabalha em um laboratório que investiga as propriedades de nanomateriais semicondutores. Uma de suas pesquisas requer que você sintetize nanocristais de $\rm CdSe$ ao reagir $\rm CdO$ com $\rm Se$ em solução, em temperaturas elevadas. A solução de $\rm Se$ é preparada dissolvendo $\rm 150\,mg$ do metal selênio em $\rm 25\,mL$ de um solvente, o 1-octadeceno. Em outro frasco, $\rm 64\,mg$ de $\rm CdO$ são dissolvidos em $\rm 3\,mL$ de ácido oleico e $\rm 50\,mL$ de 1-octadeceno, em $\rm 225\,^{\circ}C$.

- a. **Determine** as configurações eletrônicas do Cd e do Se .
- b. **Determine** o grupo e o período do Cd e do Se na Tabela Periódica.
- c. **Explique** qual elemento tem maior probabilidade de formar um \hat{a} nion no composto i \hat{o} nico CdS.
- d. Calcule volume de solução de selênio precisa ser adicionado à solução de CdO .

Gabarito

a. As configurações eletrônicas:

Cd: [Kr]
$$4d^{10} 5s^2$$

Se: [Ar] $3d^{10} 4s^2 4p^4$

- **b**. O Cd está no Grupo 12, Período 5. O Se está no Grupo 16, Período 4.
- **c.** O selênio possui maior energia de ionização e afinidade eletrônica. Assim, o ${\rm Se}$ deve formar o ânion ${\rm Se}^{2-}$ no composto iônico.
- **d.** Cálculo da quantidade de CdO .

$$n_{\mathrm{Cd}} = \frac{m_{\mathrm{CdO}}}{M_{\mathrm{CdO}}} = \frac{64\,\mathrm{mg}}{128\,\frac{\mathrm{mg}}{\mathrm{mmol}}} = 0.5\,\mathrm{mmol}$$

Cálculo da concentração de selênio.

$$c_{\mathrm{Se}} = \frac{n_{\mathrm{Se,total}}}{V_{\mathrm{Se,total}}} = \frac{\left(\frac{150\,\mathrm{mg}}{79\,\frac{\mathrm{mg}}{\mathrm{mmol}}}\right)}{25\,\mathrm{mL}} = 0.08\,\mathrm{mmol\,mL^{-1}}$$

Como o Se e o CdO reagem na razão 1:1, são necessários $0.5\,\mathrm{mmol}$ de Se para reagir com todo o CdO. Cálculo do volume da solução de selênio.

$$V_{\mathrm{Se}} = \frac{n_{\mathrm{Se,reage}}}{V_{\mathrm{Se,reage}}} = \frac{0.5\,\mathrm{mmol}}{0.08\,\mathrm{mmol\,mL^{-1}}} = \boxed{6.25\,\mathrm{mL}}$$

Questão 2

Em uma estação de tratamento de água deseja-se medir a concentração de íons ferro(II). O ferro(II) reage com 1,10-fenantrolina, phen, para formar o complexo vermelho ferroína, $Fe(phen)_3^{2+}$, cuja concentração pode ser determinada por espectrofotometria. Entretanto, em solução ácida o complexo se decompões conforma a reação

$$Fe(phen)_3^{2+}(aq) + 3 H_3 O^+(aq) \longrightarrow Fe^{2+}(aq) + 3 Hphen^+(aq) + 3 H_2 O(l)$$

Os experimentos a seguir foram realizados em 40 °C.

Exp.	$[\mathrm{Fe}(\mathrm{phen})_3^{2+}]/\mathrm{M}$	$[{ m H_2O}]/{ m M}$	$v_0/\mathrm{mMs^{-1}}$
1	$7,50 \times 10^{-3}$	0,50	9.0×10^{-6}
2	$7{,}50\times10^{-3}$	$0,\!05$	9.0×10^{-6}
3	$3,75\times10^{-2}$	$0,\!05$	4.5×10^{-5}

A constante de velocidade desse processo em $70\,^{\circ}\mathrm{C}$ é $8.5\times10^{-2}\,\mathrm{M\,s^{-1}}$.

- a. **Determine** a constante de velocidade da reação em $40\,^{\circ}\mathrm{C}.$
- b. Determine a energia de ativação da reação.
- c. **Determine** o tempo de meia-vida da reação em $25\,^{\circ}\mathrm{C}$.

Questão 3

Uma planta produz etanol pela hidratação do eteno em altas temperaturas.

$$C_2H_4(g) + H_2O(g) \iff C_2H_5OH(g) \quad K_{300 \circ C} = 26$$

Um reator é carregado com $60\,\mathrm{bar}$ de eteno e $40\,\mathrm{bar}$ de água em $300\,^\circ\mathrm{C}$. A mistura atinge o equilíbrio no reator. A mistura no equilíbrio é resfriada a $25\,^\circ\mathrm{C}$ e transferida para um tambor, permitindo que todo o excesso de eteno escape.

- a. **Determine** a entalpia de síntese do etanol.
- b. **Determine** a composição do equilíbrio no reator a 300 °C.
- c. **Explique** qual seria o efeito da adição de etanol à composição do equilíbrio a 300 °C.
- d. **Compare** a constante de equilíbrio de síntese do etanol a $300\,^{\circ}\mathrm{C}$ e a $25\,^{\circ}\mathrm{C}$.
- e. **Determine** a pressão de vapor no tambor a 25 °C.

Dados

- Entalpia de formação do eteno, $\Delta H_{\mathrm{f}}^{\circ}(\mathrm{C_2H_4}) = 53\,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- Entalpia de formação da água, $\Delta H_{\rm f}^{\circ}({
 m H_2O}) = -242\,{
 m kJ\,mol}^{-1}$
- Entalpia de formação do etanol, $\Delta H_{\rm f}^{\circ}({\rm C_2H_5OH}) = -253\,{\rm kJ\,mol^{-1}}$

Questão 4

Materiais híbridos orgânicos e inorgânicos são estudados para aplicação em dispositivos ópticos de armazenamento. Um composto potencialmente útil é o dihidrogenofosfato de \emph{N} -metil-2,4,6-trifenilpiridínio, $C_5H_{12}N$. O cátion possui uma estrutura análoga à do benzeno, com um nitrogênio heteroátomo.

- a. Apresente a estrutura molecular para o ânion dihidrogenofosfato.
- b. Descreva a geometria molecular do ânion dihidrogenofosfato.
- c. Compare os ângulos de ligação O-P-O e HO-P-OH.
- d. Apresente a estrutura molecular para o cátion N-metil-2,4,6-trifenilpiridínio.
- e. Indique os orbitais que participam do sistema aromático.

Questão 5

Nos mamíferos, o metabolismo gera subprodutos nocivos, como o peróxido de hidrogênio, os íons superóxido e radicais contendo oxigênio, designados pelo termo genérico *espécies reativas de oxigênio*. A glutationa (GSH) é um tripeptídeo importante, pois atua como potente antioxidante. O grupo tiol atua como alvo dos agentes oxidantes, perdendo um átomo de hidrogênio e formando uma ligação dissulfeto com outra molécula de GSH. Você está investigando maneiras de proteção contra o estresse oxidativo e precisa saber mais sobre a química desse composto essencial.

Glutationa (GSH)

Os valores de pK_a da glutationa são $pK_{a1}=2.12$ e $pK_{a1}=3.59$ para a desprotonação sucessiva dos dois grupos COOH, $pK_{a3}=8.75$ para o grupo NH_2 e $pK_{a4}=9.65$ para o grupo SH.

- a. **Desenhe** a fórmula estrutural da glutationa a partir de sua estrutura linear.
- b. Identifique as funções orgânicas presentes na glutationa.
- c. **Identifique** os produtos de hidrólise completa da glutationa.
- d. **Determine** o número de estereoisômeros da glutationa.
- e. **Determine** a forma predominante de GSH no pH fisiológico, 7,4.