Programming Assignment 3

UP feature and ensemble models exploration continues from the jump-start code below.

MSDS 451 Feature Engineering

Financial Machine Learning: Adding Features to the Mix

Thomas W. Miller, August 25, 2025

Overview

We again use machine learning classifiers, including tree-based ensemble boosting and bagging methods, to predict the direction of oil futures (up or down) using a number of lagged price features. In particular, we look at daily closing spot prices for West Texas Intermediate (ticker WTI) with lags of one to seven days, as well as features based on opening, closing, high, and low price points, and daily trading volume

Tree-based ensemble models for predicting the direction of daily returns set the stage for testing the predictive utility of additional features. The domain of potential features or leading indicators is wide, including those associated with other price series, economic indicators, international events, securities filings, analyst and news reports, and media measures. Here we explore a set of nine features defined from a range of exchange-traded funds (ETFs).

The model-building process demonstrated here can be employed for any asset or portfolio of assets.

The model building process involves these steps:

- Define price-based features for the target asset.
- Define binary features (Up or not Up) for other assets, economic measures, market measures, worldwide events, and media measures.
- Fit an ensemble model to the full set of features within a time series cross-validation design using a tree-structured ensemble with hyperparameters set to their default values. Note the test set classification performance in predicting movement (Up or not Up) in the target asset.
- Utilized randomized search across key hyperparameters to determine "best" settings.
- Use a hold-out test set to evaluate model performance with "best" hyperparameter settings.
- · Rank the importance of features from the model evaluation, and select the best features for subsequent model development.
- Repeat the model-building process, adding new features to the mix.

Import Libraries

We draw on Python packages for data manipulation and modeling. Most important are Polars, a high-performance alternative to Pandas for data manipulation, and Scikit-Learn for machine learning study design and modeling algorithms.

!pip install catboost

```
Downloading catboost-1.2.8-cp312-cp312-manylinux2014_x86_64.whl.metadata (1.2 kB)
Requirement already satisfied: graphviz in /usr/local/lib/python3.12/dist-packages (from catboost) (0.21)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.12/dist-packages (from catboost) (3.10.0)
Requirement already satisfied: numpy<3.0,>=1.16.0 in /usr/local/lib/python3.12/dist-packages (from catboost) (2.0.2)
Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.12/dist-packages (from catboost) (2.2.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.12/dist-packages (from catboost) (1.16.1)
Requirement already satisfied: plotly in /usr/local/lib/python3.12/dist-packages (from catboost) (5.24.1)
Requirement already satisfied: six in /usr/local/lib/python3.12/dist-packages (from catboost) (1.17.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.24->catboost) (2.9.0.pc
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.24->catboost) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.24->catboost) (2025.2)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib->catboost) (1.3.3)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.12/dist-packages (from matplotlib->catboost) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib->catboost) (4.59.1)
Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib->catboost) (1.4.9)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib->catboost) (25.0)
Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.12/dist-packages (from matplotlib->catboost) (11.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib->catboost) (3.2.3)
Requirement already satisfied: tenacity=6.2.0 in /usr/local/lib/python3.12/dist-packages (from plotly->catboost) (8.5.0)
```

```
Installing collected packages: catboost
     Successfully installed catboost-1.2.8
import os
# Ignore warnings
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter(action='ignore', category=FutureWarning)
# datetime functions needed for filtering across DataFrames with differing time frame
from datetime import datetime, timezone
# Import Python Packages for data manipulation, data pipelines, and databases
import numpy as np
import pyarrow # foundation for polars
import polars as pl # DataFrame work superior to Pandas
# Plotting
import matplotlib.pyplot as plt
# Display static plots directly in the notebook output
%matplotlib inline
# create stylized visualizations, including heat maps
import seaborn as sns
# Preprocessing
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import (RandomizedSearchCV,
                                    TimeSeriesSplit)
from sklearn.model_selection import cross_validate
# utilized in all possible subsets classification work
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss
# needed for randomized search
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint, uniform
# metrics in xgboost tuning and final model evaluation
from sklearn.metrics import (accuracy_score,
                             classification_report,
                             roc_curve,
                             roc_auc_score,
                             RocCurveDisplay,
                             ConfusionMatrixDisplay,
                             confusion_matrix,
                             precision score,
                             recall_score,
                             f1_score
from sklearn.ensemble import AdaBoostClassifier
from catboost import CatBoostClassifier
# XGBoost Package... more complete than SciKit-Learn boosting methods
import xgboost as xgb
from xgboost import XGBRegressor, XGBClassifier, plot_importance
from sklearn.ensemble import RandomForestClassifier
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
```

Downloading catboost-1.2.8-cp312-cp312-manylinux2014_x86_64.whl (99.2 MB)

99.2/99.2 MB 7.9 MB/s eta 0:00:00

Retrieve Data

In previous work, we retrieved price data for WTI and nine ETFs from Yahoo Finance. The code for WTI is shown in the next commented-out cell.

```
Previous work to retrieve data from Yahoo Finance had this structure for each of the ETFs in the study

symbol = 'WTI'
start_date = '2000-01-01'
end_date = '2025-08-19'

ticker = yf.Ticker(symbol)
historical_data = ticker.history(start = start_date, end = end_date, period = '1mo')
print(historical_data)

print("type of historical_data", type(historical_data))

historical_data.to_csv("wti_daily_data.csv")

''\

Therevious work to retrieve data from Yahoo Finance had this structure for each of the ETFs in the study\n\nsymbol = \'WTI\'\nstart_date = \'2000-01-01\'\nend_date = \'2025-08-19\'\n\nticker = yf.Ticker(symbol)\nhistorical_data = ticker.history(start = start_date, end = end_date, period = \'1mo\')\nprint(historical_data)\n\nprint("type of historical_data", type(historical_data))\n\nhistorical_data.to_
```

Polars DataFrame Development

The following code cell demonstrates Polars use with the time series DataFrame for our selected market/ticker, WTI.

```
wti = pl.read_csv("/content/wti_daily_data.csv", try_parse_dates=True)
# check the original schema
print(wti.schema)
# drop useless columns Dividends and StockSplits
wti = wti.drop(['Dividends', 'StockSplits'])
# create lag price features
wti = wti.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
wti = wti.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
wti = wti.with_columns((pl.col('CloseLag2')).shift().alias('CloseLag3'))
# create high-minus-low (HML) for day and its lags
wti = wti.with_columns((pl.col('High') - pl.col('Low')).alias('HML'))
wti = wti.with_columns((pl.col('HML')).shift().alias('HMLLag1'))
wti = wti.with_columns((pl.col('HMLLag1')).shift().alias('HMLLag2'))
wti = wti.with_columns((pl.col('HMLLag2')).shift().alias('HMLLag3'))
# create a net change for the day as the open minus closing price OMC
# also create the corresponding lag metrics
wti = wti.with_columns((pl.col('Open') - pl.col('Close')).alias('OMC'))
wti = wti.with_columns((pl.col('OMC')).shift().alias('OMCLag1'))
wti = wti.with_columns((pl.col('OMCLag1')).shift().alias('OMCLag2'))
wti = wti.with_columns((pl.col('OMCLag2')).shift().alias('OMCLag3'))
# create volume lag metrics
wti = wti.with_columns((pl.col('Volume')).shift().alias('VolumeLag1'))
wti = wti.with_columns((pl.col('VolumeLag1')).shift().alias('VolumeLag2'))
wti = wti.with_columns((pl.col('VolumeLag2')).shift().alias('VolumeLag3'))
# compute 10-day exponential moving averages of closing prices
# compute acround CloseLag1 to avoid any "leakage" in explanatory variable set
# note also the 10-day buffer between train and test in time-series cross-validation
wti = wti.with_columns((pl.col('CloseLag1').ewm_mean(half_life=1,ignore_nulls=True)).alias('CloseEMA2'))
wti = wti.with columns((pl.col('CloseLag1').ewm mean(half life=2,ignore nulls=True)).alias('CloseEMA4'))
wti = wti.with_columns((pl.col('CloseLag1').ewm_mean(half_life=4,ignore_nulls=True)).alias('CloseEMA8'))
# log daily returns
wti = wti.with_columns(np.log(pl.col('Close')/pl.col('CloseLag1')).alias('LogReturn'))
# set volume features to Float64 for subsequent use in Numpy arrays
wti = wti.with columns(
    pl.col('Volume').cast(pl.Float64).round(0),
    pl.col('VolumeLag1').cast(pl.Float64).round(0),
    pl.col('VolumeLag2').cast(pl.Float64).round(0),
    pl.col('VolumeLag3').cast(pl.Float64).round(0),
# round other features to three decimal places for reporting and subsequent analytics
wti = wti.with_columns(
```

```
pl.col('Open').round(3),
    pl.col('High').round(3),
    pl.col('Low').round(3),
    pl.col('Close').round(3),
    pl.col('CloseLag1').round(3),
    pl.col('CloseLag2').round(3),
    pl.col('CloseLag3').round(3),
    pl.col('HML').round(3),
    pl.col('HMLLag1').round(3),
    pl.col('HMLLag2').round(3),
    pl.col('HMLLag3').round(3),
    pl.col('OMC').round(3),
    pl.col('OMCLag1').round(3),
    pl.col('OMCLag2').round(3),
    pl.col('OMCLag3').round(3),
    pl.col('CloseEMA2').round(3),
    pl.col('CloseEMA4').round(3),
    pl.col('CloseEMA8').round(3))
# no correction for class imbalance in this analysis
\# define binary target/response 1 = market price up since previous day, 0 = even or down
wti = wti.with_columns(pl.when(pl.col('LogReturn')>0).then(pl.lit(1)).otherwise(pl.lit(0)).alias('Target'))
# save to external comma-delimited text file for checking calculations in Excel
wti.write_csv("wti-with-computed-features.csv")
Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume':

    Descriptive Statistics for Price Features

# Drop the rows with null values such as the initial lag rows
wti = wti.drop_nulls()
# Descriptive statistics
wtiStatistics = wti.drop('Date').describe()
print(wtiStatistics.columns)
wtiStatisticsToPrint = wtiStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(wtiStatisticsToPrint)
```

['statistic', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'CloseLag3', 'HML', 'HMLLag1', 'HMLLag2', 'HMLLag2', 'HMLLag3', 'Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_6	column_8
statistic	count	mean	std	min	50%	max
0pen	5169.0	9.888208357515962	8.24379751138907	1.105	6.597	44.596
High	5169.0	10.104958405881215	8.390030911332957	1.145	6.784	44.626
Low	5169.0	9.646586767266395	8.068196720476314	1.028	6.4	43.235
Close	5169.0	9.871213774424453	8.228563569925155	1.047	6.592	44.172
Volume	5169.0	1748263.726059199	1829939.6046243927	34700.0	1177400.0	40429700.0
CloseLag1	5169.0	9.873441671503192	8.22790431775934	1.047	6.592	44.172
CloseLag2	5169.0	9.87565660669375	8.22725538628012	1.047	6.592	44.172
CloseLag3	5169.0	9.877919326755658	8.226617508094625	1.047	6.592	44.172
HML	5169.0	0.4583662217063263	0.43874669689562873	0.029	0.327	4.129
HMLLag1	5169.0	0.4583936931708261	0.43872807289866955	0.029	0.327	4.129
HMLLag2	5169.0	0.45853685432385377	0.43871551870478587	0.029	0.327	4.129
HMLLag3	5169.0	0.4587094215515574	0.43873022336223927	0.029	0.327	4.129
OMC	5169.0	0.016985683884697237	0.37995566715807194	-3.223	0.01	3.705
OMCLag1	5169.0	0.016974656606693762	0.3799555359557333	-3.223	0.01	3.705
OMCLag2	5169.0	0.01702050686786613	0.3799653728485099	-3.223	0.01	3.705
OMCLag3	5169.0	0.01715302766492551	0.3800928215711145	-3.223	0.01	3.705
VolumeLag1	5169.0	1748148.5974076223	1829989.5770774593	34700.0	1176900.0	40429700.0
VolumeLag2	5169.0	1748359.3538402012	1829930.1201336666	34700.0	1177400.0	40429700.0

VolumeLag3	5169.0	1750131.4954536662	1833301.7931244925	34700.0	1178000.0	40429700.0	
CloseEMA2	5169.0	9.875673437802282	8.219729461746063	1.111	6.614	43.432	
CloseEMA4	5169.0	9.878829560843492	8.210186049750966	1.136	6.624	43.018	
CloseEMA8	5169.0	9.885304314180692	8.190856957522218	1.157	6.649	42.696	
LogReturn	5169.0	-0.00039874914065335176	0.04178042201340917	-0.2644790687687591	0.0	0.3488180995786815	
Target	5169.0	0.4778487134842329	0.4995574042820073	0.0	0.0	1.0	

→ Base Feature List Defined on WTI Pricing Alone

Features or explanatory variables, also known as an independent variables, are used to predict the values of target variables. The initial list of featrues includes the price-based features defined above, everything except the continuous response **LogReturn** if we wanted to employ regression and the binary response **Target** for classification, which is the focus of this project. This complete feature list is used in evaluating all methods.

We retain Date and Target at this point... Date is needed to select across WTI and the many ETFs. Target is needed as the response in training. These will be dropped from the training features set later.

```
# Select Features for the Model, exclude current day price variables ... no "leakage"
# note for moving averages, we have excluded the current day, and provide a 10-day gap
# so these may be included in the set
wti = wti.drop(['LogReturn', 'Open', 'High', 'Low', 'Close', 'Volume', 'HML', 'OMC'])
wti.head()
```

→ shape: (5, 17)

Date	CloseLag1	CloseLag2	CloseLag3	HMLLag1	HMLLag2	HMLLag3	OMCLag1	OMCLag2	OMCLag3	VolumeLag1	VolumeLag2	VolumeLag3
datetime[μs, UTC]	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64
2005-02-02 05:00:00 UTC	13.196	13.189	13.406	0.232	0.79	0.942	-0.007	0.217	0.725	656500.0	1.7768e6	9.8135e6
2005-02-03 05:00:00 UTC	13.196	13.196	13.189	0.152	0.232	0.79	0.029	-0.007	0.217	265300.0	656500.0	1.7768e6
2005-02-04 05:00:00 UTC	13.225	13.196	13.196	0.087	0.152	0.232	0.0	0.029	-0.007	303200.0	265300.0	656500.0
2005-02-07 05:00:00 UTC	13.189	13.225	13.196	0.275	0.087	0.152	0.072	0.0	0.029	361100.0	303200.0	265300.0
2005-02-08 05:00:00 UTC	13.218	13.189	13.225	0.196	0.275	0.087	0.152	0.072	0.0	161900.0	361100.0	303200.0

Read Data for Nine Exchange Traded Funds

The following code cells read data from nine exchange-traded funds (ETFs) selected to cover a wide range of asset classes. All of these funds have about a billion or more assets under management (AUM). We note the range of dates covered in each ETF DataFrame. Later we will ensure that the same date ranges are covered by WTI and the nine ETFs. Beginning dates vary, but all time series end on August 19, 2025.

For each selected ETF, we compute a variable named **Up** that is 1 if the price of the ETF went up the previous day, zero if not.

```
# work with SPY data
spy = pl.read_csv("/content/spy_daily_data.csv", try_parse_dates=True)

# drop useless columns Dividends, StockSplits, and CapitalGains
spy = spy.drop(['Dividends', 'StockSplits', 'CapitalGains'])

spy = spy.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
spy = spy.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
spy = spy.with_columns(pl.when(pl.col('CloseLag1')>pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('SPYUp'))
# check the schema
print(spy.schema)

# Drop initial lag row
spy = spy.drop_nulls()

spyStatistics = spy.describe()
print(spyStatistics.columns)
spyStatisticsToPrint = spyStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
```

```
with pl.Config(
   tbl_rows = 60,
   tbl_width_chars = 200,
   tbl_cols = -1,
   float_precision = 3,
   tbl_hide_dataframe_shape = True,
   tbl_hide_column_data_types = True):
   print(spyStatisticsToPrint)

# print a few records at the beginning of the DataFrame
print(spy.head())
```

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'SPYUp']

Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
Date	6444	2012-10-26 16:36:45.027933+00:	null	2000-01-05 05:00:00+00:00	2025-08-19 04:00:00+00:00
Open	6444.0	190.82591842184576	144.02936415534128	50.113057480959675	645.989990234375
High	6444.0	191.92668889779023	144.7563930674051	51.62493276253082	646.1900024414062
Low	6444.0	189.6269088728895	143.23284984431902	49.48618592302649	642.6799926757812
Close	6444.0	190.84933958343657	144.06736661670922	50.23106002807617	644.9500122070312
Volume	6444.0	105232386.51458721	90179712.63917024	1436600.0	871026300.0
CloseLag1	6444.0	190.76379166087477	143.96436701907055	50.23106002807617	644.9500122070312
CloseLag2	6444.0	190.67826132712196	143.85915506172498	50.23106002807617	644.9500122070312
SPYUp	6444.0	0.5446927374301676	0.4980371984141425	0.0	1.0

shape: (5, 9)

Date datetime[μs, UTC]	Open f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	SPYUp i32
2000-01-05 05:00:00 UTC	88.657974	89.6677	86.955297	 12177900	88.539185	92.142517	0
2000-01-06 05:00:00 UTC	88.459986	89.6479	87.272072	 6227200	88.697571	88.539185	1
2000-01-07 05:00:00 UTC	88.895594	92.340546	88.737205	 8066500	87.272072	88.697571	0
2000-01-10 05:00:00 UTC	92.657303	93.073073	91.885159	 5741700	92.340546	87.272072	1
2000-01-11 05:00:00 UTC	92.380116	92.558303	90.915022	 7503700	92.657303	92.340546	1

```
# work with GLD data
gld = pl.read_csv("/content/gld_daily_data.csv", try_parse_dates=True)
# drop useless columns Dividends, StockSplits, and CapitalGains
gld = gld.drop(['Dividends', 'StockSplits', 'CapitalGains'])
gld = gld.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
gld = gld.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
gld = gld.with_columns(pl.when(pl.col('CloseLag1')>pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('GLDUp'))
# check the schema
print(gld.schema)
# Drop initial lag row
gld = gld.drop_nulls()
gldStatistics = gld.describe()
print(gldStatistics.columns)
gldStatisticsToPrint = gldStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(gldStatisticsToPrint)
# print a few records at the beginning of the DataFrame
print(gld.head())
```

Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
Date	5218	2015-04-04 10:38:49.858183+00:	null	2004-11-22 05:00:00+00:00	2025-08-19 04:00:00+00:00
0pen	5218.0	132.1412112242237	51.52670299042503	41.029998779296875	317.489990234375
High	5218.0	132.77317369738134	51.70272920655233	41.36000061035156	317.6300048828125
Low	5218.0	131.45804141663464	51.31802554569786	41.02000045776367	315.0400085449219
Close	5218.0	132.14241081638417	51.533912524483476	41.2599983215332	316.2900085449219
Volume	5218.0	9420078.114220008	6644238.186068209	319300.0	93804200.0
CloseLag1	5218.0	132.09248939242204	51.49232280202278	41.2599983215332	316.2900085449219
CloseLag2	5218.0	132.0421693442927	51.44969185599339	41.2599983215332	316.2900085449219
GLDUp	5218.0	0.5298965120735915	0.49915323048311416	0.0	1.0

shape: (5, 9)

Date datetime[μs, UTC]	Open f64	High f64	Low f64		Volume i64	CloseLag1 f64	CloseLag2 f64	GLDUp i32
UIC]	<u> </u>			<u></u>				
2004-11-22 05:00:00 UTC	44.75	44.970001	44.740002		11996000	44.779999	44.380001	1
2004-11-23 05:00:00 UTC	44.880001	44.919998	44.720001		3169200	44.950001	44.779999	1
2004-11-24 05:00:00 UTC	44.93	45.049999	44.790001		6105100	44.75	44.950001	0
2004-11-26 05:00:00 UTC	45.25	45.599998	45.060001		3097700	45.049999	44.75	1
2004-11-29 05:00:00 UTC	45.099998	45.5	45.080002		3759000	45.290001	45.049999	1

```
# work with VGT data
vgt = pl.read_csv("/content/vgt_daily_data.csv", try_parse_dates=True)
# drop useless columns Dividends, StockSplits, and CapitalGains
vgt = vgt.drop(['Dividends', 'StockSplits', 'CapitalGains'])
vgt = vgt.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
vgt = vgt.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
vgt = vgt.with_columns(pl.when(pl.col('CloseLag1')>pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('VGTUp'))
# check the schema
print(vgt.schema)
# Drop initial lag row
vgt = vgt.drop_nulls()
vgtStatistics = vgt.describe()
print(vgtStatistics.columns)
vgtStatisticsToPrint = vgtStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl rows = 60.
    tbl_width_chars = 200,
    tbl_cols = -1,
    float precision = 3.
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(vgtStatisticsToPrint)
# print a few records at the beginning of the DataFrame
```

print(vgt.head())

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'VGTUp']
Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic Date	count 5421	mean 2014-11-08 04:40:16.602103+00:	std null	min 2004-02-03 05:00:00+00:00	max 2025-08-19 04:00:00+00:00
Open High	5421.0 5421.0 5421.0	167.88651112658872 169.15025730560342 166.46979142040922	165.87005650920398 167.19942905975995 164.35842233160983	25.400250326119036 26.273459632207647 24.68993342530967	710.0499877929688 710.8800048828125 704.0
Low Close	5421.0	167.9006570834688	165.88368753316217	25.04936981201172	707.2899780273438

Vo	lume	5421.0	360279.91145545105	400808.0053902826	0.0	6564500.0
C1	oseLag1	5421.0	167.78119283618796	165.74161113685028	25.04936981201172	707.2899780273438
C1	oseLag2	5421.0	167.65927450781356	165.59152803560164	25.04936981201172	707.2899780273438
VG	TUp	5421.0	0.5543257701531082	0.4970857990731627	0.0	1.0

shape: (5, 9)

Date datetime[µs, UTC]	Open f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	VGTUp i32
2004-02-03 05:00:00 UTC	40.925945	40.942719	40.774989	 231100	41.194313	41.160759	1
2004-02-04 05:00:00 UTC	39.83571	39.83571	39.709911	 51000	40.942719	41.194313	0
2004-02-05 05:00:00 UTC	40.003442	40.003442	39.709913	 2600	39.709911	40.942719	0
2004-02-06 05:00:00 UTC	40.17116	40.716278	40.17116	 1000	39.91119	39.709911	1
2004-02-09 05:00:00 UTC	40.791757	40.917555	40.607254	 3200	40.716278	39.91119	1

```
# work with VB data
vb = pl.read_csv("/content/vb_daily_data.csv", try_parse_dates=True)
# drop useless columns Dividends, StockSplits, and CapitalGains
vb = vb.drop(['Dividends', 'StockSplits', 'CapitalGains'])
vb = vb.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
vb = vb.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
\label{eq:vbwith} \verb|vb| = \verb|vb.with_columns(pl.when(pl.col('CloseLag1')>pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('VBUp'))| \\
# check the schema
print(vb.schema)
# Drop initial lag row
vb = vb.drop_nulls()
vbStatistics = vb.describe()
print(vbStatistics.columns)
vbStatisticsToPrint = vbStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(vbStatisticsToPrint)
# print a few records at the beginning of the DataFrame
```

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'VBUp']
Schema({'column': String, 'column_6': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
Date	5421	2014-11-08 04:40:16.602103+00:	null	2004-02-03 05:00:00+00:00	2025-08-19 04:00:00+00:00
0pen	5421.0	106.9052813338388	62.1452158206943	23.633474085495507	258.1815273395355
High	5421.0	107.60790542830034	62.54629697613005	24.28031945289275	260.4463040442688
Low	5421.0	106.04389329572601	61.673058648440175	19.9520221629505	257.5090323220884
Close	5421.0	106.86636685982025	62.11471701676378	23.546703338623047	258.69580078125
Volume	5421.0	491339.45766463754	522990.5325407978	200.0	9288100.0
CloseLag1	5421.0	106.82761647115882	62.09329247825284	23.546703338623047	258.69580078125
CloseLag2	5421.0	106.78877441576543	62.07172201176196	23.546703338623047	258.69580078125
VBUp	5421.0	0.5366168603578676	0.49870340245454003	0.0	1.0

shape: (5, 9)

print(vb.head())

	Date datetime[μs, UTC]	Open f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	VBUp i32
Ī	2004-02-03	36.107417	36.18088	36.048645	 1200	36.14415	35.997215	1

```
05:00:00 UTC
                           35.872324
                                        35.299305
2004-02-04
               35.872324
                                                        1600
                                                                 36.048645
                                                                              36.14415
                                                                                          0
05:00:00 UTC
2004-02-05
               35.549099
                           35.622565
                                        35,336054
                                                        4000
                                                                 35.299305
                                                                              36.048645
                                                                                          0
05:00:00 UTC
2004-02-06
               35.615208
                           36.254341
                                        35.615208
                                                        2000
                                                                 35.409519
                                                                              35.299305
                                                                                          1
05:00:00 UTC
2004-02-09
               36.511441
                           36.636328
                                       36.504093
                                                        2900
                                                                 36.254341
                                                                              35.409519
                                                                                         1
05:00:00 UTC
```

```
# work with IVE data
ive = pl.read_csv("/content/ive_daily_data.csv", try_parse_dates=True)
# drop useless columns Dividends, StockSplits, and CapitalGains
ive = ive.drop(['Dividends', 'StockSplits', 'CapitalGains'])
ive = ive.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
ive = ive.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
ive = ive.with_columns(pl.when(pl.col('CloseLag1'))pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('IVEUp'))
# check the schema
print(ive.schema)
# Drop initial lag row
ive = ive.drop_nulls()
iveStatistics = ive.describe()
print(iveStatistics.columns)
iveStatisticsToPrint = iveStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(iveStatisticsToPrint)
# print a few records at the beginning of the DataFrame
```

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'IVEUp']
Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
Date	6343	2013-01-08 00:46:19.883336+00:	null	2000-05-31 04:00:00+00:00	2025-08-19 04:00:00+00:00
0pen	6343.0	74.6655833423332	46.11985052593699	21.26051340242963	203.21139722740784
High	6343.0	75.06144188464853	46.32247720139887	22.014917670226524	203.8427634546091
Low	6343.0	74.22128225486621	45.922028399013676	20.797465831147417	202.95489456330537
Close	6343.0	74.66454975014508	46.129873687318245	21.3702449798584	203.3889617919922
Volume	6343.0	677624.5940406747	792860.168455924	400.0	20403600.0
CloseLag1	6343.0	74.63817534400859	46.10495666736668	21.3702449798584	203.3889617919922
CloseLag2	6343.0	74.61178671650268	46.080269741101944	21.3702449798584	203.3889617919922
IVEUp	6343.0	0.5344474223553524	0.49885128818986785	0.0	1.0

shape: (5, 9)

print(ive.head())

Date datetime[μs, UTC]	Open f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	IVEUp i32
2000-05-31 04:00:00 UTC	34.549207	34.899005	34.549207	 12200	34.567142	34.046928	1
2000-06-01 04:00:00 UTC	34.890046	35.257782	34.836231	 25400	34.827251	34.567142	1
2000-06-02 04:00:00 UTC	35.858717	35.93047	35.751087	 10000	35.257782	34.827251	1
2000-06-05 04:00:00 UTC	35.786959	35.786959	35.544792	 15500	35.751087	35.257782	1
2000-06-06 04:00:00 UTC	35.508916	35.544792	35.508916	 4100	35.589638	35.751087	0

```
# work with XLI data
xli = pl.read_csv("/content/xli_daily_data.csv", try_parse_dates=True)
# drop useless columns Dividends, StockSplits, and CapitalGains
xli = xli.drop(['Dividends', 'StockSplits', 'CapitalGains'])
xli = xli.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
xli = xli.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
xli = xli.with\_columns(pl.when(pl.col('CloseLag1'))pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('XLIUp')) \\
# check the schema
print(xli.schema)
# Drop initial lag row
xli = xli.drop_nulls()
xliStatistics = xli.describe()
print(xliStatistics.columns)
xliStatisticsToPrint = xliStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(xliStatisticsToPrint)
# print a few records at the beginning of the DataFrame
print(xli.head())
```

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'XLIUp']

Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
Date	6444	2012-10-26 16:36:45.027933+00:	null	2000-01-05 05:00:00+00:00	2025-08-19 04:00:00+00:00
0pen	6444.0	47.13428678572114	33.75933048208735	11.236274653018539	155.07000732421875
High	6444.0	47.445254711260986	33.95744459372276	11.497583816634966	155.14999389648438
Low	6444.0	46.80200222742193	33.55937913538951	10.989484954974614	154.07000732421875
Close	6444.0	47.13715054336207	33.76749713408024	11.149171829223633	154.99000549316406
Volume	6444.0	8557567.116697703	7392044.013283453	400.0	79118200.0
CloseLag1	6444.0	47.1164178205972	33.74450283125619	11.149171829223633	154.99000549316406
CloseLag2	6444.0	47.09581460485097	33.72157067152891	11.149171829223633	154.99000549316406
XLIUp	6444.0	0.5332091868404718	0.4989346455594378	0.0	1.0

shape: (5, 9)

Date datetime[µs, UTC]	Open f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	XLIUp i32
2000-01-05 05:00:00 UTC	17.728652	17.807798	17.550574	 129200	17.758335	18.262877	0
2000-01-06	17.679196	17.9661	17.609944	 54000	17.679186	17.758335	0
05:00:00 UTC 2000-01-07 05:00:00 UTC	18.124382	18.599257	18.124382	 32900	17.916634	17.679186	1
2000-01-10	18.698189	18.757548	18.539897	 122500	18.599257	17.916634	1
05:00:00 UTC 2000-01-11 05:00:00 UTC	18.658613	18.658613	18.361816	 109800	18.599257	18.599257	0

```
# work with XLU data
xlu = pl.read_csv("/content/xlu_daily_data.csv", try_parse_dates=True)

# drop useless columns Dividends, StockSplits, and CapitalGains
xlu = xlu.drop(['Dividends', 'StockSplits', 'CapitalGains'])

xlu = xlu.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
xlu = xlu.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
xlu = xlu.with_columns(pl.when(pl.col('CloseLag1'))>pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('XLUUp'))
# check the schema
print(xlu.schema)
```

```
# Drop initial lag row
xlu = xlu.drop_nulls()
xluStatistics = xlu.describe()
print(xluStatistics.columns)
xluStatisticsToPrint = xluStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(xluStatisticsToPrint)
# print a few records at the beginning of the DataFrame
print(xlu.head())
```

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'XLUUp']
Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
Date	6444	2012-10-26 16:36:45.027933+00:	null	2000-01-05 05:00:00+00:00	2025-08-19 04:00:00+00:00
Open	6444.0	31.894989147350113	19.721009673760992	6.889745684259615	87.3499984741211
High	6444.0	32.123881544096875	19.861535759212497	7.41416278528114	87.66999816894531
Low	6444.0	31.650661453103062	19.573122239135174	6.736037375918337	86.12999725341797
Close	6444.0	31.89608001967974	19.7271434580805	6.885226726531982	87.31999969482422
Volume	6444.0	8837735.055865921	7372839.575100792	3200.0	90263100.0
CloseLag1	6444.0	31.88441676186302	19.717318739292757	6.885226726531982	87.31999969482422
CloseLag2	6444.0	31.8729350237577	19.707778243189146	6.885226726531982	87.31999969482422
XLUUp	6444.0	0.5335195530726257	0.49891388733682634	0.0	1.0

shape: (5, 9)

Date datetime[μs, UTC]	Open f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	XLUUp i32
2000-01-05 05:00:00 UTC	11.165537	11.248862	11.018116	 273400	10.921968	11.26168	0
2000-01-06 05:00:00 UTC	11.178358	11.178358	11.050166	 34500	11.197585	10.921968	1
2000-01-07 05:00:00 UTC	11.197586	11.274501	11.146309	 46200	11.178358	11.197585	0
2000-01-10 05:00:00 UTC	11.268088	11.345003	11.248859	 15500	11.274501	11.178358	1
2000-01-11 05:00:00 UTC	11.261679	11.261679	11.107849	 25700	11.312955	11.274501	1

```
# work with SLV data
slv = pl.read_csv("/content/slv_daily_data.csv", try_parse_dates=True)
# drop useless columns Dividends, StockSplits, and CapitalGains
slv = slv.drop(['Dividends', 'StockSplits', 'CapitalGains'])
slv = slv.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
slv = slv.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
slv = slv.with\_columns(pl.when(pl.col('CloseLag1'))pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('SLVUp')) \\
# check the schema
print(slv.schema)
# Drop initial lag row
slv = slv.drop_nulls()
slvStatistics = slv.describe()
print(slvStatistics.columns)
slvStatisticsToPrint = slvStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
```

```
tbl_hide_dataframe_shape = True,
tbl_hide_column_data_types = True):
print(slvStatisticsToPrint)
```

print a few records at the beginning of the DataFrame
print(slv.head())

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'SLVUp']
Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8
statistic Date Open High Low Close Volume CloseLag1	count 4856 4856.0 4856.0 4856.0 4856.0 4856.0	mean 2015-12-23 02:12:58.418451+00: 19.84649361829585 20.0214888811897 19.649800242859214 19.840868817129873 15420806.878088962 19.83675020118129	std null 6.487981729697927 6.55865103290389 6.395723154542012 6.487317455639558 16683460.219457056 6.484757133225693	min 2006-05-02 04:00:00+00:00 8.71000038146973 9.050000190734863 8.449999809265137 8.850000381469727 1039000.0 8.850000381469727	max 2025-08-19 04:00:00+00:00 47.619998931884766 48.349998474121094 46.54999923706055 47.2599983215332 29540000.0 47.2599983215332
CloseLag2 SLVUp	4856.0 4856.0	19.832479608314237 0.5168863261943987	6.481893562087745 0.4997662319131529	8.850000381469727 0.0	47.2599983215332 1.0

shape: (5, 9)

Date datetime[μs, UTC]	0pen f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	SLVUp i32
2006-05-02 04:00:00 UTC	14.245	14.4	14.1	 12511000	13.87	13.812	1
2006-05-03 04:00:00 UTC	14.45	14.464	13.413	 15141000	14.365	13.87	1
2006-05-04 04:00:00 UTC	13.95	14.287	13.68	 11075000	13.925	14.365	0
2006-05-05 04:00:00 UTC	14.0	14.03	13.75	 6586000	14.0	13.925	1
2006-05-08 04:00:00 UTC	13.8	14.0	13.506	 9453000	13.995	14.0	0

```
# work with USO data
uso = pl.read_csv("/content/uso_daily_data.csv", try_parse_dates=True)
# drop useless columns Dividends, StockSplits, and CapitalGains
uso = uso.drop(['Dividends', 'StockSplits', 'CapitalGains'])
uso = uso.with_columns((pl.col('Close')).shift().alias('CloseLag1'))
uso = uso.with_columns((pl.col('CloseLag1')).shift().alias('CloseLag2'))
uso = uso.with\_columns(pl.when(pl.col('CloseLag1'))pl.col('CloseLag2')).then(pl.lit(1)).otherwise(pl.lit(0)).alias('USOUp')) \\
# check the schema
print(uso.schema)
# Drop initial lag row
uso = uso.drop_nulls()
usoStatistics = uso.describe()
print(usoStatistics.columns)
usoStatisticsToPrint = usoStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(wtiStatisticsToPrint.schema)
with pl.Config(
    tbl_rows = 60,
    tbl_width_chars = 200,
    tbl_cols = -1,
    float_precision = 3,
    tbl_hide_dataframe_shape = True,
    tbl_hide_column_data_types = True):
    print(usoStatisticsToPrint)
# print a few records at the beginning of the DataFrame
print(uso.head())
```

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'Open': Float64, 'High': Float64, 'Low': Float64, 'Close': Float64, 'Volume': ['statistic', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'CloseLag1', 'CloseLag2', 'USOUp']
Schema({'column': String, 'column_0': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_6': String, 'column_8'

column	column_0	column_2	column_3	column_4	column_8

statistic	count	mean	std	min	max	
Date	4869	2015-12-13 15:52:11.238447+00:	null	2006-04-12 04:00:00+00:00	2025-08-19 04:00:00+00:00	ĺ
0pen	4869.0	207.56218537914114	172.12513325570848	17.280000686645508	952.6400146484375	
High	4869.0	209.87204556632614	174.16241714493188	18.0	953.3599853515625	ĺ
Low	4869.0	205.02635254098982	169.7785603051359	16.8799991607666	932.0	
Close	4869.0	207.54419582231404	172.08918039384076	17.040000915527344	939.8400268554688	
Volume	4869.0	3012812.4988704044	4036484.7365261046	14888.0	124913013.0	ĺ
CloseLag1	4869.0	207.64140263532167	172.14643555816238	17.040000915527344	939.8400268554688	
CloseLag2	4869.0	207.73813501876296	172.20317777305166	17.040000915527344	939.8400268554688	
US0Up	4869.0	0.5103717395769152	0.49994375754988574	0.0	1.0	
1		I .		I	1	1

shape: (5, 9)

Date datetime[µ s, UTC]	Open f64	High f64	Low f64	 Volume i64	CloseLag1 f64	CloseLag2 f64	USOUp i32
2006-04-12 04:00:00 UTC	545.76001	550.47998	542.47998	 156038	545.599976	544.159973	1
2006-04-13 04:00:00 UTC	540.0	551.919983	539.200012	 70088	542.719971	545.599976	0
2006-04-17 04:00:00 UTC	553.599976	559.200012	549.440002	 114713	550.559998	542.719971	1
2006-04-18 04:00:00 UTC	560.799988	568.400024	556.559998	 115338	558.320007	550.559998	1
2006-04-19 04:00:00 UTC	564.640015	577.280029	563.919983	 98725	566.0	558.320007	1

```
# Find earliest date that can be used across all DataFrames
minDateAll = max(min(wti['Date']),min(spy['Date']),min(gld['Date']),
                 min(vgt['Date']),min(vb['Date']),min(ive['Date']),
                 min(xli['Date']),min(xlu['Date']),min(slv['Date']),min(uso['Date']))
print("minimum Date on which to select, minDateAll:", minDateAll)
minimum Date on which to select, minDateAll: 2006-05-02 04:00:00+00:00
# find latest date across all DataFrames
maxDateAll = min(max(wti['Date']),max(spy['Date']),max(gld['Date']),
                 max(vgt['Date']),max(vb['Date']),max(ive['Date']),
                 max(xli['Date']),max(xlu['Date']),max(slv['Date']),max(uso['Date']))
print("maximum Date on which to select, axDateAll:", maxDateAll)
maximum Date on which to select, axDateAll: 2025-08-19 04:00:00+00:00
# select training data from minDateAll to 2024-12-31, test data all dates in 2025
beginTrain = minDateAll
endTrain = datetime(2024, 12, 31, tzinfo=timezone.utc)
beginTest = datetime(2025, 1, 1, tzinfo=timezone.utc)
endTest = maxDateAll
wtiTrain = wti.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
wtiTest = wti.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
print("Beginning of wti training set")
print(wtiTrain.head())
print("End of wti training set")
print(wtiTrain.tail())
print("Beginning of wti test set")
print(wtiTest.head())
print("End of wti test set")
print(wtiTest.tail())
```

__

Lure ! ! ! ! ! ! ! ! ! !

2024-12-30 05:00:00	1.579	1.54	1.501	 1.544	1.525	1.559	1	ĺ
итс								

Beginning of wti test set shape: (5, 17)

CloseLag1	CloseLag2	CloseLag3		CloseEMA2	CloseEMA4	CloseEMA8	Target
f64	f64	f64		f64	f64	f64	i32
1.628	1.638	1.579		1.61	1.579	1.581	1
1.746	1.628	1.638	 	1.678	1.628	1.607	0
1.727	1.746	1.628	 	1.702	1.657	1.626	0
1.619	1.727	1.746	 	1.66	1.646	1.625	0
1.599	1.619	1.727	 	1.63	1.632	1.621	1
	1.628 1.746 1.727	1.628 1.638 1.746 1.628 1.727 1.746 1.619 1.727	1.628 1.638 1.579 1.746 1.628 1.638 1.727 1.746 1.628 1.619 1.727 1.746	1.628 1.638 1.579 1.746 1.628 1.638 1.727 1.746 1.628 1.619 1.727 1.746	1.628 1.638 1.579 1.61 1.746 1.628 1.638 1.678 1.727 1.746 1.628 1.702 1.619 1.727 1.746 1.66	1.628 1.638 1.579 1.61 1.579 1.746 1.628 1.638 1.678 1.628 1.727 1.746 1.628 1.702 1.657 1.619 1.727 1.746 1.66 1.646	f64 f64 f64 f64 f64 f64 f64 f64 f64 1.628 1.638 1.579 1.61 1.579 1.581 1.746 1.628 1.638 1.678 1.628 1.607 1.727 1.746 1.628 1.702 1.657 1.626 1.619 1.727 1.746 1.66 1.646 1.625

End of wti test set shape: (5, 17)

Date datetime[μs , UTC]	CloseLag1 f64	CloseLag2 f64	CloseLag3 f64		CloseEMA2 f64	CloseEMA4 f64	CloseEMA8 f64	Target i32
2025-08-13 04:00:00 UTC	1.74	1.71	1.72		1.729	1.731	1.737	0
2025-08-14 04:00:00	1.74	1.74	1.71	 	1.734	1.733	1.737	0
2025-08-15 04:00:00	1.74	1.74	1.74	 	1.737	1.735	1.737	0
2025-08-18 04:00:00	1.71	1.74	1.74	 	1.724	1.728	1.733	1
2025-08-19 04:00:00 UTC	1.74	1.71	1.74	 	1.732	1.731	1.734	0

→ Define the WTI Target for Training and Test Sets

Using the dates defined by looking across all ETFs and the WTI time series.

Define and examine the target for classification model development print(wtiTrain['Target'].value_counts()) yTrain = np.array(wtiTrain['Target'])

print(wtiTest['Target'].value_counts()) yTest = np.array(wtiTest['Target'])

→ shape: (2, 2)

Target	count
i32	u32
1 0	2227 2471

shape: (2, 2)

Target	count
132 1 0	72 85

Remove Target from WTI Data Sets

The initial feature set will include price features from WTI. Having obtained the Target from both the training and test data for WTI, we remove it from the WTI feature set in both the training and test sets.

Having extracted the Target from the WTI training and test sets, we can delete it from the set of features
XTrain = wtiTrain.drop(['Target'])
XTrain.head()
XTest = wtiTest.drop(['Target'])

XTest = wtiTest.drop(['Target'])
XTest.head()

→ shape: (5, 16)

Date	CloseLag1	CloseLag2	CloseLag3	HMLLag1	HMLLag2	HMLLag3	OMCLag1	OMCLag2	OMCLag3	VolumeLag1	VolumeLag2	VolumeLag3
datetime[μs, UTC]	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64	f64
2025-01-02 05:00:00 UTC	1.628	1.638	1.579	0.059	0.108	0.098	0.0	-0.029	-0.01	2.2437e6	3.6429e6	2.5184e6
2025-01-03 05:00:00 UTC	1.746	1.628	1.638	0.128	0.059	0.108	-0.078	0.0	-0.029	3.4821e6	2.2437e6	3.6429e6
2025-01-06 05:00:00 UTC	1.727	1.746	1.628	0.088	0.128	0.059	0.039	-0.078	0.0	1.4409e6	3.4821e6	2.2437e6
2025-01-07 05:00:00 UTC	1.619	1.727	1.746	0.167	0.088	0.128	0.128	0.039	-0.078	2.5746e6	1.4409e6	3.4821e6
2025-01-08	1.599	1.619	1.727	0.098	0.167	0.088	0.029	0.128	0.039	2.2995e6	2.5746e6	1.4409e6

```
# filter by date for all the ETF DataFrames, defining training and test sets
spyTrain = spy.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
spyTest = spy.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
gldTrain = gld.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
gldTest = gld.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
vgtTrain = vgt.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
vgtTest = vgt.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
vbTrain = vb.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
vbTest = vb.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
iveTrain = ive.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
iveTest = ive.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
xliTrain = xli.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
xliTest = xli.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
xluTrain = xlu.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
xluTest = xlu.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
slvTrain = slv.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
slvTest = slv.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
usoTrain = uso.filter((pl.col('Date')>=beginTrain) & (pl.col('Date')<=endTrain))</pre>
usoTest = uso.filter((pl.col('Date')>=beginTest) & (pl.col('Date')<=endTest))</pre>
# verify consistent shapes of DataFrames
print("Train DataFrame shapes:")
print("wtiTrain.shape: ", wtiTrain.shape)
print("spyTrain.shape: ", spyTrain.shape)
print("gldTrain.shape: ", gldTrain.shape)
print("vgtTrain.shape: ", vgtTrain.shape)
print("vbTrain.shape: ", vbTrain.shape)
print("iveTrain.shape: ", iveTrain.shape)
print("xliTrain.shape: ", xliTrain.shape)
print("xluTrain.shape: ", xluTrain.shape)
```

print("slvTrain.shape: ", slvTrain.shape)
print("usoTrain.shape: " usoTrain.shape)

```
pı בווכל מסטוו מבוויסוומףכי , מסטוו מבוויסוומףכי
# verify consistent shapes of DataFrames
print("Test DataFrame shapes:")
print("wtiTest.shape: ", wtiTest.shape)
print("spyTest.shape: ", spyTest.shape)
print("gldTest.shape: ", gldTest.shape)
print("vgtTest.shape: ", vgtTest.shape)
print("vbTest.shape: ", vbTest.shape)
print("iveTest.shape: ", iveTest.shape)
print("xliTest.shape: ", xliTest.shape)
print("xluTest.shape: ", xluTest.shape)
print("slvTest.shape: ", slvTest.shape)
print("usoTest.shape: ", usoTest.shape)
 → Train DataFrame shapes:
     wtiTrain.shape: (4698, 17)
     spyTrain.shape:
                       (4698, 9)
     gldTrain.shape:
                      (4698, 9)
     vgtTrain.shape:
                      (4698, 9)
     vbTrain.shape: (4698, 9)
     iveTrain.shape: (4698, 9)
     xliTrain.shape:
                      (4698, 9)
     xluTrain.shape:
                      (4698, 9)
     slvTrain.shape: (4698, 9)
     usoTrain.shape: (4698, 9)
     Test DataFrame shapes:
     wtiTest.shape: (157, 17)
     spyTest.shape:
                     (157, 9)
     gldTest.shape: (157, 9)
     vgtTest.shape: (157, 9)
     vbTest.shape: (157, 9)
     iveTest.shape: (157, 9)
     xliTest.shape: (157, 9)
     xluTest.shape:
                     (157, 9)
     slvTest.shape: (157, 9)
     usoTest.shape: (157, 9)
# Add Up indicator variables to the wti DataFrames
wtiTrainETF = wtiTrain
wtiTrainETF = wtiTrainETF.with columns(spyTrain['SPYUp'])
wtiTrainETF = wtiTrainETF.with_columns(gldTrain['GLDUp'])
wtiTrainETF = wtiTrainETF.with_columns(vgtTrain['VGTUp'])
wtiTrainETF = wtiTrainETF.with_columns(vbTrain['VBUp'])
wtiTrainETF = wtiTrainETF.with_columns(iveTrain['IVEUp'])
wtiTrainETF = wtiTrainETF.with_columns(xliTrain['XLIUp'])
wtiTrainETF = wtiTrainETF.with_columns(xluTrain['XLUUp'])
wtiTrainETF = wtiTrainETF.with_columns(slvTrain['SLVUp'])
wtiTrainETF = wtiTrainETF.with_columns(usoTrain['USOUp'])
print(wtiTrainETF.schema)
print(wtiTrainETF.head())
wtiTestETF = wtiTest
wtiTestETF = wtiTestETF.with_columns(spyTest['SPYUp'])
wtiTestETF = wtiTestETF.with_columns(gldTest['GLDUp'])
wtiTestETF = wtiTestETF.with_columns(vgtTest['VGTUp'])
wtiTestETF = wtiTestETF.with_columns(vbTest['VBUp'])
wtiTestETF = wtiTestETF.with_columns(iveTest['IVEUp'])
wtiTestETF = wtiTestETF.with_columns(xliTest['XLIUp'])
wtiTestETF = wtiTestETF.with_columns(xluTest['XLUUp'])
wtiTestETF = wtiTestETF.with_columns(slvTest['SLVUp'])
wtiTestETF = wtiTestETF.with_columns(usoTest['USOUp'])
print(wtiTestETF.schema)
print(wtiTestETF.head())
🚌 Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'CloseLag1': Float64, 'CloseLag2': Float64, 'CloseLag3': Float64, 'HMLLag1':
     shape: (5, 26)
```

Date	CloseLag1	CloseLag2	CloseLag3	 XLIUp	XLUUp	SLVUp	US0Up
datetime[μs, UTC]	 f64	 f64	 f64	i32	i32	i32	i32
2006-05-02 04:00:00 UTC	32.19	31.062	30.669	 1	0	1	1
2006-05-03 04:00:00 UTC	33.471	32.19	31.062	 1	1	1	1
2006-05-04 04:00:00 UTC	33.158	33.471	32.19	 1	0	0	0
2006-05-05 04:00:00 UTC	35.013	33.158	33.471	 1	1	1	0
2006-05-08 04:00:00 UTC	33.645	35.013	33.158	 1	1	0	0

Schema({'Date': Datetime(time_unit='us', time_zone='UTC'), 'CloseLag1': Float64, 'CloseLag2': Float64, 'CloseLag3': Float64, 'HMLLag1': shape: (5, 26)

Date	CloseLag1	CloseLag2	CloseLag3	 XLIUp	XLUUp	SLVUp	USOUp
datetime[μs, UTC]	f64	f64	f64	i32	i32	i32	i32
2025-01-02 05:00:00 UTC 2025-01-03 05:00:00 UTC 2025-01-06 05:00:00 UTC 2025-01-07 05:00:00 UTC 2025-01-08 05:00:00 UTC	1.628 1.746 1.727 1.619 1.599	1.638 1.628 1.746 1.727 1.619	1.579 1.638 1.628 1.746 1.727	 0 0 1 0	0 1 1 0 0	0 1 1 1	1 1 1 0 1

we can now drop Date and Target from wti training and test sets
as we now have the full set o features for training and testing
wtiTrainETF = wtiTrainETF.drop(['Date','Target'])
wtiTestETF = wtiTestETF.drop(['Date','Target'])

```
trainStatistics = wtiTrainETF.describe()
print(wtiTrainETF.columns)
trainStatisticsToPrint = trainStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(trainStatisticsToPrint.schema)
with pl.Config(
   tbl_rows = 60,
   tbl_width_chars = 200,
   tbl_width_chars = 200,
   tbl_cols = -1,
   float_precision = 3,
   tbl_hide_dataframe_shape = True,
   tbl_hide_column_data_types = True):
   print(trainStatisticsToPrint)
```

print a few records at the beginning of the DataFrame
print(wtiTrainETF.head())

['CloseLag1', 'CloseLag2', 'CloseLag3', 'HMLLag1', 'HMLLag2', 'HMLLag3', 'OMCLag1', 'OMCLag2', 'OMCLag3', 'VolumeLag1', 'VolumeLag2', 'V Schema({'column': String, 'column_e': String, 'column_2': String, 'column_3': String, 'column_4': String, 'column_8': String})

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
CloseLag1	4698.0	9.434744146445293	7.903321463290654	1.047	44.172
CloseLag2	4698.0	9.441019795657727	7.9087858952326995	1.047	44.172
CloseLag3	4698.0	9.447220093656876	7.91400686144687	1.047	44.172
HMLLag1	4698.0	0.45111323967645806	0.43053528722285817	0.029	4.129
HMLLag2	4698.0	0.4514563644103873	0.4308960144294226	0.029	4.129
HMLLag3	4698.0	0.45179480630055346	0.4312426208526598	0.029	4.129
OMCLag1	4698.0	0.01769391230310771	0.37248492041266446	-3.223	3.705
OMCLag2	4698.0	0.017589186888037466	0.3725618641070302	-3.223	3.705
OMCLag3	4698.0	0.01758407833120477	0.37256294191238093	-3.223	3.705
VolumeLag1	4698.0	1846607.4499787143	1858696.1408019532	52700.0	40429700.0
VolumeLag2	4698.0	1846130.779054917	1858810.9684406945	52700.0	40429700.0
VolumeLag3	4698.0	1845878.9272030653	1858934.5724908514	52700.0	40429700.0
CloseEMA2	4698.0	9.441036824180502	7.901227922219755	1.156	43.432
CloseEMA4	4698.0	9.450132183908048	7.900732474686015	1.285	43.018
CloseEMA8	4698.0	9.46854576415496	7.899496747575	1.382	42.696
SPYUp	4698.0	0.5506598552575565	0.49747990726518226	0.0	1.0
GLDUp	4698.0	0.5259684972328651	0.4993783325710364	0.0	1.0
VGTUp	4698.0	0.5576841209025117	0.49671426317032225	0.0	1.0
VBUp	4698.0	0.5357598978288634	0.49877267659502655	0.0	1.0
IVEUp	4698.0	0.5340570455512984	0.4988918682142226	0.0	1.0
XLIUp	4698.0	0.5398041719880801	0.49846616338488664	0.0	1.0
XLUUp	4698.0	0.5363984674329502	0.4987264730981392	0.0	1.0
SLVUp	4698.0	0.5163899531715623	0.4997844912621346	0.0	1.0
US0Up	4698.0	0.511068539804172	0.4999306820015263	0.0	1.0

shape: (5, 24)

CloseLag1	CloseLag2	CloseLag3	HMLLag1	 XLIUp	XLUUp	SLVUp	USOUp
f64	f64	f64	f64	i32	i32	i32	i32
32.19 33.471 33.158 35.013 33.645	31.062 32.19 33.471 33.158 35.013	30.669 31.062 32.19 33.471 33.158	1.128 1.681 1.375 1.688 1.899	 1 1 1 1 1	0 1 0 1 1	1 1 0 1 0	1 1 0 0

```
testStatistics = wtiTestETF.describe()
print(wtiTestETF.columns)
testStatisticsToPrint = testStatistics.transpose(include_header=True).drop(['column_1', 'column_5', 'column_6', 'column_7'])
print(testStatisticsToPrint.schema)
with pl.Config(
   tbl_rows = 60,
   tbl_width_chars = 200,
   tbl_width_chars = 200,
   tbl_cols = -1,
   float_precision = 3,
   tbl_hide_dataframe_shape = True,
   tbl_hide_column_data_types = True):
   print(testStatisticsToPrint)
```

print a few records at the beginning of the DataFrame
print(wtiTestETF.head())

['CloseLag1', 'CloseLag2', 'CloseLag3', 'HMLLag1', 'HMLLag2', 'HMLLag3', 'OMCLag1', 'OMCLag2', 'OMCLag3', 'VolumeLag1', 'VolumeL

column	column_0	column_2	column_3	column_4	column_8
statistic	count	mean	std	min	max
CloseLag1	157.0	1.583496815286624	0.23880529630030126	1.096	2.346
CloseLag2	157.0	1.5828471337579617	0.23851536438187623	1.096	2.346
CloseLag3	157.0	1.5820127388535032	0.23829673344386137	1.096	2.346
HMLLag1	157.0	0.08693630573248408	0.05223058853366095	0.03	0.398
HMLLag2	157.0	0.08730573248407644	0.052172748365944654	0.03	0.398
HMLLag3	157.0	0.08761146496815288	0.05209331490177502	0.03	0.398
OMCLag1	157.0	0.004267515923566881	0.06086306426616007	-0.119	0.288
OMCLag2	157.0	0.004210191082802551	0.06089029983030787	-0.119	0.288
OMCLag3	157.0	0.003891719745222931	0.060832639225176156	-0.119	0.288
VolumeLag1	157.0	1774694.2675159236	1436394.6061296004	469000.0	9514600.0
VolumeLag2	157.0	1793519.1082802548	1441411.6644551635	469000.0	9514600.0
VolumeLag3	157.0	1805398.7261146498	1439638.7979587486	469000.0	9514600.0
CloseEMA2	157.0	1.582611464968153	0.2311157066659726	1.111	2.235
CloseEMA4	157.0	1.5808598726114649	0.2211442694956234	1.136	2.122
CloseEMA8	157.0	1.5780191082802548	0.20381714628488098	1.157	1.988
SPYUp	157.0	0.5668789808917197	0.4970926415014129	0.0	1.0
GLDUp	157.0	0.5796178343949044	0.49519988886944	0.0	1.0
VGTUp	157.0	0.5605095541401274	0.4979133332299239	0.0	1.0
VBUp	157.0	0.4968152866242038	0.5015898291312316	0.0	1.0
IVEUp	157.0	0.5414012738853503	0.49987749601678194	0.0	1.0
XLIUp	157.0	0.535031847133758	0.5003673319951818	0.0	1.0
XLUUp	157.0	0.5668789808917197	0.4970926415014129	0.0	1.0
SLVUp	157.0	0.535031847133758	0.5003673319951818	0.0	1.0
USOUp	157.0	0.4840764331210191	0.5013455681821809	0.0	1.0

shape: (5, 24)

 XL1Up i32	XLUUp i32	SLVUp i32	USOUp i32
 0	0	0	1
 0	1	1	1
 1	1	1	1
 0	0	1	0
 0	0	1	1
	i32	0 0 1 1 1 1 0 0 0 0 0 0 0 0	0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0

```
# Standardize features in the training data
featureNames = wtiTrainETF.columns
print("Feature names correspond to Numpy array columns:",featureNames)
scaler = StandardScaler()
XTrain = scaler.fit_transform(np.array(wtiTrainETF))

Feature names correspond to Numpy array columns: ['CloseLag1', 'CloseLag2', 'CloseLag3', 'HMLLag1', 'HMLLag2', 'HMLLag3', 'OMCLag1', 'OM

# Standardize features for hold-out test set
featureNames = wtiTestETF.columns
print("Feature names correspond to Numpy array columns:",featureNames)
scaler = StandardScaler()
XTest = scaler.fit_transform(np.array(wtiTestETF))

Feature names correspond to Numpy array columns: ['CloseLag1', 'CloseLag2', 'CloseLag3', 'HMLLag1', 'HMLLag2', 'HMLLag3', 'OMCLag1', 'OMCLag1
```

```
# DELITITIE OF STITLE LESCONES SING COLORES FOR LOCALES CONCORDED HOUSETING (VODOCOSE)
X = XTrain # the full training data set with ETS Up indicators
y = yTrain # the cloned values just computed
# Splitting the X (XTrain) and y (yTrain) data
# into cross-validation train and test sets
# within the Scikit-Learn framework using TimeSeriesSplit
# with a gap, for the number of samples to exclude from
# the end of each train set and before the next test set.
tscv = TimeSeriesSplit(gap=10, n_splits=5)
all_splits = list(tscv.split(X, y))
train_0, test_0 = all_splits[0]
train_1, test_1 = all_splits[1]
train_2, test_2 = all_splits[2]
train_3, test_3 = all_splits[3]
train_4, test_4 = all_splits[4]
# examine the objects created for cross-validation splits
print("type(all_splits):", type(all_splits), " outer list length", len(all_splits))
print("train_0 has",len(train_0),"with indices from ",min(train_0),"to",max(train_0))
print("test_0 has",len(test_0),"with indices from ",min(test_0),"to",max(test_0))
print("train_1 has",len(train_1),"with indices from ",min(train_1),"to",max(train_1))
print("test 1 has",len(test 1),"with indices from ",min(test 1),"to",max(test 1))
print("train_2 has",len(train_2),"with indices from ",min(train_2),"to",max(train_2))
print("test_2 has",len(test_2),"with indices from ",min(test_2),"to",max(test_2))
print("train_3 has",len(train_3),"with indices from ",min(train_3),"to",max(train_3))
print("test_3 has",len(test_3),"with indices from ",min(test_3),"to",max(test_3))
print()
print("train_4 has",len(train_4),"with indices from ",min(train_4),"to",max(train_4))
print("test_4 has",len(test_4),"with indices from ",min(test_4),"to",max(test_4))
# to see all indices we can uncomment these statements
# print("elements of all_splits list of lists,\n shows index numbers for each the five lists")
# print(all_splits)
→ type(all_splits): <class 'list'> outer list length 5
     train 0 has 773 with indices from 0 to 772
     test_0 has 783 with indices from 783 to 1565
     train_1 has 1556 with indices from 0 to 1555
     test_1 has 783 with indices from 1566 to 2348
     train_2 has 2339 with indices from 0 to 2338
     test 2 has 783 with indices from 2349 to 3131
     train 3 has 3122 with indices from 0 to 3121
     test_3 has 783 with indices from 3132 to 3914
     train_4 has 3905 with indices from 0 to 3904
     test_4 has 783 with indices from 3915 to 4697
model = XGBClassifier(objective='binary:logistic', n_estimators=1000, random_state=2025)
# Evaluate a Classification Model Within the Time Series Cross-Validation Design
# Prior to executing a full-blown search for the "best" classification model,
# we test the cross-validation design on a binary classification model,
# revising code provided in online documentation for Scikit-Learn:
# Time-related feature engineering. In particular,
# we define appropriate metrics for assessing classification performance.
def evaluate(model, X, y, cv, model_prop=None, model_step=None):
    cv_results = cross_validate(
        model,
       Χ,
       у,
        scoring=["accuracy"],
        return_estimator=model_prop is not None,
    if model prop is not None:
        if model_step is not None:
            values = [
```

```
getattr(m[model_step], model_prop) for m in cv_results["estimator"]
           1
        else:
           values = [getattr(m, model_prop) for m in cv_results["estimator"]]
        print(f"Mean model.{model_prop} = {np.mean(values)}")
    accuracy = -cv_results["test_accuracy"]
    # print used in earlier testing
    # print(
         f"Mean Accuracy:
                             {-accuracy.mean():.3f} +/- {accuracy.std():.3f}\n"
    # )
    return (-accuracy.mean(), accuracy.std())
evaluate(model, X, y, cv=tscv, model_prop="n_estimators")
→ Mean model.n_estimators = 1000.0
     (np.float64(0.4947637292464878), np.float64(0.02598091670999012))
# print results from evaluate for the model with default hyperparameter settings
accuracyMean, accuracyStd = evaluate(model, X, y, cv=tscv, model_prop="n_estimators")
print(
                            {accuracyMean:.3f} +/- {accuracyStd:.3f}\n"
        f"Mean Accuracy:
    Mean model.n_estimators = 1000.0
     Mean Accuracy:
                     0.495 +/- 0.026
# Randomized search to find the best set of hyperparameters
param_dist = {
    'max_depth': randint(3, 10),
    'min_child_weight': randint(1, 10),
    'subsample': uniform(0.5, 1),
    'learning_rate': uniform(0.01, 0.1),
    'n_estimators': randint(100, 1000),
}
xgb_model = xgb.XGBClassifier(objective='binary:logistic', use_label_encoder=False, eval_metric='logloss', random_state=2025)
random_search = RandomizedSearchCV(
    estimator=xgb_model,
    param distributions=param dist,
    n_iter=100, # Number of parameter settings that are sampled.
    scoring='accuracy',
    cv = TimeSeriesSplit(gap=10, n_splits=5),
    random_state=2025,
    n_jobs=-1 # Use all available cores
)
random_search.fit(X, y)
print("Best parameters:", random search.best params )
print("Best score:", random_search.best_score_)
Est parameters: {'learning_rate': np.float64(0.05637364430976246), 'max_depth': 6, 'min_child_weight': 1, 'n_estimators': 691, 'subsamp
     Best score: 0.5106002554278416
# Evaluate Model Classification Performance in the Test Set with "Best" hyperparameter settings
# final model evaluation
finalModel = XGBClassifier(objective='binary:logistic', eval_metric='logloss', random_state=2025,
                          max_depth = 6, min_child_weight = 1, subsample = 0.5970606684977592, learning_rate = 0.05637364430976246, n_estima
final Model.fit(X, y) # fit to the training data
ypred = finalModel.predict(XTest) # predictions on the hold-out test data
RocCurveDisplay.from_predictions(yTest, ypred)
```


Confusion Matrix [[41 44] [34 38]]

print(classification_report(yTest, ypred, labels = ["0","1"]))

			precision	recall	f1-score	support
		0	0.55	0.48	0.51	85
		1	0.46	0.53	0.49	72
	micro	avg	0.50	0.50	0.50	157
	macro	avg	0.51	0.51	0.50	157
	weighted	avg	0.51	0.50	0.50	157

Ranking Features by Importance

This completes the exploration of additional features being added to the mix. Now we identify which of those features are most important in classifying the next day's return direction (up or even/down).

```
featureNames = wtiTrainETF.columns
print("Feature names correspond to Numpy array columns:",featureNames)

# Get feature importances
importances = np.round(model.feature_importances_, decimals = 3)

# Create Polars DataFrame
importanceDF = pl.DataFrame({"feature": featureNames, "importance": importances})

with pl.Config(
    tbl_rows = 60):
    print(importanceDF.sort("importance", descending=True))

Feature names correspond to Numpy array columns: ['CloseLag1', 'CloseLag2', 'CloseLag3', 'HMLLag1', 'HMLLag2', 'HMLLag3', 'OMCLag1', 'OMCLag
```

	I			
feature	importance			
str	f32			
CloseLag2	0.05			
CloseLag1	0.049			
HMLLag1	0.047			
HMLLag3	0.047			
VolumeLag3	0.046			
OMCLag1	0.045			
OMCLag3	0.045			
HMLLag2	0.044			
OMCLag2	0.044			
VolumeLag1	0.044			
VGTUp	0.043			
CloseLag3	0.042			
CloseEMA2	0.042			
VolumeLag2	0.041			
CloseEMA8	0.041			
CloseEMA4	0.04			
VBUp	0.04			
IVEUp	0.04			
SLVUp	0.039			
SPYUp	0.037			
XLIUp	0.036			
US0Up	0.035			
GLDUp	0.033			
XLUUp	0.03			

shape: (24, 2)

Repeat the Modeling Process

For subsequent model development, we can retain the top features and then run additional tests with new features using the procedure demonstrated in this analysis

References

- yfinance GitHub
- yfinance Documentation
- Polars Online User Guide
- Build Polars Database

- YouTube. Polars and Time Series: What It Can Do, and How to Overcome Any Limitation
- · Awesome Quant: Python for Quantiative Finance
- Cross-validation
- · TimeSeriesSplit
- RandomizedSearchCV
- Hyperparameter Tuning
- · Metrics and Scoring
- Introduction to Boosted Trees
- XGBoost documentation
- XGBoost in Python documentation
- Auto-Sklearn for AutoML in an Scikit-Learn Environment.

```
from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

# list of the ETF tickers
etfs = ['spy', 'gld', 'ive', 'slv', 'uso', 'vb', 'vgt', 'xli', 'xlu']
etf_dfs = {}
# Loop through each ETF to reate the 'Up' feature
for etf in etfs:
    file_path = f"/content/{etf}_daily_data.csv"
    try:
        df = pl.read_csv(file_path, try_parse_dates=True)
        # Drop irrelevant columns
        df = df.drop(['Dividends', 'StockSplits'])
        # Create lagged closing price for previous day
       df = df.with_columns(pl.col('Close').shift(1).alias('CloseLag1'))
        # Create the 'Up' feature based on yesterday's price
        df = df.with columns(
            (pl.col('Close').shift(-1) > pl.col('Close')).alias(f'{etf}Up').cast(pl.Int32)
       etf_dfs[etf] = df
    except pl.ColumnNotFoundError as e:
        \label{eq:column} print(f"Column missing in \{etf\}: \{e\}. \ Skipping \ this \ ETF.")
    except Exception as e:
        print(f"Error processing {etf}: {e}. Skipping this ETF.")
if 'spy' in etf_dfs:
    print(etf_dfs['spy'].head())
```

 \rightarrow shape: (5, 9)

Date datetime[μs , UTC]	Open f64	High f64	Low f64	 Volume i64	CapitalGain s f64	CloseLag1 f64	spyUp i32
2000-01-03 05:00:00 UTC	93.924388	93.924388	91.152589	 8164300	0.0	null	0
2000-01-04 05:00:00 UTC	90.934811	91.271387	88.46989	 8089800	0.0	92.142517	1
2000-01-05 05:00:00 UTC	88.657974	89.6677	86.955297	 12177900	0.0	88.539185	0
2000-01-06 05:00:00 UTC	88.459986	89.6479	87.272072	 6227200	0.0	88.697571	1
2000-01-07 05:00:00 UTC	88.895594	92.340546	88.737205	 8066500	0.0	87.272072	1

```
# read prepared wti
wti = pl.read_csv("/content/wti-with-computed-features.csv", try_parse_dates=True)
# merge WTI with each ETF df
for etf, df in etf_dfs.items():
    wti = wti.join(df.select(['Date', f'{etf}Up']), on='Date', how='left')
```

```
# drop NAs
wti = wti.drop nulls()
# separate features and target
etf_features = [f'{etf}Up' for etf in etfs]
base_features = wti.columns[1:13]
X_columns = base_features + etf_features
X = wti.select(X_columns).to_numpy()
y = wti['Target'].to_numpy()
dates = wti['Date'].to_numpy()
# TimeSeriesSplit with a gap to prevent look-ahead bias
tscv = TimeSeriesSplit(n_splits=5, gap=10)
# initialize CatBoost and XGBoost
models = {
    'CatBoost': CatBoostClassifier(verbose=0, random_state=42),
    'XGBoost': XGBClassifier(random_state=42, eval_metric='logloss', use_label_encoder=False)
}
# Train and evaluate each model using cross-validation
for name, model in models.items():
    print(f"Training and evaluating {name}...")
    cv_results = cross_validate(model, X, y, cv=tscv, scoring=['accuracy', 'roc_auc'], return_train_score=False)
    print(f"{name} Cross-Validation Results:")
    print(f" Accuracy: \{cv\_results['test\_accuracy'].mean():.4f\} +/- \{cv\_results['test\_accuracy'].std():.4f\}")
    print(f" AUC: {cv_results['test_roc_auc'].mean():.4f} +/- {cv_results['test_roc_auc'].std():.4f}")
→ Training and evaluating CatBoost...
     CatBoost Cross-Validation Results:
       Accuracy: 0.6494 +/- 0.0917
       AUC: 0.7146 +/- 0.1055
     Training and evaluating XGBoost...
     XGBoost Cross-Validation Results:
       Accuracy: 0.7046 +/- 0.0631
       AUC: 0.7749 +/- 0.0824
# Re-fit CatBoost model on the full dataset to get feature importance
catboost_model = CatBoostClassifier(verbose=0, random_state=42)
catboost_model.fit(X, y)
# Get feature importance and feature names
feature_importance = catboost_model.get_feature_importance()
sorted_idx = np.argsort(feature_importance)
sorted_features = np.array(X_columns)[sorted_idx]
# Plot feature importance for CatBoost
plt.figure(figsize=(10, 8))
plt.barh(sorted features, feature importance[sorted idx])
plt.xlabel("Feature Importance (CatBoost)")
plt.ylabel("Feature")
plt.title("CatBoost Feature Importance")
plt.show()
# Re-fit XGBoost model on the full dataset to get feature importance
xgboost_model = XGBClassifier(random_state=42, eval_metric='logloss', use_label_encoder=False)
xgboost_model.fit(X, y)
# Plot feature importance for XGBoost
plt.figure(figsize=(10, 8))
plot_importance(xgboost_model, ax=plt.gca())
plt.title("XGBoost Feature Importance")
plt.show()
```


