Задача 3. Равноускоренные колебания

Хорошо известна задача о движении грузов на нити, переброшенной через блок.

Уравнения второго закона Ньютона для каждого из грузов (с учетом равенства модулей ускорений и равенства модулей сил натяжения нитей) имеют вид

$$m_2 a = m_2 g - T$$

 $m_1 a = T - m_1 g$ (1)

Из этой системы следует формула для ускорения грузов (положительное направление ускорения указано на рисунке)

$$a = \frac{m_2 - m_1}{m_2 + m_1} g. (2)$$

Способ решения 1. Чисто кинематический.

Последовательно рассмотрим все этапы движения системы, описанной в условии задачи.

При движении вниз между уровнями \boldsymbol{A} и \boldsymbol{B} ускорение грузов в соответствии с полученной формулой (2) равно

$$a_1 = \frac{m_2 + m_3 - m_1}{m_2 + m_3 + m_1} g = \frac{0.99 + 0.02 - 1.00}{0.99 + 0.02 + 1.00} \cdot 10 \frac{M}{c^2} \approx 5.0 \frac{cM}{c^2}$$
 (3)

Когда правый груз пройдет расстояние h, его скорость находится из формулы

$$h = \frac{v_1^2 - v_0^2}{2a} \quad \Rightarrow \quad v_1 = \sqrt{v_0^2 + 2ah} \tag{4}$$

Если малый груз снят, то ускорение системы равно

$$a_2 = \frac{m_2 - m_1}{m_2 + m_1} g = \frac{0.99 - 1.00}{0.99 + 1.00} \cdot 10 \frac{M}{c^2} \approx -5.0 \frac{cM}{c^2}$$
 (5)

Дальнейшее движение будет происходить с отрицательным ускорением, путь, который пройдет до остановки, и минимальная координата находится по формулам

$$\Delta y = \frac{v_1^2}{2a_2} \quad \Rightarrow \quad y_{\min} = -h - \frac{v_1^2}{2a_2} \tag{6}$$

Остальные формулы для расчета характерных точек находятся аналогично. Для удобства численных расчетов все формулы сведены в единую таблицу. В таблице модуль ускорения обозначен $a=5,0\frac{c_M}{c^2}$, в строках скоростей и ускорений приведены их проекции на вертикальную ось y.

Таблица 1. Кинематический расчет закона движения

таолица 1. Кинемати еский рас ет закона движения				
	Параметр	Формула		
Движение вниз	Начальная скорость	v_0		
между уровнями <i>АВ</i>		Ü		
<i>y</i> \	Ускорение	$a_1 = -a$		
	Конечная скорость	$v_1 = -\sqrt{v_0^2 + 2ah}$		
	Конечная координата	-h		
—A	Время движения	$\Delta t = \left \frac{v_1 - v_0}{a} \right $		
—— <i>B</i>				

_	Начальная скорость	v_1
уровня В до нижней	1	· 1
точки		
<i>y</i>	Ускорение	$a_2 = a$
	Конечная скорость	0
A	Конечная координата	$y{\min} = -h - \frac{v_1^2}{2a}$
B	Время движения	$\Delta t = \left \frac{v_1}{a} \right $
Движение вверх от нижней точки до уровня В	Начальная скорость	0
<i>y</i> ↑	ускорение	$a_2 = a$
	Конечная координата	-h
	Конечная скорость	$-v_1$
	Время движения	
		$\Delta t = \left \frac{v_1}{a_2} \right $
Движение вверх	Начальная скорость	$-v_1$
между уровнями <i>АВ</i>		
<i>y</i>	Ускорение	$a_2 = a$
	Конечная координата	0
	Конечная скорость	$v_2 = \sqrt{v_1^2 - 2ah}$
	Время движения	$\Delta t = \left \frac{v_2 - v_1}{a} \right $
Движение от вверх	Начальная скорость	v_2
от уровня A до		2
верхней точки		
	Ускорение	$a_2 = -a$
	Конечная скорость	0
	Конечная координата	$y_{\text{max}} = \frac{v_2^2}{2a}$
		$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$
—B	Время движения	$\Delta t = \left \frac{v_2}{a} \right $
Движение вниз от	Начальная скорость	0
верхней точки до	-	
уровня A		
y	Ускорение	$a_2 = -a$
	Конечная скорость	$-v_2$
	Конечная координата	0
	Время движения	$\Delta t = \left \frac{v_2}{v_2} \right $
-B		$\Delta t = \left \frac{r_2}{a} \right $

Результаты необходимых численных расчетов приведены в таблице 2. (координаты в см, время в с)

Таблица 2. Расчет закона движения

	n =	= 1	n =	= 2	n =	= 3	n =	= 4	n =	= 5
	у	t	У	t	У	t	У	t	У	t
y_A	0,0	0,00	0,0	7,90	0,0	18,08	0,0	30,50	0,0	44,83
y_B	-4,0	1,26	-4,0	8,30	-4,0	18,38	-4,0	30,75	-4,0	45,05
y_{\min}	-8,0	2,53	-16,0	10,49	-24,0	21,21	-32,0	34,10	-40,0	48,84
y_B	-4,0	3,79	-4,0	12,68	-4,0	24,03	-4,0	37,44	-4,0	52,64
y_A	0,0	4,32	0,0	13,02	0,0	24,30	0,0	37,67	0,0	52,84
y_{max}	8,0	6,11	16,0	15,55	24,0	27,40	32,0	41,25	40,0	56,84

График рассчитанной зависимости показан на рисунке.

Проведенные расчеты показывают, зависимости минимального и максимального смещения от номера цикла имеют простой вид

$$y_{\min} = -8.0n (c_M)$$

$$y_{\min} = +8.0n (c_M)$$
(7)

Способ решения 2. «Энергетически-кинематический»

Полученные соотношения слишком просты, чтобы быть случайными — поэтому возможен второй, более «быстрый» способ решения, основанный не только на кинематических формулах. Заметим, что система получает дополнительную энергию при движении вниз с грузом m_3 .

Рассмотрим изменение энергии системы между крайними точками, в которых скорости грузов равны нулю.

а) Опускание: груз m_2 движется от крайнего верхнего положения $y_{\max n}$ до следующего крайнего нижнего положения $y_{\min n+1}$. На этом этапе груз m_3 опустился на высоту h (от уровня A до уровня B). Начальные и конечные положения всех грузов показаны на рисунке. Поэтому уравнение закона сохранения энергии имеет вид

 $m_2 y_{\max n} - m_1 y_{\max n} = m_2 y_{\min n+1} - m_1 y_{\min n+1} - m_3 h$, из которого следует (с учетом численных значений масс грузов):

$$y_{\min n+1} = y_{\max n} + \frac{m_3}{m_2 - m_1} h = y_{\max n} - 2h$$
.

Б) Подъем: груз m_2 поднимается от крайнего нижнего положения $y_{\min n}$ до следующего крайнего верхнего положения $y_{\max n+1}$. Учитывая, что груз m_3 кладут на уровне A, изобразим начальные и конечные положения грузов и запишем уравнение закона сохранения энергии в этом случае

 $m_2 y_{\min n} - m_2 y_{\min n} = (m_2 + m_3) y_{\max n+1} - m_1 y_{\max n+1}$, из которого находим (опять с учетом масс грузов)

$$y_{\max n+1} = \frac{m_2 - m_1}{m_2 + m_3 - m_1} y_{\min n} = -y_{\min n}.$$

Полученные формулы сразу приводят к полученным ранее формулам (7). Далее традиционным способом находим ускорения грузов при движении с грузом m_3 ($a_1=-a=-5,0\frac{c_M}{c^2}$) и без него ($a_2=+a=5,0\frac{c_M}{c^2}$).

Далее отмечаем, что движение без дополнительного груза m_3 происходит на участках $-h \to y_{\min} \to -h \to 0$, а движение с дополнительным грузом на участках $0 \to y_{\max} \to 0 \to -h$. Так как модули ускорений на этих участках одинаковы и максимальные смещения также одинаковы, то графики законов движения (параболы) на этих участках тоже одинаковы, только перевернуты. Эти рассуждения позволяют заметно сократить расчеты, начиная каждый цикл с момента прохождения вниз уровня $\textbf{\textit{B}}$. Сначала следует «подойти» к началу первого цикла: рассчитать время первого прохождения точки

y = -h по формуле $t_0 = \sqrt{\frac{2h}{a}} = 4.0 c$. После этого рассчитать максимальное смещение

груза в цикле по формуле $Y = 8n(c_M)$, а также три интервала времени прохождения соответствующих отрезков (они показаны на рисунке) по формулам

$$\Delta t_1 = \sqrt{\frac{Y - h}{2a}} = \sqrt{8n - 4} = 2\sqrt{2n - 1}$$

$$\Delta t_2 = \sqrt{\frac{Y}{2a}} = \sqrt{8n} = 2\sqrt{2n}$$

$$\Delta t_1 = \sqrt{\frac{Y + h}{2a}} = \sqrt{8n + 4} = 2\sqrt{2n + 1}$$

После чего вычисления времен прохождения каждой характерной точки рассчитываются простым суммированием (для удобства схема расчета сведена в таблицу 3.

Таблица 3. Схема расчета времен характерных точек.

	n =	
	Y = 8n =	
	$\Delta t_1 = 2\sqrt{2n-1}$	
	$\Delta t_2 = 2\sqrt{2n}$	
	$\Delta t_3 = 2\sqrt{2n+1}$	
у	t	
-4	$t_0 =$	
- <i>Y</i>	$t_1 = t_0 + \Delta t_1$	
-4	$t_2 = t_1 + \Delta t_1$	
0	$t_3 = t_1 + \Delta t_2$	
+ <i>Y</i>	$t_4 = t_3 + \Delta t_2$	
0	$t_5 = t_4 + \Delta t_2$	
-4	$t_6 = t_4 + \Delta t_3$	

Очевидно, что результаты расчетов по этой схеме приводят к тем же результатам.