Machine Learning Data Processing

PS: Pre-Learning 块字课

(-) Data Type.

·Nominal: < mutal exclusive >.

·Ordinal: < for one catelogue but in the order matterns >

*Interval: < the difference, step between the 2 value >

· Ratio: 4 has all the proporties of an interval value >.

	Nominal	Ordinal	Interval	Ratio
Countable	~	~	~	~
Order defined		~	~	~
Difference defined (addition, subtraction)			~	~
Zero defined (multiplication, division)				~

(=). Feature Module.

17. Feature Cleaning.

· Missing value: Method < Way > 0: Completion Algorithms.

D: Omit < ignore > Elements.

- · Special value: Like INF. NA. INAN. Need to be cleaned.
- · Outliers: Over the limited range. Should be detected but not necessary.
- * Obvious inconsistencies: Some value carit be admitted like a man carit progenant.
- 2) Feature Imputation: Like Hot-Deck. Cold Deck. Some Libraries.

 I thrink that it may be some instrument of Data Teature.
- 3) Feature Selection:
 - O Correlation: Features should be uncorrelated $\langle X \rangle = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$
 - Ø. Dimensionality Reduction: Reduce the Dimension. V ND → < N-i) D.
 i. P(A < Principal Component Analysis >
 ii. SVD < Singular Value Decomposition >.
 - 1 Importance: Select the Features by these methods:

i. Fitter Methods

ii. Wrapper Methods,

iii. Embedded. Methods.

4). Feature Encoding: All features must be numeric. Encoding help it.

Male: 0 ; female: I

i. Label Ercoding. ii. One Hot Ercoding

i. Latel Encoding. ii. One Hot Encoding

Sample	Category	Numerical
1	Human	1
2	Human	1
3	Penguin	2
4	Octopus	3
5	Alien	4
6	Octopus	3

Human	Penguin	Octopus	Alien
1	0	0	0
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1
0	0	1	0
0	0	0	1

5) Feature Normalisation or Scaling:

Since the range of naw data is widely. Need to normal the data which makes the marchine learning can work property.

ati]= ati] = max (a). which make the ati] & [0,1]. if it is positive.

- i. Rescaling. \Rightarrow the simplest is the range in [0,1] or [-1,1]. $x' = \frac{x \min(x)}{\max(x) \min(x)}$
- ii. Standardization \rightarrow Make the values of each features to have zero-mean and unit variance $x' = \frac{x-\bar{x}}{\sigma}$
- iii. Scaling to unit length: \Rightarrow has length one. $x' = \frac{x}{||x||}$

(2) DataSet Construction

- · Training Dataset: A set of examples used for Learning.
- · Test Dataset: A fully-trained classifer.
- · Validation Dataset: A set of examples need to tune the param
- · Cross Validation: