Why?

- Reduce scale effects
- Reduce noise
- Reduce redundancy

Data Preprocessing Reducing scale effects

Normalization – map every feature to the [0,1] interval For every feature i in data set:

- max_val = max(X_train[:,i])
- min_val = min(X_train[:,i])
- X_train_n[:,i] = (X_train[:,i] min_val) / (max_val min_val)
- X_test_n[:,i] = (X_test[:,i] min_val) / (max_val min_val)

Advantages:

- Simplicity
- Same interval for all feature values

Disadvantages:

Sensitive to outliers

Data Preprocessing Reducing scale effects

Standardization (a.k.a. z-normalization) – scale every feature to have zero mean and unit standard deviation

For every feature i in data set:

- m = mean(X_train[:,i])
- s = s(X_train[:,i])
- X_train_n[:,i] = (X_train[:,i] m) / s
- X_test_n[:,i] = (X_test[:,i] m) / s

Advantages:

- Simplicity
- Tends to produce good model performance

Disadvantages:

Sensitive to outliers (not as much as normalization)

Data Preprocessing Reducing noise and redundancy

Principal Component Analysis

Idea: Project data from n-dimensions (attributes) to m-dimensions (with n>m) while preserving as much information as possible This is achieved by a simple combination of translation and rotation

Why: Features tend to be correlated – reduce redundancy

Why: Least important features in projected space approximate noise

Reducing noise and redundancy

Principal Component Analysis

The principal components of a dataset X are the vectors v_0 , ..., v_n such that v_i is the vector that best fits X and is perpendicular to each of v_0 ,..., v_{i-1}

Reducing noise and redundancy

Principal Component Analysis

The principal components of a dataset X are the vectors v_0 , ..., v_n such that v_i is the vector that best fits X and is perpendicular to each of v_0 ,..., v_{i-1}

X in original feature space and principal components

Principal Component Analysis for dimensionality reduction

