Licenciatura en Ciencias de la Computación. Facultad de Ingeniería - Universidad Nacional de Cuyo

# Algoritmos y Estructuras de Datos I

1. tema = "análisis de complejidad"

Dr. Carlos A. Catania Ing. Lucia Cortes Lic. Javier Rosenstein Dr. Claudio Careglio



### Algoritmo

sustantivo

Un algoritmo es un método para resolver un problema mediante una serie de pasos precisos, definidos y finitos.

Que es un algoritmo?

#### **Programa**

sustantivo

Algoritmo codificado en un lenguaje y ejecutado sobre una arquitectura en particular.

Para resolver un problema determinado, pueden existir múltiples algoritmos y múltiples programas.

...pero no todos seran igual de eficientes...

4

# Cómo determinamos la eficiencia de un algoritmo?

# Primero hay que ponerse de acuerdo. Eficiencia respecto a que?

## Algunas posibilidades

- La legibilidad del código?
- La cantidad de líneas de código?
- El tiempo de ejecución?
- La memoria que consume?

# Se miden fundamentalmente dos características:

Cantidad de memoria (Complejidad Espacial)





El tiempo de ejecución (Complejidad Temporal)

# Se miden fundamentalmente dos características:



El tiempo de ejecución (Complejidad Temporal)

# Un ejemplo: calcular la suma de n números enteros

Dado un valor **n** sumar todos los números enteros de 1 hasta n

#### **Ejemplo:**

$$n = 10$$

$$1+2+3+4+5+6+7+8+9+10 = 55$$

# Un ejemplo: calcular la suma de n números enteros

```
1: def sumadeN(n):
2: theSum = 0
3: for i in range(1,n+1):
4: theSum = theSum + i
5: return theSum
6: print(sumOfN(10))
```

```
1:def sumadeN2(n):
2: return (n*(n+1))/2
3: print(sumOfN2(10))
```

# Cómo calcular la complejidad Temporal de un algoritmo?

# **Un enfoque Experimental**

Que pasaria si...

1. Probamos con distintos valores de *n* Ej: n={10,100,1000,10000,10000...}

2. Luego calculamos el tiempo de ejecución *T* ?

Tabla 1: Tiempo de ejecución para distintos valores de n-10<sup>2</sup>

| z   | sumaDeN              | sumaDeN2             |
|-----|----------------------|----------------------|
| 1 0 | 1.9073486328125e-06  | 1.19209289550781e-06 |
| 2 1 | 2.38418579101562e-06 | 4.76837158203125e-07 |
| 3 2 | 6.43730163574219e-06 | 4.76837158203125e-07 |
| 4 3 | 4.79221343994141e-05 | 2.38418579101562e-07 |
| 5 4 | 0.000494718551635742 | 2.38418579101562e-07 |
| 6 5 | 0.0051567554473877   | 4.76837158203125e-07 |
| 7 6 | 0.0536763668060303   | 2.14576721191406e-06 |
| 8 7 | 0.552401781082153    | 2.62260437011719e-06 |

Cual de los 2 algoritmos tiene una menor complejidad Computacional?



### **AHORA BIEN...**

1. Este resultado será válido si ejecutamos los mismos programas en otra computadora?

2. Que pasaria si reescribimos los programas en otro lenguaje?

# La realidad es que...

 Si nos apartamos de detalles como arquitectura o lenguaje, las curvas van a presentar un comportamiento similar

#### Mas formalmente...

## Principio de Invarianza:

Dado un algoritmo y dos implementaciones suyas I1 e I2, que tardan T1(n) y T2(n) existe una constante real c > 0 y un número natural n0 tales que para todo  $n \ge n0$  se verifica que T1(n)  $\le cT2(n)$ .

# Enfoque teórico

# A pensar...en abstracciones

 Imaginemos una computadora ideal, la cual ejecuta una instrucción en tiempo constante predeterminado.

### Entonces...

 El tiempo de ejecución puede expresarse como una función T(n), donde T va a depender de los datos de entrada n.

#### Un enfoque teórico: Estimación del número de operaciones

- Estimar *T(n)* en función del número de operaciones elementales (OE)
- Se consideran como 1 OE:
  - Operaciones aritméticas básicas
  - Asignaciones a variables de tipo predefinido por el compilador,
  - Saltos (llamadas a funciones),
  - Comparaciones lógicas
  - Acceso a estructuras indexadas básicas(vectores y matrices).
- Tiempo de una OE es de orden 1

• El tiempo de ejecución de la sentencia:

• es  $T = T(c) + max\{T(s1), T(s2)\}.$ 

• El tiempo de ejecución de una llamada a

• Tiempo es 1 (por la llamada), más el tiempo de evaluación de los parámetros P1, P2, ..., Pn, más el tiempo que tarda en ejecutarse F, esto es, T = 1 (salto) + T(P1) + T(P2) + ... + T(Pn) + T(F).

- Donde T(F) será igual a:
  - T(Op) Tiempo de las operaciones realizadas dentro de la función
  - T(R) Tiempo de evaluar el retorno (salto) + su valor (2 OE)

• El tiempo de ejecución de un bucle de sentencias

### while c:

S

• es  $T = T(c) + (n^{\circ} iteraciones)*(T(s) + T(c))$ .

Obsérvese que tanto T(c) como T(s) pueden variar en cada iteración, y por tanto habrá que tenerlo en cuenta para su cálculo

• El tiempo de ejecución de un bucle de sentencias

```
for c in range(1,10):
```

Se lo expresa como una sentencia **while** y se calcula de la misma manera

# Sumar N números enteros: Algoritmo 1

```
1: 2 OE
1: def sumadeN(n):
                                                T(n)=2+1+3+\sum 6+2
                                 2: 1 OE
     theSum = 0
      for i in range(1,n+1):
                                 3: 3+n OE
3:
                                                T(n)=2+1+3+6n+2
                                 4: 20E+40E
          theSum = theSum + i
4:
                                 5: 2 OE
     return theSum
5:
                                                T(n) = 8 + 6n
```

# Sumar N números enteros: Algoritmo 2

```
1: 2 OE
1: def sumadeN(n):
                                                  T(n)=2+1+3+\sum_{i=0}^{n}6+2
                                  2: 1 OE
     theSum = 0
                                  3: 3+n OE
      for i in range(1,n+1):
3:
                                                  T(n)=2+1+3+6n+2
                                  4: 20E+40E
          theSum = theSum + i
                                  5: 2 OE
     return theSum
5:
                                                  T(n) = 8 + 6n = c_0 + c_1 n
                                                  T(n)=2+5
1: def sumDeN2(n):
                                  1: 2 OE
                                                 T(n)=7=c_0
     return (n*(n+1))/2
                                  2: 5 OE
```

#### Volviendo al cálculo experimental de T(n)

Verificamos el resultado experimental válido para todo lenguaje de programación y arquitectura



Titular: Dr. C.A. Catania <harpomaxx@gmail.com> @harpolabs

Adjunto: Ing. L. Cortés < luciacortes 5519@gmail.com >

JTP: Lic. J. Rosenstein < rosensteinjavier@gmail.com >

### **HAPPY HACKING!**



# Sumar N números enteros: Algoritmo 1

1: def sumadeN(n): 2: theSum = 0 2: 1 OE 3: for i in range(1,n+1): 4: theSum = theSum + i 5: return theSum 1: 1 OE 2: 1 OE 3: n OE  $T(n)=1+1+\sum_{n=1}^{\infty} 1$ 4: 2 OE 5: 1 OE T(n)=3+2n

# Sumar N números enteros: Algoritmo 2

1: def sumaDeN(n): 1: 1 OE

2: theSum = 02: 1 OE

**3: for** i in **range**(1,n+1): 3: n OE

theSum = theSum + i 4: 2 OE

5: return the Sum 5: 1 OE

1: def sumDeN2(n): 1: 1 OE

**2:** return (n\*(n+1))/2

2: 2 OE

$$T(n) = 1 + 1 + \sum_{n} 2 + 1$$

$$T(n)=1+1+2n+1$$

$$T(n) = 3 + 2n$$

$$T(n) = 1 + 2$$

$$T(n)=3$$