

计算机图像处理

COMPUTER IMAGE PROCESSING

f(i)

1 3 5 4 7 5 9 8 9 a 9 d c e f

$$\underline{f(i)} = f(i-1)$$

0	0	1	3	5	4	7	5	9	8	9	а	9	Д	O	е

4bpp -> 3bpp

e(i)

0	1	2	2	-1	3	-2	4	-1	1	1	-1	4	-1	2	1

$$f(i) = e(i) + \underline{f(i)}$$
0 1 3 5 4 7 5 9 8 9 a 9 d c e f
$$\underline{f(i)} = e(i-1) + \underline{f(i-1)}$$
0 0 1 3 5 4 7 5 9 8 9 a 9 d c e
$$e(i)$$
0 1 2 2 -1 3 -2 4 -1 1 1 -1 4 -1 2 1

无损预测编码

预测器

线性预测

$$\underline{f(i)} = \sum a(k)f(i-k)$$
 $k = 1,...,m$

a(k) 是预测系数

预测差值

$$e(i) = f(i) - \underline{f(i)}$$

几种常见线性预测

- 前值预测: 用同一行的前值预测
 - $\underline{f(j,i)} = a f(j,i-1)$
- 一维预测: 用同一行的前几个值预测
 - $\underline{f(j,i)} = \sum a(k)f(j,i-k)$ k = 1,...,m
- 二维预测:同一行的前几个值,前几行的值一起来预测

•
$$\underline{f(j,i)} = \sum \sum a(h,k)f(j-h,i-k)$$
 $k = 1,...,m$

•
$$h = 1,...,n$$

几种常见线性预测

- 前值预测: 用同一行的前值预测
 - $\underline{f(j,i)} = a f(j,i-1)$
- 一维预测: 用同一行的前几个值预测
 - $\underline{f(j,i)} = \sum a(k)f(j,i-k)$ k = 1,...,m
- 二维预测:同一行的前几个值,前几行的值一起来预测
 - $\underline{f(j,i)} = \sum \sum a(h,k)f(j-h,i-k)$ k = 1,...,m

无损预测编码

对Lena图像进行无损预测编码

预测误差图像

无损预测编码

(b)原图直方图

(c) 预测误差直方图

有损预测编码损预测编码

$$\underline{f}(x,y) = round(\sum_{i=1}^{m} a_i \underline{F}(x,y-i))$$

德尔塔调制

• 德尔塔调制是一种简单的有损预测编码方法,其预测器和量 化器定义如下:

$$\underline{f(n)} = a\underline{f(n-1)}$$

$$e(n) = f(n) - \underline{f(n)}$$

$$\dot{e}_n = \begin{cases} +\delta & \text{ } \\ +\delta & \text{ } \\ -\delta & \text{ } \\ \text{ } \end{cases}$$

德尔塔调制

预测误差图像

解码后图像