MATEMATIKA KOMPUTASI

Sesi 14 Integral

> Penyusun: Pratama Wirya Atmaja, S.Kom., M.Kom.

SUB-CAPAIAN PEMBELAJARAN

Mampu menyimpulkan dan menginterpretasikan integral dan perannya di Informatika.

INDIKATOR PENILAIAN

- Kelengkapan, kejelasan, dan ketepatan dalam menerangkan integral
- Kelengkapan, kejelasan, dan ketepatan dalam menerangkan peran integral di Informatika
- Kelengkapan, kejelasan, dan ketepatan dalam menerapkan integral di latihan soal
- Kelengkapan, kejelasan, dan ketepatan dalam mempraktekkan integral di program sederhana

MATERI

- 1. Definisi integral
- 2. Integral tak tentu
- 3. Menghitung jumlah nilai fungsi
- 4. Integral tertentu
- 5. Menghitung luas area di bawah garis fungsi
- 6. Luas area positif dan negatif
- 7. Luas area yang dijepit dua garis fungsi
- 8. Aturan substitusi

DEFINISI INTEGRAL

- Terdapat dua istilah terkait integral:
 - 1) Integral
 - 2) Anti-turunan (antiderivative)
- Keduanya secara teknis serupa tetapi sedikit berbeda
- · Integral → terkait dengan jumlah nilai suatu fungsi
- Anti-turunan → terkait dengan membalik proses menurunkan fungsi → mendapatkan persamaan fungsi aslinya
- Untuk menghitung integral, kita membutuhkan rumus yang didapat dari menerapkan anti-turunan

INTEGRAL TAK TENTU

- F(x) = fungsi anti-turunan dari f(x)
- Satu fungsi dapat memiliki banyak anti-turunan
- Contoh: f(x) = 2x dapat memiliki $F(x) = x^2$ atau $x^2 + 5$ atau $x^2 + 100$ sebagai anti-turunannya
- Bentuk umum anti-turunan f(x) adalah F(x) + C, di mana C adalah konstanta
- Bentuk umum itu disebut juga dengan integral tak tentu

RUMUS-RUMUS INTEGRAL TAK TENTU

Function	General antiderivative	Function	General antiderivative
1. x ⁿ	$\frac{1}{n+1}x^{n+1} + C, n \neq -1$	8. e ^{kx}	$\frac{1}{k}e^{kx} + C$
2. sin <i>kx</i>	$-\frac{1}{k}\cos kx + C$	9. $\frac{1}{x}$	$ \ln x + C, x \neq 0 $
3. cos kx	$\frac{1}{k}\sin kx + C$	10. $\frac{1}{\sqrt{1-k^2x^2}}$	$\frac{1}{k}\sin^{-1}kx + C$
4. $\sec^2 kx$	$\frac{1}{k} \tan kx + C$	11. $\frac{1}{1+k^2x^2}$	$\frac{1}{k} \tan^{-1} kx + C$
$5. \ \csc^2 kx$	$-\frac{1}{k}\cot kx + C$	12. $\frac{1}{x\sqrt{k^2x^2-1}}$	$\sec^{-1}kx + C, kx > 1$
6. sec kx tan kx	$\frac{1}{k}\sec kx + C$	$x \nabla k^2 x^2 - 1$	
7. $\csc kx \cot kx$	$-\frac{1}{k}\csc kx + C$	13. a^{kx}	$\left(\frac{1}{k \ln a}\right) a^{kx} + C, a > 0, a \neq 1$

CONTOH PENERAPAN INTEGRAL TAK TENTU

Sebuah balon naik dengan kecepatan (v) 12 kaki/dt dan sedang berada di ketinggian (s) 80 kaki ketika ada benda jatuh dari balon itu. Berapa lama benda itu tiba di tanah? Diasumsikan bahwa percepatan gravitasi = 32 kaki/dt².

Langkah-langkah:

- 1) dv/dt = -32 (karena arah percepatan melawan kecepatan)
- 2) v(0) = 12 (kecep. benda di awal jatuh = kecep. balon)
- 3) v = anti-turunan percep. = -32t + C
- 4) Ketika $t = 0 \rightarrow 12 = -32(0) + C \rightarrow C = 12 \rightarrow v = -32t + 12$
- 5) $s = anti-turunan v = -16t^2 + 12t + C$
- 6) Ketika t = 0, $s = 80 \rightarrow 80 = -16t^2 + 12t + C \rightarrow C = 80 \rightarrow s = -16t^2 + 12t + 80$
- 7) Ketika benda di tanah \rightarrow 0 = -16t² + 12t + 80 \rightarrow t = 2,64 dt

MENGHITUNG JUMLAH NILAI FUNGSI (1/2)

- Bagaimana asal-muasal perhitungan luas area yang sukar dihitung (karena sisisisinya tidak lurus)?
- Kita bisa menghitung pendekatan luas dengan menggunakan banyak persegi untuk menggantikan area sebenarnya
- Semakin tipis persegi-persegi yang kita pakai, semakin akurat pendekatan kita
- Apa yang terjadi jika ketebalan persegipersegi itu mendekati nol sedekat-dekatnya? → atau dengan kata lain, jumlah perseginya mendekati tak hingga sedekat-dekatnya

MENGHITUNG JUMLAH NILAI FUNGSI (2/2)

Jumlah area persegi (Sp):

$$S_P = \sum_{k=1}^n f(c_k) \ \Delta x_k$$

Jika tebal p adalah limit nol:

$$J = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k.$$

J adalah integral tertentu

INTEGRALTERTENTU

- Integral tertentu selalu terkait dengan interval tertentu dari fungsinya (contohnya titik x = a hingga titik x = b)
- Bentuk umum integral tertentu: $\int_{-b}^{b} f(x) dx$

$$\int_{a}^{b} f(x) \, dx$$

Bentuk umum yang lebih mendetail:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f\left(a + k \frac{(b-a)}{n}\right) \left(\frac{b-a}{n}\right)$$

MENGHITUNG LUAS AREA DI BAWAH GARIS FUNGSI

- Kita bisa menggunakan integral tertentu jika fungsinya kontinyu dan dapat diintegralkan di interval itu
- Contoh: cari luas area di bawah fungsi y =
 2x untuk interval x = 1 hingga x = 4

$$A = \begin{bmatrix} x^2 \end{bmatrix}_1^4$$
$$= 16 - 1$$
$$= 15.$$

Solusi: anti-turunan dari y = 2x adalah y = x^2 + C \rightarrow C = 0 jika dilihat dari grafiknya

LUAS AREA POSITIF DAN NEGATIF (1/2)

- Karena kita menggunakan koordinat Cartesius, luas area bisa negatif
- Kita harus mencermati konteks masalahnya agar paham area "negatif" itu harus diapakan
- Jika sekadar menghitung luas di suatu interval, kita positifkan area "negatif" itu
- Di grafik itu, area di interval phi dan 2.phi harus kita kalikan -1 agar menjadi positif, lalu jumlahkan dengan area di interval 0 hingga phi

LUAS AREA POSITIF DAN NEGATIF (2/2)

- Langkah-langkah mendapatkan luas absolut/sebenarnya:
 - 1) Bagi interval a-b fungsinya menjadi bagian-bagian yang dipisahkan titik-titik di mana nilai fungsinya nol
 - Integrasi bagian-bagian itu secara terpisah
 - Jumlahkan setiap nilai absolut hasilhasil integrasi itu

LUAS AREA YANG DIJEPIT DUA GARIS FUNGSI

 Jika ada dua garis fungsi, maka luas area di antara keduanya adalah selisih absolut luas area setiap fungsi itu

$$A = \int_{a}^{b} \left[f(x) - g(x) \right] dx$$

- Yang dimaksud selisih absolut adalah selisih yang selalu positif
- Kita harus cermat menentukan yang mana f(x) dan yang mana g(x)

ATURAN SUBSTITUSI

$$\int f(g(x))g'(x) dx = \int f(u) du$$

Langkah-langkah:

- Substitusi u = g(x) dan du = (du/dx) dx = g'(x) untuk mendapatkan integral dari f(u)
- 2) Integrasi f(u) terhadap u
- 3) Ganti u dengan g(x)

CONTOH PENERAPAN ATURAN SUBSTITUSI

$$\int \sqrt{2x+1} \, dx = \frac{1}{2} \int \sqrt{2x+1} \cdot 2 \, dx$$

$$= \frac{1}{2} \int u^{1/2} \, du$$
Let $u = 2x+1$, $du = 2 \, dx$.
$$= \frac{1}{2} \frac{u^{3/2}}{3/2} + C$$
Integrate with respect to u .
$$= \frac{1}{3} (2x+1)^{3/2} + C$$
Substitute $2x+1$ for u .