Lecture 4

Michael Brodskiy

Professor: M. Onabajo

September 12, 2024

- Ideal Op-Amp Summing Constraint
 - Only applies when the op-amp is used in negative feedback, which is often the case
- Ideal Op-Amp Circuit Analysis Procedure
 - Check that the op-amp is connected with negative feedback
 - Assume $V_+ V_- = 0$ based on the summing node constraint
 - Apply standard circuit analysis techniques (KVL, KCL, Ohm's Law)
 - For an inverting amplifier:

$$i_i = V_i/R_1$$
, and from KCL we obtain $i_2 = i_1$
From KVL: $V_o = -i_2R_2$

- For non-inverting amplifiers:

$$A_v = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$$

$$R_i = \frac{V_i}{i_i} = \infty \text{ (with ideal op-amp model)}$$

 $R_o = 0$ (with ideal op-amp model)

- Differential Amplifier
 - A few observations

 $i_2 = -i_1$ (per summing-point constraint)

- The voltage division principles give the following equation:

$$V_{+} = V_{2} \left(\frac{R_{2}}{R_{1} + R_{2}} \right)$$
 and $V_{+} = V_{-}$

- Employing KCL, we can calculate:

$$\frac{R_2}{R_1}V_1 - V_o = \frac{R_1 + R_2}{R_1}V_+$$
$$V_o = \frac{R_2}{R_1}(V_2 - V_1)$$

- The differential gain becomes:

$$A_{vd} = \frac{V_o}{(V_2 - V_1)} = \frac{R_2}{R_1}$$

– The common-mode gain is evaluated with $V_1 = V_2 = V_{icm}$:

$$V_{ocm} = (R_2/R_1)(V_2 - V_1) \rightarrow A_{cm} = \frac{V_{ocm}}{V_{icm}} = 0$$

- The CMRR becomes ∞
- Voltage Follower
 - $-V_o = V_i$ per summing point constraint

$$A_v = (V_o/V_i) = 1$$

- Also called "unity gain buffer"

$$R_i = \infty$$

$$R_o = 0$$

- A good circuit to couple amplifier stages together with reduced loading effects:
 - * High R_i regardless of R_1
- Finite Open-Loop Gain
 - In practice, the open-loop gain (A_{OL}) is 60-120dB
 - Degraded summing point quality: $V_x = V_+ V_- \neq 0 \rightarrow V_z = \frac{V_o}{A_{OL}}$
 - Feedback factor for this circuit: $\beta = R_1/(R_1 + R_2)$ occurs due to voltage division
 - * β is the fraction of the output that is fed back to the V_- terminal

$$V_o = (V_+ - V_-)A_{OL} = -V_-A_{OL} \to V_- = \frac{-V_o}{A_{OL}}$$