Lógica proposicional

Proposiciones

Dr. José Lázaro Martínez Rodríguez

Proposiciones

Negación

- Sea p una proposición. El enunciado: "No se cumple p" es otra proposición, llamada la negación de p.
- La negación de p se denota mediante ¬p.
- La proposición ¬p se lee "No p", "no es cierto que p", "se niega que p", "no ocurre que p".
- Ejemplo:
 - p: Hoy es viernes
- La negación es: "Hoy no es viernes" (¬p).

Tabla de verdad

- Una tabla de verdad muestra las relaciones entre los valores de dos proposiciones.
- Son especialmente útiles a la hora de determinar los valores de verdad de proposiciones construidas a partir de proposiciones más simples.

Tabla de verdad para la negación de una proposición.			
ρ $\neg p$			
V	F		
F	V		

Conjunción

- Sea p y q proposiciones. La proposición "p y q", denotada por p ∧ q, es la proposición que es verdadera cuando tanto p y q son verdaderas, y falsa en cualquier otro caso.
- La proposición p ∧ q se llama conjunción de p y q. Ejemplo:
- p : Hoy es viernes q : Hoy llueve

 • p ∧ q : Hoy es viernes y hoy llueve. La proposición solo es verdadera los viernes de lluvia.

р	q	$p \wedge q$		
V	V	V		
V	F	F		
F	V	F		
F	F	F		

Conjunción

- La proposición "p ∧ q" se puede leer:
 - pyq
 - p y además q
 - p y también q
 - p incluso q
 - p sin embargo q
 - p no obstante q ...

Disyunción

- Sea p y q proposiciones. La proposición "p o q", denotada por p V q, es la proposición que es falsa cuando tanto p y q son falsas, y verdadera en cualquier otro caso.
- La proposición p V q se llama disyunción de p y q. También es conocida como disyunción inclusiva.
- Ejemplo:

• Los estudiantes que hayan cursado cálculo o ciencias de la computación pueden llevar esta clase.

p	q	$p \lor q$			
٧	٧	V			
٧	F	V			
F	V	V			
F	F	F			

Disyunción

- La proposición "p V q" se puede leer:
 - poq
 - al menos p o q
 - ya sea p o q
 - como mínimo p o q
 - ...

Disyunción exclusiva

- Sea p y q proposiciones. El conectivo lógico "o exclusivo" de p y q, denotada por p ⊕ q, es la proposición que es verdadera cuando exactamente una de las proposiciones es verdadera y falsa en cualquier otro caso.
- La proposición p \bigoplus q se llama disyunción exclusiva de p y q. Ejemplo:
- Los estudiantes que hayan cursado cálculo o ciencias de la computación, pero no ambos, pueden llevar esta clase.

р	q	$p \oplus q$
V	٧	F
٧	F	V
F	V	V
F	F	F

Conteste con tablas de verdad

- Sean p,q, y r tres proposiciones
- p Λ q Λ r
- p V q V r
- p V q A r
- p⊕ r

Implicaciones

- Sean p y q proposiciones. La implicación p ⇒ q es la proposición que es falsa cuando p es verdadera y q es falsa, en cualquier otro caso será verdadera. En esta implicación p se llama hipótesis (o antecedente o premisa) y q se llama tesis o conclusión (o consecuencia).
- La implicación se expresa con las palabras "si p, entonces q".
- Ejemplo:
- Si votas por mí, bajaré la gasolina.

p	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Implicaciones

- La implicación $p \Rightarrow q$ se puede leer:
 - si p entonces q
 - q si p
 - q siempre que suceda p
 - q es consecuencia de p
 - p sólo si q
 - •

Doble implicación

- Sean p y q proposiciones. La doble implicación p ⇔ q es la proposición que es verdadera cuando p y q tienen los mismos valores de verdad y falsa en otros casos. La doble implicación se expresa con las palabras "p si, y sólo si, q".
- Ejemplo:
- Sea p: "Puedes tomar el vuelo" y q: "Compras un boleto"

• Entonces p ⇔ q: "Puedes tomar el vuelo si, y sólo si, compras un

boleto".

р	q	$p \Leftrightarrow q$			
V	٧	V			
V	F	F			
F	V	F			
F	F	V			

Precedencia de operadores

• Generalmente se utilizan paréntesis para especificar el orden en el que deben aplicarse los operadores lógicos. Sin embargo, para reducir el número de paréntesis, se utiliza el orden de precedencia.

Operador	Precedencia
	1
٨	2
V	3
\Rightarrow	4
\Leftrightarrow	5

Ejercicio

- $p \land q \Leftrightarrow r$
- $p \lor \neg r \Rightarrow q$
- p V q \wedge r \Rightarrow s
- $p \Rightarrow (q \lor s) \land r$
- $\neg p \Leftrightarrow \neg r \lor q \land p$

X	y	x & y	$x \lor y$	$x \rightarrow y$	$x \leftrightarrow y$
T	Т	T	T	T	T
T	F	F	T	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Tarea

- Investigar las siguientes implicaciones, a que se refieren y sus tablas de verdad.
- Recíproca
- Contrarrecíproca
- Inversa