Exploratory Data Analysis_

DS 203 Programming for Data Science Amit Sethi, EE, IITB

Learning outcomes

Define exploratory data analysis

Perform basic EDA of single variables

Perform basic EDA of pairs of variables

Select EDA appropriate to the type of variable

EDA is about taking stock of data

 Understand the main characteristics of your data to plan for downstream analyses

Spot any issues with the data early

 Think about the type of analysis techniques, approaches, and the experts needed

What do we analyze in EDA

• The entire data at a glance

• Each variable in isolation

Pairs of variables

Types of questions about the entire data

Number of samples

Number of variables per sample

Samples with missing variables

Corrupted samples

Hypothetical dataset

Make	Model	Year	kmpl	Top-speed	0-60 kmph	Drivability
Hyundai	i-20	2017	18	120	13s	"3"
Hyundai	i-20	2018	17	130	11s	"4"
Hyundai	i-20	2019	19	130	13	"3"
Hyundai	i-10	2017	20	120	12s	"4"
Hyundai	i-10	2018	19	130	10	" 5"
Hyundai	i-10	2019	20	120	12	"4"
			•••			
•••				•••	•••	
Datsun		2019	20	110	15	"2"
w∙ÿ	Baleno	2019	20	120	17	"3"
	Nano	2018	30	80	55	"2"

Types of questions about each variable

- Type and coding
 - Nominal (may be coded as numerical)
 - Ordinal (may be coded as numerical)
 - True numerical (integer, quantized, float)
- Distribution
 - Descriptive statistics
 - Histograms
- Utility and ethics
 - Variability
 - Availability
 - Should it be used?

Type and coding of variables can be different

- Integers can be used to code:
 - Nominal / Categorical (species, postal codes)
 - Binary categorical (face or not-face)
 - Ordinal (very good, good, normal, bad, very bad)
 - Numerical (age in years)
 - Temporal (date)
- Text can be used to code:
 - Nominal / Categorical (species, postal codes)
 - Numerical saved as text
 - Temporal saved as text ("Sept 5, 2020")

Description of discrete variables

List of unique values

Order of values for ordinal

Histogram of a discrete variable is like a probability mass function

Histogram can indicate problems

A continuous variable is described by its probability density function

CDF is the integral of the PDF It is monotonic, and rises from 0 to 1

A continuous variable is sampled

Mean is center of gravity of the PDF; Sample mean is not population mean

Median divides the PDF into two equal areas

Quartiles divides the PDF into four equal areas

Box and whiskers plot summarizes the PDF

Histogram divides the range into discrete bins for counting samples

Types of questions about pairs of variables

Relation between variables

– Are some variables correlated?

– Are there other strong relations between variables?

— Are some variables redundant?

Cross-tab is viewed between discrete variables

Example: "Economic satisfaction" survey respondents by income and gender

Income↓; Gender →	Male	Female
None	0	0
Low	300	0
Medium	10,000	3,000
High	5,000	2,000

- No women with "low" income?
- Very few men with "low" income?
- Is there a sampling bias (e.g. email survey)?

Correlation and scatter plots are between pairs of continuous variables

• There is an outlier; otherwise, the relation is not strong, which indicates hidden factors

Correlation matrix can be computed for all continuous variables together

 Highly (positively or negatively) correlated variables can create problems later