Métodos Numéricos e Computacionais

Lista 5: Método Newton

- 1. Seja $f(x) = x^2 6$. Isole num intervalo de uma unidade de comprimento o zero positivo da f(x). Utilize o método de Newton para aproximar o zero com 3 iterações (x_0, x_1, x_2) . compare sua resposta com o valor de $\sqrt{6}$.
- 2. Seja $f(x)=-x^3-\cos(x)$. Use o método de Newton para encontrar o único zero da função . Pode-se usar $x_0=0$ como aproximação inicial? Justifique sua resposta.
- 3. Seja $f(x) = x^3 3.5x^2 + 4x 1.5$. Isole os zeros da função e aproxime-os com uma precisão de 0.01
- 4. Use o método de Newton para aproximar a solução de f(x) = 0 no intervalo indicado, com uma precisão de $|x_n x_{n-1}| < 10^{-5}$.
 - a.) $x^3 2x^2 5 = 0$, [1, 4].
 - b.) $x 0.28 0.2\sin(x) = 0$. $[0, \pi/2]$.
 - c.) $e^x + 2^{-x} + 2\cos x 6 = 0$, [1, 2].
 - d.) ln(x-1) + cos(x-1) = 0, [1.3, 2].
- 5. Use o método da Secante para aproximar a solução de f(x) = 0, no intervalo indicado com uma precisão de $|x_n x_{n-1}| < 10^{-2}$ para as equações a.) e b.) do item anterior. Compare o número de iterações entre o método de Newton e o da Secante.
- 6. Utilize o método de Newton para aproximar, com uma precisão $|x_n x_{n-1}| < 10^{-5}$, o valor de x, que produza o ponto no gráfico de $y = x^2$ o ponto mais próximo a $p_1(1,0)$. (Sugestão: minimize $(d(x))^2$, onde d(x) representa a distância entre $p(x,x^2)$ e $p_1(1,0)$). Resp. x = 0.589755.

- 7. Utilize o método de Newton para encontrar uma aproximação com precisão de 10^{-4} do valor de x que produza o ponto no gráfico de y = 1/x mais próximo a (2, 1).
- 8. Encontre uma a aproximação de $7^{1/3}$, usando o método de Newton e uma precisão de $|x_n x_{n-1}| < 10^{-5}$.
- 9. A concentração de um medicamento no sangue de um paciente é determinada por $c(t) = Ate^{-t/3}$ miligramos por mililitro, t horas após a injeção de A unidades. A concentração máxima segura é de 1 mg/ml.
 - a. Qual a quantidade a ser injetada para que esta concentração máxima segura seja alcançada e quando esse valor máximo será alcançado?
 - b. Uma quantidade adicional desse medicamento deve ser administrada ao paciente após a concentração cair para 0, 25 mg/ml. Determine, com precisão de minutos, quando essa segunda injeção deve ser aplicada.

Verifique sua resposta fazendo o gráfico da função c(t) e observando que de fato com a concentração da dose estimada A, a concentração do medicamento no sangue não atinge valores maiores do que a unidade.

10. Encontre o ponto que minimiza a função $f(x) = x^4 + x^2 - 2x - 2$, com uma precisão de 0.001. Qual o valor mínimo da função?