Engenharia Elétrica 6P SENAI - campus Londrina

Departamento de Elétrica e Automação **Prof.: Me Renato Kazuo Mivamoto**

Lista de Exercícios 1: Modelagem de sistemas dinâmicos Entrega: 28/10

1) O circuito RLC em série ressonante fornece um filtro passa-faixa quando a saída é extraída do resistor, como mostra a Figura 1(a). Um filtro passa-faixa é projetado para deixar passar todas as frequências dentro de uma faixa de frequências, $\omega_1 < \omega < \omega_2$ conforme ilustra a Figura 1(b).

Figura 1: Circuito ressonante RLC. (a) Topologia; (b) resposta do filtro

- a) Modele o filtro pelas equações diferenciais ordinárias (tensão no capacitor e corrente no indutor) e implemente em blocos no ambiente Simulink. Simule a resposta da tensão no resistor (v(0)). Insira um valor constante de tensão (v_i) e discuta os resultados.
- b) Realize o mesmo procedimento solicitado em (a), porém implemente no bloco espaço de estados no ambiente Simulink.
- c) Realize o mesmo procedimento solicitado em (a), porém implemente em função de transferência no ambiente Simulink.
- d) Realize o cálculo da frequência ressonante do filtro através da análise dos autovalores da matriz A $(\lambda I A)$. Comprove a frequência ressonante através de ensaios no ambiente Simulink.
- 2) Determine que tipo de filtro é mostrado na Figura 2

Figura 2: Circuito para análise.

a) Modele o filtro pelas equações diferenciais ordinárias (tensão no capacitor e corrente no indutor) e implemente em blocos no ambiente Simulink. Insira um valor constante de tensão (v_i) e discuta os resultados.

Engenharia Elétrica 6P SENAI - campus Londrina

Departamento de Elétrica e Automação **Prof.: Me Renato Kazuo Mivamoto**

- b) Realize o mesmo procedimento solicitado em (a), porém implemente no bloco espaço de estados no ambiente Simulink.
- c) Realize o mesmo procedimento solicitado em (a), porém implemente em função de transferência no ambiente Simulink.
- d) Realize o cálculo da frequência ressonante do filtro através da análise dos autovalores da matriz A $(\lambda I A)$. Comprove a frequência ressonante através de ensaios no ambiente Simulink. Determine o tipo do filtro da Figura 2.
- 3) (OGATA, 2010) Obtenha as funções de transferência X1(s)/U(s) e X2(s)/U(s) do sistema mecânico mostrado na Figura 3.

Figura 3: Circuito para análise.

Modele o sistema em ambiente Simulink e discuta os resultados. Apresente a resposta de velocidade dos blocos.

4) Para o sistema da Figura 4, a entrada de controle é a força F que move o carrinho horizontalmente e as saídas são a posição angular do pêndulo θ e a posição horizontal do carrinho x.

Figura 4: Circuito para análise.

Engenharia Elétrica 6P SENAI - campus Londrina

Departamento de Elétrica e Automação **Prof.: Me Renato Kazuo Miyamoto**

Considerar:

M – massa do carrinho 0,5kg

m – massa do pêndulo 0,2kg

b – coeficiente de atrito para carrinho 0,1 N/m/s

1 – comprimento do centro de massa do pêndulo 0,3m

I – momento de inércia do pêndulo 0,006kgm²

F – força aplicada ao carrinho

 θ – ângulo do pêndulo

g – aceleração gravitacional 9,81 m/s²

a) Modelar o sistema em diagrama de blocos para uma entrada de degrau unitário e analisar a resposta de saída de θ e x.

- b) Altere o coeficiente de atrito b=0,001 e analise a resposta de saída de θ e x.
- c) Altere o momento de inércia I=0,06kgm² e analise a resposta de saída de θ e x.
- d) Pretende-se implementar um controle anti-sway para a planta. Elabore um controlador da família PID para manter o ângulo de Setpoint (θ) no valor desejado.

	00,10,01
Lista se Grercias: 01	
Moselation se Sistema Divinius	
) & coconto RLC con sico Reporte	te Surces
Vm Silbre Passe Fras	
the files	Total Sent
	V.
R:50 54	2784
	+ Ldil
C: 103	- tt
1 4 6, 40	- Central
a)	Linc 16 5
12.16.16.1	5 # 2
IR. 1/1 - 1 - 1	100
At c	L HELON - Far 100
di + 1 di + 5 % = 1/2	min
84 Let 6 Z	
Vot who the sa do to	
(2.12).x. (Scr2).L	
*	, and
	FW-161 5
	L 1/6)
	L

RLC I (F + (s) = Kindows portion on the Esques Estro 35) Pon Function De TRANS Vo.t. = 10. % (S(+2)+1 Port = 10. 3 R+ 1 = 1 + R1 c Sic + Sec+ L

do + 1(t) , Eq. 4 = 1c Eg . 2

for Margin so 8, 10 + 6 da - 6 : 0 Eq. 1 x 140 - 16 = 0 I (R-12)= (1-1/2) I= (V-1/2) (2-4)

Color To Add good - Extension on the St. 0 = UM2 + 13 + 1/6 + 1/6 - 1/6" - 1/6 0= M de = 2 de . 102 + 1 to RELICONOR WARLAGE LIMPS (= Me. S. No. (2) + 23 x (2) + 6 x (2) + 6 x (2) + 6 x (2) - 50 x (3) 1 = 22/5/ M22+03-64-6/-0/3/-h-38 - German E.E. 112.80.624 -16-30 Martin Start - 18 10 dot 1 - [(hes + 30 + K + K) (Mis - 30 + K + K) - (A - K) (- K + B) Makes-Bks-K- KK-Makes- BK- KK-K-K-- (+ B Kes + 330+ K3 + Exes)

Cont. GREVE YOS Citalanos En expense o del & det. L (M.M.) 54. (M.8-M.O) 2. (M. 12 + M. 13 + B. + M. K - B.) 52 + 13/2 - E K3 + E/2 + 3K1 - BK2 - BK2 S + (K2 K2 K3 + K4 K2 + det b= (M, M2) st + (M. B+M2B) S+ (M, K2+M, K3 + M2K2+M2K1) St + (3K+BK3)5+ (K,K+K+6+K,K) F. Transt. [0 1002 BS+K+K] = M252 + BS+ K2+K3-0 G1(s) = M252 + Bs + 1/2 + Ks = 1,552 + 105 + 100 [Nos2 + B5 + K2 + K, .] = 0 - (- x2 - 25) = K2 + 35 -12 - Bs Ga(s) = K2+Bs = 105+50 det A det 1 = 1,554 + 2653 + 2553 + 10005 + 7500

que lipo de diltro e mostando 02) DETERMINE Volt
