4/14/2019 Calc Team

question 2 views

Daily Challenge 22.3

(Due: Friday 2/22 at 12:00 noon Eastern)

Let's review the definitions of supremum and infimum.

(1) Bounds, suprema, and infima.

Definition. We say that a set of real numbers A is bounded above if there exists a number x such that

 $x \geq a$ for every $a \in A$.

Such a number \boldsymbol{x} is called an upper bound for A.

Any set with an upper bound will have many upper bounds. For instance, if $A=\{x\in\mathbb{R}\mid 0\leq x\leq 1\}$, then clearly 200 is an upper bound for A since 200 is greater than every element in A. But 2 is also an upper bound for A, as is $\frac{55}{2}$.

It is useful to define a unique notion of upper bound that avoids this ambiguity.

Definition. A number x is a *least upper bound* or *supremum* of A if

- 1. x is an upper bound of A, and
- 2. if y is an upper bound of A, then $x \leq y$.

In other words: the supremum of a set A is the smallest number x with the property that every number $a \in A$ is less than or equal to x.

These two properties are the only definition of supremum.

- The supremum of a set A is not the largest element in a set: for instance, if A = (0, 1), then $\sup(A) = 1$ but clearly 1 is not in the set.
- The supremum of a set is not the "next number that comes after the set." There is no notion of "next number" in a continuum; for example, what is the "next number" after π ?

Said differently, any proof that uses the notion of the supremum $\sup(A)$ of a set $\underline{\text{must use the two properties that (1) the supremum is an upper bound, and (2) that the supremum is <math>\underline{\text{the smallest upper bound.}}$ If you have not used both properties, something has gone wrong.

Example 1. Let A be a nonempty set of real numbers and let $\alpha = \sup(A)$. Let $\epsilon > 0$ be given. Prove that the exists some element $a \in A$ such that $a > \alpha - \epsilon$.

Proof 1. Suppose by way of contradiction that there were no element $a \in A$ such that $a > \alpha - \epsilon$. This is another way of saying that every element $a \in A$ satisfies $a \le \alpha - \epsilon$, which means that the number $\alpha - \epsilon$ is an upper bound of A. But $\alpha - \epsilon$ is smaller than α , which contradicts that α is the smallest upper bound of A. \Box

Example 2. Let A=(0,1). Prove, directly from the definition, that $\sup(A)=1$.

Proof 2. To show that $\sup(A)=1$, we must prove two things: (1) that 1 is an upper bound for A, and (2) that 1 is the smallest upper bound for A.

First, by the definition of open interval we have $(0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}$. This means that, for any $a \in A$, we have a < 1. In particular, we have $a \le 1$, which means that 1 is an upper bound for A.

Now we show that 1 is the *smallest* upper bound. No other number y with 0 < y < 1 could be an upper bound for A, since the number $\frac{y+1}{2}$ belongs to A and it is not true that $y \ge \frac{y+1}{2}$. Therefore 1 is the least upper bound, proving that it is the supremum. \square

We have an entirely analogous definition for lower bounds.

Definition. A set of real numbers A is bounded below if there exists a number x such that x < a for every $a \in A$.

Definition. A number x is the *greatest lower bound* or *infimum* of a set A if

- 1. x is a lower bound of A, and
- 2. if y is any other lower bound of A, then $x \geq y$.

(2) Problem: a Spivak exercise on suprema/infima.

This daily challenge has two parts.

Part I: carefully read section (1) above. Seriously. Read it slowly and don't gloss over definitions or examples. Make sure you understand everything and could explain it to someone

Part II: complete this Spivak problem.

- (a) Suppose $A
eq \emptyset$ is bounded below. Let A_- denote the set of all -x for x in A:

4/14/2019 Calc Team

$A = \left\{ -x \mid x \in A ight\}.$
Prove that $A eq \emptyset$, that A is bounded above, and that $-\sup(A)$ is the greatest lower bound of A .
• (b) If $A \neq \emptyset$ is bounded below, let B be the set of all lower bounds of A . Show that $B \neq \emptyset$, that B is bounded above, and that $\sup(B)$ is the greatest lower bound of A .
Answer on Overleaf: https://www.overleaf.com/1231232126rckrscxfchyf
daily_challenge
Updated 1 month ago by Christian Ferko
the students' answer, where students collectively construct a single answer
green boi
Updated 1 month ago by Logan Pachulski
the instructors' answer, where instructors collectively construct a single answer
(a) First we prove that $A \neq \emptyset$. Since $A \neq \emptyset$, there exists at least one $a \in A$, which means that the corresponding number $-a$ is an element of A , and hence A is nonempty.
Next we show that A is bounded above. Since A is bounded below, there exists some x such that $x \leq a$ for all $a \in A$. Multiplying by -1 , this means that $-x \geq -a$ for all $a \in A$. But this means that $-x \geq b$ for all $b \in A$, so $-x$ is an upper bound for A .
Finally, let $\alpha = \sup(A)$ be the least upper bound of A . Then α is an upper bound for A , which means $\alpha \geq b$ for all $b \in A$, and hence $-\alpha \leq a$ for all $a \in A$. Thus the number $-\alpha$ is a lower bound of A . It is also the greatest lower bound of A , since if there were any other $\beta > -\alpha$ such that $\beta \leq a$ for all $a \in A$, then we would have $-\beta \geq b$ for all $b \in A$ but $-\beta < \alpha$, contradicting that α is the least upper bound of A . We conclude that $-\alpha$ is the infimum of A .
(b) First, $B \neq \emptyset$ because A is assumed to be bounded below, so there exists at least one x such that $x \leq a$ for all $a \in A$; this x is an element of B .
Let a be any element of a . Then B is bounded above by a (that is, every $b \in B$ satisfies $b \le a$), since we cannot have any lower bound of A which is greater than an element of A .
Now let $\alpha=\inf(A)$; we will argue that $\alpha=\sup(B)$ (clearly B has a supremum, since every set of real numbers with an upper bound also has a least upper bound, by the completeness property). As usual, we must prove two things: that α is an upper bound of B , and that it is the least upper bound.
1. (Proof that α is an upper bound of B .) This is just from the definition of infimum: since α is the greatest lower bound of A , if $b \in B$ is any other lower bound of A , we have $b \le \alpha$.
2. (Proof that α is the smallest upper bound of B). Suppose α' were another upper bound of B with $\alpha' > \alpha$. This would mean that the greatest lower bound of A is at least $\alpha' > \alpha$. But this contradicts that α was the greatest lower bound of A .
Thus we conclude that $\sup(B)=\inf(A)$. \square
Updated 1 month ago by Christian Ferko
followup discussions for lingering questions and comments