

CS2023 - Aula de Ejercicios Nº 15 Brenner H. Ojeda Rios Semestre 2024-1

Se sugiere que cada estudiante trate de resolver los ejercicios de forma individual y uego los discuta en grupo. Para las preguntas 2 y 3 use el reverso de las hojas.

Ejercicios

- 1. (5 pts) Scan P_1 y P_2 dos problemas tales que $P_1\alpha_nP_2$ y suponga que P_1 tiene cota inferior $\Omega(n\log n)$, donde n es un parametro que mide el tamaño de entrada del problema P_1 . ¿Cuales de las siguientes afirmaciones son verdaderas? Justifique cuidadosamente sus respuestas.
 - $\Omega(n \log n)$ también es una Cota inferior para P_2 .

: Al Pa tener una cota inferior D(nlogn), Pa debería tener una solución de schlogn) o mayor.

 \blacksquare Todo algoritmo que resuelve P_1 también puede ser usado para resolver P_2 .

F: La expresión Ban P2 indica que existe una transformación.
To que transforma SB a SA, pero no afirma una transformación de

■ Todo algoritmo que resuelve P₂ también puede ser usado para resolver P₁.

V: La expresión Ps an Pz indica que existe una transformación T. que permite reducir Ps o Ps por lo que puede resolverse el problema con el algoritmo

que resuelve P.

El problema P_2 puede ser resuelto en el peor caso en tiempo $O(n \log n)$.

F. La complejidad del algoritmo RB que resuelve P2 puede ser mayor que S(n logn). Por ello, no puede asegurarse que O(n logn) seg cota superior

- 2. (5 pts) El MCM (Mínimo Común Múltiplo) de dos números es el número más pequeño que se puede dividir entre ambos números. Por otro lado, el MCD (Máximo Común Divisor) de dos números es of número más grande que divide a ambos. Encuentre una reducción del problema MCM para MCD .
- 3. (5 pts) Sea MMS el problema de calcular el producto de dos matrices simétricas de orden n. Sea MMQ el problema de multiplicación de matrices cuadradas de orden n. Sabemos que el problema MMQ existe un algoritmo eficiente con complejidad de tiempo $O(n^{2,376})$. Indique si son correctas las siguientes afirmaciones (justifique su respuesta):
 - MMQ es por lo menos tan difícil cuanto MMS.

MMS es por lo menos tan difícil cuanto MMQ.

Ja TI MMQ T 5 = O(2376) Sal-Sb

