# 18.404/6.840 Lecture 15

#### Last time:

- $\mathsf{NTIME}ig(t(n)ig)$ ,  $\mathsf{NP}$
- P vs NP problem
- Dynamic Programming,  $A_{\text{CFG}} \in \mathbf{P}$
- Polynomial-time reducibility

#### Today:

- NP-completeness

#### **Quick Review**

**Defn:** A is polynomial time reducible to B  $(A \leq_P B)$  if  $A \leq_m B$  by a reduction function that is computable in polynomial time.

**Theorem:** If  $A \leq_{\mathbf{P}} B$  and  $B \in \mathbf{P}$  then  $A \in \mathbf{P}$ .



f is computable in polynomial time

NP = All languages where can <u>verify</u> membership quickly

P = All languages where can test membership quickly

#### P versus NP question: Does P = NP?

 $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ 

**Cook-Levin Theorem:**  $SAT \in P \rightarrow P = NP$ 

**Proof plan:** Show that every  $A \in NP$  is polynomial time reducible to SAT.





## $\leq_{\mathbf{P}}$ Example: 3SAT and CLIQUE

**Defn:** A Boolean formula  $\phi$  is in Conjunctive Normal Form (CNF) if it has the form  $\phi = (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{s} \lor z \lor u) \land \cdots \land (\overline{z} \lor \overline{u})$ clause literals

**Literal:** a variable or a negated variable

Clause: an OR (V) of literals.

**CNF:** an AND  $(\Lambda)$  of clauses.

**3CNF:** a CNF with exactly 3 literals in each clause.

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3CNF formula}\}$ 

**Defn:** A  $\underline{k}$ -clique in a graph is a subset of k nodes all directly connected by edges.

 $CLIQUE = \{\langle G, k \rangle | \text{ graph } G \text{ contains a } k\text{-clique} \}$ 

Will show:  $3SAT \leq_{P} CLIQUE$ 



3-clique



4-clique



5-clique

## $3SAT \leq_{\mathbf{P}} CLIQUE$

Theorem:  $3SAT \leq_{P} CLIQUE$ 

Proof: Give polynomial-time reduction f that maps  $\phi$  to G, k

where  $\phi$  is satisfiable iff G has a k-clique.

A satisfying assignment to a CNF formula has  $\geq 1$  true literal in each clause.



### $3SAT \leq_{\mathbf{P}} CLIQUE$ conclusion

Claim:  $\phi$  is satisfiable iff G has a k-clique

- ( $\rightarrow$ ) Take any satisfying assignment to  $\phi$ . Pick 1 true literal in each clause. The corresponding nodes in G are a k-clique because they don't have forbidden edges.
- ( $\leftarrow$ ) Take any k-clique in G. It must have 1 node in each clause. Set each corresponding literal True. That gives a satisfying assignment to  $\phi$ .

The reduction f is computable in polynomial time.

Corollary:  $CLIQUE \in P \rightarrow 3SAT \in P$ 

#### Check-in 15.1

Does this proof require 3 literals per clause?

- (a) Yes, to prove the claim.
- (b) Yes, to show it is in poly time.
- (c) No, it works for any size clauses.



### NP-completeness

**Defn:** *B* is NP-complete if

- 1)  $B \in NP$
- 2) For all  $A \in NP$ ,  $A \leq_P B$

If B is NP-complete and  $B \in P$  then P = NP.

**Cook-Levin Theorem:** *SAT* is NP-complete

Proof: Next lecture; assume true

#### Check-in 15.2

What language that we've previously seen is most analogous to SAT?

- (a)  $A_{\mathsf{TM}}$
- (b)  $E_{\mathsf{TM}}$
- (c)  $\{0^k 1^k | k \ge 0\}$



To show some language C is NP-complete, show  $3SAT \leq_P C$ .

or some other previously shown NP-complete language

### HAMPATH is NP-complete

**Theorem:** *HAMPATH* is NP-complete

Proof: Show  $3SAT \leq_P HAMPATH$  (assumes 3SAT is NP-complete)

Idea: "Simulate" variables and clauses with "gadgets"



#### Construction of *G*



The reduction f is computable in polynomial time.

Would this construction still work if we made G undirected by changing all the arrows to lines? In other words, would this construction show that the undirected Hamiltonian path problem is NP-complete?

m variables

k clauses

- (a) Yes, the construction would still work.
- (b) No, the construction depends on G being directed.

### Quick review of today

- 1. NP-completeness
- 2. SAT and 3SAT
- 3.  $3SAT \leq_P HAMPATH$
- $4. \quad 3SAT \leq_{P} CLIQUE$
- 5. Strategy for proving NP-completeness: Reduce from 3SAT by constructing gadgets that simulate variables and clauses.