

STGB20NB37LZ

N-CHANNEL CLAMPED 20A D²PAK INTERNALLY CLAMPED PowerMESHTM IGBT

PRELIMINARY DATA

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGB20NB37LZ	CLAMPED	< 2.0 V	20 A

- POLYSILICON GATE VOLTAGE DRIVEN
- LOW THRESHOLD VOLTAGE
- LOW ON-VOLTAGE DROP
- HIGH CURRENT CAPABILITY
- HIGH VOLTAGE CLAMPING FEATURE
- SURFACE-MOUNTING D²PAK (TO-263)
 POWER PACKAGE IN TUBE (NO SUFFIX)
 OR IN TAPE & REEL (SUFFIX "T4")

DESCRIPTION

Using the latest high voltage technology based on patented strip layout, STMicroelectronics has designed an advanced family of IGBTs with outstanding performances.

The built in collector-gate zener exhibits a very precise active clamping while the gate-emitter zener supplies an ESD protection.

APPLICATIONS

■ AUTOMOTIVE IGNITION

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	CLAMPED	V
V _{ECR}	Reverse Battery Protection	20	V
V_{GE}	Gate-Emitter Voltage	CLAMPED	V
Ic	Collector Current (continuous) at T _c = 25 °C	40	А
Ic	Collector Current (continuous) at T _c = 100 °C	30	А
I _{CM} (•)	Collector Current (pulsed)	80	А
E _{AS}	Single Pulse Energy Tc = 25 °C	700	mJ
P _{tot}	Total Dissipation at T _c = 25 °C	150	W
	Derating Factor	1	W/°C
E _{SD}	ESD (Human Body Model)	4	KV
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

(•) Pulse width limited by safe operating area

February 2000 1/6

THERMAL DATA

Γ	R _{thj-case}	Thermal	Resistance	Junction-case	Max	1	°C/W
	R _{thj-amb}	Thermal	Resistance	Junction-ambient	Max	62.5	°C/W
	R _{thc-sink}	Thermal	Resistance	Case-sink	Тур	0.2	°C/W

ELECTRICAL CHARACTERISTICS ($T_j = 25$ $^{\circ}C$ unless otherwise specified)

OFF

Symbol	Parameter	Tes	t Conditi	ons	Min.	Тур.	Max.	Unit
BV _(CES)	Clamped Voltage	I _C =2mA I _C =2mA I _C =2mA		$T_C = -40$ °C $T_C = 25$ °C $T_C = 150$ °C	380 375 370	405 400 395	430 425 420	V V V
BV _(ECR)	Emitter Collector Break-down Voltage	I _C = 75 mA		$T_C = 25^{\circ}C$	20	28		V
BV _{GE}	Gate Emitter Break-down Voltage	I _G =± 2 mA			12	14	16	V
I _{CES}	Collector cut-off Current (VGE = 0)	V _{CE} = 15 V V _{CE} = 200 V	$V_{GE} = 0$ $V_{GE} = 0$	$T_{C} = 150 {}^{\circ}\text{C}$ $T_{C} = 150 {}^{\circ}\text{C}$			10 100	μΑ μΑ
I _{GES}	Gate-Emitter Leakage Current (VCE = 0)	V _{GE} = ± 10 V		V _{CE} = 0	± 300	± 660	± 1000	μА
R _{GE}	Gate Emitter Resistance				10	15	30	ΚΩ

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	1.4	2	V V V
V _{CE} (SAT)	Collector-Emitter Saturation Voltage	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.1 1.0 1.35 1.25	1.8 1.7 2.0 2.0	V V V

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	$V_{CE} = 25 \text{ V}$ $I_{C} = 20 \text{ A}$		35		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{CE} = 25 V f = 1 MHz V _{GE} = 0		2300 165 28		pF pF pF
Q _G	Gate Charge	$V_{CE} = 280 \text{ V}$ $I_{C} = 20 \text{ A}$ $V_{GE} = 5 \text{ V}$		51		nC

2/6

FUNCTIONAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
II	Latching Current	$V_{\text{CLAMP}} = 250 \text{ V}$ $V_{\text{GE}} = 4.5 \text{ V}$ $V_{\text{GOFF}} = 1 \text{ K}\Omega$ $V_{\text{C}} = 150 \text{ °C}$	80			А
U.I.S.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26 18		A A

SWITCHING ON

Symbol	Parameter	Test Conditi	Min.	Тур.	Max.	Unit	
t _{d(on)}	Delay Time Rise Time	V _{CC} = 250 V V _{GE} = 4.5 V	$I_C = 20 A$ $R_G = 1 K\Omega$		2.3 0.6		μs μs
(di/dt) _{on}	Turn-on Current Slope	$V_{CC} = 250 \text{ V}$ $R_G = 1 \text{ K}\Omega$	I _C = 20 A V _{GE} = 4.5 V		550		A/μs
Eon	Turn-on Switching Losses	$V_{CC}=250V$ $I_{C}=20A$ $R_{G}=1$ $K\Omega$ $V_{GE}=4.5V$	$T_{C} = 25 ^{\circ}\text{C}$ $T_{C} = 150 ^{\circ}\text{C}$		8.8 9.2		mJ mJ

SWITCHING OFF

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _c	Cross-Over Time	$V_{CC} = 250 \text{ V}$	$I_{C} = 20 \text{ A}$		4.8		μs
$t_r(v_{off})$	Off Voltage Rise Time	$R_{GE} = 1 K\Omega$	$V_{GE} = 4.5 V$		2.6		μs
t _f	Fall Time				2.0		μs
t _d (off)	Off Voltage Delay Time				11.5		μs
E _{off} (**)	Turn-off Switching Loss				11.8		mJ
tc	Cross-Over Time	V _{CC} = 250 V	$I_{C} = 20 \text{ A}$		7.8		μs
$t_r(v_{off})$	Off Voltage Rise Time	$R_{GE} = 1 K\Omega$	$V_{GE} = 4.5 V$		3.5		μs
t _f	Fall Time	$T_C = 150 ^{\circ}C$			3.9		μs
t _d (off)	Off Voltage Delay Time				12.0		μs
E _{off} (**)	Turn-off Switching Loss				17.8		mJ

^(*) Pulse width limited by safe operating area (*) Pulsed: Pulse duration = 300 ms, duty cycle 1.5 % (**)Losses Include Also The Tail (jedec Standardization)

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Dlode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

4/6

TO-263 (D²PAK) MECHANICAL DATA

DIM.	mm inch			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.21		1.36	0.047		0.053
D	8.95		9.35	0.352		0.368
E	10		10.4	0.393		0.409
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068

5//

Information furnished is believed to be accurate and reliable. However, STMicroelectonics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third partes which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

5/