Stupping off stricture out Reality Question.

RCL finite Galas with props G

Want to study h-alphas by only considery L-alphas + extre structure.

B L-algebra is said to have G-structure if 4966 Fautomolion pg: B -> B ettelig Balvis active by g on L B 46 B J L - 5g 2

B, B' L-alphan with 6- studie B - B' (- morphin 4 De A-alpha morphin presenging 6- studi 4(g.b)= g.4(b)

> L-alzehron with 6 structure ous 6 -morphi I epui valut h- olphin.

Lalphon With 6 structure h-alzelna has 6 sturtur Vica B= A & L (g(a & l) = a & og(l) AQL A f@1] A'@ L (AOL) = AOI Bol B a ol - al

lemands

(a) Not every (- a) who has 6- studies

Bx: RCC en C(x)/(x?-c) 'y c & RC

(b) L-alphan can how deffect 6- studies

R. R. C. C. M. CO. D. L. Ca. T.) (ReROC

 $\frac{\mathbb{E}_{X}}{\mathbb{R}_{C}} \mathbb{R}_{C} \mathbb{C} \qquad \mathbb{C}_{X} \mathbb{C} \qquad 1) (a,b) \mapsto (\bar{a},\bar{b}) \qquad (\mathbb{R}_{X} \mathbb{R}_{C} \mathbb{C})$ $2) (a,b) \mapsto (\bar{b},\bar{a}) \qquad (\mathbb{C}_{\emptyset} \mathbb{C}$

If we only counsel L-alphon the function heals -> L-alp A -> A @ L

Contre viewed as "stupping" of 6- structure.

of A is h-algebra
B is L-algebra

Have natural iso

 $Alg_{h}(A,B) = Alg_{L}(A\otimes L,B)$ $f - (a\otimes l - f(a)l)$

This says that $-\otimes L$ h-aly

forget L-studies

are adjoit functions: forget L-structure is light adjoit of - & L and - & L is left adjoint of prouting L-Modern.

(F,G) is adjoint you of fuction its $\forall A \in Ob(Ce)$ $\forall B \in Ob(CB)$

Hom (A, G(B)) = Hom B (F(A), B)

If only wont to work with L-aleknon Forget 6-stret

Allows to define geometry "under L" by only working with L-dsjects + tetra structure.

News to find right adjoint of "forget extra structure" to know what L-dsjed is considered as "he object"

Flings

Fling = 2-Ring + Frobenius lift

Z-aljehror militant additive tousion i.e. n.a=0 => a=0 So no Speati primes one more important to A low

 $\overline{A}_p = A \otimes \overline{F}_p$ is \overline{F}_p -algebrus

SO: (-) Ap - Ap is #p-alphas
p-Frobenius morph.

Demond FyP A - A Z-alehun endomorphin

st A V' A lifts Fusherius.

Ap and poyon and poyon the spring the spring property of the spring property of the property o The olyme $y^n = y^{p_1'} - o y^{p_1'}$

01 Realth Question. u pour suly comidus wave 6-structure ill ar eq. B > B n hog on L with 6- yturtine

So how N₊, x family of endomorphing

y^N. A -> A (sometime called Adams
operation)

Example:

so every prime p

$$\frac{2}{13} = \frac{13}{13}$$

$$= \frac{13}{13}$$

$$= \frac{13}{13}$$

$$= \frac{13}{13}$$

1 Z[t] talu y N t - t N

Thewalites

(1)

(Shewalites

(Setter of If p

Morroid algebras

L + L-P

Man hertred hoporulere Flatuetur op alt)

DETAILS!

Chebyshelf line

Z[t] Flug ool

a(t,t') Flug en

involutie t => t' commuter vitt

Fl. structur i.e.

$$(\gamma^{n}(t))^{-1} = (t^{n})^{-1} = t^{-n} = \gamma(t^{-1})$$

Dus inherits invariant ry

U[t,t') Fling-structure.

becom 'y

$$a = a$$
 =)
 $\gamma^{h}(a) = \gamma^{h}(aflip) = \gamma^{h}(a)flip$

2[t,t'] = 2[x] with x = t+t'

er kyhorende Frakmin lifts ig de

$$\psi^{2}(x) = \{t + t^{-2}\} = (t + t^{-1})^{2} - 2 = x^{2} - 2$$

$$\psi^{3}(x) = t^{3} + t^{-3} = (t + t^{-1})^{3} - 3(t^{2} + t^{2}) = x^{3} - 3x \text{ etc.}$$

yh(x) rim de Cluby duff polynozu.

CLAUWENS

enge Flug studium op 27t) in

1) torische t_ t

1 Chehyshelf t -, n-th Chehyshe

should be important!

Representation Rango

More motoraly example of Fling.

6 finite pour

know # vied. repr = # conjug clares

character takk

Example: $\frac{S_3}{X_1 = T} = \frac{1}{1} = \frac{3}{1} = \frac{2}{1}$ $\frac{X_2 = S}{X_3} = \frac{1}{2} = \frac{3}{1} = \frac{2}{1}$ $\frac{X_2 = S}{X_3} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Representation Rig R(6) = $2x_1 + - - + 2x_6$ + : conponentsmie contour all diaester x_V

· induced by

$$\chi_{i} \cdot \chi_{j} = \chi_{i \otimes V_{j}}$$

is algebra med 1=x=x1

- (1₁₂₁3)

$$\& \quad \psi'(\chi_1) = \chi_1 \qquad \forall_1$$

$$\begin{cases} \psi(x_1) = x_2 \\ \psi(x_1) = x_1 \end{cases}$$

$$\psi^{2}(x_{3}) = (2, 1, -1)$$

$$= \chi_1 + \chi_3 - \chi_2$$

$$Y^{3}(\chi_{3}) = (2,0,2)$$

$$=\chi_1 + \chi_2$$

Compare them to power of X; in R(S3)

$$\chi_1^N = \chi_1 \quad \forall n$$

$$\chi_2^n = \int_1^1 \chi_1$$
 near $\chi_2^n = \int_1^1 \chi_2^n$ noold

$$\chi_3^2 = (4,0,1) = \chi_1 + \chi_2 + \chi_3$$

 $\chi_3^3 = (8,0,-1) = 3\chi_3 + \chi_1 + \chi_2$

$$\chi_3^P = (2^P, 0, -1)$$

$$2a + 2b = 2$$

$$-1a + 2b = -1$$

4

$$\alpha = \frac{2^{p}+1}{3}$$

$$b = \frac{2^{p}-2}{2} = 2^{p-1}$$

$$\chi_3^p = \frac{z^p+1}{3} \chi_3 + (z^p-1)(\chi_1 + \chi_2)$$

$$= \chi_3 + (z_{-1})(\chi_1 + \chi_1 + \chi_3)$$

PI. (Kleine Fernant)

Dus hebbre $\forall p, \forall x$ $\psi^{p}(x) - \chi^{p} \in p R(E)$ dus $\psi^{r} \in Fuberius lift.$

Non aljemene groep 6 (2) Waarom is V^{n} : $R(6) \longrightarrow R(6)$?

[E. Vo met λ -M)

(E. Waarom is $\forall x : V^{n}(x) - x^{n} \in p R(6)$?

Noon p pure a 1-mps studium of R(E) Yn hebbe greater 1: x -> x rv n-de uitwensty product i repr V Als V bossis 401, - Nor 4 healt dan is 1 V vectoruite met basis Vy NViz A --- A Vin met 1 < 4 < i2 < - < in < d 6-alter op V heist, uit tot 6-actur op 1 1/2 diagonasl get en hier bourn huz, nay rodat g./v disposad -(", ") an dur $\chi_{V}(g) = \sum_{i=1}^{N} a_i$

Dan i

$$\chi_{n}(g) = \sum_{\substack{i_1 a_{i_2} - \dots a_{i_n} \\ |\langle i_j \langle i_2 \langle \dots \langle i_n \langle d \rangle \rangle}} a_{i_1} a_{i_2} - \dots a_{i_n}$$

Adam-greations en N-stretur zijn jewlater ?

[CLAIM]:
$$\forall n \neq \chi \text{ geldt}$$
:
$$n \Lambda^{n}(\chi) = \sum_{k=1}^{n} (-1)^{k-1} \psi(\chi) \lambda^{n-k}(\chi)$$

$$k=1$$

Bruip. volatest gelijkheid te beniger 4 g & B

much on
$$\gamma^h(\chi)(g) = \chi(g^h)$$
dur ain $\chi(g) = \sum_{i=1}^{g} a_i$ dan $\chi(\chi)(g) = \sum_{i=1}^{g} a_i^h$

Relie nu *(9) =

$$\sum_{k=1}^{n} \frac{k-1}{(-1)!} \left(\sum_{\alpha_{i}} a_{i} \left(\sum_{\alpha_{i}} a_{i} a_{i} - a_{i} a_{i} \right) \right)$$

$$k=1 \quad \text{(i)} \left(\sum_{\alpha_{i}} a_{i} \left(\sum_{\alpha_{i}} a_{i} a_{i} - a_{i} a_{i} \right) \right)$$

Mech op dat vool k > 1 de term air aj aj hh

en I heer i

(Za;)(Za; V--ain-h)

met vendulled tehe, den die valle allenaal von Empe teme die overhijve zij val

 $(\Sigma a_i)(\Sigma a_{i_1} - a_{i_{n-1}})$ er co tip e juint n, du dit is it gelift à $n \lambda^h(\chi)(q)$

Hierait volgt per viduote dat alle $\chi'(x) \in R(G)$ $\chi'(x) = x$

 $- \psi^{2}(x) + \psi^{2}(x) \lambda'(x) = 2 \lambda^{2}(x)$

 $\psi^{3}(x) = \frac{1}{4} \chi^{2}(x) \lambda^{1}(x) + \psi^{1}(x) \lambda^{2}(x) = \frac{1}{3} \lambda^{3}(x)$

et (

(2) weter all $\gamma^h(x) \in R(6)$ er od $\chi^h \in R(6)$ = $\chi \int_0^{\infty} e^{-x} \int_0^{\infty} e^{-x} dx$

Voor elle g + 6 hebbe vou

 $\gamma^{n}(x)(g) = \sum_{i=1}^{6} q_{i}^{n}$ $\chi^{n}(g) = \left(\sum_{i=1}^{6} a_{i}\right)^{n}$

Pur voor n=p min vlot uit kinomical formular olar

$$\gamma^{P}(9) - \chi^{P}(9) \in \mathbb{P} R(E)$$
 en du right idd $\gamma^{P}(9) + \chi^{P}(9) \in \mathbb{P} R(E)$ idd $\gamma^{P}(9) + \chi^{P}(9) \in \mathbb{P} R(E)$

CLAIM:
$$\beta(n, \#G) = 1$$

=) γ^n is een permutatie vol. vrieducieble

repr

i.e. $\gamma^h(\chi_i) = \chi_i$ en i->; is permutation

Benix $\langle \gamma^{n}(x_{i}), \gamma^{n}(x_{i}) \rangle = \frac{1}{\#6} \sum_{g \in G} \gamma^{n}(x_{i})(g) \gamma^{n}(x_{i})(g')$

$$=\frac{1}{\#6}\sum_{g\in G}\chi_{i}(g^{n})\chi_{i}(g^{n})$$

Mu als (n, #6) don is 6 -> 6 outsmohish

$$=\frac{1}{\#6}\sum_{g^n\in G}\kappa_i(g^n)\kappa_i(g^{-n})=\langle \kappa_i, \kappa_i \rangle=1$$

Du y (xi)=xj en het is en permittette want

7 a: n. a41=1#6 en

Attent en $\gamma^{\times}(x) = \chi^{\times}(x)$ als $x \equiv y \mod \# G$

dun $\psi^{(x)}, \psi^{(x)} = x$

du $V(Y^{\alpha}(x)) = x$.

図

Dy en Qg hebbe refole channete table, moran R(Pg) & R(Qp) as 1-W

	U				
Q_g	1	ar	19,03/	4b, a2b4	sab, a3b/
Dg	1	ar	{q,a3 {	4b, a2bb	hab, a3b}
$\chi_{_{_{1}}}$	1	1	1	1	1
$\mathcal{X}_{\mathcal{I}}$	1	1	1	(-1
x_3	1	1	-1	1	- 1
\mathcal{X}_{q}	1	1	-1	-1	1
K5	2	- 2	0	0	0
(

$$Q_g = \langle a, b | a^4 = 1 | b^2 = a^2 | b^4 a b = a^3 \rangle$$

$$Q_g = \langle a, b | a^4 = b^2 = 1 | b^4 a b = a^3 \rangle$$

Ψ_2	1	α ^l	a	b	ah	ab <u>ab</u> ba ³
98	1	1	ar	2	a ²	
08	1	1	a ²	2 1	4	, Ko3 = 1

$$Y_2(x_1) = \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \chi_1$$

$$\chi_1(\chi_3) = \chi,$$

$$Y_{2}(x)$$
 = x

$$\gamma_{2}(x_{3})$$
 $\frac{2}{2}$ $\frac{2}{2}$ $\frac{-2}{-2}$ $\frac{(-2)}{2}$ $\frac{-2}{2}$ $\frac{6}{8}$