

Motivation

Distributed Denial of Service (DDoS)

Einfach in der Anwendung

Millionen Angriffe pro Tag und es werden mehr

19.02.2024 Alexander Haar

Gliederung

19.02.2024 Alexander Haar

Gliederung

19.02.2024 Alexander Haar

Überblick Internet

Training

ML Trainingset

- Daten von 5 IXPs
- 3 Monate bis 2 Jahre
- EU und US
- 200M Daten nach Vorverarbeitung

Trainiert das Model

trainieren

Training

ML Trainingset

- Daten von 5 IXPs
- 3 Monate bis 2 Jahre
- EU und US
- 200M Daten nach Vorverarbeitung

Self Attack Set

- Selbst erzeugte Daten
- dedizierte Infrastruktur
- DDoS-for-hire-services
- 700k Daten

Trainiert das Model

trainieren

validieren

Validiert Model auf Trainingsset, um Bias zu reduzieren

Klassifikation

Klassifikation

DDoS gutartig DDoS

Aggrega tion

DDoS

Mikroskopische Ebene

Ziel: blackhole anfällige Anfragen erkennen

- Association Rule Mining (ARM)

Bsp: {src_port=12;packet_size=5} -> {blackhole}

- Regeln werden minimiert
- Experten können korrigieren mit UI
- Hyperparameter

Klassifikation

DDoS gutartig DDoS

Aggrega tion

DDoS

Mikroskopische Ebene

Ziel: blackhole anfällige Anfragen erkennen

- Association Rule Mining (ARM)

Bsp: {src port=12;packet size=5} -> {blackhole}

- Regeln werden minimiert
- Experten können korrigieren mit UI
- Hyperparameter

Makroskopische Ebene

<u>Ziel</u>: Angegriffene Hosts erkennen => Verkehr stoppen

- Weight of Evidence (WoE):
- oft in blackhole => positiver score
- nicht in blackhole => negativer score

Evaluation

Leistung

- Fünf verschiedene ML Klassifikatoren
- XGBoost: höchste Leistung

Geographische Lage

- Klassifikator bleibt
- WoE wird lokal generiert
- => sehr wenig Einbüse

Retraining

- Tägliches neu lernen, um Leistung beizubehalten
- => neue Angriffsvektoren lernen

Source Address Validation – IP Spoofing

Source Address Validation – IP Spoofing

BCP 84 – IF for Multihomed Networks [20]

- Access Control Lists
 - Steht Präfix in der Liste?
- Strict Reverse Path Forwarding
 - Forwarding Information Base (FIB)
 - Richtige Schnittstelle

outbound SAV

inbound SAV

Aktueller Stand

Nicht weit verbreitet [2] [13] [23]:

- fehlender Wirtschafsreiz
- Ressourcenintensiv
- keine Regularien
- zu viel Filtern
- hängen hinterher

Aktueller Stand

Nicht weit verbreitet [2] [13] [23]:

- fehlender Wirtschafsreiz
- Ressourcenintensiv
- keine Regularien
- zu viel Filtern
- hängen hinterher

Mutually Agreed Norms for Routing Security

- Initiative aus Experten
- Bietet Lösungen für Bedrohungen
- Reichweite für SAV

Aktueller Stand

Nicht weit verbreitet [2] [13] [23]:

- fehlender Wirtschafsreiz
- Ressourcenintensiv
- keine Regularien
- zu viel Filtern
- hängen hinterher

Mutually Agreed Norms for Routing Security

- Initiative aus Experten
- Bietet Lösungen für Bedrohungen
- Reichweite für SAV

SAV in China [14] [22] [23]

- großes Ziel für DDoS-Angriffe
- viele Angriffe kommen her
- wenig Schutz vor Spoofing

Die Zukunft

Internet Engineering Task Force

- regelmäßige Treffen
- neue Internetstandards
- Internet sicherer machen

Die Zukunft

Internet Engineering Task Force

- regelmäßige Treffen
- neue Internetstandards
- Internet sicherer machen

Anforderung für neue SAV-Methoden [5]

- automatisch Aktualisieren
- präzise Validierung
- Effektiv, auch wenn nicht vollständig implementiert
- IPv4 und IPv6
- keine neuen Sicherheitslücken
- weniger Arbeit

Intra-domain SAV (SAVNET) Architecture [6]

A Large-scale Measurement of IP Source Spoofing on the Internet [23]

Fazit

Aktueller Stand

- Herausforderung DDoS-Angriffe
- BCP 38 und 84 weisen Schwächen auf [5]
- IXP Scrubber
- SAV wenig im Einsatz

weitere Forschung

- IEFT
- neue und bessere SAV-Methoden
- einfacher in der Anwendung
- Internet wird Sicherer

SAV braucht mehr Reichweite

- MANRS
- mehr SAV Einsatz
- => weniger DDoS-Angriffe

Referenzen

Abbildung 1: Matthias Wichtlhuber (u.a.) IXP Scrubber auf Seite 1 https://doi.org/10.1145/3544216.3544268

Abbildung 2 und 3: Yevheniya Nosyk (u.a.) The Closed Resolver Project auf Seite 3 https://doi.org/10.1109/TNET.2023.3257413

Abbildung 4: Moodle Kurs "Architektur und Dienste des Internets SoSe 2023" https://moodle.uni-kassel.de/course/view.php?id=9032