ASSIGNMENT -2 Python Programming

Assignment Date	26-09-2022
Student Name	Prakashini P
Student Roll Number	923819106040
Maximum Marks	2 Mark

Question-1:

1. Importing Required Package Solution:

```
import pandas as pd import seaborn as
sns import numpy as np from matplotlib
import pyplot as plt %matplotlib inline
```

Question-2:

2. Loading the Dataset Solution : df =

```
pd.read csv("/content/Churn Modelling.csv")
```

df

Output:

3. Visualizations Question-3:

3.1 Univariate Analysis Solution:

sns.displot(df.Tenure) Output:

3.2 Bi-Variate Analysis

Solution: df.plot.line() Output:

3.3 Multi - Variate Analysis Solution:

```
sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit_reg=False);
```

Output:

4. Perform descriptive statistics on the dataset.

Question-4: Solution:

df.describe() Output:

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("Churn_Modelling.csv")
```

pd.isnull(data["Gender"]) Output:

Question-6:

6. Find the outliers and replace the outliers. Solution:

Question-7:

7. Check for Categorical columns and perform encoding. Solution:

```
pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"])
.head() Output:
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	• • •	Gender_78
0	1	15634602	Hargrave	619	France	2	0.00	1	1	1		0
1	2	15647311	Hill	608	Spain	1	83807.86	1	0	1	***	0
2	3	15619304	Onio	502	France	8	159660.80	3	1	0		0
3	4	15701354	Boni	699	France	1	0.00	2	0	0		0
4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1	1		0

Output:

D	HasCrCard	IsActiveMember		Gender_78	Gender_79	Gender_80	Gender_81	Gender_82	Gender_83	Gender_84	Gender_85	Gender_88	Gender_92
	1	1	***	0	0	0	0	0	0	0	0	0	0
	0	1		0	0	0	0	0	0	0	0	0	0
	1	0		0	0	0	0	0	0	0	0	0	0
	0	0	***	0	0	0	0	0	0	0	0	0	0
	1	1		0	0	0	0	0	0	0	0	0	0
													·

Question-8:

- 8. Split the data into dependent and independent variables
 - 8.1 Split the data into Independent variables. Solution:

```
X = df.iloc[:, :-2].values
print(X) Output:

C [[1 15634602 'Hargrave' ... 1 1 1]
   [2 15647311 'Hill' ... 1 0 1]
   [3 15619304 'Onio' ... 3 1 0]
   ...
   [9998 15584532 'Liu' ... 1 0 1]
   [9999 15682355 'Sabbatini' ... 2 1 0]
   [10000 15628319 'Walker' ... 1 1 0]]
```

8.2 Split the data into Dependent variables. Solution:

9. Scale the independent variables Solution:

```
import pandas as pd from sklearn.preprocessing
import MinMaxScaler scaler = MinMaxScaler()
df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df) Output:
```

Question-10:

Output:

10. Split the data into training and testing Solution: from

```
train_size=0.8
X = df.drop(columns = ['Tenure']).copy() y
= df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

```
[→ (8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000,)
(1000,)
(None, None)
```