5) A resistência de um certo tipo de cabo de aço é uma variável aleatória modelada pela distribuição Normal com desvio padrão igual a 6 kgf. Uma amostra de tamanho 25 desses cabos, escolhida ao acaso, forneceu média igual a 9,8 kgf. Teste as hipóteses $\mu = 13$ versus $\mu = 8$ e tire suas conclusões a um nível de significância de 10%.

.....

 \star

$$x \sim N(\mu, 6^2)$$
 $\bar{X}_{(n=25)} \sim N(\mu, 36/25)$

 \bigstar Significância $\alpha = 0.1$

 $H_0: \mu = 13$ $H_a: \mu = 8$

★ Vamos determinar a região crítica.

Tomemos $Z \sim N(0,1)$.

$$0.1 = P(Z < -1.2815)$$

$$= P\left(\frac{\sqrt{25}(\bar{X} - \mu)}{\sqrt{36/25}} < -1.2815 \mid \mu = 13\right)$$

$$= P\left(\frac{25(\bar{X} - \mu)}{6} < -1.2815 \mid \mu = 13\right)$$

$$= P(\bar{X} < \mu - 1.2815 \cdot 6/25 \mid \mu = 13)$$

$$= P(\bar{X} < 13 - 1.2815 \cdot 6/25)$$

$$= P(\bar{X} < 12.6924)$$

Assim, obtivemos $RegiaoCritica = \{x; x < 12.6924\}.$

★ Teste:

Sob o nível de significância $\alpha = 0.1$, se $\bar{x}_0 \in RegiaoCritica$, rejeitamos H_0 ; se $\bar{x}_0 \notin RegiaoCritica$, aceitamos H_0 .

Evidência observada: $\bar{x}_0 = 9.8$

 \star Decisão: como a evidência observada pertence à região crítica, decidimos rejeitar H_0 ao nível de significância $\alpha = 0.1$.

Nível Descritivo ou Valor P:

P=P(Xé um valor mais extremo que a evidência observada | $H_0\ verdadeira)$

$$P < \alpha \Rightarrow \text{rejeita-se } H_0.$$

Neste exercício,

$$P = P(X < \bar{x}_0 \mid H_0 \ verdadeira) = P(X < 9.8 \mid \mu = 13) = 0.00383$$

Nível descritivo $P = 0.00383 \le \alpha = 0.1$ (implica a rejeição de H_0).