PROJECT HIERARCHICAL CLUSTERING

Clustering

- Cluster analysis
 - Gather objects into groups
- □ A Cluster is a subset of objects:
 - Similar to any other object in the same cluster
 - Dissimilar to any other object in a different cluster
- Clustering is an unsupervised classification task:
 - We don't know the classes in advance,
 every cluster can be interpreted as a class

Applications

- Detecting groups of similar users:
 - With the same purchasing patterns
 - With the same Web-site browsing patterns
 - With the same tastes
- Detecting similar object:
 - With similar properties
- Other applications:
 - As a stand-alone tool for data analysis
 - As a preprocessing step for other tasks/algorithm (outlier detection, summarization)
 - Clustering of documents related to the same topic
 - Classes of customers of an insurance company
 - Biology, phylogenetic trees

Phylogenetic trees

A good clustering algorithm should be:

- Scalable
- Able to deal with clusters with arbitrary shapes
- Able to handle noise and outliers
- Independent from input order
- Able to deal with highly dimensional data
- Able to exploit user constraints (or hints)
- Able to provide easily understandable results

Clustering algorithms:

- Partitional algorithms: Partition the objects into dis-joint sets. Usually iterative methods.
- Hierarchical algorithms: Creates an hierarchy/tree of objects, such that similar objects are "close" in the tree.
- Density-based: Number of objects in a given region of the space.
- Model-based: Statistical methods: assumes a given distribution function of the data, and finds the best fitting to the data.

The input

Data Matrix

n objects withp attributes/dimensions

Distance Matrix

- d(i, j) is the distance
 between i and j
- d(i, j) = 0
 identical / non
 distinguishable objects

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Hierarchical Agglomerative Algorithm

- 1. Compute similarity matrix
- 2. Every point is a cluster
- Repeat
- 4. Join the two closest clusters
- 5. Update the distance matrix
- 6. Until one cluster is left
- The key operation is how to compute distance between clusters
 - Algorithms differ on the distance function they use

Hierarchical Clustering

Hierarchical Clustering

Dendrogram

Min (Single Linkage)

The distance between two clusters is the distance of the closest points

□ Cons:

it overestimates similarity, and it may produce chaining

Max (Complete Linkage)

 The distance between two clusters is given by the distance of the farthest points

□ Cons:

It underestimates similarity, favors globular clusters

Average

 The distance between two clusters is given by the average distance between every couple of points (divided by the product of the cluster sizes)

□ Pros:

In the middle of the other two

Centroid based

 The distance between two clusters is given by the distance between their centroids (medoids)

- □ Pros:
 - □ Fast!

Strength of MIN

Can handle non-elliptical shapes

Problem: clustering analysis with agglomerative algorithm

distance matrix

Merge two closest clusters (iteration 1)

Update distance matrix (iteration 1)

Merge two closest clusters (iteration 2)

Update distance matrix (iteration 2)

Merge two closest clusters/update distance matrix (iteration 3)

Merge two closest clusters/update distance matrix (iteration 4)

□ Final result (meeting termination condition)

Dendrogram tree representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.00
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- 6. We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- 7. The last cluster contain all the objects, thus conclude the computation

Complexity analysis-general single linkage clustering

□ N: the number of data points

- Space complexity
 - \square O(N²): Requires to store the distance matrix

- Time complexity
 - \square In most cases, $O(N^3)$:
 - There are N steps and at each step the size, N², distance matrix must be updated and searched

SLINK

SLINK

- \blacksquare Pointer representation(The pair of π , λ functions)
 - Used to improve performance of hierarchical clustering
 - Allows a new object to be inserted in an efficient way
 - A pair of functions which contain information on a dendrogram
- Main idea of SLINK
 - Use Pointer representation(π , λ) to specify N objects
 - Only access the part-row values (M)

SLINK-Pointer representation

Pointer representation

- $\blacksquare \pi(i): (i \in [1, N] \to [1, N])$
 - The last object of the clusters which is merged with i
 - (sort of cluster id defined as the largest id in the cluster)
- - The smallest distance at which *i* is no longer the last (i.e., the highest numbered) object in its cluster

Example: (i: object processing sequence)

i	1	2	3	4	5	6	7	8	9	10
π[<i>i</i>]	2	4	4	10	6	10	10	10	10	10
λ[i]	1.2	3.4	2.1	4.1	1.9	4.2	3.6	2.9	1.4	∞

SLINK-Part-row values

Part-row values

- □ M(j) (j ∈ [1, N-1] → [0, ∞], j < i)
- Example
 - (when i = 2): 2-1(M(1)) ←
 - \blacksquare (when i = 3): 3-1(M[1)), 3-2(M(2))
 - (when i = 4): 4-1(M(1)), 4-2(M(2)), 4-3(M(3)) ←——

Slink – pseudocode

```
1. Set \Pi(n+1) to n+1, \Lambda(n+1) to \infty
2. Set M(i) to d(i, n + 1) for i = 1, ..., n
3. For i increasing from 1 to n
     if \Lambda(i) \geq M(i)
        set M(\Pi(i)) to min \{M(\Pi(i)), \Lambda(i)\}
         set \Lambda(i) to M(i)
         set \Pi(i) to n+1
      if \Lambda(i) < M(i)
        set M(\Pi(i)) to min \{M(\Pi(i)), M(i)\}
4. For i increasing from 1 to n
      if \Lambda(i) \geqslant \Lambda(\Pi(i))
         set \Pi(i) to n+1
```

Here, D is a distance matrix and the values are just used to show the part-row values in the following example. In SLINK, there is no need to calculate D.

- □ 1st object:
 - \blacksquare $\pi(1) = 1, \lambda(1) = \infty$ ①
- □ 2nd object:
 - Initialization:
 - $\pi(2) = 2, \lambda(2) = \infty$
 - M(1) = 1.2
 - Update:
 - case: $\lambda(1) > M(1) \rightarrow (\infty > 1.2)$
 - $M(\pi(1)) = \min(M(\pi(1)), \lambda(1))$ $M(1) = \min(1.2, \infty) = 1.2$
 - $\lambda(1) = \lambda(1) = 1.2, \pi(1) = 2$
 - Final status:
 - $\pi(1) = 2, \lambda(1) = 1.2$
 - $\pi(2) = 2, \lambda(2) = \infty$


```
1. Set \Pi(n+1) to n+1, \Lambda(n+1) to \infty
2. Set M(i) to d(i, n+1) for i=1, \ldots, n
3. For i increasing from 1 to n
if \Lambda(i) \ge M(i)
set M(\Pi(i)) to min \{M(\Pi(i)), \Lambda(i)\}
set \Lambda(i) to M(i)
set \Pi(i) to n+1
if \Lambda(i) < M(i)
set M(\Pi(i)) to min \{M(\Pi(i)), M(i)\}
4. For i increasing from 1 to n
if \Lambda(i) \ge \Lambda(\Pi(i))
set \Pi(i) to n+1
```

□ 3rd object:

- Initialization:
 - \blacksquare $\pi(3) = 3, \lambda(3) = \infty$
 - M(1) = 5, M(2) = 3.4
- Update:
- ① Case: $\lambda(1) < M(1) \rightarrow (1.2 < 5)$
 - $M(\pi(1)) = min(M(\pi(1)), M(1))$ M(2) = min(M(2), M(1)) = 3.4
- (2) Case: $\lambda(2) > M(2) \rightarrow (\infty > 3.4)$
 - $M(\pi(2)) = \min(M(\pi(2)), \lambda(2))$ $M(2) = \min(M(2), \infty) = 3.4$
 - $\lambda(2) = \lambda(2) = 3.4, \pi(2) = 3$
- Final status:
 - $\pi(1) = 2, \lambda(1) = 1.2$
 - $\pi(2) = 3, \lambda(2) = 3.4$
 - $\blacksquare \pi(3) = 3, \lambda(3) = \infty$ 1 2 3

- 1. Set $\Pi(n+1)$ to n+1, $\Lambda(n+1)$ to ∞
- 2. Set M(i) to d(i, n + 1) for i = 1, ..., n
- 3. For i increasing from 1 to n

```
if \Lambda(i) \geqslant M(i)
```

set $M(\Pi(i))$ to min $\{M(\Pi(i)), \Lambda(i)\}$

set $\Lambda(i)$ to M(i)

set $\Pi(i)$ to n+1

if $\Lambda(i) < M(i)$

set $M(\Pi(i))$ to min $\{M(\Pi(i)), M(i)\}$

4. For i increasing from 1 to n

if $\Lambda(i) \geqslant \Lambda(\Pi(i))$

set $\Pi(i)$ to n+1

4th object:

- Initialization:
 - $\pi(4) = 4, \lambda(4) = \infty$

After case update status:

 $\pi(1) = 2, \lambda(1) = 1.2$

 $\pi(2) = 3, \lambda(2) = 3.4$

 $\pi(3) = 4, \lambda(3) = 2.1$

 $\pi(4) = 4, \lambda(4) = \infty$

- M(1) = 5, M(2) = 4.1, M(3) = 2.1
- Update:
- Case: $\lambda(1) < M(1) \rightarrow (1.2 < 5)$ $M(\pi(1)) = \min(M(\pi(1)), M(1))$ $= \min(M(2), M(1)) = \min(4.1, 5) = 4.1$
- (2) Case: $\lambda(2) < M(2) \rightarrow (3.4 < 4.1)$ $M(\pi(2)) = \min(M(\pi(2)), M(2)) = \min(M(3), M(2))$ M(3) = min(2.1, 4.1) = 2.1
- Case: $\lambda(3) > M(3) \rightarrow (\infty > 2.1)$ • $M(\pi(3)) = \min(M(\pi(3)), \lambda(3)) = \min(M(3), \lambda(3))$ $M(3) = min(2.1, \infty) = 2.1$ $\lambda(3) = \lambda(3) = 2.1, \pi(3) = 4$

 - Here, assume we only have 4 objects, then after cluster rearrangement,

- 1. Set $\Pi(n+1)$ to n+1, $\Lambda(n+1)$ to ∞ 2. Set M(i) to d(i, n + 1) for i = 1, ..., n
- 3. For i increasing from 1 to n

if
$$\Lambda(i) \ge M(i)$$

set $M(\Pi(i))$ to min $\{M(\Pi(i)), \Lambda(i)\}$
set $\Lambda(i)$ to $M(i)$

set
$$\Pi(i)$$
 to $n+1$

if
$$\Lambda(i) < M(i)$$

set
$$M(\Pi(i))$$
 to min $\{M(\Pi(i)), M(i)\}$

4. For i increasing from 1 to n

if
$$\Lambda(i) \ge \Lambda(\Pi(i))$$

set $\Pi(i)$ to $n+1$

32

SLINK-Hierarchy Extraction

When m=2: 10 not exists in [2], so 9 + 10

When m=3: 6 not exists in [2, 10], so \bigcirc + \bigcirc

When m=4: 4 not exists in [2, 10, 6], so 3 + 4

When m=5: 10 exists in [2,10,6,4], so (9 + 10) + 8

when m=6: 4 exists in [2,10,6,4,10], so (3 + 4) + (1 + 2)

33

Complexity analysis for SLINK

SLINK:

- Time complexity: $O(N^2)$ to find π , λ
- Space complexity: in fact 3N (π, λ, M)

Item	General single linkage	Slink		
Time complexity	$O(N^3)$	O(N ²)		
Space complexity	O(N ² + overhead)	O(3N)		

Yet to be Investigated

□ How to make this parallel ?

HPC Lab Project

- Single Linkage Hierarchical Clustering
- □ To Be Delivered:
 - Sequential implementation of the algorithm discussed
 - Parallel implementation
 - Multi-threaded or Distributed or GPU
 - Report discussing performance figures of the proposed parallel implementation
 - Varying threads/cores/processors
 - Varying parallelism strategy...
- □ Score:
 - up to 3 additional points
- Bonus:
 - SIMD Vectorization
 - Cache analysis

HPC Lab Project

- □ The report should be short, ~5 pages
- □ I expect to find the following flow:
 - I attacked the problem with strategy A
 - Data layout and parallel decomposition
 - I expected to find these results
 - Experimental results are different
 - I tried to understand why
 - This lead me to strategy B
 - □ (... repeat ...)

HPC Lab Project

- You may deliver your code and report via moodle, a link to your git repo for the source is ok, 3 days before the exam date
- □ C++ coding guidelines:
 - https://lefticus.gitbooks.io/cpp-best-practices/content/03-Style.html
- Markdown can be used for the report
 - https://bitbucket.org/tutorials/markdowndemo
- English writing:
 - https://faculty.washington.edu/heagerty/Courses/b572/public/Strunk White.pdf
 - https://www.publishingcampus.elsevier.com/websites/elsevier_publishingcampus/files/Skills%20training/Elements of Style.pdf
 - http://services.unimelb.edu.au/__data/assets/pdf_file/0009/471294 /Using_tenses_in_scientific_writing_Update_051112.pdf
 - https://pingpong.chalmers.se/public/pp/public_courses/course08583/published/1510227352918/resourceld/4156227/content/Zobel%20-%20Writing%20for%20computer%20science%203rd%20edition.pdf

References

- Introduction to Data Mining (Second Edition), Kumar et al, Chap. 7. Cluster Analysis: Basic Concepts and Algorithm.
- Slides: https://github.com/jackyust/SLINK_CLINK/blob/ma ster/SLINK_CLINK.ppt
- Original paper in Moodle

The End!