### **Variedades Lineales:**

#### L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

18 de agosto de 2020

# Agenda de Variedades Lineales

Independencia lineal

Determinante de Gram

Bases Ortogonales

Ortogonalización

¿ Qué presentamos ?

Para la discusión

## Independencia lineal

▶ Generalizamos el concepto de dependencia e independencia lineal de  $\mathbb{R}^2$  y  $\mathbb{R}^3$ . Así:

$$|0\rangle = C_1 |v_1\rangle + C_2 |v_2\rangle + C_3 |v_3\rangle \cdots + C_n |v_n\rangle = \sum_{i=1}^n C_i |v_i\rangle$$
. Si  $\forall C_i = 0$  entonces  $\{|v_i\rangle\}$  son linealmente independientes

## Independencia lineal

- Generalizamos el concepto de dependencia e independencia lineal de  $\mathbb{R}^2$  y  $\mathbb{R}^3$ . Así:
  - $|0\rangle = C_1 |v_1\rangle + C_2 |v_2\rangle + C_3 |v_3\rangle \cdots + C_n |v_n\rangle = \sum_{i=1}^n C_i |v_i\rangle$ . Si  $\forall C_i = 0$  entonces  $\{|v_i\rangle\}$  son linealmente independientes
- ▶ Un conjunto  $\mathcal{B} = \{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle\} \in \mathbf{V}$ , serán base de  $\mathbf{V}$  si los  $|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle$  si son linealmente independientes

# Independencia lineal

- ▶ Generalizamos el concepto de dependencia e independencia lineal de  $\mathbb{R}^2$  y  $\mathbb{R}^3$ . Así:
  - $|0\rangle = C_1 |v_1\rangle + C_2 |v_2\rangle + C_3 |v_3\rangle \cdots + C_n |v_n\rangle = \sum_{i=1}^n C_i |v_i\rangle$ . Si  $\forall C_i = 0$  entonces  $\{|v_i\rangle\}$  son linealmente independientes
- ▶ Un conjunto  $\mathcal{B} = \{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle\} \in \mathbf{V}$ , serán base de  $\mathbf{V}$  si los  $|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle$  si son linealmente independientes
- ▶ Dentro de un espacio vectorial  $\mathbf{V}$  se puedan encontrar subespacios y sub-bases, si  $\forall |x\rangle \in \mathbf{V}$ :

$$|x\rangle = \underbrace{C_1 |v_1\rangle \cdots + C_{n-j} |v_{n-j}\rangle}_{\mathbf{S}_1} + \underbrace{C_{n-j+1} |v_{n-j+1}\rangle \cdots C_{n-k} |v_{n-k}\rangle}_{\mathbf{S}_2} + \underbrace{C_{n-k+1} |v_{n-k+1}\rangle \cdots C_{n} |v_{n}\rangle}_{\mathbf{S}_3}$$

$$|x\rangle = |x_1\rangle + |x_2\rangle + |x_3\rangle \quad \text{y} \quad |x_1\rangle \in \mathbf{S}_1; \quad |x_2\rangle \in \mathbf{S}_2; \quad |x_3\rangle \in \mathbf{S}_3,$$

entonces  $\mathbf{V} = \mathbf{S}_1 \oplus \mathbf{S}_2 \oplus \mathbf{S}_3$ .



### Determinante de Gram

Si 
$$\{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle\} \in \mathbf{V}$$
.

$$|x\rangle = \sum_{i=1}^{n} C_{i} |v_{i}\rangle \Rightarrow \begin{cases} C_{1} \langle v_{1} | v_{1}\rangle + \cdots + C_{n} \langle v_{1} | v_{n}\rangle &= \langle v_{1} | x\rangle \\ C_{1} \langle v_{2} | v_{1}\rangle + \cdots + C_{n} \langle v_{2} | v_{n}\rangle &= \langle v_{2} | x\rangle \\ \vdots &\vdots \\ C_{1} \langle v_{n} | v_{1}\rangle + \cdots + C_{n} \langle v_{n} | v_{n}\rangle &= \langle v_{n} | x\rangle \end{cases}$$

#### Entonces

$$\begin{vmatrix} \langle v_1 | v_1 \rangle & \langle v_1 | v_2 \rangle & \langle v_1 | v_3 \rangle & \cdots & \langle v_1 | v_n \rangle \\ \langle v_2 | v_1 \rangle & \langle v_2 | v_2 \rangle & \langle v_2 | v_3 \rangle & \cdots & \langle v_2 | v_n \rangle \\ \vdots & & \ddots & & \vdots \\ \langle v_n | v_1 \rangle & \langle v_n | v_2 \rangle & \langle v_n | v_3 \rangle & \cdots & \langle v_n | v_n \rangle \end{vmatrix} \neq 0$$

## Bases Ortogonales

▶ Un conjunto  $\{|e_1\rangle, |e_2\rangle, \cdots, |e_n\rangle\}$  será **ortogonal**, si

$$\langle \mathbf{e}_i \mid \mathbf{e}_j \rangle = \delta_{ij} \parallel \mid \mathbf{e}_j \rangle \parallel^2, \ i, j = 1, 2, 3, \cdots, n \ \text{con} \ \left\{ \begin{array}{l} \delta_{ij} = 0 \ \text{si} \ i \neq j \\ \delta_{ij} = 1 \ \text{si} \ i = j \end{array} \right.$$

y **ortonormal** si  $|||\mathbf{e}_j\rangle||^2 = 1$ .

## Bases Ortogonales

▶ Un conjunto  $\{|e_1\rangle\,,\;|e_2\rangle\,,\;\cdots\,,|e_n\rangle\}$  será **ortogonal**, si

$$\langle \mathbf{e}_i \mid \mathbf{e}_j \rangle = \delta_{ij} \left\| |\mathbf{e}_j \rangle \right\|^2, \ i,j = 1,2,3,\cdots,n \ \ \mathsf{con} \ \left\{ \begin{array}{l} \delta_{ij} = 0 \ \mathsf{si} \ i \neq j \\ \delta_{ij} = 1 \ \mathsf{si} \ i = j \end{array} \right.$$

- y **ortonormal** si  $|||\mathbf{e}_i\rangle||^2 = 1$ .
- ▶ Un conjunto ortogonal  $\{|e_1\rangle, |e_2\rangle, \cdots, |e_n\rangle\} \in \mathbf{V}$  es linealmente independiente y por lo tanto **base** de  $\mathbf{V}$ .

## Bases Ortogonales

▶ Un conjunto  $\{|e_1\rangle, |e_2\rangle, \dots, |e_n\rangle\}$  será **ortogonal**, si

$$\langle \mathbf{e}_i | \mathbf{e}_j \rangle = \delta_{ij} |||\mathbf{e}_j \rangle||^2, i, j = 1, 2, 3, \dots, n \text{ con } \begin{cases} \delta_{ij} = 0 \text{ si } i \neq j \\ \delta_{ij} = 1 \text{ si } i = j \end{cases}$$

- y **ortonormal** si  $||e_i\rangle||^2 = 1$ .
- ▶ Un conjunto ortogonal  $\{|e_1\rangle, |e_2\rangle, \cdots, |e_n\rangle\} \in \mathbf{V}$  es linealmente independiente y por lo tanto **base** de  $\mathbf{V}$ .
- ▶ Si  $\{|e_1\rangle, |e_2\rangle, \cdots, |e_n\rangle\}$  base ortogonal de **V**, entonces

$$\forall |x\rangle \in \mathbf{V} \Rightarrow |x\rangle = \sum_{i=1}^{n} C_{i} |e_{i}\rangle \Rightarrow \langle e_{j} |x\rangle = \langle e_{j} | \left[ \sum_{i=1}^{n} C_{i} |e_{i}\rangle \right] \Rightarrow$$

$$C_j = rac{\left\langle \mathbf{e}_j \left| \mathbf{x} \right
ight
angle}{\left\langle \mathbf{e}_j \left| \mathbf{e}_j 
ight
angle} = rac{\left\langle \mathbf{e}_j \left| \mathbf{x} 
ight
angle}{\left\| \left| \mathbf{e}_j 
ight
angle}^2$$

▶ Si { $|\hat{\mathbf{e}}_1\rangle$ ,  $|\hat{\mathbf{e}}_2\rangle$ , ...,  $|\hat{\mathbf{e}}_n\rangle$ } ∈  $\mathbf{V}^n$ , base ortonormal:  $||\hat{\mathbf{e}}_j\rangle||^2 = 1$ , entonces  $C_j = \langle \hat{\mathbf{e}}_j \mid x \rangle \Rightarrow |x \rangle = \sum_{i=1}^n C_i |\hat{\mathbf{e}}_i\rangle =$ 

$$\sum_{i=1}^{n} \langle \hat{\mathbf{e}}_{i} | \mathbf{x} \rangle | \hat{\mathbf{e}}_{i} \rangle \equiv \sum_{i=1}^{n} |\hat{\mathbf{e}}_{i} \rangle \langle \hat{\mathbf{e}}_{i} | | \mathbf{x} \rangle .$$



## Ortogonalización

 $|\mathbf{e}_n\rangle \equiv |\mathbf{v}_n\rangle - \sum_{i=1}^{n-1} \frac{\langle \mathbf{v}_n | \mathbf{e}_i \rangle}{\langle \mathbf{e}_i | \mathbf{e}_i \rangle} |\mathbf{e}_i\rangle$ 

A partir de un conjunto de vectores linealmente independientes,  $\{\ket{v_1},\ket{v_2},\ket{v_3},\cdots,\ket{v_n}\}$  siempre se podrá construir un conjunto ortogonal de vectores,  $\{\ket{e_1},\ket{e_2},\ket{e_3},\cdots,\ket{e_n}\}$ , de la siguiente forma:

 $\begin{cases} \langle e_4 \mid e_1 \rangle = 0 \\ \langle e_4 \mid e_2 \rangle = 0 \\ \langle e_4 \mid e_3 \rangle = 0 \end{cases}$ 

# ¿ Qué presentamos ?

- 1. El concepto de dependencia e independencia lineal generalizado
- 2. Determinante de Gram para identificar independencia lineal
- 3. Bases, subespacio y sub-bases
- 4. Bases ortogonales
- 5. Métodos de Ortogonalización de Gram-Schmidt

### Para la discusión

- 1. Encontrar la proyección perpendicular de los siguientes vectores en  $\mathcal{C}_{[-1,1]}$  (espacio de funciones continuas en el intervalo [-1,1]) al subespacio generado por los polinomios:  $\{1,x,x^2-1\}$ . Calcular la distancia de cada una de estas funciones al subespacio mencionado.
  - 1.1  $f(x) = x^n$ , n entero.
  - $1.2 \ f(x) = \operatorname{sen}(x).$
  - 1.3  $f(x) = 3x^2$ .
- 2. Utilizando **Maxima** suponga el espacio de polinomios,  $\mathcal{P}^n$ , de grado  $g \leq n$  definidos en el intervalo [-1,1]. Este espacio vectorial tendrá como una posible base a  $\{|\pi_i\rangle\} = \{1,t,t^2,t^3,\cdots,t^n\}$ , considere el producto interno definido por:  $\langle f|g\rangle = \int_{-1}^1 \mathrm{d}x\ f(x)\ g(x)\sqrt{1-x^2}$ . Encuentre la base ortogonal correspondiente. A esta nueva base se le conoce como polinomios de Chebyshev de segunda especie<sup>1</sup>.