Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 4.2.1 КОЛЬЦА НЬЮТОНА

Выполнил студент:

Сериков Алексей Романович

группа: Б03-103

Аннотация

Цель работы:

Познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются:

Измерительный микроскоп с опак-иллюминатором, плоско-выпуклая линза; пластинка из чёрного стекла, ртутная лампа типа ДРШ, щель, линзы, призма прямого зрения, объектная шкала.

Теория:

Рис. 1: Линза

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2 = R^2 - (R-d)^2 = 2Rd - d^2$, где R — радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим **оптическую разность хода интерферирующих лучей**:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r'_m :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)m\lambda R}{2}}$$
 (2)

Экспериментальная установка:

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Рис. 2: Экспериментальная установка

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора , коллиматора (щель S и объектив) и призмы прямого зрения . Эти устройства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на расположенный между объективом и окуляром микроскопа опак-иллюминатор (ОИ) специальное устройство, служащее для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора находится полупрозрачная стеклянная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси X, опак-иллюминатор вокруг вертикальной оси.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси с помощью микрометрического винта .

Оптическая схема монохроматора позволяет получить в плоскости входного окна опак-иллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, т.е. точка источника и точка наблюдения спектра совпадают. Интерференционная картина не зависит от показателя преломления линзы и определяется величиной зазора между линзой и пластинкой (кольца равной толщины).

Сначала микроскоп настраивается на кольца Ньютона в белом свете (свете ртутной лампы), затем при помощи монохроматора выделить из спектра яркую зелёную линию и провести измерения диаметров колец в монохроматическом свете.

Ход работы и обработка результатов.

После настройки микроскопа проведем измерения диаметров колец Ньютона. Измерения будем проводить в безразмерных единицах окулярной шкалы, переведённых затем в реальную величину с помощью калиброванной объектной шкалы.

С помощью призмы выделим зеленый свет из спектра лампы ($\lambda_{green}=546$ нм).

Будем последовательно измерять координаты экстремумов l. Результаты занесем в Таблицу 1, зная, что 100 дел соответствует 0.1мм

m	l_{dark} , MKM	l_{light} , MKM	r_{dark}^2 , HM	r_{light}^2 , HM
0	0	0	0	0
1	81	59	6.56	3.48
2	120	103	14.4	10.60
3	145	133	21.02	17.69
4	168	158	28.22	24.96
5	187	182	24.96	33.12
6	205	200	42.02	40.00
7	222	217	49.28	47.09
8	239	235	57.12	55.22
9	255	252	65.02	63.50
10	268	264	71.82	69.69
11	282	277	79.52	76.72
12	293	290	85.85	84.10

Таблица 1: Таблица с данными координат и радиусов тёмных и светлых колец Ньютона.

Построим график зависимости r^2 от m для светлых и тёмных колец:

Рис. 3: Экспериментальная установка

Наблюдая биения, определили, что на промежутке между двумя центрами соседних четких участков укладывается $\Delta m=19$ колец. Тогда получим:

$$\Delta \lambda = \frac{\lambda_{green}}{\Delta m} = 28.7 \text{HM}. \tag{3}$$

По формуле (2) и коэффициенту наклону k определим радиус кривизны R: $R = (3.6 \pm 0.1) {\rm cm}$.

Обсуждение результатов и выводы:

В работе мы, измерив диаметры колец Ньютона, определили радиус кривизны линзы, исследовали картину биений и рассчитали разность длин волн между жёлтой и зелёной спектральными линиями ртути.