

Geometria Analitica

Videoaula 4.5

Equações do Plano

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Determinando um plano

Um plano fica completamente definido por um ponto A que pertence ao plano e um vetor \vec{n} normal ao plano.

Equações gerais do plano

$$A = (x_0, y_0, z_0)$$
$$\vec{n} = (a, b, c)$$

$$\vec{n} = (a, b, c)$$

Veja que um ponto P = (x, y, z) pertence ao plano se e somente se \overrightarrow{AP} é ortogonal a \overrightarrow{n} .

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

Portanto ...

A equação geral do plano (primeira forma) que contém $A=(x_0,y_0,z_0)$ e é normal ao vetor $\vec{n}=(a,b,c)$ é dada por:

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

E também ...

A equação geral do plano (segunda forma) que contém $A=(x_0,y_0,z_0)$ e é normal ao vetor $\vec{n}=(a,b,c)$ é dada por:

$$a x + b y + c z + d = 0,$$

em que $d = -a x_0 - b y_0 - c z_0$.

Encontre as equações gerais do plano que contém o ponto A = (1, 2, 3) e é normal ao vetor $\vec{n} = (2, -1, 0)$.

Encontre um vetor normal e três pontos que pertencem ao plano

$$2x - 3y + 4z + 1 = 0.$$

Pergunta

Quais são as equações do plano xy, do plano xz e do plano yz ?

Outras formas de determinar um plano

Um plano π fica completamente definido a partir de **dois vetores paralelos** ao plano (não colineares) e **um ponto**.

Um possível vetor normal ao plano é $\vec{n} = \vec{u} \times \vec{v}$.

Outras formas de determinar um plano

Um plano π fica completamente definido a partir de **três pontos não colineares** pertencentes ao plano.

Como obter a equação nesse caso?

Determine uma equação geral para o plano que contém os pontos $A=(2,1,0),\ B=(3,-1,1),\ C=(2,2,2).$

Equação vetorial do plano

Lembre que um plano fica definido por dois vetores paralelos (não colineares) e um ponto pertencente ao plano.

Ideia: o ponto P pertence ao plano se e somente se os vetores \overrightarrow{AP} , \overrightarrow{u} e \overrightarrow{v} são coplanares.

$$\overrightarrow{AP} = s \, \vec{u} + t \, \vec{v}$$

$$(x, y, z) = (x_0, y_0, z_0) + s \vec{u} + t \vec{v}$$

Portanto ...

A equação vetorial do plano paralelo aos vetores \vec{u} e \vec{v} e que contém o ponto $A=(x_0,y_0,z_0)$ é dada por:

$$(x, y, z) = (x_0, y_0, z_0) + s \vec{u} + t \vec{v}$$

E também ...

As equações paramétricas do plano paralelo aos vetores $\vec{u}=(a_1,b_1,c_1)$ e $\vec{v}=(a_2,b_2,c_2)$ e que contém o ponto $A=(x_0,y_0,z_0)$ são dadas por:

$$\begin{cases} x = x_0 + a_1 s + a_2 t \\ y = y_0 + b_1 s + b_2 t \\ z = z_0 + c_1 s + c_2 t \end{cases}$$

Determine as equações vetoriais, paramétricas e gerais do plano paralelo aos vetores $\vec{u}=(2,1,0)$ e $\vec{v}=(-1,3,1)$, e que contém o ponto A=(1,1,1).