- 3. Calculate the average of daily temperatures stored in a sequential input file.
- a) Calculate the average of daily temperatures before the first temperature under the freezing point (in a sequential input file).

Specification:

$$A = (\text{ x:infile}(\mathbb{R}), \text{ a:} \mathbb{R})$$

$$Pre = (\text{ x=x}_0 \land |\text{x}| \ge 1 \land \text{x}_0[1] > 0)$$

$$Post = (\text{ a} = \sum_{e \in \text{X}_0}^{e \ge 0} e / \sum_{e \in \text{X}_0}^{e \ge 0} 1)$$

Analogy: two Summations

t:enor(E)
$$\sim$$
 x:infile(\mathbb{R}) (st,e,x:read)
as long as e \geq 0
f(e) \sim e, 1
s \sim s, c
(H, +, 0) \sim (\mathbb{R} +, 0.0), (\mathbb{N} +, 0)

Algorithm:

_		_
	s, c := 0.0, 0 st,e,x:read	e, s:ℝ, c:ℕ st:Status
	e≥0 ∧ st=norm	
	s, c := s+e, c+1	
	st,e,x:read	
	a := s / c	
	st,e,x:read	

Specification:

$$A = (m:\mathbb{Z}, n:\mathbb{Z}, s:H)$$

$$Pre = (m=m' \land n=n')$$

$$Post = (Pre \land s = \sum_{i=m ... n} f(i))$$

Algorithm:

s := 0	
$i=m \dots n$	i:Z
s := s + f(i)	

b) Calculate the average of daily temperatures after the first temperature under the freezing point (in a sequential input file).

Specification:

$$\begin{split} & A = (\ x: infile(\mathbb{R}), \ a: \mathbb{R} \) \\ & \textit{Pre} = (\ x=x_0 \ \land \ |x| \geq 2 \ \land \ \exists i \in [1..|x|-1]: \ x_0[i] < 0 \) \\ & \textit{Post} = (\ \ (e', (st',e',x')) = \textbf{SELECT}_{e \in x_0}(e < 0 \ \lor \\ & \text{st=abnorm}) \ \ \land \ \ a = \sum_{e \in \ x'} e \ / \sum_{e \in x'} 1 \) \\ \end{aligned}$$

Analogy: Selection

t:enor(E) \sim x:infile(\mathbb{R}) (st,e,x:read) cond(e) \sim e<0 \vee st=abnorm

Two Summations

f(e)
$$\sim$$
 e, 1
s \sim s, c
H, +, 0 \sim (\mathbb{R} +, 0.0), (\mathbb{N} +, 0)
t:enor(E) \sim x:infile(\mathbb{R}) (st,e,x:read) next() instead

Algorithm:

st,e,x:read	e:R
e>=0 \wedge st=norm	st:Status
st,e,x:read	
s, c := 0.0, 0	s:ℝ, c:ℕ
st,e,x:read	
st=norm	
s, c := s+e, c+1	
st,e,x:read	
a := s / c	

c) Calculate the average of daily temperatures before and after the first temperature under the freezing point (in a sequential input file) if in the after version that first freezing temperature is included, too.

Specification:

$$A = (x:infile(\mathbb{R}), a1, a2:\mathbb{R})$$

$$Pre = (x=x_0 \land |x| \ge 2 \land \exists i \in [2 ... |x|]: x_0[i] \le 0)$$

$$Post = ((a1, (st', e', x')) = \sum_{e \in X_0}^{e \ge 0} e / \sum_{e \in X_0}^{e \ge 0} 1$$

$$\land a2 = \sum_{e \in (e', x')} e / \sum_{e \in (e', x')} 1)$$

Analogy: two Summations

t:enor(E) ~ x:infile(ℝ) (st,e,x:read) as long as e≥0 f(e) ~ e, 1

s ~ s1, c1 (H, +, 0) ~ (R +, 0.0), (N +, 0)

Two Summations

t:enor(E) \sim x:infile(\mathbb{R}) (st,e,x:read) without first()

f(e)
$$\sim$$
 e, 1
s \sim s2, c2
(H, +, 0) \sim (\mathbb{R} +, 0.0), (\mathbb{N} +, 0)

Algorithm:

