ICFP M2 – SOFT MATTER PHYSICS Tutorial 7. Manning condensation on DNA

Jean-Marc Di Meglio and Thomas Salez

DNA is a polymer containing charges: a so-called polyelectrolyte. In addition to potentially altering the monomer-monomer interactions and thus the chain conformation, these charges interact with counterions from the solvant. This interaction can even lead to a massive condensation of the counterions around the chain – the latter becoming "dressed" by counterions and thus bearing a reduced effective charge. Here, we would like to understand this phenomenon using Manning's seminal argument, and estimate further the free-counterion fraction related to the osmotic pressure. For the latter purpose, we recall the general Debye-Hückel framework for electrolyte solutions.

I Condensation criterion

We describe the chain as an infinite and straight line, along the axis of which identical charges e are equally spaced with spatial period b. The chain is in a solvant of permittivity ϵ .

- 1 Comment on the validity of the straight-cylinder assumption.
- **2** Give the electric field E and the potential Φ at distance d from the axis.
- 3 We consider a monovalent counterion of charge -e placed at distance d from the axis. Calculate the interaction energy and show that the average counterionic concentration scales as $c \sim d^{-2\xi}$, where $\ell_{\rm B} = \xi \, b$ is a characteristic length to be described.
- 4 Evaluate the number of counterions, per charge on the chain, between the axis and an arbitrary distance d_{max} .
- 5 Show that condensation of counterions along the chain is expected for $\xi > 1$.
- 6 Assuming that, when $\xi > 1$, the condensation brings back ξ to 1 by reducing the effective chain charges, estimate the fraction of neutralized chain charges as a function of the initial ξ . How is this result modified for a counterion of charge ze?
- 7 Estimate the condensation-induced neutralization of charges on DNA ($b \approx 0.17 \text{ nm}$) at 37°C.

II Debye-Hückel theory

We consider an assembly of different ions of types i, with charges $z_i e$, and global average concentrations c_i° , thermalized in a solvant at temperature T.

ICFP M2 - Soft Matter Physics

- 1 Express the electroneutrality constraint.
- **2** In the following, we consider a given fixed test ion of type j creating an electrostatic potential $\phi(r)$ at a distance r. What is the energy of another ion, of type i, placed in this potential?
- **3** How is the local average concentration $c_i(r)$, of ionic species i at distance r from the test ion, modified with respect to c_i° due to the interaction with the test ion?
- 4 What is the local charge density $\rho(r)$ at distance r from the test ion?
- 5 In a static description, how are ϕ and ρ related in a solvant of permittivity ϵ ? Obtain the so-called Poisson-Boltzmann equation satisfied by the electric potential ϕ .
- 6 Assuming a dilute solution, linearize the previous equation. What length scale λ_D does naturally appear?
- 7 Solve for $\phi(r)$ and interpret the meaning of λ_D . One can invoke a vanishingly small ionic size a in order to discuss prefactors.

III Free counterions and osmotic pressure

We come back to the polyelectrolyte modelled in the first section, and we consider a situation where $\xi < 1$. We call n the net number of charges on one chain, N the number of chains, V the volume, and we further assume $\lambda_{\rm D}$ to be much larger than the monomeric size a. Our aim is now to study the free counterions in solution in presence of the chains, by invoking the Debye-Hückel framework.

- 1 Express the total potential $\psi(d)$ created by one chain at a given point located at distance d from the axis. Show that it depends only on the variable $s = d/\lambda_{\rm D}$.
- 2 Provide a low-s asymptotic expression for ψ , and separate it into two contributions a chain one ψ_1 and a counterionic one ψ_2 .
- 3 Calculate the work $W = n \int_0^e \psi_2 de'$, needed to establish the counterionic atmosphere of the chain, by effectively loading the chain charge (integration variable : ne') from 0 to ne.
- 4 What is the associated energy per unit volume? How does it depend on the total polyelectrolytic charge concentration c_{tot} ?
- 5 Recall the bare osmotic pressure Π_0 corresponding to a dilute homogeneous solution of monovalent counterions of concentration c_{tot} . Explain the latter choice of concentration.
- **6** Express the real osmotic pressure $\Pi = \Pi_0 + \Delta \Pi$, in presence of the chain.
- 7 Determine the osmotic coefficient Π/Π_0 and interpret it as the fraction of free counterions. Discuss the case $\xi > 1$.