Low input long-read DNA isolation for Nanopore sequencing

Christian Blumenscheit, Adrian Viehweger, celia Diezel

Abstract

DNA isolation from gram negative bacteria with chemical SDS lysis (Phenol) for sequencing on Nanopore. Fast low input cell culture (5ml) with max output (2-3 µg) and longer reads (30kb+).

Citation: Christian Blumenscheit, Adrian Viehweger, celia Diezel Low input long-read DNA isolation for Nanopore

sequencing. protocols.io

dx.doi.org/10.17504/protocols.io.nc2daye

Published: 20 Feb 2018

Before start

Prepare buffer (taken from http://bit.ly/2FfjomS@Josh Quick)

TLB:

10 mM Tris-Cl, pH 8.0

25 mM EDTA, pH 8.0

0.5% (w/v) SDS

20 μg/ml Qiagen RNase A (add fresh just before use)

Materials

✓ 1X PBS (Phosphate-buffered saline) by Contributed by users

Proteinase K 17916 by Life Technologies

Buffered Phenol Chloroform Isoamyl alcohol (P:C:I) ((25:24:1, saturated with 10 mM Tris, pH 8.0 and 1 mM EDTA Sigma P2069 by <u>Sigma</u>

Ethanol (100%, Molecular Biology Grade) BP2818500 by Fisher Scientific

100ml Sodium acetate, pH5.2 [3M] R010 by G-Biosciences

1 x TE Buffer 12090015 by Thermo Fisher Scientific

Protocol

Harvest bacterial cells

Step 1.

5 ml bacterial overnight cellculture OD600 (0.8) spin at 4500-5000 x g , 4°C for 15 min.

■ AMOUNT

5 ml Additional info: bacterial overnight cellculture OD600 (0.8)

Lysis

Step 2.

Resuspend by pipette mixing in 200 µl sterile PBS.

■ AMOUNT

200 µl Additional info: 1X PBS

REAGENTS

✓ 1X PBS (Phosphate-buffered saline) by Contributed by users.

Lysis

Step 3.

Add 2.5 ml TLB and vortex at full speed for 10 seconds.

■ AMOUNT

2500 µl Additional info: TLB

Lysis

Step 4.

Incubate at 37°C for 1 hour.

▮ TEMPERATURE

37 °C Additional info:

Lysis

Step 5.

Add 25 µl Qiagen Proteinase K or other stock solution to a final concentration of 200 µg/ml.

AMOUNT

25 μl Additional info: Proteinase K

Ĭ

REAGENTS

Proteinase K 17916 by Life Technologies

Lysis

Step 6.

Mix by pippetting with 1000 µl blue tips 4-5 times.

Lysis

Step 7.

Incubate at 50°C for 2 hours, mix every 30 minutes by slowly rotating end-over-end 3 times.

↓ TEMPERATURE

50 °C Additional info:

Phenol

Step 8.

Add 2.5 ml Buffered Phenol Chloroform Isoamyl alcohol and mix slowly by rotating end-over-end until mixure becomes milky. Incubate 10 min on a Hula mixer.

■ AMOUNT

2500 µl Additional info: Buffered Phenol Chloroform Isoamyl alcohol

Phenol

Step 9.

Spin at 5000 x g for 15 min

Phenol

Step 10.

Remove the aqueous phases and transfer it into a new tube.

Phenol

Step 11.

Repeat step 7-9

Ethanol precipitation

Step 12.

add 5 ml ice-cold 100% Ethanol and 250 µl 3M Sodium Acetate. Mix by slowly rotating end-over-end.

■ AMOUNT

5 ml Additional info: 100% ice-cold Ethanol

■ AMOUNT

250 µl Additional info: 3M Sodium Acetat

REAGENTS

Ethanol (100%, Molecular Biology Grade) <u>BP2818500</u> by <u>Fisher Scientific</u>

100ml Sodium acetate, pH5.2 [3M] R010 by G-Biosciences

Ethanol precipitation

Step 13.

Incubate at -20°C for 10 min.

■ TEMPERATURE

-20 °C Additional info:

Ethanol precipitation

Step 14.

Spin at 5000 x g at 4°C for 30 min.

DNA

Step 15.

Add 200 µl 1 x TE

■ AMOUNT

 $200 \mu l$ Additional info: 1 x TE Buffer

REAGENTS

1 x TE Buffer 12090015 by Thermo Fisher Scientific

DNA

Step 16.

Incubate at Roomtemperatur over night (ca. 12 h).