CHƯƠNG 8 BẢO VỆ VÀ ĐIỀU KHIỂN CÁC THIẾT BỊ BIẾN ĐỔI

8.1 Bảo vệ các phần tử điện tử công suất

8.1.1 Công suất tổn thất và làm mát

$$\Delta P = \Delta p_1 + \Delta p_2 \approx \Delta p_1$$

 ΔP ... Công suất tổn thất

 Δp_1 ... Công suất tổn thất chính

 Δp_2 ... Công suất tổn thất phụ

$$\Delta P = U_{T0}I_{(AV)} + R_FI^2$$

Nhiệt độ mặt ghép

$$T_{j} = T_{a} + R_{th}\Delta P$$

$$R_{th} = R_{jv} + R_{vr} + R_{ra}$$

T_i ... Nhiệt độ mặt ghép

T_a ... Nhiệt độ không khí môi trường

R_{iv} ... Điện trở nhiệt giữa mặt ghép và vỏ linh kiện bán dẫn

R_{vr} ... Điện trở nhiệt giữa vỏ và cánh tản nhiệt

R_{ra} ... Điện trở nhiệt giữa cánh tản nhiệt và không khí môi trường

Làm mát:

- Cánh tản nhiệt
- Cánh tản nhiệt + quạt gió
- Cánh tản nhiệt + nước
- Ngâm trong dầu biến thế

8.1.2 Bảo vệ dòng điện

Cầu chì:

- CC phải chịu được dòng làm việc định mức của thiết bị
- Nhiệt dung chịu đựng của CC phải nhỏ hơn nhiệt dung của thiết bị cần bảo vệ → nhiệt lượng (I²t)_{CC} < (I²t)_{TB}
- Điện áp hồ quang của CC phải tương đối lớn → Giảm nhanh dòng điện và tiêu tán năng lượng trong mạch.
- Khi CC đứt, điện áp phục hồi phải đủ lớn → Không làm cho hồ quang cháy lại giữa hai cực của cầu chì

Lắp đặt: có nhiều cách

- Từng pha của cuộn dây sơ cấp hoặc thứ cấp MBA
- Nối tiếp với từng van
- Nối tiếp với từng nhóm van mắc song song
- Đầu ra của thiết bị biến đổi

8.1.3 Bảo vệ quá áp

Quá áp trong

Sự tích tụ điện tích trong các lớp bán dẫn (quá trình động của diode và thyristor)

→ Bảo vệ bằng mạch R – C đấu song song với diode hoặc thyristor

Quá áp ngoài

Cắt không tải MBA trên đường dây, CC bảo vệ nhảy, sấm sét, ...

- → Bảo vệ bằng mạch R C mắc giữa các pha thứ cấp của MBA động lực
- R .. $10 1000 \Omega$
- C ... $0.01 1 \mu F$

8. 2 Điều khiển các thiết bị biến đổi

8.2.1 Khuyếch đại thuật toán

Khuyếch đại đảo

$$u_r = -\frac{R_2}{R_1}u_v$$

Mạch so sánh

$$u_r = \begin{cases} -U_{cc} \dots u_- > u_+ \\ +U_{cc} \dots u_+ > u_- \end{cases}$$

Mạch tích phân

$$u_r = -\frac{1}{RC} \int u_v dt$$

Mạch vi phân

$$u_r = -RC \frac{du_v}{dt}$$

Mạch tạo xung chuẩn sử dụng IC 555

$$t_1 = 0.693C(R_1 + R_2);$$
 $t_2 = 0.693CR_2$
 $T = t = t_1 + t_2 = 0.693C(R_1 + 2R_2)$

Mạch lật đơn sử dụng IC 555

$$T = 1.1RC$$

Mạch D flip - flop

D	$Q^n \rightarrow Q^{n+1}$
0	0 → 0
1	0 → 1
0	1 → 0
1	1 → 1

	Qn		D			Qn+1			
	1	2	3	1	2	3	1	2	3
1	0	0	0	1	0	0	1	0	0
2	1	0	0	1	1	0	1	1	0
3	1	1	0	1	1	1	1	1	1
4	1	1	1	0	1	1	0	1	1
5	0	1	1	0	0	1	0	0	1
6	0	0	1	0	0	0	0	0	0

	Q ⁿ		D			Qn+1			
	1	2	3	1	2	3	1	2	3
1	0	0	0	1	0	0	1	0	0
2	1	0	0	1	1	0	1	1	0
3	1	1	0	1	1	1	1	1	1
4	1	1	1	0	1	1	0	1	1
5	0	1	1	0	0	1	0	0	1
6	0	0	1	0	0	0	0	0	0

TCA 785 - Siemens

Chức năng:

- Tạo điện áp răng cưa đồng bộ
- So sánh
- Tạo xung ra

Pin	Symbol	Function
1	GND	Ground
2 3 4	Q2 Q U Q2	Output 2 inverted Output U Output 1 inverted
5	$V_{ extsf{SYNC}}$	Synchronous voltage
6 7	I Q Z	Inhibit Output Z
8	V_{REF}	Stabilized voltage
9 10	R ₉ C ₁₀	Ramp resistance Ramp capacitance
11	V ₁₁	Control voltage
12	C ₁₂	Pulse extension
13	L	Long pulse
14 15	Q 1 Q 2	Output 1 Output 2
16	<i>V</i> s	Supply voltage

Pin	Symbol	Function
1	GND	Ground
2	Q2 Q U	Output 2 inverted Output U
4	Q2	Output 1 inverted
5	$V_{ extsf{SYNC}}$	Synchronous voltage
6 7	I Q Z	Inhibit Output Z
8	V_{REF}	Stabilized voltage
9 10	R ₉ C ₁₀	Ramp resistance Ramp capacitance
11	V ₁₁	Control voltage
12	C ₁₂	Pulse extension
13	L	Long pulse
14 15	Q 1 Q 2	Output 1 Output 2
16	<i>V</i> s	Supply voltage

Điều khiển cầu chỉnh lưu một pha bán điều khiển – công suất nhỏ

Điều khiển triac với dòng mở lên đến 50mA

