高等数学 A 大练习 6

(大练习 6 为积分部分补充习题,与 mooc 视频讲解搭配)

Part 1

【例1】求极限
$$\lim_{n\to\infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right].$$

【例2】设 f(x) 连续, 试求下列函数的导数

1)
$$\int_{a^x}^{x^2} f(t)dt;$$

$$2) \int_0^x (t-x)f(t)dt;$$

3)
$$\int_0^x \sin(x-t)^2 dt$$
 4) $\int_1^2 f(x+t) dt$.

4)
$$\int_{1}^{2} f(x+t)dt$$

【例3】求极限 $\lim_{x\to 0} \frac{\int_0^{\sin^2 x} \ln(1+t) dt}{(\sqrt[3]{1+x^3}-1)\sin x}$

【例4】设函数
$$f(x)$$
 连续,且 $f(0) \neq 0$,求极限 $\lim_{x \to 0} \frac{\int_0^x (x-t)f(t)dt}{x \int_0^x f(x-t)dt}$.

【例5】试证:
$$F(x) = \int_0^x (t - t^2) \sin^{2n} t dt$$
 在 $x \ge 0$
上最大值不超过 $\frac{1}{(2n+2)\cdot (2n+3)}$.

Part 2

【例1】
$$I = \int \frac{dx}{\sqrt{x(4-x)}}$$
 【例2】 $I = \int \frac{dx}{\cos x \sqrt{\sin x}}$.

【例 3】 $I = \int \frac{xe^x}{\sqrt{e^x - 1}} dx$ 【例4】 $I = \int \frac{1+x^4}{1+x^6} dx$

【例5】若
$$\int xf(x)dx = \arcsin x + C$$
,求 $I = \int \frac{1}{f(x)}dx$.

【例6 】设 F(x) 为 f(x) 的原函数,且当 $x \ge 0$ 时, xe^{x}

$$F(x)f(x) = \frac{xe^x}{2(1+x)^2}$$
. 已知 $F(0) = 1, F(x) > 0.$ 求 $f(x)$.

【例7】 设 $f'(e^x) = \sin x$, 求 f(x).

【例8】求不定积分 $\int e^{-|x|}dx$.

【例9】
$$I = \int_{-1}^{1} \frac{2x^2 + \sin x}{1 + \sqrt{1 - x^2}} dx;$$

【例10】
$$I = \int_0^1 \frac{x dx}{(2-x^2)\sqrt{1-x^2}};$$

【例11】设
$$f(x) = \int_0^x \frac{\sin t}{\pi - t} dt$$
, 计算 $\int_0^\pi f(x) dx$.

【例12】
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^x}{1 + e^x} \sin^4 x dx;$$

【例13】已知 f(x) 连续, $\int_0^x tf(x-t)dt = 1 - \cos x$,求 $\int_0^{\frac{\pi}{2}} f(x)dx$ 的值.