

Aplicação do modelo de simulação hidráulica EPANET integrado com Sistemas de Informação Geográfica.

Estudo de caso: Sub-bloco do Aproveitamento Hidroagrícola da Cova da Beira

Luísa Vaz - Paulo Fernandez - Francisco Frazão

Organização apresentação

- 1. Objetivo
- 2. Caracterização do AHCB Sub-bloco C.4.2
- 3. Simulação hidráulica
 - a) Modelo EPANET
 - b) GHydraulics
- 4. Casos de estudo sub-bloco C.4.2
 - a) Metodologia
 - b) Resultados
 - a) Cenário 1
 - b) Cenário 2
- 5. Considerações finais

Objetivo

Realizar a simulação hidráulica da distribuição de água numa rede ramificada de rega sob pressão através da integração do modelo EPANET no QGIS

Aproveitamento Hidroagrícola da Cova da Beira

Sub-bloco C.4.2 do Bloco de Regadio da Meimoa

- Freguesias de Benquerença, Escarigo e Salgueiro;
- Origem: Canal distribuidor do Escarigo;
- 50 hidrantes;
- 87 bocas de rega;
- 13654 metros de conduta.

Mapa localização Sub-bloco C.4.2

Modelo EPANET

Executa simulações estáticas e dinâmicas do comportamento hidráulico de um sistema de distribuição

de água sob pressão;

- O EPANET determina:
 - Valores do caudal em cada conduta;
 - Valores de pressão em cada nó;
 - Altura da água nos reservatórios de nível variável;
 - Modela os orifícios emissores.

Integração EPANET com SIG

- Ghydraulics:
 - Módulo disponível no QuantumGIS Plugin Repository;
 - Utiliza a rede editada no SIG (GestRegaSIG):
 - Uma camada para cada elemento da rede;
 - Associa as várias camadas a cada componente do modelo EPANET.

GHydraulics

- Condicionantes:
 - Não considera, nos nós, orifícios emissores;
 - Válvulas representadas por nós (no EPANET são troços);
 - Não permite a escolha das unidades de cálculo;
 - Apenas utiliza a fórmula de Darcy-Weisbach para o cálculo da perda de carga;

GHydraulics - Metodologia

- Dois cenários de simulação hidráulica:
 - Consumo fixo nos hidrantes (Cenário 1) hidrante representado por ponto sendo o seu caudal a soma dos caudais fixos das bocas de rega;
 - Regulação hidráulica nos hidrantes (Cenário 2) hidrante formado pelas suas bocas de rega e cada uma delas formada pelos seus constituintes;
 - ■Saída sob pressão.

Entidades do cenário 1 e cenário 2

- Origem da água/ Canal;
- ► Hidrante;
- Troço de Conduta;
- Derivação;

Entidades do cenário 2

- Válvula redutora de pressão (PRV);
- Válvula reguladora de caudal (FCV);
- Ponto de junção (JUN);
- Seção de saída (BRG);
- Tubos de ligação;
- Válvula de secionamento (SEC).

Cenário 1: Consumo fixo nos hidrantes

Cenário 2: Regulação hidráulica nos hidrantes

- Cenário 1: Análise de resultados:
 - Nos hidrantes:
 - ■Pressão;
 - Nos troços de conduta:
 - ■Caudal;

Cenário 1: Análise pressão nos hidrantes

Legenda

- Origem da Água
- Pressão Mínima
- Pressão <40 m.c.a.
- 40< Pressão <50 m.c.a.
- 50< Pressão <60 m.c.a.
- Pressão >60 m.c.a.
- Derivações
- Troços de conduta

Cenário 1: Análise caudal nos troços de conduta

Legenda

- Origem da Água
- ─ Q <5 l/s</p>
- --- 5< Q <50 l/s
- 50< Q <300 l/s
- Q >300 l/s
- Hidrantes
- Derivações

Cenário 2: Regulação hidráulica nos hidrantes

- Saída sob pressão;
 - Analisaram-se:
 - Valor da pressão a jusante na entrada do hidrante;
 - Limitação da pressão na válvula PRV;
 - Valor da pressão a jusante da válvula PRV;
 - Caudal à passagem pela válvula FCV;
 - Pressão e caudal na secção de saída da boca de rega.

Cenário 2: Regulação hidráulica nos hidrantes

Hidrante		Válvula PRV		Válvula FCV		Seção Saída sob pressão	
ID	Pressão (m.c.a.)	ID	ΔH_s (m)	Caudal (I/s)	Pressão (m.c.a.)	Caudal (I/s)	Pressão (m.c.a.)
HID00155	43,7	Boca de rega 155_1	8,7	3	34,99	3	34,5
HID00173	39,3	Boca de rega 173_1	4,3	2	35,00	2	34,5
		Boca de rega 173_2	4,3	6	34,98	6	34,5
HID00192	53	Boca de rega 192_1	18	2	35,00	2	34,5
		Boca de rega 192_2	18	3	34,99	3	34,5
		Boca de rega 192_3	18	7,5	34,96	7,5	34,5

Considerações finais

- A integração do EPANET no QGIS permite:
 - Visualização dos parâmetros hidráulicos e dos resultados em mapas temáticos;
 - A edição dos dados do modelo em tabelas;
 - Realização de alterações à rede com base na informação geográfica;
 - Simplificação da simulação, permitindo aplicar o EPANET na rede georreferenciada.

Considerações finais

▲ A integração do modelo de simulação EPANET no QGIS demonstrou ser uma ferramenta muito útil na gestão hidráulica de redes de distribuição de água.

Bem Haja