CSE-6363-007 MACHINE LEARNING ASSIGNMENT 4 REPORT

SUBMITTED BY AKSHU PATEL (1002072333)

In this assignment, I have taken 80% data for training and 20% data for testing from "train.csv" file of Titanic Dataset.

Implementation is done on three models:

Decision Tree

Random Forest Tree

ADA Boost

1. Decision Tree

The three commonly used splitting criteria mentioned in the input parameters: misclassification rate, Gini impurity, and entropy.

- **a.** Misclassification Rate: This criterion minimizes the fraction of misclassified samples.
- **b. Gini Impurity:** Gini impurity measures the probability of misclassifying a randomly chosen element.
- c. Entropy: Entropy quantifies the impurity or disorder in a set of samples.

Here is a basic structure outline:

Constructor: Initialize the tree with parameters (criterion, max_depth, min_samples_split, min_samples_leaf).

fit(X, y): Train the decision tree using the input data and labels.

predict(X_new): Use the trained tree to make predictions on new samples.

The accuracy scores are as follows:

Criteria	Validation Accuracy	Test Accuracy
misclassification	55.07%	62.32%
gini	56.18%	50.00%
entropy	56.15%	60.02%

Outputs:

2. Random Forest

For each tree, random selected a number of features in range [min_features, num_features], where min_features is the hyperparameter supplied in the constructor and num_features is the total number of features in the original training data and verification is done that min features is less than or equal to num features.

Constructor: Initialize the random forest with parameters (num_trees, min features) and the classifier object.

fit(X, y): Train the random forest using the input data and labels.

predict(X_new): Use the trained random forest to make predictions on new samples.

The accuracy scores are as follows:

Criteria	Validation Accuracy	Test Accuracy
misclassification	93.12%	69.27%
gini	88.76%	60.03%
entropy	85.81%	60.01%

Outputs:

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS AZURE

(venv) PS D:\UTA\4th sem\ML\Assignment4\& "d:\UTA\4th sem\ML\Assignment4\venv\Scripts\/python.exe" "d:\UTA\4th sem\ML\Assignment4\\

(venv) PS D:\UTA\4th sem\ML\Assignment4\& "d:\UTA\4th sem\ML\Assignment4\venv\Scripts\/python.exe" "d:\UTA\4th sem\ML\Assignment4\\

(venv) PS D:\UTA\4th sem\ML\Assignment4\\

(venv) P
```

3. AdaBoost

Constructor: Initialize the AdaBoost ensemble with parameters (weak learner, num learners, learning rate).

fit(X, y): Train the AdaBoost ensemble using the input data and labels.
predict(X_new): Use the trained AdaBoost ensemble to make predictions on
new samples.

The accuracy scores are as follows:

Criteria	Validation Accuracy	Test Accuracy
misclassification	41.57%	53.33%
gini	50.00%	55.00%
entropy	52.12%	57.34%

Outputs:

```
(venv) PS D:\UTA\4th sem\ML\Assignment4\& "d:\UTA\4th sem\ML\Assignment4\venv\Scripts/python.exe" "d:\UTA\4th sem\ML\Assignment4\venv\Scripts/
```