

Koninkiijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milleu

Neerslagextremen in een veranderend klimaat

Geert Lenderink

m.m.v.: J. Attema, J. Loriaux, E. van Meijgaard & G. J van Oldenborgh

Convectieve neerslagextremen

Herwijnen, Juni 2011

Cumulonimbus

Inhoud

- 1. Conceptuele ideeën over neerslagveranderingen in een opwarmend klimaat
- 2. Waargenomen relaties
- 3. Simpele modellen: een conceptueel model t.b.v. interpretatie waarnemingen
- 4. Complexe modellen: klimaatmodellen & mesoschaal atmosfeer modellen

Verdamping, neerslag en klimaat: Energiebalans op wereldschaal

Op lange duur: neerslag = verdamping

• 1 % meer neerslag is equivalent aan ~1 W/m² latente warmte

Bij verdubbeling CO₂:

- directe stralingsforcering van 3.7 W/m²
- 2-4 °C mondiale opwarming, na Verdamping E feedbacks.
 - ~2 % meer neerslag en verdamping per graad opwarming

Veranderingen in neerslagextremen bij klimaatveranderen: het ruwe idee

- 1. Door het broeikas effect wordt het warmer; 1.5 tot 4 graden tegen het eind van de eeuw
- 2. Warmere lucht kan meer vocht bevatten
- Neerslagextremen worden in belangrijke mate bepaald door de (maximale) hoeveelheid vocht in de atmosfeer
- 4. Neerslagextremen zullen toenemen.

Warmere lucht kan meer water "bevatten": de Clausius-Clapeyron relatie

e_{s:} verzadigde dampdruk ~ hoeveelheid waterdamp

l_v:latente warmte bij verdamping (2.5 10⁶ J kg⁻¹)

$$\frac{\mathrm{d}e_{\mathrm{s}}}{\mathrm{d}T} = \frac{l_{\mathrm{v}}e_{\mathrm{s}}}{R_{\mathrm{v}}T^{2}}$$

T: absolute temperatuur (K)

 R_v : gas constante (461 J kg⁻¹ K⁻¹)

De Clausius Clapeyron relatie is bij benadering exponentieel bij aardse temperaturen

$$\frac{de_s}{e_s dT} = \frac{d \ln e_s}{dT} = \frac{l_v}{R_v T^2}$$

$$\frac{d \ln e_s}{dT_*} = \frac{l_v}{R_v 273.15^2 (1 + \frac{2}{273.15} T_* + \frac{1}{273.15^2} T_*^2)}$$

$$\frac{d \ln e_s}{dT_*} \approx \frac{l_v}{R_v 273.15^2} (1 - \frac{2}{273.15} T_*)$$

$$\frac{d \ln e_s}{dT_*} \approx 0.07 (1 - 0.007 T_*)$$

$$7 \% \text{ per graad toename bij 0 °C 6 % per graad bij ~ 20 °C }$$

De hoeveelheid vocht in de atmosfeer

De hoeveelheid vocht is:

$$q_v = q_{sat}RH$$

met RH de relatieve vochtigheid en

q_{sat} de verzading specifieke vochtigheid

De hoeveelheid vocht in de atmosfeer verandert volgens:

$$\frac{\delta q_{v}}{q_{v}} = \frac{\delta q_{sat}}{q_{sat}} + \frac{\delta RH}{RH} + h.o.t$$

Kleine veranderingen relatieve vochtigheid – een energetisch argument

De verdamping aan het oppervlak *E*:

$$E \cong \lambda(q_s - q) = \lambda(1 - RH)q_s$$

$$\delta E \cong (1 - RH)q_s\delta\lambda + \lambda(1 - RH)\delta q_s - \lambda q_s\delta RH + h.o.t.$$

$$\delta\!RH \cong (1-RH) \left[\frac{\delta\!q_s}{q_s} - \frac{\delta\!E}{E} + \frac{\delta\!\lambda}{\lambda} \right]$$
0.2-0.4
$$0.07 \quad 0.02$$
per C per C per C grootschalige uitdroging grond op continenten in zomer)

Kleine veranderingen in relatieve vochtigheid worden ondersteund door klimaatmodellen (behalve op continenten in de zomer).

Het dauwpunt: een maat voor de hoeveelheid vocht in de atmosfeer

Het dauwpunt T_d is de temperatuur waarbij verzadiging optreedt:

$$q_{\rm sat}(T_{\rm d}) = q_{\rm v}$$

Het dauwpunt is een maat voor absolute vochtigheid

De dauwpuntdepressie $T - T_d$

is een maat voor relatieve vochtigheid

Als de temperatuur 1 graad stijgt bij constante relatieve vochtigheid stijgt het dauwpunt ook ~1 graden

Is er een relatie tussen absolute vochtigheid en neerslag intensiteit?

Opdelen data in temperatuurklassen geeft een ander beeld

"schaling" voor uurneerslag in Nederland (30 stations, 15 years of data)

Dauwpunt: 4 uur voor de bui als proxy voor de vochtigheid van lucht waarin de bui zich ontwikkeld

Data van NL en Hong Kong laten hetzelfde verband zien

Korte tijdschaal geeft grotere range van 2CC schaling

Langjarige trends in neerslagintensiteit & dauwpunt

Uurneerslag (extreem)

Dauwpunt op dagen met zware neerslag

Gemiddelde dauwpunt

Hypothese: wolkendynamica speelt een cruciale rol

Positieve feedback

- 1. warmer
- 2. meer vocht komt in de wolk
- 3. meer condensatie & latente warmte komt vrij
- 4. sterkere bewegingen in wolk
- 5. meer vocht convergentie in wolk

Simpele weergave: "Entraining plume" model

Entraining plume model

$$\text{verticale} \ w_c \frac{\partial s_c}{\partial z} = L_v c - \epsilon w_c (s_c - s_e), \\ \text{entrainment}$$
 "temperatuur"

$$w_c \frac{\partial q_{v,c}}{\partial z} = -c - \epsilon w_c (q_{v,c} - q_{v,e}), \qquad \text{waterdamp}$$

$$w_c \frac{\partial q_{l,c}}{\partial z} = c - G - \epsilon w_c q_{l,c},$$
 wolkenwater neerslag

$$\frac{1}{2}\frac{\partial w_c^2}{\partial z} = -\alpha_1 \epsilon w_c^2 + \alpha_2 B, \quad \text{where} \quad B = g \frac{T_{v,c} - T_{v,e}}{T_{v,e}}. \quad \text{verticale}$$
 snelheid

NB: horizontale advectie + tijdsafhankelijkheid verwaarloosd

Implementatie van het "entraining plume" model

Iteratieve loop van het oppervlak naar de top van de atmosfeer

1. Toepassen vergelijkingen voor temperatuur, wolkenwater, waterdamp

$$w_c \frac{\partial s_c}{\partial z} = L_v c - \epsilon w_c (s_c - s_e),$$

- Doe condensatie wanneer
 q > q_{sat} (er is een wolk) (extra warmte!)
- 3. wanneer te veel wolkenwater -> neerslag
- 4. Bereken verticale snelheid
- 5. Stop wanneer verticale snelheid = 0 (wolkentop bereikt)

randconditie: T,q,w oppervlak

Runs met entraining plume model onder verschillende atmosferische temperaturen

omgeving: temperatuur & vochtigheid op basis van waarnemingen van een convectieve dag

Herhaal experiment bij
-3 3 graden koudere/warmere
atmosfeer, bij gelijke relatieve
vochtigheid

Neerslag in het entraining plume model

Aanname: geen entrainment ($\varepsilon = 0$)

$$P = \int_{z_b}^{top} c dz = -\int_{z_b}^{top} w_c \frac{\partial \rho q_{s,c}}{\partial z} dz \quad (1)$$

c: condensatie; q_{s,c} saturatie waarde

Herschrijven (1)

$$P = w_c \rho q_{s,c}|_{z_b} + \int_{z_b}^{z_t} \frac{\partial (\rho w_c)}{\partial z} q_{s,c} dz$$

- flux op wolkenbasis
- laterale flux

Neerslag in het entraining plume model (2)

Klimaatmodellen

Klimaten modellen rekenen op een relatief grof grid

Gobale klimaatmodellen ~ 100 km Regionale klimaatmodellen ~ 25 km

De meeste wolkenprocessen worden niet opgelost

Deze modellen gebruiken parameterisaties om wolkenprocessen te representeren

Klimaatmodellen

Mondiaal klimaatmodel (Mondiaal, 100-200 km resolutie)

"lichte regen"

Regionaal Klimaatmodel (Europe, 10-50 km resolutie)

"indicatie intensiteit bui"

Parameterisaties van convectie: "massa flux"

σ wolkenfractie

$$\overline{\psi} = \sigma \psi_c + (1 - \sigma) \widetilde{\psi}.$$
 temperatuur of abs. vochtigheid
$$\overline{w} = \sigma w_c + (1 - \sigma) \widetilde{w}$$

$$\overline{w\psi} - \overline{w} \,\overline{\psi} = \frac{\sigma}{1 - \sigma} (w_c - \overline{w}) (\psi_c - \overline{\psi}).$$

Assuming,
$$\sigma \ll 1$$
, $|\widetilde{w}| \ll w_c$

$$M_c \equiv \rho \sigma w_c$$

$$\rho\left(\overline{w\psi}-\overline{w}\ \overline{\psi}\right)\approx M_c\left(\psi_c-\overline{\psi}\right),$$

Parameterisatie versus werkelijkheid

klimaatmodel versus waarnemingen

Mesoschaal atmosfeer modellen

- 1. Zeer hoge resolutie: grid van 2.5 km
- 2. Dynamica niet-hydrostatisch

$$\frac{\partial p}{\partial z} = -\rho g, \quad \boxed{\qquad} \quad \frac{\mathrm{d}w}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g$$

Hydrostisch: druk wordt bepaald door gewicht atmosfeer Niet-hydrostisch: ook dynamische effecten op druk

3. Zeer rekenintensief (geen klimaatintegraties mogelijk)

Simulaties met het mesoschaal model

Verandering uurneerslag op basis van 10 cases

In de staart van de verdeling 11-14 % toename van uurneerslag per graad opwarming

Samenvatting

- 1. De hoeveelheid vocht in de atmosfeer neemt toe bij opwarming door het broeikaseffect
- 2. Hiermee nemen neerslagextremen toe
- Op basis van observaties: de intensiteit van neerslagextremen in convectieve buien kan 2 maal zo snel toenemen als de hoeveelheid vocht, tot zo'n 12-14 % per graad (2CC relatie)
- 4. Met conceptuele modellen begrip 2CC relatie (maar niet volledig verklaard)
- 5. Klimaatmodellen: onderschatting geobserveerd verband door onvoldoende resolutie en modelvereenvoudigingen (parameterisatie) convectie voor hoge temperaturen
- 6. Mesoschaal modellen: voorzichtige ondersteuning 11-14 % per graad

