Расчетное задание №10

1 Задание

Вычислив норму обратной матрицы A^{-1} , оценить погрешность решения СЛАУ Ax = b в каждой из трех указанных норм для найденных в задании 9 погрешностей вектора b.

	A		b
-2,693	2,013	2,284	-3
-2,487	-2,574	-0,792	-3,87
1,602	2,557	1,563	8

2 Решение

1. Обратная матрица A^{-1} :

$$A^{-1} = \begin{pmatrix} -0.36 & 0.49 & 0.77 \\ 0.47 & -1.42 & -1.41 \\ -0.4 & 1.82 & 2.15 \end{pmatrix}$$

2. Найдем норму $\|\cdot\|_{\infty}$ матриц $A,\,A^{-1}$ и число обусловленности:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{m} |a_{i,j}| = \max_{1 \le i \le m} (6,990; 5,853; 5,722)^T = 6,99$$

$$||A^{-1}||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{m} |a_{i,j}| = \max_{1 \le i \le m} (1, 62; 3, 30; 4, 37)^T = 4,37$$

$$\nu_{\delta} = cond(A) = \|A\| \|A^{-1}\| = 30,5463$$

3. Найдем нормы $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_\infty$ вектора b:

$$||b||_1 = \sum_{i=1}^m |b_i| = 3 + 3,87 + 8 = 14,87$$

$$||b||_2 = \sqrt{\sum_{i=1}^m |b_i|^2} = \sqrt{9 + 14,9769 + 64} \approx 9,38$$

$$||b||_{\infty} = \max_{1 \le i \le m} |b_i| = 8$$

- 4. Относительные погрешности вектора b соответственно для норм $||b||_1$, $||b||_2$, $||b||_\infty$ равны:
 - (a) в норме $||b||_1$: $\delta b \approx 6, 7 \cdot 10^{-2}$
 - (b) в норме $\|b\|_2$: $\delta b \approx 7, 5 \cdot 10^{-2}$
 - (c) в норме $||b||_{\infty}$: $\delta b \approx 6, 3 \cdot 10^{-2}$
- 5. Получим оценки погрешности решения СЛАУ в каждой из трех указанных норм по формуле $\delta(x^*) \leq \nu_\delta \delta(b^*)$:
 - (a) в норме $||b||_1$: $\delta(x^*) \le 30,5463 \cdot 6,7 \cdot 10^{-2} \approx 2,05$
 - (b) в норме $||b||_2$: $\delta(x^*) \le 30,5463 \cdot 7,5 \cdot 10^{-2} \approx 2,29$
 - (c) в норме $||b||_{\infty}$: $\delta(x^*) \le 30,5463 \cdot 6,3 \cdot 10^{-2} \approx 1,92$