Algebra I, lista 4, (ćwiczenia 24.03.2025, deklaracje do godz. 11:00).

Teoria. Aksjomatyczne ujęcie funkcji det, "objętość zorientowana". Własności wyznacznika (liniowość na każdej współrzędnej). Wzór na wyznacznik macierzy (z permutacjami). Twierdzenie Cauchy'ego: det(AB) = det(A)det(B). Wyznacznik macierzy 2×2 i 3×3 (wzór Sarrusa). $det(A) \neq 0 \iff \text{macierz } A$ jest odwracalna. Macierz transponowana A^T . $det(A^T) = det(A)$. Kolumny A są l.n. $\iff \text{wiersze } A$ są l.n. ($\iff det(A) \neq 0$). Operacje na wierszach i kolumnach macierzy zachowujące det, praktyczne obliczanie wyznacznika macierzy przez sprowadzanie do postaci górnotrójkątnej. Ciało: definicja, podstawowe własności. Przestrzeń liniowa nad ciałem F. Baza Hamela. Ciało liczb zespolonych. Płaszczyzna Gaussa. Postać algebraiczna i trygonometryczna liczby zespolonej. Moduł, argument (główny). Mnożenie l. zespolonych, wzór de Moivre'a. Sprzężenie jako automorfizm ciała $\mathbb C$. Arytmetyka modularna, ciała F_p .

Ćwiczenia.

1. Obliczyć wyznacznik następujących macierzy, sprowadzając je do postaci górnotrójkątnej (przy użyciu elementarnych operacji na wierszach lub kolumnach).

$$\begin{bmatrix} 0 & 3 & 0 & 3 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 3 & 1 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 1 & 1 \end{bmatrix}.$$

- 2. Sprawdzić, że w ciele liczb zespolonych \mathbb{C} :
 - (a) $|z_1 \cdot z_2| = |z_1 \cdot z_2|$
 - (b) $|z_1 + z_2| \le |z_1| + |z_2|$
 - (c) Sprzężenie $z \mapsto \bar{z}$ jest automorfizmem ciała \mathbb{C} .
 - (d) $|z| = \sqrt{z \cdot \bar{z}}$ oraz $|\bar{z}| = |z|$.
- 3. Ile jest różnych prostych w przestrzeni liniowej F_p^n $(n \neq 1)$ nad ciałem F_p ? Zadania.
- 1. Dane są macierze A, B wymiaru $n \times n$. Udowodnić, że:
 - (a) $(AB)^T = B^T A^T$.
 - (b) $(A^T)^{-1} = (A^{-1})^T$ (wsk: skorzystać z (a)).
- 2. Załóżmy, że * jest działaniem w zbiorze $X \neq \emptyset$.
 - (i) Udowodnić, że w zbiorze X istnieje co najwyżej jeden element neutralny działania * (tzn. elemet $e \in X$ taki, że dla każdego $x \in X$, e * x = x * e = x).
 - (ii) Załóżmy, że działanie * jest łączne oraz $e \in X$ jest elementem neutralnym działania *. Udowodnić, że dla każdego $x \in X$ istnieje co najwyżej jeden element odwrotny $x' \in X$ (tj. taki, że x * x' = x' * x = e).
- 3. Udowodnić, że w ciele F:
 - (i) $x \cdot 0 = 0 = 0 \cdot x$.
 - (ii) Jeśli $x \neq 0$ i $y \neq 0$, to $x \cdot y \neq 0$.

- 4. Udowodnić, że istnieje baza Hamela $\mathcal{B}\subseteq\mathbb{R}$ taka, że
 - (a) $\mathcal{B} \subseteq [0, 1]$.
 - (b)* Baza \mathcal{B} jest zawarta w zbiorze Cantora $C \subseteq [0, 1]$.

(uwaga: bez dowodu można przyjąć, że każdy zbiór generatorów $\mathbb R$ nad $\mathbb Q$ zawiera jakąś bazę Hamela.)

5. Załóżmy, że ciało liczb rzeczywistych $\mathbb R$ jest podciałem ciała F takiego, że w F istnieje element i taki, że $i^2=-1$. Niech

$$\mathbb{R}[i] = \{a + bi : a, b \in \mathbb{R}\} \subseteq F.$$

Udowodnić, że

- (a)— $\mathbb{R}[i]$ jest przestrzenią liniową nad \mathbb{R} (podprzestrzenią ciała F traktowanego jako przestrzeń liniowa nad \mathbb{R}), zbiór $\{1,i\}$ jest bazą tej przestrzeni i $dim_{\mathbb{R}}\mathbb{R}[i]=2$.
- (b) $\mathbb{R}[i]$ jest podciałem ciała F,izomorficznym z ciałem liczb zespolonych.
- 6. (a) Załóżmy, że punkty P_1, \ldots, P_n $(n \ge 3)$ są wierzchołkami n-kąta foremnego wpisanego w okrąg jednostkowy na płaszczyźnie \mathbb{R}^2 (o środku w zerze). Udowodnić, że $P_1 + \ldots + P_n = 0$.
 - (b)* Traktujemy \mathbb{R}^2 jako przestrzeń liniową nad \mathbb{Q} . Niech $V = Lin_{\mathbb{Q}}(P_1, \dots, P_n)$. Obliczyć dim(V).
- 7. Załóżmy, że $F=(F,+,\cdot,0,1)$ jest ciałem. Jeśli istnieje n>0 takie, że w ciele $F\colon$

$$n \cdot 1 := \underbrace{1 + \dots + 1}_{n} = 0,$$

to najmniejsze takie n nazywamy charakterystyką ciała F i oznaczamy przez char(F). Jeśli takiego n > 0 nie ma, to przyjmujemy, ze char(F) = 0.

- (a) Udowodnić, że jeśli $\operatorname{char}(F)>0,$ to $\operatorname{char}(F)$ jest liczbą pierwszą.
- (b)*– Udowodnić, że jeśli char(F) = p > 0, to ciało F zawiera podciało izomorficzne z ciałem F_p .
- (c)*– Udowodnić, że jeśli char(F)=0, to ciało F zawiera podciało izomorficzne z ciałem liczb wymiernych $\mathbb Q.$
- (d)*– Udowodnić, że jeśli ciało F jest skończone i zawiera podciało izomorficzne z cialem F_p , to $|F| = p^n$ dla pewnego n > 0.
- 8. Niech $b_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $b_2 = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$, $b_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ 0 \end{pmatrix}$. Niech $C = Lin(b_1, b_2, b_3) < \mathbb{R}^5$.
 - (a) Uzasadnić, że $\mathcal{B} = \{b_1, b_2, b_3\}$ jest bazą C.
 - (b) Określić odwzorowanie liniowe f o dziedzinie \mathbb{R}^5 , którego jądrem jest podprzestrzeń C.

9. Załóżmy, że W jest podprzestrzenią przestrzeni liniowej $V, v_1, \ldots, v_n \in V,$ $A = [a_{ij}]_{n \times n}$ oraz dla każdego i mamy

$$\sum_{j=1}^{n} a_{ij} v_j \in W.$$

Udowodnić, że jeśli macierzAjest odwracalna, to wszystkie wektory v_j należą do W.