TensorFlow Lite

The professional course

TensorFlow Lite

Week 3

Agenda

- 1. Introduction to model optimizations
- 2. Optimization techniques
 - a. Post-training quantization
 - b. Weight clustering
 - c. Model pruning

When we are talking about embedded applications, we have to remember that:

The device that will run the application may have hardware limitations

PCs and Servers RAM CPU

Embedded systems

When we are talking about embedded applications, we have to remember that:

- It's important to improve resources usages, such as CPU, memory, and battery
- Some optimizations can be applied to our model that will run within hardware constraints

Embedded systems

Some optimization benefits:

- Model size reduction
 - Smaller storage size and less memory usage
- Latency reduction
 - Faster inference time

Some optimization harms:

- Accuracy reduction
 - These optimizations can lead to a slight decrease in model accuracy

Quantization

Post-training quantization

• Usually, the parameters (weights and inputs/outputs) of a neural network are represented by:

Post-training quantization

But we can change these parameters bitwith:

Parameters in fp32

Quantization

Parameters in int8 and fp16

Post-training quantization

- Types:
 - Weight quantization: quantize just the weights

Post-training quantization

- Types:
 - **Full quantization**: quantize both the weights and activations

Post-training quantization

• What is the best quantization type for me?

Post-training quantization

- What is the best quantization type for me?
 - Consider the device specification
 - Consider your project constraints

Post-training quantization

• What is the best quantization type for me? Is the one that keeps satisfactory values to size, accuracy, and latency of the model, depends on your project requirements.

Post-training quantization

• How is quantization done in practice?

$$X_{quantized} = X_{real}/scale + X_{zero_point}$$

Post-training quantization

1. Compute *scale* and the X_{zero point} by finding min and max value of weight tensor:

$$\begin{array}{c} X_{\text{real}} \leftrightharpoons [X_{\text{real_min}}, X_{\text{real_max}}] \\ scale = (X_{\text{real_max}} - X_{\text{real_min}}) \, / \, (X_{\text{quantized_max}} - X_{\text{quantized_min}}) \\ X_{\text{zero_point}} = X_{\text{quantized_max}} - X_{\text{real_max}} / scale \\ \end{array}$$

Post-training quantization

Ex:
$$X_{real} = 0.85 \text{ in FP32} \in [-1, 1] -> X_{quantized} \text{ in INT8} \in [0, 255]$$

$$scale = (X_{real_max} - X_{real_min}) / (X_{quantized_max} - X_{quantized_min}) = (1 - (-1)) / (255 - 0) = 2/255$$

$$X_{\text{zero_point}} = X_{\text{quantized_max}} - X_{\text{real_max}} / scale = 255 - 1/(2/255) \approx 127$$

$$X_{\text{quantized}} = X_{\text{real}} / scale + X_{\text{zero point}} = 0.85 / (2/255) + 127 \approx 235$$

Clustering

Weight clustering

• Weight clustering is a technique to reduce the storage and transfer size of your model by replacing many unique parameter values with a smaller number of unique values.

Weight clustering

• Layer weight matrix

2.21	0.86	-0.53	-1.25
-1.75	0.96	0.23	-1.11
-0.35	-2.89	2.51	-1.86
-1.52	2.71	1.69	0.56

Weight clustering

• Get centroids:

2.21	0.86	-0.53	-1.25	x1
-1.75	0.96	0.23	-1.11	x2
-0.35	-2.89	2.51	-1.86	х3
-1.52	2.71	1.69	0.56	х4

Weight clustering

• Get centroids indexes:

Weight clustering

• Assign Indexes:

Weight clustering

• Pull Indexes:

Weight clustering

• What is the best number of centroids (or clusters)?

Weight clustering

Elbow method

Pruning

- Training optimization
- The goal of pruning is to reduce the number of parameters and operations in our neural network
- Sparse models are easier to compress, and we can skip the zeroes during inference for latency improvements

Weight clustering

- The pruning is done by adding zeros to some parameters
- You can specify the sparsity you want
 - o E.g: 50%

0.02	0.86	-0.53	-0.01
-1.75	0.10	0.23	-0.03
-0.35	-2.89	0.15	-1.86
-1.52	0.17	1.69	-0.22

0	0.86	-0.53	0
-1.75	0	0.23	0
0	-2.89	0	-1.86
-1.52	0	1.69	0

Hands-On

Hands-on Project

Step:

1. Let's apply all these optimizations to our model using the TensorFlow Lite!

Wrap-up

Wrap-Up

During this week we have learned:

- 1. An overview of the model optimizations
- 2. Importance to apply different optimization techniques
- 3. How to apply in practice these optimization techniques

References

To learn more, please, take a look:

- Model optimization: https://www.tensorflow.org/lite/performance/model_optimization
- Post-training quantization: https://www.tensorflow.org/lite/performance/post_training_quantization
- Weight clustering: https://blog.tensorflow.org/2020/08/tensorflow-model-optimization-toolkit-weight-clustering-api.html