Vorlesung 9

1. $\overrightarrow{F}(\overrightarrow{r}) = (0, 0, F_z)$ ("homogenes" Feld)

2. Jedes (zeitunabh.) Zentralfeld ist konservativ

$$\overrightarrow{F}(\overrightarrow{r}) = f(r) \cdot \overrightarrow{e}_r$$

Kann jeden Weg $A \to B$ in radiale Bewegung (leistet gleiche Arbeit unabhängig von θ, φ) & tangentiale Bew. (leistet keine Arbeit) zerlegen

$$\Rightarrow \oint \overrightarrow{F} \cdot d\overrightarrow{r} = 0$$

Nicht konservativ

3. Reibungskräfte: $\oint \vec{F} \cdot \vec{r} \neq 0$ (!)

Vektoranalysis:

Wenn
$$\operatorname{rot} \overrightarrow{F} = \overrightarrow{\nabla} \times \overrightarrow{F}(\overrightarrow{r}) = 0$$
 dann ist \overrightarrow{F} konservativ

"Nabla-Operator"
$$\overrightarrow{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$
 Manchmal wird auch $\partial_k = \frac{\partial}{\partial k}$ als Notation genutzt um die Schreibweise kompakter zu halten

$$\operatorname{rot} \overrightarrow{F} = \overrightarrow{\nabla} \times \overrightarrow{F}(\overrightarrow{r}) = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) = 0$$

In einem konservativen Kraftfeld ist die Arbeit

$$W = \int_{A}^{B} \overrightarrow{F} \cdot d\overrightarrow{r} \qquad \text{unabh. vom Weg } A \to B$$

Arbeit hängt nur von Ortsvektoren $\vec{r}_{A/B}$ ab!

$$\Rightarrow W = \int_{A}^{B} \overrightarrow{F} \cdot d\overrightarrow{r} = E_{\text{pot}}(\overrightarrow{r}_{A}) - E_{\text{pot}}(\overrightarrow{r}_{B})$$

Geleistete Arbeit steht in Relation zur **Differenz** $E_{\rm pot}(\vec{r}_{B}) - E_{\rm pot}(\vec{r}_{A})$

Die Funktion $E_{\rm pot}(\vec{r})$ ist die **potenzielle Energie**

★ Vorzeichen:

Wenn Kraft gegen Bewegung gerichtet ($\overrightarrow{F}\cdot d\overrightarrow{r}<0$) nimmt die potenzielle Energie zu, $\Delta E_{\rm pot}=E_{\rm pot}(\overrightarrow{r}_B)-E_{\rm pot}(\overrightarrow{r}_A)>0$

Nullpunkt:

 $E_{\rm pot} = 0$ willkürlich, z.B.

- Ursprung des K-Systems

 \Rightarrow $E_{\mathrm{pot}}(P)$ ist die Arbeit, die man aufbringen muss (W < 0) um den MP von $P \to \infty$ zu befördern

3.1.5 Kinetische Energie

Arbeit
$$W = \int_A^B \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{t_0}^t \overrightarrow{F} \cdot \overrightarrow{v} \, dt'$$

$$= m \int_{t_0}^t \frac{d\overrightarrow{v}}{dt} \cdot \overrightarrow{v} \, dt' = m \int_{\overrightarrow{v}_0}^{\overrightarrow{v}} \overrightarrow{v}' \, d\overrightarrow{v}'$$
2. NG
$$wegunabh. = m \left[\int_{v_{x_0}}^{v_x} v_x' \, dv_x' + \int_{v_{y_0}}^{v_y} v_y' \, dv_y' + \int_{v_{z_0}}^{v_z} v_z' \, dv_z' \right]$$

$$= m \frac{1}{2} \left[v_x^2 - v_{x_0}^2 + v_y^2 - v_{y_0}^2 + v_z^2 - v_{z_0}^2 \right]$$

$$= m \frac{1}{2} \left[v^2 - v_0^2 \right] = E_{kin}(B) - E_{kin}(A)$$

Definition:
$$E_{\text{kin}}(v) := \frac{1}{2}mv^2$$
 $[E_{\text{kin}}] = [W] = [E_{\text{pot}}] = J$

Wir hatten
$$\int_A^B \overrightarrow{F} \cdot \mathrm{d} \overrightarrow{r} = E_{\mathrm{pot}}(A) - E_{\mathrm{pot}}(B)$$
 und
$$\int_A^B \overrightarrow{F} \cdot \mathrm{d} \overrightarrow{r} = E_{\mathrm{kin}}(B) - E_{\mathrm{kin}}(A)$$

$$\Rightarrow$$
 $E_{\text{pot}}(A) + E_{\text{kin}}(A) = E_{\text{pot}}(B) + E_{\text{kin}}(B)$

$$E = E_{\text{pot}}(A) + E_{\text{kin}}(A) = \text{const}$$

Energie(erhaltungs)satz der Mechanik:

Summe aus potenzieller und kinetischer Energie ist konstant (für konservative Kraftfelder)

Beispiele:

1. Freier Fall - Senkrechter Wurf

freier Fall Anfang:
$$E_{\rm pot} = mgh$$
, $E_{\rm kin} = 0$

Ende:
$$E_{\text{pot}} = 0$$
, $E_{\text{kin}} = \frac{1}{2}mv^2$

$$\Rightarrow v = \sqrt{2gh}$$

2. Looping Versuch

minimale Geschwindigkeit:

$$\frac{1}{2}mv^2 \ge mgh \to v \ge \sqrt{2gh}$$

$$h = 10 \,\mathrm{m}$$
 $\rightarrow v \ge \sqrt{2 \times 10 \times 10} \,\frac{\mathrm{m}}{\mathrm{s}} = 14 \,\frac{\mathrm{m}}{\mathrm{s}} = 51 \,\frac{\mathrm{km}}{\mathrm{h}}$ (ohne Reibung)

In der Praxis größer, damit Insassen am höchsten Punkt noch ausreichend Zentrifugalkraft erfahren um nicht aus dem Sitz zu fallen

$$F = m \ a_t = \frac{m v_w^2}{r} \ge mg \qquad \Rightarrow \qquad \frac{2 v_w^2}{h} \ge g \qquad \Rightarrow v_w^2 \ge \frac{gh}{2}$$

$$\overrightarrow{a}(t) = \frac{\mathrm{d} \overrightarrow{v}}{\mathrm{d} t} = \begin{pmatrix} \overrightarrow{v}_x(t) \\ \overrightarrow{v}_y(t) \\ 0 \end{pmatrix} = \begin{pmatrix} \overrightarrow{x}(t) \\ \overrightarrow{v}_y(t) \\ 0 \end{pmatrix} = \begin{pmatrix} -\omega^2 R \cos \omega t \\ -\omega^2 R \sin \omega t \\ 0 \end{pmatrix}$$

$$= -\omega^2 R \overrightarrow{e}_R = \omega^2 R \overrightarrow{e}_a = \frac{v^2}{R} \overrightarrow{e}_a$$

$$v_0 \ge \sqrt{\frac{5}{2}gh} = \sqrt{5gr}$$

Beschleunigung im Looping:
$$a = \frac{v_0^2}{r} = \frac{5gr}{r} = 5g$$
 unabhängig vom Radius!

Beschl. will man schnell verringern (da unangenehm), deshalb Design eher

Versuch: **Todespendel**

$$A E_{pot} = mgh E_{kin} = 0$$

$$E_{\text{pot}} = 0 \qquad E_{\text{kin}} = \frac{1}{2}mv^2$$

$$C = A$$

$$mgh = \frac{1}{2}mv^2$$

$$v = \sqrt{2gh}$$

Energiesatz d. Mechanik:

Nur $E_{\rm pot}$ + $E_{\rm kin}$ für konservative Felder

Später: andere Energieformen

Reibung → Wärmeenergie elektr. + magn. Energie

dann allgemein: $\sum_{\text{E-formen}} E_i = \text{const}$

3.1.7 Das Potenzial

Potenzielle Energie in einem Kraftfeld hängt oft von den Eigenschaften des Objektes ab, auf das die Kraft ausgeübt wird:

$$(G = 6.67430.. \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2})$$

Gravitationsfeldkonstante

$$E_{\rm pot} = G \frac{Mm}{r} \sim m$$

Elektr. Kraft:
$$\overrightarrow{F} = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r^3} \overrightarrow{r}$$
 $E_{\rm pot} = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r} \sim q$

$$E_{\rm pot} = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r} \sim q$$

elektrische Feldkonstante

$$(\epsilon_0 = 8.854.. \times 10^{-12} \frac{\text{As}}{\text{Vm}})$$

Für solche Fälle ist eine Größe praktisch, die unabhängig von der "Probemasse", "Probeladung", etc. ist :

Gravitationspotenzial:
$$V(\vec{r}) := \frac{1}{m} E_{\text{pot}}(\vec{r})$$
 $[V] = \frac{J}{\text{kg}}$

Potenzial = pot. Energie pro Probemasse = Eigenschaft der Masse, die das Feld erzeugt

Bezug zur Kraft:

$$dW = \overrightarrow{F} \cdot d\overrightarrow{r} = -dE_{pot}(\overrightarrow{r})$$

$$F_x dx + F_y dy + F_z dz$$

$$\Rightarrow F_x = -\frac{\partial E_{pot}}{\partial x}, \quad F_y = -\frac{\partial E_{pot}}{\partial y}, \quad F_z = -\frac{\partial E_{pot}}{\partial z}$$

$$\frac{\partial}{\partial x}$$
 = "partielle" Ableitung

Leiten nach x ab, nehmen an, dass y, z konstant

$$\Rightarrow \overrightarrow{F} = (F_x, F_y, F_z) = (-\frac{\partial E_{\text{pot}}}{\partial x}, -\frac{\partial E_{\text{pot}}}{\partial y}, -\frac{\partial E_{\text{pot}}}{\partial z}) = -(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) E_{\text{pot}}(\overrightarrow{r})$$

Oder grad : Gradient

$$\overrightarrow{F} = -\operatorname{grad} E_{\operatorname{pot}}(\overrightarrow{r}) = -\overrightarrow{\nabla} E_{\operatorname{pot}}(\overrightarrow{r})$$

In welche Richtung zeigt $\overrightarrow{
abla} E_{\mathrm{pot}}$?

Zeigt immer in die Richtung der größten pos. Änderung von $E_{\mathrm{pot}}(\vec{r})$

