2.2 Pushdown Automata

- PDAs are like nondeterministic finite automata but have an extra component called a stack.
 - provides additional memory beyond the finite amount available in the control.
 - allows pushdown automata to recognize some nonregular languages.

- Pushdown automata are equivalent in power to context-free grammars.
- A language is context free if
 - a context-free grammar generating it or
 - a push-down automaton recognizing it.

- A PDA can write symbols on the stack and read them back later.
 - Pushing: writing a symbol on the stack
 - Popping: removing a symbol from the stack.
 - stack is a "last in, first out" storage device.

- Stack is of infinite size.
- Stack is a "last in, first out" storage device.
- Example: How a PDA recognizes the nonregular language $\{0^n 1^n | n \ge 0\}$.

- Stack is of infinite size.
- Stack is a "last in, first out" storage device.
- Example: How a PDA recognizes the nonregular language $\{0^n1^n|n\geq 0\}$.
- Can use its stack to store the number of 0's it has seen.

- Stack is of infinite size.
- Stack is a "last in, first out" storage device.
- Example: How a PDA recognizes the nonregular language $\{0^n 1^n | n \ge 0\}$.
- Can use its stack to store the number of 0's it has seen.
 - As each 0 is read, push it onto the stack
 - As soon as 1's are read, pop a 0 off the stack
 - If reading the input is finished exactly when the stack is empty, accept the input else reject the input

DETERMINISTIC AND NONDETERMINISTIC (PDA)

- **Deterministic** and **nondeterministic** pushdown automata are not equivalent in power.
 - Nondeterministic pushdown automata recognize certain languages that no deterministic pushdown automata can recognize.
- Note: nondeterministic PDAs are equivalent in power to context-free grammars.

FORMAL DEFINITION OF A PUSHDOWN AUTOMATON

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

Where
$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$
 and $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$

COMPUTAIONS OF A PUSHDOWN AUTOMATON

- A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ computes as follows.
- It accepts input $w = w_1 w_2 \cdots w_m$, where each $w_i \in \Sigma_{\varepsilon}$ and sequences of states $r_0, r_1, \dots, r_m \in Q$ and strings $s_0, s_1, \dots, s_m \in \Gamma^*$ exist that satisfy the following conditions.
 - 1. $r_0 = q_0$ and $s_0 = \varepsilon$.
 - **2.** For $i=0,\ldots,m-1$, we have $(r_{i+1},b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{\varepsilon}$ and $t\in\Gamma^*$. This condition states that M moves properly according to the state, stack, and next input symbol.
 - **3.** $r_m \in F$. This condition states that an accept state occurs at the input end.

COMPUTAIONS OF A PUSHDOWN AUTOMATON

Input symbol Signature 1998 Maybe ε

Symbol on top of the stack.
This symbol is popped.

Maybe ε : means the stack is Neither read nor popped

This symbol is pushed onto the stack.
This symbol is popped.

Maybe ε : means nothing is pushed.

- **Example 1:** The formal description of the PDA that recognizes the language $\{0^n1^n|n\geq 0\}$.
- Let $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$, where
- $Q = \{q_1, q_2, q_3, q_4\},$
- $\Sigma = \{0,1\},$
- $\Gamma = \{0, \$\},$
- $F = \{q_1, q_4\},$
- And δ is given by the following table, wherein blank entries signify \emptyset .

Input:	0			1			arepsilon		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
$\overline{q_1}$									$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3, \boldsymbol{\varepsilon})\}$					
q_3				$\{(q_3, \boldsymbol{\varepsilon})\}$				$\{(q_4, \boldsymbol{\varepsilon})\}$	
q_4									

• **Example 1:** (cont.)

Top of the stack symbol (new)

Let
$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$$
, where $Q = \{q_1, q_2, q_3, q_4\}$, $\Sigma = \{0,1\}$, $\Gamma = \{0, \$\}$, $F = \{q_1, q_4\}$,

- Example 1: (cont.)
- " $a, b \rightarrow c$ ": to signify that when the machine is reading an a from the input, it may replace the symbol b on the top of the stack with a c.
- $a = \varepsilon$: the machine may make this transition without reading any symbol from the input.
- $b = \varepsilon$: the machine may make this transition without reading and popping any symbol from the stack.
- $c = \varepsilon$: the machine does not write any symbol on the stack when going along this transition.

- Example 1: (cont.)
 - no explicit mechanism to allow the PDA to test for an empty stack.
 - This PDA is able to get the same effect by initially placing a special symbol \$ on the stack.

- $b = \varepsilon$: the machine may make this transition
 - witho
- 1. Creating an empty stack
- the st 2. If input is 0, then push a 0 onto the stack
 - 3,4. If input is 1, then pop a 0 from the stack and no push
- $c = \{5.$ The last input symbol and stack is empty \rightarrow accept the string

$$\{a^ib^jc^k|\ i,j,k\geq 0\ \text{and}\ i=j\ \text{or}\ i=k\}.$$

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}.$$

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}.$$

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}.$$

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}.$$

• Example 2: Find the PDA that recognizes the language

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}.$$

a

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}.$$

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}.$$

- THEOREM: A language is context free if and only if some pushdown automaton recognizes it.
- Part1: If a language is context free, then some pushdown automaton recognizes it.
- Part2: If a pushdown automaton recognizes some language, then it is context free.

- Part1: If a language is context free, then some pushdown automaton recognizes it.
- PROOF IDEA:
- Let A be a CFL, Then A has a CFG G, generating it.
- Using the following example we show how to convert G into an equivalent PDA, P.
- Example: Grammar G

 $S \rightarrow BS|A$: R1, R2

 $A \rightarrow 2A | \epsilon$: R3, R4

 $B \rightarrow BB1|0$: R5, R6

Using **left-most derivation** for generating **001** will be :

 $S \Rightarrow BS \Rightarrow BB1S \Rightarrow 0B1S \Rightarrow 001S \Rightarrow 001A \Rightarrow 001$

R1 R5

R6

R6

R2

R4

- PROOF IDEA: (cont.)
- In general form all of intermediate string in the derivation for generating a string will be in form

000110010101*SA*01*SSA*00*SSAA0*Terminal Rest

Trest

(contains terminals and nonterminals)

- The PDA P will work by accepting its input w, if G generates that input,
 - by determining whether there is a derivation for w. (left-most derv.)

- PROOF IDEA: (cont.)
- Let's see how we can store a an **intermediate string** (sentential form) in the derivation in a pushdown automaton.

PROOF IDEA: (cont.)

At each step of the derivation, we expand the leftmost nonterminal using the

rules.

rules. $S \stackrel{*}{\Rightarrow} 0000B01BS \Rightarrow \cdots$ Rule: B \to BB1	PDA P	B B	The stack the previo step	
	0 0 0 0	1	В	
		0	0	
so the steps that we follow in	1	1		
 We match the stack top to 	В	В		
 Pop the top of the stacks a 	S	S		
 push the left side of the ru 	\$	\$		

Since PDA is nondeterministic, all rules at the same time will be examined.

- PROOF IDEA: (cont.)
- How can we add the following rule in a PDA?
- Rule: $A \rightarrow BCD$ where A,B,C, and D are nonterminals

We are not allowed to push multiple symbols.

$$\underbrace{\qquad \qquad \epsilon, A \longrightarrow D} \underbrace{\qquad \qquad \epsilon, \epsilon \longrightarrow C} \underbrace{\qquad \qquad \epsilon, \epsilon \longrightarrow D} \underbrace{\qquad \qquad }$$

- PROOF IDEA: (cont.)
- What will be the transition if there is a terminal on top of the stack?

- PROOF IDEA: (cont.)
- The Final PDA

• Example: construct aPDA P1 from the following CFG G.

$$S \to aTb|b$$
$$T \to Ta|\varepsilon$$

 Part2: If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

- We have a PDA P, and we want to make a CFG G that generates all the strings that P accepts.
- G should generate a string if that string causes the PDA to go from its start state to an accept state.

Steps:

- **Step 1:** simplify the PDA
- Step2: Building CFG

- Proof idea: (cont.)
- **Step1:** Simplification by modifying P as below to give it the following three features:
 - 1. It has a single accept state, q_{accept}.

- Proof idea: (cont.)
- **Step1:** Simplification by modifying P as below to give it the following three features:
 - 2. It empties its stack before accepting.

- Proof idea: (cont.)
- **Step1:** Simplification by modifying P as below to give it the following three features:
 - 3. Each transition either pushes a symbol onto the stack (a push move) or pops one off the stack (a pop move), but it does not do both at the same time.

- Proof idea: (cont.)
- **Step1:** Simplification by modifying P as below to give it the following three features:
 - 3. Each transition either pushes a symbol onto the stack (a push move) or pops one off the stack (a pop move), but it does not do both at the same time.

- Proof idea: (Cont.)
- Step2: Building CFG
- For each pair of states p and q in P, the grammar will have a variable A_{pq} .
 - This variable generates all the strings that can take P from p with an empty stack to q with an empty stack.

 such strings can also take P from p to q, regardless of the stack contents at p, leaving the stack at q in the same condition as it was at p.

- Proof idea: (Cont.)
- Step2:
- To design G, we must understand how P operates on the strings generated by A_{pq} .
 - For any such string x, P's first move on x must be a push,
 - Since stack is empty.
 - Similarly, the **last move** on x must be a pop.
 - Since the stack should be empty.

- Proof idea: (Cont.)
- Step2:
- Two possibilities occur during P's computation on x.
- Either the symbol popped at the end is the symbol that was pushed at the beginning, or not.

$$A_{pq} \longrightarrow A_{pr} A_{rq}$$

$$A_{pq} \longrightarrow a A_{rs} b$$