

Detección de gestos heterogéneos mediante few-shot learning

Mario Andreu Villar Raúl Balanzá García

- 1. Introducción
- 2. Trabajos relacionados
- 3. Descripción de la tarea
- 4. Extracción de características
- 5. Arquitectura del modelo y sistema
- 6. Diseño experimental
- 7. Resultados
- 8. Discusión
- 9. Conclusiones
- 10. Trabajo futuro

Introducción

- Tarea compartida del congreso SHREC 2022.
- **Objetivo**: detectar y clasificar gestos a partir de trayectorias 3D de las articulaciones de los dedos.
- Primera aproximación offline para luego adaptarse a un contexto online.
- Few-shot: modelos capaces de generalizar a partir de un conjunto de entrenamiento pequeño.

Trabajos relacionados

Otros trabajos [1]: 3 equipos participantes en la tarea + la propuesta de la organización.

2ST-GCN

- Convolución en grafo
- Dos flujos de datos
 - Flujo espacial
 - Flujo temporal

Causal TCN

- Procesa datos secuenciales
- Capas convolucionales en cascada
- Modela dependencias temporales a largo plazo

TN-FSM

- FSM con 4 estados para detectar si el gesto ha empezado, es la parte del medio o es el final.
- Dos partes: una con Transformers y otra con una FC para clasificar.

Descripción de la tarea

- Conjunto de **288 secuencias** con varios gestos
 - 144 para **train** (anotadas) y 144 para **test** (sin anotar, descartado)
 - Separadas en 576 gestos individuales para entrenar los modelos
- 16 clases: una por cada gesto
 - Se puede añadir una clase adicional cuyo significado es no-gesto
- Tipos de gestos
 - Estáticos: una pose que se mantiene fija
 - Dinámicos: una única trayectoria de la mano
 - **Dinámicos de grano fino**: articulación de los dedos
 - Dinámicos-periódicos: el mismo patrón de movimiento de los dedos se repite
- Los datos son recogidos por un dispositivo HoloLens 2.

Extracción de características

- Formato: datos de los dedos capturados con un dispositivo Hololens2.
 - Secuencias temporales en archivos de texto
 - Cada fila: datos de un marco temporal con coordenadas de 26 articulaciones
 - Cada articulación se caracteriza por 3 floats (posición x, y, z) \rightarrow total: **78 floats**

- Modelo de reconocimiento por gesto
 - **Entrada**: posición de las articulaciones en ventana de n frames $\rightarrow (n \times 78)$
 - Salida: clase
- Sistema total
 - **Entrada**: secuencia de m frames que contienen varios gestos + timestamp $\rightarrow (m \times (78 + 1))$
 - Salida: timestamps de inicio y final de cada gesto + sus etiquetas: bounding ranges

Arquitectura del modelo

- Red **STRONGER** [2] (modificación de las DDNet)
 - Propuesta por los organizadores de la tarea
 - DDNet: red para clasificar señales direccionales
- Nuestra aproximación: versión modificada de STRONGER
 - Utiliza 1D CNNs: rápidas
 - Entrada a la red: 5 inputs -> transformaciones de los joints
 - Joint Collection of Distances (JCD)
 - Joint Pairs' Directions (JPD)
 - Palm Orientation (PO)
 - Slow global motion (Mslow)
 - Fast global motion (Mfast)
 - Estas entradas forman un embedding del gesto

Transformaciones de los joints

Arquitectura del sistema

- La entrada al sistema es una secuencia de frames
 - En la secuencia hay varios gestos (de 3 a 5)
- Se define un tamaño de ventana que se va desplazando
 - En cada desplazamiento → se obtiene con el modelo la probabilidad de haber un gesto

• Caso 2: se encuentra gesto → anotar timestamp de detección

Diseño experimental

Entrenamiento y desarrollo

- k-fold cross-validation con k = 5 en conjunto de train
- 144 secuencias con un total de 576 gestos
- Mediana de duración de cada gesto: <u>36 frames</u>

Test

- Grabación de nuestro propio conjunto de datos con las gafas HoloLens 2
- 16 secuencias con un total de 64 gestos
- Mediana de duración de cada gesto: <u>163 frames</u>
- Reducción de la duración de cada gesto
 - Agrupar frames en bloques de tamaño N y hacer su media
 - Hacer saltos de tamaño N y quedarse con 1 de cada N frames → submuestreo

Resultados

Modelo de reconocimiento de gestos offline

• Entrenado durante 100 epochs

Modelo offline	Accuracy			
Modelo offilite	Desarrollo (k-fold CV)	Test (media)	Test (submuestreo)	
Fully Connected	0.83 ± 0.09	0.46	0.43	
ResNet	0.95 ± 0.04	0.28	0.32	
STRONGER + ResNet	1.00 ± 0.01	0.85	0.88	

Sistema de reconocimiento de gestos online

• Modelo: STRONGER + ResNet

• Si (confianza < threshold) → clasificar en clase **no gesto**

Sistema online	Desarrollo (20% train)		Test (submuestreo)			
Threshold	Accuracy	Recall	F1 score	Accuracy	Recall	F1 score
0.990	0.80	0.76	0.78	0.52	0.58	0.55
0.995	0.81	0.64	0.72	0.56	0.51	0.53
0.999	0.79	0.32	0.46	0.64	0.35	0.45

Discusión

- Los **modelos offline** obtienen <u>muy buenos</u> resultados (alta precisión)
 - Todas las variantes: >80% de precisión en el conjunto de desarrollo
 - Nuestra propuesta obtiene máxima precisión en desarrollo y 88% en test
- El **sistema online** aprende de forma aceptable pero <u>tiene margen de mejora</u>
 - Es necesario ajustar el umbral de confianza
 - A veces el ruido viene del propio etiquetado y no del sistema
 - En ocasiones, se predice un gesto con alta confianza cuando en realidad hay ruido (no-gesto)

Real	Predicción	Confianza
CROSS	V	0.975373
CROSS	V	0.953544
CROSS	V	0.912978
CROSS	NO_GESTO	<0.9
CROSS	NO_GESTO	<0.9
CROSS	NO_GESTO	<0.9
NO_GESTO	NO_GESTO	<0.9
NO_GESTO	NO_GESTO	<0.9
NO_GESTO	NO_GESTO	<0.9

Real	Predicción	Confianza
NO_GESTO	NO_GESTO	<0.9
NO_GESTO	NO_GESTO	<0.9
NO_GESTO	NO_GESTO	<0.9
NO_GESTO	WAVE	0.991562
NO_GESTO	WAVE	0.991737
NO_GESTO	WAVE	0.992262
WAVE	WAVE	0.993068
WAVE	WAVE	0.993068
WAVE	WAVE	0.993149

Conclusiones

- Las transformaciones a las articulaciones ayudan a generalizar mejor.
- Necesario muy buen modelo offline.
- Se debe anotar correctamente el conjunto de datos de entrenamiento.
- Se debe alcanzar un balance entre precisión y *recall* a través del umbral de confianza.
- La técnica de ventana deslizante obtiene buenos resultados en sistemas online.

Trabajo futuro

• Se deben generar más datos con un mejor proceso de anotación.

- Propuestas para mejorar modelos y sistemas:
 - Probar a utilizar redes recurrentes
 - Utilizar un modelo preentrenado de gestos + proceso de finetuning
 - No hay buenos modelos preentrenados de gestos disponibles (aún)
 - Entrenar los modelos offline con una clase no-gesto
 - Se entrenaría con el ruido de las grabaciones entre cada gesto

Referencias

- [1] Caputo, A., Emporio, M., Giachetti, A., Cristani, M., Borghi, G., D'Eusanio, A., ... & von Tycowicz, C. (2022). SHREC 2022 Track on Online Detection of Heterogeneous Gestures. *arXiv* preprint arXiv:2207.06706.
- [2] Emporio, M., Caputo, A., & Giachetti, A. (2021). STRONGER: Simple trajectory-based online gesture recognizer. 10.2312/stag.20211481

¡Gracias por vuestra atención!

Detección de gestos heterogéneos mediante few-shot learning

Mario Andreu Villar Raúl Balanzá García

