LIMBAJE FORMALE ŞI AUTOMATE

CURSUL 5

GRAMATICI FORMALE CHOMSKY

Gramaticile ne furnizează mecanisme de <u>generare</u> a limbajelor, spre deosebire de automate care sunt mecanisme de <u>acceptare</u> sau de <u>recunoaștere</u> de limbaje. De aceea, automatele se mai numesc și acceptoare.

Vom da pentru început cea mai generală definiție pentru gramatici, introdusă de Naum Chomsky în 1950, pentru a modela limbajele naturale. Vom particulariza această definiție pentru gramaticile independente de context, liniare și regulate.

Definiție 1. O gramatică formală are o structură de forma $G = (N, \Sigma, S, P)$, unde:

- *N* este alfabetul neterminalilor;
- Σ este alfabetul terminalilor, $\Sigma \cap N = \emptyset$;
- $S \in N$ este simbolul de start al gramaticii;
- P este o multime finita, $P \subseteq (N \cup \Sigma)^*N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$, ale cărei elemente se numesc <u>producții</u>. Pentru fiecare pereche $(\alpha, \beta) \in P$ vom scrie $\alpha \to \beta$. Observăm că <u>membrul stâng</u> al acestei producții, α , este un șir de simboluri din $(N \cup \Sigma)^*N(N \cup \Sigma)^*$, in care apare cel putin un simbol neterminal, iar <u>membrul drept</u> al productiei, β , este un șir de simboluri din $(N \cup \Sigma)^*$, posibil λ .

Definiție 2. Fie $G = (N, \Sigma, S, P)$, o gramatică definită ca mai sus, $\alpha, \beta \in (N \cup \Sigma)^*$.

• Spunem că din α se derivă direct β în G (sau că β este derivat direct din α in G) și scriem $\alpha \underset{G}{\Rightarrow} \beta$ (sau $\alpha \Rightarrow \beta$ cand G este subânțeles) dacă $\alpha = uxv, \beta = uyv$ și $x \rightarrow y \in P$. Cu alte cuvinte, subșirul x din α este înlocuit cu y.

- Spunem că din α se derivă β în G (sau că β este derivat din α în G) și scriem $\alpha \stackrel{*}{\Rightarrow}_G \beta$ (sau $\alpha \stackrel{*}{\Rightarrow} \beta$ cand G este subânțeles) dacă: fie $\alpha = \beta$, fie există $\alpha_1, \ldots, \alpha_n = \beta, \alpha_1, \ldots, \alpha_n \in (N \cup \Sigma)^*$ și $\alpha \stackrel{*}{\Rightarrow} \alpha_1, \alpha_1 \stackrel{*}{\Rightarrow} \alpha_2, \ldots, \alpha_{n-1}$ $\stackrel{*}{\Rightarrow} \alpha_n, n \geq 1$. În acest caz spunem că $\alpha \stackrel{*}{\Rightarrow}_G \beta$ este o derivare în n pași, pe care o putem nota $\alpha \stackrel{*}{\Rightarrow}_G \beta$ sau $\alpha \stackrel{*}{\Rightarrow}_G \alpha_1 \stackrel{*}{\Rightarrow} \alpha_2 \stackrel{*}{\Rightarrow} \ldots \stackrel{*}{\Rightarrow} \alpha_{n-1} \stackrel{*}{\Rightarrow} \alpha_n$. Pentru cazul $\alpha = \beta$ spunem că $\alpha \stackrel{*}{\Rightarrow}_G \beta$ este o derivare în $\alpha \stackrel{*}{\Rightarrow}_G \beta$ pași.
- În cazul în care $\alpha \stackrel{n}{\Rightarrow}_G \beta$, $n \ge 1$, putem scrie $\alpha \stackrel{+}{\Rightarrow}_G \beta$
- În cazul în care $S \stackrel{*}{\Rightarrow}_G \alpha$, $\alpha \in (N \cup \Sigma)^*$, spunem că α este o <u>formă sentențială</u> pentru G.

Definiție 3. Fie $G = (N, \Sigma, S, P)$, o gramatică definită ca mai sus. Limbajul generat de gramatica G se notează cu L(G) și este definit prin

$$L(G) = \{ w \in \Sigma^* | S \stackrel{*}{\Rightarrow}_G w \}$$

Limbajul generat de G constă din mulțimea șirurilor terminale care sunt derivate din simbolul de start al gramaticii.

GRAMATICI ȘI LIMBAJE INDEPENDENTE DE CONTEXT

Gramaticile independente de context sunt cel mai mult utilizate in specificarea sintaxei unui limbaj de programare. Formal:

Definiție 4. Fie $G = (N, \Sigma, S, P)$ o gramatică Chomsky. Spunem că G este independentă de context dacă orice producție din P este de forma

$$A \to \alpha$$
, unde $A \in N$, $\alpha \in (N \cup \Sigma)^*$

Observații.

- 1. $P \subseteq N \times (N \cup \Sigma)^*$;
- 2. Multimile N, Σ , P sunt finite;
- 3. Producția $A \rightarrow \alpha$ mai este numită și A-producție.

- 4. Dacă toate producțiile lui A sunt $A \to \alpha_1, ..., A \to \alpha_n$, pentru simplificare putem folosi notația $A \to \alpha_1 | ... | \alpha_n$
- 5. În general, notăm cu litere mari simbolurile neterminale

Exemple.

1. Gramatică care genereaza $\{a^nb^n|n\geq 0\}$

$$G_1 = (\{S\}, \{a, b\}, S, \{S \to aSb, S \to \lambda\})$$

O derivare in G este de forma

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow a^nSb^n \Rightarrow a^nb^n$$

2. Gramatică care genereaza $\{a^m b^n | m \ge n \ge 0\}$

$$G_2 = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow aS, S \rightarrow \lambda\})$$

3. Gramatică care genereaza expresiile formate cu ajutorul operatorilor

+, -,*, () și a operandului
$$a$$

 $G_3 = (\{S\}, \{a, +, -, *, (,)\}, S, \{S \to S + S, S \to S - S, S \to S * S, S \to a, S \to S + S, S \to S + S,$

$$G_3 = (\{S\}, \{a, +, -, *, (,)\}, S, \{S \to S + S, S \to S - S, S \to S * S, S \to a, S \to (S)\}$$

4. Gramatica G_4 care generează șirurile palindroame peste $\{a,b\}$ (w este palindrom dacă șirul obținut prin citirea de la dreapta la stânga a literelor lui w este identic cu w; exemple: λ , a, b, aba, abba)

 G_4 are producțiile

$$S \rightarrow aSa, S \rightarrow bSb, S \rightarrow a, S \rightarrow b, S \rightarrow \lambda$$

5. Gramatică care generează șirurile w peste $\{a,b\}$ pentru care numărul aparițiilor lui a în w, notat cu $|w|_a$, este egal cu numărul aparițiilor lui b în w, notat cu $|w|_b$.

Fie
$$G_5$$
 cu producțiile $S \rightarrow aSb \mid bSa \mid SS \mid S \rightarrow \lambda$

Observație. Pentru a arăta că pentru G_i limbajul generat, $L(G_i)$, este cel indicat în exemplul i, i = 1, ..., 5, trebuie folosită dubla incluziune. Spre exemplu:

Propoziția 1. Limbajul generat de gramatica G_5 cu producțiile $S \rightarrow aSb \mid bSa \mid SS \mid S \rightarrow \lambda$ este $L_5 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$

Demonstratie. Aratam mai intai ca $L(G_5) \subseteq L_5$.

Fie $w \in L(G_5)$, $S \stackrel{n}{\Rightarrow} w$, $w \in \{a, b\}^*$. Aratam prin inductie dupa n ca $w \in L_5$

Baza inductiei. Pentru n=1, rezulta ca $w=\lambda$, iar $\lambda\in L_5$.

Ipoteza inductiva. Presupunem ca pentru orice $p \le n$ si pentru orice w cu $S \stackrel{p}{\Rightarrow} w$ avem $w \in L_5$.

Saltul inductiv. Fie $S \stackrel{n+1}{\Longrightarrow} z$. Vom pune în evidență primul pas al derivării. Avem 3 cazuri:

- a) $S \Rightarrow aSb \stackrel{n}{\Rightarrow} z$. Rezultă că z = az'b si $S \stackrel{n}{\Rightarrow} z'$. Din ipoteza de inductie rezulta ca $|z'|_a = |z'|_b$. Dar atunci rezulta ca $|z|_a = |z|_b$.
- b) $S \Rightarrow bSa \stackrel{n}{\Rightarrow} z$. Analog cazului a).
- c) $S \Rightarrow SS \stackrel{n}{\Rightarrow} z$. Rezulta ca $z = z_1 z_2$ si $S \stackrel{\leq n}{\Rightarrow} z_1$, $S \stackrel{\leq n}{\Rightarrow} z_2$. Din ipoteza de inducție avem $|z_1|_a = |z_1|_b$, $|z_2|_a = |z_2|_b$, de unde rezulta ca $|z|_a = |z|_b$.

Reciproc, arătăm că $L_5 \subseteq L(G_5)$. Fie $w \in L_5$, $|w|_a = |w|_b$. Aratam prin inductie dupa $n = |w|_a$ ca $w \in L(G_5)$.

Baza inductiei. Pentru n = 0, rezulta ca w = λ si $\lambda \in L(G_5)$.

Ipoteza inductiva. Presupunem ca pentru orice $w \in L_5$, $|w|_a = |w|_b = p$, $p \le n$, rezulta $w \in L(G_5)$.

Saltul inductiv. Fie $z \in L_5$, $|z|_a = |z|_b = n + 1$. Avem cazurile:

a) z = awb, $|w|_a = |w|_b = n$. Din ipoteza de inductie $w \in L(G_5)$, deci $S \stackrel{*}{\Rightarrow} w$.

Atunci in *G* avem derivarea $S \Rightarrow aSb \stackrel{*}{\Rightarrow} awb = z$, deci $z \in L(G_5)$.

- b) z = bwa, $|w|_a = |w|_b = n$. Analog cazului a).
- c) z = awa, $|w|_a = n 1$, $|w|_b = n + 1$. Fie $z = a_1a_2 \dots a_{2n}$, $z_i = a_1 \dots a_i$, $a_1 = a_{2n} = a$ si functia definita prin $f(i) = |z_i|_a |z_i|_b$. Avem $f(1) = a_1 + a_2 + a_3 + a_4 + a_4 + a_5 +$

1, f(2n-1) = -1. Rezulta ca exista $j, 2 \le j \le 2n-2$ astfel incat f(j) = 0.

Luam $u=a_1a_2\dots a_j$, $v=a_{j+1}\dots a_{2n}$, z=uv. Avem $|u|_a=|u|_b$, deci $|v|_a=|v|_b$.

Conform ipotezei de inductie $u, v \in L(G_5)$, deci $S \stackrel{*}{\Rightarrow} u$ si $S \stackrel{*}{\Rightarrow} v$. Atunci in G avem derivarea $S \Rightarrow SS \stackrel{*}{\Rightarrow} uv = z$, deci $z \in L(G_5)$.

GRAMATICI ŞI LIMBAJE REGULATE

Definiție 5. Fie $G = (N, \Sigma, S, P)$ o gramatică independentă de context. Spunem că G este o gramatică regulată dacă orice producție din P are una din formele

$$A \rightarrow aB$$
, unde $B \in N$, $a \in \Sigma \cup \{\lambda\}$
 $A \rightarrow b$, unde $b \in \Sigma \cup \{\lambda\}$

Propoziția 2. Limbajul generat de o gramatică regulată este un limbaj regulat.

Demonstratie. Fie $G = (N, \Sigma, S, P)$ o gramatică regulata. Construim AFN_{λ} $A = (N \cup \{f\}, \Sigma, \delta, S, \{f\})$, unde $\delta(A, a) = \{B | A \rightarrow aB \in P\}$ si $\delta(A, a) = \{f\}$ daca si numai daca $A \rightarrow a \in P$. Aratam ca L(G) = L(A).

Fie $w \in \Sigma^*, A \in N$ si $A \stackrel{n}{\Rightarrow} w, n \ge 1$. Aratam prin inductie dupa n ca $(A, w) \vdash^* (f, \lambda)$.

Baza. n=1. Rezulta ca $A \to w \in P, w \in \Sigma \cup \{\lambda\}$, deci $\delta(A,w)=\{f\}$, adica $(A,w) \vdash (f,\lambda)$.

Ipoteza de inductie. Presupunem ca pentru orice $w \in \Sigma^*$ si orice $A \in N$ cu $A \stackrel{n}{\Rightarrow} w, n \ge 1$, avem $(A, w) \vdash^* (f, \lambda)$.

Saltul inductiv. Fie $A \stackrel{n+1}{\Longrightarrow} w$. Punem in evidenta primul pas al acestei derivari, $A \Rightarrow aB \stackrel{n}{\Rightarrow} w$, unde $A \rightarrow aB \in P$. Rezulta ca $w = az, B \stackrel{n}{\Rightarrow} z$. Din definitia lui δ avem ca $\delta(A, a) = B$, iar din ipoteza de inductie rezulta $(B, z) \vdash^* (f, \lambda)$. Atunci $(A, w) = (A, az) \vdash (B, z) \vdash^* (f, \lambda)$.

Pentru A = S, rezulta ca $S \stackrel{n}{\Rightarrow} w$ implica $(S, w) \vdash^* (f, \lambda)$, adica $w \in L(G)$ implica $w \in L(A)$, cu alte cuvinte $L(G) \subseteq L(A)$.

Reciproc, aratam ca $L(A) \subseteq L(G)$. Pentru aceasta se arata ca daca $(A, w) \vdash^n (f, \lambda)$ atunci $A \stackrel{n}{\Rightarrow} w$ prin inductie dupa n. **EXERCITIU**

Propoziția 3. Orice limbaj regulat este acceptat de o gramatica regulata.

Demonstratie. Fie $L \subseteq \Sigma^*$ un limbaj regulat acceptat de AFN $A = (Q, \Sigma, \delta, s, F)$. Construim gramatica regulata $G = (N, \Sigma, S, P)$ cu N = Q, S = s, P definita prin

$$P = \{p \to aq | q \in \delta(p, a)\} \cup \{p \to \lambda | p \in F\}$$

Aratam ca L(A) = L(G). Fie $w \in \Sigma^*$. Avem urmatoarele echivalente:

$$w \in L(A) \Leftrightarrow s \xrightarrow{n} w \Leftrightarrow s \Rightarrow a_1 q_1 \Rightarrow \dots \Rightarrow a_1 \dots a_n q_n \Rightarrow a_1 \dots a_n = w \Leftrightarrow s \Rightarrow a_1 q_1 \in P, \dots, q_{n-1} \Rightarrow a_n q_n, q_n \Rightarrow \lambda, q_n \in F \Leftrightarrow q_1 \in \delta(s, a_1), \dots, q_n \in \delta(q_{n-1}, a_n), q_n \in F \Leftrightarrow (s, a_1 \dots a_n) \vdash (q_1, a_2 \dots a_n) \vdash \dots \vdash (q_n, \lambda) \Leftrightarrow a_1 \dots a_n = w \in L(A).$$
Rezulta ca $L(A) = L(G)$.

Teoremă. Familia limbajelor generate de gramaticile regulate, notată cu \mathfrak{L}_{REG} , este egala cu familia limbajelor regulate.

Demonstratie. Rezulta din Propozitiile 1 si 2

Exemple de gramatici regulate.

- 1. $S \rightarrow aS \mid bS \mid \lambda$. Aceasta gramatica genereaza $\{a, b\}^*$.
- 2. $S \rightarrow aA$, $A \rightarrow bB$, $A \rightarrow aS$, $S \rightarrow \lambda$. Aceasta gramatica genereaza $\{aba\}^*$.