Discrete aths

2. Loop Invariants

- Objectives
 - to show the use of induction for proving properties of code involving loops
 - use induction to prove that functions work
 - introduce pre- and post- conditions, loop termination

Overview

- 1. What is a Loop Invariant?
- 2. Three simple examples
 - they involve while loops
- 3. Selection Sort

4. Further Information

1. What is a Loop Invariant?

 A loop invariant is an inductive statement which says something which is always true about a program loop.

- Loop invariants are useful for:
 - code specification
 - debugging

- A loop invariant is typically written as an inductive statement S(n), where n is some changing element of the loop. For example:
 - the loop counter/index
 - a loop variable which changes on each iteration

2.1. Example 1

```
int square(int val)
  int result = 0;
  int counter = 0;
  while (counter < val) {</pre>
    result += val;
    counter++;
  return result;
```

Problem: does this function work?

Pre- and Post-conditions

- We assume that val is a positive integer
 - the precondition for this function

- square() always returns val²
 - the postcondition
 - we will use the loop invariant to show that this is true

The Loop Invariant

To make the proof clearer, let counter_n and result_n be the values of counter and result after passing round the loop n times.

• Loop invariant S(n):

result_n = val * counter_n

- is this true in the loop for all $n \ge 0$?

Basis

- S(0) is when the loop has not yet been executed.
 - $result_0 = counter_0 = 0$
- So:

- result_o = val * counter_o
- which means that S(0) is true.

Induction

 We assume that S(k) is true for some k >= 0, which means that:

$$result_k = val * counter_k$$
 (1)

After one more pass through the loop:

$$result_{k+1} = result_k + val$$
 (2)

$$counter_{k+1} = counter_k + 1$$
 (3)

• Substitute the rhs of (1) for the 1st operand of the rhs of (2):

```
result<sub>k+1</sub> = (val * counter<sub>k</sub>) + val
= val * (counter<sub>k</sub> + 1)
= val * counter<sub>k+1</sub> (by using (3))
```

- this is S(k+1), which is therefore true.

- For the loop, we now know:
 - -S(0) is true
 - S(k) --> S(k+1) is true

- That means S(n) is true for all n >= 0
 - for all n >= 0, the loop invariant is true:
 result_n = val * counter_n

Termination

- The loop does actually terminate, since counter is increasing, and will reach val.
- At loop termination (and function return):

```
counter<sub>n</sub> = val
```

• So in S(n):

```
result<sub>n</sub> = val * val
= val<sup>2</sup>
```

So the postcondition is true.

2.2. Example 2

Problem: does this function work?

```
int exp(int b, int m)
// return b<sup>m</sup>
{
  int res = 1;
  while (m > 0) {
    res = res * b;
    m = m - 1;
  }
  return res;
}
```


Pre- and Post-conditions

- We assume b and m are non-negative integers
 - the preconditions for this function
- exp() always returns b^m
 - the postcondition
 - we will use the loop invariant to show that this is true

The Loop Invariant

• To clarify the proof, let res_n and m_n be the values of res and m after passing round the loop n times.

• Loop invariant S(n):

$$res_n * b^{m_n} = b^m$$

- is this true in the loop for all $n \ge 0$?

Inventing this is the hardest part.

Basis

• S(0) is when the loop has not yet been executed.

$$- res_0 = 1; m_0 = m$$

• So:

$$1 * b^{m} = b^{m}$$

- which means that S(0) is true.

Induction

 We assume that S(k) is true for some k >= 0, which means that:

$$res_k * b^{m_k} = b^m$$
 (1)

After one more pass through the loop:

$$res_{k+1} = res_k * b$$
 (2)

$$m_{k+1} = m_k - 1$$
 (3)

Rearrange the equations:

$$res_k = res_{k+1} / b$$
 (2')
 $m_k = m_{k+1} + 1$ (3')

• Substitute the right hand sides of (2') and (3') into (1):

```
(res_{k+1}/b)*b^{(m_{k+1+1})} = b^m
which is
res_{k+1}*b^{(m_{k+1+1-1})} = b^m
which is
res_{k+1}*b^{m_{k+1}} = b^m
```


• S(k+1) is:

$$res_{k+1} * b^{m_{k+1}} = b^m$$
 (4)

 So we have shown S(k+1) is true by using S(k).

- For the loop, we now know:
 - -S(0) is true
 - S(k) --> S(k+1) is true

- That means S(n) is true for all n >= 0
 - for all n >= 0, the loop invariant is true: $res_n * b^{m_n} = b^m$

Termination

- The loop does actually terminate, since m is decreasing, and will reach o.
- At loop termination (and function return):

$$m_n = 0$$

• So in S(n):

$$res_n * b^0 = b^m$$

so $res_n = b^m$

• So the *postcondition is true*

2.3. Example 3

```
int factorial(int num)
  int i = 2i
  int fact = 1;
  while (i <= num) {</pre>
    fact = fact * i;
    <u>i++;</u>
  return fact;
```

Problem: does this function work?

Pre- and Post-conditions

- We assume num is a positive integer
 - the precondition for this function

- factorial() always returns num!
 - the postcondition
 - we will use the loop invariant to show that this is true

The Loop Invariant

To clarify the proof, let fact_n and i_n be the values of fact and i after passing round the loop n times.

Loop invariant S(n):

$$fact_n = (i_n - 1)!$$

- is this true in the loop for all $n \ge 0$?

Basis

 S(0) is when the loop has not yet been executed.

$$-i_0 = 2$$
; fact₀ = 1

• So:
$$fact_0 = (i_0 - 1)!$$

 $1 = (2 - 1)!$
 $1 = 1$

which means that S(0) is true.

Induction

 We assume that S(k) is true for some k >= 0, which means that:

$$fact_{k} = (i_{k}-1)! \tag{1}$$

After one more pass through the loop:

$$fact_{k+1} = fact_k * i_k$$
 (2)

$$\mathbf{i}_{\mathbf{k+1}} = \mathbf{i}_{\mathbf{k}} + 1 \tag{3}$$

 Substitute the rhs of (1) for the 1st operand of the rhs of (2):

fact_{k+1} =
$$(i_k - 1)! * i_k$$

= $(i_k)!$
= $(i_{k+1} - 1)!$ (by using (3))

- this is S(k+1), which is therefore true.

- For the loop, we now know:
 - -S(0) is true
 - S(k) --> S(k+1) is true

- That means S(n) is true for all n >= 0
 - for all n >= 0, the loop invariant is true: $fact_n = (i_n - 1)!$

Termination

- The loop does actually terminate, since i is increasing, and will reach num+1.
- At loop termination (and function return):

```
i_n = num + 1
```

• So in S(n):

```
- fact_n = (i_n - 1)!
= (num + 1 - 1)! = num!
```

So the postcondition is true.

3. Selection Sort

```
void selectionSort(int A[], int num)
  int i, j, small, temp;
  for (i=0; i < num-1; i++) {
    small = i;
                                            put index of
    for( j = i+1; j < num; j++)
                                           smallest value
      if (A[j] < A[small])
         small = j;
                                          in A[i .. num-1]
    temp = A[small];
                                             into small
    A[small] = A[i];
    A[i] = temp;
                                       swap A[small]
                                         and A[i]
```


selectionSort(A, 4);

Execution Highlights

Start 1st iteration:

Start 2nd iteration:

Start 3rd iteration:

Start 4th iteration:

Pre- and Post-conditions

- We assume num is a positive integer, which contains the number of elements in the array
 - the *precondition* for this function
- selectionSort() sorts the array into ascending order
 - the postcondition
 - we will use the loop invariant to show that this is true

3.1. Consider the Inner Loop

```
small = i;
for( j= i+1; j < num; j++)
  if (A[j] < A[small])
    small = j;</pre>
```

Put index of smallest value in A[i .. num-1] into small

Pre- and Post-conditions

- We assume i is a positive integer, which is an index into the array
 - the precondition for this part of the code
- This code finds the index of the smallest value in A[i..num-1]
 - the postcondition
 - we will use the loop invariant to show that this is true

The Inner Loop Invariant

• To clarify the proof, let $small_n$ and j_n be the values of small and j after passing round the loop n times.

• Loop invariant S(n):

small_n is the index of the smallest of A[i .. j_{n-1}]

- is this true in the loop for all $n \ge 0$?

Execution Highlights

loop ends

i

Basis

 S(0) is when the loop has not yet been executed.

$$- small_0 = i; j_0 = i+1$$

So: small₀ is the index of the smallest of A[i .. j₀-1]
 which is A[i..(i+1-1)], or A[i..i], or A[i]

That means that S(0) is true.

Induction

We assume that S(k) is true for some k >= 0, which means that:
 small_k is the index of the smallest of A[i .. j_k-1]

 The pass through the loop involves two possible branches because of the if.

- Case 1. If $A[j_k]$ is not smaller than the smallest of $A[i...j_{k-1}]$
 - then $small_{k+1} = small_k$ (no change)
- Case 2. If $A[j_k]$ is smaller than the smallest of $A[i... j_k-1]$
 - then $small_{k+1} = j_k$

- At the end of the pass:
 - small_{k+1} is the index of the smallest of $A[i..j_k]$
 - $-j_{k+1} = j_k + 1$
- S(k+1) is:
 - small_{k+1} is the index of the smallest of A[i .. j_{k+1} -1]
- So S(k+1) is true.

- For the inner loop, we now know:
 - -S(0) is true
 - S(k) --> S(k+1) is true

- That means S(n) is true for all n >= 0
 - for all n >= 0, the inner loop invariant is true: small_n is the index of the smallest of A[i .. j_n-1]

Termination

- The loop does actually terminate, since j is increasing, and will reach num.
- At loop termination:

$$j_n = num$$

- So in S(n):
 - small_n is the index of the smallest of A[i .. j_n-1], or A[i..num-1]
- So the postcondition is true.

The inner loop

3.2 The Outer Loop

```
void selectionSort(int A[], int num)
  int i, j, small, temp;
  for (i=0; i < num-1; i++) {
   small = i;
    for( j= i+1; j < num; j++)
      if (A[j] < A[small])
                                       proved
        small = i;
    temp = A[small];
    A[small] = A[i];
    A[i] = temp;
```


The Outer Loop Invariant

• To clarify the proof, let i_m be the value of i after passing round the loop m times.

Informal loop invariant T(m):

i_m indicates that we have selected m of the smallest elements and sorted them at the beginning of the array.

Graphically

More Formally

- Loop invariant T(m):
 - a) A[0..i_m-1] are in sorted order;
 - b) All of $A[i_m..num-1]$ are >= all of $A[0..i_{m-1}]$

Basis

- T(0) is when the loop has not yet been executed. i₀=0
 - a) Range is A[0..-1], which means no elements.
 - b) Range is A[0..num-1] which means everything > A[0..-1]
- So T(0) is true.

Induction

- We assume that T(k) is true for some k >= 0, which means that:
 - a) A[0..i_k-1] are in sorted order;
 - b) All of $A[i_k..num-1]$ are >= all of $A[0..i_{k-1}]$

- By the end of the inner loop, we know that A[small] is the smallest element in A[i_k..num-1]
 - the postcondition of the inner loop
- The next three lines swap A[small] and A[i_k]
 - now A[i_k] contains the smallest element

Graphically swapped

- By the end of the outer loop, we know:
 - -a) A[0..i_k] are in sorted order;
 - b) All of $A[i_k+1..num-1]$ are >= all of $A[0..i_k]$

$$-\mathbf{i}_{k+1} = \mathbf{i}_k + 1$$

This shows that T(k+1) is true.

- For the outer loop, we now know:
 - -T(0) is true
 - T(k) --> T(k+1) is true
- That means T(m) is true for all m >= 0
 - a) A[0..i_m-1] are in sorted order;
 - b) All of $A[i_m..num-1]$ are >= all of $A[0..i_{m-1}]$

Termination

• The outer loop does actually terminate, since i is increasing, and will reach num-1.

At loop termination (and function return):

$$i_m = num - 1$$

- So in T(m):
 - a) A[0..i_m-1] are in sorted order
 - so A[0..num-1-1] is sorted
 - so A[0..num-2] is sorted

all the array up to the last element is sorted

- b) All of $A[i_m..num-1]$ are >= all of $A[0..i_{m-1}]$
- so, A[num-1..num-1] >= all A[0..num-1-1]
- so, A[num-1] >= all A[0..num-2]
- so the last element is bigger than all the other array elements
- So the function does sort the array into ascending order: the postcondition is true

4. Further Information

 Discrete Mathematics Structures in Computer Science
 B. Kolman & R. C. Busby
 Prentice-Hall, 1987, 2nd ed.
 Section 1.6

