Template for the Assignment

Table of Contents

CHAPTER 1: Introduction (100 words)

As data scientist, I need to develop a model to solve the missing values in two variables, MARITAL_STATUS and LOAN_AMOUNT variables. The prediction model used was Logistic regression. Before the model is apply, the data need to be cleansed first then replace the missing values with appropriate values.

CHAPTER 2: Experimentation

2.1 Create a folder on SAS

2.1.1 Explanation

First create a permanent folder dataset. This folder stores the uploaded dataset(s) that use for this project. This dataset will be temporarily store in the created folder.

2.1.2 Screenshot(s)

2.2 Create a permanent library on SAS

2.2.1 Explanation

The SAS datasets/files are stored permanently on the created library while creating SAS datasets. Only eight characters is allowed for naming the library. Linked the created folder to the new created permanent library.

2.2.2 Screenshot

2.3 Upload the datasets DATASET_TRAINING_DS & DATASET_TESTING_DS to the folder DAP----

2.3.1 Explanation

We have to upload the datasets to the created project folder. Before starts to code.

2.3.2 Screenshots

2.4 Import the datasets DATASET_TRAINING_DS & DATESET_TESTING_DS to the newly created library.

2.4.1. Explanation

Before proceeding with the code, let's import the datasets DATASET_TRAINING_DS & DATESET TESTING DS to the newly created library which is DMLIBMFR.

2.4.2 Screenshots

2.5 Display the structure (data dictionary) of the training dataset: TRAINING_DS

2.5.1 SAS Codes

```
TITLE1 'Structure/Data Dictionary of the dataset - DMLIBMFR.TRAINING_DS';
PROC CONTENTS DATA = DMLIBMFR.TRAINING_DS;
RUN;
```

2.5.2 Screenshot(s)/Output(s)

			The CONTENTS Procedure					
Data	Set Name	Observations	61					
Men	nber Type	DATA		Variables	10			
Eng	ine	V9		Indexes	0			
Crea	ated	03/16/2022	14:54:22	Observation Length	80			
Last	Modified	03/16/2022	14:54:22	Deleted Observations	0			
Prot	ection			Compressed	N			
Data	Set Type			Sorted	N			
Lab	el							
Data	Representation	SOLARIS_X	(86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64					
Enc	oding	utf-8 Unicod	e (UTF-8)					
	Data Set Page S	ize	131072					
			Engine/Host Dependent Information					
	Number of Data	Set Pages	1					
	First Data Page		1					
	Max Obs per Pa	ge	1635					
	Obs in First Data	a Page	614					
	Number of Data	Set Repairs	0					
	Filename		/home/u61014881/DM_CT_MAR_2022_PROJECT_AMIE/training_ds.sas7bdat					
	Release Created		9.0401M6					
	Host Created		Linux					
	Inode Number		31590072					
	Access Permiss	ion	[W-[[
	Owner Name		u61014881					
	File Size		256KB					

Alphabetic List of Variables and Attributes								
#	Variable	Туре	Len	Format	Informat			
5	CANDIDATE_INCOME	Num	8	BEST12.	BEST32.			
2	GENDER	Char	6	\$6.	\$6.			
6	LOAN_AMOUNT	Num	8	BEST12.	BEST32.			
10	LOAN_APPROVAL_STATUS	Char	1	\$1.	\$1.			
7	LOAN_DURATION	Num	8	BEST12.	BEST32.			
8	LOAN_HISTORY	Num	8	BEST12.	BEST32.			
9	LOAN_LOCATION	Char	7	\$7.	\$7.			
3	MARITAL_STATUS	Char	11	\$11.	\$11.			
4	QUALIFICATION	Char	14	\$14.	\$14.			
1	SME_LOAN_ID_NO	Char	8	\$8.	\$8.			

2.5.3 Explanation

The detail structure / data dictionary of the dataset – DMLIBMFR.TRAINING_DS. Furthermore, it also provided the list of attributes. It also shows our folder location.

- 2.6 Univariate Analysis of variables found in the dataset DMLIBMFR.TRAINING_DS.
- 2.6.1 Univariate Analysis of the categorical variable: GENDER

2.6.1 SAS Codes

```
TITLE1 'Figure 1 Univariate Analysis of the Categorical variable: Gender';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;
TABLE GENDER;
RUN;

* This code display a barchart of Gender*/
ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
VBAR GENDER;
Title 'Figure 2 Univariate Analysis of the Categorical variable: Gender';
RUN;
```

2.6.2 Screenshot(s)/Output(s)

2.6.3 Explanation

In Figure 1 shows there are two categorical variable of GENDER which are According to Figures 1 and 2, the frequency of Male is higher than females. Besides that, Figure 1 shows Male have a high percentage cumulative frequency and percentage than females.

2.7 Univariate Analysis of the categorical variable: LOAN_LOCATION

2.7.1 SAS Codes

```
TITLE1 'Figure 3 Univariate Analysis of the Categorical variable: LOAN_LOCATION';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;
TABLE LOAN_LOCATION;
RUN;

/* This code display a barchart of LOAN_LOCATION*/
ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
VBAR LOAN_LOCATION;
Title 'Figure 4 Univariate Analysis of the Categorical variable: LOAN_LOCATION';
RUN;
```

2.7.2 Screenshot(s)/Output(s)

2.7.3 Explanation

In Figure 3 shows there are three categorical variables of LOAN_LOCATION which are City, Town and village. From the figures above, the LOAN_LOCATION variable has a high frequency at Town, followed by City and then the Village.

2.8 Univariate Analysis of the categorical variable: MARITAL_STATUS

2.8.1 SAS Codes

```
TITLE1 'Figure 5 Univariate Analysis of the Categorical variable: MARITAL_STATUS';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;
TABLE MARITAL_STATUS;
RUN;

* This code display a barchart of MARITAL_STATUS*/
ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
VBAR MARITAL_STATUS;
Title 'Figure 6 Univariate Analysis of the Categorical variable: MARITAL_STATUS';
RUN;
```

2.8.2 Screenshot(s)/Output(s)

Figure 5 Univariate Analysis of the Categorical variable: MARITAL_STATUS

The FREQ Procedure

MARITAL_STATUS	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
Married	398	65.14	398	65.14				
Not Married	213	34.86	611	100.00				
Frequency Missing = 3								

----End----

2.8.3 Explanation

The Figure 5 shows there are two categorical variables of MARITAL_STATUS which are married and not married. In this analysis, we encounter some issue. The Figure 5 shows among 614 observations there are 3 observations is missing.

2.9 Univariate Analysis of the categorical variable: QUALIFICATION

2.9.1 SAS Codes

```
TITLE1 'Figure 7 Univariate Analysis of the Categorical variable: QUALIFICATION';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;
TABLE QUALIFICATION;
RUN;

* This code display a barchart of QUALIFICATION*/
ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
VBAR QUALIFICATION;
Title 'Figure 8 Univariate Analysis of the Categorical variable: QUALIFICATION';
RUN;
```

2.9.2 Screenshot(s)/Output(s)

2.9.3 Explanation

Figure 7 shows there are two categorical variables of QUALIFICATION: graduate and undergraduate. It shows the graduate has a high frequency than the undergraduate. Followed by percent and cumulative percent. But low cumulative frequency than undergraduate.

2.10 Univariate Analysis of the categorical variable: LOAN_HISTORY

2.10.1 SAS Codes

```
TITLE1 'Figure 9 Univariate Analysis of the Categorical variable: LOAN_HISTORY';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;
TABLE LOAN_HISTORY;
RUN;

/* This code display a barchart of LOAN_HISTORY*/
ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
VBAR LOAN_HISTORY;
Title 'Figure 10 Univariate Analysis of the Categorical variable: LOAN_HISTORY';
RUN;
```

2.10.2 Screenshot(s)/Output(s)

2.10.3 Explanation

Figure 9 shows there are two categorical variables of LOAN_HISTORY: two numeric values, 0 and 1. It shows that LOAN_HISTORY at 0 has 14.50 % that might have loan, not yet settle. In addition, the LOAN_HISTORY at 1 shows 85.5% settled their loan payment.

2.11 Univariate Analysis of the continuous variable: LOAN_APPROVAL_STATUS

2.11.1 SAS Codes

```
TITLE1 'Figure 11 Univariate Analysis of the Categorical variable: LOAN_APPROVAL_STATUS';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;
TABLE LOAN_APPROVAL_STATUS;
RUN;

* This code display a barchart of LOAN_APPROVAL_STATUS*/
ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
VBAR LOAN_APPROVAL_STATUS;
Title 'Figure 12 Univariate Analysis of the Categorical variable: LOAN_APPROVAL_STATUS';
RUN;
```

2.11.2 Screenshot(s)/Output(s)

Figure 11 Univariate Analysis of the Categorical variable: LOAN_APPROVAL_STATUS

The FREQ Procedure

LOAN_APPROVAL_STATUS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
N	192	31.27	192	31.27
Υ	422	68.73	614	100.00

----End----

2.11.3 Explanation

Figure 11 shows there are two categorical variables of LOAN_APPROVAL_STATUS: two values, N and Y. It shows that at Y have high amounts of LOAN_APPROVAL_STATUS than at N.

2.12 Univariate Analysis of the continuous variable: CANDIDATE_INCOME

2.12.1 SAS Codes

```
TITLE1 'Figure 13 Univariate Analysis of the Categorical variable: CANDIDATE_INCOME';
PROC MEANS DATA = DMLIBMFR.TRAINING_DS N NMISS MIN MAX MEAN MEDIAN STD;
VAR CANDIDATE_INCOME;
RUN;

ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
HISTOGRAM CANDIDATE_INCOME;
Title 'Figure 14 Univariate Analysis of the Categorical variable: CANDIDATE_INCOME';
RUN;

RUN;
```

2.12.2 Screenshot(s)/Output(s)

Figure 13 Univariate Analysis of the Categorical variable: CANDIDATE_INCOME The MEANS Procedure Analysis Variable : CANDIDATE_INCOME N N Miss Maximum Median Std Dev Minimum Mean 150.0000000 81000.00 5403.46 3812.50 6109.04 614 0

2.12.3 Explanation

There is no missing value from the observations. The bar chart shows the CANDIDATE_INCOME shows Min value, Max value, Mean, Median and standard deviation in Figure 13.

2.13 Univariate Analysis of the continuous variable: LOAN AMOUNT

2.13.1 SAS Codes

```
TITLE1 'Figure 15 Univariate Analysis of the Categorical variable: LOAN_AMOUNT';

PROC MEANS DATA = DMLIBMFR.TRAINING_DS N NMISS MIN MAX MEAN MEDIAN STD;

VAR LOAN_AMOUNT;

RUN;

ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;

PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;

HISTOGRAM LOAN_AMOUNT;

Title 'Figure 16 Univariate Analysis of the Categorical variable: LOAN_AMOUNT';

RUN;
```

2.13.2. Screenshot(s)/Output(s)

2.13.3 Explanation

This variable shows twenty-two (22) observations from 614 observations are missing in the LOAN_AMOUNT variable. Same thing happened at MARITAL_STATUS variable but different number of missing values.

2.14 Univariate Analysis of the continuous variable: LOAN_DURATION

2.14.1 SAS Codes

```
TITLE1 'Figure 17 Univariate Analysis of the Categorical variable: LOAN_DURATION';

PROC MEANS DATA = DMLIBMFR.TRAINING_DS N NMISS MIN MAX MEAN MEDIAN STD;

VAR LOAN_DURATION;

RUN;

ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;

PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;

HISTOGRAM LOAN_DURATION;

Title 'Figure 18 Univariate Analysis of the Categorical variable: LOAN_DURATION';

RUN;
```

2.14.2 Screenshot(s)/Output(s)

Figure 17 Univariate Analysis of the Categorical variable: LOAN_DURATION

2.14.3 Explanation

In this variable, there is no missing value. Since this variable also a numeric variable, it clearly shows the minimum, maximum, mean, median and standard deviation value.

- 2.15 Bivariate Analysis of the variables found in the DMLIBMFR.TRAINING_DS.
- 2.15.1 Bivariate Analysis of the variables (Categorical vs Categorical) or (Categorical vs Numeric) or both same categorical found in the DMLIBMFR.TRAINING_DS.
- 2.15.1 Bivariate Analysis of the variables (LOAN_LOCATION categorical variable vs LOAN_APPROVAL_STATUS categorical variable) found in the DMLIBMFR.TRAINING_DS.

2.15.1. SAS Codes

```
TITLE1 'Figure 19 Bivariate Analysis of the variables:)';
TITLE2 ' ( LOAN_location - Categorical variable vs LOAN_APPROVAL_STATUS - Categorical variable ) ';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;

TABLE LOAN_LOCATION * LOAN_APPROVAL_STATUS /
PLOTS = FREQPLOT( TWOWAY = STACKED SCALE = GROUPPCT );
RUN;
```

2.15.2 Screenshot(s)/Output(s)

Figure 19 Bivariate Analysis of the variables:) (LOAN_location - Categorical variable vs LOAN_APPROVAL_STATUS - Categorical variable)

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Table of LOAN_LOCATION by LOAN_APPROVAL_STATUS								
	LOAN_APPROVAL_STATUS							
LOAN_LOCATION	N	Υ	Total					
City	69 11.24 34.16 35.94	133 21.66 65.84 31.52	202 32.90					
Town	54 8.79 23.18 28.13	179 29.15 76.82 42.42	233 37.95					
Village	69 11.24 38.55 35.94	110 17.92 61.45 26.07	179 29.15					
Total	192 31.27	422 68.73	614 100.00					

2.15.3 Explanation

This analysis shows the correlation between LOAN_LOCATION and LOAN_APPROVAL_STATUS. This analysis wants to show the impacts of LOAN_LOCATION on LOAN_APPROVAL_STATUS. It tells us how many applicants get approval and not approval based on different types of locations.

2.16 Bivariate Analysis of the variables (GENDER– categorical variable vs LOAN_APPROVAL_STATUS – categorical variable) found in the DMLIBMFR.TRAINING DS.

2.16.1 SAS Codes

```
TITLE1 'Figure 20 Bivariate Analysis of the variables:)';
TITLE2 ' ( GENDER - Categorical variable vs LOAN_APPROVAL_STATUS - Categorical variable ) ';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;

TABLE GENDER * LOAN_APPROVAL_STATUS /
PLOTS = FREQPLOT( TWOWAY = STACKED SCALE = GROUPPCT );
RUN;
```

2.16.2 Screenshot(s)/Output(s)

Figure 20 Bivariate Analysis of the variables:)
(GENDER - Categorical variable vs LOAN_APPROVAL_STATUS - Categorical variable)

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Table of GENDER by LOAN_APPROVAL_STATUS								
	LOAN_APPROVAL_STATUS							
GENDER	N	Υ	Total					
Female	43 7.00 34.13 22.40	83 13.52 65.87 19.67	126 20.52					
Male	149 24.27 30.53 77.60	339 55.21 69.47 80.33	488 79.48					
Total	192 31.27	422 68.73	614 100.00					

2.16.3 Explanation

In this relationship, it shows the total of Male and Female get approval for the loan. From this analysis shows that Male have more approval (Y) and rejected (N) than Female.

2.17 Bivariate Analysis of the variables (QUALIFICATION— categorical variable vs LOAN APPROVAL STATUS—categorical variable) found in the LAPPDK.TRAINING DS.

2.17.1 SAS Codes

```
TITLE1 'Figure 21 Bivariate Analysis of the variables:)';
TITLE2 ' ( QUALIFICATION - Categorical variable vs LOAN_APPROVAL_STATUS - Categorical variable ) ';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;

TABLE QUALIFICATION * LOAN_APPROVAL_STATUS /
PLOTS = FREQPLOT( TWOWAY = STACKED SCALE = GROUPPCT );
RUN;
```

2.17.2 Screenshot(s)/Output(s)

2.17.3 Explanation

This section shows the relationship between the QUALIFICATION and the LOAN_APPROVAL_STATUS. The graduate has 340 for Y and 140 for N, but undergraduate has 82 for Y and 52 for N. It shows that approval and rejected status is high at Graduate than Undergraduate.

2.18 Bivariate Analysis of the variables (LOAN_LOCATION vs CANDIDATE_INCOME) found in the DMLIBMFR.TRAINING DS.

2.18.1 SAS Codes

```
TITLE1 'Figure 22 Bivariate Analysis of the variables:)';
TITLE2 ' ( LOAN_LOCATION - Categorical variable vs CANDIDATE_INCOME - Numeric variable ) ';
FOOTNOTE '----End----';

PROC MEANS DATA = DMLIBMFR.TRAINING_DS;

CLASS LOAN_LOCATION; /* It is a Categorical variable */
VAR CANDIDATE_INCOME; /* Numeric variable : Continous variable */
RUN;

PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;

VBOX CANDIDATE_INCOME / CATEGORY = LOAN_LOCATION;
/* LOAN_LOCATION X-AXIS CANDIDATE_INCOME Y-AXIS */
TITLE1 'Figure 23 Bivariate Analysis of variables LOAN_LOCATION vs CANDIDATE_INCOME';
RUN;
```

2.18.2 Screenshot(s)/Output(s)

Figure 22 Bivariate Analysis of the variables:) (LOAN_LOCATION - Categorical variable vs CANDIDATE_INCOME - Numeric variable)

The MEANS Procedure

Analysis Variable : CANDIDATE_INCOME									
LOAN_LOCATION	N Obs	N	Mean	Std Dev	Minimum	Maximum			
City	202	202	5398.25	6392.93	416.0000000	63337.00			
Town	233	233	5292.26	5279.63	210.0000000	39999.00			
Village	179	179	5554.08	6782.66	150.0000000	81000.00			

----End----

2.18.3 Explanation

This time we want to observe the impacts of LOAN_LOCATION on CANDIDATE_INCOME. It clearly differentiates the CANDIDATE_INCOME variable based on the LOAN_LOCATION variable. The village shows high maximum in CANDIDATE_INCOME compared to the others location like town and city.

2.19 Bivariate Analysis of the variables (MARITAL_STATUS vs CANDIDATE_INCOME) found in the DMLIBMFR.TRAINING_DS.

2. 19.1 SAS Codes

```
TITLE1 'Figure 24 Bivariate Analysis of the variables:)';
TITLE2 ' ( MARITAL_STATUS - Categorical variable vs CANDIDATE_INCOME - Continous ) ';
FOOTNOTE '----End----';

PROC MEANS DATA = DMLIBMFR.TRAINING_DS;

CLASS MARITAL_STATUS; /* It is a Categorical variable */
VAR CANDIDATE_INCOME; /* Numeric variable */
RUN;

PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;

VBOX CANDIDATE_INCOME / CATEGORY = MARITAL_STATUS;
/* MARITAL_STATUS X-AXIS CANDIDATE_INCOME Y-AXIS */
TITLE1 'Figure 25 Bivariate Analysis of variables MARITAL_STATUS vs CANDIDATE_INCOME';
RUN;
```

2. 19.2 Screenshot(s)/Output(s)

Figure 24 Bivariate Analysis of the variables:)
(MARITAL_STATUS - Categorical variable vs CANDIDATE_INCOME - Continous)

The MEANS Procedure

Analysis Variable : CANDIDATE_INCOME										
MARITAL_STATUS	N Obs	N	Mean	Std Dev	Minimum	Maximum				
Married	398	398	5629.17	6989.25	150.0000000	81000.00				
Not Married	213	213	4970.38	4004.33	416.0000000	37719.00				

----End----

2. 19.3 Explanation

This time we want to observe the impacts of MARITAL_STATUS on CANDIDATE_INCOME. There are no missing values. The married applicants have high income compared to not married applicants.

- 2.20 Imputing (replacing) missing values
 - 2.20.1 Imputing missing values found in the variables:
 - 2.20.2 Make a copy of the dataset: DMLIBMFR.TRAINING DS

2.20.2 SAS Codes

```
/* Make a back-up copy of the DMLIBMFR.TRAINING_DS before do cleansing treatment or data cleaning*/

TITLE1 'Make a back-up copy of the DMLIBMFR.TRAINING_DS';

PROC SQL;

CREATE TABLE DMLIBMFR.TRAINING_DS_BK AS
SELECT *
FROM DMLIBMFR.TRAINING_DS;

QUIT;
```

2.21.1 Before ImputingList The Observations With Missing Values In The MARITAL STATUS Variable

2.21.1 SAS Codes

2.21.2 Screenshot(s)/Output(s)

2.21.3 Explanation

Before imputing or replacing the missing values, the first step is to list the observation(s) with the missing values in the MARITAL STATUS.

2.21.4 SAS Codes

2.21.5 Screenshot(s)/Output(s)

STEP 2: Count the number of observations with missing values in the MARITAL_STATUS

2.21.6 Explanation

Then, for the second step is to count the number of observations with missing values in the MARITAL_STATUS.

2.21.7 Create a dataset to hold the MARITAL_STATUS and the number of applicants.

2.21.7 SAS Codes

2.21.8 Explanation

Then, for the third step is to create a small dataset to hold or keep the intermediate results of MARITAL_STATUS and the number of counts of applicants.

2.21.9 SAS Codes

```
TITLE1 'STEP 4: Display the contents of the dataset - DMLIBMFR.TRAINING_DS_MARITAL_STATUS';
FOOTNOTE '----End----';

PROC SQL;

SELECT *
FROM DMLIBMFR.TRAINING_DS_MARITAL_STATUS;

QUIT;
```

2.21.10 Screenshot(s)/Output(s)

STEP 4: Display the contents of the dataset - DMLIBMFR.TRAINING_DS_MARITAL_STATUS

2.21.11 Explanation

Then, for the fourth step is to display the contents or the observations inside the dataset - DMLIBMFR.TRAINING_DS_MARITAL_STATUS. In the created tiny dataset shows there are two observations, Married and Not Married.

2.21.12 SAS Codes

```
339 TITLE1 'STEP 5: Find the MOD and impute the missing values found in the dataset DMLIBMFR.TRAINING_DS';
340 FOOTNOTE '----End----';
341
342 PROC SQL;
343
344 UPDATE DMLIBMFR.TRAINING DS
345 | SET marital_status = ( SELECT marital_status Label = 'MOD_MARITAL_STATUS'
                           FROM DMLIBMFR.TRAINING DS MARITAL STATUS
347
                           WHERE ( counts EQ ( SELECT MAX(counts) Label = 'Highest Counts'
348
                                               FROM DMLIBMFR.TRAINING_DS_MARITAL_STATUS ) ) )
                                               /* Above is a sub-program to find the MOD of MARITAL_STATUS*/
350 WHERE ( ( marital_status IS NULL ) OR
351
            ( marital_status IS MISSING ) OR
            ( marital_status EQ '' ) );
352
353
354 QUIT;
```

2.21.13 Screenshot(s)/Output(s)

2.21.14 Explanation

Then, for the fifth step is to find the MOD and impute the missing values found in the dataset DMLIBMFR.TRAINING_DS. The sub-program is used to instantly update the MOD of MARITAL_STATUS automatically. Then replaced the MARITAL_STATUS with the outcome of program, Null, Missing, or blank space (").

2.22 STEP 6 & 7: After imputing missing values: list the observations with missing values in MARITAL_STATUS variable

2.22.1 SAS Codes

2.22.2 Screenshot(s)/Output(s)

```
After imputing missing values
STEP 6: List the observation(s) with missing values in the MARITAL_STATUS
----End----
```

2.22.3 Explanation

This section shows the after process of cleansing the MARITAL_STATUS variable. The results show an empty or blank, meaning the data cleansing is succeeded.

2.22.4 SAS Codes

2.22.2 Screenshot(s)/Output(s)

STEP 7: Count the number of observations with missing values in the MARITAL_STATUS

2.22.3 Explanation

The number of observations turns zero. Meaning there is no missing values detected anymore.

Since its already being replaced on previous program.

2.23 After imputation: Univariate Analysis of the categorical variable: MARITAL_STATUS

2.23.1 SAS Codes

```
TITLE1 'Figure 26 After Imputation: Univariate Analysis of the Categorical variable: MARITAL_STATUS';
FOOTNOTE '----End----';

PROC FREQ DATA = DMLIBMFR.TRAINING_DS;
TABLE MARITAL_STATUS;
RUN;

ODS GRAPHICS / RESET WIDTH = 4.0 IN HEIGHT = 3.0 IN IMAGEMAP;
PROC SGPLOT DATA = DMLIBMFR.TRAINING_DS;
VBAR MARITAL_STATUS;
398
VBAR MARITAL_STATUS;
Title 'Figure 27 After Imputation: Univariate Analysis of the Categorical variable: MARITAL_STATUS';
RUN;
```

2.23.1 Screenshot(s)/Output(s)

Figure 26 After Imputation: Univariate Analysis of the Categorical variable: MARITAL_STATUS

ш	hα	_	w	-		ш	roced	HIFO
	110			_	w		1000	uic

MARITAL_STATUS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Married	401	65.31	401	65.31
Not Married	213	34.69	614	100.00

----End----

2.23. 3 Explanation

Previously, there are 3 missing values. Now after the imputation process, the missing values is clear and clean from missing values.

2.24 Impute missing values found in the variable – LOAN_AMOUNT

2.24.1 SAS Codes

```
TITLE1 'STEP 1: Make a back-up copy of the dataset - DMLIBMFR.TRAINING_DS';
FOOTNOTE '----End----';

PROC SQL;

CREATE TABLE DMLIBMFR.TRAINING_DS_BK AS
SELECT *
FROM DMLIBMFR.TRAINING_DS;

QUIT;
```

2.24.2 Screenshot(s)/Output(s)

SME_LOAN_ID_NO	GENDER	MARITAL_STATUS	QUALIFICATION	CANDIDATE_INCOME	LOAN_AMOUNT	LOAN_DURATION	LOAN_HISTORY	LOAN_LOCATION	LOAN_APPROVAL_STATUS
LP001002	Male	Not Married	Graduate	5849		360	1	City	Υ
LP001106	Male	Married	Graduate	2275		360	1	City	Υ
LP001213	Male	Married	Graduate	4945		360	0	Village	N
LP001266	Male	Married	Graduate	2395		360	1	Town	Υ
LP001326	Male	Not Married	Graduate	6782		360	1	City	N
LP001350	Male	Married	Graduate	13650		360	1	City	Υ
LP001356	Male	Married	Graduate	4652		360	1	Town	Υ
LP001392	Female	Not Married	Graduate	7451		360	1	Town	Υ
LP001449	Male	Not Married	Graduate	3865		360	1	Village	Υ
LP001682	Male	Married	Under Graduate	3992		180	1	City	N
LP001922	Male	Married	Graduate	20667		360	1	Village	N
LP001990	Male	Not Married	Under Graduate	2000		360	1	City	N
LP002054	Male	Married	Under Graduate	3601		360	1	Village	Υ
LP002113	Female	Not Married	Under Graduate	1830		360	0	City	N
LP002243	Male	Married	Under Graduate	3010		360	0	City	N
LP002393	Female	Married	Graduate	10047		240	1	Town	Υ
LP002401	Male	Married	Graduate	2213		360	1	City	Υ
LP002533	Male	Married	Graduate	2947		360	1	City	N
LP002697	Male	Not Married	Graduate	4680		360	1	Town	N
LP002778	Male	Married	Graduate	6633		360	0	Village	N
LP002784	Male	Married	Under Graduate	2492		360	1	Village	Υ
LP002960	Male	Married	Under Graduate	2400		180	1	City	N

2.24.3 Explanation

Before imputation, make a back-up copy of the dataset - DMLIBMFR.TRAINING_DS and list the observations with missing values in the variable: LOAN_AMOUNT.

2.24.4 SAS Codes

2.24.5 Screenshot(s)/Output(s)

STEP 3: (Before imputation) Number of observations with missing values in the variable: LOAN_AMOUNT

Number of Observations

22
----End----

2.24.6 Explanation

Then, cross check to confirm that there are 22 missing values or observations in LOAN_AMOUNT variable.

2.24.7 SAS Codes

```
TITLE1 'STEP 4: Impute the missing values found in the variable - LOAN_AMOUNT';
FOOTNOTE '---End---';

PROC STDIZE DATA = DMLIBMFR.TRAINING_DS REPONLY

METHOD = MEAN OUT = DMLIBMFR.TRAINING_DS;
var LOAN_AMOUNT;

QUIT;
```

2.24.8 Screenshot(s)/Output(s)

Tota	otal rows: 614 Total columns: 10 🖛 💠 Rows 1-100							
	SME_LOAN_ID	GEND	MARITAL_STA	QUALIFICATION	CANDIDATE_INCOME	LOAN_AMOUNT	LOAN_DURATION	
1	LP001002	Male	Not Married	Graduate	5849	146.41216216	360	
2	LP001003	Male	Married	Graduate	4583	128	360	
3	LP001005	Male	Married	Graduate	3000	66	360	
4	LP001006	Male	Married	Under Graduate	2583	120	360	
5	LP001008	Male	Not Married	Graduate	6000	141	360	
6	LP001011	Male	Married	Graduate	5417	267	360	
7	LP001013	Male	Married	Under Graduate	2333	95	360	
8	LP001014	Male	Married	Graduate	3036	158	360	
9	LP001018	Male	Married	Graduate	4006	168	360	
10	LP001020	Male	Married	Graduate	12841	349	360	
11	LP001024	Male	Married	Graduate	3200	70	360	
12	LP001027	Male	Married	Graduate	2500	109	360	

2.24.9 Explanation

In the outputs, the missing value in LOAN_AMOUNT variable at first observation has been replaced with suitable value through the program. Since previously, it only shows '.' And now it has a value in it.

2.24.10 SAS Codes

2.24.11 Screenshot(s)/Output(s)

```
STEP 5: ( After imputation ) List the observations with missing values in the variable: LOAN_AMOUNT
----End----
```

2.24.12 Explanation

After imputation is completed, the result shows an empty or blank on observations with missing values in the variable of LOAN_AMOUNT.

2.24.13 SAS Codes

2.24.14 Screenshot(s)/Output(s)

2.24.15 Explanation

This part shows the number of observations of missing values is zero in the variable of LOAN_AMOUNT.

2.25 Univariate Analysis of the variables found in the dataset DMLIBMFR.TESTING_DS.

2.25.1 Introduction

MACRO is an advanced functions feature from SAS to shorten or minimize the length of codes by write the code once but can call it many times.

2.25.2 SAS Codes

```
389 | /* Univariate Analysis of Variables found in the DMLIBMFR.TESTING DS using MACRO
390
391 MACRO BEGINS HERE */
392
393 %MACRO MACRO_UVA_TESTING_DS(PDS_NAME, PVARI_NAME, PTITLE_1, PTITLE_2);
394
395 TITLE1 &PTITLE_1; /* PASSING VALUE */
396 TITLE2 &PTITLE_2;
397 FOOTNOTE '----End----';
398
399 PROC FREQ DATA = &PDS_NAME;
400
401 TABLE &PVARI_NAME;
402
403 QUIT;
404
405 %MEND MACRO_UVA_TESTING_DS;
407 /* MACRO ENDS HERE */
```

2.25.1 Run the SAS Macro

```
409 /* CALL/RUN THE SAS MACRO */
410
411
412 

**MACRO_UVA_TESTING_DS(DMLIBMFR.TESTING_DS, GENDER, 'UNIVARIATE ANALYSIS', 'OF THE CATEGORICAL VARIABLE - GENDER');
412 

**MACRO_UVA_TESTING_DS(DMLIBMFR.TESTING_DS, MARITAL_STATUS, 'UNIVARIATE ANALYSIS', 'OF THE CATEGORICAL VARIABLE - MARITAL_STATUS');
413 

**MACRO_UVA_TESTING_DS(DMLIBMFR.TESTING_DS, QUALIFICATION, 'UNIVARIATE ANALYSIS', 'OF THE CATEGORICAL VARIABLE - QUALIFICATION');
414 

**MACRO_UVA_TESTING_DS(DMLIBMFR.TESTING_DS, LOAN_LOCATION, 'UNIVARIATE ANALYSIS', 'OF THE CATEGORICAL VARIABLE - LOAN_LOCATION');
415 

**MACRO_UVA_TESTING_DS(DMLIBMFR.TESTING_DS, LOAN_HISTORY, 'UNIVARIATE ANALYSIS', 'OF THE CATEGORICAL VARIABLE - LOAN_HISTORY');
```

2.25.3 Screenshot(s)/Output(s)

UNIVARIATE ANALYSIS OF THE CATEGORICAL VARIABLE - LOAN_LOCATION

The FREQ Procedure

LOAN_LOCATION	Frequency	Percent	Cumulative Frequency	Cumulative Percent
City	202	32.90	202	32.90
Town	233	37.95	435	70.85
Village	179	29.15	614	100.00

----End----

UNIVARIATE ANALYSIS OF THE CATEGORICAL VARIABLE - MARITAL_STATUS

The FREQ Procedure

MARITAL_STATUS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Married	233	63.49	233	63.49
Not Married	134	36.51	367	100.00

----End----

UNIVARIATE ANALYSIS OF THE CATEGORICAL VARIABLE - QUALIFICATION

The FREQ Procedure

QUALIFICATION	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Graduate	283	77.11	283	77.11
Under Graduate	84	22.89	367	100.00

----End----

UNIVARIATE ANALYSIS OF THE CATEGORICAL VARIABLE - LOAN_LOCATION

The FREQ Procedure

LOAN_LOCATION	Frequency	Percent	Cumulative Frequency	Cumulative Percent
City	140	38.15	140	38.15
Town	116	31.61	256	69.75
Village	111	30.25	367	100.00

----End----

UNIVARIATE ANALYSIS OF THE CATEGORICAL VARIABLE - LOAN_HISTORY

The FREQ Procedure

LOAN_HISTORY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	59	16.08	59	16.08
1	308	83.92	367	100.00

----End----

2.25.4 Explanation

This part shows the result of each minimize code done in SAS Macro for univariate analysis. Since there are 5 SAS Macro codes, so there are 5 results for each of the macro code.

2.26 Bivariate Analysis of the variables found in the DMLIBMFR.TESTING DS using Macro.

2.26.1 SAS Codes

```
510 /* Bivariate Analysis of variables found in the - Using MACRO
511
512 MACRO BEGINS HERE */
513
514 %MACRO MACRO_BVA_CATE_TESTING_DS(PDS_NAME, PVARI_1, PVARI_2, PTITLE_1, PTITLE_2);
515
516 TITLE1 &PTITLE_1;
517 TITLE2 &PTITLE_2;
518 FOOTNOTE '----End---';
520 PROC FREQ DATA = &PDS_NAME;
521
522 TABLE &PVARI_1 * &PVARI_2 /
523 PLOTS = FREQPLOT( TWOWAY = STACKED SCALE = GROUPPCT );
524
525 RUN:
527 %MEND MACRO_BVA_CATE_TESTING_DS;
528
529 /* MACRO ENDS HERE */
/* To run/call the MACRO - MACRO_BVA_CATE_TESTING_DS */

%MACRO_BVA_CATE_TESTING_DS (DMLIBMFR.TESTING_DS, LOAN_LOCATION, GENDER, 'BIVARIATE ANALYSIS', 'LOAN_LOCATION - Cate variable vs GENDER - Cate variable');

%MACRO_BVA_CATE_TESTING_DS (DMLIBMFR.TESTING_DS, QUALIFICATION, GENDER, 'BIVARIATE ANALYSIS', 'QUALIFICATION - Cate variable vs GENDER - Cate variable');
```

2.26.2 Screenshot(s)/Output(s)

BIVARIATE ANALYSIS QUALIFICATION - Cate variable vs GENDER - Cate variable

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Table of QUALIFICATION by GENDER							
	GENDER						
QUALIFICATION	Female	Male	Total				
Graduate	63	220	283				
	17.17	59.95	77.11				
	22.26	77.74					
	77.78	76.92					
Under Graduate	18	66	84				
	4.90	17.98	22.89				
	21.43	78.57					
	22.22	23.08					
Total	81	286	367				
	22.07	77.93	100.00				

2.26.3 Explanation

This part shows the result of each minimize code done in SAS Macro for bivariate analysis. Since there are 2 SAS Macro codes, so there are 2 results for each of the macro code.

2.27 Create Logistic regression model

2.27.1 SAS Codes

```
536 /* Create a model */
537
538 PROC LOGISTIC DATA = DMLIBMFR.TRAINING_DS OUTMODEL = DMLIBMFR.TRAINING_DS_LRMODEL; /* Linear regression */
539 CLASS
540 GENDER
541 LOAN_LOCATION
542 MARITAL_STATUS
543 QUALIFICATION
544 LOAN_HISTORY;
545 /* Above are categorical variables found inside the DMLIBMFR.TRAINING_DS */
546 MODEL LOAN_APPROVAL_STATUS = /* place here all independent variables */
547 /* LOAN_APPLICATION_STATUS is a dependent variable *
548 GENDER
549 MARITAL_STATUS
550 QUALIFICATION
551 LOAN AMOUNT
552 LOAN DURATION
553 LOAN HISTORY
554 CANDIDATE INCOME
555 LOAN_LOCATION;
556 OUTPUT OUT = DMLIBMFR.TRAINING_DS_LR_OUT P = PRED_PROB;
557 /* PRED_PROB -> Predicted probability - variable to hold predicted probability
558 OUT -> the output will be stored in the dataset
559 Akaike Information Criterion must (AIC) < SC (Schwarz Criterion) 560 */
561 RUN;
```

2.27.2 Screenshot(s)/Output(s)

2.27.3 Explanation

This result shows that have cleansed dataset 100 percentage. The TRAINING_DS turns pure and clamping cleansed well. Logistic regression highlighted and processed it.

2.27.4 Screenshot(s)/Output(s)

2.27.5 Explanation

This result shows the model convergence status fulfilled the criterion and satisfied.

2.27.6 Screenshot(s)/Output(s)

2.27.7 Explanation

Akaike Information Criterion must (AIC) < SC (Schwarz Criterion). The value of SC must lower than AIC.

2.27.8 Screenshot(s)/Output(s)

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept		1	0.2759	0.6583	0.1757	0.6751		
GENDER	Female	1	0.0133	0.1391	0.0091	0.9238		
MARITAL_STATUS	Married	1	-0.2894	0.1168	6.1435	0.0132		
QUALIFICATION	Graduate	1	-0.1918	0.1283	2.2333	0.1351		
LOAN_AMOUNT		1	0.00275	0.00151	3.3172	0.0686		
LOAN_DURATION		1	0.000682	0.00175	0.1512	0.6973		
LOAN_HISTORY	0	1	1.9452	0.2088	86.8297	<.0001		
CANDIDATE_INCOME		1	-0.00002	0.000023	0.9613	0.3269		
LOAN_LOCATION	City	1	0.1810	0.1497	1.4625	0.2265		
LOAN_LOCATION	Town	1	-0.5272	0.1567	11.3178	0.0008		

2.27.9 Explanation

If Pr > ChiSq is <= 0.05, it means that independent variable is an important variable and as is truly contributing to predict dependent variable. It means MARITAL_STATUS, QUALIFICATION, are contributing more other independent. Only few variables are contributed in this process but others is not.

2.28 Display the contents of the created model.

2.28.1 SAS Codes

```
TITLE1 'To view the contents of the model';

PROC SQL;

ST1

SELECT *

FROM DMLIBMFR.TRAINING_DS_LRMODEL;

QUIT;
```

2.28.2 Screenshot(s)/Output(s)

TYPE	_NAME_	_CATEGORY_	_NAMEIDX_	_CATIDX_	_MISC_
L					0
М	NYYNYNNN				10
G	GENDER	Female	0	0	2
G	GENDER	Male	0	1	-2
G	GENDER		-1	-1	0
G	GENDER		-1	-2	-6
G	LOAN_LOCATION	City	1	0	2
G	LOAN_LOCATION	Town	1	1	2
G	LOAN_LOCATION	Village	1	2	-2
G	LOAN_LOCATION		-2	-1	0
G	LOAN_LOCATION		-2	-2	-7
G	MARITAL_STATUS	Married	2	0	2
G	MARITAL_STATUS	Not Married	2	1	-2
G	MARITAL_STATUS		-3	-1	0
G	MARITAL_STATUS		-3	-2	-11
G	QUALIFICATION	Graduate	3	0	2
G	QUALIFICATION	Under Graduate	3	1	-2
G	QUALIFICATION		-4	-1	0
G	QUALIFICATION		-4	-2	-14
G	LOAN_HISTORY	0	4	0	1
G	LOAN_HISTORY	1	4	1	-1
G	LOAN_HISTORY		-5	-1	0
G	LOAN_HISTORY		-5	-2	-12
G	LOAN APPROVAL STATUS	N	5	0	12

2.29 Predict the LOAN_APPROVAL_STATUS using the Logistic Algorithm or model.

2.29.1 SAS Codes

```
579 /* Program to predict the LOAN_APPROVAL_STATUS using the Model created by the LRA (Logistic Regression Algorithm) */
PROC LOGISTIC INMODEL = DMLIBMFR.TRAINING_DS_LRMODEL; /* It is a model you created */
582 SCORE DATA = DMLIBMFR.TESTING_DS
583 OUT = DMLIBMFR.TESTING_DS_LAS_PREDICTED; /* Location of output */
584 QUIT;
585
586
587 /* To view the LOAN_APPROVAL_STATUS */
588
589 TITLE1 'LOAN_APPROVAL_STATUS';
590 FOOTNOTE '---End---';
591
592 PROC SQL;
595 FROM DMLIBMFR.TESTING_DS_LAS_PREDICTED;
596
597 QUIT;
```

2.29.1 Screenshot(s)/Output(s)

LOAN_APPROVAL_STATUS									
LOAN_DURATION	LOAN_HISTORY	LOAN_LOCATION	LOAN_APPROVAL_STATUS	From: LOAN_APPROVAL_STATUS	Into: LOAN_APPROVAL_STATUS	Predicted Probability: LOAN_APPROVAL_STATUS=N	Predicted Probability: LOAN_APPROVAL_STATUS=Y		
360	1	City			Υ	0.173495	0.826505		
360	1	City			Υ	0.188719	0.811281		
360	1	City			Υ	0.218375	0.781625		
360	1	City			Υ	0.180398	0.819602		
360	1	City			Υ	0.346929	0.653071		
360	1	City			Υ	0.272307	0.727693		
360	1	Town			Υ	0.206971	0.793029		
360	0	Village			N	0.953504	0.046496		
0.00					.,				