

COMPUTER ORGANIZATION

ADDITION & SUBTRACTION OF SIGNED NUMBERS

n-BIT RIPPLE CARRY ADDER

- A cascaded connection of n full-adder blocks can be used to add 2-bit numbers.
- Since carries must propagate (or ripple) through cascade, the configuration is called an n-bit ripple carry adder (Figure 9.1).

x_i^{\perp}	y_i	Carry-in c_i	$\operatorname{Sum} s_i$	Carry-out c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	I
1	0	0	1	0
1	0	1	0	1
1	1	.0	0	1
1	1	1	1	1

$$\begin{array}{rcl} s_i &=& \overline{x_i}\overline{y_i}c_i + \overline{x_i}y_i\overline{c_i} + x_i\overline{y_i}\overline{c_i} + x_iy_ic_i = x_i \oplus y_i \oplus c_i \\ c_{i+1} &=& y_ic_i + x_ic_i + x_iy_i \end{array}$$

Figure 9.1 Logic specification for a stage of binary addition.

