▼ MM20B007 - MLE Tutorial Homework

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import minimize
```

Getting the data

```
df = pd.read_csv('<u>/content/drive/MyDrive/SEM</u> 7/ID5055/MLE_Tutorial/student-por_2.csv', sep = ';')
df
```

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob		famrel	freetime	goout	Dalc	Walc	health
0	GP	F	18	U	GT3	А	4	4	at_home	teacher		4	3	4	1	1	3
1	GP	F	17	U	GT3	Т	1	1	at_home	other		5	3	3	1	1	3
2	GP	F	15	U	LE3	Т	1	1	at_home	other		4	3	2	2	3	3
3	GP	F	15	U	GT3	Т	4	2	health	services		3	2	2	1	1	5
4	GP	F	16	U	GT3	Т	3	3	other	other		4	3	2	1	2	5
644	MS	F	19	R	GT3	Т	2	3	services	other		5	4	2	1	2	5
645	MS	F	18	U	LE3	Т	3	1	teacher	services		4	3	4	1	1	1
646	MS	F	18	U	GT3	Т	1	1	other	other		1	1	1	1	1	5
647	MS	М	17	U	LE3	Т	3	1	services	services		2	4	5	3	4	2
648	MS	М	18	R	LE3	Т	3	2	services	other		4	4	1	3	4	5
649 rows × 33 columns																	•
																	,

▼ (a) Plot the histogram and guess the distribution the given feature follows

```
plt.title('G1 feature\'s value distribution')
plt.hist(df['G1'])
```

```
(array([ 1., 0., 7., 42., 107., 186., 154., 106., 38., 8.]),
array([ 0., 1.9, 3.8, 5.7, 7.6, 9.5, 11.4, 13.3, 15.2, 17.1, 19. ]),
<BarContainer object of 10 artists>)
```

G1 feature's value distribution

The above histogram has the representation of a Gaussian Distribution. The parameter μ is the mean or expectation of the distribution (and also its median and mode), while the parameter σ is its standard deviation. The variance of the distribution is σ^2 . The probability density function of the Gaussian distribution is given by:

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

▼ (b) Estimate the parameters of the distribution by maximizing the log-likelihood

```
# Log-likelihood function for Gaussian distribution
def log_likelihood(params, data):
    mu, sigma = params
    log_likelihood = -0.5 * np.sum(np.log(2 * np.pi * sigma**2) + ((data - mu)**2) / (2 * sigma**2))
    return -log_likelihood # We'll minimize the negative log-likelihood

# Initial parameter guess
initial_params = [0.0, 1.0]

# Maximize log-likelihood to estimate parameters
result = minimize(log_likelihood, initial_params, args= (df['G1'],) , method='Powell')

# Estimated parameters
estimated_mu, estimated_sigma = result.x
```

```
print("Estimated Parameters:")
print("Estimated mean:", estimated_mu)
print("Estimated sigma:", estimated_sigma)
```

Estimated Parameters:

Estimated mean: 11.399112386778784 Estimated sigma: 1.9395871813611976

The estimated Mean (μ) is 11.399112386778784 and Standard Deviation (σ) is 1.9395871813611976.

The Variance (σ^2) is 3.761998434100675.