

Interactive Seurat Visualisation using Vitessce and CellxGene

Internship presentation 22 February 2024

Table of Contents

- 1. Aims and Objectives of my Project
- 2. Tools Explored
- 3. Cellxgene (+ Extensions)
- 4. Vitessce
- 5. Demonstration

Aims and Objectives

Visualisation method for Seurat objects that is:

- 1. Interactive
- 2. Web-based
- 3. Easily shareable
- 4. Able to display a variety of plot types / embeddings

Aims and Objectives

Visualisation method for Seurat objects that is:

- 1. Interactive
- 2. Web-based
- 3. Easily shareable
- 4. Able to display a variety of plot types / embeddings

Intended Use:

- 1. Visual aid for publication (collaborators, readers etc)
- 2. Exploration of own data

Explored Tools

Tool	Web- based/shareable	Interactive	Range of Figures	User-friendly
Vitessce	✓	✓	✓	
CellxGene		✓	✓	✓
Loupe Desktop App		✓		√
Single Cell Portal	√	√		
Automated Single Cell Analysis Portal	✓	✓		

CellxGene

CellxGene

- Requirements:
 - .h5ad file and pip install

CellxGene

- Requirements:
 - .h5ad file

• Community Extensions:

Explore CellxGene	CellxGene Visualisation in Plugin	CellxGene Gateway
Annotation, Exploration, data pre- processing	violin, stacked violin, stacked bar, heatmap, volcano, etc. plots	Multiple Datasets

Explore CellxGene (exCellxGene)

Manually managed gene sets

Differentially expressed genes

Vitessce

Widget / View types

Anndata-Zarr store

 Vitessce R and Python package to transform Seurat/.h5ad

```
adata_path <- file.path("data", "example", "example.h5ad.zarr")
vitessceAnalysisR::seurat_to_anndata_zarr(so, adatapath)</pre>
```


Vitessce Platforms

Vitessce Data Hosting

Locally	Static Web Servers
http-server	GitHub Pages, AWS S3 Buckets, Google Cloud
Not yet published data	Published and non-confidential data
Only shareable with file transfer	Shareable with unique vitessce.io url

Vitessce Config.JSON

The config specifies the:

- Dataset
- 2. Visualisation types (widgets)
- 3. Linking widgets
- 4. Design (colours, layout)

```
"version": "1.0.16",
"initStrategy": "auto"
"name": "Zebrafish Neutrophil Figure 3",
"description": ""Visualisation based on Fig. 3 from Kirchberger and Shoeb et al. 2024",
 "datasets": [{
    "uid": "A", "name": "My dataset",
    "files": [{
        "fileType": "anndata.zarr",
        "url": "https://esztersojtory.github.io/vitessce_data/zfish.h5ad.zarr",
        "options": {
          "obsEmbedding": [{...}],
          "obsSets": [{...},}],
          "obsFeatureMatrix": {...}}}]}],
 "coordinationSpace": {
 "dataset": { "A": "A"},
  "embeddingType": { "A": "UMAP"},
  "featureValueColormapRange": {"A": [0.15,0.23]},
  "obsSetColor": { "A": [ {"path": [], "color": [248, 225, 222 ]}]}},
 "layout": [
 {"component": "scatterplot",
    "coordinationScopes": {
      "dataset": "A",
      "embeddingType": "A",
      "featureValueColormapRange": "A",
      "obsSetColor": "A"},
    "x": 0, "y": 0, "w": 6, "h": 12 }]}
```


Applied Examples

Mohamed's zebrafish dataset (Fig 3)

Mohamed's zebrafish dataset (Fig 4)

Luis' Wildtype Dataset

Demonstration

Thank you

Contact:

12202454@students.meduniwien.ac.at

esojtory1@gmail.com

GitHub: esztersojtory