TrioXpert: An Automated Incident Management Framework for Microservice System

Yongqian Sun¹, Yu Luo¹, Xidao Wen², Yuan Yuan³, Xiaohui Nei⁴, Shenglin Zhang¹, Tong Liu⁵, Xi Luo⁵

¹Nankai University, ²BizSeer, ³National University of Defense Technology, ⁴Computer Network Information Center, Chinese Academy of Sciences, ⁵Lenovo

Outline

Background & Motivation

Framework Design

Evaluation

Microservices Systems

Microservice architectures have become the standard for modern enterprise systems

Impact of Incidents

Incidents

Poor UX

Financial Loss

Typical Lifecycle of Incident Management

OCEs require automated management

Why We Need an End-to-End Framework?

Inconsistent or partial conclusions

Why We Need an End-to-End Framework?

Increased Deployment Costs & Integration Overhead

Can We Trust a Black-Box in Critical Operations?

No Explanation, No Trust

Challenges when integrating LLMs

Semantic impoverishment in multimodal fusion

Textual data overload in real-time incident management

LLM limitations in complex and trust critical incident management

Outline

Background & Motivation

Framework Design

Evaluation

TrioXpert Overview

(a). Multimodal Data Preprocessing

- (b). Multi-Dimensional System Status Representation
- (c). LLMs Collaborative Reasoning

An End-to-End Incident Management Framework for Microservice System

- (a). Multimodal Data Preprocessing
- (b). Multi-Dimensional System Status Representation
- (c). LLMs Collaborative Reasoning

Module #1 Multimodal Data Preprocessing

- (a). Multimodal Data Preprocessing
- (b). Multi-Dimensional System Status Representation
- (c). LLMs Collaborative Reasoning

Module #2 Multi-Dimensional System Status Representation

- (a). Multimodal Data Preprocessing
- (b). Multi-Dimensional System Status Representation
- (c). LLMs Collaborative Reasoning

Module #2 Numerical Perspective

- (a). Multimodal Data Preprocessing
- (b). Multi-Dimensional System Status Representation
- (c). LLMs Collaborative Reasoning

Module #2 Textual Perspective

- (a). Multimodal Data Preprocessing
- (b). Multi-Dimensional System Status Representation
- (c). LLMs Collaborative Reasoning

Module #3 LLMs Collaborative Reasoning

Outline

Background & Motivation

Framework Design

Evaluation

Evaluation: Performance

TABLE II
PERFORMANCE COMPARISON ON AD, FT, RCL, AND TIME. "-" MEANS THIS METHOD DOES NOT COVER THE TASK.

	$\mathscr{D}1$								$\mathscr{D}2$											
Methods	6	AD			FT			RCL		Efficiency		AD			FT			RCL		Efficiency
	Precision	Recall	F1	Precision	Recall	F1	Top@1	Top@3	Avg@5	Time (s)	Precision	Recall	F1	Precision	Recall	F 1	Top@1	Top@3	Avg@5	Time (s)
TrioXpert	0.880	0.972	0.924	0.852	0.768	0.807	0.651	0.778	0.773	14.314	0.854	0.972	0.909	0.814	0.725	0.767	0.550	0.775	0.750	12.597
ART [1]	0.759	0.621	0.683	0.786	0.794	0.790	0.683	0.762	0.757	0.872	0.593	0.972	0.737	0.860	0.650	0.740	0.375	0.825	0.738	1.363
DiagFusion [2]	-	-	-	0.675	0.500	0.574	0.310	0.452	0.467	4.145	-	-	-	0.797	0.527	0.634	0.582	0.709	0.695	3.297
Eadro [4]	0.425	0.946	0.586	-	-	5 0	0.137	0.315	0.302	0.627	0.767	0.935	0.842	-	-		0.157	0.315	0.310	0.899
Hades [29]	0.866	0.863	0.865		-	-	-	-	-	0.104	0.867	0.868	0.868	-	-	-	-	-	-	0.415
MicroCBR [11]	-	-	-	0.667	0.796	0.726	-	9 = 1	-	0.278	-	-	-	0.629	0.678	0.653	w:	-		0.306
PDiagnose [30]	-	-	-	-	-	-	0.615	0.692	0.685	4.342	-			-	-	-	0.037	0.296	0.285	9.919

Evaluation: Ablation Study

A1	Remove the textual pipelines
A2	Remove the numerical pipeline
A3	Replace the multi-expert reasoning with a single LLM
A4	Disable conflict resolution and aggregation
A5	Disable hallucination mitigation

Evaluation: Ablation Study

TABLE III
THE EVALUATION RESULTS OF ABLATION STUDY.

Methods		<i>9</i> 1		$\mathscr{D}2$					
Wichiods	AD: F1	FT: F1	RCL: Avg@5	AD: F1	FT: F1	RCL: Avg@5			
TrioXpert	0.924	0.807	0.773	0.909	0.767	0.750			
A1	0.725	0.190	0.667	0.832	0.685	0.625			
$\mathcal{A}2$	nan	0.261	0.238	nan	0.352	0.275			
$\mathcal{A}3$	0.672	0.398	0.534	0.583	0.284	0.608			
$\mathcal{A}4$	0.428	0.294	0.397	0.552	0.359	0.517			
$\mathcal{A}5$	0.339	0.157	0.362	0.405	0.287	0.233			

Case Study: Real-World Incidents from Lenovo Production

Traditional Method

TrioXpert

3 OCEs

Automated

2.5 h

26 s

5+ attempts

2 attempts

Manual reasoning

Interpretable reasoning chain

Case Study: Real-World Incidents from Lenovo Production

Lenovo OCEs Validation: Root cause was transparent and traceable

Thank you!

