Vv156 Lecture 3

Dr Jing Liu

UM-SJTU Joint Institute

September 26, 2016

- The previous definition of the limit of a sequence is very vague.
- The definition states:

If a sequence does indeed get closer and closer to a number L, then the sequence is said to be convergent and we say it has a limit of L.

$$\lim_{n\to\infty} a_n = L$$

- Q: Can you think of any issues with the above definition of limit?
 - There are two major issues with the phrase

"get closer and closer",

- Firstly, consider the following

$$a_n = \sin\left(\frac{n\pi}{50}\right), \quad \text{for } n \in \mathbb{N}.$$

- We certainly don't mean to define $\mathit{L}=1$ as the limit of this sequence.
- In general, we don't mean to define L to be the limit of

$$\{a_n\}$$

if $\{a_n\}$ is only getting closer and closer to L for some n up to a certain integer,

k

after which it moves away from L!

- Again recall, the definition of the limit of sequence

If a sequence does indeed get closer and closer to a number L, then the sequence is said to be convergent and we say it has a limit of L.

$$\lim_{n\to\infty}a_n=L$$

- For the second issue, consider the following sequence

$$a_n = \frac{1}{n}$$

- Intuitively it is clear that we mean to define zero to be the limit of $\{a_n\}$,

$$\lim_{n\to\infty}a_n=0$$

but if we stick to the current definition, what stops someone from claiming

$$\lim_{n\to\infty}a_n=-1$$

- When we say a_n approaches L, we mean regardless of how short the distance,

$$|a_n - L| < \epsilon$$
, where $\epsilon > 0$

if a large enough n, say N, is chosen, then

$$|a_n - L| < \epsilon$$
 for every $n > N$.

- The number N tells you how far you have to go to get close to L up to ϵ .

Definition

A sequence $\{a_n\}$ has the limit L, and we write

$$\lim_{n\to\infty} a_n = L \qquad \text{or} \qquad a_n \to L \quad \text{as} \quad n\to\infty$$

if for every $\epsilon > 0$ there is a corresponding integer N such that

if
$$n > N$$
 then $|a_n - L| < \epsilon$

- In terms of δ -neighbourhoods of L,

$$(L - \epsilon, L + \epsilon)$$

the limit L is a value such that $\{a_n\}$ is eventually in every neighbourhood of it

- Again, if a finite limit L exists, we say the sequence converges or is convergent.
- Otherwise, we say the sequence diverges or is divergent.

Exercise

Show the sequence of reciprocals of natural numbers is convergent.

Definition

A sequence $\{a_n\}$ diverges to infinity, we write

$$\lim_{n\to\infty} a_n = \infty$$
 and $a_n \to \infty$ as $n\to \infty$

if for each number $M \in \mathbb{R}$ there exists a number $N_M \in \mathbb{N}$ such that

$$a_n > M$$
 for all $n > N_M$

Similarly, a sequence $\{a_n\}$ diverges to negative infinity, we write

$$\lim_{n\to\infty} a_n = -\infty$$
 and $a_n \to -\infty$ as $n\to \infty$

if for each number $m \in \mathbb{R}$ there exists a number $N_m \in \mathbb{N}$ such that

$$a_n < m$$
 for all $n > N_m$

Exercise

Show the sequence of even numbers diverges to infinity.

Limit Laws

Let $\{a_n\}$ and $\{b_n\}$ be two sequences such that $\lim_{n\to\infty}=L_a$ and $\lim_{n\to\infty}=L_b$.

1 The limit of a constant sequence is the constant itself.

$$\lim_{n\to\infty} a = a$$

2 The limit of a sum/difference is the sum/difference of the limits.

$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n = L_a + L_b$$

3 The limit of a product is the product of the limits.

$$\lim_{n\to\infty} (a_n b_n) = \left(\lim_{n\to\infty} a_n\right) \left(\lim_{n\to\infty} b_n\right) = L_a L_b$$

4 The limit of a quotient is the quotient of the limits

$$\lim_{n\to\infty}\left(\frac{a_n}{b_n}\right)=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}=\frac{L_a}{L_b}, \qquad \text{provided} \quad L_b\neq 0 \quad \text{and} \quad b_n\neq 0$$

Exercise

Is the sequence

$$a_n = \frac{n}{10+n}$$

convergent or divergent? If it is convergent, find what it converges to.

Proof

- For the product law, we need to show that for $\epsilon > 0$, there exists N such that

$$|a_n b_n - L_a L_b| < \epsilon$$
 for all $n > N$

- Since $\{a_n\}$ is convergent, it is bounded. Let M be the bound, i.e.

$$|a_n| < M$$

- Since $\{a_n\}$ converges to L_a , for $\epsilon_1=rac{\epsilon}{2(|L_b|+1)}>0$, there exists N_1 such that

$$|a_n - L_a| < \frac{\epsilon}{2(|L_b| + 1)}$$
 for all $n > N_1$

Proof

- Similarly, there exists N_2 such that

$$|b_n - L_b| < \frac{\epsilon}{2(M+1)}$$
 for all $n > N_2$

- Let $N = \max(N_1, N_2)$. Then, for n > N, consider

$$|a_{n}b_{n} - L_{a}L_{b}| = |a_{n}b_{n} - a_{n}L_{b} + a_{n}L_{b} - L_{a}L_{b}|$$

$$= |a_{n}(b_{n} - L_{b}) + L_{b}(a_{n} - L_{a})|$$

$$\leq |a_{n}(b_{n} - L_{b})| + |L_{b}(a_{n} - L_{a})|$$

$$\leq |a_{n}||b_{n} - L_{b}| + |L_{b}||a_{n} - L_{a}|$$

$$< M \frac{\epsilon}{2(M+1)} + |L_{b}| \frac{\epsilon}{2(|L_{b}|+1)} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Definition

- The sequence $\{a_n\}$ is said to be increasing if

$$a_{n+1} \ge a_n$$
 for all n .

and it is said to be decreasing if

$$a_{n+1} \le a_n$$
 for all n .

- A sequence $\{a_n\}$ is said to be monotonic if it is one of those cases.

Monotonic Sequence Theorem

A monotonic sequence converges if and only if it is bounded.

Exercise

Suppose $a_n = \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N}$. Show the sequence is convergent.

Squeeze Theorem

Suppose $\{a_n\}$ and $\{b_n\}$ are convergent, and

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=L$$

If for some $N \in \mathbb{N}$,

$$a_n \le c_n \le b_n$$
 for all $n > N$

then the sequence $\{c_n\}$ is convergent. Moreover,

$$\lim_{n\to\infty}c_n=L$$

Exercise

Show the sequence $\left\{\frac{4^n}{n!}\right\}$ converges to zero.

Proof

- We need to show that for each $\epsilon > 0$, there exists N such that

$$n > N \implies |c_n - L| < \epsilon$$

- The sequence $\{a_n\}$ converges to L, thus there exists N_a , when $n > N_a$, then

$$|a_n - L| < \epsilon \iff -\epsilon < a_n - L < \epsilon$$

- Similarly, for $\{b_n\}$, there exists $n > N_b$, when $n > N_b$, then

$$|b_n - L| < \epsilon \iff -\epsilon < b_n - L < \epsilon$$

- Let $N = \max(N_a, N_b)$. For n > N, we have

$$a_n \le c_n \le b_n \iff a_n - L \le c_n - L \le b_n - L$$

 $\iff -\epsilon < a_n - L \le c_n - L \le b_n - L < \epsilon$
 $\iff |c_n - L| < \epsilon \quad \square$

- The concept of sequence and limit of it is largely a stepping stone to the limit of a function
- However, it is useful in terms of analysing anything to do with infinity.
- Consider an equilateral triangle,

- 1. Divide each side into three segments of equal length.
- 2. Create new equilateral triangles that have the middle segment from step 1. as its base and points outward.
- 3. Remove the line segments that are the bases of the new triangles from step 2.
 - Continue the above three steps indefinitely for all sides.
- Q: What is the perimeter of the object as the number of iterations $\to \infty$?