

RNA, Motif, and Motif Families

Problem Statement

Motivation and Goal

Motivation

- Earn valuable insights on the instances of well known motif families
- Explore the feasibility of solving motif finding problem using ML

Goal

 Identify the instances of well known motif families in different RNA chains

Methodology

- Develop a model that can identify the instances of a specific family using ML techniques
- Considered families:
 - Kink-turn
 - reverse Kink-turn
 - Sarcin-ricin
 - Tandem-shear

- Steps followed:
 - ✓ Data Collection
 - ✓ Feature Extraction
 - ✓ Data Preprocessing and Normalization
 - Model Training
 - Testing and Model Evaluation

Data Collection

Collecting motif locations

- Lilley et al. [4]
- Strobel et al. [5]
- Szewczak et al. [6]
- Zhong et al. [2]
- Ge et al. [8]
- Zhong et al. [7]
- Petrov et al. [9]
- Islam et al. [10]

Data Collection

Collecting motif sequence and 3D structure data

Data Collection

- Collecting testing data set
 - Cut loops from RNA chains
 - Follow the same procedure to get the structure information

Representative Selection

Selecting Representatives using the tool RNAMotifContrast [10]

Kink-turn

Sarcin-ricin

Tandem-shear

Feature Extraction:

Sequence Features:

- ☐ Motif length, GC percentage
- □ Sequence Alignment Score & Sequence Identity (Needleman–Wunsch algorithm [1])

Motif_str	Motif_length	GC_percentage	Seq_identity			Align_score			
			Kinkturn	Sarcin Ricin	Tandem Shear	Kinkturn	Sarcin Ricin	Tandem Shear	Family
1E7K_C:2-8_16-19	11	0.545	0.643	0.71	0.71	9	10	7	Kink-turn
1NBS_B:52-57_79-85	13	0.154	0,625	0.5	0.94	10	8	7	Sarcin-Ricin
1U6B_B:52-55_81-84	8	0.375	0.909	0.818	0.714	10	9	7	Tandem Shear
•••	***		***		•••	•••	•••		•••

Feature Extraction:

3D Structural Features

- ☐ 3D structure Alignment Score, Alignment Length
- ☐ RMSD Value (using tool RNAMotifScanX [2])
- ☐ Total base-pairs and base-stacks (using tools DSSR [3])
- ☐ Matching base-pairs and base stacks with representative (using tool RNAMotifScanX [2])

Tot Tot		3D_Alignment_Score			3D_Alignment_RMSD			Matching_basepair				
Motif_str	_BP		Kinkturn	Sarcin Ricin	Tandem Shear	Kinkturn	Sarcin Ricin	Tandem Shear	Kinkturn	Sarcin Ricin	Tandem Shear	Family
1E7K_C:2-8_16-19	2	7	46.8	107	35	7.95	6.9	7.796	2	2	2	Kink-turn
1NBS_B:52-57_79-85	5	13	172.8	35.9	91.7	0.87	5.4	5.93	5	3	2	Sarcin -Ricin
1U6B_B:52-55_81-84	2	6	46.4	80.4	35.3	6.28	7.35	0.96	2	2	2	Tandem Shear

Data Preprocessing:

- Motif Sequence and 3D Structure Collection:
- □ Total 33 features, all numerical
- No missing values
- Less-noisy dataset

Ratio

Model Training:

Converted 31 features to two features (P1 and P2) using PCA

Parameters used: Min distance = 0.05, Min Neighbors = 7

Model Training:

Converted 31 features to two features (P1 and P2) using PCA

Parameters used: Initial Clusters = 3

Model Training:

- Supervised Learning (Binary Classifier):
- → Modeled 3 naïve bayes binary classifiers for 3 motif families
- → Built an ensemble classifier
- Used maximum voting
- → Model Evaluation

	Accuracy	Precision	F1-Score	Recall-sore
Binary Classifier 1	86.96	84.33	88.62	85.63
Binary Classifier 2	93.48	93.6	93.37	93.45
Binary Classifier 3	97.8	98.6	95.0	96.7
Ensemble Classifier	84.78	87.23	86.71	86.3

Current Challenges:

- → Tertiary structural information of motifs has not been taken into consideration before
- → No pre-existing dataset, had to extract features and generate data
- → Dataset clean but Really small in size
- → Can't guarantee model accuracy
- → Motif sequences not same length, so couldn't generate Position Weight Matrix as a feature yet

Future Work:

- → Performing Multi-alignment in order to generate position weight matrix
- → Feature importance generation
- → Implementing other supervised and unsupervised learners to compare performance
- → Performing Evaluation using both motif family members and non-member instances

Proposed Work Schedule

Timeline	Task to be Completed	Responsible Individual		
Week 1-2	a) Motif Location Collection b) Motif Sequence and 3D Structure Collection	Mahfuz Nabila		
Week 3-4	a) Feature Extraction and Sequence Alignment b) 3D structural Alignment and RMSD calculation	Nabila Mahfuz		
Week 5-6	a) Data Preprocessing and Normalization b) Implementing DBSCAN Algorithm	Mahfuz Nabila		
Week 7-8	a) Model Training b) Collection of Testing Dataset	Mahfuz and Nabila		
Week 9-10	Testing and Model Evaluation	Mahfuz and Nabila		
Week 11 (April 29th)	Final Report Preparation	Mahfuz and Nabila		

References

- [1] Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3), 443-453.
- [2] Zhong, Cuncong, and Shaojie Zhang. "RNAMotifScanX: a graph alignment approach for RNA structural motif identification." RNA 21.3 (2015): 333-346.
- [3] Lu, X. J., Bussemaker, H. J., & Olson, W. K. (2015). DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic acids research, 43(21), e142-e142.
- [4] Nucleic Acid Structure Research Group, University of Dundee, University of Dundee, Professor David M.J. Lilley FRS. http://www.lifesci.dundee.ac.uk/groups/nasg/
- [5] Strobel, S. A., Adams, P. L., Stahley, M. R., & Wang, J. (2004). RNA kink turns to the left and to the right. RNA (New York, N.Y.), 10(12), 1852–1854. https://doi.org/10.1261/rna.7141504
- [6] Szewczak, A. A., Moore, P. B., Chang, Y. L., & Wool, I. G. (1993). The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proceedings of the National Academy of Sciences of the United States of America, 90(20), 9581–9585. https://doi.org/10.1073/pnas.90.20.9581
- [7] Zhong, C., Tang, H., & Zhang, S. (2010). RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment. Nucleic acids research, 38(18), e176. https://doi.org/10.1093/nar/gkq672
- [8] Ge P., Islam S., Zhong C., Zhang S. De novo discovery of structural motifs in RNA 3D structures through clustering. Nucleic Acids Res. 2018; 46:4783–4793.
- [9] Petrov A.I., Zirbel C.L., Leontis N.B. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA. 2013; 19:1327–1340.
- [10] Shahidul Islam, Md Mahfuzur Rahaman, Shaojie Zhang, RNAMotifContrast: a method to discover and visualize RNA structural motif subfamilies, Nucleic Acids Research, 2021;, gkab131, https://doi.org/10.1093/nar/gkab131

Any Questions?