Replication / Computational Neuroscience

[Re] A circuit model of auditory cortex

Parvathy Neelakandan¹ and Christoph Metzner^{1,2, ID}

 1 Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany – 2 Biocomputation Group, Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, United Kingdom

Edited by (Editor)

Introduction

Received

bla

Published

Methods

DOI

In this replication, we focus on the rate models proposed in the original article. The firing rate model was an extensions of the traditional Wilson-Cowan model¹ and represented an iso-frequency unit of the auditory cortex. This iso-frequency unit consisted of one excitatory and two inhibitory populations. Building on this unit a more complex three-unit rate models was developed, to investigate stimulus-specific adaptation, forward suppression, tunig-curve adaptation and feedforward functional connectivity.

Iso-Frequency Unit Model The iso-frequency unit model was based on the Wilson-Cowan model¹ but was modified to include two different types of inihbitory interneurons. The two inhibitory population are meant to represent parvalbumin-psoitive (PV) and somatostatin (SST) cells. The single unit model is given by

$$\tau_u \frac{du(t)}{dt} = -u(t) + f(w_{ee}u(t) - w_{ep}p(t) - w_{es}s(t) + qg(t)i(t)), \tag{1}$$

$$\tau_p \frac{dp(t)}{dt} = -p(t) + f(w_{pe}u(t) - w_{pp}p(t) - w_{ps}s(t) + I_{Opt,PV}(t) + qg(t)i(t)),$$
 (2)

$$\tau_s \frac{ds(t)}{dt} = -s(t) + f(w_{se}u(t) - w_{sp}p(t) - w_{ss}s(t) + I_{Opt,SST}(t), \tag{3}$$

with u(t), p(t), and s(t) being the normalized firing rates (in [0,1]) of the pyramidal cell population, the PV population and the SST population, respectively. Furthermore, w_xy represents the strengths of connections from population y to population x. The two terms $I_{Opt,PV}$ and $I_{Opt,SST}$ describe the input current to cells due to optogenetic stimulation of the PV population and SST population, respectively. τ_i , $i \in u, p, s$ defines the time constants for the respective populaitons. The function f is realised as a threshold linear function given by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ rx & \text{if } 0 \le x \le 1/r \\ 1 & \text{if } x > 1/r, \end{cases}$$

Copyright © 2020 P. Neelakandan and C. Metzner, released under a Creative Commons Attribution 4.0 International license. Correspondence should be addressed to Christoph Metzner (cmetzner@ni.tu-berlin.de)
The authors have declared that no competing interests exists.
Code is available at https://github.com/ChristophMetzner/Park-Geffen-Replication.

Table 1. Overview of the model parameters

а	b	С
1	2	3

(4)

which coarsely approximates a sigmoid function. Furthermore, the function f is thresholded by simply subtracting a constant u_i from the input x (i.e. $f(x-u_i)$) which varied for the different populations. Lastly, afferent auditory input is fed into the unit is given by qg(t)i(t), which is subdivided into the 'raw' input i(t) and a slow modulation g(t) mimicking synaptic depression at thalamic synapses. The input function i(t) is simply an instantaneous rise with amplitude q and an exponential decay with a time constant of τ_q . The synaptic depression g(t) is governed by the following equation

$$\frac{dg(t)}{dt} = \frac{g_0 - g(t)}{\tau_{d_1}} - \frac{g(t)i(t)}{\tau_{d_2}}.$$
 (5)

The parameter values can be found in Table 1

Three-Unit Model Building on the single unit a three-unit model was implemented, with each single unit representing a different input frequency, thus creating a simple tonotopic layout that allowed to explore more complex auditory inputs. Intra-unit connectivity was as described before for the single-uni model. Inter-unit connectivity was restricted to immediate neighbours and included the following connection types: Exc to exc, exc to PV and SST to exc. Together, the activity of the three populations of each unit was governed by

$$\tau_u \frac{du_i(t)}{dt} = -u_i(t) + f(w_{ee}u_i(t) - (w_{ep} - a(1 - D_i(t)))p_i(t) - w_{es}s_i(t) + J_{1,i}(t)), \quad (6)$$

$$\tau_p \frac{dp_i(t)}{dt} = -p_i(t) + f(w_{pe}u_i(t) - w_{pp}p_i(t) - w_{ps}s_i(t) + I_{Opt,PV}(t) + J_{2,i}(t)), \quad (7)$$

$$\tau_s \frac{ds_i(t)}{dt} = -s_i(t) + f(w_{se}u_i(t) - w_{sp}p_i(t) - w_{ss}s_i(t) + I_{Opt,SST}(t) + J_{3,i}(t)), \quad (8)$$

with

$$J_{1,i}(t) = \begin{cases} -F_i(t)s_2(t) + qI_i(t) + w_{ee}^* u_2(t) & \text{if } i = 1, 3\\ -F_s(t)(s_1(t) + s_3(t)) + qI_2(t) + \frac{w_{ee}^*(u_1(t) + u_3(t))}{2} & \text{if } i = 2 \end{cases}$$

(9)

and
$$J_{2,i}(t) = \begin{cases} qI_i(t) + w_{pe}^* u_2(t) & \text{if } i = 1,3 \\ qI_2(t) + \frac{w_{pe}^* (u_1(t) + u_3(t))}{2} & \text{if } i = 2 \end{cases}$$
(10)

and

$$J_{3,i}(t) = \begin{cases} qI_i(t) + w_{se}^* u_2(t) & \text{if } i = 1,3\\ qI_2(t) + \frac{w_{se}^* (u_1(t) + u_3(t))}{2} & \text{if } i = 2. \end{cases}$$
(11)

Figure 1. ReFig1

Figure 2. ReFig2

Here, $I_i(t)$ is described by

$$I_k(t) = g_k(t)i_k(t) + g_2(t)i_2(t)\alpha$$
 for $k = 1, 3$ (12)

and

$$I_2(t) = (g_1(t)i_1(t) + g_3(t)i_3(t))\alpha + g_2(t)i_2(t).$$
(13)

Reproduction of experiments

Reimplementation

The iso-frequency unit model and the three-unit model were both implemented in Python and integrated into the neurolib framework 2 .

Discussion

bla

Figure 3. ReFig3

References

- 1. H. R. Wilson and J. D. Cowan. "Excitatory and inhibitory interactions in localized populations of model neurons." In: **Biophysical journal** 12.1 (1972), pp. 1–24.
- C. Cakan, C. Metzner, and N. Jajcay. neurolib: A Python simulation framework for easy whole-brain neural mass modeling. 2019.

Figure 4. ReFig4

Figure 5. ReFig6

Figure 6. ReFig8

Figure 7. ReFig9