1 Hydrostatik

1.1 Druck

Abbildung	Formeln	Einheiten
F_{\perp} F A F_{\parallel}	• $p = \frac{F_{\perp}}{A}$ • $\tau = \frac{F_{\parallel}}{A}$ • $\tau = 0$ für ruhende Fluide	• $p = \left[\frac{N}{m^2}\right] = Pa$ • $\tau = \left[\frac{N}{m^2}\right] = Pa$ • $\tau = Scherung$

1.2 Schweredruck

1.3 Auftrieb: Prinzip des Archimedes

Abbildung	Formeln	Einheiten
F _A m F _G	 F_G = Gewichtskraft F_G = ρ_K * V * g F_A = Auftriebskraft F_G = ρ_F * V * g Wenn etwas oben auf schwimmt, herrscht keine Beschleunigung. Dann gilt: F_A = F_G Als Tiefgang wird der Teil des Körpers bezeichnet der im Wasser ist. 	• $F_A, F_G = [N]$ • $\rho_K = \text{Dichte K\"{o}rper}$ • $\rho_F = \text{Dichte Fl\"{u}ssigkeit}$ • $\rho_F, \rho_K = \left[\frac{kg}{m^3}\right]$ • $V = [m^3]$ • $g = 9.81\left[\frac{m}{s^2}\right]$

1.4 Druck und Überdruck

Abbildung	Formeln	Einheiten
P Finnen FAussen Po	• $F = F_I - F_A = p * A - p_0 * A$ • $A * (p - p_0) = \Delta p * A$ • $\Delta p = \ddot{\mathbf{U}} \mathbf{berdruck}$	• $p, p_0, \Delta p = \left[\frac{N}{m^2}\right] = Pa$ • $F, F_I, F_A = [N]$ • $A = [m^2]$ • $A = Fl$ äche der Scheibe

1.5 Kompression

Abbildung	Formeln	Einheiten
↓ V	• $\frac{\Delta V}{V} = -\kappa * \Delta p$ • $\kappa = -\frac{1}{V} * \frac{\Delta V}{\Delta p}$ • $K = \frac{1}{\kappa}$ • $K = \text{Kompressions modul}$	• $\Delta p = \left[\frac{N}{m^2}\right] = Pa$ • $\kappa = \left[\frac{1}{Pa}\right]$ • $V, \Delta V = [m^3]$

1.6 Barometrische Höhenformel

Abbildung	Formeln	Einheiten
$p_{(h)}$ h	$\bullet \ p_{(h)} = p_0 * e^{-\frac{\rho_0 * g * h}{p_0}}$	$\bullet \ p_{(h)} = \left[\frac{N}{m^2}\right] = Pa$ $\bullet \ p_0 = \left[\frac{N}{m^2}\right] = Pa$ $\bullet \ \rho_0 = \left[\frac{kg}{m^3}\right]$ $\bullet \ g = \left[\frac{m}{s^2}\right]$
p_0, ho_0		$\bullet \ h = [m]$
		u = [m]

1.7 Oberflächenspannung

Abbildung	Formeln	Einheiten
Δs ΔA	$\bullet \ \sigma = \frac{\Delta W}{\Delta A} = \frac{\Delta W}{\Delta s * b * 2}$ $\bullet \ \sigma = \frac{F}{2 * b}$	• $\sigma = \left[\frac{N}{m}\right]$ • $\sigma = \text{Oberflächenspannung}$ • $\Delta W = [Ws]$ • $\Delta A = [m^2]$ • $\Delta s, b = [m]$

Ideale Flüssigkeit \implies reibungsfrei und inkompressibel Ideales Gas \implies Gesetz von Boyle-Mariotte = $p*V = constant \implies$ Gilt nur für konstante Temperatur T!

Isotherm = Die Temperatur bleibt gleich (bzw. man lässt genug Zeit zum Temmperaturausgleich

Adiabatisch = Ohne Wärmeaustausch mit der Umgebung

Barotrop = Die Dichte einer Flüssigkeit ist nur von Druck abhängig

2 Hydrodynamik

2.1 Kontinuitätsgleichung

Abbildung	Formeln	Einheiten
A_1 V_2 V_2	$\bullet \ \ A_1 * v_1 = A_2 * v_2$	• $A_1, A_2 = [m^2]$ • $v_1, v_2 = [\frac{m}{s}]$

2.2 Bernoulli-Gleichung

Abbildung	Formeln	Einheiten
h_1 h_2	• $p_1 + \rho * \frac{v_1^2}{2} + \rho * g * h_1 = p_2 + \rho * \frac{v_2^2}{2} + \rho * g * h_2$ • $p_{1,2} = \text{Statischer Druck}$ • $\rho * \frac{v_{1,2}^2}{2} = \text{Dynamischer Druck}$ • $\rho * g * h_{1,2} = \text{Schweredruck}$	• $p_{1,2} = \left[\frac{N}{m^2}\right] = Pa$ • $v_{1,2} = \left[\frac{m}{s}\right]$ • $\rho = \left[\frac{kg}{m^3}\right]$

2.3 Formel von Stokes - Kugelfallviskosimeter

Abbildung	Formeln	Einheiten
F _R F _A F _G	• Im Gleichgewicht: $F_G = F_A + F_R$ • $F_{Gewicht} = \frac{4}{3} * \pi * r^3 * \rho_{Koerper} * g = m * g$ • $F_{Auftrieb} = \frac{4}{3} * \pi * r^3 * \rho_{Fluessigkeit} * g = m * g$ • $F_{Reib} = 6 * \pi * r^3 * \eta * r * v$ • $\eta = \text{Viskosit\"at} = \frac{2 * r^2 * g * (\rho_K - \rho_F)}{9 * v}$	$\bullet \ F_G, F_A, F_R = [N]$ $\bullet \ r = [m]$ $\bullet \ \rho_K, \rho_F, = \left[\frac{kg}{m^3}\right]$ $\bullet \ g = \left[\frac{m}{s^2}\right]$ $\bullet \ m = [kg]$ $\bullet \ \eta = \left[\frac{N*s}{m^2}\right]$

2.4 Laminare Rohrströmung

Abbildung	Formeln	Einheiten
Mantelfläche = $2 \cdot \pi \cdot r \cdot l$ A_1 A_2	• $F_{Reib} = F_{Druck1} - F_{Druck2}$ • $\tau = \pi * r^2 * (p_1 - p_2) + 2 * \pi * r * l * \eta * \frac{dv}{dr}$ • $\tau = Schubspannung$	• $\tau, p_1, p_2 = [Pa]$ • $r, l = [m]$ • $F = [N]$ • $\eta = \text{Viskosit\"at} = [\frac{kg}{m*s}] = [Pa*s]$

2.5 Gesetz von Hagen Poiseuille

Formeln	Einheiten
• $\dot{\mathbf{V}} = \frac{V}{t} = \frac{\pi * \Delta p * r^4}{8 * \eta * l} = \frac{\pi * (p_2 - p_1) * r^4}{8 * \eta * l}$	• $\Delta p, p_2, p_1 = \left[\frac{N}{m^2}\right] = [Pa]$ • $\dot{\mathbf{V}} = [m^3]$ • $P = [W]$ • $F = [N]$ • $A = [m^2]$ • $s = [m]$ • $\eta = \mathbf{Viskosit\"{at}} = \left[\frac{kg}{m*s}\right] = [Pa*s]$

2.6 Pumpenleistung

$\bullet p = \left[\frac{N}{2}\right] = Pa$	Formeln	Einheiten
• $P = \frac{W}{t * \eta} = \frac{F * s}{t * \eta} = \frac{p * A * s}{t * \eta} = \frac{p * V}{t * \eta}$ • $V = [m^3]$ • $P = [W]$ • $F = [N]$ • $A = [m^2]$ • $A = [m^2]$ • $A = [m]$ • $A = [m]$	• $P = \frac{W}{t*\eta} = \frac{F*s}{t*\eta} = \frac{p*A*s}{t*\eta} = \frac{p*V}{t*\eta}$	$ \bullet \ P = [W] $ $ \bullet \ F = [N] $ $ \bullet \ A = [m^2] $ $ \bullet \ s = [m] $

2.7 Reynolds-Zahl

Formeln	Einheiten
• $Reynoldszahl = Re = \frac{\rho * v * d}{\eta} = \frac{\rho * \dot{V} * 4}{d * \pi * \eta}$	• $\rho = \left[\frac{kg}{m^3}\right]$ • $\eta = \text{Viskosit\"at} = \left[\frac{kg}{m*s}\right] = \left[Pa*s\right]$
$\bullet \ v = \frac{\dot{V}}{A}$	$\bullet \ v = \left[\frac{m}{s^2}\right]$
• $Re > 2320 \Rightarrow$ Bei Rohrströmung Turbulenz	\bullet $d = [m]$
• $Re < 2320 \Rightarrow$ Keine Turbulenz	$\bullet \ A = [m^2]$
	$\bullet \ \dot{V} = \left[\frac{m^3}{s}\right]$

3 Wärmelehre

3.1 Temperatureinheiten

Formeln	Einheiten	
• ${}^{\circ}C = \frac{{}^{\circ}F - 32}{1.8}$ • ${}^{\circ}F = {}^{\circ}C * 1.8 + 32$ • ${}^{\circ}C = K - 273.15$ • $K = {}^{\circ}C + 273.15$	• °C = Temperatur in Celsius • °F = Temperatur in Fahrenheit • K = Temperatur in Celsius	

3.2 Molare Masse, Molmasse

Formeln	Einheiten	
$\bullet \ \ M = \frac{m}{n} = N_A * m_M$	• $m = [kg]$ • $n = [mol]$ • $M = \left[\frac{kg}{mol}\right]$ • $N_A = 6.022 * 10^{23} \left[\frac{1}{mol}\right]$ • $m_M = [kg]$	

3.3 Längen und Volumenänderung

Abbildung	Formeln	Einheiten
I ΔI	• $\Delta l = \alpha * l * \Delta T$ • $\Delta V = \gamma * V * \Delta T$ • $\alpha, \gamma = Ausdehnungskoeffizienten$ • $\gamma = 3 * \alpha$ (Gilt bei isotopen Materialien) • Isotop = In allen Richtungen gleiche Eigenschaften	

3.4 Thermische Spannung, Hookesches Gesetz

Thermodynamische Systeme

- ⇒ offen = Austausch von Energie und Austausch von Material (z.B. Wärmetauscher, Kompressor, Gasturbine)
- \Rightarrow geschlossen = Austausch von Energie und kein Austausch von Material (z.B. Heizkreislauf, Kühlschrank)
- ⇒ abgeschlossen = kein Austausch von Energie und kein Austausch von Material (z.B. Ideale Thermosflasche)

7

⇒ adiabatisch = kein Wärmeaustausch, kein Materialaustausch, aber Energieaustausch (z.B. Kompressor)

Abbildung	Formeln	Einheiten
	• Ohne Behinderung: $\Delta l = \alpha * l * \Delta T$ • Mit Behinderung: $\Delta l = 0$ • $\sigma = E * \frac{\Delta l}{l}$ • $\sigma = E * \alpha * \Delta T$ • E = Elastizitätsmodul • σ = Thermische Spannung	$\bullet \ E = \left[\frac{N}{m^2}\right] = Pa$ $\bullet \ \sigma = \left[\frac{N}{m^2}\right] = Pa$ $\bullet \ \Delta l, l = [m]$ $\bullet \ \Delta V = [m^3]$ $\bullet \ \alpha = \left[\frac{1}{K}\right]$ $\bullet \ \Delta T = [K]$

3.5 Thermische Zustandsgleichung, ideales Gas

Formeln	Einheiten
• $p*V = N*k*T$ • $p*V = n*R*T$ • $p*V = \frac{m}{M}*R*T$ • $R = N_A*k$ • $n = \frac{m}{M}$ • R = Universelle Gaskonstante • k = Boltzmann-Konstante • $N_A = \text{Avogadro-Zahl}$ • 1 atü = 98066.5 [Pa] • 1 Torr = 133.322 [Pa] = 1[mm] * $g*\rho_{Hg}$	• $p = [\frac{N}{m^2}] = Pa$ • $V = [m^3]$ • $N = [1] = \text{Anzahl Mole}$ • $n = [1] = \text{Anzahl Mole}$ • $M = [\frac{kg}{mol}] = \text{Molare Masse}$ • $T = [K]$ • $k = 1.381 * 10^{-23} [\frac{J}{K}]$ • $R = 8.314 [\frac{J}{mol*K}]$ • $N_A = 6.022 * 10^{23} [\frac{1}{mol}]$ • $\rho_{Hg} = 13595[\frac{kg}{m^3}]$ • $g = 9.81[\frac{m}{s^2}]$

Ideales Gas \Rightarrow 1.) (p*V=const) Teilchen sind Massepunkte 2b.) Teilchen üben keine gegenseitigen Kräfte aus Reales Gas \Rightarrow 1.) Teilchen dehnen sich aus \rightarrow Volumen ist jetzt: (V-b) 2.) Teilchen wirken Kräfte aus $(p=p_0+\frac{a}{V^2})$

3.6 Van der Waal'sche Zustandsgleichung, reale Gase

Abbildung	Formeln	Einheiten
p ideal Tkrit	• (allg.): $p = \frac{n*R*T}{V_m - b} - n^2 * \frac{a}{V_m^2}$ • (1 mol): $p = \frac{R*T}{V_m - b} - n^2 * \frac{a}{V_m^2}$ • $V = V_m * n$ • a = Kohäsionsdruck (material-abhängig) • b = Kovolumen (material-abhängig)	• $p = [\frac{N}{m^2}] = Pa$ • $V = [m^3]$ • $n = [1] = \text{Anzahl Mole}$ • $V_m = [\frac{m^3}{mol}] = \text{molares Volumen}$ • $T = [K]$ • $a = [\frac{10^{-3} * Pa * m^6}{mol^2}]$ • $b = [\frac{10^{-6} * m^3}{mol}]$

3.7 Mittlere freie Weglänge

$\bullet \ \bar{1} = [m]$ $\bullet \ \bar{1} = [m]$ $\bullet \ d \qquad \bullet \ \bar{1} = \frac{1}{\sqrt{2} * n * \pi * d^2} = \frac{R * T}{\sqrt{2} * \pi * d^2 * p * N_A}$ $\bullet \ n = \frac{N}{V} = \frac{p * N_A}{R * T}$ $\bullet \ n = [N]$ $\bullet \ N = [1]$ $\bullet \ V = [m^3]$ $\bullet \ p = [Pa]$ $\bullet \ T = [K]$ $\bullet \ N_A = 6.022 * 10^{23} \left[\frac{1}{mol}\right]$	$\bullet \ n = \frac{Teilchen}{Volumen} = \left[\frac{1}{m}\right]$ $\bullet \ d = [m]$	Abbildung	Formeln	Einheiten
$\bullet R = 8.314 \left[\frac{J}{mol*K} \right]$	$\bullet \ n = \frac{N}{V} = \frac{p * N_A}{R * T}$ $\bullet \ p = [Pa]$ $\bullet \ T = [K]$	d 1 d		• $n = \frac{Teilchen}{Volumen} = \left[\frac{1}{m^3}\right]$ • $d = [m]$ • $N = [1]$ • $V = [m^3]$ • $p = [Pa]$ • $T = [K]$ • $N_A = 6.022*10^{23} \left[\frac{1}{mol}\right]$

3.8 kinetische Gastheorie

Abbildung	Formeln	Einheiten
	• $p = \frac{F}{A} = \frac{1}{3} * \frac{N_A * v^2 * m}{V}$ • $E_{kin} = \frac{m * v^2}{2} = \frac{3}{2} * k * T$	• $p = \left[\frac{N}{m^2}\right] = Pa$ • $F = [N]$ • $A = [m^2]$ • $V = [m^3]$ • $m = [kg]$ • $v = [m\frac{m}{s}]$ • $T = [K]$ • $k = 1.381 * 10^{-23} \left[\frac{J}{K}\right]$ • $N_A = 6.022 * 10^{23} \left[\frac{1}{mol}\right]$

3.9 Thermodynamik

Formeln	Einheiten
• Erster Hauptsatz der Thermodynamik: $dU = \delta W + \delta Q$ • $\Delta Q = m * c * \Delta T$ • $m * c = C$ • $\Delta T = T_2 - T_1 \Rightarrow$ So, dass es positives ΔT gibt • $Q_{ab} = Q_{zu}$ • $Q_s = \text{Schmelzwärme} = q_s * m$ • $Q_v = \text{Verdampfungswärme} = q_v * m$	• dU =innere Energie= $[J]$ • δW =Arbeit= $[Ws]$ • $\delta Q, \Delta Q$ =Wärme= $[J]$ • $m, m_1, m_2 = [kg]$ • c, c_1, c_2 = spez. Wärmekapazität = $[\frac{J}{kg*K}]$ • C = Wärmekapazität = $[\frac{J}{kg}]$ • $\Delta T, T_1, T_2, T_M = [K]$ • $c_{Wasser} = 4182[\frac{J}{kg*K}]$
\bullet $q_s=$ spez. Schmelzwärme	• $c_{Eis} = 2060 \left[\frac{J}{kg*K} \right]$
• $q_v = \text{spez. Verdampfungswärme}$ • $T_M = \text{Mischtemparatur zweier Stoffe}$ $m_1 * c_1 * T_1 + m_2 * c_2 * T_2$	$ullet \ Q_s, Q_v = [J]$ $ullet \ q_s, q_v = [rac{J}{kg}]$
• $T_M = \frac{m_1 * c_1 * T_1 + m_2 * c_2 * T_2}{m_1 * c_1 + m_2 * c_2}$	• $q_{s,Eis} = 333700 \left[\frac{J}{kg} \right]$ • $q_{v,Wasser} = 2257000 \left[\frac{J}{kg} \right]$

Gründe für eine höhere Wärmekapazität:

- 1.) Anzahl Freiheitsgrade
- 2.) Grössere Anzahl an Teilchen (kleinere Dichte)

Anomalie des Wassers:

Höchste Dichte bei 4 °C⇒ Volumenzunahme bei Erhöhung und Verminderung der Temperatur

3.10 Wärmetransport

Formeln Einheiten

$$\bullet \ k = \frac{1}{\frac{1}{\alpha_i} + \sum_s \frac{d_s}{\lambda_s} + \frac{1}{\alpha_a}}$$

$$\bullet \ k_{zylindrisch} = \frac{1}{r_a} * \frac{1}{\frac{1}{r_i * \alpha_i} + \sum_s \frac{1}{\lambda_s} * ln(\frac{r_{sa}}{r_{si}} + \frac{1}{r_a * \alpha_a}) }$$

• P_H = Heizleistung = $k * A * \Delta T$

•
$$P_K = \text{K\"{u}hlleistung} = k * A + \underbrace{c_L * \rho_L * \frac{V}{t}}_{Lueftung} * \Delta T$$

• Auch hier gilt die Wärmebilanz $Q_{ab}=Q_{zu}$. Hier können die Aufgaben meist über den Vergleich der Heizleistungen gelöst werden.

• $\alpha_i, \alpha_a = \text{W\"{a}rme\"{u}bergangszahl} = [\frac{W}{m^2 * K}]$

• $k = \text{Wärmedurchgangszahl} = \left[\frac{W}{m_{2*K}^2}\right]$

• $d_s = \text{Wanddicke} = [m]$

• $\lambda_s = \text{Anzahl Wandschichten} = [1]$

• r = Wandradien = [m]

• $P_H, P_K = [W]$

• A = Wandfläche = [m]

 $\bullet \ c_L = 1005 \left[\frac{J}{Kg * K} \right]$

• $\rho_L = 1.2041 \left[\frac{kg}{m^3} \right]$

• $V = \text{Raumvolumen} = [m^3]$

• t = [s]

• $\Delta T = [K]$

11

3.11 Freiheitsgrade

Atommodel	Translation	Rotation	Oszillation	Gesamt
Massenpunkt	3	0	0	3
Starre Hantel	3	2	0	5
Schwingende	2	9	1 * 2	7
Hantel	3		1 * 2	
Mehratomig starr	3	3	0	6
Kristall	0	0	3 * 2	6