Least Squares Regression

Alan T. Arnholt

Last modified on August 15, 2023 11:01:37 Eastern Daylight Time

Correlation

The **correlation coefficient**, denoted by r, measures the direction and strength of the linear relationship between two numerical variables. Is is given by the equation

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \tag{1}$$

Following are the high school GPAs and the college GPAs at the end of the freshman year for ten different students from the Gpa data set of the BSDA package.

hsgpa	collgpa
2.7	2.2
3.1	2.8
2.1	2.4
3.2	3.8
2.4	1.9
3.4	3.5
2.6	3.1
2.0	1.4
3.1	3.4
2.5	2.5

Create a scatterplot and then comment on the relationship between the two variables.

The college GPA is the response variable and is labeled on the vertical axis. The scatterplot in Figure 1 shows that the college GPA increases as the high school GPA increases. In fact, the the dots appear to cluster along a straight line. The correlation coefficient is r=0.844, which indicates that a straight line is a reasonable relationship between the two variables.

• Compute the correlation coefficient using the equation presented earlier.

R Code

```
head(Gpa)
# A tibble: 6 x 2
  hsgpa collgpa
  <dbl>
         <dbl>
1
   2.7
           2.2
        2.8
2.4
3.8
1.9
2 3.1
3 2.1
4 3.2
5 2.4
6 3.4
           3.5
  values <- Gpa %>%
    mutate(y_ybar = collgpa - mean(collgpa),
           x_xbar = hsgpa - mean(hsgpa),
           zx = x_xbar/sd(hsgpa),
           zy = y_ybar/sd(collgpa))
  knitr::kable(values)
```

zy	ZX	x_xbar	y_ybar	collgpa	hsgpa
-0.6565322	-0.0209580	-0.01	-0.5	2.2	2.7
0.1313064	0.8173628	0.39	0.1	2.8	3.1
-0.3939193	-1.2784393	-0.61	-0.3	2.4	2.1
1.4443708	1.0269430	0.49	1.1	3.8	3.2
-1.0504515	-0.6496987	-0.31	-0.8	1.9	2.4
1.0504515	1.4461035	0.69	0.8	3.5	3.4
0.5252257	-0.2305382	-0.11	0.4	3.1	2.6
-1.7069836	-1.4880195	-0.71	-1.3	1.4	2.0
0.9191450	0.8173628	0.39	0.7	3.4	3.1
-0.2626129	-0.4401184	-0.21	-0.2	2.5	2.5

```
#
values %>%
    summarize(r = (1/9)*sum(zx*zy))

# A tibble: 1 x 1
    r
    <dbl>
1 0.844

Using the build in cor() function:

Gpa %>%
    summarize(r = cor(collgpa, hsgpa))

# A tibble: 1 x 1
    r
    <dbl>
1 0.844
```

Note:

```
p1 <- ggplot(data = Gpa, aes(x = hsgpa, y = collgpa)) +
    geom_point() +
    theme_bw()
p2 <- ggplot(data = values, aes(x = zx, y = zy)) +
    geom_point() +
    theme_bw()
library(gridExtra)
grid.arrange(p1, p2, ncol = 1, nrow = 2)</pre>
```


Or better yet
library(patchwork)
p1/p2

Least Squares Regression

The equation of a straight line is

$$y = b_0 + b_1 x$$

where b_0 is the y-intercept and b_1 is the slope of the line. From the equation of the line that best fits the data,

$$\hat{y} = b_0 + b_1 x$$

we can compute a predicted y for each value of x and then measure the error of the prediction. The error of the prediction, e_i (also called the residual) is the difference in the actual y_i and the predicted \hat{y}_i . That is, the residual associated with the data point (x_i, y_i) is

$$e_i = y_i - \hat{y}_i.$$

The least squares regression line is

$$\hat{y} = b_0 + b_1 x$$

where

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = r \frac{s_y}{s_x}$$
 (2)

and

$$b_0 = \bar{y} - b_1 \bar{x} \tag{3}$$

Find the least squares regression line $\hat{y} = b_0 + b_1 x$ for the ${\tt Gpa}$ data.

The coefficients are also computed when using the lm() function.

```
lm(formula = collgpa ~ hsgpa, data = Gpa)
Residuals:
    Min
                   Median
              1Q
                               3Q
                                       Max
-0.48653 -0.37273 -0.02328 0.37365 0.54817
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        0.8318 -1.143 0.28625
(Intercept) -0.9504
             1.3470
                        0.3027
                                4.449 0.00214 **
hsgpa
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4333 on 8 degrees of freedom
Multiple R-squared: 0.7122,
                              Adjusted R-squared: 0.6762
F-statistic: 19.8 on 1 and 8 DF, p-value: 0.002141
  library(moderndive)
  get_regression_table(mod1)
# A tibble: 2 x 7
  term
           estimate std_error statistic p_value lower_ci upper_ci
  <chr>
                        <dbl>
                                 <dbl> <dbl>
                                                  <dbl>
                                                          <dbl>
              <dbl>
              -0.95
                        0.832
                                 -1.14
                                         0.286 -2.87
                                                          0.968
1 intercept
2 hsgpa
               1.35
                        0.303
                                  4.45
                                         0.002
                                                  0.649
                                                          2.04
```

Find the residuals for mod1.

```
R Code
  get_regression_points(mod1)
# A tibble: 10 x 5
     ID collgpa hsgpa collgpa_hat residual
  <int>
         <dbl> <dbl>
                           <dbl>
                                   <dbl>
      1
            2.2
                 2.7
                           2.69 -0.487
1
2
      2
            2.8
                           3.22
                                 -0.425
                 3.1
3
      3
            2.4 2.1
                          1.88 0.522
4
            3.8 3.2
                           3.36
      4
                                 0.44
5
      5
            1.9 2.4
                           2.28 -0.382
            3.5
                 3.4
6
      6
                           3.63 -0.129
```

```
7
       7
             3.1
                                2.55
                                        0.548
                    2.6
 8
       8
             1.4
                    2
                                1.74
                                       -0.344
9
             3.4
                    3.1
                                3.22
                                        0.175
       9
10
      10
             2.5
                    2.5
                                2.42
                                        0.083
```

Add the least squares line to the scatterplot for collgpa versus hsgpa.

Assessing the fit

