EGT Qual Paper Reading

Winter 2018

Note 1: Mutation-selection equilibrium in games with multiple strategies

Advisor: Professor Fu Scribe: Xingru Chen

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Introduction

1.1.1 Basic settings

Let us consider a population of N individuals where game with n strategies is played.

- The payoff values are given by the $n \times n$ payoff matrix $A = [a_{ij}]_{n \times n}$.
- The state of the system is described the n-dimensional column vector X, where X_i is the number of players using strategy i. The frequencies of strategies are x = X/N.
- Approaches
 - traditional (well-mixed populations of infinite size): the deterministic selection dynamics can be described by the replicator equation.
 - recent (populations of finite size): a stochastic description is necessary.

1.1.2 More detailed settings

For simplicity, we focus on stochastic evolutionary dynamics in the population of a large (but still finite) size.

- Evolutionary updating occurs according to the frequency dependent **birth-death** Moran process, where an individual is chosen to reproduce and its offspring will replace an individual (W-F process and P-C process are also discussed). It is worth pointing out that these two individuals can be identical.
- Individuals reproduce proportional to their payoffs but subject to mutation with probability u > 0: with probability 1 u, the child adopts the strategy of the parent; with probability u one of the n strategies is chosen at random.
- In the case of weak selection where $\delta \ll 1/N$, the payoff of strategy i is given by $f_i = 1 + \delta \pi_i$ and the column vector f is given by $f = 1 + \delta Ax$. Further, the total payoff the whole population is $F = X^T f = N(1 + \delta x^T Ax)$.

In the stationary state of the Moran process, we find the system in state X with probability $P_{\delta}(X)$, the distribution of which is the eigenvector with the largest eigenvalue of the stochastic transition matrix of the system. The stationary probabilities are continuous at $\delta = 0$ and for any state X we can write them as

$$P_{\delta}(X) = P_{\delta=0}(X)[1 + O(\delta)]. \tag{1.1}$$

1.1.3 Kernel assumptions

We now propose a more general way of identifying the strategy most favored by selection: **the strategy** with the highest average frequency (i.e. abundance) in the long time average. Moreover, we consider that selection favors a strategy if its abundance exceeds 1/n and vise versa.

- Although the frequencies of the strategies can widely fluctuate in time, all strategies have approximately the same abundance 1/n in the stationary distribution of the mutation-selection process.
- For low mutation rates, all players use the same strategy until another strategy takes over most of the time. There are only two strategies involved in a take over.
 - For high mutation rates, the frequencies of all strategies are close to 1/n all the time.
- In the stationary state, the average total change of the frequency of any strategy is zero (selection and mutation are in balance).
- Since in the **neutral** stationary state all players are equivalent, exchanging indices does not affect the averages $\langle x_i \rangle$, $\langle x_i x_j \rangle$ and $\langle x_i x_j x_k \rangle$. In particular, we have

$$\langle x_1 x_2 \rangle = \langle (1 - \sum_{2 \le i \le n} x_i) x_2 \rangle = \langle x_1 \rangle - \langle x_1 x_1 \rangle - (n-2) \langle x_1 x_2 \rangle. \tag{1.2}$$

$$\langle x_1 x_2 x_2 \rangle = \langle (1 - \sum_{2 \le i \le n} x_i) x_2 x_2 \rangle = \langle x_1 x_1 \rangle - \langle x_1 x_1 x_1 \rangle - (n-2) \langle x_1 x_2 x_2 \rangle. \tag{1.3}$$

$$\langle x_1 x_2 x_3 \rangle = \langle (1 - \sum_{2 \le i \le n} x_i) x_2 x_3 \rangle = \langle x_1 x_2 \rangle - 2\langle x_1 x_2 x_2 \rangle - (n-3)\langle x_1 x_2 x_3 \rangle. \tag{1.4}$$

1.1.4 Methods

To calculate the deviation from the uniform distribution of the mutation-selection process, we use the perturbation theory given the selection strength δ .

1.1.5 Major results

• For low mutation probability $u \ll 1/N$, selection favors strategy k if

$$L_k = \frac{1}{n} \sum_{i=1}^{n} (a_{kk} + a_{ki} - a_{ik} - a_{ii}) > 0.$$
 (1.5)

• For high mutation probability $u \gg 1/N$, selection favors strategy k if

$$H_k = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n (a_{kj} - a_{ij}) > 0.$$
 (1.6)

 \bullet For arbitrary mutation probability the general expression for selection to favor strategy k is

$$L_k + NuH_k > 0. (1.7)$$

And Strategy k is more abundant than strategy j if

$$L_k + NuH_k > L_j + NuH_j. (1.8)$$

1.2 Perturbation method

We look into the dynamics of the system in the stationary state.

1.2.1 Abundance of type k

During a single update step, the average number of offspring (fitness) of a k-player due to selection is

the parent itself its random death the proliferation proportional to its payoff

$$\omega_k = 1 + (-1/N) + f_k/F \qquad (1.9)$$

For $\delta \to 0$, we have

$$\frac{f_k}{F} = \frac{1 + \delta(Ax)_k}{N(1 + \delta x^T Ax)} = \frac{1}{N} [1 + \delta(Ax)_k] [1 - \delta x^T Ax + O(\delta^2)] = \frac{1}{N} [1 + \delta((Ax)_k - x^T Ax) + O(\delta^2)].$$

Hence,

$$\omega_k = 1 + \frac{\delta}{N} [(Ax)_k - x^T Ax] + O(\frac{\delta^2}{N}). \tag{1.10}$$

The frequency of k-players changes on average due to selection by

$$\Delta x_k^{\text{sel}} = x_k \omega_k - x_k = \frac{\delta}{N} x_k [(Ax)_k - x^T A x] + O(\frac{\delta^2}{N}). \tag{1.11}$$

The average change due to selection in the leading order can be written as

$$\langle \Delta x_k^{\text{sel}} \rangle_{\delta} = \sum_{X} \Delta x_k^{\text{sel}} P_{\delta}(X)$$

$$\approx \frac{\delta}{N} \sum_{X} x_k [(Ax)_k - x^T A x] P_{\delta=0}(X) \times [1 + O(\delta)]$$

$$\approx \frac{\delta}{N} (\sum_{j} a_{kj} \langle x_k x_j \rangle - \sum_{i,j} a_{ij} \langle x_k x_i x_j \rangle).$$
(1.12)

Therefore, the expect total change of frequency in state X is

change in the absence of mutation

$$\Delta x_k^{\text{tot}} = \underbrace{\Delta x_k^{\text{sel}}(1-u)}_{\text{introduction of a random type under mutation}} \text{random death under mutation} + \underbrace{\left(-u \times x_k/N\right)}_{\text{(}-u \times x_k/N)}. \tag{1.13}$$

Given that $\langle \Delta x_k^{\rm tot} \rangle = 0$, after averaging (1.13) we obtain the abundance in the stationary state expressed by the average change due to selection as

$$\langle x_k \rangle_{\delta} = \frac{1}{n} + \frac{N(1-u)}{u} \langle \Delta x_k^{\text{sel}} \rangle_{\delta}.$$
 (1.14)

1.2.2 Average change of type k

During a single update step, it is obvious that

strategy k is more abundant than the average change due to selection is positive

$$(\langle x_k \rangle_{\delta} > 1/n) \iff (\langle \Delta x_k^{\text{sel}} \rangle_{\delta} > 0) \qquad (1.15)$$

By taking into account the symmetries, we get the following expression for $\langle \Delta x_k^{\rm sel} \rangle_{\delta}$

$$\frac{1}{N}\delta[\langle x_1x_1\rangle a_{kk} + \langle x_1x_2\rangle \sum_{i\neq k} a_{ki} - \langle x_1x_1x_1\rangle a_{kk} - \langle x_1x_2x_2\rangle \sum_{i\neq k} (a_{ki} + a_{ii} + a_{ik}) - \langle x_1x_2x_3\rangle \sum_{k\neq i\neq j\neq k} a_{ij}]. \quad (1.16)$$

At last, our main task is to figure out $\langle x_1 x_1 \rangle$, $\langle x_1 x_2 \rangle$, $\langle x_1 x_1 x_1 \rangle$, $\langle x_1 x_2 x_2 \rangle$, and $\langle x_1 x_2 x_3 \rangle$, which boils down to the calculation of $\langle x_1 x_1 \rangle$ and $\langle x_1 x_1 x_1 \rangle$.

1.3 Calculation of correlations

We draw m players at random from the population in the **neutral** stationary state, and define s_m as the probability that both or all of them share the same strategy. To calculate these probabilities, we shall use the birth-death Moran model and apply **coalescent** ideas.

• Two lineages coalesce in an elementary step of update (i.e. two players share the same parent, but not necessarily the same strategy) with probability $2/N^2$.

two lineages coalesce — the parent is not chosen to die — the parent and the child are selected

Thus, the number of time steps for two lineages to coalesce follows a geometric distribution with expectation $N^2/2$. We assume that the population size is large, hence a continuous time description can be used, where the rescaled time is $\tau = t/(N^2/2)$. In the rescaled time, the trajectories of two players coalesce at rate 1.

average time steps for two lineages to coalesce average time units for two lineages to coalesce

$$(1.18)$$
discrete time steps continuous time units
$$(1.18)$$

• Tracking the historical footprint of an individual, we see that mutations happen at rate $\mu/2 = Nu/2$ to each trajectory, where $\mu = Nu$ is the rescaled mutation rate.

1.3.1 Correlation s_2 of two individuals

The coalescence time τ_2 of two different individuals is described by the probability density function (PDF) $f_2(\tau_2) = e^{-\tau_2}$.

probability at discrete time
$$N$$
 is large enough PDF at continuous time
$$P(T>t) = (1-2/N^2)^t \Rightarrow P(T>t) = e^{-t/(N^2/2)} = e^{-\tau} \Rightarrow e^{-\tau_2} = d(1-e^{-\tau_2})/d\tau_2. \quad (1.20)$$

Once the two players coalesce, we immediately get two players of the same strategy. The probability $s_2(\tau)$ that after a fixed time τ they again have the same strategy is 1

$$P(T > t) = e^{-\lambda t} \times e^{-\lambda t} = e^{-2\lambda t}.$$
(1.21)

¹light bulb problem: There are two light bulbs having independent and identical exponential life with parameter λ . Their lifespan is a random variable t with probability distribution function $f(t) = \lambda e^{-\lambda t}$. The time until the first failure of these two light bulbs will also follow an exponential distribution with parameter 2λ . The proof is straightforward as

We then obtain the stationary probability s_2 by integrating this expression with the coalescent time density as

$$s_2 = \int_0^{+\infty} s_2(\tau) f_2(\tau) d\tau = \int_0^{+\infty} (e^{-\mu\tau} + \frac{1 - e^{-\mu\tau}}{n}) e^{-\tau} d\tau = \frac{n + \mu}{n(1 + \mu)}.$$
 (1.23)

1.3.2 Correlation s_3 of three individuals

Any two trajectories of three players coalesce at rate 1, hence there is a coalescence at rate 3. The coalescence of two out of the three trajectories then happens at time τ_3 , described by the density function $f_3(\tau_3) = 3e^{-3\tau_3}$.

Before the first coalescence at time τ_3 backward, it is possible that

the two players have the same strategy

$$\begin{array}{c|c} & & \\ \hline & s_2 \\ & & \\ \end{array}$$
 three identical players

or

the two players have different strategies

$$1-s_2 (1.25)$$

two identical players and one different player

If we have three identical players, then they are again identical after time τ with probability

none of the players have mutated thus they are still the same

$$s_3^*(\tau) = \underbrace{e^{-3\mu\tau/2}}_{P(T_3 > \tau) = 1 - \int_0^\tau 3\mu/2e^{-3\mu s/2} \, ds}$$

one of them has mutated but they are the same after mutation

+
$$\frac{1/n \times [3(1 - e^{-\mu\tau/2})e^{-\mu\tau}]}{(1.26)}$$

$$\binom{3}{1} = 3, P(T_1 \le \tau) = \int_0^\tau \mu/2e^{-\mu s/2} ds, P(T_2 > \tau) = 1 - \int_0^\tau \mu e^{-\mu s} ds$$

at least two of them have mutated but they are the same after mutation

$$+ \left[\frac{1/n^2 \times \left[1 - e^{-3\mu\tau/2} - 3(1 - e^{-\mu\tau/2})e^{-\mu\tau}\right]}{(1 - e^{-3\mu\tau/2} - 3(1 - e^{-\mu\tau/2})e^{-\mu\tau}]} \right]$$

$$= \frac{1}{n^2} [1 + 3(n-1)e^{-\mu\tau} + (n-1)(n-2)e^{-3/2\mu\tau}].$$

If we have two identical players and one different player, then

• the probability that they have the same strategy is 0 under the circumstances below:

• the probability that they have the same strategy is 1/n under the circumstance below:

• the probability that they have the same strategy is $1/n^2$ under the circumstances below:

Hence, the probability of all three players having the same strategy after time τ is

$$s_3^{**}(\tau) = \frac{1}{n} \times (1 - e^{-\mu\tau/2})e^{-\mu\tau} + \frac{1}{n^2} \times [1 - e^{-3\mu\tau/2} - 3(1 - e^{-\mu\tau/2})e^{-\mu\tau}]$$

$$= \frac{1}{n^2} [1 + (n-3)e^{-\mu\tau} - (n-2)e^{-3/2\mu\tau}].$$
(1.27)

Moreover, we can simply obtain s_3 as

three identical players — two identical players and one different player

$$s_3 = \underbrace{s_2 \times \int_0^{+\infty} s_3^*(\tau) f_3(\tau) d\tau} + \underbrace{(1 - s_2) \times \int_0^{+\infty} s_3^{**}(\tau) f_3(\tau) d\tau} = \frac{(n + \mu)(2n + \mu)}{n^2 (1 + \mu)(2 + \mu)}.$$
(1.28)

1.4 Back to major results:)

Under neutrality, we have

chance of having strategy one out of n possibilities

$$(x_1) = 1/n \tag{1.29}$$

the first player has strategy one with probability 1/n

$$(x_1 x_1) = 1/n \times s_2 \tag{1.30}$$

the second player uses the same strategy with probability s_2

the first player has strategy one with probability 1/n

$$(x_1 x_1 x_1) = 1/n \times s_3$$
 (1.31)

the second and third players uses the same strategy with probability s_3

Combined with previous assumptions, we further get

$$\langle x_1 x_2 \rangle = \frac{1 - s_2}{n(n-1)}, \qquad \langle x_1 x_2 x_2 \rangle = \frac{s_2 - s_3}{n(n-1)}, \qquad \langle x_1 x_2 x_3 \rangle = \frac{1 - 3s_2 + 2s_3}{n(n-1)(n-2)}.$$
 (1.32)

By defining

$$L_k = \frac{1}{n} \sum_{i=1}^{n} (a_{kk} + a_{ki} - a_{ik} - a_{ii}), \qquad H_k = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{i=1}^{n} (a_{kj} - a_{ij}), \tag{1.33}$$

we finally arrive at the major results

$$\langle \Delta x_k^{\text{sel}} \rangle_{\delta} = \frac{\delta \mu (L_k + \mu H_k)}{nN(1+\mu)(2+\mu)}, \qquad \langle x_k \rangle_{\delta} = \frac{1}{n} \left[1 + \delta N(1-u) \frac{L_k + NuH_k}{(1+Nu)(2+Nu)} \right]. \tag{1.34}$$

• The expression becomes exact in the $N \to \infty$, $N\delta \to 0$ limit, if $Nu = \mu$ is kept constant.