ME140A: Numerical Analysis in Engineering Lecture Notes

Alexander Meiburg

9/22/22 - 9/22/22

Course Organization

- Goal: Numerical solution of integrals and differential equations
- ► Homework will rely significantly on you programming these methods you learn. MATLAB recommended, alternatives welcome
- ► Collaborate on the homework! You learn more that way. Just make sure that you are, in fact, learning. ②
- ► HW: 10% of grade. Exams: 30%/30%/30%.
- Submit homework via email
- Office hours by appointment or Zoom, but my schedule is very open!
- ► Full syllabus available here
- ► These notes will be continually updated here

Recall: **Differentiation** systematically lets you take a function F(x) and find its derivative f(x) = F'(x).

$$\frac{d}{dx}\left(e^{\sin(x+\log x)}\right) = e^{\sin(x+\log x)}\cos(x+\log x)\left(1+1/x\right)$$

Recall: **Differentiation** systematically lets you take a function F(x) and find its derivative f(x) = F'(x).

$$\frac{d}{dx}\left(e^{\sin(x+\log x)}\right) = e^{\sin(x+\log x)}\cos(x+\log x)\left(1+1/x\right)$$

Integration asks for the opposite. You have a handful of rules(!), but they can't cover every case. Often impossible, and we resort to defining new functions or using the computer

$$\int e^{-x^2} dx := \Phi(x)$$

Recall: **Differentiation** systematically lets you take a function F(x) and find its derivative f(x) = F'(x).

$$\frac{d}{dx}\left(e^{\sin(x+\log x)}\right) = e^{\sin(x+\log x)}\cos(x+\log x)\left(1+1/x\right)$$

Integration asks for the opposite. You have a handful of rules(!), but they can't cover every case. Often impossible, and we resort to defining new functions or using the computer

Example: Computing the position of an object after some movement.

$$y(t) = Position$$
 as a function of time

$$v(t) = Velocity$$

$$v = \frac{dy(t)}{dt}, \quad y(t) = \int_0^t v(t) dt$$

Example: Computing the position of an object after some movement.

$$y(t) = Position$$
 as a function of time

$$v(t) = Velocity$$

$$v = \frac{dy(t)}{dt}, \quad y(t) = \int_0^t v(t) dt$$

What form are we given v(t)? Could be:

Explicit function of t (from theory, specifications...)

Example: Computing the position of an object after some movement.

$$y(t) = Position$$
 as a function of time

$$v(t) = Velocity$$

$$v = \frac{dy(t)}{dt}, \quad y(t) = \int_0^t v(t) dt$$

What form are we given v(t)? Could be:

- Explicit function of t (from theory, specifications...)
- ► Data (samples at certain points)

Example: Computing the position of an object after some movement.

y(t) = Position as a function of time

$$v(t) = Velocity$$

$$v = \frac{dy(t)}{dt}, \quad y(t) = \int_0^t v(t) dt$$

What form are we given v(t)? Could be:

- Explicit function of t (from theory, specifications...)
- Data (samples at certain points)
- ightharpoonup A function of t and of y, or something else

This last one forms a differential equation, and will need different methods. But many ideas will transfer!

Example: Computing the position of an object after some movement.

$$y(t) = \mathsf{Position}$$
 as a function of time

$$v(t) = \mathsf{Velocity}$$

$$v = \frac{dy(t)}{dt}, \quad y(t) = \int_0^t v(t) dt$$

What form are we given v(t)? Could be:

- Explicit function of t (from theory, specifications...)
- Data (samples at certain points)
- ightharpoonup A function of t and of y, or something else

This last one forms a differential equation, and will need different methods. But many ideas will transfer!

May also have y as an integral over *several* variables, not just one. *e.g.* Dust accumulating on a surface varies with x, y, and t. Can do three integrals in a row (analytically), or one 3D integral (numerically).

Aside: Numerical Differentiation

Differentiation is easy if we have an exact formula, but what about for data points?

Aside: Numerical Differentiation

Differentiation is easy if we have an exact formula, but what about for data points?

$$v(t) \approx \frac{y(t+1s) - y(t)}{1s}$$

Aside: Numerical Differentiation

Differentiation is easy if we have an exact formula, but what about for data points?

$$v(t) \approx \frac{y(t+1s) - y(t)}{1s}$$

But consider:

t	y(t)
0	5
1	6.1
2	7.3
3	8.4
4	9.8
7	15.3
8	17.4
9	59.8
10	138.7
11	138.8

Issues such as irregular data, or gaps in time too large to understand what happened. Big question in its own right, Week 2!

Problem: given f(t), find $F(t) = \int_0^t f(t) \, dt$. If f(t) is too complicated, let's find something simpler we can integrate. What's simple? Polynomials!

Problem: given f(t), find $F(t) = \int_0^t f(t) dt$. If f(t) is too complicated, let's find something simpler we can integrate. What's simple? Polynomials!

Idea: **Sample** the function at several points, **estimate** the function in between with a simpler formula, **analytically integrate** the estimate.

Problem: given f(t), find $F(t) = \int_0^t f(t) dt$. If f(t) is too complicated, let's find something simpler we can integrate. What's simple? Polynomials!

Idea: **Sample** the function at several points, **estimate** the function in between with a simpler formula, **analytically integrate** the estimate.

Simplest: Linear fit through two points. ("Trapezoidal rule")

Fit quadratic ("Simpson's rule"):

Credit: Wikimedia

In general, find

$$f_n(x) = a_0 + a_1 x + a_2 x^2 + \dots a_n x^n$$

and integrate

$$\int_{a}^{b} f_n(x) \ dx$$

Turns out: a_i depend linearly on the $f(x_i)$, so the result is some weighted sum of the $f(x_i)$.

In general, find

$$f_n(x) = a_0 + a_1 x + a_2 x^2 + \dots a_n x^n$$

and integrate

$$\int_{a}^{b} f_n(x) \, dx$$

Turns out: a_i depend linearly on the $f(x_i)$, so the result is some weighted sum of the $f(x_i)$.

Trapezoidal:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} (f(b) + f(a))$$

Simpson's:

$$\int_a^b f(x) \ dx \approx \frac{b-a}{6} \left(f(b) + 4f\left(\frac{a+b}{2}\right) + f(a) \right)$$

If our function is too complicated over $\left[a,b\right]\!,$ then subdivide and do each separately.

$$\int_{x=a}^{b} f(x) = \int_{x=a}^{(a+b)/2} f(x) + \int_{x=(a+b)/2}^{b} f(x)$$

If our function is too complicated over $\left[a,b\right]$, then subdivide and do each separately.

$$\int_{x=a}^{b} f(x) = \int_{x=a}^{(a+b)/2} f(x) + \int_{x=(a+b)/2}^{b} f(x)$$

$$250$$

$$200$$

$$150$$

$$-$$

$$100$$

$$-$$

$$50$$

$$0$$

$$2$$

$$4$$

$$6$$

$$8$$

$$10$$

Error Analysis

Write

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \dots$$

First and second terms accurate, third isn't. Fitting gives

$$E_{trap} \approx \frac{1}{12} |f''(\xi)| (b-a)^2$$

Error Analysis

Write

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \dots$$

First and second terms accurate, third isn't. Fitting gives

$$E_{trap} \approx \frac{1}{12} |f''(\xi)| (b-a)^2$$

Refine this with subintervals