

Region based Extensive Response Index Pattern For Facial Expression Recognition

Published in-IC3IOT IEEE conference, 2018 By: Monu Verma

Proposed Method

Fig. 1. The overall process of proposed method

Proposed Descriptor

Fig. 2. Illustration of proposed RETRaIN descriptor

Vision Intelligence Lab

Proposed descriptor

Fig. 3. Encoding scheme of proposed descriptor

Advantages

- RETRaIN descriptor uses the directional information from edge responses, instead of actual intensity value to encode the texture pattern.
- Edge responses are less sensitive to illumination changes and random noise.
- RETRaIN extract the high edge responses from local and extensive regions that capture the more definite information of corner and edges.
- RETRaIN encodes the structure information into six-bit compact binary pattern that deliver more information with less space.

Databases

Extended CK

JAFFE

MUG

Neutral

Angry

Disgust

Fear

Нарру

Sad

Surprise

Databases

TABLE I
The number of images for different datasets

	Neutral	Anger	Disgust	Fear	Нарру	Sad	Surprise	Total
CK+	116	132	180	75	204	87	249	1043
JAFFE	30	30	30	30	30	30	30	210
MUG	255	260	250	241	255	245	255	1761

TABLE II
Facial Expression Recognition rate (%) of RETRaIN and other methods on CK+, JAFFE and MUG
Datasets for 6 and 7 class expressions

Method	Ck	(+	JAF	FFE	MUG	
ivictiou	6- class	<u>7- class</u>	<u>6- class</u>	7- class	<u>6- class</u>	<u>7- class</u>
LBP	93.46	89.00	86.11	85.23	99.20	98.40
CS- LBP	95	92.55	88.33	86.68	99.20	98.57
LDP	96.25	92.90	90.55	86.19	98.80	98.52
LDN	94.80	91.68	83.88	81.42	98.67	98.57
LDTP	95.28	91.86	90.55	85.71	98.87	98.57
RETRaIN	97.83	95.16	91.66	88.09	99.66	98.57

TABLE III
Confusion matrix of CK+ dataset for 6 class facial expressions

	Anger	Disgust	Fear	Нарру	Sad	Surprise
Anger	26	0	0	0	0	0
Disgust	1	35	0	0	0	0
Fear	0	0	15	0	0	0
Нарру	0	0	0	39	2	0
Sad	0	0	0	0	17	0
Surprise	0	0	0	0	1	49

TABLE IV
Confusion matrix of CK+ dataset for 7 class facial expressions

	Neutral	Anger	Disgust	Fear	Нарру	Sad	Surprise
Neutral	19	1	0	1	0	1	0
Anger	0	26	0	0	0	0	0
Disgust	0	1	33	0	0	1	1
Fear	0	0	0	15	0	0	0
Нарру	0	0	0	0	40	1	0
Sad	1	0	0	1	0	15	0
Surprise	1	0	0	0	0	0	49

TABLE V
Confusion matrix of JAFFE dataset for 6 class facial expressions

	Anger	Disgust	Fear	Нарру	Sad	Surprise
Anger	6	0	0	0	0	0
Disgust	0	5	1	0	0	0
Fear	0	0	6	0	0	0
Нарру	0	0	0	5	0	0
Sad	0	0	0	1	5	0
Surprise	0	0	0	0	0	6

TABLE VI
Confusion matrix of JAFFE dataset for 7 class facial expressions

	Neutral	Anger	Disgust	Fear	Нарру	Sad	Surprise
Neutral	4	0	0	1	0	1	0
Anger	0	6	0	0	0	0	0
Disgust	0	0	6	0	0	0	0
Fear	1	0	0	5	0	0	0
Нарру	0	0	0	0	6		0
Sad	1	0	0	1	0	4	0
Surprise	0	0	0	0	0	0	6

TABLE VII
Confusion matrix of MUG dataset for 6 class facial expressions

	Anger	Disgust	Fear	Нарру	Sad	Surprise
Anger	52	0	0	0	0	0
Disgust	0	50	0	0	0	0
Fear	0	0	48	0	0	0
Нарру	0	1	0	50	2	0
Sad	0	0	0	0	49	0
Surprise	0	0	0	0	0	51

TABLE VIII
Confusion matrix of MUG dataset for 7 class facial expressions

	Neutral	Anger	Disgust	Fear	Нарру	Sad	Surprise
Neutral	48	0	0	2	0	1	0
Anger	1	51	0	0	0	0	0
Disgust	0	0	50	0	0	0	0
Fear	1	0	0	47	0	0	0
Нарру	0	0	0	0	51	0	0
Sad	0	0	0	0	0	49	0
Surprise	0	0	0	0	0	0	51

Conclusion

- This paper presents a novel descriptor Region based Extensive Response Index Pattern (RETRaIN) for facial expression recognition.
- RETRaIN encodes texture by analyzing relation among the reference and neighboring pixels by considering their orientations.
- RETRaIN uses the directional information instead of actual intensity value, that make it more robust compare to existing descriptors.
- RETRaIN encoded six bit pattern by extracting direction numbers of high edge responses, which is generated by applying directional compass mask.

References

- [1] C. Darwin, "The expression of emotion in animals and man," London: Methuen. (1877), A biographical sketch of an infant. Mind, vol. 2, pp.285-294, 1872
- [2] P. Ekman, "Facial expression and emotion." American psychologist, vol. 48, no.4, pp.384, 1993.
- [3] P. Ekman, and W. V. Friesen, "Facial action coding system." 1977.
- [4] P. N. Belhumeur, J. P. Hespanha. And D. J. Kriegman, "Eigenfaces vs. fisherfaces: Recognition using class specific linear projection." *IEEE Transactions on pattern analysis and machine intelligence*. vol. 19, no.7, pp.711-72, 1997.
- [5] T. Ahonen, A. Hadid, and M. Pietikainen, "Face description with local binary patterns: Application to face recognition." *IEEE transactions on pattern analysis and machine intelligence*. vol. 28, no. 12, pp.2037-2041, 2006.
- [6] P. Kakumanu, N. Bourbakis, "A local-global graph approach for facial expression recognition." In *Tools with Artificial Intelligence*. *ICTAI'06*. 18th IEEE International Conference on IEE. pp. 685-692, 2006.
- [7] G. Zhao, M. Pietikainen, "Dynamic texture recognition using local binary patterns with an application to facial expressions." *IEEE transactions on pattern analysis and machine intelligence*, vol. 29, no. 6, pp.915-928, 2007.
- [8] X. Fu, W. Wei, "Centralized binary patterns embedded with image Euclidean distance for facial expression recognition." In Natural Computation ICNC'08. Vol. 4, pp. 115-119, 2008.

References

- [9] T. Jabid, M. H. Kabir, O. O. Chae, "Robust Facial expression recognition using local directional pattern." *ETRI j.*, vol. 32, no. 5, pp. 784-794, 2010.
- [10] A. R. Rivera, J. R. Castillo, O. O. Chae, "Local directional number pattern for face analysis: Face and expression recognition." *IEEE transactions on image processing*, vol. 22, no.5, pp.1740-1752, 2013.
- [11] B. Ryu, A. R. Rivera, J. Kim, O. O. Chae, "Local Directional Ternary Pattern for Facial Expression Recognition." *IEEE Transactions on Image Processing*, vol. 26, no. 12, pp. 6006-6018, 2017.
- [12] S. K. Vipparthi, S. Murala, A. B. Gonde and Q. J. Wu, "Local directional mask maximum edge patterns for image retrieval and face recognition," *IET Computer Vision*, vol. 10, no. 3, pp. 182-192, 2016.
- [13] C. Cortes, V. Vapnik, "Support vector machine." Machine learning. vol. 20, no. 3, pp.273-297, 1995.
- [14] P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar. and I. Matthews, "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression." In *Computer Vision and Pattern Recognition Workshops (CVPRW), Computer Society Conference on IEEE.* pp. 94-101, 2010.
- [15] F. Y. Shih, C. F. Chuang, and P.S. Wang, "Performance comparisons of facial expression recognition in JAFFE database." *International Journal of Pattern Recognition and Artificial Intelligence*, vol. 22, no. 03, pp.445-459, 2008.
- [16] N. Aifanti, C. Papachristou, and A. Delopoulos, "The MUG facial expression database." In *Image analysis for multimedia interactive services (WIAMIS)*, 2010 11th international workshop on IEEE. pp. 1-4, 2010.