CHAPTER 5 SUMMARY. **Energy**Justin Yang NOVEMBER 22, 2012

(1)
The (2) done by a constant force \vec{F} that moves an object a displacement Δx is defined as
(3)
So $W = \vec{F} \cdot \Delta \vec{x}$. Work is a (4) The SI unit of work is the (5) (J), 1 J = 1 N · m = 1 kg · m ² /s ² . A (6) is any object where all of its parts undergo equal Δx over any
Δt . The total work done on a particle is the same as the work done by the net force on the particle, so the work done is the area under the F_x -versus- x curve:
$(7) \qquad \qquad$
(8)
Under a constant <i>net</i> force F_{net} acting along a straight line on a particle of mass m , which is displaced by Δx along the straight line, the work done on the particle is
(9)
Applying Netwon's second law (10) and the kinematic relation (11), we have
(12)
The quantity $\frac{1}{2}mv^2$ is defined as the (13) of the particle
(14)
Kinetic energy is a (15) The SI unit of kinetic energy is the same as work: $kg \cdot m^2/s^2$ or J. Kinetic energy depends on the mass and speed of the particle but not the direction of motion. $W = \Delta K$. This is true even when the force is varying. This is known as the (16)
(17)
The (18) of a system is the energy associated with the configuration of the system. Often the work done by external forces on a system may result in an increase in the potential energy of the system.
(19) The gravitational force between an object of mass m and the Earth is $\vec{F} = -mg \hat{j}$, where $h, h_0 \ll r_E$, so the work done by gravity is
(20)
When the object is near the surface of the Earth, the gravitational potential energy
(21)
Thus, the work done by gravity is at the expense of the gravitational potential energy:

(22) ______.

