
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: Wed Sep 12 10:49:29 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 08444791 Version No: 4.0

Input Set:

Output Set:

Started: 2007-08-30 23:44:14.040

Finished: 2007-08-30 23:44:15.377

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 337 ms

Total Warnings: 22

Total Errors: 0

No. of SeqIDs Defined: 27

Actual SeqID Count: 27

Error code		Error Description	on								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(22)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(23)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(24)

Input Set:

Output Set:

Started: 2007-08-30 23:44:14.040 **Finished:** 2007-08-30 23:44:15.377

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 337 ms

Total Warnings: 22

Total Errors: 0

No. of SeqIDs Defined: 27

Actual SeqID Count: 27

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

```
<110> Brockhaus, et al.
<120> Human TNF Receptor
<130> 01017/40451C
<140> 08444791
<141> 1995-05-19
<150> US 08/095,640
<151>
         1993-07-21
        US 07/580,013
<150>
<151>
        1990-09-10
<150> EP 90116707.2
<151> 1990-08-31
<150>
         CH 1347/90
         1990-04-20
<151>
<150>
        CH 746/90
<151>
        1990-03-08
        СН 3319/89
<150>
<151>
         1989-09-12
<160> 27
<170> PatentIn version 3.3
<210> 1
<211> 2111
<212> DNA
<213> Homo sapiens
<400> 1
gaattegggg gggtteaaga teaetgggae eaggeegtga tetetatgee egagteteaa 60
                                                               120
ccctcaactg tcaccccaag gcacttggga cgtcctggac agaccgagtc ccgggaagcc
ccagcactgc cgctgccaca ctgccctgag cccaaatggg ggagtgagag gccatagctg
                                                                180
tetggeatgg geeteteeae egtgeetgae etgetgetge egetggtget eetggagetg
                                                                240
ttggtgggaa tatacccctc aggggttatt ggactggtcc ctcacctagg ggacagggag
                                                                  300
aagagagata gtgtgtgtcc ccaaggaaaa tatatccacc ctcaaaataa ttcgatttgc
                                                                360
tgtaccaagt gccacaaagg aacctacttg tacaatgact gtccaggccc ggggcaggat
                                                                  420
                                                                  480
acggactgca gggagtgtga gagcggctcc ttcaccgctt cagaaaacca cctcagacac
                                                                  540
tgcctcagct gctccaaatg ccgaaaggaa atgggtcagg tggagatctc ttcttgcaca
```

gtggaccggg	acaccgtgtg	tggctgcagg	aagaaccagt	accggcatta	ttggagtgaa	600
aaccttttcc	agtgcttcaa	ttgcagcctc	tgcctcaatg	ggaccgtgca	cctctcctgc	660
caggagaaac	agaacaccgt	gtgcacctgc	catgcaggtt	tctttctaag	agaaaacgag	720
tgtgtctcct	gtagtaactg	taagaaaagc	ctggagtgca	cgaagttgtg	cctaccccag	780
attgagaatg	ttaagggcac	tgaggactca	ggcaccacag	tgctgttgcc	cctggtcatt	840
ttctttggtc	tttgcctttt	atccctcctc	ttcattggtt	taatgtatcg	ctaccaacgg	900
tggaagtcca	agctctactc	cattgtttgt	gggaaatcga	cacctgaaaa	agaggggag	960
cttgaaggaa	ctactactaa	gcccctggcc	ccaaacccaa	gcttcagtcc	cactccaggc	1020
ttcaccccca	ccctgggctt	cagtcccgtg	cccagttcca	ccttcacctc	cagctccacc	1080
tatacccccg	gtgactgtcc	caactttgcg	gctccccgca	gagaggtggc	accaccctat	1140
cagggggctg	accccatcct	tgcgacagcc	ctcgcctccg	accccatccc	caaccccctt	1200
cagaagtggg	aggacagcgc	ccacaagcca	cagageetag	acactgatga	ccccgcgacg	1260
ctgtacgccg	tggtggagaa	cgtgcccccg	ttgcgctgga	aggaattcgt	geggegeeta	1320
gggctgagcg	accacgagat	cgatcggctg	gagctgcaga	acgggcgctg	cctgcgcgag	1380
gcgcaataca	gcatgctggc	gacctggagg	cggcgcacgc	cgcggcgcga	ggccacgctg	1440
gagetgetgg	gacgcgtgct	ccgcgacatg	gacctgctgg	gctgcctgga	ggacatcgag	1500
gaggegettt	geggeeeege	cgccctcccg	cccgcgccca	gtcttctcag	atgaggctgc	1560
gcccctgcgg	gcagctctaa	ggaccgtcct	gcgagatcgc	cttccaaccc	cacttttttc	1620
tggaaaggag	gggtcctgca	ggggcaagca	ggagctagca	gccgcctact	tggtgctaac	1680
ccctcgatgt	acatagcttt	tctcagctgc	ctgcgcgccg	ccgacagtca	gcgctgtgcg	1740
cgcggagaga	ggtgcgccgt	gggctcaaga	gcctgagtgg	gtggtttgcg	aggatgaggg	1800
acgctatgcc	tcatgcccgt	tttgggtgtc	ctcaccagca	aggetgeteg	ggggcccctg	1860
gttcgtccct	gagccttttt	cacagtgcat	aagcagtttt	ttttgtttt	gttttgtttt	1920
gttttgtttt	taaatcaatc	atgttacact	aatagaaact	tggcactcct	gtgccctctg	1980
cctggacaag	cacatagcaa	gctgaactgt	cctaaggcag	gggcgagcac	ggaacaatgg	2040
ggccttcagc	tggagctgtg	gacttttgta	catacactaa	aattctgaag	ttaaaaaaaa	2100
aacccgaatt	С					2111

```
<211> 455
<212> PRT
<213> Homo sapiens
<400> 2
Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu
             10 15
Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro
   20 25 30
His Leu Gly Asp Arq Glu Lys Arq Asp Ser Val Cys Pro Gln Gly Lys
    35 40 45
Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys
50 55 60
Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp
Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu
      Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val
                           110
      100 105
Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg
    115 120 125
Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe
130 135 140
Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu
145 150 155 160
Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu
       165 170 175
Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr
              185
      180
```

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser

195 200 205

Gly	Thr 210	Thr	Val	Leu	Leu	Pro 215	Leu	Val	Ile	Phe	Phe 220	Gly	Leu	Cys	Leu
Leu 225	Ser	Leu	Leu	Phe	Ile 230	Gly	Leu	Met	Tyr	Arg 235	Tyr	Gln	Arg	Trp	Lys 240
Ser	Lys	Leu	Tyr	Ser 245	Ile	Val	Суз	Gly	Lys 250	Ser	Thr	Pro	Glu	Lys 255	Glu
Gly	Glu	Leu	Glu 260	Gly	Thr	Thr	Thr	Lys 265	Pro	Leu	Ala	Pro	Asn 270	Pro	Ser
Phe	Ser	Pro 275	Thr	Pro	Gly	Phe	Thr 280	Pro	Thr	Leu	Gly	Phe 285	Ser	Pro	Val
Pro	Ser 290	Ser	Thr	Phe	Thr	Ser 295	Ser	Ser	Thr	Tyr	Thr 300	Pro	Gly	Asp	Суз
Pro 305	Asn	Phe	Ala	Ala	Pro 310	Arg	Arg	Glu	Val	Ala 315	Pro	Pro	Tyr	Gln	Gly 320
Ala	Asp	Pro	Ile	Leu 325	Ala	Thr	Ala	Leu	Ala 330	Ser	Asp	Pro	Ile	Pro 335	Asn
Pro	Leu	Gln	Lys 340	Trp	Glu	Asp	Ser	Ala 345	His	Lys	Pro	Gln	Ser 350	Leu	Asp
Thr	Asp	Asp 355	Pro	Ala	Thr	Leu	Tyr 360	Ala	Val	Val	Glu	Asn 365	Val	Pro	Pro
Leu	Arg 370	Trp	Lys	Glu	Phe	Val 375	Arg	Arg	Leu	Gly	180 380	Ser	Asp	His	Glu
Ile 385	Asp	Arg	Leu	Glu	190	Gln	Asn	Gly	Arg	Cys 395	Leu	Arg	Glu	Ala	Gln 400
Tyr	Ser	Met	Leu	Ala 405	Thr	Trp	Arg	Arg	Arg 410	Thr	Pro	Arg	Arg	Glu 415	Ala
Thr	Leu	Glu	Leu 420	Leu	Gly	Arg	Val	Leu 425	Arg	Asp	Met	Asp	Leu 430	Leu	Gly

Pro Ala Pro Ser Leu Leu Arg 450 455

<210> 3

<211> 2339

<212> DNA

<213> Homo sapiens

<400> 3						
teggaeaeeg	tgtgtgactc	ctgtgaggac	agcacataca	cccagctctg	gaactgggtt	60
cccgagtgct	tgagctgtgg	ctcccgctgt	agctctgacc	aggtggaaac	tcaagcctgc	120
actcgggaac	agaaccgcat	ctgcacctgc	aggeeegget	ggtactgcgc	gctgagcaag	180
caggagggt	geeggetgtg	cgcgccgctg	ccgaagtgcc	gcccgggctt	cggcgtggcc	240
agaccaggaa	ctgaaacatc	agacgtggtg	tgcaagccct	gtgccccggg	gacgttctcc	300
aacacgactt	catccacgga	tatttgcagg	ccccaccaga	tctgtaacgt	ggtggccatc	360
cctgggaatg	caagcaggga	tgcagtctgc	acgtccacgt	ccccacccg	gagtatggcc	420
ccaggggcag	tacacttacc	ccagccagtg	tccacacgat	cccaacacac	gcagccaagt	480
ccagaaccca	gcactgctcc	aagcacctcc	ttcctgctcc	caatgggccc	cagcccccca	540
gctgaaggga	gcactggcga	cttcgctctt	ccagttggac	tgattgtggg	tgtgacagcc	600
ttgggtctac	taataatagg	agtggtgaac	tgtgtcatca	tgacccaggt	gaaaaagaag	660
cccttgtgcc	tgcagagaga	agccaaggtg	cctcacttgc	ctgccgataa	ggcccggggt	720
acacagggcc	ccgagcagca	gcacctgctg	atcacagcgc	cgagctccag	cagcagctcc	780
ctggagagct	cggccagtgc	gttggacaga	agggcgccca	ctcggaacca	gccacaggca	840
ccaggcgtgg	aggccagtgg	ggccggggag	gcccgggcca	gcaccgggag	ctcagcagat	900
tattacaatg	gtggccatgg	gacccaggtc	aatgtcacct	gcatcgtgaa	cgtctgtagc	960
agctctgacc	acagctcaca	gtgctcctcc	caagccagct	ccacaatggg	agacacagat	1020
tccagcccct	cggagtcccc	gaaggacgag	caggtcccct	tctccaagga	ggaatgtgcc	1080
tttcggtcac	agctggagac	gccagagacc	ctgctgggga	gcaccgaaga	gaagcccctg	1140
ccccttggag	tgcctgatgc	tgggatgaag	cccagttaac	caggccggtg	tgggctgtgt	1200
cgtagccaag	gtggctgagc	cctggcagga	tgaccctgcg	aaggggccct	ggtccttcca	1260
ggcccccacc	actaggactc	tgaggetett	tctgggccaa	gttcctctag	tgccctccac	1320

ageegeagee teectetgae etgeaggeea agageagagg eagegagttg tggaaageet ctgctgccat ggcgtgtccc tctcggaagg ctggctgggc atggacgttc ggggcatgct 1440 ggggcaagtc cctgagtctc tgtgacctgc cccgcccagc tgcacctgcc agcctggctt 1500 ctggagccct tgggtttttt gtttgtttgt ttgtttgttt gtttgtttct ccccctgggc 1560 tetgeecage tetggettee agaaaaceee ageateettt tetgeagagg ggetttetgg agaggaggga tgctgcctga gtcacccatg aagacaggac agtgcttcag cctgaggctg 1680 agactgcggg atggtcctgg ggctctgtgc agggaggagg tggcagccct gtagggaacg 1740 gggtccttca agttagctca ggaggcttgg aaagcatcac ctcaggccag gtgcagtggc 1800 tcacgcctat gatcccagca ctttgggagg ctgaggcggg tggatcacct gaggttagga 1860 qttcqaqacc aqcctqqcca acatqqtaaa accccatctc tactaaaaat acaqaaatta qccqqqcqtq qtqqcqqqca cctataqtcc caqctactca qaaqcctqaq qctqqqaaat 1980 cgtttgaacc cgggaagcgg aggttgcagg gagccgagat cacgccactg cactccagcc 2040 tgggcgacag agcgagagtc tgtctcaaaa gaaaaaaaaa aagcaccgcc tccaaatgct 2100 aacttgtcct tttgtaccat ggtgtgaaag tcagatgccc agagggccca ggcaggccac 2160 catattcagt gctgtggcct gggcaagata acgcacttct aactagaaat ctgccaattt 2220 tttaaaaaag taagtaccac tcaggccaac aagccaacga caaagccaaa ctctgccagc 2280 cacatccaac cccccacctg ccatttgcac cctccgcctt cactccggtg tgcctgcag 2339

<210> 4

<211> 392

<212> PRT

<213> Homo sapiens

<400> 4

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser 20 25 30

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys
35 40 45

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys
50 55

Arg Leu (Cys Ala	Pro Le	u Pro	Lys	Суз	Arg	Pro 75	Gly	Phe	Gly	Val	Ala 80
Arg Pro (Gly Thr	Glu Th	r Ser	Asp	Val	Val 90	Суз	Lys	Pro	Суз	Ala 95	Pro
Gly Thr I	Phe Ser 100	Asn Th	r Thr	Ser	Ser 105	Thr	Asp	Ile	Суз	Arg 110	Pro	His
Gln Ile (Cys Asn 115	Val Va	l Ala	Ile 120	Pro	Gly	Asn	Ala	Ser 125	Arg	Asp	Ala
Val Cys 130	Thr Ser	Thr Se	r Pro 135	Thr	Arg	Ser	Met	Ala 140	Pro	Gly	Ala	Val
His Leu l 145	Pro Gln	Pro Va		Thr	Arg	Ser	Gln 155	His	Thr	Gln	Pro	Ser 160
Pro Glu I	Pro Ser	Thr Al	a Pro	Ser	Thr	Ser 170	Phe	Leu	Leu	Pro	Met 175	Gly
Pro Ser 1	Pro Pro 180	Ala Gl	u Gly	Ser	Thr 185	Gly	Asp	Phe	Ala	Leu 190	Pro	Val
Gly Leu	Ile Val 195	Gly Va	l Thr	Ala 200	Leu	Gly	Leu	Leu	Ile 205	Ile	Gly	Val
Val Asn (Cys Val	Ile Me	t Thr 215	Gln	Val	Lys	Lys	Lys 220	Pro	Leu	Cys	Leu
Gln Arg (Glu Ala	Lys Va		His	Leu	Pro	Ala 235	Asp	Lys	Ala	Arg	Gly 240
Thr Gln (Gly Pro	Glu Gl 245	n Gln	His	Leu	Leu 250	Ile	Thr	Ala	Pro	Ser 255	Ser
Ser Ser :	Ser Ser 260	Leu Gl	u Ser	Ser	Ala 265	Ser	Ala	Leu	Asp	Arg 270	Arg	Ala
Pro Thr I	Arg Asn 275	Gln Pr	o Gln	Ala 280	Pro	Gly	Val	Glu	Ala 285	Ser	Gly	Ala

```
Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Ala Asp Ser Ser Pro Gly
   290
          295
Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser
305
   310 315 320
Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met
           325 330 335
Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val
      340 345 350
Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro
             360
Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val
   370 375 380
Pro Asp Ala Gly Met Lys Pro Ser
385
            390
<210> 5
<211> 28
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (25)..(25)
<223> Xaa = unknown amino acid
<400> 5
Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro
   5
                         10
Gln Gly Lys Tyr Ile His Pro Gln Xaa Asn Ser Ile
20 25
<210> 6
<211> 15
<212> PRT
```

<213> Artificial sequence

```
<223> Synthetic peptide
<400> 6
Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Lys
     5
                               10
<210> 7
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 7
Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys
1 5
                               10
Pro Leu
<210> 8
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 8
Val Phe Cys Thr
<210> 9
<211> 16
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 9
Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala
                           10
<210> 10
<211> 18
```

<220>

```
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (8)..(8)
<223> Xaa = unknown amino acid
<400> 10
Leu Pro Ala Gln Val Ala Phe Xaa Pro Tyr Ala Pro Glu Pro Gly Ser
                                 10
              5
Thr Cys
<210> 11
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa = unknown amino acid
<400> 11
Ile Xaa Pro Gly Phe Gly Val Ala Tyr Pro Ala Leu Glu
                                  10
<210> 12
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 12
Leu Cys Ala Pro
```

```
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 13
Val Pro His Leu Pro Ala Asp
<210> 14
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (9)..(10)
<223> Xaa = unknown amino acid
<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa = unknown amino acid
<400> 14
Gly Ser Gln Gly Pro Glu Gln Gln Xaa Xaa Leu Ile Xaa Ala Pro
              5
                                 10
<210> 15
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 15
Leu Val Pro His Leu Gly Asp Arg Glu
<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic primer
<400> 16
                                                                     27
agggagaaga gagatagtgt gtgtccc
<210> 17
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 17
aagcttggcc aggatccagc tgactgactg atcgcgagat c
                                                                     41
<210> 18
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 18
                                                                     41
gatctcgcga tcagtcagtc agctggatcc tggccaagct t
<210> 19
<211> 38
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 19
cacagggatc catagctgtc tggcatgggc ctctccac
                                                                     38
<210> 20
<211> 44
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 20
cccggtacca gatctctatt atgtggtgcc tgagtcctca gtgc
                                                                     44
<210> 21
```

<211> 19

```
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 21
gatccagaat tcataatag

<210> 22
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 22
gtacctatta tgaattctg
```

19