PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCI)

INTERRITION DE LA CALLON TOBBION		SADER THE FATERY COOLERATION TREATT (FCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 99/47535
C07H 17/00, C07K 14/00, A01N 43/04, A61K 35/14, C12Q 1/68, C12P 21/06, C12N 15/00	A1	(43) International Publication Date: 23 September 1999 (23.09.99)
(21) International Application Number: PCT/USS (22) International Filing Date: 16 March 1999 (1998) (30) Priority Data: 60/078,044 16 March 1998 (16.03.98) 60/088,312 5 June 1998 (05.06.98) 60/106,056 28 October 1998 (28.10.98) 09/236,134 22 January 1999 (22.01.99) (71) Applicants (for all designated States except US): March NIUM PHARMACEUTICALS, INC. [US/US]; 22 Street, Cambridge, MA 02142–1017 (US). THE RESETTY OF CALIFORNIA [US/US] and (75) Inventors; and (75) Inventors; and (75) Inventors; and (75) Inventors, New York, Nelson, B. [US/US]; 630 29th Street, Nelson, CA 94131 (US).	IG.03.9 U U U U U U U U U U U U U U U U U U	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(54) Title: METHODS AND COMPOSITIONS FOR DIAGONA CONTROL OF THE CO	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	THIS CAND TREATING CHROMOSOME—18p RELATED DISORDERS 100 AND TREATING CHROMOSOME—18p RELATED DISORDERS 101 AND TREATING CHROMOSOME—18p RELATED DISORDERS 102 AND TREATING CHROMOSOME—18p RELATED DISORDERS 103 AND TREATING CHROMOSOME—18p RELATED DISORDERS 104 AND TREATING CHROMOSOME—18p RELATED DISORDERS 105 AND TREATING CHROMOSOME—18p RELATED TO THE AND TREATING THE AND TREATING CHROMOSOME—18p RELATED DISORDERS 105 AND TREATING CHROMOSOME—18p RELATED TO THE AND TREATING THE

(57) Abstract

The present invention relates to the mammalian IIKNG1 gene, a gene associated with bipolar affective disorder (BAD) in humans. The invention relates, in particular, to methods for the diagnostic evaluation, genetic testing and prognosis of HKNG1 neuropsychiatric disorders including schizophrenia, attention deficit disorder, a schizoaffective disorder, a bipolar affective disorder or a unipolar affective disorder.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine ·
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	lialy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland ·		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	К2 -	Kazakstan	RO	Romania		
CZ	Czech Republic	rc .	Saint Lucia	RU	Russian Federation		
DE	Germany	LĮ,	Liechtenstein	SD	Sudan		
DK	Denmark	LK.	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHODS AND COMPOSITIONS FOR DIAGNOSING AND TREATING CHROMOSOME-18p RELATED DISORDERS

5

This is a continuation-in-part of U.S. application no. 09/236,134, filed on January 22, 1999 which claims priority under 35 U.S.C. § 119(e)(1) of provisional application no. 60/078,044 filed on March 16, 1998, of provisional application no. 60/088,312 filed on June 5, 1998, and of provisional application no. 60/106,056 filed on October 28, 1998, each of which is incorporated herein by reference in its entirety.

1. INTRODUCTION

The present invention relates, first, to the HKNG1 gene, 15 shown herein to be associated with central nervous systemrelated disorders, e.g., neuropsychiatric disorders, in particular, bipolar affective disorder and schizophrenia and with myopia-related disorders. The invention includes recombinant DNA molecules and cloning vectors comprising sequences of the HKNG1 gene, and host cells and non-human 20 host organisms engineered to contain such DNA molecules and cloning vectors. The present invention further relates to HKNG1 gene products, and to antibodies directed against such HKNG1 gene products. The present invention also relates to methods of using the HKNG1 gene and gene product, including 25 drug screening assays, and diagnostic and therapeutic methods for the treatment of HKNG1-mediated disorders, including HKNG1-mediated neuropsychiatric disorders such as bipolar affective disorder, as well as HKNG1-mediated myopia disorders such as early-onset autosomal dominant myopia.

2. BACKGROUND OF THE INVENTION

There are only a few psychiatric disorders in which clinical manifestations of the disorder can be correlated with demonstrable defects in the structure and/or function of the nervous system. Well-known examples of such disorders include Huntington's disease, which can be traced to a mutation in a single gene and in which neurons in the striatum degenerate, and Parkinson's disease, in which dopaminergic neurons in the nigro-striatal pathway degenerate. The vast majority of psychiatric disorders, however, presumably involve subtle and/or undetectable changes, at the cellular and/or molecular levels, in nervous system structure and function. This lack of detectable neurological defects distinguishes "neuropsychiatric" disorders, such as schizophrenia, attention deficit disorders, schizoaffective disorder, bipolar affective disorders, or unipolar affective disorder, from neurological 15 disorders, in which anatomical or biochemical pathologies are manifest. Hence, identification of the causative defects and the neuropathologies of neuropsychiatric disorders are needed in order to enable clinicians to evaluate and prescribe appropriate courses of treatment to cure or ameliorate the symptoms of these disorders. 20

One of the most prevalent and potentially devastating of neuropsychiatric disorders is bipolar affective disorder (BAD), also known as bipolar mood disorder (BP) or manic-depressive illness, which is characterized by episodes of elevated mood (mania) and depression (Goodwin, et al., 1990, Manic Depressive Illness, Oxford University Press, New York). The most severe and clinically distinctive forms of BAD are BP-I (severe bipolar affective (mood) disorder), which affects 2-3 million people in the United States, and SAD-M (schizoaffective disorder manic type). They are characterized by at least one full episode of mania, with or without episodes of major depression (defined by lowered mood, or depression, with associated disturbances in rhythmic

behaviors such as sleeping, eating, and sexual activity). BP-I often co-segregates in families with more etiologically heterogeneous syndromes, such as with a unipolar affective disorder such as unipolar major depressive disorder (MDD), which is a more broadly defined phenotype (Freimer and Reus, 5 1992, in The Molecular and Genetic Basis of Neurological Disease, Rosenberg, et al., eds., Butterworths, New York, pp. 951-965; McInnes and Freimer, 1995, Curr. Opin. Genet. Develop., 5, 376-381). BP-I and SAD-M are severe mood disorders that are frequently difficult to distinguish from one another on a cross-sectional basis, follow similar clinical courses, and segregate together in family studies (Rosenthal, et al., 1980, Arch. General Psychiat. 37, 804-810; Levinson and Levitt, 1987, Am. J. Psychiat. 144, 415-- 426; Goodwin, et al., 1990, Manic Depressive Illness, Oxford University Press, New York). Hence, methods for 15 distinguishing neuropsychiatric disorders such as these are needed in order to effectively diagnose and treat afflicted individuals.

Currently, individuals are typically evaluated for BAD using the criteria set forth in the most current version of the American Psychiatric Association's Diagnostic and 20 Statistical Manual of Mental Disorders (DSM). While many drugs have been used to treat individuals diagnosed with BAD, including lithium salts, carbamazepine and valproic acid, none of the currently available drugs are adequate. For example, drug treatments are effective in only approximately 60-70% of individuals diagnosed with BP-I. Moreover, it is 25 currently impossible to predict which drug treatments will be effective in, for example, particular BP-I affected individuals. Commonly, upon diagnosis, affected individuals are prescribed one drug after another until one is found to be effective. Early prescription of an effective drug treatment, therefore, is critical for several reasons, 30 including the avoidance of extremely dangerous manic episodes, the risk of progressive deterioration if effective

treatments are not found, and the risk of substantial side effects of current treatments.

The existence of a genetic component for BAD is strongly supported by segregation analyses and twin studies (Bertelson, et al., 1977, Br. J. Psychiat. 130, 330-351; Freimer and Reus, 1992, in The Molecular and Genetic Basis of Neurological Disease, Rosenberg, et al., eds., Butterworths, New York, pp. 951-965; Pauls, et al., 1992, Arch. Gen. Psychiat. 49, 703-708). Efforts to identify the chromosomal location of genes that might be involved in BP-I, however, 10 have yielded disappointing results in that reports of linkage between BP-I and markers on chromosomes X and 11 could not be independently replicated nor confirmed in the re-analyses of the original pedigrees, indicating that with BAD linkage studies, even extremely high lod scores at a single locus, can be false positives (Baron, et al., 1987, Nature 326, 289-15 292; Egeland, et al., 1987, Nature 325, 783-787; Kelsoe, et al., 1989, Nature 342, 238-243; Baron, et al., 1993, Nature Genet. 3, 49-55).

Recent investigations have suggested possible localization of BAD genes on chromosomes 18p and 21q, but in both cases the proposed candidate region is not well defined and no unequivocal support exists for either location (Berrettini, et al., 1994, Proc. Natl. Acad. Sci. USA 91, 5918-5921; Murray, et al., 1994, Science 265, 2049-2054; Pauls, et al., 1995, Am. J. Hum. Genet. 57, 636-643; Maier, et al., 1995, Psych. Res. 59, 7-15; Straub, et al., 1994, Nature Genet. 8, 291-296).

Mapping genes for common diseases believed to be caused by multiple genes, such as BAD, may be complicated by the typically imprecise definition of phenotypes, by etiologic heterogeneity, and by uncertainty about the mode of genetic transmission of the disease trait. With neuropsychiatric disorders there is even greater ambiguity in distinguishing

individuals who likely carry an affected genotype from those who are genetically unaffected. For example, one can define an affected phenotype for BAD by including on or more of the broad grouping of diagnostic classifications that constitute the mood disorders: BP-I, SAD-M, MDD, and bipolar affective [5] [mood] disorder with hypomania and major depression (BP-II).

Thus, one of the greatest difficulties facing psychiatric geneticists is uncertainty regarding the validity of phenotype designations, since clinical diagnoses are based solely on clinical observation and subjective reports. with complex traits such as neuropsychiatric disorders, it is 10 difficult to genetically map the trait-causing genes because: (1) neuropsychiatric disorder phenotypes do not exhibit classic Mendelian recessive or dominant inheritance patterns attributable to a single genetic locus, (2) there may be incomplete penetrance, i.e., individuals who inherit a predisposing allele may not manifest disease; (3) a phenocopy phenomenon may occur, i.e., individuals who do not inherit a predisposing allele may nevertheless develop disease due to environmental or random causes; (4) genetic heterogeneity may exist, in which case mutations in any one of several genes may result in identical phenotypes.

Despite these difficulties, however, identification of the chromosomal location, sequence and function of genes and gene products responsible for causing neuropsychiatric disorders such as bipolar affective disorders is of great importance for genetic counseling, diagnosis and treatment of individuals in affected families.

25

3. SUMMARY OF THE INVENTION

The present invention relates, first, to the discovery, identification, and characterization of novel nucleic acid molecules that are associated with central nervous system-related disorders and processes, e.g., human neuropsychiatric disorders, such as schizophrenia, attention deficit disorder, schizoaffective disorder, dysthymic disorder, major

depressive disorder, and bipolar affective disorder (BAD) including severe bipolar affective (mood) disorder (BP-I), bipolar affective (mood) disorder with hypomania and major depression (BP-II). The invention further relates to the discovery, identification, and characterization of proteins encoded by such nucleic acid molecules, or by degenerate, e.g., allelic or homologous, variants thereof. The invention further relates to the discovery, identification, and characterization of novel nucleic acid molecules that are associated with human myopia or nearsightedness, such as early-onset, autosomal dominant myopia, as well as to the discovery, identification, and characterization of proteins encoded by such nucleic acid molecules or by degenerate variants thereof.

In particular, the nucleic acid molecules of the present invention represent, first, nucleic acid sequences corresponding to the gene referred to herein as HKNG1. As demonstrated in the Examples presented below in Sections 6, 8 and 14, the HKNG1 gene is associated with human CNS-related disorders, e.g., neuropsychiatric disorders, in particular BAD. The HKNG1 gene is associated with other human neuropsychiatric disorders as well, such as schizophrenia.

20 As demonstrated in the Example presented below in Section 14, the HKNG1 gene is also associated with human myopia, such as early-onset autosomal dominant myopia.

In addition to the positive correlation between mutations within the HKNG1 gene and individuals exhibiting symptoms of BAD, described in Section 6 and 8, the present invention is further based, in part, on Applicants' discovery of novel HKNG1 cDNA sequences. Applicants' discovery of such cDNA sequences has led to the elucidation of the HKNG1 genomic (that is, upstream untranslated, intron/exon, and downstream untranslated) structure, and to the discovery of full-length and alternately spliced HKNG1 variants and the polypeptides encoded by such variants. These discoveries are

described in Sections 7 and 10, below. Applicants' discovery of such cDNA sequences has also led to the elucidation of novel mammalian (e.g., guinea pig and bovine) HKNG1 sequences, and to the discovery of novel allelic variants and polymorphisms of such sequences. These discoveries are described in Section 10 below.

The invention encompasses nucleic acid molecules which comprise the following nucleotide sequences: (a) nucleotide sequences (e.g., SEQ ID NOS: 1, 3, 5, 6, 36, and 37) that comprise a human HKNG1 gene and/or encode a human HKNG1 gene 10 product (e.g., SEQ ID NO: 2; SEQ ID NO: 4), as well as allelic variants, homologs and orthologs thereof, including nucleotide sequences (e.g., SEQ ID NOS:38, 40, 42, 44, and 46-48) that encode non-human HKNG1 gene products (e.g., SEQ ID NOS:39, 41, 43, 45, and 49); (b) nucleotide sequences comprising the novel HKNG1 sequences disclosed herein that 15 encode mutants of the HKNG1 gene product in which sequences encoding all or a part of one or more of the HKNG1 domains is deleted or altered, or fragments thereof; (c) nucleotide sequences that encode fusion proteins comprising a HKNG1 gene product (e.g., SEQ ID NO: 2; SEQ ID NO: 4), or a portion thereof fused to a heterologous polypeptide; and (d) nucleotide sequences within the HKNG1 gene, as well as chromosome 18p nucleotide sequences flanking the HKNG1 gene, which can be utilized, e.g., as primers, in the methods of the invention for identifying and diagnosing individuals at 25 risk for or exhibiting an HKNG1-mediated disorder, such as BAD or schizophrenia, or for diagnosing individuals at risk for or exhibiting a form of myopia such as early-onset autosomal dominant myopia. The nucleic acid molecules of (a) through (d), above, can include, but are not limited to, CDNA, genomic DNA, and RNA sequences.

The invention also encompasses the expression products of the nucleic acid molecules listed above; i.e., peptides, proteins, glycoproteins and/or polypeptides that are encoded by the above HKNG1 nucleic acid molecules.

The compositions of the present invention further encompass agonists and antagonists of the HKNG1 gene product, including small molecules (such as small organic molecules), and macromolecules (including antibodies), as well as nucleotide sequences that can be used to inhibit HKNG1 gene expression (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance HKNG1 gene expression (e.g., expression constructs that place the HKNG1 gene under the control of a strong promoter system).

include cloning vectors and expression vectors containing the nucleic acid molecules of the invention, as well as hosts which have been transformed with such nucleic acid molecules, including cells genetically engineered to contain the nucleic acid molecules of the invention, and/or cells genetically engineered to express the nucleic acid molecules of the invention. In addition to host cells and cell lines, hosts also include transgenic non-human animals (or progeny thereof), particularly non-human mammals, that have been engineered to express an HKNG1 transgene, or "knock-outs" that have been engineered to not express HKNG1.

Transgenic non-human animals of the invention include

25 animals engineered to express an HKNG1 transgene at higher or
lower levels than normal, wild-type animals. The transgenic
animals of the invention also include animals engineered to
express a mutant variant or polymorphism of an HKNG1
transgene which is associated with HKNG1-mediated disorder,
for example an HKNG1-mediated neuropsychiatric disorders,
such as BAD and schizophrenia, or, alternatively, a myopia

disorder such as early-onset autosomal dominant myopia. The transgenic animals of the invention further include the progeny of such genetically engineered animals.

The invention further relates to methods for the treatment of *HKNG1*-mediated disorders in a subject, such as *HKNG1*-mediated neuropsychiatric disorders and *HKNG1*-mediated myopia disorders, wherein such methods comprise administering a compound which modulates the expression of a *HKNG1* gene and/or the synthesis or activity of a *HKNG1* gene product so symptoms of the disorder are ameliorated.

The invention further relates to methods for the treatment of HKNG1-mediated disorders in a subject, such as HKNG1-mediated neuropsychiatric disorders and HKNG1-mediated myopia disorders, resulting from HKNG1 gene mutations or aberrant levels of HKNG1 expression or activity, wherein such methods comprise supplying the subject with a nucleic acid molecule encoding an unimpaired HKNG1 gene product such that an unimpaired HKNG1 gene product is expressed and symptoms of the disorder are ameliorated.

The invention further relates to methods for the treatment of HKNG1-mediated disorders in a subject, such as HKNG1-mediated neuropsychiatric disorders and HKNG1-mediated myopia disorders, resulting from HKNG1 gene mutations or from aberrant levels of expression or activity, wherein such methods comprise supplying the subject with a cell comprising a nucleic acid molecule that encodes an unimpaired HKNG1 gene product such that the cell expresses the unimpaired HKNG1 gene product and symptoms of the disorder are ameliorated.

The invention also encompasses pharmaceutical formulations and methods for treating *HKNG1*-mediated disorders, including neuropsychiatric disorders, such as BAD and schizophrenia, and myopia disorders, such as early-onset autosomal dominant myopia, involving *HKNG1* gene.

In addition, the present invention is directed to methods that utilize the HKNG1 nucleic acid sequences, chromosome 18p nucleotide sequences flanking the HKNG1 human gene and/or HKNG1 gene product sequences for mapping the 5 chromosome 18p region, and for the diagnostic evaluation, genetic testing and prognosis of a HKNG1-mediated disorder, such as a HKNG1-mediated neuropsychiatric disorder or a HKNG1-mediated myopia disorder. For example, in one embodiment, the invention relates to methods for diagnosing HKNG1-mediated disorders, wherein such methods comprise measuring HKNG1 gene expression in a patient sample, or detecting a HKNG1 polymorphism or mutation in the genome of a mammal, including a human, suspected of exhibiting such a In one embodiment, nucleic acid molecules encoding HKNG1 can be used as diagnostic hybridization probes or as 15 primers for diagnostic PCR analysis for the identification of HKNG1 gene mutations, allelic variations and regulatory defects in the HKNG1 gene which correlate with neuropsychiatric disorders such as BAD or schizophrenia.

identifying compounds which modulate the expression of the HKNG1 gene and/or the synthesis or activity of the HKNG1 gene products, including therapeutic compounds, which reduce or eliminate the symptoms of HKNG1-mediated disorders, including HKNG1-mediated neuropsychiatric disorders such as BAD and schizophrenia. In particular, cellular and non-cellular assays are described that can be used to identify compounds that interact with the HKNG1 gene product, e.g., modulate the activity of the HKNG1 and/or bind to the HKNG1 gene product. Such cell-based assays of the invention utilize cells, cell lines, or engineered cells or cell lines that express the

In one embodiment, such methods comprise contacting a compound to a cell that expresses a HKNG1 gene, measuring the level of HKNG1 gene expression, gene product expression or gene product activity, and comparing this level to the level of HKNG1 gene expression, gene product expression or gene product activity produced by the cell in the absence of the compound, such that if the level obtained in the presence of the compound differs from that obtained in its absence, a compound that modulates the expression of the HKNG1 gene and/or the synthesis or activity of the HKNG1 gene products has been identified.

In another embodiment, such methods comprise contacting a compound to a cell that expresses a HKNG1 gene and also comprises a reporter construct whose transcription is dependent, at least in part, on HKNG1 expression or activity.

In such an embodiment, the level of reporter transcription is measured and compared to the level of reporter transcription in the cell in the absence of the compound. If the level of reporter transcription obtained in the presence of the compound differs from that obtained in its absence, a compound that modulates expression of HKNG1 or genes involved in HKNG1-related pathways or signal transduction has been identified.

In yet another embodiment, such methods comprise administering a compound to a host, such as a transgenic animal, that expresses an HKNG1 transgene or a mutant HKNG1 transgene associated with an HKNG1-mediated disorder such as a neuropsychiatric disorder (e.g., BAD or schizophrenia), or to an animal, e.g., a knock-out animal, that does not express HKNG1, and measuring the level of HKNG1 gene expression, gene product expression, gene product activity, or symptoms of an HKNG1-mediated disorder such as an HKNG1-mediated

30 neuropsychiatric disorder (e.g., BAD or schizophrenia). The

measured level is compared to the level obtained in a host that is not exposed to the compound, such that if the level obtained when the host is exposed to the compound differs from that obtained in a host not exposed to the compound, a compound modulates the expression of the mammalian HKNG1 gene and/or the synthesis or activity of the mammalian HKNG1 gene products, and/or the symptoms of an HKNG1-mediated disorder such as a neuropsychiatric disorder (e.g., BAD or schizophrenia), has been identified.

The present invention still further relates to

10 pharmacogenomic and pharmacogenetic methods for selecting an effective drug to administer to an individual having a HKNG1mediated disorder. Such methods are based on the detection of genetic polymorphisms in the HKNG1 gene or variations in HKNG1 gene expression due to, e.g., altered methylation, differential splicing, or post-translational modification of the HKNG1 gene product which can affect the safety and efficacy of a therapeutic agent.

As briefly discussed above, the present invention is based, in part, on the genetic and physical mapping of the HKNG1 gene to a specific portion of the short arm of human chromosome 18 that is associated with human neuropsychiatric disorders, in particular, bipolar affective disorder. These results are described in the Example presented, below, in Section 6. The invention is also based on the elucidation of the HKGN1 nucleotide sequence, amino acid sequence and expression pattern, as described in the Example presented,

25 below, in Section 7. The invention is further based on the identification of specific mutations and/or polymorphisms within the HKNG1 gene which positively correlate with neuropsychiatric disorders, in particular, BAD, as described in the Example presented below in Section 8. These mutations include a point mutation discovered in an individual affected by BAD which is absent from the corresponding wild-type

nucleic acid derived from non-affected individuals and linkage disequilibrium of three markers showing cosegregation with a population of individuals with BAD. This mutation is a single base mutation which results in a mutant HKNG1 gene product comprising substitution of a lysine residue for the wild-type glutamic acid residue at HKNG1 amino acid position 202 of the polypeptide of SEQ ID NO:2 or the HKNG1 amino acid residue 184 of the polypeptide of SEQ ID NO:4. These mutations further include the mutations discovered in schizophrenic and BAD patients that are detailed in FIGS. 5A-10 5B.

3.1. DEFINITIONS

As used herein, the following terms shall have the abbreviations indicated.

BAC, bacterial artificial chromosomes

BAD, bipolar affective disorder(s)

BP, bipolar mood disorder

BP-I, severe bipolar affective (mood) disorder

BP-II, bipolar affective (mood) disorder with

hypomania and major depression

bp, base pair(s)

EST, expressed sequence tag

HKNG1, Hong Kong new gene 1

lod, logarithm of odds

MDD, unipolar major depressive disorder

ROS, reactive oxygen species

RT-PCR, reverse transcriptase PCR
SSCP, single-stranded conformational polymorphism
SAD-M, schizoaffective disorder manic type
STS, sequence tagged site

YAC, yeast artificial chromosome

"HKNG1-mediated disorders" include disorders involving
30 an aberrant level of HKNG1 gene expression, gene product

synthesis and/or gene product activity relative to levels found in clinically normal individuals, and/or relative to levels found in a population whose level represents a baseline, average HKNG1 level. While not wishing to be bound by any particular mechanism, it is to be understood that disorder symptoms can, for example, be caused, either directly or indirectly, by such aberrant levels. Alternatively, it is to be understood that such aberrant levels can, either directly or indirectly, ameliorate disorder symptoms, (e.g., as in instances wherein aberrant levels of HKNG1 suppress the disorder symptoms caused by mutations within a second gene).

HNKG1-mediated disorders include, for example, central nervous system (CNS) disorders. CNS disorders include, but are not limited to cognitive and neurodegenerative disorders such as Alzheimer's disease, senile dementia, Huntington's 15 disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as Gilles de la Tourette's syndrome, autonomic function disorders such as hypertension and sleep disorders, and neuropsychiatric disorders that include, but are not limited to schizophrenia, schizoaffective disorder, attention deficit disorder, dysthymic disorder, major 20 depressive disorder, mania, obsessive-compulsive disorder, psychoactive substance use disorders, anxiety, panic. disorder, as well as bipolar affective disorder, e.g., severe bipolar affective (mood) disorder (BP-I), bipolar affective (mood) disorder with hypomania and major depression (BP-II). Further CNS-related disorders include, for example, those 25 listed in the American Psychiatric Association's Diagnostic and Statistical manual of Mental Disorders (DSM), the most current version of which is incorporated herein by reference in its entirety.

"HKNG1-mediated processes" include processes dependent and/or responsive, either directly or indirectly, to levels of HKNG1 gene expression, gene product synthesis and/or gene

product activity. Such processes can include, but are not limited to, developmental, cognitive and autonomic neural and neurological processes, such as, for example, pain, appetite, long term memory and short term memory.

5 A. BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A-1B. The nucleotide sequence of human HKNG1 cDNA (SEQ ID NO: 1) is depicted on the bottom line. The top line depicts the full length amino acid sequence of human HKNG1 polypeptide (SEQ ID NO: 2) encoded by the human HKNG1 cDNA sequence. The nucleotide sequence encoding SEQ ID NO: 2 corresponds to SEQ ID NO:5.

FIG. 2A-2B. Nucleotide sequence of an alternately spliced human HKNG1 variant, referred to as HKNG1-V1 (SEQ ID NO: 3) is depicted on the bottom line. The derived amino acid sequence of the human HKNG1 gene product (SEQ ID NO: 4) encoded by this alternately spliced cDNA variant is depicted on the top line. The nucleotide sequence encoding SEQ ID NO:4 corresponds to SEQ ID NO:6

FIG. 3A-3R. Genomic sequence of the human HKNG1 gene (SEQ ID NO. 7). Exons are in bold and the 3' and 5' UTRs (untranslated regions) are underlined.

FIG. 4. Summary of in situ hybridization analysis of HKNG1 mRNA distribution in normal human brain tissue.

FIGS. 5A-B. HKNG1 polymorphisms relative to the HKNG1 wild-type sequence. These polymorphisms were isolated from a collection of schizophrenic patients of mixed ethnicity from the United States (FIG. 5A) and from the San Francisco BAD collection (FIG. 5B).

FIGS. 6A-B. Nucleotide sequence of the RT-PCR products for HKNG1-V2 (FIG. 6A; SEQ ID NO:36) and HKNG1-V3 (FIG. 6B; SEQ ID NO:37).

FIG 7. The cDNA sequence (SEQ ID NO:38) and the 30 predicted amino acid sequence (SEQ ID NO:39) of the guinea pig HKNG1 ortholog gphkng1815.

FIG. 8. The cDNA sequence (SEQ ID NO:40) and the predicted amino acid sequence (SEQ ID NO:41) of gphkng 7b, an allelic variant of the guinea pig HKNG1 ortholog gphkng1815.

- FIG. 9. The cDNA sequence (SEQ ID NO:42) and the predicted amino acid sequence (SEQ ID NO:43) of gphkng 7c, an allelic variant of the guinea pig HKNG1 ortholog gphkng1815.
 - FIG. 10. The cDNA sequence (SEQ ID NO:44) and the predicted amino acid sequence (SEQ ID NO:45) of gphkng 7d, an allelic variant of the guinea pig HKNG1 ortholog gphkng1815.
- FIG. 11. The cDNA sequence (SEQ ID NO:46) and the predicted amino acid sequence (SEQ ID NO:49) of the allelic variant bhkng1 of the bovine HKNG1 ortholog.
 - FIG. 12. The cDNA sequence (SEQ ID NO:47) and the predicted amino acid sequence (SEQ ID NO:49) of the allelic variant bhkng2 of the bovine HKNG1 homolgue.
- FIG. 13. The cDNA sequence (SEQ ID NO:48) and the predicted amino acid sequence (SEQ ID NO:49) of the allelic variant bhkng3 of the bovine HKNG1 homolgue.
 - FIG. 14A-B. Alignments of the guinea pig *HKNG1* cDNA (FIG. 14A) and predicted amino acid (FIG. 14B) sequences for gphkng1815, gphkng 7b, gphkng7c, and gphkng 7d.
- FIG. 15. Alignments of the cDNA sequences of the bovine HKNG1 allelic variants bhkng1, bhkng2, and bhkng3.
 - FIG. 16. Alignments of the human (hkng_aa), bovine (bhkng1_aa) and guinea pig (gphkng1815_aa) HKNG1 amino acid sequences.
- FIG. 17. Alignments of the human HKNG1 protein sequences; top line: the mature secreted HKNG1 protein sequence (SEQ ID NO:51); second line: immature HKNG1 protein form 1 (IPF1; SEQ ID NO:2); third line: immature HKNG1 protein form 2 (IPF2; SEQ ID NO:64); bottom line: immature HKNG1 protein form 3 (IPF3; SEQ ID NO:4).
- FIG. 18. The nucleotide sequence of human *HKNG1* splice variant *HKNG1* CDNA (SEQ ID NO: 65) is depicted on the

bottom line. The top line depicts the full length amino acid sequence of human HKNG1 Δ 7 polypeptide (SEQ ID NO: 66) encoded by the human HKNG1 Δ 7 cDNA sequence.

5. DETAILED DESCRIPTION OF THE INVENTION

5.1. THE HKNG1 GENE

HKNG1 nucleic acid molecules are described in the section. Unless otherwise stated , the term "HKNG1 nucleic acid" refers collectively to the sequences described herein.

5

A human HKNG1 cDNA sequence (SEQ ID NO: 1) encoding the 10 full length amino acid sequence (SEQ ID NO: 2) of the HKNG1 polypeptide is shown in FIG. 1A-1B. The human HKNG1 gene encodes a secreted polypeptide of 495 amino acid residues, as shown in FIG. 1A-1B, and SEQ ID NO: 2. The nucleotide sequence of the portion of the cDNA corresponding to the coding sequence for HKNG1 (SEQ ID NO:2) is depicted as SEQ ID NO:5.

The HKNG1 sequences of the invention also include splice variants of the HKNG1 sequences described herein. For example, an alternately spliced human HKNG1 cDNA sequence, referred to as HKNG1-V1 (SEQ ID NO: 3) encoding a human HKNG1 variant gene product (i.e., the HKNG1-V1 gene product) is shown in FIG. 2A-2B. This splice variant of a human HKNG1 gene encodes a secreted polypeptide of 477 amino acid residues, as shown in FIG. 2A-2B, and SEQ ID NO:4. The nucleotide sequence of the portion of the cDNA corresponding to the coding sequence for HKNG1 (SEQ ID NO:4) is depicted in SEQ ID NO:6.

Another alternately spliced human *HKNG1* cDNA sequence (SEQ ID NO:65), referred to as *HKNG1* \(\Delta \), encodes a second *HKNG1* variant gene product (the *HKNG1* \(\Delta \) gene product) which is depicted in FIG. 18. This splice variant of the human

HKNG1 gene encodes the variant polypeptide shown in FIG. 18 (SEQ ID NO:66).

The genomic structure of the human HKNG1 gene has been elucidated and is depicted in FIG. 3A-3R, with the HKNG1 sexons indicated in bold type, and the 5'- and 3'-untranslated regions indicated by underlining. The wild-type genomic sequence of the HKNG1 gene is depicted in FIG. 3A-3R and SEQ ID NO:7.

Non-human homologues or orthologs mammalian orthologs, e.g., of the human HKNG1 sequences discussed above are also provided. Specifically, a guinea pig cDNA sequence (SEQ ID NO:38), referred to herein as gphkng1815, encoding the full length amino acid sequence (SEQ ID NO:39) of a guinea pig HKNG1 ortholog is shown in FIG. 7. This guinea pig cDNA sequence encodes a gene product of 466 amino acid residues, as shown in FIG. 7 and in SEQ ID NO:39.

Allelic variants of this guinea pig HKNG1 ortholog, referred to as gphkng 7b, gphkng 7c, and gphkng 7d (SEQ ID NOS:40, 42, and 44, respectively), are shown in FIGS. 8-10, respectively. The allelic variants gphkng7b, gphkng7c, and gphkng7d each encode variants of the guinea pig gphkng1815

HKNG1 gene product which contain deletions of 16, 92, and 93 amino acids, respectively, as shown in FIGS. 8-10, in SEQ ID NOS:41, 43, and 45, respectively, and in the sequence alignment in FIG. 14B.

Bovine HKNG1 ortholog cDNA sequences (SEQ ID NOS: 46-25 48), referred to herein as bhkng1, bhkng2, and bhkng3, and each encoding the same bovine ortholog gene product are shown in FIGS. 11-13, respectively. The bovine HKNG1 allelic variants encode the same gene product, i.e., a 465 amino acid protein, as shown in FIGS. 11-13 and in SEQ ID NO:49.

The HKNG1 gene nucleic acid molecules of the invention include: (a) nucleotide sequences and fragments thereof

(e.g., SEQ ID NOS: 1, 3, 5, 6, 7, 36, 37, and 65) that encode a HKNG1 gene product (e.g., SEQ ID NOS: 2, 4 and 66), as well as homologues, orthologs and allelic variants of such sequences and fragments thereof (e.g., SEQ ID NOS:38, 40, 42, 5 44, and 46-48) which encode homologue or ortholog HKNG1 gene products (e.g., SEQ ID NOS:39, 41, 43, 45, and 49); (b) nucleotide sequences that encode one or more functional domains of a HKNG1 gene product including, but not limited to, nucleic acid sequences that encode a signal sequence domain, or one or more clusterin domains as described in 10 Section 5.2 below; (c) nucleotide sequences that comprise HKNG1 gene sequences of upstream untranslated regions, intronic regions, and/or downstream untranslated regions or fragments thereof of the HKNG1 nucleotide sequences in (a) above; (d) nucleotide sequences comprising the novel HKNG1 15 sequences disclosed herein that encode mutants of the HKNG1 gene product in which all or a part of one or more of the domains is deleted or altered, as well as fragments thereof; (e) nucleotide sequences that encode fusion proteins comprising a HKNG1 gene product (e.g., SEQ ID NO: 2, 4, 39, 41, 43, 45, 49 and 65), or a portion thereof fused to a 20 heterologous polypeptide; and (f) nucleotide sequences (e.g., primers) within the HKNG1 gene, and chromosome 18p nucleotide sequences flanking the HKNG1 gene which can be utilized as part of the methods of the invention for identifying and diagnosing individuals at risk for or exhibiting an HKNG1-25 mediated disorder, such as BAD, or myopia.

The HKNG1 nucleotide sequences of the invention further include nucleotide sequences corresponding to the nucleotide sequences of (a)-(f) above wherein one or more of the exons, or fragments thereof, have been deleted. In one preferred embodiment, the HKNG1 nucleotide sequence of the invention is

30

a sequence wherein the exon corresponding to exon 7 of SEQ ID NO:7, or a fragment thereof, has been deleted.

The HKNG1 nucleotide sequences of the invention also include nucleotide sequences that have at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or more nucleotide sequence identity to the HKNG1 nucleotide sequences of (a)-(f) above. The HKNG1 nucleotide sequences of the invention further include nucleotide sequences that encode polypeptides having at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or higher amino acid sequence identity to the polypeptides encoded by the HKNG1 nucleotide sequences of (a)-(f), e.g., SEQ ID NOS: 2, 4, 39, 41, 43, 45, 49, and 66 above.

To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid 15 sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the 20 molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical overlapping positions/total # of positions x 100%). In one embodiment, the two sequences are the same length.

The determination of percent identity between two sequences can also be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990)

Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA

90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = $_{5}$ 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as 10 described in Altschul et al. (1997) Nucleic Acids Res.25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be 15 used (see http://www.ncbi.nlm.nih.gov). Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is 20 part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.

The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically only exact matches are counted.

The HKNG1 nucleotide sequences of the invention further include: (a) any nucleotide sequence that hybridizes to a HKNG1 nucleic acid molecule of the invention under stringent conditions, e.g., hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate (SSC) at about 45°C followed

by one or more washes in 0.2xSSC/0.1% SDS at about 50-65°C, or (b) under highly stringent conditions, e.g., hybridization to filter-bound nucleic acid in 6xSSC at about 45°C followed by one or more washes in 0.1xSSC/0.2% SDS at about 68°C, or under other hybridization conditions which are apparent to those of skill in the art (see, for example, Ausubel F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at pp. 6.3.1-6.3.6 and 2.10.3). Preferably the HKNG1 nucleic acid molecule that hybridizes to the nucleotide sequence of (a) and (b), above, is one that comprises the complement of a nucleic acid molecule that encodes a HKNG1 gene product. In a preferred embodiment, nucleic acid molecules comprising the nucleotide sequences of (a) and (b), above, encode gene products, e.g., gene products functionally equivalent to an HKNG1 gene product.

Functionally equivalent HKNG1 gene products include naturally occurring HKNG1 gene products present in the same or different species. In one embodiment, HKNG1 gene sequences in non-human species map to chromosome regions syntenic to the human 18p chromosome location within which human HKNG1 lies. Functionally equivalent HKNG1 gene products also include gene products that retain at least one of the biological activities of the HKNG1 gene products, and/or which are recognized by and bind to antibodies (polyclonal or monoclonal) directed against the HKNG1 gene products.

Among the nucleic acid molecules of the invention are deoxyoligonucleotides ("oligos") which hybridize under highly stringent or stringent conditions to the HKNG1 nucleic acid molecules described above. In general, for probes between 14 and 70 nucleotides in length the melting temperature (TM) is calculated using the formula:

Tm(°C)=81.5+16.6(log[monovalent cations (molar)])+0.41 (%

G+C)-(500/N) where N is the length of the probe. If the hybridization is carried out in a solution containing formamide, the melting temperature is calculated using the equation Tm(°C)=81.5+16.6(log[monovalent cations (molar)])+0.41(% G+C)-(0.61% formamide)-(500/N) where N is the length of the probe. In general, hybridization is carried out at about 20-25 degrees below Tm (for DNA-DNA hybrids) or 10-15 degrees below Tm (for RNA-DNA hybrids).

Exemplary highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C (for about 14-base oligos), 48°C (for about 17-base oligos), 55°C (for about 20-base oligos), and 60°C (for about 23-base oligos).

These nucleic acid molecules may encode or act as antisense molecules, useful, for example, in HKNG1 gene regulation, and/or as antisense primers in amplification reactions of HKNG1 gene nucleic acid sequences. Further, such sequences may be used as part of ribozyme and/or triple helix sequences, also useful for HKNG1 gene regulation. Still further, such molecules may be used as components of diagnostic methods whereby, for example, the presence of a particular HKNG1 allele involved in a HKNG1-related disorder, e.g., a neuropsychiatric disorder, such as BAD, may be detected.

Fragments of the HKNG1 nucleic acid molecules can be at least 10 nucleotides in length. In alternative embodiments, the fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more contiguous nucleotides in length. Alternatively, the fragments can comprise sequences that encode at least 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450 or more contiguous amino acid residues of the HKNG1 gene products. Fragments of the HKNG1 nucleic acid molecules can also refer to HKNG1 exons or introns, and, further, can refer to portions of HKNG1 coding regions that

encode domains (e.g., clusterin domains) of HKNG1 gene products.

The HKNG1 nucleotide sequences of the invention can be readily obtained, for example, by standard sequencing and the sequence provided herein.

As will be appreciated by those skilled in the art, DNA sequence polymorphisms of a HKNG1 gene will exist within a population of individual organisms (e.g., within a human population). Such polymorphisms may exist, for example, among individuals within a population due to natural allelic variation. Such polymorphisms include ones that lead to changes in amino acid sequence. An allele is one of a group of genes which occur alternatively at a given genetic locus.

As used herein, the phrase "allelic variant" refers to a nucleotide sequence which occurs at a given locus or to a gene product encoded by that nucleotide sequence. Such 15 natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene.

Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals.

20 As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide of the invention. The term can further include nucleic acid molecules comprising upstream and/or exon/intron sequences and sructure.

With respect to HKNG1 allelic variants, any and all such

25 nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation of the HKNG1 gene are intended to be within the scope of the present invention. Such allelic variants include, but are not limited to, ones that do not alter the functional activity of the HKNG1 gene product. Variants include, but are not limited to, variants comprising the

polymorphisms summarized in FIGS. 5A-B and a variant which encodes a full length *HKNG1* polypeptide comprising a substitution of a lysine amino acid at amino acid residue 202 of the *HKNG1* polypeptide shown in FIG. 1A-1B and SEQ ID NO:2 or the *HKNG1* amino acid residue 184 of the polypeptide of SEQ ID NO:4.

With respect to the cloning of additional allelic variants of the human HKNG1 gene and homologues and orthologs from other species (e.g., guinea pig, cow, mouse), the isolated HKNG1 gene sequences disclosed herein may be labeled and used to screen a cDNA library constructed from mRNA obtained from appropriate cells or tissues (e.g., brain or retinal tissues) derived from the organism (e.g., guinea pig, cow, and mouse) of interest. The hybridization conditions used should generally be of a lower stringency when the cDNA library is derived from an organism different from the type of organism from which the labeled sequence was derived, and can routinely be determined based on, e.g., relative relatedness of the target and reference organisms.

Alternatively, the labeled fragment may be used to screen a genomic library derived from the organism of interest, again, using appropriately stringent conditions. Appropriate stringency conditions are well known to those of skill in the art as discussed above, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example,

25 Sambrook, et al., 1989, Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Press, N.Y.; and Ausubel, et al., 1989-1999, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y., both of which are incorporated herein by reference in their entirety.

Further, a HKNG1 gene allelic variant may be isolated from, for example, human nucleic acid, by performing PCR using two degenerate oligonucleotide primer pools designed on the basis of amino acid sequences within the HKNG1 gene product disclosed herein. The template for the reaction may be cDNA obtained by reverse transcription of mRNA prepared from, for example, human or non-human cell lines or tissue known or suspected to express a wild type or mutant HKNG1 gene allele (such as, for example, brain cells, including brain cells from individuals having BAD). In one embodiment, the allelic variant is isolated from an individual who has a HKNG1-mediated disorder. Such variants are described in the examples below.

The PCR product may be subcloned and sequenced to ensure that the amplified sequences represent the sequences of a HKNG1 gene nucleic acid sequence. The PCR fragment may then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment may be labeled and used to screen a bacteriophage cDNA library. Alternatively, the labeled fragment may be used to isolate genomic clones via the screening of a genomic library.

length cDNA sequences. For example, RNA may be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express the HKNG1 gene, such as, for example, brain tissue samples obtained through biopsy or post-mortem). A reverse transcription reaction may be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" with guanines using a standard terminal transferase reaction, the hybrid may be digested with RNAase H, and second strand synthesis may then be primed with a poly-C primer. Thus, cDNA sequences upstream of the amplified fragment may easily

be isolated. For a review of cloning strategies that may be used, see e.g., Sambrook et al., 1989, supra, or Ausubel et al., supra.

A cDNA of an allelic, e.g., mutant, variant of the HKNG1 gene may be isolated, for example, by using PCR, a technique that is well known to those of skill in the art. case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant HKNG1 allele, and by extending 10 the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of 15 skill in the art. By comparing the DNA sequence of the mutant HKNG1 allele to that of the normal HKNG1 allele, the mutation(s) responsible for the loss or alteration of function of the mutant HKNG1 gene product can be ascertained.

alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant HKNG1 allele, or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant HKNG1 allele. An unimpaired HKNG1 gene or any suitable fragment thereof may then be labeled and used as a probe to identify the corresponding mutant HKNG1 allele in such libraries. Clones containing the mutant HKNG1 gene sequences may then be purified and subjected to sequence analysis according to methods well known to those of skill in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant HKNG1 allele in an individual suspected of or known to carry such a

mutant allele. In this manner, gene products made by the putatively mutant tissue may be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against the normal *HKNG1* gene product, as described, below, in Section 5.3. (For screening techniques, see, for example, Harlow and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.)

In cases where a HKNG1 mutation results in an expressed gene product with altered function (e.g., as a result of a 10 missense or a frameshift mutation), a polyclonal set of anti-HKNG1 gene product antibodies are likely to cross-react with the mutant HKNG1 gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known to those of skill in the art.

using PCR amplification techniques. Primers can routinely be designed to amplify overlapping regions of the whole HKNG1 sequence including the promoter regulating region. In one embodiment, primers are designed to cover the exon-intron boundaries such that, coding regions can be scanned for mutations. Exemplary primers for analyzing HKNG1 exons are provided in Table 1, of Section 5.6, below.

The invention also includes nucleic acid molecules, preferably DNA molecules, that are the complements of the nucleotide sequences of the preceding paragraphs.

In certain embodiments, the nucleic acid molecules of the invention are present as part of nucleic acid molecules comprising nucleic acid sequences that do not contain heterologous (e.g., cloning vector or expression vector) sequences. In other embodiments, the nucleic acid molecules of the invention further comprise vector sequences, e.g., cloning vectors or expression vectors.

5.2. PROTEIN PRODUCTS OF THE HKNG1 GENE

HKNG1 gene products or peptide fragments thereof, can be prepared for a variety of uses. For example, such gene products, or peptide fragments thereof, can be used for the generation of antibodies, in diagnostic assays, or for the identification of other cellular or extracellular gene products involved in the regulation of HKNG1-mediated disorders, e.g., neuropsychiatric disorders, such as BAD.

The HKNG1 gene products of the invention include, but are not limited to, human HKNG1 gene products, e.g.,

- polypeptides comprising the amino acid sequences depicted in FIGS. 1A-1B, 2A-2B, 17, and 18 (i.e., SEQ ID NOS:2, 4, 51, and 66). The HKNG1 gene products of the invention also include non-human, e.g., mammalian (such as bovine or guinea pig), HKNG1 gene products. These include, but are not
- 15 limited to, polypeptides comprising the amino acid sequences depicted in FIGS. 7-13 (i.e., SEQ ID NOS:39, 41, 43, 45, and 49).

HKNG1 gene product, sometimes referred to herein as an "HKNG1** protein" or "HKNG1** polypeptide," includes those gene products encoded by the HKNG1** gene sequences depicted in FIGS. 1A-1B, 2A-2B, 7-13, 17, and 18, as well as gene products encoded by other human allelic variants and non-human variants of HKNG1** that can be identified by the methods herein described. Among such HKNG1** gene product variants are gene products comprising HKNG1** amino acid residues encoded by the polymorphisms depicted in FIGS. 5A and 5B. Such gene product variants also include a variant of the HKNG1** gene product depicted in FIG. 1 (SEQ ID NO:2) wherein the amino acid residue Lys202 is mutated to a glutamic acid residue. Such HKNG1** gene product depicted in FIG. 2 (SEQ ID NO:4)

wherein the amino acid residue Lys184 is mutated to a glutamic acid residue.

In addition, HKNG1 gene products may include proteins that represent functionally equivalent gene products.

Functionally equivalent gene products may include, for example, gene products encoded by one of the HKNG1 nucleic acid molecules described in Section 5.1, above. In preferred embodiments, such functionally equivalent HKNG1 gene products are naturally occurring gene products. Functionally equivalent HKNG1 gene products also include gene products

10 that retain at least one of the biological activities of the

10 that retain at least one of the biological activities of the HKNG1 gene products described above, and/or which are recognized by and bind to antibodies (polyclonal or monoclonal) directed against HKNG1 gene products.

Equivalent HKNG1 gene product may contain deletions, including internal deletions, additions, including additions yielding fusion proteins, or substitutions of amino acid residues within and/or adjacent to the amino acid sequence encoded by the HKNG1 gene sequences described, above, in Section 5.1. Generally, deletions will be deletions of single amino acid residues, or deletions of no more than 20 about 2, 3, 4, 5, 10 or 20 amino acid residues, either contiguous or non-contiguous. Generally, additions or substitutions, other than additions that yield fusion proteins, will be additions or substitutions of single amino acid residues, or additions or substitutions of no more than about 2, 3, 4, 5, 10 or 20 amino acid residues, either 25 contiguous or non-contiguous. Preferably, these modifications result in a "silent" change, in that the change produces a HKNG1 gene product with the same activity as the HKNG1 gene product depicted in FIG. 1A-1B, 2A-2B, 7-13, or 17.

Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues

involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

Alternatively, where alteration of function is desired, addition(s), deletion(s) or non-conservative alterations can produce altered, including reduced-activity, HKNG1 gene

products. Such alterations can, for example, alter one or more of the biological functions of the HKNG1 gene product. Further, such alterations can be selected so as to generate HKNG1 gene products that are better suited for expression, scale up, etc. in the host cells chosen. For example,

cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

As another example, altered HKNG1 gene products can be engineered that correspond to variants of the HKNG1 gene product associated with HKNG1-mediated neuropsychiatric disorders such as BAD. Such altered HKNG1 gene products include, but are not limited to, HKNG1 proteins or peptides comprising substitution of a lysine residue for the wild-type glutamic acid residue at HKNG1 amino acid position 202 in FIG. 1A-1B (SEQ ID NO:2) or amino acid position 184 (SEQ ID NO:4) in FIG. 2A-2B.

25 HKNG1 protein fragments and/or HKNG1 peptides comprise at least as many contiguous amino acid residues as necessary to represent an epitope fragment (that is to be recognized by an antibody directed to the HKNG1 protein). For example, such protein fragments or peptides comprise at least about 8 contiguous HKNG1 amino acid residues from a full length HKNG1 protein. In alternate embodiments, the HKNG1 protein fragments and peptides of the invention can comprise about

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450 or more contiguous amino acid residues of a HKNG1 protein.

Peptides and/or proteins corresponding to one or more domains of the *HKNG1* protein as well as fusion proteins in which a *HKNG1* protein, or a portion of a *HKNG1* protein such as a truncated HKNG1 protein or peptide or a *HKNG1* protein domain, is fused to an unrelated protein are also within the scope of this invention. Such proteins and peptides can be designed on the basis of the *HKNG1* nucleotide sequence

- 10 disclosed in Section 5.1, above, and/or on the basis of the HKNG1 amino acid sequence disclosed in the Section. Fusion proteins include, but are not limited to, IgFc fusions which stabilize the HKNG1 protein or peptide and prolong half life in vivo; or fusions to any amino acid sequence that allows the fusion protein to be anchored to the cell membrane; or
- fusions to an enzyme, fluorescent protein, luminescent protein, or a flag epitope protein or peptide which provides a marker function.

The HKNG1 protein, the HKNG1 protein sequences described above can include a domain which comprises a signal sequence that targets the HKNG1 gene product for secretion. As used herein, a signal sequence includes a peptide of at least about 15 or 20 amino acid residues in length which occurs at the N-terminus of secretory and membrane-bound proteins and which contains at least about 70% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, 25 proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 40 amino acid residues, preferably about 19-34 amino acid residues, and has at least about 60-80%, more preferably 65-75%, and more preferably at least about 70% hydrophobic residues. A signal sequence serves to direct a protein 30 containing such a sequence to a lipid bilayer.

In one embodiment, a HNKNG1 protein contains a signal sequence at about amino acids 1 to 49 of SEQ ID NO:2. In another embodiment, a HKNG1 protein contains a signal sequence at about amino acids 30-49 of SEQ ID NO:2. In yet another embodiment, a HKNG1 protein contains a signal sequence at about amino acid residues 1 to 31 of SEQ ID NO:4. In yet another embodiment, a HKNG1 protein contains a signal sequence at about amino acids 12-31 of SEQ ID NO:4. The signal sequence is cleaved during processing of the mature protein.

A signal sequence of a polypeptide of the invention can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway. Thus, the invention pertains to the described HKNG1 polypeptides having a signal sequence (that is, "immature" polypeptides), as well as to the HKNG1 signal sequences themselves and to the HNKG1 polypeptides in the 20 absence of a signal sequence (i.e., the "mature" HKNG1 cleavage products). It is to be understood that HKNG1 polypeptides of the invention can further comprise polypeptides comprising any signal sequence having characteristics as described above and a mature HKNG1

In one embodiment, a nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is

25 polypeptide sequence.

subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

The HKNG1 protein sequences described above can also include one or more domains which comprise a clusterin domain, i.e., domains which are identical to or substantially homologous to (i.e., 65%, 75%, 80%, 85%, 90%, 95% or more identical to) the domain corresponding to amino acid residues 134 to 160 or amino acid residues 334 to 362 of SEQ ID NO:2, or to the domain corresponding to amino acid residues 105-131 or amino acid residues 305-333 of SEQ ID No:39, or to the domain corresponding to amino acid residues 105-131 or amino acid residues 304-332 of SEQ ID NO:49. Preferably, such domains comprise cysteine amino acid residues at positions corresponding to conserved cysteine residues of the clusterin domains of SEQ ID NOS: 2, 39 or 49.

In particular, HKNG1 protein sequences described above can also include one or more domains which comprise a conserved cysteine domain. Such a domain corresponds, for example, to the domain of cysteines corresponding to Cys134, Cys145, Cys148, Cys158 and Cys160; or to Cys 334, Cys344, Cys351, Cys354, and Cys362 of SEQ ID NO:2. In an alternative embodiment, a conserved cystein domain corresponds to one or more of the domains of SEQ ID NO:39 which comprises Cys105, Cys116, Cys119, Cys124, and Cys131; or Cys305, Cys315, Cys322, Cys325, and Cys333. In yet another alternative embodiment, a conserved cysteine domain corresponds to one or more of the domains of SEQ ID NO:49 which comprises Cys105, Cys116, Cys119, Cys124, and Cys131; or Cys314, Cys321, Cys324, and Cys332.

Finally, the HKNG1 proteins of the invention also include HKNG1 protein sequences wherein domains encoded by one or more exons of the cDNA sequence, or fragments ther of, have been deleted. In one particularly preferred embodiment,

the HKNG1 proteins of the invention are proteins in which the domain(s) corresponding the those domains encoded by exon 7 of SEQ ID NO:7, or fragments thereof, have been deleted.

The HKNG1 polypeptides of the invention can further comprise posttranslational modifications, including, but not limited to glycosylations, acetylations, and myrisalations.

The HKNG1 gene products, peptide fragments thereof and fusion proteins thereof, may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing the HKNG1 gene products, polypeptides,

- 10 peptides, fusion peptide and fusion polypeptides of the invention by expressing nucleic acid containing HKNG1 gene sequences are described herein. Methods that are well known to those skilled in the art can be used to construct expression vectors containing HKNG1 gene product coding sequences and appropriate transcriptional and translational
 15 control signals. These methods include for any angle.
- vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. See, for example, the techniques described in Sambrook, et al., 1989, supra, and Ausubel, et al., 1989, supra. Alternatively, RNA capable of
- encoding HKNG1 gene product sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in "Oligonucleotide Synthesis", 1984, Gait, ed., IRL Press, Oxford.

a variety of host-expression vector systems may be utilized to express the HKNG1 gene product coding sequences of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells that may, when transformed or transfected with the appropriate nucleotide coding sequences, exhibit the HKNG1 gene product of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E.

coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing HKNG1 gene product coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast 5 expression vectors containing the HKNG1 gene product coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the HKNG1 gene product coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing HKNG1 gene product coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian 15 cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the HKNG1 gene product being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of HKNG1 gene product or for raising antibodies to HKNG1 gene product, for example, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which the HKNG1 gene product coding sequence may be ligated individually into the vector in frame with the lacz coding region so that a fusion protein is produced; pIN vectors (Inouye and Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke and Schuster, 1989, J. Biol.

Chem. 264:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica, nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The HKNG1 gene product coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).

successful insertion of HKNG1 gene product coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect spodoptera frugiperda cells in which the inserted gene is expressed. (e.g., see Smith, et al., 1983, J. Virol. 46:584; Smith, U.S. Patent No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the HKNG1 gene product coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable

of expressing HKNG1 gene product in infected hosts. See Logan and Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted HKNG1 gene $_{5}$ product coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire HKNG1 gene, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a 10 portion of the HKNG1 gene coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals 15 and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner, et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen that
modulates the expression of the inserted sequences, or
modifies and processes the gene product in the specific
fashion desired. Such modifications (e.g., glycosylation)
and processing (e.g., cleavage) of protein products may be
important for the function of the protein. Different host
cells have characteristic and specific mechanisms for the
post-translational processing and modification of proteins
and gene products. Appropriate cell lines or host systems
can be chosen to ensure the correct modification and
processing of the foreign protein expressed. To this end,
eukaryotic host cells that possess the cellular machinery for
proper processing of the primary transcript, glycosylation,
and phosphorylation of the gene product may be used. Such

mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, and WI38.

For long-term, high-yi ld production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express the HKNG1 gene product may be engineered. Rather than using expression vectors that contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci that in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines that express the HKNG1 gene product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the HKNG1 gene product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska and Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817)

25 genes can be employed in tk, hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan and Berg, 1981, Proc. Natl.

Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

- Alternatively, the expression characteristics of an endogenous *HKNG1* gene within a cell line or microorganism may be modified by inserting a heterologous DNA regulatory element into the genome of a stable cell line or cloned microorganism such that the inserted regulatory element is operatively linked with the endogenous *HKNG1* gene. For
- "transcriptionally silent", i.e., an HKNG1 gene which is normally not expressed, or is expressed only at very low levels in a cell line or microorganism, may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell line or microorganism. Alternatively, a transcriptionally silent, endogenous HKNG1 gene may be activated by insertion of a promiscuous regulatory element that works across cell types.

A heterologous regulatory element may be inserted into a stable cell line or cloned microorganism, such that it is operatively linked with an endogenous *HKNG1* gene, using techniques, such as targeted homologous recombination, which are well known to those of skill in the art, and described e.g., in Chappel, U.S. Patent No. 5,272,071; PCT publication No. WO 91/06667, published May 16, 1991.

25 Alternatively, any fusion protein may be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht, et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines

(Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the gene of interest is subcloned

into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an aminoterminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni^{2*}·nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

The HKNG1 gene products can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, sheep, cows, and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate HKNG1 transgenic animals. The term "transgenic," as used herein, refers to animals expressing HKNG1 gene sequences from a different species (e.g., mice expressing huma HKNG1 gene sequences), as well as animals that have been genetically engineered to overexpress endogenous (i.e., same species) HKNG1 sequences or animals that have been genetically engineered to no longer express endogenous HKNG1 gene sequences (i.e., "knock-out" animals), and their progeny.

Any technique known in the art may be used to introduce a HKNG1 gene transgene into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to pronuclear microinjection (Hoppe and Wagner, 1989, U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into germ lines (Van der Putten, et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148-6152); gene targeting in embryonic stem cells (Thompson, et al., 1989, Cell 56:313-321); electroporation of embryos (Lo, 1983, Mol. Cell. Biol. 3:1803-1814); and sperm-mediated gene transfer (Lavitrano et al., 1989, Cell 57:717-723) (For a review of such techniques, see Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115, 171-229)

Any technique known in the art may be used to produce transgenic animal clones containing a *HKNG1* transgene, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal or adult cells induced to quiescence (Campbell, et al., 1996, Nature 380:64-66; Wilmut, et al., Nature 385:810-813).

The present invention provides for transgenic animals that carry a HKNG1 transgene in all their cells, as well as animals that carry the transgene in some, but not all their cells, i.e., mosaic animals. The transgene may be integrated 10 as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko, et al., 1992, Proc. Natl. Acad. Sci. USA 89:6232-The regulatory sequences required for such a celltype specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the HKNG1 transgene be integrated into the chromosomal site of the endogenous HKNG1 gene, gene targeting is preferred. Briefly, when such a 20 technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous HKNG1 gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous The transgene may also be selectively introduced 25 into a particular cell type, thus inactivating the endogenous HKNG1 gene in only that cell type, by following, for example, the teaching of Gu, et al., 1994, Science 265, The regulatory sequences required for such a celltype specific inactivation will depend upon the particular 30 cell type of interest, and will be apparent to those of skill

in the art.

Once transgenic animals have been generated, the expression of the recombinant HKNG1 gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques that include but are not limited to Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR (reverse transcriptase PCR). Samples of HKNG1 geneexpressing tissue, may also be evaluated immunocytochemically using antibodies specific for the HKNG1 transgene product.

HKNG1 proteins can be used, e.g., to treat CNS-related disorders, e.g., neuropsychiatric disorders. Such HKNG1 gene products include but are not limited to soluble derivatives such as peptides or polypeptides corresponding to one or more domains of the HKNG1 gene product, particularly HKNG1 gene products, that are modified such that they are deleted for one or more hydrophobic domains. Alternatively, antibodies to the HKNG1 protein or anti-idiotypic antibodies that mimic 20 the HKNG1 gene product (including Fab fragments), antagonists or agonists can be used to treat neuropsychiatric disorders involving HKNG1. In yet another approach, nucleotide constructs encoding such HKNG1 gene products can be used to genetically engineer host cells to express such HKNG1 gene products in vivo; these genetically engineered cells can function as "bioreactors" in the body delivering a continuous supply of HKNG1 gene product, HKNG1 peptides, soluble HKNG1 polypeptides.

5.3. ANTIBODIES TO HENGI GENE PRODUCTS

Described herein are methods for the production of antibodies capable of specifically recognizing one or more

HKNG1 gene product epitopes or epitopes of conserved variants or peptide fragments of the HKNG1 gene products. Further, antibodies that specifically recognize mutant forms of HKNG1, are encompassed by the invention. The terms "specifically bind" and "specifically recognize" refer to antibodies that bind to HKNG1 gene product epitopes at a higher affinity than they bind to non-HKNG1 (e.g., random) epitopes.

Such antibodies may include, but are not limited to, polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, 10 Fab fragments, F(ab')2 fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above, including the polyclonal and monoclonal antibodies described in Section 12 below. Such antibodies may be used, for example, in the detection of a HKNG1 gene product in an biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal levels of HKNG1 gene products, and/or for the presence of abnormal forms of such gene products. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes, as described, below, in Section 5.8, for the evaluation of the effect of test compounds on HKNG1 gene product levels and/or activity. Additionally, such antibodies can be used in conjunction with the gene therapy techniques described, below, in Section 5.9.2 to, for example, evaluate the normal and/or engineered 25 HKNG1-expressing cells prior to their introduction into the patient.

Anti-HKNG1 gene product antibodies may additionally be used in methods for inhibiting abnormal HKNG1 gene product activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods for a HKNG1-mediated neuropsychiatric disorder, such as BAD or schizophrenia.

For the production of antibodies against a HKNG1 gene product, various host animals may be immunized by injection with a HKNG1 gene product, or a portion thereof. Such host animals may include, but are not limited to rabbits, mice, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, cil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as a *HKNG1* gene product, or an 15 antigenic functional derivative thereof. For the production of polyclonal antibodies, host animals such as those described above, may be immunized by injection with *HKNG1* gene product supplemented with adjuvants as also described above.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, may be obtained by any technique that provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Patent No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in

vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison, et al., 1984, Proc. Natl.

- Acad. Sci., 81:6851-6855; Neuberger, et al., 1984, Nature 312:604-608; Takeda, et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which
- 10 different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. (See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816397, which are incorporated herein by reference in their entirety.)
- 15 In addition, techniques have been developed for the production of humanized antibodies. (See, e.g., Queen, U.S. Patent No. 5,585,089, which is incorporated herein by reference in its entirety.) An immunoglobulin light or heavy chain variable region consists of a "framework" region interrupted by three hypervariable regions, referred to as complementarily determining regions (CDRs). The extent of the framework region and CDRs have been precisely defined (see, "Sequences of Proteins of Immunological Interest", Kabat, E. et al., U.S. Department of Health and Human Services (1983)). Briefly, humanized antibodies are antibody molecules from non-human species having one or more CDRs from the non-human species and a framework region from a human immunoglobulin molecule.

Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; Bird, 1988, Science 242:423-426; Huston, et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward, et al., 1989, Nature 334:544-546) can be adapted to produce single chain

antibodies against *HKNG1* gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments that recognize specific epitopes may be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragments, which can be produced by pepsin digestion of the antibody molecule and the Fab fragments, which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse, et al., 1989, Science 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

5.4. USES OF HKNG1 GENE SEQUENCES GENE PRODUCTS, AND ANTIBODIES

15

Described herein are various applications of HKNG1 gene sequences, HKNG1 gene products, including peptide fragments and fusion proteins thereof, and of antibodies directed against HKNG1 gene products and peptide fragments thereof. Such applications include, for example, mapping of chromosome 18p, prognostic and diagnostic evaluation of HKNG1-mediated disorders, including CNS-related disorders, e.g., neuropsychiatric disorders, such as BAD or schizerbrania.

neuropsychiatric disorders, such as BAD or schizophrenia, modulation of *HKNG1*-related processes, and the identification of subjects with a predisposition to such disorders, as described, below, in Section 5.5.

Additionally, such applications include methods for the treatment of a HKNG1-mediated disorders, such as BAD or schizophrenia, as described, below, in Section 5.9, and for the identification of compounds that modulate the expression of the HKNG1 gene and/or the synthesis or activity of the 30 HKNG1 gene product, as described below, in Section 5.8. Such compounds can include, for example, other cellular products

that are involved in such processes as mood regulation and in HKNG1-mediated disorders, e.g., neuropsychiatric disorders such as BAD or schizophrenia. These compounds can be used, for example, in the amelioration of HKNG1-mediated disorders and for the modulation of HKNG1-mediated processes.

Uses of the HKNG1 gene sequences, HKNG1 gene products, including peptide fragments and fusion proteins thereof, and of antibodies directed against HKNG1 gene products and/or peptide fragments thereof also include prognostic and diagnostic evaluation of a HKNG1-mediated myopia disorder such as early-onset autosomal dominant myopia, methods for the treatment of a HKNG1-mediated myopia disorder, and for the identification of compound that modulate the expression of the HKNG1 gene and/or the synthesis or activity of the HKNG1 gene product and could therefore be used in the amelioration of a HKNG1-mediated myopia such as early-onset autosomal dominant myopia. Indeed, such methods are substantially identical to the methods described, below, in Sections 5.5, 5.8, and 5.9 for the diagnosis and treatment of HKNG1-mediated disorders.

20

5.5. DIAGNOSIS OF HKNG1-MEDIATED DISORDERS

A variety of methods can be employed for the diagnostic and prognostic evaluation of *HKNG1*-mediated disorders, <u>e.g.</u>, neuropsychiatric disorders and for the identification of subjects having a predisposition to such disorders.

Such methods may, for example, utilize reagents such as the HKNG1 gene nucleotide sequences described in Sections 5.1, and antibodies directed against HKNG1 gene products, including peptide fragments thereof, as described, above, in Section 5.3. Specifically, such reagents may be used, for 30 example, for:

(1) the detection of the presence of *HKNG1* gene mutations, or the detection of either over- or under-expression of *HKNG1* gene relative to wild-type *HKNG1* levels of expression;

- (2) the detection of over- or under-abundance of HKNG1 gene product relative to wild-type abundance of HKNG1 gene product; and
- (3) the detection of an aberrant level of HKNG1 gene product activity relative to wild-type HKNG1 gene product activity levels.
- HKNG1 gene nucleotide sequences can, for example, be used to diagnose a HKNG1-mediated neuropsychiatric disorder using, for example, the techniques for HKNG1 mutation/polymorphism detection described above in Section 5.1, and in Section 5.6 below.
- Mutations at a number of different genetic loci may lead to phenotypes related to neuropsychiatric disorders. Ideally, the treatment of patients suffering from such neuropsychiatric disorder will be designed to target the particular genetic loci containing the mutation mediating the disorder. Genetic polymorphisms have been linked to
- 20 differences in drug effectiveness. Thus, identification of alterations in the *HKNG1* gene, protein or gene flanking regions, can be utilized in pharmacogenetic methods to optimize therapeutic drug treatments.

In one embodiment of the present invention, therefore, alterations, i.e., polymorphisms, in the HKNG1 gene or protein encoded by genes comprising such polymorphisms, are associated with a drug or drugs' efficacy, tolerance, or toxicity, and may be used in pharmacogenomic methods to optimize therapeutic drug treatments, including therapeutic drug treatments for one of the disorders described herein, e.g., HKNG1-mediated disorders such as schizophrenia and BAD. Such polymorphisms can be used, for example, to refine the

design of drugs by decreasing the incidence of adverse events in drug tolerance studies, e.g., by identifying patient subpopulations of individuals who respond or do not respond to a particular drug therapy in efficacy studies, wherein the subpopulations have a HKNG1 polymorphism associated with drug responsiveness or unresponsiveness. The pharmacogenomic methods of the present invention can also provide tools to identify new drug targets for designing drugs and to optimize the use of already existing drugs, e.g., to increase the response rate to a drug and/or to identify and exclude non-10 responders from certain drug treatments (e.g., individuals having a particular HKNG1 polymorphism associated with unresponsiveness or inferior responsiveness to the drug treatment) or to decrease the undersireable side effects of certain drug treatments and/or to identify and exclude individuals with marked susceptibility to such side effects 15 (e.g., individuals having a particular HKNG1 polymorphism associated with an undersirable side effect to the drug treatment).

In an embodiment of the present invention, polymorphisms in the HKNG1 gene sequence or flanking this sequence, or variations in HKNG1 gene expression, or activity, e.g., variations due to altered methylation, differential splicing, or post-translational modification of the HKNG1 gene product, may be utilized to identify an individual having a disease or condition resulting from a HKNG1-mediated disorder and thus define the most effective and safest drug treatment. Assays such as those described herein may be used to identify such polymorphisms or variations in HKNG1 gene expression or activity. Once a polymorphism in the HKNG1 gene or in a flanking sequence in linkage disequilibrium with a disorder-causing allele, or a variation in HKNG1 gene expression has been identified in an individual, an appropriate drug treatment can be prescribed to the individual.

For the detection of *HKNG1* gene mutations or polymorphisms, any nucleated cell can be used as a starting source for genomic nucleic acid. For the detection of *HKNG1* gene expression or *HKNG1* gene products, any cell type or tissue in which the *HKNG1* gene is expressed may be utilized.

Nucleic acid-based detection techniques are described, below, in Section 5.6. Peptide detection techniques are described, below, in Section 5.7.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits. 10 invention therefore also encompasses kits for detecting the presence of a polypeptide or nucleic acid of the invention in a biological sample (i.e., a test sample). Such kits can be used, e.g., to determine if a subject is suffering from or is at increased risk of developing a disorder associated with a disorder-causing allele, or aberrant expression or activity of a polypeptide of the invention (e.g., a CNS disorder, including a neurospychiatric disorder such as BAD or schizophrenia). For example, the kit can comprise a labeled compound or agent capable of detecting the polypeptide or mRNA or DNA or HKNG1 gene sequences, e.g., encoding the 20 polypeptide in a biological sample. The kit can further comprise a means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide). Kits can also include instructions for observing that the tested subject is 25 suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide if the amount of the polypeptide or mRNA encoding the polypeptide is above or below a normal level, or if the DNA correlates with presence of a HKNG1 allele that causes a disorder.

For antibody-based kits, the kit can comprise, for 30 example: (1) a first antibody (e.g., attached to a solid

support) which binds to a polypeptide of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or to the first antibody and is conjugated to a detectable agent.

For oligonucleotide-based kits, the kit can comprise,

for example: (1) an oligonucleotide (e.g., a detectably labeled oligonucleotide) which hybridizes to a nucleic acid sequence encoding a polypeptide of the invention, or (2) a pair of primers, such as the primers recited in Table 1, useful for amplifying a nucleic acid molecule encoding a polypeptide of the invention.

The kit can also comprise, for example, one or more buffering agents, preservatives, or protein stabilizing agents. The kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample. Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with polymorphisms that correlate with alleles that cause HKNG1-related disorders, and/or aberrant levels of HKNG1 mRNA, polypeptides or activity.

5.6. DETECTION OF HENG1 NUCLEIC ACID MOLECULES

A variety of methods can be employed to screen for the presence of *HKNG1* gene-specific mutations or polymorphisms (including polymorphisms flanking *HKNG1* gene) and to detect and/or assay levels of *HKNG1* nucleic acid sequences.

Mutations or polymorphisms within or flanking the HKNG1
gene can be detected by utilizing a number of techniques.

30 Nucleic acid from any nucleated cell can be used as the starting point for such assay techniques, and may be isolated

according to standard nucleic acid preparation procedures that are well known to those of skill in the art.

HKNG1 nucleic acid sequences may be used in hybridization or amplification assays of biological samples to detect abnormalities involving HKNG1 gene structure, including point mutations, insertions, deletions, inversions, translocations and chromosomal rearrangements. Such assays may include, but are not limited to, Southern analyses, single-stranded conformational polymorphism analyses (SSCP), and PCR analyses.

Diagnostic methods for the detection of HKNG1 gene-10 specific mutations or polymorphisms can involve for example, contacting and incubating nucleic acids obtained from a sample, e.g., derived from a patient sample or other appropriate cellular source with one or more labeled nucleic acid reagents including recombinant DNA molecules, cloned 15 genes or degenerate variants thereof, such as described in Section 5.1, above, under conditions favorable for the specific annealing of these reagents to their complementary sequences within or flanking the HKNG1 gene. The diagnostic methods of the present invention further encompass contacting and incubating nucleic acids for the detection of single 20 nucleotide mutations or polymorphisms of the HKNG1 gene. Preferably, these nucleic acid reagent sequences within the HKNG1 gene, or chromosome 18p nucleotide sequences flanking the HKNG1 gene are 15 to 30 nucleotides in length.

After incubation, all non-annealed nucleic acids are removed from the nucleic acid: HKNG1 molecule hybrid. The presence of nucleic acids that have hybridized, if any such molecules exist, is then detected. Using such a detection scheme, the nucleic acid from the cell type or tissue of interest can be immobilized, for example, to a solid support such as a membrane, or a plastic surface such as that on a microtiter plate or polystyrene beads. In this case, after incubation, non-annealed, labeled nucleic acid reagents of

the type described in Section 5.1 are easily removed. Detection of the remaining, annealed, labeled HKNG1 nucleic acid reagents is accomplished using standard techniques well-known to those in the art. The HKNG1 gene sequences to which the nucleic acid reagents have annealed can be compared to the annealing pattern expected from a normal HKNG1 gene sequence in order to determine whether a HKNG1 gene mutation is present.

In a preferred embodiment, *HKNG1* mutations or polymorphisms can be detected by using a microassay of *HKNG1* nucleic acid sequences immobilized to a substrate or "gene chip" (see, e.g. Cronin, et al., 1996, Human Mutation 7:244-255).

Alternative diagnostic methods for the detection of HKNG1 gene-specific nucleic acid molecules (or HKNG1 flanking sequences), in patient samples or other appropriate cell sources, may involve their amplification, e.g., by PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Patent No. 4,683,202), followed by the analysis of the amplified molecules using techniques well known to those of skill in the art, such as, for example, those listed above.

20 The resulting amplified sequences can be compared to those that would be expected if the nucleic acid being amplified contained only normal copies of the HKNG1 gene in order to determine whether a HKNG1 gene mutation or polymorphism in linkage disequilibrium with a disease-causing HKNG1 allele exists.

Among those *HKNG1* nucleic acid sequences which are preferred for such amplification-related diagnostic screening analyses are oligonucleotide primers which amplify *HKNG1* exon sequences. The sequences of such oligonucleotide primers are, therefore, preferably derived from *HKNG1* intron sequences so that the entire exon, or coding region, can be analyzed as discussed below. Primer pairs useful for

amplification of *HKNG1* exons are preferably derived from adjacent introns. Appropriate primer pairs can be chosen such that each of the eleven *HKNG1* exons are amplified. Primers for the amplification of *HKNG1* exons can be routinely designed by one of ordinary skill in the art by utilizing the exon and intron sequences of *HKNG1* shown in Figure 3A-3R.

As an example, and not by way of limitation, Table 1, below, lists primers and primer pairs which can be utilized for the amplification of each of the human HKGN1 exons one through eleven. In this table, a primer pair is listed for each exon which consists of a forward primer derived from intron sequence upstream of the exon to be amplified, and a reverse primer derived from intron sequence downstream of the exon to be amplified. For exons greater than about 300 base pairs in length, i.e., exons 4 and 7, two primer pairs are listed (marked 4a, 4b, 7a and 7b). Each of the primer pairs can be utilized, therefore, as part of a standard PCR reaction to amplify an individual HKNG1 exon (or portion thereof). Primer sequences are depicted in a 5' to 3' orientation.

20

25

30

TABLE 1

	Г	TABLE 1			
	-	Primer Seque			
	-	1 cggggttggtttccacc	(SEQ ID NO:8)	£	
	_ -	gcgaggagagaaatctggg	(SEQ ID NO:9)	forward	
	5			reverse	
	-	2 tgctcactactttgcagtgttc	(SEQ ID NO:10)	forward	
		tgagatcgtgtcactgcattct	(SEQ ID NO:11)	reverse	
	 			reverse	
	-	gtaaatctcaaaatgttgggttaata	ng (SEQ ID NO:12)	forward	
1	•	ctaactcttcttctatcattactc	(SEQ ID NO:13)	reverse	
				LOVELSE	
	4.	- gottattgtgtgtgtgtg	(SEQ ID NO:14)	forward	
	-	ggacaaccaacatgcaaacag	(SEQ ID NO:15)	reverse	
	41				
15			(SEQ ID NO:16)	foward	
		agcagttttgtccttccaagtg	(SEQ ID NO:17)	reverse	
	5	gtgttttgtatat			
		gtgttttgtaatctgatcagatctc	(SEQ ID NO:18)	forward	
		gcagtatttctggtccagatc	(SEQ ID NO:19)	reverse	
20	6	ggtgcacatagatcatgaaatgg			
		taagctgaaataggtgccttaag	(SEQ ID NO:20)	forward	
		y - y - y - y - y - y - y - y - y - y -	(SEQ ID NO:21)	reverse	
	7A	tttattccatttctgtcccctac	/070 =		
		aaggeteagttaggtetgtate	(SEQ ID NO:22)	forward	
25		ggoodgeace	(SEQ ID NO:23)	reverse	
	7B	caggagttttaacgtcttcagac	/GTG TT AT		
į		gactcagaaatgtctaccatttc	(SEQ ID NO:24)	forward	
			(SEQ ID NO:25)	reverse	
ı	8	tgtctccacttcttcaaagtgc	/CEO TO VICE		
-		Caaaatgtacctgagaa	(SEQ ID NO:26)	forward	
30			(SEQ ID NO:27)	reverse	
	: 1				

		Primer Sequen		
	9	cacctccaagtttcatggac	(SEQ ID NO:28)	forward
		caaggtatgcacgtgtcatttc	(SEQ ID NO:29)	reverse
5	10	gaatgtgtattgggatttagtaaac	(SEQ ID NO:30)	forward
		ttgagaattaactattcctgtcaac	(SEQ ID NO:31)	reverse
	11	ccatcctggacttttactcc	(SEQ ID NO:32)	forward
L	-	ctttcctgcaactgtgtttattg	(SEQ ID NO:33)	reverse

10

Each primer pair above can be used to generate an amplified sequence of about 300 base pairs. This is especially desirable in instances in which sequence analysis is performed using SSCP gel electrophoretic procedures, in that such procedures work optimally using sequences of about 300 base pairs or less.

Additional HKNG1 nucleic acid sequences which are preferred for such amplification-related analyses are those which will detect the presence of an HKNG1 polymorphism which differs from the HKNG1 sequence depicted in FIG. 3A-3R. polymorphisms include ones which represent mutations associated with an HKNG1-mediated neuropsychiatric disorder, such as BAD or schizophrenia. For example, a single base mutation identified in the Example presented in Section 8, below, results in a mutant HKNG1 gene product comprising substitution of a lysine residue for the wild-type glutamic 25 acid residue at amino acid position 202 of the HKNG1 amino acid sequence shown in FIG. 1A-1B (SEQ ID NO:2) or amino acid position 184 of the HKNG1 amino acid sequence shown in FIG. 2A-2B (SEQ ID NO:4). Such polymorphisms also include ones that correlate with the presence of a HKNG1-mediated neuropsychiatric disorder, e.g., polymorphisms that are in linkage disequilibrium with disorder-causing HKNG1 alleles.

Amplification techniques are well known to those of skill in the art and can routinely be utilized in connection with primers such as those listed in Table 1 above. In general, hybridization conditions can be as follows. In general, for probes between 14 and 70 nucleotides in length the melting temperature TM is calculated using the formula: Tm(°C)=81.5+16.6(log[monovalent cations])+0.41(% G+C)-(500/N) where N is the length of the probe. If the hybridization is carried out in a solution containing formamide, the melting temperature is calculated using the equation Tm(°C)=81.5+16.6(log[monovalent cations])+0.41(% G+C)-(0.61% formamide)-(500/N) where N is the length of the probe.

Additionally, well-known genotyping techniques can be performed to identify individuals carrying *HKNG1* gene mutations. Such techniques include, for example, the use of restriction fragment length polymorphisms (RFLPs), which involve sequence variations in one of the recognition sites for the specific restriction enzyme used.

Further, improved methods for analyzing DNA polymorphisms, which can be utilized for the identification of HKNG1 gene-specific mutations, have been described that capitalize on the presence of variable numbers of short, tandemly repeated DNA sequences between the restriction enzyme sites. For example, Weber (U.S. Pat. No. 5,075,217) describes a DNA marker based on length polymorphisms in blocks of (dC-dA)n-(dG-dT)n short tandem repeats. The average separation of (dC-dA)n-(dG-dT)n blocks is estimated to be 30,000-60,000 bp. Markers that are so closely spaced exhibit a high frequency co-inheritance, and are extremely useful in the identification of genetic mutations, such as, for example, mutations within the HKNG1 gene, and the diagnosis of diseases and disorders related to HKNG1 mutations.

Also, Caskey et al. (U.S. Pat.No. 5,364,759) describe a DNA profiling assay for detecting short tri and tetra

nucleotide repeat sequences. The process includes extracting the DNA of interest, such as the *HKNG1* gene, amplifying the extracted DNA, and labelling the repeat sequences to form a genotypic map of the individual's DNA.

Other methods well known in the art may be used to identify single nucleotide polymorphisms (SNPs), including biallelic SNPs or biallelic markers which have two alleles, both of which are present at a fairly high frequency in a population. Conventional techniques for detecting SNPs include, e.g., conventional dot blot analysis, single stranded conformational polymorphism (SSCP) analysis (see,

- stranded conformational polymorphism (SSCP) analysis (see, e.g., Orita et al., 1989, Proc. Natl. Acad. Sci. USA 86:2766-2770), denaturing gradient gel electrophoresis (DGGE), heterodulex analysis, mismatch cleavage detection, and other routine techniques well known in the art (see, e.g., Sheffield et al., 1989, Proc. Natl. Acad. Sci. 86:5855-5892;
- 15 Grompe, 1993, Nature Genetics 5:111-117). Alternative, preferred methods of detecting and mapping SNPs involve microsequencing techniques wherein an SNP site in a target DNA is detecting by a single nucleotide primer extension reaction (see, e.g., Goelet et al., PCT Publication No.
- WO92/15712; Mundy, U.S. Patent No. 4,656,127; Vary and Diamond, U.S. Patent No. 4,851,331; Cohen et al., PCT Publication No. WO91/02087; Chee et al., PCT Publication No. WO95/11995; Landegren et al., 1988, Science 241:1077-1080; Nicerson et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:8923-8927; Pastinen et al.,1997, Genome Res. 7:606-614; Pastinen et al., 1996, Clin. Chem. 42:1391-1397; Jalanko et al., 1992, Clin. Chem. 38:39-43; Shumaker et al., 1996, Hum. Mutation 7:346-354; Caskey et al., PCT Publication No. WO 95/00669).

The level of HKNG1 gene expression can also be assayed.

For example, RNA from a cell type or tissue known, or suspected, to express the HKNG1 gene, such as brain, may be

isolated and tested utilizing hybridization or PCR techniques such as are described, above. The isolated cells can be derived from cell culture or from a patient. The analysis of cells taken from culture may be a necessary step in the assessment of cells to be used as part of a cell-based gene therapy technique or, alternatively, to test the effect of compounds on the expression of the HKNG1 gene. Such analyses may reveal both quantitative and qualitative aspects of the expression pattern of the HKNG1 gene, including activation or inactivation of HKNG1 gene expression.

In one embodiment of such a detection scheme, a cDNA 10 molecule is synthesized from an RNA molecule of interest (e.g., by reverse transcription of the RNA molecule into cDNA). A sequence within the cDNA is then used as the template for a nucleic acid amplification reaction, such as a PCR amplification reaction, or the like. The nucleic acid 15 reagents used as synthesis initiation reagents (e.g., primers) in the reverse transcription and nucleic acid amplification steps of this method are chosen from among the HKNG1 gene nucleic acid reagents described in Section 5.1. The preferred lengths of such nucleic acid reagents are at least 9-30 nucleotides. For detection of the amplified product, the nucleic acid amplification may be performed using radioactively or non-radioactively labeled nucleotides. Alternatively, enough amplified product may be made such that the product may be visualized by standard ethidium bromide staining or by utilizing any other suitable nucleic acid staining method. 25

Additionally, it is possible to perform such HKNG1 gene expression assays "in situ", i.e., directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents such as those described in Section 5.1 may be used as probes and/or primers for such in situ procedures (see, for example, Nuovo,

G.J., 1992, "PCR In Situ Hybridization: Protocols And Applications", Raven Press, NY).

Alternatively, if a sufficient quantity of the appropriate cells can be obtained, standard Northern analysis can be performed to determine the level of mRNA expression of the HKNG1 gene.

5.7. <u>DETECTION OF HKNG1 GENE PRODUCTS</u>

Antibodies directed against unimpaired or mutant HKNG1 gene products or conserved variants or peptide fragments 10 thereof, which are discussed, above, in Section 5.3, may also be used as diagnostics and prognostics for a HKNG1-mediated disorder, e.g., a neuropsychiatric disorder such as BAD or schizophrenia. Such methods may be used to detect abnormalities in the level of HKNG1 gene product synthesis or expression, or abnormalities in the structure, temporal 15 expression, and/or physical location of HKNG1 gene product. The antibodies and immunoassay methods described herein have, for example, important in vitro applications in assessing the efficacy of treatments for HKNG1-mediated disorders. Antibodies, or fragments of antibodies, such as those 20 described below, may be used to screen potentially therapeutic compounds in vitro to determine their effects on HKNG1 gene expression and HKNG1 gene product production. compounds that have beneficial effects on a HKNG1-mediated disorder, such as BAD or schizophrenia.

In vitro immunoassays may also be used, for example, to assess the efficacy of cell-based gene therapy for a HKNG1-mediated disorder, e.g., a neuropsychiatric disorder, such as BAD schizophrenia. Antibodies directed against HKNG1 gene products may be used in vitro to determine, for example, the level of HKNG1 gene expression achieved in cells genetically engineered to produce HKNG1 g ne product. In the case of

intracellular HKNG1 gene products, such an assessment is done, preferably, using cell lysates or extracts. Such analysis will allow for a determination of the number of transformed cells necessary to achieve therapeutic efficacy in vivo, as well as optimization of the gene replacement protocol.

The tissue or cell type to be analyzed will generally include those that are known, or suspected, to express the HKNG1 gene. The protein isolation methods employed herein may, for example, be such as those described in Harlow and Lane (1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). The isolated cells can be derived from cell culture or from a patient. The analysis of cells taken from culture may be a necessary step in the assessment of cells to be used as part of a cell-based gene therapy technique or, alternatively, to test the effect of compounds on the expression of the HKNG1 gene.

Preferred diagnostic methods for the detection of HKNG1 gene products, conserved variants or peptide fragments thereof, may involve, for example, immunoassays wherein the HKNG1 gene products or conserved variants or peptide fragments are detected by their interaction with an anti-HKNG1 gene product-specific antibody.

For example, antibodies, or fragments of antibodies, such as those described, above, in Section 5.3, may be used to quantitatively or qualitatively detect the presence of **HKNG1** gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody (see below, this Section) coupled with light microscopic, flow cytometric, or fluorimetric detection. Such techniques are especially preferred for **HKNG1** gene**

30 products that are expressed on the cell surface.

The antibodies (or fragments thereof) useful in the present invention may, additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for in situ detection of HKNG1 gene products, conserved variants or peptide fragments thereof. In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody that binds to an rTs polypeptide. The antibody (or fragment) is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the HKNG1 gene product, conserved variants or peptide fragments, but also its distribution in the examined tissue. Using the present invention, those of ordinary skill will readily recognize that any of a wide variety of histological methods (such as staining procedures) can be 15 modified in order to achieve in situ detection of a HKNG1 gene product.

Immunoassays for HKNG1 gene products, conserved variants, or peptide fragments thereof will typically comprise incubating a sample, such as a biological fluid, a tissue extract, freshly harvested cells, or lysates of cells in the presence of a detectably labeled antibody capable of identifying HKNG1 gene product, conserved variants or peptide fragments thereof, and detecting the bound antibody by any of a number of techniques well-known in the art.

The biological sample may be brought in contact with and immobilized onto a solid phase support or carrier, such as nitrocellulose, that is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled *HKNG1* gene product specific antibody. The solid phase support may then be washed with the buffer a second time to remove unbound antibody. The amount of bound

label on the solid support may then be detected by conventional means.

By "solid phase support or carrier" is intended any support capable of binding an antigen or an antibody. Wellknown supports or carriers include glass, polystyrene, 5 polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material may have virtually any possible structural configuration so long as the coupled 10 molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads. Those skilled 15 in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

One of the ways in which the HKNG1 gene product-specific antibody can be detectably labeled is by linking the same to an enzyme, such as for use in an enzyme immunoassay (EIA) (Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)", 1978, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville, MD); Voller, A. et al., 1978, J. Clin. Pathol. 31:507-520; Butler, J.E., 1981, Meth. Enzymol. 73:482-523; Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, FL,; Ishikawa, E. et al., (eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo). The enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorimetric or 30 by visual means. Enzymes that can be used to detectably label the antibody include, but are not limited to, malate

dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, α-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, β-galactosidase, ribonuclease, urease, catalase, 5 glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect HKNG1 gene products through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986). The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycocrythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

The antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediamin tetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

15 5.8. SCREENING ASSAYS FOR COMPOUNDS THAT MODULATE HKNG1 GENE ACTIVITY

The following assays are designed to identify compounds that bind to a HKNG1 gene product, compounds that bind to proteins, or portions of proteins that interact with a HKNG1 gene product, compounds that modulate, e.g., interfere with, the interaction of a HKNG1 gene product with proteins and compounds that modulate the activity of the HKNG1 gene (i.e., modulate the level of HKNG1 gene expression and/or modulate the level of HKNG1 gene product activity). Assays may additionally be utilized that identify compounds that bind to HKNG1 gene regulatory sequences (e.g., promoter sequences; see e.g., Platt, 1994, J. Biol. Chem. 269, 28558-28562), and that can modulate the level of HKNG1 gene expression. Such compounds may include, but are not limited to, small organic molecules, such as ones that are able to cross the blood-30 brain barrier, gain to and/or entry into an appropriate cell

and affect expression of the HKNG1 gene or some other gene involved in a HKNG1 regulatory pathway.

Methods for the identification of such proteins are described, below, in Section 5.8.2. Such proteins may be involved in the control and/or regulation of mood. Further, among these compounds are compounds that affect the level of HKNG1 gene expression and/or HKNG1 gene product activity and that can be used in the therapeutic treatment of HKNG1-mediated disorders, e.g., neuropsychiatric disorders such as BAD and schizophrenia as described, below, in Section 5.9.

Compounds may include, but are not limited to, peptides 10 such as, for example, soluble peptides, including but not limited to, Ig-tailed fusion peptides, and members of random peptide libraries; (see, e.g., Lam, et al., 1991, Nature 354:82-84; Houghten, et al., 1991, Nature 354:84-86), and combinatorial chemistry-derived molecular library made of Dand/or L- configuration amino acids, phosphopeptides (including, but not limited to members of random or partially degenerate, directed phosphopeptide libraries; see, e.g., Songyang, et al., 1993, Cell 72:767-778), antibodies (including, but not limited to, polyclonal, monoclonal, 20 humanized, anti-idiotypic, chimeric or single chain antibodies, and FAb, F(ab')2 and FAb expression library fragments, and epitope-binding fragments thereof), and small organic or inorganic molecules.

Such compounds may further comprise compounds, in particular drugs or members of classes or families of drugs, known to ameliorate the symptoms of a HKNG1-mediated disorder, e.g., a neuropsychiatric disorder such as BAD or schizophrenia.

Such compounds include families of antidepressants such as lithium salts, carbamazepine, valproic acid, lysergic acid diethylamide (LSD), p-chlorophenylalanine, p-

³⁰ propyldopacetamide dithiocarbamate derivatives e.g., FLA 63;

anti-anxiety drugs, e.g., diazepam; monoamine oxidase (MAO) inhibitors, e.g., iproniazid, clorgyline, phenelzine and isocarboxazid; biogenic amine uptake blockers, e.g., tricyclic antidepressants such as desipramine, imipramine and amitriptyline; serotonin reuptake inhibitors e.g., fluoxetine; antipsychotic drugs such as phenothiazine derivatives (e.g., chlorpromazine (thorazine) and trifluopromazine)), butyrophenones (e.g., haloperidol (Haldol)), thioxanthene derivatives (e.g., chlorprothixene), and dibenzodiazepines (e.g., clozapine); benzodiazepines; dopaminergic agonists and antagonists e.g., L-DOPA, cocaine, amphetamine, c-methyl-tyrosine, reserpine, tetrabenazine, benzotropine, pargyline; noradrenergic agonists and antagonists e.g., clonidine, phenoxybenzamine, phentolamine, tropolone.

15 Compounds identified via assays such as those described herein may be useful, for example, in elaborating the biological function of the HKNG1 gene product and for ameliorating HKNG1-mediated neuropsychiatric disorders, such as BAD and schizophrenia. Assays for testing the effectiveness of compounds identified by, for example, techniques such as those described in Sections 5.8.1 - 5.8.3, are discussed, below, in Section 5.8.4.

5.8.1. IN VITRO SCREENING ASSAYS FOR COMPOUNDS THAT BIND TO THE HKNG1 GENE PRODUCT

In vitro systems may be designed to identify compounds capable of binding the HKNG1 gene products of the invention. Compounds identified may be useful, for example, in modulating the activity of unimpaired and/or mutant HKNG1 gene products, may be useful in elaborating the biological function of the HKNG1 gene product, may be utilized in screens for identifying compounds that disrupt normal HKNG1

gene product interactions, or may in themselves disrupt such interactions.

The principle of the assays used to identify compounds that bind to the HKNG1 gene product involves preparing a reaction mixture of the HKNG1 gene product and the test compound under conditions and for a time sufficient to allow the two components to interact and bind, thus forming a complex that can be removed and/or detected in the reaction mixture. These assays can be conducted in a variety of ways. For example, one method to conduct such an assay involves anchoring a HKNG1 gene product or a test substance onto a solid support and detecting HKNG1 gene product/test compound complexes formed on the solid support at the end of the reaction. In one embodiment of such a method, the HKNG1 gene product may be anchored onto a solid support, and the test compound, which is not anchored, may be labeled, either 15 directly or indirectly.

In practice, microtiter plates are conveniently utilized as the solid support. The anchored component may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished by simply coating the solid surface with a solution of the protein and drying.

20 Alternatively, an immobilized antibody, preferably a monoclonal antibody, specific for the protein to be immobilized may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the non-immobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the previously non-immobilized component is pre-labeled, the detection of label immobilized on the

surface indicates that complexes were formed. Where the previously non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the previously non-immobilized component (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody).

Alternatively, a reaction can be conducted in a liquid phase, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for HKNG1 gene product or the test compound to anchor any complexes formed in solution, and a labeled antibody specific for the other component of the possible complex to detect anchored complexes.

5.8.2. ASSAYS FOR PROTEINS THAT INTERACT WITH HKNG1 GENE PRODUCTS

Any method suitable for detecting protein-protein interactions may be employed for identifying *HKNG1* gene product-protein interactions.

15

Among the traditional methods that may be employed are co-immunoprecipitation, cross-linking and co-purification 20 through gradients or chromatographic columns. Utilizing procedures such as these allows for the identification of proteins, including intracellular proteins, that interact with HKNG1 gene products. Once isolated, such a protein can be identified and can be used in conjunction with standard techniques, to identify proteins it interacts with. For example, at least a portion of the amino acid sequence of a protein that interacts with the HKNG1 gene product can be ascertained using techniques well known to those of skill in the art, such as via the Edman degradation technique (see, e.g., Creighton, 1983, "Proteins: Structures and Molecular Principles," W.H. Freeman & Co., N.Y., pp.34-49). The amino acid sequence obtained may be used as a guide for the

generation of oligonucleotide mixtures that can be used to screen for gene sequences encoding such proteins. Screening made be accomplished, for example, by standard hybridization or PCR techniques. Techniques for the generation of oligonucleotide mixtures and the screening are well-known.

[See, e.g., Ausubel, supra, and 1990, "PCR Protocols: A Guide to Methods and Applications," Innis, et al., eds. Academic Press, Inc., New York).

Additionally, methods may be employed that result in the simultaneous identification of genes that encode a protein which interacts with a *HKNG1* gene product. These methods include, for example, probing expression libraries with labeled *HKNG1* gene product, using *HKNG1* gene product in a manner similar to the well known technique of antibody probing of \(\lambda\geta\)11 libraries.

One method that detects protein interactions in vivo,

15 the two-hybrid system, is described in detail for
illustration only and not by way of limitation. One version
of this system has been described (Chien, et al., 1991, Proc.
Natl. Acad. Sci. USA, 88:9578-9582) and is commercially
available from Clontech (Palo Alto, CA).

constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the HKNG1 gene product and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into this plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid and the cDNA library are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., HBS or lacz) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene: the DNA-binding domain hybrid cannot because it does not provide activation

function and the activation domain hybrid cannot because it cannot localize to the activator's binding sites.

Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product.

The two-hybrid system or related methodologies may be used to screen activation domain libraries for proteins that interact with the "bait" gene product. By way of example, and not by way of limitation, HKNG1 gene products may be used as the bait gene product. Total genomic or cDNA sequences are fused to the DNA encoding an activation domain. library and a plasmid encoding a hybrid of a bait HKNG1 gene product fused to the DNA-binding domain are co-transformed into a yeast reporter strain, and the resulting transformants are screened for those that express the reporter gene. For example, a bait HKNG1 gene sequence, such as the open reading frame of the HKNG1 gene, can be cloned into a vector such that it is translationally fused to the DNA encoding the DNAbinding domain of the GAL4 protein. These colonies are purified and the library plasmids responsible for reporter gene expression are isolated. DNA sequencing is then used to 20 identify the proteins encoded by the library plasmids.

A cDNA library of the cell line from which proteins that interact with bait HKNG1 gene product are to be detected can be made using methods routinely practiced in the art. According to the particular system described herein, for example, the cDNA fragments can be inserted into a vector such that they are translationally fused to the transcriptional activation domain of GAL4. Such a library can be co-transformed along with the bait HKNG1 gene-GAL4 fusion plasmid into a yeast strain that contains a lac2 gene driven by a promoter that contains GAL4 activation sequence.

A cDNA encoded protein, fused to a GAL4 transcriptional activation domain that interacts with bait HKNG1 gene product

will reconstitute an active GAL4 protein and thereby drive expression of the HIS3 gene. Colonies that express HIS3 can be detected by their growth on petri dishes containing semisolid agar based media lacking histidine. The cDNA can then be purified from these strains, and used to produce and isolate the bait HKNG1 gene product-interacting protein using techniques routinely practiced in the art.

5.8.3. ASSAYS FOR COMPOUNDS THAT INTERFERE WITH OR POTENTIATE HKNG1 GENE PRODUCT MACROMOLECULE INTERACTION

The HKNG1 gene products may, in vivo, interact with one or more macromolecules, including intracellular macromolecules, such as proteins. Such macromolecules may include, but are not limited to, nucleic acid molecules and those proteins identified via methods such as those described, above, in Sections 5.8.1 - 5.8.2. For purposes of this discussion, the macromolecules are referred to herein as "binding partners". Compounds that disrupt HKNG1 gene product binding to a binding partner may be useful in regulating the activity of the HKNG1 gene product, especially mutant HKNG1 gene products. Such compounds may include, but are not limited to molecules such as peptides, and the like, as described, for example, in Section 5.8.2 above.

The basic principle of an assay system used to identify compounds that interfere with or potentiate the interaction between the HKNG1 gene product and a binding partner or partners involves preparing a reaction mixture containing the HKNG1 gene product and the binding partner under conditions and for a time sufficient to allow the two to interact and bind, thus forming a complex. In order to test a compound for inhibitory activity, the reaction mixture is prepared in the presence and absence of the test compound. The test compound may be initially included in the reaction mixture, or may be added at a time subsequent to the addition of HKNG1

gene product and its binding partner. Control reaction mixtures are incubated without the test compound or with a compound which is known not to block complex formation. formation of any complexes between the HKNG1 gene product and the binding partner is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the HKNG1 gene product and the binding partner. Additionally, complex formation within reaction mixtures containing the test 10 compound and normal HKNG1 gene product may also be compared to complex formation within reaction mixtures containing the test compound and a mutant HKNG1 gene product. comparison may be important in those cases wherein it is desirable to identify compounds that disrupt interactions of mutant but not normal HKNG1 gene product.

15 In order to test a compound for potentiating activity, the reaction mixture is prepared in the presence and absence of the test compound. The test compound may be initially included in the reaction mixture, or may be added at a time subsequent to the addition of HKNG1 gene product and its binding partner. Control reaction mixtures are incubated without the test compound or with a compound which is known not to block complex formation. The formation of any complexes between the HKNG1 gene product and the binding partner is then detected. Increased formation of a complex in the reaction mixture containing the test compound, but not in the control reaction, indicates that the compound enhances and therefore potentiates the interaction of the HKNG1 gene product and the binding partner. Additionally, complex formation within reaction mixtures containing the test compound and normal HKNG1 gene product may also be compared to complex formation within reaction mixtures containing the 30 test compound and a mutant HKNG1 gene product. comparison may be important in those cases wherein it is

desirable to identify compounds that enhance interactions of mutant but not normal HKNG1 gene product.

In alternative embodiments, the above assays may be performed using a reaction mixture containing the HKNG1 gene product, a binding partner, and a third which disrupts or enhances HKNG1 gene product binding to the binding partner. The reaction mixture is prepared and incubated in the presence and absence of the test compound, as described above, and the formation of any complexes between the HKNG1 gene product and the binding partner is detected. In this embodiment, the formation of a complex in the reaction mixture containing the test compound, but not in the control reaction, indicates that the test compound interferes with the ability of the second compound to disrupt HKNG1 gene product binding to its binding partner.

The assays for compounds that interfere with or 15 potentiate the interaction of the HKNG1 gene products and binding partners can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring either the HKNG1 gene product or the binding partner onto a solid support and detecting complexes formed on the solid support at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with or potentiate the interaction between the HKNG1 gene 25 products and the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance; i.e., by adding the test substance to the reaction mixture prior to or simultaneously with the HKNG1 gene product and interactive intracellular binding partner. Alternatively, test compounds that disrupt preformed complexes, e.g., compounds with higher binding constants that

displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are described briefly below.

In a heterogeneous assay system, either the HKNG1 gene product or the interactive binding partner, is anchored onto a solid surface, while the non-anchored species is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored species may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the HKNG1 gene product or binding partner and drying. Alternatively, an immobilized antibody specific for the species to be anchored may be used to anchor the species to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the partner of the immobilized species is exposed to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the non-immobilized species is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody

25 specific for the initially non-immobilized species (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds that inhibit complex formation or that disrupt preformed complexes can be detected.

Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the

reaction products separated from unreacted components, and complexes detected; .g., using an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution, and a labeled antibody specific for the other partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds that inhibit complex formation or that disrupt preformed complexes can be identified.

In an alternate embodiment of the invention, a homogeneous assay can be used. In this approach, a preformed complex of the HKNG1 gene product and the interactive binding partner is prepared in which either the HKNG1 gene product or its binding partners is labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Patent No. 4,109,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the species from the preformed complex will result in the generation of a signal above background. In this way, test substances that disrupt HKNG1 gene product/binding partner interaction can be identified.

techniques can be employed using peptide fragments that correspond to the binding domains of the HKNG1 product and/or the binding partner (in cases where the binding partner is a protein), in place of one or both of the full length proteins. Any number of methods routinely practiced in the art can be used to identify and isolate the binding sites.

These methods include, but are not limited to, mutagenesis of the gene encoding one of the proteins and screening for disruption of binding in a co-immunoprecipitation assay. Compensating mutations in the gene encoding the second species in the complex can then be selected. Sequence analysis of the genes encoding the respective proteins will reveal the mutations that correspond to the region of the

protein involved in interactive binding. Alternatively, one protein can be anchored to a solid surface using methods described in this Section above, and allowed to interact with and bind to its labeled binding partner, which has been treated with a proteolytic enzyme, such as trypsin. After washing, a short, labeled peptide comprising the binding domain may remain associated with the solid material, which can be isolated and identified by amino acid sequencing. Also, once the gene coding for the segments is engineered to express peptide fragments of the protein, it can then be tested for binding activity and purified or synthesized.

- For example, and not by way of limitation, a HKNG1 gene product can be anchored to a solid material as described, above, in this Section by making a GST-HKNG1 fusion protein and allowing it to bind to glutathione agarose beads. The binding partner can be labeled with a radioactive isotope, such as 35, and cleaved with a proteolytic enzyme such as trypsin. Cleavage products can then be added to the anchored GST-HKNG1 fusion protein and allowed to bind. After washing away unbound peptides, labeled bound material, representing the binding partner binding domain, can be eluted, purified, and analyzed for amino acid sequence by well-known methods.

 Peptides so identified can be produced synthetically or produced using recombinant DNA technology.
 - 5.8.4. ASSAYS FOR IDENTIFICATION OF COMPOUNDS THAT AMELIORATE A HKNG1-MEDIATED DISORDER

Compounds, including but not limited to binding

25 compounds identified via assay techniques such as those described, above, in Sections 5.8.1 - 5.8.4, can be tested for the ability to ameliorate symptoms of a HKNG1-mediated disorder, e.g., a CNS-related disorder, such as a neuropsychiatric disorder, including schizophrenia and bipolar aff ctive (mood) disorders, including severe bipolar affective (mood) disorder (BP-I), bipolar affective (mood)

disorder with hypomania and major depression (BP-II), and myopia disorders

It should be noted that the assays described herein can identify compounds that affect *HKNG1* activity by either affecting *HKNG1* gene expression or by affecting the level of *HKNG1* gene product activity. For example, compounds may be identified that are involved in another step in the pathway in which the *HKNG1* gene and/or *HKNG1* gene product is involved and, by affecting this same pathway may modulate the effect of HKNG1 on the development of a *HKNG1*-mediated disorder.

10 Such compounds can be used, <u>e.g.</u>, as part of a therapeutic method for the treatment of the disorder.

Described below are cell-based and animal model-based assays for the identification of compounds exhibiting such an ability to ameliorate symptoms of a *HKNG1*-mediated disorder, e.g., neuropsychiatric disorder, such as BAD or schizophrenia.

First, cell-based systems can be used to identify compounds that may act to ameliorate symptoms of a HKNG1-mediated disorder. Such cell systems can include, for example, recombinant or non-recombinant cell, such as cell lines, that express the HKNG1 gene.

In utilizing such cell systems, cells that express HKNG1 may be exposed to a compound suspected of exhibiting an ability to ameliorate symptoms of a HKNG1-mediated disorder, e.g., a neuropsychiatric disorder, such as BAD or schizophrenia, at a sufficient concentration and for a sufficient time to elicit such an amelioration of such symptoms in the exposed cells. After exposure, the cells can be assayed to measure alterations in the expression of the HKNG1 gene, e.g., by assaying cell lysates for HKNG1 mRNA transcripts (e.g., by Northern analysis) or for HKNG1 gene

expression of the HKNG1 gene are good candidates as therapeutics.

In addition, animal-based systems or models for a HKNG1mediated disorder, e.g., neuropsychiatric disorder, for s example, transgenic mice containing a human or altered form of HKNG1 gene, may be used to identify compounds capable of ameliorating symptoms of the disorder. Such animal models may be used as test substrates for the identification of drugs, pharmaceuticals, therapies and interventions. example, animal models may be exposed to a compound suspected 10 of exhibiting an ability to ameliorate symptoms, at a sufficient concentration and for a sufficient time to elicit such an amelioration of symptoms of a HKNG1-mediated disorder. The response of the animals to the exposure may be monitored by assessing the reversal of the symptoms of the disorder.

With regard to intervention, any treatments that reverse 15 any aspect of symptoms of a HKNG1-mediated disorder, should be considered as candidates for human therapeutic intervention in such disorders. Dosages of test agents may be determined by deriving dose-response curves, as discussed in Section 5.10.1, below.

20

5.9. COMPOUNDS AND METHODS FOR THE TREATMENT OF HKNG1-MEDIATED DISORDERS

Described below are methods and compositions whereby a HKNG1-mediated disorder described herein, e.g., a HKNG1mediated neuropsychiatric disorder, such as BAD or schizophrenia, may be treated. For example, such methods can comprise administering compounds which modulate the expression of a mammalian HKNG1 gene and/or the synthesis or activity of a mammalian HKNG1 gene product (e.g., a recombinant HKNG1 gene product) so symptoms of the disorder 30 are ameliorated.

Alternatively, in those instances whereby the HKNG1mediated disorders result from HKNG1 gene mutations, such
methods can comprise supplying the subject with a nucleic
acid molecule encoding an unimpaired HKNG1 gene product such
that an unimpaired HKNG1 gene product is expressed and
symptoms of the disorder are ameliorated.

In another embodiment of methods for the treatment of HKNG1-mediated disorders resulting from HKNG1 gene mutations, such methods can comprise supplying the subject with a cell comprising a nucleic acid molecule that encodes an unimpaired HKNG1 gene product such that the cell expresses the unimpaired HKNG1 gene product and symptoms of the disorder are ameliorated.

In cases in which a loss of normal HKNG1 gene product function results in the development of a HKNG1-mediated

15 disorder an increase in HKNG1 gene product activity would facilitate progress towards an asymptomatic state in individuals exhibiting a deficient level of HKNG1 gene expression and/or HKNG1 gene product activity. Methods for enhancing the expression or synthesis of HKNG1 can include, for example, methods such as those described below, in Section 5.9.2.

Alternatively, symptoms of HKNG1-mediated neuropsychiatric disorders, may be ameliorated by administering a compound that decreases the level of HKNG1 gene expression and/or HKNG1 gene product activity. Methods for inhibiting or reducing the level of HKNG1 gene product synthesis or expression can include, for example, methods such as those described in Section 5.9.1.

25

In one embodiment of treatment methods, the compounds administered comprise compounds, in particular drugs, which ameliorate the symptoms of a disorder described herein as a neuropsychiatric dis rder, such as BAD or schizophrenia.

Such compounds include drugs within the families of antidepressants such as lithium salts, carbamazepine, valproic acid, lysergic acid diethylamide (LSD), pchlorophenylalanine, p-propyldopacetamide dithiocarbamate derivatives e.g., FLA 63; anti-anxiety drugs, e.g., diazepam; monoamine oxidase (MAO) inhibitors, e.g., iproniazid, clorgyline, phenelzine and isocarboxazid; biogenic amine uptake blockers, e.g., tricyclic antidepressants such as desipramine, imipramine and amitriptyline; serotonin reuptake inhibitors e.g., fluoxetine; antipsychotic drugs such as phenothiazine derivatives (e.g., chlorpromazine (thorazine) and trifluopromazine)), butyrophenones (e.g., haloperidol (Haldol)), thioxanthene derivatives (e.g., chlorprothixene), and dibenzodiazepines (e.g., clozapine); benzodiazepines; dopaminergic agonists and antagonists e.g., L-DOPA, cocaine, amphetamine, α -methyl-tyrosine, reserpine, tetrabenazine, benzotropine, pargyline; noradrenergic agonists and antagonists e.g., clonidine, phenoxybenzamine, phentolamine, tropolone.

In another embodiment, symptoms of a disorder described herein, e.g., a HKNG1-mediated neuropsychiatric disorder such as BAD or schizophrenia, may be ameliorated by HKNG1 protein therapy methods, e.g., decreasing or increasing the level and/or of HKNG1-activity using the HKNG1 protein, fusion protein, and peptide sequences described in Section 5.2, above, or by the administration of proteins or protein fragments (e.g., peptides) which interact with an HKNG1 gene or gene product and thereby inhibit or potentiate its activity.

Such protein therapy may include, for example, the administration of a functional HKNG1 protein or fragments of an HKNG1 protein (.g., peptides) which represent functional HKNG1 domains.

In one embodiment, HKNG1 fragments or peptides representing a functional HKNG1 binding domain are administered to an individual such that the peptides bind to an HKNG1 binding protein, e.g., an HKNG1 receptor. Such fragments or peptides may serve to inhibit HKNG1 activity in an individual by competing with, and thereby inhibiting, binding of HKNG1 to the binding protein, thereby ameliorating symptoms of a disorder described herein. Alternatively, such fragments or peptides may enhance HKNG1 activity in an individual by mimicking the function of HKNG1 in vivo, thereby ameliorating the symptoms of a disorder described herein.

The proteins and peptides which may be used in the methods of the invention include synthetic (e.g., recombinant or chemically synthesized) proteins and peptides, as well as naturally occurring proteins and peptides. The proteins and 15 peptides may have both naturally occurring and non-naturally occuring amino acid residues (e.g., D-amino acid residues) and/or one or more non-peptide bonds (e.g., imino, ester, hydrazide, semicarbazide, and azo bonds). The proteins or peptides may also contain additional chemical groups (i.e., functional groups) present at the amino and/or carboxy termini, such that, for example, the stability, bioavailability, and/or inhibitory activity of the peptide is enhanced. Exemplary functional groups include hydrophobic groups (e.g. carbobenzoxyl, dansyl, and t-butyloxycarbonyl, groups), an acetyl group, a 9-fluorenylmethoxy-carbonyl 25 group, and macromolecular carrier groups (e.g., lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates) including peptide groups.

5.9.1. INHIBITORY ANTISENSE, RIBOZYME AND TRIPLE HELIX APPROACHES

In another embodiment, symptoms of HKNG1-mediated neuropsychiatric disorders may be ameliorated by decreasing

the level of HKNG1 gene expression and/or HKNG1 gene product activity by using HKNG1 gene sequences in conjunction with well-known antisense, gene "knock-out," ribozyme and/or triple helix methods to decrease the level of HKNG1 gene

5 expression. Among the compounds that may exhibit the ability to modulate the activity, expression or synthesis of the HKNG1 gene, including the ability to ameliorate the symptoms of a HKNG1-mediated neuropsychiatric disorder, such as BAD or schizophrenia, are antisense, ribozyme, and triple helix molecules. Such molecules may be designed to reduce or inhibit either unimpaired, or if appropriate, mutant target gene activity. Techniques for the production and use of such molecules are well known to those of skill in the art.

Antisense RNA and DNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense approaches involve the design of oligonucleotides that are complementary to a target gene mRNA. The antisense oligonucleotides will bind to the complementary target gene mRNA transcripts and prevent translation. Absolute complementarily, although preferred, is not required.

referred to herein, means a sequence having sufficient complementarily to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarily and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

In one embodiment, oligonucleotides complementary to non-coding regions of the HKNG1 gene could be used in an antisense approach to inhibit translation of endogenous HKNG1 mRNA. Antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.

Regardless of the choice of target sequence, it is 10 preferred that in vitro studies are first performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonuclectides. It is also preferred that these studies 15 compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonuclectide is of approximately the same length as the 20 test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.

The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989,

Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre, et al., 1987, Proc. Natl. Acad. Sci. U.S.A. 84:648-652; PCT
Publication No. W088/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication No.

W089/10134, published April 25, 1988), hybridization-triggered cleavage agents (see, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil,

- 5-carboxymethylaminomethyl-2-thiouridine,
 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine,
 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine,
 2-methyladenine, 2-methylguanine, 3-methylcytosine,
 5-methylcytosine, N6-adenine, 7-methylguanine,
- 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-
- 5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v),
 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl)
 uracil, (acp3)w, and 2,6-diaminopurine.

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier, et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue, et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue, et al., 1987, FEBS Lett. 215:327-330).

Oligonucleotides of the invention may be synthesized by

15 standard methods known in the art, e.g., by use of an
automated DNA synthesizer (such as are commercially available
from Biosearch, Applied Biosystems, etc.). As examples,
phosphorothicate oligonucleotides may be synthesized by the
method of Stein, et al. (1988, Nucl. Acids Res. 16:3209),
methylphosphonate oligonucleotides can be prepared by use of
controlled pore glass polymer supports (Sarin, et al., 1988,
Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

While antisense nucleotides complementary to the target gene coding region sequence could be used, those complementary to the transcribed, untranslated region are most preferred.

Antisense molecules should be delivered to cells that express the target gene in vivo. A number of methods have been developed for delivering antisense DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to 30 target the desired cells (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens

expressed on the target cell surface) can be administered systemically.

A preferred approach to achieve intracellular concentrations of the antisense sufficient to suppress translation of endogenous mRNAs utilizes a recombinant DNA 5 construct in which the antisense oligonucleotide is placed under the control of a strong pol III or pol II promoter. The use of such a construct to transfect target cells in the patient will result in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous target gene transcripts and 10 thereby prevent translation of the target gene mRNA. For example, a vector can be introduced e.g., such that it is taken up by a cell and directs the transcription of an antisense RNA. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in mammalian cells. Expression of the sequence encoding the antisense RNA can be by any promoter known in the art to act in mammalian, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include but are not limited to: the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter 25 (Wagner, et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster, et al., 1982, Nature 296:39-42), etc. Any type of plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA construct which can be introduced _ directly into the tissue site. Alternatively, viral vectors 30 can be used that selectively infect the desired tissue, in

which case administration may be accomplished by another route (e.g., systemically).

Ribozyme molecules designed to catalytically cleave target gene mRNA transcripts can also be used to prevent translation of target gene mRNA and, therefore, expression of target gene product. (See, e.g., PCT International Publication W090/11364, published October 4, 1990; Sarver, et al., 1990, Science 247, 1222-1225).

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. (For a review, see 10 Rossi, 1994, Current Biology 4:469-471). The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event. The composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA, and must include the 15 well known catalytic sequence responsible for mRNA cleavage. For this sequence, see, e.g., U.S. Patent No. 5,093,246, which is incorporated herein by reference in its entirety.

While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target gene mRNAs, the use of hammerhead ribozymes is preferred.

- Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Myers, 1995,
- Molecular Biology and Biotechnology: A Comprehensive Desk Reference, VCH Publishers, New York, (see especially Figure 4, page 833) and in Haseloff and Gerlach, 1988, Nature, 334:585-591, which is incorporated herein by reference in its entirety.
- Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the

target gene mRNA, i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

The ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one that occurs naturally in *Tetrahymena thermophila* (known as the IVS, or L-19 IVS RNA) and that has been extensively described by Thomas Cech and collaborators (Zaug, et al., 1984, Science, 224:574-578; Zaug and Cech, 1986, Science, 231:470-475; Zaug, et al., 1986, Nature, 324:429-

- 10 433; published International patent application No. WO 88/04300 by University Patents Inc.; Been and Cech, 1986, Cell, 47:207-216). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes which target eight base-pair active site target and the second sequence.
- 15 target eight base-pair active site sequences that are present in the target gene.

As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells that express the target gene in vivo. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous target gene messages and inhibit translation. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

Endogenous target gene expression can also be reduced by inactivating or "knocking out" the target gene or its promoter using targeted homologous recombination (e.g., see Smithies, et al., 1985, Nature 317:230-234; Thomas and Capecchi, 1987, Cell 51:503-512; Thompson, et al., 1989, Cell 5:313-321; each of which is incorporated by reference herein

in its entirety). For example, a mutant, non-functional target gene (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous target gene (either the coding regions or regulatory regions of the target gene) can be used, with or without a selectable marker and/or a 5 negative selectable marker, to transfect cells that express the target gene in vivo. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the target gene. Such approaches are particularly suited in the agricultural field where modifications to ES (embryonic stem) cells can be used to generate animal offspring with an inactive target gene (e.g., see Thomas and Capecchi, 1987 and Thompson, 1989, supra). However this approach can be adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in vivo using appropriate viral vectors.

Alternatively, endogenous target gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the target gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the target gene in target cells in the body. (See generally, Helene, 1991, Anticancer Drug Des., 6(6):569-584; Helene, et al., 1992, Ann. N.Y. Acad. Sci., 660:27-36; and Maher, 1992, Bioassays 14(12):807-815).

Nucleic acid molecules to be used in triplex helix formation for the inhibition of transcription should be single stranded and composed of deoxynucleotides. The base composition of these oligonucleotides must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC' triplets across the three associated strands of the resulting triple helix. The

pyrimidine-rich molecules provide base complementarily to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.

Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

- In instances wherein the antisense, ribozyme, and/or triple helix molecules described herein are utilized to inhibit mutant gene expression, it is possible that the technique may so efficiently reduce or inhibit the transcription (triple helix) and/or translation (antisense, ribozyme) of mRNA produced by normal target gene alleles that
- the possibility may arise wherein the concentration of normal target gene product present may be lower than is necessary for a normal phenotype. In such cases, to ensure that substantially normal levels of target gene activity are maintained, therefore, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target
- gene activity may, be introduced into cells via gene therapy methods such as those described, below, in Section 5.9.2 that do not contain sequences susceptible to whatever antisense, ribozyme, or triple helix treatments are being utilized. Alternatively, in instances whereby the target gene encodes an extracellular protein, it may be preferable to co-
- administer normal target gene protein in order to maintain the requisite level of target gene activity.

Anti-sense RNA and DNA, ribozyme, and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of DNA and RNA molecules, as discussed above. These include techniques for chemically synthesizing oligodeoxyribonucleotides and

oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into

15

cell lines.

5.9.2. GENE REPLACEMENT THERAPY

HKNG1 gene nucleic acid sequences, described above in Section 5.1, can be utilized for transferring recombinant HKNG1 nucleic acid sequences to cells and expressing said sequences in recipient cells. Such techniques can be used, for example, in marking cells or for the treatment of a HKNG1-mediated neuropsychiatric disorder. Such treatment can be in the form of gene replacement therapy. Specifically, one or more copies of a normal HKNG1 gene or a portion of the HKNG1 gene that directs the production of a HKNG1 gene

- 25 product exhibiting normal HRNG1 gene function, may be inserted into the appropriate cells within a patient, using vectors that include, but are not limited to adenovirus, adeno-associated virus, and retrovirus vectors, in addition to other particles that introduce DNA into cells, such as liposomes.
- B cause the HKNG1 gene is expressed in the brain, such g ne replacement therapy techniques should be capable of

delivering HKNG1 gene sequences to these cell types within patients. Thus, in one embodiment, techniques that are well known to those of skill in the art (see, e.g., PCT Publication No. W089/10134, published April 25, 1988) can be used to enable HKNG1 gene sequences to cross the blood-brain barrier readily and to deliver the sequences to cells in the brain. With respect to delivery that is capable of crossing the blood-brain barrier, viral vectors such as, for example, those described above, are preferable.

In another embodiment, techniques for delivery involve 10 direct administration, e.g., by stereotactic delivery of such HKNG1 gene sequences to the site of the cells in which the HKNG1 gene sequences are to be expressed.

Additional methods that may be utilized to increase the overall level of HKNG1 gene expression and/or HKNG1 gene product activity include using targeted homologous recombination methods, discussed in Section 5.2, above, to modify the expression characteristics of an endogenous HKNG1 gene in a cell or microorganism by inserting a heterologous DNA regulatory element such that the inserted regulatory element is operatively linked with the endogenous HKNG1 gene in question. Targeted homologous recombination can thus be used to activate transcription of an endogenous HKNG1 gene that is "transcriptionally silent", i.e., is not normally expressed or is normally expressed at very low levels, or to enhance the expression of an endogenous HKNG1 gene that is normally expressed.

Further, the overall level of *HKNG1* gene expression and/or *HKNG1* gene product activity may be increased by the introduction of appropriate *HKNG1*-expressing cells, preferably autologous cells, into a patient at positions and in numbers that are sufficient to ameliorate the symptoms of

30

a *HKNG1*-mediated neuropsychiatric disorder. Such cells may be either recombinant or non-recombinant.

Among the cells that can be administered to increase the overall level of HKNG1 gene expression in a patient are 5 normal cells, preferably brain cells, that express the HKNG1 Alternatively, cells, preferably autologous cells, can be engineered to express HKNG1 gene sequences, and may then be introduced into a patient in positions appropriate for the amelioration of the symptoms of a HKNG1-mediated neuropsychiatric disorder. Alternately, cells that express 10 an unimpaired HKNG1 gene and that are from a MHC matched individual can be utilized, and may include, for example, brain cells. The expression of the HKNG1 gene sequences is controlled by the appropriate gene regulatory sequences to allow such expression in the necessary cell types. Such gene regulatory sequences are well known to the skilled artisan. Such cell-based gene therapy techniques are well known to those skilled in the art, see, e.g., Anderson, U.S. Patent No. 5,399,349.

When the cells to be administered are non-autologous cells, they can be administered using well known techniques that prevent a host immune response against the introduced cells from developing. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Additionally, compounds, such as those identified via techniques such as those described, above, in Section 5.8, that are capable of modulating HKNGI gene product activity can be administered using standard techniques that are well known to those of skill in the art. In instances in which the compounds to be administered are to involve an interaction with brain cells, the administration techniques

should include well known ones that allow for a crossing of the blood-brain barrier.

5.10. PHARMACEUTICAL PREPARATIONS AND METHODS OF ADMINISTRATION

5 The compounds that are determined to affect HKNG1 gene expression or gene product activity can be administered to a patient at therapeutically effective doses to treat or ameliorate a HKNG1-mediated disorder or modulate a HKNG1related process described herein. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of such a disorder.

5.10.1. EFFECTIVE DOSE

Toxicity and therapeutic efficacy of such compounds can 15 be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD_{50} (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as 20 the ratio LD_{50}/ED_{50} . Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and 25 animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED_{50} with little or no toxicity. The dosage may vary within this range dep nding upon the dosage form 30 employed and the route of administration utilized.

therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

As defined herein, a therapeutically effective amount of antibody, protein, or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.

The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments. In a preferred example, a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.

5.10.2. F RMULATIONS AND USE

Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.

Thus, the compounds and their physiologically acceptable salts and solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral rectal or topical administration.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, 15 microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or 25 hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer 30 salts, flavoring, coloring and sweetening agents as

appropriate.

Pr parations for oral administration may be suitably formulated to give controlled release of the active compound.

For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

- For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane,
- dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multidose containers, with an added preservative. The

- 20 compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In certain embodiments, it may be desirable to
- administer the pharmaceutical compositions of the invention
locally to the ar a in need of treatment. This may be

achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one embodiment, administration can be by direct injection at the site (or former site) of a malignant tumor or neoplastic or preneoplastic tissue.

For topical application, the compounds may be combined with a carrier so that an effective dosage is delivered, based on the desired activity

A topical formulation for treatment of some of the eye disorders discussed infra (e.g., myopia) consists of an effective amount of the compounds in a ophthalmologically acceptable excipient such as buffered saline, mineral oil, vegetable oils such as corn or arachis oil, petroleum jelly, Miglyol 182, alcohol solutions, or liposomes or liposome-like products. Any of these compositions may also include preservatives, antioxidants, antibiotics, immunosuppressants, and other biologically or pharmaceutically effective agents which do not exert a detrimental effect on the compound.

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The compositions may, if desired, be presented in a pack or dispenser device that may contain one or more unit dosage forms containing the active ingredient. The pack may for

example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

5

6. EXAMPLE: THE HKNG1 GENE OF CHROMOSOME 18 IS
ABSOCIATED WITH THE NEUROPSYCHIATRIC DISORDER
BAD

In the Example presented in this Section, studies are described that define a narrow interval of approximately 27 kb on the short arm of human chromosome 18 which is associated with the neuropsychiatric disorder BAD. The interval is demonstrated to lie within the gene referred to herein as the HKNG1 gene.

6.1. MATERIALS AND METHODS

6.1.1. LINKAGE DISEQUILIBRIUM

Linkage disequilibrium (LD) studies were performed using DNA from a population sample of neuropsychiatric disorder (BP-I) patients. The population sample and LD techniques were as described in Escamilla et al., 1996, Am J. Med. Genet. 67:244-253. The present LD study took advantage of the additional population sample collection and the additional physical markers identified via the physical mapping techniques described below.

6.1.2. YEAST ARTIFICIAL CHROMOSOME (YAC) MAPPING

For physical mapping, yeast artificial chromosomes (YACs) containing human sequences were mapped to the region being analyzed based on publicly available maps (Cohen et al., 1993, C.R. Acad. Sci. 316:1484-1488). The YACs were then ordered and contig reconstructed by performing standard short tag sequence (STS)-content mapping with microsatellite markers and non-polymorphic STSs available from databases that surround the genetically defined candidate region.

6.1.3. BACTERIAL ARTIFICIAL CHROMOSOME (BAC) MAPPING

used to screen a human BAC library (Research Genetics, Huntsville, AL). The ends of the BACs were cloned or directly sequenced. The end sequences were used to amplify the next overlapping BACs. From each BAC, additional microsatellites were identified. Specifically, random sheared libraries were prepared from overlapping BACs within the defined genetic interval. BAC DNA was sheared with a nebulizer (CIS-US Inc., Bedford, MA). Fragments in the size range of 600 to 1,000 bp were utilized for the sublibrary production. Microsatellite sequences from the sublibraries were identified by corresponding microsatellite probes. Sequences around such repeats were obtained to enable development of PCR primers for genomic DNA.

6.1.4. RADIATION HYBRID (RH) MAPPING

Standard RH mapping techniques were applied to a Stanford G3 RH mapping panel (Research Genetics, Huntsville, AL) to order all microsatellite markers and non-polymorphic STSs in the region being analyzed.

6.1.5. SAMPLE SEQUENCING

Random sheared libraries were made from all the BACs within the defined genetic region. Approximately 9,000 subclones within the approximately 340 kb region containing the BAD interval were sequenced with vector primers in order to achieve an 8-fold sequence coverage of the region. All sequences were processed through an automated sequence analysis pipeline that assessed quality, removed vector sequences and masked repetitive sequences. The resulting sequences were then compared to public DNA and protein databases using BLAST algorithms (Altschul, et al., 1990, J. Molec. Biol., 215:403-410).

15

20

All sequences were contiged using Sequencher 3.0 (Gene Code Corp.) and PHRED and PHRAP (Phill Green, Washington University) into a single DNA fragment of 340 kb.

6.2. RESULTS

Genetic regions involved in bipolar affective disorder (BAD) human genes had previously been reported to map to portions of the long (18q) and short (18p) arms of human chromosome 18 (Freimer et al., 1996, Neuropsychiat. Genet. 67:254-263; Freimer et al., 1996, Nature Genetics 12:436-441; and McInnis et al., Proc. Natl. Acad. Scie. U.S.A. 93:13060-13065).

High resolution physical mapping using YAC, BAC and RH techniques. In order to provide the precise order of genetic markers necessary for linkage and LD mapping, and to guide new microsatellite marker development for finer mapping, a high resolution physical map of the 18p candidate region was developed using YAC, BAC and RH techniques.

For such physical mapping, first, YACs were mapped to the chromosome 18 region being analyzed. Using the mapped YAC contig as a framework, the region from publicly available markers spanning the 18p region were also mapped and contiged with BACs. Sublibraries from the contiged BACs were constructed, from which microsatellite marker sequences were identified and sequenced.

To ensure development of an accurate physical map, the radiation hybrid (RH) mapping technique was independently applied to the region being analyzed. RH was used to order all microsatellite markers and non-polymorphic STSs in the region. Thus, the high resolution physical map ultimately constructed was obtained using data from RH mapping and STS-content mapping.

Linkage Disequilibrium. Prior to attempting to identify gene sequences, studies were performed to further narrow the neuropsychiatric disorder region. Specifically, a linkage disequilibrium (LD) analysis was performed using p pulation

samples and techniques as described in Section 6.1, above, which took advantage of the additional physical markers identified via the physical mapping techniques described below.

Initial LD analysis narrowed the interval which

5 associates with BAD disorders to a 340 kb region of 18p. BAC clones within this newly identified neuropsychiatric disorder region were analyzed to identify specific genes within the region. A combination of sample sequencing, cDNA selection and transcription mapping analyses were used to arrange sequences into tentative transcription units, that is,

10 tentatively delineating the coding sequences of genes within this genomic region of interest.

Subsequent LD analyses further narrowed the BAD region of 18p to a narrow interval of approximately 27 kb. This was accomplished by identifying the maximum haplotype shared among affected individuals using additional markers.

Statistical analysis of the entire 18p candidate region indicated that the 27 kb haplotype was significantly elevated in frequency among affected Costa Rican individuals (LOD = 2.2; p = 0.0005).

This newly identified narrow interval was found to map completely within one of the transcription units identified as described above. The gene corresponding to this transcription unit is referred to herein as the *HKNG1* gene. Thus, the results of the mapping analyses presented in this Section demonstrate that the *HKNG1* gene of human chromosome 18 is associated the neuropsychiatric disorder BAD.

Analysis of the BAD interval indicated that the 27 kb BAD disease-associated chromosomal interval identified in the linkage disequilibrium studies is contained within an approximately 60 kb genomic region which contains a sequence referred to as GS4642 or rod photoreceptor protein (RPP) gene (Shimizu-Matsumoto, A. et al., 1997, Invest. Ophthalmol. Vis. Sci. 38:2576-2585).

7. EXAMPLE: SEQUENCE AND CHARACTERIZATION OF THE HKNG1 GENE

As demonstrated in the Example presented in Section 6, above, the HKNG1 gene is involved in the neuropsychiatric disorder BAD. The results presented in this Section further characterize the HKNG1 gene and gene product. In particular, isolation of additional cDNA clones and analyses of genomic and cDNA sequences have revealed both the full length HKNG1 amino acid sequence and the HKNG1 genomic intron/exon structure. In particular, the nucleotide and predicted amino 10 acid sequence of the HKNG1 gene identified by these analyses disclose new HKNG1 exon sequences, including new HKNG1 protein coding sequence, discovered herein. Further, the expression of HKNG1 in human tissue, especially neural tissue, is characterized by Northern and in situ hybridization analysis. The results presented herein are consistent with the HKNG1 gene being a gene which mediates neuropsychiatric disorders such as BAD.

7.1. MATERIALS AND METHODS

EKNG1 cDNA Clone Isolation: Hybridization of a human
brain and kidney cDNA library was performed according to standard techniques and identified a full-length HKNG1 cDNA clone. In addition, a HKNG1 cDNA derived from a splice variant was isolated, as described in Section 7.2, below.

Northern Blot Analysis: Standard RNA isolation techniques and Northern blotting procedures were followed. The HKNG1 probe utilized corresponds to the complementary sequence of base pairs 1367 to 1578 of the full length HKNG1 cDNA sequence (SEQ ID NO. 1). Clontech multiple tissue northern blots were probed. In particular, Clontech human I, human II, human III, human fetal II, human brain II and human 30 brain III blots were utilized for this study.

In Situ Hybridization Analysis: Standard in situ hybridization techniques were utilized. The HKNG1 probe utilized corresponds to the complementary sequence of base pairs 910 to 1422 of the full length HKNG1 cDNA sequence (SEQ ID NO. 1). Brains for in situ hybridization analysis were obtained from McLean Hospital (The Harvard Brain Tissue Resource Center, Belmont, MA 02178).

Other techniques: The remaining techniques described in Section 7.2, below, were performed according to standard techniques or as discussed in Section 6.1, above.

10

7.2. RESULTS

7.2.1. HKNG1 Nucleotide and Amino Acid Sequence

A human brain cDNA library was screened and a fulllength clone of HKNG1 was isolated from this library, as
described above. By comparing the isolated cDNA sequence to
sequences in the public databases, a clone was identified
which had been previously identified as GS4642, or rod
photoreceptor protein (RPP) gene (GenBank Accession No.
D63813; Shimizu-Matsumoto, A. et al., 1997, Invest.
Ophthalmol. Vis. Sci. 38:2576-2585). Although ShimizuMatsumoto et al. refer to GS4642 as a full-length cDNA
sequence, the isolated HKNG1 cDNA extends approximately 200
bp beyond the 5'end of the identified GS4642 clone.

Importantly, the HKNG1 clone isolated herein reveals that, contrary to the amino acid sequence described in Shimizu-Matsumoto et al., the full length HKNG1 amino acid sequence contains an additional 29 amino acid residues N-terminal to what had previously been identified as the full-length RPP (SEQ ID NO:64). The full-length HKNG1 nucleotide sequence (SEQ ID NO: 1) and the derived amino acid sequence of the full-length HKNG1 polypeptide (SEQ ID NO: 2) encoded by this sequence are depicted in FIG. 1A-1B.

The full-length HKNG1 polypeptide was found to contain two clusterin similarity domains: clusterin similarity

domain 1 which corresponds to amino acid residues 134 to amino acid residue 160, and clusterin similarity domain 2 which corresponds to amino acid residue 334 to amino acid residue 362. Such cluterin domains are typically characterized by five shared cysteine residues. In clusterin domain 1, these shared cysteine residues correspond to Cys 134, Cys145, Cys148, Cys158, and Cys 160. The shared cysteine residues in clusterin domain 2 correspond to the residues Cys334, Cys344, Cys351, Cys354, and Cys362.

Full-length HKNG1 cDNA sequence was compared with the genomic contig completed by random sheared library sequencing. Exon-intron boundaries were identified manually by aligning the two sequences in Sequencher 3.0 and by observing the conservative splicing sites where the alignments ended. This sequence comparison revealed that the additional cDNA sequence discovered through isolation of the full-length HKNG1 cDNA clone actually belongs within three HKNG1 exons.

Prior to the isolation and analysis of HKNG1 cDNA described herein, nine exons were predicted to be present within the corresponding genomic sequence. As discovered herein, however, the HKNG1 gene, in contrast, actually contains 13 exons, with the new cDNA containing sequence which corresponds to a new exon 1, exon 2 and a 5' extension of what had previously been designated exon 1. Splice variants, discussed in Section 9 below, also exist which comprise additional exons 2' and 2". The genomic sequence and intron/exon structure of the HKNG1 gene is shown in FIG. 3A-3R.

The breakdown of exons was confirmed by the perfect alignment of the cDNA sequence with the genomic sequence and by observation of expected splicing sites flanking each of the additional, newly discovered exons.

#KNG1 nucleotide sequence was used to search databases

of partial sequences of cDNA clones. This search identified

a partial cDNA sequence derived from IMAGE clone R61493 having similarity to the human HKNG1 sequence. IMAGE clone R61493 was obtained and consists of a cDNA insert, the Lafmid BA vector backbone, and DNA originating from the oligo dT primer and Hind III adaptors used in cDNA library construction. The Lafmid BA vector nucleotide sequence is available at the URL http://image.rzpd.de/lafmida_seq.html and descriptions of the oligo dT primer and Hind III adaptors are available in the GENBANK record corresponding to accession number R61493.

The sequence of the cDNA insert revealed that the insert was derived from an alternatively spliced HKNG1 mRNA variant, referred to herein as HKNG1-V1. In particular, this HKNG1 variant is deleted for exon 3 of the full length 13 exon HKNG1 sequence. The nucleotide sequence of this HKNG1 variant (SEQ ID NO:3) is depicted in FIG. 2A-B. The amino acid sequence encoded by the HKNG1 variant (SEQ ID NO:3) is also shown in FIG. 2A-B.

Preferably therefore, the nucleic acids of the invention include nucleic acid molecules comprising the nucleotide sequence of HKNG1-V1 or encoding the polypeptide encoded by HKNG1-V1 in the absence of heterologous sequences (e.g., cloning vector sequences such as Lafmid BA; oligo dT primer, and Hind III adaptor).

7.2.2. HKNG1 GENE EXPRESSION

frontal lobe, temporal, putamen, amygdala, caudatte nucleus, corpus callosum, hippocampus, whole brain, substantia nigra, subthalamic nucleus and thalamus). Once again, this is in direct contrast to previous Northern analysis of the RPP gene, which reported that expression was limited to the retina (Shimizu-Matsumoto, A. et al., 1997, Invest. Ophthalmal. Vis. Sci. 38:2576-2585).

Analysis of HKNG1 the tissue distribution was extended through an in situ hybridization analysis. In particular, the HKNG1 mRNA distribution in normal human brain tissue was analyzed. The results of this analysis are depicted in FIG. 4. As summarized in FIG. 4, HKNG1 is expressed throughout the brain, with transcripts being localized to neuronal and grey matter cell types.

Finally, expression of *HKNG1* in recombinant cells demonstrates that the *HKNG1* gene encodes a secreted polypeptide(s).

8. A MISSENSE MUTATION WITHIN HKNG1 CORRELATES WITH BAD

the BAD disorder maps to an interval completely contained within the HKNG1 gene of the short arm of human chromosome 18. The Example presented in Section 7, above, characterizes the HKNG1 gene and gene products. The results presented in this Example further these studies by identifying a mutation within the coding region of a HKNG1 allele of an individual exhibiting a BAD disorder.

Thus, the results described herein demonstrate a positive correlation between a mutation which encodes a non-wild-type HKNG1 polypeptide and the appearance of the neuropsychiatric disorder BAD. The results presented herein, coupled with the r sults presented in Section 6, above,

identify HKNG1 as a gene which mediates neuropsychiatric disorders such as BAD.

8.1. MATERIALS AND METHODS

Pairs of PCR primers that flank each exon (see TABLE 1, above) were made and used to PCR amplify genomic DNA isolated from BAD affected and normal individuals. The amplified PCR products were analyzed using SSCP gel electrophoresis or by DNA sequencing. The DNA sequences and SSCP patterns of the affected and controls were compared and variations were further analyzed.

8.2. RESULTS

In order to more definitively show that the *HKNG1* gene mediates neuropsychiatric disorders, in particular BAD, a study was conducted to explore whether a *HKNG1* mutation that correlates with BAD could be identified.

First, exon scanning was performed on all eleven exons of the *HKNG1* gene using chromosomes isolated from three affected and one normal individual from the Costa Rican population utilized for the LD studies discussed in Section 6, above. No obvious mutations correlating with BAD were found through this analysis.

Next, HKNG1 intron and 3'-untranslated regions within the 27 kb BAD interval were scanned by sscp and/or sequencing for all variants among three affected and one normal individual from the same population. Approximately 60 variants were identified after scanning approximately two-thirds of the 27 kb genomic interval, which can be genotyped and analyzed by haplotype sharing and LD analyses, as described above, in order to identify ones which correlate with bipolar affective disorder. Fig. 5 lists selected variants identified through this study.

Exon scanning using chromosomal DNA from the general population of Costa Rica, however, successfully identified a

HKNG1 missense mutation in an individual affected with BAD who did not share the common diseased haplotype identified by the LD analysis provided above. In particular, exon scanning was done on exons 1-11 of HKNG1 nucleic acid from 129

5 individuals from the general population affected with BAD.

This analysis identified a point mutation in the coding region of exon 7 not seen in non-bipolar affected disorder individuals. Specifically, the guanine corresponding to nucleotide residue 604 of SEQ ID NO:1 (or nucleotide residue 550 of SEQ ID NO:3) had mutated to an adenine. HKNG1 protein

10 expressed from this mutated *HKNG1* allele comprises the substitution of a lysine residue at amino acid residue 202 of SEQ ID NO:2 (or amino acid residue 184 of SEQ ID NO:4) in place of the wild-type glutamic acid residue.

wild-type sequence, and which, therefore, represent HKNG1
alleles, were identified through sequence analysis of the
HKNG1 alleles within a collection of schizophrenic patients
of mixed ethnicity from the United States and within a BAD
collection from the San Francisco area. These variants are
depicted in FIGS. 5A and 5B, respectively. Statistical
analysis indicated that there were significantly more
variants in the collection of schizophrenic patients of mixed
ethnicity from the United States and the San Francisco BAD
and Costa Rican BAD samples than in a collection of 242
controls (p < 0.05).

25 9. EXAMPLE: IDENTIFICATION OF ADDITIONAL <u>EKNG1 SPLICE VARIANTS</u>

This example describes the isolation and identification of three novel splice variants of the human gene HKNG1. First, a novel HKNG1 clone was isolated from a human retinal cDNA library. This clone, which completely lacks exon 7 of the full length HKNG1 cDNA sequence, is referred to herein as HKNG1 A7. Because the deletion of exon 7 from the full length

HKNG1 sequence leads to an immediate frameshift, the clone HKNG1 17 encodes a truncated form of the HKNG1 protein. The HKNG1 17 cDNA sequence (SEQ ID NO:65) is depicted in FIG. 18 along with the predicted amino acid sequence (SEQ ID NO:66) of the HKNG1 17 gene product it encodes.

Two other novel splice variants, referred to herein as HKNG1-V2 and HKNG1-V3, were isolated and identified by using RT-PCR analysis to isolate additional HKNG1 sequences. The following primer sequences were used:

5'-AGTTGCGTCCCTCTCTGTTG-3'

(SEQ ID NO:67)

5'-GCTTCATGTTCCCGCTGTTA-3'

(SEQ ID NO:68)

These splice variants included additional exons between exons 2 and 3 of the full length HKNG1 sequence (SEQ ID NO:1).

The RT-PCR product derived from HKNG1-V2 includes a novel exon referred to as "exon 2' ", whereas the RT-PCR product derived from HKNG1-V3 includes a novel exon referred to as "exon 2" ". The sequence of these novel exons are provided in Table 2 below. The nucleotide sequence of the HKNG1-V2 RT-PCR product containing novel exon 2' is depicted in FIG. 6A (SEQ ID NO:36), whereas the HKNG1-V3 RT-PCR product containing novel exon 2" is depicted in FIG. 6B (SEQ ID NO:37). Both exon 2' and 2" are part of the 5'-untranslated region of the HKNG1 cDNA.

TABLE 2

25

10

Exon 2' 5'-TTCCCTCCCTTTGGAACGCAGCGTGGGCACC
TGCAACGCAGAGACCACTGTATCCCCGGTGCAGA
ATGTAATGAGTGCCTGATACATTTGCCGAATAAA
CTATTCCAAGGGTTGAACTTGCTGGAAGCAAGAG
AAGCACTATTCTGG-3'

(SEQ ID NO:34)

Exon 2" 5'-ATGGAGTCTTGCTCTCGTTGCCCAGACTGGA (SEQ DI NO:35)
GTGCACTGCTGCGATCTCAGCTCACTGCAACCTC
TACCTCCCAGGTTCAAGCGATTCTCCTGCCTCAG
CCTCTCGAGTGGCTGGGACTATAG-3'

5

10. EXAMPLE: IDENTIFICATION OF HKNG1 ORTHOLOGS

This example describes the isolation and characterization of genes in other mammalian species which are orthologs to human *HKNG1*. Specifically, both guinea pig and bovine *HKNG1* sequences are described.

10

20

10.1. GUINEA PIG HKNG1 ORTHOLOGS

A guinea pig HKNG1 ortholog, referred to as gphkng1815, was isolated using RT-PCR. The cDNA sequence (SEQ ID NO:38) and predicted amino acid sequence (SEQ ID NO:39) are depicted in FIG. 7. Both the nucleotide and the predicted amino acid sequence of gphkng 1815 are similar to the human HKNG1 nucleotide and amino acid sequences. Specifically, the program ALIGNv2.0 identified a 71.5% nucleotide sequence identity and a 62.8% amino acid sequence identity using standard parameters (Scoring Matrix: PAM120; GAP penalties: -12/-4).

Like the human HKNG1 polypeptide, the predicted gphkng 1815 polypeptide also contains two clusterin similarity domains, which correspond to amino acid residues 105 to 131 (clusterin domain 1), and amino acid residues 305-333 (clusterin domain 2), respectively. Both of these domains contain the five conserved cysteine residues typically associated with clusterin domains. Specifically, these conserved cysteines correspond to Cys105, Cys116, Cys119, Cys124 and Cys131 (clusterin similarity domain 1) and Cys305, Cys315, Cys322, Cys325, and Cys333 (clusterin similarity domain 1) of the gphkng 1815 polypeptide sequence.

Three allelic variants of gphkng 1815, referred to as gphkng 7b, gphkng 7c, and gphkng 7d, respectively, w re also

identified by RT-PCR. Their nucleotide [SEQ ID NO:40 (gphkng 7b), SEQ ID NO:42 (gphkng 7c), and SEQ ID NO:44 (gphkng 7d)] and amino acid [SEQ ID NO:41 (gphkng 7b), SEQ ID NO:43 (gphkng 7c), and SEQ ID NO:45 (gphkng 7d)] sequences are depicted in FIGS. 8 through 10, respectively. Each of these three allelic variants contains a deletion within a region homologous to exon 7 of human HKNG1. The allelic variants retain the open reading frame of the gene, however, each allelic variant contains a deletion, relative to gphkng 1815, of 16, 92, and 93 amino acid residues, respectively.

An alignment of the predicted amino acid sequences of gphkng1815, gphkng 7b, gphkng 7c, and gphkng7d is shown in FIG. 14. An alignment of the predicted amino acid sequences of the human HKNG1 gene product, the guinea pig HKNG1 ortholog gphkng1815, and the bovine HKNG1 ortholog described in Subsection 10.2 below are shown in FIG. 16.

10.2. BOVINE HKNG1 ORTHOLOGS

Bovine orthologs of HKNG1 were also cloned by screening a cDNA library made from pooled bovine retinal tissue using a nucleotide sequence that corresponded to the complementary 20 sequence of base pairs 910-1422 of the full length human HKNG1 cDNA sequence (SEQ ID NO:1) as a probe. independent bovine cDNA species, referred to as bhkng1, bhkng2, and bhkng3 (SEQ ID NOS: 46 to 48, respectively) were isolated. Each of these allelic variants contains several single nucleotide polymorphisms (SNPs). None of the SNPs 25 results in an altered predicted amino acid sequence. all three bovine cDNAs encodes the same predicted amino acid sequence (SEQ ID NO:49). These SNPs apparently reflect the natural allelic variation of the pooled cDNA library from which the sequences were isolated. Each of the three bovine - HKNG1 allelic variants is depict d in FIGS. 11 to 13, 30 respectively, along with the predicted amino acid sequence which they encode.

The predicted bovine HKNG1 polypeptide also contains two clusterin similarity domains, corresponding to amino acid residues 105-131 and amino acid residues 304-332, respectively, of SEQ ID NO:49. Clusterin domain 1 contains the five shared cysteine amino acid residues typically associated with this type of domain: Cys105, Cys116, Cys119, Cys124, and Cys131. Clusterin domain 2 of the bovine HKNG1 polypeptide contains four conserved cystein residues: Cys314, Cys321, Cys324, and Cys332.

11. EXPRESSION OF HUMAN HKNG1 GENE PRODUCT

Described in this example is the construction of expression vectors and the successful expression of recombinant human HKNG1 sequences. Expression vectors are described both for native HKNG1 and for various HKNG1 fusion proteins.

15 11.1. EXPRESSION OF HUMAN HKNG1: FLAG

A human HKNG1 flag epitope-tagged protein (HKNG1:flag) vector was constructed by PCR followed by ligation into an vector for expression in HEK 293T cells. The full open-reading frame of the full length HKNG1 cDNA sequence (SEQ ID NO:5) was PCR amplified using the following primer sequences:

- 5' primer 5'-TTTTCTGAATTCGCCACCATGAAAATTA (SEQ ID NO:52)
 AAGCAGAGAAAAACG=3'
- 3' primer 5'-TTTTTGTCGACTTATCACTTGTCGTCGTC (SEQ ID NO:53)
 GTCCTTGTAGTCCCAGGTTTTAAAATGTTCCT
 TAAAATGC-3'

the 5' primer incorporating a Kozak sequence upstream of and 25 including the upstream initiator methionine and the 3'primer including the nucleotide sequence encoding the flag epitope DYKDDDDK (SEQ ID NO:50) followed by a termination codon.

The sequenced DNA construct was transiently transfected into HEK 293T cells in 150 mm plates using Lipofectamine (GIBCO/BRL) according to the manufacturer's protocol.

30 Seventy-two hours post-transfection, the serum-free conditioned medium (OptiMEM, GIBCO/BRL) was harvested and

spun and the remaining monolayer of cells was lysed using 2 mL of lysis buffer [50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.05% SDS with "Complete" protease cocktail (Boehringer Mannheim) diluted according to manufacturers instructions]. Insoluble material was pelleted before preparation of SDS-PAGE samples.

Conditioned medium was electroblotted onto a PVDF membrane (Novex) after separation by SDS-PAGE on 4-20% gradient gels and probed with an M2 anti-flag polyclonal antibody (1:500, Sigma) followed by horseradish peroxidase (HRP) conjugated sheep anti-mouse antibody (1:5000,

- Amersham), developed using chemiluminescent reagents (Renaissance, Dupont), and exposed to autoradiography film (Biomax MR2 film, Kodak). Flag immunoreactivity appeared as a doublet of bands that migrated by SDS-PAGE between 60 and 95 kDa as determined by Multimark molecular weight markers (Novex), demonstrating secretion of the HKNG1:Flag protein.
- The double band indicates at least two different species with different mobilities on SDS-PAGE. Such doublets most commonly arise with posttranslational modifications to the protein, such as glycosylation and/or proteolysis. Treatment of the PNGase F (Oxford Glycosciences) according to the manufacturer's directions resulted in a single band of
- increased mobility, indicating that two original bands contain N-linked carbohydrate. When run in the absence of a reducing agent, the relative mobility of the immunoreactive bands was greater than 100 kDa relative to the same markers, indicating that HKNG1:flag fusion proteins may be a disulfide linked dimer or higher oligomer.

25

30

11.2. EXPRESSION OF HUMAN HKNG1-V1:FLAG

A human HKNG1-V1 flag epitope-tagged protein (HKNG1-V1:flag) vector was also constructed by PCR followed by ligation into an expression vector, pMET stop. The full length open-reading frame of the HKNG1-V1 cDNA sequence (SEQ

ID NO:6) was PCR amplified using the following primer sequences:

- 5' primer 5'-TTTTTCTGAATTCACCATGAGGACCTGGG (SEQ ID NO:54)
 ACTACAGTAAC-3'
- 3' primer 5'-TTTTTGTCGACTTATCACTTGTCGTCGTC
 5 GTCCTTGTAGTCCCAGGTTTTAAAATGTTCCT
 TAAAATGC-3'

The 5' primer incorporated a Kozak sequence upstream of and including the upstream initiator methionine. The 3' primer included the nucleotide sequence encoding the flag epitope DYKDDDDK (SEQ ID NO:50) followed by a termination codon.

The sequenced DNA construct was transiently transfected into HEK 293T cells in 150 mm plates using Lipofectamine (GIBCO/BRL) according to the manufacturer's protocol. Seventy-two hours post-transfection, the serum-free conditioned medium (OptiMEM, GIBCO/BRL) was harvested and spun and the remaining monolayer of cells was lysed using 2 mL of lysis buffer [50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.05% SDS with "Complete" protease cocktail (Boehringer Mannheim) diluted according to manufacturers instructions]. Insoluble material was pelleted before preparation of SDS-PAGE samples.

membrane (Novex) after separation by SDS-PAGE on 4-20% gradient gels and probed with an M2 anti-flag polyclonal antibody (1:500, Sigma) followed by horseradish peroxidase (HRP) conjugated sheep anti-mouse antibody (1:5000, Amersham), developed using chemiluminescent reagents (Renaissance, Dupont), and exposed to autoradiography film (Biomax MR2 film, Kodak). Flag immunoreactivity appeared as a doublet of bands that migrated by SDS-PAGE between 60 and 95 kDa as determined by Multimark molecular weight markers (Novex), demonstrating secretion of the HKNG1:Flag protein. When run in the absence of reducing agent, the relative mobility of the immunoreactive bands was greater than 100 kDA relative to the same markers, suggesting that the HKNG1-

V1:flag fusion protein may be a disulfide linked dimer or higher oligomer.

11.3. EXPRESSION OF HUMAN HKNG1:FC

A human HKNG1/hIgG1Fc fusion protein vector was constructed by PCR. The full-length open-reading frame of the full length HKNG1 cDNA (SEQ ID NO:5) was PCR amplified using the following primer sequences:

- 5' primer 5'-TTTTTCTCTCGAGACCATGAAAATTAAAG (SEQ ID NO:55) CAGAGAAAAACG-3'
- 3' primer 5'-TTTTTGGATCCGCTGCCCAGGTTTTA (SEQ ID NO:56)
 AAATGTTCCTTAAAATGC-3'

The 5' primer incorporated a Kozak sequence before the upstream methionine to the amino acid residue before the stop codon. The 3' PCR primer contained a 3 alanine linker at the junction of HKNG1 and the human IgG1 Fc domain, which starts at residues DPE. The genomic sequence of the human IgG1 Fc domain was ligated along with the PCR product into a pCDM8 vector (Invitrogen, Carlsbad CA) for transient expression.

The sequenced DNA construct was transiently transfected into HEK 293T cells in 150 mm plates using Lipofectamine (GIBCO/BRL) according to the manufacturer's protocol.

20 Seventy-two hours post-transfection, the serum-free conditioned medium (OptiMEM, GIBCO/BRL) was harvested and spun and the remaining monolayer of cells was lysed using 2 mL of lysis buffer [50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.05% SDS with "Complete" protease cocktail (Boehringer Mannheim) diluted according to manufacturers instructions]. Insoluble material was pelleted before preparation of SDS-PAGE samples.

Conditioned medium was electroblotted onto a PVDF membrane (Novex) after separation by SDS-PAGE on 4-20% gradient gels and probed with an M2 anti-Fc polyclonal antibody (1:500, Jackson ImmunoResearch Laboratories, Inc.) followed by horseradish peroxidase (HRP) conjugated sheep anti-mouse antibody (1:5000, Amersham), developed using

chemiluminesc nt reagents (Renaissance, Dupont), and exposed to autoradiography film (Biomax MR2 film, Kodak). Human IgG1 Fc immunoreactivity appeared as a doublet of bands that migrated by SDS-PAGE between 148 and 60 kDa standards of the Multimark molecular weight markers (Novex), demonstrating secretion of the HKNG1:Fc fusion protein.

11.4. EXPRESSION OF HUMAN HKNG1-V1:FC

A human HKNG1-V1/hIgG1Fc fusion protein (HKNG1-V1:Fc) vector was also constructed by PCR. The full-length open reading frame of HKNG1-V1 cDNA (SEQ ID NO:6) was PCR amplified using the following primer sequences:

- 5' primer 5'-TTTTCTCTCGAGACCATGAGGACCTGGG (SEQ ID NO:57)
 ACTACAGTAAC-3'
- 3' primer 5'-TTTTTGGATCCGCTGCTGCCCAGGTTTTA (SEQ ID NO:56)
 AAATGTTCCTTAAAATGC-3'
- The 5' primer incorporated a Kozak sequence before the upstream methionine to the amino acid residue before the stop codon. The 3' PCR primer contained a 3 alanine linker at the junction of HKNG1-V1 and the human IgG1 Fc domain, which starts at residues DPE. The genomic sequence of the human IgG1 Fc domain was ligated along with the PCR product into a pCDM8 vector for transient expression.

The sequenced DNA construct was transiently transfected into HEK 293T cells in 150 mm plates using Lipofectamine (GIBCO/BRL) according to the manufacturer's protocol. Seventy-two hours post-transfection, the serum-free conditioned medium (OptiMEM, GIBCO/BRL) was harvested and spun and the remaining monolayer of cells was lysed using 2 mL of lysis buffer [50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.05% SDS with "Complete" protease cocktail (Boehringer Mannheim) diluted according to manufacturers instructions]. Insoluble material was pelleted before preparation of SDS-PAGE samples.

30 Conditioned medium was electroblotted onto a PVDF membrane (Novex) after separation by SDS-PAGE on 4-20%

gradient gels and probed with an anti-human Fc polyclonal antibody (1:500, Jackson ImmunoResearch Laboratories, Inc.) followed by horseradish peroxidase (HRP) conjugated sheep anti-mouse antibody (1:5000, Amersham), developed using chemiluminescent reagents (Renaissance, Dupont), and exposed to autoradiography film (Biomax MR2 film, Kodak). Human IgG1 Fc immunoreactivity appeared as a doublet of bands that migrated by SDS-PAGE between 148 and 60 kDa standards of the Multimark molecular weight markers (Novex) centered approximately between 125 and 150 kDa, demonstrating secretion mediated by the HKNG1 signal peptide.

10

11.5. <u>EXPRESSION OF HUMAN HKNG1∆7:FC</u>

A human HKNG1A7:hIgG1Fc fusion protein vector was also constructed by PCR. The sequence of the HKNG1A7 splice variant was amplified by PCR amplification using Exons 1 through 6 of the full length HKNG1 cDNA sequence (SEQ ID NO:1) as a template with the following primer sequences:

- 5' primer 5'-TTTTTCTGAATTCACCATGAAGCCGCCAC (SEQ ID NO:58)
 TCTTGGTG-3'
- 3' primer 5'-TTTTTGGATCCGCTGCGGCCTCCGTG (SEQ ID NO:59)
 GTCAGGAGCTTATTTTTCACAGAGGACCAGCT
 AG-3'
- The 5' primer incorporated a Kozak sequence upstream of and including the upsream initiator methionine. The 3' primer included the first17 (coding) nucleotides of exon 8 followed by nucleotides encoding a 3 alanine linker.

The genomic sequence of the human IgG1 Fc domain was ligated along with the PCR product into a pCDM8 vector for transient expression.

The sequenced DNA construct was transiently transfected into HEK 293T cells in 150 mm plates using Lipofectamine (GIBCO/BRL) according to the manufacturer's protocol. Seventy-two hours post-transfection, the serum-free conditioned medium (OptiMEM, GIBCO/BRL) was harvested and spun and the remaining monolayer of cells was lysed using

2 mL of lysis buffer [50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.05% SDS with "Complete" protease cocktail (Boehringer Mannheim) diluted according to manufacturers instructions]. Insoluble material was pelleted before preparation of SDS-PAGE samples.

Conditioned medium was electroblotted onto a PVDF membrane (Novex) after separation by SDS-PAGE on 4-20% gradient gels and probed with an anti-human Fc polyclonal antibody (1:500, Jackson ImmunoResearch Laboratories) followed by horseradish peroxidase (HRP) conjugated sheep anti-mouse antibody (1:5000, Amersham), developed using chemiluminescent reagents (Renaissance, Dupont), and exposed to autoradiography film (Biomax MR2 film, Kodak). Human IgG1 Fc immunoreactivity appeared as a band that migrated by SDS-PAGE between 42 and 60 kDa relative to Multimark molecular weight markers (Novex) centered approximately between 36.5 and 55.4 kDa relative to Mark 12 molecular weight markers

11.6. EXPRESSION OF NATIVE HUMAN HKNG1

A human HKNG1 expression vector was constructed by PCR amplification of the human HKNG1 cDNA sequence (SEQ ID NO:1) followed by ligation into an expression vector, pcDNA3.1 (Invitrogen, Carlsbad CA). The full open-reading frame of the HKNG1 cDNA sequence (SEQ ID NO:5) was PCR amplified using the following primer sequences:

- 5' primer 5'-TTTTCTCTCGAGGACTACAGGACACAGC (SEQ ID NO:60)
- 3' primer 5'-TTTTTGGATCCTTATCACCAGGTTTTAAA (SEQ ID NO:61)
 ATGTTCCTTAAAATGC-3'
 The 5' primer incorporated a Kozak sequence upstream of and including the upstream initiator methionine. The 3' primer included a tandem pair of termination codons.

The sequenced DNA construct was transiently transfected into HEK 293T cells in 150 mm plates using Lipofectamine 30 (GIBCO/BRL) according to the manufacturer's protocol. Seventy-two hours post-transfection, the serum-free

conditioned medium (OptiMEM, GIBCO/BRL) was harvested and spun and the remaining monolayer of cells was lysed using 2 mL of lysis buffer [50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.05% SDS with "Complete" protease cocktail (Boehringer Mannheim) diluted according to manufacturers instructions]. Insoluble material was pelleted before preparation of SDS-PAGE samples.

Conditioned medium was electroblotted onto a PVDF membrane (Novex) after separation by SDS-PAGE on 4-20% gradient gels and probed with an anti-HKNG1 polyclonal antibody (#84, 1:500) followed by horseradish peroxidase (HRP) conjugated sheep anti-mouse antibody (1:5000, Amersham), developed using chemiluminescent reagents (Renaissance, Dupont), and exposed to autoradiography film (Biomax MR2 film, Kodak). HKNG1 immunoreactivity appeared as a doublet of bands that migrated by SDS-PAGE between 60 and 95 kDa as determined by Multimark molecular weight markers (Novex).

11.7. EXPRESSION OF NATIVE HUMAN HKNG1-V1

A human HKNG1-V1 expression vector was also constructed by PCR amplification of the human HKNG1-V1 cDNA sequence (SEQ ID NO:3) followed by ligation into an expression vector, pcDNA3.1. The full open-reading frame of the HKNG1 cDNA sequence (SEQ ID NO:6) was PCR amplified using the following primer sequences:

- 5' primer 5'-TTTTTCTGAATTCACCATGAAGCCGCCAC (SEQ ID NO:62)
 TCTTGGTG-3'
- 25 5' primer 5'-TTTTTCTCTCGAGACCATGAGGACCTGGG (SEQ ID NO:63)
 ACTACAGTAAC-3'
 - 3' primer 5'-TTTTTGGATCCTTATCACCAGGTTTTAAA (SEQ ID NO:61)
 ATGTTCCTTAAAATGC-3'

The 5' primer incorporated a Kozak sequence upstream of and including the upstream initiator methionine. The 3' primer included a tandem pair of termination codons.

30 The sequenced DNA construct was transiently transfected into HEK 293T cells in 150 mm plates using Lipofectamine

(GIBCO/BRL) according to the manufacturer's protocol. Seventy-two hours post-transfection, the serum-free conditioned medium (OptiMEM, GIBCO/BRL) was harvested and spun and the remaining monolayer of cells was lysed using 2 mL of lysis buffer [50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.05% SDS with "Complete" protease cocktail (Boehringer Mannheim) diluted according to manufacturers instructions]. Insoluble material was pelleted before preparation of SDS-PAGE samples.

Conditioned medium was electroblotted onto a PVDF membrane (Novex) after separation by SDS-PAGE on 4-20% gradient gels and probed with an M2 anti-HKNG1 polyclonal antibody (#84, 1:500) followed by horseradish peroxidase (HRP) conjugated sheep anti-mouse antibody (1:5000, Amersham), developed using chemiluminescent reagents (Renaissance, Dupont), and exposed to autoradiography film (Biomax MR2 film, Kodak). HKNG immunoreactivity appeared as a doublet of bands that migrated by SDS-PAGE between 70 and 95 kDa as determined by Multimark molecular weight markers (Novex), demonstrating secretion mediated by the HKNG1 signal peptide.

11.8. EXPRESSION OF HUMAN HKNG: AP FUSION PROTEINS

Expression vectors were also constructed for human HKNG1 alkaline phosphatase C-terminal fusion protein (HKNG1:AP), human HKNG1-V1 alkaline phosphatase C-terminal fusion protein (HKNG1-V1:AP), and human HKNG1 alkaline phosphatase N-terminal fusion protein (AP:HKNG1).

The expression vector for human HKNG1:AP was constructed by PCR amplification followed by ligation into a vector for suitable for expression in HEK 293T cells. The full-length open-reading frame of human HKNG1 (SEQ ID NO:5) was PCR amplified using a 5' primer incorporating an EcoRI restriction site followed by a Kozak sequence prior to the upstream initiator methionine. The 3' primer included a XhoI restriction site immediately following the final codon of

HKNG1. Thus, the open reading frame of the construct includes the HKNG1 signal peptide and the full HKNG1 sequence followed by the full sequence of human placental alkaline phosphatase.

The expression vector for human HKNG1-V1:AP was constructed by PCR amplification followed by ligation into pMEAP3 vector. The full length open reading frame of human HKNG1-V1 (SEQ ID NO:6) was PCR amplified using a 5' primer incorporating an EcoRI restriction site followed by a Kozak sequence prior to the upstream initiator methionine. The 3' primer included a XhoI restriction site immediately following the final codon of HKNG1-V1. Thus, the open reading frame of the construct includes the HKNG1-V1 signal and the full length HKNG1-V1 sequence followed by the full sequence of human placental alkaline phosphatase.

The expression vector for human AP:HKNG1 was constructed by PCR amplification followed by ligation into the AP-Tag3 vector reported by Cheng and Flanagan, 1994, Cell 79:157-168. The full-length open-reading frame of human HKNG1 (SEQ ID NO:5) was PCR amplified using a 5' primer incorporating a BamHI restriction site prior to the nucleotides encoding the first amino acids (i.e., APT) of the mature HKNG protein, and 20 a 3' primer that included a XhoI restriction site immediately following the termination codon of HKNG1. Thus, the open reading frame of the complete construct includes the AP signal peptide and the full sequence of human placental alkaline phosphatase, followed by the full HKNG1 sequence.

The sequenced DNA constructs were transiently

25 transfected in HEK 293T cells in 150 mM plates using
Lipofectamine (GIBCO/BRL) according to the manufacturer's
protocol. 72 hours post-transfection, the serum-free
conditioned media (OptiMEM, Gibco/BRL) were harvested, spun
and filtered. Alkaline phosphatase activity in the
conditioned media was quantitated using an enzymatic assay

30 kit (Phospha-Light, Tropix) according to the manufacturer's
instructions. When alkaline phosphatase fusion prot in

conc ntrations below 2 nM were observed, conditioned medium was concentrated by centrifugation using a 30 kDa cut-off membrane. Conditioned medium samples before and after concentration were analyzed by SDS-PAGE followed by Western blot using anti-human alkaline phosphatase antibodies (1:250, Genzyme) and chemiluminsecent detection. A band at 140 kDa was observed in concentrated supernatant of HKNG1:AP, HKNG1-V1:AP, and AP:HKNG1 transfections. Conditioned medium samples were adjusted to 10% fetal calf serum and stored at 4°C.

10 11.9. PURIFICATION OF FLAG-TAGGED HKNG1 PROTEINS

The secreted flag-tagged proteins described in subsections 12.1 and 12.2 above were isolated by a one step purification scheme utilizing the affinity of the flag epitope to M2 anti-flag antibodies. The conditioned media was passed over an M2-biotin (Sigma)/streptavidin Poros column (2.1 x 30 mm, PE Biosystems). The column was then washed with PBS, pH 7.4, and flag-tagged protein was eluted with 200 mM glycine, pH 3.0. Fraction was neutralized with 1.0 M Tris pH 8.0. Eluted fractions with 280 nm absorbance greater than background were then analyzed on SDS-PAGE gels and by Western blot. The fractions containing flag taged protein were pooled and dialyzed in 8000 MWCO dialysis tubing against 2 changes of 4L PBS, pH 7.4 at 4°C with constant stirring. The buffered exchanged material was then sterile filtered (0.2 µm, Millipore) and frozen at -80°C.

11.10. PURIFICATION OF HKNG1 FC FUSION PROTEINS

25

The secreted Fc fusion proteins described in Subsections 12.3-12.5 above were isolated by a one step purification scheme utilizing the affinity of the human IgG1 Fc domain to Protein A. The conditioned media was passed over a POROS A column (4.6 x 100 mm, PerSeptive Biosystems); the column was then washed with PBS, pH 7.4 and eluted with 200 mM glycine, pH 3.0. Fractions were neutralized with 1.0 M Tris pH 8.0.

A constant flow rate of 7 ml/min was maintained throughout the procedure. Eluted fractions with 280 nm absorbance greater than background were then analyzed on SDS-PAGE gels and by Western blot. The fractions containing Fc fusion protein were pooled and dialyzed in 8000 MWCO dialysis tubing against 2 changes of 4L PBS, pH 7.4 at 4°C with constant stirring. The buffered exchanged material was then sterile filtered (0.2 μm, Millipore) and frozen at -80°C.

12. PRODUCTION OF ANTI-HKNG1 ANTIBODIES

Described in the example presented in this Section is the production and characterization of polyclonal and monoclonal antibodies directed against HKNG1 proteins.

12.1. PRODUCTION OF POLYCLONAL ANTIBODIES

Polyclonal antisera were raised in rabbits against each of the three peptides listed in Table 3 below. Each of the peptides was derived from the HKNG1 amino acid sequence (SEQ ID NO:2) by standard techniques (see, in particular, Harlow&Lane, 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, the contents of which is incorporated herein by reference in its entirety). Each of the peptides is also represented in the HKNG1-V1 polypeptide sequence (SEQ ID NO:4). Antisera was subsequently affinity purified using the peptide immunogens.

TABLE 3

Antibody Peptide/Immunogen a.a. residues
(SEQ ID NO:2)

Antibody 84 APTWKDKTAISENLK 50-64

Antibody 85 KAIEDLPKQDK 304-314

Antibody 86 KALQHFKEHFKTW 483-495

12.2. PRODUCTION OF MONOCLONAL ANTIBODIES

Monoclonal antibodies were raised in mice by standard techniques (see, Harlow & Lane, supra) against the HKNG-Fc fusion protein described in Section 11.3 above. Wells were screened by ELISA for binding to the HKNG-Fc fusion protein. Those wells reacting with the Fc protein were identified by ELISA for binding to an irrelevant Fc fusion protein and discarded. HKNG-Fc specific wells were tested for their ability to immunoprecipitate HKNG-Fc and subjected to isotype analysis by standard techniques (Harlow & Lane, supra), and eight wells were selected for subcloning. The isotype of the subcloned monoclonal antibodies was confirmed and is presented in Table 4 below.

Based on Western blotting, immunoprecipitation and immunostaining data discussed in SubSection 12.3 below, two monoclonal antibodies (3D17 and 4N6) were selected for large scale production.

15

TABLE 4

Clone	Isotype
1F24	2a
1 J 18	2a
2020	1
3D17	1
3D24	2a
4N6	1
4016	2b
10C6	_2a

25

20

12.3. WESTERN BLOTTING AND IMMUNOPRECIPITATION OF RECOMBINANT HKNG PROTEIN

The polyclonal antisera and all eight monoclonal antibodies described in subsection 12.1 and 12.2 above were 30 tested for their ability to recognize recombinant HKNG1 proteins on Western blots using standard techniques (see, in

particular, Harlow & Lane, 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press). Polyclonal antisera 84 and 85 and monoclonal antibodies 3D17 and 4N6 were able to recognize all forms of the mature (i.e., secreted) recombinant HKNG proteins tested (i.e., WANGLERS)

5 secreted) recombinant HKNG proteins tested (i.e., HKNG1:Fc, HKNG1:flag, AP:HKNG1, and native HKNG1) in Western blots.

Table 5 indicates the ability of each monoclonal antibody to immunoprecipitate recombinant HKNG1, as assessed by Western blotting of immunoprecipitates with the polyclonal antisera 84 and 85. None of the polyclonal antisera were able to immunoprecipitate recombinant HKNG1 proteins. All eight monoclonal antibodies immunoprecipitated HKNG1:Fc. Immunoprecipitation of the other recombinant HKNG1 proteins was variable.

15

TABLE 5

	Monoclonal	Protein			
	Antibody	HKNG1:Fc	HKNG1:flag	AP:HKNG1	HKNG1 (native)
	IF24	+	+	+	-/+
20	1 J 18	+	-	-/ +	+/+
	2020	+.	-	+	. —
l	3D17 -	+/+	+/+		+/+
	3D24	+	_	· .	• • • • • • • • • • • • • • • • • • •
	4N6	+	+	+	+
25	4016	+	_	-	+/+
	1006	+	_	_	+

13. CONFIRMATION OF THE HKNG N-TERMINUS AND DISULFIDE BOND STRUCTURE

30 The exp riments described in this section provide data identifying the N-terminus of the mature secreted human HKNG

protein. The experiments also provide data identifying the disulfide bond linkages between cysteine amino acid residues in the mature, secreted protein.

Specifically, mature, secreted HKNG:flag, HKNG, and HKNG:Fc recombinant proteins were produced and purified as 5 described in Section 11 above. The mature recombinant proteins were digested with trypsin, and the tryptic fragments were identified and sequenced using reverse-phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/MS/MS). The N-terminus of all mature secreted proteins tested was unambiguously identified 10 as APTWKDKT, which corresponds to the amino acid sequence starting at alanine 50 of the HKNG1 amino acid sequence (FIG. 1; SEQ ID NO:2) or alanine 32 of the HKNG1-V1 amino acid 2; SEQ ID NO:4). Thus, although the cDNA sequence (FIG. sequences of HKNG1 and HKNG1-V1 encode distinct amino acid sequences, the mature secreted proteins produced by these two 15 splice variants of the human HKNG1 gene are identical, since the alternative splicing that gives rise to HKNG1-V1 (i.e., the deletion of exon 3) affects the amino acid sequence of the proteolytically cleaved signal peptide. The amino acid sequence of the mature secreted HKNG1 protein is shown in FIG. 17 (SEQ ID NO:51)

The mature secreted HKNG protein is also distinct from the RPP amino acid sequence disclosed by Shimizu-Matsumo et al. (1997, Invest. Ophthalmal. Vis. Sci. 38:2576-2585). In particular, amino acid residues 1 to 20 of the RPP amino acid sequence disclosed in Figure 3 of Shimizu-Matsumo et

25 al., supra, correspond to the cleaved signal peptide of HKNG1-V1. The amino acid sequence of the mature secreted form of the HKNG1 gene product is depicted in FIG. 17 (SEQ ID NO:51).

Disulfide bond linkages for 8 of the 13 cysteine residues in the mature, secreted HKNG protein were also identified from LC/MS/MS of peptides recovered from tryptic

digestion of the unreduced protein. In particular, the following disulfide bonded pairs of cysteines were identified (numbering refers to the HKNG1 protein shown in FIG. 1; SEQ ID NO:2):

Cys 134 to Cys 145; Cys 148 to Cys 153; Cys 160 to Cys 334; and Cys 354 to Cys 362.

5

14. EXAMPLE: LOCALIZATION OF HKNG mRNA AND PROTEIN EXPRESSION

This example describes experiments wherein the HKNG gene product is shown to be expressed in human brain and retinal tissue. Specifically, in situ hybridization experiments performed using standard techniques with a probe that corresponded to the complementary sequence of base pairs 910-1422 of the full length HKNG1 cDNA sequence (SEQ ID NO:1) detected HKNG messenger RNA in the photoreceptor layer (outer nuclear layer) of human retina in eyes obtained from the New England Eye Bank.

The polyclonal antisera and all eight monoclonal antibodies described in Section 12 above were tested for immunostaining of human retina. Polyclonal antiserum 85 and monoclonal antibodies 1F24, 4N6 and 4O16 showed immunostaining of HKNG protein in the photoreceptor layer and adjacent layers of the retina. The immunostaining in these tissues with polyclonal antiserum was blocked by 85 peptide immunogen, but not by the other two peptide immunogens (i.e., 84 and 86), confirming that the immunostaining was due to HKNG protein expressed in the photoreceptor layer.

The same antibodies were then used to localize HKNG protein by immunostaining in sections of human and monkey brain. HKNG protein was observed in cortical neurons in the frontal cortex. The majority of pyramidal neurons in layers IV-V were immunoreactive for HKNG protein. A subpopulation of neurons was also labeled in layers I-III. HKNG

immunoreactivity was also observed in the pyramidal cell layer of the hippocampus and in a small number of neurons in the striatum.

These data further support the fact that HKNG is, indeed, a gene which mediates neuropsychiatric disorders such 5 as BAD. Furthermore, the fact that HKNG is also expressed in human retinal tissue suggests that the gene also plays a role in myopia conditions. Specifically, Young et al. American Journal of Human Genetics 63:109-119) report a strong linkage (LOD = 9.59) for primary myopia and secondary macular degeneration and retinal detachment in the telomeric region of human chromosome 18p. Through fine mapping analysis, this candidate region has been narrowed to a 7.6 cM haplotype flanked by markers D18S59 and D18S1138 (Young et al., supra). However, the marker D18S59 lies within the HKNG1 gene. This fact, coupled with the finding the HKNG is 15 expressed in high levels in the retina, strongly suggests that the HKNG1 gene is also responsible for human myopia conditions and/or other eye related diseases such as primary myopia, secondary macular degeneration, and retinal detachment.

20 15. EXAMPLE: IMMATURE PROTEIN PRODUCTS OF THE HKNG1 CDNA SEQUENCES

This section describes experiments which were performed to determine which of the two putative initiator methionines encoded by both the full length HKNG1 cDNA and the alternatively spliced HKNG1-V1 cDNA are used in the synthesis of immature HKNG1 protein. The results indicate that both initiator methionines are used at varying levels, resulting in the production of three different forms of the immature HKNG1 protein, referred to herein as immature protein form 1 (IPF1), immature protein form 2 (IPF2), and immature protein form 3 (IPF3).

Both the full length HKNG1 cDNA sequence shown in FIG. 1 (SEQ ID NO:1) and the alternatively spliced HKNG1-V1 cDNA sequence shown in FIG. 2 (SEQ ID NO:3) encode predicted proteins that have methionines in close proximity to their predicted initiator methionines. The predicted protein sequence encoded by the full length HKNG1 cDNA sequence has a second methionine at amino acid residue number 30 of the amino acid sequence depicted in FIG. 1 (SEQ ID NO:2). although FIG. 1 indicates that the full length HKNG1 cDNA encodes the first immature form of the HKNG1 protein depicted 10 in FIG. 1 (referred to herein as IPF1), the full length HKNG1 cDNA may additionally encode a second immature protein form (referred to herein as IPF2), whose sequence (SEQ ID NO:64) is provided on the third line of the protein alignment depicted in FIG. 17. IPF2 is initiated at methionine 30 of the IPF1 protein sequence, and is identical to the RPP 15 polypeptide sequence taught by Shimizu-Matsumoto et al (1997, Invest. Ophthalmol. Vis. Sci. 38:2576-2585). Likewise, the alternatively spliced HKNG1-V1 cDNA sequence encodes the predicted immature protein form, referred to herein as IPF3, depicted in FIG. 2 (SEQ ID NO:4). However, the HKNG1-V1 cDNA 20 may also encoded another immature protein form, identical to IPF 2, that is initiated at methionine 12 of the IPF3 protein sequence. FIG. 17 illustrates an alignment of the three immature HKNG1 protein sequences IPF1 (second row), IPF2 (third row), and IPF3 (bottom row). As explained is Section 13 above, the mature HKNG1 gene product secreted by cells 25 expressing the HKNG1 constructs described in Section 11, above, is in fact the same cleaved product (SEQ ID NO:51), regardless of the immature HKNG1 protein (IPF1, IPF2, or IPF3) from which it is produced. An alignment of the mature secreted HKNG1 protein is therefore also depicted in FIG. 17 (top row).

Modified HKNG1:flag and HKNG1-V1:flag expression vectors were constructed as described in Sections 12.1 and 12.2,

respectively. However, the nucleotide sequence of full length HKNG1 was modified, using standard site directed mutagenesis techniques, so as to introduce an additional base pair between the upstream methionine (i.e., met 1 in SEQ ID NO:2) and the downstream methionine (i.e., met 30 in SEQ ID NO:2). The nucleotide sequence of HKNG1-V1 was likewise modified, using standard site directed mutagenesis techniques, to introduce an additional base between its upstream methionine (i.e., met 1 in SEQ ID NO:4) and downstream methionine (i.e., met 12 in SEQ ID NO:4). 10 in both modified constructs, the C-terminal flag epitope tag was no longer in the same reading frame as the upstream methionine but was in frame with the downstream methionine. Consequently, exclusive translation initiation at the first methionine of a construct would lead to the production of non-flag immunoreactive proteins. However, exclusive 15 translation initiation at the second methionine of a construct would lead to the production of flag immunoreactive proteins.

Unmodified HKNG1:flag, unmodified HKNG1-V1:flag, modified HKNG1:flag, and modified HKNG1-V1:flag constructs were transfected into cells, and their resulting gene
20 products were harvested, blotted onto a PVDF membrane, and probed with an M2 anti-flag polyclonal antibody, and developed according to the methods described in Sections 12.1 and 12.2 above.

Flag immunoreactivity was detected in all four samples.
The unmodified HKNG1:flag and HKNG1-V1:flag expression

25 vectors produced amounts of mature secreted HKNG1:flag protein consistent with the levels detected in Sections 12.1 and 12.2 above. Further, the flag immunoreactive band detected for the modified HKNG1:flag construct was indistinguishable in intensity from the band detected for the unmodified HKNG1:flag construct, indicating that the immature

30 HKNG1 protein produced by full length HKNG1 cDNA is

predominantly IPF2, while IPF1 is produced by full length HKNG1 cDNA in r latively minor amounts.

The flag immunoreactive band from the modified HKNG1-V1:flag construct had dramatically reduced intensity relative to the band from the unmodified HKNG1-V1:flag construct. Thus, HKNG1-V1 produces primarily the immature HKNG1 protein IPF3, while the immature HKNG1 protein IPF2 is produced by HKNG1-V1 in relatively minor amounts. These results are summarized below in Table 6.

10

TABLE 6

Construct	Immature Protein	Prominance Minor	
HKNG1	IPF1 (SEQ ID NO:2)		
	IPF2 (SEQ ID NO:64)	Predominant	
HKNG1-V1	IPF2 (SEQ ID NO:64)	Minor	
	IPF3 (SEQ ID NO:4)	Predominant	

15

Thus, the HKNG1 gene products of the invention include gene products corresponding to the immature protein forms IPF1 and IPF3. However, preferably the HKNG1 gene products of the invention do not include amino acid sequences consisting of the IPF2 sequence (SEQ ID NO:64).

16. REFERENCES CITED

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings.

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

5

15

 An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a HKNG1 gene product comprising:

- (a) the amino acid sequence of SEQ ID NO:2;
- (b) the amino acid sequence of SEQ ID NO:4;
- (c) the amino acid sequence of SEQ ID NO:39;
- (d) the amino acid sequence of SEQ ID NO:41;
- (e) the amino acid sequence of SEQ ID NO:43;
- (f) the amino acid sequence of SEQ ID NO:45;
- (g) the amino acid sequence of SEQ ID NO:49; or
- (h) the amino acid sequence of SEQ ID NO:66.
 - 2. The isolate nucleic acid molecule of Claim 1, wherein the isolate nucleic acid molecule comprises:
 - (a) the nucleotide sequence of SEQ ID NO:1;
 - (b) the nucleotide sequence of SEQ ID NO:3;
 - (c) the nucleotide sequence of SEQ ID NO:7;
 - (d) the nucleotide sequence of SEQ ID NO:34; or
 - (e) the nucleotide sequence of SEQ ID NO:35.
- 3. The isolated nucleic acid molecule of Claim 1, wherein the isolated nucleic acid molecule comprises:
- (a) the nucleotide sequence of SEQ ID NO:38;
 - (b) the nucleotide sequence of SEQ ID NO:40;
 - (c) the nucleotide sequence of SEQ ID NO:42; or
 - (d) the nucleotide sequence of SEQ ID NO:44.
- 4. The isolated nucleic acid molecule of Claim 1, wherein the isolated nucleic acid molecule comprises:
 - (a) the nucleotide sequence of SEQ ID NO:46;
 - (b) the nucleotide sequence of SEQ ID NO:47; or
 - (c) the nucleotide sequence of SEQ ID NO:48.
- 5. An isolated nucleic acid molecule consisting of a nucleotide sequence that encodes a mature HKNG1 protein having the amino acid sequence of SEQ ID NO:51.

6. An isolated nucleic acid molecule which hybridizes to the complement of the nucleic acid molecule of any one of claims 1-5 under highly stringent conditions comprising washing in 0.1xSSC/0.1% SDS at 68°C.

- 7. An isolated nucleic acid molecule which hybridizes to the complement of the nucleic acid molecule of any one of claims 1-5 under stringent conditions comprising washing in 0.2xSSC/0.1% SDS at 50-65°C.
- 8. The isolated nucleic acid molecule of Claim 5 or 7,

 wherein said isolated nucleic acid molecule encodes a
 functionally equivalent HKNG1 gene product.
 - 9. A vector comprising the nucleotide sequence of any one of Claims 1-5.
- 10. An expression vector comprising the nuclectide sequence of any one of Claims 1-5 operatively associated with a regulatory nucleotide sequence controlling the expression of the nucleotide sequence in a host cell.
- 11. A host cell genetically engineered to contain the nucleotide sequence of any one of Claims 1-5.
 - 12. A host cell genetically engineered to express the nucleotide sequence of any one of Claims 1-5 operatively associated with a regulatory nucleotide sequence controlling expression of the nucleotide sequence in said host cell.
 - 13. An isolated polypeptide comprising the amino acid sequence of a HKNG1 gene product having:
 - (a) the amino acid sequence of SEQ ID NO:2;
 - (b) the amino acid sequence of SEQ ID NO:4;
 - (c) the amino acid sequence of SEQ ID NO:39;
 - (d) the amino acid sequence of SEQ ID NO:41;

25

30

(e) the amino acid sequence of SEQ ID NO:43;

(f) the amino acid sequence of SEQ ID NO:45; or

- (g) the amino acid sequence of SEQ ID NO:49;
- (h) the amino acid sequence of SEQ ID NO:66.
- 14. An isolated polypeptide consisting of a mature5 HKNG1 gene product having the amino acid sequence of SEQ ID NO:51.
 - 15. An isolated polypeptide comprising an amino acid sequence encoded by the isolated nucleic acid molecule of Claim 6 or 7.

10

- 16. An antibody which selectively binds to the HKNG1 gene product of any one of Claims 13 or 14.
- 17. A method for treating a HKNG1-mediated disorder in an individual comprising administering to the individual a compound which modulates the expression of an HKNG1 gene in the individual.
 - 18. The method of Claim 17, wherein the compound inhibits or potentiates the expression of an HKNG1 gene in the individual.

20

- 19. The method of Claim 17, wherein the compound is a small molecule.
- 20. The method of Claim 17, wherein the HKNG1-mediated disorder is a neuropsychiatric disorder.

- 21. The method of Claim 17, wherein the neuropsychiatric disorder is bipolar affective disorder or schizophrenia.
- 22. The method of Claim 17, wherein the HKNG1 gene encodes a HKNG1 gene product comprising:
 - (a) the amino acid sequence of SEQ ID NO:2;

- (b) the amino acid sequence of SEQ ID NO:4;
- (c) the amino acid sequence of SEQ ID NO:39;
- (d) the amino acid sequence of SEQ ID NO:41;
- (e) the amino acid sequence of SEQ ID NO:43;
- (f) the amino acid sequence of SEQ ID NO:45;
- (g) the amino acid sequence of SEQ ID NO:49;

- (h) the amino acid sequence of SEQ ID NO:51;
- (i) the amino acid sequence of SEQ ID NO:64; or
- (j) the amino acid sequence of SEQ ID NO:66.
- 23. The method of Claim 17, wherein the individual is a mammal.
 - 24. The method of Claim 23, wherein the mammal is a human.
- 25. A method for treating a HKNG1-mediated disorder in an individual comprising administering to the individual a compound which modulates the expression or activity of a HKNG1 gene product in the individual.
- 26. The method of Claim 25, wherein the compound inhibits or potentiates the expression or activity of a HKNG1
 20 gene product in the individual.
 - 27. The method of Claim 25, wherein the compound is a small molecule.
- 28. The method of Claim 25, wherein the HKNG1-mediated 25 disorder is a neuropsychiatric disorder.
 - 29. The method of Claim 28, wherein the neuropsychiatric disorder is bipolar affective disorder or schizophrenia.
- 30. The method of Claim 25, wherein the HKNG1 gene product comprises:

(a) the amino acid sequence of SEQ ID NO:2;

- (b) the amino acid sequence of SEQ ID NO:4;
- (c) the amino acid sequence of SEQ ID NO:39;
- (d) the amino acid sequence of SEQ ID NO:41;
- (e) the amino acid sequence of SEQ ID NO:43;
- (f) the amino acid sequence of SEQ ID NO:45;

5

- (g) the amino acid sequence of SEQ ID NO:49;
- (h) the amino acid sequence of SEQ ID NO:51;
- (i) the amino acid sequence of SEQ ID NO:64; or
- (j) the amino acid sequence of SEQ ID NO:66.
- 31. The method of Claim 25, wherein the individual is a mammal.
 - 32. The method of Claim 31, wherein the mammal is a human.
- 33. A method for identifying a compound which modulates expression of an HKNG1 gene comprising:
 - (a) contacting a test compound to a cell that expresses an HKNG1 gene;
 - (b) measuring a level of HKNG1 gene expression in the cell;
- (c) comparing the level of HKNG1 gene expression in the cell in the presence of the test compound to a level of HKNG1 gene expression in the cell in the absence of the test compound,

wherein if the level of HKNG1 gene expression in the cell in the presence of the test compound differs from the level of expression of the HKNG1 gene in the cell in the absence of the test compound, a compound that modulates expression of an HKNG1 gene is identified.

- 34. The method of Claim 33, wherein the HKNG1 gene encodes an HKNG1 gene product comprising:
 - (a) the amino acid sequ nce of SEQ ID NO:2;
 - (b) the amino acid sequence of SEQ ID NO:4;

```
(c) the amino acid sequence of SEQ ID NO:39;
```

- (d) the amino acid sequence of SEQ ID NO:41;
- (e) the amino acid sequence of SEQ ID NO:43;
- (f) the amino acid sequence of SEQ ID NO:45;
- (g) the amino acid sequence of SEQ ID NO:49;
- (h) the amino acid sequence of SEQ ID NO:51;
- (i) the amino acid sequence of SEQ ID NO:64; or
- (j) the amino acid sequence of SEQ ID NO:66.
- 35. The method of Claim 34, wherein the HKNG1 gene comprises:
- (a) the nucleotide sequence of SEQ ID NO:1;

- (a) the nucleotide sequence of SEQ ID NO:3;
- (a) the nucleotide sequence of SEQ ID NO:5;
- (a) the nucleotide sequence of SEQ ID NO:6;
- (a) the nucleotide sequence of SEQ ID NO:34;
- (a) the nucleotide sequence of SEQ ID NO:35;
- 15 (a) the nucleotide sequence of SEQ ID NO:38;
 - (a) the nucleotide sequence of SEQ ID NO:40;
 - (a) the nucleotide sequence of SEQ ID NO:42;
 - (a) the nucleotide sequence of SEQ ID NO:44;
 - (a) the nucleotide sequence of SEQ ID NO:46;
 - (a) the nucleotide sequence of SEQ ID NO:47;
- (a) the nucleotide sequence of SEQ ID NO:48; or
 - (a) the nucleotide sequence of SEQ ID NO:65.
 - 36. A method for identifying a compound which modulates expression or activity of an HKNG1 gene product comprising:
- (a) contacting a test compound to a cell that expresses an HKNG1 gene product;
 - (b) measuring a level of HKNG1 gene product expression or activity in the cell;
- (c) comparing the level of HKNG1 gene product
 expression or activity in the cell in the presence
 of the test compound to a level of HKNG1 gene
 product expression or activity in the cell in the
 absence of the test compound,

wherein if the level of HKNG1 gene product expression or activity in the cell in the presence of the test compound differs from the level of HKNG1 gene product expression or activity in the cell in the absence of the test compound, a compound that modulates expression or activity of an HKNG1 gene product is identified.

- 37. The method of Claim 36, wherein the HKNG1 gene product comprises:
 - (a) the amino acid sequence of SEQ ID NO:2;
 - (b) the amino acid sequence of SEQ ID NO:4;
- (c) the amino acid sequence of SEQ ID NO:39;
 - (d) the amino acid sequence of SEQ ID NO:41;
 - (e) the amino acid sequence of SEQ ID NO:43;
 - (f) the amino acid sequence of SEQ ID NO:45;
 - (g) the amino acid sequence of SEQ ID NO:49;
 - (h) the amino acid sequence of SEQ ID NO:51; or
- (i) the amino acid sequence of SEQ ID NO:64.
- 38. A method for identifying an individual having or at risk of developing a HKNG1-mediated disorder comprising the step of detecting the presence or absence of a polymorphism that correlates with an HKNG1 allele associated with the disorder, wherein presence of the polymorphism indicates that the individual has or is at risk of developing the HKNG1-mediated disorder.
- 39. The method of Claim 38, wherein the mutation results in production of a protein comprising an amino acid sequence that is different from the amino acid sequence of SEQ ID NO:2 or 4.
 - 40. The method of Claim 39, wherein the mutation results in the substitution of a lysine for a glutamic acid at amino acid residue 202 of SEQ ID NO:2.

WO 99/47535 PCT/US99/05606

41. The method of Claim 39, wherein the mutation results in the substitution of a lysine for a glutamic acid at amino acid residue 184 of SEQ ID NO:4.

42. The method of Claim 36, wherein the method

5 comprises the step of analyzing the sequence of the coding region of the human HKNG1 gene by preparing and sequencing cDNA comprising a sequence that hybridizes under stringent conditions to the complement of a nucleotide sequence which encodes the polypeptide sequence depicted in SEQ ID NO:2.

10

15

20

25

30

COCATCAGGACCTGCACTACACACACACCTAAATCCCCTCACACG ATG BAA ATT AAA GCA GAG AAA AAC E G P S R S W H Q L H H G D I A N N S G CAA COT CCT TOO AGA AGO TOG TOG CAA CTT CAC TOG GGA CAT-ATTL GCA AAT AAC AGO GOG K K F P P L V F I V C L L W L K D S H AMC ATE AMG COO CCA CTC TTG GTG TTT ATT GTG TGT CTG CTG TGG TTG AAA GAC AGT CAC 144 CAPTHEDETAISENLESES THE HEAL COST ACT THE AME GAS ANA ACT COT ATC ACT GAA AAS CIT AND ACT TIT TOT GAG 68 V G E I D A D E E V K K A L T G I K Q H 204 CTG CCG CAG ANA GRA GCA CAA GRA GTG AMG AAG GCT TTG ACT GGT ATT AAG CAA ATG 88 KIHH'ERKEKEHTHLKSTLKK 264 ANA ATC ATC ATC ATC ANA ANA GAG ANG GAA CAC ACC AAT CTA ATC ACC ACC CTG ANA AAA 10R CREERQEALKLLHEVQERLE 324 TOC ACA GAA GAA AAG CAG GAG GCC CTO AAA CTT CTG AAT GAA GTT CAA GAA CAT CTG GAG 128 EEERLCRESLADSHGECRSC CAA CAA AGG CIA TEC COG CAG TET TTG CCA CAT TEC TOG CET CAA TEC AGG TET. TGC 444 LENNCHRIYTTCQPSWSSVK CTC GRA ART ARC TOO AGE AGE ATT THE ACA ACC TOO CAR COT AGE TOO TOT GTC AAA NKIERFFRXIYQFLFPFRED. 504 ANT AND ATT GRA COG TIT TIC ACC ANG ATA TAT CAA TIT CIA TIT COT TIC CAT GRA GAT 564 REKDLPISEKLIEEDAQLT Q ANT CHA ANA CAT CAC COC AND ACT CHA ANA CAC ART GRE CHA CAR CAR TWO ACC CHA KEDVFSQLTVDVKSLFKKSF ATG GRE CAT ONG THE ACT CAG THE ACT CHE CAT TOT CHE THE AAC AGE ACT THE 228 684 H V F R Q K Q Q E P D Q T F Q S R F I S AMC GTC TTC AGA CAG ATC CAG CAL GAG TIT GAC CAG ACT TIT CAL TCA CAT TTC ATA TCA 248 DTÖLTEPYFPAFFFKEPHTK 744 GAT ACA GAC CER ACT GAG CCT TAC TIT TIT COA GCT TAC TOT AAA GAG CCG ATG ACA AAA 268 ADLEQCWDIPHFFQLFCHFS 804 GCA GAT CAT GAG CAA TOT TOG GAG ATT COC AAC TTC TTC CAG CTO TIT TGT AAT TTC AGT 288 A S I I E S A S E I I I K H P K 'Y I ...E . D OTC TOT ATT TAT GAA AGT GTC AGT GAA ACA ATT ACT ANG ATG CTG ANG GCA ATA GAA GAT 308 924 LPKQDKA,PDHGGLISKMLPG 328

																			GCC	
Q	D	R	C	L	¢	G	E	L	D	0	ĸ	L	2	R	٠.		٠,		87	348
.Cag	CYC	AGA	GGA	CTG	TGT	G3G	GAA	CIT	CAC	CAG	AAT	TIG	TCA	AGA	434	441	222			348 2044
Ξ	K	C	Q	Z	C	Q	λ	E	L	8	a	D	C	Þ	n	**	. в			368
GAA	MA	TGC	CAA	ÄAA	TGI	CAG	CCT	CAC	CEA	TCT	GAA	CAC	TOT	COL	CAT	CT'S	~	~~	-	368 1104
											•									
Ħ	T	E	L	D.	E	X	1	R	L	Ϋ́	N	V	Š	N	0	ο.	•	_		388
CXC	ycy	GXA	TIA	CYC	GAG	GCG	Nic	AGG	TIG	GIC	AAT	GΤλ	3000	AAT	CAG	C) C	510	~~	Q	388 1164
I	L	Q	H	T	R	X	Ħ	L	E	D	T	A	Y	T,	v	F	22	٠,	_	€08
ATT	CLC.	æ	ATG	MC	∞	MG	CAC	TIG	CAG	CAC	ACC	CCC	TAT	CIG	tarra	GAG	210	700	K	408 .1224
G	Q	F	G	H	V	S	E	L	λ	N	Q	A	P	E	T	F	T	٠	-	426
ccc	CYY	111	œ	TCC	CIG	TCT	GAA	CIG	GCX	AAC	CAG	GCC	CCA	GXA	ACA	GAG	200	*		426 1284
И	S	I	Q	V	V	P	R	I	R.	E	G	ĸ	I	8	ĸ	•	n		•	448
ART	1CV	XXX	CVC	CIL	GIT	Œ	NGG	ATT	CAT	GAA	CCY	AAT	ATT	700	AAA	CAA	CD T	GLA	101	448 1344
		_															•			
K	K	T	Ø	L	8	Į	L	P	S,	S	H	F	T	L	ĸ	T	Þ	т.		468
ATG	AIG	ycy	CVC	TIX	YCC	ATT	CIG	CCT	TOO	TCI	RAT	TIC	ACA	CTC	AAG	ATC	COT	ست م	CAR	4 68 14 04
	-																			
E	2	λ	E	S	S	N	,F	I	G.	Y	V	v	A	ĸ	A	L	0	Ħ		488
GAA	NGT	CCL	CVC	agt	TCI	w	LIC	att	∞	TAC	CTA	CIC	œ ∧	XXX	CCT	CEA	CAG	CAT	Į.	488 1 4 64
							-								•					7405
<u> </u>	E	H	F	K.	T	H	•													496
	GIL	CAT	TIT	YYY	YCC	100	TAA													1468
GNA	arc:	ENRIT	CAI	ociv:	CT KT	300	NOT!	iGN1	TAX	MCT!	CAIX	ZICC.	aroci	(OC)	جعين	XICA!	A TRI	a	ICCX	
		•	•	•		AAA	_	•	•				•		•					,
TEM	CEL	CEAR	EXCIV		rtca)TTN	XXX	XXXI	TIC	3003	MAN	LAAA	CRAZ	10CII	LATAI	CIAI	TACE	TTT	ATG	
-	-																			

CHOOCHE CONTROL CONTRO CCHOCCIGGACTTCHCTCCCHTOTTCHTACCTCHCTGAAGCCTCHAATTCCTCGGTTCAAGTGACCTCCTACCTCAGC H R T "W D Y S N S G N "H K P P L L V F COC ATE AGG ACC TOG GAC TAC AGT AAC AGC GGG AAC ATG AAG GGG GCA CTC TTG GTG TIT IVCLLKDSHCXPTKKDKT ATT OTG TET CTG CTG TGG TTG ANA GAC AGT CAC TGC GCA COC-RET-TGG AAG GAC-AAA ACT 117 A I S E N L K S F S E V G E I D A D E E 59 CCT ATC ACT GAA AAC CTG AAG AGT TIT TCT GAG GTG GGG GAG ATA GAT GCA GAA GAG 177 V X K A L T G I X Q K K I K H E R K E K 79 OTG ANG ANG OCT TIG ACT OCT ATT ANG CAA ANG AMA ANG ANG ANG GAA AGA AAA GAG AAG 237 ERTRLESTLKKCREEKQEAL 99 CHA CHC ACC AME CER ATC ACC ACC CEC AME ARA TOC ACA GAA GAA AME CHE GAE GCC CEC 297 K L L N E V Q E R L E E E R L C R E S 119 ANN CIT CIC AND GAN GIT CAN GAN CAT CIG GRG GAN GAN GAN AGG CIN TGC CGG GRG TCT LADSKGECRSCLENNCKRIY 139 TTG GCA CAT TOO TOG GGT GAA TGC AGG TOT TGC CTG GAA AAT AAC TGC ATG AGA ATT TAT 417 TTCOPS WSS V K N K I E R F F R K 159 ACA ACC TOC CAA CCT ACC TOC TCT GTG AAA AAT AAG ATT GAA CCG TIT TTC AGG AAG **£77** I Y Q F L F F H E D N E K D L F I S E ATA TAT CAL TIT CIA TIT CCT TTC CAT GAA GAT AAT GAA AAA GAT CTC CCC ATC AGT GAA 537 K L I E E D A Q L I Q K E D V F S Q L I 199. AMS CITC ATT CAS GAA GAT GCA CAA TITG ACC CAA AIG GAG CAIT GIG TITC AGC CAG TITG ACT 597 A D A H E T E H B E E H A . E B G H G G E. 219 ONG GRT CTG ANY TOT CTC TIT ALC AGG ACT TIT ALC OTC TTC AGA CRG ATG CAG CAA GAG 657 FDQTFQSKFISDTDLTEPYF TIT CAC CAG ACT TIT CAA TOA CAT TITC ATA TOA GAT ACA CAC CIR ACT CAG CCT TAC TIT 71.7 FPAFEKBPKKADTEQCKDI 259 TIT COL GOT TIC TOT ANA GAG COD AND ACA ANA GOA GAT CIT GAG CAN TOT TOG GAC ATT .777 PHFFQLFCHFSVSITESVSE 279 COC AND THE THE CAG CHE THE TEE ANT THE ACT CHE TEE ATT THE CAA ACT CHE CAA T I T K H L K A I E D L P K Q D K A P D 299 ACA ATT ACT AND ATT CTG AND GCA ATA GAN GAT THA CON ANA CAA GAC AAA GCT CCT GAC 897 HGGLISKKLPGQDRGLCGEL 319 CAC GGA GGC CTG ATT TCA AAG ATG TTA GCT GGG CAG GAC AGA GGA CTG TGT GGG GAA CTT 957 D Q H L S R C F K F H E K C Q K C Q A H 339

-											्या ।	, ,,								
GAC	CAC	MI	TIG	LCY	YCY	TCT	TIC	MA	TIT	CAI	CN	. AAA	100	CAA		TOT	CXG	GCTP	ChC	1017
	5	Ε	D	C	₽	D	V	P	٠,٧	L	Ħ	T	E	ı.	Ð	F			_	359
CEA	ICI	CYY	CYC	TGT	CI	GAT	GIA	CT	CCI	CIG	CAC	ACA	CAA	TTA		CAG	~~	100	K	359 1077
_							•				٠.				. ~~		w	MC	MOG	1077
L	V	Ħ	V	8	N	Q	Q	Y	G	Q	I	L	0	ĸ	T	TD.	•	••	_	379
IIG	CLC	XX T	CTA	700	M	CAC.	CAG	TAT	000	CXC	ATT	CIC	cia	ATO	N.	O	***	4	<u>, 1</u>	379 1137
				•								•			••••	~~	and a	CIC	TIG	1137
E	₽.	T	λ	Y	L	V	E	K	ĸ	R	G	0	F	Ġ	u	77		_	L	
GYC	CYC	YCC	∞	TAT	CTC	GTG	GAG	λXG	ATG	YCY	GGG	CAL	TIT	GGC	4133	Caro	***	2	L	399 1197
												•				910	ici	CUV	CIG	1197
X	N	Q	λ	P	E	T	E	I	I	F	N	8	r	0	v	**		_		419
CCY	wc	CRG	∞	∞	CYV	ACA	GAG	MC	ATC	TIT	ÀAT	TCA	ATA	CAG	GTB	C-1-1-	~	. X	I	419 1257
	_													~,~	ouic	GIL	un	AGG	ATT	1257
H	E	G	И	I	S	K	Q	D	E	T.	Ħ	Ħ	T	D	T.	•	-		_	439
CKT	GAA	CCY	XXT	att	TOC	AXA	CAA	GAT	GAA	ACA	ATC	ATG	ACA	GIC.	TTA	300	*		P	439 1317
_	_															••••	WIT	CiG	CCT	1317
5	. 5	H	F	Ť	L	ĸ	I	P	L	E	E	s	A	E	2	c		_	r	
10C	1CL	XXT	TTC	ACA	CIC	MG	ATC	CT	CIT	CAL	CYY	AGT	œ	CAG.	NOW.	***	110	F	I .	459 1177
_																101	~~.	, 11C	AIT	1377
-		V	•	Y	K	Y	L	Q	Ħ	F	K	a	Ħ	F	ĸ	જાં	•	4		4-5
000	TAC	CEX	CIG	CCY	XX	CCT	CIX	CAG	CHÌ	TTT	WO.	GYY	CAT	TIT	AAA	ACC.	€ TOO	411		478
																				1434
GVVC	wicz	MAZC.	CAIC	CIM	XXCC	NGI	YCE	CNI	TAIL.	TCT	CAIC	TOO:	,VCC.1	CCN	WICC	TCAN	ATAR	iaac	GC3	
TAAT	~~	HIGH		LITC	CAGG	RAAAG	TATU	TEM	CIAI	XIRC	TAIC	arci	XCX(TTAC	TITA	CTTA	IGIT	GAAn	CC.	
																				•
TIRG		-	44.27		TONG	LTA	NATC	NAAA	AXC	30CI	TAA	WX	CAA	COTA	ATAI	GIAI	TACA	TITC	ATC:	
GINC													•							
		~~~			~~~	TOWN	TALA	TACI		$\alpha \alpha$	איני									

ATTATGAGACACTCTCCCTGCTAATCCTTAGAACATCTTGGTTCTTGGTACTTGACTTTTAGCCCCTCTGACATATAGTTGATCTCAGA GTGTCTGGCATTTCAGTAGTGCTCTATTTTACAAATCCCAGTAAACTGCTCCACTGTGGCTTGTTTATGTGTTAATACTGCTTGTTTTC TOTTATAAATTATTTTTTGCTTTGGAGTAAGATATCATCATTTTGCATAGCTACAAATCTGAAGTTAAAGAAAATTTTAAAAAATGTAAT TGTGGGAAAATAACAAATAGATCTGCTGAGATGGAGGCTTTGACTAATGTTTTAATAACAGGCAACAAAACAAAGAGGCAGGATATTTT GGTCACAACTAAACCTAAATTAAATCCTCATACAAAGCCCCATTAAGATAAATGCTCAAATTCTGGGAACATTTCACTTGCCTTTGCCAG CAATTTTACCCTTCAGAGGGTGTGGATCTAATCAGGGGAACAAACTACCCTGGGCTTAATTCTCATTAACAGGGACTAATTTGTCAAAG CGGCAGTACTAGCTGAAGTGATGGGTATGGAAGCATTCACTGTGAGGATTTTGCTGAGGTGCCTGGCACAGGGTAGGGGAACTCACCCA GGCTGCAAGATGCTAACAGTTCAAGGTCTAGTGTGGACTAAGGTGCAGTCAGGATGGGAACAGGTGCAACTTGGGCCAACAT  $\textbf{CAGTATGAAGGGCCTGATCTGAGGGGGAAGGAGGGGGGGCATCTGGGAAGCAAGAGTTCCTGGTATCCTGTTGACCAGAGTCTTGG\\$ ACTGGGCTCAGCCTTGGCTACTGGCCCGGCAGATGATAGAAGAGAAAACCAGGAACCCAGGCTGAAGCCCAGTGGTTGGGCTAGCCCACA CACCATGCATAGCCTTAAAGGGGTGGCCTAAGGGCATGGTCCGCTCCAAAAAAGGAAAGGGGGGCCCCAGAATATTTCTGAATCCCACTC ACTGCCAGGGAAGAACCTCTCAATTCACTCAATAGTGCATTCTCCTGCTTCTCAATAGGCTAATACTCTAGAGAATATGGGGACAAGGG GAGGAGGGTCTAGTGGAACAGGTCTAAACTGGCGTTTGAATTTTAAGATAAGTTAATCATACATTGGCTGGGTCAGCCATGTCTCTTAG TCTTTACAAAGTAGAACACAAAAAAATTCAATGGAAATCTACAGACACCTATTTGCAGATGAGGAAACACGGCTATGAAGATTGGGAA GATTGGGAAGAACTGGCCAGGTGTGGTGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCTGGTGGATCACTTGAGGTCAGGA GTTGGAGACCAGCCTGGGCAACATAGTAAAACCCTGTCTCTACTCAAATTACAAAAATCAGCAGGCGTTGTGGGGCCCCACCTGTAATC CCCAATAAAGAGAAAGCAGGACTCATGTTTAAGAAACCCATGAGATGTGTATGGACCTCATGGAAGAGCTCTTGCTTTCTAATGATCTA CGTAACAGATGAAAAGCAGAGCATAGGGCTAAGGATGAAAATACAACAGTAATAAGGTATTAATATATTAAGAAAGCTAATGCTCC ACATAAGCAGAGGACATTAAAGGGACTTTTTTTTTTTAAGGATATCTTAATGTTTTAAATGAGAAGACATAGAAAGGGATAGGTCCAAC TCACCCAGGTGGGGGGGGGGAAACCAGGACTGGGCAGAGAGGCTGGGCTGTAACCAAGTCACAAAGGTGTCAGCTGGTCCCA TOGTGARTTCTGGACCTAGGATGCCTGATCCCAAGGCATTCCAAACTGGGGCAAGGAAGTTGTGCTTTAAAACTTCTCATTGACTGTCA GTCACTGGGCATGAGCAGTCCCCAGGAAGGGGGGATGACCTTGAGCAAGGTGGATGTCTTCAGCCAAGGGCAAYCACTGGGAAGGAGAA TTCTTTTCTGAGACAGTCTCACTCTGTCACCCAGGCTGGAGTGCGGTGGCACGATCTCGGCTGCAACCTCCGCCTCCCAGGTTCA AGCANTTCTTGANCCTCCTGAGTAGCTGGGACTACAGATGTGTGCCACCACCACCCAGCTAATTTTTTGTATTTTTAGTAGAGAGGGGGGG CCACCCCACACCCCAGATCCACTGCCTTCTATATAATTTCTGGGTGAAGCTAATTCAGGATTCTGATGGACCTGTCTTCCCGAGGGAA ACTTOTAAAAGGAAAGTTAGAGGGACAAACTATAGCCCCTGCCACAGCAGCTGCTGCTGGAGGACAAAAATGGTGCTCCTCATTTCCCTT CTTGAGACTGGGTCTTGCTCTGACCCAGGCTGAAATGCAGTGGCATAACCTCAGCTCACTGCAGCCTTGATCTCCCAAGCTCAAGCC GCAATGGGATTTTGCCATGTTTCCCAGGCTGGGCTTGAACTCCTAAGCTCAAGCTATCCTCCCACCTGTGCTAAAGTGCTGGGAT ACCAGGGTGCCAAACATACOCTTCTCCTCCTTTCCTGCAGCTCTACCTCCTCCTGATGATCAGGACAATCATGTATGATGACTCCTTTC CTTGACTGCTGCTCTCAGAAGGAACCCATTGTGTTGGGTGAGAACACATCATTGAAATTTAGTAAGACTCTTGCTGTGCCTATGGT AGAAGCATTCCCTCTCTGGGGCCAAGATCTTTAAATGCACAGAGTCCAAAGTCGTGGGAACCAAAGCAGAAATTAAAAAGGAGATGACT GGGATTATGGTAAGAACTGTTTCCACCCTTGATTTGCTGCACCCATGTGTTCTACCTAGGAGATAGCACACCATATACTGGTTATTCAT TTGGATTACATGCTGCATCCCGGAGAATGGGCACTGCATTCTCACTGGTCATCATGTCAGAGCCTGCCCCTGCAGAGGCTTTCCCCATTGC TCTGTCAGTGTTATAGGGTCAGTGGATTTCATGGTCATGTGCCCCACTGCACCTCCATTCTTGTAAAATGGGTCCTCTGGTTCAA TOTGATGCCATGTGGGATCTTGTGTCAATAGAATAAATACTCAGATGTTCTGGCTGAAGCTTTACAAGCAGAAAAAGGCCAACCGATGAC

TGAAATAAGCGTTGAGCCCAGTCAAGATGAGTTCCTGCTCTTTCCAGGATAGACGGAGTCTAGTGTAGATCACTTGACATCAAGAGACT TCTCTGCCACAATGAGCGCTCCATTCATGTTCCTATTGTGCCAACACTAGGGTGTCTGTAATCACTGAAAACATTATTGCTATCATTAT CCCGGCTTCAAGTGATTCTCCCGGCCTCAGCCTCCAGAGTAGCTGGGATTATAGGCATGCGCCACCACGCCTGGCTAATTTTTGTATTTT TAGTAGAGACAGTCTTTTGCCATATTAGTCTGTCTGGTCTCGAACTCCTGACCTCAGGTGATCTGCCCGGCCTTGGCCTTCCGGAGTGCT TECCTITATTCCTTCTCTAATCCTGTTCTTTAAGTAGATGTGAATTTCTGAACTACATACTTTTTCTTTACTCTTGAGAGGTTGTTTGG AGGITCCAGCAGGGGACCACAGCTACTCGTATACCCTTGACCAAAGACTGGTCCTTGTCTATCAAGGATGGTCGTCTTCTTCCACCAAG CTGGTAGTCAATGGGGTGACAGTGTCGCAGCCAGATTGCCCTCACATCCAACTCTTAGTGATCTTCTCTTAACATTTCTTGCAAGGCAG TCTCCCTCTGTTGTCCAGGCTGGAGTGCAGTGGCTGATCTTGGCTCACTGCAAACTCTGCCTCCCAGGTTCAAGTGATCCTCATTCCT CAGCCATCTGAGTAGCTGTGCCAGCGTGTGCCACCATGCCTAAATTTTGTATTTTTAGTAGAGACGAGGTTTTACCGTGTT GCCCAGGATGGTCTTCAGCCTTCTTAACTTTTAAAGGATAATTTCACGGGGAGAATTCTAGGTTAGTGTATTTTTCTATACTTTA AATATTTCACTCCACTTTCTTCTTGTGTGTGTGTGAAGATAATGATATATTCTTATTCTTGTTTCTCTGCAGGTAAGGTGGTTT CATACCTCTGGCTTCTTTCGAGAATTTCTCTTTGTCTTTGATTTCCTACAGTTTGAATATGATATAATTATGTATAGACTTGGGGCTAT TTATOCTTTCTCGTGTAGTCTGAGCTCCCTAAGTCTGTGGTATGGTGTCTTGTAATTGATTTGGGAAAATTCTCAGTCATTATTACTTC  ${\tt AAATATTTCTTCTGTTCTTTTTTAACTTGTGCCAACTTTTTAATTGATACATAGTATTTTACATATTTATGGGGTACATGT$ GAGCTTTTCAAGTCCTCTCTTGTAACAATTTTGAAATATACAATGCCTTGTTGTTAACTAGTCACCCTGCTCTCAAACACTAGG ATCTATCATTCTACTCTTACCTCCATGAGATCAGCCTTTTTAACTCCCACATATGAGTAGAGAACATGTAGTACTTGTTTTGCCGTGTC ATAGTGTTCCATTGTTTATATAGACCACATTTTACTTTATCCATTTGTACATTGATCAACACTGAGGTTGATCCATATCTTGGCTATTG TGAATAGTGCTGCAATAAACATGGGGTGCAGGTATCCCTTTAATATACCGATTTCTTTTCCTTTGGATAAATACCCAGTAATGGGATT GCTGGATCATGTGGTAGATGTATTTTAAGTTTTTTGAGAAACCTCCATACTCTTCCATCATGGCTGTATTAATTTACATTCCCATCAAT AGTATATGAGTTCCCTTTTTTTTCTGCATCCTCACCAGCATCTATTATTTTTGTCTTTATAATAATGGCCTTTCTAACCAGGGTAAGAT QATATCTCATTGTGGTTTTGATTTGCATCTCCCTGATQAGTAGTQATGTCAAGCGTTTTTCCATATGCCCATTGGCCATTAGTATGTCT TCTTTTGATCAAGTCTGTTTGTGTCCTTTTGCCCCACTGTTTATGCTCCCTTTTTTTCTTCTCTCTGGTATCCCCCTCACACATATATCA GACCTITTTEAATTGTCCCACAATTCTTGCATTTTCTGTTCTTTTTCATTCTTCTTCTTTTTCAGTTTCAGTTTTCGAAGTTTCTATT CRETERIORICATION CONTROL METACONICATION CONTR титетическое постое пос TCTTYCTTCTTTCCTTCTTTCCACCACTTCTCACTATGTTCCTCACGCTAGCCCTAGAACCCCTGGGCTCAAGTTATCCTCTCAG CTCAGCCTTTCAAGTAGGTGGGACAAATGCGGCATTCTATCATACCCAACAATTCCTCATTTCTGTTACAGTGGTTTTTATTTCTAGCA TCAGCATATTAATTAGTTATTTTCAATTCTAGCCTGATAATTCCAAAATCTCCGTTATATTTGAGTCTGTATCTATGCTTGGTTTGTCT AAACAGGCCTTTAATATGAGGTTTTATGTTTATCTGGCTTGGAGTTAGGCTGTGTTTACTCTTTGCTGTAACTTTGGTGCCAGAGGCTA AAATTTCCTCTGGTGCCCTTGTTTTGTCTCTCCTGTTATGTTTGTGTTTCCACACACTCTCCGTGAATATGGTGTGAGGCTTGAAGTT CTTTAGCTGTAACCCCTCTTATTATACAGCAGCCTTACGGATGTGGTGGTAATCTGGGGAGGGTGGGCTTAAGTATTCAGCAGTCCTGTG ATCAGGCCTCAGTCTTTTAATAAGCCTCAGTACTTCCCTTTCCCTTTCTGCATGTTAGAGTGGCCCTGGAGTTGGGGGTATCCATTACCC CAGGITGGTAGGCTTTGGTAAAACCACAGTCTATCAAGCTGTGGTAAAATAGTTTCCCTGCAGTCTGGCTTTGTTAAGGATAACAGAG GCTCTGGGGGGTGTTTCAAAATTGCTACTTTTCCTCTCTCCCTGTCAGAAGCACAAGGAGATTTCTCTTGATCTTCACCCTGAGAGTCTG GTGGGGTTCCTGGAGGTAAAACTCAGGAAAGTGTGAGGGCCTCCACACAAAGGGTCTGCTGAAGTTTGTTCCATAGCCTCAGTTCTCTA

ATGGATCTAAGAAGAGTTATTGATTTTCAATTTGTCCAACTTAATTCTTGTTTTGAAGACAGAAGTGATGACTTCCAAGCTCTTTATAT GTTGAACCCAACCCCATATTATTTTCAATTAGCAATTGCATATAGCAATGGTACATTGCATTTATAGAAATATAATTGATGTTTGCCTG TGTATCTTTTTTCCTATTATGTTGCTGAATTCATTTCTTAGTTCTAGGAATTTTTCAAATACATCCCTTAGGATATTCTGTATACATAA ATTGAGCATAATGTTAGCTGTAGGTGTTTAAATCTTTATCCAGTTGACGAAGTTACCCTTTATTCCAATTTTTCTGAGAGTTTATATC TCTATTTGCTAATATTTTGTTAAGGATTTTTGCATCTGTTCATGAGGGATCTGGGCTGGTAGGTTTTTTTCCCCCCTGCAATGTCTC TTTGACACAGTCTTGCCCTAGGCTGCAGTACAGTGGTACGATCATGGCTCACTGCAGCCTCAAACTCCCAGGCTCAAGTGATCT TCCTGCCTCAGCCTTCCCAGTACAGGGGCAGCCTACCACCATCTGGCCCAATTTTTAAATTTTTCTTTTTTAGAGAGGGGTCTCACTATGT TGCCCAGAGGATCTCAAGCAATTCACCTACCTTGGCCCCCTCTTCTTGTATTTTATGGAAGAATTATTGGTGTCAATTCTTCTTGAAAGT AGGCTGTAGTGCAGTGGTGACCTCTGCTCACTACAACCTCTGCCTCCCACGTTCAGGTGATTCCCCTGCCTTACTCAGGCTCTGGAG GAGCTGGGATTACAGGCACCGCCCACCATGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGACCAGACTGG TCTCGAACTCCTGACCTCAAGTGATCCACCCGCCTCGGCCTCTCAAAGTGCTGGGATTACAGGCATGAGCCACCGCCCCAGCTGAAGA TTTCTTTTTGGGGAGTTTTAAATTATACAATCAATTTGCTTAATAGGTATAAGCTATTCAAGTTATCTATTTTATACTGGATGAGTTGC AATAGITTGTGGTTTATGAGTTTATATGGTCCATTTCATCTGAGGTATAAAATTTAYTTGTGTAGTATTGTTGGTAGTATTCCCTTGTT  $\textbf{CTCTCTCTCGGTCAGTCTTTCCAGAGGTTTGTCAATTTTGTTGACTTTTTTCCCCCAAAGAATCAGCTCTTTGTTTCATGGATTTTCT$ CATATTCGATGTGAAATCTTACATTATTCACTCGGGACTTTTCTTCTTTTTTTGATGTATGCATTTAGTATTCTAAATTTACTTCTKAGT  $\textbf{CGTAGTCAGAGTGCATGCTGTACAGTTTCAGTTCTTTCAAATTTATTGAGCTTTGTTTAATGGATCTGGATACAGTTTATCTTGGCA$ CACACACCTCTTCAACTCTCCAATGTCAATTGTCCATTTGTCAATTTCTCCTTTCAGTTCTATTACTTTTTCTTCACATATTTTACAA · CTCTOTTOTTTGGTGCATACACATTTATGCACCAAATTTAGGATTGCTATAACTTCTTGGTGGATTGACCCTTTTACATTATAATGT TCATATATOTACATAGATATATATATTTTTTTGAGATGOTGTACTCTCTCACCCAGGCTGGAGTACAGTAGTGCTCACTGCAACCTCTG TTAGTAGAGGGGTTTAACCATGATGGACAGGCTGGTCTCGAACTCCCGACCTCCCAGCGATTAGCCCACCTTGGCCTCCCAAAGTGCT  $\textbf{GOCATIACAGGTGTGAGCCACCGTGCCTGGTTTAATATTTTTAATCCACTCAGTCTTTGTCTTCTACTGGTGTACATAGACATTCGCAT$ **GTAATGTAAATGTTGATATGTAAGAGCTTGAATCTGTTATGTTTTTGCTTTCCTATGTTTTCCAATTTTTAATTTCTCAGTTTTCTT** TTTTCTCCTTCATATTGGCTAATGAACACTTTGAATCATTCCATTTTGATTTACCTATAGTGTTTTTTAGTGTCTCTTTGCATAGC TTTTTTAGGGGTTACTTTAAGTATTTCATTATATGTACATAACTTATCACAGTATATTGGTATCGTTATTTTACCAGTTCAAGTAAAGT TGFTGFTTCTTCCCTCTTTATGCCCCCATAGTTCCTTCTTCTATTGTTTTCGFTTAGAGAACTTCCTAGCCATTCTATTGGGGTAGATCT CCTAGTGACAAATTCTCTTAGCTTTCTTTTTCTCTGTGAATGTCTTTATTTCCCTCTTTGTTCCTGGAGGACATTCTCACTGGATATAGG ATTCTTGGCTATTGGGTCTTTTCTTTTGGCACTTTTGTAAGTGTGCAGCCTGCTGAAAATAAAAATTAAAATAAAATAAAAATGAAT OTTITOCTTCCTACCTTCATCAAAGTATAATTCACTCAAATCAGCAGCCCATCTCTATAATCTGCAGCCCCATCCTCACCTCTC

AGAGAAATGGTTTAAAGGAACTAAGGCTGTTTCTCCTAAAAAGAAAATAGTTGGAGACATGTGACCTCCAAAGAAACAGGACTTTTTCT ATGGGGCTCCAAGGGGTTTCTATGAGAGAATGATAAAGGAGAGACTTTCAGCTTAGTCTCAGGAAGACTTTTCAACAACCAAACCTGCCC AAAGATGGACTGCCCTAAGGATTGTGTTCTGACATTAAGGGTATGGAGGTATGGGTTAGATGAATATTTTACCAAAATGCCATAG ATATTTCAGGCTATTGATGTTGTAATATCATACTAGGCAACTCCACTTCAATATGAGTCTCTATGATGTAAAATGAAATAGGATGTGTT  $\textbf{TCGATAGAGAGTTGCAGTTTGATGTTAGCGACCACACAAAATTACTTTCCCTACATAAGAACATGTTATTACTCTAGTTGAT$ GATGACTGCTTATGGGAAATGTGTCTGCTTTGTTAGGAATCTTGCCTAATATATGTATAATTCAAGATGGTATTATAAAGTGACATATA TGATTTTAACATTTGCACTTAAAATAACACTTATTCTGTACCATCHASTGTCTAGGAGCTTCTACATATTCCATTATTATCTTTATTTT TCTGGCTCCAGGATCCAGGCTCAAAGCCAATATACTATCCACCACCCCAACTCTTTAGTTTGATCLAATTTGTCAAATTATTTTACAGTT ATTTATCTGTAAATTAAGGGGATAATTGCCCCAGTCAATAAATGTGTCCCCTTCAAAGGTTACATACTTAACCAATGGTGCTACTGGGCT CAGAACATTITGGAACTACGATTITGGTGGCAACCAAAAAAACCTCCAGTACATTCCTCTGAACATTCTCCAGAGGCAAGTCTTTCTCCATGGAGACTGGGCTTCATTTTTTGAATTAGCCTGAAGTTGTTTGAGGTCAAATCTGATGAAAAGAGCGGCTGGGGAAGCTGGATATTTT CCTTCGTGATTTAAAACAOTAAATGCCACCTAAATGAGAAGGCTACTTTCTTTGAATGTTTTOTAAACTGGCTTTGAAGGTACTTCTTT AAAAAAGAAGCACAAGAAAGACOGTGACTGGCAACAGCCTCACTGGAATACGTCTCTAATCATCAAGGCAACCCACACTCATTTGGATG TGTGCATCCGGTGATGTTATTATTTTTAAAGTTATGTGCCACAAAGATGCATTCTTTGCTATACAAAAGAGCTGTTGAAATTTATAA AGATATAAAAAGGGGAAAAGGCACCAAATGGAAGATTCTTAGGCATTAAGTGCTCAGACAGCATAGATCTTCATTAGATGACGT TAAACATGCCTCCCAAGCCAACGTTCATCCAGGAATACGGAGGATGTTTGGGATATGGGGGGCATGAAATTTTACAATTGTAGG GCCCTTTAACAAGGGTAGACTTGCAAGTTGCACTGCCTTCCTGCCTTACCTGTTCCAGCATCCAGAGTTTGTGAACCTG GGGMCCAAGGACAGCACCCTGGCATGGGCAGGCCCACTNGGGGGACTCTCTCAGGGGCTGCTGCAGCTGTGTCAGTGTCCCCAACAGGGAGN CCCCTCCTGCTTTATCTGCCCAGAGCGAGGCTCTCTTTCTAATGTGTACAAGGCGTTCTACCTATGACTCGTGGTCCTGCCATAGAAAT GCTTTTTTTTTTTTAACTGAATTAAGTTGCCAAGTTTGAAAAATCAGAATTTCACATAAGATCCCTATTTCTGCTCTTTTTGAAAAA CTGAATGTTCTTTCCACAGTGAGCCCACATTCCTTCCTGACGACCATCACCGTTCAGCTGGAGTAGAGAGGGCTCTGCTGGCTTCAGAT CONSTRUCTOR CONTRACTOR CONTROL CONTRO AMOSCATCHTACCAATGRC107TGAGARCATCCTCCGGGGGGATTTCTCTCCTCGCCGCTCTTGCCCACTTCTCCGGAGAGCCAG AGGIAGAAATACTOTGGGCTGCTTCAGAGGCTGCCGAGCAAAACTCAGGCAATCTCCTGGGCTGTTCCAATACGTTTATTCTCTTTTTC ANARCAGGAGGAGGAGGAGAGAGAGACACACCATCCCTGCAAAACTACTGGCAAAAACTAAGGGGAGCCGGGTGTGGTGGCTCA ACAAAATTAGTCGATTGTGGTGCATGCTTGTAATCCCATCTACTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGC CCAAGCAGAAAAAGAATCACTCTGAAAACGATCACATCTAACTATCAATGCTCATACAGTTTATGGAATTATCAGCCCAACTTGATAAA ATCAOTATTTGAGGAAACTGTGGGATAAGCCCCCTGATTTCAATCCCCCATTGTGCCCAGGTCCTGGTTAACTGAGGTTAACGAAGTAAAGA GCTGCAGACACTATTAACTGCTACCTTAAACCGATTACTCTAGCTTAGCCTACTTTCCACGTACAGATTTTACCAGTGGACAACATGAT GAACAGAATTTTCAAACTCAACATTAATGCAACTCCTCAGTCCCTGACAATGGCGGGGGGGAAAAGTTTCTAAAAATATGCAGCAGCACA AGGACATCCTGGAATGTGGGACAGTAAAATCACTTAAACTTTGCGTGACCTTGAAGAAAGTCACGATGATCTGTTTTTCCAGGTCCCT 

 ${\tt CAGCCTGGAGTCTCTTGAGTCTCAAGGCTGCCTGAGTTCCTCTAACATCCTCTAGGCAGTATCAGCTAATGAGACAATGAATTCC}$ ATGGAGGCAGCAGTGGGAACAGAAGTACCTCTTTGGATAATTTACAACACTGGTGAGCAGAGGGTCAGATCACCCTGGGGTTTGTGTC ACAACCAAAAAACTGGCTGTGGCACTGAGTTCTTGGATGGTTTTCTACAGCTGGTCCAGATTTTCCATGGGCTCACCTTTAAATTAAAA GAATTTCTGCACTTTGAAGAATTTGAAAACAAAGCCATGTGTGAGAATATGAGATCCACTCATATGCCCTTGCAAGAAATAGGTTGCAT GTGCCTATGTTGTTCTGATTTACTAAACTTTAAAAATATGTCCATTGTTGTCTGTTAACAGCTTTTGGCAACTTTTTCAGAGATTGAAA TATGTGAGCAAATTAGAGAAATGAGTACAATTATTAGCTAGTACCATTCAACAAGCGCTAAAGATACAAAATACCTCTACAATACATAAA AGGAATGATTATAGTAGATTTTATAATGCCATATAAGGTTTCTTATTTAACTTCATTCTTAATTCTCAAAATAAAATGAAATTACATAG AAGCAAAGTAATATAGTTACCAGAATAGTATTTTTACATGTCTTTAAGTGTATGTTGTTGTTGTTTTTAAGGTAATTATGTGATGT TOTGGAAAGAACAGAGACCTGGGTTAGATAAAATTCCGGTTGTCTACCAGATTGTGATAGTGAGCAAATTACTTAACCTCTATGATCCT TATCTTATTATCTATGAAACAGGATTGGTAATACTCATATCATAAGGTTGAAAGGATTAAATGAGGCACTATGGAAAATTTCTAACAT GGTGGTGCCTGGGACAGTAGAAGATGCTTAATAAAGATAGCTTTCATTATTATTAGCTTTTTCAGGTGATGGTGATTGTAAATGTT TTTATTACCCAAAATGTCAACGACTGTCATAAAGATAAAAATTAATAATAATTAGCCCAGGTGCGGTGCGTTCACGCCTGTAATCCCAGCA CTTTGGGAGCTGAGGTGGGTAGATCACAAGGTCAGGAGATTGAGACCATCCTGGCTAACGCGGTGAAACCCCCATCTCTACTAAAAATAC AAAAAATTAGCTGGGTGTGTTGGGGGGGGCGCCTGTAGTCCCAGCTACTCATAGTCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATGGTG TGAACCCGGGAGGCGGGGGCAGATGCCGAGATGCGCCACTGCACTCCAGTCTGGGCTACAGAGCCAGACTTCATCTCAAAAAAA AAAAAAAATTAATAATTAAACCCGAAGTATGAACTGAATTATTTCCCTTAGTAGCACATCACATAGGCTGATGATAGTTTTGGTG TTTTTATTTTTATTTGCTTCAGTAGCATTADCCTTTCCTACCAAGATTCGAACAATCCATTTGCCTTTTTTTCCCTAAAATCTCTCAT ATGGAGTTTATCTGGCTCAAGACCAGGACATTTATTGCATATCAGGTTTCTACAGTTCAGGCAAAAGTTTGAGGATAAGGACTTACTGC AAAAAGTCTTCTATTGTTCTCAACCATTTTCTCGCTTAGCACATGCAGAGATTTGAAATGGTCCGTGCTACAGTACTTGTGTCTGTATA TITCTCTTGTAGAATATTAGAACAAGGGATTTGCAGTTTACAGAGAAGAAGGACTTGGCGAGGTGTTTGGAAATACACTCAGAAACCTGA GGAAATTTGTGGAAAGAGAGGCTTATTATTTCTAGAAATATGCTAGAGTWCGTTTTGATTGTGCACCTGAGGAATTAATAGATTAAGTA GTTTTATAAGGACTGGGGTTAATAGAATACTGGCAGTGAAGTTTGTCTTAGGACTTCTTAATTGGATAATCAGTGAAGTCACCAGATCC CAGTTAGAGACAGTTCCAAGTTTTACAAAACGCAAGATAACTGTCCAAGAGCTGTAATGGCTTAATCATCTTTGAATAATACCTCTCAC TGAAGCTATATCATAAGAAATAAAAATCTACATTTTAAAAAATTGGCTGTAATCATAGGGTGACTAACTGTCCCTGTTTACCCAGGACT CAGGGTTTCCCAGGCTCAGGGACAATGGGTACTAAAACCAGGACAGTCCCCAGGCAAACTGGGACGGTTGATCACCCTACCCAATGGCCT CATCTOTCTCATTAAAATATCTGGATTACTTCGTGCCTCAAAAATATCCTCGGCTTACCTGACTCTAGACAGTCAAGAAGCTTTATTA ATTOTCTAATGTATGCCACTTTCTGCAGGTGATATTGTTCAACTGATAGATGAGCATCACTGATTGAAATATTTTGTGGTTTTCATGCT TTOTATCTTGTGCTGATAGCCCCACATGGATATTTCTGTTTCCAAGTTTGTGTCACTTCTGGAGATATTAGCCTGAACTCAGCAAAATA ACACCTGTAATCCCAGTACTTTCCCLAGGCTGLAGGTGGTTCGCATCCCTTCGGATCAGGAGTTTGAGACCAGCCTGGCCAATATCGTCAAT CAAGCCCTGTCTCTACTAAAAATACAAAATTAGTTGTGCGTGAAGTGTGCCTGTAATCCCAGGTACTCAGGAGGTTGAGGCAGGA AAAAAAAAAAAAAATTAGCTGGATGTGGCACATGCCTGTAATCCCAGCTACCTGGAAGGCTGAGGCAGGAAATCGCTTGAACCCA ATAAAAAATAAATAAATACATAAATGAACACATAAATTAGATATACCAAGAAAAGTATAAAAAAGTCTTOTOTGAACATAAATGA AAATTGGCCAAAATAGGTAACAGACAGGGGTCAGGCGTGGTGGCTCATGCCTGCAATCCCAGTACTTTGGGAGGCTGAGGTGGGAGGAACC CAACTTGCCTTGCCTGCCTGCCTTAAAATACTAAGTTAAATGCAATACATGCCCTGACATTGTAGTTTGCTTTCACAAAGAT TTACTGAATACTTACTCTAGGCTAAACCTTGTGCTACATGTTGGGGCTACAGGGATGAAAGARAATTGGTCTTGCCCTCCAGGAACCTT TCATTTAGTACAGAGATTTAGTGTGTGCTGGTCTCTTCTCCCCCTCTCCAGATCTATTCTCTCTATTTCTTCCCCTCTCCCT GCCTCCAGGAAGGGGGGCTGGATCACTGTGGCTCATTGCTCTGTGGCTTCTGATTGAGTTCAGCCAATGGGAGGCATHATTTTGGCGTG CCAGCTCTCCCTCTCCCAATTCCACTTCCCTCCCAACCCTCTCGCTCTCACTCCGTTCCTGTATCCAATAACAGACTCCCTT AACTGCCCACTTCTGAAAACAGTTTCTGCATAAAGCTATTTTCATAATTTCCTCTGATGTGCCTTCTGTTTCCTGTGAAACCCTGATT

TOGCACCATCAAGAGTGCCCATGTAACAGAGATAAGTAAATGCATCTTGAGCTGAACACTGAAGGATAAGAAACAAAGGGGAGAAAGAC  $\tt CTAGAAGGGGCAATATACAGCAAGGAGGCAAAATAAACTACTGTGCATTCATGCCAGTGTTAGCATTTAGGACATCTGGAAGCTAGAGG$ TGGACTGGAAAAGGAGAGAGTGATAGGAGCTGGGGTCAGAGAGTTTCAGGGTGGGGGAAGGTCTTGCAGGACCTTGTAGGTAATTGTAAA AACAATCAGAATCAACTAGATGGATITAAGTATGGGTATACCATGAAAGAAAATTACTTAAGATCCTTGCTACTCAAAGTATGAGCCAG GACCAGCTACACTGGCATHAGCTGGGAACTTGTTAGAAATGCAGAATCCCAAGTCCCCGAGACAAACTGAATCAGAACCTGCACTTTAA  ${\tt CAAGATCCCAGGTGGCCCATTTGTATGGTAGAGGTTTAAGAAGCATTGGTTTAAAAGATCCCTCTTGATAGGAGCATGGAAGATACATTT}$  ${\tt GAGACAGAATAGACAAGTCAGAGACAGGTGGGAAGGGCCTAAAACAGGGGCAGAAGTAGGGAGGTAAATGAGGAGACAAATACAAAGGAA}$ ATGCGTAGGGAAGAACAATGCACCCTTTACCCAGCCTCCCATCATTAACATCTTATGCAACTATATTATAATATCGAAAACAATCAA TTTATCATATGTGAAGCTTTGCTACCACAATCAAGATATTCAAGCCATTAGCAGAAGATTTTCTGGTGTTACCTCCTTATAGCCACACG CAGTGTGTATCTTTTGGGATTGGTAACAGAGCAAGACAGGATCTCACTCTGTCACCCAGGCTGGAGTGCAGTGTCGTGATCTTGGCTCA TTGCAGCCTCCACCTCCTGGGCTCAGGTGATCCTTCCACCCCAGCCTCCTGAGTAGCTGGGACTACAGACACACGCCACCTCACCTGGC TAATTTTTTGTATTTTATAATGATGGGGTTTCACCATTTTGCCTAGGCTAGTCTAGAACTCCTGGGCTCAAGTGATCCAACCGCCTTG TOTATCAATACTTCACTCCTTCCAGTTCCTGAGTAGTATTCCATGCCTTGGAGGTGCTAGAGTTTATTCATCACATTCAACCCATTGAA GCHCATTTGGGTGGCTTCCAAGTTTCCAGTTTTGGGCTATTATGAACAAAGTTACTATGAACATTCÄTATACAATGGATACTTTTTTGTA TGAATGAATGGAATAGAATGGATAGGATTAGTGATCAGCTATGTGGGATGAAGAGTGGCATAAGTAGTAAAAAAGTAACCCTCAATGCA ANTAGTATCCTTTTCAAATGAAAACAGTAATTTAACATAAACTATGAACTTAAAATCTAAAGTAAAACTTGACAACAGTGATGCAGAAT AATTTATTAAGCAAAAAGGAAAGCTCTCAGGAAAGAGTGGGGTCCTGAAAGCAGGTTGCTGGTTGCCCCTTCGTAGTTGAATACAAGGG CTTCTATATAAAACCTGATGGGGCCGAGTTCCCTGTTCGTATAAGGCATGAATTCCTGGTGGCTCCACCGCCCCCAGTGCGTATG TGGGACCTTCGTCCACTAGGGACATGTTTAGACAAGCTCCCTGTGCACGTTCCCTTATCTGCACAAAACATGGGTTGGAGGTTCTCCGG GCACCCTTCCTTTACTTTCTGCCTAAAGCAAGCTGGCTAACTCCTTTCAACAATACTAAAGACATACAGACAATGGTTCTCAGTACAAT ACTIGITIGGCCTCCIATICIACAANGTCCTATIACTATIAAGCATTCTTGTATCATGGCATTCCTCAAATAGTTTTTAAATTACTTTT AATTT@AAGAAG@AACATTCTGTACAGTCACG@AAAGTGTCAAAAATGAAAATGAAAATGAGGCAGGGTGTGGTGGCTCACGCCTGTAATCTCCG CACTTTOGGAGGCCTAGGTGGGTTGCTTGAGCCTAAGAATTTGAGACCAGCCTGGGCAATATGGTATAACCCTGTGTACAAA ANTACAAAAATTAGCCAGGTGTGGGCCCAAGCCTGTAGTCCCAGCTACTTGGGAAGTTAGGGGAAATCCTAGGTGACAGAATGA OTACGATCTTGGCTCACTGCCAACCTCCGCCTACCAGGTTCAAGCCATCCTCCCAACTCAGGCTCCAGAGTAGCTGGGACTACAGGTTGTG COCCACCATGTCCAGATAATTTTGTAGAGATGGGATTTTGCCATGTTGCCTGAATGCCTGGCCTCAAGCAATCCACCCTCTTTTAATGAATTTACACGTTACCCAAATGTTCCCTAGTTTTTCTGCCTTCCAAGATCACTCTGGAAGAATATTTAAGAATATACCAAAT CATGCTCCTAGGTCCAGGGTCCTCTTGGCCATGACACTACCACCACAGTGCAGACCCCACAACAGGGAGAAGGACGCCCACAGTCCCTCA ATCCCCCTTTTCCAAGATGTGCACAGCCTGACTCCTAACTCCCCACCACTGACTCTAGGGGAAAAACAGCACAGGGCAGGAAACGATTT CGTTCAAATCGGAGTTCTTTCTTCATGACATTTCTTTGCAAAGTCCCGGAACCCACAGCTCTGAGACTCTGGCTGTCCCCCAACCCACC CGCCCCAGAACAACCACCGCCTTCTTTCAGTGTAGCCAAAAGGCTATTGGAGTCTTCTCAAATGAAAGAGATTTTATCAAAGGCTTGGA QAAQAAAAQAAAAAAAQAQATTATATAATAAAACGTAAAACAACAAACATATACACAAAACAAAACAAAAATAAAACTQAQATATGATTCTCCC

WO 99/47535

GGAGTGTTIAGAGCAGGAATGTTCTTGGGCATCTGCCTTCCCCCACCAGCACCCCCCACAAGGCCAAGGCCAGTTCACCCTCAGTGCTCA CTACTITGCAGTGTTCATAGAATATTTTTAGGCGGCTCCCTAAAATTTCTTTTCTTTTCTTTAGAGTTGCGTCCCTCTCOOTTOCCAGGCTGGAGTTCAGTGGCATGTTCATAGCTCACTGAAGCCTCAAATTCCTGGGTTCAAGTGACCCTCCTACCTC TGTCACCCAGGCCAGAATGCAGTGACACGATCTCAGCTCACTGCAACTTCTGCCTCCCAGATTTAAGGGTTTCTCTTGCCTCAGCCTCC CTACTAGCTGGGATTACAGGCTTGCACCACCTACGTCCGGCTAATTTTTGTATTTTAGTAGAGATGTGGTTTCACCATGTTGGCCAGG CAGGTCTCGAGCTCCTGACCTCAAGTGATCCACCCGGGGTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTACGCCCAGCCT ATTTTATTTTATATTTTTTTTTAGACAAGGTCTAGCTCTGTTGCCTGGGCTGGAGTGTAGTGGTGCAATCACGATTCAGTGCGGCCCCT TGTAGAGACGGGGTCTCACCCTGGTGTCCAGGCTGGTCTCAAACTCCTGGGCTCCAGTGATGCTCCCACATTGGCGTCCCAAAGTGCTG GGATTATAGGAGTGAACTACTGTGCCCAGTCTTTTTAAAAAATTTTCAAGAGATTGGGGTCTTGCTATATTGCCCAGGCTGGTCTCCAC TCCTGGTGTTAAGCGATCCTCCCACCTCAGCCTCCTTGAGTAGCTGGGATGACATTACAGGCACACACTGCCACCACTGGCTCTAAAAC ATACTCCTCAAACTTTTGTACGTATCTCAGCAGTCATCAGTTGCACAGTGCAGAGGGATGAACTGCCGTCCCGCCACCTAAAAAGCATT ACTTCCCTGTCTTGCCTTTGGGAGGTTGACCCTGAGTTGGCATCTCAGGGTCTCAGTCTGCTGGTTTCCTGSGTTCCCCTTG AAGGCTACTGCTCCCACAAGGCAACCACGGTCCCCGCTCTGGCTCTCACTGAGCTCCAGAATCATTGTTTCCTCCCCTTACCCAAGTGA GAATAATTATGTTTTATTCCAGAACCCTGACAAATGAAGAGGCCTAAAAACCCCCTAGGTATTATCCGATCTTGGTGATCAGGGAGGTG TTTGTTTTTTTTAATGCAGACACATAGTTTTAAAAATTATTCACTTCATCTACTGTAAGAAAAGTCATATTAATTCACAATTTTGA TTAAAACAAACAAACAAACAACAACTTCTGTGACATTTTGGCTAACAAGTGGTTCAATATTAAAGCTTTGTCCACCAGGTGCAGTGGC TCATGCCTGTAGTCTCAGTGCTTTAGGAGGCTGAGGTGGGAGGATCACTTGAGGCCAGGAGGTCGAGGCTGCAGTGAACCATGATCTCA  $\textbf{CAATCTGTCTCTTTGGCCTGGGTCTCTCACTGCCTTTTAGATAAAATCTGGCAATAACCAAAGAGTTTTCATAAGGCCTGTTGATCT\\$ GAGTCAGCACAAGGATTCTTTTTTCCATATATAGGCTGAGTATTCCTTATCTTACATGCGTGAGGCCAAAGTGTTTCAGGTTCTGGA TOTTTTGGGATTTTGAAATATTTGCATATACACAATGAGATATCTTGGGGATAGAACCTACATCTAAACACAAAATTCATTTATGTTTC CATCAGGAAGCAAGCTGTCCCTGTCTCAGCCACCCACAAGGACACTCTGTAGTTGTCTTTCATTCCTGATTCCGAATTTATACGCTACT TTGCAGCAGAAAGGAGCTGGGAGGGTCCTTTTTTTCCCTTGGGGACACGGAATAAATTGTGTATTATGTGCCTGCATTTTGACTGTGAC CCCATCACATGAGGTTAAGTGTAGAATTTTCCACTTGTCTCTGTGCTTAAAAAGTTTAGATTGGCCAGGCATGGTGGCTCATGGCTG CARTCCCATCACTTTAGGAGGCCAAAGCAGGTGATTTGAGGTCAGGAGTCAAAACCAGCCTGGCCAACATGGTGAAACCCTGTCT CTACTAAAAATAAAAAGTTAGCCTGGCATGTTGGTGCATGCTTGTAATCCCAGCTACTCGGGAGGCCGAGGCAGAATCTCTTGAA AAAAAAAGGTTAGATTTTGGAGCATTTTGGATTTTGGATTTTGCATTAAGTGTGTTCAAGCTGAAAAGAAAATCCGATTTGCTCAGGA TTTTHCCCATCCTGCTGTCATGCAGATCCAAGAACCAAATTAAAACACATTTGCCGGGGTCATAATAATGTGGCCAGAATTTAAAGAAA AACTTCATTTTTAATTATGTATGTATTGCTTGTTTTAGTCTACCCATTTCTATTTGCTTTAGCTTACTCAAAAATAAAGCGCGCCACTT CGAACACTCAATAGTCTTCCATTCATGTGGGCCTTTATAATGCACGGCCCCAGATGCAATACATCTGGCGGTCTGCTTGGGTTGGCCAC TGGATTGAAGGAGGCAGAAAGTCTGGGATGATTCCCAAATGTCTGGATCTGGTGACAGGGAGATATGGCAGGGGGAGACTTAGGGGAAA GGTTCCAGGTAACTTCATCGAAAGAGAGTTTCAGGCAGTAGAAATAAGAGCACCCAGGACAAAGCCCCCAGGGAAGAGACAAACATCTGACG GAGGACAGAGGAAGGAAGGAATGAGACTGAGCAGGTGTCATGTGTGACACCAGAGCCTGACACATAGTAGGAACACT CAGCAAATACCCTAACAGAGATGAATCCAAGGCTGGGGGAGGTGGCTCACGCCTGTAATCCCCACACCTTGAGAGGCCCTAAGTGGGAGG GATGAATGCATAACCTGGCTGCTGGAGCCCAACATGGGTTGGGTGAGCCCACTCTTACCAGCAGCTAATCAAAAATTTGCCTGGAATTCT

GAGGCTCCTGTCCTACGTCTTGGCTGCTCCCAGATCACCTTCTGGCCGGTCCCAAGTCCACTTCCCGTGCTCCTTGCTCCCTTCCT CCTGGTCTCCCTCACACTTTCCTTTCCTACTCCCTTCCCTCTGTGGCCCTGGCCTCAGCCCAGCACAGGGAGAGCCCTGTGCCACCTAT ATCCAGAGGTTGAAGAACCCATCCTGTTTTGCCAGTGAGAAGGGGGATAGAATTAAAAGGATTAGGAGGGCTCAGGCATGGTGGCTCCAG NGTGTCATCCCAGCTACTCAGGAGGCTGAGGCGGGAGGATCACTTGAGCCCCAGGAGTTGGAGACTATAGAGCACTATGATTACACCTGT AAAGGTAACCACATCCTGCTACAAANAAAAGAAGNTGGAGGGGTANGANGAGGGACCAAGAGCTAATGGCATCATTTACACAAAAAGAGA  $\textbf{CTTCTTGATGACTTAGCAACAAAAATTCTTGTTGGTAGTGAGAGTTAGACCCTGGTGGACTGGGTAGGGGGTTCCTGGATCATGAGCA$ AAGGCCTGTGCCAGCCAATGGCCCCCACTACACTCTGCCCCGGCCTTTCTCATCTCAAAAAATGGCATCCCCATCCAAAGCTCAAGTC AACAATCCAGCAGCCACCTTTGATTCTGCACTTCCCCTCACCTCCACAGTCCCATCTCCAAAATAAGTTCCAAATYTCACCACTT CTCATTCTCCAAAGAGGGGACHATTATCTCTTTCCTGGTGATTAAAACAGCTTCCTAACTGGSTTCCCTTCTACCTTGCTTTCCCATAGT CCATTCTTCTCAGGACAACACAGTGCCTTTTAAAACCAGTGCATTATTGTTGCCCTTTGGGAAATCCTCCACAATTATCCAGTCTTG CTTCAAAAAATGTATGTATTTCTGACTTTTTACCCTGCCCTACTTACAGGATATGCACATTTCTGATCTCCAGCCAATATCACACTTCT TCTCTCACTGCACTCTGCCACACTTGGCCAAGTTTGTTCCCACTCCTCTTGCACTTGCTCTCAGATCTCAGAAGAGGCGTGCTCCTTGT CTTTCAGGCCAGCCGGCTTCACACATGTGCCACGTGCGCCCCCTCGCTCAGAAGGGATCTGTACTCGGTTTGGATCTATTGTTGCCATCT TGAAACTCTTAATACTCTTTGAACACOGGGCCCGTATTTTCATTTTGCACTGGGTCCTGAAAATTGTGTAGCTGGCTCTACTTTCAGGG ATTGTATCAGAAGTCTCCTCCAAAGAGGCCTTCCTCGGCCACTTATCCTCAAGTAGCTCCCCCTTCTAAGTTACTGGCTATCCCA TCATTCCCACTTAATTTTCTTCATAACAGTTGTCATGCTTTTATACATTCTGGCTTCTATATTTTATTTCTGTATTGTCCAG<u>TTCCCTCC</u> CTTTCGALCGCAGCOTGGGCACCTCCAACCCACACCACTGTATCGGCGGTGCAGAATGTAATGAGTGCCTGATACATTTGCCCAATA ALCTATTCCAAGGOTTGAACTTGCTGGLAGCAAGGAAGCACTATTCTGGCTAAAATGGAAATTTTAAATGTACTTGATATTTATATAC ATCCTAATCAATAATTAAATTTGTGTAGTGCTGATCTAAACAGATAAATTCTGGCTTCATGATGATGGTGAAGTGGAATATAATTTTCT CATTITGTATTCAAACTAGATCTTTTTCATGAAAGGATTTGAAGTCTAGATTCAATGCCTACTTTTTCTTATGTTATATGAAACTA AAACAATTATTTATTTTTTTTTTTTTGAGATGGAGTGTTGCTCTCATTGCCCAGACTGGAGTGCACTGCGATCTCAGCTCACCTGCA TITGTATTTTAGTAAAGATGGGCTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGACCCAAGTGATCTGCCTGGCCTCGCCTCC GCTCTGTTGCCCAGGCTGGAGTGCAGTGACGCTATCTCAGCTCACAGAAACCTCCGCCTCCTAGGTTTAAGCAATCCTCCTGTCTCAGC CTCCCCAGTAGCCAAGATTACAGGCACCTGCCACCACCCAGCTAATTTTTGTATTTTTAGTAGAGATGGGGTTTCACCATGTTGACC AGGCTGGTCTCAAACTCCTGACCCAAGTGATGTGTGTCTCCCCCAAGCCTCCCAAAATGCTGCCATTACAGGCCTGAGCCACTGTGCCTGGC CHASTCTCARTTTTTARABACGTTATTCCTACCTTCCARTGACATTCCACTCTOTCTCCCTCARTABAACATTTTCATTTATAATA ACTANTITICACCTCCCCCACCAATCTCTAACCAAGATAGAGTAGCTCTGATTCTTCCATTTTACAGGTCATGTCAAATCATTTCGTACATT CCACCTATOTACCACACCTTGGTCACAATATGTCAATAATAATCACACAACTTCAGACCTGGGAGTAACAGCTGGAAATATTTCTTCCA ATANTTOCATTITITATCAGAGGACGATCAGGTCCAAGTGGACAGGACCATCAGACAATCOTGTGGCAAGGAAGTTGATGCAATTTGAC CTCTTARGTCRGCCTTTATGTCCATCGCTCCTTTCCAGCARGTGRGTTAGCCCARCCTTTGCCTGCAAAGGAGGAAATTTTTARTTG AND AND ADDRESS OF A PROPERTY CTTTTOTTTTACTTCTCTTATGCATATTCTCCTCAACTTTTTTTCAOTGGGCCAGAGGAGGAGGACTGCCTCTTGTGACTGTGGAAGGA CTTCTACCAGGCTAACACCCCTGGCCTCTCACCCTCCCATTTCTCACCCTGCAAAGCAGAGTGCTATTTGATTCATGTTCTTAGTCTGT GENTETCHOTTGROGRGARCTCGTTAGRGATTTGCCCTCTTTCTGTCTTTTTGRGACCTTRCTGGTGCARGRCRGCARATCCTAGCTGG TOTCTACAGGACACATGCACTCTTAGGTTACATAACTGCAGGGACCACTGTCATTGTATCCTGGAGCTGGTTCTATATAAGACACAGGC TEAGCAGTATATAGGCTTCCTAGTCTGCTCGGCCAAATGTCCCCAGTTGGAAGCCCAGAGGTTGTCTGGCTATGCCAGTGGCAGGATG GOCAAGTCTAACTCAAGGGTGACATATTAGCAAGACCTTTATGGCCATGCATCTAAGATGCTCTGTCCAAGCCTGAACTTAGCAACAAT TITOCTTCTAAATCTCCTTAATTATCAAGCAGCTATCTACAATATTTTGTAATCCCCTTAAATCTTGAGCATAATGATGTCATAATTAT

GAAAGTGHCCGGHTTCACATGAAGTATTGCTTAATCTTAAGAACAAAATGGCAGCTGTGAAAACAGATGAAGTAATTAGAGGAAGAGCC TTTTTGGAAGCTTCGAGATATTTCAAAGTAATTAGTACTAGTTAGCAATAAAGTTCTGTTCTGAGAAATTGCTCTTAAAGGAGGAACA CAACAAAATTTGGGTCTGTTGAAAAAGAACACGCAGATGCCAGCCTTGATGTCAAACGGGGCCCAAACTTGGACAGTGGTAAACTAATGA GCAATGGTGCACAGAGTCAGGGTAAAAGGTGGACAATTTCCTATGACCAACTTTTCCAGGACTCTGCTCTGCTCTTCCTGAGAAAAATA CCCAAAGTGCTGCCTCTTCCATTGGCCCAACCATGCATCTTTCAGGATAGGMCACATCTGTTTATAGGTGTGGATTGTTAGTTGCTCATA AGTGACATTAGGCTGTTTAAAATAATAATAGTTCGAGTTTTGCTATGAGCTGATCTGTTTTCCAAGAGAGCTAAGAGTTTTCCAGCTAA ANGAGGGAATTAGTGGGTAATCAAGGCAGCTGACATGGGGTGTGGCTGGGCCTTGAATGTGTGTCACTCTCTGTGCCCAGGCAGCAA AGATAAACTCCAGACTGCATGTTGCTCAGAGACCAGGACCAACGTCATAGGGCGCCCTAAAAGGCAGGTGGCCCAGTTCAGAATTGTCAA GAGATTTCAGGTGCCGGAGAGACCCATCGTGTAGATTCCAGAGTTGGCTATCATGACTAACAGCTGTCTAAGTTGTTTTTAAATGAATC ATTAAGGGCTACATTTTCAGTTCAGCTAATCAAGTAGCAAATTACGGTGGGTCTAAAATACTTATCTATTGCATTATGTATATGCTAGA CTGTGTAAATACACTTTTCAAACTGTTTTATCTAAGAGTTTACTCACTTTCACATTGTGGCTTATAGTATTTTCAATCTAAGAGACTAA TTTTGCTTACATAGGAAACTACATATTTTAAATTGAAAATTAAAAAAATATTTTTAAGGTTTTAATGAGTCCTATCAAAACACATTTGT ATATAGGAAGGTAGCCCAAGGTCACTGTTGCCAATTGTGTACACAGCCTGCCCTMTAGTGTTTTCTTAAACAGCACCAAATTTTAGA  ${\tt TCATAGTTGTAAATCTCAAAATGTTGGGTTAATAGGATTAAACACTGTGTCATCAAATTGATAGGACACAGCTAAATCCCTGACACGGA$ TGANANTTALAGCAGAGAAAAACGAAGGTCCTTCCAGAAGCTGGTGGCAACTTCACTGGGGAGATATTGCAAAGTTAGTGGTAAATACA TIACIAGTACAGTTGCTAGTTTACCACTGTATTAAAAAGACATTCCAAATGTTGATCAAATAATGGÄGGTTTCTGTGGTTGTTTTCTTT TTAAAATAGTAAATATACGTAAAGCAGATAAATATCCCCTTTGTGGGAGTTAAAATAATCTAACTTATTTTATAGTTTTAACTTATTTT AAGCATACGACTATTCTAACTTATTTAACTTTTAGTAAAGTTTTAACCTCTGTATTTAGAATATTTGTAACTAATGTGTATCGAAT TAAACTCAAAGGGAAATTCATTAACTGAGAAGAAAAAATTTTAACTGTGCACTATTCACATAGCATAATGGGTTTTATAAGGAGTATGA GAAAAATGTGTGTGGTTTGGTTTCTTTAAAAATAATAGCGAACCACGTAGGTAAAAACTCACTTGAGAACATAGACTTTTGGAG CCAGCCTGACCCACATGGAGAAACTCCATCTCTACTAAAAATACAAAATTAACCGGGCTTGGTGGCGCATGCCTATAATCCCAGCTACT OTOTTTCCAGATGTTTACAAAATGAAGCTTGGACTCTGAGAGGATGTGATCTATCCTCTCCATTGCATTGAGTTTCAAGTACTTCACAT TCTCAGGCACATTAGCATAAGTTGTCTAAAGTCATAAGGAAAAATTGACAGAAAAATGCTTTGGAGCCCCAGGTGTTTTCAATTGATGC CAACAGAAACTAACCAAATGGAAGACATTTGATGCGGGTTTATTTTTCCTTTGCAGTAACAGCGGGAACATGAAGCCGCCACTCTTGGT GITTATTOTOTOTOTOTOTOTTGAAAGACAOTCACTOCGCACCACTTGGAAGGACAAAACTGCTATCAGTGAAAGCTGAAGAGTA TTCGCTOTTTTCACGCTGAAACOTTCTCAAGGCGCTTAAACCAGGTCATCCTGACGCCCAAACATCTGGGTAAAAATAGAAAATTCCAAT CACGTCTCTGCAGGCGTTCACCTTTCCAGATGTTTGTATCATGTAGATACAACTTGCCAGTTTTTTCACTGCATTTTTTTGTATCATCC AGATGGTTGGTGTCATCTCAGCACAGCTCTAATGAACAGTGAAATACTTTTCTAGCATTTGAAAAATTTAAACCATTAGAGTAATCTGT OCAATTGTTCTTAAACTAGTGAAAGAATGGGTTATAATTAGGTTGAATCTGGTTGTTCTGTGGCCCATTAACTTGCAACTTTGCTTGGTG ATATATACTTTGGGTACTTAATATATAGAAGAACAAATTAGCTAAAATGCAGCTGATTTGGGGTCTGTAATAATCAGAGTCAAGAATGA GCTCCTCAGTAGGCCACGTTGGCTATTTTGAACAGGGAATGACAATGAATTTTAAACTTACTAAGGGCTTATTAAAGGTGTATAAGACA GAGAAATTGCTGACTGTGTTTGAGGTCCCCAGCTGGGCACTTAATATAAATTATGAAGAAAATGCAAAATTTTCTCTAATATAAACACA CTTGAGTCTTAAATGAAAGAAAAAAATGGATAAATGAAAACAGGGCCTGAGCAAGTGACAAGAATGAGGTTCAGTGAACTCTATTTGT ttaggegeteacaagtaggagtagaaggtatggteegtgtggeagetgtgteeatgtggeagetgaeagetaatteattatgatetge TTTCAGAATATGAGCCTATAAGAGAACAATTAAGCCTCTCTTTTGGAGACATGAAAGGTTGGTGAACTTGGTGTTTTGTAATCTGATCA TOOTATTAAGCALATGAATGAATGGAAAGAALAGAGAAGAACACCACCAATGTAATGAGCACCCTGAAGAAATGCAGGAGAAA

1

AGCAGGTACAGTCATTGAAAATAATGTCTGTTCTTACACAGATCTGGACCAGAAATACTGCACTTGTTAGTGCGATTGATGAATTACTT ATTTTCCTTAGTAATAAATTTCATGGGTAGCTGCTTTTATTTGAGGAAAAGTTTAAGGGAAGCTTCAGATTTCCTTGAAGAACATATTT CGTGTAGGATAGGCTTCTGCAAGACTCCAACCCGGAATCTGGGGGGATTCATCTCTGTTTAAGTGCTGCTTTCTCAAAAATAGATTATTC TIGHTTTTTOTTTCTGTTTTTCAGACAGAGTCTCGCTCTGTCACCCAGGCTGGAGTTGATCCCGCTCATTGCAACCTCCACCTCC  ${\tt TGGOTTCAGGCTGCTCAGCCTCCCTAGTAGCTGGGATTACAGGCTCCTACCACCACGCCTGGCTAATTTTTGTATTTTTA}$ GAAGAGACGGGGTTTCACCATGCTGGCCAGGCTGGTCCCGAACTCTGGGGCTCAAGTGATCCACCTGCCTCAGGCTCCCAAAGTGCTGG TATATGCATATTCATTTACTCATGAATTAGATACATGAATTGCTACCATTGATATCTCAAGGCACAATATGTATTTAAGGTGAGATTCA TCATTAGCGAGTGTGGATATAAGTCCACATTTCAAATAATCTTCTAGATATTTTGAAACTTTTAGCCGACTTGCCAGATCTGATTAGAT GTTAAAACTAGATAATAAAATCCATCAGTCTACCTGAGTTCTCTTACATGGCAACTCATTACAATTGGGTGCATGTGAACAGAGCAAGG TGAACTACATATTTTATCCATGGAGAATACATATTATATTCAAATGTCTTTGGAAGATGTAAAAAATTGTTCATATGCCACAGTATAAA GTTCAGTAAATTTCTAAATTATAGACATTGAATAGCTTGCAGTTTAATGACATTAATAATTAACATCACACTCAAAACAATGACTTTTT  ${\tt TARARARGGITATCTTCARRCATTRCCCTTRARTCRARGRGGARATTRARACTGTRACRARATRATTTGGARARATRTTTTCARTTTTA$ ATGITGAGAGIAAATTACITTTTAAATKTATTITTTATTITTTGAAAAATGITAAGTTGIAAATACATATAACAAAATTTACCATCATA ACCATTTTAAGTGTAACGTTCAGTAGTGTTAAATACATTCATACTGTTGTGCAACCAATCTCCAGAATTATTTTCATCTTGCAAAAAC TGAAAGTCTATACATATTAAACAATGCCCCATTCCCCCCACCCCAGTCAGATTTTTAATTTAAAAAATACAAGTGGAAGTTCTAATATTT TCTATCTATCCCTCTATCTATAAAGTTGGGGGCCACTGAATTCCAGATTGCTGCTTGCATCTTTTTACTTCTGAGCATCATGGCCTCTG GGAGTCCGTTAAGCAACTGGAGCCGGGTAGTGTGACAGGCTGACCCCAAAGCTGTGTGAGCGGTCACCGGACTGGTTGATGTTGCAGC CTCACCTACTGCCCTGAGTCAGTCAGGGTTCTGGCAAGGAAAGGAGAATGCCTGACCAGCAGCTGCAAACCCTTCTCCCTTTTGGCAGC AATCAAAAGATTTTGAGGAAATCIXAAATAGCTCCTCATCAGGAAAATGTGGAAGCCCCTCCAGCTGGGATCTTCCCTGGTGGGCTTGT GAGCCTGGCCATCTGGGAATAGRGACACTAGATAGCACTCATACACTCTTCACAAAACACATTATCACATGGAATGTTTTGAACATCTC AACTGAGATAAAGTCAGCAGATGTGTGCAGGGGGGCCCAGTGATTTTCTGCTTTTCTCACTTCCCTGAACCTCCTGGCAAGGAGGACA GGGTXTACAGCTTTAACAAGAATATTCCACTTTGGGTGGGTCAAGTAAGCAAATGTGGATTTCACTTCTGGCCCTGAAGAATCCAAGCA ACTAGTAGAATTTTTGTTTATTCTTAAAAATCTTATTGTACAAAAATTCATTGAATTATACTCTTAAGTTTGAGGCACTCAATTAGAAA GTTAATCOGRAAAAAAAATCTGTTTAACCCTGAGTATCCCTCCCTAAAATTACTTAAAOCCTAGAATAAAGGTCAGTTTAGACAAATT ATCCTCACTGTCCCCTCCACCCCTCCTTATTAATATTTAGTGAGACTATCTGAAACTTATTAAGTAGGAAACCCTAGAGAAGGTT AGAGTGACTTGACCTCCAAATCAGGTTTTATTTGTATGTGTTTTTTAATGAAATGCCGTCTTGCTATGTTGCTCAGGCTGGTCTTGAACT CCTGGGCTCAAGGGATCCTCCTGCCTCACTTCCCCAGTAGCTGGGATCACAGGCCACTAGCCACCATGCCTGGCTCAATGCCAGGTTAAT ATAGCGCTTTTGATAAACTGTCAACTATAGGAATAGAGTTATAAGCGTGAATCTGCCAGTTGGTACAATGTCTAGCAGGAAACGGAAGG COTOCATAGCATATTCCTTAGGAATGTTTACTAGACAGAGGTCTACTTCTTCCATGGCAATGTTTCACTTCCAAAACTTGGGACCTGTG ATTTOGFAACTGTTTTTTGTCCTGCTTCTGGGCAGTGAATGGAAGGGAAGCCTGAGAGATACTAGTTATTATACTGGACTAGTTATAATA AGATACTATTATTCCTATTATTCCTATTTGCAAATGAGGAGACTAAGGCTTATATGTATTTAAGTAATTTGCCCCAAGGGTACACAGCCAC TOTAGTTTGGAATTGGGATTTTGGGTTATGAGGACAATGAGCAGAATATGTAAAATTGGGACTGATTGAGAAAATCCTGG AGGINTIGITACTIGCCITGGAGNACAACTITITITITITITITITGAGACAGAGTCTTACTCTTGTTGCCCAGGCTAAAGGACAATG GCACGATCTTGGCTCACTGCAACCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCTTCAGCCTCTGAAGTGGCTGGGATTACAGGCACC TGATCCACCCGCCTCCAGCCTCCCAAAATGCTGGAATTACAGTGTTGAGCCACTGCACCCCGCCGAAAAACAACCACTTTAAGATGTTA GATTCCAGCCAAGTGAAGTGCCTCATGCCTGCAATCCCAAGCACTTTGGGAAGGTCAACCTGGGCAGATCACTTGAGGCCAGGAGTTCGA GNTCAGCCTGGGNAANTGGTGNAACTCCGTCTCTANTANAACATACAAAAATTNGCCCGGCATGGTGGCACGCACCTGTACTCCCAGC

TACTGGGGAGAGGGTGAGGCAGAATCTCTTAAACCTGGGAGATGGAGGTTGCAGTGAGGTGAGATTGCACCACTGCACTCCAGCCTGG CACACTCCTGTCTGGGTCAAAATGTATATTGGCAAGCTGGGGCCCTTGGCAGTTTTCTTACGTGGATCATAGCAAATGCTACGTGGCTTA GCAGCCAAACTTTACAATGAGGACAACKGACAAATCCTAGCCAGGCAGAGAAGATGTGGAAGATTGTCAGTGCCCAGGTGATTCTTTGG GCTTAATACTCCAGGAAAGGGTCATTTCCATTAGCTCTGAGGCTGTCTTCTTATGGCCAGATCCACTATACTCACTTCATTCCCCTGCA CGATATCTCGGCATGGAGGGGCTGGGGTTCAGAAGTCCACACTTGCAGGGAAGCCAGAGGTTTGGGCAGGGGCACAGGAAGAAAGGTC TGTTGCACCATGGTGCTGACCCGTGAGGCACTCCAGGGGCAGGGCTGAGGCTCGCAGGGACAGGTGCCACTGCTGCTGGGCTCCTCACC ATTACAATGTAACTCAACGGGAACATTTAACTTGACATACAAGAATTGTACTTTCTTGCAATGTTTAAGGATATACAACAATTAAAGAC AGCĂTAAATGAAAGAATTAAAATGTACCAGCTTTATAAACTGTAAAGCCCACTTTCCCCCATGCACCAGTGGATGAGAATTGAAGACAGA GTACATTTCAAAGGGTGAAATCAACTAAGGTGCACATAGATCATGAAATGGAAATTGGACTTTTGTTTCTACTTTTAACTAGGAGGGCCC TORRECTICTURATURAGE TOTAL ACTION OF THE CONTRACT OF THE CONTRA TCTTOCCTOGALARTALCTOCATGRORATTTATACARCCTOCCARCCTROCTOCTCTCTOTGRAARATARGGTAAGAGAAAAAAAAGAGAG  $\textbf{CTCAAGATTCACAGTTCTTAAGGCACCTATTTCAGCTTACTTTTTATTAATTTATGTTAATATTTAGAACGGAGATGCCTGATCTGA$ TAGGGGCCTTTTGCTTTCTAGAATCTAATGTTTACATACCATCACCTGTGTATACGCAATTTATAAGGTAGAGCACCATTCAG TOGTCACTGAATGCATCTCTTAAAATATCCTCGCTTTCTGCCTTGTATTTGTTATTTGTGAACATGTTCCCACTAGATAGTAAGCTCTT TGAGGGCAGGGATCATATCTTATTTGTCTTCACTTATGCATTGGTGGCATCCAGTAAATGTTTACCAAATTGCATTTGGAATCATAGCA TTGCAGTCTCTGATTTCAATCCACATTAATTTTTCCTTCTGGAGGCCAAATATTTAAAGATACTCTCTGCCTCCCAAATCTTACCTTCA TATOPAGACTGGCATGTTTTCTTTTTTTTGTACCCTTTGGTTATCTTCTGAGCAGAGGGATCACAGAGGGTGGTGACCTGAATAGGATGAG CTCTGCCCCACTAACGGCTCCAATTAAGCTAGATTTTTCTCCCCCTTCAAGAAGTGAGCTGAATACAAAATTGAGTGGAATTTCACGCT CCATATTAGAGCACATACTAATTAGGGTATGCTCCTGGCTTGGCAATGCCATACTCAATTACAAAGGGAGCAACTACTAAGATAATGAA Tecoccaagitaattigectecaciatiaattecatetectetatititagagetactotectectaatacaecagaatatecteta ATCAGCACCAGCAGGAAGTCAGGAGATATGGGGACCATTCCCATCTGGGTCAGTTGTGTGATCTTATGAACATTTCTTGGGGCTTTAAA TTCATCAGACAGGGTCTGGCTCTTTTGCCCTGGCTAGAGGGCAGTGGTGCCATCTTGGCTTACTGCAGCCTCCACCTCCTGGGTTCAAG TGATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCGCCCACCACCACCCCTAGCTAATTTTTGTATTTTTAGTAGAGACAG GTGGGCAATGTAAACCAGGAGAAATTTCAGATCCTGTTTCCATAGGCAAAGGCAAAGTCAGGTATAAGAGGGTTAAGAAATTATCTTAA AGITAATTGCCTCATACTAGCTTGCCCAGAATTATTATTGATTTGAAATGACTACTGTAAGTTGACTTTAAAATTTGCAATAAGAAATG GTCCAGGGCCGGGTGCAGTGGCTCACCCCTGTTATCCCTAGCCACTTTGGGAGGCCTAGGCATGTGGATTHCCTGAGCTCAGGAGTTGGA CTACTCGGAAGGCTGAGACAGAAGAATCACTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCGAGATGGTGCCATTGCACTCCAGCCTG CAGATTORACOOTTTTTCCAGGAAGATTATCAATTTCTATTTCCATTCAGAAGATTAATGAAAAGATCTCCCCATCAGTGAAAAGCT CATTOROGRADATIOCACALITY GACCCALLY SOCIAL TOTOTORIA CCLOTTORICT VIOLATOTORIA TECTCT CTTTAACAOOROTTTAA acotettcagacagatgcagcaaggtttgaccagacttttcaatcacatttcatatcagatacagacctaactgagccttacttttt CCLOCHTTCTCTALLORCCCOLTCALALOCAGATCTTCALCCLACTTCTCCCALCTTCTTCTCALTTTCAC TOTCTCTATTTATGRAROTOTCAGTGRARCARTACTRAGITOCTGRAGOCARTAGRAGATTTACCARRCAGGCARGCARGCARGCARGTATT AAAAGATTACTTTACTTAGAGOTTTACACTAAAOTCAAGTTTTOTTTAGCTTCAGAAATGOTAGACATTTCTGAGTCACATTOTATAG COTTTCTTGAAGAGACAATTTATGGAAAATĞTTTCAGAGCCTCTTAAAAGAAGCTTTGAAGTCTGCTAAACACTATCCCTCTTCCATCA

 $\textbf{CAGCTAATTTTTTTTTTTTTTTTTAGTAGAGGGGGGGGGTGTCAGTTATCTTGGGCCAAGCTGGTCTCAAACTCCCGACCTCAGGTGATCCACC$ AGCTCTATTCTGCTAAAGCATCAGAGAGCTTCTTTAAAATTGATCTGGAATCCTCAACTCCCAGTTTGAGAAGCCCCACTCTCACATATA ACCAGAGCAATTTAGTGCCCTCCTCTGAATCACTACAATCATTCCTTAAATCATAAAATGTATGCATAAAACCACAAAAAATGCTCATA AACCCCAAACTACAGAAATATTAGATAAGAATTGCCTTCTACCAACACTAATCATGCCTCATGGCATCCATGTTGGAGACACAATGCTG  $\tt CTTTATGTTTAAGGCGGCAGATATCTTCTGTGGGGTTCTATGGAGTAAGTTAGATACCGCATTCGAGAATGAGAATTGCCACGAGGGT$ CAAGTGTAGGATCTGCATTTCCTTTGTCACTGTATTGACCCCTTAAGCCAGGTTGAAGGCTGCTCCCCTCTGAGATGAAAAATAAAATGG CCACGCCTGGCTAATTTTTGTATTTTAGTAGAGACAGGGGTTTCACCCATGTTGGCCCAGGCTGGTCTCGAACTCCTGACCTCAAGTGAT GACCCTATCTGACTATTTTTCAATTATATTAGCTGTAGCTGGCAACATCTGAATCAGATTCTCAAAATCGCCATGACATTACATAACTG GCCTCTACATAGGAGAGGTTTACCTTTCAGAAACTGAAGCTAGGAAACAGTGCATTACATCCTTCAGGTGCCATCGTTCCATGAACAGA GAACAGCCATCATTACTGGAATTGTTGGGTTCTATTTCAGAGTCCAGTGGACTTTTTTTATAAGTCAATTATTGGTCTGGTAGTCCAT TCTGAGGTTGCAAATTCACAAATATTCAGGATAAACACCAGGCGAGTAGACTAAATCTATCCAGGCTGGGTAGTAAAACACTATTTA GCCTGACTGTTTACATGGATATCAACTGTCTTGGAATAACACTGAGAATATGTTCATTAGAACAAAAGGGCTCCTCCCATGTTGT GTAGCAGCCTTACACAAGCATTGGTTACATTCCCATGTGCACAGGACTGTCAGTAGTGATTCAGACATGCCACAATCTAGATAATTTTT CCAGCCCTACTCTCAGCTGCCTCACACGCACCCTCCCCAGCCCCTCTGCGCCACTTCCATCTCAGTGATGACCTGGAAAGCCAAGGTCC CCTGTGAATGCAAATAGTAAAGACAAAAAAAAGCCAAAAAAGTCTGTGTTACACTATTGTACTCTTCTCTCCAGTATCCC TCCCCTAGCCAGACAGTACACAGAAGCTACCGCAGAGGAGACACTGTCTTCCCAGATGAGCAAATGTGGACTGTTTATCAAGAATAGTC AGGCAGGCGCTCTACAGCACTTGAATGTGGTTTCCATCACTTTTCTGGACAGGTAGTTGGTGAGGAATAAGCCTACTGCCCCTAGAAAA TCTGCCTAATGACTTGAGTTTTGCCCCCTTGTGGTAGGCAAAATAATGACTGCCCACAATATCCCCACCCTAATCCCCAGAA ATTITITICAGACAGAGTETTGCTCTGTCACCCAGGCTGGAGTGCAGTGGAATGATCTTGGCTCACTGCAACCTCCACCTCGGGGTTTA ACTGATTCTCCTGCCTCAGCCTCCCCAAGTAGCTGTGATTACAGGCACTCACCACCATACCTGGCTAATTTTTGTATTTTGAGTAGAGGC ACCOTTTCCCCATCTTCTCCAGCCTGGTCTCCAACCTTCTGACCTCAAATGATCCGCCCCACCTCCGGCCTCCCAAAGTGCTGGGATTACAG CCATGROCCATCRTCCCCCCCCCCCACTCATTTTAAAATAGAGAGAGTATGCTGGATTATCCAGATGGATTCAATGTAATCACAGGGTC CTTANAAGTGGAAGRAGGAGGCAGAARAGAATTAATAGTAGCAGCCACAAGAGAAGGACTTGGCTCGACTTTGACGACCTTGAAGACAG AGGAAGGGCCCAGGAGCCGAGTAATGTAGGTGGCCCTCGAGGAACTGGAAATGGTATAGAAATGAATTCTCCTCTAGAGCCTCCGCAAAA GGTGCGATTCTTGGCTCAGTACAACCTCCGCCTCCTAGGTTCAAGCGATTCTTCTGCCTCAGCCACCTGAGTAGCTGGGACTACAGGCAC TCTGACCTAAAAGACCAAACAATAATGAATTTGTGCTGTTTCAAGCCACTGAATCTGTGGTAGCTGTAGCAGAGCTAATAATAATAGTA OTTUNOTATAGGTTCATTTTCTTCTCATATTTCTTTCCTACCTTGGTCTTTCTGGACCTCAGTTCCTGAATCTGTTGAAAGCGAATAGG TOCKOGRANGTROCTCTTGGRATTRICTTCATTTGCCTTATGARTCCCTGGRAGGGRACAGRTGRGATTGROTTCTACTGTRGCTTGACC TGGGAGAGTAGATGATTTAGCTCAGTGACTGCAACTAGCTCCCTGGAAGGGTTCTGAGGTTCTGTCAAGGCTAGACTAAGCGAG GTGATGGATTGTGCTGTGGCTGCAGGATGCCCGAATTAGTGTCATATGGGCCTAGAATTTGTCATCCTTGGTGTACATACCAGGTATTAA TCTAGATGCTAGAGATAAAATGATGAGTATGACACAGCCTCTGACTTCCAGCAGCTCAGTCCAGAGAAAGGAAAAGAATTAGTGAACA ATTACATCACCATATTOTOCCTALAATCCCAGAACAACCTATCGAAGAATGACAACATTAAAATGGCAAGACCAAGTCCCTTCCCTCAA 

TACAGGGCAAAGAAGAGGGGTCCAGGAAAGCAGCTGGGAGAAACTGACTTTCTGGTCACCAAAGGGGGATGGGTGCCTTACATGCCATTCT ATCAAACAGTGCTTCACTGTTTTTAAACTATGGACTTTGCAATTTATCTCAAAATAAAACGTTTCATTTTTAAATGCTGAGGATTTAAT ATGACAGAAAATCATCAGGTTGTAAATTAGTAATACATGTTTCCTAATGTCAAACACTCTATTGGGAACCGCCAATTTTCTGTTGGATA GACTTCTCTTTTACACATTTTTATATGGATTGTTAATTCTCCTAGGGGAAAAAACTTCTCAAAACTTGATTGGCTTTAGATATTTTCCT TGTGTGTGTATATACATATATAGAGAAATGCAAAAAAGAATAGTAATAAAATAACCACCTATCACCCACTTTAAGAAACAGACAT AAGTGGTTCACAATCACCTATTTACTTAATCCTATTGACATCAGAAATACTAATGATATAAGGACAAATGATTTTTAAAGTAATCAAATA TATAAAAGAACAAAATAAATGAAAGCTGCCCTCTCCTACCTTATCAACTCCCTCTTCTAAAAGATAGTTATTAATAATTCTTCATGACT CCTCCTAGAAAATAAAATTACATGCATTAATATATGTGTGTATATACTACTAATAAATTTCTAGTAATGAGATTCTTGGATTCAAGAGT GTGCAATTTTTAATAGCTGTTCAGTTGTCCCAGGAAATTATTGCACCAACGTGCATTTCTGTGTCTAAATATAGGAAAAAGGGCCAGGG GOGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGGAGGCGGGTGGATCATTTGAGGTCAGGAGTTCAAGAAACCGGCCTGGAC AACATGGCGCAACCCCATCTCTACTAAAAGTACAAAGATTAGCTGGGCTTGGTGGCTCTCACCTGTAATCCCAGCTACTTGGGAGCCTG TCCACTTCTTCAAAGTGCAAACTCTTATGACACTAAGGTGTAAATGTTATGTTCCCTGTAGCTCCTGACCACGGAGGCCTGATTTCAAA CATGITACCTGGGCLGGACAGLGGACTGTGGGGGAACTTGACCAGLATTTGTCAAGATGTTTCAAATTTCATGAAAAAATGCCAAAAAT OTCAGGCTCACCTATCTGAAGGTAAATAATTGCTATTTTGTTTTATTCTACTTTAAGTTCTCAGGTACATTTTGTTATAAAGTTTCG GTGCCACAAAAGAAATAGCACTCGAATATAAAATTTTCTTTTTAATTCTCAGCAAGGAAAGTTACTTCTATAGAAGGTGCGCCCTTAC AGATGGAGCAATGGTGAGCGTGCACTTGCCAAGGGAGGGGAAGGGGTTCTTAACCCTGACAATGCACGTGGCCCCTGCTGTGTGGG TCCCCTATTGGCTAGGGTTAGACCGCACAGGCTAGACTAATTCCCATTGGCTAATTTAAAGAGAGTGACGAGGTGAGTGGTCTGGAGGG GANTCAGGGTGGAGCGTGTANTCGAAAAAGGTTGCTTTACGAGGAAATTAAGTTTANAAGTAGAAGGCAAAGAATTGAACATACTGACA TACTGATTCTTTGGAAAGAAATTTAGAACTCACATCTAACAATTTTTTAGGGTTTCTTTAGTATTCTGGACAGAGGACAAAATCTCATT CTCACAAGCATAGTGGATTCATTTGCTTTCCTAAGCACTTTTTTTGCAGGCTCATTTCCATCTGGGGGCGTTCAATGTAGGTTTATAA actogroffthofftgffttttatgagacagagtettgctctgttgcccaggctggaggcacaatctcggctgcaacctgc GTATTTTAGTAGGGACGAGGGTTTCACCATATTGGGCAGGCTGGTCTCGAACTCCTGAGCTTGTGATCCGCCCACCTCGGCCTCCCAA AATTCCCTAATTCTTCTTGTGATTTTTTTTATGATTAATGACCAAACACTATTCTCTCCCAAAACAAAAACCTTGACCAAATTAGCCCAA AAATATTTTTTTGAAAGTGGCATTGGCTCTTTCCCATTGGTGGGTTAATGAACTAATTAGCATTTAAATAGGGAAAGTGGCTTCTCCTC TCHOTALTTGTALATALAGGACCCAAGATALTCTTTGGGTTCTALCAAAATTCTTCTGTALAAACAGTGGTCCCCAGCCTTCTGGCACC AGGGACTAGATTCCTGGAAGACAATTTTTCCAAAGATGGTGGGGCAGGGGGCACGTTTGGGGGATGATCAGCCATTATTCTCCTAAG CAGOGETCAACCTAGACCCTTTGCATGCACAGTTCACAATAGGGTTTGTGCTCCCGTGAGAATGGAATGCCTCCGCTGATCTGACAGCA GGCGGGGCTCAGGCAGTCATGCTTGCTCACCTGCCGCTCACCTGCTGCTGCTACAGCTCCGTTCCTAAGAGGCTACAGGCTGATATGGGT COGTGGCCCAGGGGTTGGGGACCCCTGCTATAAAGGAAGTTCAGAAAAATCAGATTATAAATTCTGATTTTTATAAATCAGAATTTATAA AATTCAGATTATAATTTACTACCAAGTAATAGCTCTTTTGCCCTTAACTTCCCACAGTGAAGACCACTGGAGTAATTTATATCAAGGCA ANGANCANANAGCATGGTCAGTGGAAACTCCTGGCCCTTCGCTTTCTCTCCTCAATCTAACAGTGAGCAAGTTGCAACAAATCGC **DECENTERAGAGAAAAGGGAGGATGGAATTGTTACAACCGTTTCTGTCGCCCAGGCTGGAGTGCAGTGGCGCGATCTTCGCTCACTGAAA** CCTCIACCTCCTGAGTTCAAGCGATTCTGCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCACGCCCCCCACCATACCTGGCTGATTT TTGTATTTTAGTAGAGATGGGGTTTCACCATATTGGGCCAGGCTGGTCTCGAACTCCTGACCTCGKGATCCTCCCACCTCAGCCTCCCA ARGOSCTGGGATTACAGGTGTGAGCCATCGCGCCCAACAAATTGTTACAATGTTAAACAACATAATATCCTAAACATATTGGCTT

TTAAAGTATCATTAGATACACCACAATACTAATAAAGGTTACCTTTGGGTTTTAAGATTAAAGATGATTTTTAAAAATACTICTTTCTG TATTTTCCAAACTCTTAACCATAAACATAAGATATTCCTTGACTTAGGATAGGATTATGTCACAACCCATCATAAGTTTGAAAAATCAT AAGTTGAACCATTGTAAATTGGGGACCATATGTACATGTATGCATATATGATATTAAAAATTATTAGACGTCTTTAAAATTTGACTTTT TAACATATTACTTTTATTTAATCACCTTGCTCAAGGAGCCTGTAAATTACATATTAATATTCTCCATTATGAAATAAGTCTTTCCATTG TGCAAATTAATGCATTGCAGAGGTTCTAAACATCTATATGCTTTGCAACTCGAAAGGAGTAAGTTTCCCTTTCTAATTTTTTTATTCAA TIAAATAAAAAAATGAGTTTAATAGAGTCTATTAAATTAGATCATTATTCGGAGTGGTTAGTAAACCTGTTTAGAGTCGACAACACTCC GCAACCTCCACTTCCCAGGTTCAAGTGATTCTCCTGCCTCAGGCTCTCGAGTAGCTGGGATTACAGGCAACCGCCACCATGCCCAGCTA CCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCATGCCCAGCCCCTTTCTCCTTTTTAAATATCACCAGCCTGGGTTCTTTGTTCT GOCTANATTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTTGTGATCCACCTGCCT CGGCCTCCCAAAGTCCTGGGATTACAGGCTTGAGCCACCATCCCTGGCCTCCAGCCTGGGTTCTTATTGACACTGAATTCTCAAGTTAG GCCTCTCCCGACCTCAGTAGTTGGTCTTTTCTCCCCCCTTCTTTTGAAAGCAGAGTCCATTATACAAATGGACTTGTTTACTTCTCCACA TCCCTCTTGTGCAAATTTTCTGCCATGGACACCTCTACCCCACCTTAGAATGTATATTAGACAATTTTGACATCTAGAATGTCTTGTTG GGCAGAAAAGCGTTTGGAAAGCGTTGCTCCAGGTAGCTCTGATTACAAACTGGACCTTTTCGCGGGGTTACCTAGAGCAGTTGAGAGTG CTCTTTCTCCTGGCCAGGTGCAGTTGCTCATGGCTGTAATCCCAGCACTCTGGAAGGCCGAGGCGGGGGGGATCACCTGCGGTCAGGAGT TTGAGACCAGCCTGGCCAACATGGCGAAACCCCGTTCTACTAAAAATACAAAAATTAGGCAGATATGGTGGTAGAACCTGTAATCCCA GCTACTCAGGAGGCTGAGGCAAGAGTTGCTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATCAAGCCTCCAGCCTGGGCCTC AACTGCTGACTCGAGGACTCTCTCAGCCTGTTTTATCATTTGGAAGAGGAAATAATATATCTGCTTCGTACACATCTTTAGAAGTTTAA ATAAAATGTCTGAAATATCAATGATTCTCATTATTCAAATATTTGTTTTTTAAGTCACAGTTGCAAGGTTATATACAGAAGCATAGGT TTTATAACAGAAAAATAGACACTTAATAATAGTGACCTCTTACAAAAATAGTCCTGCTCAAGCATCCCATCTATGTATCATTAHCATCTA TTTCTTTCTACCCAGCTAAAATAGTTTATTAATAATCCTTGAATGTCACAAGTNGAATACAGAATAAATCAGATAATACATTAAAATGC ACCTGATAATCAATATGCACCAGATAATGGACACAGTATACATCAGATAATACAGTACAAATTCAATGAAAGTTTAGTGTTGCAAAGGT AAAATGTAAAGAATGTCCTAATGTGCTCCCATGCTGCTTAAAACTGTTATTATAAATTGCTTTTTATTATAAATATAAAGAATGATG TANTAGGCCAGCCATGGTGGCTCATCCCTGTAATTCCAGGTCTTTGGGAGGCTGAGGCAGGTGAATCACTTGAGGTTAGGAGTTTGAGA  ${\tt CCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATATAAAAATTAGCCAGGTGTGGTGGTACGCACCTGTAGTCTCAGCTAC$ TCCGGAGGCTGAGGCAGGAGAATCGCTTGAAACCAGAAGCCGGAGCTTGCAGTGGGTCAAGATCAAGCAACTGCACTCCAGCCTAGGTG ACHGAGCGAGACTTTGTCTCAGGAAAAAAAAAATTCTCAGTCACCTAGATTGAGAAATAGAACATTACCAAAACAGATAAAGCCCCA CATGAAACGGGCACATGTCTGGCTGCGCTCGCTCATGCCTGTAATCCCAGCACTTTGGGAAGGCCAAGGGCCAATCACTTAAGG GTAGTCCCAGCTACTCGGGAGGCTGAGGCACAAGTATCACTTGATCCCAGGAAGCAGAGGTTGCAGTGAGCCAAGATTGTGTCACTGCA TTGCCATTATCTTTTCTATCAGACCAAAATAATTTACATCTCTACTAGACAAACATTTGCCACTTTTCAATCCATAATCTATGGOTAAT TTCATGGRGTCTGGCCCTAATCAACAGTAAATAGTAAAGCCAACAAAGGATCTCTTCGCTAGACCTTGAAGTGATCTTTGGGTGGACCC CTTAGACAATAATTTAGTATGACATTGAGAGGACACGCAAGCCTGGGCAGCLTAGTGAGACCCGCCTCTACAAAAAATTAAAAATTAG

÷

AAAGGAAATGCAGCCATTTTTTTTTTGCCTTATTTCCAAGTTCTGGATAATTTTTCTTTTTTTAACAATATAAATATTATCACTTATGTA GTATGTTGGTCTATGTAGGCATATCACAATWTATYCATTCCCTAGCTGAAGTACATTTGCTTTCAAGGTATTGCTATTATAAACAAATC TCATACCTTTAATCAAATAATAATTTTGTCTCTTCAATCAGCTIYTGATTTACTTTGTTCNAANACNAAGCACACAACTATAATTANAAT TTCATTACTGATAAATATATATATTTTCCAAAACATCACAAATCTTTTNTRRYTNCACTATTTACTATACACTTTNGGTCTNAATTTAA AGCGGCTTCACTATATGTGGTTCTTTTCCTCTCTCCCATACTAATTACTGGTACTGGACATATACATCCAAAATCAAATAGTARTGTC CTTTTTAAGGGATAARTGGGATGTGATGTAGAAGGGGGCATAGTAGGGACTTCATCTGTTTTGGCAAATTTTTCTTAATATAGGTGGTA GGCATGTGGAATTTATAACAAAAGTTCTGTCTCCAGCCCAGTTTCTGTTACATAAAACCATATAATTAACAGTTAAACTGGATCTGGTT TGACACAGATGTAGACGATATTAATAATTACTCCAGAACAACAGGCATAACTAAAAACTACCACAGGCAAAAGGGGAAAATAGAGAAATG TAAGGGCTGGGACTTAAGCCCATGTTGCCCACCTCCAAGTTTCATGGACTTTTTCCTTCTCCACATTACTTTCTTCTCTGCTAGACTGT CCTGRTGTACCTGCTCTGCACACACACATTAGACGAGGCGATCAGGTTGGTCAATGTATCCAATCAGCAGTATGGCCAGATTCTCCAGAT GACCCGGAAGCACTTOGAGGACACCGCCTATCTOGTGGAGAAGATGAGAGGGCAATTTGGCTGGGTGTCTGAACCTGGCCC CHANARCHARACTERITETIALITCHATACAGGTAAAGGAGAGCCCAAGAGCAGATACGGAAATGACACGTGCATACCTTGATTTCAC TGTTAATTTACTTATGAATTGTGTCTGAATTTGAAAACAAGCTGTAGGAGGTATTCATATTTCCATTGTGATTGCCTTCAGGCTGACTT GATTTAACGTAGTTCATGGTCTTTAGAAAACAAGAAAGTCCATAAAGAAAATCAATTTAAAACACAAAATACTTTCTAATCTAGAAATG GCTATTTCTGCTTAGAGTTATAGGGCTATAACTGATAGAGGTAACCTTGAAGAAATATGGCCAATGTAGGTTTTAGGAGAGAAGACTTA CAAATAAAGCAATTTGAGTTCAAAATTTGACTCTGAAACTTACCAGCTGAGTAAGCTTGGGGAAAGTACCTCAACCATTCTAGGCCTCAG TGTTCCACCTGTAAAATGGTAACAATCATAGCTATCTTAACGTGTACACCTATAAAGTGATTAGTATAGATTTCTTATACAAAACAAGA GCTCTGTAAATTATAGCTCTTATTAGTTGCTCACACAATAAAGCCACTGAGTTATCTTGAGAATTAAACATTTATATGTTACTCGTCAC GGAGTTTGAGACCAGCCTGGCTAATGTGGCGAAACCCCGTCTCTACCAAAAACATAAAAATTAGCCAAGTGTGATGGCACACACTTGT AATCCCAGCTACTCAGGAGGCTGAGGCAGGAATCACTTGAACCCGGAAGGCAGAGGTTGCAGTGAGCTGAGATCGTGCCACTGCACT CTACAAATGCGCCAGGCTAGTGATTCCTGATGAGGCTGGTTTTGAGGGTTCCCAAAAAGACTTGGATACAAAAATTACTGGGCAGAGCA ATTGAAGATGCAATATTCTGTGTGTAGTATGTTAGGTTATGTTGGTGCCCTATCCAGATCCCTGGGGATCCCTTTTACCAGCTCCCACT GGTGCTGCTGCTGCTAACTGCTTATCTCTGAAACTTTCTCCCAAAGATTGCCCTTGGAGCACTTATGCCCCAGAGCTTCCTGCAGG ATCAGGCTGAGGCTAACAGTCATCTGAAGCCATATCCTTGCTTAGCTTCTTACTTCTCTAGTTTGCTTTTCCTCTAATCCCCTTAAAAGT TOCKCCTGAGAGCATTCTTTATAAACCACTTCTGTCAGAATCTCAGGCACTGCTTCTAGGAAATTAGACTTATGCCATTCTATAATCCA GCATTTCCCTCTTTTTCAAACTACAAAGCTGTGGATCATGCCTGATTTGAGAAATAAGTTTAGAAAGTCACAGCAAGCTCATTAAAAA AGTGTATTCATTACTGCAGACCACAGTCAAAGGGTTTTGAAAGGCCACTGTTCCAATCCCTGCCAGCTCTCTGATTCTATAACTCTATTA GATTACACTTGAGGAAGGTAAAATAATTCAATATATTTGATCATCCTCGCATATATAGACTTTTAGTTTAACGAGGAAAAAGTCTTGTA TTGAAGAATAAAACTTGAAGAAAAATTTTAGCAGTGCTTTCAACCTTTAGAAATCTACAGTCAATATTTAGTTGTTTTTACCATTGTCA **GTATTTTCTATTCTGTGCTTTGATTTACTTCCATTCTAGTGTCTCTTGAGTAACAGATTTATCTAAAATTCTTTATGCTGATAA** CATTTACTGGGTGTCACGCAATGTTCTAAGACTTTTTCCATATATCAGATCATTTAATACCCTCAATGACCCTATAAGGGAAGTAGAAT TCTTTCCCCXGTTTTTCAAATGAGGCACAGAGGAGGTTAAGCAACTTGTCTGAGGCTCACACAGCTAGTAAATGGTAGAACTAGAATTCA AACTCAAGCAGTATTTCTCTAGAATCAGTGAACGTAACCACTTTGCTAAACTGCCTGTGAAGTTACTTTTCTCAAAACAGCTCCTATTT ACCGTTGTGGTCCCTGGTTGTATAATAGTTACATGGGTGTTGACTTTACAATTATTTAAACCAAACATAAATACTTTATGCAGTTTTTA TGTATGTTATACTCACAGAAAGAGAAGGGAAAAATTTTTAAATCATTCTCTTAAGGTTACATCAAGTTGCGTATCAGTTCAGTTCCATT TANATGATTCANATCANAGTCTGTGCATTTGAGAATTCATTANGAGAGTAACATACATGTTATTCATTANGAGTAACATAAATTTTGCA TTGATTCTTGCCAAAATCACACCATACAACCATAAATTGTAAATTTCTAGGAAAACTCAGTACAAAACTTGGTGCAATGCAATACAAAACTTTG

GTGGCACAGACAGTAATACTCAGCAAACATCCCACCTCCTCTCATATTTTCCAGCTCCCCTTGTGGTTAAACGTTGCCATGTGGCAA  ${\tt GTTCTGGCCAGTGAAGCGTGAAAACTGAAAAGGGTTCTTTGTAGATTGAGACAGTGAAGAGCCTATGTGTGCTCATCTATTCTCTT$ TTTCTGCTGAGGGCACAAAGAAAGTCCTGAAATCATGTGCTACAGCTATGAGATAATGTGCCTTTGCCTACCAGGCTTCTCAGTGTTTA TTACCTCAGCACAAACCCAGGCCTATCCTGACTAAGGTGGTATTAAATTACTATTGAATGTGTATTGGGATTTAGTAAACTTCTACTGT ATAATCCTTCTTCTGTAGGTAGTTCCARGGATTCATGRAGGAAATATTTCCARACAAGATGAAACAATGATGACAGACTTAAGCATTCT GCCTTCCTCTAATTTCACACTCAAGATCCCTCTTGAAGAAAGTCCTGAGAGTTCTAACTTCATTGGCTACGTAGTGGCAAAAGCTCTAC ACCATTITIAGGAACATTITIAAAACCTGGTAAGCAGAGTGCCTGGTTAGGAATGCCTTGTTGACAGGAATAGTTAATTCTCAAAAGGGA TCAGATTTGCAAATTAAAAAAAACCCAGGAAATCCTGATAGGAATGTGATGAAATGGGAATTCTCATATATCATGTATTGGTGGGAAC ATAATTGGTTTTGCATTTTGAAAGCTATTTGATTATGCATATGAAGAGCCATAAAATTTCCTTTTGATATAATAATTCCACTTCCGAA ATCANTCCTAAGGRATAAATCTAAATTTGATGAAHAKTCTCCCTCCAAGATCTAGATTTGCAGCATTATTTAAATATTAAAAGTTGGCC GCCCCCAGTGCCTCATGCCTGTAATCCCAGCACTTTGCGAGGCTGAGGCGCGGGGGGGATCACGAGGTCAGGAGATTGAGACCATCCTGGAT AACACGGAGAAACTGCGTCTCTACTAAAATAAAAAAAATTAGCCGGGGCATGGTGGCGGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTG AGGCAGGAGAATGGCGTGAACCCGGGAGGCAGARCTTGCAGTGAGCAGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCAAGA TGTGTAAAAACAAGAGAATGATTAAGTAKATTATGACTAAATACACTCAATACATTTTATGAAACGTTAAAAATATTCAAAAATTTAA ATAATGACTTGCTAACTACTTTAACAAGAGCTTTATTATCAGCTAGTCTTGGAGGTAATAGTATTATCATGATTTTTCAGAAAAAGATC TCACACTGCACGGCTTCCTGTTAAGATATTTGCTCAAAAAATGCGAGATATAAAAATCTGGGTAATATGATCAACCTTAAAGAATAATT  ${\tt ACATTITAAATTATCATGAGACCTTGTTAGTAGGTCACCATCAATGTGTAATTAAGCCAGATGTGACAGGATTTGTTGCCTCTCCCTT$ GCAACTGGTACTCTGAAAGAGAAAATGAGAAATTTGACAAGATCCTGTCCCCAAGGAGCTTCCTATCCAACAGGGGCACAAGACAGATA CTCTGGGAGTTCAGGGGAGGTCGTTCACATTCTGGTAGGGAAGATACTTCTGAGCTCAGTATATTCCCTTTCTCACTGTCCTTCTATC TTTTTTTTTGAGACAGACTCTTGTTCTGTCACCCATACTGGAGTACAGTGGCACGATCTCGGCTCACTGCAACCTCGGCCTCCCAGGT TACTOROGGIGCTGGGAAGTCCTGCTAAAAATACGGCAAGAAAGAGTAGAGCATCTAGGTACTGAGGGTGCTGGGAAGTCCTGCTAAAG TOOTCCCCCCCCCCCTTTGAGTTTCCCTGTGCCAGGCTACCTGCCCTCTGTGAGTTTGAGTTCTTTTCTTTGGTTGCAAGCA ACCAMGACCAGCTCAGCTAAAAGAAATGGATGGATACCGACTCATGAGTCAGAGGGGAAGCTGGACGTCTATGCCCAGAGCCAGGCAGA AACCCCTCAGGTCTAGAGTCTGGGAGGAGGAAACCGATGGACAGCTGCTTCAGGGCCCAGCGCTCAGGGTGAAGCAGCTGCAGTTGTTT **GCACAGAGCAGAGTCTTCGTTGACAGTCCCCCATGTACTACCCCTTTGTTTAGGTTACTGAGTCATCAACAGATCTCAGTTCAAAT**AGTC ACTTETTCAGGGGCAATATACCCTCTTCTACCCATAARCTAGGGGCAACATACCCTCTCTCCCCCTTTCACACATGACCATAACACCATG TAGCACTCAACTCTTGTAAGTTGACATTTACCCATGTGACTCTTTATGAACGTTCATCTCCATCCCGAGACCTACAGTCCATGAGGGTA CCACCOTTCTAGGGTTTTTGCTCTTTCTCTCTGTCAGTGCGCACTTAGGACTCTGCCTGGCACAGGGCAAACCCTCAATATTTGTTGAAT **AAATTAATTAATAAACACCTGTAAATGAATATCAGTAGACTACAACAAGAGTAACAGTAGGCGAAGGTGGAAGGCAAAGGTGGGAAGG** OTCAGGCTCTGAGTGCTGGGGTCTGAGGTTCACTCTACAGGGCTGGTGAGACACGATAGGTTTTAGAGAAAGGAAGCCTCA -ACTTCCAATGGCAATGAGAATAACATACTGAGTAATTGGGAGATCAAGCAAATTATTTACTAACAAGGCACACGAAGTGATTTTTCAC ACCCANTOTTAATGTTTTTCTTTTTTATCTACTTTTAAAATTCTAAAAGTAACAAAATCACAACCTACCAAACATTTAGACGACAAAAAT TATOCATAATCCCACCATCTTAACACCACCACTATTATCATTTGTTTTCCTTATTCACATTTTCTACCTATTTTCTTAGATTYCCAAGA 

GGCATGATCTCGGCTCACGGCAACCTCCCACGTTCAAGCGACTCTCATGCCTCAGGCTCCCAAGTAGCTGGGATTACAGGTGT GCACCACCACACTTGGCTAATTTTTGTATTTTTAGTAGAGATGTGTTTTTACCATGTTGGCCGGGTGGTCTCAAACTCCTGGCCTCA AGTGATCCTTCCACCTCAGCCTCCCCAAGGGCTGGTATTACAGGCATGAGCCACTGCCTGGCCTGGCATTTCAATTTTTAAAATCTTCA ACTGAATTTCTTTTTTGTGCACCTTACTTGGTATCATGGATAAAATTTTGTCAATTTTCTGATTATATCAATGCATTCAGGGTCCCAAA CCTGCCAAAGTTTAAAGAGAAAGATACTAAGGGAAAAACCAGGAAAAGATGGTAGAAAAGAATCACCCTGGCATTTTCAATCACGTAAA TCTGGAACTTTCTTAGTTATCTAGCATCCTAAGTGCCTGGACGTTCCTGATTGGTTTTGCAATGTGTTTTATTTCCCATCCCCAAGTT TCATAGCTGCCGGCCCTGGGATCTACAGTCACAGGCTGTAACACAATATCTTGCACATCCTGAGTCTTTAATAAGCTTTTGTAGATGGG CTCTTACCATCATCATCATCGTGAAAGGCAAATATACAAAATTTGTTGACTAATGTAATGAGTCATGAGTAACAGAAGTTTACTGACCA AACACTACGTGCATGTAGAGTTCAGAATAAACACTTTATTATCACATCAGAGGAAAAGACCATCTTAGAGGCTCAACAACCCAGGAAAG CAACAGCAGGTATTCTATTACCCCATCCTGGACTTTACTCCAAGAAAAAATACACTGAGTCTGTGAGTAATTTATTAGTATTTTGATCA ATCCTGRARTARARAGGRTRATGCRATARACACAGTTGCAGGRARGTATGTTAGCTATATACTATGALGTACTCTTAGTTTACTERTG TTGRATGOCTTROCTATTRATACTCRARTTGROTTRARATGRARATTCCTCCTTRARARATCRARCGTRATATGTRITACATTTCATOG TACATTAGTAGTECT. TOTATATTGAATAAATACTAAATCACCTAGGTGTCTATGTTCTATCACATCTACAAACATGTCACTTCCTAAT TTTTGTAAAGACCAATAGGTTCTGTATAGTCTTTTTTTAAATTGTGGTAAAATACACATGGCATTAATTTACCATTTTAACCATTTTAA AGTGCACAATTTGTGGCATTAAGTACACTCACGTTGCTGCAACCATCACCACCGTCCATCTTCAGAACCTTTTTATCTTCCTAAACT GAAACTCTGTACTCGTTAAGCACTCACTTCCCCGTTCCCCCAGCCCCTAGCAACCACGACTGTACTTTCTATGAATTTGACTA  $\textbf{CTCTAGGTACTGCATGTAGGTGGAATCATACAGTATTTGTCTTTTGCTTCATTTTGTTTTTGTTTTTCTAAGACAGGCTCTCAC$ TCTGTCGCCAGGCTGGAGTGCAGTGGCAATCACAGTGTCCTTTTGTGACTGGTTTATTTCACTTAGTGCCATGTTTTCAAGGTTCA TCCATGTTGTTGCATGTCTCAGAACTTCCTTTTTAGGCTAATATTCTTGCATGTATTTACCTAGTTTTGCTTATCCATTCAGCCATTG ATCCACACTTCCCTTCCATCTTTTCCCTATTGTCAATAATCCTGTTTTCAACCTCCGTTGCTACATAGTTACTTTTTAAAATTG GCACAACACCCCTGTCTTTTGACATACGTATTTTATGGAAAACACAAGATTTTCCTGGCTGACGCTCAACCTCATAATTTGGACCTTGG CCAAACCAGCCTGGCCAACATGCTGAAAACCTGTATCTACTAAAAATACAAAAATTGGCCAGGTGTGGTGGCCGCATGCCTGTAATCCCA  ${\tt octactergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradictergradicte$ TTAANGAACTTTTCACCCAGTCTTGATCTGACAGAAAGGCTTGTCAGAGAAAGTTAGAGTTCAGAGGCAGCCAATTGAATATAAT TACTETATTGCCCAGGCTGGAGTGCAGTGGCATGATGTGGGCTCACTGAAGCCTGACGTCGTGAGGTGATCCTCCCACCTCAGG CTGGTCTCAAACTCCCAGCCTCAAGCAATCTGCCCGCCTCAGCCTCCAAAAGTGCTGTAATTACAGGCATGAGCCACTGCTCCTGCCAG **GCAACTAATAGAATCCTGGGTTCTTCGGTGTGCAATAAAYCTCAAATACAGCTATTCAACCATAGATTTTAAATATTTGTTAGTGAAGG** TGACAAAAAATAAGTGATTAAGAGAACCTATTTTCTATCCAATGAGCTATCAAAAGCTTATAGAGTGGAAAGAGAGGGGGGAAGTGA GGCTCAAAACAGCTAAATGGAAAGAAGATTTTGCATGCAGGCTGAACTGGATTTTCATCCTGGCTACTATATTCTCCAGATGTGTCACT TTGGCCAAGATCCTTAATCTCAGTGTCATCTATAAGGTAATTAAAGTACACTAGTGCCCCACTAATCTGTGGTTTTGCTTTCCAAGGTT TCAGTTACCCGAGATCAACTGCCGTTTTAAAATATTATGTGGAAAATTCCAGAAATACATAGTAAGTTTTCAATTGCATGCCATTAAAT CTCATECTGTCCCTGACCCCTTCCTCCCGAGGTGAATGCTCCCTTTGTCCAGTGGCTCCACGATGACTACATTCCCCAAAATTGTTCT **CTTAGGAACCCTTTCTGTGTTCAAGGAACCCTTACTTTACTTAATTATGGCCCCAAAGCACAAGATAGGGATGCCGGCATACTGTTATA** CAAAAAAAACATGOTATGTATAAGGTTCAGTACTATCTGCAGTTTCAGACATCCCCTTGGGGTCTTGGGAACATATCCCCCGTGGATAAGG COMMACTACTOTAMAGTTTOTETTTTATAGAGTAGTTETEAGAACTACATTAATCCATAATGTGTGSCTCATGATACTCATTGATAGA

TGGTAGTAGCAACAATAAAAAATAATATTATCAAGTAACTGATTCATAATTGACTCTCAAAAAACGTTAATTTTCTGCTTTCCTTTACCT  ${\tt AAGTITACCTACATGTTTGAAAGGGAAGGTTTTCTAGACCAATAATTTTCAAATATTTTTGCTCTCATACTTCCTCAAAGG}$ AAACTGAAAAAGTTGCAACATACTTGCATGTCATTTTTCTATATAAGTTGAAAGAATAGCAAATTGTTATTTTCCCACGCATCGTAAAG ATTAGCAGGTCATCCCTCTTTAAAATGTACCAAATGGAATCTAAATATCATCGCAATTTGACCCAGCATCATCCATTTAAACAAATATA CAAGTTTTTCTTTAACAATGAGAAATTTTATCTCATTACATTTTCTCCCTAAACTCTTATTTCAATCTACATTCCTAAGAATTTTATCC TAATGTAGTATATTTTTATGCTTAAATATCTTTTGTTGATCAACACAATTTTGATCATTTTTAAATTTTAAAATTAAGAACATCCTGT TCCAATAAGTTAACGTATCCACTAATAATTATTTCTTCCTAGAACAAGACAGGATTAAGCATCATGACCGTCCCTATTGGGGGATG TTTTTATAGATGCAAGCACTGCGCACCTACTGGTATAAATGCACCTGCTGATTGGAATGTTCTTTCCCCAGATCTTCCCCTGCTGGTT TCTTCCCAGTATTCAGGTCTCAGCTCAAATGTGACTTCCTCAATGAGGCCTCCTGGTGATCAGATCTAAAGCACCCTCTACACAATCAC TGTTTAGTGCTATACCCATTAATTTACTATCACACTTGTCACTATCTGCAGATGTCTTGTTTGGTTACTTTTGTCAC TGCCAGAATATCAGTTCTATGAAGAAAAGGGCCTTGTCTATTTTGACACTTATAGANATGATGNAGGNACGACATACAAATGGCCAATG GGCATATGGAAAAACGCTTGACTTCAAGAGTACTNATGGNTATNACCAACATTTATGGAGTAACTACTTTGAAAAGAACCATTCTGTCT TTACTATCAAGCCAAGATACTCAAGGAAGGCAGCAGAAGTGGAAGCTCCATGTGGGCAGAGGAGCCTAGTCTTGAGATGTGATTTAGCT GGTATTTGGGTGAAACAAATAAACCAGCCTCAAAATAACACAAGGGGCCGGGTGCAGTGCCTCACGCCCTGTATCCCAGCACTTTGGGAG GCTCGAGGCAGGCAGATTACTTCAGGTGAGGAGTTCGAGACCAGCCTGGCTAACATGGTGAACCTCCAT

## 7853-138

HKNG 1 mkg	VA express	ion in nort	nal br	ain	
Britis Regions	Gray Matter	White Matter	Neuron	Actonordes	<b>.</b>
Frontal cortex(1)	444	•	44	rea ocytes	Oligodendrocytes
Motor cortex(2)	444		44	-	•
Parietal contex(3)	444	_	**	•	•
Occipital coctan(4)	414	-	**	.•	•
Hippocampal formation(5)	***		44	• .	. •
· CA1	***	• •	•	•	•
CA2		•	44	•	·• .
CAS	444 .	• •	• ++	•	•
CM CM	na	na	na	na	. <b>na</b>
Dentate gyrus	+++	•	++	•	
subjection 9/103	44	•	+	•	-
beraphbocambai divi	444	•	4+	•	_
Caudate/Putamen(6)	444	•	++	•	_
	4/-	•	+/-	•	-
GPI/GPe/Putamen(7)					•
GR GR	+	•	+	•	
GPs.	+	•	4	-	•
Putamen	· 4/-	•	4/-	-	•• •
Amygdala(8)	++	•		-	•
Indiamus(e)amediat	44	•	1	· <u>-</u>	•
Substantia nigra level(10)				•	•
SNo(substantia nigra para compacta)	144	•	44.		
Sivi(substantia nigra para retioulata)	•	•	4	•	•
Red Nucleus	• •	_	7	•	• .
3rd cranial nerve nuclei	ì	_	7	•	• .
superior colliculus		<u>.</u> .	•	•	•
Upper pons(11)	•	•	+	•	•
Loous ceruleus	•			•	•
portine ructel	444	· •	+	. •	•
Lower pons(12)	***	•	4+	•	•
foors corriers					
pontine nuclei	444	•	+	•	•
raphy nucleus(midine)	44.	•	.44	-	•
Medulia(18)	***	•	+	•	
inferior olivery nucleus		• •			
12th confet norm model	**************************************	•	+	•	. • ·
nucleus ambiguus(multipolar lower motor neurons)	7	• .	+	-	•
Osrobellum(14)	•	•	+	•	•
Putidrje cells					
Granular layer	44	•	44	•	•
Molecular tayor	•	•	4/-	•	•
Temperal pole(15)	• •	•	+ '.	•	•
Cingulate contex(16)	444	•	4+	•	•
Anterior thelemus(17)	444	•	44	•	•
Subthelemia muderna	7		_		
Ventral anterior N. (VA), Ventral lateral N.(VL)	-	•	7	• .	•
Hippocampal formation(18)	**	• ;	++	•	• •
CA1					
CA2	na	na ,	na .	na-	na.
CAS	na	na.	ina	na.	na.
- OM	444	•	. 44	•	•
subjection	444	•	++	•	•
	444		**	-	•
parahippocampai gyri	4:44	•	44	•	•
corvical cord (restrat position)				•	•
enterior motor nuclei	44 .	•	4	•	•
sensory nuclei group	44	•			-

	H						
Parridicae	Arrected Individuals	Phenotype	a.a.	өхор	comment	nt change	nt
30124	3010189	307	D331#	G			positi n
		3	TTCCV	<b>x</b> 0	3 of 4 affected individuals	AGA -> ACT	51,641
	3010185	302					51,642
	3010184	SCZ					
30105	3010027	302	123T	6	the only affected to the		
31102	3110017			T	cie ciiry allected individual	ATT -> ACT	35,044
· ·	/100176	major depr	E202K	7	all three affected individual (also seen once in Costa Pica)	GAA -> AAA	45,487
	3110014	SCZ			(8)		
	3110003	208					
30120	3010155	SCZ	E202K	-			
20126		T		1	one or the affected individuals	GAA -> AAA	45,487
30126	3010203	SCZ	intronic	10	3 of 4 affected individuals	insertion:	after
	3010210		- 1			GAATGCCTGGTTAG	63,417
		300				21 base pairs	
	3010204	302				3' of exon 10	
30140	3011486			T			
			Tucronic	٥	one of the two affected	A -> T	43,450
		<del></del> ,			010011	(24bp	
						downstream of exon 6)	
32301	3210041	SCZ			two of the three affected		
	3210051	SCZ			ם [ פונד ומיד ב		
					STUDENTATOR		

FIG. 5A

	nt change nt		CTC -> CTB			CTC -> CTA 36,307			he two affected
it			one of the two affected	grats	Fronton 1-11	trecced individuals			one of the two affected
exon comment			i one or the t	TATION	4 both a				one of the
	eguano	L34L		:	7507			1237	• ) !
Phenotype				800	3	SCZ		SCZ	
Fedigree, Affected Individuals		3010155		3210104		3210009		3110013	
, earthred		30120		32200			21100	SOTTE	

FIG. 58

position

45,571

exon	nt change
1	G->C (35 bp upstream from 3' endo of exon 1)
. 4	CIG -> CIA
9	GIT -> GGT
9	A -> T (24 bp downstream from exon 6)
7	GTC -> ATC

non-coding 5'-UTR

L42L (silent)

V123G

a.a. change non-coding (intronic)

36, 331

43, 184

FIG. 50

AGTTGCGTCCCTCTGTTGCCAGGCTGGAGTTCAGTGGCATGTTCATAGCTC
ACTGAAGCCTCAAATTCNTGGGTTCAAGTGACCCTCCTACCTCAGCCCCATGA
GGACCTGGGACTACAGTTCCCTCCCTTTGGAACGCAGCGTGGGCACCTGCAA
CGCAGAGACCACTGTATCTCCGGTGCAGAATGTAATGAGTGCCTGATACATT
TGCCGAATAAACTATTCCAAGGGTTGAACTTGCTGGAAGCAANAGAAGCACT
ATTCTGGTAACAGCGGGAACATGAAGCCGCCACTCTTGGTGTTTATTGTGTGT
CTGCTGTGGTTGAAAGACAGTCACTGCGCACCCACTTGGAAGGACAAAACTG
CTATCAGTGAAAACCTGAAGAGTTTTTCTGA

AGTTGCGTCCCTCTGTTGCCAGGCTGAGTTCAGTGGCATGTTCTTAGCTC
ACTGAAGCCTCAAATTCCTGGGTTCAAGTGACCCTCCACCTCAGCCCCATGA
GGACCTGGGACTACAGATGGAGTCTTGCTCTCGTTGCCCAGACTGGAGTGCA
CTGCTGCGATCTCAGCTCACTGCAACCTCTACCTCCCAGGTTCAAGCGATTCT
CCTGCCTCAGCCTCTCGAGTGGCTGGGACTATAGTAACAGCGGGAACATGAA
GCCGCCACTCTTGGTGTTTATTGTGTGTCCGCTGTGGTTGAAAGACAGTCACT
GCGCACCCACTTGGAAGGACAAAACTGCTATCAGTGAAAACCTGAAGAGTTT
TTCT

CT	rgga	GTCA	ACTG	AGTG	TGGA	ADT	AACT:	rcca)	) AAA	TGAC	:ATG/	GGAC	TCA	CTGG.	AGAA:	rcati	JATC!	NAGG!	AGCTA	. 79
CAG	CACT	CTGA	CTTA	ACTT:	TATTO	TGT	<b>G</b> AC	\ATG	\GAG;	CAAC	TGC	AGG#	LATTA	ACAG:	rgagi	AC I	M ATG /	K Aag (	L CTG	3 153
	L		м	. F	P	v	C	L	L	W	L	к	D	С	н	С	A	P	T	23
													GAC	TG:	CAT	TG	: GC:	r ccı	ACT	213
TGC		_			A CCC	I ATC		E GA	N AAC	A GCG	N AAC	S AG1	P TTT	S TC	E Gag	A GC1	G GGO	E GAG	I ATA	43 273
D		_	_		v		I			I	G	1	K	Q	M	ĸ	I	м	M	63
													' AAA	CAC	ATG	AAA	ATC	: ATG	ATG	333
GAA		R AGI		E Gaa	E Gaa	H CAC	S AGC	K Aaa	L CTA	M . ATG	K Aaa	T ACC	L TTG	K AAC	X AAG	C TGC	K Aaa	E L Gaa	E GAA	83 393
K	Q	B	A	L	ĸ	L	м	N	B	v	н	E	н	L	E	E	B	B	s	103
								AAT	GAA	GTT	CAT	GAA	CAC	CTG	GAG	GAG	GAA	GAA	AGC	453
L TTA		CAC			CIG			S TCC	W TGG	D GAT	e gaa	C TGC	R AGG	A GCT	TGC	L CTG	B Gaa	S AGT	N AAC	123 513
	М	R			T	T	c	Q	P	λ	W	s	s	v	ĸ	N	м	v	E	143
TGC		AGG	; TTI	' GAT	ACC							TCC	TCT	GTG	AAA	AAT	ATG	GTG	GAA	573
CA/G G		TTC		K AAG	ATC	Y TAT	Q CAG	F TTT	L CTG	F TTT	P CCT	L CTC	Q CAG	e Gaa	N AAT	D GAC	R AGA	S AGT	G GGC	163 633
P	v	s	K	G	v	T	B	E	D	A	0	v	s	н	1	R	н	v		183
					GTC							GTG	TCA	CAC	ATA	GAG	CAT	GTG	TTC	693
S AGC	_				D GAT			S TCT	CTC	P TTC	N AAC	R AGA	S AGC	L CTT	Y TAC	V GTC	P TTC	K AAA	Q CAG	203 753
L	R	R	В	P	ם	Q		F	Q	s	Y	P	T	s	G	T	D	v	T	223
					GAC					TCA	TAT	TTC	ACA	TCG	GGG	ACT	GAC	GTT	ACA	813
gag Gag	CCI	P TTC	P TTT	TTT	CCY		TTG	S TCC	k aag	e Gag	P CCA	A GCC	Y TAC	R AGA	A GCA	D GAT	A GCT	E GAG	P CCA	243 873
S	W	A	I	P		v		Q	L	L	С	N	L.	s	P	s	v	¥	Q	263
					AAT													TAT	CAA	933
s agt	•	s agt	gaa gaa	X AAA	CTC	ATC	T ACA	T ACC	CIG	R CGT	A GCC	T ACA	e gag	D GAC	P CCT	P CCA	k aaa	CAA	D GAC	283 993
K	D	S		Q	G	G	P	ī	s	K		L	P	E	Q	D	R	G	s	303
D					GGA															1053
	GGG	AAA	C11	GGC	CAG	AAT	TIG	TCT	GAT	TGC	GII	N AAT	F	R CGC	aag aag	r Aga	TGC	Caya S	K AAA	323 1113
C	Q CAG	D GAT	Y Tat	L	S	D Gat	D	C	P	N	v	P	B	L	Y	R	E	L	N	343
					TCT															1173
GAG	ecc	CIC	CGA	cic	V GTC	agt	AGA	TCC	AAT	CAG	CAA	TAC	GAC	CAG	OTG	. V GTG	CAG	M ATG	T ACC	363 1233
Q CAG			L CTG	B	D GAC	T	T ~~	L	L	М	B	K	H	R	B	Q	P	G	W	383
					Y										-					1293
GIT	TCT	GAA	cra	GCA	TAC	CÃG	TCC	CCA	GGA	GCT	GAG	GAC	ATC	TIT	N Aat	CCA	V GTG	K AAA	V GTA	403 1353

## 30/57

H	V	A	L	s	A	H	E	G	N	s	S	D	0	D	n	*	v	.,	P	
ATG	GTA	CCC	CTA	AGT	GCT	CAT	GAA	GGA	AAT	TCT	TCT	GAT	CAA	Chr	C).C				P	423 1413
			*								•••	Un.	CAA	GAI	GAC	ACA	GTG	GIT	CCI	1413
	S	L	L	P	s	S	N	P	т.	,	c		_		_					
TCA	AGC	CTC	CTG	CCT	TCC	TCT	AAC	TTC	202	~~	3	3	- <u>-</u> -	7	E	K	S	A	G GGC	443
								•••	ACA	CIC	AGC	AGC	CCT	CTT	GAA	AAG	AGT	CCI	GGC	1473
N	A	N	F	I	D	H	v	v				_	_							
AAC	GCT	AAC	TTC		CAT	CAC	~	~~~	-5-	Α	v	L	Q	H	F	K	Б	H	P	463
			•••	~	OV.	CAC	GIG	GTA	GAG	AAG	GTT	CTT	CAG	CAC	TTT	AAG	GAG	CAC	P TTT	1533
	T																			
	ACT																			467
																				1545
GAAG	ATTT	ነው የተ	'C አጥር	יר מידי	'እ እ <b>ም</b> ረ	~~~														
					MIL	-MGC/H	MUAA	TTAC	ACCT	TCGC	CCAA	GACC	TGAG	AATT	CTGA	AAAT	'ACAA	AGCA	recc	1624
		I GAM	LALLA	10C 1 G	CATG	AAAG	TTAG	GTAT	ATAT	TAGG	AAGC	ACTA	TTGG	TTTA	CTTT	GTTG	AATG	GAAG	TTT	1703
ARIA	GCTA	TTCA	TTAA	GAGT	TAAT	'ATAA	TAAA	TICI	TCCI	'AAAA	AGTA	TAAA	GTAC	TATA	GTAG	ATA	TGAT	CCAT	TAC	1782
																				1/82
TICI	TIGT	ATAC	AAAT	AAAT.	TACT	GAGT	cccc	T												
																				1815

Cī	TGGA	re1Ci	ACT	GAG	TGI	rgga	CTGA	AACT	TCCA	AAAA	CTGA	CATG	AGGA	GTCA	CTGG	AGAA	TCAT	GATO	AAGG	AGCT	A 79
CA	CACT	CIG	CTI	AAC	TTI	TTA	CTGT	GGAC	AATG	AGAG.	ACAAG	crec	<b>NAGG</b>	ATTA	ACAG	TGAG.	AAC .	M ATG	K AAG	L CTG	3 153
CC	L A CT	, I	, G A	M TG	P TTI	. CC	V GT	C G TG	L T CTO	L 3 CT	W A TGC	L TTC	K S AAJ	D A GA	C C TG	H T CA	C T TG	A T GC	. P	T F AC	23 7 213
W	K		)	K	T	A	I	s	E	N	A	N		P	c	P		_		_	
D	v	מ		G	B	v	ĸ	I	A	L	I	G	T	к	0	M	r	7			
E	R	R	. 1	B	B	B	H	s	ĸ	L	м	ĸ	T	۲.	r		c	b.		_	
K	Q	B	2	A.	L	K	L	ж	N	E	v	H	R	ч	t.		2	Ð	E A GAR	_	
L	C	Q	,	,	s	L	A	D	s	W	D	B	C	R		c	T.	p			
C-	И	R	1	,	D	T	T	С	0	P	A	w	s	e	v	¥	M		A AGT E GAA		
Ð	R	s	G	;	P	v	s	ĸ	G	v	т	E	Ŕ	D		^	v		••	_	
E	Н	v	F	•	s	Q	L	s	A	D	v	т	s	1.	P	M			CĀC Ł		633
v	F	K	Q		L	R	R	В	F	D	0	A	F	0	8	v	P	т	CIT S	_	693 203
T	D	v	T		B	P	F	F	P	P	s	L	s	ĸ	R	Ð	A	v	TCG R		753 223
D	A	E	₽		8	W	A	I	P	N	ν.		0	7.	٠.	_			AGA S	_	813 243
s	v	Y	. Q		6	v	s	В	ĸ	ī.	ı	T	<b>.</b>	1.	ъ	h	-	Ð	AGT D	_	873 263
P	K	Q	D	1	K	D	s	N	0	G	G	P	T	g					GAC B	_	933 283
D	R	G	s	1	D	G	ĸ	L	G	٥	N	ī.	s	מ	r	v	N	p	GAG R	v	993
R	C	Q	K	•	C	Q	D	Y	L	s	D	D	С	Ð	N	v	ъ.		ccc		1053
R	B	L	N	 I	30 (	A	GAT L	R	CTA L	TCT V	GAT	GAC P	TGC	CCI	AAT	GTG	CCT	GAA	CTA	TAC	323 1113 343
v	Q	м	T	. w	2	Y	н	CGA L	CIG R	GTC D	AGT .	AGA T	TCC T.	AAT 1.	CAG	CAA	TAC	GAC	CAG	GTG	1173 363
Q	P	G	H	ن ۱	us : '	S.	CAC E	CTG L	GAA A	GAC Y	ACC :	ACG S	CTT P	CTG G	ATG	GAG	AAG n	ATG	AGA	GAG	1233
		GGC	160	, G1	7	ICT	GAA	CTG	GCA	TAC	H CYC .	TCC	CCA	GGA	GCT	GAG	GAC	ATC	TTT	TAA	383 1293
CCA	GTG	AAA	GTA	AT	rG (	TA (	GCC	CTA	AGT :	GCT	CAT (	GAA	GGA .	AAT	TCT	TCT	GAT	CYY	D GAT	GAC	403 1353

T ACA	V GTG	V GTT	ĆCI. B	S TCA	S AGC	L CTC	L CTG	CCT	S TCC	S TCT	N AAC	F TTC	T ACA	L CTC	S AGC	S AGC	P CCT	L CTT	E GAA	42: 141:
K Aag	S AGT	A GCT	G GGC	N AAC	A GCT	n aac	F TTC	I ATT	D GAT	H CAC	V GTG	V GTA	E GAG	K Aag	V GTT	L CTT	Q CAG	H CAC	F TTT	443 1473
						W TGG														451 1497
GAAG	ATTI	AGTO	CATC	CTAT	PAATC	'AGCA	AGAA	ITTAC	ACCT	TCGG	CCAA	GACC	TGAG	AATT	CIGA	LAAA7	TACAA	AGCA	.GGC	1576
TAAC	'ACAA	ITGAA	CACA	CTG	CATG	iaaag	TTAG	GTAT	'ATAT	TAGG	AAGC	ACTA	TTGG	TTTA	CTTT	GTTC	AATG	GAAG	TTT	1655
AATA	GCTA	TTCA	AATT	GAGT	TAAT	'ATAA	AAAT	TTCT	TCCT	AAAA	AGTA	TAAA	GTAC	ATAT	GTAG	ATAA	TGAT	GCAT	TAG	1734
TTCT	TTGT	ATAC	TAAA	TAAA	TACT	GAGT	cccc	T												1767

CTT	GGAG	TCAR	.CTGA	GTGT	GGAC	TGAA	ACTI	CCAA	AAAC	TGAC	ATGA	GGAG	TCAC	TGGA	gaat	CATO	IATCA	AGGA	GCTA	79
CAC	ACTC	TGAC	TTAA	CTTT	ATTC	TGTG	GACA	ATGA	.GAGA	CAAC	TGCA	AGGA	TTAA	CAGT	GAGA	AC A			L TG	3 153
					CCC												A GCA	P CCT	T ACT	23 213
W TGG	K AAG	D GAC	K AAA	T	A GCC	I ATC	S AGT	E GAA	N AAC	A GCG	n Rac	S AGT	P TTT	S TCT	E GAG	A GCT	G GGG	E GAG	I ATA	43 273
	V GTA	D GAT		E GAG	V GTG		I ATA		L TTG		G GGC		K Aaa	Q CAG	M ATG	K	I ATC	M ATG	M ATG	63 333
E Gaa		R AGA	E GAG	E GAA	E GAA	H CAC	S AGC	K AAA	L CTA	M ATG	K Aaa	T ACC	L TTG	K Aag	K Aag	C TGC	K Aaa	B GAA	B GAA	83 393
K Aag		E GAG		L CTG						V GTT					E GAG	e Gag	E GAA	E GAA	S	103 453
L TTA	C TGC	Q CAG	V GTT	S TCT	L CTG	A GCA	D GAT	S	W TGG	D GAT	e gaa	C TGC	R AGG	A GCT	C TGC	L CTG	E Gaa	S AGT	N AAC	123 513
C TGC	M ATG	R AGG	F TTT	D GAT	T ACC	T ACC	C TGC	Q. CAA	. P CCT	A GCA	W TGG	s TCC	S TCT	V GTG	K Ara	N AAT	M ATG	E GAG	P CCA	143 573
	Y TAC		A GCA	D GAT	A GCT	B GAG	P CCA	S AGC	N TGG	A GCC		DCC D	N AAT	V GTC	F TTC	Q	L CTG	L CTC	C TGC	163 633
n aac	L TIG	s Agt	F TTC	S TCA	V GTT	Y TAT	Q CAA	S AGT	v GTC	S AGT	e gaa			I ATC		T ACC	L CTG	R CGT	A GCC	183 693
T ACA	_	D GAC		P CCA						s TCC		Q CAG	G GGA	G GGC	P CCG	I ATT	S TCA	K Aag	I ATA	203 753
L CTA	P CCT	E GAG	Q CAA	D GAC	R AGA	G GGC	S TCA	D GAT	G GGG	K AAA	L CTT	G GGC	Q CAG	n aat	L TTG	S TCT	D GAT	C TGC	V GTT	223 813
N AAT		R CGC	K AAG		C TGC											C TGC	P CCT	n Aat	V GTG	243 873
P			Y TAC	R AGA	E GAA	L CTC	n aat	B GAG	A GCC		R CGA	L CTG	V GTC	S AGT	r aga	S TCC	n aat	Q CAG	Q CAA	263 933
Y TAC	D GAC	Q CAG	V GTG	v GIG	Q CAG	n atg	T ACC	CYC Ö	Y TAT			E Gaa		T ACC	T ACG	L CTT	L CTG	H ATG	E GAG	283 993
k aag		r aga	E GAG	_	P TIT					E GAA						P CCA	G GGA	A GCT	E GAG	303 1053
D GAC																			S TCT	323 1113
					V GTG		P CCT	S TCA	S AGC	r CTC	L CTG	CCI	s TCC	s TCT	n Aac	P TTC	T ACA	L CTC	S AGC	343 1173
																V GTA			V GTT	363 1233
L CTT	-	H CAC	F TIT	K AAG	E GAG		F TIT		T ACT	W TGG	Taa									375 1269
GAAC	ATT	CAGTY	CATO	CTA	TAATO	AGCI	LAGAL	ATTAC	CACCT	rrege	CCA	GAC	TGAC	GAAT?	CTG	AAAA?	racaj	VAGC!	AGGC	1348

## 34/57

TAACACAATGAACACAGCTGCATGAAAGTTAGGTATATATTAGGAAGCACTATTGGTTTACTTTGTTGAATGGAAGTTT	1427
AATAGCTATTCAAATTGAGTTAATATAAAAATTTCTTCCTAAAAAGTAAAATGTACATATGTAGAATATGATGCATTAG	1506
TCTTTGTATACTAAATAATACTGAGTCCCCT	1539

CTTGGAGTCAACTGAGTGTGGACTGAAAACTTCCAAAAACTGACATGAGGAGTCACTGGAGAATCATGATCAAGGAGCTA	79
M K L CACACTCTGACTTAACTTTATTCTGTGGACAATGAGAGACAACTGCAAGGATTAACAGTGAGAAC ATG AAG CTG	3 153
P L L M P P V C L L W L K D C H C A P T CCA CTT TTG ATG TTT CCC GTG TGT CTG CTA TGG TTG AAA GAC TGT CAT TGT GCA CCT ACT	23 213
N K D K T A I S E N A N S F S E A G E I TGG AAG GAC AAA ACT GCC ATC AGT GAA AAC GCG AAC AGT TTT TCT GAG GCT GGG GAG ATA	43 273
D V D G E V K I A L I G I K Q M K I M M GAC GTA GAT GGA GAG GTG AAG ATA GCT TTG ATT GGC ATT AAA CAG ATG AAA ATC ATG ATG	63 333
E R R E B B H S K L M K T L K K C K E E GAA AGG AGA GAG GAA GAA CAC AGC AAA CTA ATG AAA ACC TTG AAG AAG TGC AAA GAA GAA	83 393
K Q E A L K L M N E V H E H L B E E E S ANG CAG GAG GCC CTG ANA CTT ATG ANT GAN GTT CAT GAN CAC CTG GAG GAG GAN GAN AGG	103 453
L C Q V S L A D S W D E C R A C L E S N TTA TGC CAG GTT TCT CTG GCA GAT TCC TGG GAT GAA TGC AGG GCT TGC CTG GAA AGT AAC	123 513
C M R P D T T C Q P A W S S V K N M P A TGC ATG AGG TTT GAT ACC ACC TGC CAA CCT GCA TGG TCC TCT GTG AAA AAT ATG CCA GCC	143 573
Y R A D A E P S W A I P N V F Q L L C N TAC AGA GCA GAT GCT GAG CCA AGC TGG GCC ATT CCC AAT GTC TTC CAG CTG CTC TGC AAC	163 633
L S F S V Y Q S V S B K L I T T L R A T TTG AGT TTC TCA GTT TAT CAA AGT GTC AGT GAA AAA CTC ATC ACA ACC CTG CGT GCC ACA	183 693
B D P P K Q D K D S N Q G G P I S K I L GAG GAC CCT CCA AAA CAA GAC AAA GAC TCC AAC CAG GGA GGC CCG ATT TCA AAG ATA CTA	203 753
P B Q D R G S D G K L G Q N L S D C V N CCT GAG CAA GAC AGA GGC TCA GAT GGG AAA CTT GGC CAG AAT TTG TCT GAT TGC GTT AAT	223 813
F R K R C Q K C Q D Y L S D D C P N V P TIT CGC AAG AGA TGC CAG AAA TGC CAG GAT TAT CTA TCT GAT GAC TGC CCT AAT GTG CCT	243 873
E L Y R E L N E A L R L V S R S N Q Q Y GAA CTA TAC AGA GAA CTC AAT GAG GCC CTC CGA CTG GTC AGT AGA TCC AAT CAG CAA TAC	263 933
D Q V V Q M T Q Y H L B D T T L L M B K GAC CAG GTG GTG CAG ATG ACC CAG TAT CAC CTG GAA GAC ACC ACG CTT CTG ATG GAG AAG	283 993
M R E Q F G W V S E L A Y Q S P G A E D ATG AGA GAG CAG TIT GGC TGG GIT TCT GAA CTG GCA TAC CAG TCC CCA GGA GCT GAG GAC	303 1053
I P N P V K V M V A L S A H B G N S S D ATC TIT AAT CCA GTG AAA GTA ATG GTA GCC CTA AGT GCT CAT GAA GGA AAT TCT TCT GAT	
Q D D T V V P S S L L P S S N F T L S S CAA GAT GAC ACA GTG GTT CCT TCA AGC CTC CTG CCT TCC TCT AAC TTC ACA CTC AGC AGC	
P L E K S A G N A N P I D H V V E K V L CCT CTT GAA AAG AGT GCT GGC AAC GCT AAC TTC ATT GAT CAC GTG GTA GAG AAG GTT CTT	363 1233
Q H F K B H F K T W * CAG CAC TIT AAA ACT TGG TAA	374 1266
GAAGATTTAGTCCATCCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGAGAATTCTGAAAATACAAAGCAGGC	1345

WO 99/47535	36/57	PCT/US99/05606
TAACACAATGAACACAGCTGCATGAAAGTTAG	GTATATATTAGGAAGCACTATTGGTTTACTTTGT	TGAATGGAAGTTT 1424
AATAGCTATTCAAATTGAGTTAATATAAAAAT	TTCTTCCTAAAAAGTAAAATGTACATATGTAGAA	TATGATGCATTAG 1503
TTCTTTGTATACTAAATAAATACTGAGTCCCC	т	1536

WO 99/47535

K K P P L L V P GCAACCTCGTTGGTGAGAGCCTGCAGTTAGTGTCACGGCGGAAAC ATG AAG CCG CCA CTC TTG GTG TTT IVYLLR LRDCQCAPTG 28 ATT GTG TAT CTG CTG CGG CTG AGA GAC TGT CAG TGT GCG CCT ACA GGG AAG GAC CGA ACT 129 R B D P K G F S K A G E I D V D E E TCC ATC CGT GAA GAC CCG AAG GGT TTT TCC AAG GCT GGG GAG ATA GAC GTA GAT GAA GAG 189 K A L I G M K Q M .K I L M E R R 68 GTG AAG AAG GCT TTG ATT GGC ATG AAG CAG ATG AAA ATC CTG ATG GAA AGA AGA GAG GAG 249 E H S K L M R T L K K C R E E K Q 88 gaa cat agc aaa cta atg aga aca ctg aag aaa tgc aga gaa aag cag gag gcc ctg 309 M N E V Q B H L E E E E 108 AAG CTT ATG AAT GAA GTT CAA GAA CAT CTA GAA GAG GAA AGG CTA TGC CAG GTG TCT G S W D E C K S C L E S D C M RPY 128 CTG ATG GGT TCC TGG GAC GAA TGC AAA TCT TGC CTG GAA AGT GAC TGC ATG AGA TTT TAT 429 Q S S W S S M K S T I E R ACA ACC TGC CAA AGC AGT TGG TCC TCT ATG AAA TCC ACG ATT GAA CGG GTT TTC CGG AAG 489 I Y Q F L F P F H E D D E K E L P ATA TAT CAG TIT CTC TIT CCT TTC CAT GAA GAC GAT GAA AAA GAG CTT CCT GTT GGT GAG 549 I E N AAG TTC ACT GAG GAA GAT GTA CAG CTG ATG CAG ATA GAG AAT GTG TTC AGC CAG CTG ACC 609 D V G F L Y N M S F H V F K O M 208 GTG GAT GTG GGA TIT CTC TAT AAC ATG AGC TIT CAC GTC TTC AAA CAG ATG CAG CAA GAA 669 LAFQS-YFMSDTD S М R 228 TIT GAC CTG GCT TIT CAA TCA TAC TIT ATG TCA GAC ACA GAC TCC ATG GAG CCT TAC TIT 729 SKEPAKKAHP M 0 S 248 TIT CCA GCT TIT TCC ANA GAG CCA GCA ANA ANA GCA CAT CCT ATG CAG AGT TGG GAC ATT C N F S L S V Y 0 S 26ª CCC AGC TTC TTC CAG CTG TTT TGT AAT TTC AGC CTC TCT GTT TAT CAA AGT GTC AGC GCA T V T E M L K A I E D L S K Q D K 288 ACA GTT ACA GAG ATG CTG AAG GCC ATT GAG GAC TTA TCC AAA CAA GAC AAA GAT TCT GCC 909 S S T T W P V R G R G L 308 CAC GGT GGA CCG AGT TCC ACG ACG TGG CCT GTG CGG GGC AGA GGG CTG TGT GGA GAA CCT 969 Q N S S E C L Q F H A R C Q K C Q 328 GGC CAG AAC TCG TCC GAA TGT CTC CAA TTT CAT GCA AGA TGC CAG AAA TGT CAG GAT.TAC 1029 V P E L Y T K A D 348 CTA TGG GCA GAC TGC CCT GTT CCT GAA CTA TAC ACA AAG GCG GAT GAG GCC CTT GAG 1089 V N I S N Q Q Y A Q V L Q M T Q 368 TTG GTC AAC ATA TOO AAT CAG CAG TAT GCC CAG GTA CTC CAG ATG ACC CAG CAT CAC TTG 1149 H E K M R E Q F G W 388 GAG GAC ACC ACG TAT CTG ATG GAG AAG ATG AGA GAG CAG TTT GGT TGG GTA ACA GAG CTG 1209 Q T P G S E N I F S P I K V P G V 408 GCC AGC CAG ACC CCA GGA AGC GAG AAC ATC TTC AGT TTC ATA AAG GTA GTT CCA GGT GTT 1269 H E G N F S K Q D E K M I D I S 428

												ATA								132
S	N	F	T	L	T	I	P	L	R	R	e	A			_	_	_	_		
TCT	AAT	TTC	ACA	CTC	ACC	ATC	CCT	<del>-</del>	GAN	CRA	300	GCT		3	-S	D	P	I	s	44
									U.V.	GAA	W? I	GCT	GAG	AGT	TCC	GAC	TTC	ATT	AGC	138
Y	м	t.	A	ĸ	a	v	^	**	_		_									
	ATYZ	CTC2	CCC	888		~	~	n	-F	K	E	H	F	K	S	W	•			46
•		-10	000	~~~	961	GIA	CAG	CAT	TIT	AAG	GAA	CAT	TIT	AAA	TCT	TGG	TAA			144
0010																				
												KAAA?								152
ATAC	CTTG	LAAA	CGT	TTCA	LACCI	CATI	AATA	ATC	AAGG	CATO		CTAA	CACA	N/CT	יארמי					
												~ 170	مامده	0.0311	AUCA	r2.1.1.7	TTAC	CTAT	TGA	160
ATTI	TCAA	ATTA	AAAA	AAAA	AATC	CIG	TAGE	ATTC	'A N TV	*****	~i.~.	ATTC								
								~100	watu	INVA.	GAUA	MITC	TAT	ATGI	GATI	GCCA	GAAA	CAA	CTG	1680
GTTT	TGTC	TTTT	TY: A 2	AACT	TA 7-1	~~~	~~~													
						CULL	IMIA	CATA	TCAA	GAGT	CATC	TAAA:	TICI	TITI	AATA	TAAT	AATT	CCAC	TTC	1759
TOCA	ATC A	3 TOO		~ . ~																
1001	MI CM	MICC.	MMM	CARO I	AAA1	CTAA	AATT	GAAT	TGAA	GTTC	CCYC	CCCA	AGAT	CAAT	ATTI	GCAA	ATTA	TTTA	AAA	1838
TAGT	AAAC	IGIT	AAAA	ACTG	AATG	TCAT	CTGA	ATGT	CTAA	AAAC	CAGA	aatg	GTTA	AAAG	CTGT	GGCT	AAAT	ATCC	TCC	1917
																				.191
AAAT	ATCT	TATA	AAAC	CATT	AAAA	ATAT	TTAT	AAAA	TTTA	AATC	ATGA	CATG	ACAT	CTGC	TGGA	ממים	GDGT		T/T	
																				1996
aagc	CTAT	CTAT	aagg	CAAA	TATT	ATTA	TTAC	TATC	TTCC	AGAA	ANGA	AACT	TCAG	N COTTO	3 CCC					
													I GAG	WC1C	MUGG	ICCA	AGIG	ITAG	TTG	2075
CTCA	STCA:	IGTC	TGAC	TCTT	TGGG	ACCC	CTTC	32(7)	CTAC	CCC3	~~~	GCTC	~~~							
									GIAG	····	CCHO	GCIC	CICI	STCC	GTGG	GATT	CTTC	AGAC	AGG	2154
AATA	TGG	GCA	GGTT	GCTA'	TTY	~	PCC N	~~~ ~ ~	1 Marie											
								JUMA	AICI.	iccc	TATC	CAGG	GATG	BAAC	CCAG	STCT	CCTG	CATT	GCA	2233
ССТВ	32.777.65	اطحاحات	ימידים	P/~IV>			·													
	<b></b>		~~1A.	10101		ACCAL	MIG	ATT	ACTC	RAGT	CAGT	AGGG	<b>GTA</b>	3AGG	CAAA	TTT	AACT.	CAGT:	TT	2312
-161	MAI!	-MIM	#1 LG(	LUAC	ATTAJ	ACT	GIT	CIG	rigge	GACA:	TIG	JTTG/	AAA	VAAT	AAAG:	IGAADI	YEAR	AGT	ATA	2391
WAC.	CTAT	AAA7	GTA	ATGA?	CAA	VACG	(AAA)	LAAA!	CTAC	CAAT	TGC	ATTA	VAAA7	CAAA	AAGGG	TTG	CAGO	:		2464

K P CAGAAGCTGGTGGCAACCTCGTTGGTGAGAGCCTGCAGTTAGTGTCACGGCGGAAAC ATG AAG CCG CCA CTC IVYLLRLRDC 0 C A TTG GTG TIT ATT GTG TAT CTG CTG CGG CTG AGA GAC TGT CAG TGT GCG CCT ACA GGG AAG 132 D R T S I R E D P K G F S K A G 45 GAC CGA ACT TCC ATC CGT GAA GAC CCG AAG GGT TTT TCC AAG GCT GGG GAG ATA GAC GTA 192 K KALIGMKQMKILME 65 GAT GAA GAG GTG AAG AAG GCT TTG ATT GGC ATG AAG CAG ATG AAA ATC CTG ATG GAA AGA EHSKLM 85 AGA GAG GAG GAA CAT AGC AAA CTA ATG AGA ACA CTG AAG AAA TGC AGA GAA GAA AAG CAG 312 K-L M N E V Q E H L E E E E R L C GAG GCC CTG AAG CTT ATG AAT GAA GTT CAA GAA CAT CTA GAA GAG GAA AGG CTA TGC 372 LMGSWDBCKS CLESD 125 CAG GTG TCT CTG ATG GGT TCC TGG GAC GAA TGC AAA TCT TGC CTG GAA AGT GAC TGC ATG 432 R F Y T T C Q S S W S S M K S T I B R 145 AGA TIT TAT ACA ACC TGC CAA AGC AGT TGG TCC TCT ATG AAA TCC ACG ATT GAA CGG GTT 492 HEDDEKEL 165 TTC CGG AAG ATA TAT CAG TIT CTC TIT CCT TTC CAT GAA GAC GAT GAA AAA GAG CTT CCT 552 V G E K F T E E D V Q L N Q I E N V 185 GTT GGT GAG AAG TTC ACT GAG GAA GAT GTA CAG CTG ATG CAG ATA GAG AAT GTG TTC AGC 612 V D V G F L Y N M S F H V 205 CAG CTG ACC GTG GAT GTG GGA TIT CTC TAT AAC ATG AGC TIT CAC GTC TTC AAA CAG ATG 672 Q Q E F D L A F Q S Y F M S D T D S M E 225 CAG CAA GAA TIT GAC CTG GCT TIT CAA TCA TAC TIT ATG TCA GAC ACA GAC TCC ATG GAG 732 CCT TAC TIT TIT CCA GCT TIT TCC AAA GAG CCA GCA AAA AAA GCA CAT CCT ATG CAG AGT 792 DIPSFFQLFCNFSLSVYQS 265 TGG GAC ATT CCC AGC TTC TTC CAG CTG TTT TGT AAT TTC AGC CTC TCT GTT TAT CAA AGT TVTEML B D 285 GTC AGC GCA ACA GTT ACA GAG ATG CTG AAG GCC ATT GAG GAC TTA TCC AAA CAA GAC AAA H G G P S S T T W P V R G R G L 305 GAT TCT GCC CAC GGT GGA CCG AGT TCC ACG ACG TGG CCT GTG CGG GGC AGA GGG CTG TGT O N SSE O K C 325 GGA GAA CCT GGC CAG AAC TCG TCC GAA TGT CTC CAA TTT CAT GCA AGA TGC CAG AAA TGT 1032 Y . L WAD CPAVPELYTK CAG GAT TAC CTA TGG GCA GAC TGC CCT GCT GTT CCT GAA CTA TAC ACA AAG GCG GAT GAG 1092 и в и о ĸ L N QYAO 365 GCC CTT GAG TTG GTC AAC ATA TCC AAT CAG CAG TAT GCC CAG GTA CTC CAG ATG ACC CAG 1152 BDTTYLMEKMRE I. 385 CAT CAC TTG GAG GAC ACC ACG TAT CTG ATG GAG AAG ATG AGA GAG CAG TTT GGT TGG GTA 1212 Q T P G S E N I F S P 405 ACA GAG CTG GCC AGC CAG ACC CCA GGA AGC GAG AAC ATC TTC AGT TTC ATA AAG GTA GTT 1272

₽	~				_															
	GGT	GTT	CAC	GAA	G GGA	n Aat	P TTC	S TCC	K AAA	Q CAA	D GAT	E Gaa	K Aag	M ATG	I ATA	D GAC	I Ata	S AGC	I ATT	42: 133:
L ]	₽	s	s	N	P	T	L CTC	T	7	ъ.			_	_	_	_				
P	I	s	Y	м	L	A	ĸ	A	v	^	.,	_		_		_				
TTC	ATT	AGC	TAC	ATG	CIG	GCC	AAA	GCT	GTA	CAG	CAT	HI	AAG	GAA	CAT	TIT	AAA	TCT	W TGG	469 145
TAA																				466 1455
GCAG	agta	TTTG	ATTA	GGGA	CGTI	TGCI	GATA	GGAA	TAGA	TGGT	TCT1	TAAA?	GGGA	AAAA	TGAC	:AAA:	CTAG	CTII	TGA	
ATAC																				1613
ATTT																				1692
GTTT	IGTC	IIII	TGAA	aagt	TATT	CAAT	TATA	CATA	TCAA	GAGT	CATO	TAAA	TTCT	TITI	aata	TAAT	TTAA	CCAC	TTC	1771
TGGA																				1850
TAGT																				1929
AAATI																				2008
AAGCC																				2087
CTCAC																				2166
AATAC GGTAG																				2245
																				2324
CTCTG AAACT																				2403
CCTTC																				2482
SATTE																				2561 2640
AAACT																				2719
ACAAC																				
CATA																				
CTTG	<b>FAGG</b>	TAGG	TCCC	TATC	AATG	TATA	ATTA	AGCT	OGGT.	ATTT	CTAG	ATTC	GCTG	CCTC	TCCC	TTTA	тстс	TGAR	TG	2956
TGGA	JACO	IIGI	TGGT	CATC	ARTC	AACC	aata'	TCIT	ITTA	GCAT	CTTC	TAAG	TGAA	GGC						3016

GTG	nagg'	CCT	TACA	gaag	CTGG	rggci	AACC:	rcgr	rggtv	GAGA	CCT	CAG:	rtag:	IGTC	ACGGG	CGGAJ	AAC I	M ATG 1	K AAG	2 76
P CCG		_	_	V GTG		I ATC					_			D GAC	C TGT	Q CAG	C TGT	A GCG	P CCT	22 136
T ACA		K AAG	D GAC	R CGA	T ACT	S TCC	I ATC	R CGT	e gaa	D GAC	CCC P	K AAG	G GGT	P TTT	s TCC	k Aag	A GCT	G GGG	E GAG	42 196
I ATA	_	V GTA		B GAA	_	V GTG		K Aag		L TTG	I ATT		M ATG	K AAG	Q CAG	M ATG	K AAA	I ATC	L CTG	62 256
M ATG	E Gaa	R AGA	R AGA	E GAG	B GAG	e gaa	H CAT	_	K AAA		M ATG		T ACC	L CTG	k aag	K AAA	C TGC	r aga	B GAA	82 316
B GAA	K AAG	Q CAG	E GAG	A GCC		k aag	L CTT	M ATG				Q CAA			L CTA	e gaa	e gag	e gaa	e gaa	102 376
r agg		C TGC	Q CAG	V GTG	S TCT	L CTG	M ATG	g GGT	S TCC	W TGG	D GAC	B Gaa	C TGC	K Aaa	S TCT	C TGC	L CTG	B GAA	s agt	122 436
	C TGC	M ATG		F TTT	-	T ACA	T ACC	C TGC	_	S AGC	S AGT	w TGG	s TCC	S TCT	m atg	K Aaa	S TCC	T ACG	I ATT	142 496
E GAA	R CGG	V GTT	F TTC	R CGG	K AAG	I ATA	Y TAT	Q CAG	F TTT		F TTT		F TTC	H CAT	e gaa	D GAC	D GAT	B GAA	K AAA	162 556
E GAG	L CIT	P CCT	V GTT	G GGT	B GAG	K AAG	P TTC	T ACT	B GAG		D GAT	V GTA	Q CAG	L CTG	M ATG	Q CAG	I ATA	E GAG	n aat	182 616
V GTG		S AGC	Q CAG	L CTG	T ACC	V GTG	D GAC	V GTG	G GGA	F TTT	L CTC	Y Tat	n Aac	M ATG	s agc	F TTT	H CAC	V GTC	F TTC	202 676
k Aaa	Q CAG	n atg	Q CAG	Q CAA	e gaa	P TTT	D GAC	L CTG	A GCT	P TTT	Q CAA	S TCA	y Tac	F TTT	H ATG	S TCA	D GAC	T ACA	D GAC	222 736
s TCC	M ATG	e gag	P CCT	Y TAC		F TTT			F TTT			g Gag	PCCA	a GCA	K AAA	K Aaa	A GCA	H CAT	CCT	242 796
m atg	Q CAG	s agt	N TGG	D GAC	I ATT	CCC	S AGC	F TTC	F TTC		L CTG		C TGT	n aat	P TTC	S AGC	L CTC	s TCT	V GTT	262 856
Y TAT	Q CAA	s agt	GIC A	S AGC		T ACA		T ACA	E GAG	n Dta	L CTG		A GCC	I ATT	e gag	D GAC	L TTA	S TCC	K AAA	282 916
Q CAA	D GAC		D GAT	_		CAC	_	_	-			T ACG			P CCT		R CGG			<u>3</u> 02 976
						G GGC									-					322 1036
CAG	AAA	TGT	CAG	GAT	TAC	CTA	TGG	GCA	GAC	TGC	CCI	GCT	GTT	CCT	GAA	CTA	TAC	ACA	aag	342 1096
GCG	GAT	GAG	GCC	CIT	GAG		GTC	AAC	ATA	TCC	AAT	CAG	CAG	TAT	GCC	CAG	GTA	CTC	CAG	
ATG	ACC	CAG	CAT	CAC	TIG	B GAG	GAC	ACC	ACG	TAT	CIG	ATG	GAG	AAG	ATG	AGA	GAG	CAG	TTT	382 1216
GGT	TGG	GTA	ACA	GAG	CTG	GCC	AGC	CAG	ACC	CCA	GGA	AGC	GAG	AAC	ATC	TTC	AGT	TTC		1276
K	V	V	P	G	V	H	E	G	N	F	S	K	Q	D	E	K	M	I	D	422

DAA	GTA	GII	CCA	GGT	GTT	CAC	GAA	GGA	AAT	TTC	TCC	AAA	CAA	GAT	GAA	AAG	ATG	ATA	GAC	1336
I	s	I	L	₽	s	s	N	P	T	L	T	T	Þ	· .	P			A	_	
ATA	AGC	ATT	CIG	CCT	TCC	TCT	AAT	TTC	ACA	CTC	ACC	ATC	ccı	CTT	GAA	GAA	AGT	GCT	E Gag	442 1396
S	S	D	P	I	s	Y	M	L	A	ĸ	A	v	Q	н	P	ĸ	B	н	P	462
AGT	TCC	GAC	TIC	ATT	AGC	TAC	ATG	CTG	GCC	AAA	GCT	GTA	CAG	CAT	TII	AAG	GAA	CAT	TTT	1456
	S																			466
AAA	TCT	TGG	TAA																	1468
GCAG	AGTA	TTT	ATTA	LGGGA	CGTI	TGCI	GATA	GGAR	TAGA	יזינים		מממי	CCCX							
																				1547
ATAC	CITG	AAAA	CGTA	TTCA	ACCI	CATI	'AATA	ATCA	AAGG	CATG	AAAA	CTAA	GACA	AGTI	AGC	GTT	TTAC	CTAT	TGA	1626
ATTT	TCAA	ATTA	AAAA	AAAA	ATCC	TGAT	AGAA	TGCA	ATGA	AATG	<b>IAGAA</b>	TICI	TATA	TGTG	ATTG	CCAG	AAAC	AAAC	TGG	1705
TTTT	GTCT	TTTT	AAAD	AGTT	ATTC	AATT	ATAC	TATA	CAAG	AGTC	ATCA	AATT	TCTT	TTTA	LATA	AATA	ATTC	CACT	TCT	1784
GGAA	TCAA	TCCA	aagg	agta	AATC	TAAA	ATTG	AATT	gaag	TTCC	CACC	CCAA	GATC	AATA	TTTG	CAAA	TTAT	TTAA	AAT	1863
AGTA	AACT	GTTA	AAAA	CTGA	atgt	CATC	TGAA	TGTC	TAAA	AACC	agaa	ATGG	TAA	AAGC	TGTG	GCTA	AATA	TGCT	CCA	1942
						TATT														2021
AGCC:	FATC	TATA	AGGC	AAAT	ATTA'	TTAT	TACT.	ATCT	rcca/	GAAA	AGAA	ACTI	GAGA	CTCA	GGGT	CCAA	GTGT	TAGT	TGC	2100
TCAG:	CAT	GTCT	GACT	CITN	BAGA	cccc	rtgg	ACTG:	ragc	CCAC	CAGG	CTCC	rctg:	TCCA	TGGG.	ATTC	TTCA	GACA	AGA	2179
ATACT	rgga	3CAG	GTTG	CTAT:	TCC:	TTCT	CAG	GAAA:	CTT	CCT	ATCC	AGGG	ATGG	AACC	CAGG	TCTC	CTGC	ATTG	CAG	2258
TAGI	TGC:	TTA	CTATO	CTGAC	CAA	CCAA	LTGA.	ATTAC	TCA	AGTC	AGTA	GGGGG	STAG	AGGC!	AAAT	TTA	ACTT	GTT	rrc	2337
CTG	ATC	ATAA:	reco	CACA?	TAAI	CTG	TTC	TGT	reces	CAT:	r <b>T</b> GG:	rtgaj	LAAA	LATAI	VAGIY	GAAAI	<b>LATG</b>	GTA	raa	2416
						\CGA;														2490

```
CTTGGAGTCAACTGAGTGTGGACTGAAACTTCCAAAAACT Majority
                         20
                                     30
   CTTGGAGTCAACTGAGTGTGGACTGAAACTTCCAAAAACT gphkng1815-1.
   CTTGGAGTCAACTGAGTGTGGACTGAAACTTCCAAAAACT gp7b-1.
    CTTGGAGTCAACTGAGTGTGGACTGAAACTTCCAAAAACT gp7c-1.
    CTTGGAGTCAACTGAGTGTGGACTGAAACTTCCAAAAACT gp7d-1.
    GACATGAGGAGTCACTGGAGAATCATGATCAAGGAGCTAC Majority
                                     70
41 GACATGAGGAGTCACTGGAGAATCATGATCAAGGAGCTAC gphknq1815-1.
 41 GACATGAGGAGTCACTGGAGAATCATGATCAAGGAGCTAC gp7b-1.
   GACATGAGGAGTCACTGGAGAATCATGATCAAGGAGCTAC gp7c-1.
   GACATGAGGAGTCACTGGAGAATCATGATCAAGGAGCTAC gp7d-1.
    ACACTCTGACTTAACTTTATTCTGTGGACAATGAGAGACA Majority
                         100
 81 ACACTCTGACTTAACTTTATTCTGTGGACAATGAGAGACA gphkng1815-1.
 81 ACACTCTGACTTAACTTTATTCTGTGGACAATGAGAGACA gp7b-1.
 81 - ACACTCTGACTTAACTTTATTCTGTGGACAATGAGAGACA gp7c-1.
 81 ACACTCTGACTTAACTTTATTCTGTGGACAATGAGAGACA gpp7d-1.
    ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT Majority
             130
                                    150
                         140
                                                160
 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT gphkng1815-1.
 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT gp7b-1.
 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT gp7c-1.
 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT gp7d-1.
    TGATGTTTCCCGTGTGTCTGCTATGGTTGAAAGACTGTCA Majority
             170
                         180
                                    190
                                                200
 161 TGATGTTTCCCGTGTGTCTGCTATGGTTGAAAGACTGTCA gphkng1815-1.
 161 TGATGTTTCCCGTGTGTCTGCTATGGTTGAAAGACTGTCA gp7b-1.
 161 TGATGTTTCCCGTGTGTCTGCTATGGTTGAAAGACTGTCA gp7c-1.
 161 TGATGTTTCCCGTGTGTCTGCTATGGTTGAAAGACTGTCA gp7d-1.
    TTGTGCACCTACTTGGAAGGACAAAACTGCCATCAGTGAA Majority
             210
                         220
                                    230
                                                240
 201 TTGTGCACCTACTTGGAAGGACAAACTGCCATCAGTGAA gphkng1815-1.
 201 TTGTGCACCTACTTGGAAGGACAAAACTGCCATCAGTGAA gp7b-1.
 201 TTGTGCACCTACTTGGAAGGACAAACTGCCATCAGTGAA gp7c-1.
 201 TTGTGCACCTACTTGGAAGGACAAAACTGCCATCAGTGAA gp7d-1.
    AACGCGAACAGTTTTTCTGAGGCTGGGGAGATAGACGTAG Majority
             250 -
                         260
                                    270
 241 AACGCGAACAGTTTTTCTGAGGCTGGGGAGATAGACGTAG gphkng1815-1.
 241 AACGCGAACAGTTTTTCTGAGGCTGGGGAGATAGACGTAG gp7b-1.
 241 AACGCGAACAGTTTTTCTGAGGCTGGGGAGATAGACGTAG gp7c-1.
 241 AACGCGAACAGTTTTTCTGAGGCTGGGGAGATAGACGTAG gp7d-1.
```

```
ATGGAGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT Majority
              290
                          300
                                     310
 281 ATGGAGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT gphkng1815-
 281 ATGGAGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT gp7b-1.
 281 ATGGAGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT gp7c-1.
 281 ATGGAGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT gp7d-1.
    GAAAATCATGATGGAAAGGAGAGGAAGAACACAGCAAA Majority
              330
                         340
                                     350
                                                360
 321 GAAAATCATGATGGAAAGGAGAAGAAGAACACAGCAAA gphkng1815-
 321 GAAAATCATGATGGAAAGGAGAGGAAGAACACAGCAAA 9p7b-1.
 321 GAAAATCATGATGGAAAGGAGAGAAGAACACAGCAAA gp7c-1.
 321 GAAAATCATGATGGAAAGGAGAGGAAGAACACAGCAAA gp7d-1.
    CTAATGAAACCTTGAAGAAGTGCAAAGAAGAAAGCAGG Majority
              370
                         380
                                     390
                                                400
 361 CTAATGAAACCTTGAAGAAGTGCAAAGAAGAAAGCAGG gphkng1815-
 361 СТААТСААААССТТ GAAGAAGTGCAAAGAAGAAAGCAGG 9p7b-1.
 361 CTAATGAAAACCTTGAAGAAGTGCAAAGAAGAAAGCAGG gp7c-1.
 361 CTAATGAAAACCTTGAAGAAGTGCAAAGAAGAAAGCAGG gp7d-1.
    AGGCCCTGAAACTTATGAATGAAGTTCATGAACACCTGGA Majority
              410
                         420
                                     430
                                                440
 401 AGGCCCTGAAACTTATGAATGAAGTTCATGAACACCTGGA gphkng1815-
 401 AGGCCCTGAAACTTATGAATGAAGTTCATGAACACCTGGA gp7b-1.
 401 AGGCCCTGAAACTTATGAATGAAGTTCATGAACACCTGGA gp7c-1.
 401 AGGCCCTGAAACTTATGAATGAAGTTCATGAACACCTGGA gp7d-1.
    GGAGGAAGAAAGCTTATGCCAGGTTTCTCTGGCAGATTCC Majority
              450
                         460
                                                480
 441 GGAGGAAGCTTATGCCAGGTTTCTCTGGCAGATTCC gphkng1815-.
 441 GGAGGAAGAAAGCTTATGCCAGGTTTCTCTGGCAGATTCC gp7b-1.
 441 GGAGGAAGAAAGCTTATGCCAGGTTTCTCTGGCAGATTCC gp7c-1.
"441 GGAGGAAGAAAGCTTATGCCAGGTTTCTCTGGCAGATTCC 9D7d-1.
    TGGGATGAATGCAGGGCTTGCCTGGAAAGTAACTGCATGA Majority
                         500
                                    510
 481 TGGGATGAATGCAGGGCTTGCCTGGAAAGTAACTGCATGA gphkng1815-:
    TGGGATGAATGCAGGGCTTGCCTGGAAAGTAACTGCATGA gp7b-1.
    TGGGATGAATGCAGGGCTTGCCTGGAAAGTAACTGCATGA gp7c-1.
    TGGGATGAATGCAGGGCTTGCCTGGAAAGTAACTGCATGA gp7d-1.
    GGTTTGATACCACCTGCAACCTGCATGGTCCTCTGTGAA Majority
             530
                         540
                                                560
521 GGTTTGATACCACCTGCCAACCTGCATGGTCCTCTGTGAA gphkng1815-:
- 521 GGTTTGATACCACCTGCCAACCTGCATGGTCCTCTGTGAA gp7b-1.
521 GGTTTGATACCACCTGCCAACCTGCATGGTCCTCTGTGAA gp7c-1.
521 GGTTTGATACCACCTGCCAACCTGCATGGTCCTCTGTGAA gp7d-1.
```



```
AAGGAGCCAGCCTACAGAGCAGATGCTGAGCCAAGCTGGG Majority
             850
                         860
                                    870
                                                880
841 AAGGAGCCAGCCTACAGAGCAGATGCTGAGCCAAGCTGGG gphkng1815-1.
   AAGGAGCCAGCCTACAGAGCAGATGCTGAGCCAAGCTGGG gp7b-1.
   ----AGCCAGCCTACAGAGCAGATGCTGAGCCAAGCTGGG 9p7c-1.
569
     <u>---</u>CCAGCCTACAGAGCAGATGCTGAGCCAAGCTGGG gp7d-1.
56B
   CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT Majority
             890
                        900
                                    910
                                                920
881 CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT gphkng1815-1.
833 CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT gp7b-1.
605 CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT gp7c-1.
602 CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT gp7d-1.
   CTCAGTTTATCAAAGTGTCAGTGAAAACTCATCACAACC Majority
             930
                        940
                                    950
                                                960
921 CTCAGTTATCAAAGTGTCAGTGAAAACTCATCACAACC gphkng1815-1.
873 CTCAGTTTATCAAAGTGTCAGTGAAAAACTCATCACAACC gp7b-1.
645 CTCAGTTTATCAAAGTGTCAGTGAAAACTCATCACAACC gp7c-1.
642 CTCAGTTTATCAAAGTGTCAGTGAAAACTCATCACAACC 9p7d-1.
   CTGCGTGCCACAGAGGACCCTCCAAAACAAGACAAGACT Majority
             970
                        980
                                    990
                                               1000
961 CTGCGTGCCACAGAGGACCCTCCAAAACAAGACAAAGACT gphkng1815-1.
  CTGCGTGCCACAGAGGACCCTCCAAAACAAGACAAGACT gp7b-1.
  CTGCGTGCCACAGAGGCCCTCCAAAACAAGACAAAAAA gact gp7c-1.
  CTGCGTGCCACAGAGGCCCTCCAAAACAAGACAAGACT gp7d-1.
   CCAACCAGGGAGGCCCGATTTCAAAGATACTACCTGAGCA Majority
            1010
                        1020
                                    1030
                                               1040
1901 CCAACCAGGGAGGCCCGATTTCAAAGATACTACCTGAGCA gphkng1815-1.
953 CCAACCAGGGAGGCCCGATTTCAAAGATACTACCTGAGCA gp7b-1.
725 CCAACCAGGGAGGCCCGATTTCAAAGATACTACCTGAGCA 9p7c-1.
722 CCAACCAGGGAGGCCCGATTTCAAAGATACTACCTGAGCA gp7d-1.
   AGACAGAGGCTCAGATGGGAAACTTGGCCAGAATTTGTCT Majority
            1050
                        1060
                                    1070
                                               1080
1041 AGACAGAGGCTCAGATGGGAAACTTGGCCAGAATTTGTCT gphkmg1815-1.
993 AGACAGAGGCTCAGATGGGAAACTTGGCCAGAATTTGTCT gp7b-1.
765 AGACAGAGGCTCAGATGGGAAACTTGGCCAGAATTTGTCT gp7c-1.
762 AGACAGAGGCTCAGATGGGAAACTTGGCCAGAATTTGTCT gp7d-1.
   GATTGCGTTAATTTTCGCAAGAGATGCCAGAAATGCCAGG Majority
                        1100
                                               1120
                                    1110
1081 GATTGCGTTAATTTTCGCAAGAGATGCCAGAAATGCCAGG gphkng1815-1.
1533 GATTGCGTTAATTTTCGCAAGAGATGCCAGAAATGCCAGG gp7b-1.
805 GATTGCGTTAATTTTCGCAAGAGATGCCAGAAATGCCAGG 977c-1.
802 GATTGCGTTAATTTTCGCAAGAGATGCCAGAAATGCCAGG gp7d-1.
```

```
ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA Majority
              1130
                          1140
                                     1150
                                                 1160
 1121 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA gphkng1815-1.
 1073 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA gp7b-1.
 845 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA gp7c-1.
 842 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA gp7d-1.
    CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC Majority
              1170
                         1180
                                     1190
1161 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC gphkng1815-1.
 1113 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC 9p7b-1.
 885 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC 9D7c-1.
 882 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC gp7d-1.
    AATCAGCAATACGACCAGGTGGTGCAGATGACCCAGTATC Majority
             1210
                         1220
                                     1230
· 1201 AATCAGCAATACGACCAGGTGGTGCAGATGACCCAGTATC gphkng1815-1.
 1153 AATCAGCAATACGACCAGGTGGTGCAGATGACCCAGTATC 9p7b-1.
 925 AATCAGCAATACGACCAGGTGGTGCAGATGACCCAGTATC 9P7c-1.
 922 AATCAGCAATACGACCAGGTGGTGCAGATGACCCAGTATC 9p7d-1.
    ACCTGGAAGACACCACGCTTCTGATGGAGAAGATGAGA Majority
                         1260
                                     1270
 1241 ACCTGGAAGACACCACGCTTCTGATGGAGAAGATGAGAGA gphkng1815-1.
 1193 ACCTGGAAGACACCACGCTTCTGATGGAGAAGATGAGAGA gp7b-1.
 965 ACCTGGAAGACACCACGCTTCTGATGGAGAAGATGAGAGA 9p7c-1.
 962 ACCTGGAAGACACCACGCTTCTGATGGAGAAGATGAGAGA gp7d-1.
    GCAGTTTGGCTGGGTTTCTGAACTGGCATACCAGTCCCCA Majority
             1290
                         1300
                                     1310
                                                1320
 1281 GCAGTTTGGCTGGGTTTCTGAACTGGCATACCAGTCCCCA gphkng1815-1.
 1233 GCAGTTTGGCTGGGTTTCTGAACTGGCATACCAGTCCCCA gp7b-1.
 1005 GCAGTTTGGCTGGGTTTCTGAACTGGCATACCAGTCCCCA gp7c-1.
 1002 GCAGTTTGGCTGGGTTTCTGAACTGGCATACCAGTCCCCA gp7d-1.
    GGAGCTGAGGACATCTTTAATCCAGTGAAAGTAATGGTAG Majority
                         1340
                                    1350
                                                1360
 1321 GGAGCTGAGGACATCTTTAATCCAGTGAAAGTAATGGTAG gphkng1815-1.
 1273 GGAGCTGAGGACATCTTAATCCAGTGAAAGTAATGGTAG gp7b-1.
 1045 GGAGCTGAGGACATCTTTAATCCAGTGAAAGTAATGGTAG gp7c-1.
 1042 GGAGCTGAGGACATCTTTAATCCAGTGAAAGTAATGGTAG gp7d-1.
    CCCTAAGTGCTCATGAAGGAAATTCTTCTGATCAAGATGA Majority
                         1380
                                    1390
                                                1400
 1361 CCCTAAGTGCTCATGAAGGAAATTCTTCTGATCAAGATGA gphkng1815-1.
 1313 CCCTAAGTGCTCATGAAGGAAATTCTTCTGATCAAGATGA gp7b-1.
 1085 CCCTAAGTGCTCATGAAGGAAATTCTTCTGATCAAGATGA gp7c-1.
 1082 CCCTAAGTGCTCATGAAGGAAATTCTTCTGATCAAGATGA gp7d-1.
```

```
CACAGTGGTTCCTTCAAGCCTCCTGCCTTCCTCTAACTTC Majority
             1410
                         1420
                                    1430
                                                1440
1401 CACAGTGGTTCCTTCAAGCCTCCTGCCTTCCTCTAACTTC gphkng1815-1.
1353 CACAGTGGTTCCTTCAAGCCTCCTGCCTTCCTAACTTC gp7b-1.
1125 CACAGTGGTTCCTTCAAGCCTCCTGCCTTCCTCAACTTC gp7c-1.
1122 CACAGTGGTTCCTTCAAGCCTCCTGCCTTCCTCAACTTC gp7d-1.
   ACACTCAGCAGCCCTCTTGAAAAGAGTGCTGGCAACGCTA Majority
             1450
                         1460
                                    1470
                                                1480
1441 ACACTCAGCAGCCCTCTTGAAAAGAGTGCTGGCAACGCTA gphkng1815-1.
1393 ACACTCAGCAGCCCTCTTGAAAAGAGTGCTGGCAACGCTA gp7b-1.
1165 ACACTCAGCAGCCCTCTTGAAAAGAGTGCTGGCAACGCTA gp7c-1.
1162 ACACTCAGCAGCCCTCTTGAAAAGAGTGCTGGCAACGCTA gp7d-1.
   ACTTCATTGATCACGTGGTAGAGAAGGTTCTTCAGCACTT Majority
                         1500
                                    1510
                                                1520
1481 ACTTCATTGATCACGTGGTAGAGGTTCTTCAGCACTT gphkng1815-1.
1433 ACTTCATTGATCACGTGGTAGAGAAGGTTCTTCAGCACTT gp7b-1.
1205 ACTTCATTGATCACGTGGTAGAGAAGGTTCTTCAGCACTT gp7c-1.
1202 ACTTCATTGATCACGTGGTAGAGAAGGTTCTTCAGCACTT gp7d-1.
   TAAGGAGCACTTTAAAACTTGGTAAGAAGATTTAGTCCAT Majority
             1530
                        1540
                                    1550
1521 TAAGGAGCACTTTAAAACTTGGTAAGAATTTAGTCCAT gphkng1815-1.
1473 TAAGGAGCACTTTAAAACTTGGTAAGAAGATTTAGTCCAT gp7b-1.
1245 TAAGGAGCACTTTAAAACTTGGTAAGAAGATTTAGTCCAT gp7c-1.
1242 TAAGGAGCACTTTAAAACTTGGTAAGAAGATTTAGTCCAT gp7d-1.
   CCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGA Majority
             1570
                        1580
                                    1590
                                                1600
1561 CCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGA gphkng1815-1.
1513 CCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGA gp7b-1.
1285 CCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGA gp7c-1.
1282 CCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGA gp7d-1.
   GAATTCTGAAAATACAAAGCAGGCTAACACAATGAACACA Majority
             1610
                        1620
                                    1630
                                                1640
1601 GAATTCTGAAAATACAAAGCAGGCTAACACAATGAACACA gphkng1815-1.
1553 GAATTCTGAAAATACAAAGCAGGCTAACACAATGAACACA gp7b-1.
1325 GAATTCTGAAAATACAAAGCAGGCTAACACAATGAACACA gp7c-1.
1322 GAATTCTGAAAATACAAAGCAGGCTAACACAATGAACACA gp7d-1.
   GCTGCATGAAAGTTAGGTATATATTAGGAAGCACTATTGG Majority
             1650
                        1660
                                    1670
                                                1680
1641 GCTGCATGAAAGTTAGGTATATTAGGAAGCACTATTGG gphkng1815-1.
1593 GCTGCATGAAAGTTAGGTATATTAGGAAGCACTATTGG gp7b-1.
1365 GCTGCATGAAAGTTAGGTATATATTAGGAAGCACTATTGG gp7c-1.
1362 GCTGCATGAAAGTTAGGTATATATTAGGAAGCACTATTGG gp7d-1.
```

	_1	`	Ľ,	Ţ	λ	C	1			ľ	G	-				\ /	\ 1	. (	; G	A	A	G	T	T	T	Α	A	T	A	G	C	1	. A	1	1	, С	A	A	A	1	. 1	2	Majority
													90									•	00									•	10									-1	20
1681	ī			r	λ	c	7	7		r	G	T	7			. ,	. 7		G	A	A	귾	т	Т	т		Α	<u> </u>	_	6		_	_		_	_	_	_	_		_	_	L 3 gphkng1815-1.
1633	T	•	r	r	A	c	T	T		r	G	T	1	G	. A		. 1		: 6		A	G	_	<u>-</u>	·	Α.	Α	T	Α.	G		•									. 1		gpnkng1815-1. gp7b~1.
1405	T	,		r	A	c	T	1	•	r	G	T	T	G	A		. 7		: 6		Δ.	G	•	•	Ψ.	Α	Α	~		6						~				. 1			; gp7b~1. ; gp7c-1.
1402	T			r	A	c	т	T		r	G	T	T	G	A		1		: 6	Δ.	Δ	G	-	· Т	•	^	A A	~	^	0	_					٠				. 1			gp7c-1. gp7d-1.
												_	_				•	_	•	•	•	٠	•	٠.	٠	^	^	٠	^	•		•	^	. 1	1	٠	A		. А	. 1	1	. G	gp7d-1.
	A		3 1	r	T	A	A	T	. ,	٨	T	A	А	A	A		. 1			_	Ŧ	т	_	_	т	A					_	_					_	_	_	_	_		Majority
	_								_	_		•				-	_	_	_	_	÷	÷	Ť	_	÷		_	_	_	_		÷				A	-		T	-	<u> </u>	_	Majority
	_		_	_	_			_				73	_					_			_	74	_									75										17	
1721	A	G	; 1	•	T	A	A	T	, 1	١,	T	A	A	A	A	A	1	I	T	C	T	T	C	С	T	A	A	A	A	A	G	T	A	A	A	A	T	G	T	A	C	A	- gphkng1815-1.
10/3			, ,		-	A	A	1	4	•	Ţ	A	A	A	A	A	·I	I	Т	C	T	T	C	C	T	A	A	Α	A	A	G	T	A	A	A	A	т	G	T	Α	C	Δ.	m2b_1
1445	λ	G	7		T	A	A	Т		١,	T	A	A	A	A	. A	T	1	T	C	T	T	C	С	T	A	A	A	A	A	G	T	A	A	A	A	т	G	T	A	c		m7c-1
1442	A	G	7		T	A	A	T	,	١,	T	Α	A	A	A	A	T	T	T	C	T	T	C	C	T	A	A	A	A	A	G	T	A	A	A	A	T	G	T	A	C	A	gp7d-1.
	Ŧ	_^	. 1		G	T	A	G	7	1 2	A	Ŧ	Α	T	G	Α	T	G	С	A	T	T	A	G	T	T	С	T	T	T	G	T	A	T	A	C	T	A	A	A	T	λ	Majority
											_	77	_								_	78	-								_	79	-									8	
1761	T	A	. 1	•	G	T	A	G	A		A	T	A	T	G	A	T	G	С	A	T	T	A	G	T	T	С	T	T	T	G	Ŧ	A	T	Α	c	T	A	A	A	Т		- gphkng1815-1.
1713	T	А	. 1	•	G	T	A	G	A		A	T	A	T	G	A	T	G	С	A	T	T	A	G	T	T	C	T	T	T	G	T	A	T	A	C	T	A	A	A	T	A	m7h_1
1485	T	A	. 1	•	3	T	A	G	A	١,	A	T	A	T	G	A	T	G	C	A	T	T	A	G	T	T	C	T	T	T	G	T	A	T	A	C	T	A	A	A	T	A	m7c-1
1482	T	A	. 3	. (	3	T	A	G	A	. 1	A	T	A	T	G	A	T	G	C	A	T	T	A	G	T	T	C	T	T	T	G	T	A	T	A	C	T	A	A	A	T	A	gp7d-1.
																													•														<b>5.</b>
	Α	A	1	' 2	A	<u>c</u>	T	G	Α	. (	3	T	C	C	C	C	T																										Majority
											18	31	0																														
1001	_	_	_	_	_	_	_	_	_	_	_	<u>+</u>	_	_	_	_	_	-																									
1801														_	_	_	_																										gphkng1815-1.
1753 1525														_	_	_	-																										gp7b-1.
1522					•	_	Υ.	•							_		_																										gp7c-1.
	B.		-			~	T.	•		•	•	m	~	~	~	~	~																										gp7d-1.

	8
bhkng1	
bhkng2	CAMAGE INCICARCE TECTE CONTROL
bhkng3	GTGAAGGTCCTTACAGAAGCTGGTGGCAACCTCGTTGGTGAGAGCCTGCAGTTAGTGTCACCGCGGAAACATGAAGCCG
bhkng1	The state of the s
bhkng2	
bhkng3	THE COLOR OF THE COLOR OF THE CASE OF THE
	***
bhkng1	THE PROPERTY OF THE CONTROL OF THE PROPERTY OF
bhkng2	TO THE TOTAL CONTROL OF THE PROPERTY OF THE PR
bhkng3	TO COMPANY OF THE COMPANY OF THE PROPERTY OF T
bhkng1	GCAGATGAAAATCCTGATGGAAAGAAGAAGAGGAGGAACATAGCAAACTAATGAGAACACTGAAGAAATGCAGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA
bhkng2	
bhkng3	THE PROPERTY OF THE PROPERTY O
<b>h</b> hlan	<del></del>
bhkng2	AGCAGGAGGCCCTGAAGCTTATGAATGAAGTTCAAGAACATCTAGAAGAGGAAGAAAGGCTATGCCAGGTGTCTCTGATG
bhkng3	
Diburgs	AGCAGGAGGCCCTGAAGCTTATGAATGAAGTTCAAGAACATCTAGAAGAGGAAGAAAGGCTATGCCAGGTGTCTCTGATG
bhkng1	** <del>*</del>
bhkng2	GGTTCCTGGGACGAATCCAAATCTTGCCTGGAAAGTGACTGCATGAGATTTTATACAACCTGCCAAAGCAGTTGGTCCTC
	THE COMMENSATION OF THE PROPERTY OF THE PROPER
	GGTTCCTGGGACGAATGCAAATCTTGCCTGGAAAGTGACTGCATGAGATTTTATACAACCTGCCAAAGCAGTTGGTCCTC
bhkng2	TATGAAATCCACGATTGAACGGGTTTTCCGGAAGATATATCAGTTTCTCTTTCCTTTCCATGAAGACGATGAAAAAGAGC
	TATGAAATCCACGATTGAACGGGTTTTCCGGAAGATATATCAGTTTCTTTTCCTTTCCATGAAGACGATGAAAAAGAGC TATGAAATCCACGATTGAACGCGTTTTCCCGAAGAAAAAGAGC
•	TATGAAATCCACGATTGAACGGGTTTTCCGGAAGATATATCAGTTTCTCTTTCCTTTCCATGAAGACGATGAAAAAGAGC 561
bhkng1	TTCCTGTTGGTGAGAAGTTCACTGAGGAAGATGTACAGCTGATGCAGATAGAGAATGTGTTCAGCCAGC
bhkng2	TTCCTGTTGGTGAGAAGTTCACTGAGGAAGATGTACAGCTGATGCAGATAGAGAATGTGTTCAGCCAGC
bhkng3	TTCCTGTTGGTGAGAAGTTCACTGAGGAAGATGTACAGCTGATGCAGATAGAGAATGTGTTCAGCCAGC
	• • • · · · · · · · · · · · · · · · · ·
bhkng1 .	720 GTGGGATTTCTCTATAACATGAGCTTTCACGTCTTCAAACAGATGCAGCAAGAATTTGACCTGGCTTTTCAATCATACTT
bhkng3	GTGGGATTTCTCTATAACATGAGCTTTCACGTCTTCAAACAGATGCAGCAAGAATTTGACCTGGCTTTTCAATCATACTT
	721
hkng1	CATGICALIACACAGACTCCATGGAGCCTTACTTTTTCCAGCTTTTTCCAAAGAGACCACGAAAAAAAA
	A CONTRACTOR AND A CONT
	AND CAMBACACATACTCATGAGCCTTACTTTTTCCAGCTTTTTCCAAAGAGCCACCAAAAAAAA
•	
hkngl /	MANUFACCARITY CONSCITE TO CAGCITY TO THE TOTAL AND THE TOT
	- TOO AND TOO AND THE PROPERTY OF A PROPERTY
	GAGTTGGGACATTCCCAGCTTCTTCCAGCTGTTTTGTAATTTCAGCCTCTCTGTTTATCAAAGTGTCAGCGCAACAGTT
	******

	960
bhkngi	ACAGAGATGCTGAAGGCCATTGAGGACTTATCCAAACAAGACAAAGATTCTGCCCACGGTGGACCGAGTTCCACGACGTG
bhkng2	ACAGAGATGCTGAAGGCCATTGAGGACTTATCCAAACAAGACAAGATTCTGCCCACGGTGGACCGAGTTCCACGACGTG
bhkng3	ACAGAGATGCTGAAGGCCATTGAGGACTTATCCAAACAAGACAAAGATTCTGCCCACGGTGGACCGAGTTCCACGACGTG
_	961
bhkng1	GCCTGTGCCCCCAGAGCCCCTTTTTCCACAAACCCCCTTTTTCCACAAACCCCCCC
bhkng2	The state of the s
bhkng3	The state of the s
2.20.19.	GCCTGTGCGGGGCAGAGGGCTGTGTGGAGAACCTGGCCAGAACTCGTCCGAATGTCTCCAATTTCATGCAAGATGCCAGA
hhl	1190
bhkng1	The state of the s
bhkng2	RATGTCAGGATTACCTATGGGCAGACTGCCCTGCTGTTCCTGAACTATACACAAAGGCCGATGAGGCCCTTGACTTCCTC
bhkng3	AATGT CAGGATTACCTATGGGCAGACTGCCCTGCTGTTCCTGAACTATACACAAAGGCGGATGAGGCCCTTGACTTCCTC
	1121
bhkng1	AACATATCCAATCAGCAGTATGCCCAGGTACTCCAGATGACCCAGCATCACTTGGAGGACCACCACCATTATCCAGA
bhkng2	AACATATCCAATCAGCAGTATGCCCAGGTACTCCAGATGACCCAGCATCACTTGGAGGACACCACCATCTATCT
bhkng3	AACATATCCAATCAGCAGTATGCCCAGGTACTCCAGATGACCCAGCATCACTTGGAGGACACCACGTATCTGATGGAGGA
	The state of the s
	1201
bhkng1	GATGAGAGAGCAGTTTGGTTGGGTAACAGAGCTGGCCAGCCCAGGCAGCCCCAGGAAGCGAGAACATCTTCAGTTTCATAAAAGG
bhkng2	GATGAGAGAGCAGTTTGGTTGGGTAACAGAGCTGGCCAGCCA
bhkng3	GATGAGAGAGCAGTTTGGTTGGGTAACAGAGCTGGCCAGCCCAGGACCCCCAGGAAGCGAGAACATCTTCAGTTTCATAAAAGG
_	1281 .
bhknq1	TAGTTCCAGGTGTTCACGAAGGAAATTTCTCCAAACAAGATGAAAAGATGATAGACATAAGCATTCTGCCTTCCTCTAAT
bhknq2	TAGTTCCAGGTGTTCACGAAGGAAATTTCTCCAAACAAGATGAAAAGATGATAGACATAAGCATTCTGCCTTCCTCTAAT
bhkng3	TAGTTCCAGGTGTTCACGAAGGAAATTTCTCCAAACAAGATGAAAAGATGATAGACATAAGCATTCTGCCTTCCTCTAAT
	1361
bhkng1	TTCACACTCACCATCCCTCTTGAAGAAAGTGCTGAGAGTTCCGACTTCATTAGCTACATGCTGGCCAAAGCTGTACAGCA
bhkng2	TTCACACTCACCATCCCTCTTGAAGAAAGTGCTGAGAGTTCCGACTTCATTAGCTACATGCTGCCCAAAGCTGTACAGCA
bhkng3	TTCACACTCACCA TOCCACTATA ACADA ACCACACACACACACTCATTAGCTACATGCTGCCCAAAGCTGTACAGCA
	TTCACACTCACCATCCCTCTTGAAGAAAGTGCTGAGAGTTCCGACTTCATTAGCTACATGCTGGCCAAAGCTGTACAGCA
	1441
bhkng1	1520 TITTAAGGAACATTTTAAATCTTGGTAAGCAGAGTATTTGATTAGGGACGTTTGCTGATAGGAATAGATGGTTCTTAAAA
bhkng2	TTTTAAGGAACATTTTAAATCTTGGTAAGCAGAGTATTTGATTAGGGACGTTTGCTGATAGGAATAGGTTCTTAAAA
	TITTAAGGAACATTTTAAATCTTGGTAAGCAGAGTATTTGATTAGGGACGTTTGCTGATAGGAATAGATGGTTCTTAAAA
	1571
bhkng1	1600
bhkng2	GGGAAAATGACAAAACTAGCTTTTGAATACCTTGAAAACGTATTCAACCTCATTAATAATCAAAGGCATGAAAACTAAG
bhkng3	GGGAAAAATGACAAAACTAGCTTTTGAATACCTTGAAAACGTATTCAACCTCATTAATAATCAAAGGCATGAAAACTAAG
Dibu;93	GGGAAAAATGACAAAACTAGCTTTTGAATACCTTGAAAACGTATTCAACCTCATTAATAATCAAAGGCATGAAAACTAAG
bhkng1	1690
	ACAAGTTAGCAGTTTTTACCTATTGAATTTTCAAATTAAAAAAAA
bhkng2	ACAAGTTAGCAGTTTTTACCTATTGAATTTTCAAATTAAAAAAAA
bhkng3	ACAAGTTAGCAGTTTTTACCTATTGAATTTTCAAATTAAAAAAAA
	1681
bhkng1	ATATOTGATTGCCAGAAACAAACTGGTTTTGTCTTTTTGAAAAGTTATTCAATTATACATATCAAGAGTCATCAAATTTC
DIKNG2	ATATGTGATTGCCAGAAACAAACTGGTTTTGTCTTTTTGAAAAGTTATTCAATTATACATATCAAGAGTCATCAAATTTC
bhkng3	ATATGTGATTGCCAGAAACAAACTGGTTTTGTCTTTTTGAAAAGTTATTCAATTATACATATCAAGAGTCATCAAATTTC

	1761	
bhkng	TITITAATATAATAATTCCACTTCTGGAATCAATCCARAGGAGTAAATCTAAAATTGAATTG	184
bhkng	2 TTTTTAATATAATAATTCCACTTCTGGAATCAAATCCAAAGGAGTAAATCTAAAATTGAATTGAAGTTCCCACCCC	<b>LAGA</b>
bhkng	3 TTTTTAATATAATAATTCCACTTCTGGAATCAAATCCAAAGGAGTAAATCTAAAATTGAATTGAAGTTCCCACCCCC 1841	rygy.
bhkng		192
bhkng		
bhkng	3 CANTATTTGCAAATTATTTAAAATAGTAAACTGTTAAAAACTGAATGTCATCTGAATGTCTAAAAACCAGAAATGG 1921	TIN
bhkng	1 AAGCTGTGGCTAAATATGCTCCAAATATCTTATAAAACCATTAAAAATATTTATAAAATTTAAAATCATGACATGAC	2000
_		
bhkng:		ATC
DIKING:	1 GCTGGAACAAGAGTTTATTCTAAGCCTATCTATAAGGCAAATATTATTATTACTATCTTCCAGAAAAGAAACTTGA 2 GCTGGAACAAGAGTTTATTTTAAGCTTATTTATAAGCCAAATATTATTATTACTATCTTCCAGAAAAGAAACTTGA	2080
bnkng:	2 GCTGGAACAAGAGTTTATTCTAAGCCTATCTATAGGCAAATATTATTACTATCTTCCAGAAAAGAAACTTGA 3 GCTGGAACAAGAGTTTATTCTAAGCCTATCTATAAGGCAAATATTATTATTACTATCTTCCAGAAAAGAAACTTGA	GACT
bineng.	3 GCTGGAACAAGAGTTTATTCTAAGCCTATCTATAAGGCAAATATTATTACTATCTTCCAGAAAAGAAACTTGA 2081	CV CAI
physical	CAGGGTCCAAGTGTTAGTTGCTCAGTCATGTCTGACTCTTTGGGACCCCTTGGACTGTAGCCCACCAGGCTCCTCTC	3100
mmig.	CAGGGTCCAAGTGTTAGTTGCTCAGTCATGTCTGACTCTTTGAGACCCCTTGGACTGTTAGCCCACCAGGCTCCTCTC	Tre
	<b>2161</b>	
bhkng1	O TOGGATICI I CALIACAGGRATACTGGGGCAGGTTGCTATTTTCTTTCTACCARA A TOTAL COLOR	240
	THE CONTRACTOR OF THE PROPERTY	
bhkng3	THE TENSACIALISM INCIGAGE CAGGITG CTATTTCCTTCTC ACCIDED A TOTTCCTTC ACCIDED AND ACCIDED AS A CONTRACT ACCIDED AND ACCIDED AS A CONTRACT ACCIDED AND ACCIDED AS A CONTRACT ACCIDED ACCIDED AS A CONTRACT ACCIDED AS A CONTRACT ACCIDED ACCIDE	ACC
bhkng1	CASSICICUIGCATIGCAGGTAGATGCTTTACTATCTGAGCAACCAA ROYA A ROYA A ROYA A COROA COR	
	THE PROPERTY OF THE PROPERTY O	
bhkng3	CAGGTCTCCTGCATTGCAGGTAGATGCTTTACTATCTGAGCAACCAAATGAATTACTCAAGTCAGTAGGGGGTAGAG	GCA
bhkng1		
bhkng2		AAA
bhkng3	THE PROPERTY OF THE PROPERTY O	
	THE PROPERTY OF THE PROPERTY O	
	The state of the s	AAA
	2401	AAA
bhkng1	2401	
bhkng1 bhkng2	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAAAGCTAAAAAACTCTATAAATGTAATGATCAAAAAGCTAAAAAGCTATAAAATGTAATGATCAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAGCTAAAAAAGCTAAAAAAGCTAAAAAAGCTAAAAAAGCTAAAAAAGCTAAAAAAAGCTAAAAAAGCTAAAAAAGCTAAAAAGCTAAAAAAGCTAAAAAAGCTAAAAAAGCTAAAAAAAGCTAAAAAAAA	480
bhkng1 bhkng2 bhkng3	2401 GTGARARATGAGTATARACTCTATARATGTRATGATCARACGRARACARACTACARTCTGCATTARARATARAR GTGARARATGAGTATARARCTCTATARATGTRATGATCARACGRARACARARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARARCTCTATARATGTRATGTRATG	480 AGG
bhkng3	2401 GTGARARATGAGTATARAGCTCTATARATGTRATGATCARARCGARARARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARARCTCTATARATGTRATGATCARARCGARARARARATCTACARTCTGCATTARARATARAR GTGARARARTGAGTATARARCTCTATARATGTRATGATCARARCGARARARARATCTACARTCTGCATTARARATARAR 2481	480 AGG AGG
bhkng3	2401 GTGARARATGAGTATARACTCTATARATGTAATGATCARAACGARAARATATCTACARTCTGCATTARARATARARAGTGARAAAAAAAAAA	480 AGG AGG AGG
bhkng3 bhkng1 bhkng2	2401 GTGARARATGAGTATARACTCTATARATGTAATGATCARAACGARAARAARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARAACTCTATARATGTAATGATCARAACGARAARAARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARAACTCTATARATGTAATGATCARAACGARAARARAATCTACARTCTGCATTARARATARAR 2481 GTTGGCAGG. 2: GTTGGCAGGAATTACGGTTGGARATGGATGATTTTTTTTARCCTTTTTTTTTT	AGG AGG AGG S60
bhkng3	2401 GTGARARATGAGTATARACTCTATARATGTAATGATCARAACGARAARAARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARAACTCTATARATGTAATGATCARAACGARAARAARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARAACTCTATARATGTAATGATCARAACGARAARARAATCTACARTCTGCATTARARATARAR 2481 GTTGGCAGG. 2: GTTGGCAGGAATTACGGTTGGARATGGATGATTTTTTTTARCCTTTTTTTTTT	AGG AGG AGG S60
bhkng3 bhkng1 bhkng2 bhkng3	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAACGAAAAAAAA	480 AGG AGG AGG 560
bhkng3 bhkng1 bhkng2 bhkng3 bhkng3	2401 GTGARARATGAGTATARACTCTATARATGTRATGATCARACGRARARARATCTACARTCTGCATTARARATARAC GTGARARATGAGTATARACTCTATARATGTRATGATCARACGRARACGRARARATCTACARTCTGCATTARARATARARA GTGARARATGAGTATARACTCTATARATGTRATGATCARARCGRARARARATCTACARTCTGCATTARARATARARA 2481 GTTGGCAGG CTTGGCAGGATTACGGTTGGARATGGATGATTTTTTTTACCTTTTCATCTTTTGATATTTTACARTTTTCTATARA GTTGGCAGG. 2561	480 AGG AGG AGG FGA
bhkng1 bhkng2 bhkng3 bhkng3 bhkng1 bhkng1	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAACGAAAAAAAA	480 AGG AGG 560 FGA
bhkng3 bhkng1 bhkng2 bhkng3 bhkng3	2401 GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARARA GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARARA 2481 GTTGGCAGG CTTGGCAGGATTACGGTTGGARATGGATGATTTTTTTTACCTTTTCATCTTTTGATATTTTCARATTTTCTATARA GTTGGCAGG 2561 266 ATARATARTTTTGAGATTTCARATTAGARGATATGTTGCTARARATAGCTAGGTARATGTAGATTGRACACTGTATCAR	480 AGG AGG 560 FGA
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng1 bhkng2	2401 GTGARARATGAGTATARAACTCTATARATGTAATGATCARAACGARAARAAATCTACAATCTGCATTAARAATARAAGGARAAAATGAGTATARAACTCTATARAATGTAATGATCARAACGARAARAAATCTACAATCTGCATTAARAATARAAGGARAAAAAAAAAA	480 AGG AGG 560 FGA
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng2 bhkng2 bhkng3	2401 GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARARGTGARARATGARARCTGARARAGTARARATCTACARTCTGCATTARARATARARAGTGARARAGTARARATCTACARTCTGCATTARARATARARAGTGARARAGARARAGATARARATCTACARTCTGCATTARARATARARATARARATCTACARTCTGCATTARARATARARATARARATCTGCCAGGATTARARATCTACARTCTGCATTARARATARARATARARATCTGCCAGGAATTACCGGTTGGCAGGAATTACCGGTTGGARATCGGATGATTTTTTTTTAACCTTTTCATCTTTTGATATTTTACARTTTTCTATARTGTTGGCAGGA 2561 2641 2641	480 AGG AGG 560  FGA  ATG
bhkng3 bhkng1 bhkng3 bhkng3 bhkng1 bhkng2 bhkng3 bhkng3	2401 GTGARARATGAGTATARAACTCTATARATGTAATGATCARAACGARAARAARATCTACARTCTGCATTAARAATARAAGGARAAAATAAAAATGTGAATARAAGGARAAAAAAAA	480 AGG AGG 560  FGA  ATG
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng2 bhkng2 bhkng3	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAACGAAAAAAAA	480 AGG AGG 560  FGA  ATG
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng2 bhkng3 bhkng3	2401 GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARARA GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARARTCTACARTCTGCATTARARATARARA 2481 GTTGGCAGG GTTGGCAGG GTTGGCAGGATTACGGTTGGARATGGATGATTTTTTTTACCCTTTTCATCTTTTGATATTTTACARTTTTCTATARATGTTGGCAGG 2561 2661 277 GTTCTCATCTTTRARCTTTAGAAGATATGTTGCTARARATAGCTAGGTARATGTAGATTGRACACTGTATCARATCTCATCTATCATCTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTARACTTTTAGTATAAGTACTTCTATTCCATGGTARATCCTACAGTARAGACGARATGTARACTTGTTC 2721	480 AGG AGG AGG 560  640  4TG  220 
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng2 bhkng3 bhkng3 bhkng3 bhkng3 bhkng1	2401 GTGARARATGAGTATARAACTCTATARATGTAATGATCARAACGARAARAARATCTACARTCTGCATTARARATARAAG GTGARAAATGAGTATARAACCTCTATARATGTAATGATCARAACGARAARAARATCTACARTCTGCATTARARATARAAR GTGARAAATGAGTATARAACCTCTATARATGTAATGATCARAACGARAARAARAATCTACARTCTGCATTARAARATARAAR 2481 GTTGGCAGG GTTGGCAGG GTTGGCAGGAATTACCGGTTGGARAATGGATGATTTTTTTTAACCTTTTCATCTTTTGATATTTTACARTTTTCTATARATGTTGGCAGG 2561 2661 277 ATARAATARATTTTGAGATTTCARATTAGAAGATATGTTGCTARARATAGCTAGGTARATGTAGATTGAACACTGTATCAR 277 CGTTCTCATCTTTARACTTTAGTATAAGTACTTCTATTCCATGGTRATCCTACAGTARGACGARATGTARAACTGTTC 2721	480 AGG AGG AGG 560  640  720  720 
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng2 bhkng3 bhkng3 bhkng3 bhkng1 bhkng2	2401 GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGRARARARATCTACARTCTGCATTARARATARAR GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGRARARARARATCTACARTCTGCATTARARATARARA GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGRARARARARATCTACARTCTGCATTARARATARARA 2481 GTTGGCAGG GTTGGCAGG GTTGGCAGG GTTGGCAGG ATRACTTACCGTTGGRARATGGATGATTTTTTTTACCCTTTTCATCTTTTGATATTTTACARTTTTCTATARA GTTGGCAGG ATRACTARTTTGAGATTCARATTAGARGATATGTTGCTARARATAGCTAGGTRARTGTAGATTGARCACTGTATCAR 2561 26 ATRACATARTTTTGAGATTCARATTAGARGATATGTTGCTARARATAGCTAGGTRARTGTAGATTGARCACTGTATCAR 2721 28 TCTACAGGRARARCARCTARATGRCATTTCAGACGTACATTACCATCTGTTAGGRARATGTAGATTTTTTTBATTARTCTGTTC 28 TCTACAGGRARARCARCTARATGRCATTTCAGACGTACATTACCATCTGTTAGGRATATTTTTTTBATTARTCTGTTC 28 TCTACAGGRARARCARCTARATGRCATTTCAGACGTACATTACCATCTGTTAGGRATATTTTTTTBATTARTCTGTTC 28 TCTACAGGRARARCARCTARATGRCATTTCAGACGTACATTACCATCTGTTAGGRATATTTTTTTBATTARTCTGTTC ATRACTARTATTTTTTTTTTTTTTTTTTTTTTTTTT	480 AGG AGG AGG 560 720 600
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng2 bhkng3 bhkng3 bhkng3 bhkng1 bhkng2	2401  GTGARARATGAGTATARACTCTATARATGTAATGATCARACGARARARATATCTACARTCTGCATTARARATARARAGTGARARATGARACTCTATARATGTAATGATCARACGARARARATACTACARTCTGCATTARARATARARAGTGARARACTCARATAGARACTCATARARATGARACCARARACGARARARARATCTACARTCTGCATTARARATARARATARARATCTACARATCTGCATTARARATARARATARARATCARACTCTATARACTCTATARATGTARATGTACACTTTTTTTTTT	480 AGG AGG AGG 560  740  720  000 
bhkng3 bhkng1 bhkng3	2401  GTGARARATGAGTATARACTCTATARATGTAATGATCARACGARARARAATATCTACARTCTGCATTARARATARARACGARARACGARARACGARARACGARARACTCTATARATGTAATGTA	480 AGG AGG AGG 560  640  220  220  220  220 
bhkng3 bhkng1 bhkng3 bhkng1 bhkng3	2401  GTGARARATGAGTATARACTCTATARATGTAATGATCARACGARARARAATATCTACARTCTGCATTARARATARARACGARARACGARARACGARARACGARARACTCTATARATGTAATGTA	480 AGG AGG AGG 560  640  220  220  220  220 
bhkng3 bhkng1 bhkng3 bhkng1 bhkng3 bhkng3	2401  GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARARA GTGARARATGAGTATARARCTCTATARATGTARTGATCARACGARARARARATCTACARTCTGCATTARARATARARA GTGARARATGAGTATARARCTCTATARATGTARTGATCARARCGARARARARATCTACARTCTGCATTARARATARARA 2481  GTTGGCAGG  GTTGGCAGG  2561  26  ATRARATRATTTTGAGATTTCARATTAGARGATATGTTGCTARARATAGCTAGGTARATGTAGATTGARCACTGTATCAR  2641  27  GTTCTCATCTTTRARCTTTAGTATARAGTACTTCTATTCCATGGTARATCTACAGTARAGACGARATGTARATCTGTTC  2801  2801  28	480 AGG AGG AGG 5560  720  720  80 
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng3 bhkng3 bhkng3 bhkng3 bhkng3 bhkng3 bhkng3 bhkng3	2401 GTGAAAAATGAGTATARAACTCTATAAATGTAATGATCAAAAAGGAAAAAAAAAA	480 AGG AGG AGG 560  540  220  220  28G  28G  28G
bhkng3 bhkng1 bhkng2 bhkng3	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAACGAAAAAAAA	480 AGG AGG AGG 560  720  720  720  720  720  720  720  720  720  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740  740 740 740 740 740 740 740 740 740 740
bhking3 bhking1 bhking2 bhking3	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGAACGAAAAAGGAAAAAAAA	480 AGG AGG AGG 5560 720 CA ACG ACC ACC
bhking3 bhking1 bhking2 bhking3	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGAACGAAAAAGGAAAAAAAA	480 AGG AGG AGG 5560 720 CA ACG ACC ACC
bhking3 bhking1 bhking2 bhking3	2401 22 GTGAARANTGAGTATAANACTCTATARATGTAATGTAATGATCARAACGAARAARAATCTACARTCTGCATTAARATAARA	480 AGG AGG AGG AGG AGG AGG AGG AGG AGG AG
bhkng3 bhkng1 bhkng2 bhkng3 bhkng1 bhkng3 bhkng1 bhkng2 bhkng3 bhkng3 bhkng3	2401 22 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGTAAT	480 AGG AGG AGG AGG AGG AGG AGG AGG AGG AG
bhking3 bhking1 bhking2 bhking3 bhking3 bhking3 bhking3 bhking3 bhking1 bhking3 bhking1 bhking3 bhking3 bhking3 bhking3 bhking3 bhking3 bhking3	2401 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAACGAAAAAAAA	480 AGG AGG AGG AGG AGG AGG AGG AGG AGG AG

	1
hmhkng aa	MKI KARKNEGOSO CARANT MAROTA NATURANIA
bhkngl aa	MKIKAEKNEGPSRSWWQLHWGDIANNSGNMKPPLLVFIVCLLWLKDSHCAPTWKDKTAISENLKSFSEVGEIDADEEVKK
gphkng1815_aa_	FIRPPLLVF I VYLLRLRDCOCAPTGKDRTS I REDDYCECTA CETTURE
•• • • • • • • • • • • • • • • • • • •	81
hmhkng_aa	ALTGIKOMKIMMED KEVENTAN METI KACADANANAN 160
bhkngl aa	ALTGIKOMKIMMERKEKEHTNLMSTLKKCREBKQEALKLLNEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTC
gphicng1815 aa	THE TAXABLE PROPERTY OF THE PR
	ALIGIKOMKIMMERREBEHSKLMKTLKKCKEBKQEALKLMNEVHEHLEBEBSLCQVSLADSWDECKACLESNCMRFTTTC
hmhkng_aa	QPSWSSVENKIERFFRKIYORLEDBHEDNEDI DYCHE YURANG 1
bhkng1_aa	QPSNSSVENKIERFFRKIYQFLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ QSSWSSNKSTIERVFRKIYQFLPPFHEDDRYFI BURRETTERMIN 1997 PROFESSOR 1997 PROFESSO
gphkng1815_aa_	QSSWSSMKSTIERVFRKIYQFLFPFHEDDEKELPVGEKPTEEDVQLMQIENVFSQLTVDVRSLFNKSFNVFRQMQQEFDQ QPAMSSVKMVEQFFRKIYQFLPPLQE.NDRSGPVSKGVTEEDAQVSHIEHVFSQLSADVTSLFNRSLYVFKQLRREFDQ 241
	241
hmhkng_aa	TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSBTITKMLKAIEDLPKQDKAPDHGG AFOSYFMSDTDSHRPYFPAPSYPAPSYPAPSYPAPSYPAPSYPAPSYPAPSYPA
bhkngl_aa	AFQSYFMSDTDSHEPYFFPAFSKEPAKKAHPMQSWDIPSFFQLFCNFSLSVYQSVSATVTENLKAIEDLSKQDKDSAHGG AFOSYFTSGTTVTEPFFPSLSYPAYDANAGANANAGANAGANAGANAGANAGANAGANAGANAGA
gphkng1815_aa_	AFQSYFTSGTDVTEPFFFPSLSKEPAYRADAEPSWAIPNVFQLLCNLSFSVYQSVSEKLITTLRATEDPPKQDKDSNQGG
hmhkng_aa	LISKMLPGQDRGLCGELDQNLSRCFKFHEKCQKCQAHLSEDCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDT
	THE THE PART OF TH
gphkng1815_aa_	PISKILPEQDRGSDGKLGQNLSDCVNFRKRCQKCQDYLSDDCPNVPBLYRBLNBALRLVSRSNQQYDQVVQMTQYHLBDT
hmhkng_aa	AYLVEKMRGOPGWVSBLANOAPBTEIIFNSIQVVPRIHEGNISKQDETMMTDLSILPSSNFTLKIPLEESAESSNFIG
gphkng1815_aa_	TLLMEKMREOFGWYSKLAYOSPGAEDIFNFYKYMVALSAHEGNSSDODD.TVYPSSLLPSSNFTLSSPLEKSAGNANFID 481
	•
	* * * * * * * * * * * * * * * * * * *
	YMLAKAVQHPKEHPKSW
ah-wridings_gg_	HVVEXVLQHFKEHFKTM
•	

matureHKNG HKNG1-V1-IPF3 HKNG1/1-V1-IPF2 HKNG1-IPF1	
matureHKNG	ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL
HKNG1-V1-IPF3	ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL
HKNG1/1-V1-IPF2	ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL
HKNG1-IPF1	ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL
matureHKNG	NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ
HKNG1-V1-IPF3	NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ
HKNG1/1-V1-IPF2	NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ
HKNG1-IPF1	NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ
matureHKNG	FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ
HKNG1-V1-IPF3	FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ
HKNG1/1-V1-IPF2	FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ
HKNG1-IPF1	FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ
matureHKNG	TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT
HKNG1-V1-IPF3	TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT
HKNG1/1-V1-IPF2	TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT
HKNG1-IPF1	TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT
matureHKNG	KMLKAIEDLFKQDKAPDHGGLISKMLPGQDRGLCGELDQNLSRCFKFHEKCQKCQAHLSE
HKNG1-V1-IPF3	KMLKAIEDLFKQDKAPDHGGLISKMLPGQDRGLCGELDQNLSRCFKFHEKCQKCQAHLSE
HKNG1/1-V1-IPF2	KMLKAIEDLFKQDKAPDHGGLISKMLPGQDRGLCGELDQNLSRCFKFHEKCQKCQAHLSE
HKNG1-IPF1	KMLKAIEDLFKQDKAPDHGGLISKMLPGQDRGLCGELDQNLSRCFKFHEKCQKCQAHLSE
matureHKNG	DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRQQFGWVSELANQ
HKNG1-V1-IPF3	DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRQQFGWVSELANQ
HKNG1/1-V1-IPF2	DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRQQFGWVSELANQ
HKNG1-IPF1	DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRQQFGWVSELANQ
matureHKNG	APETEIIFNSIQVVPRIHEGNISKQDETMITDLSILPSSNFTLKIPLEESAESSNFIGYV
HKNG1-V1-IPF3	APETEIIFNSIQVVPRIHEGNISKQDETMITDLSILPSSNFTLKIPLEESAESSNFIGYV
HCC1/1-V1-IPF2	APETEIIFNSIQVVPRIHEGNISKQDETMITDLSILPSSNFTLKIPLEESAESSNFIGYV
HKNG1-IPF1	APETEIIFNSIQVVPRIHEGNISKQDETMITDLSILPSSNFTLKIPLEESAESSNPIGYV
matureHKNG	Varalqhpkehpktw
HKNG1-V1-IPP3	Varalqhpkehpktw
HKNG1/1-V1-IPF2	Varalqhpkehpktw
HKNG1-IPF1	Varalqhpkehpktw

R H L Q A R A A G L V S T TG CGT CAC CTG CAG GCC CGG GCC GCG GGG TTG GTT TCC ACC CTG GAG GTT GCT GAC ACC RLTSSR CTG TGC CCT CGG CTG ACT TCC AGC CGG TGG CAC AGA CGC CTC CAG GGG GCA GCA CTC AAG WHRRLQGA R I L G M T E L R P S L L P G W S CGC ATC TTA GGA ATG ACA GAG TTG CGT CCC TCT CTG TTG CCA GGC TGG AGT TCA GTG GCA 177 * L T E A S N S W V Q V T L TGT TCT TAG CTC ACT GAA GCC TCA AAT TCC TGG GTT CAA GTG ACC CTC CCA CCT CAG CCC 79 HEDLGLQDTAKSLT CAT GAG GAC CTG GGA CTA CAG GAC ACA GCT AAA TCC CTG ACA CGG ATG AAA ATT AAA GCA 99 P S R S W W Q L H GAG AAA AAC GAA GGT CCT TCC AGA AGC TGG TGG CAA CTT CAC TGG GGA GAT ATT GCA AAT 119 357 N S G N M K P P L L V P I V AAC AGC GGG AAC ATG AAG CCG CCA CTC TTG GTG TIT ATT GTG TGT CTG CTG TGG TTG AAA 139 417 PTWKDKTAI A GAC AGT CAC TGC GCA CCC ACT TGG AAG GAC AAA ACT GCT ATC AGT GAA AAC CTG AAG AGT . 477 F. S E V G E I D A D E E V TIT TCT GAG GTG GGG GAG ATA GAT GCA GAT GAA GAG GTG AAG AAG GCT TTG ACT GGT ATT 179 KIMMERKEKEHTNLMST ANG CAN ATG ANA ATC ATG ATG GAN AGA ANA GAG ANG GAN CAC ACC ANT CTA ATG AGC ACC 199 597 C R E E K Q E A L K L L N E V Q E CTG AAG ARA TGC AGA GAA GAA AAG CAG GAG GCC CTG AAA CTT CTG AAT GAA GTT CAA GRA 219 657 E E E R L C R E S L A D S W G E C CAT CTG GAG GAA GAA AGG CTA TGC CGG GAG TCT TTG GCA GAT TCC TGG GGT GAA TGC 717 RSCL BNNCMRIYT AGG TCT TGC CTG GAA AAT AAC TGC ATG AGA ATT TAT ACA ACC TGC CAA CCT AGC TGG TCC 259 K L L T T E A + F TCT GTG AAA AAT AAG CTC CTG ACC ACG GAG GCC TGA TTT CAA AGA TGT TAC CTG GGC AGG 837 TEDCV G H L T R I C Q D ACA GAG GAC TGT GTG GGG AAC TTG ACC AGA ATT TGT CAA GAT GTT TCA AAT TTC ATG AAA 299 R L T Y L K T V L M AAT GCC AAA AAT GTC AGG CTC ACC TAT CTG AAG ACT GTC CTG ATG TAC CTG CTC TGC ACA 319 957 SGWSMYPI R CAG AAT TAG ACG AGG CGA TCA GGT TGG TCA ATG TAT CCA ATC AGC AGT ATG GCC AGA TTC 1017 S . R + 'p T W'R T P P I W W R R TCC AGA TGA CCC GGA AGC ACT TGG AGG ACA CCG CCT ATC TGG TGG AGA AGA TGA GAG GGC 1077 AGCLNWQTRPQKQ AAT TTG GCT GGG TGT CTG AAC TGG CAA ACC AGG CCC CAG AAA CAG AGA TCA TCT TTA ATT 1137 H K B I P P N CAN TAC AGG TAG TTC CAN GGA TTC ATG ANG GAN ATA TTT CCA ANC ANG ATG ANA CAN TGA 1197 Q T · A · F C L P L TGA CAG ACT TAA GCA TTC TGC CTT CCT CTA ATT TCA CAC TCA AGA TCC CTC TTG AAG AAA 1257 I S H S R S.L V L R V L T S L A, T * W Q K L Y S I L R GTG CTG AGA GTT CTA ACT TCA TTG GCT ACG TAG TGG CAA AAG CTC TAC AGC ATT TTA AGG 1317

																				459 1377
																				479 1437
																				499 1497
e	v		v	c	N	٠	v	=	×	¥	Ŧ	D	D	٠	ĸ	T	v		N	519
																				1557
AGC M	TAT Y	TAA Y	TAC I	TCA S	AAT W	TGA Y	GTT I	AAA S	ATG S	aaa S	ATT L	CCT	CCT	TAA B	*	ATC I	AAA L	CGT N	AAT H	

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/05606

A. CLA	SSIFICATION OF SUBJECT MATTER						
IPC(6) :Please See Extra Sheet.							
US CL:535/23.1; 530/350, 387.1; 436/6, 69.1; 325, 320.1; 514/44  According to International Patent Classification (IPC) or to both national classification and IPC							
	ocumentation searched (classification system followe	d by classification symbols)					
U:S. :	536/23.1; 530/350, 387.1; 436/6, 69.1; 325, 320.1; 5	14/44					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic d	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
APS, Dial	log		i				
C. DOCUMENTS CONSIDERED TO BE RELEVANT							
	Charles of January with 1 Province		Dalauras sa alaina No				
Category	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.				
A	Database GENBANK, Accession Num	ber D63815, SHIMIZU, A. et	1-7, 9-14,				
	al. Human mRNA for rod photorec		16-42				
	Submitted 08 August 1995, see th	• •	· ·				
	relationship to SEQ ID NO:2 (amino a	<u>-</u>					
	NO:5, nucleotides 37-1485), SEQ ID I	NO:51 (amino acid residues 1-					
	446), and SEQ ID NO 64 (amino acid	l residues 1-466).					
		. •					
	1.						
·		. ]					
	·	•					
'							
			•				
	·						
☐ Eust	l ner documents are listed in the continuation of Box C	See patent family annex.					
		*T° leter document published after the inte					
-•	ecial categories of cited documents:	date and not in conflict with the appl the principle or theory underlying the	ication but cited to understand				
	be of perticular relevance						
_	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be conside when the document is taken alone					
cit	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	"Y" document of particular relevance; the	claimed invention cannot be				
•	scial reason (es specified)  cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	step when the document is				
	coment reserring to an oral management, use, extendition or other	being obvious to a person skilled in t					
	cument published prior to the international filing date but later than a priority date claimed	*A.* document member of the same patent family					
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report				
29 JULY	1999	<b>19</b> AUG 1999					
Name and s	nailing address of the ISA/US	Authorized officer //	,				
Commissio Box PCT	ner of Patents and Trademarks	1). Haurence	- Y				
Washington	a, D.C. 20231	Karen Cochrane Carlson, Ph.D.	YOL				
Facsimile N	lo. (703) 305-3230	Telephone No. (703) 308-0196	1				

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/05606

IPC (6):	ATION OF SUBJECT MATTER:	
C07H 17/00; C0	07K 14/00; A01N 43/04; A61K 35/14; C12Q 1/68; C12P 21/06; C12N 15/00	
	•	
		-
·		
		• •
-		

Form PCT/ISA/210 (extra sheet)(July 1992)+

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/05606

Box ! Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2Xa) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.:  because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
·
3. X Claims Nos.: 8, 15
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
·
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.