Laboration 4:

Tidsplan, frekvensplan och impedanser

Decibel

- Ett relativt mått på effekt, med enheten [dB]:
- Man kan också mäta absoluta värden genom att relatera till en referens:
 - Impedans på ingång och utgång antas vara konstant

$$dB = 10\log_{10}\left(\frac{P}{P_{ref}}\right)$$

- $P_{ref} = 1 W$ ger enheten [dBW]
- $P_{ref} = 1 \ mW$ ger enheten [dBm]

Decibel

Man kan även använda decibel som ett mått på spänning:

$$dB = 10 \log_{10} \left(\frac{P}{P_{ref}} \right) = 10 \log_{10} \left(\frac{U^2/Z_0}{U_{ref}^2/Z_0} \right) = 20 \log_{10} \left(\frac{U}{U_{ref}} \right)$$

- $U_{ref} = 1 V \text{ ger enheten [dBV]}$
- $U_{ref} = 1 \ mV$ ger enheten [dBm]

Bode-diagram

Uppmätning av filter:

 Mätvärdena "plottas" i ett diagram med logaritmisk amplitud och logaritmisk frekvens

Bodediagram

$$Gain = \frac{|\mathbf{U}_{ut}|}{|\mathbf{U}_{in}|}$$

(OBS!Gain, inte i dB)

$$Phase = \angle \mathbf{U}_{ut} - \angle \mathbf{U}_{in}$$

 $(Fasvinkel\,i\,grader)$

$$Frequency = \frac{f}{f_B}$$

 $(Normaliserad\,frekvens)$

Lunds universitet / Fakultet / Institution

Icke-idealiska OP-förstärkare, aktiva filter

Modell

- Idealisk OP-förstärkare:
 - Oändlig ingångs-resistans $R_{in}=\infty$
 - Noll utgångs-resistans $R_{ut}=0$
 - Oändlig förstärkning $A_{OL} = \infty$
 - Oändlig bandbredd $B_{fOL}=\infty$

Verklighet

- Icke-idealisk OP-förstärkare:
 - Ändlig ingångs-resistans

 $\mathrm{BJT}: \ R_{in} \approx 1 \mathrm{\ M}$ $\mathrm{FET}: \ R_{in} \approx 1 \mathrm{\ T}$

Icke-noll utgångs-resistans

Effekt OP: $R_{ut} \approx 1 - 100$ Småsignal OP: $R_{ut} \approx 1 - 5$ k

- Ändlig förstärkning
 - Frekvensberoende

$$A_{OL} \approx 1 \cdot 10^4 - 1 \cdot 10^6$$

- Ändlig bandbredd
 - Förstärkningsberoende

 $B_{fOL} \approx 1 - 100 \,\mathrm{Hz}$

Frekvensberoende f\u00f6rst\u00e4rkning

- Den uppför sig som ett låg-pass filter med brytfrekvensen $f_{B_{OL}}$
- f_t är "unity-gain" bandbredden

- Motkopplad förstärkning:
 - Om vi har en icke-inverterande OP-koppling

– Så blir den motkopplade ("closed loop") förstärkningen:

$$A_{CL} = \frac{\mathbf{U}_{ut}}{\mathbf{U}_{in}} = \frac{\mathbf{U}_{ut}}{\frac{\mathbf{U}_{ut}}{A_{OL}} + \beta \mathbf{U}_{ut}} = \frac{A_{OL}}{1 + \beta A_{OL}}$$

- Motkopplad bandbredd
 - Sätt in det tidigare uttrycket för frekvensberoende förstärkning

$$A_{OL}(f) = \frac{A_{OL}(0)}{1 + j\left(\frac{f}{f_{B_{OL}}}\right)}$$

i ekvationen för motkopplad förstärkning.

$$A_{CL} = \frac{A_{OL}}{1+\beta A_{OL}} = \frac{A_{OL}(0)/[1+j\left(\frac{f}{f_{B_{OL}}}\right)]}{1+\beta A_{OL}(0)/[1+j\left(\frac{f}{f_{B_{OL}}}\right)]} = \frac{A_{OL}(0)}{1+\beta A_{OL}(0)+j\left(\frac{f}{f_{B_{OL}}}\right)}$$

$$= \frac{\frac{A_{OL}(0)}{1+\beta A_{OL}(0)}}{\frac{1}{1+\beta A_{OL}(0)} + \frac{j\left(\frac{f}{f_{B_{OL}}}\right)}{1+\beta A_{OL}(0)}} = \frac{A_{CL}(0)}{1+j\left(\frac{f}{f_{B_{OL}}(1+\beta A_{OL}(0))}\right)}$$

$$f_{B_{CL}} = f_{B_{OL}}(1 + \beta A_{OL}(0))$$

• FB-produkt (gain-bandwidth product):

- Icke-linjära begränsningar:
 - Utspänningsområde begränsas av:
 - Belastning på OP utgång
 - Matningsspänning
 - Om $u_{ut} = A_{CL}u_{in} > u_{\mathrm{matning}}$ så kommer utspänningen att klippas:

- Utström-område:
 - Om man kopplar in en belastning R_L som drar mer ström än vad OP:n kan leverera:

$$\frac{u_{ut}}{R_L} > i_{ut}$$

så kommer utströmmen att klippas.

 Om utströmmen klipps, så kommer även utspänningen att klippas:

$$u_{ut} = R_L i_{ut}$$

- "Slew-rate" begränsning
 - Hur snabbt utspänningen kan ändras:

$$\left| \frac{du_{ut}}{dt} \right|$$
 - SR $\left[V/\mu s \right]$

 Om signalen ändrar sig snabbare än SR, så hinner inte förstärkaren att ändra sig lika snabbt

- "Offset"-ström:
 - Om man kopplar in exakt samma lik-spänning på båda ingångarna, så ska det flyta exakt lika mycket lik-ström i båda ingångarna på OP:n, men i verkligheten så är in-strömmarna olika.

- Medelvärdet av DC-inströmmarna kallas för kretsens ("bias") tomgångsström $I_B=\frac{I_{B_+}-I_{B_-}}{2}$, avvikelsen $I_{off}=I_{B_+}-I_{B_-}$ är kretsens "offset"-ström.
- Tomgångsströmmen existerar även om inströmmen från källan and noll.

"Offset"-ström:

- Transistorerna Q1 och Q2 måste vara identiska i alla avseenden.
- Man säger då att transistorerna är "matchade".

- "Offset"-spänning:
 - På samma sätt får man även en skillnad i spänningen mellan ingångarna på OP:n, även om inspänningen från signalkällan är noll.
 - Eftersom OP:n förstärker upp spännings-differensen mellan ingångarna så kommer utspänningen inte att vara noll då inspänningen är noll.
 - Detta kallas då för OP:n "offset"-spänning.

$$U_{ut} = A_{CL}U_{off} \neq 0$$

- Eftersom A_{CL} är stort så måste "offset"-spänningen vara liten U_{off} (<< 10 mV)

Differens-förstärkare

Differensförstärkare:

 Om R₃ = R₁ och R₄ = R₂ så minimerar man ström-"offset":en

$$u_{ut} = \frac{R_1}{R_2} \left(u_{in_1} - u_{in_2} \right)$$

Differens-förstärkare

Instrumentförstärkare:

$$i_x = \frac{u_x}{R_x} = \frac{(u_a - u_b)}{R_x}$$

$$R_1 = R_2 = R_3 = R_4 \quad \Rightarrow \quad A_{CL} = 1$$

Differens-förstärkare

- Instrument-förstärkare:
 - Mycket hög inresistans
 - Förstärkningen bestäms endast av R_x
 - Common-Mode förstärkningen försvinner i ingångskretsen $u_{ut} = \frac{R}{R_x} \left(u_{in1} u_{in_2} \right)$

Integrator

Aktiv integrator:

$$i_{in} = \frac{u_{in}}{R}$$
 $u_C = \frac{1}{C} \int_0^t i_C(t) dt$ $KVL: u_{ut} + u_C = 0$

$$u_{ut} = -\frac{1}{RC} \int_0^t u_{in} dt$$

Derivator

Aktiv derivator:

$$i_{in} = C \frac{du_C}{dt}$$
 $u_R = Ri_R$ $KVL:$ $u_{ut} + u_R = 0$

$$i_R = i_{in} \qquad \Rightarrow \qquad u_{ut} = -RC\frac{du_{in}}{dt}$$

Aktiva filter

- Fördelar:
 - Få komponenter
 - Överföringsfunktion är okänslig för komponenttoleranser
 - Enkla att avstämma (justera in)
- Nackdelar:
 - Kräver strömförsörjning
 - Fungerar dåligt vid höga frekvenser (radiofrekvenser)

