

تابعنا تيليجرام

https://t.me/ic33m

اا ماھر أح

مطلب من دار ألت الدعم الفنى: ١٠٠١٣ وللإفتراحات: ١٣٠ صريب: ١٩٢٠

MATER Witnessen

لمجتوب*يات البخ*مائ — إولأ: إلجبسر —

		المحدة الأولمة :
		արտելունի արդակ
	0	مادرس المسام الحصارة
	3.7	A A we had not been a little and the second
	Eh	phone and the state of the stat
	Gh	
	14	gym yrung gryndy e (mi yr
	, M	· Le latin Library parent
	404	Projection of the second comments of the second
		الوحدة الثانية ;
	WA	مالدرس (ز) رفیدا افعد
	179	فرواس في الرابية المرابعة المر
	164	இ அன். கு மார்க்
_	_	انيًا : التماضي
		Legaco minits :
	5762	enterpolities; @sactificial philosophics
	TVIN	M. Simple Cunshe
	199	- Links School Bridge & Companie
	775	Akahali (alahali dari dari dari dari dari dari dari dar
	.773	والحرس (عشقان الحول الوطية
	137	والدرس بالمستوادم في المستواد المستود المستواد المستواد المستواد المستواد المستود ا
	FOR	ه الحرس الكامل ال
		الثا: حساب المثلثات ــــــــــــــــــــــــــــــــــــ
		لوحدة الرابعة :
	TA-	• ألدرس () : All الرنفاع والخفاص
	TAD	مادرس علامل المطابقة المحموع عودي فياست الأوليس ــــــــــــــــــــــــــــــــــــ
	VIN	• الدول المشية الضعف الجوية
	1)4	in to te the Oming

أولاً: الجبر

الوحدة الأولم: "

- •الدرس (): المتتابعات والمسلسلات،
 - والحرس (): الوشارعة الحسابية .
 - والحرس ﴿: الأوساط الحسابية .
 - والدرس (١): المتسلسلات الحسابية .
 - الدرس ﴿: المِنتَاعِةُ المَادِسِةِ .
 - والحرس 🖰 الأوساط المندسية .
- «الدرس 🐑: الونتسلسلات الهندسية,

الوحدة الثلية :

- مادرس (): مبدا اعد.
- هادرس (): النبي اديال.
- والدرس ﴿: التواقب ق.

Stanned with Cardicians

ای انتا

بالتعويض عن ن = ۱ بلتج ع ح ۲ × ۲ + ۱ = ۱ أن أن الحد الاأول عوم بالتعويض عن ن = ۲ بنتج ع ح ۲ × ۲ + ۲ = ۵ أن أن الحد الثاني عوه وبالتعويض عن ن = ۲ بنتج ع ح ۲ × ۲ + ۲ = ۵ أن أن الحد الثانث عوم وبالتعويض عن ن = ۲ بنتج ع ح ۲ × ۲ + ۲ ت ان أن الحد الثانث عوم أماع ن عهد العام الذي توجد منه أي حد من خلال التعويض لإذا أردنا إلجاد المادس فعوض عن ن = ۲ وبرمز للحد المادس بالرمز ع وبنفس الطريقة بكتابة حدودها بين فوسين كما يلي:

(المؤوه ٤٧٠ ...) ويرمز للمنتابعة بالرمز (ع)

ملاحظات هامة

- 🕥 حدود التتابعة من صور عناصر مجال التتأبعة.
- ¥ حظالفرق بير (عن حيث (عي) يعير عن التتابعة بينما عي يعبر عن حدها التوني.
- و يجب أن نفرق بين التتنبعة والمجموعة فالتتابعة تخضع لترتيب عناصرها (حدودها) أي أن الترتيب عناصرها.
 - عناصر الجموعة لا تتكر بينما عناصر الثنابعة قد تتكرر.

فيشننها بيذ قديتنهام فيشنها قدبتنها

تكون المتتابعة منتهية إذا كان عدد حدودها منتهيًا (ال بوكن حصره أو عده) مثل (١٠٤٨٤٦٤٤٤)

وتكون المتنابعة غير منتهية (ذا كان عدد حدودها غير منته (أي عدد المعاثى من الحدود) منال (٢٤١) من ...)

مثالی.

أُكِنْكِ كَلاُّ مِنْ المِنْتَابِعَاتَ التي حدها النَّولِي يعملي بِالعلاقة:

- كى = ٢ ب ١ + ١ والى خمسة حدود إبتداء من الحد الولى
- ن الحدود (بنداء من الحدود الأول) ﴿ وَ مَا عَدِد غَيْرَ مَنْنَهُ مِنَ الْحَدُود (بنداء من الحد الأول)

الحل

#=1+(1) += E ...

 $S_y = Y(Y) + \ell = 0$

200

اعدة إثبال امتنابوات وامتسلسات

ر التنابعة هي (٢٥٥٤٧) متنابعة منتهية.

(۲) پوشع ن = ۲۰۲۱ ۲۵۱۱ ۵۱ ...

$$\mathbf{1} = \mathbf{T}(\mathbf{T}) = \mathbf{1}$$

$$\mathbf{1} = \mathbf{T}(\mathbf{T}) = \mathbf{1}$$

$$Y = Y(t) = Z$$
 $t = Y(t) = Z$

ن المتنابعة هي (١ ، ٤ ٤ ، ٩ ، ٩ ، ١٦ ، ١٠٠) متنابعة غير منتهية.

فحراتتها وأحادكة

الحد العام للمتتابعة (ويسمى أحيانًا بالحد القولى ايكتب عي حيث عي صورة العنصر الذي ترتيبه ب في مجال التتابعة ويمكن إستنتاجه أحيانًا من خلال حدود معطاة للمتتابعة.

فمثا

الحد العام التنابعة الأعداد الزوجية: ٢٥ ع ٢٥ د مو گ = 7 = 7 الحد العام التنابعة الأعداد الشردية: ٢١ م ٥ ٥ م = 7 = 7 = 7 = 7 الحد العام المتنابعة : $= \frac{1}{7}$ م $= \frac{1}{7}$ $= \frac{1}{7}$

مثال

أَكْتُكِ الحدود الخمسة الأولى وكذلك الحد العام للمتابعة (S_0) المعرفة كالأتى: $S_0 = Y$ $S_{0+1} = Y$

الحل

0.65696461 = 0.36960

في الملاقة ع ب+= ٢ ع ي

بوضع ب= ۱

וטוט ל, מייאר בו=די

پوشيع له = ۲

وحظ أن

بعض المتتابعات ليست لها قاعدة معروفة حتى الأن مثل متتابعة الأعداد الأولية (٣٤٣) ٢٤٥٥ ...)

, 27=, 2:

(بالتعبيش عن ع ٢=)

ZY= , Z :.

$$| v_1 | v_2 | v_3 | v_4 | v_4 | v_5 |$$

ملاحظات

- إذا أختفف إشارة كل حد في المتنابعة عن الحد السابق له مباشرة مثل المتنابعة (- أب ، أب ، أب ، أب) فإن المتنابعة في هذه الحالة تسمى متنابعة نذبذبية.
- المتتابعة الثابية هي متتابعة جميع حدودها متساوية ويكون حدها العام على الصورة $\mathcal{L}_0 = 1$ حيث $1 \in \mathcal{L}_0$ ويكون أي حد الحد السابق له = صفر وقد تكون منتهية مثل (١٤١٤) ...)
 - 🕜 بعض التتابعات ليست لها قاعدة معروفة وبالتالي غير معروف حدها العام.

أغيضانتنا قدبتنوناع فبعبابتنا قدبلتنونا

فمنأ

1377 المتتابعة (۲) م ۱۹،۸ د (۱۹،۸ د و ۱۹،۸ د و ۱۹ د و

توجد کی ہے کم توجد کی ہے گی

إذا كان الناتج > ، تكون المتتابعة تزايدية وإذا كان الناتج < ، تكون المتتابعة تناقصية

٣٠٠ عن صفر الثان الثانج أكبر من صفر

. التتابعة تزايدية لجميم قيم ب

$$\frac{1-}{(1-\psi T)(1+\psi T)} = \frac{1-\psi T-1-\psi T}{(1-\psi T)(1+\psi T)} = \frac{1}{1-\psi T} - \frac{1}{1+\psi T} = \sqrt{2} -$$

" كى در كى لأن الناتج أصفر من صفر

يرالتتابعة تناقصية لجميع قيم ن

$$\frac{u(t-)}{v} - \frac{1+v(t-)}{1+v} = T - \frac{v(t-)}{v} - T + \frac{t+v(t-)}{1+v} = \sqrt{2} - \frac{1+v}{1+v} = \sqrt{2} - \frac{1+v}{1+v}$$

$$\left[\frac{1}{1} + \frac{1}{1+1}\right]_{1+1}(1-) = \frac{1}{1+1}(1-) + \frac{1+1}{1+1}(1-) = \frac{1}{1+1}(1-)$$

$$\left(\frac{1+UY}{(1+U)U}\right)^{1+U}(1-)=\left[\frac{(1+U)+U}{(1+U)U}\right]^{1+U}(1-)=$$

وهذا القدار موجب عندما ب عدد فردي وسالب عندما ب عدد زوجي أي أن المتنابعة ليست تزايدية وليست تناقصية.

🎯 لمتسلسلات ورمز التجميع

التسلسلة هي عملية جمع حدود المتتابعة ف<mark>صَلْق</mark>ً (١٠٤٨، ٩٠٤) هي متتابعة تتكون من خمسة حدود بينما التسلسلة هي عملية جمع لهذه الحدود.

أى أن ، ٢ + 1 + 7 + 4 + 4 + 4 هـم المتسلسلة المرتبعلة بالمتنابعة السابقة وذلك بوضع إشارة الجمع بين حدود المتنابعة ويمكن إستخدام رمز التجميع « آل «ويقرأ «سيجما» لكتابة المتسلسلات بصورة مختصرة.

فمثلأ

المتسلسلة السابقة تتكون من جمع الحدود الخمسة للمتتابعة وتكتب بإستخدام رمز النجميع بالصورة $\sum_{j=1}^{n} \beta_{j}$ وهي تعني $\beta_{j} + \beta_{j} + \beta_{j} + \beta_{j} + \beta_{j}$

ومن ذلك يمكن تعريف المتسلسلة المتتمية والمتسلسلة غير المنتمية كما يلى،

death, a balling

تكتب بالعمورة: $_{1}^{1}$ + $_{2}^{1}$ + $_{3}^{2}$ + $_{4}^{2}$ + $_{5}^{2}$ +

أى أن مجموع كل حدود المتنابعة المنتهية يسمى متسلسلة منتهية والقيمة المددية للمتسلسلة منتهية والقيمة

ويمكن أيجاد مجموع مفكوك المتسلسلة ي ي كما يلي:

 $\sum_{i=1}^{T} (\sqrt{i}) = (i)^{T} + (Y)^{T} + (Y)^{T} = i + \lambda + YY = IT$

المتسلسة غير المنتهية

المتسلسلة غير المنتهية لا يمكن حصر عدد حدودها فمثلاً المتسلسلة $+ 2 + 4 + 4 + 4 + \dots$ تكتب الصورة $\sum_{i=1}^{\infty} (Y)^{v}$ وقد إستخدم الرمز ∞ ليدل على ذلك.

و الخواص الجبرية النجميع

بدا كانت (عر) ، (هر) متتابعتين ، ب و س- + ، م ∈ ع فإن ،

ملاحظنة

جميع الخواص الجبرية السابقة لرمز التجميع لا تستخدم إلا في حالة إيجاد مجموع المنتابعة بدءًا من الحد الأول أي لإيجاد في ح

الماعر والراصلا

وتمكن أن يصل إلى تعص السائح من هذه الحواص فتها ،

😗 مجموع الأعداد الزوجية

مجموع الأعداد الزوجية = ٢ + 4 + 7 + 4 + · + + V

$$=\sum_{i=1}^{N} Y_i v_i = Y \sum_{i=1}^{N} v_i - Y \times \frac{O\left(O+I\right)}{Y} = O\left(O+I\right)$$

أى أن مجموع الأعداد الزوجية (الدن حدًا = ب (١ + ١)

😗 مجموع العداد الفردية

مجموع الأعداد الفردية = ٩ + ٣ + ٩ + ١٠ + ٧ + ١٠ - ٩

$$=\sum_{k=1}^{N}(Y_k-I)=Y\sum_{k=1}^{N}y_k-\sum_{k=1}^{N}I$$

10=0-0+10=0x1-(1+0)0x1=

أى أن مجموع الأعداد الفردية إلى ب حدًا = ٢٠

أكتب كلأ من المتسلسلات الأتية ثم أوجد مجموع المفكوك :

$$\bigcirc \sum_{i=1}^{n} (Y \vee + I) \bigcirc \sum_{i=1}^{n} \left(\frac{1}{V + I} - \frac{1}{V} \right)$$

الحث

V3 0

 $\xi = {}^{\dagger}(Y) = {}_{\downarrow} Z_{\downarrow} Z_{\downarrow} = {}_{\downarrow} Y = {}_{\downarrow} Z_{\downarrow} = {$ $\eta_1= {}^{\dagger}(\mathfrak{s})= {}_{\mathfrak{s}}$ یکون ${}^{\dagger}_{\mathfrak{s}}= {}^{\dagger}(\mathfrak{T})= {}^{\dagger}_{\mathfrak{s}}= {}_{\mathfrak{s}}$ بوضع $\eta=\mathfrak{s}$ یکون ${}^{\dagger}_{\mathfrak{s}}= (\mathfrak{s})^{\dagger}=\mathfrak{p}$ $(3_{r} + 3_{r} + 3_{r} + 3_{r} + 3_{s})$ وتكون المتسلسلة هي $(3_{r} + 3_{r} + 3_{r} + 3_{s})$

اِق أَن ، المُتسلسلة هي (١ + ۽ + ٩ + ٩ + ١) ويكون في يا = ١ + ۽ + ٩ + ١ + ٢٠ = ٣٠

وبهكن النحقق من مجموع ،لمنسلسنة بإستخدام الآلة الحاسية كما يلي ،

منعط على مفتاح رمر التجميع ي حسب اللون المحبد لدلك وهو غالبًا المعبد الدلك وهو غالبًا المعبد الدلك وهو غالبًا

ك Shift Log سنفيح الشاشة بحيث نكتب قاعدة المتابعة أولاً

- به مسلخدم المتاح (Replay) (الشقط إلى أسفل لكتابة المدد الذي تبدأ به وهو ١٠٠ ثم ننتقل إلى أعلى بإستخدام المتاح (الكتب عدد الحدود وهو ١٠٠ ثم ننتقل إلى أعلى بإستخدام المتاح (الكتب عدد الحدود وهو ١٤٠ فيكون شكل الشاشة هو ((x) 2 كا
- بضغط على ممتاح [] ليعطى الناتج على الشاشة وهو ٣٠ وهو مطابق
 لناتج الجمع السابق.

$$\forall = 1 + \forall = \uparrow = 1$$

وتكون التسلسلةهي مجموع هنه الحدود

$$10 = (1 + \sqrt{7})$$
 و محون $\sum_{i=1}^{7} (7 + 1) + 1 + 1 + 1 + 1 + 1 = 1$ و محون المسلسلة هي $(1 + \sqrt{7}) = 1$

$$\frac{1}{\sqrt{1 + 1}} \left(\frac{1}{\sqrt{1 + 1}} - \frac{1}{\sqrt{1 + 1}} \right) + \left(\frac{1}{\sqrt{1 + 1}} - \frac{1}{\sqrt{1 + 1}} \right) + \left(\frac{1}{\sqrt{1 + 1}} - \frac{1}{\sqrt{1 + 1}} \right) + \left(\frac{1}{\sqrt{1 + 1}} - \frac{1}{\sqrt{1 + 1}} \right) \right)$$

$$= \frac{1}{\sqrt{1 + 1}} - 1 + \frac{1}{\sqrt{1 + 1}} - \frac{1}{\sqrt{1 + 1}} + \frac{1}$$

اوجد بطریقتین مختلمتین: گخ (۲ – ۲ ۷ + ۷٪)

الحبل

الطريقة الأولى ، التعويض المباشر ،

$$(^{\dagger}P + P \times P_{i} - P) + (^{\dagger}P + P \times P + P^{\dagger}) + (P - P \times P + P^{\dagger}) + (P - P \times P + P^{\dagger}) + (P - P \times P + P^{\dagger})$$

الطريقة الثانية ، إستخدام الخواص الجبرية للتجميع ،

$$=7\times2-7\times\frac{2(3+\ell)}{7}+\frac{3(3+\ell)(7\times3+\ell)}{7}$$

14= (1+0)U

. = YA - U+ TU ...

$$A = Y \bullet + T \bullet - A = 1$$

اِذَا کس کے م = ۱۹۰ اُوجد قیمة ں

الحل

$$\sum_{i=1}^{N} v_i = iPI$$

$$i = (T_1 + O)(H - O) \triangle$$

أوجد ما يأتي (

- 🚺 مجموع الأعداد الروجية إلى العدد وو
- 🕜 مجموع الاعداد القردية إلى المدد 👣

الحل

ر) الجموع =
$$7 + 1 + 7 + \dots + 11$$
 ... عبد الحسود $U = 10$... عبد الحسود $U = 10$... $U = 10$

$$(Y) = Y \cup -t$$

$$\sum_{i=1}^{4} (Y \vee -t) = U^{2} = (aY)^{2} = aYr$$

مثالی

أوجد عندا تحدود في كل ممًا يأتي:

- لة كان 🕒 إذ كان 🕒 😅 🗸 🗸 🗸 🕦
- YA4=1-27+...+++++10€ ()

الحار

$$\hat{\cdot}_{V_{\alpha}} \sum_{i=1}^{N} Y_i = U_i (\omega + \ell)$$

$$f_{ij}(A^{ij}) = O^{T} + O^{T}$$

$$= \{ \forall \phi = \psi \} (\forall \forall + \psi) \circlearrowleft$$

$$|\tilde{t}_{\rm in}|_{Y}=spanethaue \gtrsim$$

السلخدام ومرّ التجميع ∑ في كتابة المتسلسلة: ٢ × ٢ + ٢ × ٤ + ٤ × ٥ + . . .

الحل

نكتب أوفَّ الحد العام بالطريقة التالية ،

$$3_{\gamma} = 7 \times i = (7 + t) (7 + t)$$

$$S_{\eta} = t \times t = (\tau + t) (\tau + \gamma)$$

 $S_{\eta} = (\tau_{0} + t) (\tau + \gamma)$

$$^+$$
ي أنحد العام للمتنابعة هو گ $_2$ $_3$ $_4$ ($_3$ + $_7$) حيث $_7$ $_7$ س

$$\sum_{i=1}^{\infty} X_i + Y_i \times X_i + Y_i \times X_i + \dots = \sum_{i=1}^{\infty} (J_i + I_i) (J_i + Y_i)$$

عزيزى الطالب فى هذا المكان من كل تمرين ستجد

أسئلة لمراجعة ما سبق في صورة إختبار تراكى على ما سبق دراسته يتم الإجابة في نفس الررقة قبل أن تدحل في الدوس الجديد وهذا يجعلك عذكر ما درست بإستمرار ولا تنساء ويجعلك في مراجعة مستمرة لدروسك السابقة نما يجعلك في توصل مستمرة لدروسك السابقة نما يجعلك في توصل مستمرة دروسك السابقة بما يجعلك في توصل مستمرة وهده لميزة يقدمها لك كتاب الماهر ه

تابعد عبي التسجرام کنب @uneasnawe

رُرِيًّا مسائل المستوى الأول

أكثل الستة حدود الأولى لكل من المتنابعات الأثية:

- (١-) منتابعة الأعداد الفردية السالبة التي تبدأ بالعدد (١-)
- 😙 منتابمة الأعداد المحصورة بين ٥١ م ١٨ والتي يقبل كل ميها القسمة على و

🚺 أختر الإجابة الصحيحة من بين الإجابات المعطاه ،

🕦 🙉 المتتاسمة هي دالة مجالها هو 💮

[ع* أ) ع أ) ص أ) ص٠ أومجموعة جزئية منها]

[n d n d n d n]

الحد الرابع للمتتابعة (\mathcal{L}_{ij}) حيث $\mathcal{L}_{ij} = \mathcal{L}_{ij}$ هو \mathcal{L}_{ij}

[Yo d W d W d s]

[4 4 + 4 + 4 1]

﴿ ﴿ لَكُونِ المُتَتَابِعَةُ مُنَاقِصِيةً إِذَا كَانَ عُن مِن المُتَتَابِعَةُ مُنَاقِصِيةً إِذَا كَانَ عُن مِن

[= d > d < d <]

0

٢ ﴿ يَكُونَ الْمُتَاسِمَةُ ثَابِيَّةً إِذَا كُسْ عِنْ مِنْ الْمُسْتَاسِمَةُ ثَابِيَّةً إِذَا كُسْ عِيْ الْمُلِّينِ ﴾ [

[= d > d \ d \ <]

۱ ﴿ لَكُونَ الْمُتَنَابِعَةُ تُرَايِدِيَةَ إِذَا كَانَ حُنِيبًا ﴿ ١٠٠٠٠ حُنِي لَكُلُ فَ ﴾ ١

[= d > d \le d \le]

"" | الحد السابع للمتابعة (3_0) حيث $3_0 = 7 \circ 7 + 7$ هو

[m d 4A d 45 d W]

 $\frac{\partial \psi}{\partial x_{i}}$ الحد الرابع للمنتابعة (عن حيث عن = $\frac{\partial \psi}{\partial x_{i}}$ هو

[4 d o d o d o d o

🕟 📜 فی نائتابعة (گی) میث گی = ۳ ن ۲۰ ازا کان گی – ۲۰ وان ب – سست...

[] d • d & d T]

🕥 🚉 الحد النوني للمتتابعة (٢٠ ٨ ٤ ٢٧ ٤ ٨ ١) هو

[Tor d to d to d or]

😭 😭 الحد النوس للمتنابعة (-1)) يا -4) ٢٧) ...) هو

["o"(1-) d "o- d "o d "(1-)]

📆 😭 بيس المتتابعات الأتية إذا كانت منتهية أو غير منتهية :

(MC... CACYCOCT) (T)

(... 6 11 6 Y 6 £ 6 1) (1)

- المتنابعة (ح) حيث ع ين المان و من ب

 $\{a_{i}(x_{i},x_{i})\} \ni U(x_{i}) + \frac{\lambda}{C} - \frac{\lambda}{C} + \lambda (C)\}$

📆 أَكْنَاشِينَ الشمطة في أَكْنُبُ الحد التولى:

- CEACTE-CITCI-CT (T)

... CATE VY C VY CAA CAD (1)

... (10 (1-14 (F (1 ()

الله مسائل المستوى الثاني

🚺 أختر الإجابة المحيحة من بين الإجابات المعطاة ،

[h d Y d Y d +]

المجد المشر من الثنايمة التي حدما البولي $S_0 = \frac{7}{6} + 4$ وحيث ن $S_0 = \frac{7}{6}$

[(t+v)(t+v) d (t+v)ut d (t+v)u d (t+v)(t-v)

المنتاسة التي حدها لتوني عن الحيث و حيث المنتابعة

[ترابسة ل تنظمية ل دابتة ل تدبدبية]

🛐 🚉 أشب الخمسة حدود الأولى ثكن من المتنابعات التي حدها العام يعطى بالقواعد الأتية •

"U+V= , & 1)

1 3 July = 1 1

(1)- 20

*(Y-U) "(1-)= 』 と ①

= 020

ر عا (π الله عاد (π الله عاد ا

🔯 أُكْسِدِ كَالاً مِن الْمُتَنَابِعَاتُ (لَتِي حَدِهَا النَّونِي يَعْطَى بِالْعَلاقِةِ:

وأدر خمسة صود إبتداء من الحد الأوزجي

1-01=20

والمحدد فيزمنته من السود أيتناء من الدرائيان

*= , 2 3

أكدب الحدود الخمسة الأولى للمنتابعة (ع) المرقة كالآتى:

ع.=-۱ ع ا عرب = ۲ ع میشو که ۱

الأَلْكِ المرفة كالآولى للمنتابعة (ع) المرفة كالآتى:

2,= ۲ ، کی=۲کی میدن ۶۲

الفترة يمارس كريم تماريس اللياقة البدئية الله فائق في اليوم الأول تم يريد الفترة بعد ذلك بمعدل دقيقتين بوميًا

- () أَكُلُب الرَّمْسية حدود الأولى لهذه المُتَنابِعة.
 - 🕝 أوجد الحد العام لهذه المتنابعة.
- 🕜 أوجد الزمن الذي يستغرقه كريم في اليوم السابع.
- في أن يوم سيكون الرمن الذي يصفرانه كريم نصف ساعة ؟ وضح إجابتك.

المامر

فالباطيات

الله بس أيًّا من المتنابعات (عي) تزايدية وأيها تناقصية وأيها عير دلك في كل مما ياتي:

0

$$\frac{3}{4}\left(\frac{1}{4}\right) = \sqrt{2}$$

$$\left(\frac{1}{Y}\right) = \sqrt{2} \ \odot$$

🚻 كتب ممكوك كل من المتسلسلات الأتية :

🔟 أوجيد مجموع المكوك في كل من المتسلسلات الأتيبة شم نحفق من صحبة الناتج

بإستحدام الألة الحاسبة ز

$$\left(\sum_{n=1}^{T} ad\left(\frac{\pi^{-n}}{T}\right)\right)$$

🔣 🗺 أختر الإجابة الصحيحة عن بين الإجابات المعطاه ،

﴿ الْتُسلسلة هـ + ١٠ + ١٥ + ٢٠ + ﴿ ﴿ وَتَكْتَبِ بِإِسْتَخْدَامِ رِمْزُ لِلْجِمُوعِ عَلَى الصورةِ ﴿

﴿ الْمُسَلِّمُ الْمُعْرِمُ الْجُمُوعِ عَلَى الْجُمُوعِ عَلَى الْمُسْلِمُ الْجُمُوعِ عَلَى الْجُمُوعِ عَلَى

$$|taue_{\zeta \bar{b}} \left[\sum_{v=1}^{n} (v+v) \right]_{b} \sum_{v=1}^{n} (vv) \right]_{b} \sum_{v=1}^{n} (1v) \right]_{b} \sum_{v=1}^{n} (vv) \right]$$

"" المتسلسلة $\frac{1}{7} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \cdots$ تكتب بإستخدام رمز المحموع على الصورة ""

﴾ التسلسلة ٩ + ٩٩ + ٩٩٩ + ٩٩٩٩ + ١٠٠ إلى ن حدًا تكتب بإستخدام رسر المجموع على الصورة ١٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠

📆 🚎 أحير الإحانة الجنجنجة من بين الإحابات المعطاة ,

المتسلسلة ۱ + ۲ + ۲ + ۲ + ۵ + ۱۰۰ + ۲۰ تكتبح إستخدام رمر الجموع على الصوره

[(2) 2 (0) 2 (0) 2 (0) 2 (0)

﴾ المتسلسلةُ ٢ + الله ٢ + ٨ + ١٠ + ٠٠٠٠ تكثب بإستخدام رمز الجموع على الصورة

[小菜 日 (小)菜 日 (小)菜 日 (小)菜]

🕝 التعلملة ٣ + ٦ + ٩ + ١٢ + ١٥ + ١٨ + ٢٦ لكتب بإستخدام رمر الجموع على الصوره

[(vw) x a (vv) x a (1+vv) x x (1+ve) x]

(١) التسلسلة ٢ + ١ + ١ + ١ + ١ + ١ + ١ + ١ + ١ منتفي بأستخدام رمز الجموع على الصورة

(التسلسلة ١ + ١ + ١ + ١ + ١ + ١ + ١٤ تكتب بيستخير المحموع على الصورة

[(アハ) 京 は (を) な (で) 京]

المتسلسلة أو المراج المراج المراج المراج المراج و تكتب باستخدام رمز المروعة المدورة

فأوجد بإستخدام خواس رمز التجميع 🥃 قيمة كل مما يأتي:

 $\widehat{\nabla} \sum_{i=1}^{N} (Y_i^{-1} - Y_i^{-1})$

(V = 1 (v+0)

🖼 🔯 أُكتَب الحد العام لكل من المتنايمات الأتية :

(... 6 4 6 4 6 4 6 4) (... 6 316 A 6 0 (T) ()

(···· ETECTYCACT) T

 $\left(\cdots e^{\frac{1}{J}} e^{\frac{1}{J}} e^{\frac{1}{J}} e^{\frac{1}{J}} e^{\frac{1}{J}}\right)$

(.... 6 14 - 6 A 6 6 - 6 7 6 1 -) ()

 $\left(\dots \frac{\pi i}{\gamma} \operatorname{lin} \pi \operatorname{lin} \frac{\pi \gamma}{\gamma} \operatorname{lin} \frac{\pi}{\gamma} \operatorname{lin} \right)$

المانتابعة (عن) إذا كان ع م ع م ع م الم على + به س أوجد قيمة س إم

🔃 أَخْتُر الْإِجَابَةُ الصحيحةُ من بين الإجابَاتُ المعطاهِ ،

[0 d 1- 4 d 1- 4 d 1-0]

[TTTYIN & TEEN & TYTE & TYVO]

 $\widehat{\Psi} = \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum$

[so d to d A d &]

(ع س - ۱) تساوى « -----

[13 d 44 d e d e4]

الحد البوتي للمتتابعة (١٦٤٩ ١٦٤٩)) هو

[To d "Y d Y d Y+0]

الحد النوني للمتتابعة: (٣ ١٠٠٠) هو

[1-U(Y-)×Y 4 1-U(Y-)×Y 4 1-U(Y-)]

﴿ التتابعة (٢٠)=٢٠٠ مستبعة ----

[تزایده) تنافید کر دبته) تعبدبیه]

🕢 🚉 الثنابعة التي حده التوثي ع ن ع 🕇 - ١ حيث صفح 🕩 تمثل منتابعة

[تزايدية] تناقصية 🥻 ثابتة] تدبنية]

[تزايدية إن تناقصية إن دايتة إن تسديية]

ن إذا كاند ن ∈ س~ * ، كل م + - ح و = - * فإن المتنابعة

[تزایدیه ای تناقصیه ای دابته ای دبنابیه]

(۲×۲)) (4×۵) د (4×۲)) (4×۲)) (4×۲)) (4×۵) (4×۲) (4×۲) (4×۲) (4×۲) (4×۲)

هو چ ن =

[(++0)(1+0) & (1+0)01 & (1+0)0 & (1+0)(1-0)]

وسائل لفيس مستونات وليافي التمكح

[a]
$$\forall a = (t - \sqrt{\tau}) \stackrel{\sim}{\sum} (\nabla + \tau) = a\tau \qquad (a)$$

🖬 أوحد فيمه ، " (デール)なの (サルアールリュラの 1-1

[3ºF]

(-1-1-1) = (-1-1-1) = (-1-1-1) = (-1-1-1) = (-1-1-1) = (-1-1-1-1) [17]

الا المان د (س) = ي معيده د الم مان (س) = ي المين م : ط - ط

(Y)(you) les [1-0]

الله المانت د (س) = ۳ س - ۲ فاوجد کې د ۱۰ (س) [15]

🗓 إذا حكان سي ۽ سي هما جنري العادلة ٧ س " – (٢ + ٢) س -

وكان ير 🕶 🗸 (٣٠٠ م م ١٨٥) فأوجد قيمة م [46]

[1-]

في المتنابعة (۲ د ۲ ۲ و ۲ ۲ ۵ ۰۰۰۰) بلا مخة أن كل حد من الحدود يريد عن الحد السابق له بمقدار قابت (فيمته ۲) وهذا يعني أن الفرق بين أي عددين متنالين هو ۲ وهو مقدار قابت وهذا الدوع من المتنابعات التي بكون فيها الفرق بين أي عددين مقدار ثابت يسمى بالتنابعة الحسابية وهذا الاتدار الثابت يسمى «أساس المتنابعة» ويرمن له عادة بدارمر « از »

ومن ذلك بمخل تعريف المتنابعة الحسابية خما يلي

المشاعة الحسابية

هی المتناسعة التی یکون فیه المروری کل حدو الحد السابق له میاشرة یساوی مقدارا دارت مسمی سامر المتنابعة ویرمز له عادة بالرمر (و) أی آن $2 = 3_0$ یا کن ب $3 = 4_0$ کی این سامی المتنابعة المسابعة = آی حد فیها – الحد السابق له مباشرة

رمكن تكوين المتنابعة بمعلومية حدث الأول (١) وأساسما (١) فَمِثْلاً إِذَا كَانَ الحد الأُولَ إِنَّ عَالِمُ اللهِ عَنْ حَدِمَا الأَولِ الْمُعَالِينِ وَ حِبَّا فإن السابعة بكون حدث الأول (وحدث الثاني يريد ؟ عن حدث الأون أي: عُ حِبِّ مَا عُنْ حِبْ ٢ + ٢ = و وهكذ) وتكون التنابعة هي (٢٤١) عن ٢٠٠) ...)

رائم.

إربى المقتايمات الأنية متتابعة حسابية :

(410111044) (0111111111111111 ...) (4110111044)

الحل

المرقة ما إذا كانت التناسة (عن) حساسة أم لا فاسا توجم عن براح فإذا كان الماتج مقدار ثابت كانت المتناسفة (عن) حسابية وأساسها هذا المقدار الثانت.

ن التتابعة حسابية وأساسها دو

ن المُتنابعة حسابية وأساسها = ٢٠٠

$$\frac{1}{17} = \frac{1}{7} - \frac{1}{2} = \frac{1}{7} - \frac{1}{2} = \frac{1}{7} - \frac{1}{7} = \frac{1}{7} = \frac{1}{7} - \frac{1}{7} = \frac{1}{7} = \frac{1}{7} - \frac{1}{7} = \frac{1$$

ر التتابعة ليست حسابية

فلَحضة تسمى المنتابعة توافقية إذا كان مقلوبات حدودها تكون فتتابعة حسابية مثل المتتابعة السابقة.

مازمتازك هاما

- أثمثتابهة الحسابية عن دالة من الدرجة الأولى في ن حيث ن ∈ س- ويكون معمل به عوأساس المتتابعة.
- همثارُ (ع ن) = (۲ ب ، ۱۰) مثنابعة حسابية لأن (ع ن) دائة من الدرجة الأولى في v = (v + v) = (v + v)
- $^{\circ}(3_0)=(0^{\circ}+1)$ مسابعة ليستحسابية $1/(3_0)$ والة من الدرجة الثانية هي $1/(3_0)$

المرتبانية فالترابية والمرتبانية فالترابية

المتتابعة الحسابية (عي) تكون برايدية إذا كان أساسها موجب (أي و ح صفر) المتتابعة الحسابية (ع) تكون تنافسية إذا كان أسامها سالب (أي وح صفر) المتتابعة الحسابية (ع) تكون دائنة إذا كان أساسها (و = صغر) فمثا

 $\Psi = \theta - g = g$. Strictly in the $\theta = g + g + g + g$ is a strictly in $\theta = g + g + g$ أعدم طوحين تدلك فإن المنتابعة تكون ترايدبة

وفي التتابعة (، ۱ ، ۸ ، ۲ ، ۱ ، ۵ نالاحظ أن الأساس از = 8 - 1 = -7لدلله فإن أكتتجمة تكون تباقصية

> وفي التتابعة (٢ ۽ ٢ ۽ ٦ ۽ ۾ ۽ -1) نائ سنڌ أن الأسمن $\xi = \xi - 1 = 0$ فلالك فإن المتنابسة تكون دويته

أى المتناسات الاتبه نكون منتابعة حسابية ، وإذا كانت متنابعة حسابية فأوجد أساسها مبيئا ماإنا كانت التتابمة متناقمية أم مترايعة و

$$(\tau + \frac{\gamma}{4!}) = (\sqrt{L})$$

الحال

للمرفة ما إذا كانت المتتابعة (ع) حسابية أم لا فإننا توجد عن ٢٠٠٠ عن فإذا كان الناتج مقدار فابت كانت المتنابعة (عي) حسابية وأساسه هذا المتدار الثابت.

۱۰۲۰ م ۲۰ ۱۰ با ب ۱۰۰ م با مقدار خابت

 $q = g = \text{tanks} g = \lim_{n \to \infty} (q + \psi + \eta) = (\cup_n \mathcal{L}) \wedge$

٢ ک> (موجية) الل المتنابعة متزايدة

ن (ع ن $(-1^{-1}v)$ متنابعة غیر حسابیة $(-1^{-1}v)$

$$\Psi_{-} = g = \text{landing Surjection} (\bullet \Psi - Y) = (\cup \xi) :$$

رز المتابعة متناقسة

ب از کر در سالیة)

ومذا المقدار غیر ثابت لأنه یعتمد علی قیمة به . . ($\frac{1}{3}$) = ($\frac{1}{3}$) . . ($\frac{1}{3}$) . .

الزينيل لبياتك المستعة الحسابية 🎯

لتمثيل متتابعة حسابية ولتكن (١٠٤٨ ، ٢٠٤٨) فرندا نلاحظ أن مجال التتابعة (كما علمنا عن الدرس الأون) هو (٢٠٤٨ ، ٣٠٤) هو وتكون الأرواج المرتبة الممثلة المهتتابعة هي :

((٢٠١) ، (٢٠١) ، (٣٠١) ، (٣٠١) }

ويمكن تمثيلها حكما بالشكل المقابل ويكون
هذا الشكل هو التمثيل البيائي للمنتابعة
هذا الشكل هو التمثيل البيائي للمنتابعة

النقط التى تعنل مدود المتنابعة الحسابية تقع على إستقامة واحدة مما يعنى أن المتنابعة الحسابية هي دائة من الدوجة الأولى في به حيث ب \mathbf{E} س أوهو المتغير المستقل و \mathbf{S} حيث $\mathbf{S}_0 \in \mathbf{S}$ هو المتغير المتنقل و $\mathbf{S}_0 \in \mathbf{S}$ هو المتغير المتابع ويكون معامل ب هو أساس المتنابعة أي أن العلاقة بين المتغيرين ب $\mathbf{S}_0 \in \mathbf{S}_0$ هي $\mathbf{S}_0 = \mathbf{S}_0$ ب حيث ب \mathbf{S}_0 قابتان \mathbf{S}_0 أساس المتنابعة.

المامر

في البائقيار

Acidot (pickas) (sighas)

(ذا كانت (ع) متنابعة حسانية حدها الأول (وسامتها و ظان ع = ﴿ وكل حد يريد عن انسابق له بمقدار ؟

ای آن کے دو+ و ع کے دو+ و ع کے دو+ ہو و و کدا ونلاحظ من ذلک آن معامل و یقل بمقدار الوحدة عن رتبۂ الحد (ترنیب الحد)

فودلاً ع. = ١+١٠٤ ع عود + 1 ع وهمدا

وبالإستمرار على هذا التمطانجد أن المدالتوثي لهذه المتنابعة هو على = أ + (ت - ١١ و و المنافقة المدالتوثي كما يلى : ومن ذلك يمكن تعريف الحد التوثي كما يلى :

बर्गाणाचा वटां<u>गणीया</u> विकास

(نا رمزنا للحد الأول في اختتابه الحسابية بالرمز { وثالاً ساس بالرمز و شيان ع ن الحد الذي رتبته ن) بسمى الحد النوبي أو الحد العام للمنتابعة الحسابية حيث $(3_0 = 1 + (0 - 1))$ و حيث ن $(3_0 = 1 + (0 - 1))$ و حيث ن $(3_0 = 1 + (0 - 1))$ و حيث ن

وإذا كان عدد حدود المتنابعة الحسابية ب فإن حدها الأخير ع يرمن له بالرمز ل أي أن له ع ا + (٠٠٠) ك

وإذا كتبيد بمض حدود المتنابعة وذلك بوصح ل =٣٤ ٢٤٩ ، . . في الحد العام للمتنابعة الحسابية فإننا تحصل على المتنابعة (﴿) ﴿ + ك) ﴿ + ٣ ك ، ﴿ + ٣ ك ، ...) وتسمى عذه المبورة بالصورة العامة للمنتابعة لحسابية التي حدها الأول ﴿ وأساسها ك

فيباسعة فداتنها تبيين 🍥

يمكن تعيين المتنابعة الحسابية متى علم حدها الأول والأساس غمثالاً [1] كان حدها الأول إ = ٢ والأساس ر = ٣ غان المتنابعة هي (٢) ه ١١٤٨ (١٠٠)

﴿ وَاسْتَحْدُونِهِ الْأَلَةِ الْحَاسِةِ الْعَامِيةِ فَيْنَاكُ مِسْرِيَّةٍ مُسْرِيًّا وَاسْرِيَّةٍ وَ

يمكن استخدام الآلة انجاسية العلمية لكتابة المتتابعة السابقة خما يلي ،

- 💽 تكتب قيمة ﴿ (العدد ٧) ثم تصفيف علامة
- نضح قيمة و بالضغط على + ثم (العدد ٣) ونضفت علامة فنعطى الحد الثاني للمنتاهة.

dalarola.

لاحظ المرق بين (عن) ؛ عن حيث (عن) ترمز للمتتابعة بينما عن ترمز للحد اليوني للمثنابعة.

لإرجاد عدد حدود المتتابعة نوجد رتبة الحد الأخير فيها ب المتتابعة نوجد رتبة الحد الأخير فيها لإيحاء رثبة أول حدسالب في المتتابعة الحسابية نوجد أصغر عبد سحيح موجب ى بحيث يحقق المتباينة ﴿ كُنَّ < ﴿ أَاوِ لَ < ﷺ

لإيجاد رتبه أخرحه موجب في المتتابعة الحسابية توجه أكبر عدد صحيح موجب 0 بحیث یحفق المتبایئة $3_0 > 1$ او $0 > \frac{t-1}{t} + t$

🤈 لإيحاد رئية أول حد تكون فيمته أكبر من فيمة معينة أس في متتابعة متزايدة $- < \sqrt{2}$ ترجد صغر عدد صحیح مرجب ی بحیث یحقق المتبایدة

إذا كان أحثى المتتابعة (و > و) كانت المتتابعة لزايدية.

ورانا كان أساس المتتابعة (الح م) كانت المتتابعة تعالمبية.

وثالئ

في التتابعة الحسابية الأتية (٣٠) و ٧٤ ع...) أوجد و

🚺 رتبة الحد الدي قيمته 🖜

🚺 قیمة ع 🔐 😮 رتبة اول حد تزید قیمته عن ۹۸

الجبل

Y=Y-0=5 6 Y=1

① قیمد گی دا + ۱۲ = ۲ + ۱۲ × ۲ = ۲۲

﴿ تفرض أن الحد الذي قيمته = 47 هو ع ن

or= 1 (1-U)+1::

98= 18 A

pヤーギー むギキギ A.

 $a Y = Y \times (Y - U) + Y^{\prime} \triangle$

aY= u Y 🕹

マーナー カイニシブ・

性素の言

". رقبة الحد الذي قيمته ٣٥ مي ٢٧ (أي أن ع ٢٠ = ٣٥)

حل آخر ن = الحر ا + ۱ = ۲ + ۱ = ۲۲ + ۱ = ۲۱

🕝 لايحاد رتبة اول حد تزيد قيمته عن ٨٨ عمرص أن گي > ٩٨

ان والمن المعروبية المعدد يا تجمل $\beta_0 > 44$

🕆 رتبة أول حد تزيد قيمته عن 🗚 هو 🗚 أي گيءِ

 $\eta = 0$ $\therefore 1 + \frac{\gamma - \eta_A}{\gamma} < 0$ $\therefore 1 + \frac{1 - \sqrt{5}}{5} < 0$ $\Rightarrow 1 + \frac{1 - \sqrt{5}}{5} < 0$

.مثال

في المتتابعة الحساسية الألية (٢٣) ٢٨ ع ٢٤ ... ع ٧٧- أوجد ،

🚺 قيمة حي من البداية

🚺 رتبة أول حد سائب وأوجد قيمته

🚯 عدد حدود المتنابعة

😧 قيمة 💆 من المهاية

الحل

t-= TY - YA = 5 C TT=!

() لإيجاد رتبة أول حد سالب نفرض أن عي ح ،

الله والمخرفيمة للعددان تجمل في سالياً

° رائية أول مد سائب = ۱٫۰

وقيمته ع_{ري} = ۱ + ۹ د = ۲۲ + ۹ × -) = -

ث رقبة أول حد سالب = ، ١

1<00

() لإيحاد عدد حدود المتتابعة نوجد رئبة آخر حد فيها

$$\underline{t} - x (t - \omega) + TT = YT - \Delta$$

$$17 = 0$$
 $17 = 1 + \frac{77 - 77}{1 - 1} = 17$

.مثال ـ

متنابعة حسابية فيها $2_{p} + 2_{p} = 70$ \$ $2_{p} = -7$ أوجد المتنابعة وأوجد رتبة أحر حد مرجب فيها و وإذا كان - 20 أحد حدود عند المتنابعة فصرتبته.

الحال

وبالتمويس طي المادلة 🌓 :

فالباطات

الماهر

أخرجدموجياهوجي

لإيجاد رتبة الحد الذي قيمته - ٣٥ نمرض أن ع = - ٣٥

: <£ -× (1-0)+ to ∴

و بهذن إستخدام؛ الله الحاسبة التأخذ من صحة حل اله عادلتين،

T-=5V+| & TIRSO+|T

بإتباع الخطوات التأثية ،

- الشخط على مغتاج المعليات [Mode] وتختار من القائمة EQN وذلك بكتابة الرقم
 المكتوب أمامها وغالبًا 5 أو 3 في يعمن الآلات ثم ذختار المعادلة الخطية enx + bnY = en
 وذلك بالصعط على الفتاح []
- ندخل معاملات (۱) ، (۶) والحد المطلق بالترتيب للمعادلة الأولى ثم للمعادلة الثانية
 مباشرة ونضغط على الأزرار من اليسار إلى اليمين مباشرة على النحو الثاني :

😙 لاستدعاء النواتج ,

إذا كان مجموع ألحد الثالث والحد لخامس من متتابعة حسابية هو ١٦ وحاصل ضرب جدها الثاني في حدها الساسي مع فأوجد التتابعة

الحل

وبالتمويض من 🕥 في المادلة 👣 :

$$4A = (30 + 37 - A)(3 + 57 - A)$$

$$\mathbf{I} \mathbf{A} = \mathbf{T} \mathbf{J} \mathbf{E} - \mathbf{T} \mathbf{E} \mathbf{A}$$
 $\qquad \qquad \mathbf{E} \mathbf{A} = (\mathbf{J} \mathbf{Y} + \mathbf{A}) (\mathbf{J} \mathbf{Y} - \mathbf{A}) \mathbf{A}$

وبالتعويض في المادلة 🕦 :

$$Y = \{ A, A \in Y = \emptyset \}$$
 where $\{ Y = \emptyset \}$ and $\{ Y = \emptyset \}$

مثالي

 $\{t\}$ کانت $\{t\}$ یسی سی ۲۹ متنابعهٔ حسابیهٔ وکانت $t=\frac{1}{2}$

فأوجد ليمة كل من: ﴿ ﴾ • وكنا رتبة حدها الأخير

الحال

$$YY + f = \omega \otimes \omega + YY = f - YY = g \otimes \omega$$
 Equipment 2 and 222 $f \in YY$

$$YY + A = -2A \qquad YY + A = -2A \qquad A = AA$$

ثلاث أعداد تكون متتابعة حسابية مجموعها فا ومجموع مربعاتها ٢٣ أوجد متدالأعداد،

الحال

تفرض أن الأعداد الثلاثة التي تكون التتابعة هي:

$$\mathbf{A}\mathbf{Y} = \mathbf{T}(\mathbf{3} + \mathbf{1}) + \mathbf{T}\mathbf{1} + \mathbf{T}(\mathbf{3} - \mathbf{1}) \mathbf{T}$$

$$\Psi = \Psi (s + a) + \Psi a + \Psi (s - a)$$

$$\mathbf{A}\mathbf{Y} = \mathbf{V}\mathbf{e} + \mathbf{T}\mathbf{J}\mathbf{Y} \mathbf{A}$$

في جميع المسائل التي يدكر فيها

محموم ثلاث حدود في متتابية

حسابية تفرض أن الحدور

5+16165-1

مثالی

أثبت أنه لا يوجد حد قيمته (هو في المتتابعة الحسابية (١٣ ، ١٧ ، ٢١ ، ٠٠)

الحل

المرفة ما إذا كان يوجد حد قيمتُه (ع) أم لا فإننا نوجد رتبة الحد الدي قيمته وم فإذا كانت عدد صحيح موجب فهذا يعنى أنه يوجد حد فيمته ١٥١

أما إذا كانت رتبة الحد (٠) سالبة أو كسر فهذا معناه أنه لا يوجد حد فيمته ١٥١

$$\mathbf{I} = \mathbf{I} \mathbf{T} + \mathbf{I} \mathbf{Y} = \mathbf{F} \mathbf{I} \quad \mathbf{I} \mathbf{T} = \mathbf{I} \mathbf{Y}$$

$$tot = t + O(t + t)^{\alpha} \triangle$$

THE PARTY OF

🛐 أجب عن الأستلة الآنية ،

() الحد الخامس في المتتابعة في ٢٠٠٠ هو ١٠٠٠٠٠٠٠

🕤 المتنابعة التي حدها النوبي ع 😅 🕶 ٣ 🔾 في منتابعة

[تزليدية أي تناقصية أي فابنة أي تدبدبية]

🕞 قيمة التسلسلة 🟂 (٧٠ هـ ١٠) هو

.....= √ ½ €

أكلب ممكوك كل من المتسلسلات الأثية:

 $\left(\begin{array}{c} \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \right) \end{array} \right)$

🕤 أكتب الخمسة حدود الأولى لكل من الانتابمات التي حدها العام يعطي بالقواعد الأتية:

 $= (-1)^{-1} = (-1)^{-1}$

الماعر

🚺 حدد أيًا من المتنابعات الأنية حسابية وأيها غير حسابية ثم أوجد الأساس في حالا

كونها حسابية :

(YA CYECTRETOCT) (Y)

(TECTICIACIOCITY)

(YEVEVEVEV) (14-644-614-61-60-) (P)

⑥ (س ۲+ س ۲۰ س ۲۰ ص ۵۰ س + ۶ ص) حیث س ۵ ص کمیتان موجبتان

أكتب الحمسة حدود الأولى للمتتابعة الحسابية في كلمن الحالات الأتية:

1=11=1

#-= \$ { Y = | Y | 0 = 5 { T = | 1

🚺 أختر الإجابة الصحيحة من بين الإجابات المعطاه ،

🕦 تسمی التنابعة (ع ن) متنابعة حسابية إذا كان ع ن على على الساب

· [>مقدارتابت } =مقدارتابت } حمقدارتابت أي =منفر]

🌱 أصاص المتتابعة الحسابية و 🖃

[1+02 4 02-1+02 4 -12 4 1+02]

[s(1+v) d (1-v) d s d s(1-v)]+ |= u2 1

﴿ كَانَ ﴾ = (٧ ن +١) منتابعة عسابية فإن :

أولاً إساسها =

[0 d 1 d 7 d 7]

لَالْيَا حَدَهَا الأول =

[red wd wd w]

﴿ إِنْ الْحِدُ الْحِدِي عَشَــرِ مِن الْمُتَابِعَةُ ﴿ حُنِي ﴾ و ٢ و - وهو

[TI d TY d YA d TO]

﴿ ﴿ الحد النوني للمنتابعة الحسابية (٨١ ٤ ٧٧ ٤ ٢٠٠٠) هو ﴿ وَ السنانِيةُ ﴿ ٩٧ ٤ ٢٧ ٤ ١٠٠٠) هُو ﴿ وَ ا

Ve-n q nt-ve q ve-nt q ve-nt

والختر الإجابة الصحيحة من بين الإجابات المعطاي

() () = (ه − ۲ ان) متنابعة حسابية أساسها =

[Y & Y- & Y & o]

 $\dots = \dots = 0$ الحد النوبي للمتتابعة الحسابية (۲) ه و ۱۱ (۲) م و گ $_0$ = $\dots = \dots$

[Y-0 & 1-07 & 1-07 & 1+07]

﴿ عدد حدود المتنابعة (٢ ع ع ٢٠٤٥) هو ١٨٠٠٠٠٠٠٠

[17 4 7 4 0 4 4]

🔃 😭 جميع المتنابعات الأثية حسابية ما عدا المتنابعة

d (... (++- (++- 10- (++-) d (.... (++ (+) (+ (+)))

 $\left[\left(\dots,\varepsilon,\frac{1}{J},\varepsilon,\frac{1}{JJ},\varepsilon,\frac{1}{JJ},\varepsilon,\frac{1}{JJ},\varepsilon,\frac{1}{JJ},\varepsilon,\frac{1}{J},\varepsilon,\frac{$

🙆 🔯 المتتابعة الحسابية من بين المتنامعات الأقية هي

 $d = \frac{1}{1+v} = (\sqrt{L}) \quad d = \left(\frac{1+v}{v}\right) = (\sqrt{L})$ $\left[\left(\frac{1-\frac{1}{v}v}{1+v+\frac{1}{v}v}\right) = (\sqrt{L}) \quad d = \left(\frac{1+v}{v}\right) = (\sqrt{L})$

🖪 اوجد

(١٠٠) (.... (٨ (٥ (٧) عنه المتابعة الحسابية (٢٠)

(دروروس المتنابعة الحسابية (٣) ٢) ...) المنابعة الحسابية (٣) ٢) على المتنابعة الحسابية (٣) ٢)

🗹 أختر الإجابة الصحيحة من بين الإجابات المعطة ،

[s- d s- d tr d tr-]

﴿ مَتَنَابِعَةَ حَسَابِيةَ أَسَاسُهَا ٣ وَحَدُهُا التَّاسِعِ ⇒ ٢٦ فَإِنْ حَبْهَا الأَوْلِ

(۲ منفر ای -۳ (۱۸ d

🕏 منتابعة حساسة حدها الأول = - ٢١ وحدها العشرون = ٣٩ فإن هو أساسها

[مندر ۹ d ۳ d ۳ - [مندر

رُارِيًا مسائل المستوى الثاني

- (این ان النتابعة $(\beta_0) = \gamma_0 + \gamma_0$ تكون متنابعة حسابیة ثم أوجد قیمة حدها الثامن γ_0 النب ان المتنابعة $(\beta_0) = \gamma_0 + \gamma_0$ به هی متنابعة حسابیة وأوجد أساسها ثم أثبت الأربعة حدود الأولى منها .
- إن المحمد المحم
- المعاشر ثم أوجد عدد (١٣ ع ١٩ ع ١٩ ع ١٠ ع ١٠٠) أوجد الحدد العاشر ثم أوجد عدد (١٠٠ عدد العاشر ثم أوجد عدد حدود هذه المتابعة،
- [101] (در الم أوجد رتبة أخر حد موجب على المتنامة الحسابية (١٥ د ١٥ ١٥ م ١٠ ١٣)
- اوجد الحد السابع من اغتنابعة الحسابية (١٩) ٥ ٥ ، ...) ثم أثبت أنه لا يوجد فبها حديساوى صغر
- الذي الثلاثة الأولى من المتنابعة (ع ن) = (٢ + ه ن) تم أوجد رتبة الحد الذي الدي الذي المددود الثلاثة الأولى من المتنابعة وأوجد رتبة أول حد قيمته تزيد عن ١٠٠ [(١٧٠١٦٠١]
- المتنابعة حسابيه فيها ع ب = ۲۱ ع ع ب ع ۲۹ أوجد المتنابعة شم أوجد الحدرالسابع السابع والمشرين فيها .
- المثال الثاني. وجد المتابعة الحسابية التي حدها الخامس = ٢١ وحدها العاشر = علانة أمثال حدها الثاني.
- السياسة حسابية حدما الرابع = ١١ ومجموع حديها الخامس وانتاسع = ١٠ ومجموع حديها الخامس وانتاسع = ١٠ ومجموع حديها الخامس وانتاسع = ١٠ ومجموع حديها الخامس وانتاسع = ١٠٠٤ أوجد المتنابعة = (٥٠٠٠ مهم ١٠٠٤ في هذه المتنابعة = (٥٠٠٠ مهم ١٠٠٤)
- رگی) منتابعة حسابية فيها $3_{p} + 3_{p} = 17$ أوجد المتتابعة ثم أوجد رتبة الحد الدی قیمته تساوی 37_{p}

[YKELT]

 $(3_0, 3_0)$ مثنانعة حسانيه فيها $(3_0, 3_0, 3_0, 3_0)$ وجدالحد النونى لهده المتنابعة ومنه أوحد رثبة وقيمة أول حد سالب فيها.

المن اعداد في تنابع حساس محموعهم = 10 وحاصل صربهم = 100 أورد هيم الأعداد النازنة.

أنا منتابعة حسانية حدها الثاني ضعف حدها الرابع وحدها العاشر ينقص عن ضعف حدها الرابع وحدها العاشر ينقص عن ضعف حدها السانع بمقدار ٦ أوحد التتابعة.

الرابع أودد المتنابعة الحسابية التي حدها السادس : ٢٠ والنسبة بين حديها الرابع والعاشر كسبة عن حديها الرابع والعاشر كسبة ٤٠٠٧ [(١٠١٠-١٤٤١٠...)]

 $\mathbb{Z}_{\mathbb{Z}_{+}^{0}}(S_{0})$ منابعة حسابية فيها $S_{+}+S_{1}=Y33S_{+}\times S_{1}=919$ [(۲۲، ۲۲، ۲۲۰ د ۱۲۰۰۰)]

آلاً الأكونت خمسة أعداد متنابعة حسابية مجموعها وع وحاصل ضرب العدد الأول في المدد الخامس مصافًا (ليه حاصل صرب العدد الثاني في المدد الرابع = ١١٧ في أهي هذه الأعداد ؟

ل في التناسة الحسابية (٣٠) ١٥ ٥ ٥ ٠ ٠ ٠ ، ٩٩) أوجد حدها الخامس عشر ثم أوجد عدد (٣٠٠٠٠) حدود التنابعة.

المتنابعة حسابية حدها الأول = ٢ ع = ٢ س + ٢ أوجد ع + ع [17]

الله المنابعة مسابية مدها الأول د ٢ ء كن د ٢٩ ء كي د ٢٩ ء كي د ٢٩ ع أن د ٢٩ ع أوجد المتابعة . أوجد قيمة ب ثم أوجد المتتابعة .

الأخير = ٢٠٠ وعدد حدودها ٢٠٠ وحدها الأخير = ٢٠٠ وعدد حدودها ٢٠ مدًا أوجد المتنابعة.

الله إذا كان (٢٠٢) من ١٩٣٤) متنابعة حسابية وكان ب = ١٩٩ + ٦ أوجد فيمة كل من ٢٤٠٠ وكنا رتبة حدها الأخير.

المتتابعة حسابية حدها الثالث يزيد عن حدها الخامس بمقدار ١٨ وصدف حروا السابع يمقص عن حدها الرابع بمقدار ٣٠ أوجد المتناسمة ال

ا به ۱۹ س + ۱۹ س + ۱۹ س + ۱۹ س + ۲۹ س + ۲۹

الله متتلبعة حسابية يزيد حدها الثالث عن حدها الأول بمقدار ؟ ومجموع مربعي حديها الثالث عن حدها الأول بمقدار ؟ ومجموع مربعي حديها الثاني والرابع ــ ٢٦ أوجد الثتابعة [(١٠٠ ١٦٠١ -١٠٠ الله المدعة -١٠ المدعة -

آن في التنابعة الحسابية (٣ س ٢٤ س + ص ٢٥ ص – ٣٤ ١٢٤ ٢٠ ، ٢٢٤) أوجد قيمة س ٤ ص ثم أوجد التنابعة وعبد حدودها. [١٧٥٠٥،١١٥]

🚰 أوجد عدد الاعداد السحيحة المحسورة بين ؟) ؟ ﴿ وَكُلُّ مِنْهَا لَا يَقْبِلُ القَسْمَةُ عَلَى ؟ [11]

مسائل تقيس مستويات عليا في التفكير

🛅 أختر الإجابة الصحيحة من بين الإجابات المعملاء .

🕥 🎥 عند حدود المتنابعة الحسابية . (٢٠ / ١١ / ١٥ / ٢٧١) هو

[serv d see d ev d ev]

سسسس = م ک نابه ۲۳ = م ک ۲۰ ۲۰ م ۲۰ ۲۰ میان کی و ۲۳ میان کی در ۲۰ میان کی در ۲۰ میان کی در ۲۰ میان کی در ۲۰ می

[or b M b or b m]

→ متنابعة حسامية حدها الأول = ٢ ٤ ٢ من = ٢ منابعة حسامية حدها الأول = ٢ ١ منابعة حسامية حدها الأول = ٢ ١٠٠٠ منابعة حسامية حداها الأول = ٢ ١٠٠٠ منابعة حداها الأول = ٢ ١٠٠٠ منابعة حداها الأول = ٢ ١٠٠٠ منابعة حداها الأول = ١٠٠١ منابعة حداها الأول = ١٠٠٠ منابعة حداها الأول = ١٠٠١ منابعة حداها الأول = ١٠٠ منابعة حدالها الأول = ١٠ منابعة حدالها الأول = ١٠٠ منابعة حدالها الأول = ١٠ منابعة حدالها الأول = ١٠٠ منابعة حدالها الأول

IN a sa a re a rol

﴿ إِذَا كَانِتُ (٢١) مِ سِ ۽ ١٥) مِن حدود مثنانعة حسابية فإن ص =

शिक्ष विश्व विश्व विश्व

﴿ إِذَا كَانَتَ (١٢) ٤] ٤ --- ٢٤ (١٨) مسابعة حسابية قاب إ = -------

[4 6 + 6 + 6 40]

عدد الأعداد الصحيحة المحصورة بين ٧ ، ١٠٠ وكل منها يقبل القسمة على ٩

[11 d 4. d 44 d 44]

 (۷) عدد حدود (المتنابعة الحسادية (۳) س ۷۵ س ۸ س + ۱) يساوى [41 6 42 6 44 6 45] (٨) عدد الحدود فردية الرتبة من حدود المتنابعة الحسابية (٣) هـ ٨ ٨ ١١٠) يساوى [YV d 19 d Yo d W] [0 4 7 4 7 4 1] المتتابعة حسابية عدها الأول = ٣٥ وأساسها عدد صحيح ، ٢ مو أول حد سائب 1 t- d r- d r- d 1-1 (١) منتابعة حسابية حدها الاول = ١٠٥٠ وأساسها عدد صحيح ﴾ ع م هو أول حد موجب فإن ع مد المست is a r a r a 1] ۱۹ = ر ب ر د ۲۱ = ر ب ر ده = ر ک اهیا غیباسه قعالته (۱۶ عام) فزن ن 🕿 استناست [v d a d e d t] ﴿ إِذَا كَانَ } ٢ ﴾ ﴾ ب) ٢٥ تكون منتابعة حسابية وكانت ب = ٥ ﴿ + ٢ فإن عدد حدود المتنابعة 🖃 ﴿ فَي أَي مِنتَابِعِةَ حَسَامِيةَ يَكُونَ عَ مِنْ + كُونَ - كَانِ تَتَابِعِةَ حَسَامِيةَ يَكُونَ عَ مِنْ + كُونَ - كَانِ تَتَابِعِةَ حَسَامِيةً يَكُونَ عَ مِنْ + كُونَ - كَانِ تَتَابِعِةً حَسَامِيةً يَكُونَ عَ مِنْ + كُونَ - كَانِ تَتَابِعِةً عَسَامِيةً يَكُونَ عَ مِنْ الْعَلَامُ عَلَيْكُونَ عَلَيْكُونَ عَ مِنْ الْعَلَامُ عَلَيْكُونَ عِلْكُونَ عَلَيْكُونَ عَلَيْكُونَاكُ عَلَيْكُونَا عَلَيْكُونَ عَلَيْكُونَاكُونَ عَلَيْكُونَ عَلَيْكُونَا عَلَيْكُونَاكُ عَلَيْكُونَا عَلَيْكُونَاكُونَا عَلَيْكُونَا عَلَيْكُونَا عَلَيْكُونَا عَلَيْكُونَا عَلَيْكُونَا عَلَيْكُونَا عَلْ [340 \$ 240 \$ 240 \$ 210] (و اذا کان (ح ن اعتباعه مسعیه فیه ع ر = ۲ و ح ن فإن اساس النتابعہ = [0+1 4 1-0 4 0-1 4 v1] = $\frac{1}{12} = \frac{1}{12} =$ [12 4 02-12 A 02×12 A 02+12] ﴿ أَربِمَةَ أَعِدَادَ تَكُونَ مَنْتَابِمَةَ حَسَابِيةَ مَجْمُوعَهُمْ ؟ وَ مَجْمُوعُ مَقَلُوبِي الْحَدِينَ الثاني والنالت يساوى 🚓 فإن الأعداد هي [ACTURET & TEACTER & WESTER & VEGGTET] ۱۵ (دا کان ع بر من المتنابعة الحسابية ۲۲ م ۱۳ بي ۱۹۵ م... يساوی ع بر من ۱۳ بي ۱۹۵ م... بي المنابعة الحسابية ۲۲ م ۱۹۵ م... بي المنابعة الحسابية ۲۳ م... بي المنابعة ص التتابعة الحصابية ٢٤١ 🔩 ٢٤٣٤٤) فإن ن =

60

[1 d T d + d 1]

[الرابع] الخامس أو السادس أن السابع]

- اذا كونت س ، ص ، ع متتابعة حسابية فإثبت أن (٣ س + ١ ، ٣ ص + ١ ، ٣ ع + ١) الله الكون متتابعة حسابية أيضًا.
- الله المدالاول والنوك من منتابعة حسابية بساويان على الترتيب الحدين النائي والخامس من المتتابعة الأولى والخامس من المتتابعة الأولى يساوى الحد الخامن من المتتابعة الثانية.
- الأخير في هده المتنابعة يساوى مجموع حديها الرابع والخامس فإثبات أن أساس هذه المتنابعة يساوى مجموع حديها الرابع والخامس فإثبات أن أساس هذه المتنابعة يساوى مجموع حديها الرابع والخامس فإثبات أن أساس هذه المتنابعة يساوى حدها الأول وأوجد عدد حدودها.
- المتنابعة حسابية فيها عي د ٢٠ ع عي وسطًا متناسبًا بين ع ، ع عي أوجد المتنابعة ثم أوجد رتية الحد الدي فيمته ٢٠
- الله (س) س) ع ، ل) متنامة حسابية حدودها موجبة فإذا كان ص ع .. س ل = ٢٧) ص ل – ٢ س ع = ٣٩ فزلبت أن ١٩٩ يكون حدًا فيها وأوجد رتبته.
- الله (س ۽ ص ۽ خ ۽ ل ۽) متتابعة حسانية فيها س + ل = ۾ ۽ ص ٢ + خ٢ = ٧ س أوجد المثتابعة. أوجد المثتابعة.
- (3_0) منتابعة معرفة بحيث $3_0 = -10$ $3_{0+1} = 3_0 + 0$ منتابعة اخبری معرفة بحيث $3_0 = 7$ $3_0 + 7$ ألبت أن كلاً من (3_0) ، (3_0) منتابعة حسابية وأوجد كلاً منهما ثم أوجد أول حد موجد في المتتابعة (3_0)

(زا جانت \dagger) ι) هـ ثلاثة حدود مثنائية من مثنابعة حسابية فإن ι تعرف بالوسطة الحسابي بين الحدين \dagger : هـ وقد علمنا مما سبق أن الأساس = أى حد – السابق له أى أنه في التنابعة (\dagger) ι : ι = ι - ι) ι = ι - ι .

ركما علمنا في السنوات تسابقة أن الوسط الحسابي لأي عندين يساوى مجموع العندس وغلبه فإن الوسط الحسابي لأي عندين يساوى مجموع العندس وغلبه فإن الوسط الحسابي لأي حدين عند وضعه بين الحدين فإن الحدود الثلاثة تكون متتابعة حسابية.

أى أن (١) سهم) أو (١) المحمد عمر) متنابعة حسابية وإذا كانت المتنابعة الحسابية التكوير من أو (١) من عمر عمر وينان وسطون حسابيين وتسمى التكوير من أي حديد غير منتاليين بالأوساط الحسابية،

والمجال مصريا فحصناه الأف الأفعام الاستبناني أذا المستجارات

مثال

0

الماهر

فالبائتيان

ادخل ٧ أوساط حسابية بين ٣ ، ٣٥

الحل

ب عدد الأوساط = ٧

A = Y + Y = ayar-21 and A

ن لدينًا متناسة حدها الأول ٣٥ ع حدها الأخير = ٣٥ م ب ج ٥

 $s \times (t-q) + T = T a \therefore$ $s(t-\varphi) + f = J \forall f$

t=32. YY=3A2.

ي الأوساط هي: ٧٠ (١٩ د ١٥ د ١٩ د ٧٧) ٢٩ ٢٧ ٢٧

 $\xi = \frac{Y - Y \delta}{1 + V} = \delta \therefore$ $Y = J \cdot Y = J \cdot Y = f : \epsilon \Delta \Delta \Delta \Delta$

ے الأوسامانشی (۲۹۲۷ء - ۲۹۲۰)

اللاحظات بعامة

 $\gamma = v = \gamma - 3$ and $\gamma = 0$ and $\gamma = 0$ and $\gamma = 0$ and $\gamma = 0$

ن الوسط الدي ترتبيه ب في منتابعة حسابية ... م ب ي و

 $rac{\partial g}{\partial x}$ في ثالًا , الوسط الثانث f + f > g والوسط الخامس f = g + g وهكت ...

 $\frac{t-t-t}{0} = \frac{t-t}{t}$ يقرض آن و هي عدد الأوساط فإن و $\frac{t-t}{t}$

الإنبان ،عبد الأوساط و = عبد الحدود - ٢ = ٠٠ . ٠٠ = ١ + ٢

 $\frac{1-d}{1+d} = \beta \wedge \qquad \beta (1-\gamma+\beta) = (1-d) \wedge \qquad \beta (1-\alpha) + \beta = d \wedge$

أوجد العددين الذين وسطهما الحسابي 🐈 ٧ والنسبة بينهما ٧ : ٣

الحل

يترش أن العددين لا س ٢ لا س

ر ۾ سن = 10 ا

ر المندين هما = ٣ x ٣ 6 ٣ x ٢

 $\frac{10}{2} = \frac{7 + m + 7 + m}{2} = \frac{10}{2} = \frac{10}{2}$

∴ س = ۳

ے العددیں هما ۾ ۽ ۽

distant

عند إدخال عدة أوساط حساسة بيس) ، ل تخون المختابيعة انجساسة هي (إ ع إ + و ع أ + ٢ 5 ٤ - ع ال - ٢ و ع ال - و ع ال) ويكون (الوسطة الأول = ع _ = إ + و ع الوسط الأخير = ل - ٧ و وهكدا ..

مثالى

إذا أدخنت عدة أوساط حسابية بين ٢ ٤ وكانت النسبة بين مجموع الوسطين الأول والرابع إلى مجموع الوسطين الأخيرين هما ٢: ٣ هما عدد هناه الأوساط؟

الجبل

تمرض إن أساس المتقابعة = و

ألوسطين الأول والرابع هما ٢ + و ر و ٢ + و و و الوسطين الأخيرين هما ٢٤ - و و ٢٤ - ٣ و

$$\frac{1}{\sqrt{2}} = \frac{3\xi + 7 + 3 + 7}{\xi \sqrt{2} - 4\xi + 5 - 7\xi} \stackrel{?}{\sim}$$

$$\frac{q}{q} = \frac{3\xi + 7 + 3 + 7}{3\gamma - \gamma \xi + \beta - \gamma \xi} \stackrel{?}{\sim}$$

$$\frac{7+3}{7+3}=7.5$$

$$\frac{1}{T} = \frac{30 + 6}{37 - 6A} \therefore$$

$$\frac{1}{T} = \frac{3 5 + 1}{5 T - 5 A}$$

مثال مسابية للعددين 1) مفانيت أن: مدام + ١٥-٢م المدرين 1) مفانيت أن: سدا مدرسة

$$\frac{1-\alpha}{\gamma} = \frac{1-\alpha}{\gamma} + \frac{1-\alpha}{\gamma} = \frac{1-\alpha}{\gamma} = \frac{1-\alpha}{\gamma} + \frac{1-\alpha}{\gamma} = \frac{1-\alpha}{\gamma} = \frac{1-\alpha}{\gamma} + \frac{1-\alpha}{\gamma} = \frac{1$$

ه في الرياضيا

الدرجة لنعائية

آجب عن الأسئلة ، لأتية ،

			- 415 - 175 - 41	. 4 41 . 405	2
Marie San Park	· · · · · · · · · · · · · · · · · · ·	سريه رح ي	والتركيب الأوا) إنجد السابع ا	١).

[to d to d to d tv]

= (3) [if = (3)] = 7 (if = 1) = 1

[+ d +- d + d +-]

[4. d Yo d Y. d Yo] ----- =(1+dY) \(\frac{1}{2}\)

الحد الخامس للمتتابعة (\mathcal{S}_{ij}) حيث $\mathcal{S}_{ij} = \emptyset$ به - هو ()

[10 d w d t d ti]

($^{\circ}$ ($^{\circ}$) متنامعة حسابية فيها $^{\circ}$ $^{\circ}$ + $^{\circ}$ $^{\circ}$

👣 أخير ، لإجابة الصحيحة من بين ، الإجابات المعطاه ،

() إذا محومت (۲۲ م ۲ ۱۹ م ۲۱ م ۲۱ ۵ ۲۷ م ۲۱ مسالید العامید العام ۱۹ م ۱۹ م ۱۹ م ۱۹ م

[أوساط حسابية إن متنابعة تعاقصية إن متنابعة تدبدبية إن متنابعة دارته] (٣) عدد الأوساط الحسابية = عدد حدود المتنابعة ---------

[Y- d 1- d 1+ d Y+]

(٣) عدد حدود المتنابعة الحسادية = عدد أوساط، هذه المتنابعية ،

[T - d 1- d 1+ d T+]

📵 😥 إذا كان الوسط الحسابي للعددين من ٢٦ هو ٢٩ فإن من تساوي

[m d m d m d b]

😭 أخير الإجابة الصحيحة من بين الإجابات المعصاه ،

﴿ إِذَا كَانَ عِنْدُ مِنْ وَالْمُتَابِعَةُ وَا حِدًا فَإِنَّ الْحِيَّ الْأُوسِطُ هُو

[3, b 3, b 3, b 5,1]

🕥 إذا كان ب هو الوسط الحسابي بين ل ع م فإن بي + م 🖘

['v & 👙 & or d v]

(ع) الله محانت (ح) متتامعة حسابية حيث عن + ۲ فإن الوسطة الحسابى بين ع ۽ ع ۾ يساوي ۽ سست [Th d TY d TA d A]

 (1) ﴿ إِذَا كَانَ؟ † + † + † ٥ (1 - † ٥ (1 + † ثلاثة حدود متتالية من متتابعة حسابية ﴿ [0 4 7 4 7 4 1] فإن ا تساوي مسمس

[الرابع إن الخامس إن السابس إن السابع]

[L P C+F P C-5 P C-75]

زانيا مسائل المستوى الثاني

و این ادخل ه اوساط حسابیه بین ۲ ۸ ۵ ا

DATES WATER ST

أردل خمسة أوساط حسابية بين ع ٢٢٠ ثم أوجد الوسط الرابع [١٠]

أندل ١٢ وسطاً حسابيًا مين ٢٥ : ٢٥ ثم أوجد كن من الوسط الأول والوسط الأخير ٢١٠ ، ١٥٠

ال ١٦ وسطاً حسانيًا بين العددين ٢٧ – ٢٤ (١٦ مسطاً حسانيًا بين العددين ٢٧ – ٢٢ (١٦ مسطاً حسانيًا بين العددين ٢٧ – ٢١ (١٦ مسطاً

كا عبدان النسبة بينهما ٢ : ١٠ ووسطها الحسابي = ١٣ أوجد العددين. [٢٠٠٦]

الله المعالى عندون يريد أحدهما عن صعف الأخر بمقدار ٣ ووسطهما الحسابي = ١٠٠٠ [١٠٠٠]

الله و المن الوسط الخامس بين المددين ٢) ٧) من متناهمة حساسة هو ٢٣ فأوجد عبد الأوساط ثم قيمة الوسط الناسع.

الله عنه متنابعة حسابية حدها الناسع بساوى ٢٥ والوسط الحسابى بين حديها الثالث والخامس هو ١٠ أوجد هده المتنابعة.

ﷺ إذا كان الوسط الحسابي بين ﴿) ب هو ﴿ والوسط الحسابي بين ؛ ﴿) ٢ ب هو ٢٠ والوسط الحسابي بين ؛ ﴿) ٢ ب هو ٢٠ و فأوجد قيمة كل من ﴿) ب

الله الله المناسعة عدد هذه الأوساط. (١) وكان الوسط السابع يساوى ثلاثة أمثال الوسط الثنائي أوجد عدد هذه الأوساط.

الثالث والسابع عن المسابية التي فيها الوسط الحسابي بين حديها الثالث والسابع عو التالث والسابع عو المسابع عن ا

[Maps]

الأمتنابعة حسانية محموع حديها الأول والرابع = ١٦ والوسط لحسابي لحديها النائي والرابع = ٦ أودد التنابعة ثم أوجد الوسط الخامس [١٠،١٠١]

الأولين إلى مجموع الوسطين الأخيرين هي ٣ وكانت النسبة دين مجموع الوسطين الأولين إلى مجموع الوسطين الأخيرين هي ١٦ في عدد ثلك الأوساط ؟

 $(1-1)^{2}$ و $(1-1)^{2}$ و $(1-1)^{2}$ و $(1-1)^{2}$ و $(1-1)^{2}$ و $(1-1)^{2}$ و المناه و $(1-1)^{2}$

الله إذا أدخننا بين ٢) ٢٨ عدة أوساط حسابية عددها ب وكانت النسية بين الوسط الثران والوسط الدي ترتيبه (ب - ١) هي ٢ : ٣ في ا قيمة ب ؟

ان کانت س می الوسط الحسابی بون س ، ع فائیت ان :

(س + ۲ ص + ع) (۲ ص - س − ع) = صغر

المسائل تقيس مستويات علياقي التفكح

🚮 أحتر الإجابة الصحيحة من بين الإجابات المعطاه :

🕥 إذا كانت (س " ۽ س " ۽ ع ") في تنابع حسابي فإن س " =

[-v"+3" 1) "-v"+3" 1) 1-v"+3" 1) 1(-v"+3")

🕤 عبد إدخال عدة أوساط حسابية بين † ﴾ ل يكون الوسط قبل الأخير 😑 🔐 سن

[L-72 D L D L+2 D L-2]

IT d Y- d & d A]

[TI d Y. d TY d TA]

خان قيمة الحد الأوسط = ١٠٠٠٠٠٠ [- الله الله الله الله إلى الله إلى الله إلى الله

 $1 \neq \ell \neq 0$ ان $\ell = \sqrt{\ell}$ د سایی $\ell = \ell \neq 0$ ل $\ell \neq \ell \neq \ell$

 $\left[\frac{1}{4} d \frac{1}{4} - d \frac{1}{4} - d \frac{1}{4}\right]$

فإن ل +) = المستندية

(١) إذا كان الوسط الحسابي للعددين) ، ب يساوي دوالوسط الحسابي دين) " ، ب"

(آ) إن كان ب وسط حسابي بين ﴿ ﴿ هِـ فَإِن بُ ۖ - ﴿ هِـ - بِ ﴾ =

--- d ++1 d +1 d 1

(ا) إذا كانت ص وسط حسابي بين س) ع فإن ص + ٢ ع م م + ٢ م م ا

﴿ إِنَا كَانَ مُ } كَا مُ كَانَ ثَنَائِعَ حَسَائِي ؟ لا تُ ؟ هُـ } وَ فَي تَتَابِعِ حَسَانِي أَيضًا

 $(i| A + i) = \frac{A - A}{1 - A}$

[14 + 4 + 4 +]

(و) الوسط الحسابي للحدين الثالث عشر والخامس والعشرين من متتابعة حسابية يساوي ٥١٨ ۽ ٢ ۾ ۽ + ع ۽ ۽ + ع ۽ ت ٨٤ فإن حدها الأول يساوي ١٠٠٠٠٠٠٠

[TV.0 d TY d TT.0 d TT]

﴿ إِذَا كُونِتِ ١٥ ٤ مِنْ + ٢ ٤ ٤ مِنْ - ٥ مَنْتَابِعَةُ حَسَابِيَةً قَالِ رَبِّعَةً وَلَ حَدَّ فَيَمِنْهُ

الله أوجيد فيناس كال زواد المثلث تذي فيدقياس (حدى رواياه هو الوسطة الحسابي ساير قياسي $\{ (N_1, N_2, N_3, N_4, N_4, N_5) \}$ انزاویتین الأخرین والصفری یساوی $(N_1, N_2, N_3, N_4, N_5) \}$

[TJYL ITJYLTJY]

ادخل ۲ أوساط حسابية بين لو ۲۵۲ لر ۲۵۲

- وحد السبية بين اطوال أضلاع Δ و به القائم الزاوية شي ب والدى أطوال أضلاع من تنابع حسابي حيث و الوسط الحسابي بين ب ع Δ
- ادا کاں س ، س ، ع فی تتابع حسابی فأنبت ان : س + ص ، س + ع ، ص + ع فی تتابع حسابی فائبت ان : س + ص ، ص + ع فی تتابع حسابی أیشًا.

المسلطة احسابية

هي عملية جمع حدود المتناسة الحسابية.

فمثلاً المنتابعة الحسابية (١،٤٨٤٩٥٤٤٢) يمكن جمع حدودها الخمسة وتكتب في سورة متسلسلة حسامية ما لشكل هـ و ٢ + ٤ + ٣ + ٨ + م د حيث عهم و يرمر لمجموع خمسة حدود متتاثية من المتنابعة.

عَجُ مَالَحَظَةَ أَنَ النَّتَابِمَةُ عَنْدَمَا كَانِتُ مَكْتُوبِةً فِي صَوْرَةَ دَالُهُ مَثْلُ (ع ن ٢ ع ٠ (٢ ت) فإن مجموع التسلسلة المتكولة من الخمسة حدود الأولى يكتب على الصورة 💆 (٢٠٥)

فيإسه فداتته زبه اغهرن ومرعه 🧕

أولا - 📗 مجهوع ب حدّامن متتابعة حسابية به علومية حديما الأول (والأخير ال

إذا كان الحد الأول من المتنابعة الحسابية هوم وحدها الأخير هوال وأساسها ووعده حلودها ر، فإن مجموع هذه الحدود (مجموع ب هذا) من التنابعة المسابية يرمز له

بالرقار بحارة ويعطني بالمتسلسلة البالجة أ

كما يمكن كتابة المنسيسلة بالحبورة ،

ولجدة المعادلتين (٢) ٤ (٢) وينتح أن ،

$$Y \triangleq V = (1 + U) + (1 + U) + (1 + U) + \dots + (1 + U)$$
 (15) Us and Helician

$$(J+f) \frac{U}{Y} = \sqrt{\Delta} \left[Y \cup \frac{U}{Y} \right]$$
 ($J+f$) $U = \frac{U}{Y} + \frac{U}{Y} = \frac{U}{Y} + \frac$

حيث ب هو عند الحدود ، إ هو الحد الدى نبداً به ، ل هو الحد الأخير وتستخدم هدم القاعدة إد، علم في المتنابعة حدها الأول والأخير

-مثال

أوجد مجموع العشرين حدًا الأولى من متنابعة مسابية حدها الأول = 1 وحدها العشرين = ٦٩

الحال

$$30 = [33 + i] \frac{V_0}{V} = \frac{1}{V} = 0$$

カニリ じかーひじもード

مثالی.

أوجد مجموع التسلسلة الحسادية ٢ + ٩ + ١٧ + ١٠٠٠ أوجد

ألحل

و ت $\gamma=\gamma=\gamma$ و يلزم أيجد عدد الحدود برستخدام الحد الدوني للمتتابعة

ثم دوجد مجموع ١٠ حدود بإستخدام الحد الأول والأخير

محووع ب حدًا من فتتبعة حسانية بمعلومية حدها الأولى والأساسي

 $(J+1)+\frac{U}{T}=\frac{U}{U}$ و وعلمها أن هي $=\frac{U}{T}-(1+U)$

ويانتمويض بالملاقة الأولى في العلاقة الثانية فإن:

$$[f(t-t)+|f|]\frac{Q}{Q}=\frac{1}{Q}$$

وتستخدم هذه الشاعدة إذا علم في المتنابعة حدها الأول والأساس.

ويمكن تلخيص ما شبق فيما يني ،

مجموع جدود منتابعه حسابيه حدها الأول (وعدد حدودها ن ،

أوجد مجموع العشرين حدًا الأولى من المتنابعة الحسابية : (٢١) ١٩ ١٧ ٠ · ·)

الحل

 $f_{t} = \left[(Y - Y) + f_{t} + f_{t} \times f_{t} \right] = \frac{f_{t}}{\pi} = \frac{1}{2} f_{t} + f_{t} \left(-f_{t} \right)$

interellisia

- 🚺 لإيجاد المجموع هي يلزم معرفة عدد الحدود ن وإذا كالتاغير معلومة توجدها $f(1-q) + f = d \ln a \sin a$
- 🕡 لإيجاد المحموع التداء من حد معين توجد قيمة هذا الحد وتعوض عنه بدلًا من مُ في القاعدة التي تستخدمها فيثلاً ، إذا كان مطلوب الجموع بدءًا من الحد الثالث فإننا مموض بدع بدلاً من إ

فونلاً ، گر ع هر - هر ، گر = هر ان آن ، انترتیب عناصرها .

- إذا كانت المتابعة الحسابية تناقصية وحده الأول موجب فإن أكر عدد من الحدود يمكن جمعه ليكون الجموع موجب في أكبر عدد صحيح موجب ن يحقق المباينة عدر > ،
- إذا كانت المتتابعة الحسابية ترايدية وحدها الأول سالب فإن أقل محموع احدود المتنابعة هو مجموع معرفة عدد المتابعة هو مجموع معرفة عدد المدود السائمة.
- آباجاد عدد حدود منتابعة حسابية بحيث مجموع حدود المثنابعة أكبر من قيمة معينة س موجد أصفر عدد منحيح موجب ب بحيث يحقق المتباينة عر رح س
 - عدد الحدود التي تجعل المجموع أكبر ما يمكن = عدد الحدود الموجبة.

مثال

في التسلسلة الحسابية و + ٨ + ١١ +أوجد ،

- 🚺 مجموع ٧٠ حدًا الأوثى منها.
- 👣 مجموع ١٠ حدود من حدوده ابتداء من الحد السابح.
 - 🕡 محموع حدود المتنابعة بدءًا من ع إلى ع 🕝

الحبل

T=4-4=5 (0 m)

$$f_{i,j} \triangleq g_{i,j} = g_{i,j} + g_{i,j} + g_{j,j} = g_{i,j} + g_{j,j} + g_{j$$

لإيجاد مجموع ١٠ حدود انتداء من الحد السابع نضع S_{γ} عدلاً من γ في قانون الجموع $a_{\gamma} = \frac{r_{\gamma}}{\gamma} [Y S_{\gamma} + (r - 1) \times Y]$ بالتمويص في صيفة الجموع

(٣) مجموع حدود المتنادعة استداء من عير الى عير

بريجاد مجموع حدود المتتابعة بدءًا من عي الى عي نصع عي بدلاً من إ في القابون ونضع عي بدلاً من ل

$$1 + \frac{11}{7} (3_{11} + 3_{12}) = \frac{11}{7} (77 + 77) = 710$$

والحالية

يمكن إنجاد مجموع حدود المتتابعة بدءًا من عي إلى عي عن طريق إيجاد هي ونظرح منها هي فيكون الناتج هو مجموع الحدود من عي الن عي

.مثالی۔

الحل

$$(J+l)\frac{U}{v}=u^{\Delta}$$

$$(AY + Y)^{\frac{1}{2}} = 4Ac^{*}$$

تانئا ، بوجد قيمة ي

$$3 19 + 11 = AV : \qquad 3 (1 - \omega) + f = J : C$$

$$12 = 1 + 10 = 10 + 1 = 10 + 1 = 10 + 1 = 10$$

المتنابعة الحسابية هي (١١) ١٥ / ١٩ / ٨٧٥٠٠٠٠)

اودد ، 🖔 (۲ س -۱)

الحاء

عدد حدود المتنابعة = قيمة م الأخيرة - قيمة م الأولى + ١ = ٢١ - ٥ + ١ = ٢٠ حسًّا ودوجد الحد الأول ع وتعوص بها عن إ والحد الأخير ع ويدوس بها عن ل في عن

$$\Delta_{ij} = \frac{U}{T} \left((1+U) \right)$$

$$P^{i_1} \equiv \left(\frac{1}{2} \forall + \frac{1}{2} \right) \frac{\gamma}{\gamma_1} \equiv \frac{1}{\gamma_1} A_{i_1}^{-1},$$

مثاري

أوجد عدد الحدود التي يجب أخدها من المتنابعة الحسابية :

(۱۹ د ۲ د ۱ ۱۰۰۰) اینداه من الحد الأول لیکون مجموعها ۱۹۵

الحل

$$\left[s\left(t-o\right) + \left\lceil \gamma \right\rceil \right] \frac{1}{O} = \frac{1}{O} \left[s\left(t-o\right) + \left\lceil \gamma \right\rceil \right]$$

$$(Y \times \psi)$$
نالضان $(Y + \psi)^{-1} = (Y + \psi)^{-1} = (Y$

رُ. على الحدود التي يجب أختما ليكون الجموع هزو هي ، و حدود

وجد أصفر عدد من الحدود يمكن أخدها من التتابعة الحسانية (٧١ ٢٥ ٥ ٦٨ ٥٠٠)) ابتداء من الحد الأول ليكون المجموع سالبًا ثم أوجد أكبر محموع لهده المتتابعة

الحال

الإيجاد اصفر عدد من الحدود ليكون الجموع سالبًا تفرض أن هي < •

$$\sim \frac{V}{V}$$
 (۲ × ۲۷ + (۱ – V) + ۷۱ × ۲) $\sim \frac{V}{V}$ موجية دائمًا $\sim V$

.". أصغر عدد من الحدود يمكن أخدها ليكون مجموع التتابعة سالبًا هو ٢٩ حدًا ، أكبر مجموع لهده المتنابعة هو مجموع الحدود الموجبة والإيجاد مجموع الحدود الموجبة يلزم معرفة أخر حدموجب في هند المتتابعة.

$$YE\frac{\gamma}{T}>0.5$$

$$A = \frac{3Y}{Y} [Y \times YY \times YY] = YYA$$

أوجد المتتابعة الحسابية التي مجموع السيعة حدود الأولى منها يسلوى ٧٧ ومجموع السبعة حدود القالية لها يساوي ٢٢٤

الحباح

$$[1(1-\alpha)+[4]\frac{\lambda}{\alpha}=^{\alpha} \Rightarrow \triangle$$

$$\mathbb{E}[Y|Y] = \frac{V}{V} [Y|X_A + V|V]$$

لماهر

$$[s+(s+f)+]\frac{v}{v}=vvs.$$

$$[SY + SY + f]Y = YY f A$$

يمكن إعتبار محموم السبعة حدود الأولى ٧٧ ومجموع الأربعة عشر حلبا الأولى ٧٠١ لكن يكون الحد الأول واحدًا في الحالتين ودوجد هي عبي ونحن العادلتين منفس الطريقة السابقة.

(۱+ ω) وذا کان مجموع ω حدًا من حدود متناسعة حسابية يعطى بالقانون هي = ω فأوجد المتتابعة وحدها الثاني عشر.

ألحل

$$Y = \{0, +1\}$$
 $Y = \{1+1\}$ $Y = \{1+1\}$ $Y = \{1+1\}$ $Y = \{1+1\}$

متتابعة حسابية فيها حدها الرابع بنقص عن العدد ٤٢ بمقدار حدها الثالي وحاصل

ضرب حديها الثالث والخامس يساوى ٢١٥ أوجد

- 🚺 المتنابعة ثم أوجد مجموع العشرين حدًا الأولى.
- 😙 عدد الحدود اللازم أخذها من هذه المتنابعة ابتداء من حدها الأول ليكون المجموع مساويًا المنقر.

الحل

$$\begin{aligned} & \text{EY} = \frac{1}{2} \mathcal{E} + \frac{1}{7} \mathcal{E} \wedge \mathcal{E} \\ & \text{EY} = 5 \mathcal{E} + \frac{1}{7} \mathcal{E} \wedge \mathcal{E} \end{aligned}$$

$$\P^* A = \left(3 + 7 + 7 \right) \left(71\right) A$$

10 m 5 Y + Y1 ...

(.... (Y) (Y) (YV) Replicable

$$Y_{1}=\left[\left(\Upsilon-\right)\times 14+7V\times Y\right]\frac{Y_{1}}{T}=_{\gamma_{1}}\Delta$$

$$= [T - x(1 - 0) + TY \times Y] \frac{C}{Y}$$

ەثالىن.

متتابعة حسابية مكونة من 10 حد) وحدها الأوسط = ١٨) وأنتسبة بين مجموع الحدود السابقة تهدا الحد إلى مجموع الحدود التالية له هي ١٣٠ أوجد هذه المتتابعة.

الحل

مرتيب الحد الأوسط =
$$\frac{10+1}{7}$$
 من الحد الأوسط هو Δ_{Λ}

$$\frac{\partial}{\partial T} = \frac{3 T + \frac{1}{2} T}{3 T + \left[3 \Lambda + \frac{1}{2}\right] T} \therefore \qquad \frac{\partial}{\partial T} = \frac{\left[3 \left(1 - U\right) + \frac{1}{2} T\right] \frac{U}{T}}{\left[3 \left(1 - U\right) + \frac{1}{2} T\right] \frac{U}{T}} \therefore$$

$$\frac{6}{W} = \frac{3T+1}{5T+4A+1} \therefore$$

Lanceman L L Lanceman L

الحنود التالية للحد النامن تيدأب ع

$$\frac{a}{W} = \frac{37 + \beta Y}{37 + [3A + \beta]Y}$$

$$\frac{a}{17} = \frac{377 + \frac{1}{2}}{311 + \frac{1}{2}} \therefore$$

فالراميات

وداً موظف حياته العملية براتب سنوى قدره ٣٠٠٠ جبيهًا وأخذ ينقاضى علاوة ثابته قدره ١٠٠٠ جبيهًا وأخذ ينقاضى علاوة ثابته قدره ١٠٠٠ جبيه سنويًا ثم أوجد مجموع البالغ الني تقاضاها خلال تلك المترة.

الحال

$$\frac{1}{1} (1 - C) = \frac{1}{1} (1$$

$$\left[\mathcal{F} \left(1 - U \right) + \left[Y \right] \frac{U}{Y} = _{U} + _{L}^{*} ;$$

$$\mathbf{DDD}_{i,i} = \left[f_{i,i} \times f_{i}^{i} + f_{i+1} \times f_{i}^{i} \right] \frac{1}{10} = \frac{1}{10} \mathbf{DD}_{i,i}$$

المام

فالرياضان

🚺 أختر الإجابة الصحيحة من بين الإجابات المعطاه ،

[(J+1) or d (J+1) + d (J+1) or d (J-1) +

🕜 🕍 مجموع ن حدًا الأولى من منتابعة حسابية هدها الأول إ وأساسها و هو

\$ [(s(1-0)+|1] 0 d [s(1-0)+|1] \frac{1}{2}]

[[5(1-0)+]] 4 [5(1-0)+]7]07

😭 🛍 مجموع أول ١٠ أعداد روجية في مجموعة الأعداد الطبيعية يساري

[to d the d to d to]

[to d th d th d a.]

مجموع التسعة حدود الأولى من متتابعة حسابية حدها الأول ٢ وحدها الاخير ١٨

[4. d 4. d A. d 60]

------= (1+@Y) <u>(1</u>

[a. d. to d. To d. To]

🤍 🕮 مجموع الأعداد الطبيعية الفردية التي هي أكبر من، ؛ وأقل من ، ٣ تساوي

[TH & TH & TH & m]

﴿ ﷺ مجموع الأعداد الطبيعية التي تقبل القسمة على ٣ ومحصورة بين ٢٠٠٠.

[YM & YV & AT & TET]

لتعاوى

🖬 أختر ، لإجابة الصحيحة من بين الإجابات المعطاه ،

(d yo d yo d yo)

(احداد المعداد الحسانية ٣ + ٧ + ١١ + + ٣٥ بإستخدام رمر الجموع كالأتى:

مجموع حدوج المتتابعة الحسابية (-۱۲) - ۸) - ۱۲) يعطى عددًا ---- ---

[منيخاموجيًا إن صحيحًا ساليًا إن صغر إن غير حقيقى]

﴿ مجموع السنة أسيود الأولى مِن المتنابعة الحسانية (٢٤ ١ ١ ١ ٨ ٤ ١٠٠٠ - ٢٤) يساوى

[منفر أي ٢٤ أي ١٦ [4٨]

[١١٠] (--- مجموع العشرة حدور الأولى من المتنابعة الحسابية (٢ ؛ ٢ ٥ ٤ ٤ ٠٠٠)

(١١٠٧) (٨٠٤ مجموع حدود التنابقة الحسابية (٢١٥١٨ ١٠٠٠٠)

(١٧٧١) اوجد مجموع المتسلسلة ٩ + ١٢ + ١٠٠ + ١٠٠٠)

[1.1.] ٢ + ١٠ ٦ = حموع ثلاثون حدًا الأولى من المتتلوم على حيث عن ٢ - ٢ - ٢ - ٢ الماري

العشرين حدًا الأولى منها على = ٢٦ على = ٢٦ أوجد المتعامدة ثم أوجد مجموع العشرين حدًا الأولى منها

العشرين حدًا الأولى منها ع + ع = ١١ ع ع الأوجد المتأبوة ثيرة وجد مجموع العشرين حدًا الأولى منها . (٢) عن العرب المدرية الأولى منها

ابتداء من الحدود التي يجد أخذها من المتنابعة الحسابية (٢, ٣ و ه و) ابتداء من المتنابعة الحدود مداويًا وولا الأول ليكون مجموع هذه الحدود مساويًا وولا الأول ليكون مجموع هذه الحدود مساويًا وولا المتنابعة المتنابعة

رُزِينًا مسائل المستوى الثاني

🚹 في المتنابعة الحسابية (١٣٤٩) ١٥٤) أوجد:

- المجموع هاحدًا الأولى مثها.
- ﴿ مجموع حدود المتنابعة ابتداء من الحد الخامس إلي الحد لخامس عشر
- (٣) عدد الحدود التي مجموعها يساوى ٩٥٠ ابتداء من الحد الأول. [١٥٠١،٢٩٦١]

- المن أوجد عدد الحدود اللازم أخذها من المتتابعة (٢٧ ، ٢١ ، ٢١ ، ٢١٠ ، ١٠٠٠) ابتداعًا من الحر الأول ليتلاشى الجموع.
- ابتداز عدد من الحدود يمكن أخده من المتابعة (٨٩ ١ ٨١ ٤ ٨٩ ٤ ٠٠٠٠) ابتداز من الحد الأول ليكون الجموع سائنا
- ابتداز اكبر عدد من الحدود يمكن أخذه من المتنابعة (٢٥ ، ٢١ ، ٢١ ، ١١٠ ، ١١٠) ابتداز الحد الأول ليكون الجموع موجبًا .
- الم مجموع جميع الحدود الموجبة من المتنابعة الحسابية (٢٥) ٥,٧٢ ، ٢٧٠ ...) [١٨]
- الله أوجد في من التنابعة الحسابية (٢١٤ ٢٥)) ثم أوجد كم حدًا يلزم أخدما من حدود هده المتابعة الحسابية (١٩٥ عموع ١٩٥ عموع ١٩٥٠ عموم حداً علام المتابعة المتا
 - 🔃 🖼 هي اعتتابمة على عروم ۽ (٣٧) ۽ ١٠٠) أوجد :
 - () رتبة وقيمة أول حد ساب فيها.
 - T عدد الحدود التي تجعل المعنوع كير من الصنفر.
 - 🔃 🗃 فى الثنتابعة الحسابية (م٢ ۽ ٢٧ / ٢٧)) أوجد :
 - () اگبر مجموع للمتتابعة.
 - ٣ عدد الحدود التي مجموعها = ١٧٠ ابتدام من الحد الأول افسر وجود جولين،

Batteutt-w.[]

- المنابعة حسابية حدها التانى = ١٧ ومجماع العشرة حدود الأولى منها ١٧٥ ومجماع العشرة حدود الأولى منها ١٧٥ المنابعة
- الله متتابعة حسابية مجموع v حدًا الأولى منها v وحدها الأول v واساسها v أوجد عدد حدودها.
- الأول يساوى ١٦٠ ومجمل الأول يساوى ١٢ وحدها الأخير يساوى ٢٦٠ ومجمل الأخير يساوى ٢٦٠ ومجمل الأخير يساوى ١٤٠٠ ومجمل التنابعة.
 - 🚹 🚉 أوجد التتابعة الحسابية التي شيها :
 - 10 3,= TT 3 3,= 14 3 4, = 010
 - *A = = 6 90-= 02 6 14= 2 1

[Garanterates)]

- الله متتابعة حسامية حدها الثبتى يساوى ١٢ وحدها قبل الأخير يساوى ١٨ ومجموع حدودها يساوى ١٥٠ أوجد عدد حدودها.
- الله (3_0) متتابعة حساسة فيها $3_0 3_0 = 3$ ومجموع الحدود الأربعة الأولى منها يساوى صفرًا أوجد التتابعة درة الحدود التي يجب أخدها من هذه المتابعة درة ا من حده الأول ليكون مجموعها ، 77
- الثالث مجموع العشرين حدًا الأولى من متنابعة حسابية يساوى ٨٦٠ ومجموع حديها الثالث والرابع يزيد م حدها السنادس بمقدار ه أوجد المتنابعة. [(١٣٤٩٠٥ --)]
- المتنابعة حسابية ملياقيسة مجموع حديها الرابع والخامس = ١٧ وحاصل ضربهما = ١٤ وحاصل ضربهما = ١٤ أوجد المتنابعة ومجموع الاجنى عشر حدًا الأولى منها. [(١١٠١/١١٠١ ١٠٤ ١٠٠ ١٠٠ ١٠٠ الأولى منها.
- السانس مجمرع الحدين النائث والمقامس منتربعة حسابية تزايدية يساوى ٢٤ ومربع حدها السانس يساوى ٢٤ أوجد المتناسعة فيم أوجد مجموع المشرين حدًا الأولى منها. [(٢٠٠٠ ١٩٠٠ ١٩٠٠)
- ا خدها من حدود هذه المتنابعة ابتداء من حدها الأولى يكُون مجموعها أكبر ما يمكن أوجد هذا المجموعة أكبر ما يمكن وأوجد هذا المجموع،
- المتتابعة حسابية أساسها و ومجموع الخمسة حدود الأولى منها يطاوى منها أوجد المتتابعة عم أوجد المتتابعة مم أوجد رتبة أول حد تزيد قيمته عن ١٢٧ في هذه المتتابعة.
- التنابعة الحسابية (١٨) ١٥ (١٩) ١٠) أوجد الحداثدى نبدأ به ليكون مجموع عشرة حدود منها مساويًا (-٧٥)

- عدد الحدود الثائرم أخدها من المتنابعة ابتداء من الحد الأول حتى يكون الجموع مساويًا ١٩٤٠ (١٩٠٠)

|- t

1/2

آ إذا كان عن عو مجموع ب حدً الأول من المتنابعة الحسابية (ع ن) وكان هم - هم = + 19 فأوجد عم عمر

الحسابي تحديها الثالث والساس يساوي ١٦ أوجد حدما الأول وأساسها ثم أوجد علم حدما الأول وأساسها ثم أوجد علم حدما الأول وأساسها ثم أوجد علم حدًا يمكن أخذها من المثنابعة ابتداء من حدما الأول لبنلاشي الجموع [7] -115

الأخير كنسبة أو فها عدد الأوساط وما مجموع التتابعة . [18] الوسط السابع إلى الوسط الأخير كنسبة المسابع الله المسابق الأحير كنسبة المسابق المسا

متتابعة حسابية مجموع الحدود الثانى والرابع والخامس منها يساوى ١٨ ومجموع الثلاثة عشر حدًا الأولى منها يساوى ١٦ أوجد أول حد سالب في هذه النتابعة ثم أوجد أول حد سالب في هذه النتابعة ثم أوجد أول حد من حدود هذه التتابعة بجعل مجموعها التداء من الحد الأول سالبًا. [عدائيا

الموردة أعداد تكون مثنائمة حسابية مجموعها ٢٥ وإذا طرح من الحد الأوسط ٢ كونت مقلوباتها عندلذ متنابعة حسابية فها مي هذه الأعداد ٢

است أحدى الشركات عمل صيانة شاملة الأحد مبانيها وحدت موعدًا الاستلام البنى وكان من بين شروط التعاقد أنه في حالة التأخير عن الموعد أن يدهع السلول ١٠٠٠ جنبه غن كل يوم ثال له فإذا تأخر القاول عن تسنيم هذه غرامة عن اليوم الأول وتزاد ١٠٠٠ جنبه عن كل يوم ثال له فإذا تأخر القاول عن تسنيم هذه الأعمال خمسة أيام فكتا يكون إجمالي البلغ المستحق لتسديد غرامة التاخير ؟ [١٠٠٠]

🛗 🛮 مسائل تقبس مستوبات عليا في التفكير

	المعطاة	e data III		الصجيحة	الاجابة	T & 1
İ	OUNTER	Christal	عرا بغرا		dicta.	,

				بعطاه د	أختر الإجابة الصحيحة من بين الإحابات الم
•	44014014+	ساوی	(404)	4660	🕥 محموع حدود المتنابعة الحسادية (٣٩) سر
[3	444	d Ye	A d	13-A - 6	Y-1%]
		47	ساوي –،	e(∪1-1)?	😙 إذا كان مجموع ب حدًا من حدود المتنابعة
[4	· ch	14	d s	4 6]	············ = ••••••••••••••••••••••••
		OY-	"บ=	بالعلاقة هـ	🕆 متنابعة مجموع ر، حدًا الأولى منها يعطى
[٧	d,	4-6	44	(10]	فإن حدما الخامس =
(1	+ O Y)	υ= _U	غائول ھ	ة يتعين من الا	 إذا كان مجموع ن حدًا من منتابعة حسابيـ
					فإن حدها المام ع 😅 =

0-5 d t-0 d 1-01 d 01-11

إلىكل حدمن حدود هنما التتابعة أصبح الحدالثالث في التتابعة الجديدة ح = (ح) الفون حدها الأول = المسالة ول عندها الأول = المسالة ول عندها الأول = المسالة ول عندها المسالة ولمسالة ول عندها المسالة ولم المسالة ول عندها المسالة ولم المسالة و

[2 4 0 4 5 4 7]

 إذا كان عي هو مجموع من الأوساط الحسابية أدخلت بين العددين إن بن عي عي هو مجموع ب من الأوساط الحسابية أدخلت دين ع ي ب

﴿ منتابعة حسابية (٢ ك + ٢٤١ ك + ٣ ٤ ٢ ك + هـ) ...) وكان هي الأولى ⇔ ن ٢ ﴿ هَان ره 😑 مسسس

﴿ إِذَا كَانِتَ النَّسِيةَ بِينَ مَجِمُوعِ حَدُودِ عَدَدُهَا فِ مِنْ مِنْتَابِمِتَينَ حَسَابِيتِينَ كَنْسَبِةَ

الأولى عن الأولى (٢ ل + 4) فإن عن الثانية (٢ ل + 4) فإن عن الثانية

[TO d TT d O d V d V

- () متنابعة حساسية عدد حدوده ٣ ل حدًا ومجموع حدودها = هـ فإذا كال مجموع لل حد الأخيرة ع ل حد الأخيرة ع فإن هـ = ساله عد الأخيرة ع فإن هـ = ساله عن المحموع لل ٣٠ ل المال المحموع لله حد الأخيرة ع فإن هـ = ساله عن المحمود الم
- الا احداد مجموع ب حدًا الأولى من مسابعة حسابية يتناسب مع ب الأولى - ﴿ متنابعة حسائية فيها عن ابتداء من حدها الأولى = ٢ ٠٠ ع عن ابتداء من حدير الأول = ١٠٠٠ ١٠٠٠
 الأول = ١٠٠٠ فإن عن إرابتداء من حدها الأول = ١٠٠٠ ١٠٠٠

[UA- of UB of Uh of Uh-]

 $_{\rm min}$ متتابمة حسابية فيها $2_{\rm A} = 0$ (مده المدود للمتتابعة) و من $_{\rm O} = 0$ فإن $_{\rm O} = 0$

[10 d 16 d 17 d 11]

1

- فع حدًا بلزم أخده (بتداء من الحد الأول من المتتابعة (ع) حيث عن ٢٠٠٠ بعد و كان ٢٠٠٠ من المعدود إلى مجموع دافي الحدود كنسبة تكون النسبة مين مجموع تثلث الأول من هده الحدود إلى مجموع دافي الحدود كنسبة المدود (د ١٠٠٠)
- الله كتام حدًا يلزم أخده ابتداء من الحد الأول للمتتامعة (عن) = (ع ن + ۲) حتى يكون مجموع الثلث الأخير منها يساوى أربعة أمثال محموع الثلث الأول ٢
- البت أن (لر سن سن $^{-1}$) متنابعة حسابية حيث س عدد صحيح موجب وإذا كانت س = 17) من حدد مجموع الحدود التسعة الأولى من هده المتنابعة بنون إستخدام الألة الحاسبة.
- السنة وفي نهاية المام حسب له البنك الموالد فكانت ١١٧ جنبهًا فكم المبلغ الذي كان يودعه الرجل شهريًا .

🔃 اوجد مجموع الـ ٢٥ حدًا الأولى من المتتابعة (ع ي) حيث :

عبدماتكون بعندُا فرديًّا عبد عبدُا فرديًّا عبد عبدًا فرديًّا امتدما تكون ب عدمًا زوجيًا

[ANN]

[1] [1] حكان الحد النوني التنابعة بعطي بالقانون!

عسما تكورزان عبدًا روجيًا

أوجد عند الحدود التي يمكن أخذها من هده المتنادعة التداء من حدها الأول بحيث يكون مجموعها مساويًا ٢٧٣ ثم عين مجموع كل من الحدود الفردية الرتبة والحدود الزوجية الرتبة علمًا بأن عدد اتحدود زوجي 1026 115 (14]

🖪 (ذا کونت (۱ + ب ۵ ه ب – ۱ ۲ و ۲ و ۸ س ۵) متنابعة حساسة وکونت (۱ و ب ۲ و ۲ ب – ۲ و) متتابعة حسائبة أيضا فأوجد كالأمن المتنابعتين ثم أوجد قيمة ب التي تجعل النسبة بين مجموع ب من حدود المتنابعة الأولى إلى مجموع ب من حدود المتنادمة الثانية كنسبة -روز ۲۱ 1061 ... 646 4 . 4534 (.... 6 M 6 3164)

🐼 الحد الثامل في منتابعة حسابية يساوي عدد حدودها فإذا علم أن مجموع حدود هدد الثنتابعة يساوي مربع عدد حدودها أؤثاد عدد حدود هذه الثنايعة وحدها الأوسط. [10] وال

💯 متتابعة حسابية عدد هدودها زوجي فإذا كان مجموع حدودها المردية الرتبة يساوي ٢٤ ومجموع حدودها الزوجية الرتبة بساوي ٢٠ وحدها الأخير يزيد عن حدها الاول بمقدارهن أوجد مند حنود هندا التتاسة. [4]

🖪 منتابعة حساسة حدها السادس والثلاثون يساوي صفرًا) إذا كان مجموع ب حدًا الأولى منها يساوى ضعف محموع الخمسة حدود الأولى منها فأوجدان ومن ثم أستنتج مجموع وع حدًا من هذه المتنابعة الحسابية ابتداء من حدها الثاني عشر. [[١٠٠١] ، سمر]

التظل في المتابعة الحسابية ان كل حد يزيد عن الحد السابق له بعقدار ثابت مثل المتنابعة (٢٠١) ١٠٠٠) وإذا طرحنا أن حد - الحد السابق له يكون الباتج مقدار ثاب هو أساس المتنابعة (٢٠١) ١٠٠٠) وإذا طرحنا أن حد - الحد السابق له يكون الباتج مقدار ثاب هو أساس المتنابعة ووالآن سوف ندرس نوع آخر من المتنابعات مثل المتنابعة (اى في مقدار ثابت) وأنه وللأحظ فيها أن كل حد ينتج من دعل ضرب الحد السابق له في ٢ (أى في مقدار ثابت) وأنه عند قسمة أى حد عنى الحد السابق له يكون الناتج مقدار ثابت في الحد السابق المتابعة أن

....
$$| \mathbf{y} = \frac{\mathbf{g}}{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{z}}{\mathbf{y}} \in \mathbf{y} = \frac{\mathbf{y}}{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{z}}{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{z}}{\mathbf{y}}$$

وفى هذه الحالة تسمى هذه المتنابعة بالمتنابعة الهندسية ويمكن تعريفه، خما يلق

-رفتيدا

تسمى المتنابعة (β_0) حيث $\beta_0 \neq 0$ متنابعة مندسية (دا كان: $\frac{\beta_0+1}{\beta_0}=0$ مقدار ثابت لكل $\epsilon_0 = 0$. $\frac{\beta_0}{\delta_0}$

$$\frac{1+\sqrt{L}}{\sqrt{L}} - \frac{\gamma L}{\gamma L} = \frac{\gamma L}{\sqrt{L}} = \sqrt{1 \text{ the }}$$

اى أن : ﴿ ﴿ أَسَاسَ الْمُلْتَابِعَةُ الْمُلْدِسِيةِ﴾ = ﴿ الحد السَّابِقَ لَهُ مِبَاشَرَةَ أى حدفى المتنابعة

أَصُلَكِ الأربعة حدود الأولى للمتتابعة (ح ن) فيما يأتي ثم بين أيهما يكون متتابعة مندسية وأوجد أساسهاج

$$\mathbf{O}(S_{u}) = (\forall x \forall u)$$

$$\mathbf{O}(S_{u}) = (\forall x \forall u)$$

$$(1 < 0 + \frac{1}{5} = \sqrt{5} = \sqrt{5} = \sqrt{5} + \sqrt{$$

الحلل

رِّ الحدورد الأربعة الأولى عن ٢ ، ١٧ ، ٢٤ ٨ ٨٤ والعرفة ما إذا كانت المتنابعة هندسية أم لا نوجد النسبة موا فإذا كانت دمقدار فابت تكون المتنابعة هندسية وإذا كانت ومقد أرمتغير يمتمد على به فإن المتنابعة ليستهندسية

$$\gamma = \frac{1+\sigma \gamma_{X} \psi}{2\sigma^{2}} = \gamma = \frac{1+\sigma \gamma_{X} \psi}{2\sigma^{2}} = \frac{1+\sigma^{2}}{2\sigma^{2}}$$

٢٠ د ١٥٠ ١ من الطّريقة السابقة نجد الحدود الأربعة الأولى هي ٢٠ ٤ ٥ ١ ١ ٨٠ ٤ ١ ٨٠

ن التتابعة ليست هندسية

$$\frac{4}{3} = \sqrt{1377}$$
 (Arrayan de sur proposition of the surface of

man a market til a completion @

التمثيل متتابعة هندسية مثل (٣٤٤٤٨)) فإننا نالحظ أن .

{(۲۵۳) ۲ (۲۵۳) ۲ (۲۵۳) ۲ ...} ونالحظ من الشكل البياني أن در

حدود المتنابعة مشاقصة حيث (> ، ٥ ، < > ١

التمثيل لبيانى للمتناهة الهندسية يتبع الدالة الأسية وليس دالة من الدرجة الأول كما في المتنابعة الحسابية

المتنابعة الهندسية بمكل أن تكون تزايدية أو نناقصية أو متناوبة الإشارة تبعًا للحالات الاتيد

فإدالتنابعة تزايعية

🚺 إذا كان م موجب ع م > ١

فمثلاً التنابعة(١٠١٠عهـ١٠٠٠)

حدمًا الأول إن (عدد موجب) وأساسها ﴿ = ٢ (عدد موجب) لذلك فإن المتنابعة تزايدية

اذا كان موجب، < م ح ١ فإن التنابعة للرافصية من المنابعة الرافصية من المنابعة الرافصية الرافصية الرافصية المنابعة الرافصية الرافصية المنابعة المنابعة الرافصية المنابعة الرافصية المنابعة الرافصية المنابعة المنابعة المنابعة المنابعة المنابعة الرافصية المنابعة المناب

فمثلاً التتابية (١٠٠٠ أو الم الم الم الم

حدها الأول؛ = ؛ (عدد موجب) وأساسها ي = ي افسر موجب) لدلك فإن النتابمة تنالسيه

- 🕝 (ذا گان) موجب 🦫 معدسالب
- **ىلى التتابعة** « تياوية الإشارة فإن المتتابعة تيافضية
- ولا کان اِ سائنیة ع ی ۱
- غ**ان التتابعة** رزايدية
- 🚺 إذا كان إ سائيـة ع ، < س< ١
- فإن المتنابعة مساوية الإشارة
- 🚮 إذا كان ع سالينة 💰 م عبدسالين

ماحظات هامة

- 🚺 أساس المُثنّابعة الهندسية لا يساوي سفر
- (اذا كان الأساس مساوي تلواحد الصحيح فإن التتابعة تكون دايتة مثل التتابعة (١٤٧٤٧٤٠ من التتابعة)

الكيم الكيم المالية المالية المنابعة ال

إذا كان الحد الأول في متنابعة هندسية هو ﴿ وَالأَسَاسِ مِ قَالِي مَ

Spet a Spety a Spety" a Spety"

اللفظ أن السن يقل بمقدار الوحدة عن رئية الحد (ترتيب الدد)

أى أنه الله الله الله الله المحادث وهكذا وبالإستمرار على هذا النمط تجد أن

Aller III

إذا كانت المتتابعة الهندسية منتهية وعند حدودها = v فإنه برمز لحدها الأخير بالرمز ل حيث $v = v^{-1}$ وتكون العنورة العامة للمتتابعة الهندسية في هذه الحالة على العنورة $v = v^{-1}$ و $v = v^{-1}$ و

أي أن الحد النودي (العام) سمئتابعة المندسية مو ،

گن= ا ب ای ا ای ای ایکل ن و س - ۱

تيث ع_ن الحد الدوني (الحد العام)) ل الحد الأخير) † الحد الأول) ب عدد حدود التتابعة (رقية الحد) ، ب أساس التتابعة.

وَ لِمُسْتِحِدُ إِلَّهُ قِالْمُ الْمُسْتِمُ مِنْ الْمُسْتِمُ الْمُسْتِمُ الْمُسْتِمُ الْمُسْتِمُ الْمُسْتِمُ ا

الكتابة المتنابعة الهندسية التي شبها $\gamma = \alpha$ و مثأً بلبخ الآني ،

نكتب فيمة ﴿ (العدد ٥) ثم نضفط علامة 🕝 ثم نضفط على المفتاح 🔀 ونضع

قيمة ي (العدد ٧) ثم تضعط علامة 😑 فتعطى الحد الثاني للمتتابعة ويتكرار

الطبقط، على علامة 🖃 تعطى الحبود التالية وهكذا

_مثالی

بين ان الاتتابعة (۳۰ م – ۳ د ۲ د ۲۰ د ۳۰ متنابعة هندسية هم اوجد ، ځې ۽ ځې

$$\frac{3_{\gamma}}{3_{\gamma}} = \frac{\gamma}{\gamma r} = \frac{\gamma}{\gamma} \cdot \frac{3_{\gamma}}{3_{\gamma}} = \frac{\gamma}{\gamma} \cdot \frac{\gamma}{3 r} = \frac{\gamma}{\gamma} = \frac{\gamma}{\gamma} \cdot \frac{\gamma}{3 r} = \frac{\gamma}{\gamma} \cdot \frac{\gamma}{3 r} = \frac{\gamma}{\gamma} \cdot \frac{\gamma}{3 r$$

$$\Delta_{\mathbf{v}} = 1 \cdot \mathbf{v}^{\prime} = \gamma t \times \left(\frac{-t}{\gamma}\right)^{\Gamma} = \frac{\gamma t}{2\Gamma} = \frac{\gamma}{\Gamma t}$$

$$\Sigma_{i,\ell} = \frac{1}{2} \nabla^{\mu} = \frac{1}{2} \nabla^{\mu} = \frac{1}{2} \left(\frac{1}{2} \right)^{\mu} = \frac{1}{2} \frac{1}{2} \nabla^{\mu} = \frac{1}{2} \frac{1}{2} \nabla^{\mu} = \frac{1}{2$$

متالئ

أوجد المتنابعة الهندسية التي هدها الثاني ووحدها الرابع و

الحل

$$\frac{\xi_1}{\gamma_2} = \frac{\gamma_{\gamma_1}}{\gamma_2} \therefore$$

 $h=\varphi \mid \triangle$

 $\mathbf{f}_{i} = \nabla_{\mathbf{g}^{T}} \mathbf{f}_{i} \wedge \mathbf{f}_{i}$

0

إذا كان أس (س) فرديًا فإنبا دحمل

على اليمة واحدة للأساس (٧) وإنا كان أس (س) زوجيًا فإنت تحمل

على قيمتين للأساس (ي)

متتابعة عندسية حدها الثاني يزيد عن حدها الأول بمقدارج وحدها الثالث يزيد عن حدما الأول بمقدار به أوجد المتتابعة وأوجد رتبة الحد التي قيمته ١٩٢

الحل

$$\Psi = f - \varphi \uparrow \Delta$$

$$f(\eta_{i}) = (\eta_{i} - \eta_{i}) + f(\eta_{i})$$

$$\frac{4}{\pi} = \frac{(1-\sqrt{3})}{(1-\sqrt{3})} :$$

$$\frac{1}{4} = \frac{1}{1 \cdot \sqrt{1 - 1}} = \frac{4}{4}$$

$$T = 1 + \sqrt{1}$$

$$\frac{q}{T} = \frac{(1 + \sqrt{1})(1 - \sqrt{1})}{(1 - \sqrt{1})} \therefore$$

$$T=(1-7)$$
 المادلة (): $(1-7)$

لإيحاد رئبة الحد الذي قيمته ١٩٣ نموض في لحد العام

مثالی

متتعمة هندسية حدودها موجبة فإنا كان حدها النالث يزيد عل حدها الخامس بمقدار، y ومجموع الحدود الثالث والرابع والخامس yx أوجد المتتابعة

1

الحلل

$$Y_i = \left(\frac{1}{2}\sqrt{-\frac{1}{2}}\right)\frac{1}{2}\sqrt{\frac{1}{2}} f_{ij}^{-1}$$

بقسمة 🕤 على 🕦 :

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} \left(\frac{1}{1 + \sqrt{1 $

$$\frac{\gamma_1}{\gamma_2} = \frac{\left(\frac{\gamma_2}{\gamma_1} + \gamma_2 + 1\right)^{\frac{1}{2}} \gamma_1}{\left(\frac{\gamma_2}{\gamma_2} + \gamma_2 + 1\right)^{\frac{1}{2}} \gamma_1}$$

$$\mathbb{Z} a + a \cdot \nabla + a \cdot \nabla^T = PI - PI \cdot \nabla^T$$

$$c = (V + \sqrt{A})(Y + \sqrt{A}) \wedge$$

$$\gamma_0 = \left(\frac{g}{q} + 1\right) \times \frac{g}{q} \times \beta \stackrel{\wedge}{\to}$$

$$\boxed{\frac{1}{1}} = \sqrt{1} \dots$$

 $\frac{11}{6} = \frac{1}{1} \times 1 \times 1$

 $v = Y_1 - \sqrt{q} + \frac{Y}{\sqrt{q}} Y_2 + \frac{1}{\sqrt{q}}$

ن المتتابعة هي (١٨١عه ٢٣٤٤ -)

مثألي

إنَّا كَانْتُ (٢٤ ع س) ص ٢ ك ١٠٠٠) متنابعة متعسمة فأوجد قيمة ڪل من سُ ۽ س واوجد عي

الجبل

تعرض أن الأساس = س

$$\frac{\gamma_{\frac{1}{4}}}{\gamma_{\frac{1}{4}}} = \gamma_{\sqrt{2}} \gtrsim$$

$$\sqrt{\frac{1}{4}} = \sqrt{...}$$

$$S_{V} = 1 \sqrt{1} = 37 \times \left(\frac{1}{7}\right)^{2} = \frac{7}{4}$$

17 = 1 × 12 = ∪- ∴ $T_i = \frac{T_i}{4} \times T_i = U^{d_i} \wedge$

 $\frac{1}{A} = \frac{1}{4} \sqrt{A}$

إذا كان الحد الأخير من منتابعة هندسية موجبة = ٢٥٦ ومجموع الثلاث حدود الأخيرة منها = 14% فأوجد أساسها ٤ وإذا كان مجموع الثلاث حدود الأولى منها = 14 فأوجد الانتتابية

الحل

: مجموع الثلاث حدود الأخيرة = 707 +
$$\frac{707}{4}$$
 + 707 = 712

$$\therefore \frac{r \circ r}{\sqrt{r}} \left(v_{i}^{r} + v_{i} + r \right) = A43$$

$$\therefore \frac{1}{\sqrt{2}} \left(\sqrt{2} + \sqrt{2} + \ell \right) = V$$

$$\mathbf{v} = \mathbf{t} - \mathbf{y} \cdot \mathbf{t} - \mathbf{T} \mathbf{y} \cdot \mathbf{Y} \mathbf{A}$$

$$\mathbf{v} \cdot \mathbf{v} = \mathbf{t} + \mathbf{y} \cdot \mathbf{t} + \mathbf{T} \mathbf{y} \cdot \mathbf{t} \mathbf{A}$$

$$\boldsymbol{x} = \left(\boldsymbol{Y} - \boldsymbol{y}^{*} \right) \left(\boldsymbol{Y} + \boldsymbol{y}^{*} \boldsymbol{Y} \right) \boldsymbol{z}^{*},$$

$$M = \{ V \triangle$$

$$M = \{V,$$

 $16 = ({}^{Y}x + y + 1)$?

 $(a_{\text{conf}}) = \frac{Y-y}{Y} = \frac{Y-y}{Y}$

Y= | ...

VAL.	المامر المامر
	في الرياضيات
" H M C HANGE COLUMN	3
المراجع مسأ وكثم لفسك المراجع مسأ وكثم لفسك	
احتبار براکمی کی ا	
الأسئلة الأثية ،	
نسمی اغتراعهٔ ابتی قاعدتها $S_0 = 2 \cup 1$ مأنها مثناعهٔ	
[دزایدیة از تنظمیة از تدبدبیة از تابتد]	
المنتسلسلة الحسانية ٢ + ٧ + ١١ + ١٠٠٠ + ١٥ بياستخدام رمز المجموع على	
المتورة المتور	
[(t-v+) \$\frac{1}{2} d (t-v+) \$\frac{1}{2} d (t-v+) \$\frac{1}{2} (t-v+) \$\frac{1}{2} \]	
﴿ إِذَا كَانِ ؟ ﴿ + ؟ ؟ ؟ ﴿ ~ ؟ ؟ ؟ ﴿ ثَالَاتُ حِدُودَ مَتَنَائِيةٌ مِنْ مَتَنَابِعَةٌ حِسَابِيةٌ ﴿	
[
() مجموع التسلسلة الحسابية ي (٢٠٠٠) =	
[A. d] V1 d V7 d 11]	
 في التسلسلة الحسابية (۲ + ۲ + ۹ + ۹۲ +) أوجد ، 	
(1) مجموع ها حدًا الأولى منها	
(ب) مجموع حدود التسلسلة ابتداء من الحد الحامس إلى الخامس عشر	
Managegerangung - habibbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	
Helimpertebbben -numbehebehebeheten pengapannak pelangapanan belanga inggapannan benada peripanan wannanbaneb	
(a) أوجد عدد حدود المتتابعة الحسابية التي حدها الأول يساوى ب وحدها الأخير	
يساوى ٢٩ ومجموع به حدا الأولى منها يساوى ٢٩٠	

** Birton stand Bronn stand - Stander company of the Stander beath bank of the Standard of the	
	1

رُزِيًا مسائل المستوى الأول

الامدما) ودرك من المتاسعة الهندسية (٣٤٣)) أوجد كل من الحراب الهندسية (٣٨٠٩١)

🕞 😭 بين أن المتناسة (٢٠ ٤٤ ٨ ٢ ١٤ ١٠٠٠) متنابعة هندسية وأوجد گي

(٣) متنابعة هندسية حدها الأول = غ وأساسها = ٢

(magnamagan)

أكتب الخمسة حدود الأولى متهاء

عندسید مندسید اساسی = ۲ وحدها التاسع = ۲۵۲.

[SECTO (-- GECTO)]

أوجد التتابعة وأوجد عي ع عي

 $\left[\frac{1}{2} \right]$ في المتنابعة (١٤٤٤) ١٩٢٤ و به جهر الوجد و به الوجد و به المعد النوتي $\left[\frac{1}{4} \right]$ وجد و به المعد النوتي المعد النوتي $\left[\frac{1}{4} \right]$

[17] (أوجد عدد حدود المتتابعة (٢٥٠ م ١٩٨) ١٠٠٠) (١٢٠ م ١٩٨ عدد عدود المتتابعة (٢٥٠ م ١٩٨ ع ١٩٠٠ عدد عدود المتتابعة (

﴿ فِينَا مِنْتَابِعَةَ هَنِدُسِيةَ أَسَاسُهَا = أَنْ وَحَدَهَا الثَّالَثُ: ١٤ أُوجِدَ هَدِهِ الْتَتَابِعَةَ.

CHARLES DAYS

[151AF + A1]

﴿ هَي الْمُتَاسِمَةُ الْهِنْسِيةِ (١) ٩ (١٠) أُوجِد دَيْ عَلَيْ عَلَى

🖬 أختر الإجابة الصحيحة من يين الإجابات المعطاه ،

[אור 6 דוד 6 זור 6 אור]

👚 الحد اسابع من المتنابعة الهندسية (٢٥ ٤ ٢٣٤ م...) هو

[1- d + d +- d 1]

👻 📆 الحد الثولى للمتتابعة الهندسية (٣٠ –٢٠) ١٠٠٠) هو -----------

[1-0(T)T d 0(Y)T d 1-0(Y-)T d 0(Y-)T]

﴿ الحد السادس من التتابعة الهندسية (٢٠١٠ ، ١٩٢٥ ، ١٠٠٠) هو

[44 d to d en d ve]

[4 4 + 4 4 4 1]

😙 تمثل حدود السابعة الهندسية محمومة من النقط النفصلة التي تقع على

[استقامة واحدة في منحنى دالة تربيعية في منحنى دالة أسية في منحنى دالة تكميية

أي تسمى المتتابعة (عن) هندسية إذا كان يساوى مقدار ثابت (لكل به ومحمم منها عليه وعمم منها إلى المواحم منها المنابعة (عليه
[1+02 d 02-1+02 d 1+02-02 d 1+02]

(کن)=(۲ ت ۲ - ۱) تکل ت ک ای (گی)=(لو (۲×۲ ۲)) تکل ت کا

﴿ تَكُونَ الْمُتَابِعَةَ الهِنْسِيةَ تَنَاقُصِيةَ [ذا كان أساسها م مسم وحدها الأول موجبًا

[=]-۱۱۰[﴾ ۱< إن حسفر أن ∈]۱۱۰[]

رُالِيًّا مسائل المستوى الثاني

الله المن المنتابعة (عن عنتابعة (عن عنتابعة منتابعة منتابعة منتابعة منتابعة وأكتب الأربعة جدود الأولى منها.

(Pathakes)

 آئیت آن المتتابعة التی حدها النونی یساوی و بر و و میتابعة مندسیدنم
 آوجید عدما السابع

المام

[9]

 \P وجد المتابعة الهندسية $\left(\frac{1}{X}, \frac{1}{2},

 $(+)_{q,l} = (-1)_{q,l} = (-1)$

[V] أوجد رئبة أول حد أصفر من الواحد الصحيح في المتنابعة (١٩٢٩ ٢٤٣٤ ١٠٠٠). (١٠٠٨).

 $[(-\alpha, \alpha, \alpha)] = A$ | $[(-\alpha, \alpha, \alpha)]$ | $[(-\alpha, \alpha, \alpha)] = A$ | $[(-\alpha, \alpha, \alpha)$

|(-17.7.77)| |(-17.7.77)| |(-17.7.77)| |(-17.7.77)| |(-17.7.77)|

الله المتنابعة مندسبة جميع حدودها موجبة وحدها الأول يساوى أربعة أمثال حدها الثالث ومجموع حديها الثاني والخامس – ٢٦ أوجد هذه المتنابعة. [(١١٠٣١٠١٠)]

الله المتنابعة عندسية حدها الأول أوحدها الأخير ٢٥ وعدد حدودها ٨ أوجد المتنابعة.

الله منتابعة هندسية حدها الرابع يساوى ١٢ ومجموع حديها النالث والخامس ٢٠ أوجد التنابعة. [(٢١٠١٠٠٠-) ، (﴿ ٢١٠١١٠٠- ﴿ ٢٠١٠٠- ﴿ ٢٠١٠٠- ﴿ ٢٠١٠٠- ﴿ ٢٠١٠٠- ﴿ ٢٠١٠٠- ﴿ ٢٠١٠٠- ﴿ ٢٠١٠٠- ﴿ ٢٠١٠

آلًا متنابعة هندسية مجموع حميها النائي والنالث يساوى ٢٠ ومجموع حدودها النلائة الأولى يساوى ٢٥ ومجموع حدودها النلائة الأولى يساوى ٢٥ يون أن هناك متنابعتين وأوجد هما. ((مبد مددمه ١٠٠٠)) (مبدمه مدد)

السائل و محموع الحدين الأول والثاني من متنابعة هندسية p و مجموع الحديث السائل والسابع منها يساوى p كأوجد المتنابعة.

الثانى يزيد عن حدها الثاني بمقدار ٢٦ وحدها الثاني بمقدار ٢٦ وحدها الثاني يزيد عن حدها الثاني يزيد عن حدها الثاني يزيد عن حدها الأول بمقدار ٨٤ أوجد المتناسة

 $\left[\left(\frac{1}{\sqrt{2}},0.10\right)\right] - \frac{1}{\sqrt{2}} \log_{2} \left(\frac{1}{\sqrt{2}},0.10\right) = \frac{1}{\sqrt{2}} \log_{2} \left(\frac{1}{\sqrt{2}},0.10\right)$

 $q_{N} = \sqrt{2} + \sqrt{2} + \sqrt{3} = \sqrt{3} + \sqrt{3} = \sqrt{3}$ آثاث آثاث ($\sqrt{3}$) متنابعة مندسية جميع مدودها موجيد فإذا بكان $\sqrt{3} = \sqrt{3}$ آثاث معتابعة فماوجد رتبة الحد الدى قدمته ۸۰

المتابعة مستبه فيها عي - ٨ عي ٤ عي الإدا السابعة المابعة المتابعة عبابعة المتابعة ا

الله منتابعة مندسية مدودها موجية فإذا كان المرق بين الجدين الثالث والحامس منها ولا منتابعة مندسية مدود الثالث والرابع والحامس ٧٦ فأوجد هده المتتابعة. (١٠٥٠،١٠٠٠)

الكاد المتنابعة هندسية حدودها موجبة فيها ع يزيد عن ع بمقدار ٢٩ م كر ينقص عن عن عرب بمقدار ٣ أودد المتنابعة.

الثلاثة حدود الأولى من متتابعة هندسية ٢٦ ومجموع التلاثة حدود العالية العالمة العالمة العالمة العالمة العالمة المتابعة.

🕜 (دا کونت (لے ۲۰ اے ۲۰ اے + ۱) منتابعة هندستة أوجد قيمة اے

اذا كانت الكمنات س - ٢٠ س + ٢٠ س + ٧ هي الحدود الثلاثة الأولى من منتابعة هندسية حدودها موجبة فأوجد س ثم أوجد الحدالسابع منها.

الله الموظف راتبه الشهرى ١٢٠٠ جنبه ويحصل على علاوة سبوية تابته بنسبة ٢٪ زيادة عن راتب السنة السامقة مباشرة فكم يكون راتبه بالجنبه في السنة السامسة. (١٨٥٠)

المنابعة هندان. و حاصل ضربها بساوى ١١ و حاصل ضربها بساوى ١١ و حاصل ضربها بساوى ١١ أوجد هده الأعداد.

MINISTAL

الله (۹۹) س ، ص ، خ ، ۲ ،) متنابعة هندسية جميع حدودها موجبة أوجد قيم س ، ص ، خ

AT O

- ي متنابعة هندسية النسبة بين محموع حديها الأول والثالث إلى محموع حديها الثانى والرابع = ٢٠١١ وحدها السابس = ٢٠١٠ أوجد الثنابعة وحدها التاسع. [(٢٠١٠] ٢٠١٤]
- الوسط الحسابي بين الحدين الثاني والرابع من متتابعة مندسية يساوي وو وحاصل صرب حدها الأول في حدها الخامس يساوي تسمة أمثال حدها الثالث أوجد المتتابعتين.

[C - CRETY CAND (IIII CRETTED)]

ثلاث أعداد تكون منتابعة هيدسية بحيث يكون حاصل ضربهم $= \frac{767}{36}$ $= \frac{767}{36}$ ومجموع مقلوباتها = 760 هي هذه الأعداد $= \frac{7}{3} \cdot \frac{7}{3} \cdot \frac{7}{3} \cdot \frac{7}{3} \cdot \frac{7}{3}$

رزيل مسائل تقيس مستويات عليا في النفكير

- $\{\frac{1}{4} = 5 + 1 \in 7 = 0 + 2 \text{ otherwise accompletely } \{1 + 2 = 1 + 1 + 2 = 1 \} \}$ $\left[\frac{1}{174} = 2 \times (-10711)\right]$ $\left[\frac{1}{174} = 2 \times (-10711)\right]$
- الله أعداد تكون منتابعة هندسية مجموعها ٢٨ ومجموع مريعاتها ٣٣٦ فما هي هده الأعداد، [١٩٨٤٤]
- ا وجد المتتابعة الهندسية التي أساسها ﴿ وفيها ي = ٢ ، ع م ال = ا ع الم ١٠٠٠)] ا
- المتنابعة (S_0) معرفة بحيث $S_{n+1} = \frac{1}{V} S_0$ فين دوعها ، وإذا كانت السبة بين مربع حدها الثاني ومجموع الحدين الثالث والخامس هي S_0 ه فأوجد المتنابعة. $\{(ner)_{i=1}^{N}, \dots, (ner)_{i=1}^{N}\}$
- الله متتابعتان هندسيتان الحد الأول في كل منهمة ٢٦ ومجموع الثلاثة حدود الأولى منها الله متابعتان هندسيتان المتابعتين. [(١٢١-١٢١١١١ --)]
- ایشا متنابعه هندسید. ایشا متنابعه هندسید.

💽 أختر الإجابة الصحيحة من بين الإجابات المعظم -

﴿ إِذَا كَانْتَ سَ ﴾ ، فإن أساس المتنابعة الهميسية ﴿ ﴾ ٤ من ٣ - ٧ ، ٧ مس ، ٢٠٠٠ }

﴿ فَي الْمُتَابِعَةَ الْهِنْسِيةَ (٢٥٦) ٢٨٤ ٢٦٤ ، ...) فإنْ رَبَّهَ أولَ حد أصغر من الواحل

🍘 في المتنابعة (صدية (٣) ٢ : ١٣ : ٢ . . .) اليمة أول حد تزيد اليمته عن ٢٠٠ يصاوي

[TAR & STA & AST & TEA]

۱۲۸ = ۱+ ۲ ۲ (۲ = ۲) گ (۲ الهداس كيسمده كمباتته (1)

[n d \ \ d \ \ \ \ \]

الإن حديما الأول ع سيسب.

[(()) e d () e d () e d () e d () e]

(*リャリ(*リャリ(*リャリ(*ナナ) - **リ・ナ*リ・ナ*リー・**|

[w d te d to d to]

فإن س دء سسب

علها أن الأوساط الحسابية هي الحدود الواقعة مين حديث متناليين في المتنابعة الحسابية وأيضًا الأوساط الهندسية هي الحدود الواقعة بين حديث متناليين هي المتابعة الهندسية ويمكن إيجاد الوسط الهندسي كما بالتعريف التبالي:

نتوس

(ذا كانت) ، ، ، هـ ثلاث حدود منتائية من متنابعة عندسيه فإنه يقال أن ب هي الوسط الهندسي بين الكميتين) ، هـ حيث $\frac{1}{2}$ هـ $\frac{1}{2}$

Elisa (Ball)

- لإبجاد أنوسط الهندسي تكميتين لابد وأن تكون الكميتين لهما نفس الإشارة) أما إذا
 كانت أحدى الكميتين موجبة والأخرى سالية فإنه لا يوجد لهما وسط هندسي حقيقي.
 - ن عدد الأوسامل = عدد حدود المنتابعة ٢ = ١٦ = ٢
 - ٥ عدد حدود المتتابعة = عدد الأوساط + ٣
- ن الوسط الذي ترتيبه (ع) من البداية هو إن عن فمثلاً الوسط الساس هو إن وهكدا ...

Chart

الوسطة تهند من لعدة كميات موجبة عددها به هو الجدر النوس الموجب تحاصل ضرب هذه الكميات جميدً أي أن الوسطة الهندسي لهده الكميات = "أحاصل سرب عدم الكميات

ـ مثال

أدخل ٣ أوساط هندستة يين ٣ ٤٨٤

الحال

ACTIVE.

إذا كان عدد الأوسامان

المسرية زوجيا فإرحثال مجموعة راحدة من الوسائل

(حل وحيد) ما إذا كان عدد الأرساط الطليبة طريبًا

فإن عناك مجموعتين من الأوساط (حلين) * عدد حدود الثنايمة ب + + + = 0

عدد الأوساعات ٢

sh=fort sh=gfor=th

Y = 12

Y±=√∴

- €A = ⁴√ ₹ ∴

والأوساط هي ٢٥,٢٢٤ ع٢.

M. J.

عسلما ي = ۲

.. الأوساط هي - ٢٦ ٢٦ ع - ٢٤

عنتماج يراح

.مثالج

عدنان وسطهما الحسابي ١٧ ووسطهما الهندسي مع أوجد المديان

الحل

تشرض أن؛ تعدين ﴿) مِـ

(i) -- Yt=-+fA

 $(\sqrt{-\frac{4}{\gamma}} + \frac{1}{\gamma}) = \frac{1}{\gamma} + \frac{4}{\gamma} + \frac{1}{\gamma}$

() - (t-=+)...

(T) =

الوسطة الهندسي = ± ﴿ [هـ. = ± هـ!

بالتعويص من 🕦 في 🕲 :

YYS = "| - | Y'S ...

470 = A | C

 $\mathsf{TY} = (\mathsf{f} - \mathsf{Y} \mathsf{f}) \upharpoonright_{\mathsf{f}}$

 $i = (Yo + f)(A + f) \triangle$

== *** + | T1 - * ∴

tem & temps

40 = 1 4 4 = 1 A

• المحدان هما و يادي

إذا أدخلت ه أوساط هندسية بين عددين وكان مجموع الوسطين الأول والثالث = ، ا ومجموع الوسطين الثاني والرابع = ٢٠ فيها هي هذه الأوساط ؟

الحل

يقرض أن الحد الأول | والأساس م

ن الوسط الأول
$$= 1$$
 ب و الشائي $= 1$ ب 7 و الشائث $= 1$ ب 7 و الرابع $= 1$ ب ا

يقسمة ﴿ عَلِي ﴿ وَ

$$\Psi = \varphi \therefore \qquad \Psi = \frac{\left(\frac{1}{\sqrt{1+1}}\right)\frac{1}{\sqrt{1+1}}}{\left(\frac{1}{\sqrt{1+1}}\right)\frac{1}{\sqrt{1+1}}} \therefore \qquad \frac{\Psi_1}{\Psi_2} = \frac{\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+1}}}}}{\frac{1}{\sqrt{1+1+1}}} \therefore$$

بالتعويص في 🕦 :

$$h = | \forall v : V =$$

. مثالی

إذا كانت: ﴿ + ﴿ > ﴿ + ﴿ > ﴿ + ﴿ + ﴿ * ثلاث حدود متنالية في منتابعة عندسية فأوجد قيمة ﴿

الحل

· التنابعة عندسية ع + ٧ وسط، هندسي بين † + ١٩٢١ + ٢ ١٢٠ م

$$Y + \frac{1}{2} \log x + \frac{1}{2} \log$$

$$\frac{\gamma \psi_{-}}{\gamma \gamma} = \int d^{2}x = \int$$

المامر

_مثال

مداد في تتابع حسابي مجموعها ٢٩ وإذا طرح من العدد الأوسط مر خان الأعداد الناتجة في تتابع هندسي أوجد هذه الأعداد.

الحل

نقرص أن الأعداد هي إ = و ٤ ﴿ وَ ا ﴿ وَ ا

$$TS = \{S + j\} + j + (S - j) \therefore$$

5+14(14(5-14(ma)lack);

وعبد طرح ٨ من العبد الأوسمة تصبح الأعداد ١٣ – ٥ ٥ ٥ ٢ + 5 في تتابع هنس

$$^{\mathsf{T}}_{\mathcal{S}} = \mathsf{NM} = \mathsf{Vol} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} + \mathsf{NY}) (\mathcal{S} - \mathsf{NY}) = ^{\mathsf{T}} \mathcal{S} \wedge (\mathcal{S} - \mathsf{NY})$$

-مثالی

ثلاثة أعداد تكون متنابعة هندسية مجموعها ٢٦ وإذا طرح من الأول الواحد لصحيح وطن من الثاني ٢ وطرح من الثالث ١٩ كانت الأعداد الثانجة في تتابع حساس أوجد الأعدر

الحل

تقرض أن الأعداد هي ﴿ وَ ﴿ مِ وَ مِ مِ ا

$$-1 + 1 + 1 + 1 = r$$

18=10

0-

1

lb.

٣٠ - ١٥١ م - ٢٥١ م - ١٩ تكون منتابعة حسابية

$$y_1 - y_2 + y_1 - y_2 = (x_1 - y_2) + y_2$$

$$\frac{17}{4} = \frac{7\sqrt{4}\sqrt{4}}{1+\sqrt{4}\sqrt{4}}$$

$$\frac{\lambda}{\lambda A} = \frac{(\lambda + \lambda_1 A - \lambda_2) \frac{1}{4}}{(\lambda_1 A + \lambda_2 + \lambda_2) \frac{1}{4}} \cdot \frac{1}{4}$$

لهدة أزنى إيجاد أعلمبية

$$T = \sqrt{d} \frac{1}{T} = \sqrt{\Delta}$$

سررائی

رنا کار (س ۱۶۱ س) فی تتابع هندسی ۱ (س – ۲ ۱۱۱ س) فرر تتابع حسابی آوجد قیمهٔ کل من س ۲ م

الحل

ر: (1) أ = سن سن

ب س رور س في لتابع هادسي

، سن صن=۱۱ --- (آ)

خ س ۲۰۰۰ + س ۸ = ۸

ب س ۱۹۷۹ و س في تتابع حسابي

(T) - N=JP+J-:

بالتعويش من 🐑 في 🛈 🗈

15= " - 16.5

...(اس ۲۰۰۰) (اس ۸۰۰۰) د

ر س = 4 d من = 1

¥ = (v- - %) v- ∴

 $s=Vt+Q+ts+{}^TQ+\chi$

 $A=\cup \cup \emptyset \ \forall = \cup \cup \emptyset.$

ير قيمة س ۽ ص هيءَ ۾ ۾ ٢٤٨ ۾ ٢٤٨

(प्रभव्यक्षेत्र क्ष्माच्यक्षेत्र क्ष्माच्यक्षेत्र ह्या विश्वविद्या 📵

انا ڪاڻ س ۽ ص ۾ ۾ *۽ س هو ص فان :

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$

(بوضع المفدار على صورة مربخ خامي)

٤ > ٥ وحيث أن الوسط الهندسي الموجب أكبر من الوسط الهندسي السالب،

فبكون الوسط الحسابى تعددين حقيقيين فوجبين مخترفين الجرز وسطعما العبدسي

ایآں

إذا كان إوس وهر تلاث حدود منتائية في منتابعة هندسية فإن أجهر إذا كان إ ي ب ي هـ قلات حدود متقالية في متقابعة حسابية فإن ب > وأ هـ

إذا كانت كي يُكِي يُكِي الساكي أعداد مقيدية موجبة فإن

3,+2,+2,+2+ = +2+,2+2+ 2n

والتحقق المعاولة فالقط علدها عي الله علي الله علي = ١٠٠٠ = عان

مثالي

إذا كانت: ٢ (٢ ص ٢ ٤ هـ ٥ ه و أعداد موجهة في تتابع هندسي فائبتان: (۲۹ + ع هـ) (۲۰ + ۲۵ < ۸ ا م هـ

الحال

- والوسط الحسابيء أثوسط الهندسي
- (1) = UT < A (+) TA ع 🕆 ۴ 🏎 وسط هندسی بین ۴ 🕻 ع عد 🦳
- ③ → → ∧ < 50+ いず
 </p> * ع هروست هندسی بین ۳ ب و ۵ و
 - س 🕦 ۽ 🕥 بالضرب:
 - AUIA < (10+ UY) (AI+ |Y) ..

	ودرا إلحى المساح الفلتسية
	المريان من الوساط المندس
	الما وكتر نفسك الما وكتر نفسك
	المتبار تراكمي المحدد المائمي الما
1	هُوناً عن الأسلبة الآثية
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	[177
	ال دران رود التتابعة هندسية حدودها موجبة فيها عبد التتابعة عبد التتابعة عدودها موجبة فيها عبد التتابعة
ļ	
	الله مسرح يتسع تـ ١٦ منفًا فإذا كان العنف الأول يحتوى على ١٦ متعنًا وكل
	محقب القريلية يتسع لعدد من القاعد يزيد عن الصحف الذي يسبقه مباشرة بمقدار) مقرعد شار مدر التلام بيديا إلى بيدي

وازرا مسال المستوى الأول

🖬 🕥 أوجد الرسط الهيدسي بين ۽ ۽ 80

😙 🚱 أوجد الوصط الهندسي بين ١٩ ۽ ١٩

🗇 ادخل آریمة اوساط، هندسیة بین ۹ یا ۲۶۳

ادخل خمسة وساط هندسية موجبة بين ٢٢٠٤

۱۳۲۵ مندسیة بین مندسیة بین مندسیة بین مندسیة بین مندسیة اوسامه مندسیة بین مندسی مندسیة بین مندسیة بین مندسی م

[[MINITERED T]

👔 أَخْتَرُ الْإِجَابَةِ الصحيحة من بين الإجابات المعطاه :

(PY & A# & T4# & A]

﴿ إِذَا عَمَانِ الْوَسِطُ الْهِنِيسِي بَلْمِنِدِينَ ﴾) ص هو ١٥ هَإِنْ ص تِسارِي

I b o d vo d wi

[44]

 $[n^{-1}]$

 $[s^{i_1}\tau^{i_2},i_3\tau]$

[Protections to

الله المنات عن من المنافة حدود موجبة ومنتالية من منتاسمة همدسية فإن ب حسس

[a d a d a + 1 d a + 1]

﴾ إذا كان الوسف الهندسي للمددين ٢ ع س ع هو ﴿ فَإِنْ قَيْمَةٌ مِن =

[TY d 14 d E d A]

🚹 أختر الإجابة الصحيحة من بين الإجابات المعطاه 🕡

الوسط الحسابي تعددين حقيقيين موجيين مختلفين من وسطهما الهندسي.

﴿ الوسطة الهندسي الموجب للكميتين إ ") با هو

[المن ك احد ك احد ك المن]

إذا مكان الحدين الأوسطين في منتابعة هندسية هما ٢ ي و على الترتيب فإن أساسها

TATAAA T

() الوسط الهندسي للأعداد ٢٤ و ١٢ يساوي [٢ ال ٢ ال ١٩ ال ١٩ ال

4+1=10 & 0=4+1 & 0>4+1 & 0<4+1

- العددان موجبان مجموعهما ٢٠ ووسطهما الهندسي ٨ في اهما العددان؟ [١٦٠٠] عددان موجبان القرق بينهما ٨ ووسطهما الهندسي ٣ في اهما العددان؟
- 💽 😭 أوجد المددين اللدين وسطهما الحسابي a روسطهما الهندسي ٢
- كا عندان موجيان الوسط الحسابي لهما ٢٥ ووسطهما الهندمني و٢ فينا العندان؟ ﴿ إِنَّ الْمُ

ثالثا مسال المستوى الثاني

- الوسط الحسابي لعددين = ﴿ وسطهما الهندسي) وأصغر العددين يساوى ٩ أوجد العدد الأخر
- إذا أدخلت ٤ أوساط هندسية بين عددين وكان مجموع الوسطين الأول والرابع = ٩٠ ومجموع الوسطين الثاني والثالث = ٩٠ أوجد المددين.
- إذا أدخلت عدة أوساط هندسية دين ٢ ٤ ٨٤٥٨ وكانت النسبة بين مجموع الوسطين الأولين إذا أدخلت عدد تلك الأوساط.
- اذا کان الوسط الهندسي بين س ۽ صهو ۽ والوسط الحسابي بين (س + غ) ۽ (ص + ۲) هو ١٥] الوسط الهندسي على من ۽ س ۽ ص
- الثاني والرابع يساوي ٦٨ والوسط الهندسي الموجب لهما يساوي ٣٣ أوجد المتنابعة.

[(**********)]

- العسابي تفحدين الثالث والخامس يساري ٣٠ والوسط الهندسي الموجب لهما يساوي ٢٤ أوجد المتحيح والوسط الهندسي الموجب لهما يساوي ٢٤ أوجد المتتابعة.

- الوسط الحساس مين الحميل الأول والرابع من متقامعة فعدسية هو ﴿ } والوسور الحساس دين حديها الثاني والتالت هو ؟ ﴿ } والوسور الحساس دين حديها الثاني والتالت هو ؟ ﴿ } والوسور أبين أبه توحد مثنايمنان هندسپنان وأوجدهما ﴿ ﴿ اللَّهُ اللَّالَةُ اللَّهُ الللَّهُ اللَّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ ا
- المنتسمة حسابية حدم الاول ٤ وحدودها الثاني والخامس والحادي عشر تكون منتابعة منتابعة مندسية أوجد المتتابعة
- النواتج متتابعة حساسة أوجد الأعداد، النواتج متتابعة حساسة أوجد الأعداد،
- رحی منتابعة حسابیة فیها $S_p = 14$ وحدودها S_p ، S_q ، S_{np} فی تتابع همدسی آوجد النتابعة الحسابیة ،
- الله متنابعة حسانية ترايدية حدها النامن يساوى 10 وحدودها عي، عي، عي تكون متنابط متنابعة حسانية ترايدية حدها الناء المسابية.
- الأول والنائي متنابعة مجموع الخمسة حدود الأولى منها عن وحدودها الأول والنائي والنائي متنابعة المسابية. (المنابعة المسابية . (المنابعة المسابية .
- الله أعداد موجبة في تتابع حسابي مجموعهم 10 وإذا ضرب أصغرها في ٢ وأسيف للأوسط ٧ وأصيف للأمكير ١٧ كوبت الأعداد الناتجة متتابعة هندسية ودد حدود المتنادعة الحسابية.
- الثالث في ٣ كانت الأعداد الثلاثة الحديدة في تثابع حسابي أوجد منوالأعداد، الثانث في ٣ وضرب العدد الثانث في ٣ وضرب العدد الثالث في ٣ كانت الأعداد الثلاثة الحديدة في تثابع حسابي أوجد منوالأعداد، [﴿ عَلَيْ مَا عَلَيْهُ اللَّهُ عَلَيْهُ اللَّهُ اللّهُ اللَّهُ اللَّاللَّهُ اللَّهُ اللّهُ اللَّهُ اللّهُ الللّهُ اللّهُ ال
- تلاثة أعداد تكون متتابعة هندسية مجموعها عم وإدا أضيف إلى العدد الثاني ٢ وألا العدد الثاني ٢ وألا العدد الثالث ٧ صارب الأعداد الثلاثة في تتابع حسابي أوجد هندالأعداد، الاستان
- النواتج تكون في تنابع حسابي أنبث أن هناك منتابعة على ٢) ٤) ٣ على الفرتيب أله النواتج تكون في تنابع حسابي أنبث أن هناك منتابعتين.

0

🔃 اذا كانت ؟ †) ب ؛ ٣ هـ ؛ ٤ و كميات موجبة في تتابع هندسي أثبت أن: (۱۶+ + ج.م.) (ب+ + ۱د) > ۱۲ ب م

> 📆 (د) کار () س) کے 15 کمیات موجیہ فی تنابع ہندسی فأثبت ان: (۲ + هـ) (ب + ۶) > £ ب هـ

📆 بذا كانت ٦ ﴿ ٢ ﴿ ٢ م ٢ ﴿ و كهيات موجية في تتابع حسابي فأثبت أن : 5UT+AJE < "AT+"UT(T) 514 < AU(1)

رق مسائل تفيس مستويات عليا في التفكير

🚻 أختر الإجابة الصحيحة من بين الإجابات المعطاه ،

(١) إذ كانت (س ع ص ع ع ع ...) في تتابع هندسي فإن [٢ص < س + ع إلى ص ٢ > س ع إلى ص = س ع إلى أص = س ع] 💎 افرسطه الهندسي تارکنداد روي چې و هو

[se d v d ve d Thre] ع ، ع م يساوى [At d ty d ter d 4]

() إذا كان (س - ١) وسط هندسي بين العددين (س - ٢) ، (٣ س - ٥)

(a) الوسط الهندسي للأعداد ٢ ي ٢ ٢ ٢ ٨ ٢ ٨ هو

[h d A d t d T]

﴿ إِذَا كَانِكُ } ؟ ت ؟ هـ ؟ 5 أربع كميات موجية منتائية من متتابعة هندسية فإن ا + د> سسست [ب + هـ أن ٢ ب + هـ أن ب حـ أن ب - هـ] ﴿ إِدَا كَانِتَ عُ هِي أَنُوسِطُ الحسابِي بِينَ ﴿ مَا صَوْكَانَتَ ثِرَ هِيَ الوَسِطُ الْهَنْدَسِي بِينْهِما وحكان إ " + ب " = ك ع " - " ه " ع طان ك + " =

[TE d th d te d T]

المامر

﴿ إِذَا كَانَ سَ عَ صَ عَ هَى تَنَابِعِ حَسَابِي وَكَانَ سَ عَ صَ - سَ عَ عَ - سَ فَى تَنَابِعِ الْعَالَ عَ ال هندسي وكان له ع = م ص = ها س فإن له × م =

[w d b d A d *]

- (ع) إذا كان (ع) بعد في تتابع هندسي وكانت و هي الوسط الحسابي بين (ع) وكانت و هي الوسط الحسابي بين (ع) م وكانت و هي الوسط الحسابي بين بعد فإن $\frac{1}{s} + \frac{a_s}{c} = \dots$
- الأعداد على الأعداد ١٤ ٩٩ ٤ ١٤ ٩٤ على الترتيب إلى أربعة أعداد تكون متتابعة ضدمية نحمر على أربعة أعداد تكون متتابعة حسابية أوجد التتابعة الهندسية.
- المتتابعة الهندسية من وإذا كانت عي في الحسابية تكون مثنايعة هندسية أثبت ار أساس المتنابعة الهندسية من الهندسية من المتنابعة الهندسية من المتنابعة والحسابية من المتنابعة من المتنابعة من المتنابعة والحسابية من المتنابعة من المت
- اذا محادث (س ، س ، ع) أعداد موجبة تكون متتابعة حساسة وكادت إ على الوسط الهندسي بين س ، ع وكانت إ على الوسط الهندسي بين س ، ع فألبت إن : س " > إ س
 - اذا كانت (١) م ، م) كميات موجية في نتابع هندسي أثبت أن: (او ١) لو م ؛ لو هـ) في نتابع حسابي.

لتبيق أن علمها أن التسلسلة هي مجموع حدود متنابعة وتعلمنا كيفية إيجاد المنسلسلة الحسابية والأن سوف تنمرف على كيفية إيجاد المتسسسلة الهندسية

مجووع المشطسلة لهندسية

المُسلسلة الهنسبية هي مجموع حدود التنابعة الهندسية ويرمر للجموع ب حدًا منها بالرمر هي

🧿 مجموع به حدًا للواحة فن فيتملسله هندسية.

أولا الجلد فجموع ب حُدَا مَن مَسَاسَلَةُ صَادِسِيةَ بِمِعْلُومِيةَ حَجَمَ الْأُولُ وَالْسَاسُ

إذا كانت إنه إنه إنه أنه أنه المسابع المسلمة على من عدها الأول إو أساسها من الأنه المكان إنها الماسها من المناسطة المنا

妆

فالباضاد

وبطرح المعادلتين بخون ای ان من (۱-۱)=۱(۱-۱)

$$1 \neq \sqrt{\epsilon} \left[\frac{(\sqrt{\sqrt{-1}}) \frac{1}{2}}{\sqrt{-1}} = \sqrt{+ \frac{1}{2}} \right]$$

مثالی_ أوجد مجموع السيمة حدود الأولى من المتنابعة الهندسية (٢٤٦) ١٠٠٠)...)

الحل

$$A = \frac{2}{A} = 2 \times 2 \times C$$

$$\frac{1-\sqrt{(1-\sqrt{2})^2}}{1-\sqrt{2}} = \sqrt{-2} = \sqrt{2}$$

التين البجاد مجووع ب حدًا من متسلسة هندسية به علومية حدما المراق

وأن ال
$$=$$
 ويشرب الطرائين الى ي

وبالتعویش من () فی () فإن:
$$\frac{1-t}{t-t}$$
 عبد $t=t$

ويمكن تلخيص ما سبق فيما يلى ،

ocopy acc accept of ecoc affine michals

مجموع ب حدًا من حدود مثنائعة هندسية حدها الأول إ وأساسها بهوا

$$\Delta_{ij} = \frac{1}{1-v} \frac{(v-1)}{v-1} = \sum_{ij} \frac{(v-1)}{v-1}$$

مجموع حدود مثتابعة هندسية حدها الأول إ وأساسها ي وحدها الأخير له:

$$\Delta_{ij} = \frac{1-Uv}{v-1} \qquad \text{cut}_{ij} \neq i \qquad \text{(uniformly signal)}$$

لهدده إجلى المستسؤات القندسية

Selections.

انا حکالت ہے
$$\frac{t-\sqrt{t-t}}{t-\sqrt{t-t}} = \frac{t-\sqrt{t-t}}{t-\sqrt{t-t}}$$
 و بنا حکال ہے ہ $\frac{t-\sqrt{t-t}}{t-\sqrt{t-t}}$ انا حکالت ہے و النا حکالت ہے جا تصورة السابقة

مثالی.

أوجد مجموع حدود منتابعة هندسية حدها الأول = ٧ وأساسها = ٣ وحدها الأخير = ١٨٦

الحال

SAN - JOT- JOT-1

$$VYA = \frac{V - V \times 2A^{*}}{V} = \frac{1}{2A^{*}} A^{*}V$$

واستخطها والتجويع

يستخدم الرمز « 3 » نجمع حدود التسلسلة بعد إيجادها بالتعويص عن قيم ي لإيجاد الحد الأول والأساس وعدد الحدود أو الحد الأخير.

فمثلا

الرمز في ٢٧ - أتعنى مجموع حدود التسلسلة من الحد الثانى إلى الحد السادس الذلك تعوض عن ب = ٢ لإبحاد قيمة † وتوجد ب وعدد الحدود ثم توجد المجموع وسوف توضح ذلك من خلال الأمثلة .

فيهتنما بيذ فيسدنها تالاسلستن 🍥

تعريف

التسلسلة الهندسية غير النتهية (اللانهائية) هي التسلسلة التي لها عند لا نهائي من الحدود

فمناأ

المتسلسلة ٢ + 6 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 المتسلسلة منتهية لأن تها حد أخير. إما المتنابعة ٢ + 6 + 4 + 4 - 4 في منتابعة غير منتهية لأن تيس لها حد أخير.

- مثالی.

الحل

$$(\exists a \forall l = d \in Y = q \in \exists a \mid q = q) = \frac{d - d - d}{d - 1} = q$$

۔ صالی _

منتابعة منسبية أساسها ٢٠٠ ومجموع حدودها السنة الأولى = ٢٠٠ أوجد المنتابعة

الجبل

$$\frac{1 - \frac{1}{2} - \frac{1}{2}}{[1 - \frac{1}{2}(4 - 1)]!} = \xi \cdot \frac{1}{2} - \frac{1}{2}$$

$$V=\frac{AA}{AA}=VV$$

ر التتارية هي (۲) در ۸ (۲) در)

_ہٹالی۔

1-4 (4) 4 \$\frac{7}{2} \cdot 720|

الحل

$$A = 1 + a + b + b = 0$$
 if $a = 0$ if $a = 0$ if $b = 0$ if $a =$

$$(A=O(t)=A(t)=\{(a^{-1})a^{-1}a^{-1}a^{-1}\}$$

$$A_{A} = \frac{A_{A}(t-7^{A})}{t-7}$$

2

مثالی.

متنابعة هسسية موجية محموع الأربعة حدود الأولى منها = ٢ ٢٢ ومجموع الأربعة

$$\frac{(1-\frac{1}{2})!}{1-\sqrt{1-\frac{1}{2}}} = YY \frac{1}{2} ...$$

$$\frac{(1-\frac{1}{2})!}{1-\sqrt{1-\frac{1}{2}}} = YY + YY \frac{1}{2} = \frac{(1-\frac{1}{2})!}{(1-\frac{1}{2})!} = YAY = ...$$

$$W = \frac{(1 - \frac{1}{\sqrt{1 - \frac{1}}{\sqrt{1 - \frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - \frac{1}{1 - \frac{1}{\sqrt{1 - \frac{1}{1 - \frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - }{1 - \frac{1}{\sqrt{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1}}}}}{1 - 1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

مثالي

متنابعة هندسية حدودها موجية ؛ حدها الثاني = ٢ وحدها الثالث يزيم من حدها الأول بمقداريه أوجد مجموع السبعة حدود الأولى منها

الحال

$$A = (1 - \frac{1}{2}\sqrt{3}) A \triangle$$

فالباطبات

المامر

ېقسمة 🕝 على 🕦 ;

$$\frac{1}{4} = \frac{(1 - \frac{1}{4}\sqrt{1})}{(1 - \frac{1}{4}\sqrt{1})} \hat{x}_{i}$$

$$\varphi : T = T - T \varphi : T = T$$

$$\therefore (\forall \neg + \uparrow) (\neg \neg \forall) = i$$

$$\therefore \neg = \frac{\neg \uparrow}{\nu} \text{ adjects } \neg \neg \forall i = \emptyset$$

$$\frac{\lambda}{\lambda} = \frac{\lambda}{1 - \lambda^{\Lambda}}.$$

$$v=V-\sqrt{2}V-\frac{1}{2}\sqrt{2}V/2$$

$$\forall = \uparrow \wedge$$

$$\gamma_{A} = \frac{(\gamma - \gamma)\gamma}{\gamma - \gamma} = \sqrt{\Delta}$$

ببين الشكل المقابل مثلث متساوى الأضلاع طول ضلعه من من وسم مثلث آخر في الداخل عن طريق توصيل النقاط التي تمثل مسصفات أضلاع المثلث الأكبر ويتم تكرار رسم المثلثات الداخلية بنفس الطريقة فأوجد الأقرب عدد مدحيح مجموع محيطات الدارة مثلثات الأولى في هذا التمط.

الحل

محيط الثلث الأكس = ٢٤ هـ ١٤٠ م

محيط المثلث الأصغر التالي = ٢٠ × ٢٠ = ٦٠

محيط الثلث التالي للمثلث الأصفر = ٣٠ = ١٠ x

أَنْ أَنْ المعلاهو ١٩٠٤، ٢٥ و١٠٤ ،... (لي واحدود

مجموع المحيطات = ١٧٠ ج ١٦٠ + ٢٠٠ +

وهى مجموع متسلسلة هندسية

$$\frac{(\sqrt{-1})!}{\sqrt{-1}!} = \sqrt{-1}$$

٠

$$A4^{4} = \frac{1}{\left(\frac{1}{4}\left(\frac{A}{4}\right) - 4\right)}AA^{4} = ^{4^{-}} \Rightarrow ^{4^{-}} \Rightarrow ^{4^{-}} \Rightarrow ^{4^{-}}$$

فالخقة

محيمة المثلث المتساري الاسلام = ٣ × طرل المسم

 $h \approx u \in \frac{1}{V} = u \in \mathbb{N} \times \mathbb{R}^d$

المناسسات المنطوع بيد معادية وعيد المنتخابة

المتسلسلات الهندسية غير المنتهبة لوعلى ر

البوغ الأول يكون فيها إبراج دوهي متسلسلة لايمكن ريجاد مجموعها

عثل - المستسنة ؟ + 2 + 4 + . . . وفي هندا لحالة تسمى منسلسلة غير متقارية

الموع الثالين يكون فيها إلى | < + وهي متسلسفة يمكن إيجاد مجموعها

عثى: المتناصة (١٤ ٢ ٢ ٢ ٢ ١ ١ ٠ ٠ ٠) وهي هذه الحائلة تسمى متسلسلية متقاربة أن المنسلسلة الهندسية غير التنهية هي التي لها عند لا تهائي من الحدود وإذا كان مجموعها عنداً حقيقيً فإنها تكون متقاربة لأن مجموعها يقسر بحر عدد حقيقي (ما أن ثم يكن للمتسلسلة مجموع فإنها تكون غير متقاربة.

eiving liteimaren cataron Edozak 🍥

عنما ال مجموع ل حنّا من حدود متسلسلا مند سبة معطى بالملاقة $a_0 = \frac{1 \cdot (1 - 1)^n}{n^n - 1}$ وعند جمع عدد غیر منته من حدودها فإن a_0 يقترب من معفر عدد ما نكون $a_0 = 1 \cdot 1$ وعدد جمع عدد غیر منته من حدودها فإن a_0 يقترب من معفر عدد عرب $a_0 = \frac{1}{n^n - 1}$

Publish Up

إذا كانت إس إنه 1 هانه لا يمكن إيجاد محموع المتنابعة إلى ما لا نهاية

مظل

فى الثنتابعة الهندسية (٢١) 6 \$ \$ \$...) أوجد مجموع حدودها إلى ما لانهاية أبنداء من الحد الأول

الحل

 $AA = \frac{1}{14} = \frac{1}{1} = \frac{1}{1} = \frac{1}{14} = \frac{1}{1$

المالية م

متتابعة هندسية لا نهائية مجموع حدودها ١٦ وأساسها = أوبد المتتابعة بم أثبت أن حدما الثالث يساوى ٣ أمثال محموع الحدود التالية له.

الحل

 $\frac{1}{1} = i \pi^{-1}$ $\frac{1}{1} = i \pi^{-1}$

 $\left(\cdots,\{\frac{q^n}{2}\in T\in T^n\}\right)$

 $\therefore \mathcal{L}_{\gamma} = t \cdot \mathbf{v}^{T} = \gamma t \times \left(\frac{t}{2}\right)^{T} = \tau t \times \frac{t}{T} = \frac{1}{2}$

m arrange that we first the $\frac{1}{2}$ $\sqrt{1+\frac{1}{2}}$ $\sqrt{1+\frac{1}{2}}$ $\sqrt{1+\frac{1}{2}}$ $\sqrt{1+\frac{1}{2}}$

 $\therefore \frac{1}{t-\sqrt{t}} = \frac{1}{t} \times 11 \times \frac{1}{t} = \frac{1}{t} \times 11 \times \frac{1}{t} = \frac{1}{t} \times 11 \times \frac{1}{t} = \frac{1}{t} = \frac{1}{t}$

من ﴿ وَ وَاسْتَنْتُمُ أَنَّ عُي = ٣ أَمَثَالُ مَجْمُوعُ الْحَلُودُ التَّالَيْةُ لِهُ.

_مثالی

متتاهه هندسیة غیر منتهیة مجموع عدد غیر محدود من حدودها ۴۹ و<mark>حدها الأو</mark> یزید می حدها انتانی بمقدار ۲۶ أوجد الاتتابعة.

الحل

$$\frac{1}{\sqrt{-1}} = \P t \wedge$$

$$Yt = (y - 1) f \therefore$$

m = 1.5

من (١) ۽ (٣) بالقسمة:

$$\frac{\gamma_{\xi}}{\eta_{1}} = \frac{(\sqrt{-1})}{1} \times (\sqrt{-1}) + \dots$$

المدوة أأرفي ألملسنسأإن الفردينية

$$c = (Y - yY)(Y - yY)$$

$$\sqrt{-\frac{\gamma}{\gamma}}$$
 (مرقوصة لأن المتنابعة غير معتهية) $\sqrt{-\frac{\gamma}{\gamma}}$

ـ مثالی

إذا كان مجموع متابعة هندسية غير منتهية = ٤ ومجموع حديها الاول واثناني يساوى ٣ برهار على أنه توجد متتابعتان تحنقان هديي الشرطين وأوجدهما

الجبل

$$\dot{\mathbf{x}} = \frac{1}{(y+1)} \mathbf{Y}$$

$$\mathbf{y} = (y+1) \mathbf{1} \mathbf{A}$$

$$\odot$$

$$\frac{1}{h} = \frac{1}{(\Lambda - I)} \times (\Lambda + I) \downarrow f$$

$$\frac{1}{4} = \frac{1}{4} - 1.5$$

$$\frac{1}{2} \pm \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$$

$$\left(-1.0 + \frac{1}{2} + 1.0 + \frac{1}{2} \right) \cos \frac{1}{2} \sin \frac{1}{2} \left(-1.0 + \frac{1}{2} $

متنابعة هندسية لا نهائية مجموع عدد غير منتهى من حدودها = ١٦ والنسبة مين حدما الرابع إلى مدمًا الثالث هي إوج أ<mark>وجد لثنتابعة.</mark>

الحال

$$t_1 = \frac{1}{\sqrt{-2}}$$

$$H = \frac{n-2}{4} \circlearrowleft$$

$$y_{d} = \frac{1}{\frac{1}{N} - \lambda} \cdot \lambda$$

$$\frac{1}{T} = \sqrt{T}$$

تحويل أكشر المشرف الدائم الف كسر امتيادهم

عند تحويل بعص الكسور الإعتبادية لصورة عشرية نجد أن عمليات التسرد ولدلك أصطلح على ان يكتب هذا الكسر على الصورة ٣٠، وتقرأ ٣٠٠٠لروقد اصطلب على وضبع شرطة ذوق الرقم تدائر وهذه الشرطة تعبى تكرار العدر إلى مالانهاية على رقمين و دارية لتمني أن الأرقام التي أسمل لشرطة تتكرر بصورة مستمرة

مثالئ

فنة كل من الأعداد الاتية في صورة عند نسبي:

....

1/14# 😘

.,Ŧ 💽

الجبل

ما يداخل القوسين عبارة عن مجموع متتابعة هندسية لا نهالية ميها الأول (وأساسها 🗓

$$\frac{1}{T} = \frac{1}{T} \times \frac{T}{T} = \frac{1}{\frac{1}{T_1} - 1} \times \frac{T}{T} = \epsilon_1 \overline{T}$$

$$\frac{1}{\sqrt{\frac{1}{2}}} \times \frac{1}{\sqrt{\frac{1}{2}}} + \frac{1}{\sqrt{\frac{1}{2}}} = \left(\cos \frac{1}{\sqrt{\frac{1}{2}}} + \frac{1}{\sqrt$$

$$\frac{A}{A} = \frac{144}{44} = \frac{10}{44} + \frac{1}{16} = \frac{100}{44} \times \frac{100}{100} \times \frac{100}{100} + \frac{1}{100} = \frac{1}{100} \times \frac{1}{1000} = \frac{1}{100} \times \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} \times \frac{1}{1000} = \frac{1}{1000}$$

$$m = \frac{1}{44} + \frac{1}{44} + \frac{1}{4} + \frac{1}{4} + m = 0.222222 \rightarrow m = 0.1$$

$$\left(\left| \cos \omega_{i} \right| \right|_{i=1}^{n} + \frac{1}{i} + \frac{1}{i} + \frac{1}{i} + \frac{1}{i} + \frac{1}{n} = 0$$

$$\frac{4}{4} = \frac{4}{1} \times \frac{4}{1} \times 0 + \frac{3}{1} \times \frac{4}{1} \times$$

$$\frac{V}{W} = \frac{\{0\}}{q} V = \overline{a_1 \overline{a_1}} V_{12},$$

لوددة ألحني المتسلسران العنصبية
William Villo
المرافية الم
الله الأنبة الآنية الآن
ا الوسط الوسط الحسابي للمددين) ، ۱۹ هو دو فإن ا = ۰۰۰۰ ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
[17 d 17t d 16t d 77](7 - 7) يتمازي ١٢٠ d 7t d 7
عدد الأعداد الصحيحة المحصورة بين ١) ٩٩ وكل منها يقبل على ٥ هو ١٩٠٠ (١ ٢٠ ١ / ٢٠ ١ مع ١٩٠١)
ادخل ستة ارساط هندسية بين ٢٠١٢
ps: -samens: -squarem:semse++3d++-6++44d++pseeeeeeeeeeeeeeeeeeeeee++bad++++64d+++56++psdpdd+passpdssadpass
آوجد عدد الحدود اللازم أخذها من المتنابعة (٢٧) ٢٤ د ١٠٠) ابتداء من المدالأول عنى يتلاشى المجموع.
+250-1

- ्र वं पड वं पा वं पप إنها مجموع العشرة مدود الاولى من التتابعة (٣٤٩ ٤ ٣٤ ٤ ١٠) هو n 1 (no d too d st)
- منتابعة هندسية مجموع الخمسة حدود الأولى مثها = ۴۶ قابلاً مثان أساسها يها هل عدما الأول = [٢] ١ ١ ١ ٢ ١ ١ ١٠
- منتابعة هسسية حبها الأول =) ومجموع الثلاث حدود الأولى منها = ١١ فير أساس المتتابعة هو ١٠٤٣-] • ١٠٤٣- أنا أن المتابعة هو
- @ مجموع حدود التتابعة الهندسية (٢٠٤) (الى ما لا نهاية إيتماء عن حيوا
- ﴿ مجموع المتنابعة الهمسية (٧٧) و ٢٥) إلى ما لا نهاية أيتناء من علما إنان (m d too d m d mr)
- ♡ مجموع حدود المتتابعة الهمدسية (١٩٤ ٤١٤) ...) (ابي مالامهاية إبتداء من حيي [m d 16 d 17 d 18] (لأول هو المستند
- ﴿ مجموع عدد غير منه من حدود متنابعة هندسية = ١٧ وحدها الأول = ۽ فإن: ثانيًا مجموع الخبسة حدود الأولى منها =

VAN & YAY & VAN & TE

📆 🗺 أيَّ من التسلسلات الهندسية الأنية يمكن جمع عبد لا نهائي من حدودها ؟ فسر إجابلك،

- +++ + TV + 10 + Y0 (1)
- - --- +54 + 41 + V (P)
 - + + + + + A (0)
- + Y + Y + 4 + 4 (1)

... + #E + YT + YL (T)

 $\cdots + \frac{\forall a}{\forall c} + \frac{\phi}{\pi} + \frac{\psi}{\Psi}$

المعمود الدامكات	عد جمعا الد صفح أمد ا	2.3912] 🚉 أي من التسلسالات الهندسي
O. Carin	(c17 c 1 - c 7) (T)		(67£1Y£Y£) ①
	(Yxe ^{f-U})		$\left(\cdots,\frac{1}{2}\left(\frac{1}{2},\frac{1}{2}\left(\frac{1}{2}\right)\right)\right)$
	فيهاه	سية التي	🖺 أوجد مجموع المتمسمالات الهند
[141] % =	$\forall f = f \neq 0 \text{ or } \frac{1}{4} = 0 \text{ or } \frac{1}$	[#W]	1=014=41=1()
[***A] \Y A =	$\int c \frac{A}{J} = A c A v c V = 1 $	[sarv]	101)=J:Y=V=1=[(F)
	عسية الأتية :	ابعات الهد	🗓 🚉 أوجد مجموع كل من المنة
[444]			ال (٢٥١٤٤٤٤) ١٠٠٠ (لق ٢حمل
[uses]		دود)	﴿ (۱۲۵) ۱۲۵) ما الله ٢٠٠٠ الله ٢٠٠٠
[##]			(YIA661464-64) (P)
	ون الأنيتين :	الهندسيت	🛚 🚎 أوجد مجموع التسلسلتين
$\left[\frac{dH}{dt}\right]$		[10[77]	(*) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \)
_			🚨 😭 أختر الإجابة الصحيحة مر
			() مجموع الخمسة حدود الأو
[19 B 19	d to d tr]		يساوى ،،،،،،،،،،
*******	لتتابعة (٨٤٤٤٨) هو	من حدود ا	🕤 🎡 مجموع عدد غیر منته
	d te d te]		
ا <u>+</u> هو ع			👻 إذا كان مجموع عدد غير م
			فان حدها الأول يساوى
ن حدما الأول ٢٩	معود التنابعة الهندسية التر	يرسته من	🕦 😭 إذا كان مجموع عدد غر
Y d X	d + d +]	\$4+18-E+11+	هو ٩٦ فإن أساسها يساوي -
إلى مالا نهاية	اوى مجموع الحدود التالية	ا الأول يسا	🕥 🔯 متتابعة هندسية حده
	****	باوی	فإن أساس هده الانتتابعة يس
	अब दी और्रा दी ।		
			🕥 🏥 منتابعة هندسية مجم
[VV (ot	तु पर दी भें। "	ی	فإن الحد القالث منها يساو
Sec. 14			

زالل مسائل المستوي الثاني

المطائبين فجيون عدد مجدود من متنابعة مندسية

- الله متناسة هندسية حدها الثالث بساوى و هدها السادس يساوى ٣٤٣ أوجد التناسة عدود الأولى منها (٢٠١١ ١٠١١٥٠ الماده
- الله (٣٠٠) كذار حدَّ، يكرم أخسف من المتنابعة الهندسية (٣٠) ١٧ (١٠ م.) ابتداء من حدوا الأول ثيكون مجموع هذه الحدود ٥ ٢٨١)

(ht myse)

- الله (المتنبعة الهدمية التي حدها الأول = ٢٤٣ وحدها الأحير = ٢ و المتنبعة التي حدها الأول = ٢٤٣ وحدها الأحير = ٢ ومجموع حدودها = ٢٢٤ ومجموع حدودها = ٢٢٤ المتنبعة التي حدودها = ٢٢٤ المتنبعة التي حدودها = ٢٤٣ ومجموع حدودها = ٢٤٣ ومجموع حدودها الأحير = ٢
- الله المتنابعة الهندسية التي مجموعها = ١٠٩٣ وحدها الأخير = ٢٩٩ وأسسها=٢
- الله متتابعة هندسية حدها الرابع = ع٢ وحدها السابع ١٩٣٠ ع أوجد المتتابعة ثم أوجد مجموع الخمسة عشر حداً الأولى ميها [(١٩٦٠ - ١٩٥١ ع المعالم ١٩٠٠ - ١٩٠١)
- الله متتابعة همدسية حدودها موجهة وحدها الرابع يساوى أربعة أمثال حدها السائم ومحموع الخمسة حدود الأولى منها يساوى ٣٠ أوجد المتتابعة [١٠٠١/١٠١٨]
- الله الله المناسعة عدودها موجية ومجموع الحدود الأربعية الاولى منها يساؤله الأوجد عددا التناسعة الاولى منها يساؤله وحدها المنادس يزيد عن حدها الثاني بمقدار به أوجد هدد المتناسعة (١٠١٠١٠٠٠)
- [1] متتابعة معدسية فيها ع. ٣ ٢ ع م م الوجد مجموع السنة حدود الأولى منها اله
- الم اوجد مجموع حدود التتابعة الهمدسية $(3_0) = (4^{4/3})$ إبتداء من حدها الرابع المحده العاشر

البت أن الاتتابية (على) = (۲۰ ۲۰ ۲۰) هي متتابعة هندسية وأوجد عدد الحدود (بنداء من الحد الأول التي مجموعها عهوه

الله إذا تكان مجموع ب حداً الأولى من متناسة هندسية بمطي بالقانون : هي = ١٣٨ – ٢ ٢ - ٥ فأوجد المتنابعة ثم أوجد حدها السابع [١٠٤ تعدد ١١٤] ١١٠]

نا (م متنابعة همدسية مجموع الخمسة حدود الأولى منها = 0,0 ومجموع الخمسة حدود الأولى منها = 0,0 ومجموع الخمسة حدود الثانية لها = 0,0 ومجموع الخمسة حدود الثانية لها = 0,0

من المتنابعة الهندسية (أ ، أ) وجد الحد الذي تبدأيه ليكون مجموع خمسة حسود منتالية ابتدء من هذا الحد مساوياً ١٦٣

التي حدها النوني؟ × ٢٠٠ ليكون الحموع أكبر من ٢٠٠٠ [1]

الأول المنابعة الهندسية التي مجموع حدودها أوجد عدد حدود الأول الأ

الله متنابعة هندسية تبكون من سنة حدود فإذا بكان مجموع الخمسة حدود الأولى منها = ٢٤٣ ومجموع الخمسة حدود الاخيرة منها = ٢٧٧ أوجد التنابعة (١٠٠٠ ١١٠٠ ١١٠٠)

عددان موجبان | ۱۰ (| < ب) وسطهما الحسابي ٢٤ و وسطهما الهندسي الموجب ٢٩ أوجد العددين ثم أوجد مجموع السنة حدود الأولى من المتناسة الهندسية (١٦ ت - ٤٥١ م م م م ع م ع م م ع م ع م ع م ع م ع م م ع م ع م ع م ع م م ع م م م ع

أسئلة عنى عدد غير فيتهمن حدود فتتابعة ميرسية

الدت أن: (ح ل ٣ x ٢) = (٣ x ٢) متتابعة منسية وبين أنه يمكن جمع عبد لا نهائي من حدودها وأوجد هذا المجموع ابتياء من حدما الأول

 $Y_{-} = \frac{1}{2}$ متنابعة متدسية أساسها $\frac{Y_{-}}{V_{-}}$ ومجموع حدودها إلى ما Y_{-} نهاية ابتداء من حدها الأول $Y_{-} = Y_{-}$ أوجد المتنابعة

الله المنابعة الهندسية التي مجموع عدد غير منته من حدودها يساوي ٨) وحدها الثاني يساوي ١٣

- متنابعة هندسية جميع حدودها موجية وأساسها أصغر من الواحد الصحيح والوسط الحسابي للحدين الثالث والخامس .. ٦٠ والوسط الهندسي الموجب لمفس الحدين = ١٨ أوجد المتنابعة ثم أثبت أن مجموع أي صدر من حدودها مهما كبر لا يمكن أن يزيد عن ٧٩٨ أوجد المتنابعة ثم أثبت أن مجموع أي صدر من حدودها مهما كبر الا يمكن أن يزيد عن ١٩٠٨ أوجد المتنابعة ثم أثبت أن مجموع أي صدر من حدودها مهما كبر الا يمكن أن يزيد عن ١٩٠٨ أوجد المتنابعة ثم أثبت أن مجموع أي صدر من حدودها مهما كبر الا يمكن أن يزيد عن ١٩٠٨ أوجد المتنابعة ثم أثبت أن مجموع أي صدر من حدودها مهما كبر الا يمكن أن يزيد عن ١٩٠٨ أن يربد عن ١٩٠٨ أن يربد عن ١٩٠٨ أوجد المتنابعة ثم أثبت أن مجموع أي صدر عن حدودها مهما كبر الا يمكن أن يربد عن ١٩٠٨ أن يربد عن المربد عن ا
- وا كانت (١) س ، س ، س ، متنبعة حسابية ، (١) س ، س ، ...) متنابعة هندسية فأحسب قيمة كل من س ، من من والمحموع عند فأحسب قيمة كل من س ، س ، ص حيث س جوس عوا ثم بير أنه يمكن أيجاد مجموع عند غير منته من حدود التتابعة الهندسية وأوجد هذا الجموع أبتناء من حدها الأول
- الى متتابعة هند مية عبر متعية وأى حد فيها يساوى صعف محموع الحدود التاتية له الى متتابعة والله المرابع ٣ فأوجد هده المتنابعة (١٠٠٧ ١٨١)
- الله منتابعة هندسية غير منتهية حيدها الأول = مجموع العدود التالية لدولي ما لا نهادة ومجموع حديها الأول والثاني عبد الما مده المتتابعة [(٢٠٠٠]]
- ا متتابعة هندسية لا تهائية حدودها موجبة فيه كي = ١١ كي × كي = ١٦ | اوجد المتتابعة ومجموع عدد لا نهائي من حدودها. [(٣١٨ ١٩٠١٠ ١٩٠١]
- ا متنابعة هندسية لا نهائية مجموع عند غير مئته من حروره عبد المائية مجموع عند غير مئته من حروره عبد المتابعة .
- متتابعة هسسية فيها ع = 0 ، $\frac{3}{2}$ = $\frac{1}{\sqrt{7}}$ | وجد المتابعة وبين أنه يمتن معاعد غير منتابعة من عدودها إبتهاء من عدها الأول ثم أوجد هد المجموع، [(١٥١٥ أم) عدودها إبتهاء من عدها الأول ثم أوجد هد المجموع، [(١٥١٥ أم)
- الله المانت و و ب و مر في تتابع مسابي وكانت ؟ و ب د ؟ و مر في تتابع هندمني في إذا كانت و و مر في تتابع هندمني في وحد فير منته من مدود المتتابعة في وجد فير منته من مدود المتتابعة في منته من مدود المتتابعة الهندسية (و مر و ب و ۲۲ ۲ ۲۰۰۰)
- المنسية و المراكسور العشرية التالية على صورة كسر إعنيادي بإستخدام المتنابعة المنسية و الأرد ع ٢٠٤٠ و ١٩٦٤ و ١٩٤٤ و ١٩٤٤ و ١٩٤٤ و

العمل في مصنع بمرتب سنوى قدره ٧٢٠٠ جنيه على أن يحمل على على الموحمل على على الموحمل على على الموحمل على علاوة سنوية قدرها ٢٪ من مرتب السنة السابقة أحسب مرتبه في السنة السابقة ومجموع ما يحصل عليه في السنوات السبع الأولى،

🚺 أختر الإجابة الصحيحة من يين الإجابات المعطأة ،

ن (ع ن) متنابعة هندسبة فيها
$$\frac{2}{3} = \frac{1}{4}$$
 الله عبد غير منته الله (ع ن عبد غير منته عبد غير منته

رَائِقًا مسان تقبس مستوبات عبيا في البهكم

تدادير لإجابة المحبحة من بين الإجابات المعطاه ،

٢= ١+٠٠ ٢= منتابعة عندسية مجموع ب حدًا الأولى منها يعطى بالملاقة عدى ٢= ٢٠٠٠ ٣ - ٢٠٠١

$$\begin{bmatrix} \frac{v}{V} & d & \frac{v}{V} & d & \frac{v}{V} & d & \frac{v}{A} \end{bmatrix}$$

() منتابعة هندسية محموع منعيات حدودها إلى ۵۵ يساوى

$$\left[\frac{\frac{1}{1-1}}{1} d \frac{1}{\sqrt{-1}} d \frac{\frac{1}{1-1}}{\sqrt{-1}} d \frac{\frac{1}{1-1}}{\sqrt{-1}}\right]$$

﴿ منتابِعة هندسية لا نهائية حدها الأول يساوي فإن مجموع مريعات حدودها إلى

﴿ متسلسلة هندسية ، هـ ، الأولى = ١٥٥ وأساسها = ٢ فيان حدم الأول = ········

﴿ متتابعة عندسية (٢ / + ٢ ، ٢ / - ٢ ، ٢ - ٣ ،) فإن مجموعها إلى ما لانهاية

﴿ إِذَا كَانَتَ سَ مَجْمُوعَ نَ حَدًّا مَثَنَا لَيَةَ مَنَ مَثَنَائِعَةُ هَنْدُسِيةَ } ص حاصل ضرب هذه الحدود فإن (س) المحدود) ع مجموع مقلوبات هذه الحدود فإن (س) المحدود) ع

[T. d TV d TE d T1]

مبحأ العبد

المتناها المتنافعة المتناها ال

تهديد مكثيرًا ما نحتاج (لى معرفة عدد الطرق الختنمة التي يمكن أن ترتبها مجموعة من الثياب الختلمة الإرتدائها لدلك فدراسة مبدأ المد يفيدينا في معرفة عدد الطرق، فمثلاً إذا كان لدى شخص ٣ تى شيرت الوانهم هي [رعدادي، أن) ٢ بنطلون الوانهم هي [رعدادي، أن) مكون من تي شيرت وينطلون.

بالتفكير قليلاً نجد أن كبل تي شيرت يمكن أرتدائله من بنظلون من البنظلونين ويمكن توضيحه بالمخطط التالي ويسمى بمخطط الشجرة التبالية.

آي لي عدد طرق الإسبار ٦ طرق مختلفة ويمكن معرفة دلك أيض بصورة الأولى ومسلطة كما يلى ،

ومست من و مناون من من و مناون عدد طوق (خدیار منطلون من مناون منا

ومن ذلك بمكى إستبتاج القاعدة التأثية ،

contail actions

إذا امكن إجراء عملية بطرق مختلفة عددها م وكان لديث في نفس الوات عملية) يمكن (جراؤها يطرق مختلفة مددها ب فإن عدد طرق، جرأء العمليتين ممّا ب ع بر ب

وبمكن تعميم القاعدة كما بلقء

إذا مكان عدد طرق (جراء عمل ما يساوى م) طريقة ومكان عدد طرق (جراء عمل ثان م طريقة ومكان عدد سرق (جراء عمل ثالث م) طريقة ومكذا (لى عدد طرق عبل را موم طريقة قان عدد طرق (جراء هذه الأعمال ممّا جام) × م، × م، × م

ا مبدأ السابية الوط

عبداً العد الشروط هو نفس مبدأ العد ولكنة لبدأ أولا بالخانة الشروطة لنعرف مر العرق التي تحقق هذا الشرطائم الخانة الثالية التي بها شرطة وتعرف عدد الطرق التي تحققها هي أيضًا وهكذا .

فوللا

(ذَا كَانَ لَمَيْمًا الأَرْقَامُ { ، ٢ ، ٢ ، ٢ ، ٢ ﴾ وتريد تكوين عدد مكون من ٢ أراام محتللة قبكم طريقة يمكن ذنك ؟

ولدرد على هذا السؤال فإنما ببدأ بالخانية الخالة العشرات المألف المثروطة أولا وهي الخانية المسرى خانية عدد الطبق ال

الثناث لأنه لا يمكن (ستخدام الصغر جهة اليسار وإلا أصبح المدد مكون سيرقمين فقط لدنك فإنه يمكن وضع \$ أرقام فقط في هذه الخانة

" عند طرق خبيار الرقم في خانة اللنت = ع

ويعد (ختيار قيمة في خادة المنات يتبقى ۽ أرقام فقط دختار من بينهم لخانة العشرا^ل ن عدد طرق ختيار الرقم في خانة العشرات ۽ ۽ ويعد (ختيار رقم في خانة المات واقع في خانة العشرات يتبقى ٣ أعداد فقعة تختار من بينهم لخانة الأحاد

- / عدد طرق (طبيار الرقم في خانة الأحاد :: ٣
- ے عدد الطرق الكلية = ₹ × € × 7 = % و طريقة

مثال

الحل

الحبل

مول تحارى له خلائة أبواب بشم طريقة يمكن لشحص الدخول والخروج من المول بشرطة أن لا يصمح له بالخروج من أي باب دُخل منه ؟

عدد طرق الدخول إلى المول = ٣ طرق ، عدد طرق لخروج من الدول = ٣ طريقة ي عدد طرق الإختيار = ٣ × ٢ = ٣ طرق

كام عندًا مكونًا من تلاثة أرقام بحيث يكون رقم الأحاد من المناصر { ٣٠٢} ورقم المشرات من العناصر { ٣) ه} ورقم الثات من المناصر { ٢٠٤٥}

Scienced with dendarrow

@ Kylan

من الشجرة لبيانية،

عدد طرق الإختيار = بعد طرق رقم الاحد × عدد طرق رقم العشرات × عدد طرق رقم الاحد عدد طرق رقم الدر

مثالي

تناتثة أشخاص وصلوا إلى محافظة الاقصار فيها أربعة فنادق فها عبد الطرق الرّ مها يمكن ترول كل شخص في أحد هذه الفنادق وحده.

الجلل

الشخص الأول يستطيع أديحتار أحد أربعة قعادق

.. عدد طرق إختيار الشخص الأول = ٤ طرق

وعندما يحتار فندقًا معينًا فإن الشخص الثاني لا يجد أمامه سوى أن يحتار في أن بين الثلاثة الباقية

رُ. عدد طرق أختيار الشخص الثاني = ٣ طرق

وبالتالي عبد طرق اختيار الشخص الثالث = ٢ طريقة

يّ عبد الطرق المختلفة = ف × ∀ × ۲ = ۲۶ طريقة

مثال

دخل بوسف مطعم لتقديم الوجبات الجاهزة فكان المطعم يقدم 8 أنواع من الوجبات الساخنة و ٣ أنواع من السلطات و 4 أنواع من الشرودات شكم عدد الوجبات التي يمكر أن يقدمها يوميًّا هذا الطعم على أن تشمل الوجبة نوعً واحدًّا من الوجبات الساخة والسلطات والمشروبات؟

الحل

هنده طرق الإختيار = 4 × 7 × 4 = 14 طريقة

- 🚺 يعكون العدد من الأرقام؟ ٢٠٥٢ (٢٠٥٠)
 - 🕡 العدد مكون من خمسة أرقام .
- 🕜 العدد ژوچي،

في أهي عدد الخيارات المكنة أمام رحاب لإستعادة رقمها ؟ إذا علم أن الأرقام لا تتكرد

الجل

(للحظ أن الأرقام محدودة ونا تتكل) عدد خايات العدد خيسة :

تبدأ بخانة الأحاد المشروطة (العدد زوجي ٦٤٤٤٢)

عدد طرق ، ختيار الرقم في الذانة الأولي و و طرق

عدد طرق ختيار الرقم في الذانة الثانيـــة = 4 طرق

عدد طرق إختيار الرقم في الذالة الثانثية 🛫 🔻 صرق

عبد طرق (ختيار الرقم في الذالة الرابعية 😑 🔻 طرق

عدد طرق إختيار الرقم في الذانة الذاهسة = و طرق

عدد الطرق (الإختيارات) = ٢ × ٢ × ٢ × ١ = ٢٧ طريقة

گنام عددًا من خوس خانات تیداً بعدد طردی یمکن تکونیها من الأروام ۲۰۱۱ - ۲۰۱۲ م ۲۰۱۲ وی تکرار

الحال

تبدأ بخادة الأحاد الشروطة (٢٥٩) والأن العدد فردي)

عدد طرق (ختيار الرقم في خانة الأحاد (الأولى) = ٣ طرق

عدد طرق (خنيار الرقم في الخانة المشرات (النانية) = و طرق

وهى باقى الأرقام بعد الإختيار الأول (د أرقام)

عبد طرق إختيار الرقم في الذانة الثالثينة = \$ طبرق

عدد طرق إختيار الرقم في الذالة الرابعية = ٣ طرق

عبد طرق إختيار الرقم في الخالة الخامسة 🚽 🔻 عنريقة

ن هند الطرق = $\forall \times \forall \times \xi \times a \times \forall = \forall \chi \forall \chi \in X$ طریقت

مثالي

بَحُتِ طَرِيقَةَ بِمِكُن تَكُويِنَ عَبِدَ مِكُونَ مِنَ رَبِعِةَ أَرَقَامَ مُحَتَّلُمَةً مِن الأَرْقَامَ { ٢٠٤٤ ٣ إِنْ ٢٠٤٤] يحيث يكون رقم العشرات زوجيًا.

الحل

تَبِعَا ۚ بِالْخَاتَةَ؛ لِشَرُوطَةُ وَهِي خَاتِةَ الْعَشْرِاتَ

عدد طرق إختيار الرقم في كانة العشرات زوجيًا { ٢٠٢ } = ٢ طريقة

عدد طرق إختيار الرقم في ذالة الأساد ٢٠٠ طسرق

عند مترق إختيار الرقم في خالة المثات = ٢ - طريقة

عدد طرق إختيار الرقم في خالة الأليف ٢٠٠ طريقة

يُ عدد طرق الإختيار=٢×٢×٢× = ١٢ طريقة

	مار مر منظ التعاد	(Althou
ladd cad their ladge tak ald byle pais taysul		ول اجم معنا وأختم نفسك
W-1	Landing Co.	ختیار تراکمی 🔻
المرجة العالية الم		الأثية ، الأثية الأثية ، الأث
*1177	= 9 فإن حاصل شربهما =	ال المناد والمصهدا الهندسي
[v d =}= ,2.	ل ۲۰ (۱۰۰) مو(۲۰۰۰ مردیده)مو(۲۰ م	
['U & T+1	ن ۾ ن ۾ ن کي ن گ _{ن ۽ ۽} + ۲ فإن أساس نئٽتابعة يسار	المتتابعة حسابية فيها گ
[v- d 1 d	[۳ أي – ۹ } غلمددين 4ء ص هو جبا فإن ص =	﴿ إِذَا كِسَ الْوَسِطُ الْهِنْدُسِيَ
[Yo- d Yo	d m d n3	
	بعة الهندسية (عل) = (۲۰۰۲	 أوجد محموع حدود التتار
1	وحدها الماشر.	(بنداء من حدما الرابع إل
- 11 11 12 12 12 12 12 12 12 12 12 12 12		**************************************
4 10 1 1 17 10 11 11 11 11 11 11 11 11 11 11 11 11	d+25(4+) + quanterité 5054 244+ no námbr d à 1115+ 1116	\$\$\$4 \$ # \$\$###############################
4 6 8 4 + In a a a a a	fr. hand-bb22 422 4497774 and + 244 24-749 440 a and b and d.	bddd b166++88 -989+1995-p p mamaaa
	مجموع عدد غير منته م	(۱) أوجد الانتلامة المندسية
		حدودها يساوى ١٨ عحده
25-27-100-1-10-10-10-10-10-10-10-10-10-10-10-) adda middibbadia da seasan yang parana.
4+77444********************************	+++++ mai qila a dia bida dib b 884 + 1488 + 1+488 7 7 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7	7-1-1-11-11-11-11-11-11-11-11-11-11-11-1
·	14 +4 54 5 4 b4 b 4m a a name na que y paj +444 g-1 +44 +4+4 b4 4++4 b4 4++4 b4 -	Part +-P4 ++4 0++ ba +-aaaaaa-aa

المعدة لها ثلاثة أبوب بخدم طريقة يمكن الأحد الملابة الدخول والطراع من الجامر الحامر الجامر الحامر ا بشرط أن لا يسمح له بالخروج من أي ناب دخل منه ؟

التي يمكن الخالد أن يتناول وجيد من بين شاون والمناول وجيد من بين شاون والمناول وجيد من بين شاون والمين رجيدة عدد الرحيون عدد الرحيان المروبات (برلقال) ليمون) ماليون (حيدة) دجاج ؛ سمك) ومشروباً واحدًا من الشروبات (برلقال) ليمون ؛ ماليو)

المواع من المطالب ، أنواع من المطالب ، أذواع من المبلاطات ، ٣ أنواع من السلامان النيخ مصعم بعدم ، سوع سي هذه عدد الوجبات التي يمكن أن يقدمها يوميًّا على أن تشمل الوجبة لوعًا وأحنًا ب كلمن الفطائر والسلطات والشروبات،

🗖 كنم عددًا مكونًا من ثلاثة أرقام بحيث يكون رقم الأحاد من العناصر (١١) ورقم المشرات من العناسير ﴿ ٣ ﴾ ٤ ﴿ ورقم اللئات من العناصير ﴿ ﴿ وَ ٢ ﴾ ﴾ ﴿ وَرَقُّمُ الْلِنَاتُ مِنَ العناصير

رُارًا} مسائل المستوى الثاني

🚹 أختر الإجابة الصحيحة من بين الإجابات المعطاه ،

🕥 عدد طرق جنوس 🛪 أشخاص على ثلاثة مقاعد في صحت 🛪 🕠 🕠

→ عدد طرق تكوين عدد من فلا فلا أرقام من الأرقام { ٩ ، ٧ ، ٩ ، ٢ ، ٥ } إذا سمح بالنكرة يعماوي سسست

💬 عدد طرق تكوين عدد من ثلاثة أرقام من الأرقام { ٢ : ٢ : ٣ : ١ : ٥ } بيونكرا وساوي مستسبب the direct of the

🔽 أختر الإجابة الصحيحة من بين الإجابات المعطاه ،

🕥 💯 عند طرق جلوس 2 طلاب على أربعة مقاعد طي صنف يساوي --------

d s+s d 1]

🅎 عدد طرق نرول ۲ أشخاص في أربعة فنادل حيث يثرل كل شخص في أحد هده التنه

PRENT & THEFT & THE & THE وحده يسأويسب

- المعلوانة علام المعلمات في مخروط عمكون علام المعلوانة على مخروط عمكمت على المعلوانة على المعلونة المعلمات في صفواحد،
- المنافعة ال
- المسرف الأرقام ، إلى و معمرطالا المعارف الأرقام ، إلى و معمرطالا مختلفة المسرف الأرقام ، إلى و معمرطالا مختلطة مختلفة يمكن انتاجها ؟
- الجبر ((ا كان مطروحًا ته ٢ مفروات في الهندسة ٤ ٣ مفروات في الجبر ٢ المراحة واللائن في الجبر ٢
- الأعداد الأعداد الكون كل منها من ثلاثية أرقام محتلمة مأخوذة من الأرفام الله عدد الأعداد الكون كل منها من ثلاثية أرقام محتلمة مأخوذة من الأرفام الله على الل
- انا علمت أن مجموعة أرقام شبكات المحمول في إحدى الدول تتكون من إحدى عشر رقم فإنا حكان الرقم (٢٥) ثابت من اليسار أوجد أحكير عدد من الخطوط بهكر أن تتحملها شبكات المحمول ؟

رُانِيًا مسائل تقيس مستويات عليا في التفكير

- كتم عددًا يمكن تكوينة من أربعة أرقام محتلفة وتحتوى على الرقمين ، ٨٠ ﴿ ﴿ إِمَا
- الله بكت طريقة يمكن تكوين عدد من خمسة أرقام مختلمة من الأرقام (١ ، ٣ ، ٣ ؛ ١٤٥٤) بحيث لا يتجاوز عددين زوجيين ولا عددين فرديين ؟
- الله المريقة يمكن تكوين عدد مكون من أريعة أرقام من ، إلى 4 وتكون محصورة بالأسلا و ٢٠٠٠ ولا يكون هدمًا طرديًا ؟

Charal Coopers (B)

إذا صربنا عدد صحيح في جميع الأعناد الصحيحة الموجية الأصغر منه فإن هذه العمنية تسمى امضروب العدده

فونا

(6) α_1 or α_2 or α_3 or α_4 o

Cognical

مضروب العدد الصحيح الموجب ب يكتب على الصورة إنه ويساوى حاصل ضرب جميع الأعداد الصحيحة الموجبة التي هي أصفر من أو تساوي به حيث.

1 = 1600 attack 0 = 1600 1فإن = ، أو ن = ١

- 🚺 أكبر عوامن 📭 هو ب وأصفرهم هو الواحد،
 - ن = ب ان-۱− میدن و خرج *

$$\underline{Y-U}(Y-U)(Y-U)(Y-U)(Y-U)(Y-U)U=\underline{U}$$

أي أنه يمكن كتابة مضروب العدد بدلالة مضروب عدد أقل منه

🗿 مضروب أي عند منحيح موجب يقبل القسمة على مضروب أي عبد منجع موجب أقل منه.

اوجد قيمة ، ١٥٠

الحل

$$114 = YY + \xi Y = \frac{Y \wedge X + \frac{1}{2} + \frac{1}{2} + \frac{Y}{2}}{2} + \frac{Y}{2} + \frac{Y$$

الوحدة النابية البياويل 🕳

مثال

الحل

في قيمة ، ن ؟

76

(ز) ڪان: <mark>(ن = ٢٢</mark>

, g r agis ag

لمعرفة العدد الدى مضروبه ٢٢ نفسم على ٢ لم عنى ٢ ثم على ٣ ومخذا إلى أن تصل إلى باتح الفسما = ٢

Y YE Y 17 E E E=U.;

4]=인.

txtxTXt=U

و الم

أوجد فيمة ال

الحل

7+ul

£7 = (7 + U)

(Y=v)・<u>Y+v</u>(: (i)

 $gy = (1 + \psi)(1 + \psi)$

1=8-07+¹0

ں = ہم (مرفوض) ع

.= 17-7+ U7+ 1U *

 $\bullet = (0 - \psi) (A + \psi) \wedge$

 $\mathfrak{L}^{\dagger} = \frac{|\mathcal{Q}|(1+\psi)(1+\psi)}{|\mathcal{Q}|},$

0=V.,

مثالی.

الحل

 $\frac{\overline{\nabla t}}{|u|} = \frac{1}{|\overline{T} - U|} + \frac{1}{|\overline{T} - U|(1 - U)|} + \frac{1}{|\overline{T} - U|(1 - U)|U|}$

 $\frac{T_1}{|\omega|} = \left(1 + \frac{1}{1 - \omega} + \frac{1}{(1 - \omega)|\omega|}\right) \frac{1}{|T - \omega|}$

 $\frac{1}{|U|} = \left(\frac{(1-u)(u+u+1)}{(1-u)(u)}\right) \frac{1}{\frac{1}{1-u}}$

فالرياصات

$$\frac{T!}{2!} = \left(\frac{Q - \frac{1}{2}Q + Q + \frac{1}{2}}{(1 - Q)Q}\right) \cdot \frac{1}{T - Q}$$

$$\frac{Y1}{|y|} = \left(\frac{1+\frac{1}{y}}{(1-y)y}\right) \frac{1}{|y-y|}$$

$$\frac{TT}{U} = \frac{1 + TU}{T - U(1 - U)U}$$

41=1+ TU

رائل <u>ال - ه م او الم</u>

أوجد فيمة ، ب

الحل

$$\underline{a} = \underline{a - U}(t - U)$$

 $|\mathbf{x}| = \mathbf{t} + \mathbf{o}|\mathbf{A}$

التبداديد)

رهٔ كان لدى أحد محلات الأزياء ٢ أنوار غوديل معين من القمصان وأراد ثلاثة أشخاص اختيار ثلاثة منها بأنوار مختلدة.

فبخدع طريقة بمخن إختيار هذه الألوان الثلاثة معًا ؟

بالطبع من الشخص الأول يمكنه (ختيار أي تون من المبتة ألوان أي أن له ؟ طرق الإختيار أما الشخص الثاني فيختار بعده تون من الخمسة ألوان الباقية أي أن له ؟ طرق الإختيار أما الشخص الثاني فيختار بعدهما تون من الخمسة ألوان الباقية أي أن له ؟ طرق الإختيار أما الشخص الثالث فيختار بعدهما تون من الأربعة الوان الباقية أي أن له ؟ طريقة فيكون عدد طرق (ختيار الألوان الثلاثة معًا = ؟ × 8 × 3 = ، ١٢ طريقة وحكل ثلاثة الوان تم (ختيار هم معًا يسمى تبديلاً المبتة ألوان ما خودة ثلاثة ثلاثة المناف مرة ويرمز لذلك بالرمز ألى وتقرأ دستة للم المائه.

اى المراد (x a x 1 منتب بالالة الحاسبة كالاتي:

6 Shift X 3

ای است میں حاصل ضرب عدة عوامل عددها ۳ تبدأ بالعدد ٦ وكل عامل ینتصر واحد عن سابقه،

 V ل $_{1}$ = V × م × ؛ نصرت العبد V العبد الدى قبله ومكدا (ئى ۽ عوامل مين نسبق نستئنج أن حكل طريقة من طرق الأختيار نسمى تبدينة وتعرف كما يلى ،

التبديلية

التبديلة لعدد من الأشباء هي وصعها في ترتيب معين.

وبمكن صياغتها رياضيًا بالتعريف التالي ،

ومادق

يرمز لمدد تناديل ب من العناصر المتميرة ماخوذة م من العناصر في كل مرة بالرمز

- أن أن الرمر "لي ويقرأ ان لامن عبدل على عدد تباديل اله من الأشياء المختلفة مأخوذة منها الله من الأشياء في كل مرة حيث ي ﴿ ن
 - اَقَ أَن اللهِ عدد الترتيبات التي يمكن تكوينها من ب من الأشياء بحيث يحتوى كل ترتيب على ب من هده الأشياء
- فهشاً من ه أشياء بحيث يحتوى كل تكوينها من ه أشياء بحيث يحتوى كل ترتيب على ٣ من هده الأشياء في كل مرة
- أَى أَن قَلِم = ٢ × ٤ × ٥ = ٢ أَى أَن العبد الأخير = (١+٣-٥) = ٣)

 قل = عبد الترتيبات التي يمكن تكوينها من و أشياء بحيث يحتوى كل

 ترتيب على 2 من هذه الأشياء في مكل مرة.

ان أن أن العامل الأخير في حاصل الضرب هو (١٠-٠، ١٠)

أي يزيد واحديس الفرق بين 🗘 🤊

العقال الحاد وإذا ضريقا البسط والمقام في م × × × وإذا ضريقا البسط والمقام في م × × × و

פֿוַטי ינק = דאיזאו פרעייני ורַ = ואפאזאדאין

 $\frac{1}{|Y-Y|} = \frac{1}{|Y-Y|}$

 $\frac{V!}{e^{\frac{1}{2}}} = \frac{V}{|Y|} = \frac{1 \times 7 \times 7 \times 2 \times 4 \times 7 \times 7}{|Y|} = \frac{V}{|Y|} = \frac{V}{|Y$

مها سبق نستیته آن $\sqrt{\frac{|v|}{|v-v|}}$ حیث \sqrt{v} ط ، $v \in V_{r}$ ، $v \in V_{r}$ وما سبق نستیته آن و می است

الحظران "لي له صورتان فإذا كانت بمعلومة يفضل (ستخدامانصورة،

 $(1+\sqrt{-0})\cdots(1-0)(1-0)u=\sqrt{0}$

فمثلاً ، ^بل = ب (ب -۱)

اماً إذا كانت ي مجهولة فيغضل استخدام الصورة : "لي ح

وميما ^سل = ا<u>ب - اب - اب - اب</u>

فمثلاً الرائد المال

اق آن (^{در} د,=۱

0 "لی≃ات

ملاحظات () "ارب= ب

والراغيات

الوحدة الثمية التبادين

ويمض تلخيص قوالين التبديل فيما يني

ملخص فوتين التبادل

• بيستخدم إذا كانت ب معلومة (٢-٠٠) ريستخدم إذا كانت ب معلومة حيث (٢-٠٠) ريستخدم إذا كانت ب معلومة

ان = ۱ (۱ - ۱) (۱ - ۱) (۲ × ۲ × ۲ × ۲ ٪ به عدد الموامل والحد الأخير = ١ الأخير = ١

 $v = \frac{U}{|U|}$ و $v = \frac{V}{|U|} = \frac{U}{|U|}$ $v = \frac{V}{|U|} = \frac{U}{|U|}$ $v = \frac{U}{|U|}$ $v = \frac{U}{|U|}$ $v = \frac{U}{|U|}$

ال<u>ا - ال</u> ويستخدم إذا كانت ي مجهولة غالبًا عانت ي مجهولة غالبًا

Simple complete in

die Glicelle

يمكن أن تستدل في المسائل اللفضية عنى السيديل من خلال الجمل التالية ،

۞ إختبار تجدة للقيام بأعمال محتلفة التديد وظبقة شرئيس ونالب)

🐠 الإختيار على التتالي (واحد وراء آخر)

🔐 غیر مسجوح بالتکرار التبادیل البیتیب فیصا حامی

(السحيابدون إرجاع ليدون إداق)

توزيع عماصر على أملكن بحبث بشغل كل عنصر مكان واحد في نفس الوقت.

. مثال).

🔁 - رائي

ي″ 🕡

اوجد قبمه ، 🐠 ل

الحل

D'L,=PKAKYKF=3F#

1=1×1×1=pJ*(*)

 $-\frac{1}{2} = \frac{1}{2} - \frac{1}{2} = 0$

استخداه الحاسبة ،

برمز للتباديل بالحاسبة العملية بالرمر والسوند وفيه الفاتيح الا الله لحساب اليمة ^{ال}لي بالحاسرة تصفط بالتنابع على الماتيح (لأتية ر

الحل

ئبدأ بقسمة المدد ٧٧، على ٦ ثم تقسم المدد الناتج على ٥ ثم نقسم العدد الباتج على £ ثم يقسم العدد الباتج على ٣ 4 1 Wi تم نفسم العدد البالج على ٢ حتى تصل إلى أثمدد ؤ 11

THYREXPRE PROMISE

0 1:

J"= J" :.

1=1 = 1-0 1-1-1.

مثالي

(ذا كان ألي= ۲۱۰) ^{۱۱ با}لي= ۲۲۰ فأوجد ، ۲ بان

الحال

من الفترش وجود ٢ أعداد منتائية حاصل طبريهم ٢١٠ حيث أن العدد رقم آحاده «صعر» طلانا نبدأ القسمة بالرقم «a» ثم نحاول العدد الثالي له «q» وهكدا ويمكن تقسيمه بأى صورة لإيجاد ٢ أعداد مثثاثية حاصل صريهم يساوي ۲۱۰

0×1×V=_J(:

"t, + "L, + "L, + "t,

مثالی. ادا کان: ^{در} ل + بان + بان = ۱۲۰ فأوجد قيمة ۽ (٢٠٠٠ : ١٠٠١)

الحل

$$\forall i = \frac{10 \times 1}{4} = \underbrace{1}_{1} \underbrace{1 - 0}_{1} \underbrace{1 + 0}_{1}.$$

إذا كان: ١٠٠١ ل ٢٠٠١ الر

حل آخر ،

$$\frac{|U|}{|Y-U|} = \frac{|Y-U|}{|\xi-Y+U|} = \frac{|Y-U|}$$

اولا- الرتيب ل من العناصر في صف واحد فإن -

- عدد طرق إختيار السمير في المكان الأول = ي
- عدد طرق اختبار المصرفي المكان الثاني = (ب ۱)

عدد العلمق تعقص طريقة واحدة بعد إختيار العنصر في المختار الهل.

- عدد طرق اختیار العنصر فی المکان الثالث = (ن ۲) ···· و معن ا (لی أن نصل إنی اخر عیصر والذی یکون له طریقة واحد i
 - أى أن عدد طرق اختيار العنصر الأخير = ١
 - أى بن عدد الطرق التي ترتبيها ن من العناصر في صف وحد
 - <u>∪</u>=1×1×1×....(1-∪)(1-∪)∪=
 - أى أن عدد طرق ترتيب س المناسر في هف واحد عراب

تَانِياتُ ﴿ لَمْ يَبِدِي مِن العَلَاصِرِ فِي حَالَّمِهُ فَإِنْ :

الدائرة ليس بها نقطة بداية أونقطة نهاية لدلك فلن يبدأ الترتيب إلا يعدوسه السول لأول في أي مكان على الدائرة ويدلك يكون للمنصر الاول طريقة واحدة فقط وفي وفي في أي مكان والذي بمجرد وصعه في هدا المكان فيعتبر تحدد به بداية الدائرة ونهاية بالأخرين ثم نبدأ ترتيب العناصر الأخرى ويشون ،

عدد طرق (ختيار (تعنصر شي المذاب الأول = 1

عدد طرق إختيار العنصر في المكان الثاني = (ب-1)

عدد طرق (ختیار انمنصر فی المکان الثالث = (ب - ۲) ومکنا

الى أن نصل إلى أخر عنصر الدى يكون له طريقة وإحدة

أى أن عدد طرق اختيار العيصر الاخير = ١

أى أن عدد الطرق التي نرتبيها ب من العناصر على دائرة

<u>1-∪</u>}=1×1×1×.... 1-0)(1-0)×1=

أى أن عدد طرق ترتيب به من المسامير على دائرة = ١٠٠١

الوجدة ليستة ليبادرن

.مثالی

نشاه طريمة يمكن ترتيب و أشخاص في و مقاعد بحيث يجلسون:

🔽 على شكل دائرة مستديرة.

🚺 في صف والي

الحل

- کیمکن تلاشخاص اخمسة آن پجلسوا طی صف واحد بعدق شرق عددها = <u>= = 0 × 1 × 7 × 1 × 1</u> + 17 طریقة

، مثالی _

أوجد عدد الطرق المختلفة تجلوس وطلاب على و مقاعد في صف واحد

الحل

الميتا ؟ مقاعد براد اختيار إ منها في كل مرة

.مثالي

اود، عدد الكلمات المختلفة التي يمكن الكويني عند أخذ و صروف من كنمة ورشورسة،

الحال

الديم لا حروف من كلمة «الدرسة» براد إختيار ۽ حروف محتلفة في كل مرة

 $\Lambda_{\mathbf{p}}^{\mathbf{p}} = \mathbf{f} \times \mathbf{o} \times \mathbf{f} \times \mathbf{f} \times \mathbf{f} \times \mathbf{f} \times \mathbf{o} \times \mathbf{f} = \mathbf{d} \Lambda$

ر مثلی

مجلس إدارة شركة بتالف من ثمانية أعصاء بكم طريقة يمكن أن نختار منهم رئيسًا وأحيبًا ومحاسبًا؟

الحل

لإختبار رئيس للشركة أمامنا ي إختيارات

الإختبار أمسا للشركة أمامنا لا إختيارات

لإختيار محاسبًا للشركة أمامنا ؟ إختيارات

أى أنما أجريما تبديلة على ٨ أشخاص مأخوذة ثلاثة ثلاثة

. مثالی

كم عبدًا يعكن تكوينه من الأرقام ٢٤٦٥٥١٤٥٣ يتكون من أربع خانات معتلفة ؟

الحال

 $f_{i} = \{ x \mid x \mid x \in X \mid x \in X_{i} \} \text{ and } f_{i} = \{ y \mid x \in X \mid x \in X_{i} \} \}$

أوجد السندين ،

🚹 أختر الرجابة الصحيحة من بين الإجبات المعطاه :

$$\begin{bmatrix} 1 & q & q & q & q & q & q \end{bmatrix} \qquad \dots \dots = \bigcap_{i \neq j} A = \frac{1-\alpha_j}{\alpha_j} \cap_{i \neq j} A = \frac{1-$$

📆 أحدر الإجابة الصحيحة من بين الإجابات المعطاه ،

ال الله الله الله الله الله الله الله ا			
[17. d v d ts d .]			
[Th of Ye of A of I]			
[me d m d A d M]= M-DE			
[187			
[• • • • • • • • • • • • • • • • • • •			
[t d T d T d T d T] [T - V J 170 = J J J D T D T]			
﴿ إِذَا كُلُونَ فُلُولِ الْفِيمَةِ لِ = ١٣٠ قُولُ الْفِيمَةِ لِ = ١٣٠٠ قَالُ ١٣٠ قُلْلُ ١٣٠ ق			
() إذا مكان ^{ن ل} ي ع ^{ن ل} ي فإن ن = [١ ١ ١ ١ ٥ ٥ ١ ١]			
(b) عند الطرق التي يمكن أن يجلس بها ٣ اشخاص على a مقاعد تساوي			
[70 4 10 4 17 4 4]			
🕥 📨 عدد طرق ترتیپ حروف کلمة مصنع تساری سسسس			
[16 4 10 4 4 4 5]			
🕥 🔄 لَجنة مؤلفه من ١٧ عضوًا عند الطرق التي يمكن بها إختيار رئيس ونالب رئيس			
الهده اللجنة تساوى ١٩٣٠ ٥ ١٩ ١ ١ ١٩ ١٩ ١٩ ١٩ ١٩			
الله المن عدد طرق إختيار عدد مكون من رقمين مختلفين من مجموعة الأرقام			
[4 d w d v d (۸) اتساوی ۱۲ م ک ۲۰ ال ال ال ال ال			
(ان این عدد طرق ترتیب ۷ أطفال فی دالرة لساوی			
[0.6. d VV. d V d 1]			
😉 😭 رقم تليفون ڀٽکون من ۾ منازل			
ه پجدان تکون احدالاُرقام ۸:۵:۱٤:۲ م			
عيدما باقى المنازل تعنالف من أي رقم دون قيد و كنام عدد أرقام التليمونات المختلمة			
[home of engages of come of engage] Partiel			

📆 اوجد فيمه کل من ج

- - 0 J* (P)

Yx "J° @

,J'x,J' @ @

- استرا أ 🕲 🕮 ۴ 🔁 📉

 - Tx JO [m]

1~ T (| 1974)

- [4] (A) (, + 16,
- "AAA"+ "A \$\$\$ (M)
 - 44 (F) [14]
- **,**J^+,J^⊠®
 - 1/10
- 🚺 اوجد قيمة ب التي تحقق ڪرمن:
 - 1=41

- YE=リ鰡() [60]
- 0 = 1+ U (Y)
- 14.= "P. [4]
- VY.= +U" () [1]
- £=,J"+,J" [17]

- 110= T-UP
- 1+U (1)
 - 444+= J'* 🕸 🖤
 - 45.= 474+n
- 17.= JU (4) 01- 17 + JU + JU (5)

🔝 اوجد قيمة ب (ذا ڪئڻ :

- Y1•= ,J ¥ 8% ①
- 1€=<u>∪</u>(1+∪)®
- 61=U: 1+U() (1)
 - 17= 1-07 0 (F) THE THE THE OF

Y+0]= Y+0|Y()

- [6]
- لا کان ال = یا د جرد ، ای کان الا کان
- آل بذا كان اي = ١٢٠) ^{دن} ل = ١٧٠ أوجد ، ا<mark>ن س</mark>

[0]

إسطرا

[3]

, 6

0.11

344

143

[14]

[7]

[#]

[1]

М

10

[1]

[0]	المافر ت آن کان سر ۲۰۰۰ ر _ی ۲۰۲۰ از س بر سر ۱۹۰۰ اوجد ، سر س			
(v4v)	الله الله الله الله الله الله الله الله			
[11]	الله الله الله الله الله الله الله الله			
[7]	الله المكان " لي عال × 1 الي عال الله عال " ا			
لونة من سبعة	🖼 🥶 أوجد عدد طرق إختيار رئيس ونائب رئيس وسكرتير من لجنة م			
[#b-]	أشخاص.			
الله الله من بين ثمانية طلاب بدئم طريقة بمكن تعلم التربية البدنية (ختيار ثلاثة طلاب (والد تلو الأخر) علاجتراك في فرق كرة القدم وكرة السلة والكرة الطائرة على الترتيب. [20]				
	اثبت أن ، ۲+ س = ۲+ س من اثبت أن ، ۲+ س عند الله الله الله الله الله الله الله الل			
	البت ان ، <u>۱+ ۰ = ۱+ ۰ ان</u>			
	[الق] مسائل تقيس مستويات عليا في التفكير			
Est	ادا کان $\frac{ v-v }{v} = \frac{ v-v }{(v-v)}$ فأوجد قیمة: ب			
(4)	النا كان الله على على على الله			
[6]	ادا كان ۱۰۰ لي: ٢٠٠ فما قيمة: ٢٠٥			
	(۱×۷×0×۲×۱) عند ان الم = ۲ افراد ۲×۵×۷×۹)			
lij .az	النا كان "لى فأوجد التي قيمة للعدد ب تحقق المتبايمة السابا			
hi	الناكان للل + ال = ١٨ فأوجد قيمة: ١٠			
-				

علها فيها سبق أن التباديل هي إختيارات مرتبة يمكن تكويتها من مجموعة من الأشياء مأخوذة كلها أو بعصها في كل مرة وفي بعض الأحيان بحتاج (أن أجراء إختيارات بدور، ترتيب،

فمثلآ

(ذا كان أربعة أندية { إلى بي عبيه و } وتقام مباريات لكرة القدم بنظام الدورى بين المرق بحيث نقام الباراة على ملعب الفريق المدكور أولاً فإن الترتيب هنا له أهمية فتكون الإحتيارات المكنة هي ،

ويسمى كل إختيار من الإحتيارات و تبديلية و

إما إذا أردنا إقامة مباراة بين فريقين من فرق الأندية الأربعة في أحد الإحتفالات الرياسية ففي هذه الحالة لا يهم الترتيب وتكون الإختيارات المكنة هي ا

{5cm}c{5cu}c{acu}c{sct},{act}c{uct}

وبسمى كل إختيار من الإختيارات، ثوفيقة ،

مما سبق تالحظ أن

الاران)،(س۱) تعبر عن تبديلين الأن(ا،س) الأن(ا،س) المراد) المبر عن توفيق واحد الأن السالة المراد) المبر عن توفيق واحد الأن السالة المراد) المبرعين المالتوافيق لا شهتم بالترتيب.

ومن دلك يمكن تعريف التوافيق خما يلى ،

تودف

مد التواطيق الكونة كل منها من رسن الأشياء والختارة من بين $(v_i)^{(a)}$ مند التواطيق الكونة كل منها من v_i من العلام المناسم الوقت هو v_i حيث: $v_i \leq v_i$ من $v_i \in v_i$

معنى دلك،

فمثلآ

^عرا_ب تعنى عدد المجموعات الجرئية التي تحتوى كل منها على ٢ عناصر إينز تكوينها من مجموعة تحتوى على دعناصر وتقرأ ٥٠ قاف ٣٠ أو ٥٠ قوق ٩٠.

وأبضا

 أن تعنى عدد المحمومات الجزئية التي تحتوى كل منها على) عناصريس تكوينها من مجموعة تحتوى على ؟ عناصر.

وبالناتی ^{ای}ن تعنی عدد المجموعات الجزئیة الخالیة التی یمکی تکویها من معرف تحتوی علی و عناصر وهی باسطیع محموعة واحدة أی آن ^{ای}ن _ = ۱

وأيضا

ا بي وهي على عدد المجموعات الحزلية الرباعية التي يمكن تكويبها من مجموعة تحتره طه عناصر وهي بالطبع مجموعة وحدة حيث أن أي مجموعة هي مجموعة جزئية من نضها أداة أن عنا أيضًا وذلا حظافي مثال الأندية الأربعة السابقة إننا نختار فريقين من الدية وأنعا العباديل يساوى ١٣ تبديلة وعدد التواطيق يساوى ٣ ترفيقة.

$$t = \frac{Y \times Y \times t}{1 \times Y \times Y} = \frac{yJ^t}{|Y|} = yJ^t$$
 (15)

$$\frac{(1+\sqrt{-\upsilon})\cdots(Y-\upsilon)(1-\upsilon)\upsilon}{1\times Y\times Y\times \cdots(Y-\upsilon)(Y-\upsilon)(Y-\upsilon)} = \frac{\upsilon^{\upsilon}}{\upsilon^{\upsilon}} = \upsilon^{\upsilon}$$

$$1\times Y\times Y\times \cdots(Y-\upsilon)(Y-\upsilon)(Y-\upsilon)$$

وبقص استخدامه إذا كانت م لها قيسة عسرية.

$$\frac{\sqrt{-\sqrt{3}}}{\sqrt{-\sqrt{3}}} = \sqrt{3} $

وبغض إستخدامه إنا كانت ي ليس لها قيمة عندية.

ويمكن إستخناج البنائج التالية ،

ونستخدم هده النتيجة لحساب القيمة العددية التوفيق إد. كان ج > أن و فرئلاً

لإبحاد قيمه "أن م فإنما بالحظ أن ٩٨ عدد أكبر من نصف به لدلك نستخدم النتيجة

$$1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2$$

$$1 = \sqrt{\sigma^2} (1 = \sqrt{\sigma^2} = \sqrt{\sigma^2})^{\frac{1}{2}} \int_{0}^{1} dt dt$$

فمثلاً الاس = ۲۱ کی = ۲۷ سائی = ۲۰ ۱۰ ومکدا

ىتىجە 9 وإماء = ف U=3+5 إذا كان ، ^و و = ^{و و} و

Minati.

الماهر

فالباضياد

هناك بعض الجمل الدائة على التوافيق والتي لا تعتم باسرتيني

- المنان الدول المجموعة من الأشخاص (دون تحديد عمل كل منهم حسب الترتيد).
 - 🚺 اختيار مجموعة جرئية من محموعة كالية.
 - 🕜 الإختيار أو السحب دهمة وإحدة (معًا) أو عشوائيًا بدون ترتيب

مع ملاحظة أن ،

(۱) ، (، ،) (تعبر عن تبديلين حيث نهتم بالترتيب عي النباديل.

أما { م ، ص } ، { س ، ٢} تمير عن توفيق واحد حيث لا نهتم ما لتراتيب هي التوافيق

أوجد باتح ڪل من : 🚺 " بي

va" 🚺 0 to 0

$$t_0 = \frac{\forall x \neq x \neq x \neq x}{1 \times \forall x \neq x \neq x} = \frac{e^{i \int_{-1}^{1}}}{1} = e^{i \int_{-1}^{1}}$$

بإستخدام الحاسبة ر

بهكر استخدام الفاتيح ﴿ Shift ص اليسار لليمين لكتابة رمز التوافيق؟

كمايلس، 15 الناتج — - 4 € Shift -- 6 -- ابنا

*= ,U"(T)

1= 0 " (T)

الحدة لتابة لنجافيض

بنا ڪاڻ ^ٿ ن_ا = ۸۴

فاوجد قيمة ، ن

الحل

$$\forall A = \frac{(1-\psi)\psi}{1\times Y}$$

$$A = O \therefore A = (V + O)(A - O)$$

$$(\wedge \neg \neg \neg \land (\land \lor \land \lor \lor \lor) \lor \neg \neg \lor))$$

$$AV = \frac{A_{1}}{A_{1}} :$$

$${}^{cr} U_{\gamma} = \Lambda \tau \, \underline{| \, \Upsilon} = \Gamma \alpha$$

$$\forall A = \frac{|\mathcal{Q}|}{|\mathcal{T}| |\mathcal{T} - |\mathcal{Q}|} \therefore$$

$$\uparrow \Lambda = {}_{\uparrow} \sigma^{\sigma}$$

$$\underline{Y}[YA = \frac{Y - Q[(Y - Q)Q]}{Y - Q[}]$$

$$\boxed{A=0.7.}$$

.د ۳ل پ = ۲۲۰

$$i = (V + iJ)(A + iJ)$$

ـ مثالی. الا کان سے = ۱۲۰ ، ۲۴ سی = سی ف<mark>اوجد قیمہ کل من س</mark> یی

والباقيات

 $\sqrt{J^{2}} = \frac{\sqrt{J^{2}}}{\sqrt{J}} \times 76$

1=1:

الحال

أوجد قيمة ، ي

$$_{V+\varphi}\psi^{1a}=_{\varphi^{1}}\psi^{1a}\otimes$$

$$(^+ \searrow = \frac{r}{\gamma} \left(\alpha \sqrt{\epsilon} \operatorname{gau} Y^{\dagger} \mathcal{C} \setminus \mathcal{C} \right) = (^+)^+$$

14

14

وزا مڪان ^{- - ک}لہ ۽ ۱۲۰ ۽ ^{ن + ک}ن = ۱۲۰ اُوجد قبمة ، ۲، ن

$$V = 1 - 0$$

Y=(:: وبالتعويض في 🕥 عن 🕠 hau!

مثالي

بكم طريقة يمكن إختيار تجمة من ٣ أشحاص من سي ١٢ شخص

الحال

" الإختيار لا بعتمد على الترتيب فإن كل إختيار يسمى توفيقًا

بكم طريقة يمكن (نتخاب لجنتين تتكون كل منها من أربعة أشخاص من بين عشرة أشخاص بحبث لا يدخل شخص في كلتا اللجنتين

الحل

 $\frac{1}{2}$ عليد طرق أنتسفاب اللجنة الأولى = $\frac{1}{2}$ به $\frac{1}{2}$ × $\frac{1}{2}$ وبعد إختيار اللجمة الأولى فإننا نلاحظ أن عدد الأشخا<mark>ص أصبح ٦ أشخاص ن</mark>حتار معهم لجنة من وأشخاص.

عدد طرق انتخاب اللجدة الثانية = $\frac{7 \times 4 \times 9 \times 7}{1 \times 7 \times 7 \times 7}$ = 10 طريقة عدد الطرق التي يتم بها إنتخاب اللجيتين = ۲۱۰ × ۱۵ = ۳۱۰۰ طريقة

ALLEGE STATE OF STATE

بخم طريقة يمكن تكوين لجنة من بين ١٢ طالبًا و ٩ طالبات بحيث تتكون النجعة من: 🕜 أربعة طنبة أو ثلاثة طالبات.

🚯 أريمة طلية وثلاث طالبات.

الحل

عدد مارق إختيار ۽ طلبة من يون ١٢ طالب = ١٢ وم ۽ = ٩٠٠ عدد طرق (ختیار ۳ طالبات می بین ۹ طالبات = ^۱ ی _ب = ۸t

عدد طرق إختيار أربعة طلبة و ثلاث طالبات

= 140 × 14 = ۱۹۵۸ طریقة

عدد طرق إختيار أربعة طلبة أو ثلاثة طالبات

= ۲۹۵ + ۱۹۵ طریقة

إذا كان الربطوين إختيارين بعرق و - خانت نصرب ناتجي الإخسارين إذا كان الريمة بين (ختيارين بحرق

دأوه فإنثا تحمع ناتجي الإخبيار

متلك باسكال ،

بلياز باسكال (١٦٢٣ – ١٦٦٢) ، هو فيلسوف فرنسي ورياضي وفيزيائي اندم نظرية الإحتمالات وصمم تنظيمًا ثلاثيًا من الأرقام سمى مثلث باسكال في حساب الإحتمالا وأخترع باسكال أيضًا آلة حاسبة تؤدى عمليات الجمع والضرب.

من تأمل مثلث الأعداد المقابل ،

🕥 الصف الأول ،

يمثل (ب = ب) من العناصر مأخوذ منهــا ص=دأوس=۱

هيكون ال = ١٥ الى = ١

😘 الصف الثاني ،

يمثل (∪ ±٢) من العناصر مأخود منها س = ، أو س = ٢ أو س = ٢ شي كل مرة \dots فیکون † ی = 1 ه † ی = 1 وهکذا

- العدد في أي صف بإستثناء العام الأول يساوى مجموع العددين الموجودين فمثلاً الصف النالث (١٤ + ١٤) وهكدا .
 - 🔕 يوجد تماثل حول العدد الدي يموسط الصف (إدا كانت ب فردمة)
 - 💽 يوجد تعالل حول العبدين اللدين يتوسطان الصب (ادا كانت ن روحية)

نَشَاظًا فَطَرِ الشَكَلِ المُندسِي :

م القطعة المستقيمة التي تصل دين رأسين غير مستاليين

عنبي أقطار ألمثلث دسفر

عيد المطار الشكل الرياعي = ١

عدد أقطار الشكل الخامسي = ٥

عبد أقطار ای شکل مندسی عبد أصلاعه ب
$$= \frac{U}{v} + (v - v)$$

$$4 \approx (Y-Y) \frac{\pi}{V} \approx 10^{-10} \text{ Mpc}$$

$$\Upsilon_1 \simeq (\Upsilon - A) \frac{A}{T} = 1$$
 عبد أقطار الشكل الثماني ع

$$To = (T - 1_1) \frac{1_1}{Y} = \frac{1_1}{Y} (1 - 1_1) = T$$

كما بمكن استخدام القاعدة النالية ،

عبدأقطارأي شكل متدسي عند أشالاعه ب ψ-₋υ⁰=

ويكون عدد أقطار الشكل السداسي = أ ال ب ١٠٠٠ = ٩

زائيا مسائل المستوى الول

لمعطاه	ير الإجابة الصحيحة من بين الإجابات	ما اد
	الأنافان يصفحها والمالية	511

[10] مدرسة بها ١٧ معلم يرأد تشكيل لحبة مكونة من ۽ معلمين بكت طريقة ؟

🚺 أخير الإجابة الصحيحة من بين الإجابات المعطاه ،

(1) d (1) d (10.)] والإلكان والمسان والدائم والدائم استست (۱) مان المان الم pd . 4 . 4 r] المعدد طرق (ختیار غریق می ع أشحاص می مجموعة بها به أشخاص لیسائل، المخاص لیسائل، المخاص المعالی المحاص المح [m 6 P.75 G 14 G P7] 🚺 أختر الإجابة الصحيحة من بين الإجابات المعصاد ، 🕥 عدد الطرق التي يمكن تشكيل لحثة من γ طالاب من بين ۹ طلاب ير سير ind the d TV d to] 😗 💯 عدد طرق إختيار ۴ أشخاص من ۾ أشخاص 🕾 🔐 🔐 10 4 to d to d to] 🕝 🨭 عدد طرق الإجابة على أسللة طقط في إمتحان يحتوى على ٦ أسئلة : ﴿ ﴿ to d re d to d T-1 عدد طرق (ختیار کرة حمراء و آخری بیضاء می بین ۵ کرات حمرانو ۱ عرد 64 × 4 × 4 10] بيشناء ك مسسس عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجراية إلى التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجموعات الجزاية ذات العنصرين التي يمكن تكوينها من () عن عدد الجراية () عدد ا [" 6 " 4 ,0" 4 ,3"] يساوي indeed a del ﴿ إِذَا كُنْ فِي عِلْوَ لِ عِلْمَا لِي الْمُولِ بِ عِلْمَا اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ الل ﴿ إِذَا حَكُالُ " وَ عَلَى اللَّهِ عَلَى اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّ 4 t G 7 d 7] سسسس = من المال
lar D or b , b M.

(a)

-

فالريطياء

الله المالت المجموعة س- = { ا ، ب ، هـ ، و ، و ، و } أوجد ،

- عدد الجموعات الحزئية الثنائية لهده المحموعة.
- عدد الجموعات الحزئية الثلاثية لهذه المحموعة.

311.18

زلنا مسائل المستوى الثاني

ن بین عشرة	كون كل منها من أربعة أشخاص مر	ركم طريقة يمكن (نتخاب لجننيس لت
[Thin	ستا اللجستين.	ائىخامىبىيە لايدخل شخصر فى ك
مكونة من إ		🎚 من يين ۱٫ معلمين ¢ ۾ معلمات في مدر
[11714]		معلمين و ۴ معلمات لتعثل الدرسة في
شكيل لجدة	ه ۸ طالبات بخم طریقة یعکن تنا	يَّ ﴿ يُوجِد فَى أَحِد الصموف ، ١ مللابِ
[++4.]		أنشطة غماسية تتألف من ثلاثة طلاب
اد هی سادة	نيار معلم لتدريب طلبة الأوليمييا	🗓 😥 من بين أربعة معلمين يراد (خة
[14]	ار آوجد عدد طرق الإختيار.	الرياصيات ثم معلم أخر لإعداد الإخت
[6]	أوجد اليمة " ص - ب	آ (ذا کان ^{ن و} پ = ۱۲۰
11)	فمأقيمة إن-ه	الَّهُ الْمُعَانُ * ^{و م ال} مِي = £ ٨
[6]	فماقيمة س	الإا ڪال ٿون _ + ٢١=
[1]	أوجد قيمة إن - ع	الإن منوان أن ب = T) أنه المنوان أن ب = T) أنه المنوان أن ب
[9539]	فأوجد قيمة بي س	لا کان ال = ۱۲۱ ال
	١٠ ن ۾ تم أوجد أقل قيمة تعدد ب	🛂 بنا کان "ل 😅 ۲۶ سی فاوجد قیمه
[411]	•	الثريتيمل مدوالملاقة سيحيجة.

فأوجد فيملان

15]

الا معال ۱۱۰ م و ۱۱ م

(الا ڪال ^ٿن ۽ ۽ ^{ٿن} ۽ ان _۾ هي تتابع حسابي فان ن ۽

[n d w d w d w]

$$...... = \frac{1 + \sqrt{\sigma^{10} + \sqrt{\sigma^{10}}}}{\sigma^{10} + 1 + \sqrt{\sigma^{10}}} o_{10}^{10} o_{10}^{10} = \sqrt{\sigma^{10} + 1 + \sqrt{\sigma^{10}}} o_{10}^{10} \oplus ig_{10}^{10}$$

$$\frac{A}{71} = \frac{1 - \sqrt{7}^{0^{\frac{1}{4}} + \frac{1}{7} - \sqrt{7}}}{\sqrt{7}^{0^{\frac{1}{4}} + \frac{1}{7} - \sqrt{7}}} \underbrace{0^{\frac{1}{4}}}_{0} \underbrace{0^{\frac{1}{4} + \frac{1}{7} - \sqrt{7}}}_{0} \underbrace{0^{\frac{1}{4} + \frac{1}{7} - \sqrt$$

[v d v d t d o]

فاثبت ان: ب > ۱۵

^00, < *0, 0, 0, 0 (1) (1)

فما قيمة : <u>٧ - ٧</u>

ا < عان ^۷ در < ۱۲ می ا

الا کان ''ب + ''ب = ب ۲ + ۱ ب + ه أوجد قیمة : ب ا

[۱۲۲] (دا کان ^{۱۲۰} ل_{ار ۱}۲۰۰ ن _{۱۲}۰ ۲۰۲۱) ^د و دهه اوجد قیمه ن ۱۲۰۲ <mark>تا</mark>

انا شانت س، مجموعة غير خالية ركان س = { (۱) ب): ۱) ب ∈ س، ا خ ب } وكان عدد عناصر س، يساري ۲۷ ع = { (۱) ب } : ۱) د ∈ س، } وجد عدد عناصر ع.

ثانيًا: التفاضل والتكامل

الوحدة الثالثة :

- والحرس 🛈 ، فعدل التغيير
 - والدرس و الإشتقاق
- والدرس ﴿ فواعد الإشتقاق
- «Κε_ταυ()) αώναδ εβδ βεβδ (δί**λε** δ βωλωλό,
 - الدرس : مشتقات الحوال المثلثية
 - والدرس ﴿ ، تطبيقات علم المشتقات
 - ه الحرس (@: التكامــــــل

إذا كانت د :] (، ب [← ع حيث ص = د (س) فإن أى تغير في قيمة س من س إلى س رقی مجال د یقاطه تغیر فی قیمة ص من د (س) الی د (س) وعلیه فإن :

مقدار التخير في س = ∆ س (ويقرأ دلتا س) = س , – س ,

abcl(التغیر فی <math>abcl(-abcl(-abc

وباعتبار (س، ۵ د (س))

نقطة على منحنى الدالة د

فإن لكل تغير في إحداثيها السيني من

س إلى س = س + و

بحيث س, +و ∈]() ب[) و غ،

.

ف الراضات

بحدث تغير ساطر في إحدثيها الصادي يتعس بالعباقي

ت(د) ـ د (س، + د) - د (س،) وتسمى الدالة تبدالة التغير شن د عبد سيء من

مُلَاعَظُونًا عَمَالًا الرمزين 🛆 س أو ي بمثلان الثغير في س

مثال

إذا كانت د (س) = γ س γ^{7} ب س – γ وتغیرت س من γ إلى γ ب و فاود بان التغیرت د عندما α = γ .

الجال

ب د (س) ہے ۳ س ۲ ہے س ۔ ۲٫۶ س تتغیر سن ۲ (س ۲ + عر

10941914=1-1+(x7=(Y)3 6 7=,U-1.

د (٢ + ٩) = ٢ (٢ + ٩) + (٢ + ٩) - ٢ = ٢٢ + ٢٢ ٩ + ٣٩ - ٢

= 72, "+" 11 C + 11

 $-(a) = c(Y + a) - c(Y) = (Ya^{T} + Yt a + Yt) - Yt = Ya^{T} + Yt a$

€ عبدما ۾ = ۳ره

 $\sharp_{2}(\forall = i_{3}\forall \times)\forall + {}^{\dagger}(i_{3}\forall) \ \forall = (i_{3}\forall) \stackrel{\triangle}{\hookrightarrow}$

۲) ت (-۱٫۱) أي إيجاد التغير عندما و = -۱٫۰

 $\uparrow_{2} \forall \forall - = (*_{1})^{-1} \forall + \uparrow (*_{2})^{-1} \Rightarrow \uparrow (*_{1})^{-1} \Rightarrow \uparrow (*_{2})^{-1} \Rightarrow \uparrow (*_{2$

णहा<u>त्री कर्णालेख कृत</u> ⊚

بفسمة دالة النميرات على كر حيث كر كوء تحصل على دالة جديدة م تسمى داللامتوسة التغير في د عند س = س عرب عيث ،

۱ (ع) = د (سر+ ع) - د (سر<u>)</u>

 $|e^{-1}(a)| = \frac{\Delta^{-1}(a)}{\Delta^{-1}(a)} = \frac{c(-1)}{c(-1)}$

ای آله به کن ایجاد داند التغیر شم نقسمها علی در او توجد <u>۵ س</u>

- ادا کان د (س) = س" + ۳ س فاوجد ،
- 🕕 داله متوسط التمير في د عندما س 🕳 س
- 🕥 متوسط التعير في د عندما تثغير س من ۴ إلى ۲

الحل

دالة التغير

دالة متوسط النخيز

.. س, = ۲ ، ۵ , = ۲ − ۲ = −۱

 $A = V + (1-) + V \times V = 1$

وبمكن إيحاد فتوسط ليغير في د عندما تتغير حل من + إلى + بأن توجد د ، ٢٠ ، د (٢) تم توجد المتوسط كما يني ،

$$A = \frac{1A - 1_0}{Y - Y} = \frac{(-U_y) - (-U_y)}{-U_y} = \frac{1A - 1_0}{Y - Y} = A$$

[دا کانت د: ۱۱ می می درس) ، سی ، سی + و 3 ای بر وکان ختوسط التغیر ۲ (و) تهایه عندما و حه فاننا نحصل بهده النهایة عربان جدیدة تسمی بمعدل تغیر اندالة عند المقطة سی حیث ،

معدل التغیر فی د عند س = ایسا م (و) = تیسا د (س + و) - درس بشرط آن تکون البهایهٔ موجودهٔ

ملخص لبعض القوانين

المرسخ

9

محیداللربع~ طول الطلع x نفسه ← د (س) = 4 س ا مساحة المربع = طول الطلع x نفسه ← د (س) = س ا حیث س طول صلع الربع

المستطيل

محيط الستطيل = (الطول + العرض) × ٢ مساحة الستطيل = الطول × العرض

المكعيب

الساحة الجانبية = ٤ × مربع طول حرفه مد (س) = ٤ س الساحة الكلية = ٢ × مربع طول حرفه مد (س) = ٢ س الصجم = مكمب طول حرفه مد (س) = ٣ س الصجم عدد (س) = ٣ س الصحب عدد (س) = ١ س الصحب عدد (س)

الدائسرة

محیط الدائرة =
$$\pi$$
 الله π د (س) = π س مساحة الدائرة = π ن π + د (س) = π س میش می طول نصف العار الدائرة

الكسرق

.مثالی

اذا كانت د (س) = س؟ + ۴ س - ۴ فأحام الموسود التمير عندما تتغير س من ۴ إلى ۲٫۴ ثم أحسب معدل تغير الدائة د عندماس و۲۰

الحل

$$A_1 \tau = \frac{1 \cdot \tau \ell}{1 \cdot \tau} = \frac{1 \tau - 1 \tau}{\tau - \tau \cdot \tau} = \frac{1 \tau - 1 \tau}{\tau - \tau} = \frac{1 \cdot \tau \ell}{\tau - \tau} = \frac{1 \cdot \tau \ell}{\tau} = \frac{1 \cdot \tau \ell}{\tau$$

$$\frac{c(-v_{i}+e)-c(-v_{i})}{e} = \frac{e^{7}+Ae+7i-7i}{e} = e+A$$

$$A = (A + A) = \frac{A_{n+1}}{A_{n+1}} \land (A) = \frac{A_{n+1}}{A_{n+1}} (A + A) = A$$

والثم الم

إذا كانت س = س - 1 حيث س هو و فأوجد ه

- 🚺 داللا متوسط التغير في ص عندما تتغير س من سي إلى س 🖈 و وأوجد هما المترسط عبدما تتمير س من ٢ (لي ٢١٥
 - 🕜 معدل التغير في ص عندما س 🖘 🏋

..ن(ع)=د(س_ا+ع)- ډ(س_ا)

$$\frac{1}{1-u_{1}+a_{-1}} = \frac{1}{1-u_{1}+a_{-1}} $

عندما تنغیر س من ۲ إلى ور۲ لكون س ۽ = ۲ ٪ هر = ۲ ٪ ۴ هر۰

$$\frac{1}{1} \left(e_{i,j} \right) = \frac{-\frac{1}{\gamma}}{\left(\gamma + e_{i,j} - \beta \right) \left(\gamma - \gamma \right)} = \frac{-\gamma}{0 \cdot \beta \times \beta} = -\frac{\gamma}{\gamma} \cdot \frac{1}{\gamma}$$

$$\frac{Y-}{(a_{i}+a_{$$

$$\frac{1}{Y} - = \frac{Y \rightarrow}{Y \times Y} = \underbrace{\frac{Y \rightarrow}{Y \times Y}}_{Y \times Y} = \underbrace{\frac{Y \rightarrow}{Y \times Y}}_{$$

مثالئ

حسب معدل تعير الدالة د (س) = (س + ٨ عندما س = ١

الحال

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{$$

الكالة المنافعة لا يمكن أيجد معدل تغير الدالة عند س = - ٨ لأن التهاية تعون غير من بودة عندها

حل آخر عندما س=س

$$=\frac{\frac{1}{2}(A+Q)-c(-Q)}{\frac{1}{2}(A+Q+Q)}=\frac{\frac{1}{2}(A+Q+Q)}{\frac{1}{2}(A+Q+Q)}=\frac{\frac{1}{2}(A+Q+Q)}{\frac{1}{2}(A+Q+Q)}=\frac{1}{2}$$

$$\frac{1}{\sqrt{1+\sqrt{1+\sqrt{1+\frac{1}{2}}}}} = \frac{1-\frac{1}{2}}{1+\frac{1}{2}}(\sqrt{1+\frac{1}{2}}) = \frac{1}{2}$$

$$\frac{1}{4} = \frac{1}{1 \times 7} = \frac{1}$$

مثالي

اوجد دانه متوسط التغیر فی د حیث د (س) = س ۲ عندما تتعیر س من س, الی س, + ی ثم|ستغلج معدل افتغیر فی د عبد س یر ب

الحال

شد(س)=س]

$$a! \text{ is a found it } true = \frac{a \cdot (-a) - a \cdot (-a)}{a} = \frac{a \cdot (-a)^{2} - a^{2}}{a}$$

$$\frac{r_{ij} - r_{ij}}{r_{ij}} = \frac{r_{ij} - r_{ij}}{r_{ij}} = \frac{r_{ij} - r_{ij}}{r_{ij}} = \frac{r_{ij} - r_{ij}}{r_{ij}}$$

$$T_{ijm} = T_{ijm} \times T = \frac{T_{ijm} - T_{ijm}}{T_{ijm} + T_{ijm}} = \frac{T_{ijm} - T_{ijm}}{T_{ijm}} = \frac{T_{ijm}}{T_{ijm}} = \frac{T_{ijm}}$$

عندما سي - ٢

$$Y = (Y) \times Y = 1$$
 معدل التغیر فی د

مثالي

يوضح أعشكل المقابلء

النحنى ي = د (ي) حيث ي جملة مبيعات أحد مناقد بيع أجهزة الحاسب الألى مقدرًا بملايين الجنبهات: ي الزمن مقدرًا بالشهور أوجد من الرسم متوسط التغير في جملة البيعات عدما يتغير الرمن من:

الحل

متوسط التعير في د = $\frac{c(A) - c(B)}{A - B} = \frac{1 - 0}{B} = 0$ منبون جديد / شهر أي ان متوسط جملة المبيعات يتزايد بمقدار مديون جديد شهريًا خلال مدء المسرة (١٠) من الرسم د (١٠) = 7 + 3 + c(A) = 0 متوسط التغير في د = $\frac{c(A) - c(A)}{A - B} = -0.0$ مليون جديد شهر أي أن متوسط جمعة المبيعات يتناقص بمقدار قرا مليون جديد شهريًا خلال هذه المترة

منالي

صميحة من المدن على شكل دائرة تتعرض للحرارة فتتميد بإنتظام محتفظة بشكلها أوجد معدل التغير في مساحة سطح الصفيحة بالنسبة إلى طول تصف قطرها عندما يكون طول بصف قطرها ٢٤ م (٣ مد ٣٠٠)

الحل

بمرض أن طول نصف القطر = س .. مساحة الصغيحة = π س 7 س 7 = (m) ه .. د (س) = π 7 س 7 8 9

راجع ممنا وأحثم نفستك

الماهر

عزيزي الطالب في هذا المكان من كل تمرين ستجد

أسئة لمراجعة ما سبق في صورة إختبار تراكمي على ما سبق دراسته يتم الإجابة في نفس الورقة قبل أن تدخل في الدرس الجديد وهذا يجعلك تنذكر ما درست بإسترار ولا تنما ويجعلك في مراجعة مستمرة لدروسك الساغة بما يجعلك في تواصل مع ما درست وأيضًا يعودك على التفكير بطريقة مبتكرة وهذه المبزة يقدمها نك كتاب الماهر فقط.

المسائل المستوى اراول

🚺 أختر الإحانة الصحيحة من بين الإجابات المعطاة ،

﴿ فَيَمَا الدَّالِدَ فِي لِلدَّالِدُ ﴿ سَ ﴾ ﴿ ﴿ ﴿ أَنَا تَغْيِرَتَ سَ مِنْ ۗ إِلَى } يَسَاوِي

[r d r- d 1- d 1]

 γ قيمة دالة التغير للدائة د (س) = س γ + γ إذا كان التغير في س γ بر،

عندما س دو يساويوي الاره إلى ١٩٤٤ إلى ١٨٤ إلى ١٨٢]

(-)قیمة دالة التغیر ثلباللا د (-) = -

1 d e- d = d =] ∆ من ≃ بيساوي

[تا ڪان د (س) = س' - ۴ س وڊالة البغير ت عندما س = ٢ فأن د

اولاً ت(۱٫۱) = ۱۰۰۰۰۰۰۰۰۰ िया वे भा वे भा वे नाम]

نانيا ت (-هره) = ١٠٠٠٠٠٠٠ ﴿ ٢٫٥ ﴾ ٢٥٠ أي ١٩٥٠ أي ١٩٥٠

😭 🔯 إذا كانت د (س) = س ۲ + ۲ س - ۱ فإن التغير في د عندما :

التغيرس من ٢ إلى ١٦ = ١٠٠٠٠٠٠٠ [٦١ أو ١٦١ و ١٦٠ أو ١١١

[A = 512	the source well as a second
ة التمير شم أوجد متوسط التغير عندما تتغير	(را کان در ص ۱ = اور − ۱۰ اور اور − ۱۰ اور
جندما سن ± y ا	ـــى من ۲ (لى)و۲ تم أوجد معدل التغير : ــــــــــــــــــــــــــــــــــــ
بالمخطرة.	أحتر رمانه الصحابية من بين الإجاب
(۱٫۵) = سنستنده عبدها س با۲	نا كاند(س)=س"+ ۳ فإنت 1
[17,70 d 1,70 d 4,70 d 1,7	e-]
	 (س) = ۲ س − ۳ فان ت
[04-0-6 & Yie & Yie- d	git]
: 7/4 عندما تتغير س من ۴ ألى ٢/٢ فإن التغير	الله التهاردا كال منوسطة البغير في و =
[TT of A of west of water]	ائي د يمماري
ا = س ⁷ + ۲ س + و عندما تنفیر س	🤁 متوسط تعير الدالة د حيث د (س)
[1 4 4 4 4 4 1]	من ۱ (نی ۲ یساوی ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
: عسما تتغير سن من ١٦٤ إلى ٢ فإن التغير في د	🕝 إنا كان متوسط (لتعير في د = - إر)
[1141- 9 PAL 9 PRE 9 PR	يساوى [ـ
ه عندما تتغیر س من ۲ (ای ۱۵ د (۲) = ۲	🕥 🈭 إذا كان متوسط التغير في د –
[m d A d V d &]	
	📎 متوسط التعير في محيط مرمع طو
[
، عندما يتعبر طول حرف من هم إلى بهم	🕢 🚱 متوسط (التغير في عجم مكم
[FET & TIA & STO & S-4]	
دما يتغير طول ضلعه من بهم {ل <i>ي بهم</i>	🕥 متوسط البغير في مساحة مربع عنا
[o d 14 d 14- d o-]	يساوي
دالة و عالم	🕒 🕮 يوضح الشكل المقامل ممحني ال
د پکورن	حبث ص = د (س) في أي الفتران
	متوسط لتغير في د هوالأمكبر
المام] الم	d [→ (f]]
[[ail] d [s	t. →]

رين مسائل المستوى الثاني

- الموجد متوسط التغیر للدالة و حیث و Y + Y w = 4 من ولالك عندما تعغیر w = 1 المورد و المدوالدالة عند w = 1
- التغير عندما تتغير من ٣ إلى ١٠,١ وجد دالة متوسط التغير للدالة ثم أوجد متوسط التغير عندما س ع إلى ١٠,١ تم أوجد معدل التغير عندما س ع ا
- آوجد متوسط تغیر الدالیة ص + + + + + + + متدما لتغیر س من $||u||_{L^{1/2}(x)}$ $||u||_{L^{1/2}(x)}$ $||u||_{L^{1/2}(x)}$
- الدالة عندما س عراج الدالة عندما س عراج الدالة عندما س عراج التغير الدالة عندما س عراج الدالة عندما س عرا
 - الازا كانت ددالة حيث د (س) = الله المأوجد ،
 - الله متوسط التغير للدالة. الاستدارتين مانيانيا للامندين
- 🕥 معدل تغیر هناه اندانه وند س 🕶 🕥
- نا روز کانت د (س) = $\frac{\gamma}{m-1}$ فأوجد دانلامعدل انتخبر عندما س = س و الله وأحسب معدل انتخبر عندما س = γ
- اله منوسط التعبر للدالة د (س) = الله منوسط التعبر س من س الله عندما تتغير س من س الله الله من من س الله الله من من الله الله عندما س = ١ الله من الله الله عندما س = ١
- $m = \frac{m_0 + 1}{m_0 + 1}$ وجد دالة متوسط التغير في دحيث د $m = \frac{m_0 + 1}{m_0 + 1}$ عندما $m = m_0$ [1]
- الله عدد الله متوسط التعبر للدالة د (س) = ا س ۳ عندما س = ۳۰۰٫ عندما س = ۲۰۰٫ - الله المالت د (س) = ا س + ب فأوجد دانة التغير ت (ع) عندما س = ا وإذا كانت ت (۱٫۱) = ۲٫۰ عندما د (۱) = ۲ فأوجد قيمتي ا ، ب

 $q = - \frac{1}{2}$ (دا کانت ت $q = - \frac{1}{2}$ فأوجد تیمة $q = - \frac{1}{2}$ فأوجد تیمة $q = - \frac{1}{2}$

آیا کانت السافة نی التی تقطعها حشرة خلال رمی قدره ب ثابیة پعطی با تعلاقة ن ⇒ ب۲ – ۲ ب + ۲ فأوجد متوسط التغیر فی اشافة عندما تتغیر ب می ب ⇒۲ ث این و شقم أكسب معدل التغیر فی ف عندما ب ⇒۲ ث

سقط مجر من سو ساکن فتکونت موجه دانریه نیرداد باسطه پحیث نظل محتفظة نشکای اندائری آهند به متوسط انتفیر فی مساحه سطحها عبدما یزداد طول نصف طول نصف فطره من T (ای T) شماوند مسل آلتغیر عندما یکون طول نصف قطرها فرT (T) (ای T) (ای T)

الله الله المعددية مربعة الشكل تتمدد بإسطام بحيث تعتمط بشكلها أوجد والله متوسط التغير في مساحة سطح الصفيحة عندما يتغير طول ضلعها من ۴ (لي ٣ مـ ورومه أتسلب معدل التغير في الساحة عندما بكون طول الطبلع ٨٣٨ من ١٠١

الكلية وذلك عسما يتغير طول حرفه من ٣٦ (أن ٣١٤) ثم أتنسب معدل تغير مساحته الكلية وذلك عسما يتغير طول حرفه من ٣٦ (أن ٣١٤) ثم أتنسب معدل تغير مساحته الكلية عسما يكون طول حرفه ٣٣٥

التغير في المدن تتمدد بالتسخين محتفظة بشكلها الكروى فأوجد معدل التغير في عجم الكرة بالسبة إلى طول نصف قطرها ٢٦٠ [٢٠٠٠]

التي الا كانت اللبيد س (مُقاسة بالكيلوجرام) التي تبنجها شجرة برتفال مثوسطة الإنتاج يوقف عند الكيلوجرامات من من المبيد المشرى المنتخدم لرش الشجرة طبقًا العلاقة :

عن صاح - 1 - 17 | التناسب مدوست التغير في من عندما تتغير من من أ إلى ٢ | ١٧|

الماظر تنمير على شكل مثلث طول قاعدتها يساوى ضعف أرتفاعها الماظر تنمير الله المراقمين أن تغير ارتماعها الماظر تنمير ارتماعها الماظة على شكلها أحلك بمتوسط التغير في مساحته إذا تغير ارتماعها من ٨٠٨ (لي ١٨٨ م

السية بين أبعاده) أحسب معدل التعير في مساحة سطحه عندما يكون عرضه ومنفي السية بين أبعاده) أحسب معدل التعير في مساحة سطحه عندما يكون عرضه وم وأحسب معدل المعير في مساحة سطحه عندما يتغير طوله من ١٠٦٠ [لي ٢١٠]

🐼 أُختَر ، الحانة الصحيحة من بين الرجابات المعطاة ،

(س) جس ۱۰ هان معدل تغیر اندانهٔ د عندما س ۱۰ یساوی

[10- d 11 d 10 d 1]

 $\frac{\pi}{2}$ انا کانت د (س) = یا س فان معدل تغیر اندانهٔ د عندما س = یا س فان معدل تغیر اندانهٔ د عندما س = $\frac{\pi}{2}$ یساویسوی یساوی

[ه أن ه-س أن س " إن غيرموجودة]

 $\frac{1}{2} (c) = \frac{1}{2} (c) +

 $\frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2}$

 $\left[\frac{\pi}{e} \quad \text{is ale is aniend}\right]$

مس الرسيم متوسط التعير في جملة البيعات عندما يتغير الزمن من:

المامر

ثانیّا $v = A | t_{\mathcal{S}} | v = A$ یساوی

أولاً متوسط بغير الدالة عبدما بتغير س من ٢ (لي ٢٫١ يساوي

ثانيًا معدل تغير الدالة عندما س = ١ يساوي

🖁 مسائل تقيس مستويات عليا في التفكير

🔣 🗺 في الشكل المقابل ،

منحنی اندائی د حیث ص = د (س) حدد الفترات التی یکون فیها متوسط التغیر فی د ثابتًا وفسر (جباتك

المسيحة رقيفة على شكل مثلث منساوى الأصلاع تبعدد بإنتظام بحيث تظل محتفظة بشكله أوجد متوسط التغير في مساحة الصفيحة عندما ينفير طول ضلعها من هراس الى وروسم .

الله مثلث متساوی الأصلاع أحسب متوسط تغیر مساحة سطحه عندما یتغیر طول ضلعه من ۸ می
التغيرة من العدن عنى شكل مربع تتعرض للحرارة فتتمدد محتفظة بشكلها أحسب التغير في طول صلعها عندما تتغير الساحة بمقدار هم بدءًا من اللحظة التي يكون فيها طول الضلع وسم

في الشكل المقابل ،

$$\frac{c(-v_1+e)-c(-v_1)}{-v_1+e-v_1}=\frac{c(-v_1+e)-c(-v_1)}{e}$$

وأفنشا فتلزنا وعرفا

وإذا متعامدة التقسلية عد (سر ، د (سر ,) ونعلة ثابشة على منحسى الدائلة دوتحركت القطة وعلى المتحتى بحيث تقترب من القطة عدلياخد هدر الوطيع مدل ويصبح ماينًا للمنحتى عند مرأى أن و حصفر فإن ميل الماس هف هـ = مل الي

د (س، + هـ) - د (س،) ار وجدت

اي آن ميل الملس لمنحنى الدالة د حيث ص = د (س) عند النقطة (س، ، د (س)) پساوی معدل التغیر طی د عند س = سی

لكل قيمة للمصير س في محال د بناظرها قيمة وحيده لعدل التغير في دوعلي هذا فإن معدل التغيير هودالية بيضنا في المتغيير سيطلق عليها والدالة المشتفة، أو المشتقة الأولى للدالية، أو المعامل التفاضلي الأول، ويمكن تعريفها كم، للى

إنا كانت د:] م ، ب (ب ك ، س ∈] | ، ب (فين ،

الدالة المنتقة د عد (س) عقيد الدالة المنتقة د عد (س) عقيد ا بشرط أرتكون هذه البهاية موجودة

إذا كانت ص = د (س) فيرمز للمشتقة الأولى للنالة د بأحد الرموز

ونفرأ مشتقة سء أو مشتقة ده

3 9 00

وتقرأ عدال ص دال س، أو عمشتقة ص بالنسية إلى س «

Colore the

ميل الماس للحشي س = د (س)عند النقطة (س، د (س،)) هو د'(س،)

لإيجاد الدالة الشنتة للدالة د أو ميل الماس لتحتى الدالة د حيث د (س) = ٣ س الم عند المقطة (٢٤١) فإن ميل الماس عند (س =١) = المستقة الأولى للدالة عند (س عز)

$$\frac{Y - (^{\dagger} z + z + 1) + 1}{z} = \frac{Y - 1 - ^{\dagger} (z + 1) + 1}{z}$$

مثالی

أوجد الدالة الشتقة للدالة وحيث و (س) = س " + ٣ س + و مستحدمًا تعريف الشتقة ثم وجد ميل الماس لمحنى وعند المقطة (١٠١٠)

الحبل

#+u=#+[₹]u==(u=)a∵

د (س + ق) = (س + ق) ۲ + ۲ (س + ق) + ه

a+ a++--+++a+ a-++++--=

د(س + ف) - د (س) = س[†] + ۲ س و + و [†] + ۳ س + ۳ و + و

- س⁻ - ۲س - د = ۲س و + و ^۲ + ۲ و

= e (Y - U + e + Y)

٠٠٠ (س)= الهسا د (س + ه) - د (س)

ر. د' (س) = لهما <u>هر ۲ س + و ۲ ۲) = شما (۲ س + و ۲ ۲)</u>

±(س)=٢س++ T=0+(1-)++(1-)=(1-)3"

ن النقطة (٣٠٠) تفع على النحني د

 $1 = 7 + 1 - x = (1 - 1)^2 = (7 + 1 - 1) = 7 + 1 + 7 = 1$

والثي

أوجد مستخدمًا التعريم الدالة المشتقة لكل من البوال الأتية :

الحل

$$\frac{(uv)^2 - (uv) + (vv)}{(vv)^2} = \frac{(vv)^2 - (uv)^2}{(vv)^2}$$

$$\frac{\pi}{2} < \omega \in \frac{1}{\frac{1}{2} - \omega + \frac{1}{2}} = (\omega)'_{3}$$

$$=\frac{-u+y-w-e-y}{(w+y)(w+y)} = \frac{(w+y+y)(w+y)}{(w+y)(w+y)(w+y)} = \frac{(w+y)(w+y)(w+y)}{(w+y)(w+y)(w+y)}$$

$$= \frac{(w+y)-c(w)}{e+y} = \frac{(w+y)-c(w)}{e+y}$$

$$\therefore c'(-\omega) = \frac{c_{k-1}}{k-1} \frac{1}{k} \times \frac{-k}{(-\omega+k+1)(-\omega+7)}$$

$$=\frac{t_{\frac{1}{2}-1}}{t_{\frac{1}{2}-1}}\frac{t_{\frac{1}{2}-1}}{t_{\frac{1}{2}-1}(t_{\frac{1}{2}}+\frac{1}{2})\left(-t_{\frac{1}{2}}+\frac{1}{2}\right)}=$$

. مثالی ـ

and contribution of

أوجد ميل المماس لمنحس الدالة وحيث و (س) = س + با عبد النقطة إ (٢٠١) ثم أوجد فياس الزاوية الموجهة التي يستمها هذا المماس مع الإنجاد الموجب لمحور السينات عند النقطة إ

الحيل

$$\gamma = \gamma + T(\gamma) = (\gamma) \circ$$

$$\frac{(1) 3 - (3 + 1) 3}{9} = \frac{(1 + 1) - (1 + 1)}{9} = \frac{(1 + 1) - (1 + 1)}{9} = \frac{1 - (3 + 1)}{9} = \frac{1 -$$

مثالی

رزا کان د (س) د ا س ۲ مید ا فاستأوجد ،

- 🚺 المشتقة الأولى للدالة وعند أي نقطة (س) س)
- 🚺 قيمة † إذا كان ميل المماس لمفحني الدالة عند س = ١ يساوي ٩

الحال

$$\gamma = \gamma_{-} $

$$\frac{[\gamma - \gamma - \gamma] - [\gamma - \gamma] - [\gamma - \gamma] - [\gamma - \gamma] - [\gamma - \gamma]}{g} = (-1)^{2} - \gamma$$

$$\frac{Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-}}{g_{-} - g_{-}} = \frac{Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-}}{g_{-} - Y_{-} - Y_{-}} = \frac{Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-}}{g_{-} - Y_{-} - Y_{-}} = \frac{Y_{-} - Y_{-} - Y_{-} - Y_{-} - Y_{-}}{g_{-} - Y_{-} - Y_{-}} = \frac{Y_{-} - Y_{-} - Y_{-} - Y_{-}}{g_{-} - Y_{-} - Y_{-}} = \frac{Y_{-} - Y_{-} - Y_{-} - Y_{-}}{g_{-} - Y_{-} - Y_{-}} = \frac{Y_{-} - Y_{-} - Y_{-} - Y_{-}}{g_{-} - Y_{-}} = \frac{Y_{-} - Y_{-}}{g_{-} - Y_{-}} = \frac{$$

$$\left[\frac{\gamma_{m-1}\gamma_{m-1}}{\alpha_{m-1}}\right]_{\{\frac{m-1}{2}\}} = \left[\frac{\gamma_{m-1}\gamma_{m-1}}{\alpha_{m-1}}\right]_{\{\frac{m-1}{2}\}} = \left[\frac{\gamma_{m-1}\gamma_{m-1}}{\alpha_{m-1}}\right]_{\{\frac{m-1}{2}\}} = \frac{\gamma_{m-1}\gamma_{m-1}}{\alpha_{m-1}}$$

4=17%

##[A]

مثالی

الذا كان د (س) = 1 س^ا + س س حيث (و ب فابتان أوجد و

- 🚺 المشتقة الأولى للدالة د عند أي نقطة (س ۽ س)
- 🚺 قیمتی ۲ ی ب إذا كان میل المجاس لمنحنی الدائة عند النقطة (۱۰) ۱۳ 🚺 الواقمة عليه يساوي

الحال

٧ د (س) = (س"+ ب س

فالرياميان

∴د(س+و)=† (س+و)¹+µ(س+ه)

= إ س^ت + ۲ إ س ۾ + إ ۾ ^۲ ۽ ن س + ت ۾

د(سده)-د(س)=إس۲+۱س و + او۲+ ب س + ب و - اسال رس =דן יים + ז פ"+ ט ב = ב (דן יים + ז פ + טן

د اس) = المسلم (۱۹ س ۱۹ ص ۱۹ مر + س ۱۹ س + س

 $|- = - \sin - \frac{1}{2}$

 $t = Y \mid x - f + t_{ij}$

(1) 1 4 + 8 Y - 7.

7-=(1-) 5 ∴ 😯 (۱۰۰ ۲۰۰۷) تقع علی اللحالی د

د (س)= ا س^{ار} + ب س

(1-) w+ 1(1-) |= Y-

(4) ヤーニジートル

من (٦) الإيالجمع

 $\{(-++)\} = \{-\}.$

بالتعويض في 🕥

1= 4+14-1

てゃき= ひご

1=1.5

1= -+1×1-..

*= 4 ...

يفال أن الدلة د قابلة للإهنقاق عند س د إ (حيث إ تعتمى إلى مجال الدالة)

 $\frac{(1) + (1 + 1$

وإذا وجدت مشتقة ثلدا لة دعك كل نقطة تبتمي إلى الفترة] هم) و { نقول أن الدالة د قابلة للإشتقاق في هذه العترة ولدلك فإن الد. لة كثيرة الحدود تكون فابلة ثلاث تفاق

(دا عائد الدائد و معرفة عند س = | (حيث النتمى إلى مجال الدائة) وكادت قاعدة الدائة على يمين التحتلف عن قاعدتها على يسار اشتبحث عن قابلية الإشتقاق عند س = | بأن توجد المشتقة اليمسى للدائة ويرمز الها د (($^+$) والمشتقة اليمسى ويرمز الها د ($^+$) والمشتقة اليمسى ويرمز الها د ($^+$) عيث:

$$\frac{(1+2)-(1+2)-(1+2)}{(1+2)} = \frac{(1+2)-(1+2)}{(1+2)} = \frac{(1+2)-(1+2)}{(1+2)}$$

$$\frac{(1)a-(1+2)-(1+2)}{(1-a)} = \frac{a(1+2)-a(1)}{a}$$

وتكون الدالة و قابلة للإشتقاق عندم إذا فقط إذا كان (2⁺) - 2⁺(4⁺) و ويرمز اشتقة الدالة بالرمز 2⁺(4)

diago.

إذا كانت الدالة د حيث ص = د (س) قابلة للإشتقاق عند س = † فإنها تكون متميلة عند هذه النفطة

مانطاقوات

إنسال دائة عبد نقطة لا يعنى بالضرورة
 أنها قابلة للإشتقاق عند نفس النقطة.
 ومثاأ

اتدانة ي مت<mark>صلة عند إ</mark>

ولكن ميل الماس الأول (الشنقة اليمنى) ب ميل الماس الثانى (الشنقة اليسرى) المادة غير قابلة للإشتقاق عند س = 1

ل<mark>م في الرياضيات</mark>

﴿ إِذَا كَانَتُ السَّالَةَ غَيْرِ مَنْصَلَةَ عَنْدَ مِنْ ﷺ أَ فَإِنَّ الدَّالَةِ غَيْرِ قَائِلَةً لَائِمَتَقَاقَ عَنْدَ مِنْ ﷺ فَمِثْلاً

الدالة دغير متصلية عند س = أ لأن الدالة غير معرفة عند س = أ رادالة غير قابلة للإشتقاق عند س = أ

وعد بحث إشتقاق دالة عند نقطة في مجالها يعضل بحث إتصالها عند هند المقطة أولاً.

فإذا كانت و متصلة نبحث الإشتقاق،

فإذا كانت د غير متعملة فالدالة غير قابلة للإشتقاق.

مثالي

أثبت أن ، د (س) = س" - س + ٣ قابلة ثلاثبتقاق عند س = ١

الحل

$$Y = Y' + 1 - \frac{Y}{2}(1) = (1) + A$$

$$c'(t) = \frac{c_{n-1}}{c_{n-1}} = \frac{c_n(t+c_n) - c_n(t)}{c_n} = \frac{c_{n-1}}{c_{n-1}} = \frac{(t+c_n)^{\frac{n}{2}} - (t+c_n) + \gamma - \gamma}{c_n}$$

$$\frac{a+^{7}a}{a} = \frac{(-7+9+1)^{-1}a+27+1}{a} = \frac{a^{7}+a}{a} =$$

$$E \Rightarrow 1 = (1 + A)^{\frac{1}{1 + A}} = \frac{(1 + B) \cdot B}{B} = \frac{1}{1 + A} = \frac{1}$$

رز و فايلة للإشتقاق عبد سرير ر

ائيت أن ، د (س) = المنتقاق عند س = ؛

الحل

لإيجاد مجال الدائة دنضع للقام در

$$\frac{1}{V} = \frac{1}{V - f} = (f) a \lambda$$

$$\frac{\frac{1}{Y} - \frac{1}{Y - 2 + \frac{1}{2}}}{2} = \frac{(1) - (2 + \frac{1}{2})}{2} = \frac{(1) - (2 + \frac{1$$

$$\frac{1}{(a+r)} = \frac{1}{(a+r)} =$$

$$\mathcal{Z} \ni \frac{1}{4} = \frac{1}{(3+7)\frac{1}{7}} = \frac{1}{(3+7)\frac{1}{7}} = \frac{1}{4} \oplus \mathcal{Z}$$

🖈 د قابلة للإشتقاق عند س 🕳 ۽

مثالی

أبدث قابلية الإشتقاق للنالة دعند س = ا حيث

الحل

ن ألدالة معرفة عند من يرا

$$\frac{(1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1)}{2} = \frac{(1 + 1) + (1 + 1) + (1 + 1)}{2}$$

$$\mathfrak{f}=\frac{B}{B}\stackrel{\mathfrak{f}_{-1,0}}{\stackrel{\mathfrak{f}_{-1,0}}{\longrightarrow}}=\frac{g-P+B+\mathfrak{f}_{-1}}{B}\stackrel{\mathfrak{f}_{-1,0}}{\stackrel{\mathfrak{f}_{-1,0}}{\longrightarrow}}=$$

 $\frac{(1) - (1 + 0)}{1 + 1}$ د $\frac{(1 + 0) - c(1)}{0 + 1}$

$$=\frac{1}{4k+1}\frac{\left[1-1\left(1+4k\right)\right]-\frac{1}{2}}{2k+1}=$$

$$\frac{a-37}{a} = \frac{1-a3}{a} = \frac{1-a3+7-1}{a} = \frac{1-a3}{a} =$$

$$\frac{\partial}{\partial x} = \nabla x + \frac{\partial}{\partial x} = \nabla y + \frac{\partial}{\partial x} = 0$$

ن المُستقة اليسري غير موجورة

النهاية غير موجودة

ن أندالة د غير قاطة تلإشتقاق عند س = ١

- مثالی

المامل الماملات

أبحث قابلية الإشتماق للدائة د مند س ٣٥٠ حيث ،

الحل

الدالة معرفة عند س ٢٥٠

ال مجال د = ع

 $\gamma_+ = \eta - \gamma \times z = (\gamma) \circ \Lambda$

 $\frac{(Y^+)_2 - (X^+)_3}{(Y^+)_4} = \frac{(Y^+)_4 - (Y^+)_4}{(Y^+)_4}$

$$\frac{(1-) \left[\left(-\left(\beta + \gamma \right) f \right]}{n} \cdot \frac{1-\beta}{2-\beta} =$$

$$(=\frac{3!}{3!}\frac{1-4!}{1-3!}=\frac{1+4-3!}{3!}\frac{1+4}{3!}=$$

 $\underline{\epsilon}=\left(\begin{smallmatrix} 4& \\ 4& \end{smallmatrix}\right)^{2}\Delta\bigtriangleup$

 $\frac{(Y) - (y + Y)}{2} = \frac{(Y)}{2} = (Y) = \frac{1}{2} = (Y + Q) - c(Y)$

$$\frac{(1-)-[a-\sqrt{(a+7)}]}{a} = \frac{(1-)-[a-\sqrt{(a+7)}]}{a} =$$

dentificial street

$$\frac{1 + 2 \cdot 4}{3} = \frac{1 + 2 \cdot 4 - 7}{3} = \frac{1 + 2 \cdot 4 + 1}{3} = \frac{1 + 2 \cdot 4}{3} = \frac{$$

1×("Y)45

ي الدالة د قابلة ثلاثمتقاق عند س ≃ ٢

هثالۍ

 $\eta = 0$ مئد (س $-\eta = 0$ س $-\eta$ مئد ميث د $-\eta$

الحبل

1-0-=(0-)

ن مجال د ≃ ع

ي الدالة معرقة عبد س ≃۲ و د (۲) ۲∞ ۲۰۰ سفر

$$c^{\lambda}(Y^{+}) = \frac{c_{k-1} + c_{k-1}}{c_{k-1} + c_{k-1}} = \frac{c_{k-1} + c_{k-1}}{c_{k-1} + c_{k-1}} = \frac{[(Y + c_{k-1}) - Y] - c_{k-1}}{c_{k-1} + c_{k-1}}$$

$$a^{\dagger}(\gamma^{\dagger}) = \frac{a_{m-1}}{a_{m-1}} \frac{\gamma + a_{m-1}}{a_{m}} = \frac{a_{m-1}}{a_{m-1}} \frac{a_{m}}{a_{m}} = f$$

$$\frac{e - \left[\left(\beta + \gamma \right) - \gamma \right]}{\beta} = \frac{\left(\gamma \right) \cdot 5 - \left(\beta + \gamma \right) \cdot 5}{\beta} = \frac{\left(\gamma \right) \cdot 5 - \left(\beta + \gamma \right) \cdot 5}{\beta} = \left(\gamma \right) \cdot 5$$

("T) 5 # ("T) 5 "

﴿ الدالة و غير قابلة للإشتقاق على س ت

الريميان أبحث قابلية أشتقاق الداله وحيث: د(س)= { س^۳+۳ عدما س>۱ ادرس)= درسا $T = T + T(1) = (1) \Delta$ $\gamma = \gamma + {}^{T}(1) = (\gamma + {}^{T}(1)) = (\gamma + {}$ $| t_{ij} |_{t_{ij}} = (1^{-1}) = \frac{t_{ij}}{t_{ij}} = (1^{-1}) = (1^{-1}) = (1^{-1}) = 0$ النهاية البسرى = د (1^{-1}) = $\frac{t_{ij}}{t_{ij}} = \frac{t_{ij}}{t_{ij}} = (1^{-1}) = 0$ ("1) a w ("1) a v ے اندانہ غیر متصبہ عند س ج ن الدائة و غير قابلة تلاشتقاق عند س = ١ رتاری د(س)= ۱-۳س-د(س)= ۲-س-۲۲ عندماس≼۱ قابلة للإشتقاق مندس و ١ فأوجد قيمة ١ الحل ب الدالة و الابلة للإشتقاق عند س = إ • أثدالة ومتصلة عند س يرو · التهايةاليمنى للدالة د = النهاية اليصرى للسالة د $(7-\omega^{-1})=\frac{2\omega^{-1}}{2\omega^{-1}}$ $(7+\omega^{-1})=\frac{2\omega^{-1}}{2\omega^{-1}}$ $(7+\omega^{-1})$ Y = Y = Y = Y - T(Y)1=10 صفر=۲۱−۲⇒۲۱=۲(+۲)

	مَنْ الْمُنْ مُنْ اللَّهِ مُنْ اللَّهُ مُنَا اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مِنْ اللَّهُ مُنْ اللَّا لِمُنْ اللَّهُ مُنْ اللَّهُ مُنَا اللَّا مُنَا اللَّا مُنَالِمُ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ ا
Gr war	le tippe.
ALCENTAL MARIE MARIE MARIE br>MARIE MARIE MARIE MARIE M	راجع معنا وأختم لقسلت
est ton	نِبا ِراکمی
	أُجِب عَن الْسَلَاةُ الْأَنْيَةَ رَ
ثلما تتغیر س سy إلى ۲٫۳	🕥 روزا کان متوسعه «انتغیر شی د د ۱٫۳ م
en down den do	فإن التغير في د يصاوي [١٣]
ما تتغیر س من ۱ [لی ۲ د (۱) = ۱	(زا کان متوسط التغیر فی د = 1 عند
tedadvdel	فإن د (۲) = ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
ا يتغير طول حرفه من إن إلى إ	😙 متوسط التغير في حجم مكعب عنده
[14 d TA d VI d tet]	يساوى
: س ⁷ + ۲ س عندما لتغیر س	() متوسط تغیر الدالة و حیث و (س) :
[منفر () ۱۲ () ۱۹ () ۲)	من ۱ اتی ۳ یساوی
9.	⊚أوجد معدل تغير الدالة د حيث د (سر
.m.mnann mamaidannamhannidannidannidannidanni ibandian	
-PP=H+bbbdbasidebubusdabasamanankansapasampung	************************************
**************************************	nq -np q n-n- poq n-n- pq +n-+ 22 p-n-h pq + hu +n-+ 1h d +n-h h + +n-+ p + n n n n n
فأوجد رائة التغيرات عندما س = ٢	() (دُا جَانت د (س) = س ا مس به ۱
	قم أحضلتهات (۱۳۰۰)
#**	-688-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-

	udd baadd badadd badad badd 40 abl 4+524+55 mad 414
d d d d man an a command a der de de de des des des des des des des de	#44 b#4#4+b##44 #b#4+hmb44+b4+4 :hesses+p#4+++-mes#

📆 أكثر ترداية الصحيحة من بين الإيبانات المخطرة

اکثر ازدایه انتصبیت سن (سن عند س = س اندائه د حیث ص = د (س) عند س = س پساؤن میر

عى مسلمانتغير أن دالة التغير أن معدل التغير أن التغير أن التغير أن التغير أن 💎 المشتقة الأولى لندالة ص = د (س) عند س = ا يساوي استنسار

(1)2-(2-1)3 (1)3-(2+1)3

❤ مشتقة الدالة د (س) = س أعند س = ا تساوى

[- 6 1 6 7 6 0-7]

[منفر ئ - ۱ ئ ۲ ئ ۲ ا- ۲]

﴿ وَ الدَّالِةَ وَ تَكُونِ قَائِلَةَ لَلْإِسْتَقَاقَ عَنْدَ مِنْ ﴿ ﴾ ﴿ وَمَجَالُ الدَّالِةَ إِذَا كَانتُ

[د (۱) تها وجود ﴾ دُ (۱) لها وجود ﴾ دُ (۱) = ثابت ﴾ دُ (۱) ليس لها رجود]

🕤 (نا كانت) تدادة و قابِلة تلاِهتقاق عند س = ؟ فإنها تكون........ عند س = ا

[دُ(س)غيرممرقة) متصفة) غيرمتصفة أي د(س)غيرممرقة 🥎 (ذا کانت انسانه و حیث و و

قابلة الإشتقاق مند س = ٢ فإن إ = [١٠]

(۱۵) (۱۵ کانت اندالهٔ و حیث د و

د(س)= (اس'+سس-۱ عثیما س>۲

قابلة للإشتقاق عند س ٢٥ قإن ١١ جيء سيسي

ď ₹-]

﴿إِذَا كَانْتَ الدَالَةُ وَحَيِثُو:

وروة بالإشتقاق عند س = ۲ قان ۲ أ = ب =

[10 d 10- d r d 1-]

الشنفة ثم أوجد الدائمة المستخدمات و حيث د (س) = س * - س + استخدمات عريف الشنفة ثم أوجد ميل الماس عبد النفطة (-٧ : ٧)

آ أوجد مشتقة الدائـة و حيث و (س) = س" + 4 شمأوجد ميل الماس لنحنى الدلة عند النقطة (-1 و ٢) الواقعة عليه.

🕡 لَحْتَرَ الْإِدَايَةُ الصَحَيْحَةِ فَنَ بَيْنَ الْإِجَابِاتُ الْمُعْطَاةُ ا

 $\{ \{ w \in \mathbb{R}^{n} \mid w \in \mathbb{R}^{n} \mid w \in \mathbb{R}^{n} \}$

البنة الإشتقاق عند س = ۱ المان (ع الم ۲ الم ۲ الم ۲ الم ۱ الم ۲ الم ۱ الم

 $\frac{1 \leq m \quad \text{with } \frac{1}{2} = (m) = \begin{cases} 1 + m^{\frac{1}{2}} & \text{where } \frac{1}{2} = (m) \end{cases}$

قابلة للإشتقاق عند س = ١ فإن ١ = ١٠٠٠٠٠٠٠ [١ ط ٢ ط ٢ ط ٢]

اس-ب عندما س≼۲ (س)= الدالة: د (س)= المندما س>۲

حيث () ب ذابتان فإذا كانت أندأته قابئة تلإشتقاق عند س = ٧

آلا کانتالدالا: د (س) = { س ج ب عندما س ≤ ۲ | س ج ب عندما س > ۲

 A^- d A d t - d t] A^- هابلة A^- A d t - d t = A^- A

س خ المادت الدارد (س) = { س عندما س خ ۲ غ س عندما س > ۲

 $[A \quad d \quad L \quad d \quad T \quad d \quad 1]$ وابدة الإشتقاق عند من $x \neq 4$ وان $x' \in T$

المام

فالرباضات

🚻 مسائل المستوى الثاني

💷 😭 (۱۵ کانت د (س) = ۳ س + ۴ س + ۷ أوجد مشتقة الدائة و مستخرمًا تعریق الشتقة تع أوجد ميل الماس لنحنى دعند انقطة (١٠١٠) μ -1

💟 🖄 اُوجد بإستخدام التعريف مشتقة الدالة وحيث و (س) = س أ - هعند س ع ج وبين المني الهندسي لشتنة الدالة عند حررت لا [4]

🚮 أوجد بإستطيام لتعريف مشتقة الدالة وحيث د (س) ٢٥ س ٢٠ عند س ١٠٥م أوجد قياس الراوية الموجبة التي يصنعها هذا الماس مع الإنحاء الموجب لحور السبين لأقرب دقيقة. OPEN.

🔙 أوجد بإستخدام التعريب مشتقة الدائبة وحيث د (س) = ١ -- ٥ س – ٣ س اعدر التقطية (-١٠) شم أوجد قياس الزاوية المرجبة التي يصلحها هيثا الماس مع الإنجار الوجب لحور السبنات لأقرب والبقة ['94]

📧 أوجد مستخدمًا التعريف الدانة الشتقة لكن من الدوال الأتية :

🔝 اوجد الاشتقة الأولى للدالة و هي كل مما يأتي وعين قيم س التي تكون عندها الدالة

غير قابلة للإشتقاق:

الحن قاطية الإشتقاق لكل من الموال الاتية عند النقط المعناة:

$$1 = 0.01 = 1.00 = 0.0$$

🔐 أبحث قابلية الإشتقاق للدالة د حيث ر

فأندث قابلية الإشتقاق للدائة ي مند س ج

📆 أبحث الإنسال وقابلية الإشتقاق للدائة و عبد س = با حيث ،

🔃 أبدت قابنية الدالة د تازهتماق عند س 🖘 ديث ،

📆 🙀 أبحث قابلية الإشتقاق الدالة و غنه س = ١ حيث ر

ا الباطيات الماطيات

🚻 🥶 أوجد فيمة الثابت م إذا كانت الدائلات هيث :

متصلة عند س = ٧ ثم أبحث قابلية الإشتقاق للدائة عند س = ٧

📆 إذا كانت البيانة و ديث ،

متصلة عند سُ = ﴿ فَأُوجِد قَيْمَةَ انْتَابِتَ ﴿ ثُمْ أَبِحَتْ قَابِلْيَةَ هَذَهُ الْدِالَةَ لَلْإِسْتَقَاقَ عند سَ عَهِ ﴿ إِنَّا

[1]

👪 إذا كانت العالة ي ديث ،

متصلة عند سُ = وفأوجد قيمة الغابث إخم أبحث قابلية عندالدانة و للإعتقاق عند س = و [و]

الله (ذا كانت الدائة و حيث ،

متمسة عند س = 7 فأوجد قيمة الثابت إ ثم أبحث قابلية الدائة د تلاشتقاق عند س = 7 (١)

🕡 😥 أوجد قيمة الثابت ﴿ إِذَا كَانْتَ الدَّالَةُ دَ قَائِلَةً لَلإِشْتَقَاقَ عِنْدَ سَ = ؟ حَلِثُ ،

د (س)= {ا س ۲+ س ۱ عندما س ۲۶ ا

ا کان د (س) = ۲ س۲ + سحیث ۲ ، د دابتان أوجد ،

الشتقة الأولى ليدالة دعند أى نقطة (س ، س)

 آبواللمة عليه
 بساوى ١٢ (٢٥ - ٣) الواللمة عليه
 بساوى ١٢ (٢٥ - ٣) الواللمة عليه
 بساوى ١٢ (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه
 دامان ميل المماس للنحنى الدائة عند التقطة (٢٥ - ٣) الواللمة عليه المان ال

اذا کان د (س) = الله عیدار ، ب دابتان اوجد ،

(س) مُشتقة الأولى للدالة دعد أي نقطة (س) ص)

﴿ قيمتى مَ يَ بِ إِذَا كَانَ مِيلِ الْمِاسِ بَنْبَعْنِي الدِاللَّهُ عِنْدِ النَّقِعِلْةِ (مَ يَ) الواقعة عليه بساوى -٣

إن الدوال الاتية قائلة للإشتقاق عند س ≃ ٢

السنفة اليمنى والمشتقة اليسرى لكل من الدوال الاتية وأثبت أن كلاً منها غير قائلة للإشتقاق عند النقطة س=١

👪 أختر الإحالة الصحيحة من بين الإجباث المعطاة :

قابلة الإشتقاق عند س = ، فإن اع = ------

[-۱ ﴾ صغر ﴾ ۱ ﴾ ۲-۲]

$$\frac{\pi}{\gamma}$$
 کنت العالة د : د (س) $=$ $\{b-\gamma\}$ عندما س $\{c\}$

 $\frac{\pi}{v}$ الإعتقاق عند س $\frac{\pi}{v}$ فإن كv

[ستر ل ۱ ل ۴ ل ۱ ا ۱ –۱]

$$= (\tau)^2$$
قابلة تارشيماق عبد س ج τ فإن دُ $(\tau) = (\tau)^2$ الله الم

$\gamma = m$ عبد $\sqrt{\gamma} = m$ عبد $\gamma = m$ عبد $\gamma = m$

البحث فابلية الإشتقاق للبالة و مند س ٢٥ جهث ،

📆 رنا کانت اندانهٔ د دیث،

أبحث قابلية الإشتقاق للبالة وامقد س 🕳 ا

📆 (ذا گانت الدائلا و حبث ر

أبحث فابلية الإشتقاق للبالة وعندس 🚅

رنا کانت الدالة و دیث ،

متصلة عند س= ۱ ۵ د (۱) = ۱۱ أوجد قيم الثابتين م ۵ هـ

ئم أبحث قابلية الإشتقال عند س روا

[7,4]

علما أن اشتقة الأولى للدالة دهى دُ (س) = تها د (س+ ق) - د (س)

واحدت أن إيحاد المستقة الأولى ليعمن الدوال مثل د (س) = س" + س" + ۲ س - ۱

تحتاج الي كثير من الحيد والرقت للوصول إليها لدلك سوف نتمرف على يعض قواعد الإشتقان الدى تسهل عليها إيجاد المشتقة الأولى دون عناء أو جهد فيما يلى ا

- Charles

إذا كانت س = هـ حيث هـ (تابت) ك ع ابن ع س = صفر

وذلك لأن:

س≥د(س)=هاد(س+ه)≃ه

 $(a \neq a) = \frac{a - a}{a} = a \cdot (a \neq a)$

فمثلا

ينإن صُ = صنفر فإن دُ (س) صمر

فاد ع سن در س ۱-۷

فملا

$$\frac{y}{u-y} = \frac{u-y}{u-y} - \frac{y}{u-y}$$

$$\{i\} \; a \supseteq \{i\} \; a \supseteq \{i\}$$

مثالی __

أوجد الشتقة الأولى لكل من الدرال الأثية:

الحال

$$\frac{Y^{\omega}}{\xi_{\omega_{0}}} = \frac{\psi^{0} \beta}{\psi^{\omega}} \beta^{\omega} = \frac{\psi^{0} \beta}{\psi^{0}} \beta^{\omega}$$

$$\overline{\psi} = \frac{1}{1 - \sqrt{\gamma}} = \frac{1}{1 - \sqrt{\gamma}} = \frac{10^{9.5}}{1 - \sqrt{\gamma}} = \frac{10^{9.5}}{1 - \sqrt{\gamma}} = \frac{1}{1 - \sqrt{\gamma}} =$$

إذا حكانت ع ، v دالتين قابلتين للإشتقاق بالنسبة للمتغير مى فإن ع v و تكون v ايضا قابلة للإشتماق بالنسبه إلى مى ويكون v و

 $\frac{1}{|x|}$ $\frac{1}{|x|}$

فمناأ

 $(m + 7 m 7 + 7 m) \frac{3}{m 5}$ = $\frac{3}{6 m} (m^7) + \frac{3}{6 m} (7 m)^7) + \frac{2}{6 m} (6 m)$

= ۴ س^۲ + ۴ س + ۵

مثالي

أوجد الشتقة الأولى لكل من الدوال الأثية:

الحل

 $\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}$

صتال إذا كانت د(س) ≃ س" – ﴾ س" + 7 س + وفأوجد ميل المجاس لمنحني الدالة عند المقطنة (١٤١)

الحمل و من ۳ من ۳ من ۲ من ۲ من

Y = P + (1) A - (1) Y = (1) اليل عند التقطة (1) Y = (1) Y = (1)

 $0^{\frac{1}{10}}$ وقد قياس الزاوده التي يصنعها المماس مع الإنجام الموجد لمحور السيئات للمدحدي $m=\frac{1}{7}$ مند التقطة ($m=\frac{1}{7}$)

الحل وس - 4×4س - ه = وس م _ ه

 $1 - \pi \circ - (1 -) \in \pi (Y \circ 1 -)$ that I = 0

الميل = را هر = ما هر = ما الميل = را هر = ما الميل = ما

مثال

پرا مغان د (س) ≃ (۲ س + ۳) (س ً − ۲ س + ۱) فأوجد دُ (س) دم أوجد دُ (۱۰)

الحل

 $_{c}^{*}(-\omega)$ \simeq الدالة الأولى $_{c}$ مشتقة الثانية $_{c}$ الدالة الثانية $_{c}$ مشتقة الأولى

$$f = f - Y + 3 = (1-)^2 x$$

والخلافة المكان المدء مجراء صرب الدائيين أولا تمريجاد لأ (س) كما يلييء

$$(1 + \omega - Y - U) (Y + \omega - Y) = (\omega - Y)$$

-متالی

 $\{c\} \ge 0$ $m = \{m^{\gamma} - \sqrt{m}\} \left(\frac{T}{T} - \frac{T}{m}\right) \frac{1}{2} \exp \left(\frac{e^{-M}}{2} - \frac{1}{2} m^{\gamma}\right) \right)$

الحال

$$(\frac{V}{V} - \frac{1}{V} - \frac$$

فالبماعد

 $\left(\frac{1}{2} O + \frac{1}{4} - O + A\right) \times \left(1 - O + \frac{1}{4} O + A + O + A\right) +$

$$\int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} = \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} + \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} + \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} = \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} = \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} + \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} = \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} = \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} + \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^{2} d^{2}}{d^{2}} = \int_{\mathbb{R}^{\frac{1}{2}}} \frac{d^$$

إذا كنت ع ، ب ما لتين تابلتين ثالاِشتقاق بالنصية للمتغير من وكانت ف (س) بي $\left(rac{\mathcal{L}}{v}
ight)$ تكون $\left(rac{\mathcal{L}}{v}
ight)$ تكون $\left(rac{\mathcal{L}}{v}
ight)$ ويكون بالنسبة للمتغير س ويكون

$$\frac{2\sigma \xi - \xi \sigma}{2\sigma} - \left(\frac{\xi}{\sigma}\right) \sigma = \frac{\sigma \sigma}{2\sigma \sigma} \xi - \frac{\xi \sigma}{2\sigma \sigma} \sigma = \left(\frac{\xi}{\sigma}\right) \frac{\sigma}{2\sigma \sigma} \sigma$$

ان ان مشتقة خارج القسمة _ عقام x مشتقة البسط x مشتقة التام x مشتقة البسط x مشتقة التام x مشتقة
رمنالي.

أوجد المشتقة الأولى للدالة ص عد ١٧٠٠ م أوجد ك (٣٠)

الحل

 $\frac{7}{7(T+U-T)} = \frac{U-2-7+U-2}{7(T+U-T)} = \frac{7\times U-7-7\times (T+U-T)}{7(T+U-T)} = \frac{U-3}{7(T+U-T)}$

 $q = \frac{1}{2} = \frac{1}{\sqrt{(1+\sqrt{1+\gamma})}} = \sqrt{1+\gamma} \cdot \frac{1}{2}$

ودفالنشارا عدوة فللناف

الحل

$$\frac{\eta + u u + \frac{\eta}{1 + u u} + \frac{u u}{1 + u u} = \frac{u u}{1 + u} = \frac{(\tau + u u)(\tau + u u)}{u + \frac{1}{1 + u u}}$$

$$\frac{1 \times (1 + m + 1) \cdot (m + n) \cdot (m + n) \cdot (m + n)}{2 + m} = \frac{1}{2 + m} \cdot \frac{1}{2 + m}$$

$$\frac{16+\cdots A+\frac{1}{2}\cdots }{\frac{1}{2}(6+\cdots)}=\frac{1-\cdots B-\frac{1}{2}\cdots -1+\cdots 1Y+\frac{1}{2}\cdots Y}{\frac{1}{2}(6+\cdots)}=$$

 $1 = m + \frac{1 - m^{2} + 7 - m^{2} + 7 - m^{2}}{m^{2} + 1}$ are m = 1

الحال

$$\frac{1 \times (1 - \omega + 1 + 1 - \omega + 1) + (1 + \omega + 1)}{1 + (1 + \omega + 1)} = \frac{3}{3} = \frac{3}{3}$$

$$e'(t) = \frac{\tau + \gamma + \gamma}{t} = \frac{\tau}{t} = \frac{\tau}{\tau}$$

مسائل المستوى الول

والمعطاة) المعطاة عن س الإجباث المعطاة ،

[۷ أن صفر أن ۱ أن غيرموجودة]

ره π ن ه ن π ن هيرمعرف] ------- [صعر ان ه ان π ان غيرمعرف]

(۲ س ۲ ف ۲ س ۱ س ۱ ۲ ف ۲ س) است ا

 $\left[\frac{1}{Y_{i,m}} d \frac{1-}{Y_{i,m}} d \frac{\frac{1}{Y_{i,m}}}{\frac{1}{Y_{i,m}}} d \frac{\frac{1}{Y_{i,m}}}{\frac{1}{Y_{i,m}}} d \frac{\frac{1}{Y_{i,m}}}{\frac{1}{Y_{i,m}}}\right] \dots = \left(\frac{1}{Y_{i,m}}\right) \frac{1}{Y_{i,m}} \otimes

 $\begin{bmatrix} \frac{1}{7} & \frac{$

[+ w + a + w + a + w + a + w +]

$$= \left(\pi + \frac{\sigma}{2} - V - \frac{\tau}{2}\right) = \frac{5}{2}$$

[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} +

الماهر

مسائل على محموع دائتين أو عدة دوال

💟 أوحد المشتقة الأولى لكل من الحوال الأتية حيث من 🗲 🖫 ؛ (سن)=۲س[†]+۲س+۱

ره) ص د) س + ۲

4-"- 4-" - 3-10" + 3 - 10 (1) A+ - 10 - 4- 10 - 4- 10 (1)

ن س = " س" + " س" + س - ۲ ا ن س = س" (س" + ۲ س" + ۲ س ا به ا

الا المرابع
T+1-0 (1) (ع) المرابع الم

الها الها على يه المسلمة - ه المسلمة - ٩ - المسلمة - ا

(اس - ۲) (س - ۲)

⊕ + س = س ^T + (س + ۱) س + و

🚺 أقبل 🗀 تصحيحه من بين الإحابات المعطاة

﴿ ميل الماس للمتحتى ص = س " = ٣ س + ٢ س + ٢ عند س = ١ يعنازى -----[منفر ﴾ –ا ﴾ ا ﴾ ت]

[صفر ۾ جءِ ۾ ۽ ۽ ا

[صغر 4 4 1 - ۲ 1 1]

الماس الراويه التي يصبعها الماس لكل من المحثيات الأتية مع الإنجاه الموجب لمحور الميئات:

 $\lim_{n\to\infty} \psi_n = \psi_n \text{ also we also } \psi_n = \lim_{n\to\infty} \psi_n = \psi_n = \psi_n$

for d on d or d ord

ن د (س) ≃ س ۲ + ځ س ۲ + ځ س عند س = ۱۰۰ تساوي

["ורם מ "ורי מ "זי מ "נים]

⊕ س ⇒ س + م عبد النقطة (۲ (۱) تساوی

[مشر" ۾ ۳۰ ۾ مه" ۾ با

 $\frac{1}{2}$ $e^{(-1)} = \frac{1}{7} - 0^7 = 7$ six (trads $\left(\sqrt{7}\right) = \frac{1}{7}$) rungs

[صفر" ني ۳۰ کي دي" کي دي"]

البت الشماس للمنحتى ص - س " + أبيت النقطة (١٥ -١) يصنع مع الإنجاء النوجب المعرر السينات زاوية الياسها #

مسائل عثى مشتقة جاصل ضرب دائتين

🕎 أوجد الشنقة الأولى لكل من الدوال الأتية :

() ص = (۲ س -۲) (۲ س +۱)

(1-10m) (1+10m)=00 (1-2)

(اس+ ۲ س -۱) (س + س -۱) (س ۲ + س -۱)

(f-w-++++)(+-w-)= w-1

(1+w+7-7w+6)(1+w+7)=00

(۱+ س+۲) (س^۲ -۲ س+۱) عند)

(سا+۲+اس) (سا+۲+اس) (سا +۲+اس)

(اس ا + اس + على (س ا + اس + على) (س ا + اس + اس + اس)

 $\left(\frac{1}{\sqrt{1-u^2}} - \frac{1}{\sqrt{1-u^2}}\right)\left(\sqrt{1-u^2} + \frac{1}{\sqrt{1-u^2}}\right)u = u^{-\frac{1}{2}}$

(س = س ۲ (۲ س - ۱) (س ۲ + ۲ س - ۲)

فالرباميات

الماهر

مسائل على مشتقة خارج قسمة دالتيب

0

أوجد الشنقة الأولى لكل من الدوال الأتية:

$$\frac{4 - v - 0}{1 + v - 0} = v = \frac{6 - v - 1}{1 + v - 0} = \frac{6 - v - 1}$$

$$\frac{\psi - \sqrt{1 - \psi}}{1 + \sqrt{1 - \psi}} = \sqrt{2}$$

اودد میل الماس للمدحدی س = سن عند س = ۲ [7]

مسائل متنوعة على قواعد الإشتقاق

اذا كان ص = س" - ٣ س" - ٩ س فأوهد قيم س التي تجعل و س = صفر السا

الا هان د (س) = س ۲ - ه س + ۲ فأوجد قيم س التي تجمل د (س) - ۷ [ير]

۱۱ ادا مکان د (س) = (۲ س − ۲) (۲ س + ۱) فأوجد قیم س انتی تجمل د′ (س) = ۵ از

الله التي يكون عندها درس) = سرا به فأوجد قيم س التي يكون عندها درس) = صغر [۱۰۱]

[i] (ذا كانت ص = س " - إ س + ١٥ دُ (١) = -١ فأوجد قيمة إ

الله المحافقة و (س) = ۱ س " + س س وكانت د (۱) = ۲ ه دُ (۱) = ۱ ه أورد البعد وكانه د (۱) = ۱ ه دُ (۱) = ۱

فأوجد قيمة كل من ﴿ ي ب

(ا کان میل الماس للمتحتی س = س 7 + 4 س + 4 یساوی – 4 عند المقطة (7 - 7) فأوجد قیمة کل من 7) س

المادة عادت:

[وجد ميل الماس للمنحثى ص = س " ـ با عند نقط تقاطعه مع محور السينات [1-1]

الوجد ميل الماس للمنحس ص - س ٢ - ٢ س + غ عند تقط تقاطع النحس مع محور المنادات ١٠٠

وجد میں الماس للمنحنی ص = س 7 – 2 عند حکل نقطة می نقط تقاطعه مع 2 – 2 المنتقیم ص + 2 – 2

ان کاں سے اس -1 بس -1 بار س -1 بار کر میں -1 عندما س -1 وکار متوسط تغیر می عندما تتغیر س می -1 (لی ۲ یساوی ۷ فاوجد قیمتی -1) بار در استان استغیر س می -1 (لی ۲ یساوی ۷ فاوجد قیمتی -1) بار در استان استغیر س

 $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ 1 = 0 six $\frac{2\pi c}{2 + c}$ six -1 = 1

(1-4) عند المعاس للمعجبي ص $-\frac{4}{2}$ بساوى (-4) عند المقطة (1-4) $\frac{1}{2}$ وجد قيمتي $\frac{1}{2}$ عند المقطة (1-4)

أختر الإجابة الصحيحة من بين الإجابات المعطاة .

() إذا كان د (س) ج س" + † س + \$ 4 دُ (١) = ٥ أيان ا = ---------

[r d v d r d r-]

🏵 إذا كانت د (س) = س ^ه فإن معدل تعير د (س) عند س = ٢ يساوى

[m d m d for a d h]

 $\begin{bmatrix} \frac{1}{11} & d & \frac{1}{1} & d & \frac{1}{1} & d & \frac{1}{1} \\ \frac{1}{11} & d & \frac{1}{1} & d & \frac{1}{1} \end{bmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{11} & d & \frac{1}{1} \end{pmatrix}$

م<mark>سائل تفيس مستويات عبا في التفكي</mark>

🚾 أوجد ميل الماس للنحتى الدالة س = س } س - ٣ [عند التقطة (٣٤٣)

$$\frac{1+\sqrt{-c}}{\sqrt{2}}\log c \ln \frac{1+\sqrt{-c}}{\sqrt{2}}$$

 $q_{-}=\frac{1}{2}$ (ذا كان ميل الثماني للمعجني من $\frac{1}{1}$ من $\frac{1}{1}$ عبد المقطة (١٠٢) الواقعة عليه $\frac{1}{1}$ فأوجد قيمتي زوب 19-44

را کید سے[د (س)]^د حیث و قابلة للإشتقاق بالنسبة الی س بارد عدد حقیقی فارد ^{و می} = د (س)]^{د - ۱} × دُ (س)

 $|_{\mathcal{O}}$ القوس v = v (القوس القوس القوس أو ال

ومللأ

إذا كانت س = (٣ س ٢ + ٥ س)

 $\frac{t^{-n}}{t^{n}} = \frac{t^{-n}}{t^{n}} + t^{-n}$ والقوس \mathbf{x}^{-n} بالقوس

 $\frac{2^{4}}{2^{4}} = \frac{1}{2^{4}} \left(\frac{1}{2^{4}} - \frac{1}{2^{4}} \right) \left(\frac{1}{2^{4}} - \frac{1}{2^{4}} \right) = \frac{1}{2^{4}} \left(\frac{1}{2^{4}} - \frac{1}{2^{4}} \right) \left(\frac{1}{2^{4}} - \frac{1}{2^{4}} - \frac{1}{2^{4}} - \frac{1}{2^{4}} \right) \left(\frac{1}{2^{4}} - \frac{1}{2^{4$

dissile.

الماهر

فالباضان

إدا حكانت من دالة قابلة للإشتقاق بالمسبة إلى سن

$$\frac{d^2 x}{d^2 x} \times \frac{1}{2} = \frac{1}{2} \exp \left(\frac{x}{2} - a\right) = \frac{1}{2} \exp \left(\frac{x}{2} - a\right)$$

ېيمکى ملاحظة انداد، كانت ص = او (س) حيث د (س)>،

أن أن مشتقة الجدر التربيعي للدالة = 1 الحدر × مشتقة ما تحدّ الجنر

_مثالی

 1 وجد المنتقة الأولى السالة: $\mathbf{v} = (\mathbf{r} \cdot \mathbf{v}^{T} + \mathbf{T})^{1}$

الحل

 $f(\tau+{}^{\gamma}\omega\cdot \gamma)=\omega\circ\gamma$

۔مثاج،

زدا ڪندت س ۽ ۲ س^۲ + ۱ فاوجد ، و س

الجلل

أورد المشتمة الإولى للدالة س = (٢ س +١) * (٤−٣ س) ا

الدل

w'=|u| u'=|u|
 $V = \frac{V^{T} - V}{V^{T} + V}$ $V = \left(\frac{V^{T} - V}{V^{T} + V}\right)^{T}$ $V = \frac{V^{T} + V}{V^{T} + V}$

الحل

$$\frac{1}{2}\left(\frac{1}{1+\frac{1}{2}O^{-1}}\right) = O^{\frac{1}{2}}$$

$$\frac{U - Y \times (Y - \frac{Y}{U}) - U - Y \times (Y + \frac{Y}{U})}{Y + \frac{Y}{U}} \times \frac{Y - \frac{Y}{U}}{Y + \frac{Y}{U}}) Y = \frac{U^{2} \cdot S}{U - \frac{Y}{U}}$$

$$\frac{1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2}$$

$$\frac{\sqrt{(Y-Y_{U-1})} - Y_1}{\sqrt{(Y+Y_{U-1})}} = \frac{\sqrt{(Y-Y_{U-1})}}{\sqrt{(Y+Y_{U-1})}} \times \sqrt{(\frac{Y-Y_{U-1}}{Y+Y_{U-1}})} \times \sqrt{2}$$

- Alle Englishmen

بذا كان درى بدانتين حيث س بدري)، خ = براس) فين س دد [براس] ويفول بن س بالقالدانة س ولايجاد مشتقة دالقائد، لة يمكن (تباع المطارلة المالية

يا كأنب س = د (ع) قائلة للإشتقاق بالنسبة للمتغير ع

وكانست ع عراس) قابلة الإشتقاق بالنسبة للمتغير س

عــــان ص د (س))تكون قابلة للإشتقاق بالنسبة المتنبرس

ويخلون وس - وص حوف العرف هذه البطرية بقاعدة السيسة

-مثال

إذا مكان ص = ع" ، غ = س" + ٢ أوجد الم ال

الحل

4 7 × 100 5 2.

 ${}^T \mathcal{E} = \mathcal{G}^{p,q}$

ار المراجع على
4+ 00- 27

1, 5 mi = 5 mi × 5 m = 7 4 × 4 mi

 $^{1}(Y+^{T}U^{m})^{T}=U^{m}+1U^{m}+$

مدري

إذا كانت س ع ٢ ع * ١ ع عن اس ٢ - ٢ س فاوجد ، كر س عند س د ٢

الحال

 $\mathbb{T}\left(\overline{U_{n-1}^{-1}U_{n-1}^{-1}}\right)^{\frac{1}{2}} \otimes \mathcal{O}^{\frac{1}{2}}$

بالتعويص عن خ

 $\frac{1}{2} \left(-\frac{1}{2} \right) \times \frac{1}{2} \left(-\frac{1}{2} -\frac{1}{2} \right) \times \frac{1}{2} \times \frac{1}{$

. ص = ۲ (سن^۲ - ۲ س) ۲

جِلْ آخر

$$\frac{\frac{p}{s}}{\sqrt{s}} \times \frac{\sqrt{s}}{\frac{p}{s}} \simeq \frac{\sqrt{s}}{\sqrt{s}} \cdot \frac{s}{s}$$

$$\frac{(n-m)\times(m-1-m)\times(m-1-m)}{(m-1-m)} = \frac{(m-1-m)\times(n-m)}{(m-1-m)} \times \frac{(m-1-m)}{(m-1-m)} \times \frac{(m-1-m)}{(m-1-m)} \times \frac{(m-1-m)}{(m-1-m)} \times \frac{(m-1-m)}{(m-1-m)} \times \frac{(m-1-m)}{(m-1-m)} \times \frac{(m-1-m)}{(m-1-m)} \times$$

-مثالی

الحل

يمكن الحل بطريقتين هما في ال<mark>مثال السابق ولكن الطريقة ،اأسمل هي</mark> التعويض اولا

$$\frac{uu}{Y + uu} = \frac{1 - 1 + uu}{1 + 1 + uu} = uu$$

$$\frac{\frac{2^{n}}{2^{n}}\frac{1$$

$$\frac{Y}{T(Y+UU)} = \frac{U^{d} \frac{S}{S}}{U^{d} \frac{S}{S}} \stackrel{?}{\cdot} \frac{1}{S}$$

أوجد كلاً مما ياتي هيت أن ما بداخل الأقواس دوال وليست ثوابت ،

الحل

 $\left(\sin^{2} \left(a_{0}\right)^{\frac{1}{2}}\right) = 1^{a_{0}} \times \left(\sin^{2} \left(\sin^{2} \left(a_{0}\right)^{\frac{1}{2}}\right)\right)$

(بستغدى من و ولانعتبيا)

$$^{\dagger}\omega = (^{\prime\prime}\omega) \frac{3}{100} \text{ (b)}$$

_ مثالی_

الا کان ص * = س * + ۴ س + ۱ فاوجد ، از می

الحال

∵ ص " ≃ س " + ٣ س + ١ بأخذ مشتقة الطرقين بالسبة إلى س

$$T + v_0 T = \frac{v_0 S}{S} T_0 T_0$$

فأمارا مسيون المرابا

1 (1+ or + + Tom) = or ...

, س^{ات}=س + ۲ سرر + ۱

 $(Y + U + \frac{1}{T}) \times \frac{\frac{1}{T}}{T} (1 + U + \frac{1}{T} + \frac{1}{T} U + \frac{1}{T} = \frac{U^{-1}}{U + \frac{1}{T}}.$

7+0-1 7/1+0-7-0-=

۔ مثالی۔

 $y = \frac{2}{2} +

الحل

1 - 4 = 1 - 4 + 2 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

 $\frac{1}{6}m^{2} \times \frac{1}{6}m^{2} \times \frac{1}$

 $\forall_{i,j=1,0} + a_{i,j=1} \forall = \forall_{i,j=1} \forall \times (a + \forall_{i,j=1} \forall) =$

ر <u>و من - ه و من - ۲ من " = ۲ من " + ۱۵ من " سوا من " من ا من ا من ا بن ا</u>

(i) 10-

إذا كان د (س) = (س + ۴)° فأوجد قيم س التي تجمل د' (س) = ٥

g)

الحل

۵(س)=(س+۲)*

دُ (س) = ۵ (سر ۲۰ × ۲) x ا

عدماد (س) = 6

 $t = \frac{1}{2}(t + \psi^{-1})$

إماس ديسه

راً. من = - إ

1-27+um

N±=₹+ □+ △

رُ وُ (س) ع ه (س ۲۹)¹

(*+) *= (T+w-) * ...

Y-= -- ...

رامأرا رومتسما بالأسم

و الشنقة الأوى لكل من الدول الأثية :

المعطاة ، المحيحة من بين الإحالات المعطاة ،

$$-1$$
 $\frac{5}{10}$ $\frac{5}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$

$$..... = (\cdot)' \Delta \psi \circ (1 + \dots + 1) = (\dots + 1) \oplus (1 + \dots + 1) \oplus$$

$$a = \omega + \frac{\chi}{2} = 0$$

$$A = \frac{$$

الا مكان ص = ۲ - س فإن ا س = ۱۱ المساد.

1- 1 1-00 4- 1 1- 1 1- 1 1- 1 Jay

الا احكان (س + س) ؟ يد فإن في س = سسست

[r d r- d 1- d 1-]

📊 مسلال المستوى الثاني

🚹 أوجد المُسْتقة الأولى لكل من الدوال الأتية :

 $(-1)^{4}$ $(-1)^{4}$

🚺 أَخْتَرُ الْجَانِةُ الصَّحِيحَةِ فِي نِينَ الْإِجَانِاتِ الْمِعْطَاةِ ،

ساوی $\overline{Y - \overline{Y} - \overline{Y}} = 0$ مشتقد الدالة د $(-1) = \overline{Y - \overline{Y} - \overline{Y}}$ عند $\overline{Y} = 0$

阵 4 车 4 车 4 车

[-۱ ق ۱ ق منفر ق ۱-]

﴿ مشتقة الدائة د (س) = ا س ۲+ س - ۲ عند س = ا يساوى

[-۱ ای ۱۰ ای سفر ای ا

 (۳ مشتقة الدائة د (س)= (۲ من ۲ + ۲ من ۲ + ۳) علد س = ۲ يساوی ----[4 d A d t d t-]

📊 أوجد الشنقة الأولى لكل من الدوال الأتية :

(س + +) (۲ − ۲ س) الم

(۱) س = س ۲ (۲ - ۲ س)

← ص = (۲ س +۱) (س +۲) * (۲+ س + ۱) ص = س ا س ۲ +۱

(ال س)=(۱+س)^ا (ا س)

(2) ص = (س^۲ +۱) الم

this had a believed to be a second

وَ أُودِهِ الشَّقَةَ الأَولَى لَكُلُّ مِنْ السَّوَالُ الأَتِّيةَ :

$$\left(\frac{1-\omega_{0}}{1+\omega_{0}}\right)=\omega_{0}\left(\frac{1-\omega_{0}}{1+\omega_{0}}\right)^{n}$$

$$\gamma = -\frac{5}{3-1}$$
 و فاوجد $\frac{5}{2}$ مندما س $\frac{5}{1-2}$

$$\left[\frac{1}{\tau_{\omega^{-}}}\right]$$

الله المانع = س ٢ -١١ ص = ع٢ - ٧ ع + ٣ فائبت ال اوس + ٩ وس ٢٠ س عدا

الا كال ص = س + ع ا س = ع ٢ - ١ فالبت ال ، و عن + ٢ في عن - ١٥٠ الله عن الله عن عن الله عن ال

الأوجد مين المسلمحني لدالة س - (س + ۲) عند النقطة (- ۱۲ ۲) على هذا النبوني (ر)

 $\frac{1}{1000}$ [it $\frac{1}{1000}$] $+ \frac{1}{1000}$ $+ \frac{1}{10000}$

-1 $= \frac{1}{\sqrt{1-7}}$ $= \frac{1}{\sqrt{1-7}}$ $= \frac{1}{\sqrt{1-7}}$ $= \frac{1}{\sqrt{1-7}}$

 $\frac{3-7}{2}$ = $\frac{3-7}{3+7}$ = $\frac{3-7}{7-4}$ elter $\frac{3-4}{7-4}$ = $\frac{3-7}{7-4}$ elter $\frac{3-4}{7-4}$ = $\frac{3-7}{7-4}$ elter $\frac{3-4}{7-4}$ elter $\frac{3-4}{7-4}$

 $\frac{1}{|y|} (x) = \frac{1}{|y|} - \frac{1}{|y|} +

📝 أختَر الإجبة الصحيحة من بين الإجباب المعطاة -

 $70 + \frac{1}{2} = 2 = \frac{1}{2} + \frac{1}{2} = 0$

 $\frac{1}{4}$ of $\frac{1}{4}$ and $\frac{1}{4}$ is an $\frac{1}{4}$ in $\frac{1}{4}$ or $\frac{1}{4}$ or $\frac{1}{4}$

 $|Y = \frac{y}{y} =$

[nd + d 學 d]]

 $\lim_{z \to 0} \frac{1+z}{1+z} = \lim_{z

1 4 1 4 1 d 1 d 1]

المنافث من ت ۲ - بس فإن : ق من المنافث من المنافث من المنافث من المنافث من المنافث ال

(-1 d -1 d 0 -1 d 1-)

الماهر

abal abatista alliques

الا احتاد من المدين المال : و من من من المال
[tt d Y- d Y d Y±]

[r d + d max d 1]

 $\left[\frac{1}{\pi A^{1}} d \frac{1}{\pi A^{1}} d \frac{1}{A^{2}} d \pi A^{1}\right]$

🔝 مىنائل تقيس مستويات عبيا في التفكير

اوجد ، خ س

 $\frac{\delta}{2}$, $\frac{\delta}{\delta}$, $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$ $\frac{\delta}{\delta}$

 $t = 0 - \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2$

 $\begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}$

اوجد ۽ د س عندس س

فاثبت ان، وص = ٢ اس - ١

 $^{T}(1-\omega)=^{T}(\Upsilon+\omega)$ النان (عمل $\Upsilon+\Upsilon)$

 $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$ $\frac{1-4}{4}$

 $|x| = \frac{1}{2} |x|^2 + 1$ $|x| = \frac{1}{2} |x|^2 + 1$ $|x| = \frac{1}{2} |x|^2 + 1$ $|x| = \frac{1}{2} |x|^2 + 1$

 $\frac{\partial}{\partial x} (u) = \frac{\partial}{\partial x} \left(\frac{x - x}{x - y} \right)^{-1}$ $= \frac{\partial}{\partial x} (u) + \frac{\partial}{\partial x} \left(\frac{x - y}{x - y} \right)^{-1}$ $= \frac{\partial}{\partial x} \left(\frac{x - y}{x - y} \right)^{-1}$

- في النمار إلى المسسمة الأطراب م

الماسة عدالد هابلة الإشتقاق بالنسبة إلى المتغير سرولي،

وس الما ع الماع وس الى الما به المارة عن المعمل المراحمي المراه

الم مشتقة مثوالدالة

ز الإسل + ۲) عمل (۲ س + ۲) ×۲ = ۲ مد (۲ س + ۲) وأبضًا إذا كانت س عيما (س ٢ + ٤) فإن ،

سُ = مِنا (س ۲ + 1) × ۲ س منا (س ۲ + 4)

شاں: و س = - حا س

الاعالت س د منا س

ويصفة عامة إذا كانت س = عنا (د (س)) فإن ، س = د (س) ما (د (س)) $(1 - {}^{T} - {}^{T}) = {}^{T} - {}^{T} - {}^{T} - {}^{T} = {}^{T} - {}^{T} - {}^{T} - {}^{T} = {}^{T} - {}^{$

🕝 مشيفه داله ندين

إذا كانت س = مل س

هإن: وسن = قا اس

وبصفة عامة (ذا كانت س = طا (د (س)) فإن ، سُ = دُ (س) وَا أَ (د (س)) فوللاً إذا كانت س = ق (س ٢+٢) فإن ، ص = ٢ س ق ا (س٢+٢)

ملاحظات

 $\left[\left(\omega - \frac{\pi}{\gamma}\right) | \Delta \right] = \frac{3}{2\pi i} = (\omega - \frac{\pi}{\gamma}) \left[\Delta \right] \left[\frac{3}{\gamma} + \omega \right]$ = منا (بر - س) × ۱۰ × - ما س

العاهر الما الماهر الما الم

ساء (ما س)= ما س الما س الماء (ما س) عنا اس الماء الم

- المالات منالاس منالاس المنالات المنا

مثال).

أوجد المشتقة الأولى لكل من الدوال الأثية :

🕡 س = مثا ۲ س

🚺 س = ۲ برا س

🐧 س تيما س منا ۲س

🕜 س = ما س + منا ۲ س

الحل

ر از المستاس = ۲ مناسل

()ص ≃۲ عاسق

ر الاس = (-برا ۲س) ۱۲ = - برا ۲س

٠٠٦ الما ١٠٠٠

ئ د س = ها س - ۲ ها ۲ س

وس من + بدا ۲س

€ س عبر سن منا ۲س

ر از من ≃یا س×۲۰۰ یا ۲۰۰۰ میدا ۲۰۰۰ میدا س

= - ٢ ين س يما ٢ س + يما ٢ س يما س

مثالی ۔

أوجد المشتقة الأوثى تكل من البوال الأتية:

🕡 س د ا ۲ س + ۲ سا 🕶

🚺 ص= بيا (۲ سر+۱)

1 س = س لا ۲ س + منا ۲ س

🕝 ص 🕾 الى (٤ س + ٣)

الجار

(۱+س۲) الم ۳=۳ معا (۲ س ۱+) ۱۲ ت معا (۲ س ۱+)

€ المستخدم × (منا ۲س) ×۲+ ما ۲س ×۱- ۳ ما س × استخراب ما ساس × با ۲س ×۱- ۳ ما ساس × با ۲س منا ۲س منا ۲س + ما ۲س - ما س

رين الأقسيرة الأحجار الوائنية الأردوار الوائنية الأردوار القائنية الأردوار الأردوار الوائنية الأردوار الوائنية

أوجد المشتقة الأولى لكل من الدوال الأتية :

(۲ سر+۴) (۲ سر+۴)

الحل

() س=[ما (۲-۱۰-۲)]"

۲×(۲+ س۲) له × (۲+ س۲) له ٢ ع مدا (۲ س ۲ ۲ م

= ۲ ما ^۱ (۲ س + ۲) منا (۲ س + ۲)

Tx (0+ 0+ 7) Yx 1 (0+ 0+ 7) 1== 00 5

= غ (۲ س + ه) ايغ (۲ س + ه^۲) ا

مثال

 $|i| = \frac{\pi}{4}$ انا کانت س $= \frac{\pi}{4}$ س) فألبت أن بو س = - ها ۲ س

الحل

 $\left(\mathbf{U} + \frac{\pi}{T}\right) \ln \times \left(\mathbf{U} + \frac{\pi}{T}\right) \ln T = \frac{s}{1000}$ $= a + \gamma \left(\frac{\pi}{\gamma} + \omega \right) = a + \gamma \left(\frac{\pi}{\gamma} + \gamma \omega \right) \left(\frac{\pi}{\gamma} + \gamma \omega \right) = a + \gamma \left(\frac{\pi}{\gamma} + \gamma \omega \right)$ ≃~ما∀س

اوجد ، و سن (۱ + ها ۲ سن) عند س = TT

الحل

$$\frac{\pi \tau \ln \pi \tau \ln \tau + (\pi \tau \ln \tau) (\pi \tau \ln \tau)}{\tau (\pi \tau \ln \tau)} =_{\pi \times U^{-}} (U^{-})^{2}$$

$$\hat{y} = \frac{1}{1} = \frac{1 \times 1 \times 1 \times 1 + (1 \times 1) (1 + 1)}{7(1 + 1)}$$

مثل.

أوجد ، أو س إذا كان س = ما (طا ه س)

الحلل

ت س د بها (بلا ه س) بغرض أن غ د بلا ه س

فإن ص عماع ناخ على هس

ي المراجع على المراجع والمراجع والمراجع المراجع والمراجع والمراع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراع و

 $a^{-1} = \frac{2 \pi}{2 - 1} \times \frac{3 \pi}{2} = \frac{3 \pi}{2 - 1} \times \frac{3 \pi}{2} =

 $(\underline{\omega} \circ \underline{\omega}) \circ \underline{\omega}^T \circ \underline{\omega} \circ \underline{\omega}^T \circ \underline{\omega} \circ \underline{\omega}^T \circ \underline{\omega}^T \circ \underline{\omega} \circ \underline{\omega}^T \circ \underline{\omega} \circ \underline{\omega}^T \circ \underline{\omega} \circ$

حيآخر

ت س دیا (یا ۵ س) دیا (یا ۵ س) بر می) و س

$$\left(\frac{\pi \, \forall}{\overline{\tau}} - \omega^{-}\right) = \tau = \frac{\omega^{-} \, \beta}{\overline{\tau}^{-}} \qquad \left(\frac{\pi \, \forall}{\overline{\tau}} - \omega^{-}\right) = \tau = \omega^{-} \, \beta$$

$$\left(\frac{\pi \, \forall}{\overline{\tau}} - \pi\right) = \tau = \frac{\omega^{-} \, \beta}{\overline{\omega}^{-} \, \beta} \qquad \pi = \omega^{-} \, \omega$$

$$1 = \theta + \omega = \omega^{-} \, \beta$$

$$1 = \frac{1}{\tau} \times \tau = \frac{\pi}{\tau} = \omega^{-} \, \beta$$

$$\frac{\pi}{4} = (1)^{1-} = \omega^{-} \, \beta$$
Shift That $1 = 45$

إذا كانت س = قوا ٢ س أوجد معدل تغير س بالنسية إلى س عندما س = يُ

الحل

- (x)40-

$$\frac{\partial Y}{\partial t} = \frac{1}{2} + $

$$=\frac{\cdot \times Y^{-}}{^{\intercal}(1)}=\frac{\left(\frac{\pi}{\Upsilon}\right)}{^{\intercal}\left(\frac{\pi}{\Upsilon}\right)}=\frac{\left(\frac{\pi}{\xi}\times \Upsilon\right)}{^{\intercal}\left(\frac{\pi}{\chi}\times \Upsilon\right)}=\frac{\cdot \times Y^{-}}{\left(\frac{\pi}{\chi}\times \Upsilon\right)}=\frac{\cdot \times Y^{-}}{\left(\frac{\pi}{\chi}\times \Upsilon\right)}=\frac{\cdot \times Y^{-}}{\left(\frac{\pi}{\chi}\times \Upsilon\right)}$$

arilial Institution and the

مسائل المستوى الرول

الطريب مرجدلة

الناسكانية ص على سي طارت كر سي =

[قاس أن قتاس أن قاأس أن قتالس]

الله المعادد در س عمل ه س فان در (س) = ۱۰۰۰۰ ۱۰۰۰۰ ا

[ه أن هما س أن همتا س أن همتا مس]

 π^{\dagger} ان من π منا π^{\dagger} هان من π

[۱ ط ا ا صفر ای ا ا ا

 $\left[\frac{1}{2} \frac{1}{6} \right] = 0 \quad \text{ord} \quad \left[\frac{1}{4} - \frac{1}{6} \right] \quad \text{ord} \quad \left[\frac{1}{4} - \frac{1}{6} \right]$

ه المحانث س = ما (٢ س + ٥) فإن س =

[(عدا ٢ س إلى ٢٠ مدا ٢ س إلى مدا (٢ س + ٥) إلى ٢ مدا (٢ س + ٥)

﴿ إِذَا مِمَانَتُ صُ عَدِيلًا ﴿ ٣ سَ - ٤) فَإِنْ صَى عَد

۳ نیا ۲ (۲ س + ۲) کا ۱ تا ۱ (۲ س + ۲)

(١) إذا كانت ص = ٢ عدا (٢ - ٤ س) غان ص =

[ف ما (۲ - ف س) ال ۱۲ ما (۲ - ف س) ال

[(u-1-1) la 14- d (u-1-1) la 1-

الاَ كانت د (س) - س ٢ + عا ٤ س فإن د ا (س) =

[٢ س- عمتا عس في س + عمتا عس ٢]

وس + عما وس ال وس + عما وس [

("" al to " " + al to " " " + tal to " " " ta-")

 $\lim_{t\to\infty} |t| = \lim_{t\to\infty} |t| =$

الختر الرحابة الصحيحة من بين الرحانات المعضاة ،

ال الله و س (م) س م اس الله الله

[-ماس+مناس أل ماس مناس إلى الماس مناس إلى الماس مناس

ال ما المالية على المالية ال

[ه+٢ تا ٢٠س أ، ٥ + قا ٢٠س إ. ه+٢ قا ٢ س أ، ٥ + تا ١ س

" "=(" \" | \(\bar{b} \) \ \ \(\bar{b} \) \ \ \(\bar{b} \) \ \ \(\bar{b} \) \\(\bar{b} \) \\(\bar{b} \) \\(\bar{b} \) \\(\bar{b} \) \(\bar{b} \) \\(\bar{b} \) \

[سفالاس" ﴾ لاسفالاس" ﴾ لاسفاللس" ﴾ لاسفالاسا

ر با ۱ و۱° + هکا ۲ و۱°) =

[صدر في - ا في ا في الماها"+ الماها

[صفر ان یا ان ۱ ان ۲ ما سرما دا

 $\cdots\cdots\cdots = (1-\omega)^{\frac{7}{7}} \bigoplus_{i \in \mathcal{I}} \bigoplus_{j \in \mathcal{I}} \bigoplus_{i \in \mathcal{I}} \bigoplus_{i \in \mathcal{I}} \bigoplus_{j \in \mathcal{I}} \bigoplus_{i \in$

[طالس له الحاسطاس له الحاس له الحاسنالس

– فيثلثما بالصادرة الأنفية الأطار المناثية –

= (- [] - [] [طاس ﴾ قالس ﴾ طناس ﴾ -قالس

ا منا (۲-۲-۷) ای -۳-۷ منا (۲-۲-۷) ای 7 مدا (۲ - ۲ س۲) ۱ ۲ س مدا (۷ - ۲ س۲]

ال معا ٢ جن - (١ ع عا ٢ جن - (١ ع عا ٢ عن - ١٠) عن الم [[] ٢] ٢] ٢] ٢] - ٢] - ٢] [] - ٢]

سسس = (ب ما س منا س) = سسست [المنااس) منااس) - امنااس) المااس

ال المال على العالم
[٨-١٠ + ٢ ما ٤ - ١٠ ١٨ من عنا ٤ - ١٠ ما ٤ - ١٠ ال معا عس + ما عس في ١٨ س معا عس + ما عس]

📊 أوجد الشنفة الأولى لكل من الدوال الأثية :

` إ الص=ما أوس () ص = يا ٢ س

🕝 س = مناسب

@س-ما (س۲+ ۲) اله اله س = منا (۵ س + ۲)

(14+Tuma-) 16-00(A) (ア+・・・・・・・・・・) 16ヤニの(25) (9)

أأأ مسائل المستوى الثاني

🗓 وجد و س إذا كانت :

٠٠٠ س = م ١ س

🗇 س تا سائعتا س

و ن⊕س≃سما س

ا ()س=س عاس

فيالياضال

الماه

ا الله من = س ما (٢ مردد)

ھ س=سما س

🚺 أوجد المشتقة الأولى للدوال الأتية :

الا الا السواد ما اس ما سواس ما سواس ما سواس

$$\left(\frac{1}{V_{n,n,n}}\right) I_{n,n} = \sigma^{n} \mathbb{R}^{n} \mathbb{C}$$

🔯 أوجد المُستقة الأولى تكل من الدوال الأتية :

📆 أودد المستفة؛ لأولى لكل من الدوال الأتية :

$$\frac{\pi}{3} \ln m \ln \frac{\pi}{7} + 21 + m \ln \frac{\pi}{9}$$

$$= 21 + m \ln \frac{\pi}{7} + 21 + m \ln \frac{\pi}{9}$$

$$\frac{d}{dt} = \frac{1}{2} \frac{dt}{dt} + \frac{dt}{dt} = \frac{1}{2} \frac{dt}{dt} = \frac$$

المافر إس أوا جاري:

آ فين المماس لكل من المندعيات ،

ن س = بها ۲ مس عندما س = $\frac{\pi}{7}$ بساویها

$$\pi = 1$$
 ($\gamma = 1$) size $\pi = 1$ unless $\pi = 1$

$$\pi$$
سن π من π من π من π من عدما من π بساوی π

$$\pi$$
 من π من $\pi_{\rm pl}$ π س صدما س π یساوی π

$$\left[\frac{\tau_{-}}{\pi} d \frac{\gamma}{\pi} d \frac{\pi}{\gamma} d \frac{\pi}{\gamma} d \frac{\pi_{-}}{\gamma}\right]$$

$$\pi$$
 س π سے اوی π سے π منبعہ سے π یساوی π

$$\nabla$$
 اس میا س عبدما س $\frac{\pi}{\gamma}$ یساوی ∇ اس عبدما بر ∇ اس مبغر ∇ اس مبغر ∇

$$\begin{bmatrix} \frac{1}{\pi} & 0 & \frac{1}{\pi} & 0 & \pi - 0 & \pi \end{bmatrix}$$

[۱ ا ا ۱۰ ا ا صفر ا ا

إلى قياس الزاوية التي يصمعها الماس للتحلي كل من الدوال الأثية مع الإنجاء الوجر. [1]

x = -v at Y = v such that $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ and $\frac{\pi}{4}$

[4 6 % 6 % 6 % r.]

→ من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مساوى مساوى مسسم...

(۳) من = مناس في س عند النقطة (π ، π) يساوى مساوى مساوى مناس مناس في م

["10 d "10. d "to d "T+]

 \mathbb{T} we define \mathbb{T} and \mathbb{T} and \mathbb{T} and \mathbb{T}

[to d "tr. d "tr. d "to]

الماس الماس المعدى س = عنا س عند س = الإنجاء الوبب الماس الماس المعدى س = عنا س عند س = الإنجاء الوبب المعدى المعدى الإنجاء الوبب

(دا بعدت ص= (ما ۲س + منا عس) * فأوجد ، و ص

الا كانت س = عنا " (٣ - ٣ س ٢ +٣ س٢ فأوجد ، و س

 $|x| = \frac{\pi}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$

الأ أوجد رُس إذا كانت س م الأس عندما س = ،

الا معانت س د منا (π - ۳ س) ۱ فاوجد ، و س عند س د ۳ بنا

ويروا ومشتمان الحمل المثلية -

الإلا المالات د (س) = ماس اوجد ، د (صمر)

وحد في كل مما اسى ،

ن س = (۱ - ع) ع = م ۲ س عند س = ۱۳

 $\frac{\pi}{4}$ مندس $\frac{\pi}{4}$ مندس $\frac{\pi}{4}$ مندس $\frac{\pi}{4}$ مندس $\frac{\pi}{4}$

 $\frac{1}{2}$

الله الماست س = (ما س + منا س) البت أن : و من - ٢ منا ٢ س

هٔ وی ایکانت س در س میا س میا س

فأثبت أن ، و من = ما ٢ س ٢٠ س مما ٢ س

الأكادت س = ما سن + منا سن فائيت أن الرسن = 1 + ما ٢ سن الما ٢ سن الما ٢ سن الما ٢ سن

 $1 = \frac{1}{4} \frac{1}{4} = \frac{1}{4$

 $\frac{\pi}{\Psi}$ = 0) Ψ – 0 Ψ – 0) Ψ – 0 Ψ – 0) Ψ – 0 Ψ –

الله کانت $m{w} = m{z}$ وا کانت $m{w} = m{z}$ و من $m{z}$ و من النسبة الله من عندما $m{w}$

📆 لختر الإجابة الصحيحة من بين الإجابات المعطاة ،

ال إذا كان س = الم الله الله الله على : و من = المستسس

[طالاس أن لا كالس أن كالس أن القالاس]

[۲منا۲س کے منا۲س کے ۲ما۲س کے ما۲س)

[쿠]

[7]-]

[(-]

مسائل تقیس مستویات میاوی انفکیر

 $\frac{800}{1000}$ [3] $\frac{800}{1000}$ [4] $\frac{800}{1000}$ [4] $\frac{800}{1000}$ [5] $\frac{800}{1000}$

الله إدا كانت س = ١٩ ٤ + ٢ ، ٤ = منا س أوجد ، و ص

 $e^{-2\pi i \frac{1}{2}} = \frac{e^{-1} - e^{-1}}{e^{-1}} = \frac{e^{-1} - e^{-1}}{e^{-1}} = \frac{e^{-1} - e^{-1}}{e^{-1}} = \frac{e^{-1}}{e^{-1}}

الماس له عبد هده النقطة هي ٣ ص + 5 س + ٣ ص فأوجه قيمتي (٤ س

 $\psi_{1} = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} -

تتطلب التطبيقات الهندسية على مشئقة الدالة إيجاد معادلة الخط الستقيم إذا علم ميله ونقطة تقع عليه لدلك يجب أن نتدكر العلاقة مين مبلى السنقيمين التوازيس والمستقيمين المتعامديين.

مبل الماس للحشي عند أي نقطة (س ع ص) الواقعة عليه هو الشتقة الأولى لدالة هذا

US

میں اٹماس تنہیں سے در (سس) بعند التقطة $||(-1)||_{2}$ الورقعة علیہ $-||(-1)||_{2}$ (سر) سر)

Car Carried Jan

حيث و فياس الزاوية الموجبة التي يصنعها الماس مع الإنجاه الموجب لحور السبنات،

delacionate

المادر

والرياصاد

ونستنتج من ذلك أن ميل العمردي على التحتى ص= c (m) عند النقطة الواقعة عليه $= \frac{c}{[c - m]} (m)$ ميل العمردي على التحتى ص

Ministra orlanda Militaria

(دا کانت (س_{ر ع} س_{ر)} نقطه تقع علی منحنی الداله د حیث س = د (س) ۱ امیل انماس عند هنداننت طفقان ۰

🚯 معادلة الماس للمتحثى عند النقطة (سي اص)

🕡 معادلة الممودي على المتحني عبد النقطة (س ۽ س ِ)

CENTRAL CONTRACTOR

إذا حكال الماس يصنع زاوية موجبة قباسها ي مع الإنجاد الموجد لحور السينات فإن ميل الماس = طل ي

نا کان الماس پوازی لئستقیم و س + س ص + هـ = ه و الماس پوازی لئستقیم و س + س ص + هـ = ه و الماس = میل المستقیم المطی = $\frac{1}{n}$ معامل س . ای آن $\frac{2}{2}$ س = $\frac{-1}{n}$

أما إذا كان الماس عمودي على هذه المستقيم فإن ميل الماس = معامل ص الماس = معامل ص

- إداكان الماس يوازي محور السيئات فإن ميل الماس = صفر
- إدا كان الماس بوازى محور الصادات فإن ميل الماس غير معرف أي أن مقام ميل
 الماس سعر

رائيستخيم الذي يوريا ليقطني (سي) هي) (سي) هي اميله يو التوسيل الميله يو الميله يو التوسيل الميله يو الاتوسيل الميل ا م ينامكان مبل الماس موجبًا فإن الماس يصنع زارية حادة مع الإنجاء الوجب لحور السينان. ع والطائد مين الماس ساليًا فإنه يصنع زاوية منشرجة مع الإنجاء الموجب لحور السينان. و إنامكان مين الماس ساليًا فإنه يصنع زاوية منشرجة مع الإنجاء الموجب لحور السينان. و المعدد القطة تقاطع منحنى مع محور السيمات نضع مي : ونوجد فيم سولتحديد تتط تقاطع منحس مع محور الصادات بضع س = ، ولوجد قيم س لتحديد نقط تناطع سحنيين أومستقيمين تحل معادلتهما جبريًا (معادلتين أثيتين)،

وُجِدُ النَّفِطُ التِي تَقِعَ عَلَى المِنْحِثِي صِ = سِ ٣ - 1 سِ + ٣ وَالتِي عَنْدُهَا مِيلُ المماس للمتحتى يساوى - إ

الحار

ر س يوس⁷ ــ ۾ س + ۲

 $Y'' = \frac{\partial^2 S}{\partial x^2} = \frac{\partial^2 S}{\partial x^2} = \frac{\partial^2 S}{\partial x^2}$

Tall or F.

عندم س = -۹

عندها س= ۱

ئ ص = ۲+ (۱-) £ - ۲ (۱-) = ن ث ٠٠ = ٣ + (١) ﴿ - ٣ (١) = ٢٠٠٠ ...

4-10-0

E- 7 - 7 = 1.

性ニン・ボ

1-=1- "-T"

(المقطفي (+ch) ((a ch-)

ازجد النقط الواقعة على منحتى الدائة ص 😅 س 🖰 🔫 س 🗖 ــ ۾ س والتي يكون الماس عنيها موازيًا لحور اسينات.

الحال

س = س ۲ ـ ۲ س ۲ ـ ۹ س

. الماس يوازي محور السينات

ر از عن = ۴ س ۲ - ۲ س ۱۹

 $\sqrt{2} \sin \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = \frac{1}{2} \sin \frac{f}{2} \frac{1}{2}$

يرس المواسمة

الماعر

في الرياميان

ح س = − أن اس = ٢

(وبالتعويض في معليته المنجبي

مذلي

أوجد البقط الواقعة على منحنى الدالة ص = - ب ٣ + ٣ س - ١ والتي يكون عنيها الملي:

- 🚺 موازيًا للمستقيم 🤻 س ص ٧ = ٠
- 🚺 عموديًا على السنقيم س + ۴ ص 🖎

الحل

 $\Upsilon + \frac{\gamma}{4} \omega - \Upsilon = \frac{\omega^{\alpha} \beta}{\omega - \beta} - \epsilon$

1-w=+70=0

🕥 🤨 للماس موازيًا للمستقيم 🤊 س – ص – ٧ = ٠

ر حيل الماس = ميل السنقيم ؛

$$7 = \frac{7}{1-} = \frac{-aabti - \sqrt{-2}}{aabti - \sqrt{-2}} = 7$$

4= " Jun 4" //

1=T+T-T:

 $1\pm - 0 \pm \Delta$

: س^{*}=1

T=1=T+1=0f.

عندما س = ١

a-=1-7-1-=0° ∴

عندما س = ١٠

: المقطرهي (۲۶۱) ((۲۶۱ – g)

الماس عمودي على السنفيم س + ٣ ص = ٨) ميل السنفيم = ﴿ ﴿ الماس عمودي على السنفيم = ﴿

 $\overline{\tau} = \frac{\sigma^{\alpha} d}{\sigma^{\alpha} d} \ \tilde{\sigma}.$

 $T \cong \operatorname{again} \operatorname{dist}_{\mathcal{A}}$

4 - Tow 4 1

TOTA TOTAL

0 . ماميناما ياد ماميناما ناميناما ماميناما م .. س د ، (بالتعويض في معابله المتحلي)

يرض عدوا ساعيا

(1-61) and detail (

المنقط الواقعة على المنحثي ص = سر - ٢ والتي عندها الماس العنجني

العلى العام الع

، الماس يورزى المستقيم ص = س + ؤ _ مهامل سي بعد ترتيب العادلا _ ميل الماس للمتحدى = ميل المستقيم _ مهامل ص

1±=1= → ∴ 1= *(1- →) ∴

1=1-1=00 ...

<u>بر س = ه</u>

 $a = \frac{y - y}{y - y} = \sqrt{y} = \sqrt{y}$

∴ –ن = ۲

1=1-1-14

- النقط من (۲۱۰) ۽ (۲۲۰)

- مثالی- $|| v - v|| = \frac{v + T}{v + 1} النحتى والتي إحداثيها السيني = ٢) هل النقطة ﴿ (٣٠) ٤) تقع على الماس؟

7+00

.. النقطة (٦٤٦) تقع على المنحتى

العاما

$$\frac{\gamma - \omega - 1 + \omega}{\tau} = \frac{1 \times (\gamma + \omega) - 1 \times (\gamma + \omega)}{\tau} = \frac{\omega + 1}{\tau} \tau,$$

$$\frac{\Upsilon^{-}}{\Upsilon(\Upsilon+\psi^{-})} = \frac{\psi^{0} S}{\psi^{-} S} \therefore$$

$$f = \frac{1}{T} = \frac{T-1}{T(1+1)} = \frac{T-1}{T(1+1)} \left[\frac{U^{0-\frac{1}{2}}}{U^{0-\frac{1}{2}}} \right] ;;$$

$$(1-u-1) - \frac{1-\frac{1-}{1-}}{\frac{1-}{2}} (1-u-1)$$

بالتعويس بالنقطة (٣٠) في معادلة الماس

$$a = a - (t) T + (Y -) \therefore$$

_مثالی

 $\left(\frac{\pi}{t}, \frac{\pi}{t}\right)$ اوجد معادلتي الماس والممودي للمنحبي من نـ س ما τ س عبد المقطة و

الحل

$$\mathbf{Y} = \left(\frac{\pi}{4}\right)\mathbf{Y} \mathbf{L}_{\mathbf{A}} + \left(\frac{\pi}{4} \times \mathbf{Y}\right) \mathbf{L}_{\mathbf{A}} \frac{\pi}{4} \times \mathbf{Y} = \left(\frac{\pi}{4}, \frac{\pi}{4}\right) \left[\frac{\sqrt{5}}{5}\right]$$

معادلة المماس هي

المددة لأداءة تطبية تحدي المستدان

$$\left(\begin{array}{c} \pi \\ -\infty \end{array}\right) + \frac{\pi}{2} - \infty$$

معادية العمودي هي (س - س) = ﴿ (س - س)

$$\left(\frac{\pi}{4} = \omega + \omega + \frac{\pi}{4}\right) = \frac{\pi}{4} - \omega + \frac{\pi}{4} = \frac{\pi}{4} - \omega$$

أوجد فيمة بكرُّ بِعن الدَّابِكِين } عن إذا كان ميل الماس للمنحني ص = سن أ + } س + س عند النقطة (۴۴١) الواقعة علمه يساوى ٥

الحل

٠٠ انقطة (٣٤٩) تقع على المعين من عرش ٢ + ١ س + ب

- مثالی -ألبت أن مساحة الثنث الحصوريين الماس ليميحين من = ﴿ حيث من ﴿ - . ﴿ عبد أى نقطة عنيه ومحور السيئات ومحور الصادات تساوى ٧ وحدة مربعة

الحل

رض أن ، س=
$$\frac{1}{1}$$
 ... من $= \frac{1}{1}$... من $= \frac{1}{1}$... المنطقة عبد (1) $= \frac{1}{1}$... المنطقة عبد (1) $= \frac{1}{1}$... $= \frac{1}{1}$

$$\frac{\frac{1}{2}}{\frac{1}{2}} = \left(\frac{1}{2}, \frac{1}{2}\right) \left[\frac{\frac{1}{2}}{2}\right]$$

 $\sum_{i=1}^{n} \frac{1}{i^{2}} (u_{i} - u_{j}) \cdot (u_{i} - u_{i})$

1+0--=1-0+1

ر من + إلا ص - + إ عن (معادلة العاس و ع) إن من + إلا ص - + إ عن ا

الإيجاد نقطة تشاطع العاس والأحم محور الصادات نضع سري

 $| T = \psi^{-1} | f_{ij}$ $= | Y - \psi^{-1} | f_{ij} |$

ر تقطة التقاطع مع محور الصادات عن (٠٠)

7=27.

الإيجاد تقطه تقاوتو المؤرد والا مع محور المسات لضع ص در

14=0-1.

.. نقطة التقاطع مع محزي الميناب هي (١٢١٠)

14=33

مساحة ∆ الطنوب= ل × ر م × ر د علم × ۲ | = ۲ ومنة مريمة

. مثالی

 $p_{\rm CC}$ مينا مة سطح الثنث المكون من محور السينات والمودى عليه للمحم $p_{\rm CC}$ عند المقطة ($p_{\rm CC}$)

الحل

٠٠ ۾ ص عبا _ سنا

 $O = \frac{1}{4} = \frac{O^{0}}{1} \cdot \frac{3}{2} \cdot \dots \quad O = \frac{O^{0}}{1} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \dots \quad O = \frac{O^{0}}{1} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \dots \quad O = \frac{O^{0}}{1} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \dots \quad O = \frac{O^{0}}{1} \cdot \dots$

معادلة اللماس عند التقطة (-1 عن (-1 عن -1) معادلة اللماس عند التقطة (-1 عن -1)

لإيجاد بقطة تقاطع الماس مع محور السيئات نضع ص = :

معادلة العمودي عنك النقطة (١٠٠٠) هي:

ن ۽ سن ۾ ص ڪ ۽

لإنجاد نقطة تقامل العموري مع محور السينات بضع س = •

*ニャナレーおり

مساحة \triangle المطلوب = $\frac{1}{y}$ × ر $\frac{1}{x}$ و = $\frac{1}{y}$ × و × $\frac{1}{x}$ = ووحدات مربعة

مثالی ـ

إدا حكان الماس للمتحشى ص = س أ – 7 س آ حس عند النقطة إ = (- ١٠١) يعس المحنى عند نقطة أخرى بي فأوجد معادلة المعمودين على المحتى عند ب

الحل

: و س = ع س م يدن ١٠٠

$$1-=1-(1-)$$
 و $=\frac{5}{5}$ عبل الماس $=\frac{5}{5}$ $=\frac{5}{5}$ $=\frac{1}{5}$

معادلة الماس للمنحني عبد البقطة (١٠٤)،) هي:

لإيجد نقط تقاطع الماس مع اللحني :

$$s = 1 - \frac{1}{2} \omega + \infty$$

$$1-\omega = \frac{1}{2}\omega = \frac{1$$

$$t = c \cdot t = (t) \cdot \xi = \frac{T}{t}(t) \cdot \xi =$$

ممادلة الممودي هند التقطة (٢٠ -٣) هو: :

$$\left(1-\omega_{0}\right)^{\frac{2}{2}\omega}\approx\left(7+\omega_{0}\right)$$

$$\epsilon = \nabla - \psi - \psi - \chi_{-}$$

والرباهيات

الماقر

أخثر الإسانة الصحيحة من بين محانات المعضاة .

الماس لنحنى الدالة د حيث س = د (س) عند أى نقطة عليه هو مراسي

[100 (000 (000) [100 (000)]

 $m_{max} = 1 = 1$ at the $m_{max} = 1$ at $m_{max} = 1$ at $m_{max} = 1$ at $m_{max} = 1$

[4 4 4 4 4 6 6]

صيل الماس للمنحتى ص = و عندما س = و هو اسب

[-۱۲ ای ۱۰ ای ۱۷ ای آی اه مستر]

میل الماس للمنحنی س $_{ab}$ س عندما س $_{ab}$ بساوی $_{ab}$

[= 4 + 4 + 4 + 4 + 7]

میل العمودی تلمنحنی ص = ط ۲ س عندما س = $\frac{\pi}{2}$ یمناوی سیسیس

[+ d + d + d +]

الله ميل الممودي للمنحني ص = يا ٧ س عند النقطة التي تقع على النعبي وأحداثيها السيني على الناسي وأحداثيها السيني على الناسي

[۱۰] ۱۱ ای صفر ای غیرمبرد]

﴿ إِذَا كَانَ الْمُسْتَقِيمِ } ص + 0 = 1 ص + 0 = 1 ممانًا لمحمى الدائلة و عند النقطة التي

 $\begin{bmatrix} -4 & \frac{1}{\gamma} & 0 & \gamma & 0 & \frac{1}{\gamma} \end{bmatrix}$ $\begin{bmatrix} \gamma & \gamma & 0 & \frac{1}{\gamma} & 0 & \gamma & 0 \end{bmatrix}$

﴿ ﷺ إذا كان المستقيم ص = ٨ = ٣ س مماش لمنحنى الدالة دعند النقطة (١٠٠٣)

فإن دُ (٣) = ١٠٠٠ الله عنقر في ٣٠٠ [٢] في منقر في ٣٠٠

إذا كان المنتقيم ؟ س - ص + ٧ = ، عموديًا على منحنى الدائة ر عنه النظة

۞ إلكماس للمنحني ص = (٣ س - ٥) عند النقطة (١٤٣) يصنع مع الإنجاء

الوجب ذحور السينات زاوية موجبة ظلها يستست

[-۱ ۵ ۹ ۵ ۹ ۵ ۹ ۵ مند]

["to: d "tro d "to]

﴿ ميل المس للمنحني ص → س اس | عند س = ٣ هو ١٠٠٠٠٠٠٠٠٠

[*- 4 * 4 * 4 *]

[3'6 3- 6 1- 6 1]

سيدنة الماس للمنحلي ص $= (س - \tilde{t})^T$ عند النقطة (١٤٢) هي \cdots

[w+teu+ d T-u+teu+ d t-u+eu+ d T-u+teu+]

رازا) م<mark>سائل المستوى الثاني</mark>

- 1- أوجد قياس الزاوية الموجية التي يصنعها الماس للمنحس س = س " + أس 1 مع الإنجاء الموجية السيئات عند س = ا
- الإنجاء الموجب عمور السينات عند النقطة (٩٤٣) (٩٤٣) مع الأحداد المتحتى ص
- [1+0+0] (س −1) (س −1) [وجد قياس الرّوية الموجدة التي يصنعها الماس للمنحثير ص = س (س −1) (س +1) [وجد] مع الإنجاء الوجب تحور السينات عند نقطة الأصل،
- ٧ + ١٠ س ١٠ الراوية الموجية التي يصنعها العمودي على المنحني ص = ١٠ س ٢٠ ٢ ٢٠ مع الإنجاد الوجيد لحور السيدات عبد النقطة (٣٠١٠) الأقرب بقيقة.
- الإنجاء الياس الزاوية الوجيدة التي يصنعها الماس للمشعني ص عيا ٢ س مع الإنجاء الوجب المحور السيئات عند النقطة (٣) ٠٠)
- وجد المقصف الواقعة على منحنى الدائمة من T + T من T + T من T + T من يكون عندها ميل الماس للمنحنى يساوى T
- أوجد انتقط الوظمة على المحبى ص بير س ٢ مر ٢ مس ٢ مر ٢ والتي يكون عليما المام موازيًا لحور السيئات.

الله المسلم الواقعة على المنحنى ص = س + س + ٣ وائتى بكون عنسه المرادي أوجد النفيط الواقعة على المرادية في المرادي المنحثى يصبع زاوية موجدة مع الإنجاء الوجد الحور السيئات زاوية فياسه ومراه [[المعالم]

الله النعط الوافعة على النحنى ص = ٣ س ٢ - ١١ س + دوالتي يكول عند ما النس: [李章]

() موازيًا للمستقيم ٢ س + ص − ٥ = ١

😙 عموديًا على السنة يم وو ص + ص = ١١

١٩٠٥ يصنع زارية موجدة مع الإنحاء الوجب لحور السينات ظنها ٢٠٠٥.

الله وجد النفيط الواقعة على منحني لدالية س = (س - ٣) - ١ والتي عنيما المبر بوازی الستقیم ۲ س + س – ۴ = ۰ ((1,1))

 $\ln(\sqrt{4})$

الماس المنصور النقيط الواقعة على المتحثى ص = -ب - ٢ والتي يكون عندها الماس للمنص مواريًا للمستقيم ص = س + 1 [[tai]4[-1]]

عموديًا على الستقيم ص و س = ٧ [argi[n.i]]

انا کان س $\{ [,], \frac{\pi}{2} \}$ فأوجد النقط الواقعة على المنحنى m = 1 س [(中華)] ويكون الماس عنده، يوأزي الستقيم ص + س = ه

وجد النقط الواقعة على منحتى الدالة $m{v}_{-a}$ س + $_{ab}$ س والتي يكون عندها $[m{w}]$ $\left[\frac{\pi}{\psi} (x) \right]$ الماس موازيًا الحور السينات حيث س [[中华]]

📆 أوجد معادلة الماس للمنحني في كل مما يأتي عند التقط العطاة:

7+ " - 1 - 1 - 1 - 0 @(1) عند التقملة التي إحداثيها السبنيء ا

1 + w = w (·

عند التقطة ﴿ ٢ ﴾ 🕏

+ 1-1-2 100

مند التقطة (\$1\$)

€ ﷺ محد (س۲+س)(س۲+ه) عند انتفطة (۱−۲۶−۹)

عند التقطة (٢٤١)

عند التقطة (١٤٧)

(T- Tom)= (1)

الهجون أستنان فيلسفات على المستمال

$$\left(\left(\frac{\pi}{t}\right) \times \left(\frac{\pi}{t}\right) \times \left(\frac{\pi}{t}\right) \times \left(\frac{\pi}{t}\right)$$

عند المقطة (١٤٠)

📆 اوجد معادلة العمودي عثى التحسي في كل ممه بأتى عبد المقط المعطاق

$$\left(\frac{1-}{\gamma}t_{-1}\right)$$
 air literate

$$\left(1(\frac{\pi}{4})^{3+22}\right)$$

$$\frac{\sqrt{\tau}}{4} \sqrt{\tau} \sqrt{\frac{\pi}{4}} \sqrt{4 \frac{\tau}{4}}$$

☑ أوجد معادلة للماس لتحتى البالة س = (س - ٢) (س ++) عند تلطني تقاطعه [+= 4+ 00 + 00 +] مع محور السيئات.

📆 اوجد معادلة الماس للمشجئين البدي معادلته ص = 💎 - س عنت بقطة تقاطعه مع [سر 4] ش -بات)

اوجد معادلة العمودي على المحنى س = إس + ٦ عند نقطة تقاطعه مع السنقيم \$100 TO A 100 to 100 to [

🜃 🐼 أَنْمِكَ أَنْ يُقْصِينِ المُرْسِومُ لَلْمِنْ حَتَى ص عاس َّم س عام عند التقطة (١٤١) يكون عبوديًا على الماس الرسوم المنجس ص = ٢ - ﴿ س عبد نفس البقطة.

الله برندي أن الماسات لنجس الدالة ص = س ٢ ج س + ٢ جند أي نشخة عليه تعيل جزاوية حادة على مجور السيبات ثم أوجد معادلتي الماس والعمودي للمنحني عند النقطة حن = - ١

البت أن الماس المنحنى ص = س + <u>1 عن</u>ه أي نقطة على النحنى يعين الإراديد [.] متفرجة مع الإنجاء الموجب لمعور السيئات.

[7] أوجد معادلة الماس والعمودي لتحنى الدالة ص علا عل ٣٠ عنا س عند للما Praise of the contact تقاطع للنحتىمع محور الصادات

الما المتحتى ص = ٣ س ٢ - ٧ س + ٤ يقطع محور السيات في النقطتين إ ١٠ ال أثبت أن الماسين عندون ب متعامدين.

الله وجد المقبط الوافعة على المنحتى ص = س" والتي يصر الماس للعنجتي عني [(*****). . (.)] بالتقطة (١١٤)

🚻 📆 أوجد مساحة سطح المثلث الكون من محور السيئات والمساس والعمودي علي للمنحتى ص = س٣ - ٢ س + ١٢ عند (١٢ ع ه) الواقعة عليه (٢٠١٥ مناسير

ردا کان متحتی ایرانه و هو من $(-m-1)^{7}+7$ وجد ،

الماس عند نقطة تقاطعه مع الحور الصادي.

إحداثيي نقطة ثقاطع هذا الماس مع الحور السيش.

[(+3T)] (٣) مساحة المثلث الحدد بهذا الماس ومحوري الإحداثيات، [1] وهدامومنا

[deal+ort]

الأا متكان اللماس للمتحيي ص = 2 عبد البقطة هـ في الربع الأول يقطع محوري الإحداثيات في المنقطتين م ون فألبث أن مساحة ٨ م و ن ثابت ولا تعتبد على موضع التقطة عر الواقعة على متحنى الدالة.

🖼 (ذا كان ميل الماس للمنجس ص = 🕴 بساوى - ٨ عند النقطة (١٠٠٠) أوجد اليمتي (ع ب 7-14

دا کان المنحنی س = | - - | - |عبد النقطة (١٠ ٤ ٣٠) فأوجد فيمتى وي ب [449]

وذا مكان المحتى $v = (v^{T} - v)$ (با v + v) يس محور السيئات عند انتقالة [v]1-1-(٣٤٠) ويسس المستقيم ص = ٢ س عند نقطة الأميل فأوجد قيمتي (٥٠٠)

مسائل تقيس مستويات عليا في التفكم

الله الله و حيث و (س) = { س الله عندما س ح الله الله و حيث و (س) = { س مندما س ک ا

فابلة للإشتقاق عبد س = ١ أوجد معادلة الماس للنحثى الدالة عند هذه النقطة [س = ١ س]

عبى قيمة † ⊜ أ التي تجعل محور السينات مماسًا للمنحني : س = س " - أ س + † - ا ثم عبن نقطة التماس.

(640)

الدالة وحد معادلة الماس الدالة وحيث و (س) عند س = ۲ إوس - س - ۱ وس

الله أنهات أن الماس التحلي الدالة س = س | س | - ۲ س عبد النقطة س = ۳ س عبد النقطة س = ۳ من عبد النقطة س = ۳ من

 $\frac{1}{|| \log x||} = \frac{1}{|| \log x||} + \frac{1}$

 $\frac{1}{|\nabla x|^2 + |\nabla x|^2 +$

آلِ أُوجِد قيمة † التي تجمل المنتقيم ص - 4 س + † مماسًا للمشمئي ص = س " + a [1]

للاً أوجد معادثة الماس للمنحش :

ص + ٢٠ س ص = ٢١ - س عند النفطة (٤٠١)

[4271-0417+0-A]

الم کانت $\left(\frac{\pi}{\gamma}, \frac{\pi}{\gamma}\right)$ تقع علی منحنی اثدائة س = 1 ها س هنا س + س و کانت معادل الساس نه عند هند النقط هی γ ص + γ س + γ = γ

(F41)

علهما قبى سبق كبنية إيحاد اشتقة وراة علمه الدالة وحيث. وراس م وس درس) وسوف نشاول في هذا الدرس العملية العكسية العملية الإشتقاق وهي الشتقة العكسية.

إذا كانت الدائة الشنقة للدائة من هي أو من فإن المهلية المكسية لها وهي إنجاد من إذا علم 5 من تسهى المستعدالعجسية أو معسنة الخاص،

فونلاً الاكانت س = س الإن و س = ب س و والا كانت و س = ب س

فإن اشتقة العكسية هي: سن او سن ١٠٠١ أو سن ١٠٠٠ أو سن ١٠٠٠ أو سن

لأن جميع هذه الدوال محموعة المستشار العكسية بيدالة، **تكون مشتقتها 7 س " ينلة**

فإذا رمزينا للعدد الموجود بعد سن " بالرموث ليدل على هذا العدد الثابت فإن س = س ا بان

تكون مشتقتها الا ^{الراس} ها؟ س^{اد}

تحصان بخيل للتعريف الدالقء

بقال أن الدالة ت مشتقة عكسية للدالة د (ذا كانت ت (س) = د (س) لكل س في مجال د

مجموعة المُسْتَقَاتَ العكسية للدالة وتسمى لتكامل غير المعدد تهذه الدالة ويرمز لها يالرمز أن (س) و س [ويقرأ لخامل دعة س بالمسبة إلى س]

إذا كان تُ (س) = د (س) فإن ∫ د (س) و س = ت (س) + ث حيث ن دابت إختياري (ثابت النكامن)

فمثا

.. إ ٣ س ا و س = س ٢ + ث

ن (هسائو سيوسي⁶ ۽ ٿ

. (۱۹ س ۲ و س ۲۰۰۰ س۷ + ث

ځ س ۲= (۵+۲س) <u>ځ</u>

ک رس^و - ۳) = ه س^ا

ع اس الا س ۲) = ۱۶ س ۳ د س

ولتعيين قيمة الثابت ث يكزم معرفة فيمة التكامل عند قيمة معينة للمتغير الستقل س وهذا خارج نطاق دراستك.

مثال

أنبت أن اندائلات حيث ت (س) = أمس و هي مشتقة عكسية للدائلا و حيث و (س) = ۲ س^

الحل

 $^{^{^{^{\prime}}}}$ توجد مشتقة الدائلات فيكون ثُ $^{^{\prime}}(-0) = \frac{1}{7} \times 7 \times 0^{^{^{\prime}}} \times 7$ ن $^{^{\prime}}(-0) = 0$ أي آن الدائلات مشتقة مكسية الدائلاد ثرات (-0) = 0 (-0)

الرياضيات

اً س و س = س + شحیث شانت ی عدد نسبی ی به جها أی النا نصیف للأس واحد ثم نقسم علی الأس الحدید + ث

404

[ا و س = إ س + ث حيث إ عدد حقيقي ثابت

فهللًا إدوس=دس+ث ع إ-١٤ س +ث

مثالی

تحقق من صحة كل مما يأتى :

الحل

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

٥٠ مثالي

- اوجد ۽ 🚯 إ سءُ ي س
- س ۲ س آو س
- 🕡 س 🏲 و س
- 🚯 ۽ 🎙 س و س

الحل

$$\dot{\omega} + \frac{\frac{1}{2}}{4} = \dot{\omega} + \frac{\frac{\frac{1}{2}}{4}}{\frac{\frac{1}{2}}{4}} = \dot{\omega} + \frac{\frac{1+\frac{\frac{1}{2}}{4}}{\frac{1+\frac{\frac{1}{2}}{4}}{4}}}{\frac{1+\frac{\frac{1}{2}}{4}}{4}} = ordinal \frac{\frac{1}{2}}{4} + ordinal$$

$$\dot{\omega} + \frac{\frac{1}{\tau}}{\tau} - \tau = \dot{\omega} + \frac{\frac{\frac{1}{\tau}}{\tau}}{\frac{\frac{1}{\tau}}{\tau}} \dot{z} = \dot{\omega} + \frac{1 + \frac{1}{\tau}}{1 + \frac{1}{\tau}} \dot{z} = \dot{z}$$

خنواص الكامدية

إذا كان كل من د ع م دائة قابلة للإشتقاق على فترة ما فأن ،

$$2+70-\frac{1}{7}=2+\frac{700}{7}\times1=0.05$$

المام

وبالبراصير

اوبد، () (اس ا+ س-ه) د س ((اس ا+ اس م) د س

الحل

(۲ س+س-4) د س

w=1(++=++++)(€)

» } (۲ س^۲ س۲ کوس = ۲ } س^۲ کوس = ۲] س کوس

1+0(0+0-1) × 1 0-10(0+0-1) $\frac{1+v}{|v|} = \frac{1+v}{|v|} +

 $\left[\left(\frac{(-1)^{3}}{2} + \frac{(-1)^{3}}{2}$

أي أر تكامل (دالة) × مشتقتها = (الدالة) + ث

قوللًا إ (٣ - ٢ س) + ٣)) د س = [(٣ - ٢ س) * و س + ٣ [و س $= \frac{(w-y-u)^{2}}{y-w-v} + \frac{1}{2}(w-y-v) + \frac{1}{2}(w-y-$

ولإيجاد (دانة) $^{\circ}$ ير مشتقتها مثل $_{1}$ (س † – † س + $^{\circ}$) $^{\circ}$ († س – †) و س فإننا لللحظ أنء

د (س) = س ۲ = (س) أع د د (س) = ۲ س ۲ = (س)

ر [(س^۲ - ۲ س + ۵) ^۷ (۲ س − ۲) کس

مثالی_

U-5 (+ U-) } 0

أوجد ، 🚺 [(﴿ س ۖ - ۲) الله عن

الحل

سع ((عرب ۲- ۱) و سع ((س- عامل + ع) و س

$$(-1)^{\frac{1}{2}} \left(-1)^{\frac{1}{2}} + \frac{1}{2} +$$

$$\frac{1}{4} + \frac{4}{100} - \frac{1}{4} + \frac{4}{100} + \frac{4}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100$$

مثالی

0

الحال

$$\frac{1}{4} + \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}$$

$$\hat{\omega} + \omega = 1 + \frac{1}{1} (Y + \omega = Y) \times \frac{1}{2} \times \xi =$$

$$\frac{1}{4} + \omega = 7 + \frac{1}{4}(V + \omega = V) \frac{1}{V} =$$

$$\dot{\Box} + \frac{a^{-}(4 + \omega - \gamma)}{a -} \times \frac{1}{\gamma} \times h = \omega - s^{3/-}(4 + \omega - \gamma) \Big[h = \frac{1}{a} + \frac{1}{a} \times \frac{1}{\gamma} \times h = \omega + \frac{1}{a} + \frac{1}{\alpha} \times \frac{1}{\gamma} \times h = \omega + \frac{1}{\alpha} \times \frac{1}$$

_مثالی ـ

الحل

$$(m+1)^{a} = \prod_{i=1}^{n} \frac{q^{i}}{m} + 1$$
 من $(m+1)^{a} = \prod_{i=1}^{n} \frac{q^{i}}{m} + 1)^{a}$ من $(m+1)^{a} = \prod_{i=1}^{n} \frac{q^{i}}{m} + 1)^{a} + 2$

الوددة النالة النكامل

رمالي.

ابدن

U-1 ((++ T) U-1 } ()

υ÷∜≈(υ→)′α((+[†]υ=∀≈(υ+)αγ

 $\int_{-1}^{1} \int_{-1}^{1} dt \, dt \, dt = \frac{\left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}}}{\frac{1}{2}} + \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} - u_{1} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2}$

$$\text{Im} \, \sum_{i=1, \dots, k+1}^{\frac{1}{2}} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{i=1}^{k+1} \sum_{j=1}^{k+1} \sum_{j=1}^$$

"U-1=(U-)2(1+1U-=(U-)2)

 $\int_{-1}^{1}\int_{-$

ن (۲ س + ۴ (س ۲ − ۳ س + ۹) } و س

٣-١٠٠٢=(١٠٠) عاد ٢-١٠٠١ (١٠٠) عاد ١٥٠١

 $\frac{1}{2} + \frac{1}{2} \left(a + \omega - T - \frac{T}{2} \omega - \right) \frac{T}{A} = \omega - \frac{1}{2} \frac{V}{2} \left(a + \omega - T - \frac{T}{2} \omega - \right) \left(T - \omega - T \right) \frac{T}{2} \right)$

J- 19 + " -- 1 -- 1 (1)

ن درس)=+ س⁺+ ۱ د′(س)=+س

ر إس (و س ٢ + ٩) أو س = أو إ ما س (ه س ٢ + ٩) أو س

 $\dot{\omega} + \frac{T}{T} (4 + \frac{1}{T} \omega - \theta) \frac{1}{10} = \dot{\omega} + \frac{\frac{T}{T} (4 + \frac{T}{T} \omega - \theta)}{\frac{T}{T}} \frac{1}{10} =$

Javal I

فالياضان

🚺 أ منا س و س = ما س دي حيث ثر ثابت إختياري

إياس وس = منا س + ث
 إنا آس وس = طا س + ث

estitus alaum

ن | (اس + ب) و س ≈ - أ عنا (ا س + ب) + ث

ن معا (اسدن) وس≃أ ما (اسدن) الم

و اس در و س = أ ما (ا س + س) + ث ديث ث ابن إدبياري

فيثلاً إ(س ـ يها س) وس= أو س"+ هنا س+ث

 $\frac{1}{2}$ وأيضًا $\int \left(\frac{1}{2} \frac{1}{4} + 0 + \frac{1}{4} \frac{1}{4} + 0\right) \cdot \frac{1}{4}$ وأيضًا

= [(ا مِنَا سَ + فَا * سَ +۱) ادست علما سَ + طَا سَ +سَ +فُ کَمَا أَنَ }مِنَا (۲ سِ +۲) ادس ﷺ إِ (۲ سِ +۳) +ث

خدار بعض الحالات إنها اللية

- ۵ مثا اس+ما اس=۱
- 🕡 منا ۲ س ما ۲ س = منا ۲ س
 - ٧-١٠٥ ما ٢س عبدا ٢ س
 - ٧ ما ٢ س = أي أي منا ٢ س

٠٠٠ الما^ا س= قا اس

۲۰ مشا۲ س ۱۰۰ عنا ۲س

و ما سرمنا س=ما ۲۰۰

14 Fr + + = 14 | 1 | 1 | 1 |

(introligation)

رس) د س=د (س) ا من [د (س) و س=د (س) و المنافذ

مثال

الحل

- مثال

اوجد ،

الحل

()] منا (بن + ۱+) د س ۲۰ ما (بن +۱+) + ث

فالرباض

- مثال ويا لا سن و س ♦ [(ما س+متا س) أ و س
- (معا ۲ سومها س) وس

الحيل

- Appropriate

۲ ما س منا س= ما ۲س ما "س + منا" س ع

- ((ما س + منا س) و س = [(بيا أ س + ٧ ي س عنا سن بعدا اس عس
- = ﴿ (١ + م) ٢ س) و س عدس المحال ٢ س + ث
- ال المنا الس المنا الس المنا الس منا الس المنا الس المنا الس المنا الس المنا الس المنا الس المنا الس
 - = ا (منا س ما س) (منا س + ما س) و س
 - = [(منا سر ما س) ؛ س = ما س + منا س + ث

बेट्टाइसिट

المنااس + مناس) وس منا ۲ س =۱-۲ ما ^۲س = { (را + با عنا ۲ س + عنا س) و س * ما * سر - 🖫 - 💺 منا ٢ س = ي س + له ما ۲ س + ما س + ث

- هن ۲ س=۲ من⁷س-۱ ٠٠ عما ٢ س = + + + عا ٢ س
- (قا من المسلمة عند المسلمة المسلمة عند المسلمة الم
- =] (۲+ هنا۲ س × ها۲ سن) وسن
 - = [(۲+ ما ۲س) دس
 - سے ہیں۔ پہلے ۲ س +ث

CHESTED.

(T))="10" [= = T] [= ۲ (مقدر دایت)

🗓 🚅 عن الأسلية ديية

[-4 أي ٩ أي ١ أي صفر]

س = ۳ هو ۲۰۰۰۰۰۰۰
 میل الماس للمتحتی س = س | س | عند س = ۳ هو ۲۰۰۰۰۰۰۰

[4 d 4 d r- d 4-]

[1 d 1- d + d + d +]

- () متوسط النعير في حجم مكعب عندما يتغير طول حرفه من هـ الى ٧ سر يساوى
- أوجد النصف الواقعة على المتحنى ص = ٣ س " ١١ س + ٥ والتى يكون عسما الماس موارثا للمستقيم ٢ س + ص = ٥ = ٥

 $(m^{7} + m)$ (س $^{7} + m$) (س $^{7} + m$) (ص $^{7} + m$) (ص $^{7} + m$) (ص $^{8} + m$) (عند المقطة ($^{4} - ^{1} + ^{2}$)

na rannel berbberrerena : marri tre to transport belgene. annhabbelingene problemath

مسائل المسوي لأول

O. Mossile

الماد

📆 اختر 💎 الماسخة

 $\left[\dot{\omega} + \frac{\dot{\gamma}}{1} \omega - \frac{\dot{\gamma}}{10} + \frac{\dot{\gamma}}{1} \omega \omega + \frac{\dot{\gamma}}{11}

أ أن س + من وس ال الأس - من وس بات ال

س - هما هس ان باس - هما وس

----- = o = 5 (T la - o = 1) (1)

[٢ س٢ - ١] ١ س ١٥ ١٩ س٢ - ١ إ س ١٥ ١

1-7-10- & 0+71-10-

·······= p→5 T(0+0→)}

 $\frac{d}{d} \frac{d^{3} + \sqrt{(a + c c^{3})^{3} + c^{4}}}{(a + c c^{3})^{3} + c^{4}} \frac{d}{d} \frac{d^{3} + \sqrt{(a + c c^{3})^{3}}}{(a + c c^{3})^{3} + c^{4}}$

(س[†]−†س+۱) لس= ۱۰۰۰۰۰۰۰۰۰۰]

 $\frac{d^{-11}(1-\omega_1)\frac{1}{11}}{\frac{1}{11}} \frac{d^{-2} + \frac{11}{11}(1-\omega_1)\frac{1}{11}}{\frac{1}{11}}$ $\left[\frac{d^{-11}(1-\omega_1)}{11} + \frac{d^{-2}}{11} + \frac{11}{11}(1-\omega_1)\frac{1}{11} \right]$

..... (س ۲ ۲) (س ۲ + ۱ س - ۲ ۱۱ و س = ۱۱۰۰۰۰۰۰۰۰۰

 $\vec{G} \stackrel{\dot{\omega}}{=} \frac{17}{4} (V - U + V$

 $d = \frac{1}{\Lambda(1-\omega-1)} + \frac{1}{\Lambda(1-\omega-1)} + \frac{1}{\Lambda(1-\omega-1)}$

 $\left[\dot{\omega} + \frac{1-}{\Lambda(1-\omega-1)} \right] = \frac{1-}{\Lambda(1-\omega-1)4}$

------ = --- 5 a (-1 -1) a - [1]

6 1(1-0-) 1 6 0+1(1-0-)

[1(1-w) & +1(1-w)]

 $\lim_{t\to\infty} \int_{\mathbb{R}^n} \left(-t_0 - \frac{t}{m_0} \right) \left(-t_0^{\frac{1}{2}} + \frac{t}{m_0} \right) \left(-t_0^{\frac{1}{2}} + \frac{t}{m_0} \right) \, dt = 0$

 $\left(\left(-\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2}$

(س + ۱<u>) و</u> س = و س = و س

 $\frac{\pi}{2} = \frac{\pi}{4} = \frac{\pi$

⊕ آ† استا اس د س د س د سده سند س داره آ [- منا س+ث أي منا س+ث أي ما س+ث أي ما س

و منا لاسود في - المنا لاسون في المن لاسون في المنا لاسون في المنا لاسون في المنا لاسون في المن

⊕ <u>د س</u> ∫ (س۲+ه س) و س = سسس

[سائدهسدت کے سائدس کے سائدہ کے ایسدوا

 $\frac{2}{2} \sum_{i=1}^{n} {m_i}^T \sum_{i=1}^{n} {m_i}^T$

[سال کے باس کے سیادت کے سیوٹ]

📆 أَجْتَرَ الإجابَةِ الصحيحةِ مِن بين الإجابات المعطاة ،

ا الفاكنت د (س) = أيما س و س طلب د (٠) - د (π) الفاكنت د (س) = أيما س و س طلب د (٠) - د (π) الفاكنت د (س) = أ

المحدة الزارة التكامس 🕝 🚛 📆 د سورت 🖚 🕝 (ما اس + يدا اس ع د س = سه سس الما السوميا السوال ١١٥ ١١٥ ١١٥ ١١٥ سربت أن ماس بيتاس بث ارما س + بنا س) و س د سسسته لما سرجمنا سرجات في ما سرجمنا سر من سرحماس إلى مناسر عماس دث (اما س+منا س)وس= اساسا آماس مناسبت أو ما سر مناسد أ مع سر عماس ای معاس - ماس + ث $1 - \frac{1}{2} \sum_{i=1}^{n} [(سن-۱)* او (سن-۱)*+ شاه (سن-۱)* او (سن-۱)*+ شاه d T(1-v-1) + 1 1 1-v-1) 1 T(1-0-1)++ 6 -1 () - سرا - رس ا در اس = سسست + ش \$\frac{1}{4}(\pi+\cup 0)\frac{1}{4} \tag{1}(\pi+\cup 0)\frac{1}{4} [+ (+ w +) + (+ w +) + (+ w +) + (س) اِذا ڪانت ۾ (س) = آ جي جي طاب دُ (۱) =

ي ين (س-١) (س-٢) (س-٣-س٠١) وس ر€ ين (أس-٣ (س-٣) وس

$$(Y-U-Y)(Y-U-Y)$$

🗓 اوجد کناً مما باتی ،

﴿ ﴿ وَمَا سِ - ٣ مِنَا سَ ﴾ و سِ

$$\sqrt{\frac{\pi}{r}} + \frac{3r}{4}$$
 له $\sqrt{\frac{\pi}{r}}$ کوس

الم المراكبة المساه سا) وس

ثالثًا: حساب المثلثات

الوحدة الرابعة :

- والدائش البها الأنها فالمحصص
- ه پرتراط ۱۱ برد فران باکیان و محمد و محمد و محمد محمد محمد و - ه الجرس) ﴿ . الحوال المناسة لصعب الروية
 - والدراس 🛈 صحفهسرون

درسيا في العام السابق زوايا الإرتفاع والإدخفاض كتطبيق على حرائلك انقلام الزاوية وأمكن إيجاد إرتفاع المبابق زوايا الإرتفاع الأرض دون أن نقوم بالقياس الفعلى لإرتفاع عنده المبائي وبعد دراستنا لفانوني الجيب وجيب التمام فإنه يمكننا دراسة تطبيقات أكثر عممةًا على حل المثلث تشمل زوايا الارتفاع والإنخفاض بوجه عام وسوف نتدكر فيما بلى مفهوم راويتي الإرتماع والإدخفاض.

Carried Co

إذا رصد شخص † نقطة هـ أعلى من مستوى نظره الأفقى | ب قيان الزاوية بين † ب ع أ هـ تسمى زاوية ارتفاع هـ عن المستوى الأفقى لنظر الشخص إ

Orter Manager

إذا رصد شخص إ نقطة و أسفل من مستوى نظره الأفقى إن فإن الزاوية بين إن) أو تسمى زاوية إنخفاض و عن المستوى الأفقى لنظر الشخص)

UI BAR

إناسكان ص هو قياس زاودة إرتماع ب بالنسبة إلى أوكان من هو قياس زاوية إنخماض إ بالنسبة إن بان س = ص وذلك لانهما متبادلتان

رالني.

س يقطة على سطح الأرض رصنت راوية أرتفاع قمة درج فوجد أن قياسها ٣٦° ثم علو الراهيد مساطعت مثراً في خط مستقيم أفقى بحو قاعدة البرج فوجد أن قباس وأويه ارتماع قمة البرج ٣٥° أوجد إرتماع البرج لأقرب مثر

الحل

 $^{\circ}$ بغرض أن إ ب هو أرتفاع البرج ۽ ان ($^{\circ}$ هـ به $^{\circ}$ هـ ۲۳ $^{\circ}$ ۳۲ $^{\circ}$

$$\label{eq:constraints} \mathcal{W}_{\rm CDA} = \frac{v_{\rm CDA} | t_{\rm co}| v_{\rm CDA}}{v_{\rm CDA}} \approx \omega \, \mathcal{J} \, \mathcal{J},$$

ئ (س=۸۲ر،۱۲۰ یا ۲۵° × ۱،۱۸۳

مقمظة

عند حل السالة إذا كان الشكل يحتري على مثلثين فإننا ذيداً المل من الثاث العدوم طول أحد أخبلاهه.

ر مثالی

من طالبرة هليكوينتر ثابتة على (رتضاع ١٨٠ صنر من سطح الأرص فيست رأويني أنحفاص سيارتين من على سطح الأرص فكاننا ٢٠٠٥ أويد الأفرب متر المناظر بين مقدمتي السيارتين من الطائرة والسيارتين أن سفى مستوى راسى واحد وأن مسقط الطائرة في مستوى رسطح الأرض ﴿ أَ سَ

الجبل

يضرض أن إرتماع الطائرة هو ه، ا

$$\sin \theta = \frac{16 \cdot 16^{-4}}{\cos \theta} = 13 \cdot 161 \cdot \sin \theta$$

$$\frac{\omega \uparrow}{\sigma_{\{0\}} \downarrow_{\alpha}} = \frac{\{\xi\}_1 \xi \gamma}{\sigma_{\gamma_1} \downarrow_{\alpha}} \ ...$$

ير از د
$$= \frac{\alpha_{\rm M}}{\alpha_{\rm T}} \frac{1_{\rm m} \approx 161,87}{\alpha_{\rm T}} = 10$$
 المقر

ر الش

برج ارتفاعه ۱۰۰ مثر مقام على صخرة من نقطة على سطح الأرص في المستوى الأفقى الماريقاعدة انصحرة فيست زاوينا إرتفاع قمة والاعدة البرج فوجدتا ٢٧^٥٥ ٢٦^{٥ عنى} الترتيب أوجد إرتفاع الصحرة لأقرب مثر ،

الحل

$$U_{i}\left(\mathcal{L}\left(\left\{ t\right\} \cup\right) = FV^{0} - F\left(^{1}\right) = rV^{0}$$

$$U_{i}\left(\mathcal{L}\left(\right) = rF^{0} - FV^{0} = FF^{0}$$

 $x = \frac{12}{4}$ التعویصر من ۱ (قی ۲ ینتج آن: ب ها = $\frac{10}{4}$ x ها ۲۰ = $\frac{10}{4}$ د ما ۲۰ = $\frac{10}{4}$ د ما ۲۰

من سطح مبتى برتقع ١٠ متر عن سجاح الأرض فيست زارية إرتفاع قمة ملننة فكانت ٣٥ وقيست زارية (تحف اش قاصدة المدنة فكانت هـ٣٥ أوجد (رتفاع المستة عثمًا بأن فاعدة المدنة والمبتى على مستوى أفقى واحد .

الحال

$$O(Z \Rightarrow \Box) = V A_{\alpha} + \alpha A_{\alpha} + \alpha A_{\alpha}) = \Phi A_{\alpha}$$

،مثالی

مس نفعيَّة على سطح الأرص وجد أن زنوية أرتفاع قمة برج شي ١٠٠ ومن نقطة تراتم عن سطح الأرمن بمقدار ٣٠ متر وتعلوا الأولى مباشرة وجد أن قياس زاوية ارتفاع لهذا البرج ٣٠٠ أوجد إرتفاع البرج إلى أقرب مثر

الحل

بشرش أن إ ب إرتفاع البرج

والن

خياهه طيبار محملتين للرصيد على أرص أفقية وهو عنى إرتصاع ، ه متر قوجه أن غيامس (أويتي الحماصهما ، و ° ع ٥٦ ° على الترقيب فإذا كالنث الطائرة والمحطئين في مستوى رأسي واحد وكان مسقط (لطائرة يقع على الخط استقيم الواصل بين المعلقين فأد سبب المسافة بين الحطتين لأقرب متر .

الدل

پهرس آن ۱ موسع الطيار، ب ع هموقع محطتي الرصد ان (کاب او) = ده ۵ و (کاهه او) = ۲۴ ۵

ن د هد = ما ۵۳ = ۲۲۷ مشر

444744 = 446740 + 640744 = * 3 + 3 + 3 + 3

ن الساطة مين محطتي الرصد الأقرب متر = ٩٣٧ مثر

ملاحظان

الأصالة التي تتعامل مع الإنجاهات الأصلية والقرعية يفضل رسم الإتجاهات الأصلية عبد موضع نقطة الرصد ويحدد إنجاء الشئ المرصود بالنسبة لهذه التقطلات وبلاحظ أن إنجاء الشمال الشرقي مثلاً يعشع زاوية قيامها وي" مع كس من الشرق والنمال.

أما إنجاء ٢٠٠٠ غرب الشمال مثالاً فإنه يصنع زاوية قياسها ٢٠٠ مع الشمال من جهة الغرب ويكون إنجاء الشمال مو احد ضلمي الزاوية ٤ وذار حظ أن ٢ تقع حرق ر ٤ ب تقع جدوب ر

تسير سفينة بسرعة 10 كم/ساعة في إنجاه شرق الحنوب بزاوية فياسها 10 رصد إس ركابها هدف ثابت في إنجاه الشمال الشرقي وبعد ساعتين وجد الراكب أن الهدف أصبح في إنجاه 10° غرب الشمال أحسب بعد الهدف من السفينة في هذه اللحظة بأقرب عمر

الحال

يغرض أزالوضعالأول للسفيئة هوإ

والوطيع الثائي للسمينة عواب وموقع الهدف ها

** المسافة التي قطمتها السميمة في ساعتين = 10 × 7 = 20 كم

$$U (\angle A) = iAi^{\circ} - (6V^{\circ} + A3^{\circ}) = VA^{\circ}$$

ن بُعد السفينة عن الهنف لأقرب كم دوم كم

تحركت سفينة من نقطة معينة في إنجاد ، ٥٠ غرب الجنوب بسرعة ، ١-كم/سامة وفي نمس اللحظة تحركت سفينة أخرى من نمس الكان في إنجاد ، ٤٠ شمال الغرب سعرهة م كم/ساعة أوجد (لبُعد سي السفينة بن بعد ۴ ساعات

الحال

بغرض أن النقطة التي تحركت منها السفينة

هي أ وتحركت إلى ب والسفينة الاخرى تحركت إلى هـ

رُ السافة التي قطعتها السفينة الأولى في

خ ساعات د وا ۲ × ۲ د ۲۰ هکم

والسافة التي أماعتها أنسفينة للانية في

المتطارة تفريخ الإيماء والخدفاض

 $a = 0 \times 7 \times 6 = 0$

$$A1V \cdot AV = {}^{T}V \cdot \frac{1}{1-A} \times 10 \times V \cdot X \cdot V - \frac{1}{2}(10) + \frac{1}{2}(V \cdot I) =$$

ر ب هـ د ۱۹۰۸ کم

ن البُعد بين السفينتين بد ١٥,٨٧ ڪم

مثالی

رميد رجل من تقطفظي المستوى الأفقى النار بقاعدة تل زاوية إرتفاع قمة التل طوجيدة ٢٨° ثم تمرك الراسد جهة التل على مستوى يميل على الأفقى بزاوية قياسها ٨° مسافة ١٠٠ مثر وصد قمة التل مرة خرى فوجد أن فيس زاوية ورتفاعها ، ٣٥ أسسب إرتفاع التل لأفرب متر

الحال

بفرض أنزاب إرتفاع التل وأن عباة وانقطتا الرصد

$${}^{\sigma}TT={}^{\sigma}(\iota-{}^{\sigma}TT=$$

 $O\left(\angle \cup : \infty\right) = \lambda \gamma I^{0}$

راجوممنا واختبر نفست

عريزى الطالب في هذا المكان من كل تمرين ستجد

أمثلة لمراجعة ما سبق فى صورة إختبار تراكمى على ما سبق دراس يتم الإجابة فى نفس البرقة قبل أن تدخل فى الدرس الحديد وهذا يجعلك تمفكر ما درست بإسفرار ولا تنساء ويبملك فى تواصل مع ما درست رأيمًا ويبملك فى تواصل مع ما درست رأيمًا ويبملك فى تواصل مع ما درست رأيمًا يعودك على التفكير بطريقة مبتكرة وهذه الميزة يقدمها لك كتاب الماهر فقط،

مسائل المستوى الول

المناهد شخص قمة منذنة فوجد أن قياس زاوية إرتفاع قمتها م)" أوجد إرافاع التندة إلى المناه إلى المناه التندة إلى منز المناه
آل من نقطة عنى سطح الأرص رصدت زاوية إرتفاع قمة برج طوحت أن قياسها ٢٥ ثم سار الراصد مسافة ٢٣ مثرًا في خط مستقيم أفقى نحو قاعدة البرج فوجد أن قياس زاية إرتفاع قمة البرج ٥١ أوجد إرتفاع البرج لأقرب مثر.

الأرض رصدت زاوية ارتفاع قمة الأرض وصدت زاوية ارتفاع قمة برج فوجد أن قياسها وا من المستوى الأفتى نحو قاهدة البرع الرامند في خط مستقيم مسافة ٥٠ مترًا في المستوى الأفتى نحو قاهدة البرع فوجد أن قياس زاوية إرتماع قمة البرج ٢٠ ٥ و أوجد إرتفاع البرج الأقرب متر الانتفاع البرج الأقرب متر

من نقطة على سطح الارض رصد رجل زاوية إرتفاع قمة برج فوجد أن قياسه 11 والمساد من نقطة على سطح الارض رصد رجل زاوية إرتفاع قمة برج فوجد أن قياس زاوية التلاع سار مبتعدًا عن قاعدة البرج في طريق أفقى مسافة ، و متر وجد أن قياس زاوية التلاع قمة البرج ٢٠ أوجد إرتفاع البرج القرب متر.

charifornistic to lead

الله معاثل المستوي الثاني

آ نیک من شهد تل وجد راصد أن قیاس زاویتی إنحفاض قمة برج وفاعدته هما ۲۹° ۲۹° من شهد تا وجد راصد أن قیاس زاویتی إنحفاض قمة برج وفاعدته هما ۲۹° ۲۹° من علما بأن على انترتیب فاذا كافرید منز علما بأن على انترتیب فاذا كافرید منز علما بأن علما بأن علما بأن والبرج فی مستوی افقی واحد.

آ این فید برج برتفاعه می مترا البست زوایتا انحفاض النقطتین از بر علی الأرض ویانتا ۲۲° ۱۲۱ علی الترتیس افرذا کانت از تعثل قاعدة البرج ۱ (⊆ ب از فادست طول ا ب لافرب متر

آل برج ارتفاعه ، ٧ مبر مقام على صحرة ، من نقطة عنى سطح الأرمن في ألمنتوى الأفتى الأولاد و الارمن في ألمنتوى الأفتى الاربقاعة المحرة فيمنت زاويتا إرتفاع قمة وقاعدة البرج فوجدنا ١٥٠ - ٣٣٠ على الترتيب أوجد إرتفاع الصخرة الأفرب متر .

المقاوة الرتفاعها ٢٠ مترًا مقامة على تل بالقرب من شاطئ بحر قيست (اويتا ارتفاع لمقوقاعدة المنارة من قارب قوق سطح البحر فوجدتا ٢٠٠٠ على الترتيب أوجد ارتفاع الثل عن سطح البحر الأقرب متر .

الم المداورج وتفاعه هم متر رصدت زاوية إرتفاع قمة جبل وجدت ال ٢٩٥ ثم رمست قمة الجبل من قاعدة البرج فوجدت المعالمة الجبل من قاعدة البرج فوجدت ٢٠٠ عاماً المسلب وقفاع الجبل الأفرب متر المساس

الله فيستان و به المتعام قمة برج لم يكتمل بماؤه من نقطة على بعد ١٠٠ متر من فاعدته فوجد أن فياسها ٢٠٠ و كم مترً يجب أن ترتفع فمة البرج حتى يصبح قباس زاوية إرتفاعها من نفس النقطة يساوى و ٢٠٠ مترًا

الله فارياب حارى يتحرك في الناء في خط مستقيم نحو صحرة بسرعة منتظمة ٢٠٠٠ متر/دليقة وعند لحظة ممينة رصدت من القارب زاوية إرافاع قمة الصخرة فوجد أن فياسها ٣٠٠٠ ويحد لقيدتين ومن نفس الفارب تمرصد زاوية الإرتفاع مرة أخرى فوجد أن فياسها ٢٠٠٠ أحالاب إرتفاع الصحرة الأقرب متر ،

رصد قائد طائرة عمودية عدف على الأرص طوجد أن قياس زارية الحداصد في تعظم من وحد أن قياس زارية الحداصد في تعظم من وجد أن قياس زارية إنحدس الهدف من وجد أن قياس زارية إنحدس الهدف ومن وجد أن قياس زارية إنحدس الهدف المنافرة عن منطح الأرص لحظة الرصد الأولى للهدف المنافرة عن منطح الأرص لحظة الرصد الأولى للهدف المنافرة عن منطح الأرص لحظة الرصد الأولى للهدف المنافرة عن منطح الأرس لحظة الرصد الأولى للهدف المنافرة عن منطح الأرس لحظة الرصد الأولى للهدف المنافرة عن منطح الأرس لحظة الرصد الأولى اللهدف المنافرة عن منطح الأرس لحظة الرصد الأولى اللهدف المنافرة عن منطح الأرس لحظة الرصد الأولى اللهدف المنافرة المنافرة عن منطح الأرس الحظة الرصد الأولى اللهدف المنافرة المنا

🚻 ஊ فى الشخل المقابل ،

بالونان أ ع و ارتفاعهما ما ﴿ ٢ ع مه مترًا رصد جسم على الأرض (هـ) يقع في الستوى الرأسي المار بالبالونين فإذا كان فياسا رأويتي إدخفاص الجسم وه ٢ عمل الترتيب أوجد البعد بين البالوبين مقربا الأقرب متر.

[والغز

السافة الأفقية بين برجين ، و متر وقياس زاوية انخماص قمة الأول عندما تشاهد س ثما الثاني ، ٧٠ فإذا كان إرتفاع البرج الثاني ، ، ١ متر فأوجه إرتماع البرج الأول (علمًا بال البرجين يقمال في مستوى أفقى واحد)

من قاعدة قدار إرتفاعه ٢٠ متر قيست زاوية إرتفاع قمة مينى فكانت ٢٥ وم قعة النثر قيست زاوية إنخفاض قمة المبنى نفسه فكانت ٢٥ أوجد الأقرب متر إرتماع المبنى (علمًا بأن قاعدتى المبنى والفنار في مستوى أخفى واحد)

الأرض وجد أن قياس زاوية إرتفاع قمة شجرة تعاول الأرض وجد أن قياس زاوية إرتفاع قمة شجرة تعاول الموجد أن قياس زاوية إرتفاع قمة شجرة تعادا وجد أن لياس ومن نفطة أخرى على إرتفاع مع مترًا من المقطة السابقة وقوقها تمادا وجد أن لياس زاوية إنخفاض قمة الشجرة تساوى ، ٣٠ أوجد زرتفاع الشجرة الأقرب متر .

With playing brighted

الاس نقطة على سطح أرص أفقية رصد رجى زاوية ارتفاع منطاه يتحرك رأسيا بسرعة دابنة إأس نقطة على سطح أن قياسها يساوى ٣٥° ودور ١١٥، ١٠٠٠ س نهمه المترا/دقيقة هوجد أن قياسها يساوى ٣٥٥ وبعد ثلاث نقائق عبد الرصد من مترا/دقيقة هوجد أن قياسها يساوى ٢٥٥ وبعد ثلاث نقائق عبد الرصد من ميان النقطة فوجد أن قياس زاوية إرتفاع النطاد أصبحت وو" النقطة فوجد أن قياس زاوية إرتفاع النطاد أصبحت وو" أوجد بعد الرجل عن مسقط المنطاد على الأرض لأقرب متر

[۱۳۹]متر]

والمن المناه و على شاطئ مهر رصد رجل موقع منزل عند نقطة ب على المنفة الاخرى يسافة .. ٢ مثر حنى وصل إلى نقطة هـ وجد أن نقطة ب في (تجاه ٢١ شمال الشرق. أوجد عرص النهر القرب متر علمًا بأن ضفتي البهر متواريتان وأن النقط أ ، ب ، عد في مستوى أغتى وأحد، [32145]

الأسفيئة تتحرك في إتجاه الشمال الشرقى شوهد منها هدف يشع في جهة الشرق ويعد أن المنعث السفيدة ١٧ كم لوحظ أن الهدف أصبح في (تجاه ٣٠٠ شرق الجنوب أوجد بعد الهدف عن السفينة في تلك اللحظة. [الارافاطيس]

واحد حيث البعد بين إ عرفي مستوى أفقى واحد حيث البعد بين) ، ب يساري ، و كيلومتر ن تقع في إنجاه بصفع زوية قياسها ٢٥° شمال الشرق من إ والبعد بين ب ¢ هـ يساوي رير ڪم ۽ بيد تقيع في (تجاه يحسنع زاوية قياسها ٢٥٠ شمال الغرب مي ب أوجد البعد بين المدينتين ع عد [جوزوو شمر]

🗓 🚱 ثلاث قرى () س) هم تقع القرية (غرب القرية ب حيث (ب = ٢٠ ڪم واقع القرية ه في إنجاه ١٨° شرق الشمال من القرية ٤ ، ٥٠° شمال الفرب من القرية ب أوجد المسافة بين القريتين ب ع مد الأقرب كيفو متى (pt 4)

يًّ تحركت سميدة من نقطة في إنجاء ، ف° شرق الجنوب يسرعة ∧ كم/ساعة ، في نفس اللحظة ومن نفس المقطة تحرمتك سفيمة أخرى في إتجاه ٥٩٠ شمال الشرق بسرعة ٤ كم/ساعة أوجد المعاطة بين السفينتين بعد ساعتين. المراا كم

الله المركة سفينة من نقطة معيمة في إنجاه ١٢° جنوب الشرق بسرعة ١١ كيلو متر/ساعة وفي نفس اللحظة تحرجكت سفينة أخرى من نفس النقطة في إنجاء ٨٨° شمال الشرق بسرعة ورب كيلو متر /ساعة أوجد السافة بين السفينتين بعد مضى ساعتين من لعظة تحركهما ممًا. AFE TT AT

تحركت مغينة من نقطة معينة في إنحاده 40 غرب الجنوب بسرعة مقاردا في تحركت معينة في إنحاده 40 غرب الجنوب بسرعة مقاردا في نفس اللقطة وحركت سميعة أخرى من نفس اللقطة ومن أنجاء 10 كم / س أوجد المسافة بين المضيدتين بعدم ماعز 10 مقربًا لأقرب يسرعة 6 كم / س أوجد المسافة بين المضيدتين بعدم ماعز مناعز مناعز عشربيل،

الله ﴿ المُعَلَّمُ المُعَلَّمُ المُعَلَّمُ وَفَى القَصِّ الْوَقِّ الْأُولُ فَى إِنْجَاهُ وَ الْعَلِي الْمُعِلِ بسرعة ٢٧ مترًا / دقيقة والثاني في إنجاء ٢٠٠ جبوب الفري بسرعة ٢٨ متر / دقيقة أوجد الأقرب متر الساطة بيمهما بعد ودقائق

تسير سفيحة يسرعة ٢٤ كم / حدة في إنجاء الحدوب رهند راكب منها عدقا تابث في النجاء ٢٥ كم منها عدقا تابث في النجاء ٢٥ منه وجد الراكب أن السفينة في النجاء ٢٥٠ جنوب غرب منها للمدن الهدف عن المنهدة عندانا

الله و رسبت طائرة عدم عصائين إن بعد العظة مروزها بالسنوي الرأسي الر بالسنقيم أن تحيث إن عده ٢٠٠٠ مثر فوجد أن قياس زاوية ارتفاعها من إخوا؟ وإ وقياس زاوية إرتفاعها من ب هو ٢٠ ٢٠٠ والسقطة الرأسي للطائرة ∈ إن أوجد ارتفاع الطائرة عن سطح الأرض لأقرب مثر

وصدت سفينة في عرض البحر معارة فوجد أنها تقع على بعد و كم نعو الدن المراقة و وعد ساعنين وجدت أن المنارا أسبحا تم تحركت السفيلة في إتجاد شمال الشرق وبعد ساعنين وجدت أن المنارا أسبحا تم تحركت السفيلة عن إتجاد و الشرق تها أحسب سرعة السفيلة [١٠١٣-١٠٠٠]

الله المسير سفينة تحو الشمال الشرقي بسرعة منتظمة مقدارها ٢٨ كم / س شاط راكب فيها نقطتين ثابنتين في إنجاء ٣٧ غرب الشمال وبعد ٢ ساعات رجد منا الراكب أن أحدى هاتين النقطتين أصبحت في إنجاء ٢١ جنوب الغرب بالنسبة له والأخرى في إنجاء ٢١ شمال الغرب بالنسبة له أوجد البعد بين المقطئين الأقرب كبلا من عنمًا بأن النقطة بن والراكب في مستوى أفنى وأحد

وصد رجل من نقطة في الستوى الأفقى اللاربقاعدة ثل زاوية إرتماع فمة الترافيد أن قياسها ٢٥ وله صعد نحو التل مسافة وولا على مستوى بميل على الأفنى بزايا قياسها ٢٥ وجد أن فياس زاوية إرتفاع فمة التل ٣٠ أوجد ورتفاع التل لأفرب متراسات

و من نقطة في المستوى الأفقى الماريقاعدة قل رصد رجل زاوية ارتفاع قمة التل فوجد ان قياسها ٢٧° ولما صعد فحو التل مسافة ٢٠٠ متر على طريق يميل على الأفقى برارية فياسها ٢٠٠ وجد أن قياس زاوية إرتفاع قمة التل ٢٠٠ أوجد إرتفاع التل لأقرب متر [٢٠١ س]

🕌 مسائل تقيس مستويات عليا من التفكير

معينة نسير بسرعة منتظمة ١٢ كم / ساعة في إنجاه ٣٠ شرق الشمال شاهد راكب فيها نقطتين ثابتتين في إنجاء الشمال الفريي ويعد ٢ ساعات وجد الراحكب أن إحدى النقطنين أسبحت في إنجاء ٣٠ جنوب الفريد والأخرى أسبحت في إنحاء ٢٥ شمال الفرد أوجد البعد بين المقطنين علقا بأن المقطنين والراكب في مستوى أفقى واحد إدراد عدد المدينة المعدد بين المقطنين علقا بأن المقطنين والراكب في مستوى أفقى واحد إدراد عدد المدينة المعدد بين المقطنين علقا بأن المقطنين والراكب في مستوى أفقى واحد المدينة المد

من شاهد طيار هدفًا وهو على إرتفاع ١٠٠٠ متر عن سطح الأرس فوجد أن قياس زارية الخفاصة ١٨٠ ٩٦ ويعد ثالات دقائق من الطيران على نفس الإرتماع متجهًا نحو الهدف وجد أن قياس زاوية إنحفاص الهدف أصبحت ٣٦ ٨٣٥

فصأسرعة الطيار بالمتر / دقيقة فصأسرعة الطيار بالمتر / دقيقة

سفيدة تسير بسرعة مسطمة قدرها ٢٥ كم / ساعة في إنجاء ٢٧ شمال الدرب شوهد فيها عند الساعة العاشرة سباحًا فنار في إنجاء ٢٠ شرق الشمال وعد الساعة الواحدة ظهرًا من نفس اليوم وجد أن العنار أصبح في إنجاء الشمال الشرقي أوجد بُعد الفنار عن السفينة في تثلك اللحظة.

الراميان الله الله على محطة للرصد وصدت طالولجي () ب تقدان في مستوى وأسي واحد عم المعلا زاویتی اِرتفاع الطائرة پن هما ۵.) ی علی الثر آیب فأثبت أن ارتمع لطامرتين = في الماطة بهن المراطة بهن المراطة والأطور ن مسمتر و در ۱۳۵۰ و ی ۱۷۵۰ فأوده ارتفاع الطائرتین لأقرب متر

A CONTRACTOR OF THE PARTY OF TH

فرينا للاحظ أن

ひ(とり)=ひ(とうしり)

عا (۱+ ن) = ل س = م س + ل م = 3 m + U 7 =

= ما ا×متا ب+متا ا×ما ب

(للحظ أن،ع من = م س)

فيكون : [ما (1+4) = ما امكا ت + منا أما ت (البرهان اليمتدن فيه الطالب)

ويوضع (- ب) بدلاً من ب بينج أن،

ما [(+(-ب)] = مِ أ مِنا (-ب) + مِنا إ مِا (-ب)

وحيث أن ما (ا-س)=-ما سهمنا (-س)=منا س فيكون الما (ا-س)=ما الما ب-منا الما ب

وبإستخدام بفس الشخل بمكن إثبات أن . (عنا (1+ س) = منا أمنا ^{ب -} ما اما ب

ونستنتج أيضًا أن ا منا († ب) = منا امنا ب جما ا ما ب

وديث أن، طا (1+4) = عا (1+4) عنا ب منا اما ب منا اما ب عنا اما ب عنا اما ب عنا اما ب عنا
طا (۱+ ب) = طا (۱+ طا ب وعدوضع (-ب) بدلاً من ب فان ،

~プラリに(1+リヤ) # # いけない し は-1 は = (いー1) は

distant

في أي مثلث ∤ ب هـ :

ما (ا + ب) = ي ها دنا (ا + ب) = - منا ها (ا + ب) = - طا هم

. مثال

 $\frac{a}{17}$ د قبشا راونتین و کال ها $1 = \frac{1}{a}$ حیث $1 < \frac{\pi}{4}$ هنا $1 = \frac{\pi}{4}$ حیث $\frac{\pi}{4} > 1 > 1$ هنا 1 + 1 هنا 1 + 1

الحل

 $\frac{\pi}{Y} > 1 > e_Y$

in the

$$-\frac{1}{a}\times\frac{a}{4t}+\frac{a}{a}\times\frac{1}{a}-$$

ـ مثالی ـ

الحال

$$]\pi\forall\iota\frac{\pi\tau}{\tau}\{\ni\nu\}$$

" ما (۱+ د)=ما امتا د+ منا اما د

$$\frac{1}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}$$

$$\left(\frac{\sqrt{4}}{40}\right) \times \left(\frac{a}{40}\right) - \frac{A}{40} \times \frac{4}{9} = 0$$
 [[$\frac{a}{40} = (a + 1) = (a + 1)$]

$$\frac{1}{a} - \frac{1}{a} = \frac{1}{a} = \frac{1}{a} = \frac{1}{a} = \frac{1}{a}$$

$$\frac{11V^{-}}{V^{-}} = \frac{V^{-}}{V^{-}} = \frac{\left(\frac{V}{V^{-}}\right) - \frac{V}{V^{-}}}{\left(\frac{V}{V^{-}}\right) - \frac{V}{V^{-}}} = \frac{V^{-}}{V^{-}} = \frac{V^{-}}{V^{-}$$

ال مرمثلث فيه من (۱+۱) عنا ما سع منا (۱+۱) عنا م

الحيل

$$\frac{A}{10} = 0 \lim_{n \to \infty} \left(\frac{4n}{10} = 0 \right) \lim_{n \to \infty} \left(\frac{7}{n} = 1 \right) \lim_{n \to \infty} \frac{A}{10}$$

$$\frac{1 - \frac{1}{1}}{1 - \frac{1}{1}} = \frac{1}{1} = \frac{1}$$

$$\frac{\Lambda\sigma}{\Lambda T} = \left(\frac{\Lambda\sigma}{\Lambda T-1}\right) - = (\omega + 1) \ \underline{I}_{-\Delta} - =$$

0 - - T

بدون إستخدام الألة الحاسبة أوجد قيمة ،

- ا ۱۰ لم "۲۰ لمه + "۲۰ لمه ا ۳۰ لم
- ۵۷۴۰ له ۲۲۴۰ له ۲۲۴۰ لته ۲۲۴۰ لته ۱
 - منا 🛪 منا 🛪 ما 🛪 ما 🛪
 - °۸۰ ليم °۵۰ لته − °۱۰ ليک ۲۰ ليم

آلفتدار = ما (۲۰ + ۲۰ € ما ۲۰ - ۲۰

المقدار = منا (۳۰ ۲۳ (۲۰) = منا ۳۰ = با

 $\frac{T}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$ $\frac{\pi}{T}$

المقدار= منا ۲۵° منا ۱۰° - ما ۳۵° ما ۱۰ 7) = 1 - " (0) - " (0) | 1 = -

مثألي

بدرن إستخدام حاسبة الجيب أوجد قيمة كل مما ياتي: 🚺 ما ۱۵

🕠 منا ۵۷۹

الحال

نحول الزاوية إلى طرح أو مجموعة راويتين

ال ما دا" = ما (را" - دا") = ما را" منا دا" - منا را" ما دا"

 $\frac{\overline{Y} - \overline{Y}}{4} = \frac{\overline{Y}}{\overline{y}} \times \frac{1 - \overline{Y}}{\overline{y}} = \frac{1}{\overline{y}} \times \frac{1}{\overline{Y}} - \frac{1}{\overline{Y}} \times \frac{\overline{Y}}{\overline{Y}} = \frac{1}{\overline{Y}} \times \frac{\overline{Y}$

الحظ أنه يمكن تحويل 10° (ثي (10° – 10°) وتحل بمفس الطريقة

الإلامال

$$\frac{\overline{\gamma} \overline{\beta} - \overline{\gamma} \overline{\beta}}{\overline{\delta}} = \frac{\overline{\gamma} \overline{\beta}}{\overline{\gamma} \overline{\beta}} \times \frac{\overline{\gamma} - \overline{\gamma} \overline{\beta}}{\overline{\gamma} \overline{\beta}} = \frac{\overline{\gamma}}{\overline{\gamma}} \times \frac{\overline{\gamma}}{\overline{\gamma} \times \frac{\overline{\gamma}}{\overline{\gamma}} = \frac{$$

$$\frac{\overline{\gamma^{2}_{1}+1}}{\overline{\gamma^{2}_{1}+1}}\times\frac{\frac{1+\overline{\gamma^{2}_{1}}}{\gamma^{2}_{1}+1}-\frac{1+\overline{\gamma^{2}_{1}}}{1+\overline{\gamma^{2}_{1}}}-\frac{\alpha_{20}}{\alpha_{20}}\frac{1}{16}+\frac{\alpha_{10}}{\alpha_{10}}\frac{1}{16}+\frac{\alpha_{10}}{16}\frac{1}{16}=\frac{1}{16}$$

$$\overline{\psi} = \psi - \frac{\overline{\psi} + \overline{\psi} + \varepsilon}{\psi - \overline{\psi}} = \frac{\psi + \overline{\psi} + \overline{\psi}}{\psi - \overline{\psi}} =$$

مثال)

أوجد فيمة س المعصورة بين ٣٩٠٤ والتي تحقق المادلة :

منا س منا ۳۵ - ما س ما ۲۵ × ۴

الحال

لا منا (س+س)=منا س منا س-ما س ما س

$$\frac{1}{2} = (^{\circ}Yo + \cdots)$$
 $\frac{1}{2} = (^{\circ}Yo + \cdots) = \frac{1}{2}$

ت الزاوية تقع في الربع الأول أوالرابع

 $(ae_{\pm}a)^{\frac{1}{2}}$

· الراوية التي جيب تمامها ﴿ قياسها ، ٩٥ (الربع الأول) أو ، ٩٠ (الربع الرابع)

الحال

$$\left(\frac{\overline{Y}}{\overline{Y}}\right) = \left(\omega - \frac{\pi}{4}\right) L_{A}$$

الزاوية تقع في الربع الأول أو الثائي

الأول أو ۱۲۰° $(\pi - \frac{\pi}{4})$ رذا كانت تقع في الربع الثاني

$$\frac{\pi}{\tau}$$
 - π = ω + $\frac{\pi}{t}$

$$\frac{\pi}{\tau} - \pi = \omega + \frac{\pi}{t} \qquad d \qquad \frac{\pi}{\tau} = \omega + \frac{\pi}{t} :$$

$$\frac{\pi \bullet}{w} = \frac{\pi \vee}{w} - \pi = \omega -$$

$$\frac{\pi}{W} = \frac{\pi}{\epsilon} - \frac{\pi}{r} = \omega + \tau.$$

- مثالی ــ

برهن على أن قيمة القدارة

مة (سر + ١٨٥) منا (٨٣ - س) + منا (س + ١٨٥) ما (٨٢ - س)

لا تتولف عثى قيمة س

الحل

- " ما اعتا ب+ منا اها ب= ما (١+٠)
 - ∴ بوضع † ع س + ۸۲° ع ب = ۸۲° س
- $\frac{1}{2} \approx ^{0} (0.1 + ^{0} (-4.4 + ^{0})) = _{-1}^{0} (-4.4 + ^{0})$
 - المقدارلا يتوقف على فيمة س

ايجل

د من ٧°= الطرف الأيسر

$$\frac{d^{2} A \cdot b_{0}}{d^{2} a^{2}} = \frac{d^{2} A \cdot b^{2}}{d^{2} a^{2}} = \frac{d^$$

$$=\frac{1}{a}\frac{\lambda_1}{\lambda_2}=\gamma=0$$

مثالی.

الحل

الطرف الأيس = ها ٣٠° منا 1+ منا ٣٠° ها (+ منا (هنا ١٠٠٠ ما (م، ١٠٠١

الطرف الأيسر = ما (۲۰۹۰) = منا (

الطرقان متساويات

ر النون من المنا ب = طا ۱+ طا ب

الحي

الطرف الأيمن = هذا أجنا ب عنا أجنا ب

= ها ا + ها ب = طا ا + طا ب = الطرف الأيسر

ـ مثال،

إذا كان إلى ١٦٠ على ب = أب حيث ١٥ ب همه قياسا زاويتان حادثان فائبت ان ۴۰ – ب = هؤ°

الحال

 $1 = \frac{1\frac{7}{7}}{1\frac{7}{7}} = \frac{\frac{1}{7} - 7}{\frac{1}{7} \times 7 + 1} = \frac{\frac{1}{7} \frac{1}{7} - \frac{1}{7} \frac{1}{7} \frac{1}{7} + \frac{1}{7} \frac{1}{7} \frac{1}{7} = \frac{1}{7}

"10 = W - 1 A

1=(-+) 16 17

مثالی_

الحال

1= "1. 16 + "YO 16

1= ("1.+ "Ya) 16 ..

∵ مل هؤ" <u>⇒</u> ا

"ا، له "اه له - ا = "ا، له + "اه له ...

1-"1. Lb "To 16+"1. Lb+"40 Lb ..

ر مثان

لِا كَانْتُ شَدَةُ النَّبَارِ الكَهِرِينَ تَعْطَى بِالْعَلَاقَةُ نَ = ﴿ مِنَا عَلَى مِا يُعَلِّقُهُ نَ = ﴿ مِنَا عَلَى مُ

- 🚺 أعد كتابة العلاقة السابقة بإستخدام فرق قياسي زاويتين.
- 🕡 أوجد شدة التيار الكهربي بعد تانية واحدة (دور استخدام العاسية)

لحال

$$\left[\left(\sqrt[q]{q} - \sqrt[q]{q} \right) \right] \left[\lim_{n \to \infty} \frac{\frac{n}{2}}{n} = \frac{n}{2} \right],$$
 Simultiniana $\left(\sqrt[q]{q} \right) \left[\lim_{n \to \infty} \frac{\frac{n}{2}}{n} = \frac{n}{2} \right]$

$$^{\circ}$$
T₁ + $^{\circ}$ Ia = $^{\circ}$ Va $^{\circ}$ $^{\circ}$

$$v = \frac{T}{T}$$
 (0) $v = v$ بالتعویمں علی $v = v$

$$\gamma_{n_1} |_{L^2(\Omega)}^n |_{L^2(\Omega)} = \frac{\gamma}{\gamma} = 0$$
 $(^2\gamma_1 + ^2\gamma_2) |_{L^2(\Omega)} = \frac{\gamma}{\gamma} = 0$.

$$\frac{\overline{\gamma_j^k}}{\overline{\gamma_j^k}} \times_{\mathbb{Q}_p} \underbrace{\operatorname{constant}}_{\mathbb{Q}_p} \left[\frac{\gamma_j - \overline{\gamma_j^k}}{\overline{\gamma_j^k}} \right] \frac{\overline{\gamma_j^k}}{\overline{\gamma_j^k}} = \underline{\omega} \iff \left[\frac{\gamma_j}{\gamma_j} \times \frac{\gamma_j}{\overline{\gamma_j^k}} - \frac{\overline{\gamma_j^k}}{\overline{\gamma_j^k}} \times \frac{\gamma_j}{\overline{\gamma_j^k}} \right] \frac{\overline{\gamma_j^k}}{\overline{\gamma_j^k}} = \underline{\omega}$$

$$\frac{\nabla}{(\frac{d}{d} + \frac{d}{d})} = \left[\frac{1}{\frac{d}{d} + \frac{d}{d}} \right] \frac{1}{d} = 0$$

The land of the second states of the second

التبارتراكمي 🚻

الدرجة السائية 🕌

المن قمة منزل برنمع ٢٠ مترًا منسطح الأرض فيستزاريتي إنحفاض ننطتين
سى ، ص عنى سطح الأرض وهي جهة واحدة من النرل طكانت و٣٥ ، ٢٤ على
تترتيب فإذا مكانت فاعدة المزل على بغس الخط الأفقى المار بالنقطتين
س ۽ س فأوجد اڻيمد بين ائنقطتين.
4+2+++++++++++++++++++++++++++++++++++

+4+- Hebrittititit 1141 - 1141 - 1141 1111 1111 1111 1111

(ب) من نقطة على سطح الأرض رصدت زاوية أرتفاع قمة برج قوجد أن قياسها
ه؟° ثم سار الرامند في خط مستقيم مسافة ٧٥ متراً في المستوى الأفقي تحو
قاعدة البرج فوجد أن قياس زاوية إرتفاع قمة البرج ،٣٠ ٢٥°
أوجد إرتفاع البرج الأقرب متر.
highermone and the higher states and the second of the second of the second states and the second of
historia de la company de la c
· Annighted for pro-1971 the page 1-10-4-10-14-10-14-10-14-10-14-10-14-11-14-11-14-14-14-14-14-14-14-14-14-
(ج) من قمة منزل إرتفاعه ٨ أمتار عن سطح الأرس مكان قياس زاوية أرتفاع قمة
شجرة ١٨° وقياس زاوية الخفاض فاعدتها ٢٩° أوجد أرتفاع الشجرة وبعدها
عن البني.
dinnepplyker '4+biddipplatikian profesioni profesioni kanadar konstitutivi perspenyan modiset, adadibinas esar
+ 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

المادر

🖬 اختر از انانه انصدیخه من بین ارجانات انمعطاه

ا ما ۱۰ منا ۲۰ منا ۲۰ من ۲۰ من ۳۰ من سند المسلس ال ۱ ال ۱۰ ال

€ الله على وا وا معلى وا
 $\begin{bmatrix} \frac{1}{7} & 0 & \frac{1-}{7} & 0 & \frac{1}{7} & 0 & \frac{1}{7} \end{bmatrix}$

٣ عدًا بس منا ص+ما سرعاً ص =

[منا (سر-س)) منا (سر+س) له ما (سر-س) إ) ما (سر+س)

« بينا ۷۰ يونا ۲۰° ميا ۲۰° يوا ۲۰ ليم ۲۰° عا ۳۷۰ عا

[صدر ۵ او ۵ او ۱۵ او ۱۹

و ما ۱۸ ما ۱۷ منفر ای ۱ ای ۱۰ ای

س مع (۱+ ب) مع د جم ((+ ب) الم د سسسس الم

[ما ا أي منال في طال في -منال]

﴿ ١ (س + ص) مِنَا ص - مِنَا (س+ ص) مِمَا ص =

[ماس ﴾ مناسن ﴾ طاسن ﴾ -ماس

 $[T \textbf{d} T - \textbf{d} T \textbf{d} T - \textbf{d} T \textbf{d} T] \cdots = (\theta + \frac{\pi}{1}) \text{ the plane } T = \theta \text{ the plane } T$

الا كان ما ا = با ما سعب فإن ما (١+ س) = المستحدد

[۱ کے ۱ کے منفر کی 🗗

 $\frac{\pi}{10}$ [ذا ڪال ما $\frac{\pi}{1}$ متا س + متا $\frac{\pi}{1}$ ما س = $\frac{\pi}{10}$ فإن منا س =

[۱ ۾ ١- ۾ صدر 4 أ

الا كان من من من المن المن من على المن

[מפי ש פרץ" ש פפ"וסדץ" ש פון יסדו"]

المالية المالية المعطاة من عن الحربات المعطاة

 $= \frac{\pi}{1\Lambda} \ln \frac{\pi}{q} \ln + \frac{\pi}{1\Lambda} \ln \frac{\pi}{q} \ln 0$

[+ d + d + d + d +]

[mid 1 1 1 1 1 1 mid

[معالاس أل معالم س أل ما مس ال مالاس]

الا مكان ما ٢ س منا ١٠° - منا ٢ س ما ١٠° = أ فإن ق (١٠ س) =

["A. A "A. 4" " " " A "Y.]

 $= \left(\frac{\pi}{r} + \theta\right) L_{A}$

[ما 4 ه - ما 4 ك منا 4 ك -منا 4]

 $= \left(\frac{\pi}{2} + \theta\right) \downarrow \square \bigcirc$

 $\left[(\theta + \Delta T) + \theta + \Delta \Delta T) \right] \frac{1}{T} = (\theta + \Delta \Delta \theta + \Delta T) \frac{1}{T}$

[عائمت ب ف حافيات له لاجانيات في المحافيات]

همنا س منا س سل س ما س) =

[عما س له منا ۲س له -مناس له ما ۲س]

(قبدة + 1 على مس مد المسالية
[(١- س) إلى طا (هؤ" - س) إلى طا (هؤ" - س) إلى طا (٣ س -١٠)

معا ۵۰ معا ۵۰ + معا ۲۰ معا ۵۰ معا ۵۰ م

🚹 بدون إستحدام الآلة الحابسة أوجد قيمة

الله على الله على الله على الله على الله على الله على الله على الله على الله على الله على الله على الله على ال

" . . " V. la + " 1. La " V. La E

"ه، له "د ام "ه، احد " د الله " ما ده"

1 ما ۷۷ متا ۸"+ متا ۲۲ ما ۵۲

"To La "As La + "To La "As La -

۳۰ ایشده (۱) در ایشده اینده (۱) در ایشده اینده (۱) در اینده اینده (۱) در اینده اینده (۱) در ا

🔼 أختر دبانة تصحيحة فن تين الإحماد المغضاة ء

ن منا با منا سر سما به ما س ± سسسس

[عا (دا م م الله على
 $\cdots = \left(\frac{\pi}{4} + t\right) \ln t \ln + \left(\frac{\pi}{4} + t\right) \ln t \ln t$

[صدر ۵ ۱ ۵ ۱ ۵ ۲ ۴]

[مطر]

31

[1]

[مالمأب أن المالمات أن المتالمات أن المتالمتاب

ا) یا (اس+ العادی ا

[ما اما ب ال تما اما ب الاستا الماد ال المنا الماد الم

الحج الجهالة بأرائسها و کو این کا میا ۱۵۰۱ کا سے جفاوجد ، [÷ . ⊢] で=いは (+ = | しかをは) فأوجد بدون إستخدام الألة الحاسبة قيمة لي (١ + ب) 14 ىرون أن - إ + ب = 10" و الله مسائل المستوى لناني رِيا ڪان مِيا ا = الله حيث ي < ا < π > ا حيث، < ن < الله ڪان ميا ا = الله حيث ي < ا < π > الله عال ميا الله عال ميا N . TT-فأوجد اليمة: ط (١٠٠١) ع ما (١٠٠١) $\frac{\Lambda}{10} = 0$ إذا كان إ $\frac{V}{2} = \frac{1}{4}$ إذا كان إوبتين حادثين هيث $\frac{1}{4} = \frac{V}{4}$ و ال أودر مليون إستخدام الألة الحاسية اليمة كل من : (U-1) H(1) (U+1) La (1) {u-f} 13(P) $\int_{0}^{\pi} c_{1} \left[\exists \omega \in \bigcap_{i=1}^{N} a_{i} \right] = 0 \quad \text{for } i = 1 \quad \text{for }$ 170 4 2 7 (u-1) les (u+1) les 130 $\pi > - > \frac{\pi}{v}$ $\frac{\alpha}{\sqrt{v}} = - \frac{1}{2} \sqrt{\frac{\pi v}{v}} > 1 > \pi \frac{\pi}{2} - - 1 \ge \sqrt{2} \ln \frac{\pi}{2}$ فأوجد قيمة مِنا (١ - ب) بدون إستخدام الأثة الحاسب. $\left[\frac{M}{D}\right]$ $\frac{\pi}{v} > 1 > 0$ الناكان با $\frac{1}{v} > 1 > \frac{1}{v} > 1 > 1 ل ناكان با الناكان با النا$ $\left[\frac{x_1^2}{x_1^2} - x_2^2\right] = \frac{\pi a}{4} = \frac{1}{4} + \frac{1}{4} \sin(x_1^2 + x_2^2) = \frac{\pi a}{4} + \frac{1}{4} + \frac{1$ وتند معون استخدام الآلة الحاسبة البهة كل من " 「Time (Man (計) (ロード) は ⑦ (ロード) は ⑦ €منا (۱–ب)

ا ب جرمشت فيه ١٤ ١ ١ ١ ١٧ منا ب = ١٥ أوجه بدود إستخدام الأثلا الحسيد وي

뜻

فأوجد قيمة عا (إ – س، عما (إ + ب)

الله تكان ما ٢ = ٢ ره حيث | أكبر الباس موجهه ١٣ ٥ هنا ٢٠ - ١٢ . ، حيث رياس قیاس موجب فأوجد فیمة ما (۱ - س)) منا (۱ - س) #, #

الله المثلث إن مراذا كان طا احدٍ ١٣٤ منا ت - ه = ، فأوجد فيمة ما هر الله

1 F. 1 T. 1 T. 1

أوجد مدا ((+ س)) مما 🌦

🚾 أختر الإجابة الصحيحة من بين الإجابات المعطاة ،

مسسس = "و، توو له "وو توم توم له - "و، توو ليم "وو توم توم ليم ال

اها ۹۰ ای منا ۹۰ ای مرصفر ای منا ۱۹ ۲۹

Rice of Rive of River of River

 $-\left(1-\frac{\pi}{4}\right) \ln \left(1+\frac{\pi}{4}\right) \ln -\left(1-\frac{\pi}{4}\right) \ln \left(1+\frac{\pi}{4}\right) \ln \left(1+\frac{\pi}{4$

The d The d The d The

۱۰۰۰ کی کا ایم °۲۰ لیم ۱۵۰ کی ۱۵۰ کی ۱۹۰ کی الاستان ۱۹۰ کی الاستان ۱۹۰ کی ۱۹۰ کی الاستان ۱۹۰ کی ۱۹۰ کی ۱۹۰ کی

[" Ib d " Yo lan d " Yo lan d " Yo lan]

ما المان ما المان مان علام المان علام المان المان علام المان
[To lea - of "To la - of "To lea of "To la]

['vng'n] € منا ٦٥ منا ٨ - ما ٥٦ ما ٨ = ما سر Ched hi ["revised"tovia)

ال سر ما ۱۵ ۲۲ مرد الم ۲۲ مردد الم ۲۲ مردد الم ۲۲ مردد الم ۲۰ مردد الم

للأبرس عنى أدقيم المقادير التانية لا تتوقف على من :

- (اس + ۲۵ منا (س + ۲۵) منا (س + ۲۵) منا (س + ۲۵) ما (س + ۲۵) و المراكزية على المراكزية على المراكزية على المراكزية على المراكزية على المراكزية الم
 - 🊂 بدور إستحدام الألة الحاسبة أثبت أن ،
- °۲۰ لیم = °۸۰ لیم + °۵۰ لم (۲ ا الله = " ۱۵ الله + " ۱۲ اله 🕥 ا °ه له = °۱۲ه له − °۴ لعه 🕣 1= "To LL" A. LL - "To LL - "A. LL ①
 - @ ها ۲ س منا ۲ س منا ۲ س ما ۲ س منا ۲ س منا ۲ س + ما ۳ س ما ۲ س

المامر

فإليافيان

📆 بدور إستخدام الآلة الحاسنة أثبت أن ا

أهام

[-

$$(f + {}^{0}f_{1}) \downarrow_{a} = ({}^{0}f_{1} - f_{1}) \downarrow_{a} + (f - {}^{0}f_{1}) \downarrow_{a}$$

$$\frac{1}{Y} = \frac{\pi}{Y\xi} \ln \frac{\pi}{\lambda} \ln x + \frac{\pi}{Y\xi} \ln \frac{\pi}{\lambda} \ln x$$

اً أَدَنْصَرُ لأَسْطِ صَوْرَهِ: مِنَا (ا+ب) مِنَا ا+ مِا (ا+ب) مِنْ ا

T بدور إستخدام الانة الحاسبة أثبت أن:

انا کال طال طال سے $\frac{7}{4}$ و طال (س – س) = $\frac{7}{7}$ حیث س و س اقیامًا زاویتی حادثین اللہ مال میں اللہ میں

أثبت أن: طاص = الم

آی نیمه یا کان یا اور نامه کا (+ ما °) = چاوجد قیمه یا ط

turned, bordently trad

حيث إذا كان ما الما ب الله عنا المناب المناب المناب المناب عنا المناب لردد فيمة كال من (١ + ب) غيدًا (١ - ب) [1 4]

 $\frac{3}{2} = 1$ إن أن الأولاء علمت أن ط $\frac{3}{2} = 1$

[뜻년]

فاوجه بال بومن شمأوجد بال (ا - ب)

آوزا ڪان ۽ ۾ قياسًا زاويتان جادتان حيث ۽ ۾ س = 10°

1 1 = 1 = 1 1 = 1 1 = 1 = 1 1 = 1 = 1 1 = 1 = 1 1 = 1 = 1 = 1 = 1

🛣 إذا كان ﴿ + ب + هـ = ١٨٠° حيث ﴿ ٤ ب ٤ هـ فياسات روايا ∆ أثبت أن: بل [+ بل ب + بل ج = بل [بل ب بل م

 $\frac{1}{4}$ وری از اکان $\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$ جیت $\frac{1}{4}+\frac{1}{4}$ جادة

فأثبت أن: بليا (مل ب + مل ب مل هـ + مل ا كل هـ = ١

 $\frac{1}{4} = -1$ (i.e. $\frac{1}{4}$ (i.e. $\frac{1}{4}$ (i.e. $\frac{1}{4}$ (i.e. $\frac{1}{4}$ (ii.e. $\frac{1}{4}$ (iii.e. $\frac{1}{4}$ (iii.

 $(w - w)^{T} + T = T(w)^{T} + (w) + w + w$

بدون إستخدام الألة الحاسبة.

[474]

 $\frac{1}{|a|} \frac{|a|}{|a|} = \frac{|a|}{|a|} + \frac{|a|}{|a|} = \frac{|a$

آغ إذا كان بل من عن عن أثبت أن: من " - × م ٢ من - ١ = ١ من - ١ = ١

 $m{v}^{0}$ اذا ڪانت شدة التبار الكهربي ت تعطي بالعلاقة ت= ما \hat{v}^{0}

أعد كتابة العلاقة السابقة بإستخدام مجموع قباسى زاريتين.

الاجد شدة التيار الكهريئ بعد ثانية واحدة (دون إستخدام الحاسبة) [المراحمة]

مسائل تقيس مستويات عليا من التفكير 📆

الماهر

🚻 أختر الإجابة الصحيحة من بس الإجاب المعطاة :

﴿ إِذَا حَمَانَ سِ صِ عِ مِثَلَثُ

$$and = \frac{2}{7} \ln \left(\frac{m + m}{7} \right) \ln + \frac{2}{7} \ln \left(\frac{m + m}{7} \right) \ln \left(\frac{m + m}{7} \right)$$

[منفر کی ب کی ۱ کا ا

الإاكانت س ﴿ [٤٠٠] فإن قيمة س التي تجعل قيمة المقدار ﴿ وَإِنْ عَلَيْهِ الْمُقَدَّارِ

جا جن منا ۱۵°+ منا من ما ما°أمطرماييكن هي

Tay D . VY D GAT" D GAT

€ إذا كانت س (٢٤٠] ﴿إِنْ قَبِمَةُ سَ الْتَي تَجِعَلُ قَيْمَةُ الْقَدَارِ

متا س متا ۲۰° + ما س ما ۲۰° اکبر ما یمکن هی سسس.

$$-\infty$$
 = $^{\circ}$ V, $\frac{7}{r}$ - $^{\circ}$ V, $\frac{1}{r}$ - $^{\circ}$ V, $\frac{1}{r}$ $^{\circ}$ V, $\frac{1}{r}$ V, $\frac{1}$

- ﴿ إِنَّ الشَّكَلِ الْقَامَلِ:
- المروة على المروحة CT=48. Ct=45 فإن ما (داهر) = الله
- - في الشكل المعابل: ا ب هه و مربع ، ںو=و م، 8 = (25 UZ) U قېن ال θ =
- [d d d d d d d d d] (ز) کان یا ۲۰° د ۱ فان یا ۲۰° د ۱۰۰۰۰۰۰۰ = ۲۰۰۰۰۰۰۰ ا [1-1 0 1+1 0 1+1 0 1]
 - 🕥 في الشكل القادل: ن (دهدو ب)=۴° ، ن (د ا ندو) = س ق (الا ب ع) = س ، ق (١١) = ع ما (س+ع) - ا هان بل س = سنسست
- a + a + a +]
- 🕜 في الشكل القابل: ل م ب و مستطیل ی ز = ۲ م ، ~1=(36 ~ Y=306 ~ E=5) ق (خدل ۲) = ۱ ته (خدل د) = س، U (2(U a) = U فإن بل سے ١٠٠٠٠٠٠٠٠٠ [14 d + d A d VY]

(۱) في الشكل القادل:

$$\frac{\nabla V}{\Delta V} = \frac{\Lambda}{1} \frac{\Lambda}{1V} \frac{\Lambda}{1} \frac{\Lambda}{\Lambda \sigma} \frac{\Lambda}{1} \frac{\Lambda}{1V} \frac{\Lambda}{1} \frac{\Lambda}{1V} \frac{\Lambda}{1} \frac{\Lambda}{1V} \frac{\Lambda}{1} \frac{\Lambda}{1V} \frac{\Lambda}{1} \frac{\Lambda}{1V} \frac{\Lambda}{1} \frac{\Lambda}{1V} \frac{\Lambda$$

$$\frac{1}{A}$$
د المان من من زوایا حادة و کان طا $1=\frac{1}{A}$ عا طا $1=\frac{1}{A}$ عا طا حد = $\frac{1}{A}$

$$\frac{\pi}{3}$$
 Le $\left(-\frac{\pi}{7} \right)$ Le $\left(\frac{\pi}{7} + -\omega \right)$

2 240. In Jan ..

رها (۱+ ب) ما ه- ما (ب+ ه) ما (= ما ب ما (م-ع)) المارة (م-ع)

و ازرت ان: طا ۱ هـ + طا ۲ هـ طا ۵ هـ طا ۷ هـ + طا ۵ هـ = ط۶ ۷ هـ

(س - س) المنا (س + س) منا $\left(-\frac{\pi}{4} \right)$ منا $\left(-\frac{\pi}{4} \right)$ منا (س - س) منا (س - س)

∑ إذا علم أن رال † ؛ رأل ب هما جِدرًا اللعادلة س " − ٢ س − ٢ = ،

فأوحد قيمة : شَا ((+ ب)

البناميحة للطابقة لاتية : مِنْ (س + س) مِنْ (س - س) = مِنْ أُ س + مِنْ " ص + إِنَّ أَبِينَ مِنْ عَنْ

و عدد ه و عدد و عدد الله و عدد

المال المالية المنطقة المالية

لعيمران

ما (+ + ب) = ما احدا ب + ما الموضع ب = ا

الله عند العالم المناط المناط المناط

문화(JS)(tal) La Y=(Y La A

ب مثل یکوں

23 file - 1 le = 14 les

۲-۴^۷لیه ۲=

ا ۲۹ معرطة ؛ طا ۲ ميث طا عمدرطة ؛ طا ۲ بير ا ۱ - طا ۲ م

المالية المست عدال من

وَيَحَدُّدُ مِعَتَانَةً صَوْرَةً القَوَانَيْنَ تُسَائِقَةً إِذَا صَاعَفُنَا الرَّاوِيةَ ﴾ [لتعبيح 1] ، ^ ماييكن عنابتها إذا يصفنا الرارية ٧] لتصبح إ كما يلق ،

$$| \{ \frac{1}{2} + \frac{1}{2} \} | = \frac{1}{2} | =$$

depthatistical and a deal of

ال
$$\tau$$
 هـ $\frac{f}{\tau}$ = $t - a \pm 1$ (من خواص المقادير الجدرية)

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{1} \ln \frac{-1}{7} \left\{ z = \frac{1}{7} \ln \frac{1}{7} \ln \frac{1}{7} \right\} = \frac{1}{7} \ln \frac{1}{$$

وتمكن بدكر كنفية إنجاد الجام للمعادلة فيما ينجيء

eta و eta
قمثالآ

0

الماعر

فالبياضا

ربت: العام للمعادلة على $\theta = \frac{1}{V}$ فإننا للحظ أن ، على θ موجية أى أن θ تقع في الربع الأول أو الذائي

` الزاوية الحادة لتى جبيها = ﴿ فياسها ، ٩٠

وحيث أن @ تقع هي الربع الأول أو الثاني هإن و ٣٠٠ أو ٥ ١٨٠ ٣٠٠ "١٠٠

$$\left(\pi \frac{\bullet}{3}\right)$$
 of $\pi + \frac{\pi}{3} = \theta$ of $\frac{\pi}{3} = \theta$ Jol

 $\left(\pi \frac{a}{7} = \frac{\pi}{2N^*} \times 2a = 2a^*\right)$ العظان (۱۵۰ – 2a)

 π ونگون الحل المام للمعادلة هو: $\frac{\pi}{7} + 7$ ن π أو $\frac{\pi}{7} + \pi + \pi + \pi$

π υ τ + π 🐧 । जी

رالتان راکان منا ا= - غمیث ا ∈] ۳ ، ۳ [راکان منا ا= مین ا ۲ ان منا ۱۲ ان طا ۱۱

الدل

$$\frac{4}{2} = 1$$
 الناس (اویهٔ تقع فی اثریع الثانی) منا $\frac{4}{2} = 1$ منا $\frac{7}{2} = 1$ منا $\frac{7}{2} = 1$ منا $\frac{7}{2} = 1$

$$\frac{Y!-}{YO} = \frac{1-}{O} \times \frac{Y}{O} \times Y = \int \{ L_{ij} \} L_{ij} Y = \int Y L_{ij} J_{ij}$$

$$\frac{V}{Yo} = {}^{Y} \left(\frac{Y}{o} \right) - {}^{Y} \left(\frac{1-v}{o} \right) = {}^{Y} \left[\frac{1-v}{o} - {}^{Y} \left[\frac{1-v}{o} \right] + {}^{Y} \left[\frac{1-v}{o} \right] \right]$$

$$\frac{\gamma_{\underline{q}-1}}{V} = \frac{\frac{\gamma_{\underline{q}-1}}{Y}}{\frac{V}{V}} = \frac{\frac{\gamma_{\underline{q}-1}}{2}}{\frac{\gamma_{\underline{q}-1}}{2}} = \frac{\gamma_{\underline{q}-1}}{V} $

مامغة المكن بجد طا ١٦ بطريقة أخرى

$$\frac{7!-}{V} = \frac{V}{V} + \frac{V!-}{V} = \frac{V!-}{V!-} = \frac{V!-}{V!-} = V!$$

-مثالی

إذا كان بل س = أن فأوجد اليمة كل من بل ٢ س ؛ بل ٤ س

الحال

$$\frac{\forall \underline{t}}{V} = \frac{\frac{\Psi}{Y}}{\frac{V}{VY}} = \frac{\frac{\Psi}{X} \times Y}{\frac{\Psi}{YY} - 1} = \frac{\psi \times V + \frac{1}{2} \psi \times V}{\psi \times V + \frac{1}{2} \psi \times V} = \frac{\psi \times V}{V}$$

المام

ألحل

ان المناس (اوية تقع في الربع الأول عنه
$$1 = \frac{1}{8}$$

$$\frac{17}{19}$$
 منا $\frac{17}{19}$ منا $\frac{17}{19}$ منا $\frac{17}{19}$

$$\frac{114}{174} = 4 - \frac{122}{174} \times 7 = 4 - \omega^{\frac{1}{2}}|_{\Delta A} T = \omega^{\frac{1}{2}}|_{\Delta A}$$

$$\frac{\forall t}{\forall o} = \frac{\forall}{o} \times \frac{t}{o} \times \forall = f \vdash_{o} f \vdash_{o} \forall = f \forall \vdash_{o} \forall$$

$$\frac{\mathbf{Y}^{+}}{\mathbf{Y}\mathbf{A}} = \frac{\mathbf{Y}\mathbf{Y}}{\mathbf{Y}\mathbf{A}} \times \mathbf{Y} - \mathbf{Y} = \mathbf{J}^{\mathsf{T}} \mathbf{L}_{\mathbf{A}} \mathbf{Y} - \mathbf{Y} = \mathbf{J}^{\mathsf{T}} \mathbf{L}_{\mathbf{A}} \mathbf{Y}$$

$$\frac{\mathbf{T}\mathbf{T}^{\mu}}{\mathbf{T}\mathbf{T}^{\mu}} = \frac{\mathbf{a}_{-}}{\mathbf{1}\mathbf{T}} \times \frac{\mathbf{Y}_{-}}{\mathbf{T}_{0}} + \frac{\mathbf{1}\mathbf{Y}}{\mathbf{1}\mathbf{T}} \times \frac{\mathbf{Y}_{0}}{\mathbf{T}_{0}} =$$

$$\gamma = \frac{\beta}{T} \stackrel{\forall}{=} \Gamma \stackrel{\triangle}{=} \Gamma \stackrel{\triangle}{=} \Gamma$$

$$\frac{A}{a} = 1 + \frac{V}{a} = 1 + f \log_a = \frac{f}{V} \cdot \log_a V$$

$$\frac{\xi}{a} = \left(\frac{A}{a}\right) \frac{1}{V} = \frac{1}{V} \frac{1}{V} \log_{10} A$$

$$\frac{1}{2h} = \frac{1}{4} L_b \therefore$$

$$\frac{\gamma}{|\alpha|^2} = \frac{1}{\gamma} |\alpha| \therefore$$

$$\omega \mid_{\mathbb{A}} \frac{1}{\eta} \mid_{\mathbb{A}} - \omega \sin \frac{1}{\eta} \mid_{\mathbb{A}} = \left(\omega + \frac{1}{\eta}\right) \mid_{\mathbb{A}} ...$$

$$\frac{\sigma}{4\pi} \times \frac{1}{2} - \frac{17}{47} \times \frac{7}{2} =$$

$$\frac{\partial P}{\partial R} = \frac{\nabla R}{\partial R} = \frac{\partial P}{\partial R} + \frac{\partial P}{\partial R} =$$

بدون استخدام الألة الحاسبة أوجد قيمة كل من:

$$^{\circ}YV. > \theta > ^{\circ}IA.$$
 ($\frac{f-}{\theta} = \theta$ le viriale $\frac{\theta}{Y}$ le 0

الحل

٢٧٠ > θ قياس زاوية تفع عن الربع الثالث (٨٠٠ < θ < ٢٧٠)

$$\frac{\frac{1}{a} + \frac{1}{a} = \theta \text{ i.s.}}{\frac{1}{a} + \frac{1}{a} + \frac{1}{a} + \frac{1}{a} = $

"IT
$$\theta > \frac{\theta}{\tau} >$$
" $\phi : (1+)$ "TV+ $\phi >$ " $\phi : (1+)$ "TV+ $\phi >$ " $\phi : (1+)$ "TV+ $\phi >$ " $\phi : (1+)$ "TV+ $\phi = (1+)$ "TV+

$$\frac{\partial}{\partial t} = \frac{\theta}{\tau} \lim_{n \to \infty} \frac{\partial}{\partial t} \frac{\partial$$

ن ما
$$\frac{\theta}{\tau}$$
 ما $\frac{\theta}{\tau}$ ما $\frac{\theta}{\tau}$ ما $\frac{\theta}{\tau}$ ما تعمد موجد تقع می الربع الأول هانتیمه موجد تم

$$\frac{\overline{Y} - \overline{Y}}{Y} = \frac{\overline{Y} - \overline{Y}}{6} = \frac{\overline{Y} - \overline{Y}}{Y} = \frac{\overline{Y} - \overline{Y}}{2} = \frac{\overline{$$

$$\left(\frac{0}{\gamma} - 0 + 0 + 1\right) \qquad \frac{\gamma}{\gamma} = \frac{1}{\gamma} \times \frac{\gamma}{\gamma} - \frac{1}{\gamma} = \frac{1}{\gamma} \times \frac{\gamma}{\gamma} + \frac{1}{\gamma} = \frac{1}{\gamma} \times \frac{\gamma}{\gamma} + \frac{1}{\gamma} = \frac{1}{\gamma} \times \frac{\gamma}{\gamma} + \frac{1}{\gamma} = \frac{1}{\gamma} \times \frac{\gamma}{\gamma} = \frac{1}{\gamma}$$

(بالضرب في مرافق المقام (١ – 🔫) بسطًا ومقافًا)

أوجد بدون إستخدام الالة الحاسبة قيمة كل مما يأتي:

الجل

$$\frac{\overline{\Psi_{1}^{*}}}{\Psi_{1}} = \overline{\Psi_{1}} \; \underline{\Gamma_{22}} = \overline{\Gamma_{1}} = \overline{\Gamma_{$$

$$\frac{\overline{Y}}{\overline{Y}} = {}^{0}$$
 to $\underline{I}_{A} = \left(\frac{\pi}{A}\right) Y \underline{I}_{A} = \frac{\pi}{A} \underline{I}_{A} \frac{\pi}{A} \underline{I}_{A} Y \overline{Y}$

$$\frac{q}{q} = 1 + \frac{1}{q} - 1 + \frac{q}{q} - 1 + \frac{q}{q} - 1 + \frac{q}{q} + \frac{q}{q} - \frac{q}{q}$$

_ مثالی

أدرو مبحة الإطابقات الأثية:

البحل

عبد رثبات سحة مثطابقان يقصل البده بالطرف الاكر بالقوائي

$$\frac{17}{11} \sim \frac{1}{a^{\frac{1}{2}} + \frac{1}{17}} \sim \frac{1}{a^{\frac{1}{2}} + \frac{1}{17}}$$

$$(1 - 7 - 1)^{T} = 1 = (1 - 7 - 1)^{T} = 1 = 1$$

$$\frac{(\omega^{T} | \Delta Y - 1) - 1}{(1 - \omega^{T} | \Delta Y + 1)} = \frac{(\omega Y | \Delta Z - 1) \omega Y | \Delta Y}{(\omega Y | \Delta Z + 1) \omega Y | \Delta Y} =$$

$$=\frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4}$$
 و $=\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$

حالثه.

وراكال منا الما التي كاوت قيمة: ما ١٧ ثم أوتد رفيا ا - فا و

الحل

$$\frac{1}{\epsilon} = \frac{1}{\epsilon} (\{ |\mathbf{l}_{\mathbf{a}} - \mathbf{l}| |\mathbf{l}_{\mathbf{a}} \rangle) :$$

بتربيع الطرفان

$$\frac{1}{4} = f \ln f \ln f - 1$$
. $\frac{1}{4} = f \ln f \ln f - 1$ $\ln f + f' \ln f$.

$$\frac{\Psi}{4} = \beta \Psi \, L_{b} \, \Delta$$

$$\frac{Y'}{4} = |Y| \sum_{i=1}^{n} (|Y|_{i=1}^{n}) |Y|_{i=1}^{n} = |$$

$$\frac{\underline{f}}{\underline{T}} = \frac{\frac{1}{T} \times T}{\underline{f}} = \frac{(t \mid \underline{f}_{th} - \underline{f} \mid \underline{f}_{th}) T}{\underline{f} \cdot T \mid \underline{f}_{th}} =$$

الحال

بتوديد المقامات

انبت آن، المحالة عن اوس هم أوجد قيمة: طا 🛪

الحل

 $| \frac{1}{1} = \frac{\int_{-\infty}^{\infty} \frac{1}{1} \frac{1}{1} = \frac{\int_{-\infty}^{\infty} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}$

 $1 - \overline{Y} = \left(\frac{1}{\overline{Y} - 1} \right) \overline{Y} = \frac{\overline{1}}{\overline{Y} - 1} = \frac{\overline{\pi}}{1} \underbrace{L_{n} - 1}_{\overline{n}} = \frac{\overline{\pi}}{A} \underbrace{L_{n}}_{\overline{n}} = \frac{\overline{\pi}}{A} \underbrace{L_{n}}_{\overline{n}}$

أثبت أن طلا به ال

إذا كان على (٧ إ + ب) = ١ وكان على أ عالي

الحال

 $\frac{1}{4} = \frac{\frac{1}{4} \times 4}{\frac{1}{4} \times 4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = 44 \frac{1}{4}$

1= - 10 + 1 .

불어=이 남부+이 남사

1 = 1 × 1 = - Lb :

 $\frac{1}{l} = h \prod_{k} \frac{1}{k}$.

المل

({ " la - | " lea) | lea | la = | " la | lea - | " lea | la

$$= \frac{\frac{1}{7}}{\frac{1}{4}} \times \frac{1}{4} \times$$

والغي.

الا كان ا + س = ١٣٥ ميث ا م سقياسا راويتين وكان طا ا = ا

فأوجد فيمة: ما ٣ ب

الحل

1-"ITE = 0 ()

*\F#=\\+\f\;

(f-"we) Lawlet

$$V = \frac{\frac{V^{-}}{V}}{\frac{1}{V} - \frac{1}{V}} = \frac{\frac{1}{V} - \frac{1}{V}}{\frac{1}{V} - \frac{1}{V}} =$$

" فإ سموجية ومجموع الزاريتين ١٧٥"

الداكلتج طي الربيع الأول

أوديد قيم س المحمورة بين ، ١٢ الوالش تحقق العادلة: منا س + منا ٢ س د ،

الحبل

يرويدا أسرجينا سروي

 $4 = 1 - m^{\frac{1}{2}} \log \frac{1}{2} + m^{\frac{1}{2}} \log \frac{1}{2}$

(۲ مِمَا س ۱−) (مِمَا س + ۱) **

اما منا س= الله او منا س= ١٠

ر. تقع هي الربع الأول أو الرابع

ب عما س=ب (عندموجب)

ن الزاوية الموجية التي جيب تمامها = أوهي الأ

ن س $= 17^{\circ}$ (الربع الأول) أو س $= 17^{\circ} - 17^{\circ} = 17^{\circ}$ (الربع الرابع)

*3A+= U+ ::

ب _{هنا} س = −۱

نَ قَيْمَ سَ النَّي تَحَقَّقُ الْعَادِلَةَ هَيَ الْآلِي تَحَقَّقُ الْعَادِلَةَ هِي الْآلُو "Too G^oldo C^olo S

حل آخر

 π \cup Υ + π أو $-\omega$ = $\pm \frac{\pi}{7}$ + Υ \cup Υ أو $-\omega$ = + Υ \cup Υ أو $-\omega$

ويوضع ب ٢٢١٤ ... توجد القيم التي تحقق المادلة

المامر

🛐 بدون إستخدام الألة الحاسبة أوحد قيمة:

۵ ۲ میا ۱۵ مینا ۱۵ مینا ۱۵ از آن ۲ میا ۱۹ ایم ۱۹ ایم ۱۹ ایم ۱۹ از آن ۲ میا ۱۹ ایم ۱۹ ایم ۱۹ ایم ۱۹ ایم ۱۹ ایم ۱ [4]

[4]

141

"VO" L-"YO" L. () [] | 1-"TT YO" L. Y ()

"TV La "EP La + "TV Lia "ET Lia perile

🔃 إذا كان بل ا م = ٢ حيث ، ح و ح 🐺 عاودد اليمة : ما ١٦ ؛ منا ١٢ ؛ ما ١٢ 🏥 🐇

💽 🚰 أوجد مدون استخدام الالة الحاسية اليمة كل من عا ٢ 6 ، عنا ٢ 6 ، ط) ٢ 6 إنا كان:

$$\frac{1}{\tau} > \theta > 0$$

$$\frac{1}{\tau} > \theta > 0$$

$$\frac{1}{\tau} > \theta > 0$$

$$\frac{1}{\tau} = \theta \text{ i.s. } 0$$

$$\frac{\pi}{2} > \theta >$$

$$\frac{\pi \tau}{\tau} > \theta > \pi$$
 $\theta = \theta \text{ Li } \tau$

🛅 🚮 او تد بدون استخدام الاتذا تحاسية فيسة كل من : ما ٢ ك عنه ٢ ك ما 🕏 ٢

مينا 💆 إذا كان:

$$\frac{\pi \tau}{\tau} > \theta > \pi$$
 $\frac{\epsilon}{\tau} = \theta \perp \bullet$

وأختر الإجارة المحبحة من بين الإجابات المعطاة ،

------ = "To La "To La [1]

أَنْ هَا ﴿ * ثُلُ لِهُ مِنَا ﴿ * ثُلُ مَا ﴿ * ثُلُ مِنَا ﴿ * ثُلُ مِنَا ﴿ * أَنَّ مِنَا ﴿ * أَنَّ مِنَا ﴿ * أَ

["المادة" إلى مادة" إلى مناحة" إلى الأجمعادة"]

["An Leb ed "An Leb + ed "An Leb ed "An Leb + ed "An Leb + ed "To Leb ed "To

ساست عا° جه ا ۱۵ ° ۲۰ ایم ۳۰ ایم ۱۳۰ ایم ۱۳۰ ایم ۱۳۰

("الله من "الله من "الله من "الله من "الله من "الله من "الله الله من "الله الله من "الله من "الله من الله من ا

هنا دا" منا دا" + ما دا" ما دا" = ۵۰۰۰۰۰۰۰۰۰ (

["Triba of "Yriba of "Yriba"]

الله عال ال

"1. 16 ° 4. 16 -1 (6)

["TO LES OF "AN LES OF "AN LES OF "TO LES]

91 1 + 47 1 1 + 1

إطافة في طناف في ما في فنا فإ

1 + 8 1 + 1 F

[1 1 d 0 1 b d 0 1 b d 0 b]

💟 اجبر لا يه الصبيحة من بين الطابات المحطة

******* ** LT-1(1)

Tola d Tolb of Tola of Tola]

🕝 عنا ''جس – يا ''جس =

اعادس أل عامس أل عنادس أل طادس

-----= 87 La 87 La 10

إماده له عاده له ناده له ناده إ

(و) إذا كان بيل س = \ تعيث س (وع الله الله على المس =

[+ 6 + d + 0 + -

 $\frac{1}{2} \int_{\mathbb{R}^{n}} |\mathbf{r}| d\mathbf{r}

[+ d + d + d +]

⊕ ما ۱ س = ما ۲ س x مسسد

[ما ۳ سن ال ۱ منا ۳ سن ال منا ۳ سن ال منا ۳ سن ا

📶 أحير ، لإجابة الصحيحة في يبين الإجابات المعطاق

It'b d that by tatte to that -trib

€ منا اس ما اس ما است

(۱ ا) عادس ای عنادس ای جهاس مناسا

[17 to \$ 6 17 to d 27 to d 17 to \$

[1+ 1 d 1+16 d 1+16 d 1+16+] -------- 1-1+16 (1)

ورناكادها اعلاما الله فإذ ما ٢ إله -----

 $\begin{bmatrix} \frac{1V}{70} & d & \frac{1V-}{70} & d & \frac{A}{70} & d & \frac{4}{9} \end{bmatrix}$

ن این از اعالت بی ج د نی قبل بیا ۲ د د ۱۰۰۰۰۰۰۰۰۰

["rela of "rela of "to la of "to lat]=1-"to " [= + 10]

إدعادة في معادة في ما حدث في ما مدة إ

[مالاس أو مالاس أو مشر أو ماهس]

 $\lim_{n\to\infty} \sup_{x\in \mathbb{R}^n} \| u(x)\|_{L^{2}(\mathbb{R}^n)}^{\frac{1}{2}} \| u(x)\|_{L^{2}($

[+ d \frac{\frac{1}{4}}{4} d \frac{\frac{1}{4}}{4} d \frac{\frac{1}{4}}{4}]

T+++ (+-+) (+-+)- (+-+) ----= "10 15 (

الا عن ما س = في ما مع على ما الم

 $\left[\frac{1}{\sqrt{2}} = q + \frac{1}{2} = q + \frac{1}{2} = q + \frac{1}{2}\right]$

.... الأحد من الأحد من الأحد التنظيم الأحداث التنظيم الأحداث التنظيم الأحداث التنظيم الأحداث التنظيم
[ما خاص الما أصلة طاهم]

ال العام ا المعام ا إ ا السبسب

[PT leat d Hiles d Pt les d Pt leat]

انا کان ما $1-rac{a}{2}$ ، $rac{\pi}{2}$ $> 1 < rac{\pi}{2}$ اوجد کال من ما 2 اما عما 3[品·器] $\frac{\pi}{\sqrt{2}}$ [وا كان منا $\frac{\pi}{\sqrt{2}}$ مبث $\frac{\pi}{\sqrt{2}}$ (وا كان منا $\frac{\pi}{\sqrt{2}}$ مبث $\frac{\pi}{\sqrt{2}}$ (وا كان منا $\frac{\pi}{\sqrt{2}}$ فأوجد بدون إستخدام الألة الحاسية كلمن هنا ٢٩) ط ا ٢ ب [告答] الله في الاا علمت أن عنا ا = و حيث القياس راوية حدة أوجد بدون استخدام الارد [聖·帶·帶·情] الحاسبة قيمة ما ١٩٤ منا ١٩) طا ١٩٤ منا ﴿ [11 + 42 + 16] أوجد قيمة ما لا سء منا لا سء طا لا س [4] اوجد ا (١٠ ١١ ما ٢ هـ + ١٢ ما ٢ AYLA (P) [岩(春] AY LA ن π و ا کان جا π ہے ہوں ہوتے ہوتے ہوتے ہوتے الحاسبة π ہوتے الحاسبة الح اوجد قيمة ما ١٧٠ ادا کار ه ما 1=7 حیث $1\in \mathbb{R}$ و فأوجد بدور (ستخدام الآلة الحاسبة \mathbb{R} $\begin{bmatrix} \frac{V}{V0} & \frac{VL-}{V0} \end{bmatrix}$ الله عنا (الراب الله عنا ال $\left[\frac{\pi}{2}\left(\cdot\right)\left[\frac{\pi}{2}\left(\cdot\right)\right]\right]$ ون کان طال $\left[\frac{\pi}{2}\left(\cdot\right)\right]$ لی نام ان طال $\left[\frac{\pi}{2}\left(\cdot\right)\right]$ $\gamma = (- \gamma + \gamma)$ فأثبت بدون إستحدام الألذائه الماسية أن ط $\gamma = \gamma$ $\frac{1}{2}$ إذا حكان م و قياسا زاويتين حادثين وحكان م طل م $a \in \mathcal{A}$ من $a \in \mathcal{A}$ $\left[\frac{1}{16} + \frac{477}{113} + \frac{5}{16} \right]$ أوحد ربيل لا ب ع طا (۲ – ۲ ب) ع منا ۲ ب ١٤ كان مل إديث < 1 < ب فأوجد بدون استخدام الألة الحاسية 17 la +1 la di [4]

ميطرا المصرا ويتناولها إلوما فعيرا وعمل

 $|\pi \cdot \frac{\pi}{V}[\exists -\frac{\epsilon}{2} - \frac{\epsilon}{2}] \cdot |\pi| الماد الماد الماد الماد الماد (١٠١٠ ما عقد (١٠١٠ ما (١٩٠ م) على (١٩٠ م) الماد
الا معاد منا ۱۲ من ﴿ حيث إ ﴿ إِنَّ اللَّهِ اللَّهُ اللَّهُ مَا الْعَمَا الْعَمَا الْعَمَا الْعَمَا الْ $\left[\frac{W}{77}, \frac{3}{4}\right]$

الإلام والمناه المنت و إن ١٠١٠ [] الوجد قيمة طا ٢ مرة طا 🌴

 $\left[\left(L_{i} + \frac{1}{4} \right) e^{-\frac{2\pi i}{\hbar}} \right]$

["-]

 $]\frac{\pi}{\gamma} \in \mathbb{R}_{+} \Rightarrow \lim_{n \to \infty} \frac{\xi}{n} = \lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} \frac{\pi}{n}$ وأوجد قيمة ٢ مدا ٢ س + ما (٢ س - ١٨٠)

وجد فيما ما الامدا الاطالا

> الالة الحاسبة ﴿ ﴾ ﴿ إِنَّ الْمُعَامِ الْآلة الحاسبة وجداليمة منا 🖟 كما () منا (

[4. 1/2 1/2]

Thrank]

الأيدون إستخدام الالقالحاسبة أوجد اليمة كالرمن:

*** L () : [] *** ** L () ()

* L (*)

البن صحة المنطابقات الأثية

1141=144140

守 انتا ۲ هـ انتا حاق ا

© (طا س+ دورا س) بما ۲ س=۲ (€ قوا آ (۱ – بيرا ۲) = ۲

아이네 나는 어느 내 나는 어머니는 (소) 선생님

أ (1) معالة و حدالة ف = معالا في

أ ﴿ وَإِنَّا مِنْ ﴿ وَإِنَّا مِنْ عَالِمًا لِاسْ عَالِمًا لا مِنْ

🕙 🖾 كنا ۲ س + طبا ۲ س = رايا س شم أستخدم ذلك في إيجاد قيمة رايا 🕬 بدون إستخدام الألة الحاسبة.

> بلون إستخدام الألة الحاسية.

() منا من - ما س = منا س + ما س

🚻 أوجد قيم س المحصورة بين. ٩٠ ٢ والتي تحقق كل معادلة مما يأتن:

ا (€ ما ۲ س = منا س

1

ميطها يفصف المتعالية المعافدة المناه على المناه المناه مناه من ولك ويدون استخدام الألة الحاسية اودد فیمة منا ۱۵° [4.3] ا - منا ت = طا ب ومردنك إستلتج شيعة ط ه٧٥ الشارية المعال ه٧٥ الم بدون إستخدام الألة لحاسبة 1 Page $\frac{\pi}{2}$ (e) $\frac{\pi}{2}$ (e) $\frac{\pi}{2}$ (e) $\frac{\pi}{2}$ (e) $\frac{\pi}{2}$ الإلا كان ما سما " سما سما " سما أ فأوجد ال (١٥٥) فيأثبت أنءيها ٤ ب د معفر ["] فائیت ان روح + ب= هه" ◙ إن مرمعت فيه طل م = ١٩ طوا ب = ﴿ أُوجِد ، طا هـ ٤ طا ٢ هـ (T 📶 إذا كان اقيس أصدر زاوية موجبة وكان جا † 🚾 فأوجد فيمة كل من : ("+4-- 14) La (("4- 14) La ((14- "W) Lb $\left[\begin{array}{ccc} \psi & \psi, & \psi_{1} \\ \psi_{0} & \nu_{\overline{0}} & \overline{\psi} \end{array}\right]$ 🎉 📆 ركل لاعب كرة القدم مزاوية فياسها ٣٠٠ مع سطح الأرس ويسرعه إبتدائية مقدارها ١٤٫٧ م/ث ردا كالت للسافة الأطفية ب التي تقطعها الكرة ثعطى بالعلاقية $\frac{1}{2} \frac{1}{2} \frac{1}$ ألمرعة الإبلدالية ضُغ العلاقة السابقة في أيسط ميورة.

أوجد السائدة الأنفية في التي تقطعها الكرة بالثر

أرق مسائل تفيس مستويات علياس التفكير

0

[4] أخبر الإحانة الصحيحة من بين الإحاثات المعطاة ،

() إذا كان منا ٢٩٥ = المان منا ٢٧٥ =

T a or a ++ T a 1-01

﴿ إِذَا كُسُ مِنْ مِنْ الدَّافِيةِ عِنْ أَلَّا ﴿ عِنْ أَلَّا كِنْ عِنْ الْمُنْ عِنْ الْمُنْ عِنْ الْمُنْ عِنْ

[-1 to man to 4 to]

آ إذا كان على ٢ س = ﷺ فإن عب س جسسس حيث ، " < ٢ س < ، ١٠٥٠ على على الله على على الله على حلى الله على ا

更中西亚西山

﴾ إذا كان عَلَ ؟ س + عَمَا ؟ س = ٧ فَوْن عِلْ ؛ س = ٧ فَوْن عِلْ ؛ س =

[d + d + d +]

@ إذا كان منا و - ما و = أ فإن ما (١٨٠° + ٦ و) =

[+ d + d + d +]

الله م ال

 $\frac{\pi}{4}$ > ردًا ڪان مِيا $\frac{\pi}{4}$ س - مِيا $\frac{\pi}{4}$ جس $= \frac{\pi}{4}$ ، < حس $= \frac{\pi}{4}$

فان من سن منا ۲ س + منا سن ما ۲ سن =

 $\begin{bmatrix} \frac{V}{Y_1} & d & \frac{VY}{Y_2} & d & \frac{V}{Y_3} \end{bmatrix}$

 $\frac{1}{V} < \frac{\pi}{4} [\exists | t = \frac{1}{\sqrt{1 - t}} = 1]$

فأوجد قيمة كل من ما ٢٢ مي ٢٧ عبر ٢٧

(ذا کان منا $\frac{V}{10} = 1$) ما س $= \frac{V}{10}$ د معا قیاسا زاویتین حادثین

14.4

فاوجد قيمة كل من منا (الله من عنا الله

 $\left[\frac{\pi_{-}}{2},\frac{\pi_{-}}{2}\right]$

ال المنا المعلم المعلم المنا
البدان: الله عند ١١ عدم اوجد ، الله ١٠ عنم اوجد ، الله ١٤ عند الله عند ١١ عنم اوجد ، الله عند الله عن

ي ثبت أن: يَا ١٧ + طا ١٢ = طا ١

المت ان: منا ا + ما ا _ قا ۲۹ - طا ۲۹ ما

آنبت آن: مل س = رحا س اب ان: مل ۳ = ۲+ منا ب

البدان: ما الاسماع الاسماع الاسماع الاسماع المام الاسماع المام المام المام المام المام المام المام المام المام

را به از: (۱ - ما ۱) = ۱ - ما آو منا آو

ا = "١٥ ل ٢٠ ٢ + "١٥ ٢ ل : ط ٢ ١٥ ٢ + ٢ ل ١٥ ١ = ١

 $\frac{A}{10} = 0$ اثبت آن: ما س = $\frac{A}{1}$ اثبت آن: ما س = $\frac{A}{1}$ اثبت آن: ما س = $\frac{A}{10}$ مثا (س + س)

البت ان: ما ۱۳=۱۳ ما ۱-۱ما ۱

[1]

(1-1-1)(1-4-1)(1-4-1)(1-4-1))

(a 1-1 a+1) (1+1-1 +1) (1+1-1 +1) (1+1-1 +1) (1+1-1 +1) (1+1-1 +1) (1+1-1 +1) الالالداليان دورق بين مربعين

(14-27)(14-24)(14-24)とか1

('A-E)('U-E)(1-E)Ent 1

(一と)(シーと)(ナーと)とナーション

(1-2)(1-2)(1-2)27 Tool

ولکن ه (۵) سع)=۴۰ سایم بالمويض من (۴) في 🕃 :

(1-2)(1-2)(1-2)Et=(+41)

أى أن مساحة سطح المنت الذي أطوال أضلاعه هي () ب) هـ عدى

م (۵۱ ب. هـ) = اع (ع - ۱) (ع - س) (ع - هـ) حيث ع نصف محيط المثلث

مقطلة هامة البرهان لا يمنحن فيه الطبيب

التأمليا

بستطبئ ان بستبتج ان

2×0=(4-2)(4-2)(1-2)21

(auth) = ('a-E)('u-E)('1 E)Et=0 old

الماور

- € بذا كانت إحدى القيم ع م أو ع ب أو ع م سالبة فإن الكميات السالبة تحت الجذر غير معرفة في ع وبالتالي لا توجد مساحة للمثلث وإذا كالت أحدى القيم تساوي صفرًا فإنه لا يوجد مثلث من الأساس.
- احداطوال اصلاع المثلث فإنه لا يوجد مثبث يعكن إيجاد معاجت ويمكن إستخدام متبايدة الملك للتأكد من ذلك قبل الحل حيث مجموع طول أي ضلعين في مثلث أكبر من طول الضلع الثالث.

فُومُنَا أَ ، إذا كانت أطوال الأضلاع هي ٢٠٧) ١٥ من السنتيمترات فإي

٢ ٤ = ٢٨ م ريكون ع = ١٤ حيث أن ع < طول أحد الأصلاع فإنه لا يوجد منك يمكن إيجاد مساحته وبالمعل(ذا إستخدمنا متباينة المثلث نجدهنا أن ٢٠٠٢ = ١٠٠ أي أن مجموع طولي الضلعين أصغرهن طول الضلع الثالث وبالتالي فإن من الأطوال لا يمكن أن تكون أطوال أضلاع مثلث ولذلك لا يوجد مثلث يمكن إيحار استأجته.

أوجد بإستخدام سيفة هيرون مساحة سطح 🛆 ﴿ ب هـِ الْنِي فِيهُ : MY= 'AL MY='46 (0=1)

الجبان

ていこうて チンチャターご サン

~10=2 in

1=17-10=4-26 17=14-10=0-26 14=0-10=1-2

(-- 2)(-2)(1-2)21 ARMAN

77 = TX T X 1 × 10 + 0

المرابعة المتعنات الاتبة (إن أفكر دلث) أوجد مساحة المتعنات الاتبة (إن أفكر دلث)

من السنتيمتران

و مثلث اطوال أصلاعه ٢٥ ٢٥ و

من السنتيمتران

مثلت اطوال استلامه ۲۰ ۵ ۱۸ ۲۰ ۲۰

اس= نهد درد در م المناسلين

M=2:

M=11-11=12-86 10=1-11=1-86 1-11=1-8

(ع-د) (ع-د) (ع-د) (ع-د) (ع-د)

71140 = 4X 0X 0 X 11/2

- TI= 10 00000

4>24

T = 2 ...

0A=+++++= E+

رلا يوجد مثلث يمكن إيجاد مساحته

مثالی

الشخل المقابل ،

يبين قطعة أرض أبعادها

كما غو موصح بالشكل

أوجد مساحته لأقرب

الجال

("T+=3|=3-4=4) (...

4 [3 هـ متساري الأشلاح

TT = 46 (T) = 16 (T)=15

(41=41×4=14+1=21 (60 = Z ...

~10=P1-20=1-2=1-2=1-2

('a-2)('u-2)('1-2) {y= 1 a | A = 1 a | Y = 1 a

:AUIA

الماو

10="Y. L. Y. =

F 10= 7, 6 4, = 01

مساحة Δ إ ب Δ = $\frac{1}{V}$ حاصل شرب طول شنعیه \times ها الزاویة المحصورة بینهما

Me paral xalfara la Varia

ث مساحة الشكل إ ب هـ ر دمساحة ∆ إ ر هـ + مساحة ∆ إ ب هـ.

ر الناریاءی است در الناریایی است و الناریایی است در الناریایی ا

الحل

في ۱۸ اب م:

مساحة ∆اب ع= أ × اب× ب

7.= 17 x + x + =

ಿ4=(ಆ೬) ಆ 😗

("IT = "(IT)+"(a) = -) :.

في ۱۵م د:

MAREE LA

44 = 17 + 14 + 14 = 5 4

ساحة △ إ عدد = (١٦ - ١٩ إ و ١٩ - ١٩) (و ١٩ - ١٩) (و ١٩ - ١٩) = ٢ ، ١٩ ك

ع مساحة الشكل الرباعي إلى هـ و

- مساحة ◊ إ ب عب + مساحة ◊ | هـ و - ٢٠ + ٢٠٣٧ = ٧٣١٠ م

وثال

برز کان مید ۱۸ است د ۲۰۰ متر والسیة بین أطوال ضلاعه رازت: ما ت ۲:۵:۷ أوجد مساحة ۱۸ است

المل

يفرص أن أ = ٣ له ؛ بُ = ه له ؛ هـُ = ٧ له • محيط ٨ [ب هـ = أ + بُ + هـُ • ٢ = ٣ له + ١٥ + ٧ له

Te = eJ ∴

d Water

(T)=1:x7=d1=1:

~ = T+ X == d= "

~ H. = Y. x Y = UY=1

Maret :

T == 11++ 1++ 7+= 2 T

~ 1 = 12 - 10 = 1 - 2 (~ 0 = 1 - 10 = 1 - 2 (~ 1 = 1 - 10 = 1 - 2

(3-4)(3-4)(3-4)(3-4)

FYORK = JINO. X 4. X TOIT

-مثالی

أوجد طول تصف قطر الدائرة التي شس أصلاع ٨ م ب مر الدي أطوال أضلاعه ١٤٠٩ ١٤ ص السنديمبرات من الداخل مقربًا الثانج لأقرب رقم عشري واحد.

الحل

تقرص أن الإعلام عاد عاد الماع عد عاد ١١٤

part = 15 + 9 + 4 + 4 = 67 "

M=12-20m=12-20m=1-20m=2

- 1 = 1×1×1×10) = ('a-2)('u-2)('t-2)2) = u:

ف الرياميان

آختبار ترب<mark>کمی ۱۲۲</mark>

المامر

المجة الهائية ــــ

🚺 أجب عن الأسئلة الآلية :

- ال الله كان إلى $\theta = \gamma$ فإن إلى $\gamma = \theta$
- الا كان من س = أ فإن منا س = المستسم
- $\begin{bmatrix} \frac{\eta}{\gamma} & d & \gamma & d & \frac{\eta}{4} \end{bmatrix} = \frac{\theta \cdot \frac{1}{2}}{\theta \cdot \frac{1}{2} 1}$
- إذا كان منا إ = أحيث ° حيث ° حيث أوجد بدون إستخدام الأنة الحاسة

🕥 بدون (منتخدام الحاسية أثبت أن

$$\frac{a_0 + b_0 + b_1}{a_0 + b_0 - b_1} = a_0 + b_0 + b_$$

The sales الا مسان المستدى از ول

والمحال و المحالة و ن بساعة سعاح ∆ الدی اطوال اصلاعه ۲،۷۷ ه من السنتیمترات विका ते किए ते किए ते कि।

[1 d r d 17 d 7] € إن مساحة سطح ﴿ التساوى الساقين الذي طول أحد ساقيه ١٠ م وقياس إحدى واريتى قاعدته دع والم [1 - d a. d to d to]

() مساعة سطح 🛆 المتساوى المشاقين الذي طول أحد ساقيه ١٧٣م والياس رحدي زاویتی قاعدته ،۷° = [۲۲ (۲۲ (۲۲) ۲۲ ا) ۲۷ (سام

() مساحة منطح المثلث المتساوى الأخوالاع الذي طول ضلعه اسم =

[IN G & G THA & THAT"

🕥 📆 بساحة سطح المثلث الذي طولا ضلعي فيه 🔩 يا من السنتيمترات وفياس

🖬 أختر الإحاية التصحيحة من حين الإحادات المعطاق

🛈 😥 مساحة بنطح الثنث الدي أطوال أضلاعه ٢٨ ع ٨٨ ع ٨٨ يسأوي و و 📆 📆 [EA OF WAI TO IT TE]

🕥 مساحة سطح الثلث المساوى الأضلاع الذي طول ضعمه 🖍 يساوي و 🗝 📆 [IN d Ther d The d Thal

🕜 مساحة سطح الننث الدى طولا ضلعين هيه ١٢٦م ، ١٦٦م من الصنتيمتر ات واياس

[Plan of Plan of Plan of Plan]

🛈 🖼 ني الشكل الماءل: مساحة سطح 🛆 🕯 ب عد تساویسرّ

a aft d aft d va]

Down - Chetscon - -

- ال الم الوجد مساحة الشكل الرباعي إلى هـ و الدي فيه ان (حال) = الا الم عام) الم عام

- الله المدينة على شكل مثلث النسبة بين أطوال أضلاعه هي ٢: ٥: ٧ فإذا كال محيط المدينة يساوى ٢: ٥: ٧ فإذا كال محيط المدينة يساوى ٢٠٥٠ مثر فاوجد مساحته

مسلال تقيس مسئويات عليا من التفكير

المسيقين اطول اشتلاعه م در ب عبر عدر و هكل خماس محيطة ٢٣٦ م من (١٥) = ٥ (١٥) = ٥ (١٥) = ١٠٣:٢:٤:٢ النسبة بين اطول اشتلاعه م در ب عبر عمر در و و و و و و ٢ : ٢:٢:٢ المدرد المدرد مساحته

فى الرياضيات البحتة

<u>للصـف الثانى الثانوى</u> الفصل الدراسي الثاني

حلول الكتاب

تابعنا تیلیجرام https://t.me/miri33andyou1

ماهر أحمد محمود

يطلب من : دار الكوثر للنشر والتوزيع بالقجالة الشعم الفنى ١١١٣٩٥٠٠١٣ _ ١٦/٢٣٩٥٠٠١٣ ع ١١١٣٩٥٠٠١٣ عن ١٢ التواوين القافرة وللإقتراحات ١٢ التواوين القافرة العلى مرقعنا www. EL MAHER.org

uzrajiuž i	1,2(2)	تعسارين الجسير	حنسول ا
760	3, = 7 S,	على التعابدات والمسيسلات	(سارين (١٠)
$A \subseteq S_0 = f \times f = -g$	3-18		(P-(1-1)-1)
A-ma-minaza	3,= 7 3 ₄	[A-49=4	(em 47/ (me) ()
W-#4-#1=*2.0	16×=16		€ و مح- به سبور
-10)	(A = (1 - (1 - (1 -)		
1-027=02 1	٧=,٤٩		(D) 101 (D)
5=9=7= ₇ 2 A	3, = ¥ 2,	_	Tu= 200
·· Systacterit	127-12	"J"(1-)= J&®	
$\Delta (\Delta_{\mu} \approx 0.0078 \pm 0.7)$	2,= Y 3,	٠٠٠٠	الا الله الله الله الله الله الله الله
tA=YtaY=,&? .	3, = 73,		® هيرمنتهية ﴿ 1- با 1 € گر = ا با - ا
A3, e7malert	3,=+3,		
(41	LEACTERSTERS!Y)		**(1-)=_C®
(menchinence)		चे चे	ι "(')= _υ ζ 🛈
الاستاليارد عن=1 به + ۱۹		4 0 ((1+v).	ر2=٫٫ر2]۩
۳۰۵ سید ه	STALL S	1/0	14 9 •
THENEWED	7+07=02®	و تنافسية ((±+1)(±+1)
N≠o∆	1-7- = y	(7	16Te (31 C) (D)
V-1-1-V+1	L - , - F @ D	()	c1c1-c4-) 🖲 👚
(1+u)u = (1+u)		(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(+ + + + + + + + + + + + + + + + + + +
	P .	(1-	1841-4-45-)
ر ک≻ررن ک	1 1 .	(to 1 to 1	- 1 4 14 (1- } ●
#- u Y - # + (1+ w	Appendix Registration		ورتيان ت
	<t=ut-y+uy=< th=""><th></th><th>1 ut=32@@</th></t=ut-y+uy=<>		1 ut=32@@
	س ک <۱۰۰ € ۱۰	T=1-T=7=2 4	1=1-1×1=,E
	\$)= E @	2 23=1 H H-f=V	•
		(SIVIPIPE) =	
	$-=\left[1-\frac{1}{4}\right]^{1}\left(\frac{1}{4}\right)=$		
U6>4464	الفاتح ﴿ منفي ﴿	Pars -	*u=_,2 ①
	general particularly.	v = L(L) = L	2 = *(1) = 1
		$M = {}^{\Gamma}(4) = {}_{\frac{1}{2}} {}_{\frac{1}{2}} \qquad \epsilon$	$S_{\gamma} = (\Upsilon)^{\top} = \Psi \Gamma$
		1 (MESSETVERES)

(%+ , **) 3 - (%+ , **) 3 = (%

TE F(U co) mire - FFF map

1,43-1,43-1,43.

TEAMS: - GAM

 $\sum_{\alpha} (-Y\gamma) = \sum_{\alpha=1}^{N} (-Y\gamma) - \sum_{\alpha=1}^{N} (-Y\gamma)$ $= \frac{-Y\gamma A + Y}{2} - \frac{-Y\gamma A + Y}{2} = -A \cdot I + \cdot T = -A \cdot Y$ $= \sum_{\alpha} (-Y\gamma) = A \cdot I + A \cdot I = -A \cdot I + A \cdot I = -A \cdot Y$

 $\omega(z-) = z + \omega(z-1) = \omega z - z + \omega z \otimes \omega$

هنا القدار موجب عند ب عدد قردي وسالب عندان عدد زوجي أي أن التنابعة ليست الزايدية وليبت تناقسية (متنبعية)

 $\frac{1}{1+\alpha}\left(\frac{1}{4}\right) = \frac{1}{1+\alpha}\left(\frac{1}{4}\right) \times \frac{1}{4} = \mathbb{E}\left[1 - \frac{1}{4}\right] \stackrel{\text{def}}{=} \left(\frac{1}{4}\right) = \frac{1}{4}$

التالج سالب حسفر 45 000 حال

أر التنابعة لتالسية

[(++¹(1+v)]^{1+v}((-)=_vE_{1+v}E®

[(1+¹v)²(1-)]
[(1+¹v)²(1-)](1-)²(1-)w

[(1+¹v)²(1-)](1-)²(1-)w

[(1+¹v)²(1-)²(1-)w

[(1+¹v)²(1-)²(1-)w

[(1+¹v)²(1-)w

[(1+¹v)²(1

ال التنامة متحب لا لا ترابعية ولا تناه

18+1+4+1+1=(4-48) 4 3 3 (A)

4.= 4 = 3 0

74=(T+,T) Y D

TOWNER TO A V + S & SO (T-yF) X ®

#1= \$#+ 11+ 1+1= (1+p) Z @

﴿ گُرُ (او تفسن) = أو) سن + لو هسن	THOYOUT (HICHERT) TO TO TO
الوسال المسلم	1+0 =020 (m(+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
The to the Transfer	Tunger (interpretation)
∴ س ۱۰۰۵ من ۱۰۰۵ (موفوضی)	(*** 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A=(u-+1) 30	$1 - \omega_0 = \left(\frac{1}{2\pi}\right) = \omega_0 = 0$
A== 2 4= + 4 2	(===t1==cA:==+t1=) ()
A = (1+ + +) + + + + + + + + + + + + + + + +	1.30=(1) 14 HO-1
for a transfer of the con-	(-11 la 1 1 la 1 1 la 1 1 la 1 0
the second secon	$\frac{1}{2} = \frac{1}{2} \left(\frac{\pi v}{v} \right)^{\frac{1}{2}}$
	7-0,2 1 4-,2 W
** はってい	0-12 10-0+0E-110E
77 16 - 47 16 e 77 mg	U-8+2-27-27
TT LL - FILL do Time	34=4+m+2=m+2 4=42
) بيعدة عن طفية «طالة» (يافيسم) كالأداد والمسالة (يافيسم)	الما الما الما الما الما الما الما الما
الله (طا من " - طا (من – ۱")) الله عدد " الله عدد الله علاد عدد الله الله عدد الله الله الله الله الله الله الله ال	€ ⊕ 17.0 € 17.0 €
Pr = +++ + + - = ++ Lb + + 1 - =	۱۰۰ (۲۰) ۳۲۵ (۱۰۰) ۱۹۹۵ (۱۰) ۱۹۹۵ (۱۰۰) ۱۹۹۵ (۱۰۰) ۱۹۹۵ (۱۰۰) ۱۹۹۵ (۱۰۰) ۱۹۹۵ (۱۰۰) ۱۹۹۵ (۱۰) ۱۹۹۵ (۱۰) ۱۹۹۵ (۱۰۰) ۱۹۹۵ (۱۰۰) ۱۹۹۵ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹۹ (۱۰) ۱۹ (۱۰) ۱۹۹
عرب المراجع ا	© تزایدیة © تنافسیة
علوا مال الولا وعلم ٢ مالو ٢ مالو ١ مالو ١ م	(T+u)(1+u)®
لره + لره - لورد - لورد - لروه - لره + لره +	7 X + 4 X = (1+4) X O 🖸
ه از ۹۹ م از ۱۰۰ ه از ۱۰۰ ه از ۱۰۰ ه ۱۰۰ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳	سريما س <u>س (عب + 1</u> + 1 سن ۲+ عب عب (عب + 1 سن
(۲) ب=۱۰ شور ۱۱ لوړه ۱۱ ب=11 شاور ۲۹ مارو ۱۱	ر در از اس د
۱۳ م ۱۲ م کار _ی ۱۲ م آور ۱۲	سن ⁷ به قاس س ۱۵۰۱ (۱۵۰
ب×۲۹ (پانجمع)	ر سن + 10) (سن + 10) ±+
عالوب ۱۵ - لوب ۱۰ - لوب ۱۵ - توب ۱۵ - ۲	س د = ۱۰ (مرقوش) کان می ⊆ ی. * . س = ۱۰
Yar I (1)	*XXr=(*-vr)XO
"are "are "are "are	1-1- (1+10+)10- X 4= 40
More have have have	
**************************************	ا دوسی د همده یمه (۱۳ س ۱۰ ۱۰) (مین ۱۳ س ۱۳) ا در د شوا د (میافوشی) در سیده

P. Control of the con	
V-= 4 (T+()-= 4 T=1)	«صفر ۵ ۲ ت ^{۱۱} و ۲ ت ^{۱۱} م ۲ س ^{۱۱}
Am married to the married of the	ωτα(1-3+1) T=[11 ± + 11 ± + 10 ±] T =
1A=(yT-yu-T)3:	ereder IA Dec
Watkt-wet+ist-wet -	(7)-1+7) 20
YE = (quim + quim) T ∴ 1A = 5 - quim T + quim T	1-7
HECK AS THE C CASON TO	The The lev
	की- की∈ #=v
14 گـ (مطاب – مانب) العال	₹}- ₹}- 1=7
7 La - 7 La - 7 La - 7 La - 1 La - 1 La -	117 - 177 to 11=1
9 1 1 - 9 1 2 + 1 + 1 1 1 - 8 1 4 +	क्ती - वरी ← वर=४
+ (AA la - 1 la) + (AA la - 1 la) =	$(y = y) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt$
5 = (3-)++++==(4+la-4+la)+	$\lambda = \frac{1}{4} - \frac{1}{4} = (\frac{1}{4} - \frac{1}{4} + \frac{1}{4}) = \frac{1}{4}$
(۲) على التتابط (الصابية (۲۰ (۲۰ (۲۰ (۲۰ (۲۰ (۲۰ (۲۰ (۲۰ (۲۰ (۲۰	$\mathbb{O}\sum_{i,j,k} \frac{1}{m_i^{-1} - m_k^{-1}} = \sum_{i,j,k} \left(\frac{1}{m_i^{-1}} - \frac{1}{m_k^{-1}}\right)$
©(1) ∑(4v-4)	بوشع ب=۲ ہے 1 🛊
(1) 2(10-1)	$\frac{1}{4} - \frac{1}{4} \iff V = V$
respond to the rest	$\frac{\dot{s}}{l} - \frac{\dot{s}}{\Psi} = 1 \pi \varphi$
Eat-int=150 Intermed	Protector (
Y=Y-Y×Y=yEA Y=yeq	$\frac{IA}{I} - \frac{II}{I} \iff IA = A$
$\gamma_1 = \gamma = 0$ or $\gamma = \frac{1}{2} \triangle$ $\Delta = \frac{1}{2} = \gamma$	- 4
STRT-BRTESS PROPERTY	$(e^{-\frac{1}{2}} - \frac{1}{2} - \frac{1}{2}) = 1$
18+2+4=(4-44) 3 4	$\frac{M_{h^{-1}}}{M_{h^{-1}}} = \frac{M_{h^{-1}}}{J} + \beta = \frac{r_{h^{-1}} - r_{h^{-1}}}{J} \cdot \frac{2r^{-1}}{M_{h^{-1}}} \cdot \frac{2}{M_{h^{-1}}}$
	$H = {}^{\dagger}(Y) + {}^{\dagger}(Y) + {}^{\dagger}(Y) + {}^{\dagger}(Y) = {}^{\dagger} \omega \stackrel{X}{X} = (Y)_{V}$
$\frac{1-\sqrt{\left(\frac{1}{2}\right)}}{\sqrt{2}} \frac{3}{\sqrt{2}} (\sim)$	TH GI
1-1000	$v(H) = \frac{1/2(H+I)}{H} = v(H)$
$\lim_{t\to\infty} \left(\frac{1}{t}\right) = \int_{\mathbb{R}^n} \nabla u ^{2n} du = 0$	$\tan \pi(y) = [(\pi)_{\pi}]_{\alpha} = (\pi)(\pi + \alpha) \wedge$
$\frac{1}{T} = \frac{1}{T-T} \left(\frac{1}{T} \right) = \frac{1}{T} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \frac{1}{T-T} \left(\frac{1}{T} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j}	=(v-)'-a
$\frac{1}{2} = \int_{-\infty}^{\infty} \left(\frac{1}{2} \right) = \frac{1}{4} \sum_{i=1}^{\infty} \frac{1}{4}$	(# + w+ #) 3 = (w+) 1-4 3
$\cdot \qquad \frac{1}{\lambda} = \frac{1-4}{4} \left(\frac{1}{\lambda} \right) = \frac{1}{4} \mathcal{L} \times \qquad \qquad 4 \to e^{-\lambda x_0}$	7227-
+ + + + + + + + + + = (-*(\frac{1}{2}) \frac{2}{2} \tau	हा=प + क्ष=प स में + के को स में =

"- - - B1175

$$f = {}^{2}(A) + A = {}_{1}(A)$$
, $A = A + A + A$

$$T = T(T) + T = T A$$
 $T = G \text{ page}$

$$T_{i} = \frac{1}{2} \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) \frac{$$

$$\frac{1}{4} = (\frac{1}{4})^{2} = (\frac{1}{4})^{2} = \frac{1}{4}$$

$$\frac{1}{T^{-1}} = \frac{T}{T} \left(\frac{1}{T} \right) = \frac{1}{T} Z^{-1} \qquad T = 0 \text{ gauge}$$

$$\frac{1}{AT} = \left(\frac{1}{T}\right) = \sum_{i=1}^{n} a_{i} =$$

$$\frac{1}{\sqrt{2}} = \left(\frac{1}{\sqrt{2}}\right) = \sqrt{2} \cdot \frac{1}{\sqrt{2}} \qquad 0 \approx 6$$

T=17-18=,2-,2 1

$$S_n = S_0 = 3\tau + r\tau = \tau$$

ث المنتابعة حسابية وأساسها ≈ T

1 3, -3, = er - ir = 1 3, -3, = 17 - fr = 0

$$S_{-1} = S_{+} = -V + iV = -V$$

🕲 ج ۽ - جي ۾ 🕈 سن ۾ ۴ من - من - ۲ من ۽ ۴ م

يا ڇي ۾ ڇيڪ ۾ سن ۾ لاهن ساهين ساهين ۾ جين ۾ جي

2 2-2-20

اختارها حسابية أسفيها ⊕ (لاس باس)

T=10P (TTLIVESTLY LT) WEA

V=1(1) (#-4T-63684Y) T-#F L

1--10

 $\{ \overline{\tau} = \xi \, \overline{\tau} \, \frac{1}{4} = \xi \, \overline{\tau} \, \frac{1}{4} = \xi \, \overline{\tau} \, \frac{1}{4} = \xi \, \xi - \xi \,$

🕥 🕥 = مشمار ذابت

L-1,20

T. (1-U) @

u+ - F @ u1 - A= _ L Ø TA ®

10 1-ur 0 r-00

1- 10 - 50

T-= T x 3+ T = _ [] []

11=T=T+T= ,(T)

TERTXY+THIE

Spr = T + Of H T = Al

7-0 11-0 Y

NO(3_)atust

1+v1]-[1+(1+v)1]=_2-1+v2

ے این مع مار سازن – ۱ ۱۳ د مقدار ثابت

TT

ن (ع رز) ۱۰ به متنابعة حمابية

SA = TXA+1=W

 $S_{\omega+t} = S_{\omega} = [Y - Y(\omega+t)] - [Y - Y\omega]$

. أَرْجَى)=¥ - 7ي مثنايمة حسابية أساسها = - 7

THE THE STATE OF THE

3-m4-rate a Sample-fact

##>U\$A +-## LAV=1€ 71# £ ™ (1) = 11=11+1 c= ا+(ب−۱) د < مطو (1+1) Y=14+12 27=2 ۵۰ ۲۲ + (۱- یا ۲۰۰ × ۲۰۰ مطور (Y) ← ***** (A) 化电离电路 一种的 17->(1-4)7- $\frac{h^{-}}{4A^{-}} \leq (1-h) \gamma$ Tall their (T)+(1) day 16 on 17.7 < on 1 + 1√ < o اللثلابمة هي (٢٠٦٤) ١١٥ ...) Y-x TT+3Y=37F+1=₄₄ & 7- = 4 2 A L=1A+1+11+11(1)+ 11=17+1(W) THE CHAIN £ + \$ 4 × × \$ به (٢) من (١) ، (٧) بالطرح ينتج أن: Santa Harteta, E Y×1.5 getting Y≈3.5. 一名安耳克 h-= *x (1-0) + 1* A A (L. CA CRCT) LA BASSAN DE Las You hapter 1 agus 1400 de 7 = 1 + 17 - 100 = 0 J(3-0)+1#,27 1 3, = 1 + A & = Y + A x - Y = 1 THUT A 100 A. Tm(1-0)+T=1014 OT EIGT A et a u ... 3, >+ = Y(+(u-1)×-7>+ 1= ++++ (V) 1(1) - Am J + P A. 4 < T+ 417-1Y (Y) - Pt = 14+1 44>04 -14> u Y == 14- < uYmaueraft. (1) (1) ₍₁₎ بداخر مدموجيد هواغي ت التنابسة عن (٢٠٧٤) له الله ١٦٠ ١٦٠ 13 Z = 11+1×-7=- Y => Z =1 7=41-(-11+)-(st+))-(st+)) H 4本事中42年一代 T-=5 -1-31the war $3_1 = 71 \Rightarrow 1 + 71 = 71 \Rightarrow 1$ P = 71 $\Rightarrow 1$ H-=oF ث لا يوجد في التقابعة حد 🗝 🛚 ے انتقابہ 3 میں (۲۵ تا ۲۲ تا ۲۹ تا ۱۹۰ س) ۔ ₩\$+₹=_Z∰ S. m(+(u-!)s S,=f+=kf=F 2 S,=f+kf=F T+ UT-T0=T- #(1-u)+T0= ع. = + + 0 pt = +1 المعرود عي (٢ ١٧٢ ١٧١) ث£لمدالنوني = گي ≈ ۲۸ × ۲۰ 、 ろっく・コ ペナーサレく・コ ペアく ヤレ Made Alega Cale + To YT ASUP = THEUD OF = THE here with STOU 3,=1+ PL=47+Px-7=-Y THE U.S. 19.5 Cu.:. 3 +W-=1A+1 : (= 4 = 4 + 1 (W) ا كا تفرض أن الأساد هي: 1 - 1 1 أ 1 1 1 1 من 🛈 ا 🛈 بالطبح 电电影 在一场的时候在一场的电影中的一个 الله == ۴ بالتنویش ش ب 🛈 THE REPARE $Y = \{x + t\} = \{t\} \times \{x + t\}$ ۸۰۰ = روانسایستامی (۱۹۹۹) در کی = ۲۰۰ 10 = (J++) H+H(J=0) 1 (1) +11-=114+(1 (1) +11=11+1 $\label{eq:continuous_problem} A \circ B = \frac{1}{2} \mathcal{B} = \frac{1}{2} \mathcal{B} \quad \text{on} \quad \left(\frac{1}{2} \mathcal{B} - \frac{1}{2} \mathcal{B}\right) \mathcal{B}$ بطرح (1) س (۲) ヤーニッス オアーニメガル 平在四月八 - 在四²月八 - 平4-四²月中一 باللمزيش في (٦) $T^{\dagger} = \{A_{ij}\}$ Water of the Parties and dealer (V-may & A. ((... c Yet TA c Y) and September ? Vency on starte a

1=12-12 (27=12) 4 10 = 5+5=35-5 147-103-11 11+1T=1+1 cc (2T+1)T=1+1 Charetes -f T# 1-101141 April & 3=(14+f)-(14+f)7∴ (1)++=14+f ← £ الأصلم هي (١٣٤٩) ٢٤١٤ (٢) ME Z & AVENNMETE [T] فيحل الماولتين ·= 40+1 41=1-01+F + 41=1 = (1-0)+f カーリアチド West Meson To = 3 T . ال العام بالثمويتي في المدلة الأولى A=1+7=4+16=16 4=17 المحالة حميتي كالمحا 17=7+11=7+, E=, E = 11=7+ A= 7+, E=, E + ". الشنايمة عن (40) 11 ، 12 -) (... e 17 e 1 e e 4 e 5) ... 3 (... e 17 e 1 e 5) ...) (1) + Y-= ++++ T-- T-- 2 (F) Mantella, Et. E. 1 = 14+1 = 1 = 16 ι τ=1 ← Τ=₁Σ.[Μ 79- ... C 473 + 14- 475 + 1 V 4-150-PM (i) → The J × (1+φ) ∴ T1=5(1-0)+T A - 38-1 (Y) + 44= LIP $Y1 = I(1 - \omega 1) + T \triangle$ يمل(١) ٤ (١) A set of $\forall Y = I (1 - \omega Y)$ (T) -للتتابعة من (١٠) ٢١١ ١١٤ -) يقسمة (١) على (٢) 47=(37+f)+(3+f) A 4t=,2+,2 \tag $\frac{44}{44} = \frac{1-42}{1-42}$ 47=44+17 (1) = T(=#T+fA No see of the teothetteott Y14 = Z x . Z t=1.5 (1) a_0 (1) + Y14=(st+f) x (sT+f) (... 6 ITEYET) um Paulitiki بالثمريض من (١) ش (٢) الا التنابعة ع المعالم بالتنابعة التنابعة التنابعة عام التنابعة عام الله التنابعة التنابعة التنابعة التنابعة ا $10 = \frac{710}{71} = 37 + 71 \triangle$ TW=(#1+11) = Y1 11-=_E=d デーニョン. 3--11-10-37 キーコルム イスーニメリティングリーニメリティない 44 - 3 A 15-17- x 1+1 التعابدة هي (٢٢٤ ٢٦٤ ٢٦) . •) Santana Santing (17) E== | T+1+++++++++= |++T-| [T] オーキンスペン かん - ローバアネア・(コッカ 5=1A 1 10=18 [-155 = 5 + [15.5] 7 + 135 × W.Y. MY = (s+1)(s-1) + (sT+1)(sT-1)A=1 A 13.= | 7. 11Y=15-11+131-11 キュアールニック はみこ カー ガスコルツ $10 - e^{\frac{\pi}{4}} 10 - e^{\frac{\pi}{4}} 10 + 100 = 1$ 137=1(1-o)+15. STRUCK ザキャメモ 5 - 7 -177 = 0 x(1 - u) + 7 T = J water (c) TTWO A 1+ T-1/4 au Amichmentalist Characteristic TARREST - ANGLEAN the bade state of the radio yes (THE STER CHEST) CONTRACTOR 1-2 3-- 630 -Fig. 4.7 (SMale, IN)

11=1 & t+A=1

いニュとー・との

i+Ra-j-kade A-tiade Atasia 3,-73,-27 to (i+Ri)-7(i+Ri) art 1+Ri-Pi-Riade (i+Ri)-Pi-Riade Atasia Atasiasas (interpret)

\$(\$-\pu\$) = \$\pu\$ = \$

APPOP AVECTOR

Y=12. 1=1-11+|@ 1=|-(11+|)

 $TS = {}^{q}(\delta T + \beta) + {}^{q}(\delta + \beta)$

Contracted to the Paragraph

T کس - ۲ - ۲ س - س ۱۵ س + ص - ۲ س

٣ س ــ ٢ س -- ٣ ت ص -- س

ص - س = ۳= (۱) سـ (۹)

¥ - ۲ س ۲ = ۳ = س ۲ = ۳ س - ۳س

(T) = T = D = T = DP4

18 = and - and

خ بن د هه ایک س د ه

پائسترنمان کی (۱) مان ۱۸

(NT time CTE CTS LTA (SB) (ST manufact)

TOUTANT E TOUTAMENT

tie We again that the U.S. Ste U.F.

Tiers(teu)+th Tiers:

عدد الأعداد الخصورة بين ٢٠ ٢ اوڪل منها لايقبل علي ٢ ٣ ٨ - ١١ - ٢٠ ج. عدد الأعداد ١٥ عــد

14 ⊕ 17 ⊕ 17 ⊕ 17 ⊕ 17 ⊕ 17 ⊕

4= £ 4=10

LET - VEST - VEST+ PA

Regard 1990

Baldunked

 $U = \{ (m-1) \times 1 \}$

Ta(t-u)+f=ft

THE GALL THE STATE AND ASSESSMENT AND ASSESSMENT ASSESS

﴿ مِنْ لِتَسَامِدُ الأَمِنَامِةُ أَ= 7 مَ 1 = 1 كَ لِ= 11

TYEOA . TE (1-0) + Tolb 1

35 = 34 عمد المعرد الغربية الرئية

@3,-3,-3,-3,

(1 + OT) - (1 - OP) = (1 - OP) - (T + OT)

 $T = \mathcal{O} \wedge \qquad \mathcal{O} T = 3 \wedge \qquad T = \mathcal{O} T = 1 + \mathcal{O}$

14 - 10 = 10 Ta=10

Te->11 + +>31+Ye

7 A->10 TO->10

1 mars personal V

A- mi- mis - remarks

111-11 1 1-11

#1 < 21A - + < 21A + #1-

TOTE IN COLUMN

1(1-0)-1= 270

(1) - 15 = 10

 $L(\lambda - \tau - \omega \tau) + (\pi_{\alpha - \alpha + \ell}) L$

 $F(A = \phi) = A = (A$

 $\frac{1}{T} = \frac{17}{17} = \frac{1}{11\{1+\psi\}}$

Inu utal-ul

 $\frac{a}{ix} = \frac{1}{i+a} + \frac{1}{i-a} \therefore$ $\frac{a}{17} = \frac{b}{1} \frac{b}{(7 + 7a)} \therefore \qquad \frac{b}{17} = \frac{1 - \theta + 3 + 8}{(7 + 7a)}$ $3 = 3.7 \quad 4 = \frac{7}{2} 3.7 \quad 76 = \frac{7}{2} 3 - 70.5, \quad \frac{1}{17} = \frac{7}{7} \frac{1}{1 - 70}$ ث الأمناء من ٢٥٤٤ كا ٢٥٨ التقايمة ١٣٠ أو ١٣٠ المالية المالية 17 m f 1 x u + + + = 1 (1 - + + o +) + (= 1+ o +) (1) + U + 17=1-076 47 c 41,0 c 432,202124/124/ 13 (1-8+ W1) + 1- tous ♥ - u1-41= 1-×(1+u1) + 41= $(Y) \leftarrow \psi A - i A_1 A + \frac{1}{1 + \omega_1} \mathcal{L}$ $\psi = \pm 1, t = \psi \frac{\overline{\psi}}{\overline{\psi}} + 17$ W. Handlaute $\frac{T_{i+1}^{n_i} \underline{\sigma}}{\gamma_{n-1} \underline{\sigma}} = \underline{\sigma} \, \mathbb{Z}_n$ $T t_i \sigma = \varphi (t_i) \sigma$ Tou. (٢ = (٢ س + ٢٥٠) - (س - ص) ۳۰ من ۴ کان د س جان وعالس والمن ع أحس عن مشرش أن و July 11 + 11 m ا + (u − 1) ادعا س + ۱۱ س (س = ص) + (ی = ۲) از ۱۵ می ۱۱ ص (رو د ۱) از ۱۰ (اسی د ۱۱ من ۱ سی به اس マイド ナッツルコ (v-1)(1-v+1-v)1=(1-v+1-v) 101-0 📆 🖓 سء صء ح متنابعة حسابية ے ص⊸س = تر −ص ≈الأساس

🕾 ۱۹۵۲ و ۱۹۰۰ و در و ۹۵ هی تعابع حسابی **サキシニ10 4 行** V + Y + f # = T# + F ... tend of feda. # 13 m 13 m f 1 J(1-U)+ i=d Tx(1-0)+6=70 traction of the Aad' 1(1-UT)+1= ... & 1 1(1-47)+1= of 1 1(1-4+)+1= of 4-2 to 1 = 1 (1 - 47) + 1 = 47 & - 48 & + 47 & A 1(1-0)+10 LY10 3(1-1)+1-2 (1) + 3(1-y) + 1 = 1y1(1+0-1-1)="0-" 1(0-f)=(0-f)(0+f) 1(1-0)+1=270 $s(1-t')+t=_{t}L$ $(1) + 3(1-1) + 1 = \frac{1}{2}$ $\frac{1}{r} = \frac{1}{r} + (v - 1)$ بالطبع $\frac{1}{r} = \frac{1}{r}$ (1) بالتعريض في (1) 1 (1) بالتعريض في (1) $\frac{4}{4a} = \frac{1}{02^2} \times (1 - 1) + 1$ 1+1-1 = 1-1 - 1 =1 100 = 12. 3(1-4+1)+1=4.,2 0 + 1 = 0+7 + 1-0+1 + 1 = 구 + 급 = 2+,200,022 🕅 نفرض أن الأعماد هي ، 37 + 343 + 143 - 1437 - 1 1 m | 1. 打电压器 ۸ مجموعهم ⇔ ا ﴿

1 - v= Y

ングアーとゲージンアージング

```
(1+1)^T + (1+1)^T = 7(1+1)
                                                                                                                                                                                                                                                                                                                                                                                                            ش≃س ⇔ح ⇔حن ادمندار ثابت
                                                                                                                                       (47-1)7 = 747 + 717 A

 أن الأحراب العالم بالعالم إلى العارن متتابعة حسابية

 إن المرش أن المتنابعة الأول (ع أ + الرع) + 7 وع 10 · · · · .

                                                                                                                                                                                37-1=1+4
                                                                                      ويوشع أتا
                                                                                                                                                                                                                                                                                                                                                                                                      والتتابعة التانية أواجازة (+ازوج:
                                                                                                                                                                             メデーマニデルナルム
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Set at
                                                                                                                                                                                                                                                                                                                                                                                                                                             OF
                                                         **(1+3)(1+3)A **** #****A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              30+1=21+1
                                                                                                                                                                                         3-48-002
                                                                                                                                                                                                                                                                                                                                  (1) -\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1?
                                        ال التتنايمة من (٥ : ١ ) ١٠٠ (٢٠٠ ) أثار ٢٠٠ (١٠٠ ) ...)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   $¥=377
                                                                                                                                                                                                                                                                                                                                                                                                                                         (T):
                                                     (m+s+f+f+s+e+1)
                                                                                                                                                                                                                                                                                                            ع_ (من اعتدامهٔ الأولى) = أ + 1 ا بالشويش من (١) في (٣)
                                     AA=(J+f)f(J-f) aafA Hefra
                                                                       W = {}^{T} x - W J_{x} W = (x + 1)(x - 1)
                                                                                                                                                                                                                                                                                                            (a_i)^{-1} + (a_i)^{-1} = (a_i)^{-1} + (a_i)^{-1} = (a_i)^{-1} + (a_i)^{-1} = (a_i)^{-1} + (a_i)^{-1} = (a_
                             التراز والمراز وأنها متتقلعية
                                                                                                                                                                                                                         de"sa
                                                                                                                                                                                                                                                                                                                                          (i) + (1-o)A + (1-o)A + (1-o)A
                                                                                                                                          (western) augment
                                                                                                                                                                                                                                                                                                                                                                                      FRIA 34+E+3Y+FR3-He
                                                                                A+ut-=1-x(1-u)+1= _8
                                                                                                                                                                                                                                                                                                                                       بالتعويش (۱) الله Tell Type (۱) بالتعويش في (۱)
                                                                 Advantage of the Average of
                                                                                                                                                                                                                                                                                                                                                                (J_1 + J_2) \otimes J_2 = J_2 + J_3 \otimes J_4 + J_4 \otimes J_4 + J_4 \otimes J_4 + J_4 \otimes J_
                                            THE OUT THE CO E MI CUT
                                                                                                                                                                                                                                                                                                                                                       ه = انهاد آغیاسه غیالته ی ۵ ن ۵ ن ۵ متابعه حسابیه آساسه = ۵
                                                                                                                                                                                                                                                                                                                                                                                                                      *** | [1 - 1 st
                                                                                                                                                                                                                                                                                                                                                                              T- 24-T+1-24=2-1-2
                                                                                                                                                                                                                                                                                                                                           月16年 集業資本
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (A-Fi)Past
                                                                                      ( 2-1012) Y= 2V-11 EV=
                                                                                                                                                                                                                                                                                                                                       Tata.
                                                                                                                                                                                                                                                                                                                                                                                                                                          $.0 mg //.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Day 180
                                                                                                                                                                                           T0-1-V-
                                                            التكالمة حمايية
                                                                                                                                                                                                                                                                                                                                                                                                         ال (التنابعة من (٢٠ ٥/٢) (٢٠ س)
                                                                                      55=8,4 x (1-c) + 7.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        31= 2
                                                                                                                                      (N-w)#EM-UME
                                                                                                                                                                                                                                                                                                                         teau A. Aviesotie * Atelies of est
                                                                         10-m.24 40-m.24 01-m.24
                                                                                                                                                                                                                                                                                                                                           ر ارتدارها می ( ۱۳۰۰ – ۱۹۹ – ۱۹۹ – ۱۹۹ ...)
                                                                                                                                                                                                                                                                                                                                                                                           TT=(sT+j)t-(sT+j)(s+t)...
      7+TM- uT##T+[00- u0]Y=T+, EY=, E
                                                                                                                                                                                                                                                                                                                                                                                                             T^{T} = J[T - T] + TJT + J[T + T]
## ت ۲۸۳ ملم به ۳ ( TAT سر ۲۸۳ م. ( س
                                                                                                                                                                                                                                                                                                Tempo tangan giri mata — Maria A — Prailis 4
                                                 (... CTVA -CTVF - CT(A - ) ..... (A.TVA -CTVF - CT(A - )
                                                                                                                                                                                                                                                                                                                                                                                           T1=(1T+1)11~(3T+1)(1+1)
        PAT KUSA
                                                                                                       TAP COTE botton C. 2
                                                                                                                                                                                                                                                                                                                                                                                               The standing to the standing of
                        \mathfrak{M} = \{ a, b \}
                                                                                                                                                                                         \{|x|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|^2+|y|
                                            . . آول هم موجيدهو کي ۱۹۳۳ ۱۲ - TAT = ۲
                                                                                                                                                                                                                                                                                                             manage Tells
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          医电阻力
                                                                                                                                                                                                                                                                                                                                                                                                                                             H4 mt = (1-w) + T :;
                                                                                                                                                                                                                                                                                                                          fraga Terrota
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     194-1-01-F

 ( ... ) 47 + ( 4 + 1) + ( 1 + 1) ( + 1) ( + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1) ( 4 + 1)
                                                                                                                                                                                                                                                                                               و جوز کو جو جود کی کی اور کی کا ایک انجال ایک انجال الاول)
```

Seasonal web Companies

€ 2 مدد الأوسانگ = ۵ مدر الاحتود ۲۰۰۰ على الأوعاط الحسابية (T) cycla V=u c Tt=J c t=1 T) 110 40 P. P 14+1=17 cm 1(1-u)+[=J 3Y-1@ Year Main & 15 (4 (1-0)+) ٠>..٤ الأوساطونين (١٤ - ١٩ - ١٩ - ١٩ - ١٩) . . الوسط الرابع = ١٩ >>7~ # (1-u) + 19 $M = 7 \circ 37 = 20$ and $M = 37 \circ 37 \circ 37 \circ 37$ ·>ロデーザ· ニ ·>デ・ロデースV Man : 10=J : 14+1 17 출 < u A (T~+) サーショデーム رابلا آول حد سالب هو گاري $T^{\frac{1}{2}} = J^{\frac{1}{2}}T$ 野田 田本島 T-=F- # 7F + 3V# #FF + f= ... 2 تَأَكُّونِ الشَّهِيِّ (\$15 \$60 \$60 \$60 \$14). الاعتدالأوناط ها الله عندالمتورية ال 1-2-20 M-u t fi--J t fv=f Sec. Park 11V+TV=W- - 1(1-u)+|-U O+ 1=#+fT. THE JAM JIY # 61-① -TT=#6+} - TT - Z (T) = L... C3A LT1 LT1) (and default I/A) بعد الله الله ميا (٨) المنطان هيا ٢-س (١٠٠-س) Sect Of Street TI + A L + II - Helics المراكسينان مساورة والا (Y-+) Y--=+Y-🖪 تفرض أن المدين هما 🗝 عن و 🕬 بالتمريش في 🛈 $\frac{T_1}{T} = \frac{D^{2} + D^{2}}{T} \Leftrightarrow (1) + T = D^{2}T + D^{2}$ 9=++17 THE (Y) = Y) = oP + y = ∆ (T+) t=fT يحل للمادلتين اسراء تا سرحة سن شامل ۱۹۹۰ 1 x (1-w)+1= B M-=urr-Berger St. ## (1- w) + 1=37 بالتمريش في (1) 🕳 س-١٣= ٢ 👉 س عام 第一 山東田等一門 التراكيية الإشهادة كالاعلام Dene + h ind.. Trafft. Yrmidelf @ffmjaeff. Week (#+) U 0 = 10 ۲- () اوساما، حسابیة () −۲ LV=L-ot+T ← !V=3(1-u)+} رة إلى منظل التي يت الله الأوساط = الأسطاط = الأ ₩. € س = ۱۳ 7+ ® u t 🛈 .2 OF (1) - TERIATI -THE CH T(V) ,20 1-10 TO THE SECTION ASSESSMENT 7--2--2 IA-UZ CT-FCV-UK BALLANDE (4) (T) - treat +fa Y----Yes - - 48-31+55 14-13-1 4.3=1.5 (Y) ((1) Jan (45) THE TYPE TO STY \$ (an delegated). Cond Vallation Applicate

3.3

🐿 س) و برو س متلبعة حسابية
weltema wewelt
Indiana weathers
+ 44 T = 44 = T 16 M = 164
(ω-1)* a ω* -∤* a
(١٩) تشريض أن أساس المحديدة ٥٠٠ ل
الوسط الذي لرتبيه ب-١٥ = ١٨٥ – ١٦
$T = S \stackrel{\wedge}{\longrightarrow} \frac{1}{T} = \frac{ST + T}{ST + T}$
t_mt+(u=r); = At=t+Tu=f
خرودا ميدالعنون
المحدد (الأوساط 14 وسطة المحدد (الأوساط 14 وسطة المحدد الأوساط 14 وسطة المحدد
£ + بين = سي + خ
(E5) (f=5)
عدا ص(۲۳ سـ۲۹س) عدا صيد منشرت منشر
🏵 بطبريه الرسماد والقام 🛪 🔻
P # + 100 # + 100 # 100
24-2-0 -0-4-2-3
\$4-m-2+m- 20+m \$00m
Enun unit group
S-04 =
WO 11-10 12-11 00
TO 140 TO
1.6
(1) = w - h=)
etatus (was) de etatatus j
#1="+4"++"=1#
(7+) +=tA+ ←5t − ⁷ ← f
*=(t-u)(t-u) (= *=!t+u);- 'u
\mu
اها انس=۲:۲مرفوش ادس=۲:۲

46 = 40 = 41 + 44 = 44 + 44 = 4 (A) The war the weather the the the the the tensor that the tensor (1) = M=0+(A T+= - F+ |1 $(Y) \leftarrow Y = \omega + (YX)$ Weustofa. (4) c (1) day J. = 73. (58+1) F= 38+1 17=TH (1-U) +1 ت عدد الأوساط 🖛 🕶 🗲 🐔 11 - 42++2 E 3 - 73 = 7 - 1 + FL - 7 $(T) = T - exT - \{A$ Yes a Yes (T)+(4) Jay التحايمة هي (٢ ء -1 ء 14 4 س) (1) + 11 = 17 + 17 = 17 + 1 + 1 (1) (1) + 11=17 + 17 (T) + 17 = 24 + 17 $(1)_{ij}$ $(1)_{ij}$ $(2 + n)_{ij}$ $(3 + n)_{ij}$ $(4 + n)_{ij}$ $\forall A = i \forall A, \qquad \forall A = i \forall i = j \forall$ Meta (aut 1 (b) (14) gas language (). $t_{-n} = t + n t = H - n t = -T$

⟨ تمرض أن أساس المتنابعة = ال

(*+3 Atm#6*+†*	A Price T 1 A ST
3+ FL=A7	س" - (هـ - سائحت" - (هـ" - وهـ سادت)
(+ A/ L = 0, A/ L = (/) plading	المسامعة والإمراء ما
$TV_{i} = \pi \uparrow \Lambda$ $TA_{i} = \pi + \uparrow \Lambda$ $\frac{\gamma_{i+1}}{\gamma_{i}} = 0$	- (a-a-()a+(a-u+ a=
#= u=t+ \#=(T+ u=Y)Y®	(a=1(u-a)-1u
THOUGH THOUGH OF HELFORD	📆 ۽ صريحه حسابي پڻ سيءَ ع
4-=4 (te=14 (E-without Contract - Section
يفرشي آن عي <ه	9+ 00 + 7 4 - 00 + 9 - 00 on
0>1(1-u)+14 @ N->1(1-u)+1	99-00 Pto00
#->u!~!! = #->t+u!-!#	2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1
1/4 <0 ← 01>0+#	2+400 - 2+400 12 1-400 - 2+400 = 2-400 = 2-400
د ۱۸ مین ۱۸	= 19-100 = 1(3-00) == == =============================
ادگیر اول مدانیمتدانش من مره	at laci
🔞 زوارت 🛆 هي ۱ د ب ۽ ہے	س اص اع ش تتابع سبایی
$T_{A+m+1-a+1} = a+1$	14 15 (taur (3-12 manga)
*(1 + w = w = "A + w = - w + 1 = - w	$\frac{1+r(1+z)}{1-z+1} = \frac{1+r(1-z)}{1-z+1} \Rightarrow$
"THE THE TANK THE STATE OF THE	
Tenfo hemite - Telland	1 = 1 = 1+14 -14+14 = 14 +4 = 12+14 = 12+14 = 15+14 =
" In 4 " In 1 " To ma 4" Tally second	🐨 ۱۱ (۱۰ مالی تتابع حسایی
1(1-A)+1=1+1=1 (1+(A-r))	(1) = = = T = T = = T = = T = = T = = T = = T = = T = = T = = T = = T = = T = T = = T = = T = = T = = T = = T = = T = T = = T = = T = = T
107 - 101 - 10 may 107	۲۲س۲۹ هی۵۶ فی تنابع مسایی ۱ هی=۲ ب + د د =۲ هی ـ ب (۲)
Toles : Tolkery - Ythesy	UT-A1+(A1-UT)T=3+1T
الراطوسانل من (۲ لر ۴ ر ۲ بر ۲ به ۱۷ لر ۲)	υ1αυ1-μ1+μ1-υ1α
الأوساط الثاولة = ٢٠	🛈 ۱۴ یا دا هر ۱۵ و هر تتابع حسابی
Alexaletrelears.	يشريني أن الإدارات العالات
A1+11=11 → (I)	The s - T=v
2+7=3 (Y) + Y=2-3% Y=3-1-1+1	$y + y = 0 \qquad y = 0 + 1$
ب = إ + الزمن الأولى ﴾ ب = إ + 1 لأ من الثالية	$\frac{1}{k} = \frac{1}{3!} = \frac{1 + ^2 (- ^2)}{17 + ^2 (- 17 + ^2)} = \frac{4 - 4 h}{1 - 3} \ A$
(f) = Stessia Stessian A	14.0 × ¥= 1.0 € + 1.0 €
بالثمويش من (٢) هي (٣)	,
A=31 A 31 = 34 + A cc 31 = (3+1)4 A	1+7/2+1+272=7±4,A7 1+7/2=7±4,A7
New Citefa News Leb.,	(1) + 44.0=174 + (1)
(٢٥) بغرض أشوال أضلاع الثلث هياً (ديا في متتابعة مسامية	A(=+1++1++++++++++++++++++++++++++++++++
لقرض أن هُمُ أَنا بُأتِكِينَ التِعَانِيةِ (إ = 15 (د) + 1)	Westinglassialassual

	$\Psi_{(a-b)} \circ \Psi_{(a-b)}$, $\Psi_{(a-b)} \circ \Psi_{(a-b)}$
त-र्व्ह्रेज काणि	Als alt the test of the first o
(1-1-1) 3 @ (10-10) 3 @	*=(14-4) es
⊕سدر ۱۱۹	particle and the second
(1(4-v)+17)¥=,, & ()(1	بتالسية وي الأشلاع ١٤٠ - ١٤٤ و ١٤٠ - ١
	FIRST WAR AREAST
17 × =[16 + 7] = 1, 44	١١ سياس عاخ متنابعة حساسة . ٢ س=س + خ ـ (١)
**** **** **** ** ** ** ** ** ** ** **	(س + ص) + (ص + ع)=٢ص+س + ع
44-07 C	بالتعريس من(٢)
11-Y=(A++1) = TY = + = (J+1) U = +	(2+4+2=2+4+2+4+4)
CLeff = #+TU-Teff	ي (س + ع) وسط حسابيا وان (س + س) (س + ع)
TT=0.5 TS=0T ←	ر بين ۽ جيءِ سن ۽ جء جن ۽ هن شانع حساس ايڪا
1444=144 x 1 = 444 = [1+1] A = 144	
PET + S R Y = I = J L Y + E - G V []	(عاربان (1)) على التسلسلات السالية
STHT A TI KTHU	1.0 -11 (0), (0 h- (1))
$\operatorname{Inte} = \left[\left\{ \mathbf{Y} + \mathbf{A} \right\} \frac{\mathbf{Y}_{\mathbf{A}}}{\mathbf{Y}} =_{\mathbf{Y}_{\mathbf{A}}} \mathbf{A} \left[\left\{ \mathbf{J} + \mathbf{y} \right\} \right] \frac{\mathbf{M}}{\mathbf{Y}} =_{\mathbf{Q}_{\mathbf{A}}} \mathbf{A} . .$	(1) (1-10-4=(1+10-1)=(1-10-1) (1)
طرام _ا .	7+344 - 4=4=4= 4=4= 4= 4= 4=4=
1010 ETO H T + 21 HTO H T = (T + UT) 2	پدي د±≃س + ۲
1,17	T=u=2 (T+) T=u=F
(i) + " " = 10.	. 4=18+18+3
(1) - A-markets	THAT THE ATEN
بطن (۱) سروا۱)	T+36=7T
Y-= 6. AY- 0318.5	(9) 9=an+pg
بالتمييش (١) 🔑 🛂	
(i.e. TA'STA STA) (LEADING AND	p===14+1+14+1+14+1
m=[n-n] 中 _n app [J+t] 学 e _p aで	(T+) 10 = α μ (A + μ γ
44m14ele1e4A	ثرة + 1 (1) ما (1) من (1) ما (1) ما الماري بالماري
E (1) ±17 = 27 + [1 / ₄	(i+) M+=1(V
(t)یخبرید (t) × آثم طرح (t)	ي و د ـــ پالتمويس في (۱)
THE SHAD THEFTER	N=(A 1=0- =1+)
٨ التتابية هي (٣) ٤٧٥٠ ب)	التشنيداني (١٩١٩))
40: = {T = 14 + T = T } \frac{\frac{1}{2}}{2} = \frac{1}{2} = 4	[J+1]# ="= @[J]
	(1-(1-1)+17] = 0 ~ (1)
	4. © 17. D 1. O
	167 (A 144 (A 14
	14

[s(t-u)+ft] 华田山本で - Yus 6 7=1 [4 (... (1V (T1 (T#)(W) 71-=((-)x1(+74=1)(+)=uZ [T×(1-4)+1] 第=1+2 to a to A ت به ۲۰ والمل الأغرب د ۱۰۰ مرفوض [1(1-4)+H]F=,... » ، عند الحضورة لثن يجب أختها ٢٠ عـــــ أ [1(1-0)+,21]*= Yes & Amil's [(+ut-17-]n = 140-40. = (F x 14+ 1 x 1) + = 1.4 1) (ut - 14-) u =140-FINTERIOR OF THE FRIENDS IN THE WITH THE 743 = [41+75] 15 = 104 +=(e-u)(f1+u1) #### in it. 4-=; { TT=|4 [s(1-4)+|T] #= ... + (D) (25 ر < سفر Va.=[P×(1-v)+4×1]¥ 1+ F <01 ۲۲ ÷ (ن –۱) × ←۱ < منقر Wine (UT+10) U.S. Yei=(T=UT+1A) 분 hau a 140 (f+) :=100-010+*UT 1--1- n 4+ 44-12 1-= 62 ... 1 pt 8 m = Q84 TU ·=(Y•-∪)(Y+∪) ← (©می>مطر (ω_0) براوشیT = -4 (دراوشی) ¥ ۲۲ × (۱−۷) + ۲۲ متر الله عدد المسود = 19 ميارا T-al (TVa(F) 14-1(د)-۱) > مشر خان≃ستر ルンのない着しの [+(1-v)+!1]#=_+ Gas W = U . T-=1 + Y0=(□ ¥ (۱- بدلا + (۱- بدلا = ۱۲− × (۱- بدلار © ځی> سفر 「山山山田子中山下一年」 Head and Velotic 1+ VO > U .. #T+ (1-U) + T يُ عند المحود = ١١ حياً 17=uca 17.1>v ۱۱۱]=۱۸ ، د حسر<مشر الدهند الجنود الوجية = ١٢ منا معقر $>[A \rightarrow x (1-u) + A1 \times T]$ T- x 17+10 x 1 1 1 = 10 A \$59 march 5 1+ 1VA < 4 & ۱۷۸ – ۸(ب−۱)> منفر 17-= __ A ① 17:=[1-x[1-u]+ 10 x 1] \frac{1}{2} TP.TA < u لكريت الاستيا ٣١ ع ع. غ. ا مبن> سفو CHITCHUTTE OF @ \Y=(\+0-Y#)+ THEO GIVE الا × (۱- د) + ۲۴ × 기분 صفر (...u+|u+|a)(W) 1+ 후 > u.a. ۵۰ – ۱۲(۱۰ –۱۱) > مطر [1(1-4)+|1)=====(1)+|T=++ $C_{n,k}(V) = Q(X)$ 17.4 > w · < 1,0 + u1,0 - YE = - < . 2 1 $\sum_{i=1}^{n} \frac{1}{n} \int_{\mathbb{R}^{n}} \frac{1}{n} \int_{\mathbb{R}^$ THOUS THE DOS THE COLOR [A(to v) + [t] 분= [本 がままる 93 = 67% = 1 A. $\delta T \nabla = \left[T T T_{i} \theta - \nabla T_{i} \right] \nabla T = \frac{1}{16\pi^{2}} dt$ (... 45% 459° 41+) 3max2044

 $0.1 - {}^{7}\psi = 774 \Leftrightarrow (7 - \psi 7 + 7 -) \stackrel{?}{+} = 774$ $i = (11 + \omega)(7i - \omega) \Leftrightarrow i = 77i + \omega i - 7\omega$ Law York at A. [1(1-0)+|1]#= A*1=[##+##]** A (1) - A1 = ±15 + ±1 (1+Te+1+TE)-(1+BE)=0 44(f) 1(f) Ad + H L=FA (T) + 4 = 1 % Lux on What 199 A 1F= 2+ 2 (1) D - 17=34+|1 = 17=36+|+37+| A to AVE 5 V - 97 = 1 T 3,x3,=11 to (1+7)(1+11)=-1 4-- (54+ 44-14) (57+ 44-14) 4-= (FA+44-17) (F3+44-14) $4 := \frac{1}{4 - 1/4} \iff 4 := \left(\frac{4 + 4p}{4}\right) \left(\frac{4 - 4p}{4}\right)$ * - - - - 171 - 174 = "5 - 171 = "5 - 174 بالتمويض في (١) ... ١٢ = (٢ = ١٢ = 1Y=[... ش اعتتابمه من (۱۲۵۵۱۶۱۲۵ س) ... Just of the Atlant "L= 2+ - 2 (1) 1+71+1+24=25 = 71+74=27 ω THAT 4! التنابعة لزاريعية الرابيعية (Y) (1) dead (Y) West + fa T = J平电影点 (m (3 (3 (7) 3a/22)) [1(t-u)+|+]#=_#

3744[7 x 36 + 7 x 7] ** = 4.**

[1(1-4)+|+]#=_a&\ [t--vb+tn]#=41. white [notes] = hite = hite >= (A>- () + ¹() ≥ > = (11) - (11) + ¹() (> الارالوسة :=(۲۲+v)(۲۰-v) د المرالوسة 1(1-4)+(=, 2=11. #(1-0)+17=T1-: $(J \circ f) = \frac{Q}{T} = _{Q} \Rightarrow Q \circ (S) \Rightarrow TA = F(S \circ Q) \wedge$ $\left(M+\right) \times \frac{Q}{2} = 10 \times -2. \left(M+M\right) \frac{Q}{2} = 10 \times -2.$ يبالتمويش شي- (١) -(1) + 1 + 0 + 0第一年 多点。 「中央一年 まりした (۲۱ – ۱... ۱۸ ۲) ۲ (۲۱ – ۲۱) #10 = 41 = 5 = 41 = 10 T 메이스 [AS + 17] 분 A. Ster ... چ چارا دهاه دان دو دا مدود ATTAPASSA SO LEY 29+11=2 (ATELLISTY OF SYT) Land September 1 Phana Land t Waft $\sum_{i} \frac{\Psi}{Q} \left[\forall f = 0.5 \right] = -0.50$ #A#-= ___ الله العاملية *** = ** × ¥ 40-2514-12 34+1=65 $\frac{W - h \sigma -}{M} = 1...$ 50- = \$10 + 1V A ريخ التخابمة من: (۱۸۹۶۹۷ 👊) ★ペニリホ J+ CA = JE (A = J - JC S - WE] CO WE S+ PM [J+1] \frac{1}{2} = _J + [1+14+1-11] = 10. whatee [IA+II] auto ME U.A. Tm4 c=1=1-17+1 [#(1-u)+ft]#=_#

(with the third -) Indiana.

\$ [14 + 74] = منفر يه ٢ (١٤ + ٢) = ٥

(とひーロ)・けり半 ニリム

(1) - 41 = 4 + 1 TO (t) = 3t = st + 1 $\Phi = \Phi \in \mathcal{F}_{n}$ TYRST -بالتمريض في (١) Secret A. 41-1-1 .. التتابعة هي (١٨١٤ ٩١٤ ١٠٠) ع راد دا (۱- u) + ا د در <u>ا</u> 17=0 c= + < 1+ 01-10 $[J(t-u)+[T]\frac{Q}{t}=_{u^{\frac{1}{2}}}$ 1010[49-90]1=44 & A- - A $\tau \simeq [1 \times 1 + |\tau] \frac{\delta}{\tau} [\widetilde{Y}]$ المنتابعة هي (١٨٠ – ١١٠) ...) 177 < 18 (v-t) = 0.00الدرانية الحد الطلوب ٢٤ 77 T < 0 A filmite atte-filmys-WINE & Sela カルコンゲーム カーディング カム PROS $41 = (31 + 17) \frac{V}{T} = \sqrt{2} (11 + 12) = 18$

O+WHAT+FA مراطيوه= (الايد + ال ث إ + ١٧ و ١٩٠ به ايطرح ۞ من ۞ من ا ١٤ م ٢٠٠

tofa (1) and Pasta

(34 د... د التتابية عن (34 د د د الله الله).

(U-Y) U1= = F.

() عب = ۲ × ۲ (۲۰۰۷) = صفر

17 = (3 − Y) 3 × 7 × ₃ ×

i=(A+u)(1+-u)

MAG

 $t = A \left(u_i d_i d_i \right)$ المعمر المبيور 🛪 🗱 عينًا .

$$[_{n}Z + _{q}Z] = (1,0011)_{n}A$$

$$\frac{1}{4} = \frac{1 + 1}{2 + 1} \qquad \Longleftrightarrow \qquad \frac{1}{4} = \frac{(2 + 1) \pi}{(2 + 1) \pi}$$

(0) =

التنايمة هي (١٦ د١٤ د٢٠ ...)

عل أغواء الاحظ أن مجموع الخمس حفود الأولى

٤ ١٠ ألمه الأوسط للطعيمة عقود الأولى

A desput

مجموع الخصص حدود التالية = 0 مجموع الجاء الأوسط الهم = 9 ع.

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow \frac{1$

$$\frac{1}{4\pi} A + 1 \left[4 a + 2 i \right] = 0$$

Tion IT H tom, E x to-

$$A \bowtie \{i\} = A = W - i - i(A) = AA = iA + iA$$

boas & trought & thought & boas & the (welletter Hartham) & & [10 x T + 100]4=[24 + [1] = _= unio len m Her pi din (۱۳) اس - ۹۴×۲۹ - ۲س †1≥um m Millsont T E (1-4) 4 The Re ... · 李田野 中学1000点 Tina. T-07=33 \$506.00 [40 + 94] 1 H 1144 1 3,=|= 7 - 7 × (= 4 3 3,= 7 - 7 × 7 - - 4 OT-THU C THESE [J+1] # n_{Je} $\left[\left\{ q_{1}T+T+1\right\} \right] \frac{Q}{T}=T^{2}Q+2$ (ut 1) #=#1-PETD-OT-TON TO-OTETHA ن ۵ – ۱۸ (مرقوش) 14-14=20 V=(1x Y-T1)-(0x Y-T0)= الكمر داوادو و المرحمي مريو 1, *fo"+0-[f(0-f)"+(0-f)] [1-0+[1+0+-'0]1]-0+'01= [1-0+7+01-"07]-0+"01* 1-46-1-07-07-07-0-07-🕒 نفريني أن التنابعة عني ، (د و و و و و و و و و 71-27-1 - 12-20 Searefule refute | Supplishment 1(./2)=./2 \$4 + \$3 m \$ + #\$ + \$6. The fresh Ti $1 = {}^{T}(3+f) = (3+f-{}^{T})(3+f)$ co[1-1-1-1-7,(1+1) entration (tell) a retration (tell) وه ۱۰۰۱ (مراوض) [10 مطور (دراونی) mate t F=1.5

Walk trade & tattata >=[J(1-ψ)+H]분 ← ra[11+of-] 는 ra[1+of-1d]본 May 2 M-sut-14 = 3V+1 1 110 - 110 = 17 F 4 TS 75 - 450 - 310 + 3747 Toda まずりニメギりんご Maga. TH (1- u) + 1= T1 راد عدد الأوساط = 1 ا وسطاً $THV = \left(T + V\right) \frac{11}{T} \approx_{H^{-1}}$ (1) + Wald + | + Mall + | + AT + | + A + | 17=[117+17] 17 = [117+17]18-74 TH (1) + 1max +1 (1) + W=14+1T (T) + T=#1A+ FT مرور ها الترويد من التحريض أن (1) من التحريض أن (1) **第三十八** THEFT - MANY- IT ·> 1.0+01.0-1-4-1> 11,0 - > 411,0 - c ين چ کا چه شاران مدستان مو ڪي ·>[ta+ut,a-ts]とと・>_.a 를 보고 > [15] # 1,0~] # 분 # 를 75,6 - > 01,6 - ex +> 71,6 + 01,4 -18 0 0 1 1 1 1 CO 🖼 تفرش آن التلائة أساد عي 🕽 – و ۽ ۾ ۾ ۾ و AND HAIR & HERRICH $\frac{1}{4 + \lambda} \pm \frac{1}{2} \pm \frac{1}{4 - \lambda} + 0$ $4 + \lambda \pm \lambda \pm 1 = \lambda$ $\frac{Y-y-}{4-4A} = \frac{Y+y-}{4-4A} = -\frac{1}{2} - \frac{1}{4-4} = \frac{1}{4} - \frac{1}{4}$ \$\$\$ \$\$\$ - \$\$ - \$\$\$ + \$\$A - #\$\$\$ \$\$A - \$\$\$ - \$\$A -.... أ (+ + ... الأساء من (1+ A) الأ

گرے میں میس ہے

s(1-u)+!=,20 q = r(1 - q) + |A| $(0) \leftarrow$ J(1-01)+1= ... 2 T = y(Y - yY) + f بالمارج Y = y(Y - yY) + f0 - 0 T- - 1 + 0 1 - 1 - 1 0 T نَ لَ * ~ ؟ بالتمويش في (١) U=(Y-)(1-U)+1 DET + OT -1 Thursday. [3(1=0)+[1] 블=,,4~ $[(T-)(t-uT)+(T-uE)T]\frac{uT}{T}=_{uT}A$ [T+04 7 UA] UF = 5-- $\left(\frac{\pi}{4} \times \right) = \left[4 - 0 - \frac{\pi}{4} \times 2 + \frac{\pi}{4} \right]$ 07-Tu-=6esti-of+10 i=(a-a)(A+a)A-=u (مرالونی) أولاً ، أ الحد الأول ٤ ثمن الأوساط الحسابية ٤ موالحد الأخير $f=(1+\beta)^{-1}$. He can like the proof of the $f=(1+\beta)^{-1}$ $[d+t] \stackrel{\mathcal{L}}{=} \omega_{t} \Delta \Delta$ (u+1) {=[1-u+1+1] {= تانیاً ۱۹۰ (رسط حسابی) ۲۰ ب مقرض أن الأستين في $A = a_0 = \frac{1}{2} \log a_0$ (figure) $A = a_0 = \frac{1}{2} \log a_0$ (figure) هي 🖘 🛠 (الوسطة الأول + الوسطة الأخيرُ) -(u+1) %=[#-u+#+1] %= (ロナル) 学パロナル 美田 編み ترهيرتهي كأزناه 1+ 07=10 Y=(1+ d/Y) = Y + d/Y=) [1(1-4)+11]#=,,4 【(ヤ)(1-4)+ヤルが1】学=70

[1-01+10-10]d="(1-0)d-10d= 1-01204 [1(1-0)+|1] ===@ [4(1-0)+lt] F=ut (1) = 1 = s(1 - u) + ff $[s(1-\psi t)+(t)]\frac{\psi t}{\psi}=_{\psi t^{2}}$ [3(1-01)+[1]0=0 (1) بطرح (1) من (1) بطرح (1) من (1)T-siu & Tsiu-[f(1-ut)+|T] #=,,,,, [3-306+11]070 [JUT+5-JU+[T]0Y= (1) place (14 T + 1(1 - 0) + ft] ota *~ x uT=[(T~)Y+t]uTm_{ut}_k wh-s_{ation} (4(1-A)+1-12@ $(1) \leftarrow 3Y + 1 = 0$ [#(1-u)+}T] #=_u# [1(1-0)+[1] 샹=10 A(1-0)+|T=07 (3) out #(1-w)+f1=(#Y+f)1 $J(1-\omega)+\{T=J\{I+\{T\}\}\}$ 50 m to A. F(1-0)=316 🐨 🖰 عدد حدودها زوجي 💎 تغرمي أن عدد الحصود ۹ ب الرائحيان الأوسطان هما الأرادكان ووا 5(1-u)+|+u2 $J(1-\omega) + f = Tt_0$ (1)4(3-1+4)+1=1. B z = (T) = (T) = T $I(1-\alpha t) + (t-45, a)$ $\{x(1-yT)+yT\}\frac{yT}{x} = \sum_{y \in A}$ ") عند الجدرة 7 ي 70 م 10 \$1 \$1 يالتيريمي شير (٦) ه

4,75 = (+ 1/4 قر المستوي المس

3,8 x 75 + 5 - ± 175 + 5 - ± 177 + 1± J

التنابعات (۱۹۱۷۱۵) (۱۹۱۷۱۵) ...) کی ۱۹۱۷۱۵ ...)

يشرش أن عده المدود = ٢٤

 $\frac{1}{\sqrt{4}} = \frac{\left[4\pi(\mu - h) + \mu^{-1}\right] \frac{\partial}{\partial h}}{\left[4\pi(\mu - h) + \mu^{-1}\right] \frac{\partial}{\partial h}} = \frac{h}{h}$

 $\frac{\gamma}{\gamma} = \frac{\sqrt{1+\Lambda}}{\sqrt{1+\gamma+1}} \qquad co. \qquad \frac{\gamma}{41} = \frac{\gamma - \sqrt{1+\gamma+1}}{\gamma - \sqrt{1+\gamma+1}}$ $\frac{\gamma}{\gamma} = \sqrt{1+\gamma+1} \qquad co. \qquad \frac{\gamma}{41} = \frac{\gamma - \sqrt{1+\gamma+1}}{\gamma - \sqrt{1+\gamma+1}}$

Cartie specificate tree "

2-4-6-15

 $\Sigma_{\tau} = A + T = it \Rightarrow \Sigma_{\tau} = Tt + T = 2t$

(in CHECKER) RANGE,

تقرس أن عدد الحدود 🗷 🖰

مجموع الثلث الأشير = يا مجموع الثلث الأول

(UE+Z)====(U+Z+1++E)Y

(1-10+|+|)1m1-10F+|+10T+|

(1-01-1-1)tel-08+1+0A+1

WIS + TT HUT- + A

Sepa Mega

ارهند المنودة ٢ ي ١٨ هماً

17) ج. علو من من عند عالو من

ج بيالي س من عالم من ۽ او من

جريدلو من موڙ دالو سن ۾ الو من

را جراء جره تو ص احراء حره تو ص

ج والراسية ألو سراحية ألو سي في "١٠" (مَيْتُتُمُعُهُ مُسَالِياً

الرمالة لرمالة لرمالة سأ

filte of entire of a

عديد \$ [وفر دوه د مغر \$ إد \$ فر <u>دوه و دوه و المعاد</u>

بالإلى و معامه

$$\frac{d^{1-\epsilon}}{dt} = \frac{\left[(1-\epsilon)(1+t) \right] \frac{d}{d}}{\left[(1-\epsilon)(1+t) \right] \frac{d}{d}} = \frac{1-\epsilon}{\epsilon^{-\epsilon}}$$

$$\frac{d^{1-\epsilon}}{dt} = \frac{d^{1-\epsilon}}{dt} + \frac{d^{1-\epsilon}}{dt}$$

$$d^{1-\epsilon} = \frac{d^{1-\epsilon}}{dt} + \frac{d^{1-\epsilon}}{dt}$$

$$d^{1-\epsilon} = \frac{d^{1-\epsilon}}{dt} + \frac{d^{1-\epsilon}}{dt} + \frac{d^{1-\epsilon}}{dt}$$

OFFICE FIRE

$$_{A}^{A} \circ = \{1(1-\alpha)+11\} \frac{1}{\alpha} \subset (1) \circ = 1A+1$$

NEW A

$$10 = 3.9 + 3 = \frac{1}{2} \times 10^{-3}$$
 (because of the second

[24] وترنى أن منه المدود ؟ به

$$-10_1 A = \frac{1}{2} - J \left(1 - Q T\right) + \frac{3}{2}$$

A may The Hill June 20 A

Wala Ja

$$\frac{1}{2} \int_{\mathbb{R}^n} \left[-1/(1+\alpha) + \frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{\alpha} \int_{\mathbb{R}^$$

بالقسمة مليء

$$i=(1i+\phi)(11+\phi)\Delta$$
 $i=12i+\phi Y_1+^2\phi\Delta$

ولى التنابعة الهملسية (بنازين (4))

(المعروف أن البلغ المودع شهرياً
$$=7$$
 جنيهاً المدد الشهر الأول $=\frac{e^4}{e^4}$ $=\frac{e^4}{e^2}$ $=\frac{e^4}{e^2}$

$$\frac{1}{12} = \frac{1}{14} \times \frac{1}{14} = \frac{1}{12}$$
 والمدة الشهر الثالث $= \frac{1}{14} \times \frac{1}{14} = \frac{1}{14}$ (يأده ١٠ أكهر فقط)

$$\left(\dots t \frac{1}{H} c \sqrt{\frac{H}{H^{1+}}} c \sqrt{\frac{1}{L^{1}}} \right) \lim_{n \to \infty} \operatorname{adj}_{n} .$$

$$\frac{dA_{1}}{\sqrt{1-\alpha}} = \frac{dA_{1}}{\sqrt{1-\alpha}} = 0.7.$$

(س د ۱۱ د ۱۰ د ۱۱ کاروپید) د (س د ۱۳ د ۱ د ۱۱ کیریند) 😉

ومنشس مسد أقحموه اله

$$\left[\{1-\omega\}1+\lambda\right] \frac{Q}{T} + \left[(1-\omega)1+\lambda\right] \frac{Q}{T} = TYT.,$$

$$v \approx (V - \omega)(T + \omega \phi) / c$$

$$106 \times \left[\left(\gamma - \gamma \right) \gamma + A \right] \frac{V}{V} = \frac{1}{2} A$$

(آ-روس-)=(ا-س+)+(ا-سو)

$$1 = \frac{1}{2}\omega - \omega(t)$$
) $T\omega^{2} = t^{2} + T\omega = 1$

	Megi	2	7-48	
	$x = a \left(\frac{h}{d} \right)$	t es	$\gamma_1 = \gamma_{p^2} = 1\gamma$	
Ę	دهي (۱۹ ۸) داد تا	يد الاشايد	95 = (A	
	Ali	⁴ (7) x\n	(A) 5, =1 V	
	MINT	**(T) K \	S. = 10"	
1.	~(t-) ™	13	TITO F	
		10	MO.	
	ولر إثابر ("عسا	🛈 (لو ا	400	_
	D Just	والبية	﴿ مِنْحِنْنِ دَانْ	1
	Deloil.	1. 2.	11 .0	1
	والمراه محدار تابت	14 U T 70 A	1 - 3 0 0	
		TXP	15 MG	-
	tim,		A DESIGNATION OF THE PARTY OF T	
	Call Later Pa	(m. 301rp)	3,000 3	-
	م ده د ماندار تایت ده ا	Table	3, 100 E	10
	1- 1-	سية الله الراء	ala laster	11
T .	Late C Allega	Transfer.	-3 + V - 1	A
	چ سطمار کابت مع به چ ^و – ۱۸ م	I TO WELL	Ang L	TY
	14 = *- * * * * * *	H.	W. C.	1
	And Address of the Ad	HC. CO. AL	" (فيتباحج جروا	_
3-1	- u.a. 31			1
		W de	1-04=644	
		1 11 1 14	ير ود (معد الحد	
	11	1 . 1	7-10	1
	ture - lace	* ¥ =	V1=12(1)	
	AAT II A.	14 %	(w)3=#	1
	MTLE TOP HET !	ta ten	H NYUF	
hei	THE PERSON	1.2	hite at any	
	HITE WAS	A ==	News	

4 P-1(1)(4) Mile M [4×(1~0)+|1] # = The was [THEFTHY] to a W=Tx(+Y=1(+)=_Z(w) Sentanterterial $\mu_{A,b} = \left[+ a + b \right] \frac{\Delta}{M} = M = 0$ The A C TES E [m++] f=4+ = 11+1] f=2+ 17×平=110 7 (3,=14"= 7x 1"=1) S,= toheratheary () 3, m = 1 , 3, m + m () 5. = 14. 44 × 4. = 220 الإنتابية فضيها Astrical system as the telestated Symple of the state of the stat $S_{i} = (S_{i} = 3 \times H = H)$ (mederally magnitudity $\mathcal{A}^{\alpha} = \{ \, \mathcal{A}_{\beta} = \{ \, \mathcal{A}$ 1=1(1) + 160= 1/1= v2 (1) $\frac{16}{4} = \sqrt{\frac{4}{4}} \times 46 = \sqrt{4} = \sqrt{5}$ المد اللوني × ١٤٤ × (﴿) ٢٠٠٧ 7=,-0(1) x+11 = 7=,-010 $\frac{1}{2} \int_{\Omega} d^{2} d^$ W-see thestern الدي (هند الحدود) تا ۱۳ عداً

1>1-0(1) = 444 =1 >1-0,1 + > " = (4)= Y->u-@1->1+u-@¹⁻7>^{1+u-}T

Amount

(T) = 71 = 1/1 = (1) = A = 7 + A $Y = \sum_{i=1}^{n} A_{i} + \sum_{i=1}^{n} A_{i}$ (1) بقین (2) علی (3) Marka (1) gen الالتتابية الهندسية **من (۲**۴۱) و ...)

(T) = TAI = "A" = IA" = IA" = (T) بالتعريش في (١) التكايمة هي (١١٤٢) ١٠٠)

 $\frac{1}{\sqrt{h}} = \frac{h_1}{4^{h_2}} \qquad (1) \text{ true}(1)$

3-60 3-700 $\frac{1}{2}$ بالتمويش (۱) $\frac{1}{2}$ = ا= ا+ ا= $(\dots \in \frac{1}{N} \in \frac{1}{4} + \frac{1}{4})$ in Superior \mathbb{Z}

المعلق عد المعدد T-101+01A T-2+,2 $T1 = \left(\frac{1}{2}\right)t + \frac{1}{2} \times t$ Photo S 34 - P.A.

۵. (۱۳۵۱مهر (۲۲ د ۲۲ د ۲۹ د ۲۹ د ۲۹ د)

Wetter = to the branch γ برجه $\gamma = -1$ کتابینهٔ مین ($\frac{1}{2}$ ۲۰۰۵ تا ۱۹۵۰)

> Y = 1 + 1 + 1 + 1 = 1 = 1 = 1 = 1 = 1 Ti=("x+1)"x1 = $\varphi = \frac{1}{2} \varphi + \frac{1}{2} \exp \left(\frac{1}{2} + \frac{1}{2} \exp \left(\frac{1}{2} \frac{\varphi}{\varphi} + \frac{1}{2} \right)^2 \varphi \right) \right)$

بر√ ـ مر ۱۹۹۰ سے (ایر ۱۰)(بر−۱) = ۰

Frein von 6 meter four (... esere] d (. ere een ere)

to = "el + el = (... s'etretat)

10= 10+ 01+16

그 1= 4 34=3+1A

 $\frac{17}{4} = \frac{18}{14} = \frac{1}{2} x + y + 1 \implies 10 = (\frac{1}{2} x + y + 1) f$ •=(1-04)(1+04) ← ·=1-01+701 1-2 6

(... (A+57++ 510)

1 + TAA=(++)*v1: TAA="v1+*v1

TT="pic ىلىسىد 🛈 ملى 🛈

学生的人: ڻ ۾ ١٦٠ بالٽمريش في 🛈 🕝

ش انتقابیه دی (۲۰ تا ۲۰ تا ۲۰ تا ۱۰۰)

1 + 12=(1-1) of = 12=11-111

(= 1A=(1-+)) = 1A=1-+1

 $\frac{1}{\sqrt{1+(v-1)}} = \frac{1}{\sqrt{1+(v-1)}} = \frac{1}{\sqrt{1+(v$

عندما سِرِهِ إِنَّ بِالسَّرِيضَ في ﴿ اللَّهِ عَلَى اللَّهِ عَلَى اللَّهِ عَلَى اللَّهِ عَلَى اللَّهُ

... التابية في (٣٣٠ ـ ٢١ ـ ٨٠١ ...) ٢٧ - ١٦١ ...)

0+ 12=1/1 = 1=1/1 =1=(1/1)[W]

(- +1=(1-1)) of ettel of-101

 $T12 = \frac{\left(1 - \frac{\theta}{2}\right)^{\frac{1}{2}} \left(\frac{\theta}{2} - \frac{\theta}{2}\right)}{\left(\frac{1}{2}\right)^{\frac{1}{2}}} = 17$

The still teach the was the tell-

(m 6 2 6 2 6 12) Siza (1771) Land.

(--+ 1-+ 1-+ 1-)4 (--+ 1-+ 1-+ 1-)4

 $\frac{1}{2} \left(\frac{1}{N} \right) = \frac{1}{N} = \frac{1}{N} = \frac{1}{N} = \frac{1}{N} \frac{1}{N} + \frac{1}{N} = \frac{1}{N} = \frac{1}{N} \frac{1}{N} = \frac{1}{N} \frac{1}{N} = \frac{1}{N} \frac{1}{N} = \frac{1}{N} = \frac{1}{N} \frac{1}{N} = \frac{1}{N} \frac{1}{N} = \frac{1}{N} \frac{1}{N} = \frac{1}{N} = \frac{1}{N} \frac{1}{N} = \frac{1}{N} = \frac{1}{N} = \frac{1}{N} = \frac{1}{N} = \frac{$

ي رينديملامي (١٥٤٥هـ) 💺 تا س)

ペーシャン ニットキーショップ・プリ +=(Y-y)(T+y) ← +=Y-y+¹y

ب 🖛 ۳۰۰ مرفوس ギニッム

(... a Yea band agent) ... dar to a Year by f

> **使用的人**。 \$21 - 4J

THU. A="" - UIA="UI [1

N=1.4 The (TT+A) For Yhe ful + ful

(... (T(C)T()) Resident

tors water and the Co

LAY-1-"TRITING I - LAY-A

1 = 10=("v=1)"v| coton"v|-"v|T

41m121+121+121

T -Vi=("++++)"+1

 $\frac{1+\gamma+\gamma}{2} = \frac{1+\gamma+\gamma}{2} = \frac{1+\gamma+\gamma}{2} = \frac{1+\gamma+\gamma}{2}$

وجدر جور " ها! ۱۰ الر"

عر⁷ خ 14 م⁷ + وي + و – 14 = +

*= (Y+yA)(Y-yY) - *= 16 - y4+7yt4

 $\psi = \frac{1}{4}$ estangentules Φ $\psi = \frac{V}{A}$ enteres Ai = 1.5

*1=[-1]|-

٨ التنابية من (٨٠ ١٥ ١٥ ١٣٩٤ م.)

1) = "1)=(1-" y) | de T}=|-"y|T

بغيمة ﴿ علي ()

 $Y = \frac{(1+\varphi + \frac{1}{2}\varphi)(1-\varphi)^{\frac{1}{2}}}{(1-\varphi)^{\frac{1}{2}}} \iff$

 $\tau = (T + \varphi)(T - \varphi) \rightleftharpoons \tau = T + \varphi + T$

برعاج عاب ۲۰۰۰ مرفوش

THEA بالشويش طن 🛈

<u> التعابية من (۲۰۲۲ ۲۲) ...)</u>

てきっしゅうしょう 何

(D + 71-("0+0+1)2 What'states

1 18A=(++++1) Total

(24.0+1)

🕮 س 🕫 بالثمويينس في 🛈

Ti=((+1+1)) ==

17=(++1)+1="++1=2+2 B (0)

 $S_{\mu} = S_{\mu} = V = V = V = V = V = V^{T} = V = V$ (1)

يتربيع الملالة (١) ثم القصمة

 $\frac{1}{4A} = \frac{A}{4A + A_1 + A} \qquad \Longleftrightarrow \frac{AA}{A(A)} = \frac{A}{A} \frac{A}{A} \frac{A}{A} \frac{A}{A}$

 $x = Y + \varphi \, h + \frac{1}{2} \varphi \, \Psi \, \exp \, H + Y + \varphi \, \Psi + \frac{1}{2} \varphi \, \Psi$

 $i=(T-\varphi)(1-\varphi T)$

tela - ves di TV min - 1 mg (mittigeres) & (miteratety) a gen.

1+ # = dl = 1+01 - 01

1+0+ - Y+0- + Y+0- (1+0-17- 0- 17-

(س+۷+)(۱+س)¤(۲-س)(۷+س)

س آجوس کا عبریا کا اس کا ایس از سال ۱۹۳۳

المربعة به التقيمة في (١٩٤٦) (١٠٠٠)

 $y_{\phi} = Y \times (Y)^{2} = TPt$

🕥 کے = ا راہ - ا سین برد ادرا

3, wort (11,1) " "

ع = ۱۲۰۰ (۲۰٫۱) = ۱۸۰۰, ۱۸۰۰ وتيهاً

🕏 د دريدن الاعماد هي دا ۽ اور ۾ ا م

(= 15- 1-1+ +1+1

have a material and every

£ إ = أن ع بالتعويض من ﴿ في ﴿)

CHOUNTY Travelete !

و بدوس ما کار آجازه برجم کی آجازات ۱۳۱۸ م

 $v = (1-\varphi)(1-\varphi)$

tny t day

عليما لكون بيء 🛔 يالتمويض في 🕜 🚛 ١٩= 2 (Parte on (2153) f)

بالشريض الى 🕦 🕽 🖛 مكلما لكون بر = 1 (Madel) malagi..

3=.Z ((T)

 $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{12} = \frac{1}{2} \sqrt{2}, \qquad \qquad 2 = \frac{1}{2} \sqrt{2} + 2$

· 好好 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

Water to the part of the part

 $y! = | T \leftarrow \frac{1}{2} = \frac{(2a+1)!}{(2a+1)!} \leftarrow \frac{1}{2} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ O- TEV:

1=1 1 - 17="v1

بالتعويش من ﴿ هُنِ ﴿ }

TOTAL MENT ((C. CE. YEL)

() + T:=("+1)+f= 10="+f-+f"

O- te'st = "statistation

يقسمة ﴿ عِلَى ﴿ ﴾ ﴾ ﴿ اللَّهُ اللَّا اللَّهُ اللَّا اللَّهُ اللَّاللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الللَّهُ الل

 $r = (\Upsilon - \varphi)(1 - \varphi \Upsilon) \iff r = (\Upsilon - \varphi)(1 - \varphi \Upsilon) = r$ int a threather day

المُ المُتَعَالِمِينَا الأُولِي هِي (٨١ / ٢٩ م ١٠ ...)

التتابية الأشرى في (٢٠١٠) ...)

📆 هرش آن الأصاد من (۱ ا بر ۱ ا بر ۲

Taylo To a state of the

O- Vert

THURSDAY HIS THEFT OF

 $T = \sqrt{-1} + \sqrt{-1}$, where $T = \sqrt{-1}$

PROPERTY OF TAXABLE

 $\forall x, y \in \frac{1}{2} = y \land \qquad \forall x (\forall x, y)(\exists x, y)$

مليما ۾ 🛊 ۽ پالٽيويش في 🛈 🗈 🛊

را¥سادمي√∜ ۽ ڳاء ڳ

 $\frac{V}{X} = \frac{1}{2}$ $\frac{V}{X} = \frac{1}{2}$ $\frac{V}{X} = \frac{1}{2}$ الامداد هي: 🏃 ۽ 🐈 ۽ 🛬

 $\bigcap \{v_i + v_{ij}^T = At \}$ $A = \{v_i + v_i\} = At \}$ $A = \{v_i + v_i\} = At \}$

يطبوب 🛈 🗷 🕏 $T = \omega + 3 \Delta , \quad 0 = \frac{1}{2}(\omega + 3) \Delta .$

(مراويته) t = v + v + v + d + v + d

ردا = الاستانية من (T=1). (T=1).

(٦) نفرض أن أساس المتنابعة = ع

(... (of (of colst) = (... (dia to d)

Small + fa

(i) + 1=(y+1) | co

 $\frac{q}{\sqrt{4\pi s}} = \frac{\frac{1}{2}(1+q)^{\frac{n}{2}}}{\frac{1}{2}(1+q)} = \frac{p}{(1+q)}$

 $r = \frac{1}{2} y + y + -1 = \frac{y}{4} = \frac{(\frac{1}{2} y + y - 1)(y + 1)}{y + 1} ...$

 $\Delta_{H,\varphi,h} := (1 + \varphi 1) \Leftrightarrow v = 1 + \varphi 1 - 1 \varphi 1 h.$ $\frac{1}{2}$ بالتمريخي ئي $\left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ (. charas) _ananima &

17. = V(1) = V(1) = (1) = 1 = 1 = 1

🔁 تقرش أنّ الأمياء الولائة من (💰 (۾ 💰 (ي 🖰

Material est et

アバーシリーシリーリ

D+ TT1=(1/2+1/2+1)1/2

بترييم 🛈 وقسمتوه عاس 🖲

 $\frac{YAI}{YYY} = \frac{((^{T}_{y} + y + 1)^{T}_{y})}{((^{T}_{x} + (y + 1)^{T}_{y})} ...$

 $\frac{1}{4} = \frac{\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}} = 1$

"v="("v+1)=[v+1)+1!!

6+10+13(0-10+13=

 $\frac{V}{V} = \frac{\frac{1}{2} (\frac{1}{2} y + y + 1)}{(x + \frac{1}{2} x + 1)(x - \frac{1}{2} x + 1)}$ (1)

$$\frac{\mathbf{V}}{\mathbf{T}} = \frac{\mathbf{T}_{\mathbf{V}} + \mathbf{V} + \mathbf{I}}{\mathbf{T}_{\mathbf{V}} + \mathbf{V} + \mathbf{I}} \cdot \mathbf{I}$$

^{*}シアナシアナアニ^{*}シアナシアって...

$$A = T + \sqrt{2} - \frac{1}{2}\sqrt{2} \le C$$

$$C(A) : Y = \{ 1, \dots, N \} \cap \{ 1, \dots, N \}$$
 where $\{ 1, \dots, N \} \cap \{ 1, \dots, N \}$

 $\frac{1}{2} \times T = \frac{T + \phi T - T - \phi}{2} \left(\frac{1}{2T} \right) f_{1}$ (b) where $\frac{1}{2} \times T = \frac{T + \phi T - T - \phi}{2T} \left(\frac{1}{2T} \right) f_{2}$

$$\mathsf{T} = \mathsf{I} = \mathsf{U} \wedge \mathsf{T} = $

At with
$$T = \frac{T}{T} \left(\frac{1}{T} \right) \otimes f \otimes \dots \otimes f \otimes M$$

$$\frac{A}{4} \otimes A = \{ -\frac{1}{2} \operatorname{trains} \operatorname{strains} \}^{-1}$$

$$\frac{A}{a} = \frac{\frac{1}{4} \frac{1}{4}}{\frac{1}{4} \frac{1}{4} \frac{1}{4}} \simeq \frac{A}{a} = \frac{\frac{7}{4} \mathcal{L}}{\frac{2}{4} \frac{1}{4} \frac{1}{4}}$$

$$\tau = 0$$
 $\frac{\lambda}{a} = \frac{1}{\frac{\lambda}{a+1}} \iff \frac{\lambda}{a} = \frac{1}{\sqrt{a+1}}$

$$-(-1 \frac{1}{7} 4107)$$
 جائنتايندهين $-(-1)$

آمَّ تقرض أن اعتباره هي (١٩٤١ ي ١٩٤ م⁷) ...)

$$f_{i}(x) \left(i + y + y^{T} \right) = \Delta x$$

(Totaly to tal) a (sent wit) in manufa

$$y = \frac{(n+1)^{\frac{1}{2}}}{(n+1)^{\frac{1}{2}}} = \frac{n+1}{n+1} =$$

$$\varphi = \frac{(\varphi + 1)^{\frac{1}{2}} \varphi \dagger}{(\varphi + 1)^{\frac{1}{2}} \varphi \dagger} = \frac{\varphi + \frac{1}{2} \varphi \dagger}{\frac{1}{2} \varphi \dagger + \frac{1}{2} \varphi \dagger} = \frac{\varphi + \frac{1}{2} \varphi + \frac{1}$$

$$1 > 0^{-1}(1)$$
 باخذ أو تلطرفين

$$\frac{\pi}{4^{11}} <_{j-\alpha(4)} \iff 4^{\alpha_1} <_{j-\alpha(4)} \land$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$S_A = T(T)^T = MT$$

1-4(4)1+20

$$T = \{(T)^{t_0-t} = (t)$$

$$S_{T_{t_0-t}} = \{(v_t)^{T_{t_0+t}-t} = (t)$$

$$\frac{1}{T} = \frac{1(\tau)^{\frac{1}{1-\varepsilon}}}{1(\tau)^{\frac{1}{1-\varepsilon}}}$$

$$\frac{1}{k} = \{A, \dots, \frac{1}{k}\}$$

$$S_{n-s}=f(nu)^{n-s-s}$$

$$\lambda_{n=2}(q) + \cdots + \gamma_{n=2}(q) = q$$

1- m= 1/2 - 1- m = 1-1/2 = m-1 $\Delta_{m} = \frac{H}{T} [T \times H + (H - t) \times 1]$ WITE TO THE الأرضم القاصر ٢٧٧ (T) = (()-)= (()): TO KET ZEW CONTONE TO WEET OF And waster $\sigma = (1)$ $\varphi \omega_{ij} (1) = 1$ page & been been (nh-watteringe (分) THE PLENT OF VALUE OF A 18 - PORT Sugar on 2 to garage TALLED & TARREST 2= (/)c: PARTIE OF With more To fo Securiti ۵۰ اگرساط می (۲۰ تا ۲۷ تا ۲۷ زوم) . شثل متنابعا فندسية مدها ألأول الأم = () ب = س ج (ters Vett & Venttell $\frac{1+\sqrt{-1}-1}{(-1)} = \frac{1-\sqrt{-1}-1}{(-1)} =$ الأوساط هير (١٠٤٠) و يواع ويواع THUS YOUNDS ON THE TERM $(h_{k+1})(q_{k+1})(q_{k+1})(q_{k+1}) = \frac{q_{k+1}}{q_{k+1}} \cdot q_{k+1}$ ئاتلوستىدىس (چەدەدەغەمەدد). (*f+1)····(*f+1)(f+1)(f-1)=*+v=f=1 TY = 2 (A = 20) $(^{4}) + ^{3}(^{4}) + ^{3}(^{4}) + ^{3}(^{4}) + ^{4})$ ** = >1 (4) (4) (4) (4) T = y = TYHTY = Ty (4+1)(4-1)= $\left(\frac{1}{4} c \frac{\pi}{2} c \left(\frac{1}{4}\right) \frac{1}{2} c \left(\frac{1}{4}\right)\right)$ 10 - 1 - 1 - 1 - 1 特別を開き 10 A & O T <u>-4+1</u> ⊕ \$5 m \$ + 10 m 25 to an own of <00 101 D 10 (1) cushe الدرش أن العددين مما أن هـ

Service See	هنی الار	(1)01,44)
	<u>-</u> •	‡ 00
	M @	171 🕲
$A 1 \mathbf{v}^0 = \frac{F}{F} 1 \mathbf{v}^T$		
<u>र्</u> सम्बद्धाः		$z_{i} \cdot y_{i}^{T} = \frac{1}{p}$
· · · · · · · · · · · · · · · · · · ·		" الحدود موجية
$\nabla A = {}^{A}\varphi \cdot F + {}^{A}\varphi \cdot F \triangle$	1	** 3 ₇ + 3 ₇ = 41
	7 A=*($1\left(\frac{1}{T}\right)^T + 1\left(\frac{1}{T}\right)^T$
TA = F TA CO	YA I	= + + + + + + + + +
		$\Psi U \Psi = \ \hat{f} \ _{L^2}$
(~	TY CASETET	۸ (۱۸۵۱ میر (

 $\Phi_{\alpha} = \Phi_{\alpha} (A_{\alpha} \otimes B_{\alpha}) \oplus \Phi_{\alpha} \otimes \Phi_{\alpha}$

4 Chinacolomic S.

التنابية حسابية هي (۲۰ م ۲۰ م ۲۶ م ۲۰

[JC1 watert] Harrin

🎦 المييان من ۽ ض

100 mg an an an an

الله والمساورة

بالتعويمي من 🕦 🚓 💮

حي (۱۰ - س) د ۹

10 (1 - Un) (1 - Un)

town is town.

1 1 m m 6 1 m m الأرافعيدان مما كالا

🔻 نشرص أن المدمين 🕻) ب

a demonstra

1 to m () = 0 c) (A 化二甲基甲二甲基甲基

Seat A

Acres 44 A بوهما كالمنطوعية الأوما

() and or we do to

سي" – واس د اا بده

A - بر د من = + + من من ۱ الاصغو من + 4

John = 10 + 1 = John + = + - 1

بالتربيع ٨١ + ١٨١ من + ص أ يديوس

من¹ - ۲۸میر + ۱۸ - ۱۹ (۱۳۰ م) (۱۳۰ م) (س-۱۹

A1 من=61 ... A1 المتبد الأخرجو A1

() = 11 = (" + 1) + 1 = 1 = 1 + 1 ()

1 + 1 + 1 + T = 1 = 1 + 1 (1+v) = 1 = T v 1 + 1 v 1

1- = (1+1) 10 m (1+1) = 11 (1+1) = 11 (1+1) = 11

 $\frac{\psi}{\Psi} = \frac{(\varphi + 1)\varphi}{(1\varphi + \varphi - 1)(\varphi + 1)}$

ブッティッチーラエッチ 488 4 100 - 108 A

T=0 6 2 40

124 - 14-1

ألمنيوان هما ١٦٠ و ٥

(110A to., 17) (F)

Tyerry (p+1)p1

> 7 - 2 /2 . 77 - ⁷ /2 = 10 * UTE + "-"v1= 02 APPENDANCE.

VOUG TOUPHTY OF TOUPHYS وده الأوساط == الوساط:

ال ۱۳۹ سر حل بد () سر د ۱۹ مر ۱۹ ۲۰ ۱۳ ا

مري ۾ ان هوڙ 💮 🚊 سن ڪو ۽ عن 🌊 🕥

بالتمويش في 🛈 😅 🕫 دي ۾ س7

 $v = (1h - \omega^{\alpha})(T - \omega^{\alpha}) \implies v = T^{\alpha} + \omega^{\alpha}T_{1} - \frac{1}{2}\omega^{\alpha}$

å ص. = ۱۸ بالتمویطی طی (€

Thomas & Manual

() with a (o + 1) o for the figure ()

THE THE THE THE THE THE STREET

من (0) (9 بالفسمة ^{(7 م ال} م

** £ * \$18 - 75 £ *

 $i = (1 - \varphi)(1 - \varphi 1)$.

 $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right)$ بان افتتابعة الزايسية

d ب = 1 بالتمويمي

التنابدة الإسسية عن (٢ : ٨ : ٣٢ : ١))

المرس أن المنتين † 6 ب ووسطهما الهندس = أ 1 ب

T=1-2114

TE OF IT € باسمع

0 m2 - 10 % @ + 1= - '

بالتعويمي في 🕦 -

 $(| \{ + + \} | + + + \}$ (بتربیع انظراین)

t = |1 - |0| = 1 + |1 + |1| = |0 + |1|

fel A

كالمنبيان هما الاللا

(= 51=(1/2+1) 1/21 = 51=1/21+1/21

 $\frac{q_1}{2} = \frac{\left(\frac{1}{2} + \frac{q_2}{2} \right)}{\left(\frac{1}{2} + \frac{q_2}{2} \right)} = \frac{19}{16}$

 $(Y_{-1}, Y_{-1}) = 1$ مرفوش $Y_{-1} = 1$ مرفوش

PART OF PART OF PART OF PART OF PART OF THE PROPERTY OF THE PROPERTY OF THE PART OF THE PA 0 - 1-("p+1)| - 1-"p|+|(4) معيرية المادلة ﴿ فَي ا (= 1=(v+1)v) = 1=1v++) YA = 355 + ft ... معتمد 🛈 کس THE OF TARRESTS + IT .. 東京社会は $\frac{1}{1} = \frac{1}{4} = \frac{1}$ (... IV (# LT) as initial (...) D+ 10=3Y+1M PETRUSH OF CONTROL $f = \varphi - 1 \qquad \frac{1}{\pi} = \varphi \dots \quad \tau = (T - \varphi)(1 - \varphi T)$ إ ي (+ 5 ء) + 3 ا طي تتابع عندسي 111 + 11 = 12 + 111 + 111 = 111 + 11 = 111 = 111 = 111 = 11111 = 11111 =بالتعريمن في 🛈 الربيجة متنابعتان هنمسيتان tek i her 19-40 C 1114-7x " التتابية الأولى هي: (٢٠١٤ م.) 10=214+7 $A = f \wedge c$ A. التتابعة الثانية هي: (4 \$ \$ 4 \$ 4 ...) بالتعريض في 🛈 🐪 ا 🖘 ٢ 🖪 (۱۹۰۱) (۱۹۱۹) في تنابع هلسس ٨ التنابية المسابية عن (١٥ / ٩٠) ١٠٠ ...) [1++1][1+1]=[(1+1) (...cr+|cr+|cr+|cl|)[9] "en+ #111 +"to"## +#1A + "t m=[#1+14] 후 ← [#(1-4)+17]분=;~ 217×111 e-7 x 0:=(14+17) (I) + h = # T + f ii. Later Teach Attack State of States (4.7) 15+165+161 التنامة من (١٥٣٥٨٤ -) -(1++) = !(1+11) ₩ تمركن أن الأعمام ﴿ وَ أَنِي } لَيْ PARTER TO THE PROPERTY (+ 17=(1/4+++1)) = 17="ul+ul+1 ف=٢١ ـ ﴿ بِالشروش في() 31 X= 1 إن ١٦٠) أن قرئتام حماين 10 = 10 = 11 + 1 701+1=1+107 ر و به ۱ من المتنابعة المسابية عبر (۱ م ۹ م ۱ م.). - المتنابعة المسابية عبر (۱ م ۹ م ۱ م.) 📆 تقريض الأعمان . ﴿ - ﴿ وَ وَ أَوْجُ مِ وَ متسعة 🛈 علي 🛈 10 m 3 + [+] + 3 - 1 $\frac{4}{17^{2}} = \frac{(1+y^{2}-\frac{1}{2}y^{2})!}{\int_{-1}^{2} x d^{2} d^{2} + \frac{1}{2} \int_{-1}^{2} \frac{1}{2} d^{2} d^{2} d^{2} + \frac{1}{2} \int_{-1}^{2} \frac{1}{2} d^{2} Memiria. **多本作** الأعداد عيروا فالمؤوج والأعداد "player to travers of a (#+ TTENTEST - h) (4-7) $\mathbf{v} = \mathbf{v} + (1+ 11)(11- h)=H6 (T=y)()=yT) 757 - 176 - 174 m166 Held telegraph head 40 TA - 1 W + 142 4 m (9 m 20) (9 m 20) A minimum (1:7:4) (4:7) (1:7:4) الدواء – 19 (سرهرشري) أنا T = Aمنتما ب ۱−۴ و ۱−۴ الأعداد في (۱۰۲۹) YEARTINA MARY! 🌃 تقرض أن الأمداد هي أ الإي الإي " هي كتابع هندسي التأمياء هي (١٤٩٩) (1) + 11 = 11 + 11 (... 11 + 11 + 11 + 11) (1) A P(D) + from + frf) إ ٢٠ [٧] ٢ أ في لتابع حسابي

2.0

 $(1+71)^{7} + 1(1+741)$

$$\begin{split} & 1 \mid_{\nabla} = \{ + T \mid_{\nabla}^T \implies 1 \} \mid_{\nabla} = \{ (t + T \sqrt{T}) \\ & + 2 \mid_{\nabla}^T = \{ (t + T \sqrt{T}) \mid_{\nabla}^T = \{ (t + T \sqrt{T}) \} \\ & + 2 \mid_{\nabla}^T = \{ (t + T \sqrt{T}) \mid_{\nabla}^T = \{ (t + T \sqrt{T}) \} \} \\ & + 2 \mid_{\nabla}^T = \{ (t + T \sqrt{T}) \mid_{\nabla}^T$$

الما تعرض أن المسود التحديد الأربى إنا أب يا أب الما تتابيع عندسي

 $\frac{1}{r} \cdot \frac{1}{r} \cdot \frac{1}$

ن برده و د از برجه متعاملان

T + "w=| 1 (+ w+ 1=| 1 1

بالتعريض من 🛈 في 🕦

 $-10^{-1} \text{of } \approx 10^{-1} \text{or } 10^{-1}$

==(1-u)(1+u1) ←

 $u=\frac{1}{2} \text{ a cut } a_i den$

ے ہائٹمویش اس ۞ ثا= ﴿

الله موسطة هندسي يين ۲۹۱۹هـ . بين ۲۹۱۹هـ ۲۹ م. ۲۰ تا در وسط هندسي يين دره ۱۱۱ ي در ۱۱۹ کام.

A WIT < (16 + W) (AT + (1) A

📆 : درسدهنسرین اعم 🐪 (۱۹۵۰) ادم 📆

∵ هـ وبيط عندسي يون بداد ان به ۱۹ کا که به 🛈

 $\Delta \cup I \leq (i+a)(a+b) \wedge$

🗚 🖰 ۲ ب ویست حسابی پین ۱ (۱ ۵ هم

وميث إن الوسط العسابي> الهمط الهشمي ألوجب

 $0.7 \times 0.7 \times 1.0$ grigging liads[65]

(1) + w/HT < Turks

وياللل ٢ هـ ويحك حسابي دِينَ ٢ ت ٢ ١٦٠

ن ٢ م > ١ ٣٠٠ تا د يعتريبع الطرفين

(t) = sut < (a)

(*) \$ (1) ₍₁₀₎

ANTERNATIVE PARTIES

ويتسبد الطرقين على ٢٩ ت. هـ (٤٠) ت 🗈 🖺 🐧)

HICAUL.

🕥 ۳ ت وسعاد جسايي پين ۱۹۱۱ هـ.

alicut eataliciut)

لأعروبيط حسابيرين لأددالا

JTKUT CT(AT)

JUT + ASS < "AT + "UT \ JUT < "AT

2+3->0101

T= 1 × 7 × 1 7 × 1 7 × 1 7 × 7 × 7

TIT= (T) = 1 = 1 = 1 = 2 = 11

 $A = \overline{ 1 (Y \times Y Y)} = \overline{ 1 (Y \times Y Y)}$

(+-u-+)(+-u-+)(+-u-+)

16 ÷ m \$1 ~ ¹00 T = \$ 40 M = ¹00

¥س∫ساسي د ا¤د

 $i = (T + i \omega_1)(T + i \omega_1)$

ىرەچ 4 يىسەء

6 - THARENTHE - THAREATHE

🕥 🖰 ب رسڪ هندسي پين () جي والوسعة الحسابي يون () هـ = + + " الوسط الحسابي > الوسط (فيليسي (1x) u < =+1 :: (1) + ut<+12 مِلَكُنُ هُ وَسَعْدُ هُلُدِينِ بِينَ بِي } لِرُ $-4 < \frac{1+\omega}{2} \ge$ (Y) - - T < J + W (T) i (1) page 4+ 4 T < 3 + 4 + 4 + 1 A → + Q < I + [A</p> 27= w+1® fam.ul (w = (+ w + 1) (w + f) = (w + 1) [ult- (u+1)]et= ['ar-'(21)]210 ['sr-'24]2*= "327-"2A= 13 5 1 - 7 6 1 5 1 5 1 - 1 5 6 1 4000 244=7+4 Mar + Och 🕒 🕾 سرى س ۽ ۾ هي تدبيع حسلبي (1) + 0+7=2+0+2 ٧٠ سن ۽ سن ۽ جس ۽ ج - سن بلن لٽائيم ملاسس (on ~ £) on = "(on ~ or) ... (- ن + غ - س) = س ع - س ا ئ (ع-س)*=سوم ، س^{*} ع" - ٢ع س + س" = ٤ س ع - ٤ س" ه س ا = ۱ س ع + ع ا = صدر $i=(\underline{p}-\omega_{-})(\underline{p}-\omega_{-}\theta)$ # سی ب ع گ سی≃ ع (سرفوشیر) بالتمویشیشی(۱) سن ۾ جسن جو جين g = T + g = Aشفاحي هج چيدوس and a resta tower Tury put

12=1 + u=1+1u=1(1+u) $(y+1)|_{y=1}$ (1) + $\frac{(\varphi+1)\varphi!}{2} = \frac{|\varphi|+\varphi!}{2} = \frac{|\varphi+\varphi|}{2} = 0$ (1) - $\frac{|\nabla x|^2 \sqrt{1}}{(x+1)|x|} + \frac{|\nabla x|}{(x+1)|x|} = \frac{|x|}{x^2} + \frac{1}{x} \stackrel{?}{\sim} 1$ $1 = \frac{1}{12} + \frac{1}{12} = \frac{1}{12} = \frac{1}{12} + \frac{1}{12} = \frac{1}{$ 🛈 ۲۲ (۲۲ و ۱ م هی کتابع حسابی 44-17 = 47 A -- T+1=ωΥΔ ١٢٧ ع ٢ ص - ٢٩ ع المر - ٣ (في تتابع متعسي () T - - - 1) | T = 1 (| T - - - T) A (1-27) t= (14-24+1) (f = +1)f = *(f = +1) (7 + 1)[7 + 1 - 11] = i·=(f== +T)(f==T) まっ字 - 1-47 루다루 수 1000~

(٣٠) تشريش أن الأعماد هـ..:

إداره وارت او" كارن متتابعة عنبسية ار ه کار این ۱۹۲۰ می^{ا به ۱}۲۹۱ از ^{۱۱} ۱۰ تکون مثنارمهٔ مساییهٔ $a_0 = a_0 = a_0 = b_0 = b_0 = b_0$ $(m+_{i'}t) \cdot (m+_{i'}t) = (n+_{i'}t) - (n+_{i'}t)$ 1+1+75+ 41=17+417 $1 + y + t - \frac{y}{2}y = t - yt - 4t$ () = 4 = "(1-y) | = (1+y*-*y)| بالل عر- عر- عر- عر $\{\tau(+\frac{1}{2}f, -(1+\frac{1}{2}f)) = (\tau(+\frac{1}{2}f), -(\tau(+\frac{1}{2}f))\}$ 74-1+(1-4)+(1-4)* $\{\chi^T(\chi-\ell)-\xi\chi(\chi-\ell)=\lambda+\lambda T$ بنسية 🛈 ياس 🕦 $\hat{\mathbf{x}} = \varphi + \frac{\psi \cdot q}{q} = \frac{q}{2} \left(\frac{1 - \varphi \cdot \varphi}{1 - \varphi \cdot q} \right) \hat{\mathbf{x}}.$

tel material and the Total Co.

ت الانتابية الرئيسية من والاياة والايام الياس ____

"etertifacioni®

12 12 1 A < (4 + 1) (4 + 4) (4 + 1) A auth c(u-1)(t-1)(a-1); ﴿ الوسعة الحسابى > الوسطة الهلسي 1 N - 1 V - 1 4 1 - + y- x 111 < 1 + 0-عنى التمليلات الهملية (YIODW) 100 1Y# (F) 11 @ A+ (D) 1-10 TT= J Actobeus ي = عبد الأوساءات + T A^{++} $(1-y)_{y} = 0$ 7=01 V(T)=V(V)A V(V)=17A TYEF & TYEF [J#(1+u)+ft] = 🚣 (T- x (1-v)+ TY = T) + = T **[T+UT-]U]#: Maga OYMEYA. د عبد المكورة ١٠ الشكر T (P) CANO 37 (D) (T) PO T-cr@ 1400 City Line 1>===== يمكن جمعها إلى عند لا تهالي 1 < = = = + لا يبكن جمع عدد لا تهاكي من حدودها 1 < Y = 1 - y @ لا يمكن جمع عند لا تهالي من حدودها 1>4=14+4=10 يمكن جيم هند لا نهائي من حدودها 1>4-4.

يمكن جمع حمد لا تهافي من مصومها

🏗 ۱۹۲۶ و ۱۹۷۶ و ۱۷۷۰ ختابع منبسی (3.37 + 1)(3.7 + 1) = (3.47 + 1)tare a gray a few act a again a fe On total attenta attentam 流列工作时工作社 12 th frit a co ita that finela firela T-EHRAMA TEACH " عن في التنابعة الحسابية عن المتنابعة عندسية " THU & THES. برايتيار والرسية من (٢٠) ١٥٠٠ ال ا + ۱ = ۱۲ بالامويشر من 🛈 هن 🛈 建基基 排放 والطبوب الأكا Auft au Aufrafra $\sqrt{A} = \frac{1/A}{m} = 3/A - 1/A = 3/A$ £ التتابية الصبابية هي (١١٨ £ ٤٣ ٢) ...)

کی حی هی الوسط الحسابی بین ۱۹۰۰ع خ والوست الحسابی > الرسط الهندسی ۱٫۰ س > (اس غ ب (۱۰ و وسط هندسی بین سره دس ۱٫۰ و د (س س)

باللان عواص ١١٠٠ والماس من عواس ع

(1) = 1 = 2 m = 2 m = 1:

پالٽمويڪن فن 🛈

ا تار د = ار ا د او د ا = از ا م تار د = ار ا + از م

٥. ﴿ لُو الْ عَالِي مَنَا لُو عَدٍ ﴾ الرقايع مسابق

1-4+--100

رزين به بين سايا داري و من سايا دويو و المواهدة -19 ويرسط المسايل كه الوسط الهامسية

armedia.

-787 Care

Second with Company

$\frac{1}{2} = \varphi t \forall = \frac{1}{2} t t = t = \frac{1}{2} (i)$	1 < = = = = = = = = = = = = = = = = = =
71=46=0	¥ بمثل همج (بدو ¥ تهالي من مسؤلها
att 1-3 x 1 1-0.1	🕒 💲 - 🐧 - 🕻 < ۱ ، بدان حسیدالی 🖚
$\frac{J_{1}}{M_{1}} = \frac{J - \frac{J_{1}}{J_{1}} \times J_{2}}{J - \frac{J_{1}}{J_{2}} \times J_{2}} = \frac{J - J_{1}}{J - J_{2}} = \frac{J_{1}}{J_{2}} = \frac{J_{2}}{J_{2}} = \frac{J_{2}}{J_{$	$1A \times \frac{\forall 1}{2-\lambda} \times \frac{1}{2-\lambda} \times \frac{1}{2-\lambda} \times \frac{1}{2-\lambda} = a_1$
AOn On Or	T
et ③ ② ¥ ①	$[t_i] = \left(\frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{$
	"، لا يمكن حصها إلى ٥٥
1-4 = 1-47 = 0-2	m_{ij} المحمد المحم
17V = + - 17A =	$0 ext{ (i)} = \frac{1}{2} + \frac{1}{2} + \frac{1}{4} $
I-ura = If = If uru-1	
Amus Yestens - toyatt	V * 1 = = -
9-44-11 : 0-4=1/1	Tay (Tay (Lat () 1
ينسمة (€ بغي (€ :	1481 = (1-17)L (1-17) 1-17 = (1-17)
ري ۲۷ = ۲۷ بالشويش في ۞	haus fact hitel®
رازها به ا رتتابیاهی (۱۳۰۱) (۱۳۰۱)	- Brahley
$Y=1 = \frac{Y+X}{Y} = \frac{(1-Y+X)+Y}{1-Y} = \frac{(1-Y)+Y}{Y-Y} = \frac{Y+X}{Y-Y} = $	1-4 - 1-4 -
Tay (Tat (Jettalt Lant fail.
$TA1 = \frac{(1-\alpha \tau)T}{1-\tau} \qquad \frac{(1-\alpha \tau)T}{1-\tau} = \frac{1}{1-\tau}$	1ATY = 1-TH 101) =
TAN EYT	11A=11 (1 = 1 = 1 = 11 = 11
Ammy AAmma Law na	THIN THE
711 = 1 to 1 to 1 to 1	
	1=v t 1=y t 1= () (1
$\frac{1-y}{1-y} = P(1) \leftarrow \frac{1-y}{1-y} = y = 0$	$TVA = \frac{(4-7)^{\frac{1}{2}}}{1-7} = \sqrt{4}$
$T(T \to q_f = T(q) = q_f T(q)$	Taut hart treate
\$15 m p T \$15 A \$15 - \$15 m p T \$15	$10.5 \text{ Mpc} = \frac{1}{1 - 3} \left(\frac{3}{3}\right) \left[100 - \frac{1}{3} + \frac{1}{3$
(metanesales of selection of se	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tay o Tital a tair - well	(1=7) y=+7) t,=M7
$\frac{1-\lambda}{1-\lambda^{1/2}} = 2^{1/2}\lambda \qquad \frac{1-\lambda^{1/2}}{1-\lambda^{1/2}} = \frac{1}{1-\lambda^{1/2}}$	$P(t) = \frac{T - (T - 1) \times V(A)}{1 - T - 1} = \frac{1 - v_{eff}}{1 - v_{eff}} = \frac{1}{v_{eff}}$
PPV at V=1mVhf at	O C Syminate a Sample of the
तेलाहेतः १ स स्त्रेष – ए स प्रत्यास्त्री	15-2 17 - 1 10 - ALVET
التعايمة هي (۲۰۲۰)	$100 \text{ ML} = \frac{11 - 4 \text{ MLLAT}}{1 - 4} = \frac{1 - 4 \text{ MLLAT}}{1 - 4 \text{ MLLAT}} = \frac{1 - 4 \text{ MLLAT}}{1 - 4 \text$

$$\frac{1}{1+\frac{1}{2}} = \frac{1}{1+\frac{1}{2}} = \frac{1}{1+\frac{1}} = \frac{1}{1+\frac{1$$

نفسه في سرق − درځ = ۸ TERM $AAT \cdot b = \frac{(1 - \frac{10}{2} \cdot 7)T}{3 - 7} = \frac{1}{10} \cdot 45 \cdot 5$ (1) +1=v1 = 1=,2(4) 1=1-1×1 = 1=2-2 $\{(q_i^T-1)=0 = (1)\}$ plus $\{(1)\}$ plus $\{(1)\}$ $\frac{1}{4} = \frac{1}{\sqrt{1 - \frac{1}{2}}} \iff \frac{1}{4} = \frac{1}{\sqrt{1 - \frac{1}{2}}}$ 1=7-47-4410 - 4-745=44 V +=(T-y)(1+ pT) ن ≃ - أو (مرفوش) 1 در = أر (2014) ما هي (2014) ...) $V(T) = \frac{(\gamma - V(T)) \gamma}{\gamma - \gamma} = \frac{1}{V(T)}$ de va te via "otte oth $\frac{(t-t_{A})t}{t^{1-\alpha}}=4.5$ (1-°v) (-9¥ --v 44 ← 44-19 AA = 4 = = 19 1 A = = 4 = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = 4 = = 4 = = 4 = 4 = = 4 = = 4 = 4 = = 4 = 4 = 4 = = 4 = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = 4 = = Cartifold (Attification) 4=41-41 (0-14)1 W Y=(1-4)44 رار ي ۲۰۰ والأطر سوغوشن $v = (1 + \varphi)(1 + \varphi) \wedge$ بالتنويض في 🖫 $T = \{ (\lambda_i - \theta_i) = (\delta + \theta_i) \} \times \{ (\lambda_i + \theta_i) \}$ $T = \frac{\log L}{\log L} \Leftrightarrow \frac{\log T(\log L)}{\log L} \Leftrightarrow \frac{\log L}{\log L} \Leftrightarrow \frac{\log L$ 11-44) = 0 = 4 = 4 =

(+117=" of 6) +11=" of W

ن البعد الدي تيماً يعمو عم

Secured with Company

ts't wt= 🗷 🖰

۵. لاتتابعة من (۲۶۲ م ۱۸۵ س.)

$$T_{11} < \frac{\left(1 - \frac{\omega_T}{T}\right)^{\frac{1}{4}}}{1 - T} \le \frac{\left(1 - \frac{\omega_{\omega_T}}{T}\right)^{\frac{1}{4}}}{1 - \omega} = \omega^{\frac{1}{4}}$$

$$\frac{1}{4} = J \in A \cap A = \frac{1}{4} = J \in A \cap A = \frac{1}{4} = J \in A \cap A = \frac{1}{4} = J \cap \cap A = \frac{1}{4$$

$$\frac{-\frac{4}{4\sqrt{4}}}{4\sqrt{4}} = \frac{1-\sqrt{4}}{4\sqrt{4}\sqrt{4}} = \frac{1-\sqrt{4}}{4\sqrt{4}} = \frac{1-\sqrt{4}}{4\sqrt{4}\sqrt{4}} =$$

$$\sum_{i=0}^{n} \left(\frac{1}{i}\right) = A_i = \frac{1}{i} A_$$

$$\binom{1}{i} = \frac{1}{2-\alpha} \left(\frac{\Delta}{i} \right) \qquad \Longleftrightarrow \qquad \frac{\Delta}{i} = \frac{1}{2-\alpha} \left(\frac{\Delta}{i} \right)$$

$$\frac{1(\sqrt{1-x})}{\sqrt{1-x}} = \frac{1(\sqrt{1-x})}{\sqrt{1-x}} = \frac{1}{\sqrt{1-x}}$$

ينسمة 🖫 ملي 🛈

学电源系

$$T = \frac{\nabla T^{\frac{1}{2}}}{T + T} = \frac{1 \times \varphi}{\left(\frac{1}{2} - \frac{1}{2} \varphi\right) \frac{1}{T}} = \frac{\left(\frac{1}{2} - \frac{1}{2} \varphi\right) \varphi^{\frac{1}{2}}}{1 - \varphi}$$

Tella.

كالتنابطين (٢٤٧هـ١٨ ساء ١٩٨٩)

7 - ۱۹۸ + ۱۹۸ = دی (۲-۱)(۱-۱) = مشر

وما و بره ۱۸ از ۱۸ د ۱۸ به ۱۸ براوش

$$a_{01} = \frac{t-1}{(t-s^{-1})t} = \frac{t^{-1}}{(t-s^{-1})t} = \frac{t^{-1}}{(t-s^{-1})t} = \frac{t^{-1}}{t^{-1}}$$

$$\min_{\boldsymbol{x}} \sum_{\boldsymbol{y} \in \mathcal{X}} \frac{1}{|\boldsymbol{y}|^2} = \frac{1 - \log \frac{1}{2} |\boldsymbol{y}| + \frac{1}{2}}{\log \frac{1}{2}} = \frac{1 - \log \frac{1}{2}}{\log \frac{1}{2}} \text{ (A)}$$

$$\frac{1}{\tau}$$
 of the last $\tau = 1$

$$t = \frac{\frac{T}{T}}{\frac{1}{T^2} - 1} = \frac{1}{\sqrt{-1}} \leq \frac{1}{2} \leq \frac{1}{2}$$

$$(-1)^{\frac{1}{2}} \in \frac{1}{2}$$
 (1) $(-1)^{\frac{1}{2}} = \frac{1}{2}$ (1)

$$\frac{1}{\sqrt{1+\frac{h}{h}}} \left(\frac{h}{h}, \left(\frac{h}{h}, \left(\frac{h}{h}, \left(\frac{h}{h}\right)\right)\right) + \frac{h}{h}}{\sqrt{1+\frac{h}{h}}} = hh \quad (1)$$

$$(1)$$
 $\frac{1}{2}$ $\frac{1}{2}$

$$I = \frac{14}{17} = \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{-1}}$$

$$\frac{1}{\sqrt{-\sqrt{1}}} = 1 \quad \Rightarrow \quad f = 3\sqrt{-3\sqrt{1}}$$

$$\psi = \frac{1}{2}$$
 $\varphi = \frac{1}{2}$

$$T_i = \{ \gamma_i \} \qquad \qquad T_i = \frac{\delta_i}{2} \ge 0$$

التنابعة من (١٤٤١٤٤٤) .)

$$toe_{\pm ik}$$
 $c_{-}(t) = N = (p+1)$

$$(T) = T = \frac{1}{4\pi n}$$

$$\frac{11}{4\frac{1}{16}} = (\varphi + 1)(\varphi - 1)$$

$$\tau = \tfrac{\tau}{\frac{1}{2}-1} = \tfrac{\tau}{\mu} \cdot m$$

1 = 1 = 1 :

1 -1 = 2 - 1 T

10-10-01

r="yre AT Well $\frac{1}{2}\left(\frac{\lambda}{T}\right) = \frac{\lambda}{2}\left(\frac{\lambda}{T}\right) = \frac{1}{2}\sqrt{\lambda}$ يحل المادلتين 4-62 بالتمويش في إحدى المادلتين 🛴 🕽 🛪 🔻 : التتابية عن (۲۲ ع P و P و P و ...) "] ﴿] = ﴿ ﴿ لَا لَهُ كُنْ جَمِعَ عَلَمْ غَيْرَ مَلْتُهُ مِنْ حَمَوِهِ الْتُتَابِعَةُ $\frac{1}{2} - \frac{1}{2} = \frac{1}$ T-=,2-,2 (9) treated to a (t) = T := (p-1)/214 mm = 40 mm 1. $(Y) = \frac{Y Y \Phi}{Y} = \frac{1}{x-1} \tilde{\alpha}$ بالسمة (١) على (٢) $\frac{1}{4} = {}^{\uparrow}(\sqrt{-1})$ 1 ± = y = 1 ... <u>₹</u>a./ -1 Y-=-1 6 7=1 $\gamma = \frac{\delta}{\tau} \{n_i(\mathbf{p})_{i,j}\}$ بالتمويض في (١) dom: 15 (41) و (41) و (41) و (41) و (41) v.=,2 -,2@ Vietalete $(1) + \forall x = (7x + 1) \uparrow$ 2-12-2 . maiet e et à 10 (v + 1) v l (1) -يقسمة (١) عثير (١) $\frac{y_1}{y_2} = \frac{(y_1+1)\frac{1}{2}}{(y_1+1)\frac{1}{2}}$ $\frac{V}{V} = \frac{\left(\sqrt{V_{i} + V_{i} + V_{i}}\right)\left(V_{i} + V_{i}\right)}{\left(V_{i} + V_{i}\right)\left(V_{i} + V_{i}\right)} \stackrel{\text{def}}{\sim}$ 7-1-1 - 14 + 16 mg 1224 pt = "gt." $_{\tau = (\tau - \sqrt{\tau})} (\tau - \sqrt{\tau})$ 3 = v = += v 01=21 t 31=10 لتتنامدا بأولي (١٦) ٢٤ (٢١) ...) التنتابية اللعلية (٢٠١٤ ٢٠١ ع...) ٦ توجد مكتابيتان والمنتقومة الثانية يمكن جمع حدودها إلى بدوان جرح ١

 $177 = \frac{94}{5-1} = 0$

بالغسبية (ا) على (ا) الر

 $A = \frac{1}{2} \left(\sqrt{-1} \right) A + C$

$$(1 < \frac{1}{n} \ge \sqrt{n} + \frac{1}{n} \ge \sqrt{n})$$
 (against $V_{in}[x_i] = \frac{1}{n}$

مائتمویمی فی انساد 12 انڈائیڈ

$$1 = \frac{1}{\sigma} \times \frac{1}{\sigma} \times \frac{1}{\sigma} \times 1 .$$

كالتحبيقين (١٣٥-١٤) ١٩٥١))

$$\frac{1}{T} = \frac{1}{T} \left((p+1) \wedge \dots (p+1) \right) \left(\frac{1}{p-1} \right) \frac{1}{T} = \frac{1}{T} \left(\frac{1}{T} \right)$$

1=4+0A-1045 1=1+07=10

$$i = \{ T - \varphi T \} (T - \varphi T) \Longleftrightarrow i = T + \varphi A - T \varphi B$$

 $\frac{\Lambda}{2}$ $x = y - 1\Delta$.

$$q_{\frac{1}{2}} = \frac{1}{2} \sum_{i} \left(\frac{q_i}{q_i} \right) w_i + \frac{1}{2} $

Constructed (Production)

19:= 1 / 1 + 1 / 1 is

$$\frac{a}{T} = \frac{57c}{6h} = \frac{\left(\frac{7}{4}\sqrt{+1}\right)^{3}\sqrt{f}}{\frac{3}{4}\sqrt{f}} = 2$$

serveniors prefer the

$$i = (T - \varphi)(1 - \varphi^{\dagger}) \wedge$$

$$(a_{ij} = \frac{1}{V} - \frac{1}{V}) = Y (a_{ij} + a_{ij})$$

: التتابية من (TAL) و 15 و 15 و 15 و ...)

🛈 في التقايمة الجينبية - ٢ س دا د ص 🕒

في التنابطة الهندسية - من ٢ م ١ يوسي

$$\textcircled{\tiny T} = u_0 = \overset{\bullet}{} u_0 \overset{\bullet}{} \overset{\circ}{} \overset{\circ}{}$$

بالتسويش من 🛈 هن 🕥 💮 ۲۵ ص 🖘 مرا 🕳 به من

در حول ۱۹۰۰ مرفوش وهي المتنابعة الهندسية بي دمن برا سُرِّد الله براجة

الديمكن جمع عدد غير ملته من حسود التثابعة الهندسية

$$\frac{T}{T} = \frac{1}{\frac{3}{2}+1} \approx \frac{T}{\sqrt{-1}} = \frac{1}{10} \neq 0.$$

$$r=^t y i \in r=_1 \mathcal{E}$$

$$A^{\dagger} = \uparrow \qquad \qquad \uparrow = \uparrow \left(\frac{1}{7}\right) \times \uparrow$$

المتنابعة من (٤١٤ ٢٧ ٤٨١) ...)

$$\left(\operatorname{cr}\left(\frac{\Psi}{T} \left(T \left(T \right) \right) \right) \right)$$
 د التنابعة شي $\left(T \left(T \right) \right)$

$$1 \sqrt{\pi} \left(\sqrt{1} \pi I t \right) \Rightarrow \left(\frac{1}{2} \sqrt{1} \pi I t \right) \Rightarrow \left(I t \right) \left(\frac{1}{2} \sqrt{1} \pi I t \right) \Rightarrow \left(I t \right) \left(\frac{1}{2} \sqrt{1} \pi I t \right) \Rightarrow $

$$\frac{1}{2} = \sqrt{1 + \frac{1}{12}} = \frac{1}{2}\sqrt{1 + \frac{1}{2}} = \frac{1}{2}\sqrt{12}$$

$$\mathfrak{D} = \frac{1}{4} = \varphi \iff \frac{1}{4} = \frac{\tau_{\varphi} r}{\tau_{\varphi} t} \iff \frac{1}{4} = \frac{\tau_{\varphi}}{\zeta}$$

$$\overline{x_{i}} \Rightarrow \alpha \cdot \frac{\overline{x_{i}}}{\overline{x_{i}}} = \frac{\overline{x_{i}}}{\overline$$

1+u1=4 = 1 +4+1=u1 [A

!=(Y~ ∪) (Y~ ∪) ← !=!4+ ∪11 - [†]∪

beacted.

ث المتنايمة هي (٥٠ تا ٢٤) -)

 $77\frac{1}{7} = \frac{170}{7} = \frac{100}{100} = \frac{100}{100} = \frac{1}{100} =$

(m. + 1 + 1 + 1) W =

 $\frac{d}{A} = \left(\frac{1}{1-a_1}\right) \frac{1}{A} =$

(com + 1) + 1 + 1 + 1 + 1) + 1 + + 1 = + 1 =

 $\frac{d^{\frac{1}{2}}}{d^{\frac{1}{2}}} = \left(\frac{1}{\frac{1}{2} - \frac{1}{2}}\right) \epsilon_1 \epsilon_2^{\frac{1}{2}} + \epsilon_2^{\frac{1}{2}} \approx$

TIN, +4 TYTES

00 A. + 1,14137 + 4,137 + 4,4 =

 $(m_{++}+\frac{1}{2}i_{++})\mapsto (i+\frac{1}{2}i_{++}m)$

1 Act + 7811 + 1 A E

 $= \lambda_1 \circ + \frac{\eta_f}{100} \times \frac{\eta_f}{100} \times \frac{\eta_f}{100} \times \frac{\eta_f}{100} \xrightarrow{\mathcal{F}} \frac{\eta_f}{100} \xrightarrow{\mathcal{F}} \frac{\eta_f}{100}$

Q ... 4 4,47 + 4,47 + 4,7 =

 $\left[\varpi_{m_1} + \frac{1}{q} + \frac{1}{q} + \frac{1}{q} + \frac{1}{q} \right] \cdot q =$

 $\tilde{\psi} = X_{A}$ $= \ell_1 \circ \left(\frac{\ell}{\ell - \frac{\ell}{2}}\right) \circ \ell_2 =$

· 77 ... 15 45.45.

 $\left(m_{eve} + \frac{f_{t+1}}{2} + \frac{f_{t+1}}{2} + \frac{f_{t+1}}{2} + f_{t+1}^{-1}f_{t+1}^{-1}\right) = 0$

 $\frac{H}{A} = e^{\frac{1}{2}} \frac{d}{dt} \quad \forall \quad \frac{H}{A} = \left(\frac{1}{1 - \frac{1}{2}}\right) e^{\frac{1}{2}} = \frac{1}{A}$

40 - 4	15 (t) + 1,14 + 1,1 + 1,15 (t)
	maria Processin in the state of the
- इति इ	$\equiv \ f_1 + f_2\ _{L^2(\frac{1}{2})} \leq \frac{1}{ f_1 } \frac{1}{ f_2 } \leq \frac{1}{ f_2 } \frac{1}{ f_2 }$

10-21

13

. 1040404 m. , 104 (V)

 $\left(m_{i+1} + \frac{1}{\delta_{i+1}} + \frac{1}{\delta_{i+1}} + \frac{1}{\delta_{i+1}} + 1 \right) *_i \circ \emptyset + *_i \circ_{i+1} :$

 $f_{ij} = \sqrt{\frac{10}{100}} f_{ij} \approx \frac{\sqrt{10}}{100} f_{ij}$ $= f_{i,k} + \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}} \right) = \frac{f^{\frac{2}{2}}}{2}$

3,=1, " = ... Y x (F., I) = ... Y T. T. I I'd and

1-4/1 = 4+

 $\frac{1}{\log \log n} \log \log n \log n \log n \leq \frac{\left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2}\right)\right) \log n}{1 + \left(\frac{1}{2} - \frac{1}{2}\right)} = \sqrt{n} \iff$

VIO P THE TOTAL MO 1- 3 7-1-0

÷ @

(1-1)(1+12)=(1a1)(0

1-(4-4)(4-4) 2-(4-4)(4-4) 1-(4-4)(4-4)(4-1)

(mitteres) area

 $\frac{d}{dA} = \frac{\frac{2}{4} - d}{4} = \frac{A - d}{4} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}$

-- J- (S)

(1- "4)| = u=

touring a Tria Triagraph of

 $[1-m+1]^{\frac{1}{2}}[a] = \{1-m+m+m+1\}^{\frac{1}{2}}[a] = a$ $(1) = \frac{(1-U)}{4} \cup (\sqrt{y})^{2} (1) = 0$ (.. (\frac{1}{2} (\frac{1}{2} (\frac{1}{2} (\frac{1}{2})))))) () () () (T) 1- " - E n((1-2) x (1-4)) = n(x) (1-v)wathmo(1-wall) a 1 00 = 1 ((1-4) 0 p 4) = 4 (1 p 1) 1. € لولاً ، السمان عي = س ع عي = س ع س س آلوسط**ان الهند**سيان من بري س بر £ من بن به من س⁷ = ۱۸ (1) = 1A=(++1)+U-كالياً ؛ الوسطان الحسابيان من + الراب اس ــ و 77 × 5 → 00 + 5 + 6-Water of the con-ر سن به سن س^۲ ۳۷۰

الا ﴿ ﴿ عُ إِنَّ الْمُعَالِمَةُ مُعْدِسِيةٍ

(ادا به ایآه ایاته این) گن= (ایراه ایروایه ایروایاته ...)

= (أو أيا أو أيا + أو عا والوغ + الوغ عا ...)

متتابعة عسابية أساسها لروس

لان عن مو - عن حمقدار دايت لوي م

(materials)= 2

 $\Delta_{i,j} = \frac{\{(y^{(i)} - t)\}}{(x - t)}$

 $W_{j_{1}} = \forall_{1}(a = \frac{(j_{-10}, a)j_{1}}{j_{-10}} = y_{0} \Rightarrow \infty$

عرة (لويانا لويانه) الويان ١٠٠١ الويان ٢٠٠ m)

 $[\tau t + \frac{1}{7}, \mu t] \frac{\tau s}{C} = [s(t-u) + |t|] \frac{U}{T} = \mu a$

TTO,6 = To + % JITE =

11 = H= - H= (1)

 $H = \frac{(1-\frac{1}{2}\sqrt{t})!}{(1-\frac{1}{2}\sqrt{t})!} - \frac{(1-\frac{1}{2}\sqrt{t})!}{(1-\frac{1}{2}\sqrt{t})!}$

T) = (1-17/) = (1-12)1

Hall MAI

 $\frac{1-v}{(1-\frac{1}{2}v)!} = v = \mathbb{Q} = \frac{1-v}{(1-\frac{1}{2}v)!!} \times 1$

 $\mu_{\ell} = \frac{h_{\ell}}{\hbar \ell} \stackrel{h_{\ell}}{=} \frac{J_{\ell}}{\hbar \ell} \stackrel{h_{\ell}}{=} \frac{J - h_{\ell}}{\left(f = J_{\ell} h_{\ell} \right) \frac{1}{\ell}}$

D- 1=1 - 1=24

Surfet a tend to the contract of the surfaces

THE THAT THE WA

 $\frac{\|\mathbf{x}-\mathbf{u}_{\mathbf{y}}\|_{\mathbf{T}}}{1-\mathbf{y}}=\mathbf{a}\mathbf{h}\cdot\mathbf{c}=\frac{\|\mathbf{x}-\mathbf{u}_{\mathbf{y}}\|_{\mathbf{T}}}{1-\mathbf{y}}=\mathbf{u}_{\mathbf{y}}\mathbf{a}.$

س 🕲 ير" ۾ ١٣٨ ۾ 😅 بالتموينس في 🕲

A1="-"T= & : |+ 14 = 1- 1T= & @ Satistate Contract Vet+1-hed $2444i = \frac{4-i}{4.444.444-10.} = \frac{5-i}{5.5-i} = \frac{5-i}{5.5-i}$ $6\lambda = \frac{1}{t-1} = 6\lambda = -4\lambda$ (+ (+ +) 1 x = (... WEL **1** May 17 + 17 x (() - 1) 64 A 1=2-1-01 -- 1 + 1 t - 1 1 4 t *=(1- UT)(1-UT) مالتدویش فی 🛈 **第1 中华人** भ= के साहर 👣 عدد طرق دخول الجامعة = ٢ طرق عدد طرق الخروج من الجامعة 🖛 الطريقة . عدد طرق الاختيار ۲۰ تر ۲۰ تا طرق 🔻 عدد طبق أشاتيار الرجية 🖛 ٣ مثرق ميد طرق المتيار الشروب = ٣ عليق مده طرق ۱۳ هنچار = ۳ بد ۳ = ۱ طرق عند طرق اختيار المعلقار = ١ طرق عدد طرق اختبار السلاطات تا باطرق عدد طرق اختیار الشروبات ۲۰ طرق عدد طرق اختبار الوجية ٣ ٣ ٤ ٢ ٢ ٢٠ ٢٠ طربنية 🗨 عدد طوق اختیار رقم (۲ جاد 🗈 ۲ طریقة عدد مارق أختبار رقم المشران * ٢ ماريد: عدد طرق اختیار رام الثات = ۲ عارق مبد الطرق المتكفة عا؟ # T o T o T متربقة 100 4.10 37# (T) tetatat (D(V) TETRLE THENE WOOD THYE

THYMIG

بالشويش في 🛈 😁 ۱۳۸= ۲۳ Amed Vet-e $\left(\frac{1}{n}, \left(\frac{\tau}{n}\right), \left(\frac{\tau}{n}\right), \left(\frac{\tau}{n}\right)\right)$ $\frac{1}{\sqrt{\left(\frac{L}{M_{1}}\right)-1}} = \frac{1}{\sqrt{-1}} = \frac{1}{\sqrt{-1}} = \frac{1}{\sqrt{-1}} = \frac{1}{\sqrt{1+\frac{1}{M_{1}}}} $\frac{111}{111} = \frac{111}{111} \times 11 = \frac{11}{11} = \frac{11}{1$ (التناييدين (إداريداي"، ...) $\left(\min \{ \frac{1}{1-\epsilon} \in \frac{1}{1-\epsilon} \in \frac{1}{1-\epsilon} \} \right)$ $\frac{1-\alpha^{\frac{1}{2}}\frac{1}{4}}{2}=\frac{1-\alpha^{\frac{1}{2}}\frac{1}{4}}{2}\times\frac{\frac{1}{2}}{\alpha^{\frac{1}{2}}}\times\frac{\frac{1}{2}-\frac{1}{2}}{\alpha^{\frac{1}{2}}}\times\frac{\frac{1-\alpha^{\frac{1}{2}}}{2}}{2}\times\frac{1-\alpha^{\frac{1}{2}}}{2}\times\frac{1-\alpha^{\frac$ (--+++-)@ $\frac{\frac{1}{2}-\frac{1}{2}}{a_{1}\left(\frac{1}{2}\right)-\frac{1}{2}}=\frac{\frac{1}{2}-\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}}=\frac{\frac{1}{2}-\frac{1}{2}}{\left(\frac{1}{2}-\frac{1}{2}\right)\frac{1}{2}}=\frac{1}{2}$ (i) $\left[\Psi \left(\frac{1}{\Psi} \right) - 1 \right] T =$ $\frac{\left(\frac{1}{2}-\right)-1}{\left(\frac{1}{2}-\right)-1}=\sqrt{2}$ $u = x + \frac{1}{T} = \left[\frac{u(\frac{1}{T}) - 1}{T} \right] + x + \frac{1}{T} = \frac{u(\frac{1}{T} - \frac{1}{T} - 1)}{T} = \frac{u(\frac{1}{T} - 1)}{T} = \frac{u(\frac{1}$ 1-0(1)=1-0 Flage 1-0[+ -]=1-0" ," [= ..." 1==1-0(1-)=0E على مهدأ العد و (۱۹۲۱ه (۲۷) ut=_2®

THTH(X)

te ①

r- 🛈

- - کا مدید المشیق = و ۱۱ کا ۱۹ تا ۱۹ مدریشت
- 🏖 عند البارق 🗚 🛪 ۲ به ۱۲۰۵۳ مارپوند

عدد المطرق = 1 × 4 × 1 × 1 = 1 مطروقة

التانية الثالثة الرابعة الخامسة التانية الثالثة الرابعة الخامسة

مند الطرق ۱۳۰ ت ۱۳ ت ۲ ت ۲ ۲ ۲ ۲ ماریدی

- الله العلم (عا × 1 × 1 × 1 × 1 × 1 ماريشا
 - الأعلى ÷ 1 × 1 × 1 × 1 × 1 ماريته العلى ÷ 1 × 1 × 1 × 1 ماريته
- المناسل و المناسلة و المناسلة و المناسلة و المناسلة والمناسلة و المناسلة والمناسلة وال
- ۱۲۰۵ مدانطرق ده × ۲ × ۲ × ۲ × ۱۲۰۵ طریقة
 - سد طرق اختيار الحروف الأيجمية * ۲۸ = ۲۲ = ۲۸ طرق لا

هده طرق اختيار الأروام

X A X V = 1-4 طريقة

هده طرق الاختيار الكليد

March 44-1571 = Bill # 54505 =

W عبد البطاقات المكن إنتاجها

 $250 k_{\rm p} \log n = \log k + \log k + 2 \log n$

- 🖎 عدد اختیارات الطالب المتعدد ت ۴ ت ۲۸ تا ۱۸۰۳ شریعه
 - که مدر طرق اشتهار الداده النانشات ۳ مترق حیث ۲ به کی اشتهار الداد ۹

عدد طرق اللتهار المائلة الأولى ≃ 7 طرق

عدد طوق اختيار المائة الثانية = ٣ سريحة

عدد طرق الاختيار = 7 × 7 × 7 = 14 طريقة

🔞 عدد طرق الاختيار =

الله على المالات لماري لوزيع البرامين ، و 4 وهي: عدد الحالات النبي يمكن أن لوزع بها العدمين ، 4 4 وفي الخالات الأربية هي ،

irei	مثات	عشيرات	أماي	
			A	0
	4		۸	① ①
		٨	4	•
	h	A		0
	A		-1	•
<u> </u>	A	,		0
			1	(1)
۸		,		(3)
_ ^	1	1		3

وهذب وضع الرائمون تصبح الشلاة التالية لها حل اللتهار & أوقام ومد اختيار الرقمين - 4 % والخانة الأخيرة لها حق المتيار لا أرقام بمد حلق 7 حانات ويقون عند الأرقام المتنفة اللى يمكن تكوينها

4+1=(Y × A × 5 = 5)4=

🗺 في الدولاة الأولى = ٦ اختيارات

هي الدخالة الجانية $\mathbf{r}=\mathbf{r}$ أحتيارات طفيف

والله لأن لر متنس في الطائقة الأولى والم فردي فلطنتار والم زوجي والمكس

> هي الخالة الذائلة :: 7 أختيار من الأوقام المعالفة للحالة الثانية في الخالة الرابعة :: 12 ختيار من الأوقام الخالية للحالة (12122

في الجنزة الخامسة = اختيار واحد فلس

عبد الطرق ۲ × ۲ × ۲ × ۲ × ۱ × ۲ × ۲ طریحه

الخانة الأولى = 6 مارق

الخانة الرامية هالا يؤرق

الأن العدد زومي (۱۳ متيارت ۱۳۵۰ و ۲۵ و ۸) المنادة الدائية = ۲۰ طرق (۱۰ المنادة الشاشة = ۲۰ طرق

كأن الحمد يجب أن يكون أقل من ٢٠٠٠

فالأرقام للمتملذهنية كالأكالة كالأكالة

ومنتشي من الإهداد العدد ١٠٠٠ لأقه ليس شيمن الفترة المبددة عدم الطرق المكنة = 8 × 10 × 10 × 10 + 1444 طريدة

کامید الملول ۳ ال و ۲ m m m a fe و المورود کاملول ۳ المورود کاملول ۳ المورود کاملول ۳ المورود کاملول ۲ سال ۱۹	मुक्का	_bush ug	کنن خضر	(4)04164)
احد عدرات		A	· ①	ال (ز) فراسية
عدد الاختينوات ال		- 	• 🛈	11 (€)
انتا انتا مدم الطرق م ۲ × ۲ × بغریق ۲	21	أزلام مبعث	متعودة من أريمة	Auchteus (B)
ک مده المطرق = " ان م = + × + × + × + × + × + مدرود (13=1 × 7 ×	
		490	_	نفرنس ان ال
المدالطرق ١٠٠ × ٢ × ٢ × ٢ × ٢ ماريدد			_	Burney Street
ک مدد المثری = ۱ × ^ا ل ب = ۱ × ۲ × ۲ × ۲ × ۱۱ = ۱۱ عربید:		•		ى خورىدە ئادىدى ئازىمۇ ئايىدىي
$X = \{1, 1\} \times \{1, 2\} \times \{1, 3\} \times \{1, 4\}		(16 = 0 - 0 - 1
۳۲ مند المارق = ال _ب × ⁷ ل _ب = 0 × 7 = 14 مارود 2		,	_	بالتعويش س (
$(J^1 \times {}_{i_1})_i \times {}_{i_2})_i \times {}_{i_3}$				r = (+)y= 5
= ۸ به ۷ به £ = ۲۷۴ متریجید			351	e Tomas de Ma
$40 \times 10^{-3} \times 10^{-3} \times 10^{-3} \times 10^{-3} \times 10^{-3}$				partition Type A
© تعد طرق اختیار مرف واحد = ال عدد طرق				·)(15-u=)
مداختیار حرفین مختصین $= {}^{0}$ ل و	ويطر في 🛈		€ سربت مادات	Magazia Tanana
Lagar Property	17 = 4 -	As at Cha		را هي هدوا سرا 1-امديان ميا (
الله عدد الطرق = (L = 1 = ۲ × ۲ × (= ۲ طریعید	{***} ®	10	111 T	11 O 🖸
##1-1 ® #11-#17- #-4-® W	111 @	_	¥®	(₹}⊕
a}=,J* ❤	T (3)		V (S)	200
۵ الایام <u>(د) او داو</u> دوستر		17: 🐨	4.00	1⊕_
٠٠٠ - ١١-١ - ١١-١٠ - ١١٠٠٠	114 ①	ተነው	(۲) منفر	100
Winter at a Leon The .J. O	4 🔞	10	73	WT (D)
TETETETETE JUG	144.00	41 @	4.0	• (0)
®™Ly= T _{Ly} =THTH##################################	, ([a)		44.0	11 🗑
#=1+1=,J ¹ , + ¹ L,=++1=#	-	>	ر مکان	0
® *L, + *L,= * + * = ¥= ≥ F	میاد خازی3			
A+ 1= 10,0 A		>	ــــــ فراغ	\rightarrow
######################################	. میاه خازید			
		>	2m /	
100 100 11 00	. میاد شازیلا	3	۱=1 تا طريق	عدم العارق = ٢
100 = 11				غدد الطرق «» <u>ا</u>
			_	

17.= _ Ju @	N=9 (1) (N)
1x7x7xtxe=17:=u	إمادو «منقر ألا يه=1
each each	The wife
****** **** ****	THE SETERIE OF
T=4A +J*=,J*A	<u> </u>
	l, teo
<u>₹+0 =₹+0 </u> ∀®	1 17.
<u>T+∪ (T+∪)=T+∪ </u> Y i=∪∴	The Internet
Y4= <u>y (++v)</u> ⊕	1 t. 21 - 21 - 21 - 21 - 21 - 21 - 21 - 21
1×1×1×1=1(=1+0]	* A=0., %=1-0
***** (****** (!=\+o)	1
# = W (1+v)(1+v) : # = 1+v ()	*= <u>m (++n)</u> . *= <u>m</u>
	1=00 ± 1+00
#%=(%+u)(%+u)	
-=(1-0)(1+0)	17 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
	\$₹ = (1 + φ} φ ∴
۱=υ ((مرفوش) ۱=υ Δ	= (1-0) (V+U) ∴ +=11-0+10
110 = 1 + 1 @	ن = − ∀ (مرفوش) ۱۰ ب = ۲
11 = 1 + 1 U (1+u) + U	And the Andready and Andready
78 1+0 " Té = 1+1+0 Té = 0 (1+0)	₹± u .,
forest intermediates	• والالتي = ۱۳۲۱ مالا يا ۱۳۵۵ مالا عالم الالهام الال
Feet delta	THUA
(بخبربالطرقين×٢) (عاربالطرقين×٢)	AstahayJu, VhayJu 🐼
terminate of the tent of	الب⇒اللي المناف
feet teeta <u>fieoti</u> a	" " " " " " " " " " " " " " " " " " "
ู่เปี่ยู่เป็น Yxix#eVe _j เป [*] โป	37=u/. 34=7+u
$\forall x \forall x \forall x \in \forall t = \underline{\sigma} \land \qquad \forall x \neq y \land $	1=,J"+,J" (D
4-04 <u>4] - 0</u> }	T=uA (=u+1
1= <u>1</u> = <u>7-1</u> = <u>y - y</u>	⊕ دل + دل + دل ساه
T 1V=-7F== X 1 X 7 X 7 X 7	
*= # #	#== (1-y) + y + 1
14: = 10 to 14: = 100	
PROA	Year (4e ³ u
1= <u>1</u> = <u>0-0</u> = <u>y-0</u> 1.	

8 .	a-= u = 10 + u + 1
کی منب الطرق ۵۰ الران پر کان پر ۱۹۰ بو ۱۹۰ بر ۱۹۰ میرودی	(f=1-0-4)
ا عدد الطبق = ۱۱۷۲۰ = ۱۱۷۲۰ × ۲۵ = ۱۲۷۲۰ طریقی	
الأحدد الطرق = " ال عدد الطرق = " الأمام = " الأمام = " الأمام على الأمام = " الأمام على الأمام = " الأمام على الأمام = "	(V) = (V) = (V)
الله عدم الطرق = أن ع + 1 × 7 = 1 طريقة	(S = 7+=20+17-
17: = 7 0° : 17: = 10° 17	4 17+1
Advar Li Hendan	744411=14+14
tradition of the Antaherophy in	144 = 144 = 144 L
	(f+) signif
the state of the state of	(fac)
At = y J - ot At = y D or Y	بالتعويض من 🏵 في 🛈
At a y	y tegen de
ert = TAt = Ji-ut	العالم التعريض في (٢٥ تاكتوريض في (٢٠٠٠)
pullagillands yakadaqulands,	#= T X = = [++
esul headly test	المنابعة من (۱۳۹۱ ع ۱۳۹۱ مس.)
\a_i] = <u>0 - 0 " 0 " 0 " 0 0 0 -</u>	10 10 10 10
11=,0°% 11=,0°®	O # O # O
,J"	
$q = \frac{q J^{\prime\prime}}{2J}$	-= AV ∪-10A
VEUX TOPETON SEVERO	i= (1(+ψ)(T1 − U)
1=,0*=,0*=,0*	اله ۲۰ مرفوشي) (مرفوشي) د ۲۰ مرفوشي)
$y = \frac{\sqrt{f'}}{2}$ $y = \frac{\sqrt{f'}}{2}$ $y = \sqrt{f'}$ $y = \sqrt{f'}$ $y = \sqrt{f'}$	() عبد الطرق = ۱۹۰ مريت:
and the same of th	440. Ø 16 Ø V ① 4
Yes A Angle of the	y ③ ∧ Ø ∀ ①
as a final in the final of	A 30 A 40 10
**************************************	m @ (-11) @_
	10 0 DO
pulha pulation set x Amplate	4 (3) 4 (3) H (3)
AROUTE PRO AROUT	10 10
THINTE TE T-FIG (-U) A FEUT	74 M Y W A W
Tto = 100 is	٧ ك عدد الجموعات الجزئية التنالية = النهادة الجموعات الجزئية التنالية = النهادة الجزئية التنالية =
$\mathbf{Y} = \mathbf{Y} = \mathbf{Y} + \mathbf{Y} = \mathbf{Y} + \mathbf{Y} + \mathbf{Y} = \mathbf{Y} + \mathbf{Y} + \mathbf{Y} = \mathbf{Y} + $	 ٣٠ عند الجمومات الجزئية الثلاثية = "لهي = ٢٠
The grant Table	$\Delta = -17 = -19 = $

1	
VARION TARTHUA	And the state of t
tke _{te o} o™u. o=,luda	10 = 0
TA = TJ AT AT TA = TA	الر = 1000 من المال = 100 المال = 100 المال ا
V + Y Ly = AF LY A Y Y Ly = A = V	TETRITICAL
eagrament Author (JAH)	(± √).
**************************************	$Tw = \frac{\partial H_{d}}{\partial H_{d}} = ^{d} \Omega_{dv} = ^{q} \Omega_{dv} = ^{q} \Omega_{dv} = ^{q} \Omega_{dv} \cdot r^{s}$
(1) - 4 = 0 - 0 - 0 - 0 + 0 * 0 - 0 = 4 - (1)	، ب چ بي
Alter to the total of the	**************************************
1915+=€ Vie= (June in	$\frac{U}{T \cdot T - U} = \frac{1 \cdot U}{U \cdot 1 \cdot V} \cdot$
$(7) = 17 = 0.0 + 0.0 - 2.$ $(3)^{17} = \frac{1}{2} J^{-0.0} + 0.0 - 2.$	T - 0 Y = 1 (1+0)
الم	1=0/ h=1+0/ 1×0/2 =1+0/4
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	471 + - V" (T)
<u>v</u> J ^v ≈ _v ∪ ^v ② 1√" ≈,∪" ④	$\omega \frac{q_1}{\tau} = \frac{(\tau - \omega)(\tau - \omega)\omega}{\tau \pi \tau \pi \tau}$
() () () () () () (() () () ($+ \pi T A_1 + G T - T G A_2 $ $3AT = T + G T - T G$
	r = (17 + ω)(10 − ω)
¥ ساواس -ص = <u>سن -سن</u>	۰ ت = ۱۰ ت = ۱۲ (مرتوش)
	7; Y= , U ^{3 - U} , U ³ (7)
(a) = 1/2 (b) + 0, = 1/2 (c) (d)	$\frac{\psi}{T} = \frac{1 + \tau \times T}{(1 - \omega)(T - \omega)(T - \omega)} \times \frac{(T - \omega)(1 - \omega)\omega}{1 \times T \times T}$
Intain () Anain ($\frac{7}{7} = \frac{10 - 70}{100 - 70}$
	Yu*-Fig +1A=fg*-Tg
@ The - 400 @ The - 400.	valid + off - Tolk A
الله المرابع ا	+=(∀= u)(₹₹~ u +) ∴
	ن = الله (مرفوش) الأن ن 5 اس. الله عليه ∀ الله عليه الأن ن 5 اس. الله عليه الأن ن 5 اس. الله عليه الأن الله عليه عليه الله عليه عليه الله عليه عليه عليه عليه عليه عليه الله عليه عليه عليه عليه عليه عليه عليه ع
"J _{1 + 0} + "J ₁₀ = "J ₁₀ + 4".	$ \Psi = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ $ \Psi = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = $
(1-v)(1-v)ut (1-v)(1-v)(1-v)	
1+++1=(1-4)1	1V=0+p+p+p+p+
teun teunt ut	ي" + 5 ي − 17 هه (ب + 2)[ب − 7) هه د = − 2 (مرفوشن) 5 د ي = 7
	Um y di empire la julius 🗹
	TA=,UT+U: +=Vlain

Amigustant " OA + " OA = " OA 4 3 1 44 + 400 = 4 $\frac{1+h_1-\omega}{h_1}+\frac{q}{1+q-\omega}=T$ (1-u)(A-u)+hxt=(A-u)+ We will a To a leastless of the **(TF * U)(1(= U) The State of the S $\frac{\frac{d}{dt}}{\frac{d^{2}t^{2}}{dt^{2}}} = \frac{\frac{d^{2}t^{2}}{dt^{2}} \frac{d^{2}t^{2}}{dt^{2}} + \frac{d^{2}t^{2}}{dt^{2}} \frac{d^{2}t^{2}}{dt^{2}} = \frac{\frac{d^{2}t^{2}}{dt^{2}} \frac{d^{2}t^{2}}{dt^{2}}}{dt^{2}} = \frac{\frac{d^{2}t^{2}}{dt^{2}} \frac{d^{2}t^{2}}{dt^{2}}}{dt^{2}} = \frac{d^{2}t^{2}}{dt^{2}} \frac{d^{2}t^{2}}{dt^{2}} = \frac{d^{$ $\frac{A}{71} = \frac{\sqrt{4}}{\sqrt{4}} = \frac{1 + \frac{1 - \sqrt{4}}{4}}{\frac{1}{\sqrt{4}} + 1} = \frac{1 + \frac{1 - \sqrt{4}}{4}}{\frac{1 - \sqrt{4}}{4}} = \frac{1 + \frac{1 - \sqrt{4}}{4}}{\frac{\sqrt{4}}{4}} + 1$ $\frac{A}{71} = \frac{\sqrt{4 + \sqrt{4}}}{\sqrt{4}} = \frac{1 + \frac{1 - \sqrt{4}}{4}}{\sqrt{4}} + 1$ $\frac{A}{72} = \frac{\sqrt{4 + \sqrt{-1}}\sqrt{4}}{48 + \sqrt{4}} \quad \Longleftrightarrow \quad \frac{A}{72} = \frac{\sqrt{4 + \sqrt{1 + \sqrt{2}}}\sqrt{4}}{48 + \sqrt{4}}$ $\frac{\psi_{V}^{T} + h_{V}^{T}}{h_{V} + 0h} = \frac{h_{V}^{T} + h_{V}^{T}}{T_{V} + 0h} = \frac{h_{V}^{T} + h_{V}^{T}}{T_{V} + 0h} = \frac{h_{V}^{T}}{h_{V}^{T}}$ プィナップアニップルナ[®]ッV andrewyth a Tyly ·=(*- u)(*- u u r) $v = \frac{T_{1}}{V} \times Q$ Tuylo

1-7-0 7 : 1 2 0 104 = 0 10 0 (F) $\frac{1+\Delta_{i}}{\Omega} = \frac{\frac{1+\Omega_{i}}{1+\Delta-\Omega_{i}}}{\frac{1+\Delta_{i}}{1+\Omega_{i}}} = \frac{\frac{1+\Delta_{i}}{1+\Omega_{i}}}{\frac{1+\Delta_{i}}{1+\Omega_{i}}} = \frac{1+\Delta_{i}}{1+\Omega_{i}}$, Julauxta uvxt® And and 1 · 2014 · 202 1 = 2-0 1-2 x 1-0 0 FTE U S The State of the S $\frac{1}{6} = \frac{1 \cdot \sqrt{u^{1-\alpha}}}{1 \cdot \sqrt{u^{1-\alpha}}}$ 1 - 1-0 1 - 1-0 1 - 1-0 1 - 1-0 1-0 $\frac{q}{1} = \frac{\sqrt{-|\psi|}}{\sqrt{-|\psi|}} = \frac{\frac{q}{1-|\psi|}(1-|\psi|)}{\sqrt{-|\psi|}}$ $\frac{q}{q} \approx \frac{1-\sqrt{q}}{1-\sqrt{q}} \qquad \Longleftrightarrow \qquad$ 1-yAut-yt NEOL teatre enve e 1-30+2-0+® $1 > \frac{1 + \sqrt{-1}}{\sigma} \Leftrightarrow 1 > \frac{\sqrt{\sigma^2}}{\sigma^2} \wedge$ 42349-1 # < V. 1147 160 **しきがきたし** SICHICALVILLE, 7=00 ev.

الله المردن أن عدد عناسير المجموعة عنده ها المحاولة عن المجموعة عنده ها المحاولة عن المجموعة عنده ها المحاولة عن المجموعة عناسير عليه ها المحاولة عن المجموعة عناسير المجموعة عناسير المجموعة عناسي عناسي المجموعة عناسي عناسي المجموعة عناسي ع

 UI
 VIV-UI
 $\begin{array}{c} a + \phi \gamma + {}^{2} \phi = {}_{1} \phi^{2} + {}_{2} \phi^{2} & \\ (1 + \phi)(a + \phi) = \frac{(1 + \phi)\phi}{2\pi \gamma} + \frac{(1 + \phi)(1 + \phi)\phi}{2\pi \gamma \pi^{2}} \\ (1 + \phi)(a + \phi) = \left(1 + \frac{2 + \phi}{\gamma}\right) \frac{(1 + \phi)\phi}{\gamma} \\ (1 + \phi)(a + \phi) = \left(\frac{T + T + \phi}{\gamma}\right) \frac{(1 + \phi)\phi}{\gamma} \\ (1 + \phi)(a + \phi) = \frac{(1 + \phi)}{\gamma} = \frac{(1 + \phi)\phi}{\gamma} \\ (1 + \phi)(a + \phi) = \frac{(1 + \phi)}{\gamma} = \frac{(1 + \phi)\phi}{\gamma} \\ \bullet = T + \phi^{2} \phi = 0 \\ \bullet = T + \phi^{2}$

 $\begin{aligned} & \mathbf{I}_{1}^{\dagger} \mathbf{z} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}_{1}^{\dagger} \mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}} \\ & \mathbf{v}^{\dagger} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}} \\ & \mathbf{v}^{\dagger} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger}} \\ & \mathbf{v}^{\dagger} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger}} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger}} \\ & \mathbf{v}^{\dagger} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger}} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger}} \\ & \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger}} = \frac{\mathbf{v}^{\dagger} + \mathbf{v}^{\dagger}}{\mathbf{v}^{\dagger}} \\ & \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} \\ & \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} \\ & \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} \\ & \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} = \mathbf{v}^{\dagger} \\ & \mathbf{v}^{\dagger} = \mathbf{v}^$

U = 1-x|y-u| = 1-x|x|x-u|

U = 1-x|y-u| = 1-x|x|x-u|

$\frac{(\omega_1) + (\omega_2) + (\omega_3)}{\omega_3} = (\omega_3) + (\omega_3)$
٣٠٠٢ (سرياه) (سرياه) ١٠٠٦ ما ٢٠٠٢ من د
<u> ۲-س+۲۵س"-۲-س۵۱ -۲-س+۰۰۰</u>
. # = 1 m ₁ = 1,
$\xi_{i,\uparrow} = \pm i_{j} \xi = \Psi \times \Psi = \Psi = (i,\uparrow) \xi^{i}$
$\lim_{k\to\infty} \frac{k}{k} = \frac{k}{k} = \frac{k}{k} = \frac{1}{k} (7 - 7m_0 - 6.)$
E-=3-4=2-4=
) م (فر) <u>د (س + فر) - د (س)</u>
(4- "-1-(-u-1-1-)
ه <u>. سن "۱۳۰ سن" و ۱۳۰ سي في "۱۶۰ " - ۱</u> مسن "۱۵
عس فره ٢ س و " با و "
7 (4) = T - 1 - T - (4) (4)
$f_{\{1,1\}} + c_1 f \approx f \approx f + f(f) f = (c_1 f) f$
98,98 m 4,41 + 45 + 38 =
معلل النفيرة لهسام (و)
" (Tony" + 4 w & + 2") = 4 my
$\gamma \gamma = \gamma (\gamma) \gamma = \gamma $ and $\gamma \gamma = \gamma (\gamma) \gamma = \gamma \gamma$
(a) = (a) (b)
<u> </u>
$\frac{g_{-\omega+\omega-\omega}}{g(g+\omega-\omega)} = \frac{\frac{1}{\omega} - \frac{1}{g+\omega-}}{g} = (g) \in \mathbb{R}$
$\frac{1-\frac{1}{m_0(m_0+g_0)}}{m_0(m_0+g_0)} \wedge \operatorname{and}_{\mathrm{Disag}} = \frac{1-\frac{1}{m_0}}{m_0(m_0+g_0)} \wedge (g_0)$
$\frac{1}{T_{ijk}} = m \frac{1-\frac{1-\epsilon}{(a+ijk)_{ijk}} \frac{1-\epsilon}{m \beta} =$
$\frac{1}{2} = \frac{1}{2} \operatorname{const}_{\mathcal{C}} \operatorname{const}_{\mathcal{C}} = \frac{1}{2} \operatorname{const}_{\mathcal{C}}$
﴿ ﴿ فَ اللَّهُ وَ اللَّهُ وَ اللَّهُ مِنْ اللَّهُ عَلَى اللّهُ عَلَى اللَّهُ عَلَّى اللَّهُ عَلَى اللَّهُ عَلَّهُ عَلَى اللَّهُ عَلَى اللَّهُ عَلَى اللَّهُ عَلَى اللَّهُ عَلَى اللَّهُ عَلَى اللَّهُ عَلَّا عَلَى اللَّهُ عَلَّهُ عَلَى اللَّهُ عَلَّهُ عَلَّ عَلَّا عَلَى اللَّهُ عَلَّى اللَّهُ عَلَّهُ عَلَّا عَل
1-1-1-1-1
$\frac{g_{-}}{(g+g_{-})_{g,m}} = \frac{g_{-(g,m),g,m}}{(g+g_{-})_{g,m}} =$
(#+p-)(p-==(#))/* (;

		_ ,		
	وڙ، شاريسن ان			
عدل التغير	عني -	(1) 01/10		
#- ®	-,4t 🕙	100		
	كانيا، – فېړه	11 qg 11.		
	1- ①			
	<u> ۱۳۵۱ - ۱۳۵ س)</u>	<u>ا</u> م (د) به د(سر		
	(T-9-T)- T-			
- 41	T+U-T-1-	440-4		
7 - 4				
7=(3)(*	ع معدل التقير د	ε¥=(44)Υ		
(D.A.)	1,11	*,** © ₽ ∀ ©		
W.O	and the same of th	1♥		
[wei]® #®	44 B			
(سره ۹ از سر <u>ه</u>) = د (سره)				
₀ γ′ ₀ (β+ι		=(a)(A		
	474			
	7+3+0+7= <u>37+30+30+7</u> =			
	+7=(#)/4			
(T,) (I) (T,)	فير (علدما لتغير			
		** × T × F		
3=(.	ه تهيا (۲۰۵ منت	معدل التغييرة		
1	س+هر) – ډ(س) ه	·)2=(a) r(v)		
(سري ² + ۳سوره ۱))-1+(-0+0-)++	*(#+ ₁ =)		
(1+10+1+100)-1+(2+0-)++1(2+0-)				
1-رساس	+	## UP #		
	are are to	1+3m2		
	s)(e= (8T+1)			
54z	TOWNS THE			
	(a) ()			
T + ن + T:	=(T+#+u=	4) (**** ±		
Harte Carting	a 🚓 مندران	عتدماس		

 $\frac{q_{-}}{(q_{-})^{1-\beta+(-1)}} = \frac{q_{-}}{(q_{-})^{1-\beta+(-1)}}$ $7 = \pi \frac{7 - \frac{7}{(3-1)(1-1+1)}}{(3-1)(1-1+1)} = -7$ Y-44-7 - 1-44-7 7-0-4-2-0-4 X -2-3-0-4 X -4-3-0-4 (7-w)-7-3+w-1)3 = 7 (4) = (-0+4 (-1) 1 - (Y) + (H+V) + (H+V) = (H+V) + (H+V) = (H+V) + (H+V معدل التنهير سألج (سر) ۱۲ (سر) م ا ت(a)=د(س+a)-د(س) a(x)a = a - a - a + a + a - aمند سردان د (د) در د $v_i V_i v_i V = v_i V_i V_i$ $v_i V = (v_i V_i) \otimes V_i$ ルチオーヤム ヤキ(*)コイ オードル (T) = (#+T) = = (#) . W =(Y+0,)^T+|{T+0,}-Y-1-F|+Y حاشية فأجاها ect. 1+u1-10=d(R) $\frac{\{u\}^{3-(\beta+\psi)3}}{2} = (\beta)\gamma^{2}$ (*+u*- *u)-*+(#+u)*- *(#+u) ... T-07+ 0-1+3T-07- 3+307+ 0 $7-3+47=\frac{37-13+347}{3}=(3)$ عندمالتغیر ب س ب ۱۳۰ (بی ب ۱۳۰

 $\frac{1}{2}$ and litting = $\frac{1}{2}$ المعدل التغير = ما ﴿ $=\frac{7 \cdot \omega - 7 - 7 \cdot \omega - 7 \cdot R_{i} + 7}{(-\omega + R_{i} - 1)(-\omega - 1)(-\omega + R_{i} - 1)} = \frac{-7 \cdot R_{i}}{(-\omega + R_{i} - 1)(-\omega + R_{i} - 1)}$) (e)= [[[] [] [] [] [] " (سر-۱)(سر+لا-۱) مديل التغير = لهستام (ق) ي لوسا (س-4) س+ال − () (س+ال − () $T = \frac{T-1}{T(1-\mu)} = \frac{T}{T}$ $\frac{1}{V} = \pi \frac{V-V}{V(1-V)} = \frac{1}{V}$ معدل التخير ۳ م (ف)= <u>د (سن</u>+ ف) - د (سن) $\left(\omega - \frac{1}{\omega}\right) - \left[(\beta + \omega) - \frac{1}{2+\omega}\right]$ س−فس(س+اد)−(س+اد) س(س+*ل*) $\frac{R(-u)^{2}-Ruy-t)}{Ruy(-u+R)} = \frac{-(uv^{2}+Ruy+t)}{uv(-u+R)}$ معدل التغير $\frac{1}{2}$ (a) $= \frac{-(-v^2+1)}{1}$ عندما ص= 1 جي عمدل التغير ت ((+ 1) الريد (سور) يه الاستاد سيووبه سيدا میں آخبری میں سی ہو اس اسی اسی و میں ہو ہو ۔ و (می دورے) (میرے) $=\frac{-7L}{L(\omega_0+L-1)(\omega_0-\ell)}$ م (الـ)= (س+الـ-۱) (س-۱)

アニア・テナテル キュ(モ)ぐん معدل التغير = أغيباً ع(الا)= أغيباً (إن + الا = T) عالا ب 🛨 ہے ملد ی 🕶 کائیڈ معدل التفور = 1 = 1 = 1 = 1

 1 of $\Pi=0$). But the definite 12 $\stackrel{(4)}{\longrightarrow}$ (v)=(4+v)2 L 1 vπ-1(u+v)π (T (T () () X + X () () پر لهيڪا (۲ π تي ۵ π ۲۵ (۵ π تي

 $A=t=\pi$ مسال التخبر $T=\pm A=t$ π من المبالد المبايدة γ (در γ π π π در π γ

عندها يزدادهاول تسف التعارمي ٢ إلى ٢٠١ ممدل انتفير في ناساسة = ٢ ٦ ١٣ ١٣ ١٣ ٢٢

(۱۱) د (س) = س^ا $\gamma(a) = \frac{(a+b)^{\frac{1}{2}} - (a+b)^{\frac{1}{2}} - (a+b)^{\frac{1}{2}}}{a} = (a+b)^{\frac{1}{2}}$

معدل التعير ع تهيام (ع) = لليالو عام ١٩٠٠

الساحة العلية م = ٥ سن

مثوسها التغير فيءبسا مداكلتية

 $\frac{(a \circ b)^{2} - (a \circ b)^{2}}{4} = (a) \circ b$

ويشيمه حري = 4 1 فا = 7 ره

 $TY_i Y = \frac{{}^{i}Y X Y - {}^{i}(Y_i Y) X Y}{{}^{i}X^{i}} = (A) Y_i X X$ معدل التغيير في الساحة الكلية = تَجَمَّعُ أَمُ (3) $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^2 - 1 \times \frac{1}{2} \right)$

The(An+Th) = 4 a

📆 نفرش أن طول تصف قطر الكوة = س $\pi_{\alpha\beta\gamma}(\Omega_{\zeta}(x) \leq \frac{1}{2} = 0) = \frac{1}{2} \pi_{\alpha\beta\gamma}(\Omega_{\zeta}(x))$ منجم ($\Omega_{\zeta}(x) \leq \frac{1}{2} \pi_{\alpha\beta\gamma}(\Omega_{\zeta}(x))$ T₁:= π 1/2 = (₁:=) a $c (-\omega_{p} + k_{z}) = \frac{1}{2} \pi (-\omega_{p} + k_{z})^{T}$ $\gamma(k) = \frac{e(-\omega_1+k)-k(-\omega_2)}{-1}$ $\gamma(\mathbf{x}) = \frac{\frac{1}{2}\pi(-\omega_{\ell}+\mathbf{x}_{\ell})^{\top} - \frac{1}{2}\pi+\omega^{\top}}{2\pi(\mathbf{x}_{\ell}+\mathbf{x}_{\ell})^{\top} - \frac{1}{2}\pi+\omega^{\top}}$ $\left[\frac{1}{2}\omega v - \frac{1}{2}(B+\sqrt{\omega-1})\right] \times \frac{1}{2} = (B) \cdot \frac{1}{2}$ محدل التقييرات الهسيبا م (فر) $\left[\frac{1}{4^{1/2}} e^{-\frac{\pi}{2}} \left(d + \frac{1}{4^{1/2}} e^{-\frac{\pi}{2}} \right) \right] \mathbb{E} \left[\frac{1}{2^{1/2}} \frac{1}{4^{1/2}} e^{-\frac{\pi}{2}} \right] = 0$ THE RESIDENCE TO THE PERSON عندما طول نعبت كطر الكرة = مري < ٢ .". ممدل التغير = 1 × × × + + × (×) = 111 ^{- -}

📆 نفرش أن طول تصبف قطر الكرة = -------

مساحة سطح الشرة = قـ = د (س) = € % س) (-u₁)=1X =(₁

> $a = (-1, 1 + 0, 1) \times 1 \times (-1, 1 + 0, 1)^T$ ع (م) = <u>د (سی به م) – د (سی با</u>

 $\frac{1}{2} \int_{\mathbb{R}^n} \frac{\pi i - \frac{1}{2} (s + \frac{1}{2}) \pi i}{\pi i - \frac{1}{2} (s + \frac{1}{2}) \pi i} = (s) \frac{1}{2}$

 $\left[\frac{1}{1}\partial^{\mu} - \frac{1}{2}B + B \frac{1}{2}\partial^{\mu} \frac{\gamma + \frac{\gamma}{2}\partial^{\mu}}{2}\right] \times (\pi(B) \gamma)$ $\left[\frac{(B+\sqrt{D+A})B}{B}\right] \approx 1 - \left[\frac{TB+A}{A}\sqrt{D+T}\right] \approx 1 + \left[\frac{TB+A}{A}\right]$ >(a) == x(1 +u,+ e)

> مندما ينفير طول نصف القطر من ٥٠٠ إلى ٦٠٠ Company on A القراصة والمستقرات الأراث الأراث

> > $\pi(t,t) = (\cdot,t+\cdot,0\times t) \pi(t+(x)) \cap A$

د (سن) ۱۲ E e سن¹

سرب - من به يكون ثابنًا لأنه يمثل ميل السنديم - سرب من السنديم الدُّ مِتُوسِمِكُ التَّغِيرِ بِكُونَ كَابِثًا فِي الفَتْرَاتِ] 10 6 7 [6] 6 6 7 [6] 6 6 7 - [

📆 تغريض أن مِثول مضلع المُثِلث هو مِن

ميناسة ﴿ ﴿ مَاسَلُ شَرِبُ عَلَوْلُ طَنِيقِ لا مَا ١٠٣٠ Tu- Pa Pa 10-1-(b)==(4)=(4) "U= T- 1(d+u=) + 1 ['uu-'s+sun'+'un] \frac{\fir}{\fin}}}}}}}{\frac{\fir}\f{\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\ P>= = 平=[1+至×+]平=(1)(

🕥 تفرض أن طول شدع الافت هو ص 🕥

" زراب الثنث التساوى الأضلاع الياس كل منها ١٠"

الأمساحة سطح الثلث

تحاسي شيره طرالا شتمون الاجيب الزاورة المسيرة بياهما

سنامة النائد 🕳 🛊 جرس ۾ س ۾ ما 🗗

" - T = T K" - 1 =

مثومعك الثقير الساحة

$$\frac{\frac{1}{4} \frac{\sqrt{\frac{1}{4}} - \frac{1}{4} (-1) + \frac{\sqrt{\frac{1}{4}}}{4}}{\frac{1}{4} - \frac{1}{4} (-1) + \frac{1}{4}}}{\frac{1}{4} - \frac{\sqrt{\frac{1}{4}}}{4} - \frac{1}{4} - \frac{\sqrt{\frac{1}{4}}}{4} - \frac{1}{4} - \frac{\sqrt{\frac{1}{4}}}{4} - \frac{1}{4} - \frac{\sqrt{\frac{1}{4}}}{4} - \frac{\sqrt{\frac{1}{4}$$

$$\begin{aligned} \mathbb{R} &= (s, \theta) a^{-s} & \stackrel{\uparrow}{=} (s, \theta) \otimes \{s, c, e\}_{\mathcal{A}} \\ & \mathbb{R} &\downarrow \mathbb{R} \otimes (s, \theta) a \in & \stackrel{\uparrow}{=} (s, \theta) \otimes \{s, c, e\}_{\mathcal{A}} \\ & \stackrel{\downarrow}{=} (s, \theta) a \in & \stackrel{\downarrow}{=} (s, \theta)_{\mathcal{A}} \\ & \stackrel{\downarrow}{=} (s, \theta)_{\mathcal{A}} = (s, \theta)_{\mathcal{A}} \\ & \stackrel{\downarrow}{=} (s, \theta)_{\mathcal{A}} = (s, \theta)_{\mathcal{A}} \\ & \stackrel{\downarrow}{=} (s, \theta)_{\mathcal{A}} = (s, \theta)_{\mathcal{A}} \end{aligned}$$

$$\frac{\mathbb{R} &\downarrow \mathbb{C} = (s, \theta)_{\mathcal{A}} = (s, \theta)_{\mathcal{A}} \\ & \mathbb{R} &\downarrow \mathbb{C} = (s, \theta)_{\mathcal{A}} \end{aligned}$$

$$\frac{17}{1+\sqrt{2}} = \ln 2 \left(\sqrt{2}\right) 3 \boxed{10}$$

$$\forall 4 = \frac{17}{1+1} = \ln 2 \left(\frac{1}{1}\right) 3$$

$$1 = 3 - 7 = 3$$

$$A7 = \frac{17}{1+7} = \ln 2 \left(\frac{1}{1}\right) 3$$

$$Y = \frac{17 - 17}{1} = \frac{1}{1} \left(\frac{1}{1}\right) 3 - \left(\frac{1}{1}\right) 3 = \left(\frac{1}{1}\right) 7$$

📆 نفرض أن المُفاعِ المُثنَّدَ = س الأطرل القامدة = 1 سي $\omega = \pi_i \omega + \pi_i \frac{1}{2} = (\omega_i) + \pi_i \omega + \Delta \Delta \omega_i \omega$ ث د(سرن) = س) د(س) = س $^{-1}(A+_{i,j-1})=(-i,j+2_{i,j})^{-1}$ $\gamma(u) = \frac{\lambda(-u_1 + k) - k(-u_2)}{\lambda}$ *(a) = (a) * Total Bed Jones Total $\frac{(A+_{1})_{2}-7)_{1}}{2}=\frac{2}{3}_{1}A+_{2}_{1}+\frac{1}{3}_{2}A+_{3}_{1}+\frac{1}{3}_{2}A+_{3}_{1}A+_{3}_{2}A+_{3}_{3}A+_$ # + port = (#) + #

> عندما بتغير الارتفاع س 6 إلى 1.6 Amount to 1.1=A-A.1=D.7

> > 13,4 = 0,1 + 3 × 7 = (#) / A

💎 خفرس أن مرض نفستطيق 🕶 🧝 🦰

ئ طول المنتطيل = ٢ من ٢٠

 $\mathbf{v} = \mathbf{v} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}$

الساعة= ٢ ص ٢ ١٠٠ معيال التعير في الساعة

ي نهـــا <u>1(س+0)^ -۲س</u>

ر بهستا استا داسته داد استاستا

ير لهما (السرم) د) من يم علامينده

بالمسال التغير في الساعية = 4 = 4 %

حيدي⁷ + 7 من هر + ف⁷ - حي - فر + 1 - حي⁷ かっての サーマニ (タ) み 化化二甲基 ولندا س = ۲ $(\cdot, T -) = {}^{T}(\cdot, T -) + \cdot, T - \cong T \otimes T = (\cdot, T -)_{G}$ $MN \rightarrow \infty$ T) معدل لغير النالد () 4(1+4)-4(1) T (P) € د' (۱) 🕒 وجود 🛈 متعملة 10 10 (1) 100 1-(7) (س) = س+۱ $1 + (-\infty + 0)^{-1} - (-\infty + 0) = (-\infty + 0) + 1$ × س†+۲س ق + ق" - س – ق + ۴ د (س + هـ) - د (س) = (۲- ب + هـ -۱) هـ $(1-3+\omega_1)^2 = \frac{1}{2} \frac{1}{2} = (1-3+\omega_1)^2$ ث د' (س) = ۲س −۱ $\forall x (+1) = (-1)^T - (-1) + p = 0$ ٨ التحملة (- ٧ ٤٧) لقع على مصمي د ميل التماس على التعبيد (ــ اور ب) $a = -1 - (1 - 1) = 1 (-1) - \ell = -4$ 44 "D+=(U+) + [4] د (س+۵)=(س+۵)* +) د (س)= لهيا المساء (س) د (س) = المسا (سرداد) * ۱۰۰ س مرد د نهستا (س + 8) " من" = + س علم النحمالا (١٠٠٠) Y(1) 1(1) < (P) لا (س) ۱۲ ۲س^ا 4 (س د ب د (س د ف) ۲ ۲ (س د ف)^۲ د کارس د ف) + ۲ ه (س)= لهسا ه (س دو س) ر نهيسا (س جو) د عسبه او د ۱ - اسس - اسس

· P · · · P -عندما يتنير طول الصلح من (﴿ إِلَى ﴿ اِ twa t Asomi $Y \propto \frac{\overline{Y}}{2} + A \propto \frac{\overline{Y}}{2} \approx 3 \text{ A. A. The property of The = (1+A) ==== 📆 نغرص ال ملول نعلم المربع مل 🦳 القميا مرقات من ٢ سخ $\{(a_1)_{11} = (a_1 + a_2)_{12} = (a_1)_{12}^{-1} = (a_2)_{12}^{-1} = (a_2)_{12}^{ =\{1+4,\}^{\dagger}-\{1\}^{\dagger}=H+A4,+4,^{\dagger}-H$ ALC: DEL الكافأ خاذات والحستين (a(5 = a)(5 + a) فر + 4 × د ح = − + (مرتوشر) الرجاها بهالرما حيث أن المترل يتحمد أي يزدار ." يزداد طول شنع المطيحة بطعار ا " ، أي يصبح طرل تعاربان (T) على الاشتقاق •m©© WO VI (T) 10 @د(س)=س+ 1 د (س + او) ه س + او + اس و او ا (0-)-(3+0-)-(3)-1 - w - 1 - w - 1 - w = = ال + بر-س- ال - س(-س+اد) ن (فر) = و - _____ فر ____(سروق) (a)-1-(a) $t = \frac{1}{1 - 1} \left(\frac{1}{1 - \frac{1}{1 - 1}} \left(\frac{1}{1 - \frac{1}{1 - 1}} \right) \frac{1}{1 - 1} \right)$ six $u_1 = 0$ $\frac{49}{4} = \frac{1}{144} - 1=$ (د (سن + ف) = (سن + ف) " - (سن + ف) + ا

د (س د فر) دسرا د وس فر د فرا سس ۱۴۵۰ د ا

((-1) | -1 ((-1) | -1 ((-1) ((-1)

ه جن آ ۾ 7 سن هي ۾ هيڙ سام سن سام ر (س جار) - و (س) حس" ها س د د د "ساس ۲۰ د هوسس" جو برسو راس)= لهيا <u>ف(سره) - د(سر)</u> (T-9+0-7) = 1 = 1 = 1 T-U-T=(T-#+U-T) -100 = 100 to (00) 2 (T (4+w)= + w = (4+w) د (س جهر) - د (س) = (س جور) أ = سرةً $(-1)^{2} = \frac{(-1)^{2} - (-1)^{2}}{(-1)^{2}} = (-1)^{2}$ - المسا (مردول) - سراد المساف 1 = + - + = (un)'s عبث س ا ا انه [عبد ا العبد ا العبد ا العبد ا د (س)= لهيا <u>د (س+د)-د (س)</u> 14 m P P 1+ m P m 1+ m P P $] \Rightarrow i \frac{1}{T} - [2i \varphi - \frac{1}{T} + \varphi - \frac{T}{T}] + (\varphi - \frac{T}{T})^{T}$ 1 = (4+ pr) 5% 1 = (J-) = (D 1 - 1 - 1 - (-u-)a - (a+u-)a

(0+ AT+ (-1) A --- 4) -- (-) = نهيسا ۽ س ۽ ٻور ۽ ۽ ميل الماس ۾ ۾' (س) = 1 ۾ 1 ۾ 1 = 1 ج (۲) د (س) ⇔س أ ــ د $\delta = \delta - \frac{1}{2} (\Upsilon) = (\Upsilon) \delta A A$ التحكة (4: 4) 9 للمتحدرة ميل الماس عند (س. ۳) = معدل التغير في د عند (س. ۲) $\frac{(Y)3-(J+Y)3}{2}\left[\frac{1}{12}\right]=(Y)^23$ 4-[0-1(5+Y)] ______ _ _ (-0-1 30 3705 Lags ... $= \lim_{n \to \infty} \frac{d_n(r+k)}{dr} = \lim_{n \to \infty} \frac{d_n(r+k)}{dr} = \frac{d_n(r+k)}{dr}$ ۲= میل المانی ۲۰ (۳) = میل المانی ۲۰ (۳) = میل المانی ۲۰ (۳) = ۲+ ۲× ۲= (۱) م. (۲+ ۲× (۱) م. (۲+ ۲× (۱) م. (۲+ ۲× (1) م. (۲+ ۲× (1) م. (۱) م. (1) م ثراللقطة (١٠٤١) ⊕ التصحي المائة م ميل الماس عند (٣٠٠) «معدل التغير في و هذر (س ١٥) (1)+-(2+1)+ Lat =(1)'s - ميل المان = تهيا [(+(3+1)] - ا "ቴዎ'የቴ ሐፊፊ ¶د (س) = ۱ − 4س ۳ ۲س⁹ $T = {}^{T}(1-)T - (1-)B - 1 = (1-)A$ ے انتخطہ (– ۲۰۱۹) کا شمنی المالہ ہ میں الماس عند (س = - ۱) = معدل التمیر عند (س:+۱)] - (1-)4-(4+1-)a - 41 = (1-)*a $\frac{Y-[Y(B+1-)Y-(B+1-)Y-1]}{A}$ 1-1 AT- 31-7 30 241 1-41 = _ نهـــا <u>م-۱و۱ _</u> لهـــا <u>م (۱-۱۵)</u> 1= (AT-1) == "te=JA

 $T+(-\omega+0)=(-\omega+0)^{\frac{1}{2}}-T(-\omega+0)+T$

۲+ س۲ = س^۲ – ۲س ۲۹

(س)= الس= سا د (س ده) = (س ده) اً اُ د(س+a+)-د(ص) = (س+a) أ- سا = المان (سراء) من المان على المان ا TU-VT = (U-) "A 3+u-10(3+u-)s/. د (س)= المراجع (سوءه)=(س) د _ نهــا من-س-الا _ نهــا من خوا من من الارسادي (سن) (u-) (a+u-) a T- = (u-) 'a A رُ وَ ﴿ سَ ﴾ غَيْرِ قَابِلَةَ لِلاَهْتَقَالَ عِنْدَ سَ = ﴿ Ftun = (um) a (1) (m)=(s+m)= (m)'s T+0- T+1+0-(T+3-, = T+4-(T+4-) (T+3+4-) = -3 (T+u-) (T+s+u-)s --3 $\frac{1}{1(T+\omega-)} = (\omega-)'_{\delta}$ يُرُ وَ(سَنِ) غَيْرِ قَائِلَةً لِلرَّمَتُمَاقِ عِنْمَ مِن ٣٠٠٠ ٢٠ * (U-) a (E) $\frac{T}{4 - (A + \mu +) + (A + \mu +) \delta / \epsilon}$ (um)= (um)= (um) = (um) *a

= س-س-الر = ____ (سي+ور)س = س(س+اد) (u-)+ (a+u-)+ (u+)* = (-1 the second (س)= أ أ ميد س قاع - {١} $\frac{g_{-\omega}}{(T-\omega^{-})(T-g_{-\omega})} = \frac{T+g_{-\omega^{-}}-g_{-\omega^{-}}}{(T-\omega^{-})(T-g_{-\omega^{-}})} =$ د'(س)= لهسا د(س+ه)=د(س) (1-v-)(4-3+v-) × 1 (-v-) = (T-u-)(T-31+u-) 1-3 1- (-u-) = (-u-) 1: 14 de (-0) = 14 (-0+4) = سن [†] بس الرجس جال سس[†] سس الرسس (سرجال ۱۹) (سرجال (سرجال (\(\frac{1}{1}\)\(\frac{1}\)\(\frac{1}{1}\)\(\frac{1}\)\(\frac{1}{1}\)\(\frac{1}\ د (سر) د توسط <u>د (سر+اد) - د (سر</u>) $=\frac{i_{k-1}}{k_{k-1}}\frac{i_{k}}{i_{k}}\times\frac{i_{k}}{(-i_{k}+i_{k})(-i_{k}+i_{k})}$ $\frac{1}{2(1+\omega_{-})} = (\omega_{-})^2 \Delta \Delta$ 7+70=(0-) a (V) د (س+ال) = (س+ال)[†] +۱ $\varepsilon \left(-\omega + k \right) - \varepsilon \left(-\omega \right) = \left(-\omega + k \right)^{T} + T = v \omega^{T} + T$ =(-u+4)⁷--u⁷ $e^*(-\omega) = \lim_{k \to 0} \frac{e(-\omega + k) - e(-\omega)}{k}$ دُ (س)= <u>توليدي</u> (سوجاد)=س Tower w (compliants

(🗗) - ق = ع ار د ا التال معرفة عند من ١٩١٩ - $\frac{1}{2} = (7) \times 7$ $\frac{(T) - (T + R) - c(T)}{A} = (T)^{2} A$ 1-1-3+1 1-1-3+1 1-3+1 1-3 (B+Y) BY 100 20 = 1 = 1 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 ن د فايلة للاشتغاق عند س ت ٢ legit [madige A 1-3+m)=(3+m)=: د (س + ال) -- د (س) := (س + ال - ا - و س - ا $(\omega -) a - (d + \omega -) a$ $(\omega -) a - (d + \omega -) a$ 1-m-1-mem) بالشرب x مرافق أثيبط د (س) = ثها <u>(س +8-۱) (س-۱)</u> د (س) = گوند 1 < 00 (1-00 LT = الإسبط أن البيالة و غير قابلة للاغتقاق عند من = ا لعدم وجود اللهاية 1 = 1 = 1 = (0) 'a ال والمالية معرفة عند سن 🖚 🎙 الله مجال ۵ = ع $1 = {}^{\dagger}(T) - A = (T) a$ $c'(t^+) = \lim_{n \to \infty} \frac{c(\tau + n_*) - c(\tau)}{n}$ 1-7-1 3+31+1 1-41 = ture (= (#+1) \ \frac{1 - 41}{2 - 4} = 1-1(2-1)-0 1-0 -1-12-2(-0 1-0)

 $\frac{2m + 3m - 4m - 7m + 8m}{2m + 2m - 2m} = \frac{2m}{2m} $= \frac{14}{6.41} \frac{-76}{6(7 - 0 + 76.48) (7 - 0 - 8)}$ د (س) = (س) ع د (س) = (س) ع 🕏 د (🧝) غير قابلة الاستفاق مند 🤝 🏺 (ا د (س)= (س-1 1-0+m = (0+m)s د (س)= الم 1 d-u-1 '' مجال الدالة س كا ∴ اتمالة غير فابلة الاشتقاق مند ص= ا ۱+ س-^۱-س+۱ ان د معرفة عند اس 🗢 أ الا ميجال ه = ع 1=1+1-1(1)=(1)a $a'(t) = \frac{1}{a} \frac{a(t+a_t) - a(t)}{a}$ 1-1+(2+1) -1(2+1) (d+1) d 1 mg m とヨ!=(!)なた الدو فليفة للخفينقيق مؤم سي سرا $(-1)^T = (-1)^T = (-1)^T$ الاسجال د= ال $A = \Phi(a) \cdot a \cdot A$ $e'(\cdot) = \frac{(\cdot + e_i) - e_i(\cdot)}{e_i(\cdot + e_i)}$ $\underbrace{1+4-\frac{1}{4}(\pm k+1)\gamma}_{4} \underbrace{1-\frac{1}{4}}_{4-\frac{1}{4}} \pm$ 27 - <u>727 - 4</u>3 -Emission x Te(s) "s A. را. د هېپند ناده دندې منه 🗝 ه 🛪

ے نہا<u>ہے۔ اور وائے</u> نہسا <u>ادر -1-ادر</u> (9-1-)4 Lat _ 19-94 Lat _ 1-=:-1-=(p-t-) ---- = Y-=(J-Y-) 1-41 = $Y = (2.1)^n \Delta \Delta$ 1-=(11)15.5 (TY) 'a≠(*Y) 'a∵ $\frac{\{1\}a - (B+1)a}{B} = \frac{1}{2} = \{2, 3\}a$ $\frac{T-1+\beta\tau+\overline{\tau}}{\beta} \stackrel{L_{-1}+\beta}{=} \frac{T-1+(\beta\tau))\overline{\tau}}{\beta} \stackrel{L_{-2}+\beta}{=} =$ اً. ألد لَا غير فابلة للاشتقاق علم -- ب = : الله مجال د = څ Y= AY Lat = $s^{*}(Y^{+}) = \frac{1}{1 + 1} \frac{c(Y + Q_{-}) - c(Y)}{q_{-}}$ (*1) 's#(*1) 's* Tell Wa ي نها المراجة - المراجة ث انبالة غير قابنة للإشتقاق متد ص = ١ | Y-u-| = (u-) a (M) شد(س) = أ وسس مندما س≺ا الرائدانة غير فاسة ليودنيتان بأد كرادا بحث المنال البالة أولاً المجال د = ح د (۲) = ۲ − ۲ = مبتر $\nabla = \nabla + \nabla (1) = \{1\} \circ A$ $x = T - T = (Y - y_0 - Y) = \frac{1}{2} (Y - y_0 - Y) = T - T = x$ c'(1") = 1 = 1 = (1+0.)-c(1) $=\frac{\mathbb{I}_{\{t=1\}}}{\mathbb{I}_{\{t=1\}}} \frac{\left[(t+\mathbb{I}_{t})^{2}+Y\right]-Y}{\mathbb{I}_{\{t=1\}}}$ " انبالة مثيميّة مند حي = ٢ " مجال د 🗢 ع 4= {t} a A (T) a-(#+T) a - (T) a $T = (-1)^{2} a \lambda_{1} \qquad T = (a + 1)^{2} \frac{1 - a + 1}{1 - a + 1} = 0$ (1)3-(3+1)3 = (*1)'s (T1) s#(*1)5 v . . الدالة غير قابلة للإشتفاق عند صريحا $(-7)^2 a \# (-7)^2 a A = 1 - a \frac{a}{a} \frac{1}{r_{conb}} a (-7)^2 a$ الله الإسجال و = ع - { أَنْ الْمَالِدُ فَيْنِ مَعْرِفَةُ عِنْمُ صَلِيعَ اللَّهِ عَنْهُ صَلَّمَ عَنْهُ . . المالة غير كابلة للإغتاليُّ عند من = * ن البائةغير متصلة عند س ٥٠٠ |w|w=(w) 3 [N] 🗘 البالة غير قابلة للإشتقاق مند 🗝 🖎 در (س) ¤ (س) عندما سری . در (س) عندما سرح، الدالة بمرقة عند 🗝 🗈 1 (۱۷) مجال د ≃ ح $T = T(X) - \emptyset = (Y)$ 5 البحث الاتعمال أولأ عتبر صورده $e^{t}(t^{-}) = \frac{1}{t^{-1}} \frac{e(t+t_1) - e(t)}{e}$ $i = {}^{\dagger}(i) = \{i\}_{i \in I}$ $\frac{T - \left[\frac{T}{T}\left(JJ + 1\right) - k\right]}{JJ} \stackrel{1 - - 4J}{\longrightarrow} =$ $v = \frac{1}{2} \left(v \right) = \frac{1}{2} \sup_{k = 0, \infty} \frac{\left(\frac{k}{2} - \frac{k}{2} \right)}{\left(\frac{k}{2} - \frac{k}{2} \right)} = \left(\frac{2}{2} + \frac{k}{2} \right) \frac{k}{2}$

The second seco

📆 بعرت منصلة عند س 🖘 (*1) a= (*1) a & CHAPTER OF アロドーアム: رو (س) = (س) المادة من (المادة من (المادة) من المادة (من المادة) من المادة (من المادة) من المادة (من ا المنبعة سركة العلية معرفة عند الواعد العالم ال الا مجال د = ي ful+te(t) a ع (۱۱) = لهسما <u>د (۱۱) هـ (۱۱)</u> ع الها والمارون المارون $a_i^{k}(I^{p}) = \frac{\prod_{k=1}^{k} \frac{a(I+k_i) - a(I)}{a_i}}{a_i}$ $a^*(f^*) = \frac{1}{4} \frac{[\Psi - (f + h)^*] - 1}{4}$ 7-14-17-1-7 hand a ے ٹھستا <u>محوسوٹ</u> ٹھستا الز ۲۰۱۰) مرمزہ کی اس Y-=(#-Y-) 1 = 1

الدرس) عدم اس "ماس عدم اس الدرس) عدم اس "ماس عدم اس الدرس) عدم اس الدرس
(T) 5 ≠ (*T) 5 ** 17 = ** 7 = 1

الدائدة بغير فابلية للاشتداق ملت س 🕫 🕏

(T1)%#(*1)%v

اندانه غیر قابله تنزشتنای مند س = أ

الرباد فابده بالانتخال عدد الرباد الأ

ى الدالة متسقة بلد س=٣

را التهاية اليملى الدبائلات «النهاية الهسرى الدائلات

1-7 = A + 7(1) | = Y + T = Y

Y-1016 A-wit - Votes it

س+ اس (= (س) ، . ③ ٣١

د (س+4,)¤†(س+هـ)†+س

در ساله و استو و ها د س

(u-)a-(a+u-)a

دوس⁷ه ۲ وس در د در⁷ د س − ا س⁷− س

عاد (۱۳ میرد + قارات اس + قارات ا

دارس)= لهسا درسههر)-درس)

📆 ** أميل الماس عند (س = ٢) = ١٢

THE METER MENTER

الا المنطقة (٢) و المنطقية

+ 17-7 A TET-A - A TET A

 $z = \frac{1}{1 - 1} = \frac{1}{1 - 1$

 $\frac{\left(\omega_{ij}\right)a - \left(\frac{a}{a} + \omega_{ij}\right)a}{a} = \left(\omega_{ij}\right)^{a}a$

(#+0+)0+ (++) = (#+0+)0+ (++) =

 $\frac{1}{4} \frac{1}{100} = (100)^{\frac{1}{2}} \frac{1}{100}$ 4- Last - (-1) + -(-1) + (-1) + (-1) + (-1) + (-1) $\left(\frac{1}{100}\right)^{\frac{1}{1000}} = \left(1 + 10\right)^{\frac{1}{1000}}$

- T = 1 + 1

1200 : inite (un)37.

(1) = (1) =

7 - Y- L-4 - (3+1) L-4 -

(1) 0 - (2+1) 2 L 2 = (1 1) 2

ر تهسما <u>دمو وجون</u> تهسما <u>ورون</u> وحداً الله (T1)S#(*1)Sv

ار المالة غير كابلة للاشتقاق عند س ١٥٠

("Y) a = ("Y) a ". Y = U= utalitation a " (T)

(T+10-T) - 1-10- = (T0-1) 1-11-11 ...

THENTHAME

3417 Azta

الإسراح عقدما سوحة 140 win " = (00) 3.1

A# (1)=(1)'s

(T)a-(d+Y)a 1-41-(-Y)4a

 $\frac{(\tau)a+(a+\tau)a}{a} \xrightarrow{a} = (+\tau)'a$

44 00 1500 د (س) یا ۲ سیسما ، د سردا - استعلیما-۱ جس ج۰

 $Y = 1 + \frac{1}{2}$ بحث الاتمنال عند $- y = 1 + \frac{1}{2} $\forall = i + i \neq (i + i) = (i$ Y=1= (-1) = (-1) =

T=("1)a=("1)aV

الرائدالة متوبلة وتبرس = إ

1-10 (#41) hand = (*1) 4 ع لهسا (۱۹۹۵) ع استا فر(۱۹۹۱) ع استا $\zeta^{1}(\ell^{-}) \approx \frac{\xi_{m-1}}{\xi_{m-1}} \frac{\gamma(\ell+\eta_{1}) - \gamma}{\eta_{1}} = \frac{\xi_{m-1}}{\eta_{m-1}} \frac{\gamma \eta_{1}}{\eta_{1}} \simeq \gamma$ T=("1) =("1) "a"

ث أتمالة د البلة تاركتندي عند س ١٠٠

معاس 'جلاس جاڙ <u>مندينا</u> سن ۾ ۾ ع [مر] ≃ (مر) عامل عنديا س٦٢ حوس "ولاسووا عنيماس وي

جحث الالصال عند س 🗢 إ

7=1+1=Y+T(1)#-=(1) a

 $\forall = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = (+1)^n$

T=1+1HY+ (1)+-=

Y = (1) a = (-1) a = (-1) a V

الرائياتة ومتحيلة متدحن * 1

د' (۱°)= لهيا <u>د(سوا)-د(س)</u>

Y-1+(J+1)Y+1(J+1)I-

🕏 🖫 ميل المراس هات (دس 🖶) 🖘 🕈

 $\int dx = \frac{1}{2} \int dx$ T = 1 A

😯 النفطة (١٤١) 🗈 للمتحلي د 1 = (1) a &

1=04 - 4+ \(\frac{7}{2}\) =(4 \(\phi \) \(\phi \) \(\frac{1}{2}\) =(0+)4V

🐼 اندعل 🛈 اعبلة الاجتماع مند س= 🕈

・くで=(*1)'3①団 ·>(~1)/a

الأراكيانة دغير البلة للإشتقال مند س حرا

🛈 د (س) گنیند مدیر س ۱۵

رُدُ قَدُ (صَلَ) قَالِلَةُ بُلِاكِيْتُكَاكُ عِنْدِ مِنْ صِ إِنَّا

د' (۱) «سفر

€ د'(۱))= ۲=۲> صفر

د'(۱۱) جمنتو

ألفائة شغير الأبلة الإشتخاق عند من = !

1<1=("1)'s 6 +>("1)'s 0

" الدائة د. شير قابلة الدمثقاق عند س دو

1- (P) Y (D) (F)

🛈 ۱۲ 🕥 غير موجودة

(r-u-) = (u-) a]T=p=[=(p+)3A

7 €00 totale 7000 7>00 totale 70000}=(00)35

.... أثمالة معرفة عند ص ٣٣ ن مجال د = خ *=T-T=(T)a

 $\frac{(\Upsilon) = -(\beta + \Upsilon) = \frac{1}{2} \frac{1}{2} = (^{+}\Upsilon)'_{2}$

 $\frac{(\tau)s - (s + \tau)s}{s} \stackrel{\text{def}}{=} (-\tau)^s s$

(これ)ちゃくされらい

الدائدة غير فابنة الاشتفاق مندس ٣٠٠

رس ادا مندما س≽ا ا د(س)» أ_{د (ا}مس عندما -۱ <−د<1

11 = A + $^{7}(1)$ = 7 = $(1)^{3}$ = (

ث ألبالة غير للبلة للإفتقاق عند من ٣٠٠ (دماريون (۳)) على قواعد الإشتقاق r (f) 14 P 1-0 (1)a-(a+1)a =(*1)*a® 7- (1)-7+ (3+1) Last = F= 114 F= (3+1) L-4 = (1)3-(J+1)3 L-43 = (-1)/a Chia echian £المائة ما مير قابلة للإهتقاق متد-ص = إ ال د (س) = { سیما سیه ۱۹ ۱۶ س مندما سرد۱ $\frac{(T)a - (B + T)a}{a} = (T)'a$ A

۲- = (عو- ۲-) المها = (عe- ۲-) المها = (عe- ۲-) المها = (عe- ۲-) المها = (aboverness)
$$1/4 = 1/4 + 1/4 = 1/4 + 1/4 = 1/4$$

("1)4#(41)aV

كالمالة غير متصلة عندس ١٠٥

٨٠ الدالة د غير لابلة للإشكائل مند س ١٠٠

📆 🖰 المالة متسلد عند س = ((-1) = (-1) = (-1)(- + - - -) = (- + + - -) = (- + + - - -) 47+1×f=f(+1(1)4 ムームアコピーグリカ H=(1) a V (1) - A TREET 15= c 0 + 2(5) as A Beckens (1) + (1 + 1) = 4.5بالتعريمي من (٣) في (١) **イメーTT=イヤル** (イルーパ)チェイヤム TRACE TEEPH بالتعريش في (٦) من فيمة ع

T= 表示。

ر اسبه علما س≼ ا الد (س)= حس ۱۹ مليما س ۱۹

THINK-NAL

© سيخفي - ۲۰۲ س - آ اين <u>و سي</u> - ۽ اين- آ $\frac{(\tau)_{1-(\beta+1)_{2}}}{s} = \frac{(\tau + t)_{1-(\beta+1)_{2}}}{s} = (\tau + t)_{1-(\beta+1)_{2}}$ <u>۳+س-۲۰۰۱</u> ه س ه ے تھسا ج<u>رد و دو</u> تھسا <u>ہی</u> جرد ہ س ۾ ۽ س ڏ _ س اُ ج ج س-اُ (T f) 5 # (Tf) 5 tr ⊕س = ۲ س ۲ + ۳ س ا ... المالة د غير الابتة الاختلاق عند س= إ 17 = 17 - 17 = 17 - 17 = 17 any = + 17 = 17 = 17 any **⊕** استر ⊕سر ⊕سر 1-40 FO الا من = سالم - و من لا + 4 - 7 من - لم - 1 من - لم رُدُ الْمِنْ عِلَيْهِ مِنْ اللَّهِ مِنْ اللَّهِ عِلَى اللَّهِ عِلَيْهِ مِنْ اللَّهِ عِلَيْهِ مِنْ اللَّهِ عِلْم رُدُ وُمِينَ عِلَيْهِ عِلَيْهِ مِنْ اللَّهِ عِلَيْهِ مِنْ اللَّهِ عِلَيْهِ عِلْمِينَ اللَّهِ عِلَيْهِ مِنْ اللَّ 1-- 1-T)+0 +----- +-1----4-⁷ 20 € T^{*} $\psi = 1 + 1 + \psi = \Lambda$. 7+10+1=(0+)'3♥ ار على ۱۸۵ ميل ^{۱۳}۰ © الأص = 3 س" - الأس + 4 (1-v-)(t-v-) () سُ ت ا من السراء من ا 😥 من = ۲ سن + ۱ From W. From Harry - was 10-7+ 10-7+ "0-20" (1) Funda fundarios $\frac{1}{1}$ $\frac{\partial u}{\partial x} = 0$ $\frac{\partial u}{\partial$ ® س = سن + سن + ا سن + ا = سن + ه (س)=۲مرا -۲مرا +۲س t+ort=ort=or دُ (س) = ٨ س ٢ ١ س ٢٠ 13 1-00 (*) سفر @ صُريع - ٢ س ٢٠ ١٠ س - ٢ + هس-١ *170 (1) *10 (1) (۲) مطر 4.0 ٠ المراجع المراجع المراجع من ١٠ م المراجع المر سُوري ۾ جو سي^{ي آه} ۾ سي^{ي آ} ۾ اِ 😵 س 🖛 سن 🕈 سن 🕳 ندم سن 🔻 سن 🔻 $\frac{1}{2} = \frac{1}{4} - 1 = 1 = \frac{1}{4} = \frac{1}{4$ J-1- - Turks + J-7- 1-4-50 $f = \mu \text{ th} = \frac{\mu^{\alpha \beta}}{4\pi^{\alpha \beta}} \in$ AMERICAN PROPERTY. (Funt funt) turner 平=(+2)4 ص = ۲ س آ ۾ سيآ جي سُرُه ڳاس آ ۾ 7 س (1+4-1)(7-4-1)+4-1) T- - + T+ " - = (- -) + 10 $T \times (1 + \omega r) + T \times (7 - \omega r) = \frac{r \cdot r}{r \cdot r}$ TAMES TO DESCRIPT ⊕ س = ۳ س د ۱ ۲ س ^{- ۲} ار می ۱۹۵ س ـ ۲ س = ۳ + 12 من ۳۰ به سالي ۲۰

1+ ×(11) 1≥∆

- TO

1 = (می () ()

ر المن = (1 س) - 1 س + 4)(1 س + فيس أ - 1 س ^1) (4-1,000) (1-00 4- 1,000) + - Punkat- man + m + a maa 1- mea جمن وي من أ -جس أ وواس - وس وحن = ۱۲ من ۴ من ۴ من ۱۲ من ۴ من ۴ من ۴ من ۴ من ۴ من ۴ من ئِينَ أَ جَ جَسَ - أَ - هِسَ - " - إس " - إس " أ () حور د من (سور - المور) = من ⁷ - ا $y = \frac{y - y}{y - y}$ $(1-y_{1})^{T}+(y_{2})^{T}+(y_{3})^{T}+(y$ *۱ حق = (۲ س^۲ سس^۱) (۲ س ۲۰) + (سرا ۲۰ س ۲۰) (۲ س ۲۰) (۲۰ س ۲۰)* و ۽ سن ۾ ۾ سن "جاءِ سن" جاءِ جن" جاءِ جن" جاءِ جن" 4 / اس ا س ا س ا ۱۲ س ا ۱۲ س ا خ 1 س السام السام المسام الم *(++++++*)

£ اس د (س) د ا د ا د س^۲ ساغ $(-1)^{n-1} = (-1)^{n-1} = (-1)^{n-1} = (-1)^{n-1} = (-1)^{n-1}$ = ۲س أ و ۲س أ و ۲س أ - هس وص سام دوس دوس دوس دوس ؟) وحمل = {س+۲}(۲س+۱) + (س + مس+ ۱) × (س + س+۱) × ۱ د مي د د س^{ار} و فس و ۲ و س آ و س ـ و . - ۲ سي⁷ + ۲ سي ۱ ۹ € الرحية = (س - 7)(7س + 1)+(س ۲+1س - 1)) لا ة ر حين = 1 مين - 1 مين - 1 مين + 7 مين + 7 مين - 4 5-4 mg - 7 mg - 8 (T)(1+w-T-1-4)+(1-w-A)(1+w-T)= = (-1) ه ۱۶ س ^۲ به اس ۲۰۸ س ^۲ - اس ۲۰ تا ۱۳ س ^۱ $(1+\omega-T-T_{\omega-1})+(T-T_{\omega-1})(T+T_{\omega-1})=\frac{\omega^{\alpha_{\beta}}}{1-\omega}$ $m T + \frac{1}{2} con^2 + \frac{1}{2$ $R = \omega - T + T \omega + t = \frac{\omega^{-1}}{t + \omega} + T = 0$ (اس ا - س ا) (س ا + ۲ س ا) $(\frac{1}{2} - \frac{1}{2} \times 1 + \frac{1}{2} \times 1 + \frac{1}{2} \times 1 \times 1) \times (\frac{1}{2} - \frac{1}{2} - \frac{1}{$ ه (س^{اه ۱} سا^ا) (اس - چُس ا^ا) $\frac{2^{n}}{4^{n}} \times (-1)^{n} - (-1)^{n} \times (-1)^{n} + (-1)^{n} \times (\left(\frac{1}{\sqrt{1-\sqrt{1}}} - \sqrt{-7}\right)$ الماسية + المسراس - ١

ص=س+٣+ ي سُ=١

0	**************************************
	(110-1
	$\frac{10}{1000000000000000000000000000000000$
	*(1+µ=#) *(1+µ=#) 0=3
	$\frac{T = [y_{t+1}]}{T = [y_{t+1}]} = \frac{(y_{t+1})y_{t+1} + (T - [y_{t+1}])}{T + [y_{t+1}]} = \frac{1}{2} (0)$
	U-T = (1-" (1-" (1-" (1-" (1-" (1-" (1-" (1-"
3	(1+ "um)
_	. ٢-س +٢-س-٢-س +٣-س . ٨-س
- 1	$\frac{T_{1}}{T_{1}} = \frac{T_{1} - T_{1} - T_{1}}{T_{1}} = \frac{T_{1} - T_{1}}{T_{1}} = \frac{T_{1} - T_{1}}{T_{1}} = \frac{T_{1} - T_{1}}{T_{1}}$
	(الراب + الراب + الرا
<u>-</u>	
9	T-4-1-10-6+4-4+4-4+1-7 =
	Thought to
	1+0-(+" <u>U</u> =
_	= 100
9	Q
- 1	$\frac{(+\omega^{-1}-4+\omega+1)(1+\omega+1)-(+\omega^{-1}+\omega+3)(1+\omega-4)}{(-\omega^{1}-4+\omega+1)}$
	ومن = (سن ¹ عمس+۱) . ومن = (سن ¹ عمس+۱) .
Į	
<u> </u>	ال س = (++++++++++++++++++++++++++++++++++
ē	10 mg 14 mg T 1
	رس ۲۲(۱۰۰ (سن ۱۰۰ ۱۳۶ س درسن ۱۰۰ (۱۰۰ سر) ۱۳۶ س این در (سن ۱۰۰ (۱۰۰ (۱۰۰ ۱۳۶ س
-1	ر اس
) ص = س + بر - ۲ من = آ
	(T+ ym) (m Y+ (+ ym) ym ym ym (T+ ym) (T + ym)
	من ' -۲ س+۲ س ٔ ۱۹ س _ع ۲۰ س ٔ ۱۹ س من ٔ ۱۹
-	-
0	$\frac{\omega^{\frac{1}{2}} \times (\omega^{\frac{1}{2}} + \frac{1}{2} \omega^{\frac{1}{2}}) - (1 + \omega^{\frac{1}{2}}) (4 - \frac{1}{2} \omega^{\frac{1}{2}})}{(4 - \frac{1}{2} \omega^{\frac{1}{2}})} = 0$
ı	
0	"
	$\frac{A_{-i,j+1}a_{-1,j+1}a_{-1}}{(1-1,j+1)} =$

10 THOMPSON	وص_ (س	ത
*(1+ ³ p=)	Les 3	9

$$\frac{\eta_{1}^{T}_{U^{m}}}{\tau_{\{1+\frac{1}{2}_{U^{m}}\}}} \approx \frac{U^{m,j}}{U^{m,j}} \wedge \cdots - \frac{\eta_{U^{m}T-1+\frac{1}{2}_{U^{m}}}}{\tau_{\{1+\frac{1}{2}_{U^{m}}\}}} \approx \frac{U^{m,j}}{U^{m,j}}$$

مند س = ۲

$$\frac{1}{L^{\frac{1}{2}}} = \frac{\Delta_{n+1}}{2} \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n} \cdot \frac{1}{n}$$

\ المن = المن = المن عليما ومن = ا

 $c=\left(1+c_{1}+T-c_{2}+T-c_{3}\right)/T-c_{2}+T-c_{3}+T-c_{4$

Annual Literar

$$a = {}^{\overline{q}} \omega \cdot \overline{q} = (\omega \cdot \omega)^{\frac{1}{2}} a \overline{W}$$

مندم د' (س) ۲ = ۱ بس ۲ ب ایس ۲ = ۲

(Te) It="ort

temper to pe

دُ (س) ۱۵ س ۱۰ ۱۰ س ۱۹

ARV-o-ITA

11سن ⇔ ۱۲ کیس د

الله (سن + اسن + ا سن + ا

 $=\frac{1-\omega_{-1}}{(-\omega_{-1}^{-1}+\omega_{-1})}=$

 $d \equiv \frac{\frac{1}{2} d + \frac{1}{2} d$

 $t = (t + t)(t + t) \wedge t + t^T + t + t \wedge t$

1-20-4 120-

 $t = (t)^{-1} t^{-1}$ $(t)^{-1} t^{-1} = \frac{t^{-1}}{t^{-1}} \left(\frac{t}{t} \right)$

 $1 = |A| - |A| = T + |A| - |A| - |A| = \frac{T}{2}(1) T + |A|$

الا د (س) د اس د برسید ۱۳ برسیدس ۱۳

O- Teuris unic(1)22

∀ + ¹ ω | T = (ω) ′ ≥ ε

Scanned with Computation

The reported welferthish THE PARTY OF THE PARTY OF ويسل ©د السلاح شاها ، و ت•۲ (+ + + | T = Y \(\frac{(\omega + | -) - (\omega \in + | \beta)}{\omega} = Y \(\cdot \) بحل 🛈 د 🗘 ينتج ان سه ۱ م ٧ (١١-١١) ﴿ النصني T من (۲س + ۱) = ۳س ۱۹ (#UA U+T+=T+ @ U+T=(#+)+(#1+ ¥ ص = (س" ۱۰۰)(س" ۱۰۰)(س ا ۱۰۰)(س) + ۱۰۰)(س ۱۹۰) (س $\frac{1+\omega - T}{1+\omega + T} = \omega^{\alpha}$ (4+19, -1)(-1)(-1)(-1)(-1)7×(1+m-r)-7×(1+m-r) = 003 (1+"cm)(1+"cm)(1-"cm)=cm (4+2+4) 7-0-7-17+0-7 = 0-1 1-0-7 ص=(س^{۱۱}س)(اس^{۱۱} ۱۱) $P_{ij} = \frac{\partial^2 f}{\partial x^2} \therefore \qquad i = \frac{\partial^2 f}{\partial x^2} = 0$ 😘 حرب 🖚 🕻 فقط التقاملي مع محور السيئات پوضع ص 🖘 $\frac{1}{2} = \frac{1}{4} = \frac{1}{2(4+1-3)} = \frac{2^{2}\beta}{2^{2}}$ ر من = 1س ز سا - 1=0 T س= اس+ب الالتفطة (١٠ -١) التعلجي -- (T+u-)(T u-) -- $(t) = t - \max t / \Delta \qquad \frac{t}{\omega + \omega - t} = t - \Delta$ THEM $\frac{1}{1} = \frac{\left(\left\{ - (u + u) + u + u \right\} \right)}{\left(\left\{ - (u + u) + u \right\} \right)} = \frac{u^{\alpha \beta}}{u^{\alpha \beta}}$ $(-\pm(T+)\times T_{m_{m-m+1}}]\frac{m^{n-1}}{m^{n-1}}$ $(\pm \pi T\times T\pm \frac{1}{m^{n-1}})\frac{m^{n-1}}{m^{n-1}}$ ◄ ٢٠٠٠ = ٢٠٠٠ نقط انتقاطع مع محور العمادات عند س=ه 14- - 10-5 T = T - + to T = , and \frac{10^4 J}{10^4 J} ميل المنس = المستدس دو $(4-+)\frac{14-}{T_{(n+1)}}=h-2, \quad \frac{14-}{T_{(n+1)n}(1)}=h-$ ۳۰ معادلة الستليم اس∞ يا − 1 س بالتبويس في معادلة النجتي ﴿ ﴿ صُ ۗ عَا عَا صَا اللَّهُ صَا نَ أُ=؟ بِالتِمْوِيضِ فِي (١) هِنَ أ 4(1-) س + اس -۸=، بهر (س+1) (س-۱) = ، 1-24-12 س د سال ہے جو ہوں 17 گ میں ہو 7 ہے جو ہو ہو 1- P A-® T® 年の المقطرهي (- 4 194) ۽ (٢٥٠) ₹ 🕙 r (6) · (3) * A - * Jak / ... الایل ۲۰۰۰س عند سرت ۱۵۰ 17 س د سراس – ۲ عند س ۲۰ 🗈 ۱۸ اهل ۲۰ © ميل الماني: ﴿ مُنْ عَالَ ٢٠ مِنْ ١٠ س (ميل العاني: ﴿ اللَّهِ عَلَى الْعَانِي: ﴿ أَا اللَّهِ عَلَى الْعَانِي: $\hat{c}^{\dagger}(\tau) = \tau(\tau)^{\dagger} + r(\tau) = \text{viring e.g.}$. Sliggs-abit $\gamma = \pi \uparrow + (\uparrow \uparrow) \uparrow - = \frac{U^{2} \uparrow}{U^{2} \downarrow}$ الزارية متقرجة 1-1-1- 0 M ې لاس چېلس^ا+۲ماس و عدسی≔۹ لاسل () - U1+|T=A

ال - المرابع *(T+ u=1)=(u=)a (C) د(س)±#(۳+س۴)#±۲x (۳+س۴)#±(س)ه De(-1) = 1 (7-+0") A = 1+0 ه المراجع المر *(*u=+1)u=1A== $\left(\frac{1\pi(1+\omega_1)^2-7\pi\omega_2}{1}\right)\left(\frac{1+\omega_1}{1}\right)$ 1-10-1 0-1-10-1 0+0-1 (203) = ۲(۲ س ۱۹) 1=u+1 = $\frac{f(1+\omega_1)-(1)(-1-\omega_1)}{(1+\omega_1)} = \frac{f(1+\omega_1)}{(1+\omega_1)}$ € سُ = س ۱۲(۲س-۱)×۲×(۲س-۱)×۲×(۲س-۱)×۲ $\frac{1}{|Y-Y|} = \frac{|Y-(Y)(\omega + Y)|}{|Y-Y|} = \forall -$ IY-YeV-(1-w++w+)(1-w+) = (1 July)(1 July) عنى مشتية والة الدالة (1) oppies $\frac{1}{T^2+\mu-T}\frac{1}{T^2}=T\times\frac{\frac{2\pi \pi}{T}}{T}(T^2+\mu-T)\frac{1}{T}=\frac{\mu^2J}{(2\pi^2)^2}$ 10 -00 " to @ 11 10 (T+u=T)10T $\frac{1}{2} \frac{1}{1-1} = (7 - \omega_0 - 1) \times 7 - \omega_1 + (-\omega^T + 7) \times 7$ € ایس • (3) To the Town You You You know have 1- B + D 1- 0 3 + 4 + 7 - 7 - 7 = 3 = whx*(1000+7)1= 2"5 () V-3+0-1=(3+0-)+® "("m#47)m"\" (w)+-(a+w-)+=(a)a $(\psi - \tau - \gamma) \times (\tau - \tau - \psi)^{2} \times (-\tau - \psi)$ ع (ق) = <u>ت (ق) - ۲ - (س ۵ - ۲ - (س - ۲ - (س - ۲ - (س</u> ¹(¹()+(1-1)()+(1-1) محدل التغيير = الهجام أحدد م حدد المحدد ال (1+10-1) 4(4-0-+70-) 40 (1-0) 4 (1-0) $\{\frac{1}{T_{1,2}} + 1\} \times \{\frac{1}{T_{1,2}} - T\} = \{(1-), 1\}$ *(1 - r) 1. = ?0 *(u=T-1)+(Y-) x (u-T-1) * x * u== = = () * () * J-¶π Y = V-1 1+V-141 -

- VI ($= \gamma \left(\frac{1-\tau^{-1}}{\tau^{-1}}\right)^{\frac{1}{2}} + \frac{1-\tau^{-1}}{\tau^{-1}} = \frac{1-\tau^{-1}}{\tau^{-1}} = \frac{1-\tau^{-1}}{\tau^{-1}}$ $\frac{1}{2} \frac{(1-\frac{1}{2}(1-\frac{1}{2}(1-\frac{1}{2}))^{-1})^{1/2}}{2} = \frac{1}{2} $\frac{1-\frac{1-\gamma}{\sqrt{\gamma-\gamma}}}{1-\frac{\gamma}{\sqrt{\gamma-\gamma}}} = \frac{1-\frac{\gamma}{\gamma-\gamma}}{1-\frac{\gamma}{\gamma-\gamma}} = \frac{1-\frac{\gamma}{\gamma-\gamma}}{1-\frac{\gamma}{\gamma-\gamma}$ $= \frac{1}{(\omega - \tau)\overline{\omega - \tau}} \times \frac{1}{(\omega - \tau)} =$ $\frac{1}{2} \frac{1}{\left(\frac{1}{2^{n-1}}\right)^{\frac{1}{2}}} = \frac{1}{\frac{1}{2}\left(\frac{1}{2^{n-1}}\right)} \times \frac{1}{2} \left(\frac{1}{2^{n-1}}\right)^{\frac{1}{2}} =$ ^ اس' - ۲)^۲ $(7-1) \times (7-1) \times (7-1) \times (7-1) \times (7-1)$ T(11-y-A) T = y+ 1 $(11-\omega-1)^{T} + A = A + (11-\omega-1)^{T}$ T (1+ T - "....) = Y + ... T - ".... Y = ..." $\left(T-\omega_{1}\right) = \frac{T_{1}}{T} \left(T+\omega_{1}\right) - T_{1} \left(T+\omega_{2}\right)$ عن=(٢س ١٠٠)⁴ + (٤س ١٠٠) ل س + ۲ + ۲ = ۲ (۲ س + ۲) H + ۲ + ۲ = ۸ س + ۲ + ۲ 1- 1(-) T= - R $\left(\frac{\log n}{n} \approx l^{2} \left(\frac{n}{n}\right) \times \left(\frac{n}{n}\right) \times \left(\frac{1}{n}\right)$ $\frac{\gamma_{i,p,n}}{\gamma_{i,p,n}} = \frac{U^{p',p}}{U^{p',p}} : \qquad \left(\frac{\theta^{-p'}}{\gamma_{i,p,n}}\right) \left(\frac{\theta}{U^{p'}}\right) \gamma_i =$ T+10- = 1+1+10- = 1 رس = الماه الماه (س ٢ + ٢) Hard

(U=T-T)U=T+(U=T-4)*U=4 [(_+++_+)__+++__++_]*(_++++_+)* (۲ - ۲س)^۲(باس - ماس[†]) $(T-) \times {}^{\dagger}(M-T-T)^{p} \times {}^{\dagger}(T-M-1) \times {}^{M-1}$ ta(1-1-1)x*(J-1-1) : • (ص-۲)(۲-۲س)^۲[-۲(س-۲)+۲(۲-۲س)] (July - 1/4)*(July - #3(7- July)* $^{4+}(Y+uu)(Y-) \times ^{4}(Y+uuY) = \frac{u^{m+1}}{(m+1)} \stackrel{\circ}{\text{T}}{\text{T}}$ - (س ۴۵) ^۳ ۱۹۶(۳س ۴۹) -» (۲۰س ۱۹) " (س ۲۰) " [۳۰ (۲۰س ۱۹) ۱۹۰ (س ۲۰) $(-Y + Y)^{4-} (Y + -)^{-1} (Y + Y - -)^{2}$ (1) اور د من ال س⁷ + 1 ص و الساه ساء وساء د سام $(uu)^{\frac{1}{2}} + (uu)^{\frac{1}{2}} \times (vu)^{\frac{1}{2}} + (uu)^{\frac{1}{2}} + (uu)^{\frac{1}{2}}$ = ٢٠٠١ - سر (٢٠٠١ - ٢ *(1-100)(1+100)=00 @ +(سن" –۱) ۴ بروس) = ٢ س(س* - ۱) 🔻 🖟 (س(* ۱۰) + (س(* ۱۰) () د(س) = (۱ +س) ا (۱ سس) =[(۱+س)(۱-س)]ا=(۱-س^۳)) د ' (س) = ۱۱ (- س ^۲) بد - ۲ س د ۸ سن (۱ سن ۲) ^۲ $\frac{T(T+Q^{\mu\nu})^{\frac{\nu}{2}-\mu}}{T_{\mu\nu\nu}} = \frac{T}{T_{\mu\nu\nu}} \times \frac{T(T+Q^{\mu\nu})}{Q^{\mu\nu}} T =$ 10(4- m-) - 4×(4+m-) × (4+m-) + 2 (4-m-) + 2 (4-m-) $\frac{1}{2} \left(\frac{1-\omega-\frac{1}{2}}{1-\omega-\frac{1}{2}} \right) = \frac{1}{2} \left(\frac{1-\omega-\frac{1}{2}}{1-\omega-\frac{1}{2}} \right) = 0$

 $\frac{1}{\left(\frac{d}{2}+\frac{1}{$ *(1-pm) = $\frac{\tau_{++}}{\tau_{\{1-\omega_{+}\}}} = \frac{(\tau_{++}\omega_{+}) - (\tau_{-\omega_{+}})}{\tau_{\{1-\omega_{+}\}}} = \frac{\frac{p}{2}}{\omega_{-1}}$ $\frac{T_{\text{con}}}{T_{\text{con}}} = \frac{T_{\text{con}}}{T_{\text{con}}} =$ اً ص ت ا ٢-٠٠ - 1 مع ص = (٢-٠٠ - 1) أ $(\omega - 1) = \frac{T_0}{T} (d - T_0 \omega T) \frac{1}{T} = \frac{\omega^{d,j}}{\omega^{d,j}}$ $\lim_{t\to\infty} |\nabla (t-t)| = |\nabla (t-t)|$ 1=1-(1-1x7)1x1=1001 == T+270 m 1 200 × 200 × 200 ; $\psi = V + \frac{v_{\text{op}}}{4} = (7 + 27) = \omega^{2} + V + \omega$ رز و من ۲۰۰۰ و <u>و ج</u> - س۳ به بن ۲۰۰۰ بر ۲۰۰۰ و ۱۳۰۰ و ۱۳۰ و ۱۳۰۰ و ۱۳۰ و ۱۳۰۰ و ۱۳۰ و ۱۳۰۰ و ۱۳۰ و ۱۳۰۰ و ۱۳۰ و ۱۳۰۰ و ۱۳۰ و ۱۳۰۰ و ۱۳۰ 7+24-12=00 1 1-10=2 1 T+(1-70-)V-*(1-70-)=0 $T_{i_1 \cdots i_n} = T(-i_n^T - t) \times T - i_n^T - t^T - i_n^T$ ع ياسن" - ياسن" - والسن" - ياسن" - الايس Total Park المندارة المراك ١٩٠٠ (١٠٠٢) - الماكات

ه ا د عندماس د ۴ T-U-L F $\frac{1}{1} = \frac{1}{24} = \frac{4 - 4 \times 4}{4 + 1(4) \cdot 4} = \frac{1}{4 \cdot 4} = 4 - 4 \times 4$ 10 42 - 5 - 00 1 (1+ 21)(2 1 2)(19+1) 77={1+7)(1+1)(1)=2-1 = 1=2-10 $(u-t+^{T}u-t)^{T}(t-^{T}u-t+^{T}u-t)^{T}=$ $(4+7)^{-3}(4-7+1)V=\frac{u^{\alpha}\beta}{\cos\beta} \triangleq$ (4×Y±*(1-)Y= (1 1)(1+24) = 25 = 25 = 25 = 1)(1+24) = 1 T# +1= 8 % $a = \left(\frac{1}{4} - 1\right) a = \frac{1}{4} A$ (V.) Total or Good

1-4--

 $\frac{1\times(1-p)-1\times(1+p)}{(4+p)} = \frac{1\times(1-p)-1\times(1+p)}{p+p}$

عل أهر د

1-2 = 0

ش من=س+==سده ا با من=غ+= ا $V = \frac{1}{2} \sum_{i=1}^{n} T = 1 - (1 - \frac{n}{2})^{T} = 0 - (1 - \frac{n}{2})^{T} = 0$ 100 = 100 = 100 = 100 = 100 (10 - 4)=15 = 100 د اعتباره ۳ ع مور ۱۳ ع موم ع - ۳ ع = صغر "(\frac{\tau-\tau}{14.44}) = 10" (1) $\frac{1\pi \left(T+\mu \nu\right)-1\pi \left(1+\mu \nu\right)}{2} \pm \left(\frac{T+\mu \nu}{1+\mu \nu}\right)T \pm \frac{\mu \nu \beta}{1+\mu \nu}$ $\left\{ f(\xi + \frac{1}{2}) \right\} \frac{1}{2^{n+1}} \text{ with } \left[\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} \right] \leq \left(\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} \right) f \in$ $\left(\frac{T_{i+1}}{T_{i+1}}\right) \times \left(\frac{T_{i+1}}{1+T_{i-1}}\right) \times \frac{Q^{p-1}}{Q^{p-1}}$ $_{-}$ $\phi_{ij} \simeq \left(\alpha_{ij}^{\dagger} - \hat{\pi}\right)^{\frac{1}{2}} \simeq \frac{L^{2}Q}{L^{-1}Q} \simeq \frac{1}{2} \left(\alpha_{ij}^{\dagger} - \hat{\pi}\right)^{\frac{1}{2}} \otimes \pi^{-1}Q$ $\frac{A}{h} \cong A^{\frac{1}{2}} \cdot A \cong A^{\frac{1}{2}} \stackrel{\text{def}}{=} \mathbb{R} \stackrel{\text{de$ +(T+--T)=- + + + -- T= T-- 1 $\frac{1}{T+y-T} = T \times \frac{1-y}{T} (T+y-T) \frac{1}{T} = \frac{y-y}{y-y}$ $T = \left(\frac{2\pi c}{1-c}\right)^2 + 4c_0\left(\frac{2\pi c}{1-c}\right)^2 + T$ $\frac{1}{2}(A+a-1)+\frac{1}{4}(\frac{1}{4A+a-1})+(A+a-1)=$ الاستثنال بالنسبة إلى من
الاستثنال بالنسبة إلى من ۲۶ سي^{د ـ ا} × سياب - لاس دوس - اسرد، A) س = المرابع المراب - س ۱۹ مرسواره - س ۱۹ مرسواره

Score was well directed new

ا با سن ۲۰ من ۳ من ۳ من ۳ من

fi .		
22	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ξ1 0-1 E1	
<u></u>	شند سرودو	
ع الم الس - سن ماد - ب = ١ - الم الد - ب = ١	RETIRT # # 5	
$\overline{Y} = \frac{Q^{-1}\beta}{\frac{p}{2}\beta} \forall \frac{p}{Y} = \frac{p}{Q^{-1}\beta}$	ξ,	
4 E1 . 4 . 0-1	- T	
1-	v(1-10- 1+10-00 c= 101 €	
(T-Tu-)	<u> المن (س ۱۹۳) - ۱۹ س</u> (س ۱۹۴۲)	
	· - ·	
1-0(1-	$\frac{\partial^{-1}}{\partial r^{-1}}$ $\times \frac{\partial^{-1}}{\partial r^{-1}} \times \frac{\partial^{-1}}{\partial r^{-1}} = -$	
	1+ ¹ w)(T- ¹ w)	
.44.00.0	_ U س ص	
	f = fun	_
ي مشتقات الدوال الثلثية		
1- P		
1x(1-u-)-1x(1+u-) 1(1+u-)	(i) <u>(-u</u> - • (-u - • (-u - •	
4 (1-4-) 11 = 4 1 (1+4-) × 4	1+4-7	(1
	(ب) اس ۳= "س" (ب)	
	ص=(۳سائ-۱)* اوساد د	
	$-\frac{1}{2}(1-\frac{1}{2}) = \frac{1}{2} = \frac{1}{2}(1-\frac{1}{2})$	_
- ۴ (غ من ا المال الم	**************************************	
	🕥 ۷ د متعملة جائد سن	
	("1)a=("1)a::	
نهــا <u>ا</u> س	= (+ u+) =	_
T=1A	$\frac{L}{2} = T + 2$	
(1)2-(3+1)) <u>a</u> 1	
		-

🗃 ۾ ۾ 🦆 من او هن ۾ ۾ 📗 جي اندي ۾ هن اندين ۾ 🔁 $\frac{1}{2} = \frac{1}{2} = \frac{1}$ $q = \frac{1}{2} + $\frac{(u-7-1)(1+u-1)}{2^{n-2}} = \frac{u-7-1}{2^{n-2}} \times (1+u-1) \times \frac{7-9}{2^{n-2}}$ مندسي = ۱۹۱۹ م س" = ۱ = ا ہے میں ساو و می دیوج $\frac{1-}{L} \in \frac{\Psi_{-}}{L} = \frac{\{T-1\}\{1+T\}\}}{T \in \mathbb{R}^{T}} = \frac{PJ}{M-2}$ (اس ۲۰) = (س ۱۰) * ناص ۲۰ ه ۱۵ (س ۱۰) * ا アード(1-0-)エロアム $\overline{1-\psi - \frac{1}{2}} = \epsilon - \frac{1}{2} (1-\psi - \frac{1}{2}) = \frac{\psi^{\alpha,\beta}}{\psi - \frac{1}{2}}$ 1 mg = 1 mg = 1 mg | 1 $= f\left(\frac{3-t}{3-t}\right) \times \frac{(3-t)\pi(1-t)\pi(1-t)}{(3-t)^2} \times (1-t) + 1$ $T+\omega+Y=\frac{(3+1)\pi(-1)}{7}\times(T-\omega+Y)=\frac{-3(3+1)}{7}\times(T-\omega+Y)=\frac{1}{7}$ $(7 + \omega^{-1} + 7 + \omega + 1) \times (7 + \omega + 7)$ Australia de la la consta To by by a few to the form 27=1-1-1-1-1-1-1 = 15 w T= الاس عس ا + س ، ع = [س- ا 1 + m1 = 1 m2 + 1 TE OF

⊕ س = ۲سبعاس

ر ص <u>مناس×(۲+مناس) – (۲۰س+ماس)×–ماس</u> ارجی (مناس)³

وس بهاس بها اس د ۲ س ما آس د ۲ س ما آس

وس جماس ۲۰ سرماس ۱ (منا ^تس جما ^تس) رس معا^وس

و س تواس ۲۰ سوماس ۱۹

$\frac{a}{a} = \frac{y - y + \beta + 1}{a} = \frac{y - y + \beta}{a} = y - y $
<u> </u>
(T1) fash(11) fash
ت المالة د غير فابقة للجمتمال
🛈 🕞 کا 'س 💮 ۵ مِعا ہ س
⊕ستر ⊕ستر
(1-0-1) じて① (チャッチ) たての
﴿ ١٤ مَا (٢ - ١ - س) ﴿ ٢ - س + ١ منا ١٠٠٠
100 to portator 100
💽 🛈 د ما دین سیما میں 🕥 ۱۹۹۵ تا ۳۳
⊕دس ۱۳۱۵ تساد `` استدر
⊕يبئر ⊙سدر ⊙حد
⊗ اطاس کا'س ⊕ نا'س
(「リーヤーヤ) トュリートー ⑥
0-141-0 0-141-0 11-0
I had one hard one hard the
1- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(V+v-6) ta1 (1) + 1 + -= - 10-5
(T+ ⁷ U=) (=U + U + (E)
(T+000) Lat -= 200 (S)
(T+U-T) ^T U == U^P S ♥
(14+ [†] u=+-) [†] Uy=1+-⊗
🗗 🛈 و من ۱۳ هاس مناس
آئي حسرمتاس ۽ ماجي

(0 -) L $\left(\frac{1+\sqrt{r}}{1+\sqrt{r}}\right)^{\frac{1}{2}} \ln \left(\frac{1+\sqrt{r}}{1+\sqrt{r}}\right) \ln \frac{1}{r} \frac{1+\sqrt{r}}{1+\sqrt{r}} = \frac{\sqrt{r}}{1+\sqrt{r}}$ (مريد معا (معا س) د د ما (بیما دی) به د ما دی ع – عا س بد ما (منا س) ای س داده منا ۲س وس و احمالاس (1) المراجع المراجعة ر من على على من على من على من على من على من على من على ر اس - ۲۰ اما ۸س ر اس - ۲۰ ۲س-ما کس ۲۰ س = ۲ ما س + مناس رص = برز عاس بهتا س = معا س = ما س) ر من مناسب مناسب ر سن مناسب مناسب (uppl) ha range (i) وسي = المنافس ع - 8 ما فس وص = جامناهس 🗗 🕥 س عما 🗜 + عما س مها 🐺 س عما (س + ﷺ) (# + um) les a 200 j 📆 ص=عنا س منا 💯 + ما س ما 💯 ص = مِمَا (س - ٢٠٠٠) $\frac{\left(\frac{\pi}{\tau} - \omega\right) \left(-\omega - \frac{\pi}{\tau}\right)}{\frac{\pi}{\tau}} = -\frac{1}{\omega} \left(-\omega - \frac{\pi}{\tau}\right)$ $\frac{\pi}{\tau} = \frac{1}{\omega} \left(-\omega + \frac{1}{\omega}\right)$ $\frac{\pi}{\tau} = \frac{1}{\omega} \left(-\omega + \frac{1}{\omega}\right)$ $\frac{\pi}{\tau} = \frac{1}{\omega} \left(-\omega\right)$ $\left(\frac{\pi}{2} + \omega_{\rm ob}\right)^{\frac{1}{2}} \ln \frac{\omega^2 d}{2} = 2 \left(\frac{\pi}{2} + \omega_{\rm ob}\right)^{\frac{1}{2}} \ln \omega_{\rm ob}$

ن س = عاس $\frac{e^{-i\omega_{0}}}{e^{-i\omega_{0}}} = \frac{e^{-i\omega_{0}} e^{-i\omega_{0}}}{(1+a^{2})^{-i\omega_{0}}} = \frac{e^{-i\omega_{0}}}{e^{-i\omega_{0}}}$ و متاس ومنا "س و ما " س $\frac{1}{\log \frac{1}{2}} = \frac{1}{(1+\log \frac{1}{2})^{1/2}} \stackrel{\mathcal{L}}{\longrightarrow} \frac{1}{(1+\log \frac{1}{2})} = \frac{1}{(1+\log \frac{1}{2})^{1/2}} = \frac{1}{(1$ (ح) قرد طا س (ما اس م منا اس) س د با د ما س بر ۱ د طا س بن را و س د ا د طا س 🕏 س دنا آس ۱۰ یه ص دفا آس د (طاس) ه من ۱۳ (گا س) بر قا[∓]س 🕥 س عاس + د ما دس ق من عدلة خاراً؟ يبطأ الأمني () ص=س ما س دوسن وس د ما س د ما س + ۱ ⊚ س = طا راحن ومن = براس نا اس © س عيدا س " ۱۹ هـ ... خوس د −۳س يا س" () س عما () $\left(\frac{1}{T_{color}}\right) \ln \frac{T_{color}}{T_{color}} = T_{color} - \frac{1}{T_{color}} + \frac{1}{T_{color}} + \frac{1}{T_{color}}$ $T \times (T + \omega + T) \times (T + \omega + T)^T = \frac{\omega^2 f}{1 + \omega^2}$ (2) عاد با[†] (۲ س + ۲) منا(۲ س + ۲) © دس معالما جس بد الا جس بد ت سلاطا 1س کا ⁴⁷ س © اس ۱۵ من " س $\Lambda = 1 (asl m)^{0}$ ر میا س) + x د ها س ه ۱۰۰۰ ما س (منا س)^ا ۳ س مد (س ۱۰۰)

 $T = \frac{1}{2} \left[\frac{1}{4\pi i} \left(\frac{1}{4\pi i} + \frac{1}{4\pi i} \right) \right] = \pi^{\frac{1}{2}} \left[\frac{1}{4\pi i} \frac{1}{4\pi i} \right] = \frac{1}{2} \left[\frac{1}{4\pi i} \frac{1}{4\pi i} \right] = \frac{1}{2} \left[\frac{1}{4\pi i} \frac{1}{4\pi i} + \frac{1}{4\pi i} \frac{1}{4\pi i} \right]$

∫ 1- ⊕	Y- (P)	Y- (T)	ത്ത	I	دري تا الما من
1 0	⊙ مندر		10 D		(ز) من د ۱ طا دس
1 2		10	*.	". و من = ۲ قا ^و ۲ س	ص = ط ۲س
"\T=®	*s# (f)		- †⊙ ••⊙™		(۱) مر = نتا سر = ماس
	- E (M) /.				
	graf "		∏س= مِنا س	ی حل ہے حل	وص = حتاس= - ط
	-		aa46	2	(₹) س = راتا س د ما د
		+ = » / » = (/ »		16-0-1	وس ما اس ما ا
			۳۱ من - (سا۲	ما 'س	و مين _{مي} ^ا من
عماء ص)	آ:« (امداا—ن-	إلاس + هفألاس)	A)TOURS		⊕ من = بيا " سرطا س مد
ω\+(Y+)	با(۲-۲س) با	- H(U-F-Y) ⁶	10 10 mg		رمن «عما سيمنا سيط
		a (u-T-T) *{c		نے جیا∀س فا [†] س	۱۳۵۰ من منا میر- <mark>ما من</mark> مکام
	عد سيا ٢ س	ا (جوزا) سي	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		عجمالين جمالين كال
					() س دسرطا (۲س د)
		-ما7س ۱+متأ7س	F"	اس کا ^۲ (۲۰۰۵ -۱۰)	$I + \{1 = \omega + 1\}$ ($I = \omega + 1\} + 1$
1-=	1+1 = 2003	<u>ا</u> فيد	مثد سي د	يما ه-ن	() س علا (اس -۱) -
د)ماس	۱+(۲س،جمات ۲۵۰	را س (۲+متاس ا		٧ منا ١-٠٠	"(1-0-1)"
	the eff	•	ماد مورده	مِعَا فِي سِ	@ ص= العا لم س-س
	$T = \frac{V}{1} = \frac{43}{2}$	*(+++)+(1+T) *(1)	1 + UP 3	۽ ڇُس ۽ ڇُس ما ڇُس	يرجوا لإس – عد
		†(τ) †(ψ=₹-π	(۱۲) س معا (- + la u-+ =
Y-:	e (1304° – 113) Y	e (mer-n)L		v-11	ا المون = المون = الم
			Maria Maria		and the Country of th
	•=(T-) H() tx*(+) w=	1 to 1	7	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		ما س	=()=(A	<u>- 14-</u>	-= 15 * (A)
			-(0-)1	سن * عا سن	وص چين ^ا مناس+
110000		ا ۱+مناس دمه	=(و سن هوا ^{ا ب} کس ه (۱ سن ۱۰ ا طا ۱
	۱ مطاس ا حما			uny Tibras)*++++++++++++++++++++++++++++++++++++
114	+1 -7	- 150H - [46+1	-=(-)'=		
95000	+ 1 *	77		د دیادان	(ا من د (س + ۱) معا
4.		4 - 4	* .	forth (1909) no	الم
_				را س بسراما سردما سرا	± †′) [*] (1+ µ+) n

الا ص = عاس سُره (۱+عناس)مناس-ماسه-ماس (۱+عناس) من مناسرهمنا "سرهها "س (۱۹معاس) س = معاس + ا (۱+معاس) ۱ + مدا س) (به ادم ۲ مور (1) ص = لوا ٢٠س writeryt-shorte س ۱۲هما۲ س عندها س دي $\frac{2^{10}}{2^{10}} = \frac{(\frac{\pi}{2} \times \Psi)^{1/2}}{(\frac{\pi}{2} \times \Psi)^{1/2}} = \frac{\pi}{2^{10}} \div$ رُ معدل تغیر می باننسیه این س = و می :: عطو : 17 س≃ کا باس مُن <u>و مقال سود ۱۳۷۰ می اس</u> (معال س) ا 10-1ks عنديها س 🕳 💯 $u_{i}^{\pm} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100$. معدل تغير ص بالثمية إلى س. و أس = معدر -+78+⊕ M T منا ۲ س ﴿ تَنَا مِنْ مِلَا مِنْ 🕑 مبا ۲ س 143 ® ≃۲ما1 س @قا اس آله (سن) = (+ما أس آ-ما أس m(u-)a (۱۳- ما ^اس)(۱۳۰ ماس معاس)-(۱۳ ما <mark>اس (۱۳۰ ما سمعاس)</mark> (۱ مما ^اس) ر (۱-ما اس)ما اس د (۱-ما اس) ما اس (۱-ما اس)

M Organ 17 (1-3) 3 5 walton $\frac{e^{\eta_{ij}}}{e^{-\eta_{ij}}} = \frac{1}{T\left(1-\eta_{ij}\right)^{\eta_{ij}}} \times Y\left(1-T\eta_{ij}\right)^{\eta_{ij}}$ $\pi = \max \frac{- \tau_{A, Y} - - \tau_{A, Y}}{(\tau(1 - a) \tau_{A, Y})}$ TTIEST = 0"3 The The #- = 1-1-1-1-(موا الس + 1) الم ار ما ۲ (ما ۲ س) + ۱) × (۱ ما ۲ س) (۱ ما ۲ س) = - ا ما۲ س (مِنا۲س +۱) 2-m(1+1) x \ x \ x = \ \frac{1 + 1}{2 - m} \ 🕦 س بدرا اس - عنا اس س = − (عدا أس − عا أس) ان س 🖛 – منا ۲س زمي وسن 107هـ 1س (۱۱) س د (ما سرد بها س) س دعا "س + بنا " س + ۲ ما س منا س ين من ها؟ عدا الحن صحاحيا الس 🕥 س ع ۲ س ما سرونا س د سرما ۲ س ے اوس ۱۳۰۰ ما ۲ میں ۲۰۰۰ ما ۳ میں ۱۶ میں اوس عما تموج تسيما تس T ب س د ما س ما س+مناس ر اس مناس (ماس دوناس) - (مناس -ماس) ماس در اس مناس (ماس دوناس) " مناس ماس جمنا س-مناس عاس جما س ما سبینا س (ماسبهناس) ما سهيا سجهاسيماس ١٠٥٠ اس

٧L

امالس (۱-مائس)

$$\left(\psi + \left(\frac{1}{2} + \frac{1}$$

ال من عاس مناس

<u>ارسي</u> غرس

ر ما سر دیا س) ه (مناسع میاسی) - (براسی مناسی) ه (مناسع میاسی) و رساند میاسی

(almente)

المائس ۱۹ متائس میاس مائس میتائس ۲۰ ماس متاس

 $1 - \frac{v^{\mu} s}{v^{\mu}} (v - T \ln + 1) = \lim_{n \to \infty} \frac{V^{\mu}}{v - T \ln + 1} = \frac{V^{\mu}}{v - T \ln + 1}$

الله الماسيمة سرون

 $_{r}$ ربيعين $\left\{ \Psi_{r}\right\} \left\{ \Psi_{r}\right\}$ وقع ملى التنجلي

FOUR DOINE OF ENDINE

ميل الماست و سن

براجات بر (حماس)+ إعماس برعات

 $\frac{4^{n_0}}{1-n} = \frac{1}{2} \left[\frac{n^2}{n^2} + n_0 + n_0 \right]^{\frac{n}{2}}$

 $| \tau = [1 - \tau] | = \frac{U^2 \beta}{4 - U} \Leftrightarrow (|\tau|, \frac{\pi}{4}) \ge \frac{1}{4}$

۲۰ میل اغمانی د حمیانی ^سن به پاه د ۳ د ۳۰

T=[... T-=]-/

mس=عاس- لٍ با "س

ومن سماس - الإيالامالاس هماس

د منا س(۱ - ما ۲ س) د منا س × منا ۲ س

on Plane was

(تنازين (٦)) على تطبيقات الشنقات

$$\oplus + \left(7 + \frac{1}{4} \cos \frac{1}{2}\right) + \frac{1}{4} \left(7 + \frac{1}{4} \cos \frac{1}{2}\right) = O_{\mathbf{A}} \oplus$$

$$H + \frac{1}{2} \cos \frac{\pi}{4} + \frac{\pi}{4} (T + \frac{\pi}{4} \cos \frac{\pi}{4}) = \cos \frac{\pi}{4}$$

$$\frac{1}{L-U} = 7 \left(\frac{1}{2} - U^{\frac{2}{2}} + 7 \right) \left(-U^{\frac{2}{2}} + \frac{1}{2} \right) + \frac{1}{2} - U^{\frac{2}{2}}$$

(1)
$$4-12-7+7$$
 $4-2-2$ $\frac{42^{d}f}{4-4}$

$$(Y) + \omega = \frac{\frac{p}{p}}{\omega - \delta} f, \qquad Y + \nabla_{\omega} \cdot \frac{1}{\gamma} = \underline{p}$$

مساحة الربع د (س) = س"

$$\gamma(A) = \frac{c_0(A)}{A} = \frac{c_0(\gamma - c_0 + B)}{A}$$

$$Y = r + A \times Y = (A + c + C) = Y \times A + r = Y$$

医一种性点

$$I = \frac{1}{L_{\phi}} - I \times I = \{(\alpha) \left[\frac{\partial \alpha_{1}}{\partial \alpha_{2}}\right]\},$$

T-0- - - 1 (T4) 1218-017-707 1 $a=0-\log 4-\frac{1}{2}\log 2$...(احريا = ۵)(احريا+۱)≃ه $\frac{1 \kappa (T+\omega_1) - 1 \kappa (T+\omega_2)}{(T+\omega_2)} = \frac{\omega^2 J}{\omega^{-1}}$ من های از من در ا عليما سرده 1 (T-ye) = (T-ye) = (1-ye) 78 电Yo + 70 + 5 - 5 - 1 - 1 - 1 - 1 - 1 $\theta = \pi \frac{\theta - \epsilon}{\tau(\tau - \mu)} = \frac{\theta}{\tau(\tau)} = 0$ ۱/ التكنف من (4 م - A) د (۱/ ۹۸ م (۲۸ م) . e- no lb A *1.1'14" # + + (4 -) * * Lb = # (۱- اس (س^ا -۱) " التعاس يمسع زاوية فياسها ١٧٥ مع الانجاء للوجب شحور السينات 4-7 wat = 200 p ري ميل للماني = 144 May في الماني عام 144 May $T = \frac{1}{2} (1 - T)^{2}$, $T = \frac{1}{2} (1 - T)$ $t = \pm i\hbar \operatorname{U}_{i} \mathcal{F}_{i}$ $t = \pm i \operatorname{H}^{\dagger}(x) \operatorname{T} =_{\{x_{i}\}_{i} \in \mathcal{A}^{\dagger}} \underbrace{\operatorname{U}^{a} \mathcal{F}}_{x_{i} = x_{i}}$ $^{\bullet}\mathsf{tT} \bullet = (\mathsf{t} -)^{\mathsf{t} - } \overset{\bullet}{\mathsf{t}} \flat = \mathsf{J}$ 1#4+{1-}6-⁶(1-}m## عندما س 🗷 – ۱ Y + 1 1 (3) 医维罗克曼氏征 医皮肤 وتبديا س عرا 1-1 - التعكمي (۱۳۵۸) د (۲۵۱) مند التحملة (۱۹۰۰ (۱۹۰۰ (1- = 1-x1 = 000 / 1. الانتماس الانتساليم يُ ميل باستقيم = مين ألماس $\frac{\theta}{\eta} = \exp \frac{1}{2\pi i \eta} = \frac{\eta_0}{\eta} = \frac{\eta_0}{\eta} = \frac{\eta_0}{\eta}$ مين المنظيم = معامل سي. مين المنظيم = معامل س $T = \frac{\partial^2 J}{\partial x^2 d} f_x$ T- = 11 - g-1 // ... $\frac{T}{T} = \varphi - \lambda \qquad (14) \qquad 4 = \varphi - 1$ $T = (\pi T) \lim_{t \to 0} T = \lim_{t \to 0} \frac{d^{d} J}{dt}$ $\frac{16m}{4} = 0 + \frac{1}{2} = 0 + \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{2} = 0 + \frac{1}{2}$ 70.04 "14"71 = (4)" " U = # A. ال مجاد الا المستقيم ۲۰ س د ۲۰ من د ۲۰ TATOME STATE A SALESTATION OF A Sere berry عند ميل العاس = ٩ مين المعيدي ن ي + 10 70 = \$1 - 10-5 A to on a trainer Report A. (1+) Y1=w1 وليما س ه ١ 10 may 5 $481 + 6 + 7 \times 11 + 7(7) T = 66 A$ $1 - = \varphi + i\omega_0$ (1) $T = 1 - (1)T + {}^{V}(1) = \varphi + 2$ (4Y c 3) Maximi. $\Phi = \{-\{1-\}\} + {}^{T}(1-) = \omega \in \mathbb{Z}$ ﴿ الماس يستم زاوية كالها = −١٩ $(\theta + \epsilon \lambda +) + (\Psi + \lambda)_{ab} = death A$ $\Delta = \frac{\partial^2 F}{\partial x^2} \ge 0$ 11-026 The water Town Townson (8) 11--11- 4-7 4-9-1211-*(-) To go C. لأرميل للماس المطر 19 المشن//محور السيلاب

1-7(7 - u -) = 1 (4)

مماولة للسهيم (7 س و من ١٠٠٠ ه

السنتيم
$$W=1-2$$
 د $T=2$

$$T = T - \sqrt{-T} A$$
. A substitute of $T = T - \sqrt{-T} A$.

$$\pi(+1)^{-1}$$
 المقطقة من $\pi(-1)^{-1}$

$$\frac{v_{ij} = t - t^{-1}(T - T)}{v_{ij} = \frac{1}{t} \times (T - T)} = \frac{v_{ij}}{t} \times \frac{1}{t} \times$$

$$\frac{1}{\sqrt{1-\omega_{p}}} = \frac{1+\omega_{p}+\omega_{p}}{\sqrt{1-\omega_{p}}} = \frac{\omega_{p}}{1-\omega_{p}}$$

$$A = \frac{e^{-i\phi}}{1 - e^{-i\phi}} \lesssim 1 + e^{-i\phi} \approx e^{-i\phi}$$

where
$$t = \frac{q-q}{q-q} = \frac{q-q}{q}$$
 . The $t = \frac{q-q}{q-q} = 1$

::التقدمي (٤٤٠) ((£14)

$\frac{1\times (7-\omega_{-})\times (1-\omega_{-}7)\times f}{(-\omega_{-}7)\times f} = \frac{(-\omega_{-}7)\times f}{(-\omega_{-}7)\times f}$

$$\frac{1}{1-\omega} = \frac{1-\omega+1}{(-\omega-1)^{\frac{1}{2}}} = \frac{1}{(-\omega-1)^{\frac{1}{2}}}$$

معادلة الصنائبين حس + س - ٧

$$t = \frac{1}{2} = \frac{1}{2}$$

$$1 = \frac{1}{T_{(1-\omega+1)}} \triangle$$

$$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$1 - \frac{10^6 J}{V}$$
 $J = \frac{1}{V} = \frac{1}{V} = \frac{1}{1000} J_{\rm col} A$

$$\left[\frac{\pi}{4} \left(x \right) \right] \ni \frac{\pi}{4} = 2 \text{ for } p \in \mathbb{N}$$

4
16 = 4 N + 4 NA = $_{1}$ + 4 γ_{1} samult some

$$\frac{\pi}{\gamma} = \max_{i} \max_{j \in \mathcal{I}} \frac{\pi}{\gamma} \left\{ x \right\} \frac{\pi}{\gamma} \left\{ x \right\} \frac{\pi}{\gamma} = \frac{\pi}{\gamma} \times \gamma \left[\frac{\pi}{\gamma} \right],$$

$$\left(\frac{\pi}{\gamma}\right) \left(\frac{\pi}{\gamma}\right) \frac{\pi}{\gamma} = \frac{\pi}{\gamma} \times \gamma \left[\frac{\pi}{\gamma} \right].$$

🕥 س 🖛 ما س + منا س

المعنى
$$H$$
ممور السيئات $\Lambda = \frac{e^{2\eta}}{e^{-\eta}}$ = معقر Λ

طُ موجية في الربع الأول) الثالث

الربع الثالث 1

$$(1 - \frac{1}{2})^{-1} = \frac{1}{2} - \frac{1$$

$$A = T \times A - T(T) = \frac{U^{2} S}{U - J}$$

$$(\nabla - \omega_{ij}) = \nabla - \omega_{ij} \cdot (\nabla \omega_{ij} - \omega_{ij}) = (\nabla \omega_{ij} - \nabla \omega_{ij}) \cdot (\nabla$$

27 س - ۲ = ۸ س - ۲۹ $\sum_{i=1}^{n} \left(\hat{a} - \hat{a} - \hat{a} \right)^{2} = 0$ IT - OH A HOP A (از) در می بر وسی در ایا سی أواحل ساقامي بالالحصكر ナニダ リレールニアム The second $\frac{1}{1 - \alpha_0} = 1 - \alpha_0 \frac{1}{1 - \alpha_0} \geq 1$ ﴿ ص عدر دس -1 وبالتسريش من 🖚 📮 شي محادلة لللحش فجد أن : $\frac{T}{L} = T^{-}(T) = T = \lim_{t \to T} \left(\frac{d^{2}t}{dt} \right)^{-1}$ $t = \pi = \frac{\pi}{4} \operatorname{Li}_{t} - \pi = \varphi^{*}$ اي آن: النصلة (🚣 ۲۰ – ۱) تقع على التحتي $(Y - y - y) \stackrel{\pi}{=} (\frac{\theta}{2} - y - y)$ المعادلة الماس على التقطة (🏂 ١ 🛪 - ١) هيا: بير المس ساخي خالعه ® س = س (+ اس. - ($(\frac{\pi}{t} - \omega_{-}) \forall = (t - \pi) - \omega_{-}$ $\frac{\pi}{1} = \omega + \pi = 1 + \pi = \omega$ بناس عامل به الإما ﴿ من= ۲ ما س + منا س $\frac{1}{1-(1)} \frac{1}{1-(1)} \frac{1}{1-(1)} \frac{1}{1-(1)} = \max_{i=1}^{n} \frac{1}{1-(1)} \frac{1}{1-(1)} = \min_{i=1}^{n} \frac{1}{1-(1)$ ر المانية على المانية على المانية الم (ای - 1) =مشر (س - 1) از ج می جا = ه (آ) می = (س ۲ + من) (س ۲ خو) $T = c \ln - c \ln T = \lim_{t \to 0} \left[\frac{\partial^{d} f}{\partial x^{d}} \right]$ (++ u+) #= (+- u#) رز لاس - اس + اجه س – ۱ به ۲ س اله من المعامل (T+pm) TT = (T+pr) <u> ۱۳۸۸ - ۱۱ ما س)× بنا س – (۱ جیا س)× جنا س</u> ۱۶ جاس) キニス・チェクー カーザブ ム ص + ٦٦ سا۲۲ سن + ٦٦ 7+ 00 (a) $\frac{\pi(x_0 - \pi(\pi(x_0 + 1) - \pi(x_0 + 1) - \pi(x_0 + 1))}{(\pi(x_0 - 1))} = \frac{\pi(x_0 - 1)}{(x_0 - 1)}$ $\frac{t_{N_{ij}}}{t_{N_{ij}}} \leq \frac{(-t_{ij}+1) \times (-t_{ij}+1) \times (-t_{ij}+1)}{(-t_{ij}+1)^{\frac{1}{2}}}$ A Take (مر + n) عدد (مر + n) T(14,4,1) = 1013 1 - 11 + w + w + $\frac{1}{1-} = \frac{1}{1-1} = \frac{1}{1-1} \left[\frac{1}{1-1} \right]$ $(1-\mu_0)^{\frac{1-\mu}{2}} \otimes (1-\mu_0)$ \$+ pro- = \$ = pro \$ //. $A = \pi^{-1}(1) Y - (1) Y = \frac{U^{-1}}{(1-i)!} \left[\frac{U^{-1}}{1-i} \right]$ 100 B = 100 B + 100 ے میل العمودی = 🛨 €س د (سر۲-۲) $(\gamma - \gamma - \gamma) \stackrel{\wedge}{=} (4 + \gamma - \gamma)$ ممادلة المجودي هي ر $(\gamma - \gamma)$ رساً = ۲×۳(س اً = ۲) ۲×۳س デーローニアミシ ロイカ ##4 - ₩A - ₩ A (غ) من = (آ) $^{\dagger}(T - T_{OM}) \longrightarrow \Lambda = \frac{O^{-3}}{O^{-1}}$ $f = \lim_{n \to \infty} a_n = f = \sup_{n \to \infty} f_n$ $f = f'(\tau - L) f \times A = \frac{1}{(4\pi)} \left[\frac{d^2 J}{dt} \right]$ $\mathcal{F} = \{ -\{1\} \in \mathcal{F} = \{ \{1\} \in \mathcal{F} : \{1\} \in \mathcal{F} \} \} \}$ ين من - العالمة من - ۲۲ (س-۲۰) ۱۹ = (۱۰۰ (س-۲۰) ۱۹ س د ص د الا م ۱۹ × ه

محادلة العمودية

$$(q_1 - q_2) = \frac{1}{\sqrt{1 - q_2}} (q_2 - q_3)$$

الراسي والأمن أواجاه

$$\frac{1 \times (1 + \omega_{-}) - 1 \times (1 + \omega_{-})}{1 + \omega_{-}} = \frac{\omega^{-1}}{\omega^{-1}}$$

$$\frac{1}{2} = \sup_{\{Y \in \mathcal{Y}\}} \frac{1}{\{Y = Y\}} = \sup_{\{Y \in \mathcal{Y}\}} \frac{1}{\{Y = Y\}}$$

$$T \sim U^{-\frac{1}{2}} T_1 - U^{-\frac{1}{2}} T_2$$
 $(T - U^{-\frac{1}{2}}) \frac{1}{2} = (0 - U^{-\frac{1}{2}})$

$$T = \overline{T}(T-1) T = \frac{1}{(f(1))} \left(\frac{(f^2,1)}{(f-1)}\right)$$

$$(4-\omega - \frac{1}{2} - \omega - 1) = \frac{1}{2} \cdot (-\omega - 1)$$

$$\frac{e^{-\frac{1}{2}} \times e^{-\frac{1}{2}} \times e^{-\frac{1}{2}} \times e^{-\frac{1}{2}} \times e^{-\frac{1}{2}}}{(1 - e^{-\frac{1}{2}})^{\frac{1}{2}}} \times e^{-\frac{1}{2}} \times e^{-\frac{1}{2}}}$$

$$\frac{2 - \frac{1}{2} $

$$\frac{e^{i\omega}}{e^{i\omega}} = \frac{\tau_{-i\omega}}{(\tau_{-i\omega})^T}$$

$$=\frac{1}{2}\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right) = \frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)$$

ال معادلة المعودي هي د صل ٢٠٠

$$\mathbb{T} = \frac{\overline{\mathcal{T}}_{i}}{\epsilon} \, \mathbb{T} \, \mathbb{L}_{\mathbf{H}_{i}} = \frac{1}{(1 + \frac{\overline{\mathcal{T}}_{i}}{2})} \Big[\frac{(1 + \frac{\overline{\mathcal{T}}_{i}}{2})^{2}}{(1 + \frac{\overline{\mathcal{T}}_{i}}{2})^{2}} \Big]$$

$$\left(\frac{\overline{M}}{2} - Q^{\mu}\right) \frac{1}{2} = \left(1 - Q^{\mu}\right) \stackrel{\wedge}{\leftrightarrow}$$

$$T=1-T=T=\frac{1}{(1)T}\left[\frac{d^{2}\beta}{d^{2}\beta}\right]$$
.

$$1 - a_{ij} = 1$$

$$T - a_{ij} = 1 - a_{ij} = 1$$

$$T_{ij} = a_{ij} = 1 - a_{ij} = 1$$

(٧) لايجاد نقطه التقاطع

1 ص - 12 ماس

$$\frac{1}{1-v} = \frac{1}{1+v} = \frac{1}{1-v} = \frac{1}{1-v} = \frac{1}{1-v} = \frac{1}{1+v} = \frac{1}$$

📆 لايجاد نقطة التقاطع مع مصور السينات برينيم حم 🖘

-=(1-₆-)(1-₆-4) ∴ (1-₆-4)(1-₆-4) -ب- الله

د ت المناطقة المناطق المناطقة ا

(+c1) 1 (+c4)

ملتة على معور السينات ﴿ عَنْدُمَا صُ = ﴿ وَا

ش∞=(-1) + "(1-)=ب•∴

 $V = \lim_{n \to \infty} \frac{e^{-n}}{n} \cdot f \quad \text{if } n \to \infty \quad \text{where} \quad f = 0 \quad \text{or} \quad f$

1-4- - 2 - 1- 1 (1 - 1)

من المتنز ١٣٠٠ مع ١٩٠

 $1 = 9 - 1 = 1 = \left(\frac{1}{4^{-1}}\right) \left(\frac{1}{4^{-1}}\right)$

ميل المنس= − ا الرحي = − ا

 $24 \times 1 = 1 = 1 \times 1$

$$f = {}^{\dagger} G = \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \stackrel{?}{=} \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} \stackrel{?}{=} \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial$$

معادلة اللماني الثان بالتقطقة (e g it)

 $\langle a_{ij}, a_{ij}, a_{ij} \rangle = \langle a_{ij}, a_{ij}, a_{ij} \rangle$

 $(t-\omega_{-})^{\frac{1}{2}}\omega_{-}T=(v-\omega_{-})$

عن ۾ جين آهن جي سن جي سن جي سن جي سن جي سن

ري مين" ۾ 19مين" – 19مين" – 19مين" – 19مين" – 19مين"

7 س " (سن + 1) ت •

مرسنغه أث∙سيعة

متيماس د د شس د (۱) تا د

 $Y(t) = \frac{1}{2}(Y) = \frac{1}{2}(Y$

(71343) (444) (447)

 $T = T - L \times T = {\scriptstyle \left(m/L \right)} \left[\frac{M^{d-1}}{L} \right]$

 $(i - i - j)^{-1} = (-i - i - i)^{-1}$

س بالاستان بالاستان الكراس - الساب الساب المسابق

لا يُجِادُ نَقَمَلُ لَقَامَلُمُ الْمَاسِ مِعَ مُحِورُ أَيْسَيِّنَاتَ فَطْمَعُ أَنْ \$ * *

$$\left(t \in \frac{1}{4} \right) \left[1 + \frac{1}{4} = 0 + 1 \right]$$

 $(6-\omega)^{\frac{4}{2}} = (4-\omega)^{\frac{4}{2}} (-\omega-0)$

emile of the or 2 to the or a few after

الإهباء تقط القاطع المعودي على صحور السيثات بوشع ص ==

H=g=A r=H=g=

(+ c18) 33-330

ې ب د ۱۱ د پ د ۱۲٫۵ ومدا طول

 $\Delta a_{\mu\nu}$ ابن نور $a_{\mu\nu} = \frac{1}{2} \times 17,0$ بن $\Delta a_{\mu\nu} = 0$

 $(T | Y_i) = 0$ The state of the part o

$$T = \pi \left(T = 1\right) T \pi_{\left(1(1+1)\right)} \left[\frac{e^{2\beta}}{1-\beta}\right]$$

محادلة للماس غيء

$$(a_0 - b_1) = -b^*(-a_0 - b_1)$$
 $A = a_0 - b_1 - b_2$

4 × 37 + 100 × 10+3

🕤 لايجاد نقطة تقاطع الماس مع محور السهلات تضع

4200

الد الأمالة الثقاماتج عبي (٣٠٤٠).

🏵 مساحدات الطلوب هو مساحدات و إ ب

= 🛊 ۱۲ = ۱۲ = ۱۲ ومبلادريبلا

$$\frac{1-c_{1}}{1-c_{2}} = \frac{1-c_{2}}{1-c_{2}} $

* الشنقيم ص: أسر 4 6 مماس للبنامش عند اللتملة (P = () =) $h = \sup_{\{T-t\}=\frac{1}{2}} \left[\frac{M^{d} d}{M^{d}} \right] f_{t}$ A=(1-) wt+*(1-)}#: (1) ac. A=407-17 m $\mathbf{i} = \mathbf{x} \circ \mathbf{c} \in \mathbf{T} \otimes [\mathbf{i} : \mathbf{j} : \mathbf{c} \in \mathbf{T})$, where $\mathbf{i} \in \mathbf{T} \otimes \mathbf{c}$ (سي[†] - اسي) (اس + س) (ا $(Y-u-Y)(u+u-Y) + f \times (u-Y-Yu-) = \frac{u-Y}{1-u-Y}$ ١٠٤٢) التحلق يمس محور السيئات علد (٢٥٠) ى لاحن =مىقرىك س = ۲ $(1-7 \times 7) \times (\omega + 7 \times 1) + (\times (7 \times 7 + 7)) \times (\omega + 7 \times 1) + (\times (7 \times 7 + 7)) \times (\omega + 7 \times 1) \times (\omega + 7 \times$ (1) + 1= w+ (1); $T = \frac{Q^d \beta}{Q^d \beta} \cdot \lambda.$ ص=٢٠٠١ (مباس للمتحدي) الأفلستاليم مماس للمتحدي عند (٥٥٠). رُدُ وَالْمُ الْمُعُمِّدِينِ ١٥٠ عِنْكَ (١٠٠٠) (T-+xT)x(\(\omega ++x\)+}(+KT-T)\(\overline{\sigma}\) 1-=u / (T-+) (T-+) بالتعويش في (فا عن) ب \$=14 (=N-14 الله و (سن) = (سن) + ق سن (د) التعليد (-۲۰۱) و العليس # + (1-) U + *(1-) | = TA (1) - T- = w-"(a) (b) = (1-)" > ((+ 11-) <= - = + o- (+ = (o-) ') (1) ca 1-4+11-Sec (1) (1) day 4 1=14 ザカム 🚰 🖫 اندانه قابله تلاميداق 1500 14007 = (Un) 50 1600

T#(1)%A

٨٠ مماريد څخ هي الا س په ايسي ١٨٠٠ ٨ لايماد ظملة تقاطع البيانيم أن مع محور العينات الإس 480 أي أن و ٣٣٠] من الوعدات PT中心电流 لابجاد نقط لقامع المتقليم ﴿ أَنَّ مع محور الصادات فإنَّ میں عا ہ أي أن و يوحكٍ من الوهيات Angel A ث مساعة گام و ب = أو × 11 × أو = ادو منظ مربعة رمي حكمية ثابتة لا تعتمد عان إحداثين نقطة هر الوالعة على الالحني 2. (1) = 6) 5 للمنحلي $\frac{1}{\omega + 1\pi i} = 1 - 2,$ ((-+) 4= (w+1) 4- A (1) ← 1= = → +(∴ $\frac{1 \times (-1 \times (-1) + (-1))}{1 \times (-1 \times (-1))} = \frac{(-1)}{1 \times (-1)}$ $\frac{\{q-\frac{q-1}{2}\}}{2(q+q-1)} = \frac{q-2}{q-1}$ $V = \frac{1}{(1-\epsilon)!} \left[\frac{1-\epsilon}{2-\epsilon} \right]$ 7(a+1) = A = A $\frac{1}{2(k-1)} \approx k-1$ TelA. بالتعريض في (١) من [**甲三苯酚药** 19一日山中東京 ٣٠ النابطة(١٠٠٠) لقع على للنحلي ص = | س" + ب س" $(1) + 7 = \omega - 1$ (1) $(1 - 1)\omega + 7(1 - 1) = 7 - 3$ مبل ألماس للمتحنى عند أى تتبلة عليه

مكساس دا

 $(T(t)) \leftarrow T = t \times T = y = t$

1 = = 4 ± -	معادلة الماس جي: (٣٠٠ ٣٠٠) ٣٠٠ (من ١٠٠٠)
م <u>يل ا</u> لثماني عند (س = ۲) × ۱	ミエムデームニすぶ デージャデエギージ
ميل السمودي على (من = ١٠٠) = ١	🕥 ص ≃ س7− ا ص + ا + ۱
V = 1 - 1) it is a second of $V = 1$.	لا الثماني هو محور السيئات وحق ≃ ۲ س ~ [- الثماني هو محور السيئات
1= " T T T T T T T T T T T T T T T T T T	de getter (A. 1995 and 1995 b. 1995 b
$\frac{1}{1} = \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} = \frac{1}{1}$	∳=u=∴ f=u=t
2 600 = 100 × 100 × 100	۲ من ه س ^۳ – این ۱ م ۱ من ۱ من ۱ من ۱ من ۱ من ۱ من ۱ م
$\frac{1^{\log^2 \left(1 - \frac{1}{2} \log^2 \left(\frac{1}{2} \log^2 (\frac{1}{2} \log^2 \left(\frac{1}{2} \log^2 \left(\frac{1}{2} \log^2 (\frac$	ري من ه سري المن المن المن المن المن المن المن المن
معادلة للماس شية	س د دسرا جالس د ۱۰ محرور المیدان معلی تلهدها
(من - من) ت الأمن . (من - سر)	and our of the same of a four of
واص سيد والعربية عدد المسيد من من المسيد	TEUP A SET(TOUR)
(+11+1)	," تتحدد الثماني هي (۱۰)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	() a () a ()
1 00 0 00 00 00 00 00 00 00 00 00 00 00	د (سن)» { سن>، د (سن)» { سن <،
1= 1000 1000	te [†] (Y) ≈ or △ t = or and a decomposition of the or er
C8 /	(١٤٢) ك المتمتي
(ا) اليجاد نقط تقاطع النجس مع الدائرا	لارس)= دارس)=
ي دن ه دن المراجع و المراجع م د دو من المراجع و	
78 = "UP + 8 = UP".	1=1 x 1=(1)'a
عرا ⁷ +عن +¤۳۰ د (عن ۲۹)(اس +¤)	معادلة للماس هية
east (/-ast	A-u-t-t-u-1 (1-u-) t=(1-u-)
جالتمويض فى معادلة اللحني عن ص	. ا أمين ما اس ما ا = ه
3-=±+ بن = ₹ بن = ₹ بن = ₹ بن المتدا ٢٠	[ك اس= س س - ۳ س
na Maria di	وي عدد احداد احداد د سي ^{ا ب} ادس مي∌ه عدد د
س ۽ ۲ هر (مرهوشي)	سي ديور. سي ديون سيخه
لا تحققان معادلة الدائرة علمما ص= 0	مندس=۲
reporting to the experiment	ter-ter-u-te [*] ur.
Thus a supply of (Teur) pe	1=40.5
تحققان معادلة الدالرة	الله الله الله الله الله الله الله الله
	1T - (1-) TTT - 0 4-7.

$$T = \Psi \rightarrow \pi \ \, T = \frac{e^{\frac{2\pi i \eta}{2}}}{e^{\frac{2\pi i \eta}{2}}} \left\{ \frac{e^{\frac{2\pi i \eta}{2}}}{e^{\frac{2\pi i \eta}{2}}} \right\} f_{i}, \qquad T = \min_{i \neq j} \pi \ \, T = \frac{e^{\frac{2\pi i \eta}{2}}}{e^{\frac{2\pi i \eta}{2}}} \frac{e^{\frac{2\pi$$

$$\label{eq:condition} a_{ij} = \frac{1}{T} \left(a_{ij} + 1 \right) \qquad \quad J^{(ij)} = 0 \quad \text{and} \quad a_{ij} = 0 \quad \text{and} \quad a_{$$

$$T = T - \| T - \| T - \|_{(\theta \in T_1)} \Big[\frac{e^{\rho \cdot t}}{e^{\rho \cdot t}} \Big]$$

$$\forall + m - n = 10 \text{ mod } \forall A (\nabla - m) \cdot \frac{1}{\nabla} = n \text{ mod } n$$

$$\overline{\tau} = \left((1 + \frac{Q^{\alpha\beta}}{Q^{\alpha\beta}}) \right) \frac{1}{T} + \frac{Q^{\alpha\beta}}{Q^{\alpha\beta}} > 0.5.7.$$

$$A = \frac{1}{2} \frac{d^2}{d^2} + \frac{1}{2} \frac{d^2}{d^2} + \frac{1}{2} = \frac{1}{2}$$
 (vicing)

$$1 = \pm 1 + \frac{Q^2 \beta}{Q^2 + Q^2 \beta} + \frac{Q^2 \beta}{Q^2 + Q^2 + Q^2 \beta} + \frac{Q^2 \beta}{Q^2 + Q^2 $

$$\hat{A} = \pm L + \frac{L}{L} + \pm \frac{L^{d-1}}{L^{d-1}} W \in$$

$$\frac{t^{-\alpha_{\rm tot}}}{t^{-\alpha_{\rm tot}}} = \frac{A^{-\alpha_{\rm tot}}}{t^{-\alpha_{\rm tot}}}$$
المادنة شي :

$$(1-\omega_{\nu})^{2} = (-\omega_{\nu}) \Rightarrow (\omega_{\nu} - \omega_{\nu})^{2} = (-\omega_{\nu} ^{2} = (-\omega_{\nu} - \omega_{\nu})^{2} = (-\omega_{\nu})^{2} = (-$$

🗗 سے ایماس مناس ب 🖃 یا ۲س + س

$${\rm Col}({\mathbb R}^{n})$$
 الثماد ${\rm Col}({\mathbb R}^{n})$ الثماد) الثماد (

100

1- ® 1.10

$$1 \times 9 - \mu \sigma + \mu \tau \gamma \quad \Longleftrightarrow \quad 11 - \mu \tau \gamma = \frac{\mu \sigma \gamma}{2 - \mu}$$

$$T = \frac{\partial^{2} J}{\partial - J}$$
 . $t = \frac{\partial^{2} J}{\partial - J} + T$

الاقلمان المتحلى أأ السنقيم

$$\frac{t^{\frac{2}{2}} \frac{q_{1}}{q_{1}}}{t^{\frac{2}{2}} \frac{q_{2}}{q_{1}}} = \frac{t^{\frac{2}{2}} \frac{q_{2}}{q_{2}}}{t^{\frac{2}{2}} \frac{q_{2}}{q_{2}}} \text{ than if } q_{2}$$

$$3 = -33 + n + 3.5$$

$$\frac{T}{T} = Q + A \qquad \qquad \tilde{q} = Q + \tilde{q} \, .$$

بالتمويش في معادلة التحش

$$\frac{\gamma}{\gamma \eta} = n + \frac{\gamma}{\gamma} = \eta \eta - \frac{\gamma}{\eta} \left(\frac{\gamma}{\gamma} \right) \eta = Q^{-1} \Lambda$$

$$\left(\frac{qq}{q} + \frac{q}{q}\right)_{q} = 2 \operatorname{dist}(A)$$

$$\frac{1}{\sqrt{1+2\alpha}} \left(\frac{T}{T} + \frac{PT}{T} \right)$$

$$\frac{1}{\sqrt{1+2\alpha}} \left(-\alpha \sqrt{1+2\alpha} \right) \left(-\alpha \sqrt{1+2\alpha} \right)$$

$$(1 + \omega_0) \times T + (\omega_0^{\dagger} + (\omega_0^{\dagger} + (\omega_0^{\dagger} + 1)(T + \omega_0^{\dagger}))$$

$$(P + h -) + L \times T \times ((T -) + t) = \frac{\omega^{2,3}}{\omega^{2,3}} = f' :$$

$$TT = (1 + t -)$$

$$\frac{1-c}{c} = \frac{e^{ip^2 - ip^2}}{e^{ip^2 - ip^2}} : constit its interest.$$

422 191 4 Jul 29 4 Jul

Section and well a Constant arrest

ث المراه على المراع على المراه على المراه على المراه على المراه على المراع
🕦 👣 (سن 'جاس-۲) ۲۰ د ت

 $\frac{1}{2} (3 - \omega^{-\frac{1}{2}} - 3 - \omega + i)^{-2} + 2 \approx \frac{1}{2(7 - \omega - i)^{\frac{1}{4}}} \oplus 2$

٠٠٠ أ ١٠٠٠ أ ١٠٠٠ أ ١٠٠٠ أ ١٠٠٠

€ ما (س + الله) + د

ش+ب الله باس الله عنا باس+شه

@ - أحمالاسدن @ سنادوس @ سنادن

الماسودة الاسودة

🛈 سرده 🕒 ما سردمها س

€ ما س-ما سهد این استان ده

1 (1-0-1) 1 (1-0-1) 1 (1-0-1)

ا (ا س ا د س = ا ا مي + بده ت س ا بد

4+ - 1- - - 17 - - 17 } @

4+ 14- = 4+ 1- 1- 14-14

﴿ إِدْ إِسْ وَسِ وَإِ فِسَ أُوسِ

4+ 10- 1=4+ 10-1=4+ 10-8=

m 1 = w = 1 0

 $0+\frac{1}{2}\omega_{+}\frac{q}{4}=\omega_{+}\frac{\frac{1}{2}\omega_{+}}{\frac{1}{2}}=$

۵۰ ممال ۱۰ د مورد ۱۰ مال ۱۰ د د مورد مورد ۱۰ مال ۱۰ د د مورد مورد

@ [T (T 3"-0) & 3= [(T 3"-4") & 3

megh-Tetmoseh-Tetm

© [(ا س) ده س.۳ ۲ اسد ده <u>ا اسلام شمال ۲ سر ده</u>

ms("-w++ furt) |=

D 1 (1 -0" + 0-0 + 2) 2 -0

n-1 (n-1-1) | = n-1(1-n-) n- | @

ع ليِّس ^٢ − ¥س*+ك

@] س*(۴س - سُنْ) ادس

 $\triangle + \frac{1}{4}Q = \frac{1}{4} + \frac{1}{4}Q = \frac{1}{4} + \frac{1}{4}Q = \frac{1}{4}$

@ (س-۲)(س+۲) اس

 $\Delta + \omega - \xi - \frac{1}{2}\omega_{0} + \frac{1}{2}\omega_{0} + \frac{1}{2}\omega_{0} + \frac{1}{2}\omega_{0} + \frac{1}{2}\omega_{0}$

(----) (-u-+) t

the continue of the party of the

(1-J-)) (T

س) (س = ۲ راس ۱۵۰) (س

U-1 (1+ 1) U-1 - U-) [-

ع المال
J (- -) (⊕

 $\lim_{t\to\infty} J\left(\frac{1}{T_{t-1}} + T - T_{t-1}\right) \Big) =$

ب [رس^و ۱۳+ س^و) د من

ي آر دو دورد مورد جول داده

the training of the first

u=1(++1,0−+1)1⊕

 $O(1) \frac{T}{T_{color}} \left\{ + O(1) \left(\frac{T_{color}}{T_{color}} \right) \right\}_{col}$

STATE OF THE STATE

 $\Delta + \frac{T}{100} - \mu_0 T \Delta \Delta + \frac{1}{100} \mu_0 T + \mu_0 T \Delta \Delta$

Г.	
	© [(۲ س + 4) المراجع) المراجع المرا
	$a_{ij} + \frac{p}{p} = (p - p - q) + \frac{p}{p} = q + \frac{p}{p} \times q + q$
,	a pa s
	± + ∀ (+ - + +) =
	@ [{ س با د س
	4+ + + + + + + + + + + + + + + + + + +
	4 + + + + + + + + + + + + + + + + + + +
	© [سن (۳ + سن) ا و سو
	$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n} + \frac{1}{n} \right) \left[\frac{1}{n} + \frac{1}{n} \right] \left[\frac{1}{n} + \frac{1}{n} + \frac{1}{n} \right] \left[\frac{1}{n} +
	4+ F(1+4+7) + TXT =
Т	@ إ سيد (١- بس) در س
	$= \left[\left[- \left(\left(t - \frac{1}{T} \right) \right)^{2} \right] + \left(- \frac{1}{T} \right)^{2} \right] + \left(- \frac{1}{T} \right)^{2} \right] = 0$
	△+ [∀] (₹~⊌ ~) \ \ =
Т	100 E - 1 100 E
	•
	$= \int_{0}^{\infty} \left[\left(\frac{a}{T_{(1)}} \frac{a}{T_{(2)}} \right)^{\frac{1}{2}} \left(\frac{a}{T_{(2)}} \right)^{\frac{1}{2}} \right]$
l	$\frac{1}{2} + \frac{\frac{1}{2}(0 - \log 1)}{12\frac{1}{2}} = \log \frac{1}{2} (0 - \log 1) = 0$
	$=\frac{\frac{1}{2}(1 - \epsilon_{i,i+1})^{\frac{n}{2}} + \epsilon_{i,i}}{\frac{1}{2}}$
H	(صور=) (سو ^۲ -۲۰۰۰) ع سو
l	± [(س سه) (سن سه) او سن
l	ط (سب ۱۰) أو مساء أو (سب ۱۰) أ + ك
L	1 / w-7 (m-1) 1 m
	= ا (س-۴ (س-۴) اوس = ا (س-۴) اوس
	43
	$q_1 + \frac{\frac{1}{2}}{\frac{1}{2}(L-D_{n_1})} = D_{n_1} \chi_{\frac{1}{2}}(L-D_{n_1}) =$
	= //() { =
	,,

©∫ حن " ۽ ۳ من " ۽ سن " رمن
رسية (من الموارية والموارية والموارية والموارية والموارية والموارية والموارية والموارية والموارية والموارية وا
عد الله من الله من الله عن ال
υ-ε(1-10-)]⊙
) ((π+ω+γ) (π−ω+γ) }
ع (سوم) و سود السام وس دی
© [(من ''- ') ارس
$u = j \left(\frac{(1+uu+^{\frac{1}{2}}uu-)(1-uu-)}{(1-uu-)} \right) \frac{1}{2} = 0$
ع ((سن ¹ + س ۱۹) د سن
2 + y-+ 1y-+ 1y-+ 1y-+
ψ ("" "" " " " " " " " " " " " " " " "
$ = \int \left(\frac{(1+\omega^{\frac{1}{2}}-\frac{1}{2}\omega^{\frac{1}{2}})(\frac{1}{2}\omega^{\frac{1}{2}})}{4\omega^{\frac{1}{2}}-\frac{1}{2}\omega^{\frac{1}{2}}} \right) d\omega$
m أ (س 44) لاس # أمن + المن عن
Und (\(\frac{1+\cup \text{\tint{\text{\tin\text{\texi}\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\tex
$U^{-1}\left\{\frac{\left(1-U^{-1}\right)\left(2-U^{-1}\right)}{\left(1-U^{-1}\right)}\right\}=$
ط (سن − ۲) از سن ۱ باس ۲ − ۲ سن ۱ − ۲ سن ۱ − ۲ سن
w-1°(1-w)+1€
$\triangle + \sqrt{1 - 2m} = \triangle + \sqrt{1 - 2m} = \frac{1}{2}m$
U=3 ¹ *(T+∪=) ₹ [®
ع + ^{T-} (۲+ب-) - عد + ^{T-} (۲+ب-)۲ =
4 + 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
ω1 ⁶ (ν-Υ-Λ)}@
(A-7-0) + = = + (A-7-0) + = = + (A-7-0) + = = + (Y-y-7) + (Y-y-7) + = + (Y-y-7) + (Y-y
@ (113-11) 13
$\triangle + \frac{1}{2} \{ x - y \} \frac{1}{2} = \triangle + \frac{\frac{1}{2} (x - y)}{x + \frac{1}{2}} =$

Ð [من (۲س (+4)*4 سن
$\psi = \nabla = (\psi \psi)^T + \Delta = -\Delta e^T (\psi \psi) = F - \psi$
$Q = S^{\frac{1}{2}} \left(R - \frac{1}{2} Q + T \right) Q + T \left(\frac{1}{2} \frac{1}{2} \right)$
$\Delta + \frac{1}{2}(4 - \frac{1}{2}U + \frac{1}{2}) + \frac{1}{24} =$
(هس ^ا من (هس ^ا مه) ۲۰ و س
$\omega = (\omega +)^2 \lambda^{-1}, \qquad (7 +)^2 \omega = (\omega +)_{A} \nabla$
$Q = A^{\frac{1}{2}} \left[\left(q + Q_{1} + q_{1} \right) \cdot q + q_{2} \right] \frac{1}{2} \left[\frac{1}{2} \right]$
$\stackrel{\triangle}{=} + \frac{\gamma_{-1}}{\gamma \left(\gamma_{+} \gamma_{-1} + \beta \right) \gamma_{+}} = \triangle + \frac{\gamma_{-}}{\gamma_{-}} \left(\gamma_{+} \gamma_{-1} + \beta \right) \frac{\gamma_{-}}{\gamma_{-}} =$
T
ω-1 "ω" ("" ("") ("") ("") ("") ("") ("") ("") (
"a+1=(a+)"s." ++1==(a+)+"
$U^{-1} = \frac{1}{4} \int_{-\infty}^{\infty} d^{-1} d^{-1} = \frac{1}{4} \int_{-\infty}^{\infty} d^{-1} $
4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
U-1(++10-1+10-)(-+1-0-7) [1
$\phi = 44 \text{ Tr} = (\phi = 1/4)^2 \text{ s.c.}$
$\int (T_{i} - Q_{i}^{T} + \frac{1}{2} - Q_{i}^{T}$
±++ (++++++++++++++++++++++++++++++++++
∑ ((هما س ۳۰۰ بنا س) د ده
س≠ها س ۲۰۰ ما س +۵
(ما ۲س ۲۰ منا ۱۰س) د حد
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
U-3(U-T 13 -U- 1249)] (€
سهياس - ڇڪا ۴س + ت
(1) (۲+ الما [†] س) د س=۲-س + اطا س + د
﴿ إِمَا (فين ١٠) وس = أَ عِنَا (فين ١٠) خ
@ (عنا (۲-س) د سه - عا (۲-س) + غ
٠٠٠ عاد الماد عاد الماد الما
(ساأس-ماأس) وس
= أعما لا س د س = أي ما الس + ث
الاستانس دست
ير] (١٠ ها ١٧س) و سروس + المأ ١٣س + يه

V44. A 1 44
ا المس [*] مير +) المس المس المس المس المس المس المس المس
(۲−س۲)
$\lim_{t\to\infty} J \frac{H}{t} \left(1 - \omega - T \right)^{\frac{1}{2}} \left[2 - \omega - T \right] \frac{T \left(T - \omega - T \right)}{T \left(1 - \omega - T \right)} \left[2 - \omega \right]$
(t-n-1) (t-n-1)
NO CONTRACTOR OF THE PARTY OF T
ے (الاسن + الاسن + ا
7.411
= 17 (7-4-7) 1 =
ا ا المام کا المام ک
(4+m) (4+m) (4+m)
$\lim_{t\to\infty}\frac{1}{T}$
Parks 1 m man 1
10-4" (T+00) [T-00-5" (T+00)] =
4 + (+++++) = - (++++++++++++++++++++++++++++++++++
a.a. 1 . 1=
± + + + + + + + + + + + + + + + + + + +
m-1,(4+m)m]@
$U^{-1} S^{0}(T+U^{-})(T-T+U^{-})$ is
and the same of th
U=5"(7+U=) [7-U=5"(7+U=)(7+U=)] to
U-3"(+U-) [1-U-3"(1+U-)] =
\$\$\$\\\(\frac{1}{4} + \omega_0\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4+ 1(4+ 0-) 1 - 1(4+ 0-) 1 =
U-11+U-1+1U-11 @
u= x ½[¹(t+∪+)]] ±
F(14)
++ = = = = = = = = = = = = = = = = = =
+ (1+0-)# =
De 1 (1+10-1-10-) { -0-17(1-10-) } @
a + ناس ⁴ بان ² بان + ناس + ناس ± نا
رس (۲- <u>۱۰) (۱+۱۰-۱) اس</u> اس
- [**-* }
1,
عياريس¥_جساد بساد)دسد
1
マント マーザー データー データー デール (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
j ř š
1 1 1

- € [(4 ما "س) و س
- $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ منها $\frac{1}{2} = 0$ $\frac{1}{2}$
 - $\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}\right)$
 - $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and $\frac{\pi}{2}$
- الله المراسرة عدا س) و س
- »] (ما "س 4 منا "س + تما سيمنا سي) ۾ س
- » أَ (١٠ جا ٢س) و س عاس » يُّ مِنا ٢س ه يُ
 - ⊗ [(۱+ مثا سر) اوس
 - » [(۱ + ۲ متا س د متا^۴ س) و س
 - $0 + \frac{1}{2} +$
 - $u = \frac{1}{2} \left(u \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \frac{1}{2} = 0$
 - = ݣِس ١٠ ما س ١ في ما بس ١٠ ع
 - 🖯 أُ اعنا أس د قا أس) ز من
 - $a = \frac{1}{4} + \frac{1}{4}$ بنا اس + زا اس) اس
 - = 👺 ه 🕹 ما ٢ س ه طا س دن
 - 🛈 أيا س يتا سروس
 - = إليَّ ما السيوس
 - $\frac{1}{q} = \frac{1}{q} = \frac{1}$
 - 😥] (منا سر+ قا س) ا ر س
- = أ (منا "سرب ٢ منا سرنا سرب قا "س) و س
 - $= \left[\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \right]^{\frac{1}{2}}$ وس
 - ع ﴿ ﴿ ﴾ ﴿ يُمَا تِسِهِ قَالِسٍ) وس
 - = 🗦 س + 🚽 ما ۲س + طا س + ن
 - ال الدومان على وس
 - = أ فا^{ح من} د س= ۲ فا من + + ث
 - (مینا مین) و س =) (احما سی) و س
 (دوماسی) و س =) (دوماسی) و س
 $\lim_{n \to \infty} \frac{(n-n+1)(n-n-1)}{(n-n+1)} = \frac{1}{n}$
 - = [(۱- عاً س) و ستدس + عدا س+ ی
 - ⊗ ا مناس و س
 - ما <mark>منا سيمانس</mark> دس ماسيناس

- = [(مناس-ماس)(متأسو مماس) و سن ماس دیناس
- ⇒ [ووا س مواس وس وس مواس د مواسر د ث
 - الم المناسعة المناس
 - ء] فاأسريس يطاس ديد
 - ⑥ [طا*س توا*س و س

 - - (سر" م المر" م المر" م المرية م المرية المر
- $\Delta + \frac{1-}{(\omega T + {}^T\omega)^T} = \Delta + \frac{2\omega}{1-} (\omega T + {}^T\omega) = \frac{1}{T} =$
 - (اعس"-س") اوسي أوسي (المسية) اوسي
 - = [۱۵ (المسلم مسلم)) و سن [المسلم - =10 أ (7س −1) أ رس
 - $\frac{d_{1}+d_{1}\left(1-c_{1}-T\right)=d_{2}+\frac{1\left(1-c_{1}-T\right)=d_{2}}{d_{1}+T}}{d_{1}+T}d_{2}=\frac{1}{2}$ $c_{1}+d_{1}\left(\frac{T}{T_{c_{1}}}+\frac{T}{c_{2}}\right)^{d_{1}}c_{2}+\frac{1}{2}$

 - $\lim_{n \to \infty} \frac{1}{n} \left(\left(\frac{1}{n} + \frac{1}{n} + \frac{1}{n} \right)^{\frac{n}{2}} dn \right) \right) = \frac{1}{n} \left(\frac{1}{n} + \frac{1}{n} + \frac{1}{n} \right) \left(\frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} \right) \right) + \frac{1}{n} \left(\frac{1}{n} + \frac{1}{n$
 - عا (1سر+ P) أوس
 - $\Delta + \frac{1}{2} \left(\frac{1}{2} + \sqrt{-\frac{1}{2}} \right) \frac{1}{2} = \Delta + \frac{\sqrt{(2 + \sqrt{-\frac{1}{2}})}}{\sqrt{2 + \sqrt{-\frac{1}{2}}}} =$
 - (۲۰_{۱۳} ا ۱۹_{۱۳} و س
 - $\operatorname{cond} \frac{T + \operatorname{conf}}{4 \left(1 + \operatorname{conf}\right)} \left[\frac{1}{T} \right] =$
 - $y = 3 \frac{1-y}{2(1+y+y)} \left[\frac{1}{y} + y = 3 \frac{1+y-y}{2(1+y+y)} \right] \frac{1}{y} =$
 - = الله المساورة المس
 - $\Delta + \frac{4 \cdot (1 + \mu \omega T)}{4 \cdot \mu \omega T} = \frac{1}{T} + \frac{T \cdot (1 + \mu \omega T)}{T \cdot \mu T} = \frac{1}{T} =$
 - (1+u-Y)1A (1+u-Y)1Y

ع مرابع الرابع المرابع $\Delta + \frac{\theta}{4 \cdot m^{-1}} - \frac{\pi}{4} \cos \frac{\pi}{4} =$ (۱۵ س ۱۹ س عص ∞ [(۱۵ س ۱۹) و س ا ا ما اس د سه [۱ (ما 'س) وس = [٤ (الله - الله علا عمل)؟ و من = [٤ [] - ٣ × أي معا لاس + أي معا " 9 س] و س =] [۱-۲ عنا ۲س + عنا ۲۰ س] رس = [[1 - 1 عنا لاس + يُ + يُ عنا اس] و س = ﴿ { يُ = ٢ مَمَا ٢ سَ + يَّ مِمَا ٤ سَ} إِرْسَ = 🕹 ساء ما تس + 🕹 ما اس + ت © [(مناس) د س ه] [دفا س د الس $\log \left(\frac{1}{4\pi^2} + \gamma + \omega^2 \right) = 0$ ه ﴾ ﴿ ﴿ ﴿ ﴿ مِمَّا لَاسِ ﴿ لَا ﴿ كُلَّا مِنْ إِلَّا مِنْ إِلَّهُ مِنْ أَلَّا مِنْ أَلَّا مِنْ أَلَّا مِنْ = ﴿ [﴿ + إِنَّ عِمَّا السِّهِ وَا أَسْ } وَ سَ ه چُس ۽ ڇُما ۽ سردها س جن ﴿ أَ عَا أُسِ دِمِنَا أُسِ وَمِنَا وَمِنَ عَاسِهِ مِنَاسِ ء[<u>(ماس جوناس)(ما "س</u>-ماس بوناس جونا "س) ر س هاس جوناس) $= \frac{1}{2} (1 - \frac{1}{2} - 1)$ رسي سس و أو منا ٢س ون

) ا سرما دس $= \frac{1}{2} \int \frac{T_{min} \cdot \Phi}{(T_{min} \cdot \Phi)^2} \left[\frac{1}{2} \cdot \frac{1}{2}$ $=\frac{1}{2}\left[\frac{1}{2}\frac{m}{(1-m)^{2}}\left(\frac{1}{2}m\right) + \frac{1}{2}\left(\frac{m}{2}m\right)^{2}\right] + \frac{1}{2}\left(\frac{1}{2}m\right)^{2}$ $\frac{1}{2} \left[\frac{1}{2} (2m - 1)^{-1} \log m - \frac{1}{2} \right] (2m - 1)^{-1} \log m$ $m + \frac{4 - \kappa_{\perp}}{4 - (4 - m_{\perp})} \times \frac{1}{4} = \frac{4 - \kappa_{\perp}}{4 - m_{\perp}} \times \frac{1}{4} =$ ع برا المراجع ه 🕹 المراكس المساول وس = الله (٢٠٠٠) (٢٠٠٠) أ رس テーロック (T+ローア) (T+ローア) | 中一] (السروة) أ وسي عليا (المسومة) أله سن - الما (المسومة) أله وسن $\Delta + \frac{\frac{1}{4}\left(4+\rho+4\right)}{4}H\frac{A}{A} = \frac{\frac{1}{4}\left(4+\rho+4\right)}{\frac{1}{4}H\frac{A}{A}}H\frac{A}{A} = \frac{\frac{1}{4}\left(4+\rho+4\right)}{\frac{1}{4}H^{\frac{1}{4}}}H\frac{A}{A} = \frac{1}{4}$ $\Delta + \frac{7}{4}(7+\omega^{-1})\frac{4}{14} + \frac{9}{4}(1+\omega^{-1})\frac{7}{14} =$ € أ س مها وس - 1 14-14 + white 1 w $\lim_{n\to\infty}\frac{12}{n}\left(1+n^{-\frac{1}{2}}\right)^{\frac{1}{2}}\left(1+n^{-\frac{1}{2}}\right)^{\frac{1}{2}}\left(1+n^{-\frac{1}{2}}\right)^{\frac{1}{2}}\left(1+n^{-\frac{1}{2}}\right)^{\frac{1}{2}}$ = [(سرية) ^{- ٣} وس ٢٦٠] (سرية) ^{مع}وسي $=\frac{1-(1+yr^{-1})+37}{1-r}-\frac{7-(1+yr^{-1})}{7-}=$ () | Y-y"-17-"+ Along + 12 | () =] المراجعة المراجع = أ الموروس مقال (س ١١) ٢٠٠٠ وس

حلسول تمسيارين مسياب المشتسات

غنى روايا الارثماع والانجناص

€ شکاه د: ۷(د مه او) =۱۵ " ۱۷="۱۷"

Atlant rilet a of last a with

2. [مد(ارتفاع ليرج) = 47 متراً

(۳ هن∆(خافت)يکون

U(Zt(+)=+7"T6"-67"=+4" Vf"

$$\frac{a^{\frac{1}{4}a^{\frac{1}{4}a}}}{a^{\frac{1}{4}a^{\frac{1}4}a^{\frac{1}{4}a^{\frac{1}{4}a^{\frac{1}{4}a^{\frac{1}{4}a^{\frac{1}{4}a^{\frac{1}4$$

شي∆ إداد:

 $\frac{\Phi \nabla_i \nabla}{\Psi \nabla_i \Gamma_{i,j}} = \frac{|\psi|^2}{\Psi \nabla_i \nabla_i \Gamma_{i,j}}$

 $||\hat{f}_{t,t}|| \approx 4i_{t}t e^{\frac{2}{3}}e^{\frac{2}{3}} ||\hat{f}_{t,t}||_{L^{\infty}} ||\hat{f}_{t,t}||_{L^{\infty}} \approx 12\pi i_{t}^{2}$

1] يشرض أن إ ب هو اراضاع أثيرج "H"Tim(stack) th"

ھي∆ احب≀

Ti're La Tr'Tr La

 $\{\Psi_i \Psi \Psi \equiv \frac{\sigma_{ij} \sigma_{ij} \sigma_{ij}}{\sigma_{ij} \sigma_{ij} \sigma_{ij}} = \rho \{ \uparrow, \downarrow \}$

في∆ إسمارات إنبدازيماً 14 × 14 مثر

 $(1) = \frac{\frac{1}{2} \operatorname{MT} \left(\log n \right)}{\frac{1}{2} \operatorname{Alg}} = A \uparrow$ (t) + "Ye la x at = wt :... بالتعريمي س (۱) شي (۳)) ب = <u>« می ۱۹۳ شیدا» ۴۰ د ۱۹۳ متر</u>

ث ارتفاع الجيل = ما از ≈ ب از × ما ۳۳ "Think" to late * ۱۱ اه

(∀فنی∆ امدد يكون والاع المالية المالية المالية * 4-1-x -10-- - - 1

هن که اسم یکون ما ۱۵۰ د ما ۱۵۰ کما ا به = ۱۳٫۷=۱۳٬۷۵ متر ۱۳۰ متر ۱۳۰ متر

JatA(A) "(Zt)m)" = a7" aat"

TT Le Ye La Testavi Testa

قن∆ أ ب ما النالم الزاوية في د

ATOM THE LANGE WAS A SECOND

امت ماده داد داد داد در

هن 🛆 | ت هم يکون

* Bala * Sala

 T^{α} and T^{α} , $A^{\alpha} = {}^{\alpha} t \cdot \lim_{n \to \infty} \frac{dt}{d_1 \cdot \lim_{n \to \infty}} = -1$

أب(ارتضاع التل)= ٢٧ متر

: 3 w | A . A ()

"サマイトト=(レメイトス)がピヤヤイト=(メレンイトン)び

"115 15 La " 75 15 La "117 '1- ta A# "7 3'1- ta jia WY ≈

في ۵ ب ما 12

هـ وهب وها ۲۰٬۲۰ ۱۳۷۳ متر

≃ ۷٫۷ متر عليما ل (لا ب أ از) هوا"

را مراو⇔ ۱۰۱مش

Tela Tela

. . ك هـ (للساطةالترويجيايةالها) = ١٠٠ − ٧٠,٧ = ٢١٫٤ مثر

The (خماد) با الاحماد) = 10°

Figure Volt 18 Volt 1971-194 =

(۳۳) هي ∆ د ب مي: プロロ(エレコン)ロ

- 171,10 = 19. La 10 = 45 ش ۵ اوساده
- V(Z1)=+P*-YP*= TF*
- *bT=*f0+*tV=(U3(5)0
- This wife ان <u>داد) ا</u> ما(۱۹۱۵) ماآ
 - "107 Laufi,10 = auf

¥ هي∆| درجيا

10 m (2) h "44、41=(いで17)の

 $^{h}YL'44 = ^{4}L''TY - ^{h}YYYm (1) = 24)U'$

 $|-1\cdot Y = \frac{1}{1}(YY) + \frac{1}{1}(YY)| = -1$

ات مالاماد) مالخانمان مالخمادا TE OF THE THE

ر و د ۱۹۱ محر ۲۹۱ محر ۲۹۱ محر ۲۹ محر 171'TY W

101 A

"The La "The La

 $VV_{ij}VV_{ij} = \frac{v_{ij}v_{ij} \cdot V_{ij}V_{ij}}{v_{ij} \cdot V_{ij}} = 0$ (A.

هي أ∆ اكتمر:

المرادة ما «۳۰ A,۱۲» شم

 $\frac{d_{ij}}{2\pi i} = \frac{d_{ij}}{d_{ij}} : d_{ij} \triangleq \Delta_{ij}$

الريب الراب <u>العامل الم³ ال</u> 100 مثل

"hame" "to + "(0) = "three (p = (\sigma) \sigma

(14.)⁷=(14.)⁷+(4.4.)⁷=+<u>14.844.44</u>

📆 اشتخاه التي السلمية السمينية الأولى

And a series of the series of

د اندان ۱۳ سهناو مس

"A. least with the "(177) a "(177) a"

الأقبات 37,07 كيلومكر

وفي السافة دين المغينتين بعد مصيء، عثين من لحظة تحرستهم، مماً

السافاة الإقبارية = السرمة التنظيمة به الزمن

- $\Delta f \approx -2.0 \times 10^{-2} \text{ Mpc}$
 - MATERT HARMIS
- "Y1"Y#= "\A"T#="4+=(1| @\s\)U...
- "Ye"(Y="ef"(A+"T)"Y==(...(...\)U...

الى 🛆 🥇 ف ها: بتطبيق النعدة چيب النمام

 $(\omega,\omega_c)^{\dagger}=(43)^{\dagger}+(17)^{\dagger}-f\approx 4)\otimes 17 \operatorname{keV}^{\dagger}$

AFRICA PERSONAL

في∆ (رضا ((س)" = (ر ()" + (رض)" ~ (ر العرضية) (جار س)

 $\omega^{(k)*}\left(\overline{\gamma^{k}} + \overline{\gamma^{k}} + \overline{\gamma} + \overline{\gamma$

ATAT SAFA

m

بشرخی آن ارتفاع امتاذردهو ها ؟ - ۱۵ (۱۵ هات) = ۱۸۰ " (۲۱ ۴۳ ۴۳ ۲۲) تا ۲۹۲٬۹۳ (۲۱ ۴۳ ۴۳ ۲۳) تا ۲۹۲٬۹۳ المرث (۱ هات:

$$\frac{T_{+12}}{4T_{-}^2Y_{-}^2Y_{-}^2} = \frac{\sin \frac{T}{T}}{T_{-}^2Y_{-}^$$

 $\mu_{\rm e} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \right)$

الوقاعية المات عاز

Tate to La ... The Relation

e Sallie

$$prim TA_{i}(t) = \frac{e_{i} a_{i}}{A_{i} a_{i}} = a_{i} u$$

$$u = \frac{e_{i} a_{i}}{A_{i} a_{i}} = \frac{e_{i}}{A_{i} a_{i}} = \frac{e_{i}}{$$

📆 رحية السافة التي تحركتها السفينة طلال ٢ ساهات

AGE AT HIT A THE ATE

قي∆رانس:

∪ {∠† (←)=∀∀* + 0}* =₹Λ*

"!\="\i-"!0={} +!\\\

٥(∠مار)= ۱۸۰*-(۲۸*

ره<u>ار)</u> ما(خمار) ما(خارم)

AYIA = AE

ا هـ = <u>١٨ ما ٢٨ .</u> د ١, ٥٨ متر

ش ∆ إ ما سط

。 は = 。 は + まれ = (か 本 (ブ) の は (ブ) の 。

📆 يغرطي أن الثل | مدة وأن عدة (نقطلنا ألومند $\langle \langle u \rangle \langle \mathcal{L} \omega \rangle = \iota P^o - \mathcal{H}^o = PP^o$

a(24/1)=//-//-//-/1/4/) ti

 $D(Z = \{1\} = PP^{\alpha} = 3P^{\alpha} = 9P^{\alpha}$

هن 🛆 (عداد)

\$\delta (...) = 4\forall \forall \fora

10 th = 11 to ا بده مقر ۱۸۹۰ مقر ۱۸۹۰ مقر ۱۸۹۰ مقر

4-14-4

ر و به ۱۹۸۹ <u>* ۱۹۹۲ محل ۲۸۱ محل ۱۹۸۹ محل</u> از و به ۱۹۹۱ محل ۱۹۹۹ محل

 $\nabla (\times (x_{-k})) = \nabla T^{0} - (t)^{0} = \nabla t^{0}$

∨ زارید (فرات خاریده من ۵ (فرم

☆ (となりみ) = AT*ーヤ(* = f f ⁴

 $f \cdot \mathcal{Q} \left(\mathcal{L} \setminus \mathbb{L} \right) = r \wedge r^{\alpha} - \left(r r^{\alpha} + T r^{\alpha} \right) = r^{\alpha} r^{\alpha}$

طن ∆ (د من ۱ من ارسال من ار

 $(1) + \frac{\log \log n}{\log n} = \mu \left\{ n \right\}$

هن ۱۵ د من ۱۹ من المد

ت: (ب = إم × ما ۲۷" (T) +

بالتعويض من (١) في (١)

"17 La x "107 Lax111 = w] البندل مداعة المتر

🐿 بشرش أن اللمة البرج ٤ ب المة الشرق

a, Alet:

"10 la " Vo la " 9, la ۱. اد= دا دی و ۱۳۷۸ هر ورو به <u>ما ۱۳</u>۱۵ مثر ما ۲۰۹۵ - ۱۳۱۵ مثر

*10 la *4: la *70 la

TA, VERENTA LA TA, ES LA S. E. TA, ES ALLA A

Scheled with Current re-

المسافة بين البرجين:: 3 + 3 هـ = 17 + 17 + 17 بـ 10 بـ 10 + 17 De Thite

(إن) أو((و) + (بيو) " - اإد « بياد علام"

* †بر⇔ #4,01 مش

📆 بشرس أن التقطتين اللابئتين هما كاعم ويماية حرطلة

السهيدة

*|hi=(本いは)は t |hi=(すい [だ] むご

"Tim("H+"T#+"In) = "M-m(AA)# A.

هي 🛆 و در ماه

Tale = Bola

م بروسود : (۲۰ ام ام ۱۹۹ مکم دیدون در ۱۹۹ مکم دیدون در ۱۹۹ مکم

📉 يقرض ان الهدف هو هـ. وموقع الطاكرة في الفترقين (14-

هي ڪُ اقت "11"14 L "1+14 STATATA = Tree | Supplement | S

هي∆ است.

ずもかざい ニョルプクリー・リルー(ユーンチェ)ひ

U(21a-U)-W-(H)-(W-(U-15)U

***54-

* P3'1A la * 49'91 la *

 $ATR_{i}VP = \frac{TTS^{2}(A \cdot l_{i}XSTAT_{i}N)}{TS^{2}(A \cdot l_{i}XSTAT_{i}N)} = \omega_{i}TA$

 $\frac{1}{\sqrt{1+\epsilon_0}} \frac{1}{\sqrt{1+\epsilon_0}} = \frac{1}{\sqrt{1+\epsilon_0}} \frac{1}{\sqrt{1+\epsilon_0}$

ە 140,700 متر أطبعة

🚰 بغرض أن موقع السفيلة علد الماعلاالملشرلاهو أومولعها الساعة الراحدة هو ب وموقع الفتارهو هربودا ساهات

لمحولة السليلة مساقة = ٢٥ ج ٣ = ٢٥ عشم "AY=("TY="%)+"T+=(\(\omega\)\(\omega\)\(\omega\) "YY="YY+"(4=(A=(Z)U ATLA

🎮 يشرش أن جثرل السلم = (ب = ل

ري بي س = " ۱۷ يا ۲۵ = ١٢/٢٧٤ هنم

ل ما ده" معرد + أو ال ريما دد° - چُار = ۱٫۵ $t_{n} = \left(\frac{1}{2} - \frac{n}{2} + \frac{1}{2}\right) = 0, t$ $\hat{x}_i \forall = \frac{Y_i a}{2} = \hat{x}_i \wedge \hat{x}_i = 0 \text{ i.i.}$

بغرض أنّ الارتفاع هو ع

n # ld

通 植物医生生红斑

Jul our lab

شديده خططعا

ف ہ ∤ ہے۔ ب ہے ان ع ع طنا تد – ع طنا ت

ف = ع (طوا فر - طوا ی)

د ع × طعاد - طبای

ري ع = المعاون المعاون = المعاون المع

لعارين (٣)]- على النوال الثلثية فيمرح أو فرق قياس راويتين

ا € ك (2 ش إ س) = 13 - 10 - 10 و 1

1 m - 1 A ...

ما من ما داد

1 AV.4 = "4. Lante = 00)

غن ۵ ا من س ۱ ۱۹۳۸ م ۱۹۳۸ م ۱۹۳۸ غن ۵ ا من س ۱ ۱۹۳۸ م

4444 = "11 ton 44.4 - ----

Sales and with Companies

T1-480

$$\frac{1}{2} \operatorname{wed}_{\mathbb{Q}} = \operatorname{wed}_{\mathbb{Q}} \operatorname{wed}_{\mathbb{$$

$$\frac{1}{\tau} = a^{\alpha} \Psi \cdot \ln = (\Psi \wedge + \Psi \tau \tau) \ln = \mu \ln \pi \tau$$

$$\text{True}_{i} = \frac{a_{i}(-a_{i}^{2} + a_{i}^{2})}{a_{i}(-a_{i}^{2} + a_{i}^{2})} = \frac{a_{i}^{2} - a_{i}^{2}}{a_{i}(-a_{i}^{2} + a_{i}^{2} + a_{i}^{2})} = \frac{a_{i}^{2} - a_{i}^{2}}{a_{i}(-a_{i}^{2} + a_{i}^{2} + a_{i}^{2})} = \frac{a_{i}^{2} - a_{i}^{2}}{a_{i}(-a_{i}^{2} + a_{i}^{2} + a_{i}^{2} + a_{i}^{2})} = \frac{a_{i}^{2} - a_{i}^{2}}{a_{i}(-a_{i}^{2} + a_{i}^{2} + a_{i}^{2} + a_{i}^{2} + a_{i}^{2})} = \frac{a_{i}^{2} - a_{i}^{2}}{a_{i}(-a_{i}^{2} + a_{i}^{2} + a_{i}^$$

"To be" to be + "Tobe" to be:

و منا ۱۵ د منا ۱۵ (۳۰ − ۲۰)

$$(\frac{\pi}{3} + \frac{\pi}{4})$$
 is $= \frac{\pi \cdot a}{17}$ is ①

존나무 6 - 관 16주 160

🗗 () القبارة عنا (10" + سر)

$$\Psi = \frac{\pi}{4}$$
 التدارة عنا $[-1] = \pi$ التدارة عنا π

🕏 هنا (بدا د جبا (برا برا (برا برد و د ا برا بر

عتما امرب

@ ما اعنا د + منا (ما د = [ما امدات - منا (ما د) ٣٠ منا إما ب

(star)o() THE PAY TYPE

الى ∆ إنساء:

$$\int_{\mathbb{R}} d x \, d x = \frac{e^{\frac{1}{2} A_{B} \cdot \int_{\mathbb{R}^{N}} d x \, d x}}{e^{\frac{1}{2} A_{B} \cdot \int_{\mathbb{R}^{N}} d x \, d x}} = \exp \int_{\mathbb{R}^{N}} d x \, d x$$

اس∆اسم

$$e^{-\frac{1}{2}} = \frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} f_{-\frac{1}{2}} \left(\frac{1}{2} \times 1 \frac{1}{2} \frac{1}{2} \right)}{e^{-\frac{1}{2}} f_{-\frac{1}{2}}} = \omega f \mathcal{L}$$

***="18 = "4+=(15) *

ك (خاد ب) = ك (خواد ب) = ۲۹ بانجایل

هي ڪارو سيدو

25-41 Back

$$\frac{A4}{W} = \frac{\frac{A}{10} \times \frac{4}{V}}{\frac{A}{10} \times \frac{4}{W} - 1} =$$

$$\frac{\frac{VV}{AE}}{AE} = (\omega + 1) \frac{1}{4} \frac{\Delta}{\Delta}$$

$$\frac{VE}{VA} = \omega \ln \frac{V}{A} = 1 \ln \frac{\Delta}{\Delta}$$

$$\frac{1}{4}$$
 = $\frac{1}{100}$ = $\frac{1}{100}$ + $\frac{1}{100}$ =

$$\frac{76}{70} \times \frac{4}{9} + \frac{V}{70} \times \frac{\Gamma}{9} =$$

$$\frac{a}{17} \times \left(\frac{1}{a} - \right) + \left(\frac{17}{17} - \right) \times \left(\frac{7}{a} - \right) =$$

$$\left(\frac{17}{2a} \times \frac{7}{10} - \frac{71}{10} + \frac{1}{10}\right)$$

$$1 = \frac{\frac{1}{6} + \frac{1}{7}}{\frac{1}{2} \times \frac{1}{9} - 1} = \frac{\omega \ln + f \ln}{\omega \ln f \ln - 1} = (\omega + f) \ln$$

٧ قا ((+ ب) موجية المعا ((+ ب) سائية

🕮 ﴿ ﴿ بِهِ ثَمِّعِ فِي أَثْرِيعِ الثَّالِثَ

$$1 = \frac{\frac{1}{4} + \frac{4}{3}}{\frac{1}{4} + \frac{4}{3} - 1} = \frac{1}{2} \frac{$$

*(Apr. a 4.17

$$\frac{\frac{d}{dt} \times \frac{d}{dt} - \frac{d}{dt}}{\frac{d}{dt} \times \frac{d}{dt} - \frac{d}{dt}} = \frac{d}{dt} + \frac{dd}{dt} = \frac{d}{dt} + \frac{d}{dt} = \frac{d}{d$$

$$\frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} =$$

$$\frac{77}{78} = \frac{16}{78} + \frac{16}{78} =$$

﴿ مَا (ا + ب) = ما اساب + منا اما ب

$$\frac{m}{m} = \frac{\frac{A}{4a} - \frac{1}{a}}{\frac{A}{1a} - \frac{1}{a} + 1} = \frac{a \cdot b - b \cdot b}{a \cdot b \cdot b \cdot b \cdot b} = (a - b) \cdot b \cdot 0$$

$$\frac{VV}{AB} = \frac{A}{VV} = \frac{1}{A} + \frac{10}{VV} = \frac{T}{B} =$$

$$\frac{AP}{AP} = \frac{1}{(\omega - \xi) \frac{1}{4}} = (\omega - \xi) \text{ is } A$$

m

ما ((سد) هما المنا ب - منا الما ب $\frac{17-\pi}{4} \times \frac{19}{4} \times \left(\frac{1}{4}\right) + \frac{19}{17-\pi} \times \frac{1}{4} \times \frac{1}{12} \times \frac{$ $\frac{J\Phi}{J\Phi} = \frac{Jh}{\Phi} \times \frac{\Phi}{h} + \frac{Jh}{JE^{-}} \times \frac{\Phi}{\Phi^{-}} \times (m-1) \int_{\mathbb{R}^{2}} dt$ 1 = 1 la 4 Tul la () (1) $\frac{17}{17} = \omega \ln \lambda$ $\frac{1}{17} = \omega \log \gamma$

ما هـ = ما ((++) الما ((++)) = ما ((++) د ما ارمنا ب + بنا ارما ب

$$\frac{q_{ij}}{q_{ij}} \simeq \frac{q_{ij}}{q_{ij}} \times \frac{1}{4} + \frac{q_{ij}}{q_{ij}} \times \frac{q_{ij}}{4} \equiv$$

﴿ مِنا (١+ ١) = مِنا إمنا ب - ما إما ب

 $\frac{1+\frac{1}{2}}{1+\frac{1}{2}} = \frac{1+\frac{1}{2}}{1+\frac{1}{2}} = \frac{1}{2} + \frac{$

*1: la=(*1:/71+*11'T1) la ③ @

$$\pi\tau = (\frac{\pi\tau}{4} + \frac{\pi t}{4}) = 0$$

$$\frac{\pi}{4} \ln n (1 - \frac{\pi}{4} + 1 + \frac{\pi}{4}) \ln n = 0$$

$$\frac{1}{2} = \frac{1}{2} \cdot \left(\frac{1}{2} \cdot \frac$$

المما (مع المعالية المعالية (مع (معالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية

ها (موار (موار) (موار) الموار) الموار

ا مها مها مها ۱۹۰ به نصا مها سا

*4. la ={ *40 + *40} la =

(٨) آما (س -۱۰*)= ما ۲۰ أه جما ۱۹۰۰

Transfer - are A

لُا مِن سَارَا * بِيَامِهِ * fate march

ال منا (١٠٠٠ - ١٠٠٠) = منا ١٦٠ ك منا ١٣٠٠

4 Transport "FT: GUM

 $\frac{\partial P}{\partial P} = 0$ less $\frac{\partial P}{\partial P} = 0$ is $\left[\frac{\partial P}{\partial P} = \frac{\partial P}{\partial$

﴿ وَا ﴿ إِ - بِنَ عِيدًا لِمِنَا بِ * مِا لِمَا بِ

$$\frac{4M_{I}}{M_{I}-}=\frac{4J_{c}}{4J_{c}}\approx\frac{JA}{V^{cc}}+\frac{JA}{9c^{cc}}\approx\frac{JA}{J^{2}}\approx$$

﴿ مَا ﴿ إِنَّ بِي مَا إِنْمَا بِنَّا بِنَّا إِمَا بِي

$$\frac{14 \cdot -}{17^{1}} = \frac{17}{17} \times \frac{19}{17} \times \frac{19}{17} + \frac{9}{17} \times \frac{A-}{17} =$$

$$\frac{\frac{1}{|\mathcal{X}_{1}|} - \frac{1}{|\mathcal{X}_{2}|}}{\frac{1}{|\mathcal{X}_{1}|} - \frac{1}{|\mathcal{X}_{2}|}} = \frac{1}{|\mathcal{X}_{1}|} \frac{1}{|\mathcal{X}_{2}|} + \frac{1}{|\mathcal{X}_{2}|} = (|\mathcal{X}_{2}| - 1) + \frac{1}{|\mathcal{X}_{2}|}$$

الله (۱۱ مر (۱۱ مر ۱۱ مر مرا امر مرا

$$\frac{A}{V} = \frac{A}{B} + \frac{A}{V} = \frac{A}{B} = \frac{A}{V} = \frac{A}{A} = \frac{A}$$

و دروما (مواده ما إما در)

$$\frac{\overline{\gamma} t_1}{A \theta} = \left(\frac{A}{t V} \times \frac{V}{\theta} - \frac{t a}{t V} \times \frac{d}{\theta} \right) = \infty$$

7- - | La 6 - - | La W

$$\frac{\eta r}{\eta r}$$
 and the $(\frac{\eta}{\eta r})$ and (αr)

ما (۱ – ب) هما إنبيا ب منا (م) ب

$$\frac{\frac{1}{2}\frac{1}{4}}{\frac{1}{2}\frac{1}{4}} = \frac{\frac{1}{2}\frac{1}{4}}{\frac{1}{2}\frac{1}{4}} = \frac{\frac{1}{2}\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{2}\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{2}\frac{1}{4}}{\frac{1}{2}\frac{1}{4}} = \frac{\frac{1}{2}\frac{1}{4}}{\frac{1}\frac{1}{4}} = \frac{\frac{1}{2}\frac{1$$

معا ((دب) جمعة إحداث - عنا إحاً ب

$$\frac{f_{A_{-}}}{q} \approx \left(\frac{q}{f_{A^{-}}}\right) - \frac{f_{A_{-}}}{f_{A^{-}}} \approx \frac{1}{f^{-}} =$$

$$\frac{3P}{10} + \frac{10}{10} + \frac{10}{10} =$$

🗷 ۱۱۰ الماير فوس مهجب 🔞 ما ۱۰ 🖫

الله في الربع الثاني و ... منا (10 مُرِّ

<u> د میا</u> بر به آیا د د امندر کیشن دوجه

الرس تقع في الربع الذاني الدما ب الم

🕏 منا (۴۰ - ۴۸) د یا س

مداده عباس شروعه از گروه داده ا

"TIO LE ("17 LL =("17 10 ~ ...) Lb ()

"NY" is = "TT" is + "IT" = U+ A

الله الاستار = من (سر ۱۹۹ - سر ۱۹۹*) = من ۲۰ د آب

١٠ لا يتولف مني من

€ = الله (س + ۱۷/۱۷ - س - ۱۹/۱۵) له اله ۱۹ اله

4.7 يتوفق على س

🖸 الطرف الأيس = ما (٣٠٠ - ٢٠١) + مِنَا (١٠٠ - ٢٠١)

"To lea "To lea + "To lea + "To lea + "To lea "To lea = "To lea -
 $= \frac{1}{7}$ منا ۲۰ از $= \frac{1}{7}$ منا ۲۰ از $= \frac{1}{7}$ منا ۲۰
🛈 t 🕈 ينفس الطريقة السابقة

*to La (*To - *A+) L ①

1- "70 d-" A-16 /.

"የቀ ዜ "ል፡ ዜ + ነው "የቀ ዜ ~ "ል፡ ዜ ለ

1#⁸ የቀ ዜ "ል፣ ዜ ። "የቀ ዜ ። "ል፣ ዜ _/...

الطرف الأيدن = مد (٣ س-٢ من) علامن
 الطرف الأيدن = مدا (٣ س -٣ من)

+طأ س: ⇒الطرف الأيسر

€ (*** معا (*۷*) =معا (*۲۰) معا (*۱* معا (*۵*)

ه المحال والطوف الأيسر

("الشرف الأيمن = طا (٣٧٥) له ع" (٣٠٠)

Talle to they

 $\frac{1+\frac{m}{2}}{1+\frac{m}{2}} = \frac{\frac{1}{2}+\frac{m}{2}}{\frac{1}{2}+\frac{m}{2}} = \frac{\frac{1}{2}+\frac{1}{2}}{\frac{1}{2}+\frac{1}{2}+\frac{1}{2}} =$

 $\frac{1}{h}+4=\frac{\frac{1}{h}+2+2}{h}=\frac{1+\frac{1}{h}+\frac{1}{h}+\frac{1}{h}}{h}=$

= العثراك الأيصر

المقرف الأيس = طا (40 (40 + 40))

 $= \frac{4 |a|^{2} + 4 |a|}{1 + 4 |a|^{2}} = \frac{4 + 4 |a|}{1 + 4 |a|^{2}} = |a|_{a} |a|_{a} |a|_{a}$

المعلوف الأيمن = طا (10 ° +1) = طاقه الأمال
1 les

المدارة المارة المدارة المارة

(الملوف الأيمن * ما (۱+ س) + ما (۱- س)
 الملوف الأيمن * منا (۱+ س) + منا (۱- س)

ما امراب ما سما (معالیت است امان مناز دیاب ماسما (میاز اعداد ما امان مناز دیاب ماز دیار ماز دیار در اندر در الایسر مناز امناب مناز

© المقرف التأيمن عدم: (۳۰ −۱) + معاً (۱ −۳۰) عديا ۲۰ منا ۲۰ منا ۲۰ ما ۲۰ ما ۱۰ منا ۱منا ۲۰۰ منا إما ۲۰۰

 $\frac{1}{2} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = \frac{1}{2} \log \frac{1}{2} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}$

دما ۱۰° منا †+ منا ۱۰° سا †

« الدينا †+مشر × ما ¢×متا إ

ة الطرف الأيين = الطرف الأيس<u>ر</u>

﴿ الطَرَفُ الأَيْمِنُ ٢٠ مِمَا أَمِنَا ٢٠ * مِمَا أَمَا ٢٠ ﴿

معا فرمنا م^{ور} = موا فرما مو^و

 $\left(\frac{\pi}{V_0^2} + \frac{\pi}{\lambda}\right)$ المارك الأيمن = ما $\frac{\pi}{\lambda} = \frac{1}{\lambda}$ ه الأيمن

(*) انطرف الأيمر عد ما (ه2" + 6") + منا (ه2" + 6") " با ه 4" منا م 4" منا

📆 لقبر = منا [(۱+ب) = ا] د منا ب

📆 🛈 الطرف الأيس هما (س جمه – س – 14)

 -10^{-10} = $\frac{4}{V}$ = 10^{-10} in 10^{-10}

﴿ الطرف الأبس = مناء؟ " مناس = ماء؟" ها س ٠ منة 19 من صرح بنا 19 ما ص معداً س ه أي عنا س + أيمنا س - عنا جو =عنفر= الأيسر

🕝 تعفرت الأبيس

= الطرف الأيسر

الطوف الأييس:

عمل مراد بها مرمنا ۱۹۰ د بها مرما ۱۹۰ د منا م من المرور من من مرور من من من من من المن من

$$\frac{1}{T} = \omega^{\mu} \stackrel{\text{def}}{=} \frac{1}{2} - \omega^{\mu} \stackrel{\text{def}}{=} \frac{1}{2} + 2\omega \omega^{\mu} \stackrel{\text{def}}{=} \frac{1}{2}$$

🔞 ا تقع في الربع الأول

$$1 - \frac{(Y-1) + \frac{Y}{4}}{(Y-1)^{\frac{2}{4}}} = \frac{-(1) + (1)}{-(1) + (1)} = (-1 + 1) = 1$$

F = 1 h

7 = 1 U

1-0 La weller other-resent

$$\frac{V}{4} = \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2} - 1} = \frac{\frac{1}{2} \ln || \ln || + 1|}{\frac{1}{2} \ln || \ln || + 1|} = (2 + 1) \ln || + 1|$$

پوشج (+ هـ – د

$$1 = \frac{\frac{10}{\sqrt{4}}}{\frac{10}{\sqrt{4}}} = \frac{\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}}}{\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}}} = \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}} = (1 + \omega)$$

$$1 = \frac{\frac{10}{\sqrt{4}}}{\sqrt{4}} = \frac{\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}}}{\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}}} = (1 + \omega)$$

$$1 = \frac{\frac{10}{\sqrt{4}}}{\sqrt{4}} = \frac{\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}}}{\sqrt{4}} = (1 + \omega)$$

$$2 = \frac{10}{\sqrt{4}} = \frac{1}{\sqrt{4}} $

"tenangunga

(ب+ ب) = منا (مناب ما إما ت $\frac{1}{2} = \frac{1}{4} - \frac{1}{4} =$

ويروا ويراوي والويوا بودينا ويواده والوياب جمعا إمنان - منا إمنان = ٢ ما إما نده ما إمان ومنا إمنا برها ما إما بره (۲+)

20 أما إما بيومد (منا ب يه (مدا اعداد)

المألمات عنااعتاب عنالهتاب عنالعناب

(-1b+)1= 4 6 1 6 7

, without the a - t lb 1

교실 = 등 x t A متدما الله الم 豊田の山か طها ب د ي

ما (ا من المناطقة الم

$$\frac{4V-}{T^*}=\frac{\frac{A}{T}-\frac{T}{B}}{\frac{A}{T}=\frac{T}{B}+1} \approx$$

4 + "(# x | 2 10-4-100

طا (0) " + ب) = <u>نا ه، " دفا ب (0) ا</u> و- طامه کار ۱- طاب

(w+ "to) that this "(+=w-11)

<u> طافه "بطات _ (بطات _</u>

= <u>بنات + مات.</u> چنا بر-ماب

4 - "1/4 = 4 + f (F)

ملا (ز+ن) عملا (۱۸۰ - من) = - ما م

بر <u>الحلالية ب</u> = علا عبر

يريلا وجها برحاطا عام فاراط مخالط

يربلا ومقا يرمقا عبدقا وقا يدفنها

(الم الله على (الا مير) الم

عالم والمالة عليه المالة عليه المالة عليه المالة ي فالطاعة وفاد فاعمه وطالطان

وطاوطات طادخا فحمطا وطاعت

بالقسمة على فيما لابينا ب ﴿ مُنَا لَا فُ بِ هِ ﴿ إِنَّا مُنَّا مِنْ اللَّهِ اللَّهِ اللَّهِ اللَّهِ

المستوف الأبين من أسرة والمراس ما أس و وما "س

ه معا⁷ص و 1 منا من معا ص

- ۲۰۱۱ بنا مرحا مرده ۱۰ بنا سرعا م

= 1 + 1 منا مرينا ص + 1 ما س ما ص

× ۴ + ۴ مث (س - س) = الأيمس

1= デーコー = いいしし = (シャリルー)

*IF##(~7)4. "IF=(~7)4+([7]4...

المقرف الأيمن م المعادد معا لا ما ب

<u>به استامه ادما نم</u> چه اسمانه

= <u>ما اعتاب - منازمان</u> عنازمنان - عنازمنان

معانیمتاند مخاند مخاند. ما} مانی مانی ما

عاد مان مان مان مام عاد مان مان مان

= طا ا - طا ب+طاب - طاعه= طا ا - طاعه

= الطرفالأبسر

الا « ۲۰+° (۱) اله °۲۰+° (۱) (۳۲۰+°۳)

 $\overline{\psi} + \overline{\psi} = \frac{1 + \overline{\psi}}{1 + \overline{\psi}} = \frac{\overline{\psi}}{\overline{\psi}} + \overline{\psi} = \frac{1}{\overline{\psi}} + \overline{\psi} = \frac{1}{\overline{\psi}} + \overline{\psi} = \frac{1}{\overline{\psi}} + \overline{\psi} + \overline{\psi} = \overline{\psi} = \overline{\psi}$

1-1-711-711+ V=1- 0-777-70-3

=مندر

ب "١٩٥ له ﴿ عن ﴿ الله

ت = با (۱۳ ان ۱۲۰+ ت (۱۳ سند ۱۳ مند ۱۳ سند
 $\left\{ ^{\alpha} \right\} ^{\alpha} \left\{ a\right\} ^{\alpha}$

$$\frac{\left(\frac{1}{4} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{4}\right) + \frac{1}{4}}{\left(\frac{1}{4} - \frac{1}{4}\right) + \frac{1}{4}} = \frac{1}{4} \times $

 $h = {}^{\alpha} h \cdot L = \left(\frac{{}^{\alpha} h h \cdot }{2}\right) L = \left(\frac{L + \omega^{\alpha} + \omega^{\alpha}}{2}\right) L + O(2)$

(ا) منا (المراحد) منا هر حما ((المراحد)) ما هر المراحد (المراحد + 1 هر المراحد + 1 هر المراحد + 1 هر المراحد + 1 هر المراحد (المرحد (المراحد (المراحد (المراحد (المراحد

(استرفید درما) = -۱ (استرفید درما) مر د ۱۱* ۱۲۰ ن ۲۲۰ ن سر ۱۲۰ ن سره

(احتبار + مثا (س - ۲۰) = ۱ (احتبر فیمه د مثا)
 بن - ۲۰ = منظر ۲۰ = منظر ۲۰ = ۲۰ منظر ۲۰ = ۱۳ منظر ۲۰ = ۱۳ منظر ۲۰ = ۱۳ منظر ۲۰ = ۱۳ منظر ۲۰ منظ ۲۰ منظر
() ما اس + عنا اص + ۲ ماس منا ص = (+ به (۱)

 $\frac{1}{4} - c_1 + c_2 + \frac{1}{4} - c_3 + c_4 + c_4 + c_5 + c_4 + c_5 + c_5 + c_6 + c_$

۱۳ + ۱ + ۲ (ها س مناص + منا س ما ص) د ۲ + ۱ + ۱ ۲ ما (س + ص) د ۲۳ - ۲۰ ه

1 (-- + --) la

"Y. Is "T. 16 - "Y. L. (1)

 $\Psi_{V_{1}} \lim_{n \to \infty} \frac{\Psi_{V_{1}} |_{L_{2}}}{\Psi_{V_{1}} |_{L_{2}}} = \Psi_{V_{1}} |_{L_{2}} \cong$

[(-+1)+1] 4=(++1+) 60

(v+1) lel le + (v+1) le l'e=

 $\frac{1}{p} \times \frac{1}{9} + \frac{7}{7} \frac{7}{7} \times \frac{7}{9} = \frac{4+7}{19} = \frac{1}{19}$

1

(1) - \frac{1}{7} = \text{in the first - 10 lead to

 $(t) \circ (t) \text{ for } t$

 $f = \frac{1}{4} + \frac{1}{4} = \frac{9}{7} \qquad (+7)$ $= \frac{1}{4} + \frac{1}{4} = \frac{9}{7} \qquad (+7)$

$$\alpha$$
 to θ to $+\alpha$ to θ to $=(\alpha+\theta)$ to $=\alpha$ to $\frac{\partial V}{\partial \theta} = \frac{A}{1V} \times \frac{4}{8} + \frac{16}{1V} \times \frac{T}{8} =$

$$\{ "Y_1 \sqsubseteq_{\Delta} \Xi \}$$
 $\exists = \emptyset = \exists \Delta + \emptyset = \exists \Delta \frac{"Y_1 \sqsubseteq_{\Delta}}{"Y_1 \sqsubseteq_{\Delta}}$

$$E_{i} = \frac{\frac{1}{L} + \frac{T}{L}}{\frac{1}{L} + \frac{T}{L} + 1}$$

$$\frac{V}{2} = \frac{\frac{1}{4} + \frac{3}{4}}{\frac{1}{4} \times \frac{3}{4} - 1} = \frac{\sqrt{16 + 16}}{\sqrt{16 + 16} - 1} =$$

$$\frac{\Psi}{2} = \omega + 4k \Delta$$

$$\begin{aligned} & + (1+1) & + (2+1) \\ & + (2+1) & + (2+1$$

$$\frac{1}{2}\frac{1}{\sqrt{4}} \cdot \frac{1}{\sqrt{4}} + \frac{1}{2}\frac{1}{\sqrt{4}} \cdot \frac{1}{\sqrt{4}} = \frac{1}{2}\frac{1}{\sqrt{4}} \cdot \frac{1}{\sqrt{4}} \cdot \frac{1}{\sqrt{4$$

يغرمي ان علول طبلع نفريع = ٢ ان $U = f(f(J))^{\frac{1}{2}} + \frac{1}{L^{\frac{1}{2}}} = f(f(J))$ "te = - + 0

$$\frac{1-\frac{1}{2}}{1+\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2$$

, تربيم *ب*اق يتعثم أهر طرور

ന

ت خمیر فیشترمة من ∆ (ب و

(a+1) assolute

140) × 17 + 1 × 150 = 0 h .:

THE REPORT OF THE PARTY OF THE

الطوف الثبين = خام (۱۹۱۰) × (۱۹۱۰) الطوف الثبين = خام (۱۹۱۰) × طا (۱۹۱۹) الماد (۱۹۱۹) × طا (۱۹۱۹) د طا (۱۹۱۹)

(ما (منا ت + منا زما ت) ما هـ - (م تربينا هـ + منا ترما هـ) س (

سيا (بينا بريا عرج منا (بنا بريا عرج ما (بنا بر مناعر – ما (بننا بريا عر

= عنا إنها برما هـ – ما إنما برمنا هـ = ما ب(عنا إنما هـ – ما إنمنا هـ) = ما برما (هـ – إ)

® † قا (تج+هم) « قا ∀ م

م بارتم مثل هم دخا به م ۱- با تمرث هم

رز طاع مرج طاع مرج طاع مرج طاع مرطاع مرطاع مرطاع مر در طاع مرج طاع مرطاع مرطاع مرج طاع مرج طاع مر

(يما 10 معا 10 معا سي ميا 10 ما س

n (منا #)"ميد ص + يا 10" ما ص)

= ۲ × را به اس-ماس) × بله (مناس + ماس)

دهنا س بینا س به بینا س بیاس سیاس بیناس سینس سامی

» (عنا سرعنا ص حيا سرعيا ص)

+ (منا سرما س- ما سرمنا س)

حمدا (س م س) مما (س م س)

 $t = \frac{1}{1} = \frac{-colodow}{colodow} = \frac{1}{1} = \frac{1}{1}$

 $T- = \frac{1000 \frac{1000}{1000} = \frac{1000 \frac{1000}{1000}}{1000} = -T$

 $\frac{T}{T} = \frac{T}{(T+)-1} = \frac{\omega \ln t \ln t \ln t}{\omega \ln t \ln t \ln t} = (\omega + 1) \ln t$

£ ((+ ب + بد) = طاس د طانم

$$= \frac{\frac{1}{h} + \frac{V}{q}}{\frac{1}{h} + \frac{V}{q} + \frac{1}{h} + \frac{V}{q} + \frac{1}{h}} = \frac{\frac{1}{h} + \frac{V}{q} + \frac{1}{h}}{1 + \frac{V}{q} + \frac{1}{h}} = \frac{1}{h}$$

第 = *(3 = 本 + 以 +) が、 1 = (本 + 以 +)) が *

(س - س) ۲ ما (س - س) اعتا ما (س - س)

المنا حرمنا ص ـ وما س ما ص

= ٣ منا س منا س + ٣ ما س ما ص

(m = "4+) lb = (w + f) lb

المارين على هد المارين

در فا از فا بدر خفا بدفا بدر در در از از فا بدر در فا از فا بدر خفا از فا بدر خفا بدفا بدر فا بدر د

القبار $= a z i (\frac{\pi}{2} + a + \frac{\pi}{4}) = a z i (\frac{\pi}{2} + a - a) = a i$

or "theta "theo+fvts

مردا او مردا (۱۰ – ۱۹۰) شیدا (۱۰ – ۱۹۰) است ا مردا (۱۰ – ۱۹۰) شیدا

شاهمنا إداعما (ب-۲۰۰)

«۳- اما درما «۳- اما درما «۳- (۳- اما

.. الآجها د- جا د=(۲۴ - ۱) ها د

ا جها در معا د مراجعا در ما در

10 0 lb A 10 0 lb A

" $\forall a = (a - 1)^{n} a + 1$ " (a = a + 1)

🗗 بشرهی آن ۱۴ ساه به انیاسات روایا 🗴

*40 = # + # + # A ... *1A1 = m + w + P

 $\frac{-2}{4} \stackrel{\text{de}}{=} \left(\frac{-2}{4} - \frac{4}{4} \right) \stackrel{\text{de}}{=} \left(\frac{-2}{4} + \frac{4}{4} \right) \stackrel{\text{de}}{=}$

10층마루마+흑마루마+흑마루마. 추마루마-10후마루마+흑마루마

(4) (اعدا من عدا ص عدا من عا ص)

مرزعتا من عنا سره مرامي ما س)

« منا " س من " ص ← ما " سر ما " ص

د منا "سي جدا" ص - (١ - منا "س) (١ - منا "س)

همنا أس منا أس - [١ - هذا أس - هنا أس

م معا "سيموا" سرا

حيدا السريدا "من ما جمعا "من ديدا" من سينا "دريف

حيثا "سن به يشا" ص − ١

. w = 1 4 . a 1 $15 = {}^{7}(1) - {}^{7}(\overline{A}) + {}^{7}(1)$ C4=11%

$$\frac{11}{T} = \frac{T_{1} + A}{T_{1} + T_{2}} = \frac{1T}{1T} \times \frac{\frac{1}{4} + \frac{T}{4}}{\frac{1}{4} + \frac{T}{4} - 1} =$$

على الدوال الثلثية لمعف الراوية

🕤 مت ۴ سر

÷ 0 1

"A+ 6 "T+ 1

8 L - 🕝

📵 ﴿ تُقْمَ فَي ٱلرَّبِعِ اللَّالِي <u>--</u>-1€

≒ → 1 仏

ب تقتع في الربع الأول

1년 1년 후 대 1년

طايه طاب

ما (۱- س) - با اما سه ما اما س $\left(\frac{\delta}{4T} \times \frac{\Psi_{-}}{\theta}\right) + \frac{17}{4T} \times \frac{4}{\theta} =$ 77 E

"t="V="4.=(1230(3) : J - 1 A ...

The Late of the Late

طن 🐧 صرحه لا دُ

- "to La 1 -- * -- L () (1 Th - a 10 to () - 1 = 10 ()

\="\$+ Lb ③ - T. L. @

٧- المام علام على المام على الم

₹<u>1</u> = <u>1</u> = 7 = ₹ = | != | != ₹ != | ₹ != | ₹

V = 4 - 19 =

🕏 تقع في الربع الأول

-0 L 3 1

منا 8 = ي

--e u

16 = T x = x 1= 0 to 8 to 1= 81 to

 $\frac{\mathbf{Y}_{-}}{\mathbf{Y}_{-}} = \frac{\mathbf{Y}_{-}}{\left(\frac{d}{dt}\right)}\mathbf{Y} - \mathbf{Y} = \mathbf{G}^{T}\mathbf{I}_{dt}\mathbf{Y} - \mathbf{Y} = \mathbf{G}^{T}\mathbf{I}_{dt}$

71- - 616 -016d

ا) منا 9 = أ T)1 = 0 L

*1+1==(*1+-)1=(*##-*##)1. (*)

® منا (۱۰ " - ۱۰") د منا (۳۰ – ۲۰")

"1. 15 = ("1. - "1.) 16 (S)

8 الم (8 الم 1 - (8 أ ما 1 ما 8 منا 8 عنا 8 منا 8

عا[†] 0+ تما 9 ستا 8 المتأ وحاتما المتاا

۲ <u>ما (۵ اه +8 ما (۹ ام ۲</u> ۲ کتا (۱ متا (۲ + ما <u>۱۹)</u>

ا الله الماد الله الله الله الله الله

O ፦ ወ

Į (3) 10 11E

⊕۲ معا ۲-س

A (۲ ما اعدا ا (عدا اس

40 0 4 F 1 - 1 4 F 1 &

"tribe @ "Tribe ® ¥- €

> † Ø TI D with 1

TT @

11 Part @

هاله (ا الله الله)

ا بنے بی اثریع الثاثی the state

 $\frac{17a-1}{1240} = \left(\frac{17-1}{12}\right) \times \frac{1}{12} \times 7 = \left[\frac{1}{124} \right] \times 7 = \left[\frac{1}{124} \right$

 $\frac{1}{2} \left(\frac{1}{2} \frac{1}{4} \right) = \frac{1}{2} \left(\frac{1}{2} \frac{1}{4} - \frac{1}{2} \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} \frac{1$

114 = 10 - 164 =

1

$$\frac{1}{\sqrt{\frac{17}{17}}} = \frac{1}{\sqrt{\frac{11}{17}}} = \frac{1}{\sqrt{$$

🔞] قاياس راوية حادة

نَ أَنْهُمْ فِي الرَّبِعُ الأُولُ 17 = 1 kg

 $\frac{17}{2} = 1 \text{ is } \left\{ \frac{9}{12} = 1 \text{ is } 1$

114 = 1-1(+) = 1 = 1 = 1 1 to 7 = 1 + L

📆 🕻 من تقع في الربع اللالث

Family دها سو≃ 🊰

ا منا سره 👺

ما بس دوما س مها س ۲۵ ت ت تا د $\frac{1}{2} = 1 - \frac{1}{2} \left(\frac{\pi^2}{2} \right)^2 = 1 - \frac{1}{2} \frac{\pi^2}{2}$

الا لاس و معالا من ا

📆 🖰 😭 🚓 لقع في الربع الثالث ۽ جا ج. = 📆 ¥==66 والمعاجبة الأثيار

1.4

T 。」 LL 旬 $\frac{71}{V} = \frac{\frac{10}{4} \times 7}{\frac{1}{2} \times 1} = \frac{100}{10} \frac{100}{10} = 107 \text{ lb}$ # = # Unt ・ = マー デ は 4 + デ では てん ·=(F+부나)(1~분바F): マール と は 中二十 16·1 الظنبار = ٢ معا ٢ س .. ما (١٨١٠ - ٢٥٥) = Tail 7 m - al 7 m = 1 () - 1 | 1 | 1 | 1 | 2 | = 1 514 . = | Y las [7] 114 -1 1 - 17 -1 12 = 1 la 114 +1 1 17 (co+1 +=) to 15 mg lan 175 = (+ L) 1 = 1 L - 121 = 1 km Trt = Trt x 2 x 7 = 1 to 1 to 1 to 1 $\frac{V}{V} = \frac{T\left(\frac{1}{T}\right)V - V}{T} = \frac{1}{T} \cdot T \log V - V = \frac{1}{T} \cdot \log V$ 11 to = "TT" P. La (1) ٢٢'٣٠ > ٩٠" تقع في الربع الأول. كاليمة مفاأي موجية "(# (# + 1 "TY"T) (# ... "

(۳) الطرق الأيمن = ما (۳-۱) = ما المرق الأيمن = ما (۳-۱) = ما المرق الأيمن = (۱-1) ما المرق الأيمن = (1-1) ما المرق المرق الأيمن = (1-1) ما المرق الأيمن = (1-1) ما المرق الأيمن = (1-1) ما المرق الم = ما تم معامدتا هـ = مناهـ = مناهـ = مناهـ = مناهـ الطرف الأيسرة الما ١٥ و اله و ا عيدادها أوج عارة وما ووجعا وعاو (مناه-ماه)(مناه+ماه) (ما8+متا8)* عنا 8-ما 8 ما 9+مد 9 والإسهاد يسطأ ومقاما على ها 🛭 #1 1 = 1 = 1 = 0 1 برضع ۴۱۳٬۳۱۵ و۳۳۲ $\frac{{}^{2}\xi\sigma \left({L_{2}}\right) }{{}^{2}\xi\sigma \left({L_{2}}\right) }=\frac{\left({}^{2}TY^{2}Y^{2}\right) Y\left({L_{2}}\right) }{\left({}^{2}YY^{2}Y^{2}\right) Y\left({L_{2}}\right) }=\frac{1-{}^{2}TY^{2}Y^{2}\left({L_{2}}\right) }{1+{}^{2}TY^{2}Y^{2}\left({L_{2}}\right) }\cdots$ $\frac{\overline{\Psi}_{k} - \overline{\psi}}{\overline{\Upsilon}_{k} - \overline{\psi}} \times \frac{\overline{\Psi}_{k}}{\overline{\Upsilon}_{k} + \overline{\psi}} = \frac{\overline{\psi}}{\overline{\psi}} \times \frac{\frac{\overline{\psi}}{\overline{\psi}}}{\frac{\overline{\psi}_{k}}{\overline{\psi}} + \overline{\psi}} =$ المثرف الأيمر = (-عبا مر+عام (章)144(李)144-1 (후)Yla+(흥)Yla+1 출타우니 축사다리 李lu李lat+1-李 ltat+1 T라는(라마+라타) و من چاند) ﴿ مناجَّا مناجُ ع الأبسر الله الأبسر الأبسر ﴿ استرف الأيمن = 1 ما 1 1 + منا ١١ أ

 $1 = (|T^T|_{4k}1 - 1) + |T^T|_{4k}T =$

 ابطرف الأيمن = ١ - أ × ٢ ما [منا † × منا [واحما "إحجا " إ اتطرد الأيس = منا ب مناب مناب مناب عِنَا ' بِي مِنَا اُ بِي عِنَا اُ بِي مَا لِمِنَا لِدَ عَلَا اِنْ لِي مِنَا اُ بِي = ٢ فتا ٢ ب= الطرف الأيسر المدرف الأيمن = قدا ٢ من + طعا ٢ من ه مالاس د مالاس بهالاس مالاس د مالاس ۱+۲هنا " می ۱۰ - ۲هنا "مین به هناس ۲هاس میاس - ۲هاس مناس به هاس ے ماریا میں دارانیمبر پوشع س = 14" ن بایما حس د قبل ۲ حس + بایما ۲ حس ("10 x 1) life + ("10 x 1) life = "10 life :; P + + Y a " F . Leb + " Y . Let = (۱) الطوف الأيسر = (1-طا ⁷ سي <u>منا " س منا "</u> $\frac{y-1}{y-1}\frac{dy-1}{dy+1} = y-1 \log x$ يهضع س 🗷 📲 "10 " (5 - 4 To (5)) $\frac{T}{T} = \frac{a_{10}}{a_{10}} \times \frac{a_{10}}{a_{10}} \times \frac{1}{a_{10}} \wedge \dots$ سالاس ﴿ الطرف الأيمن = ماس هنا ^{ا صرحما ۳ می پر (مناس دماس)(مناس دهاس) د مناس دماس} يديها سرجها بن =الأيسر $\frac{(1^{\frac{1}{2}} | x + 7) - 1}{(1 + 1)^{\frac{1}{2}}} = \frac{1 - (1 - 7 + 1)^{\frac{1}{2}}}{(1 + 7 + 1)^{\frac{1}{2}}} = \frac{1 - (1 - 7 + 1)^{\frac{1}{2}}}{(1 + 7 + 1)^{\frac{1}{2}}}$ $\frac{\int_{-1}^{T} L_{n+1}}{\int_{-1}^{T} L_{n+1}} = \frac{\int_{-1}^{T} L_{n+1}}{\int_{-1}^{T} L_{n+1}} = \frac{\int_{-1}^{T} L_{n}T + \frac{1}{2} - \frac{1}{2}}{\int_{-1}^{T} L_{n}T + \frac{1}{2}} = \frac{1}{2}$

ت الطرف الأيسر

[A]
$$\frac{1}{1} \frac{1}{1} $

T=# [4 Y+ 3] 本 [[] $\left(\left(\frac{\partial}{\partial t}\right)^{\frac{1}{2}}\right)$ is $T + \left(\left(\frac{\partial}{\partial t}\right)^{\frac{1}{2}}\right)$ is t ==۲ (ما ۱ الله + معا ۱ الله $\left\{\frac{d}{2} \left\{ \ln a \right\} \right\} \left\{ \ln b \right\} + \left\{ \ln b \right\} \left\{ \ln b \right\} = 0$ 4 "lar + 4" ar-루"Lr-루"Lr-루"Lr+루Le+루Le 1= \$ " ba #-·프론"[67-분[64 분 168 ٧ يا ﴿ إِنَّ اللَّهِ * ٢ مِنْ أَنَّ اللَّهِ * ٢ مِنْ أَنَّ اللَّهِ * ١٥ ا مناق المناق ا $t = \frac{\rho}{\gamma} \wedge$ مرفوض لأن ال زاوية حادة مرجبة ۲۲ (۲ ما س بنا س = جا س والمراجع مراجا مراجو ما س (1منا س-1) ده 4 منا س∍⊈ امزيرا سيعد 프= = 나 네큐= 나 네 ". غيم س ألى جندق اغماطة هي: 李有我有华 🕏 ما ۲س=منا س 4 جا جن جوا من = جوا من = 4 عنا سر (۲ ما سر ۱۰۰) ده اله ما سومي إما يكأ س ١٥٠ T = 4 正 = 4 30 mm d 37 mm 6 Th = w ' w - w ' ke (*)

عاس = فاس = الأيسر الانتهاليد المدا ا (منا " هـ - ما " م) - ۲ ۲ ۲ ما همکا هده ا معا" هي - ٢ ما هر معاري - 1 ما " هي = - (+٢) المتاليد الماميليد الماليدون (۱ منا مره ما مر) (منا مر ۲۰۰ ما مر) ده أبا تمنا ها - مأ ها بنا بد = تما د (+ بنا بد) وے تعلقہ منام طا عبت - 1 (موفوش) ي ت الله م

الطرف الأين = ٢ منا (\(\frac{\pi}{4} - \frac{\pi_{\sigma_0}}{4} \))

﴿ الطرف(الأيسر * أي (١ + عنا ١٢)

= ﴿ * ١٤ كِينَا " إهيها " إهالأبين

منا " 10 × 11 × 14 + 1) أو (1 + مناخ × 10 أ)

 $\frac{\left(\frac{1}{4} \ln t + 1 - 1\right)\tau}{\frac{1}{4} \ln \left(\frac{1}{4} \ln t\right)} = \frac{\left(\left(\frac{1}{4}\right)\tau \ln - 1\right)\tau}{t^{2} \ln t} =$

المترف الأبين = 1 منا 1 من

= المأسيمياس = المأسيمياس الماميا الساء = الميا السياد

همأ لاس + إحالأيس

(1-1 tax +1) ==

= بها ۱+ (بست - ۱۰ ایم از ۲۰ م س ۲۰ ایم ۱۰ است ۱۰ ا

 $^{9}10 = \frac{1}{2} \exp \left[- (2.9 \log + 3) \frac{5}{4} \times 1 \right]^{9} \log A$

متا الاست المتاريخ باعد (النظرابي

1 = 00 The

اما عما ٢ س = معا (٢ ٥ ٢ ١٠ ١٠)

 $(\pi_{ij} + \frac{\pi V}{A})$ (2) $\pi_{ij} = \pi_{ij} + \pi_{ij}$

***	1+0+1	- ۲ بيتا	ru−t [†] ba®
شمتا لاس ده		•=	(منا ۲س ۱۰۰)
C	# f o 7	(مطر	حتا لامين دعها
$\Pi(\phi = \phi \circ A)$	((#+)	75 w 17 = w-1
	1=u	4	متنحان 🖘
1	R≃ψ	C.	12.04
			الم اليم س هي :
			+ ب⊶۲ اليد (¥)
			+40.764-1
	+# (2.1	ما س	T - 4+ Lt
			(1 al +u-1)
100			الدما سودل
			اماها صود 🛊
	(Ru	4-4	ما سوسما (-
			µ1+ <u>π</u> =μ
			ا عليمان=:
۱۳۹ (مرانوش) ۱۳۰			*
$\frac{\mathcal{H} + 1}{d} = 0 + V$	(π _u	$\Psi + \frac{TE}{2}$	ما س⇔ما(∸
			اله ما سن∞ه
	(π,	UT+2	ما سرد مد (۲
		π	w # + # w
	أوناها		om quitaulg
$\pi > 7$ (مرفوشن) $\pi < \pi$	•	_	₩=
	<u> </u>	4	كاللهم مساهية
•=3	P}+ (-	مِعَا 🔐	₩ LDT®
The sur late.		=7}	+(+)+4+
			ما س د 🌱
4	(Hut	+ 44)	امانيا سونيا
	(πυ	T + 7	ما س=ما (ٿ
		Xu!	+ The service

(Light) RT < R \$ = to The to A

(1÷) πω	امن احرن ۵ 👭 ۱۹۰۹ و
	1. m = 1. + m 1
t=u	عندمان = ١ ا
$\pi \frac{\epsilon}{h} = \omega$	$= -4\frac{\pi}{\Lambda} = \omega = \dots$
(1+) π _ω τ	+ # = - + #
π.	$A = \frac{1}{A} + A$
1= u	مسمر رو 💷 💎 💰
$\pi \frac{i\sigma}{k} = \omega$	$\frac{A}{MA} \approx M = 1$
$\frac{1}{2} = \omega \cdot T$ for $-\infty$ $\frac{1}{2} =$	⊕۱-۲عبا أحق
	$\frac{\lambda_{m}}{V} = \rho_{m} T \log \lambda_{m}$
$\{\Pi \omega \tau + \frac{\Pi \tau}{\tau}\}$	المرجعا لأمير بدععا
ر (πυτ+ <u>πί</u>) ا	المعالجين سيد
#ut+#E=u=t € #ut	+ 11 = 1 = 1
(1+) Ru1+⊕	
π	u+#=u+A
New 1 c	مندسا ب = د ا
The state of the s	
(7+) X U T + T	
	$A = \frac{T_1T}{T_1} = \frac{1}{T_2} + \frac{1}{T_1}$
	علىمان 84
Ti a or	
Te . Bt . AT .	T
	1+u-1"L @
restauration in	e [†] (1+u→1 la)
	يا 7-ب = −1
(Kut+#	ما تحديدها (-
	T + III = up - T
п	س= 11 + ب
120 (مقتما يه ۵۰
₹ ₹ 1 1 1 1 1 1 1 1 1 1	∏T =ω+
TY T	E. Company of the Control of the Con

Total and Rut+ TV = C teo (amount $(-1)^{\frac{1}{2}} \pi \tau < \pi \frac{W}{V} = -1$ مراوش) $\pi \tau < \pi \frac{W}{V} = -1$ و الميم س مي الآلواء (الآلواء) $-u = \frac{\pi V}{V} = u_0 = \frac{\pi V}{V} = u_1$ الله على على جاء الله على ساء الله الله من هي الله الله الله الله وأجهل سيجاه طالس € ما ۲ س متأسر + متا ۲ س ما س سما (۲ س + س) T) = 16 t **等等中心等指示** = ما 4 س ۱۹۰ ما ۲ س بريا ۲ س الاعجازة وسيدوك والتجويد طا ميجبة هي مقل من الريمين الأول والثالث $\frac{\hat{\gamma}_{ij}}{\hat{\gamma}_{ij}} = \frac{1}{\hat{\gamma}_{ij}} + \hat{\gamma} = \hat{\gamma}_{ij} \hat{\gamma}_{ij} \hat{\gamma}_{ij} \hat{\gamma}_{ij}$ $\frac{\Pi}{2} = \omega \Delta$ (1+) $\frac{\Pi}{2} = \omega + 1$ (1+) (T+) $\frac{\pi}{4}V = \frac{\pi}{4} + 8 = \omega + 2 \omega \sin \omega$ T) 1 2 = 11 1 1 2 = 1 1 1 1 1 1 1 1 $\pi \frac{V}{W} < \frac{\pi}{2} \le_{V} a_{V} a_{V} + a_{V} a_{V} = \pi \frac{V}{2\pi} + a_{$ 10年11日本日 ا الايسر= (۱ + ۱ منا ۱ + ۱) = منا ۱ ا The state of the s (+1) +1) + = (+ + le +1) + = +1+ Le : 1= 学生1 PP+T $\lambda = \omega + 15 \ A$ ﴿ مَلَا حَنِ مِرْجِبِ فِي سَكِلِ مِنْ الْرَيْدِينِ الأُولِ وَالْتَالِدِيُّ المعلوف الأبيس = 1-10-1ما المائية) ما س = 1-10-1ما المائية) ما س = المائية مديني المائية المائية مديني المائية المائية المائية مديني المائية الما هر الربع الأول؛ من 🖫 🎚 $\frac{Ra}{4} = \frac{R}{4} + R = 0$ القيم س لترتمقل المادلاهي 🖟 🖟 الم 광 나= 왕나 - 왕나왕나? = ®معا س-†ما " أيسد. "10. La-1 = "YO L ै = "र॰ la = ("१० = "१४०) la = "१४० la " $a^{\frac{1}{2} \frac{m_0}{2}} = \frac{1}{4} \qquad \text{with } \sqrt{-\frac{1}{2} \ln t_0 g_0}$ The mark to -= ("To - "IA") to = "IB" to The term of the second $(\overline{\tau}^{\frac{1}{2}} + \overline{\tau}) = \frac{(\overline{\tau}^{\frac{1}{2}} - 1)^{-1}}{2} = 4 + 1\hat{L}$ $\pi \omega t + \frac{\pi}{\tau} = \frac{\omega r}{\tau} \Delta$ ($\pi \omega t + \frac{\pi}{\tau}$) $\ln = \frac{\omega r}{\tau} \ln \pi$ ال $\pi = \frac{\pi \sigma}{4}$ + $\pi \sigma$ مند به حسفر ۵ به ۱۳ الله منا العلم المنا المنا العدمية المناوعة T---Post to fort Lan *terminal *temperal ال ما در ها "در - ما "در) بـ الله الدر) بـ الله والمراجع فالمحاج المعالية الترافي والمراورة والمراورة

$$U = \frac{3^{7}(x + \theta + 1)^{9}}{3} = 3.5$$

$$\lim_{t\to\infty} \frac{\|(v,t)\|^2 \times \|v\|^2}{4\pi} \simeq \mathbb{P}^2 \log_2 X$$

$$= r\left(\frac{\sqrt{n+\ell}}{4}\right)^2 - \ell = \frac{\sqrt{n+\ell}}{2} - \ell = \frac{\sqrt{n-\ell}}{2}$$

$$\frac{\overline{h_1}}{h} = \frac{1}{\overline{h_2}} = a + b \wedge$$

$$V = \frac{J^{-1} T_{\text{in}}}{a^{-1} T_{\text{in}}} + \frac{J^{-1} T_{\text{in}}}{a^{-1} T_{\text{in}}} \otimes \frac{1}{a^{-1} T_{\text{in}}} + \frac{J^{-1} T_{\text{in}}}{a^{-1} T_{\text{in}}} \otimes \frac{J^{-1} T_{\text{i$$

موا در سما د
$$= \frac{1}{2}$$
 بتربیع المارفون $($

$$\frac{1}{4} = a \ln a \ln x - a^{2} \ln x + a^{3} \ln x$$

$$1 - a \ln x = \frac{1}{4} = a \ln x + \frac{1}{4} = a \ln x$$

$$\frac{T}{L} = \frac{\frac{1}{T} \times T}{\frac{1}{T} \times T} = \frac{T \cdot L \cdot T}{T \cdot L \cdot L} + T \cdot L \cdot T$$

$$3 = \frac{\frac{3}{3} + \frac{7}{4}}{\frac{3}{3} + \frac{7}{4} = 1} = \frac{\sqrt{15 + 175}}{\sqrt{15} + 75 + 1} = (\sqrt{15})$$
 is

$$\frac{T}{4} = \frac{\frac{1}{2}\pi^{\frac{1}{4}}}{\frac{3}{4}-1} = \frac{1}{2}\frac{UT}{U-1} = 1 + U$$

$$1 = \frac{1}{4} + 4 = 1 = \frac{1}{4} + \frac{2}{4} = 1 = \frac{1}{4} + \frac{2}{4} = 1$$

$$\frac{s}{V} = o(16.5) \qquad \frac{s}{4} = o(16.5) \times 10^{-3}$$

🗗 ا د د د د خواسات وایا 🛆

$$\frac{\gamma-1}{3} = \frac{\gamma \times \gamma}{3-1} = \frac{-4 \cdot \frac{1}{3} \cdot \frac{\gamma}{3}}{-4 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{\gamma}{3}} = -4 \cdot \frac{\gamma}{3} \cdot \frac{\gamma}{3}$$

$$\frac{\mathbf{v}}{\mathbf{v}_{\mathbf{a}}} = \frac{\mathbf{q}}{\mathbf{v}_{\mathbf{a}}} - \frac{\mathbf{q}_{\mathbf{q}}}{\mathbf{v}_{\mathbf{a}}} = \mathbf{f}^{\mathbf{v}} \mathbf{l}_{\mathbf{a}} - \mathbf{f}^{\mathbf{v}} \mathbf{l}_{\mathbf{a}} = \mathbf{f}^{\mathbf{v}} \mathbf{l}_{\mathbf{a}}$$

$$-\frac{1}{1-4}$$

$$\omega T = ({}^{3}\omega - 1)I \wedge$$

$$\mathfrak{f} = \frac{\mathfrak{f}}{\| T \|_{\mathcal{F}}} \otimes \overline{\left\{ T \right\}} \otimes \frac{\pi}{\| T \|_{\mathcal{F}}} \otimes \overline{\left\{ T \right\}} \otimes \overline{\left\{ T \right\}}$$

المعارة في « (سيارة على المعارة على ال

$$1^{\frac{1}{2}} \ln \pi \left(\frac{1^{-1} \ln \pi}{1^{-1} \ln \pi} - 1 \right) = \frac{1^{-1} \ln \pi}{1^{-1} \ln \pi} = \exp^{\frac{\pi}{2} \ln \pi}$$

ممتأثل حماثات محاتل

$$\frac{\overline{\psi} \cdot b}{\overline{\psi}} = a \psi_{0} \cdot \underline{b}_{2,0} = \frac{\overline{\mu}}{\overline{\eta}} \cdot \underline{b}_{2,0} = \frac{\overline{\mu}}{\overline{\eta} \overline{\eta}} \underline{b}_{2,0} + \overline{\eta}$$

((la+)(n-(lia)) ((la+)(la)

<u>- بنا∫-يا</u> پشيده بدي القسر على جدا } منا∫دها

> 116-1 116-1

(الما إ- ما) المعرف العارف الألهان (منا إ- ما))

1 test la 7-1 "la+1" las _

17 ha-1 = 1 lea | ha 7-1 =

17 th - 17 th = 17 th - 17 to =

الأيسرة المعان - الما ي معال - الما ي المعان - الما ي المعان - الما ي المعان - المع

$$\frac{1}{4} \frac{1}{4} = \frac{\frac{1}{4} \ln x}{\frac{1}{4} \ln x} = \frac{\frac{1}{4} \ln x}{\frac{1}{4} \ln x} = \frac{\frac{1}{4} \ln \frac{1}{4} \ln x}{\frac{1}{4} \ln x} = \frac{1}{4} \ln \frac{1}{4} \ln x}$$

ها سر بروا ۴ س جابروا سرها ۲ س = ها £ س

17] يتربيع المثرطين

$$\frac{1}{T}$$
 = 1 last lay = f^{\dagger} last f^{\dagger} last

Vattle Settletlet-1

Purchlative Treatment

39 b- = 14 lea 1

 $\frac{17}{17}\frac{1}{4} = \frac{1}{4}\frac{1}{1} \approx 14$

to the transfer

$$\frac{1A}{T\theta} = \frac{V}{T\theta} - 1 = 1 \operatorname{Li}_{A} - 1 = \frac{1}{T} \operatorname{Li}_{A} T$$

$$\frac{T}{\theta} = \frac{1}{T} \operatorname{d}_{\theta} A, \qquad \frac{1}{T\theta} = \frac{1}{T} \operatorname{d}_{\theta} A.$$

ب أو أو الد − ب العد أو الده (ب+ أو ما الد

جنا (۱۰۷) = منا المعالب - ما الما ب

$$\frac{44-}{178}\times\frac{7}{9}\times\frac{71}{71}-\frac{1}{8}\times\frac{7}{70}=$$

 $t = (\frac{\omega + 1}{4})^{\frac{1}{4}} \log_2 t = (\omega + 1) \log_2 t$

 $1+(\omega+l)\ln = (\frac{\omega+l}{2})^{\frac{1}{2}} \ln T$

$$\frac{A1}{174} = 1 + \frac{44 - 4}{174} = 1$$

$$\frac{A^{\frac{1}{2}}}{2a_{+}} = \left(\frac{\omega + \frac{1}{2}}{2}\right)^{\frac{1}{2}} \left(\frac{a_{+}}{2a_{+}}\right)^{\frac{1}{2}}$$

$$\frac{\overline{\{x_i\}} \cdot q_i}{\overline{y_i} \cdot p_i} = \frac{q_i}{\overline{y_i} \cdot p_i} = \left(\frac{x_i \cdot q_i}{\overline{y_i}}\right) \frac{1}{|x_i|} \cdot x_i$$

الما يا المعرب ال

$$\frac{\varphi}{a}$$
 and φ in φ . $\frac{\varphi}{a}$ and the φ in φ

$$\frac{Y-y}{\theta} = \sup \mathbb{T} \left(\log x + \log x \right) \ln x$$

67 بتوحيد القامات

$$r = \frac{al}{r} (r - r) = \frac{ral}{r} = r = |alcolor|$$

$$\frac{dV}{dt} = \frac{\frac{1}{6} + \frac{A}{10}}{\frac{1}{6} \times \frac{A}{10} - \frac{1}{3}} = \frac{0000 + 0000 + \frac{1}{10}}{00000 + 00000 + \frac{1}{10}} = (000 + 0000) \text{ lb}$$

$$t = \frac{a \, \gamma}{(V)} \times \frac{(V)}{V^{\gamma}} = (\omega + \omega + 1) \, \ln \frac{(V)}{V^{\gamma}} \, ds$$

الا ما ۱۲ ما ۱

على سيقة هجون	(1)		

T-01 **** Fr @

10

(1) اتفع في الربع الأول

VI = 1 K V N TO | Laf La Tof Y La

$$\frac{1}{L} \frac{1}{|X|} = \frac{1}{L} \frac{|P|}{|P|} = 1 A P$$

$$\frac{\gamma \gamma \gamma_{-}}{\alpha \gamma V} = \frac{\gamma \zeta_{-N,Y}}{\gamma (\frac{\gamma \zeta}{V}) - \gamma} = \frac{\gamma \gamma \zeta_{-1}}{\gamma \gamma \zeta_{-1}} = \gamma \zeta \zeta_{-1}$$

FTHAT FTHAT FRATE

2

⊕4,∆1∪1: 13=7+1+9 13=71 3=f

1=(a-1)(1-1)(7-1)1 = 1 ω f Δ f

۲=۲۰۰۰ المواصورات من (۲-۱۰) المواصورات المواصو

⊕ نی∆ (ب ه: ۲ ع≃۲+۱۲+4=۲۳ ۶ = ۸۱

مبتجة ١٥ ال عد

= (14-1A)(17-1A)(1-1A)1A

A= ((10) - ((17) = A

Francis HAX + 1 Al Sains

F this - To work a state of the contraction of

ا ماران ماران ماران ا ا ماران ماران ماران ماران ا ماران ماران ماران ماران

Frien'to Lawrot

المساحة الشكل الريامي أن عن ٢٠ × أب عن المقال الريامي أن عن المقال الريامي أن عن المقال المقال المقال عن المقال عن المقال المقال عن ال

(FY-6A)(Y6-6A)(4-6A) 1A = = -1 A 2-1-A

الا على الداء المادة
C4.4=T+-T4,4=5-2

- ALON TO - TS. 0= 1 - Z

(4-2)(4-2)(3-2)2 = 3-4 - 3 = 2-1-1.

ر مساحد الدی ا ب عبد = ۲ کارب د ۲۰ میاسد :

- 47,8 = 4×18 × 2 = 4ω (Δ 3=1ω)

ئى∆سلمت

14.7=2.4 (+1) F1.1=1+11+15.1=2.4

11,T=1-14,T=5-2

3-4-14,4-14,4-24,6

4, T= W-14, T= "s-1

 $F = T_1 A = 0, T \times 1, Y \times 11, T \times 14, T = -3 = 0 \triangle 1 = 1 = 1 = 0$ A property of the propert

(1--17)(A-17)(1-17) 17 = - 1 (A-17) A-1-1 الشكل أب قاد مربع 7 96 m مساحة الربع [ب 8 و 15-14 Transana. M=ZA TANANTHEET 17 = 4 - 17 = A # سباحة ﴿ أ عدد د أ (١١ -١١) (١١ -١١) معادمة ﴿ أ ميناحة ۵ د د ه 7 TY.Y= Promite and == مساحة الشكل = ۲۱ + ۲۱ = ۲۰ ۱۰ ۲ - ۲۰ ۲ ۲ مساحة الشكل أ ب هـ (= 70 + 70 = 44 " P 4 LP | 4-1 🗈 الشكل 🕽 ب مر الرجيستوليل MA-Bleau مساحة الستطيل إن عي في FIAHANS= Prost as a franch Alaba THEAMER LESS ARAPIT (*) + (*) + (*) + = + [مساعية الشكل = ١٦+ ٤٨ = ٢٤٠ ^{سا} 7" 47.7="To is 17 x 17 x 1 = a 1 / A late باعد الشكل أ ب عبر و = ۲۰ ۲۰۲۹ ۲۰ ۲۰ ۲۰۲۹ "﴿ ترسم بداد الشكل أب ها فرمستطيل L 1 20 min Cleaseof الشكل أب ها واللوم مساحة المستطيل = 3 × 4 = 27 م Chessell Challedun BALL F 11=1-71=4 F 11=1+1+1=27 4=24 مساحة الرهم = 10 × 10 = 10] [$(1-\lambda)(1-\lambda)(\lambda-\lambda)(\lambda-\lambda)(\lambda-\lambda)$ 170= 76 m h x = man 2 5 4 20 had 7-13.7 = عبيامة الشكل = ١٠٠ م ١٠٠ = ١٢٠ م مساحة الشكل = 47 × 11,7 × 11,7 × 17 $\sim 11 = \frac{\Lambda - V_1}{2} = 0$ LAUIDA TIMA+ H+ HHEY TI=++++=ET 10一名か (A-10)(11-10)(11-10) × 10 = A Zalus 17 = F F-11=

خدرض أن الأطوال مي: ٧ ال ، ٥ ال ، ١٠ ال

محيط المديقة = ٢٥٠

F .. = 07 + 00 + 04

T.=01

Prom di 10

الاستوال هي: ١٤٠) ١٤٠ ٢٠ ١٠

(160-180) (90-180) (40-500) 180 F= 220 call 20 loss

Totalle

١٦) تشريض أن الأطوال ﴿

will with with with the

٢-س + ١١س + ٢-س + ٢-س ١٠١٠ ي يروب

f = a - A

41=4-11

2. الأطوال هي: 1

CASCASCASCASCE

نسل الد

LASSA

4-24

15=f+f+3=2f

(4-A)(1-A)(1-A) A) = = 3 3 D ====

r 11,r=