CS5222 Project 2 Custom Acceleration with FPGAs

Shen Jiamin A0209166A shen_jiamin@u.nus.edu

March 4, 2022

Abstract

In this project, I'm going to port the lab to **PYNQ 2.7** and **Vivado/Vitis 2020.2**. The experiment is done on ASUS RS500-E8-PS4 V2, with operating system Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-100-generic x86_64).

1 Matrix Multiplication Pipeline Optimization in HLS

1.1 Understanding the baseline matrix multiply (background)

For Vitis 2020.2, the command used should be

```
$ vitis_hls -f hls.tcl
```

The report generated by HLS (as in Figure 1) shows that some pipelining has already been done automatically by Vitis HLS. In order to prepare baseline for the next part, I disabled the pipelining.

```
--- hls.tcl 2022-03-03 21:17:24.651417872 +0800
+++ hls_nopipe.tcl 2022-03-03 21:33:53.435003340 +0800
@@ -7,6 +7,7 @@
open_solution "solution0" -flow_target vivado
set_part {xc7z020clg484-1}
create_clock -period 10 -name default
+config_compile -pipeline_loops 0
csim_design -clean
csynth_design
close_project
```

The new report is as Figure 2. It turns out that the overall performance is a little bit worse than documented. This is because every iteration in L3 loop takes 11 cycles and thus 2816 cycles in total to perform a single inner product.

1.2 Pipelining in HLS (8 marks)

The work is done with auto pipelining disabled.

1.2.1 Pipelining the L3 (innermost) loop

The code is modified as Figure 3.

Pipelining the intermost loop do not trigger loop unrolling, and thus the structure of 3-layer loops is not modified. The loop body of L3 is pipelined, which reduces its latency from 2816 cycles to 1031 cycles. The initiation interval achieved of L3 is 4 cycles.

This design utilizes slightly more resources but no more floating point adders or multipliers.

Table 1: HLS Report for mmult_float

				Latency Summary	mmary				Utiliza	Jtilization Summary	mary		Instance	1ce
	Profile	Latency (cycles)	(cycles)	Latency (ms)	(ms)	Interval (cycles)	(cycles)	BRAM 18K DSP	DSP	FF	TOT	URAM	fadd	fmul
		min	nin max	min	max	mim	max							
1.1	Baseline (AutoPipe)	85160	85160	1.236	1.236	85161	85161	13	5	1151	2058	0	1	1
1.1	Baseline (NoPipe)	228022	228022	2.280	2.280	228023	228023	14	5	817	1635	0		1
1.2.1	L3 Pipelining	85286	85286	1.238	1.238	85287	85287	14	5	921	1713	0		1
1.2.2	L1 Pipelining	6193	6193	0.062	0.062	6194	6194	70	800	415044	243128	0	160	160
1.2.3	1.2.3 L2 Pipelining	7341	7341	0.073	0.073	7342	7342	182	80	38357	34359	0	16	16

*	Summary:	.												
 	Latency min	(cycles)	Latend	; cy (a 	absolut max		In min		1	Pipeline Type				
	85160	85160 +	1.236	ms	1.236	ms +-		1 85161 -+		none				
+	Detail: * Insta N/A * Loop:				+		+		-+-		+	 +	+	
	i I	Loop Name	 		atency min	(cycl ma				Initiatio achieved				 Pipelined
	- LOAI	D_OFF_1 D_W_1_LOAD_ D_I_1_LOAD_ L2	'		5 1280 1024 82800		5 1280 1024 2800		-+· 1 2 2 5	1 1	+ 	1 1 1 1 -	+ 5 1280 1024 80	yes yes yes yes no
	+ L3		j		1031		1031	1	2	4	İ	1 j	256	yes

Figure 1: Performance estimates in default condition

1.2.2 Pipelining the L1 (outermost) loop

|- STORE_O_1_STORE_O_2 |

The code is modified as Figure 4. 160 adders and 160 multipliers. 299.1 seconds

1.2.3 Pipelining the L2 loop

The code is modified as Figure 5. 16 adders and 16 multipliers. 62.45 seconds Report

- 1. the design latency in cycles,
- 2. the overall device utilization (as Total per Resource),
- 3. the number of floating point adders and multipliers (you can find this information under the Instance section of the synthesis report) and
- 4. the Initiation Interval of the loops you pipelined.

1.3 C. Increasing Pipeline Parallelism by Repartitioning Memories (8 marks)

Report

- 1. the design latency in cycles,
- 2. the overall device utilization (as Total per Resource),
- 3. the number of floating point adders and multipliers (you can find this information under the Instance section of the synthesis report) and
- 4. the Initiation Interval of the loops you pipelined.

(a) Performance Estimates

* Summary:

 	Latency min	(cycles) max	Latency min	+ (absolute) max +	Inte	erval max	Pipeline Type
İ				2.280 ms			

+ Detail:

* Instance:

N/A

* Loop:

+	+	+	+	+	+	+	+
 Loop Name	Latency min	(cycles) max	Iteration Latency			Trip Count	 Pipelined
- LOAD_OFF_1	5		 1	 -	 -	 5	no
- LOAD_W_1	1300	1300	130	-	-	10	no
+ LOAD_W_2	128	128	1	-	-	128	no
- LOAD_I_1	1040	1040	130	-	-	8	no
+ LOAD_I_2	128	128	1	-	-	128	no
- L1	225536	225536	28192	-	-	8	no
+ L2	28190	28190	2819	-	-	10	no
++ L3	2816	2816	11	-	-	256	no
- STORE_0_1	136	136	17	-	-	8	no
+ STORE_0_2	15	15	3	-	-	5	no
+	+					+	

(b) Utilization Estimates

* Summary:

Name	BRAM_18K	DSP	FF	LUT	URAM
DSP Expression FIFO Instance	- - - 0	+ - - -	 0 - 384	-i	+ - - -
Memory Multiplexer Register	14 - -	- - -	64 - 369	376	- - -
Total	14	5 		1635 	0
Available	280	220			0
Utilization (%)	,	2 +	~0 	3	0

+ Detail:

* Instance:

Instance	Module	++ BRAM_18K ++	DSP	FF	LUT	URAM
CONTROL_BUS_s_axi_U fadd_32ns_32ns_32_5_full_dsp_1_U1 fmul_32ns_32ns_32_4_max_dsp_1_U2	CONTROL_BUS_s_axi fadd_32ns_32ns_32_5_full_dsp_1 fmul_32ns_32ns_32_4_max_dsp_1	0 0	0 2 3	36 205 143	40 390 321	0 0 0
Total	+ 	+ 0 +	5	384	751	0

Figure 2: HLS Report with pipelining explicitly disabled

```
--- mmult_float.cpp.orig
                              2022-03-04 16:59:04.734375380 +0800
+++ mmult_float.cpp.L3
                             2022-03-04 16:58:59.566207094 +0800
@@ -78,6 +78,7 @@
            T tmp = offset_buf[j];
        L3:
            for (int k = 0; k < FEAT; k++) {
+#pragma HLS PIPELINE II = 1
                tmp += in_buf[i][k] * weight_buf[j][k];
            out_buf[i][j] = tmp;
                                     Figure 3: Inserting HLS directive for L3.
                               2022-03-04 16:59:04.734375380 +0800
--- mmult_float.cpp.orig
+++ mmult_float.cpp.L1
                             2022-03-04 16:58:38.673526756 +0800
@@ -72,6 +72,7 @@
L1:
    for (int i = 0; i < BATCH; i++) {
    // Iterate over output classes
+#pragma HLS PIPELINE II = 1
    L2:
        for (int j = 0; j < CLASSES; j++) {
            // Perform the dot product
                                     Figure 4: Inserting HLS directive for L1.
                               2022-03-04 16:59:04.734375380 +0800
--- mmult_float.cpp.orig
+++ mmult_float.cpp.L2
                             2022-03-04 17:00:26.201027719 +0800
@@ -74,6 +74,7 @@
    // Iterate over output classes
        for (int j = 0; j < CLASSES; j++) {
+#pragma HLS PIPELINE II = 1
            // Perform the dot product
            T tmp = offset_buf[j];
```

Figure 5: Inserting HLS directive for L2.

1.4 D. Amortizing Iteration Latency with Batching (8 marks)

Report

1. the design latency in cycles, and

L3:

2. the overall device utilization (as Total per Resource).

1.5 E. Extending Batch Size with Tiling (8 marks)

Report

- 1. the design latency in cycles, and
- 2. the overall device utilization (as Total per Resource).

1.6 F. Hardware compilation and FPGA testing on the PYNQ (8 marks)

Report

- 1. the measured speedup and
- 2. measured classification accuracy.

2 Part 2: Fixed-Point Optimizations (30 marks)

- 1. the fixed-point validation accuracy reported by mnist.py after you've tweaked the SCALE factor.
- 2. the design latency in cycles
- 3. the overall device utilization (as Total per Resource).
- 4. your measured system speedup over the fixed-point CPU implementation
- 5. your measured classification accuracy on the 8k MNIST test sample
- 6. how many multipliers are instantiated in your desing?
- 7. report the initiation interval of the matrix multiplication loop that you pipelined
- 8. given the number of multipliers in your design and input throughput via the AXI port, is the design bandwidth- or compute-limited?

3 Part 3: Open-ended design optimization (30 marks)

Vitis High-Level Synthesis User Guide