THOMAS BREYDO

Problem. Suppose V is a real vector space and $N \in \mathcal{L}(V)$. Prove that N_C is nilpotent if and only if N is nilpotent.

Suppose $k = \dim V$.

Claim.
$$N^k = 0 \implies (N_C)^k = 0$$

Proof. Suppose $N^k = 0$. Then, for any $u + iv \in V_C$,

$$(N_C)^k (u+iv) = N^k u + iN^k v$$
 (by 9.9)
= 0,

and thus $(N_C)^k = 0$.

Claim.
$$(N_C)^k = 0 \implies N^k = 0$$

Proof. Suppose $(N_C)^k = 0$. Then, for any $u \in V$,

$$N^{k}u = N^{k}u + i \cdot 0$$

$$= N^{k}u + iN^{k}0$$

$$= (N_{C})^{k}(u + i \cdot 0)$$

$$= 0,$$
(by 9.9)

and thus $N^k = 0$.

Combining the two claims above, we get that

$$N^k = 0 \quad \iff \quad (N_C)^k = 0.$$

Note. You can view the source code for this solution here.