Equações diferenciais lineares

Antonio Carlos Nogueira

1 Equações diferenciais lineares de ordem superior

Nesta seção faremos uma discussão sobre equações diferenciais de ordem superior, começando com a noção de problema de valor inicial. Nossa atenção porém será concentrada nas equações lineares (mais precisamente as de segunda ordem)

1.1 Problema de valor inicial e prblema de valor de contorno

Problema de valor de contorno

Para uma equação diferencial (linear) de ordem n o problema

Resolva:
$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Sujeito a: $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$ (1)

onde y_0, y_1, \dots, y_{n-1} são constantes arbitrárias, é chamado **prob lema de valor inicial**. Os valores específicos $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$ são chamados **condições iniciais**. Procuramos solução em algum intervalo I contendo x_0 .

No caso de uma equação linear de segunda ordem, uma solução para o problema de valor inicial

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), \ y(x_0) = y_0, y'(x_1) = y_1,$$

é uma função $\phi(x)$ definida em algum intervalo I contendo x_0 e que satisfaça a equação e as condições iniciais, ou seja,

$$a_2(x)\phi''(x) + a_1(x)\phi'(x) + a_0(x)\phi(x) = g(x)$$
 e $\phi(x_0) = y_0, \phi'(x_0) = y_1$.

Teorema 1 (Existência e unicidade) Sejam $a_0(x), a_1(x), \dots, a_n(x)$ e g(x) funções contínuas em um intervalo I com $a_n(x) \neq 0$ para todo $x \in I$. Se $x = x_0$ é algum ponto deste intervalo, então existe uma única solução y(x) para o problema de valor inicial (1) neste intervalo.

Exemplo 1

Verifique que a função $y = 3e^{2x} + e^{-2x} - 3x$ é uma solução para o problema de valor inicial

$$y'' - 4y = 12x$$
, $y(0) = 4$, $y'(0) = 1$.

Como a equação diferencial é linear e os coeficientes bem como g(x) = 12x são funções contínuas e $a_2(x) = 1 \neq 0$ em qualquer intervalo contendo x = 0, segue do teorema 1 que a função dada é a única solução do PVI.

Exemplo 2

A função $y = \frac{1}{4} \sin 4x$ é uma solução para o PVI

$$y'' + 16y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

Segue-se do terorema 1 que, em qualquer intervalo contendo x=0, a solução é única.

Observação 1 A continuidade das funções $a_i(x)$, $i = 0, 1, \dots, n$ e a hipótese $a_n(x) \neq 0$ para todo $x \in I$ são ambas importantes. Especificamente, se $a_n(x) = 0$ para algum x no intervalo, então a solução oara um PVI linear pode não ser única ou nem existir.

Exemplo 3 Verifique que a função $y = cx^2 + x + 3$ é uma solução para o PVI

$$xy'' - 2xy' + 2y = 6$$
, $y(0) = 3$, $y'(0) = 1$,

no intervalo $(-\infty, \infty)$ para qualquer escolha do parâmetro c.

Solução: Como y' = 2cx + 1 e y'' = 2c, segue que

$$x^{2}y'' - 2xy' + 2y = x^{2}(2c) - 2x(2cx + 1) + 2(cx^{2} + x + 3)$$
$$= 2cx^{2} - 4cx^{2} - 2x + 2cx^{2} + 2x + 6$$
$$= 6$$

E ainda temos:

$$y(0) = c(0)^2 + 0 + 3 = 3$$

 $y'(0) = 2c(0) + 1 = 1$

Problema de valor de contorno

Um outro tipo de problema consiste em resolver uma equação diferencial de ordem dois ou maior na qual a variável dependente y ou suas derivadas são especificadas em pontos diferentes. Um problema como

Resolva:
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Sujeito a:
$$y(a) = y_0, y(b) = y_1,$$

é chamado de **problema de valor de contorno**. Os valores especificados $y(a) = y_0$ e $y(b) = y_1$ são chamados de **condições de contorno** ou **condições de fronteira**. Uma solução para tal problema é uma função que satisfaça a equação diferencial em algum intervalo I, contendo a e b, cujo gráfico passe pelos pontos (a, y_0) e (b, y_1) .

Em contraste com a situação para problemas de valor inicial, um problema de valor de contorno pode ter

- (i) várias soluções
- (ii) uma única solução
- (iii) nenhuma solução

Exemplo 4 A solução geral para a equação

$$y'' + 16y = 0$$

é dada por

$$y = c_1 \cos 4x + c_2 \sin 4x.$$

Detereminar a solução para esta equação que satisfaça as condições de contorno

$$y(0) = 0, y(\pi/2) = 0.$$

Solução: A primeira condição y(0) = 0 nos dá

$$0 = c_1 \cos 0 + c_2 \sin 0$$

ou seja

$$c_1 = 0$$
.

Logo, $y = c_2 \sin 4x$. Usando a segunda condição $y(\pi/2) = 0$, obtemos

$$0 = c_2 \sin 2\pi$$
,

e como sen $2\pi=0$, esta condição é satisfeita com qualquer escolha de c_2 . Assim, uma solução para o problema

$$y'' + 16y = 0$$
, $y(0) = 0$, $y(\pi) = 0$,

é a família a um parâmetro

$$y = c_2 \sin 4x$$
.

Assim, existe uma infinidade de soluções satisfazendo o dado problema de valor de contorno.

Exemplo 5 O problema de valor de contorno

$$y'' + 16y = 0$$
, $y(0) = 0$, $y(\pi/2) = 1$,

 $n\tilde{a}o \ possui \ solução \ na \ família \ y = c_1 \cos 4x + c_2 \sin 4x.$

Solução: De fato, como no exemplo anterior, a condição y(0) = 0 implica que $y = c_2 \sin 4x$; e a segunda condição, quando aplicada, nos dá $1 = c_2 \sin 2\pi = 0$ o que é absurdo.

Exercícios

- 1. Sabendo que $y=c_1e^x+c_2e-x$ é uma família a dois parâmetros de soluções para y''-y=0 (no intervalo $(-\infty,\infty)$), encontre um membro dessa família satisfazendo as condições iniciais y(0)=0, y'(0)=1.
- 2. Encontre uma solução para a equação diferencial do Problema 1 satisfazendo as condições y(0) = 0, y(1) = 1.
- 3. Sabe-se que c) $1e^x \cos x + c_2e^x \sin x$ é uma família a dois parâmetros de soluções para a equação y'' 2y' + 2y = 0 em \mathbb{R} . Determine, se existir, um membro dessa família que satisfaça as condições iniciais dadas:

(a)
$$y(0) = 1$$
, $y'(0) = 0$.

- (b) y(0) = 1, $y(\pi) = -1$.
- (c) y(0) = 1, $y(\pi/2) = 1$.
- (d) y(0) = 0, $y(\pi) = 0$.
- 4. Sabe-se que $y = c_1x^2 + c_2x^4 + 3$ é uma família a dois parâmetros de soluções para a equação $x^2y'' 5xy' + 8y = 24$ em \mathbb{R} . Encontre, se existir, um membro dessa família que satisfaça as condições iniciais dadas:
 - (a) y(-1) = 0, y(1) = 4.
 - (b) y(0) = 1, y(1) = 2.
 - (c) y(0) = 3, y(1) = 0.
 - (d) y(0) = 3, y(2) = 15.

1.2 Dependência e independência linear

Os conceitos de dependência e independência linear são fundamentais para o estudo de equações diferenciais lineares.

Definição 1 (Dependência linear) Dizemos que um conjunto de funções $f_1(x), f_2(x), \dots, f_n(x)$ é **linearmente dependente (LD)** em um intervalo I se existem constantes c_1, c_2, \dots, c_n não todas nulas, tais que

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

para todo x no intervalo.

Definição 2 (Independência linear) Dizemos que um conjunto de funções $f_1(x), f_2(x), \dots, f_n(x)$ é **linearmente independente (LI)** em um intervalo I se ele não é linearmente dependente.

Em outras palavras, um conjunto de funções é linearmente independente em um intervalo se as únicas constantes para as quais

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0,$$

para todo x no intervalo, são $c_1 = c_2 = \cdots = c_n = 0$.

No caso n=2, duas funções $f_1(x)$ e $f_2(x)$ são LD em um intervalo I se existem constantes, que não são ambas nulas, tais que, para todo $x \in I$,

$$c_1 f_1(x) + c_2 f_2(x) = 0.$$

Assim, se por exemplo, $c_1 \neq 0$, segue que

$$f_1(x) = -\frac{c_2}{c_1} f_2(x);$$

ou seja, uma é múltipla da outra. Reciprocamente, se $f_1(x) = cf_2(x)$ para alguma constante c, então

$$1 \cdot f_1(x) - c f_2(x) = 0$$

para todo x em algum intervalo I, ou seja, as funções são LD.

Concluímos asssim que duas funções são linearmente independentes quando nenhuma delas é múltipla da outra em qualquer intervalo.

Exemplo 6 As funções $f_1(x) = \sin 2x$ e $f_2(x) = \sin \cos x$ são linearmente dependentes em $(-\infty, \infty)$ pois

$$sen 2x = 2 sen cos x.$$

Exercício 1 Mostre que as funções $f_1(x) = \cos^x$, $f_2(x) = \sin^2 x$, $f_3(x) = \sec^2 x$, $f_4(x) = \tan^2 x$ são linearmente dependentes no intervalo $(\pi/2, \pi/2)$.

O wronskiano

O próximo teorema proporciona uma condição suficiente para a independência linear de n funções em um dado intervalo.

Teorema 2 (Critério para independência linear de funções) Suponha que as funções $f_1(x), f_2(x), \dots, f_n(x)$ sejam diferenciáveis pelo menos n-1 vezes. Se o determinante

$$\begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

for diferente de zero em pelo menos um ponto do intervalo I, então as funções $f_1(x), f_2(x), \dots, f_n(x)$ serão linearmente independentes em I.

O determinante do teorema anterior é denotado por

$$W(f_1(x), f_2(x), \cdots, f_n(x))$$

e é chamado o Wronskiano das funções.

Corolário 2.1 Se $f_1(x), f_2(x), \dots, f_n(x)$ são diferenciáveis pelo menos n-1 vezes e são linearmente dependentes em I, então

$$W(f_1(x), f_2(x), \cdots, f_n(x)) = 0$$

para todo x em I.

Exemplo 7 As funções $f_1(x) = \sin^2 x$ e $f_2(x) = 1 - \cos 2x$ são linearmente dependentes em \mathbb{R} (Por quê?) Pelo corolário anterior, devemos ter $W(\sin^2 x, 1 - \cos 2x) = 0$ para todo $x \in \mathbb{R}$. De fato:

$$W(\operatorname{sen}^{2}x, 1 - \cos 2x) = \begin{vmatrix} \operatorname{sen}^{2}x & 1 - \cos 2x \\ 2 \operatorname{sen} x \cos x & 2 \operatorname{sen} 2x \end{vmatrix}$$

$$= \begin{vmatrix} \operatorname{sen}^{2}x & 1 - \cos 2x \\ \operatorname{sen} 2x & 2 \operatorname{sen} 2x \end{vmatrix}$$

$$= \begin{vmatrix} \operatorname{sen}^{2}x & 1 - \cos 2x \\ \operatorname{sen} 2x & 2 \operatorname{sen} 2x \end{vmatrix}$$

$$= 2 \operatorname{sen}^{2}x \operatorname{sen} 2x - \operatorname{sen} 2x + \operatorname{sen} 2x \cos 2x$$

$$= \operatorname{sen} 2x(2 \operatorname{sen}^{2}x - 1 + \cos 2x)$$

$$= \operatorname{sen} 2x(2 \operatorname{sen}^{2}x - 1 + \cos^{2}x - \operatorname{sen}^{2}x)$$

$$= \operatorname{sen} 2x(\operatorname{sen}^{2}x + \cos^{2}x - 1) = 0$$

Aqui usamos as identidades trigonométricas $\sin 2x = 2 \sin x \cos x$, $\cos 2x = \cos^2 x - \sin^2 x e \sin^2 x + \cos^2 x = 1$.

Exemplo 8 As funções $f_1(x) = e^{mx}$ e $f_2(x) = e^{nx}$, $m \neq n$, são linearmente independentes.

Solução: De fato, o wronskiano é dado por

$$W(e^{mx}, e^{nx}) = \begin{vmatrix} e^{mx} & e^{nx} \\ me^{mx} & ne^{nx} \end{vmatrix}$$
$$= ne^{nx}e^{mx} - me^{mx}e^{nx}$$
$$= ne^{(m+n)x} - me^{(m+n)x}$$
$$= (n-m)e^{(m+n)x} \neq 0$$

para todo $x \in \mathbb{R}$. Logo, f_1 e f_2 são linearmente independentes em qualquer intervalo da reta real.

Exemplo 9 Dados os números reais alpha e β , com $\beta \neq 0$, verifique que as funções $y_1 = e^{\alpha x} \cos \beta x$ e $y_2 = e^{\alpha x} \sin \beta x$ são linearmente independentes em qualquer intervalo da reta real.

Exemplo 10 As funções $f_1(x) = e^x$, $f_2(x) = xe^x$ e $f_3(x) = x^2e^x$ são linearmente independentes em qualquer intervalo da reta real pois

$$W(e^{x}, xe^{x}, x^{2}e^{x}) = \begin{vmatrix} e^{x} & xe^{x} & x^{2}e^{x} \\ e^{x} & xe^{x} + x & x^{2}e^{x} + 2xe^{x} \\ e^{x} & xe^{x} + 2e^{x} & x^{2}e^{x} + 4xe^{x} + 2e^{x} \end{vmatrix}$$
$$= 2e^{3x}$$

não se anula para nenhum valor de x.

Exercícios

1. Verifique se as funções dadas são linearmente dependentes ou linearmente independentes em \mathbb{R} .

(a)
$$f_1(x) = x, f_2(x) = x^2, f_3(x) = 4x - 3x^2$$

(b)
$$f_1(x) = 0, f_2(x) = x, f_3(x) = e^x$$

(c)
$$f_1(x) = 5, f_2(x) = \cos^2 x, f_3(x) = \sin^2 x$$

(d)
$$f_1(x) = \cos 2x, f_2(x) = 1, f_3(x) = \cos^2 x$$

(e)
$$f_1(x) = x, f_2(x) = x-1, f_3(x) = x+3$$

(f)
$$f_1(x) = 2 + x, f_2(x) = 2 + |x|$$

(g)
$$f_1(x) = 1 + x, f_2(x) = x, f_3(x) = x^2$$

(h)
$$f_1(x) = e^x, f_2(x) = e^{-x}, f_3(x) =$$

 Mostre, calculando o wronskiano, que as funções dadas são linearmente independentes.

(a)
$$f_1(x) = x^{1/2}, f_2(x) = x^2, \text{ em } \mathbb{R}$$

(b)
$$f_1(x) = 1 + x, f_2(x) = x^3, \text{ em } \mathbb{R}$$

(c)
$$f_1(x) = \operatorname{sen} x, f_2(x) = \operatorname{cosec} x$$
, em $(0, \pi)$

(d)
$$f_1(x) = e^x, f_2(x) = e^{-x}, f_3(x) = e^{4x},$$

em \mathbb{R}

(e)
$$f_1(x) = x, f_2(x) = x \ln x, f_3(x) = x^2 \ln x, \text{ em } (0, \infty)$$

1.3 Soluções para equações lineares homogêneas

Uma equação diferencial linear de ordem n da forma

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
 (2)

é chamada de equação homogênea, enquanto

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$
(3)

com g(x) não identicamente nula, é chamada de **não homogênea**.

Exemplo 11 A equação 2y'' + 3y' - 5y = 0 é uma equação diferencial ordinária linear de segunda ordem homogênea.

Exemplo 12 A equação $xy'''2xy'' + 5y' + 6y = e^x$ é uma equação diferencial ordinária linear de terceira ordem não homogênea.

Veremos nas próximas seções que, para resolver uma equação não homogênea (3) devemos primeiro resolver equação homogênea associada (2).

Princípio da superposição

Daqui por diante, para evitar repetições desnecessárias, faremos sempre as mesmas suposições com relação às equações lineares (2) e (3). Em algum intervalo I,

- os coeficientes $a_i(x)$, $i = 0, 1, 2, \dots, n$ são funções contínuas;
- a função g(x) é contínua;
- $a_n(x) \neq 0$ para todo $x \in I$.

O próximo teorema nos diz que a soma, ou **superposição**, de duas ou mais soluções para uma equação diferencial linear homogênea é também uma solução

Teorema 3 (Princípio da superposição-equações homogêneas) Sejam y_1, y_2, \dots, y_k soluções para a equação diferencial linear de ordem <math>n e homogênea (2) em um intervalo I. Então, a combinação linear

$$y = c_1 y_1 + c_2 y_2 + \dots + c_k y_k$$

onde os c_i , $i = 1, 2, \dots, k$, são constantes arbitrárias, é também uma solução no intervalo I.

Prova. Faremos a prova para o caso n = k = 2. Sejam $y_1(x)$ e $y_2(x)$ soluções para a equação

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0.$$

Definindo $y = c_1 y_1(x) + c_2 y_2(x)$, temos

$$a_2(x)[c_1y_1'' + c_2y_2''] + a_1(x)[c_1y_1' + c_2y_2'] + a_0(x)[c_1y_1 + c_2y_2]$$

$$= c_1[a_2(x)y_1'' + a_1(x)y_1' + a_0(x)y_1] + c_2[a_2(x)y_2'' + a_1(x)y_2' + a_0(x)y_2]$$

$$= c_1 \cdot 0 + c_2 \cdot 0 = 0$$

Corolário 3.1 (i) Um múltiplo $y = c_1 y_1(x)$ de uma solução $y_1(x)$ para uma equação diferencial linear homogênea também é uma solução.

(ii) Uma equação diferencial linear homogênea sempre possui a solução trivial y = 0.

Exemplo 13 As funções $y_1 = x^2$ e $y_2 = x^2 \ln x$ são soluções para a equação homogênea de terceira ordem

$$x^3y''' - 2xy' + 4y = 0$$

no intervalo $(0,\infty)$. Pelo princípio da superposição, a combinação linear

$$y = c_1 x^2 + c_2 x^2 \ln x$$

também é uma solução para a equação no mesmo intervalo.

Exemplo 14 As funções $y_1 = e^x$, $y_2 = e^{2x}$, $y_3 = e^{3x}$ satisfazem a equação homogênea

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$$

 $em \mathbb{R}$. Logo.

$$y = c_1 e^x + c^2 e^{2x} + c_3 e^{3x}$$

também é solução.

Soluções linearmente independentes

Nosso objetivo agora é determinar quando n soluções y_1, y_2, \dots, y_n para a equação diferencial homogênea 2 são linearmente independentes.

Teorema 4 (Critério para independência linear de soluções) $Sejam y_1, y_2, \dots, y_n, n$ soluções para a equação diferencial linear homogênea 2 em um intervalo I. Então, o conjunto de soluções é linearmente independente em I se, e somente se,

$$W(y_1, y_2, \cdots, y_n) \neq 0$$

para todo $x \in I$.

Do teorema acima segue que quando y_1, y_2, \dots, y_n são n soluções para a equação (2) em um intervalo I, o Wronskiano é identicamente nulo ou nunca se anula no intervalo.

Definição 3 (Conjunto fundamental de soluções) Qualquer conjunto y_1, y_2, \dots, y_n de n soluções linearmente independentes para a equação diferencial linear homogênea 2 em um intervalo I é chamado de conjunto fundamental de soluções no intervalo I.

Teorema 5 Sejam y_1, y_2, \dots, y_n n soluções linearmente independentes para a equação diferencial linear homogênea (2) em um intervalo I. Então, qualquer solução Y(x) para (2) é uma combinação linear das n soluções linearmente independentes y_1, y_2, \dots, y_n , ou seja, podemos encontrar constantes C_1, C_2, \dots, C_n , tais que

$$Y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x).$$

Prova:

O seguinte teorema responde a questão básica de existência de um conjunto fundamental de soluções para uma equação linear. Sua demonstração é consequência do teorema 1.

Teorema 6 Existe um conjunto fundamental de soluções para a equação diferencial linear homogênea (2) em um intervalo I.

Com base nos teoremas 5 e 6 podemos fazer a seguinte definição.

Definição 4 (Solução geral - equações homogêneas) Sejam y_1, y_2, \dots, y_n n soluções linearmente independentes para a equação diferencial homogênea (2) em um intervalo I. A solução geral para a equação no intervalo I é dada por

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x),$$

onde c_1, c_2, \cdots, c_n são constantes arbitrárias.

Exemplo 15

A equação de segunda ordem y'' - 9y = 0 possui duas soluções

$$y_1(x) = e^{3x}$$
 e $y_2(x) = e^{-3x}$.

Como

$$W(e^{3x}, 3^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6 \neq 0$$

para todo valor de x, segue que y_1 e y_2 formam um conjunto fundamental de soluções em $(-\infty, \infty)$. Assim, a solução geral para a equação diferencial é dada por

$$y = c_1 e^{3x} + c_2 e^{-3x}.$$

Exemplo 16

As funções $y_1 = e^x$, $y_2 = e^{2x}$ e $y_3 = e^{3x}$ satisfazem a equação de terceira ordem (Verifique!!!)

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$$

Como

$$W(e^{x}, e^{2x}, e^{3x}) = \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0$$

para todo valor de x, segue que y_1 , y_2 e y_3 formam um conjunto fundamental de soluções em $(-\infty, \infty)$. Concluimos que

$$y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$$

é a solução geral para a equação diferencial.

Exercícios

- 1. (a) Verifique que y=1/x é uma solução para a equação diferencial não linear $y''=2y^3$ no intervalo $(0,\infty)$
 - (b) Mostre que y = c/x não é solução para a equação quando $c \neq 0, 1, -1$.
- 2. Dada a equação não linear $y'' + (y')^2 = 0$:
 - (a) Verifique que $y_1 = 1$ e $y_2 = \ln x$ são soluções da equação n o intervalo $(0, \infty)$;
 - (b) y_1+y_2 é uma solução para a equação?
 - (c) $c_1y_1 + c_2y_2$, c_1 e c_2 constantes arbitrárias, é uma solução para a equação?
- Verifique que as funções dadas formam um conjunto fundamental de soluções para a equação diferencial no intervalo indicado. Forme a solução geral em cada caso.
 - (a) y'' y' 12y = 0; e^{-3x} , e^{4x} , $(-\infty, \infty)$
 - (b) y'' 4y = 0; $\cosh 2x$, $\operatorname{senh} 2x$, $(-\infty, \infty)$
 - (c) y'' 2y' + 5y = 0; $e^x \cos 2x$, $e^x \sin 2x$, $(-\infty, \infty)$
 - (d) $4y'' 4y' + y = 0; e^{x/2}, xe^{x/2}, (-\infty, \infty)$
 - (e) $x^2y'' 6xy' + 12y = 0$; x^3 , x^4 , $(0, \infty)$
 - (f) $x^3y''' + 6x^2y'' + 4xy' 4y = 0, x, x^{-2}, x^{-2} \ln x, (0, \infty)$
- 4. Considere a equação diferencial de segunda ordem

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0,$$
 (4)

onde $a_2(x), a_1(x)$ e $a_0(x)$ são contínuas em um intervalo I e $a_2(x) \neq 0$ para

todo $x \in I$. Pelo teoream de existência e unicidade existe uma única solução y_1 para a equação satisfazendo as condições $y(x_0) = 1$ e $y'(x_0) = 0$, onde $x_0 \in I$. Da mesma forma, existe uma única solução y_2 para a equação que satisfaz as condições $y(x_0) = 0$ e $y'(x_0) = 1$. Mostre que y_1 e y_2 formam um conjunto fundamental de soluções para a equação diferencial no intervalo I.

- 5. Sejam y_1 e y_2 duas soluções para a equação 4.
 - (a) Se $W(y_1, y_2)$ é o wronskiano de y_1 e y_2 , mostre que

$$a_2(x)\frac{dW}{dx} + a_1(x)W = 0.$$

(b) Deduza a **fórmula de Abel**

$$W = ce^{-\int \frac{a_1(x)}{a_2(x)}} dx$$

onde c é uma constante.

(c) Usando uma forma alternativa da fórmula de Abel

$$W = ce^{-\int_{x_0}^x \frac{a_1(t)}{a_2(t)}} dt,$$

para $x_0 \in I$, mostre que

$$W(y_1, y_2) = W(x_0)e^{-\int_{x_0}^x \frac{a_1(t)}{a_2(t)}}dt.$$

(d) Mostre que, se $W(x_0)=0$, então W=0 para todo $x\in I$, enquanto que se $W(x_0)\neq 0$, então $W\neq 0$ para todo $x\in I$.

O método da redução de ordem

Um dos fatos mais interessantes no estudo de equações diferenciais lineares de segunda ordem é que podemos construir uma segunda solução a partir de uma solução conhecida. O método da redução de ordem é um método para converter uma equação diferencial linear para uma equação diferencial linear de ordem inferior e, em seguida construir a solução geral da equação original usando a solução geral da equação de ordem inferior.

Primeiramente, vamos considerar um exemplo bem simples. Depois generalizaremos. É fácil ver que a função $y_1(x) = e^x$ é uma solução da equação y'' - y = 0. Vamos tentar uma solução da forma $y = u(x)e^x$ então:

$$y' = ue^{x} + u'e^{x}$$
$$y'' = ue^{x} + 2u'e^{x} + u''e^{x}$$

e assim

$$y'' - y = 2u'e^x + u''e^x = e^x(u'' + 2u') = 0$$

Como $e^x \neq 0$, segue que u'' + 2u' = 0.

Fazendo a substituição w=u', a equação resultante será uma equação linear de primeira ordem em w, dada por

$$w' + 2w = 0.$$

Multiplicando esta equação pelo respectivo fator integrante, que nesse caso é e^{2x} , obtemos

$$e^{2x}w' + 2we^{2x} = 0$$

ou seja

$$\frac{d}{dx}(e^{2x}w) = 0$$

Segue daí que

$$w = c_1 e^{-2x}$$
 ou $u' = c_1 e^{-2x}$

Integrando obtemos

$$u = -\frac{c_1}{2}e^{-2x} + c_2$$

e assim

$$y = u(x)e^x = -\frac{c_1}{2}e^{-x} + c_2e^x.$$

Escolhendo $c_2=0$ e $c_1=-2$, obteemos a segunda solução $y_2=e^{-x}$. Como $W(e^x,e^{-x})=-2\neq 0$, para todo x, as soluções y_1 e y_2 são linearmente independentes em $(-\infty,\infty)$. Logo, as solução geral da equação é a dada por y, ou seja,

$$y = c_1 e^{-x} + c_2 e^x$$
.

Exemplo 17 Sabendo que $y_1 = x^3$ é uma solução para a equação $x^2y'' - 6y = 0$, use redução de ordem para encontrar uma segunda solução no intervalo $(0, \infty)$.

Solução: Defina $y = u(x)x^3$. Assim

$$y' = x^{3}u' + 3x^{2}u$$

$$y'' = x^{3}u'' + 6x^{2}u' + 6xu$$

$$x^{2}y'' - 6y = x^{2}(x^{3}u'' + 6x^{2}u' + 6xu) - 6ux^{3}$$

$$= x^{5}u'' + 6x^{4}u' = 0$$

de modo que u(x) deve ser uma solução para a equação

$$x^5u'' + 6x^4u' = 0$$
 ou $u'' + \frac{6}{x}u' = 0$.

Fazendo w = u', obtemos a equação linear de primeira ordem

$$w' + \frac{6}{x}w = 0;$$

o fator integrante para esta equação é dado por

$$e^{\int (6/x)dx} = e^{6 \ln x} = x^6.$$

Multiplicando a equação por x^6 obtemos

$$x^6w' + 6x^5w = 0$$

ou seja

$$d(x^6w) = 0$$

e daí

$$x^6 w = c_1$$
.

Segue que

$$w = u' = \frac{c_1}{x^6}$$

e portanto

$$u = -\frac{c_1}{5x^5} + c_2.$$

Assim

$$y = u(x)x^3 = -\frac{c_1}{5x^2} + c_2x^3.$$

Escolhendo $c_2 = 0$ e $c_1 = -5$, obtemos a segunda solução $y_2 = \frac{1}{x^2}$.

Caso geral

Dada a equação

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0. (5)$$

Vamos supor que as funções $a_i(x)$ são contínuas e que $a_2(x) \neq 0$, para todo x em um intervalo I. Dividindo a equação 5 por $a_2(x)$, esta toma a forma padrão

$$y'' + P(x)y' + Q(x)y = 0, (6)$$

onde P(x) e Q(x) são contínuas em algum intervalo I. Suponha que $y_1(x)$ é uma solução conhecida da equação 6 em I e que $y_1(x) \neq 0$, para todo $x \in I$. Definindo a nova solução como $u(x)y_1(x)$, segue que

$$y' = uy'_1 + y_1u'$$

$$y'' = uy''_1 + 2y'_1u' + y'_1u''$$

$$y'' + Py' + Qy = u(y''_1 + Py'_1 + Qy_1) + y_1u'' + (2y'_1 + Py_1)u' = 0$$

e como y_1 é solução resulta daí que

$$y_1u'' + (2y_1' + Py_1)u' = 0$$

e fazendo w = u' obtemos

$$y_1w' + (2y_1' + Py_1)w = 0, (7)$$

que é uma equação linear e separável. Aplicando esta última técnica obtemos

$$\begin{split} \frac{dw}{w} + 2\frac{y_1'}{y_1}dx + Pdx &= 0 \\ \ln|w| + 2\ln|y_1| &= -\int Pdx + c \\ \ln|wy_1^2| &= -\int Pdx + c \\ wy_1^2 &= c_1e^{-\int Pdx} \\ w &= u' = c_1\frac{e^{-\int Pdx}}{y_1^2}. \end{split}$$

Integrando novamente, obtemos

$$u = c_1 \int \frac{e^{-\int Pdx}}{y_1^2} dx + c_2,$$

e portanto

$$y = u(x)y_1(x) = c_1y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx + c_2y_1(x).$$

Escolendo $c_2=0$ e $c_1=1$, concluimos que uma segunda solução para a equação 6 é

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx$$
 (8)

Resta verificar que y_1 e y_2 são linearmente independentes. Para isto basta verificar que o wronskiano $W(y_1, y_2) \neq 0$; mas

$$W(y_1, y_2) = e^{-\int P(x)dx}$$
 (Verifique!!!)

que é diferente de zero em qualquer intervalo em que $y_1(x) \neq 0$.

Exemplo 18 Sabendo que a função $y_1 = x^2$ é uma solução para $x^2y'' - 3xy' + 4y = 0$, encontre a solução geral no intervalo $(0, \infty)$.

Solução: Dividindo por x^2 a equação pode ser escrita na forma

$$y'' - \frac{3}{x}y' + \frac{4}{x^2}y = 0,$$

onde identificamos $P(x) = -\frac{3}{x}$; daí

$$\int P(x)dx = -3 \int \frac{dx}{x} = -3 \ln|x| = \ln|x^{-3}|$$

assim uma segunda solução para a equação será dada por

$$y_2 = x^2 \int \frac{e^{-\int P(x)dx}}{x^4} dx$$
$$= x^2 \int \frac{e^{-\ln|x^{-3}|}}{x^4} dx$$
$$= x^2 \int \frac{x^3}{x^4} dx$$
$$= x^2 \int \frac{dx}{x}$$
$$= x^2 \ln x$$

Portanto, a solução geral da equação em $(0, \infty)$ será dada por

$$y = c_1 x^2 + c_2 x^2 \ln x.$$

Exercícios

1. Encontre uma segunda solução para as equações abaixo usando o método da redução de ordem ou a fórmula deduzida na aula.

(a)
$$x^2y'' + 3xy' - y = 0$$
, $x > 0$, $y_1(x) = x^{-1}$

Resp:
$$y_2 = \frac{\ln x}{x}$$

(b)
$$(x-1)y'' - xy' + y = 0, x > 1, y_1(x) = e^x$$

Resp:
$$y_2 = x$$

(c)
$$y'' + 5y' = 0$$
, $y_1 = 1$,

Resp:
$$y_2 = -\frac{1}{5}e^{-5x}$$

(d)
$$y'' - y' = 0, y_1 = 1,$$

Resp:
$$y_2 = e^x$$

(e)
$$y'' - 4y' + 4y = 0$$
, $y_1 = e^{2x}$,

Resp:
$$y_2 = xe^{2x}$$

(f)
$$y'' + 16y = 0$$
, $y_1 = \cos 4x$,

Resp:
$$y_2 = \sin 4x$$

(g)
$$y'' - y = 0$$
, $y_1 = \cosh x$,

Resp:
$$y_2 = \cosh x \left(\frac{\ln(1+e^x)+1}{1+e^x} \right)$$

(h)
$$9y'' - 12y' + 4y = 0$$
, $y_1 = e^{\frac{2}{3}x}$,

Resp:
$$y_2 = xe^{\frac{2}{3}x}$$

(i)
$$x^2y'' - 7xy' + 16y = 0, x > 0, y_1 = x^4,$$

Resp:
$$y_2 = x^4 \ln x$$

(j)
$$x^2y'' - 4xy' + 6y = 0$$
, $y_1 = x^2 + x^3$,

Resp:
$$y_2 = x^2$$

2 Equações lineares homogêneas com coeficientes constantes

Nesta seção consideraremos equações lineares homogêneas com coeficientes constantes, ou seja, equações da forma

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$

onde a_0, a_1, \dots, a_n são constantes arbitrárias. Nosso objetivo agora é obter as soluções gerais para tais equações. Começamos observaando que a solução geral para a equação linear homogênea de primeira ordem y' + ay = 0, onde a é uma constante arbitrária é dada por $y = ce^{-ax}$. Portanto, é natural procurar determinar se existem soluções exponenciais definidas em \mathbb{R} para a equação

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0.$$

O fato interessante aqui é que todas as soluções para esta equação são funções exponenciais ou construídas a partir de funções exponenciais. Consideraremos aqui somente o caso em que n=2.

2.1 Equações lineares homogêneas com coeficientes constantes de segunda ordem

Consideremos então a equação

$$ay'' + by' + cy = 0 (9)$$

onde a, b, c são constantes arbitrárias. Vamos supor que a função $y = e^{\lambda x}$ seja uma solução da equação (9); assim devemos ter

$$y' = \lambda e^{\lambda x}$$
$$y'' = \lambda^2 e^{\lambda x}$$

e substituindo na equação ficamos com

$$a(\lambda^2 e^{\lambda x}) + b(\lambda e^{\lambda x}) + c(e^{\lambda x}) = 0$$
$$e^{\lambda x}(a\lambda^2 + b\lambda + c) = 0$$

e, como $e^{\lambda x} \neq 0$ para todo $x \in \mathbb{R}$, concluímos que a função $y = e^{\lambda x}$ é uma solução da equação (9) se, e somente se, λ for uma raiz da equação quadrática

$$a\lambda^2 + b\lambda + c = 0 \tag{10}$$

Esta última equação é chamada equação auxiliar o u equação característica da equação diferencial (9). No que segue, para determinarmos os valores de λ , consideraremos três casos, a saber:

- Caso 1: as raízes da equação característica são reais e distintas;
- Caso 2: as raízes da equação característica são reais e iguais;
- Caso 3: as raízes da equação característica são complexas conjugadas.

2.1.1 Caso 1: raízes reais e distintas

Suponha que a equação característica $a\lambda^2 + b\lambda + c = 0$ possua duas raízes reais e disitntas, digamos, λ_1 e λ_2 . Pelo que vimos acima, as funções $y_1 = e^{\lambda_1 x}$ e $y_2 = e^{\lambda_2 x}$ são soluções da equação diferencial (9). É fácil ver que estas duas soluções são linearmente independentes pois

$$\frac{y_2}{y_2} = \frac{e^{\lambda_2 x}}{e^{\lambda_1 x}} = e^{(\lambda_2 - \lambda_1)x} \neq \text{constante.}$$

Logo, y_1 e y_2 formam um conjunto fundamental de soluções e, portanto, a solução geral da equação (9), neste caso, é dada por

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}.$$

Exemplo 19 Resolva o problema de valor inicial

$$y'' + y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 1$.

Solução: A equação característica é dada por $\lambda^2 + \lambda - 2 = 0$ e suas raízes são $\lambda_1 = 1$ e $\lambda_2 = -2$. Logo, a solução geral para a equação dada é

$$y = c_1 e^x + c_2 e^{-2x}.$$

Substituindo as condições iniciais, temos

$$\begin{cases} c_1 + c_2 &= 1 \\ c_1 - 2c_2 &= 1 \end{cases}$$

Resolvendo o sistema acima, obtemos $c_1 + 1$ e $c_2 = 0$. Logo, a solução do PVI é $y = e^x$.

Exemplo 20 Resolva a equação 2y'' - 5y' - 3y = 0.

Solução: A equação auxiliar é $2\lambda^2-5\lambda-3=0$ e suas raízes são $\lambda_1=-\frac{1}{2}$ e $\lambda_2=3$. Logo, a solução geral da equação dada é

 $y = c_1 e^{-x/2} + c_2 e^{3x}.$

2.1.2 Caso 2: raízes reais e iguais

Suponha agora que a equação característica tenha duas raízes iguais $\lambda_1 = \lambda_2$. Neste caso, uma das soluções será $y_1 = e^{\lambda_1 x}$. Para obter a outra solução utilizamos o método da redução de ordem discutido anteriormente. Observamos, entretanto, que antes de aplicarmos a fórmula (ou o método em si) precisamos colocar a equação original na forma padrão:

$$y'' + \frac{b}{a}y' + \frac{c}{a}y = 0,$$

17

e além disso, devemos ter $b^2-4ac=0$, logo $\lambda_1=-\frac{b}{2a}$ e daí $-\frac{b}{a}=2\lambda_1$. Assim, aplicando a fórmula para obter uma segunda solução para equação temos

$$y_2 = y_1^2 \int \frac{e^{-\int (b/a)dx}}{y_1^2} dx$$

$$= e^{\lambda_1 x} \int \frac{e^{-(b/a)x}}{e^{2\lambda_1 x}} dx$$

$$= e^{\lambda_1 x} \int \frac{e^{2\lambda_1 x}}{e^{2\lambda_1 x}} dx$$

$$= e^{\lambda_1 x} \int dx$$

$$= xe^{\lambda_1 x}$$

Logo, a solução geral para a equação é dada por

$$y = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}.$$

Exemplo 21 Resolva a equação diferencial y'' - 10y' + 25 = 0

Solução: A equação característica é dada por $\lambda^2 - 10\lambda + 25 = 0$. Neste caso temos $\lambda_1 = \lambda_2 = 5$. Logo, uma solução é dada por $y_1 = e^{5x}$. Pelo visto acima a outra solução será $y_2 = xe^{5x}$. Assim, a solução geral da equação dada é

$$y = c_1 e^{5x} + c_2 x e^{5x}.$$

2.1.3 Caso 3: raízes complexas

Consideraremos agora o caso em que a equação característica tem raízes complexas conjugadas. Nesre caso as raízes podem ser escritas na forma $\lambda_1 = \alpha + i\beta$ e $\lambda_2 = \alpha - i\beta$, onde α e $\beta \neq 0$ são números reais e $i^2 = -1$. Formalmente não há diferença entre esse caso e o caso 1, e assim podemos escrever a solução geral da equação como sendo

$$y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}.$$

Porém, na prática, é preferível trabalhar com soluções reais ao invés de exponenciais complexas. Para fazer esta redução utilizaremos o que chamamos de fórmula de Euler

$$e^{i\theta} = \cos\theta + i\sin\theta$$

onde θ é qualquer número real. Segue desta fórmula que:

$$e^{i\beta x} = \cos \beta x + i \sin \beta x$$
 e $e^{-i\beta x} = \cos \beta x - i \sin \beta x$

onde usamos o fato de $\cos(-\beta x) = \cos \beta x$ e $\sin(-\beta x) = -\sin \beta x$. Assim, podemos escrever

$$e^{(\alpha+i\beta)x} = e^{\alpha x + i\beta x}$$

$$= e^{\alpha x} e^{i\beta x}$$

$$= e^{\alpha x} (\cos \beta x + i \sin \beta x)$$

e da mesma forma

$$e^{(\alpha-i\beta)x} = e^{\alpha x}(\cos\beta x - i\sin\beta x)$$

Agora, observe que

$$e^{i\beta x} + e^{-i\beta x} = 2\cos\beta x$$
 e $e^{i\beta x} - e^{-i\beta x} = 2i\sin\beta x$.

Como $y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}$ é uma solução para qualquer escolha de C_1 e C_2 , fazendo primeiro $C_1 = C - 2 = 1$ e em seguida $C_1 = 1$ e $C_2 = -1$, obtemos, nesta ordem as duas soluções seguintes

$$y_1 = e^{(\alpha+i\beta)x} + e^{(\alpha-i\beta)x}$$
 e $y_2 = e^{(\alpha+i\beta)x} - e^{(\alpha-i\beta)x}$

Mas

$$y_1 = e^{\alpha x} (e^{i\beta x} + e^{-i\beta x})$$

$$= e^{\alpha x} (\cos \beta x + i \sin \beta x + \cos \beta x - i \sin \beta x)$$

$$= 2e^{\alpha x} \cos \beta x$$

е

$$y_2 = e^{\alpha x} (e^{i\beta x} - e^{-i\beta x})$$

$$= e^{\alpha x} (\cos \beta x + i \sin \beta x - (\cos \beta x - i \sin \beta x))$$

$$= 2ie^{\alpha x} \sin \beta x$$

Como $y_1=2e^{\alpha x}\cos\beta x$ e $y_2=2ie^{\alpha x}\sin\beta x$ são soluções da equação diferencial, segue que $e^{\alpha x}\cos\beta x$ e $e^{\alpha x}\sin\beta x$ também são soluções. Ainda, como já vimos anteriormente, temos que $W(e^{\alpha x}\cos\beta x,e^{\alpha x}\sin\beta x)=\beta e^{2\alpha x}\neq 0$, pois $\beta\neq 0$. Logo, podemos afirmar que essas duas funções formam um conjunto fundamental de soluções para a equação diferencial em $\mathbb R$. Assim, a solução geral da equação será dada por

$$y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x,$$

ou ainda

$$y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x).$$

Exemplo 22 Resolva a equação y'' + y' + y = 0.

Solução: A equação característica é dada por $\lambda^2 + \lambda + 1 = 0$ e tem como raízes os números complexos $\lambda_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ e $\lambda_2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$. Logo, a solução geral da equação diferencial dada é

$$y = c_1 e^{-x/2} \left(c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right)$$

Exemplo 23

As duas equações

$$y'' + k^2 y = 0 (11)$$

$$y'' - k^2 y = 0 (12)$$

são encontradas frequentemente no estudo de matemática aplicada. Para a primeira equação diferencial, a equação auxiliar $\lambda^2+k^2=0$ tem raízes $\lambda_1=ki$ e $\lambda_2=-ki$. Segue que a solução geral para a equação (11) é dada por

$$y = c_1 \cos kx + c_2 \sin kx. \tag{13}$$

A equação diferencial (12) tem equação auxiliar dada por $\lambda^2 - k^2 = 0$, cujas raízes são $\lambda_1 = K$ e $\lambda_2 = -k$. Daí, a solução geral será dada por

$$y = c_1 e^{kx} + c_2 e^{-kx}. (14)$$

Observe que escolhendo $c_1 = c_2 = \frac{1}{2}$ em (14), obtemos que

$$y = \frac{e^{kx} + e^{-kx}}{2} = \cosh kx$$

também é uma solução para a equação (12). Ainda, se tomamos $c_1 = 1/2$ e $c_2 = -1/2$, então

$$y = \frac{e^{kx} - e^{-kx}}{2} = \operatorname{senh} x$$

também é uma solução para a equação (12). Como $\cosh kx$ e senh kx são linearmente independedentes em qualquer intervalo da reta real, segue que elas formam um conjunto fundamental de soluções. Logo, uma forma alternativa para a solução geral de (12) é

$$y = c_1 \cosh kx + c_2 \sinh kx$$
.

Equações de ordem superior

No caso geral, para resolver uma equação diferencial de ordem n

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$$
(15)

homogênea e de coeficientes constantes, procedemos como no caso n=2. Devemos, neste caso, resolver uma equação polinomial de grau n, a saber,

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_2 \lambda^2 + a_1 \lambda + a_0 = 0$$
(16)

Se todas as raízes dessa equação forem reais e distintas, digamos, $\lambda_1, \lambda_2, \dots, \lambda_n$, então a solução geral para a equação (15) será dada por

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + \dots + c_n e^{\lambda_n x}$$

$$\tag{17}$$

Os casos 2 e 3 são mais trabalhososo porque as raízes de uma equação auxiliar de graun n>2 podem ocorrer com várias combinações. Por exemplo, uma equação de grau cinco pode ter cinco raízes reais e distintas, ou três raízes reais e distintas e duas complexas (conjugadas), ou uma raiz real e quatro emplexas, ou cinco raízes reais e iguais, ou cinco raízes reais com duas delas sendo

iguais, etc. O que sabemos no entanto (e é possíovel de ser provado) é que quando uma raiz λ_1 tem multiplicidade k (isto é, k raízes da equação (16) são iguais a λ_1) então as funções

$$e^{\lambda_1 x}, x e^{\lambda_1 x}, x^2 e^{\lambda_1 x}, \cdots, x^{k-1} e^{\lambda_1 x}$$

são k soluções linearmente independentes da equação (15) e a solução geral deverá conter a combinação linear

 $c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x} + c_3 x^2 e^{\lambda_1 x} + \dots + c_k x^{k-1} e^{\lambda_1 x}.$

Destacamos, por último, que quando os coeficientes da equação (16) são números reais, as raízes complexas que essa equação porventura venha a ter sempre aparecem em pares conjugados. Por exemplo, uma tal equação polinomial de grau 3 pode ter no máximo duas raízes complexas. Finalmente, talvez a maior dificuldade na resolução de equações diferenciais homogêneas com coeficientes constantes seja encontrar as raízes das respectivas equações auxiliares. Vejamos alguns exemplos.

Exemplo 24 Resolver a equação y''' + 3y'' - 4y = 0.

Solução: A equação auxiliar nesse caso é $\lambda^3 + 3\lambda^2 - 4 = 0$. Por inspeção, vê-se claramente que $\lambda_1 = 1$ é uma raiz. Dividindo então $\lambda^3 + 3\lambda^2 - 4$ por $\lambda - 1$, encontramos

$$\lambda^{3} + 3\lambda^{2} - 4 = (\lambda - 1)(\lambda^{2} + 4\lambda + 4) = (\lambda - 1)(\lambda + 2)^{2},$$

logo as demais raízes são $\lambda_2 = \lambda_3 = -2$. A solução geral, portanto, será dada por

$$y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}.$$

Exemplo 25 Resolva y''' + 5y'' + 10y' - 4y = 0

Solução: A equação auxiliar nesse caso é dada por $\lambda^3 + 5\lambda^2 + 10\lambda - 4 = 0$. Você deverá verificar que $\lambda_1 = \frac{1}{3}$ é uma raiz para essa equação. Dividindo $\lambda^3 + 5\lambda^2 + 10\lambda - 4$ por $\lambda - 1/2$ obtemos

$$\lambda^{3} + 5\lambda^{2} + 10\lambda - 4 = (\lambda - 1/3)(3\lambda^{2} + 6\lambda + 12)$$

e portanto a equação auxiliar pode ser escrita na forma

$$(\lambda - 1/3)(3\lambda^2 + 6\lambda + 12) = 0$$

ou

$$(3\lambda - 1)(\lambda^2 + 2\lambda + 4) = 0$$

Resolvendo a equação $\lambda^2 + 2\lambda + 4 = 0$, encontramos as raízes complexas $\lambda_1 = -1 + \sqrt{3}i$ e $\lambda_2 = -1 - \sqrt{3}i$. Logo, a solução geral para a equação diferencial dada será

$$y = c_1 e^{x/3} + e^{-x} (c_2 \cos \sqrt{3} x + c_3 \sin \sqrt{3} x)$$

Exemplo 26 Resolva $\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = 0$

Solução: A equação auxiliar é dada por $\lambda^4 + 2\lambda^2 + 1 = 0$ e a mesma é equivalente a

$$(\lambda^2 + 1)^2 = 0.$$

Logo, as raízes características são $\lambda_1 = \lambda_2 = i$ e $\lambda_3 = \lambda_4 = -i$. A solução geral nesse caso será dada por

$$y = C_1 e^{ix} + C_2 e^{-ix} + C_3 x e^{ix} + C_4 x e^{-ix}.$$

Usando a fórmula de Euler e fazendo uma escolha apropriada de constantes o termo C_1e^{ix} + C_2e^{-ix} pode ser reescrito como

$$c_1 \cos x + c_2 \sin x$$
.

Da mesma forma, o termo $C_3xe^{ix}+C_4xe^{-ix}$ pode ser reescrito como

$$c_3x\cos x + c_4x\sin x$$
.

Logo, a solução geral é

$$y = c_1 \cos x + c_2 \sin x + c_3 x \cos x + c_4 x \sin x$$
.

Exercícios

- 1. Encontre a solução geral para cada equação diferencial a seguir.
 - (a) 4y'' + y' = 0,
 - (b) 2y'' 5y' = 0
 - (c) y'' 36y = 0,
 - (d) y'' 8y = 0
 - (e) y'' + 9y = 0.
 - (f) 3y'' + y = 0
 - (g) y'' y' 6y = 0,
 - (h) y'' 3y' + 2y = 0
 - (i) y'' + 8y' + 16y = 0,

- (i) y'' + 10y' + 25y = 0
- (k) y'' + 3y' 5y = 0,
- (1) y'' + 4y' y = 0
- (m) 12y'' 5y' 2y = 0,
- (n) 8y'' + 2y' y = 0
- (o) y'' 4y' + 5y = 0.
- (p) 2y'' 3y' + 4y = 0
- (q) 3y'' + 2y' + y = 0,
- (r) 2y'' + 2y' + y = 0
- 2. Resolva a equação diferencial dada sujeita às condições iniciais indicadas.

 - (a) y'' + 16y = 0, y(0) = 2, y'(0) = -2(b) y'' y = 0, y(0) = 1, y'(0) = 1(c) y'' y = 0, y(0) = 5, y'(0) = 10(d) y'' + y' + 2y = 0, y(0) = 5, y'(0) = 10

- (c) y'' + 6y' + 5y = 0, y(0) = 0, y'(0) = 3 (h) 4y'' 4y' 3y = 0, y(0) = 1, y'(0) = 5
- (d) y'' 8y' + 17y = 0, y(0) = 4, y'(0) = -1 (i) y'' 3y' + 2y = 0, y(1) = 0, y'(1) = 1
- (e) 2y'' 2y' + y = 0, y(0) = -1, y'(0) = 0 (j) y'' + y = 0, $y(\pi/3) = 0$, $y'(\pi/3) = 2$
 - 22

3. Resolva as equações diferenciais sujeitas às condições de contorno indicadas:

(a)
$$y'' - 10y' + 25y = 0$$
, $y(0) = 1$, $y(1) = 0$ (c) $y'' + y = 0$, $y'(0) = 0$, $y'(\pi/2) = 2$

(c)
$$y'' + y = 0$$
, $y'(0) = 0$, $y'(\pi/2) = 2$

(b)
$$y'' + 4y = 0$$
, $y(0) = 0$, $y(\pi) = 0$

(d)
$$y'' - y = 0$$
, $y(0) = 1$, $y'(1) = 0$

Respostas

1. (a)
$$y = c_1 + c_2 e^{-x/4}$$

(c)
$$y = c_1 e^{-6x} + c_2 e^{6x}$$

(e)
$$y = c_1 \cos 3x + c_2 \sin 3x$$

(g)
$$y = c_1 e^{3x} + c_2 e^{-2x}$$

(i)
$$y = c_1 e^{-4x} + c_2 x e^{-4x}$$

(k)
$$y = c_1 e^{(-3+\sqrt{29})x/2} + c_2 e^{(-3-\sqrt{29})x/2}$$

(m)
$$y = c_1 e^{2x/3} + c_2 e^{-x/4}$$

(o)
$$y = e^{2x}(c_1 \cos x + c_2 \sin x)$$

(p)
$$y = e^{-x/3} \left(c_1 \cos \frac{\sqrt{2}}{3} x + c_2 \sin \frac{\sqrt{2}}{3} x \right)$$
 (c) $y = -2 \cos x$

2. (a)
$$y = 2\cos 4x - \frac{1}{2}\sin 4x$$

(c)
$$y = -\frac{3}{4}e^{-5x} + \frac{3}{4}e^{-x}$$

(e)
$$y = -e^{-x/2}\cos(x/2) + e^{x/2}\sin(x/2)$$

(g)
$$y = 0$$

(i)
$$y = e^{2(x-1)} - e^{x-1}$$

3. (a)
$$y = e^{5x} - xe^{5x}$$

(c)
$$y = -2\cos x$$

3 Equações lineares não homogêneas

Nessa seção focaremos nossa atenção na definição de uma solução geral para uma equação linear não homogênea. Uma função y_p , independente de parâmetros, que satisfaça a equação

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$
(18)

é chamada de solução particular para a equação.

Exemplo 27

- (a) $y_p = 3$ é uma solução particular para a equação y'' + 9y = 27. (Verifique!!!)
- (b) $y_p = x^3 x$ é uma solução particular para a equação $x^2y'' + 2xy' 8y = 4x^3 + 6x$. (Verifique!!!)

Dada uma equação não homogêna Os dois teoremas seguintes caracterizam a solução geral para uma equação diferencial linear não homogênea.

Teorema 7 Seja y_p qualquer solução para a equação não homogênea (18) e sejam y_1, y_2, \cdots, y_n soluções para a equação diferencial linear homogênea associada em um intervalo I. Então

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n + y_p$$

é também uma solução para a equação não homogênea no intervalo I para quaisquer constantes c_1, c_2, \cdots, c_n .

Prova. Vamos provar o teorema para o caso n=2. Considere a equação

$$y'' + a_1 y' + a_0 y = g(x)$$

e seja $y = c_1 y_1 + c_2 y_2 + y_p$.

Podemos agora provar o análogo ao teorema 5 para as equações não homogêneas.

Teorema 8 Seja y_p uma solução para a equação diferencial linear não homogêna (18) em um intervalo I e seja $\{y_1, y_2, \cdots, y_n\}$ um conjunto fundamental de soluções para a equação homogênea associada no intervalo I. Então, para qualquer solução Y(x) de (18), existem constantes C_1, C_2, \cdots, C_n tais que

$$Y(x) = C_1 y_1 + C_2 Y_2 + \dots + C_n y_n + y_n.$$

Prova. Provaremos o caso n=2. Suponha que Y e y_p sejam soluções para a equação

$$a_2(x)y'' + a_0(x)y' + a_0y = g(x).$$

Seja u a função definida por $u(x) = Y(x) - y_p(x)$. Então

$$a_2(x)u'' + a_0xu' + a_0u = a_2(x)[Y'' - y_p''] + a_1(x)[Y' - y_p'] + a_0(x)[Y - y_p]$$

$$= a_2(x)Y'' + a_1(x)Y' + a_0(x)Y - [a_2(x)y_p'' + a_1(x)y' + a_0y_p]$$

$$= q(x) - q(x) = 0$$

Isto mostra que u(x) é uma solução da equação homogênea associada, logo, de acordo com o teorema 5, existem constantres c_1 e c_2 tais que

$$u(x) = c_1 y_1(x) + c_2 y_2(x)$$

e daí

$$Y(x) - y_p(x) = c_1 y_1(x) + c_2 y_2(x)$$

ou

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x).$$

Assim podemos definir:

Definição 5 (Solução geral - Equações não homogêneas) $Seja\ y_p\ uma\ solução\ para\ a$ equação diferencial linear não homogênea (18) em um intervalo $I\ e\ seja$

$$y_c = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

a solução geral no intervalo I para a equação diferencial linear homogênea associada. A **solução** geral para a equação não homogênea no intervalo I é definida por

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x) = y_c(x) + y_p(x).$$

Na definição acima a combinação linear

$$y_c(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

é chamada de solução complementar e $y_p(x)$ solução particular.