Computability and Complexity

Lecture 12

More NP-complete Problems

given by Jiri Srba

Summary of What We Know

Definition (Polynomial Time Reducibility)

We write $A \leq_P B$ iff there is a polynomial time computable function f such that for any input w we have $w \in A$ iff $f(w) \in B$.

Summary of What We Know

Definition (Polynomial Time Reducibility)

We write $A \leq_P B$ iff there is a polynomial time computable function f such that for any input w we have $w \in A$ iff $f(w) \in B$.

Definition (NP-Completeness)

A language B is NP-complete iff $B \in NP$ (containment in NP) and for every $A \in NP$ we have $A \leq_P B$ (NP-hardness).

Summary of What We Know

Definition (Polynomial Time Reducibility)

We write $A \leq_P B$ iff there is a polynomial time computable function f such that for any input w we have $w \in A$ iff $f(w) \in B$.

Definition (NP-Completeness)

A language B is NP-complete iff $B \in NP$ (containment in NP) and for every $A \in NP$ we have $A \leq_P B$ (NP-hardness).

Facts: SAT and CNF-SAT are NP-complete (last lecture).

Theorem

If A is NP-complete, $A \leq_P B$, and $B \in \text{NP}$, then B is NP-complete.

NP-Completeness of 3SAT

Boolean Formula in cnf

 $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ where every C_i , $1 \leq i \leq k$ is a disjunction of number of literals

Boolean Formula in 3-cnf

 $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ where every C_i , $1 \le i \le k$ is a disjunction of exactly 3 literals

NP-Completeness of 3SAT

Boolean Formula in cnf

 $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ where every C_i , $1 \leq i \leq k$ is a disjunction of number of literals

Boolean Formula in 3-cnf

 $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ where every C_i , $1 \le i \le k$ is a disjunction of exactly 3 literals

CNF-SAT $\stackrel{\mathrm{def}}{=} \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula in cnf }$ 3SAT $\stackrel{\mathrm{def}}{=} \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula in 3-cnf } \}$

NP-Completeness of 3SAT

Boolean Formula in cnf

 $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ where every C_i , $1 \leq i \leq k$ is a disjunction of number of literals

Boolean Formula in 3-cnf

 $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ where every C_i , $1 \le i \le k$ is a disjunction of exactly 3 literals

CNF-SAT $\stackrel{\text{def}}{=} \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula in cnf } \}$ $3SAT \stackrel{\text{def}}{=} \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula in 3-cnf } \}$

Theorem

CNF- $SAT \leq_P 3SAT$

Corollary

3SAT in NP-complete.

- Assume a given formula $\phi = C_1 \wedge C_2 \wedge ... \wedge C_k$ in cnf.
- We construct in poly-time a formula $\phi' = C'_1 \wedge C'_2 \wedge \ldots \wedge C'_k$ in 3-cnf such that ϕ is satisfiable if and only if ϕ' is satisfiable.

- Assume a given formula $\phi = C_1 \wedge C_2 \wedge ... \wedge C_k$ in cnf.
- We construct in poly-time a formula $\phi' = C'_1 \wedge C'_2 \wedge \ldots \wedge C'_k$ in 3-cnf such that ϕ is satisfiable if and only if ϕ' is satisfiable.
- Every clause $C_i =$

$$(\ell_1 \vee \ell_2 \vee \ldots \vee \ell_m)$$

is transformed into conjunction of clauses C'_i =

$$\begin{array}{l} (\ell_1 \vee \ell_2 \vee z_1) \wedge (\overline{z_1} \vee \ell_3 \vee z_2) \wedge (\overline{z_2} \vee \ell_4 \vee z_3) \wedge (\overline{z_3} \vee \ell_5 \vee z_4) \wedge \dots \\ \dots (\overline{z_{m-3}} \vee \ell_{m-1} \vee \ell_m) \end{array}$$

- Assume a given formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in cnf.
- We construct in poly-time a formula $\phi' = C'_1 \wedge C'_2 \wedge \ldots \wedge C'_k$ in 3-cnf such that ϕ is satisfiable if and only if ϕ' is satisfiable.
- Every clause $C_i =$

$$(\ell_1 \vee \ell_2 \vee \ldots \vee \ell_m)$$

is transformed into conjunction of clauses C'_i =

$$\begin{array}{l} (\ell_1 \vee \ell_2 \vee \underline{z_1}) \wedge (\overline{\underline{z_1}} \vee \ell_3 \vee z_2) \wedge (\overline{z_2} \vee \ell_4 \vee z_3) \wedge (\overline{z_3} \vee \ell_5 \vee z_4) \wedge \dots \\ \dots (\overline{z_{m-3}} \vee \ell_{m-1} \vee \ell_m) \end{array}$$

- Assume a given formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in cnf.
- We construct in poly-time a formula $\phi' = C'_1 \wedge C'_2 \wedge \ldots \wedge C'_k$ in 3-cnf such that ϕ is satisfiable if and only if ϕ' is satisfiable.
- Every clause $C_i =$

$$(\ell_1 \vee \ell_2 \vee \ldots \vee \ell_m)$$

is transformed into conjunction of clauses C'_i =

$$\begin{array}{l} (\ell_1 \vee \ell_2 \vee z_1) \wedge (\overline{z_1} \vee \ell_3 \vee z_2) \wedge (\overline{z_2} \vee \ell_4 \vee z_3) \wedge (\overline{z_3} \vee \ell_5 \vee z_4) \wedge \dots \\ \dots (\overline{z_{m-3}} \vee \ell_{m-1} \vee \ell_m) \end{array}$$

- Assume a given formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in cnf.
- We construct in poly-time a formula $\phi' = C'_1 \wedge C'_2 \wedge \ldots \wedge C'_k$ in 3-cnf such that ϕ is satisfiable if and only if ϕ' is satisfiable.
- Every clause $C_i =$

$$(\ell_1 \vee \ell_2 \vee \ldots \vee \ell_m)$$

is transformed into conjunction of clauses C'_i =

$$\begin{array}{l} \left(\ell_1 \vee \ell_2 \vee z_1\right) \wedge \left(\overline{z_1} \vee \ell_3 \vee z_2\right) \wedge \left(\overline{z_2} \vee \ell_4 \vee \underline{z_3}\right) \wedge \left(\overline{\underline{z_3}} \vee \ell_5 \vee z_4\right) \wedge \dots \\ \dots \left(\overline{z_{m-3}} \vee \ell_{m-1} \vee \ell_m\right) \end{array}$$

- Assume a given formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in cnf.
- We construct in poly-time a formula $\phi' = C'_1 \wedge C'_2 \wedge \ldots \wedge C'_k$ in 3-cnf such that ϕ is satisfiable if and only if ϕ' is satisfiable.
- Every clause $C_i =$

$$(\ell_1 \vee \ell_2 \vee \ldots \vee \ell_m)$$

is transformed into conjunction of clauses C'_i =

$$\begin{array}{l} (\ell_1 \vee \ell_2 \vee z_1) \wedge (\overline{z_1} \vee \ell_3 \vee z_2) \wedge (\overline{z_2} \vee \ell_4 \vee z_3) \wedge (\overline{z_3} \vee \ell_5 \vee z_4) \wedge \dots \\ \dots (\overline{z_{m-3}} \vee \ell_{m-1} \vee \ell_m) \end{array}$$

where z_1, \ldots, z_{m-3} are new (fresh) variables.

• Clearly, C_i is satisfiable iff C_i' is satisfiable, the formula ϕ' is in 3-cnf (if fewer variables than 3 in a clause then repeat some literal), and the reduction works in polynomial time.

NP-Completeness of *CLIQUE*

Theorem

CLIQUE is NP-complete.

Proof: We already know (from previous lectures) that

- CLIQUE is in NP, and
- $3SAT \leq_P CLIQUE$.

Because 3SAT is NP-complete, we conclude that CLIQUE is NP-complete too.

NP-Completeness of VERTEX-COVER

Vertex-Cover Problem:

Given an undirected graph G and a number k, is there a subset of nodes of size k s.t. every edge touches at least one of these nodes?

We call such a subset a k-node vertex cover.

Definition of the Language VERTEX-COVER

 $VERTEX-COVER \stackrel{\text{def}}{=} \{\langle G, k \rangle \mid G \text{ is a graph with } k\text{-vertex cover}\}$

NP-Completeness of VERTEX-COVER

Vertex-Cover Problem:

Given an undirected graph G and a number k, is there a subset of nodes of size k s.t. every edge touches at least one of these nodes?

We call such a subset a k-node vertex cover.

Definition of the Language VERTEX-COVER

 $VERTEX-COVER \stackrel{\text{def}}{=} \{\langle G, k \rangle \mid G \text{ is a graph with } k\text{-vertex cover}\}$

Clearly, VERTEX-COVER is in NP.

Theorem

 $3SAT \leq_P VERTEX-COVER$

Corollary

VERTEX-COVER is NP-complete.

Proof: $3SAT \leq_P VERTEX-COVER$

- Let ϕ be a 3-cnf formula with m variables and p clauses.
- We construct in poly-time an instance $\langle G, k \rangle$ of VERTEX-COVER where k = m + 2p and G is given by:
- For every variable x in ϕ add two nodes labelled with x and \overline{x} and connect them by an edge (variable gadget).
- For every clause $(\ell_1 \vee \ell_2 \vee \ell_3)$ in ϕ add three nodes labelled with ℓ_1 , ℓ_2 and ℓ_3 and connect them by 3 edges so that they form a triangle (clause gadget).
- Add an edge between any two identically labelled nodes, one from a variable gadget and one from a clause gadget.
- Note that the reduction works in polynomial time and that ϕ is satisfiable iff G has a k-vertex cover.

NP-Completeness of HAMPATH

Theorem

 $3SAT \leq_P HAMPATH$

Corollary

HAMPATH is NP-complete.

NP-Completeness of HAMPATH

$\mathsf{Theorem}$

 $3SAT \leq_P HAMPATH$

Corollary

HAMPATH is NP-complete.

Proof (3SAT \leq_P HAMPATH): For a given 3-cnf formula

$$\phi = \underbrace{\left(a_1 \vee b_1 \vee c_1\right)}_{C_1} \wedge \underbrace{\left(a_2 \vee b_2 \vee c_2\right)}_{C_2} \wedge \ldots \wedge \underbrace{\left(a_k \vee b_k \vee c_k\right)}_{C_k}$$

over the variables x_1, x_2, \ldots, x_m construct in poly-time a digraph G and nodes s and t such that

 ϕ is satisfiable if and only if G has a Hamiltonian path from s to t.

Proof: $3SAT \leq_P HAMPATH$

NP-Completeness of UHAMPATH

Definition

 $\begin{array}{l} \textit{UHAMPATH} \stackrel{\mathrm{def}}{=} \{\langle \textit{G}, \textit{s}, \textit{t} \rangle \mid \\ \textit{G} \text{ is undirected graph with a Hamiltonian path from } \textit{s} \text{ to } \textit{t} \ \} \end{array}$

Theorem

UHAMPATH is NP-complete.

NP-Completeness of UHAMPATH

Definition

 $\begin{array}{l} \textit{UHAMPATH} \stackrel{\text{def}}{=} \{ \langle \textit{G}, \textit{s}, \textit{t} \rangle \mid \\ \textit{G} \text{ is undirected graph with a Hamiltonian path from } \textit{s} \text{ to } \textit{t} \end{array} \}$

Theorem

UHAMPATH is NP-complete.

Proof: By poly-time reduction from *HAMPATH*. In the reduction from a directed graph to an undirected one, we replace every node with an undirected path of length 2:

NP-Completeness of SUBSET-SUM

$$\begin{array}{l} \textit{SUBSET-SUM} \stackrel{\text{def}}{=} \left\{ \left\langle S, t \right\rangle \mid \\ S = \left\{ x_1, \dots, x_k \right\} \subseteq \mathbb{N} \text{ is a multiset, } t \in \mathbb{N}, \\ \text{and there is a multiset } X \subseteq S \text{ s.t. } \sum X = t \right. \end{array}$$

Theorem

SUBSET-SUM is NP-complete.

NP-Completeness of SUBSET-SUM

SUBSET-SUM
$$\stackrel{\text{def}}{=} \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\} \subseteq \mathbb{N} \text{ is a multiset, } t \in \mathbb{N},$$
 and there is a multiset $X \subseteq S$ s.t. $\sum X = t \}$

Theorem

SUBSET-SUM is NP-complete.

Proof: By poly-time reduction from *3SAT*. For a given 3-cnf formula

$$\phi = \underbrace{\left(a_1 \vee b_1 \vee c_1\right)}_{C_1} \wedge \underbrace{\left(a_2 \vee b_2 \vee c_2\right)}_{C_2} \wedge \ldots \wedge \underbrace{\left(a_k \vee b_k \vee c_k\right)}_{C_k}$$

over the variables x_1, x_2, \ldots, x_m construct in poly-time a set of numbers S and a number t such that

 ϕ is satisfiable iff from S we can select numbers that add up to t.

Proof: $3SAT \leq_P SUBSET-SUM$

						C_1	C_2	 C_k
<i>x</i> ₁	1	0	0	0	 0	1	0	 0
$\overline{x_1}$	1	0	0	0	 0	0	0	 1
<i>x</i> ₂		1	0	0	 0	0	0	 1
$\frac{x_2}{\overline{x_2}}$		1	0	0	 0	1	0	 0
<i>X</i> 3			1	0	 0	0	0	 0
X 3			1	0	 0	1	0	 0
<i>X</i> 3 : <i>X</i> _m					 1	0	0	 0
$\overline{x_m}$					 1	0	1	 0
						1	0	 0
						1	0	 0
							1	 0
							1	 Ö
								i
								1
t	1	1	1	1	 1	3	3	 3

Summary

Cook-Levin Theorem: SAT is NP-complete.

- Because poly-time reducibility (\leq_P) is transitive, all languages below are NP-hard.
- All languages below belong to NP, so they are NP-complete.

