```
In [4]: # plot the data
        plt.gray()
        for i in range(4):
            plt.matshow(digits.images[i])
```

<matplotlib.figure.Figure at 0x2378ed54048>

Out[5]:

	0	1	2	3	4	5	6	7	8	9	 54	55	56	57	58	59	60	61	6
0	0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	6.0	13.0	10.0	0.0	0.
1	0.0	0.0	0.0	12.0	13.0	5.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	11.0	16.0	10.0	0.
2	0.0	0.0	0.0	4.0	15.0	12.0	0.0	0.0	0.0	0.0	 5.0	0.0	0.0	0.0	0.0	3.0	11.0	16.0	9.
3	0.0	0.0	7.0	15.0	13.0	1.0	0.0	0.0	0.0	8.0	 9.0	0.0	0.0	0.0	7.0	13.0	13.0	9.0	0.
4	0.0	0.0	0.0	1.0	11.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	2.0	16.0	4.0	0.

5 rows × 64 columns

```
In [7]: df[0:12]
```

Out[7]:

	0	1	2	3	4	5	6	7	8	9	 55	56	57	58	59	60	61	6
0	0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	6.0	13.0	10.0	0.0	0.
1	0.0	0.0	0.0	12.0	13.0	5.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	11.0	16.0	10.0	0.
2	0.0	0.0	0.0	4.0	15.0	12.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	3.0	11.0	16.0	9.
3	0.0	0.0	7.0	15.0	13.0	1.0	0.0	0.0	0.0	8.0	 0.0	0.0	0.0	7.0	13.0	13.0	9.0	0.
4	0.0	0.0	0.0	1.0	11.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	2.0	16.0	4.0	0.
5	0.0	0.0	12.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	9.0	16.0	16.0	10.0	0.
6	0.0	0.0	0.0	12.0	13.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	9.0	15.0	11.0	3.
7	0.0	0.0	7.0	8.0	13.0	16.0	15.0	1.0	0.0	0.0	 0.0	0.0	0.0	13.0	5.0	0.0	0.0	0.
8	0.0	0.0	9.0	14.0	8.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	11.0	16.0	15.0	11.0	1.
9	0.0	0.0	11.0	12.0	0.0	0.0	0.0	0.0	0.0	2.0	 0.0	0.0	0.0	9.0	12.0	13.0	3.0	0.
10	0.0	0.0	1.0	9.0	15.0	11.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	10.0	13.0	3.0	0.
11	0.0	0.0	0.0	0.0	14.0	13.0	1.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	1.0	13.0	16.0	1.

12 rows × 65 columns

```
In [9]: #Train and the model and prediction

X = df.drop('target',axis='columns')
y = df.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
```

```
In [10]: # Import Random forest classificer from sklearn

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=20)
model.fit(X_train, y_train)
```

```
In [11]: # predict the accuracy of the model
          model.score(X_test, y_test)
Out[11]: 0.96944444444444444
In [12]: y_predicted = model.predict(X_test)
In [13]: # Evaluate the confusion matrix
          from sklearn.metrics import confusion_matrix
          cm = confusion_matrix(y_test, y_predicted)
          \mathsf{cm}
Out[13]: array([[34,
                                          0,
                                                       0,
                                                  0,
                                                           0],
                            0,
                  [ 0, 34,
                                 0,
                                     0,
                                          0,
                                                  0,
                                                       0,
                                                           0],
                  [ 0,
                        1, 31,
                                 0,
                                     0,
                                          0,
                                              0,
                                                  0,
                                                       0,
                                                           0],
                  [ 0,
                        0,
                            0,
                                30,
                                     0,
                                          0,
                                              0,
                                                  0,
                                                       2,
                                                           0],
                  [ 0,
                        0,
                            0,
                                 0, 42,
                                          0,
                                              0,
                                                  0,
                                                           2],
                                                       0,
                  [ 0,
                        0,
                            0,
                                 0,
                                     0,
                                         36,
                                              0,
                                                  0,
                                                       0,
                                                           1],
                  Γ0,
                                                  0,
                            0,
                                          0,
                                             34,
                                                           0],
                                 0,
                                     0,
                  [ 0,
                            0,
                                     1,
                                          0,
                                              0, 38,
                                0,
                                                       0,
                                                           0],
                                         0,
                        2,
                            1,
                                              0,
                                                  0, 36,
                  [ 0,
                                0,
                                     0,
                                                           0],
                  [ 0,
                        0,
                            0,
                                 0,
                                     0,
                                         0,
                                              0,
                                                  1,
                                                       0, 34]], dtype=int64)
```

In [14]: # use seaborn library to plot the data

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sn
plt.figure(figsize=(10,7))
sn.heatmap(cm, annot=True)
plt.xlabel('Predicted')
plt.ylabel('Truth')

Out[14]: Text(69,0.5,'Truth')

In []: