Student Number: _	
-------------------	--

Name:

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

Final Examination, April 16, 2001

First Year - Programs 1, 2, 3, 4, 6, 7, 8, 9

MMS 101 - Applied Science: Materials

Exam Type: A

Examiners: T.W. Coyle, U. Erb, G. Bendzsak

Answer all questions on these pages. Marks for each question are given in the margin. Only approved calculators are permitted.

Marks	
#1:	
#2:	
#3:	
#4:	
#5	
#6:	
Total:	

Data & Equations

$$e = 1.602 \times 10^{-19} \,\mathrm{C}$$

$$N_A = 6.023 \times 10^{23} \text{ mo}\Gamma^1$$

$$e = 1.602 \times 10^{-19} \text{ C}$$
 $N_A = 6.023 \times 10^{23} \text{ mo}^{-1}$ $k = 1.38 \times 10^{-23} \text{ J/}_{K} = 8.62 \times 10^{-5} \text{ eV/}_{K}$

$$\varepsilon_{\rm o} = 8.85 \times 10^{-12} \, {\rm C}^2/_{\rm J.m}$$

$$c = 3 \times 10^8 \, \text{m}/\text{s}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \,^{\text{C}^2}/_{\text{J-m}}$$
 $c = 3 \times 10^8 \,^{\text{m}}/_{\text{s}}$ $h = 6.63 \times 10^{-34} \,^{\text{J-s}} = 4.13 \times 10^{-15} \,^{\text{eV-s}}$

$$\varepsilon = \frac{V}{L}$$

$$V = IR \qquad \varepsilon = \frac{V}{\tau} \qquad \sigma = n |e| \mu_e + p |e| \mu_h \qquad \text{in } \sigma = -\frac{E_t}{2\nu T} + \ln \sigma_o$$

$$\ln \sigma = -\frac{E_{\epsilon}}{2kT} + \ln \sigma_{o}$$

$$\sigma = \frac{F}{A} = E\epsilon$$

$$\varepsilon = \frac{l_i - l_o}{l_o}$$

$$\sigma_{\rm T} = \frac{\rm F}{\rm A_i} = \sigma(1+\varepsilon)$$

$$\sigma = \frac{F}{A_0} = E\varepsilon \qquad \qquad \varepsilon = \frac{l_i - l_o}{l_o} \qquad \qquad \sigma_T = \frac{F}{A_i} = \sigma(1 + \varepsilon) \qquad \qquad \varepsilon_T = \ln \frac{l_i}{l_o} = \ln (1 + \varepsilon)$$

$$\rho = \frac{n \cdot A}{V_C \cdot N_A}$$

$$\rho = \frac{\mathbf{n} \cdot \mathbf{A}}{\mathbf{V}_{\mathsf{C}} \cdot \mathbf{N}_{\mathsf{A}}} \qquad \qquad \rho = \frac{\mathbf{n}'(\sum A_{\mathsf{C}} + \sum A_{\mathsf{A}})}{\mathbf{V}_{\mathsf{C}} \cdot \mathbf{N}_{\mathsf{A}}} \qquad \qquad d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$n\lambda=2d\sin\theta$$

$$U_r = \int_0^{\epsilon_r} \sigma d\epsilon$$

$$\tau_R = \sigma \operatorname{Cos} \Phi \operatorname{Cos} \lambda$$
 $v = \mu_e \varepsilon$

$$v = \mu_e \epsilon$$

$$L = N d \sin \left(\frac{\theta}{2}\right)$$

$$\overline{M_n} = \sum x_i M_i \qquad E = hv = \frac{hc}{\lambda}$$

$$E = h v = \frac{hc}{\lambda}$$

1. The molecular bonding in sodium chloride (NaCl) is predominantly ionic. Assume that the attractive and repulsive energies between the two ions, as a function of the internuclear distance r, are given respectively by:

$$E_A = -\frac{e^2}{4\pi\epsilon_0 r} \quad and \quad E_R = \frac{A}{r^n}$$

where: A and n are constants

Values for A and n can be obtained by using the results of an analysis of the particle-in-a-box problem with a parabolic potential energy distribution. The analysis gives relationships for the lowest energy level E_p , and the frequency of oscillation f_p between adjacent energy levels (all specified below).

$$E_p = \frac{h}{4\pi} \sqrt{\frac{(n-1)e^2}{4\pi\epsilon_0 \mu r_o^3}} \qquad E_p = \frac{1}{2} h f_p \qquad \mu = reduced \ mass = \frac{m_1 m_2}{m_1 + m_2}$$

where:

 $m_1 = \text{mass of sodium isotope Na}^{23} = 22.99 \text{ amu}$

 m_2 = mass of a chlorine isotope Cl³⁵ = 35.35 amu

- 3 mks (a) Obtain an algebraic equation for the equilibrium separation distance r_o
- 3 mks (b) Find an expression for the bond energy E_o in terms of r_o
- 6 mks (c) Assuming that the results obtained from the particle-in-a-box analysis can be applied to this problem, derive two algebraic equations for n and A using the relationships between E_p , f_p and r_o
- 3 mks (d) Give numerical values for the constants A, n and energy E_o given that $f_p = 1.14 \times 10^{13}$ Hz, $r_o = 0.251$ nm, and 1 amu = 1.66×10^{-27} kg

=	Student Number:	Name:	
	1. (cont.)		
-			
=			
•			
Ĵ			
•			
₹			
•			
•			

S	tudent Number:	Name:	
2. 5 mks	conduction band. Waveleng 0.56 µm. The observed war	m a xenon lamp excites electrons from the valance band 9th of the component of radiation responsible for this transvelength of the emitted red laser light is $0.6943 \mu m$. If the much heat is carried away by the phonons? (W = $^{1}/_{s}$)	sition is
5 mks		aluminum wire, having a resistance of $0.02~\Omega$, carries a ocity of the electrons through the wire given μ_e =1.22x10	
5 mks	(c) The electrical conductive 25°C. Calculate the band g	vity of an intrinsic semiconductor is 4 times larger at 55%	C than at

Student Number:		Name:	
-----------------	--	-------	--

3. (a) Using Bragg's law calculate the diffraction angles (2θ) for the <u>first four peaks</u> in an X-ray diffraction pattern for aluminum, which has the FCC (face centered cubic) structure with a lattice parameter a = 0.404 nm, using monochromatic X-rays having a wavelength of 0.1542nm. Remember, the reflection rules state that for FCC crystals h,k,l must all be either odd or even for diffraction to occur. Enter all relevant data in the following table.

8 mks

Miller indices	d-value	20
for diffracting plane	[nm]	[deg.]
:		
		}
i		

6 mks Draw the four planes identified above in part (a) in the cubic unit cells below. Draw only one plane in each cube. Label each plane.

Student Number:	 Name:

4. The combinations of slip planes and slip directions are termed slip systems. For a particular crystal structure the slip planes are the planes having the most dense atomic packing while the slip directions correspond to the directions with the highest linear density in these planes.

12 mks

(a) For this problem consider the case of a FCC (face centered cubic) crystal. There are four non-parallel planes of closest packing with three directions of highest linear density in each plane, thus giving a total of 12 possible slip systems. In the following table, list the 12 slip systems using correct crystallographic notations for planes and directions.

Slip plane (hkl)	Slip direction (uvw)
	
· · · · · · · · · · · · · · · · · · ·	
<u> </u>	
{	

Student Number:		Name:	
Student Number.		Manue.	

4. (b) For an applied tensile stress in the [100] direction, which slip system(s) would be most likely to operate? To answer this question you must find the resolved shear stress, τ_R , for each of the 12 systems for an arbitrary value of tensile stress.

6 mks

	,		
Slip system	cosф	cosλ	T _R
(hkl)[uvw]			

Material	Diameter (mm)	Elastic Modulus (GPa)	Poisson's Ratio	Yield Strength (MPa)	Tensile Strength (MPa)
Nylon	8	3.00	0.39	55	75.9
Steel	3	207	0.30	490	590

5. We need to lift a piano to the 2nd floor deck of a new house because the stairway is too narrow to carry it up the stairs. The piano weighs 250 Kg. We could use a nylon rope or a steel cable. The distance from the piano to the winch is 30 m.

4 mks (a) What is the maximum load that can be supported without permanent deformation by (i) the nylon rope and (ii) the steel cable?

4 mks (b) Calculate the elongation of 30m of steel cable when supporting 250 Kg.

4 mks (c) Calculate the true stress in the nylon rope when supporting a load of 250 Kg.

4 mks (d) If both the nylon rope and steel cable were attached to the piano at the same time so that the strain in each was the same, what would the stress be in the rope and in the cable when the piano was lifted?

6. (a) MX - NY phase diagram. MX and NY are compound semiconductors that have room temperature band gap energies of 1.42 and 2.25 eV, respectively. The two compounds form solid solutions in all proportions, and the band gap of the alloy varies approximately linearly with composition as described by the equation below. Single crystals of MX-NY are formed by very slowly solidifying from the liquid under carefully controlled conditions.

$$E_z = X_{MX} (2.25 \text{ eV}) + (i - X_{MX}) (1.42 \text{ eV}) \text{ where } X_{MX} = \frac{\text{# mol MX}}{\text{# mol MX} + \text{# mol MX}}.$$

- 2 mks (i) What is the melting point of pure MX?
- 2 mks (ii) At what temperature would the first liquid appear when heating a solid of composition 75 weight % MX?
- 4 mks (iii) If light emitting diodes (LED's) were to be made from the first solid to form during cooling, what liquid composition would be required to produce LED's with a band gap of 1.80 eV?

Page 9 of 11

Sti	udent Number:	Na	ame:		
	 (b) Al-Cu phase diagram. High strength Al-Cu alloys are widely used in the aerospace industry. (i) Fill in the table below by describing the microstructure and phase composition expected at 300°C for each of the overall compositions given. 				
	Overall composition (weight % Cu)	Sketch of microstructure (label all phases)	Relative amount of each phase	Composition of each phase (weight % Cu)	
	0.5				
	3.0				
i mks	(ii) In the space strain harden containing 3.0	ce below, briefly describe thre ing which could contribute to weight % Cu.	e strengthening mecha the strength of an	anisms other than aluminum alloy	

tudent Number:	Name:
----------------	-------

Page 11 of 11