2018 ~ 2019 学年第一学期

《复变函数与积分变换》课程考试试卷(A卷)(闭卷)

学号

	院(系)	专业班级	学号		
	考试日期:	2018年12月2日		考试时间: 8:30~11:00	
<u> </u>	、单项选择题	(每题2分,共24分)).		
1.	复数 3 – 2 <i>i</i> 的	主辐角为:()			
	A. – $\arctan \frac{3}{2}$	$+\pi$, B. – arctar	$C \cdot -3$	$\operatorname{arctan} \frac{2}{3}$, D. $-\arctan \frac{3}{2}$.	
2.	$\left(\frac{1+\sqrt{3}\mathrm{i}}{1-\sqrt{3}\mathrm{i}}\right)^{10}$ 的值	为: ()			
	$A.\frac{1}{2} + \frac{\sqrt{3}}{2}i,$	B. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$,	$C.\frac{1}{2}-\frac{\sqrt{3}}{2}i,$	D. $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$.	
3.	在复平面上,	下列哪个方程不能表	示以 $\mathbf{z_0}$ 为圆心,以 r	(>0)为半径的圆周? ()	
	A. $ z-z_0 $	=r,	B. $ z ^2 - z_0 \bar{z} - \bar{z_0}$	$z + z_0 ^2 - r^2 = 0,$	
	$\underline{\mathbf{C.}(z-z_0)}$	$^{2}=r^{2},$	$D. z = z_0 + re^{-i\theta}$	$(0 \le \theta \le 2\pi).$	
4.	若复变函数f((z) = v + ui在区域 D	内解析,则在区域]) 内下列说法一定正确的是:(()
	A. u是v的	共轭调和函数.	B. v 是 u 的共轭调	和函数,	
	Cu是v的]共轭调和函数,	D. u 是 $-v$ 的共轭	调和函数.	
5.	若曲线 C为	$z = t - t^2 i, 0 \le t \le 1$,则积分 $\int_{\mathcal{C}} (z-1)$	dz的值为: ()	
	A.1, I	B1, C. 1+	+i, D. $1-i$.		
6.	积分 $\oint_{ z =1} (\frac{z}{\bar{z}} +$	$\frac{\bar{z}}{z}$) dz 的值为: ()			
	A. $2\pi i$,	B. $4\pi i$, C.	0, D. $-2\pi i$.		
7.	若幂级数 $\sum_{n=0}^{+\infty} a_n$	$_{n}(z-1)^{n}$ 在点 $z=3$ 收敛	汝,则该级数一定收	敛的点为: ()	
	A. $-2 + \sqrt{3}$	$i, \qquad B \cdot 2 + \sqrt{3} i$, $C \cdot -1 + \sqrt{3}$	i, D. $1 + \sqrt{3}i$.	
8.	函数 $f(z) = \frac{1}{z}$	+ 1 + 2z 在无穷远点[的留数为: ()		
	A1,	B. 1, C.	-2, D. 2.		
9.	z = 0是函数 j	$f(z) = \frac{1}{\cos^{\frac{1}{z}}} \text{ if } ()$			
	A. 可去奇点	, B. 本性奇点,	C. 极点,	D. 非孤立奇点.	
10.	级数 $\sum_{n=0}^{+\infty} \left(\frac{2^n}{z^{n+1}}\right)$	$+\frac{z^n}{3^{n+1}}$)的收敛环域为:	: ()		
	$A \cdot \frac{1}{2} < z < 3$	3, B. $2 < z < 3$	B, $C \cdot \frac{1}{3} < z < 2$	2, $D \cdot \frac{1}{3} < z < \frac{1}{2}$.	

- 11. 函数 $F(\omega) = e^{\omega j}$ 的 Fourier 逆变换f(t)为: ()
 - A. $2\pi\delta(t-1)$,
- B. $2\pi\delta(t+1)$, C. $\delta(t-1)$, D. $\delta(t+1)$.
- 12. 函数f(t) = (t-1) (sint) $\delta(t-2)$ 的 Fourier 变换 $F(\omega)$ 为: ().
 - A. $e^{-2\omega j} \sin 2$, B.0, C. $e^{2\omega j} \sin 2$,

- 二、(12 含) 已知u(x,y) = 2(x-1)y,验证u(x,y)为调和函数,并求二元函数v(x,y),使得函 数 f(z) = u(x,y) + iv(x,y)为解析函数,且满足f(2) = -i.
- (12 冬) 将函数 $f(z) = \frac{1}{(z-2)(z-4)}$ 在点 $z_0 = 3$ 展开为 Laurent 级数。

四、计算下列积分(备题5分,共10分)。

1.
$$\oint_{|z|=2} \frac{\cos z}{(z-\frac{\pi}{2})^{10}} dz$$
. 2. $\oint_{|z|=2} \frac{z}{1-z} e^{\frac{1}{z}} dz$.

2.
$$\oint_{|z|=2} \frac{z}{1-z} e^{\frac{1}{z}} dz$$
.

五、计算下列积分(备题5分,共10分)。

1.
$$\int_0^{+\infty} \frac{x^2 \cos \sqrt{2}x}{x^4+1} dx$$

1.
$$\int_0^{+\infty} \frac{x^2 \cos \sqrt{2}x}{x^4 + 1} dx.$$
 2.
$$\oint_{|z| = 2} \frac{z^{33}}{(z^3 + 3)^3 (z^5 + 5)^5} dz.$$

- 六、(6 分) 求区域 $D = \{z = x + yi: -\frac{\pi}{2} < x < \frac{\pi}{2}, y > 0\}$ 在映射 $w = \sqrt{\frac{i + e^{iz}}{i e^{iz}}}$ 下的像.(答题过 程需用图形表示)
- 七、(n 冬) 求一共形映射w = f(z),将z平面上的区域 $D = \{z: |z| < 1, |z + \sqrt{3}| < 2\}$ 映射到 w平面的上半平面.(答题过程需用图形表示)

八、(10 含) 利用 Laplace 变换求解下面常微分方程:

$$x''(t) + x(t) = -3\cos 2t$$
, $x(0) = 1$, $x'(0) = 1$.

九、(65) 设函数f(z)在 $|z-z_0|$ < R内满足条件: (1). 除一阶极点 z_0 外处处解析, (2). 只有

一个一阶零点
$$z_1$$
,且 $|z_1 - z_0| < r < R$. 证明: $\frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{zf'(z)}{f(z)} dz = z_1 - z_0$.