1. BASIC KNOWLEDGE

In this lecture, we learn how to solve the following types of problems using unconventional signs for the written notation of mathematical notions and reasoning: additions, subtractions, multiplications, divisions, exponents, and radicals.

All the rules of operations (addition, subtraction, multiplication, division, radicals, and exponents) we learnt from arithmetic and algebra are still valid with these symbols.

Fundamental law of fractions:

For any fraction
$$\frac{a}{b}$$
 and any number $c \neq 0$, $\frac{a}{b} = \frac{a \times c}{b \times c}$.

Division of fractions

To divide by a fraction, we simply multiply by its reciprocal.

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Power rules of exponents

$$a^{m} \times a^{n} = a^{m+n} \qquad \Leftrightarrow \qquad \qquad a^{m+n} = a^{m} \times a^{n}$$

$$(a^{m})^{n} = a^{mn} \qquad \Leftrightarrow \qquad \qquad (ab)^{n} = a^{n}b^{n}$$

$$(\frac{a^{m}}{b^{m}} = \left(\frac{a}{b}\right)^{m} \qquad \Leftrightarrow \qquad \qquad \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$

Properties of radicals

$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$
 $(a > 0, \text{ and } b > 0)$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \qquad (a > 0, \text{ and } b > 0)$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m = a^{\frac{m}{n}}$$

Properties of absolute value

$$|-x| = |x|$$

$$|x - y| = |y - x|$$

$$|xy| = |x| \cdot |y|, \text{ and } \left| \frac{x}{y} \right| = \frac{|x|}{|y|} \quad y \neq 0.$$

Square binomial

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$
$$(x-y)^{2} = x^{2} - 2xy + y^{2}$$
$$x^{2} - y^{2} = (x-y)(x+y)$$

Number of divisors

For an integer n greater than 1, let the prime factorization of n be $n = p_1^a p_2^b p_3^c \dots p_k^m$, Where a, b, c, \dots , and m are nonnegative integers, p_1, p_2, \dots, p_k are prime numbers.

The number of divisors is: d(n) = (a+1)(b+1)(c+1)...(m+1)

Sum of the positive divisors

The sum of divisors is:

$$\sigma(n) = (\frac{p_1^{a+1} - 1}{p_1 - 1})(\frac{p_2^{b+1} - 1}{p_2 - 1})...(\frac{p_k^{m+1} - 1}{p_k - 1})$$
Or $\sigma(n) = (p_1^a + p_1^{a-1} + ... + p_1^0)(p_2^b + p_2^{b-1} + ... + p_2^0)...(p_k^m + p_k^{m-1} + ... + p_k^0)$

Patterns of the last digit of a^n

The last digits of a^n have patterns shown in the table below.

n	1	2	3	4	Period
2 ⁿ	2	4	8	6	4
3 ⁿ	3	9	7	1	4
4 ⁿ	4	6			2
5 ⁿ	5				1
6 ⁿ	6				1
7 ⁿ	7	9	3	1	4
8 ⁿ	8	4	2	6	4
9 ⁿ	9	1			2

For example, when a = 2,

$$2^{1} = 2$$
 $2^{2} = 4$, $2^{3} = 8$, $2^{4} = 16$, $2^{5} = 32$, $2^{6} = 64$, $2^{7} = 128$, $2^{8} = 256$,...

The last digits of 2^n demonstrate a pattern: 2, 4, 8, 6, 2, 4, 8, 6, etc...

Pythagorean triples

A **Pythagorean triple** consists of three positive integers a, b, and c, such that $a^2 + b^2 = c^2$.

There are 16 primitive Pythagorean triples with c < 100:

2. PROBLEMS SOLVING

2. 1. Additions

Example 1. For any positive integer n, define (6)n to be the sum of the positive factors of n. For example, (6) = 1 + 2 + 3 + 6 = 12. Find ((18)).

- (A) 39
- (B) 40
- (C) 48
- (D) 56
- (E) 60

Example 2. For the positive integer n, let < n > denote the sum of all the positive divisors of n with the exception of n itself. For example, < 4 > = 1 + 2 = 3 and < 12 > = 1 + 2 + 3 + 4 + 6 = 16. What is < < 28 > > ?

- (A) 28
- (B) 11
- (C) 21
- (D) 6
- (E) 3

 \Rightarrow Example 3. Let $\spadesuit(x)$ denote the sum of the digits of the positive integer x. For example, \clubsuit (8) = 8 and \clubsuit (123) = 1 + 2 + 3 = 6. For how many two-digit values of x is - (x) = 12?

- (A) 3
- (B) 4 (C) 6 (D) 9
- (E) 7

Example 4. If $a \cdot b = a^2 + ab - b^2$, then find $(3 \cdot 2) \cdot 13$.

- (A) 11
- (B) 95 (C) 48 (D) 59
- (E) 143

Example 5. If $a \triangle b = (a+b) + ab + b$, what is $(5 \triangle 7) \triangle 3$?

- (A) 54
- (B) 57

- (C) 219 (D) 222 (E) 232

Example 6. For all real numbers a and b, where $b \neq 0$, the operation \bigstar is defined as $a \neq b = \frac{a^2 + b^2}{L^3}$. Compute the following, and express your answer as a

- common fraction: $(1 \pm 2)^2/(2 \pm 1)$.

- (A) $\frac{1}{8}$ (B) $\frac{1}{5}$ (C) $\frac{125}{64}$ (D) $\frac{5}{64}$ (E) $\frac{25}{64}$

Example 7. If $a \nabla b = a^2 + 2ab + b^2$, what is the value of $(3 \nabla 2) \nabla 5$?

(A) 25

- (B) 60
- (C) 900
- (D) 625
- (E) 30

2. 2. Subtractions

Example 8. Define $x \otimes y = x^3 - y$. What is $h \otimes (h \otimes h)$?

- (A) h
- (B) 0
- (C) h (D) 2h

Example 9. The operation \bigoplus is defined as $m \bigoplus n = m^2 - mn - n^2$, and the operation \bowtie is defined as $m \bowtie n = 2(m-n)$. Compute $(3 \oplus 4) \bowtie (4 \oplus 3)$.

- (A) 26 (B) 28 (C) 19 (D) 28

- (E) 5

Example 10. If for positive integers a and b, $\langle ab \rangle = ab - a - b$, find the value of a + b in the equation $\langle ab \rangle = 6$.

- (A) 9
- (B) 10
- (C) 8
- (D) 15
- (E) 12

Example 11. Define $(x \triangle y)$ to mean 2x - 3y. Evaluate $((4 \triangle 3) \triangle (5 \triangle 3))$.

- (A) -1
- (B) 1
- (C) 5
- (D) -5
- (E) 15

Example 12. Given that $a + b = a^3 - b^2$, what is the value of 4 + (2 + 1)?

- (A) 7
- (B) -15
- (C) 8
- (D) 15
- (E) 7

Example 13. 10. Subfactorials, !n, are defined by the formula:

$$!n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right)$$

Express the following where for x = 6: $\frac{!x}{!(x-1)}$.

- (A) $\frac{265}{44}$ (B) $\frac{11}{30}$ (C) $\frac{53}{24}$ (D) $\frac{53}{144}$

- (E) 6.

Example 14. The operation \bullet is defined by $n \bullet = n^2 - 1$. What is the value of the following: 10(3**2**) - 5(4**2**)?

- (A) -5 (B) 99 (C) 8 (D) 15 (E) 5

2. 3. Multiplications

Example 15. If 4! means $4 \cdot 3 \cdot 2 \cdot 1$, what is the value of $\frac{5!}{3!}$?

- (A) 20
- (B) 40
- (C) 30
- (D) 60
- (E) 80

Example 16. If $a \star b$ is defined as (a+1)(b+1), find $(2 \star 3) \star 4$.

- (A) 120
- (B) 65
- (C) 56
- (D) 11
- (E) 20

Example 17. Two binary operations are defined by the rules $a * b = a^3 - b^3$ and a

 $\forall b = (a+b)^3$. What is the value of $(2 \times 3) \vee 9$?

- (A) 1000
- (B) 729
- (C) 512 (D) 1
- (E) -1000

Example 18. Given a * b = ab + 1, evaluate: 4 * [(6 * 8) + (3 * 5)].

(A) 65

(B) 121

(C) 144

(D) 261

Example 19. If $a \not \simeq b = ab - 1$ and $a \bigstar b = a + b - 1$, what is the value of 4 \updownarrow [(6 \bigstar 8) \bigstar (3 \updownarrow 5)]?

(A) 27

(B) 104

(C) 26

(D) 103

(E) 182

2. 4. Divisions

 \Rightarrow Example 20. For each pair of real numbers $a \neq b$, define the operation * as $(a*b) = \frac{a+b}{a-b}$. What is the value of ((1*2)*4)?

(A) -2/3 (B) -1/7

(C) 0 (D) 1/2

(E) This value is not defined.

Example 21. Define $a @ b = ab - b^2$ and $a # b = a + b - ab^2$. What is $\frac{6 @ 3}{6 # 3}$?

- (A) -1/5
- (B) 1/4
- (C) 1/8

- (D) 1/4
- (E) 1/2

Example 22. For the nonzero numbers a, b, and c, define $(a,b,c) = \frac{abc}{a+b+c}$. Find (2, 5, 8).

- (A) 16/3
- (B) 5
- (C) 15/2
- (D) 6
- (E) 24

Example 23. Express 3*(4*5) as a common fraction given $a*b = \frac{ab}{a+b}$.

- (A) $\frac{20}{9}$ (B) 1 (C) $\frac{60}{47}$ (D) $\frac{20}{47}$ (E) $\frac{47}{60}$

Example 24. If $a * b = \frac{(a+b)}{b}$, compute (3 * 1) * 2.

- (A) 3
- (B) 4
- (C) 2
- (D) 1
- (E) 8

Example 25. If $a \not\approx b = \frac{(\frac{1}{b} - \frac{1}{a})}{(a - b)}$, express $5 \not\approx 7$ as a common fraction.

- (A) $\frac{35}{3}$ (B) $\frac{1}{35}$ (C) $\frac{2}{35}$ (D) $\frac{4}{35}$ (E) $-\frac{1}{35}$

Example 26. Given $a * b = \frac{a+b}{a \cdot b}$, find (5 * 6) * 1.

- (A) $\frac{30}{11}$ (B) $\frac{11}{30}$ (C) $\frac{41}{11}$ (D) $\frac{11}{41}$ (E) $\frac{985}{341}$

Example 27. If a \bullet b is defined as $\frac{a+b}{2}$, what is the value of 6 \bullet (3 \bullet 5)?

- (A) 1
- (B) 4
- (C) 2
- (D) 10
- (E) 5

2. 5. Exponents

 \gtrsim Example 28. The operation \otimes is defined for all nonzero numbers by $a \otimes b =$ a^2/b . Determine $[(1 \otimes 2) \otimes 4] - [1 \otimes (2 \otimes 4)]$.

- (A) -15/16
- (B) -14/15 (C) 0
- (D) 15/16
- (E) 17/16

Example 29. If $x \odot y = (x^y)^x$, what is the units digit of $4 \odot 10$?

- (A) 6
- (B) 8
- (C) 2
- (D) 4
- (E) 0

Example 30. If a b means $3a - 2^b$, then what value is associated with 4 (2 b)3)?

- (A) $\frac{49}{4}$ (B) 8 (C) 16 (D) $\frac{47}{4}$ (E) -2

Example 31. If $a \neq b = a^b + b^a$, what is $(4 \neq 3) \div (3 \neq 4)$?

- (A) 256
- (B) 145
- (C) 1 (D) 5
- (E) 2

Example 32. For natural numbers a and b, $a \triangle b = b^a + 2ab$. Find the value of (2) \triangle 3) – (3 \triangle 2).

- (A) 1
- (B) 41 (C) 37 (D) 12
- (E) 0

Example 33. If $x \otimes y = x^y - x + y^y$, find the value of $(4 \otimes 2) - (3 \otimes 1)$.

- (A) 16
- (B) 1
- (C) 13
- (D) 17
- (E) 15

Example 34. If $x \oplus y = (x^y)^x$, what is the units digit of $7 \oplus 5$?

- (A) 7
- (B) 9 (C) 3
- (D) 1
- (E) 6

Example 35. Given a \triangle b = $\frac{a^b}{b^a}$, and $a \square b = \frac{3a-b}{ab}$, find the common fraction equivalent to $(2\triangle 3)\Box(2\triangle 1)$.

- (A) $\frac{3}{8}$ (B) $\frac{24}{9}$ (C) $\frac{8}{9}$ (D) $\frac{8}{3}$ (E) $\frac{16}{9}$

2.6. Radicals

Example 36. For real numbers a and b, define $a \diamond b = \sqrt{a^2 + b^2}$. What is the value of $(8 \lozenge 15) \lozenge ((-15) \lozenge (-8))$?

- (A) 0
- (B) 13/2
- (C) 15 (D) $17\sqrt{2}$
- (E) 26

Example 37. Let ∇ be defined as $\nabla(a, b) = \sqrt{a^2 + b^2}$, for all real numbers a and b. Find ∇ (∇ (∇ (12, 5), 84), 132).

- (A) 97
- (B) 117
- (C) 137
- (D) 157
- (E) 187

Example 38. Let \star be defined as $\star(a,b) = \sqrt{a^2 + b^2}$, for all real numbers a and b. Find $\bigstar(\bigstar(16, 63), \bigstar(33, 56))$ and express in simplest radical form.

- (A) 65
- (B) $65\sqrt{2}$ (C) $63\sqrt{2}$
- (D) 130
- (E) $56\sqrt{2}$

Example 39. If $x \heartsuit y = \sqrt{xy} + \frac{2}{x} - \frac{3}{2}$, find the value of $(4 \heartsuit 4) \heartsuit 3$. Express your answer as a common fraction.

- (A) $\frac{13}{6}$ (B) 3 (C) $\frac{23}{6}$ (D) $\sqrt{17}$ (E) 7