Course Notes for

CS 1501 Algorithm Implementation

By
John C. Ramirez
Department of Computer Science
University of Pittsburgh

- These notes are intended for use by students in CS1501 at the University of Pittsburgh and no one else
- These notes are provided free of charge and may not be sold in any shape or form
- These notes are NOT a substitute for material covered during course lectures. If you miss a lecture, you should definitely obtain both these notes and notes written by a student who attended the lecture.
- Material from these notes is obtained from various sources, including, but not limited to, the following:
 - Algorithms in C++ by Robert Sedgewick
 - Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
 - Introduction to Algorithms, by Cormen, Leiserson and Rivest
 - Various Java and C++ textbooks
 - Various online resources (see notes for specifics)

Greatest Common Divisor

- GCD(A, B)
 - Largest integer that evenly divides A and B
 - i.e. there is no remainder from the division
 - Simple, brute-force approach?
 - Start with min(A,B) since that is largest possible answer
 - If that doesn't work, decrement by one until the GCD is found
 - Easy to code using a simple for loop
 - Worst case run-time?
 - We want to count how many mods we need to do
 - Assume time for a mod is similar to a mult ($\sim N^2$)
 - Theta(min(A, B)) mods are needed is this good?

- Remember exponentiation?
- A and B are N bits, and the loop is linear in the VALUE of min(A,B)
 - This is exponential in N, the number of bits!
 - We could try up to $\sim 2^N$ mods in worst case (ex: what would be worst situation for GCD?)
- ▶ How can we improve?
 - Famous algorithm by Euclid:

$$GCD(A,B) = GCD(B, A mod B)$$

- Ok let's try it
 - -GCD(30,24) = GCD(24,6) = GCD(6,0) = ?????
- What is missing?
 - The base case: GCD(A,B) = A if B = 0
 - Now GCD(6,0) = 6 and we are done

Run-time of Euclid's GCD?

- Let's again count number of mods
- Tricky to analyze exactly, but in the worst case it has been shown to be linear in N, the number of bits
- Similar improvement to exponentiation problem
- Also can be easily implemented iteratively

Extended GCD

 It is true that GCD(A,B) = D = AS + BT for some integer coefficients S and T

```
- Ex: GCD(30,24) = 6 = (30)(1) + (24)(-1)
```

$$- Ex: GCD(99,78) = 3 = (99)(-11) + (78)(14)$$

Arithmetic Summary

- With a bit of extra logic (same Theta run-time),
 GCD can also provide the coefficients S and T
- This is called the Extended Greatest Common Divisor algorithm
 - We will see soon that this will be useful in RSA encryption
- Arithmetic summary
 - We have looked at multiplication, exponentiation, and GCD (XGCD)
 - These will all be necessary when we look at public key encryption next

Cryptography Motivation and Definitions

- What is Cryptography?
 - Designing of secret communications systems
 - A SENDER wants a RECEIVER (and no one else) to understand a PLAINTEXT message
 - Sender ENCRYPTS the message using an encryption algorithm and some key parameters, producing CIPHERTEXT
 - Receiver has decryption algorithm and key parameters, and can restore original plaintext
 Sende

Cryptography Motivation and Definitions

- Why so much trouble?
 - CRYPTANALYST would like to read the message
 - Tends to be very clever
 - Can usually get a copy of the ciphertext
 - If this were NOT the case we would not need encryption at all – think about it
 - Usually knows (or can figure out) the encryption algorithm
 - These are typically published and well-known algorithms

Cryptography Motivation and Definitions

- So the **key parameters** (and how they affect decryption) are really the only thing preventing the cryptanalyst from decrypting
 - So cryptanalyst would really like to know or figure out these key parameters
 - Alternatively (since cryptanalyst is clever) they may hope to decrypt your message without knowing them
 - There may be some other ways to determine what the message was

- Early encryption schemes were quite simple
 - Ex. Caesar Cipher
 - Algorithm: Simple shift of letters by some integer amount
 - Key parameters: Amount of the shift (integer)

ABCDEFGHIJKLMNO ABCDEFGHIJKLMNOPQR.... <- letters used in code

<- original alphabet

shift = 3

<- ciphertext

- Almost trivial to break by brute force
 - Try each shift until right one is found
 - Only 25 possible shifts for letters, 255 for ASCII
 - Try arbitrary substitution instead: Substitution Cipher
 - Algorithm: Permute the alphabet to create encryption alphabet
 - Key Parameters: Specific permutation used
 - Sender and receiver know permutation, but cryptanalyst does not
 - Much more difficult to break by brute force
 - With alphabet of S characters, S! permutations

- But still relatively easy to break today in other ways
 - Frequency tables, sentence structure
 - Play "Wheel of Fortune" with the ciphertext
 - Once we guess some letters, others become easier
 - Not a trivial program to write, by any means
 - But run-time is not that long that is the important issue

Hey Pat, can I buy a vowel?

These "before and after"s always give me trouble

- Better if "structure" of ciphertext differs from that of plaintext
 - We can try to do this with the alphabet and in the source message
 - Remove vowels, remove punctuation and spaces, etc
 - However, it is better if we can achieve this as part of the encryption process
 - Ex: Instead of substitution, "add" a key value to the plaintext
 - We can add a different key value for each position in the plaintext

- If the keys are pseudorandom, this will allow us to map the same plaintext character to different ciphertext characters, based on the location
- Ex: Assume a simple key of ABCD that we add cyclically to our plaintext

ALGORITHMS ARE COOL <- original message <- key sequence

BNJSSKWLNUCESGCDPQO <- ciphertext

 With more complex keys we can create a fairly challenging code

- Vigenere Cipher (and other similar ciphers)
 - Now the same ciphertext character may represent more than one plaintext character
 - The longer the key sequence, the better the code
 - If the key sequence is random and is as long as the message, we call it a Vernam Cipher
 - This is effective because it makes the ciphertext appear to be a "random" sequence of characters
 - The more "random", the harder to decrypt

- Vernam Cipher is provably secure for onetime use (as long as key is not discovered)
 - Since a "random" character is added to each character of the message, the ciphertext appears to be completely random to the cryptanalyst
 - However, with repeated use its security diminishes somewhat
 - Used in military applications when absolute security is required
 - See http://en.wikipedia.org/wiki/One-time_pad
 http://www.pro-technix.com/information/crypto/pages/vernam_base.html

Symmetric Ciphers

- Variations and combinations of this technique are used in some modern encryption algos
 - Ex. 3DES, AES, Blowfish
 - Most of these are called block ciphers, because they process the data in blocks (ex: 128 bits)
 - ▶ They are also called symmetric ciphers, because the encryption and decryption keys are either the same or easily derivable from each other
 - See: https://en.wikipedia.org/wiki/Symmetric-key_algorithm
 - An advantage of symmetric ciphers is that they are very fast
 - Typically linear in the size of the message

- Symmetric ciphers can be effective, but have a KEY DISTRIBUTION problem
 - How can key pass between sender and receiver securely?
 - Problem is recursive (must encrypt key; must encrypt key to decrypt key, etc).
 - How can we prevent multiple sender/receivers from reading each other's messages?
 - Need a different key for each pair of users
 - The solution is to have an asymmetric cipher, also called public-key cryptography

- In PUBLIC-KEY cryptography
 - Key has two parts
 - A **public** part, used for encryption
 - Everyone can know this
 - A **private** part, used for decryption
 - Only receiver should know this
 - Solves distribution problem
 - Each receiver has their own pair of keys
 - Don't care who knows public part
 - Since senders don't know private part, they can't read each other's messages
- RSA is most famous of these algorithms

- ▶ The idea of an asymmetric cipher is generally attributed to Diffie and Helman
 - See: <u>https://en.wikipedia.org/wiki/Diffie%E2%80%93Hel</u> <u>lman_key_exchange</u>
- Rivest, Shamir and Adelman (RSA) from MIT were the first to prominently achieve the goals of an asymmetric cipher
 - Others exist but we will focus on RSA

- How/why does RSA work?
 - Let E = encryption (public) key operation
 - Let D = decryption (private) key operation
 - 1) D(E(plaintext)) = plaintext
 - E and D operations are inverses
 - 2) All E, D pairs must be distinct (mod PHI)
 - 3) Knowing E, it must be VERY difficult to determine D (exponential time)
 - 4) E and D can be created and used in a reasonable amount of time (polynomial time)

- Theory?
 - ▶ We will be "lite" on theory here, but ...
 - Assume plaintext is an integer, M
 - C = ciphertext = M^E mod N
 - So E simply is a power
 - We may need to convert our message into an integer (or possibly many integers) first, but this is not difficult – we can simply interpret each block of bits as an integer
 - $M = C^D \mod N$
 - D is also a power
 - Or M^{ED} mod N = M
 - ▶ So our public key is (E, N) and private key is (D, N)
 - So how do we determine E, D and N?

Not trivial by any means

- This is where we need our extremely large integers
 - 512, 1024 and more bits

Process

- Choose random prime integers X and Y
- Let **N** = XY
- Let PHI = (X-1)(Y-1)
- Choose another random prime integer (less than PHI and relatively prime to PHI) and call this E
- Now all that's left is to calculate D
 - We need some number theory to do this
 - We will not worry too much about the theory

- We must calculate D such that ED mod PHI = 1
 - We will not go over theory for this but if D satisfies this equation then our formulas from Slide 22 will work
- Note that this is saying that the remainder of ED divided by PHI is 1 or that

```
ED = 1 + K(PHI) [for some K, and, rearranging]
```

$$1 = ED - K(PHI)$$
 [rearranging a bit more]

$$1 = PHI(-K) + ED$$

- Luckily we can solve this using XGCD
- We know already that GCD(PHI, E) = 1 > Why?
- We also know, from XGCD discussed prev., that GCD(PHI,E) = 1 = (PHI)S + (E)T for some S and T

- XGCD calculates values for S and T
 - S will be –K (we don't really care about this)
 - T will be D (this is our decoding key)
- Let's look at a simple example
 - We will use small numbers for this example just to make the math easier
 - For a real key we would use very large numbers


```
X = 7, Y = 11 (random primes)
XY = N = 77
(X-1)(Y-1) = PHI = 60
E = 37 (random prime < PHI)
Solve the following for D:
  37D \mod 60 = 1
Converting to form from prev. slides and
  solve using XGCD:
 GCD(60,37) = 1 = (60)(-8)+(37)(13)
So D = 13
   • C = M^{E} \mod N \rightarrow M^{37} \mod 77
   • M = C^D \mod N \rightarrow C^{13} \mod 77
      See RSATest.java
```

Is RSA Feasible?

- In order for RSA to be useable
 - 1) The keys must be able to be generated in a reasonable (polynomial) amount of time
 - 2) The encryption and decryption must take a reasonable (polynomial) amount of time
 - 3) Breaking the code must take an extremely large (exponential) amount of time
 - Let's look at these in our next lecture

