Optimizing Q-commerce Delivery: Unravelling The Interplay of Fee, Penalty, and Rider-Platform Collaborative Efforts

Ashish Raj, Debabrata Das International Journal of Production Economics

Team: Indrani Das, Sabari Karthick S, Saimadhav S, Sumanto Kar, Trivikram Umanath

Introduction

Traditional Supermarkets

The initial stage of retail with physical stores.

Quick-commerce Services

The latest development offering rapid delivery.

2010-11:

2025:

E-commerce Platforms

The shift to online shopping with broader access.

Introduction

Dark Store

- → smaller in size
- → 300 to 5000 square feet of space
- → densely populated residential

- → within a radius of 3-4 km
- → small orders of high-demand products

Factors Fueling the Rise of Quick Commerce in Urban Areas

Smaller Households

Fewer people in homes leading to increased reliance on delivery services.

Urbanization

The concentration of populations in cities creating a need for efficient commerce.

Busy Lifestyles

The demand for quick services due to people's fast-paced daily routines.

Aging Populations

Older individuals preferring home deliveries for convenience.

areas

Introduction

Challenges faced by delivery riders:

- → Job Insecurity
- → Pay Fluctuations
- → Low / No Base Pay Canal Page 1
- → Long Working Hours
- → Increased Operating Cost

Challenges faced by Q - commerce companies

→ Delivery partners frequently switch companies

The Essential Trio Driving Quick Commerce Success

The Company

Provides the infrastructure and services for quick commerce.

Delivery Person

Ensures timely delivery of goods to customers.

Customer

The end recipient of the goods, driving demand.

Research Questions

Model Formulation and Analysis

Interaction between a Q-commerce company and a delivery rider Under 2 different setups:

- with penalty
- without penalty

Joint Effort Function

$$\rho(a,b) = \delta a + \eta ab$$

- Q_{i} -Rider's Effort
- h -Qcommerce Company's Effort

 δa -Impact of rider's individual effort

 δ -Effectiveness of the rider's own effort

 ηab -Complementary effect of combined efforts

 η -Synergy between the rider's effort and the Qcommerce company's effort

Assumptions:

- Effort levels normalized between 0 and 1
- $(\delta + \eta) \le 1$

Non Penalty Setup - Rider's Perspective

$$\Delta_{DR} = (f-e)[
ho(a,b)] - da^2$$
 $\Delta_{DR} = (f-e)[\delta_a + \eta_{ab}] - da^2$

$$\Delta_{DR}$$
 -Payoff of the Rider

$$d$$
 -Constant associated with cost of effort of the rider da^2 -Quadratic effort cost

$$da^2$$
 -Quadratic effort cost

Rider maximizes payoff by optimizing effort a

Non Penalty Setup - Qcommerce Company's Perspective

$$\Delta_{Qcomm} = (s-f)
ho(a,b) - qb^2$$

$$\Delta_{Qcomm} = (s - f)(\delta_a + \eta_{ab}) - qb^2$$

 ΔQ_{comm} -Payoff of the Company

-Delivery fee of the rider

- Total benefits to the Q-commerce company from the successful delivery
- effort of the Q commerce company

$$q^2$$
 -Constant associated with cost of q^2 -Quadratic cost of effort of the company

Company maximizes payoff by setting f and effort b

Penalty Setup - Rider's Perspective

The probability of the rider being liable for the penalty

$$\Pr\left(v > t\right) = 1 - \Pr\left(v < t\right) = \left(1 - \frac{t}{V}\right)$$

where $v \in U(0,V)$ and t is the threshold

 Δ_{DR} -Payoff of the Rider

-Delivery fee of the rider $\,$ -Self-disbursement cost incurred by the rider

d -Constant associated with cost of $d a^2$ -Quadratic effort cost for rider effort of the rider

V - Maximum perceived customer loss

Rider maximizes payoff by optimizing effort a

Penalty Setup - Qcommerce Company's Perspective

$$\Delta_{\text{Qcomm}}^{t} = (s - f) (\delta a + \eta ab) \left(1 - \frac{t}{V}\right) - qb^{2}$$

 ΔQ_{comm} -Payoff of the Company

-Delivery fee of the rider

- -Total benefits to the Q-commerce company from the successful delivery
- effort of the Q commerce company
- q^2 -Constant associated with cost of q^2 -Quadratic cost of effort of the company

Company maximizes payoff by setting **f** and effort **b**

Company and rider interaction with penalty mechanism

Effort increases with f
 up to an optimal point

$$t^*=rac{(V+2f-2e)}{3} \ f^*=rac{(s+e+t)}{2}$$

- Higher t reduces efforts if f is fixed
- Optimal penalty balances motivation and retention

Reasons for Penalties in Q-commerce

Why Impose Penalties in Q-commerce?

- Late Deliveries: Missing the 10-20 min window
- Low Customer Satisfaction: Poor ratings or complaints
- Order Cancellation: Rejecting or failing to complete orders
- Traffic Violations: Speeding or unsafe driving
- Equipment Issues: Poor bike/phone maintenance
- Fraudulent Behavior: Faking deliveries or misreporting

Financial Impact: Reduced earnings: Penalty *t* cuts payoff

- Increased Effort: Higher effort to avoid penalties, but at some cost
- Motivation vs. Stress: Drives timeliness but risks burnout or unsafe rushing
- Retention Risk: High t may push riders to quit or switch platforms
- Behavioral Shift: Selective order acceptance to minimize penalty risk

How Penalties Affect Q-commerce Companies

- Improved Service Quality: Higher rider effort boosts success rate
- Financial Benefit: Penalty revenue offsets losses
- Customer Satisfaction: Fewer delays enhance reputation and retention
- Risk of Rider Turnover: High **t** may reduce rider pool, disrupting operations
- Operational Complexity: Managing penalties requires monitoring and fairness

Side-by-side comparison:

Aspect	Simultaneous Effort	Penalty-Based
Decision Timing	Joint effort after fee	Rider reacts to poten-
		tial penalty
Rider Incentive	Boosted by synergy	Suppressed by penalty
	(η)	(t)
Effort Outcome	$lpha, m{b}$ increase with	$lpha$ decreases with \emph{t}
	trust	
Optimal Control	Fee $f^* = \frac{s+e}{2}$	Penalty $t^* = \frac{V + 2f - 2e}{3}$
Managerial Tip	Collaborate	Penalize moderately

Implications for Practice in Q-commerce

1. For Delivery Riders:

- Better payoffs
 - Overall combined payoff for customer and rider.
- Seek prior commitment of effort from company
- Informed decision-making weighing the balance between penalty and delivery fee.

2. For Q-Commerce:

- Provide prior effort commitment:
 - health and wellbeing workers
 - bike insurance
 - loans
 - trainings
- Place optimal penalty
- Optimal Delivery Fee and Effort

Conclusion

- How dynamic of mutual support can help to boost increased revenue generation
- Developed analytical model for two different decision-making model
 - (i) With Penalty
 - (ii) Without Penalty

Future Work

- AI/ML based algorithms to help in predicting the demand and optimizing the delivery fee
- Appropriate location of dark stores
- Investigate purchasing behaviour of customers, promotional offers and flash sales
- Develop a three-player game theoretic model also involving customer

Reference

