Package 'localrhat'

December 9, 2021

Title A Local Version of R-hat For MCMC Convergence Diagnostic

Type Package

Version 0.1.0
Maintainer Théo Moins <theo.moins@inria.fr></theo.moins@inria.fr>
Description Implementation of a modified version of the Gelman-Rubin diagnostic for MCMC convergence diagnostic (also known as R-hat), where it is computed on local indicator variables and the supremum over all quantile is consider.
Depends R ($>=4.1$), MASS
License What license is it under?
Encoding UTF-8
RoxygenNote 7.1.2
R topics documented:
all_local_rhat
grid_for_R
local_rhat
multivariate_directed_local_rhat
multivariate_grid_for_R
multivariate_local_rhat
rhat_infinity
rhat_infinity_max_directions
trad_rhat
Index 1

2 all_local_rhat

all_local_rhat

Computation of $\hat{R}(x)$ on a given grid

Description

Return the vector of $\hat{R}(x)$ values that will be used to compute the supremum \hat{R}_{∞} . The function use grid_for_R for the grid of values of x.

Usage

```
all_local_rhat(chains, max_nb_points = 500)
```

Arguments

chains an array of size $n \times m$ where n is the length of the chains and $m \geq 2$ is the

number of chains.

max_nb_points the maximal length of the grid in the case where the total number of samples is

larger. By default, max_nb_points = 500.

Details

The computation of \hat{R}_{∞} require to compute a supremum of $\hat{R}(x)$ values over the quantiles x. See the documentation of grid_for_R to see how the choice of the different x is done. Thus, this function combine grid_for_R for the computation of the grid and local_rhat for the computation of $\hat{R}(x)$ on a given x to obtain all the values of $\hat{R}(x)$ on the generated grid.

Value

A list that contains the different $\hat{R}(x)$ values used for the computation of \hat{R}_{∞} .

References

TO INCLUDE

grid_for_R 3

grid_for_R

Quantile values used for the computation of \hat{R}_{∞}

Description

Return the set of points that will be used to estimate the supremum of $\hat{R}(x)$ over x. The number of different values taken by $\hat{R}(x)$ can not exceed the number of samples, so the number of points used for the computation is the minimum between $n \times m$ and a threshold value that can be specified in the argument max_nb_points

Usage

```
grid_for_R(chains, max_nb_points = 500)
```

Arguments

chains an array of size $n \times m$ where n is the length of the chains and $m \geq 2$ is the

number of chains.

max_nb_points the maximal length of the grid in the case where the total number of samples is

larger. By default, max_nb_points = 500.

Details

As the computation of local- \hat{R} are based on indicator values $I(\theta^{(i,j)} \leq x)$ and because the chains are finite, it is enough to evaluate these indicators in $x = \theta^{(i',j')}$ to obtain all the possible values of $\hat{R}(x)$. However, to keep the computation time reasonable, if $n \times m$ is greater than a given max_nb_points, the values are sorted and uniform thinning is apply (which means picking off every k iterations) so that only max_nb_points is kept at the end.

Value

A list that contains the different x used for the computation of $\hat{R}(x)$.

References

TO INCLUDE

```
library(localrhat)

N <- 500 # length of chains
M <- 4 # number of chains

# Toy example with 3 i.i.d chains uniform in [-0.5, 0.5] and 1 in [-1, 1]:
chains <- array(c(runif((M-1)*N, -1/2, 1/2), runif(N, -1,1)), c(N,M))

# plot_local_r(grid_for_R(chains), all_local_rhat(chains),</pre>
```

4 local_rhat

x = c(-1, 1), y = c(0.999, 1.1), title = "Gaussian distributions")

local_rhat

Local version of the Gelman Rubin diagnostic \hat{R}

Description

Compute $\hat{R}(x)$, a version of univariate \hat{R} computed on indicator variables for a given quantile x.

Usage

local_rhat(x, chains)

Arguments

x a float number corresponding to the quantile used for the computation of $\hat{R}(x)$. chains an array of size $n \times m$ where n is the length of the chains and $m \geq 2$ is the number of chains.

Details

The function return \hat{R} computed on $I(\theta^{(i,j)} \leq x)$ for a given value of x:

$$\hat{R}(x) = \sqrt{\frac{\frac{n-1}{n}\hat{W}(x) + \hat{B}(x)}{\hat{W}(x)}},$$

with $\hat{W}(x)$ and $\hat{B}(x)$ the estimated local within-chain variance and between-chain variance:

$$\hat{W}(x) = \frac{1}{m} \sum_{j=1}^{m} (F_j(x) - F_j^2(x))$$

And

$$\hat{B}(x) = \frac{1}{m^2} \sum_{j < k} (F_j(x) - F_k(x))^2.$$

Value

The local- $\hat{R}(x)$ computed on the m chains.

References

TO INCLUDE

Examples

```
library(localrhat)

N <- 500 # length of chains
M <- 4 # number of chains

# Toy example with 3 i.i.d chains uniform in [-0.5, 0.5] and 1 in [-1, 1]: chains <- array(c(runif((M-1)*N, -1/2, 1/2), runif(N, -1,1)), c(N,M))

# Quantile to evaluate:
x <- 0.5
# local_rhat(x, chains)</pre>
```

```
multivariate_all_local_rhat
```

Computation of multivariate $\hat{R}(x)$ on a given grid

Description

Return the vector of $\hat{R}(x)$ values that will be used to compute the supremum \hat{R}_{∞} in the multivariate case. See multivariate_grid_for_R for the grid computation for x.

Usage

```
multivariate_all_local_rhat(chains, dir = NULL, max_nb_points = 500)
```

Arguments

chains	an array of size $n \times d \times m$, where n is the length of the chains, $m \geq 2$ is the
	number of chains and d is the dimension.
dir	a binary vector of size d indicating the signs in the indicator variable. For ex-
	ample, dir = c(0,,0) correspond to the computation of \hat{R} on $I\{\theta_1^{(j)} \leq$
	$x_1, \ldots, \theta_d^{(j)} \leq x_d$. This direction will be used if no arguments is given.
max_nb_points	the maximal length of the grid in the case where the total number of samples is
	larger. By default, max_nb_points = 500.

Details

The computation of \hat{R}_{∞} require to compute a supremum of $\hat{R}(x)$ values over the quantiles x. See the documentation of multivariate_grid_for_R and grid_for_R to see how the choice of the different x is done. Thus, this function combine multivariate_grid_for_R for the computation of the grid and multivariate_directed_local_rhat or multivariate_directed_local_rhat, depending on if a direction is specified.

Value

A list that contains the different $\hat{R}(x)$ values used for the computation of \hat{R}_{∞} .

References

TO INCLUDE

multivariate_directed_local_rhat

Multivariate $\hat{R}(x)$ with a specified dependence direction

Description

Compute $\hat{R}(x)$ in the multivariate case, for a given quantile x and a given sense for the d signs in the indicator variable.

Usage

```
multivariate_directed_local_rhat(x, chains, dir)
```

Arguments

X	a vector of size d corresponding to the quantile used for the computation of $\hat{R}(x)$.
chains	an array of size $n\times d\times m$, where n is the length of the chains, $m\geq 2$ is the number of chains and d is the dimension.
dir	a binary vector of size d indicating the signs in the indicator variable. For example, $\dim = c(\emptyset, \dots, \emptyset)$ correspond to the computation of \hat{R} on $I\{\theta_1^{(j)} \leq x_1, \dots, \theta_d^{(j)} \leq x_d\}$, and if $\dim[i] = 1$, then the indicator with $\theta_d^{(j)} \geq x_d$ will be used.

Details

In the multivariate case, \hat{R} can be computed on $I\{\theta_1^{(j)} \leq x_1, \dots, \theta_d^{(j)} \leq x_d\}$, but also with indicator where some " \leq " are replaced by " \geq ", which leads to 2^{d-1} possibilities and potentially as many different results of \hat{R}_{∞} . Here, a 0-1 vector has to be mentioned in the function to specify which indicator to use, indicating which size on each dimension.

Value

The corresponding multivariate $\hat{R}(x)$ computed on the given dependence direction.

References

TO INCLUDE

Examples

```
library("localrhat")
library("MASS") # For Multivariate Normal Distribution
rho <- 0.9
m < -4
n <- 100
reps <- 50
# Function to generate bivariate normal chains, with one that differs by its sigma:
gen_bvnormal_chains <- function(M, N, rho){</pre>
    sig_matrix <- (1-rho) * diag(2) + matrix(rho, nrow=2, ncol=2)</pre>
    return (array(c(mvrnorm((M-1)*N, mu = rep(0, 2), Sigma = diag(2)),
                     mvrnorm(N, mu = rep(0, 2), Sigma = sig_matrix)), c(N,2,M)))
chains <- gen_bvnormal_chains(m, n, rho)</pre>
# Quantile to evaluate:
x \leftarrow c(0.5, 0.5)
# multivariate_local_rhat(x, chains)
# multivariate_directed_local_rhat(x, chains)
```

```
multivariate_grid_for_R
```

Quantile values used for the computation of multivariate $\hat{R}_{-}\infty$

Description

Return the set of points that will be used to estimate the supremum of $\hat{R}(x)$ over $x \in R^d$. The function works in the same way as grid_for_R in the univariate case, see the corresponding documentation for more details.

Usage

```
multivariate_grid_for_R(chains, max_nb_points = 500)
```

Arguments

chains an array of size $n \times d \times m$, where n is the length of the chains, $m \ge 2$ is the

number of chains and d is the dimension.

max_nb_points the maximal length of the grid in the case where the total number of samples is

larger. By default, max_nb_points = 500.

Value

A list that contains the different x used for the computation of $\hat{R}(x)$.

References

TO INCLUDE

```
multivariate_local_rhat
```

Multivariate version of the local- \hat{R} : $\hat{R}(x)$

Description

Compute $\hat{R}(x)$ in the multivariate case, which correspond to \hat{R} computed on a multivariate indicator variable for a given quantile x.

Usage

```
multivariate_local_rhat(x, chains)
```

Arguments

 ${\sf x}$ a vector of size d corresponding to the quantile used for the computation of

 $\hat{R}(x)$.

chains an array of size $n \times d \times m$, where n is the length of the chains, $m \geq 2$ is the

number of chains and d is the dimension.

Details

The function return \hat{R} computed on

$$I\{\theta_1^{(j)} \le x_1, \dots, \theta_d^{(j)} \le x_d\}$$

, for a given value of $x \in \mathbb{R}^d$.

Value

The multivariate $\hat{R}(x)$ computed on the m chains.

References

TO INCLUDE

```
library("localrhat")
library("MASS") # For Multivariate Normal Distribution
rho <- 0.9
m <- 4
n <- 100
reps <- 50</pre>
```

rhat_infinity 9

rhat_infinity

Scalar version of the local Gelman Rubin diagnostic $\hat{R}(x)$.

Description

Compute \hat{R}_{∞} , a scalar summary of the function $\hat{R}(x)$ corresponding to the supremum over the quantiles x.

Usage

```
rhat_infinity(chains, dir = NULL, max_nb_points = 500)
```

Arguments

chains an array of size $n \times m$ in the univariate case and of size $n \times d \times m$ in the d-variate

one, where n is the length of the chains, $m \ge 2$ is the number of chains and d is

the dimension.

dir a vector specifying which indicator to use for the multivariate case. See the

function $multivariate_directed_local_rhat$ for more details. If no direction is given, the computation is done on the indicator variable with the " \leq " sign

on all dimension.

max_nb_points the maximal length of the grid in the case where the total number of samples is

larger. By default, max_nb_points = 500.

Details

 \hat{R}_{∞} is based on $\hat{R}(x)$, the computation of \hat{R} on $I(\theta^{(i,j)} \leq x)$ (in the univariate case):

$$R_{\infty} = \sup_{x \in R} R(x).$$

This require to compute $\hat{R}(x)$ on different values of x to estimate this supremum. See the function all_local_rhat for more details. In the multivariate case, \hat{R} can be computed on $I\{\theta_1^{(j)} \leq x_1, \ldots, \theta_d^{(j)} \leq x_d\}$, but also with indicator where some " \leq are replaced by " \geq ", which leads to 2^{d-1} possibilities and potentially as many different results of \hat{R}_{∞} . Here, a 0-1 vector can be given in the function to specify which indicator to use.

Value

The value of \hat{R}_{∞} computed on the m chains.

References

TO INCLUDE

Examples

```
library(localrhat)
library("MASS") # For Multivariate Normal Distribution
rho <- 0.9
m < -4
n <- 100
reps <- 50
# Function to generate bivariate normal chains, with one that differs by its sigma:
gen_bvnormal_chains <- function(M, N, rho){</pre>
    sig_matrix <- (1-rho) * diag(2) + matrix(rho, nrow=2, ncol=2)</pre>
    return (array(c(mvrnorm((M-1)*N, mu = rep(0, 2), Sigma = diag(2)),
                     mvrnorm(N, mu = rep(0, 2), Sigma = sig_matrix)), c(N,2,M)))
}
R_values <- c()
for (e in 1:reps){
    chains <- gen_bvnormal_chains(m, n, rho)</pre>
    # R_values <- c(R_values, rhat_infinity_max_directions(chains))</pre>
# R_mat <- matrix(data = R_values, ncol = 1)</pre>
# colnames(R_mat) <- "R-hat-inf_max_dir"</pre>
# plot_hist(R_mat, bin_size = 0.004,
            \lim_{y} axis = 15, vaxis_pos = 1.015,
            plot_threshold = F)
```

rhat_infinity_max_directions

Symmetrical version of $\hat{R}_{-}\infty$ in the multivariate case.

Description

Compute the multivariate version of \hat{R}_{∞} in all possible dependence direction and return the maximum values.

Usage

```
rhat_infinity_max_directions(chains, max_nb_points = 500, nb_directions = NULL)
```

Arguments

chains an array of size $n \times d \times m$, where n is the length of the chains, $m \geq 2$ is the number of chains and d is the dimension. $\max_{n \geq 0} points$ the maximal length of the grid in the case where the total number of samples is larger. By default, $\max_{n \geq 0} points = 500$. $\min_{n \geq 0} points = 500.$ an integer giving the number of directions to compute \hat{R}_{∞} : if given, it has to be between 1 and 2^{d-1} and a a random set of directions of this size will be used.

Details

In the multivariate case, the sensitivity of R_{∞} strongly depends on the sign of dependence of the variables. This function implement the naive way to consider all direction, by computing on the 2^{d-1} possible one. **Warning**: this method becomes extremely costly when the dimension grow, and we recommend to avoid it as soon as d>5 (pending future work on multidimensional improvements). Alternatively, a number of directions can be specified, to avoid computational issues and compute R_{∞} on a subset of the possibilities: then, random directions will be generated to diagnostic the convergence on the corresponding dependence direction.

Value

The maximum value of all \hat{R}_{∞} computed.

```
library(localrhat)
library("MASS") # For Multivariate Normal Distribution
rho <- 0.9
m < -4
n <- 100
reps <- 50
# Function to generate bivariate normal chains, with one that differs by its sigma:
gen_bvnormal_chains <- function(M, N, rho){</pre>
    sig_matrix <- (1-rho) * diag(2) + matrix(rho, nrow=2, ncol=2)</pre>
    return (array(c(mvrnorm((M-1)*N, mu = rep(0, 2), Sigma = diag(2)),
                     mvrnorm(N, mu = rep(0, 2), Sigma = sig_matrix)), c(N,2,M)))
}
R_values <- c()</pre>
for (e in 1:reps){
    chains <- gen_bvnormal_chains(m, n, rho)</pre>
    # R_values <- c(R_values, rhat_infinity_max_directions(chains))</pre>
# R_mat <- matrix(data = R_values, ncol = 1)
# colnames(R_mat) <- "R-hat-inf_max_dir"</pre>
# plot_hist(R_mat, bin_size = 0.005,
            \lim_{y}axis = 15, vaxis_pos = 1.025,
            plot\_threshold = F)
#
```

12 trad_rhat

trad_rhat

Compute the traditional Gelman-Rubin diagnostic.

Description

Compute the traditional Gelman-Rubin diagnostic.

Usage

```
trad_rhat(chains)
```

Arguments

chains

an array of size $n \times m$ where n is the length of the chains and $m \geq 2$ is the number of chains.

Details

The function return the tradition Gelman-Rubin diagnostic \hat{R} .

Value

 \hat{R} computed on the m chains.

References

TO INCLUDE

Index

```
all_local_rhat, 2
grid_for_R, 3
local_rhat, 4
multivariate_all_local_rhat, 5
multivariate_directed_local_rhat, 6
multivariate_grid_for_R, 7
multivariate_local_rhat, 8
rhat_infinity, 9
rhat_infinity_max_directions, 10
trad_rhat, 12
```