

A Language Model-based Generative Classifier for Sentence-level Discourse Parsing

Ying Zhang

Hidetaka Kamigaito

Manabu Okumura

{ zhang, kamigaito, oku } @ lr.pi.titech.ac.jp

Language Model-based Generative Classifier (LMGC) for the sentence-level parsing w/ auto segmentation

Motivation

Discourse segmentation: detect elementary discourse units (EDUs) boundaries in a given text.

Discourse parsing: link detected EDUs.

Most prior work is on the basis of discriminative models P(y|x), which cannot consider mapping from predictable labels y to input texts x to exploit more label information.

RST Discourse Treebank (RST-DT) corpus

Task	Train	Valid	Test
(a) Segmentation	6,768	905	991
(b) Sentence-level parsing w/ gold segmentation	4,524	636	602
(c) Sentence-level Parsing w/ auto segmentation	-	861	951

Results for the sentence-level parsing w/ auto segmentation.

Model	Seg	Parse		
		Span	Nuclearity	Relation
Pointer-networks*	-	91.75	86.38	77.52
Oracle _{seg}	98.24	-	-	_
Base segmenter	93.92	-	_	-
$GPT2LM_e$	95.03	-	_	-
$LMGC_e$	96.51	-	_	_
Enhance _e	96.79	-	_	-
Extend _e	96.48	_	-	-
Oracle	-	93.95	91.25	85.93
Base parser	_	93.53	88.08	78.75
$GPT2LM_r$	_	92.02	84.20	74.49
$LMGC_{\mathcal{S}}$	_	93.96‡	88.46	79.25
Enhance _s	_	94.00†	88.50	79.33
$LMGC_u$	-	93.96†	89.90†	80.33†
Enhance _u	-	93.92‡	89.74†	80.22†
$LMGC_r$	-	93.65	89.08†	80.57†
$Enhance_r$	-	93.73	89.16†	81.18†

Experiments

 \dagger , \ddagger : the F_1 score is

significantly superior

to the base parser with

a p-value < 0.01 and <

0.05, respectively.

Results for the segmentation.

Model	Precision	Recall	F_1
Oracle	97.73	98.67	98.20
Pointer-networks*	93.34	97.88	95.55
Base segmenter	92.22	95.35	93.76
$GPT2LM_e$	94.05	95.72	94.88
$LMGC_e$	95.31	97.56	96.43†
Enhance _e	95.54	97.93	96.72†
$Extend_e$	95.05	97.86	96.44†

†: the F_1 score is significantly superior to GPT2LM with a p-value < 0.01.

Results for the sentence-level parsing w/ gold segmentation.

Model	Span	Nuclearity	Relation	
Oracle	98.67	95.88	90.07	
Pointer-networks*	97.44	91.34	81.70	
Base parser	97.92	92.07	82.06	
$GPT2LM_r$	96.35	88.11	77.86	
LMGC _s	98.23‡	92.31	82.22	
Enhance _s	98.27‡	92.39	82.42	
$LMGC_u$	98.31‡	94.00†	83.63†	
Enhance _u	98.31†	93.88†	83.56†	
$LMGC_r$	98.00	93.09†	83.99†	
Enhance _r	98.12	93.13†	84.69†	

 \dagger , \ddagger : the F_1 score is significantly superior to the base parser with a p-value < 0.01 and < 0.05, respectively.

Methods

1. Linearize Tree $z = (z_1, ..., z_a) = (x, y)$

(Attribution (Elaboration (N (N We've got a lot)_N (S to do,)_S)_N)_{Elaboration} (S he acknowledged.)_S)_{Attribution}

• with EDU boundary labels (x, e)

$$e_1$$
 [EDU] e_2 [EDU] e_3 [EDU]

• with span labels (x, e, s)

(Span (Span
$$e_1$$
)_{Span} (Span e_2)_{Span})_{Span} (Span e_3)_{Span}

• with nuclearity labels (x, e, u)

$$(N (N e_1)_N (S e_2)_S)_N (S e_3)_S$$

• with relation labels (x, e, r)

 $(\text{Span (Span }e_1)_{\text{Span}} \text{ (Elaboration }e_2)_{\text{Elaboration}})_{\text{Span}} \text{ (Attribution }e_3)_{\text{Attribution}}$

2. Joint Probabilities

$$\log P(\mathbf{z}; \theta) \approx PLL(\mathbf{z}; \theta) \approx \sum_{t=1}^{a} \log P(z_t | z_{< t}, z_{> t}, M_t; \theta)$$

$$M_t: [\mathbf{MASK}]$$

Joint sequence z: We $\ref{eq:continuous}$ got a lot <code>[EDU]</code> to do , <code>[EDU]</code> he acknowledged . <code>[EDU]</code>

3. Label Embedding

elementary discourse units are the minimal building blocks of a discourse tree

Definition of [EDU]

LMGC – Enhance:

 Embedding of [EDU] = Ave (Embedding of elementary, Embedding of discourse, ...,
 Embedding of tree)

 LMGC – Extend:

Joint sequence **z**: We've got a lot [**EDU**] to do, [**EDU**] he acknowledged. [**EDU**] [EDU]: elementary discourse units are the minimal building blocks of a discourse tree

4. Objective Function

 $\mathbf{z}_g \in Z(x)$: correct joint sequence O_a : all permutations of set $\{1, 2, ..., a\}$ c: the number of non-predicted tokens θ : model parameter

For $\mathbf{z} \in Z'(x) \cup \{\mathbf{z}_a\}$, we maximize the expectation

$$\mathbb{E}_{o \in O_a} \sum_{t=c+1}^{a} [I_z \log P(z_{o_t} | z_{o_{< t}}, M_{o_{> c}}; \theta) + (1 - I_z) \log (1 - P(z_{o_t} | z_{o <_t}, M_{o_{> c}}; \theta))]$$

where I_z is the indicator function, defined as $I_z := \begin{cases} 1 & \text{if } \mathbf{z} = \mathbf{z}_g, \\ 0 & \text{if } \mathbf{z} \neq \mathbf{z}_g \end{cases}$