Wednesday Reading Assessment: Unit 5, Forces

Prof. Jordan C. Hanson October 13, 2021

1 Memory Bank

- \bullet Stress versus strain relationship: $stress = Y \times strain$
- Stress (pressure) is defined like: stress = F/A, where F is applied force, and A is cross-sectional area.
- Strain (fractional change in length) is defined like: $\Delta L/L_0$, where L_0 is the original length of a system, and ΔL is the change in length.
- Putting it all together: $F/A = Y(\Delta L/L_0)$

compression)Y $(10^9~\mathrm{N/m}^2)$	$(10^9 \mathrm{\ N/m}^2)$	$(10^9~\mathrm{N/m}^2)$
70	25	75
16	80	8
9		
90	35	75
15		
20		
70	20	30
6		
3		
210	80	130
	16 9 90 15 20 70 6 3	16 80 9 90 35 15 20 70 20 6 3

Figure 1: (Left) A table of Young's moduli, shear moduli, and bulk moduli. (Right) A diagram of stress and strain on a rod of cross-sectional area A and original length L_0 .

2 Chapter 5 - Stress and Strain

- 1. Steel suspension cables are used to carry gondolas at ski resorts. Find the Young's Modulus of steel in Figure 1. Consider a suspension cable that (unstretched) has a length of 2 km. Calculate the ΔL in the steel cable, assuming that the cable has a diameter of 6 cm and the tension is 4.0×10^6 N.
- 2. What would the ΔL be if the original length was 3 km? (Hint: you can redo the problem with this new number, or just use scaling.