Heart disease or Cardiovascular disease (CVD)

- * EDA
- * Extensive Analysis + Visualization with Python

```
In [60]: from IPython.display import Image

# Display the image
img = Image(r"C:\Users\admin\Downloads\Heart.png") # Replace with your actual imag
display(img)
```



```
import numpy as np # linear algebra
import pandas as pd # data processing, csv file I/O (e.g. pd.read_csv)
```

- We can see that the input folder contains one input file named heart.csv.

```
In [4]: import seaborn as sns
   import matplotlib.pyplot as plt
   import scipy.stats as st
   %matplotlib inline
   sns.set(style='whitegrid')

In [5]: # ignore warnings
   import warnings
   warnings.filterwarnings('ignore')
```

I have imported the libraries. The next step is to import the datasets.

import dataset

• I will import the dataset with the usual pandas read_csv() function which is used to import CSV (Comma Separated Value) files.

In [7]:	df =	pd.r	ead_c	sv(r	r"C:\Data	Scienc	e Cl	assnotes'	\9th- se _l	ptember	- seabor	n - Sea	abor	n, Ed
Out[7]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2
	•••													
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2

303 rows × 14 columns

Exploratory Data Analysis

The scene has been set up. Now let the actual fun begin.

• Check shape of the dataset

•

It is a good idea to first check the shape of the dataset.

```
In [10]: # print The shape
print('The Shape of the dataset',df.shape)
```

The Shape of the dataset (303, 14)

Now, we can see that the dataset contains 303 instances and 14 variables.

Preview the dataset

In [12]:	# preview the dataset
	<pre>df.head()</pre>

Out[12]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	ti
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
	<														>

#Summary of dataset

```
In [13]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): Column Non-Null Count Dtype ----------0 303 non-null int64 age 1 sex 303 non-null int64 303 non-null int64 2 ср 3 trestbps 303 non-null int64 4 303 non-null int64 chol 5 fbs 303 non-null int64 restecg 303 non-null int64 thalach 303 non-null int64 exang 303 non-null int64 oldpeak 303 non-null float64 10 slope 303 non-null int64 303 non-null int64 11 ca 303 non-null 12 thal int64 13 target 303 non-null int64 dtypes: float64(1), int64(13) memory usage: 33.3 KB

#Dataset description

- The dataset contains several columns which are as follows-
- age : age in years
- sex: 1 male & 0 female
- cp : chest pain type
- trestbps: resting blood pressure (in mm Hg on admission to the hospital)
- chol: serum cholestrol in mg/dl
- fbs: (fast blood sugar > 120 mg/dl)(1 =true; 0 =false)
- restecg: resting electrocardiographic results
- thalach: maximum heart rate achieved
- exang: exercise induced angina (1 = yes; 0 = no)
- oldpeak : ST depression induced by exercise relative to rest
- slope: the slope of the peak exercise ST segment
- ca: number of major vessels (0-3) colored by flourosopy
- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
- target: 1 or 0

#Checks the datatypes of columns

In [16]: df.dtypes

```
Out[16]: age
                         int64
                         int64
          sex
                         int64
          ср
          trestbps
                         int64
          chol
                         int64
          fbs
                         int64
          restecg
                         int64
          thalach
                         int64
          exang
                         int64
                       float64
          oldpeak
          slope
                         int64
                         int64
          ca
          thal
                         int64
          target
                         int64
          dtype: object
```

#Important points about dataset

- sex is a character variable. Its data type should be object. But it is encoded as (1 = male; 0 = female). So, its data type is given as int64.
- Same is the case with several other variables fbs , exang and target .
- fbs (fasting blood sugar) should be a character variable as it contains only 0 and 1 as values (1 = true; 0 = false). As it contains only 0 and 1 as values, so its data type is given as int64.
- exang (exercise induced angina) should also be a character variable as it contains only 0 and 1 as values (1 = yes; 0 = no). It also contains only 0 and 1 as values, so its data type is given as int64.
- target should also be a character variable. But, it also contains 0 and 1 as values. So, its data type is given as int64.

#Statistical properties of dataset

```
In [19]: # statistical properties of dataset
df.describe()
```

Out[19]:		age	sex	ср	trestbps	chol	fbs	restecg
	count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
	mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053
	std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860
	min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000
	25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000
	50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000
	75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000
	max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000
	<							>
In [20]:	# view	columns na	те					

#Univeriate Analysis

dtype='object')

Analysis of target feature veriables

- One feature veriable is target.
- It refers to the presence of heart disease in the patient
- It is integer valued as it contains two integers 0 and 1 (0 stands for absence of heart disease and 1 for presence of heart disease).
- So, in this section, I will analyze the target variable.

#Check the number of unique values in target variable

Comment

• So, the unique values are 1 and 0. (1 stands for presence of heart disease and 0 for absence of heart disease).

#Frequency distribution of target variable

Comment

- 1 stands for presence of heart disease. So, there are 165 patients suffering from heart disease.
- Similarly, 0 stands for absence of heart disease. So, there are 138 patients who do not have any heart disease.
- We can visualize this information below.

Visualize frequency distribution of target variable

```
In [32]: f, ax = plt.subplots(figsize=(6,4))

ax = sns.countplot(x = 'target', data=df ,hue='target')
plt.legend(loc = 'upper left',bbox_to_anchor=(-0.2, 1.2) )
plt.show()
```


Interpretation

- The above plot confirms the findings that -
 - There are 165 patients suffering from heart disease, and
 - There are 138 patients who do not have any heart disease.

Frequency distribution of target variable wrt sex

Comment

- sex variable contains two integer values 1 and 0 : (1 = male; 0 = female).
- target variable also contains two integer values 1 and 0 : (1 = Presence of heart disease; 0 = Absence of heart disease)

- So, out of 96 females 72 have heart disease and 24 do not have heart disease.
- Similarly, out of 207 males 93 have heart disease and 114 do not have heart disease.
- We can visualize this information below.

We can visualize the value counts of the sex variable wrt target as follows -

```
In [38]: #A countplot in Seaborn is a bar plot that shows the number of occurrences of each
#It helps visualize the distribution of categorical data.
f, ax=plt.subplots(figsize=(6,4))

ax = sns.countplot(x='sex', hue='target', data=df)
plt.show()
```


Interpretation

- We can see that the values of target variable are plotted wrt sex: (1 = male; 0 = female).
- target variable also contains two integer values 1 and 0 : (1 = Presence of heart disease; 0 = Absence of heart disease)
- The above plot confirms our findings that -
 - Out of 96 females 72 have heart disease and 24 do not have heart disease.
 - Similarly, out of 207 males 93 have heart disease and 114 do not have heart disease.

Alternatively, we can visualize the same information as follows:

In [41]: ax = sns.catplot(x='target',col='sex', data = df, kind='count',height=3, aspect=1,h
col='sex': Creates separate subplots for each unique value in the 'sex' column.
kind='count': Specifies that it's a count plot.

Comment

- The above plot segregate the values of target variable and plot on two different columns labelled as (sex = 0, sex = 1).
- I think it is more convinient way of interpret the plots.

We can plot the bars horizontally as follows:

```
In [44]: f, ax= plt.subplots(figsize=(6,4))
    ax = sns.countplot(y='target', hue='sex',data=df)
    plt.show()
```


We can use a different color palette as follows:

We can use plt.bar keyword arguments for a different look:

Comment

- I have visualize the target values distribution wrt sex .
- We can follow the same principles and visualize the target values distribution wrt fbs (fasting blood sugar) and exang (exercise induced angina).

```
Out[51]: sex target
0 1 72
0 24
1 0 114
1 93
```

Name: count, dtype: int64

```
In [52]: f,ax =plt.subplots(figsize=(6,4))
    ax = sns.countplot(x='target',hue='fbs',data=df)
    plt.show()
```



```
In [53]: f,ax = plt.subplots(figsize=(6,5))
    ax = sns.countplot(x='target',hue='exang',data=df)
    plt.show()
```


In []:

#Findings of Univariate Analysis

Findings of univariate analysis are as follows:-

- Our feature variable of interest is target .
- It refers to the presence of heart disease in the patient.
- It is integer valued as it contains two integers 0 and 1 (0 stands for absence of heart disease and 1 for presence of heart disease).
- 1 stands for presence of heart disease. So, there are 165 patients suffering from heart disease.
- Similarly, 0 stands for absence of heart disease. So, there are 138 patients who do not have any heart disease.
- There are 165 patients suffering from heart disease, and
- There are 138 patients who do not have any heart disease.
- Out of 96 females 72 have heart disease and 24 do not have heart disease.

Similarly, out of 207 males - 93 have heart disease and 114 do not have heart disease.

#Bivariate Analysis

Estimate correlation coefficients

Our dataset is very small. So, I will compute the standard correlation coefficient (also called Pearson's r) between every pair of attributes. I will compute it using the df.corr() method as follows:-

```
In [57]: correlation = df.corr()
```

The target variable is target . So, we should check how each attribute correlates with the target variable. We can do it as follows:-

```
correlation['target'].sort_values(ascending=False)
In [59]:
Out[59]: target
                      1.000000
                      0.433798
         ср
         thalach
                     0.421741
          slope
                     0.345877
         restecg
                     0.137230
         fbs
                     -0.028046
                    -0.085239
         chol
         trestbps -0.144931
          age
                    -0.225439
                    -0.280937
          sex
         thal
                    -0.344029
                    -0.391724
         ca
         oldpeak
                    -0.430696
         exang
                    -0.436757
         Name: target, dtype: float64
```

Interpretation of correlation coefficient

- The correlation coefficient ranges from -1 to +1.
- When it is close to +1, this signifies that there is a strong positive correlation. So, we can see that there is no variable which has strong positive correlation with target variable.
- When it is clsoe to -1, it means that there is a strong negative correlation. So, we can see that there is no variable which has strong negative correlation with target variable.
- When it is close to 0, it means that there is no correlation. So, there is no correlation between target and fbs.