Problem 1

Answer 1: Eating nothing gives 0 satisfaction, which is always the smallest

Answer 2: Starting at 0 causes an infinite loop

Problem 2

At most n-1 calls

Problem 4

 n^2 subproblems, n work in each. Total $O(n^3)$

Problem 5

Max of day j+1 is equal to the max we could eat on day j. We also need to multiply by the decay factor too since we are eating it on day j+1. Hence $MaxS(n,j+1) = \beta \cdot MaxS(n,j)$

Problem 6

$$\beta \cdot \sqrt{k} + maxS(n-k)$$

Optional: $O(n^2)$ complexity, O(n) space (only n distinct problems).