

Week 1: SIR Models

Dr. Rachel Sippy University of Cambridge

Week 1 Overview

- Monday, July 26:
 - Introductory material, history of mathematical modeling
 - Introduction to R
- Tuesday, July 27:
 - Epidemic determinants & parameters
 - Guided practice in R
- Wednesday. July 28:
 - Model structures
 - Plots & compartmental models in R

Objectives

- Learn the structure and assumptions of a basic SIR model
- Understand how a graphic representation can be expressed mathematically

Post Questions in the Chat!

(we will have breaks to answer these during the workshop)

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-3:00 pm	SIR Model & Differential Equations
3:00-3:10 pm	Break
3:10-3:30 pm	SIR Model & Time Steps
3:30-3:40 pm	Break
3:40-5:00 pm	R Session

Core Concept

- Number of new infections per unit time is a function of:
 - the number of people who are infectious in a population
 - the number of people who are susceptible

- We want to build a model of transmission (scenario) for a completely immunizing infection
- We are going to develop a mechanistic (compartmental) model where individuals can be classified as:
 - susceptible
 - infected
 - recovered

- Compartmental/mechanistic models
 - 1. Populations are divided into compartments
 - 2. Compartments and transition rates are determined by biological systems
 - 3. Transition rates between compartments are expressed mathematically

susceptible infected recovered R

• What are the major assumptions?

• Everyone is either:

- Population size is constant
 - no births
 - no deaths
 - no migrations

• Everyone is either:

- Population size is constant
 - no births
 - no deaths
 - no migrations

• Everyone is either:

infected,

infectious

you are

- no births
- no deaths
- no migrations

• Everyone is either:

- Population size is constant
 - no births
 - no deaths
 - no migrations

- People mix uniformly
 - homogeneous mixing
 - random mixing
 - mass action

- No latent period
 - if you are infected, you are infectious

Recovery is permanent

 The rate at which individuals of two types contact one another in a population is proportional to the product of their densities

- Infected
- Susceptible

 The rate at which individuals of two types contact one another in a population is proportional to the product of their densities

al.

Network Contacts

Metapopulations (spatial)

- Random mixing
- S x I is the number of unique contacts between the susceptible and infectious individuals
 - 2 infected
 - 4 susceptible
 - 8 unique contacts

- Infected
- Susceptible

- Random mixing
- S x I is the number of unique contacts between the susceptible and infectious individuals
 - 2 infected
 - 4 susceptible
 - 8 unique contacts
- B is a transmission coefficient
 - it is the probability of a susceptible becoming infected if they contact an infected person

- Infected
- Susceptible

- B is a transmission coefficient
 - it is the probability of a susceptible becoming infected if they contact an infected person

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

- γ is the recovery rate
 - 1/ γ is the duration of infectiousness

- system of ordinary differential equations
 - ODE
 - mathematical expression of transition rates between compartments

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

- system of ordinary differential equations
 - multiply compartments by transition rates to express change

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

 How do we calculate the rate of change for a compartment?

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

- For each compartment:
 - + number of individuals entering per unit time
 - number of individuals leaving per unit time

- How do we calculate the rate of change for a compartment?
- For each compartment:
 - + number of individuals entering per unit time
 - number of individuals leaving per unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

- How do we calculate the rate of change for a compartment?
- For each compartment:
 - + number of individuals entering per unit time
 - - number of individuals leaving per unit time

- How do we calculate the rate of change for a compartment?
- For each compartment:
 - + number of individuals entering per unit time
 - number of individuals leaving per unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

the number infected depends on contact between S and I, and the probability of transmission

- How do we calculate the rate of change for a compartment?
- For each compartment:
 - + number of individuals entering per unit time
 - number of individuals leaving per unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

the number infected depends on contact between S and I, and the probability of transmission

- How do we calculate the rate of change for a compartment?
- For each compartment:
 - + number of individuals entering per unit time
 - - number of individuals leaving per unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

the number who recover only depends on I and the recovery rate

- How do we calculate the rate of change for a compartment?
- For each compartment:
 - + number of individuals entering per unit time
 - number of individuals leaving per unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \underline{\gamma I(t)}$$

- How do we calculate the rate of change for a compartment?
- For each compartment:
 - + number of individuals entering per unit time
 - - number of individuals leaving per unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t) \quad \leftarrow \quad \text{no one to} \\ \text{subtract}$$

Questions & Break

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-3:00 pm	SIR Model & Differential Equations
3:00-3:10 pm	Break
3:10-3:30 pm	SIR Model & Time Steps
3:30-3:40 pm	Break
3:40-5:00 pm	R Session

- ODEs are solved to give us the rate of change for each compartment for each unit of time
- Units of time are meant to be infinitesimally small
 - larger time units have more inaccurate results
 - we want to model continuous time or instantaneous time units

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- rate of change can be expressed another way
 - δt is our unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- rate of change can be expressed another way
 - δt is our unit time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time, change in time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time, change in time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time, change in time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time, change in time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- δt is our unit time, change in time
- tangent of curve is rate for instantaneous time

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- tangent of curve is rate for instantaneous time
- we want to know slope A

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- we want to know slope A
- we can calculate slope B

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

• A and B look very far apart

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

• A and B look very far apart

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$as \delta t \to 0$$

- A and B look very far apart
- unless δt is very small!

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dS(t)}{dt} = \frac{S(t + \delta t) - S(t)}{\delta t}$$

$$\frac{\delta S(t)}{\delta t} = \frac{\delta S(t)I(t)}{\delta S(t)}$$

• we can only solve for B, and B is only a good approximation for A if δt is very small

Solving Differential Equations

- Specialized software/programs
 - Berkeley Madonna
 - Stella
 - MatLab
 - Mathematica
 - Maple
 - R

- Software solves differential equations with different techniques (Euler, Runge-Kutta, Burlirsch-Stoer, etc.)
 - numerical integration

SIR Model Output

- We can examine the epidemic dynamics
- We will have values for S(t), I(t), and R(t) for each time step t
 - these can be expressed as population proportions and plotted
 - we can also find totals for each compartment at the end of the epidemic

SIR Model Key Points

- Basic SIR model is the most commonly discussed compartmental/mechanistic model
- Models can be built to represent many disease systems, pathogen dynamics, and scenarios
 - Model building requires you to make assumptions consider if the assumptions are valid for your situation
- Models are translated to mathematical expressions (ODEs) that are solved using numerical integration
- Output from models helps us understand dynamics of an epidemic

More Compartmental Models

Example: Hookworm Infection

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-3:00 pm	SIR Model & Differential Equations
3:00-3:10 pm	Break
3:10-3:30 pm	SIR Model & Time Steps
3:30-3:40 pm	Break
3:40-5:00 pm	R Session