

Image Type:

- Grayscale : 1 channel
- Color : 3 channels

(RGB)

Image Size:

 Since it is MNIST dataset, we set the image size to 28x28

Resize Transformation

• Crop : traditional crop

• Squash : traditional squash

Fill : keep the originalratio by filling the gap with a color

 Half crop, half fill: combination of crop and fill

Training Images:

 Train directory containing samples per class, "labels.txt" and "train.txt"

Minimum sample per class

- Ignore the class sample if the number of samples is less than the specified number
- Blank means ignore this feature

Maximum sample per class

- Ignore the class sample if the number of samples is greater than the specified number
- Blank means ignore this feature

% for validation

 Proportion of the dataset for validation

Separate test images folder

 Since the downloaded MNIST dataset has the test images separated, this option has to be checked

DB backend

- LMDB : Great performance,
 but not good for large dataset
- HDF5 : Great for large
 dataset, but not good in term of performance

Image Encoding (Reduce image sizes)

• None : Raw image

• PNG : 100% quality with

less file size

• JPEG : 90% quality with file size less than PNG

Group Name (optional)

 This is just a reference name to group a bunch of datasets

Dataset Name (required)

 This is just a reference name to be called in importing a dataset

Python Layers

- DIGITS support custom python layer using "Caffe"
- For now, leave it blank to keep things simple

Python Layers

- DIGITS support custom python layer using "Caffe"
- For now, leave it blank to keep things simple

Training epochs

How many passes through the training dataa

Snapshot interval

 How frequent the model takes snapshots

Validation interval

 How frequent the model calculates the accuracy

Random Seed

- Determine the randomness of the dataset
- blank : the dataset will mostly different for the next training step
- any-number : the dataset will be

Batch size

- How many images to process at once
- blank : use the network configuration

Batch Accumulation

 How frequent the model calls the solver to readjust the variables

Reference: http://sebastianruder.com/content/images/2016/09/saddle_point_evaluation_optimizers.gif

Subtract Mean

- Image : subtracted from any input image you feed to the neural network
- Pixel : subtract the "same"
 mean pixel value from all pixels of
 the input to the neural network

Crop Size

- Remove some pixels from the images before they are given to the neural network
- Very good in autoencoder neural network

How many GPUs

Since we only requested 1 GPU,
 we have to put 1 GPU

Select which GPU

 It's listed two GPUs because the two GPUs are in one node

Group Name (optional)

 This is just a reference name to group a bunch of models

Model Name (required)

 This is just a reference name to be called in importing a model

Train

