二项式的扭 L 函数的牛顿折线

张神星

山东大学第六届齐鲁青年论坛 山东·青岛

2021年9月29日

指数和

设 p 是素数, \mathbb{F}_q 是含有 $q=p^a$ 个元素的有限域. 对于 $f(x)\in\mathbb{F}_q[x]$, 定义

指数和
$$S_k(f) := \sum_{x \in \mathbb{F}_{q^k}} \zeta_p^{\operatorname{Tr}_{\mathbb{F}_{q^k}/\mathbb{F}_p}(f(x))} \in \mathbb{Z}[\zeta_p].$$

我们要问:

- 作为一个复数, $|S_k(f)| = ?$
- 作为一个 p 进数, $|S_k(f)|_p = ?$
- 作为一个代数整数, $\deg S_k(f) = ?$

L 函数的有理性

我们今天来考虑第二个问题. 定义 f 的 L 函数为

$$L(s, f) := \exp\left(\sum_{k} S_k(f) \frac{s^k}{k}\right)$$

定理 (Dwork-Bombieri-Grothendick)

L(s,f) 是有理函数.

指数和的变化

我们来修改和推广下指数和的定义. 设

- $\psi_m: \mathbb{Z}_p \to \mathbb{C}_p^{\times}$ 是一个阶为 p^m 的加性特征;
- $\omega^{-u}: \mathbb{F}_q^{\times} \to \mathbb{C}_p^{\times}$ 是一个乘性特征, 其中 ω 是 Teichmüller 提升, $0 \le u \le q-2$.

定义

$$S_{k,u}(f,\psi_m) = \sum_{x \in \mathbb{F}_{q^k}^{\times}} \psi_m \left(\operatorname{Tr}_{\mathbb{Q}_{q^k}/\mathbb{Q}_p} \left(\hat{f}(\hat{x}) \right) \right) \omega^{-u} \left(\operatorname{Nm}_{\mathbb{F}_{q^k}/\mathbb{F}_q}(x) \right),$$

$$L_u(s, f, \psi_m) = \exp\left(\sum_{k=1}^{\infty} S_{k,u}(f, \psi_m) \frac{s^m}{m}\right).$$

L 函数是多项式

定理 (Adolphson-Sperber, 李文卿, 刘春雷-魏达盛, 刘春雷)

如果 $p \nmid d = \deg f$, 则 $L_u(s, f, \psi_m)$ 是次数为 $p^{m-1}d$ 的多项式.

记

$$L_u(s, f, \psi_m) = \sum_{n=0}^{p^{m-1}d} a_n s^n = \prod_i (1 - \alpha_i s), \quad S_{u,k}(f) = \sum_i \alpha_i^k.$$

为了了解 $S_{u,k}(f)$ 的 p 进性质, 我们需要了解 α_i 的赋值. 而它们正是该 L 函数的牛顿折线的斜率, 其中牛顿折线是指所有

$$(n, \operatorname{ord}_p(a_n))$$

的下凸包.

T 进指数和和 T 进 L 函数

为了统一考虑不同 m 对应的牛顿折线, 我们引入 T 进指数和和 T 讲 L 函数:

$$S_{k,u}(f,T) = \sum_{x \in \mathbb{F}_{q^k}^{\times}} (1+T)^{\operatorname{Tr}_{\mathbb{Q}_{q^k}/\mathbb{Q}_p}(\hat{f}(\hat{x}))} \omega^{-u} \left(\operatorname{Nm}_{\mathbb{F}_{q^k}/\mathbb{F}_q}(x) \right),$$

$$L_u(s, f, T) = \exp\left(\sum_{k=1}^{\infty} S_{k,u}(f, T) \frac{s^k}{k}\right) \in 1 + s\mathbb{Z}_q[\![T]\!][\![s]\!].$$

我们有 $L_u(s, f, \psi_m) = L_u(s, f, \pi_m)$, 其中 $\pi_m = \psi_m(1) - 1$.

特征函数

注意到 $L_u(s,f,T)$ 是一个形式幂级数, 想要建立它和原始的 L 函数的牛顿折线的联系不够方便. 定义特征函数

$$C_u(s, f, T) = \prod_{j=0}^{\infty} L_u(q^j s, f, T) \in 1 + s \mathbb{Z}_q[T][s],$$

则

$$L_u(s, f, T) = \frac{C_u(s, f, T)}{C_u(qs, f, T)}.$$

牛顿折线的关系

记

- $NP_{u,m}(f) = C_u(s,f,\pi_m)$ 的 $\pi_m^{a(p-1)}$ 进牛顿折线 (不依赖 ψ_m);
- $NP_{u,T}(f) = C_u(s,f,T)$ 的 $T^{a(p-1)}$ 进牛顿折线.
- $H^{\infty}_{[0,d],u}$ 为扭霍奇折线,其斜率为 $\frac{n}{d}+\frac{1}{bd(p-1)}\sum_{k=1}^{b}u_k,\ n\in\mathbb{N}$,其中 b是满足 $p^bu\equiv u \bmod q-1$ 的最小正整数,

$$u = u_0 + u_1 p + \dots + u_{a-1} p^{a-1}, \ 0 \le u_i \le p - 1.$$

这样规范化后的牛顿折线满足

$$NP_{u,m}(f) \ge NP_{u,T}(f) \ge H_{[0,d],u}^{\infty}.$$

由定义可知 $NP_{u,m}(f)$ 完全由它在 [0,d-1] 上的值决定.

二项式情形的已知结果

现在我们考虑 $f(x) = x^d + \lambda x^e$ 的情形. 由于 (d, e) > 1 时可以化归 到扭的情形,我们不妨设 (d,e)=1. 如下情形是已知的:

- u = 0:
 - $p \equiv 1 \mod d$, 此时 $NP_{u,m}(f) = H_{[0,d],u}^{\infty}$.
 - e = 1, 有很多人计算过, 不在此列举.
 - $e = d 1, p \equiv -1 \mod d$, 欧阳毅-张.
 - $e = 2, p \equiv 2 \mod d$, Zhang Qingjie-牛传择.
- 仟意 u, e = 1. 刘春雷-牛传择。

p 讲 Artin-Hasse 函数

我们需要 T 讲 Dwork 迹公式来计算牛顿折线。定义

$$E(X) = \exp\left(\sum_{i=0}^{\infty} p^{-i} X^{p^i}\right) = \sum_{n=0}^{\infty} \lambda_n X^n \in \mathbb{Z}_p[\![X]\!],$$

$$E_f(X) = E(\pi X^d) E(\pi \hat{\lambda} X^e) = \sum_{n=0}^{\infty} \gamma_n X^n,$$

则

$$\gamma_k = \sum \pi^{x+y} \lambda_x \lambda_y \hat{\lambda}^y,$$

其中 (x, y) 取遍 dx + ey = k 的所有非负整数解.

T讲 Dwork 半线性算子

定义

$$\mathcal{B}_{u} = \left\{ \sum_{v \in M_{u}} b_{v} \pi^{\frac{v}{d}} X^{v} \mid b_{v} \in \mathbb{Z}_{q} \llbracket \pi^{\frac{1}{d(q-1)}} \rrbracket \to 0 (\pi \mathbb{H}) \right\}, \ M_{u} = \frac{u}{q-1} + \mathbb{N},$$

$$\psi : \mathcal{B}_{u} \longrightarrow \mathcal{B}_{p^{-1}u}, \ \sum_{v \in M_{u}} b_{v} X^{v} \longmapsto \sum_{v \in M_{p^{-1}u}} b_{pv} X^{v},$$

则

$$\Psi := \sigma^{-1} \circ \psi \circ E_f \colon \mathcal{B}_u \to \mathcal{B}_{p^{-1}u}$$

是一个半线性算子,其中 $\sigma \in \operatorname{Gal}(\mathbb{Q}_q/\mathbb{Q}_p)$ 是 Frobenius. 那么它定义了 $\mathcal{B}:=\bigoplus_{i=0}^{b-1}\mathcal{B}_{p^iu}$ 上的算子,且 Ψ^a 是 $\mathbb{Z}_q[\![\pi^{\frac{1}{d(q-1)}}\!]\!]$ 线性的.

T进 Dwork 迹公式

定理

我们有

$$C_u(s, f, T) = \det \left(1 - \Psi^a s \mid \mathcal{B}_u / \mathbb{Z}_q \llbracket \pi^{\frac{1}{d(q-1)}} \rrbracket \right).$$

因此 $C_u(s, f, T)$ 的 T 进牛顿折线是

$$\left(n, \frac{1}{b} \operatorname{ord}_{T}(c_{abn})\right), n \in \mathbb{N},$$

的凸包, 其中

$$\det\left(1 - \Psi s \mid \mathcal{B}/\mathbb{Z}_p[\![\pi^{\frac{1}{d(q-1)}}]\!]\right) = \sum_{n=0}^{\infty} (-1)^n c_n s^n.$$

矩阵表达

记 $s_k \equiv p^k u \bmod q - 1$, $0 \le s_k \le q - 2$. 设 ξ_1, \dots, ξ_a 为 $\mathbb{Q}_q/\mathbb{Q}_p$ 的一组正规基. 则

$$\left\{\xi_v(\pi^{\frac{1}{d}}X)^{\frac{s_k}{q-1}+i}\right\}_{(i,v,k)\in\mathbb{N}\times I_a\times I_b}$$

是 $\mathcal{B}/\mathbb{Z}_p[\pi^{\frac{1}{d(q-1)}}]$ 的一组基, 对应的矩阵为

$$\Gamma = \left(\gamma_{(v, \frac{s_k}{q-1} + i), (w, \frac{s_\ell}{q-1} + j)}\right)_{\mathbb{N} \times I_a \times I_b} = \begin{pmatrix} 0 & \Gamma^{(1)} & 0 & \cdots & 0 \\ 0 & 0 & \Gamma^{(2)} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \Gamma^{(b-1)} \\ \Gamma^{(b)} & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

因此 $c_{bn} = \sum_{A \in \mathcal{A}_n} \det(A)$, \mathcal{A}_n 为全体 bn 阶主子式, 且 $A^{(k)} = A \cap \Gamma^{(k)}$ 均为 n 阶.

进一步化归

我们有

$$\xi_w^{\sigma^{-1}} \gamma_{\left(\frac{s_{k-1}}{q-1} + i, \frac{s_k}{q-1} + j\right)}^{\sigma^{-1}} = \sum_{u=1}^a \gamma_{\left(v, \frac{s_{k-1}}{q-1} + i\right), \left(w, \frac{s_k}{q-1} + j\right)} \xi_v,$$

其中

$$\gamma_{(\frac{s_{k-1}}{q-1}+i,\frac{s_k}{q-1}+j)} = \pi^{\frac{s_k-s_{k-1}}{d(q-1)}+\frac{j-i}{d}} \gamma_{pi-j+u_{-k}}.$$

于是

$$\operatorname{ord}_{\pi} \left(\gamma_{(v, \frac{s_{k-1}}{q-1} + i), (w, \frac{s_{k}}{q-1} + j)} \right) \ge \operatorname{ord}_{\pi} \left(\gamma_{(\frac{s_{k-1}}{q-1} + i, \frac{s_{k}}{q-1} + j)} \right)$$

$$= \frac{s_{k} - s_{k-1}}{d(q-1)} + \frac{j-i}{d} + \phi(pi - j + u_{-k}),$$

其中 $\phi(n) = \min \{x + y \mid dx + ey = n, x, y \in \mathbb{N}\} \in \mathbb{N} \cup \{+\infty\}$.

再进一步化归

引理 (主子式赋值)

对于 $\tau \in S_n^*$ 和整数 t, 我们有

$$\sum_{i=0}^{n} \phi(pi - \tau(i) + t) \ge d^{-1} \left(\frac{(p-1)n(n+1)}{2} + (n+1)t + (d-e)C_{t,n} \right).$$

其中 (\bar{x} 指 $x \mod d$ 最小非负剩余)

$$\begin{aligned} & \underline{C_{t,n}} = \min_{\tau \in S_n^*} \sum_{i=0}^n \overline{e^{-1}(pi - \tau(i) + t)} = \sum_{i=0}^n (R_{i,\alpha} + r_{i,\alpha}) - d\mathbf{C}_{t,n,\alpha}, \\ & R_{i,\alpha} = \overline{e^{-1}(pi + \alpha)}, \ r_{i,\alpha} = \overline{e^{-1}(t - \alpha - i)} \end{aligned}$$

 $C_{t,n,\alpha} = \max \# \{ i \in I_n^* \mid R_{i,\alpha} + r_{\tau(i),\alpha} \ge d \}.$

牛顿折线的下界

对于 $A \in \mathcal{A}_{a(n+1)}$, 设 \mathcal{R} 为其指标集, 则

$$\det(A) = \prod_{k=1}^{b} \det(A^{(k)}) = \sum_{\tau} \operatorname{sgn}(\tau) \prod_{i \in \mathcal{R}} \gamma_{i,\tau(i)},$$

其中置换 τ 满足 $\tau(\mathcal{R}^{(k-1)}) = \mathcal{R}^{(k)}$. 它的每一项赋值不小于

$$S_{\mathcal{R}}^{\tau} \ge d^{-1} \sum_{k=1}^{b} \sum_{i \in \mathcal{R}^{(k-1)}} \left((p-1)i' + (d-e) \overline{e^{-1}(pi' - \tau(i)' + u_{-k})} \right).$$

这里 i' 表示 $i \in \mathbb{N} \times I_a$ 的第一个分量. 根据前面的估计, 我们有

$$S_{\mathcal{N}}^{\sigma} \ge ab(p-1)P_{u,e,d}(n+1),$$

其中 $\mathcal{N} := I_n^* \times I_a \times I_b$, $P_{u,e,d}$ 为由前述估计给出的折线. 若对任意 τ , 存 在 σ 使得 $S_R \geq S_N^{\sigma}$, 那么 $P_{u.e.d}$ 就是牛顿折线的一个下界.

牛顿折线的下界

记 $m = \#(\mathcal{R} \setminus \mathcal{N}), T = (\mathcal{N} \setminus \mathcal{R}) \cup \tau^{-1}(\mathbb{R} \setminus \mathbb{N}).$ 选择 σ 使得在 $\mathcal{N} \setminus T$ 上 和 τ 相同. 则

$$d(S_{\mathcal{R}}^{\tau} - S_{\mathcal{N}}^{\sigma})$$

$$\geq \left(\sum_{i \in \mathcal{R} \setminus \mathcal{N}} - \sum_{i \in \mathcal{N} \setminus \mathcal{R}}\right) (p-1)i' - \sum_{k=1}^{b} \sum_{i \in T \cap \mathcal{N}^{(k)}} (d-e) \overline{e^{-1}(pi' - \tau(i)' + u_{-k})}$$

$$\geq m(p-1)-2m(d-e)(d-1)>0, \quad p>(d-e)(2d-1).$$

何时达到下界

模掉更高阶项后, 我们有

$$\begin{split} c_{ab(n+1)} &= \sum_{A \in \mathcal{A}_{a(n+1)}} \det(A) \equiv \det\left((\gamma_{i,j})_{i,j \in \mathcal{N}}\right) \\ &= \pm \operatorname{Nm}\left(\prod_{k=1}^{b} \det\left(\gamma_{\left(\frac{s_{k-1}}{q-1} + i, \frac{s_{k}}{q-1} + j\right)}\right)_{i,j \in I_{n}^{*}}\right) \\ &= \pm \operatorname{Nm}\left(\prod_{k=1}^{b} \det(\gamma_{pi-j+u_{k}})_{i,j \in I_{n}^{*}}\right) \\ &\equiv \pm \pi^{ab(p-1)P_{u,e,d}(n+1)} \operatorname{Nm}\left(\prod_{k=1}^{b} \hat{\lambda}^{v_{u_{k},n}} h_{n,k}\right), \end{split}$$

Hasse 常数

其中

$$h_{n,k} := \sum_{\tau \in S_{u_k,n}^{\circ}} \operatorname{sgn}(\tau) \prod_{i=0}^{n} \frac{1}{x_{u_k,i}^{\tau}! y_{u_k,i}^{\tau}!},$$

$$dx_{u_k,i}^{\tau} + ey_{u_k,i}^{\tau} = pi - \tau(i) + t, \quad 0 \le y \le d - 1.$$

因此当且仅当所有的 $h_{n,k} \in \mathbb{Z}_p^{\times}$ 时,

$$NP_{u,m}(f) = NP_{u,T}(f) = P_{u,e,d}.$$

一个例子

当
$$e = d - 1$$
 时, 若 $p > (d^2 - d - 1) \operatorname{order}(\omega^{-u})$, 我们有

$$h_{n,k} \equiv \det\left(\frac{1}{(-d^{-1}ev_i + u_k(1 - d^{-1}e) - j)!(v_i + j)!}\right)$$

$$\equiv \prod_{i=0}^n \frac{(d^{-1}e(i-t) + t)_i}{(-d^{-1}ev_i + u_k(1 - d^{-1}e))! \cdot (v_i + n)!} \cdot \prod_{0 \le i < j \le n} (v_i - v_j) \not\equiv 0 \bmod p.$$

因此此时
$$NP_{u,m}(f) = NP_{u,T}(f) = P_{u,e,d}$$
.

一个猜想

猜想

若 p 相对 d 和 ω^{-u} 的阶都很大, 则 $\mathrm{NP}_{u,m}(f) = \mathrm{NP}_{u,T}(f) = P_{u,e,d}$.

感谢各位的倾听!