Package 'FAMEFMR'

November 5, 2020

Title Functions used in the DELWP	FAME	fire ana	ilysis j	proces	SS			
Version 0.0.0.9000								
Description What the package does	s (one pa	aragrap	h).					
License `use_gpl3_license()`								
Encoding UTF-8								
LazyData true								
Roxygen list(markdown = TRUE)								
RoxygenNote 7.1.1								
Imports doParallel, tidyr, dplyr, fasterize, filematrix, foreach, mgcv, raster, sf, tabularaster, tictoc								
Depends data.table								
R topics documented:								
add_xystring							 	

	add_xystring
--	--------------

	inputRasters	11
	Join_Names	11
	LBY_f	12
	makeGS_LU	12
	makeGS_Summary	13
	makeSppYearSum2	14
	make_Spp_LU_list	15
	notAllIn	15
	removeEmptyDirs	16
	unlistPivot_wider	16
Index		17

 $add_xystring$

Adds concatenated String of X and Y coordinates of centroids of polygons to Simple Features polygon object. This String acts as a key to identify spatially identical polygons for use in tidyverse pivot functions.

Description

Adds concatenated String of X and Y coordinates of centroids of polygons to Simple Features polygon object. This String acts as a key to identify spatially identical polygons for use in tidyverse pivot functions.

Usage

add_xystring(myDF)

Arguments

myDF sf polygon object

Value

character vector of XYStrings

calcBBTFI_2 3

calcBBTFI_2

Calculate area BBTFI and BBTFI rasters

Description

Calculate area BBTFI and BBTFI rasters

Usage

```
calcBBTFI_2(
  FHanalysis,
  U_AllCombs_TFI = myAllCombs$U_AllCombs_TFI,
  Index_AllCombs = myAllCombs$Index_AllCombs,
  TFI_LUT,
  makeBBTFIrasters = makeBBTFIrasters
)
```

Arguments

FHanalysis list containing all the fire history spatial attributes created by function fhProcess

U_AllCombs_TFI data.table giving all combinations of cell values from the input rasters for the FAME analysis

Index_AllCombs integer index mapping U_AllCombs_TFI to raster cells

TFI_LUT data.frame lookup table from EFG for "MIN_LO_TFI", "MIN_HI_TFI", "MAX_TFI", "EFG_NAME", read from settings

makeBBTFIrasters

logical whether or not to export rasters for BBTFI to disk

Details

Calculate summary area burned below TFI BBTFI for each SEASON in analysis (accommodating Hi and Lo fire intensity of first burn to determine TFI) and cumulative area BBTFI. Also optionally outputs rasters mapping areas BBTFI

Value

list containing:

- the date sequence matrix for each cell of the raster
- the EFG TFI Lookup for each cell of the raster
- the raster resolution used.
- Optionally outputs rasters of BBTFI to disk if makeBBTFIrasters==TRUE.

4 calcDeltaAbund

calcDeltaAbund Summary of changes in relative abundance	alcDeltaAbund	:DeltaAbund
---	---------------	-------------

Description

Summary of changes in relative abundance

Usage

```
calcDeltaAbund(
   SpYearSumm = SpYearSummWide,
   FHanalysis,
   myBaseline,
   ResultsDir,
   HDMSpp_NO,
   TaxonList
)
```

Arguments

SpYearSumm	data.frame output by function makeSppYearSum2()
FHanalysis	list containing all the fire history spatial attributes created by function fhProcess
myBaseline	integer single SEASON or sequence of SEASons used to create the baseline relative species abundance for comparison of change
ResultsDir	path of directory where results will be written usually generated by FAME script
HDMSpp_NO	path of directory where results will be written usually generated by FAME script
TaxonList	data.frame of species attributes (read from default or user provided .csv)

Details

Calculates the change in relative abundance compared to a baseline SEASON or mean of SEASONS

Value

data frame wide format summary chance in relative abundance of species SEASON

calcDraftSpList 5

_	_		
cal	 (`I .	
Call	コエエト	Smi '	1 5 7

Calculate a draft species list for defined polygon

Description

Calculate a draft species list for defined polygon

Usage

```
calcDraftSpList(
  REG_NO,
  RasterRes = 225,
  PUBLIC_LAND_ONLY,
  myPoly = myPoly,
  generalRasterDir = "./InputGeneralRasters",
  splist = "./ReferenceTables/DraftTaxonListStatewidev2.csv",
  HDMVals = HDMVals225
)
```

Arguments

REG_NO integer DELWP fire region number 1:6 ,99 for Statewide analysis, or 7 for ad

hoc boundary polygon default =7 (see look up table REG_LUT for values)

RasterRes integer 225 - raster resolution is always 225 for this function for speed

PUBLIC_LAND_ONLY

logical whether to restrict analysis to public land only or the whole polygon

myPoly default clipPoly sf polygon data frame of LF_REGIONs (default) or ad hoc

polygon - used in conjunction with REG_NO

generalRasterDir

relative path to directory containing rasters of FIRE_REG, and PUBLIC LAND

(PLM_GEN)

splist path to default species attribute table default is

HDMVals

Details

Calculate the proportion of cells for the HDM in the region for each species is intended only as a starting point and requires manual quality control to produce a useful species list for the area by editing the resulting .csv file

Value

data.frame created from splist with columns appended for:

• cellsInState count of the number of cells in the state within the Binary HDM for the species

6 calc_TFI_2

• cellsInArea count of the number of cells within myPoly and within the Binary HDM for the species

• areaProp proportion of binary HDM for the state within myPoly

calcU_All_Combs

Calculate all combinations of input raster values

Description

Calculate all combinations of input raster values

Usage

```
calcU_All_Combs(FHAnalysis, cropRasters)
```

Arguments

FHAnalysis

list containing all the fire history spatial attributes created by function fhPro-

cess()

cropRasters

list of rasters and indices and cell values created by function cropNAborder()

Value

list of: \

calc_TFI_2

Main Tolerable fire interval (TFI) status calculation

Description

Main Tolerable fire interval (TFI) status calculation

Usage

```
calc_TFI_2(
  FHanalysis,
  U_AllCombs_TFI = myAllCombs$U_AllCombs_TFI,
  Index_AllCombs = myAllCombs$Index_AllCombs,
  TFI_LUT,
  OutputRasters = makeTFIRasters
)
```

cellsToHectares 7

Arguments

FHanalysis list containing all the fire history spatial attributes created by function fhPro-

cess()

U_AllCombs_TFI data.table giving all combinations of cell values from the input rasters for the

FAME analysis made in function calcU_All_Combs()

Index_AllCombs integer index mapping U_AllCombs_TFI to raster cells made in function calcU_All_Combs()

TFI_LUT data.frame Lookup table from EFG for "MIN_LO_TFI", "MIN_HI_TFI", "MAX_TFI", "EFG_NAME",

read form settings

OutputRasters logical whether to uptut rasters of TFI status for each year

Details

Calculates where each cell is currently at below MinTFI or above MAX_TFI returns the per cell and long table summarised by multiple admin units and evc

cellsToHectares Calculates multiplier to convert from raster cell count to area in hectares

Description

Calculates multiplier to convert from raster cell count to area in hectares

Usage

```
cellsToHectares(RasterMetres = RasterRes)
```

Arguments

RasterMetres numeric Value cell resolution in Metres (usually from RasterRes in settings file).

Value

numeric Multiplier to convert cell count to area in hectares

8 cropNAborder

cropNAborder

crop border of NA cells from rasters and get cell indices for remaning cells function to get the minimum bounding box of the cells with non NA values in a raster and save them to crop other rasters to same extent. also creates some rasters cropped to correct extent for instance for region and EFG also gets indices of cells in raster of same extent as crop to the shape provided

Description

crop border of NA cells from rasters and get cell indices for remaining cells function to get the minimum bounding box of the cells with non NA values in a raster and save them to crop other rasters to same extent. also creates some rasters cropped to correct extent for instance for region and EFG also gets indices of cells in raster of same extent as crop to the shape provided

Usage

```
cropNAborder(
  REG_NO = 7,
  RasterRes = RasterRes,
  PUBLIC_LAND_ONLY,
  myPoly = clipPoly,
  generalRasterDir = "./InputGeneralRasters"
)
```

Arguments

REG_NO integer DELWP fire region number 1:6,99 for Statewide analysis, or 7 for ad

hoc boundary polygon default =7 (see look up table REG_LUT for values)

RasterRes numeric raster resolution of the analysis in metres (usually set in settings file or

shiny app)

PUBLIC_LAND_ONLY

Logical TRUE/FALSE

myPoly default clipPoly sf pol

default clipPoly sf polygon data frame of LF_REGIONs (default) or ad hoc

polygon - used in conjunction with REG_NO

generalRasterDir

relative path to directory containing rasters of DELWP FIRE_REG, DELWP

REGION, EFG, PUBLIC LAND (PLM GEN)

Value

A list containing:

- Raster raster cropped of all border rows and columns that are all NA,
- Extent extent of the raster
- IDX integer vector cell numbers of cells in the cropped raster

fhProcess 9

- clipIDX integer vector cell numbers only for cells with the input polygon
- EFG integer vector EFG values for cells within clipped area
- RGN integer vector Fire Region numbers for cells within clipped area
- DELWP integer vector DELWP Region numbers for cells within clipped area
- PLM logical for cells within clipped area

fhProcess

Main Fire History Fire Sequence analysis function

Description

Main Fire History Fire Sequence analysis function

Usage

```
fhProcess(
  rawFH = "path of the rawFH file to use - a shapefile",
  start.SEASON = NULL,
  end.SEASON = NULL,
  OtherAndUnknown,
  validFIRETYPE
)
```

Arguments

rawFH path to the input fire history shapefile usually provided in settings

start. SEASON integer First SEASON for which output is wanted (four digit year as integer), if

NUll then second season in in history is used (cannot use first season because it

has no interval, this may still fail if there is no overlap)

end. SEASON integer Last SEASON required, if NULL then largest value in fire history sce-

nario used

OtherAndUnknown

integer Value to use for cases where fire type is: "OTHER" or "UNKNOWN" = NA, "BURN" = 1, "BUSHFIRE" = 2. NA = Fire excluded from analysis.

usually set in settings file

validFIRETYPE character vector of valid FIRETYPE values for checking the input file, provided

in settings file.

Details

The function takes a shapefile of Fire history contain polygons with two fields FIRETYPE and SEASON Where polygons of different FIRETYPE or SEASON overlap the function constructs unique non-overlapping polygon of their intersections (and non intersecting areas) and attributes each polygon with sequential fire SEASON (SEASO1, SEASO2 ...) and corresponding FIRETYPE (TYPE01,TYPE02 ...)

10 get_Spp_No

It then calculates all the intervals between sequential fires, and Time Since fire (TSF) and Last Fire Type (LFT) and Last burnt year (LBY) for each SEASON as defined in the input arguments, these values are append to the output sf polygon dataframe.

Value

A list containing:

- OutDF sf polygons dataframe containing all the fire history attributes
- TimeSpan integer vector sequence of SEASONS to in the analysis output
- YSFNames names of TSF years in output, needed by downstream functions
- LBYNames names of LBY years in output, needed by downstream functions
- · LFTNames names of LBY years in output, needed by downstream functions

get_Spp_No

Extract VBA (Victorian Biodiversity Atlas) species ID numbers from file paths extracts four or five digit species numbers (Victorian Biodiversity Atlas TAXON_IDs) from vector of paths or file names containing files of e.g. species HDMS containing the 5 digit TAXON_ID in their name

Description

Extract VBA (Victorian Biodiversity Atlas) species ID numbers from file paths extracts four or five digit species numbers (Victorian Biodiversity Atlas TAXON_IDs) from vector of paths or file names containing files of e.g. species HDMS containing the 5 digit TAXON_ID in their name

Usage

```
get_Spp_No(x = "Vector of Sp file Pathnames")
```

Arguments

Х

Vector of species file Pathnames containing VBA numbers

Value

numeric vector of 4or 5 digits (ususally TAXON_ID)

inputRasters 11

Description

Set correct input general rasters

Usage

```
inputRasters(RasterRes)
```

Arguments

RasterRes numeric raster resolution of the analysis in metres (usually set in settings file or

shiny app)

Value

list of input raster names correct for RasterRes or error if RasterRes is not 75 or 225

joins Lookup tables (LUTS) to dataframe containing ID_NO: Name combinations	Join_Names	, , , , , , , , , , , , , , , , , , ,
---	------------	---------------------------------------

Description

Joins one or more lookup tables to table containing ID values Function joins Lookup tables (LUTS) to dataframe containing ID_NO: Name combinations

Usage

```
Join_Names(myDF, LUTS = c("TFI_LUT", "FIREFMZ_LUT", "REG_LUT", "DELWP_LUT"))
```

Arguments

myDF dataframe or similar containing indices for the LUTS listed, to which the LUTS

will be left_joined

LUTS vector of names of LUTS in memory defaults =c("TFI_LUT","FIREFMZ_LUT","REG_LUT","DELWP_

Value

a data.frame with the LUTS joined to it

12 makeGS_LU

LBY_f

Calculate last burned year matrix (LBY)

Description

Calculate last burned year matrix (LBY)

Usage

```
LBY_f(M, y)
```

Arguments

M numeric matrix of fire sequences sequence in rows, values are SEASON

y numeric SEASON

Details

Function to calculate last burnt year (LBY) from matrix of rows of fire season iterating by year (y) used in calc_TFI_2

Value

matrix of last burned year row for each unique fire history column for each SEASON

makeGS_LU

Make long format Growth Stage Lookup matrix

Description

Make long format Growth Stage Lookup matrix

Usage

```
makeGS_LU(EFG_TSF_4GS = myEFG_TSF_4GS)
```

Arguments

EFG_TSF_4GS data.fame of growth stages for each EFG with start and end years

Details

expands a growth stage lookup table (provided in settings file) from four growth stages (1:4) per EFG with their years since fire spans as min(YSF) and max(YSF) to an array with YSF as row, EFG_NO as column and growth stage (1:4) as value. NOTE: YSF has 1 added to both the Lookup and the input to deal with YSF==0 which cannot be used in the array indexing

makeGS_Summary 13

Value

```
matrix rows YSF, columns EFG_NO, values GS number (1:4)
```

makeGS_Summary

Summarise area by growth stage.

Description

Summarise area by growth stage.

Usage

```
makeGS_Summary(
  FHanalysis,
  U_AllCombs_TFI = myAllCombs$U_AllCombs_TFI,
  Index_AllCombs = myAllCombs$Index_AllCombs
)
```

Arguments

FHanalysis list containing all the fire history spatial attributes created by function fhProcess

U_AllCombs_TFI data.table giving all combinations of cell values from the input rasters for the FAME analysis

Index_AllCombs integer index mapping U_AllCombs_TFI to raster cells #'

Details

Generates wide and long format summary of area for each EFG and season grouped by EFG, EFG_NAME, PLM ,FIRE_FMZ_NAME, FIRE_REGION_NAME, DELWP_REGION.

Value

list of two data. frames grouped by EFG, EFG_NAME, PLM , FIRE_FMZ_NAME, FIRE_REGION_NAME, DELWP_REGION

- GS_Summary_wide Wide format table summarises area by Growth Stage and SEASON
- GS_Summary_long Long format table summarises area by Growth Stage and SEASON

14 makeSppYearSum2

makeSppYearSum2

Species' relative abundance calculation and summary

Description

Species' relative abundance calculation and summary

Usage

```
makeSppYearSum2(
  FHanalysis,
  myHDMSpp_NO = HDMSpp_NO,
  writeSpRasters = writeSpRasters,
  myLU_List = LU_List,
  ResultsDir = ResultsDir,
  HDMVals = HDMVals,
  TaxonList = TaxonList,
  writeYears = NULL,
  writeSp = writeSp
)
```

Arguments

FHanalysis	list containing all the fire history spatial attributes created by function fhProcess
myHDMSpp_NO	vector of TAXON_IDs for species to be included in output
writeSpRasters	logical: whether to also write species abundance rasters to disk
myLU_List	list of species abundance lookup arrays created by function make_Spp_LU_list()
ResultsDir	path of directory where results will be written usually generated by FAME script $$
HDMVals	matrix of cell values for Habitat Distribution Model rasters for (at least) all TAXON_ID in myHDMSpp_NO generally provided in settings file and read loaded by FAME script
TaxonList	data.frame of species attributes (read from default or user provided .csv)
writeYears	vector for SEASONS for which rasters are to be written otherwise if write-SpRasters $==$ TRUE, if writeYears $==$ NULL then all SEASONS are written out
writeSp	vector of TAXON_IDs provided if only subset of species rasters are required as output.

Details

Calculates the relative abundance of species for each raster cell in analysis and summaries these as summed abundance each season. Optionally it also write relative abundance rasters for species to disk

make_Spp_LU_list 15

Value

data frame wide format summary of relative abundance of species by SEASONS

make_Spp_LU_list

Generate list of species abundance lookup arrays

Description

Generate list of species abundance lookup arrays

Usage

```
make_Spp_LU_list(myHDMSpp_NO = HDMSpp_NO, myAbundDataLong = ExpertDataLong)
```

Arguments

myHDMSpp_NO

vector of VBA IDs for species to be included in analysis

myAbundDataLong

long format input lookup table of species abundance x YSF xEFG_NO x FIRE-

TYPE_NO

Details

function creates a list of Lookup arrays for each taxon (VBA_CODE/TAXON_ID) for YSF x EFGNO x FireTypeNo these are then used in spatial calculation of species abundance functions

Value

list of 3D arrays named by TAXON_ID of relative abundance value for YSF x EFG x FIRE-TYPE_NO

notAllIn

Checks whether all values in one vector are in another vector

Description

Checks whether all values in one vector are in another vector

Usage

```
notAllIn(x, v = V)
```

Arguments

v Vector of values to check if all are in second vector

v Second vector of values that may or may not contain all values in x

16 unlistPivot_wider

Value

logical

removeEmptyDirs

remove empty directories from path

Description

remove empty directories from path

Usage

```
removeEmptyDirs(rootDir = "./Results")
```

Arguments

rootDir

relative path to remove all empty subdirectories from. Default value "./Results"

Details

Removes all empty subdirectories from the nominated path does not remove the nominated path directory even if empty

unlistPivot_wider

Fix Pivot_wider list of lists columns

Description

Fix Pivot_wider list of lists columns

Usage

```
unlistPivot_wider(df)
```

Arguments

df

wide format data frame with fields that are lists of lists

Details

Supporting function to deal with pivot_wider returning list of lists in some cases

Value

wide format data frame without fields that are lists of lists

Index

```
add_xystring, 2
calc_TFI_2, 6
calcBBTFI_2, 3
calcDeltaAbund, 4
{\tt calcDraftSpList}, {\tt 5}
calcU_All_Combs, 6
{\tt cellsToHectares}, \textcolor{red}{7}
cropNAborder, 8
fhProcess, 9
{\tt get\_Spp\_No,\, 10}
inputRasters, 11
{\tt Join\_Names}, {\color{red}11}
LBY_f, 12
make_Spp_LU_list, 15
{\sf makeGS\_LU,\, \textcolor{red}{12}}
makeGS_Summary, 13
makeSppYearSum2, 14
notAllIn, 15
removeEmptyDirs, 16
unlistPivot\_wider, \\ \frac{16}{}
```