Over a GCD Domain - Part II

In this section we establish some important results about irreducibility and factorization for polynomials over a GCD domain.

Proposition 1 (Gauss' Lemma – Part II). Let R be a GCD domain with field of fractions F, and let $p(x) \in R[x]$ have positive degree. Then p(x) is irreducible in R[x] if and only if p(x) is irreducible in F[x] and primitive in R[x].

Proof. (type this) \Box

Corollary 2. If $p(x) \in R[x]$ (R a GCD domain) is Eisenstein and primitive, then p(x) is irreducible in R[x].

Proof. Suppose p(x) = a(x)b(x) with $a, b \in R[x]$. Since p is Eisenstein, WLOG a(x) is a constant; say $a(x) = a_0$. Now $a_0|p$ in R[x], so that $a_0|$ content(p) in R. Since p(x) is primitive, a is a unit in R, hence a unit in R[x]. So p(x) is irreducible in R[x].

Proposition 3 (Rational Root Theorem). Let R be a GCD domain with fraction field F. Suppose $p(x) \in R[x]$. Let $\frac{u}{v} \in F$ be a fraction in lowest terms; that is, $\gcd(u,v)=1$ in R. If $\frac{u}{v}$ is a root of p(x), then u divides the constant coefficient of p, and v divides the leading coefficient of p.

Exercises

1. Let R be a GCD domain with $p(x), q(x) \in R[x]$ so that q is irreducible (hence prime), and let k be a natural number. Show that q^{k+1} divides p in R[x] iff q|p and $q^k|p'$ in R[x]. In particular, show that p is squarefree iff $\gcd(p,p')=1$.