NE 155/255, Fall 2019

Transport Equation Conditions and Simplifications September 18, 2019

Additional Conditions

• Finiteness condition: $0 \le \psi(\vec{r}, E, \hat{\Omega}, t) \le \infty$

• Interface condition: $\psi_1(\vec{r}, E, \hat{\Omega}, t) = \psi_2(\vec{r}, E, \hat{\Omega}, t)$ $\forall \vec{r} \in S_i$, all energies, and all $\hat{\Omega}$

• Source condition: $Q(\vec{r_0}, E, \hat{\Omega}, t) = Q_0(E, \hat{\Omega}, t)\delta(\vec{r} - \vec{r_0})$

Simplified Forms

Time Independence

We assume that losses and sources are balanced, and thus there is no rate of change with time:

$$\frac{\partial \psi}{\partial t} = 0$$

We can then remove the time dependence from all terms in our equation. As noted, for reactors we often

- solve a steady-state form of the equation,
- perform depletion calculations that characterize material evolution (using the Batemann equations, which we're skipping for now)
- solve a new steady-state calculation with updated material specifications.

One Speed

Assume all particles are at the same speed, $\vec{v} = v_0 \cdot \hat{\Omega}$. Then

$$n(\vec{r}, v, \hat{\Omega}, t) = n(\vec{r}, \hat{\Omega}, t)\delta(v - v_0)$$
$$\Sigma_s(E' \to E, \hat{\Omega}' \to \hat{\Omega}) = \Sigma_s(E, \hat{\Omega}' \to \hat{\Omega})\delta(E' - E)$$

Now we can remove E integration and E dependence:

$$\frac{1}{v} \frac{\partial \psi(\vec{r}, \hat{\Omega}, t)}{\partial t} + \hat{\Omega} \cdot \nabla \psi(\vec{r}, \hat{\Omega}, t) + \Sigma_t \psi(\vec{r}, \hat{\Omega}, t) =
\int_{4\pi} d\hat{\Omega}' \Sigma_s(\hat{\Omega}' \to \hat{\Omega}) \psi(\vec{r}, \hat{\Omega}', t) + \frac{\nu \Sigma_f}{4\pi} \int_{4\pi} d\hat{\Omega}' \psi(\vec{r}, \hat{\Omega}', t) + S(\vec{r}, \hat{\Omega}, t)$$

Isotropic Source

It is often the case that an external source is (or we can approximate it as) isotropic:

$$S(\vec{r}, E, \hat{\Omega}, t) = \frac{1}{4\pi} S(\vec{r}, E, t)$$

One Dimensional and Rotational (Azimuthal) Symmetry

We also often simplify by only worrying about fewer dimensions. Here we'll look at just one: we'll get rid of x and y.

We first assume that things only vary in the z dimension, so $\vec{r} \to z$, e.g. $\psi(\vec{r}, E, \hat{\Omega}, t) \to \psi(z, E, \hat{\Omega}, t)$

We next assume (which is often true) that our systems is **azimuthally symmetric**, which means that the scattering is symmetric about the azimuthal direction (φ) . Therefore, scattering only depends on the angle of the scattering cosine, $\mu_0 = \hat{\Omega}' \cdot \hat{\Omega}$, the angle between where it was heading and where it is heading. We can use this assumption to simplify two things.

$$d\hat{\Omega} = \sin(\theta)d\theta d\varphi = d\mu d\varphi$$
$$\mu = \cos(\theta), \text{ so } d\mu = \sin(\theta)d\theta$$
$$\Omega_z = \cos(\theta) = \mu$$

Recall our new definition $\mu_0 = \hat{\Omega}' \cdot \hat{\Omega}$.

$$\begin{split} &\int_{4\pi} d\hat{\Omega} = \int_0^{2\pi} d\varphi \int_0^\pi \sin(\theta) d\theta = \int_0^{2\pi} d\varphi \int_{-1}^1 d\mu = 4\pi \\ &\psi(z, \hat{\Omega}, E, t) d\hat{\Omega} = \psi(z, \varphi, \mu, E, t) d\varphi d\mu = \psi(z, \mu, E, t) d\varphi d\mu \end{split}$$

With azimuthal symmetry, we can rewrite the scattering cross section since it is no longer a function of φ .

$$\Sigma_s(z, E' \to E, \hat{\Omega}' \to \hat{\Omega}) \to \Sigma_s(z, E' \to E, \hat{\Omega}' \cdot \hat{\Omega}) = \Sigma_s(z, E' \to E, \mu_0)$$
.

Further, we can execute the angular integration over φ since nothing depends on it anymore:

$$\int_{4\pi} d\hat{\Omega} \, \psi(z, \hat{\Omega}, E, t) = \int_0^{2\pi} d\varphi \int_{-1}^1 d\mu \, \psi(z, \hat{\Omega}, E, t) = 2\pi \int_{-1}^1 d\mu \, \psi(z, \mu, E, t) .$$

The next simplification is in the streaming term:

$$\hat{\Omega} \cdot \nabla \psi(\vec{r}, \hat{\Omega}, E, t) \to \Omega_z \frac{\partial \psi(z, \mu, E, t)}{\partial z} = \mu \frac{\partial \psi(z, \mu, E, t)}{\partial z}$$

We can combine all of this into a 1-D equation, using $\mu_0 = \hat{\Omega}' \cdot \hat{\Omega}$:

$$\frac{1}{v} \frac{\partial \psi}{\partial t}(z, E, \hat{\Omega}, t) + \Omega_z \frac{\partial \psi(z, \hat{\Omega}, E, t)}{\partial z} + \Sigma_t(z)\psi(z, \hat{\Omega}, E, t)
= \frac{\chi(E)}{4\pi} \int_0^\infty dE' \int_{4\pi} d\hat{\Omega}' \, \nu(E') \Sigma_f(z, E', t) \psi(z, \hat{\Omega}', E', t)
+ \int_0^\infty dE' \int_{4\pi} d\hat{\Omega}' \, \Sigma_s(z, E' \to E, \mu_0) \psi(z, \hat{\Omega}', E', t) + S(z, E, \hat{\Omega}, t) ,$$

which we can then integrate over the φ component of angle:

$$\frac{1}{v}\frac{\partial\psi}{\partial t}(z,E,\mu,t) + \mu\frac{\partial\psi(z,\mu,E,t)}{\partial z} + \Sigma_t(z)\psi(z,\mu,E,t)
= 2\pi\frac{\chi(E)}{4\pi}\int_0^\infty dE' \,\nu(E')\Sigma_f(z,E')\int_{-1}^1 d\mu' \,\psi(z,\mu',E',t)
+ 2\pi\int_0^\infty dE'\int_{-1}^1 d\mu' \,\Sigma_s(z,E'\to E,\mu_0)\psi(z,\mu',E',t) + S(z,E,\mu,t)$$

Note that the fission term becomes

$$\frac{\chi(E)}{2} \int_0^\infty dE' \ \nu(E') \Sigma_f(z, E') \underbrace{\phi(z, E', t)}_{\text{scalar flux}} \ .$$

Combination

If we combine one-speed, time-independent, isotropic source, one-dimensional, and azimuthally-symmetric, we get

$$\mu \frac{\partial \psi(z,\mu)}{\partial z} + \Sigma_t(z)\psi(z,\mu) = \frac{\nu \Sigma_f(z)}{2} \phi(z) + 2\pi \int_{-1}^1 d\mu' \, \Sigma_s(z,\mu_0) \psi(z,\mu') + \frac{S(z)}{2} .$$