Hinweis. Die Aufgaben sind aus Staatsexamina früherer Jahre entnommen. Die in Klammern angegebene Punktzahl ist die Punktzahl die damals erreicht werden konnte und ist nur zu Ihrer Orientierung angegeben.

Aufgabe 8.1 (F14T2A2). Man bestimme alle Paare von Primzahlen p,q mit $p^2-2q^2=1$. (10 Punkte)

Aufgabe 8.2 (F12T2A3). Bestimmen Sie alle Teiler von 6 im Ring $\mathbb{Z}[\sqrt{-6}] = \{a + b\sqrt{-6} \mid a, b \in \mathbb{Z}\}$. (6 Punkte)

Aufgabe 8.3 (F04T2A2). Der Ring $R = \{n + m\sqrt{-2} ; n, m \in \mathbb{Z}\}$ ist bekanntlich ein euklidischer Ring bezüglich der Norm $N(n + m\sqrt{-2}) = n^2 + 2m^2$.

- (a) Zeigen Sie, daß 11 ein zerlegbares und 13 ein unzerlegbares Element in R ist.
- (b) Zeigen Sie, daß der Restklassenring R/13R ein Körper ist. Aus wievielen Elementen besteht er?
- (c) Verwenden Sie den Chinesischen Restsatz, um den Restklassenring R/11R als direktes Produkt von zwei Körpern darzustellen.

(6 Punkte)

Aufgabe 8.4 (F04T3A4). Für ein reelles Polynom $f \in \mathbb{R}[x]$ bezeichne f' die Ableitung. Seien $a_1, \ldots, a_n \in \mathbb{R}$ verschiedene reelle Zahlen, und sei I die Menge aller Polynome $f \in \mathbb{R}[x]$ mit

$$f(a_i) = f'(a_i) = 0$$
 für $i = 1, ..., n$.

Zeigen Sie:

- (a) I ist ein Ideal im Polynomring $\mathbb{R}[x]$.
- (b) I wird erzeugt von dem Polynom $\prod_{i=1}^{n} (x a_i)^2$.
- (c) Wie viele Ideale besitzt der Faktorring $\mathbb{R}[x]/I$?

(6 Punkte)

Aufgabe 8.5 (H07T1A3). Sei R ein Integritätsring, und M bezeichne die Vereinigung aller maximalen Ideale in R. Zeigen Sie, daß für die Einheitengruppe R^* von R gilt

$$R^* = R \backslash M$$
.

(6 Punkte)