Tarea 2 de Métodos Estadísticos Multivariados

Instrucciones: Contesta cada uno de los ejercicios en un archivo en Word o en hojas blancas. Puedes usar R, Excel o algún otro software, favor de anexar el código o el archivo de Excel.

Al finalizar sube tus evidencias en el lugar correspondiente en Teams.

Link del google colaboratory del documento: <u>Tarea 2</u>

MLAS 29-01-2023

▼ Ejercicio 1

Considera las siguientes matrices de covarianzas de un vector aleatorio X.

A)

$$\Sigma_1 = \left[egin{array}{ccc} 4 & 3 & -2 \ 3 & 6 & 2 \ -2 & 2 & 5 \end{array}
ight]$$

у

B)

$$\Sigma_2 = egin{bmatrix} 10 & -3 & -1 & 5 \ -3 & 8 & 3 & 0 \ -1 & 3 & 15 & 1 \ 5 & 0 & 1 & 4 \end{bmatrix}$$

Obtener la matriz de coeficiente de correlaciones para cada caso.

Después, interpreta los valores obtenidos.

```
1 import pandas as pd
2 import numpy as np
 3 import seaborn as sns
4 import matplotlib.pyplot as plt
1 a = [[4,3,-2],
     [3,6,2],
3
       [-2,2,5]]
4b = [[10, -3, -1, 5],
     [-3,8,3,0],
      [-1,3,15,1],
      [5,0,1,4]]
8 A = np.matrix(a)
9 B = np.matrix(b)
10 print('Matriz A: \n',A)
11 print('\n')
12 print('Matriz B: \n ',B)
    Matriz A:
     [[ 4 3 -2]
     [ 3 6 2]
     [-2 2 5]]
    Matriz B:
      [[10 -3 -1 5]
     [-3 8 3 0]
     [-1 3 15 1]
     [5 0 1 4]]
```

▼ Procedimiento para matriz A).

Se conoce que $ho=(V^{1/2})^{-1}\Sigma(V^{1/2})^{-1}$, por lo que se establece para la matriz A , su respectiva $V^{1/2}$.

▼ Solución ejercicio 1 A)

```
1 sns.heatmap(corr_A, annot=True, annot_kws={"size": 10})
2
```


Interpretación para correlación resultante de la matriz A

Se conoce que es una matriz simetrica y que la diagonal principal son 1.

Se puede observar que la columna 0 tiene correlación positiva moderada con la columna 1. Sin embargo, con la columna 2 tiene correlación negativa moderada. También es posible observar que la columna 1 y 2 presentan correlación positiva baja.

Otro procedimiento es:

$$\rho = \frac{Cov(x,y)}{\sqrt{var(x)var(y)}}$$

<matplotlib.axes._subplots.AxesSubplot at 0x7f01d6ab2880>

Procedimiento para matriz B)

Se conoce que $\rho = (V^{1/2})^{-1} \Sigma (V^{1/2})^{-1}$, por lo que se establece para la matriz B, su respectiva $V^{1/2}$.

```
1 v sqrt B = np.matrix( [
2
                       [np.sqrt(B[0,0]), 0 , 0 ,0],
3
                       [0, np.sqrt(B[1,1]) , 0, 0 ],
4
                       [0 , 0, np.sqrt(B[2,2]),0 ],
5
                       [0 , 0, 0, np.sqrt(B[3,3]) ]
6
                        ])
7 v_sqrt_B
   matrix([[3.16227766, 0.
                   , 2.82842712, 0.
                                           , 0.
           Γ0.
                                                      ],
                    , 0.
                           , 3.87298335, 0.
           [0.
                                                      ],
                    , 0.
                               , 0.
1 corr_B = np.linalg.inv(v_sqrt_B) * B * np.linalg.inv(v_sqrt_B)
2 corr_B
                    , -0.3354102 , -0.08164966, 0.79056942],
   matrix([[ 1.
           [-0.3354102 , 1. , 0.27386128, 0.
           [-0.08164966, 0.27386128, 1.
                                           , 0.12909944],
                             , 0.12909944, 1.
           [ 0.79056942, 0.
```

▼ Solución ejercicio 1 B)

```
1 sns.heatmap(corr_B, annot=True, annot_kws={"size": 10})
2
```


Otro procedimiento es:

$$\rho = \frac{Cov(x,y)}{\sqrt{var(x)var(y)}}$$

```
1 i00 =B[0,0] / np.sqrt(B[0,0] * B[0,0] )
 2 i11 =B[1,1] / np.sqrt(B[1,1] * B[1,1] )
 3 i22 = B[2,2] / np.sqrt(B[2,2] * B[2,2] )
 4 i33 =B[3,3] / np.sqrt(B[3,3] * B[3,3] )
 6 i01 = B[0,1] / np.sqrt(B[0,0] * B[1,1] )
 7 i02 = B[0,2] / np.sqrt(B[0,0] * B[2,2] )
 8 i03 = B[0,3] / np.sqrt(B[0,0] * B[3,3] )
10 i12 = B[1,2] / np.sqrt(B[1,1] * B[2,2] )
11 i13 = B[1,3] / np.sqrt(B[1,1] * B[3,3] )
12
13 i23 = B[2,3] / np.sqrt(B[2,2] * B[3,3] )
14
15 Corr_B2 = [[i00, i01, i02, i03],
              [i01, i11, i12, i13],
16
17
              [i02, i12, i22, i23],
             [i03, i13, i23, i33]]
19
20 sns.heatmap(Corr_B2, annot=True, annot_kws={"size": 10})
21
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f01d6992670>

Interpretación para correlación resultante de la matriz B

Se conoce que es una matriz simetrica y que la diagonal principal son 1.

Se puede observar que la columna 0 tiene correlación positiva moderada con la columna 3. Sin embargo, con la columna 1 tiene correlación negativa baja y con la columna 2 tiene correlación casi nula. También es posible observar que la columna 1 y 2 presentan correlación positiva baja y la columna 1 con la columna 3 tienen correlación nula. Por último, la columna 3 y 2 tienen correlación positiva muy baja.

▼ Ejercicio 2

Para las matrices del problema 1, obtener $V^{1/2}$, $V^{-1/2}$ y verificar que $\Sigma=V^{1/2}\rho V^{1/2}$ y $\rho=V^{-1/2}\Sigma V^{1/2}$

▼ Procedimiento del ejercicio 2: matriz A

```
V^{1/2}
```

```
1 v_sqrt_A
     matrix([[2.
                            , 2.44948974, 0.
               Γ0.
                                           , 2.23606798]])
               Γ0.
V^{-1/2}
 1 np.linalg.inv(v_sqrt_A)
     matrix([[0.5
                            , 0.40824829, 0.
                                         , 0.4472136 ]])
\Sigma = V^{1/2} \rho V^{1/2}
1 sigma_A = v_sqrt_A * corr_A * v_sqrt_A
 2 sigma A
     matrix([[ 4., 3., -2.], [ 3., 6., 2.], [-2., 2., 5.]])

ho = (V^{1/2})^{-1} \Sigma (V^{1/2})^{-1}
```

▼ Solución ejercicio 2 A)

▼ Procedimiento ejercicio 2: matriz B

```
1 v_sqrt_B
        matrix([[3.16227766, 0.
                 [0. , 2.82842712, 0. [0. , 3.8 [0. , 0. , 0. ]
                                      , 3.87298335, 0.
, 0. , 2.
   V^{-1/2}
    1 np.linalg.inv(v_sqrt_B)
                          2777, 0. , 0.
, 0.35355339, 0.
        matrix([[0.31622777, 0.
                                                         , 0.
                  [0.
                                       , 0.25819889, 0.
                  [0.
                              , 0.
                              , 0.
                                           , 0. , 0.5
   \Sigma = V^{1/2} 
ho V^{1/2}
    1 sigma_B = v_sqrt_B * corr_B * v_sqrt_B
    2 sigma_B
        matrix([[10., -3., -1., 5.], [-3., 8., 3., 0.],
                  [-1., 3., 15., 1.],
[5., 0., 1., 4.]])
▼ Solución ejercicio 2 B)
```

$$ho = (V^{1/2})^{-1} \Sigma (V^{1/2})^{-1}$$

```
1 rho_B = np.linalg.inv(v_sqrt_B)* sigma_B * np.linalg.inv(v_sqrt_B)
2 rho_B
                   [[ 1. , -0.3354102 , -0.08164966, 0.79056942], [-0.3354102 , 1. , 0.27386128, 0. ], [-0.08164966, 0.27386128, 1. , 0.12909944], [ 0.79056942, 0. , 0.12909944, 1. ]]
      matrix([[ 1.
```

▼ Ejercicio 3

Considera que:

A)

$$\Sigma_3 = \begin{bmatrix} 10 & -3 & -1 & 5 \\ -3 & 8 & 3 & 0 \\ -1 & 3 & 15 & 1 \\ 5 & 0 & 1 & 4 \end{bmatrix}$$

Obtener:

A)
$$Cov(2X_1 - 4X_2)$$

B)
$$Var(3X_2 - 2X_3)$$

C)
$$Var(2X_1 - 4X_2 + 3X_3 - X_4)$$

Procedimiento ejercicio 2 A) $Cov(2X_1, -4X_2)$

Si
$$Cov(aX_1,bX_2) = E[(aX_1 - a\mu_1)(bX_2 - b\mu_2)] = ab\sigma_{12}$$
 ...(1)

Se asocia que:

$$aX_1 = 2X_1 \Rightarrow a = 2$$

$$bX_2 = -4X_2 \Rightarrow b = -4$$

De Σ_3 se obtiene $\sigma_{12}=-3$

Solución ejercicio 2 A)

Por tanto, al sustituir en (1), se obtiene:

$$Cov(2X_1, -4X_2) = (2)(-4)(-3) = 24$$

Procedimiento ejercicio 2 B) : $\mathrm{Var}(3X_2-2X_3)$

Se conoce la propiedad $Var(aX_1+bX_2)=a^2\sigma_{11}+b^2\sigma_{22}+2ab\sigma 12$

Se asocia

$$3X_2 = aX_1$$
 y $-2X_3 = bX_2$, entonces $a = 3, b = -2, X_2 = X_1, X_3 = X_2$

De Σ_3 se obtiene que $\sigma_{22}=8,\sigma_{33}=15,\sigma_{23}=3$

Solución ejercicio 2 B)

Al sustituir:

$$Var(3X_2 - 2X_3) = (3)^2\sigma_{22} + (-2)^2\sigma_{33} + 2(3)(-2)\sigma_{23} = 9(8) + 4(15) - 12(3) = 72 + 60 - 36 = 96$$

Procedimiento ejercicio 3C): $Var(2X_1 - 4X_2 + 3X_3 - X_4)$

Se conoce la propiedad:

$$Var(\Sigma_{i=1}^{n}X_{i}) = \Sigma_{i=1}^{n}Var(X_{i}) + 2\Sigma_{i < j}Cov(X_{i}, X_{j})$$
 ...(2)

Si n=4 , entonces el desarrollo de (2), es:

$$Var(\Sigma_{i=1}^{4}X_{i}) = a^{2}\sigma_{11} + b^{2}\sigma_{22} + c^{2}\sigma_{33} + d^{2}\sigma_{44} + 2ab\sigma_{12} + 2ac\sigma_{13} + 2ad\sigma_{14} + 2bc\sigma_{23} + 2bd\sigma_{24} + 2cd\sigma_{34} + 2bc\sigma_{23} + 2bd\sigma_{24} + 2cd\sigma_{34} + 2bc\sigma_{23} + 2bd\sigma_{24} + 2cd\sigma_{34} + 2bc\sigma_{23} + 2bd\sigma_{24} + 2bc\sigma_{23} + 2bc\sigma_{23} + 2bd\sigma_{24} + 2bc\sigma_{23} + 2bc\sigma_{23$$

De Σ_3 y de $2X_1-4X_2+3X_3-X_4$, se obtienen los siguientes valores:

$$a=2,b=-4,c=3,d=-1,\sigma_{11}=10,\sigma_{22}=8,\sigma_{33}=15,\sigma_{44}=4,\sigma_{12}=-3,\sigma_{13}=-1,\sigma_{14}=5,\sigma_{23}=3,\sigma_{24}=0,\sigma_{34}=1$$

Por lo que al sustituir:

$$Var(2X_1 - 4X_2 + 3X_3 - X_4) = (2)^2(10) + (-4)^2(8) + (3)^2(15) + (-1)^2(4) + (2)(2)(-4)(-3) + (2)(2)(3)(-1) + (2)(2)(-1)(5) + (2)(-4)(3)(3) + (2)(-4)(-1)(0) + (2)(3)(-1)(1) = 245$$

Solución ejercicio 3C)

Por tanto,

$$\therefore Var(2X_1 - 4X_2 + 3X_3 - X_4) = 245$$

▼ Ejercicio 4

Considera que:

$$\Sigma_4 = \begin{bmatrix} 12 & 5 & 12 \\ 5 & 16 & 15 \\ 12 & 15 & 20 \end{bmatrix}$$

Obtener la matriz de covarianzas del vector aleatorio ${\it Z}$ donde:

1.
$$Z_1 = 3X_1 - 2X_2 + 5X_3$$

2.
$$Z_2=9X_1+6X_2-8X_3$$

3.
$$Z_3 = 4X_1 + X_2 - X_3$$

• B)

1.
$$Z_1 = 5X_1 - 2X_2 + 9X_3$$

2.
$$Z_2 = X_1 + X_2 - X_3$$

3.
$$Z_3 = 3X_1 + X_2 - 2X_3$$

4.
$$Z_4 = 4X_1 + X_2$$

Procedimiento ejercicio 4 A)

El sistema de ecuación del problema 4 A), se reescribe de la siguiente manera:

$$C_A = egin{bmatrix} 3 & -2 & 5 \ 9 & 6 & -8 \ 4 & 1 & -1 \end{bmatrix}$$

Se conoce que:

$$Cov(z) = Cov(CX) = C\Sigma_x C^T$$

Sustituyendo:

▼ Solución ejercicio 4 A)

Procedimiento ejercicio 4 B)

Del sistema de ecuaciones del ejercicio 4 B) se puede obtener la matriz de coeficientes C_B

$$C_B = egin{bmatrix} 5 & -2 & 9 \ 1 & 1 & -1 \ 3 & 1 & -2 \ 4 & 1 & 0 \end{bmatrix}$$

Se conoce que:

$$Cov(z) = Cov(CX) = C\Sigma_x C^T$$

▼ Solución ejercicio 4 B)

Sustituyendo:

▼ Ejercicio 5.

Considera la matriz Σ del problema 4. Obtener la distancia estadística (Mahalanobis) entre los dos puntos A,B dados.

- A) A (3,-4,5) y B(1,3,-2)
- B) A (4,-8,9) y B(6,9,10)
- C) A (10,4,15) y B(0,0,0)

Matriz de Covarianza del problema 4:

$$\Sigma_4 = egin{bmatrix} 12 & 5 & 12 \ 5 & 16 & 15 \ 12 & 15 & 20 \end{bmatrix}$$

▼ Procedimiento ejercicio 5 A) B) y C)

Se conoce que la distancia estadística esta dada por:

$$d^{2}(A, B) = (A - B)'\Sigma^{-1}(A - B)$$

Por lo que al sustituir se obtiene.

```
1 sigma_4 = np.matrix([[12,5,12],[5,16,15],[12,15,20]])
2 vector_a_a = np.matrix([3,-4,5])
```

```
3 vector_a_b = np.matrix([1, 3,-2])
 5 \text{ vector\_b\_a} = \text{np.matrix}([4,-8,9])
 6 vector_b_b = np.matrix([6,9,10])
 8 vector c a = np.matrix([10,4,15])
 9 vector_c_b = np.matrix([0,0,0])
10
11 dist_a = np.sqrt((vector_a_a -vector_a_b) * np.linalg.inv(sigma_4) * ( vector_a_a -vector_a_b ).T)
12
13 dist b = np.sqrt((vector b a -vector b b) * np.linalg.inv(sigma 4) * ( vector b a -vector b b ).T)
15 dist_c = np.sqrt((vector_c_a - vector_c_b) * np.linalg.inv(sigma_4) * ( vector_c_a - vector_c_b ).T)
16
17 print('Distancia estadística de A) : ', dist_a)
18 print('Distancia estadística de B) : ', dist_b)
19 print('Distancia estadística de C) : ', dist c)
     Distancia estadística de A) : [[11.97761392]]
     Distancia estadística de B) : [[14.64857953]]
Distancia estadística de C) : [[6.3656939]]
```

Solución ejercicio 5 A), B) y C)

- Distancia euclidiana entre los puntos del inciso:
 - o A) es 11.97
 - o B) es 14.64
 - o C) es 6.36

▼ Ejercicio 6)

Considera las matrices de covarianzas del problema 1. Para cada una obtener su varianza generalizada.

Covarianzas del problema 1.

A)

$$\Sigma_1 = \left[egin{array}{cccc} 4 & 3 & -2 \ 3 & 6 & 2 \ -2 & 2 & 5 \end{array}
ight]$$

y D\

B)

$$\Sigma_2 = egin{bmatrix} 10 & -3 & -1 & 5 \ -3 & 8 & 3 & 0 \ -1 & 3 & 15 & 1 \ 5 & 0 & 1 & 4 \end{bmatrix}$$

▼ Procedimiento ejercicio 6 A) y B)

El determinante de $\Sigma, |\Sigma|$, se le conoce como varianza generalizada.

El determinante de la matriz Sigma_a, o también conocida como varianza generalizada es:

11.00000000000000002

El determinante de la matriz Sigma_b, o también conocida como varianza generalizada es: 1103.99999999998

- A) El determinante de la matriz Σ_A , o también conocida como varianza generalizada es 11.00
- ullet B) El determinante de la matriz Σ_B , o también conocida como varianza generalizada es 1103.99

▼ Ejercicio 7

Sea X un vector aleatorio con distribución $N_5(\mu,\Sigma)$, obtener:

- A) $P\{(X-\mu)'\Sigma^{-1}(X-\mu)>3\}$
- B) $P\{4 < (X \mu)'\Sigma^{-1}(X \mu) < 6\}$
- C) $P\{(X-\mu)'\Sigma^{-1}(X-\mu)<2\}$
- D) Obtener el valor de w tal que $P\{(X-\mu)'\Sigma^{-1}(X-\mu) < w = 0.85\}$

Procedimiento del ejercicio 7 A), B), C) y D)

Se conoce que:

- 1. El contorno de una hiperelipse esta dada por: $(X-\mu)'\Sigma^{-1}(X-\mu)=c^2$
- 2. Asi como que: $d^2(x,\mu)=(X-\mu)'\Sigma^{-1}(X-\mu)$ es el cuadrado de la distancia estadística de x a μ .
- 3. $(X-\mu)'\Sigma^{-1}(X-\mu)$ tiene una distribución X^2_p .
- 4. El hiperelipse sólido que cumple con $(X-\mu)'\Sigma^{-1}(X-\mu) \leq X_{\alpha,p}^2$ tiene probabilidad $1-\alpha$
- Por tanto, $(X-\mu)'\Sigma^{-1}(X-\mu)\sim X_p^2$ donde $d^2(x,\mu)\sim X_{p=5}^2$

El procedimiento se realizó en Excel y la formula utilizada se escribió con su correspondiente ejercicio.

▼ Solución del ejercicio 7 A), B), C) y D)

=DISTR.CHICUAD.CD(3,5)	
0.699985836	
=DISTR.CHICUAD.CD(4,5)	
0.549415951	
=DISTR.CHICUAD.CD(6,5)	
0.306218918	
DISTR.CHICUAD.CD(4,5) - DISTR.CHICUAD.CD(6,5)	
0.243197033	
=DISTR.CHICUAD(2,5)	
0.138369166	
=INV.CHICUAD(0.85,5)	
8.115199413	
	0.699985836 =DISTR.CHICUAD.CD(4,5) 0.549415951 =DISTR.CHICUAD.CD(6,5) 0.306218918 DISTR.CHICUAD.CD(4,5) - DISTR.CHICUAD.CD(6,5) 0.243197033 =DISTR.CHICUAD(2,5) 0.138369166 =INV.CHICUAD(0.85,5)

▼ Ejercicio 8.

Considera la muestra aleatoria de un vector aleatorio (datos en el ícono). Obtener \bar{X} y S. Interpreta los valores obtenidos.

Se conoce que:

 $ar{X}=ar{x_1},ar{x_2},ar{x_3},\ldots,ar{x_n}$ Es elvector de medias que involucra la media de cada una de las variables.

y que S es la matriz de covarianza:

$$S = egin{bmatrix} \sigma_{11} & \sigma_{1,2} & \ldots & \sigma_{1,p} \ \sigma_{21} & \sigma_{2,2} & \ldots & \sigma_{2,p} \ \ldots & \ldots & \ldots & \ldots \ \sigma_{p1} & \sigma_{p,2} & \ldots & \sigma_{p,p} \end{bmatrix}$$

```
1 data = pd.read_excel('/content/datos_tarea2.xlsx')
```

2 data

	X1	Х2	Х3	Х4	X5
0	91.165	106.549	146.410	313.598	509.574
1	94.264	120.121	155.148	321.554	500.530
2	90.704	102.270	160.374	307.334	502.790
3	88.221	97.923	162.187	304.159	516.541
4	97.493	110.621	132.752	287.310	511.783
5	100.526	106.908	166.806	312.559	497.740
6	101.938	119.148	166.650	302.406	517.939
7	90.320	88.899	157.938	296.041	489.497
8	91.198	106.482	146.842	290.708	507.501
9	90.265	94.632	160.773	297.262	497.114
10	88.971	98.043	147.283	314.401	490.577
11	95.846	107.462	150.816	299.442	504.984
12	82.807	97.962	144.698	294.896	507.676
13	85.453	91.489	128.124	295.481	484.162
14	87.837	96.181	129.412	295.194	493.443
15	88.713	102.343	149.718	303.305	507.263
16	90.031	99.401	150.917	303.203	503.830
17	91.493	103.983	162.394	297.580	514.231
18	92.502	100.300	155.096	295.435	498.803
19	95.594	105.693	157.010	304.972	496.025
20	101.343	122.262	156.679	313.046	510.512
21	92.031	94.523	139.929	294.252	504.326
22	91.277	112.725	144.495	304.593	509.151
23	87.291	95.292	141.945	305.739	495.626
24	90.736	109.871	144.640	306.889	506.037
25	88.921	105.064	150.717	310.488	506.067
26	89.052	100.234	144.309	287.213	501.222
27	93.561	111.856	154.579	311.706	516.691
28	93.277	101.911	158.661	293.858	503.584
29	87.861	95.306	142.033	303.097	495.869
30	75.929	65.475	133.170	277.813	490.685
31	83.788	95.600	136.007	299.238	502.149
32	77.523	81.554	149.598	301.804	496.585
33	88.616	102.333	137.795	300.335	501.062
34	98.890	112.363	160.728	300.904	511.197
35	87.141	94.740	124.189	297.186	488.293
36	86.743	91.960	153.551	298.659	492.101
37	91.201	101.851	141.163	284.113	492.932
38	92.842	105.496	133.725	299.827	490.169
39	93.560	109.263	152.489	311.103	503.316
40	93.908	115.429	149.706	304.232	512.612
41	98.230	111.154	162.001	305.740	505.033
42	96.944	103.924	147.093	299.432	492.012
43	88.636	106.956	148.072	310.189	494.151
44	93.843	98.554	148.500	281.821	496.394
45	94.402	115.382	153.243	304.291	504.800
46	90.116	91.077	160.513	303.638	503.275

▼ Procedimiento ejercicio 8 A)

El vector de medias es:

```
1 data.mean()

X1 91.21800
X2 101.92792
X3 149.20950
X4 300.45120
X5 501.20704
dtype: float64
```

▼ Solución ejercicio 8 A)

- X₁ = 91.21800
- X₂ = 101.92792
- X_3 = 149.20950
- X_4 = 300.45120
- X₅ = 501.20704

La matriz de varianzas y covarianzas es:

▼ Procedimiento ejercicio 8 B)

1 data.cov()

		X1	X2	Х3	X4	X5
Х	(1	27.088474	43.029097	26.502514	13.003355	17.403444
Х	2	43.029097	109.938370	35.671089	49.543822	53.919321
Х	3	26.502514	35.671089	103.328174	33.266840	36.491867
Х	4	13.003355	49.543822	33.266840	80.259596	22.005543
Х	5	17.403444	53.919321	36.491867	22.005543	70.952417

▼ Solución ejercicio 8 B)

```
1 plt.figure(figsize=(8,8))
2 sns.heatmap(data.cov(), annot=True, annot_kws={"size": 10})
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f82144180a0>

1 data.boxplot(showmeans=True)

2 plt.title('Diagramas de Caja y Bigotes de los datos brindado para la tarea 2')

Text(0.5, 1.0, 'Diagramas de Caja y Bigotes de los datos brindado para la tarea 2') Diagramas de Caja y Bigotes de los datos brindado para la tarea 2

Interpretación de resultados

- Se concluye bajo las medias que:
 - \circ Los datos X_1 se centran en 91.21, los de X_2 en 101.92, X_3 en 149.20, X_4 = 300.45 y X_5 = 501.20.
 - \circ La varianza, o dispersión que pueden llegar a tener los datos de X_1 es alrededor de 27.08, X_2 de 109.93, X_3 de 103.32, X_4 de 80.25 y X_5 de 70.95.
 - Conforme a la covarianza, es posible mencionar que todas las variables tienenden a aumentar o disminuir a la vez dado que todas las covarianzas son positivas y no son cercanas a cero.
- Es posible comprender mejor dichos estadísticos con la ayuda del gráfico de cajas y bigotes, ya que el triángulo muestra la media, en la caja donde estan centrados la mayoria de las muestras y los bigotes y puntos en donde llegan a variar los datos.