

# YDLIDAR X4 DATASHEET



DOC#: 01.13.000000



# **Contents**

| overview                           | 2 |
|------------------------------------|---|
| Product Features                   | 2 |
| Applications                       | 2 |
| Installation and dimensions        | 2 |
| Specifications                     | 3 |
| Product Parameter                  | 3 |
| Electrical Parameter               | 4 |
| Interface Definition               | 4 |
| Data communication                 | 5 |
| Motor control                      | 5 |
| Optical Characteristic             | 6 |
| Polar coordinate system definition | 6 |
| Others                             | 7 |
| Development and support            | 7 |
| Revision                           |   |



#### **OVERVIEW**

YDLIDAR X4 is a 360-degree two-dimensional rangefinder (hereinafter referred to as X4) developed by YDLIDAR team. Based on the principle of triangulation, it is equipped with related optics, electricity, and algorithm design to achieve high-frequency and high-precision distance measurement. The mechanical structure rotates 360 degrees to continuously output the angle information as well as the point cloud data of the scanning environment while ranging.

#### **Product Features**

- ➤ 360 degree omnidirectional scanning ranging distance measurement
- Small distance error, stable performance and high accuracy
- ➤ 10m Ranging distance
- > Strong resistance to ambient light interference
- Low power consumption, small size and long life
- Laser power meets Class I laser safety standards
- Adjustable motor speed frequency differ from 6Hz~12Hz (support customization)
- Ranging frequency up to 5K Hz (support customization)

# **Applications**

- Robot navigation and obstacle avoidance
- Robot ROS teaching and research
- > Regional security
- Environmental scanning and 3D reconstruction
- Commercial robot /Robot vacuum cleaner

### **Installation and dimensions**



FIG 1 YDLIDAR X4 INSTALLATION SIZE





FIG2 YDLIDAR X4 MECHANICAL DIMENSIONS

# **SPECIFICATIONS**

# **Product Parameter**

# **CHART1 YDLIDAR X4 PRODUCT PARAMETER**

| Item              | Min  | Typical | Max  | Unit | Remarks                                  |
|-------------------|------|---------|------|------|------------------------------------------|
| Ranging frequency | -    | 5000    | -    | Hz   | 5000 times per second                    |
| Motor frequency   | 6    | -       | 12   | Hz   | PWM or Voltage Regulation                |
| Ranging distance  | 0.12 | -       | >10  | m    | 80% reflectivity                         |
| Scanning angle    | -    | 0~360   | -    | Deg  | -                                        |
| Absolute error    | -    | 2       | -    | cm   | Distance≤0.5m                            |
| Dolotivo orror    | -    | 1.5%    | -    | -    | 0.5m <distance≤6m< td=""></distance≤6m<> |
| Relative error    | -    | 2.0%    | -    | -    | 6m <distance≤8m< td=""></distance≤8m<>   |
| Angle resolution  | 0.48 | 0.50    | 0.52 | Deg  | Distance≤0.5m                            |
| Working life      | -    | 1500    | -    | h    | Continuous working hours                 |

Note 1: The measurement range and relative accuracy above are the factory inspection standard value;

Note 2: The relative error value indicates the accuracy of the Lidar measurement.



Relative error = (Measuring distance - Actual distance) / Actual distance \* 100%.

Please avoid using Lidar under high-temperature, high-low temperature or strong vibration situation, which might cause a 3% relative error.

# **Electrical Parameter**

#### CHART2 YDLIDAR X4 ELECTRICAL PARAMETER

| Item               | Min | Typical | Max | Unit | Remarks                                                                      |
|--------------------|-----|---------|-----|------|------------------------------------------------------------------------------|
| Supply<br>voltage  | 4.8 | 5       | 5.2 | V    | Excessive voltage might damage the Lidar while low affect normal performance |
| Voltage<br>ripple  | 0   | 50      | 100 | mV   | Excessive ripple affect normal performance                                   |
| Starting current   | 400 | 450     | 480 | mA   | Higher current required at start-up                                          |
| Standby<br>current | 280 | 300     | 340 | mA   | System idle, motor rotation                                                  |
| Working current    | 330 | 350     | 380 | mA   | System work, motor rotation                                                  |

# **Interface Definition**

X4 provides a PH1.25-4P female connector with functional interfaces for system power, data communication and motor control.



FIG3 YDLIDAR X4 INTERFACES



# **CHART3 YDLIDAR X4 INTERFACE DEFINITION**

| Pin    | Туре            | Description                  | Defaults | Range     | Remarks                         |
|--------|-----------------|------------------------------|----------|-----------|---------------------------------|
| VCC    | Power<br>Supply | Positive                     | 5V       | 4.8V~5.2V | -                               |
| Tx     | Output          | System serial output         | -        | -         | Data stream:<br>Lidar→Computer  |
| Rx     | Input           | System serial port<br>Input  | -        | -         | Data stream:<br>Computer→Lidar  |
| GND    | Power<br>Supply | Negative                     | 0V       | 0V        | -                               |
| M_EN   | Input           | Motor enable control         | 3.3V     | 0V~3.3V   | High level enable               |
| DEV_EN | Input           | Ranging enable control       | 3.3V     | 0V~3.3V   | High level enable               |
| M_SCTR | Input           | Motor speed control terminal | 1.8V     | 0V~3.3V   | Voltage or PWM speed regulation |
| NC     | -               | Reserved pin                 |          | -         | High level enable               |

#### **Data communication**

With a 3.3V level serial port (UART), users can connect the external system and the product through the physical interface. After that, you can obtain the real-time scanned point cloud data, device information as well as device status. The communication protocol of parameters are as follows:

CHART4 YDLIDAR X4 SERIAL SPECIFICATION

| Item                 | Min | Typical | Max | Unit | Remarks                                 |
|----------------------|-----|---------|-----|------|-----------------------------------------|
| Baud rate            | -   | 128000  | -   | bps  | 8-bit data bit,1 stop<br>bit, no parity |
| High Signal<br>Level | 1.8 | 3.3     | 3.5 | V    | Signal voltage>1.8V                     |
| Low signal<br>Level  | 0   | 0       | 0.5 | V    | Signal voltage<0.5V                     |

#### **Motor control**

X4's motor driver supports speed control function and can be adjusted by the M\_SCTR pin and M EN pin.

The lower the voltage / the smaller the PWM duty cycle, the higher the motor speed.

For example:

M\_EN is high level, M\_SCTR Input voltage is 0V, and then the motor rotates at the highest speed.

Following is the PWM signal requirements of M SCTR:



# **CHART5 YDLIDAR X4 MOTOR PWM SIGNAL SPECIFICATION**

| Item             | Min | Typical | Max  | Unit | Remarks                                          |
|------------------|-----|---------|------|------|--------------------------------------------------|
| PWM<br>Frequency | -   | 10      | -    | KHz  | PWM is the wave signal                           |
| Duty cycle range | 50% | 85%     | 100% |      | The smaller the duty cycle, the faster the speed |

# **Optical Characteristic**

X4 uses an infrared point pulsed laser that meets FDA Class I laser safety standards. The laser and optical lens are used for the transmission and reception of the laser signal to achieve high-frequency ranging while working. To ensure system ranging performance, please keep the laser and optical lens clean. The detailed optical parameters are as follows:

#### CHART6 YDLIDAR X4 LASER OPTICAL PARAMETERS

| Item                | Min | Typical | Max     | Unit | Remarks       |
|---------------------|-----|---------|---------|------|---------------|
| Laser<br>wavelength | 775 | 785     | 795     | nm   | Infrared band |
| Laser power         | -   | 3       | 5       | mW   | Peak power    |
| FDA                 |     |         | A Class | ; l  |               |

# **Polar coordinate system definition**

For secondary development, X4 internally defines a polar coordinate system.

Pole: the center of the rotating core of the X4;

Positive direction: clockwise;

Zero angle: directly in front of the X4 motor;



FIG4 YDLIDAR X4 POLAR COORDINATE SYSTEM DEFINITION



#### **Others**

#### **CHART7 YDLIDAR X4 OTHERS**

| Item                  | Min | Typical | Max  | Unit | Remarks                                                        |
|-----------------------|-----|---------|------|------|----------------------------------------------------------------|
| Operating temperature | 0   | 20      | 40   | °C   | High temperature<br>environment will<br>reduce life expectancy |
| Lighting environment  | 0   | 550     | 2000 | Lux  | For reference only                                             |
| Weight                | -   | 180     | _    | g    | N.W.                                                           |

# **Development and support**

With a wealth of hardware and software interfaces, X4 can support motor enable control, speed control, and enable scanning.

Also, the 3D model is available. YDLIDAR provides the graphical debugging client-Point Cloud Viewers, together with the corresponding SDK development kit and ROS development kit.

For the X4 development manual, SDK development manual and Ros manual, please download from our official website: www.ydlidar.com

# **Revision**

| Date       | Version | Contents                                                                                                                                                                                                           |
|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2017-11-29 | 1.0     | First writing                                                                                                                                                                                                      |
| 2018-01-15 | 1.1     | Modify the interface definition,Tx,Rx                                                                                                                                                                              |
| 2018-08-06 | 1.2     | Ranging resolution parameter correction                                                                                                                                                                            |
| 2019-03-21 | 1.3     | <ul> <li>Update the relative error description,</li> <li>update the document code: 01.13.000000,</li> <li>change the footer to 2015-2019 YDLIDAR</li> </ul>                                                        |
| 2019-05-06 | 1.4     | <ul> <li>Update page number is 8 pages,</li> <li>modify the accuracy description,</li> <li>increase the absolute error to 2cm when measuring distance less than 0.5m,</li> <li>modify M_SCTR error text</li> </ul> |
|            |         |                                                                                                                                                                                                                    |