DLD LAB WIN_2021

LAB-1

<u>Aim:</u> To simulate different types of logic gates (NOT, NAND, NOR, XOR, XNOR) in different ways of modelling (DATAFLOW, BEHAVIORAL, STRUCTURAL)

Tools used: vivado software

Truth tables:

Boolean expressions:

Boolean expressions	for the follow	ing gates :
Not gate:	Mor gate:	XNOR gate:
Y= ~A. book	Y= N(A+B)	$Y = \sim (A^{\Lambda}B)$
NAND gate: y= N(A&B)	$y = A^B$	A)V A

Circuit diagrams:

Not gate:

Nand gate:

Nor gate:

Xor gate:

Xnor gate:

Codes:

Not gate:

module notgate_dataflow(x,y);//dataflow modelling

input x; // declaring input

output y; // declaring output

assign $y = \sim(x)$; // assigning values to output

Endmodule

module tbi_notgate_dataflow;

reg x;

wire y;

 $notgate_dataflow a1(x,y);$

initial

begin

x=1;

#1 x=0;

#1 x=1;

end

Endmodule

Nand gate:

```
products (bin-towards)

| Column | 1997 | Springer | Discount | Di
```

```
module nandgate_behavioral (A,B,Y);
output reg Y;
input A, B;
always@(A or B) begin
if (A == 1'b1 & B == 1'b1) begin
Y = 1'b0;
end
else
Y = 1'b1;
```

end

module tb_nandgate_behavioral;

reg A, B;

wire Y;

nandgate_behavioral a1(A,B,Y);

initial begin

A = 0; B = 0;

#1 A = 0; B = 1;

#1 A = 1; B = 0;

#1 A = 1; B = 1;

end

endmodule

Nor gate:

 $module norgate_dataflow(A,B,Y);$

output Y;

input A, B;

assign $Y = \sim (A \mid B)$;

module tbi_norgate_dataflow;

```
reg A, B;
```

wire Y;

norgate_dataflow a1(A,B,Y);

initial begin

$$A = 0; B = 0;$$

$$#1 A = 0; B = 1;$$

$$#1 A = 1; B = 0;$$

$$#1 A = 1; B = 1;$$

end

endmodule

Xor gate:

```
| Company | Department | Depart
```

```
module xorgate_behavioral(X,Y,Z);
```

```
input X,Y;

output reg Z;

always@(Y,X)

begin

if (X == 1'b0 & Y == 1'b0)

Z = 1'b0;

else if (X == 1'b1 & Y == 1'b1)

Z = 1'b0;

else
```

Z = 1'b1;

end

endmodule

Test bench code:

module tb_xorgate_behavioral;

```
reg X,Y;
wire Z;
xorgate_behavioral a1 (X,Y,Z);
initial
begin
X = 0; Y = 0;
#1 X = 0; Y = 1;
#1 X = 1; Y = 0;
```

#1X = 1; Y = 1;

end

endmodule

xnor gate:

 $module \times norgate_dataflow(x,y,z);$

input x,y;
output z;
assign z = ~(x ^ y);

module tb_xnorgate_dataflow;

reg x,y;

wire z;

 \times norgate_dataflow a1(\times ,y,z);

initial begin

$$x = 0$$
; $y = 0$;

$$#1 \times = 0$$
; y = 1;

$$#1 \times = 1$$
; y = 0;

$$#1 \times = 1$$
; y = 1;

end

Results of codes:

Not gate:

REGNO:20BCD7171

Nor gate:

Xor gate:

Xnor gate:

Conclusion:

Now I got full knowledge about the verilog codes of the logic gates and there are three modelling styles also in that in this lab only two I learned(dataflow and structural)

- 1)dataflow modelling
- 2) behavioral modelling
- 3)structural modelling

There are three modelling styles in that two was very well known and I can do any codes for logic gates

Finally in this lab I came to know about

- Truth tables
- Logic gate diagrams
- Boolean expressions for logic gates
- Different types of modelling
- Output analysis

Reference links:

circuitverse