Linguaggi e Computabilità

Daniele De Micheli

2019

Indice

	abeti e																				
1.1	String	he .																			
1.2	Alfabe	eti .																			
1.3	Lingu	aggio																			
1.4	Gram	matic	he .																		
	1.4.1	Gra	mma	tica	a l	ibe	re	da	al o	or	te	st	о -	C	F(J-					
	1.4.2	Gra	mma	tica	a N	VO	Ν	co	$_{ m nt}$	ext	-fı	ree	9								

Parte I

Prima Parte

1 Alfabeti e Linguaggi

Si definisce **alfabeto** un insieme finito e non vuoto di simboli. Ad esempio, l'alfabeto $\{A,B,C,...,Z\}$ potremmo definirlo come l'insieme delle lettere maiuscole dell'alfabeto italiano. Altri esempi intuitivi sono l'inseme delle cifre che compongono i numeri arabi $\{1,2,3,...9,0\}$ o l'insieme $\{0,1\}$ che rappresenta i numeri binari. Un alfabeto si indica con una lettera maiuscola greca:

• $A = \{A, B, C, ..., Z\};$

•
$$\Gamma = \{0, 1\};$$

Si definisce invece una **stringa** un insieme vuoto, finito o infinito di simboli presi da un dato alfabeto. Una stringa vuota si indica con $\epsilon o \lambda$.

1.1 Stringhe

Una stringa, come abbiamo già visto, si rappresenta con una lettera greca maiuscola. Nel caso volessimo indicare invece la lunghezza di una stringa bisogna utilizzare la seguente notazione:

$$|\Gamma| = x$$

dove Γ rappresenta la stringa e x la sua lunghezza.

Le stringhe possono inoltre essere "manipolate", o meglio esse si possono concatenare per ottenere una nuova stringa. Tale operazione si può indicare così: $\Gamma \circ A$ e si legge " Γ concatenata ad A". La concatenazione **non** è un'operazione commutativa. Infatti

$$\Gamma \circ A \neq A \circ \Gamma$$

Se prendiamo ad esempio $A=\{010\}$ e $\Gamma=\{11\}$, allora $A\circ\Gamma=\{01011\}$ mentre $\Gamma\circ A=\{11010\}$ che non sono assolutamente uguali come si può ben vedere.

1.2 Alfabeti

Gli alfabeti, come abbiamo già visto, sono insieme finiti di simboli. Su tali insiemi è possibile definire delle operazioni che generano delle stringhe a partire dall'alfabeto stesso.

Potenza di un alfabeto : dato un alfabeto E, si definisce potenza di E la stringa di lunghezza k contenente tutti gli elementi dell'alfabeto E.

dato
$$E, k > 0 \in \mathbb{Z}, \Rightarrow E^k = E \times E \times E \times E \times \dots \times E, k \text{ volte}$$

Se |E|=q,allora $|E^k|=q^k.$ Ad esempio, prendiamo l'alfabeto $E=\{0,1\}.$ Allora:

- $E^1 = \{0, 1\}$
- $E^2 = \{00, 01, 10, 11\}$

• $E^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Come si può intuire dall'esempio qui sopra, il risultato della potenza di un alfabeto non è altro che l'insieme delle *combinazioni* di numero k degli elementi dell'alfabeto.

Chiusura di Kleene : la chiusura di Kleene è un'operazione che riguarda le potenze di un alfabeto. Infatti tale operazione non è altro che l'unione di tutte le potenze di un alfabeto fino a k. Formalmente:

$$E^* = \cup E^k = E^0 \cup E^1 \cup E^2 \dots \cup E^k, \ t.c. \ k \ge 0$$

Un'operazione derivata da quest'ultima è la chiusura di Kleene ma senza l'elemento 0:

$$E^+ = E^{\star} \setminus E^0$$

1.3 Linguaggio

Possiamo definire un linguaggio L su E un sottoinsieme di E^* tale che $L \subseteq E^*$. Per esempio, preso $E = \{a, b, c\}$, un linguaggio L potrebbe essere $L_1 = \{aa, cbc\}$. Un linguaggio può essere finito (vedi L_1), oppure infiniti (es. $L_2 = \{w \in E^* \mid w \text{ contiene lo stesso numero di } a e c\}$).

Preso un linguaggio $L \subseteq E^*$, possiamo affermare che:

- 1. $\emptyset \subseteq L$;
- $2. \ \varepsilon \subseteq L;$
- 3. $E^* \subseteq L$;

sono tutti linguaggi. La principale caratteristica di un linguaggio è che esso deve essere riconosciuto e interpretato da una macchina (o automa) ed essa deve anche essere in grado di generarlo tramite una *grammatica*.

Problema di Decisione. Il problema di decisione si presenta nel momento in cui, dato un quesito, le possibili risposte sono sempre e sole "si" o "no".

Problema di Membership. Il problema di Memebership è legato al concetto di stringa (come input), di linguaggio e di appartenenza ad un determinato linguaggio. Data una stringa w in input, una determinata macchina deve essere in grado di dire se essa appartiene ad un linguaggio oppure no.

DEFINIZIONI Una forma sentenziale è una stringa di simboli terminali e non terminali: $\gamma \in (V \cup T)^*$

Concatenazione di linguaggi : Dati due linguaggi $L_1, L_2 \subseteq E^*$ allora

$$L_1 \circ L_2 = \{w | w = w_1 \circ w_2, w_1 \in L_1, w_2 \in L_2\}$$

1.4 Grammatiche

La descrizione grammaticale di un linguaggio consiste di quattro componenti:

- 1. Un insieme finito di simboli che formano le stringhe del linguaggio. Questi sono chiamati terminali o simboli terminali.
- 2. Un insieme finito di *variabili*, dette anche *non terminali* o *categorie sintattiche*. Ognuna di esse rappresenta un linguaggio.
- 3. Una variabile, chiamata *simbolo iniziale*, che rappresenta il liunguaggio da definire.
- 4. Un insieme finito di *produzioni*, o *regole*, che rappresentano la definizione ricorsiva di un linguaggio. Ogni produzione consiste di tre parti:
 - Una variabile che viene definita dalla produzione ed è spesso detta la **testa** della produzione.
 - Il simbolo di produzione \rightarrow .
 - Una stringa di zero o più terminali e variabili. detta il **corpo** della produzione, il quale rappresenta un modo di formare le stringhe nel linguaggo della variabile di testa.

1.4.1 Grammatica libere dal contesto -CFG-

Una grammatica context-free è una grammatica che non prevede l'incrocio dei simboli terminali per cui è necessario utilizzare delle regole differenti. Possiamo rappresentare una CFG per mezzo dei quattro componenti descritti sopra, ossia G = (V, T, P, S), dove V è l'insieme delle variabili, T i terminali, P l'insieme delle produzioni ed S il simbolo iniziale.

Stringhe palindrome : le stringhe palindrome sono un esempio semplice di linguaggio che utilizza una grammatica context-free. Abbiamo il l'alfabeto $E = \{0, 1\}$ e il linguaggio costruito su esso $L_{pal} \subseteq E^*$. Da questo alfabeto e con questo linguaggio possiamo costruire una stringa w palondroma come

$$w = \{0110\}$$

Essa può essere definita per induzione come segue:

- 1. Passo base: $\varepsilon, 0, 1 \in L_{nal}$
- 2. Passo induttivo: se $w \in L_{pal}$, allora $0w0, 1w1, \varepsilon \in L_{pal}$

Un esempio di regole del linguaggio possono essere:

$$S \rightarrow \varepsilon$$

$$S \rightarrow 0$$

$$S \rightarrow 1$$

$$S \rightarrow 0S0$$

$$S \rightarrow 1S1$$
(1)

in cui la **testa** può essere sostituita dal **corpo**.

Queste regole possono essere applicate tramite le due relazioni:

- $1. \Rightarrow$
- $2. \Rightarrow^*$

La prima (1) possiamo definirla come segue:

Prima relazione. Sia G = (V, T, P, S) una CFG e sia $\alpha A\beta$ tale che $\alpha, \beta \in (V \cup T)^*$ e $A \in V$. Sia $A \to \gamma \in P$. Allora $\alpha A\beta \Rightarrow \alpha \gamma \beta$.

Seconda relazione. Si ha che $\alpha \Rightarrow^* \beta$, con $\alpha, \beta \in (V \cup T)^*$, se e solo se $\exists \gamma_1, \gamma_2, ..., \gamma_n \in (V \cup T)^*$ tale che $\alpha \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \gamma_3 \Rightarrow ... \Rightarrow \gamma_n \Rightarrow \beta$ con $n \geq 1$. Se n = 1, allora $\alpha = \beta$ e vale $\alpha \Rightarrow^* \beta$ cioè $\alpha \Rightarrow^* \gamma$.

Le produzioni di una CFG si applicano per dedurre se una stringa può appartenere al linguaggio oppure no. Per fare questo si possono utilizzare due metodi differenti. Prese le seguenti regole

- 1. $E \rightarrow I$
- $2. E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

e questa stringa w=a*(a+b00). Possiamo a questo punto intraprendere due strade per affermare se la stringa w appartiene al linguaggio, quella della inferenza ricorsiva o quella della derivazione. La prima funzina così: creo una tabella in cui in ogni passaggio applico una regola specificando per quale linguaggio e quali altre precedenti stringhe già ottenute sto riutilizzando. L'altro metodo, quello per derivazione prevede invece l'uso delle relazioni viste nel paragrafo (1.4.1). La stessa stringa è quindi ottenuta nel seguente modo:

$$E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E \Rightarrow_{lm}$$
$$\Rightarrow_{lm} a * (E) \Rightarrow_{lm} a * (E + E) \Rightarrow_{lm} a * (I + E) \Rightarrow_{lm} a * (a + E) \Rightarrow_{lm}$$
$$\Rightarrow_{lm} a * (a + I) \Rightarrow_{lm} a * (a + I0) \Rightarrow_{lm} a * (a + I00) \Rightarrow_{lm} a * (a + b00)$$

Per ricavare la stringa abbiamo utilizzato una derivazione sinistra, ma avremmo potuto eseguire la derivazione destra e il risultato sarebbe stato il medesimo. Infatti, qualunque derivazione ha una derivazione a sinistra e una a destra equivalenti.

Tabella 1: Inferenza Ricorsiva

n	Stringa ricavata	Linguaggio	Produzione impiegata	Stringhe impiegate
(i)	a	I	5	_
(ii)	b	I	6	_
(iii)	b0	I	9	(ii)
(iv)	b00	I	9	(iii)
(v)	a	E	1	(i)
(vi)	b00	\mathbf{E}	1	(iv)
(vii)	a + b00	E	2	(v),(vi)
(viii)	(a + b00)	E	4	(vii)
(ix)	a * (a + b00)	E	3	(v),(viii)

1.4.2 Grammatica NON context-free

Il linguaggio di esempio (di tipo 2): $L = \{w \in \{a, b, c\}^* | w = a^n b^n c^n, n \ge 1\}$ è generato dalla seguente grammatica (NON context-free):

$$G = (\{S, X, B, C\}, \{a, b, c\}, P, S)$$

e dove le regole di produzione sono:

- 1. $S \rightarrow aSBC$
- 2. $S \rightarrow aBC$
- 3. $CB \rightarrow XB$
- 4. $XB \rightarrow XC$
- 5. $XC \rightarrow BC$
- 6. $aB \rightarrow ab$
- 7. $bB \rightarrow bb$
- 8. $bC \rightarrow bc$
- 9. $cC \rightarrow cc$

Le grammatiche 3,4,5 possono essere "collassate" in $CB \to BC$ Si può dimostrare , usando il Pumping Lemma per i CFL, che non è context-free.

Esempio di Derivazione:

Deriviamo la stringa abc (corrispondente a n=1), indicando anche ad ogni passo la regola usata.

$$S(2) \rightarrow aBC(6) \rightarrow abC(8) \rightarrow abc$$

Deriviamo la stringa aabbcc (corrispondente a n = 1), indicando anche ad ogni passo la regola usata.

$$S(1)
ightarrow aSBC(2)
ightarrow aaBCBC(3)
ightarrow aaBXBC(4)
ightarrow aaBXCC(5)
ightarrow aaBXCC(5)$$

$$\rightarrow aaBBCC(6) \rightarrow aabBCC(7) \rightarrow aabbCC(8) \rightarrow aabbcC(9) \rightarrow aabbcC$$

In generale, per derivare $a^n b^n c^n$, per n < 1:

$$S(n-1 \ volte \to (1))a^{n-1}S(BC)^{n-1} \to (2)a^n(BC)^n(n(n-1)/2 \ volte \ la$$

$$sequenza \rightarrow (3), \rightarrow (4), \rightarrow (5))a^nB^nC^n....slide$$

Esercizio: creo una CFG su $L = \{a^{n+m}xc^nyd^m, conn, m \ge 0\}$:

2 Alberi Sintattici

Un albero sintattico è una rappresentazione grafica (ad albero) che mostra come una forma sentenziale o una stringa è stata ottenuta tramite le regole di derivazione.

Albero Sintattico. Data una CFG definita come

$$G = (V, T, P, S)$$

l'albero sintattico è un albero tale che

- 1. Ogni nodo interno è etichettato da una variabile;
- 2. Ogni foglia è etichettata da una variabile, oppure un simbolo terminale o ancora da ε . Se è etichettata con ε allora è l'unico figlio riscontrato.

3. Se un nodo è etichettato con A (variabile) e i rispettivi figli sono etichettati da sinistra verso destra con $X_1, X_2, X_3, ..., X_k$, allora $A \rightarrow X_1, X_2, X_3, ..., X_k \in P$ (ovvero A è una produzione della grammatica).

Un esempio pratico di albero sintattico: data la CFG definita come

$$E \rightarrow I \mid E + E \mid E * E \mid (E) \ e \ I \rightarrow a \mid b \mid Ia \mid I0 \mid I1$$
 (2)

abbiamo che l'albero sintattico ottenuto è un albero **radicato** e **ordinato**. Si può notare che i nodi interni rappresentano i passaggi per arrivare alle foglie. Difatti è possibile ricostruire il processo di derivazione:

$$E \rightarrow E + E \rightarrow I + E$$