⑲ 日本国特許庁(JP)

⑪特許出願公告

⑫特 **報(B2)** 公

昭61 - 33892

@Int Cl.4

識別記号

庁内整理番号

❷❷公告 昭和61年(1986)8月5日

C 22 C 28/08

6411-4K

発明の数 1 (全13頁)

49発明の名称 テルビウムーデイスプロシウム基巨大磁歪合金

> ②特 頤 昭54-40293

69公 開 昭55-134150

學出 願 昭54(1979)4月5日 ❸昭55(1980)10月18日

砂発 明 川崎市幸区小向東芝町1 考` 佐 槒 戸 東京芝浦電気株式会社総合研究 政 所内

②一発 明 野 老 薄 和 川崎市幸区小向東芝町 1 東京芝浦電気株式会社総合研究

所内 眀 川崎市幸区小向東芝町1 ⑦発 渚 天 野 景 隆 東京芝浦電気株式会社総合研究

所内

顋 ①出 人 株式会社東芝 川崎市幸区堀川町72番地

弁理士 則近 30代 理 人 慶佑 外1名

審査官 相 沢 旭

1

の特許請求の範囲

8 重量%~38重量%の鉄および0,01重量%~ 25重量%のマンガン, 0.1重量%~35重量%のテ ルビウム並びに残部のディスプロジウムおよび不 随的不純物から成り、かつテルビウムとディスプ 5 いた磁気-機械変換デバイスが有力である。しか ロジウムの重量比((テルビウム/(ディスプロ ジウム重量)) が0.001以上0.5以下の範囲内にあ り、かつ50体積%以上のラーベス型金属間化合物 相と残部テルビウムおよびディスプロジウムを主 成分とした稀土類金属α相より構成される2相合 10 つた。 金組織より成るテルビウムーディスプロシウム基 巨大磁歪合金。

発明の詳細な説明

本発明はすぐれた磁歪特性を示し、かつ靱性に 歪合金に関するものである。従来より磁性体を磁 化した場合、内部磁気配列の変化に応じ、磁性体 の長さが変化すること、すなわち外部磁場を作用 させた場合、磁歪が生ずることが知られていた。 延線、磁歪振動子等に応用されている。これらの デバイスを構成する磁歪物質としては、ニツケル 基合金、鉄ーコバルト合金、フエライト等が用い られている。

近年、計測工学の進歩および精密機械分野の発 展に伴い、ミクロンオーダーの微小変位制御に不 可欠の変位駆動部の開発が必要とされている。の 変位駆動部の駆動機構の一つとして磁歪物質を用 しながら従来知られている磁歪物質では変位の絶 対量が充分でなく、ミクロンオーダーの精密変位 制御駆動部材料としては絶対駆動変位量のみなら ず、精密制御の点からも満足し得るものではなか

また上記磁歪物質の変位量のみに着目すれば、 **稀土類と鉄の金属間化合物がニッケル基合金の** 100倍近い磁歪を示すことが知られているが、電 気入力エネルギーの機械的変位への変換効率が極 すぐれたテルビウムーデイスプロシウム基巨大磁 15 めて悪いことおよび材質的に脆弱であることのた め駆動部材料としては満足し得るものでなかつ

本発明者等はこのような点に対拠して検討を進 めた結果8重量%~38重量%の鉄および0.01重量 この磁歪は磁歪フイルタ,磁歪センサ,超音波運 20 %~25重量%のマンガン,0.1重量%~35重量% のテルビウム並びに残部のディスプロシウムおよ び不随的不純物から成り、かつテルビウムとディ スプロシウムの重量比 ((テルビウム重量) / (ディスプロシウム重量))が0,001以上0.5以下の

節囲内にあり、かつ50体積%以上のラーベス型金 屋間化合物相と残部テルビウムおよびディスプロ シウムを主成分とした稀土類金属α相より構成さ れる2相合金組織よりなるテルビウムーディスプ

即ち本発明は優れた磁歪特性および靱性を有 し、特に精密変位制御駆動部用磁気ー機械変位変 換デバイスの主要部材である磁歪物質に適したテ 供する事を目的とする。

以下本発明を詳細に説明すると、本発明に係る 合金において、テルビウム。デイスプロシウムは **稀土類(ランタナイド)に属し、鉄, ニツケル等** 量のため極めて大きい結晶異方性を有し、すぐれ た磁歪特性を得るための必須成分であると同時に すぐれた靱性を付与する合金主成分でもある。し かしながらテルピウム、デイスプロシウム単体、 あるいはテルビウムーデイスプロシウム合金で 20 ビウム金属は鉄およびマンガン等の遷移金属とラ は、低温領域では優れた磁歪特性を示すものの、 室温以上の温度領域では磁歪を示さず、満足した 特性を得ることが不可能である。

本発明合金の主要合金(添加)元素である鉄お よびマンガンはテルビウムおよびディスプロシウ 25 の意味での強磁性相が室温以上の温度まで安定化 ムとラーベス型金属間化合物を形成し、テルビウ ムおよびデイスプロシウム、テルビウムーデイス プロシウム合金における室温以上の温度領域にお ける磁で特性を著しく向上せしめ、満足し得る特 性に至らしめるものである。鉄およびマンガンの 30 635K (358℃) である。以上のごとく遷移金属は 合金成分範囲をそれぞれ8重量%以上38重量%以 下の鉄, 0.01重量%以上25重量%以下のマンガン と限定する理由は、鉄、マンガンともにそれぞれ 8重量%未満の鉄,0.01重量%未満のマンガンで は十分な磁歪特性の向上が得られず、38重量%を 35 超える鉄では靱性が著しく劣下し、脆弱になり、 25重量%を超えるマンガンでは磁歪特性が劣下す るため上記合金成分範囲に限定する。さらにテル ビウムの合金成分範囲を0.1重量%以上35重量% 以下でかつテルビウムとディスプロシウムの重量 40 比 ((テルビウム重量) / (ディスプロシウム重 量))が0.001以上0.5以下の範囲内と限定する理 由はテルビウムの合金化によりディスプロシウム のみの場合に較べ、鉄およびマンガンによる磁歪

特性の向上が一層高められ、優れた磁で特性を示 すテルピウムーディスプロシウム基合金が実現さ れるわけであるが、0.1重量%未満のテルピウム では磁歪特性の向上が得られず、35重量%を越え ロシウム基巨大磁歪合金を見い出したものであ 5 るテルビウムにおいては、かえつて磁歪特性の劣 化が認められることから、0.1重量%以上35重量 %以下の範囲に限定した。さらに上記テルビウム 限定範囲内においてもテルビウムとディスプロシ ウムの重量比が0.001以上0.5以下の範囲に含まれ ルピウムーディスプロシウム基巨大磁歪合金を提 10 ない場合、磁歪特性の向上が得られないので、限 定範囲につけ加えた。

加えて本発明合金中に認められるラーベス型金 属間化合物の体積%としては50%を満たさない場 合、靱性その他の機械的性質はすぐれるものの満 の3d遷移金属と異なり、4f電子の強い軌道角運動 15 足し得る磁歪特性が得られないので、50%以上の ラーベス型金属間化合物を含むことを限定する。

> 次に本発明合金において遷移金属添加元素とし て鉄およびマンガンに限定した理由を実験データ に基づき説明する。ディスプロシウムおよびテル ーベス型金属間化合物を作る。ラーベス型金属間 化合物を作ることにより、テルビウムーディスプ ロシウム合金等の稀土類金属・合金のすぐれた磁 **歪特性は室温以上に持ち来たされる。これは広義** されるためである。強磁性相の消失する温度は稀 土類金属において一例を挙げるならば、ディスプ ロシウムにおいて、179K(-94℃)である。— 方ラーベス型金属間化合物においてDyFe₂の場合 稀土類金属の合金化においてラーベス型金属間化 合物を形成し、すぐれた磁歪特性を室温以上の温 度に持ち来たすわけである。ラーベス型金属間化 合物の室温における飽和磁歪値を第1要に示す。

第 1 麦

	ТъFе2	DyFe ₂	HoFe₂	ErFe₂	TmFe₂
λ ₁₁₁ × 10 ⁶	2400	1900	400	-300	-600

これらの値は従来の磁歪金属例えばニツケルの 飽和磁歪値30×10⁻⁶に比べ桁違いに大きいことが ―見できる。しかしラーベス型金属間化合物単相 の機械的性質は極めて悪く、特に加工性、靱性に 劣り、実用合金かはほど違い特性しか有していな

い。加えて第1表に示す飽和磁歪値を得るために は、数十キロエルステツドという強磁場を必要と し、1アンペア当り100エルステツド程度のソレ ノイド型マグネツトを用い、電気ー磁気変換を行 し、数十キロワットの電力消費となり、実用上の

大きな障害となる。

加工性および靱性の改善策の一つとしては、ラ ーベス型金属間化合物を構成する遷移金属を鉄と マンガンとの合金にすることによつて達成され 10 る。またさらに加工性および靱性を向上せしめる 手段としてはラーベス型金属間化合物中に延性に 富む稀土類金属α相、特にαーデイスプロシウム 相を分散せしめ破壊靱性値を向上せしめることで ウム相の分散による靭性、加工性の改善は熱平衡 状態図より上記鉄ーマンガンー稀土類金属・合金 系に限定される。遷移金属-稀土類金属系状態図 は第1図に示すディスプロシウムーマンガン系の ごとき稀土類金属側においてDyMn₂ラーベス型 20 性を示すものである。 金属間化合物より高稀土類金属元素濃度の化合物 が存在しない系と第2図に示すディスプロシウム ーコバルト系のごとき稀土類金属側において DyCo。ラーベス型金属間化合物より高稀土類元素 金製品に適用可能な合金系としてはディスプロシ ウムーマンガン系型の状態図を示す合金系に限定 されるわけであるが、これを満たす合金系として は、鉄ーマンガン稀土類合金系であるわけであ

次にラーベス型金属間化合物中の稀土類金属お よび遷移金属、特に稀土類金属としてはディスプ ロシウムのテルビウムによる合金化、遷移金属と しては鉄のマンガンによる合金化に伴う磁歪特性 の変化及びαーテルビウムーディスプロシウムに 35 成が限定された。 より靱性を改善した場合の磁歪特性の変化につい て説明する。

第3図および第4図に (TbyDy(1-y))1.33 (Fe: -xMnx)2系の各x値(マンガン濃度)、各y 値(テルビウム濃度)における磁歪特性を示す。40 マンガンの合金化は室温、特に低磁場側(2kOe 以下)での磁歪特性において、yが0.2程度,テ ルビウム海度13重量%程度より低濃度側におい て、鉄のマンガンによる合金化に伴い、顕著な磁

6

歪特性の向上が認められた。なお第3図において 磁歪特性はDy: 33Fe2の室温における磁歪特性を 10とした場合の相対値で示す。(Tbo.2Dyo.8)1.33 (Feo.sMno.2)2においては、現在磁歪特性が明ら なうならば100アンペア以上の大電流を必要と 5 かになつている物質中、最高の特性を示す Tb。。₃Dy。.₁Fe₂を上回るものである。加えて TbossDyos7Fezは脆弱であることに較べ、 (Tbo.2Dyo.8)1.33 (Feo.8Mno.2)2は著しく靱性の改 善が認められた。

一方テルビウムの合金化は、室温特に低磁場側 (2kOe以下)での磁歪特性において、x値,マン ガン濃度の大小によらず、ディスプロシウムのテ ルビウムによる合金金化に伴い、顕著な磁歪特性 の向上が認められた。加えてテルビウム合金化の ある。しかしこのαーテルビウムーディスプロシ 15 効果はxが0.1, 0.2、特にx=0.2において顕著に 認められた。第4図における磁歪特性は Dy₁₋₃₃Fe₂の室温における磁歪特性を10とした場 合の相対値で示す。この結果上記Tbo.2Dyo.7Feg に較べ低テルビウム濃度において、優れた磁歪特

稀土類金属は地球上に稀有な金属資源であり、 近年有限な資源の有効活用は、技術的問題の一つ にまで高められている。この意味においても稀土 類ランタナイド中最も稀有で高価な金属の一つで の化合物が存在する系とに大別される。本発明合 25 ある低テルビウム濃度化は、極めて実用上、技術 上意味が大きい。

> また $(Tb_{0.2}Dy_{0.8})$ $(Fe_{0.8}Mn_{0.2})_2 - \alpha$ (Tb-Dy) 系の磁歪特性を第5図に示す。なお磁歪特 性(Tbo.2Dyo.s)(Feo.sMno.2)2の室温における磁 30 **歪特性を10とした場合の相対値で示す。 α** - (テ ルビウムーディスプロシウム)体積パーセントが 50%を越えると急激に磁歪特性が劣下することが

以上のごとき実験事実に基づき本発明合金の組

次に本発明の実施例について説明し、併せて本 発明の効果を確認するために比較例についても説 明する。

実施例

第2表, 第3表, 第4表のNo.2-1~No.2-14. No $3-1 \sim No$ 3-14, No $4-1 \sim No$ 4-14. 各14種類,合計42種類の合金を用意し、夫々アー ク溶解後800°Cで120時間均一化処理したのち切削 加工により厚さ3㎜,幅6㎜,長さ15㎜の試験片

10

7

を作成した後、室温下において<u>磁</u>等性を測定した。

第	2	麦
---	---	---

	合金	ラーベス 型金属間			
試料%.	Dy	ТЬ	Fe	Mn	花杏物相
		実施	列1-1		(体積%)
2 - 1	残	7.9	13.0	8.3	53
2 – 2	残	7.9	19.0	2.1	52
2 – 3	残	7.0	18.2	11.9	74
2 - 4	残	7.0	22.0	9.0	75
2 - 5	残	7.0	25.0	6.0	72
2 - 6	残	6.9	28,4	2.8	-74
2 – 7	残	5.4	21.9	14.1	85
2 — 8	残	6.4	25,2	10.8	87
2 - 9	残	6.5	28, 1	7,3	90
2-10	残	6.5	32.0	3.0	90
5-11	残	6.0	24.0	16.4	98
2-12	残	6.0	27.9	12.1	98
2-13	残	6.0	32.0	8.5	98
2-14	残	6.0	36.8	3.5	98

第 3 表

	合会	合金組成(重量%)					
試料%.	Dу	Тъ	Fe	Mn	型金属間 化合物相		
		実施	列1-2		(体積%)		
3 - 1	残	15.8	13.0	8.3	52		
3 – 2	残	15.8	19.0	2.1	51		
3 – 3	残	14.0	18.2	11.9	72		
3 - 4	残	14.0	22.0	9.0	73		
3 - 5	残	14.0	25.0	6.0	78		
3 — 6	残	13.8	28.4	2.8	75		
3 - 7	残	12.8	21.9	14.1	82		
3 – 8	残	12.8	25,2	10.8	81		

8

	合金	全組成	ラーベス		
試料No.	Dy	Ть	Fe	Мn	型金属間 化合物相
		実施	列1-2		(体積%)
3 – 9	残	13.0	28.1	7.3	89
3 - 10	残	13.0	32,0	3.0	. 90
3 -11	残	12.0	24.0	16,4	98
3 - 12	残	12.0	27.9	12, 1	98
3 – 13	残	12.0	32.0	8.5	98
3 – 14	残	12.0	36.8	3.5	98

第 4 表

15		合金	全組成	ラーベス		
	試料No.	Dy	Тъ	Fe	Mn	型金属間 化合物相
			実施	例1-3		(体積%)
20	4 - 1	残	23.7	13.0	8.3	54
	4 - 2	残	23.7	19.0	2.1	53
	4 - 3	残	21.0	18.2	11.9	77
	4 4	残	21.0	22.0	9.0	78
25	4 5	残	21.0	25.0	6,0	76
	4 - 6	残	20.7	28.4	2.8	80
	4 - 7	残	19.2	21.9	14.1	87
	4 - 8	残	19.2	25.2	10.8	90
30	4 — 9	残	19.5	28.1	7.3	92
	4 -10	残	19.5	32.0	3.0	91
	4 -11	残	18,0	24.0	16.4	97
	4-12	残	18.0	27.9	12.1	98
<i>35</i>	4-13	残	18.0	32.0	8.5	99
	4-14	残	18.0	36.8	3.5	98

磁歪特性はコアマグネットを用い、磁気回路の 40 一部に上記試料を挿入し、歪ゲージ法により測定 された。

なおNo.2シリーズは(テルピウム)/(デイスプロンウム)重量比が0.1, No.3シリーズは(テルビウム)/(ディスプロシウム)重量比が

10

15

20

25

30

10

0.2. $N_0.4$ シリーズは(テルビウム)/(ディスプロシウム)重量比が0.3である。

この測定結果は第5表、第6表、第7表に示す通りである。

	_	-
矛	J	2 22

	特 性
試料 №.	実施例1-1
2 - 1	21.2
2 – 2	20.8
2 – 3	20.8
2 - 4	29.8
2 - 5	34.0
2 - 6	20.0
2 - 7	25.5
2 - 8	38.4
2 — 9	45.0
2-10	25.2
2-11	24.5
2-12	35.0
2 – 13	40.0
2-14	23.0

第 6 表

特性
実施例1-2
20.5
21.5
31.9
38.7
70.0
34.9
39.0
47.5
84.0

	特 性	
試料 No.	実施例1-2	
3 – 10	42.0	
3-11	37.5	
3 – 12	45.5	
3-13	82.5	
3-14	41.0	

第 7 表

	特 性
試 料 No.	実施例1-3
4-1	20.2
4 - 2	34.0
4 - 3	29.8
4 - 4	31.9
4 - 5	45.5
4 — 6	60.8
4 - 7	37.0
4 - 8	39.0
4 - 9	55.0
4-10	72.0
4-11	35.0
4-12	37.5
4-13	53.5
4-14	71.5

35 比较例 1

第8表の№5-1~№5-14に示す組成の14種類の合金を用意し、実施例同様アーク溶解後800 ℃で120時間均一化処理したのち切削加工により厚さ3㎜,幅6㎜長さ15㎜の試験片を作成した40後、実施例と同一条件下で磁歪特性を測定した。また第8表の№5-15~№5-17に示す組成の従来用いられているニッケル,鉄ーコバルト系合金および鉄ーパラジウム系合金についても磁歪特性を測定した。この結果を第9表に併記した。

10

15

20

第 8 表

合金組成(重量%) ラーベ							
· · · · · · · · · · · · · · · · · · ·	ス型金 属間化						
試料No.	Dy	Тъ	Fe	Mri	合物相		
	比	較例 1			(体積%)		
5 — 1	残	1	18.2	11.9	73		
5 — 2	残	-	28.4	2.8	70		
5 – 3	残	-	41.0	-	100		
5 4	残	8.5	8.9	6.2	27		
5 - 5	残	6.0	11.9	27.9	97		
5 — 6	残	5.4	28.1	17.9	90	*	
5 - 7	残	17.0	8.9	6.2	29		
5 - 8	残	12.0	11.9	27.9	98		
5 9	残	10.8	28.1	17.9	89	*	
5 - 10	残	25.5	8.9	6.2	25		
5-11	残	18.0	11.9	27.9	97		
5-12	残	16.2	28,1	17.9	88		
5 – 13	残	40.0	19.0	2.1	52		
5-14	残	30.0	24.0	16.4	89	*	
5 - 15	49.8Co-Fe						
5-16	-16 39.6Pd-Fe						
5-17			Ni				

(※印 ラーベス相以外の相がテルビウム およびディスプロシウムを主成分 としたα相ではない。(RTa相))

第 9 表

	· · · · · · · · · · · · · · · · · · ·		
	特 性		
試料 No.	比較例1		
5 — 1	14.2		
5 — 2	14.0		
5 – 3	10		
5 – 4	9.0		
5 - 5	0.0		

12

	特性		
試料 Na.	比較例1		
5 — 6	5.0		
5 — 7	10.0		
5 — 8	14.5		
5 ~ 9	6.5		
5 - 10	11.2		
5 — 11	15.5		
5 – 12	7.5		
5 – 13	3.5		
5 — 14	16.0		
5 — 15	16.3		
5 — 16	21.8		
5 – 17	10		

なお磁空特性の比較にあたつては、低磁場側の 磁空値に注目し、印加磁場2kOeにおける静的磁 気空値を求め、No.5-5に示すDyFe2の磁空特性 を10よし、これを基準として相対値で表示した。

を10とし、これを基準として相対値で表示した。 上記実施例1の結果から明らかな如く、本発明 によるテルビウムーディスプロシウム基巨大磁歪 合金は、DyFe2の磁歪特性に較べ、その室温、低 磁場(低電気入力)側での特性の大幅改善がなさ れることが確認された。比較例1の5-17なるニ 30 ツケルに比べ本発明合金、実施例1-2の3-9, 実施例1-3の4-10においては約8倍から 9倍、すなわち従来最も用いられている磁歪材料 」に比べ1桁近く磁歪特性が向上している。この事 実は、精密微小変位駆動用材料に例を取るなら 35 ば、従来1 mで最大40μ m程度の精密変位制御が 可能であったところを同一長さ(1 m)であれば 400μπ程度の精密変位制御が可能となる以外に 同一変位(40μm)を精密変位制御するのであれ ば10cm長さですみ、小型化できるとともに、この 40 サイズは実用化の可否を決める重要な因子でもあ

更に本発明合金の磁歪特性は、比較例1の5-15に示す鉄ーコバルト合金、比較例5-16に示す 鉄ーパラジウム合金の磁歪特性をも大幅に上回る

る。

ものである。

加えて本発明合金はDyFegの磁歪特性および靱 件の改善を検討した本発明者等が先に提案したデ イスプロシウム基巨大磁歪合金の磁歪特性をさら に3倍近く向上せしめた合金である。

第6図に本発明合金、実施例1-2の3-9, 実施例1-3の4-10および脆弱ではあるが磁歪 特性に優れたラーベス型金属間化合物 Tb。.aDy。.7Fe₂の低磁場(低電気入力エネルギ ー)側の磁で特性を示すが、本発明合金は低電気 10 させたとき破壊するものあるいは破壊をまつたく 入力側において、Tbo.aDyo.aFegを上回る特性を 示し、かつ電気入力に対する直線性に優れ、高速、 交流制御においては極めて有利な特性を有してい 3.

なお上記実施例では磁歪特性の向上のみについ 15 て示したが、実施例1に示したような巨大磁歪合 金を精密変位駆動部材あるいは強力超音波発生部 材に適用する場合、磁歪特性に加え靱性は実用上 大きな問題となる。以下実施例1,第2表,第3 表, 第4 表に示した本発明合金および比較例 2, 20 第10表に示した合金について、靱性の改善の実施 例について説明する。

. 10 丧 第

	合金組成(重量%)			ラーベス 型金属間	
試料No.	Dy	ТЪ	Fe	Mn	化合物相
	比 較 例 2 (体積%)				(体積%)
10-1	残	_	41.0	_	100
10-2	残	17.7	41.0		100
10-3	残	5,9	39.0	2.0	100
10-4	残	11.8	39.0	2,0	100
10-5	残	17.7	39.0	2.0	100

実施例 2

第2表のNa 2-1~Na 2-14, 第3表Na 3-1 ~3-14, 第4表No.4-1~4-14, 各14種類, 合計42種類の合金を用意し、夫々アーク溶解後 800℃で120時間均一化処理したのち切削加工によ 40 り、10° ma×100mm ℓの試験片を作成した。 靱性 の比較評価方法としては凹凸を有する鉄製敷板へ の落下試験を採用し、同一形状(ほぼ同一重量) の試験片をA (0.5m), B (1m), C (2m),

14

D(3m)の4種類の異なる位置エネルギーの位 置より自然落下させ、破壊の有無を調べた。この 結果は第11表に示す通りである。なお靱性の表示 方法としては位置A以下の位置より落下させたと 5 き破壊したものは×印、位置A以上位置B以下の 位置より落下させたとき破壊したものはム印、位 置B以上位置C以下より落下させたとき破壊した ものはO印、位置C以上位置D以下より落下させ たとき破壊したものは◎印,位置D以上より落下 おこさないものは†印で示した。

第

	特包	ŧ
試料 No.	実施例2	
4 - 1	†	
4 - 2	t	
4 – 3	†	
4 – 4	l t	
4 - 5	1	
4 - 6	t	
4 - 7	0	
4 - 8	0	
4 - 9	0	
4 -10	0	
4-11	0	
4 -12	0	
4 -13	0	
4-14	Δ	

比較例 2

25

30

本発明合金におけるマンガンの合金化および稀 土類金属濃度の靭性への効果を確認するために第 35 10表のNo.10-1~No.10-5の合金を実施例2と同 一条件で作成した後、同一条件で試験した。この 試験結果は第12表に示す通りである。

第 12 表

	特性
試験No.	比較例2
10-1	×
10-2	×
10-3	×
10-4	×
10-5	×

上記実施例2の結果から明らかなごとく、マン ガンの合金化およびラーベス型金属間化合物化学 度によつて著しく靱性の改善がなされている。す なわち本発明合金であるテルピウムーディスプロ シウムー鉄ーマンガン系よりなるテルビウムーデ イスプロシウム基合金はマンガンの合金化延性に 物のもつ脆弱性を克服し、実用にたえうる靱性の 付与を可能ならしめたものである。加えて化学量 論的組成の稀土類金属濃度以上の稀土類金属濃度 により、室温における耐酸化性、耐食性をも向上

16

せしめることが可能である。

以上説明した如く本発明によるテルビウムーデ イスプロシウムー鉄ーマンガン系テルビウムーデ イスプロシウム基合金は従来の磁歪材料の特性に 5 比べ、極めて優れた磁歪特性を有するとともに靱 性および耐酸化等の実用材料に不可欠な要因をも 満たし、特にミクロンオーダーの敵小変位制御用 駆動部強力超音波発生用振動子、センサ等の構成 材料として極めて優れた特性を有するものであ 10 る。

図面の簡単な説明

第1図はデイスプロシウムーマンガン合金状態 図、第2図はディスプロシウムーコバルト合金状 態図、第 3 図は (TbyDy,,-y,):sa 量論的組成の稀土類金属濃度以上の稀土類金属濃 15 (Fe₁-_xMnx)₂におけるマンガン濃度と磁歪特性 との関係を示す曲線図、第4図は (TbyDy(1-y))1-33 (Fe1-xMnx)2におけるテル ビウム濃度と磁歪特性との関係を示す曲線図、第 5 \boxtimes (t α (Tb - Dy) - Tb_{0.2}Dy_{0.8}) 富むαー(Th-Dy)の分散により、金属間化合 20 (Feo.sMno.z)zにおけるαー(Tb-Dy) 体積パー セントと磁歪特性との関係を示す曲線図、第6図 は本発明合金およびTb。.aDyo.7Fe2の低磁場側の 磁歪特性を示す曲線図。

第1図

第2図

第3図

(Tby Dy(1-y))1.33(Fe1-x Mnx)2系におけらマンガン濃度

第4図

(Tby Dy(1-y))1.33 (Fe1-I Max)2系におけるテルピウム濃度

第5図

以(Tb-Dy)-(Tbo2 Dy08)(Fe08 Mn02)2系における は(Tb-Dy)体積パーセント

