પ્રશ્ન 1(અ) [3 ગુણ]

વેવ ફોર્મ સાથે કંટીન્યુઅસ ટાઇમ સિગ્નલ અને ડિસ્ક્રીટ ટાઇમ સિગ્નલ વ્યાખ્યાયિત કરો.

જવાબ:

કોષ્ટક: સિગ્નલ પ્રકારોની તુલના

સિગ્નલ પ્રકાર	વ્યાખ્યા	વેવફોર્મ ઉદાહરણ
કંટીન્યુઅસ ટાઇમ સિગ્નલ	દરેક સમય બિંદુ પર સતત મૂલ્યો સાથે વ્યાખ્યાયિત થયેલું સિગ્નલ	સ્મૂધ, અવિચ્છિન્ન વક્ર
ડિસ્ક્રીટ ટાઇમ સિગ્નલ	ફક્ત ચોક્કસ સમય બિંદુઓ પર સેમ્પલ્સ સાથે વ્યાખ્યાયિત થયેલું સિગ્નલ	અલગ-અલગ બિંદુઓની શ્રેણી

આકૃતિ:

- **એમ્પ્લિટ્યુડ સાતત્ય**: કંટીન્યુઅસ સિગ્નલમાં, એમ્પ્લિટ્યુડ કોઈપણ મૂલ્ય લઈ શકે છે, જ્યારે ડિસ્ક્રીટ સિગ્નલમાં ચોક્કસ એમ્પ્લિટ્યુડ મૂલ્યો હોય છે
- **ગાણિતિક નોંધ**: કંટીન્યુઅસ સિગ્નલ માટે x(t), ડિસ્ક્રીટ સિગ્નલ માટે x[n] અથવા x(n) વપરાય છે

મેમરી ટ્રીક: "કોસીડી" - ક્રોન્ટિન્યુઅસ સીગ્નલ નદીની જેમ વહે છે, ડીસ્ક્રીટ સિગ્નલ પગલાં જેવા હોય છે

પ્રશ્ન 1(બ) [4 ગુણ]

પિરિયોડિક અને એપિરિયોડિક સિગ્નલ સમજાવો.

જવાબ:

કોષ્ટક: પિરિયોડિક અને એપિરિયોડિક સિગ્નલની તુલના

ગુણઘર્મ	પિરિયોડિક સિગ્નલ	એપિરિયોડિક સિગ્નલ	
વ્યાખ્યા	મિશ્ચત સમય અંતરાલ પછી એકદમ પુનરાવર્તિત પુનરાવર્તિત થતું નથી અથવા અનંત પીરિયડ થાય છે ધરાવે છે		
ગાણિતિક અભિવ્યક્તિ	x(t) = x(t + nT) દરેક t માટે	x(t) ≠ x(t + T) કોઈપણ T માટે	
ઊર્જા/પાવર	અનંત ઊર્જા, મર્યાદિત પાવર	મર્યાદિત ઊર્જા, શૂન્ય સરેરાશ પાવર	
ઉદાહરણો	સાઇન વેલ્સ, સ્કવેર વેલ્સ	સિંગલ પલ્સ, ડેમ્પ્ડ સાઇન્યુસોઇડ	

આકૃતિ:

- સ્પેક્ટ્રલ પ્રોપર્ટી: પિરિયોડિક સિગ્નલમાં ડિસ્ક્રીટ ફ્રિક્વન્સી કોમ્પોનન્ટ્સ હોય છે, એપિરિયોડિકમાં સતત સ્પેક્ટ્રમ હોય છે
- **ફૂરિયર એનાલિસિસ**: પિરિયોડિક સિગ્નલ માટે ફૂરિયર સીરીઝ, એપિરિયોડિક માટે ફૂરિયર ટ્રાન્સફોર્મ વપરાય છે

મેમરી ટ્રીક: "પાઅસ" - પિરિયોડિક સિગ્નલ્સ હંમેશા સમયમાં આવર્તિત થાય છે

પ્રશ્ન 1(ક) [7 ગુણ]

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો.

જવાબ:

આકૃતિ: ડિજિટલ કોમ્યુનિકેશન સિસ્ટમ

કોષ્ટક: ડિજિટલ કોમ્યુનિકેશન સિસ્ટમના બ્લોક્સના કાર્યો

બ્લોક	รเช้	ઉદાહરણ
સોર્સ	ટ્રાન્સમિટ કરવાના સંદેશાનું જનરેશન	માઇક્રોફોન, કીબોર્ડ
સોર્સ એનકોડર	રિડન્ડન્સી દૂર કરે છે, ડેટા કોમ્પ્રેસ કરે છે	હફમેન કોડિંગ, JPEG
ચેનલ એનકોડર	ભૂલ શોધવા/સુધારવા માટે નિયંત્રિત રિડન્ડન્સી ઉમેરે છે	હેમિંગ કોડ્સ, CRC
ડિજિટલ મોક્યુલેટર	ડિજિટલ ડેટાને એનાલોગ સિગ્નલમાં રૂપાંતરિત કરે છે ASK, FSK, PSK	
ચેનલ	સિગ્નલ વહન કરતું માધ્યમ	વાયર્ડ, વાયરલેસ, ઓપ્ટિકલ ફાઇબર
ડિજિટલ ડિમોક્યુલેટર	પ્રાપ્ત સિગ્નલને પાછું ડિજિટલમાં રૂપાંતરિત કરે છે	ASK, FSK, PSK ડિમોક્યુલેટર્સ
ચેનલ ડિકોડર	ઉમેરાયેલી રિડન્ડન્સીનો ઉપયોગ કરી ભૂલો શોધે/સુધારે છે	ભૂલ સુધારણા સર્કિટ્સ
સોર્સ ડિકોડર	મૂળ સંદેશાનું પુનઃનિર્માણ કરે છે	ડેટા ડિકોમ્પ્રેશન

- ફાયદો: નોઇઝ ઇમ્યુનિટી, સુરક્ષિત ટ્રાન્સમિશન, મલ્ટિપ્લેક્સિંગ ક્ષમતા, ડિજિટલ સિસ્ટમ્સ સાથે એકીકરણ
- મુખ્ય પ્રક્રિયાઓ: સેમ્પલિંગ, ક્વોન્ટાઇઝેશન, કોડિંગ, મોક્યુલેશન/ડિમોક્યુલેશન

મેમરી ટ્રીક: "સેચમદેસિ" - **સો**ર્સ એન્કોડ કરે, **ચે**નલ કોડ, **મો**ડ્યુલેટ, **ચે**નલ, **ડિ**મોડ્યુલેટ, **સિ**ંક પ્રાપ્ત કરે

પ્રશ્ન 1(ક) OR [7 ગુણ]

સિંગ્યુલારીટી ફંકશન સમજાવો.

જવાબ:

કોષ્ટક: સામાન્ય સિંગ્યુલારીટી ફંકશન્સ

ફંકશન	ગાણિતિક વ્યાખ્યા	ગુણઘર્મો	ઉપયોગો
યુનિટ સ્ટેપ	u(t) = 1 જ્યારે t ≥ 0, 0 જ્યારે t < 0	t=0 પર અસાતત્ય	સ્વિય-ઓન સિગ્નલ્સ, હેવિસાઇડ ફંકશન
યુનિટ ઇમ્પલ્સ	δ(t) = ∞ જ્યારે t = 0, અન્યત્ર 0, ∫δ(t)dt = 1	અનંત ઊંચાઈવાળું, શૂન્ય પહોળાઈવાળું	ઇમ્પલ્સ રિસ્પોન્સ, સેમ્પલિંગ
યુનિટ રેમ્પ	$r(t) = t \cdot u(t)$	સાતત્ય પરંતુ t=0 પર ડિફરેન્શિયેબલ નથી	લિનિયર ટાઇમ ફંકશન્સ
યુનિટ પેરાબોલા	$p(t) = (t^2/2) \cdot u(t)$	યુનિટ ઇમ્પલ્સનું બીજું ઇન્ટિગ્રલ	એક્સેલરેશનથી પોઝિશન

- **ઇન્ટિગ્રેશન સંબંધ**: દરેક ફંકશન એ અગાઉના ફંકશનનું ઇન્ટિગ્રલ છે
- ગાણિતિક ટ્રલિકટ: જટિલ સિસ્ટમ્સને સરળ ઘટકોમાં વિભાજિત કરીને વિશ્લેષણ કરવા માટે ઉપયોગી

મેમરી ટ્રીક: "સ્ટેઇંપેરે" - સ્ટેપ ઇંપલ્સ પેરાબોલા રેમ્પ - ઇન્ટિગ્રેશનના વધતા ક્રમમાં ફંકશન્સ

પ્રશ્ન 2(અ) [3 ગુણ]

સિગ્નલ 10 બીટ/સિગ્નલ એલીમેન્ટ ધરાવે છે. જો સેકન્ડ દીઠ 100 સિગ્નલ એલીમેન્ટ મોકલવામાં આવે છે. બીટ રેટ શોધો.

જવાબ:

ઉકેલ:

```
બીટ રેટ = સિગ્નલ એલિમેન્ટ દીઠ બિટ્સની સંખ્યા × પ્રતિ સેકન્ડ સિગ્નલ એલિમેન્ટની સંખ્યા
બીટ રેટ = 10 બિટ્સ/સિગ્નલ એલિમેન્ટ × 100 સિગ્નલ એલિમેન્ટ/સેકન્ડ
બીટ રેટ = 1000 બિટ્સ/સેકન્ડ = 1 kbps
```

આકૃતિ:

- **બીટ રેટ**: પ્રતિ સેકંડ ટ્રાન્સમિટ થતા બિટ્સની સંખ્યા (bps)
- સિગ્નલ એલિમેન્ટ: એક કે વધુ બિટ્સનું ભૌતિક પ્રગટીકરણ

મેમરી ટ્રીક: "બીએઈ" - બીટ રેટ એ એલિમેન્ટ્સ ગુણ્યા દરેક ઈલેમેન્ટ દીઠ બિટ્સ

પ્રશ્ન 2(બ) [4 ગુણ]

ઈવન અને ઓડ સિગ્નલ સમજાવો.

જવાબ:

કોષ્ટક: ઈવન અને ઓડ સિગ્નલની તુલના

ગુણઘર્મ	ઈવન સિગ્નલ	ઓડ સિગ્નલ
લ્યાખ્યા	f(-t) = f(t)	f(-t) = -f(t)
સિમેટ્રી	y-અક્ષની આસપાસ મિરર સિમેટ્રી	ઓરિજિન સિમેટ્રી (રોટેશનલ)
ફૂરિયર સીરીઝ	માત્ર કોસાઇન ટર્મ્સ ધરાવે છે	માત્ર સાઇન ટર્મ્સ ધરાવે છે
ઉદાહરણો	કોસાઇન,	t

આકૃતિ:

- ડિકમ્પોઝિશન: કોઈપણ સિગ્નલને ઈવન અને ઓડ ઘટકોના સરવાળા તરીકે વિભાજિત કરી શકાય છે
- **ย์น นเร**์: f_e(t) = [f(t) + f(-t)]/2
- พโร นเอ็: f_o(t) = [f(t) f(-t)]/2

મેમરી ટ્રીક: "ઈસઓપ" - **ઈ**વન **સિ**ગ્નલ્સ મિરર સિમેટ્રી ધરાવે છે, **ઓ**ડ સિગ્નલ્સ મિરર થતાં ઊલટા થઈ જાય છે - **પ**રાવર્તન

પ્રશ્ન 2(ક) [7 ગુણ]

ASK મોક્યુલેટર અને ડી-મોક્યુલેટરના બ્લોક ડાયાગ્રામને વેવફોર્મ સાથે સમજાવો.

જવાબ:

ASK મોક્યુલેટર ડાયાગ્રામ:

ASK ડિમોક્યુલેટર ડાયાગ્રામ:

વેવફોર્મ:

કોષ્ટક: ASK મોડ્યુલેશન અને ડિમોડ્યુલેશન પ્રક્રિયા

પ્રક્રિયા	รเช้	ગાણિતિક રજૂઆત
મોક્યુલેશન	કેરિયરની એમ્પ્લિટ્યુડમાં ફેરફાર	$s(t) = A \cdot m(t) \cdot cos(2\pi f_c \cdot t)$
ફિલ્ટરિંગ	બેન્ડની બહારનો નોઇઝ દૂર કરે છે	f_c પર કેન્દ્રિત બેન્ડપાસ ફિલ્ટર
ડિટેક્શન	એન્વેલપ પુનઃપ્રાપ્ત કરે છે	ડાયોડ અને કેપેસિટરનો ઉપયોગ
નિર્ણય	ડિજિટલમાં રૂપાંતરિત કરે છે	થ્રેશોલ્ડ કમ્પેરિઝન

- **બાઇનરી ASK**: '1' માટે કેરિયર હાજર, '0' માટે ગેરહાજર
- **બેન્ડવિડ્ય**: ન્યૂનતમ BW = બિટ રેટ, સામાન્ય રીતે બેવડો બિટ રેટ વપરાય છે

મેમરી ટ્રીક: "એએમપીએસ" - **એ**એસકે કેરિયર **એ**મ્પ્લિટ્યુડને ડિજિટલ સિગ્નલ સાથે **મો**ક્યુલેટ કરે છે

પ્રશ્ન 2(અ) OR [3 ગુણ]

સિગ્નલમાં 4000 બીટ/સેકન્ડનો બીટ રેટ અને 1000 બોડનો બોડ રેટ હોય છે. દરેક સિગ્નલ એલીમેન્ટ દ્વારા કેટલા ડેટા એલીમેન્ટ વહન કરવામાં આવે છે?

જવાબ:

ઉકેલ:

```
સિગ્નલ એલિમેન્ટ દીઠ બિટ્સની સંખ્યા = બિટ રેટ / બોડ રેટ
સિગ્નલ એલિમેન્ટ દીઠ બિટ્સની સંખ્યા = 4000 બિટ્સ/સેકન્ડ / 1000 સિગ્નલ એલિમેન્ટ/સેકન્ડ
સિગ્નલ એલિમેન્ટ દીઠ બિટ્સની સંખ્યા = 4 બિટ્સ/સિગ્નલ એલિમેન્ટ
```

આકૃતિ:

- બિટ રેટ: બિટ્સ પ્રતિ સેકંડમાં ડેટા ટ્રાન્સમિશન સ્પીડ
- બોડ રેટ: સિગ્નલ એલિમેન્ટ્સ (સિમ્બોલ્સ) પ્રતિ સેકંડની સંખ્યા

મેમરી ટ્રીક: "બીબીઆર" - સિમ્બોલ દીઠ **બી**ટ્સ બરાબર **બી**ટ રેટ ભાગ્યા બોડ **ર**ેટ

પ્રશ્ન 2(બ) OR [4 ગુણ]

વિવિદ્ય સંચાર ચેનલોની લાક્ષણિકતાઓની ચર્ચા કરો.

જવાબ:

કોષ્ટક: સંચાર ચેનલની લાક્ષણિકતાઓ

લાક્ષણિકતા	นย์ฯ	મહત્વ	
બેન્કવિડ્થ	ચેનલ ટ્રાન્સમિટ કરી શકે તેવી ફ્રિક્વન્સીઓની રેન્જ	મહત્તમ ડેટા રેટ નક્કી કરે છે	
નોઇઝ	અનચાહ્યા સિગ્નલ્સ જે ટ્રાન્સમિશનને બગાડે છે	સિગ્નલ ક્વોલિટી અને ભૂલ દરને અસર કરે છે	
એટેન્યુએશન	ટ્રાન્સમિશન દરમિયાન સિગ્નલ સ્ટ્રેન્થની ઘટાડો	ટ્રાન્સમિશન અંતરને મર્યાદિત કરે છે	
ડિસ્ટોર્શન	સિગ્નલના આકાર/ટાઈમિંગમાં ફેરફાર	ઇન્ટરસિમ્બોલ ઇન્ટરફેરન્સ કારણે બને છે	
ચેનલ કેપેસિટી	મનસ્વી નાના એરર સાથે મહત્તમ ડેટા રેટ	શેનનના થિયરમ દ્વારા આપવામાં આવે છે	

આકૃતિ:

- SNR (સિગ્નલ-ટુ-નોઇઝ રેશિયો): સિગ્નલ પાવર અને નોઇઝ પાવરનો ગુણોત્તર
- **યેનલ કેપેસિટી**: C = B·log₂(1+SNR), જ્યાં B એ બેન્ડવિડ્થ છે

મેમરી ટ્રીક: "બએનડક" - **બે**ન્ડવિડ્થ, **એ**ટેન્યુએશન, **ન**ોઇઝ, **ડિ**સ્ટોર્શન **ક**ેપેસિટી નક્કી કરે છે

પ્રશ્ન 2(ક) OR [7 ગુણ]

ASK, FSK અને PSK ની સરખામણી કરો.

જવાબ:

કોષ્ટક: ડિજિટલ મોડ્યુલેશન ટેકનિક્સની સરખામણી

પેરામીટર	ASK	FSK	PSK
સિદ્ધાંત	એમ્પ્લિટ્યુડમાં ફેરફાર	ફ્રિક્વન્સીમાં ફેરફાર	ફેઝમાં ફેરફાર
ગાણિતિક અભિવ્યક્તિ	$s(t) = A \cdot m(t) \cdot cos(2\pi f_c \cdot t)$	$s(t) = A \cdot cos(2\pi[f_c + m(t)\Delta f]t)$	$s(t) = A \cdot cos(2\pi f_c \cdot t + m(t) \cdot \pi)$
બેન્કવિડ્થ	r_b (ન્યૂનતમ)	2(Δf+r_b/2)	2r_b
પાવર એફિશિયન્સી	નબળી	મધ્યમ	સારી
નોઇઝ ઇમ્યુનિટી	નબળી	વધુ સારી	શ્રેષ્ઠ
અમલીકરણ જટિલતા	સરળ	મધ્યમ	જટિલ
ઉપયોગો	ઓછી કિંમતની સિસ્ટમ્સ	નોઇઝવાળા વાતાવરણ	ઉચ્ચ કાર્યક્ષમતાવાળી સિસ્ટમ્સ

આકૃતિ:

- **બિટ એરર રેટ**: PSK < FSK < ASK (PSK શ્રેષ્ઠ છે)
- જરિલતા ક્રમ: ASK < FSK < PSK (ASK સૌથી સરળ છે)

મેમરી ટ્રીક: "એફપી" - **એ**મ્પ્લિટ્યુડ, ફ્રીક્વન્સી, ફેઝ - ASK, FSK, PSK માં સંશોધિત થાય છે

પ્રશ્ન 3(અ) [3 ગુણ]

બ્લોક ડાયાગ્રામ અને આઉટપુટ વેવફોર્મ સાથે FSK મોક્યુલેટરનું કાર્ય સમજાવો.

જવાબ:

FSK મોક્યુલેટર બ્લોક ડાયાગ્રામ:

વેવફોર્મ:

કોષ્ટક: FSK મોડ્યુલેશન પ્રક્રિયા

સ્ટેપ	વર્ણન
ડિજિટલ ઇનપુટ	બાઇનરી ડેટા (0s અને 1s)
ફ્રિક્વન્સી પસંદગી	f ₁ બિટ '1' માટે, f ₂ બિટ '0' માટે
વેવફોર્મ જનરેશન	s(t) = A·cos(2πf ₁ t) બિટ '1' માટે, s(t) = A·cos(2πf ₂ t) બિટ '0' માટે
આઉટપુટ	સતત ફેઝ ફ્રિક્વન્સી-શિફ્ટેડ સિગ્નલ

- **બાઇનરી FSK**: બે ફ્રિક્વન્સી f_1 અને f_2 વપરાય છે જે ફ્રિક્વન્સી ડેવિએશન દ્વારા અલગ પડે છે
- **ફાયદો**: ASK કરતાં વધુ સારી નોઇઝ ઇમ્યુનિટી

મેમરી ટ્રીક: "ફઆફાસ્ટ" - **ફ્રી**કવન્સી **આ**વર્તન **ફ**રક **સ્વ**ર વચ્ચે બદલાય છે

પ્રશ્ન 3(બ) [4 ગુણ]

1010110110 ના ક્રમ માટે PSK મોક્યુલેશન વેવફોર્મ દોરો.

જવાબ:

1010110110 માટે BPSK મોક્યુલેશન:

Digital Input:	
Carrier Signal: /\/\/\/\/\/\/\/\	
<pre>BPSK Output: /\/\\ /\/\\ /\</pre>	

કોષ્ટક: BPSK મેપિંગ

બિટ	ફેઝ	અર્થંઘટન
1	0°	કેરિયર સાથે ઇન-ફ્રેઝ (પોઝિટીવ)
0	180°	કેરિયરથી આઉટ-ઓફ-ફેઝ (નેગેટિવ)

આકૃતિ:

- ફેઝ શિફ્ટ: દરેક બિટ બદલાવ પર 180° ફેરફાર
- સ્થિર **એમ્પ્લિટ્યુડ**: ASKથી વિપરીત, એમ્પ્લિટ્યુડ સ્થિર રહે છે

મેમરી ટ્રીક: "ફોફા" - ફ્રેઝ વિરુદ્ધાર્થી બિટ **જો**ડી માટે **ફ**ીચર **આ**પે છે

પ્રશ્ન 3(ક) [7 ગુણ]

1100110101 ના ક્રમ માટે ASK અને FSK મોક્યુલેશન વેવફોર્મ દોરો.

જવાબ:

ઇનપુટ બિટ સિક્વન્સ: 1100110101

ASK મોક્યુલેશન:

FSK મોક્યુલેશન:

કોષ્ટક: 1100110101 સિક્વન્સ માટે તુલના

બિટ પોઝિશન	બિટ વેલ્યુ	ASK રજૂઆત	FSK રજૂઆત
1-2	11	કેરિયર હાજર	ઉચ્ચ ફ્રિક્વન્સી
3-4	00	કેરિયર ગેરહાજર	નીચી ફ્રિક્વન્સી
5-7	110	કેરિયર હાજર/ગેરહાજર	ઉચ્ચ/નીચી ફ્રિક્વન્સી
8-10	101	કેરિયર હાજર/ગેરહાજર/હાજર	ઉચ્ચ/નીચી/ઉચ્ચ ફ્રિક્વન્સી

- **ASK મોક્યુલેશન**: સરળ ઓન-ઓફ કીઇંગ જ્યાં '1' માટે કેરિયર હાજર અને '0' માટે ગેરહાજર હોય છે
- FSK મોક્યુ**લેશન**: બિટ વેલ્યુના આધારે બે અલગ-અલગ મૂલ્યો વચ્ચે ફ્રિક્વન્સી શિફ્ટ થાય છે

મેમરી ટ્રીક: "એબફ્ફ" - **એ**એસકે કેરિયર **બં**ધ-**ચા**લુ કરે છે, જ્યારે **ફ્રી**ક્વન્સી **જો**ડી વચ્ચે FSK શિફ્ટ કરે છે

પ્રશ્ન 3(અ) OR [3 ગુણ]

બ્લોક ડાયાગ્રામ અને આઉટપુટ વેવફોર્મ સાથે MSK મોક્યુલેટરનું કાર્ય સમજાવો.

જવાબ:

MSK મોક્યુલેટર બ્લોક ડાયાગ્રામ:

વેવફોર્મ:

કોષ્ટક: MSK મોડ્યુલેશન પ્રક્રિયા

લાક્ષણિકતા	વર્ણન
સિદ્ધાંત	સાઇન્યુસોઇડલ પલ્સ શેપિંગ સાથે OQPSKનો ખાસ કેસ
ફેઝ સાતત્ય	સરળ ફેઝ ટ્રાન્ઝિશન સુનિશ્ચિત કરે છે (અચાનક ફેઝ ફેરફાર નહીં)
ફ્રિક્વન્સી ડેવિએશન	કેરિયર ફ્રિક્વન્સીથી ±0.25 બિટ રેટ
બેન્ડવિડ્થ એફિશિયન્સી	પરંપરાગત FSK કરતાં વધારે સારી

- ફેઝ **સાતત્ય**: મુખ્ય ફાયદો FSKની તુલનામાં બેન્ડવિડ્થ ઘટાડે છે
- સ્થિર એન્વેલપ: નોન-લિનિયર એમ્પ્લિફિકેશન પ્રત્યે પ્રતિરોધક

મેમરી ટ્રીક: "એમસફ" - એમએસકે સતત ફ્રેઝ શિફ્ટ્સ સુનિશ્ચિત કરે છે

પ્રશ્ન 3(બ) OR [4 ગુણ]

8-PSK અને 16-QAM ના નક્ષત્ર રેખાકૃતિ દોરો.

જવાબ:

8-PSK કોન્સ્ટેલેશન ડાયાગ્રામ:

```
001 * * 000
\|/
010 *---+--* 111
/|\
011 * * 101
100
```

16-QAM કોન્સ્ટેલેશન ડાયાગ્રામ:

```
* * * *

* * * *

* * * *
```

કોષ્ટક: કોન્સ્ટેલેશન ડાયાગ્રામ્સની તુલના

પેરામીટર	8-PSK	16-QAM
સિમ્બોલ દીઠ બિટ્સ	3 બિટ્સ	4 બિટ્સ
સિમ્બોલ પોઝિશન્સ	વર્તુળ પર 8 પોઇન્ટ્સ	ગ્રિડમાં 16 પોઇન્ટ્સ
એમ્પ્લિટ્યુડ લેવલ્સ	1 (સ્થિર)	3 (વેરિએબલ)
ફેઝ એંગલ્સ	8 ખૂણા (45° તફાવત)	12 ખૂણા
એરર સેન્સિટિવિટી	મધ્યમ	8-PSK કરતાં વધારે
સ્પેક્ટ્રલ એફિશિયન્સી	3 બિટ્સ/Hz	4 બિટ્સ/Hz

- 8-PSK: સમાન એમ્પ્લિટ્યુડ સાથે વર્તુળની આસપાસ સમાન અંતરે પોઇન્ટ્સ
- **16-QAM**: અલગ-અલગ એમ્પ્લિટ્યુડ અને ફેઝ સાથે ચોરસ ગ્રિડમાં પોઇન્ટ્સ ગોઠવાયેલા હોય છે

મેમરી ટ્રીક: "સીપા" - કોન્સ્ટેલેશન પોઇન્ટ્સ PSKમાં સમાન **એ**મ્પ્લિટ્યુડ પરંતુ અલગ **ફે**ઝ ધરાવે છે, QAMમાં **એ**મ્પ્લિટ્યુડ અને ફેઝ બંને ફેરફાર ધરાવે છે

પ્રશ્ન 3(ક) OR [7 ગુણ]

1010101011 માટે BPSK અને QPSK મોક્યુલેશન વેવફોર્મ દોરો.

જવાબ:

ઇનપુટ બિટ સિક્વન્સ: 1010101011

BPSK મોક્યુલેશન:

QPSK મોક્યુલેશન (બિટ્સ ગ્રુપિંગ: 10,10,10,10,11):

કોષ્ટક: 1010101011 માટે BPSK અને QPSK ની તુલના

લાક્ષણિકતા	BPSK	QPSK
સિમ્બોલ દીઠ બિટ્સ	1	2
સિમ્બોલની સંખ્યા	10	5
સિમ્બોલ રેટ	બિટ રેટ જેટલો જ	બિટ રેટનો અર્ધો
બેન્ડવિડ્થ એફિશિયન્સી	1 બિટ/Hz	2 બિટ્સ/Hz
ફેઝ સ્ટેટ્સ	2 (0°, 180°)	4 (45°, 135°, 225°, 315°)

• BPSK: દરેક બિટ 180° ફેઝ શિફ્ટ લાવી શકે છે

• QPSK: એક સાથે બે બિટ પ્રોસેસ કરે છે, ચાર ફેઝ સ્ટેટ્સ વાપરે છે

મેમરી ટ્રીક: "બીક્ય્સસ" - **બી**પીએસકે **1** બિટ લે છે જ્યારે **ક્યુ**પીએસકે **2** બિટ લે છે, જેનાથી સ્પેક્ટ્રલ **સ**ક્ષમતા બમણી થાય છે

પ્રશ્ન 4(અ) [3 ગુણ]

નીચેના સંભવિત ક્રમ માટે શેનોન ફેનો કોડનો ઉપયોગ કરીને ડેટાને એન્કોડ કરો. P = { 0.30, 0.25, 0.20, 0.12, 0.08, 0.05}

જવાબ:

કોષ્ટક: શેનન-ફેનો કોડિંગ પ્રક્રિયા

સિમ્બોલ	પ્રોબેબિલિટી	ડિવિઝન સ્ટેપ્સ	શેનન-ફેનો કોડ
Α	0.30	ટોપ ગ્રુપ	0
В	0.25	ટોપ ગ્રુપ	10
С	0.20	બોટમ ગ્રુપ	110
D	0.12	બોટમ ગ્રુપ	1110
E	0.08	બોટમ ગ્રુપ	1111 0
F	0.05	બોટમ ગ્રુપ	1111 1

આકૃતિ:

- **શેનન-ફેનો એલ્ગોરિદ્યમ**: લગભગ સમાન પ્રોબેબિલિટી ધરાવતા બે જૂથોમાં રિકર્સિવલી સિમ્બોલ્સને વિભાજિત કરે છે
- કોડ એફિશિયન્સી: હંમેશા શ્રેષ્ઠ ન હોય શકે પરંતુ સામાન્ય રીતે સારું કોમ્પ્રેશન

મેમરી ટ્રીક: "સપઆઅ" - સંભાવના પ્રમાણે **અં**કો **આ**વૃત્તિ આધારિત ફાળવાય છે

પ્રશ્ન 4(બ) [4 ગુણ]

હેમિંગ કોડ સમજાવો.

જવાબ:

કોષ્ટક: હેમિંગ કોડના ગુણધર્મો

ગુણઘર્મ	વર્ણન
รเลน	લિનિયર એરર-કરેક્ટિંગ કોડ
એરર ડિટેક્શન	2 બિટ સુધીની ભૂલ શોધી શકે છે
એરર કરેક્શન	સિંગલ બિટ ભૂલોને સુધારી શકે છે
પેરિટી બિટ્સ (r)	n ડેટા બિટ્સ માટે: 2^r ≥ n + r + 1
કોડ સ્ટ્રક્ચર	સિસ્ટેમેટિક: મેસેજ બિટ્સ + પેરિટી બિટ્સ
પેરિટી બિટ્સની પોઝિશન	2ની ઘાત: પોઝિશન 1, 2, 4, 8, 16

- **એનકોડિંગ**: યોક્કસ બિટ પોઝિશન્સ પર ઇવન/ઓડ પેરિટી સુનિશ્ચિત કરવા માટે પેરિટી બિટ્સની ગણતરી
- **ડિકોડિંગ**: ભૂલની પોઝિશન નક્કી કરવા માટે સિન્ડ્રોમની ગણતરી

મેમરી ટ્રીક: "સાપો" - સત્તાની ઘાત પોઝિશનમાં **પે**રિટી બિટ **સ**િસ્ટેમેટિક રીતે ભૂલ **સુ**ધાર **ઓ**ળખે

પ્રશ્ન 4(ક) [7 ગુણ]

TDMA અને FDMA ની સરખામણી કરો.

જવાબ:

કોષ્ટક: TDMA અને FDMA ની તુલના

પેરામીટર	TDMA	FDMA
મૂળ સિદ્ધાંત	સમયને સ્લોટ્સમાં વિભાજિત કરે છે	ફ્રિક્વન્સીને ચેનલ્સમાં વિભાજિત કરે છે
રિસોર્સ ફાળવણી	દરેક વપરાશકર્તાને ટૂંકા સમય માટે સંપૂર્ણ બેન્ડવિડ્થ મળે છે	દરેક વપરાશકર્તાને સંપૂર્ણ સમય માટે સાંકડી બેન્ડવિડ્થ મળે છે
ગાર્ડ ટાઇમ/બેન્ડ	સ્લોટ્સ વચ્ચે ગાર્ડ ટાઇમની જરૂર પડે છે	ચેનલ્સ વચ્ચે ગાર્ડ બેન્ડની જરૂર પડે છે
સિન્ક્રોનાઇઝેશન	અત્યંત મહત્વપૂર્ણ (ટાઇમિંગ-આધારિત)	જરૂરી નથી (ફ્રિક્વન્સી સેપરેશન)
એફિશિયન્સી	બર્સ્ટી ડેટા માટે વધુ સારી	સતત ડેટા માટે વધુ સારી
ઇન્ટરફેરન્સ	ઇન્ટરફ્રેરન્સને ઓછો અસરગ્રસ્ત	એડજેસન્ટ ચેનલ ઇન્ટરફેરન્સથી વધુ અસરગ્રસ્ત
હાર્ડવેર જટિલતા	જટિલ (બફરિંગ, સિન્ક્રોનાઇઝેશનની જરૂર)	સરળ (ફિક્સ્ડ ફિલ્ટર્સ)
પાવર કન્ઝમ્પશન	ઓછો (ટ્રાન્સમિટર ફક્ત ટાઇમ સ્લોટ દરમિયાન ચાલુ)	વધારે (સતત ટ્રાન્સમિશન)
क्षभता	ટાઇમ સ્લોટ્સ ઉમેરીને સરળતાથી વિસ્તૃત કરી શકાય	ઉપલબ્ધ સ્પેક્ટ્રમથી મર્યાદિત
ઉપયોગો	GSM, DECT કોર્ડલેસ ફોન	એનાલોગ સેલ્યુલર, સેટેલાઇટ સિસ્ટમ્સ

- **સિસ્ટમ ફ્લેક્સિબિલિટી**: TDMA ગતિશીલ રીતે સ્લોટ્સ ફાળવી શકે છે, FDMA ફિક્સ્ડ એલોકેશન છે
- અમલીકરણ: TDMA માટે ડિજિટલ ટેકનોલોજીની જરૂર પડે છે, FDMA એનાલોગ/ડિજિટલ સાથે કામ કરે છે

મેમરી ટ્રીક: "સમયઆ" - **સ**મયના **અં**તરાલોને **ટી**ડીએમએ વિભાજિત કરે છે, ફ્રિક્વન્સીના **રે**ન્જને **એફ**ડીએમએ વિભાજિત કરે છે

પ્રશ્ન 4(અ) OR [3 ગુણ]

નીચેના સંભવિત ક્રમ માટે હફમેન કોડનો ઉપયોગ કરીને ડેટાને એન્કોડ કરો. P = { 0.4, 0.19, 0.16, 0.15, 0.1}

જવાબ:

કોષ્ટક: હફમેન કોડિંગ પ્રક્રિયા

સિમ્બોલ	પ્રોબેબિલિટી	હફમેન કોડ
Α	0.40	0
В	0.19	10
С	0.16	110
D	0.15	111
E	0.10	110

- **હફમેન એલ્ગોરિદ્યમ**: ઓછામાં ઓછી સંભાવના ધરાવતા સિમ્બોલ્સથી શરૂઆત કરીને, નીચેથી ઉપર બાઇનરી ટ્રી બનાવે છે
- ઓપ્ટિમાલિટી: મિનિમલ એવરેજ કોડ લેન્થ આપે છે

મેમરી ટ્રીક: "હઆસ" - **હ**ફમેન ઉચ્ચ **આ**વૃત્તિના **સં**કેતો માટે ટૂંકા કોડ બનાવે છે

પ્રશ્ન 4(બ) OR [4 ગુણ]

SNR અને સંચારમાં તેના મહત્વના સંદર્ભમાં ચેનલ ક્ષમતાને વ્યાખ્યાચિત કરો.

જવાબ:

શેનનનું ચેનલ ક્ષમતા ફોર્મ્યુલા:

$$C = B \times log_2(1 + SNR)$$

જ્યાં:

• C = ચેનલ ક્ષમતા બિટ્સ પ્રતિ સેકન્ડમાં

- B = બેન્ડવિડ્થ Hz માં
- SNR = સિગ્નલ-ટુ-નોઇઝ રેશિયો

કોષ્ટક: ચેનલ ક્ષમતાની લાક્ષણિકતાઓ

પાસું	นญ์า	મહત્વ
લ્યાખ્યા	શક્ય એરર-ફ્રી ડેટા રેટનું મહત્તમ મૂલ્ય	મૂળભૂત સીમાઓ નક્કી કરે છે
SNR પર આદ્યાર	SNR સાથે લોગેરિધમિક રીતે વધે છે	પાવરના ઘટતા વળતરો દર્શાવે છે
બેન્ડવિડ્થ પર આધાર	બેન્ડવિડ્થ સાથે લિનિયર રીતે વધે છે	સ્પેક્ટ્રમનું મૂલ્ય દર્શાવે છે
થિયોરેટિકલ બાઉન્ડ	કોઈપણ કોડિંગ સાથે શેનન લિમિટને વટાવી શકાતી નથી	સિસ્ટમ ડિઝાઇનને માર્ગદર્શન આપે છે

આકૃતિ:

- **શેનન-હાર્ટલી થિયરમ**: ડેટા ટ્રાન્સફર રેટની થિયોરેટિકલ મહત્તમ મર્યાદા સ્થાપિત કરે છે
- **એરર પ્રોબેબિલિટી**: જો ડેટા રેટ < ચેનલ ક્ષમતા હોય તો મનસ્વી રીતે નાની બનાવી શકાય છે

મેમરી ટ્રીક: "શનબ" - શેનન ક્ષમતા **ન**ોઇઝ રેશિયો અને **બે**ન્ડવિડ્થ પર આધાર રાખે છે

પ્રશ્ન 4(ક) OR [7 ગુણ]

FDMA ટેકનિકને વિગતવાર સમજાવો.

જવાબ:

FDMA (ફિક્વન્સી ડિવિઝન મલ્ટિપલ એક્સેસ)

કોષ્ટક: FDMA સિસ્ટમની લાક્ષણિકતાઓ

પાસું	นถุ่น	મહત્વ
મૂળ સિદ્ધાંત	ઉપલબ્ધ સ્પેક્ટ્રમને ચેનલોમાં વિભાજિત કરે છે	અનેક સમકાલીન વપરાશકર્તાઓને સક્ષમ બનાવે છે
ચેનલ ફાળવણી	દરેક વપરાશકર્તા માટે ફિક્સ્ડ ફ્રિક્વન્સી બેન્ડ	હાર્ડવેર ડિઝાઇનને સરળ બનાવે છે
ગાર્ડ બેન્ડ્સ	ચેનલો વચ્ચે ફ્રિક્વન્સી સેપરેશન	એડજેસન્ટ ચેનલ ઇન્ટરફેરન્સને અટકાવે છે
ડુપ્લેક્સિંગ	ઘણીવાર FDD (સેપરેટ Tx/Rx બેન્ડ્સ) સાથે જોડાયેલું	સમકાલીન બે-માર્ગી સંચારને સક્ષમ બનાવે છે
બેન્કવિડ્થ ઉપયોગ	દરેક ચેનલ ફિક્સ્ડ બેન્ડવિડ્થ ધરાવે છે	બર્સ્ટી ડેટા માટે સંભવિત રીતે અકાર્યક્ષમ
ઇન્ટરમોડ્યુલેશન	મલ્ટિપલ કેરિયર્સના પ્રોડક્ટ્સ	કાળજીપૂર્વક પાવર એમ્પ્લિફાયર ડિઝાઇનની જરૂર

FDMA અમલીકરણ:

- અમલીકરણ: બેન્ડપાસ ફિલ્ટર્સનો ઉપયોગ કરીને તુલનાત્મક રીતે સરળ
- ફાયદા: સિન્ક્રોનાઇઝેશનની જરૂર નથી, સતત ટ્રાન્સમિશન
- ગેરફાયદા: સ્પેક્ટ્રમ અકાર્યક્ષમતા, મર્યાદિત ફ્લેક્સિબિલિટી

મેમરી ટ્રીક: "ફગવય" - ફ્રિક્વન્સી ડિવિઝન ગાર્ડ બેન્ડ સાથે વિભિન્ન ચેનલો બનાવે છે

પ્રશ્ન 5(અ) [3 ગુણ]

TDMA એક્સેસ ટેકનિક સમજાવો.

જવાબ:

TDMA (ટાઇમ ડિવિઝન મલ્ટિપલ એક્સેસ)

કોષ્ટક: TDMA મુખ્ય લાક્ષણિકતાઓ

લાક્ષણિકતા	વર્ણન
મૂળ સિદ્ધાંત	સમયને ફ્રેમ્સ અને સ્લોટ્સમાં વિભાજિત કરે છે
રિસોર્સ શેરિંગ	દરેક યુઝરને ચોક્કસ ટાઇમ સ્લોટ ફાળવવામાં આવે છે
ગાર્ડ ટાઇમ	સ્લોટ્સ વચ્ચે નાનું સમય અંતર
ફ્રેમ સ્ટ્રક્ચર	અનેક સ્લોટ્સ મળીને સંપૂર્ણ ફ્રેમ બનાવે છે
સિન્કોનાઇઝેશન	બધા વપરાશકર્તાઓ માટે ટાઇમિંગ રેફરન્સની જરૂર

આકૃતિ:

- **ડિજિટલ અમલીકરણ**: એનાલોગ સિગ્નલ્સ માટે ADC/DAC ની જરૂર
- **બર્સ્ટ ટ્રાન્સિમશન**: વપરાશકર્તાઓ ફક્ત ફાળવેલા સ્લોટ્સમાં જ ટ્રાન્સિમટ કરે છે

મેમરી ટ્રીક: "ટેદવ" - ટાઇમ સ્લોટ્સ દરેક વપરાશકર્તા માટે અલગથી વ્યવસ્થિત

પ્રશ્ન 5(બ) [4 ગુણ]

E1 કેરીયર સિસ્ટમ સમજાવો.

જવાબ:

E1 કેરીયર સિસ્ટમ

કોષ્ટક: E1 કેરીયર સિસ્ટમ સ્પેસિફિકેશન્સ

પેરામીટર	સ્પેસિફિકેશન	વિગતો
કુલ બિટ રેટ	2.048 Mbps	યુરોપિયન સ્ટાન્ડર્ડ
ચેનલોની સંખ્યા	32 ટાઇમ સ્લોટ્સ (0-31)	30 વોઇસ + 2 કંટ્રોલ
વોઇસ ચેનલ્સ	ટાઇમ સ્લોટ્સ 1-15, 17-31	εὲs 64 kbps
સિગ્નલિંગ ચેનલ	ટાઇમ સ્લોટ 16	ચેનલ સિગ્નલિંગ માટે
ફ્રેમ એલાઇનમેન્ટ	ટાઇમ સ્લોટ 0	સિન્ક્રોનાઇઝેશન
ફ્રેમ અવધિ	125 μs	8000 ફ્રેમ્સ પ્રતિ સેકન્ડ
સેમ્પલિંગ રેટ	8 kHz	નાયક્વિસ્ટ થિયરમને અનુસરે છે

- મલ્ટિપ્લેક્સિંગ ટેકનિક: TDM (ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ)
- PCM એનકોડિંગ: 8 kHz સેમ્પલિંગ રેટ પર 8-બિટ સેમ્પલ્સ

મેમરી ટ્રીક: "ઈ132" - **E1** માં **32** ટાઇમ સ્લોટ્સ **2**.048 Mbps સાથે

પ્રશ્ન 5(ક) [7 ગુણ]

ડિજિટલ ટેલિફોન એક્સચેન્જના બ્લોક ડાયાગ્રામ, હાર્ડવેર સબ સિસ્ટમના એલીમેન્ટ સમજાવો.

જવાબ:

ડિજિટલ ટેલિફોન એક્સચેન્જ બ્લોક ડાયાગ્રામ

કોષ્ટક: ડિજિટલ ટેલિફોન એક્સચેન્જના હાર્ડવેર સબસિસ્ટમ્સ

સબસિસ્ટમ	รเช้	મુખ્ય ઘટકો
DLU (ડિજિટલ લાઇન યુનિટ)	સબસ્ક્રાઇબર લાઇન્સ અને એક્સચેન્જ વચ્ચે ઇન્ટરફેસ	લાઇન કાર્ડ્સ, CODEC, SLIC, PCM કન્વર્ઝન
LTG (લાઇન/ટ્રંક ગ્રુપ)	ટ્રંક લાઇન્સ સંભાળે છે, અન્ય એક્સચેન્જ સાથે ઇન્ટરફેસ	ટ્રંક કાર્ડ્સ, સિગ્નલિંગ યુનિટ્સ, ઇકો કેન્સેલર્સ
SN (સ્વિચિંગ નેટવર્ક)	પોર્ટ્સ વચ્ચે કોલ્સ રૂટ કરે છે, કનેક્ટિવિટી પ્રદાન કરે છે	ટાઇમ/સ્પેસ સ્વિય, કનેક્શન મેમોરી, કંટ્રોલ લોજિક
CP (સેન્ટ્રલ પ્રોસેસર)	સમગ્ર સિસ્ટમ ઓપરેશન નિયંત્રિત કરે છે	મુખ્ય પ્રોસેસર, મેમોરી, ઓપરેટિંગ સિસ્ટમ, ડેટાબેઝ
પેરિફેરલ્સ	સપોર્ટિંગ ફંક્શન્સ	પાવર સપ્લાય, અલાર્મ સિસ્ટમ્સ, મેઇન્ટેનન્સ ટર્મિનલ્સ

હાર્ડવેર એલિમેન્ટ્સ વિગતો:

- **DLU**: એનાલોગ વોઇસને 64 kbps PCM માં કન્વર્ટ કરે છે, લાઇન સિગ્નલિંગ સંભાળે છે
- LTG: E1/T1 ટ્રંક્સ મેનેજ કરે છે, SS7 જેવા પ્રોટોકોલ્સ અમલમાં મૂકે છે
- SN: સામાન્ય રીતે ટાઇમ-ડિવિઝન સ્વિચિંગ ફેબ્રિક, નોન-બ્લોકિંગ આર્કિટેક્ચર
- **CP**: કોલ પ્રોસેસિંગ, બિલિંગ, મેઇન્ટેનન્સ, એડમિનિસ્ટ્રેટિવ ફંક્શન્સ

મેમરી ટ્રીક: "ડલસપ્ર" - ડીએલયુ સબસ્કાઇબર્સ જોડે છે, **લા**ઇન ટ્રંક ગ્રુપ ટ્રંક્સ જોડે છે, **સ્વિ**ચિંગ નેટવર્ક કોલ્સ સ્વિય કરે છે, **પ્ર**ોસેસર બધું નિયંત્રિત કરે છે

પ્રશ્ન 5(અ) OR [3 ગુણ]

TDM અને FDM ની સરખામણી કરો.

જવાબ:

કોષ્ટક: TDM અને FDM ની તુલના

પેરામીટર	TDM	FDM	
ડોમેન ડિવિઝન	સમય	ફ્રિક્વન્સી	
ચેનલ સેપરેશન	ગાર્ડ ટાઇમ	ગાર્ડ બેન્ડ્સ	
મલ્ટિપ્લેક્સિંગ પ્રક્રિયા	ક્રમિક ટાઇમ સ્લોટ્સ	સમાંતર ફ્રિક્વન્સી બેન્ડ્સ	
અમલીકરણ	ડિજિટલ (મુખ્યત્વે)	એનાલોગ અથવા ડિજિટલ	
ક્રોસટોક	સામાન્ય રીતે ઓછું	વધુ સંવેદનશીલ	
સિન્કોનાઇઝેશન	અત્યંત મહત્વપૂર્ણ	જરૂરી નથી	

```
TDM:

Time -->

+-----+

| Channel 1 | Ch 2 | Ch 3 | Ch 1 | ...

+-----+

FDM:

| +----+

F | Ch3 |

r | +----+

e | Ch2 |

q | +----+

| Ch1 |

| +----+

Time
```

- **બેન્ડવિડ્થ ઉપયોગ**: ડિજિટલ માટે TDM વધુ કાર્યક્ષમ, એનાલોગ માટે FDM વધુ સાટું
- **સિસ્ટમ જટિલતા**: TDM ને ચોક્કસ ટાઇમિંગની જરૂર પડે છે, FDM ને ચોક્કસ ફિલ્ટર્સની જરૂર પડે છે

મેમરી ટ્રીક: "ટફવિ" - ટાઇમ અને ફ્રિક્વન્સી વિભાજન સિસ્ટમ્સ અલગ-અલગ ડોમેન વિભાજિત કરે છે

પ્રશ્ન 5(બ) OR [4 ગુણ]

T1 મલ્ટિપ્લેક્સિંગ હાયરાર્કી દોરો અને સમજાવો.

જવાબ:

કોષ્ટક: T1 મલ્ટિપ્લેક્સિંગ હાયરાર્કી

લેવલ	ડેઝિગ્નેશન	ડેટા રેટ	વોઇસ ચેનલોની સંખ્યા	મલ્ટિપ્લેક્સિંગ
T1	DS1	1.544 Mbps	24	24 DS0 (64 kbps)
T2	DS2	6.312 Mbps	96	4 DS1
Т3	DS3	44.736 Mbps	672	7 DS2
T4	DS4	274.176 Mbps	4032	6 DS3

T1 ફ્રેમ સ્ટ્રક્ચર:

- **T1 ફ્રેમ ફોર્મેટ**: 193 બિટ્સ (24 ચેનલ્સ × 8 બિટ્સ + 1 ફ્રેમિંગ બિટ)
- ફ્રેમ અવધિ: 125 µs (8000 ફ્રેમ્સ પ્રતિ સેકન્ડ)

મેમરી ટ્રીક: "ટીચાર" - **ટી**1, ટી2, ટી3, ટી4 મલ્ટિપ્લેક્સિંગના **ચા**ર સ્તરોની હાયરાર્કી બનાવે છે

પ્રશ્ન 5(ક) OR [7 ગુણ]

IoT ના લક્ષણો, લાક્ષણિકતાઓ, ફાયદા અને ગેરફાયદાની સૂચિ બનાવો.

જવાબ:

કોષ્ટક: ઇન્ટરનેટ ઓફ થિંગ્સ (IoT) ઓવરવ્યુ

શ્રેણી	મુખ્ય મુદ્દાઓ	
લક્ષણો	ાં ડિવાઇસ કનેક્ટિવિટી, સેન્સર ઇન્ટિગ્રેશન, ઓટોમેટેડ કંટ્રોલ, ડેટા એનાલિટિક્સ, રિમોટ મોનિટરિંગ	
લાક્ષણિકતાઓ	ક્ષણિકતાઓ લો પાવર કન્ઝમ્પશન, સ્મોલ ફોર્મ ફેક્ટર, વાયરલેસ કોમ્યુનિકેશન, રિયલ-ટાઇમ ડેટા પ્રોસેસિંગ, સ્કેલેબિલિટી	
ફાયદા	ા બહેતર કાર્યક્ષમતા, ડેટા-ડ્રિવન નિર્ણયો, રિમોટ મેનેજમેન્ટ, પ્રિડિક્ટિવ મેઇન્ટેનન્સ, રિસોર્સ ઓપ્ટિમાઇઝેશન	
ગેરફાયદા	સિક્યોરિટી વલ્નરેબિલિટીઝ, પ્રાઇવસી સંબંધિત ચિંતાઓ, ઇન્ટરઓપરેબિલિટી સમસ્યાઓ, અમલીકરણ જટિલતા, પાવર બંધનો	

IoT ના લક્ષણો:

ફાયદા અને ગેરફાયદા:

Advantages	Disadvantages
++	++
✓ Automation	X Security risks
✓ Enhanced data	X Privacy concerns
✓ Remote control	X Complex setup
✓ Cost reduction	\mid X High initial cost \mid
✓ Quality of life	X Battery life
✓ Resource savings	X Compatibility
++	++

લાક્ષણિકતા વિગતો:

- ઇન્ટરકનેક્ટિવિટી: કોઈપણ વસ્તુને વૈશ્વિક માહિતી અને સંચાર ઇન્ફ્રાસ્ટ્રક્ચર સાથે જોડી શકાય છે
- **થિંગ-સંબંધિત સેવાઓ**: IoT પ્રાઇવસી પ્રોટેક્શન જેવી થિંગ-સંબંધિત સેવાઓ પ્રદાન કરે છે
- હેટરોજેનિટી: ડિવાઇસિસ અલગ-અલગ હાર્ડવેર/સોફ્ટવેર પ્લેટફોર્મ પર આધારિત
- **ડાયનેમિક ચેન્જીસ**: ડિવાઇસ સ્ટેટ્સ ડાયનેમિકલી બદલાય છે (કનેક્ટિંગ/ડિસકનેક્ટિંગ, સ્લીપિંગ/વેકિંગ)
- **વિશાળ સ્કેલ**: મેનેજમેન્ટની જરૂર પડતા ડિવાઇસની સંખ્યા પરંપરાગત ઇન્ટરનેટ કનેક્ટેડ ડિવાઇસોથી વધુ છે

મેમરી ટ્રીક: "કઓસેડ" - કનેક્ટિવિટી, **ઓ**ટોમેશન, **સે**ન્સિંગ, કાર્યક્ષમતા, **ડે**ટા એનાલિટિક્સ - IoTના મુખ્ય લક્ષણો