Lab-02

Write your name here

February 02, 2023

Preface

The goal of this assignment is to help you gain familiarity with data frames – think "spread-sheets" – and how to use **dplyr** functions to transform data. In this lab we are providing some code snippets to serve as "scaffolding" to help guide you through each step. As always, please come to office hours and reach out to your teaching staff if you have any questions.

We will work with the data table flights provided in the package nycflights13. The data table includes all domestic flights that departed NYC (i.e. JFK, LGA or EWR) in 2013. It has 19 variables. Details of the package nycflights13 are available here.

flights

A tibble: 336,776 x 19

			•							
	year	${\tt month}$	day	dep_time	sched_de~1	dep_d~2	arr_t~3	sched~4	$arr_d~5$	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	1	1	517	515	2	830	819	11	UA
2	2013	1	1	533	529	4	850	830	20	UA
3	2013	1	1	542	540	2	923	850	33	AA
4	2013	1	1	544	545	-1	1004	1022	-18	B6
5	2013	1	1	554	600	-6	812	837	-25	DL
6	2013	1	1	554	558	-4	740	728	12	UA
7	2013	1	1	555	600	-5	913	854	19	B6
8	2013	1	1	557	600	-3	709	723	-14	EV
9	2013	1	1	557	600	-3	838	846	-8	B6
10	2013	1	1	558	600	-2	753	745	8	AA

- # ... with 336,766 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, and abbreviated variable names
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

1. In this data set, arr_delay is a variable that records the arrival delays in minutes. Negative times represent early arrivals. Use dplyr::filter to find: (1) the flights that arrived more than two hours late, and (2) the flights that arrived earlier than scheduled. What is the proportion of flights that arrived more than two hours late? What is the proportion of flights that arrived earlier than scheduled time?

```
# Use dplyr::filter to find and count the flights that arrived more than two hours late
two_hour_late <- flights |>
   filter(FALSE) |> # Replace FALSE with your code
   count()

# Use dplyr::filter to find and count the flights that arrived earlier than scheduled
early_arr <- flights |>
   filter(FALSE) |> # Replace FALSE with your code
   count()

# Count the total number of flights
total <- count(flights)</pre>
```

A proportion of 0 of the flights arrived more than two hours late. A proportion of 0 of the flights arrived earlier than scheduled time.

2. How many flights have a missing dep_time? What other variables are missing? What might these rows represent?

These rows probably represent...

3. Use at least two ways to select variables of dep_time, sched_dep_time, dep_delay, arr_time, sched_arr_time, arr_delay. Put arr_delay in the first column.

```
# Method 1
# Your code goes here
# Method 2
# Your code goes here
```

4. Use dplyr::arrange to sort flights by arrival delays in descending order. How long was the worst arrival delay?

```
worst_delay <- flights |>
  arrange(desc(FALSE)) |> # sort flights by arrival delays in descending order
  filter(FALSE) |> # choose the first row
  pull(arr_delay)
```

The worst arrival delay was inline code minutes.

5. Select air_time and distance. Generate a new varible speed that is calculated as distance divided by air_time (in miles/min). Then create a variable mph that contains speed in miles/hour.

```
flights |>
  select() |> # select `air_time` and `distance` here
  mutate( # create a new variable `speed`
    ) # create a new variable `mph`
```

A tibble: 336,776 x 0

6. Select dep_time. Currently dep_time is convenient to look at, but hard to compute with because it is not really a continuous number. Convert it to a more convenient representation of number of minutes since midnight. Add a new column dep_time_min to store the converted values.

```
# Your code goes here
  flights |>
    select() |>
    mutate(dep_hour = FALSE) |> # split out the hour-digits
    mutate(dep_min = FALSE) |> # split out the minute-digits
    mutate(dep_time_min = dep_hour * 60 + dep_min) # generate dep_time in the number of minu
# A tibble: 336,776 x 3
  dep_hour dep_min dep_time_min
  <lgl>
          <lgl>
1 FALSE
           FALSE
2 FALSE FALSE
                             0
3 FALSE FALSE
                             0
4 FALSE FALSE
                             0
5 FALSE FALSE
                             0
6 FALSE FALSE
                             0
7 FALSE FALSE
8 FALSE FALSE
                             0
```

7. Calculate the average arrival delay by carrier. Which carrier has the worst delays?

0

0

```
worst_delay_carrier <- flights |>
  group_by() |>
  summarise() |>
  arrange() |>
  filter()
```

9 FALSE FALSE

10 FALSE FALSE

... with 336,766 more rows

Carrier inline code has the worst delays.

8. What time of day should you fly if you want to avoid delays as much as possible?

Your code goes here

The best time to fly to avoid delays is...