An Adversarial Approach to Image Classification

Hippolyte Gisserot, Guillaume Kunsch, Benjamin Sykes

The problem, in short

Challenge:

- Data set: CIFAR10, pictures belonging to 10 different classes
- Goal: train a neural network robust to data attacks (notion to be developed in the next slides)

Plan of attack:

- Train a basic model and evaluate its performance
- Implement attack mechanisms (FGSM, PGD) and evaluate model performance
- Implement defense mechanisms and compare performance on natural vs. attacked images

64 random CIFAR10 images

Basic model training

Architecture:

- Conv2D + MaxPooling + Conv2D + 3*FC
- Hidden layer activation: relu
- Output layer activation: log softmax
- Loss: negative log-likelihood

Performance:

- Network accuracy: 62.8%
- The model gets it right on more than 60% of the test data, but what if we intentionally try to fool it?

Confusion matrix on test data (each row sums to 100%)

FGSM attack: principle and implementation

Principle:

- For each image, perturb it as much as possible within a certain limit (epsilon-bound)
- Mathematical formulation: $rg \max_{i \in I} l_f(x+\delta,y) pprox rg \max_{i \in I} \delta^T
 abla_x l_f(x,y)$

$$l_{x}pprox \epsilon ext{sign}(
abla_{x}l_{f}(x,y))\left(\left|\left|\cdot
ight|
ight|=\left|\left|\cdot
ight|
ight|_{\infty}
ight)$$

Original vs. perturbed images for different values of epsilor	Original vs.	perturbed imag	ges for different	t values of ensilon
---	--------------	----------------	-------------------	---------------------

Epsilon	Ассигасу
0	62.8%
0.001	56.4%
0.01	20.1%
0.1	0.1%

Accuracy vs. epsilon

PGA attack: principle and implementation

Principle:

- Iterated version of FGSM, more precise
- Mathematical formulation: $x_0 = x, \ x_{t+1} = \Pi_{B(x_0,\epsilon)}(x_t + \delta \mathrm{sign}(
 abla_x l_f(x,y)))$
- Main parameters: 30 iterations, $\delta=rac{\epsilon}{4}$ 0

Illustration of the projected gradient process

Epsilon	Ассигасу
0	62.8%
0.001	56.4%
0.01	12.6%
0.1	0%

Accuracy vs. epsilon

Performances on targeted attacks

Principle:

- PGA becomes PGD $x_0 = x, x_{t+1} = \Pi_{B(x_o, \epsilon)}(x_t \delta.\mathrm{sign}(
 abla_x l_f(x, y_{\mathrm{target}})))$
- Main parameters: 30 iterations, $\delta = \frac{\epsilon}{4}$

Epsilon	FGSM	PGD
0.001	8%	8%
0.01	23%	33%
0.1	59%	100%

Rate of successful targeted attacks (target = deer)

Defense implementation: FGSM case

Principle:

Modify the loss function to incorporate perturbed data:

$$l_f'(x,y) = lpha l_f(x,y) \ + (1-lpha) l_f(p(x),y)$$

In the FGSM case:

$$egin{aligned} l_f'(x,y) &= lpha l_f(x,y) \ &+ (1-lpha) l_f(x + \epsilon ext{sign}(
abla_x l_f(x,y)), y) \end{aligned}$$

In practice:

- $\alpha = 0$
- Equivalent to training the model on a fully perturbed data set

Epsilon	Natural images	Perturbed images
0	62.8%	20.1%
0.001	62.3%	60.1%
0.01	54.0%	81.8%
0.1	24.9%	96.0%

Accuracies of classical/robust models for natural/perturbed images

Conclusion: next steps

- PGD defense mechanism
- Loss function:
 - Find the right balance between training on natural and perturbed images ($\alpha \neq 0$)
 - Incorporate different perturbation frameworks to the loss function:

$$l_f'(x,y) = lpha_0 l_f(x,y) + lpha_1 l_f(p_1(x),y) + \ldots + lpha_n l_f(p_n(x),y)$$

- Innovate on defense mechanisms
 - Enforce Lipschitz continuity to the classifier
 - Use a VAE to perform the classification task on a reconstructed image set

Thank you for your attention!

