Cartesian System point co-ordinate:

Note: if both the axis are not \perp^{ar} , then they are called **oblique axes**

Polar co-ordinate:

Distance b/w 2 points $P(x_1, y_2)$ $Q(x_2, y_2)$ $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

distance from origin : $\sqrt{x^2 + y^2}$

polar distance : $\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)}$

Application of Cartesian System

For 3 points ABC:

find AB, BC and CA, then if following:

sum of any two equal to third
AB = BC = CA
any two equal
$AB^2 + BC^2 = CA^2$

collinear equilateral \triangle isosceles \triangle right angle \triangle

For 4 points A,B,C and D:

find AB, BC, CD and DA then if following :

$$AB = BC = CD = DA$$

$$AC = BD$$
 square
$$AC \neq BD$$
 rhombus
$$AB = CD \text{ and } BD = DA$$

$$AC = BD$$
 rectangle
$$AC \neq BD$$
 parallelogram

Application of Cartesian System

internal division
$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$$

external division
$$\left(\frac{m_1x_2 - m_2x_1}{m_1 - m_2}, \frac{m_1y_2 - m_2y_1}{m_1 - m_2}\right)$$

mid point
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

division by line : the line ax + by + c = 0 divides the line PQ in the ratio $\frac{-ax_1 + by_1 + c}{ax_2 + by_2 + c}$

co-ordinates of any point on the line segment joining two pointts are $\left(\frac{x_1 + \lambda x_2}{1 + \lambda}, \frac{y_1 + \lambda y_2}{1 + \lambda}\right)$

Division by axes

x-axis y-axis

$$\frac{-y_1}{y_2} \qquad \frac{-x_1}{x_2}$$

Area of Triangle

$$\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

collinear

$$\Rightarrow Area = 0$$

Area by co-ordinate axes and line is $\frac{c^2}{2ab}$ for Equilateral \triangle

$$area = \frac{\sqrt{3}}{4} side^2 = \frac{1}{\sqrt{3}} height^2$$

Area of Quadrilateral

$$\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \end{vmatrix}$$

collinear

$$\Rightarrow Area = 0$$

Two opp. vertices (x_1, y_1) and (x_2, y_2) of rectangle are given

$$area = |(y_2 - y_1) (x_2 - x_1)|$$

Area of Triangle using Polar

$$\triangle = \frac{1}{2} \{ r_1 r_2 \sin(\theta_2 - \theta_1) + r_2 r_3 \sin(\theta_3 - \theta_2) + r_3 r_1 \sin(\theta_1 - \theta_3) \}$$

Area of Triangle with equation of sides

if $a_r x + b_r y + c_r = 0$ is given for $r = \{1, 2, 3\}$

$$\triangle = \frac{1}{2C_1C_2C_2} \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

where C_1C_2 and C_3 are co-factors of c_1c_2 and c_3

Locus

if A and B are fixed, then the LOCUS P is

Circle , if
$$\angle ABC = \text{constant}$$

Diameter =
$$AB$$
 ,if $\angle ABC = \frac{\pi}{2}$

Ellipse ,if
$$PA + PB = constant$$

Hyperbola if $PA - PB = constant$

Different Form of Eq of St. Line

General Equation
$$Ax + By + C = 0$$

Slope Intercet form
$$y = mx + c$$

$$\mathbf{m} = \mathbf{slope}$$
 , $\mathbf{c} = \mathbf{y}$ intercept

Point Slope form
$$(y - y_1) = m(x - x_1)$$

Two Point form
$$(y-y_1) = \frac{(y_2-y_1)}{x_2-x_1}(x-x_1)$$

Intercept form
$$\frac{x}{a} + \frac{y}{b} = 1$$

Normal or
$$\perp^{ar}$$
 form $x \cos \alpha + y \sin \alpha = p$

Parametric form
$$\frac{x-x_1}{\cos \theta} = \frac{y-y_1}{\sin \theta} = r$$

Position of a Point Relative to a Line

- $P(x_1, y_1), Q(x_2, y_2)$ are on same side of line ax + bx + c = 0, if $ax_1 + by_1 + c$ and $ax_2 + by + c$ have same sign or vice versa
- (x_1, y_1) is on the origin side of the line ax + bx + c = 0, if $ax_1 + by_1 + c$ and c have same sign or vice versa

Angle Between Two Lines when slope is given

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

$$\|\Rightarrow m_1 = m_2 \qquad \perp^{ar} \Rightarrow m_1 m_2 = -1$$

when eq. of line is given

suppose $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are given

- angle: $\tan \theta = \frac{a_2b_1 a_1b_2}{a_1a_2 + b_1b_2}$
- if lines are \parallel , $\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}$
- if lines are \perp^{ar} , $\Rightarrow a_1a_2 + b_1b_2 = 0$
- if lines coincides $\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Equation of a Line Making Angle with Another Line

the eq of a line passing through $P(x_1, y_1)$ and making an angle α with the line y = mx + c

$$y - y_1 = \frac{m \mp \tan \alpha}{1 + m \tan \alpha} (x - x_1)$$

Concurrency of 3 lines

all the 3 line meet at a point of intersection

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Distance Between Two | lines

$$d = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$$

Line Passing Through Intersection of Two Lines

$$L_1 \equiv a_1 x + b_1 y + c_1$$
 $L_2 \equiv a_2 x + b_2 y + c_2$

$$\text{Line} \Rightarrow L_1 + \lambda L_2 = 0$$

Area of Quadrilateral and Parallelogram

Area of Quadrilateral =
$$4\frac{c^2}{2ab}$$

Area of parallelogram
$$= \left| \frac{(c_1 - c_2)(d_1 - d_2)}{m_1 - m_2} \right|$$

 $y = m_1 x + c_1, y = m_1 x + c_2, y = m_2 x + d_1$ and $y = m_2 x + d_2$ are the eq of sides $\|^{gram}$

Transformation of Axes

Parallel transformation

then the co-ordinates of point P with respect to new axis O' will be

$$(x-h,y-k)$$

Rotational transformation

New/Old	x↓	y↓
$x' \rightarrow$	$\cos \theta$	$\sin \theta$
$y' \rightarrow$	$-\sin\theta$	$\cos \theta$

General Eq of Second Degree

General Eq. of second degree in x and y is $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

it represents a straight line, if

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

or,
$$abc + 2fgh - af^2 - bg^2 - ch^2 = 0$$

Eq of Lines Joining the Intersection Points of a Line and Curves to the Origin

Let $\overline{lx} + my + n = 0$ be the line and $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ be 2^{nd} degree curve

$$ax^{2} + 2hxy + by^{2} + 2gx\left(\frac{lx + my}{-n}\right) + 2fy\left(\frac{lx + my}{-n}\right) + c\left(\frac{lx + my}{-n}\right)^{2} = 0$$