

扫一扫二维码,加入群聊

Measuring Laser wavelength and Index of Refraction of Air by Michelson Interferometer

University Physics Experiment Center

Content

- 1 Background
- 2 Aim
- 3 Principle
- 4 Equipment
- 5 Procedure
- 6 Questions
- 7 Expand training
- 8 Experimental data recording and processing

Significance

Invariance of the speed of light, promote the development of special relativity

Michelson's important contribution

Determination of the speed of light

1924~1926Southern California mountains 22 miles long optical path, 299796±4 km/s

Determination of the reference length

1893, Determination of the wavelength of the red cadmium line 643.84696 nm, for the standard length, recognized by the world, until 1960.

•Michelson interferometer

for: Michelson - Morley experiment LIGO (LIGO) measuring gravitational Detecting extrasolar planets

•Echelle

Especially for Broad-band, high dispersion, high resolution.

2. aim

- Familiar Michelson interferometer configuration, grasp the adjustment methods and techniques.
- Understanding and equal inclination interference conditions and equal thickness interference fringes changes of formation.
- measuring the wavelength of the light source and measuring the refractive index of air.
- Enhance the fringe visibility and awareness of temporal coherence.

3. principle

3. 1 Michelson interferometer

The same: M1, M2 air film between the interference generated.

3.2 Equal thickness interference and equal inclination interference

3.2 Equal thickness interference and equal inclination interference

3.3 application

(1) for the wavelength of light

Bright fringe:
$$2d\left(1-\frac{r^2}{2Z^2}\right) = K\lambda$$

center:

$$2d = K\lambda$$

as:

$$2\Delta d = \Delta K \cdot \lambda$$

In advance:

$$\lambda = \frac{2\Delta d}{\Delta K}$$

In this experiment:

Count for 50 bright fringes, and record the length of lens moving

3.3 application

(2) measurement air Index of refraction

Bright fringe center: $2(d + \Delta nL) = K\lambda$

Refraction concerned with air pressure:

$$\Delta n = \frac{\lambda_0}{2L} \frac{60}{p_n} p_b$$

pressure: $p_b = 1.01325 \times 10^5 \, \text{Pa}$

In this experiment:

Count for 60 bright fringes, and record the pressure before and after.

4. Equipment

8. data

8.1 measurement He-Ne laser wavelength

table1 measurement He-Ne laser wavelength

N	0	50	100	150	200	250
d (mm)						
$\Delta d (\mathrm{mm})$	$\Delta d_1 = d_{150} - d_0 =$		$\Delta d_2 = d_{200} - d_{50} =$		$\Delta d_3 = d_{250} - d_{100} =$	
$\Delta \bar{d} = \frac{\Delta d_{1+} \Delta d_{2+} \Delta d_3}{3} \text{ (mm)}$						
$\overline{\lambda} = \frac{2\Delta \overline{d}}{\Delta m} = \frac{2\Delta \overline{d}}{3 \times 50} \text{ (nm)}$						

8. 2 measurement air index of refraction Table 2 measure of air index of refraction

Trial	1	2	3
p ₁ (MPa)			
p ₂ (MPa)			
$\Delta p = p_2 - p_1$ (MPa)			
$\Delta \bar{p} = \frac{\Delta p_{1+} \Delta p_{2+} \Delta p_3}{3} (\text{MPa})$			
$n = 1 + \frac{\lambda_0}{2L} \frac{60}{\Delta \bar{p}} p$			