Problem N.4

$|\textbf{Inverses of} \ \mathbb{Z}_m|$

Due Date: 3/25/2019 Folder: NumberTheory

File Name: N4_Inverses_Name.py

Points: 2 points

Learning Objectives

• Mix of programming skills

Problem Background

Recall the basics of modular arithmetic and the group \mathbb{Z}_m . We know that the set of all residue classes is given by,

$$\mathbb{Z}_m = \{0, 1, 2, \dots, (m-1)\}.$$

Addition, subtraction and multiplication on these elements is done similarly to regular integers, but using modular arithmetic. For example, assume we are considering $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$. In \mathbb{Z}_7 we have that 5+4=2, because $9 \equiv 2 \pmod{7}$. Also, $2 \cdot 4 = 1$, because $2 \cdot 7 = 8$ and $8 \equiv 1 \pmod{7}$.

Many things are similar between \mathbb{Z}_m and the integers, but some things are different. One of those things involves multiplicative inverses. A **multiplicative inverse** of an element a is an element b such that $a \cdot b = 1$. So for instance, about we saw that in \mathbb{Z}_7 , when you multiple 2 and 4, they equal 1. Therefore, both 2 and 7 are inverses of each other in the set \mathbb{Z}_7 . The key change in \mathbb{Z}_m is that not all element have an inverse. The number of inverses and which elements have inverses will change depending on what the m is in \mathbb{Z}_m .

Program Criteria

Write a program that does the following:

- Create an input variable m that will represent which \mathbb{Z}_m set we are working with.
- Determine which elements of \mathbb{Z}_m are have a multiplicative inverse.
- Print out all the elements of \mathbb{Z}_m that have a multiplicative inverse and how many such elements there are, with appropriate descriptive text.

Deliverables

Place the following in a folder named NumberTheory in your repository:

- A Python file N4_Inverses_Name.py that satisfies the program criteria.
- A pdf file N4_Inverses_Name.pdf describe a simple test for whether a particular element of \mathbb{Z}_m has an inverse. This test will probably depend on m. This should not be a description of your program, but a simpler test that will describe all elements that have an inverse.