

Midterm 2 Review

CSCI 104

Important Rules:

- Product rule:
 - If procedure can be broken up into sequence of k tasks
 - o n1 ways to do first task, n2 ways to do second task, nk ways to do kth task
 - \circ $n_1 * n_2 * ... * n_k$ ways to do the procedure

- Sum rule:
 - If procedure can be done in n₁ ways OR n₂ ways
 - o n₁ and n₂ have zero overlap
 - \circ $n_1 + n_2$ ways to do the task

Important Rules (cont.):

- Subtraction rule:
 - If procedure can be done in n₁ ways OR n₂ ways
 - o n₁ and n₂ have overlap n₃
 - \circ $n_1 + n_2 n_3$ ways to do the task

- Division rule:
 - If procedure can be done in n ways
 - For each way, it is identical to d-1 other ways
 - o n/d ways to do a task

Important Rules (cont.):

• Permutation: ordered arrangement of r elements from a set of n

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

• Combination: **unordered** arrangement of r elements from a set of n (n choose r)

$${}_{n}C_{r} = {n \choose r} = \frac{{}_{n}P_{r}}{{}_{r}P_{r}} = \frac{n!}{r! (n-r)!}$$

	Does order matter?	Is repetition allowed?	Formula
r-permutation without repetition	Yes	No	<u>n!</u> (n-r)!
r-permutation with repetition	Yes	Yes	n ^r
r-combination without repetition	No	No	n! r! (n-r)!
r-combination with repetition	No	Yes	$\begin{pmatrix} n-1+r \\ r \end{pmatrix}$

How many different ways are there to distribute 9 cookies to 4 children so that each child gets at least one cookie?

- The cookies are indistinguishable while the children are distinguishable, so Stars and Bars is a good option to use.
 - 9 stars = cookies
 - 3 bars to separate children
- Problem: Using the Stars and Bars equation will give sequences with children getting no cookies.
 - How do we make sure each child gets at least one cookie with this method?

Important Rules:

- Probability of event E:
 - S = sample space of equally likely outcomes
 - **P(E)** = |**E**| / |**S**|
- Complement: probability that event does not occur
 - $\circ \quad P(\bar{E}) = 1 P(E)$

Important Rules:

Conditional Probability: probability of B given A

$$P(B|A) = rac{P(A\cap B)}{P(A)}$$

If likelihood of B occurring does not depend on A, then B is independent of A:

$$P(B \mid A) = P(B).$$

- Suppose there are two bags in a box, which contain the following marbles:
 - Bag 1: 7 red marbles and 3 green marbles.
 - Bag 2: 2 red marbles and 8 green marbles.

 If we randomly select one of the bags and then randomly select one marble from that chosen bag, what is the probability that it's a green marble?

 Green marble could come from Bag 1 or Bag 2, which will affect the chances of drawing a green marble

- We need to use the Law of Total Probability:
 - For any partition of the sample space into disjoint events F_1 , ..., F_k :

$$p(E) = p(E|F_1) * p(F_1) + ... + p(E|F_k) * p(F_k)$$

Hashtables

Consider a hash table of size 7 with a loading factor of 0.5, the resize function is 2n + 3, where n is the size of the hash table. (an insertion may end with the loading factor being ≥ 0.5 ; the next insertion would cause the resize).

When resizing, keys are inserted in the order they appear index-wise in the old

hashtable.

Hashtables

The hash function is (3k + 4) % n, using quadratic probing. Insert 3, 11, 10, 6, 8, 23.

Key	HashFunc(key)	Loading Factor Before Insert	Probe Sequence

Hashtables

More questions to consider:

- 1. What are the benefits of double hashing over things like linear or quadratic probing?
- 2. No examples of a double collision came up. If there was a double collision, what index do we go to next?
- 3. Can you explain the benefits of resizing?
- 4. Are probes ever guaranteed to go to distinct locations? If yes, what are the conditions for this to happen?

Bloom Filters

Q: What are the benefits and drawbacks of using a bloom filter?

Bloom Filters

Q: Which is possible, false positives or false negatives?

Bloom Filters

Q: Let's say we have a bloom filter with 19 indices, 3 universal hash functions. 5 of the bits are set. What is the probability of getting a false positive?

Q: Say gcd(a, b) = 1 and gcd(a, c) = 1. What is gcd(a, b*c)?

Q: Is 257 prime?

Q: What is the ones digit of 7^100?

Q: Given that $5x \equiv 6 \pmod{8}$, find x.

Coding

Suppose you are given an integer array *nums* of unique elements. **Return all possible subsets** of the array (in other words, the power set). The solution can be in any order, and you must not include duplicate subsets.

- Example:
 - Input: nums = [1,2,3]
 - Output: [[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]]

```
// Returns all subsets of nums
vector<vector<int>>> subsets(vector<int>& nums) {
}
```

- How many subsets are possible?
 - Each element can be included or not included in the subset
 - For an array of n elements, this would be **2^n total subsets**

Coding

We need to explore all possible combinations of the array's elements -> backtracking!

- We will start building a subset that is initially empty
- We will iterate through the array and add the current number to our subset
 - Recursively build the subset without the letters we have already used (adjust the range of our loop)
 - Backtrack by removing the number we added and proceed to the next iteration of the loop
- In each recursive call, we will have a new subset that will be a part of our solution