Final coalgebras from corecursive algebras

Paul Blain Levy

University of Birmingham

June 25, 2015

Outline

The problem

Solving the problem

Modal logic on a dual adjunction

Transition systems

Let \mathcal{A} be a set of labels.

An image-countable A-labelled transition system consists of

- a set X
- a function $X \to (\mathcal{P}_c X)^{\mathcal{A}}$

This is a coalgebra for the endofunctor on **Set**

$$B: X \mapsto (\mathcal{P}_c X)^{\mathcal{A}}$$

How can we construct a final coalgebra?

Strongly extensional quotient of an all-encompassing coalgebra

Let P be an all-encompassing B-coalgebra:

every element of every B-coalgebra is bisimilar to some element of P.

Then the strongly extensional quotient (quotient by bisimilarity) of P is a final coalgebra.

Examples of all-encompassing coalgebras, for $\mathcal{A}=1$

- (Large) The sum of all coalgebras.
- The sum of all coalgebras carried by a subset of N.
- The set of non-well-founded terms for a constant and an ω -ary operation.

Hennessy-Milner logic

With countable conjunctions, non-bisimilar states can be distinguished.

$$\phi ::= \bigwedge_{i \in I} \phi_i \mid \neg \phi \mid [a] \phi \quad (I \text{ countable})$$

It's sufficient to take the ♦-layered formulas.

$$\phi ::= \langle a \rangle \left(\bigwedge_{i \in I} \phi_i \wedge \bigwedge_{j \in J} \neg \phi_j \right)$$

Semantics in a colagebra (X,ζ)

$$u \models \langle a \rangle \left(\bigwedge_{i \in I} \phi_i \wedge \bigwedge_{j \in J} \neg \phi_j \right) \\ \iff \\ \exists x \in (\zeta(u))_a. \left(\forall i \in I.x \models \phi_i \wedge \forall j \in J. \ x \not\models \psi_i \right)$$

Formulas and states

For a state x, write $(x) = \{\phi \mid x \models \phi\}$.

For a formula ϕ , write $\llbracket \phi \rrbracket_{X,\zeta} = \{ x \in X \mid x \models \phi \}.$

Formulas and states

For a state x, write $(x) = \{\phi \mid x \models \phi\}$.

For a formula ϕ , write $\llbracket \phi \rrbracket_{X,\zeta} = \{ x \in X \mid x \models \phi \}$.

Theorem

$$x \simeq y \text{ iff } (|x|) = (|y|)$$

- (\Leftarrow) is soundness.
- (\Rightarrow) is expressivity.

Final coalgebra from modal logic

Theorem

$$x \sim y \text{ iff } (|x|) = (|y|)$$

Gives a final coalgebra whose states are sets of formulas.

Take
$$\{(x) \mid (X,\zeta) \text{ a } T\text{-coalgebra, } x \in X\}$$
.

The structure at (x) applies $X \xrightarrow{\zeta} FX \xrightarrow{F(-)} FM$

(Goldblatt; Kupke and Leal)

The Problem

$$\{ \llbracket x \rrbracket_{X,\zeta} \mid (X,\zeta) \text{ a } T\text{-coalgebra, } x \in X \}$$

This is very similar to quotienting by bisimilarity.

It is constructed out of general coalgebras.

The Problem

$$\{ \llbracket x \rrbracket_{X,\zeta} \mid (X,\zeta) \text{ a } T\text{-coalgebra, } x \in X \}$$

This is very similar to quotienting by bisimilarity.

It is constructed out of general coalgebras.

Our question

Can we build a final coalgebra purely from the logic, without reference to other coalgebras?

We need to say when a set of formulas is of the form $[x]_{X,C}$.

The image-finite case

The functor is $B: X \mapsto (\mathcal{P}^f X)^{\mathcal{A}}$.

Build the canonical model, consisting of sets of formulas deductively closed in the modal logic K.

This is a transition system.

The hereditarily image-finite elements form a final coalgebra.

The image-finite case

The functor is $B: X \mapsto (\mathcal{P}^f X)^{\mathcal{A}}$.

Build the canonical model, consisting of sets of formulas deductively closed in the modal logic K.

This is a transition system.

The hereditarily image-finite elements form a final coalgebra.

But what about the image-countable case?

Starting-point: a B-algebra

The carrier is the set Form of theories, i.e. sets of \lozenge -layered formulas.

The structure $\alpha: B \text{ Form} \rightarrow \text{Form}$ is given as follows.

For $\mathcal{M} \in \mathcal{B}$ Form, the formula $\langle a \rangle \left(\bigwedge_{i \in I} \phi_i \wedge \bigwedge_{i \in I} \neg \psi_i \right)$ is in $\alpha \mathcal{M}$

when there exists $M \in \mathcal{M}a$ such that $\forall i \in I$. $\phi_i \in M$ and $\forall j \in J$. $\psi_i \notin M$.

Think of \mathcal{M} as describing the semantics of the successors of a node x, then $\alpha \mathcal{M}$ is the semantics of x.

Properties of the *B*-algebra

The B-algebra we have just seen is

- corecursive
- injectively structured.

Corecursive algebra

A map from a B-coalgebra to a B-algebra

Think: to recursively define f(x), first parse x into parts, apply f to each part, then combine the results.

Corecursive algebra

A map from a B-coalgebra to a B-algebra

Think: to recursively define f(x), first parse x into parts, apply f to each part, then combine the results.

A coalgebra is recursive when there's a unique map to every algebra. Corresponds to well-foundedness. (Taylor)

An algebra is corecursive when there's a unique map from every coalgebra. Our algebra of fomulas sets is corecursive.

Co-founded elements of an algebra

Let S be a signature, i.e. a set of operations each with an arity.

Let (Y, \ldots) be an S-algebra.

An element of Y is co-founded when it is of the form $c(y_i \mid i \in ar(c))$ with each *y*; co-founded.

This is a coinductive definition.

Co-founded elements of an algebra

Let S be a signature, i.e. a set of operations each with an arity.

Let (Y, \ldots) be an S-algebra.

An element of Y is co-founded when it is of the form $c(y_i \mid i \in ar(c))$ with each *y*; co-founded.

This is a coinductive definition.

We shall generalize this to B-coalgebras

where B is an endofunctor on **Set** preserving injections.

The co-founded part of an algebra

Starting with a B-algebra (Y, θ) , we define a monotone endofunction p on PY.

For $U \in \mathcal{P}Y$ with inclusion $i_U : U \to Y$, we have

The co-founded part of an algebra

Starting with a B-algebra (Y, θ) , we define a monotone endofunction p on $\mathcal{P}Y$.

For $U \in \mathcal{P}Y$ with inclusion $i_U : U \to Y$, we have

$$BU \xrightarrow{Bi_U} BY$$

$$\downarrow r_U \downarrow \qquad \qquad \downarrow \theta$$

$$p(U) > \stackrel{i_{p(U)}}{\longrightarrow} Y$$

This is a monotone endofunction on PY.

A prefixpoint of p is a subalgebra of (Y, θ) .

The greatest postfixpoint νp is called the co-founded part of (Y, θ) .

It is a surjectively structured algebra, in fact the coreflection of (Y, θ) into surjectively structured algebras.

Facts about the co-founded part

Claim The (co-founded part) $^{-1}$ of our algebra is a final coalgebra, and the least subalgebra is an initial algebra.

Facts about the co-founded part

Claim The (co-founded part) $^{-1}$ of our algebra is a final coalgebra, and the least subalgebra is an initial algebra.

- The co-founded part of a corecursive algebra (Y, θ) is corecursive.
- If (Y, θ) is injectively structured, the co-founded part is injectively and surjectively structured, hence bijectively structured.
- Any isomorphically structured corecursive algebra gives us a final coalgebra.
- If (Y, θ) is injectively structured, then its least subalgebra is an initial algebra. (Adámek and Trnková)

The recipe

Let *B* be an endofunctor on **Set** preserving injections.

Take an injectively structured, corecursive B-algebra.

Its (co-founded part) $^{-1}$ is a final B-coalgebra,

and its least subalgebra is an initial B-algebra.

Modal logics in general

We can improve and generalize this recipe using Klin's framework of expressive modal logic on a dual adjunction.

Adjunctions and bimodules

What is an adjunction between \mathcal{C} and $\mathcal{D}^{^{op}}$?

Definition of dual adjunction

Functors
$$\mathcal{O}^*$$
 : $\mathcal{C}^{\mathsf{op}} o \mathcal{D}$ and \mathcal{O}_* : $\mathcal{D}^{\mathsf{op}} o \mathcal{C}$, and

$$\mathcal{C}(X, \mathcal{O}_*\Phi) \cong \mathcal{D}(\Phi, \mathcal{O}^*X)$$
 natural in $X \in \mathcal{C}^{\circ p}, \Phi \in \mathcal{D}$.

Alternative definition of dual adjunction

A functor $\mathcal{O}: \mathcal{C}^{^{op}} \times \mathcal{D}^{^{op}} \to \mathbf{Set}$ (aka bimodule, profunctor), and

$$C(X, \mathcal{O}_*\Phi) \cong \mathcal{O}(X, \Phi) \cong \mathcal{D}(\Phi, \mathcal{O}^*X)$$

natural in $X \in \mathcal{C}^{^{\mathsf{op}}}, \Phi \in \mathcal{D}^{^{\mathsf{op}}}$

Dual adjunction for satisfaction relations

Consider this dual adjunction between **Set** and **Set**.

$$\mathsf{Set}(X, \mathcal{P}\Phi) \cong \mathsf{Rel}(X, \Phi) \cong \mathsf{Set}(\Phi, \mathcal{P}X)$$

Suppose X carries a coalgebra and Φ is the set of formulas.

$$(-) \leftrightarrow \models \leftrightarrow [-]$$

Dual adjunction for satisfaction relations

Consider this dual adjunction between **Set** and **Set**.

$$\mathbf{Set}(X, \mathcal{P}\Phi) \cong \mathbf{Rel}(X, \Phi) \cong \mathbf{Set}(\Phi, \mathcal{P}X)$$

Suppose X carries a coalgebra and Φ is the set of formulas.

$$(-) \leftrightarrow \models \leftrightarrow [-]$$

Intuitions

- An object $X \in \mathcal{C}$ is a set of states.
- An object $\Phi \in \mathcal{D}$ is a set of formulas.
- $\mathcal{O}(X,\Phi)$ is the set of satisfaction relations.
- \mathcal{O}^*X is the set of predicates on X.
- O_{*}Φ is the set of theories of Φ.

Syntax of a modal logic

The syntax is represented by an endofunctor L on \mathcal{D} .

 $L\Phi$ is the set of single-layer formulas with atoms in Φ .

Example: \diamondsuit -layered formulas

 \mathcal{D} is **Set**.

 $L\Phi$ is the set of formulas

$$\langle a \rangle \left(\bigwedge_{i \in I} \phi_i \wedge \bigwedge_{j \in J} \neg \psi_j \right) \qquad (\phi_i, \psi_j \in \Phi)$$

More concisely $L\Phi = A \times P_c \Phi \times P_c \Phi$.

The set of formulas form an initial L-algebra.

Semantics of a modal logic

 $L\Phi$ is the set of single-layer formula with atoms in Φ .

BX is the set of single-step behaviours ending in a state in X.

Semantics of a modal logic

 $L\Phi$ is the set of single-layer formula with atoms in Φ .

BX is the set of single-step behaviours ending in a state in X.

The semantics is given by a map

$$ho_{X,\Phi} : \mathcal{O}(X,\Phi) o \mathcal{O}(BX,L\Phi)$$
 natural in $X \in \mathcal{C}^{\mathsf{op}}, \Phi \in \mathcal{D}^{\mathsf{op}}$

Semantics of a modal logic

 $L\Phi$ is the set of single-layer formula with atoms in Φ .

BX is the set of single-step behaviours ending in a state in X.

The semantics is given by a map

$$ho_{X,\Phi} \; : \; \mathcal{O}(X,\Phi) o \mathcal{O}(BX,L\Phi) \; \text{natural in} \; X \in \mathcal{C}^{^{\mathsf{op}}}, \Phi \in \mathcal{D}^{^{\mathsf{op}}}$$

Example: \diamondsuit -layered formulas

$$s(\rho_{X,\Phi}(\models))\langle a\rangle \ (\bigwedge_{i\in I}\phi_i \wedge \bigwedge_{j\in J} \iff$$

$$\exists x \in s_a. \ (\forall i \in I.x \models \phi_i \land \forall j \in J. \ x \not\models \psi_j)$$

Putting it together

Given an endofunctor B on \mathcal{C} , a modal logic consists of

- a dual adjunction $(\mathcal{D}, \mathcal{O})$ to \mathcal{C}
- (syntax) an endofunctor L on \mathcal{D}
- (semantics) a natural transformation $\rho_{X,\Phi}: \mathcal{O}(X,\Phi) \to \mathcal{O}(BX,L\Phi)$

Mates of the semantics

The semantics can be expressed in terms of \mathcal{O}^* :

$$\rho_*^X : L\mathcal{O}^*X \to \mathcal{O}^*BX$$

And it can be expressed in terms of \mathcal{O}_* :

$$\rho_{\Phi}^*$$
 : $B\mathcal{O}_*\Phi \to \mathcal{O}_*L\Phi$

Mates of the semantics

The semantics can be expressed in terms of \mathcal{O}^* :

$$\rho_*^X : L\mathcal{O}^*X \to \mathcal{O}^*BX$$

And it can be expressed in terms of \mathcal{O}_* :

$$\rho_{\Phi}^*$$
: $B\mathcal{O}_*\Phi \to \mathcal{O}_*L\Phi$

Expressiveness (Klin)

Suppose $C = \mathbf{Set}$, and B preserves injections.

The modal logic is expressive when ρ_{Φ}^* is injective for all Φ .

Improved recipe

Let B be an endofunctor on **Set** preserving injections.

Let $(\mathcal{D}, \mathcal{O}, \mathcal{L}, \rho)$ be an expressive modal logic, with an initial \mathcal{L} -algebra. Then the *B*-algebra

$$B\mathcal{O}_*\mu L \to \mathcal{O}_*L\mu L \cong \mathcal{O}_*\mu L$$

is corecursive and injectively structured.

Improved recipe

Let B be an endofunctor on **Set** preserving injections.

Let $(\mathcal{D}, \mathcal{O}, \mathcal{L}, \rho)$ be an expressive modal logic, with an initial \mathcal{L} -algebra. Then the B-algebra

$$B\mathcal{O}_*\mu L \to \mathcal{O}_*L\mu L \cong \mathcal{O}_*\mu L$$

is corecursive and injectively structured.

So its (coinductive part) $^{-1}$ is a final B-coalgebra and its least subalgebra is an initial B-algebra.

In the paper

Generalizing from **Set** to other categories with a suitable factorization system

e.g. **Poset** and **Set** op.

Conclusion

We can construct a final coalgebra purely from a modal logic.

Conclusion

We can construct a final coalgebra purely from a modal logic.

Question

The coinductive part is a greatest postfixpoint.

At what ordinal is it reached?

Conclusion

We can construct a final coalgebra purely from a modal logic.

Question

The coinductive part is a greatest postfixpoint.

At what ordinal is it reached?

If B preserves arbitrary intersections, it's ω .