U.S PATENT APPLN S.N. 10/529,847 DECLARATION UNDER 37 C.F.R. § 1.132

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appl. No.: 10/529,847

Confirmation No. 1538

Applicant :

Jun SAKAMOTO et al.

Filed

June 13, 2005

TC/A.U.

1796

Examiner :

Gennadiy Mesh

Dkt. No. :

IPE-052

Cust. No. :

20374

DECLARATION UNDER 37 C.F.R. § 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

- I, Koichi DAN, declare and state THAT:
- I have a Master's degree in Kyoto University,
 Graduate School of Engineering Department of Polymer Chemistry.
- 2. Since 1999, I have been employed by Toray
 Industries, Inc., and from 1999 to 2005 have been a researcher in
 the Global Environment Research Laboratories of Toray Industries,

U.S PATENT APPLN S.N. 10/529,847 DECLARATION UNDER 37 C.F.R. \$ 1.132

Inc.

- 3. I am now a Senior Researcher in the Films and Film Products Research Laboratories of Toray Industries, Inc. since 2005 and have been engaged in research and development of polymer materials from 1999 to present.
- 4. I am aware that the claims of U.S. Patent
 Application Serial No. 10/529,847 were rejected as being
 anticipated by Aoyama et al., U.S. Patent No. 6,365,659
 ("Aoyama"), in Office Actions dated June 4, 2007, September 19,
 2007, April 8, 2008, August 11, 2008, and March 30, 2009, in the
 application.
- 5. To demonstrate that the polyester resin compositions of Aoyama contain more than 100 particles per 0.02 mg of the compositions of titanium-containing particles having an equivalent circular diameter of 1 μ m or more, the following tests were carried out under my direction and supervision.

EXAMPLES 1, 4-11, 13 AND 14 OF AOYAMA

Each of the polyester resin compositions of Examples 1, 4-11, 13 and 14 of Aoyama was prepared following the procedures

U.S PATENT APPLN S.N. 10/529,847 DECLARATION UNDER 37 C.F.R. § 1.132

described in these examples in Aoyama.

The number density of titanium-containing particles, i.e., the number of titanium-containing particles per 0.02 mg of each composition, having an equivalent circular diameter of 1 μ m or more was measured according to the measuring method used in the examples of U.S. Patent Application Serial No. 10/529,847 as described on page 62, line 11, to page 64, line 16, of the application.

The results of the measurements are described in Table 1, "Test Results of Examples of US6365659", attached hereto.

That all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and that further these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent resulting therefrom.

U.S PATENT APPLN S.N. 10/529,847 DECLARATION UNDER 37 C.F.R. § 1.132

Signed this 17 day of July , 2009.

Signed: Kaihi Dan

Name: Koichi DAN

Particles (X) not added	er resin rties Film properties	-	er of dropouts		+-		00 Rejected 40	00 Rejected 47	00 Rejected/47	00 Rejected/47	00 Rejected/47	100 Rejected/47	00 Rejected/37	:00 Rejected/35	00 Rejected/42			
Par	Polyester resin	├		r particles(*2) tity) (pcs/0.02 mg)	_	3 > 300	2 ->300	2 >300	3 >300	1 >300	0 >300	9 >300	> 300		1 > 300			
	Film properties	N	dropouts	(accepted or rejected/guantity)	Rejected/60	Rejected/63	Rejected/62	Rejected /82	Rejected /83	Rejected/51	Rejected/50	Rejected/66	Rejected/60	Rejected/65	Rejected/61			
	Polyester resin properties		Number of	particles(*1) (pcs/0.02 mg)	>300	> 300	>300	>300	>300	> 300	> 300	> 300	> 300	· >300	>300			
	metal or und (C)		Ti/meta	(molar ratio)	0.39	62'0	0.2	1	-	1	_	-	0.3	0.46	0.12			
	Alkaline earth metal or cobaft compound (C)		Metal (content	as metal atoms) (ppm)	Cobalt (47)	Cobalt (47)	Cobalt (120)	Cobalt (47)	Cobalt (47)	Cobalt (47)	Cobalt (47)	Cobalt (47)	Calcium (40)	Cobait (40)	Cobalt (180)			
	horus ind (B)			(molar	0.32	6.5	0.4	0.86	0.86	0.86	0.86	0.86	0.32	16	0.22			
į	Phosphorus compound (B)	Content	phosphor	us atoms (ppm)	30	1.5	32	읎	ଚ୍ଚ	8	8	ଚ୍ଚ	30	0.8	0	வ ற்		
	Compound exide (A)	Content	-	atoms (ppm)	1 1	15	20	4	4	40		ļ	ĺ	2	17	m or more m or more		
	Compo			t (molar ratio)	90/10	32/2	80/20	90/10	90/10	90/10	90/10	90/10	90/10	85/15	90/10	ter of 1 µ ter of 1 µ		
000000				Content (wtk)	0.5	0.5	0.5	2.5	0.01	-	0.5	0.5	0.5	0.5	0.5	lar diame lar diame		
10 to 8	Particles (X)		Average	particle size (µm)	0.56	0.56	0.56	0.56	0.56	0.32	0.25	2	0.56	0.56	0.56	lent circu lent circu		
School of Livering of Liverings of County of the County of	Partic			Compound	Tranium dioxide	Silican oxide	Silican oxide				Titanium dioxide	(*1) particles having an equivalent circular diameter of 1 μ (*2) particles having an equivalent circular diameter of 1 μ						
200					Example 1	\rightarrow	Example 5	Example 6	Example 7	Example 8	Example 9	Example 10	Example 11	Example 13	Example 14	(*1) particles (*2) particles		

(*1) particles having an equivalent circular diameter of 1 μ m or more (*2) particles having an equivalent circular diameter of f μ m or more