ПРЕОБРАЗОВАНИЕ ГРАММАТИК

Вариант 1.

1. Задание

Постройте программу, которая в качестве входа принимает произвольную КС-грамматику $G = (N, \sum, P, S)$ и преобразует ее в эквивалентную КС-грамматику $G' = (N', \sum', P', S')$ без левой рекурсии и не содержащую недостижимых символов.

2. Тесты

Устранение левой рекурсии

Входная грамматика	Результат
[A,B,C,D] [a,b,c] A A -> A a a B B -> C b C -> B c D -> A	Non-terminals = ['A', 'B', 'C', 'D', "A'", "C'"] Terminals = ['a', 'b', 'c'] Start symbol = A A -> B B A' a a A' A' -> a a A' B -> C b C' -> b c b c C' D -> B A' a a A'

[A] [a] A A -> a A	Non-terminals = ['A'] Terminals = ['a'] Start symbol = A A -> a A
[A,B] [a,b] A A -> B a a B -> A b b	Non-terminals = ['A', 'B', "B'"] Terminals = ['a', 'b'] Start symbol = A A -> B a a B -> a b a b B' b b B' B' -> a b a b B'
[A,B,C] [a,b,c] A A -> A a a B -> C b C -> B c	Non-terminals = ['A', 'B', 'C', "A'", "C'"] Terminals = ['a', 'b', 'c'] Start symbol = A A -> a a A' A' -> a a A' B -> C b C' -> b c b c C'

Устранение недостижимых символов

Входная грамматика	Результат
[A] [a] A A -> a A	Non-terminals = ['A'] Terminals = ['a'] Start symbol = A A -> a A
[A,B,C] [a,b,c] A A -> A a a B -> C b C -> B c	Non-terminals = ['A'] Terminals = ['a', 'b', 'c'] Start symbol = A A -> A a a

3. Ответы на контрольные вопросы

- 1) Как может быть определён формальный язык?
- Перечисление слов языка.
- Слова, порождённые некоторой формальной грамматикой
- Слова, порождённые регулярным выражением.
- Слова, распознаваемые некоторым КА
- 2) Какими характеристиками определяется грамматика?
- \sum множество терминальных символов
- N множество нетерминальных символов
- P множество правил
 - слева непустая последовательность (не)терминалов, содержащая хотя бы один нетерминал
 - справа любая последовательность (не)терминалов)

S – начальный символ из множества нетерминалов

- 3) Дайте описания грамматик по иерархии Хомского.
- Неограниченные грамматики с фразовой структурой
- Контекстно-зависимые КЗ и неукорачивающие грамматики
- *Контекстно-свободные* грамматика допускает появление в левой части правила только нетерминального символа
- Регулярные КС грамматики с ограничениями
- 4) Какие абстрактные устройства используются для разбора грамматик?
- Распознающие грамматики устройства, принимающие цепочку языка, и выводящие условное «ОК», если цепочка принадлежит языку, и «ERROR» в противном случае.
- Порождающие грамматики устройства для порождения цепочек языков по требованию.
- 5) Оцените временную и емкостную сложность предложенного вам алгоритма.

Устранение левой рекурсии: $t - O(N^2)$, m - O(N) Устранение недостижимых символов: $t - O(N^2)$, m - O(N)