§1.5 行列式的几何意义

数学系 梁卓滨

2017 - 2018 学年 I

二阶行列式的几何意义

二阶行列式的几何意义

平行四边形的面积等于行列 式 $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$ 的绝对值

练习 求如下平行四边形的面积

练习 求如下平行四边形的面积

解 平行四边形面积为 2 阶行列式

的绝对值

练习 求如下平行四边形的面积

解平行四边形面积为2阶行列式

$$\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = 5$$

的绝对值,即面积为5。

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积

$$= \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
的绝对值

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积
$$= \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
的绝对值
$$\overrightarrow{b} = (x_2, y_2, z_2)$$

性质 向量 $\overrightarrow{a} = (x_1, y_1, z_1), \overrightarrow{b} = (x_2, y_2, z_2), \overrightarrow{c} = (x_3, y_3, z_3)$ 不 共面的充分必要条件是:

 $\overrightarrow{a} = (x_1, y_1, z_1)$

暨南大学 № 10 UNIVERSITY

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积
$$= \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
 的绝对值

性质 向量 $\overrightarrow{a} = (x_1, y_1, z_1), \overrightarrow{b} = (x_2, y_2, z_2), \overrightarrow{c} = (x_3, y_3, z_3)$ 不 共面的充分必要条件是:

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \neq 0$$