

Lecture 13

第八章:离散时间系统的变换域分析

§ 8.1 引言

§8.2 z变换定义,收敛区

§ 8.3 z变换的基本性质

第八章主要内容:

•	序列的z变换, z变换的收敛区	(1)
•	z变换的性质	(1)
•	反z变换	(2)
•	s平面与z平面的映射关系	(2)
•	离散时间系统的z变换分析法	(3)
•	系统函数的极点分布对系统时域特性的影响	(3)
•	离散序列傅里叶变换	(4)
•	离散时间系统的频率响应	(4)

- 线性差分方程的解法
- ■零输入响应
- ■单位函数响应
- ■卷积和
- ■零状态响应

一、z变换的定义

复习信号的单边拉氏变换:

$$f(t) \leftrightarrow F(s)$$
 $(s = \sigma + j\omega)$

$$F(s) = \int_0^{+\infty} f(t)e^{-st}dt$$

$$f(t) = \left(\frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds\right) u(t)$$

考虑x(t)经过理想抽样后的信号的单边拉氏变换:

$$x_s(t) = x(t)\delta_T(t) = \sum_{n=0}^{\infty} x(nT)\delta(t - nT)$$

$$\int_0^\infty x_s(t)e^{-st}dt = \int_0^\infty \left[\sum_{n=0}^\infty x(nT)\delta(t-nT)\right]e^{-st}dt$$

$$=\sum_{n=0}^{\infty}\int_{0}^{\infty}x(nT)e^{-st}\delta(t-nT)dt$$

$$=\sum_{n=0}^{\infty}x(nT)e^{-snT}$$

$\frac{\mathbb{P} LT\{x_s(t)\} = \sum_{n=0}^{\infty} x(nT)e^{-snT}}{n}$

令
$$z = e^{sT}$$
, 再令 $T = 1$, 得到序列x(n)的

单边z变换公式:

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

双边z变换公式:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

记为:

$$x(n) \leftrightarrow X(z)$$

关于单边z变换与双边z变换:

- (1) 对因果序列: x(n) = x(n)u(n) 双边z变换=单边z变换
- (2)因果序列x(n)右移后仍是因果序列 双边z变换=单边z变换
- (3)因果序列*x*(*n*)左移后不再是因果序列 双边z变换≠单边z变换
- (4)对一般序列x(n)而言: 其单边z变换就是x(n)u(n)的双边z变换

举例: 计算下面两个序列的双边z变换

$$x_1(n) = u(n)$$
 右边序列

$$x_2(n) = -u(-n-1)$$
 左边序列

二、z变换的收敛区(ROC)

回忆拉普拉斯变换收敛区:

- (1)为什么存在拉普拉斯变换收敛区的问题?
- (2)单边拉普拉斯变换收敛区在s平面上是怎样的?

和拉普拉斯变换一样,z变换也有收敛区间。例如:

$$ZT(u(n)) = \sum_{n=0}^{\infty} u(n)z^{-n} = 1 + z^{-1} + z^{-2} + z^{-3} + \dots$$

当 | z |≤1时,上述级数不收敛。

1. 收敛区的定义

z变换的收敛区的定义:对序列x(n),使得下列级数

$$\sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

收敛的z值的集合。

序列z变换级数收敛的充分条件是绝对可和,即

$$\sum_{n=-\infty}^{\infty} |x(n)z^{-n}| < \infty$$

绝对可和的判别方法

(1)比值判别法(达朗贝尔准则)

设
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$$
 ,则 $\left\{egin{array}{l} \rho<1,&$ 级数收敛 $\rho>1,&$ 级数发散 $\rho=1,&$ 不能确定

(2)根式判别法(柯西准则)

设
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho$$
 ,则 $\begin{cases} \rho < 1, & \text{级数收敛} \\ \rho > 1, & \text{级数发散} \\ \rho = 1, & \text{不能确定} \end{cases}$

2. 几类序列双边z变换的收敛区

- 有限长序列
- 右边序列
- 左边序列
- 双边无限序列

(1) 有限长序列: $x(n) = \begin{cases} x(n) & n_1 \le n \le n_2 \\ 0 & n < n_1, n > n_2 \end{cases}$

$$X(z) = \sum_{n=n}^{n_2} x(n)z^{-n} = x(n_1)z^{-n_1} + x(n_1+1)z^{-(n_1+1)} + \dots + x(n_2)z^{-n_2}$$

 $n_1 \le 0$ 时, $z = \infty$ 和 $n_2 > 0$ 时z = 0外,所有z值都收敛

不包含0和∞的z平面称为有限z平面。 有限长序列的z变换在有限z平面上收敛。 收敛区是否还可包含 0或∞,则具体情况 具体分析。

(2) 右边序列: $x(n) = \begin{cases} x(n) & n \ge n_1 \\ 0 & n < n_1 \end{cases}$ $X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$

 $\lim_{n\to\infty} \sqrt[n]{|x(n)z^{-n}|} < 1$

 $\lim_{n\to\infty} \sqrt[n]{|x(n)|} < |z|$

 $|z| > \lim_{n \to \infty} \sqrt[n]{|x(n)|} = R_r$

右边序列的z变换的收敛区

收敛半径 $n_1 < 0$ 时, $R_r < |z| < \infty$

否则, $R_r < |z| \le \infty$

在某个圆的圆外。

Re[z]

 $f \mid Im[z]$

- (3) 左边序列: $x(n) = \begin{cases} x(n) & n \le n_2 \\ 0 & n > n_2 \end{cases}$ $X(z) = \sum_{n=0}^{\infty} x(n)z^{-n} \implies X(z) \stackrel{m=-n}{=} \sum_{n=0}^{\infty} x(-m)z^{n} \stackrel{n=m}{=} \sum_{n=0}^{\infty} x(-n)z^{n}$

 $\lim_{n\to\infty} \sqrt[n]{|x(-n)z^n|} < 1$

 $\lim_{n\to\infty} \sqrt[n]{|x(-n)|} < |z|^{-1}$

 $|z| < \frac{1}{\lim \sqrt[n]{|x(-n)|}} = R_l$

左边序列的z变换的收敛区

 $j \operatorname{Im} |z|$

Re[z]

否则, $0 \le |z| < R_l$

 $n_2 > 0$ 时, $0 < |z| < R_1$

2022-4-21 z变换及其基本性质

在某个圆的圆内。

(4) 双边无限序列:

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n} \qquad -\infty \le n \le \infty$$

$$X(z) = \sum_{n=-\infty}^{-1} x(n)z^{-n} + \sum_{n=0}^{\infty} x(n)z^{-n}$$
圆内收敛 圆外收敛 圆外收敛 $R_l > R_r \Rightarrow$ 有环状收敛区 $R_l < R_r \Rightarrow$ 不收敛 双边无限序列的z变换的收敛区 为某个圆环内。

小结: 双边z变换的收敛区

- (1) 有限长双边序列的双边z变换的收敛区一般为 $0<|z|<\infty$,有限长因果序列双边z变换的收敛区为|z|>0,有限长非因果序列双边z变换的收敛区为 $|z|<\infty$ 。
- (2) 无限长右边序列双边z变换的收敛区为 $|z| > |z_0|$,即收敛区为以 $|z_0|$ 为半径的圆外区域。
- (3) 无限长<u>左边</u>序列双边z变换的收敛区为 $|z| < |z_0|$,即收敛区为以 $|z_0|$ 为半径的圆内区域。
- (4) 双边无限序列双边z变换的收敛区为 $|z_1| < |z| < |z_2|$,即收敛区位于以 $|z_1|$ 为半径和以 $|z_2|$ 为半径的两个圆之间的环状区域。

注意: 不同序列的双边z变换可能相同,即序列与其双边z变换不是一一对应的。序列的双边z变换连同收敛域一起与序列才是一一对应的。

三、典型序列的z变换(P354表8-1)

$$(1) f(k) = \delta(k)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \delta(k) z^{-k} = 1$$

(2)
$$f_1(k) = \delta(k-m), f_2(k) = \delta(k+m), m$$
为正整数.

$$F_1(z) = \sum_{k=0}^{\infty} \delta(k-m)z^{-k} = z^{-m} \quad |z| > 0$$

$$F_2(z) = \sum_{k=0}^{\infty} \delta(k+m) z^{-k} = z^m \quad |z| < \infty$$

(3)
$$f(k) = \varepsilon(k)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \varepsilon(k) z^{-k} = \frac{z}{z-1} \qquad |z| > 1$$

(4)
$$f(k) = -\varepsilon(-k-1)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \left[-\varepsilon(-k-1) \right] z^{-k} = \frac{z}{z-1} \quad |z| < 1$$

验证:不同序列的双边z变换可能相同,即序列与其双边z变换不是一一对应的。序列的双边z变换连同收敛域一起与序列才是一一对应的。

(5) $f(k) = a^k \varepsilon(k) (a$ 为实数、虚数、复数).

$$F(z) = \sum_{k=-\infty}^{\infty} a^k \varepsilon(k) z^{-k} = \frac{z}{z - a} \qquad |z| > |a|$$

(6)
$$f(k) = -a^k \varepsilon(-k-1)$$

$$F(z) = \sum_{k=-\infty}^{\infty} \left[-a^k \varepsilon (-k-1) \right] z^{-k} = \frac{z}{z-a} \quad |z| < |a|$$

启示: 序列双边z变换的收敛区,一般是某个圆的圆外/内。"某个圆"的半径可以通过z变换的表达式来确定。

例1 求下列序列的z变换及其收敛区。

1.
$$x(n) = (\frac{1}{3})^n u(n)$$

2.
$$x(n) = (\frac{1}{3})^n u(-n-1)$$

3.
$$x(n) = (\frac{1}{3})^{-n-1}u(-n-1)$$

4.
$$x(n) = \begin{cases} (\frac{1}{3})^n & n \ge 0 \\ 2^n & n < 0 \end{cases}$$

解:
$$f(k) = v^{|k|} = v^k u(k) + v^{-k} u(-k-1)$$

$$i \exists f_1(k) = v^k u(k), f_2(k) = v^{-k} u(-k-1)$$

则
$$F_1(z) = \frac{z}{z - v}$$
, $|z| > |v|$

$$F_2(z) = -\frac{z}{z - v^{-1}}$$
, $|z| < |v|^{-1}$

当|v|大于或等于1时,左边序列与右边序列的z变换没有公共的收敛域,故f(k)的双边z变换不存在; 当|v|<1时, f(k)的双边z变换存在:

$$F(z) = \frac{z}{z - v} - \frac{z}{z - v^{-1}}, |v| < |z| < |v|^{-1}$$

	序号	性质	信号	2 变换	收敛域
Z	0	定义	x(n)	$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$	R
变	1	线性	$ax_1(n)+bx_2(n)$	$aX_1(z)+bX_2(z)$	至少 R₁ ∩ R₁
换	2	移序	$x(n-n_0)$	$z^{-n_0}X(z)$	R, 但在原点或无穷远点 可能加上或删除
的	3	频移	$e^{j\omega n}x(n)$	$X(e^{j\omega}z)$	R
	4	尺度变换	$z_0^n x(n)$	$X(z_0^{-1}z)$	$ z_0 R$
基	5	z 域微分	nx(n)	$-z\frac{\mathrm{d}}{\mathrm{d}z}X(z)$	R
本	6	卷积	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	至少 R₁ ∩ R₁
性	7	时间反转	x(-n)	$X(z^{-1})$	R的倒置
质	8	求和	$\sum_{n=-\infty}^{n} x(n)$	$\frac{1}{1-z^{-1}}X(z)$	$R \cap (z > 1)$
	9	初值定理	$x(0) = \lim_{z \to \infty} X(z)$		
202	10	终值定理	$x(\infty) = \lim_{z \to 1} (z - 1)X(z)$		

1. 线性

在离散时间系统中, 若有:

$$f_1(k) \leftrightarrow F_1(z), f_2(k) \leftrightarrow F_2(z)$$

则

$$af_1(k) + bf_2(k) \leftrightarrow aF_1(z) + bF_2(z)$$

余弦序列的单边z变换:

$$ZT[e^{j\omega_0 n}] = \frac{z}{z - e^{j\omega_0}}$$

$$ZT[e^{-j\omega_0 n}] = \frac{z}{z - e^{-j\omega_0}}$$

$$ZT[\cos \omega_0 n] = ZT[(e^{j\omega_0 n} + e^{-j\omega_0 n})/2]$$

$$= (\frac{z}{z - e^{j\omega_0}} + \frac{z}{z - e^{-j\omega_0}})/2$$

$$= \frac{z(z - \cos \omega_0)}{z^2 - 2z\cos \omega_0 + 1}$$

2. 时移(位移 / 移序)性
(1)因果序列 $f(k) \leftrightarrow F(z)$

单边z变换

左

$$f(k+1) \leftrightarrow z(F(z)-f(0))$$

 $f(k+n) \leftrightarrow z^n(F(z)-\sum_{i=0}^{n-1} f(i)z^{-i}), n>0$

单边z变换

右
$$f(k-1) \leftrightarrow z^{-1}F(z)$$

移 $f(k-n) \leftrightarrow z^{-n}F(z), n > 0$

(2) 双边序列一单边z变换
$$\frac{f(k+1) \leftrightarrow z(F(z)-f(0))}{f(k+n) \leftrightarrow z^{n}(F(z)-\sum_{i=0}^{n-1}f(i)z^{-i}), n > 0}$$
右
$$\int f(k-1) \leftrightarrow z^{-1}[F(z)+f(-1)z]$$
右
$$\int f(k-n) \leftrightarrow z^{-n}[F(z)+\sum_{i=0}^{n}f(-i)z^{i}], n > 0$$

(3) 双边序列一双边z变换

$$f(k-n) \leftrightarrow z^{-n}F(z), n > 0 \stackrel{\text{deg}}{\boxtimes} n < 0$$

3. z域尺度变换特性

在离散时间系统中, 若有:

$$f(k) \leftrightarrow F(z)$$

则

$$a^k f(k) \leftrightarrow F(\frac{z}{a})$$

4. z域微分特性

在离散时间系统中, 若有:

$$f(k) \leftrightarrow F(z)$$

$$kf(k) \leftrightarrow -z \frac{d}{dz} F(z)$$

5. 卷积定理

$$f_1(k) \leftrightarrow F_1(z), f_2(k) \leftrightarrow F_2(z)$$

则
$$f_1(k) * f_2(k) \leftrightarrow F_1(z)F_2(z)$$

6. 初值和终值定理

有始序列

$$f(k) \leftrightarrow F(z)$$

$$f(0) = \lim_{z \to \infty} F(z)$$

$$\lim_{k \to \infty} f(k) = \lim_{z \to 1} (z - 1)F(z)$$

例3 用卷积定理,由单位阶跃序列的z变换求单位斜变序列 ku(k) 的z变换。

解:
$$ku(k) = u(k) * u(k-1)$$

$$ZT[ku(k)] = ZT[u(k)] \cdot ZT[u(k-1)]$$

$$u(k) \leftrightarrow \frac{z}{z-1}$$

$$u(k-1) \leftrightarrow z^{-1} \frac{z}{z-1} = \frac{1}{z-1}, |z| > 1$$

$$ku(k) \leftrightarrow \frac{z}{z-1} \cdot \frac{1}{z-1} = \frac{z}{(z-1)^2}, |z| > 1$$

小结

- (1)单边/双边z变换的定义
- (2) 双边z变换的收敛区, 收敛区与序列类别的关系
- (3)z变换的性质,类似于其它变换,但时移特性中,单、双边变换明显不同。

课外作业

阅读:8.1-8.3; 预习:8.4-8.5

作业:8.2 8.3(6)