Pour tout $x \in \mathbb{R}$, posons $f(x) = \frac{c}{x^2 \log |x|}$, si $|x| \ge 2$, et f(x) = 0 sinon, où c est tel que $\int_{\mathbb{R}} f(x) dx = 1$. On considère la mesure de probabilité $\mu := f \lambda$ où λ est la mesure de Lebesgue.

Clairement, $\int_{\mathbb{R}} |x| \mu(dx) = +\infty$. Nous allons montrer que $\hat{\mu}$ est de classe C^1 sur \mathbb{R} .

1) Montrer que pour tout $t \neq 0$, $\hat{\mu}(t) = \frac{\sin(2t)}{2t \log 2} + \frac{-i}{t} \int_{\mathbb{R}} e^{itx} f'(x) dx$, où f' est définie λ -p.p.

Posons pour tout $t \neq 0$, $\psi(t) = \frac{1}{t} \int_{\mathbb{R}} e^{itx} f'(x) dx$.

- 2) Montrer que ψ se prolonge en une fonction continue sur \mathbb{R} .
- 3 Montrer que ψ est de classe C^1 sur \mathbb{R}^* et se prolonge en une fonction de classe C^1 sur \mathbb{R} . Pour ce dernier point, on posera $\psi'(0) = 0$, on utilisera que ψ' est impaire, l'estimation $|u\cos u \sin u| \leq Cu^3$, pour tout $|u| \leq 1$ et le fait que $f'(x) \sim D/x^3 \log |x|, x \to \pm \infty$.