10^a aula

Sumário:

Movimento num referencial não inercial

Referencial não inercial

Muitas experiências da Física são feitas num referencial não inercial.

Um sistema de coordenadas ligado à superfície da Terra é obviamente não inercial.

Como é que usamos os princípios da Mecânica quando as observações são feitas num sistema não inercial?

Referencial não inercial

- Forças fictícias parecem aplicar-se a todas as partículas num referencial não-inercial.
- Forças reais devidas a agentes externos ou interações com outras partículas.

Exemplo: Carrossel

- Referencial O no eixo do carrossel, com eixos fixos no espaço
- Referencial O' no eixo do carrossel, rodando com este.
- Carrossel roda com velocidade angular ω
- No ref O' o vector de posição da criança que vai sentada é constante.

Carrossel

Referencial O'

- r'=r₀=cte
- v'=0
- a'=0

Referencial O

- movimento
 circular uniforme
- v=@r
- $a=v^2/r=\omega^2 r$

Revisitando o movimento circular

Revisitando o movimento circular

Relação com quantidades angulares

Velocidade

$$v = \omega \times r$$
.

Movimento circular uniforme

$$a = \frac{d\mathbf{v}}{dt} = \boldsymbol{\omega} \times \frac{d\mathbf{r}}{dt} = \boldsymbol{\omega} \times \mathbf{v},$$

$$a = \omega \times (\omega \times r).$$

Referencial em rotação

- Dois sistemas de coordenadas (SC) em que um roda com respeito ao outro.
- Vamos considerar que as origens O e O' de ambos SC coincidem, os vectores de posição são:

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

$$\vec{\mathbf{r}}' = x'\hat{\mathbf{i}}' + y'\hat{\mathbf{j}}' + z'\hat{\mathbf{k}}'$$

• No instante t os respectivos vectores de base são paralelos $\vec{\mathbf{r}} = \vec{\mathbf{r}}'$

Referencial em rotação

$$\vec{a} = \vec{a}' + \vec{\alpha} \times \vec{r}' + 2\vec{\Omega} \times \vec{v}' + \vec{\Omega} \times (\vec{\Omega} \times \vec{r}')$$

Aceleração devida à aceleração angular α

Ac. centripeta

Ac. de Coriolis

Ω é a velocidade angular de rotação dos vectores de base de O' em relação aos de O

Pêndulo de Foucault

pêndulo de Foucault

Movimento rotacional da terra

Aceleração

$$a' = g_0 - 2\omega \times V' - \omega \times (\omega \times r).$$
Dirección radial C
Ecuador C
Ecuador C
Eje de la tierra C
Lierra C
Dirección C
Radial C
Equador C

aceleração centrífuga devido à rotação da terra

Corpo inicialmente em repouso

aceleração centrífuga devido à rotação da terra

Corpo inicialmente em repouso:

Aceleração efectiva

$$g = g_0 - \omega \times (\omega \times r).$$

g define a direcção vertical2radial!

Ex: superfície de liquidos

Corpo inicialmente em repouso aceleração centrífuga devido à rotação da terra

(a) Hemisferio norte

(b) Hemisferio sur

(b) Hemisferio sur

Plano horizontal a_V $\frac{\pi}{2} - \lambda$ Eje de la tierra

 -2ω ×V'

Dirección

vertical

(a) Hemisferio norte

(b) Hemisferio sur

