GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA Física del Estado Sólido

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Octavo Semestre	170804	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el estudiante adquiera los conocimientos básicos para comprender la física del estado sólido y la importancia que tiene esta disciplina dentro de la Ingeniería Física y su relación con los semiconductores.

TEMAS Y SUBTEMAS

1. Estructura Cristalina

- 1.1 Arreglo periódico de átomos.
- 1.2 Celdas primitivas y de Wigner-Seitz.
- 1.3 Sistemas cristalinos.
- 1.4 Redes de Bravais.
- 1.5 Índices de Millar.
- 1.6 Estructuras cristalinas simples.

2. Red Recíproca

- 2.1 Difracción de ondas por cristales.
- 2.2 Análisis de Fourier para ondas dispersadas.
- 2.3 Vectores de red recíproca.
- 2.4 Condiciones de difracción.
- 2.5 Ecuaciones de Laue.
- 2.6 Zonas de Brillouin.
- 2.7 Redes recíprocas.
- 2.8 Factor de estructura y de forma atómica.

3. Enlaces Cristalinos

- 3.1 Interacción Van der Waals-London.
- 3.2 Cristales iónicos.
- 3.3 Cristales covalentes.
- 3.4 Metales.
- 3.5 Enlaces de hidrógeno.
- 3.6 Análisis de deformaciones elásticas.
- 3.7 Ondas elásticas en cristales cúbicos.

4. Fonones

- 4.1 Vibraciones con uno y con dos átomos en base primitiva.
- 4.2 Cuantización de las ondas elásticas.
- 4.3 Momentum cristalino.
- 4.4 Dispersión inelástica por fonones.
- 4.5 Capacidad calorífica.
- 4.6 Densidad de estados.
- 4.7 Modelo de Debye.
- 4.8 Modelo de Einstein.
- 4.9 Conductividad térmica.

- 5.1 Niveles de energía unidimensional.
- 5.2 Energía de Fermi.
- 5.3 Distribución de Fermi-Dirac.
- 5.4 Gas de electrón libre.
- 5.5 Superficie de Fermi.
- 5.6 Modelo del electrón casi libre.
- 5.7 Origen de la brecha de energía.
- 5.8 Funciones de Bloch y Modelo de Kronig-Penney.
- 5.9 Ecuación de onda en potencial periódico.

6. Cristales Semiconductores

- 6.1 Brechas de energía en semiconductores.
- 6.2 Procesos de absorción directa e indirecta.
- 6.3 Ecuaciones de movimiento.
- 6.4 Masa efectiva.
- 6.5 Silicio y germanio.
- 6.6 Concentración de portadores intrínsecos.
- 6.7 Movilidad intrínseca.
- 6.8 Conductividad de impurezas.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Introduction to Solid State Physics, C. Kittel, John Wiley, 2004, octava edición.
- 2. Elementary Solid State Physics, M. A. Omar, John Wiley, 1993.
- 3. El Cristal: morfología, estructura y propiedades físicas. J. L. Amoros, Ediciones Atlas, cuarta edición, 1990.
- 4. Solid State Physics, G. Grosso and G.P. Parravicini. Academic Press Amsterdam 2000.

Libros de Consulta:

- 1. Solid State and Semiconductor Physics, J. P. Mckelvey, Limusa, 1982.
- 2. El Estado Sólido, H. M. Rosenberg, Alianza Editorial, 1991.
- Problemas de física del sólido , H. J. Goldsmid , Ed. Reverte 1975.

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Ciencia de Materiales.

