```
# Data Loading
from google.colab import drive
import pandas as pd
drive.mount('/content/drive')
file_path = '/content/drive/My Drive/ElectricCarData_Clean.csv'
df = pd.read_csv(file_path)
```

Mounted at /content/drive

```
# Here are a few ways I performed exploratory data analysis and data visualization on this electric vehicle dataset to help w
# Import libraries like pandas, matplotlib, seaborn for data manipulation and visualization. Use pandas to read in the CSV da
# Look at basic statistics of the data like the describe() method to see mean, min, max values for numerical columns like pri
# Visualize distributions of key variables like price, range, efficiency using histograms, boxplots.
# See what the price distribution is like - are there clusters at certain price points that could indicate market segments?
# Use scatterplots to explore relationships between variables like efficiency vs price, range vs price. See if certain segmen
# Plot grouped or faceted charts to compare vehicle body types, power train, etc. See if SUVs are generally more expensive th
# Use pie, bar charts to visualize categorical variables like plug type, body style. See the proportions of each group.
# Calculate statistics like average price, efficiency for each segment or group to quantify differences seen in visualization
# Try clustering algorithms like k-means to automatically find segments based on variables like price, range, efficiency.
# Geographical data could also help identify markets. Plot maps showing EV popularity by state using open data sets.
# The goal is to visualize and understand relationships between the variables to identify potential natural segments in the I
                                                       + Code -
                                                                  + Text
# Explore the data
print(df.head())
              Brand
                                             Model AccelSec TopSpeed KmH
     0
             Tesla
                     Model 3 Long Range Dual Motor
                                                          4.6
                                                                        233
        Volkswagen
     1
                                         ID.3 Pure
                                                         10.0
     2
          Polestar
                                                          4.7
                                                                        210
     3
               BMW
                                              iX3
                                                          6.8
                                                                        180
             Honda
                                                                        145
                                                е
        Range_Km Efficiency_WhKm FastCharge_KmH RapidCharge PowerTrain \
    0
             450
                              161
                                              940
                                                          Yes
                                                                     AWD
     1
             270
                              167
                                             250
                                                          Yes
                                                                     RWD
     2
             400
                              181
                                              620
                                                          Yes
                                                                     AWD
     3
             360
                              206
                                              560
                                                          Yes
                                                                     RWD
     4
             170
                              168
                                              190
                                                                     RWD
          PlugType
                    BodyStyle Segment
                                       Seats
                                              PriceEuro
       Type 2 CCS
                        Sedan
                                    D
                                           5
                                                  55480
       Type 2 CCS
                    Hatchback
                                    C
                                           5
                                                   30000
     1
       Type 2 CCS
     2
                     Liftback
                                    D
                                           5
                                                  56440
       Type 2 CCS
                                                  68040
                          SUV
                                    D
                                           5
       Type 2 CCS
                                    B
                                                  32997
                    Hatchhack
```

print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 103 entries, 0 to 102
Data columns (total 14 columns):

Ducu	cotamiis (totat 14 cotamiis):								
#	Column	Non-	-Null Count	Dtype					
0	Brand	103	non-null	object					
1	Model	103	non-null	object					
2	AccelSec	103	non-null	float64					
3	TopSpeed_KmH	103	non-null	int64					
4	Range_Km	103	non-null	int64					
5	Efficiency_WhKm	103	non-null	int64					
6	FastCharge_KmH	103	non-null	object					
7	RapidCharge	103	non-null	object					
8	PowerTrain	103	non-null	object					
9	PlugType	103	non-null	object					
10	BodyStyle	103	non-null	object					
11	Segment	103	non-null	object					
12	Seats	103	non-null	int64					
13	PriceEuro		non-null	int64					
dtypes: float64(1), int64(5), object(8)									
memory usage: 11.4+ KB									
None									

print(df.describe())

	AccelSec	TopSpeed_KmH	Range_Km	Efficiency_WhKm	Seats	١
count	103.000000	103.000000	103.000000	103.000000	103.000000	
mean	7.396117	179.194175	338.786408	189.165049	4.883495	
std	3.017430	43.573030	126.014444	29.566839	0.795834	
min	2.100000	123.000000	95.000000	104.000000	2.000000	
25%	5.100000	150.000000	250.000000	168.000000	5.000000	
50%	7.300000	160.000000	340.000000	180.000000	5.000000	
75%	9.000000	200.000000	400.000000	203.000000	5.000000	
max	22.400000	410.000000	970.000000	273.000000	7.000000	

```
PriceEuro
          103.000000
count
        55811.563107
mean
std
        34134.665280
min
        20129.000000
25%
        34429.500000
50%
        45000.000000
75%
        65000.000000
       215000.000000
max
```

```
print(df.columns)
```

df.shape

(103, 14)

```
# Distribution of price
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure()
sns.distplot(df["PriceEuro"], kde=True)
sns.histplot(df["PriceEuro"], kde=True, stat="density")
plt.xlabel("Price (Euros)")
```

<ipython-input-10-06f499910151>:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df["PriceEuro"], kde=True)
Text(0.5, 0, 'Price (Euros)')
```



```
# Price vs Range scatterplot
plt.figure()
sns.regplot(x="Range_Km", y="PriceEuro", data=df)
plt.xlabel("Range (km)")
plt.ylabel("Price (Euros)")
```

```
Text(0, 0.5, 'Price (Euros)')
```



```
# Faceted histogram by BodyStyle
plt.figure()
sns.FacetGrid(df, col="BodyStyle").map(plt.hist, "PriceEuro")

<seaborn.axisgrid.FacetGrid at 0x7e57359dfc40>
<Figure size 640x480 with 0 Axes>
```



```
# Bar chart of segment counts
plt.figure()
sns.countplot(x="Segment", data=df)
```

<Axes: xlabel='Segment', ylabel='count'>


```
plt.figure(figsize=(15,8))
sns.heatmap(df.corr(), annot=True)
plt.show()
```

<ipython-input-60-7d08400b79ac>:2: FutureWarning: The default value of numeric sns.heatmap(df.corr(), annot=True)


```
# Average price per segment
print(df.groupby("Segment")["PriceEuro"].mean())
```

```
Segment
```

- A 22693.714286
- B 34799.227273
- C 41199.100000
- D 58487.933333
- E 74269.400000 F 119690.750000
- N 52812.833333
- S 215000.000000

Name: PriceEuro, dtype: float64

```
# Kmeans clustering on Range, Efficiency, Price
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=5).fit(df[["Range_Km", "Efficiency_WhKm", "PriceEuro"]])
print(kmeans.labels_)
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(

```
Silhouette score: 0.6263766906659917
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: Future
warnings.warn(
<matplotlib.legend.Legend at 0x7e57333f6950>
```



```
#The silhouette score provides an evaluation of how well separated the formed clusters are.

# It ranges from -1 to 1, with a higher score indicating better defined clusters.

# Visualizing the clustered data projected onto just two dimensions (range and price in this case) gives us a sense of the c

# But keep in mind, the clustering was done in 3 dimensions - range, efficiency and price.

# We can iteratively try different numbers of clusters and evaluate the silhouette score to find the optimal value for K.

# The visualizations can also be enhanced to include more attributes and provide greater insight into the market segments.
```

```
from sklearn.mixture import GaussianMixture
from sklearn.tree import DecisionTreeRegressor

# Preprocess data
X = df[["Range_Km", "Efficiency_WhKm", "PriceEuro"]]
y = df["Segment"]

# K-Means Clustering
kmeans = KMeans(n_clusters=5)
kmeans.fit(X)
```

y_pred = kmeans.predict(X)

print("K-Means accuracy:", kmeans.score(X, y))

K-Means accuracy: -6727246470.872135
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil warnings.warn(

```
# Gaussian Mixture Model
gmm = GaussianMixture(n_components=5)
gmm.fit(X)
y_pred = gmm.predict(X)
print("GMM accuracy:", gmm.score(X, y))

GMM accuracy: -20.537568849182623

# In this code:
```

In this code:
We load the electric vehicle dataset and extract the range, efficiency, price as features X and segment as the target y.
We apply 2 models: K-Means clustering, Gaussian Mixture Models.
For each model, we fit on the data, predict segments and calculate the accuracy score compared to the actual segments y.
K-Means and GMM are unsupervised clustering models that automatically find segments.
This provides a template to implement market segmentation analysis on the electric vehicle data.

from sklearn.preprocessing import StandardScaler X = df[["Range_Km", "Efficiency_WhKm", "PriceEuro"]] y = df["Segment"] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # PCA for dimension reduction from sklearn.decomposition import PCA pca = PCA(n_components=2) X_reduced = pca.fit_transform(X_scaled) # K-Nearest Neighbors from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(X_reduced, y) y_pred = knn.predict(X_reduced) print("KNN Accuracy:", knn.score(X_reduced, y)) # Neural Network from sklearn.neural_network import MLPClassifier mlp = MLPClassifier() mlp.fit(X_reduced, y) y_pred = mlp.predict(X_reduced) print("NN Accuracy:", mlp.score(X_reduced, y))

KNN Accuracy: 0.7281553398058253 NN Accuracy: 0.6990291262135923

/usr/local/lib/python3.10/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:686: ConvergenceWarning: Stocha warnings.warn(

```
# In the code:

# We scale data points to normalize the features.

# Apply PCA to reduce the dimensions to 2 principal components.

# Use KNN classifier and Neural Network classifier on the reduced data.

# Evaluate both models by their accuracy score on predicting segments y.

# The neural network is able to learn complex relationships between attributes.

# KNN is simpler but may also provide good accuracy.

# This demonstrates how to apply additional models like NN and KNN for market segmentation on this dataset, with model evaluate.
```

```
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# SVM
svm = SVC()
svm.fit(X_train, y_train)
print("SVM Accuracy:", svm.score(X_test, y_test))

# Random Forest
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
print("RF Accuracy:", rf.score(X_test, y_test))
```

SVM Accuracy: 0.38095238095238093 RF Accuracy: 0.6190476190476191

In the above split data into train and test sets
Apply SVM classifier and Random Forest classifier
Evaluate accuracy on test set for both models

SVM makes segment predictions based on defining optimal decision boundaries.
Random Forest builds an ensemble of decision trees and ensemble predicts segments.

```
# Compare accuracy scores and visualizations to evaluate which performs better.
# This demonstrates applying SVM and Random Forest for market segmentation on the EV dataset, along with model evaluation

from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration
from sklearn.metrics import accuracy_score
import scipy.cluster.hierarchy as shc

# Agglomerative clustering
aclust = AgglomerativeClustering(n_clusters=5)
aclust.fit(X)
y_pred = aclust.fit_predict(X)

print("Accuracy of Agglomerative clustering:", accuracy_score(y, y_pred))

# Plot dendrogram
plt.figure(figsize=(16,8))
dend = shc.dendrogram(shc.linkage(X, method='ward'))
plt.title("Agglomerative Dendrogram")
```


- # Hierarchical clustering builds a hierarchy of clusters represented as a dendrogram.
- # Agglomerative clustering starts with each data point as its own cluster and merges them iteratively based on similarity.
- # Accuracy was calculated versus true segments to evaluate the techniques.
- # Visualizing the dendrograms helps understand the hierarchy and clustering produced.
- # This demonstrates applying both hierarchical clustering approaches for market segmentation on the EV data, along with eval