Question 3: Pricing errors in FM (3 points), compulsory

Solve the exercise in slide n. 100 of Chapter 3 "SUR, GRS, CSR, Fama-MacBeth". Note: the question in slide n. 100 of Chapter 3 has two subquestions (i), (ii): answer to both of them.

Set-up and Definitions

• The data generating process (DGP) for the returns in excess of the risk-free rate with κ tradable factors is:

$$r_t = \beta f_t + u_t \quad t = 1, ..., T \tag{1}$$

- r_t is the (N x 1) vector containing the excess return of each security at time t: $r_{i,t}$ for i = 1,...,N, with N corresponding to the total number of securities available in the investable universe.
- u_t is the (N x 1) vector containing the errors of the DGP and is assumed: $\overset{iid}{\sim} (0, \Omega)$ over t with finite matrix Ω .
- β is the $(N \times K)^1$ matrix reporting on each line the factor loadings for i = 1,..., N^2 .

 $\operatorname{Rank}(\beta) = K$ therefore, the inverse of $\beta'\beta$ exists and is definite positive.

- f_t is the (K x 1) vector of the excess returns of the tradable risk factors in t, distributed as per $\stackrel{iid}{\sim} (\lambda, \Omega_f)$ over t. λ represents the (K x 1) vector of the true risk premia: $E(f_t) = \lambda$.
- u_s is independent from $f_t \, \forall (s,t)$ hence, $E[u_s f_t] = 0$ (hypothesis of strict exogeneity of the regressors).

¹N is deemed to be larger than K.

²We are including the vector of ones: $i_N = [1, 1, ..., 1]'$ as the first column of β in order to add the intercept to the DGP introduced above.

³As we are including the intercept in the DGP and r_t is the vector of the excess returns, we would expect $\lambda_{1,t}$ to be equal to 0.

- We assume that the true factor loadings are known, hence we dont face a problem of error in variables (EIV) for this DPG⁴.
- $\hat{\lambda}$ is estimated via OLS and corresponds to: $(\beta'\beta)^{-1}\beta'r_t$.

(i) Show $\hat{\epsilon} \xrightarrow{p} 0$

Demonstrate that $\hat{\epsilon} \stackrel{p}{\to} 0$ as $T \to +\infty$ Given the OLS formula for the pricing errors of 1 is $\hat{\epsilon}_t = r_t - \beta \hat{\lambda}_t$ and replacing $\hat{\lambda}$ with the corresponding OLS result, we find that $\hat{\epsilon}_t = r_t - \beta (\beta' \beta)^{-1} \beta' r_t = M_{\beta} r_t^{5}$.

Therefore we observe that:

$$\hat{\epsilon} = \frac{1}{T} \sum_{t=1}^{T} \epsilon_t = \frac{1}{T} \sum_{t=1}^{T} M_b r_t$$
 (2)

Looking at 2 and replacing r_t with 1, we derive:

$$\hat{\epsilon} = \frac{1}{T} \sum_{t=1}^{T} M_b r_t$$

$$= \frac{1}{T} \sum_{t=1}^{T} M_b (\beta f_t + u_t)$$

$$= \frac{1}{T} \sum_{t=1}^{T} M_b (\beta f_t) + \frac{1}{T} \sum_{t=1}^{T} M_b u_t$$
(3)

The first component of 3 is equal to 0 as it becomes: $\frac{1}{T} \sum_{t=1}^{T} (\beta f_t - \beta f_t)$, while for the second term we see:

$$\hat{\epsilon} = \frac{1}{T} \sum_{t=1}^{T} M_b u_t$$
$$= M_b \left(\frac{1}{T} \sum_{t=1}^{T} u_t\right)$$

As $u_t \stackrel{iid}{\sim} (0, \Omega)$ and Ω is finite, we can apply the Law of Large Numbers (LLN) and obtain that $(\frac{1}{T} \sum_{t=1}^{T} u_t) \stackrel{p}{\to} 0$, it follows that: $\hat{\epsilon} \stackrel{p}{\to} 0$.

 $^{^4}$ If β had not been known, we would have estimated the vector from the N timeseries regressions covering the entire sample of lenght: T.

 $^{^5}M_{\beta}$ corresponds to $I_N - \beta(\beta'\beta)^{-1}\beta$ which is symmetric and idempotent $(I_N$ is the identity matrix $(N \times N)$.

(ii) Show
$$\frac{1}{T} \sum_{t=1}^{T} (\hat{\epsilon}_t - \hat{\epsilon}) (\hat{\epsilon}_t - \hat{\epsilon})' \xrightarrow{p} M_{\beta} \Omega M_{\beta}$$

Demonstrate that $\frac{1}{T}\sum_{t=1}^{T}(\hat{\epsilon}_{t}-\hat{\epsilon})(\hat{\epsilon}_{t}-\hat{\epsilon})' \stackrel{p}{\rightarrow} M_{\beta}\Omega M_{\beta}$ as $T \rightarrow +\infty$ Following the same setup and results of 1.2 and recalling that $(M_{\beta})' = M_{\beta}$, we derive that:

$$\frac{1}{T} \sum_{t=1}^{T} (\hat{\epsilon}_t - \hat{\epsilon})(\hat{\epsilon}_t - \hat{\epsilon})' = \frac{1}{T} \sum_{t=1}^{T} (M_{\beta} r_t)(M_{\beta} r_t)'$$

$$= \frac{1}{T} \sum_{t=1}^{T} M_{\beta}(\beta f_t + u_t)(\beta f_t + u_t)' M_{\beta}$$

$$= \frac{1}{T} \sum_{t=1}^{T} M_{\beta}(\beta f_t f_t' \beta' + u_t u_t' + 2\beta f_t u_t') M_{\beta} \qquad (4)$$

Additionally, we can decompose 4 into the following components:

•
$$\frac{1}{T}\sum_{t=1}^{T} M_{\beta}(\beta f_t f_t' \beta') M_{\beta} = \frac{1}{T}\sum_{t=1}^{T} (\beta f_t f_t' \beta' - \beta f_t f_t' \beta') M_{\beta} = 0$$

•
$$\frac{1}{T} \sum_{t=1}^{T} M_{\beta} (2\beta f_t u_t') M_{\beta} = \frac{2}{T} \sum_{t=1}^{T} (\beta f_t u_t' - \beta f_t u_t') M_{\beta} = 0$$

•
$$\frac{1}{T} \sum_{t=1}^{T} M_{\beta} u_t u_t' M_{\beta}$$

Assuming: i) the fourth moment of u_t exists and is finite and ii) recalling that $u_t \stackrel{iid}{\sim} (0,\Omega)$, we can apply the LLN on $\frac{1}{T} \sum_{t=1}^T u_t u_t'$ and observe that this quantity $\stackrel{p}{\rightarrow} \Omega$. It follows that the last member of $4 \stackrel{p}{\rightarrow} M_{\beta}\Omega M_{\beta}$, therefore:

$$\frac{1}{T} \sum_{t=1}^{T} (\hat{\epsilon_t} - \hat{\epsilon})(\hat{\epsilon_t} - \hat{\epsilon})' \stackrel{p}{\to} M_{\beta} \Omega M_{\beta}$$
 (5)