### **REPASO**

Bayes



### **REPASO**

Bayes



prior predictive 
$$p(y) = \int p(y|\theta)p(\theta)d\theta$$

### REPASC

Bayes



prior predictive 
$$p(y)=\int p(y|\theta)p(\theta)d\theta$$
 posterior predictive 
$$p(\tilde{y}|y)=\int p(\tilde{y}|\theta)p(\theta|y)d\theta$$

### REPASO

Bayes



prior predictive 
$$p(y)=\int p(y|\theta)p(\theta)d\theta$$
 posterior predictive 
$$p(\tilde{y}|y)=\int p(\tilde{y}|\theta)p(\theta|y)d\theta$$

Modelo moneda

 $Beta(.) \propto Binomial(.)Beta(.)$ 

$$E(\theta) = E(E(\theta|y))$$

$$E(\theta) = E(E(\theta|y))$$
 sobre  $\theta$ 







$$E(\theta) = E(E(\theta|y))$$

$$\text{sobre } y$$

$$var(\theta) = E(var(\theta|y)) + var(E(\theta|y))$$

$$E(\theta) = E(E(\theta|y))$$

$$\text{sobre } y$$

$$\text{varianza a posteriori}$$
 
$$\text{var}(\theta) = \text{E}(\text{var}(\theta|y)) + \text{var}(\text{E}(\theta|y))$$

$$E(\theta) = E(E(\theta|y))$$

$$\text{sobre } y$$

$$\mathrm{varianza}~a~posteriori$$
 
$$\mathrm{var}(\theta) = \mathrm{E}(\mathrm{var}(\theta|y)) + \mathrm{var}(\mathrm{E}(\theta|y))$$
 
$$\mathbb{P}$$

$$E(\theta) = E(E(\theta|y))$$
sobre  $y$ 

$$\mathbb{P}$$

La media del *prior* es el promedio de todas las posibles medias del *posterior* sobre los posibles datos

$$\mathrm{var}(\theta) = \mathrm{E}(\mathrm{var}(\theta|y)) + \mathrm{var}(\mathrm{E}(\theta|y))$$

La varianza *a posteriori* es (en promedio) menor que la varianza *a priori*, en una cantidad que depende de la variación de las medias *a posteriori*.

$$E(\theta) = E(E(\theta|y))$$
sobre  $y$ 

$$\mathbb{P}$$

La media del *prior* es el promedio de todas las posibles medias del *posterior* sobre los posibles datos

$$\mathrm{varianza}~a~posteriori$$
 
$$\mathrm{var}(\theta) = \mathrm{E}(\mathrm{var}(\theta|y)) + \mathrm{var}(\mathrm{E}(\theta|y))$$
 
$$\mathbb{P}$$

La varianza *a posteriori* es (en promedio) menor que la varianza *a priori*, en una cantidad que depende de la variación de las medias *a posteriori*.

Cuanto más grande esta variación, más chances de reducir nuestra incertidumbre sobre  $\theta$ 

likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$
$$y \sim N(\theta, \sigma^2)$$

#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2}$$
  $\sigma^2$  conocida  $y \sim N(\theta, \sigma^2)$ 

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2}$$
  $\mu_0, \tau_0^2 \text{ conocidos}$ 

#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2}$$
  $\sigma^2$  conocida  $y \sim N(\theta, \sigma^2)$ 

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2}$$
  $\mu_0, \tau_0^2 \text{ conocidos}$  (inuestros  $\alpha, \beta$  anteriores!)

likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2}$$
  $\sigma^2$  conocida  $y \sim N(\theta, \sigma^2)$ 

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2}$$
  $\mu_0, \tau_0^2 \text{ conocidos}$  (inuestros  $\alpha, \beta$  anteriores!)

prior gaussiana conjugada (¡para la media!)

likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2}$$
  $\sigma^2$  conocida  $y \sim N(\theta, \sigma^2)$ 

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2}$$
  $\mu_0, \tau_0^2 \text{ conocidos}$  (inuestros  $\alpha, \beta$  anteriores!)

prior gaussiana conjugada (¡para la media!)

con  $\mu_0=0$  y  $\tau_0\to\infty$  *prior* plano, invariante ante  $\mu_0'=\mu_0+c$  (no informativo, impropio)

likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2}$$

$$\sigma^2 \text{ conocida}$$

$$y \sim N(\theta, \sigma^2)$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2}$$
  $\mu_0, \tau_0^2 \text{ conocidos}$  (inuestros  $\alpha, \beta$  anteriores!)

prior gaussiana conjugada (¡para la media!)

con 
$$\mu_0 = 0$$
 y  $\tau_0 \to \infty$  *prior* plano, invariante ante  $\mu_0' = \mu_0 + c$  (no informativo, impropio)

(familia exponencial)

likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2}$$
  $\mu_0, \tau_0^2$  conocidos

#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2}$$

 $\mu_0, \tau_0^2$  conocidos



#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2}$$

 $\mu_0, \tau_0^2$  conocidos

$$\mathbb{P} \qquad p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2}$$

 $\mu_0, \tau_0^2$  conocidos

$$\mathbb{P}$$

$$p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

$$\theta|y \sim N(\mu_1, \tau_1^2)$$

#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2}$$

 $\mu_0, \tau_0^2$  conocidos

$$\mathbb{P}$$

$$p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

$$\theta|y \sim N(\mu_1, \tau_1^2)$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2} \qquad \mu_1 = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2}$$

$$\mu_0, \tau_0^2$$
 conocidos

$$\mathbb{P}$$

$$p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

$$\theta|y \sim N(\mu_1, \tau_1^2)$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2}$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2} \qquad \mu_1 = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

#### likelihood

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \qquad \sigma^2 \text{ conocida}$$

prior

$$p(\theta) \propto e^{-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2}$$

$$\mu_0, \tau_0^2$$
 conocidos

### posterior

$$\mathbb{P}$$

$$p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

$$\theta|y \sim N(\mu_1, \tau_1^2)$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2}$$

$$\mu_1 = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

 $\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2} \qquad \mu_1 = \frac{\frac{1}{\tau_0^2}\mu_0 + \frac{1}{\sigma^2}y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}} \qquad \text{promedio de las medias} \\ \mu_1 = \frac{\frac{1}{\tau_0^2}\mu_0 + \frac{1}{\sigma^2}y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}} \qquad \text{precisiones}$ precisiones

### Casos extremos

$$p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2} \qquad \mu_1 = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

$$\mu_1 = \frac{\frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

### Casos extremos

$$p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2}$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2} \qquad \mu_1 = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

$$\mu_1 = \mu_0 \quad \text{si} \quad y = \mu_0 \quad \text{ó} \quad \tau_0^2 = 0$$

prior infinitamente preciso

### Casos extremos

$$p(\theta|y) \propto e^{-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2}$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2}$$

$$\frac{1}{\tau_1^2} = \frac{1}{\sigma^2} + \frac{1}{\tau_0^2} \qquad \mu_1 = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

$$\mu_1 = \mu_0 \quad \text{si} \quad y = \mu_0 \quad \text{ó} \quad \tau_0^2 = 0$$

*prior* infinitamente preciso

$$\mu_1 = y$$
 si  $y = \mu_0$  ó  $\sigma^2 = 0$ 

datos infinitamente precisos

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta \propto \int e^{-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2} e^{-\frac{1}{2\tau_1^2}(\tilde{\theta}-\mu_1)^2} d\theta$$

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta \propto \int e^{-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2} e^{-\frac{1}{2\tau_1^2}(\tilde{\theta}-\mu_1)^2} d\theta$$

..expresión compleja, pero exponencial de una función cuadrática en  $(\theta, \tilde{y})$ 

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta \propto \int e^{-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2} e^{-\frac{1}{2\tau_1^2}(\tilde{\theta}-\mu_1)^2} d\theta$$

..expresión compleja, pero exponencial de una función cuadrática en  $(\theta, \tilde{y})$ 

Gaussiana de dos variables, entonces marginalizando:  $\tilde{y}$  es Gaussiana

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta \propto \int e^{-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2} e^{-\frac{1}{2\tau_1^2}(\tilde{\theta}-\mu_1)^2} d\theta$$

..expresión compleja, pero exponencial de una función cuadrática en  $(\theta, \tilde{y})$ 

Gaussiana de dos variables, entonces marginalizando:  $\tilde{y}$  es Gaussiana

parámetros P

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta \propto \int e^{-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2} e^{-\frac{1}{2\tau_1^2}(\tilde{\theta}-\mu_1)^2} d\theta$$

..expresión compleja, pero exponencial de una función cuadrática en  $(\theta, \tilde{y})$ 

Gaussiana de dos variables, entonces marginalizando:  $\tilde{y}$  es Gaussiana

### parámetros P

$$E(\tilde{y}|y) = \mu_1$$

media posterior de  $\theta$ 

## Posterior predictiva

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta \propto \int e^{-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2} e^{-\frac{1}{2\tau_1^2}(\tilde{\theta}-\mu_1)^2} d\theta$$

..expresión compleja, pero exponencial de una función cuadrática en  $(\theta, \tilde{y})$ 

Gaussiana de dos variables, entonces marginalizando:  $\tilde{y}$  es Gaussiana

### parámetros P

$$E(\tilde{y}|y) = \mu_1$$

media posterior de  $\theta$ 

$$var(\tilde{y}|y) = \sigma^2 + \tau_1^2$$

varianza predictiva del modelo + incertidumbre posterior en  $\theta$ 

$$y = (y_1, \dots, y_n)$$

Método secuencial P

$$y = (y_1, \dots, y_n)$$

Método secuencial P

$$p(\theta|y_1,\ldots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

$$y = (y_1, \ldots, y_n)$$

Método secuencial P

$$p(\theta|y_1,\ldots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}} \qquad \frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

$$y = (y_1, \dots, y_n)$$

Método secuencial P

$$p(\theta|y_1,\ldots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}} \qquad \frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

O cómputo directo

$$p(\theta|y) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta)$$

$$y = (y_1, \ldots, y_n)$$

Método secuencial P

$$p(\theta|y_1,\ldots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}} \qquad \frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

O cómputo directo

$$p(\theta|y) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta)$$

$$y = (y_1, \dots, y_n)$$

Método secuencial P

$$p(\theta|y_1,\ldots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}} \qquad \frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

O cómputo directo

$$p(\theta|y) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta)$$

$$n \to \infty$$
 Muchos datos

$$y = (y_1, \dots, y_n)$$

Método secuencial P

$$p(\theta|y_1,\ldots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}} \qquad \frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

O cómputo directo

$$p(\theta|y) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta)$$

$$n \to \infty$$
 Muchos datos

$$p(\theta|y) \approx N(\theta|\bar{y}, \sigma^2/n)$$

$$y = (y_1, \dots, y_n)$$

Método secuencial P

$$p(\theta|y_1,\ldots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}} \qquad \frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

O cómputo directo

$$p(\theta|y) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta)$$

$$n o\infty$$
 Muchos datos 
$$o \qquad p(\theta|y) \approx \mathrm{N}(\theta|\bar{y},\sigma^2/n)$$
  $au_0 o\infty$  Prior difuso

Gaussiana, 
$$\mu$$
 conocida  $p(y|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$ 

Gaussiana,  $\mu$  conocida  $p(y|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$ 

*prior* conjugado para  $\sigma^2$ : distribución gamma inversa

Gaussiana,  $\mu$  conocida  $p(y|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$ 

*prior* conjugado para  $\sigma^2$ : distribución gamma inversa reparametrizamos  $\tau=1/\sigma^2$ 

$$p(\tau) = \Gamma(\alpha, \beta) \quad \tau > 0$$

Gaussiana,  $\mu$  conocida  $p(y|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$ 

 $\it prior$  conjugado para  $\,\sigma^2$ : distribución gamma inversa reparametrizamos  $\,\tau=1/\sigma^2$ 

$$p(\tau) = \Gamma(\alpha, \beta) \quad \tau > 0 \quad \text{media} = \alpha/\beta$$

$$varianza = \alpha/\beta^2$$

Gaussiana, 
$$\mu$$
 conocida  $p(y|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$ 

*prior* conjugado para  $\sigma^2$ : distribución gamma inversa reparametrizamos  $\tau=1/\sigma^2$ 

$$p(\tau) = \Gamma(\alpha, \beta) \quad \tau > 0 \qquad \text{media} = \alpha/\beta$$

$$varianza = \alpha/\beta^2$$

antes:  $\mu'_0 = \mu_0 + k$ 

ahora:  $\sigma' = k\sigma$ 

Gaussiana, 
$$\mu$$
 conocida 
$$p(y|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$$

*prior* conjugado para  $\sigma^2$ : distribución gamma inversa reparametrizamos  $\tau = 1/\sigma^2$ 

$$p(\tau) = \Gamma(\alpha, \beta) \quad \tau > 0$$

$$media = \alpha/\beta$$
$$varianza = \alpha/\beta^2$$

antes:  $\mu'_{0} = \mu_{0} + k$ 

ahora:  $\sigma' = k\sigma$ 

$$\alpha/\beta = 1, \ \alpha \to 0$$
 prior  $1/\sigma$ 

plano en  $\log (\sigma)$ : podría ser 10, 1, 0.1...







$$p(\text{abra } 2|h_1) = 1/2$$
  
 $p(\text{abra } 3|h_1) = 1/2$ 





$$p(h_1) = p(h_2) = p(h_3) = 1/3$$

$$p(\text{abra } 2|h_1) = 1/2$$
  $p(\text{abra } 2|h_2) = 0$   
 $p(\text{abra } 3|h_1) = 1/2$   $p(\text{abra } 3|h_2) = 1$ 

 $p(h_1) = p(h_2) = p(h_3) = 1/3$   $p(\text{abra } 2|h_1) = 1/2 \qquad p(\text{abra } 2|h_2) = 0 \qquad p(\text{abra } 2|h_3) = 1$ 

 $p(\text{abra } 3|h_1) = 1/2$ 

 $p(\text{abra } 3|h_2) = 1$   $p(\text{abra } 3|h_3) = 0$ 

 $p(h_1) = p(h_2) = p(h_3) = 1/3$  $p(\text{abra } 2|h_2) = 0$   $p(\text{abra } 2|h_3) = 1$  $p(\text{abra } 2|h_1) = 1/2$  $p(\text{abra } 3|h_1) = 1/2$   $p(\text{abra } 3|h_2) = 1$   $p(\text{abra } 3|h_3) = 0$  $p(h_i|\text{abra 3}) = \frac{p(\text{abra 3}|h_i)p(h_i)}{p(\text{abra 3})}$ 

 $p(h_1) = p(h_2) = p(h_3) = 1/3$  $p(\text{abra } 2|h_2) = 0$   $p(\text{abra } 2|h_3) = 1$  $p(\text{abra } 2|h_1) = 1/2$  $p(\text{abra } 3|h_1) = 1/2$   $p(\text{abra } 3|h_2) = 1$   $p(\text{abra } 3|h_3) = 0$  $p(h_i|\text{abra 3}) = \frac{p(\text{abra 3}|h_i)p(h_i)}{p(\text{abra 3})}$ 

$$p(h_1|abra 3) = 1/3$$

$$p(h_1) = p(h_2) = p(h_3) = 1/3$$

$$p(\text{abra } 2|h_1) = 1/2 \qquad p(\text{abra } 2|h_2) = 0 \qquad p(\text{abra } 2|h_3) = 1$$

$$p(\text{abra } 3|h_1) = 1/2 \qquad p(\text{abra } 3|h_2) = 1 \qquad p(\text{abra } 3|h_3) = 0$$

$$p(h_i|\text{abra 3}) = \frac{p(\text{abra 3}|h_i)p(h_i)}{p(\text{abra 3})}$$

$$p(h_1|\text{abra }3) = 1/3$$
  $p(h_2|\text{abra }3) = 2/3$ 

 $p(h_1) = p(h_2) = p(h_3) = 1/3$  $p(\text{abra } 2|h_3) = 1$  $p(abra 2|h_2) = 0$  $p(\text{abra } 2|h_1) = 1/2$  $p(\text{abra } 3|h_1) = 1/2$   $p(\text{abra } 3|h_2) = 1$   $p(\text{abra } 3|h_3) = 0$  $p(h_i|\text{abra 3}) = \frac{p(\text{abra 3}|h_i)p(h_i)}{p(\text{abra 3})}$ 

$$p(h_1|\text{abra }3) = 1/3$$
  $p(h_2|\text{abra }3) = 2/3$   $p(h_3|\text{abra }3) = 0$ 

 $p(h_1) = p(h_2) = p(h_3) = 1/3$  $p(\text{abra } 2|h_3) = 1$  $p(\text{abra } 2|h_2) = 0$  $p(\text{abra } 2|h_1) = 1/2$  $p(\text{abra } 3|h_1) = 1/2$   $p(\text{abra } 3|h_2) = 1$   $p(\text{abra } 3|h_3) = 0$ 

$$p(h_i|\text{abra 3}) = \frac{p(\text{abra 3}|h_i)p(h_i)}{p(\text{abra 3})}$$

$$p(h_1|\text{abra }3) = 1/3$$
  $p(h_2|\text{abra }3) = 2/3$   $p(h_3|\text{abra }3) = 0$