WI COMMON

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam Total Marks: 40 Spring 2022

Course Code: CSE 2217 Course Title: Data Structure and Algorithms II

Time: 2 hours

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

There are **SEVEN** questions. **Answer all of them**. Show full simulation and/or solved figures wherever necessary. Figures in the right-hand margin indicate full marks.

	(b) A graph contains the vertices $\{A, B, C, D, E, F, G\}$ and the shortest path from A to B is $A \rightarrow E \rightarrow C \rightarrow D \rightarrow F \rightarrow G \rightarrow B$. Is it possible to find the shortest path from E to F from given data? Justify your answer.	[1]
	(c) What do you understand by <i>edge relaxation</i> ? Let $d(v)$ be the shortest path estimate from node s to node v and $\delta(s,v)$ be the shortest path value from node s to node v . When does it happen that $d[v] = \delta(s, v)$?	[2]
3	(a) Show the values for <i>finish time</i> (f) and parent (π) that result from running Depth-First Search (DFS) on the undirected graph in Figure 1, using vertex A as the source vertex.	[3]
	(b) "Every connected directed acyclic graph (DAG) has exactly one topological ordering" - true or false? Design a graph G with exactly 4 vertices that justifies your reasoning.	[2]
4	(a) Why do we use the heuristics: <i>union-by-rank</i> and <i>path-compression</i> in Disjoint-Set data structure?	[3]
	(b) Draw the resultant forest after calling UNION (5, 6) and after that draw the resultant forest again after calling FIND-SET (1) on the disjoint-sets of the following figure. You must use the <i>union-by-rank</i> and the <i>path-compression</i> heuristics.	[3]
5	(a) What is Secondary Clustering? When might a hash table face this suffering?	[1]
	(b) Consider an open-addressing hash table as shown below. The table already contains some data items and other empty slots. Assume that collisions are handled by Quadratic probing using the hash function $h(k,i) = (h'(k) + i^2) \mod 13$, where $h'(k) = (k+7) \mod 13$. By showing detailed calculations, redraw the table after	
	(i) Insert 47 (ii) insert 64; (iii) delete 12 (replace with NIL); (iv) search 38.	[1] [1] [1]
	Although 38 had been present at the hash table, your search would fail here. Explain how one can modify the operations such that this will be prevented.	[1]
	0 1 2 3 4 5 6 7 8 9 10 11 12	
	70 12 38 44	
	Table: Open Addressing Table	

6	Consider the mentioned notations Text, $t = "BATMANCATWOMAN"$ Pattern, $p = "AT"$ Modulo, $q = 13$	
	Hash of a string XY, $h(XY) = (X + Y) \mod q$; where X and Y are the alphabetical sequence of keys [i.e.: $A = 1$, $B = 2$, $C = 3$, $Y = 25$, $Z = 26 \ etc$]	
	Now answer the following questions using Rabin-Karp String matching algorithm:	
	(a) Show the indices of <i>valid hit</i> and <i>spurious hit</i> (if any) using the aforementioned hashing function.	[2+1]
	(b) What is the time complexity of this algorithm? Explain how it improves the naïve string-matching algorithm?	[2]
7	(a) When does a problem belong to the complexity class NP? How does it differ from P class problems?	[2]
	(b) "Being $P \neq NP$ drives the world economy and gives the modern Password protection system a profound advantage." Do you agree with this? Briefly explain your opinion.	[4]