Nom:	
Prénom	:

Interro 1 le 12/09/2022.

Question 1. Donner la définition de point fixe.

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1 + u_n}$.

On note f la fonction définie sur \mathbb{R}_+ par

$$\forall x \geqslant 0, \ f(x) = \sqrt{1+x}.$$

- 1. Justifier que *f* est dérivable et calculer sa dérivée.
- 2. Trouver le(s) point(s) fixe(s) de f.
- 3. On suppose que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\geqslant 0$. Que vaut ℓ ?

Réponses.

Nom : Prénom :

Interro 1 le 12/09/2022.

Question 1. Énoncer le théorème de l'inégalité des accroissements finis.

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

où f est la fonction définie sur \mathbb{R}_+ par

$$\forall x \geqslant 0, \ f(x) = \frac{x^2 + 1}{2}.$$

- 1. Justifier que f est dérivable et calculer sa dérivée.
- 2. Trouver le(s) point(s) fixe(s) de f.
- 3. On suppose que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell \geqslant 0$. Que vaut ℓ ?

Réponses.