Formule goniometriche

addizione e sottrazione	
$sin(\alpha + \beta) = sin(\alpha) \cdot cos(\beta) + sin(\beta) \cdot cos(\alpha)$	$tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \cdot \tan(\beta)}$
$sin(\alpha - \beta) = sin(\alpha) \cdot cos(\beta) - sin(\beta) \cdot cos(\alpha)$	$tg(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \cdot \tan(\beta)}$
$cos(\alpha + \beta) = cos(\alpha) \cdot cos(\beta) - sin(\alpha) \cdot sin(\beta)$	$cot(\alpha + \beta) = \frac{\cot(\alpha) \cdot \cot(\beta) - 1}{\cot(\beta) + \cot(\alpha)}$
$cos(\alpha - \beta) = cos(\alpha) \cdot cos(\beta) + sin(\alpha) \cdot sin(\beta)$	$cot(\alpha - \beta) = \frac{\cot(\alpha) \cdot \cot(\beta) + 1}{\cot(\beta) - \cot(\alpha)}$

duplicazione			
$sin(2\alpha) = 2sin(\alpha) \cdot \cos(\alpha)$		$tan(2\alpha) = \frac{2\tan(\alpha)}{1 - tan^2(\alpha)} = \frac{2}{\cot(\alpha) - \tan(\alpha)}$	
$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$	$\cos(2\alpha) = 1 - 2\sin^2(\alpha)$ $\cos(2\alpha) = 2\cos^2(\alpha) - 1$	$cot(2\alpha) = \frac{cot^2(\alpha) - 1}{2\cot(\alpha)} = \frac{\cot(\alpha) - \tan(\alpha)}{2}$	

bisezione	
$\sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos(\alpha)}{2}}$	$\tan\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos(\alpha)}{1 + \cos(\alpha)}} = \frac{\sin(\alpha)}{1 + \cos(\alpha)} = \frac{1 - \cos(\alpha)}{\sin(\alpha)}$
$\cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos(\alpha)}{2}}$	$\cot\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos(\alpha)}{1-\cos(\alpha)}} = \frac{\sin(\alpha)}{1-\cos(\alpha)} = \frac{1+\cos(\alpha)}{\sin(\alpha)}$

parametriche o razionali $t=tg\left(rac{lpha}{2} ight)$	
$sin(\alpha) = \frac{2t}{1+t^2}$	$tan(\alpha) = \frac{2t}{1 - t^2}$
$\cos(\alpha) = \frac{1 - t^2}{1 + t^2}$	$cot(\alpha) = \frac{1 - t^2}{2t}$

prostaferesi	
$\sin(p) + \sin(q) = 2\sin\frac{p+q}{2} \cdot \cos\frac{p-q}{2}$	$\sin(p) - \sin(q) = 2\sin\frac{p-q}{2} \cdot \cos\frac{p+q}{2}$
$cos(p) + cos(q) = 2cos\frac{p+q}{2} \cdot cos\frac{p-q}{2}$	$\cos(p) - \cos(q) = -2\sin\frac{p+q}{2} \cdot \sin\frac{p-q}{2}$

Werner	
$\sin(\alpha) \cdot \sin(\beta) = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$	$\sin(\alpha) \cdot \cos(\beta) = \frac{\sin(\alpha - \beta) + \sin(\alpha + \beta)}{2}$
$cos(\alpha) \cdot cos(\beta) = \frac{cos(\alpha - \beta) + cos(\alpha + \beta)}{2}$	