Nanostring Analysis for Dataset X v3.0

Nathan T. Johnson

3/12/2020

Guiding Questions

Which immune cell type (and other) to compare with what we learned from flow cytometry? Did PD1 elicit any changes in expression profile compared with IgG?

What can we learn about IFNg treatment.immune cells activated?

What are the characteristics of the samples?

Basic Setup

##		${\tt RNA.Solution}$	Tumor	Fra	action	${\tt Treatment}$	Amount.of.Material.Provide
##	1	RNAlater	P0003	large frag	gments	None	500µL
##	2	RNAlater	P0003	single cell	flow	None	500µL
##	3	RNAlater	P0004	large frag	gments	None	500µL
##	4	RNAlater	P0004		None	None	500µL
##	5	RNAlater	P0004	single cell	flow	None	500µL
##	6	RNAdvance	P0010		None	IFNy	200µL
##	7	RNAdvance	P0010		None	IgG	200µL
##	8	RNAlater	P0010	large frag	gments	None	500µL
##	9	RNAlater	P0010		None	None	500µL
##	10	RNAdvance	P0010		None	aPD1	200µL
##	11	RNAlater	P0011	large frag	gments	None	500µL
##	12	RNAlater	P0011		None	None	500µL

What is being quantified?

What Gene functions are being quantified?

Gene
Cell.Type
Adaptive.Immunity
Apoptosis
Cell.Cycle
Cellular.Stress
Complement.System

 \mathbf{x}

Death.Receptor.Signaling
Extracellular.matrix.organization
Fc.Receptor.Signaling
Innate.Immunity
Interferon.Signaling
Interleukin.Signaling
NF.kB
MAPK.Signaling
Metabolism
TLR.Signaling
VEGF.Signaling
Wnt.Signaling

How many genes represent each function type Information?

Cell.Type	n
	712
B-cells	4
CD45	1
CD8 T cells	2
Cytotoxic cells	8
DC	4
Exhausted CD8	4
Macrophages	2
Mast cells	2
Neutrophils	3
NK CD56dim cells	3
NK cells	2
T-cells	5
Th1 cells	1
Treg	1

Cellular.Stress	n
-	723
+	31

Complement.System	n
-	720
+	34

Death.Receptor.Signaling	n
-	736
+	18

Extracellular.matrix.organization	n
-	714
+	40

Fc.Receptor.Signaling	n
-	681
+	73

n
733 21

Interferon.Signaling	n
-	664
+	90

$$\begin{array}{c|c} \underline{\text{Interleukin.Signaling}} & \underline{n} \\ - & 631 \\ + & 123 \end{array}$$

MAPK.Signaling	n
_	689
+	65

Metabolism	n
-	712
+	42

VEGF. Signaling	n
-	698
+	56

Wnt.Signaling	n
-	734
+	20

What comparisons can be made?

Fraction	n
large fragments	4
None	6
single cell flow	2

RNA.Solution	n
RNAdvance	3
RNAlater	9

n
2
3
5
2

Treatment	n
aPD1	1
IFNy	1
IgG	1
None	9

Can we group the samples?

PCA plots give an idea what similarties are to be expected from the samples that are in it.

 PCA - Calculates variability across entire dataset for each gene - Groups components - Using these components it allows to check for bias and grouping within samples

PC1 vs PC2

PC1 versus PC2

Principle Components Correlation

ncipal component Pearson r² clinical correlat

What genes are driving the principle component

PC1, PC2, PC3, PC4, PC5

Top 1% variables

What genes are driving the principle component

Focus on Significant Components

Component Comparison

