The group G is isomorphic to the group labelled by [168, 42] in the Small Groups library. Ordinary character table of $G \cong \mathrm{PSL}(3,2)$:

	1a	2a	4a	3a	7a	7 <i>b</i>
χ_1	1	1	1	1	1	1
χ_2	3	-1	1	0	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$
χ_3	3	-1	1	0	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$
χ_4	6	2	0	0	-1	-1
χ_5	7	-1	-1	1	0	0
χ_6	8	0	0	-1	1	1

Trivial source character table of $G \cong PSL(3,2)$ at p=2:

Trivial source character table of $G = PSL(5,2)$ at $p = 2$:												
Normalisers N_i		N_1				N_3		N_4		N_5	N_6	
p-subgroups of G up to conjugacy in G		P_1				P	3	P_4		P_5	P_6	
Representatives $n_j \in N_i$	1a	3a	7a	7b	1a	1a	3a	1a	3a	1a	1a	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	8	-1	1	1	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	16	1	$2 * E(7) + 2 * E(7)^{2} + E(7)^{3} + 2 * E(7)^{4} + E(7)^{5} + E(7)^{6}$	$E(7) + E(7)^2 + 2 * E(7)^3 + E(7)^4 + 2 * E(7)^5 + 2 * E(7)^6$	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	16	1	$E(7) + E(7)^2 + 2 * E(7)^3 + E(7)^4 + 2 * E(7)^5 + 2 * E(7)^6$	$2 * E(7) + 2 * E(7)^{2} + E(7)^{3} + 2 * E(7)^{4} + E(7)^{5} + E(7)^{6}$	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	8	2	1	1	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 2 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	20	2	-1	-1	4	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	14	2	0	0	2	2	2	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	6	0	-1	-1	2	2	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	14	2	0	0	2	0	0	2	2	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	6	0	-1	-1	2	0	0	2	-1	0	0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 2 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	26	2	-2	-2	2	0	0	0	0	2	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1	1	1	1	1	

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(1,5)(2,6)]) \cong C2$

 $P_3 = Group([(1,5)(3,7),(1,5)(2,6)]) \cong C2 \times C2$

 $P_4 = Group([(1,3)(5,7),(1,5)(3,7)]) \cong C2 \times C2$

 $P_5 = Group([(1,3,5,7)(2,6),(1,5)(3,7)]) \cong C4$

 $P_6 = Group([(1,5)(3,7),(1,5)(2,6),(1,3)(5,7)]) \cong D8$

$N_1 = Group([(2,4)(3,5),(1,2,3)(5,6,7)]) \cong PSL(3,2)$

 $N_2 = Group([(1,5)(2,6),(1,5)(3,7),(1,2)(5,6)]) \cong D8$

 $N_3 = Group([(2,6)(3,7),(1,5)(3,7),(2,7)(3,6),(1,2,7)(3,5,6)]) \cong S4$

 $N_4 = Group([(1,5)(3,7),(1,3)(5,7),(4,6)(5,7),(2,4)(3,5)]) \cong S4$

 $N_5 = Group([(1,3,5,7)(2,6),(1,5)(3,7),(2,6)(3,7)]) \cong D8$

 $N_6 = Group([(1,3)(5,7),(2,6)(3,7),(1,5)(3,7)]) \cong D8$