Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2011 – Cálculo I – 1º sem. 2015 Professor: Dr. José Ricardo G. Mendonça

5ª Lista de Exercícios — Esboço de Curvas — 21 mai. 2015

Todo mundo sabe o que é uma curva até que tenha estudado matemática o suficiente para ficar confuso com o possível número ilimitado de exceções.

Felix Klein (1849–1925)

I. Esboço de curvas

1. Encontre os limites dos seguintes quocientes quando x se torna muito grande nos dois sentidos, isto é, encontre o valor dos limites $\lim_{x \to +\infty} q(x)$ para os seguintes quocientes:

(a)
$$q(x) = \frac{2x^3 - x}{x^4 - 1}$$
;

(b)
$$q(x) = \frac{\sin x}{x}$$
;

(c)
$$q(x) = \frac{\cos x}{x}$$
;

(d)
$$q(x) = \frac{2x^4 - 1}{-4x^3 + x^2}$$
;

(e)
$$q(x) = \frac{\cos x^2}{x^2}$$
;

(f)
$$q(x) = \frac{x^2 + 1}{-2x^2 - 1}$$
.

2. Para cada uma das seguintes funções, esboce a curva indicando (i) as interseções com os eixos coordenados, (ii) os pontos críticos, (iii) os intervalos de crescimento e de decrescimento, (iv) os máximos e mínimos, (v) o comportamento de f(x) quando x se torna muito positivo ou muito negativo e (vi) os valores de x para os quais f(x) se torna muito positivo ou muito negativo:

1

(a)
$$f(x) = \frac{x^2 + 2}{x - 3}$$
;

(b)
$$f(x) = \frac{x+1}{x^2+1}$$
;

(c)
$$f(x) = \frac{x^3 + 1}{x + 1}$$
;

(d)
$$f(x) = \sin^2 x$$
;

(e)
$$f(x) = x^5 + x$$
;

(f)
$$f(x) = x^6 + x$$
.

- 3. Sejam a < b < c < d quatro números reais distintos. Usando a mesma estratégia do exercício anterior, esboce as curvas das seguintes funções:
 - (a) f(x) = (x a)(x b);
 - (b) f(x) = (x-a)(x-b)(x-c);
 - (c) f(x) = (x-a)(x-b)(x-c)(x-d).

II. Coordenadas polares e curvas paramétricas

- 1. Indique em um gráfico os pontos com as seguintes coordenadas polares (r, θ) :
 - (a) $(2,\pi/4)$;
 - (b) $(1, -\pi/4)$;
 - (c) $(3,4\pi/3)$;
 - (d) $(2,15\pi/8)$.
 - (e) (2,-2) (sim, estas são coordenadas polares).
- 2. Encontre as coordenadas polares (r, θ) dos seguintes pontos (x, y):
 - (a) (1,1);
 - (b) (-1,-1);
 - (c) $(2,\sqrt{2})$;
 - (d) (-1,0);
 - (e) $(1/2, 2\pi/3)$ (sim, estas são coordenadas retangulares).
- 3. Esboce o gráfico das seguintes funções em coordenadas polares:
 - (a) r = 2;
 - (b) $r = \sin 2\theta$;
 - (c) $r = \frac{2}{2-\cos\theta}$;
 - (d) $r = a\theta$, a > 0; essa curva é conhecida como espiral de Arquimedes;
 - (e) $r = 1 \sin \theta$; as curvas $r = 1 \pm \sin \theta$ e $r = 1 \pm \cos \theta$ são conhecidas como cardióides (porque lembram o formato de um coração);
 - (f) $r^2 = 2a^2 \cos 2\theta$; essa curva é conhecida como lemniscata de Bernoulli;
 - (g) $r^2 = (a^2 + b^2) + b^2 2(a + b)b\cos(\frac{a}{b}\theta)$, a > b > 0; essa curva é conhecida como epiciclóide e descreve a trajetória de um ponto fixo em um círculo de raio b que "rola" sem deslizamento sobre um outro círculo de raio a.
- 4. Esboce o gráfico das seguintes curvas dadas parametricamente:
 - (a) x = t + 1, y = 3t + 4;
 - (b) $x = t^2 + 1$, y = 3 t;

- (c) $x = 1 t^2$, y = t, $-1 \le t \le 1$;
- (d) $x = t \sin t, y = 1 \cos t;$
- (e) $r = t^3$, $\theta = \pi t^2$;
- (f) $r = t, \theta = t^2$.
- 5. Encontre cinco pontos racionais $(x,y) \in \mathbb{Q} \times \mathbb{Q}$ sobre o círculo unitário r=1. Em geral, é *muito* difícil encontrar pontos racionais sobre curvas. Por exemplo, não existe *nenhum* ponto racional sobre a curva $x^n + y^n = 1$ para valores inteiros n > 2— esse é o conteúdo do famoso "último teorema de Fermat"! Essa dificuldade é explorada em alguns esquemas de criptografia de chave pública. A área da matemática que estuda esse assunto (entre outros) é a geometria algébrica, uma das mais sofisticadas áreas de toda a matemática contemporânea.