Assignment -2

Project Name	AI Based Discourse for Banking Industry
Student Name	Sakthivel.A
Student Roll Number	731519210501

IMPORT LIBRARIES

import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seaborn as sns

LOADING THE DATASET

df = pd.read_csv('Churn_Modelling.csv', encoding='latin-1')df

1	_ `		_ ~		, aa			~ 1
Age	RowNumb	oer	CustomerIc	l Surname	CreditS	core	Geography	Gender
0	1	1	1563460	Hargrave		619	France	Female
42								
1 41		2	1564731	1 Hill		608	Spain	Female
2		3	1561930)4 Onio		502	France	Female
42								
3		4	1570135	54 Boni		699	France	Female
39 4		5	1573788	38 Mitchell		850	Spain	Female
43		3	1373700	oo wiitenen		030	Spain	Temate
								•••
 9995	99	96	1560622	29 Obijiaku		771	France	Male
39				5 - J-11-11				
9996	99	97	1556989	Johnstone		516	France	Male
35 9997	999	98	1558453	32 Liu		709	France	Female
36	<i>))</i> .	70	1330432	52 Elu		10)	Trance	Temate
9998	99	99	1568235	Sabbatini		772	Germany	Male
42	1000	20	1560021	O Wallson		702	Enongo	Esmala
9999 28	1000	<i>J</i> O	1562831	9 Walker		792	France	Female
	Tenure]	Balance	NumOfProducts	HasCrCard	Is	ActiveMember	\
0	2		0.00	1		1		1
1	1		8807.86	1		0		1
2	8	159	0660.80	3		1		0
3	1		0.00	2		0		0
4	2	125	5510.82	1		1		1
9995	5		0.00	2		1		0
9996	10	57	7369.61	1		1		1

9997	7	0.00	1	0	1
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
	•••	
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

VISUALIZATIONS

#visualization of categorical features

```
fig, ax = plt.subplots(3, 2, figsize = (15, 12))plt.title("Visualization") sns.countplot('Geography', hue = 'Exited', data = df, ax = ax[0][0],palette='spring') sns.countplot('Gender', hue = 'Exited', data = df, ax = ax[0][1],palette='spring') sns.countplot('Tenure', hue = 'Exited', data = df, ax = ax[1][0],palette='spring') sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1][1],palette='spring') sns.countplot('HasCrCard', hue = 'Exited', data = df, ax = ax[2][0],palette='spring') sns.countplot('IsActiveMember', hue = 'Exited', data = df, ax = ax[2][1],palette='spring')
```

```
ax[0][0].set_title('Count Plot of Geography',color='red',fontsize=15)ax[0][1].set_title('Count Plot of Gender',color='red',fontsize=15) ax[1][0].set_title('Count Plot of Tenure',color='red',fontsize=15) ax[1][1].set_title('Count Plot of NumOfProducts',color='red',fontsize=15) ax[2][0].set_title('Count Plot of HasCrCard',color='red',fontsize=15)ax[2][1].set_title('Count Plot of IsActiveMember',color='red',fontsize=15)
```

plt.tight_layout()plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

DESCRIPTIVE STATISTICS

df.dtypes

RowNumber	int64
110 //1 / (6/11/0-01	11100.
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember int64F	EstimatedSalary
float64Exited	int64
dtype: object	

$$\label{eq:condition} \begin{split} df_num &= df[['RowNumber', 'Tenure', 'CustomerId', 'CreditScore', 'Age', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'Exited']] \end{split}$$

 $df_cat = df[['Surname', 'Geography', 'Gender']]df_num.head()$

	RowNumber Tenure CustomerId CreditScore Age NumOfProductsHasCrCard \					
0	1	2	15634602	619	42	1
1						
1	2	1	15647311	608	41	1
0						
2	3	8	15619304	502	42	3
1						
3	4	1	15701354	699	39	2
0						
4	5	2	15737888	850	43	1
1						
	IsActiveMember	Exite	d			
0	1		1			
1	1		0			
2	0		1			
3	0		0			
4	1		0			

df_cat.head()

Surname	Geography	Gender
---------	-----------	--------

0	Hargrave	France Female
1	Hill	Spain Female
2	Onio	France Female
3	Boni	France Female
4	Mitchell	Spain Female

df_num.describe()

	RowNumber	Tenure	CustomerId	CreditScore
Age \				
count 10	000.00000 10000.000	000 1.0000	00e+04 10000.000000	
10000.000	000			
mean	5000.50000	5.012800	1.569094e+07	650.528800
38.921800				
std	2886.89568	2.892174	7.193619e+04	96.653299
10.487806)			
min	1.00000	0.000000	1.556570e+07	350.000000
18.000000				
25%	2500.75000	3.000000	1.562853e+07	584.000000
32.000000				
50%	5000.50000	5.000000	1.569074e+07	652.000000
37.000000				
75%	7500.25000	7.000000	1.575323e+07	718.000000
44.000000				
max	10000.00000	10.000000	1.581569e+07	850.000000

92.000000

	NumOfProducts	HasCrCard	IsActiveMember	Exited
count	10000.000000	10000.00000	10000.000000	10000.000000
mean	1.530200	0.70550	0.515100	0.203700
std	0.581654	0.45584	0.499797	0.402769
min	1.000000	0.00000	0.000000	0.000000
25%	1.000000	0.00000	0.000000	0.000000
50%	1.000000	1.00000	1.000000	0.000000
75%	2.000000	1.00000	1.000000	0.000000
max	4.000000	1.00000	1.000000	1.000000

df_cat.describe(exclude = ['int64','float64'])Surname Geography Gender

count	10000	10000	10000
unique	2932	3	2
top	Smith	France	
FANDLE	THE MASS	ING ♥ALUI	S 5457

Column	Missing values
RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

 $print(f"Our\ target\ variable\ is\ Exited.$ We can observe that it has only two possible variables: {df['Exited'].unique().tolist()}")

Our target variable is Exited. We can observe that it has only twopossible variables: [1, 0] df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)

df.rename(columns=new_names, inplace=True)df.head()

credit_score number_products		country	gender	age	tenure	balance
0	619	France	Female	42	2	0.00
1 1	608	Spain	Female	41	1	83807.86
1 2	502	France	Female	42	8	159660.80
3					1	
3 2	699	France	Female	39	1	0.00
4	850	Spain	Female	43	2	125510.82

	owns_credit_card	is_active_member	estimated_salary exi	ted0	1
		1	101348.88	1	
1		0	1	112542.58	0
2		1	0	113931.57	1
3		0	0	93826.63	0
4		1	1	79084.10	0

REPLACE OUTLIERS

```
def detect_outlier(df):
  outlier = [] threshold =
  3 mean = np.mean(df)std =
  np.std(df) for i in df:
        z_score = (i - mean)/std
  if np.abs(z_score)>threshold:
      outlier.append(i)
  return outlier
  CreditScore_list = df['CreditScore'].tolist()Balance_list =
  df['Balance'].tolist()
```

```
EstimatedSalary list = df cat['EstimatedSalary'].tolist()CreditScore outlier =
 detect_outlier(CreditScore_list) CreditScore_outlier
 Output-[359, 350, 350, 358, 351, 350, 350, 350]
 Balance_outlier = detect_outlier(Balance_list)Balance_outlier
 EstimatedSalary_outlier = detect_outlier(EstimatedSalary_list)
 EstimatedSalary_outlier
print("Shape of Data before removing outliers: { }".format(df.shape))Shape of Data before removing
outliers: (10000, 11)
ENCODING
# Encoding Categorical variables into numerical variables# One Hot Encoding
x = pd.get\_dummies(x)x.head()
x.shape
(10000, 13)
SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIALBLES
# splitting the dataset into x(independent variables) and y(dependent variables)
x = df.iloc[:,0:10]
```

SCALE THE INDEPENDENT VARIABLES

from sklearn.preprocessing import StandardScalersc = StandardScaler()

$$\begin{split} x_train &= pd.DataFrame(x_train) \\ x_train.head() \end{split}$$

	lit_score country	ry gender	age tenure		balance		
number_proc 2967	1ucts \ 579	Germany	Female	39	5 117833.30	1	
3 700	750	France	Female	32	5 0.00	ı	
2 3481	729	Spain	Female	34	9 53299.96		
2 1621	689	Spain	Male	38	5 75075.14		
1 800	605	France	Male	52	7 0.00	,	
2							
owr	s_credit_card	is_ac	ctive_member		estimated_salary		
2967		0		0	5831.00		
700		1			95611.47		
3481		1			42855.97		
1621		1			8651.92	8651.92	
800		1		1	173952.50		

SPLIT THE DATA INTO TRAINING AND TESTING

splitting the data into training and testing set

```
from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =0.25, random_state = 0)
```

print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) (7500, 10)

(7500,) (2500, 10) (2500,)