Exercises 7, 11, 13, 14, 16, 30, 31 (expect (e)), pp. 256-260.

Let R be a ring with identity $1 \neq 0$.

Problem 7. Let R be a commutative ring with 1. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal if and only if R is an integral domain. Prove that (x) is a maximal ideal if and only if R is a field.

Proof. The ideal (x) is prime if $ab \in (x) \Rightarrow a \in (x) \lor b \in (x)$ by definition. We apply the equivalence that $r \in (x) \iff \overline{r} = \overline{0} \in R[x]/(x)$. Thus the definition (x) being prime is equivalent to $\overline{ab} = \overline{ab} = \overline{0} \Rightarrow \overline{a} = \overline{0} \lor \overline{b} = \overline{0}$, i.e. R[x]/(x) is an integral domain.

Problem 11. Assume R is commutative. Prove that if P is a prime ideal of R and P contains no zero divisors then R is an integral domain.

Proof. Let $a, b \in R$ be any elements such that ab = 0. Note that $ab \in P$, and since P is prime, we have that either $a \in P$ or $b \in P$. Suppose $a \in P$. Then since P has no zero-divisors, ab = 0 forces a = 0. The same argument applies when $b \in P$ to show that b = 0. In any case, either a = 0 or b = 0. Hence R is an integral domain.

Problem 13. Let $\varphi: R \to S$ be a homomorphism of commutative rings.

- (a) Prove that if P is a prime ideal of S then either $\varphi^{-1}(P) = R$ or $\varphi^{-1}(P)$ is a prime ideal of R. Apply this to the special case when R is a subring of S then $P \cap R$ is either R or a prime ideal of R.
- (b) Prove that if M is a maximal ideal of S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal of R. Give an example to show that this need not be the case if φ is not surjective.

Proof. We proceed with each separately:

(a) Let $P \leq S$ be a prime ideal. We can split into two cases: $\varphi^{-1}(P) = R$ or $\varphi^{-1}(P) < R$. In the first case, we're just done.

In the second case, let $a, b \in R$ and $ab \in \varphi^{-1}(P)$. Then we can do some map manipulations to see that

$$\varphi(ab) = \varphi(a)\varphi(b) \in P \Rightarrow \varphi(a) \in P \lor \varphi(b) \in P \Rightarrow a \in \varphi^{-1}(P) \lor b \in \varphi^{-1}(P),$$

where the first implication is due to the fact that S is integral. Hence we have both conditions, so $\varphi^{-1}(P)$ is integral.

In the special case where we consider the inclusion $\iota : R \hookrightarrow S$, we have $\varphi^{-1}(P) = P \cap R$; so $P \cap R$ is either R or a prime ideal of R.

(b) Let I be any ideal such that $\varphi^{-1}(M) \leq I \leq R$. Then we have $M \leq \varphi(I) \leq \varphi(R)$. Since φ is surjective, we may identify $\varphi(R) = S$. Since M is maximal, we deduce that $\varphi(I)$ must be either M or S. Thus I must be either $\varphi^{-1}(M)$ or $\varphi^{-1}(S) = R$, which means exactly that $\varphi^{-1}(M)$ is maximal.

Problem 14. Assume R is commutative. Let x be an indeterminate, let f(x) be a monic polynomial in R[x] of degree $n \ge 1$ and use the bar notation to denote passage to the passage to the quotient ring R[x]/(f(x)).

- (a) Show that every element of R[x]/(f(x)) is of the form $\overline{p(x)}$ for some polynomial $p(x) \in R[x]$ of degree less than n.
- (b) Prove that if p(x) and q(x) are distinct polynomials in R[x] which are both of degree less than n, then $p(x) \neq q(x)$.
- (c) If f(x) = a(x)b(x) where both a(x) and b(x) have degree less than n, prove that $\overline{a(x)}$ is a zero divisor in R[x]/(f(x)).
- (d) If $f(x) = x^n a$ for some nilpotent element $a \in R$, prove that \overline{x} is nilpotent in R[x]/(f(x)).
- (e) Let p be prime, assume $R = \mathbb{F}_p$ and $f(x) = x^p a$ for some $a \in \mathbb{F}_p$. Prove that $\overline{x a}$ is nilpotent in R[x]/(f(x)).

Proof. We proceed with each part separately:

(a) We proceed by induction on the degree to show that for any $q(x) \in R[x]$ we have $\overline{q(x)} = \overline{p(x)}$ for some p(x) of degree less than n.

Consider the base case m < n, then there is nothing to prove.

Now assume for the sake of induction that for some $k \ge n$ all polynomials $r(x) \in R[x]$ with deg r = k satisfy $\overline{r(x)} = \overline{p(x)}$ for some p(x) of degree less than n.

Let $q(x) = a_{k+1}x^{k+1} + a_kx^k + \cdots + a_1x + a_0$ be any polynomial of degree k+1. If $f(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_0$. Notice that we have the relation

$$\overline{x^n} = \overline{-(b_{n-1}x^{n-1} + \dots + b_0)}.$$

Hence we may erase the leading coefficient of q(x):

$$\overline{q(x)} = \overline{a_{k+1}x^{k+1} + a_kx^k + \dots + a_1x + a_0}$$

$$= \overline{a_{k+1}x^{k+1}} + \overline{a_kx^k + \dots + a_1x + a_0}$$

$$= \overline{x^n} \left(\overline{a_{k+1}x^{k+1-n}} \right) + \overline{a_kx^k + \dots + a_1x + a_0}$$

$$= \left(\overline{-(b_{n-1}x^{n-1} + \dots + b_0)} \right) \left(\overline{a_{k+1}x^{k+1-n}} \right) + \overline{a_kx^k + \dots + a_1x + a_0}$$

$$= -\left(\overline{a_{k+1}b_{n-1}x^{n-1}x^{k+1-n} + \dots + a_{k+1}b_0x^{k+1-n}} \right) + \overline{a_kx^k + \dots + a_1x + a_0}$$

$$= -\overline{a_{k+1}b_{n-1}x^k + \dots + a_{k+1}b_0x^{k+1-n}} + \overline{a_kx^k + \dots + a_1x + a_0}.$$

Hence we see that $\overline{q(x)} = \overline{r(x)}$ for some polynomial r(x) of degree k! The induction hypothesis states that $\overline{q(x)} = \overline{r(x)} = \overline{p(x)}$ for some p(x) of degree less than n. This completes the induction and we are done.

- (b) We have $\deg(p-q) < n$. Thus $p-q \notin (f(x)) \Rightarrow \overline{p-q} \neq \overline{0}$. Hence $\overline{p(x)} \neq \overline{q(x)}$.
- (c) Since both $\underline{\deg a(x)}, \underline{\deg b(x)} < n$, we have $\overline{a(x)}, \overline{b(x)} \neq 0$. But clearly we also have $\overline{a(x)b(x)} = \overline{a(x)b(x)} = \overline{f(x)} = \overline{0}$. Thus $\overline{a(x)}$ is a zero divisor of R[x]/(f(x)).
- (d) We have:

$$f(x) = x^n - a \Rightarrow \overline{0} = \overline{x^n - a} \Rightarrow \overline{x^n} = \overline{a}.$$

But a is nilpotent, so there is some $m \in \mathbb{Z}^+$ such that $a^m = 0$. Thus,

$$\overline{0} = \overline{a^m} = \overline{a}^m = \overline{x^n}^m = \overline{x}^{mn}.$$

So indeed \overline{x} is nilpotent as well.

(e) From Exercise 26 from Section 3 we know that $(x-a)^p = x^p + (-a)^p$. Note that \mathbb{F}_p^{\times} is a group of order p-1, so we have $(-a)^{p-1} = 1$. Thus $(x-a)^p = x^p - a$. But this exactly shows that $\overline{(x-a)^p} = \overline{x^p - a} = \overline{0}$, as desired!

Problem 16. Let $x^2 - 16$ be an element of the polynomial ring $E = \mathbb{Z}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{Z}[x]/(x^3 - 2x + 1)$. Let $p(x) = 2x^7 - 7x^5 + 4x^3 - 9x + 1$ and let $q(x) = (x - 1)^4$.

(a) Express each of the following elements of \overline{E} in the form $\overline{f(x)}$ for some polynomial f(x) of degree ≤ 2 : $\overline{p(x)}, \overline{q(x)}, \overline{p(x) + q(x)},$ and $\overline{p(x)}, \overline{q(x)}$.

3

(b) Prove that \overline{E} is not an integral domain.

(c) Prove that \overline{x} is a unit in \overline{E} .

Proof. We proceed with each separately:

(a) Do polynomial long division to figure out $\overline{p(x)}$ and $\overline{q(x)}$:

$$p(x) = (2x^4 - 3x^2 - 2x - 2)(x^3 - 2x + 1) + (-x^2 - 11x + 3)$$

$$\Rightarrow \overline{p(x)} = \overline{-x^2 - 11x + 3};$$

$$q(x) = (x - 4)(x^3 - 2x + 1) + (8x^2 - 13x + 5)$$

$$\Rightarrow \overline{q(x)} = \overline{8x^2 - 13x + 5}.$$

Then we have $\overline{p(x) + q(x)} = \overline{7x^2 - 24x + 8}$ and

$$\overline{p(x)q(x)} = \overline{(-x^2 - 11x + 3)(8x^2 - 13x + 5)}$$

$$= \overline{-8x^4 - 75x^3 + 162x^2 - 94x + 15}$$

$$\overline{p(x)q(x)} = \overline{(-8x - 75)(x^3 - 2x + 1) + (146x^2 - 236x + 90)}$$

$$\Rightarrow \overline{p(x)q(x)} = \overline{146x^2 - 236x + 90}$$

- (b) Note that $x^3 2x + 1$ has a root at 1 so we may factor $x^3 2x + 1 = (x 1)(x^2 + x 1)$. However in the quotient, both $\overline{x 1}$ and $\overline{x^2 + x 1}$ are nonzero while $\overline{x^3 2x + 1} = \overline{0}$. Thus \overline{E} is not an integral domain.
- (c) We need xf(x) = qd + 1 where $d = x^3 2x + 1$ and q is some resulting quotient. Note that the LHS has no constant factor; hence a good guess for q would be -1, since that eliminates the +1 on the RHS. Indeed, $xf(x) = -d + 1 = -x^3 + 2x = x(-x^2 + 2)$. So clearly $f(x) = -x^2 + 2$ works. Then $\overline{f(x)} = -x^2 + 2$ is the inverse of \overline{x} , proving that it is a unit.

Problem 30. Let I be an ideal of the commutative ring R and define

$$\operatorname{rad} I = \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}^+ \}$$

called the *radical* of I. Prove that rad I is an ideal containing I and that $(\operatorname{rad} I)/I$ is the nilradical of the quotient ring R/I, i.e. $(\operatorname{rad} I/I) = \Re(R/I)$.

Proof. rad I contains I: Clearly for any $r \in I$ we have $r^1 \in I$, so $r \in \text{rad } I$. Thus $I \leq \text{rad } I$.

4

Recall that the nilradical of R/I is defined as

$$\{\overline{r} \in R/I \mid \overline{r}^n = 0 \text{ for some } n \in \mathbb{Z}^+\}.$$

Thus $\overline{r} \in \mathfrak{R}(R/I)$ if and only if there is $n \in \mathbb{Z}^+$ such that $\overline{r}^n = 0$. This occurs if and only if there is $n \in \mathbb{Z}^+$ such that $r^n \in I$, i.e. $r \in \operatorname{rad} I$. Thus we may chain the if and only if statements to conclude that $(\operatorname{rad} I/I) = \mathfrak{R}(R/I)$.

Problem 31. An ideal I of the commutative ring R is called a radical ideal if rad I = I.

- (a) Prove that every prime ideal of R is a radical ideal.
- (b) Let n > 1 be an integer. Prove that 0 is a radical ideal in $\mathbb{Z}/n\mathbb{Z}$ if and only if n is a product of distinct primes to the first power (i.e. n is square free). Deduce that (n) is a radical ideal of \mathbb{Z} if and only if n is a product of distinct primes in \mathbb{Z} .

Proof. We proceed with each part separately:

(a) Let P be a prime ideal of R. We already know that $P \leq \operatorname{rad} P$, so it suffices to only show that $\operatorname{rad} P \leq P$. Let $r \in \operatorname{rad} P$ and $n \in \mathbb{Z}^+$ such that $r^n \in P$.

We proceed by induction to prove that $r^n \in P \Rightarrow r \in P$ for all $n \in \mathbb{Z}^+$. The base case n = 1 is trivial: $r \in P \Rightarrow r \in P$. Now assume for that sake of induction that $r^k \in P \Rightarrow r \in P$ is true for some $k \in \mathbb{Z}^+$. Then consider $r^{k+1} = rr^k \in P$. Since P is prime, we have either $r \in P$, in which case we are done, or $r^k \in P$, in which case we may apply our IH to conclude that $r \in P$. This completes the induction.

Therefore we see that $r^n \in P \Rightarrow r \in P$, so rad $P \leq P$. Hence rad P = P and P is a radical ideal.

(b) Recall the following theorem from homework 7, problem 13 (b):

If $a \in \mathbb{Z}$ is an integer, the element $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if and only if every prime divisor of n is also a prime divisor of a.

Note that trying to find the radical of 0 is equivalent to finding all elements $r \in R$ such that $r^n = 0$ for some $n \in \mathbb{Z}^+$, i.e. the nilpotent elements of R. Thus here we have $a \in \text{rad } 0$ if and only if every prime divisor of n is also a prime divisor of a.

 (\Rightarrow) : If $n = p_1 \cdots p_k$ is the product of distinct primes, and each of those primes must divide a, then $\forall i, p_i \mid a \Rightarrow p_1 \cdots p_k \mid a \Rightarrow n \mid a$. Thus $\overline{a} = \overline{0}$; we conclude that rad 0 = 0 is a radical ideal.

 (\Leftarrow) : We show that contrapositive. Suppose n is not the product of distinct primes, i.e. there is some prime p such that $p^2 \mid n$. Then $a = p \cdot p'_1 \cdots p'_k$, where p'_1, \cdots, p'_k are

all the other prime factors of n other than p. But p^2 does not divide a so $n \nmid a$; hence $a \neq 0 \in \text{rad } 0$. We conclude that rad 0 is not a radical ideal, as desired.

Exercises 1, 2, 5 pp. 267-269.

Problem 1. An element $e \in R$ is called an *idempotent* if $e^2 = e$. Assume that e is an idempotent in R and er = re for all $r \in R$. Prove that Re and R(1-e) and two-sided ideals of R and that $R \cong Re \times R(1-e)$. Show that e and 1-e are identities for the subrings Re and R(1-e) respectively.

Proof. Re and R(1-e) are two-sided ideals of R: Clearly Re is a two-sided ideal since $re = er \Rightarrow Re = eR$. Note that $(1-e)^2 = 1-2e+e^2 = 1-2e = e = 1-e$, so 1-e is an idempotent of R as well. Furthermore, for any $r \in R$ we have r(1-e) = r - re = r - er - (1-e)r, so 1-e commutes with everything. Clearly this shows that R(1-e) = (1-e)R; hence R(1-e) is a two-sided ideal.

 $R \cong Re \times R(1-e)$: Define the map $\varphi : R \to Re \times R(1-e)$ by $r \mapsto (re, r(1-e))$. Clearly φ is a surjective ring homomorphism, since both $r \mapsto re$ and $r \mapsto r(1-e)$ are surjective ring homomorphisms.

Thus it remains only to show that φ is injective. Indeed, suppose $\varphi(r)=(re,r(1-e))=(0,0)$. We have re=0 and r(1-e)=0; hence r(1-e)=r-re=r=0, which shows that $\ker \varphi=0$, as desired. We conclude that φ is an isomorphism and that

$$R \cong Re \times R(1-e)$$
.

View Re as a ring. Any element in Re has the form re for some $r \in R$. We can check that e is the identity directly: (re)e = ree = re and e(re) = e(er) = eer = er. Similarly, view R(1-e) as a ring. Since we've already shown that 1-e is an idempotent of R and r(1-e) = (1-e)r for all $r \in R$, we have the same logic to show that 1-e is the identity: r(1-e)(1-e) = r(1-e) and r(1-e)(1-e) = r(1-e). \square

Problem 2. Let R be a finite Boolean ring with identity $1 \neq 0$. Prove that $R \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Proof. We proceed by induction on the cardinality of R. Consider the base case |R| = 2. Then there is only one choice for R, namely \mathbb{Z}_2 (we shorten $\mathbb{Z}/2\mathbb{Z}$), so our base case is correct.

Now assume for the sake of strong induction that our hypothesis holds for all n < k for some k > 2. We want to show that any Boolean ring with size |R| = n is isomorphic to some \mathbb{Z}_2^r .

Indeed, let $e \in R$ be any nonzero, non-identity element. Then $e^2 = e$ by definition, so e is an idempotent of R. We apply the previous exercise to give $R = Re \times R(1 - e)$. In particular, both Re and R(1-e) have at least two elements (zero and identity), so |Re|, |R(1-e)| < |R|. Thus we may apply the induction hypothesis to see that

$$R \cong \mathbb{Z}_2^a \times \mathbb{Z}_2^b = \mathbb{Z}_2^{a+b}.$$

So we have r = a + b, and the induction is complete.

Problem 5. Let n_1, n_2, \dots, n_k be integers which are relatively prime in pairs: $(n_i, n_j = 1 \text{ for all } i \neq j.$

(a) Show that the Chinese Remainder Theorem implies that for any $a_1, \dots, a_k \in \mathbb{Z}$ there is a solution $x \in \mathbb{Z}$ to the simultaneous congruences

$$x \equiv a_1 \mod n_1, \quad x \equiv a_2 \mod n_2, \quad \cdots, \quad x \equiv a_k \mod n_k$$

and that the solution x is unique mod $n = n_1 n_2 \cdots n_k$.

(b) Let $n'_i = n/n_i$ and t_i be the inverse of $n'_i \mod n_i$. Prove that the solution x in (a) is given by

$$x = a_1 t_1 n'_1 + a_2 t_2 n'_2 + \dots + a_k t_k n'_k \mod n.$$

(c) Solve the simultaneous system of congruences

$$x \equiv 1 \mod 8$$
, $x \equiv 2 \mod 25$, $x \equiv 3 \mod 81$

and

$$y \equiv 5 \mod 8$$
, $y \equiv 12 \mod 25$, $y \equiv 47 \mod 81$.

Proof. We proceed with each:

(a) If $(n_i, n_j) = 1$ then there are integers x, y such that $xn_i + yn_j = 1$; thus we know that $(n_i, n_j) = \mathbb{Z}$ and that (n_i) and (n_j) are comaximal for any i and j. Hence the Chinese Remainder Theorem gives that

$$\mathbb{Z}/(n_1) \times \cdots \times \mathbb{Z}/(n_k) \cong \mathbb{Z}/(n_1 \cdots n_k) = \mathbb{Z}/(n).$$

This exactly means that there is a unique $x \in \mathbb{Z}/(n)$ which solves the system.

(b) Since x is unique, it suffices to show that x satisfies the above equivalences. For any i

and $j \neq i$, $n_i \mid n'_j$, so

$$x \equiv \sum_{j=1}^{k} a_j t_j n_j' \equiv a_i t_i n_i' \equiv a_i \mod n_i,$$

which means we're done.

(c) I do the computation elsewhere and won't include it since it's just very mechanical and boring. We have $x \equiv 3601 \mod 16200$ and $y \equiv 8269 \mod 16200$.

More to be added...?