University of Warwick Department of Computer Science

CS255

Formal Languages

Cem Yilmaz January 20, 2023

Contents

1 Languages			2	
	1.1	Alphabet	2	
	1.2	Deterministic Final State Automata	2	
	13	Languages	4	

1 Languages

1.1 Alphabet

Definition 1.1. Alphabet

Alphabet is a non-empty finite set of symbols. For example,

$$\Sigma_1 = \{a, b, c\}$$
 $\Sigma_2 = \{5, 8, 10\}$ (1)

Are alphabets which contain those symbols.

Definition 1.2. Language

Language is a potentially infinite set of finite strings over an alphabet. Using our previous alphabets, for example, we could obtain

$$L_1 = \{ab, abc, aaab, ccc, ba\} \qquad L_2 = \{a, aa, aaa, aaaa, \dots\}$$
 (2)

We could further define

$$\Sigma^* = \{ ALL \text{ finite strings (also called words) over the alphabet } \Sigma \}$$
 (3)

1.2 Deterministic Final State Automata

Definition 1.3. Deterministic Finate State Automaton

A machine M defined by the tuple

$$M = (Q, \Sigma, q_0, F, \delta) \tag{4}$$

is called the deterministic finite state automaton or a deterministic finite state machine. The Q refers to states, Σ to the alphabet, q_0 to the initial/starting state, F to the final state and δ as the state transition.

To represent a deterministic finite state automaton, consider the following diagram:

Figure 1: Exemplar deterministic finite state automata state diagram

Which represents the following table of values:

Table 1: State Transition Table

δ	a	b	c
q_0	q_1	q_2	q_2
q_1	q_1	q_3	q_3
q_2	q_2	q_2	q_2
q_3	q_3	q_3	q_3

In other words, if the input string finishes at q_1 , we accept the input. If it finishes in any other node otherwise, reject.

Definition 1.4. The Empty Word

The length of $|\varepsilon| = 0$. The Language L_1 is the empty language, $L_2 = \{\varepsilon\}$ is a non-empty language. Note that Σ^* always contains ε . The role that of the empty string is to be a monoid in our system.

Definition 1.5. Monoid

Comprise of a set, an associative binary operation on the set with an identity element.

$$(\mathbb{N}_0, +, 0)$$
 is a monoid. Here, $+$ denotes addition. (5)

$$(\mathbb{N}, \times, 1)$$
 is a monoid. Here, \times is multiplication. (6)

$$(\Sigma^*, \circ, \varepsilon)$$
 is a monoid. Here, \circ denotes string concatenation. (7)

Definition 1.6. Transition Function

The transition function is denoted as

$$\delta(q_i, \text{string}) = q_j \tag{8}$$

k In other words, we take a state q_i , a string input, and after running the string, we get output state q_j . Note that the string can be a single letter or a bigger string. In case of a non-letter string, sometimes the δ is denoted as $\hat{\delta}$ instead. Formally,

$$\hat{\delta}: Q \times \Sigma^* \to Q \tag{9}$$

such that

$$\forall q \in Q, \hat{\delta}(q, \varepsilon) = q \tag{10}$$

$$\forall q \in Q \land s \in \Sigma^* \text{ s.t. } s = wa \text{ for some } w \in \Sigma^* \land a \in \Sigma, \hat{\delta}(q, s) = \delta(\hat{\delta}(q, w), a) \tag{11}$$

Definition 1.7. Language accepted by DFA

Consider a DFA $M=(Q,\Sigma,q_0,F,\delta)$. The language accepted or recognised by M is denoted by L(M) and is defined as

$$L(M) = \{ s \in \Sigma^* | \hat{\delta}(q_0, s) \in F \}$$
 (12)

Definition 1.8. Run of a DFA

Consider a DFA $m=(Q,\Sigma,q_0,F,\delta)$. Consider a string $s=s_1s_2\dots s_n$, where $s_i\in\Sigma$ for each $i\in[n]$. The run of M on the empty word ε is just the state q_0 . The run of M on the word s is a sequence of states r_0,r_1,\dots,r_n , where

$$r_0 = q_0 \tag{13}$$

$$\forall i \in [n], r_i = \delta(r_{i-1}, s_i) \tag{14}$$

1.3 Languages

Definition 1.9. Regular Language

A language L is called regular if it is accepted by some deterministic finite state automata (DFA)

Definition 1.10. NFA

Formally, the extended transition $\hat{\delta}$ for an NFA $(Q, \Sigma, q_0, F, \delta)$ is a function $\hat{\delta}: Q \times \Sigma^* \to \mathbb{P}(Q)$ and is defined as follows:

$$\forall q \in Q, \hat{\delta}(q, \varepsilon) = ECLOSE(q) \tag{15}$$

$$\forall q \in Q \land s \in \Sigma^* : s = wa \text{ for some } w \in \Sigma^* \land a \in \Sigma, \hat{\delta}(q, s) = ECLOSE(\cup_{q' \in \hat{\delta}(q, w)} \delta(q', a)) \quad (16)$$

It is useful to first compute the ε closure of an input and then consider the input string to see where it possible leads, repeating the process.

Corollary. Language of NFA

Consider an NFA $M=(Q,\Sigma,q_0,F,\delta)$. The run of M on the word s is a sequence of states r_0,r_1,\ldots,r_n such that

$$r_0 = q_0 \tag{17}$$

$$\exists s_1, s_2, \dots, s_n \in \Sigma \cup \{\varepsilon\} \text{ such that } s = s_1 s_2 \dots s_n \land \forall i \in [n], r_i \in \delta(r_{i-1}) \in \delta(r_{i-1}, s_i)$$
 (18)