Paginação por Demanda

Sistemas Operacionais

Prof. Pedro Ramos pramos.costar@gmail.com

Pontifícia Universidade Católica de Minas Gerais ICEI - Departamento de Ciência da Computação

Até agora, assumimos que o tamanho da memória virtual é igual ao tamanho da memória física.

Ilusões do sistema operacional:

-> tratar o disco (ou outro armazenamento auxiliar) como uma memória principal muito maior, porém mais lenta.

De maneira análoga a cache, porém mais lento.

A ilusão de uma memória virtual infinita:

um processo <mark>pode ser maior que a memória física,</mark> um processo pode executar mesmo se não estiver todo em memória,

e mais processos do que cabem na memória podem rodar simultaneamente.

- A paginação por demanda usa a memória como uma cache para o disco.
- A tabela de páginas (mapeamento de memória) <u>indica se a</u> <u>página está no disco ou na memória</u>, usando um bit de validade.
- Quando uma página é carregada do disco para a memória, o sistema operacional atualiza a tabela de páginas e o bit de validade.
- Por <u>razões de eficiência</u>, os acessos à memória precisam referenciar páginas que estão na memória na maior parte do tempo.
 - Caso contrário, o tempo efetivo de acesso à memória se aproximará do tempo de acesso ao disco.

Ideia principal: Localidade — o conjunto de trabalho de um processo precisa caber na memória e permanecer lá (regra dos 90/10).

QUANDO CARREGAR UMA PÁGINA?

No início do processo: o espaço de endereço virtual não deve ser maior do que a memória física.

<u>Overlays:</u> o programador da aplicação indica quando carregar e remover páginas.

- Permite que o espaço de endereço virtual seja maior que o espaço de endereço físico
- É difícil de implementar e propenso a erros

<u>Paginação sob demanda</u>: o processo avisa o sistema operacional antes de precisar de uma página e, em seguida, quando termina de usá-la.

QUANDO CARREGAR UMA PÁGINA?

Paginação sob demanda: o sistema operacional carrega uma página na primeira vez que ela é referenciada

- Pode remover uma página da memória para abrir espaço para a nova página.
- O processo precisa liberar a CPU enquanto a página está sendo carregada
- Page fault: interrupção que ocorre quando uma instrução referencia uma página que não está na memória.

Pré-paginação: o sistema operacional tenta prever quais páginas o processo precisará e as carrega previamente na memória.

- Permite maior sobreposição entre CPU e E/S se o sistema operacional acertar na previsão.
- Se o sistema operacional errar => page fault
- Erros podem resultar na remoção de páginas úteis.
- Difícil de acertar devido a bifurcações no código.

Uma cópia completa do programa deve estar armazenada no disco.

→ PORQUÊ?

O bit de validade na tabela de páginas indica se a página está na memória.

1: na memória 0: não está na memória (ou está no disco ou em um endereço inválido)

Se a página não está na memória: interrupção para o SO na primeira referência.

O SO verifica se o endereço é válido. Se for, o SO:

- seleciona uma página para substituir (algoritmo de substituição de páginas),
- invalida a página antiga na tabela de páginas,
- começa a carregar a nova página do disco para a memória,
- alterna o contexto para outro processo enquanto a E/S está em andamento,
- recebe uma outra interrupção informando que a página foi carregada na memória,
- atualiza a entrada da tabela de páginas,
- retoma o processo que causou a falha (por que não continuar o processo atual?).

ESPAÇO DE SWAP (TROCA)

- O que acontece quando uma página é removida da memória?
- Se a página contiver <mark>código</mark>, podemos simplesmente removê-la, pois ela pode ser recarregada do disco.
- Se a página contiver dados, precisamos salvar esses dados para que possam ser recarregados caso o processo a que pertencem precise usá-los novamente.
- Espaço de swap: uma parte do disco é reservada para armazenar páginas que são removidas da memória.

Uma página de memória virtual pode existir em um ou mais dos seguintes locais:

- O sistema de arquivos
- Memória física
- Espaço de swap

A tabela de páginas precisa ser mais sofisticada para saber onde encontrar uma página.

DESEMPENHO PAGINAÇÃO POR DEMANDA

Teoricamente, um processo poderia acessar uma nova página a cada instrução.

Localidade temporal: se um processo acessa um item na memória, tende a referenciar o mesmo item novamente em breve.

Localidade espacial: se um processo acessa um item na memória, tende a referenciar um item adjacente em breve.

DESEMPENHO PAGINAÇÃO POR DEMANDA

Seja p a probabilidade de um page fault ($0 \le p \le 1$).

Tempo de acesso efetivo = (1 - p) x ma + p x tempo de page fault

- Se o tempo de acesso à memória é 200 ns e um page fault leva 25 ms
- Tempo de acesso efetivo = (1 p) x 200 + p x 25.000.000

Se queremos que o tempo de acesso efetivo seja apenas 10% mais lento que o tempo de acesso à memória, qual valor *p* deve ter?

ALGORITMOS DE SUBSTITUIÇÃO DE PÁGINA

Em um page fault, precisamos escolher uma página para remover.

- <u>Aleatório</u>: surpreendentemente, esse algoritmo funciona bem.
- <u>FIFO</u>: First-In, First-Out. Remove a página mais antiga. É simples de implementar, mas o sistema operacional pode facilmente remover uma página que está sendo acessada com frequência.
- MIN: (também conhecido como OPT) Olha para o futuro e remove a página que será acessada mais longe no futuro (provavelmente ótimo [Belady'66]).
 Problema?
- <u>LRU</u>: Least Recently Used (Menos Recentemente Usada). Aproximação do MIN que funciona bem se o passado recente for um bom indicador do futuro. Remove a página que não foi usada há mais tempo.

PAGINAÇÃO POR DEMANDA - FIFO

3 Quadros na memória

4 páginas virtuais A, B, C, D

Fluxo: A B C A B D A D B C B

FIFO - Primeiro a entrar, primeiro a sair

	Α	В	С	А	В	D	Α	D	В	С	В
QUADRO 1											
QUADRO 2											
QUADRO 3											

Qual é o número de PAGE FAULTS?

PAGINAÇÃO POR DEMANDA - MIN

3 Quadros na memória

4 páginas virtuais A, B, C, D

Fluxo: A B C A B D A D B C B

MIN - Remove a página que será acessada mais longe no futuro

	Α	В	С	А	В	D	А	D	В	С	В
QUADRO 1											
QUADRO 2											
QUADRO 3											

Qual é o número de PAGE FAULTS?

PAGINAÇÃO POR DEMANDA - LRU

3 Quadros na memória

4 páginas virtuais A, B, C, D

Fluxo: A B C A B D A D B C B

<u>LRU (Menos Usada Recentemente) - Remove a página que não foi usada há mais tempo.</u>

	Α	В	С	А	В	D	А	D	В	С	В
QUADRO 1											
QUADRO 2											
QUADRO 3											

<u>Qual é o número de PAGE FAULTS?</u>

ADICIONAR MEMÓRIA - FIFO

Adicionar memória, vai reduzir o número de page faults?

	Α	В	С	D	А	В	E	Α	В	С	D	E
QUADRO 1												
QUADRO 2												
QUADRO 3												
QUADRO 1												
QUADRO 2												
QUADRO 3												
QUADRO 4												

ADICIONAR MEMÓRIA - FIFO

ANOMALIA DE BELADY - Adicionar quadros de páginas podem causar mais page faults em alguns algoritmos como FIFO.

	Α	В	С	D	А	В	E	А	В	С	D	E
QUADRO 1												
QUADRO 2												
QUADRO 3												
QUADRO 1												
QUADRO 2												
QUADRO 3												
QUADRO 4												

ADICIONAR MEMÓRIA - LRU

NO LRU, PORÉM, AUMENTAR O NÚMERO DE FRAMES SEMPRE ABAIXA O NÚMERO DE *PAGE FAULTS*. Porquê?

	Α	В	С	D	А	В	E	Α	В	С	D	E
QUADRO 1	A *	А	А	D*	D	D	E *	Е	Е	C *	С	С
QUADRO 2		B*	В	В	A *	Α	Α	А	А	А	D*	D
QUADRO 3			C*	С	С	В*	В	В	В	В	В	В
QUADRO 1	A *	А	А	А	Α	Α	А	А	А	А	А	E*
QUADRO 2		B*	В	В	В	В	В	В	В	В	В	В
QUADRO 3			C*	С	С	С	E *	E	E	E	D*	D

RESUMO

Vantagens da paginação sob demanda:

- O espaço de endereço virtual pode ser maior que o espaço de endereço físico.
- Os processos podem rodar sem estarem totalmente carregados na memória.
 - Os processos <u>iniciam mais rápido</u> porque <u>só precisam carregar algumas</u>
 <u>páginas</u> (de código e dados) para começar a rodar.
 - Os processos podem <u>compartilhar memória de forma mais eficaz, reduzindo</u> <u>os custos quando ocorre uma troca de contexto.</u>
- Um bom algoritmo de substituição de páginas pode reduzir o número de <u>page faults</u> e melhorar o desempenho.

PERGUNTAS?

REFERÊNCIAS

- TANENBAUM, Andrew. Sistemas operacionais modernos.
- SILBERSCHATZ, Abraham et al. Fundamentos de sistemas operacionais: princípios básicos.
- MACHADO, Francis; MAIA, Luiz Paulo. Arquitetura de Sistemas Operacionais.
- CARISSIMI, Alexandre et al. Sistemas operacionais.