

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS SEGUNDO SEMESTRE DE 2017

Profesor: Vania Ramírez - Ayudante: Constanza Barriga

Cálculo II - MAT1620 Ayudantía 8

10 de Octubre de 2017

- 1. Encuentre los puntos en el borde del cono $z^2=x^2+y^2$, con $z\geq 0$, que minimizan la distancia al punto (4,2,0).
- 2. Encuentre los extremos globales de $f(x,y) = xy^2$ en la región

$$D = \{(x, y) \in \mathbb{R}^2 | x \ge 1, x^2 + y^2 \le 3 \}$$

3. Pruebe que el máximo valor de $x^2y^2z^2$ en $x^2+y^2+z^2=R^2$ corresponde a $\frac{R^6}{27}$, con $R\neq 0$. Con esto, demuestre que

 $\sqrt[3]{x^2y^2z^2} \le \frac{x^2 + y^2 + z^2}{3}$

- 4. Determine el valor máximo de la función f(x, y, z) = x + 2y + 3z en la curva de intersección del plano x y + z = 1 y el cilindro $x^2 + y^2 = 1$.
- 5. Dada la función $f(x,y) = x^2 + xy + y^2$, determine el punto en el plano tangente más cercano al origen, considerando el plano tangente que se genera en el punto (1,1,3).
- 6. Considere la función

$$f(x,y) = \frac{1}{4}x^4 - x^2y^2 + y^2$$

Encuentre los máximos y mínimos de f, indicando el máximo y mínimo absoluto y considerando que f se encuentra en la región dada por las ecuaciones $x \ge 0$, $y \ge 0$ y $x^2 + y^2 \le 9$.