A C nyelv aritmetikai típusai. A programozás alapjai I.

Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

2020. szeptember 28.

Tartalom

- Gyakorló feladatok
- 2 A C nyelv aritmetikai típusai
 - Bevezetés

- Egészek
- Karakterek
- Valósak

1 fejezet

Gyakorló feladatok

1. Gyakorló feladat

Írjon C programot, mely egy egész számot (R) olvas be a standard bemenetről, majd a standard kimeneten megjelenít egy 10×10 mező méretű karakterábrát.

- Az ábra mezőit balról jobbra (x) és fentről lefelé (y), 1-től kezdve egyesével számozzuk.
- Azon mezőkbe, melyekre $x^2 + y^2 < R^2$, a program a '#' karaktert írja, a többi mezőt a '.' karakterrel jelölje.
- \blacksquare R = 8-ra pl. az alábbi ábra jelenik meg:

```
###### . . .
```

Megoldás

2. Gyakorló feladat

Irjon C programot, mely a standard bemenetére érkező egész számokat dolgozza fel.

- A program feladata, hogy képezze az összes bejövő szám abszolút értékét, majd kiírja a standard kimenetre a legkisebb és a legnagyobb érték különbségét.
- A számsor végét a 0 szám jelzi, melyet már nem kell feldolgoznia.
- Feltételezheti, hogy legalább egy feldolgozandó szám érkezik.

Megoldás

3. Gyakorló feladat

Írjon C programot, mely egy legfeljebb 100 valós számot tartalmazó végjeles sorozatot olvas be a standard bemenetről.

- A program feladata, hogy a standard kimeneten megadja, hogy hány olyan érték érkezett, mely nagyobb, mint a sorban tízzel korábban érkező érték.
- A sorozat végjele a 0.0 érték.

Megoldás

A C nyelv aritmetikai típusai

A típus

- Értékkészlet
- Műveletek

A típus

- Értékkészlet.
- Műveletek

Valódi számítógép – véges értékkészlet

Nem ábrázolhatunk tetszőlegesen nagy számokat

A típus

- Értékkészlet
- Műveletek

Valódi számítógép – véges értékkészlet

- Nem ábrázolhatunk tetszőlegesen nagy számokat
- Nem ábrázolhatunk tetszőlegesen pontos számokat $\pi \neq 3,141592654$

A típus

- Értékkészlet
- Műveletek
- Ábrázolás

Valódi számítógép – véges értékkészlet

- Nem ábrázolhatunk tetszőlegesen nagy számokat
- Nem ábrázolhatunk tetszőlegesen pontos számokat $\pi \neq 3,141592654$
- Ismernünk kell az ábrázolható tartományokat, hogy adatainkat

2020. szeptember 28.

A típus

- Értékkészlet
- Műveletek
- Ábrázolás

Valódi számítógép – véges értékkészlet

- Nem ábrázolhatunk tetszőlegesen nagy számokat
- Nem ábrázolhatunk tetszőlegesen pontos számokat $\pi \neq 3,141592654$
- Ismernünk kell az ábrázolható tartományokat, hogy adatainkat
 - információveszteség nélkül vagy

A típus

- Értékkészlet.
- Műveletek
- Ábrázolás

Valódi számítógép – véges értékkészlet

- Nem ábrázolhatunk tetszőlegesen nagy számokat
- Nem ábrázolhatunk tetszőlegesen pontos számokat $\pi \neq 3,141592654$
- Ismernünk kell az ábrázolható tartományokat, hogy adatainkat
 - információveszteség nélkül vagy
 - elfogadható információveszteséggel de ne túl pazarlóan tárolhassuk

A C nyelv típusai

- void
- skalár
 - aritmetikai
 - egész: integer, karakter, felsorolás
 - lebegőpontos
 - mutató
- függvény
- union
- összetett
 - tömb
 - struktúra

A C nyelv típusai

- void
- skalár
 - aritmetikai
 - egész: integer, karakter, felsorolás
 - lebegőpontos
 - mutató
- függvény
- union
- összetett
 - tömb
 - struktúra
- Ma ezekről lesz szó

Egészek bináris ábrázolása

■ 8 biten tárolt előjel nélküli egészek bináris ábrázolása

dec	27	2^{6}	2^{5}	2 ⁴	2^3	2^2	2^1	2^0	hex
0	0	0	0	0	0	0	0	0	0×00
1	0	0	0	0	0	0	0	1	0×01
2	0	0	0	0	0	0	1	0	0x02
3	0	0	0	0	0	0	1	1	0×03
:	:							•	:
127	0	1	1	1	1	1	1	1	0x7F
128	1	0	0	0	0	0	0	0	0×80
129	1	0	0	0	0	0	0	1	0x81
:	:							:	:
253	1	1	1	1	1	1	0	1	0xFD
254	1	1	1	1	1	1	1	0	0×FE
255	1	1	1	1	1	1	1	1	0xFF

A túlcsordulás (overflow)

 8 biten ábrázolt előjel nélküli számok esetén

- 8 biten ábrázolt előjel nélküli számok esetén
 - = 255+1 = 0

- 8 biten ábrázolt előjel nélküli számok esetén
 - = 255 + 1 = 0
 - **255+2 = 1**

- 8 biten ábrázolt előjel nélküli számok esetén
 - = 255+1 = 0
 - **255+2 = 1**
 - **2-3 = 255**

- 8 biten ábrázolt előjel nélküli számok esetén
 - = 255+1 = 0
 - = 255+2 = 1
 - = 2-3 = 255
- "modulo 256 aritmetika"

- 8 biten ábrázolt előjel nélküli számok esetén
 - = 255+1 = 0
 - **255+2 = 1**
 - **2-3 = 255**
- modulo 256 aritmetika"
 - Mindig csak az eredmény 256-tal vett maradékát látom

Egészek kettes komplemens ábrázolása

■ 8 biten tárolt előjeles egészek kettes komplemens ábrázolása

dec	2 ⁷	2^{6}	2 ⁵	2^{4}	2^3	2^2	2^1	2 ⁰	hex
0	0	0	0	0	0	0	0	0	0×00
1	0	0	0	0	0	0	0	1	0×01
2	0	0	0	0	0	0	1	0	0x02
3	0	0	0	0	0	0	1	1	0×03
:	:							:	:
127	0	1	1	1	1	1	1	1	0×7F
-128	1	0	0	0	0	0	0	0	0×80
-127	1	0	0	0	0	0	0	1	0×81
:	:							:	:
-3	1	1	1	1	1	1	0	1	0xFD
-2	1	1	1	1	1	1	1	0	0×FE
-1	1	1	1	1	1	1	1	1	0×FF

A túlcsordulás (overflow)

 8 biten ábrázolt előjeles számok esetén

- 8 biten ábrázolt előjeles számok esetén
 - **■** 127+1 = -128

- 8 biten ábrázolt előjeles számok esetén
 - **■** 127+1 = -128
 - **■** 127+2 = -127

- 8 biten ábrázolt előjeles számok esetén
 - \blacksquare 127+1 = -128
 - \blacksquare 127+2 = -127
 - -127-3 = 126

- 8 biten ábrázolt előjeles számok esetén
 - **■** 127+1 = -128
 - 127+2 = -127
 - **■** -127-3 = 126
- viszont

- 8 biten ábrázolt előjeles számok esetén
 - **■** 127+1 = -128
 - **■** 127+2 = -127
 - **■** -127-3 = 126
- viszont
 - = 2-3 = -1

Egész típusok C-ben

típus	bit ¹		printf	
signed char	8	CHAR_MIN	CHAR_MAX	%hhd²
unsigned char	8	0	UCHAR_MAX	%hhu²
signed short int	16	SHRT_MIN	SHRT_MAX	%hd
unsigned short int	16	0	USHRT_MAX	%hu
signed int	32	INT_MIN	INT_MAX	%d
unsinged int	32	0	UINT_MAX	%u
signed long int	32	LONG_MIN	LONG_MAX	%1d
unsigned long int	32	0	ULONG_MAX	%lu
signed long long int2	64	LLONG_MIN	LLONG_MAX	% 11d
unsigned long long int ²	64	0	ULLONG_MAX	% 11u

¹Tipikus értékek, a szabvány csak a minimumot írja elő

²C99 szabvány óta

Egészek deklarációja

- Alapértelmezések
 - A signed előjelmódosító elhagyható

Egészek deklarációja

- Alapértelmezések
 - A signed előjelmódosító elhagyható

```
int i; /* signed int */
long int l; /* signed long int */
```

■ Ha van előjel- vagy hosszmódosító, az int elhagyható

```
unsigned u; /* unsigned int */
short s; /* signed short int */
```

Egész típusok

■ Példa a táblázat használatához: egy igen sokáig futó program³

```
#include <limits.h> /* egész határokhoz */
   #include <stdio.h> /* printf-hez */
3
   int main(void)
   { /* majdnem összes long long int */
     long long i;
6
7
     for (i = LLONG_MIN; i < LLONG_MAX; i = i+1)
8
       printf("%lld\n", i);
9
1.0
     return 0;
11
12
                                                          link
```

³feltéve, hogy long long int 64 bites, a program másodpercenként millió szám kiírásával 585 000 évig fut

Egész számkonstansok

Egész számkonstansok megadási módjai

Egész számkonstansok

Egész számkonstansok megadási módjai

- Ha nincs megadva u vagy l, akkor az első, amibe belefér:
 - 1 int
 - unsigned int hexa és oktális esetén
 - 3 long
 - 4 unsigned long

Miért kell ismerni az ábrázolás korlátait?

Határozzuk meg a következő értéket!

$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(Hányféleképpen választhatok ki 15 különböző csoki közül 12-t?)

Miért kell ismerni az ábrázolás korlátait?

Határozzuk meg a következő értéket!

$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(Hányféleképpen választhatok ki 15 különböző csoki közül 12-t?)

A számláló értéke 15! = 1 307 674 368 000

Miért kell ismerni az ábrázolás korlátait?

Határozzuk meg a következő értéket!

$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(Hányféleképpen választhatok ki 15 különböző csoki közül 12-t?)

- A számláló értéke 15! = 1 307 674 368 000
- A nevező értéke $12! \cdot 3! = 2874009600$

Miért kell ismerni az ábrázolás korlátait?

Határozzuk meg a következő értéket!

$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(Hányféleképpen választhatok ki 15 különböző csoki közül 12-t?)

- A számláló értéke 15! = 1 307 674 368 000
- A nevező értéke 12! · 3! = 2 874 009 600
- Egyik sem ábrázolható 32 bites int-tel!

Miért kell ismerni az ábrázolás korlátait?

Határozzuk meg a következő értéket!

$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(Hányféleképpen választhatok ki 15 különböző csoki közül 12-t?)

- A számláló értéke 15! = 1 307 674 368 000
- A nevező értéke 12!·3! = 2 874 009 600
- Egyik sem ábrázolható 32 bites int-tel!
- A kifejezést egyszerűsítve

$$\frac{15 \cdot 14 \cdot 13}{3 \cdot 2 \cdot 1} = \frac{2730}{6} = 455$$

minden részletszámítás gond nélkül elvégezhető már akár 12 biten is

Karakterek ábrázolása – Az ASCII karaktertáblázat

■ 128 karakter, melyeket a 0x00-0x7f számokkal indexelhetünk

Kód	00	10	20	30	40	50	60	70
+00	NUL	DLE	ш	0	0	P	6	р
+01	SOH	DC1	!	1	A	Q	a	q
+02	STX	DC2	"	2	В	R	b	r
+03	ETX	DC3	#	3	C	S	С	s
+04	EOT	DC4	\$	4	D	T	d	t
+05	ENQ	NAK	%	5	E	U	е	u
+06	ACK	SYN	&	6	F	V	f	v
+07	BEL	ETB	,	7	G	W	g	W
+08	BS	CAN	(8	H	Х	h	x
+09	HT	EM)	9	I	Y	i	У
+0a	LF	SUB	*	:	J	Z	j	z
+0b	VT	ESC	+	;	K	[k	{
+0c	FF	FS	,	<	L	\	1	
+0d	CR	GS	-	=	M]	m	}
+0e	SO	RS		>	N	^	n	~
+0f	SI	US	/	?	0	_	0	DEL

Karakterek tárolása, kiírása, beolvasása

- Karaktereket (az ASCII tábla indexeit) a char típusban tárolunk
- kiíratás/beolvasás %c formátumkóddal

```
char ch = 0x61; /* hex 61 = dec 97 */
printf("%d: %c\n", ch, ch);
ch = ch+1; /* értéke hex 62 = 98 lesz */
printf("%d: %c\n", ch, ch);
```

Karakterek tárolása, kiírása, beolvasása

- Karaktereket (az ASCII tábla indexeit) a char típusban tárolunk
- kiíratás/beolvasás %c formátumkóddal

```
char ch = 0x61; /* hex 61 = dec 97 */
printf("%d: %c\n", ch, ch);
ch = ch+1; /* értéke hex 62 = 98 lesz */
printf("%d: %c\n", ch, ch);
```

A program kimenete

```
97: a
98: b
```

Karakterek tárolása, kiírása, beolvasása

- Karaktereket (az ASCII tábla indexeit) a char típusban tárolunk
- kiíratás/beolvasás %c formátumkóddal

```
char ch = 0x61; /* hex 61 = dec 97 */
printf("%d: %c\n", ch, ch);
ch = ch+1; /* értéke hex 62 = 98 lesz */
printf("%d: %c\n", ch, ch);
```

A program kimenete

```
97: a
98: b
```

Ezek szerint karakterek kiírásához meg kell tanulnunk az ASCII-kódokat?

Karakterkonstansok

Aposztrófok közé írt karakter ekvivalens az ASCII-kóddal

```
char ch = 'a'; /* ch-ba a 0x61 ASCII-kód kerül */
printf("%d: %c\n", ch, ch);
ch = ch+1;
printf("%d: %c\n", ch, ch);
```

Karakterkonstansok

Aposztrófok közé írt karakter ekvivalens az ASCII-kóddal

```
char ch = 'a'; /* ch-ba a 0x61 ASCII-kód kerül */
printf("%d: %c\n", ch, ch);
ch = ch+1;
printf("%d: %c\n", ch, ch);
```

```
97: a
98: b
```

Karakterkonstansok

Aposztrófok közé írt karakter ekvivalens az ASCII-kóddal

```
char ch = 'a'; /* ch-ba a 0x61 ASCII-kód kerül */
printf("%d: %c\n", ch, ch);
ch = ch+1;
printf("%d: %c\n", ch, ch);
```

```
97: a
98: b
```

■ Vigyázat! 0 $\neq 0$!

```
char n = '0'; /* ch-ba a 0x30 ASCII-kód kerül !!! */
printf("%d: %c\n", n, n);
```

Karakterkonstansok

Aposztrófok közé írt karakter ekvivalens az ASCII-kóddal

```
char ch = 'a'; /* ch-ba a 0x61 ASCII-kód kerül */
printf("%d: %c\n", ch, ch);
ch = ch+1;
printf("%d: %c\n", ch, ch);
```

```
97: a
98: b
```

■ Vigyázat! ,0 , \neq 0!

```
char n = '0'; /* ch-ba a 0x30 ASCII-kód kerül !!! */
printf("%d: %c\n", n, n);
```

48: 0

Karakterkonstansok

 Speciális karakterkonstansok – amiket egyébként nehéz lenne beírni

0×00	\0	nullkarakter	null character (NUL)
0×07	\a	hangjelzés	bell (BEL)
80×0	\b	visszatörlés	backspace (BS)
0×09	\t	tabulátor	$tabulator\;(HT)$
0x0a	\n	soremelés	line feed (LF)
0x0b	\v	függőleges tabulátor	vertical tab (VT)
0x0c	\f	lapdobás	form feed (FF)
$0 \times 0 d$	\r	kocsi vissza	carriage return (CR)
0x22	\"	idézőjel	quotation mark
0×27	\'	aposztróf	apostrophe
0x5c	\\	visszaper	backslash

Karakter vagy egész szám?

■ C-ben a karakterek egész számokkal ekvivalensek

Karakter vagy egész szám?

- C-ben a karakterek egész számokkal ekvivalensek
- Csak megjelenítéskor dől el, hogy egy egész értéket számként vagy karakterként (%d vagy %c) ábrázolunk

- C-ben a karakterek egész számokkal ekvivalensek
- Csak megjelenítéskor dől el, hogy egy egész értéket számként vagy karakterként (%d vagy %c) ábrázolunk
- Karaktereken ugyanolyan műveleteket végezhetünk, mint egészeken (összeadás, kivonás stb...)

Karakter vagy egész szám?

- C-ben a karakterek egész számokkal ekvivalensek
- Csak megjelenítéskor dől el, hogy egy egész értéket számként vagy karakterként (%d vagy %c) ábrázolunk
- Karaktereken ugyanolyan műveleteket végezhetünk, mint egészeken (összeadás, kivonás stb...)
- De mi értelme lehet karaktereket összeadni-kivonni?

Írjunk programot, mely karaktereket olvas be mindaddig, míg az újsor karakter nem érkezik. Ezután a program írja ki a beolvasott számjegyek összegét.

Irjunk programot, mely karaktereket olvas be mindaddig, míg az újsor karakter nem érkezik. Ezután a program írja ki a beolvasott számjegyek összegét.

Irjunk programot, mely karaktereket olvas be mindaddig, míg az újsor karakter nem érkezik. Ezután a program írja ki a beolvasott számjegyek összegét.

```
char c;
  int sum = 0;
  do
scanf("%c", &c);
                               /* beolvasás */
    if (c >= '0' && c <= '9') /* ha számjegy */
      sum = sum + (c-'0'); /* összegzés */
8
  while (c != '\n');
                               /* leállási feltétel */
  printf("Az összeg: %d\n", sum);
10
```

```
Karambolozott a 12:35-ös gyors
Az összeg: 11
```

Írjunk programot, mely az angol ábécé kisbetűs karaktereit nagybetűssé alakítja, a többi karaktert változatlanul hagyja.

Írjunk programot, mely az angol ábécé kisbetűs karaktereit nagybetűssé alakítja, a többi karaktert változatlanul hagyja.

```
#include <stdio.h>
   int main(void)
     char c:
     while (scanf("%c", &c) != EOF)
        if (c >= 'a' && c <= 'z')
7
          c = c + 'A' - 'a';
       printf("%c", c);
9
     }
10
     return c;
11
12
```

■ Normálalak

$$23,2457 = (-1)^{0} \cdot 2,3245700 \cdot 10^{+001}$$
$$-0,001822326 = (-1)^{1} \cdot 1,8223260 \cdot 10^{-003}$$

■ Normálalak

$$23,2457 = (-1)^{0} \cdot 2,3245700 \cdot 10^{+001}$$
$$-0,001822326 = (-1)^{1} \cdot 1,8223260 \cdot 10^{-003}$$

Normálalak ábrázolása

■ Lebegőpontos tört = előjelbit + mantissza + exponens

Normálalak

$$23,2457 = (-1)^{0} \cdot 2,3245700 \cdot 10^{+001}$$
$$-0,001822326 = (-1)^{1} \cdot 1,8223260 \cdot 10^{-003}$$

Normálalak ábrázolása

- Lebegőpontos tört = előjelbit + mantissza + exponens
 - előjelbit: 0-pozitív, 1-negatív

■ Normálalak

$$23,2457 = (-1)^{0} \cdot 2,3245700 \cdot 10^{+001}$$
$$-0,001822326 = (-1)^{1} \cdot 1,8223260 \cdot 10^{-003}$$

Normálalak ábrázolása

- Lebegőpontos tört = előjelbit + mantissza + exponens
 - 1 előjelbit: 0-pozitív, 1-negatív
 - 2 mantissza: előjel nélküli egész (a tizedesvesszőt elhagyva), normalizálás miatt az első számjegy ≥ 1

■ Normálalak

$$23,2457 = (-1)^{0} \cdot 2,3245700 \cdot 10^{+001}$$
$$-0,001822326 = (-1)^{1} \cdot 1,8223260 \cdot 10^{-003}$$

Normálalak ábrázolása

- Lebegőpontos tört = előjelbit + mantissza + exponens
 - 1 előjelbit: 0-pozitív, 1-negatív
 - 2 mantissza: előjel nélküli egész (a tizedesvesszőt elhagyva), normalizálás miatt az első számjegy ≥ 1
 - 3 exponens (másként karakterisztika): előjeles egész

Lebegőpontos típusok

Bináris normálalak

$$5.0 = 1.25 \cdot 2^{+2} = (-1)^{0} \cdot 1.0100_{b} \cdot 2^{010_{b}}$$

$$\begin{array}{c|c} \hline \textbf{0} & \textbf{0100} & \textbf{010} \end{array}$$

⁴implicit bites ábrázolás

Lebegőpontos típusok

Bináris normálalak

$$5.0 = 1.25 \cdot 2^{+2} = (-1)^{0} \cdot 1.0100_{b} \cdot 2^{010_{b}}$$

$$\begin{array}{c|c} \hline \textbf{0} & \textbf{0100} & \textbf{010} \end{array}$$

Bináris normálalak ábrázolása

■ Lebegőpontos tört = előjelbit + mantissza + exponens

⁴implicit bites ábrázolás

Bináris normálalak

$$5.0 = 1.25 \cdot 2^{+2} = (-1)^{0} \cdot 1.0100_{b} \cdot 2^{010_{b}}$$

$$\begin{array}{c|c} \hline \textbf{0} & \textbf{0100} & \textbf{010} \end{array}$$

Bináris normálalak ábrázolása

Lebegőpontos tört = előjelbit + mantissza + exponens

előjelbit: 0-pozitív, 1-negatív

⁴implicit bites ábrázolás

Lebegőpontos típusok

Bináris normálalak

$$5.0 = 1.25 \cdot 2^{+2} = (-1)^{0} \cdot 1.0100_{b} \cdot 2^{010_{b}}$$

$$\begin{array}{c|c} \hline \textbf{0} & \textbf{0100} & \textbf{010} \end{array}$$

Bináris normálalak ábrázolása

- Lebegőpontos tört = előjelbit + mantissza + exponens
 - 1 előjelbit: 0-pozitív, 1-negatív
 - **2** mantissza: előjel nélküli egész (a **kettedesvessző**t elhagyva), normalizálás miatt az első számjegy = 1, nem is tároljuk⁴.

⁴implicit bites ábrázolás

Lebegőpontos típusok

Bináris normálalak

$$5.0 = 1.25 \cdot 2^{+2} = (-1)^{0} \cdot 1.0100_{b} \cdot 2^{010_{b}}$$

$$\begin{array}{c|c} \hline \textbf{0} & \textbf{0100} & \textbf{010} \end{array}$$

Bináris normálalak ábrázolása

- Lebegőpontos tört = előjelbit + mantissza + exponens
 - 1 előjelbit: 0-pozitív, 1-negatív
 - 2 mantissza: előjel nélküli egész (a **kettedesvessző**t elhagyva), normalizálás miatt az első számjegy = 1, nem is tároljuk⁴.
 - 3 exponens: előjeles egész

⁴implicit bites ábrázolás

Lebegőpontos típusok C-ben

A C nyelv lebegőpontos típusai

típus	bitszám	mantissza	exponens	printf/scanf
float	32 bit	23 bit	8 bit	%f
double	64 bit	52 bit	11 bit	%f/%lf
long double	128 bit	112 bit	15 bit	%Lf

Lebegőpontos típusok C-ben

A C nyelv lebegőpontos típusai

típus	bitszám	mantissza	exponens	printf/scanf
float	32 bit	23 bit	8 bit	%f
double	64 bit	52 bit	11 bit	%f/%lf
long double	128 bit	112 bit	15 bit	%Lf

Lebegőpontos számkonstansok (tizedespont)

```
float f1=12.3f , f2=12.F , f3=.5f , f4=1.2e-3F ;
double d1=12.3 , d2=12. , d3=.5 , d4=1.2e-3 ;
long double l1=12.31 , l2=12.L , l3=.5l , l4=1.2e-3L ;
```

Egész típusok ábrázolási pontossága

Abszolút számábrázolási pontosság

A maximális ϵ hiba, ha egy tetszőleges valós számot a hozzá legközelebbi ábrázolt értékkel közelítünk

Egész típusok ábrázolási pontossága

Abszolút számábrázolási pontosság

A maximális ϵ hiba, ha egy tetszőleges valós számot a hozzá legközelebbi ábrázolt értékkel közelítünk

Az egész típusok abszolút ábrázolási pontossága 0,5

- jelen példában
 - A mantissza (abszolút) ábrázolási pontossága 1/16

expon. $= 2^{10}$	1024	1152	1280	1408	1536	1664
$expon. = 2^0$	8/8	9/8	10/8	11/8	12/8	13/8
						\longrightarrow
		"	l			'
mantissza	$1,\!000_{\mathrm{b}}$	$1,\!001_{\mathrm{b}}$	$1{,}010_{\rm b}$	$1,\!011_{\mathrm{b}}$	$^{1,100_{\rm b}}$	$1{,}101_{\rm b}$

- jelen példában
 - A mantissza (abszolút) ábrázolási pontossága 1/16
 - 2⁰ exponens mellett az ábrázolási pontosság 1/16

Lebegőpontos típusok ábrázolási pontossága

jelen példában

- A mantissza (abszolút) ábrázolási pontossága 1/16
- 2º exponens mellett az ábrázolási pontosság 1/16
- 2^{10} exponens mellett az ábrázolási pontosság $2^{10}/16 = 64$

expon. $= 2^{10}$	1024	1152	1280	1408	1536	1664
$expon. = 2^0$	8/8	9/8	10/8	11/8	12/8	13/8
						_
mantissza	$1,000_{\mathrm{b}}$	$1,\!001_{\mathrm{b}}$	$1{,}010_{\rm b}$	$1,\!011_{\mathrm{b}}$	$1{,}100_{\mathrm{b}}$	$1{,}101_{\rm b}$

- jelen példában
 - A mantissza (abszolút) ábrázolási pontossága 1/16
 - 2º exponens mellett az ábrázolási pontosság 1/16
 - 2^{10} exponens mellett az ábrázolási pontosság $2^{10}/16 = 64$
- Nem beszélhetünk abszolút, csak relatív ábrázolási pontosságról, ami jelen esetben 3 bit.

A véges számábrázolás következménye

Mivel a lebegőpontos számábrázolás pontatlan, műveletek eredményét nem szabad egyenlőségre összehasonlítani!

$$\frac{22}{7} + \frac{3}{7} \neq \frac{25}{7}$$

helyette

$$\left|\frac{22}{7} + \frac{3}{7} - \frac{25}{7}\right| < \varepsilon$$

A véges számábrázolás következménye

Mivel a lebegőpontos számábrázolás pontatlan, műveletek eredményét nem szabad egyenlőségre összehasonlítani!

$$\frac{22}{7} + \frac{3}{7} \neq \frac{25}{7}$$

helyette

$$\left|\frac{22}{7} + \frac{3}{7} - \frac{25}{7}\right| < \varepsilon$$

A nagy számok sokkal pontatlanabbak, mint a kis számok. A nagy számok hibája "megeheti" a kicsiket:

$$A + a - A \neq a$$

A bináris számábrázolás következménye

■ Ami decimálisan véges, binárisan nem biztos, hogy az. pl:

$$0.1_{\rm d}=0.0\overline{0011}_{\rm b}$$

A bináris számábrázolás következménye

Ami decimálisan véges, binárisan nem biztos, hogy az. pl:

$$0.1_{\rm d}=0.0\overline{0011}_{\rm b}$$

Hányszor fut le az alábbi ciklus?

```
double d;
for (d = 0.0; d < 1.0; d = d+0.1) /* 10? 11? */
{
    ...
}</pre>
```

A bináris számábrázolás következménye

Ami decimálisan véges, binárisan nem biztos, hogy az. pl:

$$0.1_{\rm d} = 0.00011_{\rm b}$$

Hányszor fut le az alábbi ciklus?

```
double d;
for (d = 0.0; d < 1.0; d = d+0.1) /* 10? 11? */
{
    ...
}</pre>
```

Helyesen:

```
double d, eps = 1e-3; /* mekkora eps jó ide? */
for (d = 0.0; d < 1.0-eps; d = d+0.1) /* 10-szer */
{
    ...
}</pre>
```


Keressük meg a hibát!

hibás:

```
double d = 3 / 2;
long long int c = 500000 * 500000;
```


Keressük meg a hibát!

hibás:

```
double d = 3 / 2;
long long int c = 500000 * 500000;
```

helyesen:

```
double d = 3.0 / 2.0;
long long int c = 500000LL * 500000LL;
```

Köszönöm a figyelmet.