Homework Set #1

Due Date: Before class Friday January 25th

1) You (2 points)

- (a) What is your major/minor?
- (b) When do you plan on graduating?
- (c) What do you want to do after graduation? (eg: grad school? if so, what subject? if not, what industry?)
- (d) What do you most want to get out of this course?

2) Solid State Physics (5 points)

- (a) Assume a solid is composed of closely packed atoms. What is the spacing between atoms? Express your result in terms of α , α_G , m_{proton} , and m_{electron} .
- (b) If you wanted to study the crystal structure of a solid material with $Z \sim 10$ using light, what wavelength of photons would you need? Express your result in terms of α , α_G , m_{proton} , and m_{electron} .
- (c) Where in the spectrum of EM radiation do these photons lie?

3) Strength of Gravity on Earth

(5 points)

- (a) Calculate the local strength of gravity g_{local} in terms of α , α_G , m_{proton} , and $m_{electron}$.
- (b) What is your estimated value in mks units?
- (c) How does this compare with the well-known value of 9.8 m/s²?

4) Neutron Stars (5 points)

- (a) Estimate the radius, mass, and speed of sound for neutron stars in terms of α , α_G , m_{proton} , and m_{electron} . (Assume: A neutron star is a solid made of neutrons and $m_{\text{proton}} \sim m_{\text{neutron}}$)
- (b) What are you estimated values in mks units?
- (c) Compare your estimates to actual values for Neutron Stars quoted online.
- (d) Look up m_{neutron} . How does this compare with the assumption of $m_{\text{proton}} \sim m_{\text{neutron}}$?

5) 2D Rotations (3 points)

- (a) Show that $R(\Theta) = e^{I\Theta} = cos(\Theta) + Isin(\Theta)$ where, $I = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- (b) Show that 2D rotations commute. (ie: $R(\Theta_1)R(\Theta_2) = R(\Theta_2)R(\Theta_1)$)

6) 3D Rotations (5 points)

(a) Work out the "algebra" of the generators of 3D rotations J_i .

Where $J_3 = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

 $J_2 = \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix}$

 $J_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}$

(These generators different from the T's derived in class by a factor of i)

Working out the algebra means calculating the commutation relations $[J_i, J_j]$.

(b) Let M be a traceless 2×2 hermitian matrix and U be a 2×2 unitary matrix with determinant = 1. Show that $M' = U^{\dagger}MU$ is also traceless and hermitian and that is has the same determinant as M.