LECTURE 8 - MATH 630

MEASURE THEORY

1. Algebra of Sets:

Let X be a given set (we consider it as a space) and assume FCP(X) is a given family of subsets in X. We say that I is an algebra of sets. It is a algebra of sets

(A1)

Ø E F A E F => 1 C E F

 $(A^c = X \setminus A)$

(A3) A1, A2, ,, An eF => A1UA2U...UA4 eF

REMARKS: (a) Notice that if Fn < P(A) is an algebra of sets for every $N \in \Lambda$, then

F:= () F

is also an algebra of sets. Indeed, (A1) $\forall \varphi \in \overline{f_{\eta}} = \emptyset \in \overline{f_{\eta}} = \emptyset$ (A) $\forall (Ae\overline{f} \Rightarrow A^c e\overline{f}) \Rightarrow if Ae\overline{f} \Rightarrow \forall Ae\overline{f}_{3} \Rightarrow A^c e\overline{f}_{3}$

=> A & Jo = () Ja, and in a similar way

(A3) If \forall A, A2, ..., A, \in \exists A, \cup A2 \cup \cup A, \in \exists A, \cup A2 \cup ... \cup A, \in \exists A, \cup A2 \cup ... \cup A, \in \exists A

- (b) The smallest algebra of sets in X is the family 20, Xy and the layest algebro of sets is B(X).
- (c) Suppose A c B(X) is a given family of sets and pat F(d) to be the smallest algebro of sets containing A

F(A) = ({FcB(X): 1) F is algebra of sets }

EXAMPLE: Take it = \$. What is F(it)?

F(A) = 14, X9

Measurable objects in R2: rectangles [a,, b,] * [a2, b2] = R

R has an area = $(b_1-a_1) \cdot (b_2-a_2)$

Let X be a given space and SC'S(X) a family of sets in X. Way that Is a 6-algebra (countably additive algebra) of sets in X the following winditions are satisfied: (6A1) Ø 68 $(GA_2) \qquad A \in S \implies A^c \in S$ $(GA_3) \qquad \{A_1, A_2, ..., A_n, ... \} \subset S \implies \bigcup_{k=1}^{\infty} A_k \in S$ Notice that we also have the Riloung properties of 6-algebra (6A4) YA1A2,..., A7.... 9 < 5 ⇒ () Ax € 5 Indeed, since ACC = A $\bigcap_{k=1}^{\infty} A_k = X \cdot \left(\bigcap_{k=1}^{\infty} A_k\right)^{c} \in S$ $= \times \setminus \bigcup_{k=1}^{k=1} A_k$ 6A31 = 9 (6A2) eS