Estimacija poze

SW16/2016 Milan Milovanović, SW52/2016 Nemanja Janković, SW69/2016 Mihailo Đokić Fakultet tehničkih nauka Novi Sad

Uvod

Estimacija poze je određivanje lokacija ključnih tačaka ljudskog skeleta. Neke od primena ove tehnike, između ostalog, su praćenje pokreta, prepoznavanje govora tela i treniranje robota.

Skup podataka

Koristili smo MPII skup podataka sa preko 25000 anotiranih slika ljudi u različitim pozama. Skup podataka smo podelili na trening, validacioni i test skup u razmeri 60:20:20.

Cilj

Cilj nam je bio da estimiramo ključne tačke ljudskog tela uz pomoć konvolutivne mreže zasnovane na Resnet, MobileNetV2 i ShuffleNetV2 arhitekturama. Posmatrali smo razlike u performansama i preciznosti između korišćenih arhitektura.

Metodologija

Skalirali smo sliku na dimenzije 224x224, zatim je normalizovali na skup vrednosti vrednosti [-1,1]. Vrednosti smo prosledili dubokoj konvolutivnoj neuronskoj mreži u kojoj je dodato više DUC (Dense Upsampling Convolution) slojeva. Iz mreže smo dobili 16 parova (x, y) normalizovanih koordinata koje smo zatim skalirali u originalnnu veličinu. Na kraju, povezane ključne tačke smo prikazali na orginalnoj slici.

Rezultati

Za svaku ključnu tačku smo računali prosek odstupanja predikcije od anotacije (u pikselima). U tabeli je dat prosek ukupnog odstupanja svih tačaka po arhitekturi.

	Prosečan euklidski loss
ResNet	424.36
ShuffleNetV2	410.26
${\bf Mobile Net V2}$	221.75

U grafu smo uporedili LOSS modela tokom treniranja kroz epohe za svaku od arhitektura.

Zaključak

Nakon 30 epoha, MobileNetV2 i Resnet arhitektura su pokazale malo veću preciznost od ShuffleNetV2 arhitekture. Empirijski smo zaključili da Resnet i ShuffleNetV2 arhitekture mogu da predvide više slika u sekundi od MobileNetV2. Međutim, sve tri arhitekture prikazuju velika odstupanja od ljudski unetih koordinata ključnih tačaka. Verujemo da bi se ova odstupanja smanjila dužim treniranjem modela.