PC 1 – Sets, Measures and Random Variables

Set theory

Exercise 1

For $n \geq 1$, let

$$A_n = \left[-\frac{1}{n}; 2 + \frac{1}{n} \right], \quad B_n = \left[-\frac{5}{n}; n^2 \right].$$

1. Compute $\bigcup_{n\geq 1} A_n, \bigcap_{n\geq 1} A_n$ and $\limsup_n A_n$, where $\limsup_n A_n$ is defined as

 $\limsup A_n = \bigcap_{n \geq 1} \bigcup_{k \geq n} A_k = \{x \text{ such that "} x \in A_n \text{ for infinitely many } n " \}.$

- 2. Compute $\bigcup_{n>1} B_n$, $\bigcap_{n>1} B_n$ and $\limsup_n B_n$.
- 3. Evaluate the following set

$$\left\{ x \text{ such that } \sum_{n \ge 1} \mathbf{1}_{A_n}(x) = +\infty \right\}.$$

Solution 1 1. Rappel de la définition: $\limsup_{n\to\infty} A_n = \bigcap_{k\geq 1} \bigcup_{n\geq k} A_n$. Il s'agit de l'événement où:

$$\omega \in \limsup_{n \to \infty} A_n \iff il \ existe \ une \ infinit\'e \ de \ n \ tels \ que \ \omega \in A_n$$

La suite $(A_n)_{n\geq 1}$ étant monotone décroissante $(A_n\supset A_{n+1} \text{ pour tout } n\geq 1)$, on a pour tout $k\geq 1$, $\cup_{n\geq k}A_n=[-1/k,3+1/k]$. D'une part, on voit que $[0,3]\subset A_k\subset \cup_{n\geq k}A_n$ pour tout k. D'autre part, pour tout s<0 et pour tout t>3 il existe k tel que s<-1/k et t>3+1/k. Donc, $\limsup_{n\to\infty}A_n=[0,3]$.

Independence

Exercise 2 (Independent events)

Let $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ equipped with the uniform probability distribution \mathbb{P} . Define the events $A = \{\omega_1, \omega_2\}$, $B = \{\omega_1, \omega_3\}$ and $C = \{\omega_2, \omega_3\}$. Show that A, B and C are pairwise independent. Compare $\mathbb{P}(A \cap B \cap C)$ and $\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$.

Solution 2 We have:

$$A \cap B = \{\omega_1, \omega_2\} \cap \{\omega_1, \omega_3\} = \{\omega_1\}$$

Therefore

$$\mathbb{P}[A \cap B] = \mathbb{P}[\omega_1] = \frac{1}{4}$$

And

$$\mathbb{P}[A].\mathbb{P}[B] = \frac{1}{2}.\frac{1}{2} = \frac{1}{4}$$

Therefore:

$$\mathbb{P}[A \cap B] = \mathbb{P}[A].\mathbb{P}[B]$$

And finally A and B are independent. For similar reasons, B and C are independent and so A and C. As $A \cap B \cap C = \emptyset$, we have $\mathbb{P}[(]A \cap B \cap C) = 0$. However, $\mathbb{P}[(]A)\mathbb{P}[(]B)\mathbb{P}[(]C) = 1/8$. This implies that A, B et C are not mutually independent.

Exercise 3

Let A_1, \ldots, A_n be n events from a probability space (Ω, \mathbb{P}) . Suppose that they are mutually independent. Find an explicit expression for $\mathbb{P}(A_1 \cup \cdots \cup A_n)$ depending on the $\mathbb{P}(A_i)$.

Solution 3

$$\mathbb{P}[A_1 \cup \dots \cup A_n] = 1 - \mathbb{P}[A_1^c \cap \dots \cap A_n^c]$$
$$= 1 - \prod_{i=1}^n \mathbb{P}[A_i^c]$$
$$= 1 - \prod_{i=1}^n (1 - \mathbb{P}[A_i])$$

Exercise 4

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space. Let $(A_n)_{n\geq 0}$ a series of independent events. We note $A=\limsup_n A_n$. Let assume that $\sum_n \mathbb{P}(A_n)=+\infty$ and we want to prove that $\mathbb{P}(A)=1$.

- 1. Preliminary. Justify that for all x > -1, $\ln(1+x) \le x$.
- 2. Let $n \leq N$. We note $E_{n,N} = \bigcap_{k=n}^N A_k^c$ and $E_n = \bigcap_{k \geq n} A_k^c$.
 - (a) Prove that (n fixed), $\lim_{N\to+\infty} \ln (\mathbb{P}(E_{n,N})) = -\infty$.
 - (b) Deduce that $\mathbb{P}(E_n) = 0$.
 - (c) Deduce that $\mathbb{P}(A) = 1$.

Solution 4 1. La fonction ln est concave. Sa courbe représentative est en-dessous de sa tangente au point d'abscisse 1. L'inégalité demandée est juste la traduction analytique de cette propriété géométrique.

2. (a) Les événements A_k étant indépendants, il en est de même des événements $\overline{A_k}$, et donc

$$P(E_{n,N}) = \prod_{k=n}^{N} P(\overline{A_k}) = \prod_{k=n}^{N} (1 - P(A_k)).$$

En utilisant l'inégalité précédente, on a

$$\ln \left(P\left(E_{n,N} \right) \right) \le -\sum_{k=n}^{N} P\left(A_{k} \right).$$

Puisque $\sum_{k>n} P(A_k) = +\infty$, on en déduit le résultat.

(b) Par composition par la fonction exponentielle, $(P(E_{n,N}))$ tend vers 0 lorsque N tend vers l'infini (et n reste fixé). Mais, la suite $(E_{n,N})_N$ est décroissante et

$$E_n = \bigcap_{N \ge n} E_{n,N}$$

Ainsi,

$$P\left(E_{n}\right)=\lim_{N}P\left(E_{n,N}\right)=0$$

(c) A s'écrit $A = \bigcap_n \overline{E_n}$. La suite $(\overline{E_n})$ est décroissante et $P(\overline{E_n}) = 1$. Ainsi, on trouve que

$$P(A) = \lim_{n} P\left(\overline{E_n}\right) = 1$$

Random variables

Exercise 5

Find two random variables X and Y on a probability space (Ω, \mathbb{P}) (to be specified) having the same distribution, but that are not equal.

Solution 5 Let X a random variable on [1/2, 2] with p.d.f. $f: x \to \frac{2}{3x}$ and Y = 1/X.

- 1. X and 1/X have same p.d.f.
- 2. X and 1/X are not the same random variable. Indeed:

$$\frac{X}{1/X} = X^2$$

and X^2 is not equal to 1 almost surely.

Exercise 6

In an oil region, the probability that one drilling leads to an oil slick is 0.1.

- 1. Justify that one drilling can be modeled using a Bernoulli distribution.
- 2. We made 10 oil drillings. Let X be the number of drillings that led to an oil slick.
 - (a) Under which assumptions X can be modeled using a binomial distribution? Precise the parameters.
 - (b) Assume that X follows a binomial distribution. Compute
 - i. the probability that exactly two drillings lead to oil slicks.
 - ii. the probability that at least one drilling leads to an oil slick.

Solution 6 1. Bernoulli is a Success/Failure model with a given probability of succes.

- 2. Using definition of a binomial law:
 - (a)

$$\mathbb{P}[X=2] = \binom{10}{2}.1^2 \times .9^8$$
$$\approx 0.194$$

(b)

$$\begin{split} \mathbb{P}[X \ge 1] &= 1 - \mathbb{P}[X = 0] \\ &= 1 - \binom{10}{0} 0.1^0 0.9^{10} \\ &\approx 0.651 \end{split}$$

Exercise 7

Let $\lambda > 0$ be fixed. Let $X_n, n \ge 1$ be random variables with binomial distribution with parameters n and λ/n , and Y be a random variable with Poisson distribution with parameter λ . Show that, for any $k \in \mathbb{N}$,

$$\lim_{n \to +\infty} \mathbb{P}(X_n = k) = \mathbb{P}(Y = k).$$

Hint: Use Striling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

We will later see that this result means that X_n converges in distribution to Y, or, to put it differently, that the binomial distribution with parameters n and λ/n converges to the Poisson distribution with parameter λ .

Solution 7 We have:

$$\mathbb{P}[X_n = k] = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$
$$= \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$
$$= \frac{\lambda^k}{k!} \frac{n!}{(n-k)!n^k} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

And:

$$\left(1 - \frac{\lambda}{n}\right)^{n-k} = \left(1 - \frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^n$$

$$\left(1 - \frac{\lambda}{n}\right)^k \xrightarrow[n \to \infty]{} 0$$

and

with

$$\left(1 - \frac{\lambda}{n}\right)^n = e^{\log\left(1 - \frac{\lambda}{n}\right)^n}$$

$$= e^{n \cdot \log\left(1 - \frac{\lambda}{n}\right)}$$

$$\sim e^{n\left(-\frac{\lambda}{n}\right)}$$

$$= e^{-\lambda}$$

Also,

$$\frac{n!}{(n-k)!} = n.(n-1).(n-2).\cdot.(n-k+1) \sim n^k$$

Finally,

$$\binom{n}{k} \bigg(\frac{\lambda}{n}\bigg)^k \bigg(1-\frac{\lambda}{n}\bigg)^{n-k} \sim \frac{\lambda^k}{k!} 1.e^{-\lambda}$$

This conclude the exercise.

Expectation

Exercise 8

Compute the mean, variance and cumulated distribution function of

- 1. the binomial distribution Bin(n, p) with $n \ge 1$ and p > 0.
- 2. the Poisson distribution $Poi(\lambda)$ with $\lambda > 0$.
- 3. the uniform distribution U[a, b] with a < b.
- 4. the exponential distribution $\text{Exp}(\lambda)$ with $\lambda > 0$.
- 5. the normal distribution $\mathcal{N}\left(\mu,\sigma^2\right)$ of probability density function

$$f(x): x \to \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

with $\mu \in \mathbb{R}$ and $\sigma > 0$.

Solution 8 1. As any binomial random variable can be expressed as the sum of independant Bernoulli random variables, we have

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} p = np$$

and

$$Var[X] = Var\left[\sum_{i=1}^{n} X_i\right]$$
$$= \sum_{i=1}^{n} Var[X_i]$$
$$= \sum_{i=1}^{n} p(1-p)$$
$$= np(1-p)$$

2. We have

$$\begin{split} \mathbb{E}[X] &= \frac{1}{\lambda} \int_{\mathbb{R}^+} x.e^{-\lambda.x} dx \\ &= \frac{1}{\lambda} \left[x \frac{e^{-\lambda.x}}{-\lambda} \right]_0^{\infty} - \frac{1}{\lambda} \int_{\mathbb{R}^+} \frac{e^{-\lambda.x}}{-\lambda} dx \\ &= \frac{1}{\lambda} \end{split}$$

$$\begin{aligned} \operatorname{Var}[X] &= \frac{1}{\lambda} \int_{\mathbb{R}^+} x^2 . e^{-\lambda . x} dx - \frac{1}{\lambda^2} \\ &= \frac{2}{\lambda^2} \int_{\mathbb{R}^+} x . e^{-\lambda . x} dx - \frac{1}{\lambda^2} \\ &= \frac{1}{\lambda^2} \end{aligned}$$

3. We have

$$\begin{split} \mathbb{E}[X] &= \int_a^b \frac{x}{b-a} dx \\ &= \frac{1}{b-a} \int_a^b x dx \\ &= \frac{1}{b-a} (\frac{b^2}{2} - \frac{a^2}{2}) \\ &= \frac{a+b}{2} \end{split}$$

Exercise 9

- 1. Show that if X exponential distribution $\text{Exp}(\lambda)$ with $\lambda > 0$, then $\mathbb{E}[X^n] = \frac{n!}{\lambda^n}$;
- 2. Show that if X follows $\mathcal{N}(0,1)$ then $\mathbb{E}\left[X^{2n}\right] = \prod_{k=1}^{n} (2k-1) = \frac{(2n)!}{2^n n!}$

Solution 9 1. Par intégration par parties:

$$\mathbb{E}\left(X^{n}\right)=\int_{0}^{+\infty}x^{n}\lambda e^{-\lambda x}dx=\int_{0}^{+\infty}x^{n-1}e^{-\lambda x}dx=\frac{n}{\lambda}\mathbb{E}\left(X^{n-1}\right).$$

On en déduit le résultat par récurence immédiate.

2. Par intégration par parties:

$$\mathbb{E}\left(X^{2n}\right) = \int_{\mathbb{R}} x^{2n} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = \int_{\mathbb{R}} \frac{x^{2n+2}}{2n+1} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = \frac{1}{2n+1} \mathbb{E}\left(X^{2(n+1)}\right).$$

On en déduit le résultat par récurence immédiate.

Exercise 10

Let $X: \Omega \to [0; +\infty]$ (note that $+\infty$ is allowed) be a random variable such that $\mathbb{E}[X] < \infty$.

- 1. Prove that X is finite almost surely (proceed by contradiction).
- 2. Assume that $\mathbb{E}[X] = 0$. Prove that X = 0 almost surely. Hint: use that $X \geq \frac{1}{n} \mathbf{1}_{X \geq 1/n}$.

Solution 10 1. Let assume that $\mathbb{P}[X = \infty] > 0$. Then:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}[\omega]$$

In the sum, there is $\omega \in \omega$ such that $X(\omega) = \infty$ and the sum cannot be finite.

2. X is positive and therefore, as a sum of positive terms:

$$\mathbb{E}[X] = 0 \implies \sum_{\omega \in \Omega} X(\omega) \mathbb{P}[\omega] = 0 \implies \forall \omega, X(\omega) = 0 \text{ or } P(\omega) = 0$$

6

Then " $\forall \omega, X(\omega) = 0$ or $P(\omega) = 0$ " can be red $\mathbb{P}[X \ge 0] = 0$.

Variance Inequalities

Exercise 11

Let X be a random variable such that $\mathbb{E}[X^2] < +\infty$. Prove that:

- 1. $0 \leq \operatorname{Var}(X) < \infty$
- 2. $\operatorname{Var}(X) = \mathbb{E}\left[X^2\right] (\mathbb{E}[X])^2$.
- 3. $Var(X) = 0 \iff \mathbb{P}(X = c) = 1$ for some constant c.
- 4. For any constants $a, b, Var(aX + b) = Var(aX) = a^2 Var(X)$.

Solution 11 1. We will show here:

- (a) $\mathbb{E}[X]$ exists and is finite.
- (b) $Var(X) \geq 0$
- (c) $Var(X) < \infty$

Let begin.

- (a) $\mathbb{E}[X^2]$ is finite so $\mathbb{E}[(X+1)^2]$ is. So $\mathbb{E}[X^2+2X+1]$ is. As $\mathbb{E}[X^2]+1$ is obviously finite, $\mathbb{E}[X]$ exists and is finite.
- (b) We have $\operatorname{Var}[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$ which exists as $\mathbb{E}[X]$ is a constant. As $(X \mathbb{E}[X])^2$ is almost surely positive, we have the wanted result.
- (c) We have:

$$\begin{aligned} \operatorname{Var}[X] &= \mathbb{E}[(X - \mathbb{E}[X])^2] \\ &= \mathbb{E}[X^2] + \mathbb{E}[-2.X.\mathbb{E}[X]] + \mathbb{E}[X]^2 \\ &= \mathbb{E}[X^2] - 2.\mathbb{E}[X].\mathbb{E}[X] + \mathbb{E}[X]^2 \\ &= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \end{aligned}$$

The two term are finite. Therefore, Var[X] is finite.

- 2. Following the previous calculus, the wanted equality is true.
- 3. We have:

$$\begin{aligned} \operatorname{Var}[X] &= 0 \iff \operatorname{Var}[(X - \mathbb{E}[X])^2] = 0 \\ &\iff X - \mathbb{E}[X] = 0 \\ almost surely \\ &\iff \exists c \in \mathbb{R}, \mathbb{P}[X = c] = 1 \end{aligned}$$

4. We have:

$$Var[aX + b] = \mathbb{E}[(aX + b - \mathbb{E}[aX + b])^{2}]$$

$$= \mathbb{E}[(aX - \mathbb{E}[aX])^{2}] = Var[aX]$$

$$= a^{2}\mathbb{E}[(X - \mathbb{E}[X])^{2}]$$

$$= a^{2}Var[X]$$

Exercise 12

Let X be non-negative $(X \ge 0 \text{ a.s.})$ and a > 0 be a constant.

1. Justify that

$$\forall \omega \in \Omega, \quad a\mathbf{1}_{\{X(\omega) \geqslant a\}} \leqslant X(\omega)\mathbf{1}_{\{X(\omega) \geqslant a\}} \leqslant X(\omega)$$

2. Prove the Markov's inequality

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Solution 12 1. Let prove that:

(a) $\forall \omega \in \Omega$, $a\mathbf{1}_{\{X(\omega)\geqslant a\}} \leqslant X(\omega)\mathbf{1}_{\{X(\omega)\geqslant a\}}$

(b)
$$\forall \omega \in \Omega$$
, $X(\omega)\mathbf{1}_{\{X(\omega)\geqslant a\}} \leqslant X(\omega)$

Let us begin.

- (a) Let $\omega \in \Omega$. Consider the two cases $X(\omega) \geq a$ and $X(\omega) < a$ and prove that the wanted inequality is true in the two cases.
- (b) As the indicator function is below or equal to 1, the inequality is true.
- 2. We have from 1.:

$$\forall \omega \in \Omega, \quad a\mathbf{1}_{\{X(\omega) \geqslant a\}} \leqslant X(\omega)$$

Taking the expected value in this inequality:

$$\mathbb{E}[a\mathbf{1}_{\{X(\omega)\geqslant a\}}] \leq \mathbb{E}[X]$$

$$\iff a\mathbb{E}[\mathbf{1}_{\{X(\omega)\geqslant a\}}] \leq \mathbb{E}[X]$$

$$\iff a\mathbb{P}[X \geq a] \leq \mathbb{E}[X]$$

$$\iff \mathbb{P}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$$

Exercise 13

Assume that $\mathbb{E}\left[X^2\right]<+\infty$. Applying Markov's inequality to $(X-\mathbb{E}[X])^2$ prove that, for any constant a>0,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$$

Solution 13 Applying markov inequality to $(X - \mathbb{E}[X])^2$ and $a^2 > 0$, we have:

$$\mathbb{P}[(X - \mathbb{E}[X])^2 \ge a^2] \le \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{a^2}$$
$$\iff \mathbb{P}[|X - \mathbb{E}[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$$