Seminar Tugas Akhir

Sistem Pendukung Keputusan Penentuan Lokasi Embung dengan Menggunakan Metode VIKOR (*Višekriterijumsko Kompromisno Rangiranje*)

Oleh:

Akhmad Ali Sajidin | 21120116130037

Dosen Pembimbing:

Ike Pertiwi Windasari, S.T., M.T.

Dania Eridani S.T., M.Eng.

PENDAHULUAN

Latar Belakang

- Terbatasnya jumlah air saat terjadi bencana kekeringan atau saat musim kemarau.
- Pembangunan embung sebagai salah satu solusi mengatasi kekeringan.
- Banyak calon lokasi pembangunan embung yang teridentifikasi sedangkan anggaran pembangunan yang ada terbatas sehingga perlu dilakukan prioritas pembangunan embung.
- Penggunaan SPK untuk membantu menentukan lokasi prioritas pembangunan embung secara efektif dan efisien.

Rumusan Masalah

Implementasi Metode VIKOR

Bagaimana mengimplementasikan metode VIKOR untuk mengolah data dalam penentuan lokasi embung di Kabupaten Semarang?

Implementasi Metode VIKOR ke Sistem Pendukung Keputusan

Bagaimana cara mengimplementasikan metode VIKOR ke dalam sistem pendukung keputusan?

Batasan Masalah

- Sistem pendukung keputusan mengimplementasikan metode VIKOR.
- Menggunakan bahasa pemrograman PHP dengan framework Codeigniter dan basis data MySQL.
- Menggunakan data 8 alternatif dan 7 kriteria untuk penentuan prioritas pembangunan embung di Kabupaten Semarang [1][2].

^[1] D. Ulfiana and S. Suharyanto, "Analysis of Fuzzy TOPSIS Method in Determining Priority of Small Dams Construction," in Jurnal Teknik Sipil & Perencanaan, 2019

^[2] B. Anjasmoro, S. Suharyanto, & S. Sangkawati. 2016. Analisis Prioritas Pembangunan Embung Metode Cluster Analysis, AHP dan Weighted Average (Studi Kasus: Embung di Kabupaten Semarang).

Tujuan Penelitian

- Mengimplementasikan metode VIKOR untuk memudahkan penentuan prioritas embung.
- Merancang sebuah sistem pendukung keputusan dalam bentuk sebuah sistem informasi.
- Membantu instansi terkait untuk menentukan prioritas lokasi pembangunan embung Kabupaten Semarang dengan efektif dan efisien.

KAJIAN PUSTAKA

Penelitian Terdahulu

- B. Anjasmoro, S. Suharyanto, & S. Sangkawati. 2016. Analisis Prioritas Pembangunan Embung Metode *Cluster Analysis*, AHP dan *Weighted Average* (Studi Kasus: Embung di Kabupaten Semarang).
- D. Ulfiana & S. Suharyanto. 2019. *Analysis of Fuzzy TOPSIS Method in Determining Priority of Small Dams Construction*.
- A. Civic & B. Vucijak. 2014. *Multi-criteria optimization of insulation options for warmth of buildings to increase energy efficiency*.
- S. P. Lengkong, A. E. Permanasari, & S. Fauziati. 2015. Implementasi Metode VIKOR untuk Seleksi Penerima Beasiswa.

Sistem Pendukung Keputusan

Sistem Pendukung Keputusan (SPK) atau *Decision Support System* (DSS) ialah serangkaian kelas tertentu dari sistem informasi terkomputerisasi yang mendukung kegiatan pengambilan keputusan.

SPK dibuat untuk meningkatkan produktivitas dengan melakukan proses pembuatan keputusan secara otomatis [2].

Metode VIKOR

Metode VIKOR atau *Višekriterijumsko Kompromisno Rangiranje* (dalam bahasa Serbia yang berarti "perangkingan kompromis multi-kriteria") merupakan metode *Multi-Criteria Decision Making* (MCDM) yang mampu mengatasi kriteria yang bertentangan dalam melakukan proses perangkingan [3].

Tahap-tahap Metode VIKOR:

Menyusun Matriks Keputusan (F)

$$F = \begin{matrix} A_1 \\ A_2 \\ \vdots \\ A_i \end{matrix} \begin{matrix} C_{\chi 1} & C_{\chi 2} & \cdots & C_{\chi j} \\ \chi_{11} & \chi_{12} & \cdots & \chi_{1 j} \\ \chi_{21} & \chi_{22} & \cdots & \chi_{2 j} \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{i1} & \chi_{i2} & \cdots & \chi_{i j} \end{matrix}$$
 Keterangan:
$$F = \text{Matriks keputusan}$$

$$A_i = \text{Alternatif ke - i}$$

$$C_j = \text{Kriteria ke - j}$$

$$\chi_{ij} = \text{Respons alternatif}$$

$$i = 1, 2, 3, \dots, i \text{ adalah nomor urutan alternatif}$$

$$j = 1, 2, 3, \dots, j \text{ adalah nomor urutan kriteria}$$

= 1,2,3, ... ,j adalah nomor urutan kriteria

Menentukan Bobot Kriteria (W)

$$\sum_{i=1}^{n} W_{j} = 1$$
 Keterangan: $W_{j} = \text{Bobot kriteria } j$

3. Membuat Matriks Normalisasi (N)

Benefit :
$$f_j^+ = \max(f_{1j}, f_{2j}, f_{3j}, ..., f_{ij})$$

$$f_j^- = \min(f_{1j}, f_{2j}, f_{3j}, ..., f_{ij})$$

Cost :
$$f_i^+ = \min(f_{1j}, f_{2j}, f_{3j}, ..., f_{ij})$$

$$f_j^- = \max(f_{1j}, f_{2j}, f_{3j}, ..., f_{ij})$$

$$N_{ij} = \frac{(f_j^+ - f_{ij})}{(f_j^+ - f_j^-)}$$

Keterangan:

N = Matriks ternormalisasi

 f_{ij} = Fungsi respons alternatif i pada kriteria j

 f_j^+ = Nilai terbaik dalam satu kriteria j f_i^- = Nilai terjelek dalam satu kriteria j

4. Menghitung Normalisasi Bobot (F*)

$$F_{ij}^* = W_j.N_{ij}$$

Keterangan:

 F_{ij}^* = Nilai data ternormalisasi sudah terbobot untuk alternatif i pada kriteria j

 W_i = Nilai bobot kriteria j

 N_{ij} = Nilai data ternormalisasi untuk alternatif i pada kriteria j

5. Menghitung Nilai Utility Measure (Si) dan Regret Measure (Ri)

$$S_i = \sum_{j=1}^n F_{ij}^*$$

 $R_i = \max_j \left[F_{ij}^* \right]$

Keterangan:

 S_i = Nilai *Utility Measure* untuk alternatif ke - i

 R_i = Nilai *Regret Measure* untuk alternatif ke - i

 F_{ij}^* = Nilai data ternormalisasi sudah terbobot untuk alternatif i pada kriteria j

6. Menghitung Nilai Indeks VIKOR (Qi)

$$Q_i = V \left[\frac{(S_i - S^-)}{(S^+ - S^-)} \right] + (1 - V) \left[\frac{(R_i - R^-)}{(R^+ - R^-)} \right]$$

Keterangan:

 Q_i = Nilai Indeks VIKOR alternatif

V = Bobot berkisar antara 0-1 (umumnya bernilai 0.5)

 $S^+ = \max_i(S_i)$

 $S^- = \min_i(S_i)$

 $R^+ = \max_i(R_i)$

 $R^- = \min_i(R_i)$

7. Perangkingan Alternatif

Perangkingan diurutkan dari nilai indeks VIKOR (Q) yang terendah.

8. Mengajukan Solusi Kompromi

• Pengujian Kondisi 1: Acceptable Advantage

$$Q_{(a_2)} - Q_{(a_1)} \ge DQ$$
$$DQ = \frac{1}{m-1}$$

Keterangan:

 $Q_{(a_2)}$: Peringkat alternatif kedua $Q_{(a_1)}$: Peringkat alternatif pertama m: Jumlah alternatif

Jika nilai selisih yang didapat lebih besar atau sama dengan nilai DQ, maka kondisi acceptable advantage terpenuhi.

• Pengujian Kondisi 2: Acceptable Stability in Decision Making

$$Q_i = V \left[\frac{(S_i - S^-)}{(S^+ - S^-)} \right] + (1 - V) \left[\frac{(R_i - R^-)}{(R^+ - R^-)} \right]$$

V ₁	V ₂	V ₃
0,5-X	0,5	0,5+X

Jika alternatif peringkat pertama atau $Q_{(a_1)}$ tetap menjadi peringkat terbaik dalam 3 macam pemeringkatan dengan nilai V yang berbeda, maka kondisi *acceptable stability in decision making* terpenuhi.

Solusi Kompromi:

- Jika hanya kondisi 2 tidak terpenuhi: Memilih alternatif $Q_{(a_2)}$ dan $Q_{(a_1)}$.
- Jika kondisi 1 tidak terpenuhi: memilih $Q_{(a_1)}$, $Q_{(a_2)}$, ..., $Q_{(a_m)}$

$$Q_{(a_m)} - Q_{(a_1)} < DQ$$

Teknologi

Metode Pengembangan Aplikasi

Metode *Rapid Application Development* (RAD) menekankan pada proses pembuatan aplikasi berdasarkan pembuatan *prototype*, iterasi, dan *feedback* yang berulang-ulang.

PERANCANGAN

Analisis Situasi

- Kondisi geografis Kabupaten Semarang
- Kabupaten Semarang sedang berupaya untuk meningkatkan jumlah embung di daerahnya, sedangkan dana yang dimiliki terbatas sehingga perlu adanya penentuan prioritas pembangunan embung dengan menggunakan sistem pendukung keputusan (SPK) sehingga diperoleh lokasi embung yang terbaik.

Kebutuhan Pengguna

Use Case Diagram

- Administrator
- Operator
- Guest

Activity Diagram

Activity Diagram

Perancangan Basis Data

Entity Relationship Diagram

Perancangan Antarmuka

Contoh: Rancang halaman awal (landing page)

HASIL & PENGUJIAN

Pengujian Metode VIKOR

Sebelum melakukan pengujian metode VIKOR, dideklarasikan dahulu kriteria yang akan digunakan berikut dengan tren dan juga jenis kriterianya (berparameter atau tidak)

Tabel 1: Deklarasi data kriteria dan parameter

K1 (<i>Benefit</i>)	K2 (<i>Cost</i>)	K3 (<i>Cost</i>)	K4 (<i>Benefit</i>)	K5 (<i>Benefit</i>)	K6 (<i>Cost</i>)	K7 (<i>Benefit</i>)			
Vegetasi area genangan embung	Volume material timbunan (m³)	Luas daerah yang akan dibebaskan (Ha)	Volume tampungan efektif (m³)	Lama Operasi (Hari)	Harga air/m³ (Rp)	Akses jalan menuju <i>site</i> bendungan	Nilai Parameter		
Perkampungan								Tidak tersedia jalan	1
Sawah tadah hujan									Jalan setapak
Ladang/tegalan	(Kriteria tidak berparameter)	(Kriteria tidak berparameter)	(Kriteria tidak berparameter)	(Kriteria tidak berparameter)	(Kriteria tidak berparameter)	Jalan makadam/tanah	3		
Semak belukar						Tersedia jalan aspal	4		
Hutan						-	5		

Tahap Metode VIKOR:

1. Menyusun Matriks Keputusan (F)

Tabel 2: Matriks keputusan (F) [1][2]

Kode	Nama Alternatif	K1	K2	К3	K4	K5	K6	K7
A01	Dadapayam	2	7.280	4,2	538.922,4	57	30.333,00	2
A02	Mluweh	5	196.390	2,2	3.172.333,3	113	8.322,59	3
A03	Lebak	2	99.140	2,4	783.975,8	57	8.335,12	2
A04	Pakis	2	11.430	3,4	1.346.651,1	57	10.092,48	2
A05	Jatikurung	5	29.280	5,3	39.039,7	10	375.650,85	2
A06	Gogodalem	5	54.722,35	7,3	318.778,0	63	74.434,54	2
A07	Kandangan	3	46.406,3	2,8	35.907,0	2	549.291,92	2
80A	Ngrawan	3	28.740	4,3	18.750,0	22	858.700,26	3

2. Menentukan Bobot Kriteria (W)

Tabel 3: Bobot kriteria (W)

$\sum_{j=1}^{n}$	W_j	=	1
------------------	-------	---	---

Kode	K1	K2	K3	K4	K5	K6	K7
Kriteria	(<i>Benefit</i>)	(<i>Cost</i>)	(<i>Cost</i>)	(<i>Benefit</i>)	(<i>Benefi</i> t)	(<i>Cost</i>)	(<i>Benefit</i>)
Bobot Kriteria	0,12753	0,09545	0,25151	0,13366	0,15971	0,12972	0,10242

^[1] D. Ulfiana and S. Suharyanto, "Analysis of Fuzzy TOPSIS Method in Determining Priority of Small Dams Construction," in Jurnal Teknik Sipil & Perencanaan, 2019.

^[2] B. Anjasmoro, S. Suharyanto, & S. Sangkawati. 2016. Analisis Prioritas Pembangunan Embung Metode Cluster Analysis, AHP dan Weighted Average (Studi Kasus: Embung di Kabupaten Semarang).

3. Membuat Matriks Normalisasi (N)

Benefit:
$$f_j^+ = \max(f_{1j}, f_{2j}, f_{3j}, ..., f_{ij})$$
 Cost: $f_j^+ = \min(f_{1j}, f_{2j}, f_{3j}, ..., f_{ij})$ $f_j^- = \min(f_{1j}, f_{2j}, f_{3j}, ..., f_{ij})$

Tabel 4: Matriks keputusan (F)

Kode	Nama Alternatif	K1	К2	К3	K4	K5	K6	K7
A01	Dadapayam	2	7.280	4,2	538.922,4	57	30.333,00	2
A02	Mluweh	5	196.390	2,2	3.172.333,3	113	8.322,59	3
A03	Lebak	2	99.140	2,4	783.975,8	57	8.335,12	2
A04	Pakis	2	11.430	3,4	1.346.651,1	57	10.092,48	2
A05	Jatikurung	5	29.280	5,3	39.039,7	10	375.650,85	2
A06	Gogodalem	5	54.722,35	7,3	318.778,0	63	74.434,54	2
A07	Kandangan	3	46.406,3	2,8	35.907,0	2	549.291,92	2
A08	Ngrawan	3	28.740	4,3	18.750,0	22	858.700,26	3

Tabel 5: Nilai f_i^+ dan f_i^-

	K1	K2	К3	K4	K5	K6	K7
f_j^+ (terbaik)	5	7,280	2,2	3,172,333,3	113	8,322,59	3
f_j^- (terjelek)	2	196,390	7,3	18,750	2	858,700,26	2

$$N_{ij} = \frac{(f_j^+ - f_{ij})}{(f_j^+ - f_j^-)}$$

$$N_{1,1} = \frac{(5-2)}{(5-2)} = \frac{3}{3} = 1$$

...

$$N_{8,1} = \frac{(5-3)}{(5-2)} = \frac{2}{3} = 0,6667$$

Tabel 6: Matriks Normalisasi (N)

Kode	Nama Alternatif	K1	K2	К3	K4	K5	K6	K7
A01	Dadapayam	1	0	0,3922	0,8351	0,5045	0,0259	1
A02	Mluweh	0	1	0	0	0	0	0
A03	Lebak	1	0,4857	0,0392	0,7573	0,5045	0	1
A04	Pakis	1	0,0219	0,2353	0,5789	0,5045	0,0021	1
A05	Jatikurung	0	0,1163	0,6078	0,9936	0,9279	0,432	1
A06	Gogodalem	0	0,2509	1	0,9049	0,4505	0,0777	1
A07	Kandangan	0,6667	0,2069	0,1176	0,9946	1	0,6362	1
A08	Ngrawan	0,6667	0,1135	0,4118	1	0,8198	1	0

4. Menghitung Normalisasi Bobot (F*)

Tabel 7: Hasil normalisasi bobot (F*)

F_{ij}^*	=	W_j .	N_i
¹ IJ		vvj.	'' l,

Kode	Nama Alternatif	K1	K2	К3	K4	K5	K6	K7
A01	Dadapayam	0,1275	0	0,0986	0,1116	0,0806	0,0034	0,1024
A02	Mluweh	0	0,0955	0	0	0	0	0
A03	Lebak	0,1275	0,0464	0,0099	0,1012	0,0806	0	0,1024
A04	Pakis	0,1275	0,0021	0,0592	0,0774	0,0806	0,0003	0,1024
A05	Jatikurung	0	0,0111	0,1529	0,1328	0,1482	0,056	0,1024
A06	Gogodalem	0	0,0239	0,2515	0,1209	0,0719	0,0101	0,1024
A07	Kandangan	0,085	0,0197	0,0296	0,1329	0,1597	0,0825	0,1024
A08	Ngrawan	0,085	0,0108	0,1036	0,1337	0,1309	0,1297	0

5. Menghitung Nilai *Utility Measure* (S) dan *Regret Measure* (R)

$$S_i = \sum_{j=1}^n F_{ij}^*$$

$$R_i = \max_j [F_{ij}^*]$$

Tabel 8: Nilai S dan R

Kode	Nama Alternatif	S _i	R _i
A01	Dadapayam	0,5241	0,1275
A02	Mluweh	0,0955	0,0955
A03	Lebak	0,468	0,1275
A04	Pakis	0,4495	0,1275
A05	Jatikurung	0,6034	0,1529
A06	Gogodalem	0,5807	0,2515
A07	Kandangan	0,6118	0,1597
A08	Ngrawan	0,5937	0,1337

6. Menghitung Nilai Indeks VIKOR (Q)

$$S^+ = \max_i(S_i) \quad R^+ = \max_i(R_i)$$

$$S^- = \min_i(S_i)$$
 $R^- = \min_i(R_i)$

Tabel 8: Nilai S^+ , S^- , R^+ , dan R^-

	S	R
Nilai Maksimal (+)	0,6118	0,2515
Nilai Minimal (-)	0,0955	0,0955

$$Q_i = V \left[\frac{(S_i - S^-)}{(S^+ - S^-)} \right] + (1 - V) \left[\frac{(R_i - R^-)}{(R^+ - R^-)} \right]$$

$$Q_1 = 0.5 \left[\frac{(0.5241 - 0.0955)}{(0.6118 - 0.0955)} \right] + (1 - 0.5) \left[\frac{(0.1275 - 0.0955)}{(0.2515 - 0.0955)} \right]$$

$$Q_1 = 0.5[0.8301] + (0.5)[0.2051]$$

$$Q_1 = 0.415 + 0.1026$$

$$Q_1 = 0.5176$$

...

Tabel 9: Hasil perhitungan nilai indeks VIKOR (Q):

Kode	Nama Alternatif	Q _i (v=0.5)	
A01	Dadapayam	0,5176	
A02	Mluweh	0	
A03	Lebak	0,4633	
A04	Pakis	0,4454	
A05	Jatikurung	0,6758	
A06	Gogodalem	0,9699	
A07	Kandangan	0,7058	
A08	Ngrawan	0,6049	

7. Perangkingan Alternatif

Tabel 10: Hasil perangkingan alternatif

RANK	Kode	Nama Alternatif	Q _i (v=0.5)	
1	A02	Mluweh	0	
2	A04	Pakis	0,4454	
3	A03	Lebak	0,4633	
4	A01	Dadapayam	0,5176	
5	80A	Ngrawan	0,6049	
6	A05	Jatikurung	0,6758	
7	A07	Kandangan	0,7058	
8	A06	Gogodalem	0,9699	

8. Mengajukan Solusi Kompromi

• Pengujian Kondisi 1: Acceptable Advantage

$$Q_{(a_2)} - Q_{(a_1)} \ge DQ$$
$$DQ = \frac{1}{m-1}$$

$$Q_{(a_2)} - Q_{(a_1)} = 0,4454 - 0 = 0,4454$$

$$DQ = \frac{1}{m-1} = \frac{1}{8-1} = 0.1429$$

Dikarenakan nilai $Q_{(a_2)}-Q_{(a_1)}\geq DQ$, maka kondisi *acceptable advantage* **terpenuhi**.

• Pengujian Kondisi 2: Acceptable Stability in Decision Making

Tabel 11: Hasil pengujian kondisi 2: Acceptable stability in decision making

RANK	(V=0,45)		(V=0,5)		(V=0,55)	
	Kode Alt	\mathbf{Q}_{i}	Kode Alt	Q _i	Kode Alt	Q _i
1	A02	0	A02	0	A02	0
2	A04	0,4214	A04	0,4454	A04	0,4694
3	A03	0,4375	A03	0,4633	A03	0,4891
4	A01	0,4864	A01	0,5176	A01	0,5489
5	A08	0,5689	80A	0,6049	A08	0,6409
6	A05	0,6451	A05	0,6758	A05	0,7066
7	A07	0,6763	A07	0,7058	A07	0,7352
8	A06	0,9729	A06	0,9699	A06	0,9669

Alternatif A02 konsisten berada di peringkat pertama, sehingga dapat disimpulkan bahwa kondisi *acceptable stability in decision making* **terpenuhi**.

Konklusi : Berdasarkan hasil pengujian kedua kondisi di atas dapat diketahui bahwa kedua kondisi terpenuhi, sehingga alternatif A02 atau Mluweh dapat diusulkan menjadi solusi kompromi dan merupakan peringkat terbaik dari perangkingan embung dengan metode VIKOR.

Pengujian Sistem

Pengujian Black Box

Pengujian dilakukan untuk mengetahui apakah sistem yang sudah dibuat mampu berjalan sesuai dengan rancangan pengembangan sistem atau belum.

Pengujian System Usability Scale (SUS)

Metode pengujian dengan menggunakan kuesioner untuk mengukur *usability* sebuah sistem aplikasi. Skor *System Usability Scale* (SUS) digunakan untuk menunjukkan tingkat penerimaan pengguna terhadap sistem [4].

Hasil Pengujian System Usability Scale (SUS)

^{*}Hasil Final SUS Score melalui kuesioner terhadap 20 responden.

DEMO PROGRAM

KESIMPULAN & SARAN

Kesimpulan

Dari hasil analisis yang telah dilakukan dalam penelitian ini, diperoleh beberapa kesimpulan sebagai berikut:

- Perhitungan yang dilakukan sistem sudah sesuai dengan kaidah perhitungan metode VIKOR dan seluruh data dalam sistem bersifat dinamis.
- SPK VIKOR dapat digunakan untuk melakukan perangkingan banyak alternatif dengan multi-kriteria secara efektif dan efisien.
- Alternatif Mluweh menjadi peringkat terbaik dalam perangkingan menggunakan metode VIKOR dan tetap stabil menjadi peringkat terbaik setelah dilakukan pengujian kondisi acceptable advantage dan pengujian kondisi acceptable stability in decision making.
- Dalam metode VIKOR tidak ada perhitungan khusus untuk menghitung nilai bobot kriteria. Pemberian bobot hanya diberikan begitu saja oleh pengambil keputusan sehingga diperlukan metode lain untuk memeriksa konsistensi pembobotan seperti AHP dan sebagainya.

Saran

Dari hasil analisis yang telah dilakukan dalam penelitian ini, diberikan beberapa saran sebagai berikut:

- Pengembangan SPK VIKOR dapat dilanjutkan dengan membuat sistem lebih responsive secara antarmuka, serta dapat dikembangkan secara lebih lanjut dalam bentuk aplikasi mobile berbasis Android atau iOS.
- Hasil perhitungan metode VIKOR untuk menentukan lokasi pembangunan embung dapat dibandingkan dengan hasil perhitungan yang didapat dengan metode lainnya.

TERIMA KASIH