Aula 15 Sistemas Operacionais I

Gerenciamento de Memória - Parte 4

Prof. Julio Cezar Estrella

jcezar@icmc.usp.br

Material adaptado de

Sarita Mazzini Bruschi

baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Memória Virtual Paginação - Troca de Página

- Política de Substituição Local: páginas dos próprios processos são utilizadas na troca;
 - Dificuldade: definir quantas páginas cada processo pode utilizar;
- Política de Substituição Global: páginas de todos os processos são utilizadas na troca;
 - Problema: processos com menor prioridade podem ter um número muito reduzido de páginas, e com isso, acontecem muitas <u>faltas de páginas</u>;

Memória Virtual Paginação - Troca de Página

Falta de Página no Processo A

A0		
A1		
A2		
A3		
A4		
(A6)		
B0		
B1		
B2		
B3		
B4		
B5		
B6		
C1		
C2		
C3		
(b)		
Alocação		

local

A0	
A1	
A2	
A3	
A4	
A5	
В0	
B1	
B2	
(A6)	
B4	
B5	
B6	
C1	
C2 C3	
C3	
9.00	

(c)

Alocação global

Memória Virtual Paginação – Troca de Página

- Política de alocação local (número fixo de páginas/processo) permite somente política de substituição local de páginas
- Política de alocação global (número variável de páginas/processo) permite tanto a política de substituição de páginas local quanto global

Memória Virtual Paginação – Troca de Página

- Algoritmos de substituição local:
 - Working Set;
 - WSClock;
- Algoritmos de substituição local/global:
 - Ótimo;
 - NRU;
 - FIFO;
 - Segunda Chance;
 - LRU;
 - Relógio;

 Até agora, vimos somente como uma página é selecionada para remoção. Mas onde a página descartada da memória é colocada?

Memória Secundária - Disco

- A área de troca (swap area) é gerenciada como uma lista de espaços disponíveis;
- O endereço da área de troca de cada processo é mantido na tabela de processos;
 - Cálculo do endereço: MMU;

- Memória Secundária Disco
 - Possibilidade A Assim que o processo é criado, ele é copiado todo para sua área de troca no disco, sendo carregado para memória quando necessário;
 - Área de troca diferente para dados, pilha e programa, pois área de dados pode crescer e a área de pilha crescerá certamente;

- Memória Secundária Disco (cont.)
 - Possibilidade B Nada é alocado antecipadamente, espaço é alocado em disco quando a página for enviada para lá. Assim, o processo na memória RAM não fica "amarrado" a uma área específica;

Como fica o disco - memória secundária

Área de troca estática

Área de

Memória Virtual Paginação - Tabela de Páginas Invertida

- Geralmente, cada processo tem uma tabela de páginas associada a ele → classificação feita pelo endereço virtual;
 - Pode consumir grande quantidade de memória;
- <u>Alternativa</u>: tabela de páginas invertida
 - SO mantém uma única tabela para as molduras de páginas da memória;
 - Cada entrada consiste no endereço virtual da página armazenada naquela página real, com informações sobre o processo dono da página virtual;
 - Exemplos de sistemas: IBM System/38, IBM RISC System 6000, IBM RT e estações HP Spectrum;

Memória Virtual Paginação – Tabela de Páginas Invertida

- Quando uma referência de memória é realizada (página virtual), a tabela de páginas invertida é pesquisada para encontrar a moldura de página correspondente;
 - Se encontra, o endereço físico é gerado →
 i, deslocamento>;

Memória Virtual Paginação - Tabela de Páginas Invertida

Tabela de páginas invertida

Endereço lógico: <id processo (pid), número página (p), deslocamento (d)>

Memória Virtual Paginação - Tabela de Páginas Invertida

- Vantagens:
 - Ocupa menos espaço;
 - É mais fácil de gerenciar apenas uma tabela;
- Desvantagens:
 - Aumenta tempo de pesquisa na tabela, pois, apesar de ser classificada por endereços físicos, é pesquisada por endereços lógicos;
 - Aliviar o problema: tabela hashing;
 - Uso da TLB (memória associativa) para manter entradas recentemente utilizadas;

Memória Virtual Tabela de Páginas Multinível

• Objetivo: não precisar manter toda a tabela de páginas na mo

14

- Segmentação: Visão do programador/compilador
 - Tabelas de segmentos com n linhas, cada qual apontando para um segmento de memória;
 - Vários espaços de endereçamento;
 - Endereço real → base + deslocamento;
 - Alocação de segmentos segue os algoritmos já estudados:
 - FIRST-FIT;
 - BEST-FIT;
 - NEXT-FIT;
 - WORST-FIT;
 - QUICK- FIT;

- Segmentação:
 - Facilita proteção dos dados;
 - Facilita compartilhamento de procedimentos e dados entre processos;
 - MMU também é utilizada para mapeamento entre os endereços lógicos e físicos;
 - Tabela de segmentos informa qual o endereço da memória física do segmento e seu tamanho;

- Segmentação:
 - Problemas encontrados -> embora haja espaço na memória, não há espaço contínuo:
 - Política de relocação: um ou mais segmentos são relocados para abrir espaço contínuo;
 - Política de compactação: todos os espaços são compactados;
 - Política de bloqueio: fila de espera;
 - Política de troca: substituição de segmentos;
 - Sem fragmentação interna, com fragmentação externa;

Tarefa: Compilação Livre 20k Pilha 16k Arvore de Parse 12k 12k Tabela Constantes Árvore de Símbolos de Pilha Fonte Parser **Fonte** 02k Tabela de Símbolos Constantes 0k 0k 0k 0k 0k Espaço de Segmentos (0-4) Endereçamento Virtual

Gerenciamento de Memória Segmentação-Paginada

- Espaço lógico é formado por segmentos
 - Cada segmento é dividido em páginas lógicas;
 - Cada segmento possui uma tabela de páginas → mapear o endereço de página lógica do segmento em endereço de página física;
 - No endereçamento, a tabela de segmentos indica, para cada segmento, onde sua respectiva tabela de páginas está;
 - Multics, Pentium

Gerenciamento de Memória Segmentação-Paginada

Gerenciamento de Memória

Consideração

Paginação Segmentação

Programador deve saber da técnica?	Não	Sim
Espaços de endereçamento existentes	1	Vários
Espaço total de endereço pode exceder memória física?	Sim	Sim
É possível distinguir procedimento de dados e protegê-los?	Não	Sim

Gerenciamento de Memória

Consideração l	Paginação S	Segmentação
Tabelas de tamanho variável podem ser acomodadas sem problemas?	Não	Sim
Compartilhamento de procedimentos entre usuário é facilitado?	Não	Sim
Por que?	Para obter espaço de endereçamento maior sem aumentar memória física	Para permitir que programas e dados possam ser divididos em espaços de endereçamento logicamente independentes; compartilhamento e proteção