Réseaux de neurones IFT 780

Réseaux à convolution avancés et architectures convolutives modernes

Par Pierre-Marc Jodoin

1

Autres types de couches convolutives

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e5821

10

Convolution séparée

11

Convolution séparée

Les filtres 2D et 3D peuvent être séparés en filtres plus élémentaires

Bien que tous les filtres 2D (et 3D) ne soient pas tous mathématiquement séparables, on peut tout de même les **approximer** par des filtres 1D

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \approx \begin{pmatrix} k & l & m \end{pmatrix} * \begin{pmatrix} n \\ o \\ p \end{pmatrix}$$

16

17

Convolution séparée en profondeur (Depthwise Separable Convolution)

Convolution 3D Souvent en imagerie médicale on utilise plusieurs « modalités » et des acquisitions en 3D (ici un cerveau au complet)

Convolution à trous

Autres pratiques courantes

Prétraitement des données en entrée

Pour des images RGB (ex. CIFAR10, CIFAR100, ImageNet, etc)

- Soustraire l'image moyenne des données d'entraînement (e.g AlexNet)
 - Soustraite une image 32x32x3 pour CIFAR10

$$x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

40

40

Prétraitement des données en entrée

Pour des images RGB (ex. CIFAR10, CIFAR100, ImageNet, etc)

- Soustraire l'image moyenne des N images d'entraînement (e.g AlexNet)
 - Soustraite une image moyenne 32x32x3 pour CIFAR10

$$x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Soustraire une moyenne par canal (e.g. VGGNet)
 - Soustraite trois valeurs : R, G, B

$$R = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_k[i,j].R$$

$$G = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_{k}[i, j].G$$

$$B = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_{k}[i, j].B$$

41

41

Toffe and Szepedy 2

Normalisation par lot (Batch norm)

Observation : Normaliser les données en entrée est une bonne chose.

Question : pourquoi ne pas normaliser les données à l'entrée de chaque couche?

3
Image: laffe et al. "Batch normalization: Accelerating deen network training by reducing internal covariate shift " arXiv 2015.

Normalisation par lot (Batch norm)

def batchnorm_forward_pass(x, eps):

#step 1 : calculer la moyenne et la variance mu = np.mean(x, axis=0)
var = np.var(x, axis=0) return x_norm

Question: est-ce pertinent de normaliser tous les neurones de toutes les couches? Pas toujours!

47

Normalisation par lot (Batch norm)

Solution: permettre au réseau d'apprendre à défaire la normalisation par lot

$$x_{MOY} = \frac{1}{3} \sum_{i=1}^{3} x_i$$

$$x_{VAR} = \frac{1}{3} \sum_{i=1}^{3} (x_i - x_{MOY})^2$$

$$\hat{x}_i = \frac{x_i - x_{MOY}}{\sqrt{x_{VAR} + \varepsilon}}$$

$$\tilde{x}_i = \gamma \circ \hat{x}_i + \beta$$

Paramètres appris par le système. Ainsi, le réseau peut apprendre que $\gamma = \sqrt{x_{y_{AR}}}$ et $\beta = x_{MOT}$ et ainsi annuler la normalisation au besoin.

Normalisation par lot (Batch norm)

NOTE: produit de Hadamar

$$\widetilde{x}_i = \gamma \circ \hat{x}_i + \beta$$

$$\begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \\ \gamma_5 & \gamma_6 & \gamma_7 & \gamma_8 \\ \gamma_9 & \gamma_{10} & \gamma_{11} & \gamma_{12} \\ \gamma_{13} & \gamma_{14} & \gamma_{15} & \gamma_{16} \end{bmatrix} \circ \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} \gamma_1 x_1 & \gamma_2 x_2 & \gamma_3 x_3 & \gamma_4 x_4 \\ \gamma_5 x_5 & \gamma_6 x_6 & \gamma_7 x_7 & \gamma_8 x_8 \\ \gamma_9 x_9 & \gamma_{10} x_{10} & \gamma_{11} x_{11} & \gamma_{12} x_{12} \\ \gamma_{13} x_{13} & \gamma_{14} x_{14} & \gamma_{15} x_{15} & \gamma_{16} x_{16} \end{bmatrix}$$

50

50

[Ioffe and Szegedy, 2015]

Normalisation par lot (Batch norm)

 ${\tt def\ batchnorm_forward_pass}\,({\tt x},\ {\tt gamma},\ {\tt beta},\ {\tt eps}):$

#step 1 : calculer la moyenne et la variance
mu = np.mean(x, axis=0)
var = np.var(x, axis=0)

#step 2 : normaliser les données

 $x_norm = (x - mu)/np.sqrt(var + eps)$

#step 3 : "dénormaliser" les données
x_norm = x_norm*gamma + beta

return x_norm

Normalisation par lot (Batch norm)
En généralisation, lorsqu'on souhaite traiter une seule donnée (donc une taille de lot de 1), on remplace et par des constantes précalculées
$\hat{X}_i = rac{X_i - X_{MOY}}{\sqrt{X_{IAR} + \mathcal{E}}}$
c'est-à-dire $x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} x_i$ Nb_training_data
$x_{VAR} = \frac{1}{N} \sum_{i=1}^{N} (x_i - x_{MOY})^2$ Image: loffe et al. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv, 2015.

Normalisation par lot (Batch norm)

Pour plus d'information:

- · https://deepnotes.io/batchnorm
- Image: loffe et al. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv, 2015.

55

55

Autre pratique courante : Dropout

Forcer à zéro certains neurones de façon aléatoire à chaque itération

Srivastava et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

56

Autre bonne pratique : Dropout

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
 """ X contains the data """

forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = np.random.rand(*H1.shape)

Crédit http://cs231n.stanford.edu/

Ensemble de modèles

- 1- Entraîner indépendamment différents modèles
- 2- En généralisation, faire voter ces modèles

Permet d'améliorer les performances de 2-3%

NOTE Même entraîner N-fois le même modèle fonctionne!

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus Regularization of Neural Networks using DropConnect, ICML 2013

64

Transfert d'apprentissage (Transfer learning) Question: il faut un très grand nombre de données annotées pour entraîner un réseaux de neurones profonds? Réponse: Faux, si on dispose d'un modèle pré-entraîné sur une base de données similaire.

Transfert d'a	apprentiss	age	
FC-1860 FC-2860 FC-2860 FC-2860 Washing Come 451 Come 452 Washing Come 452 Washing Come 250 C		very similar dataset	very different dataset
	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

74

À retenir pour vos projets:

Vous avez une BD qui a un nombre limité de données annotées?

- 1. Trouvez une grosse BD contenant des données similaires
- 2. Entraînez un réseau de neurones
- 3. Transférez le modèle à votre projet
- 4. Réentraînez votre modèle (ou une partie de votre modèle)

Plusieurs bibliothèques ont un "Model Zoo" avec des modèles pré-entraînés

TensorFlow: https://github.com/tensorflow/models PyTorch: https://github.com/pytorch/vision

L'augmentation de données n'est pas une exception

c'est la norme

Il n'y a *a priori* aucune raison pour ne pas l'utiliser dans vos projets.

82

CLASSIFICATION D'IMAGE

83

AlexNet ENTRÉE: 227x227x3 CONV1: 96 x 55 x 55 Couche 2 MaxPool: 3x3 stride stride 2

Quelle est la taille des cartes d'activation?

Réponse: (55-3)/2+1 = 27

97

AlexNet

ENTRÉE: 227x227x3 **CONV1**: 96 x 55 x 55

Couche 2 MaxPool: 3x3 stride stride 2

27 x 27 x 96

Combien y a-t-il de paramètres?

Réponse: 0!

98

AlexNet

ENTRÉE: 227x227x3 **CONV1**: 55 x 55 x 96 **MAX POOL1**: 27 x 27 x 96

• • •

100

AlexNet **ENTRÉE** 227 x 227 x 3 Notes additionnelles: CONV1 55 x 55 x 96 MAX POOL1 27 x 27 x 96 Fonction d'activation ReLU NORM1 27 x 27 x 96 Augmentation de données CONV2 27 x 27 x 256 LayerNorm: peu utilisé aujourd'hui MAX POOL2 13 x 13 x 256 Dropout 0.5 NORM2 13 x 13 x 256 Batch_size 128 CONV3 13 x 13 x 384 CONV4 13 x 13 x 384 SGD + momentum Taux d'apprentissage 0.01 avec CONV5 13 x 13 x 256 réduction par plateau d'un facteur 10 MAX POOL3 6 x 6 x 256 FC6 4096 ~68 millions de paramètres FC7 4096 FC8 1000

VGG16 ENTRÉE CONV-3x3-64 CONV-3x3-64 POOL-2x2 CONV-3x3-128 CONV-3x3-128		input 3x3 com; 64 3x3 com; 64 Pool 3x3 com; 128 3x3 com; 128 Pool 3x3 com; 256
POOL-2x2 CONV-3x3-128 CONV-3x3-128 POOL-2x2 CONV-3x3-256 CONV-3x3-256 CONV-3x3-256 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 POOL-2x2	Combien de paramètres? Combien de neurones?	Pool
FC-4096 FC-4096 FC-4096	mage:	VGG16 109

_		
VGG16	Cartes d'activation	input 3.3 conv. 64
ENTRÉE		3x3 conv, 64
CONV-3x3-64	[224x224x3]	Pool
CONV-3x3-64	[224x224x64]	3x3 conv, 128
POOL-2x2	[224x224x64]	3x3 conv, 128
CONV-3x3-128	[112x112x64]	Pool
	[112x112x128]	3x3 conv, 256
CONV-3x3-128 POOL-2x2	[112x112x128]	3x3 conv, 256
	[56x56x128]	3x3 conv, 256
CONV-3x3-256	[56x56x256]	Pool
CONV-3x3-256	[56x56x256]	3x3 conv, 512
CONV-3x3-256	[56x56x256]	3x3 conv, 512 3x3 conv, 512
POOL-2x2	[28x28x256]	Pool
CONV-3x3-512	[28x28x512]	3x3 conv. 512
CONV-3x3-512	[28x28x512]	3x3 conv, 512
CONV-3x3-512	[28x28x512]	3x3 conv. 512
POOL-2x2	[14x14x512]	Pool
CONV-3x3-512	[14x14x512]	FC 4096
CONV-3x3-512	[14x14x512]	FC 4096
CONV-3x3-512	[14x14x512]	FC 1000
POOL-2x2	[7x7x512]	Softmax
FC-4096	[1x1x4096]	VGG16
FC-4096	[1x1x4096]	
FC-4096	[1x1x1000]	110

VGG16	Cartes d'activation	Nb Neurones	input 3x3 conv, 64
ENTRÉE	[224x224x3]	150 K	3x3 conv, 64
CONV-3x3-64	[224x224x64]	3.2 M	Pool
CONV-3x3-64	[224x224x64]	3.2 M	3x3 conv. 128 3x3 conv. 128
POOL-2x2	[112x112x64]	800 k	Pool
CONV-3x3-128	[112x112x128]	1.6 M	3x3 conv. 256
CONV-3x3-128	[112x112x128]	1.6 M	3x3 conv, 256
POOL-2x2	[56x56x128]	400 K	3x3 conv, 256
CONV-3x3-256	[56x56x256]	800 K	Pool
CONV-3x3-256	[56x56x256]	800 K	3x3 conv, 512
CONV-3x3-256	[56x56x256]	800 K	3x3 conv, 512
POOL-2x2	[28x28x256]	200 K	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	Pool
CONV-3x3-512	[28x28x512]	400 K	3x3 conv. 512
CONV-3x3-512	[28x28x512]	400 K	3x3 conv, 512
POOL-2x2	[14x14x512]	100 K	Pool
CONV-3x3-512	[14x14x512]	100 K	FC 4096
CONV-3x3-512	[14x14x512]	100 K	FC 4096
CONV-3x3-512	[14x14x512]	100 K	FC 1000
POOL-2x2	[7x7x512]	25 K	Softmax
FC-4096	[1x1x4096]	4094	VGG16
FC-4096	[1x1x4096]	4096	
FC-4096	[1x1x1000]	1000	111
			Image: http://cs231n.stanford.edu/slides/2

VGG16	Cartes d'activation	Nb Neurones	Nb Paramètres	input 3x3 conv, 64
ENTRÉE	[224x224x3]	150 K	0	3x3 conv, 64
CONV-3x3-64	[224x224x64]	3.2 M	(3*3*3)*64 = 1.728	Pool
CONV-3x3-64	[224x224x64]	3.2 M	(3*3*64)*64 = 36,864	3x3 conv, 128 3x3 conv, 128
POOL-2x2	[112x112x64]	800 k	0	Pool
CONV-3x3-128	[112x112x128]	1.6 M	(3*3*64)*128 = 73,728	3x3 conv. 256
CONV-3x3-128	[112x112x128]	1.6 M	(3*3*128)*128 = 147,456	3x3 conv, 256
POOL-2x2	[56x56x128]	400 K	Ò	3x3 conv, 256
CONV-3x3-256	[56x56x256]	800 K	(3*3*128)*256 = 294,912	Pool
CONV-3x3-256	[56x56x256]	800 K	(3*3*256)*256 = 589,824	3x3 conv, 512
CONV-3x3-256	[56x56x256]	800 K	(3*3*256)*256 = 589,824	3x3 conv, 512
POOL-2x2	[28x28x256]	200 K	0	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*256)*512 = 1,179,648	Pool 3x3 conv. 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*512)*512 = 2,359,296	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*512)*512 = 2,359,296	3x3 conv, 512
POOL-2x2	[14x14x512]	100 K	0	Pool
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 4096
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 4096
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 1000
POOL-2x2	[7x7x512]	25 K	0	Softmax
FC-4096	[1x1x4096]	4094	7*7*512*4096 = 102,760,448	VGG16
FC-4096	[1x1x4096]	4096	4096*4096 = 16,777,216	112
FC-4096	[1x1x1000]	1000	4096*1000 = 4,096,000	112

stage	output	ResNet-50		ResNeXt-50 (32×4	d)	
conv	112×112	7×7, 64, strid	e 2	7×7, 64, stride 2		
		3×3 max pool, st	ride 2	3×3 max pool, strid	e 2	
conv	2 56×56	1×1, 64 3×3, 64 1×1, 256	×3	1×1, 128 3×3, 128, C=32 1×1, 256	×3	Bottleneck Residual layers
conv	3 28×28	1×1, 128 3×3, 128 1×1, 512	×4	1×1, 256 3×3, 256, C=32 1×1, 512	×4	
conv	4 14×14	1×1, 256 3×3, 256 1×1, 1024	×6	1×1, 512 3×3, 512, C=32 1×1, 1024	×6	
conv	5 7×7	1×1,512 3×3,512 1×1,2048	×3	1×1, 1024 3×3, 1024, C=32 1×1, 2048]×3	
	1×1	global average p 1000-d fc, softr		global average poo 1000-d fc, softmax		
#	params.	25.5×10 ⁶		25.0×10 ⁶		
F	LOPs	4.1×10 ⁹		4.2×10 ⁹		

MobileNet

[Howard et al.'17]

Tirés de l'article

Conv dw

3x3 Depthwise Conv
BN
ReLU
1x1 Conv
BN
ReLU

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv/sl	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
Conv/s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv/sl	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv/sl	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv/sl	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	3 × 3 × 256 dw	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
5× Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv/sl	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv/sl	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv/s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$
FC/sl	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

151

MobileNet

[Howard et al.'17] Tiré de l'article

Meilleurs résultats Moins de calculs Moins de paramètres.

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Mult-Adds 76 0.50 MobileNet-160 Squeezenet AlexNet 1.25

152

XceptionNet

[Chollet'17]

Amélioration de ResNet et GoogleNet, similaire à MobileNet. Ici aussi on utilise des

« Depth-wise separable convolutions »

Rappel

F.Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, CVPR 2017

155

XceptionNet

Image tirée de l'article

Table 1. Classification performance comparison on ImageNet (single crop, single model). VGG-16 and ResNet-152 numbers are only included as a reminder. The version of Inception V3 being benchmarked does not include the auxiliary tower.

	Top-1 accuracy	Top-5 accuracy
VGG-16	0.715	0.901
ResNet-152	0.770	0.933
Inception V3	0.782	0.941
Xception	0.790	0.945

F.Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, CVPR 2017

Avantages: 3. Le classificateur utilise des caractéristiques de bas et de haut niveau Standard Connectivity: Classifier uses most complex (high level) (eatures ** ** ** ** ** ** ** Avec un CNN conventionnel, le classificateur base sa prédiction sur les caractéristiques de la dernière couche, c-à-d des caractéristiques de haut niveau

Inclure les bonnes pratiques permet d'améliorer la performance des réseaux, même les plus vieux (ResNet – 2015)

**Towan Bello, William Fedus, Xianzhi Du, Ekin Dogus Cubuk, Aravind Srinvas, Tsung-Yi Lin, Jonathon Shlens, Barret Zoph

**Revisiting ResNets: Improved Training and Scaling Strategies, NeuRIPS 2021

https://arxiv.org/pdf/2103.07579.pdf

**Speed-Accuracy Partie Curve

**Toward Training and Scaling Strategies, NeuRIPS 2021

https://arxiv.org/pdf/2103.07579.pdf

**Toward Training Training Strategies, NeuRIPS 2021

**Toward Training T

Improvements	Top-1	Δ	
ResNet-200	79.0	-	
+ Cosine LR Decay	79.3	+0.3	MCO. A. B. B. A. B.
+ Increase training epochs	78.8 [†]	-0.5	- Méthodes d'entraînement
+ EMA of weights	79.1	+0.3	1
+ Label Smoothing	80.4	+1.3	
+ Stochastic Depth	80.6	+0.2	
+ RandAugment	81.0	+0.4	Méthodes de régularisation
+ Dropout on FC	80.7 ‡	-0.3	
+ Decrease weight decay	82.2	+1.5	
+ Squeeze-and-Excitation	82.9	+0.7	i
	00.6		- Améliorations de l'architecture de base
+ ResNet-D Table 1. Additive study of the ResNet	83.4 et-RS train	+0.5	
Table 1. Additive study of the ResNe	t-RS train	ning rec	i pe. The
Table 1. Additive study of the ResNo colors refer to Training Methods .	t-RS trair Regulariz	ning rec	ipe. The Iethods
Table 1. Additive study of the ResNo colors refer to Training Methods , and Architecture Improvements	t-RS train Regulariz	ning rec	ipe. The lethods Net-200
Table 1. Additive study of the ResNo colors refer to Training Methods , and Architecture Improvements . was trained for the standard 90 epoc	et-RS train Regulariz The basel	ning rec	ipe. The lethods Net-200 se learn-
Table 1. Additive study of the ResNot colors refer to Training Methods , and Architecture Improvements . was trained for the standard 90 epoc ing rate decay schedule. The image r	et-RS train Regulariz The basel ths using a resolution i	ning receivation Management Res	Jipe. The Icthods Net-200 se learn- 256. All
Table 1. Additive study of the ResNicolors refer to Training Methods, and Architecture Improvements was trained for the standard 90 epocing rate decay schedule. The image numbers are reported on the ImageNicolors and the ImageNicolors are reported on the ImageNicolors.	et-RS train Regulariz The basel hs using a resolution i	ning rec	Jipe. The Icthods Ner-200 se learn- 256. All set and
Table 1. Additive study of the ResNe colors refer to Training Methods, and Architecture Improvements was trained for the standard 90 epoc ing rate decay schedule. The image r numbers are reported on the ImageNe averaged over 2 runs. § Increasing train	et-RS train Regulariz The basel hs using a resolution i et valida ning duration	ling rec	Jipe. The Icthods Net-200 se learn- 256. All set and 0 epochs
Table 1. Additive study of the ResNi colors refer to Training Methods, and Architecture Improvements was trained for the standard 90 epo ing rate decay schedule. The impression propers averaged over 2 runs. Thi recreasing trail only becomes useful once the regular	et-RS train Regulariz The basel hs using a resolution in t validating duration rization me	line Res stepwis s 256× tion- on to 35 ethods a	Jipe. The Iethods Net-200 se learn- 256. All set and 0 epochs re used,
Table 1. Additive study of the ResNe colors refer to 'Training Methods', and Architecture Improvements was trained for the standard 90 epoc ing rate decay schedule. The image i numbers are reported on the ImageNe averaged over 2 runs. I Increasing train only becomes useful once the regula otherwise the accuracy drops due to o	et-RS trair Regulariz The basel hs using a esolution i et valida ning durati- rization mover-fitting.	line Res stepwis s 256× tion- on to 35 ethods a trope	ipe. The lethods Net-200 See Jeann- Se56. All Set and De pochs re used, out hurts
Table 1. Additive study of the ResNi colors refer to Training Methods, and Architecture Improvements was trained for the standard 90 epo ing rate decay schedule. The impression propers averaged over 2 runs. Thi recreasing trail only becomes useful once the regular	et-RS trair Regulariz The basel hs using a esolution i et valida ning durati- rization mover-fitting.	line Res stepwis s 256× tion- on to 35 ethods a trope	Jipe. The Icthods Net-200 See Jearn- Se56. All Set and De pochs re used, out hurts

