

Unit 4 – Hypothesis Testing

- Fundamentals of Hypothesis Testing:
- One-Sample Tests

Prepared by:
Kamarul Ariffin Mansor
Department of Mathematical Sciences
UiTM Kedah Branch Campus

Learning Objectives

In this chapter, you learn:

- The basic principles of hypothesis testing
- How to use hypothesis testing to test a mean or proportion
- The assumptions of each hypothesis-testing procedure, how to evaluate them, and the consequences if they are seriously violated
- How to avoid the pitfalls involved in hypothesis testing
- The ethical issues involved in hypothesis testing

What is a Hypothesis?

A hypothesis is a claim (assumption) about a population parameter:

population mean

Example: The mean monthly cell phone bill of this city is $\mu = 42

population proportion

Example: The proportion of adults in this city with cell phones is $\pi = 0.68$

States the claim or assertion to be tested

Example:

The average number of TV sets in U.S. Homes is equal to three $(H_0: \mu = 3)$

• Is always about a population parameter, not about a sample statistic

$$H_0: \mu = 3$$

The Null Hypothesis, H₀

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected

The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average number of TV sets in U.S. homes is not equal to 3 (H_1 : $\mu \neq 3$)
- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- May or may not be proven
- Is generally the hypothesis that the researcher is trying to prove

Hypothesis Testing Process

Claim: the population mean age is 50. (Null Hypothesis:

Population

 H_0 : $\mu = 50$)

Now select a random sample

Is $\overline{X}=20$ likely if $\mu = 50$?

If not likely,

REJECT Null Hypothesis

Suppose the sample mean age

is 20: $\overline{X} = 20$

Reason for Rejecting H₀

Level of Significant, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are 0.01, 0.05, or 0.10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Compiled by: Kamarul Ariffin Mansor (2021) Source: Chapter 9, Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

s Statistics, 10e © 2006 Prentice-Hall, Inc.

Slide 10

Errors in Making Decisions

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error The probability of Type I Error is α
- Called level of significance of the test
- Set by the researcher in advance

Type II Error

• Fail to reject a false null hypothesis

The probability of Type II Error is β

Possible Hypothesis Test Outcomes

Actual Situation Decision H₀ True H₀ False Do Not **Type II Error** No error Reject $(1 - \alpha)$ (B) Ho Reject **Type I Error No Error** Ηo (α) (1-β)

Key:
Outcome
(Probability)

Type I & II Error Relationship

- Type I and Type II errors cannot happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

If Type I error probability (α), then Type II error probability (β)

Factors Affecting Type II Error

- All else equal,
 - β when the difference between hypothesized parameter and its true value
 - β \uparrow when α \downarrow
 - β when σ
 - β when n

Z Test of Hypothesis for the Mean (σ Known)

• Convert sample statistic (\overline{X}) to a Z test statistic

Critical Value Approach to Testing

For a two-tail test for the mean, σ known:

- Convert sample statistic (X) to test statistic (Z statistic)
- Determine the critical Z values for a specified level of significance α from a table or computer
- Decision Rule: If the test statistic falls in the rejection region, reject H_0 ; otherwise do not reject H_0

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$

There are two cutoff values (critical values), defining the regions of rejection

6 Steps in Hypothesis Testing

- 1. State the null hypothesis, H_0 and the alternative hypothesis, H_1
- 2. Choose the level of significance, α , and the sample size, n
- 3. Determine the appropriate test statistic and sampling distribution
- Determine the critical values that divide the rejection and nonrejection regions
- 5. Collect data and compute the value of the test statistic
- 6. Make the statistical decision and state the managerial conclusion. If the test statistic falls into the nonrejection region, do not reject the null hypothesis H_0 . If the test statistic falls into the rejection region, reject the null hypothesis. Express the managerial conclusion in the context of the problem

Hypothesis Testing Example

Test the claim that the true mean # of TV sets in US homes is equal to 3.

(Assume $\sigma = 0.8$)

- 1. State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 3$ H_1 : $\mu \neq 3$ (This is a two-tail test)
- 2. Specify the desired level of significance and the sample size
 - Suppose that $\alpha = 0.05$ and n = 100 are chosen for this test
- 3. Determine the appropriate technique
 - σ is known so this is a Z test.

- 4. Determine the critical values
 - For α = 0.05 the critical Z values are ±1.96
- 5. Collect the data and compute the test statistic
 - Suppose the sample results are n = 100, $\bar{X} = 2.84$ ($\sigma = 0.8$ is assumed known)

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

6. Is the test statistic in the rejection region?

Reject H_0 if Z < -1.96or Z > 1.96; otherwise do not reject H_0

Here, $Z = \{2.0 < -1.96\}$, so the test statistic is in the rejection region

6(continued). Reach a decision and interpret the result

Since Z = -2.0 < -1.96, we <u>reject the null hypothesis</u> and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

p-value: Probability of obtaining a test statistic more extreme (\leq or \geq) than the observed sample value given H_0 is true

- Also called observed level of significance
- Smallest value of α for which H_0 can be rejected

- Convert Sample Statistic (e.g., \bar{X}) to Test Statistic (e.g., Z statistic)
- Obtain the p-value from a table or computer
- Compare the p-value with α
 - If p-value $< \alpha$, reject H_0
 - If p-value $\geq \alpha$, do not reject H_0

p-Value Example

Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu = 3.0$?

$$\overline{X}$$
 = 2.84 is translated to a Z score of Z = -2.0

$$P(Z < -2.0) = 0.0228$$

$$P(Z > 2.0) = 0.0228$$

Compare the p-value with α

- If p-value $< \alpha$, reject H_0
- If p-value $\geq \alpha$, do not reject H₀

Here: p-value = 0.0456 and α = 0.05

Since 0.0456 < 0.05, we reject the null hypothesis

Connection to Confidence Intervals

• For \bar{X} = 2.84, σ = 0.8 and n = 100, the 95% confidence interval is:

2.84 - (1.96)
$$\frac{0.8}{\sqrt{100}}$$
 to 2.84 + (1.96) $\frac{0.8}{\sqrt{100}}$

$$2.6832 \le \mu \le 2.9968$$

• Since this interval does not contain the hypothesized mean (3.0), we reject the null hypothesis at α = 0.05

One-Tail Tests

In many cases, the alternative hypothesis focuses on a particular direction. In this situation, there is only one critical value, since the rejection area is in only one tail.

Source: Chapter 9, Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

Compiled by: Kamarul Ariffin Mansor (2021)

Slide 24

Example: Upper-Tail Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bills have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

 H_0 : $\mu \le 52$ the average is not over \$52 per month

 H_1 : $\mu > 52$ the average is greater than \$52 per month

(i.e., sufficient evidence exists to support the manager's claim)

Suppose that α = 0.10 is chosen for this test

Find the rejection region:

Review: One-Tail Critical Value

Example: Test Statistic

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 64, $\bar{X} = 53.1$

(σ =10 was assumed known)

Then the test statistic is:

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{53.1 - 52}{\frac{10}{\sqrt{64}}} = 0.88$$

Example: Decision

Reach a decision and interpret the

Do not reject H_0 since $Z = 0.88 \le 1.28$

i.e.: there is not sufficient evidence that the mean bill is over \$52

p-value Solution

Calculate the p-value and compare to α

(assuming that $\mu = 52.0$)

Do not reject H_0 since p-value = 0.1894 > α = 0.10

Hypothesis Tests using Minitab

Hypothesis test for μ , σ Known (use Z):

Enter desired level of confidence

Choose desired alternative hypothesis

t Test of Hypothesis for the Mean (σ Unknown)

• Convert sample statistic (\overline{X}) to a t test statistic

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in \bar{X} = \$172.50 and S = \$15.40.

Test at the α = 0.05 level.

(Assume the population distribution is normal)

SOLUTION

- σ is unknown, so use a t statistic
- Critical Value: $t_{24} = \pm 2.0639$

Do not reject H₀

not sufficient evidence that true mean cost is different than \$168

Connection to Confidence Intervals

For \overline{X} = 172.5, s = 15.40 and n = 25, the 95% confidence interval is:

172.5 - (2.0639) 15.4/
$$\sqrt{25}$$
 to 172.5 + (2.0639) 15.4/ $\sqrt{25}$

 $166.14 \le \mu \le 178.86$

Since this interval contains the Hypothesized mean (168), we do not reject the null hypothesis at $\alpha = 0.05$

Hypothesis Tests using Minitab

Hypothesis test for μ , σ Unknown (use t):

Compiled by: Kamarul Ariffin Mansor (2021) Source: Chapter 9, Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

Unleashing Potentials Shaping the Future

END OF SLIDES

PRESENTATIONS

Prepared by: Kamarul Ariffin Mansor Department of Mathematical Sciences UiTM Kedah Branch Campus

0234567890

