

AUSLEGESCHRIFT 1205502

Int. Cl.:

B 01 j

12 g-4/01 11/32 Deutsche Kl.:

Nummer:

1 205 502

Aktenzeichen:

St 20703 IV a/12 g

Anmeldetag:

7. Juni 1963

Auslegetag:

25. November 1965

1.

Die vorliegende Erfindung betrifft einen Oxydationskatalysator, der im wesentlichen aus Oxyden der Elemente Antimon und Uran besteht, der insbesondere zur katalytischen Oxydation von Olefinen, besonders zu sauerstoffhaltigen Kohlenwasserstoffverbindungen, wie ungesättigten Aldehyden (z. B. die Oxydation von Propylen zu Acrolein), für die oxydative Dehydrierung von Buten-1 zu Butadien und von tert. Amylenen zu Isopren und in Anwesenheit von Ammoniak zu ungesättigten Nitrilen (wie z. B. die Oxydation von 10 Propylen-Ammoniak-Mischungen zu Acrylnitril) vorteilhaft verwendet werden kann.

Es sind schon verschiedene Oxydationskatalysatoren bekannt. In der USA.-Patentschrift 2 904 580 ist ein Katalysator beschrieben, der aus Antimonoxyd 15 und Molybdanoxyd in Form von Antimonmolybdat besteht; auch ist die Verwendung dieses Katalysators zur Umwandlung von Propylen in Acrylnitril erwähnt. In der britischen Patentschrift 846 666 ist ein Katalysator beschrieben, der aus einem Antimonoxyd 20 allein oder in Verbindung mit einem Molybdänoxyd, Wolframoxyd, Telluroxyd, Kupferoxyd, Titanoxyd oder Kobaltoxyd besteht. Es wird gesagt, daß diese Katalysatoren entweder Mischungen dieser Oxyde sind oder sauerstoffhaltige Verbindungen von Antimon 25 mit dem anderen Metall, wie z. B. Antimonmolybdat oder Molybdänantimonat. Es heißt dort weiter, daß diese Katalysatoren zur Herstellung von ungesättigten Aldehyden, wie z.B. Acrolein oder Methacrolein, Sauerstoff verwendet werden können. Ähnliche Katalysatoren, jedoch sulfidischer Art, sind in der deutschen Patentschrift 693 985 für Hydrierungsreaktionen beschrieben. In der britischen Patentschrift 876 446 sind Katalysatoren beschrieben, die 35 Antimon, Sauerstoff und Zinn enthalten und entweder Mischungen von Antimonoxyden mit Zinnoxyden sein sollen oder sauerstoffhaltige Verbindungen des Antimons und des Zinns, wie z. B. Zinnantimonat. Weiterhin wird gesagt, daß diese Katalysatoren bei 40 der Herstellung von ungesättigten aliphatischen Nitrilen, wie z. B. Acrylnitril, aus Olefinen, wie z. B. Propylen, Sauerstoff und Ammoniak, Verwendung finden können. Oxydationskatalysatoren aus Oxyden des Chroms, Mangans, Vanadiums und/ 45 oder Wolframs sind in der deutschen Patentschrift 415 429 beschrieben. Aus der deutschen Patentschrift 550 933 sind Katalysatoren aus Phosphaten solcher Metalle bekannt.

Es wurde nun gefunden, daß man einen im wesent- 50 lichen aus Oxyden des Antimons und des Urans bestehenden Oxydationskatalysator mit verbesserten

Verfahren zur Herstellung eines Oxydationskatalysators

Anmelder:

The Standard Oil Company, Cleveland, Ohio (V. St. A.)

Vertreter:

Dr.-Ing. Dr. jur. F. Redies, Dr. rer. nat. B. Redies und Dr. rer. nat. D. Türk, Patentanwälte, Opladen, Rennbaumstr. 27

Als Erfinder benannt: James Louis Callahan, Bedford, Ohio; Berthold Gertisser, Montclair, N. J.; Robert Karl Grasselli, Cleveland, Ohio (V. St. A.)

Beanspruchte Priorität: V. St. v. Amerika vom 11. Juni 1962 (201 279, 201 329)

2

Eigenschaften dadurch herstellen kann, daß man in aus Olefinen, wie z. B. Propylen oder Isobuten, und 30 an sich bekannter Weise aus einer Lösung von wasserlöslichen Verbindungen des Antimons und Urans Oxyde oder Oxydhydrate dieser Elemente ausfällt oder aus einer wäßrigen Suspension eines Oxyds oder Oxydhydrats eines der beiden Elemente, die eine wasserlösliche Verbindung des anderen Elements enthält, ein Oxyd oder Oxydhydrat dieses anderen Elements ausfällt, den Niederschlag von der Mutterlauge abtrennt, trocknet und das erhaltene Produkt oder ein Gemisch aus einem Oxyd des Antimons und einem Oxyd des Urans auf eine Temperatur erhitzt, die oberhalb 260°C und unterhalb einer für den Katalysator schädlichen Temperatur liegt, wobei man die Verbindungen der beiden Elemente in einem solchen Verhältnis einsetzt, daß das Sb: U-Atomverhältnis in dem fertigen Katalysator in einem Bereich von etwa 1:50 bis etwa 99:1 liegt.

Dieser Katalysator kann zur Oxydation von Olefinen insbesondere zu sauerstoffhaltigen Kohlenwasserstoffverbindungen, wie z. B. Acrolein, oder oxydativ dehydrierend zu Diolefinen oder in Anwesenheit von Ammoniak zu ungesättigten Nitrilen, wie z.B. Acrylnitril, verwendet werden.

509 739/400

Die Natur der chemischen Verbindungen, aus denen der erfindungsgemäße Katalysator aufgebaut ist, ist unbekannt. Der Katalysator kann eine Mischung von Antimonoxyd oder -oxyden und Uranoxyd oder -oxyden sein. Es ist jedoch auch möglich, daß das Antimon und das Uran mit dem Sauerstoff unter Bildung eines Antimonats oder Uranats eine Verbindung eingegangen sind. Röntgenstrahlenuntersuchungen des Katalysatorsystems zeigen die Anwesenheit einer strukturell gemeinsamen Phase des 10 Antimontyps, bestehend aus Antimonoxyd und irgendeiner Form von Uranoxyd. Antimontetroxyd wurde als anwesend nachgewiesen. Für die Zwecke der Beschreibung der Erfindung wird dieser Katalysator bezeichnet, was jedoch nicht heißen soll, daß der Katalysator entweder insgesamt oder teilweise aus diesen Verbindungen zusammengesetzt ist.

Das Verhältnis zwischen Antimon und Uran in dem Das Sb:U-Atomverhältnis kann im Bereich von etwa 1:50 bis etwa 99:1 liegen. Optimale Katalysatoraktivität wird jedoch bei Sb: U-Atomverhältnissen im Bereich von 1:1 bis 25:1 erhalten.

werden und hat dabei eine ausgezeichnete Aktivität. Er kann jedoch auch mit einem Trägerstoff kombiniert werden, und vorzugsweise macht in diesem Fall der Trägerstoff mindestens 10 bis etwa 90% des Gewichtes des gesamten Katalysators aus. Jedes bekannte 30 Trägermaterial kann verwendet werden, wie z. B. Siliciumdioxyd, Aluminiumoxyd, Zirkoniumoxyd, Alundum, Siliciumcarbid, Aluminiumsiliciumoxyd und Borate und Carbonate, die unter den Reaktions- 35 für bestimmte Reaktionsbedingungen erreicht ist, bedingungen, die bei der Verwendung des Katalysators wird durch einen Fleckentest mit einer Probe des die anorganischen Phosphate, Silikate, Aluminate, auftreten, beständig sind. Vorzugsweise wird Siliciumdioxyd als Trägerstoff eingesetzt.

Das Antimonoxyd und das Uranoxyd können zusammengemischt werden, oder sie können getrennt 40 hergestellt und dann gemischt werden, oder sie können getrennt oder gemeinsam in situ gebildet werden.

Als Ausgangsmaterialien für die Antimonoxydkomponente kann z.B. jedes Antimonoxyd wie Antimontrioxyd, Antimontetroxyd oder Antimon- 45 pentoxyd oder Mischungen hiervon verwendet werden; oder es kann ein wasserhaltiges Antimonoxyd, Methaantimonsäure, Orthoantimonsäure oder Pyroantimonsäure eingesetzt werden; oder es kann ein hydrolysierbares oder zersetzbares Antimonsalz, wie z. B. ein 50 Antimonhalogenid, z. B. Antimontrichlorid, -trifluorid oder -tribromid, eingesetzt werden; schließlich können auch Antimonpentachlorid und Antimonpentafluorid, die in Wasser unter Bildung des wasserhaltigen Oxyds hydrolysierbar sind, verwendet werden. 55 Auch Antimonmetall kann verwendet werden, wobei das wasserhaltige Oxyd durch Oxydation des Metalls in einer oxydierenden Säure, wie z. B. Salpetersäure, gebildet wird.

Die Uranoxydkomponente kann in Form von 60 Uranoxyd oder durch Niederschlagung in situ aus einem löslichen Uransalz, wie z.B. dem Nitrat, Acetat, oder einem Halogenid, wie z.B. dem Chlorid, geliefert werden. Uranmetall kann auch als Ausgangsmaterial verwendet werden, und falls auch 65 von Antimonmetall ausgegangen wird, kann das Antimon in das Oxyd und das Uran gleichzeitig in das Nitrat durch Oxydation in heißer Salpetersäure

umgewandelt werden. Ein Schlamm von wasserhaltigem Antimonoxyd, das in situ aus dem Metall in Salpetersäure gebildet wurde, kann ebenso mit einer Lösung eines Uransalzes, wie z.B. Uran-5 nitrat, zusammengegeben werden, das dann in situ als Uranoxyd durch Zugabe von Ammoniumhydroxyd niedergeschlagen wird. Das Ammoniumnitrat und alle anderen löslichen Salze werden durch Filtration des erhaltenen Schlammes entfernt.

Aus dem Obigen ist ersichtlich, daß beispielsweise Urantribromid, Urantetrabromid, Urantrichlorid, Urantetrachlorid, Uranpentachlorid, Uranhexafluorid, Urantetrajodid, Uranylnitrat, Uranylsulfat, Uranylchlorid, Uranylbromid, Urantrioxyd und Uranperoxyd als eine Mischung von Antimon- und Uranoxyden 15 als Ausgangsmaterial für die Uranoxydkomponente verwendet werden können.

Die katalytische Aktivität des Katalysators wird durch Erhitzen auf eine erhöhte Temperatur verbessert. Dabei wird die Katalysatormischung getrock-Katalysatorsystem kann in weiten Grenzen variieren. 20 net und 2 bis 24 Stunden auf eine Temperatur von etwa 260 bis 621°C, vorzugsweise von etwa 372 bis 482°C, erhitzt. Falls die Aktivität dann noch nicht genügend ist, kann der Katalysator weitere 1 bis 48 Stunden auf eine Temperatur von oberhalb 538°C, jedoch Der Katalysator kann ohne Trägerstoff eingesetzt 25 unterhalb einer für den Katalysator schädlichen Temperatur, bei der er schmilzt oder zersetzt wird, vorzugsweise etwa 760 bis etwa 1038°C, in Anwesenheit von Luft oder Sauerstoff erhitzt. Gewöhnlich wird diese Grenze nicht vor 1095°C erreicht, und in einigen Fällen kann diese Temperatur sogar noch überschritten werden.

Im allgemeinen ist mit steigender Aktivierungstemperatur die zur Durchführung der Aktivierung notwendige Zeit geringer. Ob eine genügende Aktivität Materials bestimmt. Die Aktivierung wird am besten in einer offenen Kammer durchgeführt, in der Luft oder Sauerstoff zirkulieren kann, so daß verbrauchter Sauerstoff wieder ersetzt werden kann.

Der Antimon-Uranoxyd-Katalysator gemäß der Erfindung kann durch die folgende empirische Formel definiert werden:

Sba UbOc

worin a eine Zahl von 1 bis 99, b eine Zahl von 50 bis 1 und c eine Zahl ist, die den durchschnittlichen Valenzen des Antimons und des Urans in den Oxydationsstufen entspricht, in denen sie sich in dem Katalysator gemäß der obigen empirischen Formel befinden. So kann die Sb-Valenz zwischen 3 und 5 und die U-Valenz zwischen 4 und 6 liegen.

Beispiel 1

Ein Katalysator, der aus Antimonoxyd und Uranoxyd mit einem Sb: U-Atomverhältnis von 8:1 besteht, wurde wie folgt hergestellt: 90 g Antimon wurden in 375 ccm Salpetersäure (spezifisches Gewicht 1,42) gelöst, und die Mischung wurde erhitzt, bis die Bildung von Stickstoffoxyden aufgehört hatte. Zu dieser Lösung wurde sodann eine Lösung von 40,1 g Uranylacetat [UO₂(C₂H₃O₂)₂·2 H₂O] in 400 ccm Wasser zugegeben. Sodann wurden 300 ccm Ammoniumhydroxydlösung zugegeben und der filtrierte Schlamm mit dreimal 200 ccm Wasser gewaschen. Der Filterkuchen wurde über Nacht bei 120°C getrocknet, 12 Stunden lang bei 427°C geglüht und

durch 12 stündiges Erhitzen auf 760°C in einem offenen Muffelofen aktiviert.

Beispiel 2

Ein Antimonoxyd-Uranoxyd-Katalysator mit einem Sb:U-Atomverhältnis von 6:1 wurde in der folgenden Weise hergestellt: 45 g Antimonmetall (150 Maschen U.S.-Standard = Maschenweite etwa 0,10 mm) wur-- den in 186 ccm Salpetersäure (spezifisches Gewicht 1,42) durch Erhitzen gelöst, wobei zum Sieden erhitzt 10 wurde, bis die Bildung von Stickstoffoxyden aufgehört hatte. Zu der erhaltenen Lösung wurden 26,7 g Uranylnitrat in 200 ccm Wasser gelöst zugegeben. Nach Zugabe von 150 ccm 28% iger Ammoniumhydroxydlösung zu dem Gemisch wurde 15 der erhaltene Schlamm filtriert und mit dreimal 100 ccm Waschwasser, das eine geringe Menge Ammoniak enthielt, gewaschen. Der Katalysator wurde über Nacht bei 120°C getrocknet, über Nacht bei 427°C geglüht und durch 12stündiges Erhitzen 20 auf 760°C in einem offenen Muffelofen aktiviert.

Beispiel 3

Ein Siliciumdioxyd als Trägerstoff enthaltender gemäß dem Beispiel 2 hergestellten und aktivierten Katalysators mit 198 g eines wäßrigen Silikasols mit einem SiO₃-Gehalt von 30,6% hergestellt. Der resultierende Katalysator wurde in einem Ofen bei 120°C trocknet und dann über Nacht bei 427°C geglüht.

Beispiel 4

Ein Siliciumcarbid als Trägerstoff enthaltender Katalysator wurde durch Mischen von 60 g des akti- 35 vierten Katalysators des Beispiels 2 mit 60 g Siliciumcarbid erhalten, wobei beide Produkte eine Teilchengröße hatten, daß sie durch ein 80-Maschen-Sieb (U.S.-Standard = Maschenweite etwa 0,17 mm) passierten. Die Mischung wurde mit 400 ccm Wasser 40 gerührt und die homogene wäßrige Mischung sodann in einem Ofen unter gelegentlichem Umrühren bei 130°C über Nacht getrocknet und dann bei 427°C 18 Stunden lang geglüht.

Beispiel 5

Ein Antimonoxyd-Uranoxyd-Katalysator mit einem Sb:U-Atomverhältnis von 6:1 wurde wie folgt hergestellt: 90 g Antimonmetall (Teilchengröße kleiner 0,17 mm) wurden in 372 ccm konzentrierter Salpetersäure bis zur Beendigung der Bildung von Stickstoffoxyden erhitzt. Hierzu wurden 53,4 g Uranylacetat, das teilweise in Wasser gelöst war, zugegeben. Wasser dann wurden 300 ccm 28% iger Ammoniumhydroxydlösung zugeführt. Der Schlamm wurde filtriert und der Filterkuchen mit dreimal 300 ccm einer 0,1% igen Ammoniumhydroxydlösung gewaschen. Nach dem den Filterkuchen gesaugt. Der Katalysator wurde sodann bei 130°C getrocknet, bei 427°C geglüht und sodann durch Erhitzen auf 760°C in einem offenen Muffelofen aktiviert.

Beispiel 6

Ein Katalysator, der aus Antimonoxyd und Uranoxyd in einem Sb:U-Verhältnis von 6:1 auf einem

Drittel seines Gewichts an Siliciumdioxyd als Trägerstoff bestand, wurde wie folgt hergestellt: 90 g Antimonmetall (80 Maschen U.S.-Standard = Maschenweite etwa 0,17 mm) wurden in 360 ccm heißer konzentrierter Salpetersäure (spezifisches Gewicht 1,42) gelöst, und die Mischung wurde bis zur Beendigung der Bildung von Stickstoffoxyden erhitzt und fast bis zur Trockne eingedampft. Hierzu wurden 53,4 g Uranylacetat [UO₂(C₂H₃O₂)·2 H₂O] unter Rühren zugegeben. Diese Mischung wurde in einer Kugelmühle 4 Stunden lang gemahlen. Beim Entfernen des Produktes aus der Mühle wurden 200 ccm Wasser zugegeben. Danach wurden 194 g eines wäßrigen Silikasols (30,6% SiO₈) zugegeben. Unter laufendem Rühren wurden sodann 200 ccm 28% iger Ammoniak zugefügt, der erhaltene Schlamm filtriert und mit dreimal 100 ccm Wasser gewaschen. Der Filterkuchen wurde bei 120 bis 130°C über Nacht getrocknet, bei 427°C 20 Stunden lang geglüht und durch 8stündiges Erhitzen auf 982°C in einem offenen Muffelofen aktiviert.

Beispiel 7

Ein Katalysatorsystem, das aus Antimonoxyd und Katalysator wurde durch Mischen von 60,6 g des 25 Uranoxyd in einem Sb:U-Verhältnis von 4,9:1 auf einem Drittel seines Gewichtes an Siliciumdioxyd als Trägerstoff bestand, wurde wie folgt hergestellt: 75 g Antimonmetall (80 Maschen U.S.-Standard = Maschenweite etwa 0,17 mm) wurden in 275 ccm unter gelegentlichem Umrühren 3 Stunden lang ge- 30 heißer konzentrierter Salpetersäure (spezifisches Gewicht 1,42) gelöst, und die Mischung wurde bis zur Beendigung der Bildung von Stickstoffoxyden erhitzt und fast bis zur Trockne eingedampft. Hierzu wurden sodann 53,4 g Uranylacetat [UO₂(C₂H₈O₂)₂·2 H₂O] unter Rühren zugegeben. Die Mischung wurde 4 Stunden lang in der Kugelmühle gemahlen. Beim Entfernen der Masse aus der Mühle wurden 200 ccm Wasser zugefügt und hiernach 226 g eines wäßrigen Silikasols (30,6% SiO2). Unter konstantem Rühren wurden sodann 150 ccm 28% iger Ammoniak zugegeben, der erhaltene Schlamm filtriert und der Niederschlag mit dreimal 100 ccm Wasser gewaschen. Der Filterkuchen wurde bei 120 bis 130°C über Nacht getrocknet, bei 427°C 20 Stunden lang geglüht und 45 durch 8 stündiges Erhitzen auf 982°C in einem offenen Muffelofen aktiviert.

Beispiel 8

Ein Katalysator, der aus Antimonoxyden und als 80 Maschen U.S.-Standard = Maschenweite etwa 50 Uranoxyden mit einem Sb:U-Atomverhältnis von 11,7:1 zusammengesetzt ist, wurde wie folgt hergestellt: 200 g Antimonmetall (kleiner als 270 Maschen U.S.-Standard = Maschenweite 0,05 mm) wurden in 826,7 ccm konzentrierter Salpetersäure erhitzt; bis wurde zugefügt, um die Mischung zu verdünnen, und 55 alle roten Stickstoffoxyde abgetrieben waren. Hierzu wurde eine wäßrige Lösung von 62,9 g Uranylacetat [UO₂(C₂H₂O₂)₂·2 H₂O] zugegeben. Der Schlamm wurde mit ungefähr 400 ccm Wasser verdünnt, und dann wurden 500 ccm 28% igen Ammoniumhydroxyds letzten Waschen wurde 10 Minuten lang Luft durch 60 zugegeben, wodurch der pH-Wert auf 8 gebracht wurde. Der Schlamm wurde filtriert und mit dreimal 1350 ccm 2,5% iger Ammoniumhydroxydlösung gewaschen. Nach dem letzten Waschen wurden 15 Minuten lang Luft durch den Filterkuchen gesaugt. Der 65 Katalysator wurde über Nacht in einem Ofen bei 130°C getrocknet, dann über Nacht bei 427°C geglüht und sodann durch Erhitzen über Nacht auf 760°C in einem offenen Muffelofen aktiviert.

Beispiel 9

Ein Katalysator, der aus Antimonoxyden und Uranoxyden mit einem Sb: U-Atomverhältnis von 6:1 auf einem Drittel des Gewichts der beiden Oxyde an Silika als Trägerstoff bestand, wurde wie folgt hergestellt: 90 g Antimonmetall (80 Maschen U.S.-Standard = Maschenweite etwa 0,17 mm) wurden in 360 ccm heißer konzentrierter Salpetersäure (spezifisches Gewicht 4,2) unter Erhitzen gelöst, bis die Mischung wurde fast bis zur Trockne eingedampft. Hierzu wurden sodann 53,4 g Uranylacetat unter Rühren hinzugegeben. Dieses Gemisch wurde 4 Stunden in einer Kugelmühle gemahlen. Beim Entfernen des Produktes aus der Mühle wurden 200 ccm Wasser zugegeben. Hierzu wurden 194 g eines wäßrigen Silikasols (30,6% SiO2) zugefügt. Unter laufendem Rühren wurden 200 ccm 28% igen Ammoniumhydroxyds in einem Schuß zugegeben, und der ausgefällte Schlamm wurde filtriert und mit dreimal 100 ccm Waschwasser gewaschen. Der Katalysator wurde sodann über Nacht bei 120 bis 130°C in einem Ofen getrocknet, 20 Stunden lang bei 427°C geglüht und durch 8 stündiges Erhitzen auf 982°C in einem offenen Muffelofen aktiviert.

Beispiel 10

gestellt: 90 g Antimonmetall (80 Maschen U.S.-Standard = Maschenweite etwa 0,17 mm) wurden in 360 ccm heißer konzentrierter Salpetersäure (spezifisches Gewicht 4,2) unter Erhitzen gelöst, bis die Bildung von Stickstoffoxyden aufgehört hatte. Die Mischung wurde fast bis zur Trockne eingedampft. Hierzu wurden sodann 53,4 g Uranylacetat unter Rühren hinzugegeben. Dieses Gemisch wurde 4 Stunden in einer Kugelmühle gemahlen. Beim Entfernen den in einer Kugelmühlen gemahlen g

Die Katalysatoren wurden für die Herstellung der aus den folgenden Tabellen ersichtlichen Produkte unter den dort angegebenen Reaktionsbedingungen und mit den dort aufgeführten Resultaten eingesetzt.

Die prozentualen Umwandlungen sind in den Tabellen wie folgt wiedergegeben:

°/₀ Gesamtumwandlung = 100 · (Mol zugeführten Olefins) — (Mol wiedergewonnenen Olefins)

Mol zugeführten Olefins

% Umwandlung in Diolefin = 100 · Mol gewonnenen Diolefins

Mol zugeführten Olefins

Tabelle I

Katalysa- tor nach Beispiel	Ausgangsstoff	Molverhältnis im Ausgangsgas Molares Volumen- verhältnis Buten zu Luft zu N2 zu	Temperatur	Prozentuale Umwandlung pro Durchgang Geografiumwandlung Butadien	
Beispier		H _i O	°C	Gesamtumwandlung	
1 1 2 2	Buten-1trans-Buten-2trans-Buten-2trans-Buten-2	1:3:4:1 1:4:5,4:1 1:7:0:1 1:3:4:1 1:3:4:1	494 bis 505 500 488 bis 500 488 bis 500 494 bis 513	44,5 40,2 — — — —	35,0 23,4 18,4 19,2 30,8

Tabelle II

Tabelle II Gesamt- Ausbeute in %.									
Katalysa- tor nach Beispiel	Endprodukt	Zusammensetzung des Ausgangsgemisches in Mol	· Temperatur °C	um- wandlung %	bezogen auf die ein- gesetzte organische Verbindung				
2	Acrylnitril	Propylen 1,5 NH ₃ 1,5 Luft 12 N ₂ 7 H ₂ O 1	471 bis 477	100	76,5				
6	Acrylnitril	Propylen 1 NH ₃ 1,5 Luft 12 N ₂ 4 H ₂ O 4	482	91	75				
6	Acrolein	Propylen 1 Luft 10 N ₈ 7 H ₂ O 4	449 bis 454	96	60,8				
7	Methacrolein	Isobutylen 1 Luft	427 (Druck: 0,28 kg/cm ²)	60,2	52,5				
7	Methacrylnitril		427 (Druck: 0,28 kg/cm ²)	71,9	60,0				

Patentansprüche:

1. Verfahren zur Herstellung eines Oxydationskatalysators, der Antimon und Uran enthält, dadurch gekennzeichnet, daß man in an sich bekannter Weise aus einer Lösung von wasserlöslichen Verbindungen des Antimons und Urans Oxyde oder Oxydhydrate dieser Elemente ausfällt oder aus einer wäßrigen Suspension eines Oxyds oder Oxydhydrats eines der beiden Elemente, 10 die eine wasserlösliche Verbindung des anderen Elements enthält, ein Oxyd oder Oxydhydrat dieses anderen Elements ausfällt, den Niederschlag von der Mutterlauge abtrennt, trocknet und das erhaltene Produkt oder ein Gemisch aus einem 15 Oxyd des Antimons und einem Oxyd des Urans auf eine Temperatur erhitzt, die oberhalb 260°C und unterhalb einer für den Katalysator schäd-

lichen Temperatur liegt, wobei man die Verbindungen der beiden Elemente in einem solchen Verhältnis einsetzt, daß das Sb:U-Atomverhältnis in dem fertigen Katalysator in einem Bereich von 5---etwa 1:50 bis etwa 99:1 liegt.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man die Verbindungen der beiden Elemente in einem solchen Verhältnis einsetzt, daß das Sb: U-Atomverhältnis in dem fertigen Katalysator in einem Bereich von etwa 1:1 bis etwa 25:1 liegt.

3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man den Katalysator auf Siliciumdioxyd als Träger aufbringt.

In Betracht gezogene Druckschriften: Deutsche Patentschriften Nr. 415 469, 550 933, 693 985.