Your grade: 91.66%

Your latest: **91.66**% • Your highest: **91.66**% • To pass you need at least 80%. We keep your highest score.

Next item →

L.	Which of the following is true about policy gradient methods? (Select all that apply)	0 / 1 point
	Policy gradient methods use generalized policy iteration to learn policies directly.	
	This should not be selected Incorrect. Value-based methods use generalized policy iteration to learn approximate action values, and indirectly infer a good policy. Policy gradient methods maximize the policy objective to learn policies directly.	
	The policy gradient theorem provides a form for the policy gradient that does not contain the gradient of the state distribution μ , which is hard to estimate.	
	⊙ Correct Correct.	
	Policy gradient methods do gradient ascent on the policy objective.	
	○ Correct Correct. Policy gradient methods maximize the policy objective, and hence perform gradient ascent.	
	If we have access to the true value function v_π , we can perform unbiased stochastic gradient updates using the result from the Policy Gradient Theorem.	
	\odot Correct Correct. We derived this stochastic update by multiplying and dividing by $\pi(A S)$.	
2.	Which of the following statements about parameterized policies are true? (Select all that apply)	1/1 point
	☐ The policy must be approximated using linear function approximation.	
	For each state, the sum of all the action probabilities must equal to one.	
	⊙ Correct Correct! This condition is necessary for the function to be a valid probability distribution.	
	The probability of selecting any action must be greater than or equal to zero.	
	○ Correct Correct! This is one of the conditions for a valid probability distribution.	
	☐ The function used for representing the policy must be a softmax function.	
3.	Assume you're given the following preferences $h_1=44, h_2=42$, and $h_3=38$, corresponding to three different actions (a_1,a_2,a_3) , respectively. Under a softmax policy, what is the probability of choosing a_2 , rounded to three decimal numbers?	1/1 point
	0.119	
	0.002	
	○ 0.879	
	0.42	
	⊙ Correct!	
1.	Which of the following is true about softmax policy? (Select all that apply)	1/1 point
	☑ It is used to represent a policy in discrete action spaces.	
	⊙ Correct Correct!	
	☐ Similar to epsilon-greedy policy, softmax policy cannot approach a deterministic policy.	
	It cannot represent an optimal policy that is stochastic, because it reaches a deterministic policy as one action preference dominates others.	
	It can be parameterized by any function approximator as long as it can output scalar values for each available action, to form a softmax policy.	
	 Correct Correct. It can use any function approximation from deep artificial neural networks to simple linear features. 	

	When using softmax policy over action-values, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.	
	When using softmax policy over action-values, even if the optimal policy is deterministic, the policy may never approach a deterministic policy.	
	When using softmax policy over action-preferences, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.	
	Correct Correct. Action-preferences does not approach specific values like action-values do. They can be driven to produce a stochastic policy or deterministic policy.	
6.	What is the following objective, and in which task formulation? $m(x) = \sum_{i=1}^{n} u(x) \sum_{i=1}^{n} c(x) e^{-x} d(x) = 0$	1/1 point
	$r(\pi) = \Sigma_s \mu(s) \Sigma_a \pi(a s, heta) \Sigma_{s',r} p(s',r s,a) r$	
	Discounted return objective, continuing task Average reward objective, continuing task	
	Undiscounted return objective, episodic task	
	Average reward objective, episodic task	
	⊙ Correct Correct.	
7.	The following equation is the outcome of the policy gradient theorem. Which of the following is true about the policy gradient theorem? (Select all that apply)	1/1 point
	$ abla r(\pi) = \Sigma_s \mu(s) \Sigma_a abla \pi(a s, heta) q_\pi(s,a)$	
	This expression can be converted into:	
	$\mathbb{E}_{\pi}[\Sigma_a abla \pi(a S, heta) q_{\pi}(S,a)]$	
	In discrete action space, by approximating q $_{\rm p}$ pi we could also use this gradient to update the policy.	
	Correct Correct. The expression contains sum over actions, which can be computed for discrete actions. In the textbook, this is also called the all-actions method.	
	$ ilde{f f f f f f f f f f f f f $	
	○ Correct Correct.	
	$lacksquare$ This expression can be converted into the following expectation over π :	
	$\mathbb{E}_{\pi}[abla \ln \pi(A S, heta)q_{\pi}(S,A)]$	
	⊘ Correct Correct. In fact, this expression is normally used to perform stochastic gradient updates.	
	$lacksquare$ The true action value q_π can be approximated in many ways, for example using TD algorithms.	
	○ Correct Correct.	
8.	Which of the following statements is true? (Select all that apply)	1/1 point
	Subtracting a baseline in the policy gradient update tends to reduce the variance of the update, which results in faster learning.	
	$igspace$ To update the actor in Actor-Critic, we can use TD error in place of q_π in the Policy Gradient Theorem.	
	⊙ Correct Correct. This is equivalent to using one-step state value and subtracting a current state value baseline.	
	☐ TD methods do not have a role when estimating the policy directly.	
	✓ The Actor-Critic algorithm consists of two parts: a parameterized policy — the actor — and a value function — the critic.	
	○ Correct Correct.	

9. We usually want the critic to update at a faster rate than the actor.

10. Consider the following state features and parameters heta for three different actions (red, green, and blue):

 $\mathbf{X}(s) = \begin{bmatrix} 0.1 \\ 0.3 \\ 0.6 \end{bmatrix} \qquad \theta = \begin{bmatrix} 45 \\ 73 \\ 21 \\ 120 \\ 120 \\ -10 \\ -100 \\ 200 \\ -25 \end{bmatrix} a_{1}$

Compute the action preferences for each of the three different actions using linear function approximation and stacked features for the action preferences.

What is the action preference of a_2 (blue)?

- 35
- O 39
- O 42
- O 37

11. Which of the following statements are true about the Actor-Critic algorithm with softmax policies? (Choose all that apply)

1/1 point

1/1 point

- Since the policy is written as a function of the current state, it is like having a different softmax distribution for each state.
- Orrect!
- $\hfill \square$ The learning rate parameter of the actor and the critic can be different.
- **⊘** Correct

 $Correct! \ In \ practice, it is \ preferable to \ have \ a \ slower \ learning \ rate for \ the \ actor \ so \ that \ the \ critic \ can \ accurately \ critique \ the \ policy.$

- ☐ The actor and the critic share the same set of parameters.
- $\begin{tabular}{ll} \hline & The preferences must be approximated using linear function approximation. \\ \hline \end{tabular}$
- 12. Which one is a reasonable parameterization for a Gaussian policy?

1/1 point

- \bigcirc μ : the exponential of a linear function of parameters, σ : a linear function of parameters.
- \bigcirc μ : a linear function of parameters, σ : a linear function of parameters
- lacktriangledown μ : a linear function of parameters, σ : the exponential of a linear function of parameters.

⊘ Correct

Correct!