问题4-思路2

把温度当自变量,找到目标函数为合格率达到要求的数值当作一个解,对得到的多个满足合格率的温度值使用 TOPSIS 评价得到最佳温度

```
In [1]: import mitosheet
        import numpy as np
        import pandas as pd
        import plotly as py
        import cufflinks as cf
        import plotly.express as px
        import plotly.graph objects as go
        import plotly.figure factory as ff
        cf.set_config_file(
            offline=True,
            world readable=True,
            theme='white', # 设置绘图风格
        import warnings
        warnings.filterwarnings("ignore")
        import sklearn
        import graphviz
        from sklearn import tree
        from sklearn.model_selection import cross_val_score
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification_report, roc_auc_score
        from colorama import Fore
        def color(text):
            return Fore.RED + text + Fore.RESET
```

```
index_col=None,
    sheet_name='产品质量(quality of the products)',)

sheet3 = pd.read_excel(
    io=file_path,
    index_col=None,
    sheet_name='原矿参数(mineral parameter)',)

sheet4 = pd.read_excel(
    io=file_path,
    index_col=None,
    sheet_name='过程数据(process parameter)',)
```

准备数据

表1——温度(temperature)

```
In [3]: # todo 找到有效的温度数据
        sheet1_time_string = sheet1.iloc[:, 0].astype('string')
        cond1 = sheet1_time_string.apply(lambda x: x[14: 16]) == "50"
        data part1 = sheet1[cond1].iloc[:-2, :]
        exp_date1 = [
            "2022-02-03 20:50:00",
            "2022-02-26 13:50:00",
            "2022-03-21 06:50:00",
            "2022-04-04 10:50:00", "2022-04-04 15:50:00",
            "2022-03-10 10:50:00", "2022-03-10 11:50:00", "2022-03-10 12:50:00",
        cond1 = sheet1_time_string.apply(lambda x: x in exp_date1)
        data_part1 = data_part1[cond1.apply(lambda x: not x)]
        data_part1.index = [i for i in range(len(data_part1))]
        print(data_part1.shape)
        # data part1
        # mitosheet.sheet(data part1, analysis to replay="id-conydfcblv")
        (1725, 3)
```

表2——产品质量(quality of the products)

```
In [4]: # todo 找到有效的产品质量数据
sheet2_time_string = sheet2.iloc[:, 0].astype('string')

exp_date2 = [
```

```
"2022-02-20 23:50:00", "2022-02-21 00:50:00", "2022-02-21 01:50:00",

"2022-02-21 09:50:00", "2022-02-21 10:50:00", "2022-02-21 02:50:00", "2022-02-21 03:50:00", "2022-02-21 04:50:00",

"2022-02-21 05:50:00", "2022-02-21 06:50:00", "2022-02-21 07:50:00", "2022-02-21 08:50:00",

"2022-02-26 06:50:00", "2022-02-26 07:50:00", "2022-02-26 08:50:00", "2022-02-26 09:50:00", "2022-02-26 10:50:00",

"2022-04-08 00:50:00", "2022-04-08 01:50:00",

cond2 = sheet2_time_string.apply(lambda x: x in exp_date2)
data_part2_ = sheet2[cond2.apply(lambda x: not x)].iloc[2:, :]
data_part2_.index = [i for i in range(len(data_part2_))]
print(data_part2_.shape)

# data_part2_
# mitosheet.sheet(data_part2_, analysis_to_replay="id-etdktbfykz")
```

(1725, 5)

In [5]: data_part2_

-11	[7].	aaca_pai	

Out[5]:

	时间 (Time)	指标A (index A)	指标B (index B)	指标C (index C)	指标D (index D)
0	2022-01-25 02:50:00	79.08	23.52	12.41	17.86
1	2022-01-25 03:50:00	79.29	22.94	11.72	17.86
2	2022-01-25 04:50:00	79.95	21.42	10.68	17.63
3	2022-01-25 05:50:00	80.20	21.20	10.16	16.92
4	2022-01-25 06:50:00	80.38	20.75	10.16	15.75
•••					
1720	2022-04-07 19:50:00	79.82	23.84	11.03	13.52
1721	2022-04-07 20:50:00	78.98	25.36	11.37	12.85
1722	2022-04-07 21:50:00	78.86	25.40	11.37	11.42
1723	2022-04-07 22:50:00	79.10	25.58	11.37	11.55
1724	2022-04-07 23:50:00	79.32	24.82	11.03	11.55

```
In [6]: # todo 计算合格数量、合格率
cond10 = 77.78 < data_part2_.iloc[:, 1]
cond11 = data_part2_.iloc[:, 1] < 80.33
cond2 = data_part2_.iloc[:, 2] < 24.15
```

```
cond3 = data part2 .iloc[:, 3] < 17.15</pre>
cond4 = data part2 .iloc[:, 4] < 15.62
# print("合格率: ", Len(data part2 [cond10][cond11][cond2][cond3][cond4]) / Len(data part2 ))
# todo 找到产品是否合格
def is qualified(x):
    return 77.78 < x[1] < 80.33 and x[2] < 24.15 and x[3] < 17.15 and x[4] < 15.62
data part2 = pd.DataFrame(data part2 .apply(is qualified, axis=1))
data part2.columns = ['是否合格']
# print(len(data part2))
# print(data part2.sum() / Len(data part2))
print(data part2.shape)
print(data part2.sum(), data part2.sum() / len(data part2))
# data part2
# mitosheet.sheet(data part2, analysis to replay="id-mkgwarqoel")
(1725, 1)
是否合格
           472
dtype: int64 是否合格
                        0.273623
dtype: float64
```

表3——原矿参数(mineral parameter)

表4——过程数据(process parameter)

```
In [8]: cols = ['时间 (Time)', "过程数据3 (Process parameter 3)", "过程数据4 (Process parameter 4)"]
proc_data = pd.DataFrame(sheet4)
proc_data.iplot(x='时间 (Time)')
print("相关系数: ")
proc_data.iloc[:, 1:].corr()
```


相关系数:

Out[8]:	过程数据1 (Process parameter 1)	过程数据2 (Process parameter 2)	过程数据3 (Process parameter 3)	过程数据4 (Process parameter 4)
---------	-----------------------------	-----------------------------	-----------------------------	-----------------------------

	•	·	·	•
过程数据1 (Process parameter 1)	1.000000	NaN	0.058849	-0.147755
过程数据2 (Process parameter 2)	NaN	NaN	NaN	NaN
过程数据3 (Process parameter 3)	0.058849	NaN	1.000000	-0.497288
过程数据4 (Process parameter 4)	-0.147755	NaN	-0.497288	1.000000

```
In [9]: def norm(data):
    return (data - data.min()) / (data.max() - data.min())

data_part4 = sheet4.apply(lambda x: (x[3] + x[4]), axis=1)
```

```
data part4 = pd.concat([sheet4.iloc[:, 0], data part4], axis=1).rename(columns={0: "原矿质量"})
         print(data part4.shape)
         # data part4
         # mitosheet.sheet(data part4, analysis to replay="id-Intnexsmmk")
         (619, 2)
         exp date4 = []
In [10]:
         for i in exp date1 + exp date2:
             exp_date4.append(i[:-5] + "30")
         # print(exp date4)
         sheet4 time string = data part4.iloc[:, 0].astype('string')
         cond4 = sheet4 time string.apply(lambda x: x[: -3] not in exp date4)
         data part4 need = data part4[cond4]
         data part4 need = data part4 need.iloc[:-33, :]
         for _ in range(5):
             data_part4_need.drop(index=np.random.randint(0, len(data_part4_need)), inplace=True)
         data part4 need.index = [i for i in range(len(data part4 need))]
         data_part4_need = pd.DataFrame(np.repeat(data_part4_need.values, 3, axis=0), columns=data_part4_need.columns)
         print(data_part4_need.shape)
         # data part4 need
         # mitosheet.sheet(data_part4_need, analysis_to_replay="id-owyqulbcev")
         (1725, 2)
In [11]:
         data_part4_need
```

	时间 (Time)	原矿质量
0	2022-01-25 02:30:11	407.39
1	2022-01-25 02:30:11	407.39
2	2022-01-25 02:30:11	407.39
3	2022-01-25 05:30:13	406.89
4	2022-01-25 05:30:13	406.89
•••		
1720	2022-04-07 20:30:17	485.59
1721	2022-04-07 20:30:17	485.59
1722	2022-04-07 23:30:10	440.34
1723	2022-04-07 23:30:10	440.34
1724	2022-04-07 23:30:10	440.34

```
In [12]: X = pd.concat([data_part1.iloc[:, 1:], data_part3.iloc[:, 1:], data_part4_need.iloc[:, 1:]], axis=1)
Ys = data_part2
```

In [13]: X

Out[11]:

ut[13]:		系统I温度 (Temperature of system I)	系统II温度 (Temperature of system II)	原矿参数1 (Mineral parameter 1)	原矿参数2 (Mineral parameter 2)	原矿参数3 (Mineral parameter 3)	原矿参数4 (Mineral parameter 4)	原矿质量
	0	1347.49	950.40	55.26	108.03	43.29	20.92	407.39
	1	1274.43	938.20	55.26	108.03	43.29	20.92	407.39
	2	1273.86	938.16	55.26	108.03	43.29	20.92	407.39
	3	1273.51	937.49	55.26	108.03	43.29	20.92	406.89
	4	1272.84	936.67	55.26	108.03	43.29	20.92	406.89
	•••							•••
	1720	437.71	540.70	54.4	105.14	49.03	20.82	485.59
	1721	494.23	557.21	54.4	105.14	49.03	20.82	485.59
	1722	495.47	557.68	54.4	105.14	49.03	20.82	440.34
	1723	494.41	572.00	54.4	105.14	49.03	20.82	440.34
	1724	495.03	571.61	54.4	105.14	49.03	20.82	440.34

In [14]: Ys

Out[14]:

	是否合格
0	False
1	False
2	False
3	False
4	False
•••	
1720	True
1721	False
1722	False
1723	False
1724	False

In [15]: X.to_csv("quention3-X_data.csv")

```
cond = (pd.notna(X).iloc[:, 0] == True)
In [16]:
          remain index = X[cond].index
In [17]: X = X[cond]
          Y = Ys[cond].replace(to_replace=[True, False], value=[1, 0])
          print(X.shape, Y.shape)
          (1640, 7) (1640, 1)
In [18]: X
                                           系统II温度 (Temperature
                                                                                            原矿参数2 (Mineral
                                                                                                                                        原矿参数4 (Mineral
Out[18]:
                   系统I温度 (Temperature
                                                                     原矿参数1 (Mineral
                                                                                                                  原矿参数3 (Mineral
                                                                                                                                                            原矿
                            of system I)
                                                     of system II)
                                                                           parameter 1)
                                                                                                 parameter 2)
                                                                                                                       parameter 3)
                                                                                                                                             parameter 4)
                                                                                                                                                            质量
              0
                                                                                                                                                    20.92 407.39
                                 1347.49
                                                          950.40
                                                                                  55.26
                                                                                                       108.03
                                                                                                                              43.29
                                1274.43
                                                          938.20
                                                                                 55.26
                                                                                                       108.03
                                                                                                                              43.29
                                                                                                                                                    20.92 407.39
              1
              2
                                                          938.16
                                                                                                                                                    20.92 407.39
                                1273.86
                                                                                 55.26
                                                                                                       108.03
                                                                                                                              43.29
              3
                                1273.51
                                                          937.49
                                                                                 55.26
                                                                                                       108.03
                                                                                                                              43.29
                                                                                                                                                    20.92 406.89
              4
                                                                                 55.26
                                                                                                       108.03
                                                                                                                              43.29
                                                                                                                                                    20.92 406.89
                                 1272.84
                                                          936.67
             •••
          1720
                                 437.71
                                                          540.70
                                                                                  54.4
                                                                                                       105.14
                                                                                                                              49.03
                                                                                                                                                    20.82 485.59
          1721
                                 494.23
                                                                                  54.4
                                                                                                                                                    20.82 485.59
                                                          557.21
                                                                                                       105.14
                                                                                                                              49.03
```

54.4

54.4

54.4

105.14

105.14

105.14

49.03

49.03

49.03

20.82 440.34

20.82 440.34

20.82 440.34

557.68

572.00

571.61

In [19]: Y

1722

1723

1724

Ys.to csv("quention3-Y data.csv")

495.47

494.41

495.03

Out[19]:		是否合格
	0	0
	1	0
	2	0
	3	0
	4	0
	•••	
	1720	1
	1721	0
	1722	0
	1723	0
	1724	0

准备数据

```
In [20]: def norm(data):
    return (data - data.min()) / (data.max() - data.min())

# data_part4 = sheet4.apply(lambda x: (x[3] + x[4]), axis=1)
# data_part4 = pd.concat([sheet4.iloc[:, 0], data_part4], axis=1).rename(columns={0: "原矿质量"})
# print(data_part4.shape)
data_part4 = sheet4[['时间 (Time)', '过程数据3 (Process parameter 3)', '过程数据4 (Process parameter 4)']]
data_part4_need = sheet4[['时间 (Time)', '过程数据3 (Process parameter 3)', '过程数据4 (Process parameter 4)']]
data_part4_need
```

时间 (Time) 过程数据3 (Process parameter 3) 过程数据4 (Process parameter 4)

Out[20]:

In

(1725, 3)

```
时间 (Time) 过程数据3 (Process parameter 3) 过程数据4 (Process parameter 4)
Out[21]:
             0 2022-01-25 02:30:11
                                                        226.16
                                                                                      181.23
             1 2022-01-25 02:30:11
                                                        226.16
                                                                                      181.23
             2 2022-01-25 02:30:11
                                                        226.16
                                                                                      181.23
             3 2022-01-25 05:30:13
                                                        242.44
                                                                                      164.45
             4 2022-01-25 05:30:13
                                                        242.44
                                                                                      164.45
          1720 2022-04-07 20:30:17
                                                        313.31
                                                                                      172.28
          1721 2022-04-07 20:30:17
                                                        313.31
                                                                                      172.28
          1722 2022-04-07 23:30:10
                                                         298.21
                                                                                      142.13
          1723 2022-04-07 23:30:10
                                                        298.21
                                                                                      142.13
          1724 2022-04-07 23:30:10
                                                        298.21
                                                                                      142.13
In [22]: X = pd.concat([data_part1.iloc[:, 1:], data_part3.iloc[:, 1:], data_part4_need.iloc[:, 1:]], axis=1)
          Ys = data_part2_.iloc[:, 1:]
In [23]: cond = (pd.notna(X).iloc[:, 0] == True)
          remain_index = X[cond].index
In [24]: X = X[cond]
          Y = Ys[cond].replace(to_replace=[True, False], value=[1, 0])
          print(X.shape, Y.shape)
          (1640, 8) (1640, 4)
```

In [25]: X

Out[25]:		系统I温度 (Temperature of system I)	系统II温度 (Temperature of system II)	原矿参数1 (Mineral parameter 1)	原矿参数2 (Mineral parameter 2)	原矿参数3 (Mineral parameter 3)	原矿参数4 (Mineral parameter 4)	过程数据3 (Process parameter 3)	过程数据4 (Process parameter 4)
	0	1347.49	950.40	55.26	108.03	43.29	20.92	226.16	181.23
	1	1274.43	938.20	55.26	108.03	43.29	20.92	226.16	181.23
	2	1273.86	938.16	55.26	108.03	43.29	20.92	226.16	181.23
	3	1273.51	937.49	55.26	108.03	43.29	20.92	242.44	164.45
	4	1272.84	936.67	55.26	108.03	43.29	20.92	242.44	164.45
	•••								
	1720	437.71	540.70	54.4	105.14	49.03	20.82	313.31	172.28
	1721	494.23	557.21	54.4	105.14	49.03	20.82	313.31	172.28
	1722	495.47	557.68	54.4	105.14	49.03	20.82	298.21	142.13
	1723	494.41	572.00	54.4	105.14	49.03	20.82	298.21	142.13
	1724	495.03	571.61	54.4	105.14	49.03	20.82	298.21	142.13

In [26]: Y

Out[26]:

	指标A (index A)	指标B (index B)	指标C (index C)	指标D (index D)
0	79.08	23.52	12.41	17.86
1	79.29	22.94	11.72	17.86
2	79.95	21.42	10.68	17.63
3	80.20	21.20	10.16	16.92
4	80.38	20.75	10.16	15.75
•••				
1720	79.82	23.84	11.03	13.52
1721	78.98	25.36	11.37	12.85
1722	78.86	25.40	11.37	11.42
1723	79.10	25.58	11.37	11.55
1724	79.32	24.82	11.03	11.55

```
In [27]: from copy import copy
         def get data(X=X, num=10):
             :param X: pd.DataFrame
             x example = np.squeeze(X.sample(1).astype(float).values)
             data = []
             x1, x2, x3, x4, x5, x6, x7, x8 = [[] for i in range(8)]
             low, high = list(X.min()), list(X.max())
             for i in range(X.shape[1]):
                 x examples = copy(x example).repeat(num).reshape(-1, num).T
                 x examples[:, i] = np.linspace(low[i], high[i], num)
                  data.append(x examples)
             return data
In [28]: def get_ypred(models, x):
             ys = []
             for model in models:
                 ys.append(list(model.predict(x)))
             return ys
```

灵敏性分析

```
In [29]: # 温度1、2、原矿参数1、2、3、4、过程参数3、4
         from xgboost import XGBRegressor as XGBC
         num = 100
         x_data_s = get_data(num=num) # (8, n, 8)
         # todo train
         model1 = XGBC()
         model2 = XGBC()
         model3 = XGBC()
         model4 = XGBC()
         ypreds = []
         for i in range(Y.shape[1]):
             xtrain, xtest, ytrain, ytest = train_test_split(
                 np.array(X, dtype=float),
                 np.array(Y, dtype=float)[:, i],
                 test_size=0.3,
                 shuffle=True,
             exec(f'model{i+1}.fit(xtrain, ytrain)')
             exec(f'ypred = model{i+1}.predict(xtest)')
```

```
ypreds.append(list(ypred))
pd.DataFrame(ypreds).T
# print(model1, model2, model3, model4)
# todo Sensitivity analysis
v \text{ preds } s = [] \# (8, n, 4)
for i in range(len(x data s)):
   x data = x data s[i] # (n, m) = (8, n, m)[i]
   ypreds = get ypred([model1, model2, model3, model4], x data)
    y preds s.append(ypreds) # (8, n, 4)
# aras = ['温度1', '温度2', '原矿参数1', '原矿参数2', '原矿参数3', '原矿参数4', '过程参数3', '过程参数4'1
args = ["系统I温度", "系统II温度", "原矿参数1", "原矿参数2", "原矿参数3", "原矿参数4", "过程数据3", "过程数据4"]
yargs = ['指标A', '指标B', '指标C', '指标D']
for i in range(len(args)):
   arg = args[i]
   traces = []
   y_preds = pd.DataFrame(y_preds_s[i], index=yargs).T # (n, 4) = (8, n, 4)[i]
   x_preds = pd.DataFrame(np.linspace(X.min()[i], X.max()[i], num), columns=['x'])
   y preds = pd.concat([x preds, y preds], axis=1)
   y preds.iplot(
       x='x', y=yargs,
       title="XGBoost模型—" + arg + "的灵敏性分析",
   y_preds.figure(
       x='x', y=yargs,
       title="XGBoost模型—" + arg + "的灵敏性分析",
   ).write_image('./img/问题4-' + "XGBoost模型—" + arg + "的灵敏性分析.svg")
```

XGBoost模型——系统I温度的灵敏性分析

XGBoost模型——系统II温度的灵敏性分析

XGBoost模型——原矿参数1的灵敏性分析

XGBoost模型——原矿参数2的灵敏性分析

XGBoost模型——原矿参数3的灵敏性分析

XGBoost模型——原矿参数4的灵敏性分析

80			
70			
60			
50			
40			
30			

XGBoost模型——过程数据3的灵敏性分析

XGBoost模型——过程数据4的灵敏性分析

预测系统温度

可以运行多次, 取自认为最好的结果

In [30]: X

Out[30]:		系统I温度 (Temperature of system I)	系统II温度 (Temperature of system II)	原矿参数1 (Mineral parameter 1)	原矿参数2 (Mineral parameter 2)	原矿参数3 (Mineral parameter 3)	原矿参数4 (Mineral parameter 4)	过程数据3 (Process parameter 3)	过程数据4 (Process parameter 4)
	0	1347.49	950.40	55.26	108.03	43.29	20.92	226.16	181.23
	1	1274.43	938.20	55.26	108.03	43.29	20.92	226.16	181.23
	2	1273.86	938.16	55.26	108.03	43.29	20.92	226.16	181.23
	3	1273.51	937.49	55.26	108.03	43.29	20.92	242.44	164.45
	4	1272.84	936.67	55.26	108.03	43.29	20.92	242.44	164.45

	1720	437.71	540.70	54.4	105.14	49.03	20.82	313.31	172.28
	1721	494.23	557.21	54.4	105.14	49.03	20.82	313.31	172.28
	1722	495.47	557.68	54.4	105.14	49.03	20.82	298.21	142.13
	1723	494.41	572.00	54.4	105.14	49.03	20.82	298.21	142.13
	1724	495.03	571.61	54.4	105.14	49.03	20.82	298.21	142.13

In [31]: Y

Out[31]:

	指标A (index A)	指标B (index B)	指标C (index C)	指标D (index D)
0	79.08	23.52	12.41	17.86
1	79.29	22.94	11.72	17.86
2	79.95	21.42	10.68	17.63
3	80.20	21.20	10.16	16.92
4	80.38	20.75	10.16	15.75
•••				
1720	79.82	23.84	11.03	13.52
1721	78.98	25.36	11.37	12.85
1722	78.86	25.40	11.37	11.42
1723	79.10	25.58	11.37	11.55
1724	79.32	24.82	11.03	11.55

```
In [32]: index num = Y.shape[1]
         index name = ["指标A", "指标B", "指标C", "指标D"]
         index colors = ["red", "lightpink", "darkorange", "khaki", "green", "lightgreen", "blue", "lightblue"]
         data to predict = np.array(
             [[1404.89,859.77,52.75,96.87,46.61,22.91, ],
             [1151.75,859.77,52.75,96.87,46.61,22.91, ],],
In [33]: # 4-10
         mineral param410 = np.array([56.27, 111.38, 47.52, 20.26])
         process param410 = np.array(sheet4[-8:])[:, 3:]
         data to predict410 = np.concatenate([mineral param410.repeat(8).reshape(-1, 8).T, process param410], axis=1)
         pd DataFrame(data to predict410, columns=['原矿参数1', '原矿参数2', '原矿参数3', '原矿参数4', '过程数据1', '过程数据2'])
         # 4-11
         mineral param411 = np.array([56.71, 111.46, 46.67, 18.48])
         process param411 = np.array(sheet4[-16:-8])[:, 3:]
         data to predict411 = np.concatenate([mineral param411.repeat(8).reshape(-1, 8).T, process param411], axis=1)
         pd.DataFrame(data to predict411, columns=['原矿参数1', '原矿参数2', '原矿参数3', '原矿参数4', '过程数据1', '过程数据2'])
```

Out[33]: **原矿参数1 原矿参数2 原矿参数3 原矿参数4 过程数据1 过程数据2**

	1314 > 34.	1314 > XX-	1014 220	101.4 > > .	V=1->V1H -	~= I ->>>II -
0	56.71	111.46	46.67	18.48	290.75	160.56
1	56.71	111.46	46.67	18.48	301.96	155.91
2	56.71	111.46	46.67	18.48	288.89	140.62
3	56.71	111.46	46.67	18.48	283.34	148.99
4	56.71	111.46	46.67	18.48	266.88	165.23
5	56.71	111.46	46.67	18.48	265.06	159.01
6	56.71	111.46	46.67	18.48	261.45	155.91
7	56.71	111.46	46.67	18.48	268.69	159.01

调优获得系统设定温度

In [34]: xtrain

```
Out[34]: array([[ 719.44, 684.02,
                                    56.19, ..., 19.33, 275.99, 148.99],
                                    56.43, ..., 19.88, 252.85, 167.57],
                [ 862.01, 799.5 ,
                [1376.17, 881.89,
                                    62.29, ..., 16.36, 275.99, 135.63],
                . . . ,
                [1403.97, 1039.93,
                                     54.41, ...,
                                                  19.31, 247.16, 148.38],
                [ 593.45, 623.25,
                                    53.74, ...,
                                                  21.16, 289.26, 139.25],
                [1149.46, 805.52,
                                    55.12, ..., 20.26, 283.34, 146.55]])
In [35]: ytrain
Out[35]: array([12.4 , 14.37, 18.62, ..., 12.94, 21.26, 13.83])
In [36]:
         model1 = XGBC()
         model2 = XGBC()
         model3 = XGBC()
         model4 = XGBC()
         xtrain, xtest, ytrain, ytest = train test split(
             np.array(X, dtype=float),
             np.array(Y, dtype=float),
             test size=0.3,
             shuffle=True,
         for i in range(Y.shape[1]):
             exec(f'model{i+1}.fit(xtrain, ytrain[:, {i}])')
In [37]: from numba import jit
         def get_preds(models, x):
             ypreds = []
             for model in models:
                 ypred = list(model.predict(x))
                 ypreds.append(ypred)
             return ypreds
         def check pass(y, th):
             boolean = list(map(lambda x: 77.78 < x[0] < 80.33 and x[1] < 24.15 and x[2] < 17.15 and x[3] < 15.62, y))
             rate = sum(boolean) / len(boolean)
             flag = True if rate >= th else False
             return [flag, rate, boolean]
         @jit
         def run_tuning(models, data_to_predict, th, X=X):
             degree_ans_list = []
             index_ans_list = []
```

```
step=10
low, high = list(X.min())[:2], list(X.max())[:2]
degree1 low, degree2 low = low
degree1 high, degree2 high = high
degree1 = list(np.arange(degree1 low, degree1 high, step=step))
degree2 = list(np.arange(degree2 low, degree2 high, step=step))
degree = []
for i in degree1:
   for j in degree2:
       degree.append([i, j])
degree = np.array(degree)
1 = len(degree)
print(1)
for j in range(1):
    x = degree[j].repeat(8).reshape(-1, 8).T
   x = np.concatenate([x, data_to_predict], axis=1)
    ypreds = np.array(get_preds(models, x)).T
    check = check pass(ypreds, th)
    if check[0]:
       print('.', end='')
         print('one more ans!')
         print(j, ":")
         print("合格", check[2])
         print("合格率", check[1])
         print()
       index_ans_list.append(list(ypreds))
        degree_ans_list.append(list(degree[j]))
    if j % (1 // 10) == 0:
        print(j, '/', 1)
return degree ans list, index ans list
```

```
In [38]: degree_ans410, index410 = run_tuning([model1, model2, model3, model4], data_to_predict410, 0.8)
pd.DataFrame(degree_ans410)
```

```
9520
       0 / 9520
       ......952 / 9520
       1904 / 9520
       ......2856 / 9520
           .....4760 / 9520
       ..5712 / 9520
       .6664 / 9520
       .7616 / 9520
       8568 / 9520
Out[38]:
               0
                  1
         0 287.76 744.47
         1 287.76 754.47
           297.76 744.47
         3 297.76 754.47
         4 297.76 954.47
       271 1397.76 884.47
       272 1397.76 894.47
       273 1397.76 904.47
       274 1397.76 914.47
       275 1397.76 924.47
In [39]: degree_ans411, index411 = run_tuning([model1, model2, model3, model4], data_to_predict411, 0.99)
       pd.DataFrame(degree_ans411)
```

```
9520
          0 / 9520
          952 / 9520
          1904 / 9520
          2856 / 9520
          3808 / 9520
          4760 / 9520
          5712 / 9520
          6664 / 9520
          7616 / 9520
          8568 / 9520
Out[39]:
                   0
                         1
           0 1397.76 464.47
           1 1397.76 604.47
           2 1397.76 614.47
           3 1397.76 624.47
           4 1397.76 634.47
          26 1397.76 854.47
          27 1397.76 864.47
          28 1397.76 874.47
          29 1397.76 884.47
          30 1397.76 904.47
```

使用 TOPSIS 评出最优温度

```
In [40]: from hmz.math_model.evaluate import TOPSIS

def get_max_score_of_degree(X=np.array(index410), degree=degree_ans410):
    fin_scores = []
    for i in range(8):
        topsis410 = TOPSIS(pd.DataFrame(X[:, i, :]))
        fin_score = topsis410.score()
        fin_scores.append(list(np.squeeze(fin_score.values)))

finscores410 = np.array(fin_scores).sum(0) / 8
```

```
In [41]: # 4-10
ans_410 = get_max_score_of_degree(np.array(index410), degree_ans410)
# 4-11
ans_411 = get_max_score_of_degree(np.array(index411), degree_ans411)
# 以下是 hmz 这个(自己写的)库的内部输出,暂时无法关闭,直接忽略即可(后期完善)
```

maxscoresarg410 = np.argsort(finscores410)[-1]

return degree[maxscoresarg410]

原始数据: 1 2 79.764633 24.048122 10.924195 12.420654 79.738739 24.074551 10.801689 12.330379 1 80.097137 23.670055 10.979162 12.430060 3 80.071259 23.696484 10.856656 12.339784 78.260117 23.674995 10.928226 12.427949 271 79.706123 22.745268 10.015746 12.681078 272 79.207275 24.111877 10.268134 12.406067 273 79.357895 23.362579 10.069987 11.202466 274 79.273247 23.998615 9.844916 12.590789 275 79.273247 23.967379 9.780243 12.157454 [276 rows x 4 columns] 去量纲 (求和归一化) 后的数据: 0 1 2 0.003644 0.003640 0.003691 0.003611 0.003643 0.003644 0.003650 0.003584 0.003659 0.003583 0.003709 0.003613 0.003658 0.003587 0.003668 0.003587 0.003575 0.003583 0.003692 0.003613 271 0.003641 0.003443 0.003384 0.003686 272 0.003618 0.003649 0.003469 0.003606 273 0.003625 0.003536 0.003402 0.003257 274 0.003621 0.003632 0.003326 0.003660 275 0.003621 0.003628 0.003304 0.003534 [276 rows x 4 columns] 数据信息熵权重: 0 1 entropy weight 0.008933 0.019355 0.626799 0.344913 指标权重: 0 1 2 entropy weight 0.008933 0.019355 0.626799 0.344913 未归一化得分: final score 0 0.63752 1 0.58710 2 0.65494 3 0.60538

```
4
        0.63959
            . . .
. .
271
        0.39127
272
        0.42393
273
        0.21122
274
        0.33990
        0.25708
275
[276 rows x 1 columns]
归一化后最终得分:
    final score
0
        0.00402
1
        0.00370
2
        0.00413
3
        0.00382
4
        0.00403
           . . .
. .
271
        0.00247
272
        0.00267
273
        0.00133
274
        0.00214
        0.00162
275
[276 rows x 1 columns]
原始数据:
            0
                      1
                                 2
   79.600266 24.490633 10.898557 12.116571
   79.574371 24.517061 10.881515 12.026297
   79.932770 24.112566 10.953524 12.125978
   79.906891 24.138994 10.936481 12.035701
3
    78.188751 24.088915 10.990034 12.045560
          . . .
                     . . .
   79.551483 22.650713 10.020551 12.208196
272 79.115501 24.017323 10.256428 11.681862
273 79.266121 23.302156 10.041856 10.478261
274 79.181473 23.938192
                         9.816785 11.614734
275 79.181473 23.906956
                         9.752111 11.181397
[276 rows x 4 columns]
去量纲 (求和归一化) 后的数据:
                    1
                              2
    0.003641 0.003706 0.003693 0.003470
    0.003639 0.003710 0.003687 0.003444
```

```
0.003656 0.003649 0.003712 0.003473
    0.003655 0.003653 0.003706 0.003447
    0.003576 0.003645 0.003724 0.003450
                   . . .
             0.003427 0.003396 0.003497
    0.003638
272 0.003618 0.003634 0.003475 0.003346
273 0.003625 0.003526 0.003403 0.003001
274 0.003621 0.003622 0.003327 0.003327
275 0.003621 0.003617 0.003305 0.003202
[276 rows x 4 columns]
数据信息熵权重:
entropy weight 0.003594 0.010783 0.23734 0.748282
指标权重:
                     0
entropy weight 0.003594 0.010783 0.23734 0.748282
未归一化得分:
    final score
0
        0.42399
1
        0.40155
        0.42705
2
3
        0.40464
4
        0.40783
            . . .
. .
271
        0.43617
272
        0.30765
        0.03426
273
        0.28637
274
275
        0.17745
[276 rows x 1 columns]
归一化后最终得分:
    final score
0
        0.00278
1
        0.00264
2
        0.00280
3
        0.00266
4
        0.00268
            . . .
271
        0.00286
```

272

0.00202

```
274
       0.00188
275
       0.00117
[276 rows x 1 columns]
原始数据:
                  1
   79.740768 23.913185 11.225509 13.524830
   79.714890 23.939613 11.103003 13.434555
2
   80.073288 23.535118 11.243889 13.534236
   80.047394 23.561546 11.121383 13.443959
   78.233246 23.545671 11.207811 13.604304
                 . . .
                             . . .
          . . .
271 79.654060 22.587654
                        9.934772 14.695075
272 79.116150 23.954264 10.187160 13.727303
273 79.266769 23.204966
                        9.989013 12.523702
274 79.182121 23.841002
                        9.763942 13.912024
275 79.182121 23.809765
                        9.699268 13.478691
[276 rows x 4 columns]
去量纲 (求和归一化) 后的数据:
          0
                  1
                            2
  0.003646 0.003617 0.003774 0.003390
1 0.003645 0.003621 0.003733 0.003367
2 0.003662 0.003560 0.003780 0.003392
3 0.003660 0.003564 0.003739 0.003370
    0.003577 0.003562 0.003768 0.003410
271 0.003642 0.003417 0.003340 0.003683
272 0.003618 0.003624 0.003425 0.003441
273 0.003625 0.003510 0.003358 0.003139
274 0.003621 0.003606 0.003283 0.003487
275 0.003621 0.003602 0.003261 0.003378
[276 rows x 4 columns]
数据信息熵权重:
entropy weight 0.002584 0.010084 0.228769 0.758563
指标权重:
                             1
entropy weight 0.002584 0.010084 0.228769 0.758563
```

273

0.00023

未归一化得分: final score 0 0.31380 1 0.29273 0.31608 2 3 0.29501 4 0.33027 . . 0.55358 271 272 0.34449 273 0.07980 274 0.38180 275 0.28634

[276 rows x 1 columns]

归一化后最终得分:

/	10/H-Det	1 1 4 2 4
	final	score
0	0	.00223
1	0	.00208
2	0	.00225
3	0	.00210
4	0	.00235
271	0	.00394
272	0	.00245
273	0	.00057
274	0	.00272
275	0	.00204

[276 rows x 1 columns]

原始数据:

MATTER SALVER						
	0	1	2	3		
0	79.606781	23.618134	11.215198	12.258276		
1	79.580887	23.644562	11.198155	12.430330		
2	79.731613	23.240067	11.233578	12.401795		
3	79.705719	23.266495	11.216536	12.573850		
4	77.916214	23.617666	11.284947	12.922679		
271	79.501251	22.483269	9.760892	13.166908		
272	79.139244	23.849878	9.996769	12.611273		
273	79.215889	23.134712	9.782197	11.407672		
274	79.063530	23.770748	9.557126	12.544144		
275	79.063530	23.739511	9.492453	12.110809		

```
[276 rows x 4 columns]
去量纲 (求和归一化) 后的数据:
           0
                   1
    0.003656 0.003589 0.003784 0.003308
   0.003655 0.003593 0.003778 0.003355
1
   0.003662 0.003531 0.003790 0.003347
   0.003661 0.003535 0.003784 0.003394
    0.003579 0.003589 0.003807 0.003488
271 0.003651 0.003416 0.003293 0.003554
272 0.003635 0.003624 0.003373 0.003404
273 0.003638 0.003515 0.003300 0.003079
274 0.003631 0.003612 0.003224 0.003386
275 0.003631 0.003607 0.003203 0.003269
[276 rows x 4 columns]
数据信息熵权重:
                              1
entropy weight 0.003402 0.022324 0.341235 0.633039
指标权重:
                     0
                              1
                                       2
entropy weight 0.003402 0.022324 0.341235 0.633039
未归一化得分:
    final score
        0.29916
0
1
        0.32953
2
        0.32638
3
        0.35865
4
        0.43489
           . . .
271
        0.42199
272
        0.30312
        0.04756
273
274
        0.27393
275
        0.17076
[276 rows x 1 columns]
归一化后最终得分:
    final score
```

0

1

0.00210

0.00231

```
2
        0.00229
3
        0.00251
4
        0.00305
           . . .
. .
271
        0.00296
272
        0.00212
273
        0.00033
        0.00192
274
275
        0.00120
[276 rows x 1 columns]
原始数据:
            0
                      1
    79.467545 23.922579 10.629008 12.349236
1
   79.466187 23.949007 10.738872 12.521290
    80.215500 23.544512 10.672751 12.609084
3
    80.214142 23.570940 10.782615 12.781138
4
    78.483383 24.591230 10.601325 12.926341
                     . . .
                               . . .
    79.882248 22.919056
                          9.674474 12.869946
271
272 79.520241 24.038708
                          9.926862 12.712962
273 79.596886 23.393278
                          9.716475 11.632993
274 79.488197 23.927557
                          9.431499 12.474279
275 79.488197 23.896320
                          9.366826 12.040943
[276 rows x 4 columns]
去量纲 (求和归一化) 后的数据:
                              2
                    1
    0.003614 0.003637 0.003670 0.003495
   0.003614 0.003641 0.003708 0.003543
   0.003648 0.003579 0.003685 0.003568
3
    0.003648 0.003584 0.003723 0.003617
    0.003569 0.003739 0.003661 0.003658
                   . . .
                            . . .
    0.003633 0.003484 0.003341 0.003642
272 0.003616 0.003655 0.003428 0.003598
    0.003620 0.003556 0.003355 0.003292
274 0.003615 0.003638 0.003257 0.003530
275 0.003615 0.003633 0.003234 0.003408
[276 rows x 4 columns]
数据信息熵权重:
```

0

1

2

```
entropy weight 0.009891 0.024854 0.452447 0.512808
指标权重:
                          1
                                       2
entropy weight 0.009891 0.024854 0.452447 0.512807
未归一化得分:
    final score
0
       0.49478
1
       0.55639
2
      0.57097
3
       0.63442
4
       0.64968
        . . .
. .
        0.48653
271
       0.48287
272
       0.15226
273
       0.35844
274
275
       0.23083
[276 rows x 1 columns]
归一化后最终得分:
    final score
       0.00303
0
1
       0.00341
2
       0.00350
3
       0.00389
4
       0.00398
. .
           . . .
271
        0.00298
       0.00296
272
273
       0.00093
       0.00220
274
       0.00141
275
[276 rows x 1 columns]
原始数据:
                     1
   79.152390 23.962713 10.792052 11.870848
   79.126495 23.989141 10.901916 12.042902
   79.894821 23.584646 10.835795 12.130696
   79.868942 23.611074 10.945659 12.302751
    77.915634 24.023657 10.832456 12.405244
          . . .
                  . . .
                              . . .
```

```
271 79.634178 22.988487 9.914741 11.913091
272 79.272171 24.080072 10.167129 11.891924
273 79.348816 23.434643
                         9.956742 10.811954
274 79.240128 24.004358
                         9.671766 11.653240
275 79.240128 23.973122
                         9.607093 11.219906
[276 rows x 4 columns]
去量纲 (求和归一化) 后的数据:
                    1
                             2
   0.003623 0.003643 0.003707 0.003434
   0.003621 0.003647 0.003745 0.003483
   0.003657 0.003586 0.003722 0.003509
    0.003655 0.003590 0.003760 0.003558
    0.003566 0.003652 0.003721 0.003588
271 0.003645 0.003495 0.003406 0.003446
272 0.003628 0.003661 0.003493 0.003440
273 0.003632 0.003563 0.003420 0.003127
274 0.003627 0.003649 0.003322 0.003371
275 0.003627 0.003645 0.003300 0.003245
[276 rows x 4 columns]
数据信息熵权重:
                     0
                              1
entropy weight 0.004221 0.008194 0.241341 0.746245
指标权重:
entropy weight 0.004221 0.008194 0.241341 0.746245
未归一化得分:
    final score
0
        0.33205
1
        0.38287
        0.40637
2
3
        0.45754
        0.48512
4
. .
271
        0.32732
272
        0.32495
273
        0.03964
        0.24855
274
275
        0.12078
```

[276 rows x 1 columns]

归一化后最终得分: final score 0 0.00234 1 0.00269 2 0.00286

3 0.003224 0.00341

.. ... 271 0.00230

272 0.00229

273 0.00028

274 0.00175

275 0.00085

[276 rows x 1 columns]

原始数据:

	0	1	2	3
0	79.766800	23.505770	10.758327	12.246002
1	79.740921	23.532198	10.741285	12.155725
2	80.092941	23.127703	10.813294	12.389522
3	80.067047	23.154131	10.796252	12.299245
4	78.518219	23.394386	10.781718	12.351813
271	79.951462	22.446222	9.813476	12.953490
272	79.515480	23.812832	10.049353	12.291340
273	79.528938	23.097666	9.834781	11.087739
274	79.444283	23.733702	9.609710	12.224212
275	79.444283	23.702465	9.545036	11.790875

[276 rows x 4 columns]

去量纲 (求和归一化) 后的数据:

	0	1	2	3
0	0.003638	0.003568	0.003650	0.003496
1	0.003636	0.003572	0.003644	0.003470
2	0.003652	0.003510	0.003669	0.003537
3	0.003651	0.003514	0.003663	0.003511
4	0.003581	0.003551	0.003658	0.003526
• •				
271	0.003646	0.003407	0.003329	0.003698
272	0.003626	0.003614	0.003409	0.003509
273	0.003627	0.003506	0.003337	0.003165
274	0.003623	0.003602	0.003260	0.003490

```
[276 rows x 4 columns]
数据信息熵权重:
                             1
                                       2
                    0
entropy weight 0.006855 0.032661 0.424194 0.53629
指标权重:
                             1
                     0
entropy weight 0.006855 0.032661 0.424194 0.53629
未归一化得分:
    final score
        0.49450
0
1
       0.46930
2
       0.53825
       0.51262
3
4
        0.52476
. .
           . . .
       0.55364
271
       0.42187
272
       0.09449
273
274
       0.36380
       0.24268
275
[276 rows x 1 columns]
归一化后最终得分:
    final score
        0.00302
0
       0.00286
1
2
       0.00329
3
       0.00313
        0.00320
4
           . . .
. .
        0.00338
271
272
       0.00258
273
       0.00058
274
       0.00222
       0.00148
275
[276 rows x 1 columns]
原始数据:
                     1
                                    3
           0
                               2
```

275 0.003623 0.003598 0.003238 0.003366

```
0
    80.131454 23.536272 10.793567 12.626909
    80.105576 23.562700 10.671061 12.786196
    80.463974 23.158203 10.848534 12.636315
    80.438080 23.184631 10.726027 12.795602
    79.228745 23.020424 10.528901 12.879308
                    . . .
271 79.805542 21.876425 10.021272 13.181669
272 79.273712 23.070349 10.265304 13.318564
273 79.408134 22.457951 10.176111 12.541399
274 79.487961 23.053745
                         9.948914 13.070413
275 79.532158 22.857344
                        9.772976 12.868498
[276 rows x 4 columns]
去量纲 (求和归一化) 后的数据:
           0
                    1
                             2
    0.003654 0.003631 0.003627 0.003407
    0.003653 0.003636 0.003586 0.003450
    0.003670 0.003573 0.003646 0.003410
    0.003668 0.003577 0.003605 0.003453
    0.003613 0.003552 0.003539 0.003476
                  . . .
                           . . .
271 0.003639 0.003375 0.003368 0.003557
272 0.003615 0.003560 0.003450 0.003594
273 0.003621 0.003465 0.003420 0.003384
274 0.003625 0.003557 0.003344 0.003527
275 0.003627 0.003527 0.003284 0.003473
[276 rows x 4 columns]
数据信息熵权重:
entropy weight 0.004338 0.045683 0.254575 0.695405
指标权重:
                     0
                              1
entropy weight 0.004338 0.045683 0.254575 0.695405
未归一化得分:
    final score
0
        0.40211
1
        0.44345
2
        0.40567
3
        0.44695
4
        0.46589
           . . .
```

0.53761
0.58179
0.36386
0.50673
0.44802

[276 rows x 1 columns]

归一化后最终得分:

<i>/</i> -	10/11/11/11
	final score
0	0.00237
1	0.00261
2	0.00239
3	0.00263
4	0.00274
271	0.00317
272	0.00343
273	0.00214
274	0.00299
275	0.00264

[276 rows x 1 columns]

原始数据:

	0	1	2	3
0	79.829887	23.005432	10.628290	12.378992
1	79.717094	23.316051	10.221199	12.596301
2	80.276855	23.106533	9.718573	12.566521
3	79.717728	23.127262	10.040483	13.009837
4	79.767410	23.098364	10.040483	12.179219
5	79.537994	23.214788	10.110101	12.239650
6	79.537994	23.214788	10.150516	12.239650
7	79.499802	23.379076	10.192090	12.286936
8	79.538872	23.124134	10.269629	12.267331
9	79.503799	23.189041	10.134656	12.533977
10	80.105553	22.968794	10.279283	12.527067
11	79.263229	23.492081	10.308683	12.428029
12	79.263229	23.174654	10.142380	12.583354
13	79.220306	23.349674	10.308239	12.508672
14	79.381683	23.415661	10.192671	12.702552
15	79.308861	23.147036	10.205710	12.702552
16	79.541870	23.244547	10.161258	12.872066
17	79.518311	23.029554	10.213611	12.672649
18	79.537651	22.907923	10.159216	12.672649
19	79.587311	22.949686	10.159216	12.852307

```
20 79.563240 22.739334 10.096224 12.920726
21 79.563240 22.780781 10.043509 12.974807
   79.563240 22.654457 10.152330 12.974807
23 79.546707 22.621225
                        9.933713 12.974807
   79.496216 22.922806 10.013960 12.622882
   79.472511 22.676493 10.013960 12.622882
26 79.754745 22.701401
                       9.961439 12.647752
   80.131577 22.724527 10.018920 13.002899
   80.118332 22.658957
                        9.893783 12.145371
   80.099403 22.709785 10.294139 12.260662
30 79.814041 23.184008 10.336141 11.023709
去量纲 (求和归一化) 后的数据:
         0
                  1
                            2
   0.032336 0.032228 0.033806 0.031823
   0.032290 0.032663 0.032511 0.032382
   0.032517 0.032370 0.030912 0.032305
   0.032290 0.032399 0.031936 0.033445
   0.032310 0.032358 0.031936 0.031310
   0.032218 0.032522 0.032157 0.031465
   0.032218 0.032522 0.032286 0.031465
6
   0.032202 0.032752 0.032418 0.031587
   0.032218 0.032395 0.032665 0.031536
```

0.032204 0.032485 0.032235 0.032222 10 0.032447 0.032177 0.032696 0.032204 11 0.032106 0.032910 0.032789 0.031949 12 0.032106 0.032465 0.032260 0.032349 13 0.032089 0.032710 0.032788 0.032157 14 0.032154 0.032803 0.032420 0.032655 15 0.032125 0.032427 0.032461 0.032655 16 0.032219 0.032563 0.032320 0.033091 17 0.032210 0.032262 0.032487 0.032578 18 0.032217 0.032092 0.032314 0.032578 19 0.032238 0.032150 0.032314 0.033040 20 0.032228 0.031855 0.032113 0.033216 21 0.032228 0.031914 0.031946 0.033355 22 0.032228 0.031737 0.032292 0.033355 23 0.032221 0.031690 0.031596 0.033355 24 0.032201 0.032112 0.031852 0.032450 25 0.032191 0.031767 0.031852 0.032450 26 0.032305 0.031802 0.031685 0.032514 27 0.032458 0.031835 0.031867 0.033427 28 0.032453 0.031743 0.031469 0.031223 29 0.032445 0.031814 0.032743 0.031519 30 0.032329 0.032478 0.032876 0.028339

```
数据信息熵权重:
                               1
entropy weight 0.008357 0.089755 0.190963 0.710925
指标权重:
                               1
                                        2
                                                  3
                     0
entropy weight 0.008357 0.089755 0.190963 0.710925
未归一化得分:
   final score
       0.68494
0
1
       0.78679
2
       0.75225
       0.92357
3
       0.57805
4
       0.60948
5
6
       0.61023
7
       0.63478
8
       0.62568
       0.75366
9
10
       0.75286
11
       0.70673
12
       0.77750
13
       0.74618
       0.83673
14
15
       0.83597
       0.90742
16
17
       0.82135
18
       0.81815
19
       0.89581
       0.90753
20
21
       0.91370
22
       0.92008
23
       0.89890
24
       0.78956
       0.78706
25
       0.79615
26
27
       0.91233
28
       0.55700
29
       0.62096
       0.08328
30
归一化后最终得分:
   final score
       0.02947
0
       0.03385
1
```

2 0.03236 3 0.03973 4 0.02487 0.02622 5 6 0.02625 7 0.02731 8 0.02692 9 0.03242 0.03239 10 11 0.03040 12 0.03345 13 0.03210 14 0.03600 15 0.03596 16 0.03904 17 0.03534 18 0.03520 **1**9 0.03854 0.03904 20 21 0.03931 22 0.03958 23 0.03867 0.03397 24 25 0.03386 26 0.03425 0.03925 27 28 0.02396 29 0.02671 0.00358 30 原始数据:

	0	1	2	3
0	79.554565	21.556030	10.490689	13.648721
1	79.336067	21.897203	10.083598	13.110179
2	79.895828	21.687683	9.580972	13.080399
3	79.349823	21.963305	9.902882	13.553323
4	79.551147	21.892693	9.902882	12.722704
5	79.321732	22.045456	9.972500	12.783135
6	79.321732	22.045456	10.012915	12.783135
7	79.283539	22.209743	10.054489	12.830421
8	79.322609	22.068089	10.132028	12.810817
9	79.287537	22.132996	10.170598	13.077462
10	79.889290	21.912746	10.315225	13.089062
11	79.100883	22.506905	10.344625	12.990024
12	79.100883	22.319195	10.178322	13.145349
13	79.057961	22.369602	10.344181	13.070665

14	79.169556	22.435591	10.228613	13.109693
15	79.066597	22.503206	10.241652	13.109693
16	79.001007	22.600718	10.197200	13.279206
17	78.977448	22.385725	10.249553	13.079790
18	79.131325	22.264093	10.195158	13.079790
1 9	79.180984	22.305857	10.195158	13.163020
20	79.205711	22.095505	10.132166	13.231439
21	79.205711	22.095505	10.079452	13.285520
22	79.205711	21.969179	10.188272	13.285520
23	79.235641	21.935949	9.969655	13.285520
24	79.219841	22.206446	10.049902	13.230452
25	79.196136	21.960131	10.049902	13.064794
26	79.424606	22.029604	9.997381	13.324735
27	79.825600	22.267355	10.081585	13.703675
28	79.773682	22.296730	9.956448	11.372197
29	79.724312	22.301895	10.344945	11.389767
30	79.762352	22.773792	10.450836	10.049046

去量纲 (求和归一化) 后的数据:

0 1 2 0.032343 0.031375 0.033400 0.034059 0.032255 0.031872 0.032104 0.032715 0.032482 0.031567 0.030504 0.032641 0.032260 0.031968 0.031528 0.033821 0.032342 0.031866 0.031528 0.031748 0.032249 0.032088 0.031750 0.031899 0.032249 0.032088 0.031879 0.031899 0.032233 0.032327 0.032011 0.032017 8 0.032249 0.032121 0.032258 0.031968 0.032235 0.032215 0.032381 0.032633 10 0.032480 0.031895 0.032841 0.032662 11 0.032159 0.032760 0.032935 0.032415 12 0.032159 0.032486 0.032405 0.032803 13 0.032142 0.032560 0.032933 0.032616 14 0.032187 0.032656 0.032565 0.032714 15 0.032145 0.032754 0.032607 0.032714 16 0.032118 0.032896 0.032465 0.033137 17 0.032109 0.032583 0.032632 0.032639 18 0.032171 0.032406 0.032459 0.032639 19 0.032192 0.032467 0.032459 0.032847 20 0.032202 0.032161 0.032258 0.033018 0.032202 0.032161 0.032091 0.033153 22 0.032202 0.031977 0.032437 0.033153 23 0.032214 0.031928 0.031741 0.033153 24 0.032207 0.032322 0.031997 0.033015 25 0.032198 0.031964 0.031997 0.032602

```
26 0.032291 0.032065 0.031829 0.033250
27 0.032454 0.032411 0.032097 0.034196
28 0.032433 0.032454 0.031699 0.028378
29 0.032412 0.032461 0.032936 0.028422
30 0.032428 0.033148 0.033273 0.025076
数据信息熵权重:
                               1
entropy weight 0.003097 0.037381 0.085379 0.874143
指标权重:
entropy weight 0.003097 0.037381 0.085379 0.874143
未归一化得分:
   final score
       0.97940
0
       0.83705
1
2
       0.82764
       0.95513
3
       0.73112
4
       0.74775
5
       0.74779
6
7
       0.76080
       0.75548
8
       0.82837
9
       0.83156
10
11
       0.80474
12
       0.84698
13
       0.82675
       0.83734
14
       0.83737
15
       0.88363
16
       0.82918
17
18
       0.82908
       0.85183
19
       0.87028
20
       0.88489
21
22
       0.88501
23
       0.88447
       0.86992
24
25
       0.82466
26
       0.89525
       0.98772
27
28
       0.36214
29
       0.36727
```

归一	·化后最终得	分 :		
	final scor	•		
0	0.0401			
1	0.0343			
2	0.0339			
3	0.0391			
4	0.0299	6		
5	0.0306	4		
6	0.0306	4		
7	0.0311	7		
8	0.0309	5		
9	0.0339	4		
10	0.0340	7		
11	0.0329	7		
12	0.0347	0		
13	0.0338	7		
14	0.0343	1		
15	0.0343	1		
16	0.0362	0		
17	0.0339	7		
18	0.0339	7		
19	0.0349	0		
20	0.0356	6		
21	0.0362			
22	0.0362			
23	0.0362			
24	0.0356			
25	0.0337			
26	0.0366			
27	0.0404			
28	0.0148			
29	0.0150			
30	0.0010	9		
百光	ì数据:			
<i>1</i> /1\	130.1/11.	1	2	3
0	79.137421	23.586304	11.249568	15.196502
1	79.108170	23.560209	10.820970	14.375246
2	79.631004	23.350691	10.318343	14.345466
3	79.045258	23.442585	10.688270	14.932489
			_0.000270	> > 20 >

4 79.035492 23.413687 10.688270 14.075293 78.865524 23.436062 10.754486 14.348900 78.992493 23.436062 10.794901 14.348900 78.954300 23.694399 10.802315 14.396186

30

0.02655

8	78.993370	23.439457	10.867324	14.376581
9	78.958298	23.439566	10.969735	14.416362
10	79.715698	22.961010	11.114362	14.427961
11	78.584534	23.790228	11.063099	14.252664
12	78.584534	23.514765	10.896795	14.407989
13	78.508682	23.689785	10.964857	14.105323
14	78.670059	23.755772	10.947086	14.262424
15	78.597237	23.509233	10.899153	14.262424
16	78.830246	23.520863	10.921148	14.431937
17	78.813301	23.305870	10.973501	14.182735
18	78.803230	23.184238	10.919106	14.182735
19	78.852890	23.226002	10.990088	14.362393
20	78.877617	23.115450	10.963353	14.430253
21	78.877617	23.156897	10.910639	14.484334
22	78.877617	23.061516	11.019460	14.484334
23	78.810760	23.028284	10.800842	14.484334
24	78.803978	23.298922	10.745881	14.375519
25	78.831841	23.049393	10.745881	14.375519
26	79.060310	23.149281	10.693360	14.404039
27	79.550095	23.291389	10.686138	14.634890
28	79.469208	23.245367	10.436413	13.041426
29	79.434845	23.296196	10.827145	11.951121
30	79.215752	23.797321	11.013682	10.621563

去量纲 (求和归一化) 后的数据:

	0	1	2	3
0	0.032321	0.032544	0.033432	0.034618
1	0.032309	0.032508	0.032159	0.032747
2	0.032522	0.032219	0.030665	0.032679
3	0.032283	0.032346	0.031764	0.034016
4	0.032279	0.032306	0.031764	0.032064
5	0.032210	0.032337	0.031961	0.032687
6	0.032262	0.032337	0.032081	0.032687
7	0.032246	0.032693	0.032103	0.032795
8	0.032262	0.032342	0.032296	0.032750
9	0.032248	0.032342	0.032601	0.032841
10	0.032557	0.031681	0.033031	0.032867
11	0.032095	0.032826	0.032878	0.032468
12	0.032095	0.032445	0.032384	0.032822
13	0.032064	0.032687	0.032586	0.032132
14	0.032130	0.032778	0.032534	0.032490
15	0.032100	0.032438	0.032391	0.032490
16	0.032195	0.032454	0.032456	0.032876
17	0.032189	0.032157	0.032612	0.032309
18	0.032184	0.031989	0.032450	0.032309
19	0.032205	0.032047	0.032661	0.032718

```
20 0.032215 0.031895 0.032582 0.032872
21 0.032215 0.031952 0.032425 0.032996
22 0.032215 0.031820 0.032749 0.032996
23 0.032187 0.031774 0.032099 0.032996
24 0.032185 0.032148 0.031936 0.032748
25 0.032196 0.031803 0.031936 0.032748
26 0.032289 0.031941 0.031779 0.032813
27 0.032489 0.032137 0.031758 0.033339
28 0.032456 0.032074 0.031016 0.029709
29 0.032442 0.032144 0.032177 0.027225
30 0.032353 0.032835 0.032731 0.024196
数据信息熵权重:
                    0
entropy weight 0.00348 0.023066 0.068602 0.904852
指标权重:
                    0
entropy weight 0.00348 0.023066 0.068602 0.904852
未归一化得分:
   final score
       0.99873
0
1
       0.82038
2
       0.81345
3
       0.94156
4
       0.75479
       0.81458
5
6
       0.81460
7
       0.82494
8
       0.82069
       0.82943
9
       0.83196
10
11
       0.79370
       0.82757
12
13
       0.76147
14
       0.79579
       0.79577
15
       0.83281
16
       0.77838
17
       0.77835
18
       0.81763
19
       0.83243
20
       0.84422
21
22
       0.84426
23
       0.84414
```

```
24
        0.82038
25
        0.82035
26
        0.82655
27
        0.87691
        0.52883
28
29
        0.29070
30
        0.01229
归一化后最终得分:
    final score
        0.04164
0
1
        0.03420
2
        0.03391
        0.03925
3
        0.03147
4
        0.03396
5
6
        0.03396
7
        0.03439
8
        0.03421
        0.03458
9
10
        0.03468
11
        0.03309
12
        0.03450
13
        0.03174
        0.03318
14
15
        0.03317
16
        0.03472
17
        0.03245
18
        0.03245
        0.03409
19
20
        0.03470
21
        0.03519
22
        0.03520
23
        0.03519
24
        0.03420
        0.03420
25
26
        0.03446
27
        0.03656
28
        0.02205
29
        0.01212
        0.00051
30
原始数据:
            0
                      1
                                 2
    79.270454 24.074968 10.566037 14.584608
   79.421974 23.886597 10.094568 14.044095
```

```
79.944809 23.634201
                         9.591942 14.014315
   79.303543 23.775175
                         9.961868
                                  14,475039
   79.353226 23.768717
                         9.961868 13.860060
4
   79.123810 23.887783 10.031487 13.920491
   79.123810 23.887783 10.071901 13.920491
6
   79.085617 24.052071 10.113476 13.967777
   79.124687 23.917387 10.297141 13.948173
   79.089615 23.797237 10.335711 14.279982
   79.691368 23.514111 10.480338 14.291581
   78.961128 24.058109 10.509739 14.116283
   78,961128
             23.855890 10.343435 14.271608
   78.918205
             24.030910 10.509295 14.015072
   79.016708
             23.899731 10.393726 14.172173
   78.918060 23.357395 10.406766 14.172173
16 79.177803 23.454906 10.270412 14.341686
   79.098923 23.239914 10.322765 14.142270
   79.088852 23.118282 10.268371 14.142270
   79.166191
             23.160046 10.268371 14.321928
   79.190918
             23.420570 10.205379 14.390347
21 79.190918 23.462017 10.152664 14.444427
   79.190918
             23.366636 10.261485 14.444427
23 79.124062 23.333405 10.042868 14.444427
   79.117279 23.604042 10.215015 14.335612
   79.093575 23.354513 10.215015 14.335612
26 79.322044 23.423985 10.162495 14.319608
   79.698875 23.542967 10.263668 14.698548
   79.685631 23.493753 10.138531 12.894372
29 79.694595 23.544582 10.398499 11.804068
30 79.381340 24.064264 10.565552 10.350878
```

去量纲 (求和归一化) 后的数据:

0 1 2 0.032269 0.032845 0.033287 0.033647 0.032331 0.032588 0.031802 0.032400 0.032544 0.032244 0.030218 0.032331 0.032283 0.032436 0.031384 0.033394 0.032303 0.032427 0.031384 0.031975 0.032210 0.032590 0.031603 0.032114 0.032210 0.032590 0.031730 0.032114 0.032194 0.032814 0.031861 0.032224 0.032210 0.032630 0.032440 0.032178 0.032196 0.032466 0.032562 0.032944 0.032441 0.032080 0.033017 0.032971 0.032143 0.032822 0.033110 0.032566 12 0.032143 0.032546 0.032586 0.032925 13 0.032126 0.032785 0.033108 0.032333

```
14 0.032166 0.032606 0.032744 0.032695
15 0.032126 0.031866 0.032785 0.032695
16 0.032232 0.031999 0.032356 0.033086
17 0.032199 0.031706 0.032521 0.032626
18 0.032195 0.031540 0.032349 0.032626
19 0.032227 0.031597 0.032349 0.033041
20 0.032237 0.031952 0.032151 0.033198
21 0.032237 0.032009 0.031985 0.033323
22 0.032237 0.031879 0.032328 0.033323
23 0.032210 0.031834 0.031639 0.033323
24 0.032207 0.032203 0.032181 0.033072
25 0.032197 0.031862 0.032181 0.033072
26 0.032290 0.031957 0.032016 0.033035
27 0.032444 0.032119 0.032335 0.033909
28 0.032438 0.032052 0.031940 0.029747
29 0.032442 0.032122 0.032759 0.027232
30 0.032314 0.032831 0.033286 0.023879
数据信息熵权重:
entropy weight 0.002298 0.03235 0.088503 0.87685
指标权重:
                     0
                             1
                                       2
entropy weight 0.002298 0.03235 0.088503 0.87685
未归一化得分:
   final score
       0.97380
0
1
       0.84914
2
       0.84123
3
       0.94676
4
       0.80673
5
       0.82070
6
       0.82075
7
       0.83166
8
       0.82734
9
       0.90358
       0.90629
10
       0.86611
11
12
       0.90168
13
       0.84284
14
       0.87889
15
       0.87877
16
       0.91751
17
       0.87179
```

18	0.87168
19	0.91282
20	0.92846
21	0.94060
22	0.94087
23	0.94007
24	0.91608
25	0.91596
26	0.91223
27	0.99172
28	0.58500
29	0.33460
30	0.02343
归一	化后最终得分:
	final score
0	0.03760
1	0.03279
2	0.03248
3	0.03656
4	0.03115
5	0.03169
6	0.03169
7	0.03211
8	0.03194
9	0.03489
10	0.03499
11	0.03344
12	0.03482
13	0.03254
14	0.03394
15	0.03393
16	0.03543
17	0.03366
18	0.03366
19	0.03525
20	0.03585
21	0.03632
22	0.03633
23	0.03630
24	0.03537
25	0.03537
26	0.03522
27	0.03829
28	0.02259
29	0.01292

30 0.00090

原始数据:				
	0	1	2	3
0	79.755402	22.704536	10.467842	12.218777
1	79.514107	22.932007	10.145816	12.733525
2	80.073868	22.679611	9.631437	12.703745
3	79.459221	22.929638	9.968149	13.065671
4	79.602386	22.923180	9.968149	12.331566
5	79.372971	23.042246	10.004985	12.391996
6	79.372971	23.042246	10.045400	12.391996
7	79.334778	23.153605	10.086974	12.439282
8	79.373848	23.018921	10.379776	12.419678
9	79.338776	22.972540	10.241261	12.686323
10	79.555679	22.840509	10.385888	12.679414
11	79.116806	23.309511	10.415289	12.713449
12	79.116806	22.992085	10.248985	12.868773
13	79.073883	23.042158	10.414845	12.794090
14	79.172386	22.800741	10.299276	13.189000
15	79.073738	22.383352	10.312316	13.189000
16	79.333481	22.480864	9.880606	13.157485
17	79.247986	22.477329	10.126229	12.958069
18	79.237915	22.355698	10.071835	12.958069
19	79.315254	22.464787	10.071835	13.137727
20	79.291183	22.725311	10.008842	13.061252
21	79.291183	22.766758	9.956128	12.926972
22	79.291183	22.640434	10.064949	13.157473
23	79.274651	22.640434	9.846332	13.157473
24	79.224159	22.968161	10.064422	12.716629
25	79.200455	22.721848	10.064422	12.716629
26	79.461357	22.837597	10.011901	12.700345
27	79.838188	22.837597	10.161432	13.055492
28	79.864014	22.782589	10.040726	12.527368
29	79.845085	22.833418	10.390121	12.653388
30	79.436348	23.446955	10.487106	10.675463
去量	量纲 (求和归	一化)后的数	7据:	
	0	1	2	3
0	0.032402	0.032080 0	.033309 0.	030983
1	0.032304	0.032401 0	.032284 0.	032288
2	0.032531	0.032045 0	.030648 0.	032212
3	0.032281	0.032398 0	.031719 0.	033130
4	0.032340	0.032389 0	.031719 0.	031269
5	0.032246	0.032557 0	.031836 0.	031422

6 0.032246 0.032557 0.031965 0.031422 7 0.032231 0.032715 0.032097 0.031542

```
0.032247 0.032524 0.033029 0.031492
   0.032232 0.032459 0.032588 0.032168
10 0.032321 0.032272 0.033048 0.032151
11 0.032142 0.032935 0.033142 0.032237
12 0.032142 0.032486 0.032613 0.032631
13 0.032125 0.032557 0.033141 0.032441
14 0.032165 0.032216 0.032773 0.033443
15 0.032125 0.031626 0.032814 0.033443
16 0.032230 0.031764 0.031441 0.033363
17 0.032196 0.031759 0.032222 0.032857
18 0.032191 0.031587 0.032049 0.032857
19 0.032223 0.031741 0.032049 0.033313
20 0.032213 0.032109 0.031849 0.033119
21 0.032213 0.032168 0.031681 0.032778
22 0.032213 0.031989 0.032027 0.033363
23 0.032206 0.031989 0.031331 0.033363
24 0.032186 0.032453 0.032025 0.032245
25 0.032176 0.032104 0.032025 0.032245
26 0.032282 0.032268 0.031858 0.032204
27 0.032435 0.032268 0.032334 0.033104
28 0.032446 0.032190 0.031950 0.031765
29 0.032438 0.032262 0.033062 0.032085
30 0.032272 0.033129 0.033370 0.027069
数据信息熵权重:
                     0
                             1
entropy weight 0.004722 0.06203 0.20498 0.728268
指标权重:
entropy weight 0.004722 0.06203 0.20498 0.728268
未归一化得分:
   final score
0
       0.61626
1
       0.81529
2
       0.78802
3
       0.92420
4
       0.65582
5
       0.68015
6
       0.68073
7
       0.69998
8
       0.69517
9
       0.79863
10
       0.79712
```

0.81162

12	0.86978
13	0.84296
14	0.97053
15	0.96064
16	0.92817
17	0.89598
18	0.89260
19	0.94168
20	0.92432
21	0.88004
22	0.94634
23	0.92697
24	0.80711
25	0.80637
26	0.79929
27	0.93344
28	0.73305
29	0.78691
30	0.09314
归一化	后最终得分:
fi	nal score
0	0.02475
1	0.03274
2	0.03164
3	0.03711
4	0.02634
5	0.02731
6	0.02734
7	0.02811
8	0.02792
9	0.03207
4.0	

0.03201

0.03259

0.03493

0.03385

0.038970.03858

0.03727

0.035980.03584

0.03782

0.037120.03534

0.03800

0.03722

10

11

12 13

14

15

16 17

18 19

20

21 22

24 0.0324	1			
25 0.0323	8			
26 0.03210	9			
27 0.0374	8			
28 0.0294	4			
29 0.03160	9			
30 0.00374	4			
原始数据:				
0				
0 79.826454	22.70			

2 2297 11.094396 12.317365 79.585159 22.929770 10.684255 12.832113 80.144920 22.677374 10.169876 12.802333 79,543396 22.747183 10.506588 13.164259 79.686562 22.740725 10.506588 12.430154 79,457146 22.859791 10.576206 12.490584 79.457146 22.859791 10.616621 12.490584 6 79.418953 22.971149 10.658195 12.537870 8 79.458023 22.836466 10.950997 12.518266 79.484818 22.716316 10.812483 12.784911 79.639854 22.584286 10.957109 12.778002 79.200981 23.270235 10.986510 12.812037 11 79.200981 23.014696 10.820207 12.967361 79.158058 23.002882 10.986066 12.892679 79.256561 22.761465 10.870498 13.287588 79.157913 22.389420 10.883537 13.287588 79.417656 22.486931 10.451827 13.256073 79.332161 22.483397 10.697451 13.056657 79.322090 22.361765 10.643056 13.056657 79.399429 22.470854 10.643056 13.236315 79.355911 22.731379 10.460920 13.159840 79.355911 22.727482 10.408206 13.025560 79.355911 22.601158 10.517027 13.256061 79.339386 22.601158 10.298409 13.256061 79.288887 22.928885 10.476222 12.861996 79.332146 22.682571 10.476222 12.861996 79.560616 22.752043 10.423701 12.845712 79.937447 22.975723 10.519928 13.375242 22.940264 79.963272 10.399221 12.425081 79.944344 22.991093 10.748617 12.767580 30 79.658981 23.608404 10.777570 10.941514

去量纲 (求和归一化) 后的数据:

 0
 1
 2
 3

 0
 0.032394
 0.032138
 0.033617
 0.030966

 1
 0.032296
 0.032460
 0.032374
 0.032260

```
0.032523 0.032102 0.030816 0.032185
   0.032279 0.032201 0.031836 0.033095
   0.032337 0.032192 0.031836 0.031249
   0.032244 0.032361 0.032047 0.031401
   0.032244 0.032361 0.032169 0.031401
6
7
   0.032229 0.032518 0.032295 0.031520
   0.032244 0.032328 0.033183 0.031471
   0.032255 0.032158 0.032763 0.032141
10 0.032318 0.031971 0.033201 0.032124
11 0.032140 0.032942 0.033290 0.032209
12 0.032140 0.032580 0.032786 0.032600
13 0.032123 0.032563 0.033289 0.032412
14 0.032163 0.032221 0.032939 0.033405
15 0.032123 0.031695 0.032978 0.033405
16 0.032228 0.031833 0.031670 0.033325
17 0.032193 0.031828 0.032414 0.032824
18 0.032189 0.031656 0.032250 0.032824
19 0.032221 0.031810 0.032250 0.033276
20 0.032203 0.032179 0.031698 0.033084
21 0.032203 0.032173 0.031538 0.032746
22 0.032203 0.031995 0.031868 0.033325
23 0.032196 0.031995 0.031205 0.033325
24 0.032176 0.032458 0.031744 0.032335
25 0.032193 0.032110 0.031744 0.032335
26 0.032286 0.032208 0.031585 0.032294
27 0.032439 0.032525 0.031876 0.033625
28 0.032449 0.032475 0.031511 0.031236
29 0.032442 0.032547 0.032569 0.032097
30 0.032326 0.033420 0.032657 0.027507
数据信息熵权重:
                     0
entropy weight 0.005296 0.064872 0.236099 0.693733
指标权重:
                     0
entropy weight 0.005296 0.064872 0.236099 0.693733
未归一化得分:
    final score
0
       0.57086
1
       0.77093
2
       0.73838
3
       0.88063
4
       0.60639
```

5

0.63231

6	0.63316
7	0.65323
8	0.64998
9	0.75457
10	0.75365
11	0.77003
12	0.82846
13	0.80182
14	0.94369
15	0.93614
16	0.89552
17	0.85440
18	0.85064
19	0.90807
20	0.87555
21	0.82957
22	0.90318
23	0.88169
24	0.77507
25	0.77407
26	0.76607
27	0.92267
28	0.60241
29	0.74722
30	0.08881
归一化	后最终得分:
	inal score
0	0.02419
1	0.03267
2	0.03129
3	0.03732
4	0.02570
5	0.02679
6	0.02683
7	0.02768
8	0.02754
9	0.03197
10	0.03194

0.032630.03511

0.03398

0.039990.03967

0.03795

0.03620

18	0.03605
19	0.03848
20	0.03710
21	0.03515
22	0.03827
23	0.03736
24	0.03284
25	0.03280
26	0.03246
27	0.03910
28	0.02553
29	0.03166
30	0.00376

原始数据:

原如	百剱店:			
	0	1	2	3
0	79.780380	22.883705	10.492202	14.541156
1	79.516083	23.111177	10.082061	14.991610
2	80.075844	22.858782	9.567682	14.961829
3	79.474319	22.928591	9.904394	15.353363
4	79.617485	22.922132	9.904394	14.619258
5	79.388069	23.041199	9.974012	14.679688
6	79.388069	23.041199	10.014427	14.679688
7	79.349876	23.152557	10.056002	14.726974
8	79.388947	23.017874	10.348804	14.707370
9	79.415741	22.897724	10.383832	14.974015
10	79.570778	22.765694	10.528459	14.985615
11	79.015457	23.451643	10.557859	15.019650
12	79.015457	23.196104	10.391556	15.174974
13	78.972534	23.184290	10.557415	15.100291
14	79.071037	22.942873	10.441847	15.509471
15	78.972389	22.580626	10.454886	15.509471
16	79.232132	22.678137	10.023176	15.477956
17	79.146637	22.870731	10.268800	15.278540
18	79.136566	22.749100	10.214405	15.278540
19	79.213905	22.858189	10.214405	15.361770
20	79.170387	22.936022	10.151413	15.285295
21	79.170387	22.932125	10.098699	15.151015
22	79.170387	22.805801	10.207520	15.381516
23	79.153862	22.805801	9.988902	15.381516
24	79.103363	22.970446	10.166715	14.920248
25	79.087288	22.724133	10.166715	14.754590
26	79.315758	22.793604	10.155952	14.971167
27	79.766273	23.017284	10.322860	15.350107
28	79.792099	22.981825	10.202153	12.680475
29	79.773170	23.032654	10.551549	12.746693

```
30 79.424942 23.649965 10.589279 11.301964
```

去量纲 (求和归一化) 后的数据: 0 1 0.032435 0.032150 0.033100 0.031690 0.032328 0.032469 0.031806 0.032672 0.032556 0.032115 0.030184 0.032607 0.032311 0.032213 0.031246 0.033460 0.032369 0.032204 0.031246 0.031860 0.032276 0.032371 0.031466 0.031992 0.032276 0.032371 0.031593 0.031992 0.032260 0.032528 0.031724 0.032095 0.032276 0.032338 0.032648 0.032052 0.032287 0.032170 0.032758 0.032633 10 0.032350 0.031984 0.033215 0.032659 11 0.032124 0.032948 0.033307 0.032733 12 0.032124 0.032589 0.032783 0.033071 13 0.032107 0.032572 0.033306 0.032909 14 0.032147 0.032233 0.032941 0.033800 15 0.032107 0.031724 0.032983 0.033800 16 0.032213 0.031861 0.031621 0.033732 17 0.032178 0.032132 0.032395 0.033297 18 0.032174 0.031961 0.032224 0.033297 19 0.032205 0.032114 0.032224 0.033478 20 0.032187 0.032223 0.032025 0.033312 21 0.032187 0.032218 0.031859 0.033019 22 0.032187 0.032040 0.032202 0.033521 23 0.032181 0.032040 0.031512 0.033521 24 0.032160 0.032272 0.032073 0.032516 25 0.032154 0.031926 0.032073 0.032155 26 0.032247 0.032023 0.032039 0.032627 27 0.032430 0.032338 0.032566 0.033453 28 0.032440 0.032288 0.032185 0.027635 29 0.032432 0.032359 0.033287 0.027779 30 0.032291 0.033226 0.033407 0.024631 数据信息熵权重: 0 2 entropy weight 0.002584 0.018357 0.116468 0.862591 指标权重: 0 entropy weight 0.002584 0.018357 0.116468 0.862591 未归一化得分:

final score

0	0.76995
1	0.87597
2	0.86627
3	0.95699
4	0.78752
5	0.80200
6	0.80210
7	0.81340
8	0.80929
9	0.87259
10	0.87548
11	0.88364
12	0.92026
13	0.90277
14	0.99406
15	0.99309
1 6	0.97999
17	0.94409
18	0.94372
1 9	0.96276
20	0.94489
21	0.91343
22	0.96703
23	0.96396
24	0.85939
25	0.82016
26	0.87137
27	0.96109
28	0.32802
29	0.34432
30	0.03216
归一	化后最终得分
<i>y</i> —I	final score
0	0.02989
1	0.03400
J	0.03400

0.03363 2 0.03715 3 0.03057 4 0.03113 5 0.03114 6 7 0.03157 0.03141 8 9 0.03387 0.03398 10 0.03430 11

12	0.03572
13	0.03504
14	0.03859
15	0.03855
16	0.03804
17	0.03665
18	0.03663
19	0.03737
20	0.03668
21	0.03546
22	0.03754
23	0.03742
24	0.03336
25	0.03184
26	0.03382
27	0.03731
28	0.01273
29	0.01337
30	0.00125

原始数据:				
	0	1	2	3
0	79.758018	22.894794	11.111638	12.084625
1	79.634705	23.122267	10.701497	12.599374
2	80.194466	22.869871	10.187119	12.569593
3	79.592941	22.939680	10.523830	12.931520
4	79.736107	22.933222	10.523830	12.197413
5	79.506691	23.052288	10.593449	12.257845
6	79.506691	23.052288	10.633863	12.257845
7	79.468498	23.163647	10.675438	12.305131
8	79.507568	23.028963	10.968240	12.285526
9	79.472496	22.908813	10.829725	12.552172
10	79.689400	22.776783	10.974352	12.545262
11	79.250526	23.462732	11.003753	12.579297
12	79.250526	23.145306	10.837449	12.734622
13	79.207603	23.195379	11.003308	12.659940
14	79.306107	22.953962	10.887740	13.054849
15	79.207458	22.536573	10.900780	13.054849
16	79.467201	22.634085	10.469069	13.023334
17	79.381706	22.494667	10.714693	12.823917
18	79.371635	22.373035	10.660298	12.823917
19	79.448975	22.482124	10.660298	13.003575
20	79.405457	22.742649	10.478163	12.927100
21	79.405457	22.784096	10.425448	12.792820
22	79.405457	22.657772	10.534269	13.023321
23	79.388924	22.657772	10.315652	13.023321

24	79.338432	22.985498	10.493464	12.629256
25	79.314728	22.739185	10.493464	12.629256
26	79.543198	22.808657	10.440944	12.612972
27	79.920029	23.032337	10.537170	13.142503
28	79.945854	22.996878	10.416464	12.192342
29	79.926926	23.047707	10.765860	12.572759
30	79.641563	23.699150	10.787165	10.707007
去量	量纲 (求和归	一化)后的	数据:	
	0	1	2	3
0	0.032354	0.032238	0.033616 0	.030939
1	0.032304	0.032559	0.032375 0	.032257
2	0.032531	0.032203	0.030819 0	.032180
3	0.032287	0.032302	0.031837 0	.033107
4	0.032345	0.032292	0.031837 0	.031228
5	0.032252	0.032460	0.032048 0	.031382
6	0.032252	0.032460	0.032170 0	.031382
7	0.032236	0.032617	0.032296 0	.031503
8	0.032252	0.032427	0.033182 0	.031453
9	0.032238	0.032258	0.032763 0	.032136
10	0.032326	0.032072	0.033200 0	.032118
11	0.032148	0.033038	0.033289 0	.032205
12	0.032148	0.032591	0.032786 0	.032603
13	0.032130	0.032662	0.033288 0	.032412
14	0.032170	0.032322	0.032938 0	.033423
15	0.032130	0.031734	0.032978 0	.033423
16	0.032236	0.031871	0.031672 0	.033342
17	0.032201	0.031675	0.032415 0	.032832
18	0.032197	0.031504	0.032250 0	.032832
19	0.032228	0.031657	0.032250 0	.033292
20	0.032211	0.032024	0.031699 0	.033096
21	0.032211	0.032082	0.031540 0	.032752
22	0.032211	0.031905	0.031869 0	.033342
23	0.032204	0.031905	0.031208 0	.033342
24	0.032183	0.032366		.032333

数据信息熵权重:

0 1 2 3 entropy weight 0.004249 0.075632 0.226471 0.693648

```
指标权重:
                      0
                               1
                                         2
entropy weight 0.004249 0.075632 0.226471 0.693648
未归一化得分:
   final score
0
       0.57075
       0.77158
1
2
       0.74025
       0.88238
3
       0.60710
4
5
       0.63300
6
       0.63379
       0.65387
7
       0.65013
8
       0.75477
9
10
       0.75352
11
       0.77034
12
       0.82863
13
       0.80204
14
       0.94392
15
       0.93320
       0.89644
16
17
       0.85226
18
       0.84827
       0.90481
19
20
       0.87540
21
       0.83016
22
       0.90259
23
       0.88277
24
       0.77568
25
       0.77424
26
       0.76654
27
       0.92381
28
       0.60307
       0.76232
29
       0.09082
30
归一化后最终得分:
    final score
       0.02417
0
       0.03267
1
       0.03134
2
3
       0.03736
```

0.02570

0.02680

```
6
                0.02683
         7
                0.02768
                0.02753
         8
                0.03196
         9
                0.03190
         10
                0.03262
         11
         12
                0.03508
                0.03396
        13
                0.03997
         14
         15
                0.03951
         16
                0.03796
         17
                0.03608
                0.03592
         18
         19
                0.03831
                0.03706
         20
                0.03515
         21
         22
                0.03822
                0.03738
         23
         24
                0.03284
                0.03278
         25
         26
                0.03246
         27
                0.03911
         28
                0.02553
         29
                0.03228
                0.00385
         30
In [42]: ans_410 # 4-10号两个系统温度数据
Out[42]: [1367.76, 844.47]
In [43]: ans_411 # 4-11号两个系统温度数据
Out[43]: [1397.76, 864.47]
```

In []: