Self-Guided Contrastive Learning for BERT Sentence Representations

Authors: Taeuk Kim, Kang Min Yoo, Sang-goo Lee

Venue: ACL 2021

1. Introduction

- BERT를 sentence encoder로 사용하는 가장 일반적인 방법은 지도학습으로 fine-tuning 하는 것
 - 이 때 가장 간단하고 효과적인 방법은 마지막층의 CLS embedding은 입력 sequence의 표현으로 사용하는 것
- Labeled data를 사용할 수 없을 때는 어떤 방법으로 sentence embedding을 얻는 것이 최선인지가 명확하지 않음
 - 이 때 가장 일반적인 방법은 마지막 layer에 평균 풀링을 적용하는 것
 - 하지만 이 방법이 언제나 최선은 아닐 수 있음

- 다양한 방법으로 STS 실험
 - Spearman 상관관계 측정
 - 2번째 layer의 max pooling(최고)과 10번째 layer의 CLS embedding(최저) 까지 성능의 범위가 큰 것을 보임
 - 선택한 layer 및 pooling 방법에 따라 성능이 다르게 나오고 그 차이가 큼(불안정함)

1. Introduction

- 이런 문제를 해결하기 위해 Self-Guided 방법을 사용하는 Contrastive Learning 방법을 제안함
- Contrastive Learning with Self-Guidance
 - BERT의 hidden representation을 최종 sentence embedding과 가까워야 하는 positive sample로 사용
 - Data augmentation가 필요 없고 training data에 대한 사전 지식도 갖고 있다는 장점이 있음

• $BERT_F$ 와 $BERT_T$ 로 구성

• BERT-fixed($BERT_F$)

- training 하는 동안 training signal을 주기 위해 fix 되어있는
 부분
- Minibatch 내의 sample을 BERT-fixed에 통과시켜 계산한 token level의 hidden representation에 pooling(max pooling)을 씌워 hidden representation($h_{i,l}$) 계산
- $(h_{i,l})$ 에 sampler(uniform sampler)를 거쳐 하나의 hidden representation을 계산 (h_i)
 - → pivot representation(positive sample로 사용)

BERT-tuned(BERT_T)

- 더 나은 sentence embedding을 위해 fine-tuning 되는 부
 분
- 마지막 layer의 [CLS] vector를 sentence embedding (c_i) 으로 사용

• Loss function 정의

$$L_m^{base} = -\log \left(\phi(\mathbf{x}_m, \mu(\mathbf{x}_m))/Z\right),$$
where $\phi(\mathbf{u}, \mathbf{v}) = \exp(g(f(\mathbf{u}), f(\mathbf{v}))/\tau)$

$$\text{and } Z = \sum_{n=1, n \neq m}^{2b} \phi(\mathbf{x}_m, \mathbf{x}_n).$$

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{h}_i & \text{if } \mathbf{x} \text{ is equal to } \mathbf{c}_i. \\ \mathbf{c}_i & \text{if } \mathbf{x} \text{ is equal to } \mathbf{h}_i. \end{cases}$$

$$g(\mathbf{u}, \mathbf{v}) = \mathbf{u} \cdot \mathbf{v}/\|\mathbf{u}\|\|\mathbf{v}\|$$

- $g = \cos(\theta)$ cosine similarity
- f는 MLP 층의 projection head
- $\rightarrow c_i$ 와 h_i 가 높은 similarity를 갖도록 학습
- NT-Xent loss function(the normalized temperature-scaled cross entropy loss)을 변형하여 정의

$$-log rac{\exp(sim(f(X_m),f(\mu(X_m))/ au)}{\sum_{n=1,n
eq m}^{2b}\exp(sim(f(X_m),f(X_n))/ au)} - log rac{\exp(sim(oldsymbol{z}_i,oldsymbol{z}_j)/ au)}{\sum_{k=1}^{2N}\mathbbm{1}_{[k
eq i]}\exp(sim(oldsymbol{z}_i,oldsymbol{z}_k)/ au)}$$
 사로 정의한 loss function NT-Xent loss function

• BERT-fixed와 BERT-tuned가 너무 멀어지는 것을 막기 위해 regularizer loss (L^{reg}) 추가하여 최종 loss function 정의

$$L^{base} = \frac{1}{2b} \sum_{m=1}^{2b} L_m^{base} + \lambda \cdot L^{reg} \qquad \qquad L^{reg} = \|\mathbf{BERT}_F - \mathbf{BERT}_T\|_2^2$$

- Loss function 최적화
 - NT-Xent loss의 4가지 요인

- 1. $c_i \rightarrow \leftarrow h_i (or c_j \rightarrow \leftarrow h_j)$: c_i 와 h_i 가 일치해야 함
- $2. c_i \leftrightarrow c_i$: c_i 와 c_j 가 멀어져야 함
- 3. $c_i \leftrightarrow h_j (or c_j \leftrightarrow h_i) : c_i 와 h_j$ 가 멀어져야 함
- $4. \quad h_i \leftrightarrow h_j : h_i 와 h_j 가 멀어져야 함$

- Loss function 최적화
 - NT-Xent loss 의 4가지 요인들 중 일부는 부정적인 영향을 미칠 수 있음
 - 이를 반영하여 loss function 최적화(개선)

기존:
$$L_m^{base} = -\log(\phi(\mathbf{x}_m, \mu(\mathbf{x}_m))/Z),$$

and $Z = \sum_{n=1, n \neq m}^{2b} \phi(\mathbf{x}_m, \mathbf{x}_n).$

• 첫번째로, h_i 를 최적화해야 하는 target 대신 pivot으로서의 역할만 하고 c_i 에 더 집중할 수 있도록 수정

$$L_i^{opt1} = -\log \left(\phi(\mathbf{c}_i, \mathbf{h}_i)/\hat{Z}\right),$$
 where $\hat{Z} = \sum_{j=1, j \neq i}^b \phi(\mathbf{c}_i, \mathbf{c}_j) + \sum_{j=1}^b \phi(\mathbf{c}_i, \mathbf{h}_j).$ negative positive

- h_i 가 pivot으로만 사용되기 때문에 최적화 대상으로 간주되지 않음 \rightarrow 4번째 요인이 필요없어짐
- 두번째로, 2번째 요인이 성능 향상에 중요하지 않다는 것을 발견하여 이 부분을 반영하여 loss function 수정

$$L_i^{opt2} = -\log(\phi(\mathbf{c}_i, \mathbf{h}_i) / \sum_{j=1}^b \phi(\mathbf{c}_i, \mathbf{h}_j)).$$

$$L_i^{opt2} = -\log(\phi(\mathbf{c}_i, \mathbf{h}_i) / \sum_{j=1}^b \phi(\mathbf{c}_i, \mathbf{h}_j)).$$

• 세번째로, multiple view $\{h_{i,k}\}$ 가 c를 guide하도록 허용함으로써 1번째 요인과 3번째 요인을 다양화하기 위해 loss function 수정

$$L_{i,k}^{opt3} = -\log \frac{\phi(\mathbf{c}_i, \mathbf{h}_{i,k})}{\phi(\mathbf{c}_i, \mathbf{h}_{i,k}) + \sum_{m=1, m \neq i}^{b} \sum_{n=0}^{l} \phi(\mathbf{c}_i, \mathbf{h}_{m,n})}$$

• 따라서, 최종 loss function은 $L^{opt}=rac{1}{b(l+1)}\sum_{i=1}^b\sum_{k=0}^l L_{i,k}^{opt3}+\lambda\cdot L^{reg}$ 이 됨

3. Experiments

• 3-1) STS Tasks

• SG: 기존 NT-Xent loss를 사용/ SG-OPT: 최적화된 NT-Xent loss를 사용

Models	Pooling	STS-B	SICK-R	STS12	STS13	STS14	STS15	STS16	Avg.
Non-BERT Baselines									
GloVe [†]	Mean	58.02	53.76	55.14	70.66	59.73	68.25	63.66	61.32
USE [†]	-	74.92	76.69	64.49	67.80	64.61	76.83	73.18	71.22
BERT-base									
+ No tuning	CLS	20.30	42.42	21.54	32.11	21.28	37.89	44.24	31.40
+ No tuning	Mean	47.29	58.22	30.87	59.89	47.73	60.29	63.73	52.57
+ No tuning	WK	16.07	41.54	16.01	21.80	15.96	33.59	34.07	25.58
+ Flow	Mean-2	71.35 ± 0.27	$64.95_{\pm0.16}$	64.32 ± 0.17	69.72 ± 0.25	$63.67_{\pm 0.06}$	$77.77_{\pm0.15}$	69.59 ± 0.28	$68.77_{\pm 0.07}$
+ Contrastive (BT)	CLS	$63.27_{\pm 1.48}$	$66.91_{\pm 1.29}$	$54.26_{\pm 1.84}$	$64.03_{\pm 2.35}$	$54.28_{\pm 1.87}$	$68.19_{\pm 0.95}$	$67.50_{\pm 0.96}$	$62.63_{\pm 1.28}$
+ Contrastive (SG)	CLS	$75.08_{\pm0.73}$	68.19 $_{\pm 0.36}$	$63.60_{\pm 0.98}$	$76.48_{\pm 0.69}$	$67.57_{\pm 0.57}$	$79.42_{\pm 0.49}$	74.85 ± 0.54	$72.17_{\pm 0.44}$
+ Contrastive (SG-OPT)	CLS	77.23 $_{\pm 0.43}$	$68.16_{\pm0.50}$	66.84 \pm 0.73	$80.13_{\pm0.51}$	71.23 $_{\pm 0.40}$	$81.56_{\pm0.28}$	77.17 $_{\pm 0.22}$	74.62 \pm 0.25
BERT-large									
+ No tuning	CLS	26.75	43.44	27.44	30.76	22.59	29.98	42.74	31.96
+ No tuning	Mean	47.00	53.85	27.67	55.79	44.49	51.67	61.88	48.91
+ No tuning	WK	35.75	38.39	12.65	26.41	23.74	29.34	34.42	28.67
+ Flow	Mean-2	72.72 ± 0.36	$63.77_{\pm0.18}$	62.82 ± 0.17	$71.24_{\pm 0.22}$	65.39 ± 0.15	78.98 ± 0.21	73.23 ± 0.24	$70.07_{\pm0.81}$
+ Contrastive (BT)	CLS	$63.84_{\pm 1.05}$	$66.53_{\pm 2.62}$	$52.04_{\pm 1.75}$	$62.59_{\pm 1.84}$	$54.25_{\pm 1.45}$	$71.07_{\pm 1.11}$	$66.71_{\pm 1.08}$	$62.43_{\pm 1.07}$
+ Contrastive (SG)	CLS	$75.22_{\pm 0.57}$	$69.63_{\pm 0.95}$	$64.37_{\pm 0.72}$	$77.59_{\pm 1.01}$	$68.27_{\pm0.40}$	80.08 ± 0.28	$74.53_{\pm0.43}$	$72.81_{\pm0.31}$
+ Contrastive (SG-OPT)	CLS	76.16 $_{\pm 0.42}$	70.20 $_{\pm 0.65}$	67.02 $_{\pm 0.72}$	79.42 $_{\pm 0.80}$	70.38 \pm 0.65	$81.72_{\pm 0.32}$	$76.35_{\pm0.22}$	74.46 \pm 0.35
SBERT-base									
+ No tuning	CLS	73.66	69.71	70.15	71.17	68.89	75.53	70.16	71.32
+ No tuning	Mean	76.98	72.91	70.97	76.53	73.19	79.09	74.30	74.85
+ No tuning	WK	78.38	74.31	69.75	76.92	72.32	81.17	76.25	75.59
+ Flow [‡]	Mean-2	81.03	74.97	68.95	78.48	77.62	81.95	78.94	77.42
+ Contrastive (BT)	CLS	74.67 + 0.30	70.31 + 0.45	71.19 + 0.37	72.41 ± 0.60	69.90 ± 0.43	77.16 + 0.48	71.63 + 0.55	72.47 + 0.37
+ Contrastive (SG)	CLS	81.05 ± 0.34	75.78 ± 0.55	73.76 ± 0.76	80.08 ± 0.45	75.58 ± 0.57	83.52 ± 0.43	$79.10_{\pm0.51}$	78.41 ± 0.33
+ Contrastive (SG-OPT)	CLS	81.46 \pm 0.27	76.64 \pm 0.42	75.16 ± 0.56	81.27 $_{\pm 0.37}$	$76.31_{\pm 0.38}$	$84.71_{\pm 0.26}$	$80.33_{\pm 0.19}$	79.41 \pm 0.17
SBERT-large									
+ No tuning	CLS	76.01	70.99	69.05	71.34	69.50	76.66	70.08	71.95
+ No tuning	Mean	79.19	73.75	72.27	78.46	74.90	80.99	76.25	76.54
+ No tuning	WK	61.87	67.06	49.95	53.02	46.55	62.47	60.32	57.32
+ Flow [‡]	Mean-2	81.18	74.52	70.19	80.27	78.85	82.97	80.57	78.36
+ Contrastive (BT)	CLS	76.71 + 1.22	71.56 + 1.34	69.95 + 3.57	72.66+1.16	$70.\overline{38}_{+2.10}$	77.80 + 3.24	$71.\overline{41}_{+1.73}$	72.92 + 1.53
+ Contrastive (SG)	CLS	$82.35_{\pm 0.15}$	76.44 +0.41	74.84 \pm 0.57	$82.89_{\pm 0.41}$	77.27 ± 0.35	84.44 + 0.23	79.54 ± 0.49	79.68 ± 0.37
+ Contrastive (SG-OPT)	CLS	82.05 ± 0.39	76.44 \pm 0.29	74.58 ± 0.59	$83.79_{\pm 0.14}$	76.98 ± 0.19	$84.57_{\pm 0.27}$	$79.87_{\pm 0.42}$	79.76 ±0.33

Models	Pooling	STS-B	SICK-R	STS12	STS13	STS14	STS15	STS16	Avg.
RoBERTa-base									
+ No tuning	CLS	45.41	61.89	16.67	45.57	30.36	55.08	56.98	44.57
+ No tuning	Mean	54.53	62.03	32.11	56.33	45.22	61.34	61.98	53.36
+ No tuning	WK	35.75	54.69	20.31	36.51	32.41	48.12	46.32	39.16
+ Contrastive (BT)	CLS	79.93 $_{\pm 1.08}$	71.97 $_{\pm 1.00}$	$62.34_{\pm 2.41}$	$78.60_{\pm 1.74}$	$68.65_{\pm 1.48}$	$79.31_{\pm 0.65}$	$77.49_{\pm 1.29}$	74.04 $_{\pm 1.16}$
+ Contrastive (SG)	CLS	$78.38_{\pm0.43}$	$69.74_{\pm 1.00}$	$62.85_{\pm 0.88}$	$78.37_{\pm 1.55}$	$68.28_{\pm 0.89}$	$80.42_{\pm 0.65}$	77.69 $_{\pm 0.76}$	$73.67_{\pm 0.62}$
+ Contrastive (SG-OPT)	CLS	$77.60_{\pm0.30}$	$68.42_{\pm 0.71}$	$62.57_{\pm 1.12}$	78.96 $_{\pm 0.67}$	69.24 $_{\pm 0.44}$	$79.99_{\pm 0.44}$	$77.17_{\pm0.24}$	$73.42_{\pm0.31}$
RoBERTa-large									
+ No tuning	CLS	12.52	40.63	19.25	22.97	14.93	33.41	38.01	25.96
+ No tuning	Mean	47.07	58.38	33.63	57.22	45.67	63.00	61.18	52.31
+ No tuning	WK	30.29	28.25	23.17	30.92	23.36	40.07	43.32	31.34
+ Contrastive (BT)	CLS	77.05 ± 1.22	67.83 ± 1.34	57.60 ± 3.57	72.14 ± 1.16	62.25 ± 2.10	71.49 ± 3.24	71.75 ± 1.73	68.59 ± 1.53
+ Contrastive (SG)	CLS	76.15 ± 0.54	$66.07_{\pm0.82}$	64.77 ± 2.52	71.96 ± 1.53	64.54 ± 1.04	78.06 ± 0.52	75.14 ± 0.94	70.95 ± 1.13
+ Contrastive (SG-OPT)	CLS				$76.36_{\pm 1.47}$		$80.10_{\pm 1.05}$	76.60 $_{\pm 0.98}$	73.13 $_{\pm 1.20}$

3. Experiments

• 3-2) Multilingual STS Tasks

Models	Spanish
Baseline (Agirre et al., 2014) UMCC-DLSI-run2 (Rank #1)	80.69
MBERT + CLS	12.60
+ Mean pooling + WK pooling	81.14 79.78
+ Contrastive (BT)	78.04
+ Contrastive (SG) + Contrastive (SG-OPT)	82.09 82.74

Table 2:	SemEval-2014	Task	10	Spanish	task.
----------	--------------	------	----	---------	-------

Models	Arabic (Track 1)	Spanish (Track 3)	English (Track 5)
Baselines			
Cosine baseline (Cer et al., 2017)	60.45	71.17	72.78
ENCU (Rank #1, Tian et al. (2017))	74.40	85.59	85.18
MBERT			
+ CLS	30.57	29.38	24.97
+ Mean pooling	51.09	54.56	54.86
+ WK pooling	50.38	55.87	54.87
+ Contrastive (BT)	54.24	68.16	73.89
+ Contrastive (SG)	57.09	78.93	78.24
+ Contrastive (SG-OPT)	58.52	80.19	78.03

Table 3: Results on SemEval-2017 Task 1: Track 1 (Arabic), Track 3 (Spanish), and Track 5 (English).

3. Experiments

- 3-3) SentEval and Supervised Fine-tuning
 - MR(Movie Review), CR(product review), SUBJ(subjectivity status), MPQA(opinion-polarity), SST2(movie sentiment analysis), TREC(question-type classification), MRPC(paraphrase detection)

Models	MR	CR	SUBJ	MPQA	SST2	TREC	MRPC	Avg.
BERT-base								
+ Mean	81.46	86.71	95.37	87.90	85.83	90.30	73.36	85.85
+ WK	80.64	85.53	95.27	88.63	85.03	94.03	71.71	85.83
+ SG-OPT	82.47	87.42	95.40	88.92	86.20	91.60	74.21	86.60
BERT-large								
+ Mean	84.38	89.01	95.60	86.69	89.20	90.90	72.79	86.94
+ WK	82.68	87.92	95.32	87.25	87.81	91.18	70.13	86.04
+ SG-OPT	86.03	90.18	95.82	87.08	90.73	94.65	73.31	88.26
SBERT-base								
+ Mean	82.80	89.03	94.07	89.79	88.08	86.93	75.11	86.54
+ WK	82.96	89.33	95.13	90.56	88.10	91.98	76.66	87.82
+ SG-OPT	83.34	89.45	94.68	89.78	88.57	87.30	75.26	86.91

- 4-1) Ablation Study
 - 기존 NT-Xent loss에 대한 수정(opt1, opt2, opt3) 이 모두 성능에 기여함을 확인

Models	STS Tasks (Avg.)
BERT-base	
$+$ SG-OPT (L^{opt3})	74.62
$+L^{opt2}$	73.14 (-1.48)
$+L^{opt1}$	72.61 (-2.01)
$+ \mathbf{SG} (L^{base})$	72.17 (-2.45)
BERT-base + SG-OPT ($\tau = 0.01, \lambda = 0.1$)	74.62
$+ \tau = 0.1$	70.39 (-4.23)
$+ \tau = 0.001$	74.16 (-0.46)
$+\lambda = 0.0$	73.76 (-0.86)
$+\lambda = 1.0$	73.18 (-1.44)
- Projection head (f)	72.78 (-1.84)

- 4-2) Robustness to Domain Shifts
 - 노란색 부분은 STS와 NLI에서의 성능 차이를 나타냄
 - SG-OPT는 NLI로 훈련할 때 STS에 비해 각각 1.83, 1.63만큼만 낮아지는 반면, Flow는 각각 12.16, 4.19 만큼 낮아짐
 - 즉, SG-OPT가 Flow에 비해 Domain shift에 있어 더 robust함을 보여줌

- 4-3) Computational Efficiency
 - STS-B task에서 training 및 inference 시간을 측정
 - Batch size: 16
 - SG-OPT가 Training 시간이 가장 길지만 8분 이내로 적당한 편이고, 훈련이 끝나면 pooling과 같은 후처리가 없기 때문에 inference 시에 효율적임

L	Elapsed Time						
Layer	Training (sec.)	Inference (sec.)					
BERT-base							
+ Mean pooling	-	13.94					
+ WK pooling	-	$197.03 \ (\approx 3.3 \text{ min.})$					
+ Flow	$155.37 \ (\approx 2.6 \ \text{min.})$	28.49					
+ Contrastive (SG-OPT)	455.02 ($\approx 7.5 \text{ min.}$)	10.51					

Table 6: Computational efficiency tested on STS-B.

- 4-4) Representation Visualization
 - 빨간 숫자: positive pair/ 파란 숫자: negative pair
 - SG-OPT를 사용한 버전에서 숫자들이 vector space 내에 더 잘 align함을 확인

5. Conclusion

- BERT sentence embedding 개선을 위해 Self-Guidance를 이용한 Contrastive Learning 기법을 제안
- 제안한 방법이 데이터 증강과 같은 절차 없이도 Contrastive Learning 의 이점을 누릴 수 있고, 다른 baseline들보다 high quality의 sentence representation을 생성할 수 있음을 보였음
- 제안한 방법은 training이 끝나면 후처리가 필요하지 않아 inference 면에서 효율적이고, domain shift에 있어 robust함을 보였음

Thank You

감사합니다.