Centrul National de Evaluare și Examinare

III. országos magyar matematikaolimpia XXX. EMMV

megyei szakasz, 2020. január 18.

XI. osztály

1. feladat. Adott az $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix}$ mátrix. Jelöljük a_n -nel az A^n mátrix elemeinek összegét, minden $n \in \mathbb{N}^*$ esetén.

- a) Igazold, hogy $a_n = 4n^2 + 5n + 3$, minden $n \in \mathbb{N}^*$ esetén!
- b) Határozd meg az $\alpha \in \mathbb{R}$ értékét úgy, hogy

$$\lim_{n \to \infty} (\sqrt{a_n} - \alpha n) = \frac{5}{4}.$$

2. feladat. Adott az $(a_n)_{n\in\mathbb{N}}$ sorozat úgy, hogy $a_0>0$ és

$$a_{n+1} = a_n + \frac{1}{a_n^2 + a_n + 1},$$

bármely $n \in \mathbb{N}$ esetén.

- a) Mutasd ki, hogy $(a_n)_{n\in\mathbb{N}}$ szigorúan növekvő és nem korlátos! b) Igazold, hogy $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1.$ c) Számítsd ki: $\lim_{n\to\infty}\frac{a_n^3}{n}$ értékét!

- 3. feladat. Két játékos a következő játékot játssza: egy 5 × 5-ös "sakktábla" minden mezőjére felváltva, egy-egy számkártyát helyeznek el az 1-től 25-ig számozott számkártyák közül. A játék akkor ér véget, mikor mind a 25 számkártyát elhelyezték a táblán. A játékot a kezdő játékos nyeri meg, ha a tábla négy szimmetriatengelyének mindegyikén az őket fedő számkártyák összege (ez négy darab összeget jelent) osztható 13-mal, ellenkező esetben a második játékos nyer. Melyik játékosnak van nyerő stratégiája és mi a nyerőstratégia?
- **4. feladat.** Legyen $A, B \in \mathcal{M}_2(\mathbb{R})$ két olyan mátrix, amely teljesíti a következő feltételeket:

$$AB = BA$$
, $\det(A^2 - B^2) > 0$, $\det A > 0$ és $\det B > 0$.

Igazold, hogy

a)
$$\det(A + B) + \det(A - B) = 2(\det A + \det B);$$

a)
$$\det(A + B) + \det(A - B) = 2(\det A + \det B);$$

b) $\frac{1}{\det(A + B)} + \frac{1}{\det(A - B)} \ge \frac{2}{\det A + \det B}.$