Data Structures - 67109 Exercise 5

Due: 1/5/2019

Question 1

In order to better understand the last part of the analysis of the expected running time for the probabilistic quick-sort algorithm we consider the following question:

We would like to calculate the *n*'th element in the sequence defined by the recurrence relation $a_n := \sum_{i=1}^{n-1} a_i$ and the first element $a_1 = 1$. The following algorithm returns this element, for a given *n*:

```
\begin{aligned} \text{Calc}_{-\mathbf{a}}(n): \\ & \text{if n == 1:} \\ & \text{return 1} \\ & \text{sum = 0} \\ & \text{for } i = 1 \text{ to } n-1 \\ & \text{sum = sum + calc}_{-\mathbf{a}}(i) \\ & \text{return sum} \end{aligned}
```

- 1. Write down a recurrence relation for the above pseudocode's running time per input (instead of per input's length). Use constants rather than asymptotic notation. (Note that there is no "worst-case" or "average-case" running time as the running time is calculated for a specific input).
- 2. Find a tight asymptotic bound for the relation from the previous subquestion. (Hint: look both at T(n) and at T(n+1) at the same time).

Question 2

Recall that a p-coin is a coin that has p probability to fall on T. Define X as a random variable that given n flip results, gives the number of Ts that we got $(X(x_1x_2\dots x_n)=|\{i:x_i=T\}|)$. In exercise 3 we saw that $\mathbb{E}[X]=np$. Note: Markov's inequality may be expressed as $P(X\geq a)\leq \frac{\mathbb{E}[X]}{a}$.

- 1. Using Markov's inequality, what is the upper bound for the probability of the event $A = (X \ge \frac{n}{2})$ (i.e. $\{x_1x_2 \dots x_n : X(x_1 \dots x_n) \ge \frac{n}{2}\}$)? For what values of p does this bound give us some information about this probability?
- 2. What is the probability of event A from the previous subquestion?
- 3. For every $n \in \mathbb{N} \setminus \{0\}$ we define a random variable X_n that gets the values $\frac{1}{k}$ for $1 \leq k \leq n$ in a uniform distribution (i.e. there is an implicit probability space over n elements with uniform distribution and X_n maps them to these values). Using Markov's inequality prove that for any $\epsilon > 0$, the following holds: $\lim_{n \to \infty} P(X_n \geq \epsilon) = 0$. Guidance: Use Markov's inequality to show that it suffices to prove that $\lim_{n \to \infty} \mathbb{E}[X_n] = 0$. Then, in order to prove this use the definition of a limit and the fact that the expectation for a uniform distribution is just the average.

Question 3

Recall radix sort from the recitation.

1. Use induction to prove that Radix Sort works. Where does your proof need the assumption that the per-digit sort is stable?

Recall bucket sort from the recitation. Analyze the average running time for bucket sort, use n_i a random variable for the number of elements in the i bucket

and write it as
$$n_i = \sum_{j=1}^n X_{i,j}$$
, where $X_{i,j} = \begin{cases} 1 & arr[j] \text{ is in } buckets_arr[i] \\ 0 & otherwise \end{cases}$.

Hint: We assume that the input is uniformly distributed, this means that $P(X_{i,j} = 1) = \frac{1}{k}$ (the probability of element j in the array to be assigned to bucket i is $\frac{1}{k}$). You may assume that the running time of the inner sort we use for each bucket is $\Theta(n^2)$.

- 2. Explain why the expression for the running time for sorting the buckets is $\sum_{i=1}^{k} \mathbb{E}[n_i^2]$.
- 3. Resolve $\sum_{i=1}^{k} \mathbb{E}[n_i^2]$ and give an upper asymptotic bound for the total running time of the function.

Hint: find $\mathbb{E}[n_i^2]$, decompose n_i^2 to indicator variables, and then use $\mathbb{E}[X^2] = \sum_{x \in image(X)} x^2 P(X = x)$.

Question 4

In this question we will prove that a binary tree of height h has at most 2^h leaves.

<u>Definition:</u> A COMPLETE BINARY TREE is a binary tree in which all the leaves are in the same depth (which is the height of the tree) and all internal nodes have 2 children.

Define A_h as the set of all binary trees of height h.

For every tree $a \in A_h$ denote the number of leaves in a by L(a).

Note that there is exactly one tree $a_h \in A_h$ which is a complete binary tree (make sure you understand why).

- 1. Show that for any tree $a \in A_h$ that is not a_h $(a \neq a_h)$, there is another tree $b \in A_h$ such that L(a) < L(b).
- 2. Conclude that a_h is the tree with the most leaves amongst A_h ($a_h = argmax_{a \in A}L(a)$).

Hint: You can use the fact that there is only a finite number of binary trees of heigh $h(|A_h| < \infty)$.

Hint: Assume for the sake of contradiction that there is a tree $a \in A_h$ with $L(a_h) < L(a)$.

3. Show by induction that $L(a_h) = 2^h$.

Hint: Note that a_h is just 2 copies of a_{h-1} attached as sub-trees to a root. Meaning that the copies' roots are the children of a_h 's root. Use this fact to write down a recurrence formula in h for $L(a_h)$, solve it (you can guess the solution by the iterative method) and prove the solution by induction.

Question 5

Let $Merge_k$ be the following problem: Given k sorted arrays, $A_1, ..., A_k$, each of size $\frac{n}{k}$, return a single sorted array A containing all n elements from $A_1, ..., A_k$. Consider this algorithm for $Merge_k$:

```
\begin{aligned} \texttt{Merge\_k}(A_1,...,A_k) \colon \\ B_1 &= A_1 \\ \texttt{for i=2 to k:} \\ B_i &= \texttt{Merge}(B_{i-1},A_i) \\ \texttt{return } B_n \end{aligned}
```

- 1. Give a tight asymptotic bound for the Merge_k algorithm, assuming the running time of Merge(A,B) is $\theta(|A|+|B|)$.
- 2. Give a comparison-based algorithm that solves $Merge_k$ in O(nlogk). No need to formally prove correctness or running time, just give a simple explanation. You may assume k is a power of 2

3. Prove: $\Omega(nlogk)$ is a lower-bound for the number of queries performed by a comparison-based algorithm that solves $Merge_k$. Guidance: Think about how to construct an input for $Merge_k$ that has enough permutations, i.e. enough leaves in the algorithms decision tree, that will bound the height of the tree by $\Omega(nlogk)$ (Notice that each array A_i is sorted, so a simple permutation of it is not a legal input to the algorithm). You may also want to use the claim from question 4, that a binary tree of height h has at most 2^h leaves.

Question 6

In class you will see a new data structure called BST (binary search tree), and the insert and successor operations on it. In the following questions assume all elements are distinct.

- 1. Consider the following array, [11, 9, 16, 12, 5, 6, 2], generate its respective BST (meaning perform the insert operation given below, element by element, from left to right to generate the BST). Sketch the BST that was formed.
- 2. Run the given Inorder function (pseudocode below) on the tree from the previous subquestion and write down the output. What does Inorder do?
- 3. In this subquestion we find an asymptotic upper bound for the given Inorder algorithm:
 - (a) Prove that in the run of Inorder on a tree T, after the run leaves a sub-tree of T it will never come back to it during the run.
 - (b) Conclude that in the run of the given Inorder function on a tree $T=< V, E> (V \text{ nodes and } E \text{ edges}), \text{ every edge } e \in E \text{ is visited at most twice.}$
 - (c) Conclude an upper asymptotic bound for the given Inorder function (the tightest you can find).
- 4. Explain how can the upper asymptotic bound for this algorithm be less than $n \log(n)$ when we showed that any general sorting algorithm that is comparisson-based has to have a lower bound of $n \log(n)$ for its running time? (Note that we don't have any assumptions for the inputs, as we had for the linear sorting algorithms we saw).

```
Insert(tree, value):
    parent = null
    node = tree.root
    while node is not null
```

```
parent = node
       if value < node.val
           node = x.left
       else
           node = node.right
    new_node = create a new node
    new_node.val = value
    new_node.parent = parent
    if parent == null
       tree.root = new_node
    else if value < parent.value</pre>
       parent.left = new_node
    else
       parent.right = new_node
Inorder(tree):
    node = Min(tree.root)
    while node is not null
       print node.value
       node = Successor(node)
Min(tree):
    if tree.root is null
       return null
    node = tree.root
    while node.left is not null
       node = node.left
    return node
Successor(node):
    if node.right is not null
       return Min(node.right)
    parent = node.parent
    while (parent is not null) and (node == parent.right)
       node = parent
       parent = node.parent
    return parent
```