

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title : Digital Logic Design Laboratory								
Course Code: P18CSL38 Semester: 3		L:T:P:H: 0:0:3:3	Credits: 1.5					
Contact Period: Laboratory: 3	Weightage: CIE:50%, SEE:50%							

Course Content

- 1. a) Show that NAND & NOR are universal gates
 - b) Write the VHDL code for Basic gates realization using NAND gates.

Experiment on Code Converters:

- 2. a) Design BCD to Excess -3 using basic gates.
 - b) Write the VHDL code for BCD to Excess -3 code conversion

Experiment on data processing circuit.

- 3. a) Implement the following using 8:1 multiplexer
 - i) Full adder
 - ii) Given 4 variable expression
 - b) Write the VHDL code for an 8:1 multiplexer.

Comparator circuits

- 4. a) 2 bit Magnitude comparator using suitable Decoder
 - b) Write the VHDL code for 2 bit comparator

Arithmetic circuits & Encoder

- 5. a) Implement Full Subtractor using suitable Decoder and NAND gates.
 - b) Write the VHDL code for Full subtractor.
- 6. a) Implement a Octal to binary encoder using basic gates.
 - b) Write the VHDL code for Octal to binary encoder

Shift Register

- 7. a) Design a 3-bit serial-in –serial out and a serial-in –parallel out shift register using J-K flip flop
 - b) Write the VHDL code for Johnson counter.
- 8. a) Implement a ring counter and Johnson counter using 4-bit shift register.
 - b) Write the VHDL code for Ring counter.

Counters

- 1. a) Design a **Mod n** $(n \le 8)$ Asynchronous counter using J-K flipflop
 - b) Write the VHDL code for T Flip Flop
- 10. a) Design and implement 3 bit synchronous up counter using J-K Flip -Flop ICs.
 - b) Write the VHDL code for 3 bit up counter
- 11. a) Design a counter for the given sequence with lock in condition using D Flip Flop
 - b) Write the VHDL code for D Flip Flop
- 12. a) Design a 2 bit down counter using JK- Flip –Flop.
 - b) Write the VHDL code for 3 bit Down Counter

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Outcomes

- 1. **Design and Conduct experiments** to realize various combinational and sequential circuits using IC.
- 2. **Simulate** using Xilinx to synthesize their designs and perform timing analysis.

CO-PO mapping

Semester: 3 Course co P18CSL3						Title: Digital Logic Design Laboratory										
СО	Statement		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
CO308.1	experiments to realize	Conduct e various sequential	3	3	3						2				2	
CO308.2	Simulate using to synthesize their desi perform timing analysis.	_	2	2	3		3				2				1	
CO308.3			2.5	2.5	3		3				2				1.5	

Note: Students should design and conduct any one experiment and simulate the experiment given in the same section.(for both CIE and SEE)