CS 412 Office Hour

April 19, 2019

Bayesian Networks Structure

- Three basic types of *junctions* (a three-node sub-network with two links):
 - A \rightarrow B \rightarrow C: Cascade
 - A \leftarrow B \rightarrow C: Common parent
 - A \rightarrow B \leftarrow C: Common child

$A \rightarrow B \rightarrow C$ (Cascade)

- B transmits the effect of A to C
- B "screens off" information about A from C and vice versa
- A and C are dependent, but (conditionally) independent if the value of B is given
- Example: Study hard \rightarrow Do well in the final exam \rightarrow Get an A

$A \leftarrow B \rightarrow C$ (Common Parent)

- B makes A and C statistically correlated even though there is no direct link between them
- A and C are dependent, but (conditionally) independent if the value of B is given
- Example: Shoe size ← Age of child → Reading ability

$A \rightarrow B \leftarrow C$ (Common Child)

- A and C are by themselves independent, but conditioning on B will make A and C dependent
- Example: Hollywood actors
 - Talent → Celebrity ← Beauty
 - If we only look at famous actors (i.e. Celebrity = 1), then we will see a
 negative correlation between talent and beauty: finding out that a celebrity is
 unattractive increases our belief that he or she is talented
- This negative correlation is sometimes called the "explain-away" effect

	Are A and C independent?	If we know B, are A and C independent?
$A \to B \to C$		
$A \leftarrow B \rightarrow C$		
$A \to B \leftarrow C$		

			If we know B, are A and C independent?
$A \to B \to C$	cascade	no	yes
$A \leftarrow B \rightarrow C$			
$A \to B \leftarrow C$			

			If we know B, are A and C independent?
$A \to B \to C$	cascade	no	yes
$A \leftarrow B \to C$	common parent	no	yes
$A \to B \leftarrow C$			

			If we know B, are A and C independent?
$A \to B \to C$	cascade	no	yes
$A \leftarrow B \rightarrow C$	common parent	no	yes
$A \to B \leftarrow C$	common child	yes	no