F. Pétrélis (cours) T. Jules (TD), theo.jules@ens.fr, salle L273

TD $N^{o}3$: Correction

Introduction

1/ C'est un disque.

Figure 1: Deux sphères en contact.

2/ En utilisant le théorème de pythagore:

$$R^{2} = (R - \delta)^{2} + a^{2}$$

$$\simeq R^{2} - 2R\delta + a^{2}$$
(1)
$$(2)$$

Donc on a bien $a^2 \sim 2R\delta$

Loi d'échelle

$$3/\ \delta' = \frac{a'^2}{2R} = \frac{\lambda^2 a^2}{2R} = \lambda^2 \delta$$

3/ $\delta'=\frac{a'^2}{2R}=\frac{\lambda^2a^2}{2R}=\lambda^2\delta$ En ordre de grandeur, pour notre exemple, on peut donner une expression de la déformation: $\epsilon = \frac{\delta}{a} = \frac{a}{2R}$. Le choix de a pour la déformation vient du principe de Saint-Venant.

On peut en déduire la contrainte en utilisant la loi de hooke: $\sigma\approx E\epsilon$ avec E le module d'Young.

Donc pour la force:
$$F = \sigma S \approx \frac{Ea^3}{R}$$
 Enfin, $F' \approx \frac{Ea'^3}{R} \approx \frac{E\lambda^2 a^3}{R} \approx \lambda^3 F$

4/ On en déduit $F^2 \sim \delta^3$.

Figure 2: Photoélasticité du contact de Hertz.

Expression générale de la force de contact

5/ Géométriquement, en utilisant le théorème de pythagore, on a:

$$r^2 + (R - \delta + u_\perp)^2 = R^2 \tag{3}$$

$$r^2 + R^2 - 2\delta R + 2u_{\perp}R = R^2 \tag{4}$$

Donc en simplifant, on a bien $u_{\perp} = \delta - \frac{r^2}{2R}$

6/ On a $s^2=(x'-x)^2+(y'-y)^2$. On fait la transformation $(x,y)\to (s,\phi)$. On voit bien sur la figure que l'on a $x'-x=s\cos(\phi+\theta)$ et $y'-y=s\sin(\phi+\theta)$. On en déduit la Jacobienne de la transformation inverse: $Jac = \begin{bmatrix} \cos(\phi + \theta) & -s\sin(\phi + \theta) \\ \sin(\phi + \theta) & s\cos(\phi + \theta) \end{bmatrix}$. On rappelle la formule de changement de variable pour une intégrale multiple:

$$\int_{\Phi(U)} f(x, y) = \int_{U} f(\Phi) |\det \operatorname{Jac}\Phi|$$
 (5)

Donc l'intégrale devient par changement de variable: $I = \int_0^{2\pi} d\phi \int_0^{s_{max}(\phi)} s \frac{P(s,\phi)}{s} ds$. Al-Kashi: $a^2 = (\underline{r} + \underline{s_{max}}(\phi))^2 = r^2 + s_{max}^2 + 2rs_{max}\cos(\phi)$. On utilise (3):

$$P(s,\phi) = \frac{P_0}{a} \sqrt{a^2 - (\underline{r} + \underline{s})^2} \tag{6}$$

$$= \frac{P_0}{a} \sqrt{a^2 - r^2 - s^2 - 2rs\cos(\phi)} \tag{7}$$

(8)

En utilisant la formule pour $\alpha^2 = a^2 - r^2$, $\beta = r \cos \phi$ et x = s:

$$I = \int_0^{2\pi} d\phi \left(-\frac{1}{2}r\sqrt{a^2 - r^2}\cos\phi + \frac{1}{2}(a^2 - r^2 + r^2\cos^2\phi)\left(\frac{\pi}{2} - \arctan\left(\frac{r\cos\phi}{a^2 - r^2}\right)\right)\right)$$
(9)

$$= \frac{\pi}{4} \int_0^{2\pi} d\phi (a^2 - r^2 + r^2 \cos^2 \phi) \tag{10}$$

$$= \frac{\pi}{4}(2\pi a^2 - 2\pi r^2 + \pi r^2) \tag{11}$$

On arrive à une expression de u_{\perp} : $u_{\perp}(r) = \frac{P_0 \pi (1 - \sigma^2)}{4E_0} (2a^2 - r^2)$

On a
$$u_{\perp}(r=0) = \delta = \frac{P_0\pi(1-\sigma^2)a}{2E}$$

Par identification en utilisant (2), on a: $\frac{1}{2R} = \frac{\pi P_0(1-\sigma^2)}{4Ea} = \frac{\delta}{2a^2}.$ Donc on retrouve bien notre résultat $a^2 \approx \delta R$.

7/ On intègre la pression sur la surface de contact:

$$F_{app} = \int \int_{disc} P(x, y) dx dy \tag{12}$$

$$= P_0 2\pi \int_0^a r dr \sqrt{1 - \frac{r^2}{a^2}}$$
 (13)

$$= -P_0 \frac{2\pi a^2}{3} \left[(1 - \frac{r^2}{a^2})^{3/2} \right]_0^a \tag{14}$$

$$=\frac{2\pi P_0 a^2}{3} \tag{15}$$

On sait en plus que $\delta = P_0 \frac{1 - \sigma^2}{E} \frac{\pi}{2} a$ et $a = \sqrt{\delta R}$.

Donc
$$P_0 = \sqrt{\frac{\delta}{R}} \frac{2E}{\pi(1-\sigma^2)}$$
.

Finalement,
$$F_{app} = \frac{4E}{3(1-\sigma^2)} \delta^{3/2} R^{1/2}$$
.

Application: Temps de collision entre 2 balles

8/ On peut exprimer l'énergie potentielle des 2 balles par: $dE_p = F_{app}d\delta \rightarrow E_p = D\delta^{5/2}$ avec $D = \frac{8ER^{1/2}}{15(1-\sigma^2)}$. On a aussi l'énergie cinétique: $E_c = \frac{1}{2}mv^2$. Lors de la collision, elle devient: $E_c = \frac{1}{2}m\dot{\delta}^2$.

Donc pour le système dynamique: $E_{tot}=E_c+E_p=\frac{1}{2}m\dot{\delta}^2+D\delta^{5/2}$

9/ On a δ_{max} pour $\dot{\delta}=0$, donc avec la conservation de l'énergie totale, $\delta_{max}=\left(\frac{mv^2}{2D}\right)^{2/5}$

10/ On prend notre équation dynamique par conservation de l'énergie du système:

$$\frac{1}{2}mv^2 = \frac{1}{2}m\dot{\delta}^2 + D\delta^{5/2} \tag{16}$$

$$\frac{d\delta}{dt} = (v^2 - \frac{2D}{m}\delta^{5/2})^{1/2} \tag{17}$$

$$dt = (v^2 - \frac{2D}{m}\delta^{5/2})^{-1/2}d\delta \tag{18}$$

On intègre l'égalité:

$$\tau = \int_0^{\delta_{max}} \frac{d\delta}{\sqrt{v^2 - \frac{2D}{m} \delta^{5/2}}} = \frac{1}{v} \int_0^{\delta_{max}} \frac{d\delta}{\sqrt{1 - \frac{2D}{mv^2} \delta^{5/2}}}$$

Si on pose
$$u = \frac{\delta}{\delta_{max}}$$
:

$$\tau = \frac{1}{v} \left(\frac{mv^2}{2D}\right)^{2/5} \int_0^1 du (1 - u^{5/2})^{-1/2}$$
(19)

Donc finalement, $t_{contact} = 2\tau = 3.94 \, \delta_{max}/v$. Pour des billes en métal de 1 cm à 1m/s:

$$\sigma \simeq 0.3$$

$$E \simeq 200 \, \mathrm{GPa}$$

$$\rho \simeq 8.10^3 \, \mathrm{kg/m^3}$$

$$R \simeq 0.01 \, \mathrm{m}$$

$$v \simeq 1 \, \mathrm{m/s}$$

Tout cela donne

$$D \simeq 1.2.10^{10} \text{ kg} \cdot \text{m}^{-1/2} \cdot \text{s}^{-2}$$

$$m \simeq 33 \text{ g}$$

$$\delta_m \simeq 18 \,\mu\text{m}$$

$$t_{contact} \simeq 70 \,\mu\text{s}$$