Elementos de Cálculo Numérico/Cálculo Numérico

Clase 10

Primer Cuatrimestre 2021

\boldsymbol{x}	x_0	x_1	 x_n
y	y_0	y_1	 y_n

Tabla de valores:

\boldsymbol{x}	x_0	x_1	 x_n
y	y_0	y_1	 y_n

Datos experimentales

\boldsymbol{x}	x_0	x_1	 x_n
y	y_0	y_1	 y_n

- Datos experimentales
- Evaluaciones de una función:

x	x_0	x_1	 x_n
y	y_0	y_1	 y_n

- Datos experimentales
- Evaluaciones de una función: y = f(x)

x	x_0	x_1	 x_n
y	y_0	y_1	 y_n

- Datos experimentales
- Evaluaciones de una función: y=f(x)Buscamos una función simple (de cierta clase) que pase por esos puntos

x	x_0	x_1	 x_n
y	y_0	y_1	 y_n

- Datos experimentales
- Evaluaciones de una función: y=f(x)Buscamos una función simple (de cierta clase) que pase por esos puntos

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

Si
$$p_n(x_0) = y_0, p_n(x_1) = y_1, \dots, p_n(x_n) = y_n$$

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$
Si $p_n(x_0) = y_0, p_n(x_1) = y_1, \dots, p_n(x_n) = y_n$

$$y_0 = a_0 + a_1 x_0 + \dots + a_n x_0^n$$

$$y_1 = a_0 + a_1 x_1 + \dots + a_n x_1^n$$

$$\vdots$$

$$y_n = a_0 + a_1 x_n + \dots + a_n x_n^n$$

Planteamos una función polinomial de grado n

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$
Si $p_n(x_0) = y_0, p_n(x_1) = y_1, \dots, p_n(x_n) = y_n$

$$y_0 = a_0 + a_1 x_0 + \dots + a_n x_0^n$$

$$y_1 = a_0 + a_1 x_1 + \dots + a_n x_1^n$$

$$\vdots$$

$$y_n = a_0 + a_1 x_n + \dots + a_n x_n^n$$

Sistema con n+1 ecuaciones y n+1 incógnitas:

Planteamos una función polinomial de grado n

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$
Si $p_n(x_0) = y_0, p_n(x_1) = y_1, \dots, p_n(x_n) = y_n$

$$y_0 = a_0 + a_1 x_0 + \dots + a_n x_0^n$$

$$y_1 = a_0 + a_1 x_1 + \dots + a_n x_1^n$$

$$\vdots$$

$$y_n = a_0 + a_1 x_n + \dots + a_n x_n^n$$

Sistema con n+1 ecuaciones y n+1 incógnitas: a_0, a_1, \ldots, a_n

Matriz del sistema

$$V(x_0, \dots, x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$$

Matriz del sistema

$$V(x_0, \dots, x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$$

Si $x_j \neq x_k$ entonces $V(x_0, \ldots, x_n)$ es inversible

Matriz del sistema

$$V(x_0, \dots, x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

Si $x_j \neq x_k$ entonces $V(x_0, \dots, x_n)$ es inversible $\Rightarrow p_n(x)$ único

Matriz del sistema

$$V(x_0, \dots, x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$$

Si $x_j \neq x_k$ entonces $V(x_0, \dots, x_n)$ es inversible $\Rightarrow p_n(x)$ único

 ${\sf Ejemplo:}\ n=2$

Matriz del sistema

$$V(x_0, \dots, x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$$

Si $x_j \neq x_k$ entonces $V(x_0, \ldots, x_n)$ es inversible $\Rightarrow p_n(x)$ único

Ejemplo: n=2

$$\det(V(x_0, x_1, x_2)) = \begin{vmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{vmatrix} = (x_1 - x_0)(x_2 - x_1)(x_2 - x_0)$$

Resolver un sistema lineal $(n+1) \times (n+1)$ es costoso

Resolver un sistema lineal $(n+1) \times (n+1)$ es costoso

Idea de Lagrange: hallar polinomios $L_0(x), L_1(x), \ldots, L_n(x)$

Resolver un sistema lineal $(n+1) \times (n+1)$ es costoso

Idea de Lagrange: hallar polinomios $L_0(x), L_1(x), \ldots, L_n(x)$

$$L_j(x_0) = 0, L_j(x_1) = 0, \dots, L_j(x_j) = 1, \dots, L_j(x_n) = 0$$

Resolver un sistema lineal $(n+1) \times (n+1)$ es costoso

Idea de Lagrange: hallar polinomios $L_0(x), L_1(x), \ldots, L_n(x)$

$$L_j(x_0) = 0, L_j(x_1) = 0, \dots, L_j(x_j) = 1, \dots, L_j(x_n) = 0$$

$$L_j(x) = \frac{(x - x_0) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}$$

Resolver un sistema lineal $(n+1) \times (n+1)$ es costoso

Idea de Lagrange: hallar polinomios $L_0(x), L_1(x), \dots, L_n(x)$

$$L_j(x_0) = 0, L_j(x_1) = 0, \dots, L_j(x_j) = 1, \dots, L_j(x_n) = 0$$

$$L_j(x) = \frac{(x - x_0) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}$$

$$p_n(x) = y_0 L_0(x) + \dots + y_n L_n(x)$$

Resolver un sistema lineal $(n+1) \times (n+1)$ es costoso

Idea de Lagrange: hallar polinomios $L_0(x), L_1(x), \dots, L_n(x)$

$$L_j(x_0) = 0, L_j(x_1) = 0, \dots, L_j(x_j) = 1, \dots, L_j(x_n) = 0$$

$$L_j(x) = \frac{(x - x_0) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}$$

$$p_n(x) = y_0 L_0(x) + \dots + y_n L_n(x) = \sum_{j=0}^n y_j L_j(x).$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

$$L_0(x) = \frac{(x-1)(x-3)}{(-1).(-3)}$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

■
$$L_0(x) = \frac{(x-1)(x-3)}{(-1).(-3)} = \frac{1}{3}x^2 - \frac{4}{3}x + 1$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

■
$$L_0(x) = \frac{(x-1)(x-3)}{(-1).(-3)} = \frac{1}{3}x^2 - \frac{4}{3}x + 1$$

$$L_1(x) = \frac{x(x-3)}{1.(-2)}$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

■
$$L_0(x) = \frac{(x-1)(x-3)}{(-1).(-3)} = \frac{1}{3}x^2 - \frac{4}{3}x + 1$$

$$L_1(x) = \frac{x(x-3)}{1 \cdot (-2)} = -\frac{1}{2}x^2 + \frac{3}{2}x$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

$$L_0(x) = \frac{(x-1)(x-3)}{(-1)\cdot(-3)} = \frac{1}{3}x^2 - \frac{4}{3}x + 1$$

$$L_1(x) = \frac{x(x-3)}{1 \cdot (-2)} = -\frac{1}{2}x^2 + \frac{3}{2}x$$

$$L_2(x) = \frac{x(x-1)}{3.2}$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

$$L_0(x) = \frac{(x-1)(x-3)}{(-1)\cdot(-3)} = \frac{1}{3}x^2 - \frac{4}{3}x + 1$$

$$L_1(x) = \frac{x(x-3)}{1 \cdot (-2)} = -\frac{1}{2}x^2 + \frac{3}{2}x$$

•
$$L_2(x) = \frac{x(x-1)}{3 \cdot 2} = \frac{1}{6}x^2 - \frac{1}{6}x$$

Si
$$x_0 = 0, x_1 = 1, x_2 = 3$$

$$L_0(x) = \frac{(x-1)(x-3)}{(-1)\cdot(-3)} = \frac{1}{3}x^2 - \frac{4}{3}x + 1$$

$$L_1(x) = \frac{x(x-3)}{1 \cdot (-2)} = -\frac{1}{2}x^2 + \frac{3}{2}x$$

•
$$L_2(x) = \frac{x(x-1)}{3 \cdot 2} = \frac{1}{6}x^2 - \frac{1}{6}x$$

Interpolación de Lagrange: ejemplo

Función $f(x) = \operatorname{sen}(\pi x)$ en el intervalo [a,b] = [0,0.5]

Interpolación de Lagrange: ejemplo

Función $f(x) = \operatorname{sen}(\pi x)$ en el intervalo [a,b] = [0,0.5]

Puntos equidistantes: $x_0 = 0, x_1 = h, x_2 = 2h, ..., x_n = 0.5$

Interpolación de Lagrange: ejemplo

Función $f(x) = \mathrm{sen}(\pi x)$ en el intervalo [a,b] = [0,0.5]

Puntos equidistantes:
$$x_0 = 0, x_1 = h, x_2 = 2h, ..., x_n = 0.5$$
 $h = \frac{0.5}{n}$

Función $f(x) = \operatorname{sen}(\pi x)$ en el intervalo [a,b] = [0,0.5]

Puntos equidistantes:
$$x_0 = 0, x_1 = h, x_2 = 2h, ..., x_n = 0.5$$
 $h = \frac{0.5}{n}$

Función $f(x) = \operatorname{sen}(\pi x)$ en el intervalo [a,b] = [0,0.5]

Puntos equidistantes:
$$x_0 = 0, x_1 = h, x_2 = 2h, \dots, x_n = 0.5$$
 $h = \frac{0.5}{n}$

n	$\max f(x) - p_n(x) $	n	$\max f(x) - p_n(x) $
2	2.1051×10^{-1}	6	1.7105×10^{-5}
3	$2.3537 imes 10^{-2}$	7	$1.2085 imes 10^{-6}$
4	$2.3932 imes 10^{-3}$	8	$7.6645 imes 10^{-8}$
5	$2.1533 imes 10^{-4}$	9	4.4015×10^{-9}

Gráficos de $p_n(x)$

Para
$$f(x) = \operatorname{sen}(\pi x)$$

Gráficos de $p_n(x)$

Para
$$f(x) = \operatorname{sen}(\pi x)$$
 $[a, b] = [0, 0.5]$

Gráficos de $p_n(x)$

Para
$$f(x) = sen(\pi x)$$
 $[a, b] = [0, 0.5]$

$$[a,b] = [0,0.5]$$

Función $f(x) = \operatorname{sech}(x)$ en el intervalo [a,b] = [-5,5]

Función
$$f(x) = \operatorname{sech}(x)$$
 en el intervalo $[a, b] = [-5, 5]$

Puntos equidistantes:
$$x_0=-5, x_1=-5+h, \ldots, x_n=5$$

Función $f(x) = \operatorname{sech}(x)$ en el intervalo [a, b] = [-5, 5]

Puntos equidistantes: $x_0 = -5, x_1 = -5 + h, \dots, x_n = 5$

n	$\max f(x) - p_n(x) $	n	$\left \max f(x) - p_n(x) \right $
2	9.8652×10^{-1}	7	4.4200×10^{-1}
3	$5.9306 imes 10^{-1}$	8	1.7085×10^{-1}
4	$5.9135 imes 10^{-1}$	9	5.6791×10^{-1}
5	$3.9335 imes 10^{-1}$	10	2.2243×10^{-1}
6	$2.5965 imes 10^{-1}$	11	$7.7654 imes 10^{-1}$

Para
$$f(x) = \operatorname{sech}(x)$$

Para
$$f(x) = \text{sech}(x)$$
 $[a, b] = [-5, 5]$

Para
$$f(x) = \operatorname{sech}(x)$$

$$[a,b] = [-5,5]$$

(b) Gráfico de $p_9(x)$

(c) Gráfico de $p_{10}(x)$

Si
$$p_1(x_0) = y_0$$
 y $p_1(x_1) = y_1$

Si
$$p_1(x_0)=y_0$$
 y $p_1(x_1)=y_1$
$$p_1(x)=y_0+\frac{y_1-y_0}{x_1-x_0}(x-x_0)$$

Si
$$p_1(x_0) = y_0$$
 y $p_1(x_1) = y_1$

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

Si
$$p_2(x) = p_1(x) + t$$
érmino cuadrático

Si
$$p_1(x_0) = y_0$$
 y $p_1(x_1) = y_1$

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

Si
$$p_2(x) = p_1(x) + t$$
érmino cuadrático

El término cuadrático debe anularse en x_0 y en x_1 :

Si
$$p_1(x_0) = y_0$$
 y $p_1(x_1) = y_1$

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

Si
$$p_2(x) = p_1(x) + t$$
érmino cuadrático

El término cuadrático debe anularse en x_0 y en x_1 : $a_2\left(x-x_0\right)\left(x-x_1\right)$

Si
$$p_1(x_0) = y_0$$
 y $p_1(x_1) = y_1$

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

Si
$$p_2(x) = p_1(x) + t$$
érmino cuadrático

El término cuadrático debe anularse en x_0 y en x_1 : $a_2\left(x-x_0\right)\left(x-x_1\right)$

De
$$y_2 = p_2(x_2)$$

Si
$$p_1(x_0) = y_0$$
 y $p_1(x_1) = y_1$

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

Si $p_2(x) = p_1(x) + t$ érmino cuadrático

El término cuadrático debe anularse en x_0 y en x_1 : $a_2\left(x-x_0\right)\left(x-x_1\right)$

De
$$y_2 = p_2(x_2) \Rightarrow y_2 = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$a_2 = \frac{\frac{y_2 - y_0}{x_2 - x_0} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_1} = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0}.$$

Si definimos las diferencias divididas

Si definimos las diferencias divididas

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Si definimos las diferencias divididas

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Tenemos

$$p_2(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

Si definimos las diferencias divididas

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Tenemos

$$p_2(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

Queremos hallar $p_2(x)$ correspondiente a la tabla

Queremos hallar $p_2(x)$ correspondiente a la tabla

x	-1	1	3
y	1	-5	5

Queremos hallar $p_2(x)$ correspondiente a la tabla

\boldsymbol{x}	-1	1	3
y	1	-5	5

Queremos hallar $p_2(x)$ correspondiente a la tabla

\boldsymbol{x}	-1	1	3
y	1	-5	5

Queremos hallar $p_2(x)$ correspondiente a la tabla

\boldsymbol{x}	-1	1	3
y	1	-5	5

$$p_2(x) = 1 - 3(x+1) + 2(x+1)(x-1)$$

Queremos hallar $p_2(x)$ correspondiente a la tabla

\boldsymbol{x}	-1	1	3
y	1	-5	5

$$p_2(x) = 1 - 3(x+1) + 2(x+1)(x-1) = 2x^2 - 3x - 4$$

Si definimos inductivamente

Si definimos inductivamente: $f[x_k] = y_k$ para $k = 0, \dots, n$

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

La forma de Newton del polinomio interpolador

Si definimos inductivamente: $f[x_k] = y_k$ para $k = 0, \dots, n$

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

La forma de Newton del polinomio interpolador

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n] \prod_{j=0}^{n-1} (x - x_j)$$

Si definimos inductivamente: $f[x_k] = y_k$ para $k = 0, \dots, n$

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

La forma de Newton del polinomio interpolador

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n] \prod_{j=0}^{n-1} (x - x_j)$$

Productoria: $\prod_{j=0}^{n-1} (x - x_j)$

Si definimos inductivamente: $f[x_k] = y_k$ para $k = 0, \dots, n$

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

La forma de Newton del polinomio interpolador

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n] \prod_{j=0}^{n-1} (x - x_j)$$

Productoria: $\prod_{j=0}^{n-1} (x - x_j) = (x - x_0) (x - x_0) \dots (x - x_{n-1})$

Fórmula de error de interpolación

Error:
$$r_n(x) = f(x) - p_n(x)$$

Fórmula de error de interpolación

Error:
$$r_n(x) = f(x) - p_n(x)$$

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}W(x)$$

Fórmula de error de interpolación

Error:
$$r_n(x) = f(x) - p_n(x)$$

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}W(x)$$

$$W(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

Error:
$$r_n(x) = f(x) - p_n(x)$$

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}W(x)$$

$$W(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

$$\max_{x \in [a,b]} |r_n(x)| \le \frac{1}{(n+1)!} \max_{x \in [a,b]} |f^{(n+1)}(x)| \max_{x \in [a,b]} |W(x)|$$

Error:
$$r_n(x) = f(x) - p_n(x)$$

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}W(x)$$

$$W(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

$$\max_{x \in [a,b]} |r_n(x)| \le \frac{1}{(n+1)!} \max_{x \in [a,b]} |f^{(n+1)}(x)| \max_{x \in [a,b]} |W(x)|$$

¿Cómo elegir x_0, x_1, \ldots, x_n para que $\max_{x \in [a,b]} |W(x)|$ sea mínimo?

Para x_0, x_1, \ldots, x_n equiespaciados

Para x_0, x_1, \ldots, x_n equiespaciados

$$\max_{x \in [a,b]} |W(x)| \le \frac{1}{4} \left(\frac{b-a}{n}\right)^{n+1} n!$$

Para x_0, x_1, \ldots, x_n equiespaciados

$$\max_{x \in [a,b]} |W(x)| \le \frac{1}{4} \left(\frac{b-a}{n}\right)^{n+1} n!$$

Para x_0, x_1, \ldots, x_n equiespaciados

$$\max_{x \in [a,b]} |W(x)| \le \frac{1}{4} \left(\frac{b-a}{n}\right)^{n+1} n!$$

$$\max_{x \in [a,b]} |r_n(x)| \le \frac{1}{4(n+1)} \max_{x \in [a,b]} |f^{(n+1)}(x)| \left(\frac{b-a}{n}\right)^{n+1}$$

Para x_0, x_1, \ldots, x_n equiespaciados

$$\max_{x \in [a,b]} |W(x)| \le \frac{1}{4} \left(\frac{b-a}{n}\right)^{n+1} n!$$

$$\max_{x \in [a,b]} |r_n(x)| \le \frac{1}{4(n+1)} \max_{x \in [a,b]} |f^{(n+1)}(x)| \left(\frac{b-a}{n}\right)^{n+1}$$

$$\left(\frac{b-a}{n}\right)^{n+1} \to 0 \text{ cuando } n \to \infty$$

Para x_0, x_1, \ldots, x_n equiespaciados

$$\max_{x \in [a,b]} |W(x)| \le \frac{1}{4} \left(\frac{b-a}{n}\right)^{n+1} n!$$

$$\max_{x \in [a,b]} |r_n(x)| \le \frac{1}{4(n+1)} \max_{x \in [a,b]} |f^{(n+1)}(x)| \left(\frac{b-a}{n}\right)^{n+1}$$

$$\left(\frac{b-a}{n}\right)^{n+1} \to 0 \text{ cuando } n \to \infty \quad \left(\max_{x \in [a,b]} \left|f^{(n+1)}(x)\right| \to ?\right)$$

Elección óptima:

Elección óptima: para el intervalo [-1,1]

Elección óptima: para el intervalo [-1,1] tomamos $\theta=\pi/(2n+2)$

Elección óptima: para el intervalo [-1,1] tomamos $\theta=\pi/(2n+2)$

$$x_n = \cos(\theta), x_{n-1} = \cos(3\theta), \dots, x_0 = \cos((2n+1)\theta)$$

Elección óptima: para el intervalo [-1,1] tomamos $\theta=\pi/(2n+2)$

$$x_n = \cos(\theta), x_{n-1} = \cos(3\theta), \dots, x_0 = \cos((2n+1)\theta)$$

Fig.: Puntos de interpolación con el criterio de Chebyshev (n = 5).

Elección óptima: para el intervalo [-1,1] tomamos $\theta=\pi/(2n+2)$

$$x_n = \cos(\theta), x_{n-1} = \cos(3\theta), \dots, x_0 = \cos((2n+1)\theta)$$

Fig.: Puntos de interpolación con el criterio de Chebyshev (n = 5).

Se acumulan en los extremos del intervalo

Para otros intervalos:

$$\mathrm{Si}\ [a,b]=[-5,5]$$

Si
$$[a,b] = [-5,5] \Rightarrow \tilde{x}_k = 5x_k$$

Si
$$[a,b]=[-5,5]\Rightarrow \tilde{x}_k=5x_k$$

Para
$$f(x) = \operatorname{sech}(x)$$

Si
$$[a,b]=[-5,5]\Rightarrow \tilde{x}_k=5x_k$$

Para
$$f(x) = \operatorname{sech}(x)$$
 $[a, b] = [-5, 5]$

Para otros intervalos: transformación lineal

Si
$$[a,b] = [-5,5] \Rightarrow \tilde{x}_k = 5x_k$$

$$\mathsf{Para}\ f(x) = \mathrm{sech}(x) \qquad [a,b] = [-5,5]$$

- (a) Grafico de $p_9(x)$. (b) Gráfico de $p_{10}(x)$. (c) Gráfico de $p_{11}(x)$.

Fig.: Gráfico de $f(x) = \operatorname{sech}(x)$ y las aproximaciones polinomiales.

Polinomios $L_i(x)$

Graficamos $L_5(x)$ para n=8 y distribución:

Polinomios $L_j(x)$

Graficamos $L_5(x)$ para n=8 y distribución:

Equidistante

Polinomios $L_i(x)$

Graficamos $L_5(x)$ para n=8 y distribución:

- Equidistante
- (b) Criterio de Chebyshev

Polinomios $L_j(x)$

Graficamos $L_5(x)$ para n=8 y distribución:

- Equidistante
- (b) Criterio de Chebyshev

Para el intervalo [-1,1]

Para el intervalo [-1,1]

$$|W(x)| = |(x - \cos(\theta))(x - \cos(3\theta))\dots(x - \cos((2n+1)\theta))| \le \frac{1}{2^n}$$

Para el intervalo [-1,1]

$$|W(x)| = |(x - \cos(\theta)) (x - \cos(3\theta)) \dots (x - \cos((2n+1)\theta))| \le \frac{1}{2^n}$$

$$\max_{x \in [-1,1]} |r_n(x)| \le \frac{1}{2^n (n+1)!} \max_{x \in [-1,1]} |f^{(n+1)}(x)|$$

Para el intervalo [-1,1]

$$|W(x)| = |(x - \cos(\theta)) (x - \cos(3\theta)) \dots (x - \cos((2n+1)\theta))| \le \frac{1}{2^n}$$

El error vale

$$\max_{x \in [-1,1]} |r_n(x)| \le \frac{1}{2^n (n+1)!} \max_{x \in [-1,1]} |f^{(n+1)}(x)|$$

Para el intervalo [a, b]

Para el intervalo [-1,1]

$$|W(x)| = |(x - \cos(\theta)) (x - \cos(3\theta)) \dots (x - \cos((2n+1)\theta))| \le \frac{1}{2^n}$$

El error vale

$$\max_{x \in [-1,1]} |r_n(x)| \le \frac{1}{2^n (n+1)!} \max_{x \in [-1,1]} \left| f^{(n+1)}(x) \right|$$

Para el intervalo [a, b]

$$\max_{x \in [a,b]} |r_n(x)| \le \frac{1}{2^n (n+1)!} \max_{x \in [a,b]} |f^{(n+1)}(x)| \left(\frac{b-a}{2}\right)^{n+1}$$

■ Polinomios de Taylor:

■ Polinomios de Taylor:

 $P_n(x)$ y sus derivadas coinciden con las de f(x) en x_0

■ Polinomios de Taylor:

 $P_n(x)$ y sus derivadas coinciden con las de f(x) en x_0

■ Interpolación de Lagrange:

■ Polinomios de Taylor:

 $P_n(x)$ y sus derivadas coinciden con las de f(x) en x_0

■ Interpolación de Lagrange:

 $P_n(x)$ coinciden con f(x) en x_0, x_1, \ldots, x_n

- Polinomios de Taylor:
 - $P_n(x)$ y sus derivadas coinciden con las de f(x) en x_0
- Interpolación de Lagrange:

$$P_n(x)$$
 coinciden con $f(x)$ en x_0, x_1, \ldots, x_n

■ Interpolación de Hermite:

Polinomios de Taylor:

 $P_n(x)$ y sus derivadas coinciden con las de f(x) en x_0

■ Interpolación de Lagrange:

$$P_n(x)$$
 coinciden con $f(x)$ en x_0, x_1, \ldots, x_n

■ Interpolación de Hermite:

 $P_m(x)$ y sus derivadas coinciden con las de f(x) en x_0, x_1, \ldots, x_n

Interpolación de Hermite

Polinomios de Taylor:

 $P_n(x)$ y sus derivadas coinciden con las de f(x) en x_0

■ Interpolación de Lagrange:

$$P_n(x)$$
 coinciden con $f(x)$ en x_0, x_1, \ldots, x_n

■ Interpolación de Hermite:

 $P_m(x)$ y sus derivadas coinciden con las de f(x) en x_0, x_1, \ldots, x_n

x	x_0	x_1	 x_n
f(x)	y_0	y_1	 y_n
f'(x)	y_0'	_	 y'_n
f''(x)	y_0''	_	 _

■ Polinomios de Taylor:

■ Polinomios de Taylor:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

Polinomios de Taylor:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

Interpolación de Lagrange:

Polinomios de Taylor:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

Interpolación de Lagrange:

$$P_n(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0) (x - x_1) + \cdots + a_n (x - x_0) (x - x_1) \dots (x - x_{n-1})$$

Polinomios de Taylor:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

Interpolación de Lagrange:

$$P_n(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0) (x - x_1) + \cdots + a_n (x - x_0) (x - x_1) \dots (x - x_{n-1})$$

Interpolación de Hermite:

Polinomios de Taylor:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

Interpolación de Lagrange:

$$P_n(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0) (x - x_1) + \cdots + a_n (x - x_0) (x - x_1) \dots (x - x_{n-1})$$

■ Interpolación de Hermite:

$$P_m(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots + \cdots + a_m (x - x_0)^3 (x - x_1) \dots (x - x_{n-1})^k$$

$$f(-1) = -3, f'(-1) = -1$$

$$f(-1) = -3, f'(-1) = -1$$

$$f'(0) = 0, f'(0) = 2, f''(0) = -6$$

- f(-1) = -3, f'(-1) = -1
- f'(0) = 0, f'(0) = 2, f''(0) = -6
- f(1) = -1

- f(-1) = -3, f'(-1) = -1
- f'(0) = 0, f'(0) = 2, f''(0) = -6
- f(1) = -1

x	-1	0	1
f(x)	-3	0	-1
f'(x)	-1	2	_
f''(x)	_	-6	_

Ejemplo:

$$f(-1) = -3, f'(-1) = -1$$

$$f'(0) = 0, f'(0) = 2, f''(0) = -6$$

$$f(1) = -1$$

x	-1	0	1
f(x)	-3	0	-1
f'(x)	-1	2	_
f''(x)	_	-6	_

Número de condiciones:

Ejemplo:

$$f(-1) = -3, f'(-1) = -1$$

$$f'(0) = 0, f'(0) = 2, f''(0) = -6$$

$$f(1) = -1$$

x	-1	0	1
f(x)	-3	0	-1
f'(x)	-1	2	_
f''(x)	_	-6	_

Número de condiciones: 2+3+1=6

Número de condiciones: 6

Número de condiciones: $6 \Rightarrow$ Coeficientes:

Número de condiciones: $6 \Rightarrow$ Coeficientes: a_0, a_1, \dots, a_5

Número de condiciones: $6 \Rightarrow$ Coeficientes: a_0, a_1, \ldots, a_5

$$p_5(x) = a_0 + a_1(x+1) + (x+1)^2(a_2 + a_3x + a_4x^2 + x^3(a_5))$$

Número de condiciones: $6 \Rightarrow$ Coeficientes: a_0, a_1, \dots, a_5

$$p_5(x) = a_0 + a_1 (x + 1) + (x + 1)^2 (a_2 + a_3 x + a_4 x^2 + x^3 (a_5))$$

Diferencias dividas con x_j repetidos:

Número de condiciones: $6 \Rightarrow$ Coeficientes: a_0, a_1, \dots, a_5

$$p_5(x) = a_0 + a_1 (x + 1) + (x + 1)^2 (a_2 + a_3 x + a_4 x^2 + x^3 (a_5))$$

Diferencias dividas con x_j repetidos:

$$f[-1] = f(-1) = -3, \quad f[-1, -1] = f'(-1) = -1$$

Número de condiciones: $6 \Rightarrow$ Coeficientes: a_0, a_1, \dots, a_5

$$p_5(x) = a_0 + a_1(x+1) + (x+1)^2 (a_2 + a_3 x + a_4 x^2 + x^3 (a_5))$$

Diferencias dividas con x_j repetidos:

$$f[-1] = f(-1) = -3, \quad f[-1, -1] = f'(-1) = -1$$

 $f[0] = f(0) = 0, \quad f[0, 0] = f'(0) = 2, \quad f[0, 0, 0] = \frac{1}{2}f''(0) = -3$

Número de condiciones: $6 \Rightarrow$ Coeficientes: a_0, a_1, \dots, a_5

$$p_5(x) = a_0 + a_1 (x + 1) + (x + 1)^2 (a_2 + a_3 x + a_4 x^2 + x^3 (a_5))$$

Diferencias dividas con x_i repetidos:

$$f[-1] = f(-1) = -3,$$
 $f[-1, -1] = f'(-1) = -1$
 $f[0] = f(0) = 0,$ $f[0, 0] = f'(0) = 2,$ $f[0, 0, 0] = \frac{1}{2}f''(0) = -3$
 $f[1] = f(1) = -1$

Diferencias divididas (valores x_j repetidos)

x_k	$f[x_j]$	$f[x_j, x_k]$	$f[x_j, x_k, x_l]$			
-1	-3					
-1	-3	-1	4	-5		
0	0	$\begin{bmatrix} 2 \end{bmatrix}$	-1	-3 −2	3	-1
0	0		$\boxed{-3}$	0	1	1
0	0	-1	-3	J		
1	-1					

Polinomio interpolador de Hermite y sus derivadas:

Polinomio interpolador de Hermite y sus derivadas:

$$p_5(x) = -3 - (x+1) + (x+1)^2 (4 - 5x + 3x^2 + x^3 (-1))$$

$$= 2x - 3x^2 + x^4 - x^5$$

$$p_5'(x) = 2 - 6x + 4x^3 - 5x^4$$

$$p_5''(x) = -6 + 12x^2 - 20x^3$$

Polinomio interpolador de Hermite y sus derivadas:

$$p_5(x) = -3 - (x+1) + (x+1)^2 (4 - 5x + 3x^2 + x^3 (-1))$$

$$= 2x - 3x^2 + x^4 - x^5$$

$$p_5'(x) = 2 - 6x + 4x^3 - 5x^4$$

$$p_5''(x) = -6 + 12x^2 - 20x^3$$

Verificación:

Polinomio interpolador de Hermite y sus derivadas:

$$p_5(x) = -3 - (x+1) + (x+1)^2 (4 - 5x + 3x^2 + x^3 (-1))$$

$$= 2x - 3x^2 + x^4 - x^5$$

$$p_5'(x) = 2 - 6x + 4x^3 - 5x^4$$

$$p_5''(x) = -6 + 12x^2 - 20x^3$$

Verificación:

x	-1	0	1
$p_5(x)$	-3	0	-1
$p_5'(x)$	-1	2	-5
$p_5''(x)$	26	-6	-14

$$f(x_0) = y_{0,0}, f'(x_0) = y_{0,1}, \dots, f^{(q_0-1)}(x_0) = y_{0,q_0-1}$$
 (q₀ cond.)

$$f(x_0) = y_{0,0}, f'(x_0) = y_{0,1}, \dots, f^{(q_0-1)}(x_0) = y_{0,q_0-1}$$
 (q₀ cond.)

$$f(x_1) = y_{1,0}, f'(x_1) = y_{1,1}, \dots, f^{(q_1-1)}(x_1) = y_{1,q_1-1}$$
 (q₁ cond.)

$$f(x_0) = y_{0,0}, f'(x_0) = y_{0,1}, \dots, f^{(q_0-1)}(x_0) = y_{0,q_0-1}$$
 (q₀ cond.)

$$f(x_1) = y_{1,0}, f'(x_1) = y_{1,1}, \dots, f^{(q_1-1)}(x_1) = y_{1,q_1-1} \quad (q_1 \text{ cond.})$$

:

$$f(x_n) = y_{n,0}, f'(x_n) = y_{n,1}, \dots, f^{(q_n-1)}(x_n) = y_{n,q_n-1} \quad (q_n \text{ cond.})$$

- $f(x_0) = y_{0,0}, f'(x_0) = y_{0,1}, \dots, f^{(q_0-1)}(x_0) = y_{0,q_0-1}$ (q₀ cond.)
- $f(x_1) = y_{1,0}, f'(x_1) = y_{1,1}, \dots, f^{(q_1-1)}(x_1) = y_{1,q_1-1} \quad (q_1 \text{ cond.})$

:

 $f(x_n) = y_{n,0}, f'(x_n) = y_{n,1}, \dots, f^{(q_n-1)}(x_n) = y_{n,q_n-1}$ (q_n cond.)

Número de condiciones $q_0 + q_1 + \cdots + q_n$

- $f(x_0) = y_{0,0}, f'(x_0) = y_{0,1}, \dots, f^{(q_0-1)}(x_0) = y_{0,q_0-1} \quad (q_0 \text{ cond.})$
- $f(x_1) = y_{1,0}, f'(x_1) = y_{1,1}, \dots, f^{(q_1-1)}(x_1) = y_{1,q_1-1} \quad (q_1 \text{ cond.})$

:

 $f(x_n) = y_{n,0}, f'(x_n) = y_{n,1}, \dots, f^{(q_n-1)}(x_n) = y_{n,q_n-1} (q_n \text{ cond.})$

Número de condiciones $q_0 + q_1 + \cdots + q_n \Rightarrow m = q_0 + q_1 + \cdots + q_n - 1$

$$p_m(x) = f[x_0] + f[x_0, x_0](x - x_0) + \dots + f[x_0, \dots, x_0](x - x_0)^{q_0 - 1}$$

+ $f[x_0, \dots, x_0, x_1](x - x_0)^{q_0} + f[x_0, \dots, x_1, x_1](x - x_0)^{q_0}(x - x_1)$
+ $f[x_0, \dots, x_n](x - x_0)^{q_0}(x - x_1)^{q_1} \dots (x - x_n)^{q_n - 1}$

Interpolación de Hermite: error

Error:
$$r_m(x) = f(x) - p_m(x)$$

Interpolación de Hermite: error

Error:
$$r_m(x) = f(x) - p_m(x)$$

$$r_m(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}W(x)$$

Interpolación de Hermite: error

Error:
$$r_m(x) = f(x) - p_m(x)$$

$$r_m(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}W(x)$$

$$W(x) = (x - x_0)^{q_0} (x - x_1)^{q_1} \dots (x - x_n)^{q_n}$$

Interpolación de Hermite: error

Error:
$$r_m(x) = f(x) - p_m(x)$$

$$r_m(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}W(x)$$

$$W(x) = (x - x_0)^{q_0} (x - x_1)^{q_1} \dots (x - x_n)^{q_n}$$

$$\max_{x \in [a,b]} |r_m(x)| \le \frac{1}{(m+1)!} \max_{x \in [a,b]} |f^{(m+1)}(x)| \max_{x \in [a,b]} |W(x)|$$

Oscilación de los polinomios interpoladores

Si el n es grande, p_n es de alto grado: muchas oscilaciones Ejemplo:

n	x	y
0	0.0	0.0736
1	0.1	0.1394
2	0.2	0.1728
3	0.3	0.2503
4	0.4	0.3178
5	0.5	0.5346
6	0.6	0.6210
7	0.7	0.6498
8	0.8	0.8156
9	0.9	0.8368
10	1.0	1.0680

La función $s_1(x)$ verifica

La función $s_1(x)$ verifica

 $s_1(x_j) = y_j$

La función $s_1(x)$ verifica

- $s_1(x_j) = y_j$
- $s_1(x)$ es una función lineal en cada intervalo $[x_j, x_{j+1}]$

La función $s_1(x)$ verifica

- $s_1(x_j) = y_j$
- $s_1(x)$ es una función lineal en cada intervalo $[x_j, x_{j+1}]$

$$s_1(x) = \begin{cases} y_0 \, \frac{x_1 - x}{x_1 - x_0} + y_1 \, \frac{x - x_0}{x_1 - x_0} & \text{, si } x \in [x_0, x_1], \\ & \vdots & & \vdots \\ y_{n-1} \, \frac{x_n - x}{x_n - x_{n-1}} + y_n \, \frac{x - x_{n-1}}{x_n - x_{n-1}} & \text{, si } x \in [x_{n-1}, x_n]. \end{cases}$$

Interpolación segmentada lineal: ejemplo

n	x	y
0	0.0	0.0736
1	0.1	0.1394
2	0.2	0.1728
3	0.3	0.2503
4	0.4	0.3178
5	0.5	0.5346
6	0.6	0.6210
7	0.7	0.6498
8	0.8	0.8156
9	0.9	0.8368
10	1.0	1.0680

Interpolación segmentada lineal: ejemplo

n	\boldsymbol{x}	y
0	0.0	0.0736
1	0.1	0.1394
2	0.2	0.1728
3	0.3	0.2503
4	0.4	0.3178
5	0.5	0.5346
6	0.6	0.6210
7	0.7	0.6498
8	0.8	0.8156
9	0.9	0.8368
10	1.0	1.0680

 $s_1(t)$ no oscila, es continua

Interpolación segmentada lineal: ejemplo

n	\boldsymbol{x}	y
0	0.0	0.0736
1	0.1	0.1394
2	0.2	0.1728
3	0.3	0.2503
4	0.4	0.3178
5	0.5	0.5346
6	0.6	0.6210
7	0.7	0.6498
8	0.8	0.8156
9	0.9	0.8368
10	1.0	1.0680

 $s_1(t)$ no oscila, es continua pero no derivable

En cada intervalo $[x_{j-1}, x_j]$:

En cada intervalo $[x_{j-1}, x_j]$:

$$|f(x) - s_1(x)| \le \frac{1}{2} \max_{\xi \in [x_{j-1}, x_j]} |f''(\xi)| (x_j - x)(x - x_{j-1})$$

En cada intervalo $[x_{j-1}, x_j]$:

$$|f(x) - s_1(x)| \le \frac{1}{2} \max_{\xi \in [x_{j-1}, x_j]} |f''(\xi)| (x_j - x)(x - x_{j-1})$$

Si son equidistantes:

En cada intervalo $[x_{j-1}, x_j]$:

$$|f(x) - s_1(x)| \le \frac{1}{2} \max_{\xi \in [x_{j-1}, x_j]} |f''(\xi)| (x_j - x)(x - x_{j-1})$$

Si son equidistantes: $x_j - x_{j-1} = \frac{b-a}{n}$

En cada intervalo $[x_{j-1}, x_j]$:

$$|f(x) - s_1(x)| \le \frac{1}{2} \max_{\xi \in [x_{j-1}, x_j]} |f''(\xi)| (x_j - x)(x - x_{j-1})$$

Si son equidistantes: $x_j - x_{j-1} = \frac{b-a}{n}$

$$(x_j - x)(x - x_{j-1}) \le \frac{(b-a)^2}{4n^2}$$

En cada intervalo $[x_{j-1}, x_j]$:

$$|f(x) - s_1(x)| \le \frac{1}{2} \max_{\xi \in [x_{j-1}, x_j]} |f''(\xi)| (x_j - x)(x - x_{j-1})$$

Si son equidistantes: $x_j - x_{j-1} = \frac{b-a}{n}$

$$(x_j - x)(x - x_{j-1}) \le \frac{(b-a)^2}{4n^2}$$

Para $x \in [a, b]$

En cada intervalo $[x_{j-1}, x_j]$:

$$|f(x) - s_1(x)| \le \frac{1}{2} \max_{\xi \in [x_{j-1}, x_j]} |f''(\xi)| (x_j - x)(x - x_{j-1})$$

Si son equidistantes: $x_j - x_{j-1} = \frac{b-a}{n}$

$$(x_j - x)(x - x_{j-1}) \le \frac{(b-a)^2}{4n^2}$$

Para $x \in [a, b]$

$$|f(x) - s_1(x)| \le \max_{\xi \in [a,b]} |f''(\xi)| \frac{(b-a)^2}{8n^2}$$

Para que sea derivable:

Para que sea derivable: s(t) debe ser de orden más alto

Para que sea derivable: s(t) debe ser de orden más alto

Si $s_3(t)$ es cúbica en cada intervalo $[x_{j-1},x_j]$:

Para que sea derivable: s(t) debe ser de orden más alto

Si $s_3(t)$ es cúbica en cada intervalo $[x_{j-1},x_j]$: $s_3(t)$ dos veces derivable

Para que sea derivable: s(t) debe ser de orden más alto

Si $s_3(t)$ es cúbica en cada intervalo $[x_{j-1},x_j]$: $s_3(t)$ dos veces derivable

$$f(x_0) = s_3(x_0)$$

$$f(x_1) = s_3(x_1^-) = s_3(x_1^+), \quad s_3'(x_1^-) = s_3'(x_1^+), \quad s_3''(x_1^-) = s_3''(x_1^+)$$

$$f(x_2) = s_3(x_2^-) = s_3(x_2^+), \quad s_3'(x_2^-) = s_3'(x_2^+), \quad s_3''(x_2^-) = s_3''(x_2^+)$$

$$\vdots$$

$$f(x_k) = s_3(x_k^-) = s_3(x_k^+), \quad s_3'(x_k^-) = s_3'(x_k^+), \quad s_3''(x_k^-) = s_3''(x_k^+)$$

$$\vdots$$

$$f(x_n) = s_3(x_n)$$

Para
$$k=1,\ldots,n-1$$

Para
$$k = 1, \ldots, n-1$$

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

Para
$$k = 1, ..., n - 1$$

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

 $\Rightarrow 4$ condiciones

Para
$$k = 1, \ldots, n-1$$

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

Para
$$k = 1, ..., n - 1$$

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n$$

Para
$$k = 1, \ldots, n-1$$

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Número total coeficientes: 4n coeficientes

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Número total coeficientes: 4n coeficientes (se pueden elegir 2 libremente)

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Número total coeficientes: 4n coeficientes (se pueden elegir 2 libremente)

Condiciones adicionales

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Número total coeficientes: 4n coeficientes (se pueden elegir 2 libremente)

Condiciones adicionales

Naturales:

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Número total coeficientes: 4n coeficientes (se pueden elegir 2 libremente)

Condiciones adicionales

■ Naturales: $s''(x_0) = 0$, $s''(x_n) = 0$

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Número total coeficientes: 4n coeficientes (se pueden elegir 2 libremente)

Condiciones adicionales

- Naturales: $s''(x_0) = 0$, $s''(x_n) = 0$
- Periódicas: si $y_0 = y_n$

Para k = 1, ..., n - 1

$$s_3(x_k^-) = y_k, \ s_3(x_k^+) = y_k, \ s_3'(x_k^-) = s_3'(x_k^+), \ s_3''(x_k^-) = s_3''(x_k^+)$$

$$\Rightarrow 4 \text{ condiciones} \Rightarrow 4(n-1) = 4n-4$$

$$s_3(x_0) = y_0, s_3(x_n) = y_n \Rightarrow 2$$
 condiciones

Número total condiciones: 4n-2

Número de coeficientes de cada cúbica: 4 coeficientes

Número total coeficientes: 4n coeficientes (se pueden elegir 2 libremente)

Condiciones adicionales

- Naturales: $s''(x_0) = 0$, $s''(x_n) = 0$
- Periódicas: si $y_0 = y_n$ $s'(x_0) = s'(x_n)$, $s''(x_0) = s''(x_n)$

Interpolación segmentada cúbica: ejemplo

n	x	y
0	0.0	0.0736
1	0.1	0.1394
2	0.2	0.1728
3	0.3	0.2503
4	0.4	0.3178
5	0.5	0.5346
6	0.6	0.6210
7	0.7	0.6498
8	0.8	0.8156
9	0.9	0.8368
10	1.0	1.0680

Interpolación segmentada cúbica: ejemplo

n	\boldsymbol{x}	y
0	0.0	0.0736
1	0.1	0.1394
2	0.2	0.1728
3	0.3	0.2503
4	0.4	0.3178
5	0.5	0.5346
6	0.6	0.6210
7	0.7	0.6498
8	0.8	0.8156
9	0.9	0.8368
10	1.0	1.0680

 $s_1(t)$ no oscila, es continua

Interpolación segmentada cúbica: ejemplo

n	x	y
0	0.0	0.0736
1	0.1	0.1394
2	0.2	0.1728
3	0.3	0.2503
4	0.4	0.3178
5	0.5	0.5346
6	0.6	0.6210
7	0.7	0.6498
8	0.8	0.8156
9	0.9	0.8368
10	1.0	1.0680

 $s_1(t)$ no oscila, es continua y dos veces derivable

Comparación entre métodos

Si
$$s_n(x) = p_j(x)$$
 para $x \in [x_{j-1}, x_j]$, planteamos

Si
$$s_n(x)=p_j(x)$$
 para $x\in[x_{j-1},x_j]$, planteamos
$$p_j(x)=\frac{y_j+y_{j-1}}{2}+\frac{y_j-y_{j-1}}{h_j}(x-x_{j-1/2})\\ +\frac{w_j+w_{j-1}}{16}\left(4(x-x_{j-1/2})^2-h_j^2\right)$$

 $+\frac{w_j-w_{j-1}}{24h_i}\left(4(x-x_{j-1/2})^2-h_j^2\right)(x-x_{j-1/2}),$

Si
$$s_n(x) = p_j(x)$$
 para $x \in [x_{j-1}, x_j]$, planteamos

$$\begin{split} p_j(x) &= \frac{y_j + y_{j-1}}{2} + \frac{y_j - y_{j-1}}{h_j} (x - x_{j-1/2}) \\ &+ \frac{w_j + w_{j-1}}{16} \left(4(x - x_{j-1/2})^2 - h_j^2 \right) \\ &+ \frac{w_j - w_{j-1}}{24h_j} \left(4(x - x_{j-1/2})^2 - h_j^2 \right) (x - x_{j-1/2}), \end{split}$$

donde
$$h_j = x_j - x_{j-1}$$
 y $x_{j-1/2} = \frac{x_j + x_{j-1}}{2}$,

Si
$$s_n(x) = p_j(x)$$
 para $x \in [x_{j-1}, x_j]$, planteamos

$$\begin{split} p_j(x) &= \frac{y_j + y_{j-1}}{2} + \frac{y_j - y_{j-1}}{h_j} (x - x_{j-1/2}) \\ &+ \frac{w_j + w_{j-1}}{16} \left(4(x - x_{j-1/2})^2 - h_j^2 \right) \\ &+ \frac{w_j - w_{j-1}}{24h_j} \left(4(x - x_{j-1/2})^2 - h_j^2 \right) (x - x_{j-1/2}), \end{split}$$

donde
$$h_j = x_j - x_{j-1}$$
 y $x_{j-1/2} = \frac{x_j + x_{j-1}}{2}$,

$$p_j(x_j) = p_j(x_{j-1/2} + h_j/2) = y_j,$$

$$p_j(x_{j-1}) = p_j(x_{j-1/2} - h_j/2) = y_{j-1}.$$

