# FOR MORE EXCLUSIVE

# (Civil, Mechanical, EEE, ECE) ENGINEERING & GENERAL STUDIES

(Competitive Exams)

TEXT BOOKS, IES GATE PSU's TANCET & GOVT EXAMS
NOTES & ANNA UNIVERSITY STUDY MATERIALS

VISIT

# www.EasyEngineering.net

AN EXCLUSIVE WEBSITE FOR ENGINEERING STUDENTS & GRADUATES



\*\*Note: Other Websites/Blogs Owners Please do not Copy (or) Republish this Materials, Students & Graduates if You Find the Same Materials with EasyEngineering.net *Watermarks or Logo*, Kindly report us to <a href="mailto:easyengineeringnet@gmail.com">easyengineeringnet@gmail.com</a>









ANALOG CIRCUITS







# Contents

| Manual for K-Notes              | 2  |
|---------------------------------|----|
| Diodes                          | 3  |
| Transistor Biasing              |    |
| Transistor Amplifier            | 19 |
| Feedback Amplifiers             | 25 |
| Operational Amplifiers (OP-AMP) | 29 |

© 2015 Kreatryx. All Rights Reserved.















## Manual for K-Notes

#### Why K-Notes?

Towards the end of preparation, a student has lost the time to revise all the chapters from his / her class notes / standard text books. This is the reason why K-Notes is specifically intended for Quick Revision and should not be considered as comprehensive study material.

#### What are K-Notes?

A 40 page or less notebook for each subject which contains all concepts covered in GATE Curriculum in a concise manner to aid a student in final stages of his/her preparation. It is highly useful for both the students as well as working professionals who are preparing for GATE as it comes handy while traveling long distances.

#### When do I start using K-Notes?

It is highly recommended to use K-Notes in the last 2 months before GATE Exam (November end onwards).

#### How do I use K-Notes?

Once you finish the entire K-Notes for a particular subject, you should practice the respective Subject Test / Mixed Question Bag containing questions from all the Chapters to make best use of it.

© 2015 Kreatryx. All Rights Reserved.









## **Diodes**

Representation:

A: Anode

K: Cathode





 The voltage at which the charged particles start crossing the junction is called as cut – in voltage or Threshold voltage.

It is represented as  $V_{AK} = V_{\gamma}$ .

- When  $V_{AK} < V_{\gamma}$ , depletion region exists and no charge carriers cross the junction, therefore  $I_D = 0$
- When  $V_{AK} > V_{\gamma}$ , number of charged particles crossing the junction increases & the current through the diode increase, non linearly or exponentially.
- Diode in the condition is said to be forward biased.

$$I_{D} = I_{S} \left[ e^{V_{AK} / \eta V_{T}} - 1 \right]$$

I<sub>c</sub> = reverse saturation current

$$V_T$$
 = Thermal voltage =  $\frac{KT}{q}$ 

K = Boltzmann constant

T = Temp. in k

q = charge of one e

 $V_T = 26mv$  at room temperature

 $\eta$  = intrinsic factor

• When  $V_{AK} < 0$ , diode is said to be in reverse biased condition & no majority carriers cross the depletion region, hence  $I_D = 0$ 









## **Equivalent circuit of diode**

**Forward Bias** 



when both are not given

**Reverse Bias** 



#### **Diode Resistance**

1) State or DC Resistance

$$R_{DC} = \frac{V_{AK}}{I_{D}}$$











## 2) Dynamic or AC Resistance

$$R_{AC} = \frac{dV_D}{dI_D} = \frac{\eta V_T}{I_D}$$

#### **Diode Applications**

#### **Clippers**

It is a transmission circuit which transmits a part of i/p voltage either above the reference voltage or below the reference voltage or b/w the two reference voltages.

## **Series Clippers**

#### i) Positive Clippers



$$V_i = V_m \sin \omega t$$
: When  $V_i < V_R => V_O = V_R$ 

$$V_{m} > V_{R}$$
 When  $V_{i} > V_{R} \Rightarrow V_{O} = V_{i}$ 





## ii) Negative Clipper



$$V_i = V_m \sin \omega t$$
: When  $V_i < -V_R => V_o = -V_R$ 

$$V_{m} > -V_{R}$$
 When  $V_{i} > -V_{R} \Rightarrow V_{o} = V_{i}$ 















## **Shunt Clipper**

## i) Positive Clipper



When 
$$V_i < V_R$$
, D is ON 
$$V_o = V_R$$

When 
$$V_i > V_R$$
, D is OFF
$$V_0 = V_i$$

## ii) Negative Clipper



When 
$$V_i < -V_R$$
, D is ON
$$V_0 = -V_R$$

When 
$$V_i > -V_R$$
, D is OFF  $V_O = V_i$ 

## **Two level Clipper**



When 
$$V_1 < V_2$$
,  $D_1$  is OFF &  $D_2$  is ON  $V_0 = V_2$ 

When 
$$V_{i} \ge V_{2} & V_{i} < V_{1}, D_{2} \text{ is OFF } \& D_{1} \text{ is OFF}$$

$$V_{0} = V_{i}$$

$$V_O = V_i$$
  
When  $V_i > V_1$ ,  $D_2$  is OFF  $D_1$  is ON  $V_O = V_1$ 











## **CLAMPERS**

These circuits are used to shift the signal either up words or down words.

## Negative Clampers





When 
$$V_R = 0$$

- +ve peak is shifted to 0
- -ve peak is shifted to  $-2V_{\rm m}$

When 
$$V_R \neq 0$$

- +ve peak is shifted to  $V_R$
- -ve peak is shifted to -2  $V_{m}$  +  $V_{R}$

## Positive Clampers









When 
$$V_R = 0$$

- -ve peak is shifted to 0
- +ve peak is shifted to 2V<sub>m</sub>

When  $V_R \neq 0$ 

- -Ve peak is shifted to  $V_R$
- +ve peak is shifted to  $2V_{m} + V_{R}$

#### Rectifier

It converts AC signal into pulsating DC.

#### 1) Half wave rectifier

During positive half wave cycle

$$V_0 = V_m \sin \omega t \left[ \frac{R_L}{R_f + R_L} \right]$$

 $R_f$  = diode resistance

During negative half cycle

$$V_0 = 0$$



$$\bullet \qquad \eta = \frac{4}{\pi^2} \left( \frac{R_L}{R_f + R_L} \right) \times 100\%$$

$$\bullet \quad \left( V_0 \right)_{RMS} = \frac{V_m}{2}$$

• Form Factor = 
$$\frac{V_{RMS}}{V_{avg}} = \frac{\pi}{2}$$

• Ripple factor = 
$$\sqrt{FF^2 - 1}$$

$$\bullet \quad \mathsf{PIV} = \mathsf{V}_{\!m}$$













## **Bridge full wave rectifier**

When +ve half wave cycle

$$V_{o} = V(t) \times \frac{R_{L}}{R_{L} + 2R_{f}}$$

When -ve half wave cycle

$$V_{o} = -V(t) \times \frac{R_{L}}{R_{L} + 2R_{f}}$$

• 
$$\left(V_{O}\right)_{avg} = \frac{2V_{m}}{\pi}$$

$$\bullet \quad \eta = \frac{8}{\pi^2} \left( \frac{1}{1 + 2\frac{R_f}{R_L}} \right) \times 100\%$$

• 
$$\left(V_{O}\right)_{RMS} = \frac{V_{m}}{\sqrt{2}}$$

• 
$$FF = \frac{\pi}{2\sqrt{2}}$$

• 
$$PIV = V_{m}$$

#### **Zener Diode**

- A heavily doped a si diode which has sharp breakdown characteristics is called Zener Diode.
- When Zener Diode is forward biased, it acts as a normal PN junction diode.
- For an ideal zener diode, voltage across diode remains constant in breakdown region.













## **Voltage Regulator**

Regulators maintains constant output voltage irrespective of input voltage variation.



(shunt Regulator)

Zener must operate in breakdown region so  $V_i > V_z$ 

$$I = I_z + I_L$$

$$I_L = \frac{V_Z}{R_I}$$

$$\therefore I_{max} = I_{z(max)} + I_{L}$$

$$I_{\min} = I_{z(\min)} + I_{L}$$

$$I_{z(min)} = I_{min} - I_{L}$$







10







## **Transistor Biasing**

## **Bipolar Junction Transistor**

- Current conduction due to both e- & holes
- It is a current controlled current source.

## **NPN Transistor**



#### **PNP Transistor**



## Region of Operation

| - 11 | ın   | cti | 0 | nc |
|------|------|-----|---|----|
| J    | aı ı | U   | v | uэ |

i) 
$$J_{E} = RB$$
$$J_{C} = RB$$

ii) 
$$J_{E} = FB$$
$$J_{C} = RB$$

iii) 
$$J_E = FB$$

$$J_C = FB$$

iv) 
$$J_E = RB$$
  
 $J_C = FB$ 



| Region | of or | perations |
|--------|-------|-----------|
|--------|-------|-----------|







#### **Current gain (α) (common base)**

$$I_C = I_{nc} + I_o$$

 $I_{\rm nc}$ : injected majority carrier current in collector

$$\alpha = \frac{\frac{I}{nc}}{\frac{I}{E}}$$

$$I_{C} = \frac{\alpha I_{B} + I_{O}}{(1 - \alpha)}$$
;  $I_{E} = \frac{I_{B}}{(1 - \alpha)} + \frac{1}{(1 - \alpha)}I_{O}$ 

## **Current gain β (common emitter)**

$$I_{c} = \beta I_{B} + (1 + \beta) I_{O}$$

$$\alpha = \frac{\beta}{1+\beta}$$
 ;  $\beta = \frac{\alpha}{(1-\alpha)}$ 

These relations are valid for active region of operations.

#### **Characteristics of BJT**

Common Base characteristics



$$input = V_{BE}^{, I}_{E}$$
 $output = V_{CB}^{, I}_{C}$ 

Input characteristics  $V_{BE}$  vs  $I_{E}$  when  $V_{CB} = constant$ 















## **Output characteristics**



## Common emitter characteristics



 $inputs \left( V_{\text{BE}}, I_{\text{B}} \right)$  $\mathsf{outputs} \big(\mathsf{V}_\mathsf{CE}, \mathsf{I}_\mathsf{C}\big)$ 

## **Input characteristics**

















## Output characteristics



## **Transistor Biasing**

#### 1) Fixed Bias method

$$V_{CC} - I_B R_B - V_{BE} = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

Assuming active region of operation

$$I_{c} = \beta I_{B}$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

## **Verification**

If  $V_{CE(sat)} < V_{CE} < V_{CC} \rightarrow Active Region$ If not; then saturation region



$$I_{C} = \frac{V_{CC} - V_{CE(sat)}}{R_{C}}$$

In saturation region ,  $I_B \ge \frac{I_C}{\beta_{min}}$ 

















#### 2) Feedback Resistor Bias Method

By KVL

$$V_{CC} - (I_C + I_B)R_C - I_BR_B - V_{BE} - I_ER_E = 0$$

$$V_{CC} - (I_C + I_B)R_C - I_BR_B - V_{BE} - (I_C + I_B)R_B = 0$$

Assuming active region

$$I_c = \beta I_B$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (1 + \beta)(R_{C} + R_{E})}$$
;  $I_{C} = \beta I_{B}$ 

$$V_{CE} = V_{CC} - (I_C + I_B)(R_C + R_E)$$



## 3) Voltage divider bias or self-bias

By thevenin's theorem across R<sub>2</sub>

$$V_{TH} = V_{CC} \frac{R_2}{R_1 + R_2}$$

$$R_{TH} = \frac{R_2 R_1}{R_1 + R_2}$$

**Apply KVL** 

$$V_{TH} - V_{BE} = I_B R_{TH} + (I_B + I_C) R_E$$

Assuming active region  $I_C = \beta I_B$ 

$$I_{B} = \frac{V_{TH} - V_{BE}}{R_{TH} + (1 + \beta)R_{E}}$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

















#### **FET Biasing**

#### **JFET**



- When V<sub>GS</sub> is negative, depletion layer is created between two P region and that pinches the channel between drain & source.
- The voltage at which drain current is reduce to zero is called as pinch off voltage.
- Transfer characteristics of JFET is inverted parabola

$$I_{D} = I_{DSS} \left[ 1 - \frac{V_{GS}}{V_{GS(OFF)}} \right]^{2}$$

When 
$$V_{GS} = 0$$
,  $I_D = I_{DSS}$ 

When 
$$V_{GS} = V_{GS(OFF)'}$$
  $I_D = 0$ 

Pinch of voltage, 
$$V_p = \left| V_{GS(OFF)} \right|$$

For a N – channel JFET, pinch off voltage is always positive

$$V_{p} > 0 \ \& \ V_{GS} < 0$$







#### **JFET Parameters**

#### 1) Drain Resistance

$$r_d = \frac{\Delta V_{DS}}{\Delta I_{DS}}$$

It is very high, of the order of  $M\Omega$ .

#### 2) Trans conductance

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}} = \frac{dI_{D}}{dV_{GS}}$$

$$I_{D} = I_{DSS} \left[ 1 - \frac{V_{GS}}{V_{GS(OFF)}} \right]^{2}$$

$$\frac{dI_{D}}{dV_{GS}} = g_{m} = \frac{-2I_{DSS}}{V_{GS(OFF)}} \left[ 1 - \frac{V_{GS}}{V_{GS(OFF)}} \right]$$

## 3) Amplification factor

$$\mu = \frac{\Delta V_{DS}}{\Delta V_{GS}} = g_{m} r_{d}$$

**MOSFET** (Metal Oxide Semi-conductor FET)

















#### **Enhancement Type MOSFET**

- No physical channel between source & drain
- To induce a channel Gate source voltage is applied.

#### **Depletion MOSFET**

• Physical channel present between source & drain.

## **Types of MOSFET**



#### P-channel MOSFET

## **Operating characteristics**

## 1. For n – channel MOSFET

•  $I_D = 0$  for  $V_{GS} < V_T$ 

(cut – off region)

 $\bullet \quad I_D = \mu_n C_{ox} \, \frac{W}{L} \Bigg[ \Big( V_{GS} - V_T \Big) V_{DS} - \frac{V_{DS}^2}{2} \Bigg]$ 

(linear region)

 $\textit{V}_{GS} \geq \textit{V}_{T} \text{ and } \textit{V}_{DS} < \left(\textit{V}_{GS} - \textit{V}_{T}\right)$ 

•  $I_D = \mu_n C_{ox} \frac{W}{L} \frac{\left(V_{GS} - V_T\right)^2}{2}$ 

(saturation region)

 $V_{GS} \ge V_{T} \text{ and } V_{DS} \ge \left(V_{GS} - V_{T}\right)$ 







#### 2. For p - channel MOSFET

• 
$$I_D = 0$$
 for  $V_{GS} > V_T$ 

(cut - off region)

• 
$$I_D = \mu_n C_{ox} \frac{W}{L} \left[ \left( V_{GS} - V_T \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

(linear region)

 $V_{GS} \leq V_{T}$  and  $V_{DS} > V_{GS} - V_{T}$ 

• 
$$I_D = \mu_n C_{ox} \frac{W}{L} \frac{\left(V_{GS} - V_T\right)^2}{2}$$
  
 $V_{GS} \leq V_T \text{ and } V_{DS} \leq V_{GS} - V_T$ 

(saturation region)

## **Transistor Amplifier**

## **Small signal analysis for BJT**

<u>h – parameter model of BJT</u>



$$V_1 = h_i I_1 + h_r V_2$$
  
 $I_2 = h_f I_1 + h_o V_2$ 

• current gain,  $A_1 = -\frac{I_2}{I_1}$  $A_{I} = \frac{-h_{f}R_{L}}{1 + h_{o}R_{I}}$ 





Input Impedance,

$$Z_{i} = \frac{V_{1}}{I_{I}} = h_{i} + h_{r}A_{I}R_{L}$$













• Voltage gain, 
$$A_V = \frac{A_I R_L}{Z_i}$$

• Output impedance, 
$$Z_O = \frac{1}{\left(h_O - \frac{h_f h_r}{h_i + R_s}\right)}$$



## **Small signal model**



$$\text{Voltage gain } A_{V} = \frac{V_{O}}{V_{i}} = \frac{-h_{f}e}{h_{i}e} \Big( R_{C} \parallel R_{L} \Big)$$













r<sub>bb'</sub> = base spreading resistance.

r<sub>b'e</sub> = input resistance.

 $r_{b'c}$  = feedback resistance.

r<sub>ce</sub> = output resistance.

C<sub>b'e</sub> = diffraction capacitance.

 $C_{b'c}$  = Transition capacitance.

 $g_{m}$  = Transconductance.

## Hybrid $\pi$ - parameters

1) 
$$g_m = \frac{\left(I_c\right)_Q}{V_T}$$
 ;  $V_T = \frac{KT}{q}$ ,

 $I_{CQ}$  = dc bias point collector current.

$$2) \quad r_{b'e} = \frac{h_{fe}}{g_{m}}$$









## **Low Frequency Model**













## Voltage gain as frequency



## **Low Frequency Range**

- External capacitor  $\,{\rm C}_{\rm E}\,$  and  $\,{\rm C}_{\rm C}\,$  are short circuited.
- Internal capacitor  $C_{b'c}$  and  $C_{b'e}$  are open circuited.
- Circuit becomes like.

















#### **High frequency range**

- External capacitors  $C_{b}$ ,  $C_{c}$  and  $C_{E}$  are short circuited.
- $C_{\mbox{b'c}}$  is open circuited.
- Equivalent circuit behaves as a low pass filter with cut-off frequency f<sub>L</sub>

#### Mid - band range

All internal and external capacitance are neglected, so gain is independent of frequency.

## **FET Small Signal parameters**

Trans conductance, 
$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

In non - saturation region

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu_{n} C_{OX} \frac{W}{L} \cdot V_{DS}$$

In saturation region

$$g_{ms} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)$$

## **Small Signal equivalent circuit**















#### For low frequency



#### For high frequency



## Feedback Amplifiers

## Ideal Amplifier

$$Z_{in} = \infty$$

$$Z_{O} = 0$$

Positive feedback :  $V_i = V_s + V_f$ 

Negative Feedback :  $V_i = V_s - V_f$ 

For negative feedback,  $\frac{V_O}{V_S} = \frac{A}{1 + A\beta}$ 

For positive feedback,  $\frac{V_O}{V_S} = \frac{A}{1 - A\beta}$ 



Positive feedback is used for unstable system like oscillators.







## **Effects of Negative Feedback**

## i) **Sensitivity**

Without feedback = 
$$\frac{\delta A}{A}$$

With feedback = 
$$\frac{\delta A_f}{A_f}$$

$$\boxed{\frac{\delta A_f}{A_f} = \frac{1}{\left(1 + A\beta\right)} \frac{\delta A}{A}}$$

## ii) Input Impedance

Without feedback =  $Z_i$ 

With feedback =  $Z_{if}$ 

$$Z_{if} = Z_i (1 + A\beta)$$

## iii) Output impedance

Without feedback =  $Z_0$ 

With feedback =  $Z_{of}$ 

$$\boldsymbol{Z}_{of} = \boldsymbol{Z}_{o} / (1 + \boldsymbol{A}\boldsymbol{\beta})$$

Negative feedback also leads to increase in band width

## **Topologies of Negative feedback**

| Output  | Input  |  |
|---------|--------|--|
| Voltage | Series |  |
| Voltage | Shunt  |  |
| Current | Series |  |
| Current | Shunt  |  |















#### 1) Voltage Series Topologies

$$V_f = \beta V_o$$



It is called as series shunt feedback or voltage - voltage feedback. In this case, input impedance increases & output impedance decreases.

## 2) Voltage shunt topologies

$$I_f = \beta V_o$$



 $\beta$  = Trans conductance

It is called as shunt-shunt or voltage current feedback.

## 3) Current series Topologies

$$V_f = \beta I_o$$

 $\beta$  = resistance



It is called as shunt – shunt or voltage current feedback.

## 4) Current shunt Topologies

$$I_f = \beta I_o$$



It is also called as shunt – series or current – current feedback.













## **Circuit Topologies**

1) Voltage series



2) Voltage shunt



3) <u>Current – series</u>

















#### 4) Current - shunt



## Operational Amplifiers (OP-AMP)

- $+ \rightarrow Non inverting terminal$
- → inverting terminal



#### **Parameters of OP-AMP**

## 1) Input offset voltage

Voltage applied between input terminals of OP – AMP to null or zero the output.

## 2) Input offset current

Difference between current into inverting and non – inverting terminals of OP – AMP.

#### 3) Input Bias Current

Average of current entering the input terminals of OP – AMP.

## 4) Common mode Rejection Ratio (CMRR)

Defined as ratio of differential voltage gain  $A_d$  to common mode gain  $(A_{cm})$ .

$$CMRR = \frac{A_d}{A_{cm}}$$









#### **Slew Rate**

Maximum rate of change of output voltage per unit time under large signal conditions.

$$SR = \frac{dV_0}{dt} \Big|_{max} V/\mu s$$

## **Concept of Virtual ground**

In an OP – AMP with negative feedback, the potential at non – inserting terminals is same as the potential at inverting terminal.

## **Applications of OP -AMP**

## 1) Inverting Amplifier

$$V_{o} = \frac{-R_{f}}{R_{1}} V_{in}$$

## 2) Inverting Summer

$$V_{o} = -R_{f} \left( \frac{V_{a}}{R_{a}} + \frac{V_{b}}{R_{b}} + \frac{V_{c}}{R_{c}} \right)$$

## 3) Non – inverting Amplifier

$$V_{O} = \left(1 + \frac{R_{f}}{R_{1}} V_{in}\right)$$



















#### 4) Non – inverting summer

If 
$$R_a = R_b = R_c = R$$

$$V_{1} = \frac{V_{a}(\frac{R}{2})}{R + \frac{R}{2}} + \frac{V_{b}(\frac{R}{2})}{R + \frac{R}{2}} + \frac{V_{c}(\frac{R}{2})}{R + \frac{R}{2}}$$

$$V_1 = \frac{\left(V_a + V_b + V_c\right)}{3}$$

$$V_{O} = \left(1 + \frac{R_{f}}{R_{1}}\right) \left(\frac{V_{a} + V_{b} + V_{c}}{3}\right)$$



#### 5) Differential Amplifier

By Super position

$$V_{ob} = \left(1 + \frac{R_f}{R_1}\right) \left(\frac{R_3}{R_2 + R_3}\right) V_b$$

$$V_{oa} = \frac{-R_f}{R_1} V_a$$

$$V_{o} = V_{oa} + V_{ob}$$

## 6) Integrator

$$V_{O} = \frac{-1}{RC} \int_{O}^{t} V_{in} dc$$







31







7) <u>Differentiator</u>

$$V_{o} = -RC \frac{dV_{in}}{dt}$$



8) Voltage to current converter

$$I_L = \frac{V_{in}}{R}$$



9) Current to voltage Converter

$$V_{out} = -R_p I_{IN}$$















## 10) Butter – worth Low Pass Filter



#### 11) Butter - worth High Pass Filter













## 12) Active Half – wave rectifier

In this circuit, diode voltage drop between input & output is not  $V_D$  but rather  $\frac{V_D}{A}$ , where A = open loop gain of OP - AMP.

 $\therefore V_{in} \approx V_{o}$ 







## 13) Active Full - wave Rectifier



This circuit provides full wave rectification with a gain of















## 14) Active Clipper

$$V_{IN} < V_{R}$$
 , Diode conducts and  $V_{O} = V$ 

And when  $V_{IN} > V_{R}$  Diode is OFF

$$\therefore V_o = V_{IN}$$





## 15) Active Clamper

$$V_0 = V_{IN} + V_p$$

 $V_p$  = peak value of  $V_{IN}$ 















## 16) Comparators























## 17) Schmitt Trigger

#### **Inverting Schmitt Trigger**



- When output is  $+V_{sat}$ , then  $V_{ref} = \beta V_{sat}$
- When output is  $-V_{sat}$ , then  $V_{ref} = -\beta V_{sat}$ When  $\beta = \frac{R_2}{R_1 + R_2}$
- Upper triggering point (utp) =  $\beta V_{sat}$ Lower triggering point (Ltp) =  $-\beta V_{sat}$
- Hystersis voltage =  $UTP LTP = 2\beta V_{sat}$

$$UTP = \beta V_{sat} + \frac{R_1}{R_1 + R_2} V_R$$

$$LTP = -\beta V_{sat} + \frac{R_1}{R_1 + R_2} V_R$$

















- Upper trigger Point (UTP) =  $\frac{R_2}{R_1}V_{sat}$ , Lower triggering point (LTP) =  $\frac{-R_2}{R_1}V_{sat}$ ,  $\beta = \frac{R_2}{R_1}$
- Hysteric voltage =  $UTP LTP = 2\beta V_{sat}$

## 18) Relaxation Oscillator















$$\beta = \left(\frac{R_2}{R_1 + R_2}\right)$$

$$T = 2RC \ln \left( \frac{1+\beta}{1-\beta} \right)$$

$$f = \frac{1}{T} = \frac{1}{2RC \ln\left(\frac{1+\beta}{1-\beta}\right)}$$

## 555 Timer

## Pin Diagram













- Allalog Circi
- Bistable multi vibrator acts as a FF.
- Monostable Multi vibrator produces pulse output.
- Bistable Multi vibrator acts as free running oscillator.

#### A stable Multi vibrator





$$\mathsf{T}_{\mathsf{C}} = 0.69 \Big( \mathsf{R}_1 + \mathsf{R}_2 \Big) \mathsf{C}$$

$$T_{d} = 0.69R_{2}c$$

$$T = T_c + T_d = 0.69(R_1 + 2R_2)C$$

$$f = \frac{1}{T} = \frac{1}{0.69(R_1 + 2R_2)C}$$



# connect with us

- **f** facebook.com/**kreatryx**
- witter.com/kreatryx
- g<sup>+</sup> plus.google.com/kreatryx
- youtube.com/kreatryx
- in linkedin.com/kreatryx

info@kreatryx.com kreatryx.thegateguru@gmail.com +91 7406144144 +91 9819373645 0120-4326333 Address - SE 617, Shastri Nagar, Ghaziabad, U.P (201002)

www.kreatryx.com