

AMENDMENT TO THE SPECIFICATION

Please amend the paragraph starting on page 12, line 5 as follows:

--Especially preferred photosensitizers belong to the general class of water-soluble metalligand complexes which absorb light in the range of from about 350 nm to about 700 nm. For the purposes of the present disclosure, the term "ligand" will mean an organic molecule capable of complexing or associating with a metal ion in aqueous solution, such that the reactivity, solubility, or any other physical property of said metal ion is changed. Such metal-ligand complexes are also known as metal-coordination complexes. Suitable metals ions include iron, manganese, copper, and other transition metal ions. Various valence states may be used or may be present simultaneously. The metal ions may be present in saliva, plaque, or the acquired pellicle on the tooth surface. Metal ions may also contribute, through formation of oxides, to certain types of tooth stains. Suitable metal ion ligands include chelating agents capable of associating with the metal ions above in aqueous solution, resulting in a water-soluble metalchelate complex that absorbs light between about 350 and 700 nm. Illustrative, but by no means limiting, examples of metal-coordination complexes are formed from the association of iron, manganese and copper with chelators such as ethylenediamine tetraacetic acid (EDTA), diethylenetriamine pentaacetic acid (DETPA), nitrilotriacetic acid (NTA), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediamine tetra(methylenephosphonic acid), diethylenetriamine penta(methylenephosphonic acid), and polyols such as sorbitol, xylitol, mannitol, maltitol, lactitol and other non-carboxylated polyhydroxy compounds more fully described in EP 443,651, such description being incorporated herein by reference. having at least three consecutive C-OH groups in its molecular structure. Both linear and cyclic molecules are suitable non-carboxylated polyhydroxy compounds, which may be simple unsubstituted polyhydroxy compounds or may contain any substituent(s) other than carboxylate, such as alkyl, aryl, alkene, amine, aldehyde, 13070483 03127817

Will Const

ethylene oxide, ether, sugar groups and the like. Other preferred non-carboxylated polyhydroxy compounds, are those that contain at least 5 consecutive carbon atoms, preferably from 5 to 8, having at least 4 consecutive hydroxyl groups, preferably from 4 to 8. The non-carboxylated polyhydroxy compounds can be a linear or a cyclic polyol. Examples of linear polyols are sorbitol, xylitol, mannitol, ribitol, erythrol and arabitol. Examples of cyclic polyols are inositol, scyllitol, lactose, glucose and stereoisomers thereof. Any organic multidentate chelating agent capable of forming a photoabsorbing coordination complex with a metal ion can be presumed to have utility in the present inventive compositions for and methods of whitening stained teeth.--