30

Appendix S1 for "Soil climate underpins year effects driving divergent outcomes in semi-arid

cropland to grassland restoration"

Journal: Ecosphere

Authors: Adam L. Mahood*, David M. Barnard, Jacob A. Macdonald, Timothy R. Green, Robert

H. Erskine

*corresponding author: admahood@gmail.com

Affiliations: Water Resource Management Systems, USDA-ARS, Fort Collins, CO, USA

ORCIDs:

ALM: 0000-0003-3791-9654

DMB: 0000-0003-1877-3151

JAM: 0009-0009-3093-0667

TRG: 0000-0002-1441-8008

Figure S1. The study site. The background is a 5m digital elevation model, stars indicate the locations of soil temperature and moisture probes, dots indicate the location of 2022 botany plots, and the shaded areas indicate the year that the CRP seeding application was conducted. Probe locations were chosen to represent the range of topographic complexity while also allowing for the comparison of the effect of management.

Figure S2. Species prevalence. Prevalence (number of 0.1m² plots in which a species was encountered) for each plant species encountered across the study site for native species (a) and introduced species (b).

Figure S3: Model convergence diagnostics. The potential scale reduction factor (PSRF) measures the convergence among chains, and being closer 1.0 is ideal. The vertical red dashed line lies at 1.001, a sensible target for most values to fall under. Effective sample size (ESS) measures autocorrelation between successive iterations within each chain, and higher values are better. Ideally ESS matches the number of posterior samples (indicated by the vertical red dashed line), but that is not fully necessary. Betas are the parameters for environmental filters, gammas are the parameters for the traits, and omegas are the parameters for the species associations.

Figure S4: R² values from the Joint Species Distribution Model for each species or species group.

Figure S5. Western wheatgrass and cheatgrass interactions, compared to other species. This is using abundance data on the X axes to estimate the occurrence of a given species. Western wheatgrass and cheatgrass had strong effects on each others' occurrence, compared to other species. This was consistent with field observations. Abbreviations are defined in Table S1.

Table S1: All species encountered. Many species were encountered outside of the 0.1 m2 quadrats used for the JSDM. Therefore these species were not assigned to groups, but were still used in the diversity calculations. Nomenclature follows the United States Department of Agriculture's Plant Database (https://plants.usda.gov).

							Pure Live
			Group				Seed
Family	Genus	Specific epithet	Code	Group Name	CRP Mix	origin	(kg/ha)
Asteraceae	Gutierrezia	sarothrae	GUSA	Gutierrezia sarothrae	no	native	
Asteraceae	Ericameria	nauseosa	ERNA	Ericameria nauseosa	no	native	
Asteraceae	Heterotheca	villosa	HEVI	Heterotheca villosa	no	native	
Asteraceae	Helianthus	annuus	HEAN	Helianthus annuus	no	native	
Asteraceae	Stephanomeria	pauciflora	FORB	Native Forbs	no	native	
Asteraceae	cf Aster	d_081_herb_05	FORB	Native Forbs	no	native	
Asteraceae	Antennaria	sp.	ANSP	Antennaria sp	no	native	
Asteraceae	Artemisia	arbuscula	ARAR	Artemisia arbuscula	no	native	
Chenopodiaceae	Atriplex	canescens	ATCA	Atriplex canescens	yes	native	0.2676
Chenopodiaceae	Chenopodium	berlandieri	FORB	Native Forbs	no	native	
Malvaceae	Sphaerelcea	coccinea	SPCO	Sphaerelcea coccinea	no	native	
Papaveraceae	Argemone	cf hispida	ARHI	Argemone cf hispida	no	native	
Poaceae	Bouteloua	curtipendula	BOCU	Bouteloua curtipendula	yes	native	0.6244

Poaceae	Panicum	virgatum	PAVI	Panicum virgatum	yes	native	0.1784
				Schizachyrium			
Poaceae	Schizachyrium	scoparium	SCSC	scoparium	yes	native	0.3568
Poaceae	Nassella	viridula	NAVI	Nassella viridula	yes	native	0.7136
Poaceae	Pascopyrum	smithii	PASM	Pascopyrum smithii	yes	native	1.784
Poaceae	Bouteloua	gracilis	BOGR	Bouteloua gracilis	yes	native	0.1784
Poaceae	Elymus	elymoides	ELEL	Elymus elymoides	no	native	
Solanaceae	Solanum	triflorum	FORB	Native Forbs	no	native	
Nyctaginaceae	Mirabilis	sp	FORB	Native Forbs	no	native	
	Rhizomatous						
unknow n	perennial forb	d_141_herb_09	FORB	Native Forbs	no	native	
				Introduced			
Asteraceae	Scorzonera	laciniata	LACT	Cichorioideae	no	introduced	
				Introduced			
Asteraceae	Taraxacum	officinale	LACT	Cichorioideae	no	introduced	
				Introduced			
Asteraceae	Tragopogon	dubious	LACT	Cichorioideae	no	introduced	
Asteraceae	Cirsium	arvense	CIAR	Cirsium arvense	no	introduced	
				Onopordium			
Asteraceae	Onopordium	acanthium	ONAC	acanthium	no	introduced	
Asteraceae	Lactuca	serriola	LASE	Lactuca serriola	no	introduced	
				Introduced			
Brassicaceae	Sisymbrium	altissimum	BRAS	Brassicaceae	no	introduced	
				Introduced			
Brassicaceae	Descurainia	sophia	BRAS	Brassicaceae	no	introduced	
Chenopodiaceae	Salsola	tragus	SATR	Salsola tragus	no	introduced	
Chenopodiaceae	Bassia	scoparia	BASC	Bassia scoparia	no	introduced	
Convolvulaceae	Convolvulus	arvensis	COAR	Convolvulus arvensis	no	introduced	
Fabaceae	Medicago	sativa	MESA	Medicago sativa	yes	introduced	0.3568

Fabaceae	Melilotus	officinale	MEOF	Melilotus officinale	no	introduced
				Introduced Annual		
Poaceae	Bromus	tectorum	BROM	Bromus	no	introduced
Poaceae	Secale	cereale	SECE	Secale cereale	no	introduced
Poaceae	Bromus	inermis	BRIN	Bromus inermis	no	introduced
				Introduced Annual		
Poaceae	Bromus	secalinus	BROM	Bromus	no	introduced
Poaceae	Agropyron	cristatum	AGCR	Agropyron cristatum	no	introduced
Zygophyllaceae	Tribulus	terrestris	TRTE	Tribulus terrestris	no	introduced

Table S2: R packages used in the analysis.

Package	Purpose	Citation
sf	Spatial vector data	Pebesma 2018
	management	
terra	Raster data	Hijmans 2023a
	management	
raster	Raster data	Hijmans 2023b
	management	
vegan	Diversity and NMDS	Oksanen et al 2022
SPEI	Calculating SPEI	Beguería and Vicente-Serrano
		2023
microclima	Calculating air	Mosedale et al 2023
	temperature	
NicheMapR	Calculating air	Kearney 2022

temperature

topmodel Calculating TWI Buytaert 2022

tidyverse Data wrangling Wickham et al 2019

lubridate Date wrangling Grolemond and Wickham 2011

vroom Data wrangling Hester et al 2023

Hmsc Joint species distribution Tikhonov et al 2023

modeling

gghmsc Visualization Mahood et al 2024

snow parallelization Tierney et al 2021

fields spatial process models Nychka et al 2021

ggpubr visualization Kassambara 2023

ggcorrplot visualization Kassambara 2022

ggthemes visualization Arnold 2021

ggtext visualization Wilke 2021

ggrepel visualization Slowikowski 2023

ggmcmc visualization Fernandez i Marin 2016

geomtextpath visualization Cameron and van den Brand 2022

Table S3. Species included in the CRP mix.

Common Name Scientific Name Pure Live Seed Applied Origin
(kg/ha)

Western wheatgrass Pascopyrum smithii 1.784 native

Green needlegrass	Nassela viridula	0.7136	native
Sideoats gramma	Bouteloua curtipendula	0.6244	native
Alfalfa	Medicago sativa	0.3568	introduced
Little bluestem	Schizachyrium scoparium	0.3568	native
Fourwing Saltbush	Atriplex canescens	0.2676	native
Blue gramma	Bouteloua gracilis	0.1784	native
Switchgrass	Panicum virgatum	0.1784	native

Table S4 life history traits of species used in the JSDM analysis.

species group	Mean height	introduced	perennial	w oody	graminoid	rhizomatous	Photosynthetic pathw ay		
Invasive Annual Bromus	19	yes	no	no	yes	no	c3		
Bassia scoparia	11	yes	no	no	no	no	c3		
Salsola tragus	10	yes	no	no	no	no	c4		
Pascopyrum smithii	22	no	yes	no	yes	yes	c3		
Bouteloua curtipendula	24	no	yes	no	yes	no	c4		
Medicago sativa	27.5	yes	yes	no	no	no	c3		
Invasive annual Brassicaceae	21	yes	no	no	no	no	c3		
Nasella viridulis	41.5	no	yes	no	yes	no	c4		

Invasive Chicorioideae	10.5	yes	yes*	no	no	no	c3
Native Forbs	6	no	yes	no	no	no	c4
Cirsium arvense	12	yes	yes	no	no	yes	c3
Convolvulus arvensis	8.5	yes	yes	no	no	yes	c3
Panicum virgatum	27.5	no	yes	no	yes	no	c4
Schizachyrium scoparium	19	no	yes	no	yes	no	c4
Atriplex canescens	115	no	yes	yes	no	no	c4
Bouteloua gracilis	19	no	yes	no	yes	no	c4
Bromus inermis	33	yes	yes	no	yes	yes	с3
Secale cereale	38.5	yes	no	no	yes	no	с3

^{*} two species (5 occurrences) are perennial/biennial, one species (1 occurrence) is annual/biennial

Table S5: Precipitation (mm) measured at the study site. Highest monthly values are bold. Highest and lowest years are italicized and bold.

Year	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	Mean
Jan	7	1	10	5	1	7	0	0	3	2	1	9	21	3	11	19	9	6	0	3	6
Feb	20	7	8	3	6	2	0	0	10	11	13	7	7	16	12	7	17	3	7	8	8
Mar	6	45	2	33	22	37	13	7	18	8	0	15	26	5	44	29	24	46	29	23	22
Apr	7	64	28	47	9	20	17	69	94	26	13	70	4	56	59	57	16	32	21	48	38
May	42	55	33	37	26	29	41	43	79	119	45	47	82	153	46	111	95	66	47	68	63
Jun	33	43	55	104	6	11	50	83	51	35	15	17	52	51	38	4	33	44	43	21	39
Jul	9	4	28	6	28	62	9	51	75	94	91	43	101	57	12	32	41	21	3	17	39
Aug	16	44	35	14	10	37	105	31	37	5	0	40	24	20	23	54	8	17	11	9	27
Sep	23	11	53	3	16	24	37	12	2	17	40	111	31	2	8	35	5	25	13	11	24
Oct	11	1	24	74	20	0	12	132	18	56	21	21	12	54	10	26	16	15	15	7	27
Nov	10	6	8	6	9	3	2	10	24	10	4	5	16	23	4	9	10	20	8	10	10
												1	1	l							I

Year	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	Mean
Dec	0	8	0	1	28	7	6	18	8	12	3	9	10	22	8	4	1	21	11	8	9
Sum	183	289	285	334	181	238	293	456	418	396	247	394	386	462	276	388	275	316	210	232	313

Supplementary References

Jeffrey B. Arnold (2021). ggthemes: Extra Themes, Scales and Geoms for 'ggplot2'. R package version 4.2.4.

https://CRAN.R-project.org/package=ggthemes

Santiago Beguería and Sergio M. Vicente-Serrano (2023). SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index. R package version 1.8.1.

https://CRAN.R-project.org/package=SPEI

Wouter Buytaert (2022). topmodel: Implementation of the Hydrological Model TOPMODEL in R. R package version 0.7.5.

https://CRAN.R-project.org/package=topmodel

Allan Cameron and Teun van den Brand (2022). geomtextpath: Curved Text in 'ggplot2'. R package version 0.1.1.

https://CRAN.R-project.org/package=geomtextpath

Xavier Fernández i Marín (2016). ggmcmc: Analysis of MCMC Samples and Bayesian Inference.

Journal of Statistical Software, 70(9), 1-20

www.doi.org/10.18637/jss.v070.i09

Garrett Grolemund, Hadley Wickham (2011). Dates and Times Made Easy with lubridate. Journal of Statistical Software, 40(3), 1-25.

https://www.jstatsoft.org/v40/i03/

Jim Hester, Hadley Wickham and Jennifer Bryan (2023). vroom: Read and Write Rectangular Text Data Quickly. R package version 1.6.3.

https://CRAN.R-project.org/package=vroom

Robert J. Hijmans (2023a). terra: Spatial Data Analysis. R package version 1.7-29.

https://CRAN.R-project.org/package=terra

Robert J. Hijmans (2023b). raster: Geographic Data Analysis and Modeling. R package version 3.6-20.

https://CRAN.R-project.org/package=raster

Alboukadel Kassambara (2022). ggcorrplot: Visualization of a Correlation Matrix using 'ggplot2'. R package

version 0.1.4. https://CRAN.R-project.org/package=ggcorrplot

Alboukadel Kassambara (2023). ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.6.0.

https://CRAN.R-project.org/package=ggpubr

Michael Kearney (2022). NicheMapR: R implementation of Niche Mapper software for biophysical modelling. R package version 3.2.0.

https://github.com/mrke/NicheMapR

Adam L. Mahood (2024). gghmsc: Make nice plots for working with Hmsc JSDMs. R package version 0.1.2. https://github.com/admahood/gghmsc

Jonathan Mosedale, Jonathan Bennie and James Duffy (2023). microclima: microclimate modelling with R. R package version 0.1.0.

https://github.com/ilyamaclean/microclima

Douglas Nychka, Reinhard Furrer, John Paige, Stephan Sain (2021). "fields: Tools for spatial data." R package version 14.1.

https://github.com/dnychka/fieldsRPackage

Jari Oksanen, Gavin L. Simpson, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R.B. O'Hara, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, Helene Wagner, Matt Barbour, Michael Bedward, Ben Bolker, Daniel Borcard, Gustavo Carvalho, Michael Chirico, Miquel De Caceres, Sebastien Durand, Heloisa Beatriz Antoniazi Evangelista, Rich FitzJohn, Michael Friendly, Brendan Furneaux, Geoffrey Hannigan, Mark O. Hill, Leo Lahti, Dan McGlinn, Marie-Helene Ouellette, Eduardo Ribeiro Cunha, Tyler Smith, Adrian Stier, Cajo J.F. Ter Braak and James Weedon (2022). vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan

Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10 (1), 439-446,

https://doi.org/10.32614/RJ-2018-009

Kamil Slowikowski (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with 'ggplot2'. R package version 0.9.3.

https://CRAN.R-project.org/package=ggrepel

Gleb Tikhonov, Otso Ovaskainen, Jari Oksanen, Melinda de Jonge, Oystein Opedal and Tad Dallas (2023). Hmsc: Hierarchical Model of Species Communities. R package version 3.0-14. https://www.helsinki.fi/en/researchgroups/statistical-ecology/software/hmsc

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke, Woo K, Yutani H (2019). "Welcome to the tidyverse." Journal of Open Source Software, 4(43), 1686.

https://doi.org/10.21105/joss.01686

Claus O. Wilke and Brenton M. Wiernik (2022). ggtext: Improved Text Rendering Support for 'ggplot2'. R package version 0.1.2.

https://CRAN.R-project.org/package=ggtext