Electroweak Multiboson Interactions in $Z\gamma jj$

Harry Cooke

 $The sis \ submitted \ for \ the \ degree \ of \\ Doctor \ of \ Philosophy$

Particle Physics Group, School of Physics and Astronomy, University of Birmingham.

May 31, 2023

ABSTRACT

DECLARATION OF AUTHORS CONTRIBUTION

ACKNOWLEDGEMENTS

 $Motto\ or\ dedication$

Contents

1	Introduction				
2	Theory				
3	The	ATL/	AS detec	tor at the Large Hadron Collider	3
4	Object reconstruction				
5	Upg 5.1 5.2	Upgrad 5.1.1 5.1.2 Visuali 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	des of the Phase-I Phase-II Sation of Motivatio Input Da User Inte Algorithm Usage . is of early Data .	ATLAS Level-1 Calorimeter Trigger Level-1 Calorimeter Trigger upgrade upgrade eFEX inputs and algorithms on ta erface ns Run-3 data for commissioning	6 7 7 8 8 10 10 13 13
	5.4		Results mance stuper processor Introduct Monte Control Phase-II Performa $E_{\rm ratio}$ algorithms 5.4.5.1 5.4.5.2 5.4.5.3 5.4.5.4	tion	14 18 19 19 20 21 22 25 26
6	Search for vector-boson scattering production of a Z boson and a photon				

_	CONTENTS	viii
7	Search for triboson production of VZy through its semi-leptonic	20
8	decay mode Conclusions	32 33
Α	FIRST APPENDIX	37

List of Tables

List of Figures

5.1	Initial interface on launching the Electron Feature Extractor (eFEX) Visualiser program (left) and the default view once data is read from	
	a file (right)	9
5.2	Demonstration of highlighting used to visualise algorithms, all shown for the same Trigger Object (TOB). Showing (a) initial view without highlighting, (b) highlighting for tau cluster energy, (c) highlighting for tau R_{η} , and (d) highlighting for tau R_{had}	11
5.3	Demonstration of highlighting used to visualise algorithms, all shown for the same TOB. Showing (a) highlighting for EM cluster energy, (b) highlighting for EM R_{η} , (c) highlighting for EM R_{had} , and (d)	12
5.4	highlighting for EM $w_{s,\text{tot}}$	
5.5	grouped in 20 GeV bins, with the last bin including all overflow Match rate for TOBs/RoIs as a function of energy as measured by the eFEX. Objects grouped in 20 GeV bins, with the last bin including	15
	all overflow	15
5.6	Comparison of energies for matched TOBs/RoIs with the energy as measured by the CPM given on the x-axis and as measured by the eFEX on the y-axis. Contains data for all matched objects in Run 423433. The dashed line marks the set of points where the CPM and	
5.7	eFEX energies are equal	16
5.8	eFEX energies are equal	17
5.9	(right)	23
	efficiency.	24

5.10	Diagram showing which cells contribute to the energy sum for the	
	seed cell (bright yellow) for different peak sizes. The horizontal axis	
	represents η and the vertical axis ϕ . In each case, the calculated	
	energy would be the sum of the energies of the cells contained within	
	the red box.	25
5.11	Results for calculating E_{ratio} with different peak size options. Plots	
	show background rejection as a function of signal efficiency for each	
	peak size tested (left) and background rejection at 95% signal effi-	
	ciency as a function of peak size (right)	26
5.12	Diagram showing how the introduction of an exclusion region to the	
	$E_{\rm ratio}$ algorithm prevents secondary maxima close to the seed from	
	being selected. Red arrows mark each of the six paths traversed by	
	the stepwise algorithm. Blue dots mark each step where the energy	
	gradient is calculated. The shaded grey area shows cells that cannot	
	be selected as a candidate secondary maximum, due to either being	
	skipped over or being the first step from the seed	27
5.13	Results for calculating $E_{\rm ratio}$ with different or no exclusion region	
	definitions. Plots show background rejection as a function of signal	
	efficiency for each tested exclusion region (left) and background re-	
	jection at 95% signal efficiency as a function of exclusion region size	
	(right)	28
5.14	Plot of background rejection at 95% signal efficiency as a function	
	of pseudorapidity, η , for $E_{\rm ratio}$ algorithms with different exclusion re-	
	gions	29
5.15	Results for calculating E_{ratio} after varying the search limit parameter,	
	given as a distance in η from the seed cell. Plots show background	
	rejection as a function of signal efficiency for each tested search limit	
	(left) and background rejection at 95% signal efficiency as a function	
	of the search limit (right)	30

DEFINITIONS OF ACRONYMS

CERN The European Laboratory for Particle Physics

LHC Large Hadron Collider
Superconducting collider occupying the 27 km ring at CERN.

QCD Quantum Chromodynamics

efex Electron Feature Extractor

ATLAS A Toroidal LHC Apparatus

TOB Trigger Object

RoI Region of Interest

UI User Interface

FPGA Field-programmable Gate Array

L1Calo Level-1 Calorimeter

CPM Cluster Processing Module

BCID Bunch Crossing ID

LAr Liquid Argon

LATOME Liquid Argon Trigger Optical Mezzanine

LTA Long-term Attachment

GEP Global Event Processor

	CHAPTER 1
Introduction	

	CHAPTER 2
Theory	

	Ш	Λ	Р٦	ГΕ	D	≺
\ .	п	н	Г 1		П	

The ATLAS detector at the Large Hadron Collider

	CHAPTER 4
Object reconstruction	

CHAPTER 5

Upgrades to the ATLAS Level-1 Calorimeter Trigger

Throughout the course of the PhD, several contributions have been made to the A Toroidal LHC Apparatus (ATLAS) Level-1 Calorimeter (L1Calo) trigger. Initially, this task served as authorship qualification, making a technical contribution to the experiment in order to be considered a qualified author of the collaboration. Work done as part of the qualification task is detailed in Section 5.4.

Once qualification was achieved it made more sense to direct technical work towards more current aspects of L1Calo development, alongside a Long-term Attachment (LTA) working at The European Laboratory for Particle Physics (CERN) enabling direct collaboration with on-site experts and the opportunity to assist with handson installation work. Sections 5.2 and 5.3 detail the work done during this time period.

5.1 Upgrades of the Level-1 Calorimeter Trigger

The L1Calo system described in Section X is what was in use in ATLAS throughout Run 2 of the Large Hadron Collider (LHC). In the long shutdown between Run 2 and Run 3, significant improvements were made to the system as part of the Phase-I upgrade. Once Run 3 is complete, there will be another long shutdown in which further changes will be made in the Phase-II upgrade to the L1Calo system in preparation for Run 4, the **HL-LHC!** (**HL-LHC!**).

Sections 5.2 and 5.3 discuss work on the Phase-I upgrade, and Section 5.4 discusses work on the Phase-II upgrade. Details of the L1Calo system as implemented/planned for Phase I and Phase II, with the major changes in comparison to the Run-2 system and to each other, are given in Sections 5.1.1 and 5.1.2 respectively.

5.1.1 Phase-I upgrade

The Phase-I upgrade has progressed alongside the work discussed in this chapter, to the point where the system is fully implemented and in use in Run 3 at the time of writing this thesis. The goal of the Phase-I upgrade to L1Calo is a redesign of the core components of the trigger in order to handle more data and make more refined decisions while rejecting events.

The core components introduced in the Phase-I upgrade are the **FEX!** (**FEX!**) systems, which replace the **CP!** (**CP!**) and **JEP!** (**JEP!**) in the Run-2 system. The efex provides discrimination for e/γ objects and τ leptons, the **jFEX!** (**jFEX!**) focuses on jet and τ lepton identification, and the **gFEX!** (**gFEX!**) triggers on large-radius jets and global quantities such as missing energy.

5.1.2 Phase-II upgrade

5.2 Visualisation of eFEX inputs and algorithms

In order to aid in debugging minor differences between different implementations of eFEX algorithms, an algorithm visualisation program was created. The program reads input data and performs aspects of eFEX algorithms whilst also providing a visual representation of what the algorithm is doing and where the result comes from.

The visualiser is written in JavaScript, using Node.js to interface with some serverside C++ scripts, needed to access energy decoders from online software, and Express.js to handle the web-based User Interface (UI).

5.2.1 Motivation

During development of algorithms for the hardware trigger, each algorithm is implemented multiple times. First, algorithms will be implemented in offline software to be tested and tuned against simulations or existing data. Then, in order to run on hardware, the algorithm needs to be ported to firmware. Often, to provide closer cross-checks of the firmware algorithms, they are also simulated in online software. Inevitably, due to software and firmware bugs, subtle differences will exist between these algorithms; these differences need to be understood and corrected to have a complete bug-free implementation.

The need to find these subtle differences between algorithms motivates the visualisation software discussed here. Although at first it seems illogical to add an additional, independent, implementation of the algorithm (since the issue is in part due to having multiple different implementations), the added visualisation aspect makes it easier to understand where a particular algorithm implementation might have gone wrong in cases where there are discrepancies. This has been demonstrated

through the use of the visualisation software in tests, discussed in Section 5.2.5.

5.2.2 Input Data

The visualisation software takes as input the calorimeter energies visible to a single eFEX Field-programmable Gate Array (FPGA). This covers a 6×10 area in $\eta \times \phi$ of trigger towers, with each tower being split into SuperCells across 5 calorimeter layers, as described in Section X. For each event, the input data provides one energy value per SuperCell, encoded with either LAr or Tile energy encoding.

From this input data, a 3×3 area of trigger towers, centred on an (η, ϕ) coordinate provided by the user, is extracted and displayed on-screen. This area covers all energy values used for eFEX algorithms if the seed of the TOB is located in the central trigger tower.

5.2.3 User Interface

The eFEX Visualiser program provides a minimal UI to explore input data and results of the eFEX algorithms. The basic interface is shown in Figure 5.1. It prompts the user to specify an input file, (η, ϕ) centre-tower coordinates, and an event number, then on receipt of these inputs it reads the information and displays the requested energies in a grid.

The full interface becomes visible after the grid is displayed. The grid itself is a 3×3 area divided by bold lines, with each square representing a trigger tower, and each trigger tower square divided further into SuperCells. The horizontal axis represents the η coordinate of the tower or SuperCell, and the vertical axis represents the ϕ coordinate. These coordinates are labelled with the same indices the user gave as initial input. In order to show all layers simultaneously, in the default view layers are stacked on top of each other, in the phi axis, within each tower. Controls are provided to instead view each layer individually if preferred.

9 CHAPTER 5. UPGRADES TO THE ATLAS LEVEL-1 CALORIMETER TRIGGER

Figure 5.1: Initial interface on launching the eFEX Visualiser program (left) and the default view once data is read from a file (right).

Below the grid, a list of all the quantities calculated for the current TOB is displayed. Clicking on one of these quantities will highlight all of the SuperCells involved in the calculation. The details of how these values are calculated and how the algorithms are visualised are discussed in more detail in Section 5.2.4.

Above the grid, alongside the layer selection buttons, are options to manually set the seed SuperCell and to select the units used to display energies. The unit selection input is a drop-down box that allows the user to choose between 25 MeV (default units in firmware) or GeV units. Changing this option instantly updates all displayed energies. Pressing the "Select seed" button will toggle the layer view to display Layer 2, prompt the user to click on the SuperCell with the highest energy, and then on its ϕ -neighbour with the highest energy. This aids the user in selecting the correct seed for TOB generation, but is not normally necessary as the program will apply these criteria to automatically set the seed as soon as the grid is loaded. The manual override is included in case the automatic selection is wrong, or if looking at algorithms with a different seed may help debugging.

5.2.4 Algorithms

For each TOB processed (i.e. each particular event, coordinate location, and seed), several algorithms are run to calculate the quantities displayed on-screen. These are the same algorithms used by the eFEX to calculate TOB energies and isolations. The following variables are calculated: EM cluster energy, EM R_{η} , EM R_{had} , EM $w_{s,\text{tot}}$, tau cluster energy, tau R_{η} , and tau R_{had} . All of these are either sums of SuperCell energies (EM and tau cluster energies), ratios of sums of SuperCell energies (R_{η} and R_{had}), or a ratio with weighted sums ($w_{s,\text{tot}}$).

The values of these variables are calculated immediately after the data for a given TOB is collected, or once the seed is re-specified, and displayed on-screen below the grid. If the user clicks on a displayed quantity, the SuperCells involved in the sums for the corresponding algorithm are highlighted with colours corresponding to whether those cells are used in the numerator (lime green); the denominator (gold); or, in the case of $w_{s,tot}$, in the numerator with a larger weight (dark green). Figures 5.2 and 5.3 demonstrate the highlighting for all of the algorithms.

5.2.5 Usage

The visualisation tool was used at several stages during commissioning of the eFEX. Primarily it was used to compare firmware algorithms to their implementation in online software. Each time there was a difference found between the two, the event could be checked with the visualiser to help determine which of them was correct and to work out how the other might have gone wrong.

Once there was sufficient confidence in the similarity between online simulation and firmware implementations, the visualiser was again used to help in tests comparing online and offline simulations. The same technique was applied here to help ensure offline simulations were running with the same results as their online equivalent, and to help find errors in cases where they were not.

Figure 5.2: Demonstration of highlighting used to visualise algorithms, all shown for the same TOB. Showing (a) initial view without highlighting, (b) highlighting for tau cluster energy, (c) highlighting for tau R_{η} , and (d) highlighting for tau R_{had} .

Figure 5.3: Demonstration of highlighting used to visualise algorithms, all shown for the same TOB. Showing (a) highlighting for EM cluster energy, (b) highlighting for EM R_{η} , (c) highlighting for EM $R_{\rm had}$, and (d) highlighting for EM $w_{s,{\rm tot}}$.

5.3 Analysis of early Run-3 data for commissioning

At the start of Run 3, the Phase-1 L1Calo trigger was being used for the first time, having just been installed in the ATLAS detector. In these early stages, the new Phase-1 system was running in parallel to the legacy system, but the legacy system was still being used in the trigger menu over the new system.

One of the key goals of this time period was validating the Phase-1 trigger system, comparing it to the legacy system to identify any differences which may have arisen from bugs or hardware issues. This section describes analysis of some early Run-3 data contributing to this goal.

5.3.1 Data

Two runs were used to provide the data for this analysis: Run 423433, taken on 31 May 2022, and Run 427885, from 10 July 2022. These runs were taken in quite different conditions, the first with lower intensity beams and no stable beam conditions, and the second with high intensity stable beams. Notably, the second of these runs had bunch trains with $25 \ ns$ separation between bunches, whereas the first had only isolated bunches.

Events are taken from the physics_Main stream. This stream contains 1,636,636 events for Run 423433 and 107,016 events for Run 427885.

5.3.2 TOB and Rol selection

Phase-1 TOBs and legacy RoIs in events are compared to find instances in the same event that have the same, or very similar, η - ϕ coordinates. A match is considered to be a pair of objects within ± 1 trigger tower in both η and ϕ , i.e. a TOB matches an RoI if it falls within the 3×3 area of trigger towers centred on the tower containing the RoI. Matched objects are considered to be the same physics object, identified

independently by both systems. Instances where there is a TOB or RoI with no analogue in the opposing system are also tracked.

Only the barrel region was considered for this as a preliminary investigation, since it has a simpler geometry and as such it is easier to isolate bugs. Also, at the time of analysing, only half of the eFEX modules were installed so the Phase-1 system had coverage for half of the ϕ range; only RoIs inside of this coverage are accepted.

5.3.3 Results

From the 1,636,636 events in Run 423433, 292,498 RoI/TOB pairs are selected. Of these, 271,854 matched in $\eta - \phi$ coordinates, giving a total match rate of 93%. For Run 427885, 22,337 of 27,973 pairs were matched for a match rate of 80%. Figures 5.4 and 5.5 show the match rate for objects in Run 427885 as a function of energy, using CPM-measured and eFEX-measured energies respectively. This shows that the bulk of the mismatches come from low-energy objects, with a notably higher match rate at higher energies. At all energies though the match rate is worse here than in the earlier run.

Figures 5.6 and 5.7 compare the energies recorded by the legacy and the Phase-1 systems for matched objects in the two runs. In Run 423433 it is clear that the majority of matched objects have approximately the same energy, with an additional cluster where in a few cases the eFEX-measured energy is much lower than the CPM-measured.

In the later run, Run 427885, however, there is no longer such a strong correlation in energies. It seems that in general the eFEX energies are measured to be some fraction of the CPM energies – seen by the gradient of the area containing the majority of objects being less than the equal-energies line. Once again there is another cluster of objects with very low eFEX energies at high CPM energies.

So the general trends are a high but imperfect match rate; and decreased perfor-

Figure 5.4: Match rate for TOBs/RoIs as a function of energy as measured by the CPM. Objects grouped in 20 GeV bins, with the last bin including all overflow.

Figure 5.5: Match rate for TOBs/RoIs as a function of energy as measured by the eFEX. Objects grouped in 20 GeV bins, with the last bin including all overflow.

Figure 5.6: Comparison of energies for matched TOBs/RoIs with the energy as measured by the CPM given on the x-axis and as measured by the eFEX on the y-axis. Contains data for all matched objects in Run 423433. The dashed line marks the set of points where the CPM and eFEX energies are equal.

Figure 5.7: Comparison of energies for matched TOBs/RoIs with the energy as measured by the CPM given on the x-axis and as measured by the eFEX on the y-axis. Contains data for all matched objects in Run 427885. The dashed line marks the set of points where the CPM and eFEX energies are equal.

mance in the later run compared to the earlier run, both in terms of match rate of objects and energy correlation between the two systems. This information was fed back to people working on the systems to help them track down the root issues. Likely the reason for degraded performance in the later run, despite constant improvements to the system in the time between the two runs, is due to the different beam conditions. For example, the bunch trains present in Run 427885 (but not Run 423433) could have caused issues with Bunch Crossing ID (BCID) on the Liquid Argon Trigger Optical Mezzanine (LATOME) modules feeding information to the eFEX.

[PERHAPS ANOTHER SUBSECTION HERE WITH AN UPDATE ON THE SYSTEM AND HOW THESE ISSUES WERE SOLVED]

5.4 Performance studies of electron and photon algorithms for the Global Event Processor

5.4.1 Introduction

The Global Event Processor (GEP), when introduced in the Phase-II upgrade, will aim to improve discrimination in the hardware trigger for many signatures, but notably for e/γ objects. The GEP will be working alongside the eFEX system, introduced in Phase I, but will have access to more information, giving it potential to improve upon decisions made by the eFEX. To realise this improvement, new algorithms will need to be implemented in the GEP to take advantage of the finer granularity information available to it.

Designing algorithms to be used in future hardware systems is achieved through prospective performance studies. Performance studies use simulations of the expected response of a system to evaluate the performance of individual algorithms. These studies benefit from the ease of implementation of algorithms in high-level

software but it is still important to consider the complexity of implementation in firmware when designing algorithms. Performance studies are typically the first step in designing a system as evaluating performance in simulations before a system is built can inform the design of the hardware.

This section explores the specific implementation and possible performance of the E_{ratio} algorithm in the GEP, expected to significantly improve discrimination for e/γ by making use of fine granularity input information [1, p. 126]. Section ?? details the samples used in... Section ... gives ... Section ...

5.4.2 Monte Carlo samples

Simulations used for the performance studies presented here are from two Monte Carlo samples: a $Z \rightarrow ee$ sample providing signal EM objects that the trigger should be accepting, and a minimum bias QCD sample providing background objects, typically low-energy jets, that the trigger should be rejecting. The signal sample is generated by POWHEG [2] and PYTHIA 8 [3, 4], and the background sample is generated by PYTHIA 8.

After being processed by the typical ATLAS detector simulation (see Section X), additional simulations of the upgraded trigger are performed by the Phase-I offline software in order to simulate the eFEX response to each event.

5.4.3 Phase-II simulation

Producing prospective results for the Phase-II trigger requires simulation of the requisite algorithms. On top of the existing simulations of the Phase-I simulations, two things are needed to produce the results possible with Phase II: collection of the higher granularity calorimeter data that will be available to the GEP, and any algorithms that the GEP will run on its input data.

5.4. PERFORMANCE STUDIES OF ELECTRON AND PHOTON ALGORITHMS FOR THE GLOBAL EVENT PROCESSOR 20

The first of these tasks is done by taking the location of e/γ candidate TOBs identified by the simulated eFEX, collecting calorimeter cell energies in a region around this location, and storing it in a cluster. This method was chosen over storing calorimeter cell output in the entire detector to reduce computing requirements. The size of stored clusters is 0.3×0.3 in $\eta \times \phi$, centred on the seed TOB location, chosen conservatively to be sufficiently large that it will contain all information required by any algorithm.

Samples with these clusters of high-granularity calorimeter data included are then used for developing prospective algorithms for the GEP, explored in detail in Section 5.4.5.4.

5.4.4 Performance benchmarks

These studies focus on performance of the e/γ trigger at hardware level. As such, the goal is to maintain a signal efficiency, fraction of signal events selected by the trigger, as high as possible. At the same time the amount of background being rejected should be as high as possible; this responds to maximising the background rejection, where

background rejection
$$=$$
 $\frac{1}{\text{fraction of background events selected}}$.

Both signal efficiency and background rejection will be dependent on the selections made by different algorithms. To compare algorithms, or different variants of an algorithm, both of these quantities must be considered. The typical benchmark used in these studies will be the background rejection at 95% signal efficiency.

5.4.5 E_{ratio} algorithm design

The focus for this study is on the impact of a single variable in e/γ discrimination, E_{ratio} . E_{ratio} is a shower-shape variable, already used in the **HLT!** (**HLT!**). The definition used here is

$$E_{\text{ratio}} = \frac{E_2}{E_1} \tag{5.1}$$

where E_1 and E_2 are the first and second most energetic cells in Layer 1 of the **EM!** (**EM!**) calorimeter in an area around the centre of the shower.¹

The $E_{\rm ratio}$ variable is designed to discriminate against substructure in a shower. A shower with multiple distinct branches (e.g. $\pi^0 \to \gamma \gamma$) might produce two peaks of similar energy and give an $E_{\rm ratio}$ value close to one, whereas a shower with a single peak (as expected from e/ γ clusters) would give an $E_{\rm ratio}$ value close to zero.

Calculating this variable in high-level software is straightforward and requires no optimisation. However, identifying the two required maxima involves a large number of comparisons between cell energies. An algorithm developed to run on hardware should be as simple as possible, therefore designing an alternate implementation is beneficial to minimise the impact of this algorithm on the latency of the GEP system.

A simple approach to finding the two highest energy cells in a cluster is to form a sorted list of all energies from Layer 1 cells, or at least sufficiently sorted to be confident in the highest two energies. Sorting algorithms are a very well-understood problem and heavily optimised but this approach is very rigid, not allowing for any tuning of the algorithm. For example, a cluster may have no substructure but fall on the boundary between two cells, depositing a similar amount in each. This would result in a high, background-like, $E_{\rm ratio}$ value. To avoid this the algorithm could include a minimum distance between cells considered to be the two maxima, or try to identify minima between the two, this would greatly complicate a list-sorting approach.

¹This is different to the definition used in the **HLT!**, which instead is $E_{\text{ratio}} = (E_1 - E_2)/(E_1 + E_2)$. The simpler definition is preferred here in the spirit of reducing calculation in firmware, though the two forms are a transformation of one another.

The most complete, but resource-heavy, method might consist of fitting some functional form to the energies as a function of η and ϕ to extract the peak energies. This might work in software but is very computationally expensive, even if possible to implement in firmware it is likely not worth the latency it would require.

The desired solution is an algorithm for calculating an E_{ratio} -type variable that comes somewhere between these two options, more adaptable than the list-sorting approach and less resource-heavy than the peak fitting. The following sections explore such an algorithm: a baseline algorithm for finding secondary maxima in clusters in the GEP is established in Section 5.4.5.1; parameters of the algorithm are tuned using simulations in Sections 5.4.5.2, 5.4.5.3, and 5.4.5.4; and a summary of the results and recommended parameters, as well as additional adjustments that could be made with further studies, is given in Section 5.4.6.

5.4.5.1 Initial algorithm

Identifying the two highest energy cells is done in three stages: locating the seed, identifying candidate secondary maxima, and comparing results.

The GEP will receive a seed location from the eFEX identifying which SuperCell has the highest energy. The cells within this SuperCell are compared with one another to find which has the highest energy, this becomes the seed cell for the E_{ratio} algorithm.

The algorithm will then perform a stepwise search from the seed outwards to identify peaks in energy. On each step the energy gradient is calculated as $\Delta E = E_{\rm next}^{\rm cell} - E_{\rm prev}^{\rm cell}$, where $E_{\rm next}^{\rm cell}$ is the energy of the cell being stepped to, and $E_{\rm prev}^{\rm cell}$ is the energy of the cell being stepped from. From the first step ΔE should be negative, as the seed will have a higher energy than the surrounding cells, but on subsequent steps ΔE may become positive, marking that a minimum-energy point has been passed. If, after this, ΔE becomes negative again it indicates that the previous cell was a local maximum; in this case that cell is added to a list of candidate secondary maxima, and the search stops along this route. If the edge of the available range

Figure 5.8: Diagram showing the 6 different routes in which the E_{ratio} algorithm searches for secondary maxima (left) and how the algorithm identifies secondary maxima by tracking energy gradients along each step (right).

of cells is reached before ΔE turns positive then no candidate is saved. If the edge is reached after ΔE turns positive, but before it turns negative again, then the last cell in the range is taken to be the candidate.

This stepwise search is done in 6 different routes from the seed: one route where each step from the seed is in positive η , one in negative η , two where the first step is in positive ϕ before proceeding in positive or negative η , and two following the same pattern with the first step in negative ϕ . Figure 5.8 cells, alongside a schematic depicting the peak location strategy.

Once the stepwise search is complete, up to 6 candidate secondary maxima will have been identified. The candidate with the largest energy is taken as the secondary maximum and, with the seed as the maximum, E_{ratio} can be calculated using Equation 5.1.

The performance of this baseline algorithm was investigated using simulations. Figure 5.9 shows the results, comparing the response in signal and background as a function of the calculated E_{ratio} value and the fraction of each that would pass a

given E_{ratio} threshold. The background rejection as a function of signal efficiency is also shown, the baseline algorithm achieves a background rejection of 2.3 at 95% signal efficiency.

Figure 5.9: Performance of baseline E_{ratio} algorithm on signal $(Z \to ee)$ and background (JZ0W) clusters. Plots show (a) a histogram of calculated E_{ratio} values for each cluster, (b) the integral of (a) with a grey dashed line indicating the values at 95% signal efficiency, and (c) the background rejection of an E_{ratio} threshold corresponding to a given signal efficiency.

Figure 5.10: Diagram showing which cells contribute to the energy sum for the seed cell (bright yellow) for different peak sizes. The horizontal axis represents η and the vertical axis ϕ . In each case, the calculated energy would be the sum of the energies of the cells contained within the red box.

5.4.5.2 Peak size

The first parameter to investigate is the size of the area used to calculate energies. In the algorithm as described in Section 5.4.5.1, the energies used in comparisons and in the final $E_{\rm ratio}$ calculation are always the energies of a single cell. This could be modified by instead summing the energy of a cell with that of its neighbours in η to reduce sensitivity to small fluctuations. The number of cells summed is labelled the 'peak size', where the default algorithm would have a peak size of one. With a peak size greater than one the algorithm uses a 'sliding window' approach, so the step size is still a single cell despite the energy value coming from a larger area. For an odd numbered peak size the energy of a cell is added to that of its neighbours on each side. For an even numbered peak size, neighbours in positive η are preferred. Figure 5.10 shows how cells are included in the calculated energy.

Performance for the E_{ratio} algorithm was tested with peak size values from one to five. The results are shown in Figure 5.11. Comparing the benchmark value of background rejection at 95% signal efficiency, it is clear that a peak size of one (i.e. the same as the baseline algorithm) gives the best results, with performance degrading as more cells are added to the energy sum. This appears to be generally true for background rejection at all signal efficiencies. This suggests that the benefit

Figure 5.11: Results for calculating E_{ratio} with different peak size options. Plots show background rejection as a function of signal efficiency for each peak size tested (left) and background rejection at 95% signal efficiency as a function of peak size (right).

of the fine granularity of each energy measurement outweighs the negative impact of any potential fluctuations that the increased peak size would smear out.

5.4.5.3 Exclusion region

Another alteration tested on the $E_{\rm ratio}$ algorithm is an 'exclusion region' around the seed, i.e. a number of cells close to the seed in which secondary maxima will not be searched for. An n-cell exclusion region means making the first step along any route n cells away from the seed in η . Since secondary maxima can be found as soon as two steps have been taken from the seed cell (they cannot be found on the first step as it will always be a step down from the seed), this excludes all cells in an η range from -n to n (in relative coordinates) from being considered secondary maxima. Comparatively, the baseline algorithm with no exclusion region can find secondary maxima anywhere but the four cells directly adjacent to the seed. Figure 5.12 highlights the effect of the exclusion region.

Performance for the $E_{\rm ratio}$ algorithm was tested with exclusion regions from between

Figure 5.12: Diagram showing how the introduction of an exclusion region to the E_{ratio} algorithm prevents secondary maxima close to the seed from being selected. Red arrows mark each of the six paths traversed by the stepwise algorithm. Blue dots mark each step where the energy gradient is calculated. The shaded grey area shows cells that cannot be selected as a candidate secondary maximum, due to either being skipped over or being the first step from the seed.

one and five cells, shown in Figure 5.13 alongside the baseline algorithm with no exclusion region. This time a clear increase in performance is visible compared to the initial form of the algorithm, with a one-cell exclusion region attaining a background rejection of 3.1 at 95% signal efficiency. For most signal efficiencies the one-cell exclusion still seems to perform best, though perhaps competing with a two-cell exclusion region for very high signal efficiencies. Since the only difference between no exclusion region and the one-cell case is that cells diagonally adjacent to the seed are excluded, these results suggest signal clusters frequently create secondary peaks on these diagonal; this could stem from incident particles falling close to the corner of a cell.

Given that cell widths vary significantly in different regions of the calorimeter, the performance for the $E_{\rm ratio}$ algorithm with different exclusion widths was also tested as a function of η . Figure 5.14 compares background rejection at 95% signal efficiency in several η regions. It is evident that the one-cell exclusion region performs best regardless or calorimeter geometry. The difference between one-cell and two-cell is much more drastic in the high- η endcap regions, here the strips are less granular so likely the larger exclusion regions are starting to miss real secondary peaks in

Figure 5.13: Results for calculating E_{ratio} with different or no exclusion region definitions. Plots show background rejection as a function of signal efficiency for each tested exclusion region (left) and background rejection at 95% signal efficiency as a function of exclusion region size (right).

background clusters.

5.4.5.4 Search limit

In the baseline $E_{\rm ratio}$ algorithm, the stepwise search for secondary maxima extends as far as the available data allows, in this case to the edge of the, conservatively large, stored cluster size. To minimise the amount of processing required by the algorithm, and potentially improve performance by reducing overlap with other clusters, a limit can be placed on the distance this search will traverse. Since the ϕ range of the search is already limited to one cell either side of the peak, this search limit is implemented as a maximum distance traversed in η . This distance is calculated in pseudorapidity units rather than number of cells to give a consistent response across calorimeter regions.

Performance for the $E_{\rm ratio}$ algorithm with different search limit values was tested on simulations, with the results presented in Figure 5.15. Distances in $\Delta \eta$ from 0.025 up to 0.15 were tested, with 0.15 being the width of the clusters and thus the limit

Figure 5.14: Plot of background rejection at 95% signal efficiency as a function of pseudorapidity, η , for E_{ratio} algorithms with different exclusion regions.

in place in the baseline algorithm. While no performance gains are seen by reducing the search limit, there is a plateau in performance from $\Delta \eta > 0.1$. This means the required cluster size, and thus the amount of computation required, can be reduced without degrading performance of the algorithm.

5.4.6 Algorithm summary

Given the results presented in Sections 5.4.5.2-5.4.5.4, the most performant and resource-efficient algorithm for calculating $E_{\rm ratio}$ in the GEP is the baseline algorithm established in Section 5.4.5.1 with an exclusion region of one cell and a search limit of $\Delta \eta = 0.1$. No further improvement was found by varying the peak size. This algorithm achieves a background rejection of 3.1 for 95% signal efficiency.

The $E_{\rm ratio}$ algorithm presented here is functionally complete and serves as an option for e/γ discrimination in the GEP, but further improvements could be made with

Figure 5.15: Results for calculating $E_{\rm ratio}$ after varying the search limit parameter, given as a distance in η from the seed cell. Plots show background rejection as a function of signal efficiency for each tested search limit (left) and background rejection at 95% signal efficiency as a function of the search limit (right).

additional study. More parameters could be varied and tested for performance against simulations. One example is a threshold in the energy gradient between steps to allow a change in gradient to be identified, which might improve the response of the algorithm to noise or statistical fluctuations.

CHAPTER 6

Search for vector-boson scattering production of a Z boson and a photon

CHAPTER 7

Search for triboson production of VZy through its semi-leptonic decay mode

	CHAPTER 8
Conclusions	

REFERENCES

- [1] The ATLAS Collaboration, "Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System," Tech. Rep. CERN-LHCC-2017-020. ATLAS-TDR-029, CERN, Geneva, sep 2017.
- [2] S. Frixione, P. Nason, and C. Oleari, "Matching NLO QCD computations with parton shower simulations: The POWHEG method," *J. High Energy Phys.*, vol. 2007, p. 070, nov 2007.
- [3] T. Sjöstrand, S. Mrenna, and P. Skands, "PYTHIA 6.4 physics and manual," may 2006.
- [4] T. Sjöstrand, S. Mrenna, and P. Skands, "A brief introduction to PYTHIA 8.1," Comput. Phys. Commun., vol. 178, pp. 852–867, jun 2008.

$\mathsf{APPENDIX}\; A$

FIRST APPENDIX