Moving Contact Line

Report, Apr. 2020

Recap: the singularity

• No-slip

The nature of no-slip

Hydrophilic surface + water = no-slip

• A 2015 study has shown that the no-slip condition in dynamic wetting is a consequence of liquid molecules forming hydrogen bonds with

substrate molecules

Strong vs weak friction

No-slip is a good assumption because...

Strong vs weak friction

• However, when there is moving contact line...

Hydrogen bonds CAN break. And it takes energy.

Guanhua suggestion

No-slip

Slip. Apply friction

- Hydrogen bonds CAN break. And it takes energy.
- Now we just need a model for friction.

Petter Johansson and Berk Hess's 2018 Study

Molecular simulation involving 1.2 million water molecules.
 Time step = 1ps

Their conclusion

• Friction depends on contact angle

t (ns)	r (nm)	v (m/s)	θ	μ_f (μ)	$f_{ m MKT}$
2.5	50	14	95°	4.4 ± 0.5	0.19 ± 0.01
8.0	80	3.0	64°	9 ± 1	0.49 ± 0.01
12.5	90	1.7	55°	12 ± 2	0.49 ± 0.01

Three models

molecular model

More
Assumptions
Assumptions
Microscopic
Macroscopic
Numerical

Johansson's
Naiver-stokes with
Penalty IBM with

added friction

dynamic boundary

properties

Naiver-stokes with added friction

The Navier boundary condition:

$$\beta u_s = \mathbf{\hat{t}} \cdot \boldsymbol{\tau} \cdot \mathbf{\hat{n}}$$

Friction Coefficient

Penalty IBM with dynamic boundary properties

Problem with naïve penalty

Solution

References

- Petter Johansson and Berk Hess, "Molecular Origin of Contact Line Friction in Dynamic Wetting"
- P.Johansson, A.Carlson, and B.Hess, "Water—substrate physico-chemistry in wetting dynamics," J. Fluid Mech. 781, 695–711 (2015).
- Y. D. SHIKHMURZAEV, THE MOVING CONTACT LINE ON A SMOOTH SOLID SURFACE.

Penalty can handle solid – fluid

• The Guanhua paper simulates a piece of stone in fluid flow

Use penalty to simulate water – air?

