Algoritmi e Strutture Dati

Capitolo 1
Un'introduzione informale
agli algoritmi

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano

Definizione informale di algoritmo

Insieme di istruzioni, definite passo per passo, in modo da poter essere eseguite meccanicamente e tali da produrre un determinato risultato

• Esempio: algoritmo preparaCaffè

algoritmo preparaCaffè

- Svita la caffettiera.
- Riempi d'acqua il serbatoio della caffettiera.
- Inserisci il filtro.
- Riempi il filtro con la polvere di caffè.
- 5. Avvita la parte superiore della caffettiera.
- Metti la caffettiera, così predisposta, su un fornello acceso.
- Spegni il fornello quando il caffè è pronto.
- 8. Versa il caffè nella tazzina.

Algoritmi e programmi

• Gli algoritmi sono alla base dei programmi, nel senso che forniscono il procedimento per giungere alla soluzione di un dato problema di calcolo

Pseudocodice

- Per mantenere il massimo grado di generalità, descriveremo gli algoritmi in pseudocodice:
 - ricorda linguaggi di programmazione reali come C, C++ o Java
 - può contenere alcune frasi in italiano

La traduzione in un particolare linguaggio di programmazione può essere fatta in modo quasi meccanico

Correttezza ed efficienza

Vogliamo progettare algoritmi che:

- Producano correttamente il risultato desiderato
- Siano efficienti in termini di tempo di esecuzione ed occupazione di memoria

Perché analizzare algoritmi?

- L'analisi teorica sembra essere più affidabile di quella sperimentale; vale su tutte le possibili istanze di dati su cui l'algoritmo opera
- Ci aiuta a scegliere tra diverse soluzioni allo stesso problema
- Permette di predire le prestazioni di un programma software, prima ancora di scriverne le prime linee di codice

Un esempio giocattolo: i numeri di Fibonacci

L'isola dei conigli

Leonardo da Pisa (anche noto come Fibonacci) si interessò di molte cose, tra cui il seguente problema di dinamica delle popolazioni:

Quanto velocemente si espanderebbe una popolazione di conigli sotto appropriate condizioni?

In particolare, partendo da una coppia di conigli in un'isola deserta, quante coppie si avrebbero nell'anno n?

Le regole di riproduzione

- Una coppia di conigli genera due coniglietti ogni anno
- I conigli cominciano a riprodursi soltanto al secondo anno dopo la loro nascita
- I conigli sono immortali

Formalizzazione del problema

Per prima cosa dobbiamo formalizzare il problema in termini tali da poterlo porre in maniera algoritmica

L'albero dei conigli

La riproduzione dei conigli può essere descritta in un albero come segue:

La regola di espansione

Nell'anno n, ci sono tutte le coppie dell'anno precedente, e una nuova coppia di conigli per ogni coppia presente due anni prima

• Indicando con F_n il numero di coppie dell'anno n, abbiamo la seguente relazione di ricorrenza:

$$\mathbf{F}_{\mathbf{n}} = \begin{cases} \mathbf{F}_{\mathbf{n}-1} + \mathbf{F}_{\mathbf{n}-2} & \text{se } \mathbf{n} \ge 3 \\ 1 & \text{se } \mathbf{n} = 1,2 \end{cases}$$

Il problema

Come calcoliamo F_n?

Un approccio numerico

- Possiamo usare una funzione matematica che calcoli direttamente i numeri di Fibonacci.
- Si può dimostrare che:

$$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right)$$

dove:

$$\phi = \frac{1+\sqrt{5}}{2} \approx +1.618$$

$$\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx -0.618$$

Algoritmo fibonacci1

algoritmo fibonaccil $(intero\ n) \to intero$ return $\frac{1}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right)$

Correttezza?

- Qual è l'accuratezza su Φ e Φ per ottenere un risultato corretto?
- Ad esempio, con 3 cifre decimali:

$\phi \, pprox \, 1.618$ e $\hat{\phi} \, pprox \, -0.618$

n	fibonacci1(n)	arrotondamento	F_n
3	1.99992	2	2
16	986.698	987	987
18	2583.1	2583	2584

Algoritmo fibonacci2

Poiché fibonacci1 non è corretto, un approccio alternativo consiste nell'utilizzare direttamente la definizione ricorsiva:

```
algoritmo fibonacci2(intero n) \rightarrow intero if (n \le 2) then return 1 else return fibonacci2(n-1) + fibonacci2(n-2)
```

Opera solo con numeri interi

Tempo di esecuzione

- Calcoliamo il numero di linee di codice mandate in esecuzione
 - misura indipendente dalla piattaforma utilizzata
- Se n≤2: una sola linea di codice
- Se n=3: quattro linee di codice, due per la chiamata fibonacci2(3), una per la chiamata fibonacci2(2) e una per la chiamata fibonacci2(1)

Relazione di ricorrenza

In ogni chiamata si eseguono due linee di codice, oltre a quelle eseguite nelle chiamate ricorsive

$$T(n) = 2 + T(n-1) + T(n-2)$$

In generale, il tempo richiesto da un algoritmo ricorsivo è pari al tempo speso all'interno della chiamata più il tempo speso nelle chiamate ricorsive

Albero della ricorsione

- Utile per risolvere la relazione di ricorrenza
- Nodi corrispondenti alle chiamate ricorsive
- Figli di un nodo corrispondenti alle sottochiamate

Calcolare T(n)

- Etichettando i nodi dell'albero con il numero di linee di codice eseguite nella chiamata corrispondent
 - I nodi interni hanno etichetta 2
 - Le foglie hanno etichietta 1

- Per calcolare T(n):
 - Contiamo il numero di foglie
 - Contiamo il numero di nodi interni

Calcolare T(n)

- Il numero di foglie dell'albero della ricorsione di fibonacci2(n) è pari a F(n)
- Il numero di nodi interni di un albero in cui ogni nodo ha due figli è pari al numero di foglie -1

• In totale le linee di codice eseguite sono

$$F(n) + 2 (F(n)-1) = 3F(n)-2$$

Osservazioni

fibonacci2 è un algoritmo lento:

$$T(n) \approx F(n) \approx \Phi n$$

Per esempio se n=45 il numero di linee di codice mandate in esecuzione è 3.404.709.5080 fare di meglio?

Algoritmo fibonacci3

• Perché l'algoritmo fibonacci2 è lento? Perché continua a ricalcolare ripetutamente la soluzione dello stesso sottoproblema. Perché non memorizzare allora in un array le soluzioni dei sottoproblemi?

algoritmo fibonacci3(intero n) \rightarrow intero sia Fib un array di n interi Fib[1] \leftarrow Fib[2] \leftarrow 1 for i = 3 to n do Fib[i] \leftarrow Fib[i-1] + Fib[i-2] return Fib[n]

Calcolo del tempo di esecuzione

- L'algoritmo fibonacci 3 impiega tempo proporzionale a n invece di esponenziale in n come fibonacci 2
- Tempo effettivo richiesto da implementazioni in C dei due algoritmi su piattaforme diverse:

	fibonacci2(58)	${\tt fibonacci3}(58)$
Pentium IV 1700MHz	15820 sec. (\simeq 4 ore)	0.7 milionesimi di secondo
Pentium III 450MHz	43518 sec. (\simeq 12 ore)	2.4 milionesimi di secondo
PowerPC G4 500MHz	58321 sec. (\simeq 16 ore)	2.8 milionesimi di secondo

Occupazione di memoria

- Il tempo di esecuzione non è la sola risorsa di calcolo che ci interessa. Anche la quantità di memoria necessaria può essere cruciale.
- Se abbiamo un algoritmo lento, dovremo solo attendere più a lungo per ottenere il risultato
- Ma se un algoritmo richiede più spazio di quello a disposizione, non otterremo mai la soluzione, indipendentemente da quanto attendiamo

Algoritmo fibonacci4

- fibonacci3 usa un array di dimensione n
- In realtà non ci serve mantenere tutti i valori di F_n precedenti, ma solo gli ultimi due, riducendo lo spazio a poche variabili in tutto

algoritmo fibonacci $4(intero\ n) \rightarrow intero$ $a \leftarrow b \leftarrow 1$ for i = 3 to n do $c \leftarrow a + b$ $a \leftarrow b$ $b \leftarrow c$ return b

Notazione asintotica (1 di 4)

- Misurare T(n) come il numero di linee di codice mandate in esecuzione è una misura molto approssimativa del tempo di esecuzione
- Se andiamo a capo più spesso, aumenteranno le linee di codice sorgente, ma certo non il tempo richiesto dall'esecuzione del programma!

Notazione asintotica (2 di 4)

- Per lo stesso programma impaginato diversamente potremmo concludere ad esempio che T(n)=3n oppure T(n)=5n
- Vorremmo un modo per descrivere l'ordine di grandezza di T(n) ignorando dettagli inessenziali come le costanti moltiplicative...
- Useremo a questo scopo la notazione asintotica O

Notazione asintotica (3 di 4)

• Diremo che f(n) = O(g(n)) se f(n) < c g(n) per qualche costante c, ed n abbastanza grande

Notazione asintotica (4 di 4)

• Ad esempio, possiamo rimpiazzare:

$$-T(n)=3F_n \text{ con } T(n)=O(F_n)$$

$$-T(n)=2n e T(n)=4n con T(n)=O(n)$$

$$-T(n)=F_n con O(2n)$$

Un nuovo algoritmo

Possiamo sperare di calcolare F_n in tempo inferiore a O(n)?

Potenze ricorsive

- fibonacci4 non è il miglior algoritmo possibile
- E' possibile dimostrare per induzione la seguente proprietà di matrici:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

• Useremo questa proprietà per progettare un algoritmo più efficiente

Algoritmo fibonacci5

algoritmo fibonacci5 $(intero\ n) \rightarrow intero$

1.
$$M \leftarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

2. **for** $i = 1$ **to** $n - 1$ **do**

3.
$$M \leftarrow M \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

- 4. **return** M[0][0]
- Il tempo di esecuzione è ancora O(n)
- Cosa abbiamo guadagnato?

Calcolo di potenze

- Possiamo calcolare la n-esima potenza elevando al quadrato la (n/2)-esima potenza
- Se n è dispari eseguiamo una ulteriore moltiplicazione
- Esempio

```
32=9 34 =(9)2 =81 38=(81)2 =6561
37= 3 (33)2=3 (32 3)2
```


Algoritmo fibonacci6

```
algoritmo fibonacci6(intero n) \rightarrow intero
         M \leftarrow \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)
         potenzaDiMatrice(M, n-1)
         return M[0][0]
     procedura potenzaDiMatrice(matrice M, intero n)
         if (n > 1) then
             potenzaDiMatrice(M, n/2)
             M \leftarrow M \cdot M
         if ( n \in \text{dispari} ) then M \leftarrow M \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
7.
```


Tempo di esecuzione

- Tutto il tempo è speso nella procedura potenzaDiMatrice
 - All'interno della procedura si spende tempo costante
 - Si esegue una chiamata ricorsiva con input n/2
- L'equazione di ricorrenza è pertanto:

$$T(n) = O(1) + T(n/2)$$

• Come risolverla?

Metodo dell'iterazione

 $T(n) \le c + T(n/2) \le c + c + T(n/4) = 2c + T(n/22)$

In generale:

$$T(n) \le kc + T(n/2^k)$$

Per k=log, n si ottiene

$$T(n) \le c \log_2 n + T(1) = O(\log_2 n)$$

fibonacci6 è quindi esponenzialmente più veloce di fibonacci3!

Riepilogo

	Tempo di esecuzione	Occupazione di memoria
fibonacci2	O(2 ⁿ)	O(n)
fibonacci3	O(n)	O(1)
fibonacci4	O(n)	O(1)
fibonacci5	O(n)	O(1)
fibonacci6	O(log n)	O(log n)