高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案1

恒成立问题解题基本方法 1——直接求最值

1. (1) :
$$f(x) = e^x - \ln x + 1$$
, : $f'(x) = e^x - \frac{1}{x}$, : $k = f'(1) = e - 1$.

$$f(1) = e+1$$
, ∴切点坐标为 $(1,1+e)$, ∴切线方程为 $y-e-1=(e-1)(x-1)$, 即 $y=(e-1)x+2$,

:: 切线与坐标轴交点坐标分别为
$$(0,2)$$
, $(\frac{-2}{e-1},0)$, :: 所求三角形面积为 $\frac{1}{2} \times 2 \times |\frac{-2}{e-1}| = \frac{2}{e-1}$;

(2) :
$$f(x) = ae^{x-1} - \ln x + \ln a$$
, : $f'(x) = ae^{x-1} - \frac{1}{x}$, $\exists a > 0$.

设 g(x) = f'(x), 则 $g'(x) = ae^{x-1} + \frac{1}{x^2} > 0$, \therefore g(x) 在 $(0, +\infty)$ 上单调递增,即 f'(x) 在 $(0, +\infty)$ 上单调递增,

当
$$a>1$$
时, $\frac{1}{a}<1$, $e^{\frac{1}{a}-1}<1$, $f'(\frac{1}{a})f'(1)=a(e^{\frac{1}{a}-1}-1)(a-1)<0$,

∴存在唯一
$$x_0 > 0$$
,使得 $f'(x_0) = ae^{x_0-1} - \frac{1}{x_0} = 0$,且当 $x \in (0, x_0)$ 时 $f'(x) < 0$,当 $x \in (x_0, +\infty)$ 时 $f'(x) > 0$,

$$\therefore ae^{x_0-1} = \frac{1}{x_0}, \quad \therefore \ln a + x_0 - 1 = -\ln x_0,$$

因此
$$f(x)_{\min} = f(x_0) = ae^{x_0-1} - \ln x_0 + \ln a = \frac{1}{x_0} + \ln a + x_0 - 1 + \ln a \ge 2\ln a - 1 + 2\sqrt{\frac{1}{x_0} \cdot x_0} = 2\ln a + 1 > 1$$
,

$$\therefore f(x) > 1$$
, $\therefore f(x) \ge 1$ 恒成立;

当0 < a < 1时, $f(1) = a + \ln a < a < 1$, f(1) < 1, $f(x) \ge 1$ 不是恒成立.

综上所述, 实数a的取值范围是 $[1,+\infty)$.

2. (1) 由题意知,
$$f'(x) = -\frac{a}{x} - \frac{xe^x - e^x}{x^2} + a = \frac{\left(ax - e^x\right)(x-1)}{x^2}$$
,

∴当
$$x>1$$
时, $F(x)<0$,即 $f'(x)>0$;当 $0时, $F(x)>0$,即 $f'(x)<0$;$

∴函数 f(x) 在 (0,1) 上单调递增,在 $(1,+\infty)$ 上单调递减.

(2) 因为
$$g(x) = f(x) + xf'(x) = -a \ln x - \frac{e^x}{x} + ax + x \left(-\frac{a}{x} - \frac{xe^x - e^x}{x^2} + a \right) = -a \ln x - e^x + 2ax - a$$

由题意知,存在 $x_0 \in [1,2]$,使得 $g(x_0) \le -e^{x_0} + \frac{x_0^2}{2} + (a-1)x_0$ 成立.

即存在 $x_0 \in [1,2]$, 使得 $-a \ln x_0 + (a+1)x_0 - \frac{x_0^2}{2} - a \le 0$ 成立;

①当 $a \le 1$ 时,对任意 $x \in [1,2]$,都有 $h'(x) \le 0$,∴函数h(x)在[1,2]上单调递减,

 $\therefore h(x)_{\min} = h(2) = -a \ln 2 + a \le 0 成立, 解得 a \le 0, \therefore a \le 0;$

②当1 < a < 2时,令h'(x) > 0,解得1 < x < a;令h'(x) < 0,解得a < x < 2,

 \therefore 函数 h(x) 在 [1,a] 上单调递增,在 [a,2] 上单调递减,

又
$$h(1) = \frac{1}{2}$$
, $\therefore h(2) = -a \ln 2 + a \le 0$, 解得 $a \le 0$, $\therefore a$ 无解;

③当 $a \ge 2$ 时,对任意的 $x \in [1,2]$,都有 $h'(x) \ge 0$, ∴函数h(x) 在[1,2] 上单调递增,

$$\therefore h(x)_{\min} = h(1) = \frac{1}{2} > 0$$
,不符合题意,舍去;

综上所述, a 的取值范围为($-\infty$,0].

3. (1) 解:函数
$$f(x) = \ln(x+1) + a(x^2 - x)$$
的定义域为 $(-1, +\infty)$ $f'(x) = \frac{1}{x+1} + 2ax - a = \frac{2ax^2 + ax + 1 - a}{x+1}$

$$\Rightarrow g(x) = 2ax^2 + ax + 1 - a$$
, $x \in (-1, +\infty)$

当a=0 时,g(x)=1>0 ,f'(x)>0 在 $(-1,+\infty)$ 上恒成立所以,函数f(x)在 $(-1,+\infty)$ 上单调递增无极值;

①当
$$0 < a \le \frac{8}{9}$$
时, $\Delta \le 0$, $g(x) \ge 0$,所以, $f'(x) \ge 0$,函数 $f(x)$ 在 $(-1,+\infty)$ 上单调递增无极值;

②当
$$a > \frac{8}{9}$$
 时, $\Delta > 0$,设方程 $2ax^2 + ax + 1 - a = 0$ 的两根为 $x_1, x_2(x_1 < x_2)$,

因为
$$x_1 + x_2 = -\frac{1}{2}$$
, 所以 $x_1 < -\frac{1}{4}$, $x_2 > -\frac{1}{4}$, 由 $g(-1) = 1 > 0$ 可得: $-1 < x_1 < -\frac{1}{4}$,

所以,当 $x \in (-1,x_1)$ 时,g(x) > 0, f'(x) > 0 ,函数f(x)单调递增;

当 $x \in (x_1, x_2)$ 时,g(x) < 0, f'(x) < 0 ,函数f(x)单调递减;

当 $x \in (x_2, +\infty)$ 时,g(x) > 0, f'(x) > 0 ,函数f(x)单调递增;

因此函数 f(x) 有两个极值点.

当
$$a<0$$
 时, $\Delta>0$, 由 $g(-1)=1>0$ 可得: $x_1<-1$,

当
$$x \in (-1, x_2)$$
时, $g(x) > 0, f'(x) > 0$,函数 $f(x)$ 单调递增;

当 $x \in (x_2, +\infty)$ 时,g(x) < 0, f'(x) < 0 ,函数f(x)单调递减;

因此函数 f(x) 有一个极值点.

综上: 当a < 0 时,函数f(x)在 $\left(-1,+\infty\right)$ 上有唯一极值点;当 $0 \le a \le \frac{8}{9}$ 时,函数f(x)在 $\left(-1,+\infty\right)$ 上无极值点;

当 $a > \frac{8}{9}$ 时,函数f(x)在 $(-1,+\infty)$ 上有两个极值点;

(2)由(I)知,

当 $0 \le a \le \frac{8}{9}$ 时,函数f(x)在 $(0,+\infty)$ 上单调递增,

因为f(0)=0,所以, $x \in (0,+\infty)$ 时,f(x)>0,符合题意;

当 $\frac{8}{9}$ <a ≤ 1 时,由 $g(0) \geq 0$,得 $x_2 \leq 0$,所以,函数f(x)在 $(0,+\infty)$ 上单调递增,

又 f(0)=0, 所以, $x \in (0,+\infty)$ 时, f(x)>0, 符合题意;

当a>1 时,由g(0)<0,可得 $x_2>0$,所以 $x\in(0,x_2)$ 时,函数f(x)单调递减;

又 f(0) = 0, 所以, 当 $x \in (0, x_2)$ 时, f(x) < 0 不符合题意;

当a < 0时,设 $h(x) = x - \ln(x+1)$

因为 $x \in (0,+\infty)$ 时, $h'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1} > 0$,所以h(x) 在 $(0,+\infty)$ 上单调递增,

因此当 $x \in (0,+\infty)$ 时,h(x) > h(0) = 0,即: $\ln(x+1) < x$

可得: $f(x) < x + a(x^2 - x) = ax^2 + (1-a)x$

当 $x > 1 - \frac{1}{a}$ 时, $ax^2 + (1-a)x < 0$, 此时, f(x) < 0, 不合题意.

综上所述, a的取值范围是 0,1.

4. (1) 由己知得 f(0) = 2, g(0) = 2, f'(0) = 4, g'(0) = 4

 $f'(x) = 2x + a, g'(x) = e^x(cx + d + c), ∴ a = 4, b = 2, c = 2, d = 2.$

(2) \pm (1) \pm (x) = $x^2 + 4x + 2$, x (x) = $2e^x(x+1)$,

设函数 $F(x) = kg(x) - f(x) = 2ke^{x}(x+1) - x^{2} - 4x - 2, (x \ge -2)$,

 $F'(x) = 2ke^{x}(x+2)-2x-4=2(x+2)(ke^{x}-1)$. 由题设可得 $F(0) \ge 0$, 即 $k \ge 1$,

 $\Leftrightarrow F'(x) = 0 \Leftrightarrow x_1 = -\ln k, x_2 = -2,$

①若 $1 \le k < e^2$,则 $-2 < x_1 \le 0$,∴当 $x \in (-2, x_1)$ 时,

F'(x) < 0,当 $x \in (x_1, +\infty)$ 时,F'(x) > 0,即F(x)在 $x \in (-2, x_1)$ 单调递减,在 $(x_1, +\infty)$ 单调递增,故F(x)在 $x = x_1$ 取最小值 $F(x_1)$,而 $F(x_1) = 2x_1 + 2 - x_1^2 - 4x_1 - 2 = -x_1(x_1 + 2) \ge 0$.

∴ 当 $x \ge -2$ 时, $F(x) \ge 0$,即 $f(x) \le kg(x)$ 恒成立.

②若 $k = e^2$,则 $F'(x) = 2e^2(x+2)(e^x - e^2)$, ∴ 当 $x \ge -2$ 时, $F'(x) \ge 0$, ∴ F(x) 在 $(-2, +\infty)$ 单调递增,

而 F(-2)=0, : $\exists x \ge -2$ 时, $F(x) \ge 0$, 即 $f(x) \le kg(x)$ 恒成立,

③若 $k > e^2$,则 $F(-2) = -2ke^{-2} + 2 = -2e^{-2}(k-e^2) < 0$, ∴当 $x \ge -2$ 时, $f(x) \le kg(x)$ 不可能恒成立.

综上所述,k的取值范围为 $\left[1,e^2\right]$.

5. (1)
$$f'(x) = e^x + xe^x - \frac{a}{x} - a = e^x(x+1) - \frac{a(x+1)}{x} = (x+1)\left(e^x - \frac{a}{x}\right)$$

当 x > 1 时 $e^x > \frac{e}{x}$, $e^x - \frac{e}{x} > 0$ 可得 f'(x) > 0, f(x) 单调递增,

当0 < x < 1时, $e^x < \frac{e}{x}$, $e^x - \frac{e}{x} < 0$,可得f'(x) < 0,f(x)单调递减,

综上所述: f(x)在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增;

(2) 由 (1) 知
$$f'(x) = (x+1)\left(e^x - \frac{a}{x}\right)$$

当a<0时, $f'(x)=(x+1)\left(e^x-\frac{a}{x}\right)>0$ 恒成立,此时f(x)单调递增,f(x)的值域为R,不符合题意;

当 a = 0 时,则 $f\left(\frac{1}{2}\right) = \frac{1}{2}e^{\frac{1}{2}} < 1$,也不符合题意.

当
$$a > 0$$
时,令 $f'(x) = (x+1)\left(e^x - \frac{a}{x}\right) = 0$ 可得 $e^x - \frac{a}{x} = 0$,即 $e^x \cdot x - a = 0$,

令 $g(x) = e^x \cdot x$, 则 $g'(x) = e^x \cdot x + e^x = e^x(x+1) > 0$, 所以 $g(x) = e^x \cdot x$ 在 $(0, +\infty)$ 单调递增,

设存在 $x_0 \in (0,+\infty)$ 使得 $e^{x_0} \cdot x_0 = a$, 两边同时取对数可得 $x_0 + \ln x_0 = \ln a$

则 $0 < x < x_0$ 时, $e^x \cdot x < a$, f'(x) < 0,

当 $x > x_0$ 时, $e^x \cdot x < a$,f'(x) > 0,

所以当 $x = x_0$ 时, $f(x)_{\min} = x_0 \cdot e^{x_0} - a \ln x_0 - a x_0 = a - a(-x_0 + \ln a) - a x_0 = a - a \ln a$,

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 2

故只需a − alna ≥ 1即可,

$$\Rightarrow h(a) = a - a \ln a \ (a > 0), \ h'(a) = 1 - \ln a - a \times \frac{1}{a} = -\ln a,$$

由h'(a) > 0可得0 < a < 1,由h'(a) < 0可得a > 1,因此h(a)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减,

从而
$$h(a)_{max} = h(1) = 1 - 0 = 1$$
, 所以 $h(a) = a - alna \le 1$,

又因为 $h(a) = a - alna \ge 1$,所以h(a) = a - alna = 1,由以上证明可知h(1) = 1,所以a = 1 故满足条件的实数a 的值为1.

6.(1)
$$f'(x) = e^x + 1 + \cos x$$
,则 $f'(0) = 3$, $f(0) = 1$,故切线方程为 $y - 1 = 3(x - 0)$,化简得 $3x - y + 1 = 0$;

$$m'(x) = e^x + \cos x - 2ax - 2$$
, $\Leftrightarrow h(x) = m'(x)$, $\text{III} h'(x) = e^x - \sin x - 2a$, $\Leftrightarrow H(x) = h'(x)$,

则 $H'(x) = e^x - \cos x$,

 $\therefore x \ge 0$, $\therefore e^x \ge 1 \ge \cos x$,

$$\therefore H'(x) = e^x - \cos x \ge 0$$
, $\therefore h'(x)$ 在[0, +\infty)上单调递增, 且 $h'(x) \ge h'(0) = 1 - 2a$,

当
$$1-2a \ge 0$$
, 即 $a \le \frac{1}{2}$ 时, $h'(x) \ge h'(0) = 1-2a \ge 0$, $m'(x)$ 在 $[0, +\infty)$ 上单调递增, $m'(x) \ge m'(0) = 0$,

:m(x)在[0, + ∞)上单调递增, $m(x) \ge m(0) = 0$, 符合题意;

当
$$1-2a<0$$
即 $a>\frac{1}{2}$ 时, $h'(x)\geq h'(0)=1-2a<0$, $h'[\ln(2a+1)]=1-\sin[\ln(2a+1)]\geq 0$,而 $h'(x)$ 在[0, $+\infty$)上单调递增,

∴ $\exists x_0 \in (0, \ln(2a+1)]$, 使得 $h'(x_0) = 0$,

$$:: \, \exists x \in (0,x_0)$$
时, $h'(x) < 0$, $g'(x)$ 单调递减, $m'(x) < m'(0) = 0$,

$$:m(x)$$
在 $(0,x_0)$ 单调递减, :此时 $m(x) < g(0) = 0$,不满足 $m(x)_{\min} \ge 0$,

∴ a 的取值范围是 $(-\infty, \frac{1}{2}]$.

7.: (1)
$$f'(x) = \frac{\alpha(\frac{x+1}{x} - \ln x)}{(x+1)^2} - \frac{b}{x^2}$$

$$f(1)=1, \qquad b=1,$$
 由于直线 $x+2y-3=0$ 的斜率为 $-\frac{1}{2}$,且过点 $(1,1)$,故 $\{f'(1)=-\frac{1}{2}, \frac{\mathfrak{p}\{a}{2}-b=-\frac{1}{2}, \text{解得}\,a=1,\ b=1.$

(2)
$$\pm$$
 (1) \pm \pm \pm (1) \pm \pm \pm (2) \pm \pm (2) \pm (2) \pm (2) \pm (2) \pm (3) \pm (4) \pm (4) \pm (5) \pm (5) \pm (6) \pm (7) \pm (8) \pm (1) \pm (1) \pm (1) \pm (2) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (9) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (2) \pm (2) \pm (2) \pm (2) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (2) \pm (2) \pm (2) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (1) \pm (2) \pm (1) \pm (1) \pm (2) \pm (1) \pm (1) \pm (2) \pm (3) \pm (4) \pm (4) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (8) \pm (

考虑函数
$$h(x) = 2\ln x + \frac{(k-1)(x^2-1)}{x} (x > 0)$$
,则 $h'(x) = \frac{(k-1)(x^2+1) + 2x}{x^2}$.

(i) 设
$$k \le 0$$
,由 $h'(x) = \frac{k(x^2+1)-(x-1)^2}{x^2}$ 知,当 $x \ne 1$ 时, $h'(x) < 0$, $h(x)$ 递减.

而
$$h(1) = 0$$
 故当 $x \in (0,1)$ 时, $h(x) > 0$, 可得 $\frac{1}{1-x^2} h(x) > 0$;

当 x ∈ (1, +∞) 时, h (x) <0, 可得
$$\frac{1}{1-x^2}$$
h (x) >0

从而当 x>0, 且 x ≠ 1 时, f (x) -
$$(\frac{\ln x}{x-1} + \frac{k}{x})$$
 >0, 即 f (x) > $\frac{\ln x}{x-1} + \frac{k}{x}$.

(ii) 设 $0 \le k \le 1$. 由于 $(k-1)(x^2+1) + 2x = (k-1)x^2 + 2x + k - 1$ 的图像开口向下,且 $(k-1)x^2 + 2x + k - 1$,对称轴

$$x = \frac{1}{1-k} > 1$$
. 当 $x ∈ (1, \frac{1}{1-k})$ 时, $(k-1)(x^2+1)+2x>0$,故 $h'(x)>0$,而 h $(1)=0$,故当 $x ∈ (1, \frac{1}{1-k})$ 时,

$$h(x) > 0$$
,可得 $\frac{1}{1-x^2}h(x) < 0$,与题设矛盾.

(iii) 设 k≥1. 此时
$$x^2+1 \ge 2x$$
, $(k-1)(x^2+1)+2x>0 \Rightarrow h'$ (x) >0, 而 h (1) =0, 故当 x ∈ (1, +∞) 时,

$$h(x) > 0$$
,可得 $\frac{1}{1-x^2}h(x) < 0$,与题设矛盾.

综合得,k 的取值范围为 $(-\infty,0]$.

8. 【解析】: (1) 函数
$$f(x) = \frac{x-a}{(x+a)^2}$$
 的导函数为 $f'(x) = \frac{3a-x}{(x+a)^3} (x \neq -a)$,

则函数 f(x) 在(0, f(0)) 处的切线斜率为 $f'(0) = \frac{3}{a^2}$, 依题意有 $\frac{3}{a^2} = 3$, 解得 $a = \pm 1$.

(2) 对于定义域内的任意 x_1 , 总存在 x_2 使得 $f\left(x_2\right) < f\left(x_1\right)$, 即为 $f\left(x\right)$ 在定义域内不存在最小值.

①当
$$a=0$$
时, $f(x)=\frac{1}{x}$,无最小值,符合题意;

②当
$$a > 0$$
时, $f(x)$ 的导函数为 $f'(x) = \frac{3a - x}{(x + a)^2}$,

可得f(x)在 $(-\infty, -a)$ 单调递增,在(-a, 3a)单调递增,在 $(3a, +\infty)$ 单调递减,

即有f(x)在x=3a取得极大值,

当x > a时, f(x) > 0; 当x < a时, f(x) < 0. 取 $x_1 < a, x_2 \neq -a$ 即可,

故存在 $x_2 = x_1 + \frac{1}{2} |x_1 + a|$, 使得 $f(x_2) < f(x_1)$,

同理当 $-a < x_1 < a$ 时,令 $x_2 = x_1 - \frac{1}{2} |x_1 + a|$ 使得 $f(x_2) < f(x_1)$,则有当a > 0时, $f(x_2) < f(x_1)$ 成立;

③当a<0时,f(x)在 $(-\infty,3a)$ 单调递减,在(3a,-a)单调递增,在 $(-a,+\infty)$ 单调递增,

即有f(x)在x=3a处取得极小值,

当x > a时, f(x) > 0; 当x < a时 f(x) < 0, 所以 $f(x)_{\min} = f(3a)$,

当 $x_1 = 3a$ 时,不存在 x_2 使得 $f(x_2) < f(x_1)$ 成立,

综上可得,a的取值范围是 $[0,+\infty)$.

恒成立问题解题基本方法 2——参变分离

类型一 常规

9. 【解析】: (1) 由题得 f(x) 的定义域为 $(0,+\infty)$,

$$f'(x) = \frac{a}{x} - \frac{a-1}{x^2} - 1 = -\frac{x^2 - ax + (a-1)}{x^2} = -\frac{(x-1)[x - (a-1)]}{x^2},$$

当 $a-1\le 0$,即 $a\le 1$ 时,令f'(x)>0,得0< x< 1,则f(x)在区间(0,1)内单调递增;令f'(x)< 0,得x> 1,则f(x)在区间 $(1,+\infty)$ 内单调递减,

所以 f(x) 在 x=1 处取得极大值,且极大值为 f(1)=a-2,无极小值.

当 $x \in (0, a-1) \cup (1, +\infty)$ 时, f'(x) < 0 ,则 f(x) 在区间 $(0, a-1), (1, +\infty)$ 内单调递减; 当 $x \in (a-1, 1)$ 时, f'(x) > 0 ,则 f(x) 在区间 (a-1, 1) 内单调递增, 所以 f(x) 在 x = a-1 处取得极小值,且极小值 $f(a-1) = a \ln(a-1) - a + 2$,在 x = 1 处取得极大值,且极大值为 f(1) = a - 2.

综上所述, 当 $a \le 1$ 时, f(x)的极大值为a-2, 无极小值;

当1 < a < 2时,f(x)的极大值为a-2,极小值为 $a\ln(a-1)-a+2$.

设
$$h(x) = (x-2)e^x + \ln x - x, x \in (0,1], \quad \text{则} h'(x) = (x-1)\left(e^x - \frac{1}{x}\right),$$

所以当 $0 < x \le 1$ 时, $x - 1 \le 0$.

设
$$u(x) = e^x - \frac{1}{x}$$
,则 $u'(x) = e^x + \frac{1}{x^2} > 0$,所以 $u(x)$ 在区间 $(0,1)$ 内单调递增.

$$\mathbb{Z} u \left(\frac{1}{2} \right) = \sqrt{e} - 2 < 0, \quad u(1) = e - 1 > 0,$$

所以
$$\exists x_0 \in \left(\frac{1}{2},1\right)$$
,使得 $u(x_0) = 0$,即 $e^{x_0} = \frac{1}{x_0}$, $\ln x_0 = -x_0$,

当 $x \in (0, x_0)$ 时,u(x) < 0,h'(x) > 0;当 $x \in (x_0, 1]$ 时,u(x) > 0,h'(x) < 0,

所以函数h(x)在区间 $(0,x_0)$ 内单调递增,在区间 $(x_0,1]$ 上单调递减,

所以
$$h(x)_{\text{max}} = h(x_0) = (x_0 - 2)e^{x_0} + \ln x_0 - x_0 = (x_0 - 2) \cdot \frac{1}{x_0} - 2x_0 = 1 - \left(\frac{2}{x_0} + 2x_0\right).$$

因为函数
$$y = 1 - \left(\frac{2}{x} + 2x\right)$$
在区间 $\left(\frac{1}{2}, 1\right)$ 内单调递增,所以 $h(x_0) \in (-4, -3)$,

又m > h(x)对任意的 $x \in (0,1]$ 恒成立,且 $m \in \mathbb{Z}$,所以m的最小值是-3.

10 (1)
$$f'(x) = (x+2)(x-a)e^x$$

①若a < -2,则f(x)在 $(-\infty, a)$, $(-2, +\infty)$ 上单调递增,在(a, -2)上单调递减;

② a = -2 , 则 $(-\infty, +\infty)$ 在上单调递增;

③若
$$a > -2$$
 ,则 $f(x)$ 在 $(-\infty, -2)$, $(a, +\infty)$ 上单调递增,在 $(-2, a)$ 上单调递减;

(2) 由 1 知, 当 $a \in (0,2)$ 时, f(x) 在 (-4,-2) 上单调递增, 在 (-2,0) 单调递减,

所以
$$f(x)_{\text{max}} = f(-2) = (a+4)e^{-2}$$
, $f(-4) = (3a+16)e^{-4} > -a = f(0)$,

故
$$|f(x_1)-f(x_2)|_{\max} = |f(-2)-f(0)| = (a+4)e^{-2} + a = a(e^{-2}+1) + 4e^{-2}$$
,

$$|f(x_1)-f(x_2)| < 4e^{-2} + me^a$$
 恒成立,即 $a(e^{-2}+1) + 4e^{-2} < 4e^{-2} + me^a$ 恒成立,即 $m > \frac{a}{e^a}(e^{-2}+1)$ 恒成立,

令
$$g(x) = \frac{x}{e^x}, x \in (0,2)$$
, 易知 $g(x)$ 在其定义域上有最大值 $g(1) = \frac{1}{e}$,

所以 $m > \frac{1+e^2}{e^3}$.

类型二参变分离后,分母含0

11【解析】: (1) 当
$$a = 1$$
 时, $f(x) = e^x + x^2 - x$, $f'(x) = e^x + 2x - 1$,

由于
$$f''(x) = e^x + 2 > 0$$
, 故 $f'(x)$ 单调递增,注意到 $f'(0) = 0$, 故:

当
$$x \in (-\infty,0)$$
时, $f'(x) < 0, f(x)$ 单调递减;当 $x \in (0,+\infty)$ 时, $f'(x) > 0, f(x)$ 单调递增.

①. 当 x=0 时,不等式为: 1≥1,显然成立,符合题意;

②. 当
$$x > 0$$
 时,分离参数 a 得, $a \ge -\frac{e^x - \frac{1}{2}x^3 - x - 1}{x^2}$,

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 3

$$i \exists g(x) = -\frac{e^x - \frac{1}{2}x^3 - x - 1}{x^2}, \quad g'(x) = -\frac{(x - 2)\left(e^x - \frac{1}{2}x^2 - x - 1\right)}{x^3},$$

$$\diamondsuit h(x) = e^{x} - \frac{1}{2}x^{2} - x - 1(x \ge 0), \quad \text{Iff } h'(x) = e^{x} - x - 1, \quad h''(x) = e^{x} - 1 \ge 0,$$

故h'(x)单调递增, $h'(x) \ge h'(0) = 0$,故函数h(x)单调递增, $h(x) \ge h(0) = 0$,

由
$$h(x) \ge 0$$
可得: $e^x - \frac{1}{2}x^2 - x - 1 \ge 0$ 恒成立,

故当 $x \in (0,2)$ 时,g'(x) > 0,g(x)单调递增;当 $x \in (2,+\infty)$ 时,g'(x) < 0,g(x)单调递减;

因此,
$$\left[g(x)\right]_{\text{max}} = g(2) = \frac{7 - e^2}{4}$$
,

综上可得,实数 a 的取值范围是 $\left[\frac{7-e^2}{4}, +\infty\right)$.

12.

【解答】由题意 $x^2 + 4x + 2 \le 2ke^x(x+1)$, 对任意的 $x \ge -2$ 恒成立

当x=-1时,上式恒成立,故k ∈ R;

当
$$x > -1$$
 时,上式化为 $k \ge \frac{x^2 + 4x + 2}{2e^x(x+1)}$

令
$$h(x) = \frac{x^2 + 4x + 2}{2e^x(x+1)}(x > -1), h'(x) = \frac{-xe^x(x+2)^2}{2e^x(x+1)^2}$$
, 所以 $h(x)$ 在 $x = 0$ 处取得最大值,

 $k \ge h(0) = 1$

当
$$-2 \le x < -1$$
 时,上式化为 $k \le \frac{x^2 + 4x + 2}{2e^x(x+1)}$, $h(x)$ 单调递增,故 $h(x)$ 在 $x = -2$ 处取得最

小值, $k \le h(-2) = e^2$

综上,k的取值范围为 $[1,e^2]$. \Box

13. 【解析】: (1)
$$f(x) = (x-2)e^x - \frac{a}{2}x^2 + ax$$
, $a \in \mathbb{R}$. $\therefore f'(x) = (x-1)e^x - ax + a = (x-1)(e^x - a)$.

①当 $a \le 0$ 时,令f'(x) < 0,得x < 1. ∴ f(x)在 $(-\infty,1)$ 上单调递减;

令 f'(x)>0,得 x>1, $\therefore f(x)$ 在 $1,+\infty$ 上单调递增.

②当0 < a < e时,令f'(x) < 0,得 $\ln a < x < 1$. ∴ f(x)在 $(\ln a,1)$ 上单调递减;

令f'(x) > 0,得 $x < \ln a$ 或x > 1. ∴ f(x)在 $(-\infty, \ln a)$ 和 1,+∞ 上单调递增.

③当a=e时, $f'(x) \ge 0$ 在 $x \in \mathbb{R}$ 时恒成立,f'(x)在f(x)在f(x)

④当a > e时,令f'(x) < 0,得 $1 < x < \ln a$. ∴ f(x)在 $(1, \ln a)$ 上单调递减;

令 f'(x) > 0,得 $x > \ln a$ 或 x < 1. ∴ f(x) 在 $(-\infty,1)$ 和 $(\ln a, +\infty)$ 上单调递增.

综上所述, 当 $a \le 0$ 时, f(x)在 $(-\infty,1)$ 上单调递减, 在 $1,+\infty$ 上单调递增;

当0 < a < e时,f(x)在 $(\ln a, 1)$ 上单调递减,在 $(-\infty, \ln a)$ 和 $1, +\infty$ 上单调递增;

当a=e时, f(x)在R上单调递增;

当a > e时,f(x)在 $(1, \ln a)$ 上单调递减,在 $(-\infty, 1)$ 和 $(\ln a, +\infty)$ 上单调递增.

(2) 不等式
$$f(x)+(x+1)e^x+\frac{a}{2}x^2-2ax+a>0$$
, 等价于 $(2x-1)e^x>a(x-1)$.

①当x=1时,0 < e,则 $a \in \mathbf{R}$.

②
$$\pm x \in (1,+\infty)$$
 时, $a < \frac{(2x-1)e^x}{x-1}$.

设函数
$$g(x) = \frac{(2x-1)e^x}{x-1}$$
, 则 $g'(x) = \frac{x(2x-3)e^x}{(x-1)^2}$.

当 $x \in \left(1, \frac{3}{2}\right)$ 时, g'(x) < 0,此时 g(x) 单调递减; 当 $x \in \left(\frac{3}{2}, +\infty\right)$ 时, g'(x) > 0,此时 g(x) 单调递增.

$$\therefore g(x)_{\min} = g(\frac{3}{2}) = 4e^{\frac{3}{2}}. \quad \therefore a < 4e^{\frac{3}{2}}.$$

③
$$\stackrel{\omega}{=} x \in (-\infty,1)$$
时, $a > \frac{(2x-1)e^x}{x-1}$.

设函数
$$h(x) = \frac{(2x-1)e^x}{x-1}$$
,则 $h'(x) = \frac{x(2x-3)e^x}{(x-1)^2}$.

当 $x \in (0,1)$ 时,h'(x) < 0,此时h(x)单调递减;当 $x \in (-\infty,0)$ 时,h'(x) > 0,此时h(x)单调递增.

$$\therefore h(x)_{\max} = h(0) = 1; \quad \therefore a > 1.$$

综上,a的取值范围为 $\left(1,4e^{\frac{3}{2}}\right)$.

类型三 参变分离后,需多次求导

14. (1)
$$f'(x) = \frac{1 - a - \ln x}{x^2}$$
,

由题意可得: $f'(1) = \frac{1-a}{x^2} = 0$, 解得: a = 1, 此时函数 f(1) = a = 1,

函数 f(x) 的图象在 x=1 处的切线为 y=1 成立

所以
$$f(x) = \frac{\ln x + 1}{x}$$
, $f'(x) = \frac{-\ln x}{x^2}$,

由f'(x) > 0可得0 < x < 1,由f'(x) < 0可得x > 1,

所以f(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减.

所以 f(x) 的极大值为 f(1)=1, 不存在极小值.

(2) 由
$$f(x) \le e^x + \frac{2}{x} - 1$$
 可得 $\frac{\ln x + a}{x} \le e^x + \frac{2}{x} - 1$, 分离 a 可得: $a \le x(e^x - 1) - \ln x + 2(x > 0)$

$$h(x) = e^x - \frac{1}{x}, x > 0.$$
 令 $h'(x) = e^x + \frac{1}{x^2} > 0$,所以 $h(x)$ 在 $(0, +\infty)$ 上单调递增

$$h\left(\frac{1}{2}\right) = \sqrt{e} - 2 < 0, h(1) = e - 1 > 0,$$

存在唯一的
$$x_0 \in \left(\frac{1}{2}, 1\right)$$
,使得 $h(x_0) = e^{x_0} - \frac{1}{x_0} = 0$

当
$$0 < x < x_0$$
时, $h(x) < 0$,即 $F'(x) < 0$;当 $x > x_0$ 时, $h(x) > 0$,即 $F'(x) > 0$,

故F(x)在 $(0,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增.

$$F(x)_{\min} = x_0 (e^{x_0} - 1) - \ln x_0 + 2 = x_0 e^{x_0} - x_0 - \ln x_0 + 2$$
,

由于 $h(x_0) = e^{x_0} - \frac{1}{x_0} = 0$, 得 $x_0 e^{x_0} = 1$, 再对 $x_0 e^{x_0} = 1$ 两边取对数可得: $x_0 + \ln x_0 = 0$

所以 $F(x)_{\min} = x_0 e^{x_0} - x_0 - \ln x_0 + 2 = 1 - 0 + 2 = 3$,所以 $a \le 3$.

即实数a的取值范围 $a \le 3$

15. 【解析】: (1)
$$f'(x) = 2 - a - \frac{2}{x} = \frac{(2-a)-2}{x}$$
, $x > 0$.

1)
$$\leq a \geq 2$$
, $f'(x) < 0$;

2)
$$\triangleq a < 2$$
, $\Leftrightarrow f'(x) = 0$, $x = \frac{2}{2-a}$;

综上: 当 $a \ge 2$ 时, f(x)的单调递减区间是 $0,+\infty$;

当a < 2时,f(x)的单调递减区间是 $\left(0, \frac{2}{2-a}\right)$,单调递增区间是 $\left(\frac{2}{2-a}, +\infty\right)$.

(3) :
$$g(x) = xe^{1-x}$$
, : $g'(x) = (1-x)e^{1-x}$,

$$\therefore g(x)$$
在 $(0,1)$ 内递增,在 $(1,e)$ 内递减. 又 $\therefore g(0)=0$, $g(1)=1$, $g(e)=e^{2-e}>0$,

 \therefore 函数 g(x) 在(0,e) 内的值域为(0,1].

由
$$f(x) = (2-a)(x-1)-2\ln x$$
, 得 $f'(x) = \frac{(2-a)x-2}{x}$.

①当 $a \ge 2$ 时,f'(x) < 0,f(x)在(0,e]上单调递减,不合题意;

②当
$$a < 2$$
时, \diamondsuit $f'(x) > 0$,则 $x > \frac{2}{2-a}$; \diamondsuit $f'(x) < 0$,则 $0 < x < \frac{2}{2-a}$.

i) 当
$$\frac{2}{2-a} \ge e$$
, 即 $2-\frac{2}{e} \le a < 2$ 时, $f(x)$ 在 $(0,e]$ 上单调递减, 不合题意;

ii) 当
$$\frac{2}{2-a} < e$$
, 即 $a < 2 - \frac{2}{e}$ 时, $f(x)$ 在 $\left(0, \frac{2}{2-a}\right]$ 上单调递减,在 $\left(\frac{2}{2-a}, e\right]$ 上单调递增.

$$\diamondsuit m(a) = f\left(\frac{2}{2-a}\right) = a - 2\ln\frac{2}{2-a} \; , \quad a < 2 - \frac{2}{e} \; , \quad \text{for } m'(a) = \frac{-a}{2-a} \; ,$$

$$\therefore m(a)$$
在 $(-\infty,0)$ 上单调递增,在 $\left(0,2-\frac{e}{2}\right]$ 上单调递减;

$$\therefore m(a) \le m(0) = 0$$
,即 $a - 2\ln \frac{2}{2-a} \le 0$ 在 $\left(-\infty, 2 - \frac{e}{2}\right)$ 上恒成立.

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 4

令
$$t = \frac{2}{2-a}$$
 , 则 $t > 0$, 设 $k(t) = \ln t + \frac{1}{t}$, $t > 0$, 则 $k'(t) = \frac{t-1}{t^2}$,

 $\therefore k(t)$ 在(0,1)内单调递减,在 $1,+\infty$ 上单调递增,

∴
$$k(t) \ge k(1) = 1 > 0$$
, $\mathbb{P} \ln t + \frac{1}{t} > 0$, ∴ $\ln t > -\frac{1}{t}$, ∴ $t > e^{-\frac{1}{t}}$, $\mathbb{P} \frac{2}{2-a} > e^{\frac{a-2}{2}} > e^{\frac{a-3}{2}}$.

∴
$$\stackrel{\text{def}}{=} x \in \left(0, e^{\frac{a-3}{2}}\right)$$
 For $f(x) = (2-a)(x-1) - 2\ln x > a - 2 - 2\ln x > a - 2 - (a-3) = 1$,

且f(x)在(0,e]上连续.

欲使对任意的 $x_0 \in (0,e]$ 在(0,e] 上总存在两个不同的 x_i (i=1,2) ,使 $f(x_i) = g(x_0)$ 成立,

则需满足 $f(e) \ge 1$,即 $a \le 2 - \frac{3}{e-1}$.

$$\mathbb{X} : 2 - \frac{2}{e} - \left(2 - \frac{3}{e - 1}\right) = \frac{e + 2}{e(e - 1)} > 0, : 2 - \frac{2}{e} > 2 - \frac{3}{e - 1},$$

$$\therefore a \le 2 - \frac{3}{e-1}$$
. 综上所述, $a \in \left(-\infty, 2 - \frac{3}{e-1}\right]$.

类型四 参变分离后,零点设而不求(隐零点)

(2)
$$\triangleq x > 1$$
 $\forall f$, $\Rightarrow g(x) = \frac{f(x)}{x-1} = \frac{x + \ln x}{x-1}$, $\therefore g'(x) = \frac{x-2 - \ln x}{(x-1)^2}$,

令
$$h(x) = x - 2 - \ln x$$
, $\therefore h'(x) = 1 - \frac{1}{x} = \frac{x - 1}{x} > 0$, 故 $y = h(x)$ 在 $(1, +\infty)$ 上是增函数.

由于
$$h'(3) = 1 - \ln 3 < 0$$
, $h'(4) = 2 - \ln 4 > 0$, 存在 $x_0 \in (3,4)$, 使得 $h'(x_0) = 0$.

则 $x \in (1, x_0)$, h'(x) < 0, 知 g(x) 为减函数; $x \in (x_0, +\infty)$, h'(x) > 0, 知 g(x) 为增函数.

17. (I) 函数
$$f(x)$$
 与 $h(x)$ 无公共点,等价于方程 $\frac{\ln x}{x} = a$ 在 $(0,+\infty)$ 无解

$$\Rightarrow t(x) = \frac{\ln x}{x}, \quad \text{in } t'(x) = \frac{1 - \ln x}{x^2}, \Rightarrow t'(x) = 0, \ \text{if } x = e$$

X	(0,e)	e	$(e,+\infty)$
t'(x)	+	0	1
t(x)	增	极大值	减

因为x = e 是唯一的极大值点,故 $t_{\text{max}} = t(e) = \frac{1}{e}$

故要使方程 $\frac{\ln x}{x} = a$ 在 $(0,+\infty)$ 无解,当且仅当 $a > \frac{1}{e}$,故实数 a 的取值范围为 $(\frac{1}{e},+\infty)$

(II) 假设存在实数 m 满足题意,则不等式 $\ln x + \frac{m}{x} < \frac{e^x}{x}$ 对 $x \in (\frac{1}{2}, +\infty)$ 恒成立.

即 $m < e^x - x \ln x$ 对 $x \in (\frac{1}{2}, +\infty)$ 恒成立. 令 $r(x) = e^x - x \ln x$,则 $r'(x) = e^x - \ln x - 1$,

$$\diamondsuit \varphi(x) = e^x - \ln x - 1, \quad \emptyset \varphi'(x) = e^x - \frac{1}{x},$$

 $\varphi'(x)$ 在 $(\frac{1}{2}, +\infty)$ 上单调递增, $\varphi'(\frac{1}{2}) = e^{\frac{1}{2}} - 2 < 0$, $\varphi'(1) = e - 1 > 0$, 且 $\varphi'(x)$ 的图象在 $(\frac{1}{2}, 1)$ 上连续,

∴存在
$$x_0 \in (\frac{1}{2},1)$$
 , 使得 $\varphi'(x_0) = 0$, 即 $e^{x_0} - \frac{1}{x_0} = 0$, 则 $x_0 = -\ln x_0$,

 \therefore 当 $x \in (\frac{1}{2}, x_0)$ 时, $\varphi(x)$ 单调递减;当 $x \in (x_0, +\infty)$ 时, $\varphi(x)$ 单调递增,

则
$$\varphi(x)$$
 取到最小值 $\varphi(x_0) = e^{x_0} - \ln x_0 - 1 = x_0 + \frac{1}{x_0} - 1 \ge 2\sqrt{x_0 \cdot \frac{1}{x_0}} - 1 = 1 > 0$,

$$\therefore r'(x) > 0$$
,即 $r(x)$ 在区间($\frac{1}{2}$,+ ∞)内单调递增. $m \le r(\frac{1}{2}) = e^{\frac{1}{2}} - \frac{1}{2} \ln \frac{1}{2} = e^{\frac{1}{2}} + \frac{1}{2} \ln 2 = 1.99525$,

 \therefore 存在实数m满足题意,且最大整数m的值为1.

当 $1-m \le 0$ 时,即 $m \ge 1$ 时, $1-m-\ln x \le 0$ 在 $[1,+\infty)$ 上恒成立,

所以f(x)的单调递减区间是 $(1,+\infty)$, 无单调递增区间;

当
$$1-m>0$$
时,即 $m<1$ 时,由 $f'(x)>0$,得 $x\in (1,e^{1-m})$,

由 f'(x) < 0,得 $x \in (e^{1-m}, +\infty)$,所以 f(x) 的单调递减区间是 $(e^{1-m}, +\infty)$,单调递增区间是 $(1, e^{1-m}]$.

综上, 当 $m \ge 1$ 时, f(x)的单调递减区间是 $(1,+\infty)$, 无单调递增区间;

当m < 1时,f(x)的单调递减区间是 $(e^{1-m}, +\infty)$,单调递增区间是 $(1, e^{1-m}]$.

(2)
$$f(x) = \frac{4 + \ln x}{x}$$
, $x > 1$, $\pm \frac{k}{x+1} < f(x)$, $\pm k < \frac{(x+1)(4 + \ln x)}{x}$, $x > 1$,

$$\diamondsuit h(x) = \frac{(x+1)(4+\ln x)}{x}, \ x > 1, \ \ \bigcup h'(x) = \frac{x-3-\ln x}{x^2}, \ \ x > 1,$$

$$\Rightarrow \varphi(x) = x - 3 - \ln x, \quad x > 1, \quad \text{if } \varphi'(x) = 1 - \frac{1}{x} > 0 (x > 1),$$

所以, $\varphi(x)$ 在 $(1,+\infty)$ 递增, $\varphi(4) = 1 - \ln 4 < 0$, $\varphi(5) = 2 - \ln 5 > 0$,

∴ 存在 $x_0 \in (4,5)$, 使 $\varphi(x_0) = 0$,

且 $x \in (1, x_0)$, $\varphi'(x) < 0$, h'(x) < 0, h(x) 单调递减; $x \in (x_0, +\infty)$, $\varphi'(x) > 0$, h'(x) > 0, h(x) 单调递增,

$$h_{\min}(x) = h(x_0) = \frac{(x_0 + 1)(4 + \ln x_0)}{x_0}$$
,

$$\varphi(x_0) = x_0 - 3 - \ln x_0 = 0$$
, 所以 $x_0 + 1 = 4 + \ln x_0$,

所以
$$h(x_0) = \frac{(x_0+1)^2}{x_0} = x_0 + \frac{1}{x_0} + 2 \in \left(\frac{25}{4}, \frac{36}{5}\right)$$
,

$$\therefore x_0 \in \left(4, \frac{5 + \sqrt{21}}{2}\right), \quad h(x_0) = x_0 + \frac{1}{x_0} + 2 \in \left(\frac{25}{4}, 7\right),$$

综上,k的最大值为 6.

恒成立问题解题基本方法 3——变更主元

19. (1)
$$f'(x) = 3x^2 + 2ax + b$$
, $y = \begin{cases} f'(1) = 3 + 2a + b = 0 \\ f(1) = 1 + a + b + a^2 = 10 \end{cases} \Rightarrow \begin{cases} a = 4 \\ b = -11 \end{cases} \Rightarrow \begin{cases} a = -3 \\ b = 3 \end{cases}$

当
$$\begin{cases} a=4 \\ b=-11 \end{cases}$$
 时, $f'(x)=3x^2+8x-11$, $\Delta=64+132>0$,所以函数有极值点;

当
$$\begin{cases} a = -3 \\ b = 3 \end{cases}$$
 时, $f'(x) = 3(x-1)^2 \ge 0$,所以函数无极值点,则 b 的值为 -11 .

(2) 解法一:
$$f'(x) = 3x^2 + 2ax + b \ge 0$$
 对任意的 $a \in [-4, +\infty)$, $x \in [0, 2]$ 都成立

则
$$F(a) = 2xa + 3x^2 + b \ge 0$$
 对任意的 $a \in [-4, +\infty)$, $x \in [0,2]$ 都成立

 $\therefore x \ge 0, F(a)$ 在 $a \in [-4,+\infty)$ 单调递增或为常数函数

所以得 $F(a)_{\min} = F(-4) = -8x + 3x^2 + b \ge 0$ 对任意的 $x \in [0,2]$ 恒成立,

即
$$b \ge (-3x^2 + 8x)_{\text{max}}$$
, $又 - 3x^2 + 8x = -3(x - \frac{4}{3})^2 + \frac{16}{3} \le \frac{16}{3}$,

当
$$x = \frac{4}{3}$$
 时 $(-3x^2 + 8x)_{\text{max}} = \frac{16}{3}$, 得 $b \ge \frac{16}{3}$, 所以 b 的最小值为 $\frac{16}{3}$.

解法二: $f'(x) = 3x^2 + 2ax + b \ge 0$ 对任意的 $a \in [-4, +\infty)$, $x \in [0, 2]$ 都成立

即 $b \ge -3x^2 - 2ax$ 对任意的 $a \in [-4, +\infty)$, $x \in [0, 2]$ 都成立,

$$\mathbb{H} \ b \ge (-3x^2 - 2ax)_{\text{max}}. \qquad \Leftrightarrow F(x) = -3x^2 - 2ax = -3(x + \frac{a}{3})^2 + \frac{a^2}{3}$$

①当 $a \ge 0$ 时, $F(x)_{\text{max}} = 0$, $\therefore b \ge 0$;

②
$$= -4 \le a < 0$$
 $= \frac{a^2}{3}, \therefore b \ge \frac{a^2}{3}.$ $= \frac{16}{3}, \therefore b \ge \frac{16}{3}.$

综上,b的最小值为 $\frac{16}{3}$.

20. (1) 函数 f(x) 的定义域为 $(0,+\infty)$,

当
$$m > 0$$
时,由 $f'(x) < 0$,得 $0 < x < \frac{1}{e}$;由 $f'(x) > 0$,得 $x > \frac{1}{e}$;

所以
$$f(x)$$
在 $\left(0,\frac{1}{e}\right)$ 上单调递减,在 $\left(\frac{1}{e},+\infty\right)$ 上单调递增;

当
$$m < 0$$
时,由 $f'(x) < 0$,得 $x > \frac{1}{e}$;由 $f'(x) > 0$,得 $0 < x < \frac{1}{e}$;

所以
$$f(x)$$
 在 $\left(0, \frac{1}{e}\right)$ 上单调递增,在 $\left(\frac{1}{e}, +\infty\right)$ 上单调递减;

当m=0时,f(x)=0为常量函数,不具有单调性.

(2) 由 $f(x) < e^x$, 得 $mx \ln x < e^x$,

①当 $0 < x \le 1$ 时, $e^x > 1$, $mx \ln x \le 0$,不等式显然成立;

②当
$$x > 1$$
时, $x \ln x > 0$,由 $0 < m \le \frac{e^2}{2}$,得 $0 < mx \ln x \le \frac{e^2}{2} x \ln x$,

所以只需证:
$$e^x > \frac{e^2}{2} x \ln x$$
, 即证 $\frac{2e^{x-2}}{x} - \ln x > 0$.

$$\Leftrightarrow g(x) = \frac{2e^{x-2}}{x} - \ln x, \quad \text{if } g'(x) = \frac{2e^{x-2}(x-1) - x}{x^2}, \quad x > 1,$$

$$\Rightarrow h(x) = 2e^{x-2}(x-1)-x$$
, $\bigcup h'(x) = 2xe^{x-2}-1$,

$$\diamondsuit h'(x) = \varphi(x), \quad \emptyset \varphi'(x) = 2(x+1)e^{x-2} > 0,$$

所以h'(x)在 $(1,+\infty)$ 上为增函数,

因为
$$h'(1) = \frac{2}{e} - 1 < 0$$
, $h'(2) = 3 > 0$,所以存在 $x_0 \in (1,2)$, $h'(x_0) = 0$,

所以h(x)在 $(1,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 5

又因为h(1) = -1 < 0, h(2) = 0,

当 $x \in (1,2)$ 时,g'(x) < 0,g(x)在(1,2)上单调递减;当 $x \in (2,+\infty)$ 时,g'(x) > 0,g(x)在 $(2,+\infty)$ 上单调递增,

所以 $g(x) \ge g(2) = 1 - \ln 2 > 0$, 所以g(x) > 0, 所以原命题得证.

恒成立问题解题基本方法 4——赋值法

21.

(2)由f(1)>g(1)得a<2,

现证明不等式:
$$e^x \left(x \ln x + \frac{2}{e} \right) > x$$
 即证 $x \ln x + \frac{2}{e} > \frac{x}{e^x}$,

$$\Rightarrow m(x) = x \ln x + \frac{2}{e}, h(x) = \frac{x}{e^x} (x > 0),$$

$$:m'(x)=\ln x+1,:0< x<\frac{1}{e}$$
时, $m'(x)<0,m(x)$ 递减; $x>\frac{1}{e}$ 时, $m'(x)>0,m(x)$ 递增.

$$\therefore m_{\min}(x) = m\left(\frac{1}{e}\right) = \frac{1}{e}.$$
 (8 \hat{n})

$$\dot{x}$$
 \dot{x} \dot{x}

$$:m(x) \ge \frac{1}{e} \ge h(x)$$
且等号不同时取得,

$$\therefore x \ln x + \frac{2}{e} > \frac{x}{e^x}$$
即 $e^x \left(x \ln x + \frac{2}{e} \right) > x$ 成立.

22. (1)
$$f'(x) = \frac{a}{x} + 2(x+1) = \frac{2x^2 + 2x + a}{x}$$
,

 $a \ge 0$ 时,f'(x) > 0,所以f(x)的单调增区间是 $(0,+\infty)$;

$$a < 0$$
 时,令 f $x = 0$,解得 $x = \frac{-1 + \sqrt{1 - 2a}}{2}$ $(\frac{-1 - \sqrt{1 - 2a}}{2}$ 舍去),所以 $x \in \left(0, \frac{-1 + \sqrt{1 - 2a}}{2}\right)$ 时, f $(x) < 0$,

$$x \in \left(\frac{-1+\sqrt{1-2a}}{2}, +\infty\right)$$
 By, $f'(x) > 0$,

所以
$$f(x)$$
 的单调减区间是 $\left(0, \frac{-1+\sqrt{1-2a}}{2}\right)$,单调增区间是 $\left(\frac{-1+\sqrt{1-2a}}{2}, +\infty\right)$;

(2) 由
$$f(1) - \frac{1}{a} \le 0$$
 可得 $0 < a \le \frac{1}{4}$,

只需证明当
$$0 < a \le \frac{1}{4}$$
时, $f(x) - \frac{x^2}{a} \le 0$ 恒成立,等价于 $\frac{x^2}{a^2} - \frac{(x+1)^2}{a} - lnx \ge 0$,

令
$$t = \frac{1}{a}$$
 , 则 $t \ge 4$, 设 $g(t) = x^2 t^2 - (x+1)^2 t - \ln x$, 对称轴 $t = \frac{(x+1)^2}{2x^2} = \frac{1}{2} \left(1 + \frac{1}{x}\right)^2 \le 2$,

故有
$$g(t) \ge g(4) = 16x^2 - 4(x+1)^2 - lnx$$
.

id
$$h(x) = 16x^2 - 4(x+1)^2 - lnx$$
, $h'(x) = 32x - 8(x+1) - \frac{1}{x} = 24x - 8 - \frac{1}{x} \ge 24 \times 1 - 8 - \frac{1}{1} > 0$,

所以h(x)在 $[1,+\infty)$ 单调递增,且h(1)=0.故有 $h(x) \ge 0$,于是 $g(t) \ge 0$ 恒成立.

曲此 $0 < a \le \frac{1}{4}$.

23. (1)
$$\stackrel{\text{def}}{=} a = 1 \text{ H}$$
, $f(x) = x^2 - x \ln x + 2$, $f'(x) = 2x - \ln x - 1$,

$$l: y-3=x-1$$
, $\mathbb{P} x-y+2=0$.

(2)
$$f(x) > 0$$
 $\exists x^2 - ax \ln x + a + 1 > 0$, $\exists x - a \ln x + \frac{a+1}{x} > 0$.

若不等式f(x) > 0,对任意 $x \in [1,e]$ 恒成立,即函数h(x)在[1,e]上的最小值大于零.

①当 $1+a \ge e$,即 $a \ge e-1$ 时,h(x)在[1,e]上单调递减,所以h(x)的最小值为h(e),

由
$$h(e) = e + \frac{1+a}{e} - a > 0$$
可得 $a < \frac{e^2+1}{e-1}$,

②当 $1+a \le 1$, 即 $a \le 0$ 时, h(x)在[1,e]上单调递增,

所以
$$h(x)$$
最小值为 $h(1)$,由 $h(1)=1+1+a>0$ 可得 $a>-2$,即 $-2< a \le 0$.……9分

③当1 < 1 + a < e,即0 < a < e - 1时,可得h(x)最小值为h(1 + a),

因为 $0 < \ln(1+a) < 1$, 所以 $0 < a \ln(1+a) < a$,

24. (I) 由题得
$$h(x) = e^x + a \ln x$$
, $h'(x) = e^x + \frac{a}{x} = \frac{xe^x + a}{x}$

又 $\varphi(x) = xe^x$ 在 $(0,+\infty)$ 上为单调递增函数, $\varphi(0) = 0$,

故当 $a \ge 0$ 时,h(x)无极值.

当a<0时,存在 $x_0>0$,h(x)在 $(0,x_0)$ 上单调递增, $(x_0,+\infty)$ 上单调递增,存在极小值故a<0.

首先, 令x=1, 得 $m \ge 1$;

下面证明当 $m \ge 1$ 时符合要求: $\diamondsuit t(m) = m^2 x^2 e^{x-1} - (x+1) \ln x - mx$.

(1)
$$\frac{x}{2x^2e^{x-1}} = \frac{1}{2xe^{x-1}} \le 1$$
, $\mathbb{E} xe^{x-1} \ge \frac{1}{2} \mathbb{E} t$, $\mathbb{E} (m) \ge t(1) = x^2e^{x-1} - (x+1)\ln x - x$.

$$\Leftrightarrow k(x) = x^2 e^{x-1} - (x+1) \ln x - x . \Leftrightarrow k'(x) = (x^2 + 2x) e^{x-1} - \frac{1}{x} - \ln x - 2 .$$

$$k''(x) = (x^2 + 4x + 2)e^{x-1} + \frac{1}{x^2} - \frac{1}{x} \ge (x^4 + 4x + 2) \cdot \frac{1}{2x} + \frac{1}{x^2} - \frac{1}{x} = \frac{x}{2} + \frac{1}{x^2} + 2.$$

显然当x>0时,k'(0)>0,从而k'(x)递增,又k'(1)=0

则 0 < x < 1时, k'(x) < 0, k(x) 在 (0,1) 上单调递减; x > 1时, k'(x) > 0, k(x) 在 $(1,+\infty)$ 上单调递增,

所以 $k_{\min}(x) = k(1) = 0$ 得证;

(2)
$$\frac{\pi}{2x^2e^{x-1}} = \frac{1}{2xe^{x-1}} > 1$$
, $\mathbb{R} xe^{x-1} < \frac{1}{2} \mathbb{R}$, $t(m) \ge t\left(\frac{1}{2xe^{x-1}}\right) = -\frac{4e^{x-1}(x+1)\ln x + 1}{4e^{x-1}}$.

下面,只要证 $n(x) = 4e^{x-1}(x+1)\ln x + 1 \le 0$,其中 $xe^{x-1} < \frac{1}{2}$.

由 $xe^{x-1} < \frac{1}{2}$,且 $y = xe^{x-1}$ 在 $(0,+\infty)$ 上单调递增,记 $x_0e^{x_0-1} = \frac{1}{2}$,得 $x \in (0,x_0)$

$$\mathbb{Z}(1-\ln 2)e^{(1-\ln 2)-1} < \frac{1}{2}$$
, 所以 $x_0 > 1-\ln 2$

$$\Rightarrow p(x) = 2x - 4e^{x-1} + 1$$
, $y = 2 - 4e^{x-1}$.

所以当 $x \in (0, x_0)$ 时,p(x)在 $(0,1-\ln 2)$ 上单调递增, $(1-\ln 2, x_0)$ 上单调递减,

$$p(x) \le p(1-\ln 2) = 1-2\ln 2 < 0$$
, 得证.

故所求实数m的取值范围为 $m \ge 1$.

25. (1)【解法一】: (整体法) $f'(x) = e^{x-a} - a$

当 $a \le 0$ 时,f'(x) > 0,f(x)在**R**上单调递增,不可能有两个零点 当a > 0时,

х	$(-\infty, a + \ln a)$	$a + \ln a$	$(a + \ln a, +\infty)$
$f^{'}(x)$	-	0	+
f(x)	7	极小值	7

要有两个零点, 需要 $f(a + \ln a) < 0$, 即 $a - a(a + \ln a) < 0$, 即 $1 - a - \ln a < 0$

 $h(a) = 1 - a - \ln a$ 在 $(0, +\infty)$ 上单调递减,h(1) = 0,因此 h(a) < 0 得到 a > 1,此时 $a + \ln a > 0$

因为
$$f(0) = e^{-a} > 0$$
, $f(a + \ln a) < 0$, $\lim_{x \to +\infty} f(x) = +\infty$

因此 f(x) 在 $(0,a+\ln a)$ 和 $(a+\ln a,+\infty)$ 内各有一个零点

因此实数 a 的取值范围是 $(1,+\infty)$.

【解法二】: (分离法)

当 $a \le 0$ 时, $f(x) = e^{x-a} - ax > 0$,f(x) 无零点

当
$$a > 0$$
时, $e^{x-a} = ax$, $x - a = \ln(ax) = \ln a + \ln x$

因此 $x-\ln x = a + \ln a$ 在 $x \in (0,+\infty)$ 上有两个零点

$$\Rightarrow g(x) = x - \ln x$$

由 $g'(x) = 1 - \frac{1}{x}$ 知 g(x) 在 (0,1) 上单调递减,在 $(1,+\infty)$ 上单调递增

$$g(1) = 0$$
, 易知: $\lim_{x \to 0+} g(x) = +\infty$, $\lim_{x \to +\infty} g(x) = +\infty$

因此 $g(x) = a + \ln a$ 有两个解,需要 $a + \ln a > 1$

由 $h(a) = a + \ln a$ 在 $(0, +\infty)$ 上单调递增且 h(1) = 0 ,可知 a > 1

(2) (必要性分析)

$$p(x) = f(x+1) + \frac{a}{2}(x+2) - \sqrt{x^2 + ax + 1} = e^{x+1-a} - \frac{a}{2}x - \sqrt{x^2 + ax + 1}$$

由 $p(0) = e^{1-a} - 1 \ge 0$ 可知 $1-a \ge 0$,得 $a \le 1$

下证明: 当 $a \le 1$ 时, $p(x) \ge 0$ 对任意 $x \ge 0$ 成立

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 6

当x>0时, e^{x+1-a} 关于a 单调递减, $\frac{a}{2}x$ 关于a 单调递增, $\sqrt{x^2+ax+1}$ 关于a 单调递增

因此
$$p(x)$$
 关于 a 单调递减,则 $p(x) \ge e^x - \frac{1}{2}x - \sqrt{x^2 + x + 1}$

先证明: 当x > 0时, $e^x > 1 + x + \frac{1}{2}x^2$

令
$$k(x) = \frac{1+x+\frac{1}{2}x^2}{e^x}$$
,由 $k'(x) = \frac{-\frac{1}{2}x^2}{e^x} < 0$ 知 $k(x)$ 在 $(0,+\infty)$ 上单调递减,

则
$$k(x) < k(0) = 1$$
,即 $1 + x + \frac{1}{2}x^2 < e^x$

因此
$$e^x - \frac{1}{2}x - \sqrt{x^2 + x + 1} > 1 + x + \frac{1}{2}x^2 - \frac{1}{2}x - \sqrt{x^2 + x + 1}$$

$$e^{x} - \frac{1}{2}x - \sqrt{x^{2} + x + 1} > 1 + x + \frac{1}{2}x^{2} - \frac{1}{2}x - \sqrt{x^{2} + x + 1}$$

$$= \frac{1}{2}\sqrt{x^2 + x + 1}^2 - \sqrt{x^2 + x + 1} + \frac{1}{2} = \frac{1}{2}\left(\sqrt{x^2 + x + 1} - 1\right)^2 > 0$$

因此当
$$x > 0$$
时, $p(x) \ge e^x - \frac{1}{2}x - \sqrt{x^2 + x + 1} > 0$

综上可知, 实数 a 的取值范围是 $(-\infty,1]$.

存在性问题与有解问题的基本方法

26. (1) 解:
$$y = f(x)$$
的定义域为(0,1) \cup (1,+ ∞),因为 $f(x) = \frac{\ln x}{x-1}$,所以 $f'(x) = \frac{1-\frac{1}{x}-\ln x}{(x-1)^2}$.

令 $g(x) = 1 - \frac{1}{x} - \ln x$,则 $g'(x) = \frac{1-x}{x^2}$,所以函数 y = g(x) 在区间 (0,1) 单增;在区间 $(1,+\infty)$ 单减.

又因为g(1) = 0,所以当 $x \in (0,1) \cup (1,+\infty)$ 时 g(x) < 0, f'(x) < 0

所以函数 y = f(x) 在区间 (0,1) , $(1,+\infty)$ 上均单调递减;

(2)
$$\operatorname{MR}: : \lambda x^2 - \lambda x \ge (e^{\lambda x} - 1) \ln x : (x - 1) \ln e^{\lambda x} \ge (e^{\lambda x} - 1) \ln x$$

当
$$\lambda > 0$$
, $x > 1$ 时 $x - 1 > 0$,所求不等式可化为 $\frac{\ln e^{\lambda x}}{e^{\lambda x - 1}} \ge \frac{\ln x}{x - 1}$,即 $f(e^{\lambda x}) \ge f(x)$,

 $\therefore \lambda > 0$ 易知 $e^{\lambda x} \in (1, +\infty)$, 由 (1) 知, y = f(x) 在 $(1, +\infty)$ 单调递减,

故只需 $e^{\lambda x} \le x$ 在 $(1,+\infty)$ 上能成立. 两边同取自然对数,得 $\lambda x \le \ln x$,即 $\lambda \le \frac{\ln x}{x}$ 在 $(1,+\infty)$ 上能成立.

$$\diamondsuit \varphi(x) = \frac{\ln x}{x} (x > 1) , \quad \text{if } \varphi'(x) = \frac{1 - \ln x}{x^2} ,$$

当 $x \in (1.e)$ 时, $\varphi'(x) > 0$,函数 $y = \varphi(x)$ 单调递增;当 $x \in (e, +\infty)$ 时, $\varphi'(x) < 0$,函数 $y = \varphi(x)$ 单调递减,

$$\therefore \varphi(x)_{\max} = \varphi(e) = \frac{1}{e},$$

所以 $\lambda \leq \frac{1}{e}$, 又 $\lambda > 0$, 故 λ 的取值范围是 $\left(0, \frac{1}{e}\right]$.

27 (1)已知函数 $f(x) = ax^2 - (a+2)x + \ln x$, 定义域为 $(0,+\infty)$,

$$f'(x) = 2ax - (a+2) + \frac{1}{x} = \frac{2ax^2 - (a+2)x + 1}{x} = \frac{(ax-1)(2x-1)}{x}$$

x	$\left(0,\frac{1}{2}\right)$	$\frac{1}{2}$	$\left(\frac{1}{2},\frac{1}{a}\right)$	$\frac{1}{a}$	$\left(\frac{1}{a}, +\infty\right)$
f'(x)	+	0	-	0	+
f(x)	递增	极大值	递减	极小值	递增

$$f(x)$$
 在 $\left(0,\frac{1}{2}\right)$, $\left(\frac{1}{a},+\infty\right)$ 上单调递增,在 $\left(\frac{1}{2},\frac{1}{a}\right)$ 上单调递减;

②当
$$a=2$$
时,
$$f'(x) = \frac{4\left(x-\frac{1}{2}\right)^2}{x} \ge 0$$
,函数 $f(x)$ 在 $(0,+\infty)$ 单调递增;

③当
$$a > 2$$
时, $\frac{1}{a} < \frac{1}{2}$,

x	$\left(0,\frac{1}{a}\right)$	$\frac{1}{a}$	$\left(\frac{1}{a}, \frac{1}{2}\right)$	$\frac{1}{2}$	$\left(\frac{1}{2}, +\infty\right)$
f'(x)	+	0	-	0	+
f(x)	递增	极大值	递减	极小值	递增

$$f(x)$$
 在 $\left(0,\frac{1}{a}\right)$, $\left(\frac{1}{2},+\infty\right)$ 上单调递增,在 $\left(\frac{1}{a},\frac{1}{2}\right)$ 上单调递减.

综上所述,0 < a < 2 时,f(x) 在 $\left(0, \frac{1}{2}\right)$, $\left(\frac{1}{a}, +\infty\right)$ 上单调递增,在 $\left(\frac{1}{2}, \frac{1}{a}\right)$ 上单调递减;

a = 2时, f(x)在(0,+∞)单调递增;

$$a > 2$$
时, $f(x)$ 在 $\left(0, \frac{1}{a}\right)$, $\left(\frac{1}{2}, +\infty\right)$ 上单调递增,在 $\left(\frac{1}{a}, \frac{1}{2}\right)$ 上单调递减.

(2)若存在 $x \in [1,+\infty)$,使得 $f(x) + e \le 0$ 成立,即使得 $f_{\min}(x) \le -e$.

由 (1), 可知当 $a \ge 1$ 时, f(x)在 $[1,+\infty)$ 上单调递增, $f_{\min}(x) = f(1) = -2$, 不满足 $f_{\min}(x) \le -e$;

当
$$0 < a < 1$$
时, $\frac{1}{a} > 1$

x	$\left(1,\frac{1}{a}\right)$	$\frac{1}{a}$	$\left(\frac{1}{a}, +\infty\right)$
f'(x)	-	0	+
f(x)	递减	极小值	递增

$$f_{\min}(x) = f\left(\frac{1}{a}\right) = -1 - \frac{1}{a} - \ln a$$
, $\text{fighth} -1 - \frac{1}{a} - \ln a \le -e$, $\text{Fighth} \ln a + \frac{1}{a} \ge e - 1$,

$$\Leftrightarrow g(x) = \ln x + \frac{1}{x}(0 < x < 1), \quad \therefore g'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x - 1}{x^2} < 0,$$

$$\therefore g(x) = \ln x + \frac{1}{x} 在 (0,1) 上 单调递减,$$

又:
$$g\left(\frac{1}{e}\right) = e - 1$$
,由 $\ln a + \frac{1}{a} \ge e - 1$,得 $0 < a \le \frac{1}{e}$.

综上, 实数 a 的取值范围为 $\left(0,\frac{1}{e}\right)$.

28 (1)函数
$$f(x) = \frac{\ln x}{x-1}$$
, $x > 1$, 求导得: $f'(x) = \frac{1 - \frac{1}{x} - \ln x}{(x-1)^2}$,

令
$$g(x) = 1 - \frac{1}{x} - \ln x$$
, $x > 1$, 则 $g'(x) = \frac{1 - x}{x^2} < 0$, 即函数 $y = g(x)$ 在区间 $(1, +\infty)$ 单调递减,

而
$$g(1) = 0$$
, 则当 $x \in (1, +\infty)$ 时, $g(x) < g(1) = 0$, 即 $f'(x) < 0$,

所以函数 y = f(x) 在区间 $(1,+\infty)$ 上单调递减.

(2)

$$\stackrel{\text{def}}{=} x > 1 \text{ Fi} \ln x > 0$$
, $(x-1) f(e^{\lambda x}) - \ln x \ge 0 \Leftrightarrow f(e^{\lambda x}) \ge \frac{\ln x}{x-1} \Leftrightarrow f(e^{\lambda x}) \ge f(x)$,

因 $\lambda > 0$ 且x > 1,则 $e^{\lambda x} \in (1, +\infty)$,由(1)知,y = f(x)在 $(1, +\infty)$ 单调递减,

则存在 $x \in (1, +\infty)$,不等式 $f(e^{\lambda x}) \ge f(x) \Leftrightarrow e^{\lambda x} \le x \Leftrightarrow \lambda x \le \ln x \Leftrightarrow \lambda \le \frac{\ln x}{x}$ 成立,

$$\diamondsuit \varphi(x) = \frac{\ln x}{x}(x > 1), \quad \emptyset \varphi'(x) = \frac{1 - \ln x}{x^2}, \quad \stackrel{\text{\tiny def}}{=} x \in (1, e) \text{ fit}, \quad \varphi'(x) > 0, \quad \stackrel{\text{\tiny def}}{=} x \in (e, +\infty) \text{ fit}, \quad \varphi'(x) < 0,$$

因此,函数 $\varphi(x)$ 在(1,e)上单调递增,在 $(e,+\infty)$ 上单调递减, $\varphi(x)_{\max} = \varphi(e) = \frac{1}{e}$,于是得 $0 < \lambda \le \frac{1}{e}$,

所以 λ 的取值范围是 $(0,\frac{1}{e}]$.

29.(1) 若
$$a = 2$$
 时, $f(x) = e^x - 2x + 2$,则 $f'(x) = e^x - 2$,

$$f'(x) = e^x - 2 > 0$$
, $f'(x) = e^x - 2 < 0$

所以f(x)在 $(-\infty, \ln 2)$ 上单调递减,在 $(\ln 2, +\infty)$ 上单调递增.

(2)由题意可知,即求 $f(x)>g(x_0)_{min}$ 成立的a的取值范围,

因为
$$g(x) = e^x + e^{-x}$$
, $x \in [-1,2]$, 所以 $e^x \in [\frac{1}{e}, e^2]$, 所以 $e^x + e^{-x} \ge 2$ (当且仅当 $x = 0$ 时取等号),

即 $g(x_0)_{min} = 2$,即求 $f(x) = e^x - ax + 2 > 2$ 对任意 $x \in \mathbb{R}$ 成立的 a 的取值范围,

当a<0时, $f'(x)=e^x-a>0$,此时f(x)在R上单调递增,

且有
$$f(\frac{3}{a}) = e^{\frac{3}{a}} - 3 + 2 = e^{\frac{3}{a}} - 1 < 0 < 2$$
, 不满足 $f(x)_{min} > 2$;

当a=0时, 易知f(x)>2, 显然成立;

当a>0时,令 $f'(x)=e^x-a>0$,得 $x>\ln a$,令 $f'(x)=e^x-a<0$,得 $x<\ln a$,

 $\therefore f(x)$ 在($-\infty$, $\ln a$)上单调递减,在($\ln a$,+ ∞)上单调递增,

所以 $f(x)_{\min} = f(\ln a) = a - a \ln a + 2$, 所以 $a - a \ln a + 2 > 2$, 解得, $0 \le a < e$ 所以实数 a 的取值范围为[0, e).

30.(1)解: 当
$$a = -5$$
时, $f(x) = x^2 - 8 \ln x$, 可知 $f(x)$ 的定义域为 $(0,+\infty)$,则 $f'(x) = 2x - \frac{8}{x} = \frac{2x^2 - 8}{x}, x > 0$,

可知当 $x \in (0,2)$ 时, f'(x) < 0; 当 $x \in (2,+\infty)$ 时, f'(x) > 0;

所以f(x)的单调递减区间为(0,2), 单调递增区间为 $(2,+\infty)$.

(2)解: 由题可知,存在
$$x \in [2,e]$$
,使得 $f(x)-x^2 > 2x + \frac{2a+4}{x}$ 成立,

等价于
$$2x + \frac{2a+4}{x} - (2a+2) \ln x < 0$$
 在 [2,e] 内有解,

可设
$$h(x) = 2x + \frac{2a+4}{x} - (2a+2)\ln x$$
, 即在 $[2,e]$ 上, 函数 $h(x)_{min} < 0$,

$$\therefore h'(x) = 2 - \frac{(2a+4)}{x^2} - \frac{(2a+2)}{x} = \frac{2x^2 - (2a+2)x - (2a+4)}{x^2} = \frac{2(x+1)[x-(a+2)]}{x^2},$$

令
$$h'(x)=0$$
, 即 $(x+1)[x-(a+2)]=0$, 解得: $x=a+2$ 或 $x=-1$ (舍去),

当 $a+2 \ge e$, 即 $a \ge e-2$ 时, h'(x) < 0, h(x)在[2,e]上单调递减,

∴
$$h(x)_{\min} = h(e) = 2e + \frac{2a+4}{e} - 2a - 2 < 0$$
, $(4a > \frac{e^2 - e + 2}{e - 1})$,

又:
$$\frac{e^2 - e + 2}{e - 1} > e - 2$$
,所以 $a > \frac{e^2 - e + 2}{e - 1}$;

当 $a+2 \le 2$ 时,即 $a \le 0$ 时,h'(x) > 0,h(x)在[2,e]上单调递增,

$$\therefore h(x)_{\min} = h(2) = 6 + a - (2a + 2) \ln 2 < 0$$
,得 $a > \frac{6 - \ln 4}{\ln 4 - 1} > 0$,不合题意;

当2 < a + 2 < e, 即0 < a < e - 2时,则h(x)在[2,a+2]上单调递减,在[a+2,e]上单调递增,

$$\therefore h(x)_{\min} = h(a+2) = 2a+6-(2a+2)\ln(a+2),$$

:
$$\ln 2 < \ln (a+2) < \ln e = 1$$
, : $(2a+2) \ln 2 < (2a+2) \ln (2a+2) < 2a+2$,

$$\therefore h(a+2) = 2a+6-(2a+2)\ln(a+2) > 2a+6-2a-2=4$$
, 即 $h(x)_{\min} > 4$, 不符合题意;

综上得,实数
$$a$$
的取值范围为 $\left(\frac{e^2-e+2}{e-1},+\infty\right)$.

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案7

30. (1) 当 a=1 时, $f(x)=e^x-x-1$, 所以 $f'(x)=e^x-1$

当x < 0时f'(x) < 0; 当x > 0时f'(x) > 0,

所以f(x)在 $(-\infty,0)$ 上单调递减,在 $(0,+\infty)$ 上单调递增,

所以当x=0时函数f(x)有极小值f(0)=0,无极大值.

(2)因为 $f(x) \le x^2$ 在 $[0,+\infty)$ 上有解,所以 $e^x - x^2 - ax - 1 \le 0$ 在 $[0,+\infty)$ 上有解,

当x=0时,不等式成立,此时 $a \in R$,

当
$$x > 0$$
 时 $a \ge \frac{e^x}{x} - \left(x + \frac{1}{x}\right) \pm \left(0, +\infty\right) \pm$ 有解,

由(1) 知x > 0时f(x) > f(0) = 0, 即 $e^x - (x + 1) > 0$,

当0 < x < 1时g'(x) < 0; 当x > 1时g'(x) > 0,

所以g(x)在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增,

所以当x=1时, $g(x)_{\min}=e-2$,所以 $a \ge e-2$,

综上可知,实数 a 的取值范围是 $a \ge e-2$.

31. (1)当
$$a = 1$$
时, $f(x) = 2x^3 - x^2 + 8$, $f'(x) = 6x^2 - 2x = 2x(3x - 1)$,又 $f(1) = 9$, $f'(1) = 4$,故 $y = f(x)$ 在点(1, $f(1)$)处的切线方程为: $y - 9 = 4(x - 1)$,即: $4x - y + 5 = 0$.

(2)因为 $x \in [1,2)$,若f(x) < 0,即 $2x^3 - ax^2 + 8 < 0$, $a > 2x + \frac{8}{x^2}$

$$\diamondsuit h(x) = 2x + \frac{8}{x^2}, x \in [1,2), \quad \emptyset h'(x) = 2 - \frac{16}{x^3} = \frac{2(x^3 - 8)}{x^3},$$

当 $x \in [1,2)$,h'(x) < 0,h(x)单调递减,故h(x) > h(2) = 6.

若在区间[1,2)内至少存在一个实数 x, 使得f(x) < 0成立,

故a ≥ 6,

则实数 a 的取值范围为[6,+ ∞).

恒成立与存在性问题结合

32. (1) f(x) 为定义域上的偶函数.

证明: $f(x) = e^x + e^{-x}$ 的定义域为R, $f(-x) = e^{-x} + e^x = f(x)$, f(x)为定义域上的偶函数;

(2) 若关于 x 的不等式 $mf(x) \le e^{-x} + m - 1$ 在(0,+∞)上恒成立,

即 $m(e^x + e^{-x} - 1) \le e^{-x} - 1$ 在 $(0, +\infty)$ 上恒成立,

$$x>0$$
, $e^x+e^{-x}-1>0$, 即 $m \leq \frac{e^{-x}-1}{e^x+e^{-x}-1}$ 在 $(0, +\infty)$ 上恒成立,

设
$$t = e^x$$
, $(t > 1)$,则 $m \le \frac{1-t}{t^2-t+1}$ 在 $(1,+\infty)$ 上恒成立. $\because \frac{1-t}{t^2-t+1} = -\frac{t-1}{(t-1)^2+(t-1)+1} = -\frac{1}{(t-1)^2+(t-1)+1} \ge -\frac{1}{3}$.

当且仅当t=2时上式等号成立. $:m \leq -\frac{1}{3}$;

(3)
$$\Leftrightarrow g(x) = e^x + e^{-x} - a(-x^3 + 3x)$$
. $\bigcup g'(x) = e^x - e^{-x} + 3a(x^2 - 1)$,

当 x > 1 时, g'(x) > 0, 即 g(x) 在 $(1, +\infty)$ 上单调递增, 故此时 g(x) 的最小值 $g(1) = e + \frac{1}{e} - 2a$.

由于存在 $x_0 \in [1, +\infty)$,使得 $f(x_0) < a(-x_0^3 + 3x_0)$ 成立,故 $e + \frac{1}{e} - 2a < 0$,即 $a > \frac{1}{2} \left(e + \frac{1}{e} \right)$.

$$\Rightarrow h(x) = x - (e - 1)\ln x - 1$$
, $h'(x) = 1 - \frac{e - 1}{x}$, $\pm h'(x) = 1 - \frac{e - 1}{x} = 0$, $\#\#x = e - 1$.

当0 < x < e - 1时,h'(x) < 0,此时函数单调递减,

当x > e - 1时, h'(x) > 0, 此时函数单调递增.

∴ h(x) 在(0,+∞)上的最小值为h(e-1).

注意到h(0) = h(1) = 0,

∴
$$\exists x \in (1, e-1) \subseteq (0, e-1)$$
 $\forall h(e-1) \le h(x) < h(1) = 0$.

$$x \in (e-1,e) \subseteq (e-1,+\infty)$$
 $\exists h(x) < h(e) = 0.$

∴ h(x) < 0对任意x ∈ (1,e)成立.

①
$$a \in \left(\frac{1}{2}\left(e + \frac{1}{e}\right), e\right) \subseteq (1, e)$$
时, $h(a) < 0$,即 $a - 1 < (e - 1)\ln a$,从而 $e^{a - 1} < a^{e - 1}$;

②
$$a = e$$
时, $e^{a-1} = a^{e-1}$;

③
$$a \in (e, +\infty) \subseteq (e-1, +\infty)$$
时, $h(a) > h(e) = 0$,即 $a-1 > (e-1)$ ln a ,从而 $e^{a-1} > a^{e-1}$.

综上可知: 当
$$\frac{1}{2}\left(e+\frac{1}{e}\right) < a < e$$
时, $e^{a-1} < a^{e-1}$;当 $a = e$ 时, $e^{a-1} = a^{e-1}$;当 $a > e$ 时, $e^{a-1} > a^{e-1}$.

33.解: (1)
$$f(x) = \ln x + x^2 - ax$$
, 定义域是(0,+ ∞),

$$f'(x) = \frac{1}{x} + 2x - a = \frac{2x^2 - ax + 1}{x}$$

$$\Rightarrow h(x) = 2x^2 - ax + 1(x > 0), \triangle = a^2 - 8,$$

①
$$a^2 - 8 \le 0$$
即 $-2\sqrt{2} \le a \le 2\sqrt{2}$ 时, $h(x) \ge 0$ 恒成立,

即 $f'(x) \ge 0$ 恒成立, f(x)在 $(0,+\infty)$ 单调递增,

② $a^2 - 8 > 0$ 即 $a > 2\sqrt{2}$ 或 $a < -2\sqrt{2}$ 时,h(x) = 0有 2 个不相等的实数根,

此时
$$x_1 = \frac{a - \sqrt{a^2 - 8}}{4}$$
, $x_2 = \frac{a + \sqrt{a^2 - 8}}{4}$,

$$a > 2\sqrt{2}$$
 时, $x_1 = \frac{a - \sqrt{a^2 - 8}}{4} > 0$, $x_2 = \frac{a + \sqrt{a^2 - 8}}{4} > 0$,

故
$$x \in (0, \frac{a-\sqrt{a^2-8}}{4})$$
时, $h(x) > 0$,即 $f'(x) > 0$,

$$x \in (\frac{a-\sqrt{a^2-8}}{4}, \frac{a+\sqrt{a^2-8}}{4})$$
 by, $h(x) < 0$, $\mathbb{P}f'(x) < 0$,

$$x \in (\frac{a+\sqrt{a^2-8}}{4}, +\infty)$$
 By, $h(x) > 0$, $\mathbb{H}f'(x) > 0$,

故
$$f(x)$$
 在 $(0,\frac{a-\sqrt{a^2-8}}{4})$ 递增,在 $(\frac{a-\sqrt{a^2-8}}{4},\frac{a+\sqrt{a^2-8}}{4})$ 递减,在 $(\frac{a+\sqrt{a^2-8}}{4},+\infty)$ 递增;

$$a < -2\sqrt{2}$$
时, $x_1 = \frac{a - \sqrt{a^2 - 8}}{4} < 0$, $x_2 = \frac{a + \sqrt{a^2 - 8}}{4} < 0$, $x \in (0, +\infty)$ 时, $f(x)$ 递增,

综上: $a \leq 2\sqrt{2}$ 时, f(x)在 $(0,+\infty)$ 单调递增,

$$a > 2\sqrt{2}$$
时, $f(x)$ 在 $(0,\frac{a-\sqrt{a^2-8}}{4})$ 递增,在 $(\frac{a-\sqrt{a^2-8}}{4},\frac{a+\sqrt{a^2-8}}{4})$ 递减,在 $(\frac{a+\sqrt{a^2-8}}{4},+\infty)$ 递增.

(2) :: x > 0, $:: \frac{1}{x} + 2x \ge 2\sqrt{2}$, 当 $\alpha \in (1,2)$ 时, f'(x) > 0在[1,2]上恒成立,

f(x)在[1, 2]上单调递增, $f(x)_{\min} = f(1) = 1 - a$,

故问题等价于:对于任意的 $a \in (1,2)$,不等式 $1-a > m \ln a$ 恒成立,

即
$$m < \frac{1-a}{\ln a}$$
恒成立,记 $g(a) = \frac{1-a}{\ln a} (1 < a < 2)$,则 $g'(a) = \frac{-a \ln a - 1 + a}{a \ln^2 a}$,

令 $M(a) = -a \ln a - 1 + a$,则 $M'(a) = -\ln a < 0$,

所以M(a)在(1,2)上递减,所以M(a) < M(1) = 0,

故g'(a) < 0,所以g(a)在 $a \in (1,2)$ 上单调递减,

所以 $m \le g(2) = -\frac{1}{\ln 2}$,

即实数m的取值范围为 $\left(-\infty, -\frac{1}{\ln 2}\right]$.

34. (1) 由题意,函数 y = f(x) 的定义域为 $(0, +\infty)$, $f'(x) = \frac{1}{x} - a$,

当 $a \le 0$ 时, $f'(x) = \frac{1}{x} - a > 0$, 函数 y = f(x) 在区间 $(0, +\infty)$ 上单调递增,

此时,函数y = f(x)在定义域上无最大值;

当
$$a > 0$$
时,令 $f'(x) = \frac{1}{x} - a = 0$,得 $x = \frac{1}{a}$,

由 f'(x) > 0, 得 $x \in (0, \frac{1}{a})$, 由 f'(x) < 0, 得 $x \in (\frac{1}{a}, +\infty)$,

此时,函数y = f(x)的单调递增区间为 $\left(0, \frac{1}{a}\right)$,单调减区间为 $\left(\frac{1}{a}, +\infty\right)$.

所以当 $x = \frac{1}{a}$ 时,函数f(x)有最大值,即 $f(x)_{\max} = f\left(\frac{1}{a}\right) = \ln\frac{1}{a} - 1 = 1 \Rightarrow a = \frac{1}{e^2}$,即 $a = e^{-2}$ 为所求;

(3) 只需 $b \ge (x-2)e^x + \ln x - x$ 对任意的 $x \in (\frac{1}{2}, 1)$ 恒成立即可.

构造函数 $g(x) = (x-2)e^x + \ln x - x$,

$$g'(x) = (x-1)e^x + \frac{1}{x} - 1 = (x-1)\left(e^x - \frac{1}{x}\right),$$

 $x \in (\frac{1}{2}, 1), \quad x - 1 < 0, \quad \exists t(x) = e^x - \frac{1}{x}$ 单调递增,

$$:t(\frac{1}{2}) = e^{\frac{1}{2}} - 2 < 0, t(1) = e - 1 > 0,$$

:.一定存在唯一的 $x_0 \in (\frac{1}{2}, 1)$,使得 $t(x_0) = 0$,即 $e^{x_0} = \frac{1}{x_0}, x_0 = -\ln x_0$,

且当 $\frac{1}{2}$ < x < x_0 时,t(x) < 0,即 g'(x) > 0;

当 $x_0 < x < 1$ 时,t(x) > 0,即g'(x) < 0.

所以,函数y=g(x)在区间($\frac{1}{2}$, x_0)上单调递增,在区间(x_0 ,1)上单调递减,

$$\therefore g(x)_{\text{max}} = g(x_0) = (x_0 - 2)_e^{x_0} + \ln x_0 - x_0 = 1 - 2\left(x_0 + \frac{1}{x_0}\right), \ x \in (\frac{1}{2}, 1)$$

则 $y = 1 - 2(x_0 + \frac{1}{x_0})$ 在 $(\frac{1}{2}, 1)$ 上单调递增,所以 $1 - 2(x_0 + \frac{1}{x_0}) \in (-4, -3)$,

因此b的最小整数值为-3.

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案8

不等式恒成立之端点不成立问题

1. (1) $f(x) = e^x - ax$, $f'(x) = e^x - a$.

当 $a \le 0$ 时, f'(x) > 0, $f(x) = e^x - ax$ 在 R 上单调递增.

当a > 0时, 令 $f'(x) = e^x - a = 0$, 得 $x = \ln a$.

 $x < \ln a$ 时, f'(x) < 0 , f(x) 在 $(-\infty, \ln a)$ 上单调递减,

 $x > \ln a$ 时, f'(x) > 0, f(x)在 $(\ln a, +\infty)$ 上单调递增,

故当 $a \le 0$ 时,f(x)的单调递增区间是R;

当a > 0时,f(x)的单调递减区间是 $(-\infty, \ln a)$,单调递增区间是 $(\ln a, +\infty)$.

(2)
$$g(x) = f(x) - \frac{1}{2}x^2 - \frac{1}{2}a^2 = e^x - ax - \frac{1}{2}x^2 - \frac{1}{2}a^2$$
, $g'(x) = e^x - x - a$, $g''(x) = e^x - 1$,

 $\therefore x \ge 0$, $\therefore g''(x) = e^x - 1 \ge 0$, g'(x)在 $[0,+\infty)$ 上单调递增, $g'(x)_{\min} = g'(0) = 1 - a$.

当 $1-a \ge 0$, 即 $a \le 1$ 时, $g'(x)_{\min} = 1-a \ge 0$, g(x)在 $[0,+\infty)$ 上单调递增,

则
$$g(x)_{\min} = g(0) = 1 - \frac{1}{2}a^2 \ge 0$$
, $-\sqrt{2} \le a \le \sqrt{2}$, 故 $-\sqrt{2} \le a \le 1$.

当1-a < 0,即a > 1时, $g'(x)_{min} = 1-a < 0$,

$$\exists x_0 > 0$$
, $g'(x_0) = e^{x_0} - x_0 - a = 0$, $\exists \exists a = e^{x_0} - x_0 \exists \vec{x} e^{x_0} = a + x_0$,

 $0 < x < x_0$ 时,g'(x) < 0,g(x)在 $(0,x_0)$ 上单调递减,

 $x > x_0$ 时, g'(x) > 0, g(x)在 $(x_0, +\infty)$ 上单调递增,

$$\iiint g(x)_{\min} = g(x_0) = e^{x_0} - \frac{1}{2}(x_0 + a)^2 = e^{x_0} - \frac{1}{2}(e^{x_0})^2 = \frac{1}{2}e^{x_0}(2 - e^{x_0}) \ge 0, \quad e^{x_0} \le 2, \quad \therefore 0 < x_0 \le \ln 2.$$

令函数 $h(x) = e^x - x$, 且 $0 < x \le \ln 2$, $h'(x) = e^x - 1 \ge 0$, $h(x) = e^x - x$ 在 $(0, \ln 2]$ 上单调递增, $1 < h(x) \le 2 - \ln 2$,

: $a = e^{x_0} - x_0$ (0 < $x \le \ln 2$), : $1 < a \le 2 - \ln 2$.

综上,实数 a 的取值范围是 $-\sqrt{2} \le a \le 2-\ln 2$.

2. (1) 当 a = 2 时, $f(x) = 2x\cos x - 2\sin x$,则 $f'(x) = -2\sin x$,令 f'(x) = 0,当 $x \in (\mathbf{Q} \pi)$ 时,解得 $x = \pi$,故当 $x \in (0, \pi)$

时,f'(x) < 0; 当 $x \in (\pi, 2\pi)$ 时,f'(x) > 0.所以, $f(x) \pm (0, \pi)$ 上单调递减,在 $(\pi, 2\pi)$ 上单调递增.

(2) $\Rightarrow g(x) = 3x + 2\sin x - ax\cos x$, $\iiint g'(x) = 3 + (2 - a)\cos x + ax\sin x$.

当 $a \le 0$ 时, $ax\cos x \le 0$, 所以g(x) > g(0) = 0.

当 $0 < a \le 5$ 时, $g'(x) \ge 3 - 3\cos x + ax\sin x > 0$, 故 g(x) 在 $\left(0, \frac{\pi}{2}\right)$ 上单调递增.又 g(0) = 0, 故 g(x) > g(0) = 0.

当 a > 5 时, 令 $h(x) = g'(x) = 3 + (2 - a)\cos x + ax\sin x$,则 $h'(x) = (2a - 2)\sin x + ax\cos x > 0$, 故 h(x) 在 $\left(0, \frac{\pi}{2}\right)$ 上单调递

增. $h(0) = 5 - a < 0, h(\frac{\pi}{2}) = 3 + \frac{a\pi}{2} > 0.$

故存在 $x_0 \in \left(0, \frac{\pi}{2}\right)$ 使得 $h(x_0) = 0$,且当 $x \in (0, x_0)$ 时 h(x) < 0 ,即 g(x) 在 $(0, x_0)$ 上单调递减,所以当 $x \in (0, x_0)$ 时,

g(x) < g(0) = 0, 故不符合.

综上所述, a的取值范围为 $\{a \mid a \le 5\}$.

3. (1)
$$\boxplus f(x) = \frac{3a - \ln x^3}{x} \notin f'(x) = \frac{-3 - 3a + \ln x^3}{x^2} = \frac{-3 - 3a + 3\ln x}{x^2} = \frac{3(\ln x - (a+1))}{x^2}$$

 $\Leftrightarrow f'(x) = 0 \Leftrightarrow \ln x = a+1, \quad x = e^{a+1},$

当 $e^{a+1} \ge 2$ 时, $a \ge -1 + \ln 2$, $f'(x) \le 0$ 对[1,2]恒成立,f(x)在[1,2]单减;

当 e^{a+1} ≤1时,a≤-1,f'(x)≥0对[1,2]恒成立,f(x)在[1,2]单增;

综上所述, 当 $a \ge -1 + \ln 2$, f(x)在[1,2] 单减; 当 $a \le -1$, f(x)在[1,2] 单增; 当 $a \in (-1,-1+\ln 2)$, 当 $x \in (1,e^{a+1})$, f(x)

单减; 当 $a \in (e^{a+1}, 2)$, f(x)单增;

(2) 若 a = -1, 则 $f(x) = \frac{-3-3h}{x}$, f(x) > -3x - 2在 $(0,+\infty)$ 上恒成立 $\Leftrightarrow -3-3\ln x > -3x^2 - 2x$,即 \hbar $x \to 3$ $x \to 3$

对 $x \in (0,+\infty)$ 恒成立,

$$\Leftrightarrow h'(x) = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{19}}{6} \approx 0.56$$

当
$$x \in \left(0, \frac{-1+\sqrt{19}}{6}\right)$$
时, $h'(x) > 0$, $h(x)$ 单增;当 $x \in \left(\frac{-1+\sqrt{19}}{6}, +\infty\right)$ 时, $h'(x) < 0$, $h(x)$ 单减,

所以
$$h(x)_{max} = h\left(\frac{-1+\sqrt{19}}{6}\right)$$
, 令 $M = \frac{-1+\sqrt{19}}{6}$, 则 $3\ln M < 0$, 又 $-6M^2 - 2M + 3 = 0$, 即 $3-2M = 6M^2$, 故

 $h(M) = 3 \ln M + 3 - 3M^2 - 2M = 3(\ln M + M^2)$,

构造函数 $g(x) = \ln x + x^2$,

又 $\ln x \le x - 1$, 设 $t(x) = \ln x - x + 1$, $t'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$, 当 $x \in (0,1)$, t'(x) > 0 , t(x) 单增,当 $x \in (1,+\infty)$, t'(x) < 0 ,

t(x)单减,故 $t(x) \le t(1) = 0$ (得证),

所以 $g(x) = \ln x + x^2 \le x^2 + x - 1$, $0.56 \in \left(\frac{1}{2}, \frac{3}{5}\right)$, $\Leftrightarrow m(x) = x^2 + x - 1$, m(x)在 $\left(\frac{1}{2}, \frac{3}{5}\right)$ 单增, $m\left(\frac{1}{2}\right) = -\frac{1}{4}$, $m\left(\frac{3}{5}\right) = -\frac{1}{25}$, 所以 g(M) < m(M) < 0,

所以 f(x) > -3x - 2在 $(0,+\infty)$ 上恒成立.

4. (1)
$$\boxtimes f(x) = \frac{1 + \ln(x+1)}{x}$$
 : $f'(x) = \frac{1}{x^2} \left[\frac{x}{x+1} - 1 - \ln(x+1) \right] = -\frac{1}{x^2} \left[\frac{1}{x+1} + \ln(x+1) \right]$.

由 x > 0 , $x^2 > 0$, $\frac{1}{x+1} > 0$, $\ln(x+1) > 0$, 得 f'(x) < 0 . 因此函数 f(x) 在区间 $(0,+\infty)$ 上是减函数 .

(2) 当
$$x > 0$$
时, $f(x) > \frac{k}{x+1}$ 恒成立.即 $h(x) = \frac{(x+1)[1+ln(x+1)]}{x} > k$ 对 $x > 0$ 恒成立.

即 h(x)(x>0) 的最小值大于 k. 由 $h'(x) = \frac{x-1-ln(x+1)}{x^2}$, 记 $\Phi(x) = x-1-ln(x+1)$. (x>0) 则 $\Phi'(x) = \frac{x}{x+1} > 0$,

∴Φ(x)在(0,+∞)上连续递增. 又Φ(2) =1-ln3<0, Φ(3) =2-2ln2>0,

∴Φ(x)=0存在惟一实根 a, 且满足: $a \in (2,3)$, a=1+ln(a+1),

由x > a时, $\Phi(x) > 0$, h'(x) > 0; 0 < x < a时, $\Phi(x) < 0$, h'(x) < 0知:

h(x)(x>0) 的最小值为 $h(a) = \frac{(a+1)[1+ln(a+1)]}{a} = a+1 \in (3,4)$. 因此正整数k的最大值为 3.

不等式恒成立之端点恒成立问题

5. (1) 因为 a = 0, 所以 $f(x) = \sin x + e^x$, $f'(x) = \cos x + e^x$,

因为
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, 所以 $f'(x) > 0$, 所以 $f(x)$ 在 $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上是单调增函数,

又因为
$$f\left(-\frac{\pi}{2}\right) = \sin\left(-\frac{\pi}{2}\right) + e^{-\frac{\pi}{2}} = -1 + e^{-\frac{\pi}{2}} < 0$$
, $f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + e^{\frac{\pi}{2}} = 1 + e^{\frac{\pi}{2}} > 0$,

所以 f(x)在 $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上只有一个零点.

(2) 因为 $f(x) = \sin x + e^x + ax$, 所以 $f'(x) = \cos x + e^x + a$,

当
$$2+a \ge 0$$
时,即 $a \ge -2$ 时, $h(x) \ge h(0) = 2+a \ge 0$,即 $f'(x) \ge 0$,所以 $f(x)$ 在 $[0,+\infty)$ 上为增函数, $f(x) \ge f(0) = 1$,

所以 $a \ge -2$ 时满足 $x \in [0,+\infty)$ 时都有 $f(x) \ge 1$; 当 2+a < 0时,即 a < -2时,h(0) = 2+a < 0,

$$\mathbb{Z} h(\ln(2-a)) = \cos(\ln(2-a)) + e^{\ln(2-a)} + a = \cos(\ln(2-a)) + 2 > 0$$
,

所以 $\exists x_0 \in (0, \ln(2-a))$, 使 $h(x_0) = 0$,

所以 $x \in (0, x_0)$ 时 h(x) < 0,即 f'(x) < 0, f(x) 为减函数, f(x) < f(0) = 1,与 $f(x) \ge 1$ 矛盾,所以 a < -2 不成立,

综上实数 a 的取值范围是 $[-2,+\infty)$

6. (1)

当
$$a=1$$
 时, $f(x)=\ln x-x+1$, $f'(x)=\frac{1}{x}-1$, $\Leftrightarrow f'(x)=0 \Rightarrow x=1$,

且当 0 < x < 1时, f'(x) > 0, f(x)[7]; 当 x > 1时, f'(x) < 0, f(x)[5],

$$\therefore f(x)_{\text{max}} = f(1) = 0.$$

(2) $\ln x - ax + 1 + \frac{e^{x-1}}{x} + a - 2 \ge 0$ 对任意的 $x \ge 1$ 恒成立,即 $a(x-1) \le e^{x-1-\ln x} + \ln x - 1$ 对 $\forall x \ge 1$ 恒成立,

当 x=1时,显然成立.

$$\stackrel{\text{def}}{=} x > 1 \text{ ft}, \quad a \le \left(\frac{e^{x-1-\ln x} + \ln x - 1}{x-1}\right)_{\min}, \quad \text{ft} \frac{e^{x-\ln x - 1} + \ln x - 1}{x-1} \ge \frac{x-\ln x + \ln x - 1}{x-1} = 1,$$

当且仅当 $x-\ln x-1=0$, x=1 时取"=", **:**取不到"=",即 $\frac{e^{x-1-\ln x}+\ln x-1}{x-1}>1$,

∴ $a \le 1$, a 的取值范围为 $(-\infty,1]$.

7. (1)

$$x \in \mathbb{R}$$
 , 由题意得 $f'(x) = x + 1 - e^x$, $f'(0) = 0$, 设 $g(x) = f'(x) = x + 1 - e^x$, 则 $g'(x) = 1 - e^x$,

易知当 $x \in (-\infty,0)$ 时, g'(x) > 0 , 当 $x \in (0,+\infty)$ 时, g'(x) < 0 ,

 \therefore g(x)在 $(-\infty,0)$ 上单调递增,在 $(0,+\infty)$ 上单调递减, \therefore $g(x)=f'(x)\leq g(0)=0$, \therefore f(x)在 $(-\infty,+\infty)$ 上单调递减.

当 x = 0 时, f(0) = 0, 满足题意;

当
$$x > 0$$
 时,由题已知 $a - \frac{1}{2} \ge \left(\frac{\frac{1}{2}x^3 + x + 1 - e^x}{x^2}\right)$ 。 设 $h(x) = \frac{\frac{1}{2}x^3 + x + 1 - e^x}{x^2}$, $x > 0$,

$$h'(x) = \frac{\left(\frac{3}{2}x^2 + 1 - e^x\right) \cdot x^2 - 2x \cdot \left(\frac{1}{2}x^3 + x + 1 - e^x\right)}{x^4} = \frac{\frac{1}{2}x^3 - x - 2 - (x - 2) \cdot e^x}{x^3} = \frac{(x - 2) \cdot \left(\frac{1}{2}x^2 + x + 1\right) - (x - 2) \cdot e^x}{x^3}$$

$$=\frac{(x-2)\cdot\left(\frac{1}{2}x^2+x+1-e^x\right)}{x^3},$$

由 (1) 可知, 当 x > 0时, f(x) < f(0) = 0, 即 $\frac{1}{2}x^2 + x + 1 - e^x < 0$, ∴ 当 $x \in (0,2)$ 时, h'(x) > 0, 当 $x \in (0,2)$ 时, h'(x) < 0,

即 h(x) 在 (0,2) 上单调递增,在 $(2,+\infty)$ 上单调递减, $h(x)_{max} = h(2) = \frac{7-e^2}{4}$,

$$\therefore a - \frac{1}{2} \ge \frac{7 - e^2}{4}$$
, $\mathbb{P} a \ge \frac{9 - e^2}{4}$.

综上可知,实数 a 的取值范围是 $\left[\frac{9-e^2}{4}, +\infty\right]$.

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案9

8. (1)
$$M: \exists h f'(x) = \frac{1}{x+1} - \sin x + m$$
, $f'(0) = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$, $\lim_{x \to 1} \frac{1}{0+1} - \sin 0 + m = 0$.

$$\mathbb{RI} f'(x) = \frac{1}{x+1} - \sin x - 1(x > -1),$$

当
$$-1 < x < 0$$
时,设 $g(x) = f'(x) = \frac{1}{x+1} - \sin x - 1$,所以 $g'(x) = -\frac{1}{(x+1)^2} - \cos x < 0$,

故 f'(x)在(-1,0)上单调递减, 所以 f'(x) > f'(0) = 0,

当
$$0 < x < \pi$$
 时, $\frac{1}{x+1} < 1$, $-\sin x < 0$, 所以 $f'(x) < 0$.

终上所述, m=-1时, x=0为 f(x)的极值点成立,

所以 m=-1.

(2)
$$\mathbb{H}$$
: \pm (1) \mathbb{H} $f'(x) = \frac{1}{x+1} - \sin x + m$,

当-1 < x < 0时,: f'(x)在(-1,0)上单调递减,: f'(x) > f'(0) = 1 + m,

①
$$m \ge -1$$
时, $: f'(x) > f'(0) = 1 + m \ge 0$, $f(x)$ 在 $(-1,0]$ 上单调递增,所以 $f(x) \le f(0) = 1$,

②
$$m < -1$$
时,因为 $f'(x)$ 在 $(-1,0]$ 上单调递减, $f'(0) < 0$; $f'\left(-\frac{1}{m} - 1\right) = -\sin\left(-\frac{1}{m} - 1\right) > 0$,

$$\therefore$$
存在 $x_0 \in (-1,0)$ 使 $f'(x_0) = 0$,即 $x \in (x_0,0)$, $f'(x) < 0$, $f(x)$ 递减,

当 $x \in (x_0, 0)$ 时, f(x) > f(0) = 1,与 $f(x) \le 1$ 矛盾.

综上: $m \ge -1$ 时, $f(x) \le 1$ 在 (-1,0]上恒成立.

所以实数m的范围是 $[-1,+\infty)$.

不等式恒成立之双变量最值问题

9. (1) 当 a = 0 时,直线 g(x) = bx + 1 与函数 y = f(x) 的图象相切于 $P(x_0, y_0)$,因为 $f(x) = \ln x$,所以 $f'(x) = \frac{1}{x}$,

则
$$\frac{1}{x_0} = b$$
且 $bx_0 + 1 = \ln x_0$,即 $b \cdot \frac{1}{b} + 1 = \ln \frac{1}{b}$,解得: $b = \frac{1}{a^2}$.

(2) 若对任意 x>0,都有 $f(x) \le g(x)$ 恒成立,得 $\ln x - 1 \le ax^2 + bx$.

假设
$$a < 0$$
,则当 $x > e$ 时, $\ln x - 1 > 0$, 而当 $x > \max \left\{ 0, -\frac{b}{a} \right\}$ 时, $ax^2 + bx < 0$.

取
$$x_0 = \max\left\{e, -\frac{b}{a}\right\}$$
, 则当 $x > x_0$ 时, $\ln x - 1 > 0$,而 $ax^2 + bx < 0$,矛盾;故 $a > 0$.

当
$$x = e$$
 时,由 $f(e) \le g(e)$,得 $ae^2 + be \ge 0$,即 $\frac{b}{a} \ge -e$.

下证:
$$\frac{b}{a}$$
能取到 $-e$. $\stackrel{\triangle}{=} a = \frac{1}{e^2}, b = -\frac{1}{e}$ 时, $\frac{b}{a} = -e$.

记
$$F(x) = \ln x - \frac{x}{e}(x > 0)$$
,则 $F'(x) = \frac{e - x}{ex}$,

$$\phi F'(x) > 0$$
, 得 $0 < x < e$; $\phi F'(x) < 0$, 得 $x > e$;

所以F(x)在(0,e)上单调递增,在 $(e,+\infty)$ 上单调递增,

所以
$$F(x) \le F(e) = 0$$
, 即 $\ln x \le \frac{x}{e}$.

所以
$$f(x) - g(x) = \ln x - \frac{x^2}{e^2} + \frac{x}{e} - 1 \le -\frac{x^2}{e^2} + \frac{x}{e} - 1 = -\left(\frac{x}{e} - 1\right)^2 \le 0$$
.

即对任意 x > 0, $f(x) \le g(x)$ 恒成立, 故 $\frac{b}{a}$ 的最小值为 -e.

所以
$$f'(0) = e^0 + a(1+0)^{a-1} - \frac{a}{(1+0)^2} = 1 + a - a = 1$$
,

因为
$$f(0) = e^0 + (1+0)^a + \frac{a}{1+0} - a - 2 = 1 + 1 + a - a - 2 = 0$$
,

所以 f(x) 在点(0, f(0)) 处的切线方程为 y=x, 即 x-y=0,

(2)
$$f(x) - g(x) = e^x + (1+x)^a + \frac{a}{1+x} - a - 2 - bx^2 - x$$
,

$$h'(x) = e^x + a(1+x)^{a-1} - \frac{a}{(1+x)^2} - 2bx - 1$$
, $h'(0) = e^0 + a(1+0)^{a-1} - \frac{a}{(1+0)^2} - 1 = 0$,

所以
$$h''(0) \ge 0$$
, $h''(x) = e^x + a(a-1)(1+x)^{a-2} + \frac{2a}{(1+x)^2} - 2b$,

所以
$$h''(0) = e^0 + a(a-1)(1+0)^{a-2} + \frac{2a}{(1+0)^2} - 2b = a^2 + a + 1 - 2b \ge 0$$
,

所以
$$b \le \frac{a^2 + a + 1}{2}$$
,所以 $b_{\text{max}} = \frac{a^2 + a + 1}{2}$,

所以
$$M = \frac{b+12}{a} = \frac{a^2+a+25}{2a} = \frac{1}{2}(a+\frac{25}{a}+1)$$
,

令
$$\varphi(a) = a + \frac{25}{a} + 1(a \ge 4)$$
,则 $\varphi'(a) = 1 - \frac{25}{a^2}$,当 $4 \le a < 5$ 时, $\varphi'(a) < 0$,当 $a > 5$ 时, $\varphi'(a) > 0$,所以 $\varphi(a)$ 在 [4,5)

上单调递减,在(5,+∞)上单调递增,

所以
$$\varphi(a)_{\min} = \varphi(5) = 5 + \frac{25}{5} + 1 = 11$$
,此时 $M = \frac{11}{2}$,

综上,
$$M = \frac{b+12}{a}$$
 的最小值为 $\frac{11}{2}$

11.解: (1) 由
$$f(x) = e^{ax} \sin x$$
, 得 $f'(x) = e^{ax} (a \sin x + \cos x)$,

由
$$f(x)$$
在 $\left[0,\frac{\pi}{4}\right]$ 上单调递增,可得 $f'(x) \ge 0$ 在 $\left[0,\frac{\pi}{4}\right]$ 上恒成立,

即
$$a\sin x + \cos x \ge 0$$
在 $\left[0, \frac{\pi}{4}\right]$ 上恒成立,

$$\stackrel{\omega}{=} x = 0$$
 时, $a \in R$; $\stackrel{\omega}{=} x \in \left(0, \frac{\pi}{4}\right]$,则 $a \ge -\frac{1}{\tan x}$, $\therefore a \ge -1$,

∴ *a* 的取值范围为 [-1,+∞).

(2) 设度
$$g(x) = f(x) - bx = e^{ax} \sin x - bx$$
, $x \in \left[0, \frac{\pi}{2}\right]$,

则
$$g'(x) = e^{ax}(a\sin x + \cos x) - b$$
.

设
$$h(x) = e^{ax} (a \sin x + \cos x) - b$$
, 则 $h'(x) = e^{ax} [(a^2 - 1) \sin x + 2a \cos x] \ge 0$,

$$\therefore h(x)$$
 单调递增,即 $g'(x)$ 在 $\left[0,\frac{\pi}{2}\right]$ 上单调递增,

$$\therefore g'(x) \in \left[1-b, ae^{\frac{\pi}{2}a}-b\right].$$

当
$$b \le 1$$
时, $g'(x) \ge 0$, $g(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 上单调递增, $\therefore g(x) \ge g(0) = 0$, 不符合题意;

当
$$b \ge ae^{\frac{\pi}{2}a}$$
时, $g'(x) \le 0$, $g(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 上单调递减, $g(x) \le g(0) = 0$,符合题意;

当 $1 < b < ae^{\frac{\pi}{2}a}$ 时,由于 g'(x)为一个单调递增的函数,

$$\overrightarrow{\text{mi}} g'(0) = 1 - b < 0$$
, $g'(\frac{\pi}{2}) = ae^{\frac{\pi}{2}a} - b > 0$,

由零点存在性定理,必存在一个零点 x_0 ,使得 $g'(x_0)=0$,

从而
$$g(x)$$
在 $x \in [0,x_0]$ 上单调递减,在 $\left(x_0,\frac{\pi}{2}\right]$ 上单调递增,

因此只需
$$g\left(\frac{\pi}{2}\right) \le 0$$
, $\therefore e^{\frac{\pi}{2}a} \le \frac{\pi}{2}b$, $\therefore b \ge \frac{2}{\pi}e^{\frac{\pi}{2}a}$, 从而 $\frac{2}{\pi}e^{\frac{\pi}{2}a} \le b < ae^{\frac{\pi}{2}a}$,

综上,
$$b$$
 的取值范围为 $\left[\frac{2}{\pi}e^{\frac{\pi}{2}a}, +\infty\right]$,

因此
$$b-e^2a \ge \frac{2}{\pi}e^{\frac{\pi}{2}a}-e^2a$$
.设 $G(a) = \frac{2}{\pi}e^{\frac{\pi}{2}a}-e^2a$,则 $G'(a) = e^{\frac{\pi}{2}a}-e^2$,

令
$$G'(a)=0$$
,则 $a=\frac{4}{\pi}>1$,∴ $G(a)$ 在 $\left[1,\frac{4}{\pi}\right]$ 上单调递减,在 $\left(\frac{4}{\pi},+\infty\right)$ 上单调递增,

从而
$$G(a) \ge G\left(\frac{4}{\pi}\right) = -\frac{2e^2}{\pi}$$
, $\therefore b - e^2 a$ 的最小值为 $-\frac{2e^2}{\pi}$.

12.

(1) 函数定义域为
$$(0,+\infty)$$
, 由题意得 $g(x) = \ln x - ax + 1$, 则 $g'(x) = \frac{1}{x} - a$,

①当
$$a \le 0$$
时, $g'(x) > 0$,则 $g(x)$ 在 $(0,+\infty)$ 上单调递增;

②当
$$a > 0$$
时,令 $g'(x) = 0$,解得 $x = \frac{1}{a}$,

当
$$x \in \left(0, \frac{1}{a}\right)$$
时, $g'(x) > 0$, $g(x)$ 在 $\left(0, \frac{1}{a}\right)$ 上单调递增,

当
$$x \in \left(\frac{1}{a}, +\infty\right)$$
时, $g'(x) < 0$, $g(x)$ 在 $\left(\frac{1}{a}, +\infty\right)$ 上单调递减.

(2) 设函数 $F(x) = \ln x - (a-e)x - b$, 其中 e 为自然对数的底数,

$$\therefore F'(x) = \frac{1}{x} + e - a, \quad x > 0,$$

当 $a \le e$ 时,F'(x) > 0 ,F(x) 在 $(0,+\infty)$ 上是增函数, $\therefore F(x) \le 0$ 不可能恒成立,

当
$$a > e$$
 时,由 $F'(x) = \frac{1}{x} + e - a = 0$,得 $x = \frac{1}{a - e}$,

∴不等式 $F(x) \le 0$ 恒成立, ∴ $F(x)_{max} \le 0$,

当
$$x \in \left(0, \frac{1}{a-e}\right)$$
时, $F'(x) > 0$, $F(x)$ 单调递增,

当
$$x \in \left(\frac{1}{a-e}, +\infty\right)$$
时, $F'(x) < 0$, $F(x)$ 单调递减,

∴ 当
$$x = \frac{1}{a-e}$$
 时, $F(x)$ 取最大值, $F(\frac{1}{a-e}) = -\ln(a-e) - b - 1 \le 0$,

∴满足
$$\ln(a-e)+b+1\geq 0$$
即可, ∴ $b\geq -1-\ln(a-e)$,

$$\therefore \frac{b}{a} \ge \frac{-1 - \ln(a - e)}{a} (a > e),$$

$$\Rightarrow H(x) = (x-e)\ln(x-e)-e$$
, $H'(x) = \ln(x-e)+1$, $\boxplus H'(x) = 0$, $\exists x = e + \frac{1}{e}$

当
$$x \in \left(e + \frac{1}{e}, +\infty\right)$$
时, $H'(x) > 0$, $H(x)$ 是增函数,

当
$$x \in \left(e, e + \frac{1}{e}\right)$$
时, $H'(x) < 0$, $H(x)$ 是减函数,

∴ 当
$$x = e + \frac{1}{e}$$
时, $H(x)$ 取最小值 $H(e + \frac{1}{e}) = -e - \frac{1}{e}$,

$$\ \, \because x \rightarrow e \, \mathbb{H} \,, \ \, H \, \big(x \big) \rightarrow 0 \,\,, \quad x > 2e \, \mathbb{H} \,, \quad H \, \big(x \big) > 0 \,\,, \quad H \, \big(2e \big) = 0 \,\,,$$

$$\therefore$$
当 $x \in (e, 2e)$ 时, $G'(x) < 0$, $G(x)$ 是减函数,

当
$$x \in (2e, +\infty)$$
 时, $G'(x) > 0$, $G(x)$ 是增函数,

$$\therefore x = 2e$$
 时, $G(x)$ 取最小值, $G(2e) = \frac{-1-1}{2e} = -\frac{1}{e}$,

$$\frac{b}{a}$$
的最小值为 $-\frac{1}{a}$

淇江一中卓越班 2023-17

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 10

13. (1) 由题意, 函数 $f(x) = (a+1)x - \ln x (a,b \in R)$,

因为 $x \in (0,+\infty)$ 时, $f(x) \le 0$, 可得 $f(x) = (a+1)x - \ln x \le 0$,即 $a+1 \le \frac{\ln x}{x}$,

设函数 $h(x) = \frac{\ln x}{x}(x > 0)$,可得 $h'(x) = \frac{1 - \ln x}{x^2}$,

令h'(x) > 0, 即 $1 - \ln x > 0$, 解得 0 < x < e;

所以函数 h(x) 的单调递增区间为(0,e), 同理可求得单调递减区间为 $(e,+\infty)$.

所以 $h(x)_{max} = h(e) = \frac{1}{e}$, 所以 $a+1 \le \frac{1}{e}$, 解得所以 $a \le \frac{1}{e} - 1$,

即实数 a 的取值范围 $(-\infty, \frac{1}{a}-1]$.

(2) 由函数
$$f(x) = (a+1)x - \ln x (a,b \in R)$$
, 可得 $f'(x) = a+1-\frac{1}{x}, x > 0$,

若 $a+1\leq 0$, 即 $a\leq -1$ 时, f'(x)<0恒成立, 所以 f(x)在区间 $(0,+\infty)$ 内单调递减,

又由 $x \to +\infty$ 时, $f(x) \to -\infty$,与题意不符.

若 a+1>0,即 a>-1时,令 f'(x)>0,即 $a+1>\frac{1}{x}$,解得 $x>\frac{1}{a+1}$,

所以 f(x) 在区间 $\left(\frac{1}{a+1}, +\infty\right)$ 内单调递增,在区间 $\left(0, \frac{1}{a+1}\right)$ 内单调递减,

所以
$$f(x)_{\min} = f\left(\frac{1}{a+1}\right) = (a+1) \cdot \frac{1}{a+1} - \ln \frac{1}{a+1} = 1 - \ln \frac{1}{a+1} = 1 + \ln (a+1)$$

所以 $b \le 1 + \ln(a+1)$, 所以 $b-a^2-a \le 1 + \ln(a+1)-a^2-a$,

设
$$g(x) = 1 + \ln(x+1) - x^2 - x, x > -1$$
,

所以
$$g'(x) = \frac{1}{x+1} - 2x - 1 = \frac{1 - (x+1)(2x+1)}{x+1} = \frac{-2x^2 - 3x}{x+1}$$

令
$$g'(x) > 0$$
, 即 $2x^2 + 3x < 0$, 解得 $-\frac{3}{2} < x < 0$,

又因为 x>-1 , 所以 g(x) 在区间 (-1,0) 内单调递增 ,在区间 $(0,+\infty)$ 内单调递减 ,

所以
$$g(x)_{max} = g(0) = 1 + \ln 1 - 0 - 0 = 1$$
,

所以当 a=0,b=1 时, $b-a^2-a$ 有最大值为 1.

不等式恒成立之 max, min 问题

14. 【详解】(1) :
$$f'(x) = \frac{x(2-x)}{e^x}$$
,

∴切线的斜率 $k = f'(1) = \frac{1}{e}$, $f(1) = \frac{1}{e}$.∴函数 f(x) 在点 $\left(1, \frac{1}{e}\right)$ 处的切线方程为 $y = \frac{1}{e}x$.

(2) 证明:
$$: F(x) = f(x) - x + \frac{1}{x}, \quad f(x) = \frac{x^2}{e^x}, \quad : F(1) = \frac{1}{e} > 0, \quad F(2) = \frac{4}{e^2} - \frac{3}{2} < 0, \quad F(1)F(2) < 0, \quad : F(x)$$
存在

零点 x_0 , 且 $x_0 \in (1,2)$.

$$\therefore F'(x) = \frac{x(2-x)}{e^x} - 1 - \frac{1}{x^2}, \quad \therefore \stackrel{\text{\tiny ΔP}}{=} x \ge 2 \text{ ft}, \quad F'(x) < 0;$$

当
$$0 < x < 2$$
时,由 $x(2-x) \le \left\lceil \frac{x+(2-x)}{2} \right\rceil^2 = 1$ 得 $F'(x) \le \frac{1}{e^x} - 1 - \frac{1}{x^2} < 1 - 1 - \frac{1}{x^2} = -\frac{1}{x^2} < 0$.

$$\therefore F(x)$$
在 $(0,+\infty)$ 上是减函数 \therefore 若 $x_1 > 0$, $x_2 > 0$, $x_1 \neq x_2$,则 $F(x_1) \neq F(x_2)$.

∴函数F(x) 只有一个零点 x_0 ,且 $x_0 \in (1,2)$.

(3) 解:
$$g(x) = \begin{cases} x - \frac{1}{x}, 0 < x \le x_0 \\ \frac{x^2}{e^x}, & x > x_0 \end{cases}$$
, $totall h(x) = \begin{cases} x - \frac{1}{x} - cx^2, 0 < x \le x_0 \\ \frac{x^2}{e^x} - cx^2, & x > x_0 \end{cases}$,

∴函数
$$F(x)$$
 只有一个零点 x_0 , ∴ $F(x_0)=0$, 即 $x_0-\frac{1}{x_0}=\frac{x_0^2}{e^{x_0}}$.∴ $x_0-\frac{1}{x_0}-cx_0^2=\frac{x_0^2}{e^{x_0}}-cx_0^2$.

 $\therefore h(x)$ 在 $(0,+\infty)$ 为增函数 $\Leftrightarrow h'(x) \ge 0$ 在 $(0,x_0)$, $(x_0,+\infty)$ 恒成立.

当
$$x > x_0$$
 时 $h'(x) = \frac{x(2-x)}{e^x} - 2cx \ge 0$,即 $c \le \frac{2-x}{2e^x}$ 在区间 $(x_0, +\infty)$ 上恒成立.

设
$$u(x) = \frac{2-x}{2e^x}(x > x_0)$$
,只需 $c \le [u(x)]_{\min}$,

$$u'(x) = \frac{x-3}{2e^x}$$
, $u(x)$ 在 $(x_0,3)$ 单调减, 在 $(3,+\infty)$ 单调增.

$$u(x)$$
的最小值 $[u(x)]_{min} = u(3) = -\frac{1}{2e^3}, c \le -\frac{1}{2e^3}.$

当
$$0 < x < x_0$$
 时, $h'(x) = 1 + \frac{1}{x^2} - 2cx$, 由上述得 $c < 0$, 则 $h'(x) > 0$ 在 $(0, x_0)$ 恒成立.

综上述,实数
$$c$$
 的取值范围是 $\left(-\infty, -\frac{1}{2e^3}\right]$.

14.

解: (1) 由题意, 得
$$f'(x) = \ln x + 1$$
, 故 $g(x) = ax^2 - (a+2)x + \ln x + 1$,

故
$$g'(x) = 2ax - (a+2) + \frac{1}{x} = \frac{(2x-1)(ax-1)}{x}, \quad x > 0, a > 0.$$

所以
$$g(x)$$
 在 $\left(0,\frac{1}{2}\right)$, $\left(\frac{1}{a},+\infty\right)$ 上单调递增,在 $\left(\frac{1}{2},\frac{1}{a}\right)$ 上单调递减;

所以
$$g(x)$$
 在 $x = \frac{1}{2}$ 处取极大值 $g\left(\frac{1}{2}\right) = -\frac{a}{4} - \ln 2$,在 $x = \frac{1}{a}$ 处取极小值 $g\left(\frac{1}{a}\right) = -\frac{1}{a} - \ln a$.

②当
$$a = 2$$
时, $\frac{1}{a} = \frac{1}{2}$, $g'(x) \ge 0$ 恒成立,所以不存在极值;

③
$$\exists a > 2$$
 时, $\frac{1}{a} < \frac{1}{2}$, $g'(x) > 0$ $\Longleftrightarrow 0 < x < \frac{1}{a}$ 或 $x > \frac{1}{2}$; $g'(x) < 0$ $\Longleftrightarrow \frac{1}{a} < x < \frac{1}{2}$,

所以
$$g(x)$$
 在 $\left(0,\frac{1}{a}\right)$, $\left(\frac{1}{2},+\infty\right)$ 上单调递增,在 $\left(\frac{1}{a},\frac{1}{2}\right)$ 上单调递减;

所以
$$g(x)$$
在 $x = \frac{1}{a}$ 处取极大值 $g\left(\frac{1}{a}\right) = -\frac{1}{a} - \ln a$,

在
$$x = \frac{1}{2}$$
 处取极小值 $g\left(\frac{1}{2}\right) = -\frac{a}{4} - \ln 2$.

综上,当
$$0 < a < 2$$
 时, $g(x)$ 在 $x = \frac{1}{2}$ 处取极大值 $-\frac{a}{4} - \ln 2$,在 $x = \frac{1}{a}$ 处取极小值 $-\frac{1}{a} - \ln a$; 当 $a = 2$ 时,不存在极

值;
$$a > 2$$
时, $g(x)$ 在 $x = \frac{1}{a}$ 处取极大值 $-\frac{1}{a} - \ln a$, 在 $x = \frac{1}{2}$ 处取极小值 $-\frac{a}{4} - \ln 2$.

(2)
$$F(x) = x \ln x - \frac{x}{e^x}$$
, $\Xi \times \mathbb{Z}$ $\exists x \in (0, +\infty)$, $F'(x) = 1 + \ln x + \frac{x-1}{e^x}$, $\exists x \in (1, 2)$,

故
$$F'(x) > 0$$
,即 $F(x)$ 在区间 $(1,2)$ 内单调递增又 $F(1) = -\frac{1}{e} < 0$, $F(2) = 2\ln 2 - \frac{2}{e^2} > 0$,

且F(x)在区间(1,2)内的图象连续不断,

故根据零点存在性定理,有F(x)在区间(1,2)内有且仅有唯一零点.

所以存在
$$x_0 \in (1,2)$$
, 使得 $F(x_0) = f(x_0) - \frac{x_0}{e^{x_0}} = 0$, 且当 $1 < x < x_0$ 时, $f(x) < \frac{x}{e^x}$;

当
$$x > x_0$$
时, $f(x) > \frac{x}{e^x}$,所以 $m(x) = \begin{cases} xlnx, 1 < x \le x_0 \\ \frac{x}{e^x}, x > x_0 \end{cases}$

当 $1 < x < x_0$ 时, $m(x) = x \ln x$, 由 $m'(x) = 1 + \ln x > 0$ 得 m(x) 单调递增;

当
$$x > x_0$$
 时, $m(x) = \frac{x}{e^x}$, 由 $m'(x) = \frac{1-x}{e^x} < 0$ 得 $m(x)$ 单调递减;

若
$$m(x) = n$$
在区间 $(1,+\infty)$ 内有两个不等实根 $x_1,x_2 (x_1 < x_2)则 $x_1 \in (1,x_0), x_2 \in (x_0,+\infty)$.$

要证 $x_1 + x_2 > 2x_0$, 即证 $x_2 > 2x_0 - x_1$ 又 $2x_0 - x_1 > x_0$, 而 m(x) 在区间 $(x_0, +\infty)$ 内单调递减,

故可证
$$m(x_2) < m(2x_0 - x_1)$$
, 又由 $m(x_1) = m(x_2)$, 即证 $m(x_1) < m(2x_0 - x_1)$,

$$\exists \exists x_1 \ln x_1 < \frac{2x_0 - x_1}{e^{2x_0 - x_1}}$$

记
$$h(x) = x \ln x - \frac{2x_0 - x}{e^{2x_0 - x}}, 1 < x < x_0$$
,其中 $h(x_0) = 0$

而
$$\phi(t) > 0$$
,故 $0 < \phi(t) < \frac{1}{e}$,而 $2x_0 - x > 1$,所以 $-\frac{1}{e} < -\frac{2x_0 - x}{e^{2x_0 - x}} < 0$,

因此
$$h'(x) = 1 + \ln x + \frac{1}{e^{2x_0 - x}} - \frac{2x_0 - x}{e^{2x_0 - x}} > 1 - \frac{1}{e} > 0$$
,

即h(x)单调递增,故当 $1 < x < x_0$ 时, $h(x) < h(x_0) = 0$,

即 $x_1 \ln x_1 < \frac{2x_0 - x_1}{e^{2x_0 - x_1}}$,故 $x_1 + x_2 > 2x_0$,得证.

16. (1)
$$f'(x) = (x-1)_e^{x-1} - x + 1 = (x-1)(_e^{x-1} - 1), x \in \mathbb{R},$$

当
$$x>1$$
时, $x-1>0$, $e^{x-1}-1>0$,则 $f'(x)>0$;当 $x<1$ 时, $x-1<0$, $e^{x-1}-1<0$,则 $f'(x)>0$,

当x=1时,f'(1)=0. 所以当 $x\in R$ 时, $f'(x)\geq 0$,f(x)在R上是增函数,

又 f(1)=0, 所以当 $x \ge 1$ 时, $f(x) \ge f(1)=0$;

 $\stackrel{\text{"}}{=}$ x < 1 时, f(x) < f(1) = 0.

(2)函数 F(x) 的定义域为 $\left(-1,+\infty\right)$,由(1)得,当 $x \ge 1$ 时, $f(x) \ge 0$,又 $F(x) = \max f(x)(g)x(f)$ $x \ge (f)$ $x \ge (f)$

所以当 $x \ge 1$ 时, $F(x) \ge 0$ 恒成立.

由于当-1 < x < 1时,f(x) < 0恒成立,

故 $F(x) \ge 0$ 等价于: 当-1 < x < 1时, $g(x) \ge 0$ 恒成立.

$$g'(x) = a - \cos x - \frac{1}{x+1}$$
, $g''(x) = \sin x + \frac{1}{(x+1)^2}$.

当
$$-1 < x < 0$$
时, $-1 < \sin x < 0$, $\frac{1}{(x+1)^2} > 1$,故 $g''(x) > 0$;

从而当-1 < x < 1时,g''(x) > 0,g'(x)单调递增.

①若 $g'(1) \le 0$,即 $a \le \cos 1 + \frac{1}{2}$,则当 $x \in (-1, 1)$ 时, $g'(x) < g'(1) \le 0$, g(x) 单调递减,

故当 $x \in (0,1)$ 时,g(x) < g(0) = 0,不符合题意;

②若
$$g'(1) > 0$$
,即 $a > \cos 1 + \frac{1}{2}$,取 $b \in \left(-1, -1 + \frac{1}{a+1}\right)$,

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 11

$$\mathbb{M} - 1 < -1 + \frac{1}{a+1} < 0$$
, $\mathbb{H} g'(b) = a - \cos b - \frac{1}{b+1} \le a+1 - \frac{1}{b+1} < 0$,

故存在唯一 $x_0 \in (-1,1)$, 满足 $g'(x_0) = 0$, 当 $x \in (-1,x_0)$ 时, g'(x) < 0, g(x)单调递减;

当 $x \in (x_0, 1)$ 时,g'(x) > 0,g(x)单调递增.

若 $x_0 < 0$,则当 $x \in (x_0, 0)$ 时, g(x) 单调递增, g(x) < g(0) ,不符合题意;

若 $x_0 = 0$,则 $g(x) \ge g(0) = 0$,符合题意,此时由 $g'(x_0) = 0$,得 a = 2;

若 $x_0 > 0$, 则当 $x \in (0, x_0)$ 时, g(x) 单调递减, g(x) < g(0), 不符合题意.

综上可知:存在唯一实数a=2满足题意.

当 x>1时, F'(x)>0, F(x) 单调递增; 当 0< x<1时, F'(x)<0, F(x) 单调递减;

所
$$F(x)_{\min} = F(1) = 0$$
,所以 $F(x) \ge 0$,即 $x^2 - 1 \ge 2 \ln x$,所以 $f(x) = x^2 - 1$.

设
$$G(x) = 3(x-\frac{1}{2})(x-1)^2$$
, 结合 $f(x)$ 与 $G(x)$ 在 $(0,1]$ 上的图象可知,

这两个函数的图象在(0,1)内有两个交点,

即h(x)在(0,1]上的零点个数为2(或由方程f(x)=G(x)在(0,1]内有两根可得).

(2) 假设存在实数 $a \in (-2, +\infty)$, 使得 $g(x) < \frac{3}{2}x + 4a$ 对 $x \in (a+2, +\infty)$ 恒成立,

则
$$\begin{cases} x + \ln x < \frac{3}{2}x + 4a \\ -x^2 + \left(a^2 - \frac{1}{2}\right)x + 2a^2 + 4a < \frac{3}{2}x + 4a \end{cases}$$
 对 $x \in (a + 2, +\infty)$ 恒成立,

即
$$\begin{cases} \ln x - \frac{1}{2}x < 4a, \\ (x+2)(x-a^2) > 0, \end{cases}$$
 对 $x \in (a+2,+\infty)$ 恒成立,

①
$$\% H(x) = \ln x - \frac{1}{2}x$$
, $\emptyset H'(x) = \frac{2-x}{2x}$,

当 0 < x < 2时,H'(x) > 0,H(x)单调递增;当 x > 2时,H'(x) < 0,H(x)单调递减.

所以 $H(x)_{\text{max}} = H(2) = \ln 2 - 1$,

当
$$0 < a + 2 < 2$$
即 $-2 < a < 0$ 时, $4a > \ln 2 - 1$, 所以 $a > \frac{\ln 2 - 1}{4}$, 因为 $a < 0$, 所以 $a \in \left(\frac{\ln 2 - 1}{4}, 0\right)$,

故当
$$a \in \left(\frac{\ln 2 - 1}{4}, 0\right)$$
时, $\ln x - \frac{1}{2}x < 4a$ 对 $x \in (a + 2, +\infty)$ 恒成立;

当 $a+2\geq 2$, 即 $a\geq 0$ 时, H(x)在 $(a+2,+\infty)$ 上递减,

所以
$$H(x) < H(a+2) = \ln(a+2) - \frac{1}{2}a - 1$$
.

因为
$$\left[\ln(a+2) - \frac{1}{2}a - 1\right]' = \frac{1}{a+2} - \frac{1}{2} \le 0$$
,所以 $H(a+2) \le H(2) = \ln 2 - 1 < 0$,

故当 $a \ge 0$ 时, $\ln x - \frac{1}{2}x < 4a$ 对 $x \in (a+2, +\infty)$ 恒成立.

②若
$$(x+2)(x-a^2)>0$$
对 $x\in(a+2,+\infty)$ 恒成立,则 $a+2\geq a^2$,所以 $a\in[-1,2]$.

曲①②得,
$$a \in \left(\frac{\ln 2 - 1}{4}, 2\right]$$
.

故存在实数 $a \in (-2,+\infty)$, 使得 $g(x) < \frac{3}{2}x + 4a$ 对 $x \in (a+2,+\infty)$ 恒成立,且 a 的取值范围为 $\left(\frac{\ln 2 - 1}{4},2\right]$.

同构法解零点问题与恒成立问题解答

18【解答】解: 方法一: 由 $f(x) = \frac{ax}{e^{x-1}} + x - \ln(ax) - 2(a > 0)$ 可得 $f'(x) = \frac{x-1}{e^{x-1}} (\frac{e^{x-1}}{x} - a)$,

设 $y = \frac{e^{x-1}}{x} - a$, x > 0 , a > 0 , 则 $y' = \frac{e^{x-1}(x-1)}{x^2}$, 令 $y' = 0 \Rightarrow x = 1$, $\therefore y$ 在 $x \in (0,1)$ 单调递减,在 $x \in (1,+\infty)$ 单调递增,

故 $y_{min} = y$ (1) = 1-a.

①当0 < a < 1时,令 $f'(x) = 0 \Rightarrow x = 1$,当 $x \in (0,1)$ 时,f(x)单调递减,当 $x \in (1,+\infty)$ 时,f(x)单调递增,

 $\therefore f(x)_{min} = f$ (1) = a - 1 - lna > 0, 此时 f(x) 在区间 $(0, +\infty)$ 内无零点;

②当a=1时,f(1)=a-1-lna=0,此时f(x)在区间 $(0,+\infty)$ 内有零点;

③当
$$a>1$$
时,令 $f'(x)=\frac{x-1}{e^{x-1}}(\frac{e^{x-1}}{x}-a)=0$,解得 $x=x_1$ 或 1 或 x_2 ,且 $0,$

此时 f(x) 在 $x \in (0, x_1)$ 单减, $x \in (x_1, 1)$ 单增, $x \in (1, x_2)$ 单减, $x \in (x_2, +\infty)$ 单增,

当 $x = x_1$ 或 x_2 时, $f(x)_{W \to u} = 0$,此时f(x)在区间 $(0,+\infty)$ 内有两个零点;

综合①②③知 f(x) 在区间 $(0,+\infty)$ 内有零点 $\Rightarrow a \ge 1$.

方法二: 由题意可得

 $e^{-x+1+ln(ax)} = ln(ax) - x + 2$, $\mathbb{E}\left[e^{-x+1+ln(ax)} - [-x+1+ln(ax)] - 1 = 0\right]$

因为 $e^x > x+1$ 当x=0时等号成立,

所以-x+1+ln(ax)=0,即 $ax=e^{x-1}$,

$$a = \frac{e^{x-1}}{x}$$
, $\Leftrightarrow g(x) = \frac{e^{x-1}}{x}$, $g'(x) = \frac{1}{e} \times \frac{(x-1)e^x}{x^2}$,

易知 g(x) 在 (0,1) 单减,在 $(1,+\infty)$ 上单增,所以 $g(x) \geqslant g$ (1) =1,

又x趋近于0和正无穷时,g(x)趋近于正无穷,

所以*a*≥1.

19. 【解答】解: (1) 函数 $f(x) = ae^x - ln(x+2) + lna - 2$,则 f(x)的定义域为(-2,+ ∞),

且 $f'(x) = ae^x - \frac{1}{x+2}$, 因为 f(x) 在 x = 0 处取得极值,

所以 f'(0) = 0,即 $a - \frac{1}{2} = 0$,解得 $a = \frac{1}{2}$;

此时 $f'(x) = \frac{1}{2}e^x - \frac{1}{x+2}$,

所以 f'(x) 在 $(-2,+\infty)$ 上单调递增,

则当-2 < x < 0时,f'(x) < 0,则f(x)单调递减,

当x>0时,f'(x)>0,则f(x)单调递增,

所以 f(x) 的单调递减区间为(-2.0), 单调递增区间为($0.+\infty$);

(2) 若选①: 因为 $f(x) \ge 0$ 恒成立,则 $ae^x - ln(x+2) + lna - 2 \ge 0$ 恒成立,

整理可得 $e^{x+lna} + x + lna \ge ln(x+2) + x + 2$ 恒成立,即 $e^{x+lna} + x + lna \ge ln(x+2) + e^{ln(x+2)}$ 恒成立,

令 $h(x) = e^x + x$,则 $h(x + lna) \ge h(ln(x + 2))$ 恒成立,因为 $h'(x) = e^x + 1 > 0$ 恒成立,

则 h(x) 为单调递增函数,所以 $x + lna \ge ln(x+2)$ 恒成立,即 $lna \ge ln(x+2) - x$ 恒成立,

$$\Rightarrow \varphi(x) = \ln(x+2) - x$$
, $x < -2$, $\emptyset \varphi'(x) = \frac{1}{x+2} - 1 = -\frac{x+1}{x+2}$,

当-2 < x < -1时, $\varphi'(x) > 0$,则 $\varphi(x)$ 单调递增,

当x > -1时, $\varphi'(x) < 0$,则 $\varphi(x)$ 单调递减,

所以 $\varphi(x)$ 在x=-1处取得极大值,即最大值 $\varphi(-1)=1$,

故 $lna \ge -1$,解得 $a \ge e$,所以 a 的取值范围为 [e, +∞);

若选②: 因为 f(x) 仅有两个零点,即 $ae^x - ln(x+2) + lna - 2 = 0$ 在 $(-2, +\infty)$ 上有两个根,

整理可得 $e^{x+lna} + x + lna = ln(x+2) + x + 2$, 即 $e^{x+lna} + x + lna = ln(x+2) + e^{ln(x+2)}$,

令 $h(x) = e^x + x$,则 h(x + lna) = h(ln(x + 2)),因为 $h'(x) = e^x + 1 > 0$ 恒成立,则 h(x) 为单调递增函数,

所以 x + lna = ln(x+2), 即 lna = ln(x+2) - x 在 $(-2, +\infty)$ 上有两个根,

当-2 < x < -1时, $\varphi'(x) > 0$,则 $\varphi(x)$ 单调递增,

当x > -1时, $\varphi'(x) < 0$,则 $\varphi(x)$ 单调递减,

所以 $\varphi(x)$ 在x=-1处取得极大值,即最大值 $\varphi(-1)=1$,

要想 lna = ln(x+2) - x 在 $(-2,+\infty)$ 上有两个根,只需 lna < 1,解得 0 < a < e,

所以a的取值范围为(0,e).

20.
$$\Re$$
: (1) $g(x) = \frac{a}{2}x^2 + x\cos x - \sin x$, $x \in (0, \frac{\pi}{2}]$, \Re $g'(x) = x(a - \sin x)$,

当 $a \ge 1$ 时, $a ? \sin x \ge 0$, 所以 g(x) 在 $(0 , \frac{\pi}{2}]$ 单调递增, 又因为 g(0) = 0 , 所以 g(x) 在 $(0 , \frac{\pi}{2}]$ 上无零点;

当 0 < a < 1 时, $\exists x_0 \in (0, \frac{\pi}{2})$, 使得 $\sin x_0 = a$, 所以 g(x) 在 $(x_0$, $\frac{\pi}{2}$] 单调递减, 在 $(0, x_0)$ 单调递增,

又因为
$$g(0) = 0$$
, $g(\frac{\pi}{2}) = \frac{a\pi^2}{8} - 1$,所以若 $\frac{a\pi^2}{8} - 1 > 0$,即 $a > \frac{8}{\pi^2}$ 时, $g(x)$ 在 $(0, \frac{\pi}{2}]$ 上无零点,

若
$$\frac{a\pi^2}{8}$$
?1 \leqslant 0,即 $0 < a \leqslant \frac{8}{\pi^2}$ 时, $g(x)$ 在 $(0, \frac{\pi}{2}]$ 上有一个零点,

当 $a \le 0$ 时, $g'(x) = a - x \sin x < 0$, g(x) 在 (0 , $\frac{\pi}{2}$] 上单调递减, g(x) 在 (0 , $\frac{\pi}{2}$] 上无零点,

综上当 $0 < a \le \frac{8}{\pi^2}$ 时,g(x)在 $(0, \frac{\pi}{2}]$ 上有一个零点;

令 h(x) = x + lnx , x > 0 , 则 $h(e^{x-a}) = e^{x-a} + (x-a)$, $h'(x) = 1 + \frac{1}{x} > 0$, 所以函数 h(x) 在 $(0, +\infty)$ 上递增,

所以 $e^{x-a} = x$,则有x-a = lnx,即a = x - lnx,x > 0,

因为关于 x 的方程 $xe^{x-a} = f(x) - \frac{a}{2}x^2 + ax - 1$ 有两个不同的实数解,

则方程a=x-lnx, x>0有两个不同的实数解,

$$\Rightarrow \varphi(x) = x - lnx$$
, $\emptyset \varphi'(x) = 1 - \frac{1}{x} = \frac{x - 1}{x}$,

所以函数 $\varphi(x) = x - lnx$ 在(0,1)上递减,在(1,+∞)上递增,

所以 $\varphi(x)_{min} = \varphi(1) = 1$,

所以 $\{a \mid a > 1\}$.

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——恒(能)成立、有解问题答案 12

21. (1) $\stackrel{\underline{}}{=} a = 1 \stackrel{\underline{}}{\mapsto}$, $f(x) = e^x - \ln(x+1) - 1$, $f'(x) = e^x - \frac{1}{x+1}$, x > -1,

显然 f'(x) 在 $(-1,+\infty)$ 单调递增,且 f'(0)=0,

∴ 当 -1 < x < 0时, f'(x) < 0, f(x) 单调递减; 当 x > 0时, f'(x) > 0, f(x) 单调递增.

 $\therefore f(x)$ 在 x=0 处取得极小值 f(0)=0,无极大值.

(2) 函数 f(x) 有两个零点,即 f(x) = 0 有两个解,即 $ae^x + ln(ae^x) = ln(x+1) + (x+1)$ 有两个解,

设 h(t) = t + lnt ,则 $h'(t) = 1 + \frac{1}{t} > 0$, h(t) 单调递增,

∴ $ae^x = x + 1(x > -1)$ 有两个解,即 $a = \frac{x+1}{e^x}(x > -1)$ 有两个解.

 $\diamondsuit s(x) = \frac{x+1}{e^x} (x \geqslant -1) , \quad \text{iff } s'(x) = -\frac{x}{e^x} ,$

当 $x \in (-1,0)$ 时,s'(x) > 0,s(x) 单调递增;当 $x \in (0,+\infty)$ 时,s'(x) < 0,s(x) 单调递减.

:: s(-1) = 0, s(0) = 1, $\stackrel{\text{def}}{=} x > 0$ $\forall s(x) > 0$,

 $\therefore 0 < a < 1$.

22.解: (1) 若选①: $m = \frac{1}{2}$, 则函数 $f(x) = e^{x-1} - \frac{1}{2}x^2$,

所以 $f'(x) = e^{x-1} - x$, $f''(x) = e^{x-1} - 1$,

因为 f''(x) 单调递增,且 f''(1) = 0,

所以 f'(x) 在 (0,1) 上单调递减, $(1,+\infty)$ 上单调递增,

则 $f'(x) \geqslant f'(1) = 0$,

故 f(x) 在 $(0,+\infty)$ 上单调递增,

所以不存在极小值点;

若选②: m=1, 则 $f(x)=e^{x-1}-x^2$,

所以 $f'(x) = e^{x-1} - 2x$, $f''(x) = e^{x-1} - 2$,

由 f''(x) 单调递增,且 f''(1+ln2)=0,

所以 f'(x) 在 (0,1+ln2) 上单调递减,在 $(1+ln2,+\infty)$ 上单调递增,

故 $f'(x) \ge f'(1 + \ln 2) = -2\ln 2 < 0$,

 $\nabla f'(4) = e^3 - 8 > 0$,

所以存在极小值点 $x_0 \in (1+ln2,4)$.

(2) $\Rightarrow g(x) = 0$, $\bigoplus e^{x-1} - mx^2 + mx \ln(mx) = 0$,

 $\nabla mx > 0$,

$$\text{Fru} \frac{e^{x-1}}{mx} - x + \ln(mx) = \frac{e^{x-1}}{e^{\ln(mx)}} - x + \ln(mx) = e^{x-\ln(mx)-1} - [x - \ln(mx)] = 0 ,$$

 $\diamondsuit t = x - ln(mx) ,$

故 $e^{t-1}-t=0$ 有解,

设 $h(t) = e^{t-1} - t$,

则 $h'(t) = e^{t-1} - 1$, 令 h'(t) = 0, 解得 t = 1,

所以h(t)在 $(-\infty,1)$ 上单调递减,在 $(1,+\infty)$ 上单调递增,

所以 $h(t) = e^{t-1} - t$ 有唯一的零点t = 1,

若 g(x) 在区间 $(0,+\infty)$ 上存在零点,

即1=x-ln(mx)在 $(0,+\infty)$ 上有解,

整理可得1+lnm=x-lnx,

 $\Leftrightarrow l(x) = x - lnx$,

则
$$l'(x) = 1 - \frac{1}{x}$$
, 令 $l'(x) = 0$, 解得 $x = 1$,

所以l(x)在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增,

故 $l(x) \ge l$ (1) =1,

所以1+lnm≥1,

解得 $m \ge 1$,

所以m的取值范围为[1, + ∞).

23.解析
$$a\left(\mathrm{e}^{ax}+1\right) \ge 2\left(x+\frac{1}{x}\right) \ln x \Leftrightarrow ax\left(\mathrm{e}^{ax}+1\right) \ge \left(x^2+1\right) \ln x^2 \Leftrightarrow \left(\mathrm{e}^{ax}+1\right) \ln \mathrm{e}^{ax} \ge \left(x^2+1\right) \ln x^2$$
,

$$\Leftrightarrow f(x) = (x+1)\ln x$$
, $\emptyset f'(x) = \ln x + \frac{x+1}{x}$, $f''(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x-1}{x^2}$,

易知f'(x)在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增,

所以 $f'(x) \ge f'(1) = 2 > 0$, 所以 f(x) 在 $(0, +\infty)$ 单调递增.

则
$$\left(e^{ax}+1\right)\ln e^{ax} \geqslant \left(x^2+1\right)\ln x^2 \Leftrightarrow f\left(e^{ax}\right) \geqslant f\left(x^2\right)$$

$$\Leftrightarrow e^{ax} \geqslant x^2 \Leftrightarrow ax \geqslant 2 \ln x \Leftrightarrow a \geqslant \frac{2 \ln x}{x}$$
,

$$\diamondsuit g(x) = \frac{2\ln x}{x}, \quad \text{MI } g'(x) = \frac{2(1-\ln x)}{x^2}$$

当
$$x \in (0,e)$$
时, $g'(x) > 0$,当 $x \in (e,+\infty)$ 时, $g'(x) < 0$

所以函数 g(x) 在(0,e) 上单调递增,在 $(e,+\infty)$ 上单调递减

所以
$$g(x)_{\max} = g(e) = \frac{2}{e}$$
,所以 $a \ge \left(\frac{2\ln x}{x}\right)_{\max} = \frac{2}{e}$,

所以实数a的最小值为 $\frac{2}{e}$.

24.解析 $f(x) = e^x - a \ln(ax - a) + a > 0$

$$\Leftrightarrow \frac{1}{a} e^x > \ln a(x-1) - 1 \Leftrightarrow e^{x-\ln a} - \ln a > \ln(x-1) - 1$$

$$\Leftrightarrow e^{x-\ln a} + x - \ln a > e^{\ln(x-1)} + \ln(x-1)$$

令 $g(x) = e^x + x$,则 $g'(x) = e^x + 1 > 0$, 所以函数 g(x) 为 **R** 上的增函数.

则原命题又等价于

$$g(x - \ln a) > g(\ln(x - 1)) \Leftrightarrow x - \ln a > \ln(x - 1) \Leftrightarrow \ln a < x - \ln(x - 1)$$
.

由于
$$x - \ln(x - 1) \ge x - (x - 2) = 2$$
, 所以 $\ln a < 2$, 即得 $0 < a < e^2$.

25.解析 $2ae^{2x} - \ln x + \ln a \ge 0$

$$\Leftrightarrow 2ae^{2x} \ge \ln \frac{x}{a} \Leftrightarrow 2xe^{2x} \ge \frac{x}{a} \ln \frac{x}{a} (x > 0)$$

$$\Leftrightarrow 2x + \ln 2x \geqslant \ln \frac{x}{a} + \ln \left(\ln \frac{x}{a} \right) (x > a)$$
.

设
$$f(x) = x + \ln x$$
,则 $f'(x) = 1 + \frac{1}{x} > 0$,所以函数 $f(x)$ 在 $(0, +\infty)$ 上单调递增

所以由
$$f(2x) \ge f\left(\ln \frac{x}{a}\right)$$
, 得 $2x \ge \ln \frac{x}{a}$, 即 $a \ge \frac{x}{e^{2x}}$ 恒成立.

$$\Leftrightarrow g(x) = \frac{x}{e^{2x}}, \quad \text{M} \ g'(x) = \frac{1 - 2x}{e^{2x}},$$

$$\stackrel{\text{def}}{=} 0 < x < \frac{1}{2} \text{ Iff}, \quad f'\left(x\right) > 0 \text{ , } \quad \stackrel{\text{def}}{=} x \in \left(\frac{1}{2}, +\infty\right) \text{ Iff}, \quad g'\left(x\right) < 0$$

所以函数
$$g(x)$$
 在 $\left(0,\frac{1}{2}\right)$ 上单调递增,在 $\left(\frac{1}{2},+\infty\right)$ 上单调递减

所以
$$g(x)_{\text{max}} = g\left(\frac{1}{2}\right) = \frac{1}{2e}$$
,所以实数 a 的最小值为 $\frac{1}{2e}$.

易得
$$g(x)_{\text{max}} = g\left(\frac{1}{2}\right) = \frac{1}{2e}$$
,所以实数 a 的最小值为 $\frac{1}{2e}$

26.证明: 当
$$a \ge \frac{1}{e}$$
 时, $f(x) \ge \frac{e^x}{e} - \ln x - 1$, 所以只需证明 $\frac{e^x}{e} - \ln x - 1 \ge 0$.

由于
$$\frac{e^x}{e} - \ln x - 1 \ge 0 \Leftrightarrow e^x \ge e \ln ex \Leftrightarrow xe^x \ge ex \ln ex \Leftrightarrow xe^x \ge e^{\ln ex} \ln ex$$

令
$$g(x) = xe^x$$
, 由 $g'(x) = e^x(x+1) > 0$)知 $g(x)$ 为增函数,又易证 $x \ge lnex = lnx + 1$,

所以
$$g(x) \geq g(\ln ex)$$
,即 $xe^x \geq e^{\ln ex} \ln ex$ 成立.故当 $a \geq \frac{1}{e}$ 时, $f(x) \geq 0$.

27. 解析:
$$f(x) \ge 1 + x + \ln x \iff x(e^{2x} - a) \ge 1 + x + \ln x$$

$$\Leftrightarrow$$
 $e^{2x+\ln x} - 1 - x - \ln x \ge ax$

$$\Leftrightarrow a \leq \frac{\mathrm{e}^{2x + \ln x} - 1 - x - \ln x}{x} \; .$$

由于
$$\frac{\mathrm{e}^{2x+\ln x}-1-\ln x}{x} \geq \frac{2x+\ln x+1-1-x-\ln x}{x} = 1$$
 ,

当且仅当 $2x + \ln x = 0$ 等号成立,

所以 $a \le 1$,即实数a的取值范围是 $\left(-\infty,1\right]$.