COMS W4733: Computational Aspects of Robotics

Lecture 11: Bug Algorithms 1

Slide materials from H. Choset, G. D. Hager, and Z. Dodds
Instructor: Tony Dear

Planning Algorithms

- Up to now: Continuous trajectories represented as mathematical functions
- Easy to formulate, guaranteed solution given initial and final conditions
- But extremely limited to obstacle-free, static, fully observable environments!
- Robots operate in the real world
- Full of obstacles (possibly dynamic), oftentimes not fully observable
- Plans and trajectories need to update in response to environment feedback
- Choice of algorithms will depend on what we know and what we don't

Bug Algorithms

- How do bugs traverse the environment?
- Assume only local knowledge of surroundings
 - Tactile sensing
 - Finite distance sensing
- Behaviors are simple and can be enumerated
 - Follow a wall
 - Move toward a goal

Environment Setup

- Assume point robot—not worrying about kinematics or constraints here!
- Environment is bounded, finite number of obstacles
- Robot knows its global position
- Robot is able to measure distance between points
 - Does not know layout of obstacles
- Workspace: (x, y) or $(x, y, \theta) \in W$
- Set of obstacles: WO_i
- Free workspace: $W_{free} = W \cup_i WO_i$

- If no obstacles, best path to the goal is a simple straight line
- May encounter obstacles between q_{start} and q_{goal}
 - *Hit point* on obstacle $i: q_i^H$
 - Leave point on obstacle $i: q_i^L$
- Path can be represented as a sequence of hit-leave point pairs
- While not at goal:
 - If at obstacle according to sensors:
 - Follow obstacle until we can head toward goal
 - Else: Head toward goal

- When does bug 0 fail?
- Drawback: Bug 0 has no memory
- Going around in loops can be a problem
- Can we improve Bug 0 without adding any features?
- What if we always turn right rather than left?
- Unfortunately we wouldn't know when to switch

• star

- How to improve Bug 0 if we had memory?
- We should realize if we have circumnavigated an obstacle—remember q_i^H
- What else should we keep track of?
- If we have seen the obstacle's entire perimeter, we would also know the best point to leave it
- Once we reach q_i^H again, return to that closest point and move forward

- $q_0^L \leftarrow q_{start}, i = 1$
- Loop:
 - Repeat: From q_{i-1}^L move toward q_{goal}
 - If goal reached: Exit and return success
 - If obstacle WO_i encountered at q_i^H :
 - lacktriangle Circumnavigate WO_i and record closest point to goal q_i^L
 - If goal reached: Return success
 - If q_i^H re-encountered: return to q_i^L
 - If move toward q_{goal} encounters obstacle:
 - Return failure
 - Else: $i \leftarrow i + 1$

Bug 1 Examples

Bug 1 Examples

Bug 1 Completeness

- Suppose Bug 1 never terminates...
 - But each leave point is closer to the goal than the hit point, since we pick q_i^L to be the closest point on the obstacle: $d(q_i^L, q_{goal}) < d(q_i^H, q_{goal})$
 - Each hit point is also closer to the goal than the last hit point, since the robot moved toward the obstacle from q_{i-1}^L to arrive at q_i^H
 - There a finite number of hit/leave point pairs, which the robot will eventually exhaust
- Suppose Bug 1 incorrectly returns failure...
 - Then it will attempt to leave from the closest leave point q_i^L that will run into an obstacle
 - lacktriangle But there must be at least one other possible leave point ${q_i^L}^*$ on the obstacle along line to goal
 - Since a path exists, robot would have encountered $q_i^{L^*}$ while circumnavigating obstacle and would not leave from q_i^L

Bug 1 Performance

- What are the best- and worst-case scenarios?
- Best case: Robot goes straight to goal
- Distance = D (distance from start to goal)
- Worst case: Robot travels D distance, plus completely circumnavigating all obstacles
- Distance = $D + 1.5 \sum_{i} P_{i}$
- P_i = perimeter of WO_i

- Do we really need to explore every obstacle's perimeter all the time?
- We already had some idea of the "shortest path" to the goal from the start!
- New idea: Just follow the m-line whenever we are able to instead of computing new shortest paths
- Only need to remember m-line and hit points

- $q_0^L \leftarrow q_{start}$, i = 1
- Loop:
 - Repeat: From q_{i-1}^L move toward q_{goal} along m-line
 - If goal reached: Exit and return success
 - If obstacle WO_i encountered at q_i^H :
 - Repeat: Turn left or right and follow boundary of WO_i
 - If goal reached: Return success
 - If q_i^H re-encountered: Return failure
 - If m-line encountered at m s.t. $d(m, q_{goal}) < d(q_i^H, q_{goal})$ and line (m, q_{goal}) does not encounter obstacle:
 - Stop following WO_i
 - $q_i^L \leftarrow m; i \leftarrow i + 1$

Call the line from the starting point to the goal the *m-line*

- Why do we need the distance condition when circling WO_i ?
- If m-line encountered at m s.t. $d(m, q_{goal}) < d(q_i^H, q_{goal})$ and line (m, q_{goal}) does not encounter obstacle
- Is it possible to re-encounter m-line such that we're actually farther away from the goal than when we started?
- In other words, can we somehow follow an obstacle to move behind the start or hit point?
- Distance condition ensures we don't get stuck in infinite loop!

Bug 2 Examples

Bug 2 Examples

Bug 1 vs Bug 2

Bug 2 beats Bug 1?

Bug 1 beats Bug 2?

Bug 2 Performance

- Best case: Robot goes straight to goal, distance = D
- Same as Bug 1
- What is the worst case?
- Each time we follow the m-line and find a hit point q_i^H , we could potentially traverse the perimeter!
- Suppose n_i = number of intersections with WO_i
- Worst case: distance = $D + \frac{1}{2}\sum_{i} n_{i}P_{i}$

Bug Algorithm Properties

- Bug 1 is an exhaustive search algorithm
- Circumnavigate every obstacle, check all options before choosing the best one
- Bug 2 is a greedy search algorithm
- Takes the first thing that looks good—leave points along stored m-line
- Bug 2 can outperform Bug 1 in many situations, but not always
- Bug 1 has more predictable performance and results
- Both algorithms are complete—either return a path or failure if none exists