Predicting Hotel Booking Cancellation

Abstract

The goal of this project helps the company to predict whether the customer will cancel the booking or not. We have all the booking details like arrival_date_year, stays_in_week_nights, arrival_date_day_of_month etc of the customers from various countries.

Problem definition

Throughout the year, hotels get numerous bookings, and many of these bookings are canceled. Cancelled bookings result in a loss of revenue for the company; if management could foresee whether a hotel reservation will be canceled, it would be in their best interests to assign the room to someone else and win their business. This project seeks to use current and historical booking data to predict if a hotel reservation will be canceled.

Design

The data is provided by Kaggle.

I implemented three separate models Logistic Regression Model,

KNN Model, Decision Tree Model.

Data

The dataset contains 119390 rows, 32 columns. And This data set contains data for a city hotel and a resort hotel and includes information such as when the booking was made, length of stay, the number of adults, children, and/or babies, and the number of available parking spaces, among other things.

Algorithms

Model	S
	Logistic Regression Model
	KNN Model
	Decision Tree Model

Model Evaluation and Selection

I split the dataset into train and test from datasets size of 119k.

The official metric was the classification rate (accuracy).

Logistic Regression

Accuracy Score of Logistic Regression is : 0.9749141680018311 Classification Report .

support	f1-score	recall	precision	Classificatio
15894 5951	0.98 0.95	0.99 0.94	0.98 0.96	0 1
21845 21845 21845	0.97 0.97 0.97	0.97 0.97	0.97 0.97	accuracy macro avg weighted avg

KNeighborsClassifier

Accuracy Score of KNN is: 0.7206225680933852

support	f1-score	recall	n Report : precision	Classificatio
15894	0.82	0.87	0.78	0
5951	0.39	0.33	0.48	1
21845	0.72			accuracy
21845	0.61	0.60	0.63	macro avg
21845	0.70	0.72	0.70	weighted avg

DECISION TREE

Accuracy Score of Decision Tree is: 1.0 Classification Report :

	precision	recall	f1-score	support
0 1	1.00	1.00	1.00	15894 5951
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	21845 21845 21845

Tools

numpy

- pandas
- matplotlib
- sklearn
- plotly
- seaborn
- pycountry
- folium

Communication

#Models comparison

Future directions

By adding more features, it will be possible to predict how long it will take for a booking to be cancelled (if at all). This would allow hotel management to develop cancellation policies and calculate cancellation fees more easily.