Contents

1	Clas	sses	ses 2			
	1.1	poly.ring – polynomial rings				
		1.1.1		ialRing – ring of polynomials		
			1.1.1.1	getInstance – classmethod 4		
			1.1.1.2	getCoefficientRing		
			1.1.1.3	getQuotientField		
			1.1.1.4	issubring		
			1.1.1.5	issuperring		
			1.1.1.6	getCharacteristic		
			1.1.1.7	createElement		
			1.1.1.8	gcd		
			1.1.1.9	isdomain		
			1.1.1.10	iseuclidean		
			1.1.1.11	isnoetherian		
			1.1.1.12	ispid		
			1.1.1.13	isufd		
		1.1.2	Rational	FunctionField – field of rational functions 5		
			1.1.2.1	getInstance – classmethod 6		
			1.1.2.2	createElement 6		
			1.1.2.3	getQuotientField 6		
			1.1.2.4	issubring		
			1.1.2.5	issuperring 6		
			1.1.2.6	<u>unnest</u>		
			1.1.2.7	gcd		
			1.1.2.8	isdomain		
			1.1.2.9	iseuclidean		
			1.1.2.10	isnoetherian		
			1.1.2.11	ispid		
			1.1.2.12	isufd		
		1.1.3	Polynom	ialIdeal – ideal of polynomial ring		
			1.1.3.1	reduce		
			1.1.3.2	<u>issubset</u>		
			1133	issuperset 8		

Chapter 1

Classes

- 1.1 poly.ring polynomial rings
 - Classes
 - PolynomialRing
 - $\ {\bf Rational Function Field}$
 - PolynomialIdeal

1.1.1 PolynomialRing – ring of polynomials

A class for uni-/multivariate polynomial rings. A subclass of **CommutativeR-ing**.

Initialize (Constructor)

```
 \begin{array}{l} \textbf{PolynomialRing}(\textbf{coeffring: } \textit{CommutativeRing}, \textbf{ number\_of\_variables:} \\ \textit{integer}{=}1) \\ \rightarrow \textit{PolynomialRing} \end{array}
```

coeffring is the ring of coefficients. number_of_variables is the number of variables. If its value is greater than 1, the ring is for multivariate polynomials.

Attributes

zero:

zero of the ring.

one:

one of the ring.

Methods

1.1.1.1 getInstance - classmethod

 ${\tt getInstance} ({\tt coeffring:}\ CommutativeRing,\ {\tt number_of_variables:}\ integer)$

ightarrow PolynomialRing

return the instance of polynomial ring with coefficient ring coeffring and number of variables number of _variables.

1.1.1.2 getCoefficientRing

 $getCoefficientRing() \rightarrow CommutativeRing$

1.1.1.3 getQuotientField

 $getQuotientField() \rightarrow Field$

1.1.1.4 issubring

 $\textbf{issubring}(\textbf{other: }\textit{Ring}) \rightarrow \textit{bool}$

1.1.1.5 issuperring

issuperring(other: Ring) o bool

1.1.1.6 getCharacteristic

 $getCharacteristic() \rightarrow integer$

1.1.1.7 createElement

$createElement(seed) \rightarrow polynomial$

Return a polynomial. seed can be a polynomial, an element of coefficient ring, or any other data suited for the first argument of uni-/multi-variate polynomials.

1.1.1.8 gcd

$\gcd(a, b) \rightarrow polynomial$

Return the greatest common divisor of given polynomials (if possible). The polynomials must be in the polynomial ring. If the coefficient ring is a field, the result is monic.

- 1.1.1.9 isdomain
- 1.1.1.10 iseuclidean
- 1.1.1.11 isnoetherian
- 1.1.1.12 ispid
- 1.1.1.13 isufd

Inherited from CommutativeRing.

1.1.2 RationalFunctionField – field of rational functions Initialize (Constructor)

 $\begin{aligned} & \textbf{RationalFunctionField}(\textbf{field:} \textit{Field}, \textbf{number_of_variables:} \textit{integer}) \\ & \rightarrow \textit{RationalFunctionField} \end{aligned}$

A class for fields of rational functions. It is a subclass of **QuotientField**.

field is the field of coefficients, which should be a **Field** object. number_of_variables is the number of variables.

Attributes

zero:

zero of the field.

one

one of the field.

Methods

1.1.2.1 getInstance – classmethod

return the instance of RationalFunctionField with coefficient field coefffield and number of variables number of variables.

1.1.2.2 create Element

```
\mathbf{createElement(*seedarg:}\ \mathit{list},\ \texttt{**seedkwd:}\ \mathit{dict)} \rightarrow \mathit{RationalFunction}
```

1.1.2.3 getQuotientField

```
\operatorname{getQuotientField}() 	o 	extit{Field}
```

1.1.2.4 issubring

 $issubring(other: Ring) \rightarrow bool$

1.1.2.5 issuperring

```
issuperring(other: Ring) 	o bool
```

1.1.2.6 unnest

```
\mathrm{unnest}() 	o \mathit{RationalFunctionField}
```

If self is a nested RationalFunctionField i.e. its coefficient field is also a RationalFunctionField, then the method returns one level unnested RationalFunctionField. For example:

Examples

```
>>> RationalFunctionField(RationalFunctionField(Q, 1), 1).unnest() RationalFunctionField(Q, 2)
```

1.1.2.7 gcd

```
\gcd(a: \mathit{RationalFunction}, \ b: \mathit{RationalFunction}) \rightarrow \mathit{RationalFunction}
```

Inherited from Field.

- 1.1.2.8 isdomain
- 1.1.2.9 iseuclidean
- 1.1.2.10 isnoetherian
- 1.1.2.11 ispid
- 1.1.2.12 isufd

Inherited from CommutativeRing.

1.1.3 PolynomialIdeal – ideal of polynomial ring

A subclass of Ideal represents ideals of polynomial rings.

Initialize (Constructor)

$\begin{array}{l} \textbf{PolynomialIdeal(generators:} \textit{ list}, \, \textbf{polyring:} \textit{ PolynomialRing)} \\ \rightarrow \textit{PolynomialIdeal} \end{array}$

Create an object represents an ideal in a polynomial ring polyring generated by generators.

Operations

operator	explanation
in	membership test
==	same ideal?
! =	different ideal?
+	addition
*	multiplication

Methods

1.1.3.1 reduce

 $\mathbf{reduce}(\mathbf{element} \colon polynomial) \to polynomial$

Modulo element by the ideal.

1.1.3.2 issubset

 $\mathbf{issubset}(\mathbf{other} \colon \mathit{set}) \to \mathit{bool}$

1.1.3.3 issuperset

 $\text{issuperset(other: } \textit{set}) \rightarrow \textit{bool}$

Bibliography