BE 887 Empirical Exercise

Paul R. Organ

October 17, 2018

Contents

1		IR Replication
	1.1	Table 1: Benchmark Gravity and Selection into Trading Relationships
	1.2	Probit - Using Regulation Costs
	1.3	Heckman Selection Correction
	1.4	Polynomial Regression
2		ernative Specifications and Tests
	2.1	Poisson Quasi-MLE
	2.2	Poor Man's Zero Correction
	2.3	Fixed Effects

1 HMR Replication

1.1 Table 1: Benchmark Gravity and Selection into Trading Relationships

My results are in Table 1. I exactly match the paper in columns (1) and (3). In column (2), I am close on every variable, but my coefficient estimate for fta is off. My observation counts match, and I am not sure what else could be driving this difference.

Code for this replication can be found in Appendix A

Note that "Island" is equal to 1 if at least one country in a pair is not an island. "Landlock" is defined similarly.

Table 1: Replication of HMR Table I, Columns 1, 2, and 3

	, ,		
	(1)	(2)	(3)
VARIABLES	ln_trade	Probit	ln_trade
dist	-1.176***	-0.263***	-1.201***
	(0.031)	(0.012)	(0.024)
border	0.458***	-0.152***	0.366***
	(0.147)	(0.051)	(0.131)
island	-0.391***	-0.137***	-0.381***
	(0.121)	(0.033)	(0.096)
landlock	-0.561***	-0.072	-0.582***
	(0.188)	(0.045)	(0.148)
legal	0.486***	0.038***	0.406***
	(0.050)	(0.014)	(0.040)
lang	0.176***	0.113***	0.207***
	(0.061)	(0.017)	(0.047)
colonial	1.299***	0.130	1.321***
	(0.120)	(0.122)	(0.110)
cu	1.364***	0.196***	1.395***
	(0.255)	(0.057)	(0.187)
fta	0.759***	0.791***	0.996***
	(0.222)	(0.126)	(0.213)
religion	0.102	0.104***	-0.018
	(0.096)	(0.025)	(0.076)
Constant	14.581***		14.989***
	(0.520)		(0.402)
	•		, ,
Observations	11,146	24,649	110,697
R-squared	0.709		0.682

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Probit: All predictors at mean values

1.2 Probit - Using Regulation Costs

My replication results are in Table 2.

Again I am pretty close, but the coefficient estimate on fta is way off.

Table 2: Replication of HMR Table II, Column 1

(1)	(2)
coef	se
-0.219***	0.016
-0.090	0.068
-0.195***	0.066
-0.060	0.050
0.054***	0.019
0.102***	0.023
-0.009	0.130
0.276***	0.068
0.977***	0.189
0.147***	0.034
-0.107***	0.035
-0.067**	0.030
$12,\!420$	
	coef -0.219*** -0.090 -0.195*** -0.060 0.054*** 0.102*** -0.009 0.276*** 0.147*** -0.107*** -0.067**

*** p<0.01, ** p<0.05, * p<0.1

Note: All predictors at their mean value

1.3 Heckman Selection Correction

The results from my Heckman Selection Correction model are in Table 3.

Table 3: Heckman Selection (Similar to HMR Table II, Column 2)

	(1)	(2)	(3)
VARIABLES	ln_{trade}	pos_trade	/mills
dist	-1.165***	-0.591***	-0.591***
	(0.037)	(0.032)	(0.032)
border	0.614***	-0.243*	-0.243*
	(0.137)	(0.126)	(0.126)
island	-0.577**	-0.525**	-0.525**
	(0.228)	(0.205)	(0.205)
landlock	-0.428**	-0.161	-0.161
	(0.169)	(0.118)	(0.118)
legal	0.543***	0.147***	0.147***
	(0.054)	(0.043)	(0.043)
lang	0.136*	0.274***	0.274***
	(0.071)	(0.056)	(0.056)
colonial	0.911***	-0.025	-0.025
	(0.188)	(0.335)	(0.335)
cu	1.499***	0.745***	0.745***
	(0.279)	(0.176)	(0.176)
fta	0.970***	2.635***	2.635***
	(0.214)	(0.494)	(0.494)
religion	0.295***	0.396***	0.396***
	(0.110)	(0.088)	(0.088)
reg_costs		-0.288***	-0.288***
		(0.078)	(0.078)
$reg_costs_procdays$		-0.180**	-0.180**
		(0.074)	(0.074)
Constant	14.359***	2.858***	2.858***
	(0.460)	(0.352)	(0.352)
Observations	12,535	12,535	12,535
Observations Ct. 1	12,555	12,555	

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

1.4 Polynomial Regression

The results from my replication of the regression using constructed values for \hat{z} and $\hat{\eta}$ are shown in Table 4.

Note that the \hat{z} variables are constructed using \hat{z} (inverse normal CDF of the predicted probability of positive trade) and the Mills ratio, so we have $\hat{z}_{ij} = \hat{z}_{ij} + \hat{\eta}_{ij}$. See p. 456 of the paper for more details.

Table 4: Replication of Table II, Column 4 (Polynomial Reg)

	(1)	(2)
	ln_trade	
VARIABLES	coef	se
dist	-0.829***	0.165
border	0.937***	0.163
island	-0.186	0.278
landlock	-0.331*	0.181
legal	0.421***	0.069
lang	-0.050	0.106
colonial	0.877***	0.203
cu	1.140***	0.342
fta	0.238	0.792
religion	0.124	0.155
mills	0.799**	0.333
zbar	3.190***	0.606
zbar2	-0.669***	0.185
zbar3	0.056***	0.020
Constant	9.804***	1.042
Observations	6,403	
R-squared	0.668	
*** p<0.01, *	* p<0.05, *	p<0.1

2 Alternative Specifications and Tests

2.1 Poisson Quasi-MLE

Similar to HMR Table I, Column 1. Here I present the alternative specification, using Poisson regression (left) and my replication of Table II, Column 1 (right).

	(1)	(2)
	trade	
VARIABLES	coef	se
dist	-0.643***	0.062
border	0.736***	0.153
island	0.429*	0.240
landlock	-0.542*	0.290
legal	0.286***	0.087
lang	-0.163	0.114
colonial	0.245	0.153
cu	-0.683	0.560
fta	0.250**	0.108
religion	-0.243	0.190
reg_costs	-0.241	0.151
reg_costs_procdays	-0.290	0.184
Constant	14.408***	0.668
Observations	13,572	

(b) Replication of Table II, Column 1				
	(1)	(2)		
	y1			
VARIABLES	coef	se		
dist	-0.219***	0.016		
border	-0.090	0.068		
island	-0.195***	0.066		
landlock	-0.060	0.050		
legal	0.054***	0.019		
lang	0.102***	0.023		
colonial	-0.009	0.130		
cu	0.276***	0.068		
fta	0.977***	0.189		
religion	0.147***	0.034		
reg_costs	-0.107***	0.035		
reg_costs_procdays	-0.067**	0.030		
_ •				
Observations	12,420			
*** p<0.01, **	p<0.05, * p<	< 0.1		

Note: All predictors at their mean value

2.2 Poor Man's Zero Correction

Here we include zero-trade observations by adding one to all flows, so that for flows of zero we have

$$\log(flow + 1) = \log(0 + 1) = 0$$

Again I include my replication of Table II, Column 1 for comparison. Note that the coefficient on distance grows in magnitude under this alternate specification.

(a) Alternate Specification (F	Poor Man's Zero-Correction)
--------------------------------	-----------------------------

	(1)	(2)	
	ln_trade_poorman	. ,	
VARIABLES	coef	se	
dist	-1.091***	0.054	
border	0.477	0.293	
island	-0.329	0.241	
landlock	-0.716***	0.148	
legal	0.268***	0.067	
lang	0.578***	0.079	
colonial	0.890***	0.240	
cu	0.744**	0.336	
fta	0.263	0.341	
religion	0.588***	0.128	
reg_costs	-0.131	0.104	
reg_costs_procdays	-0.280**	0.109	
Constant	10.342***	0.622	
Observations	13,572		
R-squared	0.752		
*** p<0.01, ** p<0.05, * p<0.1			

(b) Replication of Table II, Column 1 (1) (2)y1VARIABLES coef se dist -0.219*** 0.016 border 0.068 -0.090-0.195*** island 0.066landlock -0.0600.050legal 0.054***0.019 lang 0.102***0.0230.130 colonial -0.009 0.276*** 0.068 cu 0.977***fta 0.189religion 0.147***0.034 reg_costs -0.107*** 0.035-0.067** $reg_costs_procdays$ 0.030Observations 12,420 *** p<0.01, ** p<0.05, * p<0.1

Note: All predictors at their mean value

2.3 Fixed Effects

Finally we test various combinations of fixed effects in linear models, including only fta as a regressor. In the fully saturated model, the coefficient on fta drops by an order of magnitude.

Table 5: Testing Different Combinations of Fixed Effects

	(1)	(2)	(3)
VARIABLES	ln_trade	ln_trade	ln_trade
fta	3.919***	3.949***	0.392***
	(0.090)	(0.093)	(0.084)
Constant	8.315***	8.315***	8.375***
	(0.008)	(0.008)	(0.005)
Observations	65,973	65,973	65,605
R-squared	0.564	0.580	0.842
Importer and Exporter FE	Y	N	N
Im*Year and Ex*Year FE	N	Y	Y
Importer*Exporter FE	N	N	Y

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

A Stata Code

```
************************
* Author: Paul R. Organ
* Purpose: BE 887 Econometric Exercise
* Last Update: Oct 17, 2018
**********************************
clear all
set more off
capture log close
cd "C:\ Users\prorgan\Box\ Classes\BE 887\ Exercise"
log using organ_exercise.log, replace
* load data
use "data\data1980s_share.dta"
******************************
*** Data Cleaning
******************************
* data cleaning for HMR Rep parts 1, 2, and 3 and Alt Specs part 3
* define landlock if we don't have two landlocked countries
gen landlock = n_landlock!=2
* define island if we don't have two island countries
gen island = n_islands!=2
* rename variables for use in regs
rename ln_distance dist
rename legalsystem_same legal
rename common_lang lang
rename religion_same religion
** create id we can use for clustering
* convert to strings
gen impcode_str = impcode
gen expcode_str = expcode
tostring impcode_str, replace
tostring expcode_str, replace
* create id for pairs (need exp-imp and imp-exp to be same, so we do conditional)
gen newid = cond(impcode_str <= expcode_str, impcode_str, expcode_str) ///
       + cond(impcode_str >= expcode_str, impcode_str, expcode_str)
* create pair variable we will use for clustering
egen pair = group (newid)
* drop temporary variables
drop newid impcode_str expcode_str
* define indicator for country pairs with positive trade
gen pos_trade = !missing(ln_trade)
```

```
* save data
save "data\cleaned_part1.dta", replace
***********************************
* data cleaning for HMR Rep parts 4, 5, and 6, and Alt Specs parts 1 and 2
** Merge in Regulation data
* see do file 'clean_data' for small pre-cleaning steps done before this
merge m:1 expcode using "data\reg_costs_exp.dta"
drop _merge
merge m:1 impcode using "data\reg_costs_imp.dta"
drop _merge
* generate indicators for pairs
gen reg_costs = (exp_ind_cost + imp_ind_cost)==2
replace reg_costs = . if missing(exp_ind_cost) | missing(imp_ind_cost)
gen reg_costs_procdays = (exp_ind_procdays + imp_ind_procdays)==2
replace reg_costs_procdays = . if missing(exp_ind_procdays) | missing(imp_ind_procdays)
* drop if (1) reg cost data is missing or
* (2) exporter in 8 country list or (3) importer is Japan
* Japan = 413920
* Hong Kong = 453440
* France = 532500
* Germany = 532800
* Italy = 533800
* Netherlands = 535280
* UK = 538260
* Sweden = 557520
drop if exp_ind_cost = .
drop if imp_ind_cost == .
drop if expcode = 413920 | expcode = 453440 | expcode = 532500 | ///
expcode = 532800 \mid expcode = 533800 \mid expcode = 535280 \mid ///
expcode == 538260 \mid expcode == 557520
drop if impcode = 413920
save "data\cleaned_part2.dta", replace
**********************************
*** HMR Replication
** Replication of Table 1, Columns 1, 2, and 3
clear all
use "data\cleaned_part1.dta"
* Column 1
* local to list variables for inclusion in regression
local vars = "dist border island landlock legal lang colonial cu fta religion"
* running regression
* fixed effects for exporter and for importer
* standard errors clustered at the country-pair level
```

```
quietly reg ln_trade 'vars' i.expcode i.impcode if year==1986, vce(cluster pair)
* write to file for use in tex
outreg2 using "tables/t1.tex", keep('vars') ///
 stats (coef se) dec(3) replace
***********************************
* Column 2
* local to list variables for inclusion in regression
local vars = "dist border island landlock legal lang colonial cu fta religion"
* regression (exclude Congo)
quietly probit pos_trade 'vars' i.expcode i.impcode ///
if year==1986 & expcode!=141780, vce(cluster pair)
local controls = "dist border island landlock legal lang colonial cu fta religion
i.impcode i.expcode"
margins, dydx('controls') atmeans post
* write to file for use in tex
outreg2 using "tables/t1.tex", keep('vars') ///
 stats (coef se) dec(3) append ///
addnote (Note: All predictors at their mean value)
***********************************
* Column 3
* local to list variables for inclusion in regression
local vars = "dist border island landlock legal lang colonial cu fta religion"
* running regression
* fixed effects for exporter, importer, and year
* standard errors clustered at the country-pair level
quietly reg ln_trade 'vars' i.expcode i.impcode i.year, vce(cluster pair)
* write to file for use in tex
outreg2 using "tables/t1.tex", keep('vars') ///
stats (coef se) dec(3) append
*************************
** Replication of Table II, Column 1
clear all
use "data\cleaned_part2.dta"
keep if year==1986
* local to list variables for inclusion in regression
local vars = "dist border island landlock legal lang colonial cu fta religion
reg_costs reg_costs_procdays"
* regression
quietly probit pos_trade 'vars' i.expcode i.impcode, vce(cluster pair)
```

```
margins, dydx('vars') atmeans post
* write to file for use in tex
outreg2 using "tables/t2c1.tex", keep('vars') ///
side noparen stats(coef se) dec(3) replace ///
addnote (Note: All predictors at their mean value)
**********************************
** Heckman Correction Model and Table II, Column 4
set matsize 11000
local fs_vars = "dist border island landlock legal lang colonial cu fta religion
reg_costs reg_costs_procdays"
local ss_vars = "dist border island landlock legal lang colonial cu fta religion"
heckman ln_trade 'ss_vars' i.expcode i.impcode, ///
select(pos_trade = 'fs_vars' i.expcode i.impcode) twostep mills(mills_heckman)
* write to file for use in tex
outreg2 using "tables/t2c2.tex", keep('fs_vars') ///
stats (coef se) dec(3) replace
**************************
** Table 2, Column 4
* local to list variables for inclusion in probit
local vars = "dist border island landlock legal lang colonial cu fta religion
reg_costs reg_costs_procdays"
* regression
probit pos_trade 'vars' i.expcode i.impcode, vce(cluster pair)
* predict probability of selection
predict rho
* generate zhat variable
gen zhat = invnormal(rho)
* generate mills ratio
gen mills=normalden(zhat)/normal(zhat)
* generate zbar variables
gen zbar = zhat + mills
gen zbar2 = zbar^2
gen zbar3 = zbar^3
* define variables for "polynomial" regression
local vars = "dist border island landlock legal lang colonial cu fta religion
mills zbar zbar2 zbar3"
* running regression
* fixed effects for exporter, importer
quietly reg ln_trade 'vars' i.expcode i.impcode
* write to file for use in tex
```

```
outreg2 using "tables/t2c4.tex", keep('vars') ///
 side noparen stats (coef se) dec(3) replace
***************************
*** Alternative Specifications and Tests
**********************************
** Santos-Silva and Tenreyro (2006) Approach
clear all
use "data\cleaned_part2.dta"
* replace missing ln_trade with 0, convert to levels
replace ln_trade = 0 if missing(ln_trade)
gen trade = exp(ln_trade)
* run same regression as in part 4
local vars = "dist border island landlock legal lang colonial cu fta religion
reg_costs reg_costs_procdays"
poisson trade 'vars' i.expcode i.impcode if year==1986, vce(cluster pair)
* write to file for use in tex
outreg2 using "tables/alt1.tex", keep('vars') ///
side stats (coef se) noparen dec(3) replace
***********************************
** Adding one to all trade flows
gen trade_plus_one = trade + 1
gen ln_trade_poorman = ln(trade_plus_one)
local vars = "dist border island landlock legal lang colonial cu fta religion
reg_costs reg_costs_procdays"
reg ln_trade_poorman 'vars' i.expcode i.impcode if year==1986, vce(cluster pair)
* write to file for use in tex
outreg2 using "tables/alt2.tex", keep('vars') ///
side stats (coef se) noparen dec(3) replace
***********************************
** Fixed Effects
clear all
use "data\cleaned_part2.dta"
set matsize 11000
* importer, exporter, year FE
quietly reghdfe ln_trade fta, a(expcode impcode) vce(r)
outreg2 using "tables/alt3.tex", keep(fta) stats(coef se) dec(3) replace ///
addtext(Importer and Exporter FE, Y, Im*Year and Ex*Year FE, N,
Importer * Exporter FE, N)
* importer*year, exporter*year,
egen exp_year = group(expcode year)
```

```
egen imp_year = group(impcode year)

quietly reghdfe ln_trade fta, a(exp_year imp_year) vce(r)
outreg2 using "tables/alt3.tex", keep(fta) stats(coef se) dec(3) append ///
addtext(Importer and Exporter FE, N, Im*Year and Ex*Year FE, Y,
Importer*Exporter FE, N)

* importer*year, exporter*year, importer*exporter
quietly reghdfe ln_trade fta, a(exp_year imp_year pair) vce(r)
outreg2 using "tables/alt3.tex", keep(fta) stats(coef se) dec(3) append ///
addtext(Importer and Exporter FE, N, Im*Year and Ex*Year FE, Y,
Importer*Exporter FE, Y)
```