Math 325 Problem Set 3 Solutions

8. [Lay, p.127, # 12.8] If S and T are subsets of \mathbb{R} with $S \subseteq T$ and T is bounded both above and below, then show that S is also bounded, and

$$\inf(T) \le \inf(S) \le \sup(S) \le \sup(T)$$
.

Because T is bounded, both $\inf(T)$ and $\sup(T)$ make sense, and $\inf(T) \leq x \leq \sup(T)$ for every x in T. But since $S \subseteq T$, every y in S also lies in T, so $\inf(T) \leq y \leq \sup(T)$ for every $y \in S$. So S is bounded both above and below.

Even more, that pair of inequalities states that $\inf(T)$ is a lower bound for S, and $\sup(T)$ is an upper bound for S. This implies that $\inf(T) \leq \inf(S)$, since $\inf(S)$ is the largest of the lower bounds for S, and $\sup(S) \leq \sup(T)$, since $\sup(S)$ is the smallest of the upper bounds for S (so it cannot be larger than $\sup(T)$). Finally, so long as S is non-empty (which the problem really should have asserted), picking an $x \in S$ we have $\inf(S) \leq x \leq \sup(S)$ (since the numbers on either end <u>are</u> lower and upper bounds), giving the final inequality we need.

9. [Lay, p.104, # 10.8] Show that for every $n \ge 1$ we have

$$\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}$$

[One way: Factor $4k^2 - 1$!]

We establish this by induction. For n=1 we have

$$\sum_{k=1}^{1} \frac{1}{4k^2 - 1} = \frac{1}{4 \cdot 1^2 - 1} = \frac{1}{3} = \frac{1}{2 \cdot 1 + 1}, \text{ establishing the initial step.}$$

Now if we suppose that $\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}$, then

$$\sum_{k=1}^{n+1} \frac{1}{4k^2 - 1} = \left\{ \sum_{k=1}^{n} \frac{1}{4k^2 - 1} \right\} + \frac{1}{4(n+1)^2 - 1} = \frac{n}{2n+1} + \frac{1}{4(n+1)^2 - 1}$$

$$= \frac{n}{2n+1} + \frac{1}{4n^2 + 8n + 3} = \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{n(2n+3)}{(2n+1)(2n+3)} + \frac{1}{(2n+1)(2n+3)}$$

$$= \frac{2n^2 + 3n + 1}{(2n+1)(2n+3)} = \frac{(2n+1)(n+1)}{(2n+1)(2n+3)} = \frac{n+1}{2n+3} = \frac{n+1}{2(n+1)+1}$$

so $\sum_{k=1}^{n+1} \frac{1}{4k^2 - 1} = \frac{n+1}{2(n+1)+1}$, establishing our induction step.

So, by induction, we have $\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}$ for every $n \ge 1$.

10. [Lay, p.105, # 10.22] Use induction to establish Bernoulli's Inequality: If $x \in \mathbb{R}$ and x+1>0, then for every $n \in \mathbb{N}$ we have $(x+1)^n \geq 1+nx$.

For our base case n=1 we have $(x+1)^1=x+1=1+x=1+1\cdot x\geq 1+1\cdot x$, as required. Now if we suppose that (*) $(x+1)^n\geq 1+nx$, then $(x+1)^{n+1}=(x+1)^n(x+1)$. But because (x+1)>0 we can multiply both sides of (*) by x+1 while maintaining the inequality, so

 $(x+1)^{n+1}=(x+1)^n(x+1)\geq (1+nx)(x+1)=x+1+nx^2+nx=1+(n+1)x+nx^2$. But since $x\in\mathbb{R}$ we know from our previous work that $x^2\geq 0$, and since $n\in\mathbb{N}$ we have $n\geq 1>0$ so n>0, and so $nx^2\geq 0$. So

 $(x+1)^{n+1} \ge 1 + (n+1)x + nx^2 \ge 1 + (n+1)x + 0 = 1 + (n+1)x$, so $(x+1)^{n+1} \ge 1 + (n+1)x$, establishing our induction step. So by induction, $(x+1)^n \ge 1 + nx$ for every $n \in \mathbb{N}$, as desired.

11. [Lay, p.106, # 10.26] Show that for every $n \in \mathbb{N}$, there is a $k \in \mathbb{N}$ so that $n \leq k^2 \leq 2n$

This <u>can</u> be established by induction (in a slightly roundabout way): for the base case n=1 we have $1=1^2 \le 1^2=1 \le 2=2(1)$, so for n=1 we find the k=1 works. Now suppose that $n \ge 1$ and $n \le k^2 \le 2n$ for some $k \in \mathbb{N}$.

If $k^2 \ge n+1$ as well, then $n+1 \le k^2 \le 2n < 2n+2 = 2(n+1)$, so $n+1 \le k^2 \le 2(n+1)$, so the same k works for n+1 as well, establishing the induction step. The only other alternative is that $k^2 < n+1$, and so we have that $n \le k^2 < n+1$ and $k^2 \in \mathbb{N}$, and so we must have $k^2 = n$. But then $(k+1)^2 = k^2 + 2k + 1 \ge k^2 + 1 = n+1$ (since $k \in \mathbb{N}$, so $2k \ge 0$), so $n+1 \le (k+1)^2$. But since $(k-1)^2 \ge 0$, we also have

 $(k+1)^2 \le (k+1)^2 + (k-1)^2 = k^2 + 2k + 1 + k^2 - 2k + 1 = 2k^2 + 2 = 2(k^2+1) = 2(n+1)$. So $n+1 \le (k+1)^2 \le 2(n+1)$, as desired. This establishes the induction step, and so for every $n \in \mathbb{N}$ there is a $k \in \mathbb{N}$ with $n \le k^2 \le 2n$, as desired.

An alternative approach proceeds by showing that for every $n \in \mathbb{N}$ there is a $k \in \mathbb{N}$ so that $\sqrt{n} \le k \le \sqrt{2n}$. This implies our sought-after result, since $n = (\sqrt{n})^2 \le k\sqrt{n} \le k \cdot k = k^2 \le k\sqrt{2n} \le (\sqrt{2n})^2 = 2n$, so $n \le k^2 \le 2n$.

And to establish $\sqrt{n} \le k \le \sqrt{2n}$, we need only establish that $\sqrt{2n} - \sqrt{n}$ is at least 1; then a result from class implies that there is an integer lying between \sqrt{n} and $\sqrt{2n}$.

[Technically, this is false for small values of n (!) We deal with those directly...]

But if
$$\sqrt{2n} - \sqrt{n} < 1$$
 then $\sqrt{2n} < 1 + \sqrt{n}$, so $2n = (\sqrt{2n})^2 < (1 + \sqrt{n})(\sqrt{2n}) < (1 + \sqrt{n})^2 = 1 + 2\sqrt{n} + n$, so $n < 1 + 2\sqrt{n}$, so $0 \le n - 1 < 2\sqrt{n}$, so $n^2 - 2n + 1 = (n - 1)^2 < 2\sqrt{n}(n - 1) < (2\sqrt{n})^2 = 4n$, so $n^2 < 6n - 1 < 6n$, so $n < 6$.

So we can establish that $\sqrt{2n} - \sqrt{n} \ge 1$ for $n \ge 6$, allowing us to find our integer k for these values. Since we can deal with the remaining cases $n \le 5$ by an alternate argument (find values of k directly: $1 \le 1^2 \le 2$, $2 \le 2^2 \le 4$, $3 \le 2^2 \le 6$, $4 \le 2^2 \le 8$, $5 \le 3^3 \le 10$), we have found, for all $n \in \mathbb{N}$, a $k \in \mathbb{N}$ with $n < k^2 < 2n$, as desired.