Санкт-Петербургский Политехнический университет Петра Великого Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчет по лабораторной работе №1

Дисциплина: Вычислительная математика

Вариант: 18

Выполнил		
студент гр. 3530901/90003		Руднев А.К.
	(подпись)	
Преподаватель		Цыган В.Н.
	(подпись)	
	« <u> </u>	2021 г.

Входные данные: вариант 18

Таблица 1 – Таблично заданная функция

X	0.0	0.2	0.4	0.7	0.9	1.0
f(x)	1.0000	1.2214	1.4918	2.0138	2.4596	2.7183

Необходимо построить а) сплайн-функцию; б) полином Лагранжа 5-й степени и использовать обе аппроксимирующие функции нахождения корня уравнения $f(x) + x^2 = 2$ на промежутке [0.0, 1.0] методом бисекции. Результаты двух вариантов нахождения корня сравнить для одинаковых задаваемых значений погрешности метода бисекции.

Решение:

- 1) Создам Spline проект на языке C++, в котором будет реализовано решение данной задачи.
- 2) Для нахождения корня уравнения на промежутке [0.0, 1.0] будет использоваться метод бисекции, который предпологает:
- 2.1 Вычисление функции на концах, а также в середине промежутка.
- 2.2 Нахождение значения функции в середине промежутка.
- 2.3 Сравниваем знаки на концах.
- 2.4 А заменяем на С, если знак А = знаку С, иначе В меняем С.
- 2.5 Если значение в точке С меньше, чем предполагаемая погрешность, то заканчиваем вычисления.
- 2.6 Если значение в точке С больше, чем погрешность, то повторяем алгоритм.
- 3) Метод бисекции будет находить корень, используя две аппроксимирующие функции:
- 3.1 Полином Лагранжа. Значения каждой новой точки функции будет высчитываться с построением нового полинома Лагранжа 5 степени. Для этого в проект был дабавлен соответствующий метод lagrange и модернизирована функции bisection.
- 3.2 Аппроксимирующая функция Spline. В начале создается Spline-функция, и при дальнейшем значение функции в точках будет получено с помощью функции seval.

Листинг:

```
class Function {
    void spline(int n,double * x,double * y,double * b,double * c,double * d) {...}
    double getYSpline(double u) {
       aF = Function().getYSpline(aX); //Значение spline-функции в точке а bF = Function().getYSpline(bX); //Значение spline-функции в точке b
```

```
double lagrange(double xc, double *x,double *y) {...}
     double getYL(double u) {
             return lagrange(u, x, y) + u * u - 2;
     double bisectionLagrange(Function function, double a, double d, double e) {
                 bF = cF;
             #include ...
    double bis = Function().bisectionSpline(spline, a, b, e); //Результат метода бисекции
    std::cout << "\nResult bisection = " << std::setprecision(15) << bis << std::endl;
std::cout << "\nResult bisection = " << std::setprecision(15) << bisl << std::endl;</pre>
```

Результаты вычислений:

```
Bisection Spline, interval [0.500000, 1.000000]:
                                                   Bisection Lagrange, interval [0.500000, 1.000000]:
F(a) = -0.1013643779
                                                    F(a) = -0.3879582389
F(b)=1.7183
                                                    F(b) = -1.436213152
F(c) = -0.1013643779
                                                    F(c) = -0.3879582389
Bisection Spline, interval [0.500000, 0.750000]: Bisection Lagrange, interval [0.500000, 0.750000]:
F(a) = -0.1013643779
                                                    F(a) = -0.3879582389
F(b)=0.6805417194
                                                    F(b)=0.9239063275
F(c)=0.6805417194
                                                    F(c)=0.9239063275
F(a) = -0.1013643779
                                                    F(a) = -0.02579267333
F(b)=0.2582974576
                                                    F(b)=0.9239063275
F(c)=0.2582974576
                                                    F(c) = -0.02579267333
Need 4 iterations with precision 0.100000
                                                    Need 4 iterations with precision 0.100000
                                                    Value of bisection 0.687500
```

Рис.1 Рис. 2 Bisection Lagrange, interval [0.500000, 1.000000]: F(a)=-0.1013643779 F(b)=1.7183F(b)=-1.436213152 Bisection Spline, interval [0.500000, 0.750000]: Bisection Lagrange, interval [0.500000, 0.750000]: F(a) = -0.1013643779F(a) = -0.3879582389F(b)=0.6805417194 F(b)=0.9239063275 F(c)=0.6805417194 Bisection Spline, interval [0.500000, 0.625000]: Bisection Lagrange, interval [0.625000, 0.750000]: F(a) = -0.1013643779F(a) = -0.02579267333F(b)=0.2582974576 F(b)=0.9239063275 F(c)=0.2582974576 F(c) = -0.02579267333Bisection Spline, interval [0.500000, 0.562500]: Bisection Lagrange, interval [0.625000, 0.687500]: F(a) = -0.1013643779F(a) = -0.02579267333F(b)=0.07102232387 F(b)=0.4030640476 F(c)=0.07102232387 F(c)=0.4030640476 Bisection Spline, interval [0.531250, 0.562500]: Bisection Lagrange, interval [0.625000, 0.656250]: F(a)=-0.01698238056 F(a) = -0.02579267333F(b)=0.07102232387 F(b)=0.1705204816 F(c) = -0.01698238056F(c)=0.1705204816 Bisection Spline, interval [0.531250, 0.546875]: Bisection Lagrange, interval [0.625000, 0.640625]: F(a) = -0.01698238056F(a) = -0.02579267333F(b)=0.02656092072 F(b)=0.06732180482 F(c)=0.02656092072F(c)=0.06732180482 Need 7 iterations with precision 0.010000 Need 7 iterations with precision 0.010000 Value of bisection 0.539063 Value of bisection 0.632813

Рис. 3

На рисунках 1-4 представлены результаты работы программы для двух аппроксимирующих функций, и соответственно для погрешности 0.1 и 0.01.

Сравнение результатов:

Сравню ответы, которые были получены методом бисекции, используя различные аппроксимирующие функции. Количество итераций метода бисекции занесу в таблицу 1. Значение корня уравнения в таблицу 2.

Таблица 1 – Количество итераций

Погрешность	Количество итераций	
0.1	4	
0.01	7	
0.001	10	
0.0001	14	
0.00001	17	
0.000001	20	

Таблица 2 – Значение корня

Погрешность	Spline	Lagrange	
	Ответ	Ответ	
0.1	0.5625	0.5625	
0.01	0.5390625	0.5390625	
0.001	0.5380859375	0.5380859375	
0.0001	0.53741455078125	0.53729248046875	
0.00001	0.537376403808594	0.537269592285156	
0.000001	0.537383079528809	0.537266731262207	

Из полученных результатов можно сделать вывод, что методы интерполяции Spline и Лагранжа дают почти идентичные результаты ха исключением результатов с слишком маленькой погрещностью. Различия наблюдаются, начиная с погрешности = 0.0001. В методе бисекции была задана необходимая погрешность и исходя из этой погрешности вычислялся корень уравнения, удовлетворяющий ей. Графики приведены на рисунке 5 и 6.

На рисунках 7 и 8 приведены полиномы, которые были построены с помощью Spline и Lagrange.

Как видно из рисунка 7, Spline и Lagrange аппроксимируют функцию почти идентично на промежутка [0; 1.0] с шагом 0.025, за исключением некоторых моментов (видно на рисунке небольшие выделения синего цвета)

Вывод: в ходе выполнения работы было проведено ознакомление с работой подпрограмм Spline, Seval, методом аппроксимации, используя полином Лагранжа, а также была самостоятельно написан метод бисекции, и вычислены корни для уравнения $f(x) + x^2 = 2$. Исходя из полученных данных было определено, что корень для аппроксимирующей функции spline почти совпадал с корнем аппроксимирующей функции Лагранжа. Было определено необходимое количество итераций метода бисекции для удовлетворения погрешности искомого значения: чем меньше погрешность — тем больше итераций метода необходимо.