If we define the scalar multiplication $\cdot: B \times (\rho_*(B) \otimes_A M) \to \rho_*(B) \otimes_A M$ by

$$\beta \cdot z = \mu_{\beta}(z)$$
, for all $\beta \in B$ and all $z \in \rho_*(B) \otimes_A M$,

then it is easy to check that the axioms M1, M2, M3, M4 hold. Let us check M2 and M3. We have

$$\mu_{\beta_1+\beta_2}(\beta' \otimes x) = (\beta_1 + \beta_2)\beta' \otimes x$$

$$= (\beta_1\beta' + \beta_2\beta') \otimes x$$

$$= \beta_1\beta' \otimes x + \beta_2\beta' \otimes x$$

$$= \mu_{\beta_1}(\beta' \otimes x) + \mu_{\beta_2}(\beta' \otimes x)$$

and

$$\mu_{\beta_1\beta_2}(\beta' \otimes x) = \beta_1\beta_2\beta' \otimes x$$

$$= \mu_{\beta_1}(\beta_2\beta' \otimes x)$$

$$= \mu_{\beta_1}(\mu_{\beta_2}(\beta' \otimes x)).$$

Definition 35.15. Given two rings A and B and a ring homomorphism $\rho: A \to B$, for any A-module M, with the scalar multiplication by elements of B given by

$$\beta \cdot (\beta' \otimes x) = (\beta \beta') \otimes x, \quad \beta, \beta' \in B, x \in M,$$

the tensor product $\rho_*(B) \otimes_A M$ is a *B*-module denoted by $\rho^*(M)$, or $M_{(B)}$ when ρ is the inclusion of *A* into *B*. The *B*-module $\rho^*(M)$ is sometimes called the *module induced from M* by extension to *B* of the ring of scalars through ρ .

Here is a specific example of Definition 35.15. Let $A = \mathbb{R}$, $B = \mathbb{C}$ and ρ be the inclusion map of \mathbb{R} into \mathbb{C} , i.e. $\rho \colon \mathbb{R} \to \mathbb{C}$ with $\rho(a) = a$ for $a \in \mathbb{R}$. Let M be an \mathbb{R} -module. The field \mathbb{C} is a \mathbb{C} -module, and when we restrict scalar multiplication by scalars $\lambda \in \mathbb{R}$, we obtain the \mathbb{R} -module $\rho_*(\mathbb{C})$ (which, as an abelian group, is just \mathbb{C}). Form $\rho_*(\mathbb{C}) \otimes_{\mathbb{R}} M$. This is an \mathbb{R} -module where typical elements have the form $\sum_{i=1}^n a_i(z_i \otimes m_i)$, $a_i \in \mathbb{R}$, $z_i \in \mathbb{C}$, and $m_i \in M$. Since

$$a_i(z_i\otimes m_i)=a_iz_i\otimes m_i$$

and since $a_i z_i \in \mathbb{C}$ and any element of \mathbb{C} is obtained this way (let $a_i = 1$), the elements of $\rho_*(\mathbb{C}) \otimes_{\mathbb{R}} M$ can be written as

$$\sum_{i=1}^{n} z_i \otimes m_i, \quad z_i \in \mathbb{C}, \ m_i \in M.$$

We want to make $\rho_*(\mathbb{C}) \otimes_{\mathbb{R}} M$ into a \mathbb{C} -module, denoted $\rho^*(M)$, and thus must describe how a complex number β acts on $\sum_{i=1}^n z_i \otimes m_i$. By linearity, it is enough to determine how $\beta = u + iv$ acts on a generator $z \otimes m$, where z = x + iy and $m \in M$. The action is given by

$$\beta \cdot (z \otimes m) = \beta z \otimes m = (u + iv)(x + iy) \otimes m = (ux - vy + i(uy + vx)) \otimes m,$$