ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра общей физики

Лабораторная работа 5.1.1

Экспериментальная проверка уравнения Эйнштейна для фотоэффекта и определение постоянной Планка

Преподаватель: к.ф.-м.н. Юрьев Ю.В.

Обучающийся: Глотов А.А

Введение 1

1.1 Аннотация

Испусканием электронов фотокатодом, облучаемым светом называется фототоком. Фотоэффект может быть объяснён с помощью фотонной теории света. Фотон с энергией $\hbar\omega$ выбивает из металла электрон и сообщает ему определённую кинетическую энергию.

Данная работа посвящена исследованию данного явления, направленное на определение постоянной Планка

Цель работы: экспериментально проверить уравнение Эйнштейна для фотоэффекта и определить значение постоянной Планка

1.2Теоретические сведения

При столкновении фотона с электроном фотокатода энергия фотона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением

$$\hbar\omega = E_{max} + W \tag{1}$$

Здесь E_{max} - максимальная кинетическая энергия электрона после выхода из фотокатода, W - работа выхода электрона из катода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывен - он простирается от нуля до E_{max} .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подается задерживающий (V < 0) или ускоряющий (V>0) потенциал. Качественный график зависимости фототока от напряжения представлен (рис. 1)

Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V_0 очевидным соотношением

$$eV_0 = \hbar\omega - W \tag{2}$$

Простейшая оценка зависимости тока от напряжения на наклонном участке приводит к следующему выражению

$$\sqrt{I} \propto V_0 - V \tag{3}$$

Из (2) получим зависимость

0

фотоэлемента

Рис. 1: Зависимость фотото-

ка от напряжения на аноде

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{4}$$

Или, выписав ее в дифференциальной форме:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{5}$$

Рис. 2: Зависимость запирающего потенциала от частоты света

2 Результаты измерений и обработка данных

1. По спектральным линиям неона построим калибровочную зависимость угла монохроматора от длины волны

$\phi,^{\circ}$	2536	2506	2442	2430	2400	2380	2370	2332	2326	2308	2296	2280	
λ , HM	703,2	692,9	671,7	667,8	659,9	653,3	650,7	640,2	638,3	633,4	630,5	626,7	
$\phi,^{\circ}$	2260	2238	2230	2208	2198	2178	2150	2138	2106	2092	1830	1792	1780
λ , HM	621,7	616,4	614,3	609,6	607,4	603,0	597,6	594,5	588,2	585,2	540,1	534,1	533,1

Здесь $\Delta \phi = 2^{\circ}$, длины волн берем без погрешности, считая табличные данные значительно точнее погрешности шкалы монохроматора

Калибровочный график по этим данным:

Рис. 3: Калибровочный график

Проведем 5 серий измерений для различных длин волн. Для упрощения перевода будем использовать длины волн спектра неона.

703,2 нм		585,2 нм		533,1 нм		650,7 нм		616,4 нм	
V, B	I, y.e.	V, B	I, y.e.	V, B	I, y.e.	V, B	I, y.e.	V, B	I, y.e.
-0,264	-0,20	-0,547	0,19	-0,787	0,14	-0,443	0,17	-0,566	0,18
-0,155	0,33	-0,408	0,28	-0,666	0,18	-0,352	0,24	-0,451	0,24
-0,125	0,36	-0,308	0,35	-0,485	0,26	-0,283	0,30	-0,371	0,30
-0,048	0,46	-0,226	0,42	-0,320	0,36	-0,234	0,35	-0,308	0,35
-0,033	0,48	-0,160	0,48	-0,194	0,45	-0,150	0,45	-0,258	0,40
0,011	0,53	-0,055	0,56	-0,131	0,49	-0,084	0,52	-0,175	0,48
0,031	$0,\!55$	0,000	0,59	-0,008	0,55	-0,021	0,58	-0,104	0,54
0,118	0,64	0,053	0,62	0,102	0,59	0,037	0,62	-0,022	0,60

По этим зависимостям построим графики:

По МНК найдем запирающее напряжение для наших длин волн

	λ , hm	703,2	650,7	616,4	585,2	533,1
Ī	$\omega \cdot 10^{-14}$, рад/с	26.8	29.0	30.5	32.2	35.4
Ī	U_0 , B	0.44 ± 0.06	0.60 ± 0.08	0.76 ± 0.10	0.79 ± 0.11	1.01 ± 0.14

Отсюда имеем:

$$h = 2\pi e k = (6.53 \pm 0.98)$$
Дж · с

Красная граница фотоэффекта соответствует частоте, при которой $U_0=0$:

$$\omega_{ ext{\tiny KP}} = (2.0 \pm 0.3) \cdot 10^{15} \; ext{pag/c}$$

Отсюда:

$$\lambda_{ ext{\tiny KP}} = 2\pi/\omega_{ ext{\tiny KP}} = 940 \pm 130$$
 нм

Работа выхода:

$$A_{\text{вых}} = \hbar \omega_{\text{кр}} = (1.3 \pm 0.2)$$
эВ

3 Обсуждение результатов и выводы

В ходе работы мы экспериментально проверили уравнение Эйнштейна для фотоэффекта, а также определили значение постоянной Планка:

$$h = 2\pi e k = (6.53 \pm 0.98)$$
Дж · с

Полученное значение оказалось достаточно близким к табличному Красная граница фотоэффекта:

$$\lambda_{\mathrm{kp}} = 2\pi/\omega_{\mathrm{kp}} = 940 \pm 130$$
 нм

Работа выхода для используемого фотокатода:

$$A_{\text{BMX}} = \hbar \omega_{\text{KD}} = (1.3 \pm 0.2) \text{9B}$$