ANALOG 11.14 Q-25

EE23BTECH11207 -KAILASH.C*

QUESTION:

A mass attached to a spring is free to oscillate, with angular velocity ω , in a horizontal plane without friction or damping. It is pulled to a distance x_0 and pushed towards the centre with a velocity v_0 at time t=0. Determine the amplitude of the resulting oscillations in terms of the parameters ω , x_0 , and v_0 . [Hint: Start with the equation $x=a\cos(\omega t+\theta)$ and note that the initial velocity is negative.]

SOLUTION:

1) Input Parameters:

Symbols	Definition
x	Displacement
t	Time
v	Velocity
ω	Angular velocity
θ	Phase difference
m	Mass
а	Acceleration
k	Force constant
F_r	Restoring Force

2) Free Body Diagram of Spring system:

3) By Hooke's Law:

$$ma = -kx \tag{1}$$

$$m\frac{d^2x}{dt^2} = -kx\tag{2}$$

$$m\frac{d^2x}{dt^2} + kx = 0\tag{3}$$

4) Applying Laplace transformation on eq-(3):

$$mL[x"] + kL[x] = 0 (4)$$

Using the laplace transformation formula: $L[x''] = s^2X(s) - sx(t = 0) - x'(t = 0)$ in eq-(4):

$$m[s^2X(s) - sx(0) - x'(0)] + kX(s) = 0$$
 (5)

At boundary Conditions:

$$v(t = 0) = 0$$
 and $x(t = 0) = x_0$:

$$ms^2X(s) - msx_0 + kX(s) = 0$$
 (6)

$$X(s)[ms^2 + k] = msx_0$$
 (7)

$$(X(s)[ms^2 + k]).\mu(t) = msx_0$$
 (8)

Laplace transformation of $\mu(t)$ is $\frac{1}{s}$

$$X(s) = x_0 \frac{ms}{s(ms^2 + k)} \tag{9}$$

$$X(s) = x_0 \frac{s}{s(s^2 + \frac{k}{m})}$$
 (10)

We know that $\sqrt{\frac{k}{m}} = \omega$:

$$X(s) = x_0 \frac{s}{s(s^2 + \omega^2)}$$
 (11)

5) By the inverse laplace transformation formulas we have:

$$\frac{a}{s^2+a^2} = \cos(at)$$
 and $\frac{1}{s} = 1$
By doing inverse laplace transformation in eq. (11):

$$x(t) = x_0 L^{-1} \left[\frac{a}{s^2 + a^2} \right]$$
 (12)

$$x(t) = x_0 \cos \omega t \tag{13}$$

Eq-(13) represents the displacement equation From mean position. Amplitude is defined as maximum displacement from mean position i.e $x_0 = A$.

At a given random time the mass system has a phase difference from the mean position:

$$x(t) = A\cos(\omega t + \theta) \tag{14}$$

Eq-(14) represents the S.H.M Displacement equation.

6) Let at time t=0s, $x=x_0$ Substituting t=0s in equation (13):

$$x = A\cos(\omega(0) + \theta) \tag{15}$$

$$x_0 = A\cos(\theta) \tag{16}$$

$$v_0 = \frac{dx_0}{dt} \tag{17}$$

$$v_0 = -A\omega \sin(\omega(0) + \theta) \qquad (18)$$

$$v_0 = -A\omega\sin(\theta) \tag{19}$$

$$-A\sin(\theta) = \frac{v_0}{\omega} \tag{20}$$

Squaring and Adding eq-(16) and eq-(20):

$$(A\cos(\theta))^2 + (A\sin(\theta)^2) = (x_0)^2 + \left(\frac{v_0}{\omega}\right)^2$$
 (21)

$$A^{2}(\cos^{2}(\theta) + \sin^{2}(\theta)) = (x_{0})^{2} + \left(\frac{v_{o}}{\omega}\right)^{2}$$
 (22)

$$A^{2} = (x_{0})^{2} + (\frac{v_{o}}{\omega})^{2}$$
 (23)

Answer:

Amplitude of the resulting oscillation is: $\sqrt{(x_0)^2 + (\frac{v_0}{\omega})^2}$

Plot of Amplitude vs x_0

