- **1.** [punti 6] Si presentino e si dimostrino le formule di inversione per la sintesi in frequenza delle reti correttrici. Si esponga inoltre come utilizzare tali formule per la sintesi della rete **ritardatrice** con imposizione del **margine di fase**  $M_F$ .
- **2.** [punti 6] Sia dato il sistema retroazionato di figura dove  $L(s) = 10 \frac{s+2}{s^2(s+1)}$ .



- a. Tracciare il diagramma di Nyquist di  $L(j\omega)$  determinando le eventuali intersezioni con l'asse reale negativo.
- b. Studiare la stabilità del sistema retroazionato applicando il Criterio di Nyquist.
- **3.** [punti 6] Sia  $\Sigma_d$  un sistema a tempo discreto descritto dalla funzione di trasferimento

 $H(z) = \frac{b(z)}{a(z)}$  con a(z) e b(z) polinomi coprimi fra loro. Presentare e dimostrare una condizione necessaria e sufficiente che assicuri la stabilità asintotica di  $\Sigma_d$ .

**4.** [punti 6] Sia dato il sistema in retroazione di figura dove  $P(s) = \frac{1}{s[(s+2)^2 + 16]}$  e  $C(s) = K \in \mathbb{R}$ .



- a. Tracciare il luogo delle radici dell'equazione caratteristica del sistema retroazionato per K > 0. In particolare 1) determinare gli asintoti del luogo, 2) determinare gli angoli di partenza del luogo, 3) dimostrare che non esistono radici doppie reali nel luogo.
- b. Determinare il guadagno ottimo  $K^*$  del controllore affinché il grado di stabilità del sistema retroazionato sia massimo  $\left[K^* = \arg\max_{K \in \mathbb{R}} G_s(K)\right]$ .
- 5. [punti 6] Sia dato il seguente sistema



dove 
$$P(s) = \frac{9}{s+4}$$
.

Determinare un controllore proprio di ordine minimo C(s) affinché le seguenti specifiche siano soddisfatte:

- 1. reiezione infinita asintotica al disturbo composito  $d(t) = 7 + 10 \cdot \cos(3t + 1)$ ;
- 2. costante di velocità  $K_v = 4$ ;
- 3. sistema retroazionato asintoticamente stabile con tre poli dominanti in  $-2, -2 \pm j$ .
- **6.** [punti 6] Un sistema a tempo discreto è in evoluzione libera (ingresso identicamente nullo) e la trasformata zeta dell'uscita è  $Y_{\text{lib}} = \frac{z^2}{\left(z \frac{1}{2}\right)^2 (z^2 + 1)}$ . Determinare l'evoluzione libera dell'uscita

$$y_{lib}(k), k \ge 0.$$