Understanding Expectation Formation from Probabilistic Surveys

Tao Wang Johns Hopkins University

April, 2019

Outline

- Motivation
- 2 Theories
 - Sticky Expectation
 - Other theories
- Oata and Methodology
- 4 Stylized Facts
- Appendix

What I am doing

- Use density information to
 - test expectation rigidity models
 - ... and identify differences in various theories
- Both individual and population moments
- Households and professional forecasters
 - drivers of difference in rigidity across two types of agents

Why density is important

- Identification: different theories have testable predictions on the second moments
 - Scenario 1. Two people think the chance of raining is 50%.
 - Scenario 2. One person thinks 100% and the other 0%.
- Modeling Implications: both mean and variance affect economic decisions
 - precautionary saving with income risks
 - portfolio choice with risky asset

Literature

Theory

- Sticky expectation [Carroll, 2003], [Reis, 2006]
- Rational inattention [Sims, 2003], [Gabaix, 2014]
- Noisy information [Lucas Jr, 1972], [Woodford, 2001]
- Learning [Evans and Honkapohja, 2012]
- Strategic interaction [Morris and Shin, 2002], [Hellwig and Veldkamp, 2009]
- Diagostic expectation [Bordalo et al., 2018]
- Model uncertainty [Hansen and Sargent, 2001], [Hansen and Sargent, 2008]

Empirics

- Heterogeneity in Expectation: [Mankiw et al., 2003]
- Testing Theories: [Coibion and Gorodnichenko, 2012], [Fuhrer, 2018]

Unified Framework

h-period ahead density forecast by agent \emph{i} at time \emph{t} based on information set $\emph{I}_{\emph{i},\emph{t}}$

$$\widehat{f}_{i,t}(y_{t+h}|I_{i,t})$$

- Theories differ in $I_{i,t}$
- May also differ on information processing, i.e. $I_{i,t} o \widehat{f}_{i,t}$

Definition and notation

Individual

- mean forecast $E_{i,t}(y_{t+h})$ • forecast error $FE_{i,t+h|t} = y_{t+h} - E_{i,t}(y_{t+h})$ • uncertainty $Var_{i,t}(y_{t+h})$
- Population
 - average forecast $\bar{E}_t(y_{t+h})$
 - average forecast error $\overline{FE}_t = y_{t+h} \bar{E}_t(y_{t+h})$
 - cross-section disagreements $Var_t(E_{i,t}(y_{t+h}))$
 - average uncertainty $\overline{Var}_t(y_{t+h})$

Assumption about true process

$$y_{t+1} = \rho y_t + \omega_t$$
$$\omega_t \sim N(0, \sigma_\omega^2)$$

- 0 < ρ ≤ 1
- if $\rho = 0$, no way to forecast at all
- ω_t is i.i.d

Outline

- Motivation
- 2 Theories
 - Sticky Expectation
 - Other theories
- Oata and Methodology
- 4 Stylized Facts
- 6 Appendix

Sticky Expectation: assumptions

- ullet At time t, agent i learns about y_t at a fixed Poisson rate λ
- A non-updater since $t-\tau$

$$E_{i,t}(y_{t+h}|y_{t-\tau}) = \rho^{h+\tau}y_{t-\tau}$$

ullet An updater is a special cae au=0

Impulse responses to shocks: individual moments

True Process
$$\rho = 0.9, \quad \sigma_{\omega} = 0.1, \quad \omega_1 = 0.1$$

SE $\lambda = 0.4$

Impulse responses to shocks: population moments

True Process
$$\rho = 0.9, \quad \sigma_{\omega} = 0.1, \quad \omega_1 = 0.1$$

SE $\lambda = 0.4$

₽ 990

Outline

- Motivation
- 2 Theories
 - Sticky Expectation
 - Other theories
- Oata and Methodology
- 4 Stylized Facts
- Appendix

Noisy Information: assumptions

Individual only observes noisy signals

$$\begin{split} s_{i,t} &= [s_t^{pb}, s_{i,t}^{pr}]' \in I_{i,t} \\ \text{public signal:} \quad s_t^{pb} &= y_t + \epsilon_t, \quad \epsilon_t \sim \textit{N}(0, \sigma_\epsilon^2) \\ \text{private signal:} \quad s_{i,t}^{pr} &= y_t + \xi_{i,t} \quad \xi_{i,t} \sim \textit{N}(0, \sigma_\xi^2) \end{split}$$

• Kalman filtering (simply normal updating if ρ =0)

Impulse responses to shocks: individual moments

True Process
$$\rho = 0.9$$
, $\sigma_{\omega} = 0.1$, $\omega_1 = 0.1$
SE: $\lambda = 0.5$; NI: $\sigma_{\xi} = 0.1$, $\sigma_{\epsilon} = 0.1$

Impulse responses to shocks: population moments

True Process
$$\rho = 0.9$$
, $\sigma_{\omega} = 0.1$, $\omega_1 = 0.1$
SE: $\lambda = 0.5$; NI: $\sigma_{\xi} = 0.1$, $\sigma_{\epsilon} = 0.1$

Understanding Expectation Formation from P April, 2019

A detailed look into noisy information

Implied rigidity of different models

Other theories on to-do-list

- Rational Inattention: attentiveness endogenously respond to variances
- **Learning**: the structural parameter ρ is not known, thus the agent learns about it as if an econometrician does

Identification strategies 1: testing rigidity models

- [Coibion and Gorodnichenko, 2012]
 - FEs respond to shocks and serially correlated.
- Additional in this paper
 - Uncertainty does not depend on shocks; and serially correlated.

Identification strategies 2: differentiating theories

- [Coibion and Gorodnichenko, 2012]
 - FEs do not depend on past realizations according to baseline SE and NI; but do so according to heterogeneous priors or precision models.
 - Implied rigidity does not differ across shocks according to SE but differs according to NI.
 - Disagreements rise after shocks according to baseline SE, strategic interactions and heterogeneous priors but invariant according to baseline NI.

Additional in this paper

 Uncertainty do not depend on shocks per se according to baseline SE and NI, instead on degree of information rigidity.

Data

	SCE	SPF
Time period	2013-present	2007-present
Frequency	Monthly	Quarterly
Sample Size	1,300	30-50
Aggregate Var in Density	1-yr and 3-yr inflation	1-yr and 3-yr CPI and PCE
Pannel Structure	stay up to 12 months	average stay for 5 years
Demographic Info	Education, Income, Age	Industry

Population moments: average

Population moments: average forecast errors

Population moments: average uncertainty

Population moments: average uncertainty

Population moments: disagreements

Population moments: disagreements

Population moments: disagreements

Population moments: uncertainty and disagreements

Population moments: uncertainty and disagreements

Population moments: forecast and realization

Empirical execution

- Measurement Errors: winsorization is still necessary
- **Density Estimation**: generalized beta estimation, [Engelberg et al., 2009]
- Identification of Shocks: following [Coibion and Gorodnichenko, 2012]

- Bordalo, P., Gennaioli, N., and Shleifer, A. (2018). Diagnostic expectations and credit cycles. *The Journal of Finance*, 73(1):199–227.
- Carroll, C. D. (2003). Macroeconomic expectations of households and professional forecasters. the Quarterly Journal of economics, 118(1):269–298.
- Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities? *Journal of Political Economy*, 120(1):116–159.
- Coibion, O., Gorodnichenko, Y., and Kumar, S. (2018). How do firms form their expectations? new survey evidence. *American Economic Review*, 108(9):2671–2713.
- Engelberg, J., Manski, C. F., and Williams, J. (2009). Comparing the point predictions and subjective probability distributions of professional forecasters.

Journal of Business & Economic Statistics, 27(1):30-41.

- Evans, G. W. and Honkapohja, S. (2012).

 Learning and expectations in macroeconomics.

 Princeton University Press.
- Fuhrer, J. C. (2018).
 Intrinsic expectations persistence: evidence from professional and household survey expectations.
- Gabaix, X. (2014).
 A sparsity-based model of bounded rationality.

 The Quarterly Journal of Economics, 129(4):1661–1710.
- Hansen, L. and Sargent, T. J. (2001). Robust control and model uncertainty. American Economic Review, 91(2):60–66.
- Hansen, L. P. and Sargent, T. J. (2008). *Robustness*.

Hellwig, C. and Veldkamp, L. (2009).

Knowing what others know: Coordination motives in information acquisition.

The Review of Economic Studies, 76(1):223–251.

Lucas Jr, R. E. (1972).

Expectations and the neutrality of money. Journal of economic theory, 4(2):103–124.

Inattentive consumers.

Sims, C. A. (2003). Implications of rational inattention. Journal of monetary Economics, 50(3):665–690.

Woodford, M. (2001).

Imperfect common knowledge and the effects of monetary policy. Technical report, National Bureau of Economic Research.

Sticky Expectation: individual

For a non-updater since $t - \tau$ ($\tau = 0$ for updater),

Mean

$$E_{i,t}(y_{t+h}|y_{t-\tau}) = \rho^{h+\tau}y_{t-\tau}$$

Forecast Error

$$FE_{i,t+h|t} = \underbrace{\sum_{s=0}^{h+\tau} \rho^s \omega_{t+h-s}}_{\text{weighted sum of future realized shocks}}$$

Variance

$$Var_{i,t}(y_{t+h}|y_{t- au}) = \sum_{s=0}^{h+ au}
ho^{2s} \sigma_{\omega}^2$$

Sticky Expectation: individual

updater:
$$\Delta Var_{i,t}(y_{t+h}|y_t) = \sum_{s=0}^{7} \rho^{2s} \sigma_{\omega}^2$$

non-updater:
$$\Delta Var_{i,t|t-\tau-1}(y_{t+h}|y_{t-\tau-1}) = \sigma_{\omega}^2$$

- Change in expectation(and variance) depends on if update or not
- Cannot observe systematically sluggish response to shocks at individual level

Sticky Expectation: population

Average forecast

$$\begin{split} \bar{E}_t(y_{t+h}) &= \lambda \underbrace{E_t(y_{t+h})}_{\text{rational expectation at t}} + (1-\lambda) \underbrace{\bar{E}_{t-1}(y_{t+h})}_{\text{average expectation at } t-1 \\ &= \lambda E_t(y_{t+h}) + (1-\lambda)(\lambda E_{t-1}(y_{t+h}) + ...) \\ &= \lambda \sum_{s=0}^{\infty} (1-\lambda)^s E_{t-s}(y_{t+h}) \end{split}$$
weighted sum of past rational expectations

Change in average forecast

$$\Delta \bar{E}_t(y_{t+h}) = \underbrace{(1-\lambda)}_{\text{stickiness}} \Delta \bar{E}_{t-1}(y_{t+h}) + \lambda \rho^h \omega_t$$

Sticky Expectation: population

Disagreements

$$Var_t(y_{t+h}) = \lambda \sum_{\tau=0}^{\infty} (1-\lambda)^{\tau} (E_{t|t-\tau}(y_{t+h}) - \bar{E}_t(y_{t+h}))^2$$

Change in disagreements

$$\Delta Var_t(y_{t+h}) = \rho^{2h}(1-\lambda)\lambda$$
 shock at time t

- Disagreements rise after the shock and then gradually decline
- Response of disagreements depends on the size of the shock

Sticky Expectation: population

Average variance

$$\overline{\textit{Var}}_t(y_{t+h}) = (1-\lambda) \underbrace{\overline{\textit{Var}}_{t-1}(y_{t+h})}_{\text{average variance at t-1}} + \underbrace{\lambda \textit{Var}_t(y_{t+h})}_{\text{variance of updater at t}}$$

Change in average variance

$$\Delta \overline{Var}_t(y_{t+h}) = \underbrace{(1-\lambda)\Delta \overline{Var}_{t-1}(y_{t+h}) - \lambda \rho^{2h} \sigma_{\omega}^2}_{\text{does not depend on shock at t}}$$

- Average variance does not respond to shocks
- ② Average variance has serial correlation with the same rigidity parameter $1-\lambda$

Noisy Information: individuals

Mean

$$\begin{split} E_{i,t}(y_{t+h}) &= \rho^h E_{i,t|t}(y_t) \\ E_{i,t|t}(y_t) &= \underbrace{E_{i,t|t-1}(y_t)}_{\text{prior}} + P \underbrace{\left(s_{i,t|t} - s_{i,t|t-1}\right)}_{\text{innovations to signals}} \\ &= (1 - PH)E_{i,t|t-1}(y_t) + Ps_{i,t} \\ \text{where } P &= \left[P_{\epsilon}, P_{\xi}\right] = \sum_{i,t|t-1}^{y} H(H'\sum_{i,t|t-1}^{y} H + \sum^{v})^{-1} \\ \text{where } \sum_{i,t|t-1}^{y} \text{ is the variance of } y_t \text{ based on prior belief} \\ \text{and } \sum_{i,t|t-1}^{v} = \begin{bmatrix} \sigma_{\epsilon}^2 & 0 \\ 0 & \sigma_{\epsilon}^2 \end{bmatrix} \end{split}$$

Noisy Information: individuals

Change in mean

$$\Delta E_{i,t|t}(y_{t+h}) = \underbrace{\rho^h (1 - PH) \Delta E_{i,t-1|t-1}(y_t)}_{\text{Lagged response}} + \underbrace{\rho^h PH \Delta y_{i,t} + \rho^h P \Delta v_{i,t}}_{\text{Shocks to signals}}$$

- Rigidity parameter 1 PH
- Serial correlation at individual level
- Always respond to shocks

Noisy Information: individuals

Variance

$$\Sigma_{i,t|t}^{y} = \Sigma_{i,t|t-1}^{y} - \Sigma_{i,t|t-1}^{y} H'(H\Sigma_{i,t-1}^{y} H' + \Sigma^{v})^{-1} H\Sigma_{i,t|t-1}^{y}$$

Change in variance

$$\Delta \Sigma_{i,t|t}^{y} < 0$$

- 1 It does not depend on the realizations of the signal.
- ② It decreases unambiguously from t-1 to t.
- The two properties carry through to h-period ahead forecast

Mean

$$\begin{split} \bar{E}_{t|t}(y_{t+h}) &= \rho^h [(1-PH) \underbrace{\bar{E}_{t-1}(y_{t+h})}_{\text{Average prior}} + P \underbrace{\bar{s}_t}_{\text{Average Signals}}] \\ &= (1-PH) \bar{E}_{t-1}(y_{t+h}) + P [\epsilon_t, 0]' \\ &= (1-PH) \bar{E}_{t-1}(y_{t+h}) + P \epsilon_t \end{split}$$

Same properties to the individual forecast

Disagreements

$$Var_{t}(y_{t+h}) = E((E_{i,t|t}(y_{t+h}) - \bar{E}_{t}(y_{t+h}))^{2})$$
$$= \rho^{2h} P_{\xi}^{2} \sigma_{\xi}^{2}$$

- increase with the forecast horizon
- depends on noisiness private signals, but not on that of public signals and the variance of the true variable y
- 3 increase with the rigidity parameter P in this model

Change in disagreements

$$\Delta Var_t(y_{t+h}) = \rho^{2h}(1-\rho^2)P_{\xi}^2\sigma_{\xi}^2 > 0$$

- **①** disagreements increase as time goes from t-1 to t.
- disagreements increase as approaching the variable of forecast

Average variance

$$ar{V}$$
 ar_t $(y_{t+h}) = ar{\Sigma}_t^y$

Change in average variance

$$\Delta Var_t(y_{t+h}) < 0$$

- average variance is the same as individual variance, not depend on signals
- 2 the variance unambiguously drop over time

