Introduction to

Optimization

$\mathsf{Dis}{\cdot}count$

School of Management University of Science and Technology of China

Sept 1, 2020

Summary

- Backpack problem
- Playing Around With Our New Toy
- 3 Fourier's Physics Playground
 - Maxwell's Electrodynamics
 - Heisenberg's Uncertainty Principle

Dis (USTC)

Backpack problem

Dis (USTC)

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - 夕久()

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$y(x) = \frac{f(x)}{\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2}$$

4ロト 4個ト 4 差ト 4 差ト 差 から○

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \downarrow$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right]y(x) = f(x)$$

$$\downarrow \downarrow$$

$$y(x) = \frac{f(x)}{\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2}$$

- イロナ 4周ナ 4 ヨナ 4 ヨナ りく()

$$f(x) \longrightarrow \hat{f}(\xi)$$

- (ㅁ) (🗇) (전) (전) (전) (전)

$$(f + \alpha g)(x) \longrightarrow \hat{f}(\xi) + \alpha \hat{g}(\xi)$$

- 4 ロ b 4 個 b 4 き b 4 き b 9 Q (C)

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \longrightarrow \mathcal{F} \qquad \longrightarrow i\xi \hat{f}(\xi)$$

Dis (USTC) Introduction to

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$\downarrow$$

$$\mathcal{F}$$

$$\left[-\xi^2 + i\gamma\xi + \omega_0^2\right] \hat{y}(\xi) = \hat{f}(\xi)$$

- 《ㅁㅏ《圊ㅏ《ㅌㅏ《ㅌㅏ - ㅌ - 쒸٩♡

Box Proposal

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

イロト (個) (重) (重) (型) (型)

Box Proposal

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

Dis (USTC)

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

イロト (個) (重) (重) (型) (型)

$$\widehat{(f+\alpha g)}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

 \parallel

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x)e^{-ix\xi} dx$$

$$(\widehat{f + \alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

4 □ > 4 圖 > 4 圖 > 4 圖 > 1 ■ り Q (*)

$$(\widehat{f} + \alpha g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f} + \alpha g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f} + \alpha g)(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

- 《ㅁㅏ《圊ㅏ《ㅌㅏ《ㅌㅏ = = ~ ♡٩♡

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

Dis (USTC)

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

- イロナ イ団ナ イミナ イミナ - ミ - から()

Dis (USTC) Introduction to

The inverse does work

for appropriate functions

and, sometimes, the Fourier Transform of a function is not in the same set as the original function, but let's forget about this since we do not know a decent theory of integration

Playing Around With Our New Toy

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

Dis (USTC) Introduction to

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

- イロト 4個 ト 4 差 ト 4 差 ト - 差 - 夕久()

$$f(t) = \cos(\omega_0 t) e^{-\pi t^2}$$

$$\widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}}$$

$$\omega = 2\pi\nu$$

- 《ㅁㅏ《圊ㅏ《ㅌㅏ《ㅌㅏ = = ~ ♡٩♡

Dis (USTC) Introduction to

$$f(t) = \cos(2\pi\nu_0 t)e^{-\pi t^2}$$
$$\hat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}}$$

- イロト 4個 ト 4 差 ト 4 差 ト - 差 - 夕久()

Dis (USTC)

$$\widehat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}}$$

A Harder Example

$$f(t) = e^{i\omega_0 t} = \cos(\omega_0 t) + i\sin(\omega_0 t)$$

$$\widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega_0 t} e^{-i\omega t} dt$$

∢□→ ∢御→ ∢団→ ∢団→ □ めの◇

A Harder Example

$$f(t) = e^{i\omega_0 t} = \cos(\omega_0 t) + i\sin(\omega_0 t)$$
$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega_0 t} e^{-i\omega t} dt$$

- 《ㅁㅏ《圊ㅏ《ㅌㅏ《ㅌㅏ = = ~ ♡٩♡

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$
 $e^{i\omega_0 t} = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$ $\widehat{f}(\omega) = \sqrt{2\pi} \delta\left(\omega - \omega_0
ight)$

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$
$$e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$$

 $\widehat{f}(\omega) = \sqrt{2\pi}\delta\left(\omega - \omega_0\right)$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

The Mathematical Moonwalk

$$f(t) = e^{i\omega_0 t}$$

$$e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i\omega t} d\omega$$

$$\widehat{f}(\omega) = \sqrt{2\pi} \delta(\omega - \omega_0)$$

- イロト 4回 ト 4 き ト 4 き ト - き - めへ(^)

Cosines

0.5

1.0

Dis (USTC) Introduction to Sept 1, 20

0.0 Tempo t

Cosines

$$\widehat{f}(\omega) = \sqrt{\frac{\pi}{2}} \left(\delta \left(\omega - \omega_0 \right) + \delta \left(\omega + \omega_0 \right) \right)$$

< 마 > (라 > (환) (토) (호) 토 · (b) 토 ·

Fourier's Physics Playground

In the beggining, God said:

$$\begin{cases} \mathbf{\nabla \cdot E} = \frac{\rho}{\epsilon_0} \\ \mathbf{\nabla \cdot B} = 0 \\ \mathbf{\nabla \times E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla \times B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$

and there was light!

- 4 ロ b 4 個 b 4 き b 4 き b 9 Q (C)

In the beggining, God said:

$$\begin{cases} \mathbf{\nabla \cdot E} = \frac{\rho}{\epsilon_0} \\ \mathbf{\nabla \cdot B} = 0 \\ \mathbf{\nabla \times E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla \times B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$

and there was light!

- 4ロト4個ト4度ト4度ト 度 めQ@

Too hard, let's try something different

$$\begin{cases} \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} = \nabla \times \mathbf{A} \end{cases}$$

→ロ → ←回 → ← 三 → へ ○ へ ○ ○

Wave Equations

$$\begin{cases} \nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\epsilon_0} \\ \nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J} \end{cases}$$

- 4 ㅁ > 4 圊 > 4 둘 > 4 툴 > ፮ - 쒸 Q (~

All Wave Equations In One

$$\nabla^2 \psi(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = -g(\mathbf{r}, t)$$

- (ㅁ) (@) (I E) (E) (O (O)

Dis (USTC) Introduction to

Fourier's Opinion

$$\widehat{g}(\mathbf{r},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(\mathbf{r},t) e^{-i\omega t} dt$$

$$g(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{g}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

Fourier's Opinion

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \psi(\mathbf{r},t) e^{-i\omega t} dt$$

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

Fourier's Opinion

$$\nabla^2 \psi(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = -g(\mathbf{r}, t)$$

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

- 《ㅁㅏ《圊ㅏ《ㅌㅏ《ㅌㅏ - ㅌ - 쒸٩♡

Dis (USTC) Introduction to Sept 1, 20

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

マロケス御ケスきとくきと き めのの

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta (\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

- (ㅁ) (@) (호) (호) (호) (호)

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta (\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

- 4 ㅁ > 4월 > 4늘 > 4늘 > 돌 쒸요♡

$$L\phi(\mathbf{r}) = -s(\mathbf{r})$$

$$LG(\mathbf{r} - \mathbf{r}') = -\delta(\mathbf{r} - \mathbf{r}')$$

$$\phi(\mathbf{r}) = \int G(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau'$$

$$L\phi(\mathbf{r}) = \int LG(\mathbf{r} - \mathbf{r}')s(\mathbf{r}') d\tau' = -\int \delta(\mathbf{r} - \mathbf{r}') s(\mathbf{r}') d\tau' = -s(\mathbf{r})$$

- (P) (B) (토) (토) (B) (O)

One At a Time

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

←ロ ト ← 個 ト ← 差 ト ← 差 ・ 夕 へ ○

Dis (USTC) Introduction to

One At a Time

$$\nabla^2 \widehat{\psi}(\mathbf{r}, \omega) + \frac{\omega^2}{c^2} \widehat{\psi}(\mathbf{r}, \omega) = -\widehat{g}(\mathbf{r}, \omega)$$

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}'\right)$$

- イロト 4 個 ト 4 恵 ト 4 恵 ト 9 久 ()

Dis (USTC) Introduction to

Solution for $\mathbf{r}-\mathbf{r}' eq \mathbf{0}$

$$\frac{1}{r}\frac{\mathrm{d}^2(rG)}{\mathrm{d}r^2} + k^2G = 0$$

$$G(r) = \frac{A}{r}e^{\pm ikr}$$

4ロト 4個ト 4 差ト 4 差ト 差 り Q @

Solution for $\mathbf{r}-\mathbf{r}' eq \mathbf{0}$

$$\frac{1}{r}\frac{\mathrm{d}^2(rG)}{\mathrm{d}r^2} + k^2G = 0$$

$$G(r) = \frac{A}{r}e^{\pm ikr}$$

| イロトイ掛ト 4 差ト 4 差ト | 差 | 夕久()|

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

4ロト 4個ト 4 差ト 4 差ト 差 から○

Dis (USTC) Introduction to Sept 1, 202

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

Recovering 0 Psychological Trauma

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + \frac{\omega^2}{c^2} G(\mathbf{r} - \mathbf{r}') = -\delta \left(\mathbf{r} - \mathbf{r}' \right)$$

$$A \int \nabla^2 \frac{1}{r} d\tau' + 4\pi A \frac{\omega^2}{c^2} \int \frac{r^2}{r} dr = -\int \delta \left(\mathbf{r} - \mathbf{r}' \right) d\tau'$$

$$-4\pi A = -1$$

←□ ▷ ←□ ▷ ← □ ▷ ← □ → ○○(◆)

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) \,\mathrm{d}\tau'$$

$$G(\mathbf{r}) = \frac{1}{4\pi\,\mathbf{r}}e^{\pm ik\,\mathbf{r}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ikz}}{z} d\tau'$$

Dis (USTC) Introduction to

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\mathbf{z})\widehat{g}(\mathbf{r}',\omega) d\tau'$$

$$G(\mathbf{z}) = \frac{1}{4\pi \, \mathbf{z}} e^{\pm ik\, \mathbf{z}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ik\,\imath}}{\imath} \,\mathrm{d}\tau'$$

4ロト 4個ト 4 差ト 4 差ト 差 から○

Back To Our Problem

$$\widehat{\psi}(\mathbf{r},\omega) = \int G(\boldsymbol{z})\widehat{g}(\mathbf{r}',\omega) \,\mathrm{d}\tau'$$

$$G(\mathbf{z}) = \frac{1}{4\pi \, \mathbf{z}} e^{\pm ik \, \mathbf{z}}$$

$$\widehat{\psi}(\mathbf{r},\omega) = \frac{1}{4\pi} \int \frac{\widehat{g}(\mathbf{r}',\omega)e^{\pm ik\,\boldsymbol{\imath}}}{\boldsymbol{\imath}} \,\mathrm{d}\tau'$$

- 《ㅁㅏ《畵ㅏ 《돌ㅏ 《돌ㅏ 》 돌 : 씨९은

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega t \pm i\omega\frac{c}{c}}}{\mathbf{z}} d\omega d\tau$$

- 4 ㅁ ト 4셸 ト 4볼 ト 4 볼 ト 9 � ♡

Dis (USTC) Introduction to Sept 1, 202

$$\psi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{\psi}(\mathbf{r},\omega) e^{i\omega t} d\omega$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \widehat{g}(\mathbf{r}',\omega) e^{i\omega t \pm i\omega \frac{\epsilon}{c}} d\omega d\tau'$$

- (ㅁ) (🗗) (토) (토) (P) (P)

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t \pm \frac{\imath}{c}\right)}}{\imath} \,\mathrm{d}\omega \,\mathrm{d}\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}',t \pm \frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 へ 0

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t\pm\frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}',t \pm \frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

- 4 ㅁ ト 4셸 ト 4볼 ト 4 볼 ト 9 � ♡

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\sqrt{2\pi}} \iint \frac{\widehat{g}(\mathbf{r}',\omega)e^{i\omega\left(t\pm\frac{\imath}{c}\right)}}{\imath} d\omega d\tau'$$

$$\psi(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{g(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} d\tau'$$

- (ㅁ) (@) (를) (를) (O)

Back at Maxwell's

$$V(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} \, \mathrm{d}\tau'$$

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}',t-\frac{\mathbf{z}}{c})}{\mathbf{z}} \, \mathrm{d}\tau'$$

- 《ㅁㅏ《圊ㅏ《ㅌㅏ《ㅌㅏ - ㅌ - 쒸٩♡

Dis (USTC) Introduction to

One Last Step

$$\begin{cases} \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} = \nabla \times \mathbf{A} \end{cases}$$

- イロト 4回 ト 4 き ト 4 き ト - き - めへ(^)

Jefimenko Equations

$$\mathbf{E}(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\mathbf{z}}}{\mathbf{z}^2} \left[\rho \right] + \frac{\hat{\mathbf{z}}}{c \, \mathbf{z}} \left[\frac{\partial \rho}{\partial t} \right] - \frac{1}{c^2 \, \mathbf{z}} \left[\frac{\partial \mathbf{J}}{\partial t} \right] d\tau'$$

$$\mathbf{B}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \left(\frac{1}{\mathbf{z}^2} \left[\mathbf{J} \right] + \frac{1}{c \, \mathbf{z}} \left[\frac{\partial \mathbf{J}}{\partial t} \right] \right) \times \hat{\mathbf{z}} d\tau'$$

- (ㅁ) (đ) (돌) (돌) (오 (·

Fourier's Physics Playground Heisenberg's Uncertainty Principle

Dis (USTC) Introduction to Sept 1, 203

Position and Momentum

$$\psi(x) = \langle x|\psi\rangle = \int \langle x|k\rangle \langle k|\psi\rangle dk = \frac{1}{\sqrt{2\pi}} \int e^{ikx} \psi(k) dk$$

$$\psi(k) = \langle k|\psi\rangle = \int \langle k|x\rangle \langle x|\psi\rangle dx = \frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi(x) dx$$

4 □ ▷ ◀ 웹 ▷ ◀ 볼 ▷ 및 ● 의 및 ●

Position and Momentum

$$\psi(x) = \langle x|\psi\rangle = \int \langle x|k\rangle \langle k|\psi\rangle dk = \frac{1}{\sqrt{2\pi}} \int e^{ikx} \psi(k) dk$$

$$\psi(k) = \langle k | \psi \rangle = \int \langle k | x \rangle \langle x | \psi \rangle dx = \frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi(x) dx$$

- (ㅁ) (🗗) (토) (토) (P) (P)

Dis (USTC) Introduction to Sept 1, 2020

Position and Momentum (but weirder)

$$\begin{cases} X |\psi\rangle = x\psi(x) \\ K |\psi\rangle = -i\frac{\partial \psi}{\partial x} \end{cases}$$

$$\begin{cases} X |\psi\rangle = -i\frac{\partial \psi}{\partial k} \\ K |\psi\rangle = k\psi(k) \end{cases}$$

<ロ> < 回 > < 回 > < 巨 > < 巨 > 三 の < ②

Position and Momentum (but weirder)

$$\begin{cases} X |\psi\rangle = x\psi(x) \\ K |\psi\rangle = -i\frac{\partial \psi}{\partial x} \end{cases}$$

$$\begin{cases} X |\psi\rangle = -i\frac{\partial \psi}{\partial k} \\ K |\psi\rangle = k\psi(k) \end{cases}$$

- イロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 少久()

Fourier Diplomacy

$$|x\rangle \stackrel{\mathcal{F}}{\longleftrightarrow} |k\rangle$$

Dis (USTC) Introduction to

Fourier Uncertainty

- $\psi(x)$: what is x?
- $\mathbf{Q} \ \psi(k)$: what is k?

Fourier Uncertainty

- $\psi(x)$: what is x?
- $\boxed{\mathbf{2} \; \psi(k) : \mathsf{what}} \; \mathsf{is} \; k?$

Definite Position

$$\psi(x) = \sqrt{\frac{\pi}{2}} \left(\delta \left(x - x_0 \right) + \delta \left(x + x_0 \right) \right)$$

Undefinite Momentum

Uncertainty Relation

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

The uncertainty relation is a consequence of the general fact that anything narrow in one space is wide in the transform space and vice versa. So if you are a 45 kg weakling and are taunted by a 270 kg bully, just ask him to step into momentum space!

Ramamurti Shankar

Acknowledgments

The author is extremely thankful to Prof. Antônio F. R. T. Piza for the short, yet wonderful, conversations about this seminar.

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - 釣 9 (で)

Dis (USTC) Introduction to Sept 1, 202

References

- de Figueiredo, D. G. Análise de Fourier e Equações Diferenciais Parciais. 5th ed. (IMPA, 2018).
- Fleming, H. George Green e Suas Funções. http://www.hfleming.com/green.pdf.
- Panofsky, W. K. H. & Phillips, M. Classical Electricity and Magnetism. 2nd ed. (Addison-Wesley Publishing Company, Inc., 1962).
- Shankar, R. *Principles of Quantum Mechanics*. 2nd ed. (Springer, 1994).

The End