微算機原理及應用

單元五:8051的輸入與輸出埠控制

授課老師:林淵翔 老師

大綱

- 8051輸入輸出埠的特性和功能介紹(8051 I/O port)
- 8051輸入輸出埠的控制方法(8051 I/O port control)
- 8051的C語言程式設計方法(8051 programming in C)

大綱

• 範例一: 跑馬燈實驗

• 範例二: 七段顯示器控制實驗

• 範例三: 開關輸入實驗

• 範例四: 按鈕控制實驗

• 參考文獻

單元五 8051的輸入與輸出埠控制 PART A

5.1 8051 I/O port

- 總共有四個埠(port)可以做輸入輸出 埠控制(I/O control)
 - P0, P1, P2, and P3
- 每個埠有8隻腳,共有32隻腳(32 pins)

- 在 RESET 之後,所有埠都被設為 inputs,可以用來做輸入埠使用。
- 輸出之後,要重新設定I/O port為輸入埠,必須將1送到 該埠,把輸出端的output driver FET 關掉。

- Port 0 共有8隻腳(pins 32~39)。
- 可以用來作為input/output 或 address 和 data。
- 要使用這個埠必須外接提升電阻 (pull-up resistor)。因為 P0 是 open drain。

Port 0 當輸出

- Port 0 共有8隻腳(pins 32~39)。
- 可以用來作為input/output 或 address 和 data。
- 要使用這個埠必須外接提升電阻 (pull-up resistor)。因為 P0 是 open drain。

• Port 0 當輸出

```
;Toggle all bits of P0
BACK: MOV A.#0AAH
MOV P0,A
ACALL DELAY
MOV A.#055H
MOV P0,A
ACALL DELAY
SJMP BACK
```


- Port 0 當輸入
 - 整個埠要當成input,則整個port要寫1 (writing 1)到每一個位元。

- Port 1 共有8隻腳(pins 1~8)。
- 只用來作為input/output。
- 相對於P0·P1 不需要外接提 升電阻(pull-up resistors)。因 為 P1 是內建提升電阻(pull-up resistors internally)。

- Port 2共有8隻腳(pins 21~28)
- 可以用來作為input/output 或 address。
- 就像P1,P2 不需要外接提升電阻 (pull-up resistors)。因為 P2 是 內建提升電阻(pull-up resistors internally)。

- Port 3共有8隻腳(pins 10~17)。
- 可以用來作為input/output 或 alternate output function。
- 就像P1, P2·P3 不需要外接提升 電阻(pull-up resistors)。因為 P3 是內建提升電阻(pull-up resistors internally)

	P3 Bit	Function	Pin	
	P3.0	RxD	10	
	P3.1	TxD	11	
	P3.2		12	
INT	P3.3		13	P1.X PIN
To La	P3.4	T0	14	
	P3.5	T1	15	
	P3.6		16	
	P3.7		17	
		•		•

單元五 8051的輸入與輸出埠控制 PART B

5.2 I/O port 控制

Output

MOV A,#0AAH

MOV PO,A

Input

MOV A,#0FFH; A = FF hex

MOV P0,A ;make P0 an input port

;by writing all 1s to P0

MOV A,P0 ;get data from P0

- I/O control
- Bit-addressability
 - **SETB P1.0**
 - CLR P1.1

Mnemonic	Example			
ANL Px	ANL P1, A			
ORL Px	ORL P2, A			
XRL Px	XRL P0, A			
JBC PX.Y, TARGET	JBC P1.1, TARGET			
CPL PX.Y	CPL P1.2			
INC Px	INC P1			
DEC Px	DEC P2			
DJNZ PX.Y, TARGET	DJNZ P1, TARGET			
MOV PX.Y, C	MOV P1.2, C			
CLR PX.Y	CLR P2.3			
SETB PX.Y	SETB P2.3			
Note: x is 0, 1, 2, or 3 for P0 – P3.				

• 工作週期(duty cycle)

 在Port 1的bit 0(P1.0)建立一個工作週期(duty cycle)為 50%的方波

在Port 1的bit 3(P1.3)建立一個工作週期(duty cycle)為66.6%的方波

SETB P1.3

LCALL DELAY

LCALL DELAY

CLR P1.3

LCALL DELAY

SJMP BACK

;set port 1 bit 3 high ;call the delay subroutine ;call the delay subroutine again ;clear bit 2 of port 1(P1.3=low) ;call the delay subroutine ;keep doing it

- 持續監控 P1.2 直到他變成 high
- 當 P1.2變成 high,送 45H 到 port 0 並 送一個 high-to-low (H-to-L) pulse 到 P2.3

```
P1.2
P2.3
```

單元五 8051的輸入與輸出埠控制 PART C

5.3 8051 C語言程式設計

- Unsigned char
 - 是一個 8-bit 無號數的資料型態(data type),數值表示範圍為 0 255 (00 FFH)。

• 8051 C語言程式常用的資料型態(data type)

	Data Type	Size in Bits	Data Range/Usage
\rightarrow	unsigned char	8-bit	0 to 255
\rightarrow	(signed) char	8-bit	-128 to +127
\rightarrow	unsigned int	16-bit	0 to 65535
\rightarrow	(signed) int	16-bit	-32,768 to +32,767
\rightarrow	sbit	1-bit	SFR bit-addressable only
\rightarrow	bit	1-bit	RAM bit-addressable only
\rightarrow	sfr	8-bit	RAM addresses 80 – FFH only

REGX51.H

```
AT89X51.H
Header file for the low voltage Flash Atmel AT89C51 and AT89LV51.
Copyright (c) 1988-2002 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.
#ifndef __AT89X51_H__
#define __AT89X51_H__
Byte Registers
sfr P0 = 0x80;
sfr SP = 0x81;
sfr DPL = 0x82;
sfr DPH = 0x83;
sfr PCON = 0x87;
sfr TCON = 0x88;
sfr TMOD = 0x89;
sfr TL0 = 0x8A;
sfr TL1 = 0x8B;
```

```
sfr TH0 = 0x8C;
sfr TH1 = 0x8D;
sfr P1 = 0x90:
sfr SCON = 0x98:
sfr SBUF = 0x99;
sfr P2 = 0xA0:
sfr IE = 0xA8;
sfr P3 = 0xB0;
sfr IP = 0xB8:
sfr PSW = 0xD0;
sfr ACC = 0xE0:
sfr B = 0xF0;
P0 Bit Registers
sbit P0 0 = 0x80;
sbit P0 1 = 0x81;
sbit P0 2 = 0x82;
sbit P0 3 = 0x83;
sbit P0 4 = 0x84;
sbit P0 5 = 0x85;
sbit P0 6 = 0x86;
sbit P0 7 = 0x87;
```

- Time delay
 - 使用"for" 迴圈
 - 使用8051 timers

• 可位元定址(Bit-addressable)的 I/O 控制

Checksum

- 1. 將所有位元組加起來,並捨去進位部分
- 2. 把加起來的和(sum)取 2's 補數(complement)
- 3. 這就是 checksum byte,是這一串數列的最後一個 byte

```
寫一個 8051 C 語言程式去計算 checksum byte。
#include < REGX51.H>
void main(void) ←
         unsigned char mydata[] = {0x25,0x62,0x3F,0x52}; ←
         unsigned char sum = 0; ←
         unsigned char x: ←
         unsigned char checksumbye;
         for(x=0;x<4;x++)
            P2 = mydata[x]; \leftarrow
                                                //issue each byte to P2
            sum = sum + mydata[x];
                                                //add them together
                                                //issue the sum to P1
            P1 = sum; ←
         //make 2's complement
         P1 = checksumbyte; ←
                                                //show the checksum byte
```

二進制【Binary (hex)】
 對十進制【decimal】
 和 ASCII 的轉換

Key	ASCII (hex)	Binary	BCD (unpacked)
0	30	0011 0000	0000 0000
1	31	0011 0001	0000 0001
2	32	0011 0010	0000 0010
3	33	0011 0011	0000 0011
4	34	0011 0100	0000 0100
5	35	0011 0101	0000 0101
6	36	0011 0110	0000 0110
7	37	0011 0111	0000 0111
8	38	0011 1000	0000 1000
9	39	0011 1001	0000 1001

寫一個 8051 C 語言程式去轉換 111111110(FE hex) 到十進制(decimal) 並顯示數字(digits)在 P0, P1, and P2. (FEH→254)
#include <REGX51.H>
void main(void)
{

單元五 8051的輸入與輸出埠控制 PART D

微算機原理及應用實習

範例一: 跑馬燈實驗

範例說明

• 實驗目的:

瞭解8051之輸出控制方法,並練習搬移與移位旋轉指令。

• 功能說明:

由AT89S51的Port0輸出控制8個LED,從D9(LSB)開始依序往左邊點亮,每次亮一顆,即向左旋轉。

IO應用電路板(Task board 1)

元件介紹

• 各種LED外觀

• LED符號

資料來源: http://intl-lighttech.com/ and LEDKE.COM

電路圖

程式碼與流程圖(組合語言)

程式碼與流程圖(C語言)

```
#include <REGX51.H>
                             //延遲副程式
void Delay_ms(int tx)
    char ti;
    while(tx--)
                for(ti=0;ti<101;ti++);
main(void)
                                 //輸出初始值
    P0 = 0x01;
    while(1)
        char P0_MSB = P0>>7;
                                 //存入MSB
        Delay ms(500);
                                 //延遲 0.5秒
        P0 <<= 1;
                                 //將資料左移
                                 //放入原始MSB到LSB
        P0 |= P0 MSB;
```

練習題

• 功能說明:

由AT89S51的Port0輸出控制8個LED,從D9(LSB)開始依序往右邊點亮,每次亮一顆,即向右旋轉。

單元五 8051的輸入與輸出埠控制 PART E

微算機原理及應用實習

範例二:七段顯示器控制實驗

範例說明

• 實驗目的:

認識七段顯示器元件及其顯示方法。

• 功能說明:

由AT89S51的Port0控制七段顯示器輸出,使七段顯示器由0計數到9並循環。

IO應用電路板(Task board 1)

元件介紹

• 各種七段顯示器外觀

• 七段顯示器接腳

• 七段顯示器顯示數值

資料來源: www.cpu.com.tw

電路圖

IO應用電路板

程式碼與流程圖(組合語言)


```
ORG
           0
           R0,#0
                             ;設定輸出初始值
START: MOV
           DPTR,#TABLE1 ←
                             :DPTR指到資料位置
     MOV
LOOP: MOV
           A,R0
     MOVC A,@A+DPTR
                            ;利用DPTR查表
                            ;將資料搬入A
                             ;將A輸出至P0
     MOV
           P0,A
           R0
     INC
                            ;上數(加1)
     CALL
           DELAY
                            ;呼叫延遲副程式
     CJNE
           R0,#10,LOOP
                            :判斷R0是否超過10
     JMP
           START
           R5.#5
DELAY: MOV
DLOOP:MOV
           R6,#200
DLOOP2:
           MOV R7,#230
     DJNZ
           R7,$
     DJNZ
           R6,DLOOP2
     DJNZ
           R5,DLOOP
     RET
```

TABLE1: DB 00111111B;
DB 00000110B;
DB 01011011B;
DB 01001111B;
DB 01100110B;
DB 01101101B;
DB 01111100B;
DB 00000111B;
DB 01111111B;
DB 01100111B;
END

程式碼與流程圖(C語言)

練習題

• 功能說明:

由AT89S51的Port0控制七段顯示器輸出,使七段顯示器由16進制的"F"往下計數到"0"並循環。

單元五 8051的輸入與輸出埠控制 PART F

微算機原理及應用實習

範例三:開關輸入實驗

範例說明

• 實驗目的:

瞭解8051讀取開關輸入之方法。

• 功能說明:

AT89S51的Port2為開關輸入,將開關狀態讀入並透過Port0輸出至對應的LED。即開關導通時LED須點亮,開關不通時則LED不亮。

IO應用電路板(Task board 1)

元件介紹

- 各種按鈕與開關外觀

• 按鈕開關符號

• 滑動開關符號

資料來源: ygic.com, icshop.com.tw

電路圖

程式碼與流程圖(組合語言)

ORG 0 ← ;將P2控制為輸入
SCAN: MOV A,P2 ← ;將P2讀入
ANL A,#0F0H ← ;將讀入值輸出至P0
JMP SCAN ← ;將讀入值輸出至P0
END

程式碼與流程圖(C語言)

練習題

• 功能說明:

AT89S51的Port2為按鈕輸入,當S1按下時,使Port0輸出的LED開始向左旋轉(可參考範例一),放開S1按鈕時則停止。

單元五 8051的輸入與輸出埠控制 PART G

微算機原理及應用實習

範例四:按鈕控制實驗

範例說明

• 實驗目的:

瞭解8051讀取按鈕輸入之方法與除彈跳原理。

• 功能說明:

AT89S51的Port2為按鈕輸入,判斷按鈕之狀態並透過Port0輸出至對應LED。每按下一次,輸出的值加1。

IO應用電路板(Task board 1)

元件介紹

• 各種按鈕與開關外觀

• 按鈕開關符號

• 滑動開關符號

資料來源: ygic.com, icshop.com.tw

防彈跳原理 SW ideal real bounce 20~50msec 20~50msec

電路圖

程式碼與流程圖(組合語言)

				_	-
		ORG	0	←	;程式開始
		MOV	R0,#0	←	;設定計數初值
		MOV	P0,#0	←	;輸出清為0
		SETB	P2.5	←	;設定P2.5為讀入
	START:	JNB	P2.5,\$	←	;判斷P2.5有無按下
		CALL	DELAY	←	;延遲20ms
		JNB	P2.5, STAR1	Г ←—	;判斷有無彈跳
	DOUP:	INC	R0	←	;計數值加1
		MOV	P0,R0	←	;將計數值輸出
	DEBOUN2:	JB	P2.5,\$	←	;判斷P2.5有無放開
		CALL	DELAY	←	;延遲20ms
		JB	P2.5,DEBO	UN2 ←	;判斷有無彈跳
		JMP	START	←	,
	DELAY:	MOV	R6,#100		;延遲副程式
	DLOOP:	MOV	R7,#230		
		DJNZ	R7,\$		
		DJNZ	R6,DLOOP		
		RET			
		END			
- 1					

程式碼與流程圖(C語言)

```
#include <REGX51.H>
void Delay_ms(int tx)
          char ti;
          while(tx--) for(ti=0;ti<101;ti++);
main(void)
          char
                     Counter=0;
           P0=Counter;
                                          //P0顯示初始值
           while(1)
                     while(!P2 5);
                     Delay_ms(50);
                     if(P2_5)
                                Counter++;
                                P0=Counter;
                                while(P2_5);
```

練習題

• 功能說明:

AT89S51的Port2為按鈕輸入,每當S1按放一次,使Port0輸出的LED向左旋轉一位元(如範例一)。

5.4 參考文獻

- ATMEL AT89S51 datasheet (doc2487.pdf)
- ATMEL 8051 Microcontrollers Hardware Manual (doc4316.pdf)
- ATMEL 8051 Microcontroller Instruction Set (doc0509.pdf)
- The 8051 Microcontroller and Embedded Systems Using Assembly and C, Second Edition, by Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay.

5.5 複習題

- 8051輸入輸出埠的特性和功能?
- 8051輸入輸出埠的控制方法?
- 8051 C語言程式設計?
- 如何控制LED?
- 如何判斷按鈕輸入?
- 如何控制七段顯示器?