Definice 0.1 (Category, map (arrow, morphism), composition, domain, codomain)

A category \mathcal{A} consists of: a collection $\mathrm{ob}(\mathcal{A})$ of objects, and for each $A, B \in \mathcal{A}$, a collection $\mathcal{A}(A,B)$ of maps, arrows, or morphisms from A to B. Such that for each $A,B,C \in \mathrm{ob}(\mathcal{A})$ a function (named composition) $\circ: \mathcal{A}(B,C) \times \mathcal{A}(A,B) \to \mathcal{A}(A,C), \ (g,f) \mapsto g \circ f$ meets following:

For each $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$, $h \in \mathcal{S}(C, D)$: $(h \circ g) \circ f = h \circ (g \circ f)$ (associativity). For each $A \in \text{ob}(\mathcal{A}) \exists 1_A \in \mathcal{A}(A, A)$, called the identity, such that, for each $f \in \mathcal{A}(A, B)$: $f \circ 1_A = f = 1_B \circ f$.

Poznámka (Notation)

$$A \in \text{ob}(\mathcal{A}) \Leftrightarrow A \in \mathcal{A}.$$

$$f \in \mathcal{A}(A, B) \Leftrightarrow A \xrightarrow{f} B \Leftrightarrow f : A \to B.$$

For $f \in \mathcal{A}(A, B)$: domain(f) := A and codomain(f) := B.

Například (of categories) Category of:

- sets (SET): ob(SET) := sets, SET(A, B) := functions from A to B, \circ is composition;
- groups (GRP): ob(GRP) := groups, GRP(G, H) := group homomorphisms, \circ is composition;
- rings (RING): ob(RING) := rings, RING(A, B) := ring homomorphisms, \circ is composition;
- vector spaces (VECT_K): ob($VECT_K$) := vector spaces over K, RING(A, B) := K linear maps, \circ is composition;
- topological spaces (TOP): ob(TOP) := topological spaces, RING(A, B) := continuous maps, \circ is composition.

Definice 0.2 (Isomorphism, inverse)

 $f: A \to B$ in a category \mathcal{A} is an isomorphism if exists a map $g: B \to A$ in \mathcal{A} such that $g \circ f = 1_A$ and $f \circ g = 1_B$. Then we call g the inberse of f.

 $Nap \check{r} iklad$

In SET isomorphisms are bijections.

Příklad

Show that inverses are unique (justifying the use of the determine article in the previous definition).

Poznámka

0-morphisms are called morphisms (between objects), 1-morphisms are called functors (between categories), 2-morphisms are called natural transformations (between functors).

Definice 0.3 (Functor)

Let \mathcal{A} and \mathcal{B} be categories. A functor $F : \mathcal{A} \to \mathcal{B}$ consists of: a function $F : \text{ob}(\mathcal{A}) \to \text{ob}(\mathcal{B})$, and for each $A, A' \in \mathcal{A}$ a function $F : \mathcal{A}(A, A') \to \mathcal{B}(F(A), F(A'))$. Such that

$$F(f' \circ f) = F(f) \circ F(f'), \qquad \forall A \stackrel{f'f''}{A} \in \mathcal{A},$$

 $F(1_A) = 1_{F(A)} \qquad \forall A \in \mathcal{A}.$

Například (Forgetful functors)

 $U:GRP \to SET$, for any group (G,\cdot) , $U((G,\cdot)):=G$, and for any morphism $f,U(f:(G,\cdot)\to (H,*)):=f:G\to H$. (Exercise: Convince yourself that this is a well-defined functors.)

We can do the same for rings, vector spaces and topological spaces.

Například

Let \mathcal{A} be the following category: $ob(\mathcal{A}) = \{\cdot\}$, $\mathcal{A}(\cdot, \cdot) = 1$., and $1 \cdot \circ 1 = 1$. It is called discrete category with one object.

$$ob(\mathbb{B}) = \{\cdot, *\}, \ \mathbb{B}(\cdot, \cdot) = 1, \ \mathbb{B}(\cdot, *) = \emptyset$$

Directed transitive graph (with all loops) with concatenation of edges.

From group (G, +) we construct category \mathcal{G} by putting: $ob(\mathcal{G}) := \cdot$, $\mathcal{G}(\cdot, \cdot) := G$ and $oldsymbol{:} := +$. We can generalize to a monoid (M, +).

Now, let \mathcal{A} be a category with one object $\{\cdot\}$ (and assume that $\mathcal{S}(\cdot,\cdot)$ is a set). Then homomorphism with composition are monoid. And isomorphisms with composition are groups (so one-object category with all homomorphism isomorphic represents group).

(Category, where $\mathcal{A}(\cdot,\cdot)$ is a set, is often called locally small.)

Let G and H be groups and \mathcal{G} , \mathcal{H} their associated one-object categories. What is a functor from \mathcal{G} to \mathcal{H} ? For $F: \mathrm{ob}(\mathcal{G}) \to \mathrm{ob}(\mathcal{H})$ we have no other choice than $F(\cdot) := *$. For $F: \mathcal{G}(\cdot, \cdot) \to \mathcal{H}(*, *) = \mathcal{H}(F(\cdot), F(\cdot))$ we demonstrated (see lecture) that F needs to be group homomorphism (and every group homomorphism $G \to H$ is functor). (All this work for monoids too.)

Let AB be the category of ob(AB) := Abelian groups and AB(A,B) := group homomorphism. Then $U:AB\to GRP$ as "forgetful functor" is "identity". The same for commutative rings. Also we have forgetful functor $U:RING\to AB, (R,+,\cdot)\mapsto (R,+)$ and functor $U:RING\to MONOIDS, (R,+,\cdot)\mapsto (R,\cdot)$.

 $U: SET \to VECT_{\mathbb{K}}$ we can define by $F(X) = (X \to F)$ (functions from X to F) (free vector space).