

COPPERBELT UNIVERSITY CHEMISTRY DEPATMENT CH110/CH120/FO130 TUTORIAL SHEET 7- CHEMICAL BONDING

- 1. Indicate the number of valence electrons in the following:
 - a) oxygen

- b) Group 1
- c) an element with an electron configuration of 1s²2s²2p⁶3s²3p¹

ANSWER:

- a) Oxygen is a Main Group element in Group 6 it has 6 valence electrons
- b) A Group 1 element has 1 valence electron
- c) This is a Main Group element of Group 3, it has 3 valence electrons
- 2. Define each of the following:
 - a) Ionic bond
 - b) Covalent bond
 - c) Electronegativity

ANSWER:

- a) An ionic bond is a force of attraction between oppositely charged ions a compound
- b) A covalent bond is a type of bonding in which electrons are shared by atoms of a compound
- c) Electronegativity is the tendency of an atom in a molecule to attract shared electrons to itself

See Glossary Zumdhal and Zumdahl, 9th Edition.

3. a) List the following elements in order of increasing electronegativity: O, Ge, C **ANSWER:**

Ge (1.8), C (2.5) and O (3.5). See page 357, Zumdahal and Zumdahl, 9th Edition.

- b) Choose the atom or ion in each set with the smallest atomic radius.
 - i. Li, Li⁺, H⁻

ANSWER:

- Li⁺: The explanation is that Li⁺ and H⁻ are isoelectronic with a 1s² electronic configuration and smaller than Li with an 1s²2s¹ electronic configuration. However, Li⁺ is smaller than H⁻ because it has a higher nuclear charge drawing the electrons closer to the ion's nucleus.
- ii. Na⁺, Cl⁻, K⁺

ANSWER:

 Na^+ : The explanation is that K^+ and Cl^- are isoelectronic with a [Ar or $1s^22s^22p^63s^23p^6$] electronic configuration but Na^+ with [Ne or $1s^22s^22p^6$] is smaller than.

ANSWER:

F: The explanation is that O^{2-} and F^{-} are isoelectronic with a [Ne] or electronic configuration have more electrons in the valence shell than F.

- 4. a) List at least 2 ions with each of the following electron configurations:
 - i. $1s^22s^22p^6$
 - ii. $1s^22s^22p^63s^23p^6$
 - iii. $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^6$

ANSWER:

- i. O^{2-}, F^{-}
- ii. Cl⁻, K⁺
- $iii. \hspace{0.5cm} 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 \\$
- b) What the term is used to describe two ions with the same electron configuration?
- 5. Draw Lewis structures for the following compounds: (Follow the Octet Rule.)
 - a) H_2S

e) CO₃2-

h) dinitrogen

b) HCN

f) SO_3^{2-}

tetroxide i) C₃H₄Cl₂

c) NH₂F

g) diphosphorus dichloride

i) C₃H₄

- d) CH_2I_2
- 6. a) Add hydrogen atoms and electrons in order to complete Lewis structures of the following compound: C₃H₆O (acetone; nail polish remover)

- b) Write Lewis structures for the following. Show all resonance structures where applicable.
 - i. NO

ii. NO₃-

- iii. N₂O₄
- 7. a) Explain the basis of a covalent bond. What makes a bond polar? What makes a molecule polar?
 - b) Indicate the molecular **geometry** of compounds (a)-(d) in question 5 above. For each of these compounds, indicate whether they are polar or nonpolar.
 - b) Indicate the bond polarity (show the partial positive and partial negative ends) in the following bonds.
 - i. C O

iv. Br - Te

vii. Si - S

ii. P-H

v. Se - S

viii. O-P

iii. H-C1

vi. Cl-I

- ix. Br Br
- c) For each set below, indicate which bond would be the most polar:
 - i. C-F, N-F, or O-F
 - ii. Si F or C F

8. Indicate the molecular geometry of the following compounds (which disobey the octet rule):

a) SF₄

- b) XeF₄
- c) PF₅
- d) SeF₆
- 9. a) Explain the following intermolecular forces:
 - i. London forces
 - ii. Dipole-dipole interaction
 - iii. Hydrogen bonding
 - b) Explain the difference in boiling points for each of the following
 - i. HF $(20^{\circ}C)$ and HCl $(-85^{\circ}C)$
 - ii. HCl (-85°C) and LiCl (1360°C)
- 10. The equations for the heats of formation of copper (I) oxide, Cu₂O and copper (II) oxide, CuO are:

$$2Cu(s) + \frac{1}{2}O_2(g) \rightarrow Cu_2O(s); \Delta H^0_f = -166.7kJ/mol$$

 $Cu(s) + \frac{1}{2}O_2(g) \rightarrow CuO(s); \Delta H^0_f = -155.2kJ/mol$

The first and second ionization energies of copper are 750 and 2000kJ/mol respectively; its atomization energy is 339.3kJ/mol. The atomization energy of oxygen is 249.2kJ/mol. The first and second electron affinity for oxygen are -141.4kJ/mol and 790.8kJ/mol respectively. Draw the Born-Haber cycle and calculate the lattice energies (ΔH_{latt}) of the two oxides.