Cvičení 7

Binární vyhledávací stromy

- **Úloha 1.** Ukažte, jak zjistit *následníka* zadaného vrcholu, tedy vrchol s nejbližší vyšší hodnotou.
- **Úloha 2.** *Inorder traversal:* Dokažte, že projdeme-li celý strom opakovaným hledáním následníka, strávíme tím čas $\Theta(n)$.
- **Úloha 3.** Dokažte, že perfektně vyvážený strom má všechny hladiny až na poslední zaplněné. Může poslední hladina vypadat jakkoli, nebo pro ni plynou nějaké požadavky?
- **Úloha 4.** Navrhněte algoritmus, který v lineárním čase zadaný BVS perfektně vyváží. Uměli byste to provést pouze s *konstantní pamětí* navíc?
- **Úloha 5.** *Slučování stromů:* Navrhněte algoritmus, který dostane dva BVS T_1 , T_2 a sloučí jejich obsah do jednoho BVS. Algoritmus by měl pracovat v čase $\mathcal{O}(|T_1| + |T_2|)$.
- **Úloha 6.** Rozštěpení stromu: Navrhněte algoritmus, který dostane BVS T a hodnotu s, a rozdělí strom na dva BVS T_1 a T_2 takové, že hodnoty T_1 jsou menší než s a hodnoty v T_2 jsou $\geq s$.
- **Úloha 7.** k-tý prvek: Jak upravit BVS, aby dokázal pro libovolné k najít k-tý nejmenší prvek?
- Promyslete, jak se změní implementace AVL stromu když po něm kromě operací SEARCH, INSERT a DELETE chceme i tuto funkci.