Course Code	Course Title	L	T	Р	С
PMDS505L	Data Mining and Machine Learning	3	0	0	3
Pre-requisite	NIL	Syl	Syllabus version		
		1.0			

Course Objectives

- 1. Understand the role of separate database for decision making.
- 2. Learn the core ideas of data mining techniques in different case studies.
- 3. Inculcate the concept learning and Machine learning theory.

Course Outcomes

At the end of the course -students will be able to:

- 1. Gain knowledge over the importance of KDD and Data Mining
- 2. Recognize the key areas and issues in data mining.
- 3. Identify data discrepancies and eliminate anomalies and comprehend different types of learning.
- 4. Predict the outcome based on regression and compute optimal hyperplane and support vectors for data classification.
- 5. Analyse the data using the machine learning methods to address social, engineering and business problems.

Module:1 | Fundamentals of Data Mining

4 hours

Introduction to data mining - Data types -Measures of similarity and dissimilarity - Data mining tools supervised and unsupervised learning - Classification of Data Ming Systems - Data Mining Task Primitives - Major issues in Data mining.

Module:2 Data Warehousing

4 hours

Data Warehousing Components - Multi-Dimensional Data Model - Data Warehouse Architecture - Data Warehouse Implementation - Mapping the Data Warehouse to Multiprocessor Architecture - OLAP - Need - Categorization of OLAP Tools -Uses of data warehouse.

Module:3 | The Ingredients of Machine Learning

8 hours

Machine Learning – Types; Data – Getting the data - visualizing the data - preparing the data; Selecting and Training a Model – Fine tuning a Model: Grid Search – Randomized Search - Main Challenges: Data Inadequacy – Non-representativeness – Irrelevant features – -Bias-Variance- Overfitting the Model – Underfitting the Model.

Module:4 | Supervised Learning Techniques

8 hours

Binary Classifier – Performance Measures: Cross –Validation – Confusion Matrix – Precision and Recall – Multiclass classification – Mutli-label classification; Linear Regression – Gradient Descent: Batch Gradient – Stochastic Gradient Descent – Mini-batch Gradient Descent; Polynomial Regression –Logistic Regression – Bayes Classification - Estimating Probabilities -Decision Boundaries -Softmax Regression.

Module:5 | Ensemble Machine Learning

6 hours

Linear SVM with Soft Margin Classification – Non-linear SVM Classification: Polynomial features –Similarity features – Gaussian Kernel; SVM Regression. Decision Trees and Random Forests: Training and Visualizing a Decision Tree – CART Algorithm – Gini Impurity; Bagging – Pasting – Random Forests – Boosting: Adaboost and Gradient Boosting – Stacking - Explainability.

Module:6 Dimensionality Reduction

6 hours

Main approaches – Projection and Manifold Learning – PCA (Principal Component Analysis): Preserving the Variance – Principal Components – Projecting down to Dimensions – Randomized PCA – Kernel PCA.

		Unsupervised Learning				7 hours			
Clustering: K-means Clustering – Limitations – Clustering for Image Segmentation									
-Preprocessing - Semi supervised learning - DBSCAN - Hierarchical - Partitional -									
Gaussian Mixtures.									
Module:8		Contemporary Issues							
		-							
				Total	Lecture hours	45 hours			
Text Book(s)									
1		Alpaydin Ethem, Introduction to Machine Learning, 2019, 3 rd Edition, PHI							
	Learning Private Limited.								
2	Mohammed J. Zaki and Wagner Meira, Jr., Data Mining and Machine								
	Learning: Fundamental Concepts and Algorithms, 2020, 2 nd Edition, Cambridge								
	University Press.								
Reference Book(s)									
1	Balas K Natarajan, Machine Learning, 2014, Elsevier Science.								
2	Deisenroth, Marc Peter, A., Aldo Faisal and Cheng Soon Ong., Mathematics for								
	machine learning, 2019, Cambridge University Press.								
Mode of Evaluation: CAT, Assignment, Quiz and FAT									
Recommended by Board of Studies 15-02-2024									
Ар	Approved by Academic Council No. 73 Date 14-03-2024								