第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.1 无符号数和有符号数

- 一、无符号数
- 二、有符号数
 - 1、机器数与真值
 - 2、原码表示法
 - 3、补码表示法
 - 4、反码表示法
 - 5、移码表示法

- ✓ 定义
- ✓ 特点
- ✓ 举例
 - > 机器数与真值的转换
 - 不同机器数形式之间 的转化
- ✓ 机器数表示的范围与 其字长有关

6.1 无符号数和有符号数

一、无符号数

寄存器的位数

反映无符号数的表示范围

8位

 $0 \sim 255$

16位

 $0 \sim 65535$

二、有符号数

6.1

1. 机器数与真值

真值

带符号的数

+ 0.1011

-0.1011

+ 1100

-1100

机器数

符号数字化的数

小数点的位置

小数点的位置

小数点的位置

小数点的位置

2. 原码表示法

6.1

(1) 定义

整数
$$[x]_{\mathbb{R}} = \left\{ \begin{array}{ll} \mathbf{0}, & x & 2^n > x \ge 0 \\ 2^n - x & \mathbf{0} \ge x > -2^n \end{array} \right.$$

x 为真值 n 为整数的位数

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

x 为真值

如 x = +0.110

$$[x]_{\mathbb{R}} = 0 \cdot 1101$$

用 小数点 将符号 - 位和数值部分隔开

$$x = -0.1101$$
 $[x]_{\text{ff}} = 1 - (-0.1101) = 1.1101$

$$x = +0.1000000$$
 $[x]_{\text{ff}} = 0$

$$[x]_{\mathbb{R}} = 0$$
. 1000000 用小数点将符号 _ 位和数值部分隔开

$$x = -0.1000000$$
 $[x]_{\mathbb{R}} = 1 - (-0.1000000) = 1.1000000$

6.1

例 6.1 已知 $[x]_{\mathbb{R}} = 1.0011$ 求 x - 0.0011

解:由定义得

$$x = 1 - [x]_{\text{ff}} = 1 - 1.0011 = -0.0011$$

例 6.2 已知
$$[x]_{\mathbb{R}} = 1,1100$$
 求 $x - 1100$

解:由定义得

$$x = 2^4 - [x]_{\text{ff}} = 10000 - 1,1100 = -1100$$

例 6.3 已知 $[x]_{\mathbb{R}} = 0.1101$ 求 x

6.1

解: 根据 定义 : $[x]_{\mathbb{R}} = 0.1101$

$$x = +0.1101$$

解: 设x = +0.0000 [+0.0000]_原 = 0.0000

$$x = -0.0000$$
 $[-0.0000]_{\text{ff}} = 1.0000$

同理,对于整数 $[+0]_{\mathbb{R}} = 0,0000$

$$[-0]_{\mathbb{R}} = 1,0000$$

:
$$[+0]_{\mathbb{R}} \neq [-0]_{\mathbb{R}}$$

原码的特点:简单、直观

6.1

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数 就可使 减 —— 加

3. 补码表示法

6.1

(1) 补的概念

• 时钟

$$\frac{6}{+9}$$

可见 - 3 可用 + 9 代替 减法 — 加法 - 12

记作
$$-3 \equiv +9 \pmod{12}$$

$$-5 \equiv +7 \pmod{12}$$

结论

6.1

自然去掉

- >一个负数加上"模"即得该负数的补数
- ▶ 一个正数和一个负数互为补数时 它们绝对值之和即为 模 数
 - 计数器 (模 16) 1011 ──0000?

$$\begin{array}{ccc}
 1011 & & 1011 \\
 -1011 & & +0101 \\
\hline
 0000 & & 10000
\end{array}$$

可见-1011 可用 + 0101 代替

记作 $-1011 \equiv +0101 \pmod{2^4}$

同理 $-011 \equiv +101$ (mod 2^3)

 $-0.1001 \equiv +1.0111 \pmod{2}$

(2) 正数的补数即为其本身

6.1

 $(\text{mod}2^4)$ 两个互为补数的数 + 0101 分别加上模 +10000+10000+ 0101 结果仍互为补数 $(\text{mod}2^4)$ $\therefore +0101 \equiv +0101$ 丢掉 $+0101 \rightarrow +0101$ **- 1011** $[0],0101 \longrightarrow ^{*}_{+}0101$ $(\text{mod } 2^{4+1})$ -1011 = 100000**- 1011** 用 逗号 将符号位 1,0101 和数值部分隔开

(3) 补码定义

6.1

整数

$$[x]_{\nmid h} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

如
$$x = +1010$$
 $x = -1011000$
$$[x]_{\stackrel{}{\mathbb{A}}} = 0,1010$$

$$[x]_{\stackrel{}{\mathbb{A}}} = 2^{7+1} + (-1011000)$$

$$= 1000000000$$

$$= 1011000$$

$$1,0101000$$

小数

如

$$[x]_{\stackrel{}{\mathbb{A}}} = \left\{ egin{array}{ll} x & 1 > x \geq 0 \ 2 + x & 0 > x \geq -1 \pmod{2} \end{array}
ight.$$
 x 为真值
 $x = + 0.1110$ $x = -0.1100000$
 $[x]_{\stackrel{}{\mathbb{A}}} = 0.1110$ $[x]_{\stackrel{}{\mathbb{A}}} = 2 + (-0.11000000)$ $= 10.00000000$ $- 0.11000000$ $- 0.11000000$ 和数值部分隔开

(4) 求补码的快捷方式

6.1

又
$$[x]_{\mathbb{R}} = 1,1010$$

当真值为负时,补码可用原码除符号位外 每位取反,末位加1求得 (5) 举例

6.1

例 6.5 已知 $[x]_{\stackrel{}{\Rightarrow}} = 0.0001$

解: 由定义得 x = +0.0001

例 6.6 已知 $[x]_{\stackrel{}{\mathbb{A}}} = 1.0001$ $[x]_{\stackrel{}{\mathbb{A}}} \stackrel{?}{\longrightarrow} [x]_{\stackrel{}{\mathbb{B}}}$ x $[x]_{\stackrel{}{\mathbb{B}}} = 1.1111$

解: 由定义得 $\therefore x = -0.1111$

$$x = [x]_{\nmid h} - 2$$

$$= 1.0001 - 10.0000$$

$$= -0.1111$$

例 6.7 已知 $[x]_{\stackrel{1}{h}} = 1,1110$

6.1

解: 由定义得

$$[x]_{\stackrel{?}{\longrightarrow}}[x]_{\stackrel{}{\otimes}}$$

$$x = [x]_{k} - 2^{4+1}$$

$$[x]_{\text{fi}} = 1,0010$$

$$= 1,1110 - 100000$$
 $\therefore x = -0010$

$$\therefore x = -0010$$

$$= -0010$$

当真值为负时,原码可用补码除符号位外

每位取反,末位加1求得

练习 求下列真值的补码

6.1

真值	$[x]_{ eqh}$	[x] _原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{\frac{1}{1}} = [-$	· 0.0000	0.0000
$x = \boxed{-0.0000}$	0.0000	1.0000
x = -1.0000	1.0000	不能表示
由小数补码定义 [x]		$x \geq 0$
	$\begin{array}{ccc} (2+x) & 0 > \end{array}$	$x \ge -1 \pmod{2}$

$$[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

4. 反码表示法

6.1

(1) 定义

整数

小数

$$[x]_{ar{eta}} = egin{cases} x & 1 > x \geq 0 \ (2-2^{-n}) + x & 0 \geq x > -1 \pmod{2-2^{-n}} \ x$$
 为真值 n 为小数的位数
$$x = + 0.1101 & x = -0.1010 \ [x]_{ar{eta}} = & 0.1101 & [x]_{ar{eta}} = (2-2^{-4}) - 0.1010 \ & = 1.1111 - 0.1010 \ & = 1.0101 \ & = 1.0101 \ \end{pmatrix}$$
 和数值部分隔开

```
(2) 举例
```

```
例 6.8 已知 [x]_{\overline{\nu}} = 0,1110 求 x
  解:
          由定义得 x = +1110
例6.9 已知 [x]_{\overline{\nu}} = 1,1110 求 x
  解: 由定义得 x = [x]_{\overline{k}} - (2^{4+1} - 1)
                            = 1,1110 -11111
                            = -0001
例 6.10 求 0 的反码
  解: 设x = +0.0000 [+0.0000]<sub>反</sub>= 0.0000
              x = -0.0000 [-0.0000]_{\text{F}} = 1.1111
同理,对于整数 [+0]_{\mathbb{P}} = 0,0000 [-0]_{\mathbb{P}} = 1,1111
               \therefore [+0]_{\bowtie} \neq [-0]_{\bowtie}
```

三种机器数的小结

- 6.1
- ▶最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

例6.11 设机器数字长为8位(其中1位为符号位)6.1 对于整数,当其分别代表无符号数、原码、补码和 反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
00000000	0	+0	± 0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
•	•	•	•	•
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
•	•	•	•	•
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

设 $[y]_{\geqslant 1} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot y_n$

 $< I > [y]_{\nmid h} = 0. y_1 y_2 ... y_n$

[y]₄连同符号位在内,每位取反,末位加1

即得[-y]**

$$[-y]_{\nmid h} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n}$$

 $[[y]_{\nmid k} = 1. y_1 y_2 \cdots y_n]$ < II >

[y]*连同符号位在内, 每位取反, 末位加1

即得[-y]*

$$[-y]_{\nmid h} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

5. 移码表示法

6.1

补码表示很难直接判断其真值大小

如 十进制

补码

$$x = +21$$

-10101

$$x = -21$$

$$x = +31$$

$$x = -31$$

$$x + 2^{5}$$

$$+10101 + 1000000 = 110101$$
 \rightarrow \rightarrow

$$-10101 + 100000 = 001011$$

$$+111111 + 1000000 = 11111111$$

$$-11111 + 100000 = 000001$$

(1) 移码定义

$$[x]_{38} = 2^n + x \quad (2^n > x \ge -2^n)$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如

$$x = 10100$$

$$[x]_{8} = 2^{5} + 10100 = 1,10100$$

$$x = -10100$$

用 逗号 将符号位和数值部分隔开

$$[x]_{8} = 2^5 - 10100 = 0.01100$$

(2) 移码和补码的比较

设
$$x = +1100100$$

$$[x]_{8} = 2^{7} + 1100100 = 1,1100100$$

$$[x]_{4} = 0,1100100$$
设 $x = -1100100$

$$[x]_{8} = 2^{7} - 1100100 = 0,0011100$$

$$[x]_{4} = 1,0011100$$

补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-100000 -11111 -11110 : -00001 ±00000 +00001 +00010 :	100000 100001 100010 : 111111 000000 000001 000010 :	000000 000001 000010 : 011111 100000 100001 100010 :	0 1 2 : 31 32 33 34 :
+ 11110 + 11111	$egin{array}{c} 0\ 1\ 1\ 1\ 1\ 0 \\ 0\ 1\ 1\ 1\ 1\ 1 \end{array}$	111110 11111	62 63

6.1

(4) 移码的特点

6.1

> 当
$$x = 0$$
 时 $[+0]_{8} = 2^{5} + 0 = 1,00000$

$$[-0]_{8} = 2^{5} - 0 = 1,00000$$
∴ $[+0]_{8} = [-0]_{8}$

 \rightarrow 当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 - 100000 = 000000$

可见,最小真值的移码为全 0 用移码表示浮点数的阶码 能方便地判断浮点数的阶码大小

6.2 数的定点表示和浮点表示

- 一、定点表示
- 二、浮点表示
 - -1. 浮点数的表示形式
 - -2. 浮点数的表示范围
 - -3. 浮点数的规格化形式
 - -4. 浮点数的规格化
- 三、举例
- 四、IEEE 754 标准

二、浮点表示

- 为什么在计算机中要引入浮点数表示?
- 浮点表示的格式是什么?
- 尾数和阶码的基值必须是2吗? 基值的影响?
- 表数范围与精度和哪些因素有关?
- 为什么要引入规格化表示?
- 目前浮点数表示格式的标准是什么?

二、浮点表示

- 为什么要引入浮点数表示
 - -编程困难,程序员要调节小数点的位置;
 - 数的表示范围小,为了能表示两个大小相差很大的数据,需要很长的机器字长;
 - 例如:太阳的质量是0.2*10³⁴克,一个电子的质量大约为0.9*10⁻²⁷克,两者的差距为10⁶¹以上,若用定点数据表示: 2*>10⁶¹,解的, x>203位。
 - 数据存储单元的利用率往往很低。

二、浮点表示

6.2

$$N = S \times r^{j}$$
 浮点数的一般形式 S 尾数 j 阶码 r 尾数的基值 计算机中 r 取 2、4、8、16 等 当 $r = 2$ $N = 11.0101$ $\checkmark = 0.110101 \times 2^{10}$ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$ 计算机中 S 小数、可正可负 j 整数、可正可负

4

1. 浮点数的表示形式

6.2

- $S_{\rm f}$ 代表浮点数的符号
- n 其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- j_f和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

6.2

最小负数

上溢

$$-2^{(2^{m}-1)}\times(1-2^{-n})$$

$$-2^{15} \times (1-2^{-10})$$

最小正数

$$2^{-(2^m-1)} \times 2^{-n}$$

$$2^{-15} \times 2^{-10}$$

设 m=4

$$n = 10$$

最大正数

 $2^{(2^{m}-1)} \times (1-2^{-n})$

 $2^{15} \times (1-2^{-10})$

$$-2^{-(2^{m}-1)} \times 2^{-n}$$

$$-2^{-15} \times 2^{-10}$$

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

: 如果是定点数15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15} \times 0.\times \times \times \cdots \times \times \times$$
 $m = 4, 5, 6, \cdots$

满足 最大精度 可取 m = 4, n = 18

3. 浮点数的规格化形式

6.2

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位,阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

例如: 设m=4, n=10, r=2

6.2

尾数规格化后的浮点数表示范围

最大负数
$$2^{-1111} \times (-0.1000000000) = -2^{-15} \times 2^{-1} = -2^{-16}$$

最小负数
$$2^{+1111} \times (-0.1111111111)$$
 $= -2^{15} \times (1-2^{-10})$ $10 \uparrow 1$

三、举例 例 6.13 将 $+\frac{19}{128}$ 写成二进制定点数、浮点数及在定点 机和浮点机中的机器数形式。其中数值部分均取10位, 数符取1位,浮点数阶码取5位(含1位阶符),尾数 规格化。 二进制形式 x = 0.0010011定点表示 x = 0.0010011000浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$ 定点机中 $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{R}} = 0.0010011000$ 浮点机中 $[x]_{\text{ff}} = 1,0010; 0.1001100000$ $[x]_{3} = 1, 1110; 0.1001100000$ $[x]_{\bowtie} = 1, 1101; 0.1001100000$

例 6.14 将 -58 表示成二进制定点数和浮点数, 6.2 并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

解: 设x = -58

二进制形式 x = -111010

定点表示 x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

浮点机中

 $[x]_{\text{ff}} = 1,0000111010$ $[x]_{\text{ff}} = 0,0110; 1.1110100000$

 $[x]_{\nmid \mid} = 1, 1111000110$ $[x]_{\nmid \mid} = 0, 0110; 1.0001100000$

 $[x]_{\mathbb{K}} = 1, 1111000101$ $[x]_{\mathbb{K}} = 0, 0110; 1.0001011111$

 $[x]_{\text{mb}} = 1,0110; 1.0001100000$

机器零

6.2

- ▶ 当浮点数 尾数为 0 时,不论其阶码为何值 按机器零处理
- 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值,按机器零处理

如 m=4 n=10

当阶码和尾数都用补码表示时,机器零为

 $\times, \times \times \times \times;$ 0.00 ··· 0

(阶码 = -16) 1, 0 0 0 0; ×.×× ··· ×

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0

有利于机器中"判0"电路的实现

四、IEEE 754 标准

6.2

S	阶码(含阶符)	尾	数
↑ 数符	小数	[点位置	

尾数为规格化表示

非 "0" 的有效位最高位为 "1" (隐含)

	符号位S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

- 一、移位运算
 - -1、移位运算的数学意义
 - -2、算术移位规则
 - -3、算术移位的硬件实现
 - -4、算术移位与逻辑移位的区别

- 一、移位运算
 - 1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

6.3

符号位不变

、反码 0	
码 0	
	0
· •	1
_	码左移添右移添

码

反

 $x=-0.x_1x_2...x_k100...000$ $[x]_{\frac{1}{k}}=1.\overline{x}_1\overline{x}_2...\overline{x}_k100...000$ 例6.16

6.3

设机器数字长为 8 位(含 1 位符号位),写出 A = +26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解: A = +26 = +11010

则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{R}} = 0,0011010$

移位操作	机器数	对应的真值
44 公 益	$[A]_{\mathbb{F}}=[A]_{\mathbb{A}}=[A]_{\mathbb{F}}$	126
移位前	0,0011010	+26
左移一位	0,0110100	+52
上 左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

例6.17

6.3

设机器数字长为 8 位(含 1 位符号位),写出 A = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:

$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,0110100	- 52
左移两位	1,1101000	- 104
右移一位	1,0001101	- 13
右移两位	1,0000110	-6

补	码
---	---

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1, <mark>1</mark> 110011	- 13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	- 26
左移一位	1,1001011	- 52
左移两位	1,0010111	- 104
右移一位	1,1110010	-13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

→丢1

影响精度

6.3

正确

影响精度

影响精度

59

4. 算术移位和逻辑移位的区别

6.3

10110010

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110 逻辑右移 01011001

算术左移 00100110 算术右移 11011001 (补码)

高位1移丢

- 一、移位运算
 - -1、移位运算的数学意义
 - -2、算术移位规则
 - -3、算术移位的硬件实现
 - -4、算术移位与逻辑移位的区别

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数 就可使 减 —— 加

- 二、加减法运算
 - -1、补码加减法运算的公式
 - 2、举例
 - -3、溢出的判断
 - -4、补码加减法的硬件配置

二、加减法运算

6.3

1. 补码加减运算公式

(1) 加法

整数
$$[A]_{\nmid h} + [B]_{\nmid h} = [A+B]_{\nmid h} \pmod{2^{n+1}}$$

小数
$$[A]_{\stackrel{?}{\nmid k}} + [B]_{\stackrel{?}{\nmid k}} = [A+B]_{\stackrel{?}{\nmid k}} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$

小数
$$[A - B]_{\nmid h} = [A + (-B)]_{\nmid h} = [A]_{\nmid h} + [-B]_{\nmid h} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

2. 举例

6.3

例 6.18 设 A = 0.1011, B = -0.0101求 $[A+B]_{\lambda k}$ 验证 解: $[A]_{\stackrel{*}{\wedge}} = 0.1011$ 0.1011 $+[B]_{k} = 1.1011$ -0.01010.0110 $[A]_{\nmid h} + [B]_{\nmid h} = 10.0110 = [A + B]_{\nmid h}$ A + B = 0.0110例 6.19 设 A = -9, B = -5求 [A+B]** 验证 解: $[A]_{i} = 1,0111$ -1001 $+[B]_{k} = 1, 1011$ +-0101 $[A]_{\nmid h} + [B]_{\nmid h} = 11, 0010 = [A + B]_{\nmid h}$ **-1110**

66

例 6.20 设机器数字长为 8 位(含 1 位符号位) 6.3 且 A=15, B=24,用补码求 A-B

解:
$$A = 15 = 0001111$$

 $B = 24 = 0011000$
 $[A]_{\stackrel{?}{\uparrow}} = 0,0001111$ $[B]_{\stackrel{?}{\uparrow}} = 0,0011000$
 $+ [-B]_{\stackrel{?}{\uparrow}} = 1,1101000$

$$[A]_{\nmid h} + [-B]_{\nmid h} = 1,1110111 = [A-B]_{\nmid h}$$

 $\therefore A - B = -1001 = -9$

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$,用补码求 $x+y$ $x+y=-0.1100=-\frac{12}{16}$ 错

练习 2 设机器数字长为 8 位 (含 1 位符号位) 且A = -97, B = +41, 用补码求A - BA - B = +1110110 = +118 错

3. 溢出判断

6.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 中 符号位的进位 = 1 溢出

如
$$1 \oplus 0 = 1$$
 $1 \oplus 0 = 1$ $1 \oplus 1 = 1$ $1 \oplus 1 = 0$ $1 \oplus 1 = 0$

(2) 两位符号位判溢出

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda} + [y]_{\lambda} = [x + y]_{\lambda}$$
 (mod 4)

$$[x-y]_{k} = [x]_{k} + [-y]_{k}$$
 (mod 4)

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

A、X均n+1位

用减法标记 G_S 控制求补逻辑

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

- 三、乘法运算
 - 计算机中怎么做二进制的乘法运算呢
 - 可以分析一下笔算乘法是怎么做的
 - 笔算乘法的分析
 - 笔算乘法的改进
 - 原码的乘法运算
 - 补码的乘法运算

三、乘法运算

6.3

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

- 0.1101
- ×0.1011 ✓ 符号位单独处理

1101

- ✓ 乘数的某一位决定是否加被乘数
- 1101
- 0000

? 4个位积一起相加

1101

- ✓ 乘积的位数扩大一倍
- 0.10001111

2. 笔算乘法改进

6.3

第八步 右移一位,得结果

8

3. 改进后的笔算乘法过程(竖式) 6.3

部分积	乘数	说明
0.0000	1011	初态,部分积 = 0
+0.1101	=	乘数为1,加被乘数
0.1101		
0.0110	1101	$\rightarrow 1$,形成新的部分积
+0.1101	=	乘数为1,加被乘数
1.0011	1	
0.1001	1110	$\rightarrow 1$,形成新的部分积
+ 0.0000	=	乘数为0,加0
0.1001	11	
0.0100	111 <u>1</u>	\rightarrow 1,形成新的部分积
+0.1101	_	乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1,得结果

小结 6.3

- p 乘法 运算可用 加和移位实现 $p_1 = 4$,加 4 次,移 4 次
- ▶ 由乘数的末位决定被乘数是否与原部分积相加,然后→1位形成新的部分积,同时乘数→1位 (末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加
 - 硬件 3个寄存器,其中2个具有移位功能
 - 1个全加器

- 三、乘法运算
 - 计算机中怎么做二进制的乘法运算呢
 - 可以分析一下笔算乘法是怎么做的
 - 笔算乘法的分析
 - 笔算乘法的改进
 - 原码的乘法运算
 - 补码的乘法运算

运算规则 递推公式 举例 硬件配置

4. 原码乘法

6.3

(1) 原码一位乘运算规则 以小数为例

设
$$[x]_{\mathbb{F}} = x_0 \cdot x_1 x_2 \cdots x_n$$

$$[y]_{\mathbb{F}} = y_0 \cdot y_1 y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{F}} = (x_0 \oplus y_0) \cdot (0 \cdot x_1 x_2 \cdots x_n) (0 \cdot y_1 y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0) \cdot x^* y^*$$
式中 $x^* = 0 \cdot x_1 x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0 \cdot y_1 y_2 \cdots y_n$$
 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*} + z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*} + z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*} + z_{n-1})$$

例 6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 6.3

解:	数值部分	的运算	•
/ / 	部分积	乘数	说 明
	0.0000	1101	部分积 初态 $z_0 = 0$
_ +	0.1110		+ x*
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	0.1110		
逻辑右移	0.0111	0110	→1 ,得 z ₁
_ +	0.0000		+ 0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0111	0	
逻辑右移	0.0011	1011	→1 , 得 z ₂ + x*
_+	0.1110	=	$+x^*$
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	1.0001	10	
逻辑右移	0.1000	1 1 0 <u>1</u>	$\underset{+x^*}{\longrightarrow}$ 1,得 z_3
	0.1110		$+x^*$
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.0110	110	
[芝	0.1011	0110	→1 ,得 z ₄

例6.21 结果

6.3

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

A、X、Q均n+1位

移位和加受末位乘数控制

6.3 定点运算

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

6.3 定点运算

- 三、乘法运算
 - -1. 分析笔算乘法
 - 2. 笔算乘法的改进
 - -3. 改进后的乘法笔算过程
 - -4. 原码一位乘
 - -5.补码一位乘

5. 补码乘法

6.3

(1) 补码一位乘运算规则

以小数为例 设被乘数
$$[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$$
 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

① 被乘数任意,乘数为正

与原码乘相似 但加和移位按补码规则运算乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正 ③ Booth 算法(被乘数、乘数符号任意) 6.3

④ Booth 算法递推公式

$$\begin{split} [z_0]_{\nmid h} &= 0 \\ [z_1]_{\nmid h} &= 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0 \\ &\vdots \\ [z_n]_{\nmid h} &= 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

$$[x \cdot y]_{\nmid h} = (y_1 - y_0)[x]_{\nmid h} + [z_n]_{\nmid h}$$

最后一步不移位

如何实现 $+(y_{i+1}-y_i)[x]_{i}$?

y_i	y_{i+1}	$y_{i+1} - y_i$	操作	
0	0	0	→1	
0	1	1	$+[x]_{\nmid h} \rightarrow 1$	
1	0	-1	$+[-x]_{\uparrow \uparrow} \rightarrow 1$	
1	1	0	→1	

例6.23 已知 x = +0.0011 y = -0.1011 求 [xy] 6.3

人 刀		1 _ 1	1	
解: 00.0000	1.0101	0	. []	$[x]_{\nmid h} = 0.0011$
+11.1101			$+[-x]_{\nmid h}$	
补码 11.1101				$[y]_{n} = 1.0101$
	1 101 <u>0</u>	1	→1	$[-x]_{n} = 1.1101$
+ 00.0011			$+[x]_{ ext{?}}$,,
补码 00.001	1			•
	11 101	0	→1	
+ 11.1101			+[- <i>x</i>] _ネ	_
11.1101	11			·[rv]
	111 10	1	→ 1	$\therefore [xy]_{\nmid h}$
+ 0 0 . 0 0 1 1			$+[x]_{\lambda}$	=1.11011111
补码 00.001	111			-
右移 >00.000	1111 1	0	→ 1	
+ 11.1101			+[-x] _ネ	
$\overline{11.1101}$	1111		最后一	- 步不移位

(2) Booth 算法的硬件配置

6.3

A、X、Q 均 n+2 位 移位和加法操作受乘数末两位控制

乘法小结

6.3

- 整数乘法与小数乘法过程完全相同可用 逗号 代替小数点
- ➤ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

6.3 定点运算

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

6.3 定点运算

- 四、除法运算
 - -1. 笔算除法是怎么做的
 - 2. 如何用计算机硬件来模拟笔算除法的过程
 - 恢复余数法
 - 加减交替法

1. 分析笔算除法

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001111 \\ \hline 0.00000111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ? 余数不动低位补"0"减右移一位的除数
- ?上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.00001111

2. 笔算除法和机器除法的比较

6.3

笔算除法

商符单独处理 心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器上商位置 不固定

机器除法

符号位异或形成

$$|x| - |y| > 0$$
上商 1

$$|x| - |y| < 0$$
上商 0

余数 左移一位 低位补 "0" 减 除数

1倍字长加法器

在寄存器 最末位上商

3. 原码除法

6.3

以小数为例

$$[x]_{\mathbb{F}} = x_{0}. x_{1}x_{2} ... x_{n}$$

$$[y]_{\mathbb{F}} = y_{0}. y_{1}y_{2} ... y_{n}$$

$$[\frac{x}{y}]_{\mathbb{F}} = (x_{0} \oplus y_{0}). \frac{x^{*}}{y^{*}}$$
式中 $x^{*} = 0. x_{1}x_{2} ... x_{n}$ 为 x 的绝对值 $y^{*} = 0. y_{1}y_{2} ... y_{n}$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

(1) 恢复余数法

6.3

例6.24
$$x = -0.1011$$
 $y = -0.1101$ 求 $\left[\frac{x}{y}\right]_{\mathbb{F}}$ 解: $[x]_{\mathbb{F}} = 1.1011$ $[y]_{\mathbb{F}} = 1.1101$ $[y^*]_{\mathbb{F}} = 0.1101$ $[-y^*]_{\mathbb{F}} = 1.0011$

(1) $x_0 \oplus y_0 = 1 \oplus 1 = 0$

<u> </u>	$w_0 - y_0 = z$	•	
2	被除数(余数)	商	说明
	0.1011	0.0000	
	+ 1.0011		+[- <i>y</i> *] _{*\}
_	1.1110	0	余数为负,上商 0
	+ 0.1101		恢复余数 +[y*] _补
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.1011	0	恢复后的余数
逻辑左移	1.0110	0	←1
	+ 1.0011		+[-y*] _{ネト}
\m_&H _L _	0.1001	0 1	余数为正,上商1
逻辑左移	1.0010	0 1	← 1
	+ 1.0011		$+[-y^*]_{_{}_{}_{}_{}}$

_被除数(余数)	商	说 明	6.3
0.0101	011	余数为正,上商1	_
逻辑左移 0.1010	011	←1	
+ 1.0011		$+[-y^*]_{ earrow}$	
1.1101	0110	余数为负,上商 0	
+ 0.1101		恢复余数 +[y*] _补	
0.1010	0110	恢复后的余数	
逻辑左移 1.0100	0110	←1	
+ 1.0011		$+[-y^*]_{ egh}$	
0.0111	01101	余数为正,上商1	

$$\frac{x^*}{y^*} = 0.1101$$
∴ $\left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$

上商5次

第一次上商判溢出

余数为正 上商1

移4次

余数为负 上商 0,恢复余数

(2) 不恢复余数法(加减交替法)

6.3

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$

余数
$$R_i < 0$$
 上商 "0", $R_i + y^*$ 恢复余数

$$2(R_i+y^*)-y^*=2R_i+y^*$$

• 不恢复余数法运算规则

$$2R_i - y^*$$

$$2R_i + y^*$$

加减交替

例6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

解: 0.1011	0.0000	F 4.7	$[x]_{\bar{\mathbb{R}}} = 1.1$
+1.0011		+[- <i>y</i> *] _补	F 7 4 4
逻辑 1.1110	0	余数为负,上商 0	$[y]_{\mathbb{R}}=1.1$
左移 1.1100	0	←1	$[x^*]_{k} = 0.1$
逻辑 +0.1101		+[<i>y</i> *] _{ネト}	$[y^*]_{\nmid h} = 0.1$
左移	0 1	余数为正,上商1	
1.0010	0 1	←1	$[-y^*]_{\nmid h}=1.0$
+1.0011		$+[-y^*]_{ eqh}$	
逻辑 0.0101	011	余数为正,上商1	1
0.1010	011	←1	
+1.0011		$+[-y^*]_{ egh}$	
逻辑	0110	余数为负,上商0	
1.1010	0110	← 1	
+0.1101		$+[y^{-}]_{\nmid h}$	
0.0111	01101	余数为正,上商1	

$$[y]_{\mathbb{R}} = 1.1101$$

$$[x^*]_{\nmid k} = 0.1011$$

$$[y^*]_{\not=} = 0.1101$$

$$[-y^*]_{\nmid k} = 1.0011$$

例6.25 结果

②
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \ \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移 n 次,加 n+1 次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

6.3

A、X、Q均n+1位 用 Q_n 控制加减交替

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.4 浮点四则运算

- 浮点数的加减运算
 - 对阶
 - 尾数求和
 - 规格化
 - 舍入
 - 溢出判断
 - 举例
- 浮点的乘除法运算

–

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 永例を
$$= \begin{cases} = 0 \quad j_x = j_y & \exists x \in J_y \\ > 0 \quad j_x > j_y \end{cases} \begin{cases} x \in J_y \text{ for a fixed of } S_x \leftarrow 1, j_x - 1 \\ y \in J_x \leftarrow J_y \end{cases}$$
 $= \begin{cases} x \in J_x \leftarrow J_y \text{ for a fixed of } S_x \leftarrow 1, j_x - 1 \\ y \in J_x \leftarrow J_y \leftarrow$

(2) 对阶原则

小阶向大阶看齐

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 6.4 求 x + y

解:
$$[x]_{\stackrel{?}{\uparrow}} = 00, 01; 00.1101$$
 $[y]_{\stackrel{?}{\uparrow}} = 00, 11; 11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\stackrel{?}{N}} = [j_x]_{\stackrel{?}{N}} - [j_y]_{\stackrel{?}{N}} = 00,01$$

$$+ 11,01$$

$$11,10$$
阶差为负 (-2) $: S_x \rightarrow 2$ $j_x + 2$

② 对阶 $[x]_{*k'} = 00, 11; 00.0011$

2. 尾数求和

3. 规格化

6.4

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \le |S| < 1$$

(2) 规格化数的判断

$$S>0$$
 规格化形式 $S<0$ 规格化形式 真值 $0.1\times\times\cdots\times$ 真值 $-0.1\times\times\cdots\times$ 原码 $0.1\times\times\cdots\times$ 原码 $1.1\times\times\cdots\times$ 补码 $1.0\times\times\cdots\times$ 反码 $0.1\times\times\cdots\times$

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{\nmid h} = [1.1] 0 0 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i} 不是规格化的数$

$$S = -1$$

$$[S]_{\nmid h} = [1.0] 0 0 \cdots 0$$

(3) 左规

6.4

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例 $[x+y]_{*} = 00, 11; 11.1001$

左规后 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 10; 11.0010$

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数右移一位,阶码加1

例6.27
$$x = 0.1101 \times 2^{10}$$
 $y = 0.1011 \times 2^{01}$ 6.4

解:
$$[x]_{\uparrow \downarrow} = 00,010;00.110100$$
 $[y]_{\uparrow \downarrow} = 00,001;00.101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $\therefore S_y \longrightarrow 1, j_y + 1$
 $\therefore [y]_{\stackrel{?}{\Rightarrow}} = 00,010; 00.010110$

② 尾数求和

$$[S_x]_{\stackrel{}{ ext{λ}}} = 00. \ 110100$$
 $+ [S_y]_{\stackrel{}{ ext{λ}}} = 00. \ 010110$ 对阶后的 $[S_y]_{\stackrel{}{ ext{$\lambda$}}}$ 尾数溢出需右规

③ 右规 6.4

$$[x+y]_{\nmid k} = 00, 010; 01.001010$$

右规后

$$[x+y]_{3} = 00, 011; 00. 100101$$

$$\therefore x+y=0.100101\times 2^{11}$$

4. 舍入

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置"1"法

例 6.28
$$x = (-\frac{5}{8}) \times 2^{-5}$$
 $y = (\frac{7}{8}) \times 2^{-4}$

6.4

求 x-y (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:
$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{36} = 11,011; 11.011000$$
 $[y]_{36} = 11,100; 00.111000$

$$[y]_{k} = 11, 100; 00. 111000$$

① 对阶

$$[\Delta j]_{\nmid h} = [j_x]_{\nmid h} - [j_y]_{\nmid h} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 : $S_x \longrightarrow 1$, $j_x + 1$

$$\therefore$$
 [x]_{*|-'} = 11, 100; 11. 101100

② 尾数求和

$$[S_x]_{\begin{subarray}{l} [S_x]_{\begin{subarray}{l} [S_x]_{\begin{subarray}{l} [A_x]_{\begin{subarray}{l} [A_x]_{\begin{subar$$

③右规

$$[x-y]_{3} = 11, 100; 10.110100$$

右规后

$$[x-y]_{\nmid h} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

5. 溢出判断

6.4

设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码 在数轴上的表示为

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.5 算术逻辑单元

- · 一、ALU 电路
- 二、快速进位链
 - -1. 并行加法器
 - 2. 串行进位链
 - -3. 并行进位链
 - (1) 单重分组跳跃进位链
 - (2) 双重分组跳跃进位链

6.5 算术逻辑单元

一、ALU 电路

组合逻辑电路

 K_i 不同取值

 F_i 不同

四位 ALU 74181

$$M=0$$
 算术运算

$$M=1$$
 逻辑运算

 $S_3 \sim S_0$ 不同取值,可做不同运算

二、快速进位链

6.5

1. 并行加法器

117

2. 串行进位链

6.5

进位链

传送进位的电路

串行进位链

进位串行传送

以 4 位全加器为例,每一位的进位表达式为

$$C_0 = d_0 + t_0 C_{-1} = \overline{d_0 \cdot \overline{t_0 C_{-1}}}$$

$$C_1 = d_1 + t_1 C_0$$

$$C_2 = d_2 + t_2 C_1$$

设与非门的级延迟时间为t、

$$C_3 = d_3 + t_3 C_2$$

4位 全加器产生进位的全部时间为 8t,

n 位全加器产生进位的全部时间为 $2nt_v$

3. 并行进位链(先行进位,跳跃进位)

6.5

n 位加法器的进位同时产生 以 4 位加法器为例

(1) 单重分组跳跃进位链

6.5

n 位全加器分若干小组,小组中的进位同时产生,小组与小组之间采用串行进位 以n = 16 为例

(2) 双重分组跳跃进位链

6.5

n 位全加器分若干大组,大组中又包含若干小组。每个大组中小组的最高位进位同时产生。 大组与大组之间采用串行进位。

以 n=32 为例

(3) 双重分组跳跃进位链 大组进位分析

以第8小组为例

$$C_{3} = d_{3} + t_{3}C_{2} = \underbrace{d_{3} + t_{3}d_{2} + t_{3}t_{2}d_{1} + t_{3}t_{2}t_{1}d_{0}}_{D_{8}} + \underbrace{t_{3}t_{2}t_{1}t_{0}C_{-1}}_{+ T_{8}C_{-1}}$$

D₈ 小组的本地进位 与外来进位无关

T₈ 小组的传送条件 与外来进位无关 传递外来进位

6.5

同理 第 7 小组
$$C_7 = D_7 + T_7 C_3$$

第 6 小组
$$C_{11} = D_6 + T_6 C_7$$

第 5 小组
$$C_{15} = D_5 + T_5 C_{11}$$

进一步展开得

$$C_3 = D_8 + T_8 C_{-1}$$

$$C_7 = D_7 + T_7 C_3 = D_7 + T_7 D_8 + T_7 T_8 C_{-1}$$

$$C_{11} = D_6 + T_6 C_7 = D_6 + T_6 D_7 + T_6 T_7 D_8 + T_6 T_7 T_8 C_{-1}$$

$$C_{15} = D_5 + T_5 C_{11} = D_5 + T_5 D_6 + T_5 T_6 D_7 + T_5 T_6 T_7 D_8 + T_5 T_6 T_7 T_8 C_{-1}$$

(4) 双重分组跳跃进位链的 大组 进位线路 6.5

以第2大组为例

(5) 双重分组跳跃进位链的 小组 进位线路 6.5

以第8小组为例 只产生低3位的进位和本小组的 D_8T_8

