Московский физико-технический институт (ГУ) Факультет инноваций и высоких технологий Методы оптимизации, весна 2015 Семинар 11, методы условной оптимизации

1. Вычислите одну итерацию метода проекции градиента при выборе α_k методом минимизации значения функции на направлении для функции

$$f(x,y) = (x-1)^2 + (y+1)^2,$$

$$(x,y) \in U := \{(x,y) \in \mathbb{R}^2 : x \geqslant 0, y \geqslant 0\}.$$

Рассмотреть начальные приближения $(x_0, y_0) = (0, 0), (x_0, y_0) = (0, 1), (x_0, y_0) = (1, 0), (x_0, y_0) = (1, 1).$

- 2. Найдите проекцию любой точки $u \in \mathbb{R}^n$ на множество U, если
- а) $U = \{u \in \mathbb{R}^n : |u u_0| \leqslant R\}$ шар радиуса R > 0 с центром в точке u_0 ;
- б) $U = \{u \in \mathbb{R}^n : \langle c, u \rangle = \gamma\}$ гиперплоскость;
- в) $U = \{u \in \mathbb{R}^n : \langle a_i, u \rangle = b_i, i = 1, 2 ..., m\}$ аффинное множество;
- г) $U = \{u \in \mathbb{R}^n : \langle c, u \rangle \leqslant \gamma\}$ замкнутое полупространство, определяемое гипер-плоскостью $\langle c, u \rangle = \gamma$;
- д) п-мерный параллелепипед, то есть множество $U = \{u = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n : \alpha_i \le u_i \le \beta_i, i = 1, 2, \dots, n\}$, где $\alpha_i < \beta_i, i = 1, 2, \dots, n$ заданные числа;
- е) $U = \{u = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n : u_i \ge 0, i = 1, 2, \dots, n\}$ неотрицательный октант пространства \mathbb{R}^n .
- 3. Рассмотрите метод проекции градиента для функции $f(u) = |Au b|^2$ с оптимальным выбором длины шага, где A матрица порядка $m \times n, b \in \mathbb{R}^m$, считая, что множество U имеет вид, описанный в задаче 2. Исследуйте сходимость метода.

Рассмотрим задачу:

$$f(u) \to \inf; \quad u \in U,$$

где U — выпуклое замкнутое ограниченное множество из \mathbb{R}^n , функция $f(u) \in \mathcal{C}^1(U)$. Пусть $u_0 \in U$ — некоторое начальное приближение. Если известно k-е приближение $u_k \in U(k \geqslant 0)$, то приращение функции f(u) в точке u_k можно представить в виде $f(u) - f(u_k) = \langle f'(u_k), u - u_k \rangle + o(|u - u_k|)$. Возьмем главную линейную часть этого приращения $f_k(u) = \langle f'(u_k), u - u_k \rangle$, и определим вспомогательное приближение \overline{u}_k из условий

$$\overline{u}_k \in U, \quad \inf_U f_k(u) = f_k(\overline{u}_k) = \langle f'(u_k), \overline{u}_k - u_k \rangle.$$
 (1)

Так как множество U замкнуто и ограничено, а линейная функция $f_k(u)$ непрерывна, то точка \overline{u}_k из (1) всегда существует. Если функция $f_k(u)$ достигает своей нижней грани на U более чем в одной точке, то в качестве точки \overline{u}_k возьмем любую из них.

Разумеется, так просто получить вспомогательное приближение \overline{u}_k удается далеко не всегда, и вместо точного решения задачи (1) часто приходится довольствоваться

определением какого-либо приближенного решения. А именно, будем предполагать, что оно определяется из следующих условий:

$$\overline{u}_k \in U, \quad f_k(\overline{u}_k) \leqslant \min_{U} f_k(u) + \varepsilon_k, \quad \varepsilon_k \geqslant 0, \quad \lim_{k \to \infty} \varepsilon_k = 0.$$
 (2)

Допустим, что точка \overline{u}_k , удовлетворяющая условиям (2) (или (1)), уже найдена. Тогда следующее (k+1)-е приближение будем искать в виде

$$u_{k+1} = u_k + \alpha_k(\overline{u}_k - u_k), \quad 0 \leqslant \alpha_k \leqslant 1.$$

В силу выпуклости множества U всегда $u_{k+1} \in U$. Описанный метод называется методом условного градиента.

- **4.** Вычислить несколько итераций метода условного градиента с оптимального выбора шага для функции $f(x,y)=x^2+xy+y^2$ при $u\in U=\{(x,y)\in\mathbb{R}^2:0\leqslant x\leqslant 1,-1\leqslant y\leqslant 0\}$, выбирая $(x_0,y_0)=(1,-1),(-1,0),(1,0)$ или (0,0).
- **5.** Вычислите несколько шагов метода условного градиента с оптимальным выбором шага для функции $f(u) = \frac{1}{2} \langle Au, u \rangle \langle b, u \rangle$ на \mathbb{R}^n .
- **6.** Дайте описание различных вариантов метода условного градиента для функции $f(u) = |Au b|^2$, где A матрица $m \times n, b \in \mathbb{R}^m$, а множество U является шаром или параллелепипедом.