Departamento de Matemática, Universidade de Aveiro

Cálculo I — Primeiro Mini-Teste (9/11/2006)

Resolução

- 1. Considere a função f definida por $f(x)=\mathrm{e}^{\frac{\sqrt{x+1}-1}{x^2-1}}.$
 - (a) Determine o domínio de f, D_f .

Indicações para a resolução:

Temos

$$D_f = \{ x \in \mathbb{R} : x + 1 \ge 0 \land x^2 - 1 \ne 0 \}$$
.

Uma vez que:

- $x+1 \ge 0 \iff x \ge -1$;
- $x^2 1 = 0 \iff x = 1 \lor x = -1$;

temos

$$D_f = \{x \in \mathbb{R} : x \ge -1 \land x \ne 1 \land x \ne -1\} =]-1, +\infty[\setminus \{1\}].$$

(b) Determine, caso exista, $x \in D_f$ tal que f(x) = 1.

Indicações para a resolução:

Uma vez que se tem $e^x = 1 \iff x = 0$ temos

$$f(x) = 1 \iff \frac{\sqrt{x+1} - 1}{x^2 - 1} = 0$$

$$\iff \sqrt{x+1} - 1 = 0 \land x \in]-1, +\infty[\setminus \{1\}]$$

$$\iff \sqrt{x+1} = 1 \land x \in]-1, +\infty[\setminus \{1\}]$$

$$\iff x + 1 = 1 \land x \in]-1, +\infty[\setminus \{1\}]$$

$$\iff x = 0 \land x \in]-1, +\infty[\setminus \{1\}]$$

$$\iff x = 0$$

Então a função f tem um único zero x = 0.

(c) Calcule $\lim_{x \to +\infty} f(x)$.

Indicações para a resolução:

Uma vez que

$$\lim_{x \to +\infty} \frac{\sqrt{x+1} - 1}{x^2 - 1} = \lim_{x \to +\infty} \frac{\sqrt{\frac{1}{x^3} + \frac{1}{x^4}} - \frac{1}{x^2}}{1 - \frac{1}{x^2}}$$
$$= 0$$

temos

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \mathrm{e}^{\frac{\sqrt{x+1}-1}{x^2-1}} = 1 .$$

(d) Indique, para cada $k \in \mathbb{R}, \lim_{x \to +\infty} (k f(x)).$

Indicações para a resolução:

Para cada $k \in \mathbb{R}, \lim_{x \to +\infty} (k f(x)) = k \cdot 1 = k.$

Cálculo I — Primeiro Mini-Teste (9/11/2006)

2. Considere a função f definida por $f(x) = x \ln(x+1)$. Utilizando o Teorema de Bolzano, mostre que existe pelo menos um ponto $a \in]1, 2[$ tal que $f(a) = \ln 3$.

Indicações para a resolução:

Uma vez que:

- a função f é contínua no intervalo [1, 2];
- $f(1) = \ln 2$;
- $f(2) = 2 \ln 3$;
- $\ln 2 < \ln 3 < 2 \ln 3$;

o Teorema de Bolzano permite concluir que existe $a \in]1, 2[$ tal que $f(a) = \ln 3$.

3. Caracterize a função inversa da função g definida por $g(x)=\frac{\pi}{2}-\frac{2}{3}\arctan(1-x)$.

Indicações para a resolução:

Por definição de inversa de uma função temos que $D_{q^{-1}} = CD_q$ e $CD_{q^{-1}} = D_q$.

• Determinação do contradomínio de g^{-1} Como a função arcotangente tem domínio \mathbb{R} , temos $D_q = \mathbb{R}$ e, portanto,

$$CD_{q^{-1}} = \mathbb{R}$$
.

• Determinação do domínio de g^{-1} Para todo o $x \in D_g$ temos

$$\begin{split} -\frac{\pi}{2} < \arctan\left(1-x\right) < \frac{\pi}{2} &\iff -\frac{2}{3} \cdot \left(-\frac{\pi}{2}\right) > -\frac{2}{3}\arctan\left(1-x\right) > -\frac{2}{3} \cdot \frac{\pi}{2} \\ &\iff -\frac{\pi}{3} < -\frac{2}{3}\arctan\left(1-x\right) < \frac{\pi}{3} \\ &\iff \frac{\pi}{2} - \frac{\pi}{3} < \frac{\pi}{2} - \frac{2}{3}\arctan\left(1-x\right) < \frac{\pi}{2} + \frac{\pi}{3} \\ &\iff \frac{\pi}{6} < \frac{\pi}{2} - \frac{2}{3}\arctan\left(1-x\right) < \frac{5\pi}{6} \end{split}$$

pelo que

$$D_{g^{-1}} = \left] \frac{\pi}{6}, \frac{5\pi}{6} \right[.$$

• Determinação da expressão analítica que define g^{-1}

$$y = \frac{\pi}{2} - \frac{2}{3}\arctan(1-x) \iff \frac{2}{3}\arctan(1-x) = \frac{\pi}{2} - y$$

$$\iff \arctan(1-x) = \frac{3\pi}{4} - \frac{3}{2}y$$

$$\iff 1 - x = \operatorname{tg}\left(\frac{3\pi}{4} - \frac{3}{2}y\right)$$

$$\iff x = 1 - \operatorname{tg}\left(\frac{3\pi}{4} - \frac{3}{2}y\right)$$

Então, para todo o $x \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right[, \ g^{-1}(x) = 1 - \operatorname{tg}\left(\frac{3\pi}{4} - \frac{3}{2}x\right)\right]$

Resolução Página 2/3

Cálculo I — Primeiro Mini-Teste (9/11/2006)

Logo g^{-1} é a função de contradomínio $\mathbb R$ definida por

$$g^{-1}: \quad \left] \frac{\pi}{6}, \frac{5\pi}{6} \right[\quad \longrightarrow \quad \mathbb{R}$$

$$x \qquad \longmapsto \quad 1 - \operatorname{tg} \left(\frac{3\pi}{4} - \frac{3}{2} x \right)$$

4. Sejam f e g duas funções reais de variável real tais que $g \circ f$ está definida e o seu domínio coincide com o domínio de f. Mostre que se f não é injectiva, então $g \circ f$ não é injectiva.

Indicações para a resolução:

Por hipótese existem $x_1, x_2 \in D_f$ tais que $x_1 \neq x_2$ e

$$f(x_1) = f(x_2) . (1)$$

Como o domínio da composta $g \circ f$ coincide com o domínio de f temos que $f(x_1), f(x_2) \in D_g$ e, da igualdade (1), resulta que $g(f(x_1)) = g(f(x_2))$, ou seja, por definição de composta,

$$(g \circ f)(x_1) = (g \circ f)(x_2) .$$

Provámos então que existem $x_1, x_2 \in D_{g \circ f} = D_f$ tais que $x_1 \neq x_2$ e $(g \circ f)(x_1) = (g \circ f)(x_2)$, o que garante que $g \circ f$ não é injectiva.

Resolução Página 3/3