Spring 2020

Lab 3 (100 pts)

Objectives: Learn

- SQL queries with subqueries.
- Aggregate functions

Part 1

In this part, you will use **staff** 2010 table with the data you have loaded in Lab1.

Step 1: Create a folder structure called COEN178\labs\lab3.

Step 2: Create a text file called queries_part1.sql. This file will contain the SQL statements that you want to execute.

Exercise 1 (10 pts)

Write a query to show the full names of employees with maximum salary.

Approach 1: Complete the subquery below and run it.

```
Select first||last as FullName, salary
from Staff 2010
where salary >= ALL (Select salary from Staff_2010);
```

Approach 2: Complete the subquery below and run it.

```
Select first||last as FullName, salary
from Staff 2010
where salary = (Select MAX(salary) from Staff 2010);
```

What is the output?

FULLNAME	SALARY	
Michael M.Hash Timothy P.Love	179700 179700	

FULLNAME

SALARY

Timothy P.Love Michael M.Hash

179700 179700

Exercise 2 (10 pts)

Using the query below, find the last names of people with the same salary as "Zichal".

```
Select last, salary
from Staff_2010
where salary = (select salary from Staff_2010 where last =
'Zichal');
```

a) Rewrite and run the query so that the last name comparison will work, whether it is stored in uppercase, lowercase or mixed case.

```
SELECT last, salary
FROM Staff_2010
WHERE salary = (SELECT salary FROM Staff_2010 WHERE UPPER(last) =
'ZICHAL');
```

b) Substitute the last name "Young" for "Zichal" and run the query again. Did it work? If it did not work, why?

It doesn't work because there are 2 people with the last name "Young".

Fix the query and re run the query.

```
SELECT last, salary
FROM Staff_2010
WHERE salary = ANY(SELECT salary FROM Staff_2010 WHERE UPPER(last) =
'YOUNG');
```

What is the output?

LAST	SALARY
Metcalf	42000

Mrazek Northern Ocampo Oxtoby Page Pope Portilla Posey Pulliam Robertson	42000 42000 42000 42000 42000 42000 42000 42000 42000
LAST	SALARY
Schaub Schmuck Sinha Sirbu Smith Smith Stickel Swanson Tennison Thomas Tranchin	42000 42000 42000 42000 42000 42000 42000 42000 42000 42000
LAST	SALARY
Alley Asen Attili Ayling Baggetto Bates Bisi Block Campbell Campos Canery	42000 42000 58511 42000 42000 42000 42000 42000 42000 58511
LAST	SALARY
Carden Castillo Chhabra Claude Cobbina	42000 42000 42000 58511 42000

Conrad	42000	
Cuba	42000	
Cunningham	42000	
Donovan	42000	
Dorsett	42000	
Faulman	42000	
LAST	SALARY	
Fenn	42000	
Fergenson	42000	
Ford	42000	
Frank	42000	
Godfrey	42000	
Gottlieb	42000	
Grant	42000	
Hanson	42000	
Harris	42000	
Hegde	42000	
Hernandez	42000	
	.2000	
LAST	SALARY	
Hiatt	42000	
Hughes	42000	
Jackson	42000	
Jones	42000	
Kennedy	42000	
Ledbetter	42000	
Lee	42000	
Lewin	42000	
Lewis	42000	
Limon	42000	
Young		
rearry	42000	
	42000	
LAST		
	42000	

Exercise 3 (5 pts)

Write and run a query to find the number of people with salaries greater than 100,000.

Note: the output should be like something given below (the count may vary for your table)

```
SALARIES_100K_ABOVE

-------

140

SELECT COUNT(salary) as SALARIES_100K_ABOVE
FROM Staff_2010
WHERE salary > 100000;
```

Exercise 4 (10 pts)

Write and run a query to find the number of people with salaries greater than 100,000 and grouped by a salary number. See the example output below:

```
SALARY SALARIES_100K_ABOVE
               -----
                   2
      140000
     120000
                   8
      105211
                  1
                   2
      179700
                  3
      150000
                   2
      110000
      102829
                  1
                   1
      144868
      107770
SELECT salary, COUNT(salary) as SALARIES 100K ABOVE
FROM Staff_2010
WHERE salary > 100000
GROUP BY salary;
```

Exercise 5 (15 pts)

Write and run a query to find the number of people with salaries greater than 100,000, grouped by a salary number, where the no. of people in the group is >= 10. See the example output below:

SALARY	SALARIES_100K_ABOVE
130500	27

```
SELECT salary, COUNT(salary) as SALARIES_100K_ABOVE
FROM Staff_2010
WHERE salary > 100000
GROUP BY salary
HAVING COUNT(salary) >= 10;
```

Exercise 6 (5 pts)

Examine the query below. It uses regular expressions (regex) to show the last names where the same vowel repeats itself.

```
SELECT last
FROM Staff_2010
WHERE REGEXP LIKE (last, '([aeiou])\1', 'i');
```

Examine the output. What is the option "i" for?

The option "i" is for case-insensitive matching, which doesn't distinguish between upper and lowercase letters.

Regex – A reference

Part 2

In this part, you will create two tables and load them with values given.

Please note that you may have created these tables in your Lab2.

Creating Tables

Create the tables, L_EMP and L_DEPT using the DDL statements below:

Create table L_EMP (empNo Integer Primary Key, empname CHAR(10),deptId CHAR(5));

Create table L_DEPT (deptld CHAR(5) Primary Key, deptname CHAR(10));

Note: We have not defined any foreign key constraint in these tables.

Inserting Tuples

Add the following tuples into the tables (use a script file to add the data).

```
insert into L_EMP values(1,'smith','d1');
```

```
insert into L_EMP values(2,'jones','d2'); insert into L_EMP values(3,'wayne','d1'); insert into L_EMP values(4,'moor','d3'); insert into L_EMP values(5,'king','d1'); insert into L_EMP values(6,'chen','d1'); insert into L_EMP values(7,'winger','d3'); insert into L_DEPT values('d1','Research'); insert into L_DEPT values('d2','Devt'); insert into L_DEPT values('d3','Testing'); insert into L_DEPT values('d4','Advert');
```

Create a text file called **queries_part2.sql**. This file will contain the SQL statements that you want to execute.

Exercise 7 (15 pts)

In this query, we want to **show the deptid and the number of employees in each dept**. This information comes from L_EMP table. Write the Select query to show deptid and count(*) from L_EMP. Make sure that you group by deptid. **Name deptid column as deptno and the count(*) column as empcount**. Show the results of query.

```
SELECT deptid AS deptno, COUNT(*) AS empcount
FROM L_EMP
GROUP BY deptid;
```

DEPTN	EMPC0UN7
d1	4
d2	1
d3	2

Exercise 8 (10 pts)

In this query, we want to show the deptname (note the change from the previous exercise) and the number of employees in each dept. This information comes from both L_EMP and L_DEPT tables.

To write this query, we will use the fact that a subquery can be given in the FROM clause.

a) Use the query in exercise 7, as the **subquery below**. This will go in to the from clause of the query below:

```
Select deptno, deptname, empcount

from (SELECT deptid AS deptno, COUNT(*) AS empcount
```

```
FROM L_EMP
GROUP BY deptid), L_DEPT
where deptno = L DEPT.deptid
```

Execute the query. Does it give you the correct results?

The query does give us the correct results.

DEPTN	DEPTNAME	EMPC0UNT
d1	Research	4
d2	Devt	1
d3	Testing	2

b) Add the statement to show the rows displayed in ascending order, sorted by empcount (think of **order by** in the outer clause). Execute the statement.

```
SELECT deptNo, deptName, empcount
FROM (SELECT deptid as deptNo, COUNT(*) AS empcount FROM L_EMP GROUP BY
deptid), L_DEPT
WHERE deptNO = L_DEPT.deptId
ORDER BY empcount;
```

DEPTN	DEPTNAME	EMPCOUNT
d2	Devt	1
d3	Testing	2
d1	Research	4

Exercise 9 (10 pts)

In this exercise, we will find the deptid of the department with maximum number of employees.

Attempt 1: Try the query below. Will it work?

```
Select deptid, max(count(*)) from L_EMP
Group by deptid;
```

The query does not work because of the "not a single-group function". This is because MAX() returns a single value and can't be a column attribute in the SELECT statement.

Attempt 2: Try the query below. Will it work?

```
Select deptid from L_EMP
Group by deptid
Having count(*) = (Select count(*) from L EMP
```

```
Group by deptid);
```

The query does not work because of the "single-row subquery returns more than one row". This is because SELECT COUNT(*) will return multiple rows.

a) What is the problem with the above query? Fix the query in approach 2 and run it.

```
SELECT deptid, COUNT(*) as NumberOfEmployees
FROM L_EMP
GROUP BY deptId
HAVING COUNT(*) = (SELECT MAX(COUNT(*)) FROM L_EMP GROUP BY deptid);
```

b) Find the dept.name of the department with maximum number of employees.

DEPTNAME

Research

The department name with the maximum number of employees is "Research".

Exercise 10 (10 pts)

Write a query, to show the employee and dept. information only where there are employees working in a dept. Include only those tuples that have a common **deptid** in both relations

a) Run the guery (using natural join) below.

```
Select * from L_EMP NATURAL JOIN L_DEPT; Show the output.
```

DEPTI	EMPNO EMPN	AME DEPTNAME
d1	1 smith	Research
d2	2 jones	Devt
d1	3 wayne	Research
d3	4 moor	Testing
d1	5 king	Research
d1	6 chen	Research
d3	7 winger	Testing

b) The query (incomplete) query below accomplishes the same thing using cartesian product. Complete it and run to display the same output as shown by the query in a).

```
SELECT L_EMP.deptid, empNo, empName, deptName FROM L_EMP, L_DEPT
WHERE L_EMP.deptID = L_DEPT.deptId;
```

Run the queries and capture the results in lab3_output.txt, using spool.