

A Brain-Age Prediction Case Study

Authors

Tobias Ettling

Computer Science
University of St. Gallen

Dr. Sari Saba-Sadiya

Computer Science
Goethe University Frankfurt

Prof. Gemma Roig

Computer Science
Goethe University Frankfurt

Machine Learning in EEG Research

Unveiling Insights through Model Interpretation

Do different model architectures find different patterns?

Brain Age Prediction from EEG Signals

Regression Models

ElasticNet LassoRegression KernelRidge

Other Models

SVM MLP

Brain Age Prediction Case Study

Chronological age of the Subject

Tree-Based Models

XGBoost CatBoost RandomForest

K-Nearest Neighbors

KNN BaggedKNN

Brain Age Prediction from EEG Signals

Findings	Age in Years	Study Type	Paper
Central delta features show significant importance to random forest for predicting the age.	5 to 18	longitudinal	[1]
Absolute delta activity decreased with age.	8 to 12	cross-sectional	[5]
Occipital delta magnitude was higher for younger subjects (18 to 50 years) than for older subjects (51 to 85 years).		cross-sectional	[6]
Occipital delta magnitude correlates linearly with the subject age.			
Temporal theta features show significant importance to random forest for predicting the age.	5 to 18	longitudinal	[1]
Thata power degrees with age	9 to 16	cross-sectional	[7]
Theta power decreases with age.	4 to 17	longitudinal	[8]
Increase in alpha activity beginning in posterior regions and ending in anterior regions.		longitudinal	[1]
Peak alpha frequency increases with age.			
Frontal lower and parietal alpha features show importance for predicting the age with random forest.			
Alpha waves show a non linear pattern with ageing.	18 to 85	cross-sectional	[6]
Relative alpha activity increases with age.		cross-sectional	[5]
Beta frequency power shows importance for predicting the age with random forest.		longitudinal	[1]
Spectral flatness of beta band was most important for model predictions.		cross-sectional	[2]
Beta band power positively correlated with age .		cross-sectional	[5]
PSD slope was more negative in pre-teen (under age 13) vs teen subjects (age 13 to 16). Multiscale entropy increased in frontal and central regions with ageing.		cross-sectional	[7]

Brain Age Prediction from EEG Signals

Findings	Age in Years	Study Type	Paper
Central delta features show significant importance to random forest for predicting the age.	5 to 18	longitudinal	[1]
Absolute delta activity decreased with age.	8 to 12	cross-sectional	[5]
Occipital delta magnitude was higher for younger subjects (18 to 50 years) than for older subjects (51 to 85 years).		cross-sectional	[6]
Occipital delta magnitude correlates linearly with the subject age.			
Temporal theta features show significant importance to random forest for predicting the age.	5 to 18	longitudinal	[1]
Thata navar degreeses with age	9 to 16	cross-sectional	[7]
Theta power decreases with age.	4 to 17	longitudinal	[8]
Increase in alpha activity beginning in posterior regions and ending in anterior regions.		longitudinal	[1]
Peak alpha frequency increases with age.			
Frontal lower and parietal alpha features show importance for predicting the age with random forest.	***************************************		
Alpha waves show a non linear pattern with ageing.	18 to 85	cross-sectional	[6]
Relative alpha activity increases with age.		cross-sectional	[5]
Beta frequency power shows importance for predicting the age with random forest.		longitudinal	[1]
Spectral flatness of beta band was most important for model predictions.		cross-sectional	[2]
Beta band power positively correlated with age .		cross-sectional	[5]
PSD slope was more negative in pre-teen (under age 13) vs teen subjects (age 13 to 16). Multiscale entropy increased in frontal and central regions with ageing. 9 to 16 cross-sectional		cross-sectional	[7]

Brain Age Prediction Data

Proposed Pipeline

Training Sets

Analyzed Data Sets

Training Set	Channels	State
128-All	128	EC, EO
128-EC	128	EC
128-EO	128	EO
12-All	12	EC, EO
12-EC	12	EC
12-EO	12	EO

- resting state data:
 - 40 sec eyes closed (EC)
 - 20 sec eyes open (EO)
- number of electrodes:
 - 12 with channel interpolation
 - 128 electrodes without

Proposed Pipeline

EEG Features

	Feature Name		Description	
es	Mean		Mean of the signal in volt.	
	Standard Deviation		The average difference between the signal and its mean in volt.	
eatur	17,001300000000	-To-Peak litude	Distance between the maximum and minimum measure of the signal.	
H	Line Length		Physical length of the signal given as the sum of the absolute difference between consecutive time measures of the signal.	
Temporal Features	Zero Crossings		How often the signal changes from positive to negative.	
	Skewness		Quantifies the asymmetry of the signal.	
	Kurtosis		Describes the "tailedness" of a distribution compared to the normal distribution.	
7.0 -	Hjorth Complexity		Measures the complexity or irregularity of the signal	
- CO	0	Intercept	intercept of the regression line, fitted to the power spectral density (PSD) of the signal with the y-axis.	
l lie	PSD	Slope	The slope of the regression line.	
Frequency Features	log-log	Mean Square Error	The mean squared error between the regression line and the log-log power spectral density (PSD) of the signal.	
	9	R2 coefficient	Quantifies how well the regression line fits the log-log power spectral density (PSD) of the signal.	
l e	Band Power $(\delta, \theta, \alpha, \beta, \omega)$		The power of the signal in a frequency band.	
Freq	Wavelet Coefficient Energy $(\delta, \theta, \alpha, \beta, \omega)$		The energy of wavelet decomposition coefficients.	
	Hjorth Complexity		Measures the complexity or irregularity of the signal's power spectrum.	
ures	Quantile (5%, 25%, 75%, 95%) Higuchi Fractal Dimension		Describes the distribution of the signal for percentiles.	
			Quantifies the fractal complexity or self-similarity of the signal.	
Statistical	Sam Entre	ple & Approximate opy	Quantifies the complexity or regularity of the signal.	
ati	Spectral Entropy		Is the Shannon entropy of the signal's power spectrum.	
S	SVD	Fisher Information	Singular Value Decomposition (SVD) Fisher Information per channel	
	Hurst Exponent Char		Characterizes the long-term memory or self-similarity of the signal.	

Proposed Pipeline

Feature Selection / Feature Extraction

Proposed Pipeline

Can We Replicate Previous Findings?

High frequency activity increase during maturation.

Alpha Band Power [1], [5], [6] and Beta Band Power [1], [5]

EC: eyes closed EO: eyes opened R<n>: regional signal

Can We Replicate Previous Findings?

Low frequency activity decreases during maturation **Delta Band Power [5], [6]** and **Theta Band Power [7], [8]**

Can We Replicate Previous Findings?

Spectral features show high importance to all of our models.

Beta Spectral Flatness [2] and Spectral Slope [7]

SHAP Values By Region For 12-All

Proposed Pipeline

The **SHAPAgreement** measures the agreement in feature importance across different models based on Shapley values.

Group features based on some condition.

For each model, compute the group importance.

SHAPAgreement:

Compute the rank order correlation of the group importance.

Features

$$F = \{f_1, f_2, ..., f_n\}$$

Group Importance

$$S_{M,G_i} = \sum_{f_j \in G_i} |\phi_M(f_j)|$$

Distinct Feature Groups

$$G_1, G_2, ..., G_m \subset F$$

$$S = (S_{M,G_1}, S_{M,G_2}..., S_{M,G_m})$$

$$A(M_1, M_2, G) = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

$$d_i = R(S_{M_1,G_i}) - R(S_{M_2,G_i})$$

The **SHAPAgreement** measures the agreement in feature importance across different models based on Shapley values.

Group features based on some condition.

For each model, compute the group importance.

SHAPAgreement:

Compute the rank order correlation of the group importance.

Features

$$F = \{f_1, f_2, ..., f_n\}$$

Distinct Feature Groups

$$G_1, G_2, ..., G_m \subset F$$

Group Importance

$$S_{M,G_i} = \sum_{f_j \in G_i} |\phi_M(f_j)|$$

$$S = (S_{M,G_1}, S_{M,G_2}..., S_{M,G_m})$$

$$A(M_1, M_2, G) = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

$$d_i = R(S_{M_1,G_i}) - R(S_{M_2,G_i})$$

The **SHAPAgreement** measures the agreement in feature importance across different models based on Shapley values.

Group features based on some condition.

For each model, compute the group importance.

SHAPAgreement:

Compute the rank order correlation of the group importance.

Features

$$F = \{f_1, f_2, ..., f_n\}$$

Di

Distinct Feature Groups

$$G_1, G_2, ..., G_m \subset F$$

Group Importance

$$S_{M,G_i} = \sum_{f_j \in G_i} |\phi_M(f_j)|$$

$$S = (S_{M,G_1}, S_{M,G_2}..., S_{M,G_m})$$

$$A(M_1, M_2, G) = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

$$d_i = R(S_{M_1,G_i}) - R(S_{M_2,G_i})$$

The **SHAPAgreement** measures the agreement in feature importance across different models based on Shapley values.

Group features based on some condition.

For each model, compute the group importance.

SHAPAgreement:

Compute the rank order correlation of the group importance.

Features

$$F = \{f_1, f_2, ..., f_n\}$$

Group Importance

$$S_{M,G_i} = \sum_{f_j \in G_i} |\phi_M(f_j)|$$

Distinct Feature Groups

$$G_1, G_2, ..., G_m \subset F$$

$$S = (S_{M,G_1}, S_{M,G_2}..., S_{M,G_m})$$

$$A(M_1, M_2, G) = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$$
$$d_i = R(S_{M_1, G_i}) - R(S_{M_2, G_i})$$

$$d_i = R(S_{M_1,G_i}) - R(S_{M_2,G_i})$$

Rank orders for XGBoost on 12-All

Key Conclusions

Algorithm Choice Matters!

Different 'Algorithms Categories' pick up on different patterns!

SHAP values do not correlate with algorithmic <u>consistency</u>!

Thanks For Your Attention!

