

AC

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
15 February 2001 (15.02.2001)

PCT

(10) International Publication Number
WO 01/11419 A2

(51) International Patent Classification⁷: G02F (74) Agent: DAVIS, Paul; Wilson Sonsini Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050 (US).

(21) International Application Number: PCT/US00/21662 (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 8 August 2000 (08.08.2000) (25) Filing Language: English (74) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:

09/372,712	11 August 1999 (11.08.1999)	US
09/372,649	11 August 1999 (11.08.1999)	US
60/171,685	21 December 1999 (21.12.1999)	US
09/548,788	13 April 2000 (13.04.2000)	US
09/549,781	14 April 2000 (14.04.2000)	US

(71) Applicant: LIGHTCONNECT, INC. [US/US]; 35445 Dumbarton Court, Newark, CA 94560 (US).

Published:

— Without international search report and to be republished upon receipt of that report.

(72) Inventors: GODIL, Asif, A.; 2014 Colony Street, Apt. 2, Mountain View, CA 94043 (US). BLOOM, David, M.; 1855 Bret Harte, Palo Alto, CA 94303 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/11419 A2

(54) Title: DYNAMIC SPECTRAL SHAPING FOR FIBER-OPTIC APPLICATION

(57) Abstract: The present invention is directed towards dynamic spectral shaping. Using a grating, the spectral band is spread across an MEMS or other suitable device array. The device may be the deformable grating modulator invented by Bloom et. al. (patent no. 5,311,360) or other suitable device. The invention also includes the coupling in and out of the fiber and may use polarization optics to ensure the grating is used in only one polarization where the diffraction efficiency is higher.

DYNAMIC SPECTRAL SHAPING FOR FIBER-OPTIC APPLICATION

5

BACKGROUND OF THE INVENTION

Field of the Invention

10 The present invention relates to dynamically shaping the spectral response with high resolution for fiber-optic applications. More particularly, the present invention relates to dynamic gain or channel equalization for erbium doped fiber amplifiers (EDFA) used in WDM networks.

Description of Related Art

15 The EDFA gain is highly non-uniform across the EDFA spectral band. Therefore gain flattening is an important part of good EDFA design and operation. Presently this is accomplished using a static gain flattening filter based on thin film filter technology or more recently on fiber bragg gratings. The dynamic aspect is covered by using a variable optical attenuator between the two stages of an EDFA.

20 However the previous approach is inadequate for very long links where cascading of many EDFAs and components cannot ensure adequate spectral flatness. In addition, for dynamically reconfigurable networks a static approach is inadequate. Therefore there is a need for dynamically shaping the spectral response at various points in the network for maintaining adequate end to end spectral flatness. A device for accomplishing this was invented by B. Y. Kim and others based on exciting an acoustic flexure wave along the length of a bare fiber. However this approach gives limited spectral control and the bare fiber is affected by shock and vibration. Work done at Lucent is based on spreading the 25 wavelengths in space using a grating, followed by an array of MARS (mechanical anti-reflection switch) micromechanical modulators. This approach is limited by the fabrication difficulty and performance limitation of the MARS device.

Accordingly, there is a need for a simple but powerful means of dynamic spectral shaping. The ideal system should have low insertion loss, fine spectral resolution, large dynamic range, low polarization dependent loss (PDL) and simple control.

5

SUMMARY OF THE INVENTION

An object of the present invention is to provide controllable transmission in a communications system.

Another object of the present invention is to provide controllable 10 transmission in a communications system as a function of wavelength.

A further object of the present invention is to provide controllable compensation for the wavelength dependent gain of EDFA's.

Yet another object of the present invention is to provide controllable and dynamic compensation for the dynamic wavelength dependent gain of EDFA's.

15 These and other objects of the present invention are achieved in a dynamic spectral shaping device with a controllable transmission as a function of wavelength that includes a fiber optic input port providing an input beam. A wavelength dispersive element is coupled to the input port. The wavelength dispersive element spreads the input beam in at least one dimension as a function of wavelength and generates a dispersed beam. A controllable grating reflects the dispersed beam to the wavelength dispersive element and generates a recombined beam. The controllable grating provides a controllable 20 reflectivity as a function of wavelength. A fiber optic output port is positioned to receive the recombined beam.

25 In another embodiment of the present invention, an optical system includes an EDFA system with at least one amplifier stage. A spectral shaping device is coupled to the EDFA system. The spectral shaping device includes a fiber optic input port that provides an input beam. A wavelength dispersive element is coupled to the input port. The wavelength dispersive element spreads the input beam in at least one dimension as a function of wavelength and generates a dispersed beam. A controllable grating reflects the dispersed 30 beam to the wavelength dispersive element and generates a recombined beam.

The controllable grating provides a controllable reflectivity as a function of wavelength. A fiber optic output port is positioned to receive the recombined beam. The optical system provides a desired controllable wavelength flatness.

In another embodiment of the present invention, an optical system 5 includes a fiber optic input port providing an input beam and a wavelength dispersive element coupled to the input port. The wavelength dispersive element spreads the input beam in at least one dimension as a function of wavelength and generates a dispersed beam. A controllable grating reflects the dispersed beam to the wavelength dispersive element and generates a 10 recombined beam. The controllable grating provides a controllable reflectivity as a function of wavelength. A fiber optic output port is positioned to receive the recombined beam. An EDFA is coupled to the fiber optic input port. The optical system provides a desired controllable wavelength flatness.

15

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1(a) is a schematic top view of one embodiment of an optical system of the present invention that is utilized for dynamic spectral shaping.

Figure 1(b) is a schematic side view of the Figure 1(a) optical system. 20 Figure 2(a) is a schematic top view of a deformable grating, modulator array utilized in one embodiment of the present invention.

Figure 2(b) is a schematic side view of the Figure 2(a) deformable grating, modulator array.

Figure 3(a) is a schematic top view of a modified Figure 1(a) optical 25 system that includes a circulator to extract the output light.

Figure 3(b) is a schematic side view of the Figure 3(a) optical system with circulator.

Figure 4(a) is a schematic top view of a modified Figure 1(a) optical system that includes of a quarter-wave plate to minimize PDL.

30 Figure 4(b) is a schematic side view of the Figure 4(a) optical system.

Figure 5 is a schematic top view of one embodiment of an optical system of the present invention that is utilized for dynamic spectral shaping and incorporates an array waveguide grating.

5

DETAILED DESCRIPTION OF THE INVENTION

FIGURE 1 illustrates one embodiment of an optical system 100 of the present invention for the dynamic spectral shaping. It's comprised of an input optical fiber 105, an output optical fiber 115, an input collimating lens 110 of focal length f_1 , an output collimating lens 120 of focal length f_1 , a walkoff 10 birefringent plate 130 on the input side, a walkoff birefringent plate 135 on the output side, a half wave plate 140, a grating 150 to diffract the light onto a focusing lens 160 of focal length f_2 , and then onto the device array 200.

The broadband light from the input optical fiber 105 is collimated by 15 lens 110 which may be a GRIN lens, spherical lens or any other suitable lens. The collimated light passes through a walkoff birefringent plate 130 such as YVO₄, calcite or LiNbO₃. The ordinary polarization goes straight through while the extraordinary polarization is displaced downwards by an amount, which if designed properly, should be greater than the beam size. The 20 polarization of one of the displaced beams is rotated by using a half wave plate (HWP) 140 and made the same as the other beam. Now both beams are either vertically or horizontally polarized. The polarization direction is chosen to maximize the diffraction efficiency of the grating 150 which may be a holographic grating or a blazed grating. Two parallel beams impinge on the 25 grating which diffracts the light towards the upper half of a focusing lens 160 of focal length f_2 which is placed a distance f_2 away from the grating. This telecentric use walks the focused beam across the device array 200 as a function of wavelength. The two polarization paths come together on the device array which is segmented to cover different spectral slices. The reflected light from 30 the device goes through the bottom half of the lens 160 and impinges on the grating which puts all the wavelengths back to gather. The polarization is combined again using the HWP and the output birefringent plate 135 which is

oriented opposite from the input birefringent plate. The beam is focused into the output fiber 115 using another collimating lens 120.

The device array 200 may be an array of LCD elements, a suitable 5 MEMS device array such as micro mirrors or cantilevers, an array of electro-optic modulators, an array of acousto-optic modulators or any light controlling device array. The preferred embodiment is based on using a deformable grating modulator array invented by Bloom et. al. (patent no. 5,311,360) as shown in FIG. 2A,B. The device is comprised of ribbons 199 of width w suspended above 10 the substrate 198. The top surface of the ribbon is a height d above the substrate. Ribbons are electrically connected and driven in pairs. Each pair controls a spectral slice. 201 controls λ_1 , 202 controls λ_2 , and so on till 20n controls λ_n . The gap between the ribbons is also w . All ribbons and gaps are covered with a 15 reflective layer which may be aluminum or gold. For operation at a given wavelength λ , $d = m\lambda/2$ where m is an integer. Now light reflected from the ribbons and the gaps is in phase and device looks like a mirror. By applying a voltage to the ribbons, the electrostatic force starts pulling the ribbons downwards and light starts diffracting. At a maximum deflection of $\lambda/4$, all the 20 light is diffracted out and the element is effectively off. Two pairs of ribbon/gap provides enough isolation for a single-mode fiber. However more pairs can also be used. For a range of wavelength, $\lambda_1-\lambda_n$, d is chosen based on the longest wavelength, λ_1 , i.e. $d = m\lambda_1/2$. In practice, $m=3$ is a suitable choice. For the 25 EDFA application $\lambda_1=1575$ nm, therefore $d=2362$ nm. The shorter wavelength elements will start out with the ribbons already slightly pulled in. In FIG. 1, the choice of focal lengths f_1 , f_2 and the grating use determines the spot size on the device array which in turn determines the ribbon width w , i.e. spot size = $4w$. The spectral resolution of the system is determined by f_1 , f_2 , grating pitch and the grating incident angle. The resolution should be such that going from λ_1 to λ_2 moves the spot across the device array by w .

An alternate embodiment of the optical system 300 is shown in FIG. 3A,B, which is the same as system 100 in FIG. 1, except a circulator 103 is used to separate out the light in the input fiber 101 from the output fiber 102.

5 Yet another embodiment of the optical system 400 is shown in FIG. 4A,B. This is again similar to system 100 shown in FIG 1 except that polarization splitting is not employed. Since both polarizations are impinging on the grating 150, it is desirable that the grating have high diffraction efficiency for both polarizations. After diffracting from the grating, a quarter wave plate 10 (QWP) 140 is employed to flip the vertical and horizontal polarizations on the return path. This reduces the polarization dependent loss (PDL) for the overall system assuming the device array 200 does not have any significant PDL. If PDL from the device array needs to be minimized further, the polarization independent grating modulator invention of Godil et. al. (include by cross-reference) can be used here configured as an array of elements. Another 15 variation of this embodiment would be to use a circulator on the input side to separate out the output fiber from the input without creating a separate path.

Another embodiment of the present invention is disclosed in Figure 5. In this embodiment, dispersive element 150 is an arrayed waveguide grading 20 ("AWG"). A suitable AWG 150 is manufactured by Lightwave Microsystems, San Jose, California. In this embodiment, device array 200, which can be a controllable, deformable grating modulator, can be placed in close proximity to the dispersed output at AWG 150. This proximity is selected to provide good coupling efficiency back into the waveguides of AWG 150. The maximum 25 distance depends on the size of the waveguides of AWG 150. In a preferred embodiment, the distance is 10 microns or less and can be butt-coupled. With this combination, AWG 150 disperses the light from the input optical fiber 105 and spreads the input beam in at least one dimension as a function of wavelength where it impinges on device array 200. The spatially dispersed 30 light is reflected back into AWG 150 which subsequently recombines the light into optical fiber 105 but in a counterpropagating direction to the input. The

output light can be extracted by circulator 103. Other embodiments can include a separate output port and do not require the circulator.

The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to 5 limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art.

What is claimed is:

1. A dynamic spectral shaping device with a controllable transmission as a function of wavelength, comprising:
 - a fiber optic input port providing an input beam;
 - a wavelength dispersive element coupled to the input port, the
 - 5 wavelength dispersive element spreading the input beam in at least one dimension as a function of wavelength and generating a dispersed beam;
 - a controllable grating reflecting the dispersed beam to the wavelength dispersive element and generating a recombined beam, the controllable grating providing a controllable reflectivity as a function of wavelength; and
 - 10 a fiber optic output port positioned to receive the recombined beam.
2. The device of claim 1, wherein the controllable grating is an array with a diffraction efficiency that is controlled as a function of position on the array.
15
3. The device of claim 1, wherein the controllable grating is an array of ribbons.
20
4. The device of claim 1, wherein the controllable grating is a micromachined grating device.
25
5. The device of claim 1, further comprising:
 - a first lens positioned between the fiber optic input port and the wavelength dispersive element.
6. The device of claim 1, further comprising:
 - a second lens positioned between the wavelength dispersive element and the controllable grating.
30
7. The device of claim 1, further comprising:
 - a birefringent plate positioned between the fiber optic input port and the wavelength dispersive element.

8. The device of claim 1, further comprising:
a half-wave plate positioned between the fiber optic input port and the wavelength dispersive element.

5

9. The device of claim 1, further comprising:
a quarter-wave plate positioned between the wavelength dispersive element and the controllable grating.

10

10. The device of claim 1, further comprising:
a second birefringent plate positioned between the wavelength dispersive element and the fiber optic output port.

15

11. An optical system, comprising:
an EDFA system including at least one amplifier stage;
a spectral shaping device coupled to the EDFA system, the spectral shaping device including:

20

a fiber optic input port providing an input beam;
a wavelength dispersive element coupled to the input port, the wavelength dispersive element spreading the input beam in at least one dimension as a function of wavelength and generating a dispersed beam;
a controllable grating reflecting the dispersed beam to the wavelength dispersive element and generating a recombined beam, the controllable grating providing a controllable reflectivity as a function of wavelength;

25

a fiber optic output port positioned to receive the recombined beam; and wherein the optical system provides a desired controllable wavelength flatness.

30

12. The system of claim 11, wherein the at least one amplifier stage of the EDFA system is coupled to the fiber optic output port.

13. The system of claim 11, wherein the at least one amplifier stage of the EDFA system is coupled to the fiber optic input port.

14. The system of claim 11, wherein at least a portion of the spectral 5 shaping device is incorporated in the EDFA system.

15. An optical system, comprising:
a fiber optic input port providing an input beam;
a wavelength dispersive element coupled to the input port, the
10 wavelength dispersive element spreading the input beam in at least one dimension as a function of wavelength and generating a dispersed beam;
a controllable grating reflecting the dispersed beam to the wavelength dispersive element and generating a recombined beam, the controllable grating providing a controllable reflectivity as a function of wavelength;
15 a fiber optic output port positioned to receive the recombined beam; and
an EDFA coupled to the fiber optic input port, wherein the optical system provides a desired controllable wavelength flatness.

100**Figure 1A****Figure 1B**

Figure 2A

Figure 2B

300**FIGURE 3A****FIGURE 3B**

400**Figure 4A****Figure 4B**

FIGURE 5

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
15 February 2001 (15.02.2001)

PCT

(10) International Publication Number
WO 01/11419 A3(51) International Patent Classification⁷: H04B 10/17, H01S 3/067, H04J 14/02, G02F 1/00, G02B 6/34, 26/08

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US00/21662

(22) International Filing Date: 8 August 2000 (08.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/372,712	11 August 1999 (11.08.1999)	US
09/372,649	11 August 1999 (11.08.1999)	US
60/171,685	21 December 1999 (21.12.1999)	US
09/548,788	13 April 2000 (13.04.2000)	US
09/549,781	14 April 2000 (14.04.2000)	US

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant: LIGHTCONNECT, INC. [US/US]; 35445 Dumbarton Court, Newark, CA 94560 (US).

Published:

— with international search report

(72) Inventors: GODIL, Asif, A.; 2014 Colony Street, Apt. 2, Mountain View, CA 94043 (US). BLOOM, David, M.; 1855 Bret Harte, Palo Alto, CA 94303 (US).

(88) Date of publication of the international search report: 13 September 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(74) Agent: DAVIS, Paul; Wilson Sonsini Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050 (US).

(54) Title: DYNAMIC SPECTRAL SHAPING IN OPTICAL FIBRE COMMUNICATION

WO 01/11419 A3

(57) Abstract: The present invention is directed towards dynamic spectral shaping. Using a grating (150), the spectral band is spread across a diffractive MEMS (200) or other suitable device operable as a controllable grating providing a controllable reflectivity as a function of wavelength. The device may be the deformable grating modulator invented by Bloom et. al. (US patent no. 5,311,360) or other suitable device. The invention also includes the coupling in and out of the fiber (105) and may use polarization optics (130, 140) to ensure the grating is used in only one polarization where the diffraction efficiency is higher.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/21662

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H04B10/17 H01S3/067 H04J14/02 G02F1/00 G02B6/34
G02B26/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H04J H01S H04B G02F G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>FORD J E ET AL: "DYNAMIC SPECTRAL POWER EQUALIZATION USING MICRO-OPTO-MECHANICS" IEEE PHOTONICS TECHNOLOGY LETTERS, US, IEEE INC. NEW YORK, vol. 10, no. 10, 1 October 1998 (1998-10-01), pages 1440-1442, XP000786675 ISSN: 1041-1135 page 1440, column 1, line 1 -page 1442, column 2, line 18 abstract; figures 1-6 ---</p> <p style="text-align: center;">-/-</p>	1,5,6,8, 9,11-15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

5 February 2001

Date of mailing of the international search report

19/02/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Narganes-Quijano, F

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 00/21662

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 311 360 A (BLOOM DAVID M ET AL) 10 May 1994 (1994-05-10) cited in the application column 3, line 31 -column 4, line 6 column 5, line 9 -column 6, line 47 column 9, line 52 -column 10, line 16 abstract; figures 1-4,10,11 ---	1-4
A	US 5 745 271 A (MILLER DAVID ANDREW BARCLAY ET AL) 28 April 1998 (1998-04-28) column 3, line 10 -column 6, line 29 claims 21-27 abstract; figure 1 ---	1,5,6, 11-15
A	EP 0 654 917 A (AT & T CORP) 24 May 1995 (1995-05-24) column 8, line 36 -column 11, line 22 abstract; figures 2,3 ---	1,5,6
A	WO 99 38348 A (TELLIUM INC) 29 July 1999 (1999-07-29) page 3, line 6 -page 4, line 2 page 8, line 3 -page 9, line 14 abstract; figures 2,5 ---	1,5,8,9
A	PARKER M C ET AL: "DYNAMIC DIGITAL HOLOGRAPHIC WAVELENGTH FILTERING" JOURNAL OF LIGHTWAVE TECHNOLOGY,US, IEEE. NEW YORK, vol. 16, no. 7, 1 July 1998 (1998-07-01), pages 1259-1269, XP000778824 ISSN: 0733-8724 abstract; figures 2,3,7-9 ---	1,5, 11-15
A	EP 0 555 778 A (MATSUSHITA ELECTRIC IND CO LTD) 18 August 1993 (1993-08-18) column 6, line 25 -column 7, line 48 abstract; figures 8-10 ---	1,5,6, 11-15
A	US 5 793 912 A (JAIN ANIL K ET AL) 11 August 1998 (1998-08-11) column 13, line 37 -column 14, line 28 abstract; figures 13A,13B ---	1,5-10
A	US 5 805 759 A (FUKUSHIMA NOBUHIRO) 8 September 1998 (1998-09-08) column 1, line 36 - line 62 column 6, line 17 -column 7, line 59 column 10, line 9 - line 54 column 12, line 47 - line 67 column 13, line 50 -column 14, line 23 column 15, line 1 - line 21 column 16, line 51 -column 18, line 2 abstract; figures 3,4,8,12,16,17,19,22,23 ---	1,5-15
		-/-

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A,P	US 5 943 158 A (GOOSSEN KEITH WAYNE ET AL) 24 August 1999 (1999-08-24) column 2, line 46 -column 3, line 59 column 4, line 46 -column 5, line 14 abstract; figures 1-3,6,7 -----	1,5,6,8, 9,11-15
A,P	WANG L ET AL: "Programmable spectral phase coding of an amplified spontaneous emission light source" OPTICS COMMUNICATIONS, NL, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, vol. 167, no. 1-6, 15 August 1999 (1999-08-15), pages 211-224, XP004176872 ISSN: 0030-4018 page 212, column 2, paragraph 2 -page 213, column 1, paragraph 1 abstract; figure 1 -----	1,5,6,8, 9,11-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No	
PCT/US 00/21662	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5311360	A 10-05-1994	WO	9627810 A	12-09-1996
		AU	4118693 A	29-11-1993
		CA	2133335 A	11-11-1993
		EP	0638177 A	15-02-1995
		US	5459610 A	17-10-1995
		WO	9322694 A	11-11-1993
		US	5677783 A	14-10-1997
		US	5808797 A	15-09-1998
US 5745271	A 28-04-1998	NONE		
EP 0654917	A 24-05-1995	US	5526155 A	11-06-1996
		CA	2132559 A	13-05-1995
		JP	2679953 B	19-11-1997
		JP	7212346 A	11-08-1995
WO 9938348	A 29-07-1999	US	5960133 A	28-09-1999
		AU	2471799 A	09-08-1999
		EP	1051876 A	15-11-2000
EP 0555778	A 18-08-1993	JP	5224158 A	03-09-1993
		DE	69313157 D	25-09-1997
		DE	69313157 T	19-03-1998
		US	5311606 A	10-05-1994
US 5793912	A 11-08-1998	US	5608826 A	04-03-1997
		US	5450510 A	12-09-1995
		WO	9641436 A	19-12-1996
		AU	2638395 A	04-01-1996
		EP	0764376 A	26-03-1997
		WO	9534148 A	14-12-1995
US 5805759	A 08-09-1998	JP	9258117 A	03-10-1997
US 5943158	A 24-08-1999	NONE		

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
15 February 2001 (15.02.2001)

PCT

(10) International Publication Number
WO 01/011419 A3

(51) International Patent Classification⁷: H04B 10/17, H01S 3/067, H04J 14/02, G02F 1/00, G02B 6/34, 26/08

(21) International Application Number: PCT/US00/21662

(22) International Filing Date: 8 August 2000 (08.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/372,712	11 August 1999 (11.08.1999)	US
09/372,649	11 August 1999 (11.08.1999)	US
60/171,685	21 December 1999 (21.12.1999)	US
09/548,788	13 April 2000 (13.04.2000)	US
09/549,781	14 April 2000 (14.04.2000)	US

(71) Applicant: LIGHTCONNECT, INC. [US/US]; 35445 Dumbarton Court, Newark, CA 94560 (US).

(72) Inventors: GODIL, Asif, A.; 2014 Colony Street, Apt. 2, Mountain View, CA 94043 (US). BLOOM, David, M.; 1855 Bret Harte, Palo Alto, CA 94303 (US).

(74) Agent: EAKIN, James, E.; McDermott, Will & Emery, 2700 Sand Hill Road, Menlo Park, CA 94025 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report: 13 September 2001

(48) Date of publication of this corrected version: 18 July 2002

[Continued on next page]

(54) Title: DYNAMIC SPECTRAL SHAPING IN OPTICAL FIBRE COMMUNICATION

WO 01/011419 A3

(57) Abstract: The present invention is directed towards dynamic spectral shaping. Using a grating (150), the spectral band is spread across a diffractive MEMS (200) or other suitable device operable as a controllable grating providing a controllable reflectivity as a function of wavelength. The device may be the deformable grating modulator invented by Bloom et. al. (US patent no. 5,311,360) or other suitable device. The invention also includes the coupling in and out of the fiber (105) and may use polarization optics (130, 140) to ensure the grating is used in only one polarization where the diffraction efficiency is higher.

(15) Information about Correction:

see PCT Gazette No. 29/2002 of 18 July 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DYNAMIC SPECTRAL SHAPING IN OPTICAL FIBRE COMMUNICATION

5

BACKGROUND OF THE INVENTIONField of the Invention

The present invention relates to dynamically shaping the spectral response with high resolution for fiber-optic applications. More particularly, the 10 present invention relates to dynamic gain or channel equalization for erbium doped fiber amplifiers (EDFA) used in WDM networks.

Description of Related Art

The EDFA gain is highly non-uniform across the EDFA spectral band. 15 Therefore gain flattening is an important part of good EDFA design and operation. Presently this is accomplished using a static gain flattening filter based on thin film filter technology or more recently on fiber bragg gratings. The dynamic aspect is covered by using a variable optical attenuator between the two stages of an EDFA.

20

However the previous approach is inadequate for very long links where cascading of many EDFA and components cannot ensure adequate spectral flatness. In addition, for dynamically reconfigurable networks a static approach is inadequate. Therefore there is a need for dynamically shaping the spectral 25 response at various points in the network for maintaining adequate end to end spectral flatness. A device for accomplishing this was invented by B. Y. Kim and others based on exciting an acoustic flexure wave along the length of a bare fiber. However this approach gives limited spectral control and the bare fiber is affected by shock and vibration. Work done at Lucent is based on spreading the 30 wavelengths in space using a grating, followed by an array of MARS (mechanical anti-reflection switch) micromechanical modulators. This approach is limited by the fabrication difficulty and performance limitation of the MARS device.

Accordingly, there is a need for a simple but powerful means of dynamic spectral shaping. The ideal system should have low insertion loss, fine spectral resolution, large dynamic range, low polarization dependent loss (PDL) and simple control.

5

SUMMARY OF THE INVENTION

An object of the present invention is to provide controllable transmission in a communications system.

10 Another object of the present invention is to provide controllable transmission in a communications system as a function of wavelength.

A further object of the present invention is to provide controllable compensation for the wavelength dependent gain of EDFA's.

15 Yet another object of the present invention is to provide controllable and dynamic compensation for the dynamic wavelength dependent gain of EDFA's.

These and other objects of the present invention are achieved in a dynamic spectral shaping device with a controllable transmission as a function of wavelength that includes a fiber optic input port providing an input beam. A wavelength dispersive element is coupled to the input port. The wavelength dispersive element spreads the input beam in at least one dimension as a function of wavelength and generates a dispersed beam. A controllable grating reflects the dispersed beam to the wavelength dispersive element and generates a recombined beam. The controllable grating provides a controllable reflectivity as a function of wavelength. A fiber optic output port is positioned to receive the recombined beam.

25 In another embodiment of the present invention, an optical system includes an EDFA system with at least one amplifier stage. A spectral shaping device is coupled to the EDFA system. The spectral shaping device includes a fiber optic input port that provides an input beam. A wavelength dispersive element is coupled to the input port. The wavelength dispersive element spreads the input beam in at least one dimension as a function of wavelength and generates a dispersed beam. A controllable grating reflects the dispersed beam to the wavelength dispersive element and generates a recombined beam.

The controllable grating provides a controllable reflectivity as a function of wavelength. A fiber optic output port is positioned to receive the recombined beam. The optical system provides a desired controllable wavelength flatness.

In another embodiment of the present invention, an optical system
5 includes a fiber optic input port providing an input beam and a wavelength dispersive element coupled to the input port. The wavelength dispersive element spreads the input beam in at least one dimension as a function of wavelength and generates a dispersed beam. A controllable grating reflects the dispersed beam to the wavelength dispersive element and generates a
10 recombined beam. The controllable grating provides a controllable reflectivity as a function of wavelength. A fiber optic output port is positioned to receive the recombined beam. An EDFA is coupled to the fiber optic input port. The optical system provides a desired controllable wavelength flatness.

15

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1(a) is a schematic top view of one embodiment of an optical system of the present invention that is utilized for dynamic spectral shaping.

Figure 1(b) is a schematic side view of the Figure 1(a) optical system.

20 Figure 2(a) is a schematic top view of a deformable grating, modulator array utilized in one embodiment of the present invention.

Figure 2(b) is a schematic side view of the Figure 2(a) deformable grating, modulator array.

25 Figure 3(a) is a schematic top view of a modified Figure 1(a) optical system that includes a circulator to extract the output light.

Figure 3(b) is a schematic side view of the Figure 3(a) optical system with circulator.

Figure 4(a) is a schematic top view of a modified Figure 1(a) optical system that includes of a quarter-wave plate to minimize PDL.

30 Figure 4(b) is a schematic side view of the Figure 4(a) optical system.

Figure 5 is a schematic top view of one embodiment of an optical system of the present invention that is utilized for dynamic spectral shaping and incorporates an array waveguide grating.

5

DETAILED DESCRIPTION OF THE INVENTION

FIGURE 1 illustrates one embodiment of an optical system 100 of the present invention for the dynamic spectral shaping. Its comprised of an input optical fiber 105, an output optical fiber 115, an input collimating lens 110 of focal length f_1 , an output collimating lens 120 of focal length f_1 , a walkoff birefringent plate 130 on the input side, a walkoff birefringent plate 135 on the output side, a half wave plate 140, a grating 150 to diffract the light onto a focusing lens 160 of focal length f_2 , and then onto the device array 200.

10 The broadband light from the input optical fiber 105 is collimated by lens 110 which may be a GRIN lens, spherical lens or any other suitable lens. The collimated light passes through a walkoff birefringent plate 130 such as YVO₄, calcite or LiNbO₃. The ordinary polarization goes straight through while the extraordinary polarization is displaced downwards by an amount, which if designed properly, should be greater than the beam size. The 15 polarization of one of the displaced beams is rotated by using a half wave plate (HWP) 140 and made the same as the other beam. Now both beams are either vertically or horizontally polarized. The polarization direction is chosen to maximize the diffraction efficiency of the grating 150 which may be a holographic grating or a blazed grating. Two parallel beams impinge on the 20 grating which diffracts the light towards the upper half of a focusing lens 160 of focal length f_2 which is placed a distance f_2 away from the grating. This telecentric use walks the focused beam across the device array 200 as a function of wavelength. The two polarization paths come together on the device array which is segmented to cover different spectral slices. The reflected light from 25 the device goes through the bottom half of the lens 160 and impinges on the grating which puts all the wavelengths back to gather. The polarization is combined again using the HWP and the output birefringent plate 135 which is 30

oriented opposite from the input birefringent plate. The beam is focused into the output fiber 115 using another collimating lens 120.

The device array 200 may be an array of LCD elements, a suitable 5 MEMS device array such as micro mirrors or cantilevers, an array of electro-optic modulators, an array of acousto-optic modulators or any light controlling device array. The preferred embodiment is based on using a deformable grating modulator array invented by Bloom et. al. (patent no. 5,311,360) as shown in FIG. 2A,B. The device is comprised of ribbons 199 of width w suspended above 10 the substrate 198. The top surface of the ribbon is a height d above the substrate. Ribbons are electrically connected and driven in pairs. Each pair controls a spectral slice. 201 controls λ_1 , 202 controls λ_2 , and so on till 20n controls λ_n . The gap between the ribbons is also w . All ribbons and gaps are covered with a reflective layer which may be aluminum or gold. For operation at a given 15 wavelength λ , $d = m\lambda/2$ where m is an integer. Now light reflected from the ribbons and the gaps is in phase and device looks like a mirror. By applying a voltage to the ribbons, the electrostatic force starts pulling the ribbons downwards and light starts diffracting. At a maximum deflection of $\lambda/4$, all the 20 light is diffracted out and the element is effectively off. Two pairs of ribbon/gap provides enough isolation for a single-mode fiber. However more pairs can also 25 be used. For a range of wavelength, $\lambda_1-\lambda_n$, d is chosen based on the longest wavelength, λ_1 , i.e. $d = m\lambda_1/2$. In practice, $m=3$ is a suitable choice. For the EDFA application $\lambda_1=1575$ nm, therefore $d=2362$ nm. The shorter wavelength elements will start out with the ribbons already slightly pulled in. In FIG. 1, the choice of focal lengths f_1 , f_2 and the grating use determines the spot size on the device array which in turn determines the ribbon width w , i.e. spot size = $4w$. The spectral resolution of the system is determined by f_1 , f_2 , grating pitch and the grating incident angle. The resolution should be such that going from λ_1 to λ_2 moves the spot across the device array by w .

An alternate embodiment of the optical system 300 is shown in FIG. 3A,B, which is the same as system 100 in FIG. 1, except a circulator 103 is used to separate out the light in the input fiber 101 from the output fiber 102.

5 Yet another embodiment of the optical system 400 is shown in FIG. 4A,B. This is again similar to system 100 shown in FIG 1 except that polarization splitting is not employed. Since both polarizations are impinging on the grating 150, it is desirable that the grating have high diffraction efficiency for both polarizations. After diffracting from the grating, a quarter wave plate 10 (QWP) 140 is employed to flip the vertical and horizontal polarizations on the return path. This reduces the polarization dependent loss (PDL) for the overall system assuming the device array 200 does not have any significant PDL. If PDL from the device array needs to be minimized further, the polarization independent grating modulator invention of Godil et. al. (include by cross-reference) can be used here configured as an array of elements. Another variation of this embodiment would be to use a circulator on the input side to separate out the output fiber from the input without creating a separate path.

Another embodiment of the present invention is disclosed in Figure 5. In this embodiment, dispersive element 150 is an arrayed waveguide grading 20 ("AWG"). A suitable AWG 150 is manufactured by Lightwave Microsystems, San Jose, California. In this embodiment, device array 200, which can be a controllable, deformable grating modulator, can be placed in close proximity to the dispersed output at AWG 150. This proximity is selected to provide good coupling efficiency back into the waveguides of AWG 150. The maximum 25 distance depends on the size of the waveguides of AWG 150. In a preferred embodiment, the distance is 10 microns or less and can be butt-coupled. With this combination, AWG 150 disperses the light from the input optical fiber 105 and spreads the input beam in at least one dimension as a function of wavelength where it impinges on device array 200. The spatially dispersed 30 light is reflected back into AWG 150 which subsequently recombines the light into optical fiber 105 but in a counterpropagating direction to the input. The

output light can be extracted by circulator 103. Other embodiments can include a separate output port and do not require the circulator.

The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to 5 limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art.

What is claimed is:

1. A dynamic spectral shaping device with a controllable transmission as a function of wavelength, comprising:
 - a fiber optic input port providing an input beam;
 - a wavelength dispersive element coupled to the input port, the
 - 5 wavelength dispersive element spreading the input beam in at least one dimension as a function of wavelength and generating a dispersed beam;
 - a controllable grating reflecting the dispersed beam to the wavelength dispersive element and generating a recombined beam, the controllable grating providing a controllable reflectivity as a function of wavelength; and
 - 10 a fiber optic output port positioned to receive the recombined beam.
2. The device of claim 1, wherein the controllable grating is an array with a diffraction efficiency that is controlled as a function of position on the array.
- 15 3. The device of claim 1, wherein the controllable grating is an array of ribbons.
4. The device of claim 1, wherein the controllable grating is a
- 20 micromachined grating device.
5. The device of claim 1, further comprising:
 - a first lens positioned between the fiber optic input port and the wavelength dispersive element.
- 25 6. The device of claim 1, further comprising:
 - a second lens positioned between the wavelength dispersive element and the controllable grating.
- 30 7. The device of claim 1, further comprising:
 - a birefringent plate positioned between the fiber optic input port and the wavelength dispersive element.

8. The device of claim 1, further comprising:
a half-wave plate positioned between the fiber optic input port and the wavelength dispersive element.

5

9. The device of claim 1, further comprising:
a quarter-wave plate positioned between the wavelength dispersive element and the controllable grating.

10 10. The device of claim 1, further comprising:

a second birefringent plate positioned between the wavelength dispersive element and the fiber optic output port.

11. An optical system, comprising:

15 an EDFA system including at least one amplifier stage;
a spectral shaping device coupled to the EDFA system, the spectral shaping device including:

20 a fiber optic input port providing an input beam;
a wavelength dispersive element coupled to the input port, the wavelength dispersive element spreading the input beam in at least one dimension as a function of wavelength and generating a dispersed beam;
a controllable grating reflecting the dispersed beam to the wavelength dispersive element and generating a recombined beam, the controllable grating providing a controllable reflectivity as a function of 25 wavelength;

a fiber optic output port positioned to receive the recombined beam; and wherein the optical system provides a desired controllable wavelength flatness.

30 12. The system of claim 11, wherein the at least one amplifier stage of the EDFA system is coupled to the fiber optic output port.

13. The system of claim 11, wherein the at least one amplifier stage of the EDFA system is coupled to the fiber optic input port.

14. The system of claim 11, wherein at least a portion of the spectral 5 shaping device is incorporated in the EDFA system.

15. An optical system, comprising:
a fiber optic input port providing an input beam;
a wavelength dispersive element coupled to the input port, the 10 wavelength dispersive element spreading the input beam in at least one dimension as a function of wavelength and generating a dispersed beam;
a controllable grating reflecting the dispersed beam to the wavelength dispersive element and generating a recombined beam, the controllable grating providing a controllable reflectivity as a function of wavelength;
15 a fiber optic output port positioned to receive the recombined beam; and
an EDFA coupled to the fiber optic input port, wherein the optical system provides a desired controllable wavelength flatness.

1/5

FIG. 1B

SUBSTITUTE SHEET (RULE 26)

2/5

FIG. 2A

FIG. 2B

3/5

SUBSTITUTE SHEET (RULE 26)

FIG. 5

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/21662

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	H04B10/17	H01S3/067	H04J14/02	G02F1/00	G02B6/34
G02B26/08					

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H04J H01S H04B G02F G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>FORD J E ET AL: "DYNAMIC SPECTRAL POWER EQUALIZATION USING MICRO-OPTO-MECHANICS" IEEE PHOTONICS TECHNOLOGY LETTERS, US, IEEE INC. NEW YORK, vol. 10, no. 10, 1 October 1998 (1998-10-01), pages 1440-1442, XP000786675 ISSN: 1041-1135 page 1440, column 1, line 1 -page 1442, column 2, line 18 abstract; figures 1-6</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1,5,6,8, 9,11-15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

5 February 2001

Date of mailing of the international search report

19/02/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Narganes-Quijano, F

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/21662

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 311 360 A (BLOOM DAVID M ET AL) 10 May 1994 (1994-05-10) cited in the application column 3, line 31 -column 4, line 6 column 5, line 9 -column 6, line 47 column 9, line 52 -column 10, line 16 abstract; figures 1-4,10,11 ---	1-4
A	US 5 745 271 A (MILLER DAVID ANDREW BARCLAY ET AL) 28 April 1998 (1998-04-28) column 3, line 10 -column 6, line 29 claims 21-27 abstract; figure 1 ---	1,5,6, 11-15
A	EP 0 654 917 A (AT & T CORP) 24 May 1995 (1995-05-24) column 8, line 36 -column 11, line 22 abstract; figures 2,3 ---	1,5,6
A	WO 99 38348 A (TELLIUM INC) 29 July 1999 (1999-07-29) page 3, line 6 -page 4, line 2 page 8, line 3 -page 9, line 14 abstract; figures 2,5 ---	1,5,8,9
A	PARKER M C ET AL: "DYNAMIC DIGITAL HOLOGRAPHIC WAVELENGTH FILTERING" JOURNAL OF LIGHTWAVE TECHNOLOGY,US,IEEE. NEW YORK, vol. 16, no. 7, 1 July 1998 (1998-07-01), pages 1259-1269, XP000778824 ISSN: 0733-8724 abstract; figures 2,3,7-9 ---	1,5, 11-15
A	EP 0 555 778 A (MATSUSHITA ELECTRIC IND CO LTD) 18 August 1993 (1993-08-18) column 6, line 25 -column 7, line 48 abstract; figures 8-10 ---	1,5,6, 11-15
A	US 5 793 912 A (JAIN ANIL K ET AL) 11 August 1998 (1998-08-11) column 13, line 37 -column 14, line 28 abstract; figures 13A,13B ---	1,5-10
A	US 5 805 759 A (FUKUSHIMA NOBUHIRO) 8 September 1998 (1998-09-08) column 1, line 36 - line 62 column 6, line 17 -column 7, line 59 column 10, line 9 - line 54 column 12, line 47 - line 67 column 13, line 50 -column 14, line 23 column 15, line 1 - line 21 column 16, line 51 -column 18, line 2 abstract; figures 3,4,8,12,16,17,19,22,23 ---	1,5-15

-/-

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 00/21662

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A,P	US 5 943 158 A (GOOSSEN KEITH WAYNE ET AL) 24 August 1999 (1999-08-24) column 2, line 46 -column 3, line 59 column 4, line 46 -column 5, line 14 abstract; figures 1-3,6,7 -----	1,5,6,8, 9,11-15
A,P	WANG L ET AL: "Programmable spectral phase coding of an amplified spontaneous emission light source" OPTICS COMMUNICATIONS, NL, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, vol. 167, no. 1-6, 15 August 1999 (1999-08-15), pages 211-224, XP004176872 ISSN: 0030-4018 page 212, column 2, paragraph 2 -page 213, column 1, paragraph 1 abstract; figure 1 -----	1,5,6,8, 9,11-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 00/21662

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5311360	A 10-05-1994	WO 9627810 A		12-09-1996
		AU 4118693 A		29-11-1993
		CA 2133335 A		11-11-1993
		EP 0638177 A		15-02-1995
		US 5459610 A		17-10-1995
		WO 9322694 A		11-11-1993
		US 5677783 A		14-10-1997
		US 5808797 A		15-09-1998
US 5745271	A 28-04-1998	NONE		
EP 0654917	A 24-05-1995	US 5526155 A		11-06-1996
		CA 2132559 A		13-05-1995
		JP 2679953 B		19-11-1997
		JP 7212346 A		11-08-1995
WO 9938348	A 29-07-1999	US 5960133 A		28-09-1999
		AU 2471799 A		09-08-1999
		EP 1051876 A		15-11-2000
EP 0555778	A 18-08-1993	JP 5224158 A		03-09-1993
		DE 69313157 D		25-09-1997
		DE 69313157 T		19-03-1998
		US 5311606 A		10-05-1994
US 5793912	A 11-08-1998	US 5608826 A		04-03-1997
		US 5450510 A		12-09-1995
		WO 9641436 A		19-12-1996
		AU 2638395 A		04-01-1996
		EP 0764376 A		26-03-1997
		WO 9534148 A		14-12-1995
US 5805759	A 08-09-1998	JP 9258117 A		03-10-1997
US 5943158	A 24-08-1999	NONE		

Form PCT/ISA/210 (patent family annex) (July 1992)

