Problem

Answer each part TRUE or FALSE.

a.
$$n = o(2n)$$
.

b.
$$2n = o(n^2)$$
.

Ac.
$$2^n = o(3^n)$$
.

^A**d.**
$$1 = o(n)$$
.

$$e. \quad n = o(\log n).$$

f.
$$1 = o(1/n)$$
.

Step-by-step solution

Step 1 of 7

TRUE (or) FALSE

Small - o Notation:

Let f and g be functions $f,g:N\to R^+$ say that $f(n)=O\bigl(g\bigl(n\bigr)\bigr)$ if for any real number c>0, a number n_0 exists, where f(n)< c. g(n) for all $n\geq n_0$.

Comment

Step 2 of 7

(a)

False.

The statement $^{n=o\left(2n\right)}$ is invalid, because the functions n and 2n grows equality

That is $f(n) = c \cdot g(n)$. But according to definition $f(n) < c \cdot g(n)$

Therefore n = o(2n) is false

Comments (3)

Step 3 of 7

(b)

True

The statement $2n = o(n^2)$ is valid, because the functions $n^2 = n \cdot n$ which will grow faster than n. That is f(n) < g(n).

Therefore from the definition of small – o notation, $2n = o(n^2)$ is true.

Comment

Step 4 of 7

(c)

True

The statement $2^n = o(3^n)$ is valid, because the function 2^n runs shower than

