XCP Version 1.1

Part 3- Transport Layer Specification XCP on SxI

Part 3 – XCP on SxI – Transport Layer Specification

Association for Standardisation of Automation and Measuring Systems

Dated:31-03-2008 © ASAM e. V.

Status of Document

Date:	31-03-2008
Authors:	Roel Schuermans, Vector Informatik GmbH Andreas Zeiser, Vector Informatik GmbH Oliver Kitt, Vector Informatik GmbH Hans-Georg Kunz, VDO Automotive AG Hendirk Amsbeck, dSPACE GmbH Bastian Kellers, dSPACE GmbH Boris Ruoff, ETAS GmbH Reiner Motz, Robert Bosch GmbH Dirk Forwick, Robert Bosch GmbH
Version:	Version 1.1
Doc-ID:	
Status:	Release
Туре	

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any expressed or implied warranties of merchantability or fitness for any particular purpose. Neither ASAM nor the author(s) therefore accept any liability for damages or other consequences that arise from the use of this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

2

Revision History

This revision history shows only major modifications between release versions.

Date	Author	Filename	Comments
2008-03-31	R.Schuermans		Released document

Table of contents

<u>U</u>	Introduction	
0.1	The XCP Protocol Family	7
0.2	Documentation Overview	8
0.3	Definitions and Abbreviations	9
0.4	Mapping between XCP Data Types and ASAM Data Types	10
<u>1</u>	The XCP Transport Layer for Sxl (SPI and SCI)	11
1.1	Addressing	11
1.2	Communication Model	12
1.3	Header and Tail	13
1.3.	1 Header	13
	1.3.1.1 Length	13
	1.3.1.2 Counter	13
1.3.2	2 Tail	14
	1.3.2.1 Fill Bytes	14
	1.3.2.2 Checksum	14
1.4	The Limits of performance	15
1.5	Communication Modes	16
1.5.	1 Asynchronous communication mode (SCI)	16
	1.5.1.1 Asynchronous communication mode with framing	16
1.5.2	2 Synchronous communication mode (SPI)	17
	1.5.2.1 Full duplex mode	17
	1.5.2.2 Master/Slave mode	18
<u>2</u>	Specific commands for XCP on SxI	19
<u>3</u>	Specific events for XCP on SxI	20
3.1	Dummy packet	21
<u>4</u>	Interface to ASAM MCD 2MC description file	22
4.1	ASAM MCD 2MC AML for XCP on SxI	22
4.2	IF DATA example for XCP on SxI	24

Table of diagrams:

Diameter 4 : Handan and Tallfan VOD an Col	40
Diagram 1 : Header and Tail for XCP on SxI	13
Diagram 2 : Header Types for XCP on SxI	13
Diagram 3 : Fill bytes in Tail for XCP on SxI	14
Diagram 4 : Checksum in Tail for XCP on SxI	14
Diagram 5 : framing for XCP on SCI	16

0 Introduction

0.1 THE XCP PROTOCOL FAMILY

This document is based on experiences with the **C**AN **C**alibration **Protocol** (CCP) version 2.1 as described in feedback from the companies Accurate Technologies Inc., Compact Dynamics GmbH, DaimlerChrysler AG, dSPACE GmbH, ETAS GmbH, Kleinknecht Automotive GmbH, Robert Bosch GmbH, Siemens VDO Automotive AG and Vector Informatik GmbH.

The XCP Specification documents describe an improved and generalized version of CCP.

The generalized protocol definition serves as standard for a protocol family and is called "XCP" (Universal Measurement and Calibration Protocol).

The "X" generalizes the "various" transportation layers that are used by the members of the protocol family e.g "XCP on CAN", "XCP on TCP/IP", "XCP on UDP/IP", "XCP on USB" and so on.

0.2 DOCUMENTATION OVERVIEW

The XCP specification consists of 5 parts. Each part is a separate document and has the following contents:

Part 1 "Overview" gives an overview over the XCP protocol family, the XCP features and the fundamental protocol definitions.

Part 2 "Protocol Layer Specification" defines the generic protocol, which is independent from the transportation layer used.

Part 3 "Transport Layer Specification" defines the way how the *X*CP protocol is transported by a particular transportation layer like CAN, TCP/IP and UDP/IP.

This document describes the way how the XCP protocol is transported on SxI interfaces.

Part 4 "Interface Specification" defines the interfaces from an XCP master to an ASAM MCD 2MC description file and for calculating Seed & Key algorithms and checksums.

Part 5 "Example Communication Sequences" gives example sequences for typical actions performed with *XCP*.

Everything not explicitly mentioned in this document, should be considered as implementation specific.

0.3 DEFINITIONS AND ABBREVIATIONS

The following table gives an overview about the most commonly used definitions and abbreviations throughout this document.

Abbreviation	Description						
A2L	File Extension for an ASAM 2MC Language File						
AML	ASAM 2 Meta Language						
ASAM	Association for Standardization of Automation and Measuring Systems						
BYP	BYPassing						
CAL	CALibration						
CAN	Controller Area Network						
CCP	Can Calibration Protocol						
CMD	CoMmanD						
CS	C heck S um						
СТО	Command Transfer Object						
CTR	CounTeR						
DAQ	Data AcQuisition, Data AcQuisition Packet						
DTO	Data Transfer Object						
ECU	Electronic Control Unit						
ERR	ERRor Packet						
EV	EVent Packet						
LEN	LEN gth						
MCD	Measurement Calibration and Diagnostics						
MTA	Memory Transfer Address						
ODT	Object Descriptor Table						
PAG	PAGing						
PGM	ProGraMming						
PID	Packet IDentifier						
RES	command RESponse packet						
SERV	SERVice request packet						
SPI	Serial Peripheral Interface						
STD	STanDard STanDard						
STIM	Data STIMulation packet						
TCP/IP	Transfer Control Protocol / Internet Protocol						
TS	Time Stamp						
UDP/IP	Unified Data Protocol / Internet Protocol						
USB	Universal Serial Bus						
XCP	Universal Calibration Protocol						

Table 1: Definitions and Abbreviations

0.4 MAPPING BETWEEN XCP DATA TYPES AND ASAM DATA TYPES

The following table defines the mapping between data types used in this specification and ASAM data types defined by the Project Data Harmonization Version 2.0 (ref. www.asam.net).

XCP Data Type	ASAM Data Type
BYTE	A_UINT8
WORD	A_UINT16
DWORD	A_UINT32
DLONG	A_UINT64

1 THE XCP TRANSPORT LAYER FOR SXI (SPI AND SCI)

1.1 ADDRESSING

In general SPI and SCI (SxI) are no bus interfaces, they are used as a point to point connection. Therefore an addressing feature is not part of the transport layer.

1.2 COMMUNICATION MODEL

XCP on SxI makes use of the standard communication model.

The block transfer communication is optional.

The interleaved communication model is optional.

1.3 HEADER AND TAIL

Diagram 1: Header and Tail for XCP on SxI

1.3.1 HEADER

The XCP packet header for SxI consists of a Control Field containing a **LEN**gth (LEN) and an optional **C**oun**TeR** (CTR).

1.3.1.1 LENGTH

LEN is the number of bytes in the original XCP Packet. LEN can be BYTE or WORD (Intel format).

1.3.1.2 COUNTER

The CTR value in the XCP Header allows to detect missing Packets.

The master has to generate a CTR value when sending a CMD or STIM message. The CTR value must be incremented for each new packet sent from master to the slave.

The slave has to generate a (second, independent) CTR value when sending RES, ERR_EV, SRM or DAQ messages. The CTR value must be incremented for each new packet sent from slave to the master.

If available, CTR always has the same size as LEN.

Diagram 2: Header Types for XCP on SxI

XCP Version 1.1 Release 13

1.3.2 TAIL

1.3.2.1 FILL BYTES

Depending on the alignment (when using the SPI in WORD or DWORD mode) and the minimum packet size (when Master/Slave SPI mode is used), LEN_FILL (= MAX_CTO(DTO)–LEN) optional fill bytes can be added at the end of the XCP Message.

Diagram 3 : Fill bytes in Tail for XCP on SxI

1.3.2.2 CHECKSUM

The XCP Tail may contain an optional BYTE or WORD size checksum.

For a BYTE checksum the calculation must be done byte-wise, for a WORD checksum the calculation must be done word-wise. The checksum is calculated by adding the bytes of the XCP Header, the bytes of the XCP Packet and the Fill bytes of the XCP Tail into a BYTE or WORD checksum, ignoring overflows.

Diagram 4: Checksum in Tail for XCP on SxI

14 XCP Version 1.1 Release

1.4 THE LIMITS OF PERFORMANCE

There are no additional restrictions of MAX_CTO and MAX_DTO for XCP on Sxl.

Name	Туре	Representation	Range of value
MAX_CTO	Parameter	BYTE	0x08 – 0xFF
MAX_DTO	Parameter	WORD	0x0008 – 0xFFFF

XCP Version 1.1 Release

15

1.5 COMMUNICATION MODES

16

1.5.1 ASYNCHRONOUS COMMUNICATION MODE (SCI)

In asynchronous (SCI) full duplex mode each direction is fully independent of the other and there are no restrictions regarding the protocol.

1.5.1.1 ASYNCHRONOUS COMMUNICATION MODE WITH FRAMING

Diagram 5: framing for XCP on SCI

For improving frame detection capabilities, a framing mechanism can be used.

The framing protocol defines two special characters: SYNC and ESC. If framing is used, every XCP on SCI Message is preceded by a SYNC character. If Inside the XCP on SCI Message a data byte occurs that is the same as SYNC, it is replaced by the two-byte sequence ESC+ESC_SYNC. If inside the XCP on SCI Message a data byte occurs that is the same as ESC, it is replaced by the two-byte sequence ESC+ESC_ESC.

With the FRAMING block in the ASAM MCD 2MC description file the slave can inform the master that it has to use the framing mechanism.

SYNC and ESC are configurable, ESC_SYNC = 0x01, ESC_ESC = 0x00.

1.5.2 SYNCHRONOUS COMMUNICATION MODE (SPI)

1.5.2.1 FULL DUPLEX MODE

In synchronous (SPI) full duplex mode each direction has its own clock line.

Both directions are fully independent of each other and there are no restrictions regarding the protocol.

This mode is available for BYTE, WORD and DWORD SPI interfaces.

When using a WORD or DWORD SPI interface, alignment requirements must be met.

In this case the Identification_Field_Type for DAQ packets must be 0x01 or 0x03. Also the timestamp size must be 2 or 4 byte.

For XCP messages with odd length, a fill byte must be added in the XCP Tail.

Example:

LEN		CTR		ODT	DAQ	Times	tamp	Data					
9	0	Х	Χ	3	1	T_I	T_h	D[0]	D[1]	D[2]	D[3]	D[4]	0

DAQ message: WORD LEN, WORD CTR, WORD SPI, no CS, 1 fill byte

XCP Version 1.1 Release 17

1.5.2.2 MASTER/SLAVE MODE

In synchronous (SPI) master/slave mode, one clock line is used for both directions.

The device which supplies the clock is called the SPI master.

In this case the SPI slave can only send a message, if the SPI master sends a message in parallel, because the clock is required from SPI master. The SPI slave must ensure, that the message to be transmitted starts synchronously to the message to be received.

For DAQ purposes the XCP slave should be the SPI master to ensure that it is able to transmit a DAQ packets with low latency.

During configuration time, when no DAQ is running, the XCP slave must transmit dummy packets in order to enable the XCP master to send command packets for configuration. This needs to be done frequently.

The dummy packet is defined as an event packet with the event code EV_TRANSPORT. All other bytes of this event packet must be zero to be compatible with future extensions.

Example:

LEN		CTR		PID	EV	Fill bytes	3				
2	0	Χ	Х	0xFD	0xFF	0	0	0	0	0	0

Dummy message with WORD LEN and CTR:

The minimum length for all packets sent by the XCP slave must be at least MAX_CTO.

This is to ensure that all kind of command packets could be sent by the XCP master.

This mode is available for BYTE, WORD and DWORD SPI interfaces.

When using a WORD or DWORD SPI interface, the same alignment requirements as for Full Duplex Mode must be met

2 SPECIFIC COMMANDS FOR XCP ON SXI

There are no specific commands for XCP on SxI at the moment.

3 SPECIFIC EVENTS FOR XCP ON SXI

Table of Event Codes:

Event	Code	Remark		
EV_DUMMY	0xFF	Optional		

3.1 DUMMY PACKET

Category SPI Master/Slave mode only, optional

Mnemonic EV DUMMY

Position	Туре	Description
0	BYTE	Event Packet = 0xFD
1	BYTE	EV_TRANSPORT = 0xFF

The DUMMY packet is used for SPI applications when the SPI is used in Master/Slave mode.

In this case an event packet must be sent by the XCP slave (which is the SPI master) frequently to keep the communication alive.

If DAQ is running, no DUMMY packets are required.

Note:

The minimum message size must be at least MAX_CTO bytes, plus the size of the XCP Header, plus the size of the Checksum in the XCP Tail.

Therefore additional fill bytes must be added in the Tail of the event message.

4 INTERFACE TO ASAM MCD 2MC DESCRIPTION FILE

The following chapter describes the parameters that are specific for XCP on Sxl.

4.1 ASAM MCD 2MC AML FOR XCP ON SXI

```
ASAP2 meta language for XCP on Sxl V1.0
  2007-08-07
                                                                  */
  Vector Informatik, Schuermans
                                                                  */
                                                                  */
  Datatypes:
                                                                  */
                                                                  */
  A2ML ASAP2
                        Windows description
  ______
 uchar UBYTE BYTE unsigned 8 Bit char SBYTE char signed 8 Bit uint UWORD WORD unsigned integer 16 Bit int SWORD int signed integer 16 Bit ulong ULONG DWORD unsigned integer 32 Bit long SLONG LONG signed integer 32 Bit float 51 OAT32 IEEE float 32 Bit
                                                                  */
           FLOAT32_IEEE float 32 Bit
  float
struct SxI_Parameters { /* At MODULE */
                        /* XCP on SxI version */
  uint;
                       /* e.g. "1.0" = 0x0100 */
                        /* BAUDRATE [Hz] */
  ulong;
  taggedstruct { /* exclusive tags */
   "ASYNCH_FULL_DUPLEX_MODE" struct {
                                     enum {
                                        "PARITY_NONE" = 0,
                                        "PARITY_ODD" = 1,
                                        "PARITY_EVEN" = 2
                                     };
                                     enum {
                                        "ONE STOP BIT" = 1,
                                        "TWO STOP BITS" = 2
                                     };
                                      taggedstruct {
                                         block "FRAMING" struct {
                                                 uchar; /* SYNC */
                                                 uchar; /* ESC */
                                                 };
                                      };
```



```
"SYNCH_FULL_DUPLEX_MODE_BYTE";
  "SYNCH_FULL_DUPLEX_MODE_WORD";
  "SYNCH_FULL_DUPLEX_MODE_DWORD";
  "SYNCH MASTER SLAVE MODE BYTE";
  "SYNCH_MASTER_SLAVE_MODE_WORD";
  "SYNCH_MASTER_SLAVE_MODE_DWORD";
 };
 enum {
  "HEADER_LEN_BYTE"
  "HEADER_LEN_CTR_BYTE" = 1,
 "HEADER_LEN_FILL_BYTE" = 2,
  "HEADER_LEN_WORD"
  "HEADER_LEN_CTR_WORD" = 4,
  "HEADER_LEN_FILL_WORD" = 5
 };
 enum {
  "NO_CHECKSUM" = 0,
  "CHECKSUM_BYTE" = 1,
  "CHECKSUM_WORD" = 2
 };
```


4.2 IF_DATA EXAMPLE FOR XCP ON SXI

XCP Version 1.1 Release

ASAM e.V. Arnikastraße 2 D-85635 Höhenkirchen Germany

Tel.: (+49) 08102 / 8953 17
Fax.: (+49) 08102 / 8953 10
F-mail: info@asam.net

E-mail: info@asam.net
Internet: www.asam.net