Randomized Algorithms and Motif Finding

Outline

- 1. Randomized QuickSort
- 2. Randomized Algorithms
- 3. Greedy Profile Motif Search
- 4. Gibbs Sampler
- 5. Random Projections

Section 1: Randomized QuickSort

Randomized Algorithms

- Randomized Algorithm: Makes random rather than deterministic decisions.
- The main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.
- These algorithms are commonly used in situations where no exact and fast algorithm is known.

Introduction to QuickSort

- QuickSort is a simple and efficient approach to sorting.
 - 1. Select an element *m* from unsorted array **c** and divide the array into two subarrays:
 - \mathbf{c}_{small} = elements smaller than m
 - \mathbf{c}_{large} = elements larger than m
 - 2. Recursively sort the subarrays and combine them together in sorted array \mathbf{c}_{sorted}

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 1:** Choose the first element as *m*

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$oldsymbol{c}_{ ext{small}} = \{ \}$$
 $oldsymbol{c}_{ ext{large}} = \{ \}$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{ 3 \}$$

$$c_{\text{large}} = \{ \}$$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{3, 2\}$$

$$c_{\text{large}} = \{\}$$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{3, 2\}$$

$$c_{\text{large}} = \{8\}$$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{ 3, 2, 4 \}$$
 $c_{\text{large}} = \{ 8 \}$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{ 3, 2, 4, 5 \}$$
 $c_{\text{large}} = \{ 8 \}$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{ 3, 2, 4, 5, 1 \}$$
 $c_{\text{large}} = \{ 8 \}$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{ 3, 2, 4, 5, 1 \}$$
 $c_{\text{large}} = \{ 8, 7 \}$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{ 3, 2, 4, 5, 1, 0 \}$$
 $c_{\text{large}} = \{ 8, 7 \}$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 2:** Split the array into c_{small} and c_{large} based on m.

$$c_{\text{small}} = \{ 3, 2, 4, 5, 1, 0 \}$$
 $c_{\text{large}} = \{ 8, 7, 9 \}$

$$c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}$$

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 3:** Recursively do the same thing to c_{small} and c_{large} until each subarray has only one element or is empty.

- Given an array: $c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$
- **Step 4:** Combine the two arrays with *m* working back out of the recursion as we build together the sorted array.

• Finally, we can assemble $c_{
m small}$ and $c_{
m large}$ with our original choice of m, creating the sorted array c_{sorted} .

The QuickSort Algorithm

- 1. QuickSort(*c*)
- 2. if c consists of a single element
- return *c*
- 4. $m \leftarrow c_1$
- 5. Determine the set of elements c_{small} smaller than m
- 6. Determine the set of elements c_{large} larger than m
- 7. QuickSort(c_{small})
- 8. QuickSort(c_{large})
- 9. Combine c_{small} , m, and c_{large} into a single array, c_{sorted}
- 10. return *c*_{sorted}

QuickSort Analysis: Optimistic Outlook

- Runtime is based on our selection of *m*:
 - A good selection will split **c** evenly so that $|\mathbf{c}_{small}| = |\mathbf{c}_{large}|$.
 - For a sequence of good selections, the recurrence relation is:

The time it takes to sort two smaller arrays of size *n*/2

Time it takes to split the array into 2 parts

• In this case, the solution of the recurrence gives a runtime of $O(n \log n)$.

QuickSort Analysis: Pessimistic Outlook

- However, a poor selection of *m* will split *c* unevenly and in the worst case, all elements will be greater or less than *m* so that one subarray is full and the other is empty.
- For a sequence of poor selection, the recurrence relation is:

$$T(n) = T(n-1) + \text{constant} \cdot n$$

The time it takes to sort one array containing *n*-1 elements

Time it takes to split the array into 2 parts where const is a positive constant

• In this case, the solution of the recurrence gives runtime $O(n^2)$.

QuickSort Analysis

- QuickSort seems like an ineffecient MergeSort.
- To improve QuickSort, we need to choose *m* to be a good "splitter."
- It can be proven that to achieve $O(n \log n)$ running time, we don't need a perfect split, just a reasonably good one. In fact, if both subarrays are at least of size n/4, then the running time will be $O(n \log n)$.
- This implies that half of the choices of *m* make good splitters.

Section 2: Randomized Algorithms

A Randomized Approach to QuickSort

- To improve QuickSort, *randomly* select *m*.
- Since half of the elements will be good splitters, if we choose *m* at random we will have a 50% chance that *m* will be a good choice.
- This approach will make sure that no matter what input is received, the expected running time is small.

The RandomizedQuickSort Algorithm

- 1. RandomizedQuickSort(c)
- 2. if c consists of a single element
- 3. return *c*
- 4. Choose element *m* uniformly at random from **c**
- 5. Determine the set of elements c_{small} smaller than m
- 6. Determine the set of elements c_{large} larger than m
- 7. RandomizedQuickSort(*c*_{small})
- 8. RandomizedQuickSort(c_{large})
- 9. Combine c_{small} , m, and c_{large} into a single array, c_{sorted}
- 10. return c_{sorted}

^{*}Lines in red indicate the differences between QuickSort and RandomizedQuickSort

RandomizedQuickSort Analysis

- Worst case runtime: $O(m^2)$
- Expected Runtime: $O(m \log m)$.
- Expected runtime is a good measure of the performance of randomized algorithms; it is often more informative than worst case runtimes.
- RandomizedQuickSort will always return the correct answer, which offers us a way to classify Randomized Algorithms.

Two Types of Randomized Algorithms

- 1. Las Vegas Algorithm: Always produces the correct solution (ie. RandomizedQuickSort)
- 2. Monte Carlo Algorithm: Does not always return the correct solution.
- Good Las Vegas Algorithms are always preferred, but they are often hard to come by.

Section 3: Greedy Profile Motif Search

A New Motif Finding Approach

- **Motif Finding Problem**: Given a list of *t* sequences each of length *n*, find the "best" pattern of length *l* that appears in each of the *t* sequences.
- **Previously**: We solved the Motif Finding Problem using an Exhaustive Search or a Greedy technique.
- **Now**: *Randomly* select possible locations and find a way to greedily change those locations until we have converged to the hidden motif.

Profiles Revisited

• Let $\mathbf{s}=(s_1,...,s_t)$ be the set of starting positions for *l*-mers in our *t* sequences.

•

- The substrings corresponding to these starting positions will form:
 - t x l alignment matrix
 - 4 x l profile matrix **P**.
- We make a special note that the profile matrix will be defined in terms of the *frequency* of letters, and not as the count of letters.

- $Pr(a \mid P)$ is defined as the probability that an *l*-mer a was created by the profile **P**.
- If a is very similar to the consensus string of P then $Pr(a \mid P)$ will be high.
- If a is very different, then $Pr(a \mid P)$ will be low.
- Formula for $Pr(\boldsymbol{a} \mid \boldsymbol{P})$:

$$\Pr(a \mid P) = \prod_{i=1}^{n} P_{a_i, i}$$

• Given a profile: P =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

- The probability of the consensus string:
 - Pr(AAACCT | P) = ???

• Given a profile: P =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

- The probability of the consensus string:
 - $Pr(AAACCT \mid P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = 0.033646$

• Given a profile: P =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

- The probability of the consensus string:
 - Pr(AAACCT | P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = 0.033646
- The probability of a different string:
 - $Pr(ATACAG \mid P) = 1/2 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 1/8 = 0.001602$

P-Most Probable I-mer

• Define the *P*-most probable *l*-mer from a sequence as the *l*-mer contained in that sequence which has the highest probability of being generated by the profile *P*.

• **Example**: Given a sequence = CTATAAACCTTACATC, find the P-most probable *l*-mer.

P-Most Probable I-mer

Find $Pr(a \mid P)$ of every possible 6-mer:

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

- First Try: C T A T A A A C C T A C A T C
- Second Try: C T A T A A A C C T T A C A T C
- Third Try: C T A T A A A C C T T A C A T C
- Continue this process to evaluate every 6-mer.

P-Most Probable /-mer

• Compute $Pr(a \mid P)$ for every possible 6-mer:

String, Highlighted in Red	Calculations	prob(a P)
CTATAAACCTTACAT	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
CTAT <mark>AAACCT</mark> TACAT	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
CTATAAACCTTACAT	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
CTATAA <mark>ACCTTA</mark> CAT	1/2 x 0 x 1/2 x 0 1/4 x 0	0
CTATAAACCTTACAT	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
CTATAAACCTTACAT	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

P-Most Probable I-mer

• The *P*-Most Probable 6-mer in the sequence is thus AAACCT:

String, Highlighted in Red	Calculations	Prob(a P)
CTATAAACCTTACAT	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
CTATAAACCTTACAT	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
CTATAAACCTTACAT	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
CTATAA <mark>ACCTTA</mark> CAT	1/2 x 0 x 1/2 x 0 1/4 x 0	0
CTATAAACCTTACAT	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
CTATAAACCTTACAT	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
CTATAAACCTTACAT	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

Dealing with Zeroes

- In our toy example $Pr(a \mid P)=0$ in many cases.
- In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.
- To avoid many entries with $Pr(a \mid P) = 0$, there exist techniques to equate zero to a very small number so that having one zero in the profile matrix does not make the entire probability of a string zero (we will not address these techniques here).

P-Most Probable I-mers in Many Sequences

• Find the **P**-most probable *l*-mer in each of the sequences.

CTATAAACGTTACATC **ATAGCGATTCGACTG** CAGCCCAGAACCCT CGGTATACCTTACATC **TGCATTCAATAGCTTA** TATCCTTTCCACTCAC **CTCCAAATCCTTTACA GGTCATCCTTTATCCT**

P-Most Probable I-mers in Many Sequences

• The *P*-Most Probable *l*-mers form a new profile.

1	а	а	а	С	g	t
2	а	t	а	g	С	g
3	а	а	C	С	С	t
4	9	а	а	С	С	t
5	а	t	а	g	С	t
6	9	а	C	С	t	g
7	а	t	С	С	t	t
8	t	а	С	С	t	t
Α	5/8	5/8	4/8	0	0	0
С	0	0	4/8	6/8	4/8	0
Т	1/8	3/8	0	0	3/8	6/8
G	2/8	0	0	2/8	1/8	2/8

CTATAAACGTTACATC ATAGCGATTCGACTG CAGCCCAGAACCCT CGGTGAACCTTACATC TGCATTCAATAGCTTA **TGTCCTGTCCACTCAC** CTCCAAATCCTTTACA **GGTCTACCTTTATCCT**

Comparing New and Old Profiles

Red = frequency increased, Blue – frequency decreased

1	а	а	а	С	g	t
2	а	t	а	g	С	g
3	а	а	С	С	С	t
4	g	а	а	С	С	t
5	а	t	а	g	С	t
6	g	а	С	С	t	g
7	а	t	С	С	t	t
8	t	а	С	С	t	t
Α	5/8	5/8	4/8	0	0	0
С	0	0	4/8	6/8	4/8	0
Т	1/8	3/8	0	0	3/8	6/8
G	2/8	0	0	2/8	1/8	2/8

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Greedy Profile Motif Search

- Use *P*-Most probable l-mers to adjust start positions until we reach a "best" profile; this is the motif.
 - 1. Select random starting positions.
 - 2. Create a profile **P** from the substrings at these starting positions.
 - 3. Find the **P**-most probable *l*-mer **a** in each sequence and change the starting position to the starting position of **a**.
 - 4. Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.

GreedyProfileMotifSearch Algorithm

```
<u>GreedyProfileMotifSearch(DNA, t, n, 1)</u>
         Randomly select starting positions \mathbf{s} = (s_1, ..., s_t) from DNA
3_
         bestScore \leftarrow 0
     while Score(s, DNA) > bestScore
4.
            Form profile P from s
5.
6.
           bestScore \leftarrow Score(s, DNA)
7.
           for i \leftarrow 1 to t
8.
              Find a P-most probable I-mer a from the I<sup>th</sup> sequence
9.
              s_i \leftarrow starting position of a
10.
        return bestScore
```

GreedyProfileMotifSearch Analysis

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is actually unlikely that the random starting positions will lead us to the correct solution at all.
- Therefore this is a *Monte Carlo* algorithm.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimal solution simply by chance.

Section 4: Gibbs Sampler

Gibbs Sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs.
- However, we can improve the algorithm by introducing **Gibbs Sampling**, an iterative procedure that discards one *l*-mer after each iteration and replaces it with a new one.
- Gibbs Sampling proceeds more slowly and chooses new *l*-mers at random, increasing the odds that it will converge to the correct solution.

Gibbs Sampling Algorithm

- 1. Randomly choose starting positions $\mathbf{s} = (s_1,...,s_t)$ and form the set of *l*-mers associated with these starting positions.
- 2. Randomly choose one of the *t* sequences.
- 3. Create a profile P from the other t-1 sequences.
- 4. For each position in the removed sequence, calculate the probability that the *l*-mer starting at that position was generated by **P**.
- 5. Choose a new starting position for the removed sequence at random based on the probabilities calculated in Step 4.
- 6. Repeat steps 2-5 until there is no improvement.

- Input: t = 5 sequences, motif length l = 8
 - 1. GTAAACAATATTTATAGC
 - 2. AAAATTTACCTCGCAAGG
 - 3. CCGTACTGTCAAGCGTGG
 - 4. TGAGTAAACGACGTCCCA
 - 5. TACTTAACACCCTGTCAA

1. Randomly choose starting positions, $\mathbf{s} = (s_1, s_2, s_3, s_4, s_5)$ in the 5 sequences:

$$s_1$$
=7 GTAAACAATATTTATAGC
 s_2 =11 AAAATTTACCTTAGAAGG
 s_3 =9 CCGTACTGTCAAGCGTGG
 s_4 =4 TGAGTAAACGACGTCCCA
 s_5 =1 TACTTAACACCCTGTCAA

2. Choose one of the sequences at random

$s_1 = 7$	GTAAACAATATTTATAGC
$s_2 = 11$	AAAATTTACCTTAGAAGG
$s_3 = 9$	CCGTACTGTCAAGCGTGG
$s_4 = 4$	TGAGTAAACGACGTCCCA
$s_5=1$	TACTTAACACCCTGTCAA

2. Choose one of the sequences at random: **Sequence 2**

$s_1 = 7$	GTAAACAATATTTATAGC
$s_2 = 11$	AAAATTTACCTTAGAAGG
$s_3 = 9$	CCGTACTGTCAAGCGTGG
$s_4 = 4$	TGAGTAAACGACGTCCCA
$s_5=1$	TACTTAACACCCTGTCAA

3. Create profile **P** from *l*-mers in remaining 4 sequences:

1	Α	Α	Т	Α	Т	Т	Т	Α
3	H	C	Α	A	G	C	G	Т
4	G	Т	Α	Α	Α	С	G	Α
5	Τ	Α	С	Т	Т	Α	Α	С
Α	1/4	2/4	2/4	3/4	1/4	1/4	1/4	2/4
С	0	1/4	1/4	0	0	2/4	0	1/4
Т	2/4	1/4	1/4	1/4	2/4	1/4	1/4	1/4
G	1/4	0	0	0	1/4	0	3/4	0
Consensus String	Τ	Α	Α	А	Т	С	G	Α

4. Calculate $Pr(a \mid P)$ for every possible 8-mer in the removed sequence:

Strings Highlighted in Red $Pr(\boldsymbol{a} \mid \boldsymbol{P})$

AAAATTTACCTTAGAAGG	.000732
AAAATTTACCTTAGAAGG	.000122
AAAATTTACCTTAGAAGG	0
AAA <mark>ATTTACCT</mark> TAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTT <mark>ACCTTAGA</mark> AGG	.000183
AAAATTTACCTTAGAAGG	0
AAAATTTAC <mark>CTTAGAAG</mark> G	0
AAAATTTACCTTAGAAGG	0

- 5. Create a distribution of probabilities of *l*-mers $Pr(a \mid P)$, and randomly select a new starting position based on this distribution.
 - To create this distribution, divide each probability $Pr(a \mid P)$ by the lowest probability:

```
Starting Position 1: Pr(AAAATTTA | P) / .000122 = .000732 / .000122 = 6
Starting Position 2: Pr(AAATTTAC \mid P)/.000122 = .000122 / .000122 = 1
Starting Position 8: Pr(ACCTTAGA \mid P)/.000122 = .000183 / .000122 = 1.5
```

Ratio = 6:1:1.5

Turning Ratios into Probabilities

Define probabilities of starting positions according to the computed ratios.

```
Pr(Selecting Starting Position 1): 6/(6+1+1.5) = 0.706
```

Pr(Selecting Starting Position 2): 1/(6+1+1.5) = 0.118

Pr(Selecting Starting Position 8): 1.5/(6+1+1.5) = 0.176

Select the start position probabilistically based on these ratios.

• Assume we select the substring with the highest probability—then we are left with the following new substrings and starting positions.

$s_I = 7$	GTAAACAATATTTATAGC
$s_2 = 1$	AAAATTTACCTCGCAAGG
$s_3 = 9$	CCGTACTGTCAAGCGTGG
$s_4 = 5$	TGAGTAATCGACGTCCCA
$s_{5}=1$	TACTTCACACCCTGTCAA

6. We iterate the procedure again with the above starting positions until we cannot improve the score.

Gibbs Sampling in Practice

- Gibbs sampling needs to be modified when applied to samples with unequal distributions of nucleotides (*relative entropy* approach).
- Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.
- Needs to be run with many randomly chosen seeds to achieve good results.

Section 5: Random Projections

Another Randomized Approach

- The **Random Projection Algorithm** is an alternative way to solve the Motif Finding Problem.
- **Guiding Principle:** Some instances of a motif agree on a subset of positions.
 - However, it is unclear how to find these "non-mutated" positions.
- To bypass the effect of mutations within a motif, we randomly select a subset of positions in the patter,n creating a **projection** of the pattern.
- We then search for the projection in a hope that the selected positions are not affected by mutations in most instances of the motif.

Projections: Formation

- Choose *k* positions in a string of length *l*.
- Concatenate nucleotides at the chosen *k* positions to form a *k*-tuple.
- This can be viewed as a projection of *l*-dimensional space onto *k*-dimensional subspace.

$$l = 15$$
 Projection $k = 7$

ATGGCATTCAGATTC TGCTGAT

• Projection = (2, 4, 5, 7, 11, 12, 13)

Random Projections Algorithm

- Select *k* out of *l* positions uniformly at random.
- For each *l*-tuple in input sequences, hash into bucket based on letters at *k* selected positions.
- Recover motif from *enriched* bucket that contains many *l*-tuples.

Random Projections Algorithm

- Some projections will fail to detect motifs but if we try many of them the probability that one of the buckets fills in is increasing.
- In the example below, the bucket **GC*AC is "bad" while the bucket AT**G*C is "good"

Random Projections Algorithm: Example

- l = 7 (motif size), k = 4 (projection size)
- Projection: (1,2,5,7)

Hashing and Buckets

- Hash function h(x) is obtained from k positions of projection.
- Buckets are labeled by values of h(x).
- Enriched Buckets: Contain more than *s l*-tuples, for some decided upon parameter *s*.

Motif Refinement

- How do we recover the motif from the sequences in the enriched buckets?
- k nucleotides are from hash value of bucket.
- Use information in other l-k positions as starting point for local refinement scheme, e.g. Gibbs sampler.

Synergy Between Random Projection and Gibbs

- Random Projection is a procedure for finding good starting points: Every enriched bucket is a potential starting point.
- Feeding these starting points into existing algorithms (like Gibbs sampler) provides a good local search in vicinity of every starting point.
- These algorithms work particularly well for "good" starting points.

Building Profiles from Buckets

Motif Refinement

- For each bucket h containing more than s sequences, form profile P(h).
- Use Gibbs sampler algorithm with starting point P(h) to obtain refined profile P^* .

Random Projection Algorithm: A Single Iteration

- Choose a random *k*-projection.
- Hash each *l*-mer x in input sequence into bucket labeled by h
 (x).
- From each enriched bucket (e.g., a bucket with more than *s* sequences), form profile **P** and perform Gibbs sampler motif refinement.
- Candidate motif is best found by selecting the best motif among refinements of all enriched buckets.

Choosing Projection Size

- Choose *k* small enough so that several motif instances hash to the same bucket.
- Choose *k* large enough to avoid contamination by spurious *l*-mers:

$$4^{k} >> t(n-l+1)$$

How Many Iterations?

- **Planted Bucket**: Bucket with hash value h(M), where M is the motif.
- Choose m = number of iterations, such that Pr(planted bucket contains at least s sequences in at least one of m iterations) =0.95
- This probability is readily computable since iterations form a sequence of independent *Bernoulli trials*.

Expectation Maximization (EM)

- S = x(1),...x(t) : set of input sequences
- Given: A probabilistic motif model W(→) depending on unknown parameters →, and a background probability distribution P.
- Find value \rightarrow max that maximizes the likelihood ratio:

$$\frac{\Pr(S \mid W(\Theta_{\max}), P)}{\Pr(S \mid P)}$$

EM is local optimization scheme. Requires starting value \rightarrow_0 .

EM Motif Refinement

- For each input sequence x(i), return l-tuple y(i) which maximizes likelihood ratio:
 - $T = \{ y(1), y(2), ..., y(t) \}$
 - C(T) = consensus string

$$\frac{\Pr(y(i) \mid W(\Theta_h^*))}{\Pr(y(i) \mid P)}$$