CS101 Discrete Mathematics

Maximum Flow Problem

Dhananjay Goel - 2021CSB1165

Hardik Aggarwal - 2021CSB1173

Problem Description

The problem involves determining the most amount of flow that can be sent via a system of pipes, channels and other paths while taking into account the capacity restrictions.

The Directed edge from S to A has maximum capacity of 7 and 0 depicts the amount of flow from the edge. There can be numerous paths to follow to reach sink from source.

How to find the Maximal Flow?

1 Ford-Fulkerson's Algorithm

2 Edmonds-Karp's Algorithm

3 Dinic's Algorithm

4 Capacity Scaling Heuristic

Ford-Fulkerson Algorithm

Path S-A-B-t

Uses DFS to find augmenting paths

Edmonds Karp Algorithm

Capacity Scaling Heuristic

Adjust the size of each edge based on the capacity value highlighting the edges that should be given priority while finding maximal flow

Workflow

U = largets edge capacity

 Δ = largest power of 2 less than or equal to U

Dinic's Algorithm

Why take a detour? The main idea behind this algorithm is to guide augmenting paths from source to sink using a level graph and thus reducing the runtime

Conclusion

Algorithm	Time Complexity
Ford Fulkerson (with DFS)	O(EF), where F is the maximum flow
Edmonds-Karp	$O(VE^2)$
Dinic's algorithm	$O(V^2E)$
Capacity Scaling	Q(VE logU), where U is the maximum capacity of the network

Applications

Transportation Networks - Optimizing the flow of traffic, passengers or goods through the network minimizing congestion and maximizing efficiency.

Disaster Mangement - It can be used to determine evacuation routes, resource allocation and logistics planning during emergencies

Image Segmentation - Treating image as a graph, the algorithm finds the optimal boundary between different regions based on flow of pixels

Water Management- Determining the optimal distribution of water resources in irrigation networks, hydroelectric power generation, or water supply networks

Thank You