(19) народна РЕПУБЛИКА БЪЛГАРИЯ

ОПИСАНИЕ НА ИЗОБРЕТЕНИЕ по авторско свидетелотво

(II) 17385

(61)Доп. към №

(62) Pasa, or No

C 07 d 51/64

(21) Per. No 18962

(22)Заявено на 09.11.71

PHOTUTYT 38 изобретения и рационализации (46) Публикувано в бюлетия №

ma 10.11.73

(45) Otheratano na 29.03.78

(71) Заявител:

(72) ABTODH:

No No **LERTPARHA** MAT IHTHA. BUBBUCTEKA

(O)

Светлана Стоянова Зиколова Кирил Асенов Нинов Петър Николов Манолов София

(54) производни на бенвихидрилпиперазина и метол SA HOLY YARAHETO HE

Наобретеннето се отнаси до прожаводии на бензихидрилинерезина о обща формуна I

в конто й може да бъде аживиси радикая с 2 до 8 въгнеродии атома. анконилов радиная с 8 или 4 въглеродии атома, фениналичнов или дифе ниманиямов радимам 6 2 или 8 выглеродии атома в аминиовата верига. феномометидов, инфиниметильнов, нафинистиленов, бензонков, р-хлорбенвонись, триметоксибенвонись, фенницетнись, дифенницетнись, дифенениронновилов, нафтивнотилов, никлохокомлов, пиклоновилов, диотеланиностиков, динотикаминостиков, пепоридиностиков или HOPPONHEOSTHAGE OCTATER, BREDURTOHO E TOXENTO CAPRAKOROFERRO HORO-

сими соли с неорганични или органични кисолини, както и до метод за получаването им.

Новополучените съединения могат да се разглеждат като анамози на напожника се вече в практината белгийски препарач Пинаризии.

от чило отруктура е занавела і бенахидрижниперавиновата част.

Съединенията с обна формуна I се получават по два начина:

1. Като се надиза от бенанхидрилинперавии (III) и свответнето жалогенопроизводно (IV).

III

X = CI, BP.

2. При кондензации из обответно монозанестен пиперавии (Ч) с бензидринханогения (ЧІ)

X = CI man le.

Маходиние монесубститунрани пиперазнии (III и V) се алимират или анимират в среда от помирен или меномирен разгворитем (бенвек, темуол, комиси, метамен, етамом, смужеми от имертем разгворитем и вода) при обинисвени температура или при нагряване в продължение на половин до нест часа, до базите на съединения I.

Като кондензационно оредство се използва наимал от находния амин или друго вещество с базични свойства, като например Мансов. Ма₂CO₃, пиридии, триетиламии и др.

Получените бази I по обикновените нетоди, чрез разгваряне в подходящ разгворител и утанване с подходящ разгвор от съответната ниселина или продужване с ханогеноводород дават исланите от нас соли.

Две от съединенията: N^1 -сензхидрии- N^4 -елиминеразми (съединение $\mathbb R$ 7 от приложения таблица, с условен инфър Λ_5 - 2) и N^1 -бензхидрии- N^4 -нафтикацетиянинеразми (съединение $\mathbb R$ 22 от таблицата, с условен инфър Λ_5 - 18) са подложени на фарманомогичее процата, с условен инфър Λ_5 - 18) са подложени на фарманомогичее проучване, обхванамо тестеве за илиние върху сърдечие-съдовата систена, вегетативната нервна система, гладката мускулатура и остра токсичност. Данните от проучванията поназват, че съединенията са физирмогично активни. Осебено подчертам е назодилатиражит ефект върху
венечните съдове и увеличението на норожарини дебит в ещити чин
витром на съединението Λ_5 - 2. Последното увеличава коронарини, дебит непиренарат от изолирано теплокръвно сърце средно съе 160 % при
контрола с превидании — 108 % и цинаризми — 104 % (сравненията са
направени с ситимално действуващите концентрации на последните два
препарата). Следователно Λ_5 - 2 в сравнение о преинамина и цинаривина предизвина с около 50 % по-голино увеличение на дебита.

и двого съединения упражиная известен спазмолитичен офект, който при $A_S - 2$ е приблизителие единизи с този на папаверния.

По отномение на вегетативната нервна система веществата мнат слабо изразена антивност. Върху урегамизирани нотим съеденеинята опазват пратнограйно хинотельного действие.

Томончесски на ведескита, изразена в \mathbb{D}_{50} , е средно оконо 100 мг/иг за мини при интраноритополино поможение, определена
не Катбет: Резорбщита им е добра. $\Lambda_5 - 2$ има индека на резорбщия
около 2 и добра терановична инрина.

От този макар и предварителии фармекологичим проучвания става леко, че тоза са биологически активни ведества, които могар да бъдат обеки на по-нататими проучвания с оглед създаването на неви цении декаротием средства;

Съодиненията е обща формула I са нови, неописани в литературата вецества. Вначенията на R и точките на топомо са дадели в таблица.

Следвания пример непенива не-подробно изобретеннето.

Пример: Получанане на N¹-стан-N⁴-бензундрил-пинеразии.

Към разтвор на 5,04 г (0,02 и) N-монобензундрилиниеразии
в 50 ил сух бензол, в присъстане на 2 г (0,024 и) Клансо₃, при бъркане и нагряване на водна бани се изкапва за 80 имиути разтвор на
8,1.(0,02 и) етинеска з 50 ил сух бензол. Нагрява се и се бърна оде
4 часа. След охнаждане се филурува и суми над Na₂ S O₄. От бензолими разтвор се утанва чрез продухване със сух хнероводерод или с
наситем разтвор на имиринска инселина съответно ундрежнерящ и имират.

Хипреклория — 2.2. 351-6° (р). Начислен оветав в 5:064,55 Н 7,87; N 7,98, CI 20,12; канерене С 64,70, Н 7,80; N 7,77; CI 20,11.

Пикрая - 2.2. 282-8⁰(р).- Начислен олетав в \$1 С 5642; Н 4,67; IV 15,12; камереко С 50,68; И 3,86; N 15,45. Пример 2. Получаване во N^1 — (β — фенел)—одил- N^4 — бенехидрия пинеразии.

нам разтвор на 4 г (0,021 м) моло-N-(В -февли)-ставпиперавия и 80 их сух бензох, в присъстямо ил 4 г (0,086 м) направов
нарбонат при бържано в магриме на водно бами, за оконо 80 имиуми
се накапва разтвор на 4 г (0,021 м) бензинирими орга в 20 им сух
бензох. Нагрива се и се бържа още 5 часа. Спед схисидано в фентраране се буйн изд натриев сухфат и се отдертимирия бензойну. Чася
от остатъва се разтваря в алкохол и с населен разтвор на окоалова ви
селина в стер се утанва сом на получената база. Спед проврестализапин се получава окоанат с т.т. 184 – 1880. Измолено обябризанае:
С 64,93%, и 5,97%, и 5,22%. Немерено при акания: С 64,58%, и 6,30%,
и 4,99%.

При този метод могат да се получат и возчан се жадинемия, описаня в таблицата.

TABRINIA

2 по	R	COX		
ред		RIN	T.T.	
		<u> </u>		
1	2	8	4	
1 CH ₃ CH ₂ -		тавья з хачьохновых	251-8 ⁰ (p) 232-8 ⁰ (p)	

1	2	8	4
2	CH ₈ CH ₂ CH ₂ CH ₂ -	XMADOXXODMA ORGANES TROTADAS	237-40° 128-30° 300-208° (p)
3	CH3CH2CH2CH2CH2 -	estables United	105-8° (p) 218-21° (p) 198-200° (p)
4	CH3CH2CH2CH2CH2CH2 -	оковлат пикрат тартарат	124-6° (p) 225-7° (p) 205-7° (p)
5	CH3CH2CH2CH2CH2CH2CH2 -	orçaxat Taptapat	140-2° (p) 202-4° (p)
6	CH3CH2CH2CH2CH2CH2CH2CH2-	okoanat Taprapat	180–8° (p) 205–8° (p)
7	CH ₂ =CHCH ₂ -	хидрохнорид	226-8 ⁰
8	eh ₃ ch=ch. ch ₂ -	оксалат пикрат	179–181° (p) 210–12° (p)
9	C6H5 CH2CH3-	OKCAJAT .	18 4– 6 ⁰ (p)
10	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	orcanat numpat	198-9 ⁰ (p) 218-5 ⁰
11	(CgH ₅) ₂ CHCH ₂ -	OKCAMAT	195 –7 ° (p)
18	(CBH2)2CHCH2CH2-	оксалат пикрат	280–38°(p) 288–90°(p)
18	d -C ₁₀ H ₇ CH ₂ -	ORGANAT	200–201 ⁰ (p)
	∠ -C ₁₀ H ₇ EH ₂ CH ₂ -	orcenes	192 -4 ° (p)
15	с ₆ н ₅ о. сн ₂ он ₂ -	OKORNAT .	158–60 ⁰ (p)
16	C6H5CO-	ORGANAT Taptapat	140 <u>-42</u> 0 145-7

	1 2	8	4
17	p -cic ₆ H ₄ co-	интрат хидрохлорид	287-40 ⁰ 150-53 ⁰ (p)
18	3,4,5(CH ₃ 0) ₈ C ₆ H ₂ CO-	dasa ·	149-150 ⁰
19	с ₆ н ₅ сн ₂ со -	база	141-3 ⁰
20	(с ₆ н _б) ₂ снсо –	пикра т	188-190 ⁰ (p)
21	(0 ₆ H ₅) ₂ СНСН ₂ СО -	хадрохлорид Саза	113-5 ⁰ 128-30 ⁰
22	« -C ₁₀ H ₇ CH ₂ €0 -	база хидрохиорид	166-70 ⁰ 257 - 9
23	CH ₂ - CH ₂ CH -	okcanat Taptapat Quipat	198-5° (p) 160-2° (p) 184-6° (p)
24	CH ₂ - CH ₂ CH-	OKCAMAT TAPTAPAT QUIPAT	186-8° (p) 180-82° (p) 100-102° (p)
25	(c ₂ H ₅) ₂ NCH ₂ CH ₂ -	онсанат	167–169 ⁰ (p)
26	(CH ₃) ₂ INCH ₂ CH ₂ -	oncanar Taprapar	154-6° (p) 174-6° (p)
27	MCH ^S CH ^S	оксалат тартарат	132-5 ⁰ (p) 158-61 ⁰ (p)
28	MCH2 CH2-	okoanat Taptapar	160-2° (p) 160-3° (p)

Автороки протощим

1. Производни на белахидринциоразина с обща формуна I

10

в конто R е алкилов радинал с 2 до 8 въглеродии атома, адкенилов радинал с три или четири въглеродии атома, фенилалкилов, или дифенималкилов радинал с 2 или 8 въглеродии атома в алкиловата верига феноксистилов, нафтилистиленов, нафтиленов, бензоилов, р-хлор-бензоилов, триметокомбензоилов, фенилацетилов, дифенилацетилов, дифенилацетилов, дифенилацетилов, дифенилацетилов, дифенилов, дифенилов етилов, дифенилов при мерфолиностилов етилов, диметилаличесстилов, пинеридиостилов или мерфолиностилов сотить в при верига в поноснии соли с неор-ганичи или органичи или органичи или органичи или органичи.

- 2. N^{4} бенахидрии— N^{4} -ажил-пиперазии.
- В. Метод за получаване на бенахидрининперазинови производии с соща формуна I, съгласно претенция 1, карантеризиращ се с това, че бенахидрининперазии реагира със съответното калогено-производно съгласно скемата

4. Негод за получаване на бензихидрилниперазинови производии, озгласно претенция 1, карактеризиран се с това, че съответинит N-монозаместен пинеразии реалира със съответното калогенопроизводне съгласно оксията

RN NH + ICH
$$c_6H_5$$

в която X е хлор или бром, а R има дадените в претенция 1 значения, в присъствие на разгворитех и алкално кондензационно оредство,
при обикновена температура или при нагряване, до съединения I,
след което последните по желание се превръщат в соли на неорганични или органични киселини.

Издание на Института за изобретения и рационализации Софии, бул. "Насър" № 52

Пор. № 5589

Офсетова печатна база на ИИР

THPAX 200

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.