#### Diabetes Prediction Model

Name: Amrutha Prakash

Roll:AM.EN.U4AIE20011



▼ Goal: The objective is to predict based on diagnostic measurements whether a patient has diabetes.

Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

#### Dependencies:

```
Pregnancies: Number of times pregnant

Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test

BloodPressure: Diastolic blood pressure (mm Hg)

SkinThickness: Triceps skin fold thickness (mm)

Insulin: 2-Hour serum insulin (mu U/ml)

BMI: Body mass index (weight in kg/(height in m)^2)

DiabetesPedigreeFunction: Diabetes pedigree function
```

Age: Age (years)

Outcome: Class variable (0 or 1)

## ▼ Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
```

#### Loading Datasets and Visualise

```
#Importing Dataset
dataset = pd.read_csv('diabetes.csv')

#Visualising top 10 records
dataset.head()
```

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | ${\tt DiabetesPedigreeFunction}$ | Age |
|---|-------------|---------|---------------|---------------|---------|------|----------------------------------|-----|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                            | 50  |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                            | 31  |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                            | 32  |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                            | 21  |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                            | 33  |

```
# Basic info of columnsabs
dataset.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

| #    | Column                   | Non-Null Count | Dtvpe   |
|------|--------------------------|----------------|---------|
| - 11 | COTAIIII                 | Non Nail Counc | Deype   |
|      |                          |                |         |
| 0    | Pregnancies              | 768 non-null   | int64   |
| 1    | Glucose                  | 768 non-null   | int64   |
| 2    | BloodPressure            | 768 non-null   | int64   |
| 3    | SkinThickness            | 768 non-null   | int64   |
| 4    | Insulin                  | 768 non-null   | int64   |
| 5    | BMI                      | 768 non-null   | float64 |
| 6    | DiabetesPedigreeFunction | 768 non-null   | float64 |
| 7    | Age                      | 768 non-null   | int64   |
| 8    | Outcome                  | 768 non-null   | int64   |

dtypes: float64(2), int64(7) memory usage: 54.1 KB

dataset.describe()

|       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | BMI        | DiabetesPedigreeFunction | Age        | Outcome    |
|-------|-------------|------------|---------------|---------------|------------|------------|--------------------------|------------|------------|
| count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 | 768.000000               | 768.000000 | 768.000000 |
| mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  | 0.471876                 | 33.240885  | 0.348958   |
| std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   | 0.331329                 | 11.760232  | 0.476951   |
| min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   | 0.078000                 | 21.000000  | 0.000000   |
| 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  | 0.243750                 | 24.000000  | 0.000000   |
| 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  | 0.372500                 | 29.000000  | 0.000000   |
| 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  | 0.626250                 | 41.000000  | 1.000000   |
| max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  | 2.420000                 | 81.000000  | 1.000000   |

plt.figure(figsize=(8,8))
sns.heatmap(dataset.corr())

Ě

Ď

Ξ

```
- 1.0

Preanancies -

sns.barplot(x= dataset.Age.value_counts()[:10].index, y= dataset.Age.value_counts()[:10].values )

plt.xlabel('Age')

plt.ylabel("Age counter")

plt.title("Age Analysis")

plt.show
```

<function matplotlib.pyplot.show(close=None, block=None)>



## ▼ Outcome based

dataset.Outcome.value\_counts()

0 500
1 268
Name: Outcome, dtype: int64

ā

```
young_ages = dataset[(dataset.Age>=29)&(dataset.Age<40)]
middle_ages = dataset[(dataset.Age>=40)&(dataset.Age<55)]
elderly_ages = dataset[(dataset.Age>=55)]

print("Young Ages", len(young_ages))
print("Middle Ages", len(middle_ages))
print("Elderly Ages", len(elderly_ages))

Young Ages 194
    Middle Ages 153
    Elderly Ages 54

colors = ['blue','green','red']
explode= [1,1,1]
```

```
colors = ['blue','green','red']
explode= [1,1,1]
plt.figure(figsize=(8,8))
plt.pie([len(young_ages),len(middle_ages),len(elderly_ages)],labels=['Young Ages','Middle Ages','Elderly Ages'])
plt.show()
```

ŏ

.=



plt.ylabel('Count')
plt.title('Outcome 1 & 0') plt.show()



dataset.corr()

|                          | Pregnancies | Glucose          | BloodPressure | SkinThickness | Insulin                    | BMI      | DiabetesPedigreeFunction | Age       | Ou  |
|--------------------------|-------------|------------------|---------------|---------------|----------------------------|----------|--------------------------|-----------|-----|
| Pregnancies              | 1.000000    | 0.129459         | 0.141282      | -0.081672     | -0.073535                  | 0.017683 | -0.033523                | 0.544341  | 0.2 |
| Glucose                  | 0.129459    | 1.000000         | 0.152590      | 0.057328      | 0.331357                   | 0.221071 | 0.137337                 | 0.263514  | 0.4 |
| BloodPressure            | 0.141282    | 0.152590         | 1.000000      | 0.207371      | 0.088933                   | 0.281805 | 0.041265                 | 0.239528  | 0.0 |
| SkinThickness            | -0.081672   | 0.057328         | 0.207371      | 1.000000      | 0.436783                   | 0.392573 | 0.183928                 | -0.113970 | 0.0 |
| Insulin                  | -0.073535   | 0.331357         | 0.088933      | 0.436783      | 1.000000                   | 0.197859 | 0.185071                 | -0.042163 | 0.1 |
| ВМІ                      | 0.017683    | 0.221071         | 0.281805      | 0.392573      | 0.197859                   | 1.000000 | 0.140647                 | 0.036242  | 0.2 |
| DiabetesPedigreeFunction | -0.033523   | 0.137337         | 0.041265      | 0.183928      | 0.185071                   | 0.140647 | 1.000000                 | 0.033561  | 0.1 |
| Age                      | 0.544341    | 0.263514         | 0.239528      | -0.113970     | -0.042163                  | 0.036242 | 0.033561                 | 1.000000  | 0.2 |
| Outcome                  | በ ንን1ጸባጸ    | ∩ <u>4</u> 66581 | <u> </u>      | N N74759      | Ი 1 <b>२</b> Ი5 <u>/</u> ጳ | n 202605 | N 173844                 | በ 238356  | 1 0 |

# → Data Spliting

```
Data = dataset.drop(['Outcome'],axis =1)
Outcome = dataset.Outcome.values

x_train,x_test,y_train,y_test = train_test_split(Data,Outcome, test_size=0.2, random_state=1)
```

# ▼ Model Building

```
# Logistic Regression
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
regressor = LogisticRegression()
regressor.fit(x_train,y_train)
print('Test Accuracy {:.2f}%'.format(regressor.score(x_test, y_test)*100))
     Test Accuracy 77.92%
# KNN Model
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(x_train,y_train)
print('KNN Accuracy {:.2f}%'.format(knn.score(x_test,y_test)*100))
      KNN Accuracy 74.03%
# Support Vactor
from sklearn.svm import SVC
svm = SVC(random_state=1)
svm1 = SVC(kernel='linear',gamma='scale',random_state=0)
svm2 = SVC(kernel='rbf',gamma='scale',random_state=0)
svm3 = SVC(kernel='poly',gamma='scale',random_state=0)
svm4 = SVC(kernel='sigmoid',gamma='scale',random_state=0)
svm.fit(x_train,y_train)
svm1.fit(x_train,y_train)
svm2.fit(x_train,y_train)
svm3.fit(x_train,y_train)
svm4.fit(x_train,y_train)
print('SVC Accuracy : {:,.2f}%'.format(svm.score(x_test,y_test)*100))
print('SVC Liner Accuracy : {:,.2f}%'.format(svm1.score(x_test,y_test)*100))
print('SVC RBF Accuracy : {:,.2f}%'.format(svm2.score(x test,y test)*100))
print('SVC Ploy Accuracy : {:,.2f}%'.format(svm3.score(x_test,y_test)*100))
print('SVC Sigmoid Accuracy : {:,.2f}%'.format(svm4.score(x_test,y_test)*100))
     SVC Accuracy: 78.57%
     SVC Liner Accuracy : 77.92%
     SVC RBF Accuracy : 78.57%
     SVC Ploy Accuracy: 77.92%
     SVC Sigmoid Accuracy : 50.65%
# Naive Bayes
from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
nb.fit(x train.v train)
print("Naive Bayes Accuracy : \{:,.2f\}\%".format(nb.score(x\_test,y\_test)*100))
     Naive Bayes Accuracy: 77.27%
# Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=1000, max_depth=100,random_state=1)
rf.fit(x_train,y_train)
print("Random \ Forest \ Accuracy : \{:,.2f\}\%".format(rf.score(x\_test,y\_test)*100))
     Random Forest Accuracy : 80.52%
```

✓ 0s completed at 3:18 AM

• ×