Hyper-Flow Diffusion

Kimon Fountoulakis¹, Pan Li², Shenghao Yang¹

¹University of Waterloo ²Purdue University

SIAM ACDA21

Hypergraph modelling are everywhere

Hypergraphs generalize graphs by allowing a hyperedge to consist of multiple nodes that capture higher-order relations in the data.

E-commerce

Nodes are products or webpages Several products can be purchased at once Several webpages are visited during the same session

Nodes are authors

A group of authors collaborate on a paper/project

Ecology

Nodes are species

Multiple species interact according to their roles in the food chain

Diffusion algorithms are everywhere (for graphs)

Diffusion algorithms are everywhere (for graphs)

Diffusion on a graph is the process of spreading a given initial mass from some seed node(s) to neighbor nodes using the edges of the graph.

Applications include *recommendation systems*, *node ranking*, *community detection*, *social and biological network analysis*, etc.

Diffusion algorithms are everywhere (for graphs)

However ... hypergraph diffusion has been significantly less explored:

Existing methods either do not have a tight theoretical implication, or do not model complex high-order relations, or are not scalable.

Our motivation

We propose the first local diffusion method that

- Achieves stronger theoretical guarantees for the local hypergraph clustering problem;
- Applies to a substantially richer class of higher-order relations with only a submodularity assumption;
- Permits computational efficient algorithms.

However ... hypergraph diffusion has been significantly less explored:

Existing methods either do not have a tight theoretical implication, or do not model complex high-order relations, or are not scalable.

There are distinct ways to cut a 4-node hyperedge.

Distinct ways to cut a 4-node hyperedge may have different costs.

 $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$.

Distinct ways to cut a 4-node hyperedge may have different costs.

Unit: the cost of cutting a hyperedge is always 1, i.e., $w_e(S) = 1$

 $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$.

Distinct ways to cut a 4-node hyperedge may have different costs.

 $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$.

Unit: the cost of cutting a hyperedge is always 1, i.e., $w_e(S) = 1$.

Cardinality-based: the cost of cutting a hyperedge depends on the number of nodes in either side of the hyperedge, i.e., $w_e(S) = f(\min\{|S|, |e \setminus S|\})$.

Distinct ways to cut a 4-node hyperedge may have different costs.

 $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$.

Unit: the cost of cutting a hyperedge is always 1, i.e., $w_e(S) = 1$.

Cardinality-based: the cost of cutting a hyperedge depends on the number of nodes in either side of the hyperedge, i.e., $w_e(S) = f(\min\{|S|, |e \setminus S|\})$.

Submodular: the costs of cutting a hyperedge form a submodular function, i.e., $w_e: 2^e \to \mathbb{R}$ is a submodular set function.

Graph edge

Hyperedge

For each hyperedge e, we define a vector r_e that specifies the flow values. E.g., $r_e(v_1) = 1$, $r_e(v_2) = -6$. Flow conservation: entries in r_e sums to 0.

Graph edge

For each hyperedge e, we define a vector r_e that specifies the flow values. E.g., $r_e(v_1) = 1$, $r_e(v_2) = -6$. Flow conservation: entries in r_e sums to 0.

Hyperedge

Additional constraints on r_e can make the flow values respect higher-order relations.

Flows on graph

Flows on hypergraph

A natural generalization of network flows.

Higher-order relations: primal-dual flow/cut connection

- w_e is a set function $2^e \to \mathbb{R}_+$
- $w_e(S)$ specifies the **cut-cost** of splitting e into S and $e \setminus S$
- w_e is submodular

- r_e is a vector in $\mathbb{R}^{|e|}$
- r_e specifies the flow over e
- r_e lies in $\mathbb{R}_+(B_e)$

Cone generated by the base polytope of w_e

Consider a hypergraph H = (V, E)

• $\Delta \in \mathbb{R}_+^{|V|}$ specifies initial mass on nodes.

- $\Delta \in \mathbb{R}_+^{|V|}$ specifies initial mass on nodes
- r_e , $e \in E$, specifies the flow routings

- $\Delta \in \mathbb{R}_+^{|V|}$ specifies initial mass on nodes
- r_e , $e \in E$, specifies the flow routings
- $m := \Delta \sum_{e \in E} r_e \text{ specifies } \underset{e \in E}{\text{mass on nodes}}$

- $\Delta \in \mathbb{R}_+^{|V|}$ specifies initial mass on nodes
- r_e , $e \in E$, specifies the flow routings $m := \Delta \sum_{e \in E} r_e \text{ specifies net mass on nodes}$
- Each node has capacity equal to its degree

- $\Delta \in \mathbb{R}_+^{|V|}$ specifies initial mass on nodes
- r_e , $e \in E$, specifies the flow routings $m := \Delta \sum_{e \in E} r_e \text{ specifies net mass on nodes}$
- Each node has capacity equal to its degree

- $\Delta \in \mathbb{R}_+^{|V|}$ specifies initial mass on nodes
- r_e , $e \in E$, specifies the flow routings $m := \Delta \sum_{e \in E} r_e \text{ specifies net mass on nodes}$
- Each node has capacity equal to its degree
- A set of flow routings r_e , $e \in E$, is **feasible** if $m(v) \leq d(v), \forall v$

Given H=(V,E), cut-costs w_e for $e\in E$, initial mass Δ , our diffusion problem finds **feasible** flow routings with **minimum** ℓ_2 -**norm** cost.

$$\min_{\phi \geq 0} \frac{1}{2} \sum_{e \in E} \phi_e^2 \qquad \longleftarrow \phi_e \text{ is magnitude of flow (discussed later)}$$

$$m(v) \le d(v), \forall v \leftarrow$$
 Capacity constraint forces diffusion of initial mass

$$\sum_{v \in e} r_e(v) = 0, \forall e \longleftarrow \text{Flow conservation on a hyperedge}$$

Given H=(V,E), cut-costs w_e for $e\in E$, initial mass Δ , our diffusion problem finds **feasible** flow routings with **minimum** \mathcal{E}_2 -norm cost.

$$\min_{\phi \ge 0} \ \frac{1}{2} \sum_{e \in E} \phi_e^2 \qquad \qquad \longleftarrow \quad \phi_e \text{ is magnitude of flow (discussed later)}$$

$$m(v) \le d(v), \forall v \blacktriangleleft$$
 Capacity constraint forces diffusion of initial mass

$$r_e \in \phi_e B_e, \forall e$$
 — New constraint that reflects higher-order relations

Given H = (V, E), cut-costs w_e for $e \in E$, initial mass Δ , our diffusion problem finds **feasible** flow routings with **minimum** ℓ_2 -**norm** cost.

$$\min_{\phi \geq 0} \ \frac{1}{2} \sum_{e \in E} \phi_e^2 \qquad \longleftarrow \quad \phi_e \text{ is magnitude of flow}$$

$$m(v) \le d(v), \forall v \blacktriangleleft$$
 Capacity constraint forces diffusion of initial mass

$$r_e \in \phi_e B_e$$
, $\forall e$ — New constraint that reflects higher-order relations

$$B_e = \{ \rho_e \in \mathbb{R}^{|V|} : \rho_e(S) \le w_e(S) \, \forall S \subseteq V, \rho_e(V) = w_e(V) \}$$

The base polytope for w_{ρ}

Magnitude of flow

Given H = (V, E), cut-costs w_e for $e \in E$, initial mass Δ , our diffusion problem finds **feasible** flow routings with **minimum** ℓ_2 -**norm** cost.

$$\min_{\phi \geq 0} \frac{1}{2} \sum_{e \in E} \phi_e^2 \qquad \longleftarrow \phi_e \text{ is magnitude of flow}$$

$$m(v) \le d(v), \forall v \leftarrow$$
 Capacity constraint forces diffusion of initial mass

Given H = (V, E), cut-costs w_e for $e \in E$, initial mass Δ , our diffusion problem finds **feasible** flow routings with **minimum** ℓ_2 -**norm** cost.

$$\min_{\substack{\phi \geq 0 \\ z \geq 0}} \frac{1}{2} \sum_{e \in E} \phi_e^2 + \frac{\sigma}{2} \sum_{v \in V} d(v) z(v)^2$$
 For computational efficiency reasons we introduce a hyper-parameter $\sigma \geq 0$
$$m(v) \leq d(v) + \sigma d(v) z(v), \forall v$$

$$r_e \in \phi_e B_e, \forall e$$

Given H=(V,E), cut-costs w_e for $e\in E$, initial mass Δ , our diffusion problem finds **feasible** flow routings with **minimum** \mathcal{E}_2 -norm cost.

$$\min_{\substack{\phi \ge 0 \\ z \ge 0}} \frac{1}{2} \sum_{e \in E} \phi_e^2 + \frac{\sigma}{2} \sum_{v \in V} d(v) z(v)^2$$

 $m(v) \le d(v) + \sigma d(v)z(v), \forall v$

$$r_e \in \phi_e B_e, \forall e$$

For computational efficiency reasons we introduce a hyper-parameter $\sigma \geq 0$

The dual problem is
$$\min_{x \ge 0} \frac{1}{2} \left[\sum_{e \in E} f_e(x)^2 \right] + \frac{\sigma}{2} \sum_{v \in V} d(v)x(v)^2 + (d - \Delta)^T x$$

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator Reduces to $x^T L x$ for standard graphs

$$f_e(x) := \max_{\rho_e \in B_e} \rho_e^T x$$
 is the Lovasz extension of w_e

Given H=(V,E), cut-costs w_e for $e\in E$, initial mass Δ , our diffusion problem finds **feasible** flow routings with **minimum** \mathcal{E}_2 -**norm** cost.

$$\min_{\substack{\phi \ge 0 \\ z \ge 0}} \frac{1}{2} \sum_{e \in E} \phi_e^2 + \frac{\sigma}{2} \sum_{v \in V} d(v) z(v)^2$$

 $m(v) \le d(v) + \sigma d(v) z(v), \forall v$

$$r_e \in \phi_e B_e, \forall e$$

For computational efficiency reasons we introduce a hyper-parameter
$$\sigma \geq 0$$

The dual problem is
$$\min_{x \ge 0} \frac{1}{2} \sum_{e \in E} f_e(x)^2 + \frac{\sigma}{2} \sum_{v \in V} d(v)x(v)^2 + (d - \Delta)^T x$$

We use the dual solution x for node ranking and clustering

x(v) measures the (scaled) excess mass on node v after diffusion

Hyper-Flow Diffusion: local clustering

Given a set of seed node(s) S, find a low-conductance cluster C around S.

Conductance of target cluster C

$$\Phi(C) = \frac{\sum_{e \in E} w_e(C)}{\min \left\{ \text{vol}(C), \text{vol}(V \setminus C) \right\}} \quad \text{where } \text{vol}(C) := \sum_{v \in C} d(v)$$

Assign initial mass so $\operatorname{supp}(\Delta) = S$.

Assumption 1 (overlap): $\mathbf{vol}(S \cap C) \ge \beta \mathbf{vol}(S)$, $\mathbf{vol}(S \cap C) \ge \alpha \mathbf{vol}(C)$, $\alpha, \beta \ge \frac{1}{\log^t \mathbf{vol}(C)}$ for some t Assumption 2 (parameter): $0 \le \sigma \le \beta \Phi(C)/3$

Sweep-cut on optimal dual solution x returns a cluster \tilde{C} satisfying

$$\Phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\sqrt{\Phi(C)})$$

Hyper-Flow Diffusion: local clustering

Given a set of seed node(s) S, find a low-conductance cluster C around S.

Conductance of target cluster C

$$\Phi(C) = \frac{\sum_{e \in E} w_e(C)}{\min \left\{ \text{vol}(C), \text{vol}(V \setminus C) \right\}} \quad \text{where } \text{vol}(C) := \sum_{v \in C} d(v)$$

Assign initial mass so $\operatorname{supp}(\Delta) = S$.

Assumption 1 (overlap): $\mathbf{vol}(S \cap C) \ge \beta \mathbf{vol}(S)$, $\mathbf{vol}(S \cap C) \ge \alpha \mathbf{vol}(C)$, $\alpha, \beta \ge \frac{1}{\log^t \mathbf{vol}(C)}$ for some t Assumption 2 (parameter): $0 \le \sigma \le \beta \Phi(C)/3$

Sweep-cut on optimal dual solution x returns a cluster \tilde{C} satisfying

The first result that is independent of hyperedge size in general

Hyper-Flow Diffusion: algorithm

We solve an equivalent primal reformulation via alternating minimization.

The algorithm only touches a small part of the hypergraph.

The figures show the number of nodes touched by the algorithm on 3 different clusters in the Amazon-reviews dataset, which consists of 2.2 million nodes.

Proving the worst-case running time is strongly-local is an open problem.

Cardinality-based k-uniform hypergraph stochastic block model: Boundary hyperedges appear with different probabilities according to the cardinality of hyperedge cut.

We consider $q_1 \gg q_2 \geq q_3$. Under this generative setting, one should naturally explore cardinality-based cut-cost for clustering.

All our experiments use a single seed node to recover the target

- LH is a strongly-local hypergraph diffusion method based on graph reduction.
- ACL is a heuristic method that uses PageRank on star expansion.
- HFD is the only method that directly works on original hypergraph.
- U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost.
- For each method, C-* is better than U-*.
- There is a significant performance drop for C-LH at k=4.

Local clustering on a hypergraph constructed from Amazon product reviews data

Nodes are products

Hyperedges are products purchased at the same time

Clusters are products belonging to the same product category

			Cluster								
Metric	Seed	Method	1	2	3	12	15	17	18	24	25
Conductance	Single	U-HFD U-LH-2.0 U-LH-1.4 ACL	0.33	0.50 0.44	0.25 0.25	0.16 0.44 0.36 0.54	0.74 0.81	0.44 0.40	0.17 0.57 0.51 0.63	0.14 0.58 0.54 0.68	0.61 0.59
	Multiple	U-HFD U-LH-2.0 U-LH-1.4 ACL	0.05 0.05	0.13	0.15 0.15	0.21 0.15		0.45 0.33	0.14 0.26 0.19 0.33	0.18 0.14	0.32 0.53 0.47 0.59
F1 score	Single	U-HFD U-LH-2.0 U-LH-1.4 ACL	0.23 0.23	0.07 0.09	0.23 0.35	0.29 0.40	0.05 0.00	0.06 0.07	0.80 0.21 0.31 0.17	0.28 0.35	0.05 0.06
	Multiple		0.59 0.52	0.42 0.45	0.73 0.73	0.77 0.90	0.22 0.27	0.25 0.29	0.91 0.65 0.79 0.51	0.62 0.77	0.17 0.20

Local clustering on a hypergraph constructed from Microsoft academic coauthorthip data

Nodes are papers

Hyperedges are
papers having at least
a common coauthor

Clusters are papers
published at similar
venues

		Cluster					
Metric	Method	Data	ML	TCS	CV		
Cond	U-HFD U-LH-2.0 U-LH-1.4 ACL	0.03 0.07 0.07 0.08	0.06 0.09 0.08 0.11	0.06 0.10 0.09 0.11	0.03 0.07 0.07 0.09		
F1 score	U-HFD U-LH-2.0 U-LH-1.4 ACL		0.46	0.59	0.59		

Local clustering on a hypergraph constructed from travel metasearch data (F1 scores)

Nodes are hotel accommodations

Hyperedges are accommodations viewed by the same user in a browsing session

Clusters are accommodations located in the same country/territory

Method	South Korea	Iceland	Puerto Rico	Crimea	Vietnam	Hong Kong	Malta	Guatemala	Ukraine	Estonia
U-HFD	0.75	0.99	0.89	0.85	0.28	0.82	0.98	0.94	0.60	0.94
C-HFD	0.76	0.99	0.95	0.94	0.32	0.80	0.98	0.97	0.68	0.94
U-LH-2.0	0.70	0.86	0.79	0.70	0.24	0.92	0.88	0.82	0.50	0.90
C-LH-2.0	0.73	0.90	0.84	0.78	0.27	0.94	0.96	0.88	0.51	0.83
U-LH-1.4	0.69	0.84	0.80	0.75	0.28	0.87	0.92	0.83	0.47	0.90
C-LH-1.4	0.71	0.88	0.84	0.78	0.27	0.88	0.93	0.85	0.50	0.85
ACL	0.65	0.84	0.75	0.68	0.23	0.90	0.83	0.69	0.50	0.88

Node-ranking and and local clustering results on a Florida Bay food network.

	Top-2 node-ranki	Clustering F1			
Method	Query: Raptors	Query: Gray Snapper	Prod.	Low	High
C-HFD	Epiphytic Gastropods, Detriti. Gastropods Epiphytic Gastropods, Detriti. Gastropods Gruiformes, Small Shorebirds			0.47	0.64

- S-HFD uses specialized submodular cut-cost shown on the left.
- The example shows that general submodular cutcost can be necessary.
- HFD is the only local diffusion method that works with general submodular cut-costs.

For more experiments and details on both synthetic and real datasets:

Please see our preprint Local Hyper-Flow Diffusion on arXiv:2102.07945

Thank you!