Билет 19

Бесконечно малые величины, действия над ними, классификация бесконечно малых величин *Билет не проверен*

Определение

Последовательность $\{a_n\}$ называется бесконечно малой последовательностью, если $\lim_{n\to\infty}a_n=0$

Отметим несколько свойств бесконечно малых последовательностей:

1. Алгебраическая сумма конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Пусть $\{a_n\}$ и $\{b_n\}$ бесконечно малые последовательности. Покажем, что и последовательности $\{a_n+b_n\}$ и $\{a_n-b_n\}$ являются также бесконечно малыми. Зададим $\epsilon>0$, тогда существует такой номер n_ϵ , что $|a_n|<\frac{\epsilon}{2}$ и $|b_n|<\frac{\epsilon}{2}$ для всех $n\geq n_\epsilon$. Поэтому для $n\geq n_\epsilon$ имеем

$$|\alpha_n \pm \beta_n| \le |\alpha_n| + |\beta_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

что и означает, что $\lim_{n\to\infty}(\alpha_n\pm\beta_n)=0$

Соответствующее утверждение для любого конечного числа слагаемых следует из указанного по индукции.

2. Произведение бесконечно малой последовательности на ограниченную последовательность является бесконечно малой последовательностью.

Пусть a_n бесконечно малая последовательность, а x_n ограниченная последовательность, т. е. существует такое число b>0, что $|x_n|\leq b$ для всех номеров $n=1,2,\ldots$. Зададим $\epsilon>0$; в силу определения бесконечно малой последовательности существует такой номер n_ϵ , что $|a_n|<\frac{\epsilon}{b}$ для всех $n\geq n_\epsilon$. Поэтому для всех $n\geq n_\epsilon$ имеем

$$|a_n b_n| = |a_n| + |b_n| < \frac{\epsilon}{b}b = \epsilon$$

что и означает, что последовательность $a_n x_n$ бесконечно малая.

Следствие

Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Доказательство

Это сразу следует по индукции из свойства 2, если заметить, что бесконечно малая последовательность, как и всякая последовательность, имеющая предел, ограничена.

Классификация бесконечно малых величин:

Пусть $\exists \{x_n\}$ и $\{y_n\}$ - две бесконечно малые

- 1. Если $\nexists \lim_{n \to \infty} \frac{x_n}{y_n}$, то последовательности $\{x_n\}$ и $\{y_n\}$ несравнимы.
- 2. Если $\lim_{n\to\infty}\frac{x_n}{y_n}=p\neq 0$, то последовательности $\{x_n\}$ и $\{y_n\}$ одного порядка малости $x_n=O(y_n);y_n=O(x_n)$

1

3. Если $\lim_{n\to\infty}\frac{x_n}{y_n}=1$, то последовательности $\{x_n\}$ и $\{y_n\}$ эквивалентны.

- 4. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = 0$, то x_n величина большего порядка малости, чем y_n .
- 5. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = \infty$, то y_n величина большего порядка малочти, чем x_n .