Analyse I – Corrigé de la Série 3

Echauffement 1. Supposons que r est rationnel. Alors, puisque q est aussi rationnel n(r-q) est rationnel. Mais par definition de r on a que $n(r-q) = \sqrt{2}$ et puisque $\sqrt{2}$ est irrationnel n(r-q) est irrationnel; en contradiction avec n(r-q) rationnel. Donc r est irrationnel.

Exercice 1.

i) On raisonne par l'absurde. Supposons que $\sqrt{3} = \frac{p}{q}$ avec p, q des entiers naturels tels que p = p = 1. Il s'en suit que $p^2 = 3q^2$, c.-à-d. que p^2 est donc un multiple de 3, ce qui n'est possible que si p est un multiple de 3. On a donc p = 3a pour un entier naturel a. Par conséquent, $3^2a^2 = 3q^2$ et donc $q^2 = 3a^2$. Ainsi q^2 est un multiple de 3, ce qui n'est possible que si q est un multiple de 3. Mais ceci implique que le plus grand commun diviseur de p et de q n'est pas égal à 1, ce qui est en contradiction avec l'hypothèse de départ. Donc $\sqrt{3}$ est irrationnel.

$$r^2 = 7 + \sqrt{17}$$
,

ou

$$\sqrt{17} = r^2 - 7$$
.

Si r est un nombre rationnel, il s'en suit que r^2-7 en est aussi un et donc $\sqrt{17}$ aussi, ce qui est une contradiction. (La preuve que $\sqrt{17}$ est un nombre irrationnel se fait comme pour $r=\sqrt{2}$ ou $\sqrt{3}$ ou r la racine carrée de tout autre nombre premier, cf. i.) Donc $r=\sqrt{7+\sqrt{17}}$ est irrationnel.

iii) On a

$$\left(r - \sqrt{2}\right)^3 = 3 ,$$

et donc

$$r^3 - 3r^2\sqrt{2} + 3r \cdot 2 - 2\sqrt{2} - 3 = 0$$

d'où on obtient

$$\sqrt{2} = \frac{r^3 + 6r - 3}{3r^2 + 2} \ .$$

Cette égalité implique que $\sqrt{2}$ est un nombre rationnel si r est un nombre rationnel, ce qui est une contradiction. Donc r est irrationnel.

Exercice 2.

i)
$$A =]-\infty, 1[$$

ii)
$$A =]-\infty, 1]$$

$$iii)$$
 $A = [-1, \infty[$

$$iv)$$
 $A = \left[-\sqrt{2}, \sqrt{2}\right]$

$$v) A = \left] -\infty, -\sqrt{2} \right] \cup \left[\sqrt{2}, \infty \right[$$

$$vi)$$
 $A = \left]-\infty, -\sqrt[3]{3}\right]$

Exercice 3.

- i) On a $\operatorname{Inf} A = -1$ et $\operatorname{Sup} A = \sqrt{2}$. Comme $\operatorname{Sup} A = \sqrt{2} \in A$, il s'agit d'un maximum. Par contre $\operatorname{Inf} A = -1 \notin A$, donc ce n'est pas un minimum.
- ii) On a Inf $B=\sqrt{3}\notin B$ et Sup $B=+\infty$ puisque Bn'est pas majoré. Ainsi Bn'admet ni minimum ni maximum.
- *iii*) $C = \{x \in \mathbb{R} : -1 \le 2x 1 \le 1\} = [0, 1]$. Ainsi Inf $C = \min C = 0$ et $\sup C = \max C = 1$.
- *iv*) $D = \{x \in \mathbb{R} : -1 < x^2 2 < 1\} =] \sqrt{3}, -1[\cup]1, \sqrt{3}[$. Ainsi Inf $D = -\sqrt{3}$ et Sup $D = \sqrt{3}$ qui ne sont pas minimum et maximum car pas dans D.
- v) $E = \left\{1 \frac{1}{n+1} : n \in \mathbb{N}\right\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$. Ainsi $\operatorname{Inf} E = 1 \frac{1}{0+1} = 0 = \min E$ et $\operatorname{Sup} E = 1$.

En effet, $1 \ge 1 - \frac{1}{n+1}$ pour tout $n \in \mathbb{N}$, donc 1 est un majorant de E. Pour montrer que c'est le plus petit majorant, soit $\varepsilon > 0$. On veut trouver un élément $x \in E$ qui satisfait $x \ge 1 - \varepsilon$. En prenant $n_{\varepsilon} \in \mathbb{N}$ tel que $n_{\varepsilon} \ge \frac{1}{\varepsilon} - 1$, l'élément $x = 1 - \frac{1}{n_{\varepsilon} + 1} \in E$ satisfait la condition voulue. Ainsi on a bien Sup E = 1. Comme $1 \notin E$, E n'a pas de maximum.

vi) $F = \left\{ (-1)^n \left(1 - \frac{1}{n+1} \right) : n \in \mathbb{N} \right\} = \left\{ 0, -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \ldots \right\}$. Ainsi $\operatorname{Inf} F = -1$ et $\operatorname{Sup} F = 1$. On procède de manière similaire qu'à la question précédente. Clairement -1 et 1 sont minorant respectivement majorant de F. Soient $\varepsilon > 0$ et $n_{\varepsilon} \in \mathbb{N}$ tel que $n_{\varepsilon} \geq \frac{1}{\varepsilon} - 1$ comme dans v). Pour éliminer l'effet du $(-1)^n$, on considère les éléments $x, y \in F$ correspondant à $2n_{\varepsilon}$ et $2n_{\varepsilon} + 1$. On a alors d'une part

$$x = (-1)^{2n_{\varepsilon}} \left(1 - \frac{1}{2n_{\varepsilon} + 1} \right) = 1 - \frac{1}{2n_{\varepsilon} + 1} \ge 1 - \varepsilon,$$

c.-à-d. Sup F = 1, et d'autre part

$$y = (-1)^{2n_{\varepsilon}+1} \left(1 - \frac{1}{(2n_{\varepsilon}+1)+1}\right) = -1 + \frac{1}{(2n_{\varepsilon}+1)+1} \le -1 + \varepsilon,$$

d'où InfF = -1. Comme $-1, 1 \notin F$, F n'a pas de minimum ni maximum.

- vii) Comme \mathbb{Q} n'est ni minoré ni majoré, on a Inf $G = -\infty$ et Sup $G = +\infty$ et G n'a pas de minimum ni maximum.
- viii) Comme $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} , il existe des nombres irrationnels aussi proche de 0 et 1 qu'on veut. Donc Inf H=0 et $\sup H=1$. Comme ces deux nombres rationnels n'appartiennent pas à H, il ne sont pas minimum et maximum.

Exercice 4.

Q1: FAUX.

Prendre par exemple l'intervalle borné A=[1,2[. Alors Sup $A=2\notin A.$

Q2: VRAI.

Si un intervalle borné A n'est pas fermé, au moins une de ses extrémités n'appartient pas à l'intervalle. Mais les extrémités de A sont Inf A et Sup A qui sont dans A par hypothèse. Ainsi A est forcément fermé.

Q3: VRAI.

Un intervalle fermé et borné est de la forme [a, b] avec $a, b \in \mathbb{R}$, $a \leq b$. Ainsi Inf A = a et Sup A = b qui sont bien dans A.

Q4: VRAI.

Comme $a=\operatorname{Inf} A\notin A$, on a a< x pour tout $x\in A$. Par définition de l'infimum il existe pour tout $\varepsilon>0$ un $x\in A$ tel que $x\leq a+\varepsilon$, ce qui assure qu'il n'y a pas de "trou" entre a et les éléments A. De même on montre à partir de la définition du supremum que $x<\operatorname{Sup} A=:b$ pour tout $x\in A$. Ainsi A=]a,b[est un intervalle ouvert.

Q5: VRAI.

Par l'absurde, supposons que $a = \text{Inf } A \in A$. Alors $a \leq x$ pour tout $x \in A$ et comme $a \in A$, A ne peut être ouvert. Donc Inf $A \notin A$. De même pour b = Sup A.

Echauffement 2. Pour tout $x, y \in \mathbb{R}$ on a que $2xy \le 2|x||y|$. Si on additionne $x^2 + y^2 = |x|^2 + |y|^2$ des deux cotés de l'inegalité on obtient

$$x^{2} + y^{2} + 2xy \le |x|^{2} + |y|^{2} + 2|x||y|$$

donc

$$(x+y)^2 \le (|x|+|y|)^2$$

ce qui est équivalent à

$$|x+y| \le |x| + |y|.$$

Exercice 5.

Noter que l'identité en question est invariante sous les changements $y \mapsto -y$ et/ou $x \mapsto -x$. Donc on peut supposer sans perte de généralité que $x, y \ge 0$. Pour $x, y \ge 0$ on a |x| = x, |y| = y et |x + y| = x + y, et les deux côtés de l'identité sont donc égaux à x + y + |x - y|.

Exercice 6. On récrit l'inégalité sous la forme

$$\frac{x}{|x|-2} \ge \frac{-|x|}{x+1} \ .$$

Il faut distinguer cinq cas : $x < -2, \ -2 < x < -1, \ -1 < x \le 0, \ 0 \le x < 2, \ x > 2.$

i) Pour x < -2 on a |x| - 2 = -x - 2 > 0 et x + 1 < 0, et l'inégalité peut donc être récrite comme

$$x(x+1) \le x(-x-2)$$
,

ce qui est vrai si $2x^2 + 3x = x(2x + 3) \le 0$. Cette inégalité n'est pas satisfaite.

ii) Pour -2 < x < -1 on a |x| - 2 = -x - 2 < 0 et x + 1 < 0, et l'inégalité peut donc être récrite comme

$$x(x+1) \ge x(-x-2) ,$$

ce qui est vrai si $2x^2 + 3x = x(2x+3) \ge 0$. Cette inégalité est satisfaite pour $-2 < x \le -\frac{3}{2}$.

iii) Pour $-1 < x \le 0$, on a |x| - 2 = -x - 2 < 0 et x + 1 > 0, et l'inégalité peut donc être récrite comme

$$x(x+1) \le x(-x-2)$$
,

ce qui est vrai si $2x^2 + 3x = x(2x + 3) \le 0$. Cette inégalité est satisfaite pour $-1 < x \le 0$.

iv) Pour $0 \leq x < 2$ on a |x| - 2 = x - 2 < 0 et x + 1 > 0, et l'inégalité peut donc être récrite comme

$$x\left(x+1\right) \le -x\left(x-2\right)\,,$$

ce qui est vrai si $2x^2 - x = x(2x - 1) \le 0$. Cette inégalité est satisfaite pour $0 \le x \le \frac{1}{2}$.

v) Pour x > 2 on a |x| - 2 = x - 2 > 0 et x + 1 > 0, et l'inégalité peut donc être récrite comme

$$x(x+1) > -x(x-2)$$
,

ce qui est vrai si $2x^2 - x = x(2x - 1) \ge 0$. Cette inégalité est satisfaite pour x > 2

Pour résumer, l'inégalité est donc satisfaite pour

$$x \in \left[-2, -\frac{3}{2}\right] \bigcup \left[-1, \frac{1}{2}\right] \bigcup \left[2, \infty\right[$$
.

Exercice 7.

Exercice 8.

Q1: FAUX.

Prendre par exemple f(x) = x et $g(x) = x^2$ qui satisfont $(f \circ g)(x) = x^2 = (g \circ f)(x)$ avec $f \neq g$.

Q2: VRAI.

Soient $x_1, x_2 \in \mathbb{R}$ tels que $f(g(x_1)) = f(g(x_2))$. Comme f est injective, on a $g(x_1) = g(x_2)$, et par l'injectivité de g, il suit que $x_1 = x_2$. Ainsi $f \circ g$ est bien injective.

Q3: VRAI.

Soient $x_1, x_2 \in \mathbb{R}$ tels que $f(x_1) = f(x_2)$. Donc on a $f(f(x_1)) = f(f(x_2))$. Comme $f \circ f$ est injective, on conclut que $x_1 = x_2$ et donc f est injective.

Q4: VRAI.

Soient $x_1, x_2 \in \mathbb{R}$ tels que $g(x_1) = g(x_2)$. Donc on a $f(g(x_1)) = f(g(x_2))$. Comme $f \circ g$ est injective, on conclut que $x_1 = x_2$ et donc g est injective.

Q5: FAUX.

Prendre par exemple $f(x) = x^2$ et $g(x) = e^x$ qui sont définies de \mathbb{R} sur \mathbb{R} . Alors f n'est pas injective mais $(f \circ g)(x) = e^{2x}$ est injective.

Q6: VRAI.

Soit $y \in \mathbb{R}$. Comme $f \circ g$ est surjective, il existe $x \in \mathbb{R}$ tel que $(f \circ g)(x) = y$. En posant z = g(x) on a trouvé un $z \in \mathbb{R}$ tel que f(z) = y. Ainsi f est surjective.