Exercises-Interpolation-Questions

Use the table below for \sqrt{x} and approximate the value for x = 0.15 using a 3rd degree 1. polynomial and Newton forwards differences based on $x \in \{0.0, 0.1, 0.2, 0.3\}$:

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0.0	0.000000				
0.1	0.316228				
0.2	0.447214				
0.3	0.547723				
0.4	0.632456				

- Determine the 3^{rd} degree Lagrange polynomial based on $x_i \in \{0.0, 0.1, 0.2, 0.3\}$ shown in 2. question 1 and approximate the value for x = 0.15.
- Suppose we want to apply quadratic splines based on 3 points: (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . 3. Hence, we have to determine the coefficients of the following two spline polynomials (i = 1, 2):

$$s_i(x) = a_i + (x - x_i)b_i + (x - x_i)^2 c_i$$
.

- Explain the idea behind (quadratic) splines. a.
- b. How many unknown parameters are there in total? State the system of equations that determine the coefficients. Suppose that the x-points are

equidistant, i.e. $x_3 - x_2 = x_2 - x_1$, so $h = x_{i+1} - x_i$ can be used. Furthermore, impose the restriction that the first and second-order derivatives match in the interior points.

4. Suppose we want to estimate the parameter a according to the least squares method in the model:

$$f_L(x) = a\sin(x).$$

Based on the data points $\{(y_i, x_i), i = 1,...,n\}$, the sum of squared residuals can be defined:

$$SSR(a) = \sum_{i=1}^{N} (y_i - a \sin(x_i))^2$$
.

- Determine the Normal equation, i.e. $\frac{\partial SSR(a)}{\partial a} = 0$. a.
- Suppose we have the following observations: b.

$$\{(1.26221,1),(1.36395,2),(0.21168,3)\}.$$

Determine an estimate for the parameter a.

5. Suppose we want to estimate the parameters a and b according to the least squares method in the model:

$$f_L(x) = a\sin(bx).$$

Based on the data points $\{(y_i, x_i), i = 1,...,n\}$, the sum of squared residuals can be defined:

$$SSR(a,b) = \sum_{i=1}^{N} (y_i - a\sin(bx_i))^2$$
.

a.

Determine the Normal equations, i.e.
$$\frac{\partial SSR(a,b)}{\partial a} = 0 \quad \text{and} \quad \frac{\partial SSR(a,b)}{\partial b} = 0.$$

Given a sample $\{(y_i, x_i), i = 1, ..., n\}$, how would you solve for a and b numerically? b.