Übungsaufgaben zu Bedingten Wahrscheinlichkeiten - Lösungen

Aufgabe 1:

a)	Krank	qumpft 40 100 250	nicht gempfs 100 100 = 3 100	$\frac{1}{250} + \frac{3}{100} = \frac{17}{500}$
	nicht krank	1		
		40 100	60	1

$$\frac{100}{250} = \frac{1}{17}$$

$$\frac{1}{17} = \frac{2}{17}$$

Aufgabe 2:

Aurgabe 2.		1	I
·	50€	<50€	
umlauffähig	202	172	37 4
nicht umlauffalig	2	4	6
	204	176	380

$$P(450 \in \text{Numlauffähig}) = \frac{172}{380} = \frac{43}{95} \approx 94526$$

Aufgabe 3:

$$a) \overline{\begin{pmatrix} 60 \\ 3 \end{pmatrix}} = \underbrace{34220}$$

b)
$$\frac{2}{3}$$
 60 = 40 $\frac{40}{60}$ $\frac{39}{59}$ $\frac{38}{58}$ = $\frac{494}{1711}$ ≈ 0.2887

Eis
$$\frac{1}{3} \cdot (60 - x)$$
 $\frac{3}{4} \cdot x$ 30

kein Eis $\frac{1}{3} \cdot (60 - x) + \frac{3}{4} \cdot x$ $\frac{3}{4} \cdot x$ 60

 $30 = \frac{1}{3} \cdot (60 - x) + \frac{3}{4} \cdot x$ $\frac{x = 24}{4}$

Es nehmen 24 Kinder an der Fahrt teil.

Aufgabe 4:

a) $\frac{W_1}{b}$ Widerstand 1 funktioniert Widerstand 1 funktioniert nicht

. /	
W_{Z}	Widerstand 2 funktioniert
$\widetilde{W}_{>}$	Widerstand 2 funktioniert nicht
_	

	W_1	$\overline{\mathbb{W}}_{1}$	
Wz	938 938 = 0,9604	0,98.0,02 = 0,0196	998
$\overline{W_2}$	998 0,02 = 0,0196	0,02.0,02 = 0,0004	0,02
	0,98	0,02	1

$$P(E_1) = \underbrace{0.9604}_{P(E_2)} = \underbrace{0.0196}_{0.0196} + 0.9604 = 0.9996$$

(oder: 1-0,0004=0,9996)

b) Die Aussage ist richtig, da die Wahrscheinlichkeit für das Funktionieren eines Widerstandes kleiner als 1 ist. Ein Produkt aus Faktoren, die kleiner sind als 1 wird umso kleiner, je mehr Faktoren das Produkt enthält.

Aufgabe 5:

a)

	\supset	\int	
S	143	107	250
5	197	0	197
	340	107	447

Gesamtzahl der Berucher: 447

b)
$$\frac{143}{340} = 0,4206$$

Der Ankil der Berucher der Daueraustellung, der auch die Sonderaustellung berucht, beträgt 42%.