APL5523

Dual-Channel, 3.3V/500mA and 1.8V/300mA Linear Regulator

Features

- Fixed Output Voltage : Vout1=3.3V/500mA Vout2=1.8V/300mA
- Low Dropout Voltage (defined as the minimum input/output voltage difference):

Output 1 Dropout Voltage: 0.6V (at 500mA) Output 2 Dropout Voltage: 0.9V (at 300mA)

- Stable with 4.7uF Output Capacitor(at Vout1)
 Stable with 2.2uF Output Capacitor(at Vout2)
- Built in Thermal Protection
- Built in Current Limit Protection
- Fast transient Response
- Short Setting Time
- SOP-8 and SOP-8-P Package Available

Applications

- Desktop Computer
- Networking Systems
- Optical Data Storage Systems

General Description

The APL5523 is a dual low dropout regulator with output1 with 3.3V/0.5A and output2 with 1.8V/0.3A output capability. In order to obtain lower dropout voltage and faster transient response, which is critical for low voltage applications, the APL5223 has been optimized. The dropout voltages are guaranteed at 0.6V at 0.5A for output1 and 0.9V at 0.3A for output 2. Current limit is trimmed to ensure specified output current and controlled short-circuit current. On-chip thermal limiting provides protection against any combination of overload that would create excessive junction temperatures. The APL5523 regulator comes in a SOP-8 and SOP-8-P package.

Pin Configuration

Ordering and Marking Information

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Copyright © ANPEC Electronics Corp. Rev. A.1 - July., 2004

Pin Description

	PIN		Description			
No.	Name	1/0	Description			
1	Vout1	0	Vout1 output Voltage 3.3V. sources up to 500 mA.			
2	Vin	ı	Supply Voltage.			
3	Vin		Supply Voltage.			
4	V _{OUT2}	0	Vout2 output Voltage 1.8V. sources up to 300 mA.			
5	GND					
6	GND		Ground also functions as a heatsink. Solder to the ground plane to			
7	GND		maximize thermal dissipation			
8	GND					

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
VIN, VOUT	Input Voltage or Out Voltage	6	V
RTH,JA	Thermal Resistance – Junction to Ambient		
	SOP-8	150	°C/W
	SOP-8-P	75	
Rтн,jc	Thermal Resistance – Junction to Case		
	SOP-8	30	°C/W
	SOP-8-P	5	
PD	Power Dissipation	Internally Limited	W
TJ	Operating Junction Temperature		°C
	Control Section	0 to 125	
	Power Transistor	0 to 150	
TSTG	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (Soldering, 10 second)	260	°C

Electrical Characteristics

Unless otherwise noted these specifications apply over full temperature, CIN=1 μ F, COUT1=4.7 μ F, COUT2=2.2 μ F, T $_{_J}$ =0 to 125 $^{\circ}$ C. Typical values refer to TJ=25 $^{\circ}$ C.

Cumbal	Parameter	Test Conditions	APL5523			Unit	
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Oille	
V_{IN}	Input Voltage		2.7		6	V	
Ishort	Short Current	V _{OUT} =0V		50		mA	
OTS	Over Temperature Shutdown			150		°C	
	Over Temperature Shutdown Hysteresis	Hysteresis		20		°C	
тс	Output Voltage Temperature Coefficient			100		ppm/°C	
1.	Quiescent Current	I _{OUT1} =500mA, I _{OUT2} =300mA		900	1000		
IQ	Quiescent Current	I _{OUT1} =0mA, I _{OUT2} =0mA		100	200	μΑ	

Electrical Characteristics (Cont.)

Unless otherwise noted these specifications apply over full temperature, CIN=1 μ F, COUT1=4.7 μ F, COUT2=2.2 μ F, T $_{_{J}}$ =0 to 125 $^{\circ}$ C. Typical values refer to TJ=25 $^{\circ}$ C.

Cumbal	Doromotor	Test Conditions	, A	APL5523		
Symbol	Parameter	rest Conditions	Min.	Тур.	Max.	Unit
Output1 (500mA)					
V _{OUT}	Output Voltage	V _{IN} =5V	V _{OUT} -2%	3.3	V _{OUT} +2%	٧
I _{LIMIT}	Circuit Current Limit	VIN=VOUT+1V		900		mΑ
I _{OUT}	Load Current	VIN=VOUT+1V	500			mΑ
REG _{LINE}	Line Regulation	V_{OUT} +1V< V_{CC} <6.0V, I_{OUT} =1mA		5	10	mV
REG _{LOAD}	Load Regulation	$V_{IN} = V_{OUT} + 1V$, $0mA < I_{OUT} < I_{MAX}$		40	60	mV
PSRR	Ripple Rejection	F≤1kHz, 1Vpp at I _{OUT} =50mA	40	48		dB
V_{DROP}	Dropout Voltage ^(Note1)	I _{OUT} =500mA		0.6	0.7	V
C _{OUT}	Output Capacitor			4.7		μF
	ESR		0.01	0.1	1	Ohm
Output2(3	300mA)					
V _{OUT}	Output Voltage	V _{IN} =5V	V _{OUT} -2%	1.8	V _{OUT} +2%	٧
I _{LIMIT}	Circuit Current Limit	VIN=VOUT+1V		900		mA
I _{OUT}	Load Current	VIN=VOUT+1V	300			mA
REG _{LINE}	Line Regulation	V _{OUT} +1V< V _{CC} <6.0V, I _{OUT} =1mA		4	10	mV
REG _{LOAD}	Load Regulation	$V_{IN} = V_{OUT} + 1V$, $0mA < I_{OUT} < I_{MAX}$		20	40	mV
PSRR	Ripple Rejection	F≤1kHz, 1Vpp at I _{OUT} =50mA	45	55		dB
V_{DROP}	Dropout Voltage ^(Note1)	I _{OUT} =300mA		0.9	1	V
C _{OUT}	Output Capacitor			2.2		μF
	ESR		0.01	0.1	1	Ohm

Note1 : Dropout voltage definition : V_{IN} - V_{OUT} when V_{OUT} is 2% below the value of V_{OUT} for $V_{IN} = V_{OUT} + 1V$

Application Circuit

Typical Characteristics

Typical Characteristics

Typical Characteristics

Load-Transient Response

Time(0.1ms/div)

Line-Transient Response

Time(20µs/div)

Output Curretn vs. VIN

Packaging Information

SOP-8 pin (Reference JEDEC Registration MS-012)

Dim	Millim	eters	Incl	hes
Dim	Min.	Max.	Min.	Max.
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
D	4.80	5.00	0.189	0.197
E	3.80	4.00	0.150	0.157
Н	5.80	6.20	0.228	0.244
L	0.40	1.27	0.016	0.050
e1	0.33	0.51	0.013	0.020
e2	1.27BSC		0.50BSC	
φ 1	8°		8°	

Packaging Information

SOP-8-P pin (Reference JEDEC Registration MS-012)

D:m	Millim	neters	Inc	hes	
Dim	Min.	Max.	Min.	Max.	
А	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
D	4.80	5.00	0.189	0.197	
D1	3.00REF		0.118REF		
Е	3.80	4.00	0.150	0.157	
E1	2.60	REF	0.102REF		
Н	5.80	6.20	0.228	0.244	
L	0.40	1.27	0.016	0.050	
e1	0.33	0.51	0.013	0.020	
e2	1.27BSC		0.50BSC		
ф 1	8	0	8	0	

Physical Specifications

Terminal Material	Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn
Lead Solderability	Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.

Reflow Condition (IR/Convection or VPR Reflow)

Classificatin Reflow Profiles

Profile Footure	Sn-Pb Euted	ctic Assembly	Pb-Free Assembly		
Profile Feature	Large Body	Small Body	Large Body	Small Body	
Average ramp-up rate (T _L to T _P)	3°C/second max.		3°C/second max.		
Preheat					
- Temperature Min (Tsmin)	10	0°C	150)°C	
- Temperature Mix (Tsmax)	15	0°C	200)°C	
- Time (min to max)(ts)	60-120 seconds		60-180 seconds		
Tsmax to T _L - Ramp-up Rate			3°C/seco	ond max	
Tsmax to T _L - Temperature(T _L) - Time (t _L)	183°C 60-150 seconds		217°C 60-150 seconds		
Peak Temperature(Tp)	225 +0/-5°C	240 +0/-5°C	245 +0/-5°C	250 +0/-5°C	
Time within 5°C of actual Peak Temperature(tp)	10-30 seconds	10-30 seconds	10-30 seconds	20-40 seconds	
Ramp-down Rate	6°C/second max.		6°C/second max.		
Time 25°C to Peak Temperature	6 minutes max.		8 minutes max.		

Note: All temperatures refer to topside of the package. Measured on the body surface.

Reliability test program

Test item	Method	Description
SOLDERABILITY	MIL-STD-883D-2003	245°C, 5 SEC
HOLT	MIL-STD-883D-1005.7	1000 Hrs Bias @ 125 °C
PCT	JESD-22-B, A102	168 Hrs, 100 % RH, 121°C
TST	MIL-STD-883D-1011.9	-65°C ~ 150°C, 200 Cycles
ESD	MIL-STD-883D-3015.7	VHBM > 2KV, VMM > 200V
Latch-Up	JESD 78	$10 \mathrm{ms}$, $I_{tr} > 100 \mathrm{mA}$

Carrier Tape

Application	Α	В	С	J	T1	T2	W	Р	E
	330±1	62 ± 1.5	12.75 + 0.1 5	2 + 0.5	12.4 +0.2	2± 0.2	12 + 0.3 - 0.1	8± 0.1	1.75± 0.1
SOP-8/P	F	D	D1	Po	P1	Ao	Во	Ko	t
	5.5 ± 0.1	1.55±0.1	1.55+ 0.25	4.0 ± 0.1	2.0 ± 0.1	6.4 ± 0.1	5.2± 0.1	2.1± 0.1	0.3±0.013

(mm)

Cover Tape Dimensions

Application	Carrier Width	Cover Tape Width	Devices Per Reel
SOP- 8/P	12	9.3	2500

Customer Service

Anpec Electronics Corp.

Head Office:

5F, No. 2 Li-Hsin Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000

Fax: 886-3-5642050

Taipei Branch:

7F, No. 137, Lane 235, Pac Chiao Rd.,

Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.

Tel: 886-2-89191368 Fax: 886-2-89191369