UNIST Department of Mechanical Engineering

MEN 573: Advanced Control Systems I

Spring, 2016

Homework #7

Assigned: Wednesday, May 4, 2016

Due: Wednesday, May 18, 2016 (in class)

Problem 1.

Consider the asymptotically stable LTI system

$$\frac{d}{dt} \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{cc} -1 & 1 \\ -1 & -1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right], \quad x(0) = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

Utilize the Lyapunov equation to find an expression for

$$J = \int_0^\infty \left\{ 2x_1^2(t) + q \, x_2^2(t) \right\} \, dt$$

in terms of q, where q is some nonnegative number.

Hint: Notice that J can be written as

$$\begin{split} J &= \int_0^\infty \left\{ x^T(t) \begin{bmatrix} 2 & 0 \\ 0 & q \end{bmatrix} x(t) \right\} dt \\ &= x^T(0) \left\{ \int_0^\infty e^{A^T t} \begin{bmatrix} 2 & 0 \\ 0 & q \end{bmatrix} e^{At} dt \right\} x(0) \end{split}$$

Problem 2.

Consider the continuous time system described by

$$\dot{x} = Ax$$

where $A \in \mathbb{R}^{n \times n}$. Define a new matrix \overline{A} by

$$\overline{A} = A + \lambda_n I$$

where $\lambda_p \in \mathcal{R}$ and I is the identity matrix.

(a) Let λ_{Ai} be the *ith* eigenvalue of A and $\lambda_{\overline{A}i}$ be the *ith* eigenvalue of \overline{A} , show that

$$\lambda_{\overline{A}i} = \lambda_{Ai} + \lambda_p$$

(b) Now consider a Lyapunov like equation

$$AP + PA^T = -(Q + \sigma P)$$

and explain how you can use this equation to check whether or not all the eigenvalues of A have real parts smaller than $-\lambda_p$.

Problem 3.

Consider the discrete time Lyapunov function $\mathcal{D}_A:\mathcal{R}^{n\times n}\to\mathcal{R}^{n\times n},$ which is defined as follows:

$$\mathcal{D}_A(P) = A^T P A - P,$$

where $A \in \mathbb{R}^{n \times n}$.

(a) Show that $\mathcal{D}_A(\cdot)$ is a linear function of P, i.e. show that, for any two matrices $P_1 \in \mathcal{R}^{n \times n}$ and $P_2 \in \mathcal{R}^{n \times n}$ and two scalars $\alpha_1 \in \mathcal{R}$ and $\alpha_2 \in \mathcal{R}$,

$$\mathcal{D}_A(\alpha_1 P_1 + \alpha_2 P_2) = \alpha_1 \mathcal{D}_A(P_1) + \alpha_2 \mathcal{D}_A(P_2)$$

(b) Let the λ_i be the *ith* eigenvalue of A^T and let v_i be its associated eigenvector, i.e.

$$A^T v_i = \lambda_i v_i$$
.

Given two eigenvectors v_i and v_i , define the matrix

$$V_k = v_i v_i^T$$
.

Notice that you can construct n^2 matrices V'_k s. Show that

$$\mathcal{D}_A(V_k) = \mathcal{D}_A(v_i v_j^T)$$
$$= \mu_k V_k$$

and determine an expression for the scalar μ_k in terms of the eigenvalues λ_i and λ_j . Notice that μ_k is an eigenvalue for the linear function $\mathcal{D}_A(\cdot)$ and the matrix $V_k = v_i v_j^T \in \mathcal{R}^{n \times n}$ is its corresponding eigenvector.

(c) For the matrix

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0.5 \end{bmatrix} \tag{1}$$

- (i) Find the eigenvalues $\mu'_k s$ of the linear function $\mathcal{D}_A(\cdot)$ and their corresponding eigenvectors $V'_k s$.
- (ii) Obtain a matrix representation of the linear function $\mathcal{D}_A(\cdot)$ when A is given by (1), using the following procedure: Let

$$P = \begin{bmatrix} p_1 & p_2 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \qquad Q = \begin{bmatrix} q_1 & q_2 \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$$

$$\mathcal{D}_A(P) = A \begin{bmatrix} p_1 & p_2 \end{bmatrix} A^T - \begin{bmatrix} p_1 & p_2 \end{bmatrix} = - \begin{bmatrix} q_1 & q_2 \end{bmatrix}$$

Stacking up the columns of the matrices $\mathbf{P} = [\begin{array}{cc} p_1 & p_2 \end{array}]$, and $\mathbf{Q} = -[\begin{array}{cc} q_1 & q_2 \end{array}]$ to form column vectors

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{21} & p_{12} & p_{22} \end{bmatrix}^T \\ -\mathbf{Q} = -\begin{bmatrix} q_{11} & q_{21} & q_{12} & q_{22} \end{bmatrix}^T$$

determine the matrix $\mathbf{D}_A \in \mathcal{R}^{4\times 4}$ which is the coordinate representation of the linear function $\mathcal{D}_A(\cdot)$

$$APA^T - P = -Q \iff \mathbf{D}_A \mathbf{P} = -\mathbf{Q}.$$

(iii) Use matlab to verify that the eigenvalues $\mu'_k s$ of the linear function $\mathcal{D}_A(\cdot)$ are also the eigenvalues of the matrix \mathbf{D}_A . Also determine the four eigenvectors $u'_k s \in \mathcal{R}^4$ of the matrix \mathbf{D}_A , such that

$$\mathbf{D}_{\Delta}u_k = \mu_k u_k.$$

(d) Consider now the solution of the discrete time Lyapunov-like equation: Given a matrix Q, find a matrix P such that

$$\mathcal{D}_{A}(P) = -Q \tag{2}$$

i.e. find the matrix P such that

$$A^T P A - P = -Q$$

The necessary and sufficient condition for the solution to be unique is that the null space of $\mathcal{D}_A(\cdot)$ must be empty, i.e., all eigenvalues $\mu'_k s$ of $\mathcal{D}_A(\cdot)$ must be nonzero. Determine the condition that the eigenvalues $\lambda'_i s$ of A must satisfy for Eq. (2) to have a unique solution.

(e) Using the results of the of part d), prove the following threorem:

Theorem The following two conditions are equivalent

- 1. The matrix $A \in \mathbb{R}^{n \times n}$ is Schur.
- 2. For any symmetric matrix $Q \in \mathcal{R}^{n \times n}$ with bounded elements, there exists a symmetric matrix P with bounded elements, which is the unique solution of the Lyapunov equation

$$A^T P A - P = -Q.$$

Problem 4.

Let the matrix $A \in \mathbb{R}^{n \times n}$ be Schur. We will now show that, for any symmetric matrix $Q \succ 0$, the unique solution of the Lyapunov equation

$$A^T P A - P = -Q (3)$$

is

$$P = \sum_{k=0}^{\infty} (A^k)^T Q A^k. \tag{4}$$

To do so, consider the LTI system

$$x(k+1) = A x(k) \qquad x(0) = x_o$$

where A is Schur and the initial condition $x_o \in \mathbb{R}^n$ is arbitrary. Also, define the PDF $V(x) \succ 0$ by

$$V(x) = x^T P x$$

where $P = P^T$, P > 0 satisfies the Lyapunov equation (3).

(a) Show:

$$\Delta V(x(k)) = V(x(k+1)) - V(x(k)) = -x^{T}(k) Q x(k)$$

 $\quad \text{and} \quad$

$$\lim_{k \to \infty} V(x(k)) = 0$$

(b) Show: ¹

$$V(x(0)) = \sum_{k=0}^{\infty} x^{T}(k) Q x(k)$$

(c) Finally, utilizing

$$x(k) = A^k x_o V(x(0)) = x_o^T P x_o$$

where x_o is arbitrary, obtain Eq. (4).