Практикум к §2-3

Тема, задача	О чем задача	Количество	Группа, команда, участники
Погрешнос Сходимост	сть разностного оператора. По ь схемы	грешность аппроксима	щии схемы.
Задача 1	Погрешность оператора (стандартный случай)	От каждой команды все варианты в одном экземпляре	
Задача 2	Погрешность оператора (повышенная точность)	Один вариант от каждого студента	
Задача 3	Погрешность схемы и погрешность аппроксимации	Один вариант от каждого студента	
Задача 4	Доказательство сходимости схемы. Анализ общей погрешности (основная задача к зачету)	Один вариант от каждой команды	
Задача 5*	Погрешность схемы и погрешность аппроксимации (разрыв)	Один вариант от каждой команды	
Задача 6*	Погрешность аппроксимации (не только ур-е теплопроводности)	Один вариант от каждой команды	
Задача 7*	Погрешность аппроксимации (для граничных условий)	Один вариант от каждой команды	
Построени	е консервативных разностных	схем (метод баланса)	
Задача 8	Схемы для стационарного уравнения теплопроводности (кусочно-постоянные коэффициенты)	Один вариант от каждого студента	
Задача 9	Схемы для стационарного уравнения теплопроводности (зависимость коэффициентов от х, наличие точки разрыва)	Один вариант от каждого студента	
Задача 10	Схемы для нестационарного уравнения теплопроводности (постоянные коэффициенты)	Один вариант от каждого студента	
Расчеты: м	етод прогонки, разностные сх	емы (в ответах указыват	ть 3 цифры после запятой)
Задача 11	Метод прогонки	Один вариант от каждого студента	
Задача 12	Численное решение нестационарного уравнения теплопроводности	Один вариант от каждого студента	

Погрешность разностного оператора. Погрешность аппроксимации схемы. Сходимость схемы

Задачи 1-7

Задача №1 – Погрешность оператора (стандарт)

MP: Одна задача от команды, использовать все варианты, варианты распределить между участниками

Указаны производные и операторы для их вычисления. Сетка равномерная с узлами $x_{i+1}=x_i+h$, $i=0,\pm 1,\pm 2...$ и шагом h .

Нарисуйте шаблон оператора и запишите определение погрешности.

Исследуйте погрешность оператора, используя формулу Тейлора дважды: с остаточным слагаемым в форме Лагранжа и остаточным слагаемым в форме Пеано:

- а) используя форму Лагранжа, запишите значение погрешности оператора через средние точки и затем оцените модуль погрешности;
- б) используя форму Пеано, укажите главный член погрешности оператора и определите ее порядок.

Вариант №1
$$u'(x_i) \approx \frac{1}{h}(u_{i+1} - u_i) = [u_x]_i$$

(**правый** разностный оператор для вычисления **первой** производной на двухточечном шаблоне);

Вариант №2
$$u'(x_i) \approx \frac{1}{h}(u_i - u_{i-1}) = [u_{\bar{x}}]_i$$

(**левый** разностный оператор для вычисления **первой** производной на двухточечном шаблоне);

Вариант №3
$$u'(x_i) \approx \frac{1}{2h}(u_{i+1} - u_{i-1}) = [u_{\hat{x}}]_i$$

(**центральный** разностный оператор для вычисления **первой** производной на трехточечном шаблоне; вес значения u_i равен нулю);

Вариант №4
$$u''(x_i) \approx \frac{1}{h^2}(u_{i+1} - 2u_i + u_{i-1}) = [u_{x\bar{x}}]_i$$

(центральный разностный оператор для вычисления второй производной на трехточечном шаблоне).

Вариант №5
$$u''(x_i) \approx \frac{1}{h^2} (u_{i+2} - 2u_{i+1} + u_i)$$

(**правый** разностный оператор для вычисления **второй** производной на трехточечном шаблоне).

Вариант №6
$$u''(x_i) \approx \frac{1}{h^2}(u_i - 2u_{i-1} + u_{i-2})$$

(**левый** разностный оператор для вычисления **второй** производной на трехточечном шаблоне).

Задача №2 – Погрешность оператора (повыш. точность)

MP: Одна задача от команды, использовать варианты по числу участников, варианты распределить между участниками

Указаны производные и операторы для их вычисления. Сетка равномерная с узлами $x_{i+1}=x_i+h$, $i=0,\pm 1,\pm 2...$ и шагом h .

Нарисуйте шаблон оператора и запишите определение погрешности.

Исследуйте погрешность оператора, используя формулу Тейлора дважды: с остаточным слагаемым в форме Лагранжа и остаточным слагаемым в форме Пеано:

- а) используя запись в форме Лагранжа, запишите значение погрешности оператора через средние точки и затем оцените модуль погрешности;
- б) используя запись в форме Пеано, укажите главный член погрешности оператора и определите ее порядок.

Вариант №1
$$u'(x_i) \approx \left[\frac{1}{2h} \left(-u_{i+2} + 4 u_{i+1} - 3u_i\right)\right]$$

(правый разностный оператор для вычисления **первой** производной на 3-х точечном шаблоне, для сверки: порядок погрешности 2);

Вариант №2
$$u'(x_i) \approx \left[\frac{1}{60h} (u_{i+3} - 9 u_{i+2} + 45 u_{i+1} - 45 u_{i-1} + 9 u_{i-2} - u_{i-3})\right]$$

(**центральный** разностный оператор для вычисления **первой** производной на 7-ми точечном шаблоне, вес значения u_i равен нулю; для сверки: порядок погрешности 6);

Вариант №3
$$u''(x_i) \approx \left[\frac{1}{h^2} \left(2 u_i - 5 u_{i-1} + 4 u_{i-2} - u_{i-3}\right)\right]$$

(**левый** разностный оператор для вычисления **второй** производной на 4-х точечном шаблоне; для сверки: порядок погрешности 2);

Вариант №4
$$u'''(x_i) \approx \left[\frac{1}{h^3} (u_{i+3} - 3 u_{i+2} + 3 u_{i+1} - u_i)\right]$$

(правый разностный оператор для вычисления **третьей** производной на 4-х точечном шаблоне, для сверки: порядок погрешности 1)

Вариант №5
$$u'''(x_i) \approx \left[\frac{1}{2h^3} \left(u_{i+2} - 2 u_{i+1} + 2 u_{i-1} - u_{i-2}\right)\right]$$

(**центральный** разностный оператор для вычисления **третьей** производной на 5-ти точечном шаблоне, вес значения u_i равен нулю; для сверки: порядок погрешности 2)

Вариант №6
$$u''(x_i) \approx \left[\frac{1}{12h^2} \left(-u_{i+2} + 16 u_{i+1} - 30 u_i + 16 u_{i-1} - u_{i-2}\right)\right]$$

(**центральный** разностный оператор для вычисления **второй** производной на 5-ти точечном шаблоне; для сверки: порядок погрешности 4).

MP: Одна задача от команды, использовать варианты по числу участников, варианты распределить между участниками

Вариант №1 (задача №3)

Для решения краевой задачи

$$13 \cdot u''(x) + 6 x u(x) = x^2 - 7, \quad x \in [0, 3]$$

$$\frac{du}{dx}(0) = 0 \qquad \qquad \frac{du}{dx}(3) = 5 \cdot u(3) - 2$$

на отрезке [0,3] определена сетка $x_i=ih,\ i=0,\dots n$, шаг сетки h=3/n, и предложена разностная схема

$$\begin{cases} \frac{v_1 - v_0}{h} = 0\\ 13 \cdot \frac{v_{i-1} - 2v_i + v_{i+1}}{h^2} + 6 \cdot x_i \cdot v_i = x_i^2 - 7, & i = 1, \dots n - 1\\ \frac{v_n - v_{n-1}}{h} = 5 \cdot v_n - 2 \end{cases}$$

Исследуйте погрешность аппроксимации (ПА): запишите определение ПА и оцените модуль каждой компоненты ПА. Запишите оценку вектора ПА в какой-либо из норм.

При оформлении решения укажите:

- что обозначено через u(x) и через $u = (u_0, u_1, ..., u_n)$;
- что обозначено через $v = (v_0, v_1, ..., v_n)$;
- что такое погрешность схемы и как она обозначена;
- какой системой уравнений связаны ПА и погрешность схемы, зачем нужны два разных понятия погрешности.

Вариант №2 (задача №3)

Для решения стационарного уравнения теплопроводности

$$13 \cdot u''(x) - 7 \cdot x \cdot u(x) = x^2 - 17, \qquad x \in [0, 1]$$

$$13 \cdot \frac{du}{dx}(0) = 10 \ (u(0) - 3)$$

$$-13 \frac{du}{dx}(1) = 8 (u(1) - 25)$$

на отрезке [0, 1] определена сетка $x_i = ih$, i = 0, ...n, шаг сетки h = 1/n, и предложена консервативная разностная схема

$$\begin{cases} 13 \cdot \frac{v_1 - v_0}{h} = 10 \cdot v_0 - 30 \\ 13 \cdot \frac{v_{i-1} - 2v_i + v_{i+1}}{h^2} - 7 \cdot x_i \cdot v_i = x_i^2 - 17, & i = 1, \dots n - 1 \\ -13 \cdot \frac{v_n - v_{n-1}}{h} = 8 \cdot v_n - 200 \end{cases}$$

Исследуйте погрешность аппроксимации (ПА): запишите определение ПА и оцените модуль каждой компоненты ПА. Запишите оценку вектора ПА в какой-либо из норм.

При оформлении решения укажите:

- что обозначено через u(x) и через $u = (u_0, u_1, ..., u_n)$;
- что обозначено через $v = (v_0, v_1, ..., v_n)$;
- что такое погрешность схемы и как она обозначена;
- какой системой уравнений связаны ПА и погрешность схемы, зачем нужны два разных понятия погрешности.

Вариант №3 (задача №3)

Для решения нестационарного уравнения теплопроводности

$$\begin{cases} u'_t = 5 \cdot u''_{xx} + \sin(x)\cos(t), & x \in [0, 1], \ t \in [0, 10], \\ u(x, 0) = 2x, \\ u(0, t) = 0, u(1, t) = 2 \end{cases}$$

на множестве $x \in [0, 3]; t \in [0, 10]$ определена сетка с узлами (x_i, t_j) , где $x_i = ih, i = 0, ... n$, шаг по пространству h = 1/n, $t_j = j\tau, j = 0, ... m$, шаг по времени $\tau = 10/m$, и предложена **явная разностная схема**.

Запишите схему и исследуйте погрешность аппроксимации (ПА): приведите определение ПА и оцените модуль каждой компоненты ПА. Запишите оценку вектора ПА в какой-либо из норм.

При оформлении решения укажите:

– что обозначено через u(x,t) и через

$$u = (u_{00}, u_{10}, ... u_{n0}, u_{01}, u_{11}, ... u_{n1}, ... u_{0j}, u_{1j}, ... u_{nj}, ... u_{0m}, u_{1m}, ... u_{nm});$$

– что обозначено через

$$v = (v_{00}, v_{10}, ... v_{n0}, v_{01}, v_{11}, ... v_{n1}, ... v_{0j}, v_{1j}, ... v_{nj}, ... v_{0m}, v_{1m}, ... v_{nm});$$

- что обозначено через $u^{j} = (u_{0j}, u_{1j}, ... u_{nj});$
- что обозначено через $v^j = (v_{0j}, v_{1j}, ... v_{nj});$
- что такое погрешность схемы и как она обозначена;
- какой системой уравнений связаны ПА и погрешность схемы, зачем нужны два разных понятия погрешности.

Вариант №4 (задача №3)

Для решения нестационарного уравнения теплопроводности

$$\begin{cases} u'_t = 5 \cdot u''_{xx} + \sin(x)\cos(t), & x \in [0, 1], \ t \in [0, 10], \\ u(x, 0) = 2x, \\ u(0, t) = 0, u(1, t) = 2 \end{cases}$$

на множестве $x \in [0, 3]$; $t \in [0, 10]$ определена сетка с узлами (x_i, t_j) , где $x_i = ih$, i = 0, ...n, шаг по пространству h = 1/n, $t_j = j\tau$, j = 0, ...m, шаг по времени $\tau = 10/m$, и предложена **неявная разностная схема**.

Запишите схему и исследуйте погрешность аппроксимации (ПА): приведите определение ПА и оцените модуль каждой компоненты ПА. Запишите оценку вектора ПА в какой-либо из норм.

При оформлении решения укажите:

- что обозначено через u(x,t) и через
- $u = (u_{00}, u_{10}, ... u_{n0}, u_{01}, u_{11}, ... u_{n1}, ... u_{0j}, u_{1j}, ... u_{nj}, ... u_{0m}, u_{1m}, ... u_{nm});$
- что обозначено через
- $v = (v_{00}, v_{10}, ..., v_{n0}, v_{01}, v_{11}, ..., v_{n1}, ..., v_{0j}, v_{1j}, ..., v_{nj}, ..., v_{0m}, v_{1m}, ..., v_{nm});$
- что обозначено через $u^{j} = (u_{0i}, u_{1i}, ... u_{ni});$
- что обозначено через $v^j = (v_{0i}, v_{1i}, ... v_{ni});$
- что такое погрешность схемы и как она обозначена;
- какой системой уравнений связаны ПА и погрешность схемы, зачем нужны два разных понятия погрешности.

Вариант №5 (задача №3)

Для решения стационарного уравнения теплопроводности

$$\frac{d}{dx}((x+2)\frac{du}{dx}) - \sin(x) u(x) = -\cos(x+2), \qquad x \in [0, 2]$$

$$u(0) = 0, \qquad u(2) = 1.$$

на отрезке [0, 2] определена сетка $x_i = ih$, i = 0,...n, шаг сетки h = 2/n, и предложена консервативная разностная схема (см. метод баланса).

Запишите схему и исследуйте погрешность аппроксимации (ПА): запишите определение ПА и оцените модуль каждой компоненты ПА. Запишите оценку вектора ПА в какой-либо из норм.

При оформлении решения укажите:

- что обозначено через u(x) и через $u = (u_0, u_1, ..., u_n)$;
- что обозначено через $v = (v_0, v_1, ..., v_n)$;
- что такое погрешность схемы и как она обозначена;
- какой системой уравнений связаны ПА и погрешность схемы, зачем нужны два разных понятия погрешности.

Вариант №6 (задача №3)

Для решения нестационарного уравнения теплопроводности

$$\begin{cases} u'_t = 5 \cdot u''_{xx} + \sin(x)\cos(t), & x \in [0, 1], \ t \in [0, 10], \\ u(x, 0) = 2x, \\ u(0, t) = 0, u(1, t) = 2 \end{cases}$$

на множестве $x \in [0, 3]; t \in [0, 10]$ определена сетка с узлами (x_i, t_j) , где $x_i = ih, i = 0, ... n$, шаг по пространству h = 1/n, $t_j = j\tau, j = 0, ... m$, шаг по времени $\tau = 10/m$, и предложена **неявная разностная схема с весом 0.5**.

Запишите схему и исследуйте погрешность аппроксимации (ПА): приведите определение ПА и оцените модуль каждой компоненты ПА. Запишите оценку вектора ПА в какой-либо из норм.

При оформлении решения укажите:

- что обозначено через u(x,t) и через
- $u = (u_{00}, u_{10}, ... u_{n0}, u_{01}, u_{11}, ... u_{n1}, ... u_{0j}, u_{1j}, ... u_{nj}, ... u_{0m}, u_{1m}, ... u_{nm});$
- что обозначено через
- $v = (v_{00}, v_{10}, ..., v_{n0}, v_{01}, v_{11}, ..., v_{n1}, ..., v_{0j}, v_{1j}, ..., v_{nj}, ..., v_{0m}, v_{1m}, ..., v_{nm});$
- что обозначено через $u^{j} = (u_{0j}, u_{1j}, ... u_{nj});$
- что обозначено через $v^j = (v_{0j}, v_{1j}, ... v_{nj});$
- что такое погрешность схемы и как она обозначена;
- какой системой уравнений связаны ПА и погрешность схемы, зачем нужны два разных понятия погрешности.

Задача №4 – Доказательство сходимости схемы Анализ общей погрешности

(Основная задача к зачету)

MP: Один вариант от команды, этапы исследования можно распределить между участниками, текст готовить сейчас, краткий рассказ у доски к зачету

Запишите консервативную разностную схему для решения краевой задачи (соответственно вариантам). Если задача содержит граничные условия 2-го или 3-го рода, используйте стандартную аппроксимацию ГУ с помощью разностного оператора (см. Модуль 7).

Докажите сходимость схемы. Укажите порядок сходимости. Изучите общую погрешность.

Этапы доказательства:

- 1) проверка корректности схемы; связь погрешности схемы с погрешностью аппроксимации (в том числе определения погрешности схемы и погрешности аппроксимации);
- 2) оценка погрешности аппроксимации (оценить модуль каждой компоненты вектора погрешности аппроксимации по отдельности, записать оценку вектора ПА в какой-либо из норм);
 - 3) доказательство устойчивости схемы;
- 4) обоснование сходимости и анализ общей погрешности (в том числе определения общей и вычислительной погрешности).

При оформлении задачи:

- указать физический смысл коэффициентов задачи и классифицировать граничные условия своего варианта;
 - записать схему, обосновать значения коэффициентов схемы;
 - привести определения сходимости, аппроксимации, устойчивости схем;
- для решения задачи и решения схемы использовать разные обозначения.

Вариант №1 (задача №4)

$$13 \cdot u''(x) - 7 \cdot u(x) = -17, x \in [0, 1]$$

$$u(0) = 15,$$

$$u(1) = 19.$$

Вариант №2 (задача №4)

$$11 \cdot u''(x) - 7 \cdot u(x) = -17, x \in [0, 1]$$

$$11 \cdot \frac{du}{dx}(0) = 10 \cdot (u(0) - 3)$$

$$-11 \cdot \frac{du}{dx}(1) = 3 \cdot (u(1) - 25)$$

Вариант №3 (задача №4)

$$9 \cdot u''(x) - 17 \cdot u(x) = -13, x \in [0, 1]$$
$$9 \cdot \frac{du}{dx}(0) = 10 \cdot (u(0) - 3)$$
$$u(1) = 19$$

Вариант №4 (задача №4)

$$4 \cdot u \text{ "}(x) - 5 \cdot u(x) = -11, x \in [0, 1]$$

$$u(0) = 15$$

$$-4 \frac{du}{dx}(1) = 14 \cdot (u(1) - 25)$$

Вариант №5 (задача №4)

$$5 \cdot u''(x) - 9 \cdot u(x) = -4, x \in [0, 1]$$

 $\frac{du}{dx}(0) = 0$
 $u(1) = 19$

Вариант №6 (задача №4)

$$6 \cdot u "(x) - 3 \cdot u(x) = -2, x \in [0, 1]$$

$$6 \frac{du}{dx}(0) = -30$$

$$u(1) = 19$$

Вариант №7 (задача №4)

$$7 \cdot u''(x) - 11 \cdot u(x) = -15, x \in [0, 1]$$

$$7 \frac{du}{dx}(0) = -30$$

$$\frac{du}{dx}(1) = 0$$

Вариант №8 (задача №4)

$$8 \cdot u''(x) - 7 \cdot u(x) = -17, x \in [0, 1]$$

$$8 \frac{du}{dx}(0) = -30$$

$$-8 \frac{du}{dx}(1) = 7 \cdot (u(1) - 25)$$

МР: Один вариант от команды

Запишите консервативную разностную схему для решения краевой задачи

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x) u(x) = -f(x), x \in [0, 2],$$

$$u(0) = 13$$
,

$$u(2) = 19.$$

$$k(x) = \begin{cases} 3, x \in (0, \xi) \\ 7, x \in (\xi, 2) \end{cases} \qquad q(x) = \begin{cases} 0, x \in (0, \xi) \\ 5, x \in (\xi, 2) \end{cases} \qquad f(x) = \begin{cases} 10, x \in (0, \xi) \\ -15, x \in (\xi, 2) \end{cases}$$

В точке разрыва ξ поставлены условия сопряжения $u_{+} = u_{-}$, $w_{+} = w_{-}$.

В соответствии с вариантом задания, определяющим расположение точки ξ и расположение узлов сетки, исследуйте погрешность аппроксимации (ПА): для этого запишите определение ПА и оцените модуль каждой компоненты погрешности аппроксимации. Запишите оценку вектора ПА в какой-либо из норм.

Укажите, какой системой уравнений связаны ПА и погрешность схемы.

Вариант №1

Точкой разрыва является ξ =0.4. Задачу решают на равномерных сетках, для которых ξ является узлом основной сетки.

Вариант №2

Точкой разрыва является ξ =1/3. Задачу решают на равномерных сетках, для которых ξ является узлом основной сетки.

Вариант №3

Точкой разрыва является ξ =1/3. Задачу решают на равномерных сетках, для которых ξ не является узлом основной или дополнительной сетки.

Вариант №4

Точкой разрыва является $\xi=1/e$. Задачу решают на равномерных сетках, для которых ξ не является узлом основной или дополнительной сетки.

Вариант №5

Точкой разрыва является ξ =0.7. Задачу решают на равномерных сетках, для которых ξ является узлом основной сетки.

Вариант №6

Точкой разрыва является ξ =1/7. Задачу решают на равномерных секах, для которых ξ не является узлом основной или дополнительной сетки.

MP: Для вариантов 3, 4, 6 в формуле Тейлора брать в качестве разложения точку ξ , а также использовать условия сопряжения.

Задача №6* – Погрешность аппроксимации (не только уравнение теплопроводности)

MP: Один вариант от команды

Исследуйте погрешность аппроксимации в соответствии с вариантом задания.

При оформлении решения укажите:

- что обозначено через u(x) и через $u = (u_0, u_1, ..., u_n)$;
- что обозначено через $v = (v_0, v_1, v_n)$;
- что такое погрешность схемы;
- что такое погрешность аппроксимации (ПА).

Сформулируйте результат исследования в соответствии с вариантом задания.

Вариант №1 (задача №6)

Для задачи Коши

$$\frac{du}{dx} + (x^2 \sin x) \ u(x) = f(x), \ x \in [0, 1],$$

$$u(0) = 4$$

на сетке $x_i = ih$, i = 0,...n, h = 1/n предложена схема

$$\frac{v_{i+1}-v_i}{h}+(\alpha_1 a_i+\alpha_2 a_{i+1})(\beta_1 v_i+\beta_2 v_{i+1})=\gamma_1 f_i+\gamma_2 f_{i+1}, i=0,...n-1,$$

$$v_0=4,$$

где

$$f_i = f(x_i),$$

 $a_i = x_i^2 \sin x_i, i = 0,...n$

Как нужно задавать коэффициенты α_j , β_j , γ_j , j=1,2, чтобы порядок погрешности аппроксимации оказался не ниже второго по h?

Вариант №2 (задача №6)

Для краевой задачи

$$-\frac{d^2u}{dx^2} + u = f(x), x \in [0, 1],$$

$$u(0) = 0, u(1) = 0$$

на сетке $x_i = ih$, i = 0, ..., n, h = 1/n предложена схема

$$\frac{-v_{i+1} + 2v_i - v_{i-1}}{h^2} + (\alpha v_{i+1} + \beta v_i + \gamma v_{i-1}) = f(x_i) + \frac{h^2}{12} f''(x_i),$$

$$i = 1, \dots n-1,$$

$$v_0 = 0, v_n = 0$$

Как нужно задавать коэффициенты α , β , γ , чтобы порядок погрешности аппроксимации был четвертым по h?

Вариант №3 (задача №6)

Для задачи Коши

$$\frac{du}{dx} + u = x + 1, x \in [0, 1],$$

$$u(0) = 0$$

на сетке $x_i = ih$, i = 0, ..., h = 1/n предложена схема

$$\frac{v_{i+1} - v_{i-1}}{2h} + v_i = ih + 1, i = 1, \dots n-1,$$

$$v_0 = 0, v_1 = 0.$$

Аппроксимирует ли схема задачу со вторым порядком по h?

Если нет, измените схему так, чтобы порядок погрешности аппроксимации стал вторым.

Вариант №4 (задача №6)

Для задачи Коши

$$\frac{du}{dx} + 2 u \cos x = \cos x + \sin (2x), x \in [0, 1],$$

$$u(0) = 0$$

на сетке $x_i = ih, i = 0, ... n, h = 1/n$ предложена схема

$$\frac{v_{i+1} - v_i}{h} + a_i \frac{v_{i+1} + v_i}{2} = f_i, i = 0, \dots n-1,$$

$$v_0 = 0,$$
где $a_i = 2 \cos x_i,$

$$f_i = \cos x_i + \sin (2 x_i), i = 0, \dots n-1,$$

Проведите анализ погрешности аппроксимации двумя способами:

- 1) используя для оценки компонент невязки узлы $x_i = ih$, i = 0,... n;
- 2) используя для оценки компонент невязки узлы x_0 , x_n и точки $x_{i+1/2}=ih+0.5\ h,\ i=0,...\ n-1.$

Укажите порядок погрешности аппроксимации.

Вариант №5 (задача №6)

Для задачи Коши

$$\frac{du}{dx} + 2 u \cos x = \cos x + \sin (2x), x \in [0, 1],$$

$$u(0) = 0$$

на сетке $x_i = ih$, i = 0,...n, h = 1/n предложена схема

$$\frac{v_{i+1} - v_i}{h} + a_i \frac{v_{i+1} + v_i}{2} = f_i, i = 0, \dots n-1,$$

$$v_0 = 0,$$

где $a_i = \cos x_i + \cos x_{i+1}$,

$$f_i = 0.5 \ a_i + 0.5 \ (sin (2x_i) + sin (2x_{i+1})), \ i = 0, \dots n-1.$$

Проведите анализ погрешности аппроксимации двумя способами:

- 1) используя для оценки компонент невязки узлы $x_i = ih$, i = 0,... n;
- 2) используя для оценки компонент невязки узлы x_0 , x_n и точки $x_{i+1/2}=ih+0.5\ h,\ i=0,...\ n-1.$

Укажите порядок погрешности аппроксимации.

Вариант №6 (задача №6)

Для задачи Коши

$$\frac{du}{dx} + 2 u \cos x = \cos x + \sin (2x), x \in [0, 1],$$

$$u(0) = 0$$
Ha cetke $x_i = ih, i = 0, ..., h = 1/n$

на сетке $x_i = ih$, i = 0,...n, h = 1/n предложена схема

$$rac{v_{i+1}-v_i}{h}+a_i\,rac{v_{i+1}+v_i}{2}=f_i,\,i=0,...\,n$$
-1, $v_0=0,$ где $a_i=2\,\cos x_i$, $f_i=\cos x_{i+1}+\sin (2\,x_{i+1}),\,i=0,...\,n$ -1.

Проведите анализ погрешности аппроксимации двумя способами:

- 1) используя для оценки компонент невязки узлы $x_i = ih$, i = 0,... n;
- 2) используя для оценки компонент невязки узлы x_0 , x_n и точки $x_{i+1/2}=ih+0.5\ h,\ i=0,...\ n-1.$

Укажите порядок погрешности аппроксимации.

Вариант №7 (задача №6)

Для задачи Коши

$$\frac{du}{dx} + 2 u \cos x = \cos x + \sin (2x), x \in [0, 1],$$

$$u(0) = 0$$

на сетке $x_i = ih$, i = 0,...n, h = 1/n предложена схема

$$rac{v_{i+1}-v_i}{h}+a_i\,rac{v_{i+1}+v_i}{2}=f_i$$
 , $i=0,...$ n -1, $v_0=0$, где $a_i=2\cos x_{i+1/2}$, $f_i=\cos x_{i+1/2}+\sin \left(2\,x_{i+1/2}
ight)$,

Проведите анализ погрешности аппроксимации двумя способами:

- 1) используя для оценки компонент невязки узлы $x_i = ih$, i = 0,... n;
- 2) используя для оценки компонент невязки узлы x_0 , x_n и точки $x_{i+1/2}=ih+0.5\ h,\ i=0,...\ n-1.$

Укажите порядок погрешности аппроксимации.

Задача №7* – Погрешность аппроксимации (для граничных условий)

МР: Один вариант от команды

Для решения приведенной ниже краевой задачи запишите консервативную разностную схему с улучшенной аппроксимацией граничных условий (способ построения см. Модуль 7).

Исследуйте погрешность аппроксимации граничных условий: для этого запишите определение погрешности аппроксимации (т.е. все компоненты вектора ПА) и оцените модуль тех компонент, которые отвечают граничным условиям задачи.

При оформлении решения указать физический смысл коэффициентов задачи, классифицировать граничные условия своего варианта; записать схему; обосновать коэффициенты схемы; для решения задачи и решения схемы использовать разные обозначения.

Вариант №1

$$2 \cdot u''(x) - 7 \cdot u(x) = -17, \qquad x \in [0, 1]$$
$$2 \cdot \frac{du}{dx}(0) = 10 \cdot (u(0) - 3) \qquad -2 \frac{du}{dx}(1) = 8 \cdot (u(1) - 25)$$

Вариант №2

$$3 \cdot u''(x) - 7 \cdot u(x) = -17,$$
 $x \in [0, 1]$
 $3 \cdot \frac{du}{dx}(0) = 10 \cdot (u(0) + 6)$ $3 \cdot u(1) = 19$

Вариант №3

$$5 \cdot u''(x) - 7 \cdot u(x) = -17,$$
 $x \in [0, 1]$
 $5 \cdot u(0) = 15$ $-5 \cdot \frac{du}{dx}(1) = 18 \cdot u(1)$

Вариант №4

$$6 \cdot u''(x) - 7 \cdot u(x) = -17, \qquad x \in [0, 1]$$

$$6 \cdot \frac{du}{dx}(0) = 10 \ (u(0) + 6) \qquad -6 \cdot \frac{du}{dx}(0) = 0$$

Вариант №5

$$4 \cdot u''(x) - 7 \cdot u(x) = -17, \qquad x \in [0, 1]$$

$$4 \cdot \frac{du}{dx}(0) = -30 \qquad -4 \cdot \frac{du}{dx}(1) = 9 \cdot (u(1) + 15)$$

Вариант №6

$$11 \cdot u''(x) - 7 \cdot u(x) = -17, \qquad x \in [0, 1]$$

$$11 \cdot \frac{du}{dx}(0) = 2 u(1) \qquad -11 \cdot \frac{du}{dx}(1) = 3 \cdot u(1)$$

Построение консервативных разностных схем (метод баланса)

Задачи 8-10

Задача №8 – Схемы для стационарного уравнения теплопроводности (кусочно-постоянные коэффициенты)

MP: Одна задача от команды, использовать варианты по числу участников, варианты распределить между участниками

Вариант №1 (задача №8)

Уравнение теплопроводности (первая краевая задача) имеет вид

$$12 \cdot u''(x) - 5 \cdot u(x) = -7, x \in [0, 1]$$

$$u(0) = 10, \qquad u(1) = 100.$$

- 1) запишите консервативную разностную схему и формулы для вычисления коэффициентов схемы (интегралы) при произвольном n (n число участков равномерной сетки).
 - 2) запишите коэффициенты схемы при n=10 (число участков сетки);
 - 3) запишите разностную схему при n=10 в матричном виде;
 - 4) решите задачу аналитически.

Вариант №2 (задача №8)

Уравнение теплопроводности (первая краевая задача) имеет вид

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x) u(x) = -f(x), x \in [0, 2],$$

$$u(0) = 13,$$
 $u(2) = 19.$

$$k(x) = \begin{cases} 3, x \in (0, \xi) \\ 7, x \in (\xi, 2) \end{cases} \qquad q(x) = \begin{cases} 0, x \in (0, \xi) \\ 5, x \in (\xi, 2) \end{cases} \qquad f(x) = \begin{cases} 10, x \in (0, \xi) \\ -15, x \in (\xi, 2) \end{cases}$$

В точке разрыва ξ =0.4 ставятся условия сопряжения $u_+ = u_-$, $w_+ = w_-$.

- 1) запишите задачу в виде двух дифференциальных уравнений с постоянными коэффициентами (каждое со своим граничным условием) и условиями сопряжения решений двух уравнений; укажите смысл условий сопряжения;
- 2) запишите консервативную разностную схему и формулы для вычисления коэффициентов схемы при произвольном n (n число участков равномерной сетки);
- 3) запишите коэффициенты схемы при n=10 (число участков сетки); расчеты аргументируйте рисунком;
- 4) запишите разностную схему при n=10 двумя способами: в каноническом виде и в матричном виде.
 - 5) решите задачу аналитически.

Вариант №3 (задача №8)

Уравнение теплопроводности (первая краевая задача) имеет вид

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x) u(x) = -f(x), x \in [0, 1]$$

$$u(0) = 0,$$
 $u(1) = 1.$

$$k(x) = \begin{cases} 3, x \in (0, \xi) \\ 0.5, x \in (\xi, \zeta) \\ 100, x \in (\zeta, 1) \end{cases} q(x) = \begin{cases} 3, x \in (0, \xi) \\ 0, x \in (\xi, \zeta) \\ 1, x \in (\zeta, 1) \end{cases} f(x) = \begin{cases} 0, x \in (0, \xi) \\ 0, x \in (\xi, \zeta) \\ 100, x \in (\zeta, 1) \end{cases},$$

В каждой из двух точек $\xi = 0.3$ и $\zeta = 5/7$ ставятся *условия сопряжения*.

- 1) запишите задачу в виде трех дифференциальных уравнений с постоянными коэффициентами (два из них со своим граничным условием) и условиями сопряжения решений трех уравнений (попарно); укажите смысл условий сопряжения;
- 2) запишите консервативную разностную схему и формулы для вычисления коэффициентов схемы при произвольном n (n число участков равномерной сетки).
- 3) запишите коэффициенты схемы при n=10 (число участков сетки); расчеты аргументируйте рисунком;
- 4) запишите разностную схему при n=10 одним из способов: в каноническом или в матричном виде.
- 5) запишите СЛАУ, которую нужно решить, если решение задачи искать аналитически.

Вариант №4 (задача №8)

Уравнение теплопроводности (третья краевая задача) имеет вид

$$12 \cdot u''(x) - 5 \cdot u(x) = -7, x \in [0, 1]$$

$$12 \cdot \frac{du}{dx}(0) = 5 \cdot (u(0) - 7) \qquad -12 \cdot \frac{du}{dx}(1) = 8 \cdot (u(1) - 15)$$

- 1) запишите разностные уравнения для аппроксимации дифференциального уравнения и формулы для вычисления коэффициентов схемы при произвольном n (n число участков равномерной сетки); использовать метод баланса;
- 2) укажите смысл граничных условий и аппроксимируйте их двумя способами:
 - типовая аппроксимация;
 - улучшенная аппроксимация (способ построения см. Модуль 7);
- 3) запишите две консервативные разностные схемы, полученные указанными способами, и сравните их свойства.

Задача №9 – Схемы для стационарного уравнения теплопроводности (зависимость коэффициентов от х, наличие точки разрыва)

МР: Одна задача от команды, использовать варианты по числу участников, варианты распределить между участниками

Вариант №1 (задача №9)

Уравнение теплопроводности (первая краевая задача) имеет вид

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x) u(x) = -f(x), x \in [0, 1]$$

$$u(0) = 0,$$
 $u(1) = 1.$

$$k(x) = \begin{cases} x+2, & x \in (0, \xi) \\ \exp(x), & x \in (\xi, 1) \end{cases} q(x) = \begin{cases} \sin(x), & x \in (0, \xi) \\ 2-x^2, & x \in (\xi, 1) \end{cases} f(x) = \begin{cases} \cos(2x), & x \in (0, \xi) \\ x+2, & x \in (\xi, 1) \end{cases}.$$

В точке разрыва ξ ставятся условия сопряжения $u_{+} = u_{-}$, $w_{+} = w_{-}$.

- расположением точки ξ подготовьте соответствии с консервативную разностную схему для решения задачи:
- запишите схему и формулы для вычисления ее коэффициентов схемы при произвольном n в общем виде (n – количество участков равномерной сетки);
- запишите коэффициенты схемы n = 10аргументируйте рисунком; при n=10 запишите все уравнения схемы (11 уравнений).

Подварианты задания:

Команды группы 01: ξ =0.4 Команды группы 02: ξ =0.35

Команды группы 03: ξ =0.27

Вариант №2 (задача №9)

Уравнение теплопроводности (первая краевая задача) имеет вид

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x) u(x) = -f(x), x \in [0, 1]$$

$$u(0) = 0,$$
 $u(1) = 1.$

$$k(x) = \begin{cases} x+2, & x \in (0, \xi) \\ \exp(x), & x \in (\xi, 1) \end{cases} q(x) = \begin{cases} \sin(x), & x \in (0, \xi) \\ 2-x^2, & x \in (\xi, 1) \end{cases} f(x) = \begin{cases} \cos(2x), & x \in (0, \xi) \\ x+2, & x \in (\xi, 1) \end{cases}.$$

В точке разрыва ξ ставятся условия сопряжения $u_{+} = u_{-}, w_{+} = w_{-}$.

соответствии с расположением точки ξ подготовьте консервативную разностную схему для решения задачи:

- запишите схему и формулы для вычисления ее коэффициентов схемы при произвольном n в общем виде, но с использованием формулы средних **прямоугольников** (n количество участков равномерной сетки);
- при n=10 запишите коэффициенты схемы с использованием формулы средних прямоугольников; расчеты аргументируйте рисунком; при n=10 запишите все уравнения схемы (11 уравнений).

Подварианты задания:

Команды группы 01: ξ =0.35 Команды группы 02: ξ =0.27 Команды группы 03: ξ =0.4

Вариант №3 (задача №9)

Уравнение теплопроводности (первая краевая задача) имеет вид

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x) u(x) = -f(x), x \in [0, 1]$$

$$u(0) = 0, \qquad u(1) = 1.$$

$$k(x) = \begin{cases} x + 2, x \in (0, \xi) \\ \exp(x), x \in (\xi, 1) \end{cases} q(x) = \begin{cases} \sin(x), x \in (0, \xi) \\ 2 - x^2, x \in (\xi, 1) \end{cases} f(x) = \begin{cases} \cos(2x), x \in (0, \xi) \\ x + 2, x \in (\xi, 1) \end{cases}.$$

В точке разрыва ξ ставятся условия сопряжения $u_{+} = u_{-}$, $w_{+} = w_{-}$.

- В соответствии с расположением точки ξ подготовьте консервативную разностную схему для решения задачи:
- запишите схему и формулы для вычисления ее коэффициентов схемы при произвольном n в общем виде, но с использованием формулы трапеций (n количество участков равномерной сетки);
- при n=10 запишите коэффициенты схемы по формуле трапеций; расчеты аргументируйте рисунком; при n=10 запишите все уравнения схемы (11 уравнений).

Подварианты задания:

Команды группы 01: ξ =0.27 Команды группы 02: ξ =0.4 Команды группы 03: ξ =0.35

Вариант №4 (задача №9)

Уравнение теплопроводности имеет вид

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x)u(x) = -f(x), x \in [0, 1]$$

$$k(x) = \begin{cases} x+2, & x \in (0, \xi) \\ \exp(x), & x \in (\xi, 1) \end{cases} q(x) = \begin{cases} \sin(x), & x \in (0, \xi) \\ 2-x^2, & x \in (\xi, 1) \end{cases} f(x) = \begin{cases} \cos(2x), & x \in (0, \xi) \\ x+2, & x \in (\xi, 1) \end{cases}.$$

В точке разрыва ξ ставятся условия сопряжения $u_{+} = u_{-}$, $w_{+} = w_{-}$.

В соответствии с расположением точки ξ и видом граничных условий подготовьте консервативные разностные схемы для решения задачи:

- 1) запишите разностные уравнения для аппроксимации дифференциального уравнения и формулы для вычисления коэффициентов схемы при произвольном n (n число участков равномерной сетки); использовать метод баланса;
- 2) укажите смысл граничных условий и аппроксимируйте их двумя способами:
 - типовая аппроксимация;
 - улучшенная аппроксимация (см. Модуль 7);
- 3) запишите две консервативные разностные схемы, полученные указанными способами, и сравните их свойства.

Подварианты задания:

Команды группы 01: ξ =0.4

$$\frac{du}{dx}(0) = 7 \cdot u(0)$$

$$u(1) = 12$$

Команды группы 02: ξ =0.35

$$k(0) \cdot \frac{du}{dx}(0) = 5 \cdot (u(0) - 7)$$

$$u(1) = 12$$

Команды группы 03: ξ =0.27

$$u\left(0\right) =9$$

$$-k(1)\cdot\frac{du}{dx}(1) = 8\cdot(u(1)-15)$$

Задача №10 – Схемы для нестационарного уравнения теплопроводности (постоянные коэффициенты)

MP: Одна задача от команды, использовать варианты по числу участников, варианты распределить между участниками

Уравнение теплопроводности на отрезке $x \in [0, 1]$ для отрезка по времени $t \in [0, T]$ имеет вид

$$u'_t = a^2 u''_{xx} + g(x,t), x \in [0,1], t \in [0,T]$$

где $a^2 > 0$, g(x,t) известны, u(x,t) – искомая функция. Задано начальное условие

$$u(x,0) = \varphi(x)$$
.

Для x = 0 одним из 3-х способов заданы граничные условия:

– условия 1-го рода

$$u(0,t) = \mu_1(t)$$

– условия 2-го рода

$$k_1(t) \cdot \frac{\partial u}{\partial x}(0,t) = -\mathbf{M}_1(t)$$

- условия 3-го рода

$$k_1(t) \cdot \frac{\partial u}{\partial x}(0,t) = \gamma_1(t)(u(0,t) - \theta_1(t))$$

Для x = 1 одним из 3-х способов заданы граничные условия:

- условия 1-го рода

$$u(1, t) = \mu_2(t)$$

- условия 2-го рода

$$k_2(t) \cdot \frac{\partial u}{\partial x}(1, t) = -M_2(t)$$

- условия 3-го рода

$$-k_2(t) \cdot \frac{\partial u}{\partial x}(1,t) = \gamma_2(t)(u(1,t) - \theta_2(t))$$

В соответствии с вариантом задания

- 1) классифицируйте граничные условия, укажите смысл и значения параметров уравнения;
- 2) запишите разностную схему для численного решения уравнения на сетке (n, m), равномерной по пространству и равномерной по времени.
- 3) запишите, как найти значения на слое j+1, если значения на слое j известны;
- 4) СЛАУ для послойного решения неявных схем запишите в каноническом и в матричном виде;
 - 5) для условно сходящихся схем укажите ограничение на шаг.

Вариант №1 (задача №10)

Явная схема. Уравнение

$$\begin{cases} u'_t = 3 \cdot u''_{xx} + \frac{t}{t+1} \cos \pi x, & x \in [0,1], \ t \in [0,10], \\ u(x, 0) = 1 - x^2, \\ u(0,t) = \cos t, \\ u(1,t) = \sin 4t \end{cases}$$

Вариант №2 (задача №10)

Неявная схема. Уравнение

$$\begin{cases} u'_t = 4 \cdot u''_{xx} + e^{-t} \sin 7\pi x + 1, & x \in [0, 1], & t \in [0, 5], \\ u(x, 0) = 1 - x^2, \\ u(0, t) = \cos t, \\ u(1, t) = \sin 4t \end{cases}$$

Вариант №3 (задача №10)

Неявная схема с весом 0.5. Уравнение

$$\begin{cases} u'_t = 5 \cdot u''_{xx} + \sin t, & x \in [0, 1], & t \in [0, 100], \\ u(x, 0) = 1 - x^2, \\ u(0, t) = \cos t, \\ u(1, t) = \sin 4t \end{cases}$$

Вариант №4 (задача №10)

Неявная схема. Уравнение

$$\begin{cases} u'_t = 9 \cdot u''_{xx} + 5 \cdot \sin t, & x \in [0, 1], t \in [0, 1000], \\ u(x, 0) = 1 - x^2, \\ \frac{\partial u}{\partial x}(0, t) = 0, \\ -\frac{\partial u}{\partial x}(1, t) = 7 \cdot (u(1, t) - \frac{2}{7}) \end{cases}$$

Расчеты: метод прогонки, разностные схемы

Задачи 11-12

Задача №11 – Метод прогонки

MP: Одна задача от команды, использовать варианты по числу участников, варианты распределить между участниками

Вариант №1

Решить задачу методом прогонки, не используя формулы общего вида для коэффициентов прямого хода прогонки (использовать идею метода прогонки).

$$\begin{bmatrix} 3 & 1 & 0 \\ 1 & 7 & 2 \\ 0 & 2 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 11 \\ 11 \end{bmatrix}$$

Вариант №2

Решить задачу методом прогонки, используя формулы общего вида для коэффициентов прямого хода прогонки. Если нужно, преобразуйте коэффициенты уравнения (проверить соответствие СЛАУ канонической записи).

$$\begin{bmatrix} 3 & 1 & 0 \\ 1 & 7 & 2 \\ 0 & 2 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 11 \end{bmatrix}$$

Вариант №3

Докажите Теорему 1 о применении метода прогонки (формулировки Теоремы 1 и Теоремы 2 см. §2.1).

Сравните вычислительную трудоемкость метода прогонки с трудоемкостью расчетов методом Гаусса для систем размерности

Считаем, что метод Гаусса «не знает» о нулях вне трех диагоналей.

Вариант №4

Докажите самостоятельно Теорему 2 о применении метода прогонки (формулировки Теоремы 1 и Теоремы 2 см. §2.1).

Сравните вычислительную трудоемкость метода прогонки с трудоемкостью расчетов методом Крамера для систем размерности

23

Считаем, что метод Крамера «не знает» о нулях вне трех диагоналей.

MP: Одна задача от команды, использовать варианты по числу участников, варианты распределить между участниками

Рассматривается нестационарное уравнение теплопроводности:

$$u'_t = 9 \cdot u''_{xx} + t \cdot (x+4), \quad x \in [0, 0.5], \quad t \in [0, 100]$$

с начальным условием

$$u(x,0) = x \cdot (1-x)$$

и граничными условиями

$$u(0,t) = 0$$
, $u(0.5,t) = 0.25$

Запишите разностную схему на сетке соответственно варианту задания. Найдите значения сеточной функции v(x,t) на нулевом и первом слое. Нарисуйте график нулевого и первого слоя (от руки).

Вариант №1

Явная схема, число участков по пространству n=5 и по времени m=2000.

Вариант №2

Неявная схема, число участков по пространству n=4 и по времени m=4000 .

Вариант №3

Неявная схема с весом 0.5, число участков по пространству n=4 и по времени m=2000.

Вариант №4

Неявная схема, число участков по пространству n=4 и по времени m=4000. Граничные условия 1-го рода заменить смешанными граничными условиями:

$$\frac{\partial u}{\partial x}(0,t) = 0,$$

$$\frac{\partial u}{\partial x}(0.5,t) = 4 \cdot (u(0.5,t) - \frac{2t}{t+1})$$

мр: Для условно сходящихся схем проверить выполнение ограничений на шаг. Для неявных схем выписать СЛАУ для послойного решения в матричном виде.