## Prime Ideal Theorem on Number Fields

Hikmet Burak Özcan

İzmir Institute of Technology İzmir Mathematics Days 2, Dokuz Eylül University

13 September 2019

## Overview

Definitions and Preliminaries

- 2 Motivation
- Prime Ideal Theorem
- 4 References

### **Definitions and Preliminaries**

• A number field K is a finite degree extension of the field of rational numbers  $\mathbb{Q}$ , i.e., a field which is a finite dimensional vector space over the field  $\mathbb{Q}$ .

### **Examples:**

 $\star$   $\mathbb{Q}$  itself is a number field of degree 1.

\*

$$\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}\$$

is a quadratic number field, namely, a number field of degree 2.

# Basic Definitions in Algebraic Number Theory

- An algebraic number is a complex number  $\alpha \in \mathbb{C}$  which is a root of a non-zero polynomial  $f(x) \in \mathbb{Q}[x]$ .
- An algebraic integer is a complex number  $\alpha \in \mathbb{C}$  which is a root of a monic polynomial with coefficients in  $\mathbb{Z}$
- $i \in \mathbb{Q}(i)$  is an algebraic integer while  $\frac{1}{2}$  is not an algebraic integer.
- The set of algebraic integers of a number field K is called the **ring of integers** of K denoted by  $\mathcal{O}_K$ .
- The set of algebraic integers of  $\mathbb Q$  is  $\mathbb Z$ , i.e.,  $\mathcal O_{\mathbb Q}=\mathbb Z.$
- The **minimal polynomial** f of an algebraic number  $\alpha$  is the (non-zero) monic polynomial in  $\mathbb{Q}[X]$  of smallest degree such that  $f(\alpha) = 0$ .

# Properties of $\mathcal{O}_K$

For a number field K of degree n, the ring of integers  $\mathcal{O}_K$  has the following properties:

- $\mathcal{O}_K$  is a ring.
- $\mathcal{O}_K$  is a free abelian group of finite rank n.
- $\mathcal{O}_K$  is a Dedekind domain, i.e,. every non-zero ideal  $\mathfrak{a} \subseteq \mathcal{O}_K$  can be written in a unique way (up to permutation of the factors) as a product of prime ideals.

### Ideals in Number Fields

#### Definition

Let K be a number and let  $\mathfrak{a} \subseteq \mathcal{O}_K$  be a non-zero ideal. The norm of  $\mathfrak{a}$ , denoted by  $N(\mathfrak{a})$ , is defined as the index  $|\mathcal{O}_K : \mathfrak{a}|$ .

- The norm  $N(\mathfrak{a})$  is finite for every non-zero ideal  $\mathfrak{a} \subseteq \mathcal{O}_K$ .
- Norm is a multiplicative function on ideals which means that

$$N(\mathfrak{a}_1\mathfrak{a}_2)=N(\mathfrak{a}_1)N(\mathfrak{a}_2)$$

for every non-zero ideal  $\mathfrak{a}_1,\mathfrak{a}_2\subseteq\mathcal{O}_K.$ 

# Dedekind's recipe for factorization of ideals into primes

For a given prime number p, we may consider the principal ideal  $p\mathcal{O}_K$ :

$$p\mathcal{O}_K = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_{\mathfrak{r}}^{e_r},$$

where  $\mathfrak{p}_i$ 's are distinct prime ideals.

## Dedekind's Recipe

- Suppose that  $\mathcal{O}_K = \mathbb{Z}[\theta]$ , where  $\theta \in \mathcal{O}_K$ .
- Let  $f(x) \in \mathbb{Z}[x]$  be the minimal polynomial of  $\theta$ .
- $f(x) \equiv f_1^{\alpha_1}(x)$ .  $f_2^{\alpha_2}(x)$ .....  $f_r^{\alpha_r}(x) \pmod{p}$ , where  $f_i(x) \in \mathbb{F}_p[x]$  is an irreducible polynomial.
- $\mathfrak{p}_i = (p, f_i(\theta)) \subseteq \mathcal{O}_K$  is a prime ideal with  $N(\mathfrak{p}_i) = p^{deg(f_i)}$ .
- Then, we have that

$$p\mathcal{O}_K = \mathfrak{p}_1^{\alpha_1} \mathfrak{p}_2^{\alpha_2} \cdots \mathfrak{p}_{\mathfrak{r}}^{\alpha_r},$$

where  $\mathfrak{p}_i$ 's are distinct prime ideals.

## Example

- Consider the ring of Gaussian integers  $\mathcal{O}_K = \mathbb{Z}[i]$ .
- $x^2 + 1$  is the minimal polynomial of *i*.
- $x^2 + 1 \equiv (x+2)(x+3) \pmod{5}$ .
- $\mathfrak{p}_1 = (5, i+2) = (2+i)$  and  $\mathfrak{p}_2 = (5, i+3) = (2-i)$  are prime ideals.
- $5\mathbb{Z}[i] = \mathfrak{p}_1\mathfrak{p}_2$ , where  $N(\mathfrak{p}_i) = 5$  for i = 1, 2

## Example

- $x^2 + 1 \equiv x^2 + 1 \pmod{7}$ .
- $\mathfrak{p}_1 = (7, i^2 + 1) = (7)$  is a prime ideal.
- $7\mathbb{Z}[i] = \mathfrak{p}_1$ , where  $N(\mathfrak{p}_1) = 7^2$

### Motivation

Let  $\mathbb{P} \subset \mathbb{N}$  be the set of prime numbers and

$$\pi(x) = |\{p \in \mathbb{P} \mid p \le x\}|$$

be the prime counting function. For example,  $\pi(10) = 4$ ,  $\pi(100) = 25$ ,  $\pi(1000) = 168$ .

**Euclid** offered a proof of the infinitude of primes for the first time in his work "*Elements*" c. 300 BC. So, we have that

$$\lim_{x\to\infty} \pi(x) = \infty.$$

In 1896, Jacques Hadamard and Charles Jean de la Vallée Poussin proved independently Prime Number Theorem which gives an asymptotic formula for the prime counting function  $\pi(x)$ :

$$\pi(x) \sim \frac{x}{\log x}$$
.



Now, one could think about

- $K = \mathbb{Q}$
- $\mathcal{O}_K = \mathbb{Z}$
- $p\mathcal{O}_K = p\mathbb{Z}$
- $N(p\mathbb{Z}) = |\mathbb{Z} : p\mathbb{Z}| = p$  for every prime number p
- $\pi(x) = |\{p\mathbb{Z} \subset \mathbb{Z} \mid N(p\mathbb{Z}) \leq x\}|.$

Thus, the prime counting function  $\pi(x)$  can be considered as a function which counts prime ideals whose norm is not greater than x.

#### Question

If K is a number field,  $\mathcal{O}_K$  its ring of integers and  $\mathbb{P}_K$  the set of prime ideals in  $\mathcal{O}_K$ , then what can we say asymptotically about the function defined as

$$\pi_K(x) = |\{\mathfrak{p} \in \mathbb{P}_K \mid N(\mathfrak{p}) \leq x\}|?$$

### Landau's Prime Ideal Theorem

#### **Theorem**

Let K be a number field,  $\mathcal{O}_K$  its ring of integers and  $\mathbb{P}_K$  the set of prime ideals in  $\mathcal{O}_K$  and

$$\pi_K(x) = |\{\mathfrak{p} \in \mathbb{P}_K \mid N(\mathfrak{p}) \le x\}|$$

be the prime ideal counting function. Then, there is an asymptotic formula for  $\pi_K(x)$ :

$$\pi_K(x) \sim x/\log(x)$$
.

# Dedekind Zeta Function and Analytic Properties

#### **Definition**

The **Dedekind zeta function** of a number field K is defined for complex numbers s with Re(s) > 1 by the Dirichlet series

$$\zeta_{\mathcal{K}}(s) = \sum_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}} \left( \frac{1}{N(\mathfrak{a})} \right)^{s}.$$

• If  $K = \mathbb{Q}$ , then

$$\zeta_{\mathcal{K}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

is the Riemann zeta function.

# Some Analytic Properties of Dedekind Zeta Function

- The Dedekind zeta function  $\zeta_K(s)$  is absolutely convergent when  $\Re(s) > 1$ .
- The Dedekind zeta function  $\zeta_K(s)$  has an Euler product which is a product over all the prime ideals  $\mathfrak p$  of  $\mathcal O_K$

$$\zeta_{\mathcal{K}}(s) = \prod_{\mathfrak{p} \subseteq \mathcal{O}_{\mathcal{K}}} \frac{1}{1 - N(\mathfrak{p})^{-s}}.$$

• Erich Hecke first proved that the Dedekind zeta function  $\zeta_K(s)$  has an analytic continuation to the complex plane as a meromorphic function, having a simple pole only at s=1.

# Prime Ideal Theorem for Gaussian Integers

$$p = 4k + 3$$

- Let p = 4k + 3 be a prime number and  $p \le \sqrt{x}$ .
- $\mathfrak{p} = (p) \subset \mathbb{Z}[i]$  is a prime ideal.
- $N(\mathfrak{p}) = p^2$ .

## p = 4k + 1

- Let p = 4k + 1 be a prime number and  $p \le x$ .
- $p = a^2 + b^2$  for some integer a, b.
- $p = (a + bi)(a bi) \in \mathbb{Z}[i]$ .
- $\mathfrak{p}_1 = (a + bi)$  and  $\mathfrak{p}_2 = (a bi)$  are prime ideals.
- $N(\mathfrak{p}_{1,2}) = p$ .

Therefore,

$$\pi_{\mathbb{Q}(i)}(x) \sim \frac{\pi(\sqrt{x})}{2} + \frac{2\pi(x)}{2} \sim \frac{x}{\log(x)}$$

### References



F. Oggier, Lecture Notes on Introduction to Algebraic Number Theory



F. Jarvis, Algebraic Number Theory, Springer, 2014



R. Murty, Problems in Analytic Number Theory, Springer, 2008

#### THANK $\sim YOU$

