Models or Code? Evaluating the Quality of LLM-Generated Specifications: A Case Study in Optimization at Kinaxis

NEGIN AYOUGHI, DAVID DEWAR, SHIVA NEJATI AND MEHRDAD SABETZADEH

B STATISTICAL TEST RESULTS FOR RQ1–RQ4 (COMPLEMENT TO SECTION 5.7 RESULTS)

Table 1. Statistical tests for **RQ1** comparing **AMPL-based variants** and **Python-based variants** based on (a) execution success rate (Success) and zero relative error rates (#Zero/#Exec) using the Z-test; and (b) based on relative error using the Mann-Whitney test. Blue cells indicate significant improvements of AMPL-based over Python-based variants. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based ib the Success and #Zero/#Exec metrics

	Variant			Pur	BLIC			Indu	stry	
LLM	Structuring	Refinement	Sı	ıccess	#Zeı	ro/#Exec	Sı	iccess	#Zeı	ro/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	Unstructured	One-off	-5.31	1.00	3.15	0.00	-2.34	0.99	0.83	0.20
Gemini 1.5-Flash	Offstructured	Refinement	3.02	0.00	-1.64	0.95	-1.10	0.86	0.04	0.48
Gennin 1.5-Flash	Structured	One-off	-0.32	0.63	-0.67	0.75	-2.61	1.00	0.78	0.22
	Structured	Refinement	6.64	0.00	2.12	0.02	0.00	0.50	0.00	0.50
	Unstructured	One-off	-8.56	1.00	2.05	0.02	0.00	0.50	-0.94	0.83
GPT-40	Clistructureu	Refinement	-3.72	1.00	2.30	0.01	0.27	0.40	0.47	0.32
Gr 1-40	Structured	One-off	-2.76	1.00	-3.60	1.00	-4.39	1.00	0.63	0.27
		Refinement	6.24	0.00	-2.74	1.00	-0.55	0.71	2.82	0.00
	Unstructured	One-off	-4.82	1.00	0.69	0.25	-1.39	0.92	-0.09	0.53
Gemini 2.5-Pro	Offstructured	Refinement	-1.06	0.86	-3.49	1.00	-0.47	0.68	-0.19	0.57
Gennin 2.5-F10	Structured	One-off	-2.62	1.00	0.32	0.38	-2.09	0.98	1.65	0.05
	Structureu	Refinement	2.20	0.01	2.68	0.00	0.00	0.50	-0.34	0.63
	Unstructured	One-off	-4.33	1.00	3.73	0.00	-1.13	0.87	-0.69	0.76
o4-mini	Offstructured	Refinement	0.26	0.40	1.15	0.13	0.31	0.38	-0.35	0.64
04-mm	Structured	One-off	3.71	0.00	-1.35	0.91	-0.55	0.71	0.51	0.30
	Structured	Refinement	7.77	0.00	-4.77	1.00	0.31	0.38	0.07	0.47

(b) Comparing the variants based on the relative error metric

	Variant		Public	Dataset	Industr	y Dataset
LLM	Structuring	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	Unstructured	One-off	0.23	0.47	0.53	0.50
Gemini 1.5-Flash	Olistituctureu	Refinement	1.00	0.58	0.93	0.57
Geniini 1.5-riasii	Structured	One-off	0.99	0.58	0.86	0.54
	Structured	Refinement	0.00	0.41(S)	0.56	0.51
	Unstructured	One-off	0.13	0.46	0.57	0.51
GPT-40	Olistiacturea	Refinement	0.04	0.45(N)	0.32	0.45
	Structured	One-off	1.00	0.60	0.50	0.48
	Structured	Refinement	0.98	0.56	0.01	0.32(M)
	Unstructured	One-off	0.23	0.48	0.84	0.56
Gemini 2.5-Pro	Clistituctureu	Refinement	1.00	0.57	0.51	0.50
Gennin 2.5-F10	Structured	One-off	0.11	0.47	1.00	0.50
	Structured	Refinement	0.00	0.42(S)	0.72	0.53
	Unstructured	One-off	0.01	0.45(N)	0.68	0.53
o4-mini	Clistituctureu	Refinement	0.17	0.48	0.48	0.50
04-111111	Structured	One-off	0.82	0.52	0.17	0.47
	Structureu	Refinement	1.00	0.59	0.49	0.50

2 • Negin Ayoughi, David Dewar, Shiva Nejati and Mehrdad Sabetzadeh

Table 2. Statistical tests for **RQ2** comparing **structured variants** and **unstructured variants** based on (a) execution success rate (Success) and zero relative error rates (#Zero/#Exec) using the Z-test; and (b) based on relative error using the Mann-Whitney test. Blue cells indicate significant improvements of structured over unstructured variants. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based on the Success and #Zero/#Exec metrics

	Variant			Pur	BLIC			Indu	STRY	
LLM	Language	Refinement	Sı	iccess	#Zer	o/#Exec	Sı	ıccess	#Zer	o/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	AMPL	One-off	2.63	0.00	-2.98	1.00	0.00	0.50	0.00	0.50
Gemini 1.5-Flash	AMIL	Refinement	0.96	0.17	6.06	0.00	1.69	0.04	-0.21	0.58
Geillill 1.5-Flasii	Python	One-off	-2.39	0.99	0.75	0.22	0.29	0.39	0.07	0.47
	1 ython	Refinement	-2.79	1.00	1.88	0.03	0.61	0.27	-0.18	0.57
	AMPL	One-off	2.44	0.00	-2.65	1.00	-1.39	0.92	0.21	0.41
GPT-40	7 LIVII L	Refinement	5.73	0.00	-3.58	1.00	0.00	0.50	1.91	0.03
Gr 1-40	Python	One-off	-3.53	1.00	3.02	0.00	3.16	0.00	-1.50	0.93
		Refinement	-4.25	1.00	1.47	0.07	0.81	0.21	-0.49	0.69
	AMPL	One-off	0.67	0.25	-3.65	1.00	-1.06	0.85	1.83	0.03
Gemini 2.5-Pro		Refinement	0.31	0.38	3.13	0.00	0.38	0.35	0.42	0.34
Gennin 2.5-110	Python	One-off	-1.62	0.95	-3.54	1.00	-0.33	0.63	0.23	0.41
	1 ython	Refinement	-2.92	1.00	-3.04	1.00	-0.09	0.53	0.58	0.28
	AMPL	One-off	1.92	0.03	-2.15	0.98	0.00	0.50	1.44	0.07
o4-mini	AWIFL	Refinement	2.15	0.02	-2.95	1.00	0.00	0.50	0.00	0.50
04-111111	Python	One-off	-6.07	1.00	2.89	0.00	-0.58	0.72	0.37	0.36
	1 yilloli	Refinement	-5.80	1.00	3.14	0.00	0.00	0.50	0.41	0.34

(b) Comparing the variants based on the relative error metric

	Variant		Public	Dataset	INDUSTR	y Dataset
LLM	Language	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	AMPL	One-off	1.00	0.54	1.00	0.50
Gemini 1.5-Flash	AMPL	Refinement	0.00	0.34(M)	0.04	0.41(S)
Gennin 1.5-1 lasii		One-off	0.49	0.50	0.34	0.47
	Python	Refinement	0.11	0.47	0.58	0.51
		One-off	0.95	0.56	1.00	0.50
GPT-40	AMPL	Refinement	1.00	0.57	0.07	0.39
		One-off	0.01	0.44(S)	0.79	0.57
	Python	Refinement	0.17	0.47	0.78	0.57
		One-off	1.00	0.58	0.18	0.46
Gemini 2.5-Pro	AMPL	Refinement	0.00	0.42(S)	0.55	0.51
Gennin 2.5-110		One-off	1.00	0.59	0.48	0.50
	Python	Refinement	1.00	0.58	0.32	0.47
		One-off	0.99	0.55	0.54	0.50
o4-mini	AMPL	Refinement	1.00	0.56	0.44	0.49
04-111111		One-off	0.07	0.46	0.85	0.53
	Python	Refinement	0.03	0.46(N)	0.52	0.50

Table 3. Statistical tests for RQ3 comparing refinement variants and one-of variants based on (a) execution success rate (Success %) and zero relative error rates (#Zero/#Exec) using the Z-test; and (b) based on relative error using the Mann-Whitney test. Blue cells indicate significant improvements of refinement over one-of variants. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based on the Success % and #Zero/#Exec metrics

	Variant			Pub	LIC			Indu	STRY	
LLM	Language	Structuring	Suc	cess %	#Zeı	ro/#Exec	Su	ccess %	#Zer	o/#Exec
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	AMPL	Unstructured	10.68	0.00	-4.91	1.00	1.55	0.06	-1.00	0.84
Gemini 1.5-Flash	AWIFL	Structured	9.10	0.00	3.49	0.00	3.16	0.00	-1.19	0.88
Gennin 1.5-Flash	Python	Unstructured	2.71	0.00	-0.31	0.62	0.29	0.39	-0.30	0.62
	Fymon	Structured	2.30	0.01	0.69	0.24	0.61	0.27	-0.56	0.71
	AMPL	Unstructured	7.13	0.00	-0.63	0.73	1.81	0.03	-0.11	0.58
GPT-40	7 IVII L	Structured	10.15	0.00	-0.77	0.78	3.13	0.00	1.13	0.13
GF 1-40	Python	Unstructured	2.23	0.01	-0.60	0.73	1.50	0.06	-1.58	0.94
		Structured	1.48	0.07	-2.13	0.98	-0.89	0.81	-0.72	0.76
	AMPL	Unstructured	5.13	0.00	-3.74	1.00	0.79	0.21	-0.69	0.75
Gemini 2.5-Pro	AMPL	Structured	4.80	0.00	3.04	0.00	2.19	0.01	-2.04	0.98
Gennin 2.5-110	Python	Unstructured	1.43	0.08	0.25	0.40	-0.15	0.56	-0.66	0.75
	Fymon	Structured	0.08	0.47	0.75	0.22	0.09	0.46	-0.30	0.62
	AMPL	Unstructured	5.45	0.00	-0.29	0.62	1.43	0.08	0.37	0.36
o4-mini	AWIFL	Structured	5.53	0.00	-0.88	0.81	1.43	0.08	-1.16	0.88
04-111111	Python	Unstructured	0.92	0.18	2.53	0.01	0.00	0.50	-0.41	0.66
	Fyunon	Structured	1.15	0.12	2.43	0.01	0.58	0.28	-0.37	0.64

(b) Comparing the variants based on the relative error metric

	Variant		Public	Dataset	Industry	7 Dataset
LLM	Language	Structuring	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	AMPL	Unstructured	1.00	0.64	0.86	0.58
Gemini 1.5-Flash	AMIL	Structured	0.00	0.41(S)	0.82	0.56
Gennin 1.5-11asii	Python	Unstructured	0.68	0.51	0.69	0.53
	1 y tiloli	Structured	0.26	0.48	0.63	0.53
GPT-40	AMPL	Unstructured	0.72	0.52	0.40	0.47
	AMIL	Structured	0.78	0.52	0.16	0.41
	Python	Unstructured	0.78	0.52	0.88	0.61
	Fymon	Structured	0.99	0.56	0.79	0.56
	AMPL	Unstructured	1.00	0.58	0.72	0.54
Gemini 2.5-Pro	AWIL	Structured	0.00	0.43(S)	0.98	0.38
Gennin 2.5-110	Python	Unstructured	0.38	0.49	0.77	0.54
	rython	Structured	0.21	0.48	0.62	0.52
	AMPL	Unstructured	0.65	0.51	0.38	0.48
o4-mini	AWIFL	Structured	0.78	0.52	0.88	0.56
04-111111	Python	Unstructured	0.07	0.47	0.64	0.52
	1 y 111011	Structured	0.01	0.45(N)	0.67	0.52

Table 4. Statistical tests for **RQ4** compare EXEOS variants when used with **reasoning-based** LLMs, i.e., Gemini 2.5-Pro and o4-mini, versus when used with **instruction-following** LLMs, i.e., Gemini 1.5-Flash and GPT-40, based on (a) execution success rate (Success) and zero relative error rates (#Zero/#Exec) using the Z-test, and (b) relative error using the Mann-Whitney test. Blue cells indicate significant improvements in results obtained with reasoning-based LLMs over those obtained with instruction-following LLMs. No significant improvements are observed in the opposite direction.

(a) Comparing the variants based on the Success and #Zero/#Exec metrics

	Variant			Pub		Industry				
Language	Structuring	Refinement	Suc	cess %	#Zero/#Exec		Success %		#Zero/#Exec	
			Z	p-value	Z	p-value	Z	p-value	Z	p-value
	Unstructured	One-off	12.78	0.00	1.34	0.09	2.30	0.01	-0.02	0.51
AMPL	Refinement	8.02	0.00	4.07	0.00	1.99	0.02	0.65	0.26	
AWIL	Structured	One-off	11.23	0.00	2.51	0.01	2.58	0.00	1.66	0.05
		Refinement	4.10	0.00	2.38	0.01	1.07	0.14	-0.27	0.60
	Unstructured	One-off	9.79	0.00	3.09	0.00	2.59	0.00	0.18	0.43
Python	Offstructured	Refinement	8.03	0.00	5.84	0.00	1.65	0.05	1.00	0.16
Fymon	Structured	One-off	8.04	0.00	-0.41	0.66	-0.42	0.66	1.92	0.03
		Refinement	11.35	0.00	-0.03	0.51	0.43	0.33	2.28	0.01

(b) Comparing the variants based on the relative error metric

	Variant		Public	Dataset	Industr	y Dataset
Language	Structuring	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	Unstructured	One-off	0.04	0.47(N)	0.40	0.49
AMPL	Offstructured	Refinement	0.00	0.42(S)	0.38	0.48
AMPL	Structured	One-off	0.01	0.45(N)	0.05	0.44
	Structureu	Refinement	0.01	0.47(N)	0.60	0.51
	Unstructured	One-off	0.00	0.45(N)	0.41	0.49
Drothon	Olistiacturea	Refinement	0.00	0.42(S)	0.19	0.46
Python	Structured	One-off	0.76	0.51	0.03	0.42(S)
	Structureu	Refinement	0.62	0.51	0.01	0.39(M)

Table 5. Results comparing the baseline with the best-performing AMPL and Python variants of EXEOS using the Public dataset. Blue cells indicate significant improvements of EXEOS over the baseline. No significant improvements are observed in the opposite direction.

(a) Executability and correctness results for the baseline on the Public dataset

Metric	Gemini 1.5 Flash	GPT-40	Gemini 2.5 Pro	o1-mini
#Exec (Succ.%)	171 (57%)	194 (65%)	268 (89%)	209 (70%)
Mean (RelErr)	1.45	4.05	1.30	1.55
Med (RelErr)	0	0	0	0
Std (RelErr)	7.01	40.70	5.95	4.02
#Zero (RelErr)	98	127	158	155

(b) Statistical tests comparing Ampl4 and Python4 and the baseline

		AMPL4 vs. Baseline					Python4 vs. Baseline					
LLM	Success		#Zero/#Exec		RelErr		Success		#Zero/#Exec		RelErr	
	p-val	Z	p-val	Z	p-val	\hat{A}_{12}	p-val	Z	p-val	Z	p-val	\hat{A}_{12}
Gemini 1.5 Flash	0.00	4.88	0.00	3.53	0.00	0.37(M)	0.97	-1.84	0.11	1.25	0.17	0.48
GPT-40	0.00	7.27	0.98	-2.11	0.96	0.55	0.14	1.10	0.29	0.55	0.24	0.48
Gemini 2.5 Pro	0.00	8.12	0.00	2.82	0.00	0.39(M)	0.00	6.19	0.37	0.32	0.14	0.47
o4-mini	0.00	9.49	0.99	-2.27	0.94	0.54	0.02	1.99	0.01	2.28	0.00	0.43(S)