STA 561: Homeworks 5 (Due April 1 at midnight)

Reminder: work together! Share ideas, brainstorm, explain/verify your answers but write up your own work. Your homework should be submitted as pdf file generated using either latex or an python notebook.

- 1. (Some simple calculations.) Consider a binary classification problem with features $\boldsymbol{X} \in \mathbb{R}^p$ and $Y \in \{-1,1\}$. Show that the misclassification rate of the Bayes error is $\mathbb{E}\min\{q(\boldsymbol{X}), 1-q(\boldsymbol{X})\}$, where $q(\boldsymbol{x}) \triangleq P(Y=1|\boldsymbol{X}=\boldsymbol{x})$.
 - 2. (An unusual example.) Suppose we have data of the form $\{(\boldsymbol{X}_i,Y_i)\}_{i=1}^n$ drawn i.i.d. such that $P(\boldsymbol{X}=1)=P(\boldsymbol{X}=-1)=1/4$ and $P(\boldsymbol{X}=0)=1/2$ while $Y=\text{sign}(|\boldsymbol{X}|-1/2)$. Suppose we estimate a linear classifier using least squares, i.e., $\widehat{\boldsymbol{\beta}}_n=\arg\min_{\boldsymbol{\beta}}\mathbb{P}_n(Y-\beta_0-\beta_1\boldsymbol{X})^2$.
 - Derive $\boldsymbol{\beta}^* = (\beta_0^*, \beta_1^*)^{-1}$ in this example.
 - Derive the limiting distribution of $\sqrt{n}(\hat{\beta} \beta^*)$.
 - Describe the behavior of the test error $P1_{YX^{\mathsf{T}}\hat{\beta}<0}$ as n grows.