Basic Graphs

Alexander Golovnev

Outline

Paths, Cycles and Complete Graphs

Trees

Bipartite Graphs

The Path Graph P_n , $n \ge 2$, consists of n vertices v_1, \ldots, v_n and n-1 edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}$

The Path Graph P_n , $n \ge 2$, consists of n vertices v_1, \ldots, v_n and n-1 edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}$

The Graph P₅

The Path Graph P_n , $n \ge 2$, consists of n vertices v_1, \ldots, v_n and n-1 edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}$

The Graph P2

The Path Graph P_n , $n \ge 2$, consists of n vertices v_1, \ldots, v_n and n-1 edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}$

The Graph P9

The Path Graph P_n , $n \ge 2$, consists of n vertices v_1, \ldots, v_n and n-1 edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}$

The Graph P9

The Cycle Graph C_n , $n \ge 3$, consists of n vertices v_1, \ldots, v_n and n edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$

The Cycle Graph C_n , $n \ge 3$, consists of n vertices v_1, \ldots, v_n and n edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$

The Graph C₅

The Cycle Graph C_n , $n \ge 3$, consists of n vertices v_1, \ldots, v_n and n edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$

The Graph C₅

The Cycle Graph C_n , $n \ge 3$, consists of n vertices v_1, \ldots, v_n and n edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$

The Graph C₃

The Cycle Graph C_n , $n \ge 3$, consists of n vertices v_1, \ldots, v_n and n edges $\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$

The Graph Co

The Complete Graph (Clique) K_n , $n \ge 2$, contains n vertices v_1, \ldots, v_n and all edges between them (n(n-1)/2 edges)

The Complete Graph (Clique) K_n , $n \ge 2$, contains n vertices v_1, \ldots, v_n and all edges between them (n(n-1)/2 edges)

The Graph K₆

The Complete Graph (Clique) K_n , $n \ge 2$, contains n vertices v_1, \ldots, v_n and all edges between them (n(n-1)/2 edges)

The Graph K₅

The Complete Graph (Clique) K_n , $n \ge 2$, contains n vertices v_1, \ldots, v_n and all edges between them (n(n-1)/2 edges)

The Graph K_3

The Complete Graph (Clique) K_n , $n \ge 2$, contains n vertices v_1, \ldots, v_n and all edges between them (n(n-1)/2 edges)

The Graph $K_3 = C_3$

The Complete Graph (Clique) K_n , $n \ge 2$, contains n vertices v_1, \ldots, v_n and all edges between them (n(n-1)/2 edges)

The Graph K₂

The Complete Graph (Clique) K_n , $n \ge 2$, contains n vertices v_1, \ldots, v_n and all edges between them (n(n-1)/2 edges)

The Graph $K_2 = P_2$

Outline

Paths, Cycles and Complete Graphs

Trees

Bipartite Graphs

Definition

• A tree is a connected graph without cycles

Definition

• A tree is a connected graph without cycles

 A tree is a connected graph on n vertices with n – 1 edges

Definition

• A tree is a connected graph without cycles

 A tree is a connected graph on n vertices with n – 1 edges

 A graph is a tree if and only if there is a unique simple path between any pair of its vertices

Trees: Examples

Trees: Examples

Trees: Examples

Connected; the number of edges is n-1

Remove any edge, keeping the graph connected

Outline

Paths, Cycles and Complete Graphs

Trees

 A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that

- A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that
 - Every edge of G connects a vertex in L to a vertex in R

- A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that
 - Every edge of G connects a vertex in L to a vertex in R
 - I.e., no edge connects two vertices from the same part

- A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that
 - Every edge of G connects a vertex in L to a vertex in R
 - I.e., no edge connects two vertices from the same part
- L and R are called the parts of G

Complete bipartite graph

Complete bipartite graph $K_{2,3}$

Complete bipartite graph $K_{4,3}$

Cycle Graphs

For even n, C_n is bipartite

Cycle Graphs

For odd n > 2, C_n is not bipartite

