Massive Data Algorithmics

Lecture 13: Streaming Model

Definition

- The input is a sequene $\langle a_1, a_2, \cdots, a_m \rangle$ recieving one by one (imagine the input is on a tape).
- a_i in an element of the universe [n] where $[n] = \{1, 2, \dots, n\}$
- ullet Goal is to process the stream using a small amont of space s
- Since m and n are to be thought of as huge, we want to make s much smaller than these
- Specificaly, we want s to be sublinear in both n and m
- The holy grail is to achive $s = O(\log n + \log m)$
- \bullet k-passes streaming: allowed to make k passes over the stream

Approximation Algorithms

- It is usually impossible to design exact algorithms in the streaming model
- Let $A(\sigma)$ denote the output of a randomized streaming algorithm A on input σ . Let Φ be the fucntion that A is supposed to compute.
 - ullet We say that the algorithm A $({oldsymbol{arepsilon}}, {oldsymbol{\delta}})$ -approximates Φ if we have:

$$Pr(|\frac{A(\sigma)}{\Phi(\sigma)} - 1| > \varepsilon) \le \delta$$

• We say that the algorithm A (ε, δ) -additively approximates Φ if we have:

$$Pr(|A(\sigma) - \Phi(\sigma)| > \varepsilon) \le \delta$$

Frequency Vector

- Let $f_j = |\{i : a_i = j\}|$, # occurrences of j in the stream
- $F = (f_1, f_2, \dots, f_n)$ is called a frequency vector
- ullet We sometimes would like to compute $\Phi(F)$
- You can imagine that the term a_i of the stream is of form (j,c) which means f_j must be set to f_j+c (in the standard streaming model c=1)
- $||F||_k = (f_1^k + \dots + f_n^k)^{1/k}$
 - $||F||_0$ is the number of distinct elements in the stream
 - ullet $||F||_1$ is the number of elements in the stream which is m

The Problem

- Majority Problem
 - Input: the stream $\sigma = \langle a_1, \cdots, a_m \rangle$ where $a_i \in [n]$
 - Output: if $\exists j: f_j > m/2$, output j. Otherwise output null.
- Frequent Problem
 - Input: the stream $\sigma = \langle a_1, \cdots, a_m \rangle$ where $a_i \in [n]$, and k
 - Output: output set $\{j: f_j > m/k\}$.

Note: we have to report an output upon arrival of a_i for any i

Misra-Gries Algorithm

ullet A deterministic algorithm to approximate f_j

```
Initialize : A \leftarrow (empty associative array);

Process j:

1 if j \in keys(A) then

2 |A[j] \leftarrow A[j] + 1;

3 else if |keys(A)| < k - 1 then

4 |A[j] \leftarrow 1;

5 else

6 | foreach \ell \in keys(A) do

7 | |A[\ell] \leftarrow A[\ell] - 1;

8 | if A[\ell] = 0 then remove \ell from A;
```

Output: On query a, if $a \in keys(A)$, then report $\hat{f}_a = A[a]$, else report $\hat{f}_a = 0$

Analysis

- space: $O(k(\log n + \log m))$
- approximation: $f_a \frac{m}{k} \le \hat{f}_a \le f_a$
 - Counter A[a] is incremented only when we process an occurrence of a. So $\hat{f}_a \leq f_a$.
 - Whenever A[a] is decremented (in lines 7 and 8, we pretned that A[j] is incremented from 0 to 1, and then immediately decremented back to 0), we also decrement k-1 other counter, corresponding to distinct items in the stream. Then each decrement of A[a] is witnessed by a collection of k distinct items (one of which is a itself) from the stream.
 - Since the stream consists of m items, there can be at most m/k such decrements. So, $f_a \frac{m}{k} \le \hat{f_a}$

Example

Assume $k = 3$ and $a = 3$		
σ	keys	A[3]
< 2 >	{(2,1)}	0
< 2, 1 >	$\{(2,1),(1,1)\}$	0
< 2, 1, 2, 2, 1 >	$\{(2,3),(1,2)\}$	0
$<2,1,2,\underline{2},\underline{1},\underline{3}>$	$\{(2,2),(1,1)\}$	0
$<2,\underline{1},\underline{2},\underline{2},\underline{1},\underline{3},\underline{3}>$	$\{(2,1)\}$	0
$<2,\underline{1},\underline{2},\underline{2},\underline{1},\underline{3},\underline{3},3>$	$\{(2,1),(3,1)\}$	1
$<2,\underline{1},\underline{2},\underline{2},\underline{1},\underline{3},\underline{3},3,3>$	$\{(2,1),(3,2)\}$	2
< 2, 1, 2, 2, 1, 3, 3, 3, 3, 1 >	$\{(3,1)\}$	1
< $2,$ $1,$ $2,$ $2,$ $1,$ $3,$ $3,$ $3,$ $3,$ $1,$ $1,$ $1,$ $1,$ $1,$	$\{(3,1),(1,4)\}$	1
< $2,$ $1,$ $2,$ $2,$ $1,$ $3,$ $3,$ $3,$ $3,$ $1,$ $1,$ $1,$ $1,$ $1,$ $2,$ $2>$	$\{(1,3)\}$	0

A 2-Passes Algorithm for The Frequent Problem

- Each j s.t. $f_j > m/k$ exists in keys(A)
- We can make a second pass over the stream, counting excactly the frequencies f_j for all $j \in \text{keys}(A)$, and then output the desired set of items

References

Data Stream Algorithms (Chapters 0 and 1)
 Lecture notes by A. Chakrabbarti and D. College