线性代数 A(II) 习题课讲义 06

Caiyou Yuan

May 8, 2022

1 Jordan 标准形

推导线性变换的 Jordan 标准形,可以通过空间分解的方法,也可以通过 λ -矩阵的方法。

1.1 根子空间直和分解

Theorem 1. 设 A 是域 F 上 n 维线性空间 V 上的线性变换, 如果 A 的最小多项式 $m(\lambda)$ 在 $F[\lambda]$ 中分解为一次因式的乘积:

$$m(\lambda) = (\lambda - \lambda_1)^{l_1} (\lambda - \lambda_2)^{l_2} \cdots (\lambda - \lambda_s)^{l_s}, \tag{1.1}$$

则 V 中存在一个基, A 在此基下的矩阵为 Jordan 形.

Proof. 由空间分解 $V=W_1\oplus W_2\oplus \cdots \oplus W_s$,其中 $W_j={\rm Ker}\,(A-\lambda I)^{l_j}$,考虑 $B_j=(A-\lambda_j I)|_{W_j}$ 是 W_j 上的 幂零变换,根据幂零变换的性质,以及 $A|_{W_j}=B_j+\lambda_j I|_{W_j}$,可得 Jordan 标准形. 详细证明见课本.

Remark. B_i 的幂零指数为? 最小多项式为?

Remark. (根子空间的定义,课本 P139) 如果 A 的特征多项式 $f(\lambda)$ 在 $F[\lambda]$ 中可以分解为

$$f(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}, \tag{1.2}$$

则

$$V = \operatorname{Ker} (A - \lambda_1 I)^{r_1} \oplus \operatorname{Ker} (A - \lambda_2 I)^{r_2} \oplus \cdots \oplus \operatorname{Ker} (A - \lambda_s I)^{r_s}.$$

其中 $\operatorname{Ker}(A-\lambda_jI)^{r_j}$ 称为 A 的根子空间. 证明 $W_j=\operatorname{Ker}(A-\lambda_jI)^{r_j}, \dim W_j=r_j$.

Remark. 说明条件(1.1)和(1.2)互相等价. 或者进一步证明, $m(\lambda)$ 和 $f(\lambda)$ 具有相同的不可约因式.

Remark. 当条件(1.1)不成立, 考虑矩阵的有理标准形.

1.2 λ-矩阵

λ-矩阵的等价,以及不变因子、行列式因子的定义,详见讲义 01.

Theorem 2. 数域 F 上的两个矩阵 A 和 B 相似的充要条件是 $\lambda I - A$ 和 $\lambda I - B$ 等价.

Proof. 证明略,详见《高等代数学习指导用书(下册)》P439-440.

上述定理将数字矩阵相似的问题,转化为了 λ -矩阵等价的问题. 而我们知道, λ 矩阵等价的充要条件是具有相同的不变因子/行列式因子.

Definition 1. 如果 $\lambda I - A$ 的不变因子可以分解为若干一次因式的幂次乘积,我们把这些一次因式的幂次称为 $\lambda I - A$ 或 A 的初等因子.

Remark. 说明 $\lambda I - A$ 的不变因子可以分解为一次因式的幂次乘积和条件(1.1)等价. 可以通过说明 $\lambda I - A$ 的最后一个不变因子 $d_n(\lambda) = m(\lambda)$. 也可以通过说明 $\lambda I - A$ 的最后一个行列式因子 $D_n(\lambda) = f(\lambda)$.

Remark. 说明在条件(1.1)下, λ 矩阵等价的充要条件是具有相同的初等因子.

例题

1. 求

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda & 1 & \\ & & & & \lambda & \end{pmatrix}_{n \times n}$$

的所有初等因子,不变因子和行列式因子.

2. (1) 设

$$A(\lambda) = \begin{pmatrix} f_1(\lambda)g_1(\lambda) & 0 \\ 0 & f_2(\lambda)g_2(\lambda) \end{pmatrix}, \quad B(\lambda) = \begin{pmatrix} f_2(\lambda)g_1(\lambda) & 0 \\ 0 & f_1(\lambda)g_2(\lambda) \end{pmatrix},$$

如果多项式 $f_1(\lambda), f_2(\lambda)$ 都与 $g_1(\lambda), g_2(\lambda)$ 互素,则 $A(\lambda)$ 和 $B(\lambda)$ 等价.

(2) 对于对角 λ -矩阵 $D(\lambda)$,假设对角元素可以分解为一次因式方幂的乘积,证明所有这些一次因式的方幂就是 $D(\lambda)$ 的全部初等因子.

(3) 求

$$J = \begin{pmatrix} J_{n_1}(\lambda_1) & & & \\ & J_{n_2}(\lambda_2) & & \\ & & \ddots & \\ & & & J_{n_s}(\lambda_s) \end{pmatrix}$$

的所有初等因子.

(4) 求矩阵

$$A = \begin{pmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$

在复数域上的 Jordan 标准型.

2 Jordan 标准形的应用

2.1 计算矩阵指数函数

矩阵指数函数

$$e^A = \sum_{i=0}^{\infty} \frac{A^i}{i!}$$

在求解常微分方程组时具有广泛应用.

(a) 齐次一阶线性常系数常微分方程组

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = Ax, \\ x(0) = x_0. \end{cases}$$

的唯一解为 $x(t) = e^{At}x_0$. 例如求解

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \begin{pmatrix} 2 & 1 & 4\\ 0 & 2 & 0\\ 0 & 3 & 1 \end{pmatrix} x$$

的通解.

(b) 齐次高阶线性常系数常微分方程

$$\begin{cases} x^{(n)} + a_{n-1}x^{(n-1)} + \dots + a_1x^{(1)} + a_0x = 0 \\ x(0) = x_0 \\ x^{(1)}(0) = x_0^{(1)} \\ \vdots \\ x^{(n-1)}(0) = x_0^{(n-1)} \end{cases}$$

其中 $x^{(i)}(t) = \frac{d^i x}{dt^i}(t)$. 可以转化为方程组情形. 例如求解 $x^{(3)} - 3x^{(2)} - 6x^{(1)} + 8x = 0$ 的通解.

2.2 计算矩阵平方根

(1) 设 a 是域 F 中的非零元, 求 $J_r(a)^2$ 的标准型.

(2) 任意的可逆复矩阵都有平方根.

(3)
$$A = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

是否有平方根,若有给出一个.

(4) 证明:不可逆的复矩阵有平方根,当且仅当其标准型中主对角元为 0 的 Jordan 块或是 $J_1(0)$,或是 $J_r(0)$, $J_r(0)$ 成对出现,或是 $J_r(0)$, $J_{r+1}(0)$ 成对出现.