CÁLCULO NUMÉRICO

Aula 22

Objetivo: Resolver Equações Diferenciais Ordinárias utilizando métodos numéricos

□ O movimento de um pêndulo oscilante, sob certas hipóteses simplificadoras é descrito pela equação diferencial de segunda ordem:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}sen\theta = 0$$

onde:

L é o comprimento do pêndulo; g é a constante gravitacional $(g \approx 9.8 \text{ m/s}^2);$

 θ é o ângulo que o pêndulo faz com a vertical.

□ O movimento de um pêndulo oscilante, sob certas hipóteses simplificadoras é descrito pela equação diferencial de segunda ordem:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}sen\theta = 0$$

Problema de Valor Inicial (PVI):

$$\theta(t_0) = \theta_0$$

$$\theta'(t_0) = \theta_0'$$

 \Box Para valores pequenos de θ , a aproximação $\theta = sen\theta$ pode ser utilizada para simplificar o problema, para um problema linear, que pode ser resolvido analiticamente:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0$$

□ Com condições iniciais:

$$\theta(t_0) = \theta_0,$$

$$\theta'(t_0) = \theta'_0$$

- \Box Para valores maiores de θ , a solução se torna **mais complexa** e fogem do contexto de um curso básico de EDO. Neste caso, é aconselhável a aplicação de um método numérico.
- □ Problema de Valor Inicial: O valor da função e suas derivadas são especificados no mesmo ponto;
- □ Problema de Valor de Contorno: O valor da função e suas derivadas são dados em pontos distintos.

Métodos de Passo Simples

□ São resolvidas **equações diferenciais ordinárias** do tipo:

$$\frac{dy}{dx} = f(x, y)$$

□ Formal geral dos métodos de passo simples:

$$y_{i+1} = y_i + \phi_i h$$

onde:

 $\Box y_{i+1}$ é o novo valor;

 \Box y_i é o antigo valor;

 ϕ_{ι} é a inclinação;

h é o tamanho do passo.

 \Box A estimativa da inclinação ϕ é usada para extrapolar de um valor antigo y_i para um valor novo y_{i+1} em uma distância h.

Aula 6 – Resolução de EDOs Cálculo Numérico

Método de Euler

Método de Euler

 \Box A abordagem mais simples de estimativa da inclinação é usar a equação diferencial para obter uma estimativa na forma da primeira derivada em x_i .

$$y_{i+1} = y_i + \phi_i h$$

$$\phi_i = f(x_i, y_i)$$

Exemplo 1

□ Use o método de Euler para integrar numericamente a equação:

$$\frac{dy}{dx} = -2x^3 + 12x^2 - 20x + 8,5$$

de x = 0 a x = 4 com um tamanho de passo de 0,5.

A condição inicial em x = 0 é y = 1.

Lembre-se de que a solução exata é dada por:

$$y = -0.5x^4 + 4x^3 - 10x^2 + 8.5x + 1$$

Resultados do Exemplo 1

Percent Relative Error

x	Y true	Y Euler	Global	
0.0	1.00000	1.00000		
0.5	3.21875	5.25000	-63.1	
1.0	3.00000	5.87500	-95.8	
1.5	2.21875	5.12500	131.0	
2.0	2.00000	4.50000	-125.0	
2.5	2.71875	4.75000	-74.7	
3.0	4.00000	5.87500	46.9	
3.5	4.71875	7.12500	-51.0	
4.0	3.00000	7.00000	-133.3	

$$Global = \varepsilon_t = \frac{y_{true} - y_{Euler}}{y_{true}}$$

□ Comparação da solução verdadeira com a solução numérica usando o método de Euler para o exemplo.

Observe

Apesar dos cálculos capturarem a tendência geral dos dados, o erro é considerável.

Erro para o Método de Euler

OBSERVAÇÃO

□ O erro pode ser **reduzido** diminuindo-se o tamanho do passo.

Exercício 1

□ Repita os cálculos do Exemplo 1, mas use um tamanho de passo de 0,25.

Aula 6 – Resolução de EDOs Cálculo Numérico

□ Neste método, determinamos duas derivadas para o intervalo, uma no ponto inicial e outra no ponto final.

□ A inclinação utilizada será a média das duas inclinações.

□ Preditor

Aula 6 – Resolução de EDOs Cálculo Numérico

□ A equação preditora será:

$$y_{i+1}^{(k)} = y_i + f(x_i, y_i)h$$

que é uma previsão intermediária.

□ Esta equação será usada para estimar a inclinação na extremidade final do intervalo:

$$y_{i+1}^{(k)} = f(x_{i+1}, y_{i+1}^{(k)})$$

Corretor

Combinando as duas inclinações, temos uma inclinação média no intervalo:

$$\overline{y}' = \frac{y'_{i} + y'_{i+1}^{(k)}}{2} = \frac{f(x_{i}, y_{i}) + f(x_{i+1}, y_{i+1}^{(k)})}{2}$$

□ E assim, teremos:

$$y_{i+1}^{(k+1)} = y_i + \overline{y}'h$$

Etapas do Método de Heun

□ Inclinação no início do intervalo:

$$y_i' = f(x_i, y_i)$$

□ Equação preditora:

$$y_{i+1}^{(k)} = y_i + y_i' h$$

□ Inclinação na extremidade final:

$$y'_{i+1}^{(k)} = f(x_{i+1}, y_{i+1}^{(k)})$$

□ Inclinação média:

$$\overline{y}' = \frac{y_i' + y_{i+1}'^{(k)}}{2}$$

□ Equação corretora:

$$y_{i+1}^{(k+1)} = y_i + \overline{y}'h$$

□ Por ser um método iterativo, temos que estabelecer um critério de parada:

$$\left| \varepsilon_{t} \right| = \left| \frac{y_{i+1}^{(k+1)} - y_{i+1}^{(k)}}{y_{i+1}^{(k+1)}} \right| \cdot 100\%$$

Exemplo 3

□ Use o método de Heun para integrar $y' = 4e^{0.8x} - 0.5y$ de x = 0 a x = 4 com tamanho de passo 1.

 \Box A condição inicial em x = 0 é y = 2.

Resultados Exemplo 3

	y true	Iterations of Heun's Method					
		1		15			
x		y Heun	lε _t l (%)	y Heun	lε _t l (%)		
0	2.0000000	2.0000000	0.00	2.0000000	0.00		
1	6.1946314	6.7010819	8.18	6.3608655	2.68		
2	14.8439219	16.3197819	9.94	15.3022367	3.09		
3	33.6771718	37.1992489	10.46	34.7432761	3.1 <i>7</i>		
4	75.3389626	83.3377674	10.62	77.7350962	3.18		

□ Comparação da solução verdadeira com soluções numéricas usando os métodos de Euler e de Heun para a integração de: $y' = -2x^3 + 12x^2 - 20x + 8,5$.

Aula 6 – Resolução de EDOs Cálculo Numérico

Método do Ponto Médio

Método do Ponto Médio

Método do Ponto Médio

Etapas do Método do Ponto Médio

 \Box y no ponto médio do intervalo:

$$y_{i+1/2} = y_i + f(x_i, y_i) \frac{h}{2}$$

□ Inclinação no ponto médio:

$$y'_{i+1/2} = f(x_{i+1/2}, y_{i+1/2})$$

 \Box Cálculo de y_{i+1} :

$$y_{i+1} = y_i + f(x_{i+1/2}, y_{i+1/2})h$$

Métodos de Runge-Kutta

Métodos de Runge-Kutta

□ A forma geral dos métodos de Runge-Kutta é:

$$y_{i+1} = y_i + \phi(x_i, y_i, h)h \tag{1}$$

- \Box Em que $\phi(x_i, y_i, h)$ é chamada **função incremento**, que representa a inclinação em um intervalo.
- \Box De forma geral, ϕ será:

$$\phi = a_1 k_1 + a_2 k_2 + \dots + a_n k_n$$

Métodos de Runge-Kutta

$$\phi = a_1 k_1 + a_2 k_2 + \dots + a_n k_n$$

Em que os a 's são constantes e os k's são:

$$k_1 = f\left(x_i, y_i\right)$$

$$k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$$

$$k_3 = f(x_i + p_2 h, y_i + q_{21} k_1 h + q_{22} k_2 h)$$

•

$$k_n = f(x_i + p_{n-1}h, y_i + q_{n-1,1}k_1h + q_{n-1,2}k_2h + \dots + q_{n-1,n-1}k_{n-1}h)$$

com p's e q's constantes.

Métodos de Runge-Kutta

- O que diferencia cada método de Runge-Kutta é o número de termos da função incremento.
- \Box Escolhido o valor de n, iguala-se a equação (1) a termos da expansão em Série de Taylor e acham-se os a's, p's e q's.

□ O método de Runge-Kutta de **primeira ordem** (n = 1) é o **método de Euler**.

□ O método de Runge-Kutta de **segunda ordem** (n = 2) será:

$$y_{i+1} = y_i + (a_1 k_1 + a_2 k_2)h$$

onde:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$$

 \square Para determinar as constantes a_1 , a_2 , p_1 e q_{11} temos que igualar:

$$y_{i+1} = y_i + (a_1 k_1 + a_2 k_2)h$$

 \Box À Série de Taylor de segundo grau para y_{i+1} em termos de y_i e $f(x_i, y_i)$:

$$y_{i+1} = y_i + f(x_i, y_i)h + \frac{f'(x_i, y_i)}{2!}h^2$$

 Comparando a forma geral do método de Runge-Kutta de segunda ordem com uma expansão em série de Taylor, vemos que:

$$a_1 + a_2 = 1$$

$$a_2 p_1 = \frac{1}{2}$$

$$a_2 q_{11} = \frac{1}{2}$$

Solução **NÃO** é única

Existe uma família de Métodos de Runge Kutta de segunda ordem

Comparando a forma geral do método de Runge-Kutta de segunda ordem com uma expansão em série de Taylor, vemos que:

□ **Método de Heun** com um único corretor $(a_2 = \frac{1}{2})$; que é o método de Heun sem iterações.

$$y_{i+1} = y_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

□ em que:

$$k_1 = f\left(x_i, y_i\right)$$

$$k_2 = f(x_i + h, y_i + k_1 h)$$

□ Método do Ponto Médio $(a_2 = 1)$.

$$y_{i+1} = y_i + k_2 h$$

□ em que:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)$$

- □ Método de Ralston $(a_2 = 2/3)$.
 - \square Este valor de a_2 fornece um limitante mínimo para o erro de truncamento.

$$y_{i+1} = y_i + \left(\frac{1}{3}k_1 + \frac{2}{3}k_2\right)h$$

□ em que:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{3}{4}h, y_i + \frac{3}{4}k_1h\right)$$

□ Use o método do ponto médio e o método de Ralston para integrar numericamente a equação:

$$f(x,y) = -2x^3 + 12x^2 - 20x + 8,5$$

de x = 0 a x = 4 usando um tamanho de passo de 0,5.

A condição inicial em x = 0 é y = 1.

 Comparação da solução verdadeira com soluções numéricas usando três métodos de RK de 2º ordem e o método de Euler.

Métodos de R-K de Quarta Ordem

- □ São os métodos de Runge-Kutta mais populares.
- □ Assim como os de segunda e terceira ordem, existe um número infinito de versões.

O método de RK de quarta ordem clássico é parecido com a abordagem de Heun, no fato que são desenvolvidas múltiplas estimativas da inclinação para se chegar a uma inclinação média melhorada no intervalo.

Métodos de R-K de Quarta Ordem

□ Inclinações Estimadas:

Aula 6 – Resolução de EDOs Cálculo Numérico

Método de R-K de 4^a Ordem Clássico

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

em que:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)$$

$$k_3 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h\right)$$

$$k_4 = f(x_i + h, y_i + k_3 h)$$

☐ Use o método de Runge-Kutta de quarta ordem clássico para integrar:

$$y'(x,y) = 4e^{0.8x} - 0.5y$$

de x = 0 a 0,5, utilizando um tamanho de passo h = 0,5 e uma condição inicial de y = 2 em x = 0.

Exercício 2

Aula 6 – Resolução de EDOs Cálculo Numérico

Sistemas de Equações

Sistemas de Equações

- □ É muito comum termos que resolver problemas envolvendo um sistema de equações diferenciais ordinárias ao invés de uma única equação.
- □ Para resolvê-los, qualquer um dos métodos apresentados aqui pode ser aplicado.
- Em cada caso, o procedimento para resolver o sistema de EDOs envolve simplesmente a aplicação da técnica de passo único em todas as equações para cada passo, antes de prosseguir para o próximo passo.

Resolva o seguinte conjunto de equações diferenciais usando o método de Euler, supondo que, em x = 0, $y_1 = 4$ e $y_2 = 6$. Integre até x = 2 com um tamanho de passo de 0,5.

$$\frac{dy_1}{dx} = -0.5y_1$$
 e $\frac{dy_2}{dx} = 4 - 0.3y_2 - 0.1y_1$

Método de Euler

 \Box A abordagem mais simples de estimativa da inclinação é usar a equação diferencial para obter uma estimativa na forma da primeira derivada em x_i .

$$y_{i+1} = y_i + \phi h$$

$$\phi = f(x_i, y_i)$$

 \square Resultados para todos os passos, até x = 2,0.

x	y 1	y 2
0 0.5 1.0 1.5 2.0	4 2.25 1.6875 1.265625	6 6.9 7.715 8.44525 9.094087

Sistemas de Equações

É preciso tomar cuidado na determinação das inclinações, quando aplicar os métodos de RK de ordem superior, ou seja, primeiro desenvolvemos inclinações para todas as variáveis no valor inicial. Essas inclinações (um conjunto de k_i 's) são, então, usadas para fazer previsões da variável independente no ponto médio do intervalo.

Resolva o sistema de equações do exemplo anterior usando o método de R-K de quarta ordem, supondo que, em x = 0, $y_1 = 4$ e $y_2 = 6$. Integre até x = 2 com um tamanho de passo de 0,5.

$$\frac{dy_1}{dx} = -0.5y_1$$
 e $\frac{dy_2}{dx} = 4 - 0.3y_2 - 0.1y_1$

Método de R-K de 4^a Ordem Clássico

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

em que:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)$$

$$k_3 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h\right)$$

$$k_4 = f(x_i + h, y_i + k_3 h)$$

 \square Resultado para todos os passos, até x = 2,0.

x	y 1	y ₂
0	4	6
0.5	3.115234	6.857670
1.0	2.426171	7.632106
1.5	1.889523	8.326886
2.0	1.471577	8.946865