Simon Speck Rectangle

CBC

- CBC mode 计算规则
 - 1) 包括密钥编排、加密、解密三部分;
 - 2) RAM: 明文、主密钥、轮子密钥、初始向量、解密辅助数据(保存临时密文),密 钥编排辅助数据;
 - 3) Flash(data)
 - a) 数据:不包括明文、主密钥、初始向量 vector,直接对 RAM 中的数据进行初始化;包括轮常量(比如 Simon 中的 Z、Rectangle 中密钥编排的常量);
 - 4) Flash(code) & Time
 - a) 密钥编排
 - ◆ 起始状态: 主密钥初始化完成, 轮常量初始化完成;
 - ◆ 结束状态: 主密钥中数据不变, 轮子密钥全部计算完成并保持在 RAM 中;
 - ◆ 包括内容: 主密钥复制到轮密钥前 16bytes (以 Simon64/128 为例)、轮函数计算,程序框架(寄存器初始化,循环控制,子程序调用与返回,辅助数据更新);
 - b) 加密
 - ◆ 起始状态: 明文、初始向量初始化完成,轮子密钥计算完成;
 - ◆ 结束状态: 所有明文被密文覆盖、RAM 中初始向量和轮子密钥保存不变;
 - ◆ 包括内容:加载明文、加载初始向量、异或向量、轮函数加密、写回密文 同时更新寄存器中向量、程序框架(寄存器初始化,不同 Block 间循环控制、同一 Block 内轮数循环控制,子程序调用与返回);
 - c) 解密
 - ◆ 起始状态:明文被密文覆盖,初始向量、轮子密钥没被修改;
 - ◆ 结束状态:密文被恢复成明文、RAM 中初始向量和轮子密钥保存不变;
 - ◆ 包括内容:加载密文、加载初始向量、密文复制(解密过程中密文会被覆盖,而在下一个 Block 解密时需要用到本次的密文,因此需要在密文被明文覆盖前先复制)、轮函数解密、异或向量、写回明文、使用复制的密文更新寄存器中向量、程序框架(寄存器初始化,不同 Block 间循环控制、同一 Block 内轮数循环控制,子程序调用与返回);

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

			Simon	Speck	Rectangle
RAM	总计		336 bytes	384 bytes	360 bytes
	向量		8	8	8
	明文/密文		128	128	128
	主密钥		16	16	16
	轮子密钥		176	108	208
	密钥编排辅助数据		_	116	_
	保存密文		8	8	_
Flash	总计		8 bytes	0	26 bytes
(data)	 轮常量		8	_	26(25 对齐)
	三部分总计		550 bytes	544 bytes	670 bytes
	Flash(code)/Time		64910 cycles	42572 cycles	63901 cycles
		总计	162/3450	148/1846	158/1462
		装载主密钥	_	40/118	32/32
		存储主密钥	8/320	8/208	32/416
	宓 畑	S盒	_	ı	28/350
	密钥 编排	Feistel	-	ı	36/450
	細排	轮常量异或	_	_	4/100
		密钥编排函数	112/2760	64/1040	_
		更新L	_	12/312	_
		程序框架	<u>40/370</u> ^[1]	<u>24/167</u> ^[2]	<u>26/114^[3]</u>
		加密总计	178/30459	176/18603	254/31019
		加载向量	16/16	16/16	16/256
Flash	加密	向量异或	16/128	16/128	16/128
(code)		加载明文	16/256	16/256	16/256
Time		S盒	_	ı	52/10400
		行移位	_	ı	40/8000
		轮密钥异或	-	_	32/9600
		最后一轮密钥加	-	-	32/384
		明文加密	74/29552	72/17712	_
		更新向量	8/64	8/64	-
		写回密文	16/256	16/256	16/256
		程序框架	32/187	32/187	34/1707
	解密	解密总计	210/30971	220/22123	258/31420
		加载向量	16/16	16/16	16/256
		加载密文	16/256	16/256	16/256
		复制密文	16/256	16/256	
		逆S盒	_		54/10800
		逆行移位	_	_	40/8000

批注 [a1]: 可以只使用 12 bytes 的RAM 保存 L,编排过程中用后续的 L覆盖最旧的,这样加密过程中对 L的更新操作用时 1924cycles,整个密钥编排时间为 3508 cycles,代码量为160 bytes。总消耗:RAM: 280bytes

Flash(code): 560bytes
Time: 44264cycles

批注 [a2]: 4 条指令 8 bytes = 4 * 2

208 cycles = 8 * 26

批注 [a3]: 56 条指令

112 bytes = 56 * 2 2760 cycles = (69 * 40) 69: 编排一轮需要 cycles

40: 密钥编排轮数

批注 [a4]: 32 条指令 64 bytes = 32 * 2

1040 cycles = 40 * 26

批注 [a5]: 6 条指令 12 bytes = 6 * 2 312 cycles = 12 * 26

批注 [a6]:

29552 cycles = [(38+2)*44+2*43+1] * 16

批注 [a7]: 实现很巧妙,向量更新包括在里面

批注 [a8]:

32 = (5 + 4 + 5 + 1 + 1) * 2 187 = 5*1 + 4*16 +

(4*16+1*15+2*1+2*15) + 3 + 4

批注 [a9]: Simon、Speck 每一轮之间的循环控制算在了加密的部分,不是算在程序框架中; Rectangle 将这部分时间算在了程序框架中。 虽然稍有不同,但是都包括了。

	轮密钥异或	_	_	32/9600
	最后一轮密钥异或	_		32/384
	解密	74/29552	86/20720	_
	向量异或	16/128	16/128	16/128
	更新向量	16/256	16/256	_
	写回明文	16/256	16/256	16/256
	程序框架	40/251	38/235	36/1708

[1] Simon 密钥编排程序框架

40 = ((4+1+2) + (1+2+1) + 1 + 1 + (1+1+1) + 1 + 1 + 1 + 1) * 2

370 = (4+3+2)*1 + (2+2+1)*40 + (5*2+35) + (35*2) + (1+3+1)*5 + (1*2+4+2*4) + 3 + 4

- ◆ 4条指令获取地址(4cycles), 1条指令加载 Z(3cycles), 2条指令初始化寄存器(2cycles): 各执行一次;
- 1条地址变化指令(2cycles),2条寄存器变化指令(2cycles),1条比较指令(1cycles):
 各执行 40次;
- 一条 breq 指令,跳转 5 次(5*2cycles),另外 35 次不跳转(35cycles);
- 一条 rjmp 指令执行 35 次(35*2cycles);
- 一条寄存器清零指令(1cycles), 1 条加载 Z 指令(3cycles), 一条比较指令(1cycles): 各执行 5 次;
- 一条 breq 指令跳转 1 次(1*2cycles), 另外 4 次不跳转(4cycles), 一条 rjmp 指令 执行 4 次(2*4cycles);
- 1条子程序调用指令(3cycles), 1条返回指令(4cycles);

[2] Speck 密钥编排程序框架

24 = ((2 + 2) + (2 + 1 + 1 + 1) + 1 + 1 + 1) * 2

167 = (2+2)*1 + 2 + (2+1+1)*26 + 25*2 + 3 + 4

- 2条指令获取地址(2cycles), 2条指令初始化寄存器(2cycles): 各执行一次;
- 2条获取 L 地址指令(2cycles);
- 1条 sbiw 指令(2cycles),1条轮数变化指令(1cycles),1条比较指令(1cycles): 各执行 26 次;
- 1条 brne 指令跳转 25 次(25*2cycles), 另外 1 次不跳转(1cycles);
- 1条子程序调用指令(3cycles), 1条返回指令(4cycles);

[3] Rectangle 密钥编排程序框架

26 = (2 + 2 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 1) *2

114 = 2*1 + (2+1+1+2)*1 + 1*25 + (24 + 1*2 + 2*24) + 3 + 4

- 2条指令获取主密钥 RAM 地址(2cycles): 各执行 1次;
- 2条指令获取轮子密钥 RAM 地址(2cycles),1条指令设置总轮数寄存器(1cycles),1条指令清零寄存器(1cycles),2条指令获取轮常量 Flash 地址(2cycles):各执行1次;
- 1条指令轮数减(1cycles): 执行 25 次;
- 1条指令判断是否是最后一轮:(执行 24 次不跳转, 24*1cycles; 1 次跳转, 2cycles); 不是最后一轮时跳转到轮加密开始 1条指令(2cycles,使用的是 rjmp 不是 jmp), 执行 24 次;
- 1条返回执行(4cycles), 1条子程序调用指令(3cycles);

批注 [a10]:

40 = (5 + 6 + 7 + 1 + 1) * 2 251 = 5*1 + 6*16 + (6*16+1*15+2*1+2*15) + 3 + 4

批注 [a11]: 和加密一样,每轮之间的循环控制时间计算在这部分

CTR: Low Flash 的实现(采用循环加密两个 Block)

● CTR mode 计算规则

- 1) 只包括加密,没有密钥编排、解密部分;
- 2) 没有 nonce, 直接对计数器加密后与明文异或;
- 3) RAM: 明文, 计数器;
- 4) Flash(data)
 - a) 数据:只包括轮子密钥,明文和计数器直接在 RAM 中进行初始化;
- 5) Flash(code) & Time:加密(具体包括内容见下表)的代码和时间;

Counter (CTR) mode encryption

			Simon	Speck	Rectangle
		总计	24 bytes	24 bytes	24 bytes
RAM		明文/密文	16	16	16
	计数器		8	8	8
Flash	总计 轮常量		176 bytes	108 bytes	208 bytes
(data)			176	108	208
	总计 Flash(code)/Time		188 bytes 4181 cycles	186 bytes 2563 bytes	274 bytes 4295 cycles
	加密	加载计数器	16/16	16/16	16/16
		复制计数器	8/4	8/4	8/4
		计数器加1	2/1	2/1	2/1
		加密计数器	74/4046	72/2428	_
Flash		S盒	_	ı	52/1300
(code)		行移位	-	1	40/1000
Time		轮密钥异或	_	1	32/1600
		最后一轮密钥加	_	ı	32/64
		加载明文	16/32	16/32	16/32
		明文异或计数器	16/16	16/16	16/16
		第二次加载计数器	8/4	8/4	8/4
		写回密文	16/32	16/32	16/32
		程序框架	<u>32/30^[4]</u>	32/30	<u>36/226^[5]</u>

批注 [a12]: 37 条指令,两个 block
74 bytes = 37 * 2
4048 cycles = [(42+2)*44 + (43*2+1*1)]
* 2
批注 [a13]: 36 条指令
72 bytes = 36 * 2
2428 cycles = [(41 + 2) *27 + (26*2+1)]
* 2

批注 [a14]: 和 Simon CTR 程序框架一

[4] Simon 加密程序框架

32 = ((2+2+1+1) + (2+1) + (1+1) + 1 + (1+1) + (1+1)) * 2

30 = (2+2+1+1) + (2+1)*2 + (1+1)*2 + (2+1) + 2+2+3+4

- 2条指令获取计数器地址(2cycles), 2条指令获取明文地址(2cycles), 1条指令初始化块数(1cycles), 1条指令初始化零寄存器(1cycles): 各执行一次;
- 2条指令获取轮子密钥地址(2cycles), 1条指令初始化轮数(1cycles): 各执行 2 次:
- 1条轮数变化指令(1cycles), 1条比较指令(1cycles): 各执行 2次;
- 1条 brne 指令跳转 1次(2cycles)、另一次不跳转(1cycles);
- 1条 adiw 指令执行 1次(2cycles), 1条 rjmp 执行 1次(2cycles);
- 1条子程序调用指令(3cycles), 1条返回指令(4cycles);

[5]Rectangle 加密程序框架

36 = ((1+2+2+1) + (1+2) + 1 + (1+1) + (1+1+1+1) + (1+1)) * 2

226 = (1+2+2+1) + (2+1)*2 + 1*50 + (48*1+2*2+48*2) + 1*2 + (2+1+2+2) + 3+4

- 1条指令清零寄存器(1cycles), 2条指令获取计数器 RAM 地址(2cycles), 2条指令获取明文 RAM 地址(2cycles), 1条指令获取分组个数(1cycles);
- 1条指令获取总轮数(1cycles), 2条指令获取轮子密钥地址(2cycles): 各执行两次:
- 1条指令轮数减(1cycles): 执行 50(25*2) 次;
- 1条指令判断是否是最后一轮:(执行 48 次不跳转,48*1cycles; 2 次跳转,2*2cycles); 1条指令在不是最后一轮时跳转到轮加密开始(2cycles,使用的是 rjmp 不是 jmp), 执行 48 次;
- 1条指令分组数减一(1cycles), 执行 2次;
- 1条指令判断是否为最后一个分组(1次不跳转,1cycle; 另1次跳转,2cycles),1 条指令在不是最后一个分组时跳到处理一个分组的开始(2cycles),1条指令在是 最后一个分组跳到最后终止(2cycles);
- 1条返回执行(4cycles), 1条子程序调用指令(3cycles);