

Class 11 Solutions Chapter 2 Relations Ex 2.1 Q9

Let (a,b) be an arbitrary element of $(A \times B) \wedge (B \times A)$. Then,

$$(a,b) \in (A \times B) \cap (B \times A)$$

$$\Leftrightarrow$$
 $(a,b) \in A \times B$ and $(a,b) \in B \times A$

$$\Leftrightarrow$$
 $(a \in A \text{ and } b \in B)$ and $(a \in B \text{ and } b \in A)$

$$\Leftrightarrow$$
 $(a \in A \text{ and } a \in B)$ and $(b \in A \text{ and } b \in B)$

 $\Leftrightarrow a \in A \cap B$ and $b \in A \cap B$

Hence, the sets $A \times B$ and $B \times A$ have an element in comon iff the sets A and B have an element in common.

Chapter 2 Relations Ex 2.1 Q10

Since (x,1), (y,2), (z,1) are elements of $A \times B$. Therefore, $x, y, z \in A$ and $1,2 \in B$

It is given that n(A) = 3 and n(B) = 2

$$\therefore x, y, z \in A \text{ and } n(A) = 3$$

$$\Rightarrow$$
 $A = \{x, y, z\}$

$$1, 2 \in B \text{ and } n(B) = 2$$

$$\Rightarrow$$
 $B = \{1, 2\}.$

Chapter 2 Relations Ex 2.1 Q11

We have,

$$A = \{1, 2, 3, 4\}$$

and,
$$R = \{(a,b) = a \in A, b \in A, a \text{ divides } b\}$$

Now,

a/b stands for 'a divides b'. For the elements of the given sets, we find that 1/1, 1/2, 1/3, 1/4, 2/2, 3/3 and 4/4

$$\therefore R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

Chapter 2 Relations Ex 2.1 Q12

We have,

$$A = \{-1, 1\}$$

$$A \times A = \{-1, 1\} \times \{-1, 1\}$$

$$=\{(-1,-1), (-1,1), (1,-1), (1,1)\}$$

$$A \times A \times A = \{-1,1\} \times \{(-1,-1), (-1,1), (1,-1), (1,1)\}$$

$$= \{(-1,-1,-1), (-1,-1,1), (-1,1,-1), (1,-1,1), (1,-1,-1), (1,-1,1), (1,1,-1), (1,1,1)\}$$

Chapter 2 Relations Ex 2.1 Q13

(i) False,

If
$$P = \{m, n\}$$
 and $Q = \{n, m\}$,

Then,

$$P \times Q = \{(m,n), (m,m), (n,n), (n,m)\}$$

(ii) False,

If A and B are non-empty sets, then AB is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

(iii) True