Exercises

Lance Remigio

April 25, 2025

1 Regular Curves

Problem 1. Show that it is not possible to parametrize the cissoid of Diocles

$$x(x^2 + y^2) = 2Ry^2$$

so that it is regular at the origin.

Proof. Let $x = r \cos \theta$ and $y = r \sin \theta$. Then the cissoid of Diocles can be parametrized via polar coordinates:

$$x(x^{2} + y^{2}) = 2Ry^{2}$$

$$\Rightarrow r \cos \theta \cdot r^{2} = 2R \cdot r^{2} \sin^{2} \theta$$

$$\Rightarrow r^{3} \cos \theta = 2R \cdot r^{2} \sin^{2} \theta$$

$$\Rightarrow r = 2R \sin \theta \tan \theta.$$

Now, for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, we obtain

$$x = 2R \sin \theta \tan \theta = 2R \sin^2 \theta$$
$$y = 2R \sin \theta \tan \theta \cdot \sin \theta$$
$$= 2R \frac{\sin^3 \theta}{\cos \theta}.$$

Note that if we let $t = \sin \theta$, we get

$$q(t) = 2R(x(t), y(y)) = 2R\left(t^2, \frac{t^3}{\sqrt{1-t^2}}\right).$$

Differentiating, we get

$$\begin{split} \dot{x}(t) &= 4Rt \\ \dot{y}(t) &= 2R\frac{3t^2 - 2t^4}{(1-t^3)^{3/2}}. \end{split}$$

and so we have

$$|\dot{q}(t)| = 2R\sqrt{4t^2 + \frac{3t^2 - 2t^4}{(1 - t^2)^{3/2}}}.$$

But note that if $t_0 = 0$, then $|\dot{q}(t)| = 0$ which tells us that the cissoid of Diocles is not regular at the origin.

2 Curvature

Problem 2. Let $q(t) = r(t)(\cos t, \sin t)$. Show that the speed is given by

$$\left(\frac{ds}{dt}\right)^2 = \left(\frac{dr}{dt}\right)^2 + r^2$$

1

and the curvature

$$\kappa = \frac{\left| 2(\frac{dr}{dt})^2 + r^2 - r\frac{d^2r}{dt^2} \right|}{((\frac{dr}{dt})^2 + r^2)^{3/2}}.$$

Proof. To find the curvature of q, it suffices to use the following formula:

$$\kappa = \frac{|\dot{x}\ddot{y} - \ddot{x}\dot{y}|}{|\dot{q}|^3}.$$

Differentiating q(t) once, we obtain

$$\dot{q}(t) = \dot{r}(\cos t, \sin t) + r(-\sin t, \cos t)$$
$$= (\dot{r}\cos t - r\sin t, \dot{r}\sin t + r\cos t)$$

and so the magnitude of $\dot{q}(t)$ is given by:

$$\begin{split} \dot{s}(t) &= |\dot{q}(t)| = \sqrt{(\dot{r}\cos t - r\sin t)^2 + (\dot{r}\sin t + r\cos t)^2} \\ &= \sqrt{\dot{r}^2\cos^2 t - 2r\dot{r}\sin t\cos t + 2r\dot{r}\sin t\cos t + r^2\sin^2 t + \dot{r}^2\sin^2 t + r^2\cos^2 t} \\ &= \sqrt{\dot{r}^2 + r^2}. \end{split}$$

But this implies that

$$|\dot{q}(t)|^2 = \dot{r}^2 + r^2.$$

Now, notice that

$$\dot{x}\ddot{y} = (\dot{r}\cos t - r\sin t)(2\dot{r}\cos t + (\ddot{r} - r)\sin t)$$

$$= 2\dot{r}^2 + \dot{r}\ddot{r}\sin t\cos t - \dot{r}r\sin t\cos t - 2\dot{r}r\sin t\cos t - r\ddot{r}\sin^2 t + r^2\sin^2 t$$

and

$$\ddot{x}\dot{y} = ((\ddot{r} - r)\cos t - 2\dot{r}\sin t)(\dot{r}\sin t + r\cos t)$$
$$= \ddot{r}\dot{r}\sin t\cos t - \dot{R}r\sin t\cos t - 2\dot{r}^2\sin^2 t + r\ddot{r}\cos^2 t - r^2\cos^2 t - 2\dot{r}r\sin t\cos t.$$

Subtracting $\dot{x}\ddot{y}$ and $\ddot{x}\dot{y}$, we get that

$$2\dot{r}^2 + r^2 - r\ddot{r}$$

and so the curvature of q is just

$$\begin{split} \kappa &= \frac{|\dot{x}\ddot{y} - \dot{x}\dot{y}|}{|\dot{q}|^3} \\ &= \frac{|2\dot{r}^2 + r^2 - r\ddot{r}|}{(\dot{r}^2 + r^2)^{3/2}} \end{split}$$

which is our desired result.

Problem 3. Compute the curvature of the logarithmic spiral

$$ae^{bt}(\cos t, \sin t).$$

Solution. Let $q(t) = ae^{bt}(\cos t, \sin t)$. To compute the curvature of the logarithmic spiral, we first need to differentiate q(t) twice. Indeed, we have

$$\dot{q}(t) = abe^{bt}(\cos t, \sin t) + ae^{bt}(-\sin t, \cos t)$$
$$= ae^{bt}(b\cos t - \sin t, b\sin t + \cos t)$$

and so

$$\|\dot{q}(t)\| = ae^{bt}\sqrt{(b\cos t - \sin t)^2 + (b\sin t + \cos t)^2}$$

= $ae^{bt}\sqrt{b^2 + 1}$.

Now, differentiating one more time, we get

$$\ddot{q}(t) = abe^{bt}(-b\sin t - \cos t, b\cos t - \sin t) + ae^{bt}(-n\sin t - \cos t, b\cos t - \sin t)$$
$$= ae^{bt}((b^2 - 1)\cos t - 2b\sin t, (b^2 - 1)\sin t + 2b\cos t).$$

Since curvature is given by the following formula

$$\kappa = \frac{|\dot{x}\ddot{y} - \ddot{x}\dot{y}|}{|\dot{q}|^3},$$

we can obtain the following

$$\dot{x}\ddot{y} = ae^{bt}(b(b^2 - 1)\sin t\cos t + 2b^2\cos^2 t - (b^2 - 1)\sin^2 t - 2b\sin t\cos t)$$
$$\dot{y}\ddot{x} = ae^{bt}(b(b^2 - 1)\sin t\cos t - 2b^2\sin^2 t + (b^2 - 1)\cos^2 t - 2b\sin t\cos t).$$

Hence, we have the following

$$\dot{x}\ddot{y} - \dot{y}\ddot{x} = a^2 e^{2bt} (b^2 + 1)$$

and so our curvature is just

$$\kappa = \frac{|\dot{x}\ddot{y} - \dot{y}\ddot{x}|}{|\dot{q}|^3} = \frac{e^{-bt}}{a\sqrt{b^2 + 1}}.$$

3 Regular Surfaces

Definition (Regular Surfaces). A subset $S \subseteq \mathbb{R}^3$ is a regular surface if, for each $p \in S$, there exists a neighborhood V in \mathbb{R}^3 and a map $x: U \to V \cap S$ of an open set $U \subseteq \mathbb{R}^2$ onto $V \cap S \subseteq \mathbb{R}^3$ such that

- (1) \mathbf{x} is differentiable; that is, the functions x(u,v), y(u,v), and z(u,v) have continuous partial derivatives of all orders in U.
- (2) **x** is a homeomorphism; that is, **x** contains an inverse $\mathbf{x}^{-1}: V \cap S \to U$ which is continuous.
- (3) For each $q \in U$, the differential $d\mathbf{x}_q : \mathbb{R}^2 \to \mathbb{R}^3$ is injective.

Problem 4. Show that the cylinder $C = \{(x, y, z) : x^2 + y^2 = 1\}$ is a regular surface.

Proof. Define the following parametrization for C by $x = \cos(u)$, $y = \sin(u)$, and z = v for every $(u, v) \in U$ where $U = (a, b) \times (c, d) \subseteq \mathbb{R}^2$ is an open set. We will show that this parametrization of C satisfies properties (1) through (3) of the definition above. Indeed, we have

- (1) Clearly, we see that $\cos(u)$, $\sin(u)$, and v are functions that have derivatives of all order. Hence, $\mathbf{x}(u,v) = (\cos(u),\sin(u),v)$ contains derivatives of all order on $C \cap U$.
- (2) We can see that the component functions contain their respective inverses on $C \cap U$; that is, $\cos^{-1}(x) = u$, $\sin^{-1}(y) = v$, and z = v. Thus, \mathbf{x}^{-1} exists and is continuous (since their respective components are also continuous).
- (3) Note that

$$\frac{\partial \mathbf{x}}{\partial u} = (\cos(u), \sin(u), v)$$

and

$$\frac{\partial \mathbf{x}}{\partial v} = (0, 0, 1).$$

Hence, we have

$$\mathbf{dX}_{(u,v)} = \begin{pmatrix} -\sin u & 0\\ \cos u & 0\\ 0 & 1 \end{pmatrix}.$$

Notice that the matrix above has rank 2 and thus $d\mathbf{x}_{(u,v)}$ must be an injective linear map. Since properties (1)-(3) are satisfied, it follows that C is a regular surface.

4 Gauss Map and Fundamental Properties

Problem 5. Show that the mean curvature H at $p \in S$ is given by

$$H = \frac{1}{\pi} \int_0^{\pi} k_n(\theta) \ d\theta \tag{*}$$

where $k_n(\theta)$ is the normal curvature at p along a direction making an angle θ with a fixed direction.

Proof. Let k_1 and k_2 be the maximum normal curvature and minimum normal curvature, respectively. To show (*), it suffices to show that

$$\frac{1}{\pi} \int_0^{\pi} k_n(\theta) \ d\theta = \frac{k_1 + k_2}{2}.$$

Choose $\{e_1, e_2\}$ as our basis for $T_p(S)$. Then for any $v \in T_p(S)$, we have

$$v = e_1 \cos \theta + e_2 \sin \theta$$

where θ is a fixed direction. Using the Second Fundamental Form, we have

$$k_n = k_1 \cos^2 \theta + k_2 \sin^2 \theta.$$

Hence, we can see that

$$\frac{1}{\pi} \int_0^{\pi} k_n(\theta) \ d\theta = \frac{1}{\pi} \int_0^{\pi} \left[k_1 \cos^2 \theta + k_2 \sin^2 \theta \right] d\theta
= \frac{1}{\pi} \int_0^{\pi} k_1 \cos^2 \theta \ d\theta + \frac{1}{\pi} \int_0^{\pi} k_2 \sin^2 \theta \ d\theta
= \frac{k_1}{2\pi} \int_0^{\pi} \left[1 + \cos 2\theta \right] d\theta + \frac{k_2}{2\pi} \int_0^{\pi} \left[1 - \cos 2\theta \right] d\theta
= \frac{k_1}{2\pi} \left[\pi + \frac{1}{2} \sin 4\pi \right] + \frac{k_2}{2\pi} \left[\pi - \frac{1}{2} \sin 4\pi \right]
= \frac{k_1 + k_2}{2}
= H.$$

Thus, we have

$$H = \frac{1}{\pi} \int_0^{\pi} k_n(\theta) \ d\theta.$$

Problem 6. Show that if $H \equiv 0$ on S and S has no planar points, then the Gauss map $N: S \to \S^2$ has the following property:

$$\langle dN_p(w_1), dN_p(w_2) \rangle = -K(p)\langle w_1, w_2 \rangle$$

for all $p \in S$ and all $w_1, w_2 \in T_p(S)$.

Proof. Note that since $H \equiv 0$, then $k_1 = -k_2$. Also, since S has no planar points $dN_p \neq 0$ for all $p \in S$. Choose an orthonormal eigenbasis $\{e_1, e_2\}$. Then for $w_1, w_2 \in T_p(S)$, we have

$$w_1 = e_1 \cos \theta + e_2 \sin \theta \tag{1}$$

and

$$w_2 = e_1 \cos \phi + e_2 \sin \phi. \tag{2}$$

where ϕ and θ are angles formed with e_1 . Hence, we have

$$dN_p(w_1) = e_1 k_1 \cos \theta + e_2 k_2 \sin \theta$$

$$dN_p(w_2) = e_1 k_1 \cos \phi + e_2 k_2 \sin \phi.$$

Then we have

$$\begin{split} -K(p)\langle w_1,w_2\rangle &= -k_1k_2\langle w_1,w_2\rangle \\ &= \langle -k_1w_1,k_2w_2\rangle \\ &= \langle -k_1[e_1\cos\theta + e_2\sin\theta],k_2[e_1\cos\phi + e_2\sin\phi]\rangle \\ &= \langle k_2e_1\cos\theta + k_2e_2\sin\theta,k_2e_1\cos\phi + k_2e_2\sin\phi\rangle \\ &= \langle dN_p(w_1),dN_p(w_2)\rangle. \end{split}$$

Hence, we conclude that

$$\langle dN_p(w_1), dN_p(w_2) \rangle = -K(p)\langle w_1, w_2 \rangle.$$

5