Binary Symmetric channel (BSC): In BSC, the Probability of bit-flipping is E, which is independent of all other bits and E< to That is, each bit is largered independently and with equal probability (i.i.d). Coiver a packet of size & sits, the probability of the entire packet being received correctly ander BSC with bit-flipping probability e is P (packet seceived asvectly) = (1 - E). The packet error probabils = 1- (1-E)s = 1- (1- fe) = SE (ite) = 1+ EB, when | E| < I!
first order approximation The Simplest Gode: Repetition! In repetition Code, each bit b is en word on an Copier of b and the result is delivered. If b is the message word, then b' (bb.....b) is the message word, then b' (bb.....b) arresponding Codeword: Here only 2 possible message wird and 2 Cornesponding Codewords N = 3 b = 0 000Maximum likeli, hood de lading: Given a of 0's and I's. If then are more than in of 0's and I's. If there are more than in 2

She's the delide as 1. If there are more than a zeros then delide as 0. When n is odd, each bedeaved will be delided tenambiguously. When n is even, and has equal no. of 0's and 1's, the delider makes arbitrary choice among o and 1. I had delider error = $\frac{1}{2}$ $\binom{n}{i} \in (1-\epsilon)^{n-i}$ $\binom{n}{i} \in (1-\epsilon)^{n-i}$ $\binom{n}{i} \in (1-\epsilon)^{n-i}$ $\binom{n}{i} \in (1-\epsilon)^{n-i}$

 $= \sum_{i=\frac{n}{2}+1}^{n} {\binom{n}{i}} e^{i(1-e)} + \frac{1}{2} {\binom{n}{n}} e^{i(1-e)}^{\frac{n}{2}}$ (*)

* denotes that the deloder has a fifty-fifty chance of guessing corrects when it receives a coderard with an equal no. of o's and I's.

For a BSC with bit-flipping probability < \(\frac{1}{2}\), the waximum likelihood delading strategy maps any received to word to the valid bodeword with smallest Hamming detance from the received word (tier may be broken arbitrarily).

Binary Symmetric Channel (BSC):

Answer the following questions about the BSC given in Figure 1; assume that $\rho = .2$ and p(x=0) = p(x=1) = 0.5.

Figure 1: Binary Symmetric Channel (BSC) with crossover probability ρ , input x and output y.

(a) What is the probability that y = 0 if x = 0 (that is, p(y = 0|x = 0))? Solution:

If x=0 and y=0, no error occurred. The probability of no error or bit flip per bit is $1-\rho$. Thus $p(y=0|x=0)=1-\rho=0.8$.

(b) Send 6 bits x_1 through x_6 across the BSC. What is the probability that only 1 of the 6 received bits y_1 through y_6 is in error? What is the probability that 2 of the 6 received bits are in error? What is the probability none of the received bits are in error?

Solution: The BSC has a binomial distribution, and thus the probability of having exactly k errors in n bits is given by $P(k) = \binom{n}{k} \rho^k (1-\rho)^{n-k}$. For this question, n = 6.

i. What is the probability that only 1 of the 6 received bits y_1 through y_6 is in error?

The probability $P(k=1) = {6 \choose 1} (0.2)^1 (0.8)^5 = 6 * 0.2 * (0.8)^5 = 0.3932.$

ii. What is the probability that 2 of the 6 received bits are in error?

The probability $P(k=2) = {6 \choose 2} (0.2)^2 (0.8)^4 = \frac{30}{2} * (0.2)^2 * (0.8)^4 = 0.2458.$

iii. What is the probability none of the received bits are in error?

Solution:

The probability $P(k=0) = \binom{6}{0}(0.8)^6 = (0.8)^6 = 0.2621$.

(c) Now send 6000 bits x_1 through x_{6000} across the BSC. What is the probability that all 6000 bits are received correctly, that is, that none of the bits are received in error?

Solution:

Now n = 6000. The probability $P(k = 0) = {6000 \choose 0} (0.8)^{6000} = (0.8)^{6000} \approx 0.0$. The probability is so small as to be insignificant. We can estimate it by noting that $0.8 = 8/10 = 2^3/10$ and that $10^3 = 1000 \approx 1024 = 2^{10}$. Thus $(8/10)^3 \approx 2^9/2^{10} = 1000 \approx 1000$ 2^{-1} . Therefore, $(8/10)^{6000} = (8/10)^{3*2000} \approx 2^{-2000} = 2^{-20*100}$, which is so small as to be considered 0.

(d) Suppose p(x=0)=0.4. What is p(x=1)? What is the probability that y=0if x = 0? What is the probability that y = 0, regardless of what x is (that is, p(y=0)?

Solution:

i. What is p(x=1)?

Solution:

X is a binary variable, such that $x \in 0, 1$. Therefore p(x = 0) + p(x = 1) = 1. Thus p(x = 1) = 1 - p(x = 0) = 1 - 0.4 = 0.6.

ii. What is the probability that y = 0 if x = 0?

Solution:

The conditional probability p(y=0|x=0) is the probability that no errors occur, given that x = 0. This is shown on the BSC graph as $1 - \rho$. Thus

$$p(y = 0|x = 0) = 1 - \rho = 1 - 0.2 = 0.8$$

iii. What is the probability that y = 0, regardless of what x is (that is, p(y=0))? Solution:

Using marginalization, we can find p(y = 0).

$$p(y=0) = \sum_{x \in \{0,1\}} p(y=0|x)p(x)$$

$$= p(y=0|x=0)p(x=0) + p(y=0|x=1)p(x=1)$$

$$= (1-\rho) * 0.4 + \rho * 0.6 = 0.8 * 0.4 + 0.2 * 0.6$$

$$p(y=0) = 0.44$$