1 Máquinas de Turing

Lemma 1. Este lemma no se evalua.

Lemma 2. El predicado $\lambda dd' [d \vdash d']$ es $(\Gamma \cup Q)$ -PR.

Proof. Note que $D_{\lambda dd'[d \vdash d']} = Des \times Des$. También nótese que los predicados

$$\lambda q \sigma p \gamma [(q, \sigma, L) \in \delta(p, \gamma)]$$
$$\lambda q \sigma p \gamma [(q, \sigma, R) \in \delta(p, \gamma)]$$
$$\lambda q \sigma p \gamma [(q, \sigma, K) \in \delta(p, \gamma)]$$

son $(\Gamma \cup Q)$ -PR, ya que los tres tienen dominio igual a $Q \times \Gamma \times Q \times \Gamma$ el cual es finito por Corollary 36.

Sean:

$$P_R: Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$$

$$P_R(d, d', \sigma, \alpha, \beta, p, q) = 1 \Leftrightarrow (d = \alpha p \beta) \wedge ((q, \sigma, R) \in \delta(p, [\beta B]_1)) \wedge (d' = \lfloor \alpha \sigma q^{\frown} \beta \rfloor)$$

$$P_{L}: Des \times Des \times \Gamma \times \Gamma^{*} \times \Gamma^{*} \times Q \times Q \to \omega$$

$$P_{L}(d, d', \sigma, \alpha, \beta, p, q) = 1 \Leftrightarrow (d = \alpha p \beta) \wedge ((q, \sigma, L) \in \delta(p, [\beta B]_{1})) \wedge (\alpha \neq \varepsilon) \wedge (d' = \left\lfloor \alpha \cap q \left[\alpha\right]_{|\alpha|} \sigma \cap \beta \right\rfloor)$$

$$P_K: Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$$

$$P_K(d, d', \sigma, \alpha, \beta, p, q) = 1 \Leftrightarrow (d = \alpha p \beta) \wedge ((q, \sigma, K) \in \delta(p, [\beta B]_1)) \wedge (d' = \lfloor \alpha q \sigma^{\smallfrown} \beta \rfloor)$$

Veamos, por ejemplo, que P_L es $(\Gamma \cup Q)$ -PR. Notar que:

$$P_L = P_1 \wedge P_2 \wedge P_3 \wedge P_4$$

donde P_1, P_2, P_3, P_4 son los siguientes predicados:

$$P_{1} = \lambda dd' \sigma \alpha \beta pq [d = \alpha p\beta]$$

$$= \lambda \alpha \beta [\alpha = \beta] \circ (p_{1}^{0,7}, \lambda \alpha_{1} \alpha_{2} \alpha_{3} [\alpha_{1} \alpha_{2} \alpha_{3}] \circ (p_{4}^{0,7}, p_{6}^{0,7}, p_{5}^{0,7}))$$

$$\begin{array}{ll} P_2 & = & \lambda dd' \sigma \alpha \beta pq \, [(q,\sigma,L) \in \delta \, (p,[\beta B]_1)] \\ & = & \lambda q \sigma p \gamma \, [(q,\sigma,L) \in \delta (p,\gamma)] \circ (p_7^{0,7},p_3^{0,7},p_6^{0,7},\lambda i\alpha \, [[\alpha]_i] \circ (C_1^{0,7},\lambda \alpha\beta \, [\alpha\beta] \circ (p_5^{0,7},C_B^{0,7}))) \end{array}$$

$$P_{3} = \lambda dd' \sigma \alpha \beta pq \left[\alpha \neq \varepsilon\right]$$
$$= \lambda \alpha \beta \left[\alpha \neq \beta\right] \circ \left(p_{4}^{0,7}, C_{\varepsilon}^{0,7}\right)$$

$$P_{4} = \lambda dd' \sigma \alpha \beta pq \left[d' = \left[\alpha ^{\smallfrown} q \left[\alpha \right]_{|\alpha|} \sigma ^{\smallfrown} \beta \right] \right]$$
$$= \lambda \alpha \beta \left[\alpha = \beta \right] \circ (p_{2}^{0,7}, \lambda \alpha \left[|\alpha| \right] \circ f)$$

donde:

$$f = \lambda \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \left[\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5\right] \circ \left(\lambda \alpha \left[\alpha^{\curvearrowleft}\right] \circ p_4^{0,7}, p_7^{0,7}, \lambda i \alpha \left[\left[\alpha\right]_i\right] \circ \left(\lambda \alpha \left[\left|\alpha\right|\right] \circ p_4^{0,7}, p_4^{0,7}, p_3^{0,7}, \lambda \alpha \left[^{\curvearrowright}\alpha\right] \circ p_5^{0,7}\right)$$

Luego, notar que P_1, P_2, P_3, P_4 son $(\Gamma \cup Q)$ -PR, por lo tanto P_L es $(\Gamma \cup Q)$ -PR. De manera similar, podemos ver que P_K y P_R son $(\Gamma \cup Q)$ -PR.

Tomemos el siguiente predicado:

$$P = (P_R \vee P_L \vee P_K)$$

Tenemos que P es $(\Gamma \cup Q)$ -PR. Nótese que $\lambda dd' [d \vdash d']$ es igual al predicado:

$$\lambda dd' [(\exists \sigma \in \Gamma)(\exists \alpha, \beta \in \Gamma^*)(\exists p, q \in Q) \ P(d, d', \sigma, \alpha, \beta, p, q)]$$

Luego, aplicando cinco veces el **Lemma 39** obtenemos que $\lambda dd' [d \vdash d']$ es $(\Gamma \cup Q)$ -PR. Veamos esto. Notar primero que como $\beta, \alpha, \sigma, p, q$ son subpalabras de d y d' respectivamente, tenemos que $|\beta|, |\alpha|, |\sigma|, |p|, |q| \le |d| + |d'|$.

$$L_{1} = \lambda x dd' \sigma \alpha \beta p \left[(\exists q \in Q)_{|q| \leq x} P(d, d', \sigma, \alpha, \beta, p, q) \right]$$

$$Q_{1} = \lambda dd' \sigma \alpha \beta p \left[(\exists q \in Q)_{|q| \leq |d| + |d'|} P(d, d', \sigma, \alpha, \beta, p, q) \right]$$

$$= L_{1} \circ (\lambda x y [x + y] \circ (\lambda \alpha [|\alpha|] \circ p_{1}^{0,6}, \lambda \alpha [|\alpha|] \circ p_{2}^{0,6}), p_{1}^{0,6}, p_{2}^{0,6}, p_{3}^{0,6}, p_{4}^{0,6}, p_{5}^{0,6}, p_{6}^{0,6})$$

Por **Lemma 39** tenemos que L_1 es $(\Gamma \cup Q)$ -PR y por ende Q_1 es $(\Gamma \cup Q)$ -PR. De la misma manera podemos que el predicado Q_2 es $(\Gamma \cup Q)$ -PR.

$$L_{2} = \lambda x d d' \sigma \alpha \beta \left[(\exists p \in Q)_{|p| \leq x} Q_{1}(d, d', \sigma, \alpha, \beta, p) \right]$$

$$Q_{2} = \lambda d d' \sigma \alpha \beta \left[(\exists p \in Q)_{|p| \leq |d| + |d'|} Q_{1}(d, d', \sigma, \alpha, \beta, p) \right]$$

$$= L_{2} \circ (\lambda x y [x + y] \circ (\lambda \alpha [|\alpha|] \circ p_{1}^{0,5}, \lambda \alpha [|\alpha|] \circ p_{2}^{0,5}), p_{1}^{0,5}, p_{2}^{0,5}, p_{3}^{0,5}, p_{4}^{0,5}, p_{5}^{0,5})$$

finalmente, tenemos que Q_3, Q_4, Q_5 son $(\Gamma \cup Q)$ -PR.

$$L_{3} = \lambda x d d' \sigma \alpha \left[(\exists \beta \in \Gamma^{*})_{|\beta| \leq x} Q_{2}(d, d', \sigma, \alpha, \beta) \right]$$

$$Q_{3} = \lambda d d' \sigma \alpha \left[(\exists \beta \in \Gamma^{*})_{|\beta| \leq |d| + |d'|} Q_{2}(d, d', \sigma, \alpha, \beta) \right]$$

$$= L_{3} \circ (\lambda x y [x + y] \circ (\lambda \alpha [|\alpha|] \circ p_{1}^{0,4}, \lambda \alpha [|\alpha|] \circ p_{2}^{0,4}), p_{1}^{0,4}, p_{2}^{0,4}, p_{3}^{0,4}, p_{4}^{0,4})$$

$$L_{4} = \lambda x d d' \sigma \left[(\exists \alpha \in \Gamma^{*})_{|\alpha| \leq x} Q_{3}(d, d', \sigma, \alpha) \right]$$

$$Q_{4} = \lambda d d' \sigma \left[(\exists \alpha \in \Gamma^{*})_{|\alpha| \leq |d| + |d'|} Q_{3}(d, d', \sigma, \alpha) \right]$$

$$= L_{4} \circ (\lambda x y [x + y] \circ (\lambda \alpha [|\alpha|] \circ p_{1}^{0,3}, \lambda \alpha [|\alpha|] \circ p_{2}^{0,3}), p_{1}^{0,3}, p_{2}^{0,3}, p_{3}^{0,3})$$

$$L_{5} = \lambda x d d' \left[(\exists \sigma \in \Gamma)_{|\sigma| \leq x} Q_{4}(d, d', \sigma) \right]$$

$$Q_{5} = \lambda d d' \left[(\exists \sigma \in \Gamma)_{|\sigma| \leq |d| + |d'|} Q_{4}(d, d', \sigma) \right]$$

$$= L_{5} \circ (\lambda x y [x + y] \circ (\lambda \alpha [|\alpha|] \circ p_{1}^{0,2}, \lambda \alpha [|\alpha|] \circ p_{2}^{0,2}), p_{1}^{0,2}, p_{2}^{0,2})$$

Notar que $Q_5 = \lambda dd' [d \vdash d']$. Por lo tanto, $\lambda dd' [d \vdash d']$ es $(\Gamma \cup Q)$ -PR.

Proposition 3. $\lambda ndd' \left[d \stackrel{n}{\vdash} d' \right] es (\Gamma \cup Q) - PR.$

Theorem 4. Sea $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ una máquina de Turing, entonces L(M) es Σ -recursivamente enumerable.

Proof. Sea P el siguiente predicado $(\Gamma \cup Q)$ -mixto:

$$P = \lambda n\alpha \left[(\exists d \in Des) \ \lfloor q_0 B\alpha \rfloor \stackrel{n}{\vdash} d \wedge St(d) \in F \right]$$

Nótese que $D_P = \omega \times \Gamma^*$. Veamos que P es $(\Gamma \cup Q)$ -PR. Para ello tomemos:

$$P = P_1 \wedge P_2$$

donde P_1 y P_2 :

$$P_1 = \lambda n\alpha \left[(\exists d \in Des) \lfloor q_0 B\alpha \rfloor \stackrel{n}{\vdash} d \right]$$

$$P_2 = \lambda n\alpha \left[St(d) \in F \right]$$

Sabemos que el conjunto F es finito, por **Corollary 30**, F es $(\Gamma \cup Q)$ -PR. Además χ_F es $(\Gamma \cup Q)$ -PR, por lo tanto el predicado P_2 es $(\Gamma \cup Q)$ -PR. Definimos:

$$Q = \lambda n\alpha d \left[\lfloor q_0 B\alpha \rfloor \stackrel{n}{\vdash} d \right]$$

$$= \lambda ndd' \left[d \stackrel{n}{\vdash} d \right] \circ (\lambda \alpha \left[\lfloor \alpha \rfloor \right] \circ (\lambda \alpha \beta \left[\alpha \beta \right] \circ (C_{q_0 B}^{1,2}, p_2^{1,2})), p_3^{1,2})$$

Por Lemma 39 tenemos que:

$$L = \lambda x n \alpha \left[(\exists d \in Des)_{|d| \le x} Q(n, \alpha, d) \right]$$

es $(\Gamma \cup Q)$ -PR, es decir, solo nos falta acotar el cuantificador existencial, para poder aplicar el **Lemma 39**. Dado que cuando $d_1, \ldots, d_{n+1} \in Des$ son tales que $d_1 \vdash d_2 \vdash \ldots \vdash d_{n+1}$ tenemos que:

$$|d_i| \le |d_1| + n$$
, para $i = 1, \dots, n$

luego, una posible cota para dicho cuantificador es:

$$|d| \le |\lfloor q_0 B \alpha \rfloor| + n$$

Por lo tanto, tenemos que el predicado P_1 es $(\Gamma \cup Q)$ -PR. En definitiva P es $(\Gamma \cup Q)$ -PR. Sea:

$$P' = P \mid_{\omega \times \Sigma^*}$$

nótese que $P'(n,\alpha)=1 \Leftrightarrow \alpha \in L(M)$ atestiguado por una computación de longitud n.

Por Corollary 72, P' es $(\Gamma \cup Q)$ -PR, y además es Σ -mixto. Utilizando el **Theorem 51** tenemos que P' es Σ -PR.

Dado que $L(M) = D_{M(P')}$, el **Theorem 71** nos dice que L(M) es Σ -recursivamente enumerable.

Theorem 5. Supongamos $f: S \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -Turing computable, entonces f es Σ -recursiva.

Proof. Supongamos $O = \Sigma^*$. Sean:

- $M = (Q, \Sigma, \Gamma, \delta, q_0, B, I, F)$ una máquina de Turing determinística con unit la cual compute a f.
- < un orden total estricto sobre $\Gamma \cup Q$.
- $P: \mathbb{N} \times \omega^n \times \Sigma^{*m} \to \omega$ dado por:

$$P = P_1 \wedge P_2$$

donde:

$$P_1 = \lambda x \vec{x} \vec{\alpha} \left[(\exists q \in Q) \ \lfloor q_0 B \mid^{x_1} B \dots B \mid^{x_n} B \alpha_1 B \dots B \alpha_m \rfloor \stackrel{(x)_1}{\vdash} \lfloor q B *^{<} ((x)_2) \rfloor \right]$$

$$P_2 = \lambda x \vec{x} \vec{\alpha} \left[(\forall d \in Des)_{|d| \leq |*^{<} ((x)_2)| + 2} \ \lfloor q B *^{<} ((x)_2) \rfloor \not\vdash d \right]$$

Si tomamos Q_1 y Q_2 como:

$$Q_{1} = \lambda x \vec{x} \vec{\alpha} q \left[\left[q_{0} B \right]^{x_{1}} B \dots B \right]^{x_{n}} B \alpha_{1} B \dots B \alpha_{m} \right] \stackrel{(x)_{1}}{\vdash} \left[q B *^{<} ((x)_{2}) \right]$$

$$Q_{2} = \lambda x \vec{x} \vec{\alpha} d \left[\left| q B *^{<} ((x)_{2}) \right| \not\vdash d \right]$$

Tenemos que:

$$P_1 = \lambda x \vec{x} \vec{\alpha} \left[(\exists q \in Q) \ Q_1(x, \vec{x}, \vec{\alpha}, q) \right]$$

$$P_2 = \lambda x \vec{x} \vec{\alpha} \left[(\forall d \in Des)_{|d| \le |*^{<}((x)_2)| + 2} \ Q_2(x, \vec{x}, \vec{\alpha}, d) \right]$$

Es fácil ver que Q_1 y Q_2 son $(\Gamma \cup Q)$ -PR. Luego, aplicando el **Lemma 39** tenemos que P_1 y P_2 son $(\Gamma \cup Q)$ -PR y por ende P es $(\Gamma \cup Q)$ -PR. Dado que P es Σ -mixto, el **Theorem 51** nos dice que es Σ -PR. Nótese que:

$$f = \lambda \vec{x} \vec{\alpha} \left[\left(\min_{x} \ P(x, \vec{x}, \vec{\alpha}) \right)_{2} \right]$$

lo cual nos dice que f es Σ -recursiva.

Lemma 6. Sea $\mathcal{P} \in \operatorname{Pro}^{\Sigma} y$ sea k tal que las variables que ocurren en \mathcal{P} están todas en la lista $\operatorname{N1}, \ldots, \operatorname{N}\bar{k}, \operatorname{P1}, \ldots, \operatorname{P}\bar{k}$. Para cada $a \in \Sigma \cup \{i\}$, sean:

- ã un nuevo símbolo
- $\bullet \ \Gamma = \Sigma \cup \{B, \mathbf{1}\} \cup \{\tilde{a}: a \in \Sigma \cup \{\mathbf{1}\}\}$

entonces existe una máquina de Turing determinística con unit $M=(Q,\Gamma,\Sigma,\delta,q_0,B,I,\{q_f\})$ la cual satisface:

- 1. $\delta(q_f, \sigma) = \emptyset$, para cada $\sigma \in \Gamma$.
- 2. Cualesquiera sean $x_1, \ldots, x_k \in \omega$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$, el programa \mathcal{P} se detiene partiendo del estado:

$$((x_1,\ldots,x_k,0,\ldots),(\alpha_1,\ldots,\alpha_k,\varepsilon,\ldots))$$

si y sólo si M se detiene partiendo de la descripción instantánea:

$$|q_0B|^{x_1}B\dots B|^{x_k}B\alpha_1B\dots B\alpha_kB|$$

3. Si $x_1, \ldots, x_k \in \omega$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$ son tales que \mathcal{P} se detiene partiendo del estado:

$$((x_1,\ldots,x_k,0,\ldots),(\alpha_1,\ldots,\alpha_k,\varepsilon,\ldots))$$

y llega al estado

$$((y_1,\ldots,y_k,0,\ldots),(\beta_1,\ldots,\beta_k,\varepsilon,\ldots))$$

entonces

$$\lfloor q_0 B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k B \rfloor \stackrel{*}{\vdash} \lfloor q_f B \mid^{y_1} B \dots B \mid^{y_k} B \beta_1 B \dots B \beta_k B \rfloor$$

Proof. Dado un estado $((x_1, \ldots, x_k, 0, \ldots), (\alpha_1, \ldots, \alpha_k, \varepsilon, \ldots))$, dicho estado se representará en la cinta de la siguiente manera:

$$B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k B B B B \dots$$

A continuación se describirán una serie de máquinas, las cuales simularán, vía la representación anterior, las distintas clases de instrucciones que pueden ocurrir en \mathcal{P} . Todas las máquinas definidas tendrán:

- + como unit
- B como blanco
- Σ como su alfabeto terminal
- su alfabeto mayor será $\Gamma = \Sigma \cup \{B, I\} \cup \{\tilde{a} : a \in \Sigma \cup \{I\}\}\$
- uno o dos estados finales con la propiedad de que si q es un estado final, entonces $\delta(q, \sigma) = \emptyset$, para cada $\sigma \in \Gamma$.

Esta propiedad es importante ya que permitirá concatenar pares de dichas máquinas identificando algún estado final de la primera con el inicial de la segunda.

Para $1 \le i \le k$, sea M_i^+ una máquina tal que:

Para $1 \leq i \leq k,$ sea $M_i^{\dot{-}}$ una máquina tal que:

Para $1 \le i \le k$ y $a \in \Sigma$, sea M_i^a una máquina tal que:

Para $1 \leq i \leq k$, sea M_i° una máquina tal que:

Para j = 1, ..., k, y $a \in \Sigma$, sea IF_j^a una máquina con dos estados finales q_{si} y q_{no} tal que: Si α_j comienza con a, entonces:

Caso contrario:

$$B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k \quad \stackrel{*}{\vdash} \quad B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$q_{no}$$

Análogamente, para $j=1,\ldots,k,$ sea IF_j una máquina tal que: Si $x_j \neq 0$, entonces:

$$B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k \stackrel{*}{\vdash} B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$q_{0} \qquad \qquad q_{si}$$

Si $x_j = 0$, entonces:

Para $1 \leq i, j \leq k$, sea $M^*_{i \leftarrow j}$ una máquina tal que:

Para $1 \le i, j \le k$, sea $M_{i \leftarrow j}^{\#}$ una máquina tal que:

Para $1 \leq i \leq k$, sea $M_{i \leftarrow 0}$ una máquina tal que:

Para $1 \leq i \leq k$, sea $M_{i \leftarrow \varepsilon}$ una máquina tal que:

Sean:

$$M_{\mathrm{SKIP}} = (\{q_0, q_f\}, \Gamma, \Sigma, \delta, q_0, B, \mathsf{I}, \{q_f\})$$

con $\delta(q_0, B) = \{(q_f, B, K)\}$ y $\delta = \emptyset$ en cualquier otro caso.

$$M_{\mathrm{GOTO}} = (\{q_0, q_{si}, q_{no}\}, \Gamma, \Sigma, \delta, q_0, B, \mathbf{1}, \{q_{si}, q_{no}\})$$

con $\delta(q_0, B) = \{(q_{si}, B, K)\}$ y $\delta = \emptyset$ en cualquier otro caso.

Para poder realizar concretamente las máquinas recién descriptas deberemos diseñar antes algunas máquinas auxiliares. Para cada $j \ge 1$, sean:

• D_j la siguiente máquina:

Notar que:

$$\alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma \stackrel{*}{\vdash} \alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma$$

$$\uparrow \qquad \qquad \uparrow$$

$$q_0 \qquad \qquad q_f$$

siempre que $\alpha, \gamma \in \Gamma^*, \beta_1, \dots, \beta_j \in (\Gamma - \{B\})^*$.

• I_j una máquina tal que:

$$\alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma \stackrel{*}{\vdash} \alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma$$

$$\uparrow \qquad \uparrow$$

$$q_0 \qquad q_f$$

siempre que $\alpha, \gamma \in \Gamma^*, \beta_1, \dots, \beta_j \in (\Gamma - \{B\})^*$.

 \bullet TD_{j} una máquina con un solo estado final q_{f} y tal que:

$$\begin{array}{cccc} \alpha B \gamma & \stackrel{*}{\vdash} & \alpha B B \gamma \\ \uparrow & & \uparrow \\ q_0 & & q_f \end{array}$$

cada vez que $\alpha, \gamma \in \Gamma^*$ y γ tiene exactamente j ocurrencias de B, es decir, la máquina TD_j corre un espacio a la derecha todo el bloque γ y agrega un blanco en el espacio que se genera a la izquierda de dicho bloque. Por ejemplo, para el caso de $\Sigma = \{\&\}$ podemos tomar TD_3 igual a la siguiente máquina:

• TI_j una máquina tal que:

$$\begin{array}{cccc}
\alpha B \sigma \gamma & \stackrel{*}{\vdash} & \alpha B \gamma \\
\uparrow & & \uparrow \\
q_0 & & q_f
\end{array}$$

cada vez que $\alpha \in \Gamma^*$, $\sigma \in \Gamma$ y γ tiene exactamente j ocurrencias de B, es decir la máquina TI_j corre un espacio a la izquierda todo el bloque γ (por lo cual en el lugar de σ queda el primer símbolo de γ).

Teniendo las máquinas auxiliares antes definidas podemos combinarlas para obtener las máquinas simuladoras de instrucciones. Por ejemplo M_i^a puede ser la siguiente máquina:

En la siguiente máquina, tenemos una posible forma de diseñar la máquina IF_i^a .

En la siguiente máquina tenemos una posible forma de diseñar la máquina $M^*_{i \leftarrow j}$ para el caso $\Sigma = \{a,b\}$ y i < j:

Supongamos ahora que $\mathcal{P} = I_1, \ldots, I_n$. Para cada $i = 1, \ldots, n$, definiremos una máquina M_i que simulará la instrucción I_i . Luego uniremos adecuadamente dichas máquinas para formar la máquina que simulará a \mathcal{P} .

- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{j} + 1$ tomaremos $M_i = M_j^+$
- Si $Bas(I_i) = N_j^{-} \leftarrow N_j^{-} 1$ tomaremos $M_i = M_j^{-}$
- Si $Bas(I_i) = N\bar{j} \leftarrow 0$ tomaremos $M_i = M_{j \leftarrow 0}$
- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{m}$ tomaremos $M_i = M_{j \leftarrow m}^{\#}$
- Si $Bas(I_i) = \text{IF N}\bar{j} \neq 0 \text{ GOTO L}\bar{m} \text{ tomaremos } M_i = IF_j$
- Si $Bas(I_i) = P\bar{j} \leftarrow P\bar{j}.a$ tomaremos $M_i = M_j^a$
- Si $Bas(I_i) = P\bar{j} \leftarrow {}^{\smallfrown} P\bar{j}$ tomaremos $M_i = M_i^{\smallfrown}$
- Si $Bas(I_i) = P\bar{j} \leftarrow \varepsilon$ tomaremos $M_i = M_{j \leftarrow \varepsilon}$
- Si $Bas(I_i) = P\bar{j} \leftarrow P\bar{m}$ tomaremos $M_i = M^*_{j \leftarrow m}$
- Si $Bas(I_i) = \text{IF P}\bar{j}$ BEGINS a GOTO $L\bar{m}$ tomaremos $M_i = IF_i^a$
- Si $Bas(I_i) = SKIP$ tomaremos $M_i = M_{SKIP}$.
- Si $Bas(I_i) = \text{GOTO L}\bar{m} \text{ tomaremos } M_i = M_{\text{GOTO}}$

Dado que la máquina M_i puede tener uno o dos estados finales, se representará como se muestra en la siguiente figura:

entendiendo que en el caso en que M_i tiene un solo estado final, este esta representado por el circulo de abajo a la izquierda y en el caso en que M_i tiene dos estados finales, el estado final corresponde al estado q_{si} y el otro al estado q_{no} .

Para armar la máquina que simulará a \mathcal{P} , primero unimos las máquinas M_1, \ldots, M_n como lo muestra la siguiente figura:

Luego para cada i tal que $Bas(I_i)$ es de la forma α GOTO L \bar{m} , ligamos con una flecha de la forma:

$$\xrightarrow{\quad B,B,K\quad }$$

el estado final q_{si} de la M_i con el estado inicial de la M_h , donde h es tal que I_h es la primer instrucción que tiene label $L\bar{m}$. Es intuitivamente claro que la máquina así obtenida cumple con lo requerido aunque una prueba formal de esto puede resultar extremadamente tediosa. \Box

Theorem 7. Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -recursiva, entonces f es Σ -Turing computable.

Proof. Dado que f es Σ-computable, existe $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ el cual computa f. Se probará solamente el caso $O = \Sigma^*$. Notar que cuando \mathcal{P} termina, en el estado alcanzado, las variables numéricas tienen todas el valor 0 y las alfabéticas distintas de P1 todas el valor ε . Sean:

- M la máquina de Turing con unit dada por el **Lemma 84**, donde elegimos el número k con la propiedad adicional de ser mayor que n y m.
- M_1 una máquina tal que para cada $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$

$$\left\lfloor q_0 B \mid^{x_1} B \dots B \mid^{x_n} B \alpha_1 B \dots B \alpha_m B \right\rfloor \stackrel{*}{\vdash} \left\lfloor q B \mid^{x_1} B \dots B \mid^{x_n} B^{k-n} B \alpha_1 B \dots B \alpha_m B \right\rfloor$$

donde q_0 es el estado inicial de M_1 y q es un estado tal que $\delta(q,\sigma) = \emptyset$, para cada σ .

• M_2 una máquina tal que para cada $\alpha \in \Sigma^*$

$$|q_0B^{k+1}\alpha| \stackrel{*}{\vdash} \lfloor qB\alpha \rfloor$$

donde q_0 es el estado inicial de M_2 y q es un estado tal que $\delta(q,\sigma) = \emptyset$, para cada σ .

Notar que la concatenación de M_1 , M y M_2 , en ese orden, produce una máquina de Turing la cual computa f.

Theorem 8. Este teorema no se evalua.