PAD project

Alexey Rasskazov

Topic

AI can assist in various situations. We can implement simple statistical analysis and achieve great results.

Heart Disease

- Cleveland
- Hungarian
- Switzerland
- Long Beach VA
- Statlog (Heart) Data Set.

This heart disease dataset is curated by combining five popular heart disease datasets that were previously available independently but not combined before.

Collecting and finding data

Heart Disease Dataset

The dataset is sourced from Kaggle.

Dowloading dataset

```
import kaggle
kaggle.api.authenticate()
kaggle.api.dataset_download_files(
    'mexwell/heart-disease-dataset',
    path='data',
    unzip=True
)
```

Dataset URL: https://www.kaggle.com/datasets/mexwell/heart-disease-dataset

The dataset is automatically downloaded to the local data folder. Ensure you set your Kaggle username and authentication key.

Cleaning data and handling missing values

Let's explore the dataset for the most obvious errors.

Visualize incorrect rows

```
coloms_to_remove = data.loc[
    (data['resting bp s']<10) | (data['ST slope']==0)
]
coloms_to_remove[['resting bp s', 'ST slope']]</pre>
```

	resting bp s	ST slope
450	0	2
517	150	0

Two rows are clearly impossible for human beings. The first has a heart rate of zero beats per second, and the second has a slope of the peak exercise ST segment of zero, which is not possible according to the documentation.

Data analysis – attribute dependencies

This section focuses on attribute dependencies.

Heatmap

The main attributes describing variance in the data are chest pain type, exercise-induced angina, and the slope of the peak exercise ST segment.

Creating a dashboard

python3 dashboard.py

A dashboard is created using Plotly, showing the distribution of variables.

*Evaluation

Problem type: classification

Let's move to the evaluation part.

Split data

```
from sklearn.model_selection import train_test_split

X = data.drop('target', axis=1)
y = data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

The data was split into training and testing datasets.

Data preparation

```
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy='mean')
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

The cleaned data was prepared for evaluation.

Training data

```
from sklearn.metrics import accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
models = {
    'Logistic Regression': LogisticRegression(max_iter=10000),
    'Decision Tree': DecisionTreeClassifier(),
    'Random Forest': RandomForestClassifier(),
    'SVM': SVC(),
    'KNN': KNeighborsClassifier(),
    'Gradient Boosting': GradientBoostingClassifier(),
    'Naive Bayes': GaussianNB(),
for name, model in models.items():
   print(f"Training {name}...")
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"{name} Accuracy: {accuracy:.2f}")
    print(classification_report(y_test, y_pred))
```

Training Logistic Regression...
Logistic Regression Accuracy: 0.85

support	f1-score	recall	precision	
112	0.84	0.84	0.84	0
				O
126	0.86	0.86	0.86	1
238	0.85			accuracy
238	0.85	0.85	0.85	macro avg
238	0.85	0.85	0.85	weighted avg

Training Decision Tree...
Decision Tree Accuracy: 0.87

precision recall f1-score support

	0	0.83	0.90	0.87	112
	1	0.91	0.84	0.87	126
	_				
accura	acv			0.87	238
macro a	•	0.87	0.87	0.87	238
weighted a	_	0.87	0.87	0.87	238
weighted a	rvg	0.07	0.07	0.07	200
Training F	Rando	m Forest			
•		Accuracy:			
		precision	recall	f1-score	support
		procession	100011	11 50010	buppor
	0	0.91	0.94	0.93	112
	1	0.94	0.92	0.93	126
	-	0.01	0.02	0.00	120
accura	acv			0.93	238
macro a	•	0.93	0.93	0.93	238
weighted a	_	0.93	0.93	0.93	238
#018H004 C	~ 6	0.00	0.00	0.00	200
Training S	SVM				
SVM Accura					
2,111 11000110	•	precision	recall	f1-score	support
		P			z app - z
	0	0.88	0.83	0.85	112
	1	0.86	0.90	0.88	126
accura	acv			0.87	238
macro a	•	0.87	0.86	0.86	238
weighted a	_	0.87	0.87	0.87	238
6	0				
Training K	KNN				
KNN Accura					
	•	precision	recall	f1-score	support
		•			11
	0	0.84	0.87	0.85	112
	1	0.88	0.85	0.86	126
	-				
accura	асу			0.86	238
macro a	•	0.86	0.86	0.86	238
weighted a	_	0.86	0.86	0.86	238
0	- 0	0.00	0.00	0.00	_50

Training Gradient Boosting...
Gradient Boosting Accuracy: 0.91

		precision	recall	f1-score	support
	0	0.91	0.90	0.91	112
	1	0.91	0.92	0.92	126
accui	racy			0.91	238
macro	avg	0.91	0.91	0.91	238
weighted	avg	0.91	0.91	0.91	238
Training Naive Bayes Naive Bayes Accuracy: 0.88					
·		precision	recall	f1-score	support
	0	0.85	0.89	0.87	112
	1	0.90	0.87	0.88	126
accui	racy			0.88	238
macro	avg	0.88	0.88	0.88	238
weighted	avg	0.88	0.88	0.88	238

The data was trained on various models.

Stat analysis

Training Logistic Regression...
Logistic Regression Accuracy: 0.85

	precision	recall	f1-score	support
0	0.84	0.84	0.84	112
1	0.86	0.86	0.86	126
accuracy			0.85	238
macro avg	0.85	0.85	0.85	238
weighted avg	0.85	0.85	0.85	238

Training Decision Tree...

Decision Tree Accuracy: 0.87

	precision	recall	f1-score	support
0	0.83	0.90	0.87	112
1	0.91	0.84	0.87	126

accur	acy			0.87	238
macro	avg	0.87	0.87	0.87	238
weighted	avg	0.87	0.87	0.87	238
Training	Rand	om Forest			
_		Accuracy:			
		precision	recall	f1-score	support
		•			••
	0	0.91	0.94	0.93	112
	1	0.94	0.92	0.93	126
accur	acv			0.93	238
macro	•	0.93	0.93	0.93	238
weighted	_	0.93	0.93	0.93	238
0	0				
Training	SVM.				
SVM Accur					
	J	precision	recall	f1-score	support
		1			
	0	0.88	0.83	0.85	112
	1	0.86	0.90	0.88	126
	_			0.00	
accur	acv			0.87	238
macro	•	0.87	0.86	0.86	238
weighted	_	0.87	0.87	0.87	238
weighted	avg	0.07	0.07	0.07	200
Training	KNN				
KNN Accur					
mm Accui	acy.	precision	recall	f1-score	support
		precibion	ICCAII	II beene	Bupport
	0	0.84	0.87	0.85	112
	1	0.88	0.85	0.86	126
	_	0.00	0.00	0.00	120
accur	acv			0.86	238
macro	•	0.86	0.86	0.86	238
weighted	_	0.86	0.86	0.86	238
weighted	avg	0.00	0.00	0.00	200
Training	Grad	ient Roosti	nor		
Training Gradient Boosting Gradient Boosting Accuracy: 0.91					
diddiene	DOOD	precision	•	f1-score	support
		brecipion	recarr	11 20016	2 abbot c
	0	0.91	0.90	0.91	112
	1	0.91	0.90	0.91	126
	_	0.91	0.52	0.32	120

accuracy			0.91	238
macro avg	0.91	0.91	0.91	238
weighted avg	0.91	0.91	0.91	238
Training Naiv	o Rayos			
iraining warv	e bayes			
Naive Bayes A	ccuracy: 0.8	8		
	precision	recall	f1-score	support
0	0.85	0.89	0.87	112
1	0.90	0.87	0.88	126
accuracy			0.88	238
macro avg	0.88	0.88	0.88	238

0.88

Stat analysis is dane with use of precision, recall, f1-score

0.88

Accuracy Comparison

weighted avg

0.88

238

The Random Forest algorithm shows the best results.

Building a tree

Here is the decision tree itself.