Università degli Studi Roma Tre Anno Accademico 2009/2010

AL2 - Algebra 2

Esercitazione 1 Lunedì 5 Ottobre 2009

http://www.mat.uniroma3.it/users/pappa/CORSI/AL2_09_10/AL2.htm domande/osservazioni: dibiagio@mat.uniroma1.it

1. Siano $(G, \cdot), (G', \cdot)$ due gruppi. Su $G \times G'$ si definisca l'operazione binaria $\cdot : G \times G' \to G \times G'$ tale che $(g, g') \cdot (h, h') := (gh, g'h')$. Si dimostri che $G \times G'$ con tale operazione è un gruppo.

Soluzione:

Dobbiamo verificare che:

- (a) · è associativa;
- (b) in $G \times G'$ esiste l'elemento neutro;
- (c) per ogni elemento in $G \times G'$ esiste il suo inverso.
- (a) ((g,g')(h,h'))(k,k') = (gh,g'h')(k,k') = ((gh)k,(g'h')k') = (g(hk),g'(h'k')) = (g,g')((h,h')(k,k'));
- (b) Siano e, e' gli elementi neutri rispettivamente di G, G'. Allora (g, g')(e, e') = (ge, g'e') = (g, g')(eg, e'g') = (e, e')(g, g');
- (c) $(g,g')(g^{-1},g'^{-1}) = (gg^{-1},g'g'^{-1}) = (e,e') = (g^{-1}g,g'^{-1}g') = (g^{-1},g'^{-1})(g,g').$
- 2. Si assuma che l'equazione xyz = 1 valga in un gruppo G. Segue allora che yzx = 1? E che yxz = 1?

Soluzione:

Dato che x(yz)=1 e che G è un gruppo, allora x è l'inverso di yz, quindi (yz)x=yzx=1. Al contrario yxz non è detto sia 1: si considerino ad esempio $x,y,z\in S_3$ con x=(12),y=(13),z=(123); si ha xyz=1 mentre yxz=(132).

3. (Dikranjan - Aritmetica e algebra - esercizio 5.3 pagina 137)

Sia X un insieme e sia Δ la differenza simmetrica, cioè l'operazione su $\mathcal{P}(X)$ così definita:

$$A, B \in \mathcal{P}(X), \quad A\Delta B := (A \setminus B) \cup (B \setminus A).$$

Si provi che $(\mathcal{P}(X), \Delta)$ è un gruppo abeliano. Si calcolino i periodi degli elementi di $(\mathcal{P}(X), \Delta)$.

Soluzione:

Per dimostrare che $(\mathcal{P}(X), \Delta)$ è un gruppo abeliano dobbiamo verificare che:

- (a) Δ è un'operazione binaria associativa;
- (b) $\exists N \in \mathcal{P}(X)$ tale che $\forall A \in \mathcal{P}(X)$, $N\Delta A = A\Delta N = A$:

- (c) $\forall A \in \mathcal{P}(X) \ \exists \overline{A} \in \mathcal{P}(X) \ \text{tale che } A\Delta \overline{A} = \overline{A}\Delta A = N;$
- (d) $\forall A, B \in \mathcal{P}(X), A\Delta B = B\Delta A$.
- (a) Δ chiaramente è un'operazione binaria, dato che è un'applicazione da $\mathcal{P}(X) \times \mathcal{P}(X)$ in $\mathcal{P}(X)$. L'associatività è lasciata per esercizio.
- (b) Sia $N=\emptyset$. Allora per ogni $A\in\mathcal{P}(X),\ A\Delta N=(A\setminus\emptyset)\cup(\emptyset\setminus A)=A=N\Delta A.$
- (c) Dato $A \in \mathcal{P}(X)$ sia $\overline{A} := A$. Allora $A \Delta A = (A \setminus A) \cup (A \setminus A) = \emptyset$.
- (d) Per ogni $A, B \in \mathcal{P}(X)$ si ha $A\Delta B = (A \setminus B) \cup (B \setminus A) = (B \setminus A) \cup (A \setminus B) = B\Delta A$.

Dato che ogni elemento è inverso di se stesso allora ogni elemento, eccetto l'elemento neutro, ha ordine 2. L'elemento neutro (cioè l'insieme vuoto) ha ordine 1.

4. Sia A un gruppo abeliano, $a,b \in A$ di ordini, rispettivamente, m e n. Dimostrare che o(ab) è finito e che o(ab)|mcm(m,n). Mostrare, con un controesempio, che generalmente $o(ab) \neq mcm(m,n)$. Mostrare, infine, che l'ipotesi di abelianità è essenziale.

Soluzione:

Essendo A abeliano, $(ab)^{mcm(m,n)} = a^{mcm(m,n)}b^{mcm(m,n)} = 1$, quindi o(ab) è finito e o(ab)|mcm(m,n).

Se $A = \mathbb{Z}_4$ allora o(2+2) = 1 mentre o(2) = 2.

Sia $A = GL_2(\mathbb{R})$ e si considerino le matrici $a := \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ e $b := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Allora $ab = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ quindi si verifica facilmente che o(a) = o(b) = 2 mentre $o(ab) \neq 2$.

5. Dimostrare che l'insieme H degli elementi di ordine finito di un gruppo abeliano G costituisce un sottogruppo. Mostrare con un controesempio che l'ipotesi di abelianità è essenziale.

Soluzione: Se $a,b \in G$ hanno ordine finito, allora per l'esercizio precedente H è stabile. Inoltre se a è di ordine finito allora $o(a^{-1}) = o(a)$ è finito. L'ipotesi di abelianità è essenziale: si considerino ad esempio le matrici $a:=\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ e $b:=\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$. Allora $ab=\begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$ quindi si verifica facilmente che o(a)=o(b)=2 mentre ab è aperiodico.

6. (Dikranjan - Aritmetica e algebra - esercizio 5.15 pagina 138) Sia G un gruppo finito. Un sottoinsieme non vuoto H di G è un sottogruppo se H è stabile.

Soluzione:

In generale, affinché $H \subseteq G$ sia un sottogruppo occorre verificare che H sia non vuoto, stabile per l'operazione di gruppo e che $\forall h \in H$ $h^{-1} \in H$. Nel

nostro caso, date le ipotesi, rimane solo da verificare l'ultima asserzione. Sia $h \in H$. Dato che G è finito e dato che $o(h) = |\langle h \rangle|$, allora o(h) = n con $n \in \mathbb{N}^+$ quindi $h^n = 1$ e perciò o h = 1 oppure h^{n-1} (con $n \geq 2$) è l'inverso di h. In quest'ultimo caso per stabilità $h^{n-1} \in H$, da cui la tesi.

7. Descrivere tutti i sottogruppi di \mathbb{Z}_7 , \mathbb{Z}_9 , \mathbb{Z}_{10} e $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Soluzione:

Per il teorema di Lagrange ogni sottogruppo di \mathbb{Z}_7 deve avere cardinalità o 1 o 7, quindi i soli e unici sottogruppi di \mathbb{Z}_7 sono i sottogruppi banali. I sottogruppi non banali di \mathbb{Z}_9 devono avere cardinalità 3 e quindi sono ciclici, generati da elementi di ordine 3. Gli unici elementi di ordine 3 sono 3 e 6, quindi i sottogruppi di \mathbb{Z}_9 sono $\{0\}, \{0,3,6\}, \mathbb{Z}_9$. Sempre per il teorema di Lagrange i sottogruppi non banali di \mathbb{Z}_{10} devono avere cardinalità 2 o 5, quindi sono ciclici generati da elementi di ordine 2 o 5. L'unico elemento di ordine 2 è 5, gli elementi di ordine 5 sono 2, 4, 6, 8, quindi i sottogruppi di \mathbb{Z}_{10} sono $\{0\}, \{0,5\}, \{0,2,4,6,8\}, \mathbb{Z}_{10}$. $\mathbb{Z}_2 \times \mathbb{Z}_2$ ha cardinalità 4, quindi i sottogruppi non banali possono avere solo cardinalità 2, quindi sono ciclici generati da elementi di ordine 2. Gli elementi di ordine 2 sono $\{1,0\}, \{0,0\}, \{1,1\}, \{1,1\}$ quindi i sottogruppi di $\mathbb{Z}_2 \times \mathbb{Z}_2$ sono $\{(0,0)\}, \{(0,0), (1,0)\}, \{(0,0), (0,1)\}, \{(0,0), (1,1)\}, \mathbb{Z}_2 \times \mathbb{Z}_2$.

8. (Dikranjan - Aritmetica e algebra - esercizio 5.3 pagina 137)

Sia V uno spazio vettoriale di dimensione 3 sul campo \mathbb{R} generato dai vettori e_1, e_2, e_3 . Si dimostri che il sottoinsieme $W = \{ae_1 + be_2 : a, b \in \mathbb{R}\}$ è un sottogruppo di V. Si descrivano le classi laterali destre e sinistre di W.

Soluzione:

W è non vuoto; inoltre $\forall w_1 = ae_1 + be_2, w_2 = ce_1 + de_2 \in W$ si ha $w_1 - w_2 = (a - c)e_1 + (b - d)e_2 \in W$, quindi W è un sottogruppo. Si osservi, poi, che essendo V abeliano le classi laterali destre e sinistre coincidono. Si ha: $v + W = \{v + ae_1 + be_2 : a, b \in \mathbb{R}^3\}$; se $v = xe_1 + ye_2 + ze_3$ allora $v + W = ze_3 + W$ e $ze_3 + W = z'e_3 + W \Leftrightarrow z = z'$.