RESONANCE

- Q.1 Which of the following statements are correct:

 Delocalization of electrons increases molecular stability because.
- (a) electrons nuclei attraction increases.
- (b) electron electron repulsion decreases.
- (c) potential energy of the molecule increases.
- (d) potential energy of the molecule decreases.
- Q.2 Which of the following statements is (are) true about resonance.
- (a) Resonance is an intramolecular process.
- (b) Resonance involves delocalization of both σ and π electrons.
- (c) Resonance involves delocalization of π electrons only.
- (d) Resonance decreases potential energy of a molecule.
- (e) Resonance has no effect on the potential energy of a molecule.
- (f) Resonance is the only way to increase molecular stability.
- (g) Resonance is not the only way to increase molecular stability.
- (h) Any resonating molecule is always more stable than any nonresonating molecule.
- (i) The canonical structure explains all features of a molecule.
- (j) The resonance hybrid explains all features of a molecule.
- (k) Resonating structures are real and resonance hybrid is imaginary.
- (1) Resonance hybrid is real and resonating structures are imaginary.
- (m) Resonance hybrid is always more stable than all canonical structures.
- Q.3 Which of the following statements are correct about canonical structures All canonical structures of a molecule :
- (a) must have same number of unpaired electrons.
- (b) must have different numbers of paired electrons.
- (c) need not be always equivalent but they should not differ much in stability.
- (d) should be always equivalent.
- (e) must have π electrons in same orbital.
- (f) must have π electrons in different orbitals.
- Q.4 Which of the following statements are correct about Resonance energy Resonance energy is
- (a) equal to the energy of resonance hybrid.
- (b) equal to the energy of most stable canonical structure.
- (c) equal to the energy of least stable canonical structure.
- (d) equal to the difference in energies of the most stable canonical structure & resonance hybrid.
- (e) equal to the potential energy of molecule.
- Q.5 Mark the correct statements
 - Resonance energy is
- (a) stored by the molecule
- (b) released by the molecule
- (c) neither stored nor released by the molecule
- (d) sometimes stored and somtimes released by the molecules.
- Q.6 Resonance energy will be more if
- (a) canonical structures are equivalent than if canonical structures are non-equivalent.
- (b) canonical structures have charge separation than if canonical structure have no charge separation.
- (c) canonical structures have more charge separation that if canonical structures have less charge separation.
- (d) molecule is aromatic than if molecule is not aromatic.

- O.7 A canonical structure will be more stable if
- (a) it has more number of π bonds than if it has less number of π bonds.
- (b) the octets of all atoms are complete than if octets of all atoms are not complete.
- (c) it has charge separation than if it has no charge separation.
- (d) it involves cyclic delocalization of $(4n + 2) \pi$ electrons than if it involves acyclic delocalization of $(4n + 2) \pi$ electrons.
- (e) it involves cyclic delocalization (4n) π electrons than if it involves acyclic delocalization of (4n) π electrons.
- (f) +ve charge is on more electronegative atom than if +ve charge is on less electronegative atoms.
- (g) -ve charge is on more electronegative atom than if -ve
- Q.8 Which of the following statements is (are) true about the contribution of a canonical structure in resonance hybrid:
- (a) More stable canonical structure will have more contribution than less stable canonical structure.
- (b) A cahrge separated canonical structure will have more contribution than a canonical structure without charge separation.
- (c) A canonical structure with -ve charge on more electronegative atom and +ve charge on less electronegative atom will have more contribution than a canonical structure with +ve charge on more electronegative atom and -ve charge on less electronegative atom.
- (d) A canonical structure with more number of π bonds will have more contribution than a canonical structure with less number of π bonds.
- Q.9 In which of the following molecules all atoms are coplanar:

Q.10 In which of the following molecules all atoms are not coplanar:

(a) $-COOH$ (b) $-CO\overline{O}$ (c) $-COCI$ (d) $-N\overline{H}_3$ (e) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (g) $-\overline{C}H_2$ (g) $-\overline{C}H_3$ (e) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (e) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (e) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (e) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (e) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (e) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (f) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (g) $-\overline{P}Ph_3$ (g) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (h) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (h) $-\overline{C}H_2$ (g) $-\overline{P}Ph_3$ (h) $-\overline{C}H_2$ (g) $-\overline{C}H_2$ (h) $-C$	Q.11	Which of the following groups cannot participate in resonance with other suitable group:						
Q.12 Which of the following group can participate in resonance with other suitable group: (a) $CH_2 = \overset{\circ}{O} - (b) - CH_2 - \overset{\circ}{C}H_2$ (c) $-CH_2 - \overset{\circ}{C}H_2$ (d) $\overset{\circ}{O} - CH_2 - \overset{\circ}{C}H_2$ (e) $\overset{\circ}{O} - CH - CH - (f) - BH_2$ (g) $\overset{\circ}{P} Ph_3$ Q.13 In which of the following lone-pair indicated is involved in resonance: (a) $\overset{\circ}{O} - CH_2 - \overset{\circ}{C}H_2$ (f) $CH_2 = CH - CH = \overset{\circ}{N}H$ Q.14 In which of the following lone-pair indicated is not involved in resonance: (a) $CH_2 = CH - \overset{\circ}{C}H_2$ (b) $CH_2 = CH - CH = \overset{\circ}{O}H_2$ (c) $CH_2 = CH - \overset{\circ}{O} - CH = CH_2$ (d) $CH_2 = CH - CH = \overset{\circ}{O}H_2$ (e) $\overset{\circ}{O} - CH_2 - \overset{\circ}{O} - CH = CH_2$ (d) $CH_2 = CH - C = \overset{\circ}{N}H_2$ Q.15 Identify electron —donating groups in resonance among the following: (a) $-CONH_2$ (b) $-NO_2$ (c) $-OCOCH_3$ (d) $-COOCH_3$ (e) $-COOCH_3$ (e) $-COOCH_3$ (f) $-NHCOCH_3$ (e) $-COOCH_3$ (f) $-NHCOCH_3$ (e) $-COOCH_3$ (f) $-COOCH_3$ (f) $-COOCH_3$ (g) $-COOCH_3$ ((a) – COOH	(b) $-CO\overline{O}$	(c) – COCl	$(d) - NH_3$			
Q.12 Which of the following group can participate in resonance with other suitable group: (a) $CH_2 = \overset{\circ}{O} - (b) - CH_2 - \overset{\circ}{C}H_2$ (c) $-CH_2 - \overset{\circ}{C}H_2$ (d) $\overset{\circ}{O} - CH_2 - \overset{\circ}{C}H_2$ (e) $\overset{\circ}{O} - CH - CH - (f) - BH_2$ (g) $\overset{\circ}{P} Ph_3$ Q.13 In which of the following lone-pair indicated is involved in resonance: (a) $\overset{\circ}{O} - CH_2 - \overset{\circ}{C}H_2$ (f) $CH_2 = CH - CH = \overset{\circ}{N}H$ Q.14 In which of the following lone-pair indicated is not involved in resonance: (a) $CH_2 = CH - \overset{\circ}{C}H_2$ (b) $CH_2 = CH - CH = \overset{\circ}{O}H_2$ (c) $CH_2 = CH - \overset{\circ}{O} - CH = CH_2$ (d) $CH_2 = CH - CH = \overset{\circ}{O}H_2$ (e) $\overset{\circ}{O} - CH_2 - \overset{\circ}{O} - CH = CH_2$ (d) $CH_2 = CH - C = \overset{\circ}{N}H_2$ Q.15 Identify electron —donating groups in resonance among the following: (a) $-CONH_2$ (b) $-NO_2$ (c) $-OCOCH_3$ (d) $-COOCH_3$ (e) $-COOCH_3$ (e) $-COOCH_3$ (f) $-NHCOCH_3$ (e) $-COOCH_3$ (f) $-NHCOCH_3$ (e) $-COOCH_3$ (f) $-COOCH_3$ (f) $-COOCH_3$ (g) $-COOCH_3$ ((e) $-\overset{\oplus}{\mathrm{C}}\mathrm{H}_2$	$(f) - \mathring{C} H_2$	(g) $CH_2 = \stackrel{\oplus}{N} -$				
Q.13 In which of the following lone-pair indicated is involved in resonance: (a) $(P) = PP =$	Q.12							
Q.13 In which of the following lone-pair indicated is involved in resonance: (a) CH ₂ = CH - CH ₂ [©] (f) CH ₂ = CH - CH = NH Q.14 In which of the following lone-pair indicated is not involved in resonance: (a) CH ₂ = CH - NH - CH ₃ (b) CH ₂ = CH - CH = NH (c) CH ₂ = CH - NH - CH ₃ (d) CH ₂ = CH - CH = NH (e) CH ₂ = CH - NH - CH ₃ (d) CH ₂ = CH - CH = NH (e) CH ₂ (f) (f) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h		(a) $CH_2 = \overset{\oplus}{O} -$	(b) $-CH_2 - \overline{C}H_2$	(c) $-CH_2 - \overset{\oplus}{C}H_2$	$(d) \bigcirc CH_2 $			
(a) (b) (c) (d) (d) (d) (d) (e) CH ₂ = CH - \overrightarrow{C} H ₂ (f) CH ₂ = CH - CH = \overrightarrow{N} H (2.14 In which of the following lone-pair indicated is not involved in resonance: (a) CH ₂ = CH - \overrightarrow{N} H - CH ₃ (b) CH ₂ = CH - CH = \overrightarrow{O} (c) CH ₂ = CH - \overrightarrow{O} - CH = CH ₂ (d) CH ₂ = CH - C = \overrightarrow{N} : (e) \overrightarrow{C} H ₂ (e) (f) (f) (h) (c) - CH ₂ (c) - OCOCH ₃ (d) - COOCH ₃ (e) - CHO (f) - NHCOCH ₃ (e) - CHO (f) - NHCOCH ₃ (c) - OCOCI (d) - CN (e) - COCI (d) - CN (e) - COCI (d) - CN (e) - COCI (d) - CN (e) - OCOCH = CH ₂ (f) (f) (h) (e) - OCOCH = CH ₂ (f) (f) (h) (e) - OCOCH = CH ₂ (f) (h) - NO ₂ (c) - COCI (d) - CN (e) - OCOCH = CH ₂ (f) (f) (h) - NO ₂ (c) - COCI (d) - CN (e) - OCOCH = CH ₂ (f) (f) - N = NH (d) - CHO (e) - NH ₂ (f) - N = NH (d) - CHO (e) - NH ₂ (f) - N = NH (d) - CHO (e) - NH ₂ (f) - N = NH (d) - CHO (e) - NH ₂ (f) - N = NH (d) - CHO (e) - OCOCH (e) - O		(e) CH = CH	$(f) - BH_2$	$(g) - \stackrel{\oplus}{P} Ph_3$				
(e) $CH_2 = CH - \overrightarrow{C}H_2^{\Theta}$ (f) $CH_2 = CH - CH = \overrightarrow{N}H$ Q.14 In which of the following lone-pair indicated is not involved in resonance: (a) $CH_2 = CH - \overrightarrow{N}H - CH_3$ (b) $CH_2 = CH - CH = \overrightarrow{O}$ (c) $CH_2 = CH - \overrightarrow{O} = CH = CH_2$ (d) $CH_2 = CH - CH = \overrightarrow{O}$ (e) $\overrightarrow{C}H_2$ (f) \overrightarrow{O} (f) $\overrightarrow{C}H_2$ (f) \overrightarrow{O} (c) $\overrightarrow{C}H_2$ (d) $CH_2 = CH - C = N$: Q.15 Identify electron—donating groups in resonance among the following: (a) $-CONH_2$ (b) $-NO_2$ (c) $-OCOCH_3$ (d) $-COOCH_3$ (e) $-CHO$ (f) $-NHCOCH_3$ (c) $-COCH$ (d) $-COOCH_3$ (e) $-COOCH$ (b) $-COOCH$ (c) $-COCH$ (d) $-COOCH$ (e) $-COOCH$ (f) $-COOCH$ (f) $-COOCH$ (g) $-COOCH$	Q.13	In which of the following lone-pair indicated is involved in resonance:						
Q.14 In which of the following lone-pair indicated is not involved in resonance: (a) $CH_2 = CH - \stackrel{\bullet}{N}H - CH_3$ (b) $CH_2 = CH - CH = \stackrel{\bullet}{O}$ (c) $CH_2 = CH - \stackrel{\bullet}{O} - CH = CH_2$ (d) $CH_2 = CH - C = N$: (e) $\stackrel{\bullet}{O} - CH = CH_2$ (f) $\stackrel{\bullet}{O} - CH = CH_2$ (f) $\stackrel{\bullet}{O} - CH = CH_2$ (e) $\stackrel{\bullet}{O} - CH = CH_2$ (f) $\stackrel{\bullet}{O} - CH = CH_2$ (g) $- CH - C = N$: (e) $- CH - C$		(a) N	(b) (i) (i) (b) (ii) (ii) (ii) (iii)	(c) N	(d) N H			
(a) $CH_2 = CH - NH - CH_3$ (b) $CH_2 = CH - CH = 0$ (c) $CH_2 = CH - OH = O$		(e) $CH_2 = CH - CH_2$	Θ 2	(f) $CH_2 = CH - CH =$	= NH			
(c) CH ₂ = CH - O - CH = CH ₂ (d) CH ₂ = CH - C = N: (e) O - CH ₂ (f) O O O O O O O O O O O O O O O O O O O	Q.14	In which of the following lone-pair indicated is not involved in resonance:						
(e) CH ₂ (f) CH ₂ (f) CH ₂ (g) (f) CH ₂ (g) (g) CH ₂ (h) NO ₃ (h) COOCH ₃ (h)		(a) $CH_2 = CH - NH$	$I-CH_3$	(b) $CH_2 = CH - CH = O$				
(a) - CONH ₂ (b) - NO ₂ (c) - OCOCH ₃ (d) - COOCH ₃ (e) - CHO (f) - NHCOCH ₃ Q.16 Identify electron – withdrawing groups in resonance among the following: (a) - COOH (b) - CONHCH ₃ (c) - COCI (d) - CN (e) - O - CH = CH ₂ (f) N Q.17 Which of the following groups can either donate or withdraw a pair of electrons in resonance depending upon situation: (a) - NO ₂ (b) - NO (c) - CH = CH (d) - CHO (e) - NH ₂ (f) - N = NH Q.18 Which of the following groups can only withdraw a pair of electrons in resonance depending upon situation: (a) - Ph (b) O ₂ N (c) MeO (d) CH ₃		(c) $CH_2 = CH - O - CH = CH_2$		(d) $CH_2 = CH - C \equiv N$:				
(a) - CONH ₂ (b) - NO ₂ (c) - OCOCH ₃ (d) - COOCH ₃ (e) - CHO (f) - NHCOCH ₃ Q.16 Identify electron – withdrawing groups in resonance among the following: (a) - COOH (b) - CONHCH ₃ (c) - COCI (d) - CN (e) - O - CH = CH ₂ (f) N Q.17 Which of the following groups can either donate or withdraw a pair of electrons in resonance depending upon situation: (a) - NO ₂ (b) - NO (c) - CH = CH (d) - CHO (e) - NH ₂ (f) - N = NH Q.18 Which of the following groups can only withdraw a pair of electrons in resonance depending upon situation: (a) - Ph (b) O ₂ N (c) MeO (d) CH ₃		(e) CH ₂		(f) Ö				
(a) - COOH (b) - CONHCH ₃ (c) - COCI (d) - CN (e) - O - CH = CH ₂ (f) N Q.17 Which of the following groups can either donate or withdraw a pair of electrons in resonance depending upon situation: (a) - NO ₂ (b) - NO (c) - CH = CH (d) - CHO (e) - NH ₂ (f) - N = NH Q.18 Which of the following groups can only withdraw a pair of electrons in resonance depending upon situation: (a) - Ph (b) O ₂ N (c) MeO (d) CH ₃	Q.15	$(a) - CONH_2$	$(b) - NO_2$		$(d) - COOCH_3$			
Q.17 Which of the following groups can either donate or withdraw a pair of electrons in resonance depending upon situation: (a) - NO ₂ (b) - NO (c) - CH = CH (d) - CHO (e) - NH ₂ (f) - N = NH Q.18 Which of the following groups can only withdraw a pair of electrons in resonance depending upon situation: (a) - Ph (b) O ₂ N (c) MeO (d) CH ₃	Q.16	•	00 1					
upon situation: (a) $- NO_2$ (b) $- NO$ (c) $- CH = CH$ (d) $- CHO$ (e) $- NH_2$ (f) $- N = NH$ Q.18 Which of the following groups can only withdraw a pair of electrons in resonance depending upon situation: (a) $- Ph$ (b) O_2N (c) O_2N (d) O_2N (d) O_2N (e) O_2N (e) O_2N (f) $O_$		$(e) - O - CH = CH_2$	(f) N					
(a) $- NO_2$ (b) $- NO$ (c) $- CH = CH$ (d) $- CHO$ (e) $- NH_2$ (f) $- N = NH$ Q.18 Which of the following groups can only withdraw a pair of electrons in resonance depending upon situation: (a) $- Ph$ (b) O_2N (c) O_2N (d) O_2N (d) O_2N (e) O_2N (f)	Q.17	• • • • • • • • • • • • • • • • • • • •						
situation : (a) – Ph (b) O_2N (c) O_2N (d) O_2N (d) O_2N (e) O_2N (d) O_2N (e) O_2N (f) O_2N		$(a) - NO_2$	(b) - NO $(f) - N = NH$	(c) - CH = CH	(d) – CHO			
	Q.18	Which of the following groups can only withdraw a pair of electrons in resonance depending upon situation:						
(e) $-\stackrel{\oplus}{N}Me_3$ (f) $-CONH_2$		(a) – Ph	(b) O_2N	(c) MeO	(d) CH ₃			
		$(e) - \overset{\oplus}{N} Me_3$	(f) – CONH ₂					

Q.19 Write the canonical structures of each of the following:

- (a) CH₃NO₂
- (b) $CH_2 = CH N$ CH_3
- $(c) \bigcirc^{O} \bigcirc^{O}$
- (d) N H

(e)
$$CH_3O - CH = CH - \overset{\oplus}{N}Me_3$$

Q.20 Write the canonical structures of each of the following:

(b) $CH_2 = \overset{\oplus}{N} = \overline{N}$

(c) $CH_2 = C = O$

(d) O

Q.21 Give the decreasing order of π e⁻ density in the ring.

- (i) (A) NO
- (B) OCH
- (C) H_2N
- (D) NO_2

- (ii)(A) NO
- (B) O
- (C) NH
- $\text{(D)} \bigcirc \bigcirc \text{OCH}_3$

Q.22 $CH_2 = CH - CH = CH - CH_3$ is more stable than $CH_3 - CH = C = CH - CH_3$ because (I)

- (A) there is resonance in I but not in II
- (B) there is tautomerism in I but not in II
- (C) there is hyperconjugation in I but not in II
- (D) II has more cononical structures than I.

Q.23 Which of the following pairs has higher resonance energy:

- (a) CH₃COOH and CH₃COONa
- (b) $CH_2 = CH \overset{\Theta}{O}$ and $CH_2 = CH OH$
- (c) \bigcirc COO $^{\Theta}$ and \bigcirc O $^{\Theta}$
- (d) and \bigcirc

(e) and
$$CH_2 = CH - CH = CH - CH = CH_2$$

(24	Which of the	following	naire has	less resonance energy
ľ	1.44	WINCH OF UIC	HUHUWIII	pansnas	less resultance energy

(a) CO_3^{2-} and $HCOO^-$

- $> \Theta$ and $CH_2 = CH CH_2^-$
- and $CH_2 = CH CH = CH_2$ (d) \oplus and $CH_2 = CH \overset{\oplus}{C}H_2$

Which of the following pairs has higher resonance energy: Q.25

- and O
- and
- (d) $CH_2 = CH OH$ and $CH_2 = CH CH = CH OH$
- (e) and

Q.26 Which of the following pairs has less resonance energy:

- and

and

Q.27 Which of the following pairs has higher resonance energy:

(a)
$$\bigcap_{N}$$
 and \bigcap_{H}

(b)
$$CH_2 = CH - O - CH = CH_2$$
 and $CH_2 = CH - NH - CH = CH_2$

- (c) $CH_2 = CH \stackrel{\Theta}{N}H$ and $HN = CH \stackrel{\Theta}{N}H$
 - (d) $CH_2 = CH F$ and $CH_2 = CH Br$

(e)
$$CH_2$$
 and $CH_2 = CH - \dot{C}H_2$

These are three canonical structures of naphthalene. Examine them and find correct statement among the following:

- (A) All C C bonds are of same length
 - (B) CI C2 bond is shorter than C2 C3 bond.
- (C) C1 C2 bond is longer than C2 C3 bond
- (D) none.
- Q.29 Identify more stable canonical structure in each of the following pairs:

(b)
$$\overset{\Theta}{C}H_2 - C \equiv CH \longleftrightarrow CH_2 = C = \overset{\Theta}{C}H$$

$$(c)$$
 (c) (c)

$$(d) \xrightarrow{\bigoplus_{\Theta \subset H_2}} \longleftrightarrow \xrightarrow{\bigoplus_{\Theta \subset H_2}}$$

(e)
$$\overset{\oplus}{\text{C}}\text{H}_2 - \text{CH} = \text{CH} - \overset{\Theta}{\text{O}} \longleftrightarrow \text{CH}_2 = \text{CH} - \text{CH} = \text{O}$$

$$(f) \bigcup_{\substack{N \\ H}}^{\oplus O} \bigoplus_{\substack{N \\ H}} \bigcup_{\substack{N \\ H}}^{O \oplus}$$

Identify less stable canonical structure in each of the following pairs: Q.30

(a)
$$\overset{\oplus}{C}H_2 - O - CH_3 \longleftrightarrow CH_2 = \overset{\oplus}{O} - CH_3$$

$$(c) \xrightarrow{C} CH_2 \xrightarrow{H} C \xrightarrow{\Theta} CH_2$$

$$(d) \xrightarrow{\overset{\Theta}{\downarrow}} \overset{NH}{\downarrow} \xrightarrow{\overset{\Theta}{\downarrow}} \overset{O}{\downarrow} \overset{\Theta}{\downarrow}$$

(e)
$$\bigoplus_{\Theta \subset H_2} \bigoplus_{\Theta \subset H_2}$$

- In which of the following pairs, indicated bond is of greater strength: Q.31

 - (a) $CH_3 CH_2 Br$ and $CH_3 CH_2 Cl$ (b) $CH_3 CH = CH Br$ and $CH_3 CH CH_3 CH CH_3 CH CH_3 CH CH_3 CH CH_3 CH_3$

(c)
$$CH_3$$
 CI and $CH_3 - CH_2 - CI$

- (d) $CH_2 = CH_{\uparrow}CH = CH_2$ and $CH_2 = CH_{2\uparrow}CH_2 CH_3$
- (e) $CH_2 = CH_{\uparrow}CH = CH_2$ and $CH_2 = CH_{\uparrow}NO_2$

(f)
$$CH_3$$
 and C_2H_5

Q.32 In which of the following pairs, indicated bond having less bond dissociation energy:

(a) and
$$CH_2 = CH_2$$

(b) $CH_3 - C \equiv CH$ and $HC \equiv CH$

(c)
$$CH_2 \neq CH$$
 $CH = CH_2$ and $CH_2 = CH$ $CH = CH_2$
 $CH = CH_2$
 $CH = CH_2$

(d)
$$\underset{\text{NH}_2}{\overset{\text{O}}{\bigvee}}$$
 and $\underset{\text{CH}_3}{\overset{\text{O}}{\bigvee}}$ (e) $\underset{\text{Cl}}{\overset{\text{O}}{\bigvee}}$ and $\underset{\text{CH}_3}{\overset{\text{O}}{\bigvee}}$ $\underset{\text{Cl}}{\overset{\text{O}}{\bigvee}}$

$$(f)_{H_2N} \overset{O}{\overset{\text{II}}{\subset}}_{NH_2} \text{ and } \overset{O}{\overset{\text{II}}{\subset}}_{NH_2}$$

Q.33 Among the following pairs identify the one which gives higher heat of hydrogenation:

(c)
$$CH_3 - CH = CH - CH_3$$
 and $CH_3 - CH_2 - CH = CH_2$

(d)
$$CH_2$$
 and CH_3 CH_3

Q.34 Among the following pairs identify the one which gives less heat of hydrogenation:

(a)
$$CH_3$$
 and CH_3 CH_3

(c)
$$CH_3$$
 $C = C$ CH_3 and CH_3 $C = C$ H

(d)
$$CH_2 = CH - CH < \frac{CH_3}{CH_3}$$
 and $CH_2 = C < \frac{CH_3}{CH_2 - CH_3}$

Q.35 Which of the following has longest C – O bond:

$$(A) \bigcirc \bigcirc^{0}$$

$$(D) \overbrace{\underset{CH_2}{\bigvee}}^O$$

- Among the following molecules, the correct order of C C bond length is
- (B) $C_2H_6 > C_6H_6 > C_2H_4 > C_2H_2(C_6H_6 \text{ is benzene})$ (D) $C_2H_6 > C_2H_4 > C_2H_2 > C_6H_6$
- (C) $C_2H_4 > C_2H_5 > C_2H_2 > C_6H_6$
- $CH_2O CH = CH NO_2$ Q.38 II $CH_2 = CH - NO_2$ $CH_2 = CH - C1$ Ш $CH_2 = CH_2$ IV

Which of the following is the correct order of C - C bond lengths among these compounds:

- (A) I > II > III > IV (B) IV > III > II > I (C) I > III > IV (D) II > III > IV
- In which of the following molecules resonance is equivalent: Q.39
 - (A) $HCOO^{\Theta}$

(B) $CH_2 = CH - CH = CH_2$

- $CH_2 = CH CH = CH CH_3$ is more stable than $CH_3 CH = C = CH CH_3$ because Q.40
 - (A) there is resonance in I but not in II
- (B) there is tautomerism in I but not in II
- (C) there is hyperconjugation in I but not in II (D) II has more cononical structures than I.
- Q.41 $CH_2 = CH CH = CH CH = CH_2$
- Ι

$$CH_2 = CH - \overset{\oplus}{C}H - CH = CH - \overset{\Theta}{C}H_2$$

H

$$\overset{\oplus}{\mathbf{C}}\mathbf{H}_2 - \mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H} - \overset{\Theta}{\mathbf{C}}\mathbf{H}_2$$

III

Among these three canonical structures (through more are possible) what would be their relative contribution in the hybrid:

- (A) I > II > III
- (B) III > II > I
- (C) I > III > II
- (D) ||| > || > ||
- Which of the following is (are) the correct order of bond lengths: Q.42
 - (A) C C > C = C > C = C > C = N
- (B) C = N > C = O > C = C
- (C) C = C > C = N > C = O

- (D) C C > C = C > C = C > C H
- (E) $C C > C H > C = C > C \equiv C$
- $CH_3 = \frac{2}{C}C = \frac{3}{C}CH = \frac{4}{C}CH_2 = H$; CI H, C2 H, C3 H and C4 H homolytic bond dissociation $CH_2 H$

energy is in the order:

(A)
$$C2 - H > C3 - H > C4 - H > C1 - H$$
 (B) $C1 - H > C4 - H > C2 - H > C3 - H$

(B)
$$C1 - H > C4 - H > C2 - H > C3 - H$$

(C)
$$C2 - H > C3 - H > C1 - H > C4 - H$$

(D)
$$C1 - H > C4 - H > C3 - H > C2 - H$$

ANSWER

- Q.1 a, b, d
- a, c, d, g, j, l, m Q.2
- Q.3 a, c Q.4
- d

Q.5 b

- Q.6 a, d
- a, b, d, g Q.7
- Q.8 a, c, d

- Q.9 a, b, d
- Q.10 b, e, i
- Q.11 b, d
- Q.12 a, e, f, g

- Q.13 b, d, e
- Q.14 b, d, e
- Q.15
- Q.16 a, b, c, d, f

- Q.17 b, c, f
- Q.18 b, f
- c, f
- Q.21 (i) d, a, c, b (ii) b, c, d, a Q.22 A

- (a) CH₃COONa Q.23
- (b) $CH_2 = CH \overset{\Theta}{O}$
- COO^Θ

- Q.24 (a) HCOO-
- (c)
- (d) $CH_2 = CH \overset{\oplus}{C}H_2$

- Q.25
- (c)
- (d) $CH_2 = CH CH = CH OH$

- Q.26 (a) $\sqrt{\!\!/}$
- (b) \(\int_{\text{CH}_2}^{\text{\text{O}}} \)

- (b) $CH_2 = CH NH CH = CH_2$
- (c) $HN = CH \stackrel{\Theta}{N}H$ (d) $CH_2 = CH F$

- Q.28 B

- (e) $CH_2 = CH CH = O$
- Q.30 (a) $\overset{\oplus}{C}$ H₂ -O-CH₃ (b)

$$(d) \xrightarrow{\text{O}} C \xrightarrow{\text{NH}} H$$

Q.31 (a) $CH_3 - CH_2 - CI$ (b) $CH_3 - CH = CH - Br$ (c) $CH_3 - CI$ (d) $CH_2 = CH - CH = CH_2$

(e)
$$CH_2 = CH - NO_2$$
 (f) C_2H_5

(f)
$$C_2H_5$$

(b)
$$CH_3 - C \equiv CH$$

Q.32 (a) (b)
$$CH_3 - C \equiv CH$$
 (c) $CH_2 = CH$ $CH = CH_2$

(d) $CH_2 = CH$

(e) $CH_3 - C \equiv CH$

(f) $CH_2 = CH$

(g) $CH_2 = CH$

(h) $CH_2 =$

$$(d) \underset{H_2N}{\overset{O}{\bigvee}} \underset{NH}{\overset{H}}$$

(e)
$$CI$$

$$(f)_{H_2N} \xrightarrow{O}_{NH_2}$$

(b) (c)
$$CH_3 - CH_2 - CH = CH_2$$
 (d) CH_3

(d)
$$CH_2$$
 CH_3

Q.34 (a)
$$CH_3$$

$$CH_3$$
 (b) CH_3 (c) CH_3 (d) $CH_2 = C$ CH_3 $CH_2 - CH_3$

(d)
$$CH_2 = C < \frac{CH_3}{CH_2 - CH_3}$$