Sprawozdanie LAB8 - Grafy

Arkadiusz Ziółkowski 28.05.2015r

1 Cel ćwiczenia

Celem ćwiczenia jest implementacja abstrakcyjnego typu danych - grafu. Następnie należy zaimplementować algorytmy przeszukiwania BFS i DFS oraz za ich pomocą wyznaczyć ścieżki między dwoma wierzchołkami grafu dla różnych rozmiarów grafów. Czasy szukania ścieżki należy przetestować.

2 Teoretyczna złożoność obliczeniowa

2.1 Algorytm przeszukiwania BFS

- Ponieważ algorytm polega na odwiedzeniu i opowiednim oznaczeniu każdego wierzchołka, oraz każdego węzła więz złożoność obliczeniowa wyraża się w $\mathbf{O}(\mathbf{w} + \mathbf{k})$, gdzie 'w' to ilość wierzchołków, a 'k' to ilośc krawędzi.
- Należy zwrócić uwagę, że znalezienie ścieżki wiąże się z przerwaniem wykonywania algoytmu przeszukiwania wobec czego złożoność znalezienia ścieżki powinna być niższa od powyższej.

2.2 Algorytm przeszukiwania DFS

- Z uwagi na to, że algorytm ten działa również na zasadzie odwiedzania wszytskich wierzchołków i krawędzi grafu to jego złożonośc obliczeniowa również wyraża się w $\mathbf{O}(\mathbf{w}+\mathbf{k})$, gdzie 'w' to ilość wierzchołków, a 'k' to ilośc krawędzi.
- Należy zwrócić uwagę, że znalezienie ścieżki wiąże się z przerwaniem wykonywania algoytmu przeszukiwania wobec czego złożoność znalezienia ścieżki powinna być niższa od powyższej.

3 Wyniki pomiarów

Pomiary czasu wykonywania algorytmów zostały wykonane na podstawie losowo wygenerowanych grafów po 10 razy dla każdej wielkości grafu. Oba algorytmy przeszukiwały ten sam graf szukając ścieżki między tymi samymi wierzchołkami.

Ilość elementów		Średni czas odnalezienia ścieżki [ms]	
Wierzchołki	Krawędzie	DFS	BFS
10	12	0.0500	0.0099
40	50	0.0155	0.0119
100	150	0.5650	0.0518
400	500	0.1582	0.0327
1000	1200	0.0734	0.0782
4000	5000	0.0354	0.3829
10000	12000	76.7950	16.4502
40000	50000	801.0530	354.012
100000	120000	2155.8800	311.629

Tabela 1. Wyniki pomiarów

Rysunek 1. Wykres średniego czasu wyszukiwania ścieżki od rozmiaru grafu.

4 Wnioski

- Grafy są uogólnionym przypadkiem wcześniej implementowanych struktur danych.
- Dzięki algorytmom przejścia w gląb i wszerz jesteśmy w stanie znaleźć ścieżkę między dwoma wierzchołkami. W przypadku algorytmu BFS znaleziona ścieżka będzie ścieżką zawierającą minimalną ilosć krawędzi.
- Dzięki wyżej wymienionym algorytmom znalezienie ścieżki generuje złożoność czasową mniejszą lub równą O(w+k), gdzie w ilosć wierzchołków, k ilosć krawędzi.
- Ze względu na losowe generowanie spójnych grafów udowodnienie powyższej złożoności jest niemożliwe.