

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 05082998
PUBLICATION DATE : 02-04-93

APPLICATION DATE : 17-05-91
APPLICATION NUMBER : 03113475

APPLICANT : TOKICO LTD;

INVENTOR : UCHIUMI NORIYUKI;

INT.CL. : H05K 13/04 B23P 21/00

TITLE : PARTS FITTING DEVICE

ABSTRACT : PURPOSE: To improve the responsiveness of a parts fitting device and reduce the transmission error of the device by coaxially providing a rotary motor and cylindrical linear motor which rotate and vertically move a nozzle with the axis of the nozzle head and enabling the needles of the motors to rotate or vertically move together with, the nozzle.

CONSTITUTION: A nozzle head 3 is provided with a nozzle 19 for attracting parts by suction, and a rotary motor 6 and cylindrical linear motor 11 are coaxially arranged with the axis of the nozzle 19 so that the nozzle can be rotated or vertically moved by means of the motors 6 and 11. The rotary motor 6 is constituted of a permanent magnet synchronous type servo motor and the linear motor 11 is a movable coil linear servo motor. The driving force of the motor 6 is transmitted to the nozzle 19 (direct acting shaft 16) through a transmitting system composed only of a ball spline 18 and the driving force of the linear motor 11 is directly transmitted to the nozzle 19 (direct acting shaft 16).

COPYRIGHT: (C)1993,JPO&Japio

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

BEST AVAILABLE COPY

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平5-82998

(43) 公開日 平成5年(1993)4月2日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	F 1	技術表示箇所
H 05 K 13/04	M	8509-4E		
B 23 P 21/00	305	A 9135-3C		
H 05 K 13/04	A	8509-4E		

審査請求 未請求 請求項の数1(全6頁)

(21) 出願番号	特願平3-113475	(71) 出願人	000003056 トキコ株式会社 神奈川県川崎市川崎区富士見1丁目6番3号
(22) 出願日	平成3年(1991)5月17日	(72) 発明者	内海 典之 神奈川県川崎市川崎区富士見1丁目6番3号 トキコ株式会社内
		(74) 代理人	弁理士 志賀 正武 (外2名)

(54) 【発明の名称】 部品取付装置

(57) 【要約】

【目的】 電子部品を吸着するノズルが設けられたノズルヘッドを有し、このノズルを回転かつ上下動させ、また、ノズルヘッドを水平移動させることにより、基板上に半導体チップ等の電子部品を位置決めて取付ける部品取付装置において、前記ノズルの回転と上下動を駆動するための駆動伝達系の剛性を向上して高速化を図るとともに、この伝達系の伝達誤差を低減し搭載精度を向上させる。

【構成】 前記ノズルの回転と上下動を駆動する回転形モータと円筒形リニアモータとを前記ノズルヘッドにおける前記ノズルと同軸上に設け、これらモータの可動子と前記ノズルとが一体となって回転あるいは上下動する構成とする。

【課題を解決するための手段】本発明の部品取付装置は、部品を着脱自在に保持するノズルを回転自在かつ上下動自在に支持するノズルヘッドを有し、該ノズルヘッドを水平方向に移動させることにより、部品を位置決めして取付ける部品取付装置において、前記ノズルの回転と上下動を駆動する回転形モータと円筒形リニアモータとを前記ノズルヘッドにおける前記ノズルと同軸上に設け、これらモータの可動子と前記ノズルとが一体となって回転あるいは上下動する構成としたことを特徴とする部品取付装置。

【特許請求の範囲】

【請求項1】 部品を着脱自在に保持するノズルを回転自在かつ上下動自在に支持するノズルヘッドを有し、該ノズルヘッドを水平方向に移動させることにより、部品を位置決めして取付ける部品取付装置において、前記ノズルの回転と上下動を駆動する回転形モータと円筒形リニアモータとを前記ノズルヘッドにおける前記ノズルと同軸上に設け、これらモータの可動子と前記ノズルとが一体となって回転あるいは上下動する構成としたことを特徴とする部品取付装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、電子回路基板の製造工程において、半導体チップ等の電子部品を基板に取付けるのに用いられる部品取付装置に関する。

【0002】

【従来の技術】一般に、電子回路基板の製造工程において、基板上に半導体チップ等の電子部品を位置決めして取付ける装置として、部品を真空吸着するノズルと、このノズルヘッドを回転自在かつ上下動自在に支持するノズルヘッドとを有し、前記ノズルを上下させかつ回転させ、また、前記ノズルヘッドを前後左右に移動させることにより、部品を位置決めして取付ける部品取付装置が知られている。

【0003】そして、従来、この種の部品取付装置にあっては、ノズル回転用のモータとノズル上下動用のモータとをノズル軸とは平行であるが同軸上にない位置に配していた。また、ノズル回転用モータの出力軸はタイミングベルト等でノズル軸に連結されてこれにより駆動力が伝達される構成とされ、一方、ノズル上下動用モータの出力軸の回転はボールねじ等で直線運動に変換されてノズル軸に伝えられてノズル軸が上下動する構成となっていた。

【0004】

【発明が解決しようとする課題】このため、各モータからノズル軸までの動力の伝達系は、多数の伝達要素により構成されることになり、しかも、剛性が比較的低くかつパックラッシュが大きいタイミングベルトやボールねじが使用されるため、前記伝達系の固有振動数が低く応答性に限界があるという問題があった。また、これら各伝達要素の伝達誤差(ピッチ誤差、パックラッシュ)が集積してノズルの位置決め誤差となつて現れるので、位置決め精度の向上にも限界があった。

【0005】さらに、モータをノズル軸と平行にずらした位置に配しているため、ノズルヘッドの設置面積(水平方向の大きさ)が大きくかつ高重量となり、特にノズルを複数個持つ多ヘッド方式にすると、ノズルヘッドの前後左右の移動応答性が下がるとともに、ノズルヘッドの有効な動作範囲が減少するという問題があった。

【0006】

10

【0007】

【作用】上記構成であると、ノズルの回転又は上下動を駆動する各モータからノズルまでの動力の伝達系は、少數の伝達要素により構成することができ、しかも剛性が比較的低くかつパックラッシュが大きいタイミングベルトやボールねじは不要となる。このため、前記伝達系の固有振動数を高めてノズルの回転又は上下動の応答性を従来の限界を越えて向上させることができるとともに、前記伝達要素の伝達誤差を低減して位置決め精度も向上させることができる。また、各モータをノズルと同軸上に配設する構成であるため、ノズルヘッドの大きさが特に水平方向に小型になりかつ軽量になる。

【0008】

【実施例】以下、本発明の第1実施例を図1、図2に基づいて説明する。図1は本発明を適用した部品取付装置の斜視図であり、図中符号1は基台、符号2は各部の動作を制御するコントローラ、符号3は部品を着脱自在に保持して鉛直軸(θ軸)回りに回転させるとともに上下方向(Z軸方向)に移動させるノズルヘッド(本例では2ヶ設置)、符号4はノズルヘッド3をXY方向(水平方向)に移動させるXYロボット、符号5は操作盤を示している。

【0009】図2は、ノズルヘッド3の縦断面図である。このノズルヘッド3は、部品を吸着するためのノズル19を有し、このノズル19と同軸上に回転形モータ6と円筒形リニアモータ11とが配設されたもので、これらモータ6、11により前記ノズルの回転あるいは上下動が駆動される構成とされたものである。

【0010】この場合、回転形モータ6は、永久磁石同期形サーボモータであり、これは、永久磁石(可動子)7、コイル(固定子)8、回転軸9、回転角センサ10、ケース6aよりなる。永久磁石7は回転軸9に固定され、回転軸9はモータ6の外枠を構成するケース6aに軸受6b、6bにより軸支されている。この回転形モータ6は、回転角センサ10より出力される回転軸9のθ軸回りの回転角に応じた信号に基づき、コントローラ2内のサーボコントローラによって制御されて、任意の角度に回転軸9を回転せるものである。なお、回転軸9は、中空軸とされ、ケース6aからそれぞれ上下に突出するその両端のうち、先端(下端)が円筒形リニアモ

50

BEST AVAILABLE COPY

(3)

特開平5-82998

3

ータ11内に伸びている。

【0011】また、円筒形リニアモータ11は、コイル可動形リニアサーボモータであり、これは、ヨーク(固定子)12、永久磁石13、コイル(可動子)14、変位センサ15、直動軸16(ノズル軸)、リニアブッシュ17、ケース11aよりなり、回転形モータ6の下側に配備されているものである。この円筒形リニアモータ11の外枠であるケース11aは、前記回転形モータ6のケース6aの下端に固定されたもので、これらケース6aと11aは一体に形成されていてもよい。

【0012】ここで、直動軸16は、前記回転軸9の下端側に連なるように配されて、リニアブッシュ17を介してケース11aに回転かつ上下動自在に支持されているものである。この直動軸16は、中空状に形成されたもので、その基端(上端)はポールスライイン18により前記回転軸9の先端に連結され、その先端には前記ノズル19が設けられている。また、直動軸16の軸方向の略中央部の外周には、永久磁石13の内側に伸びる冠状部16aが形成され、この冠状部16aの先端にコイル14が固定されている。さらに、直動軸16内には、前記回転軸9の先端が嵌合する中径部16bが形成され、この中径部16bの内面に取付けられたOリング20によりこの嵌合部が密封される構成となっている。

【0013】また、変位センサ15は、前記冠状部16aを介してコイル14の上下方向の変位のみを検出し、コイル14の鉛直軸回りの回転に対しては出力値が変化しないものである。なお、円筒形リニアモータ11も、この変位センサ15の出力信号をフィードバック信号としてコントローラ2内のサーボコントローラによって制御され、直動軸16を上下方向の任意の位置に移動させるものである。

【0014】以上のように構成された部品取付装置において、回転形モータ6が作動して回転軸9が回転すると、この回転はポールスライイン18により直動軸16に伝えられるので、この直動軸16、コイル14及びノズル19が回転軸9とともに鉛直軸回りに回転することになる。一方、円筒形リニアモータ11が作動すると、前記鉛直軸回りに回転しているといふにかかわらず、直動軸16は、その中径部16bの嵌合部あるいはポールスライイン18を介した連結部において回転軸9に対して摺動しつつ上下動する。そして、このように直動軸16が回転軸9に対して摺動しても、これら直動軸16と回転軸9の内部はOリング20によって気密を維持して連通した状態にあるので、回転軸9の基端部を吸引装置あるいは加圧装置のいずれかに逐一的に接続してやれば、ノズル19の先端に部品を吸着し、あるいは吸着した部品を離脱させることができる。

【0015】したがって、上記の如く構成された部品取付装置によれば、以下のようにして従来同様部品を位置決めして電子回路基板等への搭載が行える。まず、XY

10 ロボット4でノズルヘッド3を水平方向における吸着位置へ移動させ、ノズル19を部品の吸着角度(鉛直軸回りの角度)に合うよう回転形モータ6で回転させ、さらに吸着高さになるよう円筒形リニアモータ11で上下動させる。その後回転軸9の内部を減圧しノズル19で部品を吸着する。そして、ノズル19を上方に上げ、搭載時の部品角度にノズル19を回転させ、XYロボット4でノズル3を搭載位置へ移動させて、ノズル3を搭載高さに下ろし回転軸9内部の圧力を上げ部品をノズル19から離せば、部品を搭載することができる。

【0016】そして、この部品取付装置であると、回転形モータ6からノズル19(直動軸16)への駆動力の伝達系を構成する伝達要素は、ポールスライイン18のみであり、また、円筒形リニアモータ11からノズル19(直動軸16)への駆動力の伝達は、直結により行われている。このため、これら伝達系における伝達誤差が極めて小さく、上記部品搭載時においては、ノズル19の回転あるいは上下動の位置決めは極めて精度高く行うことができるという効果が奏される。

20 【0017】以上説明した第1実施例は、ノズルヘッド3において、各モータ6、11自体(すなわち、ケース6a、11a等)が回転せず、回転軸9が上下動しないという特徴を有するものであるが、本発明はこれに限られず各種の態様があり得る。以下、ノズルヘッドの構成の他の例を説明する。なお、ノズルヘッド以外の構成は上記第1実施例と同様でよい。

【0018】図3は、本発明の第2実施例のノズルヘッド3Aの構成を示している。このノズルヘッド3Aは、やはり、前記回転形モータ6あるいは円筒形リニアモータ11とそれぞれ同様な構成の回転形モータ21あるいは円筒形リニアモータ22をノズル軸24と同軸上に配設してなるもので、第1実施例と同様にノズル軸24の基端に回転軸23の先端をOリング26で密封して嵌合させたものであるが、以下の特徴を有する。

【0019】すなわち、各モータ21、22のケース21a、22aは互いに分離して独立しており、回転軸23の先端側外周がキー24aによりケース22aに相対回転を拘束された状態で連結されているとともに、ノズル軸24がポールスライイン25を介して摺動のみ可能な状態でケース22aに支持された構成とされて、ノズル回転時には円筒形リニアモータ22全体が回転軸23又はノズル軸24とともに回転する点に特徴を有する。

【0020】この第2実施例の構成であると、前述した第1実施例と同様の効果に加え、ノズル軸24が円筒形リニアモータ22の固定子である永久磁石や変位センサに対して回転しないので、回転することにより発生する軸力や変位センサの出力が変化するような種類のモータも円筒形リニアモータ22として使用できるという利点がある。

50 【0021】図4は、本発明の第3実施例のノズルヘッ

5

ド3Bの構成を示している。この、ノズルヘッド3Bは、やはり、前記回転形モータ6、円筒形リニアモータ11と同様な構成の回転形モータ27、円筒形リニアモータ28をノズル軸30と同軸上に配設してなるもので、第2実施例と同様に円筒形リニアモータ28全体がノズル軸30とともに回転するものであるが、以下の特徴を有する。

【0022】すなわち、ノズル軸30の基端が、回転形モータ27の中空な回転軸29の内部を隙間を有して貫通させられ、回転形モータ27の上方に突出して、吸引装置等に接続される接続部を構成している点である。そして、ノズル軸30は、先端がポールスブライン31を介して円筒形リニアモータ28のケース28aに支持され、基端がリニアブッシュ32を介して回転形モータ27のケース27aに支持されて、回転及び上下動するようになっている。

【0023】この第3実施例の構成であると、前記第1実施例あるいは第2実施例と異なり、回転軸とノズル軸との相互間における摺動がないという利点があり、また、上述のようにノズル軸30は上下両方に突出し、この上下両端がそれぞれ上下動あるいは回転するため、ノズルヘッドを上下を反対にして使用することも可能であるという効果がある。

【0024】図5は、本発明の第4実施例のノズルヘッド3Cの構成を示している。このノズルヘッド3Cは、回転形モータ6と同様な回転形モータ33の内側に、円筒形リニアモータ11と同様な円筒形リニアモータ34を配置することにより、これらモータ33、34をノズル軸35と同軸上に配設したものである。すなわち、円筒形リニアモータ34のケース34aが回転形モータ33のケース33aの内側に軸支され、回転形モータ33の回転子である永久磁石はこのケース34aの外周に固定されている。そして、ノズル軸35は、その先端側がポールスブライン36を介して、また基端側がリニアブッシュ37を介して、ケース34aに支持された構成とされている。

【0025】この第4実施例の構成であると、ノズル軸35とともに円筒形リニアモータ34全体が回転し、かつノズル軸35が基端側においても回転かつ上下動するので、前記第3実施例と同様の効果を奏すとともに、各モータが同芯円状に配されるからノズルヘッドの上下方向の長さが短くできるという利点がある。

【0026】図6は、本発明の第5実施例のノズルヘッド3Dの構成を示している。このノズルヘッド3Dは、回転形モータ又は円筒形リニアモータとして永久磁石形ステップモータを使用し、これら回転形モータ38と円筒形リニアモータ39とを共通のケース38a内の上下に形成し、かつ、これらモータ38、39の出力軸（回転軸又は直動軸）をノズル軸52と一体に構成したものである。

6

【0027】すなわち、基端及び先端がケース38aにリニアブッシュ53、54で支持されたノズル軸52の外周であって、ケース38a内における上方に、軸方向の回転子歯45からなる回転形モータ38の回転子44が形成され、ケース38a内における下方には、周方向の回転子歯51からなる円筒形リニアモータ39の回転子50が形成されている。そして、ケース38aの内面であって、回転子44に対応する位置には、回転形モータ38の固定子を構成する励磁コイル40、永久磁石41、磁極歯42が設けられ、また、回転子50に対応する位置には、円筒形リニアモータ39の固定子を構成する励磁コイル46、永久磁石47、磁極歯48が設けられている。

【0028】また、ケース38aの内面であって、回転形モータ38又は円筒形リニアモータ39の各固定子の近傍には、各回転子44、50にそれぞれ対向する回転角センサ43あるいは変位センサ49が設けられ、各モータ38、39はこれらセンサ43、49の出力信号をフィードバック信号とし閉ループ制御することにより高精度なサーボモータとして作動する構成となっている。

【0029】なお、回転角センサ43の先端には回転子歯45に対応する歯が形成されており、このセンサ43は、回転子歯45間のバーミアンス変化で回転角を検出するものとされ、回転子歯45の上下方向の変化に対しては不感であり、また、歯間の中間位置も検出できるものである。また、変位センサ49の先端にも可動子歯51に対応する歯が形成され、この変位センサ49も回転角センサ43と同様にノズル軸52の回転には不感で上下動の変位のみを検出する構成とされている。

【0030】この第5実施例の構成であると、ノズル軸52は、回転形モータ38が作動するとこの回転形モータ38の出力軸として回転し、円筒形リニアモータ39が作動するとこの円筒形リニアモータ39の出力軸として上下動する。このため、ノズル軸52の先端のノズルに吸着された部品は、各モータの出力軸に直結した状態で回転あるいは上下動させられて極めて高精度に位置決めされる。すなわち、この例であると、各モータの出力をノズルの動きとして伝達するための伝達要素は皆無になるので、回転についても上下動についても伝達誤差はゼロになるのである。なお、この第5実施例であると、前記第4実施例の場合と同様に、摺動部が無くかつ上下を逆にして使用することもできるという効果もある。

【0031】なお、以上五つのノズルヘッドの態様を説明したが、これらは、同様の思想のもとにさらに変形して構成してもよい。まず、ノズルヘッド3、3A、3B、3Dにあっては、回転形モータを下側に円筒形リニアモータを上側に配置することもできる。また、各モータの種類は上記各例に限られず、例えば、ノズルヘッド3、3A、3B、3Cにノズルヘッド3Dと同様なステップモータを用いてもよい。また、ノズルヘッド3Dに

BEST AVAILABLE COPY

(5)

特開平5-82998

7

おいて、外側に円筒形リニアモータを、内側に回転形モータを設けてよい。

【0032】

【発明の効果】本発明の部品取付装置であると、ノズルの回転又は上下動を駆動する各モータからノズルまでの駆動力の伝達系は、少数の伝達要素により構成することができ、しかも剛性が比較的低くかつパックラッシが大きいタイミングベルトやボールねじは不要となる。また、各モータをノズルと同軸上に配備する構成であるため、ノズルヘッドの大きさが特に水平方向に小型になりかつ軽量になる。このため、以下のような各種の効果が奏される。

(1) ノズルの回転及び上下動の駆動系の剛性が高くなり、従来の限界を越えて部品搭載の高速化が可能になる。

(2) 部品の位置決め精度が向上する。

(3) ノズルヘッドが小形軽量であるので、ノズルヘッドを移動させるXYロボットの搭載能力が低くても多数のノズルヘッドが搭載でき、作業効率が向上する。

(4) 複数のノズルヘッドを設けた場合に、各ノズルヘッドの間隔を狭くできるので、小形基板においても同時搭

載が可能となる。

(5) ノズルヘッドにおいて保守点検を必要とする構成部品が少ないので信頼性が高くメンテナンスも容易である。

【図面の簡単な説明】

【図1】部品取付装置全体の斜視図である。

【図2】第1実施例に係るノズルヘッドの縦断面図である。

【図3】第2実施例に係るノズルヘッドの縦断面図である。

【図4】第3実施例に係るノズルヘッドの縦断面図である。

【図5】第4実施例に係るノズルヘッドの縦断面図である。

【図6】第5実施例に係るノズルヘッドの縦断面図である。

【符号の説明】

3, 3A~3D ノズルヘッド

6, 21, 27, 33, 38 回転形モータ

11, 22, 28, 34, 39 円筒形リニアモータ

19 ノズル

【図1】

【図2】

【図4】

(6)

特開平5-82998

【図3】

【図5】

【図6】

