Topics in Computer Graphics Chap 6: Bézier Curve Topics fall, 2011

University of Seoul School of Computer Science Minho Kim

Table of contents

Degree Elevation

Repeated Degree Elevation

The Variation Diminishing Property

Degree Reduction

Nonparametric Curves

Cross Plots

Integrals

The Bézier Form of a Bézier Curve

The Weierstrass Approximation Theorem

Formulas for Bernstein Polynomials

Degree Elevation

- What if we want to get more flexibility while keeping the shape of the current curve? → Degree elevation required
- Monomial form case?
- Can be used to make several curves have the same degree
- Useful for data transfer between different CAD/CAM or graphics systems

Degree Elevation: Algebraic Proof

$$(1-t)B_i^n(t) = \frac{n+1-i}{n+1}B_i^{n+1}(t)$$

$$tB_i^n(t) = \frac{i+1}{n+1}B_{i+1}^{n+1}(t)$$

$$B_i^n(t) = \frac{n+1-i}{n+1}B_i^{n+1}(t) + \frac{i+1}{n+1}B_{i+1}^{n+1}(t)$$

$$\mathbf{x}(t) = (1 - t)\mathbf{x}(t) + t\mathbf{x}(t)$$

$$= \sum_{i=0}^{n} \frac{n+1-i}{n+1} \mathbf{b}_{i} B_{i}^{n+1}(t) + \sum_{i=0}^{n} \frac{i+1}{n+1} \mathbf{b}_{i} B_{i+1}^{n+1}(t)$$

$$= \sum_{i=0}^{n+1} \left(\frac{i}{n+1} \mathbf{b}_{i-1} + \left(1 - \frac{i}{n+1}\right) \mathbf{b}_{i}\right) B_{i}^{n+1}(t)$$

$$=: \sum_{i=0}^{n+1} \mathbf{b}_{i}^{(1)} B_{i}^{n+1}(t)$$

Degree Elevation: Proof Using Blossoms

$$\mathbf{b}^{(1)}[t_1,\ldots,t_{n+1}] = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{b}[t_1,\ldots,t_{n+1}|t_j]$$

- $oldsymbol{b}[t_1,\ldots,t_{n+1}|t_j]$: t_j is omitted from $oldsymbol{b}[t_1,\ldots,t_{n+1}]$.
- Why? → Definition of a blossom

$$\mathbf{b}_{i}^{(1)} = \mathbf{b}^{(1)}[0^{\langle n+1-i\rangle}, 1^{\langle i\rangle}]$$
$$= \frac{1}{n+1} (i\mathbf{b}_{i-1} + (n+1-i)\mathbf{b}_{i})$$

Repeated Degree Elevation

- ▶ Degree elevation: $P \rightarrow \mathcal{E}P$
- After r degree elevation, $\mathcal{E}^r\mathbf{P}$ has the vertices $\{\mathbf{b}_i^{(r)}\}_{i=0}^{n+r}$ where

$$\mathbf{b}_{i}^{(r)} = \sum_{j=0}^{n} \mathbf{b}_{j} \binom{n}{j} \frac{\binom{r}{i-j}}{\binom{n+r}{i}}$$

$$\lim_{r \to \infty} \mathcal{E}^r \mathbf{P} = \mathcal{B} \mathbf{P} \quad \leftarrow \lim_{i/(n+r) \to t} \frac{\binom{r}{i-j}}{\binom{r+n}{i}} = t^j (1-t)^{n-j}$$

- $\mathcal{E}^r\mathbf{P}$ converges to the Bézier curve $\mathcal{B}\mathbf{P}$.
- But converges too slowly.

The Variation Diminishing Property

- The curve $\mathcal{B}\mathbf{P}$ has no more intersections with any plane than does the polygon \mathbf{P} .
- Proof
 - 1. Degree elevation is a piecewise linear interpolation.
 - 2. Piecewise linear interpolation is variation diminishing. (Sec 3.2)
 - \rightarrow Each $\mathcal{E}^r\mathbf{P}$ has fewer intersections than $\mathcal{E}^{r-1}\mathbf{P}$.
 - 3. Since $\mathcal{E}^r \mathbf{P}$ converges to the curve, the proof is done.
- A convex polygon generates a convex curve. How about the inverse?

Degree Reduction

- Problem: Can we write a given curve of degree n + 1 as one of degree n?
- ▶ In general, exact degree reduction is not possible.
 - → approximate method
- New problem: Given a Bézier curve with control vertices $\{\mathbf{b}_i^{(1)}\}_{i=0}^{n+1}$, can we find a Bézier curve with control vertices $\{\mathbf{b}_i\}_{i=1}^n$ that approximates the first curve in a "reasonable" way?

$$\begin{bmatrix} 1 & & & & & \\ * & * & & & & \\ & * & * & & & \\ & & & \ddots & & \\ & & & & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b}_0 \\ \vdots \\ \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \mathbf{b}_0^{(1)} \\ \vdots \\ \mathbf{b}_{n+1}^{(1)} \end{bmatrix}$$

Degree Reduction (cont'd)

- ► $MB = B^{(1)}$, $M \in \mathbb{R}^{(n+2)\times(n+1)}$ → Not solvable.
- Can be solved after converted to

$$(M^T M) B = M^T B^{(1)}$$

- Normal equation
- Guarantees that B is optimal in a least square sense.
- Problem? $\mathbf{b}_0 = \mathbf{b}_0^{(1)}$ and $\mathbf{b}_n = \mathbf{b}_{n+1}^{(1)}$ are not guaranteed.

Nonparametric Curves

- Functional curves: y = f(x)
- How can we express a functional curve in parametric form?

$$\mathbf{b}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} t \\ f(t) \end{bmatrix}$$

▶ If f is a polynomial,

$$f(t) = b_0 B_0^n(t) + \dots + b_n B_n^n(t), \quad b_i \in \mathbb{R} \text{ for } i = 0, \dots, n.$$

How to find the control polygon?

$$\mathbf{b}(t) = \sum_{j=0}^{n} \begin{bmatrix} j/n \\ b_j \end{bmatrix} B_j^n(t)$$

- \rightarrow The control polygon is given by the points $\{(j/n,b_j)\}_{j=0}^n$.
- f(t) is called a *Bézier function*.
- $\{(j/n,b_i)\}_{i=0}^n$ are called *Bézier ordinates*.
- $\{j/n\}_{i=0}^n$ are called the *abscissae*.

Cross Plots

 For a 2D Bézier curve, plot each coordinate function as a Bézier function.

Integrals

▶ The derivative of a polynomial function b(t):

$$\dot{b}(t) = n \sum_{i=0}^{n-1} \Delta b_i B_i^{n-1}(t)$$

The indefinite integral (or antiderivative) of a polynomial b(t) in Bernstein form defined by the ordinates $\{b_i\}_{i=0}^n$ is the polynomial B(t) defined by the ordinates

$$\frac{1}{n+1}[c,c+b_0,c+b_0+b_1,\ldots,c+\sum_{i=0}^n b_i]$$

$$\int_0^1 b(t)dt = B(1) - B(0) = \frac{1}{n+1} \sum_{i=0}^n b_i$$

- Can be obtained by setting $b_i = \delta_{i,j}$.
- All basis functions B_i^n have the same definite integral.

The Bézier Form of a Bézier Curve

The basis functions Bézier used:

$$\mathbf{b}^n(t) = \sum_{j=0}^n \mathbf{c}_j F_j^n(t)$$

• F_i^n are polynomials that obey the recursion

$$F_i^n(t) = (1-t)F_i^{n-1}(t) + tF_{i-1}^{n-1}(t)$$

$$F_0^0(t) = 1(t), \quad F_{r+1}^r(t) = 0(t), \quad F_{-1}^r(t) = 1(t)$$

- $\quad \textbf{Explicit form: } F_i^n = \sum_{i=i}^n B_j^n$
- $F_0^n \equiv 1(t)$ for all n
 - → Not a barycentric combination!
 - → How can it be defined then?

The Bézier Form of a Bézier Curve (cont'd)

- $\mathbf{c}_0 = \mathbf{b}_0 \in \mathbb{E}^3$ and $\mathbf{c}_j = \Delta \mathbf{b}_{j-1} \in \mathbb{R}^3$ for j > 0
- $F_i^n(t)$ is NOT symmetric w.r.t. t and 1 t.
- ▶ The value of x(1) is the sum of all errors in the c_i .

The Weierstrass Approximation Theorem

- 1. $\mathbf{c}(t)$: parametric curve defined over [0, 1]
- 2. For some fixed n, sample $\mathbf{c}(t)$ at parameter values i/n.
- 3. Define a Bézier curve $\mathbf{x}_n(t)$ by control points $\{\mathbf{c}(i/n)\}_{i=0}^n$:

$$\mathbf{x}_n(t) = \sum_{i=0}^n \mathbf{c} \left(\frac{i}{n}\right) B_i^n(t)$$

" $\mathbf{x}(t)$ is the n^{th} degree Bernstein-Bézier approximation to \mathbf{c} ."

4. Weierstrass approximation theorem:

$$\lim_{n\to\infty} \mathbf{x}_n(t) = \mathbf{c}(t)$$

- Not practical (too large n required)
- Every curve may be approximated arbitrarily closely by a polynomial curve.

Formulas for Bernstein Polynomials

A Bernstein polynomial is defined by

$$B_i^n(t) = \begin{cases} \binom{n}{i} t^i (1-t)^{n-i} & \text{if } i \in [0,n], \\ 0 & \text{else.} \end{cases}$$

• Relationship with the power basis $\{t^i\}$

$$t^{i} = \sum_{j=i}^{n} \frac{\binom{j}{i}}{\binom{n}{i}} B_{j}^{n}(t)$$

and

$$B_i^n(t) = \sum_{j=i}^n (-1)^{j-i} \binom{n}{j} \binom{j}{i} t^j.$$

Formulas for Bernstein Polynomials (cont'd)

Recursion:

$$B_i^n(t) = (1-t)B_i^{n-1}(t) + tB_{i-1}^{n-1}(t)$$

Subdivision:

$$B_i^n(ct) = \sum_{j=0}^n B_i^j(c) B_j^n(t)$$

Derivative:

$$\frac{d}{dt}B_i^n(t) = n\left[B_{i-1}^{n-1}(t) - B_i^{n-1}(t)\right]$$

Integral:

$$\int_0^t B_i^n(x)dx = \frac{1}{n+1} \sum_{j=i+1}^{n+1} B_j^{n+1}(t)$$
$$\int_0^1 B_i^n(x)dx = \frac{1}{n+1}$$

Formulas for Bernstein Polynomials (cont'd)

Degree elevation formulas:

$$(1-t)B_i^n(t) = \frac{n+1-i}{n+1}B_i^{n+1}(t)$$

$$tB_i^n(t) = \frac{i+1}{n+1}B_{i+1}^{n+1}(t)$$

$$B_i^n(t) = \frac{n+1-i}{n+1}B_i^{n+1}(t) + \frac{i+1}{n+1}B_{i+1}^{n+1}(t)$$

Product:

$$B_{i}^{m}(u)B_{j}^{n}(u) = \frac{\binom{m}{i}\binom{n}{j}}{\binom{m+n}{i+j}}B_{i+j}^{m+n}(u)$$