Perancangan Sistem Informasi Untuk *Maintain* Data Referensi Model Pesawat

SOFTWARE TEST PLAN

Version: V.1.4

PROGRAM STUDI D III SISTEM INFORMASI JURUSAN TEKNOLOGI INFORMASI DAN KOMPUTER POLITEKNIK NEGERI SUBANG 2024

Revision History

Date	Version	Description	Author
10/06/2024	V.1.1	Perubahan test item,	Fadlla Mubarak
		Features To Be Tested	
12/06/2024	V.1.2	Penambahan approach	Fadlla Mubarak
14/06/2024	V.1.3	Penambahan approach	Fadlla Mubarak
16/06/2024	V.1.4	Revisi STP	Fadlla Mubarak

1 INTRODUCTION

Software Test Plan (STP) dirancang untuk menentukan ruang lingkup, pendekatan, sumber daya dan jadwal semua kegiatan pengujian. Dalam Sistem Informasi Untuk Maintain Data Referensi Model Pesawat yang dirancang. Dokumen ini akan menguraikan metode, sumber daya yang diperlukan, serta jadwal yang terlibat dalam proses pengujian untuk memastikan bahwa perancangan sistem beroperasi sesuai dengan spesifikasi teknis dan kebutuhan bisnis pengguna. Dalam perancangan website ini saya akan menggunakan beberapa sistem pengujian yaitu test case.

1.1 Objective

Tujuan utama dari Rencana Pengujian Sistem Informasi Untuk *Maintain* Data Referensi Model Pesawat ini adalah untuk memverifikasi dan memvalidasi bahwa sistem yang dikembangkan memenuhi semua persyaratan fungsional, keamanan, dan kinerja yang telah ditetapkan. Rencana ini bertujuan untuk:

- 1. Mengidentifikasi komponen perangkat lunak yang akan di test
- 2. Membuat dokumentasi kebutuhan
- 3. Mengidentifikasi kebutuhan sumber daya

Pengujian sistem ini akan mencakup semua aspek fungsional utama dari sistem, termasuk manajemen data, keamanan data, serta antarmuka pengguna yang efisien dan intuitif untuk semua pengguna sistem, termasuk staf EDM dan PE. Tujuan ini akan dicapai melalui serangkaian pengujian yang terstruktur, yang meliputi pengujian unit, pengujian sistem, dan pengujian penerimaan pengguna.

1.2 Testing Strategy

Strategi pengujian untuk Sistem Informasi Untuk *Maintain* Data Referensi Model Pesawat di PT Dirgantara Indonesia dirancang untuk memastikan bahwa sistem ini *robust*, efisien, dan dapat diandalkan. Strategi ini mencakup langkahlangkah sistematis untuk menguji sistem dari berbagai sudut, meliputi aspek fungsionalitas, keamanan, dan kegunaan. Berikut adalah komponen utama dari strategi pengujian ini:

1. *Item* yang akan diuji

Dalam rangka memastikan keandalan dan efektivitas Sistem Informasi Untuk *Maintain* Data Model Pesawat yang dikembangkan untuk PT Dirgantara Indonesia, berbagai komponen sistem akan diuji secara menyeluruh. Pengujian ini meliputi modul untuk manajemen data referensi model pesawat, *Engineering Bill of Materials* (EBOM) dan *Manufacturing Bill of Materials* (MBOM). Khususnya, fokus akan diberikan pada fungsi input, pengeditan, penghapusan, serta pencarian dan penyaringan data dalam ketiga modul tersebut, untuk memastikan sistem dapat menangani operasi data dengan lancar dan efisien.

Pengujian juga akan meluas ke antarmuka pengguna, menilai kejelasan, intuitivitas, dan responsivitasnya di berbagai perangkat dan browser untuk memastikan bahwa semua pengguna dapat berinteraksi dengan sistem dengan mudah. Kinerja sistem juga akan diuji, mengukur waktu respon dan kemampuan sistem untuk mengelola beban kerja yang tinggi tanpa kehilangan stabilitas.

Terakhir, akan dilakukan pengujian penerimaan pengguna untuk memastikan bahwa sistem memenuhi kebutuhan operasional PT Dirgantara Indonesia dan mendapatkan kepuasan dari pengguna akhir. Pengujian ini akan mencakup evaluasi kesesuaian fungsional sistem dan umpan balik langsung dari pengguna tentang pengalaman mereka. Hasil dari semua pengujian ini akan memberikan gambaran komprehensif tentang kesiapan sistem untuk diterapkan secara efektif dalam lingkungan produksi nyata.

2. Fitur yang akan diuji

Dalam melakukan operasional di PT Dirgantara Indonesia, sistem informasi Untuk *Maintain* data model pesawat yang di rancang akan menjalani serangkaian pengujian ekstensif untuk memastikan fungsionalitas dan keandalan fitur-fiturnya. Pengujian ini akan mencakup berbagai aspek kritis dari sistem, termasuk modul untuk manajemen data referensi model pesawat, *Engineering Bill of Materials* (EBOM) dan *Manufacturing Bill of Materials* (MBOM).

Pertama, fitur pengelolaan data referensi model pesawat akan diuji untuk memverifikasi kemampuan sistem dalam menerima dan memproses *input* data dengan benar, termasuk validasi untuk menghindari kesalahan *input*. Fungsi *add, update, delete* dan *import excel* juga akan diuji untuk memastikan efisiensi dalam memperbarui data serta keakuratan penyesuaian yang dilakukan oleh pengguna. Penghapusan data akan diuji untuk memastikan bahwa data yang dihapus tidak dapat dipulihkan, sesuai dengan kebijakan keamanan data. Selain itu, kemampuan sistem dalam pencarian dan penyaringan data model akan dievaluasi untuk memastikan bahwa pengguna dapat dengan mudah menavigasi dan menemukan informasi yang relevan.

Kedua, fitur pengelolaan data EBOM akan diuji untuk memverifikasi kemampuan sistem dalam menerima dan memproses *input* data dengan benar, termasuk validasi untuk menghindari kesalahan *input*. Fungsi *add, update, delete* dan *import excel* juga akan diuji untuk memastikan efisiensi dalam memperbarui data serta keakuratan penyesuaian yang dilakukan oleh pengguna. Penghapusan data akan diuji untuk memastikan bahwa data yang dihapus tidak dapat dipulihkan, sesuai dengan kebijakan keamanan data. Selain itu, kemampuan sistem dalam pencarian dan penyaringan data EBOM akan dievaluasi untuk memastikan bahwa pengguna dapat dengan mudah menavigasi dan menemukan informasi yang relevan.

Ketiga, fitur pengelolaan data MBOM akan diuji untuk memverifikasi kemampuan sistem dalam menerima dan memproses *input* data dengan benar, termasuk validasi untuk menghindari kesalahan *input*. Fungsi *add, update, delete* dan *import excel* juga akan diuji untuk memastikan efisiensi dalam memperbarui data serta keakuratan penyesuaian yang dilakukan oleh

pengguna. Penghapusan data akan diuji untuk memastikan bahwa data yang dihapus tidak dapat dipulihkan, sesuai dengan kebijakan keamanan data. Selain itu, kemampuan sistem dalam pencarian dan penyaringan data MBOM akan dievaluasi untuk memastikan bahwa pengguna dapat dengan mudah menavigasi dan menemukan informasi yang relevan.

Keempat, fitur *view* data referensi model pesawat akan diuji untuk memverifikasi kemampuan sistem dalam melihat data referensi model pesawat dengan benar. Fungsi *view detail* data referensi model pesawat juga akan diuji untuk memastikan efisiensi dalam melihat data model yang dilakukan oleh pengguna. Selain itu, kemampuan sistem dalam pencarian data model akan dievaluasi untuk memastikan bahwa pengguna dapat dengan mudah menavigasi dan menemukan informasi yang relevan.

Kelima, fitur *view* data EBOM akan diuji untuk memverifikasi kemampuan sistem dalam melihat data EBOM dengan benar. Fungsi *view detail* data EBOM juga akan diuji untuk memastikan efisiensi dalam melihat data model yang dilakukan oleh pengguna. Selain itu, kemampuan sistem dalam pencarian data EBOM akan dievaluasi untuk memastikan bahwa pengguna dapat dengan mudah menavigasi dan menemukan informasi yang relevan.

Keenam, fitur *view* data MBOM akan diuji untuk memverifikasi kemampuan sistem dalam melihat data MBOM dengan benar. Fungsi *view detail* data MBOM juga akan diuji untuk memastikan efisiensi dalam melihat data model yang dilakukan oleh pengguna. Selain itu, kemampuan sistem dalam pencarian data MBOM akan dievaluasi untuk memastikan bahwa pengguna dapat dengan mudah menavigasi dan menemukan informasi yang relevan.

Ketujuh, fitur pengelolaan data MBOM akan diuji untuk memverifikasi kemampuan sistem dalam menerima dan memproses *input* data dengan benar, termasuk validasi untuk menghindari kesalahan *input*. Fungsi *add, update, delete* dan *import excel* juga akan diuji untuk memastikan efisiensi dalam memperbarui data serta keakuratan penyesuaian yang dilakukan oleh pengguna. Penghapusan data akan diuji untuk memastikan bahwa data yang dihapus tidak dapat dipulihkan, sesuai dengan kebijakan keamanan data. Selain

itu, kemampuan sistem dalam pencarian dan penyaringan data MBOM akan dievaluasi untuk memastikan bahwa pengguna dapat dengan mudah menavigasi dan menemukan informasi yang relevan.

Aspek keamanan sistem juga akan mendapatkan perhatian khusus, dengan pengujian yang meliputi autentikasi pengguna untuk memastikan bahwa hanya personel yang berwenang yang dapat mengakses sistem. Keamanan data, termasuk enkripsi dan transmisi data, akan diuji untuk memastikan bahwa informasi sensitif dilindungi secara efektif. Pengujian penetrasi juga akan dilakukan untuk mengidentifikasi dan mengatasi potensi kerentanan keamanan.

Antarmuka pengguna juga akan dievaluasi untuk usability dan aksesibilitas, memastikan bahwa semua pengguna, terlepas dari peran atau kemampuan teknis, dapat berinteraksi dengan sistem dengan mudah. Responsivitas antarmuka akan diuji pada berbagai perangkat dan ukuran layar untuk memastikan pengalaman pengguna yang konsisten dan efisien.

Terakhir, fungsionalitas laporan sistem akan diuji untuk memverifikasi kemampuan dalam menghasilkan laporan yang akurat dan informatif. Fungsi ekspor data ke berbagai format eksternal juga akan diuji untuk mendukung kebutuhan analisis data lanjutan.

Pengujian komprehensif ini dimaksudkan untuk memastikan bahwa perancangan sistem informasi pengelolaan data model pesawat berfungsi sesuai harapan dan mendukung referensi untuk pengimplementasian sistem yang bisa memenuhi kebutuhan PT Dirgantara Indonesia dalam operasi sehariharinya

3. Fitur yang tidak akan diuji

Dalam proses Perancangan Sistem Informasi Pengelolaan Data Model Pesawat untuk PT Dirgantara Indonesia, beberapa fitur dan fungsi telah ditetapkan untuk tidak diuji pada fase pengujian saat ini. Keputusan ini didasarkan pada prioritas, sumber daya, dan dampak langsung terhadap operasional utama perusahaan.

Pertama, Optimalisasi Kinerja Jaringan tidak akan diuji secara mendalam. Fokus pengujian akan lebih pada fungsionalitas sistem daripada infrastruktur jaringan. Integrasi dengan Platform Cloud Eksternal juga tidak termasuk dalam ruang lingkup pengujian. Selanjutnya, Pengujian Beban Ekstrem yang mensimulasikan kondisi operasional di luar batas normal tidak akan dilakukan. Pengujian akan berfokus pada skenario penggunaan yang realistis tanpa mendorong sistem ke batas ekstrem.

Fungsi Pemulihan Bencana tidak akan diuji secara menyeluruh pada fase ini, fokus lebih pada redundansi dan keamanan data. Pengujian Keamanan Tingkat Lanjut untuk melawan serangan keamanan yang sangat canggih tidak akan dilakukan, dengan penulis lebih memilih untuk memfokuskan pada ancaman yang lebih mungkin dan relevan.

Terakhir, tidak akan ada Pengujian Implementasi Sistem secara Keseluruhan dalam lingkungan produksi nyata pada tahap ini. Pengujian akan lebih berfokus pada fungsi dan modul individu untuk memastikan bahwa mereka beroperasi sesuai dengan spesifikasi. Pengujian end-to-end yang melibatkan semua aspek sistem bekerja bersama dalam lingkungan operasional sebenarnya akan dijadwalkan untuk tahapan berikutnya setelah konfirmasi kestabilan dan keandalan dari semua komponen inti.

Pendekatan ini memungkinkan penulis untuk mengalokasikan sumber daya secara efektif dan memastikan kualitas tinggi pada fitur penting dalam perancangan sistem sebelum melanjutkan ke fase pengujian yang lebih kompleks dan melibatkan seluruh sistem operasional. Ini juga membantu dalam mengurangi risiko operasional yang mungkin terjadi karena kesalahan selama fase awal pengujian.

4. Pendekatan manajemen dan teknis

Dalam pengujian Perancangan Sistem Informasi Pengelolaan Data Model Pesawat untuk PT Dirgantara Indonesia, bertujuan untuk memaksimalkan kualitas produk akhir. Penulis melakukan peran penting, termasuk manajer proyek, analis, perancangan, penguji, dan pengguna akhir, dengan tanggung jawab yang jelas dan terdefinisi, yang mendukung dokumen ini.

Dari segi teknis, pengujian dilaksanakan dalam beberapa lapis, mulai dari pengujian unit individual hingga pengujian sistem lengkap, memungkinkan

isolasi dan perbaikan masalah sejak dini. Teknologi terkini dan alat pengujian canggih digunakan untuk mendukung upaya pengujian ini, menjamin bahwa solusi yang dikembangkan tidak hanya robust tetapi juga sesuai dengan standar industri terbaru.

Pendekatan yang terstruktur dan teknik teknis ini memastikan bahwa Perancangan Sistem Informasi Pengelolaan Data Model Pesawat yang di rancang dengan cara yang mengutamakan keandalan dan kegunaan, mendukung gambaran untuk sistem yang bisa di jadikan referensi dalam implementasi sistem di PT Dirgantara Indonesia dalam mencapai efisiensi operasional dan keunggulan teknologi.

5. Kriteria lulus atau gagal

Dalam fase perancangan Sistem Informasi Pengelolaan Data Model Pesawat untuk PT Dirgantara Indonesia, kriteria lulus atau gagal fokus pada evaluasi desain berdasarkan kejelasan, keakuratan, dan relevansi dengan kebutuhan bisnis dan teknis. Kriteria lulus mencakup desain yang secara mendalam dan akurat memenuhi semua persyaratan yang telah ditentukan. Dokumentasi desain harus lengkap, mencakup semua aspek teknis dari sistem, termasuk arsitektur, database, antarmuka pengguna. Desain harus praktis dan dapat dieksekusi, memfasilitasi transisi mulus ke pengembangan dan pengujian. Penting juga bahwa desain menerima feedback positif selama sesi review dengan stakeholder, memastikan bahwa semua kebutuhan pengguna dan bisnis tercakup dengan kepuasan yang tinggi.

Sebaliknya, kriteria gagal akan diterapkan jika desain tidak mencerminkan persyaratan yang telah ditentukan atau jika ada fungsi kritis yang terlewat. Dokumentasi yang tidak lengkap, tidak jelas, atau yang menyebabkan kebingungan dianggap tidak memadai karena dapat menghambat proses pengembangan berikutnya. Desain yang tidak sesuai yang tidak mungkin diimplementasikan dalam konteks operasional atau teknologi perusahaan, juga akan dianggap gagal. Respon negatif dari stakeholder, terutama jika menyangkut aspek desain yang kritikal, adalah indikator kegagalan dalam memenuhi ekspektasi dan kebutuhan pengguna.

Menerapkan kriteria ini dalam perancangan memastikan bahwa proyek bergerak maju dengan desain yang solid dan realistis, yang tidak hanya mendukung pengembangan tetpai juga menghasilkan solusi yang optimal dan sesuai dengan visi PT Dirgantara Indonesia untuk pengelolaan data model pesawat yang efisien dan modern.

6. Peran dan tanggung jawab individu dalam testing

Pengujian Perancangan Sistem Informasi Pengelolaan Data Model Pesawat di PT Dirgantara Indonesia akan dilakukan secara mandiri, menuntut perencanaan, pelaksanaan, dan evaluasi yang komprehensif oleh seorang individu. Peran ini memerlukan integrasi beberapa tanggung jawab yang biasanya dipegang oleh beberapa anggota tim dalam proyek yang lebih besar. Sebagai satu-satunya pengujian, penulis akan bertindak sebagai perencana dan analis pengujian, mengembangkan dan menganalisis kasus uji berdasarkan persyaratan sistem yang telah ditentukan. Selanjutnya, penulis akan menjalankan kasus uji tersebut, mengidentifikasi dan merekam setiap kejanggalan atau masalah dalam sistem.

penulis juga akan bertanggung jawab untuk melakukan pemecahan masalah dan perbaikan terhadap bug atau isu yang ditemukan, termasuk modifikasi kode dan penyesuaian konfigurasi sistem. Setelah memastikan semua perbaikan telah dilakukan, pengujian akhir akan dilaksanakan untuk memverifikasi bahwa semua masalah telah teratasi dan sistem beroperasi dengan optimal. Seluruh proses ini akan didokumentasikan secara rinci dalam sebuah laporan pengujian yang akan mencakup metodologi, hasil, dan penanganan masalah yang dihadapi, serta evaluasi akhir dari status sistem.

Dokumen ini akan menunjukkan bukan hanya hasil kerja teknis yang telah dilakukan tetapi juga kemampuan penulis dalam manajemen proyek dan analisis sistem. Pengelolaan keseluruhan tanggung jawab ini menekankan pentingnya kepemilikan proyek penuh dan keterampilan manajemen waktu yang efektif dalam konteks perancangan sistem informasi.

7. Jadwal

Dalam rangka perancangan desain Sistem Informasi Pengelolaan Data Model Pesawat untuk PT Dirgantara Indonesia, perancangan sistem akan berlangsung dari tanggal 10 Juni 2024 hingga 16 Juni 2024. Kegiatan ini dimulai dengan review kebutuhan yang komprehensif pada tanggal 10 Juni, di mana semua persyaratan sistem akan dikumpulkan dan dianalisis untuk menginformasikan pembuatan draft desain awal. Desain ini akan mencakup skema arsitektur sistem, diagram alir data, dan konsep antarmuka pengguna.

Selanjutnya, pada tanggal 11 dan 12 Juni, desain akan dikembangkan lebih lanjut menjadi dokumen teknis yang lebih rinci, termasuk desain database, desain modul-modul spesifik, dan pengembangan skenario penggunaan yang mendalam. Pada tanggal 13 Juni, desain yang telah dikembangkan akan direview bersama stakeholder melalui sesi interaktif untuk mendapatkan feedback dan saran perbaikan, yang kemudian akan diintegrasikan dalam fase revisi dan penyempurnaan desain pada tanggal 14 dan 15 Juni.

Proses desain akan ditutup pada tanggal 16 Juni dengan penyusunan dokumen desain akhir dan persiapan presentasi. Dokumen ini akan mencakup semua aspek teknis dan justifikasi desain, siap untuk dipresentasikan kepada penguji atau dosen pembimbing. Jadwal ini dirancang untuk memastikan bahwa desain sistem yang dihasilkan tidak hanya teknis memadai tetapi juga align dengan kebutuhan operasional PT Dirgantara Indonesia, sambil menyediakan ruang yang cukup untuk iterasi dan penyempurnaan berdasarkan umpan balik stakeholder.

8. Kendala resiko

Dalam proyek perancangan Sistem Informasi Pengelolaan Data Model Pesawat untuk PT Dirgantara Indonesia, beberapa risiko potensial telah diidentifikasi yang dapat mempengaruhi keberhasilan dan efisiensi proyek. Risiko ini mencakup keterbatasan teknologi, keterbatasan waktu dan sumber daya manusia, kegagalan dalam pemenuhan jadwal, komunikasi yang tidak efektif, dan desain yang tidak memenuhi standar atau ekspektasi.

Untuk mengatasi risiko teknis, akan dilakukan penelitian dan validasi teknologi sebelum fase desain dimulai, memilih solusi teknologi yang terbukti andal dengan dukungan komunitas yang kuat. Keterbatasan waktu dan sumber daya akan dihadapi dengan jadwal yang realistis dan penerapan teknik manajemen waktu. Untuk menghindari kegagalan dalam memenuhi jadwal,

penggunaan perangkat lunak manajemen proyek akan dimaksimalkan untuk pelacakan kemajuan secara tepat dengan buffer time yang cukup untuk mengakomodasi keterlambatan.

Komunikasi yang baik dengan pembimbing dan stakeholder akan dijaga melalui pertemuan reguler dan penggunaan alat komunikasi digital untuk memastikan kejelasan dan memperoleh umpan balik berkala. Risiko kualitas desain akan diminimalisir dengan melakukan review desain internal berkala dan sesi review eksternal dengan ahli untuk validasi. Strategi mitigasi ini dirancang untuk memastikan bahwa proyek perancangan berjalan dengan lancar dan menghasilkan desain sistem yang robust, memenuhi standar industri dan ekspektasi stakeholder.

1.3 Scope

Dalam proyek tugas akhir ini, ruang lingkup perancangan Sistem Informasi Untuk *Maintain* Data Model Pesawat untuk PT Dirgantara Indonesia mencakup serangkaian kegiatan yang terstruktur untuk menghasilkan desain sistem yang komprehensif. Fase pertama melibatkan pengumpulan dan analisis kebutuhan sistem yang mendalam, bekerja erat dengan *stakeholder* untuk memastikan bahwa semua kebutuhan fungsional dan non-fungsional teridentifikasi dan dipahami. Langkah selanjutnya adalah merancang arsitektur sistem, yang meliputi komponen *hardware* dan *software*, serta membangun struktur *database* yang akan mendukung semua proses operasional sistem.

Desain antarmuka pengguna juga merupakan bagian penting dari ruang lingkup ini, dengan fokus pada penciptaan pengalaman pengguna yang intuitif dan memuaskan. Ini termasuk pengintegrasian prinsip UX/UI terbaik untuk memastikan antarmuka yang mudah digunakan oleh berbagai pengguna di PT Dirgantara Indonesia. Selain itu, desain fungsional dan modul sistem akan dikembangkan, memastikan bahwa setiap modul berfungsi dengan baik secara individual dan dalam sinergi dengan modul lainnya.

Pengujian desain melalui skenario dan prototipe akan dilakukan untuk validasi konsep, dengan sesi feedback dari pengguna potensial yang ditujukan untuk iterasi dan perbaikan desain. Akhirnya, proyek akan diakhiri dengan penyusunan dokumen desain akhir yang menyeluruh, yang mencakup semua dokumen teknis, diagram,

dan panduan implementasi. Dokumen ini akan memfasilitasi transisi yang efisien dari fase desain ke pengembangan dan implementasi, meminimalkan risiko dan memastikan bahwa sistem yang dihasilkan memenuhi semua spesifikasi dan kebutuhan operasional PT Dirgantara Indonesia..

1.4 Reference Materials

Untuk memastikan bahwa perancangan Sistem Informasi Untuk *Maintain* Data Model Pesawat untuk PT Dirgantara Indonesia dilakukan dengan standar yang tinggi dan mengacu pada praktik terbaik, berbagai bahan referensi telah digunakan sepanjang proses perancangan. Panduan desain UX/UI.

Mengacu pada berbagai bahan referensi ini membantu memastikan bahwa desain yang dihasilkan tidak hanya memenuhi kebutuhan fungsional saat ini tetapi juga sesuai dengan praktik terbaik industri dan siap untuk adaptasi serta pengembangan lebih lanjut di masa depan. Dengan demikian, perancangan sistem ini diharapkan dapat mendukung PT Dirgantara Indonesia dalam mencapai efisiensi operasional dan keunggulan teknologi.

1.5. Definition and Acronyms

1. EBOM : Engineering Bill of Materials

2. MBOM : Manufacturing Bill of Materials

3. UI : User Interface

4. UX : User Experience

5. API : Application Programming Interface

6. SQL : Structured Query Language

7. *IEEE* : *Institute of Electrical and Electronics Engineers.*

8. ISO : International Organization for Standardization.

9. SDLC : Software Development Life Cycle

10. HTTP : Hypertext Transfer Protocol

11. HTTPS : Hypertext Transfer Protocol Secure

12. Website : Kumpulan dari halaman-halaman situs yang terdapat dalam

sebuah

domain atau subdomain yang berada pada World Wide Web (WWW) di internet.

2. TEST ITEM

2.1 Program Modules

No	Nama Modul	Aktor yang Terlibat	Deskripsi Kegiatan
1	Kelola Data	Direktorat	Mengelola data model pesawat
	Model	Teknologi	termasuk menambah, memperbarui,
	Pesawat	(EDM)	menghapus, dan mengimpor data dari
			Excel.
2	View Data	Direktorat	Melihat data referensi model pesawat
	Model	Produksi (PE)	untuk memeriksa detail model yang
	Pesawat		ada.
3	Kelola Data	Direktorat	Mengelola data EBOM, termasuk
	EBOM	Teknologi	operasi tambah, perbarui, hapus, dan
		(EDM)	impor dari Excel.
4	View Data	Direktorat	Melihat detail EBOM yang digunakan
	EBOM	Teknologi	dalam model tertentu.
		(EDM)	
5	Kelola Data	Direktorat	Mengelola data MBOM, termasuk
	MBOM	Produksi (PE)	menambah, memperbarui, menghapus,
			dan mengimpor dari Excel.
6	View Data	Direktorat	Melihat detail MBOM yang digunakan
	MBOM	Produksi (PE)	dalam model tertentu.
7	Kelola Data	Admin	Mengelola data pengguna termasuk
	User		menambah, memperbarui, dan
			menonaktifkan pengguna.
8	Login	Semua aktor	Memeriksa hak akses pengguna dan
		(Admin, EDM,	memberikan akses ke sistem
		PE)	berdasarkan kredensial yang valid.
9	Logout	Semua aktor	Memungkinkan pengguna untuk keluar
		(Admin, EDM,	dari sistem guna mengamankan akses
		PE)	dan data.
10	Dashboard	Semua aktor	Menampilkan informasi terkini terkait
		(Admin, EDM,	dengan data referensi model, EBOM,
		PE)	dan MBOM.

Tabel ini menguraikan modul apa yang diuji, siapa yang bertanggung jawab atas uji tersebut, dan apa fokus dari pengujian itu. Ini disusun berdasarkan penggunaan diagram dan deskripsi yang Anda sertakan. Harap konfirmasi apakah detail ini sudah mencukupi dan sesuai dengan kebutuhan Anda atau ada tambahan lain yang diperlukan.

2.2 Job Control Procedures

Fase Tes	Keterlibatan	Waktu
Pembuatan Dokumen Test Plan	Sendiri	1 Hari (10 Juni)
Pembuatan Dokumen Design Test	Sendiri	1 Hari (11 Juni)
Review dan Revisi Desain	Sendiri	2 Hari (12-13 Juni)
Validasi Desain (Prototyping)	Sendiri	1 Hari (14 Juni)
Pembuatan Laporan Akhir	Sendiri	2 Hari (15-16 Juni)

2.3 User Procedure

Pengujian ini dilakukan untuk memastikan bahwa semua desain dan spesifikasi perangkat lunak telah memenuhi standar dan kebutuhan yang diharapkan. Dalam fase ini, validasi dilakukan melalui simulasi digital dan analisis skenario yang telah dirancang dalam dokumen desain. Karena proyek ini hanya mencakup tahap perancangan, tidak ada *user manual* yang dikembangkan, dan tidak ada *implementasi* perangkat lunak yang sebenarnya. Tujuan utama dari proses ini adalah untuk memvalidasi rancangan sebelum tahap implementasi dimulai, memastikan bahwa semua fungsi dan fitur beroperasi sesuai dengan ekspektasi dalam skenario yang ditentukan.

2.4 Operator Procedures

Dalam tahap pengujian desain ini, kita akan menyiapkan dokumentasi yang berisi Frequently Asked Questions (FAQ) yang berkaitan dengan desain sistem dan keputusan desain. Dokumen ini akan mencakup pertanyaan yang umum diajukan seputar kegunaan dan fitur sistem, memberikan klarifikasi tentang pilihan desain, serta memetakan ekspektasi untuk fungsionalitasnya. Tujuannya adalah untuk menyediakan panduan teoretis yang bisa membantu memahami aspek-aspek kritis sistem dari sudut pandang operasional, meskipun sistem belum diimplementasikan. Dokumentasi ini bertujuan untuk memperjelas asumsi desain dan mendorong diskusi yang konstruktif tentang rencana perancangan lebih lanjut.

3. FEATURES TO BE TESTED

Pengujian Sistem Informasi Untuk Maintain Data Referensi Model Pesawat ini dilaksanakan sebagai standar kelayakan Sistem Informasi Untuk Maintain Data Referensi Model Pesawat yang saya rancang, adapun beberapa fitur yang akan kami uji dalam sesi pengujian sistem ini menggunakan skala prioritas digunakan untuk menentukan tingkat kepentingan atau urgensi dari setiap butir uji dalam proses pengujian sistem adalah sebagai berikut:

1) Direktorat Teknologi (EDM)

Kelas Uji	Butir Uji	Skala Prioritas 1-5
Login	Validasi <i>login</i>	1
Kelola data model	Add data model pesawat	2
pesawat	Update data model pesawat	3
	Delete data model pesawat	3
	Import data model pesawat	4
Kelola data EBOM	Add data EBOM	2
	Update data EBOM	3
	Delete data EBOM	3
	Import data EBOM	4

2) Direktorat Produksi (PE)

Kelas Uji	Butir Uji	Skala Prioritas 1-5
Login	Validasi login	1
View data referensi model pesawat	Detail data referensi model pesawat	2
	Add data MBOM	2
Kelola data MBOM	Update data MBOM	3
	Delete data MBOM	3
	Import data MBOM	4

3) Admin

Kelas Uji	D.,4:,, II::	Skala Prioritas
	Butir Uji	1-5
Login	Validasi <i>login</i>	1

Kelas Uji	Butir Uji	Skala Prioritas 1-5
	Add data user	2
	Update data user	3
Kelola data user	Non-aktifkan data user	3
	Import data model pesawat	4

4. FEATURES NOT TO BE TESTED

Dalam fase pengujian sistem informasi maintain data referensi model pesawat, terdapat beberapa fitur yang secara strategis dipilih untuk tidak diuji. Pertama, fitur integrasi dengan sistem eksternal pihak ketiga tidak akan diuji karena ketergantungan pada antarmuka pemrograman aplikasi (API) yang belum stabil dan protokol yang belum disediakan oleh pihak ketiga, membuatnya tidak memungkinkan untuk diuji dengan efektif saat ini. Kedua, pengujian performa sistem di bawah kondisi beban puncak tidak akan dilaksanakan mengingat keterbatasan perangkat keras dan infrastruktur yang diperlukan untuk mensimulasikan kondisi tersebut belum tersedia.

Ketiga, fitur pembaruan otomatis yang memerlukan interaksi langsung dengan server produksi tidak akan diuji. Hal ini disebabkan oleh keterbatasan akses ke server tersebut dan potensi risiko keamanan yang dapat terjadi selama pengujian. Keempat, kompatibilitas dengan versi perangkat lunak yang belum dirilis juga tidak akan diuji. Ketidaktersediaan versi yang stabil dan kemungkinan perubahan yang masih terjadi pada software tersebut menjadikan pengujian prematur ini tidak praktis. Mengecualikan fitur-fitur ini dari pengujian bukan hanya masalah efisiensi, tetapi juga strategi untuk fokus pada area yang dapat memberikan hasil validasi yang paling dapat diandalkan pada tahap ini.

5. APPROACHES

Pendekatan yang digunakan pada testing ini adalah *Blackbox Testing*. Unit testing ini dilakukan denjgan melakukan testing terhadap kebutuhan fungsional ataupun kebutuhan non fungsional dari sistem informasi maintain data referensi model pesawat, pendekatan ini berupaya mencari kesalahan-kesalahan pada Perancangan Sistem Informasi Untuk Maintain Data Referensi Model Pesawatataupun fungsi yang tidak berjalan pada sistem informasi maintain data referensi model pesawat, bisa juga dengan mencari kesalahan pada struktur data, *database, interface*, inisialisasi dan tujuan Perancangan Sistem Informasi Untuk Maintain Data Referensi Model Pesawat.

5.1 Component Testing

Kategori	Detail	
Test Objective	a.	Komponen EDM: Login, kelola
		data model pesawat, kelola
		EBOM, impor data dari Excel,
		logout.
	b.	Komponen PE: Login, view
		data model pesawat, kelola
		MBOM, impor data MBOM
		dari Excel, logout.
	c.	Komponen Admin: Login,
		kelola user, aktifkan/non-
		aktifkan user, update data user,
		logout.
Technique	a.	Melakukan login dengan
		berbagai peran untuk
		memastikan hak akses dan
		batasan.
	b.	Mengecek operasi CRUD pada
		pengelolaan data di masing-
		masing komponen.
	c.	Menjalankan tes end-to-end
		melalui skenario yang
		melibatkan penggunaan
		berurutan dari modul yang
		berbeda.
	d.	Pengujian penetrasi untuk
		menemukan kelemahan.

	e. Verifikasi mekanisme autentikasi dan enkripsi.
Completion Criteria	a. Semua fungsi harus beroperasi sesuai dengan persyaratan dan hanya memungkinkan interaksi yang sesuai dengan peran pengguna tanpa error.
	b. Integrasi antar modul berfungsi tanpa kesalahan dan tidak ada kegagalan sistem yang terkait dengan integrasi.
	c. Sistem harus tahan terhadap serangan keamanan umum dan semua isu keamanan yang diidentifikasi harus diperbaiki.

5.2 Integration Testing

Test Objective	Integrasi antara software dengan hardware, ataupun
	software dengan pengunjung.
Technique	a. Mengetes seberapa stabil <i>software</i> saat
	digunakan oleh beberapa pengunjung sekaligus.
	b. Mengetes bagaimana kestabilan software saat
	digunakan di <i>hardware</i> dengan spesifikasi
	berbeda
Completion criteria	Mengetahui kestabilan software

5.2 Conversion testing

Test Objective	Memindahkan data <i>software</i> dan melihat data historis yang di konversikan dari sistem format lama ke <i>website</i> format baru
Technique	Mengubah format nama pada software
Completion Criteria	Data <i>software</i> tidak berubah meski di konversikan ke beberapa perangkat

5.3 Job Stream Testing

Test Objective	Sistem akan diuji untuk memastikan kemampuannya
	dalam mengelola data referensi model pesawat di PT
	Dirgantara Indonesia.
Technique	Memberikan akses pengujian kepada berbagai pengguna
	yang termasuk Direktorat Teknologi (EDM), Direktorat
	Produksi (PE), dan Admin di PT Dirgantara Indonesia,
	untuk menguji berbagai fungsi seperti login, pengelolaan
	data model pesawat, EBOM, dan MBOM, serta kelola
	user.
Completion Criteria	Sistem harus dapat beroperasi dengan efektif di PT
	Dirgantara Indonesia dengan memenuhi semua
	kebutuhan operasional dan keamanan, supaya tujuan dan
	maksud dari pengembangan sistem ini dapat tercapai.
	Semua komponen harus berfungsi sesuai spesifikasi
	tanpa error dan integrasi antar modul harus berjalan
	dengan lancar.

5.4 Inteface Testing

Test Objective	Pengujian software dilakukan untuk memastikan apakah	
	website diagnosa ini dapat beroperasi sesuai dengan	
	batasan-batasan yang sudah ditetapkan	
Technique	Menguji batasan yang terdapat pada sistem informasi	
	maintain data referensi model pesawat	
Completion criteria	Batasan tidak akan mempengaruhi performa pada	
	software	

5.5 Security Testing

Tes Objective	Pengamanan pada Perancangan Sistem Informasi Untuk	
	Maintain Data Referensi Model Pesawat ini yaitu adanya	
	1 admin, dan ada 2 user lainnya (PE, & EDM)	
Technique	Menguji fitur login	
Completion criteria	Software sudah memiliki pengamanan dengan fitur login	
	yang hanya admin yang bisa mengakses halaman admin	

5.6 Recovery Testing

Tes Objective	Jika software dihentikan atau keluar lalu masuk kembali	
	maka yang terjadi otomatis admin akan keluar dari form	
	admin.	
Technique	Me-restart software yang sedang berjalan	
Completion criteria	Admin akan keluar secara otomatis jika software	
	dihentikan	

5.7 Performance Testing

Test Objective	Pengujian performa akan dilakukan untuk	
	memastikan bahwa sistem mampu menangani beban	
	operasional yang diperkirakan di PT Dirgantara	
	Indonesia tanpa ada penurunan kinerja yang	
	signifikan.	
Technique	Menggunakan alat pengujian performa seperti JMeter	
	atau LoadRunner untuk mensimulasikan penggunaan	
	simultan oleh banyak pengguna, termasuk aktivitas	
	seperti mengakses dan memanipulasi data model	
	pesawat, EBOM, dan MBOM. Penekanan akan	
	diberikan pada waktu respon, kecepatan pemrosesan,	
	dan stabilitas sistem.	
Completion criteria	Sistem harus mampu mempertahankan waktu respon	
	yang cepat (di bawah sekian detik) dan kehandalan	
	selama kondisi beban puncak. Harus tidak ada	
	kegagalan atau error yang terjadi karena beban	
	pengujian. Sistem juga harus efektif dalam	
	penggunaan sumber daya, termasuk penggunaan	
	memori dan CPU yang optimal.	

5.8 Regression Testing

Test Objective	Perubahan data yang terjadi saat admin mengelola	
	web tidak akan mempengaruhi atau tidak akan	
	merubah pola yang sudah dibuat sebelumnya	
Technique	Melakukan pengujian ulang pada semua fungsi	
	sistem yang telah diuji sebelumnya setiap kali ada	
	perubahan atau pembaruan. Menggunakan skrip	
	otomatisasi pengujian regresi dengan alat seperti	
	Selenium atau TestNG untuk memastikan bahwa	
	semua fitur, termasuk login, pengelolaan data model	

	pesawat, EBOM, dan MBOM, berfungsi dengan baik	
	setelah pembaruan.	
Completion criteria	Perubahaan data tidak mempengaruhi fungsionalitas	
	software	

5.9 Acceptance Testing

Test Objective	Pengujian penerimaan akan dilakukan untuk	
	memastikan bahwa sistem memenuhi kebutuhan dan	
	ekspektasi pengguna akhir di PT Dirgantara	
	Indonesia sebelum peluncuran resmi.	
Technique	Melibatkan pengguna akhir yang sebenarnya (EDM,	
	PE, dan Admin) dalam pengujian sistem di	
	lingkungan dunia nyata. Pengguna akan menjalankan	
	skenario penggunaan sehari-hari, termasuk login,	
	pengelolaan data model pesawat, EBOM, dan	
	MBOM, serta kelola user. Mengumpulkan dan	
	mengevaluasi umpan balik dari pengguna.	
Completion criteria	Sistem harus dapat dioperasikan dengan lancar oleh	
	pengguna akhir dan memenuhi semua kebutuhan	
	operasional mereka. Umpan balik dari pengguna	
	harus positif, dan semua masalah atau kekurangan	
	yang diidentifikasi selama pengujian harus diperbaiki	
	sebelum sistem dapat diluncurkan secara resmi.	

5.10 Beta Testing

Test Objective	Pengujian beta akan dilakukan untuk mendapatkan umpan balik dari pengguna nyata di PT Dirgantara Indonesia dalam kondisi operasional sebenarnya sebelum peluncuran resmi sistem.	
Technique	Menyediakan akses ke versi beta sistem kepada sekelompok pengguna terbatas dari EDM, PE, dan Admin. Pengguna akan menggunakan sistem dalam kegiatan sehari-hari mereka, melakukan tugas seperti login, pengelolaan data model pesawat, EBOM, dan MBOM, serta kelola user. Mengumpulkan umpan balik terkait kinerja, kegunaan, dan fungsionalitas sistem.	

Completion criteria	Sistem harus menerima umpan balik positif dari	
	pengguna beta, dan semua masalah atau kekurangan	
	yang diidentifikasi selama pengujian beta harus	
	diperbaiki sebelum peluncuran resmi. Pengujian	
	harus memastikan bahwa sistem stabil dan berfungsi	
	dengan baik dalam lingkungan operasional	
	sebenarnya.	

6. PASS/FAIL CRITERIA

Berisi tentang kriteria-kriteria yang harus dipenuhi sebelum berlanjut ke tahapan berikutnya :

6.1 Suspension Criteria

Beberapa test dapat dilewati atau dikurangi jika test yang diperlukan tersebut dinyatakan gagal atau fail dan memerlukan perbaikan.

6.2 Resumption Criteria

Jika hasil dari suatu test sama dengan hasil yang diharapkan maka test tersebut dinyatakan berhasil atau pass.

6.3 Approval Criteria

Software sudah siap untuk diuji karena sudah selesai dalam tahap implementasi,dan dengan ini software akan diuji dengan menggunakan metode blackbox.

7 TESTING PROCESS

7.1 *Test Deliverable*

Pada pengujian sistem ini ada 3 tahap dokumen testing yaitu:

1. Test Plan

Berisikan mengenai rencana proses pengujian sistem yang dilakukan oleh orang yang ditunjuk untuk melakukan pengecekan terhadap modul dan fungsi pada sistem dan mencari *error* atau *bug* yang ada pada website.

2. Test Design

Dokumen ini nantinya berupa gambaran teknis tentang perencanaan yang telah dibuat pada dokumen *test* plan. Sehingga perencanaan yang sudah dibuat memiliki alur yang jelas untuk dilaksanakan.

3. Final Dokumen

7.2 Testing Tasks

Dalam pengujian *software* kami membutuhkan seseorang yang memiliki kemampuan sebagai *software* tester guna melakukan pengujian secara fungsional maupun non fungsional. Selain dari menguji, *software* tester juga harus mencari tau apakah dalam *software* terdapat *bug,error* atau kecacatan lain.

No	Task	Skill Khusus	Keterkaitan
			dengan Task
			Lain
1	Membuat dokumen software test plan	Tidak	Tidak

2	Membuat dokumen test case	Memahami	Berkaitan dengan
		kebutuhan website	test plan
3	Membuat dokumen test	Memahami	Tidak
	design	kebutuhan <i>design</i>	
4	Menyiapkan software	Memahami	Berkaitan dengan
		kebutuhan software	pengujian website
5	Menguji website	Memahami metode	Berkaitan dengan
		pengujian	persiapan dan
			pencatatan
			kegagalan pada
			sistem
6	Mencatatat kegagalan website	Memahami	Berkaitan dengan
		kegagalan yang	pengujian website
		terjadi	
7	Melakukan evaluasi website	Memahami	Berkaitan dengan
		kegagalan yang	kegagalan website
		terjadi dan	
		kebutuhan website	
		untuk diperbaiki	
8	Pengujian ulang website yang	Memahami	Berkaitan dengan
	sudah diperbaiki	pengujian website	evaluasi website

7.3 Responsibilities

Rincian pihak-pihak yang akan bertanggung jawab terhadap suatu kegiatan website di dalam serangkaian testing yang akan dilaksankan.

Worker	Specific Responsibilities	
Test Manager	a. Memberikan arahan teknis	
	b. Memperoleh sumber daya yang tepat.	
	c. Menyediakan laporan manajemen.	
Test Design	a. Menghasilkan test plan.	
	b. Menghasilkan model pengujian	
	c. Mengevaluasi efektifitas pengujian	

Tester	a. Melaksanakan <i>test</i>	
	b. Melaporkan hasil <i>test</i>	
	c. Memberikan rekomendasi.	
Database administrator	Memastikan data yang ada di database dikelola dan	
	dipelihara	

7.4 Resource

Pada bagian ini menjelaskan tentang resource yang direkomendasikan untuk melakukan testing pada Perancangan Sistem Informasi Untuk Maintain Data Referensi Model Pesawatuntuk melakukan aksi-aksi yang ada pada sistem informasi maintain data referensi model pesawat.

Worker	Minimum Resources	Specific	
	Recommende	Responsibilities	
		Comments	
Pengembang website	2	Membuat Dokumen	
		Test Plan dan test case	
Pengembang website	2	Melakukan	
		pengujian,mencatat	
		kegagalan dan	
		melakukan perbaikan	
Tester	2	Membuat dokumen test	
		plan final	

7.5 Schedule

Task	Penanggung jawab	Waktu
Membuat dokumen software test plan	Testing team	8 jam
Membuat dokumen test case	Testing team	4 jam
Membuat dokumen test design	Testing team	4 jam
Menyiapkan software	Testing team	1 jam
Menguji website	Testing team	6 jam
Mencatat kegagalan website	Testing team	3 jam

Melakukan evaluasi website	Testing team	4 jam
Pengujian ulang website yang sudah	Testing team	4 jam
diperbaiki		
Membuat dokumen final	Testing team	6 jam

8 ENVIRONMENTAL REQUIREMENT

8.1 Hardware

Untuk menjalankan pengujian *website* ini,*team* harus menyiapkan beberapa perangkat keras yaitu:

- 1. PC/Laptop
- 2. Monitor
- 3. Mouse
- 4. Keyboard

8.2 Software

Antarmuka perangkat lunak yang kami gunakan sebagai berikut:

8.2.1 Laravel

Laravel adalah framework PHP yang digunakan untuk membuat aplikasi web baik di sisi front end maupun back end. Laravel dirancang untuk membantu pengembang dalam membangun aplikasi web yang skalabel, aman, cepat, dan bersifat open source. Fitur-fitur utama Laravel termasuk routing, middleware, autentikasi, migrasi database, dan ORM (Eloquent). Laravel memudahkan pengembangan dengan menyediakan berbagai tools dan pustaka yang mendukung proses pengembangan aplikasi web secara efisien dan terstruktur.

8.2.2 PHP

PHP adalah bahasa pemrograman tingkat tinggi yang sering digunakan dalam pengembangan perangkat lunak, terutama untuk pengembangan aplikasi web dinamis. PHP memungkinkan server untuk menjalankan skrip yang menghasilkan konten dinamis di halaman web. Dalam konteks ini, PHP digunakan untuk membangun logika backend

dari sistem informasi, berinteraksi dengan database, dan mengelola sesi pengguna.

8.2.3 Visual Studio Code

Visual Studio Code adalah editor kode sumber yang ringan namun kuat, berjalan di desktop dan tersedia untuk Windows, macOS, dan Linux. Visual Studio Code mendukung berbagai bahasa pemrograman melalui ekstensi, termasuk PHP, JavaScript, HTML, dan CSS. Fiturfitur seperti IntelliSense (penyelesaian kode cerdas), debugging, dan integrasi kontrol versi (seperti Git) menjadikan Visual Studio Code alat yang sangat berguna untuk pengembangan dan pengujian aplikasi web.

8.2.4 XAMPP

XAMPP adalah paket perangkat lunak yang bersifat open source, digunakan untuk menjalankan server web lokal. XAMPP terdiri dari Apache HTTP Server, MySQL database, dan interpreter untuk skrip yang ditulis dalam bahasa PHP dan Perl. XAMPP memungkinkan pengembang untuk mengembangkan dan menguji aplikasi web di lingkungan lokal sebelum dipublikasikan ke server produksi. Dengan menggunakan XAMPP, pengembang dapat mensimulasikan lingkungan server sebenarnya dan melakukan debugging aplikasi secara lokal.

8.2.5 Web browser

Web adalah perangkat lunak dengan fungsi sebagai penerima, pengakses, dan penyaji berbagai informasi di internet. Beberapa contoh dari web browser yang sering digunakan yaitu Google chrome, Mozilla Firefox, Opera Mini, dan Microsoft Edge.

8.3 Security

Di dalam sebuah *website* yang kompleks harus memiliki *website* keamanan yang sangat baik, jika sistem itu sendiri tidak memiliki keamanan untuk melindungi data maka akan lebih mudah beresiko contohnya seperti kehilangan data dan memudahkan orang untuk melakukan pencurian data dengan melindungi data yang akan kami uji kami membuat surat perjanjian antara *developer* dan *teste*r agar tidak terjadi kehilangan data ataupun duplikasi data.

8.4 Tools

Dalam menggunakan Perancangan Sistem Informasi Untuk Maintain Data Referensi Model Pesawatini tidak menggunakan *tools* yang spesifik atau khusus, karena kita melakukan testing secara manual

8.5 Publications

Untuk melakukan pengujian pada website yang telah dibangun diperlukan beberapa dokumen untuk mendukung kegiatan proses pengujian sistem tersebut diantaranya seperti dokumen *User Procedure* yang menggambarkan dan menjelaskan penggunaan sistem informasi maintain data referensi model pesawat.

8.6 Risks and Assumptions

Pada saat melakukan pengujian memungkinkan terjadinya berbagai risiko yakni berupa mengalami loading ketika menggunakan *website* hal ini terjadi apabila *website* diakses pada perangkat yang memiliki jaringan internet rendah, sedangkan apabila tanpa jaringan internet, user tidak bisa mengakses *website*.

9 CHANE MANAGEMENT PROCEDURES

Apabila terjadi perubahan prosedur maka akan dilakukan perubahan terhadap test plan kembali, dimana hal tersebut dilakukan untuk memperbaiki sistem sehingga dokumen ini akan mengalami perubahan.