Random variables are defined for every outcome of a random experiment
X - random variable
x - actual value of the random variable X (X = x)
X - actual value of the faridom variable X (X = X)
For example, if we toss a coin 3 times, and the random variable X is the number of heads obtained, the
range of X is {0,1,2,3}
• Either 0 heads
• 1 head
• 2 heads
• 3 heads
For discrete random variables, the range is either finite or countably infinite
Countably infinite: when playing cards, there could be an infinite amount of outcomes before finally
getting a certain hand
For continuous random variables, the range is infinite
Discrete: things we can count
Number of students present in a class
Number of times you hit the snooze button
Continuous: things we can measure
Time taken to get to school on a given day
• Height
A function maps each value in a domain into a unique point (one-to-one).
Probability function: since X=x represents some event, its probability is represented by P(X=x)
 The probability that the random variable X takes on the value x
The probability that the random variable X takes on the value X
Discrete random variables have probability functions

Probability distribution of X:

Rules:

- $0 \le f(x) \le 1$ for all x
- The sum of all f(x) must be 1

Ex. A fair coin is tossed 3 times. Let X be the number of heads observed.

- f(0) = P(X=0) = P(TTT) = 1/8
- f(1) = P(X=1) = P({HTT, THT, TTH}) = 3/8 (3 choose 1)
- $f(2) = P(X=2) = P({HHT, THH, HTH}) = 3/8 (3 choose 2)$
- $f(3) = P(X=3) = P({HHH}) = 1/8$

All probabilities sum to 1, and $0 \le f(x) \le 1$ for all x

So this is a valid probability function

Example: The random variable *X* has p.f. given by

x	0	1	2	3	4
f(x)	0.1 <i>c</i>	0.2 <i>c</i>	0.5 <i>c</i>	С	0.2 <i>c</i>

- a) Determine the value of c.
- b) Calculate P(X > 2).
- (a) All probabilities must sum to 1

So 0.1c + 0.2c + 0.5c + c + 0.2c = 1 -> c = 0.5

(b)
$$P(X>2) = P(X=3) + P(X=4) = 0.5 + (0.2)(0.5) = 0.6$$

Cumulative Distribution Function

 $F(x) = P(X \le x)$ for all real numbers X

Accumulated probabilities up to and including some real number x

where f is a probability function

Properties:

- F(x) is a non-decreasing function: P(X ≤ 8) cannot be less than P(X ≤ 7) because P(X≤8) includes P(X≤7), plus P(7<X≤8)
- $0 \le F(x) \le 1$ for all x

$$\lim_{x \to -\infty} F(x) = 0 \qquad \lim_{x \to \infty} F(x) = 1$$

We can also obtain f(x) from F(x), since F(x) is just a summation of f(x)

For example, if X only takes on integer values, then f(x) = F(x) - F(x-1)

•
$$P(X=x) = P(X \le x) - P(X \le x-1)$$

Ex. Flipping a coin 3 times:

χ	f(x)	F(x)							
0	1/8	1/8							
	3/8	1/2	f(1) =	F	(1)	- F	(0)	
2	3/8	7/8							
3	'/ ₈								

CDF F(x) can be represented using a step function (goes up in increments)

Probability function f(x) can be represented using a histogram

