$$r(X) = 1 - I_H(X) = 1 - \frac{H(X)}{H_{\text{max}}}$$
 (4.11)

Формула (4.11) показывает недоиспользованность предельных возможностей источника. Чем больше избыточность, тем меньше насыщенность и тем менее эффективно используется канал связи, по которому передается сообщение.

Реальные источники информации обладают большой избыточностью. Поэтому для ее уменьшения прибегают к эффективному кодированию.

4.1.3. Эффективное кодирование.

Кодирование ДИБП.

Пусть ДИБП выдает буквы или символы каждые τ_s секунд. Каждый символ выбирается из конечного алфавита $A \in \{a_k\}, k=1,2,...,L$ с вероятностью $p(a_k)$. Энтропия такого источника определяется по формуле (2.4) и ограничивается сверху значением, вычисляемым по (4.5), т.е. $H(X) \le \log_2(L)$. Как говорилось выше, знак «=» выполняется, если вероятности символов на выходе источника одинаковы и равны $p = \frac{1}{L}$.

1. Кодовые слова фиксированной длины.

Рассмотрим блоковое кодирование, которое состоит в сопоставлении уникального ряда из K двоичных символов, каждому символу источника. Так как существует L возможных символов ДИБП, то число двоичных символов кодера на один символ источника при уникальном кодировании определяется

как
$$K = \begin{cases} \log_2(L), L = 2^Q \\ \left| \log_2(L) \right| + 1, L \neq 2^Q \end{cases}$$
, где Q - целое положительное число, $\lfloor \bullet \rfloor$ -

наибольшее целое, меньшее, чем $\log_2(L)$. K - скорость кодирования. Поскольку $H(X) \leq \log_2(L)$, то $K \geq H(X)$. Эффективность кодирования определяется отношением $\frac{H(x)}{K}$.

- А) Если $L = 2^{\varrho}$ и символы источника равновероятны, то K = H(X) и эффективность кодирования равна 1 (100%).
- Б) Если $L \neq 2^{\varrho}$, но символы источника равновероятны, то K отличается от H(X) самое большее на 1 бит на символ.
- В) Если $\log_2(L) >> 1$, то эффективность кодирования высокая.
- Γ) Если L мало, тогда эффективность кода можно повысить путем кодирования блока из J символов источника за время $J\tau_s$. Для этого надо выбрать L^J уникальных кодовых слов. Используя кодовую