Задачи о взоимным расположения

Углы и рассовние шехду плоскосями Ущет плоскости заданы общими Уравнениеми:

JI: A1X+B1Y+(12+W1=0

JZ: Azx+Bzy+Czz+Dz=0

Thorga mockoche

1) JI, 1 JIZ => TPOCIKO KOSOP-B A, B, C, не пропорушентальна TPOGKE KORGEB A2, B2, C2;

2) $\pi_1 \parallel \pi_2 \iff \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{Q_1}{Q_2}$;

3) $J_1 = J_2 \iff A_1 = B_1 = C_1 = D_1$ (cobnagais) $A_2 = B_2 = C_2 = D_2$

Уастой слугай пересегение плоскостей 1) JI, I JI2 (=> A, A, +B, B, +C, C2 =0

Зам. Гункто 1)-3) верног в мобод аффина, системи координа, в премоугольной у нас сист. К-т все уа премоугольной.

иссыедовать ваниное расположение плоскостей. Если они пересек, то навлу умы между ними. Если они не пересек, по насти рассоление между rueur.

N2.185

 $J_{11}: -x + 2y - z + 1 = 0$

 $\pi_2: \quad y + 3 \ge -1 = 0$

Pemenne.

1) Bonnueur Koggsq-201 mg yp-uir 114 1/2:

 $A_1 = -1$, $B_1 = 2$, $C_1 = -1$, $Q_1 = 1$

 $A_2 = 0$, $B_2 = 1$, $C_2 = 3$, $D_2 = -1$

 $\frac{-1}{0} \neq \frac{2}{1} \neq \frac{-1}{3}$ (gocranuno нарушениер хогя для одного равенску

Eury, JI, 1 JIz (nepecekanora)

2) Hadigine cos (TI, TI2) Kak Kourreye yna mexgy rophanemu k mockocen Hoperan K mockocsen:

n= {A1, B1, C1}= {-1, 2, -1}

12 = {Az, Bz, Cz}={0,1,3}

 $Co^{5}(\vec{n_{1}},\vec{n_{2}}) = \frac{\vec{n_{1}}\vec{n_{2}}}{|\vec{n_{1}}||\vec{n_{2}}|} = \frac{-1.0 + 2.1 + (-1).3}{|\vec{v_{1}}||\vec{v_{2}}|} = \frac{-1.0 + 2.1 + (-1).3}{|\vec{v_{1}}||\vec{v_{2}}||^{2}}$

 $=\frac{-1}{\sqrt{6}\sqrt{10}}=\frac{-1}{2\sqrt{15}} (20 \Rightarrow) you wexgy$ $\overline{n_1} u \overline{n_2} \overline{n_3} nocy f$

 $-\vec{n}_{2}$ ψ \vec{n}_{1} \vec{n}_{2} \vec{n}_{3} \vec{n}_{2} \vec{n}_{3} \vec{n}_{4} \vec{n}_{5} \vec{n}_{1} \vec{n}_{2} \vec{n}_{3} \vec{n}_{4} \vec{n}_{5} \vec{n}

4= arccos 1/2/5.

Зам. Жратко: $SG_{1}arko:$ $cos \varphi = |cos(n_{1}, n_{2})| = |n_{1}^{2} |n_{2}^{2}|$ no mogymo Cues, q=arccos/cos(\vec{n_1},\vec{n_2})/

Orbet: nepecercerorae; arccos 1/2 1/25

N2.186.

JI1: 2x-y+z-1=0

 $\Im_2: -4x + 2y - 2z - 1 = 0$

Penienne.

1)
$$A_1=2$$
, $B_1=-1$, $C_1=1$, $D_1=-1$
 $A_2=-4$, $B_2=2$, $C_2=-2$, $D_2=-1$

$$\frac{2}{-4} = \frac{-1}{2} = \frac{1}{-2} \neq \frac{-1}{-1}$$
 Coref, $\sqrt{11} | 1 \sqrt{12}$ (napamenonor)

2) Pazzeemen yp-e 24 nrockoczi 4a -2, 470001 KOPP-TOT Naparseronox nrockocsez 71472 cram ogrenakoboremi.

$$-4x+2y-22-1=0 | 1-2$$

$$2x-y+2+\frac{1}{2}=0$$

Теорена Расстоение между

Л1: Ax+By+C≥+Ø1=0

D2: AX+By+(2+D2=0

maxoguras no populyne $\mathcal{D}(\overline{J}_1, \overline{J}_2) = \frac{|\mathcal{D}_1 - \mathcal{D}_2|}{\sqrt{A^2 + B^2 + C^2}}$

Provincement
$$\int D(\Pi_1, \Pi_2) = \frac{|(-1) - \frac{1}{2}|}{\sqrt{2^2 + (-1)^2 + 1^2}} = \frac{\frac{3}{2}}{\sqrt{6}} = \frac{3}{2\sqrt{6}}$$

Ombem: naparrenter, 3/200.

D13I: N2.187, 2.188.

Задачи на составление ур-ий плоскости (продолжение)

Написать ур-е плоскость, проходящей геру току Мо (-1, -2, -3) и отсекающей от осей координах равные отредки.

Pemerne.

The MOCKOCIL & OTHERAX: X + X + Z = 1

no you a= b= c. Celes, yp-e mockocy

 $\frac{x}{a} + \frac{x}{4} + \frac{z}{a} = 1$ / a

 $x + y + z = \alpha$ D/3II N 2.190

Mo ∈ MLOCKOCOU => (-1)+(-2)+(-3) = a

-6 = a $\alpha = -6$

Лодскавни в ур-е плоскоса:

x+y+2=-6 Orber: x+y+2+6=0 x+9+2+6=0

N2. 2/3/11 N2.196 5 Cocrabur yp-e mockoca, nhoxogulujed Tepes Taky Mo (0, 1,2) и перпендикумерной к плоскостем JI1: X +2y+32+4=0 J2: 5x-4y-3z-2=0 Permenue. 1) III.K. UCKOMAR MOCKOCIO II перпендикумерна \vec{n}_1 $\vec{n}_1 = \vec{n}_1 \times \vec{n}_2$ \vec{n}_2 $\vec{n}_3 \times \vec{n}_4$ $\vec{n}_4 \times \vec{n}_2$ $\vec{n}_4 \times \vec{n}_4$ $\vec{n}_4 \times \vec{n}_4$ $\vec{n}_4 \times \vec{n}_4$ $\vec{n}_4 \times \vec{n}_4 \times \vec{n}_4$ $\vec{n}_4 \times \vec{n}_4 \times \vec{n}_4 \times \vec{n}_4$ $\vec{n}_4 \times \vec{n}_4 \times \vec$ NI4 N2 repecerce · Mo Coll, Hanpabrerouguer Beknop 2504 upenoc els reprision K UCKOMOG MNOCKOCA. Haligéen ramp bekrop répende, reprecerence nuockocsed, : $|\vec{i}|\vec{j}|\vec{k}|$ $\vec{R} = \vec{n_1} \times \vec{n_2} = |1|2|3| = 6\vec{i} + 18\vec{j} - 14\vec{k}$ T.K. M= {1,2,3}, M= {5,-4,-3}

Смер., $\vec{R} = \{6,18,-14\}$.

В колестве \vec{R} можно вектор: $\vec{R} = \{3,9,-7\}$ (его координаль координаль настренного вектора)

2) Теорема. Глоскость, проходящая 4eply Porky Mo(xo, yo, 20) и перпендику перная bekropy ñ {A,B,C} umeer ypabrenue A(x-x0)+B(y-y0)+(12-20)= Му условия нами увестна тогка Мо плоскост, му дей отвие 1) — нормаль й к плоскост Cuef, yp-ernockoca: 3(x-0)+9(y-(-1))+(-7)(2-2)=0Упросты уравнение: 3x + 9y + 9 - 72 + 14 = 03x + 9y - 72 + 23 = 0Ombem: 3x+9y-72+23=0