CS344: Solution to Homework 4

1 Problem 1

Solution. Let P be a set of k patterns, i.e. $P = \{p_1, \dots, p_k\}$ and $|p_j| = m \ (j \in [k])$. Given $t[1 \dots n]$, the problem is to find all $i \in [n-m+1]$ such that $t[i \dots i+m-1] \in P$.

The fingerprint function of string s is defined as follows:

$$f(s) = \sum_{i=1}^{|s|} s[i] * |\Sigma|^{|s|-i} \bmod q, \ \ q \in [1, O(|\Sigma|^5)]$$

which costs O(|s|) time since every element in s has to be encoded.

- (1) Fingerprints of k patterns: By using above function f, it takes O(m) time for each $f(p_i)$ and O(km) in total. Because m=n/2, the running time is actually O(kn). Then, we can map these k fingerprints $f(p_1),\ldots,f(p_k)$ to a hashtable T of size O(k) which takes O(k) time to build hashtable and O(1) time for each lookup.
- (2) Fingerprints of substrings of t: By using rolling hash (Rabin-Karp) and f, it takes O(m) time for f(t[1,m]) and O(n-m) for f(t[i...i+m-1]) ($i \in [2,n-m+1]$), so O(n) in total.
- (3) Lookup: We can query hashtable T to check if $f(t[i \dots i+m-1]) \in T \ (i \in [1,n-m+1])$, which takes O(n-m+1) time.

The algorithm costs O(kn) time. Notice that no matter how you improve lookup, the total time is determined by the time to build fingerprints of k patterns.

2 Problem 2

Solution. The fingerprint function f is defined the same as above.

- (1) Fingerprints of pattern p: p is a $m \times m$ matrix. For each row r of p denoted as p[r,:], use f to create a fingerprint $p'_r = f(p[r,:])$ ($r = 1, \ldots, m$). Then, apply f again on $[p'_1, \ldots, p'_m]$ to generate a final fingerprint of matrix p. Let's call it p''.
- (2) Fingerprints of submatrix of t: Text t is a $n \times n$ matrix. For each row r of t, there are n-m+1 subarrays each of size m. Apply rolling hash (Rabin-Karp) and f to generate n-m+1 fingerprints denoted as t'[r,j] where $j=1,\ldots,n-m+1$. Repeating it for all n rows, we get a temporary matrix t' of size $n \times (n-m+1)$. Similarly, for each column c of t', apply rolling hash to generate n-m+1 fingerprints denoted as t''[i,c] where $i=1,\ldots,n-m+1$. Repeating it for all n-m+1 columns, we get a new matrix t'' of size $(n-m+1) \times (n-m+1)$.

We show that pattern p matches t at [i,j] if and only if p'' == t''[i,j], for all $i,j \in [1,\ldots,n-m+1]$. For any submatrix t_{ij} of text t, i.e. $t_{ij} = t[i..i+m-1,j..j+m-1]$, we first apply f on each of its rows to generate fingerprints. Since t_{ij} is of size $m \times m$, each row corresponds to exact one fingerprint, i.e. t'[k,j] = f(t[k,j..j+m-1]) for $k=i,\ldots,i+m-1$. Let $t'_{ij} = [t'[i,j],\ldots,t'[i+m-1,j]]^T$, which is a column vector of size m. Apply f again on t'_{ij} to generate a new fingerprint $t''_{ij} = f(t'_{ij})$. It is obvious that t''_{ij} is the element of new matrix t'' at position [i,j]. Therefore, if we want to compare p and t'_{ij} , it is equivalent to compare p'' and t''[i,j] (sufficient). Furthermore, if p'' == t''[i,j], and we already know t''[i,j] is the fingerprint of submatrix t_{ij} , so it is equivalent to the fact p matches t_{ij} (necessary).

Running time: The running time to generate every p_r' or p'' is O(m) and $O(m(m+1)) = O(n^2)$ to repeat for m+1 times. For matrix t, it costs O(n) times to compute n-m+1 fingerprints for each row and $O(n^2)$ for all n rows, i.e. we get matrix t' in $O(n^2)$ time. Similarly, it costs $O(n(n-m+1)) = O(n^2)$ time to get matrix t''. For lookup, it takes O(1) to check p'' == t''[i,j] and repeat it for $(n-m+1)^2 = O(n^2)$ times. Combining everything together, the algorithm takes $O(n^2)$ time.