Компакты в нормированном пространстве

Теорема 1. Если в нормированном пространстве, замкнутый шар (положительного радиуса) является компактом, то это пространство конечномерно.

<u>Идея</u>: Пусть у нас есть интервал длины 2, сколько нужно интервалов длины 1, чтобы закрыть его полностью? Точно ≥ 2 .

Аналогичный вопрос про шары в плоскости. Чтобы покрыть шар радиуса 2 шарами радиуса 1 понадобится ≥ 4 шаров (площадь 4π нужно покрыть шарами площадью π).

Аналогичный вопрос про шары в пространстве. Чтобы покрыть шар радиуса 2 шарами радиуса 1 понадобится ≥ 8 шаров. Таким образом видно, что с увеличением размерности пространства увеличивается число шаров радиуса 1, чтобы закрыть шар радиуса 2.

В конечномером случае, шар это компакт и его всегда можно закрыть конечным числом единичных шаров. Но чем больше размерность, тем больше шаров требуется. Увеличивая размерность до бесконечности, шаров не должно хватать, чтобы закрыть шар радиуса 2.

 \square Рассмотрим шар $\overline{B}(0,2)$ - компакт \Rightarrow рассмотрим покрытие $\bigcup_{a\in \overline{B}(0,2)} B(a,1),$ очевидно, что

$$\overline{B}(0,2) \subset \bigcup_{a \in \overline{B}(0,2)} B(a,1)$$

Поскольку это компакт, то можно выбрать конечное подпокрытие, которое покрывает $\overline{B}(0,2)$:

$$B(a_1, 1), \dots, B(a_N, 1) : \overline{B}(0, 2) \subset \bigcup_{j=1}^{N} B(a_j, 1)$$

Рассмотрим пространство $L = \langle a_1, \dots, a_N \rangle$ - линейная оболочка центров этих шаров. Докажем, что линейная оболочка L - это все пространство \Rightarrow оно конечномерно. Будем доказывать в несколько этапов:

1) До любой точки пространства можно дотянутся элементом пространства L, причем расстояние потребуется не больше 1.

Пусть
$$B(0,r)\subset\bigcup_{a\in L}B(a,1),$$
 тогда $B(0,2r)\subset\bigcup_{a\in L}B(a,1).$

 \square Пусть $x \in B(0,2r)$, тогда:

$$||x|| < 2r \Rightarrow \left\| \frac{x}{2} \right\| < r \Rightarrow \frac{x}{2} \in B(0,r) \subset \bigcup_{a \in L} B(a,1) \Rightarrow \exists a \in L : \left\| \frac{x}{2} - a \right\| < 1 \Rightarrow ||x - 2a|| < 2$$

Получаем, что $x \in B(2a, 2)$, $2a \in L$, так как L - это линейное пространство. Сдвинем этот шар:

$$B(2a, 2) - 2a = B(0, 2) \subset \bigcup_{c \in L} B(c, 1)$$

где последнее верно по построению L. Тогда:

$$B(2a,2) \subset \bigcup_{c \in L} B(\underbrace{c+2a}_{c,L},1) \Rightarrow B(2a,2) \subset \bigcup_{b \in L} B(b,1)$$

где $\forall c, a \in L \Rightarrow c + 2a \in L$, так как L - линейное пространство. Таким образом

$$\forall x \in B(0,2r) \Rightarrow x \in \bigcup_{a \in L} B(a,1) \Rightarrow B(0,2r) \subset \bigcup_{a \in L} B(a,1)$$

Если закрыт шар радиуса 2, то из утверждения выше следует, что закрыт шар радиуса 4:

$$B(0,2) \subset \bigcup_{a \in L} B(a,1) \Rightarrow B(0,4) \subset \bigcup_{a \in L} B(a,1) \Rightarrow B(0,8) \subset \bigcup_{a \in L} B(a,1) \Rightarrow \dots$$

Получаем, что

$$\forall n \in \mathbb{N}, B(0, 2^n) \subset \bigcup_{a \in L} B(a, 1) \Rightarrow X \subset \bigcup_{a \in L} B(a, 1)$$

так как любая точка пространства X лежит в каком-то шаре $B(0,2^n)$. Итого получаем:

$$\forall x \in X, \exists a \in L : ||x - a|| < 1$$

- 2) Покажем, что из 1) следует, что X = L.
 - \square (От противного): Пусть $X \neq L \Rightarrow L$ замкнутое подмножество в X (так как мы доказывали, что конечномерные подпространства являются замкнутым множеством), тогда существует точка, в дополнении к L вместе с некоторой своей окрестностью:

$$\exists b \in (X \setminus L) \land \delta > 0 \colon B(b, \delta) \cap L = \emptyset$$

Пустое пересечение открытого шар $B(b,\delta)$ с подмножеством L означает, что:

$$\forall a \in L, \|b - a\| \ge \delta \Leftrightarrow \forall a \in L, \left\| \frac{2b}{\delta} - \frac{2a}{\delta} \right\| \ge 2$$

Поскольку L - линейное пространство, то $\forall a \in L \Leftrightarrow orall rac{2a}{\delta} \in L$ - произвольный элемент $L \Rightarrow$

$$\exists \frac{2b}{\delta} \in X, \forall a \in L : \left\| \frac{2b}{\delta} - a \right\| \ge 2$$

получили противоречие с тем, что $\forall x \in X, \exists a \in L \colon ||x - a|| < 1.$

Получили, что X=L, пространство L - конечномерно (размерность пространства $\dim L=N)\Rightarrow$ пространство X - конечномерно.

Предел функций

Пусть (X, ρ_X) и (Y, ρ_Y) - метрические пространства, точка $a \in X$ - предельная точка X. Пусть $f \colon X \setminus \{a\} \to Y$.

Опр: 1. (Гейне): Элемент $b \in Y$ называется пределом функции f при $x \to a$, если

$$\forall \{x_n\} \in X \colon x_n \neq a \land x_n \to a \Rightarrow f(x_n) \to b$$

где $x_n \to a \Leftrightarrow \rho_X(x_n, a) \to 0$ и $f(x_n) \to b \Leftrightarrow \rho_Y(f(x_n), b) \to 0$. Обозначение: $\lim_{x \to a} f(x) = b$.

Теорема 2. Предел определен единственным образом.

 \square Пусть $\lim_{x\to a} f(x) = b$ и $\lim_{x\to a} f(x) = c$. Возьмем последовательность точек $\{x_n\}: x_n \neq a \land x_n \to a \Rightarrow$ одновременно $f(x_n) \to b, \ f(x_n) \to c \Rightarrow b = c$ по единственности предела последовательности.

Теорема 3. (Арифметика пределов): Пусть $f, g: X \setminus \{a\} \to Y, \alpha: X \setminus \{a\} \to \mathbb{R}$ и (Y, ρ_Y) - нормированное пространство, где $\rho_Y(u, v) = \|u - v\|$. Если $\lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = c$ и $\lim_{x \to a} \alpha(x) = \alpha_0$, то

- (1) $\lim_{x \to a} f(x) + \lim_{x \to a} g(x) = b + c;$
- (2) $\lim_{x \to a} \alpha(x) \cdot f(x) = \alpha_0 \cdot b;$
- \square Пусть $x_n \to a \land x_n \neq a \Rightarrow f(x_n) \to b, g(x_n) \to c, \alpha(x_n) \to \alpha_0$. По свойствам предела последовательности в нормированном пространстве получим, что
 - $(1) f(x_n) + g(x_n) \to b + c;$
 - (2) $\alpha(x_n) \cdot f(x_n) \to \alpha_0 \cdot b;$

Теорема 4. (Предел композиций) Пусть X, Y, Z - метрические пространства (каждый со своей метрикой). Пусть $a \in X$ - предельная точка $X, b \in Y$ - предельная точка Y. Пусть

$$f \colon X \setminus \{a\} \to Y \setminus \{b\} \land g \colon Y \setminus \{b\} \to Z$$

$$\lim_{x \to a} f(x) = b \wedge \lim_{y \to b} g(y) = c$$

Тогда предел композиции функций равен $\lim_{x\to a} g(f(x)) = c$.

 \square Пусть $x_n \to a \land x_n \neq a \Rightarrow f(x_n) \to b$ и по условию $f(x_n) \neq b \Rightarrow g(f(x_n)) \to c$.

Опр: 2. (Коши): Число b называется пределом функции f при $x \to a$, если

$$\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x \in X \setminus \{a\}, \ 0 < \rho_X(x,a) < \delta \Rightarrow \rho_Y(f(x),b) < \varepsilon$$

Теорема 5. Определения Гейне и Коши - равносильны.

 \square (K) \Rightarrow (Γ): Пусть $x_n \to a \land x_n \neq a$, по определению Коши:

$$\forall \varepsilon > 0, \exists \delta > 0 \colon 0 < \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), b) < \varepsilon$$

Поскольку $x_n \to a \Rightarrow \exists N \colon \forall n > N, \ 0 < \rho_X(x_n, a) < \delta$, где $\rho_X(x_n, a) > 0$, так как $x_n \neq a$, тогда получим, что $\rho_Y(f(x_n), b) < \varepsilon$:

$$\forall \varepsilon > 0, \exists N : \forall n > N, \rho_Y(f(x_n), b) < \varepsilon \Rightarrow f(x_n) \to b$$

 $(\Gamma) \Rightarrow (K)$: (От противного): Предположим, что определение по Гейне выполняется, а определение по Коши не выполняется, тогда

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x : 0 < \rho_X(x, a) < \delta \land \rho_Y(f(x), b) \ge \varepsilon$$

Возьмем $\delta = \frac{1}{n}$ и построим последовательность $x_n \colon 0 < \rho_X(x_n,a) < \frac{1}{n}$, то есть $x_n \to a \land x_n \neq a$. Но по предположению получаем, что $\rho_Y(f(x_n),b) \geq \varepsilon$ - противоречие, поскольку по определению Гейне, справедливо следующее:

$$x_n \to a \land x_n \neq a \Leftrightarrow \rho_X(x_n, a) \to 0 \land \rho_X(x_n, a) > 0 \Rightarrow f(x_n) \to b \Leftrightarrow \rho_Y(f(x_n), b) \to 0$$

Теорема 6. (Об ограниченности): Пусть $\lim_{x\to a} f(x) = b$, тогда

$$\exists B(a,\delta), B(b,\varepsilon) \colon f(x) \in B(b,\varepsilon), \, \forall x \in B(a,\delta) \setminus \{a\}$$

 \square В определении Коши задаем $\varepsilon>0$, получаем $\delta>0$ и приходим к требуемому результату.

Теорема 7. (Об отделимости): Пусть $\lim_{x\to a} f(x) = b, \ c \neq b$ и $r = \rho_Y(c,b),$ тогда

$$\exists B(a,\delta) \colon \forall x \in B(a,\delta) \setminus \{a\}, f(x) \notin B(c,\frac{r}{2})$$

 \square В определении Коши задаем $\varepsilon = \frac{r}{2}$. Тогда $\forall x \in B(a, \delta) \setminus \{a\}$:

$$r = \rho_Y(c, b) \le \rho_Y(c, f(x)) + \rho_Y(f(x), b) < \rho_Y(c, f(x)) + \frac{r}{2} \Rightarrow \frac{r}{2} < \rho_Y(c, f(x)) \Rightarrow f(x) \notin B(c, \frac{r}{2})$$

Теорема 8. (Критерий Коши): Пусть (X, ρ_X) - метрическое пространство, a - предельная точка X, (Y, ρ_Y) - полное метрическое пространство и $f: X \setminus \{a\} \to Y$. Тогда $\exists \lim_{x \to a} f(x) \Leftrightarrow$ для f выполнено условие Коши:

$$\forall \varepsilon > 0, \exists \delta > 0 : 0 < \rho_X(x_1, a) < \delta \land 0 < \rho_X(x_2, a) < \delta \Rightarrow \rho_Y(f(x_1), f(x_2)) < \varepsilon$$

 $\stackrel{-}{(\Rightarrow)}$ Пусть предел $\lim_{x\to a}f(x)=b$ существует, тогда по определению Коши верно следующее:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon 0 < \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), b) < \varepsilon$$

Возьмем $\frac{\varepsilon}{2}$ и найдем $\delta>0$: $0<\rho_X(x_1,a)<\delta\wedge 0<\rho_X(x_2,a)<\delta,$ тогда:

$$\rho_Y(f(x_1), b) < \frac{\varepsilon}{2} \land \rho_Y(f(x_2), b) < \frac{\varepsilon}{2} \Rightarrow \rho_Y(f(x_1), f(x_2)) \le \rho_Y(f(x_1), b) + \rho_Y(b, f(x_2)) =$$

$$= \rho_Y(f(x_1), b) + \rho_Y(f(x_2), b) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow \rho_Y(f(x_1), f(x_2)) < \varepsilon$$

 (\Leftarrow) Проверяем определение Гейне. Пусть $\varepsilon>0$ и выполняется условие Коши с $\delta>0$:

$$0 < \rho_X(x_1, a) < \delta \land 0 < \rho_X(x_2, a) < \delta \Rightarrow \rho_Y(f(x_1), f(x_2)) < \varepsilon$$

Пусть $x_n \to a \land x_n \neq a$, тогда $\exists N \colon \forall n > N, \ 0 < \rho_X(x_n, a) < \delta$. По условию Коши это означает, что

$$\forall n, m > N, \, \rho_Y(f(x_n), f(x_m)) < \varepsilon$$

Это означает, что последовательность $\{f(x_n)\}$ - фундаментальна. Так как Y - полное, то $f(x_n) \to b$. Получилось, что какую последовательность x_n ни возьми (которая $x_n \to a \land x_n \neq a$), $f(x_n)$ будет сходится к некоторому b.

Проверим единственность b. Пусть $y_n \to a \land y_n \neq a$, рассмотрим новую последовательность

$$z_n: x_1, y_1, x_2, y_2, \dots$$

ясно, что $z_n \to a \land z_n \neq a \Rightarrow f(z_n)$ имеет предел. Предел подпоследовательности совпадает с пределом последовательности $\Rightarrow \lim f(x_n) = \lim f(y_n) = \lim f(z_n)$.

Повторные пределы

Данная секция была добавлена отдельно от курса лекций, ради логичности повествования.

Опр: 3. Пределы вида: $\lim_{x\to a} \left(\lim_{y\to b} f(x,y)\right)$ или $\lim_{y\to b} \left(\lim_{x\to a} f(x,y)\right)$ называют <u>повторными</u>.

Повторные пределы обычно не связаны друг с другом и не связаны с двойными (тройными и так далее) пределами, в общем случае.

Пример: $f(x,y) = \frac{x-y}{x+y}$, тогда повторные пределы не совпадают:

$$\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) = \lim_{x\to 0} \frac{x}{x} = 1 \neq -1 = \lim_{y\to 0} \frac{-y}{y} = \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$$

Двойного предела не существует.

Пример: $f(x,y) = x \sin \frac{1}{y}$, тогда существует один повторный предел, но не существует второй:

$$\nexists \lim_{y \to 0} f(x, y) \Rightarrow \nexists \lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right), \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

Двойной предел существует, так как: $\left|x\sin\frac{1}{y}\right| \leq |x|$.

Конечно, интересны случаи, когда повторные пределы совпадают между собой и одновременно совпадают с двойным пределом. На этот вопрос отвечает следующая теорема:

Теорема 9. Если существует двойной предел: $\lim_{\substack{x\to a\\y\to b}} f(x,y) = S$ и одновременно с этим $\forall y\in Y$ существует

предел по x: $\forall y \in Y, \exists \varphi(y) = \lim_{x \to a} f(x, y)$, то существует повторный предел и он равен двойному:

$$\lim_{y \to b} \varphi(y) = \lim_{y \to b} \lim_{x \to a} f(x, y) = \lim_{\substack{x \to a \\ y \to b}} f(x, y) = S$$

Если же ещё $\forall x \in X$ существует простой предел по y, то существут другой повторный предел, который будет равен двойному пределу и первому повторному:

$$\lim_{x \to a} \lim_{y \to b} f(x, y) = \lim_{y \to b} \lim_{x \to a} f(x, y) = \lim_{\substack{x \to a \ y \to b}} f(x, y)$$

 \square Пусть $a, b, S < \infty$. По определению:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall x \in X, \ y \in Y, \ 0 < |x - a| < \delta \land 0 < |y - b| < \delta \Rightarrow |f(x, y) - S| < \varepsilon > 0 < |f(x, y) - S| < \varepsilon > 0$$

Зафиксируем y и перейдем в неравенстве к пределу по x, тогда получим:

$$\forall \varepsilon > 0, \, \exists \, \delta > 0 \colon \forall y \in Y, \, 0 < |y - b| < \delta \Rightarrow |\varphi(y) - S| \le \varepsilon$$

Это есть ничто иное, как:

$$S = \lim_{y \to b} \varphi(y) = \lim_{y \to b} \lim_{x \to a} f(x, y)$$

Аналогичное равенство получаем, при существовании повторного предела по x. В этом случае двойной и два повторных предела будут совпадать.

Непрерывность функций

Пусть (X, ρ_X) и (Y, ρ_Y) - метрические пространства, $a \in X$. Пусть $f \colon X \to Y$.

Опр: 4. Функция f непрерывна в точке a, если

$$\forall \varepsilon > 0, \exists \delta > 0 : \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), f(a)) < \varepsilon$$

Теорема 10. Следующие утверждения равносильны:

- (1) f непрерывна в точке a;
- (2) $\forall \{x_n\} \in X, x_n \to a \Rightarrow f(x_n) \to f(a);$
- (3) a это изолированная точка или a это предельная точка X и $\lim_{x\to a} f(x) = f(a)$;

 \Box

- $(1) \Rightarrow (2)$: $\forall \varepsilon > 0$, $\rho_X(x,a) < \delta \Rightarrow \rho_Y(f(x),f(a)) < \varepsilon$. Пусть $x_n \to a \Rightarrow$ по определению предела $\exists N \colon \forall n > N, \, \rho_X(x_n,a) < \delta \Rightarrow \rho_Y(f(x_n),f(a)) < \varepsilon \Rightarrow f(x_n) \to f(a)$.
- $(2) \Rightarrow (3)$: a изолированная точка \Rightarrow ничего доказывать не нужно (см. замечание в первом семестре). Если a предельная точка, то надо показать, что $\lim_{x\to a} f(x) = f(a) \Rightarrow$ распишем определение по Гейне:

$$\forall x_n \colon x_n \to a \land x_n \neq a \Rightarrow f(x_n) \to f(a)$$

но во втором пункте дано больше, чем нужно доказать:

$$\forall x_n \colon x_n \to a \Rightarrow f(x_n) \to f(a)$$

следовательно (3) - верно.

 $(3)\Rightarrow (1)$: Если a - изолированная точка, то f - непрерывна в ней. Пусть a - предельная точка, тогда по определению Коши:

$$\forall \varepsilon > 0, \exists \delta > 0 \colon 0 < \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), f(a)) < \varepsilon$$

Хотим доказать, что

$$\forall \varepsilon > 0, \exists \delta > 0 \colon \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), f(a)) < \varepsilon$$

Если $x = a \Rightarrow \rho_Y(f(x), f(a)) = 0 < \varepsilon$.