Grandezza Fisica

Una grandezza fisica è una grandezza osservabile e misurabile quantitativamente.

Definizione operativa

Una definizione operativa definisce le metodologie necessarie per misurare una grandezza fisica.

Per esempio si consideri il *metro*. Viene definito che per misurare la larghezza di un corpo è necessario porre fisso un estremo del metro (*strumento*) all'estremità del corpo e far coincidere la fine dello strumento con quella del corpo misurato.

Misura

Una misura è necessariamente composta di tre parti distinte: Valore Errore Unità di misura

$$3 \pm 1m$$

Abbiamo quindi un *valore* che rappresenta quantitativamente la misura calcolata , un errore che indica l'intervallo di valori in cui il valore effettivo ricade e l'unità di misura della misurazione.

Unità di misura

Quindi esistono unità di misura, usate per misurare specifici aspetti della realtà.

Unità di misura	Unità	Simbolo	lettera
Durata di tempo	secondo	S	Т
Lunghezza	metro	\mathbf{m}	L
massa	grammo	g	M

Le unità di misura vengono divise in fondamentali e derivate.

Fondamentali

Le unità di misura fondamentali sono ${\bf 7}$ e sono:

- Lunghezza
- Massa
- Tempo
- Intensità di corrente
- Temperatura
- Quantità di sostanza
- Intensità luminosa

Derivate

Grandezze derivate vengono costituite da più grandezze:

Unità di misura	Definizione
Velocità Newton	$\frac{m/s}{Kg \cdot m/s^2}$

Operazioni

Diverse operazioni sono possibili in modo diverso sulle diverse misure.

Somma e Sottrazione Sono possibili solamente tra unità di misure omologhe.

$$[m] + [m] = [m]$$

Il risultato è l'unità di misura stessa.

Prodotto e Divisione

Sono possibili tra unità di misure omologhe e eterogene.

$$[v] = \frac{[m]}{[s]}$$

L'unità risultante è quindi il prodotto o la divione tra le unità.

Potenza e Radice

In questo caso è anche possibile calcolarlo con unità di misure eterogene, come nel caso del prodotto e della divione.

Multipli e Sottomultipli

Convenzionalmente si usano dei multipli e dei sottomultipli con misure molto grandi o molto piccole:

Multiplo	Valore	Sottomulitplo	Valore
Peta	10^{15}	Fempto	10^{-15}
Tera	10^{12}	Pico	10^{-12}
Giga	10^{9}	Nano	10^{-9}
Mega	10^{6}	Micro	10^{-6}
Kilo	10^{3}	Milli	10^{-3}

Incertezza

Una misurazione porta con se necessariamente un errore, questo indica la precisione della misurazione.

Rappresentazione dei dati

Misurare i dati permette di effettuare i calcoli, conviene però, in molti casi, visualizzarli, per questo usiamo dei grafici. Analizziamo quindi queste misurazioni:

t(s)	x(m)	$errore_x$
0	0	0,3
1	1,5	0,5
2	3,1	0,7
3	2,3	0,5
4	2	0,5

In questi grafici si possono vedere gli stessi dati riportati sempre con informazioni aggiuntive:

- Valori
- Valori con errore
- Valori con errore e linea di interpolazione

Inseriamo quindi le informazioni su dei grafici:

```
set xrange [0:5]
set yrange [0:5]
set xlabel "Tempo (s)"
set ylabel "Spazio (m)"
set title "Dati"
plot '-'
0 0
1 1.5
2 3.1
3 2.3
4 2
e
```

Come detto in precedenza tutte le misurazioni hanno un loro errore, nel secondo grafico è quindi possibile vedere il valore misurato e insieme l'errore della misurazione stessa:

```
set xrange [0:5]
set yrange [0:5]
```

```
set xlabel "Tempo (s)"
set ylabel "Spazio (m)"
set title "Dati con Errore"
plot '-' with yerror
0 0 0.3
1 1.5 0.5
2 3.1 0.7
3 2.3 0.5
4 2 0.5
```

Infine nell'ultimo grafico è possibile vedere la *linea di interpolazione*, una funzione che approssima nel miglior modo i valori misurati. Il processo di calcolare questa funzione si chiama *fittare* (dall'inglese fit):

```
set xrange [0:5]
set yrange [0:5]

set xlabel "Tempo (s)"
set ylabel "Spazio (m)"
set title "Linee di interpolazione"
plot -0.3*x**2+1.7*x+0.4, '-' with yerror
0 0 0.3
1 1.5 0.5
2 3.1 0.7
3 2.3 0.5
4 2 0.5
```

Errore

Massimo

Statistico

 ${\bf Sistematico}$

Propagazione

Cinematica

Dinamica

Meccanica

Punto

 ${\it Corpo}$ esteso

Legge Oraria

Traiettoria