北京航空航天大学 2015 年 硕士研究生入学考试试题

科目代码: 961

计算机综合 (共8页)

考生注意: 所有答题务必书写在考场提供的答题纸上,写在本试题单上的答题一律无效(本题单不参与评卷)

- 一、 单项选择(15道小题,每题2分,共30分)
 - 1、常见的几种总线仲裁方式中,对电路最为敏感的方式为()
 - A、链式查询 B、计数器查询方式 C、独立请求 D、中断查询
- 2、在常用的 I/O 控制方式中,要求主存与 I/O 设备之间有直接数据通路的方式为()
 - A、程序查询 B、程序中断 C、I/O 通道 D、DMA
- 3、某机器字长为64位,内存容量为256MB,若按字编址,则其寻址空间为()
 - A, $0 \sim 8M-1$ B, $0 \sim 16M-1$ C, $0 \sim 32M-1$ D, $0 \sim 64M-1$
- 4、某机器字长为 16 位,内存按字编址,PC 当前值为 2000H, 当读取一条双字长指令后 PC 的值为()
 - A, 2000H B, 2004H C, 2008H D, 200AF
- 5、某程序运行于一个由 L1、L2 两级 cache 以及主存组成的存储系统, L1 cache 和 L2 cache 的命中率分别为 50%和 80%, 则整个存储系统 cache 的命中率为()
 - A, 65% B, 80% C, 90% D, 95%
 - 6、段式存储管理的逻辑地址空间为()
 - A、一维线性的 B、二维的 C、三维的 D、由操作系统决定的
 - 7、下列选项中,操作系统提供给用户的接口为()
 - A、库函数 B、中断 C、系统调用 D、驱动程序
 - 8、设某进程的页面走向为: 5、4、3、2、4、3、1、4、3、2、1、5, 系统中

有 3 页物理内存,请问采用 LRU 和 FIFO 淘汰算法的缺页次数分别为()

A、9和10 B、5和7 C、6和6 D、8和10

9、进程可以使用的最大地址空间受限于()

I. 地址位数: II. 物理内存大小: III. 辅存大小

A、I B、I和II C、II和III D、I, II, III

10、有 5 个记录 A, B, C, D, E 存放在某磁盘的某磁道上, 假定这个磁道划分为 5块,每块存放一个记录,若磁盘旋转一周需要 20ms,处理程序每读出一个记录 后需要花费 6ms 进行处理,程序处理这些数据时磁盘照常旋转,按照()顺序存 放这 5 个记录可以使其按照 A, B, C, D, E 顺序处理这些记录的时间最少。

A, "A, B, C, E, D" B, "A, C, E, B, D" C, "A, D, E, C, B" D,

"A, E, B, C, D"

11、以太网交换机按照自学算法建立转发表,它通过()进行地址学习

A、ARP 协议

B、帧中的源 MAC 地址和目的 MAC 地址

C、帧中的目的 MAC 地址

D、帧中的源 MAC 地址

12、以太网内某主机甲的 IP 地址为: 211.71.136.23, 子网掩码为: 255. 255. 240. 0, 网关地址为: 211. 71. 136. 1, 若主机甲向主机乙【IP 地址为: 211.71.130.25】发送一个 IP 分组,则()

A、该分组封装成帧后直接发送给乙,帧中目的 MAC 地址为网关 MAC 地 址

- B、该分组封装成帧后直接发送给乙,帧中目的 MAC 地址为主机乙的 MAC 地址
- C、该分组封装成帧后交由网关转发, 帧中目的 MAC 地址为网关的 MAC 地 址
- D、该分组封装成帧后交由网关转发,帧中目的 MAC 地址为主机乙的 MAC 地址
- 13、Internet 中所有末端系统和路由器都必须实现()协议以确定网络的连 通。

A, IP B, UDP C, TCP D, OSPF

14、主机甲向主机乙发送一个(SYN=1, seg=1000)的TCP段,期望与主机乙

建立 TCP 连接, 若主机乙接受该连接请求, 则主机乙向甲发送的正确的 TCP 段可
能是()
A、(SYN=1, ACK=0, seq=1001, ack=1001)
B、(SYN=1, ACK=1, seq=1000, ack=1000)
C、(SYN=1, ACK=1, seq=1001, ack=1001)
D、(SYN=0, ACK=1, seq=1000, ack=1000)
15、在"HTTP协议缺省使用端口80"这句话中,端口80为()
A、客户端本地的传输层端口号
B、Web 服务器的传输层端口号
C、客户端和 Web 服务器双方的控制层端口号
D、Web 服务器连续的交换机端口号
二、 填空(每空1分,共20分)
1、程序局部控制性原理包括局部性和局部性。
2、MIPS 指令执行阶段,立即数寻址方式因操作数而需访问内存的次数为
次。
3、通常计算机中决定指令执行顺序的寄存器为。
4、构造 32k×32bit 的存储器共需片 2k×8bit 的 SRAM 存储芯片。
5、在通常的输入输出方式中,程序查询和都需要 CPU 执行指令来
实现数据传递,而不需要 CPU 执行指令来实现数据传递。
6、算法产生缺页率最小,但不是实用的页面淘汰算法。
7、产生死锁的四个必要条件,,,,,。

12、主机甲和主机乙之间已建立了 TCP 连接,主机甲向主机乙发送了三个 TCP

11、IPV6 地址长度为______位(bit),通常采用_____记法。

8、在无噪声的情况下。某通信链路的带宽为 4KHz, 采用 8 相位调制,则通

10、 数据链路层和网络层的协议数据单元(PDU)分别为_____和

信链路的最大数据传输速率为kbps

9、宽带接入技术 FTTH 使用的传输介质为____。

段,其中有效载荷长度分别为: 200,300,500 字节。第二个段的序号为 1000,传输过程中第二个段丢失,主机乙收到第二个段后返回的确认号为____。随后主机甲因超时重发第二个段,主机乙收到该重发段后返回的确认号为____。 三、简答题(本题共6分)

假设 M1 和 M2 是基于同一套指令采用不同方法设计出的 2 台计算机, M1 主频为 1GHz, M2 的时钟周期为 1. 2ns。程序 P 在机器 M1 上的平均 CPI 为 4, 在 M2 上的平均 CPI 为 2, 针对程序 P 而言

- (1) M1 和 M2 那台机器的执行速度更快?
- (2) 平均每条指令执行多少 ns?

四、分析题(本题共13分)

某计算机字长为 32 位,主存地址为 32 位,且按字节编址,4 路组相连 cache 的数据存储空间容量为 32KB, cache 数据块大小为 4 个字(16 字节)。每个数据块包含 1 位有效位和 4 位修改位。(每个字用 1 位修改位表示该字是否被修改)

- (1) cache 分多少组? (2分)
- (2) cache 的地址标记(tag)是多少位? (2分)
- (3) cache 总容量为多少? (3分)
- (4) 若 cache 的存取时间为 5ns, cache 访问缺失时主存使用块传送方式把数据传送至 cache,第一个字存取时间为 65ns,其后每个字的存取时间为 10ns,此时 cache 等待直到块传送结束后,再从 cache 读取数据。假定 cache 命中率为90%,则请计算该 cache 平均存取时间。(6分)

五、综合题(本题共24分)

MIPS 处理器 5 级流水线如下图所示:

- 1、请在流水线的计算阶段扩足必要的 MUX (多路选择器) 和连接线。(左侧起始部分为 ID/EX 寄存器,右侧起始部分为 EX/MEM 寄存器)
 - 2、指出上图存在的错误,并分析该设计错误的危害。
 - 3、请反汇编下列指令序列:

- 4、指出上述指令片段在执行时存在的所有数据相关。
- 5、通过利用编译器指令调度的优化功能可以消除上述的数据冒险,便按照下列表格给出调度后的指令顺序。(表格中的指令编码号即为该指令的原始编号,例:第一个单元格填入 I6,则代表第一条指令为原序列的 I6 指令)

调度前	调度后
I1	
I2	
13	
14	
I5	
16	

6、对于上述指令片段分别计算编译优化前和编译优化后所需的周期数:

MIPS 指令手册(节选)

	31 26	25 21	20 16	15 11	10 6	5 0				
编码	special 000000	rs	rt	rd	0 00000	addu 100001				
	6	5	5	5	5	6				
格式	addu rd,	rs, rt								
操 作	GPR[rd] ← GPR[rs]+GPR[rt]									

	31 26	25 21	20 16	15 0					
编码	lw 100011	base	rt	offset					
H-7	6	5	5	16					
格式	lw rt, offset(base)								
描述	GPR[rt]← memory[GPR [base]+offset]								
操 作	Addr←GPR[base]+sign_ext(offset) GPR←memory[Addr]								
其他	sign_ext代表有符号二进制补码扩展 Addr 必须为4的倍数(即addr 心必须为00)								

	31 26	25 21	20 16	15 0						
编码	sw 101011	base	rt	offset						
H-7	6	5	5	16						
格式	sw rt, offset (base)									
描述	memory[GPR [base]+offset] ← GPR[rt]									
操 作	Addr—GPR[base]+sign_ext(offset) memory[Addr]—GPR[rt]									
其他	sign_ext代 Addr 必须	表有符号二 为k的倍数	.进制补码扩 (即Addra。	展 必须为00)						

六、在操作系统中为什么要引进线程? (本题5分)

七、什么是临界资源?什么是临界区? (本题5分)

八、有一台计算机,该机提供给用户**2**³²字节的虚拟存储空间,页面大小为8192字节。有一个用户进程产生的虚拟地址为0X11123456。请问该地址的页偏移量为多少?(本题5分)

九、简述编译连接完成的重定位与操作系统完成的重定位的作用。(本题 5 分) 十、1、写出 P、V 操作的物理意义。(本题 5 分)

2、我们将只读数据的进程称为"读者进程",而写或修改数据的进程称为"写者进程"。允许多个"读者"同时读数据,但不允许多个"写者"与其他"写者"或"读者"同时访问数据。另外,要保证:一旦有"写者"等待时,新到达的"读者"必须等待,直到"写者"完成数据访问为止。试用 P、V 操作实现"读者"与"写者"的同步。(本题 10 分)

十一、计算题(本题共5分)

某局域网的介质访问控制(MAC)协议为 CSMA/CD, 信号在介质上的传播速度为 200000km/s:

- ①、若该网络为总线型结构,总线长度为 1km,则站点在发送过程中的冲突 (碰撞)检测时间为? (本题 2 分)
- ②、若该网络试用一个集线器(HUB)连接所有点,且限定站点到集线器之间的最长距离为100km,则站点在发送过程中的冲突(碰撞)检测时间为?(本题1分)
- ③、若该网络为以太网,通过使用交换机可以大幅度减少冲突,但为保证 网络性能,一个局域网内的站点个数仍不宜过多,为什么?(本题2分) 十二、计算题(本题6分)

某单位下属四个部门分别建立局域网,并依次连接到该单位的路由器 R1 的接口 D1~D4上。R1 通过接口 L1 与路由器 R2 的接口 L2 连接并接入 Internet 网络拓扑结构,各部门局域网分配的 IP 地址块及路由接口 IP 地址如下图所示:

1、路由器 R1 的路由表结构如下所示,请给出路由表内部确保各部门网络及 Internet 访问的畅通。(本题 4 分)

目的网络	子网掩码	下一跳 IP 地址	网络接口

2、为减少路由 R2 中的路由表项需对该网络地址进行聚合, 试求最大可能聚合四个部门局域网的地址块, 并用 CIDR 记法表示。(本题 2 分)

十三、解答题(本题共5分)

主机甲中的应用程序使用 TCP 协议向主机乙发送 20KB 数据,在建立 TCP 连接后,主机甲按照慢启动(慢开始)和拥塞避免机制发送数据,其拥塞窗口初始值为 1. 慢启动的门限值 ssthresh 为 8,且每次发送 TCP 报文段均搭载 1KB 的用户数据;

- 1、若传输过程中未发生确认超时,且不考虑流量控制,则主机甲到第几轮时能够完成题中所述 20KB 数据的发送?各轮次的拥塞窗口宽度为多少?(本题 3分)
- 2、若传输过程中未发生确认超时, 主机乙返回确认报文段中"窗口(window size)"字段始终为 6KB, 则主机甲到第几轮次能够完成题中所述的 20KB 数据的发送? (本题 2 分)

十四、分析题(本题共6分)

连接在以太网中的主机甲发出一个帧,其前80字节的内容(十六进制),如图1所示、以太网帧结构和IP首部结构(如图2、图3所示)

- 1、帧中的目的 MAC 地址是什么? 主机甲在生成该帧时如何得知该地址? (本题 2 分)
- 2、帧中所含 IP 分组的目的 IP 地址是什么? (用点分十进制表示); 从 IP 分组内容可以看出主机甲所在子网的网关同时进行地址翻译 (NAT) 为什么? (本题 2 分)
- 3、帧中所含 IP 分组到达接收方主机后,接收方如何从 IP 分组中识别出传输层报文的起始位置?为什么可以看出题中所给出的传输报文为 TCP 报文?(本题 2 分)

图 1

位置偏移																
0000	00	23	89	52	3D	D1	3C	97	0E	43	Е9	C2	08	00	45	00
0010	02	94	67	4D	40	00	80	06	C7	OD	OA	08	01	0B	DB	EF
0020	Е3	06	08	58	00	50	A4	82	CC	04	87	78	E4	D9	50	18
0030	FF	FF	CC	8F	00	00	47	45	54	20	2F	20	48	54	54	50
0040	2F	31	2E	31	OD	OA	41	63	63	65	70	74	3A	20	69	6D

字段宽度	6 字节	6 字节	2 字节	46~1500 字节	
	目的地址	源地址	类型	数据	FCS

图 2: IP 分组头部结构

