Week 4: Advanced Session on Optimization

- ♦ How to transform a poorly behaved non-linear formulation
 - O Into a well-behaved linear formulation
- ◆ Reminder: this is an optional session for the curious
 - O You won't be tested on this material
- ◆ Agenda
 - O Remember IDEA's optimization problem from Session 3
 - O Look at the algebraic formulation
 - O Graph the "min" statement that calculates revenues and see that is not linear
 - O Use the graph to show how to modify the formulation to make it linear
 - O Update the algebraic formulation to make it linear
 - O Implement the linear optimization problem in Excel

OPS Analytics MOOC, Week 4 Advanced Session

Recall IDEA chooses an order quantity Q for Supplier P

- ◆ Demand forecast...for example, if the market were strong
 - O Uniformly distributed from 6,000 to 14,000 units
- ◆ Revenues and costs for supplier P
 - O Sales price = 150€
 - O Unit cost = 100€
 - O Fixed cost to contract with P = 100,000€
- ◆ If IDEA were to order Q and demand turned out to be D...
 - O Earn 150€ * min{D , Q} in sales revenue
 - O Pay 100€ * Q in unit costs
 - O Pay 100,000€ fixed cost
- Profit $\pi = 150 * min{D, Q} 100 * Q 100,000$
- ◆ IDEA decides what Q between 4,000 and 10,000 to order

OPS Analytics MOOC, Week 4 Advanced Session

An algebraic formulation of the optimization problem

- ♦ We want to find the optimal order quantity: decision variable Q
- ◆ So we simulate. Suppose we generate 10 samples of demand ○ Call the *i*th sample D_i ... where i=1,2,...,10
- If we order Q and the demand sample was D_i
 Then profit was π_i = 150 * min{D_i, Q} 100 * Q 100,000
- ◆ We then average the profits over all 10 samples
- O Average $\pi_{\text{average}} = 1/10 [\pi_2 + \pi_2 + ... + \pi_{10}]$

OPS Analytics MOOC, Week 4 Advanced Session

3

We can avoid this bad type of non-linearity

lacktriangle Original formulation $\max \pi_{\text{average}}$

subject to
$$\begin{split} \pi_{\text{average}} &= 1/10 \; [\pi_2 + \pi_2 + \ldots + \pi_{10}] \\ \pi_i &= 150 \; \text{* min} \{D_i \;,\; Q\} - 100 \; \text{* Q } - 100,000 \quad \text{(for i=1,...,10)} \\ 4,000 &\leq Q \leq 10,000 \end{split}$$

- ◆ We'll add 10 decision variables, one for each sample
 - O Let S_i be the number of units sold in sample i
 - O Now we let have $\pi_i = 150 * S_i 100 * Q 100,000$ (for i=1,...,10)
- ♦ We'll eliminate the 'min's and use two constraints to define each S_i

$$O S_i ≤ D_i$$
 (for i=1,...,10)
 $O S_i ≤ Q$ (for i=1,...,10)

◆ The constraints work because the optimization maximizes each S_i

OPS Analytics MOOC, Week 4 Advanced Session

The two constraints are evaluated for a given D_i and Q

The full linear formulation

• Original formulation $\max \pi_{\text{average}}$

subject to

$$\pi_{\text{average}} = 1/10 \left[\pi_2 + \pi_2 + \dots + \pi_{10} \right]$$

 $\pi_i = 150 \text{ * min}\{D_i, Q\} - 100 \text{ * } Q \text{ - } 100,000 \quad \text{(for i=1,...,10)}$

Q ≥ 0

◆ Linear formulation $\max \pi_{average}$

subject to

$$\begin{split} \pi_{\text{average}} &= 1/10 \; [\pi_2 + \pi_2 + \ldots + \pi_{10}] \\ \pi_i &= 150 \; \text{*} \; \text{min} \{D_i \; , \; Q\} - 100 \; \text{*} \; Q \; \text{-} \; 100,000 \qquad \text{(for i=1,...,10)} \\ S_i &\leq D_i \qquad \qquad \text{(for i=1,...,10)} \\ S_i &\leq Q \qquad \qquad \text{(for i=1,...,10)} \end{split}$$

Q ≥ 0

OPS Analytics MOOC, Week 4 Advanced Session

9

Spreadsheet implementation of linear formulation 1 IDEA Linear Optimization.xlsx =\$B\$5*C10 3 Quantity (Q) units =\$B\$4 Fixed Cost : 100,000 euros 150 euros per unit =\$B\$3*\$B\$6 100 euros per unit Decision 7 =D10-E10-F10 8 Demand Unit Variables Fixed Cost Variable Cost Profit путрег Sample (D) Reveue 10 6,993.19 0.00 100,000.00 1,000,000.00 (1,100,000.00) 0.00 1,000,000.00 (1,100,000.00) 6,052.00 0.00 0.00 100,000.00 100,000.00 12 3 0.00 1,000,000. 9.115.57 0.00 **Maximization** 8,138.25 0.00 100,000.00 1,000,000. **Objective** 14 11,629.08 0.00 100,000.00 1,000,000. 15 7,884.09 (1,100,000.00) 6 0.00 0.00 100,000.00 1,000,000.00 16 7 9,729.12 0.00 0.00 100,000.00 1,000,000.00 (1,100,000.00) 17 8 11,983.58 0.00 100,000.00 1,000,000.00 (1,100,000.00) 0.00 18 6,990.26 0.00 100,000.00 1,000,000.00 (1,100,000.00) 19 10 9,248.15 0.00 0.00 100,000.00 1.000.000.00 (1,100,000.00) 20 =AVERAGE(G10:G19) Average = (1,100,000.00) OPS Analytics MOOC, Week 4 Advanced Session

Wrap-up for Week 4 Advanced Session 2

- ◆ The min(D_i, Q) in our newsvendor formulation was not linear
 It had a "kink" at D_i = Q
- ♦ We added extra decision variables and constraints to work around it
 - O Decision variables S_i were the unit sales for each sample i = 1,...,10
 - O Constraints $S_i \le D_i$ so sales would never be more than demand
 - O Constraints $S_i \le Q$ so sales would never be more than the order quantity
- ◆ When solver maximizes average profits, each S_i is maximized
 - \odot Even though it would be feasible for an S_i < D_i and S_i < Q
 - O Maximization forces the S_i to grow until it hits one or the other constraint
- ◆ So the problem behaves as if S_i = min(Di , Q)

OPS Analytics MOOC, Week 4 Advanced Session

12