

MR Spectra with SNR>10. (A) Malignant, (B) Benign For acquisition parameters see Materials and Methods. A line broadening of 3Hz was applied to both spectra. The spectra were displayed in absolute intensity mode (noiselevel similar in both spectra).

FIGURE 2

MR Spectra with SNR >10. (A) Malignant, (B) Benign For acquisition parameters see Materials and Methods. A line broadening of 3Hz was applied to both spectra. The spectra were displayed in absolute intensity mode (noiselevel similar in both spectra).

FIGURE 3