1. Studio di grafici di funzioni

Per tracciare il grafico di una funzione si studiano, se è possibile, le principali proprietà: dominio, segno, eventuali asintoti, crescenza e decrescenza, eventuali massimi e minimi locali, concavità, convessità ed eventuali flessi.

Esempi

Funzioni razionali

$$1)f(x) = 2x^3 - 5x^2 + 4x$$

Dominio E=
$$\mathbb{R}$$
; $f(x) = x(2x^2 - 5x + 4)$ $\begin{cases} > 0 \ per \ x > 0 \\ = 0 \ per \ x = 0 \\ < 0 \ per \ x < 0 \end{cases}$

intersezione con gli assi O(0;0);

$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$
; non ha asintoti

Fig.1

fig.2

 $x=rac{2}{3}$ punto di massimo relativo M $\left(rac{2}{3};rac{28}{27}
ight)$; x=1 punto di minimo relativo N (1;1)

$$f''(x) = 12x - 10 \begin{cases} > 0 \ per \ x > \frac{5}{6} \\ = 0 \ per \ x = \frac{5}{6} \\ < 0 \ per \ x < \frac{5}{6} \end{cases}$$
 flesso $F\left(\frac{5}{6}; \frac{55}{54}\right)$

2)
$$f(x) = \frac{3x^2-1}{x}$$

Dominio E= $\mathbb{R} - \{0\}$; $f(x) = 3x - \frac{1}{x}$; funzione dispari

intersezioni con gli assi $\left(\pm \frac{1}{\sqrt{3}}; 0\right)$; asintoti x = 0; y = 3x;

 $f'(x) = 3 + \frac{1}{x^2} > 0 \ \forall x \in E$ crescente in $(-\infty; 0) \cup (0; +\infty)$

$$f''(x) = -\frac{2}{x^3} \begin{cases} > 0 \ per \ x < 0 \\ < 0 \ per \ x > 0 \end{cases}$$

convessa in $(-\infty; 0)$; concava in $(0; +\infty)$

Funzioni irrazionali

3)
$$f(x) = \sqrt[3]{4x^2 - x^3}$$

Dominio E=ℝ

intersezioni con gli assi O(0;0) (4;0);

$$\lim_{x \to \pm \infty} f(x) = \mp \infty, \lim_{x \to \pm \infty} \frac{f(x)}{x} = -1,$$

$$\lim_{x \to \pm \infty} [f(x) + x] = \frac{4}{3}$$

asintoto obliquo $y = -x + \frac{4}{3}$;

$$f'(x) = \frac{8x - 3x^2}{3\sqrt[3]{(4x^2 - x^3)^2}} \begin{cases} > 0 & per \ 0 < x < \frac{8}{3} \\ = 0 & per \ x = \frac{8}{3} \\ < 0 \ per \ x < 0 \ \lor x > \frac{8}{3} \end{cases}$$

Non derivabile in x=0 e x=4 ; $\lim_{x\to 0^\pm} f'(x) = \pm \infty$ quindi il punto (0; 0) è una cuspide;

 $\lim_{x\to 4^{\pm}} f'(x) = -\infty$ pertanto (4;0) è un punto di flesso con tangente verticale x=4.

Crescente in $\left(0; \frac{8}{3}\right)$; minimo O (0;0); massimo $M\left(\frac{8}{3}; \frac{4}{3}\sqrt[3]{4}\right)$.

$$4)f(x) = \sqrt{x^2 - 2x} - 2x$$

Dominio $E = (-\infty; 0] \cup [2; +\infty);$

 $f(x) \ge 0 \text{ per } x \le 0$, $f(x) < 0 \text{ per } x \ge 2$; passa per i punti O(0;0) e A(2;-4);

$$\lim_{x \to +\infty} f(x) = -\infty, \lim_{x \to +\infty} \frac{f(x)}{x} = -1, \lim_{x \to +\infty} [f(x) + x] = -1, \text{ pertanto}$$

y = -x - 1 è asintoto obliquo per $x \to +\infty$;

$$\lim_{x \to -\infty} f(x) = +\infty, \lim_{x \to -\infty} \frac{f(x)}{x} = -3, \lim_{x \to -\infty} [f(x) + 3x] = 1, \text{ pertanto}$$

y = -3x + 1 è asintoto obliquo per $x \to -\infty$;

$$f'(x)=rac{x-1}{\sqrt{x^2-2x}}-2$$
 , campo di derivabilità $E_{f'}=(-\infty;0)$ \cup $(2;+\infty)$,

 $f'(x) \ge 0$ per $x \in (2; \frac{2\sqrt{3}}{3} + 1]$, il segno è riportato nella tabella :

	0	:	2	$\frac{2\sqrt{3}}{3} + 1$	
f'(x)	_	non definita	+	0	-
f(x)	decrescente	non definita	crescente		decrescente

massimo in
$$M\left(\frac{2\sqrt{3}}{3}+1;\; -\sqrt{3}-2\right);$$
 Poiché: $\lim_{x\to 0^-}f'(x)=-\infty$, la curva è tangente in O all'asse y ,
$$\lim_{x\to 2^+}f'(x)=+\infty \text{ , la curva è tangente in A alla retta } x=2;$$

$$f''(x)=-\frac{1}{(x^2-2x)^{\frac{3}{2}}}<0 \text{ in } E_{f''}\text{, pertanto la curva è concava nei due intervalli}$$

$$5)f(x) = \sqrt[3]{x^2|x+1|}$$

Dominio $E=\mathbb{R}$; $f(x)\geq 0 \ \forall x\in\mathbb{R}$; passa per O(0;0), A(-1;0); $\lim_{x\to+\infty} f(x)=+\infty, \lim_{x\to+\infty}\frac{f(x)}{x}=1, \lim_{x\to+\infty}[f(x)-x]=\frac{1}{3}, \text{ pertanto}$ $y=x+\frac{1}{3} \text{ è asintoto obliquo per } x\to+\infty;$ $\lim_{x\to-\infty}f(x)=+\infty, \lim_{x\to-\infty}\frac{f(x)}{x}=-1, \lim_{x\to-\infty}[f(x)+x]=-\frac{1}{3}, \text{ pertanto}$ $y=-x-\frac{1}{3} \text{ è asintoto obliquo per } x\to-\infty;$ $\text{per } x>-1\Rightarrow f'(x)=\frac{3x+2}{3\sqrt[3]{x(x+1)^2}}\geq 0 \text{ per } -1< x\leq -\frac{2}{3} \ \forall \ x>0$ $\text{per } x<-1\Rightarrow f'(x)=-\frac{3x+2}{3\sqrt[3]{x(x+1)^2}}<0$ $-1 \qquad \qquad -\frac{2}{3} \qquad 0$

f'(x)	-	N.D	+	0	_	N-D.	+	
f(x)	decrescente	0	crescente	d	ecrescente	0	crescente	

$$x = -\frac{2}{3}$$
 è punto di massimo relativo $\Rightarrow M\left(-\frac{2}{3}; \frac{\sqrt[3]{4}}{3}\right)$

Poiché:

$$\lim_{x\to -1^\pm} f'(x) = \pm \infty \quad \Rightarrow \quad \text{il punto } A(-1;0) \text{ è una cuspide, tangente } : x = -1$$

$$\lim_{x\to 0^\pm} f'(x) = \pm \infty \quad \Rightarrow \quad \text{il punto } O(0;0) \text{ è una cuspide, tangente } : x = 0$$

$$f''(x) = -\frac{2}{9\left|x^{\frac{4}{3}}(x+1)^{\frac{5}{3}}\right|} \quad \Rightarrow \quad f(x) \text{ concava in } (-\infty;-1) \cup (-1;0) \cup (0;+\infty)$$

Fig. 5

Funzioni trascendenti

6)
$$f(x) = e^{-x}(1-x^2)$$

Dominio $E = \mathbb{R}$; punti di intersezione con gli assi : $A(-1;0)$, $B(1;0)$, $C(0;1)$, $f(x) \ge 0$ per $-1 \le x \le 1$;
$$\lim_{x \to +\infty} f(x) = 0 \Rightarrow y = 0 \text{ è asintoto orizzontale ;}$$

$$\lim_{x \to -\infty} f(x) = -\infty \text{ e poiché } \lim_{x \to -\infty} \frac{e^{-x}(1-x^2)}{x} = +\infty \text{ non ha asintoto obliquo per } x \to -\infty \text{ ;}$$
 $f'(x) = e^{-x}(x^2 - 2x - 1)$, campo di derivabilità : E_f , E_f ; E_f and E_f is E_f , E_f .

f(x)	crescente	d	ecrescer	ite	crescente	
f'(x)	+	0	_	0	+	
		$1-\sqrt{2}$		$1 + \sqrt{2}$		

Pertanto:

$$x=1-\sqrt{2} \text{ è punto di massimo relativo} \Rightarrow M\left(1-\sqrt{2};2e^{\sqrt{2}-1}\left(\sqrt{2}-1\right)\right)$$

$$x=1+\sqrt{2} \text{ è punto di minimo relativo} \Rightarrow N\left(1+\sqrt{2};-2e^{-\sqrt{2}-1}\left(\sqrt{2}+1\right)\right)$$

$$f''(x)=-e^{-x}(x^2-4x+1)\geq 0 \quad \text{per} \quad 2-\sqrt{3}\leq x\leq 2+\sqrt{3}$$

		$2 - \sqrt{3}$		$2 + \sqrt{3}$		
f''(x)	_	0	+	0	_	
f(x)	concava		convessa		concava	

Flessi:

$$F_1\left(2-\sqrt{3};e^{\sqrt{3}-2}\left(4\sqrt{3}-6\right)\right); \quad F_2\left(2+\sqrt{3};-e^{-\sqrt{3}-2}\left(4\sqrt{3}+6\right)\right)$$

Fig. 6

7)
$$f(x) = e^{-\frac{1}{|x|}}(x^2 - 3)$$

Dominio $E = \mathbb{R} - \{0\}$; funzione pari; $\lim_{x \to +\infty} f(x) = +\infty$.

Poiché $\lim_{x\to 0}f(x)=0 \Rightarrow x=0$ punto di discontinuità eliminabile, quindi, la funzione così definita

$$f_1(x) = \begin{cases} f(x) & \forall x \in \mathbb{R}_0 \\ 0 & per \ x = 0 \end{cases}$$

è definita e continua in \mathbb{R} ; interseca inoltre l'asse x nei punti A,B $(\pm\sqrt{3};0)$;

per
$$x > 0$$
 si ha: $f'(x) = e^{-\frac{1}{x}} \frac{2x^3 + x^2 - 3}{x^2}$

	0	1		
f'(x)	_	0	+	
f(x)	decrescente	$-2e^{-1}$	crescente	

per x < 0 si ha: $f'(x) = e^{\frac{1}{x}} \frac{2x^3 - x^2 + 3}{x^2}$

		-1		0
f'(x)	_	0	+	
f(x)	decrescente	$-2e^{-1}$	crescente	

 $\lim_{x\to 0} f'(x) = 0 \text{ ;minimi : } M, N(\pm 1; -2e^{-1}), \text{ la funzione } f_1 \text{ ha massimo relativo in } (0; 0)$

Fig. 7-a Fig. 7-b

$$8) f(x) = \frac{logx}{x^2}$$

Dominio $E=(0;+\infty)$; $f(x)\geq 0$ per $x\geq 1, A(1;0)$, $\lim_{x\to +\infty}\frac{\log x}{x^2}=0 \qquad \Rightarrow \quad y=0 \text{ è asintoto orizzontale}$ $\lim_{x\to 0^+}\frac{\log x}{x^2}=-\infty \quad \Rightarrow \quad x=0 \text{ è asintoto verticale}$ $f'(x)=\frac{1-2\log x}{x^3} \text{ , campo di derivabilità } E_f,=(0;+\infty);$ $f'(x)\geq 0 \text{ se } 1-2\log x\geq 0 \text{ cioè } \log x\leq \frac{1}{2} \text{ per } 0< x\leq \sqrt{e}$

	0		\sqrt{e}		
f'(x)		+	0	_	
f(x)		crescente	$\frac{1}{2e}$	decrescente	

Punto di flesso $F\left(\sqrt[6]{e^5}; \frac{5}{6\sqrt[3]{e^5}}\right)$

Fig. 8

$$\begin{aligned} \mathbf{9})f(x) &= (\log^2 x - \mathbf{1})^2 \\ \text{Dominio } E &= (0; +\infty) \text{, } f(x) \geq 0 \text{ } \forall x > 0 \text{ ,} \\ f(x) &= 0 \text{ per } \log x = \pm 1 \text{ } \Rightarrow x = e \text{ } e \text{ } x = e^{-1} \Rightarrow A(e^{-1}; 0), B(e; 0), \\ &\lim_{x \to +\infty} f(x) = +\infty \text{ , } \lim_{x \to 0^+} f(x) = +\infty \text{ } \Rightarrow x = 0 \text{ } e \text{ asintoto verticale} \end{aligned}$$

 $f'(x)=rac{4}{x}[log^2x-1]\cdot logx$, campo di derivabilità $E_{f'}=(0;+\infty)$; Nella tabella sono riportati zeri e segno di f' e l'andamento di f

	0		e^{-1}		1		e	
f'(x)	8	_	0	+	0	_	0	+
f(x)	∞ d	ecrescen	te 0	crescente	1	decrescente	0	crescente

minimi in $A(e^{-1}; 0)$ e C(e; 0), massimo in B(1; 1)

 $f(x) = (\log^2 x - 1)^2$ $\frac{1}{2}$ \frac

$$10)f(x) = \frac{1}{\log(x^2 - x + 1)}$$

Dominio $E = \mathbb{R} - \{0; 1\}, \ f(x) > 0 \ \text{per } x < 0 \ \forall \ x > 1;$

$$\lim_{x\to 0^{\pm}} f(x) = \mp \infty \ \Rightarrow x = 0 \ \text{è as into to verticale },$$

$$\lim_{x\to 1^{\pm}} f(x) = \pm \infty \ \Rightarrow \ x = 1 \ \text{è as into to verticale ,}$$

$$\lim_{x \to \infty} f(x) = 0 \quad \Rightarrow y = 0 \text{ è asintoto orizzontale;}$$

$$f'(x) = \frac{1-2x}{(x^2-x+1)\log^2(x^2-x+1)} > 0$$
 per $x < 0 \lor 0 < x < \frac{1}{2}$

massimo in
$$M\left(\frac{1}{2}; \frac{1}{\log \frac{3}{4}}\right)$$

$$11)f(x) = \frac{\log x}{x-2}$$

Dominio $E = (0; 2) \cup (2; +\infty);$

$$f(x) = 0$$
 per $x = 1 \Rightarrow A(1; 0), f(x) > 0$ per $x \in (0; 1) \cup (2; +\infty);$

$$\lim_{x \to +\infty} f(x) = 0 \quad \Rightarrow y = 0 \quad \text{è as into to orizzontale };$$

$$\lim_{x \to 0^+} f(x) = +\infty \implies x = 0 \quad \text{è as into to verticale;}$$

$$\lim_{x \to 2^{\pm}} f(x) = \pm \infty \implies x = 2 \quad \text{è as into to verticale;}$$

$$f'(x) = -rac{xlogx-x+2}{x(x-2)^2}$$
 , campo di derivabilità $E_{f'} = E$;

studiamo il segno di f' osservando che il denominatore è positivo $\,\,\forall x \in E_f,\,\,$ pertanto

$$f'(x) > 0$$
 se $-x \log x + x - 2 > 0 \Rightarrow \log x < \frac{x-2}{x}$,

risolviamo graficamente la disequazione tracciando i grafici di y = logx

e dell'iperbole $y = \frac{x-2}{x}$, dalla figura risulta che

$$log x > \frac{x-2}{x} \quad \forall x \in E_f,$$

da cui

$$f'(x) < 0 \ \forall x \in E_{f'}$$
,

quindi la funzione è decrescente

in
$$(0; 1)$$
 e in $(2; +\infty)$

Fig.11- a

Fig. 11-b

$$12)f(x) = \arcsin(2x - x^2)$$

Per il dominio si deve imporre che sia $-1 \le 2x - x^2 \le 1$ che risolta dà: $E = \left[1 - \sqrt{2}; 1 + \sqrt{2}\right]$, $f(x) \ge 0$ per $0 \le x \le 2$, la curva interseca gli assi nei punti O(0;0) e A(2;0); la funzione è continua nel dominio ;

$$f'(x) = \frac{2-2x}{\sqrt{1-(2x-x^2)^2}} = \frac{2(1-x)}{|x-1|\sqrt{-x^2+2x+1}} = \begin{cases} \frac{2}{\sqrt{-x^2+2x+1}} & x < 1\\ \frac{-2}{\sqrt{-x^2+2x+1}} & x > 1 \end{cases}$$

Poiché

$$\lim_{x \to 1^+} f'(x) = -\frac{2}{\sqrt{2}} = f'_{+}(1) \quad \text{e} \quad \lim_{x \to 1^-} f'(x) = \frac{2}{\sqrt{2}} = f'_{-}(1)$$

il punto $M\left(1;\frac{\pi}{2}\right)$ è un punto angoloso, inoltre:

$$\lim_{x \to \left(1 + \sqrt{2}\right)^{-}} f'(x) = -\infty \implies \text{la curva è tangente nel punto } B\left(1 + \sqrt{2}; -\frac{\pi}{2}\right)$$

alla retta $x = 1 + \sqrt{2}$,

$$\lim_{x\to \left(1-\sqrt{2}\right)^+}f'(x)=+\infty \ \Rightarrow \ \text{la curva è tangente nel punto } \mathcal{C}\left(1-\sqrt{2};-\frac{\pi}{2}\right)$$

alla retta $x = 1 - \sqrt{2}$,

quindi il campo di derivabilità è $E_{f'} = (1 - \sqrt{2}; 1 + \sqrt{2}) - \{1\}$

	$1-\sqrt{2}$		1		$1 + \sqrt{2}$
f'(x)) +∞	+	N.D.	_	-∞
f(x)	$-\frac{\pi}{2}$	crescente	$\frac{\pi}{2}$	decrescente	$-\frac{\pi}{2}$

x = 1 punto di massimo: $M\left(1; \frac{\pi}{2}\right)$

Fig. 12

13) $f(x) = arctg^2x - arctgx$

Dominio $E = \mathbb{R}$; punti di intersezione con gli assi : O(0;0) e A(t,g1;0);

$$\lim_{x\to +\infty}(arctg^2x-arctgx)=\frac{\pi^2}{4}-\frac{\pi}{2} \ \Rightarrow \ g\colon y=\frac{\pi^2}{4}-\frac{\pi}{2} \ \text{è asintoto orizzontale}$$

$$\lim_{x\to -\infty}(arctg^2x-arctgx)=\frac{\pi^2}{4}+\frac{\pi}{2} \ \Rightarrow \ h\colon y=\frac{\pi^2}{4}+\frac{\pi}{2} \ \text{è asintoto orizzontale}$$
 Si ha :

 $ta^{\frac{1}{2}}$

 $f'(x)=rac{1}{1+x^2}[2arctgx-1]$, campo di derivabilità : $E_{f'}=\mathbb{R}$; studiando zeri e segno della derivata prima risulta :

$$f'(x) = 0$$
 per $arctgx = \frac{1}{2} \Rightarrow x = tg\frac{1}{2}$

$$f'(x) \ge 0$$
 per $x \ge tg^{\frac{1}{2}}$

f(x)	decrescente		crescente	
f'(x)	_	0	+	
		$^{\iota g}_{2}$		

Quindi la funzione ha un minimo in $x=tg\frac{1}{2}$ e risulta $f\left(tg\frac{1}{2}\right)=-\frac{1}{4}$, il corrispondente punto sulla curva è $B\left(tg\frac{1}{2};\,-\frac{1}{4}\right)$.

Grafici di funzioni L. Mereu – A. Nanni

Fig.13

Esercizi

(gli esercizi con asterisco sono avviati)

Funzioni razionali

*2)
$$f(x) = 2x^3 - 3x^2 + 1$$

*3)
$$f(x) = \frac{4x^2 - 1}{2x - 4} - 10$$

Funzioni irrazionali

*4)
$$f(x) = 2 - \sqrt[3]{(x-1)^2}$$

*5)
$$f(x) = x - 2 - \sqrt[3]{x^3 - 1}$$

*6)
$$f(x) = \sqrt{x}(x-1)^2$$

*7)
$$f(x) = 1 + \frac{\sqrt[3]{x-2}}{x}$$

*8)
$$f(x) = \frac{\sqrt{x^2 + 4}}{x}$$

*9)
$$f(x) = x - \sqrt{4 - x^2}$$

*10)
$$f(x) = \sqrt[3]{(x-1)(x-2)^2}$$

*11)
$$f(x) = \frac{x+1}{\sqrt{x-2}}$$

Funzioni trascendenti

*12)
$$f(x) = e^{x^2 - 1}$$

*13)
$$f(x) = 1 + x^2 e^x$$

*14)
$$f(x) = (2x + 3)e^{-x}$$

*15)
$$f(x) = 4x^3 e^{-2x}$$

*16)
$$f(x) = e^{-\frac{1}{x-2}}$$

*17)
$$f(x) = e^{-\frac{x}{1-x^2}}$$

*18)
$$f(x) = (4 - x^2)e^{-x-1}$$

*20)
$$f(x) = e^x |x^2 - x|$$

*22)
$$f(x) = e^{x + \frac{1}{|x|}}$$

*24)
$$f(x) = log \frac{x+4}{x+1}$$

*26)
$$f(x) = log(x + 1 + \sqrt{x^2 + 2x + 2})$$

*28)
$$f(x) = log|x^3 - x|$$

*30)
$$f(x) = \frac{1}{2}x - \sin x$$
 $= [-\pi; \pi]$

*32)
$$f(x) = arcsinx - 2x$$
 $I= [-1; 1]$

*19)
$$f(x) = e^{-x}|x+2|$$

*21)
$$f(x) = 1 + e^{\frac{1}{|x|}}$$

*23)
$$f(x) = (x+1)log(x+1)$$

*25)
$$f(x) = \frac{\log^2(x+1)}{x+1}$$

*27)
$$f(x) = log \frac{x^2 - 2x - 3}{x^2 - 2x + 5}$$

*29)
$$f(x) = \frac{x^2}{1 + log|x|}$$

*31)
$$f(x) = \sin^3 x$$
 |= [0; 2π]

Soluzioni

Funzioni razionali

*1.S. Dominio E= \mathbb{R} ; $\lim_{x\to\pm\infty}f(x)=\pm\infty$ non ha asintoti intersezioni con gli assi (-1;0), $\left(\frac{1}{2};0\right)$, (0;1);

$$f'(x) = 3(2x - 1)(2x + 1)$$

Massimo $M\left(-\frac{1}{2};2\right)$, minimo $N\left(\frac{1}{2};0\right)$;

f''(x) = 24x; concava per x < 0; convessa per x > 0; flesso F(0; 1)

***2.S.**Dominio E= \mathbb{R} ; $f(x) = (x-1)^2(2x+1)$

intersezioni con gli assi (1;0) $\left(-\frac{1}{2};0\right)$ (0;1)

 $\lim_{x \to +\infty} f(x) = \pm \infty \quad \text{non ha as in toti}$

$$f'(x) = 6x^2 - 6x$$

MassimoM(0; 1), minimoN(1; 0);

f''(x) = 12x - 6; concava per $x < \frac{1}{2}$; convessa per $x > \frac{1}{2}$ flesso $F(\frac{1}{2}; \frac{1}{2})$

*3.S.Dominio E: $\mathbb{R} - \{2\}$; $f(x) = 2x - 6 + \frac{15}{2x - 4}$

intersezioni con asse y $\left(0; -\frac{39}{4}\right)$

asintoti x = 2; y = 2x - 6;

$$f'(x) = 2 - \frac{30}{(2x-4)^2}$$

crescente in $\left(-\infty; 2 - \frac{\sqrt{15}}{2}\right) \cup \left(2 + \frac{\sqrt{15}}{2}; +\infty\right)$

massimo $M\left(2-\frac{\sqrt{15}}{2};-2-2\sqrt{15}\right)$,

minimo $N\left(2+\frac{\sqrt{15}}{2};-2+2\sqrt{15}\right); f''(x)=\frac{15}{(x-2)^3};$

concava in $(-\infty; 2)$; convessa in $(2; +\infty)$

Funzioni irrazionali

*4.S. Dominio $E=\mathbb{R}$;

intersezioni con gli assi $(1-2\sqrt{2};0)$

 $(1+2\sqrt{2};0);(0;1);$

non ha asintoti; $f'(x) = -\frac{2}{3\sqrt[3]{x-1}}$

non è derivabile in x = 1;

Cuspide M(1;2) massimo;

$$f''(x) = \frac{2}{9(x-1)\sqrt[3]{x-1}}$$

Convessa in $(-\infty; 1) \cup (1; +\infty)$

*5.S. Dominio E= \mathbb{R} i intersezione asse y (0;-1) ; asintoto orizzontale y=-2;

$$f'(x) = 1 - \frac{x^2}{\sqrt[3]{(x^3 - 1)^2}}$$
 Non derivabile in x=1;

flesso con tangente verticale (1; -1)

Crescente in $\left(-\infty; \frac{1}{\sqrt[3]{2}}\right)$, decrescente $\left(\frac{1}{\sqrt[3]{2}}; +\infty\right)$;

massimo M ($\frac{1}{\sqrt[3]{2}}$; $\sqrt[3]{4} - 2$);

$$f''(x) = \frac{2x}{\sqrt[3]{(x^3-1)^5}}$$
; flessi F(0;-1),F'(1;-1).

*6.S.Dominio E= $[0; +\infty)$; intersezioni con gli assi (0;0) (1;0); $f'(x) = \frac{5x^2 - 6x + 1}{2\sqrt{x}}$; in x=0 la funzione non è derivabile, (0;0) punto a tangente verticale, crescente in $\left[0; \frac{1}{5}\right) \cup (1; +\infty)$, decrescente in $\left(\frac{1}{5}; 1\right)$ Massimo $M\left(\frac{1}{5}; \frac{16\sqrt{5}}{125}\right)$;

minimo (0;0), N (1;0);

$$f''(x) = \frac{15x^2 - 6x - 1}{4x\sqrt{x}} \; ;$$

concava in $\left(0; \frac{3+\sqrt{24}}{15}\right)$, convessa in $\left(\frac{3+\sqrt{24}}{15}; +\infty\right)$.

*7.S.Dominio E= $\mathbb{R} - \{0\}$; asintoti x = 0; y = 1; intersezione asse x (1, 0);

 $f'(x) = \frac{2(3-x)}{3x^2\sqrt[3]{(x-2)^2}}$; in x=2 non è derivabile, x=2 punto di flesso con tangente verticale x=2,

Massimo
$$M\left(3; \frac{4}{3}\right)$$
. $f''(x) = \frac{2(5x^2 - 30x + 36)}{9x^3\sqrt[3]{(x-2)^5}}$, Flessi per x=3 $\pm \frac{3\sqrt{5}}{5}$, F(2;1)

*8.S.Dominio E: $\mathbb{R} - \{0\}$;

funzione dispari,

grafico simmetrico rispetto all'origine ;

asintoti
$$x = 0$$
; $y = 1$ $per x \rightarrow +\infty$; $y = -1per x \rightarrow -\infty$;

$$f'(x) = -\frac{4}{x^2\sqrt{x^2+4}}$$
, decrescente in $(-\infty; 0) \cup (0; +\infty)$;

$$f''(x) = \frac{4(3x^2+8)}{x^3(x^2+4)\sqrt{x^2+4}}$$
; concava in $(-\infty; 0)$, convessa in $(0; +\infty)$.

*9.S.Dominio E=[-2; 2];

intersezioni con gli assi $(\sqrt{2}; 0); (0; -2);$

$$f'(x) = 1 + \frac{x}{\sqrt{4-x^2}}$$
, derivabile in (-2; 2);

in A(-2;-2), B(2;2) tangenti verticali;

Minimo N
$$(-\sqrt{2}; -2\sqrt{2})$$

$$f''(x) = \frac{4}{(4-x^2)\sqrt{4-x^2}}$$
 ;convessa in E

L. Mereu – A. Nanni

Grafici di funzioni

*10.S.Dominio E: \mathbb{R} ; intersezioni con gli assi (1;0), (2;0), C(0; $-\sqrt[3]{4}$); asintoti $y=x-\frac{5}{3}$;

$$f'(x) = \frac{(x-2)(3x-4)}{3\sqrt[3]{(x-1)^2(x-2)^4}}$$
 non derivabile in x=1 e x=2,

F (1;0) flesso con tangente verticale,

minimo N(2;0) cuspide;

massimo $M\left(\frac{4}{3}; \frac{\sqrt[3]{4}}{3}\right)$, minimo N(2;0);

$$f''(x) = -\frac{2}{9\sqrt[3]{(x-1)^5(x-2)^4}};$$

convessa in $(-\infty; 1)$, concava in $(1; +\infty)$

*11.S.Dominio $E=(2; +\infty)$,

$$f(x) > 0 \forall x \in E$$
;

x = 2 asintoto verticale destro;

$$f'(x) = \frac{x-5}{2(x-2)\sqrt{x-2}}$$
; Minimo N (5;2 $\sqrt{3}$);

$$f''(x) = \frac{11-x}{4(x-2)^2\sqrt{x-2}}$$
; flesso F (11;4)

Funzioni trascendenti

*12)
$$f(x) = e^{x^2 - 1}$$

*12. S.Dominio E=
$$\mathbb{R}$$
; $f(x) > 0 \ \forall x \in \mathbb{R}$;

funzione pari

intersezione asse y $(0; e^{-1});$

$$f'(x) = 2xe^{x^2 - 1}$$

x = 0 punto di minimo N (0; e^{-1});

$$f''(x) = 2e^{x^2 - 1}(1 + 2x^2)$$

convessa $\forall x \in \mathbb{R}$

*13. S. Dominio E= \mathbb{R} ; $f(x) \ge 1 \forall x \in \mathbb{R}$; intersezione asse $y \in \mathbb{R}$ A (0;1);

asintoto orizzontale per $x \rightarrow -\infty$ y = 1

$$f'(x) = e^x(x^2 + 2x)$$

Massimo $M(-2; 1 + 4e^{-2})$;

minimo N (0; 1)

$$f''(x) = e^x(x^2 + 4x + 2)$$

Flessi (-2
$$\pm\sqrt{2}$$
;1+(-2 $\pm\sqrt{2}$) $^{2}e^{(-2\pm\sqrt{2})}$

*14. S.Dominio E= \mathbb{R} ; f(x) $\geq 0 \forall x \geq -\frac{3}{2}$;

intersezioni con gli assi $\left(-\frac{3}{2};0\right)(0;3)$

asintoto orizzontale y=0 per $x\rightarrow +\infty$;

$$f'(x) = (-2x - 1)e^{-x}$$
Massimo M $(-\frac{1}{2}; 2\sqrt{e});$

$$f''(x) = (2x - 1)e^{-x}$$
; Flesso $F(\frac{1}{2}; \frac{4}{\sqrt{e}})$

*15. S.Dominio E= \mathbb{R} ; $f(x) \ge 0 \forall x \ge 0$;

intersezioni con gli assi (0; 0)

asintoto orizzontale y=0 per $x \rightarrow +\infty$;

$$f'(x) = 4(3-2x)x^2e^{-2x};$$

Massimo M $\left(\frac{3}{2}; \frac{27}{2}e^{-3}\right)$;

flesso a tangente orizzontale O (0;0)

$$f''(x) = 8x(2x^2 - 6x + 3)e^{-2x};$$

Flessi a tangente obliqua $x = \frac{3 \pm \sqrt{3}}{2}$.

*16. S.Dominio $E=\mathbb{R} - \{2\};$

$$f(x) > 0 \ \forall x \neq 2$$
;

Intersezione asse y $(0;\sqrt{e})$

asintoto verticale sinistro x=2 $\lim_{x\to 2^+} f(x)=0$;

asintoto orizzontale y = 1;

$$f'(x) = \frac{1}{(x-2)^2} e^{-\frac{1}{x-2}}$$
, $\lim_{x \to 2^+} f'(x) = 0$;

crescente in $(-\infty; 2) \cup (2; +\infty)$;

$$f''(x) = \frac{5-2x}{(x-2)^4} e^{-\frac{1}{x-2}}$$
; flesso $F\left(\frac{5}{2}; e^{-2}\right)$

*17. S.Dominio E= \mathbb{R} - $\{-1; 1\}$; $f(x) > 0 \ \forall x \in E$; asintoto destro x = -1, $\lim_{x \to -1^-} f(x) = 0$; asintoto destro x = 1 $\lim_{x \to 1^-} f(x) = 0$; asintoto orizzontale y = 1; $f'(x) = -\frac{x^2 + 1}{(1 - x^2)^2} e^{-\frac{x}{1 - x^2}};$

decrescente in $(-\infty; -1) \cup (-1; 1) \cup (1; +\infty)$

*18. S. Dominio E= \mathbb{R} ; $f(x) \ge 0 \forall x \in [-2; 2]$, intersezioni con gli assi (2;0), (2;0), (0;4 e^{-1}); asintoto orizzontale y=0 per x \rightarrow + ∞ ;

$$f'(x) = (x^2 - 2x - 4)e^{-x-1}$$
;

Massimo $M(1-\sqrt{5}; (-2+2\sqrt{5})e^{\sqrt{5}-2});$

Minimo $N(1+\sqrt{5};(-2-2\sqrt{5})e^{-\sqrt{5}-2})$

$$f''(x) = -(x^2 - 4x - 2)e^{-x-1};$$

Flessi $F(2-\sqrt{6}; (-6+4\sqrt{6})e^{\sqrt{6}-3}), (2+\sqrt{6}; (-6-4\sqrt{6})e^{-\sqrt{6}-3}).$

*19. S. Dominio $E=\mathbb{R}$;

$$e^{-x}|x+2| = \begin{cases} e^{-x}(-x-2) & per \ x \le -2\\ e^{-x}(x+2) & per \ x > -2 \end{cases};$$

$$f(x) \ge 0 \forall x \in \mathbb{R};$$

intersezioni con gli assi (-2;0), (0;2);

y = 0 asintoto orizzontale per $x \rightarrow +\infty$;

$$f'(x) = \begin{cases} e^{-x}(x+1) & per \ x < -2 \\ e^{-x}(-x-1) & per \ x > -2 \end{cases},$$

x = -2 punto angoloso;

minimo N (-2;0); massimo M(-1;e); $f''(x) = \begin{cases} -xe^{-x} & per \ x < -2 \\ xe^{-x} & per \ x > -2 \end{cases}$; Flesso F(0;2)

*20. S. Dominio $E=\mathbb{R}$;

$$e^{x}|x^{2}-x| = \begin{cases} e^{x}(x^{2}-x) & per \ x \leq 0 \ \forall \ x \geq 1 \\ -e^{x}(x^{2}-x) & per \ 0 < x < 1 \end{cases};$$

$$f(x) \geq 0 \forall x \in \mathbb{R};$$

intersezioni con gli assi (0;0); (1;0)

y = 0 asintoto orizzontale per $x \rightarrow -\infty$;

$$f'(x) = \begin{cases} e^x(x^2 + x - 1) & per \ x < 0 \lor x > 1 \\ -e^x(x^2 + x - 1) & per \ 0 < x < 1 \end{cases}$$

x = 0 e x = 1 punti angolosi;

Massimi
$$\left(\frac{-1\pm\sqrt{5}}{2}; (\sqrt{5}\mp 2)e^{\frac{-1\pm\sqrt{5}}{2}}\right);$$
 minimi (0;0), (1,0);

$$f'(x) = \begin{cases} e^x(x^2 + 3x) & per \ x < 0 \lor x > 1 \\ -e^x(x^2 + 3x) & per \ 0 < x < 1 \end{cases}$$
; Flesso $F(-3; 12e^{-3})$.

L. Mereu – A. Nanni

Grafici di funzioni

*21. S.Dominio E=
$$\mathbb{R} - \{0\}$$
; $1 + e^{\frac{1}{|x|}} = \begin{cases} 1 + e^{-\frac{1}{x}} & per \ x < 0 \\ 1 + e^{\frac{1}{x}} & per \ x > 0 \end{cases}$;

funzione pari, grafico simmetrico rispetto all'asse y;

$$f(x) > 1 \in \forall x \in \mathbb{R} - \{0\};$$

asintoto verticale x = 0, asintoto orizzontale y = 2;

$$f'(x) = \begin{cases} \frac{e^{-\frac{1}{x}}}{x^2} & per \ x < 0\\ -\frac{e^{\frac{1}{x}}}{x^2} & per \ x > 0 \end{cases}$$

crescente in $(-\infty; 0)$, decrescente in $(0; +\infty)$; convessa $\forall x \in \mathbb{R} - \{0\}$.

*22. S.Dominio E=
$$\mathbb{R} - \{0\}$$
; $e^{x + \frac{1}{|x|}} = \begin{cases} e^{x - \frac{1}{x}} & per \ x < 0 \\ e^{x + \frac{1}{x}} & per \ x > 0 \end{cases}$

$$f(x) > 0 \ \forall x \in \mathbb{R} - \{0\}$$
; asintoto verticale $x = 0$;

y = 0 asintoto orizzontale per $x \to -\infty$;

$$f'(x) = \begin{cases} \left(1 + \frac{1}{x^2}\right) e^{x - \frac{1}{x}} \ per \ x < 0 \\ \left(1 - \frac{1}{x^2}\right) e^{x + \frac{1}{x}} \ per \ x > 0 \end{cases}$$

Minimo $N(1; e^2)$; convessa in E

crescente in $(-\infty; 0) \cup (1; +\infty)$; decrescente in (0; 1);

$$\lim_{x \to -1^+} f(x) = 0 ; \lim_{x \to -1^+} f'(x) = -\infty ;$$

$$f'(x) = log(x+1) + 1;$$

minimo $N(e^{-1}-1;-e^{-1});$

$$f''(x) = \frac{1}{x+1}$$
; convessa in $(-1; +\infty)$.

*24. S.

Dominio E=
$$(-\infty; -4) \cup (-1; +\infty);$$

$$f(x) > 0 \ \forall x \in (-1; +\infty)$$
;

asintoto sinistro x = -4;

asintoto destro x = -1;

asintoto orizzontale y = 0;

$$f'(x) = -\frac{3}{(x+1)(x+4)};$$

decrescente in $(-\infty; -4) \cup (-1; +\infty)$;

$$f''(x) = \frac{3(2x+5)}{[(x+1)(x+4)]^2}$$
; concava in $(-\infty; -4)$; convessa in $(-1; +\infty)$

*25. S.Dominio $E = (-1; +\infty)$;

intersezione con gli assi (0;0);

asintoti
$$x = -1$$
; $y = 0$;

$$f(x) \ge 0 \ \forall x \in E$$
;

$$f'(x) = \frac{2\log(x+1) - \log^2(x+1)}{(x+1)^2};$$

minimo O (0;0); massimo $M\left(e^2-1;\frac{4}{e^2}\right)$;

$f''(x) = 2\frac{\log^2(x+1) - 3\log(x+1) + 1}{(x+1)^3}; \text{ flessi}\left(-1 + e^{\frac{3\pm\sqrt{5}}{2}}; \left(\frac{3\pm\sqrt{5}}{2}\right)^2 e^{-\frac{3\pm\sqrt{5}}{2}}\right)$

***26. S.**Dominio E= \mathbb{R} ; f(x)>0∀x ∈ (-1; +∞);

intersezioni con gli assi (-1;0); (0 ; $\log(1+\sqrt{2})$,

crescente in \mathbb{R} ; flesso F (-1;0).

Il grafico è simmetrico rispetto al punto (-1;0).

Infatti, operata la traslazione che porta (-1;0) nell'origine, la funzione diventa

 $g(x) = \log(x + \sqrt{x^2 + 1})$ simmetrica rispetto all'origine,

poiché
$$g(-x) = \log(-x + \sqrt{x^2 + 1}) = \log \frac{1}{x + \sqrt{x^2 + 1}} = -g(x)$$
.

*27. S. Dominio E= $(-\infty; -1) \cup (3; +\infty)$; $f(x) < 0 \ \forall x \in E$; asintoto sinistro x = -1; asintoto destro x = 3;asintoto orizzontale y = 0;

$$f'(x) = \frac{16(x-1)}{(x^2-2x-3)(x^2-2x+5)};$$

decrescente in($-\infty$; -1); crescente in(3; $+\infty$) .

*28. S.Dominio E= $\mathbb{R}-\{-1;0;1\}$; funzione pari , grafico simmetrico rispetto all'asse y; asintoti verticali x=-1, x=0, x=1; $f'(x)=\frac{3x^2-1}{x^3-x} \ \ \forall x\in \mathsf{E} \ ;$

Massimi $\left(\pm \frac{\sqrt{3}}{3}; log \frac{2\sqrt{3}}{9}\right)$; concava $\forall x \in E$

*29. S.Dominio E= $\mathbb{R}-\left\{-\frac{1}{e};0;\frac{1}{e}\right\}$; funzione pari ; grafico simmetrico rispetto all'assey

 $\lim_{x \to 0} f(x) = 0; \text{ asintoti verticali } x = -\frac{1}{e}, \ x = \frac{1}{e};$

$$f'(x) = \begin{cases} \frac{x(2log(-x) + 1)}{(1 + log(-x))^2} & per \ x < 0\\ \frac{x(2log(x) + 1)}{(1 + log(x))^2} & per \ x > 0 \end{cases}$$

minimi $N'\left(-\frac{1}{\sqrt{e}};\frac{2}{e}\right)$, $N\left(\frac{1}{\sqrt{e}};\frac{2}{e}\right)$.

*30. S.Definita, continua, derivabile in I

Funzione dispari,

$$f'(x) = \frac{1}{2} - \cos x \; ;$$

Punto di massimo
$$x = -\frac{\pi}{3}$$
, $M\left(-\frac{\pi}{3}; -\frac{\pi}{6} + \frac{\sqrt{3}}{2}\right)$

Punto di minimo $x = \frac{\pi}{3}$, $N\left(\frac{\pi}{3}; \frac{\pi}{6} - \frac{\sqrt{3}}{2}\right)$

$$f''(x) = sinx$$
; Flesso O(0;0)

*31. S. Definita, continua,

$$f'(x) = 3\sin^2 x \cdot \cos x;$$

derivabile in I;

Punto di massimo $x = \frac{\pi}{2}$, $M(\frac{\pi}{2}; 1)$

Punto di minimo $x=\frac{3\pi}{2}$, $N\left(\frac{3\pi}{2};-1\right)$, Flesso con tangente orizzontale (π ;0)

*32. S.Definita, continua in I,

funzione dispari;

$$f'(x) = \frac{1}{\sqrt{1-x^2}} - 2$$
 , derivabile in I ;

Punto di massimo $x = -\frac{\sqrt{3}}{2}$, $M\left(-\frac{\sqrt{3}}{2}; -\frac{\pi}{3} + \sqrt{3}\right)$

Punto di minimo $x = \frac{\sqrt{3}}{2}$, $N(\frac{\sqrt{3}}{2}; \frac{\pi}{3} - \sqrt{3})$

 $f''(x) = \frac{x}{(1-x^2)\sqrt{1-x^2}}$; flesso O(0;0)

