INF281 Exercise 08

1. Scoring schemes for protein alignments

Calculate the score of the alignment by using different scoring schemes.

Seq1 R-HIC Seq2 RDDCC

- (a) Use the identity with a simple scoring scheme as match: 1, mismatch: 0, and gap penalty: 0.
- (b) Use the genetic code.

First	Second position			Third	
position	Т	С	A	G	position
	F	S	Y	С	Т
Т	\mathbf{F}	\mathbf{S}	Y	$^{\mathrm{C}}$	C
1	${ m L}$	\mathbf{S}	Stop	Stop	A
	L	\mathbf{S}	Stop	W	G
	L	Р	Н	R	Т
C	L	Р	Η	\mathbf{R}	C
	L	Р	Q	\mathbf{R}	A
	L	Р	Q	\mathbf{R}	G
	I	Τ	N	S	Т
A	I	${ m T}$	N	\mathbf{S}	С
Λ	I	${ m T}$	K	\mathbf{R}	A
	M	${ m T}$	K	\mathbf{R}	G
	V	A	D	G	Т
G	V	A	D	G	C
J	V	A	\mathbf{E}	G	A
	V	A	E	G	G

Α Ala Alanine \mathbf{C} Cysteine Cys D Aspartic acid Asp \mathbf{E} Glutamic acid Glu \mathbf{F} Phe Phenylalanine GGly Glycine Η His Histidine Ι IleIsoleucine Lysine \mathbf{K} Lys \mathbf{L} Leu Leucine MMet Methionine Ν Asparagine Asn Ρ Pro Proline Q Gln Glutamine \mathbf{R} Arginine Arg SSerine Ser \mathbf{T} Thr Threonine V Valine Val W Trp Tryptophan Y Tyr Tyrosine

(c) Use the AACH.

2. Probabilities of accepted mutations

Use a phylogenetic tree below to calculate the probabilities of accepted mutations. The tree contains sequences of four OTUs.

- (a) Estimate the mutations and fill them in the boxes next to the edges.
- (b) Count the occurrences of mutations and fill them in the matrix. Note that a mutation $A \to B$ is equivalent with a mutation $B \to A$.

	Α	С	G	Т
A				
С				
G				
Т				

(c) Use the following definitions and calculate f_{CG} , f_C and f.

 f_{ab} : The number of mutations from a to b or from b to a

 f_a : Total number of mutations in which a takes part

f : Twice the total number of mutations

 f_{CG} :

 f_C :

f:

(d) Use the following definition and calculate p_C .

 p_a : The relative occurrence of a in the observed sequences

 p_C :

3. Relative mutability of PAM

Relative mutability is calculated from frequencies of estimated mutilation and background probabilities.

$$m_a: \frac{1}{100p_a} \times \frac{f_a}{f}$$

 f_a : Total number of point mutations in which a takes part

f: Twice the total number of point mutations

 p_a : Relative occurrence of a in the observed sequences

Assume that the frequencies are pre-calculated as follows.

• Frequencies of estimated mutations

$$f_A: 2, \quad f_G: 3, \quad f_C: 3, \quad f_T: 2$$

 $f: 10$

• Background probabilities

$$p_A: 3/10, \quad p_G: 2/10, \quad p_C: 4/10, \quad p_T: 1/10$$

(a) Calculate the probabilities of point mutations by $\frac{f_a}{f}$.

$$\frac{f_A}{f}$$
: $\frac{f_C}{f}$: $\frac{f_C}{f}$:

(b) Calculate $100p_a$.

$$100p_A:$$
 $100p_G:$ $100p_C:$ $100p_T:$

(c) Calculate the relative mutability m_a .

$$m_A: \qquad m_G: \qquad m_C: \qquad m_T:$$

4. Mutation probabilities of PAM

Mutation probabilities are calculated from relative mutability.

$$m_{ab}: m_a \times \frac{f_{ab}}{f_a}, \qquad m_{aa}: 1 - m_a$$

 f_{ab} : Total number of point mutations in which a takes part

 f_a : Twice the total number of point mutations

 m_a : Relative mutability of a

Assume that the frequencies are pre-calculated as follows.

• Frequencies of estimated mutations

 $f_{AC}: 8, \quad f_A: 32$

• Relative mutability

 $m_A:0.004$

- (a) Calculate M_{AC} .
- (b) Calculate M_{AA} .

5. Odds ratios of PAM

Odds ratios are calculated from mutation probabilities and background probabilities.

$$O_{ab} = \frac{M_{ab}}{p_b} = m_a \times \frac{f_{ab}}{f_a} \times \frac{1}{f_b} = \frac{1}{100} \times \frac{f_{ab}}{f} \times \frac{1}{p_a p_b}$$

Assume that the frequencies are pre-calculated as follows.

$$f_{AC}: 16, \quad f: 400, \quad p_A: 0.2, \quad p_c: 0.4$$

- (a) Calculate O_{AC} .
- (b) Calculate O_{CA} .

6. BLOSUM

BLOSUM uses several thousand blocks to calculate the probabilities of accepted mutation. Use the following definitions and Block1 & Block2 to solve the problems.

 f_{ab} : Frequencies of an observed pair a and b.

T: Total number of pairs from all blocks.

The number of pairs can be calculated as 1/2wm(m-1).

$$p_a: p_a = f_{aa} + \sum_{e \neq a} f_{ae}/2$$

 $e_{aa}:p_ap_a$

$$e_{ab}: p_a p_b + p_b p_a = 2p_a p_b$$

Block1 Block2 CAGC GGA GTAC GTA CAGC

(a) Count the occurrences of all pairs.

	A	G	С	Т
A				
G				
С				
Т				

- (b) Calculate T.
- (c) Calculate f_{AA} and f_{AG} .
- (d) Calculate p_A and p_G .
- (e) Calculate e_{AA} and e_{AG} .
- (f) Calculate f_{AA}/e_{AA} and f_{AG}/e_{AG} .

7. PPM (Position probability matrix)

PWM (position weight matrix) is a popular method to find sequenced patterns. It can be generated from PPM (position probability matrix) and PFM (position frequency matrix).

Seq1 CAA

Seq2 CAG

Seq3 GAC

Seq4 ATT

(a) Create a PFM from Seq1, Seq2, Seq3, and Seq4.

	1	2	3
A			
G			
С			
Т			

(b) Create a PPM from Seq1, Seq2, Seq3, and Seq4.

	1	2	3
A			
G			
С			
Т			

8. Sequence profile

A sequence profile is similar to PWM, but it uses a scoring scheme. Use the following definitions to calculate the profile values.

$$Prof_{ra}: \frac{1}{m_r} \sum_{b \in M} R_{ba} F_{rb}$$

 F_{rb} : The number of occurrences of b at position r

 R_{ba} : Pairwise score between b and a

 m_r : The number of residues without gaps at position r

Scoring matrix:

	A	G	С	Т
Α	2	1	-3	-2
G	1	3	-2	-1
С	-3	-2	4	1
Т	-2	-1	1	2

Seq1 GT

Seq2 -G

Seq3 CA

(a) Calculate the profile values of position 1.

A1:

G1:

C1:

T1:

(b) Calculate the profile values of position 2.

A2:

G2:

C2:

T2:

(c) Make a profile matrix.

	1	2
A		
G		
С		
Т		