Big Scale ML Frameworks

Good ones

Open Source
Manifold contributors
Well documented
State of the art algorithms
Performance

One word about MPI / OpenMPI

```
#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {
        MPI Init(NULL, NULL);
                                  // initialize MPI environment
        int world size; // number of processes
        MPI_Comm_size(MPI_COMM_WORLD, &world_size);
        int world rank; // the rank of the process
       MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
        char processor name[MPI MAX PROCESSOR NAME]; // gets the name of the processor
        int name len;
        MPI Get processor name(processor name, &name len);
        printf("Hello world from processor %s, rank %d out of %d processors\n",
                processor name, world rank, world size);
       MPI Finalize(); // finish MPI environment
```

```
#!/bin/bash
#SBATCH --job-name=mpi test
#SBATCH -o mpi out%j.out
#SBATCH -e mpi err%j.err
#SBATCH -N 3
#SBATCH --ntasks-per-node=2
echo -e '\n submitted Open MPI job'
echo 'hostname'
hostname
# load Open MPI module
module load openmpi/gcc
# compile the C file
mpicc test mpi.c -o test mpi
# run compiled test mpi.c file
mpirun ./test mpi
```


What about these ones?

Microsoft CNTK – distributed deep learning framework; open source but low amount of contributors

Caffe(2) – caffe2 has been integrated in PyTorch

MapReduce – we (Criteo) used to train some models on MapReduce some time ago; implied mapreduce boilerplate; sharing information between executors was a pain

Scikit-learn – out of core algorithms for single machine learning; no distributed algorithms

h2O.ai – proposes automatic feature engineering as well as user interfaces, that can interface with Spark, TensorFlow, etc... Open source; proposes a platform (with fee)

MOA – data stream mining; only supports java; does not seem prod-grade (no integration with kafka...)

Shogun – machine learning library; no out-of-core algorithm; not meant to be used in distributed environment

Baidu AllReduce / Horovod – nope – will talk about it in course 3;4

Theano – library to evaluate mathematical expressions on vectors

Breeze, BLAS, LAPACK – efficient linear algebra libraries

Tensorflow

Model is a graph of parameterized transformations

Joint of optimization of all parameters

Automatic differentiation (vs numeric differentiation)

→ Need to use tensorflow functions, code is data!

Some features

Parallel, Distributed, Accelerator support

Languages (inference)

Serving

Tensorboard

. . .

Tensorflow – use cases in production

"BERT will help Search better understand one in 10 searches in the U.S. in English"

https://blog.google/products/search/search-language-understanding-bert/

Tensorflow – use cases in production

Spark MLLib

Version >= 3.0

Spark MLlib - Features

ML library built on top of Spark

- Python / Scala / Java
- Distributed

Features

- ML algorithms : classification, regression, clustering, collaborative filtering...
- Feature extraction and transformation
- Pipelines (with persistence)

Spark MLlib – Concepts

Spark MLlib – ML algorithms

Classification and Regression
Clustering
Collaborative Filtering...

```
from pyspark.ml.classification import LogisticRegression
estimator = LogisticRegression(maxIter=100, regParam=0.3, featuresCol="features", labelCol="label")
transformer = estimator.fit(df)
df_with_prediction = model.predict(df)
```

Regression: numeric Classification: [0;...;K-1]

Vector!

Spark MLlib — I want to ... feed model with numeric column

VectorAssembler is your friend!

```
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline

stages=[]
stages += [VectorAssembler(inputCols=["int_age"], outputCol="vec_age")]
stages += [LogisticRegression(featuresCol="vec_age", labelCol="label")]
pipeline = Pipeline(stages=stages)
```

Spark MLlib — I want to ... use categorical feature

```
StringIndexer
                                              OneHotEncoder
   string
                                   int
                                                                 vector
from pyspark.ml.feature import OneHotEncoder, StringIndexer
from pyspark.ml.classification import LogisticRegression
stages = []
stages += [StringIndexer(inputCol="cat_class", outputCol="int_class")]
stages += [OneHotEncoder(inputCols=["int_class"], outputCols=["vec_class"])]
stages += [LogisticRegression(featuresCol="vec class", labelCol="label")]
pipeline = Pipeline(stages=stages)
```

Other methods: learning with counts https://www.oreilly.com/library/view/strata-hadoop/9781491928004/video228193.html

Spark MLlib — Wait my vector looks so weird now!

PassengerId	Survived	++ Pclass ++	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	+ int_class +	
1	0	. 3	Braund, Mr. Owen	male	22.0	1	0	A/5 21171	7.25	null	S	0.0	(2,[0],[1.0])
2	1	1	Cumings, Mrs. Joh	female	38.0	1	0	PC 17599	71.2833	C85	C	1.0	(2,[1],[1.0])
3	1	3	Heikkinen, Miss	female	26.0	0	0	STON/02. 3101282	7.925	null	S	0.0	(2,[0],[1.0])
4	1	1	Futrelle, Mrs. Ja	female	35.0	1	0	113803	53.1	C123	S	1.0	(2,[1],[1.0])
5	0	3	Allen, Mr. Willia	male	35.0	0	0	373450	8.05	null	S	0.0	(2,[0],[1.0])
6	0	3	Moran, Mr. James	male	20.0	0	0	330877	8.4583	null	Q	0.0	(2,[0],[1.0])
7	0	1	McCarthy, Mr. Tim	male	54.0	0	0	17463	51.8625	E46	S	1.0	(2,[1],[1.0])
8	0	3	Palsson, Master	male	2.0	3	1	349909	21.075	null	S	0.0	(2,[0],[1.0])
9	1	3	Johnson, Mrs. Osc	female	27.0	0	2	347742	11.1333	null	S	0.0	(2,[0],[1.0])
10	1	2	Nasser, Mrs. Nich	female	14.0	1	0	237736	30.0708	null	C	2.0	(2,[],[])
11	1	3	Sandstrom, Miss	female	4.0	1	1	PP 9549	16.7	G6	S	0.0	(2,[0],[1.0])
12	1	1	Bonnell, Miss. El	female	58.0	0	0	113783	26.55	C103	S	1.0	(2,[1],[1.0])
13	0	3	Saundercock, Mr	male	20.0	0	0	A/5. 2151	8.05	null	S	0.0	(2,[0],[1.0])
14	0	3	Andersson, Mr. An	male	39.0	1	5	347082	31.275	null	S	0.0	(2,[0],[1.0])
15	0	3	Vestrom, Miss. Hu	female	14.0	0	0	350406	7.8542	null	S	0.0	(2,[0],[1.0])
16	1	2	Hewlett, Mrs. (Ma	female	55.0	0	0	248706	16.0	null	S	2.0	(2,[],[])

Spark MLlib – Sparse Vectors

OneHotEncoder use case:

n different modalities leads to an array size of n-1
One modality is mapped to one dimension
Last modality is encoded as all-0 vector. Why?

	+				-	+
int_cla	ss	ve	c_c	las	s	
	+				-	+
0	.0 (2	,[0]	,[1	.0])	I
1	.0 (2	,[1]	,[1	.0])	I
Θ	.0 (2	,[0]	,[1	.0])	I
1	.0 (2	,[1]	,[1	.0])	I
Θ	.0 (2	,[0]	,[1	.0])	I
Θ	.0 (2	,[0]	,[1	.0])	I
1	.0 (2	,[1]	,[1	.0])	I
Θ	.0 (2	,[0]	,[1	.0])	I
Θ	.0 (2	,[0]	,[1	.0])	ĺ
2	.0	(2	,[]	,[])	I
Θ	.0 (2	,[0]	,[1	.0])	ĺ
1	.0 (2	,[1]	,[1	.0])	I
Θ	.0 (2	,[0]	,[1	.0])	I
Θ	.0 (2	,[0]	,[1	.0])	I
0	.0 (2	,[0]	,[1	.0])	ĺ
2	.0	(2	,[]	,[])	ĺ

Spark MLlib — I want to ... combine columns

Depends!

FeatureHasher transforms multiple primitive columns in sparse vector

VectorAssembler will concatenate multiple vectors into a single one

Spark MLlib – Transformations Catalog

Category	Transformer	Input	Output	NbInput	Fit?	Remarks
	Binarizer	numeric	int	1	no	binary
Bucketization	Bucketizer	numeric	int	*	yes	
	QuantileDiscretizer	numeric	int	*	yes	
	ChiSqSelector	vector[numeric]	vector[numeric]	1	no	
Feature Selection	PCA	vector[numeric]	vector[numeric]	1	yes	
	Rformulat	vector[numeric]	vector[numeric]	1	no	
	UnivariateFeatureSelector	vector[numeric]	vector[numeric]	1	no	
	VarianceThresholdSelector	vector[numeric]	vector[numeric]	1	no	
	VectorSlicer	vector[numeric]	vector[numeric]	1	no	
Hashing	FeatureHasher	numeric, boolean, string	vector[int]	*	no	doesn't hash vectors
Hasiiiig	HashingTF	array	vector[int]	1	no	
	MaxAbsScaler	vector[numeric]	vector[numeric]	1	yes	
	MinMaxScaler	vector[numeric]	vector[numeric]	1	yes	
Normalization	Normalizer	vector[numeric]	vector[numeric]	1	yes	
	RobustScaler	vector[numeric]	vector[numeric]	1	yes	
	StandardScaler	vector[numeric]	vector[numeric]	1	yes	
	DCT	vector[numeric]	vector[numeric]	1	no	
	ElementwiseProduct	vector[numeric]	vector[numeric]	1	no	computes dot product with parameter
	IDF	vector[numeric]	vector[numeric]	1	yes	vector is a document
	Imputer	numeric	numeric	*	yes	
Other	IndexToString	int	string	1	yes	dual of StringIndexer
Other	Interaction	numeric, vector[numeric]	vector[numeric]	*	no	
	PolynomialExpansion	vector[numeric]	vector[numeric]	1	no	useful to compute cross-features
	StringIndexer	string	int	1	yes	
						transforms each element to category indice if algorithm judges
	VectorIndexer	vector[numeric]	vector[numeric]	1	yes	element worth to be categorized
	CountVectorizer	array[string]	vector[int]	1	yes	
						returns a string containing elements separated by white space
Text Processing	NGram	array[string]	string	1	no	(morally, returns array[string])
	StopWordsRemover	array[string]	array[string]	1	no	
	Tokenizer	string	array[string]	1	no	
						in practice, you will probably train on a given dataset and predict on
	Word2Vec	array[string]	vector[numeric]	1	yes	another one
Vectorization	OneHotEncoder	int	vector[numeric]	*	yes	
						Very useful : you need this one if you want to deal with continuous
	VectorAssembler	numeric, vector[numeric]	vector[numeric]	*	no	features without bucketization, or if you want to concatenate vectors

Spark MLlib – Want to know more?

Read the doc

https://spark.apache.org/docs/latest/ml-guide.html

Some examples deprecated though (old api : ml vs mllib)

Code is open source!

https://github.com/apache/spark

Conclusion

Many technologies, few chosen

MLlib benefits from a nice api, just like dataframe api

Don't reinvent the wheel

Libraries built by real humans; they have real bugs

Read the docs!