In [1]:

```
print("Name: RAMISETTY PAVANI")
print("Registration Number: 21BCE9521")
print("Morning Batch")
```

Name: RAMISETTY PAVANI

Registration Number: 21BCE9521

Morning Batch

Importing the necessary libraries

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing the DataSet

In [3]:

```
df=pd.read_csv("Titanic-Dataset.csv")
df.head()
```

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [4]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

	•	•	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

In [5]:

df.shape

Out[5]:

(891, 12)

In [6]:

df.describe()

Out[6]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
4							•

Checking for null values

In [7]:

```
df.isnull().any()
```

Out[7]:

PassengerId False Survived False Pclass False Name False Sex False Age True SibSp False Parch False Ticket False False Fare Cabin True Embarked True

dtype: bool

In [8]:

df.isnull().sum()

Out[8]:

PassengerId 0 Survived 0 Pclass 0 Name 0 0 Sex Age 177 SibSp 0 Parch 0 0 Ticket Fare 0 Cabin 687 Embarked 2 dtype: int64

In [9]:

```
df.corr()
```

Out[9]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

In [10]:

```
sns.heatmap(df.corr(),annot=True)
```

Out[10]:

<AxesSubplot:>

Handling null values

In [11]:

```
df["Age"].fillna(df["Age"].mean(),inplace=True)
```

In [12]:

df.head()

Out[12]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [13]:

print(df["Embarked"].mode())

0 S

dtype: object

In [14]:

df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)

In [15]:

df.drop(columns="Cabin", axis=1, inplace=True)

In [16]:

df.isnull().sum()

Out[16]:

PassengerId 0 Survived 0 0 Pclass 0 Name 0 Sex 0 Age SibSp0 Parch 0 0 Ticket Fare 0 Embarked dtype: int64

In [17]:

df.head()

Out[17]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

Data Visualization

In [18]:

```
sns.countplot(x="Survived", data=df)
```

Out[18]:

<AxesSubplot:xlabel='Survived', ylabel='count'>

In [19]:

```
df["Survived"].value_counts()
```

Out[19]:

0 5491 342

Name: Survived, dtype: int64

In [20]:

```
df["Sex"].value_counts()
```

Out[20]:

male 577 female 314

Name: Sex, dtype: int64

In [21]:

sns.countplot(df["Sex"], data=df)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[21]:

<AxesSubplot:xlabel='Sex', ylabel='count'>

In [22]:

```
sns.countplot(df["Sex"], hue="Survived", data=df)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[22]:

<AxesSubplot:xlabel='Sex', ylabel='count'>

In [23]:

sns.countplot(df["Pclass"], data=df)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[23]:

<AxesSubplot:xlabel='Pclass', ylabel='count'>

In [24]:

```
sns.countplot(df["Pclass"], hue="Survived", data=df)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[24]:

<AxesSubplot:xlabel='Pclass', ylabel='count'>

In [25]:

sns.pairplot(df)

Out[25]:

<seaborn.axisgrid.PairGrid at 0x25f1dfdcc40>

In [26]:

```
sns.scatterplot(df["Age"], df["Survived"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variables as keyword args: x, y. From versio n 0.12, the only valid positional argument will be `data`, and passing oth er arguments without an explicit keyword will result in an error or misint erpretation.

warnings.warn(

Out[26]:

<AxesSubplot:xlabel='Age', ylabel='Survived'>

Outlier Detection

In [27]:

df.head()

Out[27]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [28]:

sns.boxplot(df.PassengerId)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[28]:

<AxesSubplot:xlabel='PassengerId'>

In [29]:

sns.boxplot(df.Pclass)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[29]:

<AxesSubplot:xlabel='Pclass'>

In [30]:

```
sns.boxplot(df.Age)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[30]:

<AxesSubplot:xlabel='Age'>

In [31]:

```
q1=df.Age.quantile(0.25)
q3=df.Age.quantile(0.75)
```

In [32]:

```
IQR=q3-q1
```

In [33]:

```
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
```

In [34]:

df["Age"]=np.where(df["Age"]>upper_limit, upper_limit, np.where(df["Age"]<lower_limit,low</pre>

In [35]:

sns.boxplot(df["Age"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[35]:

<AxesSubplot:xlabel='Age'>

In [36]:

sns.boxplot(df.SibSp)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[36]:

<AxesSubplot:xlabel='SibSp'>


```
In [37]:
```

```
q1=df.SibSp.quantile(0.25)
q3=df.SibSp.quantile(0.75)
```

In [38]:

```
IQR=q3-q1
```

In [39]:

```
upper_limit=q3+1.5*IQR
```

In [40]:

```
df["SibSp"]=np.where(df["SibSp"]>upper_limit,upper_limit,df["SibSp"])
```

In [41]:

```
sns.boxplot(df["SibSp"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[41]:

<AxesSubplot:xlabel='SibSp'>

In [42]:

```
sns.boxplot(df.Parch)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[42]:

<AxesSubplot:xlabel='Parch'>

In [43]:

```
q1=df.Parch.quantile(0.25)
q3=df.Parch.quantile(0.75)
```

In [44]:

```
IQR=q3-q1
```

In [45]:

```
upper_limit=q3+1.5*IQR
```

In [46]:

```
df["Parch"]=np.where(df["Parch"]>upper_limit,upper_limit,df["Parch"])
```

In [47]:

```
sns.boxplot(df["Parch"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[47]:

<AxesSubplot:xlabel='Parch'>

In [48]:

sns.boxplot(df.Fare)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[48]:

<AxesSubplot:xlabel='Fare'>


```
In [49]:
q1=df.Fare.quantile(0.25)
q3=df.Fare.quantile(0.75)
In [50]:
print(q1)
print(q3)
7.9104
31.0
In [51]:
IQR=q3-q1
IQR
Out[51]:
23.0896
In [52]:
upper_limit=q3+1.5*IQR
upper_limit
Out[52]:
65.6344
In [53]:
df["Fare"]=np.where(df["Fare"]>upper_limit,upper_limit,df["Fare"])
```

In [54]:

sns.boxplot(df["Fare"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[54]:

<AxesSubplot:xlabel='Fare'>

Splitting Dependent and Independent variables

In [55]:

df.head()

Out[55]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1.0	0.0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1.0	0.0	PC 17599	65.6344
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0.0	0.0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1.0	0.0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0.0	0.0	373450	8.0500
4										•

In [56]:

x=df.drop(columns=["PassengerId", "Name", "Ticket", "Survived"])
y=df["Survived"]

In [57]:

x.head()

Out[57]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	22.0	1.0	0.0	7.2500	S
1	1	female	38.0	1.0	0.0	65.6344	С
2	3	female	26.0	0.0	0.0	7.9250	S
3	1	female	35.0	1.0	0.0	53.1000	S
4	3	male	35.0	0.0	0.0	8.0500	S

```
In [58]:
y.head()
Out[58]:
0
     0
1
     1
2
     1
     1
Name: Survived, dtype: int64
In [59]:
print(x.shape)
print(y.shape)
(891, 7)
(891,)
In [60]:
print(type(x))
print(type(y))
<class 'pandas.core.frame.DataFrame'>
```

Perform Encoding

<class 'pandas.core.series.Series'>

```
In [61]:
```

```
x.head()
```

Out[61]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	22.0	1.0	0.0	7.2500	S
1	1	female	38.0	1.0	0.0	65.6344	С
2	3	female	26.0	0.0	0.0	7.9250	S
3	1	female	35.0	1.0	0.0	53.1000	S
4	3	male	35.0	0.0	0.0	8.0500	S

```
In [62]:
```

```
Sex=pd.get_dummies(x["Sex"], drop_first=True)
Embarked=pd.get_dummies(x["Embarked"], drop_first=True)
```

```
In [63]:
```

```
x.drop(["Sex", "Embarked"], axis=1, inplace=True)
x.head()
```

Out[63]:

	Pclass	Age	SibSp	Parch	Fare
0	3	22.0	1.0	0.0	7.2500
1	1	38.0	1.0	0.0	65.6344
2	3	26.0	0.0	0.0	7.9250
3	1	35.0	1.0	0.0	53.1000
4	3	35.0	0.0	0.0	8.0500

In [64]:

```
x=pd.concat([x,Sex,Embarked], axis=1)
x.head()
```

Out[64]:

	Pclass	Age	SibSp	Parch	Fare	male	Q	S
0	3	22.0	1.0	0.0	7.2500	1	0	1
1	1	38.0	1.0	0.0	65.6344	0	0	0
2	3	26.0	0.0	0.0	7.9250	0	0	1
3	1	35.0	1.0	0.0	53.1000	0	0	1
4	3	35.0	0.0	0.0	8.0500	1	0	1

In [65]:

x.shape

Out[65]:

(891, 8)

Feature Scaling

In [66]:

```
from sklearn.preprocessing import MinMaxScaler
ms=MinMaxScaler()
```

In [67]:

```
x_scaled=pd.DataFrame(ms.fit_transform(x), columns=x.columns)
x_scaled.head()
```

Out[67]:

	Pclass	Age	SibSp	Parch	Fare	male	Q	S
0	1.0	0.375000	0.4	0.0	0.110460	1.0	0.0	1.0
1	0.0	0.682692	0.4	0.0	1.000000	0.0	0.0	0.0
2	1.0	0.451923	0.0	0.0	0.120745	0.0	0.0	1.0
3	0.0	0.625000	0.4	0.0	0.809027	0.0	0.0	1.0
4	1.0	0.625000	0.0	0.0	0.122649	1.0	0.0	1.0

Splitting Data into Train and Test

In [68]:

```
from sklearn.model_selection import train_test_split
```

In [69]:

```
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x\_scaled, y, test\_size=0.2, random\_state=0)
```

In [70]:

```
x_train.head()
```

Out[70]:

	Pclass	Age	SibSp	Parch	Fare	male	Q	S
140	1.0	0.523060	0.0	0.0	0.232284	0.0	0.0	0.0
439	0.5	0.548077	0.0	0.0	0.159977	1.0	0.0	1.0
817	0.5	0.548077	0.4	0.0	0.563793	1.0	0.0	0.0
378	1.0	0.336538	0.0	0.0	0.061134	1.0	0.0	0.0
491	1.0	0.355769	0.0	0.0	0.110460	1.0	0.0	1.0

```
In [71]:
```

```
x_test.head()
```

Out[71]:

	Pclass	Age	SibSp	Parch	Fare	male	Q	S
495	1.0	0.523060	0.0	0.0	0.220285	1.0	0.0	0.0
648	1.0	0.523060	0.0	0.0	0.115031	1.0	0.0	1.0
278	1.0	0.086538	1.0	0.0	0.443746	1.0	1.0	0.0
31	0.0	0.523060	0.4	0.0	1.000000	0.0	0.0	0.0
255	1.0	0.509615	0.0	0.0	0.232284	0.0	0.0	0.0

In [72]:

```
y_train.head()
```

Out[72]:

140 0

439

817 0

378

491 0

Name: Survived, dtype: int64

In [73]:

```
y_test.head()
```

Out[73]:

495 0

648 0

278 0

31 1

255 1

Name: Survived, dtype: int64

In [74]:

```
print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)
```

(712, 8) (179, 8) (712,) (179,)