Two-phase model

The two-dimensional two-phase model of water and air is given by

$$\partial_t u + \partial_x u u + \partial_z w u - f v = -(\partial_x p)/\rho \tag{1}$$

$$\partial_t v + \partial_x uv + \partial_z wv + fu = 0 (2)$$

$$\partial_t w + \partial_x uw + \partial_z ww = -(\partial_z p)/\rho - g \tag{3}$$

$$\partial_x u + \partial_z w = 0 \tag{4}$$

which holds both in water with $\rho = \rho_o$ and air with $\rho = \rho_a$, and $\rho = c\rho_o + (1-c)\rho_a$.

Solve this with two level discrete time step. Knowing u^n and w^n from previous time step, first calculate intermediate solution u^* and w^* from

$$\frac{u^* - u^n}{\Delta t} = -(\partial_x uu + \partial_z wu)_d , \quad \frac{w^* - w^n}{\Delta t} = -(\partial_x uw + \partial_z ww)_d - g , \qquad (5)$$

Then take divergence and calculate pressure p such that

$$\partial_z u^* + \partial_z w^* = -\Delta t (\partial_x (\partial_x p)/\rho + \partial_z (\partial_z p)/\rho) \tag{6}$$

This is solved for p with conjugate gradient solver with preconditioner, and so

$$u^{n+1} = u^* - \Delta t(\partial_x p)/\rho , \quad w^{n+1} = w^* - \Delta t(\partial_z p)/\rho$$
 (7)

such that next time step u^{n+1} and w^{n+1} is also free of divergence.

Concentration c with c = 1 in water and c = 0 in air given by

$$\partial_t c + \partial_x u c + \partial_z w c = \partial_z M(c) \partial_z \mu , \ 0 < c < 1$$
 (8)

with chemical potential μ and mobility parameter M given by

$$\mu = 12c^2 - 12c + 2$$
, $M_c(1 - \gamma \phi^2)$, $\phi = 2c - 1$, $-1 < \phi < 1$ (9)

and $M_c = 10^{-4}$

Discretisation

Discretisation is on a C-grid.

Options

The configuration is controlled in the template subroutines SET_PARAMETER and INITIAL_CONDITIONS. One example is provided.

A number of switches can be set to either true or false.

default meaning name enable_upwind3_advection false $enable_dst3_advection$ false enable_superbee_advection false enable_multidim_advection false enable_AB3_time_stepping false enable_particles false $enable_v_velocity$ false