PHY2048 Physics with Calculus I

Section 611806

Prof. Douglas H. Laurence

Exam 1 (Chapters 1-5) February 25, 2019

Name: Soutions

Instructions:

This exam is composed of 10 multiple choice questions and 4 free-response problems. To receive a perfect score (100) on this exam, 3 of the 4 free-response problems must be completed. The fourth free-response problem may not be answered for extra credit. Each multiple choice question is worth 2.5 points, for a total of 25 points, and each free-response problem is worth 25 points, for a total of 75 points. This means that your exam will be scored out of 100 total points, which will be presented in the rubric below. Please do not write in the rubric below; it is for grading purposes only.

Only scientific calculators are allowed – do not use any graphing or programmable calculators.

For multiple choice questions, no work must be shown to justify your answer and no partial credit will be given for any work. However, for the free response questions, work must be shown to justify your answers. The clearer the logic and presentation of your work, the easier it will be for the instructor to follow your logic and assign partial credit accordingly.

The exam begins on the next page. The formula sheet is attached to the end of the exam.

Exam Grade:

Multiple Choice	
Problem 1	
Problem 2	
Problem 3	
Problem 4	
Total	

MULTIPLE CHOICE QUESTIONS

ax ay	
7. An object accelerates with $\vec{a} = (3 \text{ m/s}^2)\hat{i} + (4 \text{ m/s}^2)\hat{j}$. If the object begins at rest, what is the object's vertical velocity after 1s?	
(a) 3 m/s Lettical => y Direction: Voy=0, ay=4m/s2 t=1s	
(c) 5 m/s => \(\frac{1}{4} =	
(d) 6 m/s	
8. A 5kg object is pushed forward with a force of 10N while a constant force pushes backwards against the object with a force of 6N. What is the acceleration of the object?	
(a) The object moves at a constant velocity (b) $0.8 \text{ m/s}^2 \text{ forward}$	
(c) $1.2 \text{ m/s}^2 \text{ backward}$	
(d) 2 m/s^2 forward $\Rightarrow \alpha = \mathbb{Z}E = \frac{4N}{N} = \sqrt{0.8} \text{ m/s}^2$	
(d) 2 m/s ² forward 3 a = \(\frac{\frac	
(a) True (b) False BOTH Weight & Tension Act on the Same object.	
10. Newton's third law states:	
(a) An object will remain in its current state of motion unless acted upon by a force (New Took 157)	
(b) The net force on an object is equal to the mass of the object multiplied by its acceleration (New Tons 2")	
(c) For any force one object could put on another, the other must put an equal and opposite force back on the first	
(d) None of the above	

FREE-RESPONSE PROBLEMS

1. Consider two vectors:

$$\vec{A} = 3\hat{i} - 2\hat{j}$$

 $\vec{B} = -\hat{i} + 4\hat{j}$

$$\vec{B} = -\hat{i} + 4\hat{j}$$

- a) Find both the magnitude and direction of \vec{A} and \vec{B} .
- b) Find the vector $2\vec{A} \vec{B}$. Give your result in unit vector notation (i.e. using \hat{i} and \hat{j}).
- c) What is $\vec{A} \cdot \vec{B}$?
- d) What is $\vec{A} \times \vec{B}$? Give your result in unit vector notation.

$$|\vec{R}| = \sqrt{(3)^2 + (2)^2} = 3.6$$
; $|\vec{B}| = \sqrt{(1)^2 + (4)^2} = 4.1$

$$= 2(3\hat{i} - 2\hat{j}) - (-\hat{i} + 4\hat{j}) = 6\hat{i} - 4\hat{j} + \hat{i} - 4\hat{j} = \boxed{7\hat{i} - 8\hat{j}}$$

d)
$$\vec{A} \times \vec{B} = (3\hat{i} - 2\hat{j}) \times (-\hat{i} + 4\hat{j}) = (3\hat{i} - 2\hat{j}) \times (-\hat{i} + 4\hat{j})$$

=
$$(3)(4)(ixi) + (-2)(-i)(ixi)$$

$$= 12(\hat{k}) + 2(-\hat{k}) = 10\hat{k}$$

LIONSTANT SPEED) Ax, = 120 m

2. A car accelerates from rest at 12 m/s² for a distance of 120m. After, the car travels at a constant speed for 250m, before decelerating at 7 m/s² until stopped.

- a) How long was the car accelerating for during the first 120m?
- b) What was the maximum speed of the car during the motion?
- c) How long did it take the car to stop once it started decelerating?
- d) How far did the car travel while it was decelerating?

Motion I (AS DEFINED in FIGURE ABove) Var = 0, a,= 12~1.2, Dx,= 120m

=>
$$\Delta x_1 = \sqrt{a_1t_1^2} + \frac{1}{2}a_1t_1^2 \Rightarrow t_1 = \sqrt{\frac{2\Delta x_1}{a_1}} = \sqrt{\frac{2(120)^7}{(12)}} = \boxed{4.475}$$

b) CAR speeds up During Motion 4, Moves AT constant speed DIRING MOTION 2, THEN SLOWS DOWN DORMG MITTION 3. So FASTEST Speed is speed AT end OF ACCELERATION in Mation 1:

c) Don't know evolute into ABOUT MOTION 3 (Just THAT as of Vs),
But we know FINAL speed of MOTION 1 = INITIAL speed of So Voz = V1 = 53.6 m/s. Since az=0, FINAL speed or Motion 2, Which equals initial speed of Motion 3, is 53.6 m/s. 50 V03 = V2 = V02 = 53.6 m/s. Now we know 3 pieces of info:

Vo3 = 53.6 m/s, a3 = -7 m/s, 13 = 0

$$3 = \sqrt{3} = \sqrt{3} = \sqrt{3} = -\frac{\sqrt{3}}{3} = -\frac{$$

d) Ax3 = V., t3 + 293t3 = (53.6)(7.66) + =(-7)(7.66)2 = 205 m (REALLY IMPORTANT!!)

- a) What is the maximum height of the projectile above the ground?
- b) How long does it take the projectile to reach the maximum height?
- c) How long is the projectile in the air for?
- d) What is the range of the projectile?

$$V_{0\lambda} = V_{0} \cos \theta = (20) \cos 50 = |29\%|_{5}$$

 $V_{0y} = V_{0} \sin \theta = (20) \sin 50 = |5.3\%|_{5}$

$$y_{3}^{4} = v_{0}y_{1}^{2} + 2\alpha y \Delta y_{1}^{2}$$

$$\Rightarrow \Delta y = \frac{-v_{0}y_{1}^{2}}{2\alpha y_{1}^{2}} = \frac{-(15.3)^{2}}{2(-10)} = 11.7 \text{ m}$$

$$\Rightarrow H = y_{0} + \Delta y = 10 + 11.7 = \sqrt{21.7} \text{ m}$$

b) To FIND Time to 60 up, once AGAIN, Only consider upward twom:
$$V_{i,\gamma} = 15.3^{n}/s, \ a_{i,\gamma} = -10^{n}/s^{2}, \ V_{i,\gamma} = 0$$

$$\Rightarrow y_{5} = y_{5} + a_{1}t \Rightarrow t_{5} = \frac{-\sqrt{15.3}}{a_{1}} = \frac{-(15.3)}{(-10)} = \boxed{1.535}$$

c) TOTAL TIME = TIME Up + TIME DOWN . FOR DOWNWARD MOTION ONLY

$$\frac{1}{2} \int_{-2\sqrt{3}}^{2\sqrt{3}} \int_{$$

AX = Voxtage => R=Voxtage = (129)(3.61)

= [46.6m]

4. A 1.2kg ball attached to a 50cm string is moved in a circle in the horizontal plane. If the maximum tension the string can withstand without breaking is 1500N,

- a) What is the maximum angular speed of the ball?
- b) What is the maximum linear speed of the ball?
- c) What is the minimum period of the ball's motion?

a)
$$\omega = \frac{V_{\text{max}}}{r} = \frac{(25)}{(0.5)} = \sqrt{50} \frac{240}{5}$$

$$\omega_{\infty} = \frac{2\pi}{T} \Rightarrow T_{Min} = \frac{2\pi}{\omega_{max}} = \frac{2\pi}{(50)} = \boxed{0.1265}$$

FORMULA SHEET

Vectors:

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$= A_x B_x + A_y B_y + A_z B_z$$

$$|\vec{A} \times \vec{B}| = AB \sin \theta$$

• Kinematics:

$$g = 9.8 \text{m/s}^2$$

$$\vec{v}_{av} = \frac{\Delta \vec{x}}{\Delta t}; \quad \vec{v}(t) = \frac{d\vec{x}}{dt}$$

$$\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}; \quad \vec{a}(t) = \frac{d\vec{v}}{dt}$$

$$\Delta x = v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + a t$$

$$v^2 = v_0^2 + 2a \Delta x$$

Circular motion:

$$a_c = \frac{v^2}{r} = \omega^2 r$$
 $v = \omega r$
 $\omega = \frac{2\pi}{T}$

Forces:

$$\sum \vec{F} = m\vec{a}$$

$$W = mg$$