First Come First Served (FCFS)

Nirmala Shinde Baloorkar Assistant Professor Department of Computer Engineering

CPU Scheduling Algorithms

First Come First Serve (FCFS) Shortest Job First (SJF)

Priority Scheduling Round Robin (RR)

First-Come, First-Served (FCFS) Scheduling

- The job that arrives first is scheduled first (Single FIFO ready queue)
- No-preemptive
 - Not suitable for timesharing systems
- Simple to implement and understand
- Average waiting time dependent on the order processes enter the system

First-Come, First-Served (FCFS) Scheduling

• Consider processes arrive at time 0

Turnaround Time = Completion Time - Arrival Time

Process	Burst Time
P_I	24
P_2	3
P_3	3

- Suppose that the processes arrive in the order: P_1 , P_2 , P_3
- The *Gantt Chart* for the schedule:

P ₁		P_2	P_3
0	24	27	7 30

- Turnaround Time $P_1 = 24$; $P_2 = 27$; $P_3 = 30$
- Average turnaround time: (24+27+30)/3 = 27ms

First-Come, First-Served (FCFS) Scheduling

• Consider processes arrive at time 0

Waiting Time = Turnaround Time - Burst Time

<u>Process</u>	Burst Time
${P}_{I}$	24
P_2	3

- Suppose that the processes arrive in the order: P_1 , P_2 , P_3 P_4 P_3
- The *Gantt Chart* for the schedule:

P ₁		P_2	P ₃
0	24	27	7 30

- Turnaround Time $P_1 = 24$; $P_2 = 27$; $P_3 = 30$
- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0+24+27)/3 = 17ms

FCFS Scheduling (Cont.)

 $\frac{\text{Process}}{P_I} \quad \frac{\text{Burst Time}}{24}$

- Suppose that the processes arrive in the order P_2 , P_3 , P_1 Turnaround Time = Completion Time Arrival Time
- P_2 3 P_3 3

• The Gantt chart for the schedule:

- Turnaround Time for $P_1 = 30$; $P_2 = 3$; $P_3 = 6$
- Average Turnaround time: (30+3+6)/3 = 13ms
- Problems:
 - Convoy effect (short processes behind long processes)
 - Non-preemptive -- not suitable for time-sharing systems

FCFS Scheduling (Cont.)

 $\frac{\text{Process}}{P_I} \quad \frac{\text{Burst Time}}{24}$

• Suppose that the processes arrive in the order P_2 , P_3 , P_3

Waiting Time = Turnaround Time - Burst Time

• The Gantt chart for the schedule:

- Turnaround Time for $P_1 = 30$; $P_2 = 3$; $P_3 = 6$
- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (30+3+6)/3 = 13ms

FCFS Scheduling (Cont.)

- Problems:
 - Convoy effect (short processes behind long processes)
 - Non-preemptive -- not suitable for time-sharing systems

Example 2 FCFS

• Consider the set of 5 processes whose arrival time and burst time are given below. Calculate the average waiting time and average turnaround time

Process ID	Arrival Time	Burst Time
P1	4	5
P2	6	4
Р3	0	3
P4	6	2
P5	5	4

Question?

