AN: PAT 1984-019756 TI: Silent ventilator unit for air conditioning system uses flexible flap, in conduit, driven by electromagnet at resonant frequency of flap to displace air PN: FR2528500-A 16.12.1983 PD: AB: The ventilator is installed in a conduit carrying a gas and is mounted on an angle bracket on the inside wall of the conduit. An elastically deformable flap is fastened at one end of the mounting bracket and lies generally in the direction of gas flow. The flap has an electrically driven exciter mechanism, connected part way along its length, which vibrates the flap at a frequency (1-20Hz) corresponding to its resonant frequency. The electricaly exciter comprises an electromagnet having a coil wound on a core, and an armature. The coil is fixed to the conduit wall, its axis lying parallel to the wall, and the 'U' shaped armature has the arms of the 'U' extending to the vicinity of the ends of the core. The base of the 'U' is fixed to the flap. When the electromagnet is energised the flap is displaced towards the coil.; PA: (INRG) INRA INST NAT RECH AGRONOMIQUE; IN: LANNOY M; SOULOUMIAC D D R; FA: FR2528500-A 16.12.1983; CO: FR; IC: F04D-033/00; F24H-003/06; MC: X27-E01B; DC: Q56; Q74; X27; PR: FR0010268 11.06.1982; FP: 16.12.1983 UP: 23.01.1984

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

(A n'utiliser que pour les commandes de reproduction).

2 528 500

PARIS

A1

DEMANDE DE BREVET D'INVENTION

(21)	N° 82 10268
(54)	Ventifateur silencieux et ventilo-convecteur muni d'un tel ventilateur.
51)	Classification internationale (Int. Cl. 3). F 04 D 33/00; F 24 H 3/06.
2 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Date de dépôt
41	Date de la mise à la disposition du public de la demande B.O.P.I. — « Listes » nº 50 du 16-12-1983.
71)	Déposant : INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE FR.
72	Invention de : Daniel Denis Roger Souloumiac et Michel Lannoy.
73	Titulaire:
74	Mandataire : Cabinet Harlé et Phélip, 21, rue de La Rochefoucauld, 75009 Paris.

La présente invention concerne un ventilateur silencieux, ainsi qu'un ventilo-convecteur muni d'un tel ventilateur.

Le chauffage des locaux des secteurs tertiaires et résidentiels correspond à une consommation d'énergie primaire extrêmement importante. Par ailleurs, il existe de nombreuses réserves d'eau chaude à température modérée ou de sous-produits industriels. Par exemple, les opérations de géothermie mettent souvent à disposition un fluide dont la température peut être aussi faible que 40 ou 45°C. Les pompes à chaleur mettent aussi à disposition de l'eau à une température qui n'est pas extrêmement élevée. En outre, de nombreux processus industriels forment de l'eau à température modérée dont l'utilisation est rarement assurée.

De plus, dans les opérations classiques, il est souhaitable de réduire la température du fluide, de l'eau en général ; en effet, plus la température de l'eau de chauffage provenant d'une chaufferie est faible, et plus les pertes calorifiques sont réduites.

Il est donc très important de pouvoir utiliser efficacement la chaleur de ces fluides, habituellement de l'eau, à température modérée.

Pour ces raisons, on a déjà essayé de remplacer les systèmes de chauffage statique, à convecteur ou radiateur fixe ou de chauffage par le sol, par des systèmes dynamiques assurant une circulation de l'air. On sait, par exemple, que les locaux industriels de grand volume sont chauffés par des aérothermes ventilés. On utilise aussi des éjecto-convecteurs, c'est-à-dire des systèmes dans lesquels la circulation de l'air sur les convecteurs est assurée par des éjecteurs. On utilise aussi des ventilo-convecteurs dans lesquels la circulation d'air est assurée par des ventilateurs.

Les systèmes dynamiques permettent l'utilisation d'une température plus faible du fluide caloporteur mais lis présentent tous l'inconvénient d'Introduire un bruit important. Si cette caractéristique n'est pas très gênante,

.

15

10

20

30

25

dans le cas des locaux industriels dans lesquels les sources de bruit sont déjà très nombreuses, il s'agit d'un inconvénient souvent rédhibitoire dans le cas des locaux calmes, tels que les bureaux et surtout les habitations, notamment les chambres à coucher.

Les appareils dynamiques les moins bruyants actuellement utilisés sont les ventilo-convecteurs, c'est-à-dire
une combinaison d'un ventilateur associé à un convecteur
dont le coefficient global de transfert de chaleur est
accru grâce à cette circulation d'air. Cependant, tous les
ventilo-convecteurs, même les plus silencieux, ont un niveau
de bruit qui, en état de marche normale, est la plupart du
temps au moins égal à 30 dB. Des niveaux de bruit inférieurs
à cette valeur ne sont obtenus que pour des très faibles
vitesses du ventilateur, c'est-à-dire pour de mauvais
rendements thermiques. Aux vitesses normales de fonctionnement, le niveau de bruit est normalement supérieur à 35 dB.

10

15

20

25

30

35

L'invention concerne un ventilateur et un ventiloconvecteur qui, pour le débit nominal de fonctionnement,
ont un niveau de bruit inférieur à 25 dB. Plus précisément,
le bruit créé par un tel ventilateur et un tel ventilo-convecteur, est indiscernable dans les locaux dont le bruit de
fond est de 25 dB, c'est-à-dire des locaux considérés comme
très calmes.

Plus précisément, le ventilateur et le ventiloconvecteur selon l'invention se caractérisent par l'absence de tout frottement et de tout contact entre les pièces mécaniques. La totalité des mouvements nécessaires au passage de l'air est assurée par déformation d'un organe sensiblement plat.

Plus précisément, l'invention concerne un ventilateur silencieux qui comporte :

- un conduit allongé destiné à la circulation d'un gaz,

- un support formant un dispositif de fixation sensiblement rectiligne, disposé transversalement au conduit et à l'intérieur de celui-ci, - un organe élastiquement déformable, maintenu par le dispositif de fixation et ayant une partie active sensiblement plane dépassant du dispositif de fixation dans la direction de circulation du gaz et vers l'aval, et

- un ensemble moteur destiné à déplacer alternativement en translation la partie active de l'organe déformable
en direction sensiblement perpendiculaire au plan de cette
partie active et sensiblement perpendiculaire à la direction
de circulation du gaz, la fréquence de fonctionnement du
dispositif moteur étant sensiblement égale à la fréquence
de résonance de la partie active et des organes qui lui sont
solidaires lorsqu'elle est déformée.

10

15

20

25

30

35

L'ensemble moteur est d'un type qui ne présente ni frottement ni choc. Par exemple, le dispositif moteur peut être d'un type actif dans un sens seulement lors du déplacement alternatif, le retour dans l'autre sens étant assuré par l'élasticité de l'organe déformable. Plus précisément, l'ensemble moteur est avantageusement un électroaimant, comprenant une bobine ayant un noyau et une armature, l'un des deux éléments étant solidaire du conduit et l'autre de la partie active de l'organe déformable. Il est avantageux que l'armature soit solidaire de la partie active et la bobine, solidaire du conduit.

La partie active porte avantageusement une masse permettant l'augmentation de son moment d'inertie et la réduction de sa fréquence de résonance.

En outre, il est avantageux que le ventilateur comporte un dispositif de rappel de la partie active vers une position de repos dans laquelle l'organe déformable est déformé, ce dispositif de rappel réduisant la fréquence de résonance de l'organe déformable. Ce dispositif de rappei peut être une masse décalée par rapport au plan de la partie active, et ce décalage est avantageusement réglable par rapport au plan de la partie active afin que la fréquence de résonance puisse être réglée. Le dispositif de rappel peut aussi être sous forme d'un ressort ayant une extrémité solidaire du conduit et une autre extrémité solidaire de

la partie active.

5

10

15

20

25

30

35

L'organe élastiquement déformable est avantareusement une plaque de matière plastique rigide, par exemule une plaque de chlorure de polyvinyle rigide.

L'orvane élastiquement déformable peut être sous forme d'une plaque dont l'épaisseur n'est pas constante mais varie. En outre cet organe peut être formé de plusieurs éléments.

La fréquence de fonctionnement du dispositif moteur est avantageusement comprise entre 1 et 20 Hz.

Le ventilateur comporte avantageusement un générateur d'impulsions uniditectionnelles, fonctionnant à la fréquence de résonance de l'organe déformable.

L'invention concerne aussi un ventilo-convecteur, comprenant un convecteur de type connu par exemple à circulation d'eau chaude, et un ventilateur du type décrit précédemment. Le convecteur étant monté dans le conduit ou juste à la sortie de celui-ci, en aval du ventilateur.

Ainsi, le ventilateur selon l'invention, n'a pas de parties mécaniques frottant les unes sur les autres puisque tous les déplacements sont dus à la déformation d'un organe déformable. En outre, le ventilateur ne crééaucun choc puisque l'armature ne vient jamais au contact du noyau de l'électroaimant. dans un mode de réalisation avantageux.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre faite en référence au dessin annexé sur lequel :

Fig.1 est une coupe verticale.suivant la ligne 1-1 de la figure 2, d'un ventilo-convecteur selon l'invention; et

Fig.2 est une coupe transversale suivant la ligne 2-2 représentant le ventilateur du ventilo-convecteur de la figure 1.

Le ventilo-convecteur selon l'invention, représenté sur les figures 1 et 2, comporte un conduit 10 de section rectangulaire, fixé de toute manière convenable de préférence en direction verticale comme représenté sur la figure 1, par exemple comme une cloison disposée par exemple à gauche de la figure 1. Ce conduit 10 a une ouverture inférieure 12 destinée à l'entrée d'un courant ascendant 14 d'air. La partie supérieure du
conduit détouche par une grille 16 destinée à canaliser l'air,
de manière bien connue. Au-dessous de la grille 16, le ventiloconvecteur comporte un convecteur 18 de type classique. On l'a
représenté sous forme d'un convecteur à ailettes comprenant
d'une part des tubes 20 de circulation d'eau 22 et d'autre part
des ailettes 24 destinées à augmenter la surface d'échange de
chaleur avec le courant ascendant 26 d'air. Le ventilateur selon
l'invention est monté entre l'ouverture inférieure 12 et le
convecteur 24.

Le ventilateur comporte un support 28 en équerre qui porte lui-même une équerre 30 de fixation contre laquelle est maintenu, par une contre-plaque 32, un organe déformable 34. Cet organe 34 est serré entre l'équerre 30 de fixation et la contre-plaque 32 par des boulons 36.

L'ensemble moteur du ventilateur comprend essentiellement un électro-aimant qui comporte une bobine 38 musie d'un noyau 40 de fer doux. L'armature est constituée par un organe 42 en U dont les bras sont séparés par une distance légèrement 20 supérieure à la longueur du noyau 40 de fer doux. Cette armature 42 est fixée sur la plaque déformable 34 par une contre-plaque 44 et des boulons 46 serrant la contre-plaque 44 contre l'armature 42. La position de l'armature 42 en direction horizontale est telle que, lorsque la plaque 34 est déformée vers la gauche sur la figure l',dans la position repérée par la référence 35, les ailes de l'armature 42 ne sont pas au contact des extrémités du noyau de fer doux 40 mais sont disposées en face si bien que l'armature ferme le circuit magnétique. Per contre, lorsque la plaque 34 est dars la position représentée en traits pleins sur la figure 1,1'armature est écartée du noyau 40.

La contre-plaque 44 porte en outre une tige filetée 48 qui supporte une masse 50 qui y est fixée de manière réglable par un écrou 52. Cette masse 50 fait plus que compenser le poids de l'armature 42, si bien que la position de repos de la plaque 34 est une position penchée vers la droite sur la figure l, correspondant sensiblement à celle qui est représentée en traits pleins. On note que le vissage

ou le dévissage de la masse 5C sur la tige 48 rapproche ou éloigne cette masse de l'axe de déformation de la plaque 34 qui se trouve entre l'équerre 30 et l'armature 42. En conséquence, le moment d'inertie varie et la fréquence de résonance de l'ensemble constitué par la plaque 34, l'armature 42 et la contre-plaque 44 munie de la masse 50, varie aussi. Ainsi, le vissage ou le dévissage de la masse 50 permet le réglage de la fréquence de résonance de l'ensemble mobile.

L'ensemble moteur, comprenant l'électro-aimant et 10 l'armature, excite avantageusement l'ensemble mobile à une fréquence correspondant à la fréquence de résonnance. De cette manière, la quantité d'énergie nécessaire au déplacement de l'ensemble mobile est minimale. La puissance consommée est en général de quelques watts seulement. L'adaptation du fonctionne-ment du moteur à celui de l'ensemble mobile peut être réalisée soit par réglage de la fréquence d'excitation de l'électro-aimant, scit par réglage de la fréquence de résonnance par déplacement de la masse 50.

L'élément essentiel du ventilateur et du ventile-20 convecteur est l'organe déformable 34. Celui-ci est avantageusement sous forme d'une plaque de matière plastique rigide, par exemple de chlorure de polyvinyle de 1,5mm d'épaisseur. Cependant, les hommes du métier peuvent facilement sélectionner la nature de la matière de l'organe déformable 34,c'est-à-dire 25 le module d'élasticité , l'épaisseur de la matière et le moment d'inertie donnant la fréquence voulue. Bien qu'on ait représenté l'organe 34 sous forme d'une plaque plane, celle-ci peut avoir d'autres configurations. Par exemple, la plaque peut avoir une épaisseur variable. Du côté de l'organe de 30 fixation, elle peut être relativement épaisse afin que le module de flexion soit élevé. Par contre, vers les extrêmités, elle peut Stre amincie et plus souple. Par ailleurs, la plaque peut aussi être formée de plusieurs matières, l'organe formant la partie qui fléchit étant par exemple choisi pour ses proprié-35 tés de flexion.On peut ainsi utiliser un bronze au béryllium. Cependant, la configuration d'une simple plaque plane est très commode car sa réalisation est très simple.

Les autres éléments de l'appareil sont des éléments très courants dans la technique et en ne les décrit pas plus en détail. Il faut simplement noter que le convecteur 18 peut être de tout type couramment utilisé, de préférence ayant une grande surface d'échange de chaleur.

Bien entendu, le fonctionnement du ventilateur nécessite une excitation de l'électro-aimant. Bien que la consommation d'énergie soit très modérée puisque l'ensemble mobile vibre à sa fréquence de résonance, il est souhaitable que la fréquence d'excitation soit effectivement égale à cette fréquence de résonance ou en diffère très peu. Dans l'exemple indiqué dans la suite du présent mémoire, la fréquence de fonctionnement du ventilateur est de 4 Hz. Cependant, cette fréquence est avantageusement de l'ordre de 1 à 20 Hz. Cette plage est limitée du côté des fréquences élevées car · il est scuhaitable que la vitesse de circulation de l'air soit limitée à 0,7 m/s et de préférence à 0,5 m/s au maximum. En effet, au-delà de ces vitesses, la simple circulation de l'air crée un bruit qui devient discernable en milieu calme. Une telle fréquence peut être obtenue à 1 aide d'un générateur d'impulsions rectangulaires de type bien connu des électriciens. Cependant, l'électro-aimant et le générateur peuvent être choisis pour un fonctionnement en courant alternatif ou continu, pulse ou non, etc.

On considère maintenant un exemple de ventilateur selon l'invention. Ce ventilateur est tel que représenté
sur les figures l et 2. La section du conduit 18 est de
15 x 60 cm, et sa hauteur est d'environ 70 cm. La plaque 34 est
découpée dans une plaque de chlorure de polyvinyle rigide
de l mm d'épaisseur. On vérifie que, dans toute la plage de
déformation de cette plaque, celle-ci est en-deçà de sa limite
élastique et re se déforme pas de manière permanente. On
détermine que l'écart du bord externe de la plaque par rapport à sa position d'équilibre sans excitation, est de 65mm
de part et d'autre de la position centrale lorsqu'une force
de 7,5 N est appliquée à la plaque au niveau de l'organe
moteur, c'est-à-dire à 95mm du dispositif de fixation, la

25.

30

35

20

10

force étant appliquée perpendiculairement à la surface de la plaque. Le module de flexion de la matière est de l'ordre de 1,2.10 Pa. Le générateur d'impulsions crée des impulsions rectangulaires à une fréquence de 4 Hz. La fréquence de résonance de l'ensemble mobile est réglée par vissage ou dévissage de la masse 50. De l'eau à 45°C circule dans le convecteur 18.

Lorsque le ventilateur fonctionne dans les conditions indiquées précédemment, de l'air aspiré à 16,2°C est chassé à la partie supérieure, par la grille 16 à une à une température de 26,7°C. Le débit d'air transmis est de 210 m³/h. La puissance consommée est de 7,5 watts. Le local dans lequel est installé ce ventilo-convecteur a un bruit de fond de 25 dB. On me discerne pas le bruit du ventilo-convecteur dans de telles conditions.

Le ventilateur et le ventilo-convecteur selon
l'invention ont de nombreuses applications dans le chauffage
des locaux. En effet, ils permettent une augmentation
du transfert de chaleur de convecteurs ou radiateurs qui sont
chauffés par de l'eau provenant de puits géothermiques,
de pompes à chaleur, de capteurs solaires, d'installations de
récupération des calories, etc....

Les ventilateurs et ventilo-convecteurs selon l'invention sont particulièrement robustes et fiables étant donné qu'ils ne comportent aucun élément mécanique qui puisse s'user ou être détérioré par des chocs.

REVENDICATIONS

- 1. Ventilateur silencieux, caractérisé en ce qu'il comporte :
- un conduit allongé (10) destiné à la circulation 5 d'un gaz,
 - un support (28,30) formant un dispositif de fixation sensiblement rectiligne disposé transversalement au conduit et à l'intérieur de celui-ci.
- un organe élastiquement déformable (34) maintenu par le dispositif de fixation et ayant une partie active 10 sensiblement plane dépassant du dispositif de fixation dans la direction de circulation d'un gaz et vers l'aval, et
- un ensemble moteur (38, 40, 42) destiné à déplacer alternativement en translation la partie active de l'organe. déformable en direction sensiblement perpendiculaire au plan 15 de la partie active et sensiblement perpendiculaire à la direction de circulation d'un gaz, la fréquence de fonctionnement de l'ensemble moteur étant sensiblement égale à la fréquence de résonance de l'organe déformable et des organes qui lui sont solidaires.
 - 2. Ventilateur selon la revendication I, caractérisé en ce que l'ensemble moteur (38, 40, 42) est d'un type qui fonctionne sans frottement ni choc.

- 3. Ventilateur selon la revendication 2, caractérisé 25 en ce que le dispositif moteur (38, 40, 42) est actif dans un sens seulement lors du déplacement alternatif, et le retour dans l'autre sens est assuré par l'élasticité de l'organe déformable (34).
- 4. Ventilateur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble moteur 30 comporte un électro-aimant comportant une bobine (38) et un noyau (40), et une armature (42), l'un des deux éléments étant solidaire du conduit (10) et l'autre de la partie active de l'organe déformable (34).
- 5. Ventilateur selon la revendication 4, caracté-35 risé en ce que l'armature (42) est solidaire de la partie active et la bobine (38) est solidaire du conduit (10).

- 6. Ventilateur selon l'une quelconque des revendications précédentes, caractérisé en ce que la partie active est munie d'une masse (50) destinée à augmenter son moment d'inertie et à réduire sa fréquence de résonance.
- 7. Ventilateur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre
 un dispositif (50) de rappel de la partie active vers une position de repos dans laquelle l'organe déformable est déformé,
 afin que la fréquence de résonance soit réduite.
- 8. Ventilateur selon la revendication 7, caractérisé en ce que le dispositif de rappel est une masse (50) décalée par rapport au plan de la partie active.
- 9. Ventilateur selon la revendication 8, caractérisé en ce qu'il comprend en outre un dispositif de réglage du 15 décalage de la masse (50) par rapport au plan de la partie active.
- 10. Ventilateur selon la revendication 7, caractérisé en ce que le dispositif de rappel est un ressort dont une extrémité est solidaire du conduit et l'autre est solidaire 20 de la partie active.
 - II. Ventilateur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'organe élastiquement déformable (34) est une plaque de faible épaisseur, par exemple en matière plastique rigide.
- 25 l2. Ventilateur selon la revendication 11, caractérisé en ce que la plaque a une épaisseur variable.
- 13. Ventilateur selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'organe déformable (34) est constitué de plusieurs parties ayant des caractéristi-30 ques différentes de flexion.
 - 14. Ventilateur selon l'une quelconque des revendications précédentes, caractérisé en ce que la fréquence de fonctionnement du dispositif moteur (38,40,42) est comprise entre 1 et 20 Hz.
- 15. Ventilateur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre un générateur d'impulsions unidirectionnelles à la fréquence de résonance de l'organe déformable (34).

16. Ventilo-convecteur, caractérisé en ce qu'il

comprend:

e.t

-un convecteur (18) à circulation d'eau chaude,

-un ventilateur selon l'une quelconque des revendications l à 13, le convecteur étant monté dans le conduit (10) du ventilateur ou juste à la sortie de ce conduit (10) du ventilateur ou juste à la sortie de ce conduit, en aval du ventilateur.

ORIGINAL