

> Koнспект > 3 ypoк > Dimensional modeling: Практикум

> Оглавление

- > Оглавление
- > Draw.io
- > Создание ER-диаграммы
- > Создание ER-диаграммы по Кимбаллу
- > Связь фактов и измерений в ER-диаграмме
- > Подготовка плоской таблицы для аналитиков
- > Добавление SCD в таблицы измерений
- > Таблица фактов с просмотрами и общая схема
- > Создание ER-диаграммы по Инмону
- > Неустойчивость ER-диаграммы по Инмону

> Draw.io

<u>Draw.io</u> – бесплатное приложение, предназначенное для моделирования диаграмм и блок-схем бизнес-процессов. Присутствует возможность интеграции с Google Документами, Dropbox, OneDrive, JIRA, Confluence, Chrome и GitHub.

Помимо веб-версии существует программа для установки на ПК, которая поддерживает ОС Windows, MacOS и Linux.

Приложение будет полезно для специалистов, которым требуется инструмент для построения схем бизнес-процессов. Сервис подходит для специалистов, чья деятельность

связана с созданием презентаций и баз данных, построением инженерных и сетевых схем, проектированием программного обеспечения.

Draw.io позволяет визуализировать <u>ER-диаграммы</u>, которые мы обсудили на предыдущих лекциях. Существует множество редакторов для создания ER-диаграмм, основное отличие платных (проприетарных) версий от бесплатных заключается в возможности проведения reverse- или forward-engineering. Reverse-engineering позволяет получить ER-диаграмму на основе существующей БД. Forward-engineering, позволяет создать БД из построенных ER-диаграмм.

> Создание ER-диаграммы

Для создания ER-диаграммы выбираем: File > New..., в окне выбора диаграмм выбираем Entity Relationship Diagram

Draw.io автоматически создаст ER-диаграмму с покупателями, заказами и отгрузками.

В разделе Entity Relationship можно выбрать различные представления сущностей, таблиц и атрибутов.

Нотация Питера Чена

Нотация Питера Чена. Эта нотация была представлена Питером Ченом, являющимся

одним из основоположников реляционных баз данных, и долгое время применялась для графической интерпретации предметной области в терминах сущностей и связей, иллюстрирующих ее абстрактное представление на логическом и концептуальном уровнях.

Table		
PK	<u>UniqueID</u>	
	Row 1	
	Row 2	
	Row 3	

□ Table		
PK,FK1	Row 1	
PK,FK2	Row 2	
	Row 3	
	Row 4	

Нотация Crow's foot.

Нотация Crow's foot является одной из наиболее известных в разработке баз данных, отражающей уровень логического представления базы данных с обозначением некоторых компонентов модели базы данных в графическом виде, облегчая, тем самым, отображение диаграммы в рабочем пространстве. Модели такого типа менее громоздки по сравнению с моделями в нотации Питера Чена.

> Создание ER-диаграммы по Кимбаллу

Предметной областью в практическом занятие является модель студентов и преподавателей в рамках проекта KarpovCourses. Проектировать будем по Кимбаллу, исходя из потребностей аналитиков.

Перед началом работы по созданию хранилища данных мы должна определится с тем, какие данные попадут на витрину данных для аналитиков. В модели с KarpovCourses в первую очередь аналитику будут интересны финансы, например, как студенты оплачивают курсы, сколько всего продаж и так далее. Для начала создадим таблицу фактов. Перед началом проектирования хранилища данных необходимо договориться о единообразии названий во всем хранилище. Для таблицы фактов мы будем использовать префикс [ct].

В таблицу фактов платежей добавим поля: сумма платежа (amount), курс (course_id), дата платежа (payment_dttm), полностью или частично была совершена оплата (is_full_flg), доля платежа (full_shr), студент (student_id).

Добавим таблицу измерений dim_student. Для таблиц измерений будем использовать префикс dim. Первичным ключом будет являться идентификатор студента. У нас есть ФИО студента, но для анализа нам также будут полезны пол, возрастная группа, профессия, регион и класс зарплаты. Мы может не запрашивать все данные у студента, часть данных мы можем получить из сторонних источников.

В таблицу измерений dim_student добавим поля: ФИО (name), пол (gender), возрастная группа (age_lvl), профессия студента (profession_type), регион студента (region), класс зарплаты (salary_lvl).

> Связь фактов и измерений в ERдиаграмме

Свяжем таблицу фактов и таблицы измерений. Связь у нас один ко многим. Нам необходимо правильно указать окончания связей. У нас может быть много записей в таблице фактов с минимальным количеством связей - 1, поэтому мы выбираем тип один и лапка, как на изображении ниже. У нас не может присутствовать запись в таблице фактов без записи в таблице измерений. Для

таблицы измерений мы выбираем тип окончания *один*, его символ представлен на изображении ниже. *(если забыли обозначения типов связей – тут)*

В меню STYLE мы можем настроить отображение и тип связи.

меню STYLE в draw.io

> Подготовка плоской таблицы для аналитиков

Аналитикам может потребоваться делать меньше join-операций и нам может потребоваться плоская витрина, например, с платежами. Для работы с плоской таблицей аналитикам нужно присоединить таблицы измерений к таблице фактов, в нашем случае к

таблице fct_payment таблицы dim_student, dim_course и dim_lector. Для этого надо скопировать все поля из таблиц измерений в таблицу фактов. Назовем новую таблицу фактов dm_payment (dm — Data mart). Когда мы присоединяем таблицу по SCD-2 у нас есть два сценария. В SCD-2 у нас есть даты начала и окончания, если при join'e мы укажем дату окончания равной плюс бесконечность, то мы получим актуальное состояния, а если мы при join'e сделаем between начала и окончания, то мы получим состояния на дату платежа.

В результате мы получили плоскую денормализованную таблицу. Для аналитика такая таблица будет удобна, но с точки зрения управления такая таблица не очень удобна.

Плоская таблица данных для аналитиков

> Добавление SCD в таблицы измерений

Мы подготовили небольшую витрину данных для аналитиков. Нам осталось выбрать и добавить типы измерений (SCD) в наши таблицы измерений. Допустим, мы хотим смотреть историю изменений по курсу. Мы можем это делать по SCD-2, в таком случае нам необходимо добавить два дополнительных поля: valid_from_dttm и valid_to_dttm. После добавлениях таких

полей уникальный id курса уже не будет валидным ключом, поэтому теперь нам надо использовать пару $course_{id}$ + $valid_{from_dttm}$ или $course_{id}$ + $valid_{to_dttm}$.

Также нам интересно посмотреть аналогичную информацию по лекторам. Допустим, что лектор редко меняет свою компанию. Будем хранить по другому типу с хранением предыдущего значения: SCD-1 (на практике такой тип используется редко). Добавим поле сомрапу_prev, но у нас нет даты, с которой произошло изменение, поэтому этими данными будет сложно пользоваться на практике.

Для студентов мы сделаем хранение по типу SCD-4. Получится 2 таблицы по студентам: одна в актуальном состоянии dim_student_act, другая с историческими значениями dim_student_hist. В dim_student_hist нужно добавить даты действия, что и в SCD-2.

> Таблица фактов с просмотрами и общая схема

Помимо платежей аналитикам может быть интересно, насколько студенты заинтересованы материалом и досматривают лекции до конца, какие преподаватели лучше готовят материалы. Мы создаем таблицу фактов с просмотрами. В таблице фактов мы укажем поля первичного ключа student_id, lecture_id, start_dttm, а также продолжительность duration, end_dttm, флаг просмотра лекции до конца full_flg. Мы выбрали такой первичный ключ исходя из предположения, что в нашей системе студент может запустить только одно видео.

Дополнительно создаем таблицу измерений с информацией о лекциях.

Первичным ключом будет являться lecture_id. Добавим поля с названием лекции name, сложностью difficulty_lvl, описанием description, лектором lector_id, а также поля для хранения по SCD-2 valid_from_dttm и valid_to_dttm.

Добавим связь между курсом и лекцией, лектором и лекцией, а также внешний ключ course_id в лекцию.

Получилась следующая общая схема

> Создание ER-диаграммы по Инмону

Выделим ключевые бизнес-сущности, их характеристики (атрибуты) и связи между ними.

У нас есть сущность Студенты, у которых есть ФИО FIO, профессия profession, компания company, пол gender, возраст age_lvl, регион region_id и уровень зарплат salary_lvl.

Добавим таблицу с Регионами, у которых есть наименование Name, описание Description и количество населения Population.

Добавим связь между этими сущностями.

Таблицы с сущностями Студенты и Регионы

Также у нас есть Курсы, с атрибутами наименование маме, описание description, уровень сложности difficulty_lvl, для кого предназначен курс from_whom, для какой профессии target_profession, продолжительность duration.

Курс состоит из Блоков, у которых есть наименование мате, описание description, уровень сложности difficulty_lvl, продолжительность duration.

Таблицы с сущностями Курсы и Блоки

Добавим сущность с Лекциями, у которых есть наименование маме, описание description, уровень сложности difficulty_lvl, продолжительность duration, принадлежность к блоку block_id.

Допустим, что одна лекция может быть в нескольких блоках. Создадим таблицу для соединения блоков и лекций block_lection. Фактически это реализация соединения многие ко многим, но через отдельную таблицу.

Таблицы с сущностями Лекции, Блоки и их связь

Добавим сведения о Лекторах: ФИО FIO, компания company, профессия profession, навыки skills, и соединим с другими сущностями, добавив в них поля внешних ключей.

Таблица с сущностью Лектор

Добавим сущность с Просмотрами видео: студент student_id, лекция lection_id, начало просмотра start_dttm, продолжительность duration, досмотрено ли до конца full_flg.

Таблица с сущностью Просмотра видео

Можно добавить ещё много таблиц, описывающих те или иные сущности, а также историзмы по SCD.

Данная схема не отрицает таблицу фактов и измерений, это наш центральный слой, на базе него мы можем стоить таблицы фактов и измерений.

> Неустойчивость ER-диаграммы по Инмону

Такая схема не является устойчивой. Допустим, что между курсом и блоком поменялась связь: теперь блок может принадлежать нескольким курсам.

Убираем поле <u>course_id</u> из блока и добавляем таблицу связи между курсом и блоком.

Изменение связи между Курсом и Блоком

Если мы захотим добавить регион к лектору, то это тоже повлечёт за собой изменение полей таблицы, и необходимо будет прогрузить данные по регионам, таким образом на время изменений таблица будет заблокирована.

Таблица с сущностью Лектор с добавленным полем region_id