Algebraiske grupper og moduliteori

Fredrik Meyer

26. september 2014

1 Representations of algebraic groups

Let $G = \operatorname{Spec} A$ be an affine algebraic group over a field k.

Definition 1.1. An algebraic representation of G is a pair (V, μ_V) consisting of a k-vector space V and a k-linear map $\mu_V : V \to V \otimes_k A$ satisfying the following two conditions:

1. The diagram

$$V \xrightarrow{\mu_{V}} V \otimes_{k} A$$

$$\downarrow id \qquad \qquad \downarrow id \otimes \epsilon$$

$$V \simeq V \otimes_{k} k$$

is commutative.

2. The diagram

$$V \xrightarrow{\mu_{V}} V \otimes_{k} A$$

$$\downarrow^{\mu_{V} \otimes \operatorname{id}_{A}} V \otimes_{k} A \otimes_{k} A$$

$$V \otimes_{k} A \xrightarrow{\operatorname{id}_{V} \otimes \mu_{A}} V \otimes_{k} A \otimes_{k} A$$

is commutative. Here μ_A is the coproduct in the coordinate ring of G.

I

We often drop the subcript from μ_V unless confusion may arise. The same comment applies to tensor products. They will always be over the ground field unless otherwise stated. We will sometimes refer to a representation (V, μ_V) sometimes as "a representation $\mu: V \to V \otimes A$ " and sometimes as just "a representation V".

Definition 1.2. Let $\mu:V\to V\otimes A$ be a representation of $G=\operatorname{Spec} A.$ Then:

- 1. A vector $x \in V$ is said to be *G-invariant* if $\mu(x) = x \otimes 1$.
- 2. A subspace $U \subset V$ is called a subrepresentation if $\mu(U) \subseteq U \otimes A$.

Proposition 1.3. Every representation V of G is locally finite-dimensional. Precisely: every $x \in V$ is contained in a finite-dimensional subrepresentation of G.

Bevis. Write $\mu(x)$ as a finite sum $\sum_i x_i \otimes f_i$ for $x_i \in V$ and linearly independent $f_i \in A$. This we can always do, by definition of tensor product and bilinearity. Let U be the subspace of V spanned by the vectors x_i .