

PROJECT TEETS

IMPACT LOADING OF SUBMARINE HULLS

Ву

Frederick J. Dzialo

Contract No. ONR-NO0014-68-A-0146-8 Report No. THEMIS-UM-70-2

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Approved for Release

Reproduction in whole or in part is permitted for any purpose of the United States Government. This research was sponsored by the Office of Naval Research under ONR Contract No. NO0014-68-A-0146, Subcontract No. NO0014-68-A-0146-8, ONR Contract Authority Identification No. NR 200-016.

Charles E. Hutchinson Co-Manager, Project THEMIS University of Massachusetts

ABSTRACT

Following Flugge's exact derivation for the buckling of cylindrical shells, the equations of motion for dynamic loading of cylindrical shells subjected to hydrostatic and axial pressure have been formulated.

The equations of motion are applicable for long, short, or thick shells, and are very useful in calculating deflections and stresses when the impact loads are applied to comparatively small regions of the shell. The normal mode theory was utilized to provide dynamic solutions for the equations of motion.

Solutions are also provided for the Timoshenko-type theory, and comparisons are made between the two theories by considering and neglecting in-plane inertia forces.

Comparison of results is exemplified by a numerical example which considers the effect of hydrostatic pressure on the dynamic response of a shell simply supported by a thin diaphragm and subjected to a localized unit radial impulse.

ACKNOWLEDGEMENT

This research was accomplished with the support of the Office of ilaval Research. Computations were done at the University of Massachusetts Research Computer Center, Amherst, Massachusetts. The author wishes to record his thanks to Messrs. Aarij and Minhaj Kirmani for their assistance in computer programming and calculations.

TABLE OF CONTENTS

	<u>•</u>	age			
akst	ACT	111			
ACKII	DWLEDGEHENT	iv			
LIST	OF TABLES	vii			
LIST	OF FIGURES	viii			
ı.	INTRODUCTION	1			
	A. Applicability of Work	1			
	Statement of Problem	1			
II.	THEORY	2			
	A. Equations of Notion	2			
	B. Orthogonality and Modal Vibrations	4			
	C. Solutions of Equations of Motion for Modal Vibration	6			
III.	SOLUTIONS FOR FORCED VIBRATIONS	8			
	h. Solution for Impact Loading	8			
	E. Solution for Unit Impulse	9			
IV.	SOLUTIONS FOR SYMMETRICAL VIBRATIONS	12			
	A. Free Vibrations	13			
	L. Forced Vibrations	14			
٧.	INTEGRAL OF THE SQUARE OF EIGENFUNCTIONS	14			
VI.	ILLUSTRATIVE EXAMPLE FOR CYLINDER SUPPORTED BY THIN DIAPHRAGM				
VII.	EQUATIONS OF HOTION FOR TIMOSHENKO THEORY 22				
* * 1	DATA FOR BUILDSTOATING CVANDLE FOR DRIFT DANIAL IMPOSECT	21			

IX.	SUMMARY OF THEORETICAL RESULTS					
	A. Effect of Pressures on Natural Frequencies	26				
	5. Dynamic Response for Unit Radial Impulse	35				
х.	DISCUSSION AND CONCLUSIONS	46				
λI.	LITERATURE CITEU	47				

LIST OF TABLES

	<u> </u>	age
TABLE I	Effect of Hydrostatic Pressure on Frequencies in Buckling Mode, Flugge's Theory	26
TAULE II	Effect of Hydrostatic Pressure on Frequencies in Buckling Mode, Timoshenko's Theory	27
TABLE II	Buckling Mode, Flugge's Theory with and without	28
TÄBLE IV	Buckling Mode, Timoshenko's Theory with and without	29
TABLE V	Comparison of Frequencies for Various Mode Shapes, Flugge's Theory, $n = 1$, $m = 1 - 10$	30
TABLE VI	Comparison of Frequencies for Various Mode Shapes, Flugge's Theory, $n = 3$, $m = 1 - 10$	31
TABLE VI	Comparison of Frequencies for Various Mode Shapes, Flugge's Theory, n = 5, m = 1 - 10	32
TABLE VI	II Effect of Hydrostatic Pressure on Fundamental Frequency, Flugge's Theory	33
TABLE IX	Effect of Hydrostatic Pressure on Higher Frequencies, Flugge's Theory	34
TABLE X	Effect of Hydrostatic Pressure on Dynamic Response for Unit Impulse, Flugge's Theory	35
TABLE XI	Dynamic Response for Unit Impulse with and without In-Plane Inertia, Flugge's Theory	36
TABLE XI	Effect of Hydrostatic Pressure on Dynamic Response for Unit Impulse, Comparison of Theories with In-Plane Inertia Included	37
TABLE XI	Oynamic Response for Unit Impulse with In-Plane Inertia, Comparison of Theories	3 8
TABLE XI	V Effect of Hydrostatic Pressure and Loading Area on Dynamic Response for Unit Impulse, Flugge's Theory with In-Plane Inertia Included	39

LIST OF FIGURES

		Page
FIGURE 1	Cylindrical Shell Subjected to Dynamic and Hydrostatic Loading	10
FIGURE 2	Radial Displacement versus Pressure for $\phi = 0$, $x = \ell/2$ at Various Values of Time	40
F1GURE 3	Radial Displacement versus Time for $P/P_C = 0$, $\phi = 0$, $x = k/2$ at Various Values of Time	41
FIGURE 4	Longitudinal Strain versus Time for $P/P_c = 0$, ; = 0, x = $x/2$	42
FIGURE 5	Longitudinal Strain versus Time for P/P _c = 0.5, z = 0, $x = z/2$	43
FIGURE 6	Longitudinal Strain versus Time for $P/P_c = 0$, $\phi = 0$, $x = \ell/2$	44
FIGURE 7	Circumferential Strain versus Time for $P/P_c = 0$, $\varphi = 0$, $x = \ell/2$	45

IMPACT LOADING OF SUBMARINE HULLS

Introduction

The purpose of this investigation is to determine the effect of impact loads on submarine hulls. For ductile materials current design methods utilize static loads for design with a performance criterion that the hull behave in a ductile manner when subjected to an impact load that may occur during ground collision or depth charges. Since glass, considered as a possible material for design has brittle properties the present design practices must be re-evaluated. Hence, more rigorous analyses must be made to determine the dynamic stress and deformation characteristics of glass hulls subjected to impact loads, and deep hydrostatic pressures. The present investigation will consider only the response of the shell. The coupled response of the shell and ring frames will be considered in a future investigation.

The model to be investigated will essentially be a cylindrical shell under deep hydrostatic and axial pressure, and subjected to an impact load.

Following Flugge's exact derivation for the buckling of cylindrical shells, the equations of motion are formulated. The equations are applicable for long, short or thick shells, and are very useful in calculating deflections and stresses when the impact loads are applied to comparatively small regions of the shell. The normal mode theory is utilized to provide dynamic solutions for the equations of motion.

atria, and the most

Solutions are also provided for the Timoshenko-type theory, and comparisons are made between the two theories by considering and reglecting in-plane inertia forces.

Equations of Hotion

Following Flugge's [1] exact derivation for the buckling of cylindrical smells, the differential equations of motion for impact loading of cylindrical smells under hydrostatic pressure become:

$$aii_{x}^{*} + a.i_{xx}^{*} - pa(u^{-} - u^{+}) - Pu^{n} + a^{2}p_{x}^{-} = cha^{2} \frac{\partial u}{\partial t^{2}}$$
 (1)

$$a_{1}i_{2}^{*} + a_{1}i_{3}^{*} - a(i_{2}^{*} - pa(v^{*} + w^{*}) - Pv^{*} + a^{2}p_{5}^{*} = cha^{2}\frac{\%v}{2t^{2}}$$
 (2)

$$-aQ_{x}^{*} - aQ_{x}^{*} - au_{x}^{*} - pa(u^{*} - v^{*} + w^{*}) - Pv^{*} + a^{2}p_{r}^{*}$$

$$= \sin^2 \frac{y'u}{dt^2} \tag{3}$$

unere

$$Q_{\cdot} = \frac{iI_{\cdot}^{*} + II_{\cdot}^{*}}{a} \tag{4}$$

$$Q_{\mathbf{x}} = \frac{\mathbf{i}\mathbf{1}_{\mathbf{x}}^{\prime} + \mathbf{1}\mathbf{1}_{\mathbf{x}}^{\prime}}{\mathbf{a}} \tag{5}$$

$$ii_{z} = \frac{\partial}{\partial x} (v^{2} + w + \partial u^{2}) + \frac{K}{\partial x^{2}} (w + w^{2})$$
 (6)

$$\mathcal{H}_{x} = \frac{\partial}{\partial x} \left(u^{x} + \partial v^{x} + \partial u \right) - \frac{K}{a^{3}} u^{\alpha} \tag{7}$$

$$H_{cx} = \frac{J}{J} \frac{1 - v}{2} \left(u^* + v^* \right) + \frac{L}{J} \frac{1 - v}{2} \left(u^* + v^{**} \right)$$
 (8)

$$H_{X\phi} = \frac{D}{a} \frac{1 - v}{2} (u^* + v^*) + \frac{K}{a^3} \frac{1 - v}{2} (v^* - w^{**})$$
 (9)

$$H_{\phi} = \frac{K}{a^2} (w + w^2 + vw^2)$$
 (10)

$$H_{X} = \frac{K}{a^{2}} (w^{u} + vw^{u} - u^{1} - vv^{*})$$
 (11)

$$H_{\phi X} = \frac{K}{a^2} (1 - v)(w^* + \frac{1}{2} u^* - \frac{1}{2} v^*)$$
 (12)

$$H_{X\phi} = \frac{K}{a^2} (1 - v)(w^* - v^*)$$
 (13)

Substitution of equations (4) through (13) into equations (1) through (3) yields:

$$u'' + \frac{(1 - v)}{2} u'' + \frac{1 + v}{2} v'' + vw' + k \left[\frac{1 - v}{2} u'' - w'' + \frac{1 - v}{2} w''' \right] - q_1(u'' - w') - q_2u'' + \frac{p_X(x, t)a^2}{D} = \frac{\rho ha^2}{D} \frac{\partial^2 u}{\partial t^2}$$
(14)

$$\frac{1+\nu}{2}u'' + v'' + \frac{1-\nu}{2}v'' + w' + k(\frac{3}{2}(1-\nu)v'' - \frac{3-\nu}{2}w''')$$

$$-q_1(v'' + w') - q_2v'' + \frac{P_{\phi}(x, t)a^2}{D} = \frac{\rho ha^2}{D} \frac{\partial^2 v}{\partial t^2}$$
(15)

$$vu' + v'' + w + k \left(\frac{1 - v}{2}u''' - u''' - \frac{3 - v}{2}v'''' + w''''\right)$$

$$+ 2w''' + w''' + 2w'' + w + w + q_1(u' - v' + w'') + q_2w''' - \frac{p_r(x, t)a^2}{D} = \frac{-\rho ha^2}{D} \frac{\partial^2 w}{\partial t^2}$$
 (16)

where

$$k = \frac{h^2}{12a^2}$$

$$q_1 = \frac{pa}{D}$$

$$q_2 = \frac{p}{D}$$

Equations (14) through (16) may be written:

$$a_5 u'' + a_2 u'' + \frac{1 + v}{2} v'' + a_3 w' + k \left(\frac{1 - v}{2} w''' - w''' \right) + \frac{p_x(x, t)}{D} a^2 = \frac{\rho h a^2}{D} \frac{\partial^2 u}{\partial t^2}$$
(17)

$$\frac{1+\nu}{2}u'' + \alpha_4(v'' + w') + \alpha_1v'' - \frac{k}{2}(3-\nu)w''' + \frac{p_{\phi}(x, t)a^2}{D} = \frac{\rho ha^2}{D} \frac{\partial^2 v}{\partial t^2}$$
(18)

$$\alpha_{3}u' + \alpha_{4}v'' + (2k + 1 - \alpha_{4})w''' + k\left\{\frac{1 - v}{2}u''' - u''' - u''' - \frac{3 - v}{2}v''' + w''' + 2w'''' + w'''' + \left(\frac{k + 1}{k}\right)w\right\} + (1 - \alpha_{5})w'' - \frac{p_{r}(x, t)a^{2}}{D} = \frac{-\rho ha^{2}}{D} \frac{\partial^{2}w}{\partial t^{2}}$$
(19)

where

$$\alpha_{1} = \frac{1 - \nu}{2} (1 + 3k) - q_{2}$$

$$\alpha_{2} = \frac{1 - \nu}{2} (1 + k) - q_{1}$$

$$\alpha_{3} = (\nu + q_{1})$$

$$\alpha_{4} = 1 - q_{1}$$

$$\alpha_{5} = 1 - q_{2}$$

Orthogonality and Modal Vibrations

For free vibrations, equations (1) through (3) become

$$all_{X}^{1} + all_{\phi X}^{2} - pa(u'' - w') - Pu'' = \rho ha^{2} \frac{\partial^{2} u}{\partial t^{2}}$$
 (20)

$$aH_{\phi}^{*} + aH_{X\phi}^{"} - aQ_{\phi}^{} - pa(v^{"} + w^{*}) - Pv^{"} = \rho ha^{2} \frac{\partial^{2} v}{\partial t^{2}}$$
 (21)

$$-aQ_{z}^{*} - aQ_{x}^{*} - aII_{y}^{*} - pa(u^{*} - v^{*} + v^{*}) - Pu^{**} = \rho ha^{2} \frac{3^{2}W}{3t^{2}}$$
 (22)

Equations (20) unrough (22) yield the free vibration frequencies and mode shapes. The orthogonality condition is derived by assuming that the displacements u, v, and w have the form

$$u = u_n(x, \phi) e^{i\omega_n t}, \qquad v = v_n(x, \phi) e^{i\omega_n t},$$

$$v = v_n(x, \phi) e^{i\omega_n t} \qquad (23)$$

Finding the orthogonality condition involves the following steps:

(1) the nth terms of expressions (23) are inserted into equations (20) through (22), and the resulting equations are multiplied by $\mathbf{u}_{\mathbf{m}}(\mathbf{x})$, $\mathbf{v}_{\mathbf{m}}(\mathbf{x})$ and $\mathbf{u}_{\mathbf{m}}(\mathbf{x})$, respectively, integrated over the domain, and added; (2) the mth terms of expressions (23) are inserted into equations (20) through (22), and the resulting equations are multiplied by $\mathbf{u}_{\mathbf{n}}(\mathbf{x})$, $\mathbf{v}_{\mathbf{n}}(\mathbf{x})$, and $\mathbf{u}_{\mathbf{n}}(\mathbf{x})$, respectively, integrated ever the domain, and added; (3) the two equations resulting from Step 2 are subtracted from those resulting from Step 1; they are integrated by parts, and use is made of equations (4) through (13) to obtain the final orthogonality relation. The orthogonality condition may be written as follows:

$$(\omega_{n}^{2} - \omega_{m}^{2}) \int_{0}^{L} \rho h(u_{n}u_{m} + v_{n}v_{m} + w_{n}w_{m}) dx =$$

$$u_{n}(\Pi_{xm} + \rho w_{m} - P \frac{\partial u_{m}}{\partial x}) + v_{n}(\Pi_{x\phi m} - \frac{\Pi_{x\phi m}}{a} - P \frac{\partial v_{m}}{\partial x})$$

$$- v_{n}(Q_{xm} + P \frac{\partial w_{m}}{\partial x}) + \Pi_{xm} \frac{\partial w_{n}}{\partial x}$$

$$- u_{m}(\Pi_{xm} + \rho w_{n} - P \frac{\partial u_{n}}{\partial x}) - v_{m}(N_{x\phi n} - \frac{\Pi_{x\phi n}}{a} - P \frac{\partial v_{n}}{\partial x})$$

$$+ w_{m}(Q_{xn} + P \frac{\partial w_{n}}{\partial x}) - \Pi_{xn} \frac{\partial v_{m}}{\partial x} = 0, \quad m \neq n$$

$$(24)$$

where the natural boundary conditions for the fixed, simply supported and free condition are given as:

Fixed

at
$$x = 0$$
, λ

$$u = v = u = \frac{\partial w}{\partial x} = 0 \tag{25}$$

Hinge

at
$$x = 0$$
, τ

$$\mathbf{H}_{\mathbf{x}} = \mathbf{C} \tag{26}$$

Simply Supported

at
$$x = 0$$
, λ

$$w = 0$$

$$H_{X} = 0$$

$$H_{X\varphi} - \frac{H_{X\varphi}}{a} - P \frac{\partial V}{\partial X} = 0$$

$$H_{X} + pw - P \frac{\partial u}{\partial X} = 0$$

$$at x = 0$$
, α
(27)

Free

$$11_x = 0$$

$$Q_X + P \frac{\partial W}{\partial X} = 0$$

$$N_{X\psi} - \frac{11}{x} - P \frac{\partial V}{\partial x} = 0$$

$$N_{X} + pv - P \frac{\partial u}{\partial X} = 0 \tag{28}$$

The differential equations (17) - (19) may be solved by assuming

$$u = Ne^{\lambda X/a} \cos(N\phi) e^{i\omega t}$$

$$v = Be^{\lambda X/a} \sin(m\phi) e^{i\omega t}$$

$$u = Ce^{\lambda X/a} \cos(N\phi) e^{i\omega t}$$
(29)

Inserting equation (29) into equations (17) - (19) yields equation (30).

The characteristic equation is found by setting the determinant of equation (30) equal to zero. To determine the eigenvalues, ω^2 , the following method is utilized: A value of ω^2 is guessed and inserted into the characteristic equation. The characteristic equation will yield eight roots. For unequal roots, equations (29) may be written as follows:

$$u = \sum_{i=1}^{8} h_{i}e^{\lambda_{i}x/a} (\cos m\phi e^{i\omega t}), \quad v = \sum_{i=1}^{8} B_{i}e^{\lambda_{i}x/a} (\sin m\phi e^{i\omega t})$$

$$w = \sum_{i=1}^{8} C_{i}e^{\lambda_{i}x/a} (\cos m\phi) e^{i\omega t}$$
(31)

where for each λ_i there exists a relationship between the amplitudes A_i , B_i and C_i from the determinant of equation (30).

Equations (31) with the necessary boundary conditions will lead to a determinant $|a_{ij}|$. A plot is then made of the determinant $|a_{ij}|$ versus ω^2 . The eigenvalues, ω^2 , are those for which $|a_{ij}| = 0$. At a point, ω^2 , when $|a_{ij}| = 0$, the ratio of the amplitudes A_i , B_i and C_i can be calculated from the determinant of equation (30).

For impact loads, local mending action will predominate, and the principal mode of response will be in the radial direction. Reglecting inertia forces in the longitudinal and circumferential directions, equation (30) reduces to equation (32).

$$\begin{vmatrix} a_{5}z^{2} - m^{2}a_{2} & (\frac{1+v}{2})m & a_{3}z - (\frac{2-v}{2})m^{2}z - kz^{3} \\ -(\frac{1+v}{2})m & -a_{4}m^{2} + a_{1}z^{2} & -a_{4}m + k(\frac{3-v}{2})mz^{2} \\ a_{3}z - k(\frac{1-v}{2})m^{2}z - kz^{3} & -a_{4}m - k(\frac{3-v}{2})az^{2} & -(2k+1-a_{4})m^{2} + 1 \\ & +(1-a_{5})z^{2} \\ & +k[(z^{2} - m^{2})^{2} + 1] \\ & +cha^{2}c^{2} - m^{2}b \end{vmatrix}$$
(32)

Solutions for Forced Vibrations

Equations (17) through (19) may be solved by assuming

$$u = \sum_{n=0}^{\infty} u_n(x, :) q_n(t)$$

$$v = \sum_{n=0}^{\infty} v_n(x, \circ) q_n(t)$$

$$w = \sum_{n=0}^{\infty} w_n(x, \circ) q_n(t)$$
(33)

Substituting the above equations into equations (17) through (19), and utilizing the orthogonality condition (24) yields the following:

$$q_{n}(t) = \frac{\int_{0}^{2\pi} \int_{0}^{g} \int_{0}^{t} [P_{x}(x,\phi,\lambda)u_{n} + P_{\phi}(x,\phi,\lambda)v_{n} + P_{r}(x,\phi,\lambda)w_{n}][\sin \omega_{n}(t-\xi)d\lambda] dx dx}{\omega_{n} \int_{0}^{2\pi} \int_{0}^{g} \rho h(u_{n}^{2} + v_{n}^{2} + w_{n}^{2}) dx d\phi}$$
(34)

For an impact loading as shown in Figure 1, equation (34) becomes

$$v_{i_{1}}(t) = \frac{\int_{(-\infty, 1)/a}^{(-\infty, 1)/a} \int_{(-\infty, 1)/a}^{(-\infty, 1)/a}$$

For a concentrated impact loading, equation (24) becomes

$$\frac{\lim_{t\to 0} \frac{-(t+c_1)/a}{(t-c_1)/a} \int_{t-c_1}^{t+c_2} \int_{0}^{t} \left[p_{\chi}(x, \phi, \lambda) u_n + p_{\phi}(x, \phi, \lambda) v_n + p_{\phi}(x, \phi, \lambda) v_n + p_{\phi}(x, \phi, \lambda) v_n \right]}{+ p_{r}(x, \phi, \lambda) u_n \sin u_{m}(t-\lambda) d\lambda dx d\phi}$$

$$= \frac{+ p_{r}(x, \phi, \lambda) u_n \sin u_{m}(t-\lambda) d\lambda dx d\phi}{u_{m} \int_{0}^{2\pi} \int_{0}^{t} \rho h(u_n^2 + v_n^2 + u_n^2) dx d\phi}$$
(36)

unere

$$p_{x} = \frac{P_{x}}{4\epsilon_{1}\epsilon_{y}}$$

$$p_{z} = \frac{P_{z}}{4\epsilon_{1}\epsilon_{y}}$$

$$p_{r} = \frac{P_{r}}{4\epsilon_{1}\epsilon_{y}}$$

Solution for Impulse

Consider an impulse per unit area, $i_{\chi}(x,\phi)$, $i_{\phi}(x,\phi)$ and $i_{r}(x,\phi)$ acting on the cylinder for an infinitely short time. The cylinder may now be considered to be vibrating freely with the following initial conditions:

$$u = v = u = 0 \tag{37}$$

Figure 1-a

Figure 1-b

Cylindrical Shell Subjected to Dynamic and Hydrostatic Loading

$$\frac{\partial u}{\partial t} = \frac{i_{\mathbf{x}}(\mathbf{x}, \cdot, \cdot)}{\partial \mathbf{h}}$$

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{i_{\mathbf{x}}(\mathbf{x}, \cdot, \cdot)}{\partial \mathbf{h}}$$

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{i_{\mathbf{x}}(\mathbf{x}, \cdot, \cdot)}{\partial \mathbf{h}}$$
(38)

The displacements for free vibrations are given as

$$u = \sum_{m=0}^{\infty} u_{m}(\Lambda_{m} \cos \omega_{m}t + U_{m} \sin \omega_{m}t)$$

$$v = \sum_{m=0}^{\infty} v_{m}(\Lambda_{m} \cos \omega_{m}t + B_{m} \sin \omega_{m}t)$$

$$w = \sum_{m=0}^{\infty} v_{m}(\Lambda_{m} \cos \omega_{m}t + U_{m} \sin \omega_{m}t)$$
(39)

Substituting the initial conditions (37) and (38) into equation (39) and making use of orthogonality yields the following

$$u = \sum_{m=0}^{\infty} u_m B_m \sin \omega_m t$$

$$v = \sum_{m=0}^{\infty} v_m b_m \sin \omega_m t$$

$$w = \sum_{m=0}^{\infty} v_m b_m \sin \omega_m t$$
(40)

where

$$b_{m} = \frac{1}{\omega_{m}} \frac{\int_{0}^{2\pi} \int_{0}^{c_{c}} (i_{x}u_{m} + i_{\phi}v_{m} + i_{r}w_{m}) dx d\phi}{\int_{0}^{2\pi} \int_{0}^{\infty} \rho h(u_{m}^{2} + v_{m}^{2} + w_{m}^{2}) dx d\phi}$$
(41)

For a distributed impulse as shown in Figure 1, equation (41) becomes

$$B_{m} = \frac{\int_{(m+\epsilon_{1})/a}^{(m+\epsilon_{1})/a} \int_{(m+\epsilon_{2})/a}^{(m+\epsilon_{1})/a} \left[i_{x} u_{m} + i_{\phi} v_{m} + i_{r} w_{m} \right] dx dz}{\omega_{m} \int_{0}^{(2\pi)} \int_{0}^{2} ch(u_{m}^{2} + v_{m}^{2} + v_{m}^{2}) dx dz}$$
(42)

For a concentrated impulse, equation (41) becomes

$$B_{m} = \frac{\lim_{\epsilon_{1} \to 0} \int_{(\eta - \epsilon_{1})/a}^{(\eta + \epsilon_{1})/a} \int_{\zeta - \epsilon_{2}}^{\zeta + \epsilon_{2}} \tilde{L} i_{x} u_{m} + i_{\phi} v_{m} + i_{r} u_{m}] dx d\phi}{\omega_{n} \int_{0}^{2\pi} \int_{0}^{\xi} \rho h(u_{m}^{2} + v_{m}^{2} + u_{m}^{2}) dx d\phi}$$

$$(43)$$

where

$$i_{x} = \frac{I_{x}}{4\epsilon_{1}\epsilon_{2}}$$

$$i_{\phi} = \frac{I_{\phi}}{4\epsilon_{1}\epsilon_{2}}$$

$$i_{r} = \frac{I_{r}}{4\epsilon_{1}\epsilon_{2}}$$

Solutions for m = 0

For n = 0, equations (1) through (3) and (14) through (16) degenerate to the following equations:

$$all_{x}^{*} + pav^{*} - Pu'' + a^{2}p_{x} = \rho ha^{2} \frac{\partial^{2}u}{\partial t^{2}}$$
 (44)

$$\operatorname{ail}_{\mathbf{X}\phi}^{\prime} - \operatorname{aQ}_{\phi} - \operatorname{Pv}^{\prime\prime} + \operatorname{a}^{2}\operatorname{p}_{\phi} = \rho \operatorname{ha}^{2} \frac{\partial^{2} \mathbf{v}}{\partial \tau^{2}}$$
 (45)

$$-aQ_{x}' - aH_{\phi} - pau' - Pw'' + a^{2}p_{r} = \rho ha^{2} \frac{\partial^{2}W}{\partial t^{2}}$$
 (46)

$$\alpha_5 u'' + \alpha_3 v' - k w''' + (p_x a^2/!) = \frac{\rho h a^2}{D} \frac{3^2 u}{3t^2}$$
 (47)

$$\alpha_1 \mathbf{v}'' + (\mathbf{p}_{\phi} \mathbf{a}^2 / \mathbf{v}) = \frac{\rho \mathbf{h} \mathbf{a}^2}{D} \frac{\partial^2 \mathbf{v}}{\partial \mathbf{t}^2} \tag{48}$$

$$-\alpha_3 u^4 + k\{u''' - w'''' - (\frac{k+1}{k})u\} - (1 - \alpha_5)w''$$

$$+ (p_x a^2/u) = \frac{\rho h a^2}{D} \frac{3^2 w}{3^{\frac{1}{2}}}$$
(49)

Solutions for equations (47) and (49) can be determined from the solutions given for unsymmetrical loading. For m=0, equation (30) becomes

$$\begin{vmatrix} \alpha_{5} x^{2} + \frac{\rho \ln a^{2} \omega_{n0}^{2}}{10} & 0 & \alpha_{3} \lambda - k \lambda^{3} \\ 0 & \alpha_{1} \lambda^{2} + \frac{\rho \ln a^{2} \omega_{n0}^{2}}{D} & 0 \\ \alpha_{3} x^{2} - k \lambda^{3} & 0 & k \lambda^{4} + (1 - \alpha_{5}) \lambda^{2} \\ 0 & k \lambda^{4} + 1 - \frac{\rho \ln a^{2}}{D} \omega_{n0}^{2} \end{vmatrix} = 0$$
 (50)

or

$$x^{6} + g_{1}x^{4} - g_{2}x^{2} - g_{3} = 0$$
 (51)

where

$$g_{1} = \left[\alpha_{5}(1 - \alpha_{5}) + k(\frac{\rho ha^{2}\omega^{2}}{D} + 2\alpha_{3})\right]/k(\alpha_{5} - k)$$

$$g_{2} = \left[\alpha_{3}^{2} - \alpha_{5}(1 + k) - (1 - 2\alpha_{5})(\frac{\rho ha^{2}\omega^{2}}{D})\right]/k(\alpha_{5} - k)$$

$$g_{3} = \frac{\rho ha^{2}\omega^{2}}{D}(\frac{\rho ha^{2}\omega^{2}}{D} - k - 1)/k(\alpha_{5} - k)$$

Equations (47) through (49) are now uncoupled and may be solved independently.

The solution for equation (48) is as follows:

For free vibrations

$$v = \Lambda_1 \cos \sqrt{\rho h/U} \omega \frac{x}{a} + \Lambda_2 \sin \sqrt{\rho h/U} \omega \frac{x}{a}$$
 (52)

The orthogonality conditions are

$$(\omega_n^2 - \omega_m^2) \int_0^k \frac{\rho h a^2}{D} v_n v_m dx = \left| v_n \frac{\partial v_m}{\partial x} - v_m \frac{\partial v_n}{\partial x} \right|_0^k$$

The forced vibration solution becomes

$$v = \frac{\int_{0}^{\pi} \left(x_{n}(x, \epsilon) \right) v_{n} \sin \epsilon (\epsilon - \epsilon) d\epsilon dx}{u_{n} \int_{0}^{\pi} h v_{n}^{2} dx}$$
(53)

Time organization conditions from equation (24) become

Time dynamic solutions from equations (33) and (34) are

$$u = \sum_{n=1}^{\infty} u_{on}(x) q_{on}(t)$$

$$u = \sum_{n=1}^{\infty} u_{on}(x) q_{on}(t)$$
(55)

witer.

$$q_{on}(t) = \frac{\int_{0}^{\infty} \bar{t} p_{x}(x, t) u_{no} + p_{r}(x, t) u_{no}] \sin \omega_{on}(t - t) d\lambda dx}{\omega_{no} \int_{0}^{\infty} ph(u_{no}^{2} + w_{no}^{2}) dx}$$

Integral of the Square of Eigenfunctions

The integral of the square of the eigenfunctions is evaluated from equation (24) by a limiting process. For any prescribed boundary condition, the evaluation of the integral may be determined as follows:

$$\int_{U_{1}}^{1} \sin[u_{1}^{2}(x) + v_{1}^{2}(x) + u_{1}^{2}(x)] dx$$

$$= \lim_{m \to \infty} (-1/2u_{m}) \frac{d}{d\omega_{m}} \left[u_{1}(H_{Xm} + pw_{m} - P \frac{d}{dx}) + u_{1}(H_{Xm} + P \frac{d}{dx}) + u_{1}(H_{Xm} + P \frac{d}{dx}) + u_{2}(H_{Xm} + P \frac{d}{dx}) + u_{3}(H_{Xm} + P \frac{d}{dx}) + u_{4}(H_{Xm} + P \frac{d}{dx}) + u_{4}(H_{Xm}$$

Illustrative Example for Cylinder Supported by Thin Diap ragm

For a cylinder supported by a thin diaphragm the following displacements satisfy the natural boundary conditions as derived from the orthogonality conditions:

$$u = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} U_{nn} \cos n\phi \cos \frac{n\pi x}{\phi}$$

$$v = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} V_{nn} \sin n\phi \sin \frac{n\pi x}{\phi}$$

$$u = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} u_{nn} \cos n\phi \sin \frac{n\pi x}{\phi}$$
(57)

To determine the natural frequencies and mode shapes the determinant for the frequency equation becomes

$$\frac{1+ \frac{1}{2} m(\frac{1-d}{2})^{2} - m^{2} \frac{1+ \frac{1}{2} m(\frac{1-d}{2})}{1 m^{2}} + \frac{1}{2} m(\frac{1-d}{2})^{-1} \frac{1-\frac{1}{2}}{1 m^{2}} + \frac{1}{2} m(\frac{1-d}{2})^{-1} \frac{1-\frac{1}{2}}{1 m^{2}} + \frac{1}{2} m(\frac{1-d}{2})^{-1} \frac{1-\frac{1}{2}}{1 m^{2}} + \frac{1}{2} m^{2} \frac{1-\frac{1}{2}}{1 m^{$$

Solutions for Forced Vibrations

From equations (33) and (34) the dynamic displacements become

$$u = \frac{x}{m} + \frac{1}{n} \cdot \frac{b_{min}}{n} \cos m_{t}(\cos \frac{n_{t} x}{t}) q_{min}(t)$$

$$v = \frac{1}{m} + \frac{1}{n} \cdot \frac{V_{min}}{n} \sin m\phi(\sin \frac{n_{t} x}{t}) q_{min}(t)$$

$$u = \frac{x}{m} + \frac{1}{n} \cdot \frac{V_{min}}{n} \cos m\phi(\sin \frac{n_{t} x}{\rho}) q_{min}(t)$$

$$v = \frac{x}{m} + \frac{1}{n} \cdot \frac{V_{min}}{n} \cos m\phi(\sin \frac{n_{t} x}{\rho}) q_{min}(t)$$
(59)

where

$$q_{\text{TMI}}(t) = \int_{0}^{2\pi} \int_{0}^{t} \left[p_{\mathbf{x}}(\mathbf{x}, \phi, \lambda) \mathbf{U}_{\text{TMI}} \cos m\phi \cos \frac{n\pi \mathbf{x}}{\tau} \right] \\ + p_{\mathbf{p}}(\mathbf{x}, \phi, \lambda) \mathbf{V}_{\text{PMI}} \sin m\phi \sin \frac{n\pi \mathbf{x}}{\tau} \\ + p_{\mathbf{p}}(\mathbf{x}, \phi, \lambda) \mathbf{U}_{\text{PMI}} \cos m\phi \sin \frac{n\pi \mathbf{x}}{\tau} \right] \\ \times \frac{\sin \omega_{\text{PMI}}(t - \lambda) d\lambda dx d\phi}{\omega_{\text{PMI}} \int_{0}^{\tau} \int_{0}^{\tau} \rho h(\mathbf{U}_{\text{PMI}}^{2} \cos^{2} m\phi \sin^{2} \frac{n\pi \mathbf{x}}{\tau} \\ + \mathbf{V}_{\text{PMI}}^{2} \cos^{2} m\phi \sin^{2} \frac{n\pi \mathbf{x}}{\tau} \right] \\ + \mathbf{V}_{\text{PMI}}^{2} \cos^{2} m\phi \sin^{2} \frac{n\pi \mathbf{x}}{\tau} dx d\phi$$

The ratio of the mode shape coefficients are

$$z = \frac{V_{mn}}{V_{mn}} = \frac{-CD + BE}{AD - B^2}$$

$$z = \frac{V_{mn}}{V_{mn}} = \frac{-AE + BC}{AD - B^2}$$
(60)

 $h = -a_{3} \left(\frac{n\pi a}{g}\right)^{2} - \ln^{2} a_{2} + \frac{gha^{2}}{L} \omega_{mn}^{2}$ $h = \frac{1 + v}{2} m \left(\frac{n\pi a}{k}\right)$ $C = \alpha_{3} \left(\frac{n\pi a}{g}\right) - k \left(\frac{1 - v}{2}\right) m^{2} \left(\frac{n\pi a}{k}\right) + k \left(\frac{n\pi a}{k}\right)^{3}$ $h = -a_{4} m^{2} - a_{1} \left(\frac{n\pi a}{k}\right)^{2} + \frac{gha^{2}}{h} \omega_{mn}^{2}$ $E = -a_{4} m - k \left(\frac{3 - v}{2}\right) m \left(\frac{n\pi a}{k}\right)^{2}$

For m = 0

$$q_{\text{on}}(t) = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{t} \left[p_{\mathbf{X}}(\mathbf{x}, \phi, \lambda) \mathbf{U}_{\text{on}} \cos \frac{n\pi \mathbf{x}}{\tau} + p_{\mathbf{r}}(\mathbf{x}, \phi, \lambda) \mathbf{U}_{\text{on}} \sin \frac{n\pi \mathbf{x}}{\tau} \right] \times \frac{\sin \omega_{\text{on}}(t - \lambda) d\lambda d\mathbf{x} d\phi}{\omega_{\text{on}} \rho \ln \ell \left(\mathbf{U}_{\text{on}}^{2} + \mathbf{W}_{\text{on}}^{2} \right)}$$

$$(61)$$

m 40 % A 3

For $m \neq 0$

$$q_{nm}(\tau) = \int_{0}^{2\tau} \int_{0}^{2} \int_{0}^{\tau} \left[p_{x}(x, \phi, \lambda) U_{min} \cos n\phi \cos \frac{n\pi x}{\tau} \right]$$

$$+ p_{\phi}(\lambda, \phi, \lambda) V_{min} \sin m\phi \sin \frac{n\pi x}{\tau}$$

$$+ p_{r}(x, \phi, \lambda) W_{min} \cos m\phi \sin \frac{n\pi x}{\tau}$$

$$\times \frac{\sin \omega_{min}(t - \lambda) d\lambda dx d\phi}{\omega_{min} \cos m\phi} \left[\frac{\sin \omega_{min}(t - \lambda) d\lambda dx d\phi}{\cos m\phi} \right]$$
(62)

Solutions for Radial Impact

 $\epsilon_{f e}$. Unit Step Loaded Distributed over Finite Area (2 $\epsilon_{f 1}$ + 2 $\epsilon_{f 2}$)

$$u = \frac{4}{\rho i \pi^{2}} \left(\frac{\varepsilon_{1}}{a}\right) \sum_{n=1}^{\infty} \left(\frac{\alpha_{n0}}{n}\right) \left(\frac{1}{\alpha_{n0}^{2} + 1}\right) \left(\sin \frac{n\pi \zeta}{\ell}\right) \left(\sin \frac{n\pi \zeta}{\ell}\right) \left(\sin \frac{n\pi \varepsilon_{2}}{\ell}\right)$$

$$\times \left(\cos \frac{n\pi x}{\ell}\right) \left(\frac{1 - \cos \omega_{n0} t}{\omega_{n0}^{2}}\right)$$

$$+ \frac{8}{\rho i \pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{\alpha_{nn}}{nm}\right) \left(\cos \frac{n\eta}{a}\right) \left(\sin \frac{n\pi \zeta}{\ell}\right) \left(\sin \frac{n\pi \zeta}{a}\right) \left(\sin \frac{n \cdot \varepsilon_{2}}{a}\right)$$

$$\times \cos n\phi \cos \frac{n\pi x}{\ell} \left(\frac{1 - \cos \omega_{nm} t}{\omega_{nm}^{2} (\alpha_{nm}^{2} + \beta_{nm}^{2} + 1)}\right)$$

$$v = \frac{8}{\rho i \pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{\beta_{nm}}{nm}\right) \left(\cos \frac{m\eta}{a}\right) \left(\sin \frac{n\pi \zeta}{\ell}\right) \left(\sin \frac{m\varepsilon_{1}}{a}\right) \left(\sin \frac{n\pi \varepsilon_{2}}{\ell}\right)$$

$$\times \sin m\phi \sin \frac{n\pi x}{\ell} \left(\frac{1 - \cos \omega_{nm} t}{\omega_{nm}^{2} (\alpha_{nm}^{2} + \beta_{nm}^{2} + 1)}\right)$$

$$v = \frac{4}{\rho i \pi^{2}} \left(\frac{\varepsilon_{1}}{a}\right) \sum_{n=1}^{\infty} \left(\frac{1}{n}\right) \left(\sin \frac{n\pi \zeta}{\ell}\right) \sin \frac{n\pi \varepsilon_{2}}{\ell} \sin \frac{n\pi x}{\ell} \left(\frac{1 - \cos \omega_{n0} t}{\omega_{n0}^{2} (\alpha_{n0}^{2} + 1)}\right)$$

$$+ \frac{8}{\rho i \pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{1}{nm}\right) \left(\cos \frac{m\eta}{a}\right) \left(\sin \frac{n\pi \zeta}{\ell}\right) \left(\sin \frac{m\varepsilon_{1}}{a}\right) \left(\sin \frac{n\pi \zeta}{\ell}\right)$$

$$\times \cos m\phi \sin \frac{n\pi x}{\ell} \frac{\left(1 - \cos \omega_{nm} t\right)}{\omega_{nm}^{2} (\alpha_{nm}^{2} + \beta_{nm}^{2} + 1)}$$

$$(63)$$

v. Concentrated Unit Step Load

$$u = \frac{1}{\pi \rho hat} \sum_{n=1}^{\infty} \left(\frac{\alpha_{n0}}{\alpha_{n0}^2 + 1} \right) \left(\sin \frac{n\pi\zeta}{t} \right) \left(\cos \frac{n\pi x}{t} \right) \left(\frac{1 - \cos \omega_{n0} t}{\omega_{n0}^2} \right)$$

$$+ \frac{2}{\pi \rho hat} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{\alpha_{nm}}{\alpha_{nm}^2 + \beta_{nm}^2 + 1} \right) \left(\cos \frac{m\eta}{a} \right) \left(\sin \frac{n\pi\zeta}{t} \right) \left(\cos \frac{m\zeta}{t} \right)$$

$$\times \left(\cos \frac{n\pi x}{t} \right) \left(\frac{1 - \cos \omega_{nm} t}{\omega_{nm}^2} \right)$$

$$v = \frac{2}{\pi \rho hat} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{\beta_{nm}}{\alpha_{nm}^2 + \beta_{nm}^2 + 1} \right) \left(\cos \frac{m\eta}{a} \right) \left(\sin \frac{n\pi\zeta}{t} \right) \left(\sin \frac{n\pi\zeta}{t} \right) \left(\sin \frac{n\pi\zeta}{t} \right) \left(\sin \frac{n\pi\zeta}{t} \right)$$

$$\times \left(\sin \frac{n\pi x}{t} \right) \left(\frac{1 - \cos \omega_{nm} t}{t} \right)$$

$$v = \frac{1}{\pi \rho hat} \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{n0}^2 + 1} \right) \left(\sin \frac{n\pi\zeta}{t} \right) \left(\sin \frac{n\pi\chi}{t} \right) \left(\frac{1 - \cos \omega_{n0} t}{\omega_{n0}^2} \right)$$

$$+ \frac{2}{\pi \rho hat} \sum_{n=1}^{\infty} \left(\frac{1}{\alpha_{nm}^2 + \beta_{nm}^2 + 1} \right) \left(\cos \frac{m\eta}{a} \right) \left(\sin \frac{n\pi\zeta}{t} \right) \left(\cos \frac{m\zeta}{t} \right)$$

$$\times \left(\sin \frac{n\pi\chi}{t} \right) \left(\frac{1 - \cos \omega_{nm} t}{\omega_{nm}^2} \right)$$

c. Unit Impulse

Solutions for a unit impulse can be found by differentiating with respect to time the solutions for a unit step function. A typical displacement relationship for a concentrated unit impulse is as follows:

$$u = \frac{1}{\pi \rho \ln \alpha \ell} \sum_{n=1}^{\infty} \left(\frac{\alpha_{no}}{\alpha_{no}^{2} + 1} \right) \left(\sin \frac{n\pi \zeta}{\ell} \right) \left(\cos \frac{n\pi x}{\ell} \right) \left(\frac{\sin \omega_{no} t}{\omega_{no}} \right)$$

$$+ \frac{2}{\pi \rho \ln \alpha \ell} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{\alpha_{nm}}{\alpha_{nm}^{2} + \beta_{nm}^{2} + 1} \right) \left(\cos \frac{m\eta}{a} \right) \left(\sin \frac{n\pi \zeta}{\ell} \right)$$

$$\times \left(\cos m\phi \right) \left(\cos \frac{n\pi x}{\ell} \right) \left(\frac{\sin \omega_{nm} t}{\omega_{nm}} \right)$$

$$(65)$$

... Triangular Loading with Suddenly applied Value of Unity, and Decreasing Linearly to Zero at Time, $t_{\hat{\bf q}}$

$$u = \frac{4}{ch\pi^{2}} \left(\frac{1}{a}\right) \prod_{n=1}^{\infty} \left(\frac{n_{n}}{n}\right) \left(\frac{1}{a_{n0}} + 1\right) \left(\sin\frac{n\pi}{\epsilon}\right) \left(\sin\frac{n\pi}{\epsilon}\right) \left(\cos\frac{n}{\epsilon}\right) \left(F_{n0}(t)\right)$$

$$+ \frac{\delta}{ch\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{n_{m}}{nm}\right) \left(\cos\frac{m_{n}}{a}\right) \left(\sin\frac{n\pi}{\epsilon}\right) \left(\sin\frac{n\pi}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right)$$

$$+ \left(\cos\frac{n\pi}{\epsilon}\right) \left(\cos\frac{n\pi x}{\epsilon}\right) \frac{\left(F_{nm}(t)\right)}{\left(\frac{x_{nm}^{2}}{4m} + \beta_{nm}^{2} + 1\right)}$$

$$= \frac{\delta}{ch\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{s_{nm}}{nm}\right) \left(\cos\frac{s_{n}}{a}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{a}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right)$$

$$+ \left(\sin\frac{n\pi}{\epsilon}\right) \left(\sin\frac{n\pi x}{\epsilon}\right) \frac{\left(F_{nm}(t)\right)}{\left(\alpha_{n}^{2} + \beta_{nm}^{2} + 1\right)}$$

$$= \frac{4}{ch\pi^{2}} \left(\frac{t_{n}}{a}\right) \sum_{n=1}^{\infty} \left(\frac{1}{n}\right) \left(\frac{1}{\alpha_{n0}^{2} + 1}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(F_{0}(t)\right)$$

$$+ \frac{8}{ch\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{1}{nm}\right) \left(\cos\frac{mn}{a}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{a}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right)$$

$$\left(\cos\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi x}{\epsilon}\right) \left(\sin\frac{n\pi x}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right) \left(\sin\frac{n\pi\epsilon}{\epsilon}\right)$$

where

$$F_{no}(t) = \frac{1}{\omega_{no}^2} \left[1 - \cos \omega_{no} t + \frac{\sin \omega_{no} t}{\omega_{no} t_d} - \frac{t}{t_d} \right]$$

$$F_{nm}(t) = \frac{1}{\omega_{nm}^2} \left[1 - \cos \omega_{nm} t + \frac{\sin \omega_{nm} t}{\omega_{nm} t_d} - \frac{t}{t_d} \right] \qquad t \le t_d$$

$$F_{no}(t) = \frac{1}{\omega_{no}^3 t_d} \left[\sin \omega_{no} t - \sin \omega_{no} (t - t_d) - \frac{1}{\omega_{no}^2} \cos \omega_{no} t \right]$$

$$F_{nm}(t) = \frac{1}{\omega_{nm}^3 t_d} \left(\sin \omega_{nm} t - \sin \omega_{nm} (t - t_d) \right) - \frac{1}{\omega_{nm}^2} \cos \omega_{nm} t$$

$$t \ge t_d$$

e. Rectangular Pulse Loading with Suddenly Applied Value of Unity and Juration, \mathbf{t}_α

Expressions for u, v, and u are identical to those corresponding to a triangular loading with the exception that $F_{no}(t)$ and $F_{nm}(t)$ be defined as follows:

$$F_{nn}(t) = \frac{1}{\omega_{n0}^{2}} (1 - \cos \omega_{n0} t)$$

$$F_{nm}(t) = \frac{1}{\omega_{nm}^{2}} (1 - \cos \omega_{nm} t) \qquad t \le t_{d}$$

$$F_{no}(t) = \frac{1}{\omega_{n0}^{2}} \left\{ \cos \omega_{n0} (t - t_{d}) - \cos \omega_{n0} t \right\}$$

$$F_{nm}(t) = \frac{1}{\omega_{nm}^{2}} \left\{ \cos \omega_{nm} (t - t_{d}) - \cos \omega_{nm} t \right\} \qquad t \ge t_{d}$$

Equations of Notion for Timoshenke Theory

Equations (1) through (3) can be reduced to those presented by Timoshenko and Gere by assuming the following conditions:

- a. The circumferential strain ϵ_ϕ , ϵ_χ and γ_{χ_ψ} are equal to zero in calculation of X_ϕ and X_{χ_ψ} .
- b. Lembrane forces are not affected by bending stresses, nor bending moments by membrane stresses.

Assumptions (a) and (b) yield $u_{\phi X} = u_{X\phi}$ and $u_{\phi X} = u_{X\phi}$. Assuming $u_{\phi X} = (v^* + v)/a$; $u_{\phi X} = u_{\phi X} = (u^* + v^*)/a = 0$, equations (1) through (3) become:

$$ad_{x}^{1} + ad_{x}^{2} + pa(v^{1} + w^{1}) + a^{2}p_{x} = \rho ha^{2} \frac{\partial^{2}u}{\partial t^{2}}$$
 (68)

$$au_{\tau}^* + au_{x\phi}^* - aQ_{\phi} - Pv^* + a^2p_{\phi} = \rho ha^2 \frac{\partial^2 V}{\partial \tau^2}$$
 (69)

$$-aQ_{\phi}^{*} - aQ_{\chi}^{*} + aH_{\phi} - pa(w^{*} + u) - Pw^{*} - a^{2}p_{r} = \rho ha^{2} \frac{\partial^{2}w}{\partial t^{2}}$$
 (70)

The membrane forces and moments from equations (6) through (13) become

$$H_{\pm} = \frac{\partial}{\partial x} \left(\mathbf{v}^* + \mathbf{v} + \mathbf{v} \mathbf{u}^* \right)$$

$$H_{\mathbf{X}} = \frac{\partial}{\partial x} \left(\mathbf{u}^* + \mathbf{v} \mathbf{v}^* + \mathbf{v} \mathbf{w} \right)$$

$$H_{\pm \mathbf{X}} = \frac{\partial}{\partial x} \left(\frac{1 - \mathbf{v}}{2} \right) \left(\mathbf{u}^* + \mathbf{v}^* \right)$$

$$H_{\mathbf{X}} = \frac{\partial}{\partial x} \left(-\mathbf{v}^* + \mathbf{w}^* + \mathbf{v} \mathbf{w}^* \right)$$

$$H_{\mathbf{X}} = \frac{\partial}{\partial x} \left(-\mathbf{v}^* + \mathbf{w}^* + \mathbf{v} \mathbf{w}^* \right)$$

$$H_{\mathbf{X}} = \frac{\partial}{\partial x} \left(-\mathbf{v}^* + \mathbf{w}^* + \mathbf{v} \mathbf{w}^* \right)$$

$$il_{vx} = \frac{K}{a^{2}} (1 - v)(u^{**} - v^{*})$$

$$il_{x\psi} = \frac{K}{a^{2}} (1 - v)(u^{**} - v^{*})$$
(71)

Substitution of equations (71) into equations (68) - (70) yields the following:

$$u'' + (\frac{1+\nu}{2})v'' + \frac{1-\nu}{2}u'' + \nu w' + q_1(v'' + w'') + \frac{a^2p_x}{D} = \frac{\rho ha^2}{D} \frac{b^2u}{bt^2}$$

$$(\frac{1+\nu}{2})u''' + v''' + (\frac{1-\nu}{2})v''' + u'' - k[w''' + w''']$$

$$+ k[(1-\nu)v''' + v'''] - q_2v''' + \frac{a^2p_\phi}{D} = \frac{\rho ha^2}{D} \frac{b^2v}{at^2}$$
(73)

$$vu' + v^* + v + k[w'''' + 2w''' + w'''] - k[v^{***} + (2 - v)v''^*] + q_2w'' + q_1(v'' + w) - \frac{a^2p_r}{D} = \frac{-\rho ia^2}{D} \frac{\partial^2 w}{\partial t^2}$$
(74)

Equations (72) - (74) may be written

$$u'' + \frac{1 - v}{2} u'' + \beta_1 v'' + \beta_2 u' + a^2 \frac{p_x}{D} = \frac{\rho h a^2}{D} \frac{\partial^2 u}{\partial t^2}$$
 (75)

$$(\frac{1+\nu}{2})u''' + \beta_3 v''' + \beta_4 v''' + w'' - k(w'''' + w'''')$$

$$+ \frac{a^2 p_{\phi}}{b} = \frac{\rho h a^2}{D} \frac{\partial^2 v}{\partial t^2}$$
(76)

$$vu' + v' + \beta_5 w + k(w'''' + 2w'''' + w'''') - k[v''' + (2 - v)v'''] + q_2 w'' + q_1 v'' - \frac{a^2 p_r}{D} = \frac{-\rho h a^2}{D} \frac{\partial^2 w}{\partial t^2}$$
(77)

where

$$\frac{1+\varphi}{2}+q_1=\beta_1$$

frances.

$$v + q_1 = \beta_2$$

$$k + 1 = \beta_3$$

$$(1 - v)(k + \frac{1}{2}) - q_2 = \beta_4$$

$$1 + q_1 = \beta_5$$

$$-\left(\frac{\ln \pi a}{\ell}\right)^{2} - \left(\frac{1-\nu}{2}\right)m^{2} \qquad \beta_{1}\left(\frac{n\pi a}{\ell}\right)m \qquad \beta_{2}\left(\frac{n\pi a}{\ell}\right) \qquad U_{\text{pin}} \\ + \frac{\rho \ln a^{2}}{D} \omega_{\text{min}}^{2} \qquad -\beta_{3}m^{2} - \beta_{4}\left(\frac{n\pi a}{\ell}\right)^{2} \qquad -m-k\left[\left(\frac{n\pi a}{\ell}\right)^{2}m+m^{3}\right] \qquad V_{\text{pin}} \\ + \frac{\rho \ln a^{2}}{D} \omega_{\text{pin}}^{2} \qquad + \frac{\rho \ln a^{2}}{D} \omega_{\text{pin}}^{2} \qquad k\left[\left(\frac{n\pi a}{\ell}\right)^{2} + m^{2}\right]^{2} \qquad U_{\text{pin}} \\ -\nu\left(\frac{\ln \pi a}{\ell}\right) \qquad m+k\left[+m^{3} + (2-\nu)\left(\frac{n\pi a}{\ell}\right)^{2}m\right] \qquad k\left[\left(\frac{n\pi a}{\ell}\right)^{2} + m^{2}\right]^{2} \qquad U_{\text{pin}} \\ + \beta_{5} - q_{2}\left(\frac{n\pi a}{\ell}\right)^{2} \qquad -q_{1}m^{2} - \frac{\rho \ln a^{2}}{D} \omega_{\text{pin}}^{2} \qquad U_{\text{pin}}$$

!

Data for Illustrative Example for Unit Radial Impulse

n = 1.2 inches a = 60 inches

£ = 24 inches

 $\epsilon_1 = 12$ inches $\epsilon_1 = 2$ inches $\epsilon_2 = 2$ inches

n = 0 radians n = 0.33333 n = 1 - 30 m = 0 - 29

 $P_{c(Flugge)} = 5083.855 \text{ psi}$ $P_{c(Timoshenko)} = 5071.73 \text{ psi}$

1

intle 1 LFFECT OF AVAILABLE PIESSUAL OF FREQUENCIES IN BUCKLING HODE

descriel: steer

Parameters: n/2a = 0.01 4/2a = 0.2

size ting ince: n = 1, sc = 9

willing Prossure: $|F_{ij}| = 5003.755$

Flugge's Theory

iscluding mulal lecrtia			kglecting Axial Inertia	
P/F _C	f	f	f_3	f _l
ə	17.04د	933	6 :07. 24	519.73
J.	402.47	3929.7a	6403.23	464.91
J. 4	خالاً. ناد	3922.72	6799.21	402.62
Ú.u	327.93	3915.64	6795.19	328.74
0.8	231.25	390 ₀ .55	6791.18	232.46
1.0		•••		

TABLE 11
LITECT OF HYDROSTATIC PRESSURE ON FREQUENCIES IN BUCKLING HODE

staterial: steel

Parameters: h/2a = 0.01

 $\ell/2a = 0.2$

buckling Rode: n = 1, m = 9

Buckling Pressure: 5071.793

Timoshenko's Theory

Including Axial Inertia			Heglecting Axial Inertia	
P/P _C	fį	f ₂	f ₃	f ₁
0	517.05	3937.01	6807.29	519.82
0.2	462.47	39 33.9 8	6807.90	464.94
0.4	400.51	3930.95	6808.52	402.65
0.6	327.02	3927.92	6809.14	328.76
0.0	231.24	3924.90	6809.75	232.47
1.0			em em em	

TABLE 111

LEFFECT OF HYDROSTATIC PRESSURE ON FREQUENCIES 111 DUCKLING MODE

Haterial: steel

Parameters: h/2a = 0.1 $\ell/2a = 3$

buckling Hode: n = 1, m = 2

Buckling Pressure, P_C = 68811.45

Flugge's Theory

Including Axial Inertia			Heglecting Axial Inertia	
P/P _C	f	f ₂	f_3	f ₁
0	889.93	6634.11	12765.31	997.21
0.2	796.08	6613.39	12750.83	891.93
0.4	689.51	6593.61	12736.34	772.44
0.6	563.06	6573.27	12721.83	630.69
8.0	398.19	6552.86	12707.32	445.97
1.0	~~~		~~~	

TABLE IV: : FILCE OF HYDROSTATIC PRESSURE ON FREQUENCIES IN SUCKLING HODE

riposhenko's Theory

including Axial Inertia				Heglecting Axial Inertia	
P/P _C	ŕį	f	f_3	f ₁	
U	386 . 62	6623.8]	12811.59	9 95 . 52	
0.0	793.12	6623.57	12810.07	890.42	
0.4	656.95	0023.34	12808.54	771.13	
0.6	560.96	6623.12	12307.03	629.63	
U.:.	396.71	0622.39	12305.51	445.21	
1.0				***	

TABLE V
COMPARISON OF PREQUENCIES FOR VARIOUS HODE SHAPES

Parameters: i/2a = 0.01 i/2a = 0.2

n = 1

		P/P _c = 0		$P/P_{c} = 0.5$			
i	f ₁	f ₂	f_3	f	f ₂	f ₃	
U	572.40	2579.58	4471.83	537.7 9	2572.29	4467.77	
1	565.22	2601.76	4508.18	529.15	2594.27	4503.96	
2	545.75	2666.71	4615.37	505.12	2658.64	4610.35	
3	519.28	2770.30	4738.65	470.58	2761.32	4783.66	
4	492.44	2907.31	5021.12	431.69	2397.20	5015.50	
5	471.53	3072.65	5304.90	394.67	3061.23	5298.54	
Ն	461.46	3261.81	5632.13	365.24	3248.95	5624.92	
7	455.25	3470.96	5995.59	348.42	3456.57	5987. 48	
ម	433.95	3696.87	6389.04	347.99	3680.88	6379.98	
9	517.04	3936.83	6807.24	365.62	3919. 10	6797.20	
10	563.17	4188.57	7245.89	400.58	4169.22	7234.85	

TABLE VI
COMPARISON OF FREQUENCIES FOR VARIOUS HODE SHAPES

Parameters: h/2a = 0.01 $\ell/2a = 0.2$

n = 3

	į	$P_c = 0$		P	$P_c = 0.5$	
1.3	Ťį	f∠	f_3	f ₁	$\mathbf{f_2}$	f_3
0	1599.26	7738.74	13404.75	1807.77	7716.36	13392.16
1	1902.11	//45 . 76	13416.82	1810.44	7723.81	13404.20
2	1910.69	7760 .7 8	13452.99	1818.46	7744.65	13440.26
j	1925.04	7801.68	13513.04	1831.89	7779.25	13500.14
4	1945.25	7850.26	13596.67	1850.85	7827.42	13583.54
5	1971.41	7 912.26	13703.44	1875.45	7888.90	13690.02
U	2003.66	7987.35	13832.83	1905.85	7963.35	13819.04
7	2042.11	3075.15	13984.19	1942.21	8050.42	13969.98
3	2086.89	3175.24	14156.82	1984.69	8149.68	14142.14
9	2138.13	828 7.1 5	14349.96	2033.47	8260.67	14334.76
10	2195.92	8410.40	14562.79	2088.67	8382.92	14547.01

TABLE VII

COPAGISOR OF FREQUENCIES FOR VARIOUS TABLE SHAPES

n = 5

	$P/P_{c} = 0$				$P/P_{c} = 0.5$			
li)	ŕį	ť ₂	\tilde{r}_3	f_1	f_2	f_3		
U	5091.63	12897.91	22339.84	4993.41	12861.43	22318.32		
i	5094.85	12902.10	22347.08	5001.56	12865.59	22326.04		
2	5104.51	12914.67	22368.80	5011.04	12378.05	22347.70		
3	5120.61	12935.60	22404.95	5026.84	12393.80	22363.75		
4	5143.16	12964.84	22455.46	5048.97	12927.79	22434.12		
5	5172.16	13002.34	22520.24	5077.44	12964.97	22498.72		
b	5207.62	13045.02	22599.16	5112.25	13010.27	22577.42		
7	5249.56	13101.79	22692.08	5153.44	13063.59	22670.07		
ပ	5297.97	13163.56	22 79 8 . 8 2	5200.99	13124.84	22776.52		
9	5352,83	13233.21	22919,20	5254.96	13193.90	22896.56		
10	5414.29	13310.62	23052.99	5315.34	13270.66	23029.97		

TABLE VITE

LEFELT OF NYDROSTATIC PILSSURE ON FUNDAMENTAL FREQUENCY

Parameters: h/2a = 0.01 $\ell/2a = 0.2$ $P_c = 5083.855$

P/P_c f H, M 0 461.46 1, ? 0.2 422.42 1, 7 0.4 374.72 1, 8 0.6 313.82 1, 8 230.72 0.30.95 115.63 1, 9 0.98 1, 9 73.13 1, 9 1.00 0.00

TABLE IX

EFFLCT OF HYDROSTATIC PRESSURE ON HIGHER FREQUENCIES

Parameters: n/2a = 0.01 2/2a = 0.2

m = 10

$P/P_c = 0$				$P/P_c = 0.5$				
n	f	\mathbf{f}_2	f_3	f ₁	f ₂	f ₃		
1	563.17	4138.57	7245.89	400.58	4169.22	7234. 85		
2	1196.55	6123.37	10597.00	1077.53	6100.93	10584.18		
3	2195.92	8410.40	14562.79	2088.67	8382.92	14547.01		
4	3600.27	10830.29	18756.15	3498.39	10796.81	18736.89		
5	5414.29	13310.62	23052.99	5315.33	13270.66	23029.97		

TABLE X
EFFECT OF HYDRUSTATIC PRESSURE UN DYNAMIC RESPONSE FOR UNIT IMPULSE

Time = 0.0006 sec P_c = 5071.793

**************************************	00000	-2.6336 -2.6385 -2.6338	0.000 0.0000 0.00000 0.0000	-2.8329 -2.9446 -2.8862 -2.6430
b [*]	8908.5 9449.1 10053.0 10597.0	-215.5 -213.5 -203.9	9271.6 9890.4 10472.0 11018.0	46.37 50.72 56.22 62.75
×	1968.3 2558.3 3288.7 4174.5	138.3 138.2 105.8	2298.0 2914.2 3649.1 4527.0	189.7 193.3 198.2 204.6
Yx4 × 10 ¹³	0000	-2.3409 -2.3987 -2.3412 -2.1625	0.0000	-2.5181 -2.566 -2.349
εφ × 104	2.7508 2.8794 2.9856 3.0685	-0.0582 -0.0576 -0.0569 -0.0562	2.8352 2.9730 3.0853 3.1696	-0.0562 -0.0457 -0.0033 -0.0018
ex × 105	-3.3372 -2.0180 -0.2079 2.140	-0.1681 -0.2117 -0.1895 -0.1261	-2.6418 -1.2752 0.5278 0.2847	0.5808 0.5879 0.5982 0.6123
w × 10 ²	2.9461 3.5206 4.2052 5.0308	-0.0656 -0.0646 -0.0589 -0.0486	2.9403 3.5164 4.2035 5.0327	-0.0457 -0.0449 -0.0398 -0.0299
5 01 × A	0.0000	4.0157 4.2870 4.4458 4.4566	0.0000	1.2954 1.4828 1.5337
u × 10 ¹²	-2.7277 0.4485 4.3863 9.5507	0.5760 0.5523 0.5073 0.7580	-6.9778 -3.8182 0.299 5.5291	1.2938 1.2645 1.2295 1.1860
P/P _C	0.25 0.50 0.75	0.25 0.50 0.75	0.25 0.50 0.75	0.25 0.50 0.75
	0 = 4	S/π = ф	0 = 4	S/m = p

Without In-Plane Inertia With In-Plane Inertia

TABLE XI DYNAMIC RESPONSE FOR UNIT IMPULSE WITH AND WITHOUT IN-PLANE INERTIA

	•	Tx × 10°	0.0000	-0.1585 0.0000		0.0000 0.6279 -0.2886	0.0000
		6	10053.00 -69.21 -213.45	-120.53 -94.49		10472.00 122.53 56.22	65.74 95.39
		b	3288.70 -188.76 -128.00	-8.82 42.27		3649.10 408.19 198.19	213.23
		7x¢ × 1012	0.0000	0.0000		0.0000	0.1667
heory $P/\dot{P}_{c} = 0.5$	Including In-Plane Inertia	e4 × 104	2.9856 -0.0021 -0.0569	-0.0392	Neglecting In-Plane Inertia	3.0853	0.00408
Flugge's Theory Time = 0.0006 sec P/P	uding In-Pl	ex × 10 ⁵	-0.2079 -0.5523	0.1045	ecting In-Pl	0.5278	0.6377 0.7256
Time •	Incl	w × 10 ²	4.2052	-0.0361 0.0180	Negle	4.2035	-0.0398 -0.01681 0.03737
		v × 10 ⁵	0.0000	-1.5013 0.0000		0.0000	-1.2071
		u × 10 ¹²	4.3863	0.5073 0.3238 0.5995		0.2987	1.2295
		•	0 4/4	π/2 3π/4		0 4/#	#/2 3#/4

TABLE XII EFFECT OF HYDROSTATIC : RESSURE ON DYMAMIC RESPONSE FOR UNIT INPULSE

Ü

Comparison of Theories with In-Plane Inertia Included

*	1 x 0 x 10 0	000000000000000000000000000000000000000	-2.6336 -2.6985 -2.6338 -2.4329	0000	-2.768 -2.249 -1.622 -0.899
	6	8908.5 9491.0 10053.0 10597.0	203.2 203.5 203.5 203.5	8965.3 9536.8 10069.0 10577.0	222-22-22-23-4-205-4-3-6-4-205-4-3-205-4-3-205-6-4-5-205-6-4-5-6-4-5-6-4-5-6-4-5-6-4-5-6-4-5-6-4-5-6-4-5-6-5-6
	°×	1968.3 2258.3 3288.7 4174.5	122.3 138.0 105.8	2174.2 2815.6 3564.1 4478.0	152.9 150.9 150.5
•	γ _{xφ} × 10 ¹³	0.0000	-2.3409 -2.3987 -2.3412 -2.1625	000000000000000000000000000000000000000	-2.4608 -1.9987 -1.4416
Sec	ε _φ × 10 ⁴	2.7508 2.8794 2.9856 3.0685	-0.0582 -0.0576 -0.0569 -0.0562	2.7469 2.8661 2.9604 3.0282	-0.0559 -0.0554 -0.0551 -0.0551
Time = 0.0006	e _x × 10 ⁵	-3.3372 -2.0180 -0.2079 2.140	-0.1681 -0.2117 -0.1895	-2.7139 -1.2115 0.6924 3.1742	-0.3017 -0.2685 -0.2625 -0.182
Ï	w × 10 ²	2.9461 3.5206 4.2052 5.0308	-0.0656 -0.0646 -0.0589 -0.0486	2.9456 3.5196 4.2042 5.0300	-0.0656 -0.0646 -0.0589
	v × 10 ⁵	0.0000	4.0157 4.2870 4.4458 4.456	0.0000	4.0601 4.3612 4.5464
	u × 10 ¹²	-2.7277 0.4485 4.3863 9.5507	0.5760 0.5523 0.5073 0.7580	-4.7460 -1.2307 3.0350 8.6714	0.2610 0.3678 0.3178 0.5896
	P/P _C	0 0.25 * 0.50 \$ 0.75	4 = 1.25 4 0.25 0.50	0 0.25 0.50 0.75	4 0.25 0.50 0.75

Flugge's Theory

Timoshenko's Theory

TABLE XIII DYNAMIC RESPONSE FOR UNIT IMPULSE WITH IN-PLANE INERTIA

Comparison of Theories

Time = 0.0006 sec $P/P_c = 0.5$

•	Tx + 10	0.0000	0.0000		0.0000	0.0496	0.000
	•	10053.00 -69.21	-120.53		10069.00	-215.36 -129.34	-101.20
	°×	3288.70 -188.76 -128.00	42.27		3564.1	-150.53 -27.73	30.52
	7xe × 1012	0.0000	0.0000		0.0000	-0.1442	0.000
	£ × 104	2.9856	-0.0392	Theory	2.9604	-0.0551	-0.0371
Flugge's Theory	x x 10 %	-0.2079	0.1045	Timoshenko's	0.6924	0.2625	0.2142
	w × 10 ²	4.2052	0.0361	•	4.2042	-0.0589	0.0180
	v × 105	0.0000	0.000		0.0000	4.5464	0000
	u × 10 ¹²	4.3863 -1.3503	0.3238 0.5995		3.0350	0.3178	0.549
	•	0 2	31,42		0	1 0 1 E	# E

EFFECT OF HYDROSTATIC PRESSURE AND LOADING AREA ON DYNAMIC RESPONSE FOR UNIT IMPULSE TABLE AIV

Flugge's Theory with In-Plane Inertia Included

Time = 0.0006 sec > = 0.0

Tx × 106	000000000000000000000000000000000000000	0.0000	7 × 4× 10	000000000000000000000000000000000000000
b	8908.5 9837.2 10273.0 10699.0	29489 33792 35970 38172	5 *	10273.0 35970.0 94865 151200
×	1968.3 2998.1 3623.7 4355.7	7380 10858 13018 15507	b b	3623.7 13018.0 39245 37437
γ _{xp} × 10 ¹³	000000000000000000000000000000000000000	00000	Yxe × 1013	00000
E. × 104	2.7508 2.9459 3.0216 3.0823	9.0096 10.0576 10.5435	ε _φ × 104	3.0216 10.5435 27.2613 46.237
x x 30.72	-3.3372 -0.9363 0.6686 2.6315	-8.1653 -1.3521 3.4277 9.2771	6x × 105	0.6686 3.4277 25.4101 -43.092
w × 10 ²	2.9461 3.9164 4.5165 5.21620	10.3530 13.9770 16.2100 18.802	w × 10 ²	4.5165 16.2100 44.794 53.917
× × 10 ⁵	0.0000	0.0000000000000000000000000000000000000	× × 105	0000
P/Pc u - 1012	-2.7277 2.8774 6.3306 10.5790	-5.0438 11.8610 22.596 35.860	el.cs u 1012	6.3306 22.5960 69.471 -92.041
	2, , l,	, ₂ 2, ₂ l,	2,,1,	6.0 = 9/9 5.4 m % 5.4 m %

Conclusions

Large hydrostatic pressures and small variations of impact area greatly affect the dynamic response of deep submersible hulls subjected to a localized impact loading.

For free vibrations deep hydrostatic pressures reduce the lower frequencies substantially while the higher frequencies are not appreciably affected. Hydrostatic pressures in the neighborhood of 50 percent of the buckling pressure can reduce the fundamental frequencies by 30 percent, while the higher frequencies, especially the second and third frequencies of the n, m mode will have no appreciable change.

Comparison of frequencies with the Flugge and Timoshenko theories show good agreement as illustrated in Tables I and II.

For forced vibrations as illustrated by a localized unit impulse, the following conclusions can be made:

- a. Deep hydrostatic pressures have predominantly large effects on longitudinal displacements and strains. Consequently the longitudinal stresses, $\sigma_{\rm X}$, will be more sensitive to change while the circumferential strains and stresses will increase moderately.
- Shearing stresses experience moderate increases and are very small in magnitude.
- c. Radial displacements and response times will have considerable increases as shown in Figure 3.
- d. Small changes in the area of loading have tremendous influence on displacements and stresses as shown in Table XIV.

- e. Comparison of theories indicates the following:
 - (1) The greatest discrepancy occurs in longitudinal displacements and strains.
 - (2) Within the area of impact, stresses, radial and circumferential displacements have good agreement, while those outside the area of impact can have large discrepancies.
 - (3) A good estimate of stresses, radial and circumferential displacements within the area of impact can be found by neglecting in-plane inertias.

References

- [1] Flugge, W., <u>Stresses in Shells</u>, Springer-Verlag, Berlin, Germany, 1960.
- [2] Timoshenko, S. P. and Gere, J. M., <u>Theory of Elastic Stability</u>, New York, McGraw-Hill Book Co., 1961, p. 496.

DOCUMENT CONTROL DATA - R & D							
Security classify atom of title, body of abstract and indexing a	arrotation a ust be a						
1 CHOMATING ACTIVITY (Corporate author)	L	CURITY CLASSIFICATION					
School of Engineering		UNCLASSI	FIED				
University of Massachusetts		26. GROUP					
Amherst, Massachusetts 01002		<u> </u>					
IMPACT LOADING OF SUBMARINE HULLS							
4 DESCRIPTIVE NOTES (Type of report and, inclusive dates)							
5 AUTHOR(S) (First name, middle initial, last name)							
Frederick J. Działo							
February 1970	74. TOTAL NO. 0	F PAGES	76. NO OF REFS				
BA. CONTRACT OR GRANT NO	94. ORIGINATOR	S REPORT NUM	BER(5)				
ONR-N00014-68-A-0146	THEMIS-	IM_70_2					
b. PROJECT NO	1111112-0	Jri-70-2	į				
In-house Project Number NO0014-68-A-0146-8 9t. OTHER REPORT NO(5) (Any other numbers that may be ass							
180014-00-4-0140-0	this report)	IRT NOISI (Any o	ther numbers that may be assisted				
d.	<u> </u>						
Distribution of this document is unlimited.	*						
11 SUPPLEMENTARY NOTES	12 SPONSORING	MILITARY ACT	IVITY				
\	Departmen	t of Defens	se (Project THEMIS)				
Following Flugge's exact derivation for equations of motion for dynamic loading of and axial pressure have been formulated.	or the buckl cylindrical	ing of cyli shells sub	indrical shells, the bjected to hydrostatic				
The equations of motion are applicable very useful in calculating deflections and to comparatively small regions of the shell provide dynamic solutions for the equations	stresses who	en the impa	act loads are applied				
Solutions are also provided for the Ti made between the two theories by considerin	imoshenko-ty ng and negle	pe theory, cting in-p	and comparisons are lane inertia forces.				
effect of hydrostatic pressure on the dynam	Comparison of results is exemplified by a numerical example which considers the effect of hydrostatic pressure on the dynamic response of a shell simply supported by a thin diaphragm and subjected to a localized unit radial impulse.						

DD . FORM 1473 (PAGE 1)

S/N 0101-807-6811

UNCLASSIFIED
Security Classification