[ch06_思考题13]

□ 请计算M的极小函数依赖集:

$$M = \{ABD \rightarrow AC, C \rightarrow BE, AD \rightarrow BF, B \rightarrow E\}$$

- □也可以按照以下步骤来计算极小函数依赖集:
 - >第一遍检查: 消除M中冗余的函数依赖;
 - >再将M中的部分函数依赖转换为完全函数依赖;
 - ▶ 第二遍检查: 消除M中那些新的冗余函数依赖;
 - > 最后得到与M等价的极小函数依赖集。

输入函数依赖集 M

step 1 G := M将G中每一个函数依赖替换为一组右边为单个属性的函数依赖 step 2 消除 G 中的冗余函数依赖 将G中的部分函数依赖化简为完全函数依赖 step 3 再次检查, G 中是否出现新的冗余函数依赖 step 4 如果有,则消除那些新的冗余函数依赖 step 5 合并G中那些决定因素相同的函数依赖

> 返回计算结果 G (G就是M的一个极小函数依赖集)

[ch06_思考题13] step 1: 将每一个函数分解为右边只含单个属性

$$F_{2} = \{ \\ 1 \\ ----- \\ 2 \\ A B D \rightarrow C \\ 3 \\ C \rightarrow B \\ 4 \\ C \rightarrow E \\ 5 \\ A D \rightarrow B \\ 6 \\ A D \rightarrow F \\ 7 \\ B \rightarrow E \\ \}$$

$$F_1^+ = F_2^+? \Longrightarrow F_2 = ABD \to A? \Longrightarrow A \in \{A, B, D\}_{F_2}^+? \Longrightarrow F_1^+ = F_2^+$$

∴ F_1 中的ABD→A是冗余的, 可以被删去, 从而将 F_1 简化成为 F_2

$$F_{2} = \{$$

$$② ABD \rightarrow C$$

$$③ C \rightarrow B$$

$$④ C \rightarrow E$$

$$⑤ AD \rightarrow B$$

$$⑥ AD \rightarrow F$$

$$⑦ B \rightarrow E$$

$$}$$

$$F_3 = \{$$
② -----
③ $C \to B$
④ $C \to E$
⑤ $AD \to B$
⑥ $AD \to F$
⑦ $B \to E$

$$F_2^+ = F_3^+? \longrightarrow F_3 = ABD \to C? \longrightarrow C \in \{A, B, D\}_{F_3}^+? \longrightarrow F_2^+ \neq F_3^+$$

- 二在 F_2 中,无法从其他函数依赖中推导得到 $ABD \rightarrow C$
- ∴ $ABD \rightarrow C$ 不是一个冗余的函数依赖, 不能从 F_2 中删除它.

$$F_2^+ = F_3^+?$$
 \longrightarrow $F_3 = C \to B?$ \longrightarrow $B \in \{C\}_{F_3}^+?$ \longrightarrow $F_2^+ \neq F_3^+$

二在 F_2 中, 无法从其他函数依赖中推导得到 $C \to B$, 不能被删除.

$$F_{2} = \{$$

$$② ABD \rightarrow C$$

$$③ C \rightarrow B$$

$$④ C \rightarrow E$$

$$⑤ AD \rightarrow B$$

$$⑥ AD \rightarrow F$$

$$⑦ B \rightarrow E$$

$$\}$$

$$F_3 = \{$$
2 ABD \rightarrow C
3 C \rightarrow B
4 ----
5 AD \rightarrow B
6 AD \rightarrow F
7 B \rightarrow E
}

$$F_2^+ = F_3^+?$$
 \longrightarrow $F_3 = C \to E?$ \longrightarrow $E \in \{C\}_{F_3}^+?$ \longrightarrow $F_2^+ = F_3^+$

- 二在 F_2 中,可以从其他函数依赖中推导得到 $C \to E$
- 二在 F_2 中, $C \rightarrow E$ 是一个冗余的函数依赖,可以从 F_2 中删除它, 得到等价的函数依赖集 F_3

$$F_3$$
 = {
 ② ABD → C
 ③ C → B
 ⑤ AD → B
 ⑥ AD → F
 ⑦ B → E
}

$$F_4 = \{$$
2 ABD \rightarrow C
3 C \rightarrow B
5 ----
6 AD \rightarrow F
7 B \rightarrow E
}

$$F_3^+ = F_4^+?$$
 \longrightarrow $F_4 = AD \to B?$ \longrightarrow $B \in \{A, D\}_{F_4}^+?$ \longrightarrow $F_3^+ \neq F_4^+$

二在 F_3 中,无法从其他函数依赖中推导得到 $AD \rightarrow B$,不能被删除。

$$F_4 = \{$$
2 ABD \rightarrow C
3 C \rightarrow B
5 AD \rightarrow B
6 ----
7 B \rightarrow E
}

$$F_3^+ = F_4^+?$$
 \longrightarrow $F_4 = AD \to F?$ \longrightarrow $F \in \{A, D\}_{F_4}^+?$ \longrightarrow $F_3^+ \neq F_4^+$

二在 F_3 中,无法从其他函数依赖中推导得到 $AD \rightarrow F$,不能被删除.

$$F_3^+ = F_4^+?$$
 \longrightarrow $F_4 = B \to E?$ \longrightarrow $E \in \{B\}_{F_4}^+?$ \longrightarrow $F_3^+ \neq F_4^+$

- 二在 F_3 中, 无法从其他函数依赖中推导得到 $B \to E$, 不能被删除.
- □ 至此, 所有函数依赖都检查了一遍, F₃就是step 2的计算结果.

- □ 以 $ABD \rightarrow C$ 为例,
 - ▶要判断ABD→C是不是部分函数依赖,就要检查在左边的决定因素 ABD中是不是存在多余的属性,去掉这些多余的属性后,该函数依赖 是否依然成立?

- ▶ 以对属性A的检查为例 (next slide)
 - 去掉属性A,将 F_3 中的 $ABD \rightarrow C$ 用 $BD \rightarrow C$ 来代替,构成新的函数依赖集 F_4 ,并检查 F_3 和 F_4 是否等价。
 - 如果 F_3 等价于 F_4 ,就表明 $ABD \rightarrow C$ 是一个部分函数 依赖,可以用 $BD \rightarrow C$ 来替换它;否则至少表明,在 $ABD \rightarrow C$ 中,属性A是必不可少的。

- □ 显然, F₄蕴涵F₃中的所有函数依赖!
- \square 要检查 F_3 是否蕴涵 F_4 中的所有函数依赖,只需要检查 F_3 是否 蕴涵 $BD \rightarrow C$

$$F_3 = BD \to C?$$
 \longrightarrow $C \in \{B, D\}_{F_3}^+?$ \longrightarrow $F_3^+ \neq F_4^+$

- ∴ 在 F_3 中无法推导得到函数依赖 $BD \rightarrow C$
- ∴ 在 $ABD \rightarrow C$ 中, 决定因素A是必不可少的, 不能被删除。

□ 检查 F_3 是否蕴涵 $AD \rightarrow C$

$$F_3 \models AD \rightarrow C?$$
 \longrightarrow $C \in \{A, D\}_{F_3}^+?$ \longrightarrow $F_3^+ = F_4^+$

- ∴ F_3 蕴涵函数依赖 $AD \rightarrow C$
- ∴ 在 F_3 中, $ABD \rightarrow C$ 是部分函数依赖, 可以用 $AD \rightarrow C$ 来代替它, 得到等价的新函数依赖集 F_4

□ 继续检查 $AD \rightarrow C$ 中的属性 D是不是多余的,即:检查 F_4 是 否蕴涵 $A \rightarrow C$

$$F_4 \vDash A \to C$$
? \longrightarrow $C \in \{A\}_{F_4}^+$? \longrightarrow $F_4^+ \neq F_5^+$

- :: 在 F_a 中无法推导得到函数依赖 $A \to C$
- ∴ $AD \rightarrow C$ 中, 决定因素D也是必不可少的, 不能被删除

□ 检查 \mathbf{F}_4 是否蕴涵 $D \to B$

$$F_4 \vDash D \rightarrow B$$
? $\Longrightarrow B \in \{D\}_{F_4}^+$? $\Longrightarrow F_4^+ \neq F_5^+$

- ∴ 在 F_a 中无法推导得到函数依赖 $D \to B$
- \therefore 在 $AD \rightarrow B$ 中,决定因素A是必不可少的,不能被删除。

□ 继续检查 F_4 是否蕴涵 $A \rightarrow B$

$$F_4 \vDash A \to B$$
? $\Longrightarrow B \in \{A\}_{F_4}^+$? $\Longrightarrow F_4^+ \neq F_5^+$

- ∴ 在 F_4 中无法推导得到函数依赖 $A \rightarrow B$
- ∴ $AD \rightarrow B$ 中,决定因素D也是必不可少的,不能被删除。

□ 检查 F_4 是否蕴涵 $D \to F$

$$F_4 \vDash D \to F$$
? $F \in \{D\}_{F_4}^+$? $F_4^+ \neq F_5^+$

- ∴ 在 F_a 中无法推导得到函数依赖 $D \to F$
- \therefore 在 $AD \rightarrow F$ 中,决定因素A是必不可少的,不能被删除。

□ 继续检查 F_4 是否蕴涵 $A \to F$

$$F_4 \vDash A \to F$$
? $F \in \{A\}_{F_4}^+$? $F_4^+ \neq F_5^+$

- ∴ 在F₄中无法推导得到函数依赖 A→F
- ∴ $AD \rightarrow F$ 中,决定因素D也是必不可少的,不能被删除。
- □ 至此, 所有函数依赖都检查了一遍, F₄就是step 3的计算结果.

[ch06_思考题13] step 4: 再次检查并删除新的冗余函数依赖

□ 在step 3的计算过程中,函数依赖集发生了变化,需要按照 step 2的流程再次检查函数依赖集 F₄ ,并消除其中可能出现的新的冗余函数依赖。

□ 经检查,发现 F_4 中的 $AD \rightarrow B$ 是冗余的,可以将其删除,得到新的等价函数依赖集 F_5

[ch06_思考题13] step 5: 合并得到最终的计算结果

□ F₅和F₆是等价的,它们都是极小函数依赖集,合并是为了方便之后的模式分解的实现。

□ F₆ 就是本题的最终计算结果。

End of ch06_思考题13_参考答案