Một số lệnh assembly MIPS cơ bản

		(1)		ARITHMETIC CORE INSTRUCTION SET	② OPC0
MIPS	Refe	rence Data		FOR-	/ FUI
	TCIC	Tence Data		NAME, MNEMONIC MAT OPERATION	(He
CORE INSTRUCTI	ON SET		OPCODE	Branch On FP True bclt FI if(FPcond)PC=PC+4+Branch	
	FC		/ FUNCT	Branch On FP False bclf FI if(!FPcond)PC=PC+4+Branch	
NAME, MNEMO	NIC M.	AT OPERATION (in Verilog	2/	Divide div R Lo=R[rs]/R[rt]; Hi=R[rs]%R[r	
Add	add I	R[rd] = R[rs] + R[rt]	(1) 0/20 _{hex}	Divide Unsigned divu R Lo=R[rs]/R[rt]; Hi=R[rs]%R[r FP Add Single add.s FR F[fd]=F[fs]+F[ft]	11/10
Add Immediate	addi	R[rt] = R[rs] + SignExtImm	(1,2) 8 _{hex}	$EP \land AA $ (E[64] E[64+11) = (E[64] E[6+	-11) +
Add Imm. Unsigned	addiu	R[rt] = R[rs] + SignExtImm	(2) 9 _{hex}	Double add.d FR {F[fd],F[fd+1]} - {F[fs],F[fs+	
Add Unsigned	addu I	R[rd] = R[rs] + R[rt]	0 / 21 _{hex}	FP Compare Single c.x.s* FR FPcond = $(F[fs] op F[ft])$? 1:	0 11/10
And	and I	R[rd] = R[rs] & R[rt]	0 / 24 _{hex}	FP Compare Double $c.x.d*$ FR $FP cond = (\{F[fs], F[fs+1]\} op \{F[ft], F[ft+1]\})$?	11/1
And Immediate	andi	R[rt] = R[rs] & ZeroExtImm	(3) c _{hex}	* (x is eq, 1t, or 1e) (op is ==, <, or <=) (y is 32, 3c, or 3e	
Drongh On Fauel	hea	if(R[rs]==R[rt])	4.	FP Divide Single div.s FR F[fd] = F[fs] / F[ft]	11/10
Branch On Equal	beq	PC=PC+4+BranchAddr	(4) 4 _{hex}	FP Divide $\text{div.d } FR \{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\}$	1]] / 11/11
Branch On Not Equa	bne	if(R[rs]!=R[rt])	(4) 5 _{hex}	Double {F[ft],F[ft+FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft]	-1]} 11/10
-		PC=PC+4+BranchAddr	(.)	FP Multiply mul.d FR $\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\}$	
Jump	_	PC=JumpAddr	(5) 2 _{hex}	Double {F[ft],F[ft+	-1]} 11/11
Jump And Link	jal .	ζ.] ,	(5) 3 _{hex}	FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft]	11/10
Jump Register	jr I	R PC=R[rs]	0 / 08 _{hex}	FP Subtract $Sub.d.FR$ $\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}$	
Load Byte Unsigned	1bu	R[rt]={24'b0,M[R[rs]	24 _{hex}	Double {F[ft],F[ft+ Load FP Single lwcl I F[rt]=M[R[rs]+SignExtImm]	(2) 31/
Load Halfword		+SignExtImm](7:0)}	(2)	Load ED Elet-MID[es]+SignEntlemn]	(2)
Unsigned	lhu l	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2) 25 _{hex}	Double F[rt+1]=M[R[rs]+SignExtImn	1+4]
Load Linked	11	R[rt] = M[R[rs] + SignExtImm]	(2,7) 30 _{hex}	Move From Hi mfhi R R[rd] = Hi	0 //
Load Upper Imm.	lui		f _{hex}	Move From Lo mflo R R[rd] = Lo Move From Control mfc0 R R[rd] = CR[rs]	0 // 10 /0
Load Word	lw i		(2) 23 _{hex}	Move From Control mfc0 R R[rd] = CR[rs] Multiply mult R $\{Hi,Lo\} = R[rs] * R[rt]$	0//
Nor		$R[rd] = \sim (R[rs] R[rt])$	0 / 27 _{hex}	Multiply Unsigned multu R {Hi,Lo} = R[rs] * R[rt]	(6) 0//
Or			0 / 25 _{hex}	Shift Right Arith. sra R $R[rd] = R[rt] >> shamt$	0/-
Or Immediate		R [rd] = R[rs] R[rt]		Store FP Single swc1 I M[R[rs]+SignExtImm] = F[rt]	
		R[rt] = R[rs] ZeroExtImm	() Hex	Store FP Sdc1 $M[R[rs]+SignExtImm] = F[rt]$ Double $M[R[rs]+SignExtImm+4] = F[rt]$	
Set Less Than		R[rd] = (R[rs] < R[rt]) ? 1 : 0	0 / 2a _{hex}	[[]	11.1]
Set Less Than Imm.	slti	11 (11)	1:0(2) a _{hex}	FLOATING-POINT INSTRUCTION FORMATS	
Set Less Than Imm. Unsigned	sltiu	R[rt] = (R[rs] < SignExtImm) $? 1: 0$	(2,6) b _{hex}		fd fur
Set Less Than Unsig.	sltu I	R R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6) 0/2b _{hex}	31 26 25 21 20 16 15 11 10 FI opcode fint ft im	6 5
Shift Left Logical		R[rd] = R[rt] << shamt	0 / 00 _{hex}	FI opcode fmt ft imm	mediate
		R[rd] = R[rt] >>> shamt	0 / 02 _{hex}		
		MIR[rel+SignExtImm](7:0) =		PSEUDOINSTRUCTION SET NAME MNEMONIC OPE	ERATION
Store Byte	sb	R[rt](7:0)	(2) 28 _{hex}	Branch Less Than blt if(R[rs] <r[rt])< td=""><td></td></r[rt])<>	
Store Conditional	sc	MID[rel+SignExtImm] - D[rt]:		Branch Greater Than bgt if(R[rs]>R[rt])	PC = Label
Store Conditional	ac .	R[rt] = (atomic) ? 1 : 0	(2,7)	Branch Less Than or Equal ble if(R[rs]<=R[rt]	
Store Halfword	sh	M[R[rs]+SignExtImm](15:0) =		Branch Greater Than or Equal bge if($R[rs] \ge R[rt]$ Load Immediate 1i $R[rd] = immed$	
		R[rt](15:0)	, , , ,	Move move R[rd] = R[rs]	
Store Word	sw .	M[R[rs]+SignExtImm] = R[rt]	(2) 2b _{hex}	REGISTER NAME, NUMBER, USE, CALL CONVENTION	l
Subtract		R[rd] = R[rs] - R[rt]	(1) 0/22 _{hex}		ERVEDACRO
Subtract Unsigned		R R[rd] = R[rs] - R[rt]	0 / 23 _{hex}		A CALL?
	 May cause overflow exception SignExtImm = { 16{immediate[15]}, immediate } 			\$zero 0 The Constant Value 0	N.A.
	(3) ZeroExtImm = { 16{1b'0}, immediate }			\$at 1 Assembler Temporary Values for Function Results	No
	(4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 }			\$v0-\$v1 2-3 values for Function Results and Expression Evaluation	No
		Addr = { PC+4[31:28], address, 2		\$a0-\$a3 4-7 Arguments	No
	(6) Operands considered unsigned numbers (vs. 2's comp.)(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic			\$t0-\$t7 8-15 Temporaries	No
BASIC INSTRUCTI			.,	\$s0-\$s7 16-23 Saved Temporaries	Yes
R opcode		rt rd shar	mt funct	\$t8-\$t9 24-25 Temporaries	No
	6 25	21 20 16 15 11 10	6 5 0	\$k0-\$k1 26-27 Reserved for OS Kernel	No
I opcode	rs		ediate	\$gp 28 Global Pointer	Yes
	6 25	21 20 16 15	0	\$sp 29 Stack Pointer \$fp 30 Frame Pointer	Yes Yes
		address		*	
J opcode				\$ra 31 Return Address	Yes

Bảng 1. Tóm tắt các lệnh MIPS cơ bản (tham khảo [1])

Các lệnh assembly MIPS trong tài liệu này sẽ được diễn tả theo từng hàng trong bảng 1

(1) May cause overflow exception

Những lệnh có phần ghi chú (1) sẽ một thông báo lỗi, hay còn gọi là gây ra một ngoại lệ (exception) khi phép toán bị tràn (overflow)