© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°02

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Centrale PC 2003

Partie I -

- 1. a. Déterminer un équivalent simple de $\frac{e^t}{\arcsin t}$ lorsque t tend vers 0^+ .
 - **b.** En déduire un équivalent simple de $\int_x^1 \frac{e^t}{\arcsin t} dt$ lorsque x tend vers 0^+ .
 - **c.** En déduire un équivalent simple de $\int_{x^3}^{x^2} \frac{e^t}{\arcsin t} dt$ lorsque x tend vers 0^+ .
- 2. a. A l'aide d'une intégration par parties, montrer que

$$\int_{2}^{x} \frac{\mathrm{d}t}{\ln t} \underset{x \to +\infty}{\sim} \frac{x}{\ln x}$$

b. Plus généralement montrer que pour $n \in \mathbb{N}$,

$$\int_{2}^{x} \frac{dt}{\ln t} = \sum_{k=0}^{n} \frac{k!x}{\ln^{k+1}(x)} + o\left(\frac{x}{\ln^{n+1}(x)}\right)$$

3. Montrer que

$$\int_{1}^{x} \frac{e^{t}}{t^{2} + 1} dt = \frac{e^{x}}{x^{2}} + \frac{2e^{x}}{x^{3}} + o\left(\frac{e^{x}}{x^{3}}\right)$$

Partie II -

Soit a un nombre réel et f une application de classe \mathcal{C}^1 sur $[a, +\infty[$ à valeurs strictement positives. On suppose que $\lim_{x \to +\infty} \frac{xf'(x)}{f(x)} = \alpha \in \mathbb{R}$.

- 1. Montrer que $\lim_{x \to +\infty} \frac{\ln(f(x))}{\ln(x)} = \alpha$.
- **2.** On suppose dans cette question que $\alpha < -1$.
 - **a.** Montrer que f est intégrable sur $[a, +\infty[$.
 - **b.** Montrer que

$$\int_{x}^{+\infty} f(t) dt \underset{x \to +\infty}{\sim} -\frac{xf(x)}{\alpha + 1}$$

- **3.** On suppose dans cette question que $\alpha > -1$.
 - **a.** Etudier l'intégrabilité de f sur $[a, +\infty[$.
 - **b.** Montrer que

$$\int_{a}^{x} f(t) dt \underset{x \to +\infty}{\sim} \frac{x f(x)}{\alpha + 1}$$

- **4. a.** Etudier l'intégrabilité sur $[2, +\infty[$ des applications $x \mapsto \frac{1}{x(\ln x)^{\beta}}$ selon $\beta \in \mathbb{R}$.
 - **b.** Etudier à l'aide des questions précédentes l'intégrabilité sur $[2, +\infty[$ des applications $x \mapsto \frac{1}{x^{\gamma}(\ln x)^{\beta}}$ selon $\beta \in \mathbb{R}$ et $\gamma \in \mathbb{R}$.