Tree Automata and Applications

Marius

December

Bottom-up tree automata

Definition

A Bottom-up tree automata (NFTA) is an automaton with rules $f(q_0,...,q_{n-1}) \rightarrow q$.

Intuition

The idea is to successively reduce term t to a single state, starting from the leave

What about non-closed terms?

Pumping Lemma

Let L recognizable.

Then there exists k such that for all terms t such that $\mathcal{H}(t) > k$, there exists contexts C, D and a term u s.t

- D is not trivial [i.e not a variable]
- t = C[D[u]]
- $\forall n \in \mathbb{N}, C[D^n[u]] \in LS$.

Top-down tree automata

Definition

A **Top-down tree automata (T-NFTA)** is an automaton with rules $q(f(t_0...t_{n-1})) \rightarrow (q_0(t_0),...,q_{n-1}(t_{n-1})).$

Intuition

The states are applied from the root to the leaves a bit like a morphism.

Equivalence

$$NFTA = DFTA = T - NFTA$$

All those tree automata are closed under boolean operations.

Homomorphism

Definition

A Tree Homomorphism is a mapping $h\mathcal{F}_n \to T(\mathcal{F}, x_0...x_{n-1})$

Extension to tree : $h(f(a,b)) = h(f)[x_0 \rightarrow a, x_1 \rightarrow b]$

Properties

h is linear if $\forall f, h(f)$ is linear [each variable appears once at most].

Recognizability

 $Linear\ homomorphisms\ preserve\ recognazibility$

Inverse homomorphisms preserve recognazibility

Non-linear does not in general [see

$$h(f) = f'(x_0, x_0), h(g) = g(a), L = \{f(g^n(a))\}\]$$

The **path language** of t=f(g(a,b)) is $\pi(t)=\{f1g1a,f1g2b\}$. [can easily be extended to languages.] The **path closure** of L is the set of terms that one can build with $\pi(L)$ L is **path-closed** is L=pc(L)

Theorem

L is path-closed $\Leftrightarrow L$ is recognizable by a T-DFTA.

A Congruence on terms is an equivalence relation compatible with ${\cal F}$

A congruence saturates L if $u \sim v$ implies $u \in L \Leftrightarrow v \in L$

 $u \sim_L v$ if and only if $\forall C, C[u] \in L \Leftrightarrow C[v] \in L$

Myhill-Nerode Theorem

The tree following propositions are equivalent

- \bullet L is recognizable
- ullet L is saturated by a congruence of finite index
- $\bullet \sim_L$ is of finite index

Application

Proof of counter-example of non-linear homomorphisms

The **front** of t = f(a, g(b, a), c) is ft(t) = abac [Formalism use positions] A **Visibly Pushdown Automata (VPA)** is a pushdown automata where the size of the word pushed in the stack relies only on the letter read.

Propositions

Let L be recognizable.

- \bullet fr(L) is context-free.
- ullet L is recognizable by a VPA

Second-Order Logic quantifies over relations

Monadic Logic quantifies only over sets

Weak Second-Order quantifies only over finite sets

Weak MSO over with k successors is $MSO(<_1 ... <_k)$

Intuition

One have a formula over a tree. [e.g $\exists x, x \in S_g$ i.e g appears in t] The trees recognized by this formula are $\{(t,v)|v(t) \text{ satisfies } \phi\}$ Here, v is a valuation to positions and the subterm at position p is $(t[p],(v(x)=p))_{x\in\mathcal{X}})$

Theorem

L is recognizable if and only if there exists ϕ in WSkS such that $L=L(\phi).$

An **unranked** tree may have an arbitrary number of children A **bottom-up hedge automata (NHA)** is an automaton with rules $a(q_0 + (q_1.q_2)^*) \rightarrow q$. **UTL = Weak MSO(child,next)** [Unranked Tree Logic]

Properties

NHA can be determinized

Unranked tree can be mapped one-to-one with ranked tree using a phony symbol and reading the term on the leaves.

Recognizability is then equivalent.

UTI = NHA