1.

QEE

The equation whose roots are opposite in sign to those of the equation $x^2 - 3x - 4 = 0$ is

	(A) $4x^2 - 3x + 1 = 0$ (C) $x^2 + 3x + 4 = 0$	(B) $x^2 + 3x - 4 = 0$ (D) none of these
2.	Sum of the roots of the equation $x^5 - 5x^3 + x^3 + x^4 + x^5 + $	x + 1 = 0 is given by (B) 5 (D) none of these
3.	If the roots of quadratic equation $ax^2 + bx$ sign then (A) $a = 0$ (C) $a = c$	+ $c = 0$ are equal in magnitude and opposite in (B) $c = 0$ (D) none of these
4.	One of the roots of the quadratic equation ($(A) - 1$ (C) 1	$\sin^2 \theta$) $x^2 - x + \cos^2 \theta = 0$ is given by (B) 2 (D) none of these
5.	If α and β are the roots of $ax^2 + bx + c = 0$, then the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is
	given by (A) $ax^2 + cx + b = 0$ (C) $(ac - b^2) x^2 + bx + c = 0$	(B) $cx^2 + bx + a = 0$ (D) none of these
6.	If $\frac{1}{x-2} \ge \frac{1}{3}$; then x belongs to (A) $(-\infty, 5]$ (C) $(2, 5]$	(B) [2, 5] (D) none of these
7.	The number of real roots of the equation 2 ² (A) 0 (C) 2	$x^{2}-7x+5$ = 1 is (B) 1 (D) 4
8.	The real roots of the equation $7^{\log_7\left(x^2-4x+5\right)}$ (A) 1 and 2 (C) 3 and 4	= (x - 1) are (B) 2 and 3 (D) 4 and 5
9.	If roots of quadratic equation ax ² + 2bx +c = represent (A) Ellipse (C) Parabola	= 0 are not real, then ax²+ 2bxy+ cy²+ dx+ ey+f=0 (B) Circle (D) Hyperbola
10.	$3x^{10} - 5x^2 + 7 = 0$ is an (A) equation (C) identity	(B) expression (D) none of these
11.	Expression $x^2 + px + q$ will be a perfect square (A) $p^2 - 4q = 0$ (C) $q^2 = p^2$	are of linear expression if (B) $p^2 + 4q = 0$ (D) none of these
12.	If a, b, c are the roots of the equation $x^3 - y$	$cx^{2} + qx - r = 0$ then the value of $\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}$ is

	(A) $\frac{q^2 + 2pr}{r}$	(B) $\frac{q^2 - 2pr}{r}$
	(A) $\frac{q^2 + 2pr}{r}$ (C) $\frac{q^2 + 2pr}{r^2}$	(B) $\frac{q^2 - 2pr}{r}$ (D) $\frac{q^2 - 2pr}{r^2}$
13.	If a, b, $c \in R$, the roots of a equation $(x - a)(A)$ rational (C) imaginary	(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0 are (B) irrational (D) real
14.	Root of equation $3^{x-1} + 3^{1-x} = 2$ is (A) 2 (C) 4	(B) 3 (D) none of these
15.	If $(1 + m)x^2 - 2(1 + 3m)x + (1 + 8m) = 0$ has (A) 0, 1 (C) 0, 3	equal roots, then m is equal to (B) 0, 2 (D) none of these
16.	If the roots of the equation $(a^2 + b^2) x^2 + 2x = (A)$ ad = bc (C) ac = bd	(ac + bd) + c^2 + d^2 = 0 are real, then (B) ab = cd (D) none of these
17.	If r be the ratio of the roots of the equation a	$ax^2 + bx + c = 0$, then $\frac{(r+1)^2}{r}$ is equal to
	(A) $\frac{a^2}{bc}$ (C) $\frac{c^2}{ab}$	(B) $\frac{b^2}{ac}$
	(C) $\frac{c^2}{ab}$	(D) none of these
18.	If the roots of the equation $x^2 + px + q = 0$ d by the same quantity, then $p + q$ is equal to (A) -1 (C) -3	iffer from the roots of the equation $x^2 + qx + p = 0$ (B) -2 (D) -4
19.	The quadratic equation whose one of the ro	ots is $\frac{1}{2+\sqrt{5}}$ is
	(A) $x^2 + 4x - 1 = 0$ (C) $x^2 + 4x + 1 = 0$	(B) $x^2 + 3x - 1 = 0$ (D) none of these
20.	Let α , β be the roots of $x^2 - x + p = 0$ and γ in G.P., then the integral value of p and q re (A) -2, -32 (C) -6, 3	γ , δ be the roots of x^2 – $4x$ + q = 0. If α , β , γ , δ are espectively are (B) –2, 3 (D) –6, –32
21.	If α , β are roots of x^2 – $p(x + 1)$ – $c = 0$ then (A) c (C) 1 – c	$(\alpha + 1)$ $(\beta + 1)$ is equal to (B) c – 1 (D) none of these
22.	For a \neq b, if the equations $x^2 + ax + b = 0$ are value of $(a + b)$ is $(A) -1$ (B) 1	and $x^2 + bx + a = 0$ have a common root, then the (B) 0 (D) 2

	(C) $p(p^2 - 4q) (p^2 + q)$	(D) none of these
34.	If $x \in [2, 4]$ then for the expression $x^2 - 6x - 6x - 6x = 6x = 6x = 6x = 6x = 6x$	+ 5 (B) the greatest value = 4 (D) the greatest value = -3
35.	The value of x for which $\frac{(x-1)(x+2)^4}{(x+1)^3(x-3)^2} \le 0$	is
	(A) [-1, 1] (C) (-1, 1)	(B) (-1, 1] (D) none of these
36.	If a and b are non-zero roots of the eq $x^2 + ax + b = 0$ is	uation x^2 + ax + b = 0 then the least value of
	(A) 0 (C) 9/4	(B) - 9/4 (D) none of these
37.	$(x-3)^2(x+2) \ge 0$ for all values of x belongi (A) $[-2, \infty)$ (C) $[-2, 3)$	ng to interval (B) $(-\infty, -2]$ (D) none of these
38.	The roots of quadratic equation are always (A) D is a perfect square (B) D is a perfect square and coefficients at (C) D is not a perfect square (D) D is not a perfect square and coefficien	re rational
39.	The graph of quadratic equation expression axis iff (A) D = 0 (C) D < 0	of $f(x) = ax^2 + bx + c$ with $a > 0$ is always above x- (B) $D > 0$ (D) none of these
40.	Quadratic equations $(a - b)x^2 + (b - c)x + (c)(2a - b - c)x^2 + (2b - c - a)x + (2c - a - b)$ (A) a (C) b	
41.	If one of the root of a quadratic equation we must be (A) imaginary (C) rational	ith rational coefficients is rational, then other root (B) irrational (D) none of these
42.	If two roots of quadratic equation $ax^2 + bx$ equation $ax^2 - bx + c = 0$ are given by (A) $\frac{1}{\alpha}$, $\frac{1}{\beta}$	+ c = 0 are α , β , then the roots of the quadratic (B) $-\alpha$, $-\beta$
	(C) $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$	(D) none of these
43.	In the quadratic equation $(2a - 3)x^2 + ax + a$	a-5=0, the value of a can never be (B) 0 (D) none of these
44.	The quadratic equation whose roots are -2 (A) $x^2 - 2x - 8 = 0$ (C) $x^2 + 2x + 8 = 0$	and 4 is given by (B) $x^2 - 2x + 8 = 0$ (D) none of these

- 45. If p, q be two positive numbers, then the number of real roots of quadratic equation $px^2 + q|x| + 5 = 0$ is
 - (A) 1

(B) 0

(C) 2

- (D) 4
- 46. If p and q are roots of the quadratic equation $x^2 + mx + m^2 + a = 0$, then the value of $p^2 + q^2 + pq$ is
 - (A) 0

(B) a

(C) -a

- $(D) \pm m^2$
- 47. The number of real roots of the equation $|x|^2 3|x| + 2 = 0$ is
 - (A) 4

(B)3

(C) 2

- (D) 1
- 48. The diagram shows the graph of

$$y = ax^2 + bx + c$$
, then

- (A) a > 0
- (B) b < 0
- (C) c > 0
- $(D)' b^2 4ac = 0$

- 49. The equation whose roots are 1 and 0, is
 - (A) $x^2 2x + 1 = 0$
 - (C) $x^2 x = 0$

- (B) $x^2 1 = 0$
- (D) none of these
- 50. One root of $px^2 14x + 8 = 0$ is six times the other then p is
 - (A) 0

(B) 3

(C) 1/3

- (D) 1
- 51. Roots of the equation $(x a)(x b) = h^2$ are
 - (A) real and equal

(B) real and unequal

(C) imaginary

(D) none of these

- 52. If $x^{1/2} + x^{1/4} = 12$, then x is
 - (A) 16 or 81

(B) 81 or 256

(C) 81

- (D) 16 or 256
- 53. One root of a quadratic equation is $2 + \sqrt{3}$, then product of roots will be
 - (A)7

(B) 4

(C) 0

- (D) 1
- 54. The expression $-x^2 + 3x + 9$ is always
 - (A) positive

(B) negative

(C) 0

- (D) none of these
- 55. If $3x^2 2mx 4 = 0$ and $x^2 4m + 2 = 0$ have a common root, then m is
 - $(A) \pm \frac{1}{2}$

(B) $\pm \frac{1}{\sqrt{3}}$

(C) $\pm \frac{1}{3}$

(D) $\pm \frac{1}{\sqrt{2}}$

(B) -1/5

(C) -3/5

(D) none of these

(A) -3

81.	The solution set of (A) $(-\infty, -2) \cup (1, \infty)$ (C) $(-2, 1)$	the inequation log _{1/3} (x	$(2^{2} + x+1) + 1 > 0$ is (B) [-1, 2] $(D) (-\infty, \infty)$		
82.	Let α and β are the r is	roots of equation $x^2 + x^2$	x + 1 = 0, the equation	n whos	se roots are α^{19} , β^{17}
	(A) $x^2 - x - 1 = 0$	(B) $x^2 - x + 1 = 0$	(D) $x^2 + x - 1$	= 0	(D) $x^2 + x + 1 = 0$
83.	If p and q are non equation $qx^2 + px + 2$	-zero constants, the ϵ	equation $x^2 + px + q =$	= 0 has	roots α and β , the
	(A) α and $1/\beta$		(C) $1/\alpha$ and $1/\alpha$	/β	(D) none
84.		$\frac{x^2 - 3x + 4}{x + 1} > 1$, $x \in R$, is			
	(A) (3, ∞)	(B) (−1, 1) ∪(3, ∞)	(C) [−1, 1] ∪[3, ∞)	(D) none
85.	(A) 2 $(\alpha - \beta) + (a - b)^2$ (B) 2 $(\alpha - \beta) + (a - b)^2$		$+ c^2 - ab - bc - ca = 0$	has ima	aginary roots, then
87.	(A) 'a' is always an ir	_	t be an integer	er	
88.		hich the sum of the squ	uare of the roots of		
	$2x^2 - 2(p - 2)x - p - 1 =$ (A) 1	(B) 11/4	(C) 2	(D) -1	
89.	If $x^2 - 4x + \log_{\frac{1}{2}} a = 0$	does not have two dist		aximum	value of a is
	(A) $\frac{1}{4}$		(B) $\frac{1}{16}$		
	(C) $-\frac{1}{4}$		(D) none of these		
90.	The largest negative	integer which satisfies	$\frac{x^2 - 1}{(x - 2)(x - 3)} > 0 \text{ is}$		
	(A) -4 (C) -1		(B) -3 (D) -2		
	(0) -1		(D) -2		
91.	The number of real se	olutions of $x - \frac{1}{x^2 - 4} =$	$=2-\frac{1}{x^2-4}$ is		
	(A) 0		(B) 1		
	(C) 2		(D) infinite		

92.	If the roots of $4x^2 + 5k = (5)$	5k + 1) x differ by unity then the negative value of k is
	(A) -3	(B) $-\frac{1}{5}$
	(C) $-\frac{3}{5}$	(D) none of these
03	If the absolute value of the	e difference of roots of the equation $y^2 + py + 1 = 0$

- 93. If the absolute value of the difference of roots of the equation $x^2 + px + 1 = 0$ exceeds $\sqrt{3} p$ then
 - (A) p < -1 or p > 4 (B) p > 4 (C) $-1 (D) <math>0 \le p < 4$
- 94. If a, b, c, d are positive reals such that a+b+c+d=2 and m=(a+b) (c + d), then (A) $0 \le m \le 1$ (B) $1 \le m \le 2$ (C) $2 \le m \le 3$ (D) $3 \le m \le 4$
- 95. If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ be the geometric mean between two distinct positive reals a and b, then the value of n is (A) 0 (B) 1/2 (C) -1/2 (D) 1
- 96. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is 3/4, then
 - (A) a = 7/4, r = 3/7(B) a = 2, r = 3/8(C) a = 3/2, r = 1/2(D) a = 3, r = 1/4
- 97. If a + b + c = 0 then $x^{a^2/bc}$. $x^{b^2/ca}$. $x^{c^2/ab}$ is equal to
- 99. If a, b, c are positive real numbers, then the number of real roots of the equation $ax^2 + b|x| + c = 0$ is
- 100. The solution set of $\frac{x^2 3x + 4}{x + 1} > 1$, $x \in R$, is

 (A) $(3, \infty)$ (B) $(-1, 1) \cup (3, \infty)$ (C) $[-1, 1] \cup [3, \infty)$ (D) none of these

LEVEL-II

1.

2.	If x_1 , x_2 are roots of $x^2 - 3x + a = 0$, $a \in R$ are	and $x_1 < 1 < x_2$ then;
	(A) $a \in (-\infty, 2)$	(B) $\left(-\infty, \frac{9}{4}\right]$
	(C) $\left(2, \frac{9}{4}\right]$	(D) none of these
3.	If the sum of the roots of the quadratic ed	quation $ax^2 + bx + c = 0$ is equal to sum of the
	squares of the reciprocals then $\frac{b^2}{ac} + \frac{bc}{a^2}$ is	equal to;
	(A) 2 (C) 1	(B) -2 (D) -1
4.	If discriminant of a quadratic equation ax^2 always	+ $bx + c = 0$ is a perfect square then roots are
	(A) rational (C) imaginary	(B) integers (D) none of these
5.	The values of 'a' for which the quadratic exalues of x; is given by	xpression x ² - ax + 4 is non-negative for all real
	(A) $(-4, 4)$ (C) $(-\infty, -4) \cup (4, \infty)$	(B) [– 4, 4] (D) none of these
6.	If a, b, c are odd integers, then roots of the (A) are always rational (C) are imaginary	quadratic equation $ax^2 + bx + c = 0$ (B) cannot be rational (D) none of these
7.	If x be real, then maximum value of the exp (A) 7 (C) 12	ression $7 + 10x - 5x^2$ is given by (B) 10 (D) none of these
8.	The number of solutions of $\frac{\log 5 + \log(x^2 + 1)}{\log(x - 2)}$	$\frac{1}{2}$ = 2 is
	(A) 2 (C) 1	(B) 3 (D) none of these
9.	The roots of the equation $(a + c - b)x^2 - 2cx$	
	(A) 1, $\frac{2c}{a+c-b}$	(B) 1, $\frac{b+c-a}{a+c-b}$
	(C) 1, $\frac{b+c-a}{2c}$	(D) 1, $\frac{a+c-b}{b+c-a}$
10.	If the product of the roots of the equation a real for k equal to	$x^2 - 3kx + 2e^{2logk} - 1 = 0$ is 7, then the roots are
	(A) 2 (C) -2	(B) 4 (D) none of these
11.	If $sin\theta$ and $cos\theta$ are the roots of the equation	$n ax^2 + bx + c = 0$, then

A quadratic equation whose roots are $\sec^2\alpha$ and $\csc^2\alpha$ can be; (A) $x^2-2x+2=0$ (B) $x^2-3x+3=0$ (C) $x^2-4x+4=0$ (D) none of these

	(A) $(a - c)^2 = b^2 - c^2$ (C) $(a + c)^2 = b^2 - c^2$	(B) $(a - c)^2 = b^2 + c^2$ (D) $(a + c)^2 = b^2 + c^2$
12.	If the roots of $x^2 + ax + b = 0$ are non-real, t (A) negative (C) zero	then the value of a ² – 4b – 1 is always (B) positive (D) nothing can be said
13.	If α , β are the roots of the equation $ax^2 + bx$ $a = 0$, are (A) $-\alpha$, $-\beta$ (C) α , $\frac{1}{\beta}$	$c + c = 0$, then the roots of the equation $cx^2 + bx + c$ (B) α , $-\beta$ (D) $\frac{1}{\alpha}$, $\frac{1}{\beta}$
14.	If $ax^2 + bx + c = 0$ is satisfied by every value (A) $b = 0$, $c = 0$ (C) $b = 0$	e of x, then (B) c = 0 (D) a = b = c = 0
15.	Let S be the set of values of 'a' for which 2 $(a + 2) \times - (a + 3) = 0$. Then S is given by (A) $(-\infty, -5)$ (C) $(-\infty, -5]$	2 lie between the roots of quadratic equation x^2 + (B) $(5, \infty)$ (D) $[5, \infty)$
16.	$(1 - \gamma^2)$ is equal to	$^3 + P_0x^2 + P_1x + P_2 = 0$, then $(1 - \alpha^2) (1 - \beta^2)$ (B) $(1 + P_1)^2 + (P_0 + P_2)^2$ (D) None of these
17.	The set of values of 'a' for which the inequal one positive real x is	lity $x^2 - (a + 2)x - (a + 3) < 0$ is satisfied for at least
18.	Consider the equation $x^3 - nx + 1 = 0$, $n \in \mathbb{N}$ (A) Equation has atleast one rational root. (B) Equation has exactly one rational root. (C) Equation has atleast one root belonging (D) Equation has no rational root.	
19.	The real values of x which satisfy $x^2 - 3x + 3x$	$2 \ge 0$ and $x^2 - 3x - 4 \le 0$ are given by (B) $1 \le x \le 2$ (D) none of these
20.	If x is real, then $\frac{x^2 + 2x + c}{x^2 + 4x + 3c}$ can take a (A) $0 < c < 2$ (B) $-1 < c < 1$	all real values if (C) $-1 < c < 1$ (D) none of these
21.	If α and β are the roots of the equation x rx + s = 0 then equation $x^2 - 4qx + 2q^2 - r =$ (A) two real roots (C) roots of positive sign	2 + px + q = 0 and α^4 , β^4 are the roots of x^2 - 0 has always (B) two positive roots (D) two negative roots
22.	If one root of equation $x^2 - 3ax + f(a) = 0$, is (A) $2x$ (C) $2x^2$	s double of the other then $f(x) = (B) x^2$ (D) x
23.	If $ax^2 + bx + c = 0$; a, b, $c \in R$; $a \ne 0$, has r (A) < 0	no real roots then (a + b + c)c is (B) = 1

35.	If $b > a$, then the equation $(x - a)(x - b) =$ (A) both roots in $[a, b]$ (C) both roots in (b, ∞)	: 1 has (B) both roots in $(-\infty, a)$ (D) one root in $(-\infty, a)$ and other in (b, ∞)
36.	If α and β (α < β), be the roots of x^2 + bx + α (A) $0 < \alpha < \beta$ (C) $\alpha < \beta < 0$	c=0, (where $c<0<$ b), then (B) $\alpha<0<\beta< \alpha $ (D) $\alpha<0< \alpha <\beta$
37.	If p and q be roots of $x^2 - 2x + A = 0$ and r are in A.P. Then (A) $A = -3$, $B = 77$, s be the roots of $x^2 - 18x + B = 0$, if $p < q < r < s$ (B) A = 77, B = -3
	(C) $A = 3$, $B = -77$	(D) none of these
38.	The set of values of 'a' for which all the solu are positive and distinct	itions of the equation $(\log_{1/2}x)^2 + 4a \log_{1/2}x + 1 = 0$
	(A) $(-1, 0)$ (C) $(-\infty, -1/2) \cup (1/2, \infty)$	(B) R (D) none of these
39.	The set of positive integral values of 'a' fo $x^2 + (a + 10)x + 10a - 33 = 0$ is a positive in (A) {2} (C) {1, 3}	r which at least one of the roots of the equation nteger, is (B) N (D) none of these
40.	Sum of the real roots of the equation $x^2 + x $ (A) 1 (C) -1	- 6 = 0 (B) 0 (D) none of these
41.	Find the interval in x for which $\frac{e^x(x^2-4)(x^2-4)}{(x+1)(x+4)}$	$\left(\frac{3+8}{3}\right) \leq 0 = \dots$
42.	If the expression $\frac{1}{x} \left[mx - 1 + \frac{1}{x} \right]$ is non-negative.	ative $\forall x \in R$ then minimum value of m must be
	(A) - $\frac{1}{2}$ (B) 2	(C) $\frac{1}{4}$ (D) $\frac{1}{2}$
43.	If α , β be the roots of $4x^2-16x+\lambda=0$, number of integral solutions of λ is (A) 5 (C) 2	$\lambda \in R,$ such that $~1<\alpha<2$ and $2<\beta<3$ then (B) 6 (D) 3
44.		x - 10) + 1 = 0 has integral roots then the value
	of a are (A) 10, 8 (C) 12,8	(B) 12, 10 (D) none of these
45.	positive common root (α), given by	x^{2} + bx + 15 = 0 and x^{2} + (a + b)x + 36 = 0 have a
	(A) $\alpha = 4$ (C) $\alpha = 10$	(B) $\alpha = 5$ (D) $\alpha = 3$
46.	The greatest value of $\frac{4}{4x^2 + 4x + 9}$ is	

(A) -5/3

	(C) –9		(D) 0	
60.	If $a, a_1, a_2,, a_n \in$	R then $\sum_{i=1}^{n} (x - a_i)^2$ i	s the least if x is equ	al to
	(A) $a_1 + a_2 + \dots + a_n$ (C) $n(a_1 + a_2 + \dots +$, ,	(D) 2(a . a .	
61.	The number of real (A) 3 (C) 1	roots of the equation	on $(x-1)^2 + (x-2)^2 + ($	$(x-3)^2 = 0$ is
62.	If p and q are the (A) $p=1$ (C) $p=-2$	roots of the equation	on $x^2 + px + q = 0$ then (B) $p = 1$ or 0 (D) $p = -2$ or 0	
63.		e equation $\alpha(x - \beta)^2 + \beta$		re real and of opposite sign.
64.	If the inequality $\frac{mx^2}{x^2}$	$\frac{x^2 + 3x + 4}{x + 2x + 2} < 5$ is satis	fied for all $x \in R$, the	en
	(A) 1 < m < 5	(B) -1 < m < 5	(C) 1< m < 6	(D) $m < \frac{71}{24}$.
65.				+ bx + c = 0, β is a root of = 0 has a root γ that always
	(A) $\gamma = \frac{\alpha + \beta}{2}$,	(B) $\gamma = \alpha + \frac{\beta}{2}$	(C) $\gamma = \alpha$,	(D) $\alpha < \gamma < \beta$
66.	The equation $ax^2 + b$ must be equal to	$a = 0$, $x^3 - 2x^2 + 3$	2x - 1 = 0 have two r	oots in common. Then a + b
	(A) 1 (C) 0		(B) −1 (D) none of these	
67.	If a, b, c are in G.F common root if $\frac{d}{a}$, $\frac{e}{b}$	·	$ax^2 + 2bx + c = 0 an$	$d dx^2 + 2ex + f = 0 have a$
	(A) A.P. (C) H.P.	C	(B) G.P. (D) none of these	
68.	If c > 0 and 4a + c < (A) (0, 2)	2b, then ax ² –bx + c =	= 0 has a root in the int (B) (2, 4)	terval
	(C) (0, 1)		(D) (-2, 0)	
69.	The number of real s (A) 0	solutions of the equati	ons $e^x = x$ is (B) 1	
	(C) 2		(D) infinite	
70.	The number of real s	solutions of the equati	on $3^{\frac{x}{2}} + (\sqrt{2} + 1)^x = (6 + 1)^x$	$(2\sqrt{2})^{\frac{x}{2}}$ is

(B) 9

	(A) 1	(B) 2	
	(C) 4	(D) infinite	
71.	The number of real solutions of the equatio	ns e ^{l xl} = I x I is	
	(A) 0 (B) 1	(C) 2	(D) 4
72.	The number of numbers between n and n^2 (A) n (C) n -2	which are divisible by r (B) n –1 (D) none of these	n is (n ∈ I)
73.	If the ratio of the roots of the equation x^2 of $x^2 + Ix + m = 0$, then (A) $p^2 m = q^2 I$ (C) $p^2 I = q^2 m$	$x^{2} + px + q = 0$ be equal (B) $pm^{2} = q^{2} I$ (D) $p^{2} m = I^{2} q$	al to the ratio of the roots
74.	The number of solutions of the equation 5 ^x	$x^{2} + 5^{-x} = \log_{10} 25, x \in F$	R is
75.	If $a + b + c = 0$, then the quadratic equation (A) at least one root in (0, 1) (C) imaginary root	n $3ax^2 + 2bx + c = 0$ ha (B) one root in (2, 3) (D) none of these	

LEVEL -III

1.	If the roots of $x^2 - bx + c = 0$ (A) 0 (C) 2	(I	ecutive integors) 1 D) none of the		łc is
2.	If $a^2 + b^2 + c^2 + d^2 = 1$, then the (A) zero (C) Two	ne maximum valu	(B)	+ cd +da is One ne of these	
3.	The number of real solutions $\cos^5 x + \sin^3 x = 1$ in the interval (A) 2 (C) 3	$[0,2\pi]$ is (I	B) 1 D) Infinite		
4.	Let $f(x) = ax^3 + bx^2 + x + d$ has Then the equation $f(x) = 0$ (A) has 3 distinct real root (B) has only one real root (C) has only one real root (D) has 3 equal real roots	ts t, which is positiv t, which is negativ	e if a f(α) < 0		β < 0, f(α), f(β) > 0;
5.	If $sin\alpha$, $sin \beta$ and $cos\alpha$ are in (A) equal (C) imaginary	GP, then roots o	f x ² + 2xcotβ (B) (D)	+ 1 = 0 are alw real greater than 1	•
6.	Let a, b,c, ∈ R such that 2a + (A) at least one root in (0 (C) both roots in (1,2)		(B) at l	atic equation as east one root in aginary roots	
7.	If ax ² + bx + 1=0 does no				alue of 2a– b is
8.	If x is real, then least value	of expression $\frac{x}{x}$	$\frac{x^2-6x+5}{x^2+2x+1}$ is	·,	
	(A) -1	(B) -1/2	(C) -1/		(D) none of these
9.	If a, b, c are real and a + b + (A) two real roots (C) one real root only	c = 0, then qua	(B) two		
10.	If x is real, then expression	$\frac{(x-a)(x-b)}{x-c} will$	assume all	real values pr	rovided
	(A) a>b>c (C) a>c>b	(I	B) a< b < c D) b > a > c		
11.	If $x^2 + 2bx + c = 0$ and $x^2 + 2a$ (A) at least one has real roots (C) both have imaginary root	s (I	B) both have		ry root.
12.	If the roots of $ax^2 + bx + c = 0$ (A) < 0 (C) > 0	(I	and 2. Then B) = 0 D) can't say	9a² + 6ab + 4a	ac is

ANSWERS

LEVEL -I							
1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49. 53. 57. 61. 65. 69. 73. 77. 81. 85. 89. 93.	B B A D B C C A C B C D B A D A C A C A B B 1	2. 6. 10. 14. 18. 22. 26. 30. 34. 38. 42. 46. 50. 54. 58. 62. 66. 70. 74. 78. 82. 87. 90. 94. 98.	A C A D D A B B C B B C B B A B D A B B D D D A 3	3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47. 51. 55. 67. 71. 75. 79. 83. 88. 91. 95.	D C A C A D A B B C A A B O A B D C A C C B A B O	4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48. 52. 56. 60. 64. 68. 72. 76. 80. 84.	СВВАААОАВОАССВСВАААВВ ВОВ
LEVEL -II							
1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 44. 48. 52. 55. 60. 64. 68. 72.	C B B D (-2, ∞) A B B C A (-3, -2]∪(-1 C C A B D D A	2. 6. 10. 14. 18. 22. 26. 30. 34. 38. , 2] 45. 49. 53. 57. 61. 65. 69. 73.	A B A D A C B B B C D B D D A D	3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 42. 46. 50. 54. 58. 62. 66. 70.	A C B A A,D C C D A C D D A C B C A O	4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 43. 47. 51. 55. 59. 63. 67. 71.	D D A A D B B B D B D D C A C C A A C
LEVEL -III							
1. 5.	B B	2. 6.	B A	3. 7.	C −1/2	4. 8.	B, C C

9. 13. 17.	C A	10. 14. 18.	A A	11. 15. 19.	С	12. 16. 20.	
21.	D	22.	В				
23.	$\lambda \in (-\infty)$, −2)∪(2, ∞)					