Swarm Robotics - Chain Formation Strategy INFO-H-414 - Swarm Intelligence

Jacopo De Stefani

Universite' Libre de Bruxelles

September 3, 2013

Introduction

Introduction

Introduction

Robot equipment

Wheels

- Wheels
- Proximity sensors

- Wheels
- Proximity sensors
- Range and Bearing

- Wheels
- Proximity sensors
- Range and Bearing
- Ground sensors

- Wheels
- Proximity sensors
- Range and Bearing
- Ground sensors
- Distance scanner

ULB ECOLE POLYTECHNIQUE DE BRUXELLES

What does the method use?

Robot equipment

- Wheels
- Proximity sensors
- Range and Bearing
- Ground sensors
- Distance scanner

■ Sense, Think, Act paradigm

- Wheels
- Proximity sensors
- Range and Bearing
- Ground sensors
- Distance scanner

- Sense, Think, Act paradigm
- Potential-fields approach [HMS02]

Chain example

Chain example with nodes labeling and id

Controller components

Controller components

1. Chain beginning

- 1. Chain beginning
- 2. Chain following

- 1. Chain beginning
- 2. Chain following
- 3. Chain building

- 1. Chain beginning
- 2. Chain following
- 3. Chain building
- 4. Chain state updating

Chain beginning

Chain following

Chain building

Chain updating

Completion time

Observed distribution of the experiments' completion times over 50 trials displayed as histogram (a) and empirical cumulative density function (b).

50 Robots. RAB Range: 150[cm].

Robots in chain

Observed distribution of the number of robots in chain over 50 trials displayed as histogram (a) and empirical cumulative density function (b).

50 Robots. RAB Range: 150[cm].

11 of 15

Correlation

Scatterplot of the experiments' completion times versus the number of robots in chain on 50 trials.

50 Robots. RAB Range: 150[cm]. r = 0.7934599.

- Simple method:
 - Random walk
 - Limited communication

POLYTECHNIQUE
DE BRUXELLES

- Simple method:
 - □ Random walk
 - Limited communication
- Here, simplicity entails:
 - Lack of placement optimality
 - □ High results variability

ULB

Conclusions

- Simple method:
 - Random walk
 - Limited communication
- Here, simplicity entails:
 - Lack of placement optimality
 - High results variability
- The width of the communication range impacts on:
 - Completion time
 - Number of robots in chain

ULB

Conclusions

- Simple method:
 - Random walk
 - Limited communication
- Here, simplicity entails:
 - Lack of placement optimality
 - □ High results variability
- The width of the communication range impacts on:
 - Completion time
 - Number of robots in chain
- Relevant impact of the structure of the environment on the method's performance.

Questions?

References (1)

Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In *Distributed Autonomous Robotic Systems 5*, pages 299–308. Springer, 2002.