

A Framework for RNA-seq DE comparisons

Center for Health Bioinformatics, Harvard School of Public Health

Health Sciences and Technology, Harvard-MIT

Pipeline proliferation

- No consensus on best practices for the majority of analyses
- Low interoperability between tools
- Many different types of experiments
- Analyses are very complex
- End users are often not programmers

"next-generation sequencing pipeline"

Next Generation Sequencing pipeline - MutationTaster

www.mutationtaster.org/deprecated/NextGenerationSequencing.html ▼
Application of the Next Generation Sequencing pipeline requires some basic knowledge of Unix. At least, the user needs to know standard shell commands and ...

An integrated pipeline for next-generation sequencing and ...

www.ncbi.nlm.nih.gov/pmc/.../PMC281100... ▼ National Center for Biotec... ▼ Nov 5, 2009 - Mitochondrial (mt) genomics represents an understudied but important field of molecular biology. Increasingly, mt dysfunction is being linked to ...

Influenza Virus High-Throughput Influenza Sequencing Pipeline

gsc.jcvi.org > GSC > Projects > Influenza ▼ J. Craig Venter Institute ▼

... an amplicon-based Sanger sequencing pipeline, and a multiplexed **Next Generation** sequencing pipeline. For both pipelines, the initial sample preparation ...

[PDF] Masterthesis "Next Generation Sequencing meets Parallelization"

www.informatik.uni-mainz.de/arbeitsgruppen/groups/.../file ▼
development of a **Next Generation Sequencing pipeline** to analyze multiple datasets in parallel. About the topic: The Next Generation Sequencing (NGS) ...

About 123,000 results (0.40 seconds)

Complexity

Inherent

Essential to task at hand

Challenging

Fun

Incidental

Caused by our solutions

Challenging

Very frustrating

Not science

Incidental complexity

- Installation
 - Tools
 - Data
- Choice
- Parameters

Development goals of bcbio-nextgen

- Community developed and driven
- Quantifiable
- Scalable
- Easy to install. Easy to use.
- Well-documented
- Easy to extend

Loman's law of bioinformatics: If you haven't found at least one bug in someone's pipeline then you don't understand it properly yet.

Community

Community

Installation

Tools

compatible

versioned

no sudo, no problem

sandboxed

Data

coherent

versioned

Current target environment

- Cluster scheduler
 - Torque
 - SLURM
 - SGE
 - LSF
- Shared filesystem
 - NSF
 - Lustre
- Local temporary disk
 - SSD

Virtualization and reproducibility

Ease of use

- ► Tools come pre-configured
- Analysis involves
 - Putting FASTQ/BAM files in a directory
 - Creating a CSV metadata file describing the samples
 - Editing a small configuration file

```
samplename, description, panel
SRR950078, UHRR_rep1, UHRR
SRR950079, HBRR_rep1, HBRR
SRR950080, UHRR_rep2, UHRR
SRR950081, HBRR_rep2, HBRR
SRR950082, UHRR_rep3, UHRR
SRR950083, HBRR_rep3, HBRR
SRR950084, UHRR_rep4, UHRR
SRR950085, HBRR_rep4, HBRR
SRR950086, UHRR_rep5, UHRR
SRR950087, HBRR_rep5, HBRR
```

details: - analysis: RNA-seq

genome_build: GRCh37
algorithm:
 aligner: star
 quality_format: Standard
 trim_reads: read_through
 adapters: [truseq, polya]
 strandedness: unstranded

Sample metadata

FASTQ/BAM

Tool configuration

Adapter removal Sanitation

Alignment (Tophat, STAR)

Quality control

Transcript quantitation

Run summary

Differential expression

ERCC concordance

SEQC concordance

Caller comparisons

bcbio.rnaseq

RNA-seq pipeline overview

A comparison of methods for differential expression analysis of RNA-seq data Charlotte Soneson1* and Mauro Delorenzi12

Varying DE calls between methods

Differential expression callers

edgeR NOISeq*

DESeq DERFinder*

DESeq2

BaySeq

voom + limma

Cuffdiff

```
Soneson, C. & Delorenzi, M. A comparison of methods for differential expression
 analysis of RNA-seq data. BMC Bioinformatics 14, 91 (2013).
library(DESeq)
library(limma)
library(HTSFilter)
library(tools)
count_file = {{{count-file}}}
out_file = {{{out-file}}}
class = {{{class}}}
project = {{{project}}}
normalized_file = paste(strsplit(out_file, file_ext(out_file)[[1]][[1]]),
   "counts", sep="")
counts = read.table(count_file, header=TRUE, row.names="id")
DESeq.cds = newCountDataSet(countData = counts, conditions = class)
DESeq.cds = estimateSizeFactors(DESeq.cds)
DESeq.cds = estimateDispersions(DESeq.cds, method = "per-condition",
                                fitType = "local")
#DESeq.cds <- HTSFilter(DESeq.cds, s.len=25)$filteredData</pre>
res = nbinomTest(DESeq.cds, levels(class)[1], levels(class)[2])
comparison = paste(levels(class)[1], "_vs_", levels(class)[2], sep="")
out_table = data.frame(id=res$id, expr=res$baseMean, logFC=res$log2FoldChange,
          pval=res$pval, padj=res$padj, algorithm="deseq", project=project)
out_table$pval[is.na(out_table$pval)] = 1
out_table$padj[is.na(out_table$padj)] = 1
write.table(out_table, file=out_file, quote=FALSE, row.names=FALSE,
write.table(counts(DESeq.cds, normalized=TRUE), file=normalized_file,
           quote=FALSE, sep="\t")
```

Is trimming beneficial in RNA-seq?

An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis

Cristian Del Fabbro . Simone Scalabrin . Michele Morgante, Federico M. Giorgi

Published: December 23, 2013 • DOI: 10.1371/journal.pone.0085024

Concordance

concordant/false positive/false negative

Jaccard index

Fold change

Simulation

- SEQC data set not a great set
- Count based simulation
 - More complicated models
 - Model biological variability
- Which algorithm is best?
- Plug in and go

Get, install, develop

Get

wget https://raw.github.com/chapmanb/bcbio-nextgen/master/scripts/bcbio_nextgen_install.py

Install

python bcbio_nextgen_install.py /usr/local/share/bcbio-nextgen —tooldir=/usr/local

Develop

https://github.com/chapmanb/bcbio-nextgen (Python)

https://github.com/roryk/bcbio.rnaseq (Clojure, R)

Free pizza, free beer and free compute

Arvados Demo and Hackathon

3-11-2014, 6pm-8pm

Curoverse Offices 51 Melcher St Boston, MA 02210

Open source informatics platform running on top of Amazon, has nice solutions for provenance tracking and managing compute resources.

Free pizza, free beer and a free beta account.

