Interpolation & Polynomial Approximation

Lagrange Interpolating Polynomials II

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

Outline

Interpolating Polynomial Error Bound

Outline

1 Interpolating Polynomial Error Bound

Example: 2nd Lagrange Interpolating Polynomial Error Bound

Outline

1 Interpolating Polynomial Error Bound

- Example: 2nd Lagrange Interpolating Polynomial Error Bound
- 3 Example: Interpolating Polynomial Error for Tabulated Data

Outline

- 1 Interpolating Polynomial Error Bound
- 2 Example: 2nd Lagrange Interpolating Polynomial Error Bound
- 3 Example: Interpolating Polynomial Error for Tabulated Data

The Lagrange Polynomial: Theoretical Error Bound

```
Theorem
```

The Lagrange Polynomial: Theoretical Error Bound

Theorem

Suppose x_0, x_1, \dots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$.

The Lagrange Polynomial: Theoretical Error Bound

Theorem

Suppose x_0, x_1, \dots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each x in [a, b], a number $\xi(x)$ (generally unknown) between x_0, x_1, \dots, x_n , and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

The Lagrange Polynomial: Theoretical Error Bound

Theorem

Suppose $x_0, x_1, ..., x_n$ are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each x in [a, b], a number $\xi(x)$ (generally unknown) between $x_0, x_1, ..., x_n$, and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where P(x) is the interpolating polynomial given by

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$

The Lagrange Polynomial: Theoretical Error Bound

```
Error Bound: Proof (1/6)
```

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (1/6)

Note first that if $x = x_k$, for any k = 0, 1, ..., n, then $f(x_k) = P(x_k)$, and choosing $\xi(x_k)$ arbitrarily in (a, b) yields the result:

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (1/6)

Note first that if $x = x_k$, for any k = 0, 1, ..., n, then $f(x_k) = P(x_k)$, and choosing $\xi(x_k)$ arbitrarily in (a, b) yields the result:

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

If $x \neq x_k$, for all k = 0, 1, ..., n, define the function g for t in [a, b] by

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}$$
$$= f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

The Lagrange Polynomial: Theoretical Error Bound

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

Error Bound: Proof (2/6)

 Error Bound
 Error Example 1
 Error Example 2

The Lagrange Polynomial: Theoretical Error Bound

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

Error Bound: Proof (2/6)

Since $f \in C^{n+1}[a,b]$, and $P \in C^{\infty}[a,b]$, it follows that $g \in C^{n+1}[a,b]$. For $t = x_k$, we have

$$g(x_k) = f(x_k) - P(x_k) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(x_k - x_i)}{(x - x_i)} = 0 - [f(x) - P(x)] \cdot 0 = 0$$

The Lagrange Polynomial: Theoretical Error Bound

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

Error Bound: Proof (3/6)

The Lagrange Polynomial: Theoretical Error Bound

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

Error Bound: Proof (3/6)

We have seen that $g(x_k) = 0$. Furthermore,

$$g(x) = f(x) - P(x) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(x - x_i)}{(x - x_i)}$$
$$= f(x) - P(x) - [f(x) - P(x)] = 0$$

The Lagrange Polynomial: Theoretical Error Bound

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

Error Bound: Proof (3/6)

We have seen that $g(x_k) = 0$. Furthermore,

$$g(x) = f(x) - P(x) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(x - x_i)}{(x - x_i)}$$
$$= f(x) - P(x) - [f(x) - P(x)] = 0$$

Thus $g \in C^{n+1}[a, b]$, and g is zero at the n + 2 distinct numbers x, x_0, x_1, \dots, x_n .

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (4/6)

Since $g \in C^{n+1}[a,b]$, and g is zero at the n+2 distinct numbers x, x_0, x_1, \ldots, x_n , by Generalized Rolle's Theorem there exists a number ξ in (a,b) for which $g^{(n+1)}(\xi)=0$.

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (4/6)

Since $g \in C^{n+1}[a,b]$, and g is zero at the n+2 distinct numbers x,x_0,x_1,\ldots,x_n , by Generalized Rolle's Theorem Theorem there exists a number ξ in (a,b) for which $g^{(n+1)}(\xi)=0$. So

$$0 = g^{(n+1)}(\xi)$$

$$= f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} \right]_{t=\xi}$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (4/6)

Since $g \in C^{n+1}[a,b]$, and g is zero at the n+2 distinct numbers x,x_0,x_1,\ldots,x_n , by Generalized Rolle's Theorem Theorem there exists a number ξ in (a,b) for which $g^{(n+1)}(\xi)=0$. So

$$0 = g^{(n+1)}(\xi)$$

$$= f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} \right]_{t=\xi}$$

However, P(x) is a polynomial of degree at most n, so the (n+1)st derivative, $P^{(n+1)}(x)$, is identically zero.

The Lagrange Polynomial: Theoretical Error Bound

```
Error Bound: Proof (5/6)
```

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (5/6)

Also,
$$\prod_{i=0}^{n} \frac{t-x_i}{x-x_i}$$
 is a polynomial of degree $(n+1)$, so

$$\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \left[\frac{1}{\prod_{i=0}^{n} (x-x_i)}\right] t^{n+1} + (\text{lower-degree terms in } t),$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (5/6)

Also,
$$\prod_{i=0}^{n} \frac{t-x_i}{x-x_i}$$
 is a polynomial of degree $(n+1)$, so

$$\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \left[\frac{1}{\prod_{i=0}^{n} (x-x_i)}\right] t^{n+1} + (\text{lower-degree terms in } t),$$

and

$$\frac{d^{n+1}}{dt^{n+1}} \prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \frac{(n+1)!}{\prod_{i=0}^{n} (x-x_i)}$$

The Lagrange Polynomial: Theoretical Error Bound

```
Error Bound: Proof (6/6)
```

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (6/6)

We therefore have:

$$0 = f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right]_{t=\xi}$$
$$= f^{(n+1)}(\xi) - 0 - [f(x) - P(x)] \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)}$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (6/6)

We therefore have:

$$0 = f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right]_{t=\xi}$$
$$= f^{(n+1)}(\xi) - 0 - [f(x) - P(x)] \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)}$$

and, upon solving for f(x), we get the desired result:

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

Outline

- Interpolating Polynomial Error Bound
- Example: 2nd Lagrange Interpolating Polynomial Error Bound
- Separation of the second state of the second sec

Lagrange Interpolating Polynomial Error Bound

Example: Second Lagrange Polynomial for $f(x) = \frac{1}{x}$

In an earlier example, • Original Example we found the second Lagrange polynomial for $f(x) = \frac{1}{x}$ on [2,4] using the nodes $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$.

Lagrange Interpolating Polynomial Error Bound

Example: Second Lagrange Polynomial for $f(x) = \frac{1}{x}$

In an earlier example, • Original Example we found the second Lagrange polynomial for $f(x) = \frac{1}{x}$ on [2,4] using the nodes $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$. Determine the error form for this polynomial, and the maximum error when the polynomial is used to approximate f(x) for $x \in [2,4]$.

Lagrange Interpolating Polynomial Error Bound

Example: Second Lagrange Polynomial for $f(x) = \frac{1}{x}$

In an earlier example, • Original Example we found the second Lagrange polynomial for $f(x) = \frac{1}{x}$ on [2,4] using the nodes $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$. Determine the error form for this polynomial, and the maximum error when the polynomial is used to approximate f(x) for $x \in [2,4]$.

Note

We will make use of the theoretical result Theorem written in the form

$$|f(x) - P(x)| \le \max_{[2,4]} \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \right| \cdot \max_{[2,4]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

with n = 2

Solution (1/3)

Because $f(x) = x^{-1}$, we have

$$f'(x) = -\frac{1}{x^2}$$
, $f''(x) = \frac{2}{x^3}$, and $f'''(x) = -\frac{6}{x^4}$

Solution (1/3)

Because $f(x) = x^{-1}$, we have

$$f'(x) = -\frac{1}{x^2}$$
, $f''(x) = \frac{2}{x^3}$, and $f'''(x) = -\frac{6}{x^4}$

As a consequence, the second Lagrange polynomial has the error form

$$\frac{f'''(\xi(x))}{3!}(x-x_0)(x-x_1)(x-x_2) = -\frac{1}{\xi(x)^4}(x-2)(x-2.75)(x-4)$$

for $\xi(x)$ in (2, 4).

Solution (1/3)

Because $f(x) = x^{-1}$, we have

$$f'(x) = -\frac{1}{x^2}$$
, $f''(x) = \frac{2}{x^3}$, and $f'''(x) = -\frac{6}{x^4}$

As a consequence, the second Lagrange polynomial has the error form

$$\frac{f'''(\xi(x))}{3!}(x-x_0)(x-x_1)(x-x_2) = -\frac{1}{\xi(x)^4}(x-2)(x-2.75)(x-4)$$

for $\xi(x)$ in (2,4). The maximum value of $\frac{1}{\xi(x)^4}$ on the interval is $\frac{1}{2^4} = 1/16$.

Solution (2/3)

We now need to determine the maximum value on [2, 4] of the absolute value of the polynomial

$$g(x) = (x-2)(x-2.75)(x-4) = x^3 - \frac{35}{4}x^2 + \frac{49}{2}x - 22$$

Solution (2/3)

We now need to determine the maximum value on [2,4] of the absolute value of the polynomial

$$g(x) = (x-2)(x-2.75)(x-4) = x^3 - \frac{35}{4}x^2 + \frac{49}{2}x - 22$$

Because

$$g'(x) = 3x^2 - \frac{35}{2}x + \frac{49}{2} = \frac{1}{2}(3x - 7)(2x - 7),$$

the critical points occur at

$$x = \frac{7}{3}$$
 with $g\left(\frac{7}{3}\right) = \frac{25}{108}$ and $x = \frac{7}{2}$ with $g\left(\frac{7}{2}\right) = -\frac{9}{16}$

Solution (3/3)

Hence, the maximum error is

$$\max_{[2,4]} \left| \frac{f'''(\xi(x))}{3!} \right| \cdot \max_{[2,4]} |(x-x_0)(x-x_1)(x-x_2)|$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (3/3)

Hence, the maximum error is

$$\max_{[2,4]} \left| \frac{f'''(\xi(x))}{3!} \right| \cdot \max_{[2,4]} |(x - x_0)(x - x_1)(x - x_2)|$$

$$\leq \frac{1}{3!} \cdot \frac{1}{16} \cdot \frac{9}{16}$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (3/3)

Hence, the maximum error is

$$\max_{[2,4]} \left| \frac{f'''(\xi(x))}{3!} \right| \cdot \max_{[2,4]} |(x - x_0)(x - x_1)(x - x_2)|$$

$$\leq \frac{1}{3!} \cdot \frac{1}{16} \cdot \frac{9}{16}$$

$$= \frac{3}{512}$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (3/3)

Hence, the maximum error is

$$\max_{[2,4]} \left| \frac{f'''(\xi(x))}{3!} \right| \cdot \max_{[2,4]} |(x - x_0)(x - x_1)(x - x_2)|$$

$$\leq \frac{1}{3!} \cdot \frac{1}{16} \cdot \frac{9}{16}$$

$$= \frac{3}{512}$$

$$\approx 0.00586$$

Outline

Interpolating Polynomial Error Bound

- 2 Example: 2nd Lagrange Interpolating Polynomial Error Bound
- 3 Example: Interpolating Polynomial Error for Tabulated Data

Example: Tabulated Data

Example: Tabulated Data

• Suppose that a table is to be prepared for the function $f(x) = e^x$, for x in [0, 1].

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x) = e^x$, for x in [0, 1].
- Assume that the number of decimal places to be given per entry is $d \ge 8$ and that the difference between adjacent x-values, the step size, is h.

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x) = e^x$, for x in [0, 1].
- Assume that the number of decimal places to be given per entry is $d \ge 8$ and that the difference between adjacent x-values, the step size, is h.
- What step size h will ensure that linear interpolation gives an absolute error of at most 10⁻⁶ for all x in [0, 1]?

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x) = e^x$, for x in [0, 1].
- Assume that the number of decimal places to be given per entry is
 d ≥ 8 and that the difference between adjacent x-values, the step
 size, is h.
- What step size h will ensure that linear interpolation gives an absolute error of at most 10⁻⁶ for all x in [0, 1]?

Let $x_0, x_1, ...$ be the numbers at which f is evaluated, x be in [0,1], and suppose j satisfies $x_j \le x \le x_{j+1}$.

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x) = e^x$, for x in [0, 1].
- Assume that the number of decimal places to be given per entry is
 ^d ≥ 8 and that the difference between adjacent x-values, the step
 size, is h.
- What step size h will ensure that linear interpolation gives an absolute error of at most 10⁻⁶ for all x in [0, 1]?

Let x_0, x_1, \ldots be the numbers at which f is evaluated, x be in [0,1], and suppose j satisfies $x_j \leq x \leq x_{j+1}$. The error bound theorem implies that the error in linear interpolation is

$$|f(x)-P(x)|=\left|\frac{f^{(2)}(\xi)}{2!}(x-x_j)(x-x_{j+1})\right|=\frac{|f^{(2)}(\xi)|}{2}|(x-x_j)||(x-x_{j+1})|$$

Solution (1/3)

The step size is h, so $x_i = jh$, $x_{i+1} = (j+1)h$, and

$$|f(x)-P(x)|\leq \frac{|f^{(2)}(\xi)|}{2!}|(x-jh)(x-(j+1)h)|.$$

Use of the Interpolating Polynomial Error Bound

Solution (1/3)

The step size is h, so $x_i = jh$, $x_{i+1} = (j+1)h$, and

$$|f(x)-P(x)|\leq \frac{|f^{(2)}(\xi)|}{2!}|(x-jh)(x-(j+1)h)|.$$

Hence

$$|f(x) - P(x)| \le \frac{\max_{\xi \in [0,1]} e^{\xi}}{2} \max_{x_j \le x \le x_{j+1}} |(x - jh)(x - (j+1)h)|$$

 $\le \frac{e}{2} \max_{x_j \le x \le x_{j+1}} |(x - jh)(x - (j+1)h)|.$

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function g(x) = (x - jh)(x - (j + 1)h), for $jh \le x \le (j + 1)h$.

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function g(x) = (x - jh)(x - (j + 1)h), for $jh \le x \le (j + 1)h$. Because

$$g'(x) = (x - (j+1)h) + (x - jh) = 2(x - jh - \frac{h}{2}),$$

19 / 25

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function g(x) = (x - jh)(x - (j + 1)h), for $jh \le x \le (j + 1)h$. Because

$$g'(x) = (x - (j+1)h) + (x - jh) = 2\left(x - jh - \frac{h}{2}\right),$$

the only critical point for g is at $x = jh + \frac{h}{2}$, with

$$g\left(jh+\frac{h}{2}\right)=\left(\frac{h}{2}\right)^2=\frac{h^2}{4}$$

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function g(x) = (x - jh)(x - (j + 1)h), for $jh \le x \le (j + 1)h$. Because

$$g'(x) = (x - (j+1)h) + (x - jh) = 2\left(x - jh - \frac{h}{2}\right),$$

the only critical point for g is at $x = jh + \frac{h}{2}$, with

$$g\left(jh+\frac{h}{2}\right)=\left(\frac{h}{2}\right)^2=\frac{h^2}{4}$$

Since g(jh) = 0 and g((j+1)h) = 0, the maximum value of |g'(x)| in [jh, (j+1)h] must occur at the critical point.

Use of the Interpolating Polynomial Error Bound

Solution (3/3)

This implies that

$$|f(x) - P(x)| \le \frac{e}{2} \max_{x_i \le x \le x_{i+1}} |g(x)| \le \frac{e}{2} \cdot \frac{h^2}{4} = \frac{eh^2}{8}.$$

Solution (3/3)

This implies that

$$|f(x) - P(x)| \le \frac{e}{2} \max_{x_j \le x \le x_{j+1}} |g(x)| \le \frac{e}{2} \cdot \frac{h^2}{4} = \frac{eh^2}{8}.$$

Consequently, to ensure that the the error in linear interpolation is bounded by 10^{-6} , it is sufficient for h to be chosen so that

$$\frac{eh^2}{8} \le 10^{-6}$$
. This implies that $h < 1.72 \times 10^{-3}$.

Use of the Interpolating Polynomial Error Bound

Solution (3/3)

This implies that

$$|f(x) - P(x)| \le \frac{e}{2} \max_{x_j \le x \le x_{j+1}} |g(x)| \le \frac{e}{2} \cdot \frac{h^2}{4} = \frac{eh^2}{8}.$$

Consequently, to ensure that the the error in linear interpolation is bounded by 10^{-6} , it is sufficient for h to be chosen so that

$$\frac{eh^2}{8} \le 10^{-6}$$
. This implies that $h < 1.72 \times 10^{-3}$.

Because $n = \frac{(1-0)}{h}$ must be an integer, a reasonable choice for the step size is h = 0.001.

Questions?

Reference Material

Generalized Rolle's Theorem

Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If

$$f(x) = 0$$

at the n+1 distinct numbers $a \le x_0 < x_1 < \ldots < x_n \le b$, then a number c in (x_0, x_n) , and hence in (a, b), exists with

$$f^{(n)}(c)=0$$

◆ Return to Error Bound Theorem

The Lagrange Polynomial: Theoretical Error Bound

Suppose x_0, x_1, \ldots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each x in [a, b], a number $\xi(x)$ (generally unknown) between x_0, x_1, \ldots, x_n , and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where P(x) is the interpolating polynomial given by

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$

◆ Return to Second Lagrange Interpolating Polynomial Example

A Beturn to Tabulated data example with $f(x) = e^{x}$

The Lagrange Polynomial: 2nd Degree Polynomial

Example: $f(x) = \frac{1}{x}$

Use the numbers (called nodes) $x_0 = 2$, $x_1 = 2.75$ and $x_2 = 4$ to find the second Lagrange interpolating polynomial for $f(x) = \frac{1}{x}$.

Solution (Summary)

$$P(x) = \sum_{k=0}^{2} f(x_k) L_k(x)$$

$$= \frac{1}{3} (x - 2.75)(x - 4) - \frac{64}{165} (x - 2)(x - 4) + \frac{1}{10} (x - 2)(x - 2.75)$$

$$= \frac{1}{22} x^2 - \frac{35}{88} x + \frac{49}{44}$$

◆ Return to Second Lagrange Interpolating Polynomial Example

