

Analisis Kompleksitas

Tim Olimpiade Komputer Indonesia

Pendahuluan

Melalui dokumen ini, kalian akan:

- Memahami konsep analisis kompleksitas.
- Mampu menganalisis kompleksitas untuk memperkirakan runtime eksekusi program.

Bagian 1

Perkenalan Analisis Algoritma

Analisis Algoritma

- Diberikan dua algoritma untuk menyelesaikan permasalahan yang sama. Algoritma mana yang lebih cepat?
- Pengukuran seberapa cepatnya suatu algoritma biasa dinyatakan dalam kompleksitas waktu.
- Kompleksitas waktu: banyaknya komputasi yang perlu dilakukan dari awal eksekusi sampai berakhirnya algoritma.

Contoh Soal: Membajak Sawah

Deskripsi:

- Pak Dengklek memiliki N bibit tanaman yang akan ia semai di sawahnya.
- Untuk itu, ia akan membajak sawahnya supaya sawahnya bisa memuat N tanaman.
- Sawah yang akan dibajak harus memiliki bentuk persegi panjang, tersusun atas R baris dan C kolom petak-petak.
 Setiap petak bisa memuat maksimal sebuah tanaman.
- Tentukan nilai R dan C supaya semua petak yang ada ditanami tanaman!
- Jika ada lebih dari satu kemungkinan jawaban, minimalkan selisih R dengan C.
- Jika masih ada lebih dari satu kemungkinan jawaban, cetak yang mana saja.

Contoh Soal: Membajak Sawah (lanj.)

Batasan:

• $1 \le N \le 10^9$.

Format Masukan:

• Sebuah baris berisi bilangan bulat, yaitu N.

Format Keluaran:

• Sebuah baris berisi dua bilangan bulat, yaitu R dan C.

Contoh Soal: Membajak Sawah (lanj.)

Contoh Masukan

35

Contoh Keluaran

7 5

Solusi 1: Coba Semua Kemungkinan

- Untuk setiap R dan C yang mungkin, coba hitung apakah $R \times C$ sama dengan N.
- Jika ya, cari yang selisih |R C| minimal.
- Cukup mencoba untuk $1 \le R \le N$ dan $1 \le C \le N$.

Solusi 1: Coba Semua Kemungkinan (lanj.)

Berikut implementasinya:

```
#include <cstdio>
#include <cmath>
using namespace std;
int main() {
  int N, R, C;
  scanf("%d", &N);
  R = 1;
  C = N:
  for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {</pre>
      if (i*j == N) {
        if (abs(R-C) > abs(i-j)) {
          R = i;
          C = j;
  printf("%d %d\n", R, C);
```

Solusi 1: Coba Semua Kemungkinan (lanj.)

- Fungsi abs adalah fungsi yang disediakan STL cmath untuk mengambil harga mutlak.
- Misalkan untuk N=100, secara kasar diperlukan 100×100 komputasi untuk mencari nilai R dan C yang tepat.
- Jadi secara umum bisa diperkirakan bahwa untuk suatu nilai N, diperlukan N^2 komputasi.
- Solusi ini dikatakan memiliki kompleksitas waktu sebesar $O(N^2)$ (dibaca "O-N-kuadrat").
- Pertanyaan: apakah solusi ini cukup cepat? Bagaimana jika $N=10^9$?

Cerita Sampingan: Meramal Waktu Eksekusi

- Terdapat sebuah perkiraan kasar bahwa komputer mampu melakukan 100 juta (10⁸) komputasi dalam 1 detik.
- Tentu saja, perkiraan ini masih sangat kasar. Waktu untuk melakukan 10⁸ operasi penjumlahan tidak sama dengan waktu untuk melakukan 10⁸ operasi modulo.
- Jenis bahasa pemrograman juga mempengaruhi waktu eksekusi algoritma, misalnya bahasa C cenderung lebih cepat daripada Java.
- Bagaimanapun juga, konvensi ini umum digunakan pada dunia pemrograman kompetitif dan sesuai untuk bahasa Pascal, C, dan C++.

Solusi 1: Terlalu lambat!

- Untuk N yang bisa mencapai 10^9 , diperlukan sekitar $10^{18}/10^8 = 10^{10}$ detik.
- Waktu tersebut setara dengan sekitar 317 tahun!
- Adakah solusi lebih efisien?

Solusi 2: Coba Semua Kemungkinan R

- Tidak perlu memeriksa semua R dan C, cukup coba saja semua kemungkinan R untuk 1 < R < N.
- Jika untuk suatu nilai R, diketahui N habis dibagi R, maka C dipastikan ada, yaitu N/R.

Solusi 2: Coba Semua Kemungkinan *R* (lanj.)

Bagian implementasi:

```
scanf("%d", &N);
R = 1;
C = N;
for (int i = 1; i <= N; i++) {
   if (N % i == 0) {
      int j = N / i;
      if (abs(R-C) > abs(i-j)) {
        R = i;
        C = j;
    }
}
```


Solusi 2: Coba Semua Kemungkinan R (lanj.)

- Solusi ini bekerja dengan lebih cepat.
- Untuk suatu nilai N, kasarnya cukup dilakukan N komputasi untuk mencari nilai R dan C yang tepat.
- Solusi ini dikatakan memiliki kompleksitas waktu sebesar O(N).
- Untuk $N = 10^9$, diperlukan sekitar 10 detik eksekusi algoritma.

Solusi 3: Batasi R sampai \sqrt{N}

- Persoalan ini sebenarnya meminta kita memfaktorkan N, supaya dua bilangan hasil faktorisasi sedekat mungkin.
- Untuk memeriksa seluruh faktor bilangan, cukup batasi sampai \sqrt{N} saja.
- Contoh: untuk N = 100, faktorisasi yang mungkin adalah:
 - 1 × 100
 - 2 × 50
 - 4 × 25
 - 5 × 20
 - 10 × 10
 - 20 × 5
 - 25 × 4
 - ... (faktorisasi selanjutnya hanya mengulang yang sudah ada)

Solusi 3: Batasi R sampai \sqrt{N} (lanj.)

Bagian implementasi:

```
scanf("%d", &N);
R = 1;
C = N:
int i = 1;
while (i*i <= N) {</pre>
  if (N % i == 0) {
    int j = N / i;
    if (abs(R-C) > abs(i-j)) {
      R = i;
      C = j;
  i++;
printf("%d %d\n", R, C);
```


Solusi 3: Batasi R sampai \sqrt{N} (lanj.)

- Kompleksitas solusi menjadi hanya $O(\sqrt{N})$.
- Untuk $N=10^9$, hanya diperlukan sekitar 32.000 komputasi, jauh di bawah 100 juta.
- Solusi ini bekerja dengan cepat bahkan untuk N yang besar.

Ulasan Contoh Soal

- Untuk menyelesaikan suatu permasalahan, bisa jadi ada beberapa solusi, masing-masing dengan kompleksitasnya tersendiri.
- Dari ketiga solusi yang telah dijelaskan, solusi ketiga sudah pasti paling diharapkan untuk bisa menyelesaikan permasalahan.
- Untuk mengukur seberapa efisien suatu algoritma, bisa digunakan notasi Big-Oh untuk kompleksitas waktu.

Notasi Big-Oh

- Biasa digunakan pada ilmu komputer untuk menyatakan pertumbuhan nilai suatu fungsi terhadap ukuran masukan yang diberikan.
- Dalam kasus ini, fungsi yang dimaksud adalah fungsi banyaknya komputasi yang diperlukan jika diberikan suatu ukuran masukan.
- Kita tidak akan menggali terlalu dalam tentang hal-hal matematis di balik notasi Big-Oh ini, hanya kulit luarnya saja.

Aturan Sederhana Notasi Big-Oh

Konstanta bisa diabaikan.

Contoh: $O(3N^2)$ bisa ditulis $O(N^2)$ saja.

Alasan: kita hanya tertarik dengan pertumbuhan fungsinya,

bukan nilai fungsi sebenarnya.

2. Cukup ambil suku yang mendominasi.

Contoh: $O(N^3 + N^2)$ bisa ditulis $O(N^3)$ saja.

Alasan: untuk N yang besar, suku N^3 akan jauh lebih besar daripada suku N^2 , sehingga N^2 menjadi tidak signifikan.

Kelompok Kompleksitas

Biasanya kompleksitas dikelompokkan menurut kelasnya sebagai berikut:

- Constant: O(1)
 Komputasi yang dilakukan tidak bergantung pada besarnya input. Contoh: program untuk mencari nilai harga mutlak suatu angka.
- Logarithmic: O(log N)
 Komputasi yang dilakukan proporsional terhadap nilai logaritma dari input.

Kelompok Kompleksitas (lanj.)

- Linear: O(N)
 Komputasi yang dilakukan proporsional secara linier terhadap input.
- Polynomial: $O(\sqrt{N})$, $O(N^2)$, $O(N^3)$, ... Komputasi yang dilakukan proporsional secara polinomial terhadap input.
- Exponential: O(N!), O(2^N), O(N^N),...
 Komputasi yang dilakukan proporsional secara eksponensial terhadap input. Biasanya dihindari karena terlalu lambat.

Kelompok Kompleksitas (lanj.)

Menghitung Kompleksitas

Bagian 2

Menghitung Kompleksitas

- Wajib dilakukan sebelum mengimplementasikan suatu algoritma.
- Tujuannya untuk memperkirakan apakah solusi ini cukup efisien untuk menyelesaikan persoalan yang ada.
- Dengan sedikit latihan, Anda dapat menghitung kompleksitas dari algoritma sederhana.

Contoh 1: Soal

Hitung kompleksitas waktu potongan program berikut:

```
total = 0;
for (int i = 1; i <= N; i++) {
   for (int j = 1; j <= N; j++) {
      total++;
   }
}</pre>
```


Contoh 1: Jawaban

• Sederhana, jawabannya adalah $O(N^2)$.

Contoh 2: Soal

Hitung kompleksitas waktu potongan program berikut:

```
total = 0;
for (int i = 1; i <= N; i++) {
  for (int j = i; j <= N; j++) { // j dimulai dari i
     total++;
  }
}</pre>
```


Contoh 2: Jawaban

- Banyaknya operasi "total := total + 1" yang dilakukan adalah $N+(N-1)+(N-2)+...+2+1=\frac{N(N+1)}{2}$.
- Kompleksitasnya $O\left(\frac{N(N+1)}{2}\right)$, tetapi cukup ditulis $O(N^2)$ saja.

Contoh 3: Soal

Hitung kompleksitas waktu potongan program berikut:

```
total = 0;
for (int i = 1; i <= N; i++) {
   for (int j = 1; j <= M; j++) {
      total++;
   }
}</pre>
```


Contoh 3: Jawaban

- Kali ini terdapat dua variabel pada input, yaitu N dan M.
- Kompleksitasnya adalah O(NM).

Contoh 4: Soal

Hitung kompleksitas waktu potongan program berikut:

```
val = N;
while (val > 0) {
  val /= 3; // Setara "val = val / 3"
}
```


Contoh 4: Jawaban

- Banyaknya operasi yang dilaksanakan setara dengan panjang dari barisan $\frac{N}{3}, \frac{N}{9}, \frac{N}{27}, ..., 1$.
- Panjang dari barisan tersebut sebenarnya adalah logaritma basis 3 dari N, atau bisa dituliskan kompleksitasnya O(log₃ N).
- Namun sebenarnya $\log_3 N = \frac{\log N}{\log 3} = \frac{1}{\log 3} \log N$.
- Berhubung $\frac{1}{\log 3}$ adalah konstanta, jadi cukup ditulis $O(\log N)$ saja.

Contoh 5: Soal

Hitung kompleksitas waktu potongan program berikut:

```
counter = 1;
while (counter*counter < N) {
  counter++;
}
```


Contoh 5: Jawaban

- Nilai variabel counter akan terus bertambah, hingga kuadratnya lebih dari N.
- Misalkan jika N = 81, maka counter akan berhenti setelah nilainya melebihi 9.
- Kompleksitas sebenarnya adalah $O(\sqrt{N})$.

Penutup

- Pelajari lebih lanjut tentang perhitungan kompleksitas melalui latihan yang diberikan.
- Terdapat notasi lainnya yang tidak kita bahas di sini, seperti Big-Theta (Θ), Big-Omega (Ω), Little-Oh (σ), dan sebagainya. Silakan Anda pelajari jika tertarik untuk mengetahui lebih lanjut.

