

MSRA @ ILSVRC & COCO 2015 competitions

Kaiming He

with Xiangyu Zhang, Shaoqing Ren, Jifeng Dai, & Jian Sun Microsoft Research Asia (MSRA)

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ImageNet Classification top-5 error (%)

PASCAL VOC 2007 Object Detection mAP (%)

AlexNet, 8 layers (ILSVRC 2012)

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

ResNet, 152 layers

(there was an animation here)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Research

Revolution of Depth

ResNet, 152 layers

(there was an animation here)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Research

Revolution of Depth

ResNet, 152 layers

(there was an animation here)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Research

Revolution of Depth

ResNet, 152 layers

(there was an animation here)

Is learning better networks as simple as stacking more layers?

Simply stacking layers?

- Plain nets: stacking 3x3 conv layers...
- 56-layer net has higher training error and test error than 20-layer net

Simply stacking layers?

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

a shallower model (18 layers)

- A deeper model should not have higher training error
- A solution *by construction*:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Plaint net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)

Residual net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)hope the 2 weight layers fit F(x)let H(x) = F(x) + x

• F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Related Works – Residual Representations

- VLAD & Fisher Vector [Jegou et al 2010], [Perronnin et al 2007]
 - Encoding residual vectors; powerful shallower representations.
- Product Quantization (IVF-ADC) [Jegou et al 2011]
 - Quantizing residual vectors; efficient nearest-neighbor search.
- MultiGrid & Hierarchical Precondition [Briggs, et al 2000], [Szeliski 1990, 2006]
 - Solving residual sub-problems; efficient PDE solvers.

Network "Design"

- Keep it simple
- Our basic design (VGG-style)
 - all 3x3 conv (almost)
 - spatial size /2 => # filters x2
 - Simple design; just deep!
- Other remarks:
 - no max pooling (almost)
 - no hidden fc
 - no dropout

Training

All plain/residual nets are trained from scratch

All plain/residual nets use Batch Normalization

Standard hyper-parameters & augmentation

CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

ImageNet experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

ImageNet experiments

A practical design of going deeper

ImageNet experiments

ImageNet Classification top-5 error (%)

Just classification?

A treasure from ImageNet is on learning features.

"Features matter." (quote [Girshick et al. 2014], the R-CNN paper)

task	2nd-place winner	MSRA	margin (relative)
ImageNet Localization (top-5 error)	12.0	9.0	27%
ImageNet Detection (mAP@.5)	53.6 abs 8.5%	olute 62.1	16%
COCO Detection (mAP@.5:.95)	33.5	37.3	11%
COCO Segmentation (mAP@.5:.95)	25.1	28.2	12%

- Our results are all based on ResNet-101
- Our features are well transferrable

Object Detection (brief)

Simply "Faster R-CNN + ResNet"

Faster R-CNN baseline	mAP@.5	mAP@.5:.95
VGG-16	41.5	21.5
ResNet-101	48.4	27.2

COCO detection results

(ResNet has 28% relative gain)

Object Detection (brief)

- RPN learns proposals by extremely deep nets
 - We use only 300 proposals (no SS/EB/MCG!)
- Add what is just missing in Faster R-CNN...
 - Iterative localization
 - Context modeling
 - Multi-scale testing
- All are based on CNN features; all are end-to-end (train and/or inference)
- All benefit more from deeper features cumulative gains!

Our results on COCO – too many objects, let's check carefully!

*the original image is from the COCO dataset

*the original image is from the COCO dataset

*the original image is from the COCO dataset

Instance Segmentation (brief)

input

Conclusions

Deeper is still better

"Features matter"!

Faster R-CNN is just amazing

MSRA team

Xiangyu Zhang

Shaoqing Ren

Jifeng Dai

Jian Sun