Региональный оператор детского технопарка «Кванториум» Государственное автономное образовательное учреждение дополнительного профессионального образования Владимирской области «Владимирский институт развития образования имени Л.И. Новиковой», детский технопарк «Кванториум-33»

ИНЖЕНЕРНАЯ КНИГА

Соревнования: «Кванториада 2022»

Название команды: «Husky»

Разработала команда: Екименков Александр Панин Матвей Майоров Дмитрий Наставник: Коршунов А.И.

Содержание

Оглавление

Глоссарий	3
Глава 1. Концепция	4
1.1 Концепция соревнований	4
1.2 Концепция проекта	6
Глава 2. Конструкция	7
2.1 Корпус	7
2.2 Ходовая часть	8
2.3 Роторный снегоочиститель	8
Глава 3. Электроника	9
3.1 Система управления низкого уровня	9
3.1.1 Главный контроллер	9
3.1.2 Драйвер управления двигателями постоянного тока	12
3.2 Система управления высокого уровня	14
3.2.1 Микрокомпьютер	14
3.2.2 Лазерный дальномер	15
Принцип работы датчика	15
3.2.3 Камеры	16
3.2.4 GPS модуль	17
3.3 Питание	18
3.4 Система управления роботом	19
Глава 4. Программная реализация	20

Глоссарий

АКБ - аккумуляторная батарея РС-роторный снегоочиститель

Глава 1. Концепция

1.1 Концепция соревнований

Преамбула:

"

Несмотря на технологический прорыв последних десятилетий, до сих пор не решены многие вопросы, связанные с суровыми климатическими условиями. Проблема климатических условий особо актуальна для Российской Федерации из-за территориальных масштабов и разнообразия климатических зон. Многие регионы нашей страны находятся в местах с суровыми зимами, где и житель города миллионника, и житель районного центра с населением менее 1000 человек – каждый сталкивается с последствиями плохих погодных условий (гололеды, снежные заносы, экстремольное калинестворовающей и сымжению проходимости дорог, а в некоторых случаях даже к физическим травмам. Сами травмы негативно влияют на качество жизни и затраты конкретных людей, а косвенно – на потенциальные экономические издержки региона. Только в России, по статистике, травматизм, связанный с этими ситуациями, является одной из причин сезонной временной нетрудоспособности населения (травматизм изза гололеда составляет порядка 15 %). экстремальное количество осадков и т.д.)."

Задание заочного отборочного этапа конкурса:

Разработать роботизированную транспортную платформу с дистанционным управлением, способную эффективно бороться с гололедом и снежными заносами.

В регламенте прописаны следующие требование к комплексу, разделенные на категории:

Назначение: платформа предназначена для борьбы с гололедом и снежными заносами.

Функциональные требования:

- 1. Дистанционное управление платформой при отсутствии прямого визуального контакта оператора с платформой.
- 2. Максимальная безопасность используемого способа передвижения для окружающей среды, городской инфраструктуры, дорожных покрытий.
- 3. Наличие систем предупреждения и/или систем безопасности для прохожих, находящихся рядом с платформой.
- 4. Возможность бороться с наледями на дорожном покрытии, а также со снежным покровом различной высоты.
- 5. Движение по дорогам с уклоном, составляющим не менее 10 %.
- 6. Преодоление платформой единичных ступеней высотой минимум 12 см.

Технические требования:

• Время работы платформы – не менее 120 мин. В режиме активной работы - не менее 60 минут. Радиус действия дистанционного управления и систем связи с устройством, в городских условиях – не менее 200 метров Устройство не должно иметь острых краёв и различных конструктивных частей, способных запутаться при работе платформы или взаимодействии с окружающей средой. Минимальный размер платформы 40 см х 30см х 30см (длина, ширина, высота), максимальный размер платформы 70 см х 60см х 60см. Платформа должна иметь массу не более 15 кг.

Требования к конструктивному исполнению не предъявляются. Требования к наличию и типу источника питания или способам приведения в действие не предъявляются. Требования к материалам изготовления платформы Международный конкурс детских инженерных команд «Городская роботизированная платформа» не предъявляются. Требования к составу

комплектующих (деталей и составных частей) и происхождению комплектующих не предъявляются. Использование тепловых двигателей в качестве источника механической энергии запрещено.

1.2 Концепция проекта

Целью проекта является разработка программно-аппаратного комплекса для патрулирования территории и мониторинга окружающей среды в автономном режиме с учетом требований регламента к устройству.

Для достижения указанной цели необходимо решить следующие задачи:

- Подобрать комплектующие для приведения комплекса в движение;
- Разработать ходовую часть комплекса на основе используемой схемы передвижения и комплектующих;
- Изучить способы локальной и глобальной навигации платформы;
- Подобрать комплектующие для навигации и автономной работы комплекса;
- Разработать схему питания комплекса;
- Разработать программное обеспечение для автономной работы комплекса.
- Разработать программное обеспечение для взаимодействия с комплексом;

Глава 2. Конструкция

Конструкция робота состоит из:

- Корпус робота;
- Ходовая часть;
- Роторный снегоочиститель;

2.1 Корпус

Корпус робота состоит из фанеры (10 частей).

Части корпуса склеены термоклеем.

2.2 Ходовая часть

Ходовая часть робота состоит из:

- Моторов
- Крепления для моторов
- Колес

Моторы вставляются в крепления для моторов с помощью болтов M2x4. А крепления крепятся к корпусу робота. Колеса крепятся к моторам с помощью ступиц.

2.3 Роторный снегоочиститель

Роторный снегоочиститель состоит из:

- Корпуса
- Шнека
- Моторов
- Трубы для выброса снега

• Лопастей для выброса снега.

Корпус роторного снегоочистителя сделан из фанерных листов толщеной 6мм.

Труба для выброса снега распечатана на 3D принтере.

Корпус склеен с помощью клеевого пистолета. На задней части РС сделано отверстие для трубы. К трубе прикручен мотор со скоростью 120 об/мин. С помощью этого мотора в трубе вращаются лопасти, которые выкидывают снег из трубы.

Так же в боковых частях РС сделаны отверстия для шнека. На левой боковой части прикреплен червячный мотор, с помощью которого вращается шнек. (Шнек перемалывает снег, из-за того, что виток имеет специальную форму, весь перемолотый снег направляется к трубе).

Глава 3. Электроника.

3.1 Система управления низкого уровня

3.1.1 Главный контроллер.

Главным контроллером является Arduino mega.

Arduino Mega 2560 – это микроконтроллерная плата на базе чипа ATmega2560.

Сердцем платформы Arduino Mega является 8-битный микроконтроллер семейства AVR — ATmega2560 с тактовой частотой 16 МГц. Контроллер предоставляет 256 КБ Flash-памяти для хранения прошивки, 8 КБ оперативной памяти SRAM и 4 КБ энергонезависимой памяти EEPROM для хранения данных.

Микроконтроллер ATmega16U2

Микроконтроллер ATmega16U2 обеспечивает связь микроконтроллера ATmega2560 с USB-портом компьютера. При подключении к ПК Arduino Mega 2560 определяется как виртуальный СОМпорт.

Светодиодная индикация

Имя светодиода	Назначение
RX и TX	Мигают при обмене данными между Arduino Mega 2560 и ПК.
L	Пользовательский светодиод подключённый к 13 пину микроконтроллера. При высоком уровне светодиод включается, при низком – выключается.
ON	Наличие питания на Arduino Mega.

Разъём USB

Разъём USB Туре-В для питания и прошивки платформы Arduino Mega 2560 с помощью компьютера.

Разъём внешнего питания

Разъём для подключения внешнего питания от 7 В до 12 В.

Кнопка сброса

Аналог кнопки RESET обычного компьютера. Служит для сброса микроконтроллера.

Регулятор напряжения 5 В

Линейный понижающий регулятор напряжения LD1117S50CTR с выходом 5 вольт обеспечивает питание микроконтроллеров ATmega2560, ATmega16U2

и другой логики платформы. Максимальный выходной ток составляет 800 мA.

Регулятор напряжения 3,3 В

Линейный понижающий регулятор напряжения LP2985-33DBVR с выходом 3,3 вольта. Линия выведена только на пин 3V3. Максимальный выходной ток составляет 150 мА.

Разъём ICSP

ICSP-разъём предназначен для внутрисхемного программирования микроконтроллера ATmega2560. Также с применением библиотеки SPI данные выводы могут осуществлять связь с платами расширения по интерфейсу SPI. Линии SPI выведены на 6-контактный разъём, а также продублированы на цифровых пинах 50(MISO), 51(MOSI), 52(SCK) и 53(SS).

Разъём ICSP1

ICSP-разъём для внутрисхемного программирования микроконтроллера ATmega16U2.

Распиновка

3.1.2 Драйвер управления двигателями постоянного тока

Для управления электродвигателями постоянного тока используется драйвер L298N.

Технические характеристики приведены в таблице ниже

Наименование	Значение
Размер платы	43 мм х 43,75 мм
Питание платы	5 B
Питание двигателей	2.5 – 46 B
Рабочий ток на канал	до 2А
Логический "0" управляющего	01.5 B
напряжения	
Логическая "1" управляющего	2,37 B
напряжения	
Максимальная частота	до 5 кГц
управляющего ШИМ	
Защита от перегрева	Есть

L298N содержит сразу два драйвера для управления электродвигателями (четыре независимых канала, объединенных в две пары). Имеет две пары входов для управляющих сигналов и две пары выходов для подключения электромоторов. Кроме того, у L298N есть два входа для включения каждого из драйверов. Эти входы используются для управления скоростью вращения

электромоторов с помощью широтно-импульсной модуляции сигнала (ШИМ).

Обозначение	Наименование
VCC	положительный контакт питания
	платы (управляющей логики) 5В
5-36V	положительный контакт питания
	электродвигателей 5 – 36 В
GND	отрицательный контакт питания
+5V	контакт, на котором формируется 5
	вольт встроенным в плату
	стабилизатором напряжения,
	отключается размыкание контактов
	помеченные JUMPER_5
IN1, IN2, IN3, IN4	управление направлением вращения
	и скоростью двигателей

L298N обеспечивает разделение электропитания для контроллера и для управляемых им двигателей, что позволяет подключить электродвигатели с большим напряжением питания чем у контроллера. Разделение электропитания микросхем и электродвигателей может быть также необходимо для уменьшения помех, вызванных бросками напряжения, связанными с работой моторов. Одна микросхема L298N способна управлять двумя двигателями по 2A каждый двигатель, а если задействовать параллельное включение для одного двигателя, то можно поднять максимальный ток до 4A.

3.2 Система управления высокого уровня

3.2.1 Микрокомпьютер

Для обработки большого количества данных необходим вычислительный модуль способный выполнять большинство расчётов непосредственно на борту. В качестве такого модуля выбрана аппаратная платформа Raspberry Pi 3 Model B+

Наименование характеристики	Значение характеристики
Процессор	4-ядерный 64-битный процессор с
	частотой 1.4ГГц
Видеоускоритель	Графический 2-ядерный сопроцессор
	Video Core IV® Multimedia;
Оперативная память	1 ГБ SDRAM LPDDR2
Постоянная память	слот для карты памяти MicroSD
Wi-Fi/Bluetooth	2.4 ГГц и 5 ГГц IEEE 802.11.b/g/n/ac WI-FI
	и Bluetooth 4.2 Low Energy (BLE),
	обеспечиваемые микросхемой Cypress
	CYW43455
Размеры	85.6 мм х 56.5 мм х 17 мм

Здесь представлена распиновка raspberry pi.

3.2.2 Дальномер

В нашем роботе использован инфракрасный дальномер SHARP 2Y0A21 от компании SHARP.

Принцип работы датчика

Принцип работы оптического датчика Sharp заключается в том, что лазерный луч отражается от препятствия и попадает на матрицу в разные её места, в зависимости от того, на каком расстоянии произошло отражение.

Размеры SHARP 2Y0A21

3.2.3 Камеры

На нашем роботе установлены 3 камеры.

Одна камера стоит на ковше, вторая и третья камеры расположены сверху робота.

Камера на ковше от кампании Logitech. Эта камера подключена к Raspberry Одна камера сверху робота. Эта камера подключается к Raspberry.

Вторая камера подключена к передатчику TS832, через который изображение выводится на экран.

Технические данные

Матрица: 1/3" CMOS

• Разрешение: 1200ТВЛ

• Соотношение сторон: 4:3

• Телевизионная система: PAL и NTSC (переключаемая)

• Экранное меню (menu OSD): поддерживается

• Синхронизация: внутренняя

• Электронный затвор: PAL: 1/50~100000; NTSC: 1/60~100000

• Сигнал/шум (S/N ratio): >52дБ (АРУ выключен)

• Видеовыход: CVBS

• Объектив: 1,8 мм / F2.5

• Автоматическая регулировка усиления: есть

• BLC: есть

• WDR: Global WDR

• Система шумоподавления: 3D DNR

Размер: 14х14х10 мм

• Питание: 3,8 В - 18 В

• Диапазон рабочих температур: от -20°C до +60°C

Диапазон влажности: 20% - 80%

• Bec: 1,7 г

3.2.4 GPS модуль

Для получение географических координат используется модуль Ublox M8N.

Модуль поддерживает следующие системы геопозициорования: GPS, Galileo, GLONASS,

BeiDou. Подключается устройство напрямую к микроконтроллеру Arduino.

3.3 Питание

Бортовым источником напряжения комплекса служит LiPo аккумуляторная батарея, имеющая следующие характеристики:

Наименование	Значение
Тип ячеек	LiPo
Количество ячеек	4 шт.
Конфигурация соединения ячеек	4S (4 ячейки соединены последовательно)
Емкость одной батареи	5000 mAh
Заявленная токоотдача	60С (числовой коэффициент умножается на емкость батареи)

Расчет времени работы комплекса при пиковой нагрузке на каждом из компонентов*:

Наименование	Токопотребление, Ампер
Драйвера двигателей	3+3
Arduino	0.04+ 0.04+0.07
GPS Ublox Neo M8N	0.04
SHARP 2y0a21	0.03
DHT22	0.0025
Моторы РС	0.5

^{*} расчет ведется без учета падения на проводниках, КПД преобразователей и т.д., т.е. при идеальных условиях.

Время работы (h) = Емкость батареи (Ah) / Суммарное токопотребление компонентов (A)

5/(3+3+0.04+0.04+0.07+0.04+0.03+0.0025+0.5) \approx 0,74 часа \approx 44,4 мин(без камеры)

Наименование	Токопотребление, Ампер
Raspberry pi3	2
Камеры	1,5

5/3,5≈1,42часа≈86 минут (только камеры с Raspberry, они питаются от другой АКБ)

3.4 Система управления роботом.

Робот управляется с помощью пульта FlySky FS-I6. В самом роботе стоит приемник FlySky FS-iA6B. Приемник подключен к Arduino Mega. Контроллер получает сигнал i-bus и преобразовывает полученные данные в PWM сигнал. Сигнал передается на драйверы.

Характеристика:

• Каналы: 6 каналов

• Диапазон RF: 2.40-2.48ghz

• Полоса пропускания: 500kHz

• Количество каналов: 142

• ВЧ-мощность: меньше чем 20dВm

• 2.4GHz система: AFHDS 2a и AFHDS

• Тип кода: GFSK

• Чувствительность: 1024

• ЦФК порт: ps2 выход: м.д.

• Питание: 6 Вольт (4 шт АА батареек)

• Режим дисплея: полупрозрачный STN положительный тип, 128 * 64 точечная матрица va73 * 39 мм, белая подсветка.

• Габариты: 174х89х190 мм

• Сертификат: се0678. ГЦК

• Память моделей: 20

• Порядок каналов: Элероны-ch1, PB-ch2, Газ-ch3, PH-CH4. Каналы 5 и 6 могут использоваться для назначения на другие функции.

Глава 4. Программная реализация

У проекта есть публичный репозиторий

Это код написанный в Arduino IDE, с помощью которого мы считываем показания с датчика температуры DHT 22, с GPS трекера и дальномера Sharp.

Программа 1.

#include <TinyGPSPlus.h>

#include <SoftwareSerial.h>

#include "DHT.h"

#define DHTPIN 2

int IRpin = 5;

#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

```
static const int RXPin = 8, TXPin = 9;
static const uint32_t GPSBaud = 9600;
TinyGPSPlus gps;
SoftwareSerial ss(RXPin, TXPin);
void setup()
 Serial.begin(9600);
 ss.begin(GPSBaud);
 dht.begin();
}
void loop()
{
 String message="";
 float t = dht.readTemperature();
 message = message+String(t)+" ";
 float volts = analogRead(IRpin)*0.0048828125;
 float distance = 65*pow(volts, -1.10);
 message = message+String(distance)+" ";
 String locationdata=String(gps.location.lat());
 message = message+String(locationdata)+" ";
 Serial.println(message);
 delay(2000);
// if (millis() > 5000 && gps.charsProcessed() < 10)
// {
// Serial.println(F("No GPS detected: check wiring."));
// }
```

}

Это код написанный на Python, благодаря нему мы выводим изображение и поверх изображения данные с Arduino UNO(время, даты, координаты, температуру). На роботе разворачивается веб сервер, который транслирует изображение. Используется Flask. Получаемую с сенсоров телеметрию выводим методом наложения на изображение, используем OpenCV метод Puttext.

```
import cv2
import serial
import time
from flask import Flask, render_template, Response, request, redirect, url_for
data='open'
read=" "
data='open'
arduino = serial.Serial('COM14',9600)
cap=cv2.VideoCapture(0)
print("connected camera")
def sendmessage():
    count=0
    global read
    while (count<1):</pre>
        arduino.write(data.encode())
        print ("Send message")
        read=str(arduino.readline())
        print(read)
        time.sleep(1)
        count=count+1
    count=0
app = Flask(__name___)
def gen_frames():
    while True:
        success,frame=cap.read()
        font = cv2.FONT_HERSHEY_COMPLEX
```

```
if read!=" ":
            print("print teleometry")
            cv2.putText(frame, read, (10, 50), font, 0.7, color=(255, 255, 255),
thickness=2)
        if not success:
            break
        else:
            ret, buffer = cv2.imencode('.jpg', frame)
            frame = buffer.tobytes()
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/video feed')
def video_feed():
    return Response(gen_frames(), mimetype='multipart/x-mixed-replace;
boundary=frame')
@app.route('/update_telemetry')
def update_telemetry():
    sendmessage()
    return ("nothing")
if name == " main ":
    app.run(host='0.0.0.0', debug=False)
```

Это код с помощью которого мы получаем картинку и выводим данные с Arduino (время, дата, координаты, температуру).

Создается Html страничка в браузере на которую выводится изображение с данными.