A New Approach to SLAM: Flow-based Learning Paradigm

Hongbin Zha

Key Laboratory of Machine Perception (MOE)
Peking University
zha@cis.pku.edu.cn

Outline

- **◆** Introduction to Flow-Based Learning for SLAM
- **♦** Related Research Topics:
 - ◆ Deep visual odometry using RNN with long-term dependency
 - **♦** Line Flow based SLAM
- **♦** Conclusions

Localization and Mapping

♦ Localization

Odometry of sensors or robot systems

Amazon warehouse robot

Google autonomous driving car

♦ Mapping

3D reconstruction of environments

Google earth

Microsoft Holoportation

SLAM: Simultaneous Localization And Mapping

◆ Tight coupling of **localization** and **mapping**

LSD-SLAM

A fundamental function of dynamic vision systems as for human

History of SLAM Research

- ◆ Make good use of explicit geometrical relationships between consecutive frames: multi-view geometry
- ◆ Enhance the performance by fusing different kinds of sensors
- ◆ Work well in limited environments for specific tasks

Is Current SLAM Good Enough?

◆ Pay Little Attention to Temporal Continuity

- Disregarding spatial-temporal consistency inherent in SLAM
- A big source of accumulated error
- Low robustness for feature tracking

♦ Rely Too Strongly on Pixel Correspondence

- Unable to use scene structures: line, surfaces, super-pixels
- Poor performance on texture-less scenes
- Difficult to transform 3D maps to structural descriptions

Is Current SLAM Good Enough?

♦ High Computational Cost

- Complicated optimization processes
- High demand for hardware
- Limited real-time applications

Learning Approach and SLAM

- Off-line batch training instead of online learning
- Supervised learning requiring massive labeled data
- Tedious parameter tuning
- Poor generalization ability

Critical Problem

- **◆** Lack of Systematic Formulation
 - Require delicate hand-crafted design and ad hoc strategies
 - Various optimizations are proposed for different situations with lots of constraints
 - Poor generalization ability to different situations

What is Flow?

Sensor Data Flow:

- Continuous motion patterns of time varying sequential data
- Explicit representation of temporal consistency of input data
- Comply to regular patterns according to laws of physics
- Make the unpredictable, predictable

THE ECOLOGICAL APPROACH
TO VISUAL PERCEPTION

June J. Gidhon

James Gibson: The Ecological Approach to Visual Perception, 1986

Predictor and Map

◆ Predictor: the engine of efficient SLAM

- Recurrent state inference: a generative model
- Infer the current state from history
- Provide guidance to reduce computational cost

♦ Map: a global, invariant representation

- Implicit/explicit representation of physical world
- Provide global constraints as regularization
- Supervisory information for prediction

Learning: A Systematic Solution

- Learning camera pose in a supervised manner
- Modelling the data flow using RNN
 - Self-supervised, online learning
 - Generative Adversarial Networks (GAN)

Our Related Research

PEKING UNIVERSITY

Outline

- **◆** Introduction to Flow-Based Learning for SLAM
- **♦** Related Research Topics:
 - **◆** Deep visual odometry using RNN with long-term dependency
 - **♦** Line Flow based SLAM
- **♦** Conclusions

Beyond Tracking: Selecting Memory and Refining Poses for Deep Visual Odometry (VO)

- ◆ Fei Xue, Xin Wang, Shunkai Li, Qiuyuan Wang, Junqiu Wang, Hongbin Zha
- ◆ CVPR 2019 (oral presentation)

Problem Definition

- Input
 - Image flow $|I_t I_{t-1}| < \sigma_{small}$
- Output
 - Camera pose $|P_t P_{t-1}| < \alpha_{small}$
- Learning camera pose incrementally
- Sequence modeling using RNN
- Long-term dependency

Learning-based VO Methods: Previous Work

- Mimicking structure from motion
 - Processing image snippets
 - Learning ego-motion jointly with depth
- Modeling the sequence with LSTM
 - Estimating relative camera poses
 - Relying on local historical knowledge

Treat VO as a pure tracking problem

SfmLearner (Zhou, et al., CVPR, 2017)

DeepVO (Wang, et al., ICRA, 2017)

Challenges

Severe error accumulation

$$P_t = \Pi_{i=1}^t P_{i,i-1} * P_0$$

- LSTM cannot remember long-term dependencies
 - Historical knowledge is forgotten
- The contributions of coming observations are ignored
 - New data is supposed to refine previous poses

Our Contributions

- A novel VO framework consisting of Tracking, Remembering and Refining
 - Remembering global information
 - Refining previous results with new observations
- An adaptive and efficient strategy for memory selection
 - Motion-sensitive selection
- A spatial temporal attention mechanism for feature distilling
 - Co-visibility based correlation

System Overview

- Encoder
- Tracking
- Remembering
- Refining

Encoder and Tracking

- Encoder
 - Optical flow estimation
 - Flownet (ICCV, 2015)
- Tracking
 - ConvLSTM (NIPS, 2014)
 - Spatial connections preserved
 - Relative pose estimation

Flownet

Tracking module

Remembering

- Taking hidden state as "local map"
- Hierarchical map representation
- Motion based selection

$$\begin{split} \left\|Rot_{m_{i}} - Rot_{m_{i-1}}\right\|_{2} &\leq \theta_{Rot} \\ \left\|Tans_{m_{i}} - Tans_{m_{i-1}}\right\|_{2} &\leq \theta_{Trans} \end{split}$$

Remembering module

Refining

- Attention-based feature selection
- Propagate refined results using the ConvLSTM O_t^A , $H_t^A = U^A(X_t^A, H_{t-1}^A)$

The last output as guidance

Spatial-Temporal Attention

- Different hidden states contribute discriminatively
 - Temporal attention
- Different visual cues contribute discriminatively
 - Spatial attention

Experiments-KITTI Dataset

Seq 03, 05, 07, 10

Comparison with learning-based methods

							Sequ	ience						
Method	0	3	0	4	C	5	C	6	0	7	1	0	A	vg
	t_{rel}	r_{rel}	t_{rel}	rrel										
UnDeepVO [26]	5.00	6.17	5.49	2.13	3.40	1.50	6.20	1.98	3.15	2.48	10.63	4.65	5.65	3.15
Depth-VO-Feat [24]	15.58	10.69	2.92	2.06	4.94	2.35	5.80	2.07	6.48	3.60	12.45	3.46	7.98	4.04
GeoNet [25]	19.21	9.78	9.09	7.54	20.12	7.67	9.28	4.34	8.27	5.93	20.73	9.04	13.12	7.38
Vid2Depth [27]	27.02	10.39	18.92	1.19	51.13	21.86	58.07	26.83	51.22	36.64	21.54	12.54	37.98	18.24
SfmLearner [23]	10.78	3.92	4.49	5.24	18.67	4.10	25.88	4.80	21.33	6.65	14.33	3.30	15.91	4.67
NeuralBundler [47]	4.51	2.82	2.30	0.87	3.91	1.64	4.60	2.85	3.56	2.39	12.90	3.17	5.30	2.29
Ours	3.32	2.10	2.96	1.76	2.59	1.25	4.93	1.90	3.07	1.76	3.94	1.72	3.47	1.75
DeepVO [28]	8.49	6.89	7.19	6.97	2.62	3.61	5.42	5.82	3.91	4.60	8.11	8.83	5.96	6.12
ESP-VO [29]	6.72	6.46	6.33	6.08	3.35	4.93	7.24	7.29	3.52	5.02	9.77	10.2	6.15	6.66
CL-VO [53]	8.12	3.47	7.57	2.61	5.77	2.00	7.66	1.66	6.79	3.00	8.29	2.94	7.37	2.67
GFS-VO-RNN [30]	6.36	3.62	5.95	2.36	5.85	2.55	14.58	4.98	5.88	2.64	7.44	3.19	7.68	3.22
GFS-VO [30]	5.44	3.32	2.91	1.30	3.27	1.62	8.50	2.74	3.37	2.25	6.32	2.33	4.97	2.26
Ours	3.32	2.10	2.96	1.76	2.59	1.25	4.93	1.90	3.07	1.76	3.94	1.72	3.47	1.75

 t_{rel} : average translational RMSE drift (%) on length from 100, 200 to 800 m. r_{rel} : average rotational RMSE drift ($^{\circ}$ /100m) on length from 100, 200 to 800 m.

Comparison with classic methods

			e mirror and	N	lethod			
C	0	UREV	VISC	02-M	ORB-S	LAM2	ORB-	SLAM2
Seq	eq Ours		[3	2]	[,	1]	(LC) [1]	
	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}
03	3.32	2.10	8.47	8.82	2.28	0.40	2.17	0.39
04	2.96	1.76	4.69	4.49	1.41	0.14	1.07	0.17
05	2.59	1.25	19.22	17.58	13.21	0.22	1.86	0.24
06	4.93	1.90	7.30	6.14	18.68	0.26	4.96	0.18
07	3.07	1.76	23.61	19.11	10.96	0.37	1.87	0.39
10	3.94	1.72	41.56	32.99	3.71	0.30	3.76	0.29
Avg	3.47	1.75	17.48	16.52	8.38	0.28	2.62	0.28

Experiments-TUM-RGBD Dataset

- Baselines
 - ORB-SLAM2, DSO
- Various conditions

Coguenas	Desc.	Ената	ORB-SLAM2	DSO	Ours	Ours	Ours	Ours
Sequence	str/tex/a.m.	Frames	[1]	[5]	(tracking)	(w/o temp atten)	(w/o spat atten)	Ours
fr2/desk	Y/Y/N	2965	0.041	X	0.183	0.164	0.159	0.153
fr2/360_kidnap	Y/Y/N	1431	0.184	0.197	0.313	0.225	0.224	0.208
fr2/pioneer_360	Y/Y/Y	1225	X	X	0.241	0.1338	0.076	0.056
fr2/pioneer_slam3	Y/Y/Y	2544	X	0.737	0.149	0.1065	0.085	0.070
fr2/large_cabinet	Y/N/N	1011	X	X	0.193	0.193	0.177	0.172
fr3/sitting_static	Y/Y/N	707	X	0.082	0.017	0.018	0.017	0.015
fr3/nstr_ntex_near_loop	N/N/N	1125	X	X	0.371	0.195	0.157	0.123
fr3/nstr_tex_near_loop	N/Y/N	1682	0.057	0.093	0.046	0.011	0.010	0.007
fr3/str_ntex_far	Y/N/N	814	X	0.543	0.069	0.047	0.039	0.035
fr3/str_tex_far	Y/Y/N	938	0.018	0.040	0.080	0.049	0.046	0.042

fr3/str_tex_far

fr3/nstr_ntex_near_loop

fr2/pioneer_360

Experiments

fr2/pioneer_360

Take-home Message

- A novel VO framework consisting of Tracking, Remembering and Refining components
- An adaptive and efficient strategy for memory selection
- A spatial temporal attention mechanism for feature distilling

- Future work
 - Focus on learning a unified map representation
 - Build a full SLAM system using neural networks

Outline

- **◆** Introduction to Flow-Based Learning for SLAM
- **♦** Related Research Topics:
 - ◆ Deep visual odometry using RNN with long-term dependency
 - Line Flow based SLAM
- **♦** Conclusions

Line Flow based SLAM

Qiuyuan Wang, Zike Yan, Fei Xue, Wei Ma, Junqiu Wang, Xin Wang, Hongbin Zha wangqiuyuan@pku.edu.cn

Problem Definition

- Input
 - Sequential images
- Output
 - Camera pose
 - 3D line map
- Motivation
 - Line segment
 - Spatial-temporal constraint
 - Localization
 - Texture-less scenes
 - Man-made building

Problem Definition

- Input
 - Sequential images
- Output
 - Camera pose
 - 3D line map
- Motivation
 - Line segment
 - Spatial-temporal constraint
 - Localization
 - Texture-less scenes
 - Man-made building

Corridor

Related Works

 Multi-perspective pose estimation (Miraldo, et al., ECCV 2018)

- Stereo relative pose estimation (Vakhitov et al. ECCV, 2018)
 - Line3D++ (CVIU, 2017)

- Line3D++ (CVIU, 2017)
- Line features for SLAM systems
 - RGBD Odemetry (Lu, et al., ICCV 2015)
 - StructSLAM (Zhou, et al., VT 2015)
 - StereoSLAM (Zhang, et al., T-RO 2015)
 - PL-SLAM (Pumarola, et al., ICRA 2017)

PL-SLAM (Pumarola, et al., ICRA, 2017)

Challenge

- Image blur, occlusion, repetitive structures
- 2D/3D Line segments
 - Extraction
 - Unstable endpoints, easy to broken
 - Matching
 - Similar appearance, heavy computation cost
 - Many-to-many problem due to broken lines
- Real time requirement

Detected line segments in a video

Our Contribution

- Propose a new representation Line flow
 - Sequential line segments
 - Corresponding to the same 3D line segment
 - Encoding
 - Spatial-temporal 2D constraint
 - 3D spatial constraint
- Line flow based SLAM algorithm
 - Bayesian network in an incremental prediction-updating fashion
 - Temporally maintained reliable line coherence

A line flow in a video

System Framework

Prediction

• 3D Spatial constraint • Spatial-temporal constraint • Collinear constraint

$$\mathbf{h}_t^j = \mathbf{K}(\mathbf{R}_t \quad [\mathbf{t}_t]_{\times} \mathbf{R}_t) \mathbf{L}^j$$

$$\mathbf{g}_t^j = \mathbf{l}_t^j + \mathbf{V}_{\tilde{\mathbf{l}}}^j$$

$$\mathbf{l}_t^{\mathbf{j}} = fused(\mathbf{h}_t^{\mathbf{j}}, \mathbf{g}_t^{\mathbf{j}})$$

Pose motion: V_T

Line flow motion: $\mathbf{V}_{\mathbf{i}}^{j}$

Updating

- 2D line segment updating
 - Guided line segment detection
 - Line flow management
- Short term optimization
 - Line re-projection error
 - Pose motion constraint
- Long Term Optimization
 - Keyframe strategy
 - 3D line segment management
 - Local bundle adjustment
 - Loop closure

Line flow triangulation

Experiment

- Platform: PC with 3.6GHz i7-7700 CPU and 16G Memory
- Dataset:
 - TUM RGBD dataset (only use RGB images)
 - 7 Scenes RGBD dataset (only use RGB images)
 - EuRoC dataset (only use left images)
 - Peking university dataset (author-collected dataset)
- Experiment content
 - Line flow evaluation and visualization
 - Localization evaluation
 - Reconstruction evaluation

Localization Evaluation

- TUM RGBD dataset
- 7 Scenes dataset

Method	LF-SLAM	PL-SLAN	A [67]	ORB-SLAM [63]	DSO [†] [18]	DLGO [53]
Dataset	LI-SLAWI	(Re-imp)	(Ori)	OKB-SLAW [03]	D30 [[18]]	DEGO [53]
fr1_xyz	1.14	1.21	1.21	0.90	6.30	5.38
fr1_floor	2.34	3.91	7.59	2.99	5.25	-
fr2_xyz	0.27	0.42	0.43	0.30	0.98	6.53
fr2_360_kidnap	2.57	4.60	3.92	3.81	4.12	80.50
fr2_desk_with_person	0.71	1.49	1.99	0.88	-	41.20
fr3_str_tex_far	0.91	1.00	0.89	0.77	1.36	74.4
fr3_str_tex_near	0.83	1.48	1.25	1.58	7.26	
fr3_nostr_tex_near	1.21	1.39	2.06	1.39	7.30	6.00
fr3_sit_halfsph	1.29	1.91	1.31	1.34	3.57	_
fr3_long_office	1.34	1.40	1.97	3.45	10.11	116.80
fr3_walk_xyz	1.16	1.38	1.54	1.24	14.14	27.50
fr3_walk_halfsph	1.64	1.40	1.60	1.74	31.86	37.4
average	1.28	1.80	2.15	1.70	8.39	43.97

TUM RGBD dataset

Coons no	LF-SLAM	PL-SLAM	ORB-SLAM†		
Scene_no	LF-SLAW	[18] (Re-imp)	[15]		
chess_01	4.15	4.58	5.06		
chess_02	4.21	3.58	4.06		
chess_03	3.60	7.58	7.74		
fire_01	4.12	4.60	4.94		
fire_02	2.26	3.08	3.10		
fire_03	4.15	3.53	3.56		
heads_01	5.99	4.26	6.66		
heads_02	3.66	4.05	4.98		
office_01	9.38	10.10	9.74		
office_02	8.33	12.69	11.44		
office_03	7.95	7.97	11.80		
stairs_01	12.71	19.31	48.04		
stairs_02	9.10	-	-		
stairs_03	5.06	5 =	- :		
stairs_04	6.42	150 150	-		
pumpkin_01	9.91	13.22	13.25		
pumpkin_02	1.97	3.33	4.62		
pumpkin_03	8.03	10.14	10.21		
redkitchen_01	3.92	5.77	6.03		
redkitchen_02	13.04	13.24	15.63		
redkitchen_03	4.87	7.01	7.53		
average	6.33	7.67	9.86		

7 Scenes dataset

Localization Visualization

TUM RGBD dataset

fr2_desk_with_person

fr3_long_office

fr3_nostr_tex_near

fr3_str_tex_far

Peking University Dataset

Take-home Message

- Propose a new concept Line flow
 - Sequential line segments
 - 2D/3D Spatial-temporal constraint
- Line flow based SLAM algorithm
 - Bayesian network in an incremental predictionupdating fashion
 - Temporally maintained reliable line coherence
- Runtime (Comparison with LSD + LBD)
 - LSD + LBD : 37.97 ms
 - LSD + Line flow matching: 21.01 ms
 - Line flow extraction: 16.91 ms
- Total time: 25-30 FPS

Conclusions

- **◆** Dynamic vision is a central topic in computer vision
- **♦** The temporal consistency of sensor data and the incremental characteristics of processing have to be used effectively
- ◆ New learning approaches to dynamic vision have to be developed, which are different from the current deep-learning methodology
- ◆ We should embed in the systems mechanisms such as memory and attentions, as recent cognitive science suggested
- ◆ On-line processing performance will be a critical element, thus requiring powerful on-line learning techniques

Thank you!

