## z/OS 3.2 IBM Education Assistant

Solution Name: RACF AES LDAPBIND Support

Solution Element(s): z/OS Security Server RACF

July 2025



# Agenda

- Trademarks
- Objectives
- Overview
- Usage & Invocation
- Interactions & Dependencies
- Upgrade & Coexistence Considerations
- Installation & Configuration
- Summary
- Appendix

## Trademarks

• See URL <a href="http://www.ibm.com/legal/copytrade.shtml">http://www.ibm.com/legal/copytrade.shtml</a> for a list of trademarks.

## Objectives

**The Challenge:** Prior to this support RACF support for encrypting LDAPBIND credentials via the KEYSMSTR class only supports non-quantum safe algorithms (DES).

**The Objective:** Add support for quantum-safe encryption (AES) for RACF LDAPBIND authentication credentials stored in RACF.

### Overview

### Who (Audience)

 RACF installations who store external authentication credentials in RACF via the LDAPBIND and KEYSMSTR class profiles.

### What (Solution)

 The RACF LDAPBIND and KEYSMSTR class support for storing encrypted authentication credentials is enhanced to support quantum-safe encryption (AES).

### Wow (Benefit / Value, Need Addressed)

- Stronger protection for passwords being shared with other platforms.
- Regulatory compliance.

# Usage & Invocation (1)

Some applications have a need to connect to an external server such as LDAP. When connecting to an external server with stored user ID and password, it's best to encrypt those credentials.

#### **KEYSMSTR Class:**

- RACF/SAF provides functions for encrypting and decrypting passwords for external servers such as LDAP via the KEYSMSTR and LDAPBIND classes.
- Although the KEYSMSTR and LDAPBIND functions are expressed in terms of the LDAP application (and DCE), any type of non-RACF-user password can be encrypted, saved in the RACF database, decrypted and returned top be used as a password to authenticate to the external server.

#### **Encryption Algorithm:**

- The existing KEYSMSTR class functions use the DES encryption algorithm.
- Not NIST approved. Not quantum-safe.

# Usage & Invocation (2)

#### Configuration steps for LDAPBIND / KEYSMSTR class support:

#### 1. Configure the Encryption Key:

- The security administrator configures the encryption key by creating a profile in the KEYSMSTR class with a SSIGNON segment which identifies the key to be used to encrypt passwords
- RDEFINE KEYSMSTR LDAP.BINDPW.KEY SSIGNON(KEYLABEL(ICSF.KEY.LABEL))
- The key material can be masked or encrypted by use of keywords in the SSIGNON segment:
  - KEYMASKED() Key material is provided on RACF command and masked in the RACF DB
  - KEYENCRYPTED() Key material is provided on RACF command and encrypted in ICSF and RACF DB has the ICSF label
  - KEYLABEL() Key material is created outside of RACF and RACF DB has the ICSF label

#### 2. Configure the Application Password:

- Security administrator configures the application password in an application profile in the LDAPBIND class.
- RDEFINE LDAPBIND APPL01.PROFILE PROXY(BINDPW('PASSWORD'))
- This password is encrypted with the key identified in the KEYSMSTR class profile before being stored in RACF.
- When the password is changed the encryption key is also stored with the password to insulate it from a key change.

#### 3. Application retrieves the password:

- Application calls the SAF **R\_dcekey** callable service and asks for the password from a particular profile in the LDAPBIND class (APPL01.PROFILE in the example above).
- The password is decrypted with the key that was used to encrypt it (key from KEYSMSTR class not used for decryption).

# Usage & Invocation (3)

Starting with OA66458 (z/OS 2.5) and z/OS 3.2 base the RACF KEYSMSTR class functions provide an option for quantum-safe encryption with support for the AES encryption algorithm.

#### Using an AES key with the KEYSMSTR class:

- With this support, the security administrator can now use the KEYLABEL field in the SSIGNON segment in the KEYSMSTR class profile to refer to an AES key in ICSF.
- No application changes are required:
  - Applications still call R\_dcekey to retrieve the password in the clear.
  - The password is encrypted with the AES or DES key defined in the KEYSMSTR class profile.

#### Other KEYSMSTR class usage (which now also support AES):

- R\_dcekey functions that encrypt DCE passwords.
  - Uses the DCE.PASSWORD.KEY profile in the KEYSMSTR class.
- R Proxyserv callable service can also use KEYSMSTR class profiles.

# Usage & Invocation (4)

### Steps to exploit AES encryption for KEYSMSTR/LDAPBIND passwords:

#### 1. Confirm AES KEYSMSTR/LDAPBIND support is available:

- Be on 3.2 or apply PTF for OA66458 (z/OS 2.5) and IPL (all systems that share the RACF database)
- A KEYSMSTR AES key should not be configured until all systems sharing the RACF database have the support available.

#### 2. Find all Encrypted Passwords:

- Find all profiles in the LDAPBIND class (SEARCH command or DBUNLOAD utility)
- List each LDAPBIND profile and PROXY segment. RLIST will indicate when the profile contains a BINDPW password (but not the actual password value).
- Determine the external password (your own documentation or call R\_dcekey to recover it in the clear).

#### 3. Define and configure AES key:

- Create AES key in ICSF (REXX script or ICSF panels)
- Update KEYSMSTR class profile to refer to the new AES key

#### 4. Reset the Passwords:

Use the RALTER command to set the BINDPW in each the LDAPBIND profile.

## Interactions & Dependencies

- Software Dependencies
  - ICSF required for AES (and DES) encryption
- Hardware Dependencies
  - None The AES encryption supports both clear keys and secure keys
    - **Note:** If using secure keys, AES key must be marked as protected eligible via the SYMCPACFWRAP(YES) keyword in the CSFKEYs class profile which covers the ICSF key label.
    - Note: DES encryption requires a crypto coprocessor.
- Exploiters
  - Comm Server CSSMTP Email Server
    - Plans to use this service to store encrypted credentials to an email server.

## Upgrade & Coexistence Considerations

- To exploit this solution, all systems in the Plex:
  - Must be at the new z/OS level (or)
  - Must be on z/OS 3.1 or 2.5 with PTFs for APAR OA66458 applied
- Note that when RACF configuration is shared via shared database or is propagated in an RRSF network, behavior on each system depends on the release and service level.
  - When an AES ICSF key label is configured in a KEYSMSTR class profile a system without the RACF AES KEYSMSTR class support introduced by APAR OA66458 will fail when attempting to use the AES key to perform encryption.
  - When RACF data is encrypted with an AES key label configured in a RACF KEYSMSTR class profile a system without the RACF AES KEYSMSTR class support introduced by APAR OA66458 will fail when attempting to use the AES key to perform decryption.
- List any toleration/coexistence APARs/PTFs: None
- List anything that doesn't work the same anymore:
  - When configured, RACF can encrypt LDAPBIND credentials with the AES encryption algorithm.

# Installation & Configuration

- Are any APARs or PTFs needed for enablement? Not on 3.2.
  - Function is also available on 2.5 via PTF for OA66458
- What jobs need to be run? None
- What hardware configuration is required? None
- What PARMLIB statements or members are needed? None
- Are any other system programmer procedures required? No
- Are there any planning considerations? No
- Are any special web deliverables needed? No
- Does installation change any system defaults? No

## Summary

 RACF support for encrypting LDAPBIND credentials via the KEYSMSTR class is enhanced to support AES encryption for stronger protection of external server authentication credentials and regulatory compliance.

# Appendix (1)

#### **IBM** Publications

- SA23-2292-xx Security Server RACF Command Language Reference
  - Update RALTER/RDEFINE commands SSIGNON segment to indicate it can also be used to define encryption keys for profiles in KEYSMSTR class profiles.
- SA23-2289-xx Security Server RACF Security Administrator's Guide
  - Update Chapter "General resources" to add AES key type for KEYSMSTR profiles.

#### **APAR Details:**

https://www.ibm.com/support/pages/apar/OA66458

# Appendix (2)

### Terminology:

- **DES Data Encryption Standard** is as symmetric 56-bit key method of data encryption. It was adopted in 1977 for government agencies to protect sensitive data and was officially retired in 2005.
- AES Advanced Encryption Standard is a symmetric block cipher chosen by the U.S. government to protect classified information. It supports three different key lengths: 128, 192 and 256 bits and was approved for use by the U.S. National Institute of Standards and Technology (NIST) in 2001.