1 Page 132

- 1. If X is an infinite well-orderable set, then by Theorem 1.3 X is equipotent to a unique initial ordinal α , then it is also equipootent to $\alpha+1$. So, there is a one-to-one function from X to $\alpha+1$, the order that defined by a < b iff $f(a) \in f(b)$ induce the well-ordering of $\alpha+1$ on X. So it has another well-ordering, obviously nonisomorphic.
- **4.** By definition we have |A| < h(A), by Lemma 5.4(a) (page 120) we have |A| + |A| < |A| + h(A). We also know that $|A| \le |A| + |A|$, the conclusion follows.

2 Page 136

2.1 Let $L \subset \omega_{\alpha}$ be the set of all limit ordinals less than ω_{α} . Let $g: \omega_{\alpha} \to L$ such that $g(\beta) = \omega \cdot \beta$. Clearly $\omega \cdot \beta$ is a limit ordinal, by Theorem 5.8 on page 122 there is a bijection from $\omega \cdot \beta$ to $\omega \times \beta$, for finite β , we have $|\omega| \cdot |\beta| < |\omega| \cdot |\omega| = |\omega|$ by Theorem 2.1 and property (i) on page 94, and for infinite β as we have $|\omega| \leq |\beta|$, we get $|\omega| \cdot |\beta| \leq |\beta| \cdot |\beta| = |\beta|$ by Theorem 2.1, thus $\omega \cdot \beta \in \omega_{\alpha}$. From item (b) of Exercise 5.7 on page 123 it follows that g is a one-to-one function, therefore by Cantor-Bernstein we get $|L| = |\omega_{\alpha}|$. (the other one-to-one function is identity, as $L \subset \omega_{\alpha}$).

Let $L' \subset \omega_{\alpha}$ be the set of all successor ordinals. Define $h: \omega_{\alpha} \to L'$ by $h(\beta) = \beta + 1$. As for infinite β , $|\beta + 1| = |\beta|$. For finite β , clearly $\beta + 1 \in \omega \subseteq \omega_{\alpha}$, so we have $\beta + 1 \in L'$. This function is clearly one-to-one, therefore again Cantor-Bernstein implies $|\omega_{\alpha}| = |L'|$. As L and L' are disjoint and $L \cup L' = \omega_{\alpha}$, we get $|L| + |L'| = \aleph_{\alpha}$, or equivalently $\aleph_{\alpha} + \aleph_{\alpha} = \aleph_{\alpha}$.

2.4 By Theorem 5.3 on page 120 we have $|\alpha + \beta| = |\alpha \cup \beta| = |\alpha| + |\beta|$. Without loss of generality assume that $\alpha < \beta$, then Corrolary 2.3 implies $|\alpha + \beta| = |\beta| \le \aleph_{\gamma}$. Again suppose $\alpha < \beta$, then $|\alpha \cdot \beta| = |\alpha \times \beta| = |\alpha| \cdot |\beta| = |\beta| < \aleph_{\gamma}$ by Corollary 2.2.

By Exercise 5.16 on page 123 α^{β} is isomorphic to $S(\alpha,\beta)$. For every $f \in S(\alpha,\beta)$ the cardinal of the set $\{\gamma < \beta : f(\gamma) \neq 0\} = X \subset \beta$ is finite. There are $|\alpha - \{0\}|^{|X|}$ such functions (each function in it can be uniquely extended to a function in α^{β} , by setting $f(\gamma) = 0$ for $\gamma \notin X$). As we can write $S(\alpha,\beta)$ as $\bigcup_{X \in [\beta]^{<\omega}} |\alpha|^{|X|}$ and since $|\alpha|^{|X|=n} = |\alpha|$ by exercise 2.3 (a) and (b) we get $|S(\alpha,\beta)| = |[\beta]^{<\omega}| \cdot |\alpha| = |\beta| \cdot |\alpha| < \aleph_{\gamma}$.

- **4.6** We proceed by induction on k, for k=1 it trivially holds. Assume that m < n iff $m \cdot k < n \cdot k$, then by Exercise 4.2 we get $m \cdot k + m < n \cdot k + m$, but as m < n and sum is commutative, again by Exercise 4.2 we get $n \cdot k + m < n \cdot k + n$, which implies $m \cdot k + m < n \cdot k + n$, from definition of multiplication it follows that $m \cdot (k+1) < n \cdot (k+1)$, this completes the proof.
- **2.6** X is a subset of ω_{α} , so it has a well-ordering, and therefore has an order type, say β and so is $\omega_{\alpha} X$, let suppose it has the order type γ . Also assome for contradiction that $|\gamma| < \aleph_{\alpha}$, as $|\beta| < \aleph_{\alpha}$, we can suppose some cardinal $|\gamma|, |\beta| \le \aleph_{\lambda} < \aleph_{\alpha}$. By exercise 2.4 we get $|\beta + \gamma| \le \aleph_{\gamma}$. But by theorem 5.3 on page 120 we get $|\beta + \gamma| = |X \cup (\omega_{\alpha} X)| = |\omega_{\alpha}|$, this implies $\aleph_{\alpha} = \aleph_{\gamma}$, contradiction.