

How to Generate A Gravitational Waveform Template Bank?

Han Wang

June 20th, 2023

Matched Filtering

□ Matched filtering:

- ➤ A widely used method to detect Gravitational Waves(GWs)
- ➤ Match between waveform templates and the signal
- ➤ More correlation, more likely to have such waveform in signal
- ➤ Need to use different templates to find the closest one
 - ightharpoonup Optimal SNR: $\rho_{\text{opt}}^2 = (h \mid h)$
 - > Need a pre-computed template bank

• Inner product:

$$(h \mid g) = 4\Re \int_0^{+\infty} \frac{\tilde{g}^*(f)\tilde{h}(f)}{S_n(f)} df$$

Template Bank

□ Validity

- Any GW signal in its parameter space: $FF \ge M$
- M = 0.97: minimal match

□ Redundancy

- ➤ More computational cost
- ☐ Take Euclidean 2D space as an example:

Too few templates

"Just right"

Inner product:

$$(h \mid g) \equiv 4\Re \int_0^{+\infty} \frac{\tilde{g}^*(f)\tilde{h}(f)}{S_n(f)} df$$

Fitting Factor (FF):

$$FF\left(\lambda^{\mu}\right) = \max_{\lambda^{\mu}} \frac{\left(h(\lambda^{\mu}) \mid h(\lambda^{\mu'})\right)}{\sqrt{\left(h(\lambda^{\mu}) \mid h(\lambda^{\mu})\right)\left(h(\lambda^{\mu'}) \mid h(\lambda^{\mu'})\right)}}$$

Too many templates

Template Bank Generation

- A similar question with covering N-dimensional curved space (*signal manifold*)
- Hard to know optimal placement algorithms (exact metrics), especially higher dimension and curved space
- □ sbank package
 - Stochastic template bank placement
- \square A(n over-)simplified version of sbank
 - ➤ Only kept the key algorithms
 - ➤ Only consider Euclidean(-like) 2D space to make it simple and be illustrated easily

Structure of sbank package

Key Algorithm: Covering

- How should we regard one template as near the other one?
- ➤ Euclidean(-like) 2D space:
 - ➤ Calculate the proper distance between two points
 - > Covering regions are drawn as circles(ellipses)
 - ➤ (Here max_distance=0.1)
- ➤ Real GW template bank:
 - > Overlap:

$$O\left(h(\lambda^{\mu}), h(\lambda^{\mu'})\right) = \frac{\left(h(\lambda^{\mu}) \mid h(\lambda^{\mu'})\right)}{\sqrt{\left(h(\lambda^{\mu}) \mid h(\lambda^{\mu})\right)\left(h(\lambda^{\mu'}) \mid h(\lambda^{\mu'})\right)}}$$

Key Algorithm: Covering

- How can we filter proposals when generating a bank?
 - We are not expected to calculate overlaps between a proposal and ALL templates in a bank
 - ➤ Neighborhood parameter and neighborhood size
 - > Templates are sorted by this parameter
- ➤ Euclidean(-like) 2D space:
 - (e. g.) Neighborhood parameter: the value of x
 - ➤ (Here nhood_size=0.2)
- ➤ Real GW template bank:
 - ➤ Neighborhood parameter:
 - > Tau0: A function of chirp mass and lower frequency
 - Since Chirp mass is a dominant parameter in GW

Further Discussions

- □ Does the distribution of trial points(proposals) effect template distribution?
 - ➤ Almost none. Better distribution can help converge faster
- ➤ Real GW template bank:
 - ➤ Need to consider the physical distribution when stochastically propose a parameter

Metric: [[1/4, 0], [0, 1]]

Metric: [[1/4, 1/4], [1/4, 1]]

`sbank` structure

`sbank_simplified` structure

Matched_filtering
Additional codes for an illustration

