MA-1102

Series & Matrices

Assignment-4-Sol Linear Systems & Eigenvalue Problem

1. Solve the following system by (a) Gauss elimination, and (b) Gauss-Jordan elimination:

(b) We reduce the augmented matrix to row reduced echelon form.

$$\begin{bmatrix} \boxed{1} & 1 & 1 & 1 & -3 & 6 \\ 2 & 3 & 1 & 4 & -9 & 17 \\ 1 & 1 & 1 & 2 & -5 & 8 \\ 2 & 2 & 2 & 3 & -8 & 14 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & 1 & 1 & 1 & -3 & 6 \\ 0 & 1 & -1 & 2 & -3 & 5 \\ 0 & 0 & 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 1 & -2 & 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
\boxed{1} & 0 & 2 & -1 & 0 & 1 \\
0 & \boxed{1} & -1 & 2 & -3 & 5 \\
0 & 0 & 0 & 1 & -2 & 2 \\
0 & 0 & 0 & 1 & -2 & 2
\end{bmatrix}
\rightarrow \begin{bmatrix}
\boxed{1} & 0 & 2 & 0 & -2 & 3 \\
0 & \boxed{1} & -1 & 0 & 1 & 1 \\
0 & 0 & 0 & \boxed{1} & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Find out the row operations used in each step. Since no pivot is on the b portion, the system is consistent. To solve this system, we consider only the pivot rows, ignoring the bottom zero rows. The basis variables are x_1, x_2, x_4 and the free variables are x_3, x_5 . Write $x_3 = \alpha$ and $x_5 = \beta$. Then

$$x_1 = 3 - 2\alpha + 2\beta$$
, $x_2 = 1 + \alpha - \beta$, $x_4 = 2 + 2\beta$.

We can write the solution set as in the following:

$$Sol(A,b) = \left\{ \begin{bmatrix} 3\\1\\0\\2\\0 \end{bmatrix} + \alpha \begin{bmatrix} -2\\1\\1\\0\\0 \end{bmatrix} + \beta \begin{bmatrix} 2\\-1\\0\\2\\1 \end{bmatrix} : \alpha, \beta \in \mathbb{F} \right\}.$$

- 2. Let $A \in \mathbb{F}^{m \times n}$ have columns A_1, \ldots, A_n . Let $b \in \mathbb{F}^m$. Show the following:
 - (a) The equation Ax = 0 has a non-zero solution iff A_1, \ldots, A_n are linearly dependent.
 - (b) The equation Ax = b has at least one solution iff $b \in \text{span}\{A_1, \dots, A_n\}$.
 - (c) The equation Ax = b has at most one solution iff A_1, \ldots, A_n are linearly independent.
 - (d) The equation Ax = b has a unique solution iff rank A = rank[A|b] = number of unknowns.
 - (a) We have scalars $\alpha_1, \ldots, \alpha_n$ not all 0 such that $\sum \alpha_i A_i = 0$. But each $A_i = Ae_i$.
 - So, $A(\sum \alpha_i e_i) = 0$. Here, take $x = \sum \alpha_i e_i$. See that $x \neq 0$.
 - (b) $R(A) = \text{span}\{A_1, \dots, A_n\}$. So, $b \in R(A)$. That is, we have a $x \in \mathbb{F}^{n \times 1}$ such that b = Ax.
 - (c) If Au = b and Av = b, then A(u v) = 0. Let $u v = (\alpha_1, \dots, \alpha_n)^t$. Then A(u v) = 0 can be rewritten as $\alpha_1 A_1 + \dots + \alpha_n A_n = 0$. Since A_1, \dots, A_n are linearly independent, each α_i is 0. That is, u v = 0.
 - (d) If the system Ax = b has a unique solution, then it is a consistent system and $null(A) = \{0\}$. Then rank(A) = rank[A|b] and rank(A) = n null(A) = n = number of unknowns.

- 3. Check if the system is consistent. If so, determine the solution set.
 - (a) $x_1 x_2 + 2x_3 3x_4 = 7$, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 5x_2 + x_3 = -2$, $3x_1 x_2 x_3 + 2x_4 = -2$.

(b)
$$x_1 - x_2 + 2x_3 - 3x_4 = 7$$
, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 - 5x_2 + x_3 = -2$, $3x_1 - x_2 - x_3 + 2x_4 = -2$.

4. Using Gaussian elimination determine the values of $k \in \mathbb{R}$ so that the system of linear equations

$$x + y - z = 1$$
, $2x + 3y + kz = 3$, $x + ky + 3z = 2$

has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

Gaussian elimination on [A|b] yields the matrix $\begin{bmatrix} \boxed{1} & 1 & -1 & 1 \\ 0 & \boxed{1} & k+2 & 1 \\ 0 & 0 & (k+3)(2-k) & 2-k \end{bmatrix}.$

- (a) The system has no solution when (k+3)(2-k)=0 but $2-k\neq 0$, that is, when k=-3.
- (b) It has infinitely many solutions when (k+3)(2-k)=0=2-k, that is, when k=2.
- (c) It has exactly one solution when $(k+3)(2-k) \neq 0$, that is, when $k \neq -3, k \neq 2$.
- 5. Find the eigenvalues and the associated eigenvectors for the matrices given below.

(a)
$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} -2 & 0 & 3 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

(d) Call the matrix A. Its characteristic polynomial is -(2+t)(3-t)(5-t).

So, the eigenvalues are $\lambda = -2, 3, 5$.

For
$$\lambda = -2$$
, $A(a, b, c)^t = -2(a, b, c)^t \Rightarrow -2a + 3c = -2a$, $-2a + 3b = -2b$, $5c = -2c$.

One of the solutions for $(a, b, c)^t$ is $(5, 2, 0)^t$. It is an eigenvector for $\lambda = -2$.

For
$$\lambda = 3$$
, $A(a, b, c)^t = 3(a, b, c)^t \Rightarrow -2a + 3c = 3a$, $-2a + 3b = 3b$, $5c = 3c$.

One of the solutions for $(a, b, c)^t$ is $(0, 0, 1)^t$. It is an eigenvector for $\lambda = 3$.

For
$$\lambda = 5$$
, $A(a, b, c)^t = 5(a, b, c)^t \Rightarrow -2a + 3c = 5a$, $-2a + 3b = 5b$, $5c = 5c$.

One of the solutions for $(a, b, c)^t$ is $(3, -3, 7)^t$. It is an eigenvector for $\lambda = 5$.

6. Let $A \in \mathbb{C}^{n \times n}$ be invertible. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if $1/\lambda$ is an eigenvalue of A^{-1} .

Since A is invertible, its determinant is nonzero. As $\det(A)$ is the product of eigenvalues of A, no eigenvalue of A is 0. Thus for each eigenvalue λ , $1/\lambda$ makes sense. Now,

$$A - \lambda I = -\lambda A(A^{-1} - \lambda^{-1}I).$$

Since A is invertible, $\lambda \neq 0$, we see that $(-\lambda A)$ is invertible. Therefore, as linear transformations, $A - \lambda I$ is one-one iff $A^{-1} - \lambda^{-1}I$ is one-one.

Or that $A - \lambda I$ is not one-one iff $A^{-1} - \lambda^{-1}I$ is not one-one.

This shows that λ is an eigenvalue of A iff λ^{-1} is an eigenvalue of A^{-1} .

7. Let A be an $n \times n$ matrix and α be a scalar such that each row (or each column) sums to α . Show that α is an eigenvalue of A.

If each row sums to α , then $A(1,1,\ldots,1)^t = \alpha(1,1,\ldots,1)^t$. Thus α is an eignevalue with an eigenvector as $(1,1,\ldots,1)^t$.

If each column sums to α , then each row sums to α in A^t . Thus A^t has an eigenvalue as α . However, A^t and A have the same eigenvalues. Thus α is also an eigenvalue of A.

8. Give examples of matrices which cannot be diagonalized.

One such matrix is $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Reason?

A has the single eigenvalue as 1. Its algebraic multiplicity is 2.

To find its geometric multiplicity, consider $A(a,b)^t = 1(a,b)^t$. It gives b=0 and a arbitrary. That is, $N(A-1I) = \{(a,0)^t : a \in \mathbb{F}\}$. It has dimension 1. That is, the geometric multiplicity of the eigenvalue 1 is 1. This is not equal to the algebraic multiplicity.

Construct $A \in \mathbb{F}^{n \times n}$ whose first row is $e_1 + e_2$, and ith row is e_i for i > 1. Prove similarly that the eigenvalue 1 has geometric multiplicity n - 1 and algebraic multiplicity is n.

- 9. Which of the following matrices is/are diagonalizable? If it is diagonalizable, diagonalize it.
 - (a) $A \in \mathbb{R}^{3\times 3}$ is such that $A(a,b,c)^t = (a+b+c,\ a+b-c,\ a-b+c)^t$.
 - (b) $A \in \mathbb{R}^{3\times 3}$ is such that $Ae_1 = 0$, $Ae_2 = e_1$, $Ae_3 = e_2$.
 - (c) $A \in \mathbb{R}^{3 \times 3}$ is such that $Ae_1 = e_2, \quad Ae_2 = e_3, \quad Ae_3 = 0.$
 - (d) $A \in \mathbb{R}^{3\times 3}$ is such that $Ae_1 = e_3$, $Ae_2 = e_2$, $Ae_3 = e_1$.

(a)
$$A=\begin{bmatrix}1&1&1\\1&1&-1\\1&-1&1\end{bmatrix}$$
 . Its charachteristic polynomial is $-(t+1)(t-2)^2$.

So, eigenvalues are 1 and 2. Solving $A(a,b,c)^t = \lambda(a,b,c)^t$ for $\lambda = 1,2$, we have

$$\lambda = 1 : a + b + c = -a, \ a + b - c = -b, \ a - b + c = -c \Rightarrow a = -c, b = -c.$$

Thus a corresponding eigenvector is $(-1, 1, 1)^t$.

$$\lambda = 2 : a + b + c = 2a, \ a + b - c = 2b, \ a - b + c = 2c \Rightarrow a = b + c.$$

Thus two linearly independent corresponding eigenvectors are $(1, 1, 0)^t$ and $(1, 0, 1)^t$.

Therefore, we have a basis of eigenvectors for $\mathbb{F}^{3\times 1}$; thus A is diagonalizable.

Take the matrix
$$P=\begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 . Then verify that $P^{-1}AP=diag(-1,2,2)$.

- (b) The eigenvalue 0 has algebraic multiplicity 3 but geometric multiplicity 1. So, A is not diagonalizable.
- (c) Similar to (b).

(d) Proceed as in (a) to get
$$P=\begin{bmatrix}1&1&0\\0&0&1\\-1&1&0\end{bmatrix}$$
 and verify $P^{-1}AP=diag(-1,1,1).$

10. Check whether each of the following matrix is diagonalizable. If diagonalizable, find a basis of eigenvectors for the space $\mathbb{R}^{3\times 1}$:

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

- (a) It is a real symmetric matrix; so diagonalizable. Its eigenvalues are -2, 1, 2. Also since the 3×3 matrix has three distinct eigenvalues, it is diagonalizable. Proceed like 9(a).
- (b) 1 is a triple eigenvalue. It leads to solve a+b+c=a, b+c=b, c=c. Solution is a is arbitrary, b=c=0. The geometric multiplicity is 1. So, it is not diagonalizable.
- (c) Its eigenvalues are 2, $(-1 \pm \sqrt{3}i)/2$. Since three distinct eigenvalues; it is diagonalizable. Here, P will be a complex matrix. Proceed as in 9(a).
- (d) $(1,0,-1)^t$ and $(1,-1,0)^t$ are two linearly independent eigenvectors for the eigenvalue -1. $(0,1,-1)^t$ is an eigenvector for the eigenvalue 2.

Hence taking
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$$
, we have $P^{-1}AP = diag(-1, -1, 2)$.