This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-280290

(43)公開日 平成4年(1992)10月6日

(51) Int.Cl.5		識別記号	庁内整理番号	F I	技術表示箇所
G 0 9 G	3/36		7926-5G		
G 0 2 F	1/133	5 5 0	7820-2K		

審査請求 有 請求項の数2(全 8 頁)

特尉平3-43570	(71) 出願人	000001889 三洋電機採式会社		
平成3年(1991)3月8日	(72)発明者	大阪府守口市京阪本通2丁目18番地 生島 一司 守口市京阪本通2丁目18番地 三洋電機株		
	(74)代理人	式会社内 弁理士 西野 卓嗣		
	,	平成3年(1991)3月8日 (72)発明者		

(54) 【発明の名称】 液晶表示装置の駆動回路

(57)【要約】

【目的】 液晶表示装置においてノーマリープラック方式、ノーマリーホワイト方式のいずれの方式にも対応し、対極DC駆動と対極AC駆動にも対応し得る高出力特性の駆動同路とする。

【構成】 抵抗 R_1 、 R_2 、 R_3 、 R_4 (抵抗値 $R_1=R_3$ 、 $R_2=R_4$)を備えた差動増幅器で構成した抵抗値の比R $_2/R_1$ (R_4/R_3)で定められる任意の増幅率を持つ引算器と引算器への入力 V_1 、 V_2 に直流再生された入力映像信号 V_1 でと直流電圧 V_2 0を適当な周期を持つ極性切り換え信号 V_3 0%によって交互に切り換えて入力する極性反転用切り換えスイッチ回路とからなる。

1

【特許請求の範囲】

【請求項1】 直流再生された映像信号を入力とし、水平同期信号または垂直同期信号などの一定の周期信号に同期して前記映像信号の極性を反転し、かつ液晶パネルの特性に合わせて増幅される前記映像信号と直流電圧を用いて液晶パネルを交流駆動する回路において、前記映像信号と前記直流電圧を前記一定の周期信号に同期した極性切り換え信号で切り換えるスイッチ回路と切り換えた信号を入力とする差動増幅器で構成した引算器を備えることを特徴とする液晶表示装置の駆動回路。

【請求項2】 抵抗 R_1 、 R_2 、 R_3 、 R_4 (抵抗值 R_1 = R_3 、 R_2 = R_4) を備えた差動増幅器で構成した抵抗値の比 R_2 / R_1 (R_4 / R_3) で定められる任意の増幅率を持つ引算器と前記引算器への入力 V_1 、 V_2 に直流再生された入力映像信号 V_1 in と直流電圧 V_2 bl を適当な周期を持つ極性切り換え信号 V_3 wによって交互に切り換えて入力する極性反転用切り換えスイッチ回路とを備えることを特徴とする請求項1の液晶表示装置の駆動回路。

【発明の詳細な説明】

[0.0.01]

【産業上の利用分野】本発明は液晶表示装置で用いられる液晶への直流印加を避ける印加電圧の交流駆動回路に関し、特に液晶パネルの偏光板の配置方向に左右されない映像信号の駆動同路に関する。

[0002]

【従来の技術】液晶表示装置の液晶表示セルに印加する 電圧は、液晶の劣化を防ぐために一定の周期で極性を反 転する交流駆動を行う必要がある。

【0003】図6に従来の液晶表示装置の映像信号の極性反転回路と液晶表示セルの回路図を示す。

【0004】図6において、直流再生された入力映像信号1は序段増幅器2によって関値を持ち印加電圧に対して光の透過率がS字状カープを描く液晶の特性に合わせて増幅される。

【0005】序段増幅器2は互いに逆極性の入力端子が 接続された1組の差動増幅器A3、差動増幅器B4に増 幅された映像信号を送る。

[0006]一方、映像信号の一定の周期信号より得られたタイミング信号が液晶表示セル5の列電極の数に対応した数のシフトレジスタ6に加わる。

【0007】シフトレジスタ6は映像信号のためのサンプリング信号をトランスミッションゲート7に送り出す。

【0008】トランスミッションゲート7の一繋がりの 開閉動作により差動増幅器A3からの正の映像信号また は差動増幅器B4からの負の映像信号はスイッチ回路、 トランスミッションゲート7を通って液晶表示セル5の 一行分の画像信号としてサンプルホールド8に蓄積され

 $[0\ 0\ 0\ 9]$ サンプルホールド 8 からの画像信号は液晶 $50\ ND 17$ 、色差信号 $2\ 3$ の入力をTr により増幅すると

表示セル内のTFT9に印加され、TFT9及び液晶の 特性により変化し、画素電極10に画素信号として加わる。

【0010】増幅率調整信号11が序段増幅器2に加えられて液晶表示セル5のコントラストを調整し、可変直流電圧信号12が差動増幅器B4に加えられて液晶表示セル5の明度を調整するようになっている。

【0011】液晶表示セル中の液晶は画素電極に加わる 画素電圧と対向電極に加わる対向電圧との差の交流電圧 で駆動される(特公平2-41039号公報)。

【0012】上記の駆動回路は差動増幅器の後にスイッチがあるので出力インピーダンスが大きくなり、サンプルホールドに低出力の信号しか供給できなかった。

【0013】画像信号と画素信号が通常異なることに基づく輝度変化を防止するため先に出顧人はアクティブマトリクス型の液晶表示装置の駆動回路として、交流の画像信号の中央電圧と対向電極の対向電圧との間に電位差を持たせる回路を提案している(特開昭61-116392号公報)。

9 【0014】更に、液晶表示セルへの光の入射側と透過側の偏光板の直線偏光軸を一致させて液晶表示セルに電圧を印加した場合に光を透過するノーマリープラック方式か、液晶表示セルへの光の入射側と透過側の偏光板の直線偏光軸を約90度交差させて液晶表示セルに電圧を印加した場合に光を遮断するノーマリーホワイト方式かによって印加する映像信号の極性が異なる。

【0015】また、対向電極に加える対向電圧VIが直流電圧である対極DC駆動であるか、映像信号駆動回路の電源電圧を下げても映像信号のダイナミックを確保で30 きるように対向電極に矩形波を印加する対極AC駆動であるかによって映像信号のペデスタルレベルが異なる。

【0016】以上のように駆動方式が異なれば、それに 合わせた映像駆動信号を用意しなくてはならない。

【0017】図7に日立製液晶カラーテレビC5-LC1のR、G、B映像増幅アナログスイッチ回路を示す。

【0018】図7でR原色信号13、G原色信号14、 B原色信号15は電源電圧16とGND17との間の電 圧でTrにより増幅され、色及び極性切り換え用アナロ グスイッチ回路18により所定の周期で極性反転され て、色及び極性切り換え後の液晶表示セル駆動信号出力 19に変換される。

【0019】図8にNEC製液晶カラーTV用クロマピデオ処理IC、型番μpc1472GのRBG出力極性反転基本回路を示す。

【0020】図8で3軸復調の色差信号を1つの信号に 簡略化すると、輝度信号20はYアンプ21により増幅 され、搬送色信号は色復調回路22により色差信号23 に復調される。

【0021】クロマビデオ処理「Cは電源電圧16、G ND17 毎発信号23の入力をTrにより増幅すると

共にSWA24がOFF、SWB25がONの時に入力 映像信号と同相の被晶表示セル駆動信号出力19を出力 し、SWA24がON、SWB25がOFFの時に反転 の液晶表示セル駆動信号出力19を出力する。

[0022] 液晶表示セル駆動信号出力19の直流電圧 レベルは電源電圧によって制限され、入力映像信号と同 相の信号と極性が反転した信号の直流電圧レベルは異な るようにしか設定できなかった。

【0023】上記の2つの液晶表示装置の駆動回路は極性反転しない映像信号と極性反転された映像信号のどち 10 ちも駆動回路の電源電圧の約1/2の電圧を映像信号の中央電圧Vcとして、Vcを挟む形でそれぞれ中央電圧の上と下にしか存在できないので対極DC駆動にしか対応できなかった。

[0025] 更に従来の駆動回路ではVcの値は電源電 20 圧に依存する形で固定されており、このことも回路構成 上の自由度に制約を加えている。

[0026]

【発明が解決しようとする課題】本発明は上述の問題を取り除いて、直流再生された映像信号を入力すれば電源電圧に依存せず電源電圧内に映像信号の中央電圧Vcを自由に設定でき、かつ対極DC駆動にも対極AC駆動にもノーマリーホワイト方式にもノーマリーブラック方式にも対応でき、更に極性反転の周期やタイミングを自由に設定可能で液晶パネルの特性に合った映像信号の振幅 30 を簡単に得られる液晶表示装置の駆動回路を提供するものである。

[0027]

【課題を解決するための手段】本発明は直流再生された映像信号を入力とし、水平同期信号または垂直同期信号などの一定の周期信号に同期して映像信号の極性を反転し、かつ液晶パネルの特性に合わせて増幅される映像信号と直流電圧を用いて液晶パネルを交流駆動する回路において、映像信号と直流電圧を一定の周期信号に同期した極性切り換え信号で切り換えるスイッチ回路と切り換40えた信号を入力とする差勤増幅器で構成した引算器を備える液晶表示装置の駆動回路とした。

[0028]

【作用】直流電圧Vblを変化させることでVswの極性によって選択される反転と非反転の出力映像信号Voutはそれぞれ映像信号の中央電圧Vcから等しい電圧だけ逆方向に離れたという条件を満たしながら、ペデスタルレベルVpが変化し、かつVcの上下に関係なくペデスタルレベルVpが設定される。

【0029】 Vswの値が切り換わることにより入力映像

信号VInから可変な直流電圧VbIが引かれるか、VbIからVinが引かれるかが切り換わり出力の極性が変化する 直流電圧VbIを入力映像信号VinのペデスタルレベルV p付近(~Vp)に設定することでノーマリーブラック方 式の対極DC駆動がなされる。

【0030】直流電圧Vblを入力映像信号Vinの中間値 Vvc付近 (~Vvc) に設定することでノーマリープラッ ク方式の対極AC駆動がなされる。

【0031】直流電圧Vblを入力映像信号Vinの白レベルVw(~Vw)付近に設定することでノーマリーホワイト方式の対極DC駆動がなされる。

【0032】直流電圧Vblを入力映像信号Vinの中間値 Vvc付近(~Vvc)に設定することでノーマリーホワイ ト方式の対極AC駆動がなされる。

【0033】入力映像信号Vinの電位に対して直流電圧 Vblの電位を調整することで液晶表示装置の画像の明る さが調整される。

【0034】対極AC駆動時の対向電圧VIの位相と出力映像信号Voutの位相は極性切り換え信号Vswの位相を180°変えることで合わせられる。

[0035] 映像信号の増幅率はR₂/R₁の値で設定され、サンプルホールド回路にスイッチを介さずに送り出されるので出力インピーダンスが小さくなり高出力の駆動回路となる。

[0036]

【実施例】図1に本発明の液晶表示装置の駆動回路の回路図を示す。

【0037】図1で駆動回路は主に入力映像信号Vinを受ける極性反転切り換え用スイッチ回路26と出力映像信号Voutを出す引算器27とから構成されている。

【0038】極性反転切り換え用スイッチ回路26に入力映像信号1、可変な直流電圧28、極性切り換え信号29が入力されている。

【0039】極性切り換え信号29は反転器30により 互いに反転した2個の信号として極性反転切り換え用ス イッチ回路26に入力され4個のスイッチ回路SWA3 1、SWB32、SWC33、SWD34に印加され る。

【0040】入力映像信号1はSWA31とSWC33 に入力され、可変な直流信号28はSWB32とSWD 34に入力される。

【0041】図1では極性反転切り換え用スイッチ回路26内のSWA31とSWD34の一組とSWB32とSWC33の一組が交互に選択されて第1の引算器への入力35と第2の引算器への入力36が極性反転切り換え用スイッチ回路26から発生する。

【0042】極性切り換え信号29がH(ハイ)の場合、スイッチ回路SWA31とSWD34がONして入力映像信号Vinが第1の引算器への入力V1となり可変な直流電圧Vblが第2の引算器への入力V2となる。

[0043] 極性切り換え信号29がL(ロー)の場合、スイッチ回路SWB32とSWC33がONして可変な直流電圧Vblが第1の引算器への入力V1となり入力映像信号Vinが第2の引算器への入力V2となる。

[0044] 引算器27に極性反転切り換え用スイッチ 回路26からV1とV2と、出力映像信号の中央値を決め る直流電圧である中央電圧37の3個の入力が加えられ る。

[0045] 引算器27は第2の引算器への入力V2から 第1の引算器への入力V1を引いた電圧を抵抗R13 108と抵抗R239の抵抗値の比R2/R1で増幅し、これを中央電圧37に加えた電圧を出力映像信号42としてに出力する。

[0046]対向電圧Vtは出力映像信号Voutの中央電圧Vcを参照して先に提案した回路で液晶表示装置の特性に合わせて設定される。

【0047】尚、映像信号の増幅率は液晶表示装置の特性に合わせて抵抗値の比R₂/R₁で自由に設定できる。

【0048】図2に本発明の駆動回路によりノーマリー ブラック方式で対極DC駆動する場合の波形図を示す。

[0049] 図2で期間t1では極性切り換え信号Vswがし(ロー)の状態にありスイッチSWBとSWCがオンし、V2にはVinがV1にはVblが入力され、期間t2ではスイッチSWAとSWDがオンし、V2にはVblがV1にはVinが入力される。

【0050】直流電圧Vblを入力映像信号1に近付ける と液晶表示画像が暗くなり、遠ざけると液晶表示画像が 明るくなる。

【0.051】図3に本発明の駆動回路によりノーマリー

プラック方式で対極AC駆動する場合の波形図を示す。

【0.0.5.2】図3で期間t.1では極性切り換え信号VswがL.(ロー)の状態にありスイッチ<math>SWBとSWCがオンし、V.2にはVinがV.1にはVbIが入力され、期間 t.2ではスイッチSWAとSWDがオンし、V.2にはVbIがV.1にはVinが入力される。

【0053】対向電圧Vcは2つの電圧で交番し、対向電圧の中央値17は出力映像信号12の中央電圧37より小さく設定されている。

【0054】図4に本発明の駆動回路によりノーマリー ホワイト方式で対極DC駆動する場合の波形図を示す。

【0055】図4で期間t1では極性切り換え信号VswがH(ハイ)の状態にありスイッチSWAとSWDがオンし、V2にはVblがV1にはVinが入力され、期間t2ではスイッチSWBとSWCがオンし、V2にはVinがV1にはVblが入力される。

【0056】図5に本発明の駆動回路によりノーマリーホワイト方式で対極AC駆動する場合の波形図を示す。

【0.057】図5で期間 t.1では極性切り換え信号VswがH(ハイ)の状態にありスイッチSWAとSWDがオンし、V.2にはVblがV.1にはVinが入力され、期間 t.2ではスイッチSWBとSWCがオンし、V.2にはVinがV.1にはVblが入力される。

[0058]表1に本発明の液晶表示装置の駅動回路の 各期間における信号の状態とスイッチの開閉状態を示 す。

[0059]

【表1】

表示 (-)	ノーマ	リーブラ	ック ()	NB)	ノーマリーホワイト (NW)			
駆動法	対極De	C反転	対極A C反転		対極D C 反転		対極A C反転	
期間	t 1	t 2	t 1	t 2	t 1	t 2	t 1	t 2
Vsw	L	H	L	Н	Ħ	L	H	L
Vsw	н	L	H	L	L	H	L	н
SWA	OFF	ON	OFF	ON	ON	O F F	ON	OFF
SWB	ON	OFF	ON	OFF	OFF	ON	OFF	КО
swc	ON	OFF	ON	OFF	OFF	ON	OFF	ON
SWD	OFF	ON	OFF	ON	ON	OFF	ON	OFF
V b 1	~ V p		~V v c		~ V w		~V v c	
V 1	Vъl	Vin	V b 1	Vin	Vin	Vьı	Vin	V b l
V 2	Vin	Vbl	Vin	V в 1	V b 1	Vin	VЬI	Vin

 $[0\ 0\ 6\ 0]$ 表 1 では各表示モード、各駅動法における 期間 $t\ 1$ 、 $t\ 2$ でのスイッチの開閉状態と $V\ 1$ 、 $V\ 2$ の 信号となる入力信号を記述している。

【0061】本実施例の極性反転切り換え用スイッチ回路内の4個のスイッチはSWAとSWCの一組、SWBとSWDの一組の接続で使用したが、他の組み合わせも可能である。

【0062】このように本発明の駆動回路において同じ出力を得るためには入力映像信号Vinと直流電圧Vblの相対的な電圧関係が同じであればVinとVblはオペアンプの動作電圧の範囲に自由に存在できる。

【0063】このため、液晶表示装置の駅動回路の設計の自由度が増すという長所もある。

[0064]

【発明の効果】本発明の液晶表示装置の駆動回路を用いることにより、対極DC駆動にも対極AC駆動にも更にノーマリーブラック方式にもノーマリーホワイト方式に 40 も対応でき、出力映像信号の中央電圧を自由に選べ、映像信号の増幅率も簡単に設定でき、プライト(明度)調整も可能な高出力の駆動回路を実現できる。

【図面の簡単な説明】

【図1】本発明の液晶表示装置の駆動回路図である。

【図2】ノーマリーブラック方式の対極DC駆動の場合の入出力図である。

【図3】ノーマリープラック方式の対極AC駆動の場合の入出力図である。

【図4】ノーマリーホワイト方式の対極DC駆動の場合 50

の入出力図である。

【図5】ノーマリーホワイト方式の対極AC駆動の場合の入出力図である。

【図 6】従来の液晶表示装置の極性反転の駆動回路図である。

【図7】従来の液晶表示装置のアナログスイッチの駆動 30 回路図である。

【図8】従来の液晶表示装置のクロマビデオ処理用の駆 動回路図である。

【符号の説明】

- 1 入力映像信号
- 2 序段增幅器
- 3 差動增幅器A
- 4 差動增幅器B
- 5 液晶表示セル
- 6 シフトレジスタ
- **' 7 トランスミッションゲート**
 - 8 サンプルホールド
 - 9 TFT
 - 10 画素電極
 - 11 增幅率調整信号
 - 12 可変直流電圧信号
 - 13 R原色信号
 - 14 G原色信号
 - 15 B原色信号
 - 16 電源電圧
- 17 GND

- 18 色及び極性切り換え用アナログスイッチ回路
- 19 液晶表示セル駆動信号出力
- 20 輝度信号
- 21 Υアンプ
- 22 色復調回路
- 23 色差信号
- 24 SWA
- 25 SWB
- 26 極性反転切り換え用スイッチ回路
- 27 引算器
- 28 直流電圧
- 29 極性切り換え信号
- 30 反転器
- 31 SWA
 - 32 SWB

【図1】

【図3】

- 33 SWC
- 34 SWD
- 35 第1の引算器への入力
- 36 第2の引算器への入力
- 37 中央電圧
- 38 抵抗R1
- 39 抵抗R2
- 10 抵抗R:
- 41 抵抗R1
- 10 42 出力映像信号
 - 43 ペデスタルレベル
 - 44 黒レベル
 - 45 入力映像信号の中間値
 - 46 白レベル
 - 47 対向電圧の中央値

[図2]

10

【図4】

【図5】

[図6]

【図8】

【図7】

【手統補正書】

【提出日】平成4年5月14日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正内容】

【謝求項1】 直流再生された入力映像信号を入力とし、水平同期信号または垂直同期信号などの一定の周期信号に同期して前記入力映像信号の極性を反転し、かつ液晶表示セルの特性に合わせて増幅される出力映像信号と対向電極信号を用いて液晶表示セルを交流駆動する液晶表示装置の駆動回路において、前記入力映像信号と直流電圧を前記一定の周期信号に同期した極性切り換え信号で切り換えるスイッチ回路と切り換えた信号を入力とする差動増幅器で構成した引算器を備えることを特徴とする液晶表示装置の駆動回路。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0004

【補正方法】変更

【補正内容】

【0004】図6において、直流再生された入力映像信号1は序段増幅器2によって、閾値を持ち印加電圧に対して光の透過率がリニアではない液晶の特性に合わせて増幅される。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0012

【補正方法】変更

【補正内容】

【0012】上記の駆動回路は差動増幅器の後にスイッチがあるので出力インピーダンスが大きくなり、周波数特性の低下や出力振幅が制限される問題があった。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正内容】

【0013】画像信号と画素信号が通常異なることに基づく輝度変化を防止するため先に出願人はアクティブマトリクス型の液晶表示装置の駆動回路として、交流の画像信号の中央電圧と対向電極への印加電圧(以下、対向

電圧と称する)との間に電位差を持たせる回路を提案している(特開昭61-116392号公報)。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0026

【補正方法】変更

【補正内容】

[0026]

【発明が解決しようとする課題】本発明は上述の問題を取り除いて、直流再生された映像信号を入力すれば電源電圧に依存せず電源電圧内に映像信号の中央電圧Vcを自由に設定でき、かつ対極DC駆動にも対極AC駆動にもノーマリーホワイト方式にもノーマリーブラック方式にも対応でき、更に極性反転の問期やタイミングを自由に設定可能で液晶表示セルの特性に合った映像信号の振幅を簡単に得られる液晶表示装置の駆動回路を提供するものである。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0027

【補正方法】変更

【補正内容】

[0027]

【課題を解決するための手段】本発明は直流再生された 入力映像信号を入力とし、水平同期信号または垂直同期 信号などの一定の周期信号に同期して入力映像信号の極 性を反転し、かつ液晶表示セルの特性に合わせて増幅さ れる出力映像信号と対向電極信号を用いて液晶表示セル を交流駆動する液晶表示装置の駆動回路において、入力 映像信号と直流電圧を一定の周期信号に同期した極性切 り換え信号で切り換えるスイッチ回路と切り換えた信号 を入力とする差勁増幅器で構成した引算器を備える液晶 表示装置の駆動回路とした。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】 Vswの値が切り換わることにより入力映像信号 Vinから可変な直流電圧 Vblが引かれるか、Vblから Vinが引かれるかが切り換わり出力の極性が変化する。例えば、直流電圧 Vblを入力映像信号 Vinのペデスタルレベル Vp付近 (~Vp) に設定することでノーマリープラック方式の対極 DC 駆動がなされる。