Cryptography Engineering

- Lecture 6 (Nov 27, 2024)
- Today's notes:
 - Double Ratchet Algorithm
 - Signal Secure Messaging Protocol
 - Introduction to Password Login

No homework

• The main idea: Symmetric-key Ratchet + **Diffie-Hellman Ratchet**

- The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet
 - When a party sends messages (before its peer party replies): Use Symmetric-key Ratchet...
 - When the peer party replies: Use Diffie-Hellman Ratchet to update the key...
- Example:

• The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet

• The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet

Alice

Root key (from previous stage)

Bob

Root key

 Y_j, y_j, X_i

All messages are relayed by the server

Alice

Root key (from previous stage)

$$X_{i+1}, X_{i+1}, Y_j$$

$$\begin{aligned} DH_{i+1,j} &= Y_j^{x_{i+1}} \\ \text{(as auxiliary input of KDF)} \end{aligned}$$

Bob

Root key

All messages

are relayed by the server

Alice

$$X_{i+1}, x_{i+1}, Y_j$$

All messages are relayed by the server Bob

Root key

$$Y_j, y_j, X_i$$

$$X_{i+1}, x_{i+1}, Y_j$$

$$DH_{i+1,j} = Y_j^{x_{i+1}}$$

$$X_{i+1}, c_1$$
$$X_{i+1}, c_2$$

- 1. Use $DH_{i+1,j}$ to recover the KDF chain (the same with the one computed by Alice)
- Use the keys from the KDF chain to decrypt c_1 , c_2
- 3. Use the ck_2 of the KDF chain as a new root key

All messages are relayed by the server

Bob

 Y_j, y_j, X_{i+1}

Root key

All messages are relayed by the server

• The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet

Bob

• The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet

• The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet

The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet

• The main idea: Symmetric-key Ratchet + Diffie-Hellman Ratchet

- Integrate Double Ratchet algorithm with X3DH
 - Use X3DH to bootstrap Double Ratchet
 - The Double Ratchet plays the role of a 'post-X3DH' protocol...

Recall of X3DH:

Public parameters: (\mathbb{G}, g, q) : A q-order EC group \mathbb{G} with a generator g

Alice

Bob

Long-term secret (static)

Identity secret key (IK)

 $ik_{A} \in_{\$} \mathbb{Z}_{a}$

 $ik_{\mathrm{B}} \in_{\$} \mathbb{Z}_a$

Identity public key (IPK)

 $IPK_{A}(=g^{ik_{A}})$

 $IPK_{\rm B}$

Mid-term secret (updated periodically) Signing secret pre-key (SK)

 $sk_{\mathbf{A}} \in_{\$} \mathbb{Z}_{a}$

 $sk_{\mathrm{B}} \in_{\$} \mathbb{Z}_a$

Signing public pre-key (SPK)

 SPK_{A}

 $\{ok_A^1, ok_A^2, \dots\} \subseteq_{\$} \mathbb{Z}_a$

 $SPK_{\rm B}$

Short-term secret (used once)

One-time secret pre-keys (OK)

One-time public pre-keys (OPK)

 $(OPK_{A}^{1}, OPK_{A}^{2}, ...)$ $(OPK_{B}^{1}, OPK_{B}^{2}, ...)$

 $\{ok_{\mathrm{B}}^1, ok_{\mathrm{B}}^2, \dots\} \subseteq_{\$} \mathbb{Z}_q$

• Recall of X3DH:

if valid, accept $\{IPK_B, SPK_B, \sigma_B, OPK_B^1\}$

Bob $ik_B, sk_B, \{ok_B^1, \dots, ok_B^{100}\}$

 $SK_A = X3DH_Key_Alice(ik_A, ek_A, IPK_B, SPK_B, OPK_B^1)$

Recall of X3DH:

Initialize Double Ratchet using the SK from X3DH

Initialize Double Ratchet using the SK from X3DH

$$SK_A = X3DH_Key_Alice(...)$$

Root key =
$$SK_A$$

$$X_0 = \perp, x_0 = \perp, Y_0 = SPK_B$$
 (Signing public pre-key of Bob)

Initialize Double Ratchet using the SK from X3DH

Bob

X3DH

$$SK_A = X3DH_Key_Alice(...)$$

------Alice's DH ratchet-----

Root key =
$$SK_A$$

$$X_0 = \perp$$
, $X_0 = \perp$, $Y_0 = SPK_B$ (Signing public pre-key of Bob)

$$X_1 = g^{x_1}, x_1 \leftarrow_{\$} \mathbb{Z}_q, DH_{1,0} = Y_0^{x_1}$$

Use $DH_{1,0}$ to derive a KDF chain to encrypt messages...

Initialize Double Ratchet using the SK from X3DH

Signal Secure Messaging Protocol

Signal Secure Messaging Protocol

- Some technical details we do not cover:
 - XEdDSA and VXEdDSA:
 - > DH key pairs for key exchange and signature...
 - Header encryption:
 - > Cannot tell which messages belong to which sessions, or the ordering of messages within a session...
 - Out-of-order messages:
 - Session management and asynchronous settings

Coding tasks

 (Without sockets) Use X3DH and Double Ratchet to encrypt this conversation (or you can choose other conversations):

Further Reading

- Technical Documentations of Signal: https://signal.org/docs/
- Some research papers of analyzing security of Ratchet algorithms:
 - > Bellare et al's work on formalizing ratcheted encryption/key exchange: https://eprint.iacr.org/2016/1028
 - ➤ Alwen et al's work on formalizing Double Ratchet: https://eprint.iacr.org/2018/1037
 - > Collins et al's work on Tight security of Double Ratchet: https://eprint.iacr.org/2024/1625
 - **>** ...