

Internetul Lucrurilor

Condiționare semnal

Senses

Informație

X, Y, a,b,c – Simboluri literale

35, 42, 32.7 simboluri numerice pentru a defini o cantitate € N, R

70 km/h, 50 V, 25 °C Informație – date cu sens

Semnal - Evoluția Informației in timp


```
AnalogInOutSerial | Arduino 1.8.12 (Windows Store 1.8.33.0)
                                                           ×
File Edit Sketch Tools Help
  AnalogInOutSerial
void setup() {
  // initialize serial communications at 9600 bps:
  Serial.begin(9600);
void loop() {
  // read the analog in value:
  sensorValue = analogRead(analogInPin);
  // map it to the range of the analog out:
  outputValue = map(sensorValue, 0, 1023, 0, 255);
  // change the analog out value:
  analogWrite(analogOutPin, outputValue);
  // print the results to the Serial Monitor:
  Serial.print("sensor = ");
  Serial.print(sensorValue);
  Serial.print("\t output = ");
  Serial.println(outputValue);
  // wait 2 milliseconds before the next loop for the anal
  // converter to settle after the last reading:
  delay(2);
                                                Arduino Uno on COM5
```


Operații mecanica

ideal mechanical advantage - IMA

Wheel and axle
$$IMA = \frac{R}{r}$$

Pulley IMA = N

Incline $IMA = \frac{L}{h}$

Condiționare HW -Amplificare/Atenuare/Saturare

Atenuare (împărțire)

Amplificare (înmulțire)

Saturare (taiere)

Condiționare Hardware - Filtrare

Condiționare SW - Sare si piper

- Statistic
- Median
- Sare si piper
- Impulsionar

Condiționare SW – Mediere ponderat

- Trece jos
- Netezire
- Zgomot alb
- Gausian
- Mediere

$$M(X) = \frac{x_1 n_1 + x_2 n_2 + \dots + n_k a_k}{n_1 + n_2 + \dots + n_k} = \frac{\sum_{i=1}^k x_i n_i}{\sum_{i=1}^k n_i}$$

Condiționare SW – Conversie (ne)lineara

Arhitectura pe nivele

Senzori Virtuali

