Geometria na OBM e Banco IMO

Guilherme Zeus Moura zeusdanmou@gmail.com

- 1. (OBM 2019, 1) Sejam ω_1 e ω_2 duas circunferências de centros C_1 e C_2 , respectivamente, que se cortam em dois pontos P e Q. Suponha que a circunferência circunscrita ao triângulo PC_1C_2 intersecte ω_1 novamente em $A \neq P$ e ω_2 novamente em $B \neq P$. Suponha ainda que Q está no interior do triângulo PAB. Demonstre que Q é o incentro do triângulo PAB.
- 2. (OBM 2016, 1) Seja ABC um triângulo. As retas r e s são bissetrizes internas de $\angle ABC$ e $\angle BCA$, respectivamente. Os pontos E sobre r e D sobre s são tais que $AD \parallel BE$ e $AE \parallel CD$. As retas BD e CE se cortam em F. Seja I o incentro do triângulo ABC. Mostre que se os pontos A, F e I são colineares então AB = AC.
- 3. (OBM 2015, 1) Seja ABC um triângulo escaleno e acutângulo e N o centro do círculo que passa pelos pés das três alturas do triângulo. Seja D a interseção das retas tangentes ao circuncírculo de ABC e que passam por B e C. Prove que A, D e N são colineares se, e somente se, $\angle BAC = 45^{\circ}$.
- 4. (OBM 2014, 1) Seja ABCD um quadrilátero convexo e seja P a interseção das diagonais AC e BD. Os raios dos círculos inscritos nos triângulos ABP, BCP, CDP e DAP são iguais. Prove que ABCD é um losango.
- 5. (OBM 2010, 4) Seja ABCD um quadrilátero convexo e M e N os pontos médios dos lados CD e AD, respectivamente. As retas perpendiculares a AB passando por M e a BC passando por N cortam-se no ponto P. Prove que P pertence à diagonal BD se, e somente se, as diagonais AC e BD são perpendiculares.
- 6. (OBM 2008, 4) Seja ABCD um quadrilátero cíclico e r e s as retas simétricas à reta AB em relação às bissetrizes internas dos ângulos $\angle CAD$ e $\angle CBD$, respectivamente. Sendo P a interseção de r e s e O o centro do círculo circunscrito a ABCD, prove que OP é perpendicular a CD.
- 7. (Banco IMO 2018, G1) Seja Γ o circuncírculo do triângulo acutângulo ABC. Os pontos D e E estão sobre os segmentos AB e AC, respectivamente, de modo que AD = AE. As mediatrizes de BD e CE intersectam os arcos menores AB e AC de Γ nos pontos F e G, respectivamente. Prove que as retas DE e FG são paralelas (ou são a mesma reta).
- 8. (Banco IMO 2017, G1) Let ABCDE be a convex pentagon such that AB = BC = CD, $\angle EAB = \angle BCD$, and $\angle EDC = \angle CBA$. Prove that the perpendicular line from E to BC and the line segments AC and BD are concurrent.

- 9. (Banco IMO 2016, G1) Triangle BCF has a right angle at B. Let A be the point on line CF such that FA = FB and F lies between A and C. Point D is chosen so that DA = DC and AC is the bisector of $\angle DAB$. Point E is chosen so that EA = ED and AD is the bisector of $\angle EAC$. Let E be the midpoint of E. Let E be the point such that E is a parallelogram. Prove that E and E are concurrent.
- 10. (Banco IMO 2015, G1) Let ABC be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C and J. Prove that IJ = AH.
- 11. (Banco IMO 2014, G1) Let P and Q be on segment BC of an acute triangle ABC such that $\angle PAB = \angle BCA$ and $\angle CAQ = \angle ABC$. Let M and N be the points on AP and AQ, respectively, such that P is the midpoint of AM and Q is the midpoint of AN. Prove that the intersection of BM and CN is on the circumference of triangle ABC.
- 12. (Banco IMO 2013, G1) Let ABC be an acute triangle with orthocenter H, and let W be a point on the side BC, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_1 is the circumcircle of BWN, and let X be the point on ω_1 such that WX is a diameter of ω_1 . Analogously, denote by ω_2 the circumcircle of triangle CWM, and let Y be the point such that WY is a diameter of ω_2 . Prove that X, Y and H are collinear.
- 13. (Banco IMO 2012, G1) Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at F, and the lines KM and CJ meet at G. Let S be the point of intersection of the lines AF and BC, and let T be the point of intersection of the lines AG and BC. Prove that M is the midpoint of ST.
- 14. (Banco IMO 2018, G2) Seja ABC um triângulo com AB = AC, e seja M o ponto médio de BC. Seja P um ponto tal que PB < PC e PA paralelo a BC. Sejam X e Y pontos nas retas PB e PC, respectivamente, tal que B cai no segmento PX, C cai no segmento PY, e $\angle PXM = \angle PYM$. Prove que o quadrilátero APXY é cíclico.

- 15. (Banco IMO 2017, G2) Let R and S be different points on a circle Ω such that RS is not a diameter. Let ℓ be the tangent line to Ω at R. Point T is such that S is the midpoint of the line segment RT. Point J is chosen on the shorter arc RS of Ω so that the circumcircle Γ of triangle JST intersects ℓ at two distinct points. Let A be the common point of Γ and ℓ that is closer to R. Line AJ meets Ω again at K. Prove that the line KT is tangent to Γ .
- 16. (Banco IMO 2016, G2) Let ABC be a triangle with circumcircle Γ and incenter I and let M be the midpoint of \overline{BC} . The points D, E, F are selected on sides \overline{BC} , \overline{CA} , \overline{AB} such that $\overline{ID} \perp \overline{BC}$, $\overline{IE} \perp \overline{AI}$, and $\overline{IF} \perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects Γ at a point X other than A. Prove that lines XD and AM meet on Γ .
- 17. (Banco IMO 2015, G2) Triangle ABC has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment BC at points D and E, such that B, D, E, and C are all different and lie on line BC in this order. Let F and G be the points of intersection of Γ and Ω , such that A, F, B, C, and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle BDF and the segment AB. Let E be the second point of intersection of the circumcircle of triangle E and the segment E.

Suppose that the lines FK and GL are different and intersect at the point X. Prove that X lies on the line AO.

- 18. (Banco IMO 2014, G2) Let ABC be a triangle. The points K, L, and M lie on the segments BC, CA, and AB, respectively, such that the lines AK, BL, and CM intersect in a common point. Prove that it is possible to choose two of the triangles ALM, BMK, and CKL whose inradii sum up to at least the inradius of the triangle ABC.
- 19. (Banco IMO 2013, G2) Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A. The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC and AB at points X and Y, respectively; assume that X and Y lie inside the triangle ABC. The lines MN and XY intersect at K. Prove that KA = KT.
- 20. (Banco IMO 2012, G2) Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The extensions of the sides AD and BC beyond A and B meet at F. Let G be the point such that ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that D, H, F, G are concyclic.
- **21.** (OBM 2012, 2) Dado um triângulo ABC, o exincentro relativo ao vértice A é o ponto de interseção das bissetrizes externas de DB e DC. Sejam I_A , I_B e

- I_C os exincentros do triângulo escaleno ABC relativos a $A, B \in C$, respectivamente, e $X, Y \in Z$ os pontos médios de I_BI_C, I_CI_A e I_AI_B , respectivamente. O incírculo do triângulo ABC toca os lados BC, CA e AB nos pontos $D, E \in F$, respectivamente. Prove que as retas $DX, EY \in FZ$ têm um ponto em comum pertencente à reta IO, sendo $I \in O$ o incentro e o circuncentro do triângulo ABC, respectivamente.
- **22.** (**OBM 2011, 5**) Seja ABC um triângulo acutângulo e H seu ortocentro. As retas BH e CH cortam AC e AB em D e E, respectivamente. O circuncírculo de ADE corta o circuncírculo de ABC em $F \neq A$. Provar que as bissetrizes internas de $\angle BFC$ e $\angle BHC$ se cortam em um ponto sobre o segmento BC.
- 23. (OBM 2007, 5) Seja ABCD um quadrilátero convexo, P a interseção das retas AB e CD, Q a interseção das retas AD e BC e O a interseção das diagonais AC e BD. Prove que se $\angle POQ$ é um ângulo reto então PO é bissetriz de $\angle AOD$ e QO é bissetriz de $\angle AOB$.
- 24. (OBM 2017, 5) No triângulo ABC, seja r_A a reta que passa pelo ponto médio de BC e é perpendicular à bissetriz interna de $\angle BAC$. Defina r_B e r_C da mesma forma. Sejam H e I o ortocentro e o incentro de ABC, respectivamente. Suponha que as três retas r_A , r_B , r_C definem um triângulo. Prove que o circuncentro desse triângulo é o ponto médio de HI.
- **25.** (**OBM 2019, 6**) Seja $A_1A_2A_3A_4A_5$ um pentágono convexo inscritível com $\angle A_i + \angle A_{i+1} > 180^\circ$ para i=1,2,3,4,5, (índices módulo 5 em todo o problema). Defina B_i como a interseção das retas $A_{i-1}A_i$ e $A_{i+1}A_{i+2}$, formando uma estrela. Os circuncírculos dos triângulos $A_{i-1}B_{i-1}A_i$ e $A_iB_iA_{i+1}$ se cortam novamente em $C_i \neq A_i$, e os circuncírculos dos triângulos $B_{i-1}A_iB_i$ e $B_iA_{i+1}B_{i+1}$ se cortam novamente em $D_i \neq B_i$. Prove que as dez retas A_iC_i , B_iD_i , i=1,2,3,4,5, têm um ponto em comum.
- 26. (OBM 2017, 3) Um quadrilátero ABCD tem um círculo inscrito ω e é tal que as semirretas AB e DC se cortam no ponto P e as semirretas AD e BC se cortam no ponto Q. As retas AC e PQ se cortam no ponto R. Seja T o ponto de ω mais próximo da reta PQ. Prove que a reta RT passa pelo incentro do triângulo PQC.