

JUNE EXAMINATION JUNIE EKSAMEN GRADE/GRAAD 12

2024

MARKING GUIDELINES/ NASIENRIGLYNE

MATHEMATICS/ WISKUNDE

(PAPER/VRAESTEL 2)

19 pages/bladsye

More Recourses

Testpapers.co.za

Exam Papers / Study Guides / Summaries / Tutoring

Testpapers Pro.co.za

Study Notes / Quizzes / Flashcards / Exam Questions

MARKING GUIDELINES/ NASIENRIGLYNE

MATHEMATICS/WISKUNDE (PAPER/VRAESTEL 2)

GR12 0624

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers/values to solve a problem is NOT acceptable.
- Breakdown implies stop marking.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en dit nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aannames van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat NIE.

	GEOMETRY/ <i>MEETKUNDE</i>
	A mark for a correct statement
S	(A statement mark is independent of a reason.)
3	'n Punt vir 'n korrekte bewering
	('n Punt vir 'n bewering is onafhanklik van 'n rede)
	A mark for a correct reason
R	(A reason mark may only be awarded if the statement is correct.)
K	'n Punt vir 'n korrekte rede
	('n Punt word slegs vir die rede toegeken as die bewering korrek is.)
S/R	Award a mark if the statement AND reason are both correct.
5/K	Ken 'n punt toe as beide die bewering EN rede korrek is.

	ESTIO	N/VRAAG 1		ı	
1.1	1.1.1	mean/gemiddeld=	982 16	✓ 982	
		= 61,38 Accept : 61	Answer only: Full marks Slegs antwoord: Volpunte	✓ answer/antwoord	
		No penalty for rou	anding off		(2
	1.1.2	$\sigma = 19,63$		✓ answer/antwoord	(1
	1.1.3	$(\bar{x} - \sigma; \bar{x} + \sigma) =$	(61,38 – 19,63; 61,38 + 19,63)		
		= (41,75; 81,0	1)	√ (41,75; 81,01)	
		∴ 6 learners/leer	ders	✓ 6	
		ACCEPT/AANV. (61 – 19,63; 61 +			(2
		= (41, 37; 80, 63)			(2
1.2	1.2.1	Negatively skewed/ skewed to the left Negatief skeef/skeef na links		✓ answer/antwoord	(1
	1.2.2	Test 2, because 50	0% of the learners got a mark nile in test 1,50 % of the learners	✓ Test 2/Toets 2	(-
		Toets 2, omdat 50 66 behaal het, term meer as 62% in to OR/OF	% van die leerders 'n punt hoër as wyl slegs 50 % van die leerders ets 1 gekry het.	✓ reason/rede	
		•	e median mark is higher than that omdat die mediaan hoër is as in		
		mark less than 76, mark less than 76/	ss than 75% of the learners got a while in test 1 75% obtained a Toets 2 , omdat minder as 75% van at minder as 76 behaal het, terwyl		
		1	aer punt as 76 behaal het.		(2
	1.2.3	$\frac{25}{100} \times 16 = 4 \text{ learn}$	ners/leerders	$\checkmark \frac{25}{100} \times 16$	(2
		OR/OF	Answer only: Full marks Slegs antwoord: Volpunte	✓ 4 OR/OF	
		$\frac{1}{4} \times 16 = 4 \text{ learner}$	rs/leerders	$\sqrt{\frac{1}{4}} \times 16$	
				√ 4	[10

Q U	ESTIO	N 2/VRAAG 2	I	
2.1	2.1.1	400	✓ 400	(1)
	2.1.2	A = 50 B = 100	✓ A ✓ B	(2)
	2.1.3	280 - 20 = 260 Ogive: Accept answer Btw $(250 - 280)$ Answer only: Full marks Slegs antwoord: Volpunte	✓ 280 – 20 ✓ 260 OR	
		OR Table: $30 + 50 + 100 + 80 = 260$	✓ Adding frequencies Tel frekwensies op ✓ Answer/antwoord	(2)
	2.1.4	The median will decrease./Die mediaan sal afneem.	✓ Decrease/afneem	(1)
2.2		$\frac{3+15t+25\times12+35\times4}{13+t+12+4} = 16,4$ $\frac{505+15t}{29+t} = 16,4$ $475,6+16,4 t = 505+15t$	 ✓ equating to 16,4/ gelykstel aan 16,4 ✓ correct expressions for both numerator & denominator/korrekte uitdrukking van beide teller en noemer 	
		1,4t = 29,4 $t = 21$	✓ simplifying/vereenvoudig ✓ answer/antwoord	(4)
				[10]

QUES	STION/VRAAG 3			
3.1	$x_{m} = \frac{x_{1} + x_{2}}{2} y_{m} = \frac{1}{2}$ $1 = \frac{a+3}{2} -1 = \frac{b}{2}$ $a = -1 b = -6$ $B(-1; -6)$	_	✓ correct substitution into correct formula for a/korrekte substitusie in korrekte formule vir a ✓ correct substitution into formula for b/korrekte substitusie in formule vir b ✓ answer for both a and b in coordinate form/antwoord van beide a en b in koördinaat vorm	(3)
3.2	$m = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{4 - (-1)}{3 - 1} \text{OR}/OF$ $= \frac{5}{2}$	$m = \frac{4 - (-6)}{3 - (-1)}$	✓ substitution into correct formula/Substitusie in korrekte formule ✓ answer/antwoord	(2)

3.3	2y + x = 11		
	$y = -\frac{1}{2}x + \frac{11}{2}$ OR $m = \frac{7-4}{-3-3}$		
	$tan\alpha = -\frac{1}{2} \qquad \qquad = -\frac{1}{2}$	$\checkmark tan\alpha = -\frac{1}{2}$	
	$\alpha = 180^{\circ} - 26,56^{\circ}$	✓ answer α /antwoord α	
	$\alpha = 153,43^{\circ}$		
	$tan\beta = \frac{5}{2}$ $\beta = 68,198^{\circ}$	✓ value of β /waarde van β	
	$\theta = 153,43^{\circ} - 68,198^{\circ}$	✓ value of θ /waarde van θ	
	$\theta = 85,2^{\circ} \text{ (-1 Rounding/-} 1 A fronding)}$		(4)
3.4	$m_{BC} = \frac{5}{2}$		
	$y - y_1 = m(x - x_1) \mathbf{OR}/\mathbf{OF} \ y = mx + c$ $y - 4 = \frac{5}{2}(x - 3) 4 = \frac{5}{2}(3) + c$	✓ Substitute gradiënt and point B or C or M/ Sustitusie gradient en punt B of C of M	
	$y = \frac{5}{2}x - \frac{7}{2}$	✓ Equation/Vergelyking	(2)
3.5	$EF = \frac{11}{2} - \left(-\frac{7}{2}\right)$	✓ value of/waarde van y_F	
	EF = 9	✓ value of/waarde van EF	
	$Area\Delta CEF = \frac{1}{2}EF. \perp h$	✓ value of/waarde van $\bot h$	
	$=\frac{1}{2}(9)(3)$	✓ answer/antwoord	
	$= 13,5 \text{ units}^2/eenhede^2$		
	OR/OF		
L	1		

$E\hat{C}F = 180^{\circ} - 85,2^{\circ} = 94,8^{\circ}$		(4)
$F(0;-\frac{7}{2})$		
$E(0;\frac{11}{2})$		
$EC = \sqrt{(3-0)^2 + (4-\frac{11}{2})^2} = \frac{3\sqrt{5}}{2}$		
$FC = \sqrt{(3-0)^2 + (4+\frac{7}{2})^2} = \frac{3\sqrt{29}}{2}$	✓ size of/grootte van EC	
Area Δ CEF = $\frac{1}{2}$ FC · ECsin94,8°	✓ size of/grootte van FC	
$=\frac{1}{2}\left(\frac{3\sqrt{5}}{2}\right)\cdot\left(\frac{3\sqrt{29}}{2}\right)sin94.8^{\circ}$	✓ substitution/subst	
$= 13,50 unit^2$	✓ answer/antwoord	(4)
		[15]

			[10]
QUES	STION/VRAAG 4		
4.1	$x^{2} + y^{2} - 6x - 4y = 12$ $x^{2} - 6x + 3^{2} + y^{2} - 4y + 2^{2} = 12 + 3^{2} + 2^{2}$ $(x - 3)^{2} + (y - 2)^{2} = 25$ $P(3; 2)$ $r = 5$	✓ complete the square LHS/ voltooi die vierkant LK ✓ RHS ✓ P(3; 2) ✓ r = 5	(4)
4.2	$(0+3)^{2} + (y-2)^{2} = 25$ $9 + y^{2} - 4y + 4 = 25$ $y^{2} - 4y - 12 = 0$ $(y-6)(y+2) = 0$ $y = 6$ $y = -2$ $R(0;6)$	✓ substitute $x = 0$ / vervang $x = 0$ ✓ factors/faktore	
	OR $(0)^{2} + y^{2} - 6(0) - 4y = 12 \checkmark$ $y^{2} - 4y - 12 = 0$ $(y - 6) (y + 2) = 0 \checkmark$ $y = 6$ $y = -2$ $R(0; 6)$	✓ substitute $x = 0$ / $vervang x = 0$ ✓ factors/faktore	(2)

4.3	$m_{RP} = \frac{6-2}{0-3}$ $m_{RP} = \frac{-4}{3}$	$\checkmark m_{RP} = \frac{-4}{3}$	
	$m_{RT} = \frac{3}{4} \left(Radius \perp \tan \right) / radius \perp raaklyn$	$\checkmark m_{RT} = \frac{3}{4}$	
	$y = \frac{3}{4}x + 6$	✓ answer/antwoord	(3)
4.4	$tanR\hat{T}O = m_{RT} = \frac{3}{4}$	$\checkmark tanR\widehat{T}O = \frac{3}{4}$	
	$R\widehat{T}O = 36,86^{\circ}$	$\checkmark R\hat{T}O = 36,86^{\circ}$	
	$\theta = 90^{\circ} + 36,86^{\circ}$		
	$\theta = 126,9^{\circ}$	✓ answer/antwoord	(3)
4.5	Q(8; 2)	✓ <i>x</i> -coordinate/ <i>x</i> - <i>koördinaat</i> ✓ <i>y</i> -coordinate/ <i>y</i> - <i>koördinaat</i>	(2)
4.6	Point of contact of tangent with gradient $\frac{3}{4}$: Kontakpunt van raaklyn met gradiënt $\frac{3}{4}$: $3 = \frac{0+x}{2}$ $x = 6$		
	$2 = \frac{6+y}{2}$ $y = -2$	point of contact/kontakpunt: ✓ x-coordinate/x-koördinaat	
	Pt of contact/kontakpunt: $(6; -2)$ Equation of the tangent at/Vergelyking van raaklyn by $(6; -2)$: $y - (-2) = \frac{3}{4}(x - 6)$	✓ y-coordinate/y-koördinaat	
	$y = \frac{3}{4}x - \frac{13}{2}$ y-intercept/afsnit = $-\frac{13}{2}$ $-6.5 < k < 6$	value of k/waarde van k: $\sqrt{}$ $-6.5 < k < 6$	(4)

	OR/OF	OR/OF	
	Equation of diameter/vergelyking van middellyn: $y = -\frac{4}{3}x + 6$ $(x-3)^2 + (-\frac{4}{3}x + 6 - 2)^2 = 25$ $x^2 - 6x + 9 + \frac{16}{9}x^2 - \frac{32}{3}x + 16 = 25$ $\frac{25}{9}x^2 - \frac{50}{3}x = 0$ $x^2 - 6x = 0$ $x(x-6) = 0$		
	∴ point of contact/kontakpunt: (6; -2) Equation of the tangent at/Vergelyking van raaklyn by: (6; -2): $-2 = \frac{3}{4}(6) + c$ $y = \frac{3}{4}x - \frac{13}{2}$	point of contact/kontakpunt: ✓ x-coordinate/x-koördinaat ✓ y-coordinate/y-koördinaat value of k/waarde van k: ✓	
	-6.5 < k < 6	-6.5 < k < 6	(4)
4.7	Centre of circle/Middelpunt van sirkel $M(-3; -2)$ Distance/Afstand MP: $MP = \sqrt{(3 - (-3))^2 + (2 - (-2))^2}$	✓ M(-3;-2)	
	$MP = 2\sqrt{13}$ $= 7,21$	$\checkmark MP = 2\sqrt{13}$	
	$(R - r < MP < R + r)$ $1 < MP < 11$ $\therefore \text{ Circles will cut twice } / \text{sirkels sal twee keer sny}$	√ R = 6 and r = 5 $ √ conclusion/gevolgtrekking$	
			[22]

QUE	STION	N/VRAAG 5		
5.1	$\tan(-x) \cdot \sin(90^{\circ} + x) + \frac{\sin 2x}{2\cos(360^{\circ} + x)}$ $= -\tan x \cdot \cos x + \frac{2\sin x \cdot \cos x}{2\cos x}$		 ✓ -tanx ✓ cosx ✓ 2sinx · cosx ✓ 2cosx 	
	$= -\frac{\sin x}{\cos x} \cdot \cos x + \sin x$		$\checkmark -\frac{\sin x}{\cos x}$	
	= -	-sinx + sinx	√ = 0	(6)
5.2	5.2.1	$cos27^{\circ} = \sqrt{1 - sin^2 27^{\circ}}$	$\checkmark \sqrt{1-\sin^2 27^\circ}$	
		$=\sqrt{1-p^2}$	$\checkmark \sqrt{1-p^2}$	(2)
		$ \begin{array}{c c} \hline 0 & 1 & 63 & p \\ \hline & 27^{\circ} & 1 & p \\ \hline & \sqrt{1-p^2} & x \end{array} $	✓ diagram	
		$cos27^{\circ} = \sqrt{1 - p^2}$	✓ answer/antwoord	(2)
	5.2.2	$sin^263^\circ = sin^2(90^\circ - 27^\circ)$		
		$= cos^{2}(27^{\circ})$ $= 1 - sin^{2}27^{\circ}$ $= 1 - p^{2}$	$\checkmark \cos^2(27^\circ)$ $\checkmark 1 - p^2$	
		OR	OR	
		$sin^2 63^\circ = 1 - p^2$	✓✓ Answer only	(2)
	5.2.3	$cos27^{\circ} = 2cos^{2}13,5^{\circ} - 1$	✓ double ∠ identity/dubbel ∠ identiteit	
		$\sqrt{1-p^2} + 1 = 2\cos^2 13,5^\circ$	✓ substitution/substitusie	
		$\therefore cos13,5^{\circ} = \sqrt{\frac{\sqrt{1 - p^2} + 1}{2}}$	✓ answer/antwoord	(3)

5.3	$\cos(x - 45^{\circ}) = \cos x \cdot \cos 45^{\circ}$	$+ sinx \cdot sin45^{\circ}$	✓ expansion/uitbreiding	
	$=\frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x$		✓ special ∠s/spesiale ∠ e	
	$=\frac{\sqrt{2}}{2}\left(\cos x+\sin x\right)$		✓ factorise/faktoriseer	
	$=\frac{\sqrt{2}}{2} k$		✓ answer/antwoord	(4)
5.4	L. H. S/LK = $\frac{\cos 2\theta + 1}{\sin 2\theta} + \tan \theta$ = $\frac{\cos 2\theta + 1}{2\sin \theta \cdot \cos \theta} + \frac{\sin \theta}{\cos \theta}$ = $\frac{\cos 2\theta + 1 + 2\sin^2 \theta}{\cos \theta}$.θ	$\begin{array}{c} \checkmark \frac{\sin\theta}{\cos\theta} \\ \checkmark \ 2\sin\theta \cdot \cos\theta \end{array}$	
	$= \frac{\frac{1-2\sin\theta \cdot \cos\theta}{2\sin\theta \cdot \cos\theta}}{\frac{2\sin\theta \cdot \cos\theta}{2\sin\theta \cdot \cos\theta}}$		✓ L.C.D/ K.G.V. ✓ $1 - 2sin^2\theta$	
	$= \frac{2}{2sin\theta \cdot cos\theta}$ $= \frac{1}{sin\theta \cdot cos\theta} = R.H.S/RK$		$\checkmark \frac{2}{2sin\theta \cdot cos\theta}$	(5)
5.5	$4sin^2\theta = \cos\left(90^\circ - 2\theta\right)$			
	$4sin^2\theta = sin2\theta$		✓ sin2θ	
	$4sin^2\theta - 2sin\theta \cdot cos\theta = 0$		√ 2sinθ·cosθ	
	$2sin\theta(2sin\theta - cos\theta) = 0$	Breakdown if divided by $sin\theta(2/6)$	✓ factors/faktore	
	$sin\theta = 0$ or/of $tan\theta = \frac{1}{2}$		$\checkmark \sin\theta = 0 \& \tan\theta = \frac{1}{2}$	
	$\theta = 0^{\circ} + k \cdot 360^{\circ}; k \in \mathbb{Z} \text{ or/of}$ $\theta = 26,57^{\circ} + k \cdot 180^{\circ}; k \in \mathbb{Z}$	N.B: If/indien $k \in \mathbb{Z}$ is omitted/weggelaat – penalize/penaliseer.	✓ 0° + $k \cdot 360^{\circ}$ & 180° + $k \cdot 360^{\circ}/k \cdot 180^{\circ}$; $k \in \mathbb{Z}$	
	or/ <i>of</i>	1mark/ <i>punt</i> .	$\checkmark \theta = 26,57^{\circ} + k \cdot 180^{\circ} ; k \in \mathbb{Z}$	
	$\theta = 180^{\circ} + k \cdot 360^{\circ}; k \epsilon \mathbb{Z}$			
	OR/OF			
	$\theta = k \cdot 180^{\circ}; k \in \mathbb{Z}$			(6)

OR

 $\ddot{\theta} = 26.57^{\circ} + k.180^{\circ} ; k \in \mathbb{Z}$

$$\begin{aligned} 4sin^2\theta &= sin2\theta \\ \frac{4sin^2\theta}{cos^2\theta} &= \frac{2sin\theta cos\theta}{cos^2\theta} \\ 4tan^2\theta &- 2tan\theta = 0 \\ 2tan\theta (tan\theta - 1) &= 0 \\ tan\theta &= 0 \quad or \ tan\theta = \frac{1}{2} \\ for \ tan\theta &= 0 \\ \theta &= 0^\circ + k. \ 180^\circ \ ; ke\mathbb{Z} \end{aligned}$$

for $tan\theta = \frac{1}{2}$

N.B: If/indien $k \in \mathbb{Z}$ is omitted/weggelaat penalize/penaliseer 1 mark/punt.

- ✓ sin2θ
- ✓ 2sinθcosθ
 - ✓ factors/faktore

$$\checkmark$$
 $tan\theta = 0$ or $tan\theta = \frac{1}{2}$

$$\begin{array}{ll} \checkmark & \theta = 0^{\circ} + k.\,180^{\circ} \; ; k \epsilon \mathbb{Z} \\ \checkmark & \theta = 26.57^{\circ} + k.\,180^{\circ} \; ; k \epsilon \mathbb{Z} \end{array}$$

(6)

[28]

QUI	ESTIO	N/VRAAG 6				
6.1	a = 5 $b = 1$			√ ✓	a = 5 $b = 1$	(2)
6.2	h(x) =	$h(x) = 4\cos(x - 30^\circ) - 2$		✓ ✓	<i>x</i> − 30° −2	(2)
6.3	Minin	num value/ <i>minim</i>	$um waarde = \frac{8}{4} = 2$	✓	answer/answer	(1)
6.4	B(38,	66°; 3,12)	Accept 38,61° or 38,73°] 🗸	38,66° 3,12	(2)
6.5	k < -	$-5 \ or/of \ k > 5$		✓ ✓	<i>k</i> < −5 <i>k</i> > 5	(2)
6.6	6.6.1	OR/OF		√ ✓	end points/eindpunte correct notation/korrekte notasie	(0)
	6.6.2	$-141,34^{\circ} < x$ $x \in [-180^{\circ}; 18]$		✓ ✓	end points/eindpunte correct notation/korrekte notasie	(2)
		OR/OF $-180^{\circ} \le x \le 3$	180°			(2) [13]

OH	ESTION/VRAAG 7		
	$\theta = 180^{\circ} - 2\alpha$	\checkmark sum of \angle' s in $a \triangle$ /	
	$\therefore \sin\theta = \sin(180^0 - 2\alpha)$	$som\ van\ \angle'\ e\ in\ 'n\ \Delta$	
		✓ Introducing sin both sides/gebruik	
	$sin\theta = sin2\alpha$	sin beide kante	(2)
			(2)
7.2	$x = PR.\cos\theta$	(0 ×	
1.2	$x = FR. \cos \theta$	$\checkmark cos\theta = \frac{x}{PR}$	
	x y		
	$\frac{x}{\sin\theta} = \frac{y}{\sin\alpha}$	✓ use of sine rule/gebruik van sin-reël	
	ysin heta		
	$\therefore x = \frac{y \sin \theta}{\sin \alpha}$		
	$\therefore PR.\cos\theta = \frac{y\sin\theta}{\sin\alpha} = \frac{y\sin2\alpha}{\sin\alpha}$		
	$PR.\cos\theta = \frac{2y\sin\alpha\cos\alpha}{\sin\alpha} = 2y\cos\alpha$	✓ 2ysinαcosα	
	2	✓ simplifying/vereenvoudiging	
	$\therefore PR = \frac{2y\cos\alpha}{\cos\theta}$		(4)
	COSO		(4)
7.3	Area = $\frac{1}{2}$ QT · QRsin α		
	$=\frac{1}{2}x y \sin\alpha$	✓✓ substitution into correct	
	2	formula/vervanging van korrekte	
	$=\frac{1}{2}(20)(15)\sin 49^{\circ}$	formule	
	$= 113,21 \text{ m}^2$	✓ answer/antwoord	(3)
			[9]

QUE	ESTION	8/VRAAG 8		
8.1	8.1.1	$\hat{A}_1 = 22,5^{\circ}$ tan-chord theorem/	✓ S	
		raaklyn-koord stelling	✓ R	(2)
			✓	
	8.1.2	$\hat{C} = 22.5^{\circ}$ \angle 's opp equal sides/	✓ S/R	
		∠'e teenoor gelyke sye		
		$\widehat{D}_1 = 45^\circ \text{ ext } \angle \text{ of a } \Delta/$	✓ S	
		buite $\angle van'n \Delta$		(2)
	8.1.3	$0\hat{B}C = 90^{\circ} tan \perp rad/raaklyn \perp radius$	✓ R	
		$\hat{B}_2 = 90^{\circ} - 22,5^{\circ}$		
		= 67,5°	✓ answer/antwoord	(2)
	8.1.4	$\hat{O}_1 = 2\hat{D}_1 \ \angle \text{ at centre} = 2 \text{ x } \angle \text{ at circ}/$	✓ S/R	
		$middelpunt \angle = 2 \times omtreks \angle$		
		$\hat{O}_1 = 2 \times 45^0$		
		$\hat{O}_1 = 90^0$	✓ answer/antwoord	(2)
8.2		already proven/ <i>reeds bewys</i>		
	$O\widehat{B}C = 90^{\circ} tan \perp rad/raaklyn \perp radius or/of$			
		already proven/reeds bewys		
			$\checkmark \hat{O}_1 = O\hat{B}C$	
	$ \hat{O}_1 $	= OBC		
	CD II C	24	✓ R	
		OA alt∠s equal/verwisselende ∠e gelyk	· K	
	OP	/OF	OR/OF	
			01401	
	$\hat{A} = 2$	22,5° ∠'s opp equal radii/		
	$A_2 - Z$	∠'e teenoor gelyke radiusse	$\sqrt{\hat{A}_2} = 22,5^{\circ}$	
		Z e teenoor geryke raatasse	2 ,-	
	$\hat{C}=22$	2 5°		
		-10		
	$\therefore \hat{A}_2 =$	- Ĉ		
	1112	- 0		
	$CB \parallel C$	OA alt ∠s equal/verwisselende ∠e gelyk	✓ R	
	" -	and the equation of the end of th		
				(2)

8.3	$AB^2 = OB^2 + OA^2$ $AB^2 = 12^2 + 12^2 \text{ Pythagoras}$	✓ S/R	
	$AB = 12\sqrt{2} = 16,97 \text{ units/}eenhede$	✓ answer/antwoord	
	But/Maar $\hat{C} = \hat{A}_1 = 22,5^{\circ}$ already proven/reeds bewys		
	∴ BC = AB sides opp equal ∠s/sye teenoor gelyke ∠e ∴ BC = $12\sqrt{2}$	✓ S/R ✓ answer/antwoord	(4)
	= 16,97units/eenhede	· answer/antwoora	
	OR/OF	OR/OF	

$AB = \sqrt{12^2 + 12^2} = 12\sqrt{2} \text{ Pythagoras}$	✓ S/R	
$\frac{BC}{\text{sn22,5}^{\circ}} = \frac{AB}{\text{sn22,5}^{\circ}}$	✓ formula/formule ✓ substitution/substitusie	
$\therefore BC = AB = 12\sqrt{2}$ = 16,97 units/eenhede	✓ answer/antwoord	(4)
		[14]

QUI	QUESTION/VRAAG 9		
9.1	$\hat{A}_2 = 90^{\circ}$ \(\times \text{in a semi-circle/} \(\times \text{in halve sirkel} \)	✓ S/R	
	$\widehat{D}_2 = 90^{\circ}$ given/gegee	l (î s	
	$\therefore \hat{A}_2 = \hat{D}_2$	$\checkmark \hat{A}_2 = \widehat{D}_2$	
	∴ ABCD is a cyclic quad/is 'n koordevierhoek converse angles in the same segment/omgekeerde hoeke	✓ reason/ <i>rede</i>	
	in dieslfde segment line subtends equal angles/lyn	Tous off Towe	
	onderspan gelyke hoeke		(3)
9.2	$\hat{A}_3 = \hat{B}_1$ tan-chord theorem/raaklyn-koord stelling	✓S ✓R	
	$\hat{A}_3 = \hat{B}_2 \angle$'s in the same segment/ \angle 'e in dieselfde segment	✓ S	
	\$		
	$\therefore \hat{B}_1 = \hat{B}_2$		
	∴ BD bisect ABC/BD halveer ABC		
			(3)

MARKING GUIDELINES/ NASIENRIGLYNE

MATHEMATICS/WISKUNDE GR12 0624

9.3	$\hat{O}_1 = 2\hat{B}_2 \angle$ at centre = $2 \times \angle$ at circ/middelpunt = $2 \times$ omtreks \angle $\hat{E}_3 = \hat{B}_1 + \hat{B}_2$ ext \angle of cyclic quad/buite \angle van koordevierhoek	✓ S/R ✓ S	
	But/Maar $\hat{B}_1 = \hat{B}_2$ already proven/reeds bewys		
	$\hat{E}_3 = 2\hat{B}_2$ $\hat{E}_3 = \hat{O}_1$ $\hat{E}_3 = \hat{O}_1$ $\hat{E}_3 = \hat{O}_1$ $\hat{E}_3 = \hat{O}_1$ $\hat{E}_4 = \hat{O}_5$ $\hat{E}_5 = \hat{O}_5$ $\hat{E}_6 = \hat{O}_5$ $\hat{E}_7 =$	$\checkmark \hat{E}_3 = \hat{O}_1$ $\checkmark \text{ reason/} rede$	(4)
			[10]

1001			/ 444 / 4	
10.2 1	0.2.1	DB = DG	✓ radii/ <i>radiusse</i>	
		In $\triangle ABC$:		
		$DF \parallel AB$	AC RC 2	
		$\frac{AC}{FC} = \frac{BC}{DC} = \frac{3}{2}$	$\checkmark \frac{AC}{FC} = \frac{BC}{DC} = \frac{3}{2}$	
			10 20 2	
		line \parallel to one side of \triangle /(Prop theorem,DF \parallel AB) aan een	/ D	(2)
		sy van ∆/Eweredigheid stelling (DF∥AB)	✓ R	(3)
1	0.2.2	I AADC 1/ ADCC		
	0.2.2	In $\triangle ABC$ and $en \triangle DEC$:		
		1) $\hat{B} = 90^{\circ}$ $\tan \perp \operatorname{rad}/rlyn \perp radius$	$\checkmark \hat{B} = D\hat{E}C \text{ S/R}$	
		$D\widehat{E}C = 90^{\circ}$ $\tan \perp \operatorname{rad}/rlyn \perp radius$		
		$\therefore \hat{B} = D\hat{E}C$	$\checkmark \hat{C} = \hat{C}$	
			$\checkmark \hat{A} = E \widehat{D} C$	
		2) $\hat{C} = \hat{C}$ common $\angle/gemeenskaplike \angle$	OR	
		3) $\hat{A} = E\widehat{D}C$ $\angle's$ of a $\Delta/\angle'e$ van Δ	$\checkmark \hat{B} = D\hat{E}C \text{ S/R}$	
			$\checkmark \hat{C} = \hat{C}$	
			v C = C	
		∴ ΔABC///ΔDEC ∠∠∠	√R ∠∠∠	(3)
1	0.2.2	AD DC	(C/D	
	0.2.3	$\frac{AB}{DE} = \frac{BC}{EC} \Delta ABC / / / \Delta DEC$	✓ S/R	
		DE EC		
		1 and the same AD - AE tong from some maintainers and	(C/D	
		but/maar $AB = AE$ tans from same point/rlyne vanaf dies. punt and/en $BC = 3 \times \text{radius} = 3DE$	✓ S/R	
		4E 2DE	(1 11 AD 11	
		$\therefore \frac{AE}{DE} = \frac{3DE}{EC}$	✓ substitute AB with	
		DE EC	AE/vervang AB	
		AE.EC = 3DE.DE	met AE	
		AE.EC = 3DE.DE	✓ substitute BC with	
		$AE.EC = 3DE^2$	3DE/vervang BC	
		AE.EC = 5DE	met 3DE	
		AE.EC	$\checkmark AE.EC = 3 DE^2$	(5)
		$DE^2 = \frac{AE.EC}{3}$	AE.EC — S DE	(5)
		J		
1	0.2.4	$Area\Delta FDC$ $opp\Delta FDC$		
		$\frac{1}{Area\Delta ABC} = \frac{1}{opp\Delta ABC}$	✓ using area rule	
		$\frac{1}{2}FC DC \sin \hat{C}$	correctly/gebruik	
		$= \frac{\frac{1}{2}FC.DC.\sin\hat{C}}{\frac{1}{2}AC.BC.\sin\hat{C}}$	opp reël korrek	
		$\frac{1}{2}AC.BC.\sin C$	opp . cor nor en	
		$-\binom{2}{2}\binom{2}{2}$	$\checkmark \left(\frac{2}{3}\right)\left(\frac{2}{3}\right)$	
		$= \left(\frac{2}{3}\right) \left(\frac{2}{3}\right)$	(3/ \3/	
		$=\frac{4}{9}$	✓ answer/antwoord	(3)
		·		[19]
			TOTAL/TOTAAL	[150]

