

Студент

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

по дисциплине: «Разработка PLM»

Четверов Антон Дмитриевич

57.1	1 / 1				
Группа	PK6-12M				
Тип задания	Домашнее задание № 1				
Название	«Реализация метода критического пути»				
Студент		_ Четверов А.Д.			
	подпись, дата	фамилия,и.о.			
Преподаватель		<u>Берчун Ю.В.</u>			
•	подпись, дата	— <i>фамилия, и.о.</i>			

Оглавление

Задание на лабораторную работу	3
Описание программной реализации	3
Примеры работы программы	4

Задание на лабораторную работу

Разработать программу, которая позволит вычислить критический путь и рассчитать время, требующееся на его выполнение (т.е. продолжительность этого критического пути) при планировании проекта. План работ (задач) задается при помощи входного файла.

Описание программной реализации

Входные данные считываются из .csv-файла, пример которого показан на Рис. 1. Структура файла следующая: первый столбец — имя работы, второй столбец — продолжительность работы, третий столбец — разделенные пробелами имена работ, которые должны быть выполнены к началу текущей

	I ≣ stage :	■ duration ≎	I≣ requirements
1	S0	15	[-]
2	S1	9	[-]
3	S2	12	[-]
4	S3	11	[S0 S1]
5	\$4	17	[S0 S1]
6	S5	6	[80]
7	S6	16	[S3 S4 S5]
8	S7	16	[S4 S5 S2]
9	\$8	10	[\$6 \$7]
10	\$9	5	[87]

Рисунок 1 – Пример входного файла

Алгоритм работы программы следующий:

- 1. Происходит парсинг входного файла
- 2. Строится граф работ в виде матрицы смежности со стороной 2n + 2 (т.к. вершинами считаются начала и окончания работ, а также две фиктивных вершины общее начало и общий конец).

Для каждой работы добавляется ребро между ее началом и концом, величина ребра — длительность работы. Начало работы соединяется нулевыми ребрами с концами тех работ, которые должны быть предварительно выполнены.

- 3. Производится обход графа от начала к концу. Максимальный путь до вершины определяется как наибольшая сумма пути до одной из предыдущих вершин и пути от нее до текущей.
- 4. Производится обход графа от конца к началу. Максимальный путь до вершины определяется как наименьшая разность пути до следующей вершины и пути от текущей вершины до следующей.
- 5. Вершины, для которых значения при обоих обходах совпали, помечаются как принадлежащие критическому пути, для остальных разность значений при обходах есть резерв по времени.

Примеры работы программы

В качестве примера будет рассмотрена последовательность работ, представленная входным файлом, приведенным на рисунке 1. Схематичное представление этой последовательности приведено на рисунке 2.

Рисунок 2 — Схематичное представление рассматриваемой последовательности работ

Рисунок 2 — Графовое представление рассматриваемой последовательности работ

Фрагмент полученной программой матрицы смежности изображен на рисунке 3.

Рисунок 3 — Фрагмент матрицы смежности рассматриваемой последовательности работ

В данной матрице номер строки – номер вершины 1, номер столбца – номер вершины 2, число на пересечении – вес ребра, выходящего из вершины 1 в вершину 2.

На рисунке 4 представлен результат работы программы.

	■ C1	‡	■ C2	‡	■ C3	‡	■ C4	‡
1	stage		duration		early_start		early_finish	
2	S0		15		0		15	
3	S4		17		15		32	
4	\$6		16		32		48	
5	S7		16		32		48	
6	\$8		10		48		58	

Длина критического пути - 58.

Рисунок 4 – Результат работы программы