Brandon Chen MATH 444 HW 4 3 H, J, K, L

3H Prove that every circle contains infinitely many points [hint: use exercise 3F and 3G]

Given any circle, it has a center O and radius r

The circle is described by $\mathscr{C}(O,r) = \{P : OP = r\}$

We know by exercise 3F that the point O lies on infinitely many distinct lines.

Given any one of those distinct lines, call it ℓ , there exists a coordinate function $f:\ell\to\mathbb{R}$ such that f(O)=0

f is bijective, take $P = f^{-1}(r)$

Then OP = |f(P) - f(O)| = |r - 0| = r, so P is on the circle

Claim: For any point P on the circle, there is only one line connecting O and P

Assume two lines, ℓ_1, ℓ_2 connect O and P

Then this violates that distinct lines must not contain 2 of the same points.

So for any point P on the circle, there must be only one unique line connecting O and P

Since there are infinitely many distinct lines through O, there are infinitely distinct points on the circle.

3J Prove Theorem 3.35 (the segment construcion theorem) [Hint: use an adapted coordinate function. Look ath the proof of theorem 3.27 for inspiration.]

Theorem 3.35: Suppose \overrightarrow{a} is a ray starting at the point A and r is a positive real number. Then there exists a unique point C in the interior of \overrightarrow{a} such that AC = r

 \overrightarrow{a} is a ray, it is part of a line, call it ℓ

 ℓ has a coordinate function $f:\ell\to\mathbb{R}$, and f(A)=0

And \overrightarrow{a} is described as $\{P \in \ell : f(P) > 0\}$

Let $C = f^{-1}(r)$

Then f(C) > 0, so C is on the ray

And AC = |f(C) - f(A)| = |r - 0| = r

So there exists a point C on the ray such that the distance AC = r

Show that this point C is unique

Assume that C is not unique, then there must be another point, call it D such that it is on the ray and AD = r

Then AD = |f(D) - f(A)| = r

Then |f(D)| = r

Then $f(D) = \pm r$

Case: f(D) = +r

Then since f is bijective, C = D, contradicts that D is not C

Case: f(D) = -r

Then f(D) < 0

Then D is not on the ray, contradiction

So C must be unique.

3K Prove Corollary 3.37 (Euclid's segment cutoff theorem)

Corollary 3.37: If \overline{AB} and \overline{CD} are segments with CD > AB, there is a unique point E in the interior of \overline{CD} such that $\overline{CE} \cong \overline{AB}$

Let r = AB

 \overline{CD} is a segment on the line ℓ

 ℓ has a coordinate function $f:\ell\to\mathbb{R}$ such that f(C)=0, f(D)>0

Then all points on \overline{CD} are $\{P \in \ell : 0 \le f(P) \le f(D)\}$

We know AB < CD, so |f(D) - f(C)| = |f(D)| = f(D) > r

Then let $E = f^{-1}(r)$

Then f(E) = r, 0 < r < f(D), so E is on the segment

And CE = |f(E) - f(C)| = |r - 0| = AB

So there exists a point E on the segment \overline{CD} such that CE = AB

Show that E is a unique point

Assume that E is not unique, then there exists another point F such that CF = AB, and F is on the segment CD

If CF = AB, then |f(F) - f(C)| = r = AB

|f(F)| = r

Then $f(F) = \pm r$

Case 1: f(F) = r

Then since f is bijective, F=E, contradicts that $F\neq E$

Case 2: f(F) = -r

Then f(F) = -r < 0, then F is not on the segment \overline{CD} , contradiction

So E must be unique.

3L Prove Theorem 3.42 (on intersections and unions of rays).

Theorem 3.42: Suppose A, B are two distinct points. Then the following set of equalities hold

a)
$$\overrightarrow{AB} \cap \overrightarrow{BA} = \overline{AB}$$

Show that $\overrightarrow{AB} \cap \overrightarrow{BA} \subseteq \overline{AB}$

Rays \overrightarrow{AB} , \overrightarrow{BA} exist on the line ℓ containing A, B

Then there exists a coordinate function $f:\ell\to\mathbb{R}, f(A)=0, f(B)>0$

So $\overline{AB} = \{ P \in \ell : 0 \le f(P) \le f(B) \}$

Points in \overrightarrow{AB} satisfy $\{P \in \ell : f(P) \ge 0\}$

And \overrightarrow{BA} satisfy $\{P \in \ell : f(P) < f(B)\}$

So points in $\overrightarrow{AB} \cap \overrightarrow{BA}$ satisfy $P \in \ell : 0 \le f(P) \le f(B)$

So $\overrightarrow{AB} \cap \overrightarrow{BA} \subseteq \overline{AB}$

Show that $\overline{AB} \subseteq \overrightarrow{AB} \cap \overrightarrow{BA}$

Points in the segment \overline{AB} are $\{P \in \ell : 0 \le f(P) \le f(B)\}$

And we know points in $\overrightarrow{AB} \cap \overrightarrow{BA}$ satisfy $P \in \ell : 0 \le f(P) \le f(B)$

So $\overline{AB} = \overrightarrow{AB} \cap \overrightarrow{BA}$

b) $\overrightarrow{AB} \cup \overrightarrow{BA} = \overleftarrow{AB}$

Show that $\overrightarrow{AB} \cup \overrightarrow{BA} \subseteq \overleftarrow{AB}$

Points in \overrightarrow{AB} satisfy $\{P \in \ell : f(P) \ge 0\}$

And \overrightarrow{BA} satisfy $\{P \in \ell : f(P) < f(B)\}$

So $\overrightarrow{AB} \cup \overrightarrow{BA} = \{P \in \ell : f(P) \ge 0\} \cup \{P \in \ell : f(P < f(B))\}$

So $\overrightarrow{AB} \cup \overrightarrow{BA} \subseteq \ell$

Show $\ell \subseteq \overrightarrow{AB} \cup \overrightarrow{BA}$

Given a point P in ℓ , then show that $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$

We know $\overrightarrow{AB} \cup \overrightarrow{BA} = \{P \in \ell : f(P) \ge 0\} \cup \{P \in \ell : f(P < f(B))\}$

So $P \in \ell$, which is true.

So $\overrightarrow{AB} \cup \overrightarrow{BA} \subseteq \overleftrightarrow{AB}$