

00862.022447

PATENT APPLICATION

0130
12621
#2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
AKITOSHI YAMADA ET AL.)
Application No.: 09/993,641)
Filed: November 27, 2001)
For: IMAGE PROCESSING APPARATUS)
AND IMAGE PROCESSING)
METHOD)
Examiner: NYA
Group Art Unit: NYA
March 15, 2002

RECEIVED

APR 02 2002

Technology Center 2600

Commissioner for Patents
Washington, D.C. 20231

SUBMISSION OF PRIORITY DOCUMENTS

Sir:

In support of Applicants' claim for priority under 35 U.S.C. § 119, enclosed
are certified copies of the following foreign applications:

2000-364629, filed November 30, 2000

2000-365339, filed November 30, 2000; and

2000-365340, filed November 30, 2000.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

Attorney for Applicants
Registration No. 42476

FITZPATRICK, CELLA, HARPER & SCINTO
30 Rockefeller Plaza
New York, New York 10112-3801
Facsimile: (212) 218-2200
245408v1

09/993, 641

(translation of the front page of the priority document of
Japanese Patent Application No. 2000-364629)

PATENT OFFICE
JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the
following application as filed with this Office.

RECEIVED

APR 02 2002

Technology Center 2600

Date of Application: November 30, 2000

Application Number : Patent Application 2000-364629

Applicant(s) : Canon Kabushiki Kaisha

December 21, 2001

Commissioner,
Patent Office

Kouzo OIKAWA

Certification Number 2001-3110587

CFM 2447 US
09/993,641

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年11月30日

RECEIVED

APR 02 2002

Technology Center 2600

出願番号

Application Number:

特願2000-364629

出願人

Applicant(s):

キヤノン株式会社

CERTIFIED COPY OF
PRIORITY DOCUMENT

2001年12月21日

特許庁長官
Commissioner,
Japan Patent Office

及川耕造

【書類名】 特許願
【整理番号】 4360018
【提出日】 平成12年11月30日
【あて先】 特許庁長官殿
【国際特許分類】 B41J 2/01
G06F 3/00
【発明の名称】 画像処理装置及び画像処理方法
【請求項の数】 17
【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
【氏名】 山田 順季
【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
【氏名】 加藤 真夫
【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
【氏名】 平林 弘光
【特許出願人】
【識別番号】 000001007
【氏名又は名称】 キヤノン株式会社
【代理人】
【識別番号】 100076428
【弁理士】
【氏名又は名称】 大塚 康徳
【電話番号】 03-5276-3241

【選任した代理人】

【識別番号】 100101306

【弁理士】

【氏名又は名称】 丸山 幸雄

【電話番号】 03-5276-3241

【選任した代理人】

【識別番号】 100115071

【弁理士】

【氏名又は名称】 大塚 康弘

【電話番号】 03-5276-3241

【手数料の表示】

【予納台帳番号】 003458

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0001010

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像処理装置及び画像処理方法

【特許請求の範囲】

【請求項1】 複数の濃度成分からなる多値画像データに誤差拡散処理を施して前記誤差拡散処理の結果を出力する画像処理装置であって、

前記複数の濃度成分のうち、第1の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第2の濃度成分の濃度値に基づいて決定する第1決定手段と、

前記第1決定手段によって決定された閾値に基づいて前記第1の濃度成分に関する誤差拡散処理を実行する第1誤差拡散実行手段と、

前記第1誤差拡散実行手段による実行結果を出力する第1出力手段と、

前記複数の濃度成分のうち、第2の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第1の濃度成分の濃度値に基づいて決定する第2決定手段と、

前記第2決定手段によって決定された閾値に基づいて前記第2の濃度成分に関する誤差拡散処理を実行する第2誤差拡散実行手段と、

前記第2誤差拡散実行手段による実行結果を出力する第2出力手段とを有することを特徴とする画像処理装置。

【請求項2】 前記第1及び第2決定手段は、前記閾値の決定に、濃度値と閾値との関係を定めたテーブルを用いることを特徴とする請求項1に記載の画像処理装置。

【請求項3】 前記第1及び第2の決定手段は夫々、複数の閾値を決定することを特徴とする請求項1に記載の画像処理装置。

【請求項4】 前記第1及び第2の決定手段は夫々、前記複数の閾値夫々の決定のために、複数のテーブルを用いることを特徴とする請求項3に記載の画像処理装置。

【請求項5】 前記複数の濃度成分のうち、第3の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を前記第1の濃度成分と前記第2の濃度成分の濃度値との和に基づいて決定する第3決定手段と、

前記第3決定手段によって決定された閾値に基づいて前記第3の濃度成分に関して誤差拡散処理を実行する第3誤差拡散実行手段と、

前記第3誤差拡散実行手段による実行結果を出力する第3出力手段とをさらに有することを特徴とする請求項1に記載の画像処理装置。

【請求項6】 前記第1、第2、第3の濃度成分に対して誤差拡散処理を行なう場合には、

前記第1の決定手段は、前記第2の濃度成分の濃度値と前記第3の濃度成分の濃度値との和に基づいて、前記第1の濃度成分に関する誤差拡散処理に用いる閾値を決定し、

前記第2の決定手段は、前記第1の濃度成分の濃度値と前記第3の濃度成分の濃度値との和に基づいて、前記第2の濃度成分に関する誤差拡散処理に用いる閾値を決定することを特徴とする請求項5に記載の画像処理装置。

【請求項7】 前記複数の濃度成分は、イエロ成分、マゼンタ成分、シアン成分、及びブラック成分であり、

前記第1の濃度成分はシアン成分であり、

前記第2の濃度成分はマゼンタ成分であり、

前記第3の濃度成分はブラック成分であることを特徴とする請求項1に記載の画像処理装置。

【請求項8】 前記第1、第2、及び第3出力手段から出力される誤差拡散処理実行結果を入力して画像形成を行う画像形成手段をさらに有することを特徴とする請求項5に記載の画像処理装置。

【請求項9】 前記画像形成手段は、インクジェットプリンタであることを特徴とする請求項8に記載の画像処理装置。

【請求項10】 前記インクジェットプリンタは熱エネルギーを利用してインクを吐出するインクジェット記録ヘッドを備え、

前記インクジェット記録ヘッドはインクに与える熱エネルギーを発生するための電気熱変換体を備えていることを特徴とする請求項9に記載の画像処理装置。

【請求項11】 複数の濃度成分からなる多値画像データに誤差拡散処理を施して前記誤差拡散処理の結果を出力する画像処理方法であって、

前記複数の濃度成分のうち、第1の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第2の濃度成分の濃度値に基づいて決定する第1決定工程と、

前記第1決定工程において決定された閾値に基づいて前記第1の濃度成分に関して誤差拡散処理を実行する第1誤差拡散実行工程と、

前記第1誤差拡散実行工程における実行結果を出力する第1出力工程と、

前記複数の濃度成分のうち、第2の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第1の濃度成分の濃度値に基づいて決定する第2決定工程と、

前記第2決定工程において決定された閾値に基づいて前記第2の濃度成分に関して誤差拡散処理を実行する第2誤差拡散実行工程と、

前記第2誤差拡散実行工程における実行結果を出力する第2出力工程とを有することを特徴とする画像処理方法。

【請求項12】 前記第1及び第2決定工程は、前記閾値の決定に、濃度値と閾値との関係を定めたテーブルを用いることを特徴とする請求項11に記載の画像処理方法。

【請求項13】 前記第1及び第2の決定工程は夫々、複数の閾値を決定することを特徴とする請求項11に記載の画像処理方法。

【請求項14】 前記第1及び第2の決定工程は夫々、前記複数の閾値夫々の決定のために、複数のテーブルを用いることを特徴とする請求項13に記載の画像処理方法。

【請求項15】 前記複数の濃度成分のうち、第3の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を前記第1の濃度成分と前記第2の濃度成分の濃度値との和に基づいて決定する第3決定工程と、

前記第3決定工程において決定された閾値に基づいて前記第3の濃度成分に関して誤差拡散処理を実行する第3誤差拡散実行工程と、

前記第3誤差拡散実行工程における実行結果を出力する第3出力工程とをさらに有することを特徴とする請求項11に記載の画像処理方法。

【請求項16】 前記第1、第2、第3の濃度成分に対して誤差拡散処理を行

なう場合には、

前記第1の決定工程は、前記第2の濃度成分の濃度値と前記第3の濃度成分の濃度値との和に基づいて、前記第1の濃度成分に関する誤差拡散処理に用いる閾値を決定し、

前記第2の決定工程は、前記第1の濃度成分の濃度値と前記第3の濃度成分の濃度値との和に基づいて、前記第2の濃度成分に関する誤差拡散処理に用いる閾値を決定することを特徴とする請求項15に記載の画像処理装置。

【請求項17】 請求項11乃至16のいずれかに記載の画像処理方法を実行するプログラムを格納したコンピュータ装置読み取り可能な記憶媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は画像処理装置及び画像処理方法に関し、特に、多値画像濃度データに誤差拡散処理を施して擬似中間調処理を行う画像処理装置及び画像処理方法に関する。

【0002】

【従来の技術】

従来、多値画像を2値で表現する疑似階調処理として誤差拡散法が知られている("An Adaptive Algorithm for Spatial Gray Scale" in society for Information Display 1975 Symposium Digest of Technical Papers, 1975, 36)。この方法は、着目画素をP、その濃度をv、着目画素Pの周辺画素P0、P1、P2、P3の濃度をそれぞれv0、v1、v2、v3、2値化のための閾値をTとすると、着目画素Pにおける2値化誤差Eを周辺画素P0、P1、P2、P3に経験的に求めた重み係数w0、w1、w2、w3で振り分けてマクロ的に平均濃度を元画像の濃度と等しくする方法である。

【0003】

例えば、出力2値データをoとすると

$$v \geq T \text{ ならば } o = 1, E = v - V_{\max}; \dots \quad (1)$$

$$v < T \text{ ならば } o = 0, E = v - V_{\min};$$

(ただし、V_{max}:最大濃度、V_{min}:最小濃度)

$$v_0 = v_0 + E \times w_0; \quad \dots \quad (2)$$

$$v_1 = v_1 + E \times w_1; \quad \dots \quad (3)$$

$$v_2 = v_2 + E \times w_2; \quad \dots \quad (4)$$

$$v_3 = v_3 + E \times w_3; \quad \dots \quad (5)$$

(重み係数の例: $w_0 = 7/16$, $w_1 = 1/16$, $w_2 = 5/16$, $w_3 = 3/16$)

と表すことができる。

【0004】

従来、例えば、カラーインクジェットプリンタ等、シアン(C)、マゼンタ(M)、イエロ(Y)、ブラック(K)4色のインクを用いて多値画像を出力する際には、各色独立に誤差拡散法等を用いて疑似階調処理を行っていたために、1色について見た場合には視覚特性が優れていても、2色以上が重なると必ずしも良好な視覚特性が得られなかった。

【0005】

この問題を改良するために、特開平8-279920号公報および特開平11-10918号公報等においては、2色以上を組み合わせて誤差拡散法を用いることにより、2色以上が重なり合う場合においても良好な視覚特性の得られる擬似中間調処理方法が開示されている。

【0006】

また、特開平9-139841号公報においては、2色以上を独立に疑似中階調処理をしたのちに、入力値の合計により出力値の修正を行い、同様な改良を行う方法が開示されている。

【0007】

特に、カラー画像の中濃度領域の粒状感を低減するのに、シアン成分(C)とマゼンタ成分(M)のドットが互いに重なり合わない様に画像形成をする事が効果的であり、そのために以下の手法が用いられている。

【0008】

図14は従来のインクジェット方式に従う画像形成制御を示す図である。

【0009】

ここでは、画像データは各画素各濃度成分(Y M C K)が8ビット(階調値が

0～255) の多値データで表現されるとして説明する。

【0010】

多値カラー画像の注目画素のC成分とM成分の濃度 C_t 、 M_t は夫々、原画像のC成分とM成分の濃度値を夫々、C、Mとすれば、

$$C_t = C + C_{err}$$

$$M_t = M + M_{err}$$

と表される。ここで、 C_{err} と M_{err} とはC成分とM成分夫々について注目画素に對して誤差拡散された値である。

【0011】

図14に示されるように、C、Mの画像形成に関し、注目画素のC成分とM成分の濃度に従って、4通りの画像形成制御を行う。

1. (C_t+M_t) の和が閾値 (Threshold 1) 以下、即ち、図14の領域(1)に属する場合には、CインクもMインクも用いてドット記録はしない。
2. (C_t+M_t) の和が閾値 (Threshold 1) を越えており、かつ、 (C_t+M_t) の和が別の閾値 (Threshold 2) 未満であり、かつ、 $C_t > M_t$ である、即ち、図14の領域(2)に属する場合には、Cインクのみでドット記録を行う。
3. (C_t+M_t) の和が閾値 (Threshold 1) を越えており、かつ、 (C_t+M_t) の和が別の閾値 (Threshold 2) 未満であり、かつ、 $C_t \leq M_t$ である、即ち、図14の領域(3)に属する場合には、Mインクのみでドット記録を行う。
4. (C_t+M_t) の和が別の閾値 (Threshold 2) 以上である、即ち、図14の領域(4)に属する場合には、CインクとMインクとを用いてドット記録を行う

【0012】

なお、ここで、 $Threshold\ 1 < Threshold\ 2$ である。

【0013】

【発明が解決しようとする課題】

しかしながら上記従来例では、C成分とM成分についての画像形成方法をC成分とM成分の濃度値の和に基づいて変えているため、単純な画像形成制御しか行うことができず、例えば、処理対象となる画像のデータが閾値の前後で変動する

のような画素が近接して存在する場合、その狭い領域でCインクとMインクの重なり合いが発生する画素とそうではない画素とが混在し、結局のところ、形成画像の質が劣化してしまう。

【0014】

このようなことを防止するためには、より複雑な閾値分割をすれば良いが、そのようにすると、その分だけ閾値条件処理をより複雑にする必要があり、結局処理時間が長くなる事が避けられない。

【0015】

さらに、従来のようなC成分とM成分の濃度値の和に基づく処理では閾値処理が単純にならざるを得ず、柔軟性に富む処理を行なうことは困難であるという問題もあった。

【0016】

また、ブラック（K）成分も加えて3つの成分の和を用いて排他的誤差拡散を行おうとすれば、例えば、以下に示すコードのように非常に複雑な処理が必要となる。

【0017】

```

Ct = C + Cerr
Mt = M + Merr
Kt = K + Kerr
If( Ct + Mt + Kt > Threshold 1 )
If( Ct + Mt + Kt < Threshold 2 )
If( Ct > Mt && Ct > Kt)
Print C
Else
If( Mt > Ct && Mt > Kt)
Print M
Else
Print K
Else

```

```

If(Ct + Mt + Kt < Threshold 3)

If( Ct < Mt && Ct < Kt)
Print M

Print K

Else
If( Mt < Ct && Mt < Kt)
Print C

Print K

Else
Print C

Print M

Else
Print C

Print M

Print K

```

本発明は上記従来例に鑑みてなされたもので、より複雑な閾値条件処理を簡単に行って高速に誤差拡散処理を行ない高品位な画像を形成することができる画像処理装置及び画像処理方法を提供することを目的としている。

【0018】

【課題を解決するための手段】

上記目的を達成するために本発明の画像処理装置は、以下のような構成からなる。

【0019】

即ち、複数の濃度成分からなる多値画像データに誤差拡散処理を施して前記誤差拡散処理の結果を出力する画像処理装置であって、前記複数の濃度成分のうち、第1の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第2の濃度成分の濃度値に基づいて決定する第1決定手段と、前記第1決定手段によって決定された閾値に基づいて前記第1の濃度成分に関して誤差拡散処理を実行する第1誤差拡散実行手段と、前記第1誤差拡散実行手段による実行

結果を出力する第1出力手段と、前記複数の濃度成分のうち、第2の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第1の濃度成分の濃度値に基づいて決定する第2決定手段と、前記第2決定手段によって決定された閾値に基づいて前記第2の濃度成分に関して誤差拡散処理を実行する第2誤差拡散実行手段と、前記第2誤差拡散実行手段による実行結果を出力する第2出力手段とを有することを特徴とする画像処理装置を備える。

【0020】

前記第1及び第2決定手段は、前記閾値の決定に、濃度値と閾値との関係を定めたテーブルを用いることが好ましい。

【0021】

前記第1及び第2の決定手段は夫々、2値化のみならず、多値化のために複数の閾値を決定しても良い。その場合、前記第1及び第2の決定手段は夫々、これら複数の閾値夫々の決定のために、複数のテーブルを用いると良い。

【0022】

さらに、前記複数の濃度成分のうち、第3の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を前記第1の濃度成分と前記第2の濃度成分の濃度値との和に基づいて決定する第3決定手段と、前記第3決定手段によって決定された閾値に基づいて前記第3の濃度成分に関して誤差拡散処理を実行する第3誤差拡散実行手段と、前記第3誤差拡散実行手段による実行結果を出力する第3出力手段とを備えても良い。

【0023】

このように、第1、第2、第3の濃度成分に対して誤差拡散処理を行なう場合には、前記第1の決定手段は、第2の濃度成分の濃度値と第3の濃度成分の濃度値との和に基づいて、第1の濃度成分に関する誤差拡散処理に用いる閾値を決定し、前記第2の決定手段は、第1の濃度成分の濃度値と第3の濃度成分の濃度値との和に基づいて、第2の濃度成分に関する誤差拡散処理に用いる閾値を決定すると良い。

【0024】

さて、前記複数の濃度成分は、イエロ成分、マゼンタ成分、シアン成分、及び

ブラック成分であり、第1の濃度成分はシアン成分であり、第2の濃度成分はマゼンタ成分であり、第3の濃度成分はブラック成分である。

【0025】

またさらに、前記第1、第2、及び第3出力手段から出力される誤差拡散処理実行結果を入力して画像形成を行う、例えば、インクジェットプリンタのような画像形成手段を備えることが望ましい。

【0026】

このインクジェットプリンタは熱エネルギーを利用してインクを吐出するインクジェット記録ヘッドを備え、このインクジェット記録ヘッドはインクに与える熱エネルギーを発生するための電気熱変換体を備えていることが好適である。

【0027】

また他の発明によれば、複数の濃度成分からなる多値画像データに誤差拡散処理を施して前記誤差拡散処理の結果を出力する画像処理方法であって、前記複数の濃度成分のうち、第1の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第2の濃度成分の濃度値に基づいて決定する第1決定工程と、前記第1決定工程において決定された閾値に基づいて前記第1の濃度成分に関して誤差拡散処理を実行する第1誤差拡散実行工程と、前記第1誤差拡散実行工程における実行結果を出力する第1出力工程と、前記複数の濃度成分のうち、第2の濃度成分に誤差拡散処理を実行するに当たり、該誤差拡散処理に用いる閾値を第1の濃度成分の濃度値に基づいて決定する第2決定工程と、前記第2決定工程において決定された閾値に基づいて前記第2の濃度成分に関して誤差拡散処理を実行する第2誤差拡散実行工程と、前記第2誤差拡散実行工程における実行結果を出力する第2出力工程とを有することを特徴とする画像処理方法を備える。

【0028】

さらに他の発明によれば、以上の画像処理方法を実行するプログラムを格納したコンピュータによって読み取可能な記憶媒体を備える。

【0029】

以上の構成により本発明は、複数の濃度成分からなる多値画像データに誤差拡

散処理を施してその結果を出力する際に、複数の濃度成分のうち、第1の濃度成分に誤差拡散処理を実行するに当たり、その誤差拡散処理に用いる閾値を第2の濃度成分の濃度値に基づいて決定し、その決定された閾値に基づいて第1の濃度成分に関して誤差拡散処理を実行し、その実行結果を出力するとともに、複数の濃度成分のうち、第2の濃度成分に誤差拡散処理を実行するに当たり、その誤差拡散処理に用いる閾値を第1の濃度成分の濃度値に基づいて決定し、その決定された閾値に基づいて第2の濃度成分に関して誤差拡散処理を実行し、その実行結果を出力する。

【0030】

【発明の実施の形態】

以下添付図面を参照して本発明の好適な実施形態について詳細に説明する。

【0031】

【共通実施形態】

まず、以下のいくつかの実施形態において共通に用いられる情報処理システムの全体概要、ハードウェア構成の概要、ソフトウェア構成の概要、及び、画像処理の概要について説明する。

【0032】

図1は、本発明の共通実施形態に係る情報処理システムの概略構成を示すプロック図である。

【0033】

図1に示されているように、この情報処理システムは、パソコン等で構成されるホスト装置51と、プリンタ等で構成される画像出力装置52とを備え、これらの間が双方向インターフェース53を介して接続されている。そして、ホスト装置51のメモリには、本発明を適用したドライバソフトウェア54がロードされている。

【0034】

1. ホスト装置51と画像出力装置52のハードウェア構成

次に、ホスト装置51と画像出力装置52のハードウェア構成について説明する。

【0035】

図2は情報処理システムを構成するホスト装置51と画像出力装置52のハードウェア構成概要を示すブロック図である。

【0036】

図2に示されているように、ホスト装置51は処理部1000とこれに周辺装置を含めてホスト装置全体を構成している。また、画像出力装置52は、記録ヘッド3010、記録ヘッド3010を搬送するキャリアを駆動するキャリア(CR)モータ3011、用紙を搬送する搬送モータ3012などの駆動部と、制御回路部3003とから構成されている。

【0037】

ホスト装置51の処理部1000は、制御プログラムに従ってホスト装置の全体制御を司るMPU1001、システム構成要素を互いに接続するバス1002、MPU1001が実行するプログラムやデータ等を一時記憶するDRAM1003、システムバスとメモリバス、MPU1001を接続するブリッジ1004、例えば、CRTなどの表示装置2001にグラフィック情報を表示するための制御機能を備えたグラフィックアダプタ1005を含んでいる。

【0038】

さらに、処理部1000はHDD装置2002とのインターフェースを司るHDDコントローラ1006、キーボード2003とのインターフェースを司るキーボードコントローラ1007、IEEE1284規格に従って画像出力装置52との間の通信を司る、パラレルインターフェースである通信I/F1008を備えている。

【0039】

さらに、処理部1000には、グラフィックアダプタ1005を介して操作者にグラフィック情報等を表示する表示装置2001（この例では、CRT）が接続されている。更に、プログラムやデータが格納された大容量記憶装置であるハードディスクドライブ（HDD）装置2002、キーボード2003が夫々、コントローラを介して接続されている。

【0040】

一方、画像出力装置52の制御回路部3003は、制御プログラム実行機能と周辺装置制御機能とを兼ね備えた、画像出力装置本体52の全体制御を司るMCU3001、制御回路部内部の各構成要素を接続するシステムバス3002、記録データの記録ヘッド3010への供給、メモリアドレスデコーディング、キャリアモータへの制御パルス発生機構等を制御回路として内部に納めたゲートアレイ(G.A.)を備えている。

【0041】

また、制御回路部3003は、MCU3001が実行する制御プログラムやホスト印刷情報等を格納するROM3004、各種データ（画像記録情報やヘッドに供給される記録データ等）を保存するDRAM3005、IEEE1284規格に従いホスト装置51との間の通信を司るパラレルインタフェースである通信I/F3006、ゲートアレイ3003から出力されたヘッド記録信号に基づき、記録ヘッド3010を駆動する電気信号に変換するヘッドドライバ3007を備えている。

【0042】

さらに、制御回路部3003は、ゲートアレイ3003から出力されるキャリアモータ制御パルスを実際にキャリア(CR)モータ3011を駆動する電気信号に変換するCRモータドライバ3008、MCU3001から出力された搬送モータ制御パルスを、実際に搬送モータを駆動する電気信号に変換するLFモータドライバ3009を備えている。

【0043】

次に画像出力装置52の具体的構成について説明する。

【0044】

図3は、画像出力装置52の代表的な実施形態であるインクジェットプリンタIJRAの構成の概要を示す外観斜視図である。

【0045】

図3において、駆動モータ5013の正逆回転に連動して駆動力伝達ギア5009～5011を介して回転するリードスクリュー5005の螺旋溝5004に対して係合するキャリッジHCはピン（不図示）を有し、ガイドレール5003

に支持されて矢印a, b方向を往復移動する。キャリッジHCには、記録ヘッドIJHとインクタンクITとを内蔵した一体型インクジェットカートリッジIJCが搭載されている。5002は紙押え板であり、キャリッジHCの移動方向にわたって記録用紙Pをプラテン5000に対して押圧する。5007, 5008はフォトカプラで、キャリッジのレバー5006のこの域での存在を確認して、モータ5013の回転方向切り換え等を行うためのホームポジション検知器である。5016は記録ヘッドIJHの前面をキャップするキャップ部材5022を支持する部材で、5015はこのキャップ内を吸引する吸引器で、キャップ内開口5023を介して記録ヘッドの吸引回復を行う。5017はクリーニングブレードで、5019はこのブレードを前後方向に移動可能にする部材であり、本体支持板5018にこれらが支持されている。ブレードは、この形態でなく周知のクリーニングブレードが本例に適用できることは言うまでもない。又、5021は、吸引回復の吸引を開始するためのレバーで、キャリッジと係合するカム5020の移動に伴って移動し、駆動モータからの駆動力がクラッチ切り換え等の公知の伝達機構で移動制御される。

【0046】

これらのキャッピング、クリーニング、吸引回復は、キャリッジがホームポジション側の領域に来た時にリードスクリュー5005の作用によってそれらの対応位置で所望の処理が行えるように構成されているが、周知のタイミングで所望の動作を行うようにすれば、本例にはいずれも適用できる。

【0047】

なお、上述のように、インクタンクITと記録ヘッドIJHとは一体的に形成されて交換可能なインクカートリッジIJCを構成しても良いが、これらインクタンクITと記録ヘッドIJHとを分離可能に構成して、インクがなくなったときにインクタンクITだけを交換できるようにしても良い。

【0048】

また、インクジェットプリンタIJRAの内部には、図2において言及した制御回路部が内蔵されている。

【0049】

記録ヘッドIJHは、YMC各成分の多値濃度データに基づいて、少なくともイエロ(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4つのインクを用いてカラー画像を記録することができる。

【0050】

2. ソフトウェア構成の概要及び画像処理の概要

図4は、上述した情報処理システムで用いられるソフトウェアの構造を示すブロック図である。

【0051】

図4から分かるように、画像出力装置52に対して記録データを出力するためには、ホスト装置52において、階層構造をしたアプリケーションソフトウェアとオペレーティングシステムとドライバソフトの3つが互いに連携して画像処理を行う。

【0052】

この実施形態では、画像出力装置夫々に個別に依存する部分は、装置固有描画機能31-1、31-2、……、31-nが扱い、画像処理装置の個別の実装に依存するプログラム部品を共通的に処理を行なうことができるプログラムと分離し、かつドライバソフトウェアの根幹処理部分を個別の画像出力装置から独立した構造にしている。

【0053】

量子化量に変換された線分割化画像は、色特性変換33や中間調処理(ハーフトーニング)34などの画像処理が施され、さらにプリントコマンド生成35において、データ圧縮/コマンドを付加した上で作成されたデータをOS(オペレーティングシステム)に用意されたスプーラ22を通じて画像出力装置52へ渡すことになる。

【0054】

図4に示すように、アプリケーションソフトウェアの階層には、アプリケーションソフトウェア11が設けられ、OS(オペレーティングシステム)の階層には、アプリケーションソフトウェア11からの描画命令を受け取る描画処理インターフェース21と生成した画像データをインクジェットプリンタ等の画像出力裝

置52へ渡すスプーラ22とが設けられている。

【0055】

そして、ドライバソフトウェアの階層には、画像出力装置固有の表現形式が記憶された装置固有描画機能31-1、31-2、……、31-nと、OSからの線分割化画像情報を受け取りドライバ内部の表色系からデバイス固有の表色系への変換を行う色特性変換部33と、デバイスの各画素の状態を表す量子化量への変換を行うハーフトーニング部34と、ハーフトーニングが施された画像データを画像出力装置52へのコマンドを付加してスプーラ22に出力するプリントコマンド生成部35とが設けられている。

【0056】

次に、図4と共に図5の画像処理概要を示すフローチャートを参照して、アプリケーションソフトウェアが画像出力装置52へ画像を出力する場合について、具体的に説明する。

【0057】

アプリケーションソフトウェア11が画像出力装置52へ画像を出力する場合は、まず、アプリケーションソフトウェア11がOSの描画処理インターフェース21を通じて、文字・線分・図形・ピットマップなどの描画命令を発行する（ステップS1）。

【0058】

画面／紙面を構成する描画命令が完結すると（ステップS2）、OSは、ドライバソフトウェア内部の装置固有描画機能31-1、31-2、…、31-nを呼び出しつつ、各描画命令を、OSの内部形式から装置固有の表現形式（各描画単位を線分割化したもの）に変換し（ステップS3）、しかる後に画面／紙面を線分割化した画像情報をとしてドライバソフトウェアへ渡す（ステップS4）。

【0059】

ドライバソフトウェア内部では、色特性変換部33によってデバイスの色特性を補正すると共に、ドライバソフトウェア内部の表色系からデバイス固有の表色系への変換を行い（ステップS5）、さらにハーフトーニング部34によってデバイスの各画素の状態を表す量子化量への変換（ハーフトーニング）を行う（ス

ステップS6)。なお、ここで量子化量への変換とは、画像出力装置52の処理するデータの形態に対応し、例えば、画像出力装置による記録が2値データに基づき行われる場合は、2値化し、画像出力装置による記録が多値データ（濃淡インクによる記録、大小インクによる記録を行うため）に基づき行われる場合は、多値化されることである。

【0060】

このハーフトーニングについての詳細は、後述する各実施形態において説明する。

【0061】

プリントコマンド生成モジュール35は、いずれも量子化（2値化、多値化）された画像データを受け取る（ステップS7）。プリントコマンド生成モジュール35は、量子化された画像情報を相異なる方法にて画像出力装置の特性に合わせて加工する。更にこのモジュールともにデータ圧縮、コマンドヘッダの付加を行う（ステップS8）。

【0062】

その後、プリントコマンド生成モジュール35は、OS内部に設けられたスプーラ22に生成したデータを受け渡し（ステップS9）、画像出力装置52へのデータ出力を行う（ステップS10）。

【0063】

なお、この実施形態では、図5のフローチャートに従ったプログラムをホスト装置51内の記憶装置に格納し動作することにより、上述の制御方法を実現させることが可能となる。

【0064】

以上のように、ドライバソフトウェアの根幹処理部分を個別の画像出力装置から独立した構造にしているので、ドライバソフトウェアと画像出力装置間のデータ処理の分担を、ドライバソフトウェアの構成を損なうことなく柔軟に変更することが可能になり、ソフトウェアの保守及び管理面で有利となる。

【0065】

次に、以上説明した共通実施形態に従うシステムを用いたいくつかの実施形態

について説明する。以下の各実施形態では、ハーフトーニング部34によって実行される誤差拡散処理の詳細について説明する。

【0066】

なお、以下に説明する誤差拡散処理は、各画素がイエロ（Y）成分、マゼンタ（M）成分、シアン（C）成分、ブラック（K）成分からなる濃度データであり、各成分は8ビット（256階調表現）で構成される多値の画像データを用いることとする。

【0067】

[第1実施形態]

ここでは、従来例とは異なり、複雑な閾値条件処理も可能な誤差拡散処理について説明する。この実施形態に従う誤差拡散処理の対象となるのは、C成分とM成分の多値画像データである。

【0068】

この実施形態では、誤差拡散処理によって多値濃度データを2値化する場合を扱う。

【0069】

図6はこの実施形態に従う画像形成制御について示すフローチャートである。

【0070】

以下、このフローチャートを参照してこの実施形態の特徴を説明する。

【0071】

まず、ステップS10では従来例のように注目画素のC成分とM成分夫々の濃度値Ct、Mtを求める。次に、ステップS20では、求められたM成分の濃度値Mtに基づいて、C成分の誤差拡散で用いる閾値（C threshold）を求める。具体的には、この実施形態では、表1及び表2に示すような閾値テーブルをホスト装置52のHDD2002或いはDRAM1003に設定しておき、この閾値テーブルを参照することでその閾値を決定する。

【0072】

ステップS30では、ステップS20で求められた閾値（C threshold）と注目画素の濃度値Ctとを比較する。ここで、 $Ct \geq C threshold$ であれば処理はス

ステップS40に進み、Cインクで記録を行うように設定する。その後、処理はステップS50に進む。これに対して、 $C_t < C_{threshold}$ であれば、処理はステップS40をスキップしてステップS50に進む。

【0073】

さて、ステップS50では求められたC成分の濃度値 C_t に基づいて、M成分の誤差拡散で用いる閾値($M_{threshold}$)を求める。具体的には、この実施形態では、表1及び表2に示すような閾値テーブルをホスト装置52のHDD2002或いはDRAM1003に設定しておき、この閾値テーブルを参照することでその閾値を決定する。

【0074】

従って、この実施形態では表1及び表2に示す閾値テーブルはC成分とM成分に対して共通に用いられることになる。

【0075】

ステップS60では、ステップS50で求められた閾値($M_{threshold}$)と注目画素の濃度値 M_t とを比較する。ここで、 $M_t \geq M_{threshold}$ であれば処理はステップS70に進み、Mインクで記録を行うように設定する。その後、処理はステップS50に進む。これに対して、 $M_t < M_{threshold}$ であれば、処理はステップS70をスキップして処理を終了する。

【0076】

以上のような処理を実行することにより、従来例の図14と同じ閾値処理となる図7(a)で示したような閾値条件処理も、図7(a)で示す閾値条件よりも複雑な閾値条件となる図8(a)に示すような閾値条件処理も、共通の形式をもつ閾値テーブルを定義し、その閾値テーブル中の値を異なるように設定するだけで容易に複雑な閾値設定処理が可能になる。

【0077】

表1は図7(a)に対応する閾値条件をもつ閾値テーブルであり、表2は図8(a)に対応する閾値条件をもつ閾値テーブルである。

【0078】

【表1】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	128	64	64	128	128	192	191
1	127	65	65	129	129	193	190
2	126	66	66	130	130	194	189
3	125	67	67	131	131	195	188
4	124	68	68	132	132	196	187
5	123	69	69	133	133	197	186
6	122	70	70	134	134	198	185
7	121	71	71	135	135	199	184
8	120	72	72	136	136	200	183
9	119	73	73	137	137	201	182
10	118	74	74	138	138	202	181
11	117	75	75	139	139	203	180
12	116	76	76	140	140	204	179
13	115	77	77	141	141	205	178
14	114	78	78	142	142	206	177
15	113	79	79	143	143	207	176
16	112	80	80	144	144	208	175
17	111	81	81	145	145	209	174
18	110	82	82	146	146	210	173
19	109	83	83	147	147	211	172
20	108	84	84	148	148	212	171
21	107	85	85	149	149	213	170
22	106	86	86	150	150	214	169
23	105	87	87	151	151	215	168
24	104	88	88	152	152	216	167
25	103	89	89	153	153	217	166
26	102	90	90	154	154	218	165
27	101	91	91	155	155	219	164
28	100	92	92	156	156	220	163
29	99	93	93	157	157	221	162
30	98	94	94	158	158	222	161
31	97	95	95	159	159	223	160
32	96	96	96	160	160	224	159
33	95	97	97	161	161	225	158
34	94	98	98	162	162	226	157
35	93	99	99	163	163	227	156
36	92	100	100	164	164	228	155
37	91	101	101	165	165	229	154
38	90	102	102	166	166	230	153
39	89	103	103	167	167	231	152
40	88	104	104	168	168	232	151
41	87	105	105	169	169	233	150
42	86	106	106	170	170	234	149
43	85	107	107	171	171	235	148
44	84	108	108	172	172	236	147
45	83	109	109	173	173	237	146
46	82	110	110	174	174	238	145
47	81	111	111	175	175	239	144
48	80	112	112	176	176	240	143
49	79	113	113	177	177	241	142
50	78	114	114	178	178	242	141
51	77	115	115	179	179	243	140
52	76	116	116	180	180	244	139
53	75	117	117	181	181	245	138
54	74	118	118	182	182	246	137
55	73	119	119	183	183	247	136
56	72	120	120	184	184	248	135
57	71	121	121	185	185	249	134
58	70	122	122	186	186	250	133
59	69	123	123	187	187	251	132
60	68	124	124	188	188	252	131
61	67	125	125	189	189	253	130
62	66	126	126	190	190	254	129
63	65	127	127	191	191	255	128

【0079】

【表2】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	128	64	64	128	128	192	128
1	127	65	65	129	128	193	128
2	126	66	66	130	128	194	128
3	125	67	67	131	128	195	128
4	124	68	68	132	128	196	128
5	123	69	69	133	128	197	128
6	122	70	70	134	128	198	128
7	121	71	71	135	128	199	128
8	120	72	72	136	128	200	128
9	119	73	73	137	128	201	128
10	118	74	74	138	128	202	128
11	117	75	75	139	128	203	128
12	116	76	76	140	128	204	128
13	115	77	77	141	128	205	128
14	114	78	78	142	128	206	128
15	113	79	79	143	128	207	128
16	112	80	80	144	128	208	128
17	111	81	81	145	128	209	128
18	110	82	82	146	128	210	128
19	109	83	83	147	128	211	128
20	108	84	84	148	128	212	128
21	107	85	85	149	128	213	128
22	106	86	86	150	128	214	128
23	105	87	87	151	128	215	128
24	104	88	88	152	128	216	128
25	103	89	89	153	128	217	128
26	102	90	90	154	128	218	128
27	101	91	91	155	128	219	128
28	100	92	92	156	128	220	128
29	99	93	93	157	128	221	128
30	98	94	94	158	128	222	128
31	97	95	95	159	128	223	128
32	96	96	96	160	128	224	128
33	95	97	97	161	128	225	128
34	94	98	98	162	128	226	128
35	93	99	99	163	128	227	128
36	92	100	100	164	128	228	128
37	91	101	101	165	128	229	128
38	90	102	102	166	128	230	128
39	89	103	103	167	128	231	128
40	88	104	104	168	128	232	128
41	87	105	105	169	128	233	128
42	86	106	106	170	128	234	128
43	85	107	107	171	128	235	128
44	84	108	108	172	128	236	128
45	83	109	109	173	128	237	128
46	82	110	110	174	128	238	128
47	81	111	111	175	128	239	128
48	80	112	112	176	128	240	128
49	79	113	113	177	128	241	128
50	78	114	114	178	128	242	128
51	77	115	115	179	128	243	128
52	76	116	116	180	128	244	128
53	75	117	117	181	128	245	128
54	74	118	118	182	128	246	128
55	73	119	119	183	128	247	128
56	72	120	120	184	128	248	128
57	71	121	121	185	128	249	128
58	70	122	122	186	128	250	128
59	69	123	123	187	128	251	128
60	68	124	124	188	128	252	128
61	67	125	125	189	128	253	128
62	66	126	126	190	128	254	128
63	65	127	127	191	128	255	128

例えば、図7(a)に示すような閾値条件処理をこの実施形態に従って実行する場合、最初に、ステップS20～S40では図7(b)に示すような閾値条件処理が実行され、次に、ステップS50～S70では図7(c)に示すような閾

値条件処理が実行される。

【0080】

同様に、図8(a)に示すような閾値条件処理をこの実施形態に従って実行する場合、最初に、ステップS20～S40では図8(b)に示すような閾値条件処理が実行され、次に、ステップS50～S70では図8(c)に示すような閾値条件処理が実行される。

【0081】

従って以上説明した実施形態に従えば、所定の形式の閾値テーブルを用いて閾値条件処理を行なうので、例えば、図9に示すように、閾値条件が複雑でも、処理を複雑にすることなく容易に行なうことができ、また処理が簡単であるゆえに複雑な閾値条件処理も高速に行なうことができる。

【0082】

[第2実施形態]

第1実施形態では誤差拡散処理によって多値濃度データを2値化する場合を扱ったが、この実施形態では、誤差拡散処理によって多値濃度データを3値化する場合を扱う。

【0083】

図10はこの実施形態に従う画像形成制御について示すフローチャートである。

【0084】

以下、このフローチャートを参照してこの実施形態の特徴を説明する。

【0085】

まず、ステップS100では従来例のように注目画素のC成分とM成分夫々の濃度値Ct、Mtを求める。次に、ステップS110では、求められたM成分の濃度値Mtに基づいて、C成分の誤差拡散で用いる2つの閾値(Cthreshold1とCthreshold2)を求める。具体的には、この実施形態では、表3～表6に示すような閾値テーブルをホスト装置52のHDD2002或いはDRAM1003に設定しておき、この閾値テーブルを参照することでその閾値を決定する。

【0086】

ステップS120では、ステップS110で求められた1つの閾値($C_{threshold1}$)と注目画素の濃度値 C_t とを比較する。ここで、 $C_t \geq C_{threshold1}$ であれば処理はステップS130に進み、さらに、ステップS110で求められたもう1つの閾値($C_{threshold2}$)と注目画素の濃度値 C_t とを比較する。ここで、 $C_t \geq C_{threshold2}$ であれば処理はステップS140に進み、Cインクを用いて大きなインク液滴を吐出して記録を行うように設定する。その後、処理はステップS160に進む。これに対して、 $C_t < C_{threshold2}$ であれば、処理はステップS150に進み、Cインクを用いて小さなインク液滴を吐出して記録を行うように設定する。その後、処理はステップS160に進む。

【0087】

また、ステップS120において、 $C_t < C_{threshold1}$ であれば、処理はステップS130～S150をスキップしてステップS160に進む。

【0088】

さて、ステップS160では求められたC成分の濃度値 C_t に基づいて、M成分の誤差拡散で用いる2つの閾値($M_{threshold1}$ と $M_{threshold2}$)を求める。具体的には、この実施形態では、表3～表6に示すような閾値テーブルをホスト装置52のHDD2002或いはDRAM1003に設定しておき、この閾値テーブルを参照することでその閾値を決定する。

【0089】

従って、この実施形態では表3～表6に示す閾値テーブルはC成分とM成分に対して共通に用いられることになる。

【0090】

ステップS170では、ステップS160で求められた1つの閾値($M_{threshold1}$)と注目画素の濃度値 M_t とを比較する。ここで、 $M_t \geq M_{threshold1}$ であれば処理はステップS180に進み、さらに、ステップS160で求められたもう1つの閾値($M_{threshold2}$)と注目画素の濃度値 M_t とを比較する。ここで、 $M_t \geq M_{threshold2}$ であれば処理はステップS190に進み、Mインクを用いて大きなインク液滴を吐出して記録を行うように設定する。その後、処理は終了する。これに対して、 $M_t < M_{threshold2}$ であれば、処理はステップS200に進み、

Mインクを用いて小さなインク液滴を吐出して記録を行うように設定する。その後、処理は終了する。

【0091】

これに対して、ステップS170において、 $M_t < M_{threshold1}$ であれば、処理はステップS180～S200をスキップして処理を終了する。

【0092】

以上のような処理を実行することにより、図11(a)で示したような閾値条件処理も図12(a)に示すような閾値条件処理も、共通の形式をもつ閾値テーブルを定義し、その閾値テーブル中の値を異なるように設定するだけで容易に複雑な閾値設定処理が可能になる。

【0093】

表3と表4とは図11(a)に対応する閾値条件をもつ閾値テーブルであり、表5と表6とは図12(a)に対応する閾値条件をもつ閾値テーブルである。

【0094】

【表3】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	85	64	64	128	43	192	107
1	84	65	65	129	44	193	108
2	83	66	66	130	45	194	109
3	82	67	67	131	46	195	110
4	81	68	68	132	47	196	111
5	80	69	69	133	48	197	112
6	79	70	70	134	49	198	113
7	78	71	71	135	50	199	114
8	77	72	72	136	51	200	115
9	76	73	73	137	52	201	116
10	75	74	74	138	53	202	117
11	74	75	75	139	54	203	118
12	73	76	76	140	55	204	119
13	72	77	77	141	56	205	120
14	71	78	78	142	57	206	121
15	70	79	79	143	58	207	122
16	69	80	80	144	59	208	123
17	68	81	81	145	60	209	124
18	67	82	82	146	61	210	125
19	66	83	83	147	62	211	126
20	65	84	84	148	63	212	127
21	64	85	85	149	64	213	127
22	63	86	84	150	65	214	126
23	62	87	83	151	66	215	125
24	61	88	82	152	67	216	124
25	60	89	81	153	68	217	123
26	59	90	80	154	69	218	122
27	58	91	79	155	70	219	121
28	57	92	78	156	71	220	120
29	56	93	77	157	72	221	119
30	55	94	76	158	73	222	118
31	54	95	75	159	74	223	117
32	53	96	74	160	75	224	116
33	52	97	73	161	76	225	115
34	51	98	72	162	77	226	114
35	50	99	71	163	78	227	113
36	49	100	70	164	79	228	112
37	48	101	69	165	80	229	111
38	47	102	68	166	81	230	110
39	46	103	67	167	82	231	109
40	45	104	66	168	83	232	108
41	44	105	65	169	84	233	107
42	43	106	64	170	85	234	106
43	43	107	63	171	86	235	105
44	44	108	62	172	87	236	104
45	45	109	61	173	88	237	103
46	46	110	60	174	89	238	102
47	47	111	59	175	90	239	101
48	48	112	58	176	91	240	100
49	49	113	57	177	92	241	99
50	50	114	56	178	93	242	98
51	51	115	55	179	94	243	97
52	52	116	54	180	95	244	96
53	53	117	53	181	96	245	95
54	54	118	52	182	97	246	94
55	55	119	51	183	98	247	93
56	56	120	50	184	99	248	92
57	57	121	49	185	100	249	91
58	58	122	48	186	101	250	90
59	59	123	47	187	102	251	89
60	60	124	46	188	103	252	88
61	61	125	45	189	104	253	87
62	62	126	44	190	105	254	86
63	63	127	43	191	106	255	85

【0095】

【表4】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	170	64	149	128	212	192	192
1	169	65	150	129	211	193	193
2	168	66	151	130	210	194	194
3	167	67	152	131	209	195	195
4	166	68	153	132	208	196	196
5	165	69	154	133	207	197	197
6	164	70	155	134	206	198	198
7	163	71	156	135	205	199	199
8	162	72	157	136	204	200	200
9	161	73	158	137	203	201	201
10	160	74	159	138	202	202	202
11	159	75	160	139	201	203	203
12	158	76	161	140	200	204	204
13	157	77	162	141	199	205	205
14	156	78	163	142	198	206	206
15	155	79	164	143	197	207	207
16	154	80	165	144	196	208	208
17	153	81	166	145	195	209	209
18	152	82	167	146	194	210	210
19	151	83	168	147	193	211	211
20	150	84	169	148	192	212	212
21	149	85	170	149	191	213	212
22	148	86	171	150	190	214	211
23	147	87	172	151	189	215	210
24	146	88	173	152	188	216	209
25	145	89	174	153	187	217	208
26	144	90	175	154	186	218	207
27	143	91	176	155	185	219	206
28	142	92	177	156	184	220	205
29	141	93	178	157	183	221	204
30	140	94	179	158	182	222	203
31	139	95	180	159	181	223	202
32	138	96	181	160	180	224	201
33	137	97	182	161	179	225	200
34	136	98	183	162	178	226	199
35	135	99	184	163	177	227	198
36	134	100	185	164	176	228	197
37	133	101	186	165	175	229	196
38	132	102	187	166	174	230	195
39	131	103	188	167	173	231	194
40	130	104	189	168	172	232	193
41	129	105	190	169	171	233	192
42	128	106	191	170	170	234	191
43	128	107	192	171	171	235	190
44	129	108	193	172	172	236	189
45	130	109	194	173	173	237	188
46	131	110	195	174	174	238	187
47	132	111	196	175	175	239	186
48	133	112	197	176	176	240	185
49	134	113	198	177	177	241	184
50	135	114	199	178	178	242	183
51	136	115	200	179	179	243	182
52	137	116	201	180	180	244	181
53	138	117	202	181	181	245	180
54	139	118	203	182	182	246	179
55	140	119	204	183	183	247	178
56	141	120	205	184	184	248	177
57	142	121	206	185	185	249	176
58	143	122	207	186	186	250	175
59	144	123	208	187	187	251	174
60	145	124	209	188	188	252	173
61	146	125	210	189	189	253	172
62	147	126	211	190	190	254	171
63	148	127	212	191	191	255	170

【0096】

【表5】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	85	64	64	128	85	192	85
1	84	65	65	129	85	193	85
2	83	66	66	130	85	194	85
3	82	67	67	131	85	195	85
4	81	68	68	132	85	196	85
5	80	69	69	133	85	197	85
6	79	70	70	134	85	198	85
7	78	71	71	135	85	199	85
8	77	72	72	136	85	200	85
9	76	73	73	137	85	201	85
10	75	74	74	138	85	202	85
11	74	75	75	139	85	203	85
12	73	76	76	140	85	204	85
13	72	77	77	141	85	205	85
14	71	78	78	142	85	206	85
15	70	79	79	143	85	207	85
16	69	80	80	144	85	208	85
17	68	81	81	145	85	209	85
18	67	82	82	146	85	210	85
19	66	83	83	147	85	211	85
20	65	84	84	148	85	212	85
21	64	85	85	149	85	213	85
22	63	86	85	150	85	214	85
23	62	87	85	151	85	215	85
24	61	88	85	152	85	216	85
25	60	89	85	153	85	217	85
26	59	90	85	154	85	218	85
27	58	91	85	155	85	219	85
28	57	92	85	156	85	220	85
29	56	93	85	157	85	221	85
30	55	94	85	158	85	222	85
31	54	95	85	159	85	223	85
32	53	96	85	160	85	224	85
33	52	97	85	161	85	225	85
34	51	98	85	162	85	226	85
35	50	99	85	163	85	227	85
36	49	100	85	164	85	228	85
37	48	101	85	165	85	229	85
38	47	102	85	166	85	230	85
39	46	103	85	167	85	231	85
40	45	104	85	168	85	232	85
41	44	105	85	169	85	233	85
42	43	106	85	170	85	234	85
43	43	107	85	171	85	235	85
44	44	108	85	172	85	236	85
45	45	109	85	173	85	237	85
46	46	110	85	174	85	238	85
47	47	111	85	175	85	239	85
48	48	112	85	176	85	240	85
49	49	113	85	177	85	241	85
50	50	114	85	178	85	242	85
51	51	115	85	179	85	243	85
52	52	116	85	180	85	244	85
53	53	117	85	181	85	245	85
54	54	118	85	182	85	246	85
55	55	119	85	183	85	247	85
56	56	120	85	184	85	248	85
57	57	121	85	185	85	249	85
58	58	122	85	186	85	250	85
59	59	123	85	187	85	251	85
60	60	124	85	188	85	252	85
61	61	125	85	189	85	253	85
62	62	126	85	190	85	254	85
63	63	127	85	191	85	255	85

【0097】

【表6】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	170	64	170	128	170	192	170
1	170	65	170	129	170	193	170
2	170	66	170	130	170	194	170
3	170	67	170	131	170	195	170
4	170	68	170	132	170	196	170
5	170	69	170	133	170	197	170
6	170	70	170	134	170	198	170
7	170	71	170	135	170	199	170
8	170	72	170	136	170	200	170
9	170	73	170	137	170	201	170
10	170	74	170	138	170	202	170
11	170	75	170	139	170	203	170
12	170	76	170	140	170	204	170
13	170	77	170	141	170	205	170
14	170	78	170	142	170	206	170
15	170	79	170	143	170	207	170
16	170	80	170	144	170	208	170
17	170	81	170	145	170	209	170
18	170	82	170	146	170	210	170
19	170	83	170	147	170	211	170
20	170	84	170	148	170	212	170
21	170	85	170	149	170	213	170
22	170	86	170	150	170	214	170
23	170	87	170	151	170	215	170
24	170	88	170	152	170	216	170
25	170	89	170	153	170	217	170
26	170	90	170	154	170	218	170
27	170	91	170	155	170	219	170
28	170	92	170	156	170	220	170
29	170	93	170	157	170	221	170
30	170	94	170	158	170	222	170
31	170	95	170	159	170	223	170
32	170	96	170	160	170	224	170
33	170	97	170	161	170	225	170
34	170	98	170	162	170	226	170
35	170	99	170	163	170	227	170
36	170	100	170	164	170	228	170
37	170	101	170	165	170	229	170
38	170	102	170	166	170	230	170
39	170	103	170	167	170	231	170
40	170	104	170	168	170	232	170
41	170	105	170	169	170	233	170
42	170	106	170	170	170	234	170
43	170	107	170	171	170	235	170
44	170	108	170	172	170	236	170
45	170	109	170	173	170	237	170
46	170	110	170	174	170	238	170
47	170	111	170	175	170	239	170
48	170	112	170	176	170	240	170
49	170	113	170	177	170	241	170
50	170	114	170	178	170	242	170
51	170	115	170	179	170	243	170
52	170	116	170	180	170	244	170
53	170	117	170	181	170	245	170
54	170	118	170	182	170	246	170
55	170	119	170	183	170	247	170
56	170	120	170	184	170	248	170
57	170	121	170	185	170	249	170
58	170	122	170	186	170	250	170
59	170	123	170	187	170	251	170
60	170	124	170	188	170	252	170
61	170	125	170	189	170	253	170
62	170	126	170	190	170	254	170
63	170	127	170	191	170	255	170

例えば、図11(a)に示すような閾値条件処理をこの実施形態に従って実行する場合、最初に、ステップS110～S150では図11(b)に示すような閾値条件処理が実行され、次に、ステップS160～S200では図11(c)

に示すような閾値条件処理が実行される。

【0098】

同様に、図12(a)に示すような閾値条件処理をこの実施形態に従って実行する場合、最初に、ステップS110～S150では図12(b)に示すような閾値条件処理が実行され、次に、ステップS160～S200では図12(c)に示すような閾値条件処理が実行される。特に、図12に示す閾値条件は中間調画像の一様性を改善するために有効なものである。

【0099】

従って以上説明した実施形態に従えば、多値画像データを3値化する場合でも所定の形式の閾値テーブルを用いて閾値条件処理を行なうので、閾値条件が複雑でも、処理を複雑にすることなく容易に行なうことができ、また処理が簡単であるゆえに複雑な閾値条件処理も高速に行なうことができる。

【0100】

なお、この実施形態では、3値化のみを扱ったが、画像出力装置であるインクジェットプリンタがドロップ変調と同色系の濃度の異なるインク（例えば、淡シアンインク、濃シアンインク、淡マゼンタインク、濃マゼンタインク）を用いることによって4値化や5値化などに対応可能である場合には、4値化、5値化などの多値の誤差拡散処理を行なうための閾値テーブルを作成しても良いことは言うまでもない。

【0101】

[第3実施形態]

第1、第2実施形態では誤差拡散処理によって多値濃度データの内、C成分とM成分とを扱った場合について説明したが、この実施形態では、これらの成分に加えてK成分も扱う。

【0102】

図13はこの実施形態に従う画像形成制御について示すフローチャートである

【0103】

以下、このフローチャートを参照してこの実施形態の特徴を説明する。

【0104】

まず、ステップS210では注目画素のC成分とM成分とK成分夫々の濃度値 C_t 、 M_t 、 K_t を求める。次に、ステップS220では、求められたM成分の濃度値 M_t とK成分の濃度値 C_t に基づいて、C成分の誤差拡散で用いる閾値（ $C_{threshold}$ ）を求める。具体的には、この実施形態では、表7に示すような閾値テーブルをホスト装置52のHDD2002或いはDRAM1003に設定しておき、この閾値テーブルを参照することでその閾値を決定する。

【0105】

ステップS230では、ステップS220で求められた閾値（ $C_{threshold}$ ）と注目画素の濃度値 C_t とを比較する。ここで、 $C_t \geq C_{threshold}$ であれば処理はステップS240に進み、Cインクで記録を行うように設定する。その後、処理はステップS250に進む。これに対して、 $C_t < C_{threshold}$ であれば、処理はステップS240をスキップしてステップS250に進む。

【0106】

さて、ステップS250では求められたC成分の濃度値 C_t とK成分の濃度値 K_t に基づいて、M成分の誤差拡散で用いる閾値（ $M_{threshold}$ ）を求める。具体的には、この実施形態では、表7に示すような閾値テーブルをホスト装置52のHDD2002或いはDRAM1003に設定しておき、この閾値テーブルを参照することでその閾値を決定する。

【0107】

ステップS260では、ステップS250で求められた閾値（ $M_{threshold}$ ）と注目画素の濃度値 M_t とを比較する。ここで、 $M_t \geq M_{threshold}$ であれば処理はステップS270に進み、Mインクで記録を行うように設定する。その後、処理はステップS280に進む。これに対して、 $M_t < M_{threshold}$ であれば、処理はステップS270をスキップしてステップS280に進む。

【0108】

さらに、ステップS280では求められたC成分の濃度値 C_t とM成分の濃度値 M_t に基づいて、K成分の誤差拡散で用いる閾値（ $K_{threshold}$ ）を求める。具体的には、この実施形態では、表7に示すような閾値テーブルをホスト装置5

2のHDD2002或いはDRAM1003に設定しておき、この閾値テーブルを参照することでその閾値を決定する。

【0109】

従って、この実施形態では表7に示す閾値テーブルはC成分とM成分とK成分とに対して共通に用いられることになる。

【0110】

ステップS290では、ステップS280で求められた閾値（K threshold）と注目画素の濃度値Ktとを比較する。ここで、 $Kt \geq K_{threshold}$ であれば処理はステップS300に進み、Kインクで記録を行うように設定する。その後、処理は終了する。これに対して、 $Kt < K_{threshold}$ であれば、処理はステップS300をスキップして終了する。

【0111】

以上の処理のコアの部分をコードで表現すると以下のようになる。

【0112】

```

Ct = C + Cerr
Mt = M + Merr
Kt = K + Kerr
Cthreshold = C_Threshold_Table[Mt+Kt]
If( Ct >= Cthreshold )
Print C
Mthreshold = M_Threshold_Table[Ct+Kt]
If( Mt >= Mthreshold )
Print M
Kthreshold = K_Threshold_Table[Ct+Mt]
If( Kt >= Kthreshold )
Print K

```

以上のような処理を実行することにより、従来例でコードを用いて説明したように複雑な閾値処理となる3成分の閾値条件処理も、共通の形式をもつ閾値テーブルを定義し、その閾値テーブル中の値を異なるように設定するだけで容易に実

行することが可能になる。

【0113】

表7はCMK成分共通に用いる閾値テーブルである。

【0114】

【表7】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	128	64	64	128	128	192	128
1	127	65	65	129	128	193	128
2	126	66	66	130	128	194	128
3	125	67	67	131	128	195	128
4	124	68	68	132	128	196	128
5	123	69	69	133	128	197	128
6	122	70	70	134	128	198	128
7	121	71	71	135	128	199	128
8	120	72	72	136	128	200	128
9	119	73	73	137	128	201	128
10	118	74	74	138	128	202	128
11	117	75	75	139	128	203	128
12	116	76	76	140	128	204	128
13	115	77	77	141	128	205	128
14	114	78	78	142	128	206	128
15	113	79	79	143	128	207	128
16	112	80	80	144	128	208	128
17	111	81	81	145	128	209	128
18	110	82	82	146	128	210	128
19	109	83	83	147	128	211	128
20	108	84	84	148	128	212	128
21	107	85	85	149	128	213	128
22	106	86	86	150	128	214	128
23	105	87	87	151	128	215	128
24	104	88	88	152	128	216	128
25	103	89	89	153	128	217	128
26	102	90	90	154	128	218	128
27	101	91	91	155	128	219	128
28	100	92	92	156	128	220	128
29	99	93	93	157	128	221	128
30	98	94	94	158	128	222	128
31	97	95	95	159	128	223	128
32	96	96	96	160	128	224	128
33	95	97	97	161	128	225	128
34	94	98	98	162	128	226	128
35	93	99	99	163	128	227	128
36	92	100	100	164	128	228	128
37	91	101	101	165	128	229	128
38	90	102	102	166	128	230	128
39	89	103	103	167	128	231	128
40	88	104	104	168	128	232	128
41	87	105	105	169	128	233	128
42	86	106	106	170	128	234	128
43	85	107	107	171	128	235	128
44	84	108	108	172	128	236	128
45	83	109	109	173	128	237	128
46	82	110	110	174	128	238	128
47	81	111	111	175	128	239	128
48	80	112	112	176	128	240	128
49	79	113	113	177	128	241	128
50	78	114	114	178	128	242	128
51	77	115	115	179	128	243	128
52	76	116	116	180	128	244	128
53	75	117	117	181	128	245	128
54	74	118	118	182	128	246	128
55	73	119	119	183	128	247	128
56	72	120	120	184	128	248	128
57	71	121	121	185	128	249	128
58	70	122	122	186	128	250	128
59	69	123	123	187	128	251	128
60	68	124	124	188	128	252	128
61	67	125	125	189	128	253	128
62	66	126	126	190	128	254	128
63	65	127	127	191	128	255	128

従って以上説明した実施形態に従えば、所定の形式の閾値テーブルを用いて閾値条件処理を行なうので、閾値条件が複雑となる3成分を扱う誤差拡散処理でも、処理を複雑にすることなく容易に行なうことができ、また処理が簡単であるゆえに複雑な閾値条件処理も高速に行なうことができる。

【0115】

さらに、この実施形態を第2実施形態で説明した3値化の処理と組み合わせすることで処理の単純化と処理高速化の利点は更に大きくなる。

【0116】

なお、本発明は前述の実施形態で説明した閾値テーブルによって限定されるものではない。閾値テーブルの形式は保持しながら、そのテーブルに設定される値を異ならせることで、例えば、以下に示すような種々の閾値条件での処理が可能になる。

【0117】

(1) C成分とM成分の濃度値の和 ($C + M$) ではなく、図9(a)に示すようにC成分とM成分の濃度値夫々の二乗和 ($C^2 + M^2$) のような閾値条件を用いる。表8はこのときに用いる閾値テーブルである。

【0118】

【表8】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	128	64	110	128	128	192	143
1	127	65	110	129	129	193	143
2	127	66	109	130	130	194	142
3	127	67	109	131	131	195	141
4	127	68	108	132	132	196	141
5	127	69	107	133	133	197	140
6	127	70	107	134	134	198	140
7	127	71	106	135	135	199	139
8	127	72	105	136	136	200	139
9	127	73	105	137	137	201	138
10	127	74	104	138	138	202	138
11	127	75	103	139	139	203	138
12	127	76	102	140	140	204	137
13	127	77	102	141	141	205	137
14	127	78	101	142	142	206	136
15	127	79	100	143	143	207	136
16	126	80	99	144	144	208	135
17	126	81	99	145	145	209	135
18	126	82	98	146	146	210	135
19	126	83	97	147	147	211	134
20	126	84	96	148	148	212	134
21	126	85	95	149	149	213	134
22	126	86	94	150	150	214	133
23	125	87	93	151	151	215	133
24	125	88	92	152	152	216	133
25	125	89	91	153	153	217	132
26	125	90	91	154	154	218	132
27	125	91	91	155	155	219	132
28	124	92	92	156	156	220	131
29	124	93	93	157	157	221	131
30	124	94	94	158	158	222	131
31	124	95	95	159	159	223	131
32	123	96	96	160	160	224	130
33	123	97	97	161	161	225	130
34	123	98	98	162	162	226	130
35	123	99	99	163	163	227	130
36	122	100	100	164	164	228	129
37	122	101	101	165	163	229	129
38	122	102	102	166	163	230	129
39	121	103	103	167	162	231	129
40	121	104	104	168	161	232	129
41	121	105	105	169	160	233	128
42	120	106	106	170	159	234	128
43	120	107	107	171	158	235	128
44	120	108	108	172	157	236	128
45	119	109	109	173	156	237	128
46	119	110	110	174	155	238	128
47	119	111	111	175	155	239	128
48	118	112	112	176	154	240	127
49	118	113	113	177	153	241	127
50	117	114	114	178	152	242	127
51	117	115	115	179	152	243	127
52	116	116	116	180	151	244	127
53	116	117	117	181	150	245	127
54	116	118	118	182	149	246	127
55	115	119	119	183	149	247	127
56	115	120	120	184	148	248	127
57	114	121	121	185	147	249	127
58	114	122	122	186	147	250	127
59	113	123	123	187	146	251	127
60	113	124	124	188	145	252	127
61	112	125	125	189	145	253	127
62	111	126	126	190	144	254	127
63	111	127	127	191	144	255	127

インク吐出量が若干大きいインクジェットプリンタを画像出力装置として用い、画像の極低濃度領域において孤立しているCインクもしくはMインクによって形成されるドットが容易に視認され、これらのドットの排他的配置により逆に画

像の一様性を損なう場合には、このような閾値条件を用いると、C成分とM成分の相関を若干弱めにすることができるので、画像一様性を維持する事が可能となる。

【0119】

(2) 図9 (b) に示すように、閾値にノイズを重畠させた閾値条件を用いる。表9はこのときに用いる閾値テーブルである。

【0120】

【表9】

濃度値	閾値	濃度値	閾値	濃度値	閾値	濃度値	閾値
0	130	64	66	128	130	192	193
1	127	65	65	129	129	193	190
2	124	66	64	130	128	194	187
3	125	67	67	131	131	195	188
4	126	68	70	132	134	196	189
5	123	69	69	133	133	197	186
6	120	70	68	134	132	198	183
7	121	71	71	135	135	199	184
8	122	72	74	136	138	200	185
9	119	73	73	137	137	201	182
10	116	74	72	138	136	202	179
11	117	75	75	139	139	203	180
12	116	76	78	140	142	204	181
13	115	77	77	141	141	205	178
14	112	78	76	142	140	206	175
15	113	79	79	143	143	207	176
16	114	80	82	144	146	208	177
17	111	81	81	145	145	209	174
18	108	82	80	146	144	210	171
19	109	83	83	147	147	211	172
20	110	84	86	148	150	212	173
21	107	85	85	149	149	213	170
22	104	86	84	150	148	214	167
23	105	87	87	151	151	215	168
24	106	88	90	152	154	216	169
25	103	89	89	153	153	217	166
26	100	90	88	154	152	218	163
27	101	91	91	155	155	219	164
28	102	92	94	156	158	220	165
29	99	93	93	157	157	221	162
30	96	94	92	158	156	222	159
31	97	95	95	159	159	223	160
32	98	96	98	160	162	224	161
33	95	97	97	161	161	225	158
34	92	98	96	162	160	226	155
35	93	99	99	163	163	227	156
36	94	100	102	164	166	228	157
37	91	101	101	165	165	229	154
38	88	102	100	166	164	230	151
39	89	103	103	167	167	231	152
40	90	104	106	168	170	232	153
41	87	105	105	169	169	233	150
42	84	106	104	170	168	234	147
43	85	107	107	171	171	235	148
44	86	108	110	172	174	236	149
45	83	109	109	173	173	237	146
46	80	110	108	174	172	238	143
47	81	111	111	175	175	239	144
48	82	112	114	176	178	240	145
49	79	113	113	177	177	241	142
50	76	114	112	178	176	242	139
51	77	115	115	179	179	243	140
52	78	116	118	180	182	244	141
53	75	117	117	181	181	245	138
54	72	118	116	182	180	246	135
55	73	119	119	183	183	247	136
56	74	120	122	184	186	248	137
57	71	121	121	185	185	249	134
58	68	122	120	186	184	250	131
59	69	123	123	187	187	251	132
60	70	124	126	188	190	252	133
61	67	125	125	189	189	253	130
62	64	126	124	190	188	254	127
63	65	127	127	191	191	255	128

【0121】

このような閾値条件を用いることで、CインクもしくはMインクによるドットが連続して形成される可能性を低減する事が出来る。

【0122】

(3) 図9 (c) に示すように、ハイライト部と中間調から高濃度領域での誤差拡散の傾向を変化させる。このような閾値条件を用いることで、中間調領域におけるインクドットの付着位置の乱れによる画質劣化を低減することができる。

【0123】

(4) 図9 (d) に示すように、閾値境界をできるだけなだらかにする。このような閾値条件を用いることで、閾値境界付近におけるCインクとMインクの排他的使用をする領域とそうではない領域との間の急峻な変化を減らすことができ実際の画像の表現力を向上させることができる。

【0124】

このように、閾値テーブルを用いることで閾値条件処理に柔軟性が加わることになる。このような閾値テーブルを、例えば、インクジェットプリンタにおける実際のインク吐出量やインクの組成と組み合わせて用いることで、画像形成処理内容や処理目的を容易に変更できる。

【0125】

さて、以上の実施形態においては、記録ヘッドから吐出される液滴はインクであるとして説明し、さらにインクタンクに収容される液体はインクであるとして説明したが、その収容物はインクに限定されるものではない。例えば、記録画像の定着性や耐水性を高めたり、その画像品質を高めたりするために記録媒体に対して吐出される処理液のようなものがインクタンクに収容されていても良い。

【0126】

以上の実施形態は、特にインクジェット記録方式の中でも、インク吐出を行わせるために利用されるエネルギーとして熱エネルギーを発生する手段（例えば電気熱変換体やレーザ光等）を備え、前記熱エネルギーによりインクの状態変化を生起させる方式を用いることにより記録の高密度化、高精細化が達成できる。

【0127】

その代表的な構成や原理については、例えば、米国特許第4723129号明細書、同第4740796号明細書に開示されている基本的な原理を用いて行うものが好ましい。この方式はいわゆるオンデマンド型、コンティニュアス型のい

ずれにも適用可能であるが、特に、オンデマンド型の場合には、液体（インク）が保持されているシートや液路に対応して配置されている電気熱変換体に、記録情報に対応していて核沸騰を越える急速な温度上昇を与える少なくとも1つの駆動信号を印加することによって、電気熱変換体に熱エネルギーを発生せしめ、記録ヘッドの熱作用面に膜沸騰を生じさせて、結果的にこの駆動信号に1対1で対応した液体（インク）内の気泡を形成できるので有効である。この気泡の成長、収縮により吐出用開口を介して液体（インク）を吐出させて、少なくとも1つの滴を形成する。この駆動信号をパルス形状をすると、即時適切に気泡の成長収縮が行われるので、特に応答性に優れた液体（インク）の吐出が達成でき、より好ましい。

【0128】

このパルス形状の駆動信号としては、米国特許第4463359号明細書、同第4345262号明細書に記載されているようなものが適している。なお、上記熱作用面の温度上昇率に関する発明の米国特許第4313124号明細書に記載されている条件を採用すると、さらに優れた記録を行うことができる。

【0129】

記録ヘッドの構成としては、上述の各明細書に開示されているような吐出口、液路、電気熱変換体の組み合わせ構成（直線状液流路または直角液流路）の他に熱作用面が屈曲する領域に配置されている構成を開示する米国特許第4558333号明細書、米国特許第4459600号明細書を用いた構成も本発明に含まれるものである。加えて、複数の電気熱変換体に対して、共通するスロットを電気熱変換体の吐出部とする構成を開示する特開昭59-123670号公報や熱エネルギーの圧力波を吸収する開口を吐出部に対応させる構成を開示する特開昭59-138461号公報に基づいた構成としても良い。

【0130】

さらに、記録装置が記録できる最大記録媒体の幅に対応した長さを有するフルラインタイプの記録ヘッドとしては、上述した明細書に開示されているような複数記録ヘッドの組み合わせによってその長さを満たす構成や、一体的に形成された1個の記録ヘッドとしての構成のいずれでもよい。

【0131】

加えて、上記の実施形態で説明した記録ヘッド自体に一体的にインクタンクが設けられたカートリッジタイプの記録ヘッドのみならず、装置本体に装着されることで、装置本体との電気的な接続や装置本体からのインクの供給が可能になる交換自在のチップタイプの記録ヘッドを用いてもよい。

【0132】

また、以上説明した記録装置の構成に、記録ヘッドに対する回復手段、予備的な手段等を付加することは記録動作を一層安定にできるので好ましいものである。これらを具体的に挙げれば、記録ヘッドに対してのキャッピング手段、クリーニング手段、加圧あるいは吸引手段、電気熱変換体あるいはこれとは別の加熱素子あるいはこれらの組み合わせによる予備加熱手段などがある。また、記録とは別の吐出を行う予備吐出モードを備えることも安定した記録を行うために有効である。

【0133】

さらに、記録装置の記録モードとしては黒色等の主流色のみの記録モードだけではなく、記録ヘッドを一体的に構成するか複数個の組み合わせによってでも良いが、異なる色の複色カラー、または混色によるフルカラーの少なくとも1つを備えた装置とすることもできる。

【0134】

以上説明した実施の形態においては、インクが液体であることを前提として説明しているが、室温やそれ以下で固化するインクであっても、室温で軟化もしくは液化するものを用いても良く、あるいはインクジェット方式ではインク自体を30°C以上70°C以下の範囲内で温度調整を行ってインクの粘性を安定吐出範囲にあるように温度制御するものが一般的であるから、使用記録信号付与時にインクが液状をなすものであればよい。

【0135】

加えて、積極的に熱エネルギーによる昇温をインクの固形状態から液体状態への状態変化のエネルギーとして使用せしめることで積極的に防止するため、またはインクの蒸発を防止するため、放置状態で固化し加熱によって液化するインク

を用いても良い。いずれにしても熱エネルギーの記録信号に応じた付与によってインクが液化し、液状インクが吐出されるものや、記録媒体に到達する時点では既に固化し始めるもの等のような、熱エネルギーの付与によって初めて液化する性質のインクを使用する場合も本発明は適用可能である。このような場合インクは、特開昭54-56847号公報あるいは特開昭60-71260号公報に記載されるような、多孔質シート凹部または貫通孔に液状または固形物として保持された状態で、電気熱変換体に対して対向するような形態としてもよい。本発明においては、上述した各インクに対して最も有効なものは、上述した膜沸騰方式を実行するものである。

【0136】

さらに加えて、本発明に係る記録装置の形態としては、コンピュータ等の情報処理機器の画像出力端末として一体または別体に設けられるものの他、リーダ等と組み合わせた複写装置、さらには送受信機能を有するファクシミリ装置の形態を取るものであっても良い。

【0137】

なお、本発明は、複数の機器（例えばホストコンピュータ、インターフェース機器、リーダ、プリンタなど）から構成されるシステムに適用しても、一つの機器からなる装置（例えば、複写機、ファクシミリ装置など）に適用してもよい。

【0138】

また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体（または記録媒体）を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ（またはCPUやMPU）が記憶媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。また、コンピュータが読み出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム（OS）などが実際の処理の一

部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

【0139】

さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張カードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

【0140】

【発明の効果】

以上説明したように本発明によれば、他の濃度成分の値を考慮して誤差拡散処理を行なうので、他の成分との重なり合いを考慮した画像形成が可能になり、高品位な画像を形成することができるという効果がある。

【0141】

また、請求項2、4、12、及び14に記載の発明によれば、誤差拡散処理に用いる閾値決定をテーブルを用いて行うので、より複雑な閾値条件処理を簡単にやって高速に誤差拡散処理を行なうことが可能になる。

【図面の簡単な説明】

【図1】

本発明の共通実施形態に係る情報処理システムの概略構成を示すブロック図である。

【図2】

情報処理システムを構成するホスト装置51と画像出力装置52のハードウェア構成概要を示すブロック図である。

【図3】

画像出力装置52の代表的な実施形態であるインクジェットプリンタIJRAの構成の概要を示す外観斜視図である。

【図4】

情報処理システムで用いられるソフトウェアの構造を示すブロック図である。

【図5】

画像処理概要を示すフローチャートである。

【図6】

第1実施形態に従う画像形成制御について示すフローチャートである。

【図7】

第1実施形態で用いる閾値条件を示す図である。

【図8】

第1実施形態で用いる別の閾値条件を示す図である。

【図9】

適用可能な種々の閾値条件の例を示す図である。

【図10】

第2実施形態に従う画像形成制御について示すフローチャートである。

【図11】

第2実施形態で用いる閾値条件を示す図である。

【図12】

第2実施形態で用いる別の閾値条件を示す図である。

【図13】

第3実施形態に従う画像形成制御について示すフローチャートである。

【図14】

従来のインクジェット方式に従う画像形成制御を示す図である。

【符号の説明】

1 1 アプリケーションソフトウェア

2 1 描画処理インターフェース

2 2 スプーラ

3 1 - 1、3 1 - 2、……、3 1 - n 装置固有描画機能

3 3 色特性変換

3 4 中間調処理（ハーフトーニング）

3 5 プリントコマンド生成

5 1 ホスト装置

5 2 画像出力装置

5 3 双方向インターフェース

5 4 ドライバソフトウェア

1 0 0 0 処理部

1 0 0 1 MPU

1 0 0 2 バス

1 0 0 3 DRAM

1 0 0 4 ブリッジ

1 0 0 5 グラフィックアダプタ

1 0 0 6 HDDコントローラ

1 0 0 7 キーボードコントローラ

1 0 0 8 通信I/F

2 0 0 1 表示装置

2 0 0 2 HDD装置

2 0 0 3 キーボード

3 0 0 1 MCU

3 0 0 3 制御回路部

3 0 0 4 ROM

3 0 0 5 DRAM

3 0 0 6 通信I/F

3 0 0 7 ヘッドドライバ

3 0 0 8 CRモータドライバ

3 0 0 9 LFモータドライバ

3 0 1 0 記録ヘッド

3 0 1 1 キャリア(CR)モータ

3 0 1 2 撥送モータ

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【書類名】 要約書

【要約】

【課題】 より複雑な閾値条件処理を簡単に行って高速に誤差拡散処理を行ない高品位な画像を形成することができる画像処理装置及び画像処理方法を提供することである。

【解決手段】 複数の濃度成分からなる多値画像データに誤差拡散処理を施してその結果を出力する際に、複数の濃度成分のうち、第1の濃度成分に誤差拡散処理を実行するに当たり、その誤差拡散処理に用いる閾値を第2の濃度成分の濃度値に基づいて決定し、その決定された閾値に基づいて第1の濃度成分に関して誤差拡散処理を実行し、その実行結果を出力するとともに、複数の濃度成分のうち、第2の濃度成分に誤差拡散処理を実行するに当たり、その誤差拡散処理に用いる閾値を第1の濃度成分の濃度値に基づいて決定し、その決定された閾値に基づいて第2の濃度成分に関して誤差拡散処理を実行し、その実行結果を出力する。

【選択図】 図6

出願人履歴情報

識別番号 [000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社