实验七 实验过程原始数据记录

时间: 2024.6-13 地点: 440 台号:

学号: 2023引加 _{班级:}

1、一**阶有源低通滤波器**① 按照 7-5 图参数,计算的截止频率= 10 2 (写出计算过程)

② 按照图 7-5 的电路选择元器件并进行电路搭建; ③ 使用信号发生器,输出有效值为 1V 的正弦波信号,频率选择参见表 7-2。接通直流电压,用示波器测 试输入和输出电压的有效值,并记录于表 7-2 中。

哭
<i>.</i>

f/kHz	0.01	0.05	0.1	0.2	0.3	0.4	0.5	0.6	f _L =0.77	0.8	1k	2k
$U_{ m in}/{ m V}$	0.83	(0)	1.02	(10)	1.00	100	102	(00)	1.00	1.00	1.01	1,05
U _o /V	1,99	1,99	1,97	193	1,84	1.76	1.66	1.56	1:39	1.37	1.5	0.7

2、二**阶有源低通滤波器**① 按照 7-6 图参数,计算的 f6 特征频率= 2**n** PL1 , fc1 截止频率= ① **1 1 1 2 1 3 - 3** 大小, $R_3=10k\Omega$, $R_4=10k\Omega$,计算的 $f_{1.2}$ 截止频率= 10k Ω , $Q_2=3$ 化 $Q_3=20k\Omega$, $Q_4=10k\Omega$, 计算的 $f_{1.3}$ 截止频率= 10k Ω , $Q_4=10k\Omega$ 计算的 $Q_4=10k\Omega$ 计算过程)

- ② 按照图 7-6 的电路选择元器件并进行电路搭建;
- ③ 使用信号发生器,输出有效值为 1V 的正弦波信号,频率选择参见表 7-3。接通直流电压,用示波器测试 输入和输出电压的有效值,并记录于表 7-3 中。

表 7-3 二阶有源低通滤波器 $R_3=10k\Omega$, $R_4=20k\Omega$

f/kHz	0.1	0.2	0.3	0.4	0.5	0.6	$f_{L1}=0.75$	1k	2k	5k	10k	15k		
$U_{\rm in}/{ m V}$	68-9	1.02	1.0	1,0	102	(.0)	1,05	1.01	1.00	1.02	1.01	1.00		
U _o ∕V	1.49	1.48	1.45	1.39	1.31	1.20	(.00	0.71	0.22	0.06	20.0	0.05		

④ 更改 $R_3=10$ k Ω , $R_4=10$ k Ω , 输入信号保持不变, 重复步骤 1,2 并记录数据, 测量频率点自定, 但**须体现** 截止频率点。

表 7-3 二阶有源低通滤波器 $R_3=10$ k Ω , $R_4=10$ k Ω

	6 Grand 19 4- Carrie Ca													
f/kHz	0-1	0.2	0.}	0.4	0-5	$f_{L2}=$	1.5	1.8	2	3	4	5		
$U_{\rm in}/{ m V}$	1.00	[.0]	100	1.01			1.00	1.01	101	1.0/	1.00	1.02		
U _o /V	2.0	2.06	2.14	2-23	2-29	1.31	1.10	0.91	0.3/	014 0	0.09	0.07		

⑤ 更改 $R_3=20$ k Ω , $R_4=10$ k Ω ,输入信号保持不变,自选一体现电路特征的频率,观察波形的变化,拍照记 录波形【 ui和 uo的有效值和频率】。

表 7-3 二阶有源低通滤波器 $R_3=20$ k Ω , $R_4=10$ k Ω

f/kHz	6. (0.2	0.3	0.0	0.5	f _{L3} =/.7	1.3	1.5	2	3	4	ک
$U_{\rm in}/{ m V}$	1.02	(.01							(-01	1,00	(10)	1.02
U ₀ /V	3.0	3.20	3.52	4.11	5.24	1.84	1-20	1.09	0.55	6-37	026	0.07

- ② 按照图 7-7 的电路选择元器件并进行电路搭建;
- ③ 使用信号发生器,输出有效值为 1V 的正弦波信号, 频率选择参见表 7-4。接通直流电压,用示波器测 试输入和输出电压的有效值,并记录于表 7-4 中。

表	7-4	二阶有源高通滤波器	足
n	/	DI D WN IEU ALL (IC) UX 0	ш

	TO THE PROPERTY OF THE PROPERT													
f/kHz	0.01	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	$f_{\rm H}\!\!=\!\!0.8$	1k	2k	3k	5k
$U_{\rm in}/{ m V}$	0-83	(0)	1.00	(.02		10)		10.	(100	1002	(0)	1.00	1.01	1.02
U_{o}/V	V-00	0.00	0.00	0.09	0.2	0.36	0.54	6.71	0.87	1.46	1.49	1.67	01.96	2-82

- 止频率)。接通直流电压,用示波器测试输入和输出电压的有效值,并记录于表 7-5 中。

表 7-5 二阶有源带通滤波器

f/kHz				f1205				•		fH >1-3				
U _{in} /V														
U _o /V														