

BUDT 758T - Hawaii Identifying Buying Targets for AirBnB Investment Property

Team 2: Zhuxuan Xu, Jiangkun Xiong, Wittney Lee, Chunghao Lee, Jin Sun

TABLE OF CONTENTS

Kaggle Competition

Data processing steps:

- Convert variables into numeric or factor types & fill NA values.
- Construct four models: Logistic regression, Bagged Trees, Random forest and XGBoost.
- Compare AUC and choose the best model.

```
# Function to convert to numeric
ConvertNumeric = function(dfCol, NAValue){
  val <- (gsub("\\$", "", dfCol))
  val <- (gsub("\\", "", val))
  val <- suppressWarnings(as.numeric(gsub("\\,", "", val)))
  val[is.na(val)] = NAValue
  return(val)
}

# Function to convert to factor
ConvertFactor = function(dfCol, GoodVector, NAValue){
  dfCol[!(dfCol %in% GoodVector)] = NAValue
  dfCol = as.factor(dfCol)
  return(dfCol)
}</pre>
```

Model	AUC
Logistic	0.8765
Bagged Trees	0.9092
Random Forest	0.9318
XGBoost	0.9399

Variables used

Numeric Variables: accommodates, availability_30,availability_90,availability_365,bathrooms,bedrooms,beds,a menities, cleaning_fee, extra_people, guests_included, host_listings_count, host_response_rate, host_verifications, maximum_nights, minimum_nights, monthly_price, price, review_scores_accuracy, review_scores_checkin, review_scores_cleanliness, review_scores_communication, review_scores_location, review_scores_rating, review_scores_value, security_deposit, weekly_price

Factor Variables: bed_type, cancellation_policy, host_identity_verified, host_has_profile_pic, host_is_superhost, host_response_time, host_since, instant_bookable, is_location_exact, market, property_type, require_guest_phone_verification, require_guest_profile_picture, requires_license, room_type

Quick Look on Hawaii Market

Most to Least Visited Places: Oahu 49.6% > Maui 24.4% > Big Island 14.5% > Kauai 11.5%

Quick Look on Hawaii Market

Visiting Purpose

- Pleasure/Vacation
 - **Honey Moon**
 - Wedding
 - Conference

Total Visitor Spending

- **Increasing since** 2003 (to 2019)
- Lodging, largest spending category

Length of Stay

- First time visitors: 31%, 8.24 days
- Repeating visitors: 68%, 9 days

Total Property

14247

Kaggle Part (Team 2)

Data Processing

- Convert selected variables into either numeric variables or factor variables
- Replace NAs for numeric variables with the average value or the highest frequency value
- Substitute NAs for factor variables with "Other" or the highest frequency value

Final model

XGboost
Parameters:
Trees = 1000,
set_engine("xgboost"),
set_mode("classification")

AUC

0.9399

Variables

Numeric variables: accommodates. availability 30, availability 60, availability 90, availability 365, b athrooms, bedrooms, beds, amenities, cleaning_fee, extra_people, quests_included, host_listings_count, host_response_rate, host_verifications, maximum_nights, minimum_nights, monthly price, price, review scores accuracy, review_scores_checkin, review_scores_cleanliness, review scores communication, review scores location, review scores rating, review scores value, security deposit, weekly_price Factor variables: bed_type, cancellation_policy, host identity verified, host has profile pic, host is superhost, host_response_time, host_since, instant_bookable, is location exact, market, property type, require_guest_phone_verification, require quest profile picture, requires license, room type

Models - variables and performance

Kaggle variables

recipe1 <recipe(high_booking_rate ~ ., data = dfa_analysis) %%
step_rm(id, access, city, description, host_about, host_acceptance_rate, host_location, host_neighbourhood, house_rules, interaction,
is_business_travel_ready, latitude, longitude, neighborhood_overview, neighbourhood, notes, space, state, transit, zipcode, square_feet,
`{randomControl}`)

.metric	.estimator	.estimate
<chr></chr>	<chr></chr>	<dbl></dbl>
roc_auc	binary	0.9319582

Hawaii model with updated variables

.metric <chr></chr>	.estimator <chr></chr>	.estimate
roc_auc	binary	0.9374196

Models: XGboost

Variables Selection

- Weekly_discount replace weekly_price
 - = 1 weekly_price/(daily_price*7)
- Add specific amenity columns (True/False): Family-kid friendly, parking, washer, dryer, hair dryer, Wifi

Models - Cutoff and Cost Matrix

Costs at different cutoff

Cutoff	Cost
0.3	2318
0.4	1832
0.5	1463
0.6	1187
0.7	992

Models: XGboost

Cut-off determination

This is a business advice for property purchasing, so we'd like lower False Positive. In cost matrix, we set cost of False positive 3 times higher than true positive. For the cost matrix, we found that cutoff = 0.7 has lowest cost.

Cost Matrix		Actual	Class
		0	1
Predicted	0	0	1
Class	1	3	1

Q1: Which region is not good for investment?

Predicted Probability	
0.0000	0.9887

Q1: Which region is not good for investment?

Q2: How does weekly price discount affect probability?

Weekly Discount Interval	Number	High-booking-rate Probability
>= 30%	92	0.4546
20% ~ 30%	127	0.6417
10% ~ 20%	197	0.6730
0% ~ 10%	183	0.6021
No discount	177	0.5967

High-booking-rate Probability for property cannot stay higher than a week = **0.2124**

Two-sample t test for unequal sample size (unequal variance):

- Difference between 10% ~ 20% and no discount is significant (p-value = 0.01).
- Difference between 10% ~ 20%
 and 20% ~ 30% is not significant
 (p-value = 0.3623).
- Difference between 10% ~ 20% and 0 ~ 10% is significant (p-value = 0.02).

Management insights:

- → Allow customers to book more than a week (maximum_nights >= 7).
- → Choose 10% to 30% weekly discount as the price management strategy!

Q3: How do provided amenities affect probability?

Management insights:

- → Add Wifi and Hair Dryer equipments into the property.
- → Try to add parking service.
- → Washer & Dryer not important.
- → Provide family-kid friendly service and equipments.

Conclusion

	DESCRIPTION
Problem	The airbnb/ short rental market is one of the most competitive and ever-changing markets for real estate investors.
Goal	Screen & Identify the right properties to invest
Method	A projection model to identify the properties with high booking rates and thus high income generating potential.
AUC	94%
Limitations	?

Investor's Goal

High Booking Rate, Avg. Length of Stay

Operating Income

Occupancy, Rental Pricing

Operating Cost

Net Operating Income

Property Age, Property Price (& Mortgage)

- Investor's Budget
- Property Location

References

Major Cities/Locations: Honolulu, Haleiwa, Kailua-Kona, Hawi, Captain Cook, Kihe Paia, Princeville, and Kapaa (location)

https://www.hawaii-guide.com/selecting-the-best-hawaiian-island

https://www.hawaii-guide.com/hawaii-tourism-statistics

https://blog.turnkeyvr.com/a-guide-to-hawaiis-short-term-rental-regulations/

https://www.hawaii.house/articles/hawaii-investment-properties-airbnb-effect/

https://www.bizjournals.com/pacific/news/2017/02/22/top-airbnb-listings-in-honolul

u-and-how-much.html

https://www.hawaiilife.com/blog/hawaii-vacation-rental-faqs/

recreational interests of visitors are changing: hiking> golfing

https://www.civilbeat.org/2019/07/9-charts-that-show-how-hawaii-tourism-is-chang

ing/

Illegal vacation rentals problems

Airbnb horror stories analysis

https://www.asherfergusson.com/airbnb/

Buying Property for Airbnb (location, type, accessibility, neighborhood)

https://www.fool.com/millionacres/real-estate-investing/rental-properties/buying-property-airbnb/

THANK YOU Q&A

