MATH 5350

Homework IX

Michael Nameika

Section 4.7 Problems

2. Of what category is the set of all integers (a) in \mathbb{R} , (b) in itself (taken with the metric induced from \mathbb{R})?

Soln. (a) In \mathbb{R} , for any $n \in \mathbb{Z}$, $\{n\}$ is not an open set since, for any r > 0, the open ball of radius r centered at n, $B_r(n)$ contains elements in \mathbb{R} not in $\{n\}$. But $\overline{\{n\}} = \{n\}$ so that $\{n\}$ is rare for each $n \in \mathbb{Z}$. Now notice,

$$\mathbb{Z} = \bigcup_{n = -\infty}^{\infty} \{n\}$$

so that \mathbb{Z} is a countable union of rare sets in \mathbb{R} , hence \mathbb{Z} is meager in \mathbb{R} .

(b) In \mathbb{Z} , any subset $S \subseteq \mathbb{Z}$ contains an open set since, if $n \in S$ (the case $S = \emptyset$ is itself trivially open), the open ball of radius 1/2, $B_{1/2}(n) = \{n\} \subseteq S$. Thus, \mathbb{Z} is nonmeager in itself.

6. Show that the complement M^c of a meager subset M of a complete metric space X is nonmeager.

We begin by proving the following lemma:

Lemma: The union of two meager sets is meager.

Proof: Let $A, B \subseteq X$ be meager. Then there exist countable collections of rare sets $(a_k)_{k \in \mathbb{N}}, (b_j)_{j \in \mathbb{N}}$ such that

$$A = \bigcup_{k \in \mathbb{N}} a_k, \qquad B = \bigcup_{j \in \mathbb{N}} b_k$$

thus,

$$A \cup B = \left(\bigcup_{k \in \mathbb{N}} a_k\right) \cup \left(\bigcup_{j \in \mathbb{N}} b_k\right)$$

and notice that the right hand side is the union of two countable unions, which is itself countable.

Now for the main problem:

Proof: Suppose by way of contradiction that M^c is meager. Then, by definition of set complement, we may express X as

$$X = M^c \cup M$$

but since M and M^c are meager, X is meager in itself by the above proof. But this contradicts Baire's Category Theorem, where, since X is complete, X is nonmeager in itself. Thus, M^c is nonmeager, which is what we sought to show.

8. Show that the completeness of X is essential in Theorem 4.7-3 and cannot be omitted. [Consider the subspace $x \subset \ell^{\infty}$ consisting of all $x = (\xi_j)$ such that $\xi_j = 0$ for $j \geq J \in \mathbb{N}$, where J depends on x, and let T_n be defined by $T_n x = f_n(x) = n\xi_n$.]

Proof: We first show that X is incomplete. Consider the sequence $\{x_n\}$ in X defined by $x_n = x_n + x_n = x_n = x_n + x_n = x_n = x_n + x_n = x_n$

MATH 5350 2

 $(1, \frac{1}{\sqrt{2}}, \cdots, \frac{1}{\sqrt{n}}, 0, 0, \cdots)$. Notice that this defines a Cauchy sequence in X since, for natural numbers n > m,

$$||x_n - x_m|| = \frac{1}{\sqrt{m}}$$

and so, for any any $\varepsilon > 0$, by the Archimedean property of \mathbb{R} , there exists an index N such that whenever n > m > N,

$$\frac{1}{\sqrt{m}} < \varepsilon$$

$$\implies ||x_n - x_m|| < \varepsilon.$$

Now, notice that, as $n \to \infty$, $x_n \to (1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \cdots) \notin X$. Thus, X is not a complete space. Now, suppose that T_n is uniformly bounded. That is, there exists a c such that $||T_n|| \le c$ for all n. But notice

$$||T_n x_n|| = \sqrt{n}$$

so that, for $n > c^2$, $||T_n x_n|| > c$, a contradiction. Thus, the completeness of X in Theorem 4.7-3 is essential, by the above example.

10. (Space c_0) Let $y = (\eta_j), \eta_j \in \mathbb{C}$, be such that $\sum \xi_j \eta_j$ converges for every $x = (\xi_j) \in c_0$, where $c_0 \in \ell^{\infty}$ is the subspace of all complex sequences converging to zero. Show that $\sum |\eta_j| < \infty$. (Use 4.7-3.)

Proof: Define the sequence of linear functionals $\{f_n\}$ by

$$f_n(x) = \sum_{j=1}^n \xi_j \eta_j$$
 $(x = (\xi_1, \xi_2, \dots))$

and since $\sum_{j=1}^{\infty} \xi_j \eta_j$ converges for all x, the sequence $\{s_n\}$ defined by $s_n = \sum_{j=1}^n \xi_j \eta_j$ is bounded by some c_x (depending on x), $|s_n| \le c_x$. Thus,

$$|f_n(x)| \leq c_x$$
.

Note also that each f_n is bounded since

$$|f_n(x)| \leq \sum_{j=1}^n |\xi_j| |\eta_j|$$

$$\leq \sup_{j\geq 1} |\xi_j| \sum_{j=1}^n |\eta_j|$$

$$= ||x|| \sum_{j=1}^n |\eta_j|$$

$$\implies ||f_n|| \leq \sum_{j=1}^n |\eta_j|$$

which is bounded since $\sum_{j=1}^{n} |\eta_j|$ is a finite sum. Thus, since c_0 is a complete space, by the uniform boundedness theorem, there exists some c > 0 such that

$$||f_n|| \leq c.$$

Now, notice that as $n \to \infty$,

$$f_n \to f = \sum_{j=1}^{\infty} \xi_j \eta_j$$

MATH 5350 3

and so, by continuity of the norm,

$$||f|| \le c$$
.

Now, define the sequence $\{x_n\}$ where $x_n=(\xi_1,\xi_2,\cdots,\xi_n,0,0,\cdots)$ with

$$\xi_j = \begin{cases} \frac{\overline{\eta_j}}{|\eta_j|}, & \text{if } \eta_j \neq 0\\ 0, & \text{if } \eta_j = 0. \end{cases}$$

Notice that $||x_n|| = 1$ for all n and that

$$f(x_n) = \sum_{j=1}^n \xi_j \eta_j$$
$$= \sum_{j=1}^n |\eta_j|$$
$$\implies |f(x_n)| = \sum_{j=1}^n |\eta_j|$$
$$\implies ||f|| \ge \sum_{j=1}^n |\eta_j|$$

but since f is a bounded linear functional $(\|f\| \le c)$, we have

$$\sum_{j=1}^{n} |\eta_j| \le c$$

and since $|\eta_j| \ge 0$ for all j, so that by the monotone convergence theorem, $\sum_{j=1}^{\infty} |\eta_j|$ converges, as was desired.