Semantic Segmentation for Geophysical Data

Xiaoijn Tan, Eldad Haber

Please check the link to see the paper related to this work sample.

Question addressed:

How to extract relevant geological information from geophysical data, leading to a geological unit map?

changes in the magnetic fields

changes in geological units

- To date, segmentation for geophysical data is typically done manually
- Limitations
 - Experienced geologists needed
 - Time and effort consumed

Question addressed:

Can we borrow ideas from other fields to overcome these limitations?

Question addressed:

Can we borrow ideas from other fields to overcome these limitations? Yes! Use CNNs in semantic segmentation

attempting to use similar technology (CNNs) for geological segmentation

- Geophysical data vs. natural images
 - ➤ Data inconsistency (not discussed here since it is not related to machine learning problems)
 - Labeled Data scarcity
 - Data complexity

➤ Labeled Data scarcity

➤ E.g. magnetic data

- Sufficient number
- > From geophysical surveys

- > Sufficient number
- > From computations

- > Insufficient number
- > require efforts by geologists

- ➤ Labeled Data scarcity
 - ➤ E.g. magnetic data
- ➤ Insufficient number of pixel-wise labels for training
 - o overfitting and poor generalization

- ➤ Labeled Data scarcity
 - ➤ E.g. magnetic data
- ➤ Insufficient number of pixel-wise labels for training
 - o overfitting and poor generalization
- ➤ Data augmentation
 - > Synthetically creating new samples from original training dataset

Geophysical data vs. natural images

➤ Labeled Data scarcity

Data augmentation

➤ Data complexity

Geophysical data vs. natural images

➤ Labeled Data scarcity

Data augmentation

➤ Data complexity

- Data complexity
 - more complex image-label relationship

Any schoolchild quite likely to know how to segment

Geophysical data vs. natural images

➤ Labeled Data scarcity Data augmentation

➤ Data complexity New Neural Network architecture

Methods

Data augmentation

Supervised learning

Next will show how to implement these methods in magnetic data

Traditional data augmentation

- Traditional data augmentation
 - mirroring, random cropping, rotation, shearing and color shifting
 - fail to take the special characteristics of geophysical data into account
 - > may be geologically infeasible
 - > may ruin spatial continuity
 - ➤ Simply copy the original data

Data augmentation

Question addressed:

How to synthesizing geologically feasible samples that share the same spatial continuity with the original data?

Data augmentation

Question addressed:

How to synthesizing geologically feasible samples that share the same spatial continuity with the original data?

• scanning the training images with a fixed template to extract a list

of patches

Arpat, G. B. (2004). SIMPAT: Stochastic Simulation with Patterns.

define a random path on the simulation grid

o Empty simulation grid on which a realization is generated by sequentially visiting each

node

Shows first 5 visiting nodes

Visiting node 1

Uninformed data event

Visiting node 1

Visiting node 1

compare

Arpat, G. B. (2004). SIMPAT: Stochastic Simulation with Patterns.

Arpat, G. B. (2004). SIMPAT: Stochastic Simulation with Patterns.

Arpat, G. B. (2004). SIMPAT: Stochastic Simulation with Patterns.

Arpat, G. B. (2004). SIMPAT: Stochastic Simulation with Patterns.

Visiting all the remaining nodes in this fashion, a final realization is obtained

Final realization

Notes

- Similarity calculation
 - Use concept of distance
- Many different realizations can be generated by changing some parameters in MPS
 - Order of visiting nodes (random seed)
 - Size of the template
- The idea of MPS used in data augmentation is much more complex than the basic idea shown above
 - Multivariate TI
 - Nonstationary TI:
 - Geological patterns tend to vary in space,
 - statistically different over the entire spatial domain

Traditional Multi-point geostatistics

Multiple-point statistics

- Geologically feasible
- Same spatial continuity

MPS — Data augmentation

Different from traditional MPS

- ➤ Not only simulate geophysical images,
- ➤ but also simulate corresponding labels

Data augmentation

- Tune parameters
 - Order of visiting nodes
 - Size of template
 - Etc.
 - ☐ generate different realizations
 - ☐ Realization 1 more similar to TI

Methods

- Data augmentation
- Supervised learning using iCNN

iCNN

Why new NN architecture?

- more complex image-label relationship
- tried resnet, good for cat segmentation, but not good for geological segmentation

Any schoolchild quite likely to know how to segment

Resnet vs. iCNN

Mathematical Viewpoint

Architectural Viewpoint

Resnet vs. iCNN

• Resnet

$$> Y_{j+1} = Y_j + \sigma(N(K_jY_j) + b_j)$$
 $j = 0, 1, \dots, N-1$

• iCNN

$$Y_{j+\frac{1}{2}} = Y_j + h\sigma(N(S_jY_j) + b_j)$$

$$>Y_{j+1} = (I + hK_j^TK_j)^{-1}Y_{j+\frac{1}{2}}$$

Resnet vs. iCNN

• Resnet

$$> Y_{j+1} = Y_j + \sigma(N(K_jY_j) + b_j)$$
 $j = 0, 1, \dots, N-1$

• iCNN

$$Y_{j+\frac{1}{2}} = Y_j + h\sigma(N(S_jY_j) + b_j)$$

$$>Y_{j+1} = (I + hK_j^TK_j)^{-1}Y_{j+\frac{1}{2}}$$

- additional step
- ☐ involve inverse matrix

Resnet vs. iCNN

Mathematical Viewpoint

Architectural Viewpoint

A typical building block of Resnet

> nonlinearly transform the input features

$$Y_{j+1} = Y_j + \sigma(N(K_jY_j) + b_j)$$
 $j = 0, 1, \dots, N-1$

A typical building block of iCNN

> nonlinearly transform the input features

$$Y_{j+\frac{1}{2}} = Y_j + h\sigma(N(S_jY_j) + b_j)$$

$$Y_{j+1} = (I + hK_j^TK_j)^{-1}Y_{j+\frac{1}{2}}$$

Question addressed:

Why iCNN, not Resnet?

iCNN	Resnet
Inverse of convolution matrix	Convolution matrix

Question addressed:

Why iCNN, not Resnet?

iCNN	Resnet
Inverse of convolution matrix	Convolution matrix
Large dense matrix	Large sparse matrix

Question addressed:

Why iCNN, not Resnet?

iCNN	Resnet
Inverse of convolution matrix	Convolution matrix
Large dense matrix	Large sparse matrix
Globally connected	Locally connected

Question addressed:

Why iCNN, not Resnet?

iCNN	Resnet
Inverse of convolution matrix	Convolution matrix
Large dense matrix	Large sparse matrix
Global connection	Local connection

 Good for different scales contained in geological data

Question addressed:

How to derive it?

•
$$Y_{j+1} = Y_j + f(Y_j; \theta_j)$$

start from Resnet

$$\circ f(Y;\theta) = f(Y;W,b) = \sigma(KY+b)$$

activity function

•
$$Y_{j+1} = Y_j + hf(Y_j; \theta_j)$$

consider as a continuous process

•
$$\frac{Y_{j+1}-Y_j}{h} = f(Y_j; \theta_j)$$

an explicit Euler discretization of the ODE

•
$$\dot{y}(t) = f(y(t); \theta(t))$$

a fully continuous process

How to derive it?

Start from Resnet:
$$Y_{j+1} = Y_j + f(Y_j; \theta_j)$$

Consider Resnet as a continuous process

$$Y_{j+1} = Y_j + hf(Y_j; \theta_j)$$

$$\dot{y}(t) = f(y(t); \theta(t))$$

The diffusion reaction network

$$\dot{y}(t) = -K(t)^T K(t) y(t) + \sigma(N(S(t)Y) + b(t))$$

□ a diagonal convolution operator • 1D convolution

IMEX discretization
$$Y_{j+\frac{1}{2}} = Y_j + h\sigma(N(S_jY_j) + b_j)$$
$$Y_{j+1} = (I + hK_j^TK_j)^{-1}Y_{j+\frac{1}{2}}$$

•
$$\dot{y}(t) = f(y(t); \theta(t))$$

•
$$\dot{y}(t) = f(y(t); \theta(t))$$

- Diffusion term
 - ☐ Stable
 - ☐ Diffuse, Globally connected

•
$$\dot{y}(t) = -K(t)^T K(t) y(t) + f(y(t); \theta(t))$$

•
$$\dot{y}(t) = f(y(t); \theta(t))$$

- Diffusion term
 - ☐ Stable
 - ☐ Diffuse, Globally connected

•
$$\dot{y}(t) = -K(t)^T K(t) y(t) + f(y(t); \theta(t))$$

•
$$\dot{y}(t) = f(y(t); \theta(t))$$

•
$$\dot{y}(t) = -K(t)^T K(t) y(t) + f(y(t); \theta(t))$$

Reaction term

•
$$\dot{y}(t) = f(y(t); \theta(t))$$

•
$$\dot{y}(t) = -K(t)^T K(t) y(t) + f(y(t); \theta(t))$$

Reaction term

$$\circ f(y(t); \theta(t)) = \sigma(N(S(t)Y) + b(t))$$

- 1D convolution
 - couples channels
 - not couple any pixels in space

•
$$\dot{y}(t) = f(y(t); \theta(t))$$

•
$$\dot{y}(t) = -K(t)^T K(t) y(t) + f(y(t); \theta(t))$$

Reaction term

$$\circ f(y(t); \theta(t)) = \sigma(N(S(t)Y) + b(t))$$

- 1D convolution
 - couples channels
 - ☐ not couple any pixels in space

IMEX

- linear term
- decay fast
- nonlinear term
- decay slow

- Discretization
 - Implicit Explicit schemes (IMEX)

•
$$Y_{j+\frac{1}{2}} = Y_j + h\sigma(N(S_jY_j) + b_j)$$

•
$$Y_{j+1} = (I + hK_j^TK_j)^{-1}Y_{j+\frac{1}{2}}$$

- nonlinear term
 - Explicit step
 - \triangleright Require small h to be stable
- linear term
 - Implicit step
 - Non-local
 - ☐ Unconditional stable

Computation

$$\bullet (I + hK_j^TK_j)^{-1}$$

- Involve inverse of a matrix
- Impose periodic boundary condition on K_j
 - Block Circulant with Circulant Blocks (BCCB)
 - Decomposed as $K_j = F^* \Lambda_i F$ 2D unitary (DFT) matrix diagonal matrix containing the eigenvalues of K_i

Computation

•
$$K_j = F^* \Lambda_i F$$

•
$$K_j^T K_j = F^* \left(\Lambda_j^* \Lambda_j \right) F$$

• $(hK^T K + I)^{-1} = \begin{cases} F^* \left(\frac{1}{1 + h\Lambda_1^* \Lambda_1} \right) F \\ & \ddots \\ & F^* \left(\frac{1}{1 + h\Lambda_1^* \Lambda_1} \right) F \end{cases}$

•
$$(hK^TK + I)^{-1}Y$$
 easy!

Computation

$$\bullet (hK^{T}K + I)^{-1}Y = \begin{cases} F^* \left(\frac{1}{1 + h\Lambda_1^*\Lambda_1}\right) F \\ & \ddots \\ F^* \left(\frac{1}{1 + h\Lambda_1^*\Lambda_1}\right) F \end{cases} Y$$

- Compute the FFT of the different channels of Y
- Compute the FFT of the convolution matrix K (FK = Λ F)
- Pointwise divide each channel by $1 + h\Lambda_1^*\Lambda_1$
- Transform the result using the inverse FFT transform

Geological unit map
 provided by an expert geologist

Data augmentation

Randomly cropping

Training

Predicting Y_N BN BN Test examples **Segmentation layer** Q_p **□** softmax function normalized exponential function Predicted segmentation

Summary

- propose a solution to the problem of insufficient annotated magnetic data based on MPS
 - generated realizations are geologically realistic and share the similar spatial continuity with the original data
- propose a new neural network architecture called iCNN to automatically segment magnetic data
- our method is capable of superseding human segmentation in some aspects due to computational efficiency and its ability to identify the geological features