Económicas, UBA. Actuario. Análisis Numérico. Cuatrimestre 2, 2022. Segundo Examen Parcial. PARA APROBAR EL EXAMEN DEBE SUMAR AL MENOS 50 PUNTOS.

Alumna/o: GABRIEL TRIPODI; Nro. Reg: 891950

02/diciembre/2022

INSTRUCCIONES

- 1. La entrega del examen debe constar de lo siguiente:
 - a. El archivo pdf con el enunciado (generado en el punto 3. anterior).
 - b. Cinco scripts de R, uno por cada ejercicio. Los nombres de los scripts deben ser:
 - \bullet 1_Integracion_NroReg.R
 - $\bullet \quad 2_Derivacion_NroReg.R$
 - 3 InterpolacionAjustamiento NroReg.R
 - 4_Simulacion_NroReg.R
 - 5 Ecuaciones Diferenciales NroReg.R

Observación: en cada uno de los scripts debe figurar su nombre, apellido y número de registro (ingresados como *comentarios*, antes del código). Si no realiza un ejercicio, de todos modos deberá cargar el script correspondiente con sus datos y sin código.

2. Los archivos mencionados en el punto 4. deberán ser comprimidos en un archivo zip (o rar), cuyo nombre será $AN_2022_C2_Parcial2_NroRegistro.zip$, y cargados al campus de la materia, en la sección entregas.

1 Integración (25 puntos)

Considere la siguiente función de densidad de la variable aleatoria Y, con dominio en el intervalo $(0, \infty)$, y parámetros $\alpha = 1.42$ y $\theta = 2.83$:

$$f_Y(x|\alpha,\theta) = \frac{(x/\theta)^{\alpha} exp(-x/\theta)}{x\Gamma(\alpha)}$$

1.1 Probabilidades simple

Aproxime la probabilidad de que Y esté entre 44.13 y 49.89 usando los métodos de "Trapecio", "Simpson" y "Simpson tres octavos". Ingrese cada algoritmo por separado (**NO SE ACEPTARÁ UN "ALGORITMO GENERAL"**). Indique en cada caso los "nodos" y_0, y_1, \ldots, y_n que se utilizan para la aproximación.

1.2 Probabilidades Compuesto

Aproxime la probabilidad de que Y esté entre 44.13 y 49.89 usando el método de Trapecio Compuesto con n=25. Además:

- Indique los "nodos" y_0, y_1, \dots, y_n que se utilizan para la aproximación.
- Calcule la cota del error.
- Compare los resultados con el punto 1.1.

1.3 Esperanza

Use $Trapecio\ Compuesto\ con\ n=320\ para\ aproximar\ E(Y);$ es decir, la esperanza matemática de Y. Calcule la cota del error.

1.4 Varianza

Use Simpson Compuesto con n=320 para aproximar la varianza de Y, es decir $V[Y]=E(Y^2)-E(Y)^2$. Calcule la cota del error.

2 Derivación (13 puntos)

Considere los datos de la tabla siguiente, donde c = f(S).

S	С
30.0	0.0914
32.5	0.3309
35.0	0.8826
37.5	1.8661
40.0	3.3111
42.5	5.1551
45.0	7.2878
47.5	9.6009
50.0	12.0135

2.1 Derivada primera

Utilice el método de los cinco puntos (punto extremo, con h>0) para aproximar c'(40) y c'(45). Si no pudiese aplicar el método, explique por qué.

[Observación: NO SE ACEPTARÁ UN "ALGORITMO GENERAL" que calcule todos los métodos. Utilice solamente el código necesario.]

2.2 Derivada segunda

Aproxime las derivadas segundas c''(40) y c''(45). Si no pudiese aproximarla/s, explique por qué.

[Observación: NO SE ACEPTARÁ UN "ALGORITMO GENERAL". Utilice solamente el código necesario.]

3 Interpolación y Ajustamiento (35 puntos)

Considere los datos de la tabla del ejercicio anterior.

3.1 Lagrange (15 puntos)

- Utilice un polinomio de Lagrange que pase por todos los puntos dados para aproximar F(48.75). Comente el resultado hallado.
- Construya un polinomio de Lagrange que pase por los últimos 4 pares de datos para aproximar F(48.75). Comente el resultado hallado, comparándolo con el punto anterior.
- Construya un polinomio de Lagrange que pase por las últimas dos observaciones dadas para aproximar F(48.75). Comente el resultado hallado, comparándolo con los puntos anteriores.

[Observación: no es necesario que esriba los polinomios P(x).]

3.2 Cubic Splines (10 puntos)

- Escriba el trazador cúbico S(x) que pasa por todos los puntos dados. Indique claramente qué polinomio $S_j(x)$ debe utilizarse en cada subintervalo. Para presentar el polinomio, utilice solamente cuatro decimales en los coeficientes.
- Utilice el trazador cúbico para aproximar F(48.75) (Advertencia: para los cálculos, no redondee los coeficientes!). Comente el resultado hallado, comparándolo con los resultados hallados con el polinomio de Lagrange.

3.3 Gráfico comparativo (10 puntos)

Realice un gráfico comparativo que incluya lo siguiente:

- Puntos originales en color verde y tipo de punto pch = 12.
- Curva continua con el **polinomio de Lagrange** que pasa por todos los puntos dados en color negro, y un punto (pch = 11 y el mismo color) marcando el valor interpolado.
- Curva continua con el trazador cúbico que pasa por todos los puntos dados en color dorado, y un punto (pch = 17 y el mismo color) marcando el valor interpolado.

4 Simulación de Montecarlo (15 puntos)

4.1 Caminos de precios

Utilice una semilla igual a su número de registro¹ para simular 1867 caminos de precios diarios, considerando $P_0 = 84$, $\mu = 0.12$ y $\sigma = 0.13$, y un horizonte temporal de siete meses.

¹Ingrese set.seed(NroReg), donde NroReg es su numero de registro, antes de empezar a simular.

A partir de la muestra simulada, estime la esperanza, estime el desvío estándar, y grafique un histograma de los **precios finales**, P_T (es decir, del precio a los siete meses).

4.2 Probabilidad 1

Calcule la probabilidad de que el precio final P_T (es decir, de precio a los siete meses) esté entre 52 y el precio inicial P_0 .

4.3 Probabilidad 2

Calcule la probabilidad de que el precio final P_T (es decir, el precio a los siete meses) sea mayor al precio esperado en T (calculado en 4.1).

5 Ecuaciones diferenciales (12 puntos)

Considere la siguiente ecuación diferencial:

$$dy/dt = cos(y) * t^{1.66} + t/y^3$$

con $3 \le t \le 4$ y con y(3) = 4.55.

- a. Aproxime y(t) en el intervalo con N=11 utilizando el algoritmo de Euler.
- b. Repita el punto anterior con el algoritmo de Runge-Kutta de orden 4.
- c. Realice un gráfico comparativo con ambas aproximaciones.
- d. Eplique las diferencias entre los dos métodos e indique cuál espera que sea más preciso.