CSC3100 Data Structures Tutorial 3

Jingjing Qian (PhD Student, SDS, 224040366@link.cuhk.edu.cn)

Acknowledgement: The tutorial materials are based on previous TA's works. Thank them for their contribution!

Contents

- Asymptotic Analysis
 - Concepts
 - Practice Problems

- Complexity for recursion and divide-and-conquer
 - Concepts
 - Practice Problems

1. Asymptotic Analysis

• Evaluate the "efficiency" of an algorithm.

- Commonly used notations:
 - Big-Oh notation: measure the upper bound complexity.
 - Big-Omega notation: measure the lower bound complexity.(Transition between Big-Oh and Big-Omega)
 - Big-Theta notation: Where Upper & lower bounds meet(Growth rate tight)

If meet

- For some algorithm f(n), assume we can prove the greens:
- O(1) O(log n) O(n) O($n \cdot \log n$) O(n^2) O(n^3) O(2^n)

(minimum upper bound)

• $\Omega(1)$ $\Omega(\log n)$ $\Omega(n)$ $\Omega(n \cdot \log n)$ $\Omega(n^2)$ $\Omega(n^3)$ $\Omega(2^n)$

(maximum lower bound)

- The minimum upper bound and maximum lower bound meet
- => f(n) is $\Theta(n \cdot \log n)$

If can't meet

- For some algorithm f(n), assume we can prove the greens:
- O(1) O(log n) O(n) O(n·log n) O(n²) O(n³) O(2ⁿ) $\wedge \wedge \wedge \wedge \wedge$

(minimum upper bound)

• $\Omega(1)$ $\Omega(\log n)$ $\Omega(n)$ $\Omega(n \cdot \log n)$ $\Omega(n^2)$ $\Omega(n^3)$ $\Omega(2^n)$

(maximum lower bound)

- The minimum upper bound and maximum lower bound don't meet
- =>Usually, just use the upper bound. We will say f(n) is O(n²)

Some nice property for calculation

For Big-Oh and Big-Omega, we have:

- 1. Polynomial Rule: Only the biggest matter
- 2. Product Rule: the big multiplies the big
- 3. Sum Rule: the bigger of the two big
- 4. (Log Rule): Log only beats constant
- 5. (Exponential Rule): Exponential beats power functions

Practice Problems(1)

```
for (int i = 0; i < n; i++) {
    // Some O(1) operation
}</pre>
```

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        // Some O(1) operation
    }
}</pre>
```

Practice Problems(1)

```
for (int i = 0; i < n; i++) {
    // Some O(1) operation
}</pre>
```

O(n)

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        // Some O(1) operation
    }
}</pre>
```

 $O(n^2)$

Practice Problems(2)

```
for (int i = 0; i < n; i+=(n/2)) {
    // Some O(1) operation
while (n > 0) {
    if (n % 2 == 1)
        res = res * a;
    a = a * a;
   n = n / 2;
```

Practice Problems(2)

```
for (int i = 0; i < n; i+=(n/2)) {
                                                     O(1)
    // Some O(1) operation
                                This algorithm
                                is called "Quick
while (n > 0) {
                                   Power"
     if (n % 2 == 1)
          res = res * a;
                                                  O(\log n)
     a = a * a;
    n = n / 2;
                               More Info: https://www.rookieslab.com/posts/fast-power-
```

algorithm-exponentiation-by-squaring-cpp-python-implementation

Practice Problems(3)

check and prove $g(n) = (0.1n^2 + n \log n) \cdot (n \log n + \sqrt{n}) = \Theta(n^3 \cdot \log n)$.

Practice Problems(3)

check and prove
$$g(n) = (0.1n^2 + n \log n) \cdot (n \log n + \sqrt{n}) = \Theta(n^3 \cdot \log n)$$
.

Idea:

- 1. "Product rule" apply for both Big-Oh and Big-Omega
- 2. Apply "Product Property": 1st term's: 0.1n^2 2nd term's: nlogn
- 3. 0.1n² is both 1st term's Big-Oh and Big-Omega, so is nlogn
- 4. Thus, the product of them is also both Big-Oh and Big-Omega \rightarrow Big-Theta!

Two key points:

- 1. Apply the rule to simplify the problem;
- 2. When proving $\Theta(\cdot)$, we need to prove $O(\cdot)$ and $\Omega(\cdot)$ together.

2. Complexity analysis for recursion and divideand-conquer

- To calculate the complexity for recursion and divide-andconquer algorithm:
- Step 1: Get the recursive expression (looks like: g(n) = g(n-1) + O(n), g(n) = g(n/2) + O(n))
- Step 2:
 - Method 1: Unfold g(n) to g(1) by hand and get the answer.
 - Method 2: Master theorem

- Recurrence: $T(n) \le a \cdot T(n/b) + O(n^d)$
- An algorithm that divides a problem of size n into a subproblems, each of size n / b

$$T(n) = \begin{cases} O(n^{d}log n) & \text{if } a = b^{d} \\ O(n^{d}) & \text{if } a < b^{d} \\ O(n^{log_{b}(a)}) & \text{if } a > b^{d} \end{cases}$$

a: number of subproblems (branching factor)

b: factor by which input size shrinks (shrinking factor)

d: need to do $O(n^d)$ work to create subproblems + "merge" their solutions

4-1 Recurrence examples

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \le 2$. Make your bounds as tight as possible, and justify your answers.

Let you be familiar with it!

a.
$$T(n) = 2T(n/2) + n^4$$
.

b.
$$T(n) = T(7n/10) + n$$
.

c.
$$T(n) = 16T(n/4) + n^2$$
.

d.
$$T(n) = 7T(n/3) + n^2$$
.

e.
$$T(n) = 7T(n/2) + n^2$$
.

f.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

g.
$$T(n) = T(n-2) + n^2$$
.

- Recurrence: $T(n) \le a \cdot T(n/b) + O(n^d)$
- An algorithm that divides a problem of size n into a subproblems, each of size n / b

$$T(n) = \begin{cases} O(n^{d}log n) & \text{if } a = b^{d} \\ O(n^{d}) & \text{if } a < b^{d} \\ O(n^{log_{b}(a)}) & \text{if } a > b^{d} \end{cases}$$

a: number of subproblems (branching factor)

b: factor by which input size shrinks (shrinking factor)

d: need to do $O(n^d)$ work to create subproblems + "merge" their solutions

Problem 4-1 (page 107, 3rd edition)

Question a-f: Use Master's Theorem.

- a. By master theorem, $T(n) = \Theta(n^4)$.
- **b.** By master theorem, $T(n) = \Theta(n)$.
- c. By master theorem, $T(n) = \Theta(n^2 \lg n)$.
- **d.** By master theorem, $T(n) = \Theta(n^2)$.
- **e.** By master theorem, $T(n) = \Theta(n^{\lg 7})$.
- **f.** By master theorem, $T(n) = \Theta(\sqrt{n} \lg n)$.

Question g: Expand the recursion

- $T(n) = T(n-2) + n^2$
- = $T(n-4) + (n-2)^2 + n^2$
- = $T(1) + 3^2 + \dots + (n-4)^2 + (n-2)^2 + n^2$ (If n is odd)
- = $T(2) + 4^2 + \dots + (n-4)^2 + (n-2)^2 + n^2$ (If n is even)
- By the sum of the squares formula, We know that T(n) is $\Theta(n^3)$.
- Some small tricks in our case:
 - Even n: use formula with n=2k in it.
 - Odd n: use sum difference (total sum-even sum)

$$1^{2}+2^{2}+3^{2}+4^{2}+...+n^{2}$$
Derivation:
$$\frac{n(n+1)(2n+1)}{6}$$

Question g: Expand the recursion (details)

- Tricks to calculate:
- - Sum of even squares
- - Sum of odd squares

Look back: An example that upper/lower bounds does not meet (Will not be in exam)

If can't meet

```
• For some algorithm f(n), assume we can prove the greens:
```

```
• O(1) O(log n) O(n) O(n \cdot \log n) O(n^2) O(n^3) O(2^n)
```

(minimum upper bound)

```
• \Omega(1) \Omega(\log n) \Omega(n) \Omega(n \cdot \log n) \Omega(n^2) \Omega(n^3) \Omega(2^n)
```

(maximum lower bound)

- The minimum upper bound and maximum lower bound don't meet
- =>Usually, just use the upper bound. We will say f(n) is O(n²)

$$T(n) = T(7n/10) + \log(n)$$

Cannot use Master Theorem.

- --But we can do scaling (放缩)
- --So we can find a good upper bound, O(n);
- --And a good lower bound, $\Omega(\log n)!$

(Will not be tested. Just for fun!)

Thank you for coming!