AGG0012 – Problemas Integrados em Ciências da Terra II

Bloco I - aula 3 Equação de Difusão Victor Sacek

O que é difusão

https://en.wikipedia.org/wiki/Diffusion

Difusão

- É um processo de transporte de massa ou de energia que ocorre em regiões onde existem diferenças de concentração. O transporte por difusão dá-se de regiões de alta concentração para regiões de baixa concentração.
- O transporte por difusão é quantificado pela densidade de fluxo φ, que é a quantidade de substância ou energia transportada por unidade de área por unidade de tempo.

Difusão

- É um processo de transporte de massa ou de energia que ocorre em regiões onde existem diferenças de concentração. O transporte por difusão dá-se de regiões de alta concentração para regiões de baixa concentração.
- O transporte por difusão é quantificado pela densidade de fluxo φ, que é a quantidade de substância ou energia transportada por unidade de área por unidade de tempo.

Série Fundação de Isaac Asimov

Série Fundação de Isaac Asimov

"Há uma série muito antiga de Isaac Asimov - os romances da Fundação - na qual os cientistas sociais entendem a verdadeira dinâmica da civilização e a salvam. Isso é o que eu queria ser. E isso não existe, mas a economia é o mais próximo que se pode chegar. Então, como eu era adolescente, embarquei nessa." - Paul Krugman, Prêmio Nobel de Economia de 2008

 Para muitos problemas físicos, a difusão segue a primeira lei de Fick, em que o fluxo é proporcional à variação da concentração e ocorre no sentido contrário a concentração.

 Para muitos problemas físicos, a difusão segue a primeira lei de Fick, em que o fluxo é proporcional à variação da concentração e ocorre no sentido contrário a concentração.

 Para muitos problemas físicos, a difusão segue a primeira lei de Fick, em que o fluxo é proporcional à variação da concentração e ocorre no sentido contrário a concentração.

 Para muitos problemas físicos, a difusão segue a primeira lei de Fick, em que o fluxo é proporcional à variação da concentração e ocorre no sentido contrário a concentração.

Exemplo: Condução de calor

Dedução

 $\phi = -\alpha \frac{du}{dx}$

Dedução

 $\phi = -\alpha \frac{du}{dx}$

Volume: $\delta V = A \delta x$

Dedução

 $\phi = -\alpha \frac{du}{dx}$

Volume: $\delta V = A \delta x$

No instante t:

Dedução

 $\phi = -\alpha \frac{du}{dx}$

Volume: $\delta V = A \delta x$

No instante t:

Fluxo em x:

Dedução

 $\phi = -\alpha \frac{du}{dx}$

e no espaço

Volume: $\delta V = A \delta x$

No instante t:

Fluxo em
$$x$$
:
$$\phi(x) = -\alpha \frac{du(x,t)}{dx}$$

Dedução

 $\phi = -\alpha \frac{du}{dx}$

e no espaço

Volume: $\delta V = A \delta x$

No instante t:

Fluxo em
$$x$$
:
$$\phi(x) = -\alpha \frac{du(x,t)}{dx}$$

Fluxo em $x + \delta x$:

Dedução

e no espaço

Volume: $\delta V = A \delta x$

No instante t:

Fluxo em
$$x$$
:

Fluxo em
$$x$$
:
$$\phi(x) = -\alpha \frac{du(x,t)}{dx}$$

Fluxo em
$$x + \delta x$$
:

$$\phi(x + \delta x) = -\alpha \frac{du(x + \delta x, t)}{dx}$$

Entrada em x: $\phi(x)A\delta t$

Entrada em x: $\phi(x)A\delta t$

Saída em $x + \delta x$: $\phi(x + \delta x)A\delta t$

Entrada em x: $\phi(x)A\delta t$

Saída em $x + \delta x$: $\phi(x + \delta x)A\delta t$

Variação total de substância: $\delta M = \phi(x)A\delta t - \phi(x+\delta x)A\delta t$

Entrada em x: $\phi(x)A\delta t$

Saída em $x + \delta x$: $\phi(x + \delta x)A\delta t$

Variação total de substância: $\delta M = \phi(x)A\delta t - \phi(x+\delta x)A\delta t \\ = [\phi(x) - \phi(x+\delta x)]A\delta t$

Quantidade total de substância no instante $\,t\,$

$$M(t) = \delta V \frac{u(x,t) + u(x + \delta x, t)}{2}$$

Quantidade total de substância no instante $t+\delta t$

$$M(t + \delta t) = \delta V \frac{u(x, t + \delta t) + u(x + \delta x, t + \delta t)}{2}$$

$$\delta M = M(t + \delta t) - M(t)$$

$$\delta M = M(t + \delta t) - M(t)$$

$$[\phi(x) - \phi(x + \delta x)]A\delta t =$$

$$\delta V \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

$$\delta M = M(t + \delta t) - M(t)$$

$$[\phi(x) - \phi(x + \delta x)]A\delta t =$$

$$\delta V \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

Como
$$\phi(x)=-\alpha \frac{du(x,t)}{dx}$$
 e $\phi(x+\delta x)=-\alpha \frac{du(x+\delta x,t)}{dx}$

$$\delta M = M(t + \delta t) - M(t)$$

$$[\phi(x) - \phi(x + \delta x)]A\delta t =$$

$$\delta V \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

Como
$$\phi(x)=-lpha \frac{du(x,t)}{dx}$$
 e $\phi(x+\delta x)=-lpha \frac{du(x+\delta x,t)}{dx}$

$$\alpha \left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx} \right] A\delta t =$$

$$\delta M = M(t + \delta t) - M(t)$$

$$[\phi(x) - \phi(x + \delta x)]A\delta t =$$

$$\delta V \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

Como
$$\phi(x)=-\alpha \frac{du(x,t)}{dx}$$
 e $\phi(x+\delta x)=-\alpha \frac{du(x+\delta x,t)}{dx}$

$$\alpha \left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx} \right] A\delta t =$$

$$A\delta x \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

$$\alpha \left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx} \right] A \delta t =$$

$$A\delta x \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

$$\alpha \left[\frac{du(x + \delta x, t)}{dx} - \frac{du(x, t)}{dx} \right] A \delta t =$$

$$A\delta x \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

$$\alpha \frac{\left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx}\right]}{\delta x} =$$

$$\alpha \left[\frac{du(x + \delta x, t)}{dx} - \frac{du(x, t)}{dx} \right] A \delta t =$$

$$A\delta x \left[\frac{u(x,t+\delta t) + u(x+\delta x,t+\delta t)}{2} - \frac{u(x,t) + u(x+\delta x,t)}{2} \right]$$

$$\alpha \frac{\left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx}\right]}{\delta x} =$$

$$\left[\frac{u(x,t+\delta t)+u(x+\delta x,t+\delta t)}{2\delta t}-\frac{u(x,t)+u(x+\delta x,t)}{2\delta t}\right]$$

$$\alpha \frac{\left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx}\right]}{\delta x} =$$

$$\frac{1}{2} \left[\frac{u(x,t+\delta t) - u(x,t)}{\delta t} - \frac{u(x+\delta x,t+\delta t) - u(x+\delta x,t)}{\delta t} \right]$$

$$\alpha \frac{\left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx}\right]}{\delta x} =$$

$$\frac{1}{2} \left[\frac{u(x,t+\delta t) - u(x,t)}{\delta t} - \frac{u(x+\delta x,t+\delta t) - u(x+\delta x,t)}{\delta t} \right]$$

Para $\delta t \to 0$ e $\delta x \to 0$

$$x$$
 δx $x + \delta x$

$$\alpha \frac{\left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx}\right]}{\delta x} =$$

$$\frac{1}{2} \left[\frac{u(x,t+\delta t) - u(x,t)}{\delta t} - \frac{u(x+\delta x,t+\delta t) - u(x+\delta x,t)}{\delta t} \right]$$

Para
$$\delta t o 0$$
 e $\delta x o 0$
$$\alpha \frac{\partial^2 u}{\partial x^2} = \frac{1}{2} \frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial t}$$

$$\alpha \frac{\left[\frac{du(x+\delta x,t)}{dx} - \frac{du(x,t)}{dx}\right]}{\delta x} =$$

$$\frac{1}{2} \left[\frac{u(x,t+\delta t) - u(x,t)}{\delta t} - \frac{u(x+\delta x,t+\delta t) - u(x+\delta x,t)}{\delta t} \right]$$

Para $\delta t o 0$ e $\delta x o 0$ $\alpha \frac{\partial^2 u}{\partial x^2} = \frac{1}{2} \frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial t}$

$$\alpha \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

$$\alpha \frac{\int du(x+\delta x,t)}{\delta x} - \frac{du(x,t)}{dx} =$$

$$\frac{1}{2} \left[\frac{u(x,t+\delta t) - u(x,t)}{\delta t} - \frac{u(x+\delta x,t+\delta t) - u(x+\delta x,t)}{\delta t} \right]$$

Para
$$\delta t o 0$$
 e $\delta x o 0$
$$\alpha \frac{\partial^2 u}{\partial x^2} = \frac{1}{2} \frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial t}$$

$$lpha rac{\partial^2 u}{\partial x^2} = rac{\partial u}{\partial t}$$
 Equação de difusão

Como calcular $\frac{\partial^2 u}{\partial x^2}$ numericamente?

diferença entre valores
d_u = (u[1:]-u[:-1])/dx ← consecutivos dividida pelo
espaçamento

xx = x[:-1]+dx/2

valores de x no meio do espaçamento

$$dd_u = (d_u[1:]-d_u[:-1])/dx$$

$$xxx = xx[:-1]+dx/2$$

Exercício

Considerando que a nossa função u(x,t) seja,

$$u(x,t_0) = e^{-x^2}$$

em um certo instante t_0 , determine

$$\frac{\partial u}{\partial t}$$

 $\operatorname{com} \ \alpha = 4$

$$\alpha \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

Exercício

Considerando que a nossa função u(x,t) seja,

$$u(x,t_0) = 4x + 2$$

em um certo instante t_0 , determine

$$\frac{\partial u}{\partial t}$$

$$\operatorname{com} \ \alpha = 4$$

$$\alpha \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

Exercício

- Enviar os dois scripts para a Janine, juntamente com as figuras resultantes.
- As figuras devem conter as curvas de u e $\frac{\partial u}{\partial t}$