Sage Quick Reference (Basic Math)

Peter Jipsen, version 1.1

latest version at wiki.sagemath.org/quickref GNU Free Document License, extend for your own use Aim: map standard math notation to Sage commands

Notebook (and commandline)

Evaluate cell: \(\)shift-enter\(\) \(com \)\(\)tries to complete \(command \) \(command? \(\)\(\) \(shows \) documentation \(command?? \) \(\)\(tab \) \(shows \) source \(a . \) \((tab \) \(shows \) all methods for object \(a . \) \((more: dir(a)) \) \(search_doc('string or regexp') \) \(shows \) links to docs \(search_src('string or regexp') \) \(shows \) links to source \(lprint() \) \(toggle LaTeX \) output mode \(version() \) \(print \) version of Sage

Insert cell: click on blue line between cells

Delete cell: delete content then backspace

Numerical types

Integers: $\mathbb{Z} = ZZ$ e.g. -2 -1 0 1 10^100 Rationals: $\mathbb{Q} = \mathbb{Q}\mathbb{Q}$ e.g. 1/2 1/1000 314/100 -42 Decimals: $\mathbb{R} \approx RR$ e.g. .5 0.001 3.14 -42. Complex: $\mathbb{C} \approx CC$ e.g. 1+i 2.5-3*i

Constants: $\pi = pi$ e = e i = i $\infty = oo$

Basic constants and functions

Approximate: pi.n(digits=18) = 3.14159265358979324 Functions: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp $ab = a*b \quad \frac{a}{b} = a/b \quad a^b = a^*b \quad \sqrt{x} = \operatorname{sqrt}(x)$ $\sqrt[n]{x} = x^*(1/n) \quad |x| = \operatorname{abs}(x) \quad \log_b(x) = \log(x,b)$ Symbolic variables: e.g. t,u,v,y,z = var('t u v y z') Define function: e.g. $f(x) = x^2$ f(x)=x^2 or f=lambda x: x^2 or def f(x): return x^2

Operations on expressions

factor(...) expand(...) (...).simplify_... Symbolic equations: f(x) == g(x)_ is previous output _+a _-a _*a _/a manipulates equation Solve f(x) = g(x): solve(f(x) == g(x), x) solve([f(x,y) == 0, g(x,y) == 0], x,y)

$$\begin{aligned} & \text{find_root(f(x), a, b)} & \text{ find } x \in [a,b] \text{ s.t. } f(x) \approx 0 \\ & \sum_{i=k}^n f(i) = \text{sum([f(i) for i in [k..n]])} \\ & \prod_{i=k}^n f(i) = \text{prod([f(i) for i in [k..n]])} \end{aligned}$$

Calculus

```
\lim_{x\to a} f(x) = \operatorname{limit}(f(\mathbf{x}), \ \mathbf{x=a}) \lim_{x\to a^-} f(x) = \operatorname{limit}(f(\mathbf{x}), \ \mathbf{x=a}, \ \operatorname{dir='minus'}) \lim_{x\to a^+} f(x) = \operatorname{limit}(f(\mathbf{x}), \ \mathbf{x=a}, \ \operatorname{dir='plus'}) \frac{d}{dx}(f(x)) = \operatorname{diff}(f(\mathbf{x}), \mathbf{x}) \frac{\partial}{\partial x}(f(x,y)) = \operatorname{diff}(f(\mathbf{x},y), \mathbf{x}) \operatorname{diff} = \operatorname{differentiate} = \operatorname{derivative} \int f(x) dx = \operatorname{integral}(f(\mathbf{x}), \mathbf{x}) \operatorname{integral} = \operatorname{integrate} \int_a^b f(x) dx = \operatorname{integral}(f(\mathbf{x}), \mathbf{x,a,b}) Taylor polynomial, deg n about a: taylor(f(\mathbf{x}), \mathbf{x,a,n})
```

2d graphics

```
line([(x_1,y_1),\ldots,(x_n,y_n)], options)

polygon([(x_1,y_1),\ldots,(x_n,y_n)], options)

circle((x,y),r, options)

text("txt",(x,y), options)

options as in plot.options, e.g. thickness=pixel,

rgbcolor=(r,g,b), hue=h where 0 \le r,b,g,h \le 1

use option figsize=[w,h] to adjust aspect ratio

plot(f(x),x_{\min},x_{\max},options)

parametric_plot((f(t),g(t)),t_{\min},t_{\max},options)

polar_plot(f(t),t_{\min},t_{\max},options)

combine graphs: circle((1,1),1)+line([(0,0),(2,2)])

animate(list of graphics objects, options). show(delay=20)
```

3d graphics

```
line3d([(x_1,y_1,z_1),...,(x_n,y_n,z_n)], options)

sphere((x,y,z),r, options)

tetrahedron((x,y,z), size, options)

cube((x,y,z), size, options)

octahedron((x,y,z), size, options)

dodecahedron((x,y,z), size, options)

icosahedron((x,y,z), size, options)
```

options e.g. aspect_ratio=[1,1,1] color='red' opacity plot3d(f(x,y),[x_b , x_e],[y_b , y_e],options) add option plot_points=[m,n] or use plot3d_adaptive parametric_plot3d((f(t),g(t),h(t)),[t_b , t_e],options) parametric_plot3d((f(u,v),g(u,v),h(u,v)), [u_b , u_e],[v_b , v_e],options)

use + to combine graphics objects

Discrete math

Linear algebra

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \text{vector}([1,2])$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \text{matrix}([[1,2],[3,4]])$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \text{det}(\text{matrix}([[1,2],[3,4]]))$$

$$Av = \text{A*v} \quad A^{-1} = \text{A$^{-1}$} \quad A^t = \text{A.transpose()}$$

$$\text{methods: nrows() ncols() nullity() rank() trace()...}$$

Sage modules and packages

from module_name import * (many preloaded)
e.g. calculus coding combinat crypto functions
games geometry graphs groups logic matrix
numerical plot probability rings sets stats
sage.module_name.all.\(\frac{1}{2}\text{ab}\)\(\text{shows exported commands}\)
Std packages: Maxima GP/PARI GAP Singular R Shell ...
Opt packages: Biopython Fricas(Axiom) Gnuplot Kash ...
%package_name then use package command syntax
time command to show timing information