Jean Team

KING SAUD UNIVERSITY COLLEGE OF COMPUTER & INFORMATION SCIENCES DEPT OF COMPUTER SCIENCE

CSC311 Design and Analysis of Algorithms

Second Semester 1444

Instructor: Prof. Mohamed Maher Ben Ismail

Tutorial #2

By. 3meer

1. Consider the pseudo-code below:

ALGORITHM
$$MaxElement(A[0..n-1])$$

//Determines the value of the largest element in a given array
//Input: An array $A[0..n-1]$ of real numbers
//Output: The value of the largest element in A $maxval \leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do

if $A[i] > maxval$
 $maxval \leftarrow A[i]$

return $maxval$

($u \in \mathcal{M} - 1$

- a. What is the basic operation of this algorithm?
- b. Give the best-case and worst-case time complexities of this algorithm in asymptotic notation.

b) worst case
$$2n-1 \leq 2n+n$$

$$\leq 2n$$

$$\leq 2n$$

$$\leq 2n$$

$$\leq 2n$$

$$\leq 2n$$

$$\leq 2n$$

$$\leq 2n-1 > n$$

$$\leq 2n$$

$$\leq$$

2. Consider the algorithm below and give its best-case and worst-case time complexities in asymptotic notation.

KING SAUD UNIVERSITY COLLEGE OF COMPUTER & INFORMATION SCIENCES DEPT OF COMPUTER SCIENCE

3. Consider the algorithm below:

ALGORITHM F(n)

//Computes **n**! recursively //Input: A nonnegative integer **n** //Output: The value of **n**!

if n = 0 return 1

else return F(n-1) * n

- a. What is the algorithm's basic operation?
- b. What is the resulting recursive equation?
- c. Solve the equation you gave in (b).
- d. What is the worst case time complexity of this algorithm?

a) Multiplication

b)
$$T(n) = T(n-1)+1$$

 $C) = T(n) = [T(n-2)+1]+1$
Stop = $T(n-2)+7$
 $n-k=1$
 $k=n-1$ | after k
Substitution
 $T(n-k)+k$
 $= T(n-(n-1))+(n-1)$
 $= 1+n-1$
 $T(n) = n$

$$\begin{array}{c}
d) \\
n \leq c g(n) \\
\leq n \\
c = 1 \\
n_0 = 1
\end{array}$$

4. Consider the algorithm below:

ALGORITHM Q(n)

//Input: A positive integer *n*

if n = 1 return 1

else return Q(n-1) + 2 * n

- a. What is the algorithm's basic operation?
- b. What is the resulting recursive equation?
- c. Solve the equation you gave in (b).
- d. What is the worst case time complexity of this algorithm?

a) Multiplication

C)=
$$T(n) = [T(n-2)+1]+1$$

Stop

= $T(n-2)+2$

after k

Substitution

 $T(n-k)+k$

= $T(n-(n-1))+(n-1)$

= $1+n-1$

T(n)= n

d)

 $M \leq C g(n)$
 $\leq M$
 $C=1$
 $No=1$