BEiT: BERT Pre-training of Image Transformers

Presenter: Mert Kilickaya 15 June 2022

BERT Pre-training

Masked Language Modelling predicts (randomly) maskes words for prediction as a pretext task.

Image Transformers

Vision Transformers (ViT) learn to encode non-overlapping image patch embeddings for classification

BERT Pre-training of Image Transformers: Target?

Visual world -unlike language- is not tokenized: No well-defined discrete target for masking

BERT Pre-training of Image Transformers: 3 Steps

BERT Pre-training of Image Transformers-1: Tokenization

Image Tokenizer is an Off-the-Shelf discrete Variational Autoencoder (d-VAE*)

Compress an image into M x M discrete codes (Visual Tokens), then reconstruct it via Decoder

d-VAE needs to encode part-level object semantics (i.e. dog ear) to satisfy reconstruction

^{*}Zero-Shot Text-to-Image Generation (OpenAI, ICML'21)

BERT Pre-training of Image Transformers-2: Pre-training

BERT Pre-training of Image Transformers-2: Pre-training

BERT Pre-training of Image Transformers-3: Fine-tuning

Experiment-1: ImageNet Classification

Models	CIFAR-100	ImageNet
Training from scratch (i.e., random initializa	ition)	
ViT ₃₈₄ (Dosovitskiy et al., 2020)		77.9
DeiT (Touvron et al., 2020)		81.8
Supervised Pre-Training on ImageNet-1K (u	sing labeled data)
ViT ₃₈₄ (Dosovitskiy et al., 2020)	87.1	77.9
DeiT (Touvron et al., 2020)	90.8	81.8
Self-Supervised Pre-Training on ImageNet-1	K (without labele	ed data)
iGPT-1.36B [†] (Chen et al., 2020a)	n/a	66.5
ViT ₃₈₄ -JFT300M [‡] (Dosovitskiy et al., 2020)	n/a	79.9
DINO (Caron et al., 2021)	91.7	82.8
MoCo v3 (Chen et al., 2021)	87.1	n/a
BEIT (ours)	90.1	83.2
Self-Supervised Pre-Training, and Intermedi	ate Fine-Tuning	on ImageNet-I
BEIT (ours)	91.8	83.2

Supervised-fine-tuning DeiT vs. BEiT: BeiT improves 81.8 -> 83.2

DINO vs. BEIT for Image Classification: BEIT is slightly better 82.8 -> 83.2

Experiment-2: Large-scale ImageNet Classification

Models	Model Size	Image Size	ImageNet
Self-Supervised Pre-Training on ImageNet-1K	(without labele	d data)	
iGPT-1.36B [†] (Chen et al., 2020a)	1.36B	224^{2}	66.5
ViT ₃₈₄ -B-JFT300M [‡] (Dosovitskiy et al., 2020)	86M	384^{2}	79.9
DINO-B (Caron et al., 2021)	86M	224^{2}	82.8
BEIT-B (ours)	86M	224^{2}	83.2
BEIT ₃₈₄ -B (ours)	86M	384^{2}	84.6
BEIT-L (ours)	307M	224^{2}	85.2
BEIT ₃₈₄ -L (ours)	307M	384^{2}	86.3

(224 x 224) vs (384 x 384): Larger-resolution resolution helps BEiT 83.2 -> 84.6

Larger embedding size helps BEiT even further 84.6 -> 86.3

Experiment-3: Semantic Segmentation on ADE-20K

Models Supervised Pre-Training on ImageNet	
BEIT (ours)	45.6
BEIT + Intermediate Fine-Tuning (ours)	47.7

DINO vs. BEIT for Semantic Segmentation: BEIT is significantly better 44.1 -> 45.6

Qualitative: Segmentation Emerges from Pre-training

Pixel-level attention separates/segments different object instances: Sky, Bridge, Rails, Train

Summary of BEiT

BEiT is pre-trained by predicting discrete visual tokens of masked patches

Visual tokens are obtained from an Off-the-Shelf compression model (d-VAE) via reconstruction

BEiT improves concurrent work of DINO for ImageNet classification and ADE-20K semantic segmentation

Discussion

Is BEiT sensitive to the vocabulary size? Trade-off? (|V| = 8192)

Too high |V| -> Every patch is a token -> No abstraction.

Too low |V| -> Very high intra-token variation -> Difficulty in reconstruction/training.

What is a better way to represent Visual Token targets?

Patch-level prediction works much better than Pixel-level prediction.

Extension to Video?

Treat frames or temporal video segments as temporal visual tokens.