Databases

Lecture 3 - Entity-Relationship-Model

Emily Lucia Antosch

HAW Hamburg

23.02.2025

Contents

1. Introduction	
2. Entity-Relationship-Model	6
3. The relational model	37
4. License Notice	57

1.1 Where are we right now?

- Last time, we looked at SQL as the language in which we define our database.
- We learnt about different database objects and how they can help us achieve our business requirements.
- Today, we'll look at
 - what an ERM (Entity-Relationship-Model) is,
 - how we can use it to effectively conceptually design databases and
 - why conceptually designing a database prior to implementation can save us a lot of headache.

1.1 Where are we right now?

- 1. Introduction
- 2. Basics
- 3. SQL
- 4. Entity-Relationship-Model
- 5. Relationships
- 6. Constraints
- 7. More SQL
- 8. Subqueries & Views
- 9. Transactions
- 10. Database Applications
- 11. Integrity, Trigger & Security

1.2 What is the goal of this chapter?

- At the end of this lesson, you should be able to
 - design a database using the ER-model,
 - decide about which attributes, constraints and relations will help you achieve your requirements.

What is an ERM

- Entity-Relationship-Model is model/diagram for the logical draft of the database
- The focus is on the business requirements
- This language is not implemented in any DBMS

A quick history of the ERM

- Introduced by Peter Chen in 1976.
- An ERM describes interrelated things of interest in a specific domain of knowledge.
- A basic ERM is composed of entity types (which classify the things of interest) and specifies relationships that can exist between entities (instances of those entity types).
- Elements:
 - ► Entity: A distinguishable thing existing in the real world.
 - ► Relationship: Between entities.
 - ► Attribute: Property of an entity or relationship.

Conceptual Design with ERM

Conceptual Design with ERM

- Entity Type
 - Represented as a rectangle
 - Singular Noun
- Attribute Type
 - ▶ Represented as ovals
 - ▶ Noun
- Relationship Type
 - Represented as diamond
 - Always between entities
 - Verb & has cardinalities

2. Entity-Relationship-Model

Online-Tools for ERM

- Creating ERMs can be done by using any drawing tool or just a piece of paper and a pen.
- Examples of drawing tools:
 - Excalidraw(Recommended)
 - ▶ Draw.io
 - ▶ Lucidchart
 - Creately

2. Entity-Relationship-Model

Entity Abstraction

Entity types (abstraction of the real world)

Entity Abstraction

Memorize

 An entity is a distinguishable thing that exists in the real world.

- An abstraction of entities would be an entity type (comparable to classes in OOP)
- Several entities make up an entity set
- An abstraction of relationships is called a relationship type

Entity Abstraction

Example

Imagine a company:

- A company is made-up of departments and each department has a unique name, a number and a manager.
- Each employee's name, social security number, address, salary and birth date is stored within our database.
- We also want to keep track of the hours per week per project, keep track of the supervisor.

2. Entity-Relationship-Model

ERM: Company Example

Source: Elmasri, Fundamentals of Database Systems, Page 204 ff

Entity Type

- An entity type is a basic object in an ERM.
- Represents a thing in the real world, like a car, a job or a person.
- An entity type has attributes, such as a name, an address or an age.
- A particular entity of that type will have values for each of these attributes.

Entity Type

Memorize

- An entity type therefore defines a collection of entities, that have the same attributes.
- Each entity type can be defined by its name and its attributes.
- The collection of all entities of a particular entity type, so all the instances of this entity type, is called an entity set.

ERM: Entity Example

- Categories for entities could be
 - actual physical objects, people, roles, organizations,
 - actions, interfaces or general information
- An element is not an entity type
 - if it has neither attributes nor relationships,
 - only contains attributes that another entity type already has

? Question

What is a good name for an entity type?

ERM: Entity Example

₹≡ Task 1

What are the entity types in the following examples?

- A company is organized in departments.
- Departments have a unique name, a unique number, a manager.
- A department oversees a number of projects, each with a name and a number.
- The company may store information about each employee like their name, their social security number and their salary.

2.1 Basics Entity Type

Entity Type

2. Entity-Relationship-Model

Entities

Source: Elmasri, Fundamentals of Database Systems, Page 204 ff

Attributes

- Is the attribute relevant to the problem you are trying to solve?
- An attribute must belong to an entity type (or a relationship type).
- Some of the attributes of an entity are important in identifying the entity. These are called key attributes.
- A good name for an attribute is unique within the entity type, but not necessarily across the entire model.

Attributes

Task 2

When you look at the attributes of the entity project, what could be identifying or key attributes?

 A department controls a number of projects, each with a unique name, unique number and a single location.

2.1 Basics Attributes

2. Entity-Relationship-Model

2. Entity-Relationship-Model

Source: Elmasri, Fundamentals of Database Systems, Page 204 ff

2.1 Basics Attributes

2. Entity-Relationship-Model

2. Entity-Relationship-Model

Source: Elmasri, Fundamentals of Database Systems, Page 204 ff

- Composite vs. Simple (atomic) attributes
 - Attributes which are not divisible are called simple or atomic attributes
 - Composite attributes can form a hierarchy
 - Composite attributes are useful to model situations in which a user sometimes refers to the composite attribute as a unit but at other times refers specifically to its components
 - ► If the composite attribute is referenced only as a whole, there is no need to subdivide it into component attributes
 - Composite attributes are attached to their component attributes by straight lines

Attributes in Entity Types

Source: Elmasri, Fundamentals of Database Systems, Page 204 ff

Key Attributes in entity sets

- How can we identify an actual entity within an entity set?
- Attributes must be used → Key Attributes (also called identifying attributes)
- Sometimes several attributes together form a key attribute (identifying attribute), meaning that the combination of the attribute values must be distinct for each entity
 - ► If a set of attributes possesses this property, the proper way to represent this in the ER model that is to define a composite attribute and designate it as a key attribute of the entity type

- Notice that such a composite key attributes must be minimal; that is, all component attributes must be included in the composite attribute to have the uniqueness property
- Key attributes are underlined
- If two attributes are underlined separately, then each is an identifying attribute on its own

Key Attributes in entity sets

₹ Task 3

What are key attributes for entity type EMPLOYEE and DEPARTMENT?

- · A company is organized in departments.
- Departments have a unique name, a unique number, a manager.
- A department oversees a number of projects, each with a name and a number.

2. Entity-Relationship-Model

• The company may store information about each employee like their name, their social security number and their salary.

2.1 Basics Key attributes in entity sets

2. Entity-Relationship-Model

2. Entity-Relationship-Model

Source: Elmasri, Fundamentals of Database Systems, Page 204 ff

2. Entity-Relationship-Model

Key attributes in entity sets

 Task 4

What are key attributes for BOOK?

Key attributes in entity sets

What are key attributes for PERSON and HOUSE?

RM: A quick history

- Edgar F. Codd invented the relational model in 1970 and won the Turing price for it.
- The model has become widely accepted.
- The model is based on relations, that are subset of the Cartesian product.
- Everything is modelled in tables.

3. The relational model

Source: www.wikipedia.org

Name	Matr_no	Term
John Meyer	123456	2
Judy Fisher	234567	4
William Smith	345678	3

3. The relational model

RM: The model

- The relational schema describes objects and relationships as a relational schema.
- A relational schema consists of a set of attributes
- Each attribute belongs to a value range/type
- A database schema consists of a set of relational schemas
- A relation displays the current data for the relational schema
- The set of relations is called the database (or the state of the DB)
- An element of a relation is called a tuple, which is simply a row

3. The relational model

RM: The model

Attribute	Type
Name	String
Matr_no	Integer
Term	Integer

3. The relational model

RM: The model

3. The relational model

RM: The model

- Objects are described using relations
 - Relations can be viewed as tables
 - But: Not like a spreadsheet table!
- There can be links between relations
- Attributes describe properties
- Possible attribute values are defined by the domain

3. The relational model

RM: The model

Informally:

- A relational model represents the database as a collection of relations
- Each relation resembles a table of values or, to some extent, a flat file of records
- When a relation is thought of as a table of values, each row in the table represents a collection of related data values
- A row represents a fact that typically corresponds to a real-world entity or relationship

- The table name and column names are used to help to interpret the meaning of the values in each row
- All values in a column are of the same data type

3. The relational model

RM: The model

Formally:

- A row is called a tuple
- A column header is called an attribute
- The table is called a relation
- The data type describing the types of values that can appear in each column is represented by a domain of possible values

3. The relational model

RM: The math behind it

- Example:
 - ► ROOM(room_num, function, seats)
 - ▶ where function = {auditorium, lab, office, administration}

RM: The math behind it

Idea

- A Relation Schema R is a set of attributes $(A_1, A_2, ..., A_n)$.
- Each attribute A_i is the name of a role played by a certain domain D in the relational schema R.
- A domain D of attribute A_i is denoted as $dom(A_i)$.
- The degree (or arity) of a relation is the number of attributes n of its relational schema.

RM: The math behind it

3. The relational model

RM: The math behind it

Relational Schema:

SQL B00K (ISBN, title, 3 author, 4 5 publisher, 6 year, price)

Relational Schema with types:

```
SQL
    B00K
    (ISBN: integer,
    title: string,
3
    author: string,
4
    publisher: string,
5
    year: integer,
6
    price: real)
```

→ Relation BOOK is of degree six.

RM: The math behind it

• A relation (or relational state) r of the relation schema $R(A_1,A_2,...,A_n)$, also denoted by r(R), is a set of m-tuples

$$r = (t_1, t_2, ..., t_m)$$

- Each n-tuple t is an ordered list of n values $t=< v_1,v_2,...,v_n>$, where each value v_1 , $1\leq i\leq n$, is an element of $\mathrm{dom}(A_i)$ or is a special NULL value.
- The $i^{\rm th}$ value in tuple t, which corresponds to the attribute A_i , is referred to as $t[A_i]$ or $t.A_i$ (or t[i] if we use the positional notation).

3. The relational model

RM: The math behind it

Memorize

- A relation is a set of rows.
 - meaning: no order, no row number
 - ▶ no duplicates

RM: The math behind it

3. The relational model

Source: www.wikipedia.org

RM: The math behind it

• A relation (or relational state) r(R) is a mathematical relation of degree n on the domains $\mathrm{dom}(A_1), \mathrm{dom}(A_2), ..., \mathrm{dom}(A_n)$, which is a subset of the Cartesian product (denoted by \times) of the domains that define R:

$$r(R) \subseteq (\text{dom}(A_1) \times \text{dom}(A_2) \times \dots \times \text{dom}(A_n))$$

• If |D| is the total number of values in a domain D, the total number of tuples in the Cartesian product is

$$|\operatorname{dom}(A_1)| \times |\operatorname{dom}(A_2)| \times \dots \times |\operatorname{dom}(A_n)|$$

4. License Notice

- This work is shared under the CC BY-NC-SA 4.0 License and the respective Public License.
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- This work is based off of the work by Prof. Dr. Ulrike Herster.
- Some of the images and texts, as well as the layout were changed.
- The base material was supplied in private, therefore the link to the source cannot be shared with the audience.