

MACHINE-ASSISTED TRANSLATION (MAT):

(19)【発行国】

(19)[ISSUING COUNTRY]

日本国特許庁(JP)

Japan Patent Office (JP)

(12)【公報種別】

公開特許公報 (A)

APPLICATION Laid-open (Kokai) patent

NUMBER (A)

(11)【公開番号】

特開平8-218013

(11)[UNEXAMINED PATENT NUMBER]

Unexamined-Japanese-Patent No. 8-218013

(43)【公開日】

平成8年(1996)8月27 Heisei 8 (1996) August 27

(43)[DATE OF FIRST PUBLICATION]

(54)【発明の名称】

インクジェット記録用水性イン ク組成物の製造方法

(54)[TITLE]

THE MANUFACTURING **METHOD** OF WATER-BASED INK COMPOSITION FOR

INKJET RECORDING

(51)【国際特許分類第6版】

C09D 11/00 PSZ (51)[IPC]

PSZ C09D11/00

[FI]

C09D 11/00 **PSZ** [FI]

C09D11/00 **PSZ**

【審査請求】 未請求

[EXAMINATION **UNREQUESTED** **REQUEST**]

【請求項の数】

1 9

[NUMBER OF CLAIMS] 19

【出願形態】 OL [Application form] OL

【全頁数】 1 9 [NUMBER OF PAGES] 19

(21)【出願番号】

特願平7-29342

(21)[APPLICATION NUMBER]

Japanese Patent Application No. 7-29342

(22)【出願日】

平成7年(1995)2月17 Heisei 7 (1995) February 17

(22)[DATE OF FILING]

日

02/12/17

(71)【出願人】

(71)[PATENTEE/ASSIGNEE]

【識別番号】

000002886

[ID CODE] 000002886

【氏名又は名称】

大日本インキ化学工業株式会社 Dainippon Ink & Chemicals Industries

【住所又は居所】

東京都板橋区坂下3丁目35番 58号

[ADDRESS]

(72)【発明者】

(72)[INVENTOR]

【氏名】 伊藤 廣行

Ito Hiroyuki

【住所又は居所】

埼玉県上尾市小敷谷692-1 2

[ADDRESS]

(74)【代理人】

(74)[PATENT AGENT]

【弁理士】

[PATENT ATTORNEY]

【氏名又は名称】 高橋 勝利 Takahashi

Katsutoshi

(57)【要約】

(57)[SUMMARY]

【構成】

顔料が分散した、水に分散又は 溶解する樹脂の有機溶剤溶液 と、水を主成分とする液体を混 合してから、有機溶剤を除去す る顔料分散型インクジェット記 録用水性インク組成物の製造方 法。水に分散又は溶解する樹脂 の有機溶剤と水とを主成分とす る混合溶剤溶液に、顔料を分散

[SUMMARY OF THE INVENTION]

The manufacturing method of the water-based ink composition for pigment-dispersed inkjet recording which removes the organic solvent after mixing the liquid which has water as main component with the organic-solvent solution of the resin dispersed or dissolved in water with which the pigment dispersed.

The manufacturing method of the water-based ink composition for pigment-dispersed inkjet recording which removes the organic solvent

させてから、有機溶剤を除去す る顔料分散型インクジェット記 録用水性インク組成物の製造方 法。 after making a pigment disperse in the mixed solvent solution containing as main components the organic solvent of resin dispersed or dissolved in water, and water.

【効果】

顔料分散安定性に極めて優れ、 かつインキ画像の耐水性にも優れた、インクジェット記録用水 性インク組成物が得られた。

【特許請求の範囲】

【請求項1】

顔料(A)が分散した、水に分散又は溶解する合成樹脂(B)の親水性有機溶剤(C)溶液(I)と、水を主成分とする液体(II)とを混合してから、脱溶剤をすることを特徴とするインクジェット記録用水性インク組成物の製造方法。

【請求項2】

顔料(A)が分散した、中和により水に分散又は溶解する合成樹脂(D)の親水性有機溶剤(C)溶液(III)と、水(E)と中和剤(F)とを含有する混合液体(IV)とを混合してから、脱溶剤することを特徴とするインクジェット記録用水性インクの製造方法。

【請求項3】

顔料(A)が分散した、水に分散又は溶解する合成樹脂(B)の親水性有機溶剤(C)と疎水性有機溶剤(G)との混合溶剤(H)溶液(V)と、水(E)を主成分とする液体(II)と

[EFFECTS]

The water-based ink composition for inkjet recording excellent in the pigment dispersion stability extremely, and excellent also in the water resistance of an ink image was obtained.

[CLAIMS]

[CLAIM 1]

A manufacturing method of the water-based ink composition for inkjet recording, in which desolvent is carried out after mixing the hydrophilic organic-solvent (C) solution (I) of synthetic-resin (B) with which pigment (A) dispersed and which is dispersed or dissolved in water, and liquid (II) which has water as a main component.

[CLAIM 2]

A manufacturing method of the water-based ink for inkjet recording, in which de-solvent is carried out after mixing the liquid-mixture object (IV) which contains hydrophilic organic-solvent (C) solution (III) of synthetic-resin (D) which pigment (A) dispersed, and which is dispersed or dissolved in water by neutralization, and water (E) and neutralizer (F).

[CLAIM 3]

A manufacturing method of the water-based ink composition for inkjet recording, which is the manufacturing method of the water-based ink composition for inkjet recording wherein desolvent is carried out after mixing the mixed solvent (H) solution (V) of hydrophilic organic-solvent (C) of synthetic-resin (B) dispersed or

を混合してから、脱溶剤をする インクジェット記録用水性イン ク組成物の製造方法であって、 前記溶液(V)と液体(II) との混合工程において、混合物 が水(E)と親水性有機溶剤 (C) とを主成分とする相と疎 水性有機溶剤(G)を主成分と する相に分離しない様に、親水 性有機溶剤(C)及び/又は疎 水性有機溶剤(G)の種類と使 用量を調整した溶液(V)を用 いることを特徴とするインクジ エット記録用水性インク組成物 の製造方法。

dissolved in water, with which pigment (A) dispersed, and hydrophobic organic-solvent (G) and liquid (II) which has water (E) as a main component.

Comprising: in the mixed process of said solution (V) and liquid (II), the solution (V) which adjusted the kind and the used amount of hydrophilic organic-solvent (C) hydrophobic organic-solvent (G) is used so that a blend may not separate to the phase containing as main components water (E) and hydrophilic organic-solvent (C), and the phase that has hydrophobic organic-solvent (G) as a main component.

【請求項4】

顔料(A)が分散した、中和に より水に分散又は溶解する合成 樹脂(D)の親水性有機溶剤 (C)と疎水性有機溶剤(G) との混合溶剤(H)溶液(VI) と、水(E)と中和剤(F)と を含有する混合液体(IV)と を混合してから、脱溶剤をする インクジェット記録用水性イン ク組成物の製造方法であって、 前記溶液(VI)と液体(IV) との混合工程において、混合物 が水(E)と親水性有機溶剤 (C) とを主成分とする相と疎 水性有機溶剤(G)を主成分と する相に分離しない様に、親水 性有機溶剤(C)及び/又は疎 水性有機溶剤(G)の種類と使 用量を調整した溶液(VI)を 用いることを特徴とするインク ジェット記録用水性インク組成 物の製造方法。

[CLAIM 4]

A manufacturing method of the water-based ink composition for inkjet recording, which is the manufacturing method of the water-based ink composition for inkjet recording wherein

De-solvent is carried out after mixing the liquidmixture object (IV) which contains water (E) and neutralizer (F) with the mixed solvent (H) solution (VI) of hydrophilic organic-solvent (C) of synthetic-resin (D) dispersed or dissolved in water by the neutralization in which pigment (A) dispersed, and hydrophobic organic-solvent

Comprising: in the mixed process of said solution (VI) and liquid (IV), the solution (VI) which adjusted the kind and the used amount of hydrophilic organic-solvent (C) and/or hydrophobic organic-solvent (G) is used so that a blend may not separate to the phase containing as main components water (E) and hydrophilic organic-solvent (C), and the phase that has hydrophobic organic-solvent (G) as a main component.

【請求項5】

[CLAIM 5]

顔料 (A) と、水に分散又は溶 A manufacturing method of the water-based ink

解する合成樹脂(B)の親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤(J)溶液(VII)とを混合して、顔料(A)を溶液(VII)に分散させてから、脱溶剤することを特徴とするインクジェット記録用水性インクの製造方法。

【請求項6】

分散した顔料(A)の体積平均 粒子径が1ミクロン未満である 請求項1、2、3、4又は5記 載のインクジェット記録用水性 インク組成物の製造方法。

【請求項7】

顔料(A)がカーボンブラック である請求項1、2、3、4又 は5記載の製造方法。 /

【請求項8】

顔料(A)が有機顔料である請求項5記載の製造方法。

【請求項9】

樹脂(B)が、分子中にカルボン酸基を有するスチレンー(メタ)アクリル酸エステル系共重合体のカルボン酸基の少なくとも一部を、塩基からなる中和剤(F)で中和した樹脂である請求項1又は3記載の製造方法。

【請求項10】

樹脂(B)が、酸価50~20 0mgKOH/gである、分子 中にカルボン酸基を有するスチ レンー(メタ)アクリル酸エス テル系共重合体であって、樹脂 (B)の酸価に対する中和率で 40%以上を、塩基からなる中

解する合成樹脂(B)の親水性 for inkjet recording, in which de-solvent is 有機溶剤(C)と水(E)とを carried out after mixing pigment (A), and 主成分とする混合溶剤(J)溶 The mixed solvent (J) solution (VII) containing as main components hydrophilic organic-

as main components hydrophilic organicsolvent (C) of synthetic-resin (B) dispersed or dissolved in water, and water (E)

And making pigment (A) dispersed in solution (VII).

[CLAIM 6]

The manufacturing method of the water-based ink composition for inkjet recording of Claim 1, 2, 3, 4 or 5 wherein

The volume average particle diameter of pigment (A) which dispersed is less than 1 micron.

[CLAIM 7]

The manufacturing method of Claim 1, 2, 3, 4 or 5 whose pigment (A) is a carbon black.

[CLAIM 8]

The manufacturing method of Claim 5 whose pigment (A) is an organic color.

[CLAIM 9]

The manufacturing method of Claim 1 or 3 whose resin (B) is the resin which neutralized at least one part of the carboxylic-acid group of a styrene-(meth)acrylic-ester type copolymer which has a carboxylic-acid group in the molecule with neutralizer (F) comprising a base.

[CLAIM 10]

The manufacturing method of Claim 9 wherein Resin (B) is the styrene-(meth)acrylic-ester type copolymer which is acid value 50-200 mgKOH/g and which has a carboxylic-acid group in the molecule.

Comprising: It is the resin which neutralized 40 % or more with neutralizer (F) comprising a base by the neutralization rate with respect to

和剤 (F) で中和した樹脂であ the acid value of resin (B). る請求項9記載の製造方法。

【請求項11】

樹脂(D)が、分子中にカルボ ン酸基を有するスチレンー(メ タ) アクリル酸エステル系共重 合体であって、かつ中和剤(F) として塩基を用いる請求項2又 は4記載の製造方法。

【請求項12】

樹脂(D)が、酸価50~20 0 m g KOH/g である、分子 中にカルボン酸基を有するスチ レン- (メタ) アクリル酸エス テル系共重合体であって、かつ 前記樹脂(D)の酸価に対する 中和率が40%以上となる塩基 を含む中和剤(F)を用いる請 求項11記載の製造方法。

【請求項13】

樹脂(B)が、分子中にカルボ ン酸基を有するスチレンー(メ タ)アクリル酸エステル系共重 合体のカルボン酸基の少なくと も一部を、塩基からなる中和剤 (F)で中和した樹脂である請 求項5記載の製造方法。

【請求項14】

樹脂(B)が、酸価50~20 0 m g KOH/g である、分子 中にカルボン酸基を有するスチ レンー (メタ) アクリル酸エス テル系共重合体であって、樹脂 (B) の酸価に対する中和率で 80%以上を、塩基からなる中 和剤(F)で中和した樹脂であ る請求項13記載の製造方法。

[CLAIM 11]

The manufacturing method of Claim 2 or 4 wherein

Resin (D) is the styrene-(meth)acrylic-ester type copolymer which has a carboxylic-acid group in the molecule, and a base is used as neutralizer (F).

[CLAIM 12]

The manufacturing method of Claim 11 wherein Resin (D) is the styrene-(meth)acrylic-ester type copolymer which is acid value 50-200 mgKOH/g and which has a carboxylic-acid group in the molecule

And neutralizer (F) containing the base from which the neutralization rate with respect to the acid value of said resin (D) becomes 40 % or more is used.

[CLAIM 13]

The manufacturing method of Claim 5 wherein Resin (B) is the resin which neutralized at least one part of the carboxylic-acid group of a styrene-(meth)acrylic-ester type copolymer which has a carboxylic-acid group in the molecule with neutralizer (F) comprising a base.

[CLAIM 14]

The manufacturing method of Claim 13 wherein Resin (B) is the styrene-(meth)acrylic-ester type copolymer which is acid value 50-200 mgKOH/g and which has a carboxylic-acid group in the molecule, and

It is the resin which neutralized 80 % or more by the neutralization rate with respect to the acid value of resin (B) with neutralizer (F) comprising a base.

【請求項15】

塩基として、脂肪族アミン化合物、アルコールアミン化合物、アルカリ金属の水酸化物及びアルカリ土類金属の水酸化物よりなる群より選択された1種類以上の化合物を用いる請求項9、10、11、12、13又は14記載の製造方法。

【請求項16】

脱溶剤後に、さらに親水性有機溶剤(C)以外の多価アルコールを添加する請求項1、2、3、4又は5記載の製造方法。

【請求項17】

水(E)を主成分とする液体(II)が、親水性有機溶剤(C)以外の多価アルコールを含有する請求項1又は3記載の製造方法。

【請求項18】

水(E)と中和剤(F)とを含有する混合液体(IV)が、親水性有機溶剤(C)以外の多価アルコールを含有する請求項2 又は4記載の製造方法。

【請求項19】

水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤(J)溶液(VII)が、親水性有機溶剤(C)以外の多価アルコールを含有する請求項5記載の製造方法。

【発明の詳細な説明】

[0001]

[CLAIM 15]

The manufacturing method of Claim 9, 10, 11, 12, 13 or 14 using the one or more kind compound chosen from the group which consists of a fatty-amine compound, an alcohol amine compound, a hydroxide of an alkali metal, and a hydroxide of an alkaline earth metal as a base.

[CLAIM 16]

The manufacturing method of Claim 1, 2, 3, 4 or 5 which further adds polyhydric alcohols other than hydrophilic organic-solvent (C) after desolvent.

[CLAIM 17]

The manufacturing method of Claim 1 or 3 in which liquid (II) which has water (E) as a main component contains polyhydric alcohols other than hydrophilic organic-solvent (C).

[CLAIM 18]

The manufacturing method of Claim 2 or 4 in which the liquid-mixture object (IV) which contains water (E) and neutralizer (F) contains polyhydric alcohols other than hydrophilic organic-solvent (C).

[CLAIM 19]

The manufacturing method of Claim 5 in which the mixed solvent (J) solution (VII) containing as main components hydrophilic organic-solvent (C) of resin (B) dispersed or dissolved in water and water (E)contains polyhydric alcohols other than hydrophilic organic-solvent (C).

[DETAILED DESCRIPTION OF INVENTION]

[0001]

【産業上の利用分野】

本発明は、インクジェット記録 用水性インク組成物の製造方法 に関する。

[0002]

【従来の技術】

現在知られている各種記録方法 の中で、騒音が小さく、高速記 録が可能であり、しかも普通紙 に記録が行えるインクジェット 記録方法は極めて有用な記録方 法である。

[0003]

このインクジェット記録方法は、インクと言われる着色液体に熱を加えて気泡を発生させ、気泡が発生する時に生じる圧とるになり、でインクを直径30~50形でのノズルから小液滴の形で、それを紙等の被記録を行ったが、といて、大いに圧電素子に対し、それを加え、大いに圧電素子に満たが上がいた。 をノズルから飛ばす方法が主な記録方法である。

[0004]

この記録方法に用いるインクとして顔料分散型インクが考案されている。この顔料分散型インクを用いたインクジェット記録方法によるインク画像は耐光性に優れ、インク画像は滲まないが、顔料が凝集沈降し、ノズルに詰まると言う欠点がある。

[0005]

[INDUSTRIAL APPLICATION]

This invention relates to the manufacturing method of the water-based ink composition for inkjet recording.

[0002]

[PRIOR ART]

In the various recording method learned now, a noise is small, and the inkjet-recording method which high-speed recording can be performed and can further record on copy paper is the extremely useful recording method.

[0003]

This inkjet-recording method applies a heat to the coloring liquid called ink, and generates air bubbles, and

It is the form of a nozzle with a diameter of 30 - 50 microns to a small droplet about an ink by the pressure produced when an air bubble is generated, and is release, it is made to adhere to recorded members, such as paper, and

The methods of applying a pressure to the system which records, and an ink by the piezoelectric element, and flying the small droplet of an ink from a nozzle are the main recording methods.

[0004]

The pigment-dispersed ink is devised as an ink used for this recording method.

The ink image by the inkjet-recording method using this pigment-dispersed ink is excellent in a light resistance, and an ink image does not spread.

However, a pigment carries out a flocking settling and there is a fault referred to as getting it blocked in a nozzle.

[0005]

上記の欠点を解決するため、特 開平1-170672号、特開 平1-170673号、特開平 5-25415号及び特開平5 -39447号各公報に、マイ クロカプセルを含むインクジェ ット記録方法に用いられるイン ク組成物が提案されている。つ まり、顔料を合成樹脂の疎水性 有機溶媒中で分散し、これに水 を加え、顔料と合成樹脂を含む 疎水性有機溶媒を主成分とする 不連続相と、水を主成分とする 連続相を形成し、更に疎水性有 機溶媒を除去することにより、 合成樹脂により被覆された顔料 (マイクロカプセル化顔料)の 分散組成物を作製方法が提案さ れている。

[0006]

しかし、いずれのマイクロカプセルもその大きさが数十から数ミクロンであり、それを含むインクを放置しておくと、マイクロカプセルが凝集沈降し、ノズルの目詰まりの原因となり、安定に記録することが不可能であると言う欠点がある。

[0007]

さらに、特開昭63-2328 40号公報に、コア物質が分散 又は溶解したポリマーの溶剤溶 液を、ポリマーの非溶媒と界の 活性剤の混合液体にイドなと界で 微小カプセルのコイド状されて でも製造する方法が提案されて ア物質が分散又は溶解したポリマーの溶剤溶液をそのまま添加 すれば、コア物質が凝集沈降す In order to solve said fault, the ink composition used for the inkjet-recording method which contains a microcapsule in Unexamined-Japanese-Patent No. 1-170672, Unexamined-Japanese-Patent No. 1-170673, Unexamined-Japanese-Patent No. 5-25415, and Unexamined-Japanese-Patent No. 5-39447 each gazette is proposed.

In other words, a pigment is dispersed in the hydrophobic organic solvent of a synthetic resin, and water is added to this, the discontinuous phase which has a hydrophobic organic solvent containing a pigment and a synthetic resin as a main component, and the continuous phase which has water as a main component are formed, furthermore, by removing a hydrophobic organic solvent, the production method is proposed in the dispersion composition of the pigment (microencapsulation pigment) coated by the synthetic resin.

[0006]

However, with any microcapsule, the size being several dozens to several microns.

When the ink containing it is left, a microcapsule carries out a flocking settling, it becomes the cause of the clogging of a nozzle, and there is a fault referred to as stably unrecordable.

[0007]

Furthermore, the solvent solution of the polymer which the core material dispersed or dissolved in Unexamined-Japanese-Patent No. 63-232840 gazette is added to the liquid-mixture object of the non-solvent and surface active agent of a polymer, and the method of manufacturing the colloid-like suspension of a micro capsule is proposed.

However, if a core material adds the solvent solution of the polymer dispersed or dissolved to the non-solvent of a polymer as it is, a core material will carry out a flocking settling.

A surface active agent is made necessary as it

る。この凝集沈降を防ぐため に、当該公報に記載されている 通り、界面活性剤を必要とする が、この界面活性剤を入れるこ とにより、インクジェット記録 画像の耐水性が劣ると言う欠点 が生じる。

describes in said gazette, in order to prevent this flocking settling.

However, the fault said that the water resistance of an inkjet-recording image deteriorates arises by putting this surface active agent.

[0008]

また特開平3-221137号 公報には、界面活性剤を用いな いで固体物質をマイクロカプセ ル化する方法として、顔料と自 己水分散性樹脂を含む疎水性有 機溶媒を主成分とする不連続相 と、水を主成分とする連続相を 形成をしてから疎水性有機溶媒 を除去して、顔料を前記樹脂で マイクロカプセル化する方法が 記載されている。

[8000]

Moreover, it considers as the method of carrying out the microencapsulation of the solid matter to Unexamined-Japanese-Patent No. 3-221137 gazette without using a surface active agent. after forming the discontinuous phase which has a hydrophobic organic solvent containing a pigment and self- water-dispersible resin as a main component, and the continuous phase which has water as a main component, a hydrophobic organic solvent is removed, and the method of carrying out microencapsulation of the pigment by said resin is described.

[0009]

[0009]

【発明が解決しようとする課 題】

しかしながら、上記した界面活 性剤を用いたマイクロカプセル 化方法で得られるインクは、い ずれも放置による凝集沈降やノ ズルの目詰まりこそ少ないが、 得られたインク画像の耐水性が 悪いという欠点がある。

[PROBLEM ADDRESSED]

However, the ink obtained bv the microencapsulation method using a surface active agent, all have the fault that the water resistance of the acquired ink image is bad, although just the clogging of the flocking settling by neglect or a nozzle is few.

[0010]

一方、界面活性剤を用いないマ イクロカプセル化方法で得られ るインクは、インク画像の耐水 性こそ、それを用いて得た画像 より優れるが、いずれのインク も放置しておくと、マイクロカ プセルが凝集沈降し、そのまま

[0010]

The ink obtained by the microencapsulation method of on the other hand not using a surface active agent, although just the water resistance of an ink image is excellent from the image obtained by using it, if any ink is also left, a microcapsule will carry out a flocking settling, in having used then, it becomes the cause of the clogging of a nozzle and there is a fault referred

用いたのでは、ノズルの目詰まりの原因となり、安定に記録することが不可能であると言う欠点がある。凝集沈降したマイクロカプセル塊を除去するには遠心分離等の特別な処理も必要であり、煩雑である。

to as stably unrecordable.

In order to remove the microcapsule lump which did the flocking settling, a special process of a centrifugation etc. is also necessary. It is complicated.

[0011]

本発明は、従来のインクジェット記録方法に用いられている顔料分散型インクの分散安定性又は画像耐水性に劣ると言う欠点を解決するものである。

[0011]

The fault referred to as deteriorating this invention to the dispersion stability of the pigment-dispersed ink used for the conventional inkjet-recording method or image water resistance is solved.

[0012]

[0012]

【課題を解決するための手段】

本発明者は、上記実状に鑑みて 鋭意検討したところ、(1)顔料 と自己水分散性の合成樹脂を含 む疎水性有機溶媒を主成分とす る不連続相と、水を主成分とす る連続相を形成してから疎水性 有機溶媒を除去するのではな く、また(2)顔料と合成樹脂を 含む溶媒を主成分とする不連続 相と、前記溶媒と任意に相溶し うる溶媒と界面活性剤とを主成 分とする連続相を形成してから 溶媒を除去するのでもなく、当 該操作において、界面活性剤を 用いず水溶性樹脂又は水分散性 樹脂を用いた上で、有機溶剤相 と水相とが連続相となる様に調 整することにより、顔料粒子の 良好な分散安定性と優れたイン ク画像の耐水性を兼備する、前 記(1)及び(2)の欠点が解決され たインクが得られることを見い 出して、本発明を完成するに至

[SOLUTION OF THE INVENTION]

This inventor did earnestly examination in view of said actual condition, and found out the following and came to perfect this invention, that

(1) by not removing a hydrophobic organic solvent after forming the discontinuous phase which has a pigment and a hydrophobic organic solvent containing self- water dispersible synthetic resin as a main component, and the continuous phase which has water as a main component, again

(2) by not removing a solvent after forming

The discontinuous phase which has a solvent containing a pigment and a synthetic resin as main component and continuous phase containing as main components the solvent which can carry out compatibility to said solvent arbitrarily, and a surface active agent

About said operation

The ink which combines the favorable dispersion stability of a pigment particle and the water resistance of an excellent ink image and with which the fault of said (1) and (2) was solved is obtained by adjusting so that an organic-solvent phase and a water phase may

った。

turn into a continuous phase after using a water soluble resin or water-dispersible resin without using a surface active agent.

[0013]

即ち本発明の極めて優れる分散 安定性と優れた耐水性のインク 画像を兼備する、顔料が分散し た水性インク組成物の製造方法 は、大別すると、以下の5種類 である。

[0014]

1. 顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)溶液(I)と、水を主成分とする液体(II)とを混合してから、脱溶剤をすることを特徴とするインクジェット記録用水性インク組成物の製造方法(以下、製造方法1という。)。

[0015]

2. 顔料(A)が分散した、中和により水に分散又は溶解する樹脂(D)の親水性有機溶剤(C)溶液(III)と、水(E)と中和剤(F)とを含有する混合液体(IV)とを混合してから、脱溶剤することを特徴とするインクジェット記録用水性インクの製造方法(以下、製造方法2という。)。

[0016]

3. 顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と疎水性有機溶剤(G)との混合溶剤(H)溶液(V)と、水(E)を主成分とする液体(I)とを混合してから、脱溶剤

[0013]

That is, when the manufacturing method of the water-based ink composition with which the pigment dispersed which has the dispersion stability which is excellent extremely and the excellent waterproof ink image of this invention divides roughly, it is the following five kinds.

[0014]

1. After mixing the hydrophilic organicsolvent (C) solution (I) of resin (B) with which pigment (A) dispersed and which is dispersed or dissolved in water, and liquid (II) which has water as a main component, carrying out desolvent.

The manufacturing method of the water-based ink composition for inkjet recording characterized by the above-mentioned (henceforth a manufacturing method 1).

[0015]

2. After mixing the liquid-mixture object (IV) which contains hydrophilic organic-solvent (C) solution (III), and water (E) and neutralizer (F) of resin (D) which pigment (A) dispersed, and which is dispersed or dissolved in water by neutralization, carrying out de-solvent.

The manufacturing method of the water-based ink for inkjet recording characterized by the above-mentioned (henceforth a manufacturing method 2).

[0016]

3. It is the manufacturing method of the water-based ink composition for inkjet recording wherein after mixing mixed solvent (H) solution (V) of hydrophilic organic-solvent (C) of resin (B) and hydrophobic organic-solvent (G) which are dispersed or dissolved in water with which pigment (A) dispersed, and liquid (II) which has water (E) as a main component, carrying out

をするインクジェット記録用水 de-solvent, 性インク組成物の製造方法であ って、前記溶液(V)と液体(I I) との混合工程において、混 合物が水(E)と親水性有機溶 剤(C)とを主成分とする相と 疎水性有機溶剤(G)を主成分 とする相に分離しない様に、親 水性有機溶剤(C)及び/又は 疎水性有機溶剤(G)の種類と 使用量を調整した溶液(V)を 用いることを特徴とするインク ジェット記録用水性インク組成 物の製造方法(以下、製造方法 3という。)。

[0017]

顔料(A)が分散した、 中和により水に分散又は溶解す る樹脂(D)の親水性有機溶剤 (C)と疎水性有機溶剤(G) との混合溶剤(H)溶液(VI) と、水(E)と中和剤(F)と を含有する混合液体(IV)と を混合してから、脱溶剤をする インクジェット記録用水性イン ク組成物の製造方法であって、 前記溶液(VI)と液体(IV) との混合工程において、混合物 が水(E)と親水性有機溶剤 (C) とを主成分とする相と疎 水性有機溶剤(G)を主成分と する相に分離しない様に、親水 性有機溶剤(C)及び/又は疎 水性有機溶剤(G)の種類と使 用量を調整した溶液(VI)を 用いることを特徴とするインク ジェット記録用水性インク組成 物の製造方法(以下、製造方法 4という。)。

[0018]

Comprising: in the mixed process of said solution (V) and liquid (II), the solution (V) which adjusted the kind and the amount of hydrophilic organic-solvent (C) and/or hydrophobic organic-solvent (G) used is used so that a blend may not separate to water (E), the phase containing as main components hydrophilic organic-solvent (C), and the phase that has hydrophobic organic-solvent (G) as a main component.

The manufacturing method of the water-based composition for inkiet recordina characterized by the above-mentioned (henceforth a manufacturing method 3).

[0017]

It is the manufacturing method of the water-based ink composition for inkiet recording, after mixing liquid-mixture object (IV) with which pigment (A) dispersed and which contains mixed solvent (H) solution (VI) of hydrophilic organic-solvent (C) and hydrophobic organic-solvent (G), and water (E) and neutralizer (F) of resin (D) dispersed or dissolved in water by neutralization, carrying out de-solvent,

Comprising: in the mixed process of said solution (VI) and liquid (IV), the solution (VI) which adjusted the kind and the amount of hydrophilic organic-solvent (C) and/or hydrophobic organic-solvent (G) used is used so that a blend may not separate to water (E), the phase containing as main components hydrophilic organic-solvent (C), and the phase that has hydrophobic organic-solvent (G) as a main component.

The manufacturing method of the water-based ink composition for inkiet recordina characterized the above-mentioned by (henceforth a manufacturing method 4).

[0018]

5. 顔料(A)と、水に分散 5. 又は溶解する樹脂(B)の親水 org 性有機溶剤(C)と水(E)と so を主成分とする混合溶剤(J) co 協議 (VII)とを混合して、 顔料(A)を溶液(VII)に が多数させてから、脱溶剤することを特徴とするインクジェット ink は以下、製造方法5という。)。 mes

[0019]

以下、本発明を詳細に説明する。

[0020]

本発明に使用される顔料(A)は、特に限定されるものではなく、公知慣用の無機顔料、有機顔料がいずれも使用できる。 又、必要に応じてそれらに体質顔料を併用することもできる。

[0021]

[0022]

有機顔料として、例えば溶性ア ブ顔料、不溶性アブ顔料、不溶 性ジアブ顔料、縮合アブ顔料、 5. After mixing pigment (A), and hydrophilic organic-solvent (C) of resin (B) and the mixed solvent (J) solution (VII) containing as main components water (E) which are dispersed or dissolved in water and making pigment (A) disperse a solution (VII), carrying out desolvent.

The manufacturing method of the water-based ink for inkjet recording characterized by the above-mentioned (henceforth a manufacturing method 5).

[0019]

Hereafter, this invention is demonstrated in detail.

[0020]

Especially pigment (A) used by this invention is not limited, and each of well-known usual inorganic pigments and organic colors can use it.

Moreover, an extender can also be used together to them as required.

[0021]

As an inorganic pigment, a carbon black, a metallic oxide, the metal sulfide, and a metal chloride are mentioned, for example.

In a black water-based ink composition, a carbon black is especially preferable, as a carbon black, a furnace black, lamp black, acetylene black, and a channel black are mentioned.

These carbon blacks may use 1 type, and may use some carbon blacks together.

[0022]

It considers as an organic color, for example, a soluble azo pigment, insoluble azo pigment, and insoluble diazo pigment, a disazo condension pigment, a phthalocyanine pigment,

[0023]

体質顔料として、例えばシリカ、炭酸カルシウム、タルクが挙げられる。これらの体質顔料は単独で使用されることは希であり、通常、無機顔料又は有機顔料と併用して使用される。

[0024]

また黒色水性インク組成物の調色のため、無機顔料及び/又は有機顔料の2種以上を併せて使用することもできる。また流動性改良のため、体質顔料等も併せて使用することができる。

[0025]

これらの顔料 (A) の添加量は、最終的に得る水性インク組成物の $1\sim30$ 重量%相当量を用いることが好ましいが、なかでも $1\sim10$ 重量%相当量がより好ましい。

[0026]

顔料分散型水性インク組成物は、一般に非イオン的方法又は イオン的方法のいずれかによっ a quinacridone pigment, an isoindolinone pigment, a dioxazine pigment, a perylene pigment, a perinone pigment, a thioindigo pigment, a "ansola" quinone pigment, and a quinophthalone pigment are mentioned.

These organic colors may use 1 type, and may use some organic colors together.

Moreover, an inorganic pigment can also be used collectively.

Moreover, an extender etc. can also be collectively used for fluid improvement.

[0023]

A silica, a calcium carbonate, and a talc are mentioned as an extender.

As for these extenders, using individually is rare

It uses together with an inorganic pigment or an organic color usually, and uses.

[0024]

Moreover, 2 or more types of an inorganic pigment and/or an organic color can also be collectively used for a color-adjustment of a black water-based ink composition.

Moreover, an extender etc. can be collectively used for fluid improvement.

[0025]

It is preferable that the 1 to 30-weight% equivalent amount of the water-based ink composition finally obtained is used for the additional amount of these pigment (A).

However, among them, the 1 to 10-weight% equivalent amount is more preferable.

[0026]

Generally a pigment-dispersed water-based ink composition can be stabilized by either the non-ion-method or the ion-method.

When using the non-ion-method, resin has a

法を使用する時、樹脂は親水性 部分と疎水性部分を有し、疎水 性部分で顔料表面に吸着し、親 水性部分でエントロピー的又は 立体的に顔料を分散安定化す る。

て安定化できる。非イオン的方 hydrophilic part and a hydrophobic part, adhere tos them on a pigment surface in a hydrophobic part, and stabilizes the dispersion of a pigment on an entropy three-dimensional target in a hydrophilic part.

[0027]

この目的に有用な代表的な合成 樹脂には、例えばポリビニルア ルコール、セルロース系誘導 体、ポリエチレンオキサイド及 びポリプロピレンオキサイドが 挙げられる。非イオン的方法は pH 変化又はイオン性汚染に対 して敏感ではないが、インク画 像が耐水性に劣ると言う欠点が ある。

[0028]

イオン的方法では、顔料粒子 を、例えば (メタ) アクリル酸、 マレイン酸又はビニルスルホン 酸等の、イオン性モノマーを必 須成分として重合させて得た合 成樹脂と、塩基との中和によっ て安定化できる。つまり、顔料 粒子は中和された合成樹脂の解 離によって形成される電気二重 層を通して安定化されており、 それによってイオンの反発力が 顔料粒子の凝集を阻止してい る。

[0029]

中和するための成分が揮発性を 有する場合には、インク画像形 成後、それが蒸発する傾向にあ るので、合成樹脂は水溶性が低 下し、インク画像の耐水性は向 上する。

[0027]

The polyvinyl alcohol, a cellulose derivative, a polyethylene oxide, and a polypropylene oxide are mentioned to a typical synthetic resin useful for this objective.

The non-ion-method is not sensitive with respect to pH change or an ionic contamination. However, there is a fault said that an ink image deteriorates to water resistance.

[0028]

By the ion-method, a pigment particle can be stabilized by neutralization with the synthetic resin obtained by polymerizing ionic monomers, such as (meth)acrylic acid, a maleic acid, or a vinyl sulfonic acid, as an essential component, and a base.

In other words, the pigment particle is stabilized through the electrical double layer formed by dissociation of the neutralized synthetic resin, and the resiliency of an ion prevents aggregation of a pigment particle from by it.

[0029]

When the component for neutralizing has a volatile, it is in the inclination for it to evaporate, after the ink image formation.

Therefore, as for a synthetic resin, a water solubility reduces, and the water resistance of an ink image is improved.

[0030]

本発明の水に分散又は溶解する 合成樹脂(B)としては、例え ば上記の顔料表面に吸着し、エ ントロピー的に又は立体的に顔 料を分散安定化する樹脂、及び 中和した、イオン性モノマーを 反応成分として得られた樹脂が 挙げられる。分散の安定性及び 耐水性に優れている点から、中 和した、イオン性モノマーを反 応性成分として含むモノマー成 分を反応させて得られた樹脂が 好ましい。合成樹脂(B)とし ては、水に分散する樹脂は、顔 料表面への吸着性が高いため、 分散顔料の機械的安定性が高く なることより、水に分散する樹 脂のほうが、水に溶解する樹脂 より好ましい。

[0031]

本発明の中和により水に分散又 は溶解する樹脂(D)としては、 分散の安定性及び耐水性に優れ ている点から、イオン性モノマ ーを反応性成分として含むモノ マー成分を反応させて得られた 樹脂が挙げられ、そのイオン性 基を中和剤で中和しすることに より、中和した、イオン性モノ マーを反応性成分として含むモ ノマー成分を反応させて得られ た樹脂となるものが好ましい。 合成樹脂(D)としては、中和 したときに水に分散する樹脂の ほうが、中和したときに水に溶 解する樹脂より、分散顔料の機 械的安定性が高くなるので、よ り好ましい。

[0030]

As synthetic-resin (B) dispersed or dissolved in the water of this invention, it adhere tos, for example on said pigment surface, the resin which stabilizes the dispersion of a pigment in entropy or in three dimensions, and the neutralized resin which was obtained considering the ionic monomer as a reaction component are mentioned.

The resin obtained by making the neutralized monomer component which contains an ionic monomer as a reactive component react from the point which is excellent in the stability of dispersion and water resistance is preferable. As synthetic-resin (B), the resin which disperses water is the way of the resin which disperses water from the mechanical stability of the dispersion pigment becoming higher since the adsorptivity on the surface of a pigment is high. However, it is more preferable than the resin dissolved in water.

[0031]

As resin (D) dispersed or dissolved in water by neutralization of this invention, the resin obtained by making the monomer component which contains an ionic monomer as a reactive component react from the point which is excellent in the stability of dispersion and water resistance is mentioned, by neutralizing the ionic group with a neutralizer, the thing used as the resin obtained by making the neutralized monomer component which contains an ionic monomer as a reactive component react is preferable.

The mechanical stability of the dispersion pigment becomes higher from the resin which it dissolves in water when the way of the resin which disperses water as synthetic-resin (D) when it neutralizes neutralizes.

Therefore, it is more preferable.

[0032]

上記のイオン性モノマーを含む 樹脂としては、主に付加重合性 ビニル基を有するモノマーより なる樹脂であり、例えばカルボ ン酸基、スルホン酸基、硫酸エ ステル基等のイオン性基が、例 えばアクリル酸、メタクリル 酸、クロトン酸、イタコン酸、 イタコン酸モノエステル、マレ イン酸、マレイン酸モノエステ ル、フマール酸、フマール酸モ ノエステル、ビニルスルホン 酸、スルホエチルメタクリレー ト、スルホプロピルメタクリレ ート及びスルホン化ビニルナフ タレンの α , β -不飽和モノマ 一等のイオン性モノマーを用い て樹脂中に導入される。

[0033]

イオン性モノマーを含む樹脂に 導入されるその他の付加重合性 ビニル基を有する非イオン性モ ノマーとしては、例えばスチレ ン、スチレン誘導体、ビニルナ フタレン、ビニルナフタレン誘 導体、 α , β -エチレン性不飽 和カルボン酸の脂肪族アルコー ルエステル、アクリルニトリ ル、塩化ビニリデン、酢酸ビニ ル、塩化ビニル、アクリルアミ ド、メタクリルアミド、ヒドロ キシエチルメタクリレート、ヒ ドロキシプロピルメタクリレー ト、グリシジルメタクリレート 及びN-ブトキシメチルアクリ ルアミドが挙げられる。

[0034]

好ましくは、スチレン及び/又 はスチレン誘導体とカルボン酸

[0032]

It is the resin which consists of a monomer which mainly has an addition polymeric vinyl group as resin containing said ionic monomer. For example, ionic groups, such as a carboxylic-acid group, a sulphonic acid group, and sulfuric-acid ester group, are introduced into resin using ionic monomers, such as (alpha) of an acrylic acid, a methacrylic acid, a crotonic acid, an itaconic acid, an itaconic-acid monoester, a maleic acid, a fumaric-acid monoester, a fumaric acid, a fumaric-acid monoester, a vinyl sulfonic acid, a sulfo ethylmethacrylate, a sulfo propyl methacrylate, and sulfonation vinyl naphthalene, and a (beta)-unsaturated monomer.

[0033]

As the nonionic monomer which has the other addition polymeric vinyl group introduced to the resin containing an ionic monomer, for example, styrene, a styrene derivative, vinyl naphthalene, a vinyl naphthalene derivative, (alpha), the aliphatic-alcohol ester of a (beta)- ethylenic unsaturated carboxylic acid, an acrylonitrile, chloride vinylidene, vinyl acetate, a vinyl chloride, acrylamide, methacrylamide, a hydroxyethyl methacrylate, a hydroxy-propyl methacrylate, a glycidylmethacrylate, and N-butoxy methyl acrylamide are mentioned.

[0034]

Preferably, let the monomer which has styrene and/or a styrene derivative, and a carboxylic-

基を有するモノマーを必須モノマーとし、上記のその他のイオン性モノマー及び非イオン性モノマーよりなるスチレンー(メタ)アクリル酸エステル系共重合体が挙げられる。

acid group be an indispensable monomer, the styrene-(meth)acrylic-ester type copolymer which consists of said other ionic monomer and nonionic monomer is mentioned.

[0035]

これらのスチレンー(メタ)アクリル酸エステル系共重合体は1種類を使用しても良く、また複数組み合わせることも出来る。またスチレンー(メタ)アクリル酸エステル系共重合体を必須成分として、非イオンモノマーよりなる樹脂を1種類以上組み合わせることも出来る。

[0036]

樹脂の酸価は、50~200 m g KOH/g が好ましい。樹脂の使用量は、樹脂と顔料との重量比でを1:10から5:1が好ましいが、さらには1:5から3:1が好ましい。

[0037]

[0035]

These styrene-(meth)acrylic-ester type copolymers may use 1 type, moreover, more than one are also combinable.

Moreover, the resin which consists a styrene-(meth)acrylic-ester type copolymer of a non-ion monomer as an essential component is also combinable more than 1 type.

[0036]

The acid value of resin has preferable 50 to 200 mgKOH/g.

As for the amount of the resin used, in weight ratio of resin and a pigment, 1:10-5:1 are preferable.

However, further 1:5 to 3:1 is preferable.

[0037]

In order to disperse or dissolve said styrene-(meth)acrylic-ester type copolymer in water, it is necessary to neutralize a styrene-(meth)acrylicester type copolymer.

As neutralizer (F) comprising the base which neutralizes a styrene-(meth)acrylic-ester type copolymer, a fatty-amine compound, an alcohol amine compound, the hydroxide of an alkali metal, and the hydroxide of an alkaline earth metal are mentioned, for example.

As a fatty-amine compound, ammonia, a monomethyl amine, a dimethylamine, the trimethylamine, a monoethyl amine, a dimethylamine, and the trimethylamine are mentioned, for example.

ン、ジメチルアミン、トリメチ ルアミン、モノエチルアミン、 ジメチルアミン及びトリメチル アミンが挙げられる。

[0038]

アルコールアミン化合物としては、モノエタノールアミン、トリエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、メチルエタノールアミン及びNーメチルジエタノールアミンが挙げられる。

[0039]

アルカリ土類金属の水酸化物としては、例えば水酸化リチウム、水酸化ナトリウム及び水酸化カリウムが挙げられる。アルカリ土類金属の水酸化物として、例えば水酸化ベリリウム、水酸化マグネシウム、水酸化ストロンチウムが挙げられる。

[0040]

[0038]

As an alcohol amine compound, the monoethanolamine, a diethanolamine, the triethanolamine, a mono propanol amine, a dipropanol amine, a tri propanol amine, the methyl ethanolamine, a dimethylethanolamine, and N-methyldiethanolamine are mentioned.

[0039]

As a hydroxide of an alkaline earth metal, lithium hydroxide, the sodium hydroxide, and potassium hydroxide are mentioned, for example.

As the hydroxide of an alkaline earth metal, for example, hydroxylation beryllium, the magnesium hydroxide, a calcium hydroxide, and strontium hydroxide are mentioned.

[0040]

These neutralizers may use 1 type, moreover, more than one are also combinable.

The additional amount of a neutralizer is set to the manufacturing method as described in said manufacturing methods 1, 2, 3, and 4, 40 % or more is preferable at the neutralization rate with respect to the acid value of the used resin, in the manufacturing method as described in said manufacturing method 5, it is the neutralization rate with respect to the acid value of the used resin, and 80 % or more is preferable.

However, the neutralization rate with respect to the acid value of the resin which the neutralizer used is expressed with Formula (1).

(1) で表される。

[0041]

中和率(%) = W a \times Neutralization 5.611×10 6 /(A \times W p \times M) = Wa*5.611*10 式(1) A : the acid

A : 樹脂の酸価 (KOHmg/g) Wp:使用した樹脂の重量 (g)

M:中和剤の分子量

Wa:添加した中和剤の重量 (g)

[0042]

本発明の疎水性有機溶剤(G)としては、水に対して難溶性の炭化水素系化合物であって、常温(25℃)において液体又は固体の化合物が使用できる。但し、常温で固体の化合物は、他の疎水性溶剤及び/又は親水性溶剤に溶解する化合物である。

[0043]

疎水性有機溶剤としては、例え ば、シクロペンタン(蒸気圧が 760mmHgになる温度 49℃)、ペンタン(36℃)、イソ ペンタン(28℃)、ネオペンタン **(10℃)**、メチルシクロペンタン (72℃)、シクロヘキサン(81℃)、 n-ヘキサン(69 $^{\circ}$ C)、2-メチ ルペンタン(60°C)、3-メチル ペンタン(63℃)、2, 2ージメ チルブタン(50°C)、2、3 -ジ メチルブタン(58℃)、メチルシ クロヘキサン(101℃)、ヘプタ ン(98°C)、2 - メチルヘキサン (90℃)、3 - メチルヘキサン (92℃)、2、3 - ジメチルペン gン(90°C)、2、4 -ジメチル ペンタン(81℃)、エチルシクロ ヘキサン(131℃)等の飽和脂肪

[0041]

Neutralization percentage (%) =Wa*5.611*106/(A*Wp*M) Formula (1)

A : the acid value of resin (KOHmg/g)
 Wp : Weight of the used resin (g)
 M : molecular weight of a neutralizer
 Wa : Weight of the added neutralizer (g)

[0042]

As a hydrophobic organic-solvent (G) of this invention, it is a hydrocarbon type compound slightly soluble with respect to water.

Comprising: The compound of the liquid or solid state can be used in normal temperature (25 degrees-Celsius).

However, a solid compound is a compound dissolved in another hydrophobic solvent and/or a hydrophilic solvent at normal temperature.

[0043]

As a hydrophobic organic solvent, for example The cyclopentane (temperature 49 degrees-Celsius from which a steam pressure is set to 760 mmHg(s)), a pentane (36 degrees-Celsius), isopentane (28 degrees-Celsius), neopentane (10 degrees-Celsius), a methylcyclopentane (72 degrees-Celsius), a cyclohexane (81 degrees-Celsius), n -hexane (69 degrees-Celsius). 2methyl pentane (60 degrees-Celsius), a 3methyl pentane (63 degrees-Celsius), a 2,2dimethyl butane (50 degrees-Celsius), a 2,3dimethyl butane (58 degrees-Celsius), methylcyclohexane (101 degrees-Celsius), a heptane (98 degrees-Celsius), 2-methyl hexane (90 degrees-Celsius), a 3-methyl hexane (92 degrees-Celsius), a 2,3- dimethyl pentane (90 degrees-Celsius), a 2,4- dimethyl pentane (81 degrees-Celsius), ethyl cyclohexane degrees-Celsius)

Saturated-fat group hydrocarbon compound of said etc, benzene (80 degrees-Celsius), toluene (110 degrees-Celsius), o- xylene (144 degrees-

(80℃)、トルエン (110℃)、 o ーキシレン(144°C)、mーキ シレン(139℃)、p - キシレン (138℃)等の芳香族炭化水素化 合物、1-ブタノール(118℃)、 2-ブタノール(100℃)、2-メチルー1ープロパノール (108℃)、1 - ペンタノール (138℃)等の水に難溶性のアル コール化合物、エチルエーテル (35℃)、プロピルエーテル (89°C)、イソプロピルエーテル (68°C)、ブチルエチルエーテル (92℃)、1, 2エポキシブタン **(63℃)**、テトラヒドロピラン (88℃) 等の水に難溶性のエー テル化合物、2-ブタノン (79℃)、3 -ペンタノン (102℃)、4 − メチル − 2 − ペ ンタノン(117℃)等の水に難溶 性のケトン化合物、メチルアセ テート(56℃)、エチルアセテー ト(77℃)、プロピルアセテート (102℃)、イソプロピルアセテ ート(88℃)等のエステル化合物 及びクロロエタン(12°C)、1-クロロプロパン(**47**°C)、2ーク ロロプロパン(35 $^{\circ}$ C)、1-クロ ロブタン(78 $^{\circ}$ C)、2ークロロブ タン(68℃)、ジクロロメタン (40℃)、クロロホルム(61℃)、 四塩化炭素(77℃)、1, 1 – ジ クロロエタン(57 $^{\circ}$ C)、1, 1, 1-トリクロロエタン(**74℃**)等 のハロゲン化合物が挙げられ る。これらの疎水性有機溶剤は 1種類を使用しても良く、また 複数組み合わせることも出来 る。

族炭化水素化合物、ベンゼン Celsius), m- xylene (139 degrees-Celsius), p- (80℃)、トルエン (110℃)、 xylene (138 degrees-Celsius)

Aromatic hydrocarbon compound of said etc, 1-butanol (118 degrees-Celsius), 2-butanol (100 degrees-Celsius), a 2-methyl -1- propanol (108 degrees-Celsius), 1-pentanol (138 degrees-Celsius)

An alcohol compound with said etc. slightly soluble in water, ethyl ether (35 degrees-Celsius), propylether (89 degrees-Celsius), an isopropyl ether (68 degrees-Celsius), butyl ethyl ether (92 degrees-Celsius), 1, 2 epoxy butane (63 degrees-Celsius), tetrahydropyran (88 degrees-Celsius)

The ether compound of said etc. slightly soluble in water, 2-butanone (79 degrees-Celsius), 3-pentanone (102 degrees-Celsius), 4-methyl -2-pentanone (117 degrees-Celsius)

The ketone compound of said etc. slightly soluble in water, a methyl acetate (56 degrees-Celsius), an ethyl acetate (77 degrees-Celsius), a propyl acetate (102 degrees-Celsius), isopropyl acetate (88 degrees-Celsius)

The ester compound of said etc

And the chloroethane (12 degrees-Celsius), 1-chloropropane (47 degrees-Celsius), 2-chloropropane (35 degrees-Celsius), 1-chloro butane (78 degrees-Celsius), 2-chloro butane (68 degrees-Celsius), a dichloromethane (40 degrees-Celsius), chloroform (61 degrees-Celsius), the carbon tetrachloride (77 degrees-Celsius), 1,1- dichloroethane (57 degrees-Celsius), 1,1-trichloroethane (74 degrees-Celsius)

The halogen compound of said etc. is mentioned.

These hydrophobic organic solvents may use 1 kind, moreover, more than one are also combinable.

[0044]

[0044]

本発明の親水性有機溶剤(C)としては、常温(25℃)において液体又は固体の炭化水素系化合物が使用できる。但し、常温で固体の化合物は、他の親水性有機溶剤及び/又は疎水性有機溶剤及び/又は水に溶解する化合物である。

[0045]

親水性有機溶剤としては、例えば、メタノール(64 $^{\circ}$ C)、エタノール(78 $^{\circ}$ C)、1-プロパノール(97 $^{\circ}$ C)、2-プロパノール(82 $^{\circ}$ C)等の親水性アルコール化合物、1, 2- メトキシエタラン(93 $^{\circ}$ C)、テトラヒドロフラン(66 $^{\circ}$ C)、p-ジオキサン(101 $^{\circ}$ C)等の親水性エーテル化合物、アセトン(56 $^{\circ}$ C)及び酢酸(118 $^{\circ}$ C)が挙げられる。これらの親水性有機溶剤は1種類を使用しても良く、また複数組み合わせることも出来る。

[0046]

本発明の製造方法1において、 顔料(A)が分散した、水に分 散又は溶解する樹脂(B)の親 水性有機溶剤(C)溶液(I) 中の親水性有機溶剤の量は、顔 料(A)の重量と樹脂(B)の 重量の和を1重量部としたと き、1~30重量部が好ましいが、 が、さらには2~10重量部が 好ましい。

[0047]

同様に本発明の製造方法2において、顔料(A)が分散した、中和により水に分散又は溶解する樹脂(D)の親水性有機溶剤

As hydrophilic organic-solvent (C) of this invention, the hydrocarbon type compound of the liquid or solid state can be used in normal temperature (25 degrees-Celsius).

However, a solid compound is a compound dissolved in the other hydrophilic organic solvent, the hydrophobic organic solvent, and/or water at normal temperature.

[0045]

As a hydrophilic organic solvent, for example Methanol (64 degrees-Celsius), an ethanol (78 degrees-Celsius), 1-propanol (97 degrees-Celsius), hydrophilic alcohol compounds, such 2-propanol (82 degrees-Celsius), hydrophilic alcohol compound of said etc, a 1,2-(93 degrees-Celsius), methoxy ethane (66 tetrahydrofuran degrees-Celsius), hydrophilic ether compound, acetone (56 degrees-Celsius), and acetic acid (118 degrees-Celsius), such as p- dioxane (101 degrees-Celsius), are mentioned.

These hydrophilic organic solvents may use 1 kind, moreover, more than one are also combinable.

[0046]

About the manufacturing method 1 of this invention

The amount of the hydrophilic organic solvent in the hydrophilic organic-solvent (C) solution (I) of resin (B) dispersed or dissolved in water which pigment (A) dispersed, when the sum of the weight of pigment (A) and the weight of resin (B) is made into 1 weight-part, 1 to 30 weight-parts is preferable.

However, further 2 to 10 weight-parts is preferable.

[0047]

In the manufacturing method 2 of this invention similarly, the amount of the hydrophilic organic solvent in hydrophilic organic-solvent (C) solution (III) of resin (D) dispersed or dissolved in water by neutralization which pigment (A)

(C) 溶液 (III) 中の親水性有機溶剤の量は、顔料 (A) の重量と樹脂 (D) の重量の和を1重量部としたとき、 $1\sim3$ 0重量部が好ましいが、さらには $2\sim1$ 0重量部が好ましい。

dispersed, when the sum of the weight of pigment (A) and the weight of resin (D) is made into 1 weight-part, 1 to 30 weight-parts is preferable.

However, further 2 to 10 weight-parts is preferable.

[0048]

同様にに本発明の製造方法3において、顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と疎水性有機溶剤(F)との混合溶剤(H)溶液(V)中の混合溶剤(H)の量は、顔料(A)の重量と樹脂(B)の重量の和を1重量部としたとき、1~30重量部が好ましいが、さには2~10重量部が好ましい。

[0048]

In the manufacturing method 3 of this invention similarly, the amount of mixed solvent (H) in the mixed solvent (H) solution (V) of hydrophilic organic-solvent (C) of resin (B) and hydrophobic organic-solvent (F) with which pigment (A) dispersed and which are dispersed or dissolved in water, when the sum of the weight of pigment (A) and the weight of resin (B) is made into 1 weight-part, 1 to 30 weight-parts is preferable. However, further 2 to 10 weight-parts is preferable.

[0049]

同様に本発明の製造方法4において、顔料(A)が分散した、中和による水に分散又は溶解する樹脂(D)の親水性有機溶剤(F)との混合溶剤(H)溶液(VI)中の混合溶剤(H)の量は、の重量の和を1重量部としたとき、1~30重量部が好ましい。

[0049]

In the manufacturing method 4 of this invention similarly, the amount of mixed solvent (H) in the mixed solvent (H) solution (VI) of hydrophilic organic-solvent (C) of resin (D) and hydrophobic organic-solvent (F) which are dispersed or dissolved in Wed. by neutralization with which pigment (A) dispersed, when the sum of the weight of pigment (A) and the weight of resin (D) is made into 1 weight-part, 1 to 30 weight-parts is preferable.

However, further 2 to 10 weight-parts is preferable.

[0050]

同様に本発明の製造方法5において、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤(J)溶液(VII)中の混合溶剤(J)の量は、顔料(A)の重量と樹脂(B)の重

[0050]

In the manufacturing method 5 of this invention similarly, hydrophilic organic-solvent (C) of resin (B) dispersed or dissolved in water, and the amount of mixed solvent (J) in the mixed solvent (J) solution (VII) containing as main components water (E), when the sum of the weight of pigment (A) and the weight of resin (B) is made into 1 weight-part, 1 to 30 weight-parts

量の和を1重量部としたとき、 $1\sim30$ 重量部が好ましいが、さらには $2\sim10$ 重量部が好ましい。また親水性有機溶剤(C)と水(E)との重量比は、1:9から9:1が好ましい。

[0051]

本発明のインクジェット記録用 水性インク組成物の製造方法に よって得られる水性インク組 物には湿潤剤、つまりインクジ エット記録装置のノズル部分に おいて、インクが乾燥し、バルを塞いでしまうことを防止する とを抑制する化合物を入れることが好ましい。

[0052]

湿潤剤としては親水性有機溶剤 (C) 以外の多価アルコール化 合物が好ましく、例えばエチレ ングリコール、ポリエチレング リコール、プロピレングリコー ル、ポリプロピレングリコー ル、トリエチレングリコール、 ポリトリエチレングリコール、 テトラエチレングリコール、ポ リテトラエチレングリコー ル、、1、3-ブタンジオール、 グリセリン、1、2、6-ヘキ サントリオールが挙げられる。 これらの多価アルコール化合物 は1種類を使用しても良く、ま た複数組み合わせることも出来 る。

[0053]

これらの多価アルコール化合物 の添加量は、インクジェット記 録用水性インク組成物の0~5

is preferable.

However, further 2 to 10 weight-parts is preferable.

Moreover, as for the weight ratio of hydrophilic organic-solvent (C) and water (E), 1:9 to 9:1 is preferable.

[0051]

In a moistening agent (nozzle part of the in other words, inkjet-recording apparatus) at the water-based ink composition obtained by the manufacturing method of the water-based ink composition for inkjet recording of this invention, in other words, it is preferable to put the compound which suppresses that an ink dries in order to prevent for an ink to dry and to plug up a nozzle in the nozzle part of an inkjet-recording apparatus.

In other words, it is in the nozzle part of "{inkjet-recording apparatus,

[0052]

As a moistening agent, polyhydric-alcohol compounds other than hydrophilic organic-solvent (C) are preferable, for example, an ethylene glycol, a polyethyleneglycol, a propylene glycol, polypropylene glycol, a triethyleneglycol, a poly triethyleneglycol, a tetraethylene glycol, a polytetra ethylene glycol, 1,3- butanediol, glycerol, 1, and a 2,6- hexane triol are mentioned.

These polyhydric-alcohol compounds may use 1 type, moreover, more than one are also combinable.

[0053]

As for the additional amount of these polyhydric-alcohol compounds, 0 to 50weight% of the water-based ink composition for inkjet

5~30重量%が好ましい。

[0054]

これらの多価アルコールは、本 発明の各製造方法における脱溶 剤後に、加えることもでき、ま た製造方法1及び3における、 水を主成分とする液体(II) に加えることもでき、また製造 方法2及び4の製造方法におけ る、水(E)と中和剤(F)と を含有する混合液体(IV)に 加えることもでき、また製造方 法5の製造方法における親水性 有機溶剤(B)と水(E)とを 主成分とする混合溶剤(J)に 加えることもできる。

[0055]

次に、本発明のインクジェット 記録用水性インク組成物の製造 方法を詳細に説明する。最初に 製造方法1について説明する。 製造方法1における水に分散又 は溶解する樹脂(B)としては、 既に述べたようにエントロピー 的に又は立体的に顔料を分散安 定化する樹脂又は中和されたイ オン性モノマーを含むモノマー 成分を反応させて得られた樹脂 が挙げられるが、分散の安定性 及び耐水性に優れている点か ら、後者の樹脂が好ましい。

[0056]

イオン性モノマーを含むモノマ 一成分を反応させて得られた樹 脂と、中和剤(F)を親水性有 機溶剤(C)に分散又は溶解す る。次に顔料(A)を加え、顔 料(A)を分散する。但し、中

○重量%が好ましく、さらには recording is preferable, furthermore, 5 to 30 weight% is preferable.

[0054]

These polyhydric alcohols, it can also add after de- solvent in each manufacturing method of this invention, moreover, it can also add to liquid (II) in manufacturing methods 1 and 3 which has water as a main component.

Moreover, it can also add to the liquid-mixture object (IV) which contains water (E) and neutralizing-agent (F) in a manufacturing method of manufacturing methods 2 and 4, moreover, it can also add to mixed solvent (J) containing as main components hydrophilic organic-solvent (B) and water (E) in the manufacturing method of a manufacturing method 5.

[0055]

Next, the manufacturing method of the waterbased ink composition for inkjet recording of this invention is demonstrated in detail.

A manufacturing method 1 is demonstrated initially.

As resin (B) dispersed or dissolved in the water kicked to a manufacturing method 1, as already stated, the resin obtained by making the monomer component containing the resin which stabilizes the dispersion of a pigment in entropy or in three dimensions, or the neutralized ionic monomer react is mentioned.

However, the resin of the point which is excellent in the stability of dispersion and water resistance to the latter is preferable.

[0056]

The resin obtained by making the monomer component containing an ionic monomer react and neutralizer (F) are dispersed or dissolved in hydrophilic organic-solvent (C).

Next, pigment (A) is added and pigment (A) is dispersed.

However, after dispersing solvent (C) in a

料を分散した後に加えても良 い。このとき必要であれば、分 散助剤を使用しても良い。

和剤(F)は、溶剤(C)に顔 pigment, it may add neutralizer (F). As long as it is necessary at this time, it may use the dispersion support agent.

The method the method of dispersing pigment

(A) disperses using for example, a paint shaker,

a ball mill, a roll mill, a speed line mill, a homo

mixer, and a Sand grinder is mentioned.

[0057]

顔料(A)を分散する方法は、 例えばペイントシェイカー、ボ ールミル、ロールミル、スピー ドラインミル、ホモミキサー及 びサンドグラインダーを用いて 分散する方法が挙げられる。

[0057]

[0058]

イオン性モノマーを含むモノマ 一成分を反応させて得られた樹 脂と、中和剤(F)に顔料(A) を分散後、親水性有機溶剤(C) を加えることもできる。これに より、顔料(A)が分散した、 水に分散又は溶解する樹脂 (B) の親水性有機溶剤 (C) 溶液(I)が得られる。

[0058]

Hydrophilic organic-solvent (C) can also be added after dispersing the resin obtained by making the monomer component containing an ionic monomer react, and neutralizer (F) in pigment (A).

Thereby, the hydrophilic organic-solvent (C) solution (I) of resin (B) with which pigment (A) dispersed and which is dispersed or dissolved in water is obtained.

[0059]

水を主成分とする液体(II) としては、水単独でも良く、ま た親水性有機溶剤(C)以外の 多価アルコールを含んでいても 良く、また各種添加剤を含んで いても良い。

[0059]

As liquid (II) which has water as a main component, a water independent is sufficient, moreover, polyhydric alcohols other than hydrophilic organic-solvent (C) may included, moreover, the various additive may be included.

[0060]

顔料(A)が分散した溶液(I) と、水を主成分とする液体(I I) との混合方法は、制限され ない。例えば、次のいずれの方 法でも良い。

[0060]

The mixed method of the solution (I) with which pigment (A) dispersed, and liquid (II) which has water as a main component is not limited.

For example, the following any method is also good.

[0061]

方法(1) 液体(II)を溶 液(I)に滴下する方法。

[0061]

Method (1) Method to drop liquid (II) to a solution (I). Method (2) Method to drop a solution (I) to

Method to drop a solution (I) and

方法(2) 溶液(I)を液体 liquid (II). (II) に滴下する方法。

方法(3) 溶液(I)と液体 (II) を別の容器に同時に滴 下する方法。

[0062]

Method (3)

Furthermore. method (1) is preferable. furthermore, when dropping liquid (II) to a solution (I), the method of dropping liquid (II) is preferable, stirring a solution (I).

liquid (II) simultaneously to another container.

[0062]

さらには方法(1)が好ましく、 さらには、液体(II)を溶液 (I) に滴下するときに、溶液 (I)を攪拌しながら液体(I I)を滴下する方法が好まし V.

[0063]

顔料(A)が分散した溶液(I) と、水を主成分とする液体(I I) との混合後、混合物から溶 剤を除去する。溶剤を除去する 方法としては、例えば膜分離 法、溶剤吸着法及び減圧蒸留法 が挙げられる。

[0064]

膜分離法は、限外濾過膜によ り、溶剤を透過させ、溶剤を除 去する方法である。溶剤吸着法 は、溶剤のみを吸着する物質を 入れたセルに混合物を通し、溶 剤を吸着させて、溶剤を除去す る方法である。

[0065]

減圧蒸留法は、混合物を常圧又 は減圧下で物質が気化するとき に必要なエネルギーを外部から 加え、混合物の温度における蒸 気圧の大きい物質から徐々に気 化させ、物質を除去する方法で ある。従って、混合物から溶剤 を除去するには、混合物の温度 における溶剤の蒸気圧が水の蒸

[0063]

A solvent is removed from a blend after mixing with the solution (I) with which pigment (A) dispersed, and liquid (II) which has water as a main component.

As a method of removing a solvent, a membrane-separation method. а solvent absorption process, and a vacuum-distillation method are mentioned, for example.

[0064]

A membrane-separation method permeates a solvent by the ultrafiltration membrane.

It is the method of removing a solvent.

A solvent absorption process is the method of making the cell which put the material which adhere tos only a solvent adhere to through and a solvent for a blend, and removing a solvent.

[0065]

Vacuum distillation method, a normal pressure or an energy necessary when a material vaporizes under reduced pressure is added from the outside, and a mixture is gradually vaporized from the material with a large steam pressure kicked to the temperature of a mixture. It is the method of removing a material.

Therefore, in order to remove a solvent from a blend, it is preferable that the steam pressure of the solvent in the temperature of a blend is larger than the steam pressure of water.

気圧より大きいことが好まし い。

[0066]

既に列記した疎水性有機溶剤 (G)及び親水性有機溶剤(C)には、蒸気圧が760mmHg となるときの温度を示したが、 その温度が水の蒸気圧が760 mmHgとなる温度100℃よ り低い溶剤が好ましい。

[0067]

上記の製造方法1に記載の製造 方法により、分散安定性に優れ たインクジェット記録用インク 組成物が得られる。

[0068]

次に、製造方法2について説明する。製造方法2における中和により水に分散又は溶解する樹脂(D)としては、既に述べたように、例えばイオン性モノマーを反応性成分として含むモノマー成分を反応させて得られた樹脂が挙げられる。

[0069]

中和により水に分散又は溶解する樹脂(D)を、親水性有機溶剤(C)に分散又は溶解する。次に顔料(B)を加え、顔料を分散する。このとき分散助剤を使用しても良い。顔料を分散する方法は既に述べた通りである。樹脂(D)に顔料を分散後、親水性有機溶剤(C)を加えても良い。

[0070]

これにより、顔料(A)が分散

[0066]

In hydrophobic organic-solvent (G) and hydrophilic organic-solvent (C) which were already listed, temperature in case a steam pressure serves as 760 mmHg(s) was shown. However, a solvent with the temperature lower than temperature 100 degrees-Celsius from which the steam pressure of water serves as 760 mmHg(s) is preferable.

[0067]

The excellent ink composition for inkjet recording is obtained by the manufacturing method of said manufacturing method 1 at a dispersion stability.

[8900]

Next, a manufacturing method 2 is demonstrated.

As resin (D) dispersed or dissolved in water by the neutralization kicked to a manufacturing method 2, as already stated, for example, the resin obtained by making the monomer component which contains an ionic monomer as a reactive component react is mentioned.

[0069]

Resin (D) dispersed or dissolved in water by neutralization is dispersed or dissolved in hydrophilic organic-solvent (C).

Next, pigment (B) is added and a pigment is dispersed.

At this time, it may use the dispersion support agent.

The method of dispersing a pigment is as having already stated.

It may add hydrophilic organic-solvent (C) after dispersing resin (D) in a pigment.

[0070]

Thereby, hydrophilic organic-solvent (C) solution (III) of resin (D) with which pigment (A)

した、中和により水に分散又は溶解する樹脂(D)の親水性有機溶剤(C)溶液(III)が得られる。

した、中和により水に分散又は dispersed and which is dispersed or dissolved 溶解する樹脂 (D) の親水性有 in water by neutralization is obtained.

[0071]

水(E)と中和剤(F)とを含有する混合液体(IV)としては、水(E)と中和剤(F)のみを含んでいても良く、また必要であれば、親水性有機溶剤(C)以外の多価アルコールを含んでいても良く、また各種添加剤を含んでいても良い。

[0072]

顔料(A)が分散した溶液(III)と、水(E)と中和剤(F)とを含有する混合液体(IV)との混合方法は、制限されるものではない。例えば、次のいずれの方法でも良い。

[0073]

方法 (4) 混合液体 (IV) を溶液 (III) に滴下する方 法。

方法 (5) 溶液 (III) を 混合液体 (IV) に滴下する方 法。

方法 (6) 溶液 (III) と 混合液体 (IV) を別の容器に 同時に滴下する方法。

[0074]

さらには方法(4)が好ましく、 さらには、混合液体(IV)を 溶液(III)に滴下するとき に、溶液(III)を攪拌しな がら混合液体(IV)を滴下す る方法が好ましい。

[0071]

Only water (E) and neutralizing-agent (F) may be included as a liquid-mixture object (IV) which contains water (E) and neutralizing-agent (F), moreover, as long as it is necessary, polyhydric alcohols other than hydrophilic organic-solvent (C) may be included, moreover, the various additive may be included.

[0072]

The mixed method with the liquid-mixture object (IV) which contains solution (III) with which pigment (A) dispersed, and water (E) and neutralizer (F) is not limited.

For example, the following any method is also good.

[0073]

Method (4) Method to drop a liquid-mixture object (IV) to solution (III).

Method (5) Method to drop solution (III) to a liquid-mixture object (IV).

Method (6) Method to drop solution (III) and a liquid-mixture object (IV) simultaneously to another container.

[0074]

Furthermore, method (4) is preferable, furthermore, when dropping a liquid-mixture object (IV) to solution (III), the method of dropping a liquid-mixture object (IV) is preferable, stirring solution (III).

[0075]

顔料(A)が分散した溶液(II)と、水(E)と中和剤(F)とを含有する混合液体(IV)との混合後、混合物から溶剤を除去する。溶剤を除去する方法は既に述べた通りである。

[0076]

上記の製造方法2により、分散 安定性に優れたインクジェット 記録用インク組成物が得られ る。

[0077]

[0078]

イオン性モノマーを反応成分として得られた樹脂と、中和剤(F)を、疎水性有機溶剤(G)、又は親水性有機溶剤(C)と疎水性有機溶剤(C)と疎水性有機溶剤(B)に分散又は溶解する。にでイオン性モノマーを反応がして得られた樹脂は、中をして得られた樹脂となる。次に顔料(A)を加え、顔料を分散する。

[0075]

A solvent is removed from a blend after mixing with the liquid-mixture object (IV) which contains solution (III) with which pigment (A) dispersed, and water (E) and neutralizer (F). The method of removing a solvent is as having already stated.

[0076]

The excellent ink composition for inkjet recording is obtained by said manufacturing method 2 at a dispersion stability.

[0077]

Next, a manufacturing method 3 is demonstrated.

As resin (B) dispersed or dissolved in the water kicked to a manufacturing method 3, as already stated, the resin containing the resin which stabilizes the dispersion of a pigment in entropy or in three dimensions, or the neutralized ionic monomer is mentioned.

However, it is preferable although the neutralized resin which was obtained considering the ionic monomer as a reaction component is mentioned from the point which is excellent in the stability of dispersion, and water resistance.

[0078]

The resin obtained considering the ionic monomer as a reaction component and neutralizer (F) are dispersed or dissolved in mixed solvent (H) of hydrophobic organic-solvent (C) and hydrophobic organic-solvent (G).

The resin obtained considering the ionic monomer as a reaction component here turns into neutralized resin which was obtained considering the ionic monomer as a reaction component.

Next, pigment (A) is added and a pigment is dispersed.

[0079]

但し、中和剤(F)は、イオン性モノマーを反応成分として得られた樹脂と、疎水性有機溶剤(G)、又は親水性有機溶剤(C)と疎水性有機溶剤(C)を済剤(H)に、顔料(A)を分散後に加えても良い。のとき必要ならば、分散助剤を分散をある。 方法は既に述べた通りである。

[0080]

また、顔料分散後、親水性有機溶剤(C)及び/又は疎水性有機溶剤(G)を加えることもできる。但し、疎水性有機溶剤(C)を加える。は、水性有機溶剤(C)を加える。これにより、顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と疎水性有機溶剤(G)と疎水性有機溶剤(V)が得られる。

[0081]

水を主成分とする液体(II) としては、水単独でも良く、ま た親水性有機溶剤(C)以外の 多価アルコールを含んでいても 良く、また各種添加剤を含んで いても良い。

[0082]

顔料(A)が分散した溶液(V)と、水を主成分とする液体(II)との混合方法は、制限されない。例えば次のいずれの方法でもよい。

[0.083]

[0079]

However, neutralizing-agent (F) may add an ionic monomer to the resin obtained as a reaction component, and hydrophobic organic-solvent (G) or mixed solvent (H) of hydrophilic organic-solvent (C) and hydrophobic organic-solvent (G), after dispersing pigment (A).

As long as it is necessary at this time, it may use the dispersion support agent.

The method of dispersing a pigment is as having already stated.

[0080]

Moreover, hydrophilic organic-solvent (C) and/or hydrophobic organic-solvent (G) can also be added after pigment dispersion.

However, hydrophilic organic-solvent (C) is added to what dispersed only by hydrophobic organic-solvent (G).

Thereby, the mixed solvent (H) solution (V) of hydrophilic organic-solvent (C) of resin (B) and hydrophobic organic-solvent (G) which pigment (A) dispersed and which are dispersed or dissolved in water is obtained.

[0081]

As liquid (II) which has water as a main component, a water independent is sufficient, moreover, polyhydric alcohols other than hydrophilic organic-solvent (C) may be included, moreover, the various additive may be included.

[0082]

The mixed method of the solution (V) with which pigment (A) dispersed, and liquid (II) which has water as a main component is not limited.

For example, the following any method is also good.

[0083]

方法(7) 液体(II)を溶 Method (7) 液(V)に滴下する方法。

方法(8) 溶液(V)を液体 (II) に滴下する方法。

方法(9) 溶液(V)と液体 (II) を別の容器に同時に滴 下する方法。

[0084]

さらには方法(7)が好ましく、 さらには、液体(II)を溶液 (V) に滴下するときに、溶液 (V)を攪拌しながら液体(I I) を滴下する方法が好まし V.

[0085]

製造方法3の水性インクの製造 方法においては、顔料(A)が 分散している溶液(V)と水を 主成分とする液体(II)を混 合する工程において、顔料(A) が分散している溶液(V)に含 まれる疎水性有機溶剤(G)が 混合中に相分離を起こさないこ とが、本製造方法の必須条件で ある。

[0086]

つまり、顔料(A)が分散して いる溶液(V)と水を主成分と する液体(II)とを混合する ことにより、疎水性有機溶剤 (G) と親水性有機溶剤 (C) の混合溶剤(H)に溶解してい る樹脂の溶解度が徐々に減少 し、樹脂が顔料(A)の表面に 徐々に吸着し、顔料(A)が樹 脂により被覆される。樹脂の溶 解度がさらに減少し、樹脂単独 の分散粒子を生成することもあ るが、既に顔料 (A) は樹脂に

solution (V). Method (8) liquid (II).

Method (9) container.

Method to drop liquid (II) to a

Method to drop a solution (V) to

Method to drop a solution (V) and liquid (II) simultaneously to another

[0084]

Furthermore, method (7) is preferable. furthermore, when dropping liquid (II) to a solution (V), the method of dropping liquid (II) is preferable, stirring a solution (V).

[0085]

In the manufacturing method of the water-based ink of a manufacturing method 3, be in the process which mixes liquid (II) which has water as a main component with the solution (V) with which pigment (A) is dispersing.

It is the indispensable condition of this manufacturing method not to generate phase separation, while mixing hydrophobic organicsolvent (G) contained in the solution (V) with which pigment (A) is dispersing.

[0086]

The solubility of the resin currently dissolved in mixed solvent (H) of hydrophobic organicsolvent (G) and hydrophilic organic-solvent (C) decreases gradually by in other words mixing the solution (V) with which pigment (A) is dispersing, and liquid (II) which has water as a main component, a resin adhere tos gradually on the surface of pigment (A), and pigment (A) is coated with a resin.

The solubility of a resin may further decrease and may generate a resin independent dispersed particle.

However, pigment (A) is coated with a resin, and even if the dispersion stability of a pigment (A) particle is ensured and a resin independent

子の分散安定性は確保されてお り、樹脂単独の分散粒子が生成 しても、本製造方法の目的を妨 げるものではない。

よって被覆され、顔料 (A) 粒 dispersed particle generates it, it does not already bar the objective of this manufacturing method.

[0087]

顔料(A)が分散している溶液 (V) と、水を主成分とする液 体(II)を混合する工程にお いて、顔料(A)が分散してい る溶液(V)に含まれる疎水性 有機溶剤(G)が混合中に相分 離を起こす場合は、つまり疎水 性有機溶剤(G)を主成分とす る相と水(E)及び親水性有機 溶剤(C)を主成分とする相が 形成された場合、分散している 顔料(A)粒子は両相の間を通 過する度に、顔料(A)粒子を 保護していた樹脂が剥がれた り、吸着したりを繰り返し、顔 料(A) 粒子は凝集し、凝集し た顔料(A)は沈降する。この 現象はソルベントショックと言 われる。従って、分散安定性に 優れたインクジェット記録用水 性インク組成物は得られない。

[0088]

顔料(A)が分散している溶液 (V)と水を主成分とする液体 (II) を混合する工程におい て、顔料(A)が分散している 溶液(V)に含まれる疎水性有 機溶剤(G)が混合中に相分離 を起こさないことの確認は、例 えば、以下のように行うことが できる。

[0089]

[0087]

In the process which mixes liquid (II) which has water as a main component with the solution (V) with which pigment (A) is dispersing, when generating phase separation while mixing hydrophobic organic-solvent (G) contained in the solution (V) with which pigment (A) is dispersing, in other words, when the phase which has as a main component the phase, water (E), and hydrophilic organic-solvent (C) which, have hydrophobic organic-solvent (G) as a main component is formed, the resin which protected the pigment (A) particle whenever it through between both phases separates or adhere tos the pigment (A) particle which is dispersing.

Repeating these, a pigment (A) particle is aggregated and aggregated pigment (A) settles. This phenomenon is called solvent shock.

Therefore, the excellent water-based ink composition for inkjet recording is not obtained by the dispersion stability.

[0088]

In the process which mixes liquid (II) which has water as a main component with the solution (V) with which pigment (A) is dispersing, the confirmation of not generating separation, while mixing hydrophobic organicsolvent (G) contained in the solution (V) with which pigment (A) is dispersing, for example, it can carry out as follows.

[0089]

顔料 (A) が分散している溶液 When manufacturing the solution (V) with which

(V)を製造するときに、水に 分散又は溶解する樹脂(B)と 顔料(A)を除いた組成物を製 造する。該組成物と水を主成分 とする液体(II)を混合する 工程において、該組成物に含ま れる疎水性有機溶剤(G)が相 分離を起こさないことを確認す る。

[0090]

つまり、疎水性有機溶剤(G)を主成分とする相と水(E)と親水性有機溶剤(C)を主成分と相に分離しないことを確認の密度の一つで、相分離が発生すれば、相のできる。相分離が確認できる。相分離が確認できる。相分離が確認できる。

[0091]

[0092]

顔料(A)が分散した溶液(V) と水を主成分とする液体(I pigment (A) is dispersing, the composition except resin (B) and pigment (A) which are dispersed or dissolved in water is manufactured.

In the process which mixes liquid (II) which has this composition and water as a main component, it confirms that hydrophobic organic-solvent (G) contained in this composition does not generate phase separation.

[0090]

It confirms, not separating the phase and water (E) which have hydrophobic organic-solvent (G) as a main component, and hydrophilic organic-solvent (C) to a main component and a phase in other words.

If phase separation generates, phase separation can be confirmed because a phase separates vertically with the difference of the density of a phase, while stirring the mixture, a phase separates to a continuous phase and a discontinuous phase, by becoming cloudy, a mixture can confirm phase separation.

[0091]

When phase separation happens, by adjusting the kind and amount of hydrophilic organic-solvent (C) contained in the solution (V) with which pigment (A) is dispersing, and/or hydrophobic organic-solvent (G), it can always perform making it phase separation not happen. With the kind of hydrophilic organic-solvent (C) and/or hydrophobic organic-solvent (G), and adjustment of an amount, the solution (V) with which pigment (A) is dispersing, and liquid (II) which has water as a main component can be mixed, without generating phase separation.

[0092]

A solvent is removed from a blend after mixing with the solution (V) with which pigment (A) dispersed, and liquid (II) which has water as a

I) との混合後、混合物から溶 剤を除去する。溶剤を除去する 方法は既に述べた通りである。

main component.

The method of removing a solvent is as having already stated.

[0093]

上記の製造方法3により、分散 安定性に優れたインクジェット 記録用インク組成物が得られ る。

[0093]

The excellent ink composition for inkjet recording is obtained by said manufacturing method 3 at a dispersion stability.

[0094]

次に、製造方法4について説明する。製造方法4における中和により水に分散又はする樹脂(D)としては、既に述べたように、例えばイオン性モノマーを含むモノマー成分を反応性成分として得られた樹脂が挙げられる。

[0094]

Next, a manufacturing method 4 is demonstrated.

As resin (D) dispersed or used as water by the neutralization kicked to a manufacturing method 4, as already stated, the resin obtained considering the monomer component containing an ionic monomer as a reactive component is mentioned.

[0095]

イオン性モノマーを含むモノマー成分を反応性成分として得られた樹脂に、疎水性有機溶剤 (G)、又は親水性有機溶剤 (C)と疎水性有機溶剤 (G)の混合溶剤 (H)に分散又は溶解する。次に顔料 (A)を加え、顔料を分散する。このとき必ずあれば、分散助剤を使用しても良い。顔料を分散する方法は既に述べた通りである。

[0095]

The monomer component containing an ionic monomer is dispersed or dissolved in the resin obtained as a reactive component at mixed solvent (H) of hydrophobic organic-solvent (G), or hydrophilic organic-solvent (C) and hydrophobic organic-solvent (G).

Next, pigment (A) is added and a pigment is dispersed.

As long as it is necessary at this time, it may use the dispersion support agent.

The method of dispersing a pigment is as having already stated.

[0096]

顔料分散後、親水性有機溶剤 (C)及び/又は疎水性有機溶 剤(G)を加えることもできる。 但し、疎水性有機溶剤(G)の みで分散したものには、親水性 有機溶剤(C)を加える。これ により、顔料(A)が分散した、 中和により水に分散又は溶解す

[0096]

Hydrophilic organic-solvent (C) and/or hydrophobic organic-solvent (G) can also be added after pigment dispersion.

However, hydrophilic organic-solvent (C) is added to what dispersed only by hydrophobic organic-solvent (G).

Thereby, the mixed solvent (H) solution (VI) of hydrophilic organic-solvent (C) of resin (B) and hydrophobic organic-solvent (G) which pigment

る樹脂(B)の親水性有機溶剤(C)と疎水性有機溶剤(G)との混合溶剤(H)溶液(VI)が得られる。

る樹脂(B)の親水性有機溶剤 (A) dispersed and which are dispersed or (C) と疎水性有機溶剤 (G) dissolved in water by neutralization is obtained.

[0097]

水(E)と中和剤(F)とを含有する混合液体(IV)としては、水(E)と中和剤(F)のみを含んでいても良く、また親水性有機溶剤(C)以外の多価アルコールを含んでいても良く、また各種添加剤を含んでいても良い。

[0098]

顔料(A)が分散した溶液(VI)と、水(E)と中和剤(F)とを含有する混合液体(IV)との混合方法は、制限されない。例えば次のいずれの方法でも良い。

[0099]

方法(10) 混合液体(IV) を溶液(VI)に滴下する方法。 方法(11) 溶液(VI)を 混合液体(IV)に滴下する方 法。

方法(12) 溶液(VI)と 混合液体(IV)を別の容器に 同時に滴下する方法。

[0100]

さらには方法(10)が好ましく、さらには、混合液体(IV)を溶液(VI)に滴下するときに、溶液(VI)を攪拌しながら混合液体(IV)を滴下する方法が好ましい。

[0101]

[0097]

Only water (E) and neutralizing-agent (F) may be included as a liquid-mixture object (IV) which contains water (E) and neutralizing-agent (F), moreover, polyhydric alcohols other than hydrophilic organic-solvent (C) may be included, moreover, the various additive may be included.

[0098]

The mixed method with the liquid-mixture object (IV) which contains the solution (VI) with which pigment (A) dispersed, and water (E) and neutralizer (F) is not limited.

For example, the following any method is also good.

[0099]

Method (10) Method to drop a liquid-mixture object (IV) to a solution (VI).

Method (11) Method to drop a solution (VI) to a liquid-mixture object (IV).

Method (12) Method to drop a solution (VI) and a liquid-mixture object (IV) simultaneously to another container.

[0100]

Furthermore, method (10) is preferable, and when dropping a liquid-mixture object (IV) to a solution (VI), the method of dropping a liquid-mixture object (IV) is still more preferable [stirring a solution (VI)].

[0101]

In the manufacturing method of the water-based

[0102]

顔料(A)が分散した溶液(VI)と水(E)と中和剤(F)とを含有する混合液体(IV)との混合後、混合物から溶剤を除去する。溶剤を除去する方法は既に述べた。

[0103]

上記の製造方法4により、分散 安定性に優れたインクジェット 記録用インク組成物が得られ る。

[0104]

ink of a manufacturing method 4, in the process which mixes the liquid-mixture object (IV) which contains the solution (VI) and water (E) which pigment (A) is dispersing, and neutralizing-agent (F), it is the indispensable condition of this manufacturing method not to generate phase separation, while mixing hydrophobic organic-solvent (G) contained in the solution (VI) with which pigment (A) is dispersing.

It is as having already described the method for fulfilling the reason and these conditions of these conditions being indispensable conditions at the time of description of a manufacturing method 3.

[0102]

A solvent is removed from a blend after mixing with the liquid-mixture object (IV) which contains the solution (VI) and water (E) which pigment (A) dispersed, and neutralizer (F).

The method of removing a solvent was already described.

[0103]

The excellent ink composition for inkjet recording is obtained by said manufacturing method 4 at a dispersion stability.

[0104]

Next, a manufacturing method 5 is demonstrated.

As resin (B) dispersed or dissolved in the water kicked to a manufacturing method 5, the resin which stabilizes the dispersion of a pigment in entropy or in three dimensions as already stated, or the neutralized resin which was obtained considering the monomer component containing an ionic monomer as a reactive component is mentioned.

However, the resin of the point which is excellent in the stability of dispersion and water resistance to the latter is preferable.

が好ましい。

[0105]

製造方法5における親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤(J)としては、親水性有機溶剤(C)と水(E)のみを含んでいても良く、また親水性有機溶剤(C)以外の多価アルコールを含んでいても良く、また各種添加剤を含んでいても良い。

[0106]

イオン性モノマーを含むモノマ 一成分を反応性成分として得ら れた樹脂と、中和剤(F)を、 親水性有機溶剤(C)と水(E) とを主成分とする混合溶剤 (」) に分散又は溶解する。こ こでイオン性モノマーを反応成 分として得られた樹脂は、中和 された、イオン性モノマーを反 応成分として得られた樹脂とな る。次に顔料(A)を加え、顔 料(A)を分散する。このとき 必要であれば、分散助剤を使用 しても良い。顔料(A)を分散 する方法は既に述べた通りであ る。

[0107]

これに、必要に応じて、更に水 (E)、親水性有機溶剤(C)、 親水性有機溶剤(C)以外の多 価アルコール及び各種添加剤か らなる群から選ばれる1種以上 を加えることができる。これに より、顔料(A)が分散した、 水に分散又は溶解する(C) と水(E)とを主成分とする混

[0105]

As a mixed solvent (J) containing as main components hydrophilic organic-solvent (C) to kick and water (E), only hydrophilic organic-solvent (C) and water (E) may be included in the manufacturing method 5, moreover, polyhydric alcohols other than hydrophilic organic-solvent (C) may be included, moreover, the various additive may be included.

[0106]

The resin obtained considering the monomer component containing an ionic monomer as a reactive component and neutralizer (F) are dispersed or dissolved in mixed solvent (J) containing as main components hydrophilic organic-solvent (C) and water (E).

The resin obtained considering the ionic monomer as a reaction component here turns into neutralized resin which was obtained considering the ionic monomer as a reaction component.

Next, pigment (A) is added and pigment (A) is dispersed.

As long as it is necessary at this time, it may use the dispersion support agent.

The method of dispersing pigment (A) is as having already stated.

[0107]

1 or more type further chosen from the group comprising polyhydric alcohols other than water (E), hydrophilic organic-solvent (C), and hydrophilic organic-solvent (C) and various additive agent can be added to this as required. Thereby, the mixed solvent (J) solution (VII) containing as main components hydrophilic organic-solvent (C) of resin (B) and water (E) with which pigment (A) dispersed and which is dispersed or dissolved in water is obtained.

合溶剤 (J) 溶液 (VII) が 得られる。

[0108]

次に、顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤(J)溶液(VII)から溶剤を除去する。溶剤を除去する方法は既に述べた通りである。

[0109]

上記の製造方法5により、分散 安定性に優れたインクジェット 記録用インク組成物が得られ る。

[0110]

[0111]

本発明の製造方法1~5により 得られた、各インクジェット記 録用水性インク組成物を、顔料 (A) の分散安定性を損なわな い範囲において、再度分散する ことが出来る。分散する方法は

[0108]

Next, a solvent is removed from the mixed solvent (J) solution (VII) containing as main components hydrophilic organic-solvent (C) of resin (B) dispersed or dissolved in water which pigment (A) dispersed, and water (E).

The method of removing a solvent is as having already stated.

[0109]

The excellent ink composition for inkjet recording is obtained by said manufacturing method 5 at a dispersion stability.

[0110]

In addition, in manufacturing-method 1,3 and 5, it is preferable not to use together a 3rd component of which resin (B) stops dispersing water, when there is an effect of this invention. In manufacturing methods 2 and 4, it is preferable not to use together the neutralizer which has a polarity contrary to neutralizer (F), when there is an effect of this invention.

In using said 3rd component and reversed polarity neutralizer, it uses in the range which does not impair the effect of this invention, and stops the amount used as much as possible to the minimum.

[0111]

Each water-based ink composition for inkjet recording obtained by the manufacturing method 1-5 of this invention can be in the range which does not impair the dispersion stability of pigment (A), and it can be again dispersed in it. The method of dispersing is as having already stated.

既に述べた通りである。

[0112]

製造方法1~5によって得られた、インクジェット記録用水性インク組成物はいずれも分散安定性に優れているが、更に分散している顔料粒子の体積平均粒径が1ミクロン未満であれば、分散安定性は更に良い。但し、体積平均粒径はメジアン(中央値)とする。

[0113]

本発明のインクジェット記録用 水性インク組成物には、その他 の添加物をそれぞれの目的に応 じて加えることが出来る。例え ば、増粘剤、流動性改良剤、界 面活性剤、電導度調整剤、pH 調整剤、酸価防止剤、防腐剤、 殺菌剤、紫外線吸収剤、消泡剤、 浸透剤が挙げられる。

[0114]

【実施例】

以下において、本発明の実施例 及び比較例を示すが、これらの 実施例は本発明を明確にするた めのものであり、本発明の範囲 を限定するものではない。尚、 実施例及び比較例中の部は特に 断らない限り、重量部とする。

[0115]

実施例及び比較例の水性インク 組成物の原料、分散方法、混合 方法、溶剤除去条件び分散顔料 の体積平均粒径を第1表から第 5表に示す。なお第1表には、

[0112]

The water-based ink composition for inkjet recording obtained by the manufacturing method 1-5

All are excellent in the dispersion stability.

However, a dispersion stability is still better if the volume mean diameter of the pigment particle which is dispersing further is less than 1 micron.

However, a volume mean diameter is taken as median (median).

[0113]

Another additive can be added to the waterbased ink composition for inkjet recording of this invention according to each objective.

For example, a thickener, a fluid improvement agent, a surface active agent, an electric-conductivity conditioner, pH conditioner, an acid-value preventive, preservative, disinfectant, a ultraviolet absorber, an antifoamer, and a penetrant are mentioned.

[0114]

[Example]

It is in below and the Example of this invention and Comparative example are shown.

However, these Examples are for clarifying this invention.

The range of this invention is not limited.

In addition, the part in an Example and Comparative Example is taken as unless otherwise indicated weight part.

[0115]

The volume mean particle diameter of the raw material of the water-based ink composition of an Example and a Comparative example, a dispersion method, a mixed method, solvent removal conditions, and the dispersion pigment is shown from a Table 1 to a 5th table.

(C) DERWENT

製造方法1の実施例、第2表には製造方法2の実施例、第3表には製造方法3の実施例、第4表には製造方法4の実施例、第5表には製造方法4の実施例、第5表には製造方法5の実施例を示した。

In addition, the Example of a manufacturing method 1 was shown in the Table 1.

The Example of a manufacturing method 2 was shown to table 2.

The Example of a manufacturing method 3 was shown in the 3rd table.

The Example of a manufacturing method 4 was shown in the 4th table.

The Example of a manufacturing method 5 was shown in the 5th table.

[0116]

合成例1(スチレン-アクリル 酸エステル系共重合体の合成) 攪拌機、温度計、環流コンデン サー付きのセパラブルフラスコ に2-ブタノン (MEK) 66 7部を仕込み、攪拌下に窒素置 換しながら79℃まで昇温す る。内温を79℃に保ち、メタ クリル酸150部、スチレン5 90部、2-エチルヘキシルア クリレート110部、メチルメ タクリレート150部及びパー ブチルO(日本油脂製の tert-ブ チルパーオキシオクトエート) 10部の混合物を約2時間かけ て添加し、反応させる。添加終 了後、2、5、9及び13時間 後にMEK3部及びパーブチル O0. 3部の混合物を添加し、 反応を継続させる。モノマー添 加終了後21時間後に内温を下 げて、反応を終了させ、スチレ ンーアクリル酸エステル系共重 合体のMEK溶液を得た。

[0116]

Synthesis example 1

(Synthesis of a styrene-acrylate type copolymer)

667 parts (MEK) of 2-butanones are prepared to a thing separable flask with a stirrer, a thermometer, and a back-flow condenser, it temperature_raises to 79 degrees-Celsius, substituting by nitrogen while stirring.

An inside temperature is maintained at 79 degrees-Celsius, 150 parts of methacrylic acids, 590 parts of styrene, 110 parts of 2-ethylhexyl acrylates, 150 parts of methylmethacrylates, and a per butyl O(tert-butylperoxy octoate made from Japanese fats and oils) 10 part mixture are added, and are made to react over about 2 hours

After the addition completion, 3 part of MEK(s) and a per butyl O0.3 part mixture are added 2, 5, 9, and 13 hours after, reaction is continued. An inside temperature is lowered 21 hours after after the monomer addition completion, and reaction is terminated.

The MEK solution of a styrene-acrylate type copolymer was obtained.

[0117]

得られたスチレンーアクリル酸エステル系共重合体のMEK溶液の粘度は、ガードナーでZ7であり、固形分は60%であった。更にMEK333部加え、

[0117]

The viscosity of the MEK solution of the obtained styrene-acrylate type copolymer is Z7 in a Gardner.

The solid content was 60 %.

Furthermore, in addition, the solid content was made into 50 weight% 333 part of MEK(s).

固形分を50重量%とした。またこの共重合体の酸価は100 mgKOH/g であり、重量平均分子量はポリスチレン換算で36,000であった〔以下、このスチレン-アクリル酸エステル系共重合体のMEK溶液を樹脂(a)と略記する。〕。

Moreover, the acid value of this copolymer is 100 mgKOH/g.

The weight average molecular weight was 36,000 in polystyrene conversion.

Hereafter, the MEK solution of this styreneacrylate type copolymer is abbreviated as resin (a).

[0118]

合成例2 (スチレン-アクリル 酸エステル系共重合体の合成) 攪拌機、温度計、環流コンデン サー付きのセパラブルフラスコ にMEK667部を仕込み、攪 拌下に窒素置換しながら70℃ まで昇温する。内温を70℃に 保ち、メタクリル酸150部、 スチレン590部、2-エチル ヘキシルアクリレート110 部、メチルメタクリレート15 O部及びAIBN (アゾビスイ ソブチルニトリル)10部の混 合物を約2時間かけて添加し、 反応させる。添加終了後、4及 び8時間後にAIBN2部、ま た12及び16時間後にAIB N1部を添加し、反応を継続さ せる。モノマー添加終了後22 時間後に内温を下げて、反応を 終了させ、MEK333部を追 加し、スチレンーアクリル酸エ ステル系共重合体のMEK溶液 を得た。

[0118]

Synthesis example 2

(Synthesis of a styrene-acrylate type copolymer)

667 part of MEK(s) are prepared to a thing separable flask with a stirrer, a thermometer, and a back-flow condenser, and it temperature_raises to 70 degrees-Celsius, substituting by nitrogen while stirring.

An inside temperature is maintained at 70 degrees-Celsius, and 150 parts of methacrylic acids, 590 parts of styrene, 110 parts of 2-ethylhexyl acrylates, 150 parts of methylmethacrylates, and the blend of 10 part of AIBN(s) (azobisisobutyronitril) are added, and are made to react over about 2 hours.

After the addition completion, 1 part of AIBN(s) is added 2 part of AIBN(s), 12, and 16 hours after 4 and 8 hours after, reaction is continued. An inside temperature is lowered 22 hours after after the monomer addition completion, and reaction is terminated.

333 part of MEK(s) are added, the MEK solution of a styrene-acrylate type copolymer was obtained.

[0119]

この溶液の固形分は50重量%であり、得られたスチレンーアクリル酸エステル系共重合体の酸価100mgKOH/gであり、重量平均分子量はポリスチレン換算で27,000であっ

[0119]

The solid content of this solution is 50 weight%. It is 100 mgKOH/g in acid value of the obtained styrene-acrylate type copolymer.

The weight average molecular weight was 27,000 in polystyrene conversion.

Hereafter, the MEK solution of this styreneacrylate type copolymer is abbreviated as resin

た〔以下、このスチレンーアク (b). リル酸エステル系共重合体のM EK溶液を樹脂 (b) と略記す る。〕。

[0120]

実施例1 (製造方法1による実施例)

250mlの広口ポリビンにJoncryl 68 (ジョンソンポリマー製スチレンー(メタ)アクリル酸エステル系共生60部及び中和剤であるMDA (N-3+1)を4.97を4.97の部人のがションの部人がでするの部及びでは溶解したで200部及び ELFTEX 8(キャを20部入れ、ページョナーで2時間分散した。

[0121]

この顔料を分散した溶液 8 0 部を攪拌機付きのセパラブルフラスコに仕込み、更にメタノール 8 0 部を加え、攪拌し、顔料 (A) が分散した、水に分散又は溶解する樹脂(B) の親水性 有機溶剤(C)溶液(I) を得た。

[0122]

攪拌機を回転させながら、これ に、水480部を毎分4mlの 速度で滴下した。

[0123]

滴下終了後、フラスコ内の混合物をエバポレーターに移し、混合物の温度を50℃に保持し、

[0120]

Example 1 (Example by the manufacturing method 1)

It is Joncryl to a 250 ml wide-mouth poly bottle. 68 [20-part] (styrene-(meth)acrylic-ester type copolymer made from a Johnson polymer) is put, 4.97 part (N-methyldiethanolamine) (60 % of neutralization rates) of MDA(s) which are 60 parts and a neutralizing agent about methanol were put, and they were dissolved uniformly. 200 parts and 20 part of ELFTEX(s)8 (carbon black made from a Cabot) were put, and the paint conditioner dispersed the 3 moremm (phi) glass bead for 2 hours.

[0121]

80 parts of solutions which dispersed this pigment were prepared to the thing separable flask with a stirrer, 80 parts of methanol were added and stirred further, and the hydrophilic organic-solvent (C) solution (I) of resin (B) with which pigment (A) dispersed and which is dispersed or dissolved in water was obtained.

[0122]

480 parts of water were dropped to this at speed of 4 ml/m, rotating a stirrer.

[0123]

After completion of dripping, the mixture in a flask was moved to the evaporator, the temperature of a mixture was maintained to 50 degrees-Celsius, the internal pressure of an

エバポレーターの内圧を徐々に下げ、混合物中のメタノールを除去した。エバポレーターの内圧を最終的に60mmHgまで下げて、溶剤の除去を終了した。

エバポレーターの内圧を徐々に evaporator was lowered gradually, and the 下げ、混合物中のメタノールを methanol in a mixture was removed.

Finally the internal pressure of an evaporator was lowered to 60 mmHg(s), and the removal of a solvent was completed.

[0124]

得られた水性インク組成物を水で100倍に希釈して、粒度分布測定装置マイクロトラットを表面であり、では変をである。メジアンが0.46μmであり、分散安定性が極めてあり、分散安定性が極めてあり、長期間についてあり、長期間についても良がであり、長期間についてあり、大変がであり、長期間についている。

[0124]

The obtained water-based ink composition was diluted 100 times with water, and the particle size was measured by particle-size-distribution measuring-device Microtrac UPA150 (produced by "rizu and northrop").

Median is 0.46 micronm(s).

The dispersion stability is excellent extremely and the clogging of a nozzle did not have it through the long period of time, either.

The water resistance of an ink image was also favorable.

[0125]

[0125]

【表1】

[Table 1]

第1表

	顔料 (A)	樹朋	1	分散媒	分散方法
実施例 1	ELFTEX8 20部 (カーホ*ンフ*ラック) (キャホ*ット製)	Joncryl 6 (酸価195) (ジョンソンポ		メタノール 60部 MDA 4.97部 (中和剤) (中和率60%)	が ラスピース゚ 200部 (3㎜φ) 分散時間 2hrs
顔料分散溶液の量		水を主成分 とする液体 (II)	混合方法	溶剤除去条件	体積平均 粒径 (メジアン)
80部 _	メタノール 80部 こ	水 480部	液体(II)を 4ml/min. で滴下	温度50℃ 圧力60mmHg	0.46 µ ш

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 1; ...20 parts ...(Carbon black) (made by Cabot); ...20 parts ...(Acid value195) (made by Johnson polymer); Methanol 60 parts, ... (neutralizing agent)(neutralization rate 60%); Glass beads 200 parts ... Dispersion time

Amount of pigment dispersion solution; Additional solvent; Liquid which has water as main component (II); Mixing method; Solvent removal conditions; Volume mean particle diameter (median)

80 parts; Methanol ...; Water ...; Dropping the liquid (II) at 4ml/min.; Temperature ... Pressure ...; ...

[0126]

施例)

250mlの広口ポリビンに J oncryl 68を20部、 メタノールを60部入れ、均一

[0126]

実施例 2 (製造方法 2 による実 Example 2 (Example by the manufacturing method 2)

> 20 parts of Joncryl 68 are put into a 250 ml wide-mouth poly bottle, 60 parts of methanol were put and it dissolved uniformly.

> 200 parts and 20 parts of Raven1040 (carbon

black made from Colombia carbon) are put for a 3 moremm (phi) glass bead, the paint conditioner dispersed for 2 hours.

50 parts of solutions which dispersed this pigment are prepared to a thing separable flask with a stirrer, furthermore, 50 parts of methanol are added, it stirred and hydrophilic organic-solvent (C) solution (III) of resin (D) with which pigment (A) dispersed and which is dispersed or dissolved in water by neutralization was obtained.

[0127]

攪拌機を回転させながら、これに水480部及びMDA3.7 部(中和率90%)の混合液体(IV)を毎分2mlの速度で 滴下した。

[0128]

滴下終了後、フラスコ内の混合物をエバポレーターに移し、混合物の温度を50℃に保持し、エバポレーターの内圧を徐々に下げ、混合物中のメタノールを除去した。エバポレーターの内圧を最終的に65mmHgまで下げて、溶剤の除去を終了した。

[0129]

得られた水性インク組成物を水で100倍に希釈して、粒度分布を測定したところ、メジアンが 0.75μ mであり、分散安定性が極めて優れており、長期間に亘り、ノズルの目詰まりもなかった。インク画像の耐水性も良好であった。

[0127]

480 parts of water and the liquid-mixture object (IV) of 3.7 part of MDA(s) (90 % of neutralization rates) were dropped to this at speed of 2 ml/m, rotating a stirrer.

[0128]

After completion of dripping, the mixture in a flask is moved to an evaporator, the temperature of a mixture is maintained to 50 degrees-Celsius, the internal pressure of an evaporator was lowered gradually and the methanol in a mixture was removed.

Finally the internal pressure of an evaporator was lowered to 65 mmHg(s), and the removal of a solvent was completed.

[0129]

The obtained water-based ink composition was diluted 100 times with water, and the particle size distribution was measured.

Median is 0.75 micronm(s).

The dispersion stability is excellent very much and the clogging of a nozzle did not have it through the long period of time, either.

The water resisting property of an ink image was also favorable.

[0130]

[0130]

【表2】

[Table 2]

第2表

	顔料(A)		樹脂			分散媒		分	分散方法	
実施例 2	Raven 1040 20部 (カーホ*ンフ*ラック (コロンヒ*アカーホ*)	Joneryl	68	20部	X9I-N	60部	(3	ラスヒ*-ス* 200部 Bmm ゆ) 散時間 2hrs	
顔料分散 溶液の量	追加溶剤	混合新		混合	合方法	溶弃 条件	削除去 牛		体積平均 粒径 (メジアン)	
50部	メタノール 50部	MDA	300部 3.7部 率90%)		k(IV) á l/min.		፮50℃ ታ65mm⊞	g	0.75μm	

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 2; ...20 parts ...(Carbon black) (made by Colombia carbon); ...20 parts; Methanol 60 parts; Glass beads 200 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Mixing liquid; Mixing method; Solvent removal conditions; Volume mean particle diameter (median)

50 parts; Methanol ...; Water ... (Neutralization rate 90%); Dropping the liquid (IV) at 2ml/min.; Temperature ... Pressure ...; ...

[0131]

実施例3~7(製造方法3による実施例)

250mlの広口ポリビンに第 3表の「樹脂」と「分散媒」を 入れ、均一に溶解した。更に第 3表の「分散方法」に記載のビ ーズと「顔料(A)」を入れ、 ペイントコンディショナーで 「分散方法」に記載の時間分散 した。この顔料を分散した溶液 を第3表の「顔料分散溶液の 量」に記載の量を攪拌機付きの セパラブルフラスコに仕込み、 更に「追加溶剤」記載の溶剤等 を加え、攪拌し、顔料(A)が 分散した、水に分散又は溶解す る樹脂(B)の親水性有機溶剤 (C) と疎水性有機溶剤(G) との混合溶剤(H)溶液(V) を得た。

[0132]

攪拌機を回転させながら、これ に、第3表記載の「水を主成分 とする液体(II)」を「混合 方法」記載の方法で混合した。

[0133]

混合終了後、フラスコ内の混合物をエバポレーターに移し、混合物の温度を50℃に保持し、エバポレーターの内圧を徐々に下げ、混合物中の溶剤を除去した。エバポレーターの内圧は最終的に「溶剤除去条件」記載の圧力まで下げて、溶剤の除去を終了した。

[0134]

得られた実施例3から7の水性

[0131]

Example 3-7 (Example by the manufacturing method 3)

The "resin" and a "dispersion medium" of a 3rd table are put into a 250 ml wide-mouth poly bottle, it dissolved uniformly.

Furthermore, the bead and "pigment (A)" as described in a "dispersion method" of a 3rd table are put, it dispersed over the hour as described in a "dispersion method" with the paint conditioner.

The amount as described in "the amount of a pigment dispersion solution" of a 3rd table is prepared to a thing separable flask with a stirrer for the solution which dispersed this pigment, furthermore, the solvent of "additional solvent" description etc. is added and stirred, the mixed solvent (H) solution (V) of hydrophilic organic-solvent (C) of resin (B) and hydrophobic organic-solvent (G) which pigment (A) dispersed and which are dispersed or dissolved in water was obtained.

[0132]

"Liquid (II) which has water as a main component" of 3rd table description was mixed by the method of "mixed method" description to this, rotating a stirrer.

[0133]

After the mixed completion, the mixture in a flask is moved to an evaporator, the temperature of a mixture was maintained to 50 degrees-Celsius, the internal pressure of an evaporator was lowered gradually, and the solvent in a mixture was removed.

Finally the internal pressure of an evaporator was lowered to the pressure of "solvent removal condition" description, and completed the removal of a solvent.

[0134]

When the water-based ink composition of obtained Example 3-7 is diluted 100 times with

希釈して、粒度分布を測定した ところ、いずれもメジアンが1 ミクロン未満であり、分散安定 性が極めて優れており、長期間 に亘り、ノズルの目詰まりもな かった。いずれのインク画像の 耐水性も良好であった。

インク組成物を水で100倍に water and a particle size distribution is measured, median of all is less than 1 micron. The dispersion stability is excellent extremely and the clogging of a nozzle did not have it through the long period of time, either. The water resistance of any ink image was also

favorable.

[0135]

尚、上記実施例3~7の組成物 から顔料と樹脂を除いて、同様 の操作を行い、混合工程中に、 相の分離が起こらないことを確 認の上に、各実施例を行った。

[0136]

【表3】

[0135]

In addition, except for a pigment and a resin, similar operation is performed from the composition of said Example 3-7, and it confirms that separation of a phase does not take place into a mixed process.

After that, each Example was performed.

[0136]

[Table 3]

第3表

	顔料(A)	樹脂	樹脂		效媒	分散方法
実施例3	Raven 1255 20音 (カーホ*ンフ*ラック) (コロンヒ*アカーホ*) 製)	(酸価55)		MEX IPA MDA (中和	30部 30部 3.15部 率90%)	ステンレスレ [*] ース [*] 500部 (3mmφ) 分散時間 2hrs
顔料分散 溶液の量	追加溶剤	水を主成分とする液体	混合方	法	溶剤除去条件	体積平均 粒径 (メジアン)
50部	MEK 30部 IPA 30部	水 400部	液体(II 2ml/mi 滴下		温度50℃ 圧力70㎜	0. 26 μ m

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 3; ...20 parts ...(Carbon black) (made by Colombia carbon); ...30 parts ...(Acid value55) (made by Johnson polymer); ... 30 parts, ... (neutralization rate 90%); Stainless steel beads 500 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Liquid which has water as main component (II); Mixing method; Solvent removal conditions; Volume mean particle diameter (median)

50 parts; 30 parts ...; Water ...; Dropping the liquid (II) at 2ml/min.; Temperature ... Pressure ...; ...

[0137]

[0137]

【表4】

[Table 4]

第3表 (つづき)

	顔料	(A)		樹川	1	分制	校媒	分散方法
実施例4	Raven	1040 20普	7F	樹脂(a) 2 (固形分酸		MEX MDA (中和	60部 1.44部 率68%)	が ラスビーズ 240部 (3㎜φ) 分散時間 2hrs
顔料分散 溶液の量	追加落	容剤		くを主成分 :する液体 (II)	混合方	法	溶剤除去条件	体積平均 粒径 (メジアン)
50部	MEK IPA	15部 25部	才	く 300部	液体(II 2ml/mi 滴下		温度50℃ 圧力60mmH	0. 42 μm

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 4; ...20 parts; resin (a) 20 parts (Solid part's acid value 100); ... 60 parts, ... (neutralization rate 68%); Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Liquid which has water as main component (II); Mixing method; Solvent removal conditions; Volume mean particle diameter (median)

50 parts; 15 parts ...; Water ...; Dropping the liquid (II) at 2ml/min.; Temperature ... Pressure ...; ...

[0138]

[0138]

【表5】

[Tabl 5]

第3表(つづき)

	顔料 (A)		樹脂		分散媒		分散方法	
実施例 5	ELFTEX 8 20音	ß	樹脂(a) 20部 (固形分酸価100)		MEK	60部	が ラスピース゚ 150部 (0.2mの) 分散時間 4hrs	
顔料分散溶液の量	追加溶剤		を主成分 する液体 (II)	混合方	法	溶剤除去条件	体積平均 粒径 (メジアン)	
50部	MEK 16.5部 IPA 23.8部 MDA 0.68部 (中和率 64%)	水	333部	液体(II 2ml/mi 滴下	-	温度50℃ 圧力80mmHg	0.18μm	

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 5; ...20 parts; resin (a) 20 parts (Solid part's acid value 100); ... 60 parts; Glass beads 500 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Liquid which has water as main component (II); Mixing method; Solvent removal conditions; Volume mean particle diameter (median)

50 parts; 16.5 parts (neutralization rate 64%); Water ...; Dropping the liquid (II) at 2ml/min.; Temperature ... Pressure ...; ...

[0139]

[0139]

比較例1

追加溶剤の欄の「MEK16. 5部、IPA23.8部及びM DA0.94部」を「MEK4 0.3部及びMDA0.94部」 とした以外は、実施例6と同様 な操作を行った。

[0140]

即ち、250mlの広口ポリビ ンに樹脂(b)を20部、ME Kを60部入れ、均一に溶解し た。更に0.2mm

のガラス ビーズを150部及び ELFTEX 8を20部入れ、ペイントコン ディショナーで4時間分散し た。この顔料を分散した溶液5 0部を攪拌機付きのセパラブル フラスコに仕込み、更に、ME K40部及びMDA0. 94部 (中和率88%) を加え攪拌し た。攪拌機を回転させながら、 水300部を滴下した。但し、 セパラブルフラスコに水を滴下 すると、フラスコ内の液体の粘 度は増加した。

[0141].

つまり、フラスコ内で疎水性溶 剤を主成分とする連続相と水を 主成分とする不連続相が形成さ れた。

[0142]

更に水を滴下すると、転相が起こり、水を主成分とする連続相と疎水性溶剤を主成分とする不連続相が形成された。更に水を滴下すると、フラスコ内の液体の粘度は低下した。これは疎水性溶剤を主成分とする不連続相の体積分率が低下したためであ

Comparative Example 1

The similar operation as Example 6 was performed except having set "16.5 part of MEK(s), 23.8 part of IPA(s), and 0.94 part of MDA(s)" of the column of an additional solvent to "40.3 part of MEK(s), and 0.94 part of MDA(s)."

[0140]

That is, 20 parts of resin (b) are put into a 250 ml wide-mouth poly bottle, 60 parts of MEK were put and it dissolved uniformly.

150 parts of a 0.2 moremm (phi) glass bead are put, and 20 parts of ELFTEX8 are put, the paint conditioner dispersed for 4 hours.

50 parts of the solution which dispersed this pigment are prepared to a thing separable flask with a stirrer, furthermore, 40 part of MEK(s) and 0.94 part (88 % of neutralization rates) of MDA(s) were added and stirred.

300 parts of water were dropped rotating a stirrer.

However, when water was dropped to the separable flask, the viscosity of the liquid in a flask increased.

[0141]

In other words, the continuous phase which has a hydrophobic solvent as a main component within a flask, and the discontinuous phase which has water as a main component were formed.

[0142]

Furthermore, when water was dropped, phase inversion took place and the continuous phase which has water as a main component, and the discontinuous phase which has a hydrophobic solvent as a main component were formed.

Furthermore, when water was dropped, the viscosity of the liquid in a flask reduced.

This is because the volume fraction of the discontinuous phase which has a hydrophobic

る。

solvent as a main component reduced.

[0143]

[0144]

【表6】

[0143]

When the mixture in a flask was moved to the evaporator and the solvent was removed after completion of dripping, the deposit with black a size being amorphous at 1 - 3 mm (phi) to an evaporator was observed.

Moreover, the water resistance of an ink image was excellent.

It became the cause of the clogging of a nozzle and it became impossible however, to record stably in having used as it is.

The centrifugation was necessary in order to remove the microcapsule lump which did the flocking settling.

[0144]

[Table 6]

第3表 (つづき)

	顔料(A)		樹朋	Ħ	分	枚媒	分散方法
実施例6	ELFTEX 8 20音	ß	樹脂(b) 20部 (固形分酸価100)		MEK 60部		が ラスピース゚ 150部 (0.2㎜φ) 分散時間 4hrs
顔料分散 溶液の量	追加溶剤	-	《を主成分 :する液体 (II)	混合方	法	溶剤除去条件	体積平均 粒径 (メシ゚アン)
50部	MEK 16.5部 IPA 23.8部 MDA 0.94部 (中和率 100%)	-	く 333部 リセリン 110部	3ml/mi		温度50℃ 最終圧力 85mmHg	0. 17 μm
比較例1	追加溶剤を 6と同様な携 その結果、	件	を行った。				は、実施例

Row by Row, from the Top

02/12/17

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 6; ...20 parts; Resin (b) 20 parts (Solid part's acid value 100); ... 60 parts; Glass beads 150 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Liquid which has water as main component (II); Mixing method; Solvent removal conditions; Volume mean particle diameter (median)

50 parts; 16.5 parts ... (Neutralization rate 100%); Water ... Glycerol ...; Dropping the liquid (II) at 3ml/min.; Temperature ... Final pressure ...; ...

Comparative Example 1; The similar operation as Example 6 was performed except setting additional solvent as "MEK 40.3 parts, MDA 0.94 parts." As a result, particles

of 1 to 3 mm (phi) were generated.

[0145]

[0145]

【表7】

[Table 7]

第3表 (つづき)

	顔料(A)	樹朋	分散		媒	分散方法
実施例7	ELFTEX 8 20普	Joncryl 6 (酸価150) (ジョンソンポ		MEK	60部	が ラスピース゚ 240部 (3㎜φ) 分散時間 8hrs
顔料分散溶液の量	追加溶剤	水を主成分 とする液体 (II)	混合方	法	溶剤除去条件	体積平均 粒径 (メシ゚アン)
50部	MEK 15部 IPA 25部 MDA 1.9部 (中和率 60%)	水 300部	液体(II 2ml/mi 滴下		温度50℃ 最終圧力 60mmHg	0. 35 μm

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 7; ...20 parts; ... 20 parts (Acid value 150)(Made by Johnson Polymer); ... 60 parts; Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Liquid which has water as main component (II); Mixing method; Solvent removal conditions; Volume mean

particle diameter (median)

50 parts; 15 parts ... (Neutralization rate 60%); Water ...; Dropping the liquid (II) at 2ml/min.; Temperature ... Final pressure ...; ...

[0146]

合成例3

合成例2の「メタクリル酸15 0部、スチレン590部、2-エチルヘキシルアクリレート1 10部、メチルメタクリレート 150部」を、「スチレン69 4部、2-エチルヘキシルアクリレート129部、メチルメタクリンート129部、メチルメタクリレート177部」とするリレート177部い、スチリレーアクリル酸エステル系共 合体のMEK溶液を得た。

[0147]

得られたスチレンーアクリル酸エステル系共重合体は、酸価ゼロ、重量平均分子量はポリスチレン換算で27,000であった〔以下、このスチレンーアクリル酸エステル系共重合体のMEK溶液を樹脂(c)と略記する。〕。

[0148]

比較例2

 $250 \, \text{ml}$ の広口ポリビンに樹脂(c)を $20 \, \text{am}$ 、MEKを $60 \, \text{am}$ 、、均一に溶解した。更に $0.2 \, \text{mm}$ ϕ のガラスビーズを $150 \, \text{am}$ 及び ELFTEX $8 \, \text{con}$ を $20 \, \text{am}$ 入れ、ペイントコンディショナーで4時間分散した。この顔料を分散した溶液 $50 \, \text{am}$ との顔料を分散した溶液 $50 \, \text{am}$ との値料機付きのセパラブルフラスコに仕込み、更に、MEK $40 \, \text{cm}$

[0146]

Synthesis example 3

Similar operation is performed except making "150 parts of methacrylic acids, 590 parts of styrene, 110 parts of 2-ethylhexyl acrylates, and 150 parts of methylmethacrylates" of a synthesis example 2 into "694 parts of styrene, 129 parts of 2-ethylhexyl acrylates, and 177 parts of methylmethacrylates", the MEK solution of a styrene-acrylate type copolymer was obtained.

[0147]

The obtained styrene-acrylate type copolymer was acid-value zero, and the weight average molecular weight was 27,000 in polystyrene conversion.

Hereafter, the MEK solution of this styreneacrylate type copolymer is abbreviated as resin (c).

[0148]

Comparative Example 2

20 parts of resin (c) were put into the 250 ml wide-mouth poly bottle, 60 parts of MEK were put, and it dissolved uniformly.

150 parts of a 0.2 moremm (phi) glass bead were put, and 20 parts of ELFTEX8 were put, and the paint conditioner dispersed for 4 hours. 50 parts of solutions which dispersed this pigment were prepared to the thing separable flask with a stirrer, and 40.3 part of MEK(s) were added and stirred further.

The blend of Pluronic F68(non-ionic surfactant) 3 part and 300 parts of water was dropped

3部を加え攪拌した。攪拌機を rotating a stirrer. 回転させながら、プルロニック F68 (非イオン界面活性剤) 3部と水300部の混合物を滴 下した。

[0149]

滴下終了後、フラスコ内の混合 物をエバポレーターに移し、溶 剤を除去した。得られた水性イ ンクは、実施例6と同様に分散 安定性には優れていたが、実施 例6のそれに比べて、インク画 像の耐水性はかなり劣ったもの であった。

[0150]

実施例8(製造方法4による実 施例)

250m1の広口ポリビンに J oncryl 683を20 部、MEKを60部入れ、均一 に溶解した。更に3mmøのガ ラスビーズを240部及び ELFTEX 8を20部入れ、ペイ ントコンディショナーで8時間 分散した。この顔料を分散した 溶液50部に、MEKを15部 及び I PA (イソプロピルアル コール)を25部を加え、顔料 (A) が分散した、中和により 水に分散又は溶解する樹脂 (D) の親水性有機溶剤(C) と疎水性有機溶剤(G)との混 合溶剤(H)溶液(VI)を得 た。

[0151]

水300部とMDA1.9部(中 和率60%)の混合液体(IV) を攪拌機付きのセパラブルフラ スコに仕込んだ。攪拌機を回転

[0149]

After completion of dripping, the mixture in a flask was moved to the evaporator and the solvent was removed.

The obtained water-based ink was excellent in the dispersion stability like Example 6.

However, compared with it of Example 6, the water resistance of an ink image was deteriorated considerably.

[0150]

Example 8 (Example by the manufacturing method 4)

Into a 250 ml wide-mouth poly bottle

20 part of Joncryl(s)683 are put, 60 part of MEK(s) were put and they were dissolved uniformly.

Furthermore, 240 parts of 3 mm (phi) glass beads are put, and 20 part of ELFTEX(s)8 were put and the paint conditioner dispersed for 8 hours.

15 part of MEK(s) and 25 part (isopropyl alcohol) of IPA(s) are added to 50 parts of solutions which dispersed this pigment, the mixed solvent (H) solution (VI) of hydrophilic (C) organic-solvent of resin (D) hydrophobic organic-solvent (G) which pigment (A) dispersed and which are dispersed or dissolved in water by neutralization was obtained.

[0151]

300 parts of water and the liquid-mixture object (IV) of 1.9 part of MDA(s) (60 % of neutralization rates) were prepared to the thing separable flask with a stirrer.

The solution (VI) was dropped to the flask at

させながら、溶液(VI)を毎 speed of 1 ml/m, rotating a stirrer. 分1mlの速度でフラスコに滴 下した。

[0152]

滴下終了後、フラスコ内の混合 物をエバポレーターに移し、混 合物の温度を50℃に保持し、 エバポレーターの内圧を徐々に 下げ、混合物中の溶剤を除去し た。エバポレーターの内圧を最 終的に60mmHgまで下げ て、溶剤の除去を終了した。得 られた水性インク組成物を水で 100倍に希釈して、粒度分布 を測定したところ、体積のメジ アンが 0. 2 1 μ m であり、 分散安定性が極めて優れてお り、長期間に亘り、ノズルの目 詰まりもなかった。また、イン ク画像の耐水性も良好であっ た。

[0153]

尚、上記実施例8の組成物から 顔料と樹脂を除いて、同様の操 作を行い、混合工程中に、相の 分離が起こらないことを確認し てから、この実施例を行った。

[0154]

【表8】

[0152]

After completion of dripping, the mixture in a flask is moved to an evaporator, the temperature of a mixture is maintained to 50 degrees-Celsius, the internal pressure of an evaporator was lowered gradually and the solvent in a mixture was removed.

Finally the internal pressure of an evaporator was lowered to 60 mmHg(s), and the removal of a solvent was completed.

The median of the volume is 0.21 micronm(s), when the obtained water-based ink composition is diluted 100 times with water and a particle size distribution is measured.

The dispersion stability is excellent extremely and the clogging of a nozzle did not have it through the long period of time, either.

Moreover, the water resistance of an ink image was also favorable.

[0153]

In addition, except for a pigment and a resin, similar operation is performed from the composition of said Example 8, this Example was performed after confirming that separation of a phase did not take place into a mixed process.

[0154]

[Table 8]

第4表

	顏料(A)	樹朋	Ħ	分前	效媒	分散方法
実施例8	ELFTEX 8 20普	Joneryl 6	83 20部	MEK	60部	が ラスピース゚ 240部 (3㎜φ) 分散時間 8hrs
顔料分散溶液の量	追加溶剤	混合液体 (IV)	混合方	法	溶剤除去条件	体積平均 粒径 (メシ゚アン)
50部	MEK 15部 IPA 25部	水 300部 MDA 1.9部 (中和率 60%)	液体(VI 1 ml/mi 滴下		温度50℃ 最終圧力 60mmHg	0. 21 µ m

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 8; ...20 parts; ... 20 parts; ... 60 parts; Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Mixing liquid (IV); Mixing method; Solvent removal conditions; Volume mean particle diameter (median)

50 parts; 15 parts ...; Water ... (Neutralization rate 60%); Dropping the liquid (IV) at 1ml/min.; Temperature ... Final pressure ...; ...

[0155]

よる実施例)

250m1の広口ポリビンに第 5表の「樹脂」と「分散媒」を 入れ、分散又は溶解した。更に 第5表の「分散方法」に記載の

[0155]

実施例 $9\sim1$ 4 (製造方法 5 に Example 9-14 (Example by the manufacturing method 5)

> The "resin" and a "dispersion medium" of a 5th table were put into the 250 ml wide-mouth poly bottle, and it dispersed or dissolved.

> Furthermore, the bead and "pigment (A)" as described in a "dispersion method" of a 5th

ビーズと「顔料 (A)」を入れ、ペイントコンディショナーで「分散方法」に記載の時間分散した。

table are put, it dispersed over the hour as described in a "dispersion method" with the paint conditioner.

[0156]

この顔料を分散した溶液を第5表の「顔料分散溶液の量」に記載の量を500mlのビーカーに入れ、更に「追加液体」記載の水等を加え、攪拌し、顔料(A)が分散した、水に分散とは溶解する樹脂(B)の親水性有機溶剤(C)と水(E)と溶液(VII)を得た。

[0157]

ビーカーの混合物をエバポレーターに移し、混合物の温度を50℃に保持し、エバポレーターの内圧を徐々に下げ、混合物中の溶剤を除去した。エバポレーターの内圧は最終的に「溶剤除去条件」記載の圧力まで下げて、溶剤の除去を終了した。

[0158]

得られた実施例 9 から 1 4 の水性インク組成物を水で 1 0 0 倍に希釈して、粒度分布を測定したところ、いずれもメジアンが1 ミクロン未満であり、分散を定性が極めて優れており、長期間に亘り、ノズルの目詰まりもなかった。また、インクの耐水性も良好であった。

[0159]

[0156]

The amount as described in "the amount of a pigment dispersion solution" of a 5th table is put into a 500 ml beaker for the solution which dispersed this pigment, furthermore, the water of "additional liquid" description etc. is added and stirred, the mixed solvent (J) solution (VII) containing as main components hydrophilic organic-solvent (C) of resin (B) and water (E) with which pigment (A) dispersed and which is dispersed or dissolved in water was obtained.

[0157]

The mixture of a beaker is moved to an evaporator and the temperature of a mixture is maintained to 50 degrees-Celsius, the internal pressure of an evaporator was lowered gradually and the solvent in a mixture was removed.

Finally the internal pressure of an evaporator was lowered to the pressure of "solvent removal condition" description, and completed the removal of a solvent.

[0158]

When the water-based ink composition of obtained Example 9-14 is diluted 100 times with water and a particle size distribution is measured, median of all is less than 1 micron. The dispersion stability is excellent extremely and the clogging of a nozzle did not have it through the long period of time, either.

Moreover, the water resistance of an ink image was also favorable.

91

[0159]

【表9】

[Table 9]

第5表

	頗料(A)	樹川	樹脂		媒	分散方法
実施例9	Raven 1255 4部	Joncryl (583 2部	メタノール 水 MDA (中和3	60部 60部 1部 ×157%)	が ラスピーズ 240部 (3mm φ) 分散時間 4hrs
顔料分散 溶液の量	追加液体	溶剤除去条件	体積平4 粒径 (メシ゚アン)			
122部	水 60部	温度50℃ 最終圧力 105㎜Bg	0. 11 μπ	n		

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 9; ...4 parts; ... 2 parts; Methanol 60 parts, water ... (Neutralization rate 157%); Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Solvent removal conditions; Volume mean particle diameter (median)

122 parts; Water ...; Temperature ... Final pressure ...; ...

[0160]

【表 1 0 】 [Table 10]

第5表(つづき)

	顔料 (A)	樹朋	110	分散媒		分散方法
実施例10	#45L 4部 (カーホ*ンプ*ラック) (三菱化学製)	Joneryl 6	83 2部	メタノール 水 MDA (中和	60部	が ラスビーズ 240部 (3mm φ) 分散時間 4hrs
顔料分散 溶液の量		溶剤除去 条件	体積平均 粒径 (メジアン)			
122部		温度50℃ 最終圧力 100mmEg	0.11 μm			

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 10; ...4 parts (Carbon black)(made by Mitsubishi Chemical); ... 2 parts; Methanol 60 parts, water ... (Neutralization rate 226%); Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Solvent removal conditions; Volume mean particle diameter (median)

122 parts; Water ... Glycerol ... (Antioxidant)(made by ICI); Temperature ... Final pressure ...; ...

[0161]

[0161]

【表11】

[Table 1]

第5表(つづき)

	顔料 (A)	梭	膾	5	計媒	分散方法
実施例11	Fastogen Blue TGR 10部 (フタロシアニン類 料) (大日本インキ化 学工業製)	Joneryl	68 10部	水 Sol (分 (セ Sol MDA	sperse 2000 1.5部 散助剤) [*] *动製) sperse 1200 0.4部	が ラスピース゚ 240部 (3㎜φ) 分散時間 4hrs
顔料分散 溶液の量		溶剤除去 条件	体積平均 粒径 (メシ゚アン)			
90部		温度50℃ 最終圧力 100mmHg	0.50μ	l		

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 11; ...10 parts (Phthalocyanine pigment)(Dainippon Ink & Chemicals); ... 10 parts; Methanol 40 parts, water ... (Dispersion adjuvant)(made by Zeneca) ... (Neutralization rate 157%); Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Solvent removal conditions; Volume mean particle diameter (median)

90 parts; Water ...; Temperature ... Final pressure ...; ...

[0162]

[0162]

【表12】

[Table 1]

第5表(つづき)

	顔料 (A)	樹	樹脂		散媒	分散方法
実施例12	Fastogen Blue TGR 10台	Joneryl (58 10部	メタノー: 水 MDA (中和	40部 40部 3.73部 1率90%)	が ラスビーズ 240部 (3mm ゆ) 分散時間 4hrs
顔料分散 溶液の量	追加液体	溶剤除去条件	体積平均 粒径 (メジアン)			
80部	水 32部	温度50℃ 最終圧力 100mmHg	0.12μπ	1		•

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 12; ...10 parts; ... 10 parts; Methanol 40 parts, water ... (Neutralization rate 90%); Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Solvent removal conditions; Volume mean particle diameter (median)

80 parts; Water ...; Temperature ... Final pressure ...; ...

[0163]

[0163]

【表13】

[Table 1]

第5表(つづき)

	顏料(A)	梭	樹脂		媒	分散方法
実施例13	Symuler Brilliant Carmine 6B 307 10部 (溶性アソ゚類 料) (大日本インキイヒ 学工業製)	3	683 5部	メタノール 水 MDA (中和率	40部 2.5部	が ラスピース゚ 240部 (3mmφ) 分散時間 4hrs
顔料分散 溶液の量	追加液体	溶剤除去条件				
93部	水 40部	温度50℃ 最終圧力 115㎜Bg	0. 28 μπ	l		

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 13; ...10 parts (soluble azo pigment)(made by Dainippon Ink & Chemical); ... 5 parts; Methanol 40 parts, water ... (Neutralization rate 157%); Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Solvent removal conditions; Volume mean particle diameter (median)

93 parts; Water ...; Temperature ... Final pressure ...; ...

[0164]

[0164]

【表14】

[Table 1]

第5表 (つづき)

	顔料 (A)	梭	樹脂		教媒	分散方法
実施例14	Symuler Fas Yellow GF conc. 10年 (ジ*アソ*顔料) (大日本インキイ 学工業製)	SIS .	683 5部	メタノーバ 水 MDA (中和	40部 40部 2.5部 (率157%)	が ラスビーズ 240部 (3mmの) 分散時間 4hrs
顔料分散 溶液の量	追加液体	溶剤除去条件	体積平均 粒径 (メシ゚アン)			
94部	水 40部	温度50℃ 最終圧力 110㎜IIg	0.20μπ	ı ·		

Row by Row, from the Top

Pigment(A); Resin; Dispersion medium; Dispersion method

Example 14; ...10 parts (diazo pigment)(made by Dainippon Ink & Chemical); ... 5 parts; Methanol 40 parts, water ... (Neutralization rate 157%); Glass beads 240 parts ... Dispersion time ...

Amount of pigment dispersion solution; Additional solvent; Solvent removal conditions; Volume mean particle diameter (median)

94 parts; Water ...; Temperature ... Final pressure ...; ...

[0165]

[0165]

【発明の効果】

本発明の製造方法では、界面活 性剤を用いずに、水に溶解又は 分散しうる樹脂又は、中和によ り水に溶解又は分散しうる樹脂 と中和剤とを併用して、水相と 有機溶剤相とが連続相を形成す る様にしてから脱溶剤するの で、得られた水性インク組成物 は分散安定性に極めて優れてい るとともに、インキ画像の耐水 性にも優れるという格別顕著な 効果を奏する。従って、本発明 の製造方法で得られた組成物 は、インクジェット記録用水性 インク組成物として使用するの に適している。

[EFFECT OF THE INVENTION]

With the manufacturing method of this invention The 15 which does not use a surfactant, the resin which may dissolve or disperse water or the resin which may dissolve or disperse water by neutralization, and a neutralizing agent are used together, and as a water phase and an organic-solvent phase form a continuous phase, since, de-solvent is carried out.

Therefore, the obtained water-based ink composition has the exceptional remarkable effect of being excellent also in the water resistance of an ink image while being excellent in the dispersion stability extremely.

Therefore, the composition obtained by the manufacturing method of this invention is suitable for using as a water-based ink composition for inkjet recording.

DERWENT TERMS AND CONDITIONS

Derwent shall not in any circumstances be liable or responsible for the completeness or accuracy of any Derwent translation and will not be liable for any direct, indirect, consequential or economic loss or loss of profit resulting directly or indirectly from the use of any translation by any customer.

Derwent Information Ltd. is part of The Thomson Corporation

Please visit our home page:

"WWW.DERWENT.CO.UK" (English)
"WWW.DERWENT.CO.JP" (Japanese)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-218013

(43)Date of publication of application: 27.08.1996

(51)Int.CI. C09D 11/00

(21)Application number : 07-029342

(71)Applicant: DAINIPPON INK & CHEM INC

(22)Date of filing:

17.02.1995

(72)Inventor: ITO HIROYUKI

(54) PRODUCTION OF AQUEOUS INK COMPOSITION FOR INK-JET RECORDING

(57)Abstract:

PURPOSE: To obtain an aqueous ink composition having extremely improved pigment dispersion stability and excellent water resistance of ink image by blending a solution of a water-dispersible synthetic resin in a hydrophilic organic solvent, comprising dispersed pigment, with a liquid consisting essentially of water and removing the solvent.

CONSTITUTION: This composition is obtained by blending (A) a solution of a water—dispersible synthetic resin in a hydrophilic organic solvent, comprising dispersed pigment, with (B) a liquid consisting essentially of water preferably by a method for dripping the liquid B to the solution A which is being stirred and removing the solvent. When a black aqueous ink composition is used as the pigment, carbon black is preferably used. A resin obtained by neutralizing a carboxylic acid group—containing styrene—(meth)acrylicester—based copolymer with a base is preferable as the synthetic resin. The solution A is prepared by dispersing or dissolving the resin and the neutralizing agent in the hydrophilic organic solvent, adding the pigment and dispersing by a ball mill, etc.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-218013

(43)公開日 平成8年 (1996) 8月27日

(51) Int.Cl.6

識別記号

庁内整理番号.

FI

技術表示箇所

CO9D 11/00

PSZ

C 0 9 D 11/00

PSZ

審査請求 未請求 請求項の数19 OL (全 19頁)

(21)出願番号

特願平7-29342

(71)出願人 000002886

大日本インキ化学工業株式会社 東京都板橋区坂下3丁目35番58号

(22)出願日

平成7年 (1995) 2月17日

(72)発明者 伊藤 廣行

埼玉県上尾市小敷谷692-12

(74)代理人 弁理士 高橋 勝利

(54)【発明の名称】インクジェット記録用水性インク組成物の製造方法

(57)【要約】

【構成】 顔料が分散した、水に分散又は溶解する樹脂の有機溶剤溶液と、水を主成分とする液体を混合してから、有機溶剤を除去する顔料分散型インクジェット記録用水性インク組成物の製造方法。水に分散又は溶解する樹脂の有機溶剤と水とを主成分とする混合溶剤溶液に、顔料を分散させてから、有機溶剤を除去する顔料分散型インクジェット記録用水性インク組成物の製造方法。 【効果】顔料分散安定性に極めて優れ、かつインキ画像の耐水性にも優れた、インクジェット記録用水性インク組成物が得られた。

【特許請求の範囲】

【請求項1】 顔料 (A) が分散した、水に分散又は溶解する合成樹脂 (B) の親水性有機溶剤 (C) 溶液 (I) と、水を主成分とする液体 (II) とを混合してから、脱溶剤をすることを特徴とするインクジェット記録用水性インク組成物の製造方法。

【請求項2】顔料(A)が分散した、中和により水に分散又は溶解する合成樹脂(D)の親水性有機溶剤(C)溶液(III)と、水(E)と中和剤(F)とを含有する混合液体(IV)とを混合してから、脱溶剤することを特徴とするインクジェット記録用水性インクの製造方法。

【請求項3】 顔料 (A) が分散した、水に分散又は溶解 する合成樹脂 (B) の親水性有機溶剤 (C) と疎水性有 ・機溶剤 (G) との混合溶剤 (H) 溶液 (V) と、水

(E)を主成分とする液体(II)とを混合してから、脱溶剤をするインクジェット記録用水性インク組成物の製造方法であって、前記溶液(V)と液体(II)との混合工程において、混合物が水(E)と親水性有機溶剤(C)とを主成分とする相と疎水性有機溶剤(G)を主成分とする相に分離しない様に、親水性有機溶剤(C)及び/又は疎水性有機溶剤(G)の種類と使用量を調整した溶液(V)を用いることを特徴とするインクジェット記録用水性インク組成物の製造方法。

【請求項4】顔料(A)が分散した、中和により水に分散又は溶解する合成樹脂(D)の親水性有機溶剤(C)と疎水性有機溶剤(G)との混合溶剤(H)溶液(VI)と、水(E)と中和剤(F)とを含有する混合で、体(IV)とを混合してから、脱溶剤をするインクジェット記録用水性インク組成物の製造方法であって、前記合物が水(E)と親水性有機溶剤(C)とを主成分とする相に分離と疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)及び/又は疎水性有機溶剤(C)の種類と使用量を調整した溶液(VI)を用いることを特徴とするインクジェット記録用水性インク組成物の製造方法。

【請求項5】 顔料 (A) と、水に分散又は溶解する合成 樹脂 (B) の親水性有機溶剤 (C) と水 (E) とを主成 分とする混合溶剤 (J) 溶液 (VII) とを混合して、 顔料 (A) を溶液 (VII) に分散させてから、脱溶剤 することを特徴とするインクジェット記録用水性インクの製造方法。

【請求項6】分散した顔料 (A) の体積平均粒子径が1ミクロン未満である請求項1、2、3、4又は5記載のインクジェット記録用水性インク組成物の製造方法。

【請求項7】 顔料(A) がカーボンブラックである請求項1、2、3、4又は5記載の製造方法。

【請求項8】顔料 (A) が有機顔料である請求項5 記載の製造方法。

【請求項9】樹脂(B)が、分子中にカルボン酸基を有するスチレン-(メタ)アクリル酸エステル系共重合体のカルボン酸基の少なくとも一部を、塩基からなる中和剤(F)で中和した樹脂である請求項1又は3記載の製造方法。

【請求項10】樹脂(B)が、酸価50~200mgK OH/gである、分子中にカルボン酸基を有するスチレンー(メタ)アクリル酸エステル系共重合体であって、 樹脂(B)の酸価に対する中和率で40%以上を、塩基 からなる中和剤(F)で中和した樹脂である請求項9記 載の製造方法。

【請求項11】樹脂(D)が、分子中にカルボン酸基を有するスチレンー(メタ)アクリル酸エステル系共重合体であって、かつ中和剤(F)として塩基を用いる請求項2又は4記載の製造方法。

【請求項12】樹脂(D)が、酸価50~200mgKOH/gである、分子中にカルボン酸基を有するスチレンー(メタ)アクリル酸エステル系共重合体であって、かつ前記樹脂(D)の酸価に対する中和率が40%以上20となる塩基を含む中和剤(F)を用いる請求項11記載の製造方法。

【請求項13】樹脂(B)が、分子中にカルボン酸基を有するスチレン-(メタ)アクリル酸エステル系共重合体のカルボン酸基の少なくとも一部を、塩基からなる中和剤(F)で中和した樹脂である請求項5記載の製造方法。

【請求項14】樹脂(B)が、酸価50~200mgK OH/gである、分子中にカルボン酸基を有するスチレンー(メタ)アクリル酸エステル系共重合体であって、 樹脂(B)の酸価に対する中和率で80%以上を、塩基からなる中和剤(F)で中和した樹脂である請求項13 記載の製造方法。

【請求項15】塩基として、脂肪族アミン化合物、アルコールアミン化合物、アルカリ金属の水酸化物及びアルカリ土類金属の水酸化物よりなる群より選択された1種類以上の化合物を用いる請求項9、10、11、12、13又は14記載の製造方法。

【請求項16】脱溶剤後に、さらに親水性有機溶剤 (C)以外の多価アルコールを添加する請求項1、2、 40 3、4又は5記載の製造方法。

【請求項17】水(E)を主成分とする液体(II)が、親水性有機溶剤(C)以外の多価アルコールを含有する請求項1又は3記載の製造方法。

【請求項18】水(E)と中和剤(F)とを含有する混合液体(1V)が、親水性有機溶剤(C)以外の多価アルコールを含有する請求項2又は4記載の製造方法。

【請求項19】水に分散又は溶解する樹脂 (B) の親水性有機溶剤 (C) と水 (E) とを主成分とする混合溶剤 (J) 溶液 (VII) が、親水性有機溶剤 (C) 以外の

50 多価アルコールを含有する請求項5記載の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、インクジェット記録用 水性インク組成物の製造方法に関する。

[0002]

【従来の技術】現在知られている各種記録方法の中で、 騒音が小さく、高速記録が可能であり、しかも普通紙に 記録が行えるインクジェット記録方法は極めて有用な記 録方法である。

【0003】このインクジェット記録方法は、インクと言われる着色液体に熱を加えて気泡を発生させ、気泡が発生する時に生じる圧力でインクを直径30~50ミクロンのノズルから小液滴の形で飛ばし、それを紙等の被記録部材に付着させて、記録を行う方式、及びインクに圧電素子により圧力を加え、インクの小液滴をノズルから飛ばす方法が主な記録方法である。

【0004】この記録方法に用いるインクとして顔料分 散型インクが考案されている。この顔料分散型インクを 用いたインクジェット記録方法によるインク画像は耐光 性に優れ、インク画像は滲まないが、顔料が凝集沈降 し、ノズルに詰まると言う欠点がある。

【0005】上記の欠点を解決するため、特開平1-170673号、特開平1-170673号、特開平5-25415号及び特開平5-39447号各公報に、マイクロカプセルを含むインクジェット記録方法に用いられるインク組成物が提案されている。つまり、顔料を合成樹脂の疎水性有機溶媒中で分散し、これに水を加え、顔料と合成樹脂を含む疎水性有機溶媒を主成分とする連続相を形成し、更に疎水性有機溶媒を除去することにより、合成樹脂により被覆された顔料(マイクロカプセル化顔料)の分散組成物を作製方法が提案されている。

【0006】しかし、いずれのマイクロカブセルもその大きさが数十から数ミクロンであり、それを含むインクを放置しておくと、マイクロカプセルが凝集沈降し、ノズルの目詰まりの原因となり、安定に記録することが不可能であると言う欠点がある。

【0007】さらに、特開昭63-232840号公報に、コア物質が分散又は溶解したポリマーの溶剤溶液を、ポリマーの非溶媒と界面活性剤の混合液体にあ方がして、微小カプセルのコロイド状態濁液を製造する方がが提案されているが、ポリマーの非溶媒にコア物質が研究がである。この凝集沈降を防ぐながは、コア物質が凝集沈降する。この凝集沈降を防ぐながに、当該公報に記載されている通り、界面活性剤を必ずであると言う欠点が生じる。 【0008】また特開平3-221137号公報には、界面活性剤を用いないで固体物質をマイクロカプセル化 有機溶媒を主成分とする不連続相と、水を主成分とする 連続相を形成をしてから疎水性有機溶媒を除去して、顔 料を前記樹脂でマイクロカプセル化する方法が記載され ている。

[0009]

【発明が解決しようとする課題】しかしながら、上記した界面活性剤を用いたマイクロカプセル化方法で得られるインクは、いずれも放置による凝集沈降やノズルの目詰まりこそ少ないが、得られたインク画像の耐水性が悪10 いという欠点がある。

【0010】一方、界面活性剤を用いないマイクロカプセル化方法で得られるインクは、インク画像の耐水性こそ、それを用いて得た画像より優れるが、いずれのインクも放置しておくと、マイクロカプセルが凝集沈降し、そのまま用いたのでは、ノズルの目詰まりの原因となり、安定に記録することが不可能であると言う欠点がある。凝集沈降したマイクロカプセル塊を除去するには違心分離等の特別な処理も必要であり、煩雑である。

【0011】本発明は、従来のインクジェット記録方法 20 に用いられている顔料分散型インクの分散安定性又は画 像耐水性に劣ると言う欠点を解決するものである。

[0012]

【課題を解決するための手段】本発明者は、上記実状に 鑑みて鋭意検討したところ、の顔料と自己水分散性の 成樹脂を含む疎水性有機溶媒を主成分とする不連続相 と、水を主成分とする連続相を形成してから疎水性有 溶媒を主成分とする不連続相を形成してから成樹脂を む溶媒を主成分とする不連続相と、前記溶媒と任何を ではなく、またの顔料と合成樹脂を む溶媒を主成分とする不連続相と、前記溶媒と任何を ではなく、するのではなく、当該操作に では、界面活性剤とを主成分とする ではれたいて、外側では 大の良好な分散を 用いた上で、有機溶剤相と水相とが連続相となる様に 野することにより、顔料粒子の良好な分散を定性と たインク画像の耐水性を兼備する、前記の及びの が解決されたインクが得られることを見い出して、本発 明を完成するに至った。

【0013】即ち本発明の極めて優れる分散安定性と優れた耐水性のインク画像を兼備する、顔料が分散した水性インク組成物の製造方法は、大別すると、以下の5種40類である。

【0014】1. 顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)溶液(I)と、水を主成分とする液体(II)とを混合してから、脱溶剤をすることを特徴とするインクジェット記録用水性インク組成物の製造方法(以下、製造方法1という。)。

ジェット記録画像の耐水性が劣ると言う欠点が生じる。 【0015】2. 顔料(A)が分散した、中和により【0008】また特開平3-221137号公報には、 水に分散又は溶解する樹脂(D)の親水性有機溶剤 界面活性剤を用いないで固体物質をマイクロカプセル化 (C)溶液(III)と、水(E)と中和剤(F)とをする方法として、顔科と自己水分散性樹脂を含む疎水性 50 含有する混合液体(IV)とを混合してから、脱溶剤す . . .

ることを特徴とするインクジェット記録用水性インクの 製造方法(以下、製造方法2という。)。

【0016】3. 顔料(A)が分散した、水に分散又 は溶解する樹脂(B)の親水性有機溶剤(C)と疎水性、 有機溶剤(G)との混合溶剤(H)溶液(V)と、水 (E) を主成分とする液体 (II) とを混合してから、 脱溶剤をするインクジェット記録用水性インク組成物の 製造方法であって、前記溶液(V)と液体(II)との 混合工程において、混合物が水(E)と親水性有機溶剤 (C) とを主成分とする相と疎水性有機溶剤 (G) を主 10 成分とする相に分離しない様に、親水性有機溶剤(C) 及び/又は疎水性有機溶剤(G)の種類と使用量を調整 した溶液(V)を用いることを特徴とするインクジェッ ト記録用水性インク組成物の製造方法(以下、製造方法 3という.).

【0017】4. . 顔料(A)が分散した、中和により 水に分散又は溶解する樹脂(D)の親水性有機溶剤

(C)と疎水性有機溶剤(G)との混合溶剤(H)溶液 (VI)と、水(E)と中和剤(F)とを含有する混合 液体(IV)とを混合してから、脱溶剤をするインクジ 20 ェット記録用水性インク組成物の製造方法であって、前 記溶液(VI)と液体(IV)との混合工程において、 混合物が水(E)と親水性有機溶剤(C)とを主成分と する相と疎水性有機溶剤(G)を主成分とする相に分離 しない様に、親水性有機溶剤(C)及び/又は疎水性有 機溶剤(G)の種類と使用量を調整した溶液(VI)を 用いることを特徴とするインクジェット記録用水性イン ク組成物の製造方法(以下、製造方法4という。)。

【0018】5. 顔料 (A) と、水に分散又は溶解す る樹脂 (B) の親水性有機溶剤 (C) と水 (E) とを主 30 成分とする混合溶剤(J)溶液(VII)とを混合し て、顔料(A)を溶液(VII)に分散させてから、脱 溶剤することを特徴とするインクジェット記録用水性イ ンクの製造方法(以下、製造方法5という。)。

【0019】以下、本発明を詳細に説明する。

【〇〇2〇】本発明に使用される顔料(A)は、特に限 定されるものではなく、公知慣用の無機顔料、有機顔料 がいずれも使用できる。又、必要に応じてそれらに体質 顔料を併用することもできる。

【0021】無機顔料としては、例えばカーボンブラッ ク、金属酸化物、金属硫化物及び金属塩化物が挙げられ る。特に黒色水性インク組成物ではカーボンブラックが 好ましく、カーボンブラックとして例えば、ファーネス ブラック、ランプブラック、アセチレンブラック及びチ ャンネルブラックが挙げられる。これらのカーボンブラ ックは1種類を使用しても良く、また複数のカーポンプ ラックを併用しても良い。

【0022】有機顔料として、例えば溶性アゾ顔料、不 溶性アゾ顔料、不溶性ジアゾ顔料、縮合アゾ顔料、フタ

顔料、ジオキサジン顔料、ペリレン顔料、ペリノン顔 料、チオインジゴ顔料、アンソラキノン顔料及びキノフ タロン顔料が挙げられる。これらの有機顔料は1種類を 使用しても良く、また複数の有機顔料を併用しても良 い。また無機顔料も併せて使用することができる。また 流動性改良のため、体質顔料等も併せて使用することも

【0023】体質顔料として、例えばシリカ、炭酸カル シウム、タルクが挙げられる。これらの体質顔料は単独 で使用されることは希であり、通常、無機顔料又は有機 顔料と併用して使用される。

【0024】また黒色水性インク組成物の調色のため、 無機顔料及び/又は有機顔料の2種以上を併せて使用す ることもできる。また流動性改良のため、体質顔料等も 併せて使用することができる。

【0025】これらの顔料 (A) の添加量は、最終的に 得る水性インク組成物の1~30重量%相当量を用いる ことが好ましいが、なかでも1~10重量%相当量がよ り好ましい。

【〇〇26】顔料分散型水性インク組成物は、一般に非 イオン的方法又はイオン的方法のいずれかによって安定 化できる。非イオン的方法を使用する時、樹脂は親水性 部分と疎水性部分を有し、疎水性部分で顔料表面に吸着 し、親水性部分でエントロピー的又は立体的に顔料を分 散安定化する.

【〇〇27】この目的に有用な代表的な合成樹脂には、 例えばポリビニルアルコール、セルロース系誘導体、ポ リエチレンオキサイド及びポリプロピレンオキサイドが 挙げられる。非イオン的方法はpH変化又はイオン性汚染 に対して敏感ではないが、インク画像が耐水性に劣ると 言う欠点がある。

【0028】イオン的方法では、顔料粒子を、例えば (メタ) アクリル酸、マレイン酸又はビニルスルホン酸 等の、イオン性モノマーを必須成分として重合させて得 た合成樹脂と、塩基との中和によって安定化できる。つ まり、顔料粒子は中和された合成樹脂の解離によって形 成される電気二重層を通して安定化されており、それに よってイオンの反発力が顔料粒子の凝集を阻止してい

40 【0029】中和するための成分が揮発性を有する場合 には、インク画像形成後、それが蒸発する傾向にあるの で、合成樹脂は水溶性が低下し、インク画像の耐水性は 向上する.

【0030】本発明の水に分散又は溶解する合成樹脂 (B) としては、例えば上記の顔料表面に吸着し、エン トロピー的に又は立体的に顔料を分散安定化する樹脂、 及び中和した、イオン性モノマーを反応成分として得ら れた樹脂が挙げられる。分散の安定性及び耐水性に優れ ている点から、中和した、イオン性モノマーを反応性成 ロシアニン顔料、キナクリドン顔料、イソインドリノン 50 分として含むモノマー成分を反応させて得られた樹脂が

好ましい。合成樹脂(B)としては、水に分散する樹脂は、顔料表面への吸着性が高いため、分散顔料の機械的安定性が高くなることより、水に分散する樹脂のほうが、水に溶解する樹脂より好ましい。

【0031】本発明の中和により水に分散又は溶解する樹脂(D)としては、分散の安定性及び耐水性に優れている点から、イオン性モノマーを反応性成分として含むモノマー成分を反応させて得られた樹脂が挙げられ、そのイオン性基を中和剤で中和しすることにより、中和した、イオン性モノマーを反応性成分として含むモノマー10成分を反応させて得られた樹脂となるものが好ましい。合成樹脂(D)としては、中和したときに水に分散する樹脂のほうが、中和したときに水に溶解する樹脂より、分散顔料の機械的安定性が高くなるので、より好ましい。

【0032】上記のイオン性モノマーを含む樹脂としては、主に付加重合性ビニル基を有するモノマーよりなる樹脂であり、例えばカルボン酸基、スルホン酸基、硫酸エステル基等のイオン性基が、例えばアクリル酸、メタクリル酸、クロトン酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、フマール酸、フマール酸モノエステル、ビニルスルホン酸、スルホエチルメタクリレート、スルホプロビルメタクリレート及びスルホン化ビニルナフタレンのα、βー不飽和モノマー等のイオン性モノマーを用いて樹脂中に導入される。

【0033】イオン性モノマーを含む樹脂に薄入されるその他の付加重合性ビニル基を有する非イオン性モノマーとしては、例えばスチレン、スチレン誘導体、ピニルナフタレン、ビニルナフタレン誘導体、α、βーエチレン性不飽和カルボン酸の脂肪族アルコールエステル、アクリルニトリル、塩化ビニリデン、酢酸ビニル、塩化ビニル、アクリルアミド、メタクリルアミド、ヒドロキシエチルメタクリレート、グリシジルメタクリレート及びNープトキシメチルアクリルアミドが挙げられる。

【0034】好ましくは、スチレン及び/又はスチレン 40%以上が好ましく、前記製造方法5に記載し 方法においては、使用した樹脂の酸価に対する中とし、上記のその他のイオン性モノマー及び非イオン性 で、80%以上が好ましい。但し、中和剤の使用モノマーよりなるスチレンー(メタ)アクリル酸エステ 40 脂の酸価に対する中和率は式(1)で表される。ル系共重合体が挙げられる。 (0041)

【0035】これらのスチレン- (メタ) アクリル酸エ

中和率 (%) = $Wa \times 5.611 \times 10^6/(A \times Wp \times M)$ 式 (1)

A :樹脂の酸価(KOHong/g)

Wp:使用した樹脂の重量 (g)

M :中和剤の分子量

Wa:添加した中和剤の重量 (g)

【0042】本発明の疎水性有機溶剤 (G) としては、水に対して難溶性の炭化水素系化合物であって、常温(25℃) において液体又は固体の化合物が使用でき

ステル系共重合体は1種類を使用しても良く、また複数 組み合わせることも出来る。またスチレン- (メタ) ア クリル酸エステル系共重合体を必須成分として、非イオ ンモノマーよりなる樹脂を1種類以上組み合わせること も出来る。

【0036】樹脂の酸価は、50~200mgKOH/ gが好ましい。樹脂の使用量は、樹脂と顔料との重量比 でを1:10から5:1が好ましいが、さらには1:5 から3:1が好ましい。

10 【0037】上記スチレンー(メタ)アクリル酸エステル系共重合体を水に分散又は溶解するためには、スチレンー(メタ)アクリル酸エステル系共重合体を中和することが必要である。スチレンー(メタ)アクリル酸エステル系共重合体を中和する塩基からなる中和剤(F)としては、例えば脂肪族アミン化合物、アルコールアミン化合物、アルカリ金属の水酸化物及びアルカリ土類金属の水酸化物が挙げられる。脂肪族アミン化合物としては、例えばアンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジメチルアミン、トリメチルアミンが挙げられる。

【0038】アルコールアミン化合物としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、デロバノールアミン、デロバノールアミン、トリプロバノールアミン、メチルエタノールアミン、ジメチルエタノールアミン及びN-メチルジエタノールアミンが挙げられる。

【0039】アルカリ土類金属の水酸化物としては、例えば水酸化リチウム、水酸化ナトリウム及び水酸化カリウムが挙げられる。アルカリ土類金属の水酸化物として、例えば水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム及び水酸化ストロンチウムが挙げられ

【0040】これらの中和剤は1種類を使用しても良く、また複数組み合わせることも出来る。中和剤の添加量は、前記製造方法1、2、3及び4に記載した製造方法においては、使用した樹脂の酸価に対する中和率で、40%以上が好ましく、前記製造方法5に記載した製造方法においては、使用した樹脂の酸価に対する中和率で、80%以上が好ましい。但し、中和剤の使用した樹脂の酸価に対する中和率は式(1)で表される。【0041】

る。但し、常温で固体の化合物は、他の疎水性溶剤及び /又は親水性溶剤に溶解する化合物である。

【0043】疎水性有機溶剤としては、例えば、シクロペンタン(蒸気圧が760mmHgになる温度49℃)、ペンタン(36℃)、イソペンタン(28℃)、ネオペンタン(10℃)、メチルシクロペンタン(72℃)、シクロヘキサン(8

50 l℃)、n-ヘキサン(69℃)、2-メチルペンタン(60

で)、3-メチルペンタン(63℃)、2,2-ジメチルブ タン(50℃)、2、3-ジメチルブタン(58℃)、メチルシ クロヘキサン(101℃)、ヘプタン(98℃)、2-メチルヘ キサン(90℃)、3-メチルヘキサン(92℃)、2,3-ジ メチルペンタン (90°) 、2、4-ジメチルペンタン(81で)、エチルシクロヘキサン(131℃)等の飽和脂肪族炭化 水素化合物、ベンゼン (80℃)、トルエン (110℃)、o -キシレン(144℃)、m - キシレン(139℃)、p - キシレ ン(138℃)等の芳香族炭化水素化合物、1-ブタノール (118℃)、2-ブタノール(100℃)、2-メチル-1-プ ロパノール (108℃)、1-ペンタノール(138℃)等の水 に難溶性のアルコール化合物、エチルエーテル(35℃)、 プロピルエーテル(89℃)、イソプロピルエーテル(68) **℃)、ブチルエチルエーテル(92℃)、1,2エポキシブ** タン(63℃)、テトラヒドロピラン(88℃) 等の水に難溶 性のエーテル化合物、2-ブタノン(79℃)、3-ペンタ ノン(102℃)、4-メチル-2-ペンタノン(117℃)等の 水に難溶性のケトン化合物、メチルアセテート(56℃)。 エチルアセテート(77℃)、プロピルアセテート(102 で)、イソプロピルアセテート(88℃)等のエステル化合 物及びクロロエタン(12℃)、1-クロロアロバン(47 で)、2-クロロブタン(68℃)、ジクロロメタン(40 で)、クロロホルム(61℃)、四塩化炭素(77℃)、1,1 -ジクロロエタン(57℃)、1, 1, 1-トリクロロエタ ン(74℃)等のハロゲン化合物が挙げられる。これらの疎 水性有機溶剤は1種類を使用しても良く、また複数組み

【0044】本発明の親水性有機溶剤(C)としては、 常温(25℃)において液体又は固体の炭化水素系化合) 物が使用できる。但し、常温で固体の化合物は、他の親 水性有機溶剤及び/又は疎水性有機溶剤及び/又は水に 溶解する化合物である。

合わせることも出来る.

【0045】親水性有機溶剤としては、例えば、メタノ ール(64℃)、エタノール(78℃)、1-アロバノール(97 ℃)、2-プロパノール(82℃)等の親水性アルコール化 合物、1,2-メトキシエタン(93℃)、テトラヒドロフ ラン (66℃)、p - ジオキサン(101℃)等の親水性エーテ ル化合物、アセトン(56℃)及び酢酸(118℃)が挙げられ る。これらの親水性有機溶剤は1種類を使用しても良 く、また複数組み合わせることも出来る。

【0046】本発明の製造方法1において、顔料 (A) が分散した、水に分散又は溶解する樹脂(B)の親水性 有機溶剤(C)溶液(I)中の親水性有機溶剤の量は、 顔料(A)の重量と樹脂(B)の重量の和を1重量部と したとき、1~30重量部が好ましいが、さらには2~ 10重量部が好ましい。

【0047】同様に本発明の製造方法2において、顔料 (A) が分散した、中和により水に分散又は溶解する樹

水性有機溶剤の量は、顔料(A)の重量と樹脂(D)の 重量の和を1重量部としたとき、1~30重量部が好ま しいが、さらには2~10重量部が好ましい。

10

【0048】同様にに本発明の製造方法3において、顔 科(A)が分散した、水に分散又は溶解する樹脂(B) の親水性有機溶剤(C)と疎水性有機溶剤(F)との混 合溶剤 (H) 溶液 (V) 中の混合溶剤 (H) の量は、顔 料(A)の重量と樹脂(B)の重量の和を1重量部とし たとき、1~30重量部が好ましいが、さらには2~1 10 0重量部が好ましい。

【0049】同様に本発明の製造方法4において、顔料 (A) が分散した、中和による水に分散又は溶解する樹 脂(D)の親水性有機溶剤(C)と疎水性有機溶剤 (F) との混合溶剤 (H)溶液 (VI) 中の混合溶剤 (H)の量は、顔料(A)の重量と樹脂(D)の重量の 和を1重量部としたとき、1~30重量部が好ましい が、さらには2~10重量部が好ましい。

【0050】同様に本発明の製造方法5において、水に 分散又は溶解する樹脂 (B) の親水性有機溶剤 (C) と 20 水 (E) とを主成分とする混合溶剤 (J) 溶液 (VI I)中の混合溶剤(J)の量は、顔料(A)の重量と樹 脂(B)の重量の和を1重量部としたとき、1~30重 量部が好ましいが、さらには2~10重量部が好まし い。また親水性有機溶剤(C)と水(E)との重量比 は、1:9から9:1が好ましい。

【0051】本発明のインクジェット記録用水性インク 組成物の製造方法によって得られる水性インク組成物に は湿潤剤、つまりインクジェット記録装置のノズル部分 において、インクが乾燥し、ノズルを寒いでしまうこと を防止するために、インクが乾燥するごとを抑制する化 合物を入れることが好ましい。

【0052】湿潤剤としては親水性有機溶剤 (C) 以外 の多価アルコール化合物が好ましく、例えばエチレング リコール、ポリエチレングリコール、アロピレングリコ ール、ポリプロピレングリコール、トリエチレングリコ ール、ポリトリエチレングリコール、テトラエチレング リコール、ポリテトラエチレングリコール、、1,3-ブタンジオール、グリセリン、1.2.6-ヘキサント リオールが挙げられる。これらの多価アルコール化合物 40 は1種類を使用しても良く、また複数組み合わせること も出来る.

【0053】これらの多価アルコール化合物の添加量 は、インクジェット記録用水性インク組成物の0~50 重量%が好ましく、さらには5~30重量%が好まし

【0054】これらの多価アルコールは、本発明の各製 造方法における脱溶剤後に、加えることもでき、また製 造方法1及び3における、水を主成分とする液体(1 1)に加えることもでき、また製造方法2及び4の製造 脂(D)の親水性有機溶剤(C)溶液(III)中の親 50 方法における、水(E)と中和剤(F)とを含有する混

合液体(IV)に加えることもでき、また製造方法5の 製造方法における親水性有機溶剤(B)と水(E)とを 主成分とする混合溶剤 (J) に加えることもできる......

【0055】次に、本発明のインクジェット記録用水性 インク租成物の製造方法を詳細に説明する。最初に製造 方法1について説明する.製造方法1における水に分散 又は溶解する樹脂(B)としては、既に述べたようにエ シトロピー的に又は立体的に顔料を分散安定化する樹脂 又は中和されたイオン性モノマーを含むモノマー成分を 反応させて得られた樹脂が挙げられるが、分散の安定性 10 及び耐水性に優れている点から、後者の樹脂が好まし W.

·【0056】イオン性モノマーを含むモノマー成分を反 応させて得られた樹脂と、中和剤(F)を親水性有機溶、 剤(C)に分散又は溶解する。次に顔料(A)を加え、 顔料(A)を分散する。但し、中和剤(F)は、溶剤 (C) に顔料を分散した後に加えても良い。このとき必 要であれば、分散助剤を使用しても良い。

【0057】顔科 (A) を分散する方法は、例えばペイ ントシェイカー、ボールミル、ロールミル、スピードラ インミル、ホモミキサー及びサンドグラインダーを用い て分散する方法が挙げられる。

【0058】イオン性モノマーを含むモノマー成分を反 応させて得られた樹脂と、中和剤(F)に顔料(A)を 分散後、親水性有機溶剤(C)を加えることもできる。 これにより、顔料(A)が分散した、水に分散又は溶解 する樹脂(B)の親水性有機溶剤(C)溶液(I)が得 られる。

【〇〇59】水を主成分とする液体(II)としては、) アルコールを含んでいても良く、また各種添加剤を含ん でいても良い。

【0060】顔料 (A) が分散した溶液 (I) と、水を 主成分とする液体(II)との混合方法は、制限されな い。例えば、次のいずれの方法でも良い。

【0061】方法(1) 液体(II)を溶液(I)に 滴下する方法.

方法 (2) 溶液 (I)を液体 (II) に滴下する方

方法(3) 溶液(I)と液体(II)を別の容器に同 時に滴下する方法。

【0062】さらには方法(1)が好ましく、さらに は、液体(II)を溶液(I)に滴下するときに、溶液 (I) を撹拌しながら液体 (II) を滴下する方法が好 ましい.

【〇〇63】顔料(A)が分散した溶液(I)と、水を 主成分とする液体(II)との混合後、混合物から溶剤 を除去する。溶剤を除去する方法としては、例えば膜分 **能法、溶剤吸着法及び減圧蒸留法が挙げられる。**

【〇〇64】膜分離法は、限外濾過膜により、溶剤を透 50 滴下する方法が好ましい。

過させ、溶剤を除去する方法である。溶剤吸着法は、溶 剤のみを吸着する物質を入れたセルに混合物を通し、溶 剤を吸着させて、溶剤を除去する方法である。

【0065】減圧蒸留法は、混合物を常圧又は減圧下で 物質が気化するときに必要なエネルギーを外部から加 え、混合物の温度における蒸気圧の大きい物質から徐々 に気化させ、物質を除去する方法である。従って、混合 物から溶剤を除去するには、混合物の温度における溶剤 の蒸気圧が水の蒸気圧より大きいことが好ましい。

【0066】既に列記した疎水性有機溶剤 (G) 及び親 水性有機溶剤(C)には、蒸気圧が760mmHgとな るときの温度を示したが、その温度が水の蒸気圧が76 OmmHgとなる温度100℃より低い溶剤が好まし

【0067】上記の製造方法1に記載の製造方法によ り、分散安定性に侵れたインクジェット記録用インク組 成物が得られる。

【0068】次に、製造方法2について説明する。製造 方法2における中和により水に分散又は溶解する樹脂 (D) としては、既に述べたように、例えばイオン性モ ノマーを反応性成分として含むモノマー成分を反応させ て得られた樹脂が挙げられる。

【0069】中和により水に分散又は溶解する樹脂 (D)を、親水性有機溶剤(C)に分散又は溶解する。 次に顔料(B)を加え、顔料を分散する。このとき分散 助剤を使用しても良い。顔料を分散する方法は既に述べ た通りである。樹脂 (D) に顔料を分散後、親水性有機 溶剤(C)を加えても良い。

【0070】これにより、顔料(A)が分散した、中和 水単独でも良く、また親水性有機溶剤 (C)以外の多価 30 により水に分散又は溶解する樹脂 (D)の親水性有機溶 剤(C)溶液(III)が得られる。

> 【0071】水(E)と中和剤(F)とを含有する混合 液体 (I V) としては、水 (E) と中和剤 (F) のみを 含んでいても良く、また必要であれば、親水性有機溶剤 (C) 以外の多価アルコールを含んでいても良く、また 各種添加剤を含んでいても良い。

【〇〇72】顔料(A)が分散した溶液(III)と、 水(E)と中和剤(F)とを含有する混合液体(IV) との混合方法は、制限されるものではない。例えば、次 40 のいずれの方法でも良い。

【0073】方法 (4) 混合液体 (IV) を溶液 (I II)に滴下する方法。

方法(5) 溶液(III)を混合液体(IV)に滴下・ する方法。

方法(6) 溶液(III)と混合液体(IV)を別の 容器に同時に滴下する方法。

【0074】さらには方法(4)が好ましく、さらに は、混合液体(IV)を溶液(III)に滴下するとき に、溶液(III)を撹拌しながら混合液体(IV)を 【0075】 顔料 (A) が分散した溶液 (III) と、水 (E) と中和剤 (F) とを含有する混合液体 (IV) との混合後、混合物から溶剤を除去する。溶剤を除去する方法は既に述べた通りである。

【0076】上記の製造方法2により、分散安定性に優れたインクジェット記録用インク組成物が得られる。

【0077】次に、製造方法3について説明する、製造方法3における水に分散又は溶解する樹脂(B)としては、既に述べたようにエントロピー的に又は立体的に顔料を分散安定化する樹脂又は中和したイオン性モノマー 10を含む樹脂が挙げられるが、分散の安定性及び耐水性に優れている点から、中和した、イオン性モノマーを反応成分として得られた樹脂が挙げられるが好ましい。

【0078】イオン性モノマーを反応成分として得られた樹脂と、中和剤(F)を、疎水性有機溶剤(G)、又は親水性有機溶剤(C)と疎水性有機溶剤(G)の混合溶剤(H)に分散又は溶解する。ここでイオン性モノマーを反応成分として得られた樹脂は、中和された、イオン性モノマーを反応成分として得られた樹脂となる。次に顔料(A)を加え、顔料を分散する。

【 0 0 7 9】但し、中和剤(F)は、イオン性モノマーを反応成分として得られた樹脂と、疎水性有機溶剤 (G)、又は親水性有機溶剤(C)と疎水性有機溶剤

(G) の混合溶剤 (H) に、顔料 (A) を分散後に加えても良い。このとき必要ならば、分散助剤を使用しても良い。顔料を分散する方法は既に述べた通りである。

【0080】また、顔料分散後、親水性有機溶剤(C)及び/又は疎水性有機溶剤(G)を加えることもできる。但し、疎水性有機溶剤(G)のみで分散したものには親水性有機溶剤(C)を加える。これにより、顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と疎水性有機溶剤(G)との混合溶剤(H)溶液(V)が得られる。

【0081】水を主成分とする液体 (II) としては、水単独でも良く、また親水性有機溶剤 (C) 以外の多価アルコールを含んでいても良く、また各種添加剤を含んでいても良い。

【0082】 顧料 (A) が分散した溶液 (V) と、水を主成分とする液体 (II) との混合方法は、制限されない。例えば次のいずれの方法でもよい。

【0083】方法 (7) 液体 (II) を溶液 (V) に 滴下する方法。

方法 (8) 溶液 (V) を液体 (II) に滴下する方: 法。

方法 (9) 溶液 (V) と液体 (II) を別の容器に同時に滴下する方法。

【0084】さらには方法 (7) が好ましく、さらには、液体 (II) を溶液 (V) に滴下するときに、溶液 (V) を撹拌しながら液体 (II) を滴下する方法が好ましい。

【0085】製造方法3の水性インクの製造方法においては、顔料(A)が分散している溶液(V)と水を主成分とする液体(II)を混合する工程において、顔料(A)が分散している溶液(V)に含まれる疎水性有機溶剤(G)が混合中に相分離を起こさないことが、本製造方法の必須条件である。

【0086】つまり、顔料(A)が分散している溶液(V)と水を主成分とする液体(II)とを混合することにより、疎水性有機溶剤(G)と親水性有機溶剤(C)の混合溶剤(H)に溶解している樹脂の溶解度が徐々に減少し、樹脂が顔料(A)の表面に徐々に吸着し、顔料(A)が樹脂により被覆される。樹脂の溶解度がさらに減少し、樹脂単独の分散粒子を生成するこの類料(A)粒子の分散安定性は確保されており、樹脂単独の分散粒子が生成しても、本製造方法の目的を妨げるものではない。

【0087】顔料(A)が分散している溶液(V)と、水を主成分とする液体(II)を混合する工程において、顔料(A)が分散している溶液(V)に含まれる疎水性有機溶剤(G)が混合中に相分離を起こす場合は、つまり疎水性有機溶剤(G)を主成分とする相と水(E)及び親水性有機溶剤(C)を主成分とする相が形成された場合、分散している顔料(A)粒子は両相の間を通過する度に、顔料(A)粒子を保護していた樹脂が剥がれたり、吸着したりを繰り返し、顔料(A)粒子は凝集し、凝集した顔料(A)は沈降する。この現象はソルベントショックと言われる。従って、分散安定性に優れたインクジェット記録用水性インク組成物は得られな30 い

【0088】顔料(A)が分散している溶液(V)と水を主成分とする液体(II)を混合する工程において、顔料(A)が分散している溶液(V)に含まれる疎水性有機溶剤(G)が混合中に相分離を起こさないことの確認は、例えば、以下のように行うことができる。

【0089】顔料(A)が分散している溶液(V)を製造するときに、水に分散又は溶解する樹脂(B)と顔料(A)を除いた組成物を製造する。該組成物と水を主成分とする液体(II)を混合する工程において、該組成40物に含まれる疎水性有機溶剤(G)が相分離を起こさないことを確認する。

【0090】 つまり、疎水性有機溶剤(G) を主成分とする相と水(E) と親水性有機溶剤(C) を主成分と相に分離しないことを確認する。相分離が発生すれば、相の密度の差で相が上下に分離することで、相分離が確認でき、混合物を撹拌しているときは、相が連続相と不連続相に分離し、混合物は白濁することにより、相分離が確認できる。

【0091】相分離が起こる場合、顔料 (A) が分散し 50 ている溶液 (V) に含まれる親水性有機溶剤 (C) 及び /又は疎水性有機溶剤(G)の種類と量を調整することで、相分離が起こらないようにすることは常に可能である。 親水性有機溶剤(C)及び/又は疎水性有機溶剤(G)の種類と量の調整により、顔料(A)が分散している溶液(V)と水を主成分とする液体(II)とを、相分離を起こさずに、混合することができる。

【0092】顔料(A)が分散した溶液(V)と水を主成分とする液体(II)との混合後、混合物から溶剤を除去する。溶剤を除去する方法は既に述べた通りである。

【0093】上記の製造方法3により、分散安定性に優れたインクジェット記録用インク組成物が得られる。

【0094】次に、製造方法4について説明する。製造方法4における中和により水に分散又はする樹脂(D) としては、既に述べたように、例えばイオン性モノマーを含むモノマー成分を反応性成分として得られた樹脂が挙げられる。

【0095】イオン性モノマーを含むモノマー成分を反: 応性成分として得られた樹脂に、疎水性有機溶剤

- (G)、又は親水性有機溶剤(C)と疎水性有機溶剤
- (G) の混合溶剤 (H) に分散又は溶解する。次に顔料
- (A) を加え、顔料を分散する。このとき必要であれば、分散助剤を使用しても良い。顔料を分散する方法は既に述べた通りである。

【0096】顔料分散後、親水性有機溶剤(C)及び/ 又は疎水性有機溶剤(G)を加えることもできる。但 し、疎水性有機溶剤(G)のみで分散したものには、親 水性有機溶剤(C)を加える。これにより、顔料(A) が分散した、中和により水に分散又は溶解する樹脂

(B) の親水性有機溶剤 (C) と疎水性有機溶剤 (G) との混合溶剤 (H) 溶液 (VI) が得られる。

【0097】水(E)と中和剤(F)とを含有する混合液体(IV)としては、水(E)と中和剤(F)のみを含んでいても良く、また親水性有機溶剤(C)以外の多価アルコールを含んでいても良く、また各種添加剤を含んでいても良い。

【0098】顔料(A)が分散した溶液(VI)と、水(E)と中和剤(F)とを含有する混合液体(IV)との混合方法は、制限されない。例えば次のいずれの方法でも良い。

【0099】方法 (10) 混合液体 (IV) を溶液 (VI) に滴下する方法。

方法 (11) 溶液 (VI) を混合液体 (IV) に滴下 する方法。

方法 (12) 溶液 (VI) と混合液体 (IV) を別の容器に同時に滴下する方法。

【0100】 さらには方法 (10) が好ましく、さらには、混合液体 (IV) を溶液 (VI) に滴下するときに、溶液 (VI) を撹拌しながら混合液体 (IV) を滴下する方法が好ましい。

【0101】製造方法4の水性インクの製造方法においては、顔料(A)が分散している溶液(VI)と水 (E)と中和剤(F)とを含有する混合液体(IV)と

16

を混合する工程において、顔料(A)が分散している溶液(VI)に含まれる疎水性有機溶剤(G)が混合中に相分離を起こさないことが、本製造方法の必須条件である。本条件が必須条件であることの理由及び、本条件を満たすための方法については、製造方法3の説明時に既に述べた通りである。

10 【0102】 顔料(A) が分散した溶液(VI)と水(E)と中和剤(F)とを含有する混合液体(IV)との混合後、混合物から溶剤を除去する。溶剤を除去する方法は既に述べた。

【0103】上記の製造方法4により、分散安定性に優れたインクジェット記録用インク組成物が得られる。

(0104)次に、製造方法5について説明する。製造方法5における水に分散又は溶解する樹脂(B)としては、既に述べたようにエントロピー的に又は立体的に顔料を分散安定化する樹脂又は中和した、イオン性モノマ20 ーを含むモノマー成分を反応性成分として得られた樹脂が挙げられるが、分散の安定性及び耐水性に優れている点から、後者の樹脂が好ましい。

【0105】製造方法5における親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤(J)としては、親水性有機溶剤(C)と水(E)のみを含んでいても良く、また親水性有機溶剤(C)以外の多価アルコールを含んでいても良く、また各種添加剤を含んでいても良い。

【0106】イオン性モノマーを含むモノマー成分を反 の性成分として得られた樹脂と、中和剤((F)を、親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤 (J)に分散又は溶解する。ここでイオン性モノマーを 反応成分として得られた樹脂は、中和された、イオン性 モノマーを反応成分として得られた樹脂となる。次に 願料 (A)を加え、 願料 (A)を分散する。このとき必要 であれば、分散助剤を使用しても良い。 願料 (A)を分 散する方法は既に述べた通りである。

【0107】これに、必要に応じて、更に水(E)、親水性有機溶剤(C)、親水性有機溶剤(C)以外の多価40 アルコール及び各種添加剤からなる群から選ばれる1種以上を加えることができる。これにより、顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)と水(E)とを主成分とする混合溶剤(J)溶液(VII)が得られる。

【0108】次に、顔料 (A) が分散した、水に分散又は溶解する樹脂 (B) の親水性有機溶剤 (C) と水

(E) とを主成分とする混合溶剤 (J) 溶液 (VII) から溶剤を除去する。溶剤を除去する方法は既に述べた通りである。

50 【0109】上記の製造方法5により、分散安定性に優

れたインクジェット記録用インク組成物が得られる。 【0110】尚、製造方法1.3及び5においては、樹脂(B)が水に分散しなくなる様な第三成分を併用しないのが、本発明の効果を奏する上では好ましい。製造方法2及び4においては、中和剤(F)と逆の極性をする中和剤を併用しないのが、本発明の効果を奏する上では好ましい。前記第三成分及び逆極性の中和剤を用いる場合には、本発明の効果を損なわない範囲で使用し、その使用量は、極力最小限に止める。

【011.1】本発明の製造方法1~5により得られた、各インクジェット記録用水性インク組成物を、顔料

(A) の分散安定性を損なわない範囲において、再度分散することが出来る。分散する方法は既に述べた通りである。

【0112】製造方法1~5によって得られた、インクジェット記録用水性インク組成物はいずれも分散安定性に優れているが、更に分散している顔料粒子の体積平均粒径が1ミクロン未満であれば、分散安定性は更に良い。但し、体積平均粒径はメジアン(中央値)とする。【0113】本発明のインクジェット記録用水性に応り組成物には、その他の添加物をそれぞれの目的に応じれる。例えば、増粘剤、流動性改良剤、界面活性剤、電導度調整剤、pH調整剤、酸価防止剤、防腐剤、殺菌剤、紫外線吸収剤、消泡剤、浸透剤が挙げられる。

[0114]

【実施例】以下において、本発明の実施例及び比較例を 示すが、これらの実施例は本発明を明確にするためのも のであり、本発明の範囲を限定するものではない。尚、 実施例及び比較例中の部は特に断らない限り、重量部と でする。

【0115】実施例及び比較例の水性インク組成物の原料、分散方法、混合方法、溶剤除去条件び分散顔料の体積平均粒径を第1表から第5表に示す。なお第1表には、製造方法1の実施例、第2表には製造方法2の実施例、第3表には製造方法3の実施例、第4表には製造方法4の実施例、第5表には製造方法5の実施例を示した。

【 0 1 1 6 】合成例 1 (スチレン-アクリル酸エステル 系共重合体の合成)

規拝機、温度計、環流コンデンサー付きのセパラブルフラスコに2-ブタノン(MEK)667部を仕込み、攪拌下に窒素置換しながら79℃まで昇温する。内温を79℃に保ち、メタクリル酸150部、スチレン590部、2-エチルヘキシルアクリレート110部、メチルメタクリレート150部及びパーブチルの(日本加限合物を約2時間かけて添加し、反応させる。添加終了サルクを15、9及び13時間後にMEK3部及びパーブチルの0、3部の混合物を添加し、反応を批析させる。

マー添加終了後21時間後に内温を下げて、反応を終了させ、スチレン-アクリル酸エステル系共重合体のME K溶液を得た。

【0117】得られたスチレン-アクリル酸エステル系 共重合体のMEK溶液の粘度は、ガードナーで27であ り、固形分は60%であった。更にMEK333部加 え、固形分を50重量%とした。またこの共重合体の酸 価は100mgKOH/gであり、重量平均分子量はポリスチ レン換算で36,000であった〔以下、このスチレン -アクリル酸エステル系共重合体のMEK溶液を樹脂 (a)と略記する。〕。

【0118】合成例2(スチレン-アクリル酸エステル 系共重合体の合成)

【0119】この溶液の固形分は50重量%であり、得られたスチレンーアクリル酸エステル系共重合体の酸価100mgKOH/gであり、重量平均分子量はポリスチレン換算で27,000であった〔以下、このスチレンーアクリル酸エステル系共重合体のMEK溶液を樹脂(b)と略記する。}

【0120】実施例1(製造方法1による実施例) 250mlの広口ボリビンにJoncryl 68(ジョンソンボリマー製スチレンー(メタ)アクリル酸エステル系共重合体)を20部、メタノールを60部及び中和剤であるMDA(N-メチルジエタノールアミン)を4.97部(中和率60%)入れ、均一に溶解した。更に3mmφのガラスピーズを200部及びELFTEX 8(キャボット製カーボンブラック)を20部入れ、ペイントコンディショナーで2時間分散した。

【0121】この顔料を分散した溶液80部を攪拌機付きのセパラブルフラスコに仕込み、更にメタノール80部を加え、攪拌し、顔料(A)が分散した、水に分散又は溶解する樹脂(B)の親水性有機溶剤(C)溶液

(1)を得た。

30

【0122】撹拌機を回転させながら、これに、水48 0部を毎分4mlの速度で満下した。

の 0.0 の 0.0 で 0.0 で 0.0 で 0.0 の 0.0 で 0.0 の 0.0 で 0.0 の 0.0 で 0.0 の 0.0 で 0.0 で 0.0 の 0.0 で 0.0 で

を除去した。エバポレーターの内圧を最終的に60mm Hgまで下げて、溶剤の除去を終了した。

【0124】得られた水性インク組成物を水で100倍 に希釈して、粒度分布測定装置マイクロトラックUPA 150 (リーズアンドノースロップ製)で粒度を測定し

たところ、メジアンが O . 4 6 μ mであり、分散安定性 が極めて優れており、長期間に亘り、ノズルの目詰まり もなかった。インク画像の耐水性も良好であった。 [0125]

【表1】

	颜料 (A)	樹	li:	分散媒	分散方法
実施例1	ELPTEIS 20년 (カーホ"ンフ"ラック (キャオ"ット型))	ガノール 60部 MDA 4.97部 (中和剤) (中和率60%)	が ラスピース゚ 200部 (3mm φ) 分散時間 2hrs
顔料分散 溶液の量	追加溶剂	水を主成分とする液体(II)	混合方法	溶剂除去 条件	体積平均 粒径 (メジアン)
180部	メタノール 80部	水 480部	核体(II)を 4ml/min. で演下	退度50℃ 圧力60mmHg	0.46 µ m

【0126】実施例2(製造方法2による実施例)

250mlの広口ポリビンにJoncryl 68を2 0 部、メタノールを60部入れ、均一に溶解した。更に 3 mm oのガラスビーズを200部及びRaven10 40(コロンビアカーボン製カーボンブラック) を20 部入れ、ペイントコンディショナーで2時間分散した。 この顔料を分散した溶液50部を撹拌機付きのセパラブ ・♪ ルフラスコに仕込み、更にメタノール50部を加え、攪 拌し、顔料 (A) が分散した、中和により水に分散又は 溶解する樹脂(D)の親水性有機溶剤(C)溶液(II I) を得た、

【0127】攪拌機を回転させながら、これに水480 部及びMDA3.7部(中和率90%)の混合液体(I V)を毎分2mlの速度で滴下した。

【0128】滴下終了後、フラスコ内の混合物をエパポ レーターに移し、混合物の温度を50℃に保持し、エバ ポレーターの内圧を徐々に下げ、混合物中のメタノール を除去した。エバボレーターの内圧を最終的に65mm Hgまで下げて、溶剤の除去を終了した。

【0129】得られた水性インク組成物を水で100倍 に希釈して、粒度分布を測定したところ、メジアンが O. 75 μ IIであり、分散安定性が極めて優れており、 長期間に亘り、ノズルの目詰まりもなかった。インク画 像の耐水性も良好であった。

[0130]

【表2】

第2表

	顏料(A	樹川	A	分散媒	53	分散方法		
実施例 2	Raven 1040 20部 (カーオ*ンフ* ラック (コロンヒ* アカー本*)	Joneryl	68	20部	メタノール 60部	(3 5)	ラスピース゚ 200部 ﺳmφ) 散時間 2brs
顔料分散 溶液の量	追加溶剤	混合系(IV		混合	方法	溶剂除去 条件		体積平均 粒径 (パップン)
50部	メタノール 50部	MODA	300部 3.7部 率90%)		(IV)を /min.	退度50℃ 圧力65mm	- 1	0.75 μ π

【0131】実施例3~7(製造方法3による実施例) 媒」を入れ、均一に溶解した。更に第3表の「分散方 法」に記載のピーズと「顔料(A)」を入れ、ペイント コンディショナーで「分散方法」に記載の時間分散し た。この顔料を分散した溶液を第3表の「顔料分散溶液 の量」に記載の量を攪拌機付きのセパラブルフラスコに 仕込み、更に「追加溶剤」記載の溶剤等を加え、攪拌 し、顔料(A)が分散した、水に分散又は溶解する樹脂 (B) の親水性有機溶剤 (C) と疎水性有機溶剤 (G) との混合溶剤(H)溶液(V)を得た。

【0132】攪拌機を回転させながら、これに、第3表 30 記載の「水を主成分とする液体(II)」を「混合方 法」記載の方法で混合した.

【0133】混合終了後、フラスコ内の混合物をエバポ レーターに移し、混合物の温度を50℃に保持し、エバ

ポレーターの内圧を徐々に下げ、混合物中の溶剤を除去 250mlの広口ポリビンに第3表の「樹脂」と「分散 20 した。エバポレーターの内圧は最終的に「溶剤除去条 件」記載の圧力まで下げて、溶剤の除去を終了した。 【0134】得られた実施例3から7の水性インク組成 物を水で100倍に希釈して、粒度分布を測定したとこ ろ、いずれもメジアンが1ミクロン未満であり、分散安 定性が極めて優れており、長期間に亘り、ノズルの目詰 まりもなかった。いずれのインク画像の耐水性も良好で

> 【0135】尚、上記実施例3~7の組成物から顔料と 樹脂を除いて、同様の操作を行い、混合工程中に、相の 分離が起こらないことを確認の上に、各実施例を行っ た.

[0136]

【表3】

	颜料 (A)	樹	ii ii	分	散媒	分散方法
实施例 3	Raven 1255 20f (カーボ*ンフ*ラック (コロンヒ*アカーボ*) (酸価55)	73 30部	MEK IPA MDA (中和	30部 30部 3.15部 1率90X)	ステンレスと。-ス。 500部 (3㎜φ) 分散時間 2hrs
質料分散 溶液の量	追加溶剂	水を主成分 とする液体 (II)	混合方	法	溶剤除去 条件	体積平均 粒径 (メジアン)
50部	NEK 30部 IPA 30部	水 400部	液体(II) 2ml/min 滴下	_	温度50℃ 圧力70㎜Ⅱg	0. 26 µ и

第3表

[0137]

【表4】

第3表 (つづき)

	質料 (A)		樹	間	分	散媒	分散方法
実施例4	Raven 1040 20		樹脂(a) :		MEX MDA (中和	60部 1.44部 1率68%)	がラスピース* 240部 (3mmゆ) 分散時間 2brs
顔料分散 溶液の量	追加溶剂	1	《を主成分 :する液体 (I I)	混合方	法	溶剂除去 条件	体積平均 粒径 (メジアン)
50部	NEK 15部 IPA 25部	*	300部	被体(II) 2 ml/mli 液下	_	温度50℃ 圧力60皿面8	0.42μπ

	類料 (A)		樹	機脂		敗媒	分散方法
実施例 5	ELPTEX 8	3 3	樹脂(a) 20部 (固形分酸価100)		MEX 60 PR		が ラスピース゚ 150部 (0.2mmの) 分散時間 4brs
顔料分散 溶液の量	追加溶剂	1	Kを主成分 :する液体 (II)	混合方	法	溶剂除去条件	体積平均 粒径 (メシ゚アン)
50部	MEX 16.5部 TPA/23.8部 MDA 0.68部 (中和率 64%)	オ	333部	液体(II) 2ml/min 滴下		退度50℃ 圧力80±±±1g	0.18μπ

【0139】比較例1

追加溶剤の欄の「MEK16.5部、IPA23.8部及びMDA0.94部」を「MEK40.3部及びMDA0.94部」とした以外は、実施例6と同様な操作を行った。

【0140】即ち、250mlの広口ボリビンに樹脂(b)を20部、MEKを60部入れ、均一に溶解した。更に0.2mmφのガラスピーズを150部及びELFTEX8を20部入れ、ペイントコンディショナーで4時間分散した。この顔料を分散した溶液50部を攪拌機付きのセパラブルフラスコに仕込み、更に、MEK40部及びMDA0.94部(中和率88%)を加え攪拌した。攪拌機を回転させながら、水300部を滴下した。但し、セパラブルフラスコに水を滴下すると、フラスコ内の液体の粘度は増加した。

【0141】つまり、フラスコ内で疎水性溶剤を主成分

とする連続相と水を主成分とする不連続相が形成された。

26

【0142】更に水を滴下すると、転相が起こり、水を主成分とする連続相と疎水性溶剤を主成分とする不連続相が形成された。更に水を滴下すると、フラスコ内の液体の粘度は低下した。これは疎水性溶剤を主成分とする不連続相の体積分率が低下したためである。

【0143】滴下終了後、フラスコ内の混合物をエバボレーターに移し、溶剤を除去したところ、エバボレータ に大きさ1~3mm 中の不定形の黒い沈殿物が認められた。また、インク画像の耐水性は優れていたが、そのまま用いたのでは、ノズルの目詰まりの原因となり、安定に記録することが不可能であった。凝集沈降したマイクロカプセル塊を除去するには遠心分離が必要であった。

【表6】

	颜料 (A)	F (A)		Ter .	分	敗媒	分散方法
实施例 6	ELPTEX 8 20fi	图	桜脂(b) 2 (固形分散	***	MEK	60部	が 5スピース* 150部 (0.2㎜φ) 分散時間 4brs
質料分散 溶液の量	追加溶剂	-	<を主成分 :する液体 (II)	混合方	法	溶剂除去 条件	体積平均 粒径 (メシ゚アン)
50部	MEX 16.5部 IPA 23.8部 MDA 0.94部 (中和率 100%)	-	333部 リセリン 110部	液体(II) 3ml/mln 滴下		湿度50°C 最終圧力 85mm配g	0.17 μπ
比較例1	追加溶剤を 6と同様な操 その結果、	łÈ	を行った。				は、実施例

[0145]

【表7】

第3表 (つづき)

	T		1		г—	 _	ı ————
	類科 (A)		樹	ii 	分	散媒	分散方法
実施例7	ELFTEX 8 201	部	Joneryl((酸価150) (ジョンソンボ)	MEX	60部	カ*ラスヒ*ース* 240部 (3mm ゆ) 分散時間 8hrs
顔料分散 溶液の量	追加溶剂	l -	《を主成分 :する液体 (II)	混合方法		溶剤除去 条件	体積平均 粒径 (メジアン)
50部	MEX 15部 IPA 25部 MDA 1.9部 (中和率 60%)	水	300部	液体(II) 2ml/min 滴下		湿度50℃ 最終圧力 60㎜瓜	0. 35 μ m

【0146】合成例3

合成例2の「メタクリル酸150部、スチレン590部、2-エチルヘキシルアクリレート110部、メチルメタクリレート150部」を、「スチレン694部、2-エチルヘキシルアクリレート129部 メチルメタク

リレート177部」とする以外は同様な操作を行い、スチレンーアクリル酸エステル系共重合体のMEK溶液を得た。

メグクリレート 150 部」を、「スチレン 694 部、2 【 0147】得られたスチレン - アクリル酸エステル系 - エチルヘキシルアクリレート 129 部、メチルメタク 50 共重合体は、酸価ゼロ、重量平均分子量はポリスチレン 換算で27,000であった〔以下、このスチレン-ア クリル酸エステル系共重合体のMEK溶液を樹脂(c) と略記する。)。

【0148】比較例2

250mlの広口ポリピンに樹脂(c)を20部、ME Kを60部入れ、均一に溶解した。更に0.2mmøの ガラスピーズを150部及びELFTEX8を20部入れ、ペ イントコンディショナーで4時間分散した。この顔料を 分散した溶液50部を撹拌機付きのセパラブルフラスコ 拌機を回転させながら、プルロニックF68 (非イオン 界面活性剤)3部と水300部の混合物を滴下した。

【0149】滴下終了後、フラスコ内の混合物をエバポ レーターに移し、溶剤を除去した。得られた水性インク は、実施例6と同様に分散安定性には優れていたが、実 施例6のそれに比べて、インク画像の耐水性はかなり劣 ったものであった。

【0150】実施例8(製造方法4による実施例) 250mlの広口ポリビンにJoncryl 683を 20部、MEKを60部入れ、均一に溶解した。更に3 mmゅのガラスビーズを240部及びELFTEX 8を20部 入れ、ペイントコンディショナーで8時間分散した。こ の顔料を分散した溶液50部に、MEKを15部及びI PA(イソプロピルアルコール)を25部を加え、顔料

(A) が分散した、中和により水に分散又は溶解する樹 脂(D)の親水性有機溶剤(C)と疎水性有機溶剤

(G) との混合溶剤(H)溶液(VI)を得た。

30

【0151】水300部とMDA1.9部(中和率60 %)の混合液体(IV)を撹拌機付きのセパラブルフラ スコに仕込んだ。攪拌機を回転させながら、溶液 (V I)を毎分1mlの速度でフラスコに滴下した。

【0152】滴下終了後、フラスコ内の混合物をエバポ レーターに移し、混合物の温度を50℃に保持し、エバ に仕込み、更に、MEK40.3部を加え撹拌した。撹 10 ポレーターの内圧を徐々に下げ、混合物中の溶剤を除去 した。エパポレーターの内圧を最終的に60mmHgま で下げて、溶剤の除去を終了した。得られた水性インク 組成物を水で100倍に希釈して、粒度分布を測定した ところ、体積のメジアンが 0.21 μ mであり、分散安 定性が極めて侵れており、長期間に亘り、ノズルの目詰 まりもなかった。また、インク画像の耐水性も良好であ った。

> 【0153】尚、上記実施例8の組成物から顔料と樹脂 を除いて、同様の操作を行い、混合工程中に、相の分離 20 が起こらないことを確認してから、この実施例を行っ

[0154]

【表8】

第4表

	顏	F (A)		樹	眉	5)	散媒	分散方法
実施例8	ELF	EX 8	- 1	Joncryl	683 20 ± β	MEK	60部	カ*ラスピース゚ 240部 (3mmゆ) 分散時間 8hrs
類料分散 溶液の量	追加	溶剂		含被体 IV)	混合方	—— —	溶剤除去 条件	体積平均 粒径 (メジアン)
50部	MEK IPA	15部 25部	水 MDA (中	300部 1.9部 和率 60%)	液体(VI) 1 ml/mir 液下	_	温度50℃ 最終圧力 60mmIg	0. 21 μ Ε

【0155】実施例9~14(製造方法5による実施 例)

250mlの広口ポリビンに第5表の「樹脂」と「分散 媒」を入れ、分散又は溶解した。更に第5表の「分散方 法」に記載のビーズと「顔料(A)」を入れ、ペイント コンディショナーで「分散方法」に記載の時間分散し た.

【0156】この顔料を分散した溶液を第5表の「顔料 分散溶液の量」に記載の量を500mlのピーカーに入 れ、更に「追加液体」記載の水等を加え、攪拌し、顔料 (A)が分散した、水に分散又は溶解する樹脂 (B)の 親水性有機溶剤(C)と水(E)とを主成分とする混合 溶剤(J)溶液(VII)を得た。

50 【0157】ビーカーの混合物をエバポレーターに移

し、混合物の温度を50℃に保持し、エバポレーターの 内圧を徐々に下げ、混合物中の溶剤を除去した。エバポ レーターの内圧は最終的に「溶剤除去条件」記載の圧力 まで下げて、溶剤の除去を終了した。

【0158】得られた実施例9から14の水性インク組成物を水で100倍に希釈して、粒度分布を測定したと

ころ、いずれもメジアンが1ミクロン未満であり、分散 安定性が極めて優れており、長期間に亘り、ノズルの目 詰まりもなかった。また、インク画像の耐水性も良好で あった。

32

[0159]

【表9】

第5丧

	質料 (A)	枝	i Na	分散	媒	分散方法
実施例 9	Raven 1255 4音	Joneryl	683 2部	<i>対列−N</i> 水 MDA (中和2	60部 60部 1部 \$157%)	カ" ラスヒ" -ス" 240部 (3mm φ) 分散時間 4hrs
顔料分散 溶液の量	迫加液体	溶剂除去 条件	体積平均 粒径 (35°72)	9		
122部	水 60部	温度50℃ 最終圧力 105㎜取	0.11 μm			

[0160]

【表10】

第5表 (つづき)

	颜 料 (A)		樹脂		分散媒	分散方法
実施例10	#45L 4部 (カーオ・ソフ・ラック (三菱化学製)	683 2部	水 MD/	/-// 60部 60部 A 1.44部 P和率226%)	か ラスヒ ース 240部 (3mm ゆ) 分散時間 4hrs
顔料分散 溶液の量	迫加液体	溶剂除去 条件	体積平均 粒径 (35°72)	3		
122部	水 60部 グリセリン40部 Proxel GIL 0.16部 (酸化防止 剤) (ICI製)	温度50℃ 最終圧力 100mmHg	0. 11 µm			

第5表 (つづき)

	颜料(A)	楼	m	5)散媒	分散方法
突 施例11	Pastogen Blue TGR 10倍 (7月ロシブニン類 料) (大日本インナイト 学工業製)		68 10部	水 Sol: (分) (七) Sol:	+ 40部 40部 sperse 2000 1.5部 胶助剂) * 100 * 1	が ラスピース゚ 240部 (3mmφ) 分散時間 4hrs
額料分散 溶液の量	追加液体	溶剤除去 条件	体積平均 粒径 (39°72)	a		
90部	水 40部	温度50℃ 最終圧力 100mmEg	0.50 μm			

[0162]

【表12】

第5表 (つづき)

	颜料 (A)		横	ii ii	5.	₩媒	分散方法	
実施例12	Fastogen Blue TCR 10部		Joneryl 68 10部		が 40部 水 40部 MDA 3.73部 (中和率90%)		が ラスピーズ 240部 (3mm φ) 分散時間 4hrs	
顔料分散 溶液の量	追加液体		的利除去 条件	体積平均数径(はジェアン)	与			
80部	水 32部	1 -	重度50℃ 数耗压力 100㎜取	0.12μπ				

第5表 (つづき)

	颜料 (A)	ŧ	H/IB	分散媒	分散方法
夹施例13	Symuler Brilliant Carmine 6B 307 106 (溶性7)。質料) (大日本(沖) 学工業製)	# 1	683 5部	対Jール 40部 水 40部 MDA 2.5部 (中和率157%)	240部
顔料分散 溶液の量	追加液体	溶剤除去 条件	体積平均粒径(はジブン)		
93部	水 40部	湿度50℃ 最終圧力 115mmHg	0. 28 μ =		

[0164]

【表14】

第5表 (つづき)

	颜料 (A)	樹	樹脂)散媒	分散方法
実施例14	Symuler Fas Yeilow GF conc. 10f (シアケー酸料) (大日本インイ 学工業製)	HS.	683 5部	水 MDA	-ル 40部 40部 2.5部 和率157%)	が ラスピース゚ 240部 (3mm φ) 分散時間 4brs
顔料分散 溶液の量	追加液体	溶剤除去 条件	体積平5 粒径 (メジ・アン)	9		
94部	水 40部	温度50℃ 最終圧力 110mmEg	0.20 μm			

[0165]

【発明の効果】本発明の製造方法では、界面活性剤を用いずに、水に溶解又は分散しうる樹脂又は、中和により水に溶解又は分散しうる樹脂と中和剤とを併用して、水相と有機溶剤相とが連続相を形成する様にしてから脱溶

利するので、得られた水性インク組成物は分散安定性に 極めて優れているとともに、インキ画像の耐水性にも優 れるという格別顕著な効果を奏する。従って、本発明の 製造方法で得られた組成物は、インクジェット記録用水 性インク組成物として使用するのに適している。