Departamento de Geometría y Topología

Geometría II – Doble Grado en Ingeniería Informática y Matemáticas

Convocatoria ordinaria -14 de junio de 2021

1. (3,5 PUNTOS) Para cada $a \in \mathbb{R}$ se considera la métrica g_a de \mathbb{R}^4 cuya forma cuadrática asociada está dada por

$$\omega_a(x_1, x_2, x_3, x_4) = a x_1^2 - x_2^2 + 2x_1x_3 + 2a x_1x_4 + 2x_3x_4$$

- (a) Calcula el índice y la nulidad.
- (b) Si A es la matriz de g_1 respecto de la base usual de \mathbb{R}^4 , encuentra una matriz ortogonal $P \in O(4)$ y una matriz diagonal D tal que $P^tAP = D$.
- **2.** (3 PUNTOS) Sea (V, g) un espacio vectorial euclídeo, $a \in V$ un vector unitario y $\lambda \in \mathbb{R} \{0\}$. Definimos $h: V \times V \longrightarrow \mathbb{R}$ como

$$h(u,v) = g(u,v) + \lambda g(u,a)g(v,a)$$

- (a) Prueba que h es una métrica en V.
- (b) Prueba que h es euclídea si y solo si $\lambda > -1$.
- **3.** (3,5 PUNTOS) En (\mathbb{R}^3, g_u) se considera f la simetría axial respecto de la recta $U = \{(x, y, z) \mid x = 0, y z = 0\}$ y h(x, y, z) = (y, x, z).
 - (a) Prueba que h es una isometría. Clasifica y describe dicha isometría.
 - (b) Clasifica y describe la isometría $f \circ h$.

a) (1 PUNTO)

Veamos que h es una mética en V.

h SIMÉTRICA: Veamos que h (u,v) = h(v,u) tu,veV

 $h(u,v) = g(u,v) + \lambda g(u,a) g(v,a) = \frac{1}{2}$

g simética Producto en IR conmutativo

 $= g(\sigma, u) + \lambda g(\sigma, a) g(u, a) =$

= h (J,u)

h BILTENEAL: Como acabamos de probar que es simética basta con probar que h es lineal en la 1º componente. Es decir tenemos que ver

 $h(\Delta u + \beta u', \sigma) = \alpha h(u, \sigma) + \beta h(u', \sigma)$ $\forall \alpha, \beta \in \mathbb{R}, \forall \alpha, \alpha', \sigma \in \mathcal{V}.$

 $h(\alpha u + \beta u', \sigma) = g(\alpha u + \beta u', \sigma) + \lambda g(\alpha u + \beta u', a) g(\sigma, a)$

= ~ g(u,v) + B g(u',v) + A (~ g(u,o) + Bg(u',o)). g(u,a)

 $= \alpha g(u,v) + \lambda \alpha g(u,\mathbf{a}) g(u,a) + \beta g(u',v) + \lambda \beta g(u',\mathbf{a}) g(u,a)$

= $\propto (g(u, v) + \lambda g(u, a)g(v, a)) + \beta (g(u', v) + \lambda g(u', a)g(v, a))$

= $\propto h(u_1 \sigma) + \beta h(u', \sigma)$.

6) (2 PUNTOS) Tenemos que probar que h endídea (=> $\lambda 7 - 1$

Entouces fupongamos que le es endidea. Entouces h(u,u)>0, tu ∈ V. holy. En particular $h(a,a) = g(a,a) + \lambda g(a,a) \cdot g(a,a) =$ $\frac{1}{||a||=1} + \lambda > 0 . \text{ By touts } \lambda > -1$

III supongamos ahora que 1>-1 y reamos que h(u,u) >0 para + u ∈ V-404. CASO >>0 En este caso tenemos

 $h(u,u) = g(u,u) + \lambda g(u,a) g(u,a) =$ $=g(u_1u)+\lambda g(u_1a)^2>0$ Por ser gendidea

CASO -1 < > < 0

En este caso vamos a utilizar la Designaldad Cauchy-Schwarz para 9 [g(u,a)] ≤ ||u||·||a||. De aqui

(*) glu,a) 2 = ||u||2. ||a||2 = ||u||2

Utilizando lo auterior terremos

$$h(u_{1}u) = g(u_{1}u) + \lambda g(u_{1}a)^{2}$$

$$= \frac{1}{2} ||u||^{2} + \lambda ||u||^{2} = \frac{1+\lambda}{1} ||u||^{2} > 0$$

OTRA FORMA DE HACER EL ADARTADO 6).

tomamos el vector a que es unitario y denotamos $\mathcal{U} = L(a)$. Sea $huz, -, un fe una base ortonormal de <math>\mathcal{U}^{\perp}$ donde $n = \dim V$. Entonces

B = ha, uz, -, un y

es una base ortonormal de (V, g).

Es facil ver que:

$$M(h,B) = \begin{pmatrix} 1+\lambda & 0 & -& -& 0 \\ 0 & 1 & 1 & & \\ 0 & -& -& 0 & 1 \end{pmatrix}$$

Viendo esta matiz es daro que h eudidea \Longrightarrow 1+ λ >0 \Longleftrightarrow λ >=1.