Foundations of Data Science

DS 3001

Data Science Program

Department of Computer Science

Worcester Polytechnic Institute

Instructor: Prof. Kyumin Lee

Project Teams

- Clay Oshiro-Leavitt, Hunter Caouette, Nick Alescio
- Danielle Angelini, Elijah Ellis, Ryan Candy, Rob Wondolowski
- Eva (Yingbing) Lu, Manasi Danke, Erica Lee, Jonathan Dang
- Danielle Angelini, Rob Wondolowski, Elijah Ellis, Ryan Candy
- Arianna Kan, Yihan Lin, Margaret Goodwin, Ken Snoddy
- Yang Gao, Jose Li, Sarah Burns, Daniel McDonough
- Noah Puchovsky, Katherine Handy, Alex Tavares, Angelica Puchovsky
- Armando Zubillaga, Gabriel Rodirgues, Humberto Leon, Joao Omena de Lucena
- Jessie White, Lindsay MacInnis, ? , ?

So far, 33 students expressed their preferences

Previous Class...

Data Science Process (Loop)

Data Collection

Overview

- Jupyter(IPython) Notebook
- Twitter Data
- Twitter API
- Collecting Tweets

Jupyter Notebook

Learn about the Data

Twitter Entities:

 Hashtags, User mentions, URLs, Image Objects

WPI @WPI · 18m

To #wpi2018 from @wpialumni @TaymonBeal: You're @WPI because you want to do awesome things w/awesome people. @WPI_SAO bit.ly/1Cy0AYY

Details

WPI @WPI · 1h

#lifescience WPI's BETC featured RT @DevalPatrick: Worcester's Gateway Park is a hub for #innovation in #biotechobit.ly/1qizzDr

Details

Information in a Tweet

• User: Name, Screen Name

Statistics: #retweets

Laurie Leshin @LaurieofMars · Oct 25
Every day is #activelearningday at @WPI!!

WPI @WPI

Active learning is the heart of WPI's distinctive @whitehouseostp #activelearningday

Creating an Application

https://dev.twitter.com/apps

How to Login: OAuth

- OAuth is an open standard for authorization
- Short for Open Authorization (OAuth)
- A standard protocol in social webs

See details: http://en.wikipedia.org/wiki/OAuth

Accessing Twitter Data from Jupyter Notebook

 Get Connected: Authorizing an application to access Twitter account data

Download Data: Retrieving trends

 Examine the Data: Displaying API responses as pretty-printed JSON

Data Format: JSON

- JavaScript Object Notation (JSON)
- an open standard format that uses humanreadable text to transmit data objects consisting of attribute-value pairs.
- A list of Dictionaries

```
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York",
  "state": "NY",
  "postalCode": "10021"
"phoneNumber": [
    "type": "home",
    "number": "212 555-1239"
  },
    "type": "fax",
    "number": "646 555-4567"
"gender": {
  "type": "male"
```

Calling Twitter APIs from Python

 Either directly call the API link, or use 3rd party library (e.g., <u>Tweepy</u> and <u>python-twitter</u>).

 In the sample code, register your own Twitter account, and Twitter app. Fill in the blanks in the code for the oauth authorization keys and secrets.

https://developer.twitter.com/en/docs.html

Most APIs have Rate Limits

- Twitter has rate limits on their APIs
 - https://developer.twitter.com/en/docs/basics/rate-limits

In general: Look at Documentation

- API Documentation
- How can we authenticate with a token
- Most modern APIs use something like oauth

Data Science: The Context

Goal of Data Science

- Discovery of patterns and models that are:
 - Valid: hold on new data with some certainty

Useful: should be possible to act on the item

Unexpected: non-obvious to the system

Understandable: humans should be able to interpret the pattern

Two Major Tasks

- Predictive Methods (supervised learning methods)
 - Use some variables to predict unknown or future values of other variables
- Descriptive Methods (unsupervised learning methods)
 - Find human-interpretable patterns that describe the data
 - e.g., categorize customers by their product preferences (clustering) or understand relations (association)

Meaningfulness of Answers

 A big data mining risk is that you will "discover" patterns that are meaningless

 Bonferroni's principle (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap

Example: Rhine Paradox

- Joseph Rhine was a parapsychologist in the 1950's who hypothesized that some people had Extra-Sensory Perception (ESP).
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards – red or blue.
- He discovered that almost 1 in 1000 had ESP they were able to get all 10 right!

Example: Rhine Paradox

- He told these people they had ESP and called them in for another test of the same type.
- Alas, he discovered that almost all of them had lost their ESP.
- What did he conclude?
- He concluded that you shouldn't tell people they have ESP; it causes them to lose it.

Back to Basics:

Getting to Know Our Data

Types of Datasets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: termfrequency vector
- Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- · Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

-	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0
_	-	·	·	-	-	-			-	

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Example: Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example: Data Matrix

If data objects have the same fixed set of numeric attributes, then
the data objects can be thought of as points in a multi-dimensional
space, where each dimension represents a distinct attribute

 Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Example: Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Example: Transaction Data

- A special type of record data, where each record (transaction) involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Example: Graph Data

Examples: Generic graph and HTML Links

Example: Ordered Data

Sequences of transactions

```
Items/Events
(AB) (D) (CE)
(BD) (C) (E)
(CD) (B) (AE)
An element of
the sequence
```

Example: Ordered Data

Genomic sequence data

Data Objects

- Data sets are made up of data objects.
- A data object (instance) represents an entity.
 - Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
 - Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes (features).
- In database... rows → data objects; columns → attributes.

What is Data?

 Collection of data objects and their attributes

- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as Objects variable, field, characteristic, or feature
- A collection of attributes describe an object

Attributes

1				1
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attributes

- Attribute (or dimension, feature, variable): a data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- Types:
 - Nominal / Binary (a part of Nominal)
 - Ordinal
 - Quantitative (Numeric)
 - Interval-scaled
 - Ratio-scaled

Attributes: Nominal, Ordinal, and Quantitative

- Nominal (categories, states, labels :: "names of things")
 - Ex. Fruits: Apples, oranges, ...
 - Special case of Nominal: Binary
- Ordinal (Ordered)
 - Values have a meaningful order (rank), but magnitude between successive values is unknown
 - Quality of meat: Grade A, AA, AAA
- (Q) Interval (No true zero-point)
 - Calendar dates: Jan 24, 2012; Location (Lat/Long)
 - Only differences (intervals) may be compared
- (Q) Ratio (Inherent zero-point)
 - Physical measurements: Length, Mass, ...
 - Counts and amounts

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countable set of values
 - E.g., zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - Examples: temperature, height, or weight.
- Continuous attributes are typically represented as floating-point variables.

Quiz! Census Data

- People: # of people in group
- Year: 1850 2000 (every decade)
- Age: 0 90+
- Sex: Male, Female
- Marital Status: Single, Married, Divorced

Quiz! Census Data

- People
- Year
- Age
- Sex
- Marital Status

2,348 data points

2 1850 0 0 1 148378 3 1850 0 0 2 145037 4 1850 5 0 1 141106 5 1850 5 0 2 135966 6 1850 10 0 1 126009 7 1850 10 0 2 121617 8 1850 15 0 1 107713 9 1850 15 0 2 111067 10 1850 20 0 1 101726 11 1850 20 0 2 100384 12 1850 25 0 1 86254 13 1850 25 0 2 79946 14 1850 30 0 2 63963 15 1850 30 0 2 63963 16 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42816 20 1850 45 0		Α	В	С	D	E
3 1850 0 0 2 14503 4 1850 5 0 1 141106 5 1850 5 0 2 135966 6 1850 10 0 1 126009 7 1850 10 0 2 12161 8 1850 15 0 1 10771 9 1850 15 0 2 11106 10 1850 20 0 1 10772 11 1850 20 0 2 10038 12 1850 25 0 1 86254 13 1850 25 0 2 7994 14 1850 30 0 1 7306 15 1850 35 0 1 5849 17 1850 35 0 2 5050 18 1850 40 0 1 4759 19 1850 45 0 1 <th>1</th> <th>year</th> <th>age</th> <th>marst</th> <th>sex</th> <th>people</th>	1	year	age	marst	sex	people
4 1850 5 0 1 14110 5 1850 5 0 2 13596 6 1850 10 0 1 126009 7 1850 10 0 2 121613 8 1850 15 0 1 107713 9 1850 15 0 2 11106 10 1850 20 0 1 10172 11 1850 20 0 2 10038 12 1850 25 0 1 8625 13 1850 25 0 2 7994 14 1850 30 0 1 7306 15 1850 30 0 2 6396 16 1850 35 0 1 5844 17 1850 35 0 2 5050 18 1850 40 0 1 4759 19 1850 45 0 1 <td>2</td> <td>1850</td> <td>0</td> <td>0</td> <td>1</td> <td>1483789</td>	2	1850	0	0	1	1483789
5 1850 5 0 2 135960 6 1850 10 0 1 126000 7 1850 10 0 2 121612 8 1850 15 0 1 107713 9 1850 15 0 2 111062 10 1850 20 0 1 101720 11 1850 20 0 2 100384 12 1850 25 0 1 86254 13 1850 25 0 2 79940 14 1850 30 0 1 73063 15 1850 30 0 2 63963 16 1850 35 0 1 58840 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42816 20 1850 45 0 1 38423 21 1850 45 0 1 32136 22 1850 50 0 1 32136	3	1850	0	0	2	1450376
6 1850 10 0 1 126009 7 1850 10 0 2 121613 8 1850 15 0 1 107713 9 1850 15 0 2 111063 10 1850 20 0 1 101728 11 1850 20 0 2 100384 12 1850 25 0 1 86254 13 1850 25 0 2 79948 14 1850 30 0 1 73063 15 1850 30 0 2 63963 15 1850 35 0 1 58848 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	4	1850	5	0	1	1411067
7 1850 10 0 2 121613 8 1850 15 0 1 107713 9 1850 15 0 2 111063 10 1850 20 0 1 101723 11 1850 20 0 2 100384 12 1850 25 0 1 86254 13 1850 25 0 2 79944 14 1850 30 0 1 73063 15 1850 30 0 2 63963 16 1850 35 0 1 58849 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34129 22 1850 50 0	5	1850	5	0	2	1359668
8 1850 15 0 1 107713 9 1850 15 0 2 111063 10 1850 20 0 1 101726 11 1850 20 0 2 100384 12 1850 25 0 1 86254 13 1850 25 0 2 79946 14 1850 30 0 1 73063 15 1850 30 0 2 63963 16 1850 35 0 1 58846 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42816 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	6	1850	10	0	1	1260099
9 1850 15 0 2 11106 10 1850 20 0 1 10172 11 1850 20 0 2 10038 12 1850 25 0 1 8625 13 1850 25 0 2 7994 14 1850 30 0 1 7306 15 1850 30 0 2 6396 16 1850 35 0 1 5844 17 1850 35 0 2 5050 18 1850 40 0 1 4759 19 1850 40 0 2 42818 20 1850 45 0 1 3842 21 1850 45 0 2 3412 22 1850 50 0 1 3213	7	1850	10	0	2	1216114
10 1850 20 0 1 101728 11 1850 20 0 2 100384 12 1850 25 0 1 86254 13 1850 25 0 2 79944 14 1850 30 0 1 73069 15 1850 30 0 2 63969 16 1850 35 0 1 58849 17 1850 35 0 2 50509 18 1850 40 0 1 47599 19 1850 40 0 2 42819 20 1850 45 0 1 38422 21 1850 45 0 2 34129 22 1850 50 0 1 32134	8	1850	15	0	1	1077133
11 1850 20 0 2 100384 12 1850 25 0 1 86254 13 1850 25 0 2 79944 14 1850 30 0 1 73063 15 1850 30 0 2 63963 16 1850 35 0 1 58844 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42816 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	9	1850	15	0	2	1110619
12 1850 25 0 1 86254 13 1850 25 0 2 79948 14 1850 30 0 1 73063 15 1850 30 0 2 63963 16 1850 35 0 1 58848 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	10	1850	20	0	1	1017281
13 1850 25 0 2 79948 14 1850 30 0 1 73063 15 1850 30 0 2 63963 16 1850 35 0 1 58848 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	11	1850	20	0	2	1003841
14 1850 30 0 1 73063 15 1850 30 0 2 63963 16 1850 35 0 1 58843 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42813 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	12	1850	25	0	1	862547
15 1850 30 0 2 63963 16 1850 35 0 1 58848 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	13	1850	25	0	2	799482
16 1850 35 0 1 58848 17 1850 35 0 2 50503 18 1850 40 0 1 47593 19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	14	1850	30	0	1	730638
17 1850 35 0 2 5050 18 1850 40 0 1 4759 19 1850 40 0 2 4281 20 1850 45 0 1 3842 21 1850 45 0 2 3412 22 1850 50 0 1 3213	15	1850	30	0	2	639636
18 1850 40 0 1 47593 19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	16	1850	35	0	1	588487
19 1850 40 0 2 42818 20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	17	1850	35	0	2	505012
20 1850 45 0 1 38423 21 1850 45 0 2 34123 22 1850 50 0 1 32134	18	1850	40	0	1	475911
21 1850 45 0 2 34125 22 1850 50 0 1 32134	19	1850	40	0	2	428185
22 1850 50 0 1 32134	20	1850	45	0	1	384211
	21	1850	45	0	2	341254
22 1050 50 0 2 2055	22	1850	50	0	1	321343
23 1030 30 0 2 28030	23	1850	50	0	2	286580
24 1850 55 0 1 19408	24	1850	55	0	1	194080
25 1850 55 0 2 18720	25	1850	55	0	2	187208
26 1850 60 0 1 1749	26	1850	60	0	1	174976
27 1850 60 0 2 16223	27	1850	60	0	2	162236

Census: N, O, Q?

- People
- Year
- Age
- Sex (M/F)
- Marital Status

Census: N, O, Q?

People
 Q-Ratio

Year
 Q-Interval (O)

AgeQ-Ratio (O)

Sex (M/F)

Marital Status

Basic Statistical Descriptions of Data*

*(These are mainly for understanding individual attributes)

Basic Statistical Descriptions of Data

Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population): $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Note: *n* is sample size and *N* is population size. $\mu = \frac{\sum x}{N}$

- Weighted arithmetic mean: $\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

Trimmed mean: chopping extreme values

Measuring the Central Tendency

• Median:

Middle value if odd number of values,
 or average of the middle two values
 otherwise

age	frequency
1-5	200
6 - 15	450
16-20	300
21 - 50	1500
51 - 80	700
81-110	44

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q_1 , median, Q_3 , max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
 - Below Q₁ 1.5×IQR, or Above Q₃ + 1.5×IQR

Boxplot

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot Analysis

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Measuring the Dispersion of Data

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

– Standard deviation s (or σ) is the square root of variance s^2 or σ^2

Histogram

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for:
 min, Q1, median, Q3,
 max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data $x_{i,j}$ data sorted in increasing order, f_i indicates that approximately f_i *100% of the data are below the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Allows the user to view whether there is a shift in going from one distribution to another
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Scatter plot

- Each pair of values (of two numeric attributes) is treated as a pair of coordinates and plotted as points in the plane
- Provides a first look at bivariate data to see clusters of points, outliers, etc

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Data Science: The Context

Data Preprocessing: Overview

Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable
 - Consistency: some modified but some not
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases/data sources, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

Normalization

Forms of Data Preprocessing

Data Cleaning

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation=" " (missing data)
 - noisy: containing noise, errors, or outliers
 - e.g., Salary="-10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - Discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples/instances have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

- Noise: random error or variance in a measured variable.
- Incorrect attribute values may due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - etc
- Other data problems which requires data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

smooth by fitting the data into regression functions

Clustering

detect and remove outliers

Combined computer and human inspection

 detect suspicious values and check by human (e.g., deal with possible outliers)

Regression

Cluster Analysis

