

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

РЕФЕРАТ

по дисциплине «Уравнения математической физики» на тему «Теоремы о единственности и устойчивости решений краевых задачи для уравнения Пуассона»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.

Б9121-01.03.02сп

Держапольский Ю.В.

(Ф.И.О.) (подпись)

Проверил проф. д.ф.-м. н.

Алексеев Г.В.

« 9 » июля 2024 г.

(Ф.И.О.)

г. Владивосток

2024

Оглавление

1	Уравнение Пуассона	3
2	Теоремы единственности и устойчивости решений краевых задач	4
3	Список литературы	10

1. Уравнение Пуассона

Пусть Ω – ограниченная область в \mathbb{R}^3 с границей $\Gamma \in C^1$, Ω_e – её внешность, $f \in C(\Omega)$ либо $f \in C(\Omega_e)$, $g \in C(\Gamma)$, \mathbf{n} – единичный вектор внешней нормали к границе Γ , $\overline{\Omega}_e = \Omega_e \cup \Gamma$. Тогда уравнение Пуассона выглядит так:

$$\Delta u = f,\tag{1}$$

где Δ – оператор Лапласа.

Комментарий. Оператор Лапласа определяется так:

$$\Delta u \equiv \operatorname{div}(\operatorname{grad} u).$$

В прямоугольных координатах в \mathbb{R}^3 его можно записать так:

$$\Delta u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.$$

Краевые задачи для уравнения Пуассона имеют вид:

1.1 Внутренняя задача Дирихле. Найти функцию $u \in C^2(\Omega) \cap C(\overline{\Omega})$, удовлетворяющую уравнению (1) в Ω и граничному условию

$$u|_{\Gamma} = g. \tag{2}$$

1.2 Внешняя задача Дирихле. Найти функцию $u \in C^2(\Omega_e) \cap C(\overline{\Omega}_e)$, удовлетворяющую уравнению (1) в Ω_e , граничному условию (2) и условию регулярности на бесконечности

$$u(\mathbf{x}) = o(1)$$
 при $|\mathbf{x}| \to \infty$. (3)

2.1 Внутренняя задача Неймана. Найти функцию $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, удовлетворяющую уравнению (1) в Ω и граничному условию

$$\left. \frac{\partial u}{\partial n} \right|_{\Gamma} = g. \tag{4}$$

Комментарий. $3\partial ecb$ $\frac{\partial u}{\partial n} \equiv \mathbf{n} \cdot \nabla u \equiv \mathbf{n} \cdot \operatorname{grad} u - npouзводная по внешней нормали к границе <math>\Gamma$.

- 2.2 Внешняя задача Неймана. Найти функцию $u \in C^2(\Omega_e) \cap C^1(\overline{\Omega}_e)$, удовлетворяющую уравнению (1) в Ω_e , граничному условию (4), и условию регулярности (3).
- 3.1 Внутренняя задача. Найти функцию $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, удовлетворяющую уравнению (1) в Ω и граничному условию

$$\left. \left(\frac{\partial u}{\partial n} + au \right) \right|_{\Gamma} = g. \tag{5}$$

Здесь $a: \Gamma \to \mathbb{R}, a \in C(\Gamma)$.

3.2 Внешняя задача. Найти функцию $u \in C^2(\Omega_e) \cap C^1(\overline{\Omega}_e)$, удовлетворяющую уравнению (1) в Ω_e , граничному условию (5) и условию регулярности (3).

2. Теоремы единственности и устойчивости решений краевых задач

Комментарий. Далее для доказательств будут использоваться свойства гармонических функций – удовлетворяющих уравнению Лапласа $\Delta u = 0$.

- $1. \ \ (Принцип максимума). \ Для функции <math>u \in H(\Omega) \cap C(\overline{\Omega}), \ u \neq \mathrm{const} \Rightarrow \\ \min_{x \in \Gamma} u(\mathbf{x}) < u(\mathbf{x}) < \max_{x \in \Gamma} u(\mathbf{x}) \ \forall \mathbf{x} \in \Omega \ .$
- 2. $u \in H(\Omega) \cap C(\overline{\Omega}), \ u|_{\Gamma} = 0 \Rightarrow u|_{\Omega} \equiv 0.$
- 3. $u \in H(\Omega) \cap C(\overline{\Omega}), \ u|_{\Gamma} \ge 0 \Rightarrow u|_{\Omega} \ge 0.$
- 4. $u, v \in H(\Omega) \cap C(\overline{\Omega}), u \leq v$ на $\Gamma \Rightarrow u \leq v$ на Ω .

5.
$$u, v \in H(\Omega) \cap C(\overline{\Omega}), v \geq 0, |u| \leq v$$
 на $\Gamma \Rightarrow |u| \leq v$ на Ω .

Для гармонических функций внешней области справедливы аналогичные свойства, при условии регулярности (3).

Теорема 1 (Единственность задач Дирихле). Решение $u \in C^2(\Omega) \cap C(\overline{\Omega})$ внутренней задачи Дирихле либо решение $u \in C^2(\Omega_e) \cap C(\overline{\Omega_e})$ внешней задачи Дирихле единственно.

Доказательство. Предположим, что задача Дирихле имеет два различных решения u_1, u_2 . Рассмотрим их разность $u = u_2 - u_1$.

$$\Delta u = \Delta u_2 - \Delta u_1 = f - f = 0. \tag{j}$$

$$u|_{\Gamma} = (u_2 - u_1)|_{\Gamma} = g - g = 0 \tag{b}$$

Значит функция u – гармоническая, на границе равная нулю. По свойству 2 во всей области Ω $u=u_2-u_1=0$. Значит $u_2=u_1$.

Теорема 2 (Устойчивость задач Дирихле). Для решений $u_1,u_2\in C^2(\Omega)\cap C(\overline{\Omega})$ внутренней задачи Дирихле либо решений $u_1,u_2\in C^2(\Omega_e)\cap C(\overline{\Omega_e})$ внешней задачи Дирихле при граничных условиях

$$u_1|_{\Gamma} = g_1, \quad u_2|_{\Gamma} = g_2,$$

и условии

$$|g_1(x) - g_2(x)||_{\Gamma} \le \varepsilon$$

Выполняется неравенство

$$|u_1(x)-u_2(x)|\leq arepsilon$$
 на $\overline{\Omega}$ ($\overline{\Omega}_e$ – для внешней задачи).

Доказательство. Разность $u=u_1-u_2$ – гармоническая функция (j), на границе Γ удовлетворяющая условию

$$|u| = |u_1 - u_2| = |g_1 - g_2| \le \varepsilon.$$

Поэтому по свойству 5 на всей области $\Omega \ |u_1 - u_2| = |u| \le \varepsilon$.

Комментарий. Далее используется первая формула Грина

$$\int_{\Omega} \nabla u \nabla v d\mathbf{x} = -\int_{\Omega} v \Delta u d\mathbf{x} + \int_{\Gamma} v \frac{\partial u}{\partial n} d\sigma. \tag{6}$$

Теорема 3 (Единственность внутренней задачи Неймана). *Решение* $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ внутренней задачи Неймана (1), (4) определяется с точностью до произвольной постоянной.

Доказательство. Предположим, что задача имеет два решения u_1, u_2 . Тогда их разность $u = u_1 - u_2$ является гармонической функцией (j), а на границе Γ выполняется условие

$$\frac{\partial u}{\partial n} = \frac{\partial (u_1 - u_2)}{\partial n} = \frac{\partial u_1}{\partial n} - \frac{\partial u_2}{\partial n} = g - g = 0.$$
 (bb)

Положим в формуле Грина (6) v = u, тогда

$$\int_{\Omega} |\nabla u|^2 d\mathbf{x} = -\int_{\Omega} u \Delta u d\mathbf{x} + \int_{\Gamma} u \frac{\partial u}{\partial n} d\sigma. \tag{7}$$

Учитывая условия (j), (bb) выводим

$$\int_{\Omega} |\nabla u|^2 d\mathbf{x} = 0. \tag{8}$$

Поскольку подынтегральная функция является неотрицательной, значит

$$\nabla u = 0$$
 в $\Omega \Rightarrow u = \mathrm{const.}$

Теорема 4 (Единственность внешней задачи Неймана). *Решение* $u \in C^2(\Omega_e) \cap C^1(\overline{\Omega}_e)$ внутренней задачи Неймана (1), (3), (4) единственно, если Ω_e — связное множество.

Доказательство. Предположим, что задача (1), (3), (4) имеет два решения: u_1 и u_2 . Возьмём шар достаточно большого радиуса B_R с границей Γ_R , что $\Omega_R \supset \Omega$, которым ограничим область Ω_e , получая $\Omega_R = \Omega_e \cap B_R$. Имеем границу $\partial \Omega_R = \Omega_e \cap B_R$.

 $\Gamma \cup \Gamma_R$. Применим формулу Грина (6), полагая $u=u_2-u_1, v=u$, и учитывая $\Delta u=0$ в Ω_R (j), будем иметь

$$\int_{\Omega_R} |\nabla u|^2 d\mathbf{x} = \int_{\Gamma} u \frac{\partial u}{\partial n} d\sigma + \int_{\Gamma_R} u \frac{\partial u}{\partial n} d\sigma. \tag{9}$$

В силу поведения функции $|\nabla u|=O(|\mathbf{x}|^{-2})$ при $|\mathbf{x}|\to\infty$, имеем $|\nabla u|^2=O(|\mathbf{x}|^{-4})$, в то время как объём Ω_R растёт как $O(R^3)$, R=|x|. Отсюда следует, что при $R\to\infty$ собственный интеграл в правой части стремится к сходящемуся несобственному интегралу $\int_{\Omega_e} |\nabla u|^2 d\mathbf{x}$. Также величина $\left(u\frac{\partial u}{\partial n}\right)\Big|_{\Gamma_R}$ убывает как $O(R^{-3})$, тогда как площадь поверхности Γ_R растёт как $O(R^2)$, значит интеграл $\int_{\Gamma_R} u\frac{\partial u}{\partial n} d\sigma$ стремится к нулю. Поэтому, переходя к пределу при $R\to\infty$ и учитывая, что $\frac{\partial u}{\partial n}=0$ на Γ (bb), получим

$$\int_{\Omega_e} |\nabla u|^2 d\mathbf{x} = 0. \tag{10}$$

С учётом связности Ω_e получаем, что $|\nabla u|=0$ в $\Omega_e\Rightarrow u=u_0=$ const. Из условия регулярности (3) следует, что $u_0=0\Rightarrow u_1=u_2$.

Комментарий. Для гармонической функции $u \in C^2(\Omega_e)$ во внешней области $\Omega_e = \mathbb{R}^3 \backslash \overline{\Omega}$, удовлетворяющей условию регулярности (3), существуют константы $R > 0, C = C_R(u)$, что выполняются условия

$$|u(\mathbf{x})| \le \frac{C_R}{|\mathbf{x}|}, \ |\nabla u| \le \frac{C_R}{|\mathbf{x}|^2}, \quad |\mathbf{x}| \ge R$$

то есть при стремлении к бесконечности убывают как $O(|\mathbf{x}|^{-1})$ и $O(|\mathbf{x}|^{-2})$. Из этого также следует, что $\left|\frac{\partial u}{\partial n}\right| = |\mathbf{n}\cdot\nabla u| = O(|\mathbf{x}|^{-2})$

Теорема 5 (Единственность внутренней третьей кравеой задачи). *Решение* $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ внутренней третьей краевой задачи (1), (5) единственно при

$$a \in C(\Gamma), \ a \ge 0$$
 на $\Gamma, \ \int_{\Gamma} a d\sigma > 0.$ (i)

Доказательство. Предположим, что задача имеет два решения: u_1 и u_2 . Тогда их разность $u=u_2-u_1$ – гармоническая функция, с краевым условием на Γ

$$\frac{\partial u}{\partial n} + au = \frac{\partial u_2}{\partial n} + au_2 - \left(\frac{\partial u_1}{\partial n} + au_1\right) = g - g = 0 \Rightarrow \frac{\partial u}{\partial n} = -au.$$
 (bbb)

Пологая в формуле (6) v = u, получим

$$\int_{\Omega} |\nabla u|^2 d\mathbf{x} = -\int_{\Omega} u \Delta u d\mathbf{x} + \int_{\Gamma} u \frac{\partial u}{\partial n} d\sigma. \tag{11}$$

Учитывая условия (j), (bbb) имеем

$$\int_{\Omega} |\nabla u|^2 d\mathbf{x} + \int_{\Gamma} au^2 d\sigma = 0.$$
 (12)

Поскольку по условию (i) $a\geq 0$, то для того, чтобы сумма положительных величин была равна нулю необходимо, что эти величины были равны нулю. Значит $\int_{\Omega} |\nabla u|^2 d\mathbf{x} = 0$, откуда $|\nabla u| = 0$ в $\Omega \Rightarrow u = u_0 = \mathrm{const.}$ Подставляя $u = u_0$ в (12), будем иметь

$$\int_{\Gamma} au_0^2 d\sigma = u_0^2 \int_{\Gamma} ad\sigma = 0.$$
 (13)

Из третьего условия в (i) получаем, что $u_0 = 0 \Rightarrow u_1 = u_2$.

Теорема 6 (Единственность внешней третьей краевой задачи). Решение $u \in C^2(\Omega_e) \cap C^1(\overline{\Omega}_e)$ внутренней третьей краевой задачи (1), (3), (5) единственно, если Ω_e – связное множество u $a \in C(\Gamma)$, $a \ge 0$ на Γ .

Доказательство. Аналогично доказательству единственности решения внешней задачи Неймана, предположим, что задача (1), (3), (5) имеет два решения: u_1 и u_2 . Возьмём шар достаточно большого радиуса B_R с границей Γ_R , что $\Omega_R \supset \Omega$, которым ограничим область Ω , получая $\Omega_R = \Omega \cap B_R$. Имеем границу $\partial \Omega_R = \Gamma \cup \Gamma_R$. Применим формулу Грина (6), полагая $u = u_2 - u_1, v = u$, и учитывая $\Delta u = 0$ в Ω_R (j), будем иметь

$$\int_{\Omega_R} |\nabla u|^2 d\mathbf{x} = \int_{\Gamma} u \frac{\partial u}{\partial n} d\sigma + \int_{\Gamma_R} u \frac{\partial u}{\partial n} d\sigma.$$
 (14)

В силу поведения функции $|\nabla u|=O(|\mathbf{x}|^{-2})$ при $|\mathbf{x}|\to\infty$, имеем $|\nabla u|^2=O(|\mathbf{x}|^{-4})$, в то время как объём Ω_R растёт как $O(R^3)$, R=|x|. Отсюда следует, что при $R\to\infty$ собственный интеграл в правой части стремится к сходящемуся несобственному интегралу $\int_{\Omega_e} |\nabla u|^2 d\mathbf{x}$. Также величина $\left(u\frac{\partial u}{\partial n}\right)\Big|_{\Gamma_R}$ убывает как $O(R^{-3})$, тогда как площадь поверхности Γ_R растёт как $O(R^2)$, значит интеграл $\int_{\Gamma_R} u\frac{\partial u}{\partial n} d\sigma$ стремится к нулю. Поэтому, переходя к пределу при $R\to\infty$ и учитывая, что $\frac{\partial u}{\partial n} = -au$ на Γ (bbb), получим

$$\int_{\Omega_e} |\nabla u|^2 d\mathbf{x} + \int_{\Gamma} a u^2 d\sigma = 0.$$
 (15)

Поскольку $a\geq 0$ на Γ и с учётом связности Ω_e , то получаем, что $|\nabla u|=0$ в $\Omega_e\Rightarrow u=u_0=$ const. Из условия (3) следует, что $u_0=0\Rightarrow u_1=u_2.$

3. Список литературы

[1] Алексеев Г.В. Классические модели и методы математической физики. Изд.: Владивосток: Дальнаука, 2011. стр. 318-323, стр. 340-345.