Распространение колебаний в упругих средах

Вариант 1

Уровень 1

Точки стоячей волны, которые не колеблются, называются ...

- 1. Узлами волны;
- 2. Максимумами волны;
- 3. Минимумами волны;
- 4. Пучностями волны;
- 5. Смещением волны.

Уровень 2

Мимо неподвижного наблюдателя за время $\Delta t = 10$ с прошло n = 4 гребня волны. Каков период распространяющейся волны?

- 1. 2,0 c;
- 2. 2,5 c;
- 3. 3,0 c;
- 4. 3,5 c;
- 5. 4,0 c.

Уровень 3

Уравнение бегущей волны имеет вид: $y = 0,1 \square \sin(2\pi t - 2x)(M)$, t(c). Чему равен период колебаний частиц среды?

- 1. 0,5 c;
- 2. 1,0 c;
- 3. 1,5 c;
- 4. 2,0 c;
- 5. 2,5 c.

Уровень 4

Волна распространяется и переходит из воздуха в воду. Во сколько раз изменяется при этом переходе длина волны, если скорость распространения волны в воздухе $340 \frac{M}{c}$, а в воде - $1500 \frac{M}{c}$?

- 1. 4,2;
- 2. 4,4;
- 3. 4,7;
- 4. 5,1;
- 5. 5.5.

Уровень 5

Длина волны $\lambda = 60$ см. На каком расстоянии друг от друга находятся точки волны с противоположными фазами колебаний?

- 1. 20 см;
- 2. 30 см;
- 3. 40 см;
- 4. 50 см;
- 5. 60 см.

Вариант 2

Скорость механических волн зависит от ...

- 1. Длины волны;
- 2. Упругих свойств среды;
- 3. Амплитуды волны;
- 4. Частоты волны;
- 5. Периода волны.

Уровень 2

Уравнение бегущей волны имеет вид: $y = 0.1 \square \sin(2\omega t - 2x)(M)$, t(c). Чему равна амплитуда колебаний частиц среды?

- 1.0,1 m;
- 2. 0,2 м;
- 3. 0,3 м;
- 4.0,4 m;
- 5. 0,5 м.

Уровень 3

Человек занимается серфингом и, находясь на доске движется вместе с волной. С какой скоростью волна несёт человека, если при длине волны 25 м колебания частиц поверхности воды происходят с частотой 0,6 Гц?

- 1. $15 \frac{M}{c}$;
- 2. $16\frac{M}{c}$;
- 3. $17 \frac{M}{c}$;
- 4. $18\frac{M}{c}$;
- 5. $19 \frac{M}{c}$.

Уровень 4

Расстояние между ближайшими гребнями волн в море 6 м. Лодка, привязанная к причалу, качается на волнах. Частота ударов волн о корпус лодки равна 0,3 Гц. На какое расстояние распространится данная волна за 3 с?

- 1. 4,2 м;
- 2. 4,6 м;
- 3. 4,8 м;
- 4. 5,4 m;
- 5. 5,9 м.

Уровень 5

Длина волны $\lambda = 60$ см. На каком расстоянии друг от друга находятся точки волны с разностью фаз $\Delta \phi$?

$$\left(\Delta \phi = \frac{\pi}{4}\right)$$

- 1. 7,0 см;
- 2. 7,5 см;
- 3. 8,0 см;
- 4. 8,5 см;
- 5. 9,0 см.

Вариант 3

Уровень 1

При распространении волны из одной среды в другую изменяются ...

- 1. Скорость и длина волны;
- 2. Амплитуда и частота волны;
- 3. Период и длина волны;
- 4. Период и частота волны;
- 5. Период и скорость волны.

Уровень 2

В океане длина волны достигает 270 м, а её период - 13,5 с. Найдите скорость этой океанской волны.

- 1. $5\frac{M}{c}$;
- 2. $10\frac{M}{c}$;
- 3. $15 \frac{M}{c}$;
- 4. $20 \frac{M}{c}$;
- 5. $25 \frac{M}{c}$.

Уровень 3

Уравнение бегущей волны имеет вид: $y = 0.1 \square \sin(2\pi t - 2x)(M)$, t(c). Чему равно время, в течение которого волна распространяется от источника колебаний на расстояние 12,5 м?

- 1. 1 c;
- 2. 2 c;
- 3. 3 c;
- 4. 4 c;
- 5. 5 c.

Уровень 4

Поплавок колеблется на воде. За 20 с он совершил 40 колебаний. При этом расстояние между берегом и поплавком 12 м, и на этом расстоянии укладывается 20 гребней волны. Найдите скорость волны.

1. 0,8
$$\frac{M}{c}$$
;

- 2. 1,0 $\frac{M}{c}$;
- 3. 1,2 $\frac{M}{c}$;
- 4. 1,4 $\frac{M}{c}$;
- 5. 1,6 $\frac{M}{c}$.

Поперечная волна распространяется вдоль упругого шнура со скоростью $15 \, \frac{\text{M}}{\text{c}}$. Период колебания точек шнура равен 1,2 с, амплитуда колебания составляет 2 см. Определите смещение точки, отстоящей на 45 м от источника колебаний, через 4 с.

- 1. $-1,83 \square 10^{-3}$ m;
- 2. $-0.83 \square 10^{-3}$ m;
- 3. 0 m;
- 4. $0.83 \square 10^{-3}$ m;
- 5. 1,83 □ 10⁻³ m.

Вариант 4

Уровень 1

При переходе из одной среды в другую остаются постоянными ...

- 1. Скорость и длина волны;
- 2. Амплитуда и частота волны;
- 3. Период и длина волны;
- 4. Период и частота волны;
- 5. Скорость и амплитуда волны.

Уровень 2

Определите фазу волны через 4 с с момента начала её распространения, если волна распространяется с частотой 100 Гц.

- 1. 200 π ;
- 2. 400π ;
- 3. 600π ;
- 4. 800π ;
- 5. 1000π .

Уровень 3

В некоторой среде распространяется волна. За время, в течение которого совершает 140 колебаний, волна распространяется на расстояние 112 м. Найдите длину волны.

- 1. 0,5 m;
- 2.0,8 m;
- 3. 1,1 m;

- 4. 1,4 m;
- 5. 1,7 м.

Уравнение бегущей волны имеет вид: $y = 0,1 \square \sin(2\pi t - 2x)(M)$, t(c). Чему равна фазовая скорость?

- 1. $1\frac{M}{c}$;
- 2. $2\frac{M}{c}$;
- 3. $3\frac{M}{c}$;
- 4. $4\frac{M}{c}$;
- 5. $5\frac{M}{c}$.

<u>Уровень 5</u>

Длина волны 2 м. Какова разность фаз между точками, отстоящими друг от друга на 1,5 м?

-π

- 1. 2 ;
- 2. π ;
 - $3 \cdot \pi$
- $3. \ \ ^{2}$;
- 4. 2π ;
 - $-5 \cdot \pi$
- 5. 2.

Звуковые волны. Скорость звука. Ультразвук

Вариант 1

Уровень 1

Звуковые волны с $v < 16 \ \Gamma$ ц называются ...

- 1. Гипозвуком;
- 2. Инфразвуком;
- 3. Слышимым звуком;
- 4. Ультразвуком;
- 5. Гиперзвуком.

Уровень 2

Чему равен уровень интенсивности звука с интенсивностью $10^{-3} \frac{\text{Br}}{\text{M}^2}$?

- 1. 60 дБ;
- 2. 70 дБ;
- 3. 80 дБ;

- 4. 90 дБ;
- 5. 100 дБ.

Человек услышал эхо своего голоса через 0,5 с после произнесения звука. На каком расстоянии от человека находится стена, отразившая звук, если скорость звука равна $340\,\frac{\text{M}}{\text{c}}$?

- 1. 70 м;
- 2. 75 м;
- 3. 80 м;
- 4. 85 m;
- 5. 90 м.

Уровень 4

Звуковая волна распространяется из воздуха в воду. Длина этой волны в воздухе 1 м. Какова длина этой волны в воде, если скорость звука в воде составляет $1360 \, \frac{\text{M}}{\text{c}}$, а в воздухе - $340 \, \frac{\text{M}}{\text{c}}$.

- 1. 1 m;
- 2. 2 m;
- 3. 3 m;
- 4. 4 m;
- 5. 5 m.

Уровень 5

Человек сбросил камень в пропасть глубиной 180 м. Через какое время после начала движения камня он услышит звук удара камня о дно, если скорость звука в воздухе $340\,\frac{\text{M}}{\text{c}}$.

- 1. 6,0 c;
- 2. 6,5 c;
- 3. 7,0 c;
- 4. 7,5 c;
- 5. 8,0 c.

Вариант 2

Уровень 1

 $\overline{3}$ вуковые волны с $10^9 < v < 10^{12}$ - 10^{13} Гц называются ...

- 1. Гипозвуком;
- 2. Инфразвуком;
- 3. Слышимым звуком;
- 4. Ультразвуком;
- 5. Гиперзвуком.

<u>Уровень 2</u>

Найдите скорость звука в воде, если колебания с периодом 0,005 с вызывают звуковую волну длиной 7,175 м.

- 1. $1300 \frac{M}{c}$;
- 2. $1435 \frac{M}{c}$;
- 3. $1700 \frac{M}{c}$;
- 4. $2095 \frac{M}{c}$;
- 5. 2150 $\frac{M}{c}$.

В воздухе скорость звука 340 $\frac{\text{м}}{\text{c}}$. Рассчитайте длины звуковых волн мужского и женского голосов, основные тоны которых соответствуют частотам 80 Γ ц и 1400 Γ ц.

- 1. 0,24 м, 4,25 м;
- 2. 1,28 м, 4,90 м;
- 3. 2,43 m, 6,79 m;
- 4. 3,84 m, 7,17 m;
- 5. 4,44 м, 7,57 м.

Уровень 4

Узлы стоячей волны, создаваемой камертоном в воздухе отстоят друг от друга на расстояние 40 см. Найдите частоту колебаний камертона, если скорость звука в воздухе $340\,\frac{\text{M}}{\text{c}}$.

- 1. 136 Гц;
- 2. 272 Гц;
- 3. 408 Гц;
- 4. 425 Гц;
- 5. 850 Гц.

Уровень 5

Найдите частоту звуковых колебаний в стали, если расстояние между ближайшими точками звуковой волны, отличающимися по фазе на 0.5π , составляет 1.54 м. Скорость звука в стали $5000 \, \frac{\text{M}}{\text{C}}$.

- 1. 798 Гц;
- 2. 805 Гц;
- 3. 812 Гц;
- 4. 826 Гц;
- 5. 858 Гц.

Вариант 3

Уровень 1

 $\overline{3}$ вуковые волны с $20000 < v < 10^9$ Гц называются ...

- 1. Гипозвуком;
- 2. Инфразвуком;
- 3. Слышимым звуком;
- 4. Ультразвуком;
- 5. Гиперзвуком.

Человек услышал удар грома через 5c после того, как увидел молнию. На каком расстоянии от человека была молния, если скорость звука 340

 $\frac{M}{c}$?

- 1. 1,2 км;
- 2. 1,7 км;
- 3. 2,3 км;
- 4. 2,8 км;
- 5. 3,2 км.

Уровень 3

Какова глубина моря, если ультразвуковой сигнал эхолокатора возвратился через 1,5 с? Скорость звука в воде $1480 \frac{M}{C}$.

- 1. 0,9 км;
- 2. 1,1 км;
- 3. 1,3 км;
- 4. 1,5 км;
- 5. 1,7 км.

Уровень 4

Имеются 2 источника звука. В точке, отстоящей от первого источника на $2,3\,$ м, а от второго на $2,48\,$ м, звук не слышен. Минимальная частота колебаний, при которой это возможно, $1\,$ k Γ ц. Найти скорость звука.

- 1. 2700 $\frac{M}{c}$;
- 2. $3200 \frac{M}{c}$;
- 3. $3600 \frac{M}{c}$;
- 4. $4200 \frac{M}{c}$;
- 5. $4800 \frac{M}{c}$.

Уровень 5

При стрельбе по мишени пуля вылетела из ружья со скоростью $700 \ \frac{\text{м}}{\text{c}}$. Стрелок услышал звук от удара о мишень через 3 с после выстрела. На

каком расстоянии от стрелка расположена мишень, если скорость звука принять равной $340 \, \frac{\text{M}}{\text{C}} \, ?$

- 1. 686 м;
- 2. 701 m;
- 3. 725 м;
- 4. 743 м;
- 5. 767 м.

Вариант 4

Уровень 1

Звуковые волны с 16 < v < 20000 Гц называются ...

- 1. Гипозвуком;
- 2. Инфразвуком;
- 3. Слышимым звуком;
- 4. Ультразвуком;
- 5. Гиперзвуком.

Уровень 2

Определите длину звуковой волны, если её скорость распространения равна $1435 \, \frac{\text{M}}{\text{C}}$, а частота - $200 \, \Gamma$ ц.

- 1. 6,354 м;
- 2. 7,175 m;
- 3. 8,267 м;
- 4. 9,513 m;
- 5. 10,116 м.

Уровень 3

Во сколько раз интенсивность звука с уровнем 30 дБ меньше интенсивности звука с уровнем 120 дБ?

- 1. $1 \square 10^9$:
- 2. $2 \square 10^9$;
- 3. $3 \square 10^9$:
- 4. $4 \square 10^9$;
- 5. $5 \square 10^9$.

Уровень 4

Звуковая волна распространяется от одной станции к другой по воздуху за время 24,4 с, а по рельсам - за время 1,51 с. Во сколько раз скорость распространения звука по рельсам больше скорости звука в воздухе?

- 1. 12;
- 2. 14:
- 3. 16;
- 4. 18;
- 5. 20.

Уровень 5

Дорожный мастер, приложив ухо к рельсу, услышал звук начавшего движение поезда, а через 2 с после этого до него донёсся гудок локомотива при отправлении. На каком расстоянии от станции отправления находился мастер? Скорости звуковых волн в воздухе и в стали принять равными соответственно $330 \, \frac{\text{м}}{\text{c}}$ и $5000 \, \frac{\text{м}}{\text{c}}$.

- 1. 689 м;
- 2. 700 м;
- 3. 706 м;
- 4. 723 m;
- 5. 738 м.

<u>Электромагнитные волны. Свойства электромагнитных волн.</u> <u>Принцип радиотелефонной связи. Простейший радиоприёмник</u>

Вариант 1

Уровень 1

Выделение низкочастотного звукового сигнала из модулированного высокочастотного называется ...

- 1. Радиомодуляцией;
- 2. Радиосвязью;
- 3. Детектированием;
- 4. Радиовещанием;
- 5. Радиолокацией.

Уровень 2

Радиоприёмник настроен на радиостанцию, работающую на частоте 10^7 Гц. Чему равна длина волн?

- 1. 10 м;
- 2. 20 m;
- 3. 30 m:
- 4. 40 m;
- 5. 50 м.

Уровень 3

Радиоприёмник настроен на радиостанцию, работающую на длине волны 25 м. Во сколько раз необходимо изменить ёмкость приёмного колебательного контура радиоприёмника, чтобы настроиться на длину волны 31м?

- 1. 1.2;
- 2. 1,5;
- 3. 1,8;
- 4. 2,0;
- 5. 2,5.

Уровень 4

Радиолокатор испускает импульсы с частотой 4,0 кГц. Какова наибольшая дальность обнаружения цели?

- 1. 35,5 км;
- 2. 36,0 км;
- 3. 36,5 км;
- 4. 37,0 км;
- 5. 37,5 км.

Радиолокационная станция излучает импульсы в 937,5 периодов электромагнитных волн. Какова длительность излучаемого импульса, если длина излучаемой волны 1,6 см?

- 1. $3\Box 10^{-12}$ c;
- 2. $5\Box 10^{-8}$ c;
- 3. $4\Box 10^{-5}$ c;
- 4. $2\Box 10^{-3}$ c;
- 5. $5 \square 10^2$ c.

Вариант 2

Уровень 1

Устройство, предназначенное для приёма информации, передаваемой с помощью электромагнитных волн радиочастотного диапазона, называется ...

- 1. Модулятором;
- 2. Радиоприёмником;
- 3. Детектором;
- 4. Антенной;
- 5. Радиопередатчиком.

Уровень 2

Радиоприёмник настроен на радиостанцию, работающую на длине волны 30 м. Чему равна частота таких волн?

- 1. $1\Box 10^7$ Гц;
- 2. $2 \square 10^7 \Gamma$ ц;
- 3. $3 \square 10^8 \Gamma$ ц;
- 4. $4 \square 10^9 \Gamma$ ц;
- 5. 5 □ 10⁹ Гц.

Уровень 3

Рассчитайте расстояние до объекта, если отражённый от него радиосигнал вернулся через $3 \,\square\, 10^{-6}$ с.

- 1. 350 м;
- 2. 400 м;
- 3. 450 м;
- 4. 500 м;
- 5. 550 м;

<u>Уровень 4</u>

При работе судовая радиолокационная станция излучает импульсы с частотой 2000 Гц. Каков радиус действия этой станции в таком режиме работы?

1. 55 км; 2. 60 км; 3. 65 км; 4. 70 км; 5. 75 км; Уровень 5 Радиолокатор находится на высоте 1 км испускает импульсы. Какова наибольшая дальность обнаружения цели? Радиус Земли принять равным $6.37 \cdot 10^6$ м. 1. 113 км; 2. 114 км; 3. 115 км; 4. 116 км; 5. 117 км. Вариант 3 Уровень 1 Волны с частотой $3 \Box 10^{18} < v < 3 \Box 10^{29}$ Гц называются ... 1. Радиоволнами; 2. Микроволнами; 3. Волнами видимого диапазона излучения; 4. Волнами диапазона ультрафиолетового излучения; 5. Волнами диапазона гамма-излучения. Уровень 2 Радиоприёмник настроен на радиостанцию, работающую на длине волны 30 м. Чему равен период для таких волн? 1. $1 \Box 10^{-7}$ c; 2. $2\Box 10^{-7}$ c; 3. $3\Box 10^{-7}$ c; 4. $4\Box 10^{-7}$ c; 5. $5\Box 10^{-7}$ c. Уровень 3 Расстояние от источника радиоволн до некоторого объекта составляет 450м. Через какое время вернётся радиосигнал, отражённый от этого объекта? 1. $3\Box 10^{-9}$ c:

- 2. $3\Box 10^{-8}$ c;
- 3. $3\Box 10^{-7}$ c;
- 4. $3\Box 10^{-6}$ c;
- 5. $3\Box 10^{-5}$ c.

Уровень 4

Наибольшая дальность обнаружения цели составляет 37,5 км. С каким периодом радиолокатор испускает импульсы?

- 1. $0.05 \square 10^{-3}$ c;
- 2. $0.15 \square 10^{-3}$ c;

- 3. $0.25 \square 10^{-3}$ c;
- 4. $0.35 \square 10^{-3} c$;
- 5. $0.45 \square 10^{-3}$ c.

Радиолокатор испускает импульсы с частотой 1,5 k Γ ц. На какой высоте находится радиолокатор? Радиус Земли принять равным 6,37 · 10 6 м.

- 1. 116 м;
- 2. 258 m;
- 3. 543 m;
- 4. 785 m;
- 5. 813 м.

Вариант 4

Уровень 1

Волны с частотой $4.3 \square 10^{14} < v < 7.5 \cdot 10^{16}$ Гц называются ...

- 1. Радиоволнами;
- 2. Микроволнами;
- 3. Волнами видимого диапазона излучения;
- 4. Волнами диапазона ультрафиолетового излучения;
- 5. Волнами диапазона гамма-излучения.

Уровень 2

Радиоприёмник настроен на радиостанцию, работающую на частоте $10^7 \Gamma$ ц. Чему равен период для таких волн?

- 1. $1 \square 10^{-7}$ c;
- 2. $2\Box 10^{-7}$ c;
- 3. $3\Box 10^{-7}$ c;
- 4. $4\Box 10^{-7}$ c;
- 5. $5\Box 10^{-7}$ c.

Уровень 3

Радиолокатор испускает импульсы с частотой 3,0 кГц. Какова длина радиоволн? Чему равно волновое число?

- $1.\ 10^3 \text{ m};$
- $2. 10^4 \text{ m};$
- 3. 10^5 m;
- 4. 10^6 m;
- $5. 10^7 \text{ M}.$

Уровень 4

Наибольшая дальность обнаружения цели составляет 37,5 км. С какой частотой радиолокатор испускает импульсы?

- 1. 1 кГц;
- 2. 2 кГц;
- 3. 3 кГц;
- 4. 4 кГц;
- 5. 5 кГц.

Уровень 5

Из пункта A в пункт B был послан звуковой сигнал, частота которого 50 Γ ц, и радиосигнал с частотой $5\square 10^8$ Γ ц. Число звуковых волн, укладывающихся на расстоянии от A до B, на $2\square 10^6$ волн меньше, нежели число радиоволн, укладывающихся на расстоянии от A до B. Определить расстояние между пунктами.

- 1. 1300 км;
- 2. 2400 км;
- 3. 3800 км;
- 4. 4500 км;
- 5. 5000 км.