C1 Set Theory

Robin Adams

August 8, 2022

1 Primitive Notions

Let there be sets.

Let there be a binary relation called *membership*, \in . When $x \in y$ holds, we say x is a *member* or *element* of y. We write $x \notin y$ iff x is not a member of y.

2 The Axioms

Axiom 1 (Extensionality). If two sets have exactly the same members, then they are equal.

Definition 2 (Empty Set). The *empty set*, \emptyset , is the set with no elements.

Definition 3. Given objects x_1, \ldots, x_n , we write $\{x_1, \ldots, x_n\}$ for the set whose elements are exactly x_1, \ldots, x_n .

Definition 4 (Union). The *union* of sets A and B, $A \cup B$, is the set whose elements are exactly the things that are members of A or members of B.

Definition 5 (Intersection). The *intersection* of sets A and B, $A \cap B$, is the set whose elements are exactly the things that are members of both A and B.

Definition 6 (Disjoint). Two sets A and B are disjoint iff they have no common members.

Definition 7 (Subset). A set A is a *subset* of a set B or is *included* in B, $A \subseteq B$, iff every member of A is a member of B.

Proposition 8. For any set A we have $A \subseteq A$.

PROOF: Every member of A is a member of A. \square

Proposition 9. For any set A we have $\emptyset \subseteq A$.

PROOF: Vacuously, every member of \emptyset is a member of A. \square

Definition 10 (Power Set). The *power set* of A, $\mathcal{P}A$, is the set whose elements are the subsets of A.

Definition 11 (Abstraction). Given a property P(x), we write $\{x \mid P(x)\}$ for the set whose elements are all the objects x such that P(x) is true.