Integral equations on open-curves: a new preconditioner

François Alouges, Martin Averseng

April 1, 2018

Abstract

In this paper, we analyze preconditioners for the integral equations arising in the resolution of acoustic scattering by an open arc in 2D in the Galerkin setting.

1 Preliminaries

Globalement, il faut recopier les définitions de Bruno. Let Γ a smooth open simple curve in \mathbb{R}^2 , and u_D and u_N two smooth functions on Γ . We consider the following boundary value problems, namely the Dirichlet problem (D):

$$\begin{cases} -\Delta u - k^2 u = 0, & \text{in } \mathbb{R}^2 \setminus \Gamma \\ u = u_D, & \text{on } \Gamma \end{cases}$$

and the Neumann problem (N):

$$\begin{cases}
-\Delta u - k^2 u = 0, & \text{in } \mathbb{R}^2 \setminus \Gamma \\
\frac{\partial u}{\partial n} = u_N. & \text{on } \Gamma
\end{cases}$$

These problems can be solved using integral equations. Let G the Green's function defined by

$$\begin{cases}
G(z) = -\frac{1}{2\pi} \ln|z|, & \text{if } k = 0, \\
G(z) = \frac{i}{4} H_0(k|z|), & \text{if } k > 0.
\end{cases}$$
(1)

We consider the single-layer potential defined for $x \notin \Gamma$ by

$$SL\lambda(x) = \int_{\Gamma} G(x - y)\lambda(y)d\sigma(y)$$
 (2)

where σ is the arc measure on Γ .. Denoting by γ the trace operator on Γ and $S = \gamma SL$, it is well-known that the solution u of (D) is given by

$$u = \mathrm{SL}\lambda$$

if λ is a solution of the integral equation

$$S\lambda = u_D. \tag{3}$$

The solution λ to the former problem is unique and well-defined. However, because of the edges of Γ , it is not smooth, leading in poor performance of numerical methods based on the discretization of λ itself. It is known that there exists a smooth function φ such that $\lambda = \frac{\varphi}{\omega(x)}$ whith

$$\omega(x) = \frac{1}{\sqrt{d(x, \partial \Gamma)}}$$

This is why, in [2], a weighted operator S_{ω} is introduced, defined by

$$S_{\omega}\varphi := S\left(\frac{\varphi}{\omega}\right).$$

This time, S_{ω} sends smooth functions on smooth functions, leading to improved convergence in numerical methods. Symmetrically, if we let

$$DL\nu(x) = \int_{\Gamma} \frac{\partial}{\partial n_y} G(x - y)\nu(y) d\sigma(y)$$
 (4)

the solution to problem (N) is obtained as

$$u = DL\nu$$

where ν is the solution of the integral equation

$$N\nu = u_N,\tag{5}$$

and N is the so-called hypersingular operator defined by

$$N\nu = \lim_{z \to 0^+} \frac{\partial}{\partial z} \mathrm{DL}\nu(x + z n_x).$$

Similarly, if u_N is smooth, there exists a smooth function ψ such that

$$\nu = \psi \omega$$
,

thus the corresponding weighted hyersingular operator is defined by

$$N_{\omega}\psi := N\left(\psi\omega\right)$$

In [2], it is shown that the operators S_{ω} and N_{ω} are inverse modulo a compact operator, justifying that they are good mutual preconditioners in the process of solving (3) and (5) numerically. Here study a new preconditioning technique based on a weighted version of the Laplace operator: for any function u defined on Γ

$$\Delta_{\omega}u := \omega \left(\omega u'\right)'$$

where the derivative is taken along the curvilinear abscissa. We analyze preconditioners given by that $S_{\omega}(\Delta_{\omega} - k^2\omega^2)$ for equation (3) and N_{ω} .

2 Analysis

Definition 1. Definition of the modified Sobolev spaces H^s_ω .

Theorem 1. For the bilinear form $(u,v) \mapsto \int_{-1}^{1} \frac{uv}{\omega}$, H^{s}_{ω} is the dual of H^{-s}_{ω} . We have compact injections from $H^{s}_{\omega} \to H^{t}_{\omega}$ when s < t.

2.1 Study on the segment with $k \neq 0$.

We write $H_0(z) = \frac{-1}{2\pi} \ln |z| J_0(z) + R(z)$ where R is an even entire function.

Proposition 1. The functions $r \mapsto \frac{J_0(r)-1}{r^2}$ and $r \mapsto \frac{J_0'(r)}{r}$ are bounded on \mathbb{R} .

Proof. We have for all $r \in \mathbb{R}$

$$\frac{J_0(r) - 1}{r^2} = -\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n-1)!^2} \left(\frac{r}{2}\right)^{2n}$$

which is easily shown to be absolutely convergent series for all r > 0. A similar argument gives the other result.

Proposition 2. For any k, we define $k_1 : r \mapsto (J_0(kr) - 1) \ln(|r|)$ defined on \mathbb{R} . Then the function $-\Delta_{\omega} k_1$ is bounded on \mathbb{R} .

Proof. We can write $-\Delta_{\omega}K_1 = (r^2 - 1)\partial_{rr}K_1 + r\partial_rK_1(r)$, yielding

$$-\Delta_{\omega}K_{1} = \ln(|r|)\left(kJ_{0}'(kr) + k^{2}(r^{2} - 1)J_{0}''(kr)\right) + (r^{2} - 1)\left(2\frac{kJ_{0}'(kr)}{|r|} - \frac{J_{0}(kr) - 1}{r^{2}}\right) + J_{0}(kr) - 1.$$

Corollary 1. The function

$$k_1: f \mapsto \int_{-1}^1 \frac{k_1(k|x-y|)}{\omega(y)} f(y) dy$$

Is continuous from $H^s_\omega \to H^{s+2}_\omega$

Theorem 2. An operator of the form

$$Kf = \int_{-1}^{1} \frac{k(x,y)f(y)}{\omega(y)} \tag{6}$$

with $k \in C^{\infty}(-1,1)$ maps H^s_{ω} to $H^{+\infty}_{\omega}$ for all s.

2.2 Non-flat arc, non-zero frequency

We consider a smooth non-intersecting curve Γ in \mathbb{R}^2 and a smooth parametrization $\mathbf{r}:[-1,1]\to \Gamma$. We choose \mathbf{r} such that $\left\|\frac{dr}{dt}\right\|=1$. Indeed we can assume the curve has unit length by proper rescaling. Indeed, if u is solution of the Helmholtz equation outside Ω with some boundary conditions on Γ (Dirichlet or Neuman) and if we define $u^\lambda=u(\lambda r,\theta)$, we find $\Delta u^\lambda+k^2\lambda^2u^\lambda=0$ outside $\Omega_\lambda=\frac{\Omega}{\lambda}$. By choosing $\lambda=|\Gamma|$, the border of the new domain is of length 1.

Without the rescaling (but still assuming constant speed parametrization), we can write

$$|r(t) - r(t')|^2 = L^2 |t - t'|^2 + \frac{C(t')^2}{2} |t - t'|^4$$

We note $G_k(t, t')$ the kernel of the non-zero non-flat arc operator.

Lemma 1. We have the following expansion

$$J_0(k \left| r(t) - r(t') \right|) = 1 - \frac{k^2}{4} L^2 \left| t - t' \right|^2 + \left(\frac{k^4 L^4}{64} - \frac{C(t')^2 k^2}{8} \right) \left| t - t' \right|^4 + (t - t')^5 F(t, t')$$

where F is a smooth bounded function.

Lemma 2. If L is the length of the curve and C(t') the curvature at a point t', one has

$$G_k(t,t') = -\frac{1}{2\pi} \ln|t - t'| \left(1 - \frac{k^2}{4} L^2 \left| t - t' \right|^2 + \left(\frac{k^4 L^4}{64} - \frac{C(t')^2 k^2}{8} \right) \left| t - t' \right|^4 + (t - t')^5 F(t,t') \right) + R(t,t')$$

where R is in $C^{\infty}([-1,1]^2)$.

Lemma 3.

$$\Delta_{\omega}^{t'} \left((t - t')^{2} \ln |t - t'| \right) = \omega^{2}(t') \frac{d^{2}}{dt'^{2}} \left((t - t')^{2} \ln |t - t'| \right) - t' \frac{d}{dt'} \left((t - t')^{2} \ln |t - t'| \right)$$

$$= \omega^{2}(t') \left(2 \ln |t - t'| + 4 - 1 \right) - t' \left(2(t' - t) \ln |t - t'| + 2(t' - t) \right)$$

$$= 2\omega^{2}(t) \ln |t - t'| + 2(t - t') \ln |t - t'| (t + 2t') + P(t, t')$$

where P is a polynmial in t and t'.

Lemma 4. The application $f \mapsto \omega^2 f$ is continuous in H^s_ω for any s.

Proof. This is obvious as
$$\left|\left\langle \omega^2 f, T_n \right\rangle_{\omega} \right| \leq \left|\left\langle f, T_n \right\rangle_{\omega} \right|$$
.

Lemma 5. The application $f \mapsto \omega^2 f'$ is continuous from H^s_ω to H^{s-1}_ω . The proof involves the Cesaro thm.

Lemma 6. The operator $\Delta_{\omega}\omega^2 - \omega^2\Delta_{\omega}$ is continuous from H_{ω}^s to H_{ω}^{s-1} .

Proof. We use the formula :
$$\Delta_{\omega}\omega^2 - \omega^2\Delta_{\omega} = 4x\omega^2f' + (4x^2 - 2)f$$

Lemma 7. The operator $S_0\omega^2 - \omega^2 S_0$ is continuous from H^s_ω to H^{s+2}_ω .

Proof. Use
$$\omega^2 T_n = \frac{2T_n + T_{n+2} + T_{|n-2|}}{4}$$
.

Be careful, the map $f\mapsto f'$ is not continuous from H^1_ω to L^2_ω , as can be checked with the example $f=\omega$.

Lemma 8. $S_k - S_0 = \omega(t)^2 \frac{k^2}{2} L^2 S_0 \Delta_{\omega}^{-1}$

References

- [1] Xavier Antoine and Marion Darbas. Generalized combined field integral equations for the iterative solution of the three-dimensional helmholtz equation. *ESAIM: Mathematical Modelling and Numerical Analysis*, 41(1):147–167, 2007.
- [2] Oscar P Bruno and Stéphane K Lintner. Second-kind integral solvers for te and tm problems of diffraction by open arcs. Radio Science, 47(6), 2012.