EKG Notes

Dan Kats

Last updated: March 6, 2020

Methods for Reading	1
The Only EKG Book You'll Ever Need	
Dr. Wyatt	
Dr. Ortiz	4
Basics	5
Axes	5
Normal Values	5
Enlargement and Hypertrophy	6
Arrhythmias	6
Sinus Arrhythmias	7
Supraventricular Arrhythmias	7
Ventricular Arrhythmias	8
Conduction Blocks	9
Preexcitation Syndromes (AVRTs)	9
Myocardial Ischemia and Infarction	10
Homeostatic Disturbances	10
Electrolyte Disturbances	10
Hypothermia	10
Drug Effects	11
Other Cardiac Disorders	11
Pulmonary Disorders	12
Other Disorders	12

Methods for Reading

The Only EKG Book You'll Ever Need

Data gathering

- 1. Standardization: check the standardization mark (10 mm high = 1 mV), paper speed
- 2. Heart rate
- 3. Intervals: duration of PR interval, QT interval, QRS complex
- 4. Axis: P waves, QRS complexes, T waves

Diagnoses

- 5. Rhythm
 - Normal P waves
 - QRS complexes wide or narrow
 - Relationship between P waves and QRS complexes
 - Regular or irregular
- 6. AV block
- 7. Bundle branch block or hemiblock
- 8. Preexcitation
- 9. Enlargement and hypertrophy
- 10. Coronary artery disease: Q waves and ST segment and T wave changes
- 11. Utter confusion: Is there anything you don't understand?

Dr. Wyatt

- 1. Rate
 - Atrial (P waves)
 - Ventricular (QRS)
- 2. Rhythm
 - Fast vs. slow
 - Regular vs. irregular
 - P waves present: atrial vs. junctional vs. idioventricular
 - P upright in lead II (sinus)?
 - All P waves with same morphology?
 - All Ps followed by QRS and all QRS preceded by P?
 - QRS narrow vs. wide
 - Dropped beats/extra beats/escape beats?

	Narrow	\mathbf{Wide}
	SVT	
Regular	Paroxysmal atrial tachycardia	VT- ob
	Paroxysmal junctional tachycardia	VTach SVT with aberrancy
	AFlutter with fixed block	
	AVRT/AVNRT	
	AFib	
Irregular	Wandering pacemaker/MAT	AFib with aberrancy
	AFlutter with variable block	

- 3. Intervals
 - PR: beginning of P to beginning of QRS
 - Normal: 3–5 small boxes (0.12–0.2 sec)
 - Assess for AV blocks
 - \triangleright 1°: > 0.2 sec
 - ▷ 2°: Mobitz I, II
 - ▷ 3°: Complete
 - QRS
 - Normal: < 3 small boxes (0.12 sec)
 - Assess for BBBs
 - \triangleright RBBB: RSR' in V1/V2
 - \triangleright LBBB: R-R' in V5/V6
 - ▶ TCA overdose
 - QT: beginning of Q to end of T
 - Normal: $<\frac{1}{2}$ R-R
 - Normal QTc: < 0.42 sec
 - Long: hypo-Mg, hypo-Ca, congenital, medications, TCA overdose

- lacktriangledown Prolongation ightarrow torsades de pointes
- 4. Axis
 - Normal: (-30°) - (90°)
 - Thumb method
 - L thumb is lead IR thumb is aVF
 - Up, up \rightarrow normal axis Up, down \rightarrow LAD (if lead II is down) Down, up \rightarrow RAD Down, down \rightarrow extreme AD
- 5. Hypertrophy
- 6. Ischemia
 - Q pathologic if:
 - > 1 small box (0.04 sec) wide
 - $> \frac{1}{3}$ of R wave deep
 - ST elevation/depression \rightarrow injury
 - T inversion \rightarrow ischemia
 - II, III, $aVF \rightarrow inferior$
 - V1–V4 \rightarrow anterior/septal \triangleright ST depression in V1–V2 \rightarrow posterior
 - I, aVL, $V5-V6 \rightarrow lateral$

Dr. Ortiz

- 1. Demographics: name, number, date
 - Calibration (looks like Roman numeral I)
 - Vertically: 10 mm = 1 mV
 - Horizontally: 1 small box = 0.04 sec, 1 large box = 0.2 sec
 - Paper speed: 25 mm/sec
- 2. Rhythm strip (lead II, \pm V1 and V5)
 - Regularity?
 - Funny beats?
 - P wave: completely positive (sinus) vs. "m"-shaped (LAE) vs. peak (RAE), negative component (not sinus) vs. multiple or irregular (AFib) vs. regular and saw-tooth (AFlutter)
 - Regular groups of P-QRS-T?
 - PR interval (including P)
 - < 3 small boxes (< 120 msec) \rightarrow accessory pathway or low atrial rhythm
 - 3–5 small boxes (120–200 msec) \rightarrow normal
 - > 5 small boxes (> 200 msec) \rightarrow 1° AV block
 - QRS: pathologic Q?
 - QT: QTc
- 3. QRS (step 3, 3 letters, 3 foci with 3 sub-foci)
 - Axis: normal $((+90^{\circ})-(-30^{\circ}))$, left axis, right axis
 - Leads I and II (I + II = 3)
 - Width: normal (< 3 small boxes), RBBB, LBBB
 - Wide \rightarrow look at V1 (V5 will be opposite)
 - \triangleright Up with R' \rightarrow RBBB
 - \triangleright Down with large S \rightarrow LBBB
 - Height: low voltage, normal, L/RVH
- 4. Last 4 things
 - Rate
 - ST
 - T: upright in all leads but aVR
 - Infarcts (old)
 - Anterior and septal (V1–V4): poor R wave progression and/or pathologic Q → infarct
 - Lateral (aVL, I, V5, V6): pathologic $Q \rightarrow infarct$
 - Inferior: pathologic Q in one of the following combinations:
 - ▶ II and III
 - \triangleright II and aVF
 - ▶ III and aVF
 - ▷ II, III, and aVF

Basics

- Anterior: V1, V2, V3, V4

– Inferior: II, III, aVF

- Left lateral: I, aVL, V5, V6

- Right: aVR, V1

- P: atrial depolarization

QRS: ventricular depolarizationT: ventricular repolarization

Axes

Normal Values

- PR: 3-5 small boxes (0.12-0.20 sec)

- QRS < 3 small boxes (0.12 sec)

 $-QT \leq \frac{1}{2} R-R$

- QTc ≤ 0.42 sec

■ QTc = $\frac{QT}{\sqrt{R-R}}$ where R-R = length of cardiac cycle (time between R waves)

- Axis: (-30°) - $(+90^{\circ})$

Inherent Pacing Rates

- Sinus: 60–100

Atrial ectopic: 60–80
AV/junctional: 40–60
Ventricular: 20–40

Enlargement and Hypertrophy

- Right atrial enlargement (first part of P wave)
 - P waves with an amplitude exceeding 2.5 mm in the inferior leads
 - No change in the duration of the P wave
 - Possible right axis deviation of the P wave
- Left atrial enlargement (last part of P wave)
 - The amplitude of the terminal (negative) component of the P wave may be increased and must descend at least 1 mm below the isoelectric line in lead V1
 - The duration of the P wave is increased, and the terminal (negative) portion of the P wave must be at least 1 small block (0.04 second) in width
 - No significant axis deviation is seen because the left atrium is normally electrically dominant
- Right ventricular hypertrophy
 - Right axis deviation is present, with the QRS axis exceeding $+100^{\circ}$
 - The R wave is larger than the S wave in V1, whereas the S wave is larger than the R wave in V6
- Left ventricular hypertrophy
 - The R wave in V5 or V6 plus the S wave in V1 or V2 exceeds 35 mm
 - The R wave in aVL is 11 mm
 - The R wave in aVL plus the S wave in V3 exceeds 20 in women and 28 in men
 - Left axis deviation exceeding -15° is also often present

Arrhythmias

- 1. Sinus arrhythmias
- 2. Ectopic rhythms
- 3. Reentrant arrhythmias
- 4. Conduction blocks
- 5. Preexcitation syndromes

Sinus Arrhythmias


~~~

Sinus arrest or exit block with junctional escape

### Supraventricular Arrhythmias

Narrow QRS, except in the case of aberrancy

|                    | Regular                           |                        |
|--------------------|-----------------------------------|------------------------|
| Paroxysmal         | P waves are retrograde if visible |                        |
| Supraventricular   | Rate: 150–250 bpm                 |                        |
| Tachycardia (PSVT) | Carotid massage: slows or         |                        |
|                    | terminates                        |                        |
|                    | Regular, saw-toothed              |                        |
|                    | 2:1, 3:1, 4:1, etc., block        | Carotid massage begins |
|                    | Atrial rate: 250–350 bpm          | *                      |
| Atrial Flutter     | Ventricular rate: one-half,       | mmmm                   |
|                    | one-third, one-quarter, etc., of  |                        |
|                    | atrial rate                       |                        |
|                    | Carotid massage: increases block  |                        |

| Atrial Fibrillation                                                       | Irregular Undulating baseline Atrial rate: 350–500 bpm Ventricular rate: variable Carotid massage: may slow ventricular rate   |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Multifocal Atrial<br>Tachycardia (MAT),<br>Wandering Atrial<br>Pacemakers | Irregular At least three different P-wave morphologies Rate: 100–200 bpm; sometimes < 100 bpm Carotid massage: no effect       |  |
| Paroxysmal Atrial<br>Tachycardia (PAT)                                    | Regular Rate: 100–200 bpm Characteristic warm-up period in the automatic form Carotid massage: no effect, or only mild slowing |  |

Aberrancy: atrial premature beat occurs before Purkinje fibers fully repolarize, so only part of the signal conducts quickly, and the rest travels slowly

## Ventricular Arrhythmias

### Wide QRS



#### **PVCs**

Red flags (increased chance of life-threatening arrhythmia)

- Frequent PVCs
- Consecutive PVCs (esp., three or more in a row)
- Multiform PVCs
- "R-on-T" phenomenon: PVCs falling on the previous T wave
- PVC in the setting of an acute myocardial infarction

Ventricular Tachycardia: three or more PVCs in a row

Ventricular Fibrillation: almost exclusively in dying hearts

#### **Conduction Blocks**

- Sinus node block: within the sinus node
- AV block: between the sinus node and the terminal Purkinje fibers
  - 1°: PR interval > 0.2 seconds
  - 2°, Mobitz type I (Wenckebach): Progressive lengthening of the PR interval until a P wave is not followed by a QRS complex (a "dropped beat"), documented as the ratio of P waves to QRS complexes (e.g., 4:3)
  - 2°, Mobitz type II: Constant PR interval with a P wave that is not followed by a QRS complex (a "dropped beat") every x cycles
  - 3°(complete): Complete AV dissociation with ventricular rate slower than atrial rate
- Bundle branch block
  - Right bundle branch block
    - $\triangleright$  Wide QRS (> 0.12 seconds)
    - ▷ RSR' (rabbit ears) in V1, V2 with ST depression and T wave inversion
    - ▶ Reciprocal deep S waves in I, aVL, V5, V6
  - Left bundle branch block
    - $\triangleright$  Wide QRS (> 0.12 seconds)
    - ▷ I, aVL, V5, V6 show prolongation of rise of R waves (broad or notched) with ST depression and T wave inversion
    - ▶ Reciprocal deep, broad S waves in V1, V2
  - Hemiblock: block of one of the three fascicles of the left bundle branch
    - ▶ Axis deviation
    - ▶ Normal QRS
  - Bifascicular block: RBBB + hemiblock
  - Incomplete bundle branch block: RBBB or LBBB appearance of tracing, but QRS 0.10–0.12 seconds

### Preexcitation Syndromes (AVRTs)

Accessory pathways bypass the AV node, causing the ventricles to contract too early

- Wolff-Parkinson-White: bundle of Kent connects an atrium to a ventricle
  - $\blacksquare$  PR < 0.12 seconds
  - Wide QRS (> 0.1 second)
  - Delta wave: slurred initial upstroke of the QRS
- Lown-Ganong-Levine: intranodal James fiber bypasses delay of AV node
  - PR < 0.12 seconds
  - Narrow QRS
  - No delta wave

# Myocardial Ischemia and Infarction

Evolution of EKG during acute MI:

- 1. T wave peaking followed by symmetric T wave inversion (indicative of ischemia, nonspecific for MI)
- 2. ST segment elevation, merged with the T wave (indicative of myocardial injury)
- 3. The appearance of new Q waves ( $>\frac{1}{3}$  height of R wave, > 0.04 seconds)
- Reciprocal changes

### Homeostatic Disturbances

### Electrolyte Disturbances

- Hyperkalemia (in order of increasing [K<sup>+</sup>])
  - 1. Diffuse peaked T waves
  - 2. PR prolongation
  - 3. P wave flattens and disappears
  - 4. QRS widens and merges with T wave
  - 5. Sine wave
- Hypokalemia
  - ST segment depression
  - Flattening of the T wave with prolongation of the QT interval
  - Appearance of a U wave
- Hypercalcemia
  - QT shortening
- Hypocalcemia
  - QT prolongation

### Hypothermia

- Slowing: sinus bradycardia, prolongation of all segments and intervals
- Distinctive ST segment elevation: abrupt ascent right at the J point, followed by equally sudden plunge back to baseline ("J/Osborn wave")
- Arrhythmias, esp., slow atrial fibrillation
- Muscle tremor artifact due to shivering

#### **Drug Effects**

- Digitalis
  - Therapeutic levels (expected changes)
    - > ST segment depression (asymmetric) with gradual downslope, merged with R wave
    - ▷ T wave flattening or inversion
  - Toxic levels
    - ▷ Sinus node suppression: exit block or complete suppression
    - ▶ AV block (any)
    - ▶ Tachyarrhythmia (any)
- Medications that prolong the QT interval
  - Antiarrhythmics: sotalol, quinidine, procainamide, disopyramide, amiodarone, dofetilide, dronedarone
  - Antibiotics: macrolides (e.g., erythromycin, clarithromycin, azithromycin) and fluoroquinolones (e.g., levofloxacin and ciprofloxacin)
  - Antifungals (e.g., ketoconazole)
  - Nonsedating antihistamines (e.g., astemizole, terfenadine)
  - Psychotropic drugs: antipsychotics (e.g., haloperidol, phenothiazines), TCAs (e.g., amitriptyline), SSRIs (e.g., citalopram, fluoxetine), and methadone

### Other Cardiac Disorders

- Pericarditis
  - Diffuse ST segment elevation
  - Diffuse T wave flattening or inversion (after ST returns to baseline)
- Pericardial effusion
  - Low voltage in all leads
  - If large: electrical alternans (axis varies beat-to-beat due to rotation of floating heart)
- Hypertrophic obstructive cardiomyopathy
  - Left ventricular hypertrophy

- Left axis deviation
- Q waves laterally or inferiorly
- Myocarditis
  - Conduction blocks (esp., BBB or hemiblock)

# **Pulmonary Disorders**

- COPD
  - Low voltage (precordial leads)
  - Right axis deviation (precordial leads) due to expanded lungs
  - Poor R wave progression (precordial leads)
- Cor pulmonale
  - Right atrial enlargement
  - Right ventricular hypertrophy
  - Repolarization abnormalities
- Acute massive PE
  - Right ventricular hypertrophy
  - Repolarization abnormalities
  - RBBB
  - S1Q3 pattern: large S wave in lead I and a deep Q wave in lead III
  - Arrhythmia

### Other Disorders

- CNS (e.g., subarachnoid bleed or cerebral infarction)
  - Diffuse T wave inversion (symmetrical, very deep and wide)
  - U waves
  - Sinus bradycardia