1. 电路如下图所示,已知 $u_i=5\sin\omega t$ (V),二极管导通电压 $U_D=0.7$ V。 试画出 u_i 与 u_0 的波形,并标出幅值。

2. 由理想二极管组成的下图电路中,试确定各电路的输出电压 $V_{\rm ol}$ 、 $V_{\rm o2}$ 和 $V_{\rm o3}$ 。

3. 写出图示各电路的输出电压值,设二极管导通电压 $U_{\rm D} = 0.7 {\rm V}$ 。

模拟电子技术作业题----第一章

4. 电路如图所示,设二极管导通电压 $U_D=0.7V$,电容对交流信号可视为短路, u_i 为正弦波,有效值为 10 mV。求二极管 D 中流过的交流电流有效值为多少?

5. 现有两只稳压管,它们的稳定电压分别为 6V 和 8V,正向导通电压为 0.7V。 试问:(1)若将它们串联相接,则可得到几种稳压值?各为多少?(2)若将它们并 联相接,则又可得到几种稳压值?各为多少?请定性画出电路原理图。

- 6. 已知电路中稳压管的参数: $U_Z=6V$, $I_{Zmin}=5mA$, $I_{Zmax}=25mA$ 。
 - (1) 分别计算 $U_{\rm I}$ 为 10V、15V、35V 三种情况下,输出电压 $U_{\rm O}$ 的值。
 - (2) 若 $U_{\rm I}$ =35V 时负载开路,则会出现什么现象?为什么?

- 7. 在图所示电路中,发光二极管导通电压 $U_{\rm D}$ =1.5V,正向电流在 5~15mA 时才能正常工作; $V_{\rm O1}$ 、 $V_{\rm O2}$ 、 $V_{\rm O3}$ 的取值有两种情况 4V 或 0.4V 随机出现。若希望 $V_{\rm O1}$ 、 $V_{\rm O2}$ 、 $V_{\rm O3}$ 为 4V 时点亮发光二极管,试问:
- (1) 限流电阻 R_1 , R_2 , R_3 以及 R 的取值范围是多少?
- (2)图(a)和图(b)两种限流方式有何区别?哪一种方式更好?

1. 测得放大电路中处于放大状态的六只晶体管的直流电位如下图所示。在圆圈中画出管子的图形符号,并分别说明它们是硅管还是锗管。

2. 现测得放大电路中这两只管子两个电极的电流如图所示。(1)分别求另一电极的电流,标出其实际方向;(2)在圈中画出管子;(3)分别求两只管子的直流电流放大系数。

3. 某晶体管的输出特性曲线如图所示,其集电极最大耗散功率 $P_{\text{CM}} = 200 \text{mW}$,试画出它的过损耗区。

4. 分别改正下图所示各电路中的错误, 使它们有可能放大正弦波信号。要求保留 电路原来的共射接法和耦合方式。

5. 电路如图所示,已知晶体管 $\beta=50$,在下列情况下,用直流电压表 测晶体管的集电极电位,应分别为多少?设 $V_{CC}=12V$,晶体管饱和 管压降 $U_{\text{CES}} = 0.5 \text{V}$ 。

- (1) 正常情况;
- (2) R_{b1} 短路;
- (3) R_{b1} 开路;

- (4) R_{b2} 开路;
- (5) R_C短路。

(c)

- 6. 放大电路及三极管输出特性如下图所示。
- (1) 在输出特性曲线上画出直流负载线。如要求 $I_{CQ}=2mA$,确定此时的静态工作点,并确定此时的 R_b 的值。
 - (2) 分别求出 R_L =∞和 R_L =3k Ω 时的最大不失真输出电压有效值 U_{om} 。
- (3) 若 R_b 调至 150k Ω 且 i_B 的交流分量 i_b (t) =20sin ω t (μ A), 画出 i_C 和 u_{CE} 的波形图,这时出现什么失真?

班级:

7. 电路如图所示, 晶体管的 β = 60, r'_{bb} =100 Ω 。

- (1) 求解 Q 点、 \dot{A}_u 、 R_i 和 R_o ;
- (2)设 $U_{\rm s}=10{
 m mV}$ (有效值),问 $U_{\rm i}=$? $U_{\rm o}=$? 若 C_3 开路,则 $U_{\rm i}=$? $U_{\rm o}=$?

8. 如图所示电路输入信号为正弦波。

(1) 求源电压放大倍数
$$\dot{A}_{us1}=\dot{U}_{o1}/\dot{U}_{s}=?\dot{A}_{us2}=\dot{U}_{o2}/\dot{U}_{s}=?$$

(2) 试定性画出输入电压 u_s 和输出电压 u_{o1} 和 u_{o2} 的波形。

- 9. 在如图所示放大电路中,设 V_{CC} =12V, β =40, U_{BE} = 0.7V, r_{be} = 1K Ω 。
 - (1) 确定 Q点; (2) 求放大电路的电压放大倍数及输入电阻和输出电阻;
 - (3) 说明发射极电阻的作用; (4) 说明电容 C_E 对放大电路的影响。

10. 在如图所示电路中, $V_{\rm cc}$ =10V,设三极管的 β =100, $U_{\rm BE}$ = 0.7V, $r_{\rm be}$ = 1K Ω 。 试求:该射极输出器的输入电阻 $R_{\rm i}$ 和输出电阻 $R_{\rm o}$ 各为多少?

11. 判断如图所示放大电路为何种组态?若输入信号为正弦波,试对应 u_i 定性画出 u_{BE} 、 i_E 、 i_C 、 u_{CB} 及 u_o 的波形,并说明 u_o 与 u_i 的相位关系。

12. 已知某共射放大电路的 Bode 如图所示, 试写出的表达式。

- 13. 某放大电路的频率响应如图所示。
 - (1) 该电路的增益频率响应 $\dot{A}_u(j\omega)$ =?
- (2) 已知放大电路输出电压最大不失真峰值为 $U_{\rm OM}=10{\rm V}$,当输入信号 $u_i=0.1\sin(2\pi\times 150)\,t+2\sin(2\pi\times 5\times 10^3)\,t(V)$ 时,试判断输出信号是否会失真? 说明理由。

模拟电子技术作业题-----第三章

1. 测得放大电路中 MOS 管的各极的电位如表所示,并已知其开启电压值。试分析各管的工作状态(截止区、恒流区、可变电阻区),并填入表内。

管 号	U _{GS (th)} /V	$U_{\mathbb{S}}/\mathrm{V}$	$U_{ m G}/{ m V}$	$U_{\mathrm{D}}/\mathrm{V}$	工作状态
T ₁	4	-5	1	3	
T ₂	-4	3	3	10	
T ₃	-4	6	0	5	

2. 在如图所示电路中,已知增强型 MOS 管的开启电压 $U_{GS\ (th)}$ 均为 2V,试判断 各管的工作状态。

3. 已知图(a)所示放大电路中,FET 的转移特性如图(b)所示。 试求解电路的 Q 点和 A_u 值。

 $u_{\rm GS}/{
m V}$

4. 在如图所示放大电路中,FET 的 $I_{DSS}=2.4$ mA, U_{GS} (off) =-6V,各电容器的容量足够大。若要求 $U_{GS}=-1.8$ V,试求:

- (1) 电阻 R_{G1} 的数值。
- (2)漏极电流 I_{DQ} 的数值。

(3)
$$\dot{A}_{u1} = \frac{\dot{v}_{o1}}{\dot{v}_i} = ? \dot{A}_{u2} = \frac{\dot{v}_{o2}}{\dot{v}_i} = ?$$

1. 通用型集成运放一般由几部分电路组成(用方框图的方法表示),每一部分常采用哪种基本电路?通常对每一部分性能的要求分别是什么?

2. 多路电流源电路如图所示,已知所有晶体管的特性均相同, $U_{\rm BE}$ 均为 0.7V。试求 $I_{\rm C1}$ 、 $I_{\rm C2}$ 各为多少?

3. 已知一个集成运放的开环差模增益 A_{od} 为 100dB,最大输出电压值 $\pm U_{oM} = \pm 12V$ 。试分别计算差模输入电压 $u_{\rm I}$ (即 $u_{\rm P} - u_{\rm N}$) 为 $10 \, \mu \, V$ 、 $100 \, \mu \, V$ 、1mV、1V 和 $-10 \, \mu \, V$ 、 $-100 \, \mu \, V$ 、-1mV、-1V 时,输出电压 $u_{\rm O}$ 的幅值。

- 4. 在下图所示电路中,已知 $V_{CC}=15V$, T_1 和 T_2 管的饱和管压降 | U_{CES} | =2V,输入电压足够大。
 - (1) 说明电路中 D_1 、 D_2 和 R_2 管的作用;
 - (2) 求最大不失真输出电压的有效值 $U_{om}=?$;
- (3) 求负载电阻 R_L 上电流的最大值 $I_{oM}=?$;
- (4)求最大输出功率 $P_{om}=?$ 效率 $\eta=?$ 此时每只晶体管的管耗 $P_{T}=?$

- **5.** 电路如图所示,所有晶体管均为硅管,β 均为 60, r'_{bb} =100Ω,静态时 | U_{BEQ} | \approx 0.7V。
 - (1) 求静态时 T_1 管和 T_2 管的发射极电流 $I_{EO}=$?
- (2) 若静态时 $u_0>0$,则应如何调节 R_{c2} 的值才能使 $u_0=0$ V?若静态 $u_0=0$ V,则 $R_{c2}=$? 电压放大倍数为多少?

6. 电路如图所示。已知电压放大倍数为-100,输入电压 $u_{\rm I}$ 为正弦波, T_2 和 T_3 管的饱和压降 | $U_{\rm CES}$ | =1V。试问:(1)在不失真的情况下,输入电压最大有效值 $U_{\rm imax}$ 为多少伏?

(2) 若 U_i =10mv(有效值),则 U_o =? 若此时 R_3 开路,则 U_o =? 若 R_3 短路,则 U_o =?

7. 下图中,可以构成复合管的标出它们等效管的类型(如 NPN 型、PNP型、N沟道结型…)及管脚(b、e、c或d、g、s)。对于不能复合的,请改进等效成第一个管子的管型。

- 8. 设图示各电路的静态工作点均合适:
 - (1) 画出微变等效电路;
 - (2) 写出 \dot{A}_u 、 R_i 和 R_o 的表达式。

(d)

1. 判断各电路中是否引入了反馈;若引入了反馈,则判断是正/负反馈;若引入了交流负反馈,则判断是哪种组态的负反馈。设图中电容对信号可视为短路。

- 2. 要实现以下目的,在放大电路中应该引入何种组态的负反馈:
- (1) 电流-电压转换:
- (2) 电压-电流转换;
- (3)输入电阻高,输出电压稳定;

(c)

- (4)输入电阻低,输出电流稳定;
- (5) 从信号源获取的电流小, 输出带负载能力强;

班级: 姓名: 学号:

3. 在如图所示电路中:

- (1) 试引入合适的交流负反馈,使输入电压 u_1 转换成稳定的输出电流 i_L ;
- (2) 若 u_I =0~5V 时, i_L =0~10mA,则反馈电阻 R_F 应取多少?

- **4.** 电路如图所示,已知 T_1 和 T_2 的饱和管压降 $\mid U_{CES} \mid = 2V$,直流功耗可忽略不计。
 - (1) R_3 、 R_4 和 T_3 的作用是什么?
 - (2) 负载上可能获得的最大输出功率 P_{om} 和电路的转换效率 η 各为多少?
- (3)设最大输入电压的有效值为 1V。为了使电路的最大不失真输出电压的峰值达到 16V,电阻 R_6 至少应取多少千欧?

5. 判断各电路中交流负反馈的组态,并在深度负反馈条件下计算电压放大倍数。 设图中所有电容对交流信号均可视为短路。

班级: 姓名: 学号:

1. 试求下图所示各电路输出电压与输入电压的运算关系式。

- 2. 理想运放电路如图所示,设电位器动臂到地的电阻为 KR_W , $0 \le K \le 1$ 。
 - (1) 试求该电路电压增益的调节范围。
- (2)已知运放的最大输出限幅值 $U_{oM}=14V$, U_{i} 有两种取值 1V 或 2V,求对应的 U_{o} 分别为多少?

3. 求如图所示电路 u_0 和 u_{II} 、 u_{I2} 之间的运算关系式。

- 4. 如图所示电路,已知: U_{I1} = 4V 和 U_{I2} = 1V 。
 - (1) 当开关 S 打开时,写出 U_{O3} 和 U_{O1} 之间的关系式;
 - (2) 写出 U_{04} 与 U_{02} 和 U_{03} 之间的关系式;
 - (3) 当开关 S 闭合时,分别求 U_{O1} U_{O2} U_{O3} U_{O4} 值(对地的电位);
 - (4) 设t = 0时将S打开,问经过多长时间 $U_{O4} = 0$?

5. 试说明下图所示各电路属于哪种类型的滤波电路? 是几阶滤波电路?

- **6.** 电路如图所示。已知 $R_1 = R_2$, $R_3 = R_4 = R_5$,且运放的性能均理想。
 - (1) 运放 A₁组成什么电路? 整个电路又是什么电路?
- (2) 试分别求 $\dot{A}_{u1} = \dot{U}_{o1} / \dot{U}_i$ 和 $\dot{A}_u = \dot{U}_o / \dot{U}_i$ 的表达式。

- 1. D_Z 起稳幅作用,其稳定电压 $\pm U_Z = \pm 6V$ 。试估算:
 - (1) 输出电压不失真情况下的有效值;
 - (2) 振荡频率。

2. 试将图示电路合理连线,组成 RC 桥式正弦波振荡电路

3. 试判断如图所示电路是否可能发生正弦波振荡。说明理由。

4. 试判断如图所示电路是否能满足正弦波振荡的条件? 试改正错误之处。

- 5. 在如图所示电路中,已知稳压管的正向导通压降 $U_D=0.7V$, $U_Z=5V$ 。
 - (1) 试求比较器的电压传输特性;
 - (2) 若 u_i =6sin ωt V, U_R 为方波如图所示,试画出 u_o 的波形

- **6.** 如图所示电路中: 设集成运放的最大输出电压为 $\pm 14V$,稳压管的 $U_Z=\pm 12V$,控制电压信号 U_C 的值再 $u_{\rm ol}$ 的两个峰值之间变化。
- (1)简述电路组成及工作原理。 (2)求 u_{o1} 的周期。 (3)求 u_{o3} 的占空比与 U_{C} 的函数关系;并设 U_{C} =2.5V,试画出 u_{o1} 、 u_{o2} 和 u_{o3} 的波形。

- 1. 电路如图所示,变压器副边电压有效值为 $2U_2$ 。
 - (1) 画出 u₂、u_{D1} 和 u_O的波形;
 - (2) 求出输出电压平均值 $U_{\mathrm{O(AV)}}$ 和输出电流平均值 $I_{\mathrm{L(AV)}}$ 的表达式;
 - (3)二极管平均电流 $I_{D(AV)}$ 和所承受的最大反向电压 U_{Rmax} 的表达式

2. 某倍压整流电路如图所示,设 $u_2 = 2\sqrt{2}sin\omega t$ 简要分析其工作原理。标出各电容两端电压的极性和数值,并分析负载电阻上能够获得几倍压的输出。

- **3.** 稳压电路中,已知稳压管的稳定电压 U_Z 为 6V,最小稳定电流 I_{Zmin} 为 5mA,最大稳定电流 I_{Zmax} 为 40mA;输入电压 U_I 为 15V,波动范围为±10%;限流电阻 R 为 200 Ω 。
 - (1) 作为稳压电路的指标,负载电流 I_L 的范围?
 - (2) 电路为什么不能空载? 如果希望可以空载, 需要作何改变?

- 4. 电路如图所示,输入直流电压 $U_{\rm I}$ =24V,三极管的 $U_{\rm BE}$ 均等于 0.7V,稳压管的 $U_{\rm Z}$ =5.3V,负载电流 $I_{\rm L}$ =100mA。试问:
 - (1) 输出电压 Uo的范围?
 - (2) 当 C_1 的容量足够大时,变压器二次侧电压 U_2 等于多少伏特?
- (3) 当电位器 $R_{\rm W}$ 的滑动端处于什么位置(上端或下端)时,调整管 $T_{\rm l}$ 的功耗最大?调整管 $T_{\rm l}$ 的极限参数 $P_{\rm CM}$ 至少应选多大(应考虑电网有 $\pm 10\%$ 的波动)?

5. 直流电源电路如图所示,试分析各电路是否有错误?说明理由。

