2. TÉMA

ELEKTRONIKA

Diódák és Zener diódák munkapont beállítása Egyszerű Zener stabilizátor

Feladatok

1. Egy valóságos rétegdióda munkaponti adatait méréssel határoztuk meg:

a dióda nyitóirányú feszültsége: $U_D = 0.6 \text{ V}$ a dióda nyitóirányú árama: $I_D = 1 \text{ mA}$ a termikus feszültség értéke: $U_T = 26 \text{ mV}$.

Számítsa ki a dióda I_0 maradékáramát!

2. Mekkora előtét-ellenállást kell a diódával sorba kapcsolni, ha a telepfeszültség $U_t = 2.7 \text{ V}$, és azt szeretnénk, hogy a diódán $I_D = 5 \text{ mA}$ áram folyjon át? A dióda nyitóirányú feszültségét a dióda-egyenletből számolja ki, ha a dióda visszárama $I_0 = 10^{-14} \text{ A}$ és a termikus feszültség $U_T = 26 \text{mV}$! Mekkora a dióda r_D dinamikus ellenállása a munkapontban?

3. Számítsa ki az R_t terhelő ellenálláson eső U_{ki} feszültséget! A diódák teljesen egyformák!

A dióda maradékárama: $I_o = 10^{-14} \,\text{A}$ A termikus feszültség: $U_T = 25 \,\text{mV}$

4. Határozza meg egy valóságos dióda U_D nyitóirányú feszültségét, ha a diódán $I_D = 10$ mA áram folyik át, és a dióda záróirányú árama $I_0 = 10^{-14}$ A! A termikus feszültség: $U_T = 26$ mV.

Rajzolja fel a dióda feszültség-áram karakterisztikáját, és jelölje be a munkapontot! Határozza meg a dióda r_p dinamikus ellenállását!

- 5. Dióda munkapont beállító kapcsolása látható az 1. ábrán.
 - a) Állítsa be a dióda munkaponti áramát $I_{DM} = 4$ mA-re! A dióda munkaponti feszültségét a nyitóirányú karakterisztika segítségével határozza meg! A dióda nyitóirányú karakterisztikája látható a 2. ábrán. A tápfeszültség: $U_t = 3$ V.
 - b) Határozza meg az R előtét ellenállás értékét!
 - c) A 2. ábrába rajzolja be a munkaegyenest és jelölje be a munkapontot! Adja meg a munkaegyenes két végpontjának értékét!

a) A dióda munkaponti feszültsége a karakterisztika alapján: $U_{DM} = ?$

- **b**) R = ?
- c) A munkaegyenes adatai:

vízszintes tengely: U = ?

függőleges tengely: I = ?

6. Állítsa be az *1. ábrán* látható kapcsolásban a dióda munkaponti áramát $I_{DM} = 3$ mAre! A dióda munkaponti feszültségét a nyitóirányú karakterisztika segítségével határozza meg!

A dióda nyitóirányú karakterisztikája látható a 2. ábrán.

A tápfeszültség: $U_t = 12 \text{ V}$.

$$U_{DM}=?$$

Határozza meg az R előtétellenállás értékét!

R = ?

7. Határozza meg a dióda-egyenlet segítségével egy valóságos dióda U_D nyitóirányú feszültségét, ha a diódán $I_D = 6$ mA áram folyik át, és a dióda záróirányú árama $I_0 = 10^{-14}$ A! A termikus feszültség: $U_T = 26$ mV.

Rajzolja fel a munkapont-beállító kapcsolást és határozza meg az R_e előtétellenállás értékét, ha a tápfeszültség: $U_{be} = 12 \text{ V}!$

Mekkora a dióda r_D dinamikus ellenállása ebben a munkapontban?

A dióda nyitóirányú feszültsége:

 $U_D = ?$

Kapcsolási rajz:

Az előtét ellenállás értéke: $R_e = ?$

A dióda dinamikus ellenállásának gyakorlati számítása: $r_D = ?$

8. Határozza meg az ábrán látható Zener diódás stabilizátor előtét ellenállásának (R_E) legkisebb megengedett értékét!

Adatok:

- tápfeszültség: $U_{be} = 24 \text{ V}$
- Zener dióda feszültsége: $U_Z = 20 \text{ V}$
- Zener dióda maximális teljesítménye: $P_{dmax} = 400 \text{ mW}.$

$$R_E = ?$$

9. Egyszerű Zener diódás stabilizátor látható az 1. ábrán.

Adatok:

- tápfeszültség: $U_{be} = 6 \text{ V}$
- Zener dióda munkaponti feszültsége: $U_{Z1} = 3 \text{ V}$
- Zener dióda munkaponti árama: $I_{ZI} = 10 \text{ mA}$

Határozza meg az R_E előtét ellenállás értékét!

A 2. ábrán látható Zener karakterisztikán ábrázolja a munkaegyenest! Adja meg a munkaegyenes két végpontját (U, I)!

A karakterisztika segítségével határozza meg, hogy mekkora lesz a kimeneti feszültség U_{Z2} értéke, ha a Zener árama $I_{Z1} = 10$ mA-ről $I_{Z2} = 23$ mA-re változik?

Határozza meg a Zener dióda r_z dinamikus ellenállásának értékét!

10. Zener diódás feszültségstabilizátor kapcsolás látható az 1. ábrán.

A stabilizátor bemeneti feszültsége: $U_{be}=4~{
m V}$ Az előtétellenállás értéke: $R_E=1~{
m k}\Omega$

Rajzolja be a 2. ábrán látható Zener karakterisztikába a munkaegyenest, jelölje

be az M munkapontot, és határozza meg a munkaponti U_Z feszültség- és I_Z áramértéket!

A munkaegyenes két végpontja:

- vízszintes tengely: U = ?- függőleges tengely: I = ?

Az ábrázolt munkaegyenes a Zener karakterisztikát

 $U_Z = ?$ és $I_Z = ?$ pontban metszi.

11. Zener diódás feszültségstabilizátor kapcsolás látható az 1. ábrán.

Adatok:

- Zener-dióda névleges feszültsége: $U_{ZN}=15~{
m V}$ - Zener-dióda árama: $I_{Zmin}=5~{
m mA}$ - Zener dióda dinamikus ellenállása: $r_Z=30~{
m \Omega}$ - Zener dióda disszipált teljesítménye: $P_d=500~{
m mW}$

tápfeszültség: $U_{be} = 20 \text{ V}$ terhelőellenállás: $R_t = 1 \text{ k}\Omega$

Határozza meg a Zener diódán átfolyó I_{zN} áram értékét, ha a kimeneti feszültség $U_{ki} = U_{ZN} = 14 \text{ V értékű!}$

Határozza meg az I_t terhelő áram értékét!

Határozza meg annak a soros R_E ellenállásnak az értékét, amelynek alkalmazásával elérhető, hogy a kimeneti feszültség $U_{ki} = U_Z = 14 \text{ V}$ értékű lesz!

Határozza meg az R_E ellenállás P_R teljesítményét!

$$I_{ZN} = ?$$
 $r_Z = ?$ $U_{Z\min} = ?$ $I_t = ?$ $I_{be} = ?$ $U_{RE} = ?$ $R_E = ?$

13. Egyszerű Zener diódás stabilizátor látható az 1. ábrán.

Adatok: a tápfeszültség:

 $U_{hel} = 5.25 \text{ V}$ a Zener dióda munkaponti feszültsége: $U_{Z1} = 4,25 \text{ V}$ $I_{ZI} = 2 \text{ mA}$ a Zener dióda munkaponti árama:

a) Határozza meg az R_E előtét ellenállás értékét!

$$R_E = ?$$

b) A 2. ábrán látható Zener karakterisztikán ábrázolja a munkaegyenest! Adja meg a munkaegyenes két végpontjának értékét $(U_1, I_1)!$ Jelölje be a munkapont helyét $(M_1)!$

$$U_1 = ?$$
 $I_1 = ?$

c) A karakterisztika segítségével határozza meg, hogy mekkora lesz a kimeneti feszültség U_{Z2} értéke, ha a Zener árama $I_{Z1}=2$ mA-ről $I_{Z2}=7$ mA-re változik?

$$U_{Z2} = ?$$

d) Ábrázolja 2. ábrán látható Zener karakterisztikán a munkaegyenes új helyzetét! Adja meg a két végpontjának (U_2, I_2) értékét! Jelölje be a munkapontot (M_2) !

$$U_2 = 8 \text{ V}$$

 $I_2 = ?$

d) Határozza meg a Zener dióda r_z dinamikus ellenállásának értékét!

$$r_z = ?$$