NEURO FORCE 1

The Evolution of Human Performance

NeuroForce1 is comprised of a data-driven human performance team that utilizes sports science assessment protocols to plot the most optimal course of action towards peak performance.

Once a baseline assessment battery is conducted to understand the individuals starting point going into the strength and conditioning program, an individualized long-term athletic development plan is generated that exploits strengths and targets deficiencies.

Upon the athlete participating in the strength and conditioning program, they are then monitored day-to-day with daily and weekly workloads that will ultimately allow for autoregulation of the programs, to avoid plateaus and suboptimal outcomes.

BASELINE ASSESSMENT

Collect applicable health & performance biomarkers to objectively assess individual strengths & deficiencies.

PROGRAM DEVELOPMENT

Leverage data to develop 100% individualized programs that will exploit strengths & target deficiencies.

OBJECTIVE IMPROVEMENT MONITORING

Objectively quantify improvements both daily and weekly, and adjust protocols as needed to avoid plateaus or potential suboptimal outcome . s

PERFORMANCE PROGRAM FOCUS

NEUROMUSCULAR EFFICIENCY

Utilize NF1 training methodologies that are evidence-informed to create, maintain, or enhance neuromuscular adaptations and overall efficiency through strength and power capabilities, all to advance peak performance.

METABOLIC EFFICIENCY

The ability of the body's metabolic systems to produce adequate and sustainable energy that is necessary to optimize individualized function overall performance.

TEST OCT

Height: 68 "

Weight: 80 lbs

DOB(Age): 10/07/2010 (13)

Gender: Male

Sport: -

BASELINE ASSESSMENT SUMMARY

12-Sep-2023

Diagnostic	Biomarker	Classification		
Diagnostic		Suboptimal	Average	Optimal
	Body Composition			
General	Hydration Status			
	Cellular Health			
	Central Nervous System			
	Autonomic Nervous System			
Functional Systems	Stress Resistance			
	Cardiac Systems			
	Energy Supply Systems			
	Arterial Elasticity			
Circulation	Peripheral Elasticity			
	DPI			
Metabolic Efficiency	Metabolism			
	Respiratory Quotient			
	Cardiorespiratory Fitness	Х		
	Functional Capacity			
Dulmanan Francis	Forced Vital Capacity			
Pulmonary Function	FEV1			

CARDIORESPIRATORY FITNESS

Cardiorespiratory Fitness testing is an assessment of relative cardiorespiratory efficiency as it pertains to maximal oxygen consumption during vigorous aerobic exercise.

ANAEROBIC THRESHOLD (AT)

Anaerobic threshold marks the point where the cardiorespiratory system is no longer able to deliver adequate oxygen to meet energy production needs in an aerobic capacity, leading lactate accumulation, and eventual fatigue.

VO₂ MAX

The maximal amount of oxygen that an individual can consume during a graded exercise assessment. Relative VO_{2max} (ml/kg/min) is among the most accurate predictors of cardiovascular & neurodegenerative diseases, and overall health.

Biomarker	Measured
AT	
VO _{2max}	0
2min – HRR	0

OPTIMAL HEART RATE TRAINING ZONES

Maintaining the optimal training intensity and heart rate will help achieve your health & performance goals in the most efficient manner possible.

Zone	Description	Min HR	Max HR
1	Active Recovery/Warm-Up	0	0
2	Aerobic Conditioning	0	0
3	Tempo	0	0
4	Lactate Threshold Training	0	0
5	Intervals/VO2 Max	0	0

PROGRAM PERFORMANCE SUMMARY

FITNESS					
Biomarker	Measured				
AT					
VO2max	0				
2min – HRR	0				

PERFORMANCE				
Assessment	Score	Category		