250213 Weekly Lab meeting

Weekly Lab Meeting

Juseong Kim

Contents

Energy SpectrumStatistics Analysis

Background1 – Fitting 구간 선정

시각적으로 곡선 구간 존재

초반에 진동 발생 구간 존재 E(k)가 급감하는 구간 존재

Energy Spectrum

Background2 – Inverse cascade

Entropy graph Over time

엔트로피 증가 Inverse cascade 없다고 가정

엔트로피 감소 Inverse cascade 있다고 가정

엔트로피 감소 Inverse cascade 있다고 가정

Energy Spectrum

Background3 - Case

FIG. 1: Picture (log-log scale) of the expected kinetic spectrum in freely decaying (a) and forced (b) two-dimensional turbulence as a function of the wavenumber. Full spectrum in the presence of energy condensation (c) and inverse cascade in freely decaying turbulence (d). Arrows indicate displacements in time. In (a), (b), and (c), a time-dependent Saffman spectrum is shown at large scales $(k \to 0)$.

(a): 2d HIT freely decay w/o inverse cascade -> 10 times v(0.0001) case

(b): 2d HIT Forced

(c): 2d Energy condensation

(d): 2d HIT freely decay with inverse cascade

- -> given v(0.00001) case
- -> Half v(0.00005) case

Leonardo Campanelli < Dimensional analysis of two-dimensional turbulence>

Background4 – inertial range of case (a)

$$E(k,t) = \nu^{3/2} t^{-1/2} \psi(k\sqrt{\nu t}), \tag{1}$$

where ψ is an arbitrary function of its argument. The only scale in the model is the dissipation length $L_{diss}(t) = \sqrt{\nu t}$, to which it corresponds the wavenumber $k_{diss}(t) = 1/L_{diss}$.

- 1. k_i: E(k)가 max일 때 k 값이라 가정
- 2. $k_{diss} = 1/ root(nu * t)$

Background4 – inertial range of case (a)

- 1. k_eps_bar: E(k)가 max일 때 k 값이라 가정
- 2. k_i: 초기조건인 k_p = 12를 k_i라 가정
- 3. $k_diss = 1/root(nu * t)$

10 times v(0.0001)

k_i (Peak k): 6.010 fitting slope: -5.511 deviation: 37.77%

R²: 0.974

k_i (Peak k): 3.889 fitting slope: -5.137 deviation: 28.42%

R²: 0.966

Half v (0.000005)

Energy(ENG) inertial range Slope: -2.077

Deviation from -5/3: 24.63% R² for Inverse Cascade: 0.699

Enstophy(EST) inertial range Slope: -3.463

Deviation from -4: 13.41%

R² for EST: 0.997

Energy(ENG) inertial range Slope: -2.663

Deviation from -5/3: 59.81% R² for Inverse Cascade: 0.840

Enstophy(EST) inertial range Slope: -3.647

Deviation from -4: 8.82%

given v(0.00001)

Energy(ENG) inertial range Slope: -2.223

Deviation from -5/3: 33.40% R^2 for Inverse Cascade: 0.919

Enstophy(EST) inertial range Slope: -5.352

Deviation from -4: 33.81%

Half v (0.000005)

Energy(ENG) inertial range Slope: -2.077

Deviation from -5/3: 24.63% R² for Inverse Cascade: 0.699

Enstophy(EST) inertial range Slope: -3.463

Deviation from -4: 13.41%

R² for EST: 0.997

Energy(ENG) inertial range Slope: -2.663

Deviation from -5/3: 59.81% R² for Inverse Cascade: 0.840

Enstophy(EST) inertial range Slope: -3.647

Deviation from -4: 8.82%

Half v (0.000005)

Energy(ENG) inertial range Slope: -2.231

Deviation from -5/3: 33.85% R² for Inverse Cascade: 0.881

Enstophy(EST) inertial range Slope: -5.332

Deviation from -4: 33.30%

Fitting Summary

Enstrophy Inertial Range (-4)	10 times v (0.0001)	Given v (0.00001)	Half v (0.000005)
Max Slope	-5.511	-6.039	-5.621
Min Slope	-4.519	-3.568	-3.463
Average slope	-5.015	-4.845	-4.552
Energy Inertial Range (-5/3 = -1.667)	-	이론 값: -1.6667	이론 값: -1.6667
Max Slope	-	-2.625	2.663
Min Slope	-	1.747	-1.607
Average Slope	-	-2.263	-2.195

Fitting Summary – Enstrophy Inertial Range (이론값: -4)

Fitting Summary – Energy Inertial Range (이론값: -1.667)

Statistics Analysis

Statistics Analysis – Vorticity Probability Distribution

Statistics Analysis – Entropy

Statistics Analysis

Statistics Analysis – Energy Dissipation Rate

Given v (0.00001) 최소값: 2.161404e-06 m²/s³

10 times v 최소값: 6.822461e-08 m²/s³

Half v 최소값: 2.572554e-06 m²/s³

Statistics Analysis – STD

Statistics Analysis – STD log scale

Statistics Analysis – STD log scale


```
t = 5.0 | Sigma = 1.3441899424 | 57.3495s
t = 15.0 | Sigma = 0.5512383245 | 656.7063s
```

Statistics Analysis

Statistics Analysis – STD

Given v (0.00001)

10 times v

Half v

Statistics Analysis – STD

t = 5.0 | Sigma = 0.1166312320 | 14253061707512166s t = 15.0 | Sigma = 0.0789406084 | 228103155817964468504100864s

250213 Weekly Lab meeting

Thank you for your attention!