Teorema de los ceros de Hilbert

19 de febrero de 2017

Definición 1. Un cuerpo K es algebraicamente cerrado si todo polinomio de K[x] tiene una raíz en K.

Lema 1. Si K y L son cuerpos con $K \subset L$ y L una K- álgebra finitamente generada $(L = K[\alpha_1, \ldots, \alpha_r])$. Entonces L es una extensión algebraica de K, es decir, todo elemento de L es raíz de algún polinomio de K[x].

Teorema 1. (Versión débil del Nullstellensatz) Si K es algebraicamente cerrado e I es un ideal de $K[x_1, \ldots, x_n]$. Se tiene que $I \neq k[x_1, \ldots, x_n] \Leftrightarrow V(I) \neq \emptyset$.

Demostración:

 \sqsubseteq Trivial, si $I = K[x_1, \dots, x_n]$ entonces $1 \in I$, lo que implica que $V(I) = \emptyset$.

 \implies Como $I \neq K[x_1, \ldots, x_n]$, entonces se tiene que existe m ideal maximal que lo contiene. Consideremos la proyección canónica:

$$\pi: K[x_1,\ldots,x_n] \to k[x_1,\ldots,x_n]/m$$

Como m es maximal, $K[x_1, \ldots, x_n]/m$ es un cuerpo, que denotamos por L. L es una K-álgebra finitamente generada por $(x_1 + m, \ldots, x_n + m)$. Aplicando el lema de Zariski se tiene que L es una extensión algebraica de, y como K es algebraicamente cerrado, L = K. Por tanto,

$$\pi: k[x_1, \dots, x_n] \to K$$

Vamos a encontrar un punto $P \in V(I)$. Concretamente, tomamos $P = (\pi(x_1), \dots, \pi(x_n)) \in k^n$. Veamos que P anula a todos los polinomios de I.

Dado
$$f \in I \Rightarrow f \in m \Rightarrow \pi(f) = 0 \Rightarrow f(\pi(x_1), \dots, \pi(x_n)) = 0 \Rightarrow f(P) = 0$$

Nota 1. Si V_1, \ldots, V_k son variedades afines, entonces $V_1 \cup \cdots \cup V_k$ es una variedad afin es una variedad afin.

- $Si\ \{V_i\}_{i\in I}$ es un conjunto de variedad afines, entonces $\cap_{i\in I}V_i$ es una variedad afín.
- \emptyset es una variedad afín $(V([k[x_1,\ldots,x_n])=\emptyset).$
- k^n es una variedad afín $(V(\{0\}) = k^n)$.

Las variedades afines son los cerrados de una topología de k^n , que se llama topología de Zariski.

Definición 2. Dado I, un ideal de $k[x_1, \ldots, x_n]$, se define el radical de I como:

$$\sqrt{I} = \{ f \in k[x_1, \dots, x_n] : f^n \in I \text{ para algún } m \ge 1 \}$$

1

Se dice que un ideal I es radical, si $I = \sqrt{I}$.

Nota 2. $I \subset \sqrt{I}$, $y \sqrt{I}$ es un ideal.

Teorema 2. (Nullstellensatz fuerte) Si K es algebraicamente cerrado.

- 1. $\forall I \text{ ideal de } K[x_1,\ldots,x_n], \ I(V(I)) = \sqrt{I}.$
- 2. Si A es un subconjunto de K^n , $V(I(A)) = \bar{A}$.

De mostraci'on

1. \supseteq Si $f \in \sqrt{I}$, entonces $f^m \in I \Rightarrow f^m(P) = 0, \forall P \in V(I) \Rightarrow f(P) = 0, \forall P \in V(I) \Rightarrow f \in I(V(I))$.

 \subseteq Sea $f \in I(V(I))$. Escribamos $I = \langle g_1, \dots, g_r \rangle$. Vamos a trabajar en el anillo $K[x_1, \dots, x_n, y]$, y consideremos el ideal:

$$I' = \langle g_1, \dots, g_r, 1 - yf \rangle$$

Se oberva que $V(I') = \emptyset$, porque si un punto anula a g_1, \ldots, g_r , entonces está en V(I), por lo tanto, también anula a f y no anula a 1 - yf. Por el Nullstellensatz débil, $I' = k[x_1, \ldots, x_n, y] \Rightarrow 1 \in I' \Rightarrow \exists h_1, \ldots, h_r, h_{r+1} \in K[x_1, \ldots, x_n, y]$ tales que

$$1 = h_1 g_1 + \dots + h_r h_r + h_{r+1} (1 - yf)$$

Sustituyendo y por $\frac{1}{f}$, y quitando denominadores, queda:

$$f^m = f_1 g_1 + \dots + f_r g_r \in I$$

Luego $f \in \sqrt{I}$.