

ESTADÍSTICA

- Oliver Leonidas Feliz 2022-1792
 - Maximo De oleo 2022-1791

GRUPO:

#16

EJERCICIO #1

Se pide calcular la varianza, desviación típica y el coeficiente de variación.

1. Tabla de frecuencia de datos agrupados:

Intervalo	Fi	Marca de clase (xi)	FiXi	FiX²i
[0, 60000)	6	30000	180000.0	5.4 x 10 ⁹
[60000, 90000)	12	75000	900000.0	6.75 x 10 ¹⁰
[90000, 120000)	51	105000	4305000.0	4.52 x 10 ¹¹
[120000, 150000)	47	135000	6345000.0	8.57 x 10 ¹¹
[150000, 180000)	36	165000	5940000.0	9.80 x 10 ¹¹
[180000, 210000)	8	195000	1560000.0	3.04 x 10 ¹¹
TOTALES	150	705,000	19230000.0	2.67 x 10 ¹²

• **Media**: x⁻= 128200.00

• **Desviación típica**: σ= 36561.73

• Coeficiente de variación: CV= 28.52%

EJERCICIO #2

Intervalo	Fi	Marca de clase (xi)	FiXi	FiX²i
[800, 1000)	16	900.0	14400.0	12960000.0
[1000, 1200)	34	1100.0	37400.0	41140000.0
[1200, 1400)	49	1300.0	63700.0	82810000.0
[1400, 1600)	13	1500.0	19500.0	29250000.0
[1600, 1800)	10	1700.0	17000.0	28900000.0
[1800, 2000)	5	1900.0	9500.0	18050000.0
[2000, 2200)	3	2100.0	6300.0	13230000.0
TOTALES	150	705,000	167800.0	226340000.0

• **Media**: x¯= 1290.77

• **Desviación típica**: σ= 273.85

• Coeficiente de variación: CV= 21.22%

EJERCICIO #3

Intervalo	Fi	FiXi	FiX ² i
2	3	6	12
3	9	27	81
4	11	44	176
5	20	100	500
6	19	114	684
7	16	112	784
8	13	104	832
9	12	108	972
10	9	90	900
11	6	66	726
12	2	24	288
TOTALES	120	795	5955

• **Media**: x⁻= 6.625

Desviación típica: σ=2.39
Intervalo: (4.23,9.02)

• Porcentaje de valores en el intervalo: 66.67%

EJERCICIO #4

• **Media:** x⁻= 42.67

• **Desviación típica:** σ = 20.52

EJERCICIO #5

• Coeficiente de variación (CV) para pesos: 3.33%

• Coeficiente de variación (CV) para alturas: 2.33%

EJERCICIO #6

Interpretar las medidas estadísticas proporcionadas:

- x= 0.8: Media del número de roturas.
- Me= 0: Mediana (la mayoría de los valores están cerca de 0).
- Mo= 0: Moda, el valor más frecuente es 0.
- σ = 0.97: Desviación típica (los datos tienen una alta dispersión).
- CV= 1.46: La dispersión relativa respecto a la media es 146%, indicando mucha variabilidad

Aquí debemos comparar las puntuaciones de dos jugadores (A y B). Para tomar una decisión, calcularemos para ambos:

- Media aritmética (x¯): Indica el rendimiento promedio.
- **Desviación típica (σ)**: Indica la consistencia del rendimiento (menor desviación = más consistente).
- Jugador A:

Desviación típica:
$$\sigma_A$$
=7.35

Jugador B:

Media:
$$x_B^- = 15.3$$

Datos agrupados con valores (xi) y frecuencias absolutas (fi):

1. Media X =
$$\frac{\sum (Xi*Fi)}{\sum Fi}$$

2. Varianza =
$$\frac{\sum Fi*(Xi-\bar{x})^{-2}}{\sum Fi}$$

3. Desviación típica.

Ejercicio 8 (a)

• Desviación típica: σ = 1.11

Ejercicio 8 (b):

• **Desviación típica:**
$$\sigma$$
= 5.70