

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DOCENTE: CARLOS ROMÁN

AYUDANTE: SANTIAGO GONZÁLEZ

MAT2505 - Ecuaciones Diferenciales Parciales

Ayudantía 10

	_	_	_					
	т)	n	П	וח	LΕ	אאי	Λ	- 1
•	\mathbf{r}	к		к	ı P	IVI	Δ	

Sea $\Omega \subset \mathbb{R}^n$ un dominio acotado. Muestre que $W^{k+1,p}$ es denso en $W^{k,p}$.

SOLUCIÓN Dado que Ω es acotado, tenemos que $\mathcal{C}^{\infty} \subset W^{m,p}$ para cualquier m. Por otro lado, sabemos que $W^{k+1,p} \subset W^{k,p}$ y que por el teorema de aproximación por funciones suaves se tiene que \mathcal{C}^{∞} es denso en $W^{m,p}$. En resumen:

$$\mathcal{C}^{\infty} \subset W^{k+1,p} \subset W^{k,p} \Rightarrow \underbrace{\overline{\mathcal{C}^{\infty}}}_{=W^{k,p}} \subset \overline{W^{k+1,p}} \subset W^{k,p},$$

donde la clausura la tomamos en $W^{k,p}$.

PROBLEMA 2

Sea $\Omega = [0, 2\pi)$.

- (1) Encuentre una base ortonormal para $H^k(\Omega)$. ¿Qué relación puede establecer con una base de $L^2(\Omega)$?.
- (2) Use lo anterior para deducir que el operador lineal de inclusión $H^k(\Omega) \hookrightarrow L^2(\Omega)$ es compacto.

SOLUCIÓN