

MHK Claims AI Scoring Predictive Analytics

- Update

Xiaomo Jiang

Yatkwai Kee Richard Yan Deepak Jhamta Jithendra Koduru

February, 2018 R4.1

Ver	Description	Date
1	 Preliminary modeling Customer historical pattern Sales + Claims Jan-Oct 2017 Voting model (RF, DT, SVC) 70% accuracy 	12/10/2017
2	 Customer pattern (Sales, Claims) + Product Attributes (Size, Style, Color & Backing) Online application w/ dashboard update on 1/10/2018 Review with Operation team on 1/26/2018 Model accuracy 72% 	1/10/2018
3	 Add ML/AI slides & online implementation flowchart Compare models w/ or w/o PCA Segmentation: Highly likely (>60%)>80% accuracy, unsure, highly unlikely (<40%) Review it in Lunch & Learn 	2/2/2018
4	 Add product historical issues via rolls New data set with cleaning in SQL script Jan 2017 – Feb 2018 Explore more classification methods Updated model accuracy 83% Segmentation: Highly likely (>75%)>92%, unsure, highly unlikely (<25%)~88% cover 67% claims 	2/22/2018

Analytics ... Turn Data into Decision

Predictive Modeling ... Iterative Procedure

Analytics Techniques

...AI, Machine Learning & Deep Learning

Deep Learning

Subset of ML which makes the computation of complicated multi-layer neural networks feasible

- Big Data
- Complexity
- High Performance Computation
- Cloud technology
- High speed internet

deep learning, a subset of machine learning - have created ever larger disruptions.

http://blog.devitpl.com/learning-machine-learning/

Claim AI Scoring

Improve Claim Process Speed and Accuracy

Business Objective

Improve claim processing speed and accuracy, reduce cost of claims and improve customer satisfaction

Use Case Capability Description

Develop claim recommendation score to identify potential predictors of claims. Recommendation engine is based on customer claim history, claim to sales %, product and product claim history.

Use Case Sponsor

Claim Analysis

Value Drivers

Costs – Claims spending

Current Challenges

- 100% of claims submitted require manual evaluation and high percentage of them require further inspection before decision is made
- Claim analysis reps spend a lot of time in navigating across multiple systems with incomplete information to investigate factors that determine validity of a claim
- Incorrect classification on a claim causing both unnecessary spend and efforts and impacting customer satisfaction
- Back log in claim processing due to need of manual evaluation in all claims

Analytics Insights & Solution Approach

Insights:

- Identify customer, product, manufacturing process attributes that are predictors of claims
- · Provide timely and simple recommendation score on claims
- Identify shifts in production variables over time

Potential modeling approach:

- Propensity of false claims based on product and customer data, physical inspection is required.
- Propensity of valid claims with auto approval potential.

Impact on current processes:

- Reduce yearly claim spend with more insightful analysis on products, customers, and manufacturing history attributes while improving customer service through more timely processing of claims
- Reduce spend on claim processing with more accuracy, effectiveness and efficiency

Data Sources

- · Customer Sales, Customer claims
- · Product profile, Product sales and claim history
- Manufacturing profile

Claim Al Scoring - Overview

Data

- ✓ Modeling data: Jan 2017 Feb, 2018
- ✓ Customer + Product + Roll
- √ 12 input factors
- √ 30,128 customer records for modeling
- ✓ Only claims related to quality
- ✓ Paid vs. Declined Claims = 71%: 29%

Results/Impacts

- ✓ Prediction Accuracy:
 - ✓ Overall: >83% (vs. 70% last model)
 - ✓ Highly likely: ~92% (vs. 80%)
 - ✓ Highly Unlikely: ~88% (vs. 75%)
- ✓ Potential reduction of claim processing effort by 60%+ (vs. 40%)
- ✓ Improve timeliness and accuracy in claim processing (hours/days to minutes)

Method/Procedure

- ✓ Data cleaning: missing, imputation, etc.
- ✓ Data mining: dist. Box, outlier ...
- ✓ Data normalization and preprocessing
- ✓ Machine learning: logistic, decision tree...
- ✓ Advanced analytics: Neural Network, Bayes, Deep Learning

Next

- ☐ Solution implementation/integration.
- □ Continuous model accuracy improvement
- □ Customer specific modeling

Modeling

- Target: binary classification
 Paid (1) vs. Declined (0)
- Data Components
 Paid: 71.3%
 Declined: 28.7%

Results – Customer + Product + Rolls

All inputs	Customer + Product + Rolls				1/2017-2/2018							
	Validation (6327)					Testing (9039)						
Model	TN (1816)	TP (4511)	Pred. Paid	Accu	CK_score	TN (2594)	TP (6445)	Pred. Paid	Accu	CK_score		
L1_logistic	51.9%	72.7%	4153	66.7%	0.233	53.2%	72.4%	5882	66.9%	0.240		
L2_logistic(OvR)	51.8%	72.5%	4146	66.5%	0.229	53.1%	72.3%	5875	66.8%	0.238		
L2_logistic(Multinomial)	51.8%	72.7%	4154	66.7%	0.231	53.0%	72.4%	5888	66.9%	0.239		
LinearSVC	41.9%	79.6%	4645	68.7%	0.219	43.7%	79.1%	6556	68.9%	0.230		
RBFSVC	67.0%	79.8%	4200	76.1%	0.446	65.9%	79.2%	5988	75.4%	0.428		
SGD	31.8%	68.2%	4316	57.8%	0.000	31.7%	68.7%	6197	58.1%	0.004		
NaiveBayes	15.4%	95.5%	5843	72.5%	0.139	16.9%	95.3%	8299	72.8%	0.155		
BGM	4.6%	93.0%	5929	67.6%	-0.031	4.3%	93.4%	8500	67.8%	-0.031		
NearestNeighbors	55.8%	77.7%	4308	71.4%	0.324	55.4%	76.8%	6104	70.6%	0.310		
DecisionTree	60.6%	87.0%	4640	79.4%	0.487	60.1%	87.0%	6642	79.3%	0.482		
EDT	45.6%	77.2%	4471	68.1%	0.227	46.8%	77.7%	6386	68.9%	0.244		
RandomForest	64.3%	91.2%	4761	83.4%	0.578	64.3%	91.3%	6811	83.5%	0.580		
NueralNetwork	10.3%	99.5%	6116	73.9%	0.133	10.8%	99.4%	8720	73.9%	0.137		
AdaBoost	47.0%	95.1%	5254	81.3%	0.480	47.9%	94.3%	7429	81.0%	0.476		
GBRT	48.3%	95.0%	5223	81.6%	0.490	49.2%	94.4%	7402	81.4%	0.490		
QDA	16.6%	93.2%	5720	71.3%	0.123	17.2%	93.1%	8148	71.3%	0.129		
Bag	66.2%	88.9%	4622	82.4%	0.561	65.5%	89.4%	6656	82.6%	0.563		
Voting 1 (DT, Bag, RF)	64.8%	91.3%	4758	83.7%	0.585	65.0%	91.2%	6788	83.7%	0.585		
Voting 2 (SVC, Bag, RF)	60.3%	92.4%	4888	83.2%	0.562	59.9%	92.1%	6975	82.9%	0.554		

- Recommend models: RBF-SVC, Decision Tree, Random Forest & Bag, balancing positive & negative true with balanced classification
- SVC requires tuning up the parameters C and gamma
- Voting method may not be needed as individual models perform well already

Model Accuracy Comparison (w/o Rolls)

The impact of historical issues of a roll on the overall accuracy is Not significant

Results

Scoring Decision Logic

- Level 1
 - dollarPerClaim ≤ -0.473
- Level 2
 - INVENTORY COLOR ≤ -0.038
 - dollarPerSale ≤ 1.679
- Level 3
 - numSales ≤ 0.831
 - dollarPerClaim ≤ -0.475
 - dollarPerSale ≤ -0.358
 - INVENTORY BACKING ≤ 1.439
- Level 4
 - INVENTORY STYLE ≤ -0.572
 - claimRatio ≤ -0.081
 - numSales ≤ 0.831
 - INVENTORY COLOR ≤ 0.079
 - INVENTORY COLOR ≤ -1.666
 - dollarPerSale ≤ -0.357
 - INVENTORY STYLE ≤ -0.851
 - INVENTORY STYLE ≤ 2.12
- Level 5
 - numSales ≤ 0.249
 - numClaims ≤ 2.636
 - INVENTORY STYLE ≤ -0.884
 - INVENTORY COLOR ≤ 0.787
 - INVENTORY STYLE ≤ -1.055
 - INVENTORY STYLE ≤ -1.331
 - ...
- Level 6
 - dollarPerSale ≤ -0.285
 - INVENTORY SIZE ≤ 2.964
 - INVENTORY STYLE ≤ 2.232

AI Score in Dashboard

Declined (< 50% prob. to pay)

Next...

- ☐ Solution implementation/integration...dashboard update
- □ Continuous model accuracy improvement
- Customer specific modeling

Thanks

Online Application

Influencing Factors for Claims (30,000+)

Influencing Factors for Claims

MOHAWK Modeling Data (old)

Results (R2) – PCA vs. Raw

		Validatio	n (6915)		Testing (9878)				Comments
Actual	Accuracy	Pred. Paid (1)	4918(1)	1997(0)	Accuracy	Pred. Paid (1)	7026(1)	2852(0)	
L1 Logistic	71.8%/72.1%	6598/6651	97%/98%	9%/8%	72.1%/72.3%	9482/9537	98%/98%	9%/8%	Prone to Paid, ↑false , reduce \$
L2 Logistic (OvR)	71.8%72.2%	6597/6603	97%/98%	9%/10%	72.1%/72.4%	9482/9469	98%/98%	9%/9%	Prone to Paid, ↑false , reduce \$
RBF SVC	66.4%/66.3%	4581/4671	73%/74%	50%/48%	65.7%/66.0%	6518/6653	72%/73%	49%/48%	Slightly balanced, but ^false
Linear SVC	65.8%/67.4%	4920/5256	76/80%	41%/35%	66.0%/67.9%	6931/7422	75%/80%	43%/38%	Prone to Paid, ↑false , reduce \$
L2 Logistics (Multinormial)	71.8%/72.2%	6597/6581	97%/95%	9%/10%	72.1%/72.4%	9482/9437	98%/98%	9%/10%	Prone to Paid, ↑false , reduce \$
Naïve Bayes	69.1%/70.0%	6170/6252	91%/92%	15%/15%	69.3%/70.8%	8781/8932	91%/93%	16%/16%	Prone to Paid, ↑false , reduce \$
Nearest Neighbor	64.8%/57.3%	4679/3718	73%/58%	45%/56%	64.3%/57.3%	6644/5287	72%/58%	45%/57%	Prone to declined, ↑miss, ↓customer
Decision Tree	59.5%/66.1%	3650/4275	59%/70%	62%/57%	60.1%/66.4%	5215/6067	59%/70%	63%/59%	Balanced prediction results
Random Forest	66.1%/65.0%	4949/4781	77%/74%	41%/43%	66.2%/65.1%	7009/6721	76%/73%	42%/45%	Balanced, but slightly prone to Paid
Neural Network	71.6%/71.8%	6784/6735	99%/99%	4%/6%	71.6%/71.9%	9723/9656	99%/99%	3%/5%	Prone to Paid, ↑false , reduce \$
AdaBoost	72.1%/72.6%	6471/6358	96%/95%	13%/17%	72.0%/72.9%	9297/9038	96%/95%	12%/18%	Prone to Paid, ↑false , reduce \$
QDA	70.0%/70.7%	6301/6366	93%/94%	13%/13%	70.5%/71.2%	9009/9074	93%/94%	14%/14%	Prone to Paid, ↑false , reduce \$
Voting(RF, BLAG, SVC)	70.0%69.3%	5529/5155	85%/81%	33%/41%	70.1%/70.5%	7839/7314	85%/(81%	34%/44%	Prone to Paid

- PCA/Raw shown
- PCA with 95% info 5 PCAs considered, vs. 9 raw factors
- No significant improvement observed from PCA process

Claim Scoring (Proposal)

Claim AI Scoring Analytics Roadmap

Fewer samples needed for Naïve Bayes method

Method Comparison (R2)

PCA

Results (R1) – Customer data only

		Validation	(2104)			Testing (3	Comments		
Actual	Accuracy	Pred. Paid (1)	1335(1)	769(0)	Accuracy	Pred. Paid (1)	1908(1)	1098(0)	
L1 Logistic	66.4%	1943	1282(96%)	108(14%)	66.7%	2771	1832(96%)	165(15%)	Prone to Paid, ↑false , reduce \$
L2 Logistic (OvR)	66.8%	1918	1282(96%)	131(17%)	67.7%	2740	1832(96%)	198(18%)	Prone to Paid, ↑false , reduce \$
RBF SVC	69.6%	1418	1055(79%)	408(53%)	69.7%	1992	1488(78%)	604(55%)	Slightly balanced, but ↑false
Linear SVC	69.8%	1721	1215(91%)	261(34%)	70.3%	2446	1736(91%)	384(35%)	Prone to Paid, ↑false , reduce \$
L2 Logistics (Multinormial)	67.1%	1902	1268(95%)	138(18%)	67.7%	2711	1832(96%)	209(19%)	Prone to Paid, ^false , reduce \$
Naïve Bayes	64.8%	1942	1268(95%)	92(12%)	65.5%	2772	1813(95%)	143(13%)	Prone to Paid, †false , reduce \$
Nearest Neighbor	59.8%	958	721(54%)	538(70%)	60.9%	1385	1068(56%)	769(70%)	Prone to declined, ↑miss, ↓customer
Decision Tree	70.5%	1236	975(73%)	508(66%)	69.1%	1715	1355(71%)	725(66%)	Balanced prediction results
Random Forest	71.5%	1332	1028(77%)	469(61%)	70.6%	1896	1469(77%)	659(60%)	Balanced, but slightly prone to Paid
Neural Network	66.1%	1981	1295(97%)	92(12%)	66.5%	2834	1870(98%)	132(12%)	Prone to Paid, ↑false , reduce \$
AdaBoost	71.9%	1546	1148(86%)	369(48%)	71.9%	2178	1622(85%)	538(49%)	Prone to Paid, ↑false , reduce \$
QDA	65.2%	1937	1268(95%	100(13%)	66.1%	2769	1832(96%)	154(14%)	Prone to Paid, ↑false , reduce \$
Voting(RF, DT, SVC)	72.4%	1440	1095(82%)	423(55%)	72.1%	2045	1565(82%)	615(56%)	Prone to Paid

- Recommend two models: Decision Tree and Random Forest
- Both balance the paid and declined prediction, particularly DT method
- Voting method is strongly recommended if possible, as it is robust after integrating different individual models

Method Comparison (R1) – Customer Data Only

MOHAWK Visualization (R1) – Customer Data

Modeling Process

Define Project

What do you want to predict or estimate?

Skill sets: Domain expertise and experience

Data Collection

Which data is relevant? Are there privacy issues?

Skill sets: Expertise in database, ETL and scripting

Data Analysis

Are there anomalies/outliers/missing data?

Skill sets: Data wrangle, data cleaning, and scripting

Data Preparation

How to put together all these data?

Skill sets: Expertise in ETL and data sampling

Re-evaluate

Deployment & Application

Refine

Evaluation & Validation

Are these models accurate and applicable? Does it make sense?

Skill sets: Domain expertise and expertise in statistics

Statistics & Modeling

What models should we use? How do we fit the model?

Skill sets: Expertise in statistics, machine learning, modeling such as regression and clustering

Bagging is an abbreviation of Bootstrap Aggregating. The conventional bagging algorithm involves generating 'n' different bootstrap training samples with replacement, training the algorithm on each bootstrapped algorithm separately and then aggregating the predictions at the end. Bagging is used for reducing Overfitting in order to create strong learners for generating accurate predictions. Unlike boosting, bagging allows replacement in the bootstrapped sample.

Adaptive Boosting – AdaBoost

Ada Boost is the first original boosting technique which creates a highly accurate prediction rule by combining many weak and inaccurate rules. Each classifier is serially trained with the goal of correctly classifying examples in every round that were incorrectly classified in the previous round.

For a learned classifier to make strong predictions it should follow the following three conditions:

- · The rules should be simple
- Classifier should have been trained on sufficient number of training examples
- The Classifier should have low training error for the training instances

Each of the weak hypothesis has an accuracy slightly better than random guessing i.e. Error Term \in (t) should be slightly more than ½- β where β >0. This is the fundamental assumption of this boosting algorithm which can produce a final hypothesis with a small error After each round, it gives more focus to examples that are harder to classify. The quantity of focus is measured by a weight, which initially is equal for all instances. After each iteration, the weights of misclassified instances are increased and the weights of correctly classified instances are decreased.

Adaptive Boosting Algorithm Non Event -99% Event - 1% Data Set Either generated randomly or user specified Reassign and give more Weightage to misclessified observations Misclassified

Advantages

- · Very Simple to implement
- Good generalization- suited for any kind of classification problem
- Not prone to overfitting

Disadvantages

· Sensitive to noisy data and outliers

Boosting-based

Boosting is an ensemble technique to combine weak learners to create a strong learner that can make accurate predictions. Boosting starts out with a base classifier / weak classifier that is prepared on the training data. The base learners / Classifiers are weak learners i.e. the prediction accuracy is only slightly better than average. A classifier learning algorithm is said to be weak when small changes in data induce big changes in the classification model.

In the next iteration, the new classifier focuses on or places more weight to those cases which were incorrectly classified in the last round.

Gradient Tree Boosting

In Gradient Boosting many models are trained sequentially. It is a numerical optimization algorithm where each model minimizes the loss function, y = ax+b+e, using the Gradient Descent Method.

Decision Trees are used as weak learners in Gradient Boosting.

While both Adaboost and Gradient Boosting work on weak learners / classifiers. And try to boost them into a strong learner, there are some fundamental differences in the two methodologies. Adaboost either requires the users to specify a set of weak learners or randomly generates the weak learners before the actual learning process. The weight of each learner is adjusted at every step depending on whether it predicts a sample correctly.

On the other hand, Gradient Boosting builds the first learner on the training dataset to predict the samples, calculates the loss (Difference between real value and output of the first learner). And use this loss to build an improved learner in the second stage.

At every step, the residual of the loss function is calculated using the Gradient Descent Method and the new residual becomes a target variable for the subsequent iteration.

Disadvantages

- Gradient Boosted trees are harder to fit than random forests
- Gradient Boosting Algorithms generally have 3 parameters which can be fine-tuned, Shrinkage
 parameter, depth of the tree, the number of trees. Proper training of each of these parameters is
 needed for a good fit. If parameters are not tuned correctly it may result in over-fitting.

XGBoost (Extreme Gradient Boosting) is an advanced and more efficient implementation of Gradient Boosting Algorithm discussed in the previous section.

Advantages over Other Boosting Techniques

- It is 10 times faster than the normal Gradient Boosting as it implements parallel processing. It is highly flexible as users can define custom optimization objectives and evaluation criteria, has an inbuilt mechanism to handle missing values.
- Unlike gradient boosting which stops splitting a node as soon as it encounters a negative loss, XG Boost splits up to the maximum depth specified and prunes the tree backward and removes splits beyond which there is an only negative loss.

Extreme gradient boosting can be done using the XGBoost package in R and Python