Automatic Reparameterisation in Probabilistic Programming

Maria I. Gorinova, Dave Moore, Matthew D. Hoffman

The Problem

What is Model Reparameterisation?

What is Model Reparameterisation?

Understanding Reparameterisation Effects

Centred
$$\theta \sim \mathcal{N}(0,1) \qquad \mu \sim \mathcal{N}(\theta, \sigma_{\mu})$$
$$y_n \sim \mathcal{N}(\mu, \sigma) \text{ for all } n \in 1 \dots N$$

Non-centred
$$\theta \sim \mathcal{N}(0,1) \qquad \epsilon \sim \mathcal{N}(0,1) \qquad \mu = \theta + \sigma_{\mu}\epsilon$$

$$y_n \sim \mathcal{N}(\theta + \sigma_{\mu}\epsilon, \sigma) \text{ for all } n \in 1 \dots N$$

Understanding Reparameterisation Effects

q = 1e-05

epsilon

2

 $q = N/\sigma$

0.035

0.030

q = 2000.0

epsilon

epsilon

q = 50.0

021

0.18

Non-centred

Goal: Free modellers of the need to choose model parameterisation

Reparameterisation in Edward2

Centred

```
def model(N, sigma, sigma_mu):
   theta = ed.Normal(0., 3.)

mu = ed.Normal(theta, sigma_mu)

y = ed.Normal(mu, sigma)
return y
```

Non-centred

```
def model_ncp(N, sigma, sigma_mu):
    theta_std = ed.Normal(0., 1.)
    theta = 3. * theta_std

mu_std = ed.Normal(0., 1.)
    mu = theta + mu_std * sigma_mu

y = ed.Normal(mu, sigma)
    return y
```

Reparameterisation in Edward2

Interceptor: A function that possibly changes how and if a RV is constructed.

```
def ncp(rv_constr, **kwargs):
    if is_location_scale(rv_constr):
        std = rv_constr(0., 1.)
        return kwargs["scale"] * std + kwargs["loc"]

with interception(ncp):
    theta = ed.Normal(0., 3.)
    mu = ed.Normal(0., 3.)
    mu = ed.Normal(theta, 1.)
    theta = 3. * theta_std
    mu_std = ed.Normal(0., 1.)
    mu = mu_std + theta
```

Interleaved HMC (I-HMC)

Input:

- $p_{CP}(\boldsymbol{\theta})$: the CP target distribution
- $p_{NCP}(\boldsymbol{\psi})$: the NCP target distribution
- $f(\theta)$: an invertible function mapping CP variables to NCP variables

At the current sample $\boldsymbol{\theta}^{(n)}$:

- 1. Take one HMC step in *CP* space (using $p_{CP}(\boldsymbol{\theta}^{(n)})$) to obtain $\boldsymbol{\theta}^{(n+1/2)}$
- 2. Transform to NCP: $\psi^{(n+1/2)} = f(\theta^{(n+1/2)})$
- 3. Take on HMC step in *NCP* space (using p_{NCP} ($\boldsymbol{\psi}^{(n+1/2)}$)) to obtain $\boldsymbol{\psi}^{(n+1)}$
- 4. Transform to CP: $\theta^{(n+1)} = f^{-1}(\psi^{(n+1)})$

Variationally Inferred Parameterisation (VIP)

$$\tilde{z} \sim \mathcal{N}(a\mu, \sigma^b)$$

$$z = \mu + \sigma^{1-b}(\tilde{z} - a\mu)$$

Preliminary Results

Interleaved HMC is robust

- VIP-HMC finds a reasonable reparameterisation
- Mixed parameterisations might sometimes be superior to fully centred or fully non-centred

	8 Schools	Radon(MN)	Radon(NA)
НМС-СР	92±4	798±276	2840±347
HMC-NCP	3475±849	340±35	187±36
I-HMC	3879±281	1495±129	2421±89
HMC-VIP	4986±660	1144±279	3273±145

Effective sample size to number of leapfrog steps

Automatic Reparameterisation in Probabilistic Programming

Maria I. Gorinova, Dave Moore, Matthew D. Hoffman

Thank you!