Assignment 2

ESO208

$$4x_1 + 2x_2 = 10$$
$$2x_1 + 4x_2 + x_3 = 11.5$$
$$x_2 + 5x_3 = 5$$

L matrix is:

 4.000000
 0.000000
 0.000000

 2.000000
 3.000000
 0.000000

 0.000000
 4.666667

U matrix is:

 1.000000
 0.500000
 0.000000

 0.000000
 1.000000
 0.333333

 0.000000
 0.000000
 1.000000

Solution vactor is:

- 1.517857
- 1.964286
- 0.607143

2. Solve
$$\begin{bmatrix} 9.3746 & 3.0416 & -2.4371 \\ 3.0416 & 6.1832 & 1.2163 \\ -2.4371 & 1.2163 & 8.4429 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9.2333 \\ 8.2049 \\ 3.9339 \end{bmatrix}$$

A(upper triangualar matrix):

9.374600 3.041600 -2.437100

0.000000 5.196349 2.007020

0.000000 -0.000000 7.068908

Solution vector x:

0.900177

0.761367

0.624216

3.
$$\mathbf{A} = \begin{bmatrix} 9 & 3 & -2 \\ 3 & 6 & 1 \\ -2 & 1 & 9 \end{bmatrix}$$

- a) Reduce it to an upper triangular matrix using Gauss Elimination Procedure.
- b) Synthesize a lower triangular matrix \boldsymbol{L} and an upper triangular matrix \boldsymbol{U} from the steps of (a) above such that $\boldsymbol{A} = \boldsymbol{L}\boldsymbol{U}$.
- c) Compute A^{-1} using the LU decomposition obtained in (b).

(a)

```
A(upper triangualar matrix):

9.000000 3.000000 -2.000000
0.000000 5.000000 1.666667
0.000000 0.000000 8.000000
```

(b)

```
L matrix is:
1.000000
               0.000000
                               0.000000
0.333333
              1.000000
                               0.000000
-0.222222
              0.333333
                               1.000000
U matrix is:
9.000000
             3.000000
                               -2.000000
0.000000
              5.000000
                               1.666667
0.000000
               0.000000
                               8.000000
```

```
[c]
```

inverse of the matrix A is (By Gauss jordan method)

0.147222 -0.080556 0.041667 -0.080556 0.213889 -0.041667 0.041667 -0.041667 0.125000

4.

Solution using thomas algorithm:

- -1.933333
- -0.866667
- -0.533333
- 0.733333

5.

inverse of the matrix A is (By Gauss jordan method)

```
25.000000
                -41.000000
                                10.000000
                                                 -6.000000
-41.000000
                68.000000
                                -17.000000
                                                10.000000
10.000000
                -17.000000
                                5.000000
                                                -3.000000
-6.000000
                10.000000
                                -3.000000
                                                2.000000
```

Solution vector x:

- 1.000000
- -1.000000
- 1.000000
- -1.000000

Problem 2.

1. Consider the following matrix:

$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

a) Find the eigenvalue of maximum absolute magnitude and the corresponding eigenvector using the Power method with an accuracy of 0.001% of relative approximate error on the eigenvalue.

(a)

Direct Power method

Eigenvalue 5.302686

Eigenvector 0.302787

-1.000000

0.999928

-0.302742

Iterations 28

(b)

d) Obtain all the eigenvalues using QR algorithm and compare with those obtained in (a), (b) and (c) above.

QR decomposition

Eigenvalues

5.302727

3.618067

1.696465

1.382585

iterations

16

2. Consider the following Matrix:

$$\begin{bmatrix} 7 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 7 \end{bmatrix}$$

(a)

Direct Power method

Eigenvalue 12.000092

Eigenvector

0.500023

-1.000000

0.500000

Iterations

17

(b)

QR decomposition

Eigenvalues 11.999979 6.000010

6.000000

iterations 11

11

3. Consider the following matrix:

- a) Find the eigenvalue of maximum absolute magnitude and the corresponding eigenvector using the Power method.
- d) Obtain the eigenvalues using *QR* algorithm.

{a}

Direct Power method

Eigenvalue

8.156859

Eigenvector

0.877404

1.000000

0.524645

Iterations

6

(b)

QR decomposition

Eigenvalues

8.156848

0.657015

0.186596

iterations

6