The LNM Institute of Information Technology, Jaipur Mathematics-II Mid Term February 21, 2018

Duratio	on: 9	90 mins. Max.Marks: 3	30
Nar	me:	Roll No.:	
1.	(a)	For which values of g, h and k the following system of linear equations is consistent?	
		x - 4y + 7z = g	
		3y - 5z = h	
		-2x + 5y - 9z = k	
		Ţ	[3]
	(b)	Prove that any square matrix A can be written as the sum of a symmetric matrix and a ske symmetric matrix.	w- [2]
2.	(a)	Let $V = C[0,1]$. Prove or disprove: $S = \{f \in V : f(\frac{1}{2}) = 0\}$ is a subspace of V .	[2]
	(b)	Let V be a vector space over a field F. Let U and W be two subspaces of V. Prove that $U \cap V$	W $[3]$
3.	(a)	What is the span of $\{1\}$ in the vector space \mathbb{C} over the field \mathbb{C} ? What is the span of $\{1\}$ in the vector space \mathbb{C} over the field \mathbb{R} .	he [2]
	(b)	Write the span of $\{(1,0,0),(0,-1,0)\}$ in \mathbb{R}^3 . Explain geometrically.	[2]
4.	(a)	Show that $B = \{(1,2,0), (1,3,2), (0,1,3)\}$ forms a basis for \mathbb{R}^3 .	[3]
	(b)	Determine the coordinate vector of $v = (2,7,-4)$ with respect to the ordered basis B given	in [3]
5.	(a)	Suppose $\{u_1, u_2\}$ is an orthogonal set in an inner product space V . Show that $ u_1 + u_2 ^2 + u_1 ^2 + u_2 ^2$.	رس
	(b)	Use Gram-Schmidt process to transform the basis $\{(1,0,1),(1,0,-1),(0,3,4)\}$ for \mathbb{R}^3 into	an [3]
6.	(a)	Find all value/s of $k \in \mathbb{R}$ for which $H = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	[3]
	(b)	Let A be a square matrix. Prove that A and A^T have same set of eigen values.	[2]