Mullard Space Science Laboratory

Department of Space & Climate Physics

Inverse problem

$$y = \phi x + n$$
 where $\phi: x \mapsto y$

ill posed

- Insufficient information to solve
- Degenerate solution space
- Unstable to inversion

Applied Math

Data-fidelity Regulariser $x^{\text{map}} = \operatorname{argmin}[$ log-likelihoodlog-prior

Advantages

- Low computational cost
 Approximate inferences
- Highly scalable

Disadvantages

- Restricted to log-concave posterior functions

Statistics

$$\underbrace{P(x|y,\phi,\mathcal{M})}_{Posterior} = \underbrace{\frac{P(y|x,\phi,\mathcal{M})}{P(y|\phi,\mathcal{M})}}_{Evidence}$$

Advantages

- Asymptotically exact
- Any posterior

Disadvantages

- Computationally expensive
- Large memory overhead
- Not scalable

Planar Weak lensing

C12

Bayesian sampling versus optimisation [2,3]

Super-resolution MAP estimation versus Kaiser-Squires for various settings [1]