Coalescing - Expansion d'opérateur

Raphaël Le Bihan

24 juin 2020

On étudie dans ce document le remplacement d'un opérateur par sa définition dans une formule FOML. On cherche à montrer en particulier que pour un opérateur $d(\vec{x_i}) \triangleq e_d$ et une formule FOML ϕ , si ϕ est valide une fois abstraite en FOL, alors la formule $\widetilde{\phi}$ obtenue en remplaçant chaque occurence de $d(\vec{e_i})$ par $e_d(\vec{e_i}/\vec{x_i})$ est également valide une fois abstraite en FOL.

On cherche alors à établir une correspondance sémantique entre les abstractions FOL de ϕ et $\widetilde{\phi}$.

$$\phi \to \phi_{\rm FOL}$$

$$\phi \to \widetilde{\phi} \to \widetilde{\phi}_{\rm FOL}$$

(J'effacerai ce schéma ou j'en ferai un mieux, mais pour l'instant il permet de comprendre quelles formules qu'on manipule.)

Définition Remplacement d'un opérateur défini

Soit $d(\vec{x_i}) \triangleq e_d$ un opérateur défini, et ϕ une formule FOML pouvant contenir des occurences de d. On définit récursivement $\widetilde{\phi}$ la formule obtenue en

remplaçant d par sa définition dans ϕ par :

$$\begin{split} \widetilde{x} & \triangleq x \\ \widetilde{v} & \triangleq v \\ \widetilde{op(\vec{e_i})} & \triangleq op(\vec{\widetilde{e_i}}) \\ \widetilde{e_1 = e_2} & \triangleq \widetilde{e_1} = \widetilde{e_2} \\ \widetilde{\text{FALSE}} & \triangleq \text{FALSE} \\ \widetilde{e_1 \Rightarrow e_2} & \triangleq \widetilde{e_1} \Rightarrow \widetilde{e_2} \\ \widetilde{\forall x : e} & \triangleq \forall x : \widetilde{e} \\ \widetilde{\nabla e} & \triangleq \nabla \widetilde{e} \\ \widetilde{d(\vec{e_i})} & \triangleq e_d(\vec{\widetilde{e_i}}/\vec{x_i}) \end{split}$$

Cette définition correspond bien à ce qu'on veut faire.

Remarque 1 : Ici on n'a pas parlé des opérateurs définis autres que d. Remarque 2 : On ne remplace pas « qu'une fois »d, mais récursivement. Par ex d(d(e)) donne $e_d([e_d(e/x)]/x)$ et pas $e_d([d(e)]/x)$.

Propriété 1 Soit $d(\vec{x_i}) \triangleq e_i$ un opérateur défini, et ϕ une formule FOML pouvant contenir des occurences de d. Soit \mathcal{M} un modèle FOL où on peut interpréter $\widetilde{\phi}_{\text{FOL}}$ (çàd un modèle dans lequel les opérateurs $\lambda z.\nabla e$ générés lors de l'abstraction de $\widetilde{\phi}$ ont une interprétation). On peut compléter \mathcal{M} en un modèle FOL \mathcal{M}_d où on peut interpréter ϕ_{FOL} en ajoutant les interprétations suivantes pour les opérateurs $\lambda z.\nabla e$ et $d_{\vec{\epsilon}}$ générés lors de l'abstraction de ϕ :

1. Pour les opérateurs $[\lambda z.\nabla e]$ ayant déjà une interprétation dans \mathcal{M} (donc ayant déjà été générés lors de l'abstraction de $\widetilde{\phi}$):

$$\mathcal{I}_d(\boxed{\lambda z.\nabla e}) = \mathcal{I}(\boxed{\lambda z.\nabla e})$$

- 2. Pour les opérateurs $\lambda z.\nabla e$ n'étant pas interprétés dans \mathcal{M} (donc n'ayant PAS été générés lors de l'abstraction de $\widetilde{\phi}$) : A compléter
- 3. ESSAI 1

Pour les opérateurs $d_{\vec{\epsilon}}$: Finalement cette définition ne convient pas, voir le contre exemple dans le document pdf « brouillon ».

$$\mathcal{I}_d(\boxed{d_{\vec{\epsilon}}}): \vec{a_i} \in \text{dom } \mathcal{M}_d \mapsto [\![e_{d_{ ext{FOL}}}]\!]_{\mathcal{M}_d[x_i \mapsto a_i]}$$

Alors:

$$\llbracket \widetilde{\phi}_{\text{FOL}} \rrbracket_{\mathcal{M}} = \llbracket \phi_{\text{FOL}} \rrbracket_{\mathcal{M}_d}$$

Voici donc les points où je bloque dans ma preuve :

- Quelle interprétation donner aux nouveaux opérateurs dans \mathcal{M}_d
- Cas ∇e et $d(\vec{e_i})$ de la preuve, mais je pense que ces cas seront faisables une fois qu'on saura quelle interprétation donner.

Preuve La preuve n'est pas finie, en particulier les cas $\phi = d(\vec{e_i})$ et $\phi = \nabla \psi$. La partie de la preuve qui a déjà été écrite est indépendante de l'interprétation des nouveaux opérateurs dans \mathcal{M}_d .

On montre que la propriété est vraie pour ϕ_{FOL}^y pour toute liste de variables rigides y. On fait une preuve par récurrence sur ϕ .

- Cas $\phi = x \mid y \mid$ FALSE. Dans ce cas $\mathcal{M}_d = \mathcal{M}$ et $\phi_{\text{FOL}}^y = \widetilde{\phi}_{\text{FOL}}^y$ donc on peut conclure.
- Cas $\phi = (\phi_1 \Rightarrow \phi_2)$. Par définition $\phi_{\text{FOL}}^y = \phi_{1_{\text{FOL}}}^y \Rightarrow \phi_{2_{\text{FOL}}}^y$ et $\widetilde{\phi}_{\text{FOL}}^y = \widetilde{\phi}_{1_{\text{FOL}}}^y \Rightarrow \widetilde{\phi}_{2_{\text{FOL}}}^y$. Par hypothèse de récurrence sur ϕ_1 et $\phi_2 : [\![\phi_{1_{\text{FOL}}}^y]\!]_{\mathcal{M}_d} = [\![\widetilde{\phi}_{1_{\text{FOL}}}^y]\!]_{\mathcal{M}_d} = [\![\widetilde{\phi}_{1_{\text{FOL}}}^y]\!]_{\mathcal{M}_d} = [\![\widetilde{\phi}_{1_{\text{FOL}}}^y]\!]_{\mathcal{M}_d} = [\![\widetilde{\phi}_{1_{\text{FOL}}}^y]\!]_{\mathcal{M}_d}$. Alors :

$$\begin{split} \llbracket \phi^y_{\text{\tiny FOL}} \rrbracket_{\mathcal{M}_d} &= \left\{ \begin{array}{ll} \text{tt} & \text{si } \llbracket \phi_1^y_{\text{\tiny FOL}} \rrbracket_{\mathcal{M}_d} \neq \text{tt ou } \llbracket \phi_2^y_{\text{\tiny FOL}} \rrbracket_{\mathcal{M}_d} = \text{tt} \\ \text{ff} & \text{sinon} \end{array} \right. \\ &= \left\{ \begin{array}{ll} \text{tt} & \text{si } \llbracket \widetilde{\phi}_1^y_{\text{\tiny FOL}} \rrbracket_{\mathcal{M}} \neq \text{tt ou } \llbracket \widetilde{\phi}_2^y_{\text{\tiny FOL}} \rrbracket_{\mathcal{M}} = \text{tt} \\ \text{ff} & \text{sinon} \end{array} \right. \\ &= \llbracket \widetilde{\phi}_{\text{\tiny FOL}}^y \rrbracket_{\mathcal{M}} \end{split}$$

- Les cas $\phi = (\phi_1 = \phi_2)$ et $\phi = op(\vec{\phi_i})$ sont similaires.
- Cas $\phi = \forall x : \psi$. Par définition $\phi_{\text{FOL}}^y = \forall x : \psi_{\text{FOL}}^{xy}$ et $\widetilde{\phi}_{\text{FOL}}^y = \forall x : \widetilde{\psi}_{\text{FOL}}^{xy}$. Alors :

$$\begin{split} \llbracket \phi_{\text{FOL}}^y \rrbracket_{\mathcal{M}_d} &= \llbracket \forall x : \psi_{\text{FOL}}^{xy} \rrbracket_{\mathcal{M}_d} \\ &= \left\{ \begin{array}{ll} \text{tt} & \text{si pour } a \in \text{dom} \mathcal{M}_d, \llbracket \psi_{\text{FOL}}^{xy} \rrbracket_{\mathcal{M}_d[x \mapsto a]} = \text{tt} \\ \text{ff} & \text{sinon} \end{array} \right. \\ &= \left\{ \begin{array}{ll} \text{tt} & \text{si pour } a \in \text{dom} \mathcal{M}, \llbracket \widetilde{\psi}_{\text{FOL}}^{xy} \rrbracket_{\mathcal{M}[x \mapsto a]} = \text{tt} \\ \text{ff} & \text{sinon} \end{array} \right. \\ &= \left. \begin{bmatrix} \text{tt} & \text{si pour } a \in \text{dom} \mathcal{M}, \llbracket \widetilde{\psi}_{\text{FOL}}^{xy} \rrbracket_{\mathcal{M}[x \mapsto a]} = \text{tt} \\ \end{bmatrix} \right. \\ &= \left. \llbracket \forall x : \widetilde{\psi}_{\text{FOL}}^{xy} \rrbracket_{\mathcal{M}} \right. \\ &= \left. \llbracket \widetilde{\phi}_{\text{FOL}}^y \rrbracket_{\mathcal{M}} \right. \end{split}$$

— Cas $\phi = \nabla \psi$.

— Cas $\phi = d(\vec{e_i})$.

C'est dans les deux derniers cas qu'on rencontre des problèmes.

Propriété 2 Soit $d(\vec{x_i}) \triangleq e_d$ un opérateur défini, et ϕ une formule FOML pouvant contenir des occurences de d. Si $\vDash_{\text{FOL}} \phi_{\text{FOL}}$ alors $\vDash_{\text{FOL}} \widetilde{\phi}_{\text{FOL}}$.

Preuve Pour tout modèle \mathcal{M} de $\widetilde{\phi}_{\text{FOL}}$ par la propriété 1 il existe \mathcal{M}_d tel que

 $[\![\widetilde{\phi}_{\text{FOL}}]\!]_{\mathcal{M}} = [\![\phi_{\text{FOL}}]\!]_{\mathcal{M}_d} = tt$

car $\phi_{\mbox{\tiny FOL}}$ est valide. Alors $\widetilde{\phi}_{\mbox{\tiny FOL}}$ est valide.