SUITES NUMÉRIQUES

I. Exemples.

On considère la suite arithmétique (U_n) de premier terme $U_0=-4$ et de raison r=0.8 et la suite géométrique (V_n) de premier terme $V_0=0.1$ et de raison q=-1.5.

- 1°) Donner l'expression de (U_n) et (V_n) en fonction de n et en déduire le calcul des 15 premiers termes de chaque suite.
- 2°) Donner les relations de récurrence vérifiées pas les suites (U_n) et (V_n) . En déduire, par une autre méthode, le calcul des 15 premiers termes de chaque suite.
- 3°) Afficher la somme de 15 premiers termes de chaque suite.
- 4°) Représenter graphiquement les suites (U_n) et (V_n) par un nuage de points.

1°) On choisit le menu **RECUR**.

On utilise le **terme général** :

$$U_n = U_0 + nr = -4 + 0.8n$$
 et $V_n = q^n V_0 = (-1.5)^n \times 0.1$.

On choisit le type de suite dans le menu TYPE.

Pour les deux suites, on prend $a_n = An + B$.

On saisit l'expression des deux suites à l'aide du menu n.

On règle les paramètres de la suite avec le menu SET.

On construit la table de valeurs avec **EXIT** puis **TABL**.

2°) On choisit le menu **RECUR**.

On utilise la **relation de récurrence** : $U_{n+1} = U_n + r$ et $V_{n+1} = qV_n$.

Pour chaque suite, on choisit son type dans le menu TYPE.

Pour les deux suites, on prend $a_{n+1}=Aa_n+Bn+C$

On saisit l'expression des deux suites à l'aide du menu nan

On règle les paramètres de la suite avec le menu SET.

On construit la table de valeurs avec **EXIT** puis **TABL**.

https://github.com/KELLERStephane/QCM-maths-physique-chimie

3°) On choisit le menu **RECUR**.

Somme des 15 premiers termes de chaque suite.

Shit SET UP puis mettre \sum **Display** sur **On**.

EXIT ; **TABL** pour avoir la valeur de chaque terme et la somme cumulée.

4°) Représentation graphique.

Shit V-Windows puis saisir les paramètres d'échelles.

EXIT; **TABL**; **G-PLT** pour avoir le nuage de points.

TRACE puis utiliser le joypad ($\blacktriangleleft \triangleright$) pour se déplacer dans le nuage de points ou ($\blacktriangle \blacktriangledown$) pour changer de suite.

II. Complément : utilisation de la fonction SEQ.

Seq	Création d'une suite de nombres.
	Touche Optn; sous menu List puis Seq
	Syntaxe Seq(Fonction, Variable, Var min, Var max, Valeur de l'incrément)

Cette instruction nécessite l'expression du terme général de chaque suite :

$$U_n = U_0 + nr = -4 + 0.8n$$
 et $V_n = q^n V_0 = (-1.5)^n \times 0.1$.

On choisit le menu RUN-MAT.

Touche Optn ; sous menu List puis Seq saisir ensuite :

Touche Optn; sous menu List puis Seq saisir ensuite:

Sum Seq (14+0.8X,X,0,15,1) A EXE pour obtenir la somme des 15 premiers termes de la suite arithmétique.

Touche Optn ; sous menu List puis Seq saisir ensuite :

Sum Seq ((1 1 5) ∧ X ► × 0 1 1 , X , 0 , 1 5 , 1) → G EXE pour obtenir la somme des 15 premiers termes de la suite géométrique.

https://github.com/KELLERStephane/QCM-maths-physique-chimie

III. Limite d'une suite.

Soit la suite (U_n) définie par son premier terme $U_0=10$ et, pour tout entier naturel n, $U_{n+1}=\frac{1}{2}U_n+1$. Soit f la fonction associée définie sur \mathbb{R} par $f(x)=\frac{1}{2}x+1$.

- 1°) Représenter graphiquement le nuage de points des premiers termes de la suite (U_n) .
- 2°) Représenter graphiquement la courbe représentant la fonction f et tracer les premiers termes de la suite (U_n) .
- $3^\circ)$ Ici U_0 est un réel quelconque. En utilisant le graphique, conjecturer le sens de variation et la limite de la suite U selon la valeur de U_0 .

1°) On choisit le menu **RECUR**.

On utilise la **relation de récurrence** : $U_{n+1} = \frac{1}{2}U_n + 1$.

On choisit le type $a_{n+1}=Aa_n+Bn+C$ dans le menu TYPE.

On saisie l'expression de la suite à l'aide du menu na_n.

On règle les paramètres de la suite avec le menu SET.

On construit la table de valeurs avec **EXIT** puis **TABL**.

Représentation graphique.

On choisit **G-PLOT** et **an** pour tracer le nuage de points $(n; U_n)$.

Shift; Trace pour se déplacer sur les points.

2°) Touche **EXIT**.

Shit V-Windows puis saisir les paramètres d'échelles.

Touche **EXIT**; **TABL**; **WEB** puis appuis successifs sur **EXE** pour le tracé ci-contre.

3°) Touche EXIT; EXIT; SET; On change la valeur de anStr.

Shit V-Windows puis saisir les paramètres d'échelles.

Touche **EXIT**; **TABL**; **WEB** puis appui successif sur **EXE** pour le tracé successif des points.

On réitère le procédé en choisissant plusieurs valeurs pour $\,U_{\scriptscriptstyle 0}\,.$

On conjecture que:

- > Si $U_0 < 2$ alors la suite (U_n) est **croissante**.
- > Si $U_0 = 2$ alors la suite (U_n) est constante.
- > Si $U_0 > 2$ alors la suite (U_n) est décroissante.
- > Dans tous les cas, la suite est **convergente** et sa limite tend vers 2. $\lim_{n \to \infty} U_n = 2$.

