

E } Xk } = E } Xo + \(\frac{\frac{k-1}{1}}{1+0} \) $E \begin{cases} x_k \\ 3 = 0 + \sum_{i=0}^{k-1} u_i + 0 \Rightarrow 0 \end{cases}$ (X_k, | X_k, u_k) (X_k, u_k) (X_k, u_k) Vor \(\frac{2}{5} \) \(\frac{2} \) \(\frac{2} \) \(\frac{2}{5} \) \(\frac{2}{5} X= + (X=, U=, NE) • In this course, our aim is to minimize XET C XLII - WK EWK 5 = Min E $\left\{ \sum_{i=0}^{5} x_i^2 \right\}$ > p3 (we en | x3, u2) 03= E { 5 w; } = (k+1) 0 = m. closed - 100P Assumption: are all independent. $\sum_{\substack{i=0\\i=0}}^{k} \left[\sigma^2 + \left(\sum_{\substack{i=0\\i=0}}^{k-1} u_i \right)^2 + i \sigma^2 \right]$ $= \frac{1}{(1+i)} \frac{$ X1 = f. (x2 g (y2), w.) = function of x2 y2, w. which are independent of us, > X1 +> W1 idependent 4, g, (y, y,) = g, (h, (x,, v,), h, (x, v)) = 9, (h, (f, (xo, u, vo), v), ho (xo, vo)) Determinatio Case Xx+1 = f (xx, ux) = 9, (h, (f, (xo, ho(xo, vo), vo), vo), v,), ho (xo, vo)) y = hx(xx) > w, <> u, independent Xx+2= fx+1 (Xx+1, 12+1) = fx+1 (fx(xx, 12), 12+1) > p³ (w, ∈ W, / x³, u, 3) = p³ (w,) Stochostic Cose Lemma: Suppose that the assumption holds XXXX = f. (Xx, UL, XXX) Then for any feedback law g, y = hx (xx, vx) P3 (X ++1 | X3 - ... X0, U2, ..., 10) = p3 (X 1 | U4, X2) Moreover these conditional densities do not depend on "a"

Xx = axx + buz deterministic * If the claim is correct y = cxx , ux = g(y, , , y) (**) = p3 (we E We) = p (we E WE) Proof of the Claim: XX & known , us . known X1=f (x0,40, 400) Xx+ = ax2 + but -f. (x., g(y.), w.) -fo (xo, go(h(xo, vo)), uso) - not a function stochastic case: Because of the bosic ossumption w, Xx + = OXx + buk + wx 8 = CXx + Vk , Ux=g(yo), yx) is independent of (xo, uso, vo) .. w is independent of X (1) Proof: (u, is independent of to (2) Xx1= (x2, 13, 10x) 40 = g (ho(xo, vo)) : funt of xo, vo (3=hk(xk,4k) , 12=gk(y3,k) - us is independent of w. U1 = 9, (h, (x, x,)) > Junt of x vous, x, P3(x3, EX, X3, x3, u3, ..., u3) function of xo, we, Vo = p = (| (x2, u2, u2) = X1+1 | X2, x3, u2, · w is independent of u Let Wk= { wk | { (x3, u3, u2) (XkH) } => w, independent xo, X, , wo, U, P\$(ux EWx) x2, x3, u2, u2) (x) = If we continue; at the kth stop Xx will be a function of (Xo, ino..., while wx is independent of x,x; X2, and we is independent of xk Note that if the claim is correct than (x) Un = ((X0, W0, - , W1) V0, - , V =) is equal to po (wx EWx)=p(wx EWx (it is not related with the feedbook and we's independent of U function "a"). independent of all post xi * Note that ikk, u, ikk > clam is correct. (4x) po (xx+1 + Xx+1 | Xx2, 42) = po (Wx | x2, 42)

Componison Principle: $\sqrt{3}(x_0) = 0 + (1+3a^2)(0+1)+3 = 3a^2 + 14^2$ OLKEN be functions such that 10 x0~ N(1,05) 1n(x) L Cn(x) J(g) = EV3(x3) 1/2 / Cx(x,u)+ Em/2+1(f,(x,u,m)) $V_0^3(x_0) = E(x_0^2) + (1+30^2) = \{0^2x_0^2 + 1\} + 3$ for all x and for all u. Let g & 6 be E 2 x & = 1 E 2 (x - 1) } = 0.5 arbitrary then w.p. 1 E \ x2 \ - 2 E \ x0 \ + 1 = 0.5 Vx(x2) 4 Jx where => E \ x23 = 1.5 J2= = { Ce(x2, 42) + Cn(x2) | X0 ... x2} + VP(x0) = 1.5 + (1+302) (1.502+1)+3 Jo= E } = ce(x2, u2) + (n(x2) | x3) Proof: Proof is by industion. $V_n^3(x_n^3) = C_n(x_n^3)$ Theorem: Define recursively the functions Assume that (N-1) $= \{X_{k+1}, X_{k+1}\}$ $= \{X_{k+1}, X_{k+1}\}$ $= \{X_{k+1}, X_{k+1}\}$ $= \{X_{k+1}, X_{k+1}\}$ $V_{\mathcal{N}}(x) \triangleq C_{\mathcal{N}}(x)$ $(*) V_k(x) = \inf_{u \in U} C_k(x, u) + E_{w_k} V_{k+1} \left(f_k(x, u, w_k) \right)$ E Ce (x3, 43) + CN(x3) | X3 1) g & G. Then 1/2(1/2) & J.3 w.p. 1 9 (x2) $(x_{k}^{2}, g_{k}(x_{k}^{2})) + (x_{k}^{2}, u_{k}^{2}) + (x_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}) + (x_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}) + (x_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}) + (x_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{k}^{2}, u_{$ 2) The Morton policy g= {3,..., gn} in G apply the same trick is applicable if the infimum in (x) is achieved J*= J(9)= = Vo(x0) Ck (xe, ge(x2))+ E { Vk+1 (xe+1) | xe } 3) A Markov policy a Gu is applical if = (x2 3 (x2)) + E V (((x2 9 (x2), w,), w, 1 x2 } and only if for each k, the infimum of VK(X3)= CK(X3, 92(X3)) + = WK VEN (12(X2) 92(X3)), W) Xi in (*) is ochieved by g(x2) i.e. V(x2) + C(x2, U2) + Ewk V+ (((x2, 92 (x2), w2))

							T		T	1	T	-					T							\Box	\top	
• =	V(y-	τ) {-	E\$ (x-Ŷ)(4-	σ.	7 {										_						4		1	
	7.	~ \	1 1	1 1	1		_	_	_	1	+	+			-			_			-	-	\dashv		_	_
= E	کر پر کا	15)	<u>}−</u> E	3 1	9 -6)	3			1	+				-			+					+	+	+	\dashv
- - -	}(x-x)	(u-a)	T+ x	(u-ū)٦٢																					
1 [1 1	1 1	1 T		7							\downarrow			_			-			i,	\dashv	+	\perp	
-	EŞ(x+	2 xy 2 y	'(৬-ছ))(A	<u>-a),</u>	3			+	-		-	-	-	+								+		-	_
	xy + () _ # S	T (W-	77	7 -5.	5	EX	u-u \	Yu-ù	3	-	\dashv			-				<u> </u>							_
	9,		70	ν'	5	70) - (1									-						$\overline{\perp}$	
.						ļ				+	+-		+			-						-	_		\dashv	
-	xy -	5 5	+ +		, -					-	· · ·					-			+	*.			-			
	YO -	70/	8 70																	•						
		\ 1 ?	 -	-	_		-		_	\perp					-	-		_	_					\dashv	$\overline{\cdot}$	
=>E	§ 21/2	<u>a). }</u>	=0 >	Y	and r	1.1	re	\dashv	+	+	-			-	-	-		+	+	(\dashv	\dashv	
				-		-				1																
⇒ 7	and y	ore m	depe	rolen	st (s	hæ	Ga	US9/	an)					\downarrow		-								\vdash	\dashv	
	1 1 7			1 1						4				+												
PY	and \hat{V}	June	ieu af	رق	ore	ma	epe	move	MT_	1	+-															
								/							_										\dashv	
X=1=(xly)=E	(\varphi+\sqrt{\varphi}+\sqrt{\varphi}	(وا ز	=E(٥ly) † :	E(\$		5)	+						+	-							\vdash		
1 1	E(x ly					-		2	11.	+															•	
																										<u> </u>
+=	<u> </u>	<i>2</i> xy2	<u>u</u> (y-	<u>-\$)</u>	<u>ly</u>)	-								+									<u>.</u>			
	×+ユ			1		-				+	+			\dashv							-					
*	X 7 4	7	1 5	3,						1																
			-0-	-		-			_		-			-		-		-					-		\vdash	\vdash
3 =	17	5-16.	,	7		1		,	\dashv	1		-				-						-				
	+2xy																									
	, + x = (~	-			- 1	-	_										-		1.	-		-
x,=<	1+ K= (202u	(y-0)) =)	X=	X-	-V =	X	-X	\dashv	-	-		+								-		+		
vand	y xe	indeo	ender	+						1																
	\triangleright				-	+	ļ.			4		-			-	\perp		-		-	<u> </u>		-	_		<u> </u>
X one	1 2 ore	",Joh	perole	nt_		+	-			1	-				-	+	<u> </u>					 	+	+-		\vdash
% 000	V Q QT	2 100	pend	ent																						
		1 1	•	1				- 3			-	-				_	+-	-		-	-	-	-	+		-
: X	and 3	ace	inde	pend	ent	+	-			\dashv	-	+	-			+	+	+	-		-	+	+	+	+-	+
Shan	that,	Σ	5	-5,	J5:1	5	7			_																
	1017				0 0		41					\prod				T				ļ_			_	_	<u> </u>	_
.			- -			-	-	-				-					+	 		-	-		-	+	-	+
			+		+	+-	+	-	,	1	+	+-		+	+		+	-		-	\dagger	-	+	+	;	\dagger
																		1		_		1.	1	1		\perp
	-		\bot					-				-	_			-	+	-		-	+	-	+	+	+	+
				<u> </u>			\perp	<u> </u>						Ш			<u> </u>	\bot	<u> </u>	L	Ш.		Щ		<u></u>	\perp

				5.
$\Rightarrow \overline{y}^k = \rho(y^k, \overline{z}_0)$				
70 - 70 / 201				
SkHIK = COV (XKHI) yt)	-COV(Xx41-E{Xx41	1913)		
	× k+11)	K		
	. 1. 1. 7			
= (0) (X++1-# 5)	in 14, 3, 3+AA	10 50/		
and 5 ++1+ = Cav (7 ++1 -	E \$ = 1 (\(\vec{1} \)			
and ZEHILE - COVINCHI-				
	f(y, 2)			
		,		
2 Cou (Xx+1-	E [] , [] , []			
Note: Cov(x-E(xly))	1 6 11 25			
	= CON (N- 119)	/		
Theorem:				
XXXIIK = AKXXIIL + A	LK (ML -CEXEIL	_()		
X01-1 = E (x0) = 0				
Time involvent case:				
Xx+1 = AX+ GWK	basic ossumption	as balds		
AK+1= MAET GAR	EBIC OSSUTIVITO	01 10 00		, ;
y = C x + 1 + HV +				
021				
			1 1 1 1	
x.~N(0, \(\omega\),u	25~N(0.8), N~N	v(o,R)		
Asymptotic Behalvour	of the halman t	ritter		
5 A 5 5 CT/	T HBHT C	5.7 M		
2 - A (2 - 1 - 2 - 2 - 2 - CT (GQG		
If A is unstable, then	Trails diverge	29		
If Trill converges	- value (steply	-state		
5-A(5-20 (c2c	+ HRHT) (5)A	+606		
Algebraic Riccoti Equa	ution (ARE)			
			+	
			+ + + + + + + + + + + + + + + + + + +	
		<u> </u>		

-41

satisfied W N W O W NHOR Function 2 Objective 1(9) KKKK + 42 7 Te 42) (x, u) XXX 4.1 (R = Lenna: x = E(x) where Cov(x) 24 (x) w Fr (12. 3/1N CKIK (x)= VKIK THE CUTE OF XPX X + L- CP ELIK (x) = VE-1 (5) N(5,12kx+Bkc) & Dk-1) C 5'PN [N (5,x, > e1)) } Cwin(x) Look depinition Die /c (x the K/RX (P) NIN

177-1

