- 1. (12pt) Suppose that simple exponential smoothing is being used to forecast the process $y_t = \mu + e_t$, where where $\{e_t\}$ are white noise with mean 0 and variance σ^2 . At the start of period t^* , the mean of the process experiences a transient; that is, it shifts to a new level $\mu + \delta$, but reverts to its original level μ at the start of the next period $t^* + 1$. The mean remains at this level for subsequent time periods.
- (a) Find the expected value of the simple exponential smoother

$$\tilde{y}_T = (1 - \theta) \sum_{t=0}^{\infty} \theta^t y_{T-t}.$$

- (b) For $\theta = 0.5$, Determine the number of periods that it will take following the impulse for the expected value of \tilde{y}_T to return to within 0.1δ of the original level μ .
- 2.(10pt) Let $\{Y_t\}$ be an AR(1) process with $|\phi| < 1$. That is $Y_t = \phi Y_{t-1} + e_t$, where $\{e_t\}$ are white noise with mean 0 and variance σ^2 . Also note e_t 's are independent of Y_{t-1}, Y_{t-2}, \dots
- (a) Find the autocorrelation function for $W_t = Y_t Y_{t-1}$ in terms of ϕ and σ^2 .
- (b) Calculate Var (W_t) , where $W_t = Y_t Y_{t-1}$.
- 3. (12pt) Suppose $Y_t = X_t + e_t$, where $\{e_t\}$ are normal white noise with mean 0 and variance σ_e^2 . The $\{X_t\}$ process is a stationary AR(1) defined by $X_t = \phi X_{t-1} + Z_t$, where $\{Z_t\}$ is a zero mean normal white noise process with variance σ_Z^2 . As usual, in the AR(1) process, assume that Z_t is independent of X_{t-1}, X_{t-2}, \ldots Assume additionally that $E(e_t Z_s) = 0$ for all t and s.
- (a) Show that $\{Y_t\}$ is stationary and find its auto-covariance function, γ_k .
- (b) Show that the process $\{U_t\}$, where $U_t = Y_t \phi Y_{t-1} = (1 \phi B)Y_t$, has nonzero correlation only at lag 1 (excluding lag 0, of course!).
- 4. (16pt) Suppose that $\{e_t\}$ is a zero mean white noise process with variance σ^2 . Consider:
- (i) $y_t = 0.80y_{t-1} 0.15y_{t-2} + e_t 0.30e_{t-1}$
- (ii) $y_t = y_{t-1} 0.50y_{t-2} + e_t 1.2e_{t-1}$.
- (a) Identify each model as an ARMA(p, q) process; that is, specify p, and q. (watch out for parameter redundancy).
- (b) Determine whether each model is stationary and/or invertible.