Math 173B: Midterm 1 Solutions

Problem 2.

(a) Describe each step in the ElGamal cipher.

Solution. Say Bob wants to send a message to Alice.

- 1. Alice and Bob publicly agree on a prime p and element g modulo p (it could be a primitive root, but it's usually chosen to have large prime order).
- 2. Alice chooses a random a with $1 \le a \le p-1$ and publishes $A = g^a \pmod{p}$.
- 3. Bob chooses his message $m \in \mathbb{Z}/p\mathbb{Z}$. He chooses a random k and computes

$$c_1 = g^k \pmod{p}, \quad c_2 = mA^k \pmod{p}.$$

He sends the pair (c_1, c_2) to Alice.

4. Alice decrypts by computing

$$(c_1^a)^{-1} \cdot c_2 \equiv m \pmod{p}. \tag{1}$$

(b) If eve has an oracle for the discrete log problem, how can she decrypt the message? Give a step-by-step explanation.

Solution. Eve knows $p, g, A = g^a \pmod{p}$, $c_1 = g^k \pmod{p}$, and $c_2 = mg^k \pmod{p}$. She has an oracle, that, given g, p, h returns x such that $g^x \equiv h \pmod{p}$ if it exists. She can then give her oracle g, p, and A and it will give her $a \pmod{p-1}$. She can then perform the same decryption calculation (1) as Alice.

Problem 3. Let p be a prime number and let g be a primitive root in \mathbb{F}_p^{\times} .

(a) Let r be an integer such that gcd(r, p-1) = 1. Prove that g^r is a primitive root in \mathbb{F}_p^{\times} .

Proof. Here's one way to do it. Let k be the order of g^r . g^r is a primitive root if and only if its order is p-1. Since $(g^r)^{p-1} \equiv 1 \pmod{p}$ by Fermat's little theorem, we know that k|p-1. Now we also have

$$(g^r)^k = g^{rk} \equiv 1 \pmod{p},$$

so the order of g must divide rk. But the order of g is p-1 since g is a primitive root, so p-1|rk. Since p-1 and r are coprime, we must then have that p-1|k. We have then shown that k|p-1 and p-1|k, so k=p-1 and g^r is a primitive root.

Here's a more algebraic way. Consider the map $f: \mathbb{Z}/(p-1)\mathbb{Z} \to \mathbb{F}_p^{\times}$ given by $f(x) = g^{rx} \pmod{p}$. g^r is a primitive root if and only if f is surjective. We know that $\mathbb{F}_p^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$, so f is surjective

if and only if it is injective (a map from a finite set to itself is surjective if and only if it is injective). Suppose that f(x) = f(y), that is

$$g^{rx} \equiv g^{ry} \pmod{p}$$
.

Since g is a primitive root, this happens if and only if $r(x-y) \equiv 0 \pmod{p-1}$. Since r is coprime to p-1, it is invertible mod p-1 and we obtain $x \equiv y \pmod{p-1}$, so f is injective, and therefore surjective, which makes g^r a primitive root.

(b) Prove that there are $\phi(p-1)$ primitive roots in \mathbb{F}_p^{\times} .

Proof. By part (a) we have that g^r is a primitive root when r is coprime to p-1. There are then at least $\phi(p-1)$ primitive roots in \mathbb{F}_p^{\times} . Suppose that r is not coprime to p-1. There is then some d>1 that divides both p-1 and r. We'd then have

$$(g^r)^{\frac{p-1}{d}} \equiv (g^{r/d})^{p-1} \equiv 1 \pmod{p-1}.$$

Note that $\frac{p-1}{d}$ and $\frac{r}{d}$ are indeed integers. The order of g^r is then at most $\frac{p-1}{d}$, which is strictly less than p-1, so g^r can't be a primitive root when r isn't coprime to p-1. We conclude that there are at most $\phi(p-1)$ primitive roots. Combining this with part (a), we arrive at exactly $\phi(p-1)$ primitive roots.

(c) Find all primitive roots of \mathbb{F}_{11}^{\times} . (HINIT: 2 is a primitive root of \mathbb{F}_{11}^{\times} .)

Solution. By parts (a) and (b) and the hint, $2^r \pmod{11}$ is a primitive root if and only if r is coprime to 11 - 1 = 10. Our primitive roots are then

$$2^1 \equiv 2, \ 2^3 \equiv 8, \ 2^7 \equiv 7, \ 2^9 \equiv 9 \pmod{11}.$$