1/1 puntos

Graded quiz on Cartesian Plane and Types of Function

CALIFICACIÓN DEL ÚLTIMO ENVÍO 92.3%

- 1. Which of the following points in the Cartesian Plane have positive x-coordinate and negative y-coordinate? 1/1 puntos
- (-4,5)
- $\bigcirc (0,0)$
- O (5,7)

 \checkmark Correcto $\mbox{The x-coordinate, 7, is positive, and the y-coordinate, -1, is negative.}$

- (5, -1)
- $\bigcirc (-5,1)$
- (7,11) $\bigcirc (-4, -7)$
- Correcto
 The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both
- 3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$

1/1 puntos

Suppose that the distances from A to B,C,D are 5.3,2.1, and 11.75, respectively.

Which of the following points is the nearest neighbor to the point A in the set S?

- C
- О в
- O D
- O A

The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of S.

4. Find the distance between the points A=(2,2) and B=(-1,-2).

1/1 puntos

- \bigcirc 1
- O 25
- 5
- \bigcirc -25

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$$

- -1
- \bigcirc 1
- $\bigcirc \sqrt{2}$
- \bigcirc 0

The slope of this line segment is $\displaystyle rac{0-1}{1-0} = -1$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

0/1 puntos

- y 4 = 2(x 5)
- \bigcirc (5,4)
- y-5=-2(x-4)
- y 4 = -2(x 5)

Incorrecto

Remember that the point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and used correctly in this answer.

However, this answer uses the point $\left(4,5\right)$ which is not on the line.

7. Which of the following equations is for a line with the same slope as $y=-3x+2$?	1/1 puntos
$\bigcirc \ y = 5x + 2$	
$\bigcirc y = 8x - 3$	
$\bigcirc y = 5x$	
$\begin{tabular}{c} \checkmark Correcto \\ The slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis. \\ \end{tabular}$	
This line has slope $m=-3$ which is the same slope as the given line.	
8. Which of the following equations is for a line with the same y -intercept as $y=-3x+2$?	1/1 puntos
$\bigcirc y = 8x - 3$	
● $y = 5x + 2$	
$\bigcirc y = 5x$	
$\bigcirc y = -3x - 8$	
$\label{eq:correcto} \checkmark \text{ Correcto}$ The the slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the coordinate of the point where the line hits the y -axis. This line has a y -intercept of 2 which same as the given line.	
9. How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1/1 puntos
1	
○ None	
infinitely many	
○ 2	

The line with equation y=x is the one and only line that meets the stated requirements.

✓ Correcto

	How n	nany lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1/1 punto
	1		
	(No	one	
		finitely many	
	O 2		
	~	$\mbox{\footnote{to}}$ The line with equation $y=x$ is the one and only line that meets the stated requirements.	
0.		is that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $F:A o Z$ is saible?	1/1 punto
	O Th	ere are infinitely many	
	\bigcirc 1		
	○ Th	ere are none	
	4		
	~	Correcto $ \text{A function } F:A\to Z \text{ is a rule which assigns an element } F(a)\in Z \text{ to each element } a\in A.$	
		There are two elements in A ; namely, a and b . For each of these elements, there are two assignment choices we could make: x and y .	
		Here are the four possible functions:	
		$F(a)=x, F(b)=y, \operatorname{OR}$	

 $F(a)=y, F(b)=x, \operatorname{OR}$

 $F(a)=x, F(b)=x, \operatorname{OR}$

F(a) = y, F(b) = y.

11. How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$	1/1 puntos
○ None	
\bigcirc 2	
Infinitely many	
O 1	
\checkmark Correcto $\mbox{The graphs of }f(x)=x,g(x)=x^2,h(x)=x^3,s(x)=x^4,\dots\mbox{ all contain both }A\mbox{ and }B$	
12. Suppose that $g:\mathbb{R} \to \mathbb{R}$ is a continuous function whose graph intersects the x -axis more than once. Which of the following statements is true?	1/1 puntos
$\bigcirc \ g$ is strictly increasing.	
$\bigcirc \ g$ is strictly decreasing.	
lacktriangledown g is neither strictly increasing nor strictly decreasing.	
All of the above.	

13. Find the slope of the line segment between the points A=(1,1) and B=(5,3).

1/1 puntos

 $\bigcirc \sqrt{20}$ $\bigcirc 4$ $\bigcirc \frac{1}{2}$

✓ Correcto

decreasing.

O 2

 \checkmark Correcto $\mbox{The slope of this line segment is } \frac{3-1}{5-1} = \frac{1}{2} \mbox{ , where } 3-1 \mbox{ is the rise and } 5-1 \mbox{ is the run.}$

The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly