CS563-NLP

ASSIGNMENT-3: Machine Translation

(Read all the instructions carefully and adhere to them)

Date: April 06, 2022 **Deadline**: April 13, 2022

Scores: 20

Instructions:

- 1. Markings will be based on the correctness and soundness of the outputs.
- 2. Marks will be deducted in case of plagiarism.
- 3. Proper indentation and appropriate comments (if necessary) are mandatory.
- 4. You should zip all the required files and name the zip file as:
- 5. <roll_no>_assignment_ <#>.zip, eg. 1701cs11_assignment_01.zip.
- 6. Upload your assignment (the zip file) in the following link: https://www.dropbox.com/request/RliXspRdi3pnp6zhYGk7

For any queries regarding this assignment contact:

Aizan Zafar (aizanzafar@gmail.com), Soumitra Ghosh (ghosh.soumitra2@gmail.com)

Machine translation: MT aims at translating from one language to the another.

Example: it is raining outside → बाहर वर्षा हो रही है

Sequence to Sequence Learning for Neural Machine <u>Translation</u>

- **Problem Statement:** The objective is to convert an English sentence to its Hindi counterpart using a Neural Machine Translation (NMT) system.
 - **Input:** Given Sentence in English. A start of the sentence (<sos>) and the end of the sentence (<eos>) token needs to be appended.

- '<sos>', 'it', 'is', 'raining', 'outside', '<eos>'
- Output: Corresponding translated sentences in Hindi. A start of the sentence (<sos>) and end of the sentence (<eos>) token needs to be appended.
 - '<sos>', 'बाहर', 'वर्षा', 'हो', 'रही', 'है' '<eos>'
- You may consider the following details for the implementation.
 - Input Vec (W_i input at the encoder): The word embeddings of the words from the input sentences will be the input to the encoder model. You can use the Word2Vec or GLOVE embedding.
 - Output Vec (W_o input at the decoder): The word embeddings of the words from the output sentences will be the input to the decoder model. You can use the Word2Vec or GLOVE embedding
 - Link → Word2vec: http://vectors.nlpl.eu/repository/20/5.zip
 - Link→ Glove: http://nlp.stanford.edu/data/glove.840B.300d.zip
 - Steps to use pre trained word embeddings:
 - Prepare a dictionary of all the unique words in the dataset.
 - Load the word2vec or glove embeddings.
 - Get embeddings for each word and save them in a numpy or torch matrix.
 - You may use any deep learning libraries such as TensorFlow, PyTorch, Keras etc. for the implementation. Use 300 dimensions for word embeddings.

• Neural Model 1: Encoder-Decoder with LSTMs

• Neural Model 2: Encoder-Decoder with Attention (Bahdanau attention)

• Dataset: Download the dataset for Machine translation from here :

https://drive.google.com/file/d/1bEK6RCdnXIqg8JGrJIMvDaAM-baalGwt/view?usp=sharing

- There are 4 files consisting of English and Hindi data
- Use the data in the files 'english.train.txt' and 'hindi.train.txt' for training. The sentences in the two files are aligned.
- Test your model using the files 'english.test.txt' and 'hindi.test.txt'
- Evaluation Metrics: Evaluate your model based on the following metrics:
 - BLEU score: BLEU looks at the overlap in the predicted and actual target sequences in terms of their n-grams. (Use the torchtext.data.metrics for computing bleu)
 - Using the gold samples from 'hindi.test.txt' compute the BLEU score
- Loss Function: Use the CrossEntropyLoss function since it calculates both the log softmax as well as the negative log-likelihood for the predicted tokens.