Week 1 Notes

Uday Manchanda

October 3, 2019

Abstract

Week 1 Notes in the Coursera Course on Cryptography

1 What is Cryptography About?

1.1 Course Overview

- Secure communication: HTTPS, WPA2, GSM, Bluetooth, SSL/TLS
- SSL/TLS has two main parts:
 - Handshake Protocol
 - Record Layer
- Encrypting files on disk: EFS, TrueCrypt
- Symmetric Encryption

- Where:
 - * E, D: cipher
 - * k : secret key (ex: 128 bits)
 - * m: plaintext
 - * c: ciphertext
- Encryption Algorithm is **publicly known**
- Use Cases
 - Single use key (one time key)

- * key is used to encrypt a single message
- * new key generated for each email
- Multi use key (many time key)
 - * key encrypts multiple messages
 - * same key used to encrypt many files

1.2 What is Cryptography

- Confidentiality and integrity
- Digital signatures, anonymous communication, digital cash
- If something can be done with a trusted authority, it can also be done without one
- Three steps in cryptography
 - Precisely specify threat model
 - Propose a construction
 - Prove that breaking construction under threat mode will solve an underlying hard problem

1.3 History

- Substitution cipher
 - Find most common letter ("E") via frequencies
 - Use frequency of pairs of letters
- Caesar Cipher
 - Shift letters by three
 - Size of key space: $|\kappa| = 26!$
- Vigenere Cipher
 - Encrypt message m with some cipher k
 - For each letter in m, add it to corresponding letter in k
 - k will "wrap around" until end of message
 - Take added result and mod 26 to obtain result between 0 and 25
- Rotor Machines
- Data Encryption Standard (DES)
 - keys: 2^{56} , block size: 64 bits
 - today AES is in use

2 Discrete Probability

2.1 Crash Course Part I

- Let U be some finite set, eg: $U = \{0, 1\}^n$
- Probability distribution P over U is a function $P:U\to [0,1],$ such that $\sum_{X\in U}P(x)=1$
- EX:
 - Uniform Distribution: for all $x \in U : P(x) = \frac{1}{|U|}$
 - Point Distribution at $x_0: P(x_0) = 1, \forall x \neq x_0: P(x) = 0$
- Distribution vector: $(P(000), P(001), P(010), \dots, P(111))$
- Events
 - For a set $A \subseteq U : Pr[A] = \sum_{x \in U} P(x) \in [0, 1]$
 - Set A is an **event**
 - $EX: U = \{0, 1\}^8$
 - A = { all x in U such that $lsb_2(x)=11$ } $\subseteq U$ for the uniform distribution on $0,1^8: Pr[A]=\frac{1}{4}$
- The Union Bound
 - For events A_1 and A_2 : $Pr[A_1 \cup A_2] \leq Pr[A_1] + Pr[A_2]$
 - $-A_1 \cap A_2 = \emptyset \to Pr[A_1 \cup A_2] = Pr[A_1] + Pr[A_2]$
 - * $A_1 = \{ \text{all x in } 0, 1^n \text{ s.t } lsb_2(x) = 11 \}$
 - * $Pr[lsb_2(x) = 11 \text{ or } msb_2(x) = 11] = Pr[A1 \cup A_2] \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$
- Random Variables
 - Definition: a random variable X is a function: $X: U \to V$
 - EX: $X : \{0,1\}^n \to \{0,1\}; X(y) = lsb(y) \in \{0,1\}$
 - For the uniform distribution on U: $Pr[X=0] = \frac{1}{2}, Pr[X=1] = \frac{1}{2}$
 - more generally: random variable X induces a distribution on V: $Pr[X=v] := Pr[X^{-1}(v)]$
- Uniform random variable
 - Let U be some set, eg $U = \{0,1\}^n$
 - We write $r \leftarrow U$ to denote a **uniform random variable** over U for all $a \in U: Pr[r=a] = \frac{1}{|U|}$
 - formally r is the identity function: r(x) = x for all $x \in U$
 - Let r be a uniform random variable on $\{0,1\}^2$

- Define random variable $X = r_1 + r_2$
- Then $Pr[X = 2] = \frac{1}{4}$
- Hint: Pr[X = 2] = Pr[r = 11]
- Randomized Algorithms
 - Deterministic algorithm: $y \leftarrow A(m)$
 - Randomized algorithm: $y \leftarrow A(m;r)$ where $r \leftarrow \{0,1\}^n$
 - EX: $A(m;k) = E(k,m), y \leftarrow^n A(m)$

2.2 Crash Course Part II

- Independence
 - Events A and B are **independent** if $Pr[A \text{ and } B] = Pr[A] \times Pr[B]$
 - EX: $U = \{0, 1\}^2 = \{00, 01, 10, 11\}$ and $t \leftarrow U$
 - define r.v X and Y as: X = lsb(r), Y = msb(r)
 - $-Pr[X=0 \text{ and } Y=0] = Pr[r=00] = \frac{1}{4} = Pr[X=0] \times Pr[Y=0]$
- XOR
 - XOR of two strings in $\{0,1\}^n$ is their bit-wise addition mod 2
 - XOR Chart

$$\begin{array}{c|cccc} x & y & x \oplus y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

- * (Yeah I made that)
- EX: $0110111 \oplus 1011010 = 1101101$
- Important property of XOR
 - Theorem: Y a random variable over $\{0,1\}^n$, X is an independent uniform variable on $\{0,1\}^n$
 - Then $Z := Y \oplus X$ is a uniform variable on $\{0,1\}^n$
 - Proof for n = 1
 - * Pr[Z = 0] = Pr[(x, y) = (0, 0) or (x, y) = (1, 1)]
 - * $Pr[(x,y) = (0,0)] + Pr[(x,y) = (1,1)] = \frac{P_0}{2} + \frac{P_1}{2} = \frac{1}{2}$

- The Birthday Paradox
 - Let $r_1, \ldots, r_n \in U$ be independent indentically distributed random variabes
 - When $n = 1.2 \times |U|^{1/2}$ then $Pr[\exists i \neq j : r_i = r_i] \ge 1/2$
 - notation: —U— is the size of U
 - EX: Let $U = \{0, 1\}^{128}$
 - * After sampling about 2^{64} random messages from U, some two sampled messages will likely be the same

3 Stream Ciphers

3.1 One Time Pad

- Symmetric Ciphers
 - Def: a cipher defined over (K, M, C) is a pair of "efficient" algorithms (E, D), where:
 - $*\ E = K \times M \to C$
 - $* D = K \times C \rightarrow M$
 - $* \forall m \in M, k \in K : D(k, E(k, m)) = M$
 - -E is often randomized, D is always deterministic
- One Time Pad
 - First example of a "secure" cipher
 - $-M = C = \{0,1\}^n, K = \{0,1\}^n$
 - key = (random bit string as long as the message)
 - $-C := E(k,m) = k \oplus m$
 - $-D(k,c)=k\oplus c$
 - $-D(k, E(k, m)) = D(k, k \oplus m) = k \oplus (k+m) = (k \oplus k) \oplus m = o \oplus m = m$
 - You are given a message and its OTP encryption (c). Can you compute the OTP key from m and c?
 - * Yes, the key is: $k = m \oplus c$
 - * Very fast encryption/decryption...but long keys (as long as plaintext)
- What is a secure cipher
 - Attacker's abilities: CT only attack (for now)
 - Possible security attempts
 - * 1. Attacker cannot recover secret key. E(k,m)=m would be secure

- * 2. Attacker cannot recover all of the plaintext. $E(k, m_0||m_1) = m_0)||k \oplus m_1$ would be secure
- * Shannon's idea: CT should reveal no "info" about the PT
- Information Theoretic security
 - Definition: A cipher (E, D) over (K, M, C) has **perfect secrecy** if:
 - * $\forall m_0, m_1 \in M, (len(m_0) = len(m_1)), \forall c \in C$
 - * $Pr[E(K, m_0) = c] = Pr[E(k, m_1) = c]$
 - * where k is uniform in K $(k \leftarrow K)$
 - * Given ciphertext can't tell if message is m_0 or m_1 (for all m0, m1)
 - * most powerful adversary learns nothing about plaintext from ciphertext
 - * no ciphertext only attack (other attacks are possible)
 - Lemma: OTP has perfect secrecy. Proof:
 - * $\forall m, c : Pr[E(k, m) = c] = \frac{\text{number of keys } \kappa \in K \text{ s.l. } E(k, m) = c}{|K|}$
 - * If $\forall m, c : \text{number} = \{ \kappa \in K : E(k, m) = c \} = \text{const}$
 - * Therefore, cipher has perfect secrecy
 - * Let $m \in M$ and $c \in C$. How many OTP keys map m to c? **one**
 - * However: implies that: $|\kappa| \ge |M| \to \text{hard to use in practice, (key length} > \text{message length})$

3.2 Pseudorandom Generators

- Stream Ciphers: Making OTP practical
 - idea: replace "random" key by "pseudorandom" key
 - PRG is a function: $G:\{0,1\}^s \to \{0,1\}^n$
 - -n>>s
 - computable by a deterministic algorithm
 - $-C := E(k,m) = m \oplus G(k)$
 - $-D(k,c) = C \oplus G(k)$
 - Can a stream cipher have perfect secrecy: No since the key is shorter than the message
 - Stream ciphers cannot have perfect secrecy
 - * Need a different definition of security
 - * Security will depend on specific PRG
- PRG must be unpredictable
 - Suppose PRG is predictable:

 $-\exists i: G(k)|_{1,\dots,i} \to^{alg} G(k)|_{i+1,\dots,n}$

- We say that $G: K \to \{0,1\}^n$ is **unpredictable** if:
 - * \exists "eff" alg A and $\exists_0 \leq i \leq n-1 \leq t$
 - * $Pr[A(G(k))|_{1,...,i} = G(k)|_{i+1}] > \frac{1}{2} + \epsilon$
 - * For non-negligible ϵ , eg $\frac{1}{2^{30}}$
 - * Definition: PRG is unpredictable if it is not predictable, no "efficient" adv. can predict bit (i+1) for "non-neg" ϵ
 - * Suppose $G: K \to \{0,1\}^n$ is such that for all k: XOR(G(k)) = 1. Is G predictable? \rightarrow Yes given the first (n-1) bits I can predict the n'th bit
- Weak PRGs (do not use for crypto!)
 - glibc random():
 - $-r[i] \leftarrow (r[i-3] + r[i-31])\%2^{32}$
 - output r[i] >> 1
 - Never use random() for crypto

3.3 Negligible vs. non-negligible

- Negligible vs. non-negligible
 - In practice: ϵ is a scalar and

 - * ϵ non-neg $\epsilon \geq \frac{1}{2^{30}}$ (likely to happen over 1 GB of data) * ϵ negligible $\epsilon \leq \frac{1}{2^{80}}$ (won't happen over life of key)
 - In theory: ϵ is a function: $\epsilon: \mathbb{Z}^{\geq 0} \to \mathbb{R}^{\geq 0}$
 - * ϵ non-neg $\exists d: \epsilon(\lambda) \geq \frac{1}{\lambda^d} (\epsilon \geq \frac{1}{poly}, \text{ for many } \lambda)$
 - * ϵ negligible $\forall d, \lambda \geq \lambda_d : \epsilon(\lambda) \leq \frac{1}{\lambda^d} (\epsilon \leq \frac{1}{poly}, \text{ for large } \lambda)$
 - Few Examples
 - * $\epsilon(\lambda) = \frac{1}{2\lambda}$: negligible
 - * $\epsilon(\lambda) = \frac{1}{\lambda^{1000}}$: non-negligible

$$\begin{cases} \frac{1}{2^{\lambda}} & \text{for odd } \lambda \\ \frac{1}{\lambda^{1000}} & \text{for even } \lambda \end{cases}$$

- PRGs: the rigorous theory view
 - PRGs are parametrized by a security parameter: λ
 - * PRG becomes "more secure" as λ increases
 - Seed lengths and output lengths grow with λ
 - For every $\lambda = 1, 2, 3, \dots$ there is a different PRG: G_{λ}
 - $-G_{\lambda}: K_{\lambda} \to \{0,1\}^{n(\lambda)}$
 - We say that the previous equation is **predictable** at position i if:
 - * there exists a polynomial time (in λ) algorithm A s.t.
 - * $Pr_{k \leftarrow K_{\lambda}}[A(\lambda, G_{\lambda}(k))|_{1,\dots,i} = G_{\lambda}(k)|_{i+1}] > \frac{1}{2} + \epsilon(\lambda)$
 - * For some non-negligible function $\epsilon(\lambda)$

3.4 Attacks on OTP and Stream Ciphers

- Attack 1: Two time pad is insecure
 - Never use stream cipher key more than once
 - $-C_1 \leftarrow m_1 \oplus PRG(k)$
 - $-C_2 \leftarrow m_2 \oplus PRG(k)$
 - Eavesdropper does: $C_1 + C_2 \rightarrow m_1 \oplus m_2$
 - Enough redundancy in English and ASCII encoding that: $m_1 \oplus m_2 \rightarrow m_1, m_2$
 - Real World Examples
 - * Project Venona
 - * MS-PPTP
 - · Have one key for interaction between server and client
 - · Another one between client and server
 - * 802.11b WEP

- · Length of IV: 24 bits
- · Repeated IV after $2^{24} \approx 16$ M frames
- \cdot On some 802.11 cards: IV resets to 0 after power cycle
- · Avoid related keys
- * Disk encryption (one-time pad does not work)

- · As you make changes to a file, the encrypted contents can leak as a hacker can figure out where in memory those changes were made
- Attack 2: OTP provides no integrity, is malleable
 - (m \oplus k) \oplus p (p is the message used by the hacker)
 - Decrypting the previous expression will yield m \oplus p
 - OTP is malleable because it is easy to change ciphertext