CE 191: Civil and Environmental Engineering Systems Analysis

LEC 03: Graphical Solutions to LP

Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley

Fall 2014

Graphical Solutions of Linear Programs

Example:

min
$$J = 140x_1 + 160x_2$$

s. to
$$2x_1 + 4x_2 \leq 28$$

$$5x_1 + 5x_2 \leq 50$$

$$x_1 \leq 8$$

$$x_2 \leq 6$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

Feasible Set Final Result

Isolines

Isolines

Isolines

Gradient of the cost function

Uniqueness (or not) of the cost function

Feasible set is unbounded

Objective function might be unbounded too

Objective function might be bounded

Optimum may be non-unique

Constraint domination

Constraint domination

Constraint domination

Graphical solution of LPs: A General Method

Insights from Graphical LP

- Linear constraints $Ax \le b$ form feasible set (possibly empty)
- Feasible set is a (possibly unbounded) convex polytope
- Optimal solution exists along edges (corner point or line segment)

Danzig's Simplex Algorithm

- Define feasible set
- Start at vertex. Move along vertices until obj. fcn. stops decreasing

Example of Simplex Algorithm

Recall the LP problem:

max
$$J = 140x_1 + 160x_2$$

s. to
$$2x_1 + 4x_2 \leq 28$$

$$5x_1 + 5x_2 \leq 50$$

$$x_1 \leq 8$$

$$x_2 \leq 6$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

Feasible Set Final Result

Start at a Vertex

Jump to adjacent vertex

Stop when objective stops decreasing

Additional Reading

Revelle

• Chapter 3 - A Graphical Solution Procedure and Further Examples

Simplex Algorithm

• Revelle Chapter 4 - The Simplex Algorithm for Solving Linear Programs