CHAPTER - 04

CHEMICAL BONDING AND MOLECULAR STRUCTURE

- 4 SF₄ has an expanded octet around sulphur atom (10 valence electrons)
- Bond order follows the order: CO > CO₂ > CO₃²
- 3. 2 Melting point follows the order: LiF > LiCl > LiBr > Lil

5. 1 •Ö-Öl-Ö: Chlorine atom is sp³ hybridised

(Pentagonal planar)

(Trigonal bipyramidal)

- 7. 2 $SF_4 sp^3d$; $XeF_4 sp^3d^2$; $I_3^- sp^3d$; $XeF_2 sp^3d$; $ICI_4^+ sp^3d$; $SiCI_4 sp^3$; $CIO_4^- sp^3$; $CIO_4^- sp^3$; $CIF_4 sp^3d$
- 8. 2 Bond angle of hydrides decreases down the group due to lack of hybridisation
- 9. 4 XeO_3 contains $d\pi p\pi$ bonds. Bond order of XeO_3 is 2
- 10. 4 $P_x P_x$, $P_y P_y$ overlaps will lead to π bond when z-axis is the internuclear axis
- 11. 2 p-dichlorobenzne has zero dipole moment
- 12. 4 BF₃ has zero dipole moment
- Both CH₄ and CCI₄ have zero dipole moment
- 14. 3 B_2 is paramagnetic due to presence of unpaired electrons in π_{2p} orbitals. Highest occupied molecular orbital in B_2 is π_{2p}

Brilliant STUDY CENTRE

- 15. 1 Bond order of O–O bond follows the sequence: O₂ > O₃ > H₂O₂. Thus, O–O bond length is in the order: O₂ < O₃ < H₂O₂
- 16. 9 **:!**-**!**:-**!**:-**!**:-

Total number of lone pairs = 3 + 3 + 3 = 9

- 17. 3 PCl₂F₃, ICl₃ and SF₄ are polar molecules
- 18. 4 BeCl₂, N_3^- , N_2O and NO_2^+ are linear with no contribution form d-orbitals in hybridisation
- B C C bond length decreases with increase in the number of electronegative fluorine atoms on the carbon (Bent's rule)
- 20. D π electron clouds of $C_1 C_2$ and $C_2 C_3$ bonds are mutually perpendicular As per the given information, Cl and H atoms on C_1 lie in a plane perpendicular to the plane of paper whereas F and H atoms on C_3 lie in the plane of paper itself
- C Backbonding affects bondlength bond order and Lewis acidity; the doesnot affect bond angle, geometry and planarily of BF₃ molecule
- A Due to backbonding, O–H bond in (CH₃)₃SiOH is more polarised, resulting in the formation of stronger hydrogen bonds

The required planes are

$$H_a - C - H_b$$
, $H_a - C - H_c$, $H_a - C - H_d$, $H_b - C - H_c$, $H_b - C - H_d$ and $H_c - C - H_d$

24. B

'S'is sp2 hybridised

S is sp2 hybridised

One $p\pi - p\pi$ bond and

One $p\pi - p\pi$ bond and two $p\pi - d\pi$ bonds

one $p\pi$ - $d\pi$ bond

- C PCI₈⁻ has perfect octahedral geometry
- 26. A, B, C, D

27. A, B, C

- N (Silt3)3 Bond order = 1.33
- 2) NH (SiH3)2 bond angle >120° due to steric repulsion between SiH3 groups N(SiH3)3 - all thi bond angles are 120°
- 3) NH(SiH3)2 backbonding pair is

 Spread only over 2 bonds

 N (SiH3)3 this pair is spread over

 3 bonds.
- 28. A, B, C, D

Bond order of X₂ in the excited state is higher than that in the ground state

29. ABC D

 C_2 is diamagnetic and it contains two π - bonds. If z - axis is intermolecular axis, $2p_x$ and $2p_y$ orbitals form π - molecular orbitals which are not symmetrical around the bond axis.

Bonding MOs are lower in energy where as antibonding MOs are higher in energy than the parent AOs

30. A, C, D

Brilliant STUDY CENTRE

$$NH_4NO_3 \equiv NH_4^{\oplus} NO_3^{(-)}$$

N is sp³ hybridised in NH_4 whereas sp² hybridised in NO_3 (-)

Bond energy and bond length of C2 molecule are greater than that of O2 molecule

31. C XeO,F, - Trigonal bipyramidal

ICl₄ - square planar

SF₄ - See - saw shaped (distorted TBP electron pair geometry)

PF₂Cl₃ - Trigonal bipyramidal

Thus only SF4 doesnot contain 90° bond angle (s)

 32. 3.00 Bond dipole moment due to the three C-Cl bonds at 120° cancel out each other. Now, only one C -Cl bond dipole moment remains making the net dipole moment 1.5D

33. 5.00
H
 $_{C} = c = c$

Maximum five atoms can be accompdated in the same palne

- 34 2.00 p = 3, q = 5, r = 2, s = 6 and t = 2
- 5.00 PCl₄⁺, ICl₂⁺, SF₂, AsF₄⁺ and SiF₄ have sp³ hybridisation, thus no involvement of d orbitals in hybridisation
- 36. 6.00 P = 3, Q = 2, R = 1 and S = 0
- 37 D $\stackrel{\Theta}{\text{CH}_3}$, NH₃, $\stackrel{\Theta}{\text{BF}_4}$, CH₄ and NH $^{\oplus}_4$ are non planar:

BF₃, CH_3^{\oplus} , $\dot{C}H_3$ and NH_2 are planar

BF₄, CH₄ and NH₄ have perfect tetrahedral geometry

38. A PBr₃Cl₂ and BF₃ are nonpolar whereas HO—OH and PBr₂Cl₃ are polar