Домашна работа № 1 по "Дизайн и анализ на алгоритми" за специалност "Компютърни науки", 2. курс, 1. поток — СУ, ФМИ, летен семестър на 2017 / 2018 уч. г.

ИЗСЛЕДВАНЕ НА АЛГОРИТМИ

Задача 1. Нека f(n) и g(n) са асимптотично положителни функции, за които $f(n) \succ g(n)$. Докажете, че f(n) - g(n) = f(n).

Покажете с контрапример, че ако заменим строгото неравенство с нестрого, твърдението ще престане да бъде вярно.

Задача 2. Намерете порядъка на обратната функция на факториела:

w(n)= най-голямото цяло положително число k, за което $k! \le n$. Функцията w(n) е определена за цели положителни стойности на n. Например $w(1)=1, \ w(2)=w(3)=w(4)=w(5)=2, \ w(6)=\cdots=w(23)=3, \ w(24)=4$.

Задача 3. Да се реши рекурентното уравнение $T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{n}{8}\right) + n^3$.

Задача 4. Намерете максималната времева сложност на дадения алгоритъм.

```
Alg (A[1...n]: array of integers) // масив от цели числа S: stack S \leftarrow empty stack // празен стек for k \leftarrow 1 to n push (S, A[k]) // добавяне на елемент към стека х \leftarrow 4 while (S is not empty) and (х is even) х \leftarrow pop (S) // изваждане на елемент от стека
```

Точките за всяка задача са 25, а за цялото домашно — най-много 100. Идентични решения се дисквалифицират!

РЕШЕНИЯ

Задача 1.
$$f(n) \succ g(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

$$\Rightarrow \lim_{n \to \infty} \frac{f(n) - g(n)}{f(n)} = \lim_{n \to \infty} \left(1 - \frac{g(n)}{f(n)} \right) = 1 - 0 = 1 \Rightarrow f(n) - g(n) \asymp f(n).$$

20 точки

Ако асимптотичното неравенство е нестрого, то ще допуска възможността за асимптотично равенство на двете функции, тоест g(n) = f(n). Да вземем $f(n) = n^2 + 7n$ и $g(n) = n^2 + 2n$. Тогава $f(n) - g(n) = 5n \prec f(n) = n^2 + 7n$, следователно не е вярно, че f(n) - g(n) = f(n).

Задача 2. От определението на функцията w следва, че $w(n) \to \infty$ при $n \to \infty$ и че е изпълнено следното двойно неравенство:

$$w! \le n < (w+1)!$$

Логаритмуваме:

$$w \log w = \log (w!) \le \log n < \log ((w+1)!) = (w+1) \log (w+1) = w \log w.$$

От неравенствата $w \log w \leq \log n \leq w \log w$ следва, че $\log n \approx w \log w$.

Затова
$$w = \frac{\log n}{\log w}$$
.

5 точки

Развиваме това уравнение, но само с една стъпка:

$$w \asymp \frac{\log n}{\log \log n - \log \log w}$$
. 5 точки

(Ако извършим повече стъпки, знаменателят ще се усложни.)

Прилагаме свойството от задача 1: тъй като $\log \log n > \log \log w$, то знаменателят се опростява до $\log \log n$, тоест

$$w(n) = \frac{\log n}{\log \log n}.$$
 5 точки

Това е отговорът на задачата — порядъкът на обратната функция на факториела.

Обаче в горните разсъждения използвахме без доказателство неравенството $\log \log n \succ \log \log w$.

Доказателство: По-горе установихме, че $\log n := w \log w$, следователно $\log \log n := \log (w \log w) = \log w + \log \log w := \log w > \log \log w$.

Остава да докажем неравенството

$$\log w > \log \log w$$
,

което се използва два пъти в горната редица от асимптотични сравнения:

- 1) самостоятелно в последната стъпка;
- 2) като основание за пренебрегване на събираемото от по-нисък порядък в предпоследната стъпка.

Неравенството $\log w > \log \log w$ се доказва чрез граничен преход, в който се използва правилото на Лопитал:

$$\lim_{w \to \infty} \frac{\ln w}{\ln \ln w} = \left[\frac{\infty}{\infty}\right] = \lim_{w \to \infty} \frac{\left(\ln w\right)'}{\left(\ln \ln w\right)'} =$$

$$= \lim_{w \to \infty} \frac{\frac{1}{w}}{\frac{1}{\ln w} \cdot \frac{1}{w}} = \lim_{w \to \infty} \frac{1}{\frac{1}{\ln w}} = \lim_{w \to \infty} \ln w = \infty.$$
5 ТОЧКИ

Задача 3 може да се реши по индукция или чрез развиване на уравнението и изследване на полученото дърво на рекурсията. **25 точки**

Отговор: $T(n) \simeq n^3$.

Задача 4. Особеното тук е, че лесно можем да получим грешен отговор. За удобство нека отделим вътрешния цикъл в самостоятелен подалгоритъм.

За удобство нека отделим вътрешния цикъл в самостоятелен подалгоритъм. ALG (A[1...n]) SUB_ALG (S) S: stack S
$$\leftarrow$$
 empty stack while (S is not empty) and (x is even) for k \leftarrow 1 to n push (S, A[k]) SUB_ALG (S)

Да означим времевите сложности в най-лошия случай, както следва: $T_1(n) = \text{сложността}$ на ALG; $T_2(n) = \text{сложността}$ на SUB_ALG.

Най-лош случай за подалгоритьма SUB_ALG е, когато стекът S съдържа всички n числа от масива A и те са четни. Всяко число се вади от стека, докато той се опразни: операцията рор се изпълнява n пъти, затова $T_2(n) := n$.

Най-лош случай за алгоритьма ALG е, когато всяко от извикванията на подалгоритьма SUB_ALG е възможно най-бавно. Затова сложността на ALG е равна на $T_1(n) \simeq n$. $T_2(n) \simeq n$. $n = n^2$, тоест $T_1(n) \simeq n^2$.

Тези разсъждения не са достатъчни, тъй като все още не сме проверили дали описаната ситуация е възможна. Отнапред не е ясно дали е възможно всяко от извикванията на SUB_ALG да бъде бавно. Затова полученият резултат е само горна граница за сложността на ALG. Точният запис е с неравенство: $T_1(n) \prec n \cdot T_2(n) \asymp n \cdot n = n^2$, тоест $T_1(n) \prec n^2$.

Това неравенство е вярно, обаче то не може да се приеме за отговор на задачата, защото търсим точния порядък на алгоритъма, т.е. равенство.

Равенството $T_1(n) \asymp n^2$ не е вярно, тъй като операцията рор не може да бъде изпълнена $\Theta(n^2)$ пъти: няма как да извадим от стека повече елементи, отколкото сме сложили в него, а сме сложили точно n елемента, понеже операцията push се изпълнява точно n пъти — по веднъж за всеки елемент на входния масив A.

И така, след като операцията рор се изпълнява не повече от n пъти, а операцията push — точно n пъти, то $T_1(n) \simeq n$. Това е вярната оценка за сложността на алгоритъма ALG. За него няма най-лош случай; по-точно, времето за изпълнението му е $\Theta(n)$ при всички входни данни. 10 точки

Щом операцията рор се изпълнява не повече от n пъти общо за цялото изпълнение на алгоритъма ALG, а пък ALG вика SUB_ALG точно n пъти, то операцията рор се изпълнява средно не повече от веднъж при едно извикване на SUB_ALG. От друга страна, при всяко извикване на SUB_ALG се изпълняват поне три операции — присвояването, проверката за празен стек и проверката за четност. Затова средният брой операции на едно извикване на подалгоритъма SUB_ALG е константа: $\widetilde{T_2}(n) \simeq 1$. Функцията $\widetilde{T_2}(n)$ се нарича амортизирана сложеност на подалгоритъма SUB_ALG. Тя показва средния брой операции, извършени от подалгоритъма при едно негово извикване от главния алгоритъм. Тя не е средна сложност, защото усредняването е по извикванията от главния алгоритъм, а не по входните данни на подалгоритъма.