

IDENTIFIKASI KEMATANGAN BUAH SIRSAK BERDASARKAN TEKSTUR DAN WARNA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK

Disusun oleh:

Kharisma Nur'aisyah NIM 18305141031 **Dosen Pembimbing:**

Dr. Sri Andayani, S.Si., M.Kom. NIP 197204261997022001

PROGRAM STUDI MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS NEGERI YOGYAKARTA
2022

Sirsak (*Annona Muricata L*) merupakan salah satu tanaman yang berasal dari Karibia, Amerika Selatan, dan Amerika Tengah. Buah sirsak sangat cocok dikonsumsi karena kandungan gizi buah sirsak yang banyak dan bermanfaat bagi kesehatan tubuh (Elidar, 2017).

- a. Bagaimana model Convolutional Neural Network (CNN) untuk mengidentifikasi kematangan buah sirsak berdasarkan tekstur dan warna?
- b. Berapa akurasi model yang didapatkan dalam mengidentifikasi kematangan buah sirsak berdasarkan tekstur dan warna menggunakan metode Convolutional Neural Network (CNN)?

- a. Menentukan model Convolutional Neural Network (CNN) untuk mengidentifikasi kematangan buah sirsak.
- Mengetahui akurasi model yang didapatkan dalam mengidentifikasi kematangan buah sirsak berdasarkan tekstur dan warna menggunakan metode Convolutional Neural Network (CNN).

KAJIAN TEORI

01

Citra

Istilah lain untuk gambar

02

Pengolahan Citra Digital

Masukan berupa citra yang menghasilkan keluaran citra seperti yang diinginkan

03

Convolutional Neural Network

Didesain untuk mengolah data multi dimensi seperti citra digital berwarna

04

Convusion Matrix

Menganalisis seberapa baik classifier mengenali tuble dari kelas yang berbeda.

METODE PENELITIAN

Deskripsi Data

Data primer, Kamera OPPO A15s (13MP), 3120x4160 piksel, 595 citra, jpg.

Perhitungan Akurasi

Mengetahui nilai akurasi model

Image Classification

Klasifikasi menggunakan metode CNN 03

Image Preprocessing

Membuat data mentah menjadi data yang berkualitas

Akuisisi Citra

Pengubahan citra analog menjadi citra digital

AKUISISI CITRA

2 Resize & Cropping

Ukuran citra dari 3120x4160 piksel menjadi 224x224 piksel

3 ImageFilter

Menggunakan library Pillow, ImageFilter.SHARPEN 4 Pembagian Data

476 citra data training, 119 citra data testing

1 Pengambilan Citra

595 citra : 205 mentah, 125 setengah matang, 265 matang

IMAGE PREPROCESSING

data dari citra dengan syarat tertentu

IMAGE CLASSIFICATION

Model Penelitian

Model: "sequential"

Layer (type)	Output Shape	Param #
************************		**********
conv2d (Conv2D)	(None, 148, 148, 8)	224
max_pooling2d (MaxPooling2D)	(None, 74, 74, 8)	8
canv2d_1 (Conv2D)	(None, 72, 72, 8)	584
max_pooling2d_1 (MaxPooling 2D)	(None, 36, 36, 8)	Ð
conv2d_2 (Conv2D)	(None, 34, 34, 16)	1168
max_pooling2d_2 (MaxPooling 2D)	(None, 17, 17, 16)	е
dropout (Dropout)	(None, 17, 17, 16)	а
flatten (Flatten)	(None, 4624)	.0
dense (Dense)	(None, 4896)	18944000
drapout_1 (Drapout)	(None, 4896)	8
dense_1 (Dense)	(None, 3)	12291

Total params: 18,958,267 Trainable params: 18,958,267 Non-trainable params: 8

```
model - tf.keras.models.Sequential{{
    tf.keras.layers.Conv2D(S, (3,3), activation='relu', input_shaps = (150,150,3)),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(10, (3,3), activation='relu'),
    tf.keras.layers.Conv2D(10, (3,3), activation='relu'),
    tf.keras.layers.DenseOling2D(2,2),
    tf.keras.layers.Dense(000, activation='relu'),
    tf.keras.layers.Dense(000, activation='relu'),
    tf.keras.layers.Dense(000, activation='relu'),
    tf.keras.layers.Dense(000, activation='relu'),
    tf.keras.layers.Dense(000, activation='relu'),
    tf.keras.layers.Dense(3, activation='seftmax')
    l)

model.summary()
```


01

04 PERHITUNGAN AKURASI MODEL


```
history = model.fit(
    train_generator,
    epochs = 165,
    validation_data = test_generator,
    callbacks = [callbacks, PlotLossesKeras()])
```

02

Data	Jumlah Data	Nilai	Nilai
Data	Juilliali Dala	Loss	Accuracy
Training	476	0,398	0,842
Testing	119	0,500	0,832

PERHITUNGAN AKURASI MODEL

Data Training

476 Citra


```
[ 12, 149, 3],
[ 27, 17, 56]], dtype=int64)

Prediksi Benar Matang: 202

Prediksi Salah Matang malah Mentah: 7

Prediksi Salah Matang malah Setengah Matang: 3

Total Prediksi Salah Mentah malah Hatang: 12

Prediksi Salah Mentah malah Hatang: 12

Prediksi Salah Mentah malah Setengah Matang: 3

Total Prediksi Salah Mentah malah Setengah Matang: 3

Total Prediksi Salah Setengah Matang malah Matang: 27

Prediksi Salah Setengah Matang malah Mentah: 17

Prediksi Salah Setengah Matang: 56

Total Prediksi Salah: 44

Total Prediksi Salah: 44

Total Prediksi Salah: 44
```

confusion matrix(Ytrain, Ytrain pred)

array([{202, 7, 3],

$$Akurasi = \frac{TP + TN}{TP + TN + FP + FN}$$

$$= \frac{202 + 149 + 56}{202 + 149 + 27 + 7 + 3 + 3 + 15 + 17 + 56}$$

$$= \frac{407}{476} = 85,50\%$$

119 Citra

Data Testing

confusion_matrix(Ytest,Ytest_pred)

$$Akurasi = \frac{TP + TN}{TP + TN + FP + FN}$$

$$= \frac{48 + 37 + 14}{48 + 37 + 14 + 2 + 3 + 1 + 3 + 6 + 14}$$

$$= \frac{99}{119} = 83,19\%$$

Augmentasi Citra

W/	a Ukuran Citra	Aku	ırasi
Warna		Training	Testing
	100 x 100	66,60%	63,03%
Grayscale	150 x 150	68,07%	55,46%
	224 x 224	87,18%	83,19%
	100 x 100	79,20%	75,63%
RGB	150 x 150	85,50%	83,19%
	224 x 224	84,66%	76,47%

Jumlah Neuron

T. L.N.	Aku	ırasi
Jumlah Neuron	Training	Testing
1024	91,2%	79,8%
4096	84,50%	83,19%
8192	87,18%	83,19%

Kernel Layer

Wannal I	Akurasi	
Kernel Layer	Training	Testing
32, 32, 64	76,5%	73,9%
8, 8, 16	89,7%	82,4%
16, 32, 32	81,7%	76,5%

Banyak Epoch

Encol	Akurasi	
Epoch	Training	Testing
205	89,7%	82,4%
170	82,1%	77,3%
167	79,8%	78,2%
166	89,5%	84,03%
165	85,50%	83,19%
153	85,50%	82,35%

PERBANDINGAN BEBERAPA PARAMETER CNN

Parameter Model	Nilai
Augmentasi citra	RGB, 150 x 150 piksel
Kernel layer	8, 8, 16
Jumlah Neuron fully-connected layer	4096 neuron
Banyak epoch	165 epoch

Conv 1 Convolution $Kernel = 3 \times 3$ ReLu

PARAMETER

Max-Pooling $Kernel = 2 \times 2$

Conv 2 Convolution $Kernel = 3 \times 3$ ReLu

Max-Pooling $Kernel = 2 \times 2$

Conv 3 Convolution $Kernel = 3 \times 3$ ReLu

Max-Pooling

fc 1 $Kernel = 3 \times 3$ ReLu

fc 2 Kernel = 2 x 2 Fully-Connected Fully-Connected $Kernel = 3 \times 3$ ReLu

PENGUJIAN DATA BARU CITRA

Outputs

$$Akurasi = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= \frac{5 + 3 + 3}{5 + 3 + 3 + 1 + 1 + 1 + 1} = \frac{11}{15} = 73,33\%$$

Inputs

15 citra:

- 5 mentah
- 5 setengah matang
- 5 matang

KESIMPULAN

Parameter Model

Parameter Model	Nilai
Augmentasi citra	RGB, 150 x 150 piksel
Kernel layer	8, 8, 16
Jumlah Neuron fully-connected layer	4096 neuron
Banyak epoch	165 epoch

