Family list
1 family member for:
JP5119351
Derived from 1 application.

1 LIQUID CRYSTAL DISPLAY DEVICE AND PRODUCTION THEREOF Publication info: JP5119351 A - 1993-05-18

Data supplied from the esp@cenet database - Worldwide

LIQUID CRYSTAL DISPLAY DEVICE AND PRODUCTION THEREOF

Patent number:

JP5119351

Publication date:

1993-05-18

Inventor:

HIGUCHI MASARU

Applicant:

SANYO ELECTRIC CO

Classification:

- international:

G02F1/136; H01L21/336; H01L27/12; G02F1/13;

H01L21/02; H01L27/12; (IPC1-7): G02F1/136;

H01L21/336; H01L27/12; H01L29/784

- european:

Application number: JP19910283104 19911029 Priority number(s): JP19910283104 19911029

Report a data error here

Abstract of JP5119351

PURPOSE:To facilitate etching control and to improve etching accuracy by providing an N<+> a-Si film in a region exclusive of an a-Si film formed in correspondence to the active region of a transistor. CONSTITUTION:The N<+> a-Si film 38 self-aligned by a drain electrode 41 and a source electrode 39 is provided. Further, an a-Si film 37 is formed to a prescribed shape and thereafter, the N<+> a-Si film 38 and the source electrode 39 are formed over the entire surface. After the drain electrode 41 and the source electrode 39 are formed, etching is executed under selfalignment with these electrodes 39, 41 as a mask. This etching is ended by detecting an insulating film 36 formed under the N<+> a-Si film 38. Then, this N<+> a-Si film 38 is exposed also in the regions exclusive of the channel region of a transistor and the etching area of the N<+> a-Si film 38 is greatly increased to the area larger than the conventional area. Consequently, the etching rate lowers.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12)公開特許公報 (A)

(11)特許出願公開番号

特開平5-119351

(43)公開日 平成5年(1993)5月18日

(51) Int. Cl. 5

識別記号

FI

G02F 1/136

500

9018-2K

H01L 27/12

A 8728-4M

21/336

29/784

9056-4M

H01L 29/78

311

審査請求 未請求 請求項の数4 (全6頁)

(21)出願番号

(22)出願日

特願平3-283104

平成3年(1991)10月29日

(71)出願人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目18番地

(72) 発明者 樋口 勝

大阪府守口市京阪本通2丁目18番地 三洋

電機株式会社内

(74)代理人 弁理士 西野 卓嗣

(54) 【発明の名称】液晶表示装置およびその製造方法

(57)【要約】

【目的】 トランジスタのチャンネル領域に対応するN 'a-Si膜のエッチングを精度高くエッチングするこ とを目的とする。

【構成】 N'a-Si膜(38)を全面に形成し、ソ ース電極(39)、ドレイン電極(41)およびこれと 一体のドレインラインをマスクにしてエッチングし、S iNx膜(36)を検出して、このエッチングを終了す

31: 絕緣性基板

33:補助容量質極

35: 表示電極

37: a-Si 膜

39: ソース重編:

32: 1-1

34:第105小絶縁膜

36: 第2のケート絶縁膜

38: N'a-Si 膜

41:ドリン酸極

10

【特許請求の範囲】

【請求項1】 透明な絶縁性基板上に形成された複数の ゲートそれぞれと一体の複数本のゲートラインと、この ゲートラインと絶縁層を介して交差するように形成され た複数本のドレインラインと、前記ドレインラインと前 記ゲートラインの交点の近傍に形成されこのゲートライ ンと一体のドレイン電極がドレイン領域に延在されたト ランジスタと、このトランジスタのソース領域から延在 されたソース電極と電気的に接続された表示電極とを有 する液晶表示装置において、

前記ドレイン電極および前記ソース電極の直下には前記 トランジスタを構成する不純物がドープされた非単結晶 シリコン膜が設けられ、この非単結晶シリコン膜は前記 ドレイン電極およびソース電極とセルフアラインされて いることを特徴とした液晶表示装置。

【請求項2】 透明な絶縁性基板上に形成された複数の ゲートそれぞれと一体の複数本のゲートラインと、この ゲートラインと交差しないように形成された補助容量電 極と一体の補助容量ラインと、この補助容量ラインおよ び前記ゲートライン上に形成された第1のゲート絶縁膜 20 と、前記補助容量電極と少なくとも一部が重畳して形成 された表示電極と、この表示電極および前記第1のゲー ト絶縁膜上に形成された第2のゲート絶縁膜と、前記ゲ ートを一構成とするトランジスタの活性領域に形成され たノンドープの非単結晶シリコン膜と、少なくとも前記 トランジスタのソース領域およびドレイン領域に形成さ れた不純物をドープした非単結晶シリコン膜と、前記ト ランジスタのドレイン領域に対応する領域から延在され たドレイン電極と一体のドレインラインと、前記トラン ジスタのソース領域から延在され前記表示電極と電気的 30 に接続されたソース電極とを有する液晶表示装置におい て、

前記不純物がドープされた非単結晶シリコン膜は前記活 性領域外に設けられ、前記ドレイン電極、前記ドレイン ラインおよび前記ソース電極とセルフアラインされてい ることを特徴とした液晶表示装置。

【請求項3】 透明な絶縁性基板上にトランジスタを構 成するゲートおよびこのゲートの上の絶縁膜で絶縁され たノンドープの非単結晶シリコン膜と不純物がドープさ れた非単結晶シリコン膜とを形成する工程と、この非単 40 結晶シリコン膜上に前記トランジスタのドレイン領域か ら延在されたドレインラインおよびソース領域から延在 されたソース電極を形成する工程とを少なくとも有する ことを特徴とした液晶表示装置の製造方法において、 前記ノンドープの非単結晶シリコン膜をパターニングし た後、前記不純物がドープされた非単結晶シリコン膜 を、前記ドレインラインおよびソース電極でセルフアラ インし、前記絶縁膜の露出を検出してエッチングを終了 することを特徴とした液晶表示装置の製造方法。

【請求項4】 透明な絶縁性基板上にゲートと一体の複 50 を形成し、全面に例えばAlを積層し、ホトエッチング

数本のゲートラインを形成する工程と、全面に第1のゲ ート絶縁膜を形成する工程と、この第1のゲート絶縁膜 上に透明材料よりなる表示電極をマトリックス状に形成 する工程と、全面に第2のゲート絶縁膜を形成する工程 と、前記ゲートを一構成とするトランジスタの活性領域 にノンドープおよび不純物がドープされた非単結晶シリ コン膜を形成する工程と、前記トランジスタのドレイン 領域からドレインラインに延在し、前記トランジスタの ソース領域と前記表示電極とを接続する電極を形成する 工程とを有する液晶表示装置の製造方法において、

前記ノンドープの非単結晶シリコン膜をパターニングし た後、前記不純物がドープされた非単結晶シリコン膜を 前記絶縁性基板全面に形成した後、前記表示電極との接 続を施した前記電極を形成し、この電極をマスクとして 前記不純物がドープされた非単結晶シリコン膜をエッチ ングし、前記第2のゲート絶縁膜の露出を検出してこの エッチングを終了することを特徴とした液晶表示装置の 製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は液晶表示装置およびその 製造方法に関し、特にトランジスタの非単結晶シリコン 層の構造および製造方法に関するものである。

[0002]

【従来の技術】一般に非単結晶シリコン膜を用いた液晶 表示装置としては、例えば特開平3-141325号公 報の如く、ノンドープのアモルファスシリコン膜(a-S i 膜) およびN'型にドープされたアモルファスシリ コン膜(N'a-Si膜)を用いたTFT構造のものが あり、これはN'a-Si膜のチャンネル領域をエッチ ングする際、SiNx膜をエッチングストッパーに採用 していた。

【0003】しかしこの構造では、SiNx膜の形成が 必要であるため、SiNx膜との接合面で歪みや欠陥等 を生じるので以下の構造および製法で達成されているも のがあった。先ず図7に示す如く、ガラス基板(1)に ゲート(2)および補助容量電極(3)を形成し、全面 に第1のゲート絶縁膜(4)を積層した後、前記補助容 量電極(3)と重畳する位置にITOより成る表示電極 (5) が形成されて図8の構成が達成される。

【0004】続いて図9の如く、第2のゲート絶縁膜 (6) がガラス基板 (1) 全面に積層された後、順次 a -Si膜(7)およびN'a-Si膜(8)を積層し、 周知とホトエッチング技術により、TFTの活性領域の みを残してa-Si膜(7)およびN'a-Si膜

(8) が同時にエッチングされ、図10の如き構成が違 成される。

【0005】更に、図11の如く、ソース電極(9)と 表示電極 (5) の接続のために、コンタクト孔 (10)

1

20

3

によりソース電極(9) およびドレイン電極(11)を 形成した。最後に、図12の如く、ソース電極(9) お よびドレイン電極(11) をマスクとして、TFTのチャンネル領域に対応するN'a-Si膜(8) をエッチ ングし、TFTが形成されていた。

[0006]

【発明が解決しようとする課題】前述の製造方法に於いて、図120N'a-Si膜(8) エッチング工程には以下の問題があった。第1に、N'a-Si膜(8) とa-Si 膜(7) は、実質的に同じ組成の膜であるため、N'a-Si 膜(8) のみエッチングすることができず、a-Si 膜(7) をもエッチングしてしまう問題があった。

【0007】第2に、N'a-Si膜(8)のエッチング面積が小さいため、エッチング時のエッチング面積依存性により、エッチングレートが増加し、精度のあるエッチング終了検出ができず、前述と同様にa-Si膜(7)がエッチングされ、スイッチング特性を劣化させる問題があった。

[0008]

【課題を解決するための手段】本発明は、前述の課題に鑑みてなされ、N' a-Si 膜 (38)を活性領域以外にも設け、ドレイン電極 (41) およびソース電極 (39)でセルフアラインされたN' a-Si 膜 (38)を設けることで解決するものである。更には、a-Si 膜 (37)を所定の形状に形成した後、全面にN' a-Si 膜 (38)を全面に形成し、ドレイン電極 (41)およびソース電極 (39)を形成した後、この電極 (39)、 (41)をマスクとしてセルフアラインしながらエッチングし、N' a-Si 膜 (38)の下に形成された絶縁膜 (36)を検出して、このエッチングを終了することで解決するものである。

[0009]

【作用】前述の構成にすると、トランジスタの活性領域に対応して形成されたa-Si膜(37)以外の領域にN'a-Si膜(38)が設けられるので、トランジスタのチャンネル領域以外にもこのN'a-Si膜(38)のエッチング面積は、従来の面積より大幅に増加し、この結果エッチングレートが低下し、エッチング制御を容易に40することができる。

【0010】更には、前述の方法に依れば、N'a-Si膜(38)をエッチングすると、チャンネル領域のa-Si膜(37)が露出すると同時に、ソース電極(39)やドレイン電極(41)の周囲に設けられた第2のゲート絶縁膜(36)も露出する。例えば分光分析法等でこの第2のゲート絶縁膜(36)の露出を検出することで、精度の高いエッチング終点を達成できる。

[0011]

【実施例】以下に本発明の実施例を図1乃至図6を用い 50 電気的に接続される。

て説明する。先ず図1の如く、透明な絶縁性基板(3 1) 上にゲート (32) と一体の複数本のゲートライン および補助容量電極(33)と一体の補助容量ラインを 形成する工程がある。前記基板 (31) は、例えばガラ スより成り、電極 (32), (33)は、約1500人 のCrより成る。図1では、ゲート(32)および補助 容量電極(33)のみを示しているが、実際は、ゲート ラインと補助容量ラインが実質的に平行に複数本配置さ れている。ゲート (32) は、ゲートラインの一部また 10 はゲートラインから突出して設けられ、補助容量電極 (33) は補助容量ラインの一部を太く設けて成してい る。材料は、Cr以外でも良く、Al, Ta等が考えら れ、この材料では通常表面に酸化膜が設けられている。 【0012】続いて、図2に示す如く、基板(31)全 面に第1のゲート絶縁膜(34)を形成し、前記補助容 量電極(33)と少なくとも一部が重畳するように表示 電極 (35) を形成する工程がある。このゲート絶縁膜 (34) は、SiNx膜より成り、PCVDで約300 0 Aの厚さに積層される。また表示電極 (35) は、I

【0013】続いて、図3の如く、ガラス基板 (31)全面に第2のゲート絶縁膜 (36)を形成する工程がある。このゲート絶縁膜 (36)も、SiNx膜より成り、PCVDで約2000Aの厚さに形成される。続いて、図4の如く、前記第2のゲート絶縁膜 (36)上に、所定のパターンのa-Si膜 (37)を形成した後、基板 (31)全面にN'a-Si膜 (38)を積層する工程がある。

TOをスパッタリングによって形成している。

【0014】前記a-Si膜(37)は、PCVDで約1000人の厚さに積層され、ゲート(32)上に対応するトランジスタの活性領域およびゲートラインとドレインラインの交差部が残るようにエッチングされる。このエッチング工程によりa-Si膜(37)は外部雰囲気に露出され、表面に酸化膜や欠陥等を発生するので、ライトエッチングが施される。その後、直ちにPCVDで約500人のN'a-Si膜(38)が基板(31)全面に積層される。

【0015】更に、図5に示す如く、表示電極(35)とソース電極(39)の電気的接続を達成するために、 先ずコンタクト孔(40)を形成し、ドレイン電極(4 1)およびソース電極(39)を形成する工程がある。 ここで電極(39),(41)は、同時に形成され、約 1000AのMoおよび約7000AのA1が順次スパッタリング等で形成され、この後周知のホトエッチング によりパターニングされる。ここでドレイン電極(4 1)は、ドレインラインと一体で形成され、前記ゲート ラインと交差する方向に延在される。またソース電極 (39)は、ソース領域上から表示電極(35)上のコンタクト孔(40)まで延在され、表示電極(35)と 電気的に接続される。

【0016】従って、図5からも判る通り、トランジス タのチャンネル領域、ドレイン電極(41)およびドレ インラインの周囲、ソース電極(39)の周囲、および 表示電極 (35) 上にN'a-Si膜 (38) が露出さ れる。最後に、図6に示す如く、ドレイン電極(41) と一体のドレインラインおよびソース電極(39)をマ スクとして、N'a-Si膜(38)をエッチングする 工程がある。

【0017】本工程は、本発明の特徴とする工程であ り、前述の如く、トランジスタのチャンネル領域以外に 10 もN'a-Si膜が存在するため、N'a-Si膜(3 8) のエッチング面積が従来例で述べた面積より大幅に 増加する。従ってエッチング面積によるエッチングレー トの依存性が軽減し、エッチングレートが低下する。し かもチャンネル領域以外のN'a-Si膜(38)の下 には、第2のゲート絶縁膜 (36) であるSiNx膜が 有るので、チャンネル領域のa-Si膜(37)が露出 すると同時に、このSiNx膜(36)も露出する。

【0018】例えば、分光分析法による検出装置を備え ておけば、エッチングレートの低下も相俟って、チャン 20 ネル領域のa-Si膜(37)のエッチングをすること なく終点検出を達成できる。以上の方法によって達成さ れた本液晶表示装置は、ドレイン電極 (41) と一体の ドレインラインの下層にN'a-Si膜(38)が形成 されるため、何らかの原因に依りドレインラインが断線 されても救済される。

[0019]

【発明の効果】以上の説明から明らかな如く、ドレイン 電極およびこれと一体のドレインラインの下層にN'a -Si膜が設けられているため、ドレインラインに断線 30 が生じても救済をすることができる。一方、N'a-S a-Si 膜のエッチングレートを低下でき、しかもNa-Si膜のエッチング領域には、その下層にトランジ

スタのチャンネルに対応するa-Si膜とSiNx膜よ りなる絶縁膜が存在するため、この絶縁膜の露出を検出 することで、精度の高い終点検出が可能となる。従って トランジスタの特性を改善できる。

【図面の簡単な説明】

【図1】本発明の製造方法を説明する要部断面図であ

【図2】本発明の製造方法を説明する要部断面図であ

【図3】本発明の製造方法を説明する要部断面図であ

【図4】本発明の製造方法を説明する要部断面図であ

【図5】本発明の製造方法を説明する要部断面図であ

【図6】本発明の製造方法を説明する要部断面図であ

【図7】従来の製造方法を示す要部断面図である。

【図8】従来の製造方法を示す要部断面図である。

【図9】従来の製造方法を示す要部断面図である。

【図10】従来の製造方法を示す要部断面図である。

【図11】従来の製造方法を示す要部断面図である。

【図12】従来の製造方法を示す要部断面図である。 【符号の説明】

3 1 絶縁性基板

3 2 ゲート

3 4 第1のゲート絶縁膜

3 5 表示電極

36 第2のゲート絶縁膜

37 a-Si膜

N'a-Si膜 38

3 9 ソース電極

4 1 ドレイン電極

[図1]

33: 補助容量電極

32:5-1

{図2]

34:第105十紀経膜 35:表示電極

【図3】

【図5】

39:ソ-ス重権 40:コンタクト乱

41:ドレリン電極

【図7】

【図9】

【図4】

【図6】

31: 絕緣性基礎

33: 補助容量重极

32: 15-1 34: 第195十紀緑膜

35: 表示電信

37: a-Si 膜

36: 第2のケート絶縁膜

38: N*a - Si 噗

39: ソース値発

41:ドリン食を

【図8】

[図10]

【図12】

《図11】

