3. Projekt

Penalty-Verfahren & SQP-Verfahren

im Fach

Numerische Optimierung

Juni 2020

Maximilian Gaul

Aufgabe 1

Aufgabe 2

Implementierung siehe BFGS_Pen.m und ArmijoPen.m.

Aufgabe 3

Tests siehe Projekt_3.m.

Aufgabe 4

Das Problem

$$f(x) = \min x_1$$

unter den Nebenbedingungen

$$g_1(x) = x_1^2 + x_2^2 - 1 \le 0$$

$$g_2(x) = x_1 + x_2 - \gamma \le 0, \gamma \ge -\sqrt{2}$$

lässt sich so graphisch darstellen:

Abbildung 1: Graphische Darstellung der Zielfunktion und Nebenbedingungen, gültige Punkte müssen in der Schnittmenge aus Blau und Orange liegen

Anhand der Lagrange-Funktion:

$$L(x,\lambda) = x_1 + \lambda_1(x_1^2 + x_2^2 - 1) + \lambda_2(x_1 + x_2 - \gamma)$$

und den Ableitungen:

$$\nabla f(x) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\nabla g_1(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$, $\nabla g_2(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

kann man die KKT-Bedingungen aufstellen:

$$\nabla_x L(x,\lambda) = \nabla f(x) + \lambda_1 \nabla g_1(x) + \lambda_2 \nabla g_2(x) = 0 \text{ (Stationarität)}$$

$$\Leftrightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_1 \cdot \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\lambda_1$$
, $\lambda_2 \geq 0$, $\lambda_1 \cdot (x_1^2 + x_2^2 - 1) = 0$, $\lambda_2 \cdot (x_1 + x_2 - \gamma) = 0$ (Komplementarität)
$$g_1(x) \leq 0$$
, $g_2(x) \leq 0$ (Zulässigkeit)

Um die Komplementarität zu erfüllen kann man nun verschiedene Faktoren gleich Null setzen.

Für $\lambda_1=0$ und $\lambda_2=0$ erhält man einen Widerspruch in der Stationarität, ebenso für $\lambda_1=0$ und $\lambda_2\neq 0$.

Für $\lambda_1 \neq 0$ und $\lambda_2 = 0$ erhält man:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_1 \cdot \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

mit

$$1 + 2\lambda_1 x_1 = 0$$
$$2\lambda_1 x_2 = 0 \Rightarrow^{\lambda_1 \neq 0} x_2 = 0$$

Da $\lambda_1 \neq 0$ muss wegen der Komplementarität zwangsläufig gelten $x_1^2+x_2^2=1 \Leftrightarrow x_1=\pm \sqrt{1-x_2^2}$ bzw. $x_1=\pm 1$. Nun einsetzen

$$1+2\lambda_1=0\Leftrightarrow \lambda_1=-rac{1}{2}$$
 (ungültig)
$$1-2\lambda_1=0\Leftrightarrow \lambda_1=rac{1}{2}$$

Damit erhält man den KKT-Punkt: $x_1=-1$, $x_2=0$. Für $\lambda_1\neq 0$ und $\lambda_2\neq 0$ erhält man

$$x_1 + x_2 - \gamma = 0 \Leftrightarrow x_1 = \gamma - x_2$$

$$x_1^2 + x_2^2 - 1 = 0 \Leftrightarrow (\gamma - x_2)^2 + x_2^2 - 1 = 0 \Leftrightarrow x_2 = \pm \sqrt{\frac{2(1 - \gamma^2) + \gamma^2}{4}} + \frac{1}{2}\gamma$$

$$\Leftrightarrow x_2 = \pm \frac{1}{2} \cdot \sqrt{\gamma^2 + 2(1 - \gamma^2)} + \frac{1}{2}\gamma \Rightarrow x_1 = \gamma - \left(\pm \frac{1}{2} \cdot \sqrt{\gamma^2 + 2(1 - \gamma^2)} + \frac{1}{2}\gamma\right)$$

Für
$$x_1=\gamma-\frac{1}{2}\sqrt{\gamma^2+2(1-\gamma^2)}-\frac{1}{2}\gamma\Leftrightarrow x_1=\frac{1}{2}\gamma-\frac{1}{2}\sqrt{\gamma^2+2(1-\gamma^2)}$$
 und $x_2=\frac{1}{2}\sqrt{\gamma^2-2(1-\gamma^2)}+\frac{1}{2}\gamma$ erhält man die Stationaritätsgleichung

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_1 \cdot \begin{bmatrix} 2 \cdot \left(\frac{1}{2}\gamma - \frac{1}{2}\sqrt{\gamma^2 + 2(1 - \gamma^2)} \right) \\ 2 \cdot \left(\frac{1}{2}\sqrt{\gamma^2 + 2(1 - \gamma^2)} + \frac{1}{2}\gamma \right) \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Mit

$$\lambda_1 \cdot \left(\sqrt{\gamma^2 + 2(1 - \gamma^2)} + \gamma\right) + \lambda_2 = 0 \Leftrightarrow \lambda_2 = -\lambda_1 \cdot \left(\sqrt{\gamma^2 + 2(1 - \gamma^2)} + \gamma\right)$$

kann man einsetzen in die 1. Gleichung:

$$1 + \lambda_1 \cdot \left(\gamma - \sqrt{\gamma^2 + 2(1 - \gamma^2)}\right) - \lambda_1 \cdot \left(\sqrt{\gamma^2 + 2(1 - \gamma^2)} + \gamma\right) = 0$$

und erhält

$$\lambda_1 = rac{1}{2\sqrt{\gamma^2 + 2(1-\gamma^2)}}$$
 , $\lambda_2 = -rac{\sqrt{\gamma^2 + 2(1-\gamma^2)} + \gamma}{2\sqrt{\gamma^2 + 2(1-\gamma^2)}}$

Für $\gamma \neq \pm \sqrt{2}$ ist λ_1 immer positiv. Für $-\sqrt{2} < \gamma \leq -1$ ist λ_2 ebenfalls positiv. D.h. $x_1 = \frac{1}{2}\gamma - \frac{1}{2}\sqrt{\gamma^2 + 2(1-\gamma^2)}$ und $x_2 = \frac{1}{2}\sqrt{\gamma^2 - 2(1-\gamma^2)} + \frac{1}{2}\gamma$ ist ein KKT-Punkt.

Weiterhin erhält man für $x_1=\gamma-\left(-\frac{1}{2}\sqrt{\gamma^2+2(1-\gamma^2)}+\frac{1}{2}\gamma\right)$ $\Leftrightarrow x_1=\frac{1}{2}\gamma+\frac{1}{2}\sqrt{\gamma^2+2(1-\gamma^2)}$ und $x_2=-\frac{1}{2}\sqrt{\gamma^2+2(1-\gamma^2)}+\frac{1}{2}\gamma$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_1 \cdot \begin{bmatrix} 2 \cdot \left(\frac{1}{2}\gamma + \frac{1}{2}\sqrt{\gamma^2 + 2(1 - \gamma^2)}\right) \\ 2 \cdot \left(-\frac{1}{2}\sqrt{\gamma^2 + 2(1 - \gamma^2)} + \frac{1}{2}\gamma\right) \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Und

$$\lambda_1=-\frac{1}{2\sqrt{\gamma^2+2(1-\gamma^2)}}$$
 , $\lambda_2=\frac{-\sqrt{\gamma^2+2(1-\gamma^2)}+\gamma}{2\sqrt{\gamma^2+2(1-\gamma^2)}}$

Da λ_1 für $\gamma \neq \pm \sqrt{2}$ immer negativ ist, ist dies kein KKT-Punkt.

Aufgabe 5

Abbildung 2: Graphische Darstellung der Zielfunktion und Nebenbedingungen, gültige Punkte liegen auf der Schnittmenge zwischen Kreis und blauen Linien

Anhand der Lagrange-Funktion:

$$L(x,\mu) = x_1 + \mu_1 (x_1^2 + x_2^2 - 1) + \mu_2 (x_1 + x_2 - \gamma)$$

und den Ableitungen

$$\nabla f(x)=\begin{bmatrix}1\\0\end{bmatrix}$$
 , $\nabla h_1(x)=\begin{bmatrix}2x_1\\2x_2\end{bmatrix}$, $h_2(x)=\begin{bmatrix}1\\1\end{bmatrix}$

kann man die KKT-Bedingungen aufstellen:

$$\begin{bmatrix}1\\0\end{bmatrix}+\mu_1\cdot\begin{bmatrix}2x_1\\2x_2\end{bmatrix}+\mu_2\cdot\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix} \text{ (Stationarität)}$$

sowie

$$h_1(x) = 0$$
, $h_2(x) = 0$ (Zulässigkeit)

Mit

$$x_1 = \frac{-\mu_2 - 1}{2\mu_1} \text{ und } x_2 = \frac{-\mu_2}{2\mu_1}$$

kann man in die 2. Nebenbedingung einsetzen

$$\frac{-\mu_2 - 1}{2\mu_1} + \frac{-\mu_2}{2\mu_1} = \gamma$$

und erhält

$$\mu_2 = -\gamma \mu_1 - \frac{1}{2}$$

Was man wiederum in die 1. Nebenbedingung einsetzen kann

$$\left(\frac{-\left(-\gamma\mu_{1} - \frac{1}{2}\right) - 1}{2\mu_{1}}\right)^{2} + \left(\frac{-\left(-\gamma\mu_{1} - \frac{1}{2}\right)}{2\mu_{1}}\right)^{2} = 1$$

Dann erhält man

$$\mu_1 = \pm \frac{1}{2 \cdot \sqrt{2 - \gamma^2}}, \, \mu_2 = \mp \frac{\gamma}{2 \cdot \sqrt{2 - \gamma^2}} - \frac{1}{2}$$

Insgesamt erhält man also die KKT-Punkte:

$$x_1=\sqrt{2-\gamma^2}\cdot\left(rac{\gamma}{2\cdot\sqrt{2-\gamma^2}}-rac{1}{2}
ight)$$
 , $x_2=\sqrt{2-\gamma^2}\cdot\left(rac{\gamma}{2\cdot\sqrt{2-\gamma^2}}+rac{1}{2}
ight)$

und

$$x_1=-\sqrt{2-\gamma^2}\cdot\left(-\frac{\gamma}{2\cdot\sqrt{2-\gamma^2}}-\frac{1}{2}\right) \text{ , } x_2=-\sqrt{2-\gamma^2}\cdot\left(\frac{1}{2}-\frac{\gamma}{2\cdot\sqrt{2-\gamma^2}}\right)$$

Aufgabe 6

Man löst das Problem

$$\min x_1$$

mit den Nebenbedingungen

$$g_1(x) = x_1^2 + x_2^2 \le 1$$

 $g_2(x) = x_1 + x_2 \le 1$

mit dem Matlab-Befehl fmincon indem man die Ungleichungsnebenbedingungen in einer separaten Funktion definiert:

```
% Ungleichheitsbedingungen aus Aufgabe 4 für fmincon
function [c,ceq] = confunNeqG(g1, g2, x)
% Nonlinear inequality constraints
c = [g1(x), g2(x)];
% Nonlinear equality constraints
ceq = [];
end
```

und dann fmincon(g, x0, [], [], [], [], [], confunNeqG) aufruft. Das Ergebnis ist $x_1 = -1, x_2 = 0$.

Ähnlich verhält es sich mit dem Problem

$$\min x_1$$

und den Nebenbedingungen

$$h_1(x) = x_1^2 + x_2^2 = 1$$

 $h_2(x) = x_1 + x_2 = 1$

Hier wird folgende Matlab-Funktion verwendet:

Das Ergebnis ist $x_1 = 0, x_2 = 1$.

Konkrete Implementierung siehe Projekt_3.m.

Aufgabe 7

Man bringt die Nebenbedingungen zuerst in die Form:

$$g_1(x) = -1 + x_1 + x_2 \le 0$$

$$g_2(x) = -1 + x_1 - x_2 \le 0$$

$$g_3(x) = -1 - x_1 + x_2 \le 0$$

$$g_4(x) = -1 - x_1 - x_2 \le 0$$

Die Stationaritätsgleichung lässt sich dann wie folgt aufstellen:

$$\nabla f(x) + \lambda_1 \nabla q_1(x) + \lambda_2 \nabla q_2(x) + \lambda_3 \nabla q_3(x) + \lambda_4 \nabla q_4(x) = 0$$

 \Leftrightarrow

$$\begin{bmatrix} 2(x_1-1.5) \\ 4(x_2-t)^3 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \lambda_4 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Ebenso die Komplementaritätsbedingungen:

$$\lambda_1 \cdot q_1(x) = 0$$

$$\lambda_2 \cdot q_2(x) = 0$$

$$\lambda_3 \cdot g_3(x) = 0$$
$$\lambda_4 \cdot g_4(x) = 0$$
$$\lambda_1 \cdot \lambda_2 \cdot \lambda_3 \cdot \lambda_4 \ge 0$$

Wenn man den Punkt \hat{x} in die Nebenbedingungen einsetzt sieht man, welche aktiv sind:

$$g_1(\hat{x}) = 0$$

$$g_2(\hat{x}) = 0$$

$$g_3(\hat{x}) = -2$$

$$g_4(\hat{x}) = -2$$

Um die Komplementaritätsbedingungen zu erfüllen, muss nun gelten: $\lambda_3=\lambda_4=0$. Die Stationaritätsgleichung verkürzt sich daher zu

$$\begin{bmatrix} -1 \\ -4t^3 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $abla g_1$ und $abla g_2$ sind linear unabhängig (LICQ erfüllt). Man erhält dann

$$\lambda_1 = -\lambda_2 + 1$$

und

$$-4t^3 + \lambda_1 - \lambda_2 = 0 \Leftrightarrow \lambda_2 = -\frac{4t^3 - 1}{2}$$

Daher

$$\lambda_1 = \frac{4t^3 - 1}{2} + 1$$

Um die Komplementaritätsbedingungen zu erfüllen muss gelten

$$\frac{4t^3-1}{2}+1 \geq 0 \wedge -\frac{4t^3-1}{2} \geq 0$$

Für $t \leq \frac{1}{\sqrt[3]{2^2}}$ und $t \geq -\frac{1}{\sqrt[3]{2^2}}$ (ungefähr $t \in [-0.63, 0.63]$) ist \hat{x} ein KKT-Punkt.

Aufgabe 8

Wenn man die Nebenbedingungen in ein Koordinatensystem zeichnet:

Abbildung 3: Nebenbedingungen von $f(x_1, x_2)$

erkennt man, das nur einseitig beschränkte Flächen entstehen, wenn entweder

- (1) und (3)
- (1) und (2)
- (2) und (4)
- (3) und (4)

oder nur eine NB gleichzeitig aktiv sind / ist (bzw. nur diese Kombinationen haben linear unabhängige Gradienten nach LICQ).

Ausgehend von der Stationaritätsgleichung:

$$\begin{bmatrix} 2(x_1 - 1.5) \\ 4(x_2 - 1)^3 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \lambda_4 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

probiert man nun diese Möglichkeiten durch d.h. setzt Nebenbedingungen aktiv und formt durch die Komplementaritätsbedingungen um.

• $\lambda_1=\lambda_2=0, \lambda_3\neq 0, \lambda_4\neq 0$ Aus den Nebenbedingungen (3) und (4) erhält man:

$$-x_1 + x_2 = 1 \Leftrightarrow x_2 = 1 + x_1$$
$$-x_1 - x_2 = 1 \Leftrightarrow x_1 = -1 \Rightarrow x_2 = 0$$

Einsetzen in die Stationaritätsgleichung:

$$\begin{bmatrix} -5 \\ -4 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

und man erhält $\lambda_3 = -0.5$, $\lambda_4 = -4.5$. Das ist also keine gültige Lösung.

• $\lambda_1=\lambda_3=0, \lambda_2\neq 0, \lambda_4\neq 0$ Man erhält aus den NB (2) und (4): $x_1=0$, $x_2=-1$ und nach Einsetzen:

$$\begin{bmatrix} -3 \\ -32 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \lambda_4 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Daraus dann: $\lambda_2 = -14.5$, $\lambda_4 = -17.5$, auch keine gültige Lösung.

• $\lambda_2=\lambda_4=0, \lambda_1\neq 0, \lambda_3\neq 0$ Aus den NB (1) und (3): $x_1=0, x_2=1$ und

$$\begin{bmatrix} -3 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

dann: $\lambda_1 = \frac{3}{2}, \lambda_2 = -\frac{3}{2}$, auch keine gültige Lösung.

• $\lambda_3=\lambda_4=0, \lambda_1\neq 0, \lambda_2\neq 0$ Aus NB (1) und (2) erhält man $x_1=1, x_2=0$ und nach Einsetzen:

$$\begin{bmatrix} -1 \\ -4 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

auch $\lambda_1 = \frac{5}{2}, \lambda_2 = -\frac{3}{2}$, also auch keine gültige Lösung.

Bisher wurde kein KKT-Punkt gefunden. Nun werden noch alle Nebenbedingungen einzeln getestet:

• $\lambda_1=\lambda_2=\lambda_3=0, \lambda_4\neq 0$ Aus NB (4) erhält man $x_1=-1-x_2$, Einsetzen in die Stationaritätsgleichung liefert

$$\begin{bmatrix} 2(-1-x_2) \\ 4(x_2-1)^3 \end{bmatrix} + \lambda_4 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Die 1. Gleichung umformen zu $\lambda_4 = -2 - 2x_2$ und einsetzen in die 2. Gleichung: $4(x_2-1)^3 + 2 + 2x_2 = 0 \Leftrightarrow 4x_2^3 - 12x_2^2 + 14x_2 - 2 = 0 \Leftrightarrow x_2 \cong 0.16488 \Rightarrow x_1 \cong -1.16488 \Rightarrow \lambda_4 \cong -2.32976$, keine gültige Lösung

• $\lambda_1=\lambda_2=\lambda_4=0, \lambda_3\neq 0$ Mit NB (3) erhält man $x_2=1+x_1$, wiederum Einsetzen:

$$\begin{bmatrix} 2(x_1 - 1.5) \\ 4(x_2 - 1)^3 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Umformen: $\lambda_3=2x_1-3$ und in die 2. Gleichung einsetzen: $4(1+x_1-1)^3+2x_1-3=0 \Leftrightarrow x_1\cong 0.72808 \Rightarrow x_2\cong 1.72808$ $\lambda_3\cong -1.54384$, keine Lösung

• $\lambda_1=\lambda_3=\lambda_4=0, \lambda_2\neq 0$ Mit NB (2) erhält man $x_1=1+x_2$, einsetzen:

$$\begin{bmatrix} 2(x_1 - 1.5) \\ 4(x_2 - 1)^3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- 1. Gleichung umformen zu $\lambda_2=1-2x_2$ und in 2. Gleichung einsetzen: $4(x_2-1)^3-1+2x_2=0 \Leftrightarrow x_2\cong 0.61454\Rightarrow x_1=1.61454$ $\lambda_2=-0.22908$, keine Lösung
- $\lambda_2 = \lambda_3 = \lambda_4 = 0, \lambda_1 \neq 0$ Mit NB(1) erhält man $x_1 = 1 - x_2$, einsetzen in Stationaritätsgleichung

$$\begin{bmatrix} 2(x_1 - 1.5) \\ 4(x_2 - 1)^3 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Die 1. Gleichung umformen: $\lambda_1=1+2x_2$, einsetzen in die 2. Gleichung: $4(x_2-1)^3+2x_2+1=0 \Leftrightarrow x_2\cong 0.27192 \Rightarrow x_1\cong 0.72808$ $\lambda_1=1.54384$. Hier also das erste Ergebnis mit $\lambda\geq 0$.

Die Lösung des Systems ist demnach $x_1\cong 0.72808, x_2\cong 0.27192$ mit $f(x_1,x_2)\cong 0.87687$

Aufgabe 9

Betrachtet wird das Problem

$$\min (x_1 - 1.5)^2 + (x_2 - 0.75)^4$$

unter den Nebenbedingungen

$$g_1(x) = x_1 + x_1 \le 1$$

$$g_2(x) = x_1 - x_1 \le 1$$

$$g_3(x) = -x_1 + x_1 \le 1$$

$$g_4(x) = -x_1 - x_1 \le 1$$

mit der Lagrange-Funktion

$$L(x) = (x_1 - 1.5)^2 + (x_2 - 0.75)^4$$
$$+\lambda_1(-1 + x_1 + x_2)$$
$$+\lambda_2(-1 + x_1 - x_2)$$
$$+\lambda_3(-1 - x_1 + x_2)$$
$$+\lambda_4(-1 - x_1 - x_2)$$

Für das SQP-Verfahren benötigt man sowohl den Gradienten der Zielfunktion als auch den der Lagrange-Funktion:

$$\nabla f(x) = \begin{bmatrix} 2(x_1 - 1.5) \\ 4(x_2 - 0.75)^3 \end{bmatrix} \nabla L = \begin{bmatrix} 2(x_1 - 1.5) + \lambda_1 + \lambda_2 - \lambda_3 - \lambda_4 \\ 4(x_2 - 0.75)^3 + \lambda_1 - \lambda_2 + \lambda_3 - \lambda_4 \end{bmatrix}$$

und weiterhin auch die Hesse-Matrix der Lagrange-Funktion

$$\nabla^2 L = \begin{bmatrix} 2 & 0 \\ 0 & 12(x_2 - 0.75)^2 \end{bmatrix}$$

Weiterhin benötigt man die Gradienten der Nebenbedingungen:

$$\nabla g_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \nabla g_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \ \nabla g_3 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \ \nabla g_4 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Mit $B = \nabla^2 L$ kann man das quadratische Hilfsproblem aufstellen:

$$\min \nabla f(x)^T d + \frac{1}{2} d^T B d$$

unter den Nebenbedingungen

$$g_1(x) + \nabla g_1(x)^T d \le 0 \Leftrightarrow \nabla g_1(x)^T d \le -g_1(x)$$

$$g_2(x) + \nabla g_2(x)^T d \le 0 \Leftrightarrow \nabla g_2(x)^T d \le -g_2(x)$$

$$g_3(x) + \nabla g_3(x)^T d \le 0 \Leftrightarrow \nabla g_3(x)^T d \le -g_3(x)$$

$$g_4(x) + \nabla g_4(x)^T d \le 0 \Leftrightarrow \nabla g_4(x)^T d \le -g_4(x)$$