

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Cómputo

ESCOM

Trabajo Terminal

"Protocolo criptográfico para el almacenamiento sin duplicados en la nube, resistente a ataques por fuerza bruta."

2016-B045

Presentan

Eder Jonathan Aguirre Cruz Diana Leslie González Olivier Jhonatan Saulés Cortés

Dra. Sandra Díaz Santiago

Índice

1.	\mathbf{Intr}	oducción]				
	1.1.	Justificación	-				
	1.2.	Objetivos	-				
		1.2.1. Objetivos Generales	-				
		1.2.2. Objetivos Específicos	-				
2.	Preliminares						
	2.1.	Definiciones	6				
		2.1.1. Servicios criptográficos	6				
	2.2.	Ataques a servicios criptográficos	9				
		Criptografía Simétrica					
		Criptografía asimétrica	Ę				
		Cifrado por bloques	6				
		Modos de operación	F				
	2.7	Funciones Hash	1.				
	2.8.	Cómputo Nube	12				
Ribliografia 10							

Índice de Figuras

2.1.	Diagrama Criptografía Simétrica	 	Ę
2.2.	Diagrama Criptografía Asimétrica	 	6
2.3.	Diagrama Cifradores por Bloques	 	7

Índice de Tablas

Capítulo 1

Introducción

- 1.1. Justificación
- 1.2. Objetivos
- 1.2.1. Objetivos Generales
- 1.2.2. Objetivos Específicos

Capítulo 2

Preliminares

2.1. Definiciones

Criptografía. Es la ciencia que trata las escrituras ocultas, está comprendida por la Criptografía, el Criptoanálisis y la Esteganografía La Criptografía es la ciencia que se encarga del estudio de técnicas para transformar la información a una forma que no pueda entenderse a simple vista; sin embargo, el objetivo de la Criptografía no es sólo mantener los datos secretos, sino también protegerlos contra modificación y comprobar la fuente de los mismos.

Criptoanálisis Es la ciencia que se ocupa del análisis de un texto cifrado para obtener la información original sin conocimiento de la clave secreta, esto es, de forma ilícita rompiendo así los procedimientos de cifrado establecidos por la Criptografía, por lo que se dice que Criptoanálisis y Criptografía son ciencias complementarias pero contrarias. El criptoanálisis es el arte de descifrar comunicaciones encriptadas sin conocer las llaves correctas

2.1.1. Servicios criptográficos

Los servicios de seguridad, son aquellos que garantizan en un sistema de información la adquisición, almacenamiento, procesamiento y transmisión de la información y para lograrlo se valen de uno o más mecanismos de seguridad.

Confidencialidad Este servicio asegura que sólo las personas o procesos autorizados tengan acceso a la información. Con ello se busca que un agente no autorizado no pueda leer, copiar o modificar la información. El servicio de confidencialidad se puede diferenciar en dos tipos:

- Servicio de confidencialidad de contenido: se busca proteger el contenido de un recurso del sistema, para ello se cifra la información para que en caso ser interceptada por alguien no autorizado, no pueda ser descubierta. Este servicio puede proporcionar protección a todos los datos transmitidos por un usuario durante una conexión o puede proteger sólo parte de ellos por ejemplo sólo a los mensajes con información importante o incluso se pueden proteger sólo algunos campos de un determinado mensaje.
- Servicio de confidencialidad del mensaje: busca ocultar el flujo de un mensaje durante una conexión, para ello se cifra y se utiliza una técnica de envoltura con el objetivo de que si un atacante está realizando un análisis de tráfico, no pueda descubrir por ejemplo quien está enviando la información ni quien la recibe ni la frecuencia con la que se envían los mensajes.

Autenticación Este servicio verifica la identidad de un agente que pretende acceder a la información. En una conexión entre dos entidades, el servicio verifica que las entidades sean quienes dicen ser, además de asegurar que un tercer individuo no pueda hacerse pasar por alguna de las entidades autorizadas y realizar una transmisión o recepción de datos.

Integridad Este servicio asegura que el contenido de los datos no ha sido modificado y que la secuencia de los mismos se ha mantenido a lo largo de toda la transmisión, con ello se evita una réplica o un reordenamiento del mensaje por parte de un atacante. Al igual que el servicio de confidencialidad, la integridad puede aplicarse a todos los datos transmitidos por un usuario durante una conexión, sólo a parte de ellos o sólo a algunos campos dentro del mensaje. Cuando se tiene un ataque a la integridad de los datos, el sistema puede o no reportar dicha violación, por lo que se puede distinguir entre servicio de integridad con recuperación y servicio de integridad sin recuperación. El servicio de integridad también se puede diferenciar entre servicio de integridad del contenido y servicio de integridad de la secuencia del mensaje

- Servicio de integridad del contenido: proporciona pruebas de que el contenido no ha sido alterado o modificado.
- Servicio de integridad de la secuencia del mensaje: proporciona pruebas de que el orden de una secuencia de mensajes ha sido mantenida durante la transmisión.

No repudio Este servicio evita que las entidades en una conexión nieguen haber transmitido o recibido un mensaje. Existen varios tipos de este servicio y cada uno de ellos proporciona pruebas de haberse llevado a cabo:

- No repudio de origen: con este servicio, el emisor de un mensaje no puede negar haber sido él quien transmitió dicho mensaje.
- No repudio de envío: comprueba que los datos fueron enviados.
- No repudio de presentación: protege contra cualquier intento falso de negar que los datos fueron presentados para el envío.
- No repudio de transporte: protege contra cualquier intento de negar que los datos fueron transportados.
- No repudio de recepción: con este servicio, el receptor de un mensaje no puede negar haber recibido un mensaje.

2.2. Ataques a servicios criptográficos

Un ataque es una violación a la seguridad de la información realizada por intrusos que tienen acceso físico al sistema sin ningún tipo de restricción, su objetivo es robar la información o hacer que ésta pierda valor relativo, o que disminuyan las posibilidades de su supervivencia a largo plazo.

Ataque sólo con texto cifrado Este caso es cuando el criptoanalista sólo conoce el criptograma y el algoritmo con que fue generado; con esta información pretende obtener el texto en claro.

Ataque con texto original conocido En esta situación el criptoanalista conoce mensajes en claro seleccionados por él mismo y sus correspondientes criptogramas, así como el algoritmo con que éstos fueron generados; aquí el objetivo es conocer la clave secreta y poder descriptar libremente cualquier texto.

Ataque con texto cifrado escogido El criptoanalista conoce el algoritmo de cifrado, así como un criptograma seleccionado por él mismo y su correspondiente texto en claro, su objetivo es obtener el mensaje en claro de todo criptograma que intercepte.

Ataque con texto escogido En este caso el criptoanalista además de conocer el algoritmo de cifrado y el criptograma que quiere descriptar, también conoce el criptograma de un texto en claro que él elija y el mensaje en claro de un criptograma también elegido por él.

Ataque con clave conocida El atacante conoce claves utilizadas en cifrados anteriores y con base en ellas intenta determinar nuevas claves.

Ataque de hombre en medio El intruso se filtra en la línea de comunicación entre dos agentes autorizados en la red; obtiene la información de uno de ellos y se la envía al otro usuario una vez que la ha utilizado.

2.3. Criptografía Simétrica

La criptografía simétrica utiliza la misma clave para cifrar y descifrar el mensaje de datos, es decir se basa en un secreto compartido [?]. Características de la Criptografía simétrica:

- La clave es la misma para cifrar que para descifrar un mensaje, por lo que sólo el emisor y el receptor deben conocerla.
- Se basan en operaciones matemáticas sencillas, por ello son fácilmente implementados en hardware.
- Debido a su simplicidad matemática son capaces de cifrar grandes cantidades de datos en poco tiempo.

[1]

Los algoritmos criptográficos simétricos tienen dos versiones: cifrador en bloque y cifrador en flujo. Una cifra es una palabra para describir un algoritmo de cifrado. El beneficio del uso de un algoritmo simétrico radica en el procesamiento rápido para encriptar y desencriptar un alto volumen de datos. El cifrado simétrico es una eficaz táctica de almacenamiento de información sensible en una base de datos, un registro o archivo [1] El cifrado simétrico puede ser representado con el siguiente diagrama 2.1.

Figura 2.1: Diagrama Criptografía Simétrica

La sintaxis de un esquema de cifrado simétrico, esta dada por la siguiente definicón.

Definición 2.1 Un esquema de cifrado simétrico está conformado por una tripleta de algoritmos $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$, definidos como se describe a continuación:

- El algoritmo generador de claves Gen selecciona una llave K al azar del conjunto de llaves K, esto se denotará como $K \xleftarrow{\$} K$. Esta clave K será usada por los algoritmos Enc y Dec, esta clave la compartirán emisor y receptor.
- El algoritmo de cifrado Enc, toma como entrada un texto en claro $M \in \mathcal{M}$ y una clave K generada por Gen y regresa un texto cifrado $C \in \mathcal{C}$. Usualmente esto se denota como $C \leftarrow \mathsf{Enc}_K(M)$.
- El algoritmo de descifrado Dec, toma como entrada un texto cifrado C y una llave K y regresa M. Esta operación se denota por $M \leftarrow \mathsf{Dec}_K(C)$. Para que cualquier algoritmo de cifrado simétrico funcione correctamente, se debe garantizar que para todas las llaves posibles en K y todos los posibles mensajes \mathcal{M} ,

$$Dec_K(Enc_K(M)) = M.$$

2.4. Criptografía asimétrica

La criptografía asimétrica es por definición aquella que utiliza dos claves diferentes para cada usuario, una para cifrar que se le llama clave pública y otra para descifrar que es la clave privada. Los algoritmos asimétricos son diferentes a los simétricos en un sentido muy importante [1]. Cuando se genera una clave simétrica, simplemente se escoge un número aleatorio de la longitud apropiada. Al generar claves asimétricas el proceso es más complejo. Los algoritmos asimétricos se llaman asimétricos porque en lugar de usar una sola clave para realizar la codificación y la decodificación, se utilizan dos claves diferentes: una para cifrar y otra para descifrar. Estas dos claves se encuentran asociadas matemáticamente, cuya característica fundamental es que una clave no puede descifrar lo que cifra. [1].

Características de la Criptografía simétrica:

• Se utiliza una clave para cifrar y otra para descifrar. El emisor emplea la clave pública del receptor para cifrar el mensaje, éste último lo descifra con su clave privada.

- Se basan en operaciones matemáticas complejas.
- Se ejecutan de 100 a 1000 veces más lento que los algoritmos simétricos.

[1]

Los beneficios de la criptografía asimétrica son la solución a los problemas de la criptografía simétrica, pues las claves públicas pueden ser distribuidas con toda tranquilidad, no valen de nada sin las claves privadas. El cifrado asimétrico se le emplea muy frecuente para pasar con seguridad una clave privada, que posteriormente, será la que se utilice para cifrar y/o descifrar otra información. El cifrado asimétrico puede ser representado con el siguiente diagrama 2.2.

Figura 2.2: Diagrama Criptografía Asimétrica

2.5. Cifrado por bloques

Los algoritmos de cifrado por bloques toman bloques de tamaño fijo del texto en claro y producen un bloque de tamaño fijo de texto cifrado, generalmente del mismo tamaño que la entrada. El tamaño del bloque debe ser lo suficientemente grande como para evitar ataques de texto cifrado. La asignación de bloques de entrada a bloques de salida debe ser uno a uno para hacer el proceso reversible y parecer aleatoria.

Para la asignación de bloques los algoritmos de cifrado simétrico realizan sustituciones y permutaciones en el texto en claro hasta obtener el texto cifrado.

La sustitución es el reemplazo de un valor de entrada por otro de los posibles valores de salida, en general, si usamos un tamaño de bloque k, el bloque de entrada puede ser sustituido por cualquiera de los 2k bloques posibles. La permutación es un tipo especial de sustitución en el que los bits de un bloque de entrada son reordenados para producir el bloque cifrado, de este modo se preservan las estadísticas del bloque de entrada (el número de unos y ceros).

Los algoritmos de cifrado por bloques iterativos funcionan aplicando en sucesivas rotaciones una transformación (función de rotación) a un bloque de texto en claro. La misma función es aplicada a los datos usando una subclave obtenida de la clave secreta proporcionada por el usuario. El número de rotaciones en un algoritmo de cifrado por bloques iterativo depende del nivel de seguridad deseado.

La sustitución es el reemplazo de un bloque de n bits por otro bloque de n bits en un espacio de 2^k [11]. Los cifradores por bloques mas usados son AES (Advanced Encryption Standard, por sus siglas en inglés) y DES (Data Encryption Standard, por sus siglas en inglés).

Los cifradores por bloques pueden ser representados mediante el siguiente diagrama. 2.3.

Figura 2.3: Diagrama Cifradores por Bloques

2.6. Modos de operación

Un modo de operación es una técnica para mejorar el efecto de un algoritmo criptográfico o adaptar el algoritmo para una aplicación, tal como aplicar un cifrador por bloques a una secuencia de bloques de datos o un flujo de datos. Los cuatro modos están destinados a cubrir virtualmente todas las aplicaciones posibles de cifrado para las cuales se podría usar un cifrador por bloques. A medida que han aparecido nuevas aplicaciones y requisitos, el NIST ha ampliado la lista de modos recomendados a cinco en la Publicación Especial 800-38A. Estos modos están diseñados para usarse con cualquier cifra simétrica de bloques, incluyendo DES triple y AES..

CBC (Cipher-block chaining): La entrada al algoritmo de encriptación es el XOR de los siguientes 64 bits de texto plano y los 64 bits de cifrado anteriores.

- La salida de uno de los bloques de cifrado se mete a otro bloque de cifrado junto con el siguiente bloque de mensaje.
- Toma como entradas un vector de inicialización (IV) y un bloque de mensaje (m).
- Durante el encriptado la salida del i ésimo bloque depende del anterior i -1 bloques.
- La salida de cada uno de los bloques depende de todo lo anterior y esto lo hace mas seguro que ECB.
- El descifrado de CBC es no secuencial.

(a) Diagrama CBC Cifrado

CFB(Cipher Feedback): La entrada se procesa j bits a la vez. El texto cifrado precedente se utiliza como entrada al algoritmo de cifrado para producir la salida pseudoaleatoria, que se le aplica XOR con el texto sin formato para producir la siguiente unidad de texto cifrado.

- Los bloques de cifrado también están encadenados pero la salida es muy diferente a los demás.
- Para cada bloque, el cifrado es producido haciendo XOR con el mensaje.
- Una ventaja de implementación es que no es necesaria la operación de descifrar no es necesario.

(a) Diagrama CFB Cifrado

OFB(Output feedback): Similar a CFB, excepto que la entrada al algoritmo de cifrado es la salida DES anterior.

- En OFB la salida del bloque de cifrado es alimentada de nuevo en la siguiente bloque de cifrado.
- El IV es cifrado varias veces para obtener una corriente de bytes aleatorios.
- Estas corrientes de bytes aleatorios se les hace XOR con el texto en plano para generar el texto cifrado.

(a) Diagrama OFB Cifrado

CTR(Counter): Cada bloque de texto sin formato se le aplica XOR con un contador cifrado. El contador se incrementa para cada bloque subsiguiente.

- CTR toma un vector de inicialización (IV) y en cada iteración el valor de IV se incrementa en 1 y queda cifrado.
- Para obtener el mensaje cifrado se hace una XOR con el IV y el bloque de mensaje.
- En términos de eficiencia CTR es mejor que CBC, OFB o CFB, ya que en este modo se pueden hacer las operaciones en paralelo ya que no dependen de algo para poder ser cifradas.

(a) Diagrama CTR Cifrado

2.7. Funciones Hash

A continuación se describirán las características de las funciones hash, también conocidas como funciones de resumen. Las funciones hash basan su definición en funciones de un solo sentido (one-way functions, en inglés). Una función de un sólo sentido es aquella que para un valor x, es muy fácil calcular f(x), pero es muy difícil hallar $f^{-1}(x)$. Es complicado en general, hallar funciones de éste tipo y probar que lo son.

Definición 2.2 Una función hash, es una función de un sólo sentidocuya entrada m es un mensaje de longitud arbitraria y la salida es una cadena binaria de longitud fija. Al resumen o hash de un mensaje m, se le denotará como h(m). Una función hash debe tener las siguientes propiedades:

- Para cualquier mensaje m, debe ser posible calcular h(m) eficientemente.
- Dado h(m), debe ser computacionalmente difícil, hallar un mensaje m', tal que h(m) = h(m').
- Debe ser computacionalmente difícil, hallar dos mensajes m y m' tales que h(m) = h(m').

Entre las funciones hash que se usan para criptografía están: MD2, MD4, MD5, donde MD significa Message Digest, y el algoritmo estándar al momento de escribir éstas notas es el Secure Hash Algorithm por sus siglas en inglés SHA. La MD5 fue diseñada por Ron Rivest, toma como entrada un mensaje de longitud arbitraria y proporciona como salida una cadena binaria de 128 bits. El mensaje de entrada se procesa por bloques de 512 bits. La SHA fue diseñada por en NIST y se estableció como estándar en 1993. Recibe como entrada un mensaje con longitud menor a 2⁶⁴ bits y como salida se obtiene una cadena binaria de 160 bits. Al igual que el MD5, se procesa en bloques de 512 bits [25].

2.8. Cómputo Nube

El cómputo nube definido así por el NIST (National Institute of Standards and Technology), es un modelo para permitir un acceso a la red ubicuo, es decir, que se encuentra presente en todas partes al mismo tiempo y conveniente a un conjunto de recursos informáticos configurables (por ejemplo, redes, servidores, almacenamiento, aplicaciones y servicios) que se puede aprovisionar y liberar rápidamente con un esfuerzo mínimo de gestión o una interacción entre el proveedor de servicios. Este modelo de cómputo nube se compone de 5 características esenciales, 3 modelos de servicio y 4 modelos de despliegue.

Características:

• Auto-servicio bajo demanda

Un consumidor puede proporcionar unilateralmente capacidades del tiempo del servidor y el almacenamiento en red, según se necesite automáticamente sin interacción con cada proveedor de servicios.

Amplio acceso a la red

Las capacidades están disponibles a través de la red y se accede a través de mecanismos que promueven el uso por plataformas de clienteheterogéneas finas o gruesas (por ejemplo, teléfonos móviles, tablets, computadoras portátiles y estaciones de trabajo)

Agrupación de recursos

Los recursos informáticos del proveedor se agrupan para servir a múltiples consumidores utilizando un modelo de múlti- usuario, con diferentes recursos físicos y virtuales asignados dinámicamente y reasignados de acuerdo con la demanda del consumidor. Hay una sensación de independencia de ubicación en que el cliente generalmente no tiene control o conocimiento sobre la ubicación exacta de los recursos proporcionados, pero puede especificar la ubicación en un nivel superior de abstracción (por ejemplo, país, estado o centro de datos). Ejemplos de recursos incluyen almacenamiento, procesamiento, memoria y ancho de banda de la red.

Elasticidad rápida

Las capacidades pueden ser suministradas elásticamente y liberadas, en algunos casos de forma automática, para escalar rápidamente hacia fuera y hacia adentro proporcional a la demanda. Para el consumidor, las capacidades disponibles para la provisión a menudo parecen ser ilimitadas y pueden ser apropiadas en cualquier cantidad en cualquier momento.

Servicio medido

Los sistemas de cómputo nube controlan y optimizan automáticamente el uso de recursos aprovechando una capacidad de medición en algún nivel de abstracción apropiado al tipo de servicio (por ejemplo, almacenamiento, procesamiento, ancho de banda y cuentas de usuario activas). El uso de recursos puede ser monitoreado, controlado y reportado, proporcionando transparencia tanto para el proveedor como para el consumidor del servicio utilizado.

Modelos de servicio

■ Software como Servicio (SaaS)

La capacidad proporcionada al consumidor es utilizar las aplicaciones del proveedor que se ejecutan en una infraestructura en la nube. Las aplicaciones son accesibles desde varios dispositivos cliente a través de una interfaz de cliente ligero, como un navegador web (por ejemplo, correo electrónico basado en web) o una interfaz de programa. El consumidor no gestiona ni controla la infraestructura oculta de la nube, incluyendo la red, los servidores, los sistemas operativos, el almacenamiento o incluso las capacidades de las aplicaciones individuales, con la posible excepción de las limitadas configuraciones específicas de la configuración de la aplicación.

■ Plataforma como Servicio (PaaS)

La capacidad proporcionada al consumidor es desplegar en la infraestructura de la nube aplicaciones creadas por el consumidor, utilizando lenguajes de programación, bibliotecas, servicios y herramientas soportadas por el proveedor. El consumidor no gestiona ni controla la infraestructura oculta de la nube, incluyendo la red, los servidores, sistemas operativos o de almacenamiento, pero tiene control sobre las aplicaciones desplegadas y, posiblemente, configuración de configuración para el entorno de alojamiento de aplicaciones.

Infraestructura como Servicio (IaaS)

La capacidad proporcionada al consumidor es proveer procesamiento, almacenamiento, redes y otros recursos de computación fundamentales donde el consumidor es capaz de desplegar y ejecutar software arbitrario, que puede incluir sistemas operativos y aplicaciones. El consumidor no gestiona ni controla la infraestructura subyacente de la nube, sino que tiene control sobre los sistemas operativos, el almacenamiento y las aplicaciones implementadas; Y posiblemente un control limitado de componentes de red selectos (por ejemplo, firewalls de host).

Modelos de despliegue

Nube privada

La infraestructura de la nube está preparada para el uso exclusivo de una sola organización que comprende varios consumidores (por ejemplo, unidades de negocio). Puede ser propiedad, administrado y operado por el órgano.

• Nube de la comunidad

La infraestructura de la nube está preparada para uso exclusivo por una comunidad específica de consumidores de organizaciones que tienen preocupaciones compartidas (por ejemplo, misión, requisitos de seguridad, política y consideraciones de cumplimiento). Puede ser propiedad, administrado y operado por una o más de las organizaciones de la comunidad, un tercero, o una combinación de ellos, y puede existir dentro o fuera de las instalaciones.

Nube pública

La infraestructura de la nube está preparada para el uso abierto por el público en general. Puede ser propiedad, administrado y operado por una organización comercial, académica u gubernamental, o alguna combinación de ellos. Existe en las instalaciones del proveedor de la nube.

■ Nube híbrida

La infraestructura de la nube es una composición de dos o más infraestructuras de nube distintas (privadas, comunitarias o públicas) que siguen siendo entidades únicas, pero están unidas por una tecnología estandarizada o propietaria que permite la portabilidad de datos y aplicaciones (por ejemplo, burbujas de nube para equilibrar la carga entre Nubes).

Problemas en Cómputo Nube

Abuso y mal uso del Cómputo Nube

Esta amenaza afecta principalmente a los modelos de servicio IaaS y PaaS y se relaciona con un registro de acceso a estas infraestructuras/plataformas poco restrictivo. Es decir, cualquiera con una tarjeta de crédito válida puede acceder al servicio, con la consecuente proliferación de spammers, creadores de código malicioso y otros criminales que utilizan la nube como centro de operaciones.

Interfaces y API poco seguros

Generalmente los proveedores de servicios en la nube ofrecen una serie de interfaces y API (del inglés, Application Programming Interface) para controlar e interactuar con los recursos. De este modo, toda la organización, el control, la provisión y la monitorización de los servicios cloud se realiza a través de estos API o interfaces. Dado que todo (autenticación, acceso, cifrado de datos, etc.) se realiza a través de estas herramientas, se hace necesario que los interfaces estén diseñados de forma segura, evitando así los problemas de seguridad, tanto los que son intencionados como los que se producen de forma accidental.

Amenaza Interna

Como en todos los sistemas de información, la amenaza que suponen los propios usuarios es una de las más importantes, dado que tienen acceso de forma natural a los datos y aplicaciones de la empresa. En un entorno cloud esto no es en absoluto diferente ya que se pueden desencadenar igualmente incidentes de seguridad provocados por empleados descontentos y accidentes por error o desconocimiento. Además, en muchos casos, es el propio proveedor del servicio el que gestiona las altas y bajas de los usuarios, produciéndose brechas de seguridad cuando el consumidor del servicio no informa al proveedor de las bajas de personal en la empresa. Como es lógico, estos incidentes repercuten de forma importante en la imagen de la empresa y en los activos que son gestionados. Los proveedores de servicio deberán proveer a los consumidores del servicio de medios y métodos para el control de las amenazas internas.

Problemas derivados de la tecnología compartida

Esta amenaza afecta a los modelos IaaS, ya que en un modelo de Infraestructura como Servicio los componentes físicos (CPU, GPU, etc.) no fueron diseñados específicamente para una arquitectura de aplicaciones compartidas. Se han dado casos en los que los hipervisores de virtualización podían acceder a los recursos físicos del anfitrión provocando, de esta forma, incidentes de seguridad. Para evitar este tipo de incidentes se recomienda implementar una defensa en profundidad con especial atención a los recursos de computación, almacenamiento y red. Además, se ha de generar una buena estrategia de seguridad que gestione correctamente los recursos para que las actividades de un usuario no puedan interferir en las del resto.

Pérdida o fuga de información

Existen muchas formas en las que los datos se pueden ver comprometidos. Por ejemplo, el borrado o modificación de datos sin tener una copia de seguridad de los originales, supone una pérdida de datos. En la nube, aumenta el riesgo de que los datos se vean comprometidos ya que el número de interacciones entre ellos se multiplica debido a la propia arquitectura de la misma. Esto deriva en pérdida de imagen de la compañía, daños económicos y, si se trata de fugas, problemas legales, infracciones de normas, etc.

Secuestro de sesión o servicio

En un entorno en la nube, si un atacante obtiene las credenciales de un usuario del entorno puede acceder a actividades y transacciones, manipular datos, devolver información falsificada o redirigir a los clientes a sitios maliciosos.

Riesgos por desconocimiento

Uno de los pilares de las infraestructuras cloud es reducir la cantidad de software y hardware que tienen que adquirir y mantener las compañías, para así poder centrarse en el negocio. Esto, si bien repercute en ahorros de costes tanto económicos como operacionales, no puede ser motivo para el deterioro de la seguridad por falta de conocimiento de esta infraestructura. Para asistir en la toma de decisiones sobre las medidas de seguridad que se han de implantar en un entorno cloud es conveniente conocer, al menos en parte, la información técnica de la plataforma. Datos como con quién se comparte la infraestructura o los intentos de acceso no autorizados pueden resultar muy importantes a la hora de decidir la estrategia de seguridad. La carencia de información de este tipo puede derivar en brechas de seguridad desconocidas por el afectado.

Referencias

- [1] Cifrado simetrico. Guía de Gnu Privacy Guard, 2015. https://www.gnupg.org/gph/es/manual/c190.html#AEN201.
- [2] em client. eM Client web page, 2015. http://www.emclient.com/.
- [3] Opera mail. Opera Mail web pages, 2015. http://www.opera.com/es-419/computer/mail.
- [4] Post box. Post Box web page, 2015. https://www.postbox-inc.com/.
- [5] Thunderbird. Thunderbird web pages, 2015. https://www.mozilla.org/es-ES/thunderbird/.
- [6] Zimbra. Zimbra web pages, 2015. https://www.zimbra.com/.
- [7] R. Allenby. Rings, fields, and groups: an introduction to abstract algebra. E. Arnold, 1983.
- [8] Alonsojpd. Montar un servidor de correo electrónico mail en linux ubuntu. AJPDsoft, 2015. http://www.ajpdsoft.com/modules.php?name=News&file=article&sid=506.
- [9] T. Brehm. The perfect server ubuntu 15.10(wily werewolf) with and mysql, pureftpd, bind, postfix, dovecot apache, php, How Forge, 2015. https://www.howtoforge.com/tutorial/ toubuntu-perfect-server-with-apache-php-myqsl-pureftpd-bind-postfix-doveot-and-ispc
- [10] M. Brodsky. Reflexiones jurídicas sobre el e-marketing en chile. Interactive Advertising Bureau, 2015. http://www.iab.cl/reflexiones-juridicas-sobre-el-e-marketing-en-chile/.
- [11] D. Chakraborty and F. Rodríguez-Henríquez. Block cipher modes of operation from a hardware implementation perspective. In Ç. K. Koç, editor, *Cryptographic Engineering*, pages 321–363. Springer, 2009.
- [12] S. Diaz-Santiago and D. Chakraborty. On securing communication from profilers. In P. Samarati, W. Lou, and J. Zhou, editors, SECRYPT 2012 - Proceedings of the International Conference on Security and Cryptography, Rome, Italy, 24-27 July, 2012, SECRYPT is part of ICETE - The International Joint Conference on e-Business and Telecommunications, pages 154-162. SciTePress, 2012.

- [13] P. Golle and A. Farahat. Defending email communication against profiling attacks. In Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES 2004, Washington, DC, USA, October 28, 2004, pages 39-40, 2004.
- [14] A. Gulbrandsen and N. Freed. Internet Message Access Protocol (IMAP) MOVE Extension. RFC 6851, 2015.
- [15] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.
- [16] D. J. C. Klensin. Simple Mail Transfer Protocol. RFC 5321, 2015.
- [17] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard), April 2001. Obsoleted by RFC 5321, updated by RFC 5336.
- [18] W. Koch. The gnu privacy guard. GnuPG web page, 2016. https://www.gnupg.org/index.html.
- [19] D. P. Martínez. Postgresql vs. mysql. geekWare, 2015. https://danielpecos.com/documents/postgresql-vs-mysql/.
- [20] J. Myers and M. Rose. Post Office Protocol Version 3. RFC 1939 (Standard), 1996. Updated by RFCs 1957, 2449.
- [21] J. Peralta. Anillos y cuerpos. Campus Virtual Univesidad de Almería, 2016. http://www.ual.es/personal/jperalta/anilloscuerpos.pdf.
- [22] N. Roshanbin and J. Miller. A survey and analysis of current captcha approaches. J. Web Eng., 12(1-2):1-40, 2013.
- [23] sawiyati. How to install apache, php and mariadb on ubuntu 15.04. Server Mom, 2015. http://www.servermom.org/install-apache-php-mariadb-ubuntu-15-04/2208/.
- [24] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
- [25] W. Stallings. Cryptography and Network Security: Principles and Practice. Pearson Education, 5a edition, 2002.
- [26] D. R. Stinson. Cryptography Theory and Practice. Chapman & Hall/CRC, 3a edition, 2006.
- [27] O. Tezer. Sqlite postgresql: Α comparison VSmysql relational database management systems. Digital of Ocean, 2014. https://www.digitalocean.com/community/tutorials/ sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-syst
- [28] M. R. S. Villanueva. Aritmética del reloj. Departamento de Matemáticas de la Universidad de Puerto Rico en Aguadilla, 2016. http://math.uprag.edu/milena/4.5% 20ARITMETICA%20DEL%20RELOJ.pdf.

- [29] Wikipedia. Ciphertext-only attack Wikipedia, the free encyclopedia, 2015. https://en.wikipedia.org/wiki/Ciphertext-only_attack.
- [30] Wikipedia. Email Wikipedia, the free encyclopedia, 2015. http://en.wikipedia.org/wiki/Email.
- [31] Wikipedia. Pretty good privacy Wikipedia, the free encyclopedia, 2015. https://es.wikipedia.org/wiki/Pretty_Good_Privacy.
- [32] L. G. G. y Dr. Sergio Rajsbaum. Critofrafía. Temas selectos de la web, 2015. http://www.matem.unam.mx/rajsbaum/cursos/web/presentacion_seguridad_1.pdf.
- [33] E. A. M. y M.C. Ma. Jaquelina López Barrientos. Fundamentos de critofrafía. Universidad Nacional Autonoma de México Facultad de Ingenieria, 2015. http://redyseguridad.fi-p.unam.mx/proyectos/criptografia/criptografia/.