AVATAR LAB

Group: G331 | Presenter: Akula. Yashwanth

Tech Stack & Reasoning

Frontend Framework

Next.js: Built-in server-side rendering enables top performance and SFO excellence.

API & ORM

Prisma: Type-safe ORM ensures efficient, error-free database access.

Deep Learning Models

Small-E: Low latency text-to-speech synthesis.

DiffDub: Realistic lip-sync and talking head generation.

Database Solutions

PostgreSQL: Robust asset storage with reliable relational integrity.

MongoDB: Flexible document storage for unstructured data.

Queue & Cache

Redis: High-speed in-memory caching to reduce latency.

BullMQ: Robust async job queue for handling concurrent

processing.

Development Tools

ngrok: Secure local server exposure for model testing.

RobustVideoMatting: Professional background segmentation for

realism.

Architecture Changes & Milestone Status

Architecture Changes

- Replaced DiffTalk with DiffDub model
- Enabled ngrok for local access
- Added RobustVideoMatting for background removal
- Adopted Prisma ORM and customized API

Milestone Status

- Core functionality achieved successfully
- Deployment not fully completed yet

```
## Additional Control of the Control
```

Challenges & Learnings

Key Challenges

- Slow video processing impacted UX
- Scaling from local ngrok to production
- Resource allocation for concurrent GPU usage
- Efficient background task handling
- Providing real-time processing feedback
- Managing BullMQ queue without overload

Technical Learnings

- Advanced Next.js SSR and API integration skills
- Hybrid DB management with Prisma, PostgreSQL, MongoDB
- Secure local dev using ngrok for model inference
- Robust background removal with video matting

Model Selection & Reasoning

Model	Purpose	Selected Because	Alternativ es	Key Notes
SMALL-E	Audio processing	Cost- effective, efficient	VO-VAE 2 Vall-E	GPU compatible, lightweight
DiffDub	Talking head synthesis	High- quality, realistic output	Sadtalker, StyleGAN	Better realism and control
RobustVide oMatting	Backgroun d removal	Effective video enhanceme nt	None	Essential for video realism

Profee's inorsels

Prefecated professional all courtion

Autormation AI

Networking AI: conmections

Future Plans - Model & UX Enhancements

Model Improvements

Implement multi-lingual support and higher video resolution.

User Experience

Collect user feedback to rapidly iterate and improve performance.

Future Plans - Hosting Strategy

- **Hosting Options Evaluation**
- Vercel: Excellent frontend optimization, higher cost at scale
- Render: Flexible, predictable pricing suited for growth
- AWS: Highly scalable and customizable for complex needs

Next Steps

Focus on accessibility, quality, and user-driven improvements.

Choose hosting aligned to budget and scalability goals.

Cloud hosting laitthoing

Cluad weed

Modercapertl

Sirwels

render

10,003

14,1095

12,092

Summary & Next Steps

Summary

- Robust tech stack chosen for performance and scalability
- Key architecture changes improved functionality
- Challenges informed learnings on optimization and deployment
- Future plans focus on enhancements and hosting strategy

Next Steps

- Complete deployment and optimize production environment
- 2. Implement planned model and UX improvements
- 3. Finalize hosting platform based on cost and scale
- 4. Gather continuous user feedback for iterative updates