Improving Inferences from Randomized Trials: Using per-protocol analyses obtain better estimated of HIV treatment effects.

by Timothy Feeney SER June 20 2024

e: feeney@unc.edu, bsky: @tfeend.bsky.social

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

Outline

RCTs

Per-protocol effects

Example using ACTG 5202 Trial

Population

Analysis Plan

Results

Limitations and Future

Randomized Trials are a gold standard

- Require clear enrollment criteria
- Unabmiguous intervention protocol
- $\bullet \ \, \mathsf{Exchangeability} \colon \, Y^a \perp \!\!\! \perp A \qquad \mathsf{for} \, \, A \in \{0,1\}$
- Consistency¹: $Y = Y^{a=1}A + Y^{a=0}(1 A)$
- Positivity²: $Pr(A = a \mid \mathbf{L}) > 0$, $\forall \ell$ where $f(a, \ell) > 0$
- This allows for unbiased estimation of treatment effects.

¹also known as treatment variation irrelevance

²L is covariate vector

RCT estimands

- Intention-to-treat (ITT) effect: $E[Y^{r=1} Y^{r=0}]$
- This is the effect of treatment assignment on outcomes
- Public health focused

- Per-protocol (PP) effect: $E[Y^{r=1,\bar{a}=1} Y^{r=0,\bar{a}=0}]$
- This is the effect of treatment assignment and adherence on outcomes
- Patient focused¹

¹Hernan and Robins, NEJM 2016

 $^{^2\}bar{a}$ is the history of treatment adherence

There is no one per-protocol effect

- Accounts for adherence
- "Doc, what if I take all my doses like you tell me to?"
- There are six per-protocol parameters that can be estimated¹
- This can also depend on how the investigator(s) define adherence.

$$\begin{split} &E\left[Y^{r=1,\bar{a}=1}\right] - E\left[Y^{r=0,\bar{a}=1}\right] \\ &E\left[Y^{r=1,\bar{a}=1}\right] - E\left[Y^{r=0,\bar{a}=0}\right] \\ &E\left[Y^{r=0,\bar{a}=1}\right] - E\left[Y^{r=0,\bar{a}=0}\right] \\ &E\left[Y^{r=1,\bar{a}=1}\right] - E\left[Y^{r=1,\bar{a}=0}\right] \\ &E\left[Y^{r=0,\bar{a}=1}\right] - E\left[Y^{r=1,\bar{a}=0}\right] \\ &E\left[Y^{r=1,\bar{a}=0}\right] - E\left[Y^{r=0,\bar{a}=0}\right] \end{split}$$

¹Rudolph et al. Epidemiology 2020

 $^{^{2}}r$ = randomization, \bar{a} = treatment history

Per-protocol effects can be biased

- Frequently done by exluding those not adhering¹
- Estimation of the per-pocol effect is much like an observational study
- Thus, bias can arise from non-exchangeability, non-consistency, or non-positivity
- This can lead to biased estimates

¹Cole et al. JAMA Net. Open 2023, Dodd et al. Trials 2012

Per-protocol effects can be biased

Can be addresed: inverse probability weighting (IPW), the g-formula, TMLE, can be used to account for selection bias (see next talk)

⁰X : vector of covariates

Per Protocol Causal Identification

• Conditional Exchangeability:

$$Y^g \perp (A_t, C_{t+1}) \mid (\bar{A}_{t-1} = \bar{a}_{t-1}^g, \bar{L}_t = \bar{\ell}_t, C_t = Y_t = 0) \quad \forall$$

- \bullet Consistency: if \bar{A}_t = \bar{A}_t^g then \bar{Y}_t = \bar{Y}_t^g
- Positivity: $f(a_t^g, C_t = 0 \mid \bar{a}_t^g, \bar{\ell}_t, C_t = Y_t = 0) > 0$ where $f(\bar{a}_t^g, \bar{\ell}_t, C_t = Y_t = 0) > 0$ $\forall t$
- ${\color{black} \bullet}$ No interference: $\bar{A}^g_{it} \perp \!\!\! \perp \bar{Y}^g_{jt}$ where $i \neq j$
- No missclassification and correct model specification

Where, C=censoring, t =time point from $0 \dots t$, g is a deterministic treatment strategy, overbar denotes history of values

⁰Wen et al. Biometrics 2019

More on Protocol Definition

An example using an HIV Trial: AIDS Clinical Trial Group (ACTG) 5202

Role of adherence in HIV treatment efficacy

- Adherence needed for viral suppression varies by treatment regimen.
- Blanket recommendations fail to capture differences.
- Understanding of how adherence impacts efficacy is critical¹ for:
 - Developing new treatments.
 - Maximizing current treatments.

l Adimora. Cole and Eron CID 2017

Example: ACTG 5202 Reanalysis

Overview:

- Phase 3b RCT
- 59 sites, US and Puerto Rico

Objective:

- Per-protocol analysis modulating protocol definition.
- Target population: population of HIV+ individuals in the United States
- Estimand: $Y^{r=1,\bar{a}=1} E[Y^{r=0,\bar{a}=0}]$ at 48 weeks

Outcomes: Virologic Failure defined as:

- plasma HIV-1 RNA level ≥1 copies /mL between 16 weeks and 24 weeks
- or ≥200 copies/mL at or after 24 weeks

ACTG 5202 Study Population

	ABC	/3TC	TDF/FTC		
	+ATV	+EFV	+ATV	+EFV	
n	463	465	465	464	
Female (%)	75 (16.2)	98 (21.1)	78 (16.8)	71 (15.3)	
Age Group (%)					
0-25 year	51 (11.0)	43 (9.2)	52 (11.2)	46 (9.9)	
25-49 years	353 (76.2)	362 (77.8)	339 (72.9)	356 (76.7)	
≥ 50 years	59 (12.7)	60 (12.9)	(15.9)	62 (13.4)	
Baseline log RNA (med [IQR])	4.64 [4.31, 5.14]	4.68 [4.34, 4.96	55 [4.31, 5.05]	4.65 [4.35, 4.91]	
Baseline CD4 (med [IQR])	236 [73, 345]	225 [103, 324]	224 [87, 327]	233 [104, 334]	
AIDS Hx (%)	84 (18.1)	88 (18.9)	69 (14.8)	71 (15.3)	

j: follow up time, $\mathbf{L_j}$: vector of covariates at follow up time j A_j : tx adherence at follow up time j, R: randomization, Y: viral failure or death

Adherence and Protocol

Adherence evaluated in-person at 8, 24, 48, 72, 96, then every 24 weeks and either at the final study evaluation or after virologic failure.

Last Time Missed		How Close Was Dose			
Medication		Schedule Followed			
Never >3 months ago 1-3 months ago 2-4 weeks ago 1-2 weeks ago Within the past week		Never Some of the time About half the time Most of the time All the time			

Adherence Definition	Definition of Variable
0 dose missed OK	No report of missed medication doses
1 dose missed OK	Participant with only one report of missed medication doses
:	
4 doses missed OK	Participant with ≥ 10 reported missed medication doses without overlap in reported timing

Deviation from Defined Protocols

Treatment Group	Censored	1 Dose	2 Dose	3 Dose	4 Dose	5 Dose	Total
ABC/3TC	234	276	110	57	18	7	928
TDF/FTC	211	263	79	38	23	7	929

Limitations and Future Plans

- 1. Completed with public access data¹
- 2. Reliance on coarse, self-reported medication adherence
- 3. Assume identification conditions met.²
- 4. Future directions include repeating analysis with g-formula, considering additional protocols.

¹Approved for more granular data from ACTG, awaiting dataset

 $^{^2\}mbox{NB}$: not guaranteed in per-protocol setting even though it is a trial

Thank you!

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

I'd like to acknowledge:

- Steve Cole
- Paul Zivich
- Catherine Li
- ACTG 5202
- ACTG 5202 Particpants
- Cole Lab Members

My website where you can find a link to my github.