Cho/Kim Al Spine Lab

Automated Scoliosis Classification: Al-enabled Spine Contouring and Cobb Angle Matrix Estimation

How spine functions can be used to create nuanced representation of spinal pathology and automate detection.

Yash Lahoti, MSE; Jennifer Yu, BS Samuel K. Cho, MD; Jun S. Kim, MD

Yash Lahoti MSE, BAS | Al/Machine Learning Engineer Icahn School of Medicine at Mt. Sinai | MS3

3 Required Components to Build a Classification System

1.

Large Patient
Database

2.

Standardized, Automated Measurement System

3.

Metric for Comparing similarity

Purpose: Can Al-generated spine morphology and manual feature engineering can capture spine signature and appropriately classify clinically significant stages of scoliosis.

I (or my coauthors) have nothing to disclose

Automated Measurement Pipeline

- A) 2 Stage Al-Segmentation Pipeline
 - Stage 1: Spine ROI Detection
 - Stage 2: Semantic Segmentation
- A) Approximate 9-D Function From Mask
- A) Generate Features from Spine Function
 - Divide function into 30 points
 - Compute the tangent-intersection angle for every combination of coordinates on the curve
- A) Train 2-layer ResNet CNN model to classify cobb matrix into no, mild, severe scoliosis

Tangent Intersection → Cobb Angle Matrix

816 EOS Biplanar FilmsStratify Split

Cobb:	Count		
0-10	161		
10-30	571		
30+	84		

Hardware	Count
Yes	674
No	142

Cobb Angle Matrix Visualization

Results: Training/Testing Performance

(n) TRAIN	Grade	Precision	Recall	F1-score
Class 0 (129)	0-10	0.609	0.434	0.507
Class 1 (456)	10-30	0.819	0.921	0.867
Class 3 (67)	30+	0.957	0.672	0.789
Accuracy		0.799	0.799	0.799

(n) TEST	(n) Grade	Precision	Recall	F1-score
Class 0 (24)	0-10	0.834	0.625	0.714
Class 1 (123)	10-30	0.907	0.960	0.933
Class 3 (17)	30+	0.875	0.823	0.848
Accuracy		0.896	0.896	0.896

Conclusions

Intermediate data points (segmentation, spine contour, cobb angle matrix) improve interoperability of Al-driven decision-systems

Automated screening of scoliosis with cobb angle matrix; spine "signature" serve as search template

Next steps involve...

- Train AI model that will predict cobb angle from matrix

