Welcome To My Presentation

My Presentation Topic is

Merge Sort

Presented By

Tushar Sarkar

Student ID: 18CSE35

Second Year Second Semester

Department of CSE, BSMRSTU.

Content

- **▶** Introduction
- ▶ Divide and Conquer Strategy
- ▶ Divide, Conquer & Combine
- ► Merge Sort Algorithm
- ► Example Explain
- ▶ Pseudocode
- ► Time Complexity
- **▶** Conclusion

Introduction

- ▶ Merge Sort is one of the most popular <u>sorting algorithms</u> that is based on the principle of <u>Divide and Conquer Algorithm</u>.
- ▶ Here, a problem is divided into multiple sub-problems.
- ► Each sub-problem is solved individually.
- ▶ Finally, sub-problems are combined to form the final solution.

Divide and Conquer Strategy

- ▶ Using the **Divide and Conquer** technique, we divide a problem into sub-problems.
- ▶ When the solution to each sub-problem is ready, we 'combine' the results from the sub-problems to solve the main problem.
- ► Suppose we had to sort an array .
- A sub-problem would be to sort a sub-section of this array starting at index p and ending at index r, denoted as A[p...r].

Divide, Conquer & Combine

Divide

If q is the half-way point between p and r, then we can split the subarray A[p..r] into two arrays A[p..q] and A[q+1, r].

Conquer

- \triangleright In the conquer step, we try to sort both the subarrays A[p..q] and A[q+1, r].
- If we haven't yet reached the base case, we again divide both these subarrays and try to sort them.

Combine

When the conquer step reaches the base step and we get two sorted subarrays A[p..q] and A[q+1, r] for array A[p..r], we combine the results by creating a sorted array A[p..r] from two sorted subarrays A[p..q] and A[q+1, r].

Merge Sort Algorithm

The MergeSort function repeatedly divides the array into two halves until we reach a stage where we try to perform MergeSort on a subarray of size 1 i.e. $\mathbf{p} == \mathbf{r}$.

▶ After that, the merge function comes into play and combines the sorted arrays into larger

arrays until the whole array is merged.

```
MergeSort(A, p, r):
    if p > r
        return
    q = (p+r)/2
    mergeSort(A, p, q)
    mergeSort(A, q+1, r)
    merge(A, p, q, r)
```


- ► To sort an entire array, we need to call MergeSort(A, 0, length(A)-1)
- As shown in the image, the merge sort algorithm recursively divides the array into halves until we reach the base case of array with 1 element. After that, the merge function picks up the sorted sub-arrays and merges them to gradually sort the entire array.

Example

▶ Suppose an array is A. Starting index p & ending index r. Then denoted array is A[p..r].

Let
$$p = 0$$
, $r = 6$

٨	0	1	2	3	4	5	6
A	38	27	43	3	9	82	10

This is an unsorted array.

So sorted this array—

Δ	0	1	2	3	4	5	6
71	3	9	10	27	38	43	82

Example Explain(Divide)

0	1	2	3	4	5	6
38	27	43	3	9	82	10

0	1	
38	27	

2	3
43	3

4	5
9	82

6
10

0	483	1
38		27

2	
43	

٠,		
	3	
	3	

Example Explain(Conquer & Combine)

Example(Divide, Conquer & Combine)

Pseudocode

```
▶ I Ime OJ
                                                 B_Sale.cpp × A_Cabbages.cpp × B_Bouzu_Mekuri.cpp × B_Books.cpp × 211.A.cpp × 211.C.chokudai.cpp × 211.D_Number_of_Shortest_paths.cpp × A_Cherry.cpp
                     ♦▶
                                Margesort.cpp X
▶ Topcoder
► Toph.com
▶ ■ URI Solve
                             void Marge(int A[],int left,int mid,int right){
▶ ■ UVA
                                 int i,l_size,r_size;
                                 l size = mid - left + 1;
▶ ■ Vjudge
                                 r_size = right - mid;
Personal Project
                                 int L[l size],R[r size];
  C+ Bellman_Ford.c
                                 for(i = 0; i < l_size; i++){</pre>
                                      L[i] = A[left + i];
  C+ BFS.cpp
  C+ BFS2.cpp
                                 for(i = 0; i < r_size; i++){</pre>
  C+ BFS3.cpp
                                     R[i] = A[mid + 1 + i];
  C+ Big_Mod.cpp
                                 int a_index, l_index=0, r_index=0;
  C+ Binary.cpp
                                 for(a_index = left; l_index < l_size && r_index < r_size; a_index++){</pre>
  G+ C1 Increasing 5
                                     if(L[l index] <= R[r index]){</pre>
                                          A[a_index] = L[l_index];
  C+ DFS.cpp
                                          1 index++;
                                                                                                        C:\WINDOWS\system32\cmd.exe - pause
                                                                                                                                                                                          C+ DFS2.cpp
                                                                                                       Plz enter the test case of T : 1
  C+ DFS3.cpp
                                                                                                       Plz enter the value of N: 7
                                          A[a index] = R[r index];
  C+ Dijkstra_Using_I
                                          r index++;
                                                                                                       The elements of A : 38 27 43 3 9 82 10
  C+ Dijkstra_using_S
                                                                                                       Before Marge Sorting Array: 38 27 43 3 9 82 10
  C+ DSU.cpp
                                                                                                       After Marge Sorting Array: 3 9 10 27 38 43 82
                                 while(1 index < 1 size){</pre>
  C+ Flyod Warshal.c
                                      A[a index] = L[l index];
                                                                                                       Press any key to continue . . .
  C+ Graph.cpp
                                      a index++;
  C Link List.c
                                      1 index++;
  C+ Map.cpp
                                 while(r index < r size){</pre>
  C+ Map2.cpp
                                     A[a_index] = R[r_index];
  C+ Margesort.cpp
                                      a index++;
                                      r index++;
  C+ MST_Kruskal.cp
  C+ Pair.cpp
  C+ Pair Me.cpp
                             void Marge_Sort(int A[],int left,int right){
                                 if(left < right){</pre>
 C+ Prime_Factoriza
                                      int mid;
  C+ Priority Queue.
                                      mid = left + (right-left)/2;
 C+ Priority_Queue2
                                     Marge Sort(A,left,mid);
                                     Marge Sort(A,mid+1,right);
  C+ Queue.cpp
                                     Marge(A,left,mid,right);
  C+ Queue2.cpp
```

Time Complexity

- \triangleright We denote with *n* the number of elements.
- \triangleright Since we repeatedly divide the (sub)arrays into two equally sized parts, if we double the number of elements n, we only need one additional step of divisions d.

```
if n=4 then d=2
if n=8 then d=3
```

- On each merge stage, we have to merge a total of n elements (on the first stage $n \times 1$, on the second stage $n/2 \times 2$, on the third stage $n/4 \times 4$, etc.
- The merge process does not contain any nested loops, so it is executed with linear complexity: If the array size is doubled, the merge time doubles, too. The total effort is, therefore, the same at all merge levels.
- > So we have n elements times $log_2 n$ division and merge stages.
- \triangleright Therefore: The time complexity of Merge Sort is: $O(n \log n)$

Conclusion

- ▶ Merge sort is an interesting algorithm and forms a great case-study to understand data structures and algorithms.
- ▶ In order to develop strong foundations in computer science, you are advised to thoroughly understand various sorting algorithms that will help you pick up the basics.
- ▶ Merge sort uses a *divide-and-conquer* method recursively sorts the elements of a list while *Bubble*, *Insertion* and *Selection* have a quadratic time complexity that limit its use to small number of elements.
- ▶ Merge sort uses *divide-and-conquer* to speed up the sorting.

Thank You