# Identifying Pneumonia In Pediatric Chest X-Rays With Neural Networks

Eric Denbin

Jesse Markowitz

#### **Presentation Outline**

- Business Understanding
- Purpose Of Analysis
- Data & Methods
- Results
- Recommendations
- Future Steps



### **Business Understanding**

#### What is pneumonia?

- Fluid in lungs
- Difficult to diagnose in children

#### Diagnosis:

- Observed symptoms
- Chest x-ray (CXR)





"Epidemiology and etiology of childhood pneumonia"









Which one of these radiographs is positive for pneumonia?

















## Which one of these radiographs is positive for pneumonia?









## **Purpose Of Analysis**

Predict pneumonia from pediatric CXR



Authorization

Negative Chest Radiography and Risk of Pneumonia

Susan C. Lipsett, Michael C. Monuteaux, Richard G. Bachur, Nicole Finn and Mark I. Neuman Pediatrics September 2018. 142 (3) e20180236: DOI: https://doi.org/10.1542/peds.2018-0236

Negative Chest Radiography and Risk of Pneumonia

**Stakeholder:** Guangzhou Women and Children's Medical Center, Guangzhou, China

**Key Metric**: Recall (reduce false negatives)

### **Data & Methods**

Data provided by Kaggle: Guangzhou Women and Children's Medical Center

Number of Images: 5,863

#### **Class Balance**

- Training
- Testing



### **First Simple Model**

Fully Connected Dense Neural Network

- Single layer
- Evaluated on only 50 images

**Validation Accuracy: 94%** 

Validation Recall: 95%



### Final Model: What is it doing?



Net2Vis -- A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations

Alex Bäuerle, Christian van Onzenoodt, Timo Ropinski; Cornell University

### **Final Model: Evaluation**

Convolutional Neural Network

- Multiple layers
- Full dataset

Testing set accuracy: 80.93%

Testing set recall: 98.46%



### Recommendations

 Use model as part of diagnostic toolkit, in conjunction with a clinical assessment

 Use model to reduce the number of false negatives among patients with pneumonia

Use model to increase the speed of predictions

### **Next Steps**

Classify bacterial vs. viral pneumonia:



- Consult with a medical expert to identify patterns in misclassified images
- Crop or zoom in on images
- Apply this strategy for adults with potential covid-19 diagnosis

## Thank you!



**Eric Denbin** 

EMAIL: ericdnbn@gmail.com

GITHUB: @ericdnbn

LINKEDIN: www.linkedin.com/in/eric-denbin



#### **Jesse Markowitz**

EMAIL:

jess.markowitz@gmail.com

GITHUB:

@jmarkowi

LINKEDIN:

www.linkedin.com/in/jmarkowi

## Appendix: Misclassified Images

These images were misclassified by our model.

#### **False Negatives**













# **False Positives** A PARA TARA

(50 out of total false positives)