武汉大学 2006—2007 学年第二学期《高等数学 B》(5 学分) 考试试题 (A 卷)

- 一、(12分)试解下列各题:
 - 1、求证幂级数 $\sum_{n=0}^{\infty} \frac{n+1}{n!} x^n$ 在收敛域内的和函数为: $f(x) = (1+x)e^x$
 - 2、求函数g(x) = x + 1 (-2 < x < 2)的傳立叶级数系数。

二、(15 分) 讨论函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}; & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在点(0,0) 处的偏导数存在性、方向导数的

存在性、可微性。

三、(10分) 验证变换 $x=e^t$ 可将微分方程 $x^2\frac{\mathrm{d}^2y}{\mathrm{d}x^2}-2x\frac{\mathrm{d}y}{\mathrm{d}x}+2y=x\ln x$ 变换为微分方程

四、(12分)设有函数 $f(x,y,z) = ze^{-(x^2+y^2+z^2)}$

1、求
$$\frac{\partial f}{\partial y}$$
, $\frac{\partial^3 f}{\partial y \partial z \partial x}$;

- 2、求三重积分 $\iint_{\Omega} f(x, y, z) dv$, 其中 $\Omega: 1 \le x^2 + y^2 + z^2 \le 4, y \ge 0, z \ge 0$.
- 五、(15分)设有旋转抛物面方程: $z=2-(x^2+y^2)$
 - 1、在旋转抛物面位于第一卦限部分上求一点,使该点处的切平面与三坐标面围成的四面体的体积最小;
 - 2、设 $V = \ln(4-z)^3 24(\ln x + \ln y)$, 其中x = x(y,z) 由方程 $z + x^2 + y^2 = 2$ 所确定.

 求 $\frac{\partial V}{\partial z}\Big|_{(t,t,3)}$.

曲面 S_2 的方程为: $x^2 + (y-1)^2 = 1$

- 1、验证曲面 S_1 的直角坐标方程为 $z = \frac{1}{2}(x^2 + y^2)$;
- 2、求曲面 S_2 介于xoy面与曲面 S_1 之间的那部分曲面面积;
- 3、求曲面积分 $I = \iint_{\Sigma} xzdydz + 2zydxdz + 3xydxdy$ 其中 Σ 为曲面 S_1 (0 $\leq z \leq 2$) 部分的下侧。
- 七、(10分) 试确定函数g(x) 使曲线积分 $\int_{1}^{\infty} [g''(x) + 9g(x) + 2x^2 5x + 1] v^2 dx + 7g''(x) dy$ 与路径无关,
 - g(x) 在全平面上三阶导数连续,L 为单连通域G 内自点(0,0) 到点(1,1) 的任意一条光滑曲线,并求此曲线积分。
- 八、(6分) 设函数 f(x) 在[0,1] 上连续,且单调增加,试证: $\iint_{D} (e^{y} f(y) + y x) d\sigma \ge (e-1) \int_{0}^{1} f(y) dy$ 其中 $D = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$ 。

武汉大学 2007—2008 学年第二学期《高等数学 B₂》(180 学时)考试试题 (A卷)

一、(36分)试解下列各题:

1、求通过直线
$$\begin{cases} 2x + y = 0 \\ 4x + 2y + 3z = 6 \end{cases}$$
 且平行于直线 $\frac{x}{1} = \frac{y}{2} = \frac{z}{4}$ 的平面方程;

- 2、在两边向量为 $\overline{AB} = \{0,4,-3\}, \overline{AC} = \{4,-5,0\}$ 的 ΔABC 中,求AB边上的高h,
 - 3、求曲面 $x^2 + y^2 + z^2 = 6$ 在点(1, -2, 1)处的切平面和法线方程;
- 4、设 $z = e^{xy} + y^2 \ln x$, 求二阶偏导数 $\frac{\partial^2 z}{\partial x \partial y}$;
- 5、计算二重积分 $\iint_D xy \mathrm{d}x \mathrm{d}y$, 其中 $D = \{(x,y) \mid x^2 + y^2 \le a^2, x \ge 0, y \ge 0\}$;
- 6、交换积分次序 $\int_1^0 dx \int_{x+1}^{\sqrt{1-x^2}} f(x,y)dy$.
- 二、(10 分) 求函数 $z = x + y + \frac{1}{xy}$ (x > 0, y > 0) 的极值。
- 三、(12分) 设函数 g(x) 具有连续导数,曲线积分 $\int_{t}^{\infty} [e^{x} + g(x)]y dx \overline{g}(x) dy$ 与路径无关,
 - 1、求满足条件 $g(0) = -\frac{1}{2}$ 的函数 g(x);
 - 2、计算 $\int_{(0,0)}^{(1,1)} [e^x + g(x)]y dx g(x) dy$ 的值。

四、(12分) 证明级数 $\frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \frac{7}{16} + \cdots$ 收敛, 并求其和。

五、(15 分) 1、求函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 的二阶偏导数 $f_{xy}(0,0)$;

2、问微分方程y''' - y'' - 2y' = 0的哪一条积分曲线y = y(x)通过点(0,-3),在这点处有倾角为 $\arctan 6$ 的切线,且 $y'' \mid_{x=0} = f_{xy}(0,0)$ 。

六、(15 分) 试求向量 $\vec{F}=\vec{i}+z\vec{j}+\frac{e^z}{\sqrt{x^2+y^2}}$ \bar{k} 穿过由 $z=\sqrt{x^2+y^2}$, z=1,z=2 所围成区域的外侧面(不包含上、下底)的流量。

武汉大学 2008-2009 学年第二学期《高等数学 B2》试题

(m)

(A卷)

一、(30 分)试解下列各题:

- 1、(6分) 求解微分方程 $\frac{dx}{y} + \frac{dy}{e^x} = 0$ 满足 $y|_{x=0} = 2$ 的特解。
- 2、(6分) 求曲面 $x^2 + 2y^2 + 3z^2 = 12$ 在点(1,-2,1)处的切平面方程。
- 3、(6分) 已知级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 x=-1 处收敛,试讨论此级数在 x=2 处的敛散性。
- 4、(6分) 计算 $\iint_D x^2 dx dy$, 其中 D 由 $y = 2 x^2$, $y = x^2$ 所围成的区域。
- $5.(6\,

 eta)$ 判别级数 $\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{2^n}$ 的敛散性. 岩收敛,是条件收敛还是绝对收敛?
- 二、(10分)函数z=z(x,y)由方程 $x-az=\sin(y-bz)$ 所确定,a,b是不全为零的常数,证明:

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1.$$

- 三、(12 分) 设 $z=x^2f(u)$, 而 $u=\frac{y}{x}$, 其中 f(u) 二阶可导,求 $\frac{\partial^2 z}{\partial x \partial y}$ 。
- 四、(10分) 试将函数 $f(x) = xarc \tan x$ 展成 x 的幂级数。
- 五、(10 分) 设 $f(x,y,z) = x^3 xy^2 z$
 - (1) 求 f(x,y,z) 在点 $P_0(1,1,0)$ 处的梯度及方向导数的最大值;
 - (2) 问: f(x,y,z) 在哪些点的梯度垂直于x轴。

八、(10 分)计算曲面积分 $I=\iint_\Sigma 2xz^2\mathrm{d}y\mathrm{d}z+y\left(z^2+1\right)\mathrm{d}z\mathrm{d}x+\left(9-z^3\right)\mathrm{d}x\mathrm{d}y$,其中 Σ 为曲面

 $z = x^2 + y^2 + 1$ $(1 \le z \le 2)$, 取下侧。

七、(10 分) 设函数 $\varphi(x)$ 具有连续的二阶导数,并使曲线积分 $\int_L [3\varphi'(x)-2\varphi(x)+xe^{2x}]ydx+\varphi'(x)dy$ 与路径无关,求函数 $\varphi(x)$ 。

八、(8分)将正数a分为正数x,y,z之和,使得 $u=x^{m}y^{m}z^{m}$ 最大(其中m,n,p为已知正数)。

武汉大学 2009-2010 学年第二学期

《高等数学 B2》考试试卷

- 一、计算下列各题: (48分, 每题8分)
- 1、设向量 $\bar{a}+3\bar{b}$ 与 $7\bar{a}-5\bar{b}$ 垂直, $\bar{a}-4\bar{b}$ 和 $7\bar{a}$ * $2\bar{b}$ 垂直,求非零向量 \bar{a},\bar{b} 之间的夹角。
- 2、求曲面 $z = \frac{x^2}{2} + y^2$ 平行于平面2x + 2y z = 0的切平面方程。
- 3、计算二重积分 $\iint_{D} \sqrt{x^2 + y^2} d\sigma$, 其中 $D = \{(x, y) | 0 \le y \le x, x^2 + y^2 \le 2x\}$.
- 4、设z = f(x,y)由 $z y + xe^{z-y-x} = 0$ 所确定,求dz。
- 5、将函数 $f(x) = \frac{1}{3-x}$ 展开成 x 的幂级数。
- 6、计算 $\iint_{\Omega} x^2 dx dy dz$, 其中 Ω 是由三个坐标面与平面 x+y+z=1 围成的闭区域。
- 二、 $(10 \, f)$ 计算曲线积分 $\int_L (x + e^{\sin y}) dy (y \frac{1}{2}) dx$,其中 L 是由位于第一象限中

的直线段x+y=1与位于第二象限中的圆弧 $x^2+y^2=1$ 构成的曲线,逆时针方向。

三、(10分) 计算曲面积分 $\iint_{\Sigma} (2x+z) dy dz + z dx dy$, 其中 Σ 为有向曲面 $z=x^2+y^2$

(0≤z≤1), 其法向量与z轴正向的夹角为锐角。

四、(10 %) 判断级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$ 的敛散性,若收敛,请说明是绝对收敛还是条件收敛。

五、 $(10 \, f)$ 求幂级数 $\sum_{n=1}^{\infty} nx^{n-1}$ 的收敛域及和函数 S(x) 。

六、(12 分) 求 $f(x,y)=x^2-y^2+3$ 在椭圆域 $D=\{(x,y)|x^2+\frac{y^2}{4}\leq 1\}$ 上的最大值和最小值.

武汉大学 2010-2011 学年第二学期

《高等数学 B2》考试试卷(A卷)

」一、 计算题: (每题7分, 共63分)

1.设一平面过原点及点(6,-3,2),且与平面4x-y+2z=8垂百,求此平面的方程.

2.设 z=f(xy,yg(x)),其中 f 具有连续二阶偏导数,函数 g(x) 可导且在 x=2 处取得极值 g(2)=1. 求

$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=2, v=1}.$$

- 3. 设 z = z(x, y) 是由 $x^2 6xy + 10y^2 2yz z^2 + 18 = 0$ 确定的函数,求 z = z(x, y) 的极值点和极值.
- 4. 设函数 f(x) 在[0,1] 上连续, 并设 $\int f(x)dx = A$,求 $\int dx \int f(x)f(y)dy$.
- 5. 设 f(u) 具有连续导数,求 $\lim_{t\to 0} \frac{1}{\pi t^4} \iiint_{x^2+y^2+z^2 \le t^2} f(\sqrt{x^2+y^2+z^2}) dx dy dz$ 。
- 6. 计算曲面积分 $\iint_S z dx dy + x dy dz + y dx dz$,其中 S 为圆柱面 $x^2 + y^2 = 1$ 被 z = 0, z = 3 截的表面外侧.
- 7. 将函数 $f(x) = 2 + |x| (-1 \le x \le 1)$ 展成以 2 为周期的傅里叶级数。
- 8. 计算二重积分 $I = \iint_{D} \frac{1+xy}{1+x^2+y^2} dxdy$, 其中 $D = \{(x,y) \mid x^2+y^2 \le 1, x \ge 0\}$.
- 9. 求方程 $(1+e^{\frac{x}{y}})dx+e^{\frac{x}{y}}(1-\frac{x}{y})dy=0$ 的通解。
- 二、(8分) 判别级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n-\ln n}$ 的收敛性,岩收敛、请指出是条件收敛还是绝对收敛。
- 三、(10 分) 设函数 f(x) 在 $(-\infty, +\infty)$ 内具有一阶连续导数, L 是上半平面 (y>0) 内从 (a,b) 到 (c,d) 的有向分段

光滑曲线,记 $I = \int_{I} \frac{1}{y} [1 + y^2 f(xy)] dx + \frac{x}{y^2} [y^2 f(xy) - 1] dy.$

(1) 证明: 曲线积分I与路径L无关。

(2) 当ab = cd时,求I的值。

四、(9分) 求幂级数 $1+\sum_{n=1}^{\infty}(-1)^n\frac{x^{2n}}{2n}$ 的利函数 f(x) 及其极值。

五、(10 分) 在变力 $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ 的作用 F、质点由原点沿直线运动到椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上第一卦限

的点 $M(x_0,y_0,z_0)$,问当 x_0,y_0,z_0 取何值时,力 \vec{F} 所作的功最大,并求出最大值。

武汉大学 2011-2012 学年第二学期期末考试

高等数学 B2(A 卷答题卡)

			•	[考	生		<u> </u>	号		—		·
				ļ. —												<u> </u>
	姓名		班级	[0]	[0]	E03	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[03	03	[0]
	XI.10			013		רוז	[13	[1]	נוז	(13	[1]	[1]	[1]	[13	[1]	[13
			[1]	-	[2]	[23	[23	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
			1. 答题前,考生先将自己的姓名、准考证号填写清楚,并填涂相	1			[3]			[3]	[3]	[33	[3]	[3]	[3]	[3]
			应的考号信息点。	[3]	[3]			[4]		[4]	[4]	[4]	[4]	[43	[4]	[43
填	正确填涂	注	2. 选择题必须使用 2B 铅笔填涂; 解答题必须使用黑色墨水的签字	[4]	1	l			[5]		1	[5]	[5]	[5]	[5]	[5]
涂	12.7% //	音	寒书写,不得用铅笔或圆珠笔作解答题:字体工整、笔迹清楚。	F27	Į.		[5]	-,-				[6]	1	(6)	[6]	63
样	错误填涂	事	3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[63	[6]	[6]	l i		[6]	i	[7]	[7]	1	[7]	E73	r.77
	悔厌填示 [><][—][●]	币	写的答题无效,在草稿纸、试题卷上答题无效。	[7]	[7]	[7]			[73			-		[8]	[8]	1
例.			4.保持卡面清洁,不要折叠、不要弄破。	[8]	[8]	[8]				[8]	İ	[8]		_	[¢]	1
			4.保持卡田商名,小安扩张、小安开联。	[9]	[93	[9]	[63.	[9]	[9]	[9]	[6]	[9]	[6]	[6]	[A]	[62
	i i	!		.—	J											

一、(8') 已知 $\vec{a}=\vec{i}$, $b=\vec{j}-2\vec{k}$, $c=2\vec{i}-2\vec{j}+\vec{k}$,求一单位向量 \vec{m} ,使 $\vec{m}\perp\vec{c}$,且 \vec{m} 与 \vec{a} , \vec{b} 共面。

二、(11') 设 $f(x,y) = \sqrt[3]{x^2y}$, 问 f(x,y) 在 (0,0) 点: (1) 是否连续? (2)偏导数是否存在? (3) 是否可微?

三、(8') 设函数 y = y(x) 由方程组 $\begin{cases} y = f(x,t) \\ t = F(x,y) \end{cases}$ 所确定、求 $\frac{dy}{dx}$ (假定隐函数定理条件满足)。

四、(8') 设 $z = u(x, y)e^{\alpha x + by}$, $\frac{\partial^2 u}{\partial x \partial y} = 0$, 试确定常数 a, b 使 $\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = 0$.

五、(10') 求函数 $f(x,y,z) = x^2 + y^2 + \underline{z}^2$ 在条件 $a_1x + a_2y + a_3z = 1$ $(a_i > 0, i = 1,2,3)$ 下的最小值。

六、(8') 计算三重积分 $\iint_{\Omega} x^3 y^2 z dV$, Ω 为马鞍面 z=xy 与平面 y=x, x=1, z=0 所包围的空间区域。

七、(8') 求幂级数 $\sum_{n=1}^{\infty} \left[\frac{1}{2^n} + (-2)^n \right] (x+1)^n$ 的收敛域。

八、(8') 求二重积分 $I = \iint_D |x^2 + y^2 - 4| dxdy$,其中 $D = \{(x, y) | x^2 + y^2 \le 16\}$.

十、(11')已知L 是第一象限中从点O(0,0) 沿圆周 $x^2+y^2=2x$ 到点A(2,0),再沿圆周 $x^2+y^2=4$ 到点B(0,2) 的 曲线段,计算曲线积分 $I=\int_L 3x^2ydx+(x^3+x-2y)dy$.

十一、(10') 将函数 $f(x) = 1 - x^2$ (0 ≤ $x \le \pi$) 展开成余弦级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和。

武汉大学 2012-2013 学年第二学期期末考试

重要数等B2 (A 岩类型于)

				考 生 学 号													
alab. 😝	TIT /47																
姓名	班级			[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	C63			
		٤١٦	[13	[1]	[13	[1]	[1]	[1]	[1]	[1]	cio	[1]	[1]	[[1]			
	1. 答题前, 考生先将自己的姓名、学号填写清楚, 并填涂相应的	[23	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[23	[23	[2]	[2]			
	考号信息点。	[3]	£31	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]			
• •	2 解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔作解答题,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答题无效,在草稿纸、试题卷上答题无效。	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]			
外来声语		[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	€53	[5]			
注意事项		[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]			
			[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]			
	4.保持卷面濱洁,不要折叠、不要弄破。	(83	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]			
		[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]			
														i			

一、(9分)已知三个向量 $\bar{a}, \bar{b}, \bar{c}, \bar{a}$ 中 $\bar{a} \perp \bar{c}, \bar{b} \perp \bar{c}, \bar{\lambda} \equiv \bar{b}$ 的夹角为 $\frac{\pi}{3}$,且 $|\bar{a}| = 2, |\bar{b}| = 1, |\bar{c}| = 3, \bar{a}$ 求 $(\bar{a} \times \bar{b}) \cdot \bar{c}$.

二、(9分) 求
$$A,B$$
,使平面 π : $Ax + By + 6z - 7 = 0$ 与直线 $i: \frac{x-4}{2} = \frac{y+5}{-4} = \frac{z+1}{3}$ 垂直。

三、(9分) 设z=z(x,y)是由方程 $x^2-y^2=2[z-\varphi(x+y-z)]$ 所确定的函数,

其中
$$\varphi$$
具有二阶导数,且 $\varphi' \neq -1$,求(1)dz;(2)记 $u(x,y) = \frac{1}{x+y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right)$,求 $\frac{\partial u}{\partial x}$ 。

問、(9分) 计算二重积分 $\iint_D e^{n\exp(x^2,y^2)} dxdy$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$.

五、 $(9 \, f)$ 求三重积分 $I = \iint_{\Omega} z dv$,其中 Ω 是由平面 x + y + z = 2 与三个坐标平面围成的区域。

 \therefore (9分) 已知 $\int_{C} \varphi(x)y \, \mathrm{d}y + xy^2 [\varphi(x) + 1] \, \mathrm{d}x$ 在全平面上与路径无关,其中 $\varphi(x)$ 具有连续的一阶导数, 并当 C 是起点在 (0,0) ,终点为 (1,1) 的有向曲线时,该曲线积分值为 1/2 ,试求函数 $\varphi(x)$.

七、(9分) 计算曲面积分 $\iint_{\Sigma} (xy+z) dS$,其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 在柱体 $x^2 + y^2 \le 2x$ 内的部分。

[]

八、(7分) 试求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n\cdot 4^n}$ 的收敛域及和函数 S(x).

九、 $(9 \, \text{分})$ 求曲面 $x^2 + 2y^2 + 3z^2 = 21$ 上平行于平面x + 4y + 6z = 0的切平面方程。

+、(7分) 设函数 $u=\frac{1}{2}x^4+\frac{1}{2}y^4+z^3-3z$, 求向量场 $\overline{A}=\operatorname{grad} u$ 穿过曲面S 流向外侧的通量,

其中S是曲面 $z=1-x^2-y^2$ ($z \ge 0$)的上侧。

十一、(8分)试在曲面 $S: 2x^2+y^2+z^2=1$ 上求一点,使得函数 $f(x,y,z)=x^2+y^2+z^2$ 沿着点 A(1,1,1) 到点 B(2,0,1)的方向导数具有最大值。

十二、(6 分) 设正项数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 是否收敛? 并说明理由。

武汉大学 2013-2014 学年第二学期期末考试

高等数学 B2(A 卷答题卡)

;											考生学号										
	-	姓名		班级																	
		YIM		7137	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]				
	·				[1]	[1]	[1]	[13	(1)	113	[13]	(13	נוֹז	[1]	C13	C13	ָנוֹ				
				1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]				
				F 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1											£33						
		正确填涂	注	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	[43	[4]	(4)	٤43	[4]	[4]	[43	[4]	[4]	[4]	[4]	[4]	[4]				
Į	涂		意	作解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[53	[5]	[5]	[5]	[5]	[5]	[5]	[5]				
	样	错误填涂	事	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]				
例	例	(×)[][•]	项												[7]						
		·.		4.保持卡面清洁,不要折叠、不要弄破。	[83	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[83	[8]				
		i	Ŀ		[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]				

一、(8分)利用二重积分的性质,比较积分 $I_1 = \iint_{\Omega} \ln(x^2 + y^2) d\sigma = I_2 = \iint_{\Omega} \left[\ln(x^2 + y^2) \right]^2 d\sigma$ 的大小,

其中 $D: e \le x^2 + y^2 \le 2e$.

二、(8分)设 $z = f(xy, \frac{x}{y}) + \sin y$,其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$

三、 $(8\, eta)$ 求过点 M(1,-2,3) 的平面,使它与平面 $\pi: x+y-z-3=0$ 垂直,且与直线 L: x=y=z 平行.

四、(8 分)设函数z=z(x,y)是由方程 $xyz=\arctan(x+y+z)$ 所确定的隐函数,求全微分dz 在点(0,1,-1) 处的值..

五、(10 分) 计算曲线积分 $\int_L (2a-y) dx + x dy$,式中 L 是从原点 O(0,0) 沿曲线 $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ (a>0)到点 $A(2\pi a,0)$ 的弧段

六、(10 分) 设Ω是由曲面 $z^2 = x^2 + y^2, z = 2$ 所围的闭区域,试计算 $\iint_{\Omega} z^2 dV$.

七、(10 分) 计算曲面积分 $\iint_S (x^3 + z^2) dy dz + (y^3 + x^2) dz dx + (z^3 + y^2) dx dy$, 其中 S 是上半球面 $z = \sqrt{1 - x^2 - y^2}$ 的上侧.

八、(8分) 求曲线 $x = \sin^2 t$, $y = \sin t \cos t$, $z = \cos^2 t$ 在对应于 $t = \frac{\pi}{4}$ 的点处的切线和法平面方程.

九、(8 分) 设 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为 $f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi, \end{cases}$,将它展开

成 Fourier 级数,并求数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 的和。

十、(9分) 设
$$f(x) = \begin{cases} \frac{\ln(1-x)}{x} & x \neq 0 \\ -1 & x = 0 \end{cases}$$
,试将 $f(x)$ 展开成 x 的幂级数并利用其求 $\int_0^x f(t) dt$ 。

十一、(6分) 设
$$a_n \ge 0$$
 $(n=1,2,...)$,且数列 $\{na_n\}$ 有界,证明: $\sum_{n=1}^{\infty} a_n^2$ 收敛。

十二、(7分) 求二元函数 $f(x,y) = \cos^2 x + \cos^2 y$ 在限制条件 $x-y=\frac{\pi}{4}$ 下的极值.

武汉大学 2014-2015 学年第二学期期末考试

高等数学 B2(A 卷答题卡)

							考	生	当	<u> </u>	号				
]		
	姓名	班级	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
	XII	·	[1]	[1]	[1]	[1]	[1]	[13	[13	[[1]	[13	[13	[1]	[1]	[13
				[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]		[2]	1 1
		1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]
		考号信息点。	[43	[4]	[4]	[4]	[4]	[4]	[4]	[4]	I	[4]		[4]	- I
填	正确填涂	通域涂 注 2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆水岩。 意 作解答题:字体工整、笔迹清楚。 事 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书 项 写的答题无效:在草稿纸、试题卷上答题无效。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]		[5]	1 1
涂			[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	l	[6]	1 1
样	错误填涂		[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[73	[7]	1 [
	 		[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	Ī -	[83
			[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]
			<u> </u>	<u> </u>	L	L	J								

- 一. (8分) 设 $\vec{p} = 2\vec{a} + \vec{b}, \vec{q} = k\vec{a} + \vec{b}$, 其中 $|\vec{a}| = 1$, $|\vec{b}| = 2$, 且 $\vec{a} \perp \vec{b}$, 问: (1) k为何值时, $\vec{p} \perp \vec{q}$?
 - (2) k 为何值时,以 \bar{p} , \bar{q} 为边的平行四边形面积为 6?

二.(8 分) 求函数
$$u = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
 沿曲线 $x = t$, $y = 2t^2$, $z = -2t^4$ 在点 $M(1, 2, -2)$ 的切线方向上的方向导数.

三. (6分)函数 z = z(x,y) 由方程 z = f(x+y+z) 所确定,其中 f 二阶可导,且 $f'(u) \neq 1$,求 $\frac{\partial^2 z}{\partial x^2}$ 。

四、(8分)设u = f(x + y + z, xyz)具有一阶连续偏导数,其中z = z(x, y)由方程 $x^2 + 2ze^{y^2} = \sin z$ 所确定,求 du.

五. (8分) 求曲面 $z-e^z+2xy=3$ 在点 M(1,2,0) 处的切平面和法线方程。

六、(10 分)设 $z=x^3+\alpha x^2+2\gamma xy+\beta y^2+\alpha\beta^{-1}(\gamma x+\beta y)$,试证: 当 $\alpha\beta\neq\gamma^2$ 时,函数 z 有一个且仅有一个极值,又若 $\beta<0$,则该极值必为极大值。

七、(8分)设 f(x,y) 连续,且满足 $f(x,y) = x\sqrt{y} + \iint_D f(u,v) du dv$,其中 D 为曲线 $y = x^2, x = y^2$ 所围成区域,求 f(x,y).

八、(8 分) 设 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 与半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 围成的空间区域, S 是 Ω 的整个边界的侧, 求曲面积分 $\bigoplus_s x dy dz + y dz dx + z dx dy$.

九、(10 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域与和函数.

十. (10 分) 确定常数λ,使得在右半平面 x > 0 的单连通区域内,曲线积分 $\int_{L} 2xy(x^{4} + y^{2})^{\lambda} dx - x^{2}(x^{4} + y^{2})^{\lambda} dy = \int_{L} P dx + Q dy$

与路径无关,并在上述条件下,求积分 $\int_{(1.0)}^{(3.3)} P dx + Q dy$ 之值。

十一、(10 分)计算三重积分 $\iint_{\Omega} (x^2 + y^2 + z) dV$,其中 Ω 是由曲线 $\begin{cases} y^2 = 4z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周而成的曲面与平面 z = 4 围成的立体.

-二、(6分) 设级数 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 在[0, 1]上收敛,证明:当 $a_0 = a_1 = 0$ 时,级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛。