Question	Scheme	Marks
10 (a)	For the correct value of $a = 10$	B1
(b)	1	[1]
(b)	Gradient of line L_2 $m = -\frac{1}{2}$	B1
	$y-'10'='-\frac{1}{2}'(x-2)$	M1
	$y - 10 = -\frac{1}{2}(x - 2) \text{ oe}$	A1
	2	A1
	x + 2y - 22 = 0 *	cso
(c)	Coordinates of point A are $(-3, 0)$	[4] B1
(c)		B1
	Coordinates of point B are $(22, 0)$	
	Length of AC	M1
	$(5\sqrt{2})^2 = (m - ' - 3')^2 + n^2 \ [\Rightarrow 50 = m^2 + 6m + 9 + n^2]$	1411
	Gradient of BC	
	$\frac{1}{4} = \frac{n}{m - 22'} \Rightarrow n = \frac{m - 22'}{4} \Rightarrow n^2 = \frac{m^2 - 44m + 484}{16}$	M1
	$4 - m - 22' \rightarrow h - 4 \rightarrow h - 16$	
	$50 = m^{2} + 6m + 9 + \frac{m^{2} - 44m + 484}{16}$ [or $50 = (22 + 4n)^{2} + 6(22 + 4n) + 9 + n^{2}$]	
	16	ddM1
	[or $50 = (22+4n)^2 + 6(22+4n) + 9 + n^2$]	daivii
	$17m^2 + 52m - 172 = 0 OR 17n^2 + 200n + 575 = 0$	
		A1
	e.g. $m = \frac{-52 \pm \sqrt{52^2 - 4 \times 17 \times -172}}{2 \times 17} \Rightarrow m = 2, (-5.058)$	M1
		IVII
	m = 2 and $n = -5$	A1A1
(d)	1	[9]
(u)	Area _{APB} = $\frac{1}{2}$ ('10')×('22''3')=(125)	M1
	Area _{ABC} = $\frac{1}{2}$ ('5')×('22'-'-3') = $\left(\frac{125}{2}\right)$	A1
	_ (- /	
	Area of quadrilateral $ACBP = \frac{375}{2}$ (units) ²	A1 [3]
	ALT	
	Area _{ACBP} = $\frac{1}{2}$ ('25') × ('15') =	[M1A1
	Area of quadrilateral $ACBP = \frac{375}{2}$ (units) ²	A1]
	ALT	

$$A = \frac{1}{2} \begin{bmatrix} '-3' & 2 & '22' & '2' & '-3' \\ 0 & '10' & 0 & '-5' & '0' \end{bmatrix}$$

$$A = \frac{1}{2} ([(-3) \times 10 + 2 \times 0 + 22 \times (-5) + 2 \times 0] - [2 \times 0 + 22 \times 10 + 2 \times 0 + (-3) \times -5]) = \dots$$
Al
Area of quadrilateral $APBC = \frac{375}{2}$ (units)²

Total 17 morbs

Total 17 marks

Part	Mark	Notes
(a)	B1	For the correct value of $a = 10$.
		Accept embedded i.e. $P = (2,10)$
(b)	B1	For the correct gradient of line L_2 $m = -\frac{1}{2}$
	M1	For a correct attempt at the equation of line L_2 using their gradient and their value for a
		$y-'10'='-\frac{1}{2}'(x-2)$
	A1	For the correct equation in any form
		$y-10 = -\frac{1}{2}(x-4)$ oe
	A1	For the correct equation in the required form $x+2y-22=0$ *
	cso	[Accept for example $22-x-2y=0$ provided all terms on one side]
(c)	B 1	Coordinates of point A are $(-3, 0)$
	B1	Coordinates of point B are $(22, 0)$
	M1	Length of AC
		$\left(5\sqrt{2}\right)^2 = (m - ' - 3')^2 + n^2 \ \ [\Rightarrow 50 = m^2 + 6m + 9 + n^2]$
		Allow use of ' $-$ 3' provided this is an x-intercept i.e. (' $-$ 3', 0)
	M1	Gradient of BC
		$\left \frac{1}{4} = \frac{n}{m - 22'} \right \Rightarrow n = \frac{m - 22'}{4} \Rightarrow n^2 = \frac{m^2 - 44m + 484}{16}$
		Allow use of '22' provided this is an x-intercept i.e. ('22', 0)
	ddM1	For attempting to form an equation in m OR, For attempting to form an equation in n
		e.g.
		$50 = m^2 + 6m + 9 + \frac{m^2 - 44m + 484}{16}$ $50 = (22 + 4n)^2 + 6(22 + 4n) + 9 + n^2$
	A1	For the correct 3TQ in either <i>m</i> or <i>n</i>
		$17m^2 + 52m - 172 = 0 OR 17n^2 + 200n + 575 = 0$
	M1	For attempting to solve their $3TQ$ to find a value for m or n by any valid method
		e.g. $m = \frac{-52 \pm \sqrt{52^2 - 4 \times 17 \times -172}}{2 \times 17} \Rightarrow m = 2, (-5.058)$
		If a calculator is used with the incorrect 3TQ award only with a full method seen.
	A1	For the value of <i>m</i> or <i>n</i>
		m=2 or n=-5
	A 4	If a second value for m or n is seen then condone for this mark.
	A1	For the value of m and n
		m=2 and $n=-5$

		Any other values of <i>m</i> and <i>n</i> must be rejected.		
(d)	M1	For either area of triangle APB or ABC		
		Area _{APB} = $\frac{1}{2}$ ('10')×('22''3') = (125) or Area _{ABC} = $\frac{1}{2}$ ('5')×('22'-'-3') = $\left(\frac{125}{2}\right)$		
	A1	Either area of triangle APB or ABC correct		
	A1	Area of quadrilateral $ACBP = \frac{375}{2}$ (units) ²		
ALT				
	M1A1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	A1	Area of quadrilateral $ACBP = \frac{375}{2}$ (units) ²		
ALT – determinant method				
	M1	For using the 'determinant method'		
		1 ['-3' 2 '22' '2' '-3']		
		e.g. $A = \frac{1}{2} \begin{bmatrix} '-3' & 2 & '22' & '2' & '-3' \\ 0 & '10' & 0 & '-5' & '0' \end{bmatrix}$		
	A1	For a correct evaluation of their determinants using their values		
		e.g. $A = \frac{1}{2} ([(-3) \times 10 + 2 \times 0 + 22 \times (-5) + 2 \times 0] - [2 \times 0 + 22 \times 10 + 2 \times 0 + (-3) \times -5]) = \dots$		
	A1	Area of quadrilateral $APBC = \frac{375}{2}$ (units) ²		