

planetmath.org

Math for the people, by the people.

continuity of sine and cosine

Canonical name ContinuityOfSineAndCosine

Date of creation 2013-03-22 19:15:37 Last modified on 2013-03-22 19:15:37

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 4

Author pahio (2872) Entry type Theorem Classification msc 26A15 **Theorem.** The real functions $x \mapsto \sin x$ and $x \mapsto \cos x$ are continuous at every real number x.

Proof. Let ε be an arbitrary positive number. Denote $\Delta \sin x =: \sin z - \sin x$, $\Delta \cos x =: \cos z - \cos x$ where we suppose that $|z-x| < \frac{\pi}{2}$. We may interpret |z-x| as an arc of the unit circle of the xy-plane. Let's think in the circle the right triangle with hypotenuse the chord of the arc and the catheti (i.e. the shorter sides) vertical and horizontal. Then $|\Delta \sin x|$ and $|\Delta \cos x|$ are just these cathets; so we have

$$|\Delta \sin x| \le |z - x|, \quad |\Delta \cos x| \le |z - x|.$$

If we make $|z-x| < \varepsilon$, then also $|\Delta \sin x|$ and $|\Delta \cos x|$ are less than ε . It means that both functions are continuous at x.

References

[1] E. LINDELÖF: *Johdatus korkeampaan analyysiin*. Neljäs painos. Werner Söderström Osakeyhtiö, Porvoo ja Helsinki (1956).