Vectors

Length of Vector: $||u|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$. Dot Product of Two Vectors: $a \cdot b =$

 $a_1b_1 + a_2b_2 + a_3b_3$ where $a = \langle a_1, a_2, a_3 \rangle$ and

 $b = \langle b_1, b_2, b_3 \rangle$

Dot Product Angle Formula: $a \cdot b =$ $||a|| ||b|| \cos \theta$. Two non-zero vectors a and b are **orthogonal** iff $a \cdot b = 0$. They have the same direction if $\theta = 0$, opposite direction if $\theta = \pi$, perpendicular if $\theta = \frac{\pi}{2}$.

Projection: $comp_a b = ||b|| cos \theta = \frac{a \cdot b}{||a||}$ $\mathrm{proj}_a b = \mathrm{comp}_a b \times \tfrac{a}{||a||} = \tfrac{a \cdot b}{a \cdot a} a$

Cross Product: $a \times b = \begin{vmatrix} l & J & k \\ a_1 & a_2 & a_3 \end{vmatrix} =$

 $(a_2b_3-a_3b_2)i-(a_1b_3-a_3b_1)j+(a_1b_2-a_2b_1)k.$ The vector $a \times b$ is orthogonal to both a and b. We can use cross product to find the area of a parallelogram, or to find the distance from a point to a line in \mathbb{R}^3 .

Properties of cross product: If a, b and c are vectors and d is a scalar, then

(i) $a \times b = -b \times a$

(ii) $(da) \times b = d(a \times b) = a \times (db)$

(iii) $a \times (b + c) = a \times b + a \times c$

(iv) $(a + b) \times c = a \times c + b \times c$

Cross product angle formula: $||a \times b|| =$ $||a|| ||b|| \sin \theta$.

Distance from Q to line through P and

$$||PQ||sin\theta = \frac{||PQ \times PR||}{||PR||}$$

Scalar Triple Product: $a \cdot (b \times c) =$

 $\begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}$

 $|b_1 \quad b_2 \quad b_3|$. If θ is the angle between a and $\begin{vmatrix} c_1 & c_2 & c_3 \end{vmatrix}$

 $b \times c$, then the height h of the parallelepiped is $h = ||a|| \cdot |cos\theta|$ and the volume of the parall elepiped is $V = |a \cdot (b \times c)|$. The area of the base parallelogram is $A = ||b \times c||$

Find if vectors are coplanar: Check if the volume of the parallelepiped determined by the vectors is equal to 0: $|a \cdot (b \times c)| = 0$

Parametric Equation of Line: $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$

Vector Equation of Plane: $n \cdot (r - r_0) =$ $n \cdot \langle x - a, y - b, z - c \rangle = 0$ or $n \cdot r = n \cdot r_0$

Linear Equation of Plane: ax+by+cz=dwhere $d = ax_0 + by_0 + cz_0$.

Parallel Planes: Two planes are parallel if their normal vectors are parallel. If two planes are not parallel, then they intersect in a straight line. The angle between the two planes is the angle θ between their normal

Derivative of Vector-valued Function: Let $r(t) = \langle f(t), g(t), h(t) \rangle$ and suppose that the components f, g and h are all differentiable at t = a. Then r is differentiable at t = a and its derivative is given by r'(a) = $\langle f'(a), g'(a), h'(a) \rangle$.

Derivative Rules: Suppose r(t) and s(t)

are differentiable vector-valued functions, f(t) is a differentiable scalar function and cis a scalar constant. Then $\frac{d}{dt}(r(t) + s(t)) = r'(t) + s'(t)$

 $\frac{d}{dt}(cr(t)) = cr'(t)$ $\frac{d}{dt}(f(t)r(t)) = f'(t)r(t) + f(t)r'(t)$ $\frac{d}{dt}(r(t)\cdot s(t)) = r'(t)\cdot s(t) + r(t)\cdot s'(t)$

 $\frac{a}{dt}(r(t) \times s(t)) = r'(t) \times s(t) + r(t) \times s'(t)$ $\mathbf{\widetilde{Arc}}$ Length Formula: Let C be the curve given by $r(t) = \langle f(t), g(t), h(t) \rangle, a \le$ $t \leq b$ where f', g' and h' are continuous. If C is traversed exactly once as t increases from a to b, then its length is s = $\int_a^b \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2 dt} = \int_b^a ||r'(t)|| dt.$ This only applies for **smooth** curves.

Surfaces

Level Curve: f(x, y) = k

Contour Plots: Numerous f(x, y) = k**Cylinders:** A surface is a cylinder if there is a plane P s.t. all planes parallel to P in-

tersect the surface in the same curve. Quadric Surface: $Ax^2 + By^2 + Cz^2 + J = 0$

or $Ax^2 + By^2 + Iz = 0$ Elliptic paraboloid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$ (symmetric about z-axis)

Hyperbolic paraboloid: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$

Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Elliptic cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$

Hyperboloid of one sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Hyperboloid of two sheets: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} =$

Level Surface: f(x, y, z) = k

Limits and Continuity

Definition of Limit: $\lim_{(x,y)\to(a,b)} f(x,y) =$ *L* if for any $\epsilon > 0$, $\exists \delta > 0$ s.t. $|f(x, y) - L| < \epsilon$ when $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$

Show limit does not exist: If f(x, y) approaches L_1 along path P_1 and L_2 along path P_2 and $L_1 \neq L_2$ then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Limit Theorems: Suppose f(x, y) and g(x, y) both have limits as (x, y) approaches (a, b). Then $\lim (f(x, y) \pm g(x, y)) =$ $\lim f(x, y) \pm \lim g(x, y), \lim f(x, y)g(x, y) =$ $(\lim f(x,y))(\lim g(x,y))$, and $\lim \frac{f(x,y)}{g(x,y)}$ $\frac{\lim f(x,y)}{\lim g(x,y)}$ provided $\lim g(x,y) \neq 0$

Squeeze: Suppose $|f(x,y) - L| \le g(x,y)$ for all (x, y) in the interior of some circle centered at (a, b), except possible at (a,b). If $\lim_{(x,y)\to(a,b)}g(x,y)=0$, then $\lim_{(x,y)\to(a,b)}f(x,y)=L$

Definition of Continuity: f is continuous at (a, b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$. This is the **substitution** property. If f(x, y)is not continuous at (a, b), then we call (a, b)a discontinuity (point) of f. f is said to be continuous on $D \subseteq \mathbb{R}^2$ if f is continuous at each point in D.

Continuity Theorems: If f(x, y) and g(x, y) are continuous at (a, b), then $f \pm g$, $f \cdot g$ are all continuous at (a,b). Further, $\frac{f}{a}$ is continuous at (a, b), provided $g(a, b) \neq 0$. Polynomial, Trigonometric, Exponential and Rational functions in x and y are continuous in its domain.

Continuity and Composition: Suppose f(x,y) is continuous at (a,b) and g(x)is continuous at f(a,b). Then h(x,y) = $(g \circ f)(x, y) = g(f(x, y))$ is continuous at (a,b).

Partial Derivatives

Partial Derivative: If f is a function of two variables, its partial derivatives are the functions f_x and f_y defined by $f_x(x, y) =$ $\lim_{h\to 0} \frac{f(x+h,y)-f(x,y)}{h} = \frac{\partial f}{\partial x} \text{ and } f_y(x,y) = \lim_{h\to 0} \frac{f(x,y+h)-f(x,y)}{h} = \frac{\partial f}{\partial y}$

Clairaut's Theorem: Suppose f is defined on a disk D that contains (a, b). If the functions f_{xy} and f_{yx} are both continuous on D, then $f_{xy}(a,b) = f_{yx}(a,b)$. So long as the number of the same variable occurring in the subscript are the same, the corresopnding partial derivatives are the same. E.g. $f_{xxyyzz} = f_{xyzxyz}$.

Equation of Tangent Plane: Suppose f(x,y) has continuous first partial derivatives at (a,b). A normal vector to the tangent plane is $\langle f_x(a,b), f_y(a,b), 1 \rangle$. Further, an equation of the tangent plane is given by

$$f_x(a,b)(x-a)+f_y(a,b)(y-b)-(z-f(a,b))=0$$

or $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$. **Increment**: Let z = f(x, y). Suppose Δx and Δy are increments in the independent variable x and y respectively from a fixed point (a,b). Then the increment in z at (a,b) is defined by

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$$

Differentiable - Two Variable: Let z =f(x,y). We say that f is differentiable at (a,b) if the tangent plane at (a,b) is a **good** approximation to f at points close to (\mathbf{a}, \mathbf{b}) . Formally, f is differentiable if we can write

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

where ϵ_1 and ϵ_2 are functions of Δx and Δy and $\epsilon_1, \epsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$. We say that f is differentiable on a region $R \subseteq \mathbb{R}^2$ if f is differentiable at every point in R.

Linear Approximation: Suppose z =f(x,y) is differentiable at (a,b). Let Δx and Δy be small increments in x and y respectively from (a,b). Then $\Delta z \approx f_x(a,b)\Delta x +$ $f_{\nu}(a,b)\Delta y$. I.e. if Δx , Δy are small, then, provided f(x, y) is differentiable, $f(a+\Delta x, b+$

$$f(a,b) + f_x(a,b)\Delta x + f_y(a,b)\Delta y$$

As Δx , $\Delta y \rightarrow (0,0)$, tangent plane gets closer to the surface

Useful Facts:

 f_x and f_y continuous $\Rightarrow f$ differentiable f_x and f_y continuous $\Leftarrow f$ differentiable f differentiable $\Rightarrow f$ continuous f differentiable $\Leftarrow f$ continuous f_x and f_y exist \Rightarrow f differentiable f_x and f_y exist $\Leftarrow f$ differentiable

Chain Rule - General Version: Suppose that u is a differentiable function of n variables x_1, \ldots, x_n , and each x_i is a differentiable function of m variables t_1, \ldots, t_m . Then u is a function of t_1, \ldots, t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each $i = 1, \ldots, m$

Implicit Differentiation - Two Independent Variables: Suppose the equation F(x, y, z) = 0, where F is differentiable, defines z implicitly as a differentiable function of x and y. Then,

$$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)}, \frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}$$

provided $F_z(x, y, z) \neq 0$.

Directional Derivative: The directional derivative of f(x, y) at (x_0, y_0) in the direction of unit vector $u = \langle a, b \rangle$ is $D_u f(x_0, y_0) =$

$$\lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

provided this limit exists. This can be extended to 3 variables.

Computing Directional Derivative: If f(x,y) is a differentiable function, then f has a directional derivative in the direction of any unit vector $u = \langle a, b \rangle$ and $D_u f(x, y) =$ $f_x(x,y)a + f_y(x,y)b$. We can rewrite it in terms of vectors:

$$D_u f(x, y) = \langle f_x, f_y \rangle \cdot \langle a, b \rangle = \langle f_x, f_y \rangle \cdot u$$

Gradient: $\nabla f(x, y) = \langle f_x, f_y \rangle = fxi + fyj =$ $\frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j$ provided both partial derivatives exist. Thus $D_u f(x, y) = \nabla f(x, y) \cdot u$

Gradient

Level Curve/Surface vs ∇F : Suppose f(x, y) is a differentiable function of x and y at (x_0, y_0) and $\nabla f(x_0, y_0) \neq 0$. Then $\nabla f(x_0, y_0) \neq 0$ is normal to the level **curve** f(x, y) = k that contains the point (x_0, y_0) . Similarly for F(x, y, z), the gradient is normal to the level **surface** at (x_0, y_0, z_0) . Tangent Plane to Level Surface: $F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$ Maximizing Rate of Increase/Decrease of F: Suppose f is a differentiable function of two or three variables. Let P denote a

given point. Assume $\nabla f(P) \neq 0$. Let **u** be a unit vector making an angle θ with ∇f . Then $D_u f(P) = ||\nabla f(P)|| \cos \theta$. $\nabla f(P)$ points in direction of **maximum** rate of change of f at $P. -\nabla f(P)$ points in direction of **minimum** rate of change of f at P.

Local extremum: If f has a local maximum or minimum at (a,b) and the firstorder derivatives of f exist there, then $f_{x}(a,b) = f_{y}(a,b) = 0.$

Critical/Stationary Point: Let f(x, y): $D \to \mathbb{R}$. Then a point (a, b) is called a **crit**ical point of f if $f_x(a,b) = 0$ and $f_y(a,b) = 0$ 0. But being a critical point does not mean it is a local min/max.

Saddle Point: Let $f(x,y): D \to \mathbb{R}$. A point (a,b) is called a saddle point of fif 1. it is a critical point, and 2. every open disk centered at (a, b) contains points $(x, y) \in D$ for which f(x, y) < f(a, b) and points $(x, y) \in D$ for which f(x, y) > f(a, b). Second Derivative Test: Let D = $D(a,b) = f_{xx}(a,b) - f_{yy}(a,b) - [f_{xy}(a,b)]^{2}.$ If D > 0 and $f_{xx}(a,b) > 0$, then (a,b) is a local minimum. If D > 0 and $f_{xx}(a,b) < 0$, then (a,b) is a local maximum. If D < 0then (a,b) is a saddle point. If D=0 then the point may be a min, max or saddle point. Closed Set: A set $R \subseteq \mathbb{R}^2$ is closed if it contains all its boundary points. (A boundary **point** of R is a point (a,b) such that every disk with center (a,b) contains points in R and also points in $\mathbb{R}^2 \setminus R$).

Bounded Set: A set $R \subseteq \mathbb{R}^2$ is bounded if it is contained within some disk. In other words, it is finite in extent.

Extreme Value Theorem: If f(x, y) is continuous on a closed and bounded set $D \subseteq$ \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$, AND an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x2, y2) in D.

Lagrange Multiplier – Two Variables: Suppose f(x, y) and g(x, y) are differentiable functions such that $\nabla g(x,y) \neq 0$ on the constraint curve g(x, y) = k. Suppose that the minimum/maximum value of f(x, y) subject to the constraint g(x, y) = k occurs at (x_0, y_0) . Then $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$ for some constant λ (called a Lagrange Multiplier).

Common Integrals
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq 1$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b| + c$$

$$\int \cos(u) du = \sin(u) + c$$

$$\int \sin(u) du = -\cos(u) + c$$

$$\int \sec^2(u) du = \tan(u) + c$$

$$\int \sec(u) \tan(u) du = \sec(u) + c$$

$$\int \tan(u) du = -\ln |\cos(u)| + c = \ln |\sec(u)| + c$$

$$\int \csc(u) \cot(u) du = -\csc(u) + c$$

$$\int \csc^2(u) du = -\cot(u) + c$$

$$\int \cot(u) du = \ln |\sin(u)| + c = -\ln |\csc(u)| + c$$

$$\int \csc(u) du = \ln |\sin(u)| + c = -\ln |\csc(u)| + c$$

$$\int \sec(u)du = \ln|\sec(u) + \tan(u)| + c$$

$$\int \cot(u)du = \ln|\sin(u)| + c = -\ln|\csc(u)| + c$$

$$\int e^{u}du = e^{u} + c$$

$$\int a^{u}du = \frac{a^{u}}{\ln(a)} + c$$

$$\int \ln(u)du = u \ln(u) - u + c$$

$$\int ue^{u}du = (u - 1)e^{u} + c$$

$$\int \frac{1}{u\ln(u)}du = \ln|\ln(u)| + c$$

$$\int \frac{1}{a^{2}+u^{2}}du = \frac{1}{a}\tan^{-1}(\frac{u}{a}) + c$$

$$\int \frac{1}{u\sqrt{u^{2}-a^{2}}}du = \frac{1}{a}\sec^{-1}(\frac{u}{a}) + c$$

$$\int \sin^{-1}(u)du = u\sin^{-1}(u) + \sqrt{1-u^{2}} + c$$

$$\int \tan^{-1}(u)du = u\sin^{-1}(u) - \frac{1}{2}\ln(1+u^{2}) + c$$

$$\int \cot^{-1}(u)du = u\cos^{-1}(u) - \sqrt{1-u^{2}} + c$$

$$\int \frac{1}{a^{2}-u^{2}}du = \frac{1}{2a}\ln|\frac{u+a}{u-a}| + c$$

$$\int \sqrt{a^{2}+u^{2}}du = \frac{1}{2a}\ln|\frac{u+a}{u+a}| + c$$

$$\int \sqrt{a^{2}+u^{2}}du = \frac{1}{2a}\ln|u + \sqrt{a^{2}+u^{2}}| + c$$

$$\int \sqrt{a^{2}+u^{2}}du = \frac{u}{2}\sqrt{a^{2}+u^{2}} + \frac{a^{2}}{2}\ln|u + \sqrt{a^{2}+u^{2}}| + c$$

$$\int \sqrt{a^{2}-a^{2}}du = \frac{u}{2}\sqrt{a^{2}-u^{2}} + \frac{a^{2}}{2}\sin^{-1}(\frac{u}{a}) + c$$
Integration by Parts: $\int udv = uv - \int vdu$.

LIATE (Order to differentiate):

Log/Inverse Trig/Algebraic/Trig/Exp

Partial Fractions: $\int \frac{P(x)}{Q(x)}dx$ where degree of $P(x)$ < degree of $Q(x)$

$$\frac{px+q}{(x-a)(x-b)}, a \neq b \rightarrow \frac{A}{x-a} + \frac{B}{x-b}$$

$$\frac{px+q}{(x-a)^{2}} \rightarrow \frac{A}{x-a} + \frac{B}{x-b}$$

$$\frac{px+q}{(x-a)^{2}} \rightarrow \frac{A}{x-a} + \frac{B}{x-b}$$

$$\frac{px+q}{(x-a)(x-b)}, a \neq b \rightarrow \frac{A}{x-a} + \frac{B}{x-b}$$

$$\frac{px+q}{(x-a)(x-b)}, a \neq b \rightarrow \frac{A}{x-a} + \frac{B}{x-b}$$

$$\frac{px+q}{(x-a)(x-b)}, a \neq b \rightarrow \frac{A}{x-a} + \frac{B}{x-b}$$

$\frac{px^2 + qx + r}{(x - a)(x^2 + bx + c)} \rightarrow \frac{A}{x - a} + \frac{Bx + C}{x^2 + bx + c}$

Common Derivatives

 $\frac{px^2 + qx + r}{(x - a)^2(x - b)} \to \frac{A}{x - a} + \frac{B}{(x - a)^2} + \frac{C}{x - b}$

$$\frac{d}{dx}a^{x} = a^{x} \ln(a)$$

$$\frac{d}{dx} \ln(g(x)) = \frac{g'(x)}{g(x)}$$

$$\frac{d}{dx} \ln(x) = \frac{1}{x}$$

$$\frac{d}{dx} \log_{a}(x) = \frac{1}{x \ln(a)}, x > 0$$

$$\frac{d}{dx}e^{g(x)} = g'(x)e^{g(x)}$$

$$\frac{d}{dx} \tan(x) = \sec^{2}(x)$$

$$\frac{d}{dx} \csc(x) = -\csc(x)\cot(x)$$

$$\frac{d}{dx} \sec(x) = \sec(x)\tan(x)$$

$$\frac{d}{dx} \cot(x) = -\csc^{2}(x)$$

$$\frac{d}{dx} \sin^{-1}(x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx} \cos^{-1}(x) = -\frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^{2}}$$