Basispraktikum Hardwarenaher Systementwurf WS 11/12 Arbeitsbericht 2

Sarah Lutteropp, Parto Karwat

22. November 2011

1 Vorwort

In diesem Aufgabenblatt ging es darum, Kenntnisse über den Umgang mit FPGAs zu erlangen und sich mit Xlinx vertraut zu machen sowie einen Überblick über verschiedene Hardwarebeschreibungssprachen zu erlangen.

2 Xilinx ISE

Wie haben in Xilinx unser aus dem letzten Aufgabenblatt erstelltes mynand.vhd importiert, die Pins zugeordnet und den Bitstream generiert. Anschließend haben wir erfolgreich den Bitstream auf die FPGA-Karte gespielt und unsere NAND-Schaltung mithilfe der LED und 2 Schaltern getestet. Siehe Source.

3 LED-Test

3.1 Gesamtschaltung

Hier ein Überblick über unsere Gesamtschaltung. Die blauen Werte stehen für die im Quelltext verwendeten Signale.

3.2 Digital Clock Manager (DCM)

Wir haben die DCM so eingestellt, dass wir eine Ausgangsfrequenz von 10 MHz erhalten. (CLKFX ausgewählt, $M=2,\,D=25$)

3.3 Zähler

Wurde eingefügt. (Siehe angefügte Dateien 'counter.vhd' 'ledTest.vhd' und 'ledTest_tb.vhd') Den Wert ANZAHL, den der Zähler hochzählt, haben wir folgendermaßen bestimmt:

$$f = \frac{1}{T}, \quad T = 4s, f_{LED} = 0.25Hz, f_{DCM} = 10Mhz = 10 \cdot 10^6Hz$$
$$f_{LED} = \frac{f_{DCM}}{2 \cdot ANZAHL}$$
$$\Rightarrow ANZAHL = 2 \cdot 10^7 = 200000000$$

4 Synthese

Siehe angefügte Datei 'in1_out1_myLEDtest.ucf'. Anschließend haben wir den Bitstream generiert, auf die FPGA-Karte übertragen. Die Blinkzeit der LED betrug, wie erwartet, zwei Sekunden.

${\bf 5} \quad {\bf Hardware beschreibungs sprachen}$

	Verilog	VHDL	SystemC	ParC	m JHDL	Lola
Einsatz	Spezifikation und	Spezifikation und	noch nicht in	Multicore und	selbstkonfigurierend	leSynchrone, digita-
	Entwurf komplet-	Entwurf komplet-	großen wirtschaft-	verteilte Systeme,	Systeme	le Schaltkreise
	ter Systeme	ter Systeme	lichen Projekten	m RF/Wireless,		
			eingesetzt	Neuronale Netze		
basierend	С	ADA	C++	C++	Java	PASCAL, Niklaus
auf						Wirth
Vorteile	leichter erlern-	großer Sprach-	schnelle Simula-	kann als Basis	kostenlos, leicht	einfach, leicht er-
	bar als VHDL,	schatz, höher	tionen, nahtloser	für KI verwendet	konfigurierbar,	lernbar
	schnelle, sim-	angesiedelt (bis	Top-Down-	werden (Neu-	leicht erweiterbar	
	ple Umsetzung,	zur Systeme-	Entwurf	ronale Netze),		
	Einflussmög-	bene), starke		kann dynamisch		
	lichkeiten auf	Typisierung,		erzeugt werden		
	der Gatterebene	Wiederver-				
	(UDP), keine	wendbarkeit,				
	strenge Typprü-	Vielseitigkeit,				
	fung					
Nachteile	geringerer	schwerer erlern-	syntaktischer	geringe Verbrei-	JVM benötigt,	keine Anwendung
	Sprachschatz	bar als Verilog,	Overhead, man-	tung	auf Linux braucht	in der Industrie,
	als VHDL	enthält Konstruk-	gelnde Angebot		man Wine zur	geringer Sprach-
		te, die sich nicht	an Synthese-		Bitstreamgenerie-	schatz
		auf Hardwaree-	werkzeugen, kein		rung	
		bene realisieren	Powermanage-			
		lassen	ment			

	Verilog	VHDL	${f System C}$	ParC	JHDL	Lola
Verbreitungs-	sehr hoch, welt-	sehr hoch, bedeu-	De-facto-	gering	gering	nur in der Leh-
grad	weit, insbesonde-	tendste HDL in	Standard im			re (ETH Zürich),
	re USA	Europa	Bereich IP-			sehr gering
			Nutzung und			
			System-Level-			
			Spezifikation			
Synthese-	Xilinx, Icarus Ve-	Xilinx, Synplify	SystemC-	-	Xilinx	-
programme	rilog, Quartus II	Pro,	Compiler von			
			Synopsys			
Sonstiges	ursprünglich Si-	seit 1987 IEEE-	Firmenunter-	Teil des V2000	Open-Source,	-
	mulationssprache,	Standard, von Be-	stützung bei Wei-	open simulator	Spracherweite-	
	seit 1995 IEEE-	ginn an als offe-	terentwicklung,	project, 1:1 -	rung	
	Standard, lange	ner Standard ent-	Spracherweite-	Mapping, Spra-		
	Zeit herstellerspe-	wickelt	rung	cherweiterung		
	zifisch					
Entwurfsjahr	1983/84	1985 (erste kom-	1999	-	1997	1994
		merzielle Version)				