Support vector machine

LING 572

Fei Xia

Week 8: 2/23/2010

Why another learning method?

- It is based on some "beautifully simple" ideas.
- It can use the kernel trick: kernel-based vs. feature-based.
- It produces good performance on many applications.
- It has some nice properties w.r.t. training and test error rates.

Kernel methods

- Rich family of "pattern analysis" algorithms
- Best known element is the Support Vector Machine (SVM)
- Very general task: given a set of data, find patterns
- Examples:
 - Classification
 - Regression
 - Correlation
 - Clustering

—

History of SVM

- Linear classifier: 1962
 - Use a hyperplane to separate examples
 - Choose the hyperplane that maximizes the minimal margin

Kernel trick: 1992

History of SVM (cont)

- Soft margin: 1995
 - To deal with non-separable data or noise

- Transductive SVM: 1999
 - To take advantage of unlabeled data

Main ideas

Use a hyperplane to separate the examples.

Among all the hyperplanes, choose the one with the maximum margin.

 Maximizing the margin is the same as minimizing ||w|| subject to some constraints.

Main ideas (cont)

 For the data set that are not linear separable, map the data to a higher dimensional space and separate them there by a hyperplane.

 The Kernel trick allows the mapping to be "done" efficiently.

Soft margin deals with noise and/or inseparable data set.

Outline

- Linear SVM
 - Maximizing the margin
 - Soft margin
- Nonlinear SVM
 - Kernel trick
- A case study
- Handling multi-class problems

Papers

- (Manning et al., 2008)
 - Chapter 15
- (Collins and Duffy, 2001): tree kernel
- (Scholkopf, 2000)
 - Sections 3, 4, and 7
- (Hearst et al., 1998)

Inner product vs. dot product

Dot product

The dot product of two vectors $x=(x_1,...,x_n)$ and $z=(z_1,...,z_n)$ is defined as $x \cdot z = \sum_i x_i z_i$

$$||x|| = \sqrt{\sum_i x_i^2} = \sqrt{x \cdot x}$$

Inner product

• An inner product is a generalization of the dot product. $||x|| = \sqrt{\langle x, x \rangle}$

 It is a function that satisfies the following properties:

$$< u + v, w > = < u, w > + < v, w >$$

 $< cu, v > = c < u, v >$
 $< u, v > = < v, u >$
 $< u, u > \ge 0 \text{ and } < u, u > = 0 \text{ iff } u = 0$

Some examples

$$< x, z > = \sum_{i} c_{i} x_{i} z_{i}$$

 $< (a, b), (c, d) > = (a + b)(c + d) + (a - b)(c - d)$

$$\langle f,g \rangle = \int f(x)g(x)dx$$
 where $f,g: [a,b] \to R$

Linear SVM

The setting

• Input: $x \in X$

- Output: $y \in Y, Y = \{-1, +1\}$
- Training set: $S = \{(x_1, y_1), ..., (x_i, y_i)\} \subseteq X \times Y$
- Goal: Find a function y = f(x) that fits the data:
 f: X → R
- \longrightarrow Warning: x_i is used in two ways in this lecture.

Notations

 x_i has two meanings

- $\vec{x_i}$: It is a vector, representing the i-th training instance.
- x_i : It is the i-th element of a vector \vec{x}

x, w, and z are vectors.

b is a real number

Inner product

Inner product between two vectors

$$\langle \vec{x}, \vec{z} \rangle = \sum_i x_i z_i$$

$$\vec{x} = (1, 2)$$

$$\vec{z} = (-2, 3)$$

$$\langle \vec{x}, \vec{z} \rangle = 1^*(-2) + 2^*3$$

= -2 + 6 = 4

Inner product (cont)

$$\langle \vec{x}, \vec{z} \rangle = \sum_i x_i z_i$$

$$cos(\vec{x}, \vec{z})$$

$$= \frac{\sum_{i} x_{i} z_{i}}{||x|| * ||z||}$$

$$=\frac{\langle x,z\rangle}{||x||*||z||}$$

where
$$||x|| = \sqrt{\sum_i x_i^2}$$

Inner product is a similarity function.

Hyperplane

A hyperplane: $\langle \vec{w}, \vec{x} \rangle + b = 0$

 \vec{w} and \vec{x} are vectors, b is a real number.

||w|| is the Euclidean norm of \vec{w} .

An example of hyperplane: < w, x > + b = 0

$$x_1 + 2 x_2 - 2 = 0$$
 $w=(1,2), b=-2$
 $10x_1 + 20 x_2 - 20 = 0$ $w=(10,20), b=-20$

Finding a hyperplane

 Given the training instances, we want to find a hyperplane that separates them.

• If there are more than one hyperplane, SVM chooses the one with the maximum margin.

$$\max_{\vec{w},b} \min_{\vec{x_i} \in S} \{ ||\vec{x} - \vec{x_i}|| \mid \vec{x} \in R^N, <\vec{w}, \vec{x} > +b = 0 \}$$

Maximizing the margin

Training: to find w and b.

$$< w, x > + b = 0$$

Support vectors

Training: Max margin = minimize norm

Minimize
$$||w||^2$$

subject to the constraint

$$y_i(<\vec{w}, \vec{x_i}>+b) \ge 1$$

This is a quadratic programming (QP) problem.

Decoding

Hyperplane: w=(1,2), b=-2

$$f(x) = x_1 + 2 x_2 - 2$$

 $x=(3,1)$ $f(x) = 3+2-2 = 3 > 0$
 $x=(0,0)$ $f(x) = 0+0-2 = -2 < 0$

Lagrangian**

For each training instance $(\vec{x_i}, y_i)$, introduce $\alpha_i \geq 0$.

Let
$$\alpha = (\alpha_1, \alpha_2,, \alpha_N)$$

$$L(\vec{w}, b, \alpha) = \frac{1}{2} ||\vec{w}||^2 - \sum_i \alpha_i (y_i (< \vec{w}, \vec{x_i} > +b) - 1)$$

minimize L w.r.t.
$$\vec{w}$$
 and b
$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}} \text{ and } \sum_{i} \alpha_{i} y_{i} = 0$$

Finding the solution

This is a Quadratic Programming (QP) problem.

The function is convex and there is no local minima.

Solvable in polynomial time.

The dual problem **

Maximize

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} < \vec{x_{i}}, \vec{x_{j}} >$$

Subject to

$$\alpha_i \geq 0$$
 and $\sum_i \alpha_i y_i = 0$

For support vectors, $\alpha_i > 0$

For other training examples, $\alpha_i = 0$

Removing them will not change the model.

Finding w and b is equivalent to finding support vectors and their weights.

The solution

$$\vec{w} = \sum_{i} \alpha_i y_i \vec{x_i}$$

Training: Set the weight α_i for each $\vec{x_i}$

Decoding:
$$f(\vec{x}) = \langle \vec{w}, \vec{x} \rangle + b$$

$$f(\vec{x}) = \sum_{i} \alpha_i y_i < \vec{x_i}, \vec{x} > +b$$

kNN vs. SVM

- Majority voting:c* = arg max_c g(c)
- Weighted voting: weighting is on each neighbor $c^* = arg \max_c \sum_i w_i \delta(c, f_i(x))$
- Weighted voting allows us to use more training examples:
 e.g., w_i = 1/dist(x, x_i)
 - → We can use all the training examples.

$$f(\vec{x}) = \sum_i w_i y_i$$
 (weighted kNN, 2-class)

$$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} < \vec{x_{i}}, \vec{x} > +b \qquad \text{(SVM)}$$

$$= \sum_{i} \alpha_{i} < \vec{x_{i}}, \vec{x} > y_{i} + b$$

Summary of linear SVM

Main ideas:

– Choose a hyperplane to separate instances:

$$< w, x > + b = 0$$

- Among all the allowed hyperplanes, choose the one with the max margin
- Maximizing margin is the same as minimizing||w||
- Choosing w and b is the same as choosing $lpha_i$

The problem

Training: Choose \vec{w} and b

Mimimizes $||w||^2$ subject to the constraints $y_i(\langle \vec{w}, \vec{x_i} \rangle + b) \geq 1$ for every $(\vec{x_i}, y_i)$

Decoding: Calculate $f(x) = \langle w, x \rangle + b$

The dual problem

Training: Calculate α_i for each $(\vec{x_i}, y_i)$

Maximize
$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} < \vec{x_{i}}, \vec{x_{j}} >$$

subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i} = 0$

Decoding:
$$f(\vec{x}) = \sum_{i} \alpha_i y_i < \vec{x_i}, \vec{x} > +b$$

Remaining issues

- Linear classifier: what if the data is not separable?
 - The data would be linear separable without noise
 - → soft margin

- The data is not linear separable
 - map the data to a higher-dimension space

The dual problem**

Maximize

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} < \vec{x_{i}}, \vec{x_{j}} >$$

Subject to

$$C \ge \alpha_i \ge 0 \text{ and } \sum_i \alpha_i y_i = 0$$

Outline

- Linear SVM
 - Maximizing the margin
 - Soft margin
- Nonlinear SVM
 - Kernel trick
- A case study
- Handling multi-class problems

Non-linear SVM

The highlight

- Problem: Some data are not linear separable.
- Intuition: to transform the data to a high dimension space

Example: the two spirals

Separated by a hyperplane in feature space (Gaussian kernels)

Feature space

- Learning a non-linear classifier using SVM:
 - Define ϕ
 - Calculate $\phi(x)$ for each training example
 - Find a linear SVM in the feature space.

Problems:

- Feature space can be high dimensional or even have infinite dimensions.
- Calculating $\phi(\mathbf{x})$ is very inefficient and even impossible.
- Curse of dimensionality

Kernels

 Kernels are similarity functions that return inner products between the images of data points.

$$K: X \times X \to R$$

 $K(\vec{x}, \vec{z}) = \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$

- Kernels can often be computed efficiently even for very high dimensional spaces.
- Choosing K is equivalent to choosing ϕ .
 - → the feature space is implicitly defined by K

An example

Let
$$\phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

Let $\vec{x} = (1,2)$ $\vec{z} = (-2,3)$
 $\phi(\vec{x}) = (1,4,2\sqrt{2})$ $\phi(\vec{z}) = (4,9,-6\sqrt{2})$

$$K(\vec{x}, \vec{z}) = <\phi(\vec{x}), \phi(\vec{z})>$$
 $=<(1, 4, 2\sqrt{2}), (4, 9, -6\sqrt{2})>$
 $=1*4+4*9-2*6*2=16$

$$\langle \vec{x}, \vec{z} \rangle = -2 + 2 * 3 = 4$$

An example**

Let
$$\phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$= \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$$

$$= \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \rangle$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 z_1 x_2 z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= \langle \vec{x}, \vec{z} \rangle^2$$

From Page 750 of (Russell and Norvig, 2002)

Another example**

Let
$$\phi(\vec{x}) = (x_1^3, x_2^3, \sqrt{3}x_1^2x_2, \sqrt{3}x_1x_2^2)$$

 $K(\vec{x}, \vec{z})$
 $= \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$
 $= \langle (x_1^3, x_2^3, \sqrt{3}x_1^2x_2, \sqrt{3}x_1x_2^2), (z_1^3, z_2^3, \sqrt{3}z_1^2z_2, \sqrt{3}z_1z_2^2) \rangle$
 $= x_1^3 z_1^3 + x_2^3 z_2^3 + 3x_1^2 z_1^2 x_2 z_2 + 3x_1 z_1 x_2^2 z_2^2$
 $= (x_1 z_1 + x_2 z_2)^3$
 $= \langle \vec{x}, \vec{z} \rangle^3$

The kernel trick

- No need to know what ϕ is and what the feature space is.
- No need to explicitly map the data to the feature space.
- Define a kernel function K, and replace the dot produce <x,z> with a kernel function K(x,z) in both training and testing.

Training

Maximize

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \vec{x_{i}}, \vec{x_{j}} \right\rangle$$

Subject to
$$\alpha_i \geq 0 \text{ and } \sum_i \alpha_i y_i = 0$$

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \underbrace{K(\vec{x_{i}}, \vec{x_{j}})}$$

Decoding

Linear SVM: (without mapping)

$$f(\vec{x}) = \langle \vec{w}, \vec{x} \rangle + b$$
$$= \sum_{i} \alpha_{i} y_{i} \left(\langle \vec{x}_{i}, \vec{x} \rangle \right) + b$$

Non-linear SVM: w could be infinite dimensional

$$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \left[K(\vec{x_{i}}, \vec{x}) \right] + b$$

Kernel vs. features

Training: Maximize
$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\vec{x_{i}}, \vec{x_{j}})$$

subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i} = 0$

Decoding:
$$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \left[K(\vec{x_{i}}, \vec{x}) \right] + b$$

Need to calculate K(x, z).

For some kernels, no need to represent x as a feature vector.

A tree kernel

Common kernel functions

• Linear:
$$K(\vec{x}, \vec{z}) = <\vec{x}, \vec{z}>$$

• Polynominal:
$$K(\vec{x}, \vec{z}) = (\gamma < \vec{x}, \vec{z} > +c)^d$$

• Radial basis function (RBF): $K(\vec{x}, \vec{z}) = e^{-\gamma(||\vec{x} - \vec{z}||)^2}$

• Sigmoid:
$$K(\vec{x},\vec{z}) = tanh(\gamma < \vec{x},\vec{z} > +c)$$

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Other kernels

- Kernels for
 - trees
 - sequences
 - sets
 - graphs
 - general structures
 - **—** ...

A tree kernel example next time

The choice of kernel function

 Given a function, we can test whether it is a kernel function by using Mercer's theorem.

 Different kernel functions could lead to very different results.

 Need some prior knowledge in order to choose a good kernel.

Summary so far

- Find the hyperplane that maximizes the margin.
- Introduce soft margin to deal with noisy data
- Implicitly map the data to a higher dimensional space to deal with non-linear problems.
- The kernel trick allows infinite number of features and efficient computation of the dot product in the feature space.
- The choice of the kernel function is important.

MaxEnt vs. SVM

	MaxEnt	SVM
Modeling	Maximize $P(Y X, \lambda)$	Maximize the margin
Training	Learn λ_i for each feature function	Learn α_i for each training instance
Decoding	Calculate P(y x)	Calculate the sign of f(x). It is not prob
Things to decide	Features Regularization Training algorithm	Kernel Regularization Training algorithm Binarization

More info

Website: <u>www.kernel-machines.org</u>

Textbook (2000): <u>www.support-vector.net</u>

Tutorials: http://www.svms.org/tutorials/

Workshops at NIPS

Soft margin

The highlight

 Problem: Some data set is not separable or there are mislabeled examples.

 Idea: split the data as cleanly as possible, while maximizing the distance to the nearest cleanly split examples.

Mathematically, introduce the slack variables

Objective function

Minimizing

$$\frac{1}{2}||w||^2 + C(\sum_i \xi_i)^k$$

where C is the penalty, k = 1 or 2 such that

$$y_i(\langle \vec{w}, \vec{x_i} \rangle + b) \ge 1 - \xi_i$$

where $\xi_i \ge 0$

Additional slides

Linear kernel

• The map ϕ is linear.

$$\phi(x) = (a_1 x_1, a_2 x_2, ..., a_n x_n)$$

$$K(x,z) = \langle \phi(x), \phi(z) \rangle$$

= $a_1^2 x_1 z_1 + a_2^2 x_2 z_2 + \dots + a_n^2 x_n z_n$

 The kernel adjusts the weight of the features according to their importance.

The Kernel Matrix (a.k.a. the Gram matrix)

K(1,1)	K(1,2)	K(1,3)	•••	K(1,m)
K(2,1)	K(2,2)	K(2,3)	•••	K(2,m)
•••				
•••				
K(m,1)	K(m,2)	K(m,3)	•••	K(m,m)

Mercer's Theorem

The kernel matrix is symmetric positive definite.

• Any symmetric positive definite matrix can be regarded as a kernel matrix; that is, there exists a ϕ such that $K(x,z) = \langle \phi(x), \phi(z) \rangle$

Making kernels

- The set of kernels is closed under some operations. For instance, if K₁ and K₂ are kernels, so are the following:
 - $-K_1 + K_2$
 - $-cK_1$ and cK_2 for c > 0
 - $-cK_1 + dK_2$ for c> 0 and d>0
- One can make complicated kernels from simples ones