In Computer Science, recursion is a common strategy for solving problems. -take a problem instance - Split it into subproblems ... -... until they are small ex binary search Problem: find an element in a sorted array. A = (a, a2, a3,, ..., Al Are Arr All Alr

base case: single element array.

Mathematical Induction is a proof technique pat is analogous to recursion. ex to prove that $1+2+3+\cdots+n$ $f(n) = \begin{cases} 1+2+3+\cdots+n = \frac{n(n+1)}{2} : T = \frac{n(n+1)}{2}, \\ \neq & : F \end{cases}$ We prove that the formula holds for n=0 (base case) and mat if it holds for n > 1, then it holds for n + 1. some specific let P be a predicate concerning ints > 0. To give a proof by magnematical induction pat throw: P(n), we prove 2 things: through the prove (1) Base case: P(0) (2) Inductive: \finz \, prove that

Case P(n-n=) P(n) If we do (1) and (2), we've proved $4n \ge 0$: 9(n). uny! (S. I in book) ex suppose we have proven P(0) and P(n-1) => P(n). These establish

P(3). Proof WIS P(3). Statement reason P(0) assumption P(0) = 7 P(1)plug in n=1 to P(n), assumption P(I) because P(0) = > P(1), and we have P(0) (modus ponens) P(1) = 7 P(2)plug in n= 2 to p(n-1)=>P(n) P(2) modus ponens P(2) = 7 P(3)Plug in n=3 to p(n-1) => P(n) P(3) modus ponens $\stackrel{\sim}{\leq} 2^{i} = 2^{n+1} - 1$ Claim 4n20 lne2 $2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1$ LRHS

We use induction over n. P(n). 2) For the base case, we WTS P(D). That is, WTS $ZZ^i = Z^0 = Z^{0+1} - 1$ n=01 = 2 -1 = 2 -1 = 1 LHS = RHS. (3) For the inductive case, we need to prove $\forall n \ge 1: P(n-1) = > P(n)$. WTS P(n).

LHS = $\frac{1}{5}$ $\frac{1}{$ Iel. of Summations $= 2^{(n-1)+1} - 1 + 2^n$ Subs. into inductive hyp. $=2^{n}-1+2^{n}$ algebra $=2^{n+1}-1$

Recall the steps for proving a statement " $\forall n \geq 0$: something" using mathematical induction:

- (1) Clearly state the property P(n), that you are using mathematical induction, and what variable you are doing induction over.
- (2) Prove the base case: P(0).
- (3) Prove the inductive case: $P(n-1) \Rightarrow P(n)$.

In this activity, you will prove that $\forall n \geq 0$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

Answer the following questions:

• Do you believe the claim? I give you an example of it holding below. Give at least two more examples of n for which the claim holds by filling in two more rows of the table for different n.

n	$\sum_{i=0}^{n} i$	$\frac{n(n+1)}{2}$
1	$\sum_{i=0}^{1} i = 0 + 1 = 1$	$\frac{1(1+1)}{2} = \frac{1(2)}{2} = 1$

• What is the predicate P(n) that you will prove holds $\forall n \geq 0$?

$$P(n) = \begin{cases} 2i = \frac{n(n+1)}{2} \end{cases}$$

• What variable will you do induction over?

M

• What is the base case? (Don't just write P(0); translate it into the specific P(n) you defined above.)

$$\underset{i=0}{\overset{\circ}{\not=}} i = \underset{i}{\overset{\circ}{0}} (0+i)$$

• What is the inductive case? (Again, don't just write $P(n-1) \Rightarrow P(n)$; translate it into the specific

What is the inductive case? (Again, don't just write
$$P(n-1) \Rightarrow P(n)$$
 you defined above.)

You is the inductive hypothesis?

What is the inductive hypothesis?

Now that you have answered the above questions, you are ready to write the full presteps are labeled in the proof for you to fill in.	roof! The three
Proof.	
(1)	
(2) For the base case, we prove that	
(3) For the inductive case, we prove that $\forall n \geq 1,$	

= RHS So we have shown P(n). we've shown P(0) and P(n-1)=7P(n), so by the principle of mathematical induction, P(n) holds 4n=0. Now-4:53: worksneet -> turn in w/ your name 4:55-end: do together