Machine Learning Intro to Computer Vision Problems

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Video

See full arabic lecture on my youtube

Problems of interest during the course

- There might be some tasks that requires you know:
- Image classification
- Video classification
- Object Detection
- 2D/3D body pose estimation

<u>Image</u>

- Grayscale image: 2D matrix (height x width)
 - Array position image[row, col] is a <u>pixel</u>
 - Each pixel represents <u>intensity</u> information in **range** 0 (for black) up to 255 (for white)
 - Binary Image: has only 2 values for black and white (e.g. 0 and 255)
- RGB image: 3D matrix (height x width x 3 channels)
 - Access: image[row, col, channel]
 - Other color spaces: <u>HSL and HSV, CMYK, CIELAB</u>. <u>Conversions</u>.
- Video = Sequence of frames (images)

Image: RGB vs Gray

Src: Article

Image: RGB vs Binary Image

Src: Article

The goal of computer vision

To bridge the gap between pixels and "meaning"

What we see

What a computer sees

Source: S. Narasimhan

Src: Stanford CS 131

Vision as a source of semantic information

Slide credit: Kristen Grauman

2D and 3D Computer vision

- Both are important. Both receives input of 2D Images
- 2D models understands images based on given 2D positions
- 3D models make use of multi view / depth
 - E.g. Building Depth for the 2D view or Building 3D model/coordinates
 - o In some problems require Camera parameters or several views of same scene
- 2D real-life scenarios/research seems more
 - Nature of several apps just understand given image/video
 - All these uploads on the web don't provide camera parameters
- RGB-D images (D for depth channel)
 - <u>Depth</u> of distance between image plane and corresponding object in RGB image
 - Now more <u>RGB-D Smartphones and Tablets</u> (Useful for apps such as AR/VR)

RGB-D Example

Src: <u>List of RGBD datasets</u>

2D Computer vision problems

Images

- Image Classification
- Object Detection
- Semantic Segmentation and Instance Segmentation
- Edge Detection
- Human Pose Estimation
- More

Videos

- Action Recognition and Action Localization
- Object Tracking
- Group Activity Recognition Problem
- More

3D Computer vision problems

- Stereo Vision
- 3D reconstruction
- Structure-from-Motion and SLAM
- Depth Estimation
- Pose Estimation
- Panorama Stitching
- Optical Flow

2D	Vision	- Image	Problems	

Problem: Image Classification

- Let say we have 1000 classes of interest
 - o E.g. Cat, Dog, Chair, Car, BMW Car, Bird, ...
- Given an image: Identify its major class (e.g. Image for Leopard)

Src: CMU course

Problem: Object Detection

- Now harder problems.
- Let say we have objects of interest
 - o e.g. Cat, Chair, Cow, Bus, ...
- Given an image, return:
 - rectangles for their positions
- Aka Object Localization
 - Sometimes localization query has specific number of items. E.g. retrieve 3 cars
- Object Proposals

Src: Tutorial

Problem: Semantic Segmentation

• Given an image, for each pixel decides its class

Person Bicycle Background

Src: <u>Tutorial</u>

Problem: Instance Segmentation / Panoptic

Same as previous, but identify the instance of each category

Semantic Segmentation

Instance Segmentation

Src: Tutorial

Problem: Edge Detection

No object of interests. Identify the boundaries/borders

Src: Article

Problem: Human Pose Estimation

- Given an image of people, for each person identify his body joints (specific e.g. wrist/shoulder)
- Similar task: Hand pose estimation
 - Find 21 joints of hand (e.g. use for sign language)

Src: <u>learnopencv.com</u>

Face Recognition & Identification

- Recognition: Find a face
- Identification: Who is this face?
- Authentication: Is this face for mostafa?

Crowd counting

GANs

This bird is black with green and has a very short beak

Src: machinelearningmastery.com

Problem: Image Captioning

- Given an image ⇒ generating textual description
 - CV and NLP intersection problem

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

Src: towardsdatascience.com

Problem: Visual Question Answering

Given an image and question: Answer it (CV/NLP)

Who is wearing glasses?

Is the umbrella upside down?

How many children are in the bed?

Where is the child sitting?

Src: mc.ai

Visual Relation Detection

- Modeling and understanding the relationships between objects in a scene (i.e. "person ride bike").
- Better generalization for other tasks such as image captioning or VQA.
- Visual relations are subject-predicate-object triplets, which we can model jointly or separately.

Problem: Image inpainting

- Given an image and bounding box of object
 - Remove the object and replace with background
 - Useful in apps such as Photoshop, Films making, removing someone from your photos

Src: paper

Problem: Content-based Image Retrieval

- Assume dataset of images
- Query: Image to find similar ones in the database
- Output: Rank all dataset images according to their similarity with query

Src: Article

2D Vision - Video Problems

Problem: Action Recognition

- The video version of Image Classification
- Action: Sequence of Simple steps (Running)

Src: Site

Problem: Action Localization

- The video version of Object Localization
- We find a tublet (aka trajectory = set of consecutive bbox)
- Find action of each tublet

Problem: Object Tracking

- We track objects based on their appearance
- We don't label the actions
- If a human: might do several kind of actions: walk, run, jump

Problem: Group Activity Recognition Problem

Group Activity = Major Action = Walking

Collective activity, Choi et al, ICCV Workshop 09

Problem: Group Activity Recognition Problem

Group Activity = Key Action(s) = Left Spike

Person Re-identification

When someone disappears and come back, we wanna still link with the old person

Video Prediction

What will happen in the next 10 frames?

Some ML Perspectives

- Supervised Learning
 - Weekly, Semi, Self Supervised learning
- Zero & Few-shots learning / Closed vs Open Set
- Multi-tasking
- Knowledge Transfer / Domain adaptation / Meta Learning
- Knowledge Distillation
- GNN, Active Learning, Attention mechanisms

3D Vision

What have we lost when projecting:

3D world scene to 2D image?

3D vision

- Most of classical algorithms are explained in non-ML context
 - Involves camera model and camera matrices (intrinsic/extrinsic)
 - Involves single camera, two cameras, or more than two cameras
 - A lot of linear algebra and optimizations!
- In deep learning context, some problems are
 - o solved by ML training (e.g. optical flow) or
 - o networks involve some 3D information (e.g. hand pose estimation, gaze estimation, ...)

3D point clouds

Representation for 3D objects

Stereo Camera

Src: Site Site

Stereo Vision

important in fields such as robotics, to extract information about the relative position of 3D objects

Right side: VSLAM

3D reconstruction

• Given set of images of object (e.g. building), construct its 3D object

Depth Estimation

Depth ~= Distance

Panorama stitching

• Take **several photos** of a wide view and merge then nicely to one **big** photo

Optical Flow

- Given 2 consecutive frames, find displacement vector showing the movement of points from first frame to second
- Can be casted as learning problem (E.g. FlowNet)

3D Body Pose Estimation

Img src

3D Head Pose Estimation

<u>Finding</u> the translation and rotation of the head

3D Hand Pose Estimation

For each joint, its 3D position

Src: Paper

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."