Predicting Customer Behavior: Who will take out an Upstart loan?

Farouk Rice

Upstart spends thousands of dollars a month on advertising to loan applicants. What if we could predict which applicants were actually likely to take out a loan?

The Product

The Product

Income

Credit Score

	\$20000 - \$40000	\$40000 - \$80000	\$80000+
680 - 720	35% APR	30% APR	25% APR
720 - 760	30% APR	25% APR	20% APR
760+	20% APR	15% APR	10% APR

APR = Annual Percentage Rate, or the "price" of the money borrowed

The Product

Interest Rate

The Customer Funnel

Application

Cost

Very Unlikely Customers All Total **Possible Marketing Potential** Customers **Spend Customers** Almost Certain **Customers**

Remarketing costs:
Approx. \$200,000 /mo

Revenue: Approx. \$3MM /mo

Remarketing costs:

~19%, or \$38K/mo

Revenue: Approx \$3MM /mo

Remarketing costs: No add'l cost

Revenue: Unknown increase

5% increase = \$150K / mo

10% increase = \$300K /mo

The Data

Outcome variable:

- Did the user take out a loan? (conversion)
 - Baseline: Among qualified applicants in the training set, 76.6% do not take out a loan.
 - Our model needs to be better than 76.6%.

- Maximum APR of 30%
- Higher proportion of high APR users convert

Conversion Rate

Applicants above 20% APR 26.7%

Applicants under 20% APR 15.3%

	Skewness	
Did not convert	-1.74	
Converted	-0.46	

	Number of applicants	Conversion rate
Eligible for 3 year only	72768	71.7%
Eligible for 5 year only	88294	57.9%

Model Selection

Data Shape

• 958996 observations, 22 imported features

Logistic Regression

- Simple and easy to interpret
- Probably not robust enough to interpret complex features

Multi-Layer Perceptron

- Good with high number of observations
- Can find complex relationships between features

Random Forest

- Good with high number of observations
- Can find complex relationships between features
- Proven success in finance industry with credit scores and underwriting

About The Model

Hyperparameter-tuned Random Forest

- Roughly 1600 trees with a maximum depth of 100
- Better performance than linear regression and Multi-Layer Perceptron
- Features
 - Debt-to-income percentage
 - Loan amount requested (or highest amount approved for, whichever is higher)
 - Monthly Payment for 3 and 5 year terms
 - > APR
 - Number of other loans
 - Credit Score
 - Reported Salary
 - Age
 - Likelihood of Fraud (Low, High)
- Iterations
 - One-hot encoded categorical variables
 - Time features
 - No categorical variables
 - Some categorical features
 - Hyperparameter tuning

About The Model: Predictive Power

Test-Train Split

- Before any exploration, 20% of the data reserved as test data
- Of remaining 80%, 20% was used as validation data and remainder used for training

	Validation Data Accuracy	
Baseline	.81*	
Logistic Regression	.852	
Multi-Layer Perceptron	.811	
Random Forest (final version)	.972	
Random Forest (test data)	.971	

About The Model: Predictive Power

	Predicted non-conversion	Predicted conversion	Total
Actual non-conversion	109802	2390	112192
Actual conversion	1603	24980	26583
Total	111405	27370	138775

19% actual conversion rate overall, 19.7% predicted conversion rate

2.1% false positive rate (predicted conversion of non-converting customers)

6% false negative rate (failed to predict conversion of converting customers)

About The Model: Predictive Power

- Removed 0% conversion probability
- Polarized assignment of probability
 - Relatively few in the middle

About The Model: Feature Importance

About The Model: Feature Importance

Logistic Regression largest coefficients:

Feature	Coefficient
Monthly Payment 5y	0084
Monthly Payment 3y	0081
FICO Score	.0015

About The Model: Feature Importance

· Highest probabilities given to those who qualify for exactly one loan term

What next?

Very Unlikely Customers Possible Customers Almost Certain **Customers**

Did not convert, but had 33% or higher probability:

Additional ~\$60K in revenue

What next?

What next?

- Utilize Monthly Payment information to improve conversion rates
 - Less creditworthy borrowers generally more likely to convert
 - Further improve underwriting on these users or target these segments
 - Offer longer loan terms (lower Monthly Payments) to more people

Thanks!