Ultimate tensorization: compressing convolutional and FC layers alike

Timur Garipov¹ Dmitry Podoprikhin^{1,2} **Alexander Novikov**³ Dmitry Vetrov^{2,3}

¹Moscow State University,

Moscow. Russia

²Yandex LLC, Moscow, Russia

³Higher School of Economics,

Moscow, Russia

Why compress convolutions?

Large neural networks:

- are expensive to download to smartphones;
- drain battery.

Why compress convolutions?

Large neural networks:

- are expensive to download to smartphones;
- drain battery.

We focus on compressing convolutional layers because:

- several modern architectures (Inception, ResNet) lack fully-connected layers;
- we can already compress fully-connected layers to move the bottleneck into convolutional layers¹.

¹Novikov et al. Tensorizing Neural Networks, NIPS-15

How to compress convolutions?

