MATE 6540: Tarea 2

Due on 21 de marzo
 Prof. Iván Cardona , C41, 21 de marzo

Sergio Rodríguez

Problem 1

Sean (X,\mathcal{T}_X) y (Y,\mathcal{T}_Y) espacios topológicos y sea $f:(X,\mathcal{T}_X) \to (Y,\mathcal{T}_Y)$ una biyección. Demuestre que las siguientes son equivalentes:

- (a) f es un homeomorfismo.
- (b) $f y f^{-1}$ son funciones abiertas.
- (c) $f y f^{-1}$ son funciones cerradas.

Demo:

MEP

Problem 2

Sean (X,\mathcal{T}_X) y (Y,\mathcal{T}_Y) espacios topológicos. Una función $f:(X,\mathcal{T}_X) \to (Y,\mathcal{T}_Y)$ es fuertemente continua si $f(\overline{A}) \subseteq f(A), \ \ \forall A \subseteq X$. Demuestre que f es fuertemente continua $\iff f^{-1}(B)$ es cerrado, $\forall B \subseteq Y$.

Demo:

MEP

Problem 3

Sean (X,\mathcal{T}_X) y (Y,\mathcal{T}_Y) espacios topológicos y $\mathcal U$ la topología producto sobre $X\times X$. Demuestre que (X,\mathcal{T}_X) es Hausdorff \iff la diagonal $\Delta=\{(x,y)\in X\times X\mid x=y\}$ es un subconjunto cerrado de $(X\times X,\mathcal U)$.

Demo:

MEP

Problem 4

Sean (X,\mathcal{T}_X) y (Y,\mathcal{T}_Y) espacios topológicos. Demuestre que si $f:(X,\mathcal{T}_X) \to (Y,\mathcal{T}_Y)$ es sobreyectiva, continua, y abierta, entonces $\mathcal{T}_Y = \mathcal{T}_{\text{FIN}}$, donde \mathcal{T}_{FIN} es la topología final inducida por f.

Demo:

MEP

Problem 5

Sea $p:(X,\mathcal{T}_X) \to (Y,\mathcal{T}_Y)$ una función continua. Demuestre que si existe una función continua $f:(Y,\mathcal{T}_Y) \to (X,\mathcal{T}_X)$ tal que $p\circ f$ es la identidad en Y, entonces p es una aplicación cociente.

Demo:

MEP