RACHUNEK PRAWDOPODOBIEŃSTWA 1R LISTA ZADAŃ NR 4

- **1.** Zdarzenia A_1 , A_2 ,.. są niezależne i mają równe prawdopodobieństwa. Jaka jest szansa, że zajdzie skończenie wiele zdarzeń A_n ?
- **2.** Losujemy niezależnie nieskończenie wiele punktów z odcinka [0,1]. Uzasadnij, że z prawdopodobieństwem 1 w każdym otwartym odcinku $(a,b) \subset [0,1]$ znajdzie się co najmniej 1 punkt.
- 3. Zdarzenia A_1 , A_2 ,.. są niezależne i $\mathbb{P}(A_n)=p_n\in(0,1)$. Wykaż, że z prawdopodobieństwem 1 zachodzi co najmniej jedno ze zdarzeń A_n wtedy i tylko wtedy, gdy z prawdopodobieństwem 1 zachodzi nieskończenie wiele zdarzeń A_n .
- 4. Znajdź przykład przestrzeni probabilistycznej oraz ciągu zbiorów A_n takich, że $\sum \mathbb{P}(A_n) = \infty$, ale $\mathbb{P}(\limsup_n A_n) = 0$.
- $\mathbf{5}^*$. Rzucamy nieskończenie wiele razy monetą, w której orzeł wypada w prawdopodobieństwem $p \geq 1/2$. Niech A_n oznacza zdarzenie, że pomiędzy rzutem 2^n a 2^{n+1} otrzymano ciąg n kolejnych orłów. Pokaż, że zdarzenia A_n z prawdopodobieństwem 1 zachodzą nieskończenie wiele razy.
- 6^* . Rzucamy nieskończenie wiele razy symetryczną monetą. Niech A_n -w pierwszych n rzutach było tyle samo orłów co reszek. Wykaż, że z prawdopodobieństwem 1 zachodzi nieskończenie wiele zdarzeń A_n .
- 7. Niech X,Y będą zmiennymi losowymi określonymi na przestrzeni probabilistycznej $(\Omega,\mathcal{F},\mathbb{P})$ i niech $A\in\mathcal{F}.$ Uzasadnij, że

$$Z(\omega) = \left\{ \begin{array}{ll} X(\omega), & \text{ gdy } \omega \in A \\ Y(\omega), & \text{ gdy } \omega \in A^c \end{array} \right.$$

jest zmienną losową.

8. Niech X,Y będą zmiennymi losowymi określonymi na przestrzeni probabilistycznej $(\Omega,\mathcal{F},\mathbb{P})$. Pokaż, że

$$\sup_{A\in\mathcal{F}}\left|\mathbb{P}[X\in A]-\mathbb{P}[Y\in A]\right|\leq \mathbb{P}[X\neq Y].$$

- 9. Dana jest przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ oraz funkcja $X: \Omega \mapsto \mathbb{R}$. Uzasadnij, że jeżeli $X^{-1}(a,b) \in \mathcal{F}$ dla dowolnych $a,b \in \mathbb{R}$, to X jest zmienną losową.
- 10. Podaj przykład przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$ i funkcji $X : \Omega \mapsto \mathbb{R}$, która nie jest zmienną losową.
- 11. Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie ciągiem zmiennych losowych. Wykaż, że jeżeli funkcja $f:\mathbb{R}^n\mapsto\mathbb{R}$ jest mierzalna, to $f(X_1,\ldots,X_n)$ jest zmienną losową. Wywnioskuj, że X_1+X_2 oraz $X_1\cdot X_2$ są zmiennymi losowymi. Uzasadnij, że $\inf_n X_n$, $\sup_n X_n$, $\lim\inf_n X_n$, $\lim\sup_n X_n$ są również zmiennymi losowymi.
- 12. Dystrybuanta zmiennej losowej X dana jest wzorem

$$F(t) = \begin{cases} 0 & \text{dla } t < -1 \\ (t+1)/2 & \text{dla } -1 \le t < 0 \\ 3/4 & \text{dla } 0 \le t < 4 \\ 1 & \text{dla } t \ge 4. \end{cases}$$

Oblicz $\mathbb{P}[X = -5]$, $\mathbb{P}[2 < X \le 5]$, $\mathbb{P}[X = 4]$, $\mathbb{P}[-1 < X < 0]$.

- **13.** Na skrzyżowaniu zamontowana jest sygnalizacja świetlna. W jednym z kierunków światło czerwone świeci się przez 2 minuty, a zielone 40 sekund. Samochód dojeżdża do skrzyżowania w losowym momencie. Niech *X* oznacza czas spędzony na skrzyżowaniu. Wyznacz rozkład *X* oraz dystrybuantę. Załóżmy, że po 1 minucie samochód wciąż nie przejechał skrzyżowania. Jakie jest prawdopodobieństwo, że opuści je w ciągu najbliższych 20 sekund?
- **14.** Niech X będzie zmienną losową o ciągłej dystrybuancie F. Pokaż, że Y = F(X) jest zmienną losową (tzn. że jest mierzalna) o rozkładzie U([0,1]).
- **15.** Niech U będzie zmienną losową o rozkładzie jednostajnym na [0,2]. Znajdź dystrybuanty i rozkłady: Y = U 1, $Y = U^4$, Y = 1/(U + 2), $Y = \log(U + 2)$, Y = |U 1|.