On gradient regularizers for MMD GANs

Michael Arbel 1* , Dougal J. Sutherland 1* , Mikolaj Bińkowski 2 and Arthur Gretton 1

Imperial College London

¹Gatsby Computational Neuroscience Unit, University College London ²Department of Mathematics, Imperial College London Equal contribution

Overview

- ✓ MMD-based losses for implicit generative models are effective and principled.
- × Previous approaches have bad topological properties.
- ✓ We introduce gradient-regularized MMD loss with better topology.
- ✓ New insight on the desired properties for the discriminator network.
- \checkmark State-of-the-art results on 64 \times 64 unconditional ImageNet and 160 \times 160 CelebA.

Integral Probability Metrics

Integral Probability Metrics (IPMs) are distances between distributions defined by a class of critic functions \mathcal{F} :

$$\mathcal{D}(\mathbb{P},\mathbb{Q}) = \sup_{f \in \mathcal{F}} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]$$

• 1-Wasserstein distance: \mathcal{F} is the set of 1-Lipschitz functions

$$\mathcal{F} = \{ f : |f(x) - f(y)| \le ||x - y||, \forall x, y \}$$

WGANs approximate f with a critic network ϕ_{ψ} . Weight clipping [1] or gradient penalty [4] used to make ϕ_{ψ} approximately Lipschitz.

ullet Maximum Mean Discrepancy (MMD) has ${\mathcal F}$ a unit ball in a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with kernel k:

- Closed form solution:
- $f^{\star}(t) \propto \mathbb{E}_{\mathbb{P}}[k(X,t)] \mathbb{E}_{\mathbb{Q}}[k(Y,t)]$
- Unbiased estimator:

Smooth optimal critic:

Maximum Mean Discrepancy for GANs

MMD GANs optimize critic in kernel:

$$k_{\psi}(x,y) = k_{\mathsf{base}}(\phi_{\psi}(x),\phi_{\psi}(y))$$

$$\inf_{\theta} \sup_{\psi} \mathsf{MMD}^2_{k_{\psi}}(\mathbb{P},\mathbb{Q}_{\theta})$$

Can also use gradient penalty [2].

Continuity under weak topology

 $\mathcal{D}_{\mathsf{MMD}}$ not continuous / differentiable in general:

Gradient Constrained MMD

ullet Adjust the radius of the RKHS ball according to the smoothness of k:

$$\mathcal{F}_{\mathcal{S}} = \{ f \in \mathcal{H}_k : ||f||_{\mathcal{H}_k} \leq \sigma_k \}$$

 $\mathsf{SMMD}_k(\mathbb{P},\mathbb{Q}) := \mathsf{sup} \; \mathbb{E}_{\mathbb{P}}[f(X)] - \mathbb{E}_{\mathbb{Q}}[f(X)] = \sigma_k \, \mathsf{MMD}_k(\mathbb{P},\mathbb{Q})$

$$\sigma_k := \left(\lambda + \mathbb{E}_{X \sim \mathbb{S}} \left[k(X, X) + \sum_{i=1}^d \frac{\partial^2 k(y, z)}{\partial y_i \partial z_i} \Big|_{(y, z) = (X, X)} \right] \right)^{-1}$$

- ullet Optimal f^{\star} satisfies $\mathbb{E}_{X \sim \mathbb{S}}[\| \nabla f^{\star}(X) \|^2] \leq 1$
- ullet Other possible choices for ${\mathcal F}$:

 $\mathcal{F}_{\mathit{Lip}} := \{ f \in \mathcal{H}_k : \|f\|_{\mathit{Lip}}^2 + \lambda \|f\|^2 \leq 1 \} \quad \mathcal{F}_{\mathit{GC}} := \{ f \in \mathcal{H}_k : \|f\|_{\mathit{L_2(\mathbb{S})}}^2 + \|\nabla f\|_{\mathit{L_2(\mathbb{S})}}^2 + \lambda \|f\|^2 \leq 1 \}$

Theory: Continuity under weak topology

 $\mathcal{D}_{SMMD}(\mathbb{P},\mathbb{Q})$ is continuous in weak topology if:

- ◆ S has a density (can depend on ℙ, ℚ)
- $\bullet \phi_{\psi}$ is fully connected, Leaky-ReLU activations, non-increasing width
- ullet Each layer of ϕ_{ψ} has weights with bounded condition number
- k_{base} is "reasonable" (Gaussian, linear, ...)

--- SMMDGAN

Condition Number: Layer 1

Experimental Comparison

Scaled MMD GANs outperform other GANs (WGAN-GP, MMD-GAN, SN-GAN).

ImageNet, 64×64 . No labels. Generator: 10-layer ResNet.

Critic: 10-layer ResNet.

CelebA, 160×160 . Generator: 10-layer ResNet. Critic: 5-layer DCGAN.

Implementation at github.com/MichaelArbel/Scaled-MMD-GAN

Faster training and better complexity control

Bibliography

- M. Arjovsky, S. Chintala, and L. Bottou. "Wasserstein Generative Adversarial Networks". ICML. 2017.
- M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. "Demystifying MMD GANs". ICLR. 2018.
- A. Brock, T. Lim, J. M. Ritchie, and N. Weston. "Neural Photo Editing with Introspective Adversarial Networks". ICLR. 2017.
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. "Improved Training of Wasserstein GANs". NeurIPS. 2017. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter. "GANs Trained by a Two Time-Scale Update Rule
- Converge to a Nash Equilibrium". NeurIPS. 2017. R. Hjelm, A. Jacob, T. Che, A. Trischler, K. Cho, and Y. Bengio. "Boundary-Seeking Generative Adversarial Networks". ICLR. 2018.
- L. Mescheder, A. Geiger, and S. Nowozin. "Which Training Methods for GANs do actually Converge?" ICML. 2018.
- T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. "Spectral Normalization for Generative Adversarial Networks". ICLR. 2018.
- Y. Mroueh, C.-L. Li, T. Sercu, A. Raj, and Y. Cheng. "Sobolev GAN". ICLR. 2018.